Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Pré-processamento de Dados

- Desempenho de técnicas de AM é afetado pela qualidade dos dados
 - Conjuntos de dados podem ter diferentes características, dimensões ou formatos
 - Atributos numéricos vs simbólicos
 - Limpos vs com ruídos e imperfeições
 - Valores incorretos, inconsistentes, duplicados ou ausentes
 - Atributos independentes vs relacionados
 - Poucos vs muitos objetos e/ou atributos

Pré-processamento: minimizar/eliminar problemas nos dados; tornar dados mais adequados para uso por um determinado algoritmo de AM

Benefícios:

- Facilitar o posterior uso de técnicas de AM
 - Ou tornar mais adequado para a técnica
 - Ex. algumas trabalham somente com entradas numéricas
- Obtenção de modelos mais fiéis à distribuição dos dados
 - Melhorar qualidade
- Redução de complexidade computacional
 - Tempo e custo
- Tornar mais fáceis e rápidos ajustes de parâmetros
- Facilitar a interpretação dos padrões extraídos

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Observação: não existe ordem fixa para aplicação das diferentes técnicas de pré-processamento

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Alguns atributos não possuem relação com o problema sendo solucionado

Ex. RG em diagnóstico

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Dados podem estar em mais de um banco de dados Diferentes conjuntos de dados integrados: pode levar a inconsistências e redundâncias

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Algoritmos de AM podem ter dificuldades quando precisam lidar com uma grande quantidade de dados (objetos, atributos ou ambos)

Ex. redundância e inconsistência

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Conjunto de dados desbalanceado: proporção de exemplos em algumas classes pode ser muito maior do que em outras

Maioria dos algoritmos de AM tem dificuldade neste cenário

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Presença de ruídos, dados incompletos e inconsistentes pode afetar desempenho dos algoritmos de AM

Alguns são incapazes de lidar com dados incompletos

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Vários algoritmos de AM têm dificuldades em usar os dados em seu formato original

Ex. transformação de valores simbólicos para numéricos

Integração de Dados

- Dados podem vir de diferentes fontes
 - ⇒ integração de diferentes conjuntos de dados
 - Cada um pode ter atributos diferentes para os mesmos objetos
- Identificação de entidade
 - Identificar os objetos em comum
 - Normalmente por busca por atributos comuns nos conjuntos
 - Que tenham valor único para cada objeto
 - Ex. identificação de paciente

Integração de Dados

- Dificuldades:
 - Atributos correspondentes com nomes diferentes
 - Dados podem ter sido atualizados em momentos diferentes

Comum usar metadados para minimizar esses problemas

Metadados: dados sobre os dados, que descrevem suas principais características

- Há atributos que claramente não contribuem para o aprendizado
 - Ex. conjunto de dados hospital

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Grandes	38,0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	M	67	Médias	38,4	2	GO	Saudável

Não contribuem para estimar se um paciente tem doença ou não

- Normalmente, o conjunto de atributos é definido de acordo com a experiência de especialista
 - Ex. conjunto de dados hospital

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
28	М	79	Grandes	38,0	2	SP	Doente
18	F	67	Pequenas	39,5	4	MG	Doente
49	М	92	Grandes	38,0	2	RS	Saudável
18	М	43	Grandes	38,5	20	MG	Doente
21	F	52	Médias	37,6	1	PE	Saudável
22	F	72	Pequenas	38,0	3	RJ	Doente
19	F	87	Grandes	39,0	6	AM	Doente
34	М	67	Médias	38,4	2	GO	Saudável

Médico pode decidir que atributo associado ao estado de origem do paciente também não é relevante para seu diagnóstico clínico

- Ex. conjunto de dados hospital
 - Após eliminação manual dos atributos

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

- Outro atributo irrelevante facilmente detectado:
 - Atributo que possui o mesmo valor para todos objetos
 - Não traz informação para ajudar a distinguí-los
- Há ainda atributos irrelevantes de identificação não tão clara
 - Técnicas de seleção de atributos podem ajudar a identificar

- Algoritmos de AM podem ter dificuldades em lidar com um número grande de objetos
 - Saturação de memória
 - Aumento do tempo computacional para ajustar os parâmetros do modelo
- Contudo, quanto mais dados, maior tende a ser a acurácia do modelo

