Chapter 1: Data Storage

Computer Science: An Overview Tenth Edition

J. Glenn Brookshear

Chapter 1: Data Storage

- 1.1 Bits and Their Storage
 - Logic
- 1.2 Main Memory
- 1.3 Mass Storage
- 1.4 Representing Information as Bit Patterns
- 1.5 The Binary System

Chapter 1: Data Storage (continued)

- 1.6 Storing Integers
- 1.7 Storing Fractions
- 1.8 Data Compression*
- 1.9 Communications Errors

*not covered

Bits and Bit Patterns

- **Bit:** Binary Digit (0 or 1)
- Bit Patterns are used to represent information.
 - Numbers
 - Text characters
 - Images
 - Sound
 - And others

Hardware Advances

- representing information as electrical signals led to telegraph in mid-1800s
 - needed device to control current flow
 - telegraph clicker, relays, vacuum tubes
- transistor in 1948
 - collector, emitter, base
- photography end of 18th century
 - based on principle that some chemicals change their properties when exposed to light
 - silver nitrate changes to metallic silver

Boolean Operations

- Boolean Operation: An operation that manipulates one or more true/false values
- Specific operations
 - -AND
 - -OR
 - XOR (exclusive or)
 - -NOT

Figure 1.1 The Boolean operations AND, OR, and XOR (exclusive or)

The AND operation

$$\frac{\mathsf{AND}}{\mathsf{O}} \overset{1}{\overset{0}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset$$

The OR operation

The XOR operation

$$\frac{\mathsf{XOR} \quad 0}{0}$$

Boolean operations

AND

NOT

Gates

- Gate: A device that computes a Boolean operation
 - Often implemented as (small) electronic circuits
 - Provide the building blocks from which computers are constructed
 - VLSI (Very Large Scale Integration)

Figure 1.2 A pictorial representation of AND, OR, XOR, and NOT gates as well as their input and output values

AND

Inputs	Output	
0 0	0	
0 1	0	
1 0	0	
1 1	1	

OR

Inputs	Output
0 0 0 1 1 0 1 1	0 1 1

XOR

Inputs	Output		
0 0	0		
0 1	1		
1 0	1		
1 1	0		

NOT

Inputs	Output		
0	1		
1	0		

How to construct a logical expression from a logic table

- Look at each line in the table for which the result is TRUE (1)
- For each of those rows
 - Find the P and Q values
 - Build an AND statement
 - with the variable itself, if it is TRUE
 - with the negation of the variable, if it is FALSE
- Connect the statements created above with ORs

1-bit comparator

P	Q	P*Q	¬P	¬Q	¬ P *¬Q	$(\mathbf{P}^{\star}\mathbf{Q}) + (\neg \mathbf{P}^{\star}\neg \mathbf{Q})$
1	1	1	0	0	0	1
1	0	0	0	1	0	0
0	1	0	1	0	0	0
0	0	0	1	1	1	1

1-bit comparator

$$(P * Q) + (P' * Q')$$

Using Circuits to do Arithmetic

 Interpret current (true) as a 1 and no current (false) as a 0, we can do math

	+	0	1
a	0	00	01
	1	01	10

Arithmetic

- Note the sum digit is 1 only when both inputs are different
- The carry digit is 1 only when both inputs are 1
- so carry bit is simply carry = a * b
- build a logic table for the sum

Addition

a	b	¬b	a*¬b	¬a	¬a*b	(a*¬b) + (¬a*b)
1	1	0	0	0	0	0
1	0	1	1	0	0	1
0	1	0	0	l	1	1
0	0	1	0	1	0	0

Addition – Half Adder

Addition – Full Adder

- Half adder adds two numbers giving sum and carry result, but no provision for a carry in.
- So we hook two half adders together to create a 1-bit full-adder

Adding two 4-bit numbers

Let's add 0101 and 0110

Flip-flops

- Flip-flop: A circuit built from gates that can store one bit.
 - One input line is used to set its stored value to 1
 - One input line is used to set its stored value to 0
 - While both input lines are 0, the most recently stored value is preserved

Figure 1.3 A simple flip-flop circuit

Figure 1.4 Setting the output of a flip-flop to 1

b. This causes the output of the OR gate to be 1 and, in turn, the output of the AND gate to be 1.

c. The 1 from the AND gate keeps the OR gate from changing after the upper input returns to 0.

