UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES

CHARACTERIZATION OF CONFINED DISPOSAL AREA INFLUENT AND EFFLUEN--ETC(U)

MAY 78 J C LU, B EICHENBERGER, M KNEZEVIC

DACW39-76-C-0038 AD-A056 371 UNCLASSIFIED WES-TR-0-78-16 NL 1 of 2 AD A056371

DREDGED MATERIAL RESEARCH PROGRAM

TECHNICAL REPORT D-78-16

CHARACTERIZATION OF CONFINED DISPOSAL AREA INFLUENT AND EFFLUENT PARTICULATE AND PETROLEUM FRACTIONS

by

James C. S. Lu, Bert Eichenberger Miroslav Knezevic, Kenneth Y. Chen Environmental Engineering Program University of Southern California

Los Angeles, Calif. 90007

May 1978 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

Under Contract No. DACW39-76-C-0038 (DMRP Work Unit No. 2004)

U. S. Army Engineer Waterways Experiment Station
P. O. Box 44, Nicksburg, Miss. 39180

UZ 6

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS P. O. BOX 631

VICKSBURG, MISSISSIPPI 39180

WESYV

15 June 1978

SUBJECT: Transmittal of Technical Report D-78-16

TO: All Report Recipients

- 1. The study reported on in the technical report transmitted herewith was undertaken as Work Unit 2D04 of Task 2D, Confined Disposal Area Effluent and Leachate Control, of the Corps of Engineers' Dredged Material Research Program. The major purpose of this task was to determine the potential pollution problems created by the land disposal of dredged material in containment areas, both from effluent and subsurface leachate discharges. Task 2D was a part of the Environmental Impacts and Criteria Development Project, which was concerned with the establishment of criteria for open-water and alternative disposal modes for dredged material.
- 2. Work Unit 2D04 was an extension of Work Unit 2D01, which evaluated the character of influents and effluents in land containment areas. Two island disposal areas were monitored, the brackish water Pinto Island site near Mobile, Alabama, and the freshwater Grassy Island site near Detroit, Michigan, to achieve the following objectives of Work Unit 2D04:
 - Through influent-effluent monitoring, determine the physical and chemical changes that can occur in dredged material during land containment.
 - Use results of effluent and background water monitoring to better characterize the potential impact that effluent discharges might have on receiving waters.
 - c. Investigate the association of different contaminant species with different sized particles in effluents and determine the relationship between residence time and removal for some parameters such as oil and grease.
 - Determine the association of trace metals and synthetic organochlorine compounds (e.g., PCBs and DDT) with the oil and grease fraction.

WESYV
SUBJECT: Transmittal of Technical Report D-78-16

15 June 1978

- e. Evaluate the gross chemical composition of both the influent and effluent oil and grease fractions in order to determine what changes might occur in the composition of their counterparts during retention in disposal areas.
- 3. The results from this study showed that most trace metals, oil and grease, chlorinated pesticides, and PCBs were almost totally associated with settleable $(>8\mu)$ solids in influent, effluent, and background water samples; their removal efficiencies were usually very close to the total solids removal. However, significant quantities of the major ions (calcium, magnesium, sodium, and potassium), ammonium nitrogen, total carbon, and organic carbon were associated with the soluble phase $(<0.05\mu$ fraction). Removal efficiency of parameters mainly associated with the soluble phase was much lower than for the parameters mostly bound with settleable solids. The concentration of soluble trace metals measured in micrograms per liter were usually in the parts-per-billion or sub parts-per-billion range; thus the release of such low levels of most soluble trace metals from land disposal areas should create negligible impact on receiving waters.
- 4. The oil and grease fraction was not found to have an exceptional affinity for chlorinated hydrocarbons (e.g., DDT analogs and PCBs) or for trace metals. Although contaminants are not contained in the oil and grease fraction per se, high levels of effluent oil and grease may subsequently entrain contaminated settleable solids.
- 5. The findings of this report, in conjunction with the findings of other related studies, strongly indicate that land disposal of dredged material should not impact the environment if settleable solids are removed before effluent discharge. However, during this field study, low dissolved oxygen levels, as well as solid-phase concentrations of oil and grease, some chlorinated hydrocarbons, and total phosphorus, were occasionally observed in effluents (especially at Pinto Island, where effluent suspended solids were highest). Soluble phosphorus was usually at very low levels in effluent samples.
- 6. The data in this report are applicable for defining pollution problems associated with confined land disposal of dredged material. The specific physical, chemical, and geochemical tests performed and discussed herein should be used in conjunction with site-specific findings for developing mitigative measures should water-quality degradation be suspected at a particular site. The results should aid those persons concerned with the permit programs, writing of Environmental Impact Statements, or designing effluent monitoring programs or studies.

JOHN L. CANNON

Colonel, Corps of Engineers Commander and Director

(B)WES (19) TR-D-78-16

TITLE (and Substite) HARACTERIZATION OF CONFINED DISPOSAL AREA INFLUENT AND FIRAL report	REPORT DOCUMENT	TATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
THILE (end Subults) THAREACTERIZATION OF CONFINED DISPOSAL AREA INFLUENT AND THAT THE PARTICULATE AND PETROLEM FRACTIONS A LILLOWING LAND PETROLEM FRACTIONS A PERFORMING ORGANIZATION NAME AND ADDRESS Invisionmental Engineering Program Minversity of Southern California OSS Angeles, Calif. 90007 The Contract OSC AND DESCRIPTION OF CONTRACT STRANT NUMBERS OF AREA WORK UNIT NUMBERS. The Contract OSC AND DESCRIPTION OF THE PROJECT, TASK AREA WORK UNIT NUMBERS. TO PROGRAM ELEMENT, PROJECT, TASK AREA WORK UNIT NUMBERS. This Contract OSC AND DESCRIPTION OF THE PROJECT, TASK AREA WORK UNIT NUMBERS. The Contract OSC AND DESCRIPTION OF THE PROJECT, TASK AREA WORK UNIT NUMBERS. TO PROGRAM ELEMENT, PROJECT, TASK AREA WORK UNIT NUMBERS. TO PROGRAM ELEMENT, PROJECT, TASK AREA WORK UNIT NUMBERS. The Contract OSC AREA WOR	. REPORT NUMBER	2. GOVT ACCESSION	
### PARACTERIZATION OF CONFINED DISPOSAL AREA INFLUENT AND PETROLEUM PRACTIONS #### PARTICULATE AND PETROLEUM PRACTIONS ###################################	Technical Report D-78-16		
**Supplementary notes	TITLE (and Subtitle)	Company of the Compan	TARE OF REPORT & PERIOD COVERED
**Supplementary notes	CHARACTERIZATION OF CONFINED DIS	POSAL AREA INFLUENT AN	19 Final report 1 0 + 1/-
ACCONTRACY STATEMENT (of the abstract entered in Block 20, if different from Report) S. Supplementary Notes S. Supplementary	FFLUENT PARTICULATE AND PETROLE	UM FRACTIONS	10 -
Tames C. S. Lu, Bert Eichenberger Hiroslav Knezevick Knneth Y. Chen D. PERFORMING ORGANIZATION NAME AND ADDRESS Indivironmental Engineering Program University of Southern California Los Angeles, Calif. 90007 DMRP Work Unit No. 2D04 1. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Nashington, D. C. 20314 4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) L. S. Army Engineer Waterways Experiment Station Univironmental Laboratory D. O. Box 631, Vicksburg, Miss. 3918 D. DECLASSIFICATION/DOWNGRADING CHEDULE To Declassification/Downgrading Declassification/Downgradin			6. PERFORMING ORG. REPORT NUMBER
Tames C. S. Lu, Bert Eichenberger Hiroslav Knezevick Knneth Y. Chen D. PERFORMING ORGANIZATION NAME AND ADDRESS Indivironmental Engineering Program University of Southern California Los Angeles, Calif. 90007 DMRP Work Unit No. 2D04 1. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Nashington, D. C. 20314 4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) L. S. Army Engineer Waterways Experiment Station Univironmental Laboratory D. O. Box 631, Vicksburg, Miss. 3918 D. DECLASSIFICATION/DOWNGRADING CHEDULE To Declassification/Downgrading Declassification/Downgradin	AUTHORAT	- Commercial Commercia	S CONTRACTOR EGANT NUMBER(A)
Contract No. CACW39-76-C-7138 PERFORMING ORGANIZATION NAME AND ADDRESS Environmental Engineering Program Inversity of Southern California OS Angeles, Calif. 90007 I. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Vashington, D. C. 20314 I. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) I. S. Army Engineer Waterways Experiment Station Invironmental Laboratory I. O. Box 631, Vicksburg, Miss. 3918 II. SECURITY CLASS (of this report) Implication STATEMENT (of this Report) Approved for public release; distribution unlimited. D. D. C. OISTRIBUTION STATEMENT (of this Report) Performent areas Dredged material Effluents Enfluents Enfluents Enfluents Enfluents Enfluents Enfluents For the state of the state o		r l	5/
DMRP Work Unit No. 2004 1. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Sashington, D. C. 20314 1. CONTROLLING OFFICE NAME & ADDRESS(II dillerent from Controlling Office) 1. S. Army Engineer Waterways Experiment Station Convironmental Laboratory 2. O. Box 631, Vicksburg, Miss. 3918 3919 3918	Miroslav Knezevic Kenneth Y. Ch	en \	Contract No. 0ACW39-76-C-0138
DMRP Work Unit No. 2004 1. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Sashington, D. C. 20314 1. CONTROLLING OFFICE NAME & ADDRESS(II dillerent from Controlling Office) 1. S. Army Engineer Waterways Experiment Station Convironmental Laboratory 2. O. Box 631, Vicksburg, Miss. 3918 3919 3918	Comment of the second s	NAME OF STREET OF STREET	
DMRP Work Unit No. 2004 1. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Sashington, D. C. 20314 1. CONTROLLING OFFICE NAME & ADDRESS(II dillerent from Controlling Office) 1. S. Army Engineer Waterways Experiment Station Convironmental Laboratory 2. O. Box 631, Vicksburg, Miss. 3918 3919 3918	PERFORMING ORGANIZATION NAME AND	ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
DMRP Work Unit No. 2004 1. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army May \$5.78 Asshington, D. C. 20314 1. MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office) J. S. Army Engineer Waterways Experiment Station Inclassified Distribution STATEMENT (of the Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block			AREA WORK ON HOMEENS
A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) A DRESS Army Engineer Waterways Experiment Station Implassified Implassified Incharactery O Box 631, Vicksburg, Miss. 3918 A DECLASSIFICATION/DOWNGRADING CHEDULE To DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) Approved for public release; distribution unlimited. To DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) To Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) A KEY WORDS (Continue on reverse side if necessary and identify by block number) Trace metals Water disposal sites Petroleum Sampling Sedimentation Trace metals Water quality A detailed analysis of contaminants in influents and effluents from two confined fredged material disposal areas is presented. The sites are located at Pinto Island, tobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fup, 0.45fup, and 8.0fu fractions. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid whases during confined area disposal. The oil and grease fractions in the samples were	Los Angeles, Calif. 90007	a ·	DMRP Work Unit No. 2D04
A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) A DRESS Army Engineer Waterways Experiment Station Implassified Implassified Incharactery O Box 631, Vicksburg, Miss. 3918 A DECLASSIFICATION/DOWNGRADING CHEDULE To DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) Approved for public release; distribution unlimited. To DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) To Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) A KEY WORDS (Continue on reverse side if necessary and identify by block number) Trace metals Water disposal sites Petroleum Sampling Sedimentation Trace metals Water quality A detailed analysis of contaminants in influents and effluents from two confined fredged material disposal areas is presented. The sites are located at Pinto Island, tobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fup, 0.45fup, and 8.0fu fractions. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid whases during confined area disposal. The oil and grease fractions in the samples were			
A MONITORING AGENCY NAME & ADDRESS(II diliterent from Controlling Office) 1. S. Army Engineer Waterways Experiment Station Convironmental Laboratory 2. O. Box 631, Vicksburg, Miss. 3918 2. D. Box 631, Vicksburg, Miss. 3918 3. SECURITY CLASS. (of this report) Implication I			
1. S. Army Engineer Waterways Experiment Station Indicatory 2. O. Box 631, Vicksburg, Miss. 3918 Approved for public release; distribution unlimited. 5. ECCLASSIFICATION/DOWNGRADING CHEDULE 7. DISTRIBUTION STATEMENT (of the abstract antered in Block 20, If different from Report) Supplementary notes 6. Supplementary notes 6. Supplementary notes 7. DISTRIBUTION STATEMENT (of the abstract antered in Block 20, If different from Report) 8. Supplementary notes 8. Supplementary notes 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) 9. Supplementary notes 1. Supp		. Army	
S. Army Engineer Waterways Experiment Station Invironmental Laboratory O. Box 631, Vicksburg, Miss. 3918 D. S. EECLASSIFICATION/DOWNGRADING CHEOULE S. DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. To Distribution Statement (of the abstract entered in Block 20, If different from Report) S. KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment areas Dredged material Sedimentation Effluents Influents Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined diredged material disposal areas is presented. The sites are located at Pinto Island, tobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05 pt. 0.45 pt. and 8.0 pt. fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, cipanic carbon, organic carbon, disperse of metal solids were subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a disposal. The oil and grease fractions in the samples were	20017		
The commental Laboratory (a) to low of some statement (of the abstract entered in Block 20, if different from Report) S. KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment areas Petroleum Sampling Sampling Sedimentation Trace metals Sampling Sedimentation Trace metals Waste disposal sites Water quality A detailed analysis of contaminats in influents and effluents from two confined diredged material disposal areas is presented. The sites are located at Pinto Island, tobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into .055µb, 0.45-µb, and 8.0-µb fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, relocated to a geochemical partitioning scheme to determine changes of metal solid were subjected to a geochemical partitioning scheme to determine changes of metal solid whases during confined area disposal. The oil and grease fractions in the samples were	4. MONITORING AGENCY NAME & ADDRESS	Gill different from Controlling Offi	ce) 15. SECURITY CLASS. (of this report)
6. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment areas Petroleum Sampling Sedimentation Effluents Influents Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, fobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into .0.05 ftm, 0.45 ftm, and 8.0 ftm fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid where su		periment Station	Unclassified
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abeliact entered in Block 20, il different from Report) 8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment areas Dredged material Sampling Sedimentation Effluents Trace metals Influents Waste disposal sites Water quality A detailed analysis of contaminants in influents and effluents from two confined irredged material disposal areas is presented. The sites are located at Pinto Island, whole Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05 flu, 0.45 flu, and 8.0 flu fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid were subjected to a geochemical partitioning scheme to determine changes of metal solid where subjected to a geochemical partitioning scheme to determine changes of metal solid were subjected to a geochemical partitioning scheme to determine changes of metal solid whases during confined area disposal. The oil and grease fractions in the samples were		3918 14 4 07	400
Approved for public release; distribution unlimited. DDC Approved for public release; distribution unlimited. DDC To DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) By KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment are a sampling Dredged material Sampling Dredged material disposal Sedimentation Effluents Waste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined irredged material disposal areas is presented. The sites are located at Pinto Island, bobbile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05 fully, 0.45 full, and 8.0 full fractions. The total sample and filtrate were analyzed for metals, nutrients, total tarbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	. o. box ost, viewsburg, miss.	121181	15a. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) 8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES Containment areas Suppling Sedimentation Sedimentation Sedimentation Trace metals Waste disposal sites Water quality A detailed analysis of contaminants in influents and effluents from two confined irredged material disposal areas is presented. The sites are located at Pinto Island, Mobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05 fub, 0.45 fub, and 8.0 fub fractions. The total sample and filtrate were analyzed for metals, nutrients, total tarbon, organic carbon, schlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined are disposal. The oil and grease fractions in the samples were			
7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report) 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment areas Petroleum Sampling Dredged material disposal Effluents Trace metals Waste disposal sites Waste disposal sites Particulates Waste disposal sites Waster quality 0. Agtract (Continue on reverse side if necessary and identify by block number) A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, belobile Bay, Alabama, and Grassy Island, Detpoit, Michigan. The samples were separated into 0.05 fu, 0.45 fu, and 8.0 fu fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid whases during confined area disposal. The oil and grease fractions in the samples were			
8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment areas Petroleum Dredged material Sampling Sedimentation Effluents Trace metals Influents Waste disposal sites Particulates Water quality O. ASTRACT (Continue on reverse side if necessary and identify by block number) A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, whichigan. The samples were separated into 0.05-\(\pu\), 0.45-\(\pu\), and 8.0-\(\pu\) fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were			DE CONTRACTOR DE LA CON
8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment areas Petroleum Dredged material Sampling Sedimentation Effluents Trace metals Influents Waste disposal sites Particulates Water quality O. ASTRACT (Continue on reverse side if necessary and identify by block number) A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, whichigan. The samples were separated into 0.05-\(\pu\), 0.45-\(\pu\), and 8.0-\(\pu\) fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were		est entered in Block 20 II differen	nt from Report) 10 1978
8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Containment areas Petroleum Dredged material Sampling Sedimentation Effluents Trace metals Influents Waste disposal sites Particulates Water quality O. ASTRACT (Continue on reverse side if necessary and identify by block number) A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, whichigan. The samples were separated into 0.05-\(\pu\), 0.45-\(\pu\), and 8.0-\(\pu\) fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	7. DISTRIBUTION STATEMENT (of the abetra		
Octainment areas Petroleum Dredged material Sampling Dredged material disposal Effluents Influents Waste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, whichigan. The samples were separated into 0.05fu, 0.45-µ, and 8.0-µ fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	7. DISTRIBUTION STATEMENT (of the abetra	and an area in Brook 20, it union	JUL 18 min
Octainment areas Petroleum Dredged material Sampling Dredged material disposal Effluents Influents Waste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, whichigan. The samples were separated into 0.05fu, 0.45-µ, and 8.0-µ fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	7. DISTRIBUTION STATEMENT (of the abette		JUL 18 101
Octainment areas Petroleum Dredged material Sampling Dredged material disposal Effluents Influents Waste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, whichigan. The samples were separated into 0.05fu, 0.45-µ, and 8.0-µ fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	7. DISTRIBUTION STATEMENT (of the abetre		JUL 18 INT
Petroleum Dredged material Sampling Dredged material Sedimentation Effluents Trace metals Influents Waste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined diredged material disposal areas is presented. The sites are located at Pinto Island, which waste may be supported and first were analyzed for metals, nutrients, total carbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	361 350		JUL 18 10 L
Containment areas Dredged material Dredged material disposal Sedimentation Effluents Influents Maste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined irredged material disposal areas is presented. The sites are located at Pinto Island, dobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fm, 0.45-m, and 8.0-m fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	361 350		JUL 18 IN LE
Containment areas Dredged material Dredged material disposal Sedimentation Effluents Influents Maste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined irredged material disposal areas is presented. The sites are located at Pinto Island, dobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fm, 0.45-m, and 8.0-m fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	361 350		MISSIN L
Containment areas Dredged material Dredged material disposal Sedimentation Effluents Influents Maste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined irredged material disposal areas is presented. The sites are located at Pinto Island, dobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fm, 0.45-m, and 8.0-m fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	361 350		MISSIN L
Dredged material Sedimentation Effluents Influents Influents Waste disposal sites Particulates Water quality O. Actalled analysis of contaminants in influents and effluents from two confined diredged material disposal areas is presented. The sites are located at Pinto Island, dobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fm, 0.45-m, and 8.0-m fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	8. SUPPLEMENTARY NOTES		MISSIN L
Dredged material disposal Effluents Trace metals Waste disposal sites Water quality O. **Lotrature** and reverse side if necessary and identify by block number) A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, hobbile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fu, 0.45-pi, and 8.0-pi fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, exhlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if no	scessary and identify by block nu	MISSIN L
Influents Particulates Waste disposal sites Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, Mobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fm, 0.45-m, and 8.0-m fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, shlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if not Containment areas	ecessary and identify by block num Petroleum	MISSIN L
Particulates Water quality A detailed analysis of contaminants in influents and effluents from two confined irredged material disposal areas is presented. The sites are located at Pinto Island, dobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fm, 0.45-fm, and 8.0-fm fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid shases during confined area disposal. The oil and grease fractions in the samples were	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if not Containment areas Dredged material Dredged material disposal	ecessary and identify by block num Petroleum Sampling Sedimentation	mber)
A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, dobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fm, 0.45-m, and 8.0-m fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid chases during confined area disposal. The oil and grease fractions in the samples were	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if not Containment areas Dredged material Dredged material disposal Effluents	Petroleum Sampling Sedimentation Trace metals	mber)
A detailed analysis of contaminants in influents and effluents from two confined iredged material disposal areas is presented. The sites are located at Pinto Island, dobile Bay, Alabama, and Grassy Island, Detroit, Michigan. The samples were separated into 0.05fm, 0.45-m, and 8.0-m fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid chases during confined area disposal. The oil and grease fractions in the samples were	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if not containment areas Dredged material Dredged material disposal Effluents Influents	Petroleum Sampling Sedimentation Trace metals Waste disposal sites	mber)
The samples were separated into 0.05/µ, 0.45-µ, and 8.0-µ fractions. The total sample and filtrate were analyzed for metals, nutrients, total carbon, organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid chases during confined area disposal. The oil and grease fractions in the samples were	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if not containment areas Dredged material Dredged material disposal Effluents Influents Particulates	Petroleum Sampling Sedimentation Trace metals Waste disposal sites Water quality	mber) Alichon eters
chlorinated hydrocarbons, oil and grease, sulfide, and solids content. The total solids were subjected to a geochemical partitioning scheme to determine changes of metal solid chases during confined area disposal. The oil and grease fractions in the samples were	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if not Containment areas Dredged material Dredged material disposal Effluents Influents Particulates 9. Agtract (Continue on reverse side if not A detailed analysis of contredged material disposal areas Mobile Bay, Alabama, and Grassy	Petroleum Sampling Sedimentation Trace metals Waste disposal sites Water quality coronary and identify by block num taminants in influents is presented. The sit Island, Detroit, Michi	and effluents from two confined es are located at Pinto Island, gan.
were subjected to a geochemical partitioning scheme to determine changes of metal solid chases during confined area disposal. The oil and grease fractions in the samples were	9. KEY WORDS (Continue on reverse side if not containment areas Dredged material Dredged material disposal Effluents Influents Particulates 0. ABSTRACT (Continue on reverse side if not a detailed analysis of contredged material disposal areas dobile Bay, Alabama, and Grassy The samples were separated	Petroleum Sampling Sedimentation Trace metals Waste disposal sites Water quality ceeesy and identify by block number taminants in influents is presented. The sit Island, Detroit, Michi into 0.05fu, 0.45-ū,	and effluents from two confined es are located at Pinto Island, gan, and 8.0-µ fractions. The total
phases during contined area disposal. The oil and grease fractions in the samples were analyzed for trace metals. A 48-hour settling test was performed to quantify the	9. KEY WORDS (Continue on reverse side if no Containment areas Dredged material Dredged material disposal Effluents Influents Particulates 9. Agtract (Continue on reverse side if no A detailed analysis of contradged material disposal areas Mobile Bay, Alabama, and Grassy The samples were separated sample and filtrate were analyze chlorinated hydrocarbons, oil and	Petroleum Sampling Sedimentation Trace metals Waste disposal sites Water quality ceesary and identify by block num taminants in influents is presented. The sit Island, Detroit, Michi into 0.05fu, 0.45fu, d for metals, nutrient d grease, sulfide, and	and effluents from two confined es are located at Pinto Island, gan. and 8.0-µ fractions. The total s, total carbon, organic carbon, solids content. The total solids
	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if not containment areas Dredged material Dredged material disposal Effluents Influents Particulates 10. Application on reverse side if not contain the continue on reverse side if not contin	Petroleum Sampling Sedimentation Trace metals Waste disposal sites Water quality ceeesy and identify by block num taminants in influents is presented. The sit Island, Detroit, Michi into 0.05fu, 0.45-u, d for metals, nutrient d grease, sulfide, and partitioning scheme to	and effluents from two confined es are located at Pinto Island, gan, and 8.0-µ fractions. The total s, total tarbon, organic carbon, solids content. The total solids determine changes of metal solid

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

362 350

yOL-

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ABSTRACT (Continued).

migration of soil and grease and chlorinated hydrocarbons during resedimentation of dredged material within a confined area.