Procurar balanço entre eficiência computacional e acurácia do modelo

- Amostra dos dados
 - Pode levar ao mesmo desempenho do conjunto completo, a menor custo computacional
 - Deve ser representativa

Amostra representativa:

- Aproximadamente as mesmas propriedades do conjunto de dados original
- Fornecer uma estimativa da informação contida na população original
- Uso deve ter efeito semelhante ao de toda a população
- Permitir conclusão do todo a partir de uma parte

Técnicas de amostragem:

Amostragem aleatória simples

- Variações: com e sem reposição de exemplos (semelhantes quando tamanho da amostra é bem menor que o do conjunto original)
- Função sample em R

Amostragem estratificada

- Quando classes têm propriedades diferentes (ex. números de objetos diferentes)
- Variações: manter o mesmo número de objetos para cada classe ou manter o número proporcional ao original

Amostragem progressiva

• Começa com amostra pequena e vai aumentando enquanto acurácia preditiva continuar a melhorar

- Tópico de classificação de dados
 - Número de objetos varia para as diferentes classes
 - Típico da aplicação
 - Ex. 80% dos pacientes que vão a um hospital estão doentes
 - Ou problema na geração/coleta dos dados

Classe majoritária

 Contém a maior parte dos exemplos

Classe minoritária

 Tem o menor número de exemplos no conjunto

- Acurácia preditiva de classificador deve ser maior que a obtida atribuindo um novo objeto à classe majoritária
 - Vários algoritmos de AM têm o desempenho prejudicado para dados muito desbalanceados
 - Tendem a favorecer a classificação na classe majoritária

- Alternativas para lidar com dados desbalanceados:
 - Obter novos dados para a classe minoritária
 - Na maioria dos casos não é possível...
 - Balancear artificialmente o conjunto de dados:
 - Redefinir o tamanho do conjunto de dados
 - Usar diferentes custos de classificação por classe
 - Induzir um modelo para uma classe

Técnicas de rebalanceamento:

Redefinir tamanho do conjunto de dados

- Acréscimo/eliminação de exemplos na classe minoritária/majoritária
- Acréscimo: risco de objetos que não representam situações reais e overfitting
- Eliminação: risco de perda de objetos importantes e *underfitting*
- library (unbalanced) em R provê vários dos métodos

Usar custos de classificação diferentes para as classes

- Dificuldades: definição dos custos, incorporar custos em alguns algoritmos de AM
- Pode apresentar baixo desempenho quando muitos objetos da classe majoritária são semelhantes

- Qualidade dos dados:
 - Em geral, dados não foram produzidos para uso em AM
 - Exemplos de problemas:
 - Ruídos: erros ou valores diferentes do esperado
 - Inconsistências: não combinam/contradizem valores de outros atributos no mesmo objeto
 - Redundâncias: objetos/atributos com mesmos valores
 - Dados incompletos: ausência de valores de atributos

Principal dificuldade: detecção de dados ruidosos

- Exemplos de causas de erros:
 - Falha humana
 - Falha no processo de coleta de dados
 - Limitações do dispositivo de medição
 - Má fé
 - Valor de atributo muda com o tempo

Alguns erros são sistemáticos e mais fáceis de detectar e corrigir

- Consequências:
 - Valores ou objetos inteiros podem ser perdidos
 - Objetos espúrios ou duplicados podem ser obtidos
 - Ex. diferentes registros para mesma pessoa que morou em endereços diferentes
 - Inconsistências
 - Ex.: pessoa com 2m pesando 10Kg

- Algumas técnicas de AM conseguem lidar com algumas imperfeições nos dados
 - Outras não conseguem ou apresentam dificuldades
- Porém de forma geral, qualidade das análises pode ser deteriorada

Todas as técnicas se beneficiam de melhora na qualidade dos dados, que pode ser obtida por meio de etapa de **limpeza**

- Ausência de valores para alguns atributos de alguns objetos
 - Ex. conjunto de dados hospital

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
	M	79		38,0		Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18		43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

- Possíveis causas:
 - Atributo não era importante quando primeiros dados foram coletados
 - Ex. e-mail na década de 90
 - Desconhecimento do valor do atributo
 - Ex. não saber tipo sanguíneo de paciente em seu cadastro
 - Falta de necessidade/obrigação de apresentar valor
 - Ex. salário em hospital
 - Inexistência de valor para o atributo
 - Ex. número de partos para pacientes do sexo masculino
 - Problema com equipamento para coleta, transmissão e armazenamento de dados