Figure 1.4 Setting the output of a flip-flop to 1 (continued)

b. This causes the output of the OR gate to be 1 and, in turn, the output of the AND gate to be 1.

Figure 1.5 Another way of constructing a flip-flop

Main Memory Cells

- Cell: A unit of main memory (typically 8 bits which is one byte)
 - Most significant bit: the bit at the left (highorder) end of the conceptual row of bits in a memory cell
 - Least significant bit: the bit at the right (low-order) end of the conceptual row of bits in a memory cell

Figure 1.7 The organization of a byte-size memory cell

Main Memory Addresses

- Address: A "name" that uniquely identifies one cell in the computer's main memory
 - The names are actually numbers.
 - These numbers are assigned consecutively starting at zero.
 - Numbering the cells in this manner associates an order with the memory cells.

Figure 1.8 Memory cells arranged by address

Memory Terminology

- Random Access Memory (RAM):
 Memory in which individual cells can be easily accessed in any order
- Dynamic Memory (DRAM): RAM composed of volatile memory

Measuring Memory Capacity

- **Kilobyte**: 2¹⁰ bytes = 1024 bytes
 - Example: 3 KB = 3 times 1024 bytes
 - Sometimes "kibi" rather than "kilo"
- **Megabyte:** 2²⁰ bytes = 1,048,576 bytes
 - Example: 3 MB = 3 times 1,048,576 bytes
 - Sometimes "megi" rather than "mega"
- **Gigabyte:** 2^{30} bytes = 1,073,741,824 bytes
 - Example: 3 GB = 3 times 1,073,741,824 bytes
 - Sometimes "gigi" rather than "giga"
- **Terabyte:** 2⁴⁰ bytes
- **Petabyte:** 2⁵⁰ bytes
- Exabyte: 2⁶⁰ bytes

Mass Storage

- On-line versus off-line
- Typically larger than main memory
- Typically less volatile than main memory
- Typically slower than main memory

Mass Storage Systems

- Magnetic Systems
 - Disk
 - Tape
- Optical Systems
 - -CD
 - -DVD
- Flash Drives

Figure 1.9 A magnetic disk storage system

Figure 1.10 Magnetic tape storage

Figure 1.11 CD storage

Data recorded on a single track, consisting of individual sectors, that spirals toward the outer edge

CDs and DVDs

- reflective material covered with clear protective coating.
- information is recorded by creating variations in this reflective surface
- high powered laser beams to created pits
- low powered laser beam to retrieve data
- smooth unpitted area is a 1, pitted area is interpreted as a 0

Flash Drives

- magnetic & optical devices require physical motion to store and retrieve data
 - slow
- in flash memory, bits are stored by sending electronic signals directly to the storage medium where they cause electrons to be trapped in tiny chambers of silicon dioxide, thus altering the characteristics of small electronic circuits
- good for off-line storage, digital cameras, phones, PDAs

Files

- File: A unit of data stored in mass storage system
 - Fields and keyfields
- Physical record versus Logical record
- Buffer: A memory area used for the temporary storage of data (usually as a step in transferring the data)

Representing Text

- Each character (letter, punctuation, etc.) is assigned a unique bit pattern.
 - ASCII: Uses patterns of 7-bits to represent most symbols used in written English text
 - modern uses 8-bit code where last 128 characters are dependent on manufacturer
 - Unicode: Uses patterns of 16-bits to represent the major symbols used in languages world wide
 - ISO standard: Uses patterns of 32-bits to represent most symbols used in languages world wide – billions of characters

ASCII

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	į.	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	С
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	\$	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	р
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	х
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	ı
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F	