A statistical analysis of the data was performed to determine the significance of variance in terms of pollutant loading between influent and background water; influent and effluent in terms of removal efficiency; and effluent and background water in terms of potential water quality impact. Tests for significance at the 95 and 99 percent con-

potential water quality impact. Tests for significance at the 95 and 99 percent confidence levels are presented.

The results show that, in general, the removal efficiency of total trace metals was very similar to the total solids removal. These results are in agreement with the analytical data which show that approximately 99% of the total trace metals was associated with the solid settleable phase (> 8 m).

The results of the particle size study show that most of the other constituents in the influent and effluent samples were associated with settleable particulates. Only a very small portion was in the soluble (< 0.05-u) phase and in the medium-size (0.05-u) to 8-u) fraction. A few species exhibited a different particle size fractionation. Significant quantities of sodium, calcium, magnesium, potassium, NH3-N, total carbon, and organic carbon were in the soluble phase; hence, the removal efficiency of these constituents was low in comparison with the removal of total solids. Soluble phosphate and sulfide were below detection limits.

The results of the geochemical phase partitioning show that the concentration of

The results of the geochemical phase partitioning show that the concentration of most metals (As, Cr, Mn, Ni, Pb, and V) remained unchanged in both the exchangeable and carbonate phase extractions of influent and effluent samples. Zinc showed noticeable increases and iron showed decreases in both of the above phases during land containment;

cadmium and copper also showed increases in the exchangeable phase extractions.

The nearly complete removal of chlorinated hydrocarbons during the settling tests indicates that the association of chlorinated hydrocarbons with the oil and grease fraction is not a significant factor. The data also show that the concentration of trace metals associated with the release of oil and grease is negligible in comparison with the total sample concentration.

the total sample concentration.

The concentrations of soluble trace metals in the effluents at both sites were in the ppb or sub-ppb range. These values are well below marine water quality criteria; therefore, the water quality impact of the more readily available soluble trace metals discharged into the receiving waters is considered to be negligible.

Marine water quality criteria are based on total concentrations. The results of this study show that the total trace metal concentrations in the effluents at both disposal sites were significantly greater than the marine water quality requirements. There fore, confined disposal operations will require either long detention times or treatment in order to meet applicable water quality standards. On the other hand, it may be necessary to amend appropriate water quality criteria to differentiate the ecological significance of soluble and particulate fractions so that meaningful water quality criteria can icance of soluble and particulate fractions so that meaningful water quality criteria can be established.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

PREFACE

This report represents an extension of a study concerning the characterization of influents, effluents, and surface background waters in the disposal of dredged material in confined areas. It was conducted as part of the Corps of Engineers' Dredged Material Research Program (DMRP) under work unit 2D04 entitled, "Characterization of Confined Disposal Area Influent and Effluent Particulate and Petroleum Fractions," Environmental Impacts and Criteria Development Project (EICDP).

This study was conducted during the period of October 1976 - September 1977 by the Environmental Engineering Program at the University of Southern California, Los Angeles, CA. Sample collection and field data were performed by the U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, MS. The study was under supervision of Dr. Kenneth Y. Chen, Director, Environmental Engineering Program, at U.S.C. Dr. James C. S. Lu was responsible for the overall coordination and supervision of laboratory operation. M. Knezevic and B. Eichenberger assisted in the statistical analysis of data as well as preparation of the final report.

The collection of field samples, field measurements and site surveys were primarily conducted by Mr. Ronald E. Hoeppel, who was also the contract manager for this work unit.

The contract was monitored by Mr. Hoeppel under the direct supervision of Dr. Robert M. Engler, Project Manager of the EICDP, and the general supervision of Dr. John Harrison, Chief, Environmental Laboratory, WES.

Contracting Officer was Mr. A. J. Breithaupt. Directors of WES during the conduct of this study were COL G. H. Hilt, CE, and COL J. L. Cannon, CE. Technical Director was Mr. F. R. Brown.

CONVERSION FACTORS, U. S. CUSTOMARY METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	Ву	To Obtain
inches	25.4	millimeters
feet	0.3048	meters
acres	4046.856	square meters
cubic yards	0.765549	cubic meters
gallons (U.S. liquid)	3.785412	liters
gallons (U.S. liquid) per minute	3.785412	liters per minute
pounds (force) per square inch	6.894757	kilopascals
electron volts	1.60219x10 ⁻¹⁹	joules

CONTENTS

		Page
PREFACE		ii
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT		iii
PART I: INTRODUCTION		1
PART II: EXPERIMENTAL PROGRAM		3
Site Description and Dredging Operations		3
Analyses of Samples		5 7
Analytical Parameters	•	8
PART III: RESULTS		11
Increase of Pollutant Loading During Dredging .		11
Removal Efficiency of Disposal Sites		16
Settling Study	•	23
Transformation of Metal Solids During Confined Area Disposal		25
PART IV: DISCUSSION		27
Increase of Pollutant Loading During Dredging .	1	27
Removal Efficiency of Disposal Sites		29
Transformation of Metal Solids During Confined		31
Land Disposal	•	31
of Pollutants		34
Effluent Discharge From Confined Disposal Areas vs. Pertinent Water Quality Criteria		36
	•	
PART V: CONCLUSIONS	•	40
REFERENCES	•	44
TABLES 1-8		
FIGURES 1-29		
APPENDIX A: VEGETATIVE LISTING, PINTO ISLAND,		
MOBILE BAY, ALABAMA	•	Al
APPENDIX B: ANALYTICAL METHODS	•	Bl
APPENDIX C: ANALYTICAL LABORATORY DATA		Cl

CHARACTERIZATION OF CONFINED DISPOSAL AREA INFLUENT AND EFFLUENT PARTICULATE AND PETROLEUM FRACTIONS

PART I: INTRODUCTION

- l. Both particulate and petroleum fractions in dredged material suspensions from confined disposal areas have potential pollutional effects on the receiving waters. In the literature, there exists considerable data on sediment size fractions as well as the oil and grease content in sediments. However, information is lacking on the size fractionation of the contaminants in dredged material and the concentration of toxic materials associated with the oil and grease fraction after sediments are suspended.
- 2. Particle size distribution is important in evaluating the pollution potential of dredged sediment. A few factors to be considered are: (a) suspended solids or slow settling solids contribute to turbidity, (b) suspended solids reduce the penetration of light, hence affecting photosynthetic activity, (c) suspended solids may have a deleterious effect upon filter-feeding organisms, and (d) small particles usually contain larger specific surface areas and require longer retention times for removal. These slower settling particulates may cause degradation of receiving waters if not properly removed.
- 3. The petroleum fraction of the dredged material may be an important parameter because of its ability to easily separate from the particles and disperse into and float on the receiving waters. Also, the petroleum fraction can be associated with toxic pollutants such as trace metals. 1
- 4. In view of the potential problems as previously discussed, the characteristics of influent and effluent particulates and petroleum fractions become very significant.

It is important not only to assess the particle size distribution and the oil and grease contents in the sediments and water columns, but also to evaluate the amount of pollutants associated with different particulates and oil and grease fractions. A detailed analysis was made on influents and effluents from two confined dredged material disposal areas: Pinto Island, Mobile Bay, Alabama, and Grassy Island, Detroit, Michigan.

- 5. The collected background water, influent, and effluent samples were separated into the following fractions: (a) total sample, (b) soluble fraction (0.05- μ filtrate), and (c) medium-size particulates (between 0.45- and 8- μ). Each fraction was analyzed for metals, nutrients, total carbon, total organic carbon, chlorinated hydrocarbons, oil and grease, sulfide, and solids content. In addition, the 0.45- μ filtrate was also analyzed for chloride, alkalinity, conductivity, and salinity. The total solids were also subjected to an elemental partitioning scheme for determining changes of metal solid phases during confined area disposal.
- 6. The oil and grease fractions for samples from these two sites were analyzed for metal content. A 48-hour settling study was also performed for quantifying the transport property of oil and grease and chlorinated hydrocarbons during resedimentation of dredged material.

PART II: EXPERIMENTAL PROGRAM

7. Two active disposal sites were selected for indepth characterization of influent, effluent and background water. The selection of these two sites was based on preliminary data obtained in a previous study carried out by U.S. Army Engineer Waterways Experiment Station (WES) on "Physical and Chemical Characterization of Contaminated Dredged Material Influents and Effluents in Confined Land Disposal Areas." 2

Site Description and Dredging Operations

Pinto Island Disposal Site, Mobile Bay, Alabama (Figure 1)

- 8. Size of diked area. 65 acres; 40 acres ponded.
- 9. <u>Dredging site</u>. Marine Bulk Ore Handling Slip on the west side of the Mobile River Ship Channel. Dredged material was transported by direct pipeline to the disposal area.
- 10. <u>Time period of dredging/disposal operations</u>. 3 Sept. (10:20 PM) to 10 Sept. (9:00 PM) 1976.
 - 11. Sample collection. 7,8 Sept. 1976
- 12. Total in situ sediment volume dredged from slip (3-10 Sept. 1976). 51,814 cu. yds.
- 13. Daily in situ sediment volumes dredged. 7 Sept. 1976, 12,045 cu. yds; 8 Sept. 1976, 9,450 cu. yds. No data are available for effluent volumes.
- 14. <u>Vegetation</u>. About 15 to 20% of the northern section of the disposal area was covered with a moderate growth of vegetation identified as primarily <u>Phragmites communis</u> and other salt tolerant bushy plants (see Appendix A).

^{*} A table of factors for converting U.S. customary units of measurement to metric (SI) units is presented on page iii.

15. Weather at disposal area. 7 Sept. 1976, about 3/4-inch rain, 4:00-5:00 PM; 8 Sept. 1976, about 3/4-inch rain, 6:30-8:30 AM.

Note: Effluent samples were collected on 8 Sept. 1976 after a total rainfall of approximately 1-1/2-inches; the dilution factor must be considered in the evaluation of parameter concentrations.

- 16. Surface background water samples were taken outside of the effluent mixing zone at the southern end of the disposal area at the confluence of the Mobile River and Mobile Bay.
- 17. The salinity of surface background water at the Pinto Island site was 3 o/oo. Dredged sediments from the dredging site were quite reducing, with substantial quantities of sulfides. Field studies of influent slurries from Pinto Island show a large immediate oxygen demand. The level of dissolved oxygen for this influent slurry was between 0.5 and 0.6 mg/l in the mixing pool beneath the influent discharge pipe.

Grassy Island Disposal Site, Detroit, Michigan (Figure 2)

- 18. The diked disposal facility on Grassy Island in the Detroit River was brought to its present dimensions in 1969 for the containment of polluted maintenance dredged material, primarily from the Rouge River in Detroit.
- 19. Subsequently, a cross dike was constructed dividing the disposal site into a north and south area. During the study only the north half of the disposal area was used with the influent pipe entering the southwest corner; effluent was discharged over a weir in the northeast corner.
- 20. EPA's 1973 sediment sampling indicated that the Rouge River was very heavily contaminated with many common industrial and municipal pollutants. Parameters to be tested for at the Grassy Island discharge were selected based on EPA's testing.

- 21. <u>Size of diked north area</u>. 30 acres; 10 acres ponded
 - 22. Dredging site. Main channel of Rouge River.
- 23. <u>Time period of dredging/disposal operations</u>. 3 Aug. 1976 to 16 Sept. 1976.
 - 24. Sample collection. 24, 25, 26, Aug. 1976
- 25. Total in situ sediment volume dredged from channel (3 Aug. - 16 Sept. 1976). 113,335 cu. yds. Dredging was performed with a hopper dredge; pump out time was approximately 45 minutes for each hopper load, with about a 2-1/2-hour dredging and hopper dredge transit time.

	24 Aug.	25 Aug.	26 Aug.
No. of hopper loads/day	8	8	7
Total in situ sediment volume in hopper bin, cu.yd	3464 <u>s</u> .	3422	3254
24-hour average influent volume,gpm	1950	1920	1825

- No data are available for effluent volumes.
- 26. <u>Vegetation</u>. Dominant vegetation at Grassy Island was <u>Phragmites</u> <u>communis</u>.
- 27. Background water samples were taken from the Rouge River at about the same location as the dredging operations. The salinity of background water at the Grassy Island site was negligible (0.2 o/oo). Dredged sediments from the dredging site are quite reducing, with substantial quantities of sulfides. The level of dissolved oxygen in the influent slurry ranged from 7.1 to 7.6 mg/l.

Analyses of Samples

28. Samples from the dredged material disposal sites

were divided into three groups: (a) background water, (b) influent slurry, (c) effluent slurry.

- 29. All samples were collected by personnel of the Corps of Engineers at WES and preserved by packing them in ice upon collection and during transportation to the University of Southern California (USC) laboratory. Samples were then stored in an environmental chamber at 4°C until used. Chloroform was added in the field for the preservation of samples for nitrogen and phosphorus analyses. Samples for the analysis of chlorinated hydrocarbons were stored in Pyrex (glass) containers. Other samples were stored in polyethylen (plastic) containers. A detailed description of the collected samples is listed in Table 1.
- 30. All samples were separated into the following four fractions by successive filtrations:
 - a. Total sample this was prepared by homogeneously mixing the original sample followed by withdrawal of a desirable amount by plastic syringe or plastic automatic pipet.
 - \underline{b} . 8- μ filtrate 8- μ filtrate sample was prepared by passing the homogenized sample through an 8- μ millipore membrane filter (SC nitrocellulose type) by pressurized filtration.
 - c. 0.45- μ filtrate 0.45- μ prepared by pressurized filtration through a 0.45- μ millipore membrane filter (HA nitrocellulose type).
 - d. 0.05- μ filtrate 0.05- μ was prepared the same way as the 8- μ and 0.45- μ filtrates. A 0.05- μ millipore membrane filter (VM nitrocellulose type) was used.
- 31. Settling tests were performed to determine the fates of oil and grease and chlorinated hydrocarbons and their interrelations in the water column after disposal.

 One liter of total sample was placed in a standard 1-liter cylinder and then shaken for 1 minute. The supernatants were withdrawn by a syringe at different time periods (2 hrs, 12 hrs, 24 hrs, and 48 hrs) from separate cylinders.

Analytical Parameters

- 32. Tests of physical and chemical properties were performed on all samples. The important environmental parameters analyzed are outlined as follows:
 - 33. Total sample
 - a. nitrogen (total Kjeldahl, NH3-N)
 - b. Phosphorus (total)
 - c. carbon (total, organic)
 - d. dry weight
 - e. oil and grease
 - f. acid soluble sulfide
 - g. cation exchange capacity
 - h. chlorinated hydrocarbons
 - i. metals (Ca, Mg, Na, K, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, Ti,V, and Zn) on both acid soluble samples as well as metals in oil and grease.
 - j. exchangeable metals
 - k. metals associated with carbonate phase
 - 1. particle size distribution
 - m. hydrocarbons
 - 34. $8-\mu$ filtrates
 - a. nitrogen (total Kjeldahl, NH3-N)
 - b. phosphorus (total, ortho-)
 - c. sulfide (soluble)
 - d. carbon (total, organic)
 - 35. $0.45-\mu$ filtrates
 - a. nitrogen (total Kjeldahl, NH₃-N, NO₂-N, NO₃-N)
 - b. phosphorus (total, ortho-)
 - c. sulfide (soluble)
 - d. carbon (total, organic)
 - e. salinity
 - f. conductivity

- g. pH
- h. alkalinity
- i. chloride
- j. metals (Ca, Mg, Na, K, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, Ti, V, and Zn)

36. $0.05-\mu$ filtrates

- a. nitrogen (total Kjeldahl, NH3-N, NO2-N, NO3-N)
- b. phosphorus (total, ortho-)
- c. sulfide (soluble)
- d. carbon (total, organic)
- e. metals (Ca, Mg, Na, K, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, Ti, V, and Zn)
- 37. When sediments are resuspended in a confined disposal area, oil and grease may be released and later discharged into the receiving waters. During this process, trace metals and chlorinated hydrocarbons may also be mobilized in association with the oil and grease fraction. Therefore, the oil and grease extracts from total influent and effluent samples were also used for the determination of trace metals. Chlorinated hydrocarbons were analyzed in the surface layer (about 2-3 inches) below the surface of water samples after settling.
- 38. Oil and grease samples were also characterized with a gas chromatography-mass spectrometry (GC-MS) system for the identification and quantification of major hydrocarbons including aromatic, straight chain and branched aliphatics. These analyses were performed on some representative samples only.

Analytical Methods

39. The measurements of pH, nitrogenous compounds, total and organic carbon (TC and TOC), alkalinity, conduc-

tivity, sulfide, and chloride follow the methods described in $\underline{\text{Standard Methods.}}^3$ The procedures and instruments used in this study are listed as follows:

	Parameter	Method					
<u>a</u> .	рН	Potentiometric (Orion 601A and 801A)					
<u>b</u> .	ин ₃ -и	Acidimetric method					
<u>c</u> .	NO3-N	Brucine method (Perkin-Elmer 124, light path 10 cm, 410 nm)					
<u>d</u> .	NO ₂ -N	Photometric method (Perkin- Elmer 124, light path 10 cm, 543 nm)					
<u>e</u> .	Organic-N	Kjeldahl method					
<u>f</u> .	TC and TOC	Combustion-infrared method (Beckman 915)					
<u>g</u> .	Alkalinity	Potentiometric titration (Orion 601A and 801A)					
<u>h</u> .	Conductivity	Conductivity meter (Barn- stead PM-70CB) YSI Model 33 salinity con- ductivity-temperature meter (used in field)					
<u>i</u> .	Chloride	Mercuric nitrate method					
<u>j</u> .	Sulfide (soluble)	Titrimetric (iodine) method					
<u>k</u> .	Cation exchange capacity	Sodium saturation method					
1.	Exchangeable metals	Ammonium acetate extract- $able^4$					
<u>m</u> .	Metals (car- bonate phase)	Acetic acid extractable 4					

<u>n</u> .	Salinity	tical Corp. Goldberg T/C, Model 10419) YSI Model 33 salinity, conductivity- temperature meter (used in the field)
<u>o</u> .	Metals (total filtrates, hexane extracts)	Perkin-Elmer atomic absorption spectrophotometers. Models 305B and 460 (Appendix B)
<u>p</u> .	Acid soluble sulfide	Titrimetric method ⁴ (Appendix B)
<u>q</u> .	Phosphorus (total, ortho-)	Modified ascorbic acid method (Appendix B)
<u>r</u> .	Chlorinated hydrocarbons	Gas chromatography (Appendix B)
<u>s</u> .	Petroleum hydrocarbons	GC-MS (Appendix B)
<u>t</u> .	Dissolved oxygen	YSI Model 57 Dissolved oxygen meter

PART III: RESULTS

- 40. The following results are, for the most part, based on the statistical analysis of the influent, effluent, and background water data. In some cases, when only one sample was analyzed, the determination of statistical significance (F-test) is not possible. In such circumstances, sound scientific judgement was applied in the interpretation of the analytical data. Time limitations did not permit the determination of statistical significance of variance between particulate fractions. The following F-tests for significance at the 95 and 99 percent confidence levels (P \leq 0.05, P \leq 0.01) are presented in Tables 2 and 3.
 - a. Influent vs. background water (pollutant loading)
 - b. Influent vs. effluent (removal efficiency)
 - <u>c</u>. Effluent vs. background water (potential water quality impact)
- 41. It should be noted that surface background water samples were collected at the Grassy Island dredging site and outside the mixing zone at the Pinto Island disposal area. Ideally, background water samples should have also been collected at the dredging and disposal sites for both Grassy Island and Pinto Island. This was not done because of time restrictions and collection problems.

Increase of Pollutant Loading During Dredging

General parameters (background water, influent)

42. Field data for the Pinto Island and Grassy Island disposal sites are given in Table 4. Average values for physical and chemical parameters of influent and background water samples are given in Table 5. From the results, it can be seen that the background water concentrations of most parameters were lower than those of the dredged material influent slurries at both disposal sites.

- 43. The average total solids in the Pinto Island influent samples were increased from the background level of 0.46% to about 7% (Table 3). This indicates that, during the dredging operation, the mixing weight ratio of dredge site water to bottom sediment ranged from 7 to 10 (based on a harbor bottom sediment moisture content of 30 to 50%).
- 44. For the Grassy Island samples, the total solids content increased from 0.01% to about 19%, indicated a 1.5 to 2.5 mixing weight ratio. These results indicate that there was better dredging efficiency at the Rouge River dredge site although the higher solids contents may have been obtained by allowing hopper overflow.
- 45. The change in salinity after mixing was negligible in the Grassy Island samples; however, salinity was about 8.5 times higher in the Pinto Island influent samples than in background water, with average influent and background water values of 25.5 o/oo and 3 o/oo, respectively. However, since surface water was obtained for a background water sample, much of the salinity increase may have been caused by higher salinity in bottom water at the dredging site; the Mobile River at the dredge site displays salinity stratification.
- 46. For Pinto Island samples, conductivity was about 5 times higher (from about 5 mMhos to 25 mMhos) in the influent samples. For Grassy Island samples, the conductivity was about 3 times greater (from about 0.04 mMhos to 0.11 mMhos). Again, it should be noted that surface background water samples were taken; the dredged bottom water at the Pinto Island site may have had a higher salinity than the surface water, which would contribute to the observed increases in influent conductivity.
- 47. The alkalinity measurements (as $CaCO_3$) after sediment-water mixing show an increasing trend at both sites. The alkalinity at Pinto Island was at about 50 mg/l in the surface background water and about 150 mg/l in an

average effluent. Grassy Island alkalinity increased from 130 mg/1 to about 500 mg/1.

48. The percent increase of chloride concentration was close to the increase of conductivity, indicating that soluble chloride salts probably account for most of the conductivity changes.

Total carbon (TC) and total organic carbon (TOC)

- 49. The TC and TOC measurements were obtained for different size fractions as well as total slurry samples (see Tables 5 and 6). The average TC and TOC concentrations in different filtrates (8- μ , 0.45- μ , and 0.05- μ) show similar concentrations in filtrates passing through all filter sizes. Thus, the data show that the TC and TOC are primarily in the 0.05- μ filterable phase for sample particles less than 8- μ .
- 50. The fraction of total carbon in the 0.05- μ filtrates was 64% and 61%, respectively, for Pinto Island and Grassy Island influent samples. Total organic carbon in the 0.05- μ influent filtrates was 53% for Pinto Island and 30% for Grassy Island.
- 51. The total filterable carbon concentration (0.05- μ filtrate) was lower in the background water by 3 and 4.5 times, respectively, for both the Pinto and Grassy Island sites. Similarly, the total filterable organic carbon (0.05- μ filtrate) increased about 3 and 6 times in Pinto and Grassy Island influents, respectively.
- 52. The total inorganic carbon (TIC=TC-TOC) data can be derived from Table 5. Figure 3 shows the relationship between alkalinity and TIC. The data fit quite well around a straight line with a slope of 5. This indicates that alkalinity is mostly comprised of bicarbonate ions:

$$\frac{C_{\text{HCO}_3}^{-}}{C_{\text{TIC}}} = \frac{61}{12} \approx 5.$$

Nutrients

- in Tables 5 and 6. The sum of the nitrogen compounds $(\mathrm{NH_3-N}+\mathrm{organic}\ \mathrm{N}+\mathrm{NO_2-N}+\mathrm{NO_3-N})$ increased significantly in the influent slurries; the contribution of $\mathrm{NO_3-N}$ and $\mathrm{NO_2-N}$ was negligible for both sites. In the influent samples, the total nitrogen increase was about 40 times (from 1 mg/l as N to 40 mg/l as N) for Pinto Island samples and 145 times (from about 1 mg/l as N to 145 mg/l as N) for Grassy Island samples. For Pinto Island, the increase of total nitrogen contributed by $\mathrm{NH_3-N}$ and organic N was 25% and 75%, respectively. For Grassy Island, the increase due to $\mathrm{NH_3-N}$ was 58% and 42% for organic N. The use of the $\mathrm{NH_3-N}$ notation is one of convention. In this study, $\mathrm{NH_4}^+$ -N is the dominant species, i.e., pH <9.3.
- 54. The soluble (< 0.05- μ) phosphorus concentrations in both the influent and background water samples were negligible at both sites. The increase in total phosphorus concentrations at Pinto Island and Grassy Island was due entirely to the solid phase (> 8- μ) as shown in Tables 5 and 6.