- Algumas técnicas de AM são incapazes de lidar com valores ausentes
 - Geram erro de execução
- Alternativas para lidar com valores ausentes:
 - Eliminar os objetos com valores ausentes
 - Definir e preencher manualmente os valores ausentes
 - Utilizar método/heurística para definir valores automaticamente
 - Empregar algoritmos de AM que lidam internamente com valores ausentes

Técnicas:

Eliminar objetos

- Mais empregada quando classe está ausente
- Não indicada quando número de atributos com valores ausentes varia muito entre os objetos ou quando muitos objetos têm valores ausentes

Definir/preencher manualmente

 Não é factível para muitos valores ausentes

Usar heurística

Alternativa mais usada

Técnicas para definição automática de valores:

Criar valor "desconhecido"

Comum a todos ou diferente para cada atributo

Utilizar média/moda/ mediana dos valores conhecidos

- Usando todos os objetos ou somente aqueles da mesma classe
- Variação: usar valor mais frequente entre k vizinhos mais próximos

Usar indutor para estimar o valor

- Valor a ser definido passa a ser o atributo alvo
- Usa informação dos outros atributos para inferior o ausente

- Usando média/moda
 - Ex. conjunto de dados hospital

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
27	M	79	Grandes	38,0	4	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	F	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
27	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Pode gerar inconsistências. Ex. paciente de 2 anos com 60 kg

Dados inconsistentes

- Possuem valores conflitantes em seus atributos
 - Nos atributos de entrada
 - Ex. 3 anos de idade e 120 kg
 - Entradas iguais e saída diferente
 - Ex. conjunto de dados hospital

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
22	F	72	Pequenas	38,0	3	Saudável

Dados inconsistentes

- Possíveis causas:
 - Erro/engano
 - Presença de ruídos nos dados
 - Proposital (fraude)
 - Problemas na integração dos dados
 - Ex. conjuntos de dados com escalas diferentes para uma mesma medida

Dados inconsistentes

- Algumas inconsistências são de fácil detecção:
 - Violação de relações conhecidas entre atributos
 - Ex.: Valor de atributo A é sempre menor que valor de atributo B
 - Valor inválido para o atributo
 - Ex.: altura com valor negativo
 - Em outros casos, informações adicionais precisam ser verificadas

- Valores que não trazem informação nova
 - Objetos redundantes
 - Muito semelhante(s) a outro(s) no conjunto de dados
 - Ex.: Pessoas em diferentes BDs com mesmo endereço e pequenas diferenças nos nomes
 - Atributos redundantes
 - Valor pode ser deduzido a partir do valor de um ou mais atributos
- Possíveis causas:
 - Problemas na coleta, entrada, armazenamento, integração ou transmissão ou desconhecimento dos dados

Ex. conjunto de dados hospital

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	F	67	Pequenas	39,5	4	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Duplicação

- Objetos redundantes participam mais de uma vez do ajuste do modelo
 - Pode assim ser considerado um perfil mais importante que o dos outros
 - Pode também aumentar custo computacional
- Passos para eliminar objetos redundantes:
 - Identificar as redundâncias
 - Eliminar as redundâncias
 - Remoção ou combinação dos valores

- Atributo redundante: valor pode ser estimado a partir de pelo menos um dos demais atributos
 - Atributos com a mesma informação preditiva
 - Ex. atributos idade e data de nascimento
 - Ex. atributos quantidade de vendas, valor por venda e venda total
 - Atributo redundante pode supervalorizar um dado aspecto dos dados
 - Pode também tornar mais lento o processo de inducão

Atributos redundantes são geralmente eliminados por técnicas de **seleção de atributos**

- Redundância de atributo está relacionada à sua correlação com um ou mais dos demais atributos
 - Dois atributos estão correlacionados quando têm perfil de variação semelhante para diferentes objetos

•	Fy conjunto de dados hosnital									
				Manchas		# Int.	# Vis.	Diagnóstico		
	28	М	79	Grandes	38,0	2	2	Doente		
	18	F	67	Pequenas	39,5	4	4	Doente		
	49	М	92	Grandes	38,0	2	2	Saudável		
	18	М	43	Grandes	38,5	20	20	Doente		
	21	F	52	Médias	37,6	1	1	Saudável		
	22	F	72	Pequenas	38,0	3	3	Doente		
	19	F	87	Grandes	39,0	6	6	Doente		
	34	M	67	Médias	38,4	2	2	Saudável		