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
128	80	Ç	160	A0	á	192	CO	L	224	EO	α
129	81	ü	161	A1	í	193	C1	上	225	E1	ß
130	82	é	162	A2	ó	194	C2	т	226	E2	Г
131	83	â	163	A3	ú	195	C3	F	227	E3	п
132	84	ä	164	A4	ñ	196	C4	_	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	A6	2	198	C6	F	230	E6	μ
135	87	Ç	167	A7	۰	199	C7	⊩	231	E7	τ
136	88	ê	168	A8	ć	200	C8	L	232	E8	Φ
137	89	ë	169	A9	_	201	C9	F	233	E9	0
138	8A	è	170	AA	¬	202	CA	ഥ	234	EA	Ω
139	8B	ï	171	AB	1-2	203	CB	ī	235	EB	δ
140	8C	î	172	AC	¹ «	204	CC	ŀ	236	EC	·
141	8 D	ì	173	AD	i	205	CD	=	237	ED	8
142	8 E	Ä	174	AE	«	206	CE	#	238	EE	ε
143	8 F	Å	175	AF	»	207	CF	∸	239	EF	n
144	90	É	176	во		208	DO	Ш	240	FO	=
145	91	æ	177	B1	******	209	D1	₸	241	F 1	±
146	92	Æ	178	B2		210	D2	π	242	F2	≥
147	93	ô	179	В3		211	DЗ	L	243	F3	≤ .
148	94	ö	180	B4	+	212	D4	F	244	F4	į
149	95	ò	181	B5	4	213	D5	F	245	F5	J
150	96	û	182	В6	1	214	D6	Г	246	F6	÷
151	97	ù	183	В7	П	215	D7	#	247	F7	*
152	98	ÿ	184	В8	7	216	D8	+	248	F8	•
153	99	Ö	185	В9	1	217	D9	Л	249	F9	-
154	9A	Ü	186	BA		218	DA	<u>_</u>	250	FA	·
155	9B	¢	187	BB	n 	219	DB		251	FB	4
156	9C	£	188	BC	 1	220	DC		252	FC	P.
157	9D	¥	189	BD	Ш	221	DD	l __	253	FD	g.
158	9E	R.	190	BE	7	222	DE	1	254	FE	•
159	9F	f	191	BF	1	223	DF	•	255	FF	

Figure 1.13 The message "Hello." in ASCII

Representing Numeric Values

- Binary notation: Uses bits to represent a number in base two
- Limitations of computer representations of numeric values
 - Overflow occurs when a value is too big to be represented
 - Truncation occurs when a value cannot be represented accurately

The Binary System

The traditional decimal system is based on powers of ten.

The Binary system is based on powers of two.

Figure 1.15 The base ten and binary systems

a. Base ten system

b. Base two system

Figure 1.16 Decoding the binary representation 100101

Figure 1.17 An algorithm for finding the binary representation of a positive integer

- Step 1. Divide the value by two and record the remainder.
- **Step 2.** As long as the quotient obtained is not zero, continue to divide the newest quotient by two and record the remainder.
- **Step 3.** Now that a quotient of zero has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded.

Figure 1.18 Applying the algorithm in Figure 1.15 to obtain the binary representation of thirteen

Hexadecimal Notation

- Hexadecimal notation: A shorthand notation for long bit patterns
 - Divides a pattern into groups of four bits each
 - Represents each group by a single symbol
- Example: 10100011 becomes A3

Figure 1.6 The hexadecimal coding system

Bit pattern	Hexadecimal representation
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	E
1111	F

Converting Between Binary and Hex

- To convert from binary to hex
 - starting on the right of the binary number, arrange the binary digits in groups of four
 - convert each quartet to the corresponding hex digit
 - **110 1110 1100**
 - 6 E C

Hex and Binary conversion cont.

- To convert from hex to binary, replace each hex digit with its 4-bit binary equivalent
- 8 A 5
- 1000 1010 0101

Finite Precision Binary Arithmetic

- We can store two different values in 1 bit: 0 or 1.
- in general, in n bits, you can store 2ⁿ different values.
- So with 4 bits, we can store 16 values 0 to 15, but there are no negative values.
- common sense says to split the number of values in half, making half positive, half negative, not forgetting zero.
- Two's complement notation

Storing Integers

- Two's complement notation: The most popular means of representing integer values – standard use is with 8 bits
- Excess notation: Another means of representing integer values – used in floating point notation
- Both can suffer from overflow errors.