Metals

55. Tables 5 and 6 present the data for metal release at both sites. These results show that the trace metal concentrations in both the solid and soluble phases were higher in the influent slurries than in the background water samples, with the exception of soluble zinc $(0.05-\mu)$ at Pinto Island. The factors of increase for soluble metals $(< 0.05-\mu)$ are as follows (minus sign indicates a scavenger effect):

	Cd	Cu	<u>Fe</u>	Hg	Mn	Ni	Pb	Se	Ti	V	\underline{zn}
Pinto Island	4	2	85	7	>5	2	5	9	>5	>7	-3
Grassy Island	40	4	20	3	38	6	5	>1	>2	>3	50

- 56. Four metal species, Cd, Fe, Mn, and Zn, were found to be strongly released (with factors greater than 10) from Grassy Island dredged material while high concentrations of soluble Fe were released from Pinto Island sediments; comparisons were made with the background water values.
- 57. The increase of total metal concentrations in the influent samples was mainly associated with the total solid phase. The factors of increase based on total concentrations are listed as follows:

	Cd	Cu	Fe	_	Hg	Mn	Ni
Pinto Island	37	6	> 230	0	34	20	460
Grassy Island	340	83	190,0	00	85	>26	2900
	Pb		Se	Ti		V	Zn
Pinto Island	12		>3	>5		>4	15
Grassy Island	260		620	>8		1800	105

58. Samples from Grassy Island show greater increases in total metal concentrations mainly due to the higher solids content of the influent samples.

Oil and grease

59. The total oil and grease concentrations in influent and background water samples are given in Table 5. The ratios of increase for total oil and grease was 130 for Pinto Island and 160 for Grassy Island, indicating that the in situ sediments were the major source for the oil and grease fractions.

Chlorinated hydrocarbons

60. Table 5 shows that the release of chlorinated hydrocarbons from the solid phase to the water column was negligible (for details, see the Settling Study section). The increase of chlorinated hydrocarbons in the influent samples was mainly associated with the solid phase. The ratios of increase for total DDT and total PCB are:

	Total DDT	Total PCB
Pinto Island	220	> 1400
Grassy Island	350	380

Petroleum hydrocarbons

61. Table 7 shows the total concentrations of selected petroleum hydrocarbons in influent and background water samples. The increase of petroleum hydrocarbons was negligible with the exception of total alkanes where the ratios of increase were > 6 for both Pinto Island and Grassy Island samples.

Removal Efficiency of Disposal Sites

62. The effectiveness of the disposal sites in removing the suspended and soluble constituents is affected by a combination of many factors, e.g., topography, geology, weather conditions, effective area, volume, depth of the disposal site, detention time, and flow rate, as well as the physical and chemical properties of dredged material and entrained waters (redox condition, particle size distribution, salinity, etc.). Due to the complexity of conditions at the disposal site and the variability of the influent samples, the removal mechanisms are usually difficult to predict and explain. The best way to judge the effectiveness of the disposal site is from the analytical results of both influent and effluent samples.

General parameters

63. The analytical results of some general water quality parameters of influent and effluent samples are listed in Table 5. Parameters such as pH, salinity, conductivity, and chloride show slight to moderate changes between influent and effluent samples. The average percent changes are as follows (minus sign indicates that the para-

meter was decreased in the influent); values within parentheses are not statistically significant (see Tables 2 and 3).

	рН	Salinity	Conductivity	Chloride
Pinto Island	(5.4)	(-19.2)	-11.3	(-14.0)
Grassy Island	(0)	*	-38.9	-5.9
* trace concer	ntration	1		

- 64. The Pinto Island disposal site showed approximately a 46% removal of the total solids. However, there was almost complete removal of the total solids for the Grassy Island disposal area, i.e., 99.7%. The high total solids removal at Grassy Island was due to long detention times obtained by total confinement procedures, i.e., negligible discharge of effluent to the receiving waters.
- 65. The decrease in alkalinity at Grassy Island was about 50%. This reduction could be the result of pH increase caused by the uptake of carbon dioxide during photosynthesis and the subsequent precipitation of calcium carbonate. Photosynthetic activity is indicated by the presence of planktonic algae in sufficient number to give the effluent a greenish color. The increase in alkalinity at Pinto Island was not significant. Significant, as used within the context of this study, refers to statistically significant differences.
- 66. The cation exchange capacity decreased 58% for the Pinto Island samples. Due to the very low solid content in the Grassy Island effluent, the cation exchange capacity could not be determined.
- 67. The soluble (< $0.05-\mu$) sulfide was determined for both sites; however, all of the samples showed only trace amounts of sulfide in the soluble phase. This may be due to the oxidation of sulfide species during sample transportation. Therefore, the results for soluble sulfide probably do not represent the actual field situation.

- 68. Results show that the total acid soluble sulfide was decreased at both sites during disposal activities. In the Pinto Island samples, the decrease was from about 20 mg/l to about 3 mg/l (Table 5). In the Grassy Island samples, the decrease was from about 38 mg/l to about 0.15 mg/l. It is believed that these decreases were due to both the removal of suspended solids and the oxidation of sulfide solids. In the Pinto Island samples, the 46% decrease in solids content can only account for approximately one-half of the decrease of total acid soluble sulfide, since the experimental results showed about an 83% decrease. This indicates that approximately 37% of the metals originally associated with the sulfide solids were changed to other species due to oxidation.
- 69. The percent removal of total acid soluble sulfide in the solid phase versus the quantity oxidized to other species is only an approximation. Since the particle size distribution of total acid soluble sulfide was not determined, its association or removal efficiency from different particle size fractions is not known. The 99.6% removal of total acid soluble sulfide at Grassy Island is in excellent agreement with the 99.7% removal of total solids.

Total carbon and total organic carbon

- 70. Data for total carbon and total organic carbon are listed in Tables 5 and 6. Total carbon in the Pinto Island effluent samples increased by 59%; the observed increases in the particulate size fractions were not significant. Total carbon in the Grassy Island effluent decreased by 55%. The following reductions were observed for the Grassy Island particulate fractions: 59% (8- μ); 58% (0.45- μ); 55% (0.05- μ).
- 71. The 111% increase of total organic carbon in the Pinto Island effluent samples was probably due to photosynthetic processes and subsequent vegetation decomposition.

Total organic carbon in the Grassy Island effluent decreased by 62%. This decrease was probably due to both the removal of suspended solids and the oxidation of soluble organic carbon. The percent oxidation of organic carbon cannot be determined because the results do not indicate a significant difference between influent and effluent samples. Nutrients

- 72. Nutrient data are listed in Tables 5 and 6. No interpretation of the Pinto Island data is possible because the differences are either not significant or indeterminate. The average removal efficiencies of NH $_3$ -N and organic N in the total slurry samples were 83% and 96%,respectively, at the Grassy Island site. The removal of (< 0.45- μ) NO $_3$ -N was not significant; the removal of (< 0.45- μ) NO $_2$ -N was indeterminate. The removal of soluble (< 0.05- μ) NH $_3$ -N and organic N was also indeterminate.
- 73. Theoretically, in the oxidizing environment, the observed decrease in total NH₃-N and organic N at Grassy Island would indicate an increase in the nitrate level. The data do not show a significant increase of NO₃-N, probably as a result of denitrification in the anaerobic disposal area sediments or by biological uptake. Biological uptake is most plausible at Grassy Island, as the site contained abundant vegetation and algae in the water column.
- 74. Total phosphorus removal was 99.9% at Grassy Island; removal at Pinto Island was not significant. Phosphorus compounds in the soluble phase (< $0.05-\mu$) were below detection limits in influents and effluents from both sites. The absence of measurable influent soluble phase phosphorus indicates that the phosphorus compounds were strongly associated with the particulates and could not be released during dredging activities or rapid chemical scavenging occurred in the influent slurry. The low effluent values may result from the formation of FePO4 precipitates; also,

biological uptake could maintain low soluble phosphorus (orthophosphate) concentrations in the disposal area. Metals

75. Tables 5 and 6 give the results of metal concentrations in influents and effluents. The average percent removal efficiencies of major ions (Na, K, Ca, and Mg) in the total samples are as follows:

	Na	K	Ca	Mg
Pinto Island		54	(23)	
Grassy Island		61	(44)	10

76. The percent removal of major ions in the total samples was less than the percent removal of total solids, with the exception of potassium at Pinto Island. These results are reasonable when considering the particle size distribution of the ions, and the total solids removal, e.g., 89% of the potassium in the Pinto Island influent was in the settleable fraction (> 8- μ) compared with a total solids removal of 46%. Conversely, 41% of the magnesium in the Grassy Island influent was in the soluble (< 0.05- μ) phase compared with a total solids removal of 99.7%.

77. The percent removal of the soluble phase (< 0.05- μ) major ions (Na, K, Ca, Mg) was not significant at either site with the exception of 54% removal of magnesium at Grassy Island.

78. The average removal efficiencies of trace metals in the total samples are as follows:

79. Comparing these results with those of total solids removal (46% for Pinto Island and 99.7% for Grassy Island), it appears that the removal efficiencies of metals in the total samples were very similar to the total solids removal

with the exception of cadmium and nickel at the Pinto Island site. This is quite reasonable since the majority of the trace metal concentrations are associated with the solid phase (see Tables 5 and 6). The weight percent of trace metals in the particulate phase (> $8-\mu$) was at least 99% for all of the influent samples with the exception of 97% for cadmium at Pinto Island.

- 80. Among the metals determined, the removal efficiency of cadmium in the Pinto Island site was far below the removal of total solids. On the other hand, the removal efficiency of nickel in the Pinto Island site was far above that of the total solids. This was probably caused by the separation of particles during resettling. In the former case, cadmium probably existed primarily in smaller particles, so that after resettling, more cadmium solids remained in suspension. However, the nickel in the Pinto Island samples might be associated more predominately with larger particles which could account for the increased percent removal.
- 81. The percent removal efficiencies of soluble trace metals (0.05- μ filtrate) are as follows (plus sign indicates that the concentration was increased in the effluent sample):

	Cd	Cu	<u>Fe</u>	Hg	Mn	Ni
Pinto Island	26	(+45)	86	(23)	24	(13)
Grassy Island	81	(54)	95	(0)	(36)	(12)
	Pb	Se	Ti	<u>v</u>	Zn	
Pinto Island	(30)	(46)	(36)	(42)	(+250)	
Grassy Island	(+15)	(68)	(5)	(27)	98	

The data show no significant differences for Cu, Hg, Ni, Pb, Se, Ti, and V at both sites; for Zn at Pinto Island; and for Mn at Grassy Island. The removal of iron at both sites, and cadmium and zinc at Grassy Island was quite effective. The soluble concentration levels of trace metals

in the effluents were less than 15 $\mu g/l$ with the exception of manganese at Grassy Island which had a value of 49 $\mu g/l$. Oil and grease

- 82. The oil and grease content in the total samples (solution plus solid phase) decreased after confinement (Table 5.) The removal efficiencies were 90% and 99.7% for the Pinto Island and Grassy Island sites, respectively. The removal efficiency at the Grassy Island site was very close to that of the total solids removal. However, the removal efficiency at the Pinto Island site was much greater than the total solids removal, i.e., 90% vs. 46%. Chlorinated hydrocarbons
- 83. The results for chlorinated hydrocarbons are given in Table 5. Among the chlorinated hydrocarbon species, only DDD, DDE, DDT, and PCB compounds were detected. The percent removal efficiencies of chlorinated hydrocarbons in the total samples are:

	op'DDD	pp'DDD	op'DDE	pp'DDE
Pinto Island	(59)	70	75	75
Grassy Island	99.0	99.6	96.7	99.4
	op'DDT	pp'DDT	Total DDT	
Pinto Island	100	100	80	
Grassy Island	99.2	99.4	99.5	
	Aroclor 1242	Aroclor 1254	Aroclor 1260	Total PCB
Pinto Island	96	97	99	96.5
Grassy Island	98.9	99.8	99.8	99.1

84. For the Grassy Island site, the removal of chlorinated hydrocarbons by confinement was very close to the total solids removal. For the Pinto Island site, the removal of chlorinated hydrocarbons was much higher than the total solids removal; this result could be due to the fact that

chlorinated hydrocarbons were associated with large particles. The 59% removal of op'DDD at Pinto Island was not significant.

Settling Study

- 85. The purposes of the settling tests were:
 - To observe the general transport phenomena during resedimentation in confined disposal areas.
 - b. To determine the relationships between particle size and the concentration of chemical constituents.
 - To investigate the possibility of concentrating trace metals and chlorinated hydrocarbons in the oil and grease fraction.
- 86. Results of the settling tests are given in Table 5 and Figures 4 to 29.

Transport of oil and grease during resettling

The data for oil and grease release during resettling are shown in Table 5, and Figures 4 to 7. The results show that during the resettling of the influent dredged material, some oil and grease from the solid phase was being continuously released into the solution phase within the first 24 hours. The solution phase oil and grease concentration usually increased slowly after 24 hours if the value at 24 hours was low. The data also show a rapid removal after 24 hours if the value at 24 hours was high. After a careful check of the settling equipment, it appears that the subsequent removal was not due to readsorption by the sediment particles. It is speculated that for high oil and grease levels in the solution phase, the excess tends to flow to the surface and accumulates on the wall of the settling column, thus decreasing the oil and grease content within the water column. Similar removal could occur through contact of the slurry with vegetation or other solid surfaces within the disposal area.

Transport of chlorinated hydrocarbons during resettling

88. The results of the settling tests for chlorinated hydrocarbons are given in Table 5 and also Figures 8 to 29. The data show that the chlorinated hydrocarbons were removed rapidly during dredged material resettling. Most of the chlorinated hydrocarbons were resettled within the first 2 hours. Below is a list of the percent removal efficiencies of different chlorinated hydrocarbons in the influent samples within two hours of settling:

	op'DDD	pp'DDD	op'DDE	pp'DDE
Pinto Island	80.9	77.9	74.1	55.2
Grassy Island	77.2	77.3	77.3	56.5
			Total	
	op'DDT	pp'DDT	DDT	
Pinto Island	34.9	34.7	56.3	
Grassy Island	33.6	57.1	66.2	
	Aroclor 1242	Aroclor 1254	Aroclor 1260	Total PCB
Pinto Island	60.7	83.5	75.9	76.6
Grassy Island	75.3	84.6	83.7	77.8

- 89. Among the chlorinated hydrocarbons, op'DDD, pp'DDD, op'DDE, and PCB's had the highest removal rates.
- 90. After 48 hours of resettling, all of the chlorinated hydrocarbons were removed to very low levels. This implies that the chlorinated hydrocarbons are strongly associated with large sediment particles and release into the solution phase should be negligible. The following table shows the percent removal efficiencies after 48 hours of resettling:

	op'DDD	pp'DDD	op'DDE	pp'DDE
Pinto Island	100	100	100	99.5
Grassy Island	99.9	99.9	99.9	99.9

	op'DDT	pp'DDT	Total DDT	
Pinto Island	97.8	99.5	99.7	
Grassy Island	99.3	99.6	99.7	
	Aroclor 1242	Aroclor 1254	Aroclor 1260	Total PCB
Pinto Island	100	100	100	100
Grassy Island	99.0	99.7	99.7	99.2

Association of metals and chlorinated hydrocarbons with oil and grease

- 91. The association of metals with oil and grease in the total samples is given in Table 5. In general, the trace metal content of the oil and grease fraction in the effluent samples is less than 5 μ g/l (in terms of the original sample volume), which is usually less than 1% of the trace metals in the total sample. The data show that the concentration of trace metals associated with the release of oil and grease is negligible in comparison with the total sample concentrations.
- 92. The association of chlorinated hydrocarbons with the oil and grease fraction is not significant. The results of the settling tests which show nearly complete removal of chlorinated hydrocarbons from influent during resettling indicate that the association of chlorinated hydrocarbons with the oil and grease fraction is not a significant factor.

Transformation of Metal Solids During Confined Area Disposal

93. The transformation of metal solids during the disposal of dredged material in diked containment areas was analyzed by determining the association of each metal with different geochemical phases of influent and effluent solids. This was accomplished by performing selective

chemical extractions on the solid phases of each sample. Since the exchangeable and acetic acid-extractable phases are most significant, these two were analyzed. Results are given in Table 5. Data for the effluent samples from Grassy Island are not available due to their very low solids content. Thus, the transformation of metal solids during confined area disposal can only be discussed for Pinto Island samples.

- 94. From the results, the following phenomena were observed for the exchangeable metals:
 - \underline{a} . Exchangeable amount increased after confined disposal Cd, Cu, and Zn.
 - Exchangeable amount decreased after confined disposal Fe
 - No significant changes As, Cr, Mn, Ni, Pb, and V.
- 95. For the acetic acid-extractable phase, the following phenomena were observed:
 - a. Amount increased after disposal Zn.
 - <u>b</u>. Amount decreased after disposal Fe.
 - No significant change As, Cd, Cr, Cu, Mn, Ni, Pb, and V.
- 96. Among the trace metals studied, the increases in exchangeable metals are in the following order: Zn (+1790%) > Cd (+420%) > Cu (+115%). The exchangeable iron was reduced by 59% during disposal operations. The removal of exchangeable arsenic, chromium, lead, manganese, nickel, and vanadium was not significant, implying that the release of these species by ion exchange mechanisms was negligible.
- 97. The zinc carbonate phase (acetic acid extractable) was increased by 25% during confined area disposal. The iron carbonate phase decreased by 47%. The arsenic, cadmium, chromium, copper, manganese and nickel carbonates showed no significant changes.

PART IV: DISCUSSION Increase of Pollutant Loading During Dredging

- 98. The results of this study show an increase in total solids and pollutants in dredged material influent slurries compared to background water levels. In most cases, more than 99% of the trace metals loading is associated with the solid settleable phase (> $8-\mu$). Changes which affect the chemical form and concentration of soluble species are very complicated. Many mechanisms may be involved in governing these changes in the soluble phase, such as geochemical phase transformations, sorption, ion-exchange, dissolution, deposition, redox reactions, coprecipitation, complexation, and diffusion from interstitial water.
- 99. Regarding the higher levels of salinity, conductivity, and soluble chloride observed in the Pinto Island influent samples (compared to surface background water levels) it is believed that the major cause was salinity stratification within the Mobile River at the dredging site. However, dependent on the directions of tidal flow, volume of freshwater discharge, and rate of mixing, the dilution of higher concentrations of major ions in the sediment interstitial water during dredging could also be important. Chloride closely paralleled the changes in conductivity and salinity. It is quite probable that the surface background water samples, which were collected near the effluent discharge, are not representative of the salinity of dredged bottom water.
- 100. The increase of major ions in the Grassy Island influent samples over the background level was less than that of the Pinto Island site. However, the Grassy Island influents had a higher alkalinity (mainly bicarbonate) indicating increased oxidation of organic carbon to carbon dioxide, which in turn reacts with the solid carbonate species to form bicarbonate ions. The data show that Grassy Island

sediments released more soluble (< 0.05- μ) organic carbon during dredging operations. This was also true for the release of nutrients.

- 101. Field monitoring showed that the Pinto Island influent samples, collected in the mixing pool beneath the discharge pipe, contained between 0.5 to 0.6 mg/l of dissolved oxygen. However, measurements made directly at the end of the discharge pipe showed no measureable dissolved oxygen in the slurry. Thus, slightly oxidizing conditions were present in the mixing pool, but the slurry appeared to have a high immediate oxygen demand. In contrast, the D.O. levels of the Grassy Island samples ranged from 7.1 to 7.6 mg/l in the mixing pool indicating a strong oxidizing condition. Much of this oxygenation probably occurred during the two-hour period when the dredged material was in the hoppers of the dredge. Since both sites were subjected to oxidizing conditions, the precipitation of FePO, could be favored. This may explain why the phosphate release was negligible in the influent samples.
- 102. The release of trace metals into the dredging site water may be primarily due to the following:
 - a. Diffusion from the interstitial water.
 - b. Aerobic conditions change the reduced metallic sulfide solids, which are generally highly insoluble, to more soluble oxidized solids; this is also indicated by the geochemical fractionation data.
 - c. Formation of soluble metal complexes due to the increase of metal ligands in the soluble phase (such as the high levels of chloride, TOC, and nitrogen compounds in the influent samples).
 - d. Ion exchange.
 - e. Oxidation and decomposition of organic compounds.
 - \underline{f} . Desorption from clay minerals or other olid species.

- 103. In comparing the two dredging sites, the relative release of metals from Grassy Island sediments was greater for Cd, Cu, Ni, Mn, and Zn, and less for Fe, Hg, Se, Ti, and V. As stated previously, Grassy Island sedimencs probably contained more carbonate species in the presence of high alkalinity and oxidizing conditions. Most carbonates are moderately soluble. On the other hand, in a strongly oxidizing environment, iron can be gradually transformed to oxyhydroxide or hydroxide solids, which have a much lower solubility.
- 104. The release of oil and grease into the dredging site water is probably derived mainly from the physical disturbances which tend to form oil in water emulsions as well as the specific gravity difference between water and the oil and grease emulsions.

Removal Efficiency of Disposal Sites

suspended and soluble constituents is affected by many complicated factors. The removal of particulates is controlled mainly by the retention time of the containment area, and the particle size distribution of resuspended sediments. Generally, most of the trace metals were concentrated in the larger settleable solids of the dredged material, i.e., > $8-\mu$. Only a very small portion was found to exist in the solution phase ($<0.05-\mu$). Therefore, if the metals were uniformly distributed within the solid phase, the removal efficiency of trace metals associated with the particulates should be close to the removal of the total solids. The removal efficiency of trace metals in the total samples was found to be very similar to the total solids removal with the exception of cadmium and nickel at Pinto Island.

either higher or lower than the total solids removal. A compilation of the percent removal efficiencies of constituents in the total samples is presented in the following table (plus sign means concentration was increased).

	Tot Soli			Exchar	nge	NH ₃ -N	Organic-N
Pinto Island	45.	8	5	8.5		(+29.4)	(60.1)
Grassy Island	99.	7				83.1	95.8
	Tota	1-P	Total	Carbon	TOC	Oil	& Grease
Pinto Island	(42	.8)	59	.3	+111	9	0.1
Grassy Island	99	.8	55	.1	61.9	9	9.7
	Ca	K	Mg	Cd	Cu	<u>Fe</u>	Нд
Pinto Island	(23)	54		18	52	46	35
Grassy Island	(44)	61	10	99.6	93	99	96
	Mn	Ni	Pb	Se	Ti	V	Zn
Pinto Island	54	67	35	39	48	45	35
Grassy Island	(98)	95	(99)	(97)	97	(96)	98
	op'D	DD	pp'D	DD	op'DD	E p	p'DDE
Pinto Island	(59)	70		75		75
Grassy Island	99	.0	99	.6	99.	6	99.4
	Aroc 124			clor 54	Aro	clor	Total PCB
Pinto Island	96		9	7	9	9	96.5
Grassy Island	98	.9	9	9.8	9	9.8	99.1

- 107. Several reasons can be given for removal efficiencies higher than the total solids removal.
 - a. Chemical constituents were associated more predominantly with larger particulates which are removed during the detention time.
 - <u>b.</u> During resedimentation chemical reactions occurred which promoted precipitation of

soluble species.

- c. The soluble species were adsorbed by clay minerals and/or hydrated oxides of iron and manganese.
- 108. For parameters that showed lower removal efficiencies than the total solids, the following reasons are suggested:
 - a. A significant amount of some parameters were associated with the soluble phase of the total sample, such as sodium, calcium, magnesium, NH3-N, total carbon, and organic carbon. The settling process could not remove most of the soluble species; hence, the removal efficiency was lower than that of the total solids removal.
 - b. Some of these parameters were associated primarily with the solid phase of the total sample. However, they were more concentrated in the smaller particles and could not be effectively removed during the detention period.
 - During resedimentation, chemical or physical reactions may have altered the original constituents to more soluble species.