- Objetos que aparentemente não pertencem à distribuição que gerou os dados
- Várias causas possíveis
- Podem levar a superajuste do modelo
 - Algoritmo pode se ater às especificidades dos ruídos
- Mas eliminação pode levar à perda de informação importante
 - Algumas regiões do espaço de atributos podem não ser consideradas

Outliers

- Valores que estão além dos limites aceitáveis ou são muito diferentes dos demais (exceções)
 - Podem ser valores legítimos
 - Ex. conjunto de dados hospital

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	300	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Pequenas	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Outliers

- Algumas técnicas de pré-processamento:
 - Técnicas baseadas em distribuição
 - Técnicas de encestamento
 - Técnicas baseadas em agrupamento dos dados
 - Técnicas baseadas em distância
 - Técnicas baseadas em regressão ou classificação

Pacote NoiseFiltersR tem algumas técnicas implementadas

Técnicas:

Baseadas em distribuição

- Ruídos identificados como observações que diferem de uma distribuição usada na modelagem dos dados
- Problema: distribuição dos dados normalmente não é conhecida *a priori*

Encestamento

- Suavizam valor de atributo
- 1°: Ordena valores de atributo;
- 2º:divide em cestas (faixas), cada uma com o mesmo número de valores
- 3°: Substitui valores em uma mesma cesta, por ex., por média/moda/

Técnicas:

Baseadas em regressão/classificação

• Usam função de regressão ou classificação para, dado um valor com ruído, estimar seu valor verdadeiro (regressão para atributo contínuo e classificação para simbólico)

Transformação de Dados

- Algumas técnicas de AM são limitadas à manipulação de valores de determinado tipo
 - Apenas numéricos ou simbólicos
- Algumas técnicas de AM têm desempenho influenciado pela variação dos valores numéricos

- Atributo simbólico com dois valores
 - Um dígito binário é suficiente
 - Ex. presença/ausência = 1/0
 - Se ordinal, 0 indica o menor valor e 1 o maior valor
- Atributo simbólico com mais valores
 - Conversão depende se o atributo é nominal ou ordinal

- Atributo nominal com mais valores
 - Inexistência de relação de ordem deve ser mantida
 - Diferença entre quaisquer dois valores numéricos deve ser a mesma
 - Codificação canônica: uso de c bits para c valores
 - Cada posição na sequência binária corresponde a um valor possível do atributo nominal
 - Cada sequência possui apenas um bit com valor 1
 - Distância de Hamming entre quaisquer dois valores é 2

- Ex. conjunto de dados hospital
 - Conversão de atributo Sexo para numérico

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	0	79	Grandes	38,0	2	Doente
18	1	67	Pequenas	39,5	4	Doente
49	0	92	Grandes	38,0	2	Saudável
18	0	43	Grandes	38,5	20	Doente
21	1	52	Médias	37,6	1	Saudável
22	1	72	Pequenas	38,0	3	Doente
19	1	87	Grandes	39,0	6	Doente
34	0	67	Médias	38,4	2	Saudável

- Atributo nominal com mais que dois valores
 - Ex. codificação canônica (1-para-c ou topológica)

Atributo	Código 1-para-c
Azul	100000
Amarelo	010000
Verde	001000
Preto	000100
Marrom	000010
Branco	000001

Dependendo do número de valores nominais, pode gerar cadeias muito grandes de bits. Ex.: 193 nomes de países

- Atributo ordinal com mais que dois valores
 - Relação de ordem deve ser preservada
 - Ordenar valores ordinais e codificar cada um de acordo com sua posição na ordem com inteiro ou real

Atributo	Valor inteiro
Primeiro	0
Segundo	1
Terceiro	2
Quarto	3
Quinto	4
Sexto	5

Distância entre valores varia de acordo com proximidade entre eles

- Ex. conjunto de dados hospital
 - Conversão de atributo ordinal Manchas

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	3	38,0	2	Doente
18	F	67	1	39,5	4	Doente
49	М	92	3	38,0	2	Saudável
18	М	43	3	38,5	20	Doente
21	F	52	2	37,6	1	Saudável
22	F	72	1	38,0	3	Doente
19	F	87	3	39,0	6	Doente
34	М	67	2	38,4	2	Saudável

