Genetic Algorithm MALIS

Simone Rossi

October 21, 2016

Date Performed: data
Partners: Simone Rossi
Fabian Sperrle

1 Chromosome genetic operators

MUTATION TEST Mutation test 0: Chromosome: fitness= 0.00, cities: Chromosome: fitness= 0.00, cities: Mutation test 1: Chromosome: fitness= 0.00, cities: 5 0 2 Chromosome: fitness= 0.00, cities: 2 1 Mutation test 2: Chromosome: fitness= 0.00, cities: Chromosome: fitness= 0.00, cities: 2 Mutation test 3: Chromosome: fitness= 0.00, cities: 0 Chromosome: fitness= 0.00, cities: 2

Crossover Test

Crossover test 0:										
	- 0 00		2	0	2	_	4	1		
Chromosome: fitnes:										
Chromosome: fitnes:	s = 0.00,	cities:					4			
Chromosome: fitnes:	s = 0.00,	cities:	2	0	3	5	4	1		
			^			^				
Crossover test 1:										
Chromosome: fitnes:	s = 0.00,	cities:	3	5	2	4	1	0		
Chromosome: fitness	s = 0.00,	cities:	2	0	3	1	4	5		
Chromosome: fitness	s = 0.00,	cities:	0	5	2	4	1	3		
				^			^			
Crossover test 2:										
Chromosome: fitnes:								-		
Chromosome: fitnes:	s = 0.00,	cities:	3	0	4	1	2	5		
Chromosome: fitnes:	s = 0.00,	cities:	4	1	2	0	3	5		
			^					^		
Crossover test 3:										
Chromosome: fitness	s = 0.00,	cities:	3	1	2	0	4	5		
Chromosome: fitness	s = 0.00,	cities:	3	2	0	5	4	1		
Chromosome: fitness	s = 0.00,	cities:	3	1	2	0	5	4		
	•		^			^				

2 Population evolution on a circle

```
Mutation rate: 0.100, Population size: 100
Generation: 0, length: 4400.545, best 4400.545
               1, length: 3858.581, best 3858.581
Generation:
               6, length: 3285.575, best 3285.575
Generation:
              9, length: 3250.057, best 3250.057
Generation:
Generation:
              21, length: 3245.444, best 3245.444
Generation:
              26, length: 3147.703, best 3147.703
Generation:
              28, length: 2938.125, best 2938.125
              36, length: 2930.445, best 2930.445
Generation:
Generation:
              42, length: 2593.538, best 2593.538
            214, length: 2549.924, best 2549.924
Generation:
Generation:
            2188, length: 2469.794, best 2469.794
            2886, length: 2465.225, best 2465.225
Generation:
Generation:
            3035, length: 2459.436, best 2459.436
Generation: 3040, length: 2160.005, best 2160.005
Generation: 3047, length: 2150.879, best 2150.879
Generation: 9724, length: 2138.629, best 2138.629
Generation: 12340, length: 2017.892, best 2017.892
Generation: 53563, length: 1939.148, best 1939.148
Generation: 91516, length: 1936.308, best 1936.308
Generation: 96079, length: 1820.814, best 1820.814
```


Figure 1: Best result after 96079 generations

3 Population evolution on cities in France

In the next table, we will report the best result of every combinations between mutation rate and population size.

	10	50	100	500
0.01				
0.1				
0.5				