Transformation of Metal Solids During Confined Land Disposal

- 109. The importance of the transformation of geochemical phases in promoting the migration of metals has been discussed. The important relations can be summarized as follows:
 - Transformation of geochemical phases will change the controlling solids of metals, thus altering the solubility of the metals in solution.
 - b. Through the dynamic equilibrium the controlling solids of metals can also regulate the exchangeable amounts of metals in the sediments.
- 110. Since polluted sediments are usually in reduced states, the controlling solids of the in situ sediments are usually reduced solids such as metallic sulfides. Upon

resedimentation of the suspended solids in aerobic environments, other solids such as carbonates, hydroxides, oxyhydroxides, hydrated oxides, or even silicates can be formed. In general, the changes in the acetic acid-extractable phases and exchangeable phases can give information concerning major changes. Data from this study show that the acetic acid extractable phase of Zn increased after disposal of dredged material. It is likely that this increase mainly represents an increase in zinc carbonate solids. The amounts of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and V in the acetic acidextractable phase either decreased or were unchanged, showing that carbonate solids of these metals are either unstable or rates of formation are slow. Therefore, other reducible solids such as hydroxides, oxides, or silicates could be predominant. The following solids are suggested as the most likely formation products for the studied metals by the ion-ratio method:5

- \underline{a} . Cu: $Cu_2CO_3(OH)_2$
- \underline{b} . Cd: CdCO₃
- c. Zn: ZnCO3 or ZnSiO3
- d. Ni: NiCO3
- \underline{e} . As: As_2O_3
- \underline{f} . Cr: Cr(OH)₃
- g. Fe: Fe(OH) , FeOOH
- \underline{h} . Pb: Pb(OH)₂(CO₃)₂, or PbO or PbCO₃
- \underline{i} . V: $V(OH)_2$, $V(OH)_3$ or V_2O_3 or V_2O_5
- \underline{j} . Mn: Mn(OH) $_{x}$, MnOOH, or MnO $_{x}$
- 111. If the equilibria exist as predicted by thermodynamic considerations, the free metal ion concentrations, with the exception of Fe and Mn, will be increased under oxidizing conditions during confined area disposal.
- 112. As suggested by Jackson and Lu⁵, from the dynamic equilibrium among controlling solids and the easily released fractions of metals, the following relation can be

established:

- 113. Under oxidizing conditions, the newly formed controlling solids will generally have increased solubility; therefore, the exchangeable amounts of metals are likely to increase; however, the data show that cadmium, copper, and zinc were the only metals whose exchangeable phase concentrations increased during disposal in a containment area. The exchangeable phase concentrations of As, Cr, Fe, Mn, Ni, Pb, and V either decreased or were unchanged which may be the result of pH changes, competing mechanisms, and kinetic reaction rates, e.g., (a) incomplete oxidation of metallic sulfides to the more soluble controlling solids; (b) ion selectivity (preferential exchange) and exchange kinetics; (c) adsorption of free metal ions by clay minerals and hydrated oxides of iron and manganese.
- 114. Since there is likely to be a relationship between the potential pollutional effects and the particle size distribution, the collected influent and effluent samples were separated into three fractions:
 - a. $0.05-\mu$ filtrate defined as the soluble fraction.
 - \underline{b} . 0.05- μ to 8- μ fraction for determining the content of pollutants in medium-size suspended particulates.
 - \underline{c} . Larger than 8- μ fraction for identifying the association of pollutants with settleable particulates.
- 115. Results of the fractionation study show that most of the contaminants in the influent and effluent samples were associated with settleable particulates. With the exception of major ions, such as sodium, potassium, calcium, magnesium, and chloride, only a very small por-

tion of the chemical constituents was in the soluble fraction. The concentrations in the medium-size particulates were also at a very low level. Table 6 gives the comparison of the size fractionation of pollutants. Since large particulates will generally settle within properly managed containment areas, the impact caused by this fraction is relatively short-term. On the other hand, the soluble fraction and medium-size suspended particulates may be the most important fraction as a source for potential pollutional effects. These substances can be transported in the effluents, and thus present a potential for the pollution of the receiving waters.

Pollutional Potential of Soluble Fraction of Pollutants

116. Information on soluble constituents in influents and effluents is very important due to the availability of soluble contaminants for biological uptake. The following sections discuss the fate of soluble constituents in confined dredged material disposal areas.

Removal of major soluble ions

117. The removal of soluble calcium and magnesium was insignificant with the exception of 54% removal of magnesium at Grassy Island. This removal might have been caused by pH changes due to photosynthetic reactions.

Removal of carbon, nitrogen, and phosphorus compounds

118. Carbon species in the influent samples may be derived mainly from the interstitial water. Upon mixing of background water with dredged sediments, additional inorganic and organic carbon may be released from the dredged slurry solids. Inorganic species either increased or decreased after diked disposal, depending on the regulating mechanisms, i.e., dissolution or precipitation of carbonate solids. The bio-oxidation of organic carbon to carbon di-

oxide may contribute additional inorganic carbon during the detention period. Since the confined area is an open system, the loss or diffusion of carbon dioxide cannot be ruled out. Photosynthetic reactions can also reduce the concentration of inorganic carbon dioxide.

- 119. Total organic carbon was increased by 111% at Pinto Island probably as a result of the selective removal of the heavier mineral particles and the release of indigenous organic matter from the site. Total organic carbon at Grassy Island was reduced by 62%. This decrease was probably due to both the efficient removal of suspended solids and the biological oxidation of soluble organic carbon, with respiration exceeding photosynthesis.
- Pinto Island was not significant. At Grassy Island, 83% NH₃-N and 96% organic N in the total samples were removed. In an oxidizing environment, the bacterial decomposition of organic N to NH₃-N and subsequent nitrification should cause an increase in the nitrate concentration. However, nitrate levels in the effluent samples did not show a significant increase, suggesting possible removal by denitrification and biological uptake by vegetation and algae. Ion exchange and adsorption by clay minerals may also account for some of the nitrate removal. Nitrite species are generally unstable in both aerobic and anaerobic environments and were not detected in this study.
- 121. The release or precipitation of phosphate depends to a great extent on the form and concentration of soluble iron. Under aerobic conditions at neutral pH, the FePO₄ solid is very stable and can limit the soluble phosphate level to about 0.09 ppm ⁶. The soluble phosphate level may also be decreased by vegetation uptake and adsorption by clay minerals and ferric hydroxide precipitates.

Removal of Trace Metals

- 122. Under oxidizing conditions, newly formed metallic carbonate, hydroxide, and silicate solids could increase the solubility of most trace metals during detention. However, most soluble (< $0.05-\mu$) trace metal concentrations were reduced in the effluent samples. The following reasons are suggested:
 - a. The solubility-controlling solids might remain as metallic sulfides instead of being transformed to carbonates, hydroxides or silicates due to short detention times. Therefore, the concentrations of soluble metals could not be increased.
 - b. The decrease of metal ligands in the effluents as suggested by the decrease in TOC may account for the decrease in metalorganic complexes.
 - c. The soluble iron and manganese concentrations were quite high in the influents; these could be oxidized in the presence of oxygen to form hydrated oxides which could scavenge most of the other soluble metals from the solution.

Effluent Discharge From Confined Disposal Areas vs. Pertinent Water Quality Criteria

123. A summary of the effluent data in Table 8 is compared with the California State Water Resources Control Board (CSWRCB) ocean water discharge standards of 1972⁸ and the 1973 marine water quality criteria proposed by the National Academy of Science (NAS) and the EPA. The results are compared for general parameters, chlorinated hydrocarbons, soluble trace metal concentrations, and total trace metal concentrations. It should be noted that the CSWRCB, NAS, and EPA water quality criteria do not differentiate between soluble and particulate concentrations, i.e., the criteria in Table 8 are based on total concentrations.

General parameters

Dissolved Oxygen. Dissolved oxygen in the Grassy Island effluents was slightly higher than the background water (7 mg/l). The effluent D.O. at Pinto Island was 3 mg/l. This level is lower than the EPA marine water quality criteria. However, if the dilution ratio of the receiving waters is larger than 5, it will meet the CSWRCB and the EPA criteria; a dilution ratio of 5 should be obtainable in most situations of effluent discharges. Therefore, required D.O. levels would be achieved, e.g.,

$$[3(1) + 7.5(5)]/[1 + 5] = 6.75$$

- 125. pH. Effluent pH levels are acceptable.
- 126. Oil and grease. The California ocean discharge standards for oil and grease are 10 mg/l for less than 50% of the time and 15 mg/l for less than 10% of the time. Grassy Island effluent meets the 10% value but not the 50% value; however, the oil and grease levels in the Pinto Island effluent were three times the 10% required concentration value, and 4-1/2 times the 50% value.
- 127. Suspended solids. Suspended solids in the Grassy Island effluent satisfy the CSWRCB criteria; suspended solids in the Pinto Island effluent were somewhat higher than the acceptable level. Increased detention times or treatment may be necessary in some cases in order to meet applicable water quality criteria.
- 128. $\underline{\text{NH}}_3$ - $\underline{\text{N}}$. Ammonium levels in both disposal area effluents were higher than both EPA and NAS marine water quality criteria.
- 129. $\underline{\text{NO}_3}$ -N. Nitrate levels in the effluents at both sites ranged from 0.1 0.25 mg/l. The listed criteria do not specify a required nitrate level. Since the background water contained about 0.1 mg/l nitrate, it is evident that the effluent levels were not significantly higher than the

background water. The nitrate criterion suggested by both the EPA and NAS for fresh water (public supply) is 10 mg/l ¹⁰. Therefore, the effluent concentrations at both sites are considered acceptable.

130. Phosphorus. Soluble orthophosphate in the effluents at both sites meets the NAS and EPA marine water quality criteria. The total phosphorus concentrations in the effluents at both sites were much higher than the NAS and EPA criteria.

Chlorinated hydrocarbons

drocarbons are 2 μ g/l for less than 50% of the time and 4 μ g/l for less than 10% of the time. Results show that the total chlorinated hydrocarbons in effluents at both sites were much higher than the standards. The settling tests indicate that most of the chlorinated hydrocarbons were associated with the particulate phase; therefore, increased detention times or treatment would be required in order to meet water quality criteria. This is particularly true at the Pinto Island site where only 46% of the total solids were removed. The Grassy Island site presents a different problem in that 99.7% of the total solids were removed; it is not known if the removal of additional suspended solids would lower the total chlorinated hydrocarbon concentrations to an acceptable level.

Soluble trace metal concentrations

132. The soluble (< 0.05- μ) trace metal concentrations in the effluents at both sites meet the CSWRCB, NAS, and EPA marine water quality criteria.

Total trace metal concentrations

133. In general, the total trace metal concentrations in the effluents at both sites were significantly higher than the NAS, EPA, and CSWRCB water quality re-

quirements, e.g., the total zinc concentration in the effluent at Pinto Island was over 100 times the allowable NAS level. The analytical results show that most of the trace metal concentrations are associated with the solid phase; therefore, increased detention times or treatment (coagulation) would be required to meet applicable water quality criteria.

PART V: CONCLUSIONS

- 134. The conclusions drawn from the analysis of data in this study are as follows:
 - a. The results show that the trace metal concentrations in both the solid and soluble phases of the influents were higher than the background water levels with the exception of soluble zinc at Pinto Island. The release of soluble trace metals was in the ppb and sub-ppb range. The initial release is most likely due to the mixing of interstitial waters, oxidation of metallic sulfides, dissolution, complex formation, and ion exchange.
 - b. The increase of total metal concentrations in the influent samples is primarily associated with the solid phase, i.e., 97 to 99%. Grassy Island showed higher levels of increase due to the greater solids content of the influent, i.e., 187 g/l vs. 71 g/l for Pinto Island.
 - Trace amounts of soluble sulfide were measured in the influents at both sites, indicating possible oxidation of sulfide species during dredging operations and transportation to the confined disposal areas. However, these values may be somewhat unreliable as they were not obtained directly in the field.
 - d. The results of the geochemical phase transformation study suggest that the concentrations of soluble trace metals under oxidizing conditions should increase during confined area disposal; however, most of these metal concentrations were decreased in the effluents. The observed reduction of soluble trace metals may be due to the following: (1) incomplete oxidation of metallic sulfides due to short detention times; (2) removal in the exchangeable phase; (3) decrease of metal ligands; and (4) coprecipitation or incorporation with the hydrated oxides of iron and manganese.
 - e. In general, the removal efficiency of trace metals in the total samples was very similar to the total solids removal. These results are in agreement with the analytical data

- which show that the major portion of the total trace metals was associated with the solid phase.
- There was almost complete removal of total f. solids at the Grassy Island disposal area (99.7%) compared to the 46% removal at Pinto Island. The high solids removal at Grassy Island was due to long detention times obtained by total confinement procedures. The relatively poor removal of total solids at Pinto Island was due to the high concentration of dissolved solids (as indicated by high conductivity values) in conjunction with reduced detention times resulting from observed "short-circuiting" in the disposal area and subsequent discharge of the effluent over a weir at a 4-inch hydraulic head.
- g. The observed decrease in total NH₃-N and organic N in an oxidizing environment should result in an increase in the nitrate concentration. However, at Grassy Island, nitrate levels did not show a significant increase in the effluent samples, suggesting that some denitrification, ion exchange of ammonium, biological uptake, and/or inhibition of nitrification occurred in the disposal area.
- h. The decrease of total organic carbon at Grassy Island was probably due to both the removal of settleable solids and the biological oxidation of soluble organic carbon. The increase of total organic carbon at Pinto Island is probably the result of biological uptake and subsequent decomposition of organic matter at the site.
- i. Phosphorus compounds in the soluble phase were below detection limits. The level of soluble phosphate may be limited by FePO₄ precipitates, biological uptake, or adsorption by clay minerals and ferric hydroxide precipitates.
- j. The nearly complete removal of chlorinated hydrocarbons during the settling test indicates that the association of chlorinated hydrocarbons with the oil and grease fraction is not a signficant factor. These results indicate that the chlorinated hydrocarbons were largely associated with large

sediment particles.

- k. The decrease in alkalinity at Grassy Island may be the result of uptake of carbon di-oxide during photosynthesis and the subsequent pH increase promoting the precipitation of calcium carbonate.
- 1. The increase in alkalinity at Pinto Island may be due to the oxidation of organic carbon to carbon dioxide followed by the dissolution of solid metal carbonate to yield predominately bicarbonate species.
- m. The results show that the concentration of soluble trace metals in Grassy Island and Pinto Island effluents were in the ppb or sub-ppb range. These concentrations are well below the CSWRCB ocean water discharge standards and the NAS and EPA marine water quality criteria. Therefore, the water quality impact of soluble trace metals in effluents discharged into the receiving waters is considered to be negligible.
- n. The results indicate that dissolved oxygen levels, and concentrations of oil and grease, chlorinated hydrocarbons, NH₃-N, solid phosphates, and suspended solids may pose a potential water quality problem. In general, these parameters could not meet the CSWRCB, NAS, and EPA water quality criteria.
- The CSWRCB, NAS, and EPA marine water quality criteria are based on total concentrations. The results of this study show that the total trace metal concentrations in the effluents at both Grassy Island and Pinto Island disposal areas were significantly higher than the referenced water quality criteria. While the extent of redissolution is very small, contaminants attached to the particles can be transported by the effluent to the receiving waters. The ecological significance of these particles cannot be well-defined at present. Nevertheless, trace metals and chlorinated hydrocarbons associated with suspended particles, including macromolecular organic complexes, may pose some problems due to the possible biological uptake.
- p. It is concluded that confined disposal operations will require either long detention

times or treatment in order to meet CSWRCB, NAS, and EPA effluent water quality requirements. One possible solution to minimize this problem is the direct treatment of dredged material or discharged effluents by the addition of coagulants to improve the settling characteristics of suspended particulates.

REFERENCES

- Yen, T.F., (ed.), The Role of Trace Metals in Petroleum, Ann Arbor Science, Ann Arbor, Michigan, 1975.
- 2. Hoeppel, R.E., Myers, T.E., and Engler, R.M., "Physical and Chemical Characterization of Dredged Material Influents and Effluents in Confined Land Disposal Areas," Technical Report (in preparation), U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- 3. APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 14 ed., Washington, D.C., 1975.
- 4. Chen, K.Y., and Lu, J.C.S., "Sediment Compositions in Los Angeles-Long Beach Harbors and San Pedro Basin," in Soule, D. F. and Ogurí, M. (eds.) Marine Studies of San Pedro Bay, California, Part VII, Sediment Investigations, Sea Grant Publications, USC-SG-8-74, University of Southern California, 1974.
- 5. Lu, J.C.S., "Studies on the Long-Term Migration and Transformation of Trace Metals in the Polluted Marine Sediment-Seawater System," Ph.D. Thesis, University of Southern California, 1976.
- 6. Stumm W., and Morgan, J.J., Aquatic Chemistry, Prentice-Hall, Englewood Cliffs, N.J., 1958.
- 7. Jackson, M.L., Soil Chemical Analysis, Prentice-Hall Englewood Cliffs, N.J., 1958.
- 8. California State Water Resources Control Board, Water Quality Control Plan--Ocean Waters of California, Resolution No. 72-45, July 1972.
- 9. Comparison of NTAC, NAS, and Proposed EPA Numerical Criteria for Water Quality, 1973.
- 10. Lu, J.C.S., and Chen, K.Y., "Migration of Trace Metals in Interfaces of Seawater and Polluted Surficial Sediments," <u>Environmental Science and Technology</u>, II 1977, pp. 174-182.
- 11. Chen, K.Y., et al., "Research Study on the Effects of Dispersion, Settling, and Resedimentation on Migration of Chemical Constituents During Open-Water Disposal of Dredged Materials," Report to U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS., Contract No. DACW39-74-C-0077, 1976.
- 12. Armour, J.A., and Burke, J.A., "Method for Separating Polychlorinated Biphenyls From DDT and its Analogs,"

 Journal of the Association of Official Analytical Chemistry, Vol. 53, No. 4, 1970, pp. 761-768

- 13. Goerlitz, D.F., and Lamer, W.L., Water Supply Paper, No. 1817-C, U.S. Geological Survey, 1967.
- 14. Mills, P.A., "Variation of Florisil Activity," Simple Method for Measuring Adsorbent Capacity and its Use in Standardizing Florisil Columns," Journal of the Association of Official Analytical Chemistry, Vol. 51, No. 1, 1968, pp. 29-32.
- 15. Reynolds, L.M., "Polychlorobiphenyls (PCB's) and their Interference with Pesticide Residue Analysis," Bulletin of Environmental Contamination and Toxicology, Vol.4, No. 3, 1969, pp. 128-143.
- 16. Schultzmann, R.L., Woodham, D.W., and Collier, C.W.,
 "Removal of Sulfur in Environmental Samples Prior to
 Gas Chromatographic Analysis of Pesticide Residues,"
 Journal of the Association of Official Analytical Chemistry, Vol. 54, No. 5, 1971, pp. 1117-1119.
- 17. Snyder, D., and Reinert, R., "Rapid Separation of Polychlorinated Biphenyls from DDT and its Analogs on Silica Gel," Bulletin of Environmental Contamination and Toxicology, Vol. 6, No. 5, 1971, pp. 385-390.
- 18. Hubbard, H.L., "Chlorinated Biphenyls and Related Compounds," Kirk-Othmer Encyclopedia of Chemical Toxicology, 2nd ed., Vol 5, 1964, pp. 289-297.
- 19. Official Method of Analysis of the Association of Analytical Chemists, 11th ed., Cambridge, Mass., 1970, pp. 475-511.

TABLE 1

Pinto Island (Mobile Bay, Alabama) and Grassy Island (Detroit, Michigan) Dredged Material Disposal Sites, Sample History and Qualitative Sample Description (Upon Arrival at U.S.C.)

			(Upon Ar	(Upon Arrival at U.S.C.)		
Site	USC Sample Code	Date Of Sample Collection	Turbidity	Color	Smel1	Greasy Appearance e.g.Oil Emulsions
Pinto Island	BW (A-D)	9-8-76	None	None	None	None
(Mobile bay, Alabama)	INF 1 (A-D)	9-7-16	Moderate	Grey and Brown	None	None
	EFF 1 (A-F)	9-8-76	Low	Light Grey and Brown	None	None
	INF 2 (A-D)	9-8-6	High	Moderately Orange and Brown	Moderately 0ily	Moderate
	EFF 2 (A-F)	9-8-76	Low	Light and Brown	Slightly 0ily	Slight
	INF 3 (A-D)	9-8-6	High	Dark Brown and Orange	Moderately 0ily	Moderate
	EFF 3 (A-F)	9-8-76	Moderate	Light Brown and Orange	Slightly Oily	Slight
Grassy Island	BW (A-C)	8-26-76	Very Very Low	Slightly Brown	None	None
Michigan)	INF 1 (A-D)	8-24-76	High	Dark Brown	Moderately Oily	Moderate
	EFF 1 (A-D)	8-24-76	Very Low	Light Yellow and Green	None	None
	INF 2 (A-D)	8-25-76	нідь	Dark Brown	Moderately 011y	Moderate
\	EFF 2 (A-D)	8-25-76	Very Low	Light Yellow and Green	None	None
	INF 3 (A-D)	8-25-76	Moderate	Dark Orange and Brown	Moderately 0ily	Moderate
	EFF 3 (A-D)	8-25-76	Very Low	Light Yellow and Green	None	None

TABLE 2 STATISTICAL CHARACTER OF BACKGROUND WATER, INFLUENT AND EFFLUENT SAMPLES FOR PINTO ISLAND, MOBILE BAY, ALABAMA - SITE SPECIFIC ANALYSIS

	Numb	er Of Sai	mples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Backgroun Water
РН									
Slurry	-		-	*	81	#	*		72
(<0.45-µ)	6	. 11	2	7.1-8.0	7.4-8.2	7.5-7.6	7.3	7.8	7.6
Salinity, 0/00									
Slurry	6	7	3	11.5-15.8	8.5-16.1	3.5-3.6	14.0	13.4	3.4
(<0.45-µ)	6	7 11	3 2	24.0-28.0	18.0-23.0	3.0-3.0	25.5	20.5	3.0
Conductivity,									
Slurry	6	6	3	20.6-26.9	20.1-27.7	6.2-6.5	24.3	24.9	6.3
(<0.45-µ)	6	11	3 2		18.0-25.9		24.8	22.0	4.9
Water Temp, °C	5	7	3	25.5-28.5	26.8-30.0	27.5-28.2	27.8	28.4	27.7
Dry Weight, 2	6	11	2	4.80-11.1	3.09-5.32	0.42-0.50	7.06	3.83	0.46
D.O., mg/1	6	9	3	0.50-1.20	0.30-4.20	7.45-7.75	0.65	2.40	7.58
lkalinity,mg/l as CaCO ₃ (<0.45-1)	6	11	2	80-202	136-270	50	151	213	50

	Sta	andard Devi	ation	F - Value	F - Value		Loading	Remova!	Impact
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background W	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background W
PH									
Slurry	ft	*	*	*	*	*	*	*	*
(<0.45-µ)	0.407	0.311	0.071	33.0	1.70	19.4	NSD _{1.5}	NSD: .s	NSD1.s
Salinity, ⁰ /οο Slurry (<0.45-μ)	1.93	2.95	0.058	1250 ∞	2.32 1.38	2900 ∞	SD ₁ ,s SD ₁ ,s	NSD1,5 NSD1,5	SD _{1.5} SD _{1.5}
Conductivity, mMhos Slurry (<0.45-µ)	2.88	3.63 3.03	0.173 1.34	277 1.26	1.58	438 5.10	SD1.5 NSD1,5	NSD ₁ ,5	SD1.5 NSD1.5
√ater Temp, °C	1.32	1.30	0.404	10.7	1.02	10.4	NSD _{1.5}	NSD1,5	NSD1.5
Dry Weight,%	2.55	0.602	0.056	2170	17.9	121	SD ₅	SD1.5	NSD1.5
D.O., mg/1	0.274	1.36	0.153	3.26	24.7	80.5	NSD ₁ ,s	SD1,5	SD ₅
lkalinity.mg/1 as CaCO ₃ (<0.45-µ)	55.0	40.7	0	œ	1.83	00	SD ₁ ,5	N SD ₁ , ₅	SD1,5

^{(-) -}(\(\triangle \) -(\(\triangle \) -SD₁,5 -NSD₁,5 -SD₅ -ND -

Not Determined (Insufficient Sample or Sample Destroyed In Transit). Not Enough Solids To Perform Analysis. Cannot Ascertain Since Not Determined Or Not Enough Solids to Perform Analysis. Cannot Ascertain Since Only One Sample Analyzed. Significant Difference at P ≤ 0.05 and P ≤ 0.01 . No Significant Difference At Either P ≤ 0.05 or P ≤ 0.01 . Significant Difference at P ≤ 0.05 only. No Difference (Difficult To Decide on Significance of Difference Since Values Compared Are At Trace Levels).