Grandes = 3Médias = 2

Pequenas = 1

- Atributo discreto e binário ⇒ conversão é trivial
 - Associa um nome a cada valor
 - Também se são sequências binárias sem relação de ordem
- Demais casos: discretização
 - Transforma valores numéricos em intervalos (categorias)
 - Existem vários métodos diferentes para discretização
 - Paramétricos: usuário pode influenciar definição dos intervalos
 - Não paramétricos: usam apenas informações presentes nos valores dos atributos

- Métodos de discretização podem ser:
 - Supervisionados: usa informação da classe
 - Melhor resultado, não leva a mistura de classes
 - Ex. escolher pontos de corte que maximizam pureza dos intervalos (entropia)
 - Não supervisionados
- Método de discretização deve definir:
 - Como mapear valores quantitativos para qualitativos
 - Tamanho dos intervalos
 - Quantidade de valores nos intervalos

Algumas estratégias:

Larguras iguais

- Dividir valores em subintervalos com mesma largura
- Problema: desempenho afetado pela presença de *outliers*

Uso de um algoritmo de agrupamento

Frequências iguais

- Mesmo número de objetos em cada intervalo
- Problema: pode gerar intervalos de tamanhos muito diferentes

Inspeção visual

Ex: discretização com larguras iguais

Ex: discretização com frequências iguais

Transformação de atributos numéricos

- Algumas vezes é necessário transformar o valor de um atributo numérico em outro valor numérico
 - Quando o intervalo de valores são muito diferentes, levando a grande variação
 - Quando vários atributos estão em escalas diferentes
 - Para evitar que um atributo predomine sobre outro
- Porém, em alguns casos pode ser importante preservar a variação

Transformação de atributos numéricos

- Transformação é aplicada aos valores de um dado atributo de todos os objetos
- Uma transformação muito usada: normalização
 - Faz com que conjunto de valores de um atributo tenha uma determinada propriedade
 - Quando escalas de valores de atributos distintos são muito diferentes
 - Evita que um atributo predomine sobre o outro
 - A menos que isso seja importante

Normalização

- Deve ser aplicada a cada atributo individualmente
 - Duas formas:

Por amplitude

- Por reescala: define nova escala (máximo e mínimo) de valores para atributos
- Por padronização: define um valor central e de espalhamento comuns para todos os atributos

Por distribuição

- Muda a escala de valores
- Ex. Ordena valores dos atributos e substitui cada valor por sua posição no *ranking* (valores 1, 5, 9, e 3 viram 1, 3, 4 e 2)
- Se valores originais forem distintos, resultado é distribuição uniforme

- Reescalar: adicionar/subtrair/multiplicar/dividir por uma constante
- Normalização min-max
 - São definidos inicialmente mínimo e máximo para os novos valores
 - Depois, para cada atributo aplica:

```
v_{\text{novo}} = \min + \frac{v_{\text{atual}} - \text{menor}}{\text{maior - menor}}. (max – min)
```

- Ex. conjunto de dados hospital
 - Normalização de Idade entre 0 (min) e 1 (max)

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Maior = 49Menor = 18

- Ex. conjunto de dados hospital
 - Normalização de Idade entre 0 (min) e 1 (max)

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

$$v_{\text{novo}} = \frac{v_{\text{atual}} - 18}{49 - 18}$$

- Ex. conjunto de dados hospital
 - Normalização de Idade entre 0 (min) e 1 (max)

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,32	M	79	Grandes	38,0	2	Doente
0	F	67	Pequenas	39,5	4	Doente
1	M	92	Grandes	38,0	2	Saudável
0	M	43	Grandes	38,5	20	Doente
0,1	F	52	Médias	37,6	1	Saudável
0,13	F	72	Pequenas	38,0	3	Doente
0,03	F	87	Grandes	39,0	6	Doente
0,52	M	67	Médias	38,4	2	Saudável

- Ex. conjunto de dados hospital
 - Normalização de # Int. entre 0 (min) e 1 (max)

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,32	М	79	Grandes	38,0	2	Doente
0	F	67	Pequenas	39,5	4	Doente
1	M	92	Grandes	38,0	2	Saudável
0	M	43	Grandes	38,5	20	Doente
0,1	F	52	Médias	37,6	1	Saudável
0,13	F	72	Pequenas	38,0	3	Doente
0,03	F	87	Grandes	39,0	6	Doente
0,52	M	67	Médias	38,4	2	Saudável