Figure 1.21 Two's complement notation systems

a. Using patterns of length three

Bit pattern	Value represented				
011	3				
010	2				
001	1				
000	0				
111	-1				
110	-2				
101	-3				
100	-4				

b. Using patterns of length four

Bit pattern	Value represented
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	- 5
1010	-6
1001	- 7
1000	-8

More Examples: www.bbc.co.uk/bitesize/guides/zjfgjxs/revision/5

Figure 1.22 Coding the value -6 in two's complement notation using eight bits

Another method – flip all the bits and add 1 to the result

How many values

- with 4 bits
- $-8 = -2^{4-1}$ and $7 = 2^{4-1} 1$.
- with 16 bits
- $-32,768 = -2^{16-1}$ and $32,767 = 2^{16-1} 1$
- with 32 bits
- $-2,147,483,648 = -2^{32-1}$ and $2,147,483,647 = 2^{32-1} 1$

Figure 1.19 The binary addition facts

$$\frac{0}{+1}$$

Figure 1.23 Addition problems converted to two's complement notation

OVERFLOW – Trouble in paradise

 Using 6 bits we can represent values from -32 to 31, so what happens when we try to add 19 plus 14 or -19 and -14.

$$\frac{19}{+14}$$

$$010011 \\ +001110 \\ \hline 100001$$

we have added two positive numbers and gotten a negative result – this is overflow

$$\begin{array}{r}
 101101 \\
 +110010 \\
 \hline
 011111
 \end{array}$$

we have added two negative numbers and gotten a positive result – this is overflow

Real numbers in Binary

- As the places to the left of the binary point are powers of 2, so are the places to the right of the binary point
- ... 8 4 2 1 . ½ ¼ 1/8 1/16 1/32 1/64 ...

Figure 1.20 Decoding the binary representation 101.101

Coding 9 11/32

- 9 = 1001
- 11 = 1011
- 32 is fifth place to the right of binary point
- so 1001.01011 with the final 1 in the 1/32 place to the right of the binary point

Figure 1.24 An excess eight conversion table

Bit pattern	Value represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	0
0111	-1
0110	-2
0101	- 3
0100	-4
0011	- 5
0010	-6
0001	- 7
0000	-8

Figure 1.25 An excess notation system using bit patterns of length three

Value represented				
3				
2				
1				
0				
-1				
-2				
- 3				
-4				

Storing Fractions

- Floating-point Notation: Consists of a sign bit, a mantissa field, and an exponent field.
- Related topics include
 - Normalized form
 - Truncation errors

Figure 1.26 Floating-point notation components

Converting 2 1/4 to floating point

- figure out 2 ¼ in binary = 10.01
- normalize the number (move the binary point to the left of the most significant 1 leftmost one) and adjust the exponent = 10.01 * 2⁰ = .1001 * 2²
- Calculate the exponent by adding the excess value to the exponent value: 2 + 4 = 6 = 110 in binary
- figure out the sign positive is 0
- put is all together = 0 110 1001

Another

- Remember if the number has a whole portion, the exponent will be positive. If the number is 0 or a fraction, the exponent will be 0 or negative
- -3/8 = .011 in binary
- normalize .11 * 2⁻¹ (pad fraction = .1100)
- calculate exponent: -1 + 4 = 3 = 011
- calculate sign: 1 for negative
- put it together: 1 011 1100

Figure 1.27 Encoding the value 2 5/8

Error Detection

- Parity bits
 - add an extra bit to each memory cell
 - for odd parity
 - count the number of 1s in memory cell
 - set extra parity bit to 0 if value already contains an odd number of 1s
 - set parity bit to 1 if number of 1 bits is even
 - so memory cell + parity bit will always have an odd number of 1s

Figure 1.28 The ASCII codes for the letters A and F adjusted for odd parity