Table 2 (Continued)

	Num	ber Of S.	amples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Chloride,mg/I									
(<0.45-µ)	6	11	2	12.2-15.2	10.1-13.3	1.90	13.5	11.6	1.90
Cation Exchange									
Capacity, meq/1	6	12	Δ	3.6-58.7	4.3-24.6	#	28.4	11.8	#
Acid Soluble									
Sulfide,mg/1	5	11	2	15.1-27.9	1.5-5.9	<0.1	19.6	3.3	TRACE
Total-C.mg/1									
Slurry	5	10	2	40.0-93.8	52.5-342	16.3-20.0	59.3	93.8	18.2
(<8-u)	5	11	2	23.0-52.5	45.0-76.3	13.8-14.0	39.8	57.0	13.9
(<0.45-u)	5	11		23.2-49.0	40.0-75.0	11.3	38.4	55.2	11.3
(<0.05-µ)	5	1.1	2 2	23.0-48.0	41.3-72.5	12.0-12.5	38.4	52.5	12.3
Organic-C.mg/1									
Slurry	6	10	2	7.5-31.3	7.1-264	4.4-10.0	19.4	40.4	7.2
(<8-u)	6	11	2	7.0-14.5	2.5-16.3	4.0-5.0	10.3	8.5	4.5
(<0.45-µ)	6	11	2	7.0-14.5	2.5-12.5	2.5-3.8	10.3	6.4	3.2

	Stand	dard Deviat	ion	F - Value	F - Value	F - Value Effluent	Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	vs. Background W	Influent vs. Background	Influent vs. W Effluent	Effluent vs. Background W
Chloride,mg/1 (<0.45-µ)	1.37	1.34	0	00	1.06	œ	SD _{1,5}	NSD ₁ ,s	\$01,5
Cation Exchange									
Capacity, meq/1	20.0	7.47	π	*	7.19	*	*	\$01.5	*
Acid Soluble									
Sulfide.mg/l	4.94	1.35	∿0	- 00	13.4	00	SD1,5	SD1,5	SD1,5
Total-C.mg/1									
Slurry	21.1	87.9	2.62	65.1	17.4	1130	NSD1.5	SD1.5	SD ₅
(<8-µ)	14.5	9.26	0.141	10500	2.45	4290	SD1.5	NSD1.5	SDs
(<0.45-u)	13.2	10.5	0	00	1.57	00	SD1.5	NSD1.5	SD1.5
(<0.05-µ)	12.5	10.2	0.353	1260	1.52	827	SDs	NSD1,5	SD ₅
Organic-C,mg/1									
Slerry	10.9	79.1	3.96	7.58	52.6	399	NSD1.5	SD1.5	SD ₅
(<8-µ)	3.11	4.04	0.707	19.3	1.69	32.6	NSD1.5	NSD1.5	NSD: .5
(<0.45-µ)	3.58	2.95	0.919	15.1	1.47	10.3	NSD1.5	NSD1,5	NSD1.5

Table 2 (Continued)

	Num	ber Of S.	amples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
(<0.05-µ)	5	11	2	6.5-13.0	4.5-12.5	3.0-3.2	9.8	6.8	3.1
3 110									
Grease,mg/1									
Slurry	6	11	2	287-684	16-105	3-4	456	45	3.5
NH3-N,mq/1				100					
Slurry	3	2	1	1.90-22.3	8.93-17.5		10.19	13.2	
(<8-µ)	3	2	1	0.78-13.1	0.96-3.29		5.10	2.13	
(<0.45-µ)	3	2 2	1	0.64-12.6	0.80-3.19		4.83	1.99	
(<0.05-µ)	1	2	1		0.61-1.81			1.21	
rganic-N,mg/1									
Slurry	3	2	1	17.5-43.8	8.20-16.7		31.1	12.5	
(<8-µ)		2 2 2	1	6.22-9.17	7.44-7.49		7.47	7.47	
(<0.45-u)	3	2	1	6.10-13.5	6.10-8.05		8.78	7.08	
(<0.05-µ)	2	1	1	6.10-12.0	•	•	9.05	-	
NO ₃ -N,mg/1									
(<0.45-µ)	3	2	1	0.26-0.30	0.22-0.24		0.28	0.23	
NO ₂ -N,mg/1									
(<0.45-µ)	3	2	1	<0.01	<0.01		TRACE	TRACE	

	Sta	indard Dev	iation	F - Value Influent	F - Value Influent	F - Value Effluent	Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water		vs. Effluent	VS. Background W	Influent vs. Background	Influent vs. W Effluent	Effluent vs. Background W
(<0.05-µ)	2.66	2.39	0.141	355	1.24	286	SD ₅	NSD1,5	SD ₅
Oil & Grease,mg/l Slurry	147	27.4	0.707	43500	28.9	1500	SD ₁ ,s	SD ₁ ,s	SD ₅
NH ₃ -N,mg/l Slurry	10.7	6.06			3.13			NSD ₁ ,s	
(<8-µ)	6.93	1.65			17.8			NSD1,5	
(<0.45-µ)	6.73	1.69			15.8			NSD1.5	
(<0.05-µ)		0.848							
organic-N.mg/1									
Slurry	13.2	6.01			4.80			NSD1.5	
(<8-µ)	1.53	0.035			47.0			NSD1.5	
(<0.45-u)	4.10	1.38			8.84			NSD1.5	
(<0.05-µ)	4.17		•						
NO3-N,mg/1									
(<0.45-u)	0.021	0.014			2			NSD ₁₊₅	
NO ₂ -N,mg/1 (<0.45-μ)	√0	∿0			IND.			ND	

Table 2 (Continued)

	Numl	ber Of S	amples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Total-P,mg/I									
Slurry	3	2	1	68-80	37.5-47.5		74.3	42.5	
(<8-µ)	3	2	1	<0.01	<0.01		TRACE	TRACE	
(<0.45-µ)	3	2 2	1	< 0.01	< 0.01		TRACE	TRACE	
<0.05-µ)	3	2	1	<0.01	<0.01		TRACE	TRACE	
Sodium,									
Slurry,mg/1		-	1	#	#		*	*	
(<8-µ),mg/1	5	8	2	7950-8700	6300-7350	1200-1350	8460	6730	1275
(<0.45-u),mg/1	3	2	2	7350-7950	5700-6600	1200-1350	7600	6150	1275
(<0.05-µ),mg/1	5	5	1	7200-7950	5700-6150		7570	5850	
Potassium									
Slurry,mg/1	4	12	_	1110-2700	583-923	#	1630	745	*
Solids,mg/1	4	11	-	14700-56200	14100-2700	0 *	26900	19500	*
$(<8-\mu)$, mg/1	4	12	-	178-191	116-155	*	184	136	
(<0.45-µ),mq/1	4	12	_	169-184	108-153	A	175	129	*
(0.05-µ),mg/1	4	12	-	156-171	98-156	*	164	126	*
Calcium									
Slurry,mg/1	4	12	2	623-718	423-618	66.3-69.7	668	513	68
Solids,mg/1	4	11	2	903-13600	11000-1670	0 13900-158	800 8090	13300	14900
(<8-u),mg/1	4	12	2	450-520	275-415	65.0-66.5	470	327	65.8
(<0.45-u),mg/1	4	12	2	438-499	255-398	63.3-65.2	462	311	64.3
(<0.05-µ),mg/1	4	12	2	418-473	217-359	61.4-62.8	440	287	62.1

	Sta	indard Dev	iation	F - Value	F - Value		Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background W	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background
Total-P,mg/1									
Slurry	6.03	7.07			1.37			NSD1.5	
(<8-u)	∿0	~0		-100	IND			ND	
(<0.45-u)	20	~0			IND			ND	
<0.05-µ)	∿0	20	•		IND			ND	
Sodium,									
Slurry,mg/1	#	*		*	#	*	*	#	*
(<8-µ),mg/1	345	484	106	10.6	1.96	20.8	NSD1.5	NSD1.5	NSD1.5
(<0.45-u),mg/1	312	636	106	8.66	4.15	36.0	NSD1,5	NSD1.5	NSD1.5
(<0.05-µ),mg/1	297	212		•	1.96			NSD _{1.5}	
Potassium									
Slurry,mg/1	738	94.8	*	*	60.7	*	*	SD1.5	#
Solids,mg/1	19800	3540	*	*	31.5	*	*	SD1.5	#
(<8-µ),mg/1	62.4	12.7	*	*	4.15	*	*	NSD1,5	*
(<0.45-u),mg/1	6.56	13.1	*	*	4.03	*	#	NSD1.5	*
(0.05-µ),mg/1	8.00	17.1	*	*	4.71	*	*	NSD1,5	*
Calcium									
Slurry,mg/1	40.4	65.6	2.40	283	2.63	744	SD ₅	NSD1,5	SD ₅
Solids,mg/1	5300	1830	1340	15.6	8.42	1.84	NSD1,5	501,5	NSD1,5
(<8-µ),mg/1	33.4	45.4	1.06	988	1.84	1820	SDs	NSDI,5	SDs
(<0.45-u),mg/1	26.2	45.9	1.34	379	3.08	1170	SD ₅	NSD1,5	SD ₅
(<0.05-µ),mg/1	25.2	46.4	0.989	649	3.38	2200	SDs	NSD1.5	SDs

Table 2 (Continued)

	Num	ber Of	Samples		Range			Mean	
Parameters	Influent	Efluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Magnesium									
Slurry,mg/1	-		-	*	#	#	#	#	#:
Solids, mg/kg		-	-	*	*	A	*	A	*
$(<8-\mu)$, mg/1	4	12	2	1150-1510	759-1280	215-229	1330	1060	222
(<0.45-µ),mg/1	4	12	2	1020-1420	752-1160	210-223	1220	959	216
(<0.05-μ),mg/1	4	12	2	966-1310	787-1100	189-195	1170	923	192
Arsenic									
Slurry.mg/1 In Oil	-	-	-	*	*	*	*	*	*
& Grease/ug/1	4	12	-	0.53-0.59	<0.01-0.92	#	0.56	0.27	*
arb. Phase, mg/kg	6	12	Δ	0.220-0.620	0.170-0.40	n	0.376	0.315	rh
xch.Phase,mg/kg	6	12	Δ	0.080-0.340	0.110-0.43	0 *	0.192	0.268	*
Cadmium									
Slurry, ug/1	6	12	2	63-104	47.4-94.5	2:12-2.63		. 73.1	2.38
Solids, mg/kg	6	11	2	0.57-2.10	1.35-2.40	0.42-0.63	1.41	1.86	0.53
(<8-u), ug/1	4	12	2	3.00-3.75	0.44-5.23	0.87-1.11		2.92	0.99
(<0.45-µ),µg/1	4	12	2	2.47-3.33	0.21-4.21	0.87-0.98		2.23	0.93
(<0.05-μ),μg/1 In 0il	4	12	2	2.43-2.93	0.17-3.92	0.66-0.73	2.68	2.00	0.69
& Grease/ug/1	4	12	2	1.33-1.77	<0.01-0.14	<0.01	1.54	0.05	TRACE

	Sta	ndard Dev	iation	F - Value	F - Value	F - Value	Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	Vs. Background W	Influent vs. Background W	Influent vs. Effluent	effluent vs. Background V
Magnesium									
Slurry,mg/1	#	nt	*	*	#	at the state of th	朮	#	*
Solids, mg/kg	π	#	*	*	*	th.	#	#	*
$(<8-\mu)$, mg/1	171	158	9.89	299	1.17	255	SD ₅	NSD1,5	SD ₅
(<0.45-µ),mg/1	179	117	9.19	378	2.34	161	SD ₅	NSD1.5	NSD1.5
(<0.05-µ),mg/1	146	105	4.24	2670	1.93	1380	SD ₅	NSD ₁ 5	SDs
Arsenic Slurry,mg/1	*	*	*	*	*	*	*	*	ħ
E Grease/ug/1	0.028	0.319	*	*	146	th	*	501.5	*
	0.168	0.119	*	*	2.00	n	*	NSD1.5	*
Carb.Phase,mg/kg Exch.Phase,mg/kg	0.089	0.077	*	#	1.33	*	*	NSD1.5	*
Cadmium									
Slurry, ug/1	18.9	17.9	0.361	2760	1.11	2480	SD ₅	NSD1.5	SDs
Solids.mg/kg	0.540	0.396	0.148	13.2	1.85	7.14	NSD1.5	NSD1.5	NSD1.5
(<8-µ),µg/1	0.307	1.70	0.169	3.13	30.6	95.9	NSD1.5	SD1.5	NSD1.5
(<0.45-µ),µg/1	0.389	1.38	0.078	25.2	12.5	315	NSD1.5	SD1.5	SDs
(<0.05-µ),µg/1	0.213	1.33	0.049	22.5	39.4	886	NSD ₁ ,s	SD1,5	SDs
& Grease/µg/1	0.182	0.058	∿0	æ	11.0	90	SD ₁ ,s	SD1,5	SD1,5

Table 2 (Continued)

	Num	ber Of S	amp les	3,714	Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Carb.Phase,mg/kg	6	12	Δ	0.034-0.22	0.090-0.206	n	0.088	0.143	
Exch.Phase,mg/kg	6	12	Δ	0.007-0.016	0.027-0.088	*	0.010	0.052	#
Chromium									
Slurry,mg/1 In Oil	-	-	-	*	*	*	*	*	#
& Grease, ug/1	4	12		0.32-0.93	< 0.01-0.69	兼	0.73	0.44	#
Carb. Phase, mg/kg	6	12	Δ	0.60-1.11	0.59-1.07	#	0.90	0.78	
Exch.Phase,mg/kg	6	12	Δ	0.14-0.28	0.15-0.46	it	0.21	0.24	*
Copper									
Slurry,mg/1	6	12	2	1.79-4.41	0.70-2.34	0.31-0.55	2.73	1.31	0.43
Solids,mg/kg	6	11	2	23.7-91.7	13.2-66.1	73-110	49.0	33.9	91.5
(<8-µ),µg/1	4	12	2	2.41-6.17	3.11-8.11	1.83-2.15	4.59	5.44	1.99
(<0.45-u), ug/1	4	12	2	2.33-5.33	2.86-7.43	1.98-2.11	3.96	4.99	2.05
(<0.05-μ),μg/1 In 0il	4	12	2	1.73-5.21	2.17-7.19	1.72-2.00	3.11	4.51	1.86
& Grease, µg/1	4	12	2	2.31-4.23	1.38-4.28	1.13-2.14	3.51	2.52	1.64
Carb. Phase, mg/kg		12	Δ	0.21-1.75	1.76-4.61	*	0.57	2.97	*
Exch.Phase,mg/kg	6	12	Δ	0.13-0.22	0.20-0.55	*	0.17	0.37	
Iron									
Slurry,mg/1	6	12	-	1460-4080	863-1450	*	2290	1230	朮
Solids,mg/kg	6	11		27400-36800	25100-37000	*	32300	31900	*
(<8-µ),µg/1	4	12	2	31.0-750	12.0-283	3.92-4.62	218	95.5	4.27

	Sta	ndard Devi	ation.	F - Value Influent	F - Value	F - Value Effluent	Loading	Removal	Effluent
Parameters	Influent	Effluent	Background Water	vs. Background W	vs. Effluent	vs. Background W	vs. Background W	vs. Effluent	vs. Background V
Carb.Phase,mg/kg	0.072	0.039	*	*	2.50	*	*	NSD: .s	*
Exch.Phase,mg/kg	0.004	0.019	*	*	18.8	*	*	SD1,5	±
Chromium									
Slurry,mg/l In Oil	A	*	tr	*	*	*	*	*	n
& Grease,ug/1	0.281	0.203	*	*	1.92	*	*	NSD1.5	*
Carb.Phase,mg/kg	0.178	0.151	*	*	1.39	*	#	NSD1.5	*
Exch.Phase,mg/kg	0.058	0.087	*	*	2.66	*	*	NSD1,5	*
Copper									
Slurry,mg/1	0.927	0.492	0.169	29.7	3.55	8.34	NSD1,5	SD ₅	NSD1.5
Solids,mg/kg	23.6	14.6	26.2	1.23	2.62	3.22	NSD1,5	NSD1,5	NSD1.5
(<8-µ),µg/1	1.66	1.67	0.226	54.8	1.02	55.8	NSD1,5	NSD1.5	NSD1,5
(<0.45-u), µg/1	1.26	1.66	0.092	197	1.75	345	NSD1,5	NSD1.5	SD ₅
(<0.05-μ),μg/1 In 0il	1.52	1.45	0.198	57.8	1.10	52.8	NSD ₁ , ₅	NSD1,5	NSD ₁ , ₅
& Grease, µg/1	0.832	0.819	0.714	1.36	1.03	1.31	NSD1.5	NSD1.5	NSD1,5
Carb. Phase, mg/kg	0.605	0.737	*	#	1.48	rh	#	NSD1.5	÷
Exch.Phase,mg/kg	0.035	0.113	*	*	13.0	*	*	SD1.5	*
Iron									
Slurry,mg/1	959	200	A	*	23.0	*	#	SD1,5	it
Solids,mg/kg	3280	3910	#	*	1.42	*	*	NSD1.5	#
(<8-u), ug/1	355	95.3	0.495	514000	13.9	37100	SD1.5	501,5	SD1,5

Table 2 (Continued)

	Numbe	r Of Sam	ples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
(<0.45-µ),µg/1	4	12	2	29.4-350	3.5-55.1	1.4-4.2	118	19.6	2.8
(<0.05-μ),μg/1 In 0il	4	12	2	15.6-310	2.4-32.8	1.2-1.3	102	13.8	1.25
& Grease, µg/1	4	12	2	82.3-1490	2.07-7.48	1.53-1.81	707	3.77	1.67
Carb. Phase, mg/kg	6	12	Δ	2390-5520	1360-2520	- 20	3580	1910	#
Exch.Phase,mg/kg	6	12	Δ	0.12-0.89	0.06-0.44	tr	0.35	0.15	*
Manganese									
Slurry,mg/1	6	12	1	33.3-53.7	9.7-30.5		45.4	20.8	
Solids,mg/kg	6	11	1	442-1120	274-784		716	523	
(<8-u), µg/1	4	12	-	4.92-5.22	3.33-5.11	#	5.07	3.87	π
(<0.45-µ),µg/1	4	12		4.72-5.00	2.37-4.77	#	4.89	3.72	*
(<0.05-µ).ug/1	4	12	-	4.55-4.82	2.11-4.54	*	4.73	3.58	*
& Grease, pq/1	4	1.2	2	1.52-2.11	0.23-1.78	<0.1	1.73	1.37	TRACE
arb.Phase,mg/kg	6	12	Δ	142-365	66-396	#	246	258	A
xch.Phase,mg/kg	6	12	Δ	91-185	5.9-128	#	154	43.1	#
Mercury									
Slurry,µg/1	6	12	2	21.0-48.0	17.0-30.0	< 0.01	34.5	21.9	TRACE
Solids,mg/kg	6	1.1	_	0.20-0.80	0.32-0.79	it	0.55	0.59	ft
(<8-u), µg/1	4	12	2 2	0.23-0.38	0.07-0.33	0.02-0.05	0.28	0.19	0.035
(<0.45-µ), µg/1	4	12	2	0.17-0.32	0.06-0.32	0.02-0.05	0.23	0.16	0.035
(<0.05-µ),µg/1	4	12	2	0.18-0.27	0.06-0.33	< 0.01-0.05	0.22	0.17	0.025

	Sta	ndard Devia	tion	F - Value Influent	F - Value	F - Value	Loading	Removal	Impact Effluent
Parameters	Influent	Effluent	Background Water		Influent vs. Effluent	Effluent vs. Background W	Influent vs. Background W	Influent vs. Effluent	vs. Background W
(<0.45-µ),µg/1	155	16.4	1.98	6160	89.5	68.7	SD ₁ ,5	SD1.5	NSD _{1.5}
(<0.05-μ),μg/1 In 0i1	140	11.9	0.071	3900000	139	28100	SD ₁ ,s	SD1,5	SD ₁ , ₅
& Grease, µg/1	583	1.36	0.198	8510000	184000	46.3	SD1.5	SD1.5	NSD1.5
Carb. Phase, mg/kg	1170	325	*	±	13.0	at	#	501,5	rh
Exch.Phase,mg/kg	0.286	0.118	*	*	5.85	*	#	SD1,5	#
Manganese									
Slurry,mg/1	7.33	6.87			1.13			NSD1.5	
Solids,mg/kg	285	139			4.19			SDs	
(<8-µ), µg/1	0.145	0.642	#	*	20.5	rk	#	SD ₅	th
(<0.45-µ),µg/1	0.121	0.594	*	*	35.0	#	#	SD1.5	*
(<0.05-µ),µg/1	0.120	0.614	*	*	38.0	n	it	SD1,5	#
& Grease, µg/1	0.273	0.414	∿0	00	2.43	00	SD1.5	NSD1.5	SD1.5
arb.Phase,mg/kg	89.5	111	*	#	1.52	*	*	NSD1.5	#
xch.Phase,mg/kg	37.9	51.4	*	*	1.84	*	*	NSD1,5	*
Mercury									
Slurry, µg/1	10.1	4.14	~0	00	5.95	00	SD1.5	SD1.5	SD1,5
Solids, mg/kg	0.239	0.147	*	*	2.73	rh	*	NSD1.5	*
(<8-µ),µg/1	0.071	0.093	0.021	12.5	1.80	22.5	NSD1.5	NSD1,5	NSD1,5
(<0.45-µ),µg/1	0.066	0.088	0.021	10.0	2.00	20.0	NSD1.5	NSD1,5	NSD1,5
(<0.05-µ),µg/1	0.040	0.087	0.035	2.00	4.00	8.00	NSD1.5	NSD1.5	NSD1,5

Table 2 (Continued)

	Numbe	er Of San	mples			Mean			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Nickel									
Slurry, mg/1	6	9	2	1.27-3.11	0.44-0.81	0.002-0.006	1.83	0.60	0.004
Solids, mg/kg	6	8	-	12.8-32.8	11.3-23.5	#	24.5	16.9	*
(<8-µ),µq/1	4	12	2 2	7.32-9.76	5.42-10.43	1.83-5.11	8.44	7.79	3.47
(<0.45-µ),µq/1	. 4	12	2	6.87-8.32	5.23-9.51	1.7-4.9	7.66	7.08	3.3
(<0.05-μ),μg/1 In 0il	4	12	2	6.31-8.30	4.95-8.75	1.8-4.23	7.54	6.55	3.05
& Grease, µg/1	4	12	2	4.14-5.53	1.15-6.05	<0.01	4.54	3.74	TRACE
Carb.Phase.mg/kg	6	12	Δ	0.86-2.44	1,22-2.72	#	1.63	1.79	食
Exch.Phase,mg/kg	6	12	Δ	0.08-0.23	0.04-0.38	*	0.128	€.252	
Lead									
Slurry, mg/1	6	12	2	3.52-6.81	1.70-8.83	0.37-0.52	5.22	3.40	0.45
Solids, mg/kg	6	11	2	61.4-104	46.8-102	74-123	77.1	76.7	98.5
(<8-µ),µq/1	4	12	2 2	6.42-7.31	3.88-5.83	1.13-1.77	6.54	4.65	- +2
(<0.45-u).ug/1	4	12	2	5.31-6.83	3.72-4.89	1.11-1.72	6.15	4.30	1.42
(<0.05-μ),μg/1 In 0il	4	12	2	4.17-6.53	3.22-4.75	0.92-1.17	5.49	3.85	1.05
& Grease, ug/1	4	12	2	2.38-5.27	0.64-1.41	< 0.1	3.87	0.97	TRACE
Carb.Phase,mg/kg	6	12		1.25-2.71	1.18-2.68	*	2.19	1.71	n
Exch. Phase, mg/kg	6	12	Δ	0.05-0.10	0.03-0.17	#	0.07	0.11	alt.
		77.00							