Maior = 20 Menor = 1

- Ex. conjunto de dados hospital
 - Normalização de # Int. entre 0 (min) e 1 (max)

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,32	М	79	Grandes	38,0	2	Doente
0	F	67	Pequenas	39,5	4	Doente
1	M	92	Grandes	38,0	2	Saudável
0	M	43	Grandes	38,5	20	Doente
0,1	F	52	Médias	37,6	1	Saudável
0,13	F	72	Pequenas	38,0	3	Doente
0,03	F	87	Grandes	39,0	6	Doente
0,52	М	67	Médias	38,4	2	Saudável

$$v_{\text{novo}} = \frac{v_{\text{atual}} - 1}{20 - 1}$$

- Ex. conjunto de dados hospital
 - Normalização de # Int. entre 0 (min) e 1 (max)

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,32	М	79	Grandes	38,0	0,05	Doente
0	F	67	Pequenas	39,5	0,16	Doente
1	М	92	Grandes	38,0	0,05	Saudável
0	М	43	Grandes	38,5	1	Doente
0,1	F	52	Médias	37,6	0	Saudável
0,13	F	72	Pequenas	38,0	0,11	Doente
0,03	F	87	Grandes	39,0	0,26	Doente
0,52	М	67	Médias	38,4	0,05	Saudável

- Ex. conjunto de dados hospital
 - Observe o efeito de outlier

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,32	M	79	Grandes	38,0	0,05	Doente
0	F	67	Pequenas	39,5	0,16	Doente
1	M	92	Grandes	38,0	0,05	Saudável
0	M	43	Grandes	38,5	1	Doente
0,1	F	52	Médias	37,6	0	Saudável
0,13	F	72	Pequenas	38,0	0,11	Doente
0,03	F	87	Grandes	39,0	0,26	Doente
0,52	M	67	Médias	38,4	0,05	Saudável

Normalização por reescala

Ex. conjunto de dados iris

- Para padronizar valores de atributos basta:
 - Adicionar/subtrair por uma medida de localização
 - Multiplicar/dividir por uma medida de escala
- Lida melhor com outliers
- Ex. atributos com média 0 e variância 1:

$$v_{novo} = v_{atual} - méd(x^i)$$

 $desv_pad(x^i)$

Diferentes atributos podem ter limites superiores e inferiores diferentes, mas terão os mesmos valores para as medidas de escala e espalhamento

- Ex. conjunto de dados hospital
 - Padronização de Idade com média 0 e variância 1

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

```
Média = 21,5
Desv_pad = 10,79
```

- Ex. conjunto de dados hospital
 - Padronização de Idade com média 0 e variância 1

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

$$v_{\text{novo}} = \frac{v_{\text{atual}} - 21,5}{10,79}$$

- Ex. conjunto de dados hospital
 - Padronização de Idade com média 0 e variância 1

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,6	M	79	Grandes	38,0	2	Doente
-0,32	F	67	Pequenas	39,5	4	Doente
2,55	M	92	Grandes	38,0	2	Saudável
-0,32	M	43	Grandes	38,5	20	Doente
-0,05	F	52	Médias	37,6	1	Saudável
0,05	F	72	Pequenas	38,0	3	Doente
-0,23	F	87	Grandes	39,0	6	Doente
1,16	M	67	Médias	38,4	2	Saudável

```
Média = 0
Desv_pad = 1
```

- Ex. conjunto de dados hospital
 - Padronização de # Int. com média 0 e desvio-padrão 1

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,6	М	79	Grandes	38,0	2	Doente
-0,32	F	67	Pequenas	39,5	4	Doente
2,55	M	92	Grandes	38,0	2	Saudável
-0,32	М	43	Grandes	38,5	20	Doente
-0,05	F	52	Médias	37,6	1	Saudável
0,05	F	72	Pequenas	38,0	3	Doente
-0,23	F	87	Grandes	39,0	6	Doente
1,16	М	67	Médias	38,4	2	Saudável

- Ex. conjunto de dados hospital
 - Padronização de # Int. com média 0 e desvio-padrão 1