	Sta	indard Dev	iation	F - Value Influent	F - Value Influent	F - Value Effluent	Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water		vs. Effluent	vs. Background W	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background
Nickel									
Slurry, mg/1	0.687	0.142	0.003	59000	23.6	2500	SD1,5	SD1.5	SD5
Solids, mg/kg	7.31	4.39	*	*	2.77	*	Ŕ	NSD1,5	京
(<8-u),uq/1	1.01	1.60	2.32	5.32	2.56	2.10	NSD1.5	NSD1.5	NSD1.5
(<0.45-µ),µg/1	0.769	1.25	2.26	8.68	2.64	3.28	NSD ₁ ,5	NSD1.5	NSD1.5
(<0.05-µ),µg/1 In 011	0.934	1.10	1.72	3.38	1.39	2.44	NSD ₁ , ₅	NSD ₁ , ₅	NSD ₁ ,5
Grease, ug/1	0.664	1.65	~0	00	6.20	00	SD1,5	NSD1.5	SD1,5
arb. Phase .mg/kg	0.606	0.434	*	*	1.95	*	*	NSD1.5	*
xch.Phase,mg/kg	0.055	0.116	*	*	4.33	*	*	NSD1,5	*
Lead	1.26	1.83	0.106	150	2.11	336	NC.		
Slurry, mg/1	15.1	19.0	34.7	159	1.59		NSD1.5	NSD1,5	SD ₅
Solids, mg/kg	0.752	0.612	0.452	2.76	1.51	3.33 1.82	NSD ₁ ,s	NSD1,5	NSD ₁ ,s
(<8-µ),µg/1	0.682	0.511	0.432	2.50	1.78	1.40	NSD ₁ ,5	NSD1,5	NSD ₁ ,s
(<0.45-µ),µg/1	1.03	0.635	0.431	35.4	2.63	13.4		NSD1,5	NSD1,5
(<0.05-μ),μg/1 In 0i1				35.4		13.4	NSD ₁ , ₅	NSD _{1 »5}	NSD ₁ ,s
Grease, ug/1	1.26	0.246	~0	00	26.3	00	SD1,5	SD1.5	SD1.5
arb.Phase,mg/kg	0.601	0.572	*	#	1.10	n	*	NSD1.5	*
xch.Phase,mg/kg	0.021	0.034	九	*	2.00	*	ħ	NSD1.5	nt

Table 2 (Continued)

	Numi	ber Of S.	amples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Selenium									
Slurry, mg/1	6	12	-	2.68-3.77	0.98-2.63	*	3.10	1.89	*
Solids, mg/kg	6	11	-	30.9-70.2	28.7-71.8	#	47.9	48.9	
(<8-µ),µg/1	3	12	2	1.71-4.51	1.83-4.73	0.47-0.59	3.47	2.85	0.53
(<0.45-µ),µg/1	3	12	2 2 2	1.61-4.41	1.69-3.80	0.50-0.61	3.31	2.62	0.56
(<0.05-µ),µg/1	1	12	2		1.47-3.34	0.47-0.51		2.39	0.49
Titanium							1		
Slurry, mg/1	6	12	2	3.87-6.71	2.23-3.71	< 0.1	5.24	2.74	TRACE
Solids,mg/kg	6	11	-	56.8-108.6	50.2-99.7	*	78.6	74.2	*
(<8-11), ug/1	4	12	2	3.83-5.38	2.13-4.52	< 0.1	4.33	3.17	TRACE
(<0.45-u),ug/1	4	12	2	3.87-5.22	1.95-4.33	< 0.1	4.32	3.04	TRACE
(<0.05-µ),µg/1	2	12	2	3.83-5.14	1.72-4.27	<0.1	4.49	2.88	TRACE
Grease, µg/1	4	12	-	0.55-0.72	<0.1-0.62	#	0.66	0.12	*
Vanadium									
Slurry.mg/1	6	12	-	3.17-4.33	1.15-4.13	A	3.68	2.02	A
Solids,mg/kg	6	11	-	39.0-79.8	31.9-77.6	*	56.7	50.2	*
(<8-µ), µg/1	4	12	2	6.17-9.73	2.47-6.43	< 0.05	7.57	4.12	TRACE
(<0.45-µ), µg/1	4	12	2	5.87-8.17	2.31-6.27	< 0.05	6.96	4.02	TRACE
(<0.05-μ),μg/1 In 011	4	12	2	5.21-8.23	1.97-6.03	<0.05	6.58	3.79	TRACE
Grease, µg/1	4	12	-	1.38-2.50	<0.05-2.03	*	1.78	0.93	*

	<u>St</u>	andard De	viation	F - Value Influent	F - Value	F - Value Effluent	Loading	Removal	Effluent
Parameters	Influent	Effluent	Background Water	vs. Background W	vs. Effluent	vs. Background W	vs. Background W	Influent vs. Effluent	vs. Background
Selenium									
Slurry, mg/1	0.429	0.561	*	*	1.75	*	*	NSD1.5	*
Solids, mg/kg	15.3	14.2	#	#	1.17	*	*	NSD1.5	*
(<8-µ),µg/1	1.53	0.853	0.085	334	3.21	104	SDs	NSD1.5	NSD1.5
(<0.45-u), µg/1	1.49	0.712	0.078	372	4.37	85	SDs	SDs	NSD1.5
(<0.05-μ),μg/1		0.632	0.028	•		499			SDs.
Titanium									
Slurry, mg/1	1.19	0.467	~0	00	6.50	00	SD1.5	SD1.5	\$01.5
Solids.mg/kg	20.1	17.1	nt	*	1.38	th*	*	NSD1.5	#
(<8-u), ug/1	0.716	0.734	~0	œ	1.05	90	SD1.5	NSD1.5	501.5
(<0.45-u), ug/1	0.618	0.748	~0	00	1.47	00	SD1.5	NSD1.5	501.5
(<0.05-u),ug/1	0.926	0.778	~0	œ	1.41	90	501,5	NSD1,5	501.5
& Grease, µg/1	0.075	0.199	π	*	6.66	*	*	NSD1,5	#
Vanadium									
Slurry,mg/1	0.436	0.800	#	*	3.39	*	*	NSD1.5	*
Solids,mg/kg	17.4	12.9	*	*	1.81	#	*	NSD1 ,5	*
(<8-u), ug/1	1.60	1.27	20	00	1.60	00	SD1,5	NSD1,5	SD1,5
(<0.45-u), ug/1	1.00	1.29	~0	00	1.66	90	SD1.5	NSD1.5	SD1,5
(<0.05-μ),μg/1 In 0il	1.33	1.36	∿0	00	1.06	00	\$01,5	NSD1,5	SD1,5
Grease, ug/1	0.499	0.542	*	*	1.18	*	#:	NSD1,5	#

Table 2 (Continued)

	Numb	er Of Sai	mples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Carb.Phase.mg/kg	6	12	Δ	3.30-5.30	<0.10-1.60	*	4.23	0.37	
xch.Phase,mg/kg	6	12	Δ	<0.1	<0.1	#	TRACE	TRACE	*
Zinc									
Slurry,mq/1	6	12	2	10.5-22.9	7.3-14.1	1.12-1.13	16.4	10.7	1.13
Solids,mg/kg	6	11	_	206-285	198-307	#	237	272	*
(<8-u),ug/1	4	12	2	<0.1-3.6	0.11-3.68	0.33-0.52	1.55	1.19	0.43
(<0.45-u), ug/1	4	12	2	<0.1-1.13	0.29-1.95	0.63-1.68	0.28	1,11	1.16
(<0.05-µ), µg/1	4	12	2	<0.1-1.12	0.17-1.93	0.56-1.32	0.28	1.04	0.94
In Oil									
Grease, µg/1	4	12	2	2.73-3.72	<0.1-2.11	0.62-0.85	3.28	1.12	0.74
arb.Phase,mg/kg	6	12	Δ	22.3-80.8	46.7-87.3	#	44.2	55.2	- 1
xch.Phase,mg/kg	6	12	Δ	0.08-1.3	3.0-11.4	*	0.29	5.55	
Chlorinated									
Hydrocarbons OF DDD									
Slurry,mg/l	3	3	1	0.053-0.486	0.040-0.171		0.272	0.111	
PP · DDD									
Slurry,mg/l	3	3	1	0.162-0.874	0.073-0.186		0.466	0.140	
OP , DDE									
Slurry,mg/1	3	3	1	0.066-0.342	0.020-0.063		0.162	0.040	

	Sta	indard Devi	ation	F - Value	F - Value	F - Value	Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background W	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background
Carb.Phase,mg/kg	0.784	0.596	*	*	1.73	*	*	NSD1.5	*
Exch.Phase,mg/kg	~0	~0	*	*	IND	*	*	ND	*
Zinc									
Slurry,mg/1	4.95	2.37	0.007	490000	4.35	112000	SD1,5	SDs	SD1.5
Solids,mg/kg	27.2	38.0	*	#	1.94	*	*	NSD1.5	#
(<8-µ),µq/1	1.50	1.14	0.134	125	1.74	71.8	NSD1,5	NSD: .s	NSD1.5
(<0.45-µ), µg/1	0.565	0.643	0.742	1.72	1.29	1.34	NSD1.5	NSD1.5	NSD1.5
(<0.05-µ),µg/1	0.560	0.583	0.537	1,12	1.08	1.21	NSD1.5	NSD1,5	NSD1.5
In Oil							.,,,		
& Grease, ug/1	0.435	0.503	0.163	7.30	1.33	9.73	NSD1.5	NSD: . s	NSD1,5
Carb.Phase,mg/kg	22.1	11.0	*	#	4.00	*	*	SDs	*
Exch.Phase,mg/kg	0.493	3.03	*	*	37.7	*	*	SD _{1,5}	*
Chlorinated									
Hydrocarbons									
OP' DDD	0.216	0.066			11.8			NSD1.5	
Slurry,mg/1	0.210	0.000			11.0			M301.5	
PP · DDD									
Slurry,mg/1	0.367	0.059			37.8			SDs	
3 (d) (y , mg/)								-55	
OP DDE									
Slurry,mg/1	0.155	0.022			51.2			SDs	

Table 2 (Continued)

	Num	ber Of Sa	mples		Range		Mean			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water	
PP· DDE Slurry, mg/1	3	3	1	0.233-0.828	0.059-0.171		0.442	0.109		
OP' DDT	,	,		0.233-0.020	0.059-0.171		0.442	0.109		
Slurry, mg/1	3	3	1	0.047-0.283	<0.001		0.186	TRACE		
PP' DDT Slurry, mg/l	3	3	1	0.182-0.874	<0.001		0.472	TRACE		
Total DDT Slurry, mg/l	3	3	1	0.743-3.39	0.192-0.590		2.01	0.400		

	Sta	indard Dev	iation	F - Value Influent	F - Value Influent	F - Value Effluent	Loading	Removal Influent	<u>Impact</u> Effluent
Parameters	influent	Effluent	Background Water	vs. Background W	vs. Effluent	vs. Background W	vs. Background W	vs.	vs. Background V
PP. DDE									
Slurry, mg/1	0.334	0.057	•		37.0			SD ₅	
OP' DDT									
Slurry, mg/1	0.123	~0			00			SD1,5	•
PP' DDT									
Slurry, mg/1	0.359	~0			00		•	SD1,5	
Total DDT	1 22	0.100			45.1			sn.	
Slurry, mg/1	1.33	0.199		•	45.1		•	SDs	

Table 2 (Concluded)

	Numb	er Of Sa	mples		Mean				
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Aroclor 1242 Slurry, mg/1	3	3	1	0.370-1.26	0.030-0.040		0.806	0.033	
Aroclor 1254 Slurry, mg/l	3	3	1	0.350-0.600	0.010-0.020		0.443	0.013	
Aroclor 1260 Sturry, mg/1	3	3	1	0.110-0.180	0.001-0.002		0.136	0.001	
Total PCB Slurry, mg/l	3	3	1	0.830-2.04	0.041-0.052		1.38	0.048	

	Star	Standard Deviation			F - Value Influent	F - Value Effluent	Loading	Removal	Effluent
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	vs. Effluent	vs.	vs. Background W	vs. Effluent	vs. Background W
Aroclor 1242 Slurry, mg/1	0.445	0.005			6000			SD ₁ ,5	
Aroclor 1254 Slurry, mg/1	0.136	0.006			545			\$01,5	
Aroclor 1260 Slurry, mg/1	0.038	0.001			467	•		SD _{1,5}	
Total PCB Slurry, mg/1	0.611	0.006			10400			SD ₁ ,5	

TABLE 3 Statistical Character Of Background Water, Influent and Effluent Samples For Grassy Island, Detroit, Michigan - A Site Specific Analysis

	Numbe	er Of Sa	mples		Range	Mean			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
PH									
Slurry	9 6	9	3	7.0-7.3	7.1-7.3	7.0	7.1	7.2	7.0
(<0.45-u)	6	9	1	8.0-8.4	8.0-8.6		8.3	8.3	
Salinity, %/00									
Slurry	9	9	3	0.2-0.5	0.2-0.5	0.2	0.3	0.4	0.2
(<0.45-u)	6	9	1	<0.1	<0.1		TRACE	TRACE	
Conductivity, in mMhos									
Slurry	9 6	9	3	0.35-0.37	0.70-0.75	0.28-0.30	0.36	0.71	0.29
(<0.45-µ)	6	6	1	0.08-0.13	0.057-0.08		0.11	0.07	
ater Temp, °C	9	9	3	23.0-25.0	23.0-25.0	29.0-29.0	24.3	24.0	29.0
ry Weight, %	6	6	1	13.9-24.0	0.03-0.10		18.6	0.06	
D.O., mg/1	9	9	3	7.1-7.6	6.9-7.6	7.0	7.4	7.3	7.0

	Sta	andard Dev	iation	F - Value Influent	F - Value		Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water		Influent vs. Effluent	Effluent vs. Background W	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background V
PH .									
Slurry	0.106	0.074	0	00	2.20	00	SD1.5	NSD1.5	SD _{1,5}
(<0.45-u)	0.155	0.216	-		1.95			NSD ₂ ,5	
Salinity, 0/00									
Slurry	0.129	0.132	0	00	1.06	00	SD1.5	NSD1.5	SD1.5
(<0.45-u)	20	∿0	•		IND			ND	
Conductivity,									
Slurry	0.010	0.017	0.01	1.0	3.00	3.00		NSD1.5	
(<0.45-µ)	0.020	0.009			7.14			SDs	
ater Temp, °C	0.666	0.866	0	00	1.70	00	SD _{1.5}	NSD1.5	SD1.5
ry Weight, %	3.46	0.032			12000			SD ₁ ,s	
D.O., mg/1	0.196	0.283	0	00	2.00		SD _{1.5}	NSD _{1,5}	SD1.5

IND. -(Δ) -(Δ) -(κ) -SD1,5 -NSD1,5 -SD5 -ND -Indeterminate,
Not Determined (Insufficient Sample or Sample Destroyed In Transit).
Not Enough Solids To Perform Analysis.
Cannot Ascertain Since Not Determined or Not Enough Solids to Perform Analysis.
Cannot Ascertain Since Only One Sample Analyzed.
Significant Difference at P ≤0.05 and P ≤0.01.
No Significant Difference at P ≤0.05 only P ≤0.01.
Significant Difference at P ≤0.05 only.
No Difference (Difficult to Decide on Significance of Difference Since Values Compared are at Trace Levels).

Table 3 (Continued)

	Numb	ber Of Sa	amples		Range		Mean			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water	
Alkalinity,mg/l										
as CaCO,										
(<0.45-µ)	6	6	1	310-610	198-290	•	505	244		
Chloride,mg/1										
(<0.45-u)	6	5	1	40.7-67.8	44.9-53.9	200	50.6	47.9		
							20.0	.,,,,		
Cation Exchange										
Capacity, meq/1	6	Δ	Δ	36.2-162	#	*	69.2	nt	*	
Acid Soluble										
Sulfide,mg/1	6	6	1	31.2-48.9	< 0.1-0.40		38.4	0.20		
Total-C,mg/1										
Slurry	6	6	1	155-276	85.0-101		214	97.0		
(<8-µ)	6	6	1	133-248	60.0-81.0		166	68.0		
(<0.45-µ)	6	6	1	124-224	54.0-75.0		154	64.0		
(<0.05-µ)	6	5	1	106-170	52.0-70.0	•	130	59.0		
Organic-C,mg/1										
Slurry	6	6	1	35.0-86.0	19.0-29.0		63.0	24.0		

	Sta	indard Dev	iation	F - Value Influent	F - Value Influent	F - Value Effluent	Loading Influent	Removal	Impact
Parameters	Influent	Effluent	Background Water	vs. Background W	vs. Effluent	vs. Background W	vs. Background W	vs. Effluent	Effluent vs. Background W
Alkalinity,mg/l as CaCO ₂									
(<0.45-µ)	109	37.9			8.31			SD 5	
Chloride,mg/1				E-186 188					
(<0.45-µ)	13.5	3.62			13.9			SD ₅	
Cation Exchange									
Capacity, meq/1	48.6	st.	#	*	n	*	*	*	*
Acid Soluble									
Sulfide,mg/1	6.07	0.176			1230			SD1,5	
Total-C,mg/1							261		
Slurry	44.4	5.96			55.6			SD1.5	
(<8-11)	42.8	8.41			25.9			SD1.5	
(<0.45-u)	36.6	8.39			19.1			SD1.5	
(<0.05-µ)	23.8	8.17			8.45	•		SDs	
Organic-C.mg/1									
Slurry	17.5	3.56			24.1			SD1,5	

Table 3 (Continued)

	Nur	mber Of	Samples		Range		Mean		
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
(<8-µ)	6	6	1	13.0-64.0	5.0-34.0		27.0	20.0	-
(<0.45-u)	6	6	1	13.0-53.0	2.0-26.0		24.0	11.0	
(<0.05-µ)	6	5	1 -	5.0-47.0	8.0-29.0		19.0	14.0	
)il & Grease,mg/1									
Slurry	6	4	1	3080-8420	8-28		5260	15	
NH 3-N, mg/1							-11"		
Slurry	2	3	1	70.2-97.3	13.8-14.8		83.8	14.2	
(<8-u)	3	3	1	1.90-85.2	13.1-13.2		40.7	13.2	
(<0.45-µ)	3	3	1	1.60-81.5	12,4-13.9		38.5	13.0	
(<0.05-µ)	2	1	1	1.20-80.7		•	40.9	•	
Organic-N, mg/1									
Slurry	3	3	1	2.39-118	2.23-2.87		60.5	2.57	
(<8-u)	3	3	1	1.08-12.1	1.60-2.20		6.77	1.98	
(<0.45-µ)	3	3	1	0.77-11.1	0.83-1.83		5.82	1.47	
(<0.05-µ)	2	1	1	0.24-11.0			5.62		•
NO 3-N, mg/1									
(<0.45-µ)	3	3	1	0.18-0.22	0.10-0.12		0.20	0.11	
NO ₂ -N, mg/1									
(<0.45-µ)	3	3	1	<0.01	< 0.01		TRACE	TRACE	

	Sta	ndard Dev	iation	F - Value	F - Value	F - Value Effluent	Loading Influent	Removal Influent	Effluent
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	vs. Background W	vs. Background W	vs. Effluent	vs. Background W
(<8-u)	19.6	10.2			3.69			NSD1.5	
(<0.45-u)	15.1	8.73			2.98			NSD1,5	
(<0.05-µ)	14.8	8.74			2.88			NSD1,5	
Dil & Grease,mg/l									
Slurry	1920	8.91			46500			SD1,5	
NH 3-N, mg/1									
Slurry	19.2	0.529			1320			SD1.5	
(<8-µ)	42.0	0.060			587000			SD1.5	
(<0.45-u)	40.3	0.777			2690			SD1,5	
(<0.05-u)	56.2								
Organic-N, mg/1							Propagation at		
Slurry	57.8	0.321			32500			SD1,5	
(<8-µ)	5.52	0.333			274			SD1,5	
(<0.45-u)	5.17	0.555			86.2			SDs	
(<0.05-µ)	7.61	•						•	•
NO 3-N, mg/1									
(<0.45-u)	0.020	0.010			4.00			NSD1,5	
NO ₂ -N, mg/1									
(<0.45-u)	20	20			IND			ND	

Table 3 (Continued)

	Numb	er Of Sa	mples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Total P, mg/1									
Slurry	3	3	1	9.38-230	0.06-0.19		129	0.15	
(<8-µ)	3	3	1	<0.01	< 0.01		TRACE	TRACE	
(<0.45-u)	3	3	1	<0.01	< 0.01		TRACE	TRACE	
(<0.05-µ)	3	3	1	<0.01	<0.01		TRACE	TRACE	
Sodium									
Slurry,mg/1	2	_	-	225-245	4		235	*	A
(<8-4), mg/1	1	4	1		26.5-30.5			28.8	
(<0.45-u),mq/1	3	3	1	23.5-25.0	23.5-32.0		24.5	28.7	
(<0.05-µ),mg/1	2	6	1	20.5-21.0	18.0-29.0		20.8	22.8	•
Potassium									
Slurry, mg/1	4	6	-	492-1320	158-452	*	886	345	*
Solids,mg/kg	4	Δ	-	2450-6940	fr.	*	4670	章	*
$(<8-\mu)$, mg/1	4	6	-	135-173	73.1-168	*	148	123	*
(<0.45-µ),mg/1	4	6	-	126-167	78.5-156	#	38	118	*
(<0.05-µ),mg/1	4	6	-	118-152	75.9-152	*	129	113	#
Calcium									
Slurry, mg/1	4	6	1	55.7-72.8	28.3-43.8		62.4	35.0	
Solids,mg/kg	4	Δ	Δ	312-407	ft	*	342	*	*
$(<8-\mu), mg/1$	4	6	1	43.9-57.2	25.2-36.4		49.8	30.8	
$(<0.45-\mu), mg/1$	4	6	1	42.7-56.3	22.3-35.6	- T	48.8	29.0	
(<0.05-µ),mg/1	4	6	1	41.6-52.8	21.4-33.6		46.4	27.2	

	Stan	dard Devi	ation	F - Value Influent	F - Value Influent	F - Value Effluent	Loading	Removal	Effluent
Parameters	Influent	Effluent	Background Water	vs. Background W	vs. Effluent	vs. Background W	vs. Background W	vs. Effluent	vs.
Total P, mg/l									
Slurry	112	0.075			2,070,000			SD1.5	
(<8-µ)	~0	20			IND.			ND	
(<0.45-µ)	~0	∿0			IND.			ND	
(<0.05-µ)	~0	∿0			IND.	•		ND	
Sodium									
Slurry,mg/1	14.1	#	*	*	*	*	*	*	*
$(<8-\mu)$, mg/1		1.66				•			
(<0.45-u),mg/1	0.866	4.54			27.4			SDs	
(<0.05-µ),mg/1	0.354	3.82			117			NSD1,5	•
Potassium									
Slurry, mg/1	441	105	#	*	17.7	*	*	SD1.5	*
Solids,mg/kg	2210	#	*	#	*	*	nt	*	*
(<8-µ),mg/1	17.3	33.6	*	*	3.77	#	*	NSD1,5	*
(<0.45-u),mg/1	19.3	29.0	*	*	2.24	*	*	NSD1.5	*
(<0.05-µ),mg/1	15.5	27.1	*	*	3.05	*	*	NSD1,5	*
Calcium									
Slurry, mg/1	7.39	6.35			1.36			NSD1.5	
Solids,mg/kg	45.0	*	nt	#	n	*	*	#	*
(<8-µ),mg/1	6.71	4.69			2.06			NSD1,5	
(<0.45-µ),mg/1	6.66	5.28			1.59			NSD1,5	
(<0.05-µ),mg/1	5.59	4.91			1.29			NSD1,5	

	Numb	er Of San	mples		Range			Mean	
Parameter ₅	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Magnesium									
Slurry, mg/1	4	6	1	137-273	124-183		174	156	
Solids, mg/kg	4	Δ	Δ	650-1440	st	A	948	*	20
(<8-u), mg/1	4	6	1	53.5-179	29.3-55.1		87.8	38.2	
(<0.45-µ),mg/1	4	6	1	40.5-176	29.7-52.1		79.6	36.9	
(<0.05-µ),mg/1	4	6	1	33.8-171	21.0-43.6		72.0	32.9	
Arsenic									
Slurry, mg/1 In Oil	-	-	~	*	*	*	*	*	#
& Grease, ug/1	4	6	~	0.83-0.93	0.37-0.78	*	0.87	0.59	*
arb. Phase, mg/kg	6	Δ	Δ	0.32-0.84	*	*	0.52	#	ź
xch.Phase,mg/kg	6	Δ	Δ	0.12-0.17	*	*	0.14	#	*
Cadmium									
Slurry, ug/1	6	5	1	210-710	1.15-2.89		435	1.86	
Solids, mg/kg	6	Δ	Δ	1.40-3.44	*	*	2.47	*	dr.
(<3-u), ug/1	4	6	1	2.81-11.0	0.42-1.23		5.13	0.89	
(<0.45-µ), µg/1	4	6	1	2.75-7.87	0.63-1.98		4.33	0.94	
(<0.05-μ),μg/1 In 0il	4	6	1	2.32-6.33	0.31-1.16	•	3.67	0.71	
& Grease, ug/1	4	6	1	<0.01-0.21	<0.01-0.44		0.13	0.21	
arb.Phase,mg/kg	6	Δ	Δ	0.090-0.310		#	0.150	*	at:
xch.Phase.mg/kg	6	Δ	Δ	0.017-0.034		*	0.025	*	*

	Sta	indard Dev	iation	F - Value	F - Value	F - Value	Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	Efluent vs. Background W	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background
Magnesium									
Slurry, mg/1	67.4	20.0			11.4			SD ₅	
Solids, mg/kg	342	zł:	#	*	*	tt.	#	it	ń
$(<8-\mu)$, mg/1	61.1	9.46			41.8			SD1.5	
(<0.45-µ),mg/1	64.6	7.97			65.7			501.5	
(<0.05-µ),mg/1	66.2	7.32			81.9	•		SD1,5	
Arsenic									
Slurry, mg/l in Oil	*	*	*	*	*	*	*	*	*
& Grease, ug/1	0.045	0.171	*	*	15.0	*	A	SD ₅	*
arb. Phase, mg/kg	0.199	ń	*	*	*	#	*	*	*
xch.Phase,mg/kg	0.018	*	*	*	*	*	*	*	#
Cadmium									
Slurry, µg/1	180	0.769			55100			SD1.5	
Solids, mg/kg	1.02	*	#	*	*	#	*	#	*
(<8-µ), µg/1	3.92	0.290			178			SD1.5	
(<0.45-u), ug/1	2.40	0.558			18.4			SD1.5	
(<0.05-µ),µg/1	1.86	0.288		•	41.4	•		SD1,5	
& Grease, µg/1	0.088	0.197			5.00			NSD1.5	
arb.Phase,mg/kg	0.084	A	*	*	*	*	*	*	*
xch.Phase,mg/kg	0.006	*	*	*	*	*	n	*	π

Table 3 (Continued)

	Numb	er Of Sam	ples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Chromium									
Slurry, mg/l In Oil	-	-	-	*	it	*	*	*	*
& Grease, ug/1	4	6	-	0.52-0.77	0.53-0.82	*	0.66	0.69	#
Carb. Phase, mg/kg	6	Δ	Δ	9.23-16.4	*	*	12.7	rt	#
Exch.Phase, mg/kg	6	Δ	Δ	0.11-0.14	nt	*	0.13	A	n
Copper									
Slurry, mg/1	6	6	1	18.7-243	1.14-1.93		93.8	1.62	
Solids, mg/kg	6	Δ	Δ	88.0-160	#	tr	123	A	*
(<8-μ), μg/1	4	6	1	9.1-17.4	3.0-8.7		12.2	5.61	
(<0.45-µ),µg/1	4	6	1	8.2-15.2	2.9-8.2		10.5	5.07	
(<0.05-μ),μg/1 In 0il	4	6	1	7.3-14.9	1.7-7.5		9.6	4.43	
& Grease, µg/1	4	6	1	4.32-5.15	2.78-4.07		4.72	3.46	
Carb. Phase, mg/kg	6	Δ	Δ	0.54-0.89	*	#	A	#	#
Exch.Phase, mg/kg	6	Δ	Δ	0.12-0.25	*	*	0.19	*	*
Iron									
Slurry, mg/1	6	6	1	4870-6830	37.8-50.1		5620	46.8	
Solids, mg/kg	6	Δ	Δ	25500-38200	rh	*	30700	*	ń
(<8-µ), µg/1	4	6	1	532-845	2.2-10.1		691	6.44	
(<0.45-µ),µg/1	4	6	1	29-302	2.7-12.7		136	5.20	
(<0.05-µ),µg/1	4	6	1	15.7-157	1.6-8.5		87.8	4.00	

	St	andard Dev	viation	F - Value Influent	F - Value Influent	F - Value Efluent	Loading	Removal	Effluent
Parameters	Influent	Effluent	Background Water	vs. Background W	vs. Effluent	vs. Background W	vs. Background W	vs. Effluent	vs. Background V
Chromium									
Slurry, mg/1 In Oil	π	*	*	*	*	*	*	ħ	*
& Grease, ug/1	0.112	0.099	#	*	1.44	*	#	NSD1.5	*
Carb. Phase, mg/kg	2.63	n	*	*	*	*	*	*	*
Exch.Phase, mg/kg	0.014	*	*	sk	*	*	*	n	ń
Copper									
Slurry, mg/1	112	0.304			139000			SD1.5	
Solids, mg/kg	23.9	A	*	*	*	*	*	*	tt
(<8-u), ug/1	3.67	2.38			2.37			NSD1.5	
(<0.45-µ),µg/1	3.20	2.11			2.34			NSD1.5	
(<0.05-µ),µg/1	3.55	2.25		•	2.47	•		NSD1,5	
& Grease, µg/1	0.382	0.477			1.55			NSD1.5	
Carb. Phase, mg/kg	0.118	rh	*	rt	#	*	*	n	*
Exch. Phase, mg/kg	0.051	*	*	*	ħ	*	*	*	A
Iron									
Slurry, mg/1	770	4.74			2660		•	SD1,5	
Solids, mg/kg	4960	#	*	*	*	*	*	*	*
(<8-µ), µg/1	150	3.16		•	2230			SD1,5	
(<0.45-µ),µg/1	131	3.91			1110			SD1.5	
(<0.05-µ),µg/1	75.0	2.92		•	663			SD1,5	

Table 3 (Continued)

	Numbe	r Of Samp	les		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water		Effluent	Background Water
In Oil									
& Grease, µg/1	4	6	1	5.83-13.6	1.17-5.79		10.9	3.31	
Carb. Phase, mg/kg	6	Δ	Δ	5200-8020	- 4		6780	4	8.
Exch. Phase, mg/kg	6	Δ	Δ	0.05-0.16	#	ź	0.12	#	#
Manganese									
Slurry, mg/1	6	6	-	15.6-37.3	0.23-1.08	*	26.1	0.61	
Solids, mg/kg	6	Δ	_	87.2-268	#	*	142	ń	#
(<8-µ), µg/1	6	6	1	78.0-95.0	47.0-92.0		87.0	63.0	
(<0.45-µ),µg/1	4	6	1		38.0-71.0		81.0	52.0	
(<0.05-μ),μg/1 In 011	4	6	1		35.0-78.0		74.0	49.0	
& Grease, ug/1	4	6	1	0.64-0.89	0.11-3.58	. 1	0.74	0.77	
Carb. Phase, mg/kg	6	Δ	Δ	228-326	π	*	278	dr	*
Exch. Phase, mg/kg	6	Δ	Δ	23.2-42.9	*	π	31.3	ź	*
Mercury									
Slurry, pg/1	6	6	1	72-112	1.3-4.8	.	85	3.1	
Solids, mg/kg	6	Δ	Δ	0.35-0.59	#	*	0.46	*	- 10
(<8-µ), µg/1	4	6	1		0.17-0.34		0.24	0.24	
(<0.45-µ), µg/1	4	6	1		0.15-0.22		0.19	0.18	
(<0.05-µ),µq/1	4	6	1	0.08-0.18	0.08-0.18	. 1	0.13	0.13	

	Sta	indard Dev	iation	F - Value	F - Value	F - Value	Loading Influent	Removal Influent	Impact
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background W	vs. Background W	vs. Effluent	vs. Background W
In 011									
& Grease, µg/1	3.93	1.72			5.23			SDs	
Carb. Phase, mg/kg	1110	*	#	*	*	*	*	*	*
Exch. Phase, mg/kg	0.039	#	*	*	*	th	*	*	*
Manganese									
Slurry, mg/1	9.09	0.295	#	*	919	*	*	SD1.5	*
Solids, mg/kg	65.5	*	#	#	*	*	*	*	
(<8-µ), µg/1	7.87	17.0			4.65			NSD1.5	
(<0.45-µ),µg/1	12.3	10.9			1.29			NSD1.5	
(<0.05-μ),μg/1 In 0il	12.0	15.5		•	1.65	•		NSD1,5	*
& Grease, ug/1	0.116	1.38			146			SD1.5	
Carb. Phase, mg/kg	38.1	A	#	*	tt	*	*	#	źt
Exch. Phase, mg/kg	8.85	*	#	*	*	*	*	*	*
Mercury									
Slurry, µg/1	14.6	1.23			142			SD1.5	
Solids, mg/kg	0.098	#	#	*	*	*	*	*	*
(<8-µ), µg/1	0.053	0.078			3.00			NSD1.5	
(<0.45-u), 119/1	0.039	0.032			1.00			NSD1.5	
(<0.05-µ),µg/1	0.041	0.032			2.00			NSD1.5	

Table 3 (Continued)

	Numbe	r Of Samp	les		Range		1	Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Nickel									
Slurry, mg/1	6	6	1	7.8-15.3	0.17-0.87		11.5	0.53	
Solids, mg/kg	6	Δ	Λ	47.0-76.3	*	π	61.9	A	r
(<8-u), ug/1	4	6	1		11.3-16.3		15.2	14.0	
(<0.45-µ),µg/1	4	6	1		10.2-16.3		14.4	13.0	
(<0.05-u),ug/1	4	6	1		9.72-15.3	•	14.1	12.3	
& Grease, ug/1	4	6	1	3.31-6.21	2.52-21.2		4.58	6.69	
arb.Phase, mg/kg	6	Δ	Δ	19.6-37.4	*	*	30.3	*	#
xch.Phase, mg/kg	6	Δ	Δ	0.99-19.5	*	*	10.5	t	*
Lead									
Slurry, mg/1	6	6	1	10.3-13.7	0.046-0.182		12.3	0.105	
Solids, mg/kg	6	Δ	Δ	55.4-74.1	*	π	66.9	it	*
(<8-µ), µg/1	4	6		4.83-7.18	4.91-9.94	*	5.99	6.55	*
(<0.45-µ),µg/1	4	6	-	1.20-6.67	4.37-9.28	π	4.62	6.10	n
(<0.05-µ),µg/1 In 0i1	4	6	1	4.13-6.55	4.22-9.23		5.22	5.99	•
& Grease, mg/1	4	6	1	1.57-3.47	0.73-4.14		2.65	1.44	
arb.Phase, mg/kg	6	Δ	Δ	0.19-11.3	×	*	2.70	tt	*
xch.Phase, mg/kg	6	Δ	Δ	0.45-0.98	*	*	0.66	*	*
Selenium									
Slurry, mg/1	6	6	1	3.63-5.61	0.123-0.204		4.95	0.157	

	Sta	indard Dev	iation	F - Value	F - Value		Loading	Removal	Impact
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background W	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background
Nickel						7 7 7 7 7 7 7			
Slurry, mg/1	2.89	0.276			110			SD1.5	
Solids, mg/kg	11.7	水	str.	*	*	*	*	#	#
(<8-μ), μg/1	1.12	2.31			4.28			NSD1.5	
(<0.45-μ),μg/1	1.28	2.12			2.76			NSD1.5	
(<0.05-μ),μg/1 In 011	1.37	1.90	•		1.93	•	•	NSD1.5	
& Grease, µg/1	1.22	7.28			35.5			SD1.5	
Carb.Phase, mg/kg	7.99	*	*	#	*	*	*	*	*
Exch.Phase, mg/kg	7.59	*	*	*	#	*	*	n	÷
Lead									
Slurry, mg/1	1.21	0.053			486			SD1,5	
Solids, mg/kg	7.63	n	π	it	A	zh .	*	*	*
(<8-µ), µg/1	1.19	1.94	#	#	2.66	*	Ŕ	NSD1.5	*
(<0.45-µ),µg/1	2.47	1.90	#	n	1.70	#	#	NSD1.5	*
(<0.05-μ),μg/1 In 0il	1.16	1.90		•	2.71			NSD1,5	
& Grease, µg/1	0.886	1.33			2.27			NSD1.5	
Carb.Phase, mg/kg	4.47	rh	*	*	ń	*	#	#	tr
Exch.Phase, mg/kg	0.180	#	*	*	*	*	*	*	*
Selenium									
Slurry, mg/1	0.721	0.035			520			SDI.5	

Table 3 (Continued)

	Numl	ber Of S.	amples		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water		Effluent	Background Water
Solids, mg/kg	6	Δ	Δ	23.4-31.3	*	*	26.8	*	*
(<8-µ),µq/1	4	6	1	1.70-2.15	<0.1-2.03		1.90	0.67	
(<0.45-u).ug/1	3	6	1	1.55-1.72	< 0.1-1.83		1.65	0.52	
(<0.05-μ),μg/1	4	5	1	0.37-1.54	<0.1-1.12		1.00	0.31	
Titanium									
Slurry, mg/1	6	6	1	7.53-9.21	0.16-0.37		8.30	0.26	
Solids, mg/kg	6	Δ	Δ	38.4-60.6	*	ste	45.6	*	#
(<8-µ),µg/1	4	6	_	1.71-2.19	1.0-1.91	*	1.97	1.53	*
(<0.45-µ),µg/1	4	6	_	1.64-1.98	0.83-1.89	*	1.83	1.45	A
(<0.05-μ),μg/1 In 0il	4	6	-	1.30-1.82	1,11-1.56	*	1.51	1.43	*
& Grease, µg/1	4	6	1	0.67-2.78	<0.1-0.63		1.45	0.23	
Vanadium									
Slurry, mg/1	6	6	1	4.39-6.21	0.12-0.32		5.44	0.21	
Solids, mg/kg	6	Δ	Δ	25.9-31.6	*	*	29.4	*	π
(<8-µ), µg/1	4	6	1	2.93-4.28	1.87-3.84		3.45	2.85	
(<0.45-u), ug/1	4	6	1	2.36-3.87	1,17-3.21		3.10	2.29	
(<0.05~μ),μg/1 In 0il	4	6	-	1.86-3.54	1.13-2.81	*	2.60	1.89	*
& Grease, µg/1	4	6	_	<0.05-0.72	<0.05-5.06	#	0.40	1.01	*
arb.Phase.mg/kg		Δ	Δ	0.4-4.2	*	*	1.75	*	#
xch. Phase, mg/kg	1.5	Δ	Δ	<0.1	*	*	TRACE	*	#

	Sta	ndard Dev	iation	F - Value	F - Value	F - Value	Loading	Removal	Effluent Effluent
Parameters	Influent	Effluent	Background Water	Influent vs. Background W	Influent vs. Effluent	Effluent vs. Background W	Influent vs. Background	vs.	vs. Background
Solids, mg/kg	2.57	*	*	*	*	*	*	*	#
(<8-µ),µg/1	0.199	1.04			2.82	•		SD1,5	
(<0.45-µ),µg/1	0.087	0.829			86.3			SDs	
ו/פע, (ע-0.05)	0.526	0.491			1.17			NSD1,5	
Titanium									
Slurry, mg/1	0.626	0.076			65.0			SD1.5	
Solids, mg/kg	8.28	*	*	*	#	*	#	#	th
(<8-u), ug/1	0.214	0.329	*	*	2.16	#	*	NSD1.5	tr
(<0.45-µ),µg/1	0.145	0.374	*	#	7.00	th.	#	NSD1.5	*
(<0.05-μ),μg/1 In 0il	0.221	0.63	*	*	1.92	ń	*	NSD1,5	*
& Grease, µg/1	0.961	0.288			11.1			SDs	
Vanadium									
Slurry, mg/1	0.679	0.085			65.8			SD1.5	
Solids, mg/kg	2.06	A	#	#	ź	*	*	*	#
(<8-µ), µg/1	0.583	0.979			2.82			NSD1,5	
(<0.45-µ),µg/1	0.621	0.829			1.76			NSD1,5	
(<0.05-μ),μg/1 In 0il	0.704	0.653	*	*	1.14	*	*	NSD ₁ ,5	À
Grease, µg/1	0.312	1.99	*	*	40.8	±	#	501.5	*
arb.Phase,mg/kg	1.45	*	*	*	#	*	*	#	*
kch.Phase,mg/kg	20	A	*	#	n	*	*	rk	*

Table 3 (Continued)

	Numbe	r Of Samp	les		Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Zinc									
Slurry, mg/1	6	6	1	17.1-37.1	0.33-0.94		24.2	0.48	
Solids, mg/kg	6	Δ	Δ	98.9-180	it	幸	127	#	
(<8-µ), µg/1	4	6	1	158-275	0.59-3.11		209	1.84	
(<0.45-µ).µq/1	4	6		107-178	0.61-2.78	- 12	143	1.65	*
(<0.05-u),ug/1	4	6	1	68-117	0.23-2.53		101	1.54	
& Grease, µg/1	4	6	1	2.12-2.83	0.96-7.87		2.52	2.75	
arb. Phase, mg/kg	6	Δ	Δ	112-247	*	#	165	A	#
xch. Phase, mg/kg	6	Δ	Δ	3.2-7.3	液	ħ	4.8	n	×
Chlorinated Hydrocarbons OP' DDD									
Slurry, mg/l	3	3	1	1.44-15.2	0.032-0.14	0 •	9.58	0.097	
PP' DDD									
Slurry, mg/l	3	3	1	4.70-78.3	0.080-0.20	0 .	35.7	0.150	•
OP' DDE									
Slurry, mg/l	3	3	1	1.80-33.4	0.032-0.08	4 •	16.2	0.052	
PP' DDE									
Slurry, mg/1	3	3	1	6.42-59.2	0.060-0.38	0 •	40.9	0.246	

	Sta	indard Dev	iation	F - Value Influent	F - Value Influent	F - Value Effluent	Loading Influent	Removal Influent	Impact Effluent
Parameters	Influent	Effluent	Background Water		vs. Effluent	vs. Background W	vs. Background W	vs. Effluent	vs. Background W
Zinc									
Slurry, mg/1	9.55	0.231			1820			SD1,5	
Solids, mg/kg	31.7	#	*	*	nt	*	*	計	à
(<8-µ), µg/1	52.1	1.05			2470			SD1.5	
(<0.45-u), ug/1	39.0	1.10	*	rh .	1250	#	#	SD1.5	故
(<0.05-µ),µg/1	22.2	0.902			608	•		SD ₁ ,5	
& Grease, µg/1	0.308	2.54			68.0			SD1.5	
Carb. Phase, mg/kg	52.2	rit .	rk	*	#	*	*	*	*
Exch. Phase, mg/kg	1.74	#	*	*	*	*	#	A	#
Chlorinated Hydrocarbons OP' DDD									
Slurry, mg/l	7.22	0.057	•		17400	•		SD ₁ ,5	•
PP' DDD Slurry, mg/l	38.2	0.062			374000			SD ₁ , ₅	
OP' DDE Slurry, mg/1	16.0	0.028			320000			SD ₁ ,5	
PP' DDE Slurry, mg/l	29.9	0.166			33100			SD _{1,5}	

Table 3 (Continued)

	Numb	er Of Sam	ples		Range			Mean		
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water	
OP' DDT	3	3	1	1 36-11 0	0.010-0.080		6.48	0.050		
PP' DDT							- 01			
lurry, mg/l	3	3	1	2.10-12.5	0.002-0.080		7.84	0.047		
Total DDT										
lurry, mg/1	3	3	1	17.7-209	0.216-0.940		117	0.605	•	
roclor 1242										
lurry, mg/l	3	3	1	11.6-98.7	0.150-1.20		57.2	0.650		

	Sta	ndard Dev	iation	F - Value Influent	F - Value Influent	F - Value Effluent	Loading	Removal Influent	Impact Effluent
Parameters	Influent	Effluent	Background Water		vs. Effluent	vs. Background W	vs. Background W	vs.	vs. Background V
OP' DDT Slurry, mg/1	4.85	0.036			23500			SD ₁ ,5	
sturry, mg/1	4.05	0.036			23500			301,5	
PP' DOT									
Slurry, mg/1	5.29	0.041			14000	•		SD ₁ ,5	
Total DDT									
Slurry, mg/l	95.8	0.365			70600			SD ₁ ,5	
Aroclor 1242									
Slurry, mg/1	43.7	0.527			6820			SD ₁ ,5	

Table 3 (Concluded)

	Numb	Number Of Samples			Range			Mean	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Aroclor 1254 Slurry, mg/1	3	3	1	4.20-24.4	0.010-0.080		16.9	0.037	
Aroclor 1260 Slurry, mg/1	3	3	1	1.10-9.80	0.006-0.020		5.90	0.012	
Total PCB Slurry, mg/1	3	3	1	16.9-133	0.166-1.28		80.1	0.715	

	Star	ndard Devi	ation	F - Value Influent	F - Value Influent	F - Value Effluent	Loading Influent	Removal Influent	Impact Effluent
Parameters	Influent	Effluent	Background Water	vs. Background W	vs.	vs. Background W	vs. Background W	VS.	vs. Background W
Aroclor 1254 Slurry, mg/1	11.0	0.038			122000			SD _{1,5}	
Aroclor 1260 Slurry, mg/l	4.42	0.007			391000			SD ₁ , ₅	
Total PCB Slurry, mg/1	58.7	0.557			11100			SD ₁ , ₅	

TABLE 4

Average Values For Field Data Of Influent, Effluent, and Background Water From Pinto Island (Mobile Bay, Alabama) and Grassy Island (Detroit, Michigan)

Dredged Material Disposal Areas

			Number Of	Samples		
	Pi	nto Island	1	Gr	assy Islan	nd
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Slurry PH	-	_	_	9	9	3
Salinity, 0/00	6	7	3	9	9	3
Conductivity, mMhos	6	6	3	9	9	3
Dissolved O ₂ , mg/l	6	9	3	9	9	3
Water Temp., ⁰ €	5	7	3	9	9	3

				Average	Values		
		P	into Islan	nd		Grassy Isla	nd
Paramet	ers	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Slurry	РН	_	-	-	7.1	7.2	7.0
Salinity,	0/00	14.0	13.4	3.5	0.3	0.4	0.2
Conductive mMhc		24.3	25.4	6.3	0.36	0.71	0.29
Dissolved mg/l		0.7	2.4	7.6	7.4	7.3	7.0
Water Temp.	, °c	27.9	28.4	27.7	24.3	24.0	29.0

Not Measured in Field.