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,6	М	79	Grandes	38,0	2	Doente
-0,32	F	67	Pequenas	39,5	4	Doente
2,55	M	92	Grandes	38,0	2	Saudável
-0,32	M	43	Grandes	38,5	20	Doente
-0,05	F	52	Médias	37,6	1	Saudável
0,05	F	72	Pequenas	38,0	3	Doente
-0,23	F	87	Grandes	39,0	6	Doente
1,16	М	67	Médias	38,4	2	Saudável

$$v_{\text{novo}} = \frac{v_{\text{atual}} - 2.5}{6.26}$$

Ex. conjunto de dados hospital

Padronização de # Int. com média 0 e desvio-padrão 1

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,6	М	79	Grandes	38,0	-0,08	Doente
-0,32	F	67	Pequenas	39,5	0,24	Doente
2,55	М	92	Grandes	38,0	-0,08	Saudável
-0,32	M	43	Grandes	38,5	2,8	Doente
-0,05	F	52	Médias	37,6	-0,24	Saudável
0,05	F	72	Pequenas	38,0	0,08	Doente
-0,23	F	87	Grandes	39,0	0,56	Doente
1,16	М	67	Médias	38,4	-0,08	Saudável

Média = 0 Desv_pad = 1

- Ex. conjunto de dados hospital
 - Observe o efeito de outlier

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,6	M	79	Grandes	38,0	-0,08	Doente
-0,32	F	67	Pequenas	39,5	0,24	Doente
2,55	M	92	Grandes	38,0	-0,08	Saudável
-0,32	M	43	Grandes	38,5	2,8	Doente
-0,05	F	52	Médias	37,6	-0,24	Saudável
0,05	F	72	Pequenas	38,0	0,08	Doente
-0,23	F	87	Grandes	39,0	0,56	Doente
1,16	M	67	Médias	38,4	-0,08	Saudável

Ex. conjunto de dados iris

Transformação de atributos numéricos

- Outro tipo de transformação: tradução
 - Valor é traduzido por um mais facilmente manipulável
 - Ex. converter data de nascimento para idade
 - Ex. converter temperatura de F para C
 - Ex. localização por GPS para código postal

Transformação de atributos numéricos

- Outro tipo de transformação: aplicação de função simples
 - Aplicação a cada valor do atributo
 - Ex. log, exp, raiz, seno, 1/x, abs
 - Ex. apenas magnitude dos valores é importante ⇒ converter para valor absoluto
 - Funções raiz, log e 1/x: aproximam uma distribuição Gaussiana
 - Função log: comprimir dados com grande intervalo de valores

Redução de dimensionalidade

- Muitos problemas possuem número elevado de atributos
 - Ex. dados de expressão gênica
 - Ex. imagens
 - Se cada pixel for considerado um atributo

Problema: maldição da dimensionalidade

Maldição da dimensionalidade

- Supor dados representados por pontos em um hipervolume
 - Valores de atributos d\u00e4o as coordenadas

Maldição da dimensionalidade

- Hipervolume cresce exponencialmente com a adição de novos atributos
 - 1 atributo com 10 possíveis valores ⇒ 10 possíveis objetos
 - 5 atributos com 10 possíveis valores ⇒ 105 possíveis objetos
 - problemas com poucos exemplos e muitos atributos:
 - Dadas sa tamarasa

Sem exemplos em várias das regiões do espaço de objetos Instâncias parecem equidistantes (dificultando encontrar padrões)

Maldição da dimensionalidade

- Número de exemplos necessários para manter desempenho cresce exponencialmente com o número de atributos
 - Na prática, o número de exemplos de treinamento é fixo
 - Necessidade de redução de dimensionalidade

Redução de dimensionalidade

Vantagens:

- Alguns algoritmos de AM que têm dificuldades em lidar com número elevado de atributos
- Melhorar desempenho do modelo induzido
 - Identificação e eliminação de ruídos nos atributos
- Reduzir custo computacional do modelo
- Resultados mais compreensíveis

Redução de dimensionalidade

Técnicas podem ser divididas em duas abordagens:

Agregação

- Combinação dos atributos originais por funções lineares ou não lineares
- Ex. PCA (*Principal Component Analysis*), que elimina redundâncias por correlação
- Levam à perda dos valores originais

Seleção de atributos

- Identificar os atributos mais importantes
- Manter os relevantes
- Remover os redundantes e inconsistentes
- Diferentes critérios podem ser usados para medir importância

Considerações finais

- Pré-processamento:
 - Integração de dados
 - Amostragem
 - Dados desbalanceados
 - Limpeza de dados
 - Transformação de dados
 - Redução do número de atributos