TABLE 5

Average Values for Physical and Chemical Parameters of Influent, Effluent and Background Water Samples from the Pinto Island (Mobile Bay, Alabama) and Grassy Island (Detroit, Michigan) Dredged Material Disposal Areas

			Number 0	f Samples		
		Pinto Island		G	rassy Island	1
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water
PH (<0.45-μ)	6	11	2	6	6	1
Salinity (<0.45-μ)	6	11	2	6	6	1
Conductivity, mMhos (<0.45-µ)	6	11	2	6	6	1
Dry Weight, %	6	11	2	6	6	1
Total Alkalinity, mg/l (<0.45-μ)	6	11	2	6	6	1
Chloride, mg/1 (<0.45-µ)	6	11	2	6	5	1
Cation Exchange Capacity, meq/1	6	12		6	_	-

			Av	erage Values		
	F	into Island			irassy Island	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water
PH (<0.45-μ)	7.4	7.8	7.6	8.3	8.3	7.3
Salinity (<0.45-μ)	25.5	20.5	3.0	TRACE	TRACE	TRACE
Conductivity, mMhos (<0.45-μ)	24.8	22.0	4.9	0.11	0.07	0.04
Dry Weight, %	7.06	3.83	0.46	18.6	(0.06)	(0.01)
Fotal Alkalinity, mg/l (<0.45-μ)	151	213	50	505	244	130
Chloride, mg/1 (<0.45-μ)	13.5	11.6	1.90	50.6	47.9	26.8
Cation Exchange Capacity, meq/1	28.4	11.8	_	69.2	-	-

 $^(\ -\)$ Not Determined (Indicates Insufficient Sample or Sample Destroyed in Transit).

⁽ \cdot) Due to the Insufficient Amount of Solids, Values in ($\,$) are for Reference Only.

^(*) Samples were Shaken and then Allowed to Settle. The Supernatant was withdrawn with a Hamilton Syringe (406 - μ opening) and injected into the TOC Analyzer.

Table 5 (Continued)

	1		Number Of	Samples		
		Pinto Island		G	rassy Island	
			Background			Background
Parameters	Influent	Effluent	Water	Influent	Effluent	Water
Total Acid Soluble Sulfide, mg/1	5	11	2	6	6	1
Total Carbon Slurry						
Total *, mg/l	5	10	2	6	6	1
(<8-µ), mg/1	5	11	2	6	6	1
(<0.45-μ), mg/1	5	11	2	6	6	1
(<0.05-μ), mg/1	5	11	2	6	5	1
Organic Carbon				1.71-1.8		
Slurry Total *, mg/1	6	10	2	6	6	1
(<8-u), mg/1	6	11	2	6	6	1
(<0.45-µ), mg/1	6	11	2	6	6	1
$(<0.05-\mu)$, mg/1	6	11	2	6	5	1
Oil & Grease						
Slurry Total , mg/l	6	11	2	6	4	1
Supernatant After	1	,			3	,
hr. settling, mg/l Supernatant After	3	3	,		,	
hrs.settling, mg/l	3	3	1	3	3	1
Supernatant After						
hrs.settling, mg/l	3	3	1	3	3	1
Supernatant After						
hrs.settling, mg/l	3	3	1	3	3	_

			Av	erage Values		
	-	into Island			rassy Island	
Parameters	Influent	Eff uent	Background Water	Influent	Effluent	Background Water
Total Acid Soluble Sulfide, mg/l	19.6	3.3	TRACE	38.4	0.2	TRACE
Total Carbon Slurry						
Total *, mg/l	59.3	93.8	18.2	214	97.0	38
(<8-u), mg/1	39.8	57.0	13.9	166	68.0	29.5
(<0.45-µ), mg/1	38.4	55.2	11.3	154	64.0	30
(<0.05-u), mg/1	38.4	52.5	12.3	130	59.0	28
Organic Carbon						
Slurry Total *, mg/1	19.4	40.4	7.2	63.0	24.0	12
(<8-u), mg/1	10.3	8.5	4.5	27.0	20.0	5.2
(<0.45-u), mg/1	10.3	6.4	3.2	24.0	11.0	3.5
(<0.05-µ), mg/1	9.8	6.8	3.1	19.0	14.0	3.0
Oil & Grease Slurry Total , mg/1	456	45	3.5	5260	25	32
Supernatant After 2 hr. settling, mg/1	57	4	3	-	3	8
Supernatant After 2 hrs.settling, mg/l	62	20	TRACE	818	8	TRACE
Supernatant After hrs.settling, mg/l	155	27	TRACE	1570	10	12
Supernatant After B hrs.settling, mg/l	64	38	TRACE	339	12	

Table 5 (Continued)

	Number Of Samples									
	P	into Island	d	Grassy Island						
Parameters	1-61	5661	Background Water	Influent	Effluent	Background				
Parameters	Influent	Effluent	water	Influent	Effluent	Water				
NH ₃ -N										
Slurry Total, mg/1	3	2	1	2	3	1				
$(<8-\mu)$, mg/1	3	2	1	3	3	1.				
(<0.45-μ), mg/l	3	2	1	3	3	1				
$(<0.05-\mu)$, mg/1	1	2	1	2	1	1				
Organic-N	M. Richard									
Slurry Total, mg/1	3	2	1	3	3	1				
$(<8-\mu)$, mg/1	3	2	1	3	3	1				
$(<0.45-\mu)$, mg/1	3	2	1	3	3	1				
$(<0.05-\mu)$, mg/1	2	1	1	2	1	1				
NO 3 -N										
(<0.45-µ), mg/1	3	2	1	3	3	1				
NO ₂ -N										
$(<0.45-\mu)$, mg/1	3	2	1	3	3	1				
Total - P										
Slurry Total, mg/l	3	2	1	3	3	1				
(<8-µ), mg/1	3	2	1	3	3	1				
(<0.45-µ), mg/1	3	2	1	3	3	1				
(<0.05-µ), mg/1	3	2	1	3	3	1				

	Average Values									
		Pinto Island			Grassy Island					
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water				
NH ₃ -N										
Slurry Total, mg/1	10.2	13.2	TRACE	83.8	14.2	TRACE				
(<8-µ), mg/1	5.10	2.13	TRACE	40.7	13.2	TRACE				
(<0.45-µ), mg/1	4.83	2.00	TRACE	38.5	13.0	TRACE				
(<0.05-μ), mg/1	9.40	1.21	TRACE	40.9	12.8	TRACE				
Organic-N										
Slurry Total, mg/1	31.1	12.4	0.91	60.5	2.57	1.10				
(<8-u), mg/1	7.47	7.46	0.64	6.77	1.98	0.96				
(<0.45-u), mg/1	8.78	7.08	0.34	5.82	1.47	0.80				
(<0.05-μ), mg/1	9.05	5.50	0.24	5.62	1.76	0.80				
NO 3 -N										
(<0.45-µ), mg/1 NO ₂ -N	0.28	0.23	0.09	0.20	0.11	0.10				
(<0.45-μ), mg/1	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE				
Total - P										
Slurry Total, mg/1	74.3	42.5	0.19	129	0.15	0.06				
(<8-u), mg/1	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE				
(<0.45-u), mg/1	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE				
(<0.05-µ), mg/1	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE				

Table 5 (Continued)

	Number Of Samples									
		Pinto Island		Grassy Island						
	-		Background	1		Background				
Parameters	Influent	Effluent	Water	Influent	Effluent	Water				
Sodium										
Slurry Total, mg/1	-	_	1	2	-	-				
$(<8-\mu)$, mg/1	5	8	2	1	4	1				
(<0.45-µ),mg/1	5 3	2	2	3	3	1				
(<0.05-µ),mg/1	5	5	1	2	6	1				
Potassium										
Slurry Total, mg/l	4	12	-	4	6	-				
Solids, mg/kg	4	11	-	4	-	-				
$(<8-\mu)$, mg/1	4	12	_	4	6	_				
(<0.45-µ),mg/1	4	12	-	4	6	-				
(<0.05-µ),mg/1	4	12	-	4	6	-				
Calcium										
Slurry Total, mg/1	4	12	2	4	6	1				
Solids, mg/kg	4	11	2	4	_	_				
$(<8-\mu)$, mg/1	4	12	2	4	6	1				
(<0.45-µ),mg/1	4	12	2	4	6	1				
(<0.05-μ),mg/1	4	12	2	4	6	1				
Magnesium										
Slurry Total, mg/l	-	-		4	6	1				
Solids, mg/kg	-	-	_	4	_	_				
(<8-µ), mg/1	4	12	2	4	6	1				
(<0.45-µ),mg/1	4	12	2	4	6	- 1				
(<0.05-µ),mg/1	4	12	2	4	6	1				

			Average	e Values		
		Pinto Island			Grassy Island	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Sodium						
Slurry Total, mg/1	-	_	_	235	_	_
$(<8-\mu)$, mg/1	8460-	6730	1280	24.5	28.8	29.5
(<0.45-µ),mg/1	7600	6150	1280	24.5	28.7	13.5
(<0.05-µ),mg/1	7570	5850	1320	20.8	22.8	13.0
Potass!um						
Slurry Total, mg/1	1630	745	_	886	345	_
Solids, mg/kg	26800	19500	_	4670	_	-
(<8-µ), mg/1	184	136	-	148	123	_
(<0.45-µ),mg/1	175	129	_	138	118	-
(<0.05-µ),mg/1	164	126	-	129	113	-
Calcium						
Slurry Total, mg/1	668	513	68	62.4	35.0	4.51
Solids, mg/kg	8090	13300	14800	342	_	_
(<8-u), mg/1	470	327	65.8	49.8	30.8	4.42
(<0.45-µ),mg/1	462	311	64.2	48.8	29.0	3.38
(<0.05-μ),mg/1	440	287	62.1	46.4	27.2	3.42
Magnesium						
Slurry Total, mg/1	-	_	_	174	156	9.2
Solids, mg/kg	-	-	-	948	-	-
(<8-µ), mg/1	1330	1060	222	87.8	38.2	8.8
(<0.45-µ),mg/1	1220	959	216	79.6	36.9	8.0
(<0.05-µ),mg/1	1170	923	192	72.0	32.9	8.9

Table 5 (Continued)

	Number Of Samples								
		Pinto Island			rassy Island				
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water			
Arsenic									
Slurry Total, µg/1	-	_	_	_	_	_			
Oil & Grease	1								
Fraction, µg/1	4	12		4	6	-			
Percent Of Total									
(Oil & Grease), %	-	-	_	-	-	-			
In Dry Oil & Grease, ppm	4	11	_	4	4				
Carbonate Phase, mg/kg	6	12	_	6	_	-			
xchangeable Phase, mg/kg	6	12	-	6	-	-			
Cadmium									
Slurry Total,ug/1	6	12	2	6	5	1			
Solids, mg/kg	6	11	2	6	_	-			
(<8-µ), µg/1	4	12	2	4	6	1			
(<0.45-u),ug/1	4	12	2	4	6	1			
(<0.05-u),ug/1	4	12	2	4	6	1			
Oil & Grease									
Fraction, µg/1	4	12	2	4	6	1			
Percent Of Total									
(Oil & Grease), %	4	12	2	4	6	1			
In Dry Oil & Grease, ppm	4	12	2	4	6	1			
Carbonate Phase, mg/kg	6	12		6	_	-			
xchangeable Phase, mg/kg	6	12	-	6	-	_			

	Average Values							
		Pinto Island			Grassy Island			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Backgroun Water		
Arsenic								
Slurry Total, µg/1	-	_	_	-	-	-		
Oil & Grease								
Fraction, µg/1	0.56	0.27	_	0.87	0.59	_		
Percent Of Total								
(Oil & Grease), &	-	-	_	-	_	-		
In Dry Oil & Grease, ppm	1.23	6.00	_	0.165	39.3	-		
Carbonate Phase, mg/kg	0.376	0.315	-	0.52	-			
Exchangeable Phase, mg/kg	0.192	0.268		0.14	-	-		
Cadmium								
Slurry Total, ug/1	89.3	73.1	2.38	435	1.86	1.27		
Solids, mg/kg	1.41	1.86	0.525	2.47	_	_		
(<8-u), µg/1	3.39	2.92	0.990	5.13	0.89	0.12		
(<0.45-u),ug/1	2.94	2.23	0.925	4.33	0.94	0.13		
(<0.05-u).ug/1	2.69	2.00	0.670	3.67	0.71	0.09		
Oil & Grease								
Fraction, ug/1	1.54	0.05	TRACE	0.13	0.21	TRACE		
Percent Of Total								
(Oil & Grease), %	1.73	0.062	TRACE	0.029	11.1	TRACE		
In Dry Oil & Grease, ppm	3.38	1.00	TRACE	0.024	13.8	TRACE		
Carbonate Phase, mg/kg	0.088	0.143	-	0.150	-	-		
Exchangeable Phase, mg/kg	0.010	0.052	-	0.025	-	-		

Table 5 (Continued)

	Number Of Samples								
		Pinto Island		1	rassy Island	1			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water			
Chromium									
Slurry Total, mg/l Oil & Grease	-	-	-	-	-	-			
Fraction, µg/l Percent Of Total	4	12	-	4	6	-			
(Oil & Grease), %	-	-	_	-	-	_			
In Dry Oil & Grease, ppm	4	11	_	4	4	_			
Carbonate Phase, mg/kg	6	12	-	6	-	_			
xchangeable Phase, mg/kg	6	12	-	0	-	-			
Copper									
Slurry Total, mg/1	6	12	2	6	6	1			
Solids, mg/kg	6	11	2	6	_	_			
(<8-µ), µg/1	4	12	2	4	6	1			
(<0.45-u),ug/1	4	12	2	4	6	1			
(<0.05-μ),μg/1 0il & Grease	4	12	2	4	6	1			
Fraction, µg/1 Percent Of Total	4	12	2	4	6	1			
(Oil & Grease), %	4	12	2	4	6	1			
In Dry Oil & Grease, ppm	4	11	2	4	4	1			
Carbonate Phase, mg/kg	6	12	2	6	_	_			
xchangeable Phase, mg/kg	6	12	_	6	_	_			

	Average Values								
		Pinto Island	•	Grassy Island					
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water			
rarameters	Till Tuell	Ellinent	water	Influent	Elliuent	water			
Chromium									
Slurry Total, mg/l	-	-	_	-	_	-			
Oil & Grease Fraction, ug/1	0.73	0.44		0.66	0.69				
Percent Of Total	0.75	0		0.00	0.09				
(Oil & Grease), %	-	-	_	_	_	_			
In Dry Oil & Grease, ppm	1.60	9.78	_	0.125	46.0	-			
Carbonate Phase, mg/kg	0.90	0.78	-	12.7	-	-			
exchangeable Phase, mg/kg	0.21	0.24	-	0.13	-	-			
Copper									
Slurry Total, mg/1	2.73	1.31	0.43	93.8	1.62	0.27			
Solids, mg/kg	49.0	33.9	91.5	123	_	-			
(<8-u), ug/1	4.59	5.44	1.99	12.2	5.61	2.6			
(<0.45-u), ug/1	3.96	4.99	2.04	10.5	5.07	2.1			
(<0.05-µ),µg/1	3.11	4.51	1.86	9.60	4.43	2.3			
Oil & Grease Fraction, µg/1	3.51	2.52	1.64	4.72	3.46	0.31			
Percent Of Total	0.129	0.192	0.381	0.021	0.214	0.337			
(0il & Grease), %	7.90	83.4	498	0,897	231	28,4			
In Dry Oil & Grease, ppm	0.57	2.97	_	0.74	-	_			
Carbonate Phase, mg/kg Exchangeable Phase, mg/kg	0.17	0.37	-	0,19	-	-			

Table 5 (Continued)

	Number Of Samples								
		Pinto Island		Grassy Island					
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water			
Iron									
Slurry Total, mg/l	6	12	_	6	6	1			
Solids, mg/kg	6	11	-	6	-	_			
(<8-µ), µq/1	4	12	2	4	6	1			
(<0.45-u), ug/1	4	12	2	4	6	1			
(<0.05-μ),μg/1 0il & Grease	4	12	2	4	6	1			
Fraction, µg/1 Percent Of Total	4	12	2	4	6	1			
(Oil & Grease), %	4	12	_	4	6	1			
In Dry Oil & Grease, ppm	4	11	2	4	4	1			
Carbonate Phase, mg/kg	6	12	_	6	_	_			
xchangeable Phase, mg/kg	6	12	_	6	_	-			

	Average Values								
		Pinto Island		Grassy Island					
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water			
TO COMPLETE		2.7746	- Hutti	Imruent	ETTTUENT	water			
Iron									
Slurry Total, mg/1	2290	1230	_	5620	46.8	0.03			
Solids, mg/kg	32300	31900	_	30700	-	_			
(<8-u), µg/1	218	95.5	4.27	691	6.44	13.5			
(<0.45-u), µg/1	118	19.6	2.8	136	5.20	5.5			
(<0.05-µ), µq/1	102	13.8	1.2	87.8	4.00	4.3			
Oil & Grease									
Fraction, µg/1	707	3.77	1.67	10.9	3.31	2.34			
Percent Of Total	177-11-11								
(Oil & Grease). %	0.031	0.0003	-	0.0002	0.007	7.8			
In Dry Oil & Grease, ppm	1550	83.8	481	2.07	221	73.1			
Carbonate Phase, mg/kg	3580	1910	_	6780	_	_			
changeable Phase, mg/kg	0.353	0.146	-	0.12	_	-			

Table 5 (Continued)

	Number Of Samples								
		Pinto Island		Grassy Island					
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water			
Manganese									
Slurry Total, mg/l	6	12	1	6	6	-			
Solids, mg/kg	6	11	1	6	-	-			
(<8-µ), µg/1	4	12	_	4	6	1			
(<0.45-µ),µg/1	4	12		4	6	1			
(<0.05-µ),µg/1	4	12	_	4	6	1			
Oil & Grease									
Fraction, µg/1	4	12	2	4	6	1			
Percent Of Total									
(0il & Grease), %	4	12	1	4	6	_			
In Dry Oil & Grease, ppm									
Carbonate Phase, mg/kg	6	12	_	6	_	-			
Exchangeable Phase, mg/kg	6	12	_	6	-	-			
and and and and and and									
Mercury									
Slurry Total, µg/1	6	12	2	6	6	1			
Solids, mg/kg	6	11	_	6	-	-			

	Average Values								
		Pinto Island		Grassy Island					
			Background			Background			
Parameters	Influent	Effluent	Water	Influent	Effluent	Water			
Manganese									
Slurry Total, mg/1	45.4	20.8	2.3	26.1	0.61	-			
Solids, mg/kg	716	523	547	142	-	_			
(<8-µ), µg/1	5.07	3.87	_	87.0	63.0	2			
(<0.45-u).ug/1	4.89	3.72	_	81.0	52.0	2			
(<0.05-μ),μg/1	4.73	3.58	_	76.0	49.0	2 2			
Oil & Grease									
Fraction, µg/1	1.73	1.37	TRACE	0.74	0.77	TRACE			
Percent Of Total									
(Oil & Grease), %	0.004	0.007	TRACE	0.003	0.128	_			
	3.77	30.7	TRACE	0.141	51.3	TRACE			
In Dry Oil & Grease, ppm	246	258	-	278		-			
Carbonate Phase, mg/kg	154	43.1	_	31.3	_	_			
Exchangeable Phase, mg/kg				,,					
Mercury	21.5			-					
Slurry Total, µg/1	34.5	21.9	TRACE	85	3.1	1.0			
Solids, mg/kg	0.55	0.59	-	0.46	-	-			

Table 5 (Continued)

			Number Of	Samples			
		Pinto Island		Grassy Island			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	
rarameters	Initident	Ettident	water	miluent	Ciriuent	water	
(<8-µ), µg/1	4	12	2 2	4	6	1	
(<0.45-µ),µg/1	4	12	2	4	6	1	
(<0.05-μ),μg/1	4	12	2	4	6	1	
Nickel							
Slurry Total, mg/1	6	9	2	6	6	1	
Solids, mg/kg	6	8	-	6	_	-	
(<8-µ), µg/1	4	12	2	4	6	1	
$(<0.45-\mu), \mu g/1$	4	12	2	3	6	1	
(<0.05-μ), μg/1	4	12	2	4	6	1	
Oil & Grease							
Fraction, µg/1	4	12	2	4	6	1	
Percent Of Total							
(Oil & Grease), %	4	9	2	4	6	1	
In Dry Oil & Grease, ppm	4	11	2 2	4	4	1	
Carbonate Phase, mg/kg	6	12	-	6	_	_	
Exchangeable Phase, mg/kg	6	12	-	6	-	-	
Lead							
Slurry Total, mg/1	6	12	2 2	6	6	1	
Solids, mg/kg	6	11	2	6	-		

	Average Values								
		Pinto Island			Grassy Island				
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water			
(<8-µ), µg/1	0.28	0.19	0.035	0.24	0.24	0.07			
(<0.45-µ),µg/1	0.23	0.16	0.035	0.19	0.18	0.07			
(<0.05-µ),µg/1	0.22	0.17	0.030	0.13	0.13	0.05			
Nickel									
Slurry Total, mg/1	1.83	0.60	0.004	11.5	0.53	0.004			
Solids, mg/kg	24.5	16.9	-	61.9	-	-			
(<8-µ), µg/1	8.44	7.79	3.47	15.2	14.0	2.83			
(<0.45-µ), µg/1	7.66	7.08	3.3	14.4	13.0	2.7			
(<0.05-µ), µg/1	7.54	6.55	3.02	14.1	12.3	2.2			
Oil & Grease Fraction, μg/1	4.54	3.74	TRACE	4.58	6.69	1.40			
Percent Of Total	0.248	0.624	There	0.04	1.40	35.0			
(Oll & Grease), %			TRACE		414	43.8			
In Dry Oil & Grease, ppm	9.96	83.1	TRACE	1.01		43.0			
Carbonate Phase, mg/kg	1.63	1.79	-	30.3	-				
Exchangeable Phase, mg/kg	0.128	0.252	-	10.5					
Lead	5.22	3.40	0.44	12.3	0.105	0.047			
Slurry Total, mg/1	77.1	76.7	98.5	66.9	0.105	0.047			
Solids, mg/kg	11.1	/6./	90.5	66.9		2-12-11			

Table 5 (Continued)

			Number 0	f Samples		
		Pinto Island		G	rassy Island	
			Background			Background
Parameters	Influent	Effluent	Water	Influent	Effluent	Water
(<8-μ), μg/1	4	12	2	4	6	_
(<0.45-µ),µg/I	4	12	2	4	6	_
(<0.05-µ),µg/1	4	12	2 2	4	6	1
Oil & Grease						
Fraction, µg/1	4	12	2	4	6	1
Percent Of Total						
(Oil & Grease), %	4	12	2	4	6	1
In Dry Oil & Grease, ppm	4	11	2 2	4	4	1
Carbonate Phase, mg/kg	6	12	_	6	_	_
xchangeable Phase, mg/kg	6	12	_	6	-	-
Selenium						
Slurry Total, mg/l	6	12	_	6	6	1
Solids, mg/kg	6	11	_	6	_	-
(<8-µ), µg/1	3	12	2	4	6	1
(<0.45-µ),µg/1	3	12	2	3	6	1
(<0.05-µ),µg/1	1	12	2	4	5	1
Titanium						
Slurry Total, mg/1	6	12	2	6	6	1
Solids, mg/kg	6	11	-	6	-	-
(<8-µ), µg/1	4	12	2	4	6	-
(<0.45-µ),µg/1	4	12	2	4	6	-

	Average Values								
		Pinto Island			Grassy Island				
			Background			Background			
Parameters	Influent	Effluent	Water	Influent	Effluent	Water			
(<8-µ), µg/1	6.54	4.65	1.45	5.99	6.55	_			
(<0.45-µ),µg/1	6.15	4.30	1.42	4.62	6.10	_			
(<0.05-µ),µg/1	5.49	3.85	1.05	5.22	5.99	1.1			
Oil & Grease									
Fraction, ug/1	3.87	0.97	TRACE	2.65	1.44	TRACE			
Percent Of Total									
(Oil & Grease), %	0.074	0.028	TRACE	0.022	1.66	TRACE			
In Dry Oil & Grease, ppm	8.49	21.5	TRACE	0.604	142	TRACE			
Carbonate Phase, mg/kg	2.19	1.71	_	2.70	-	-			
exchangeable Phase, mg/kg	0.07	0.11		0.66	-	-			
Selenium									
Slurry Total, mg/1	3.10	1.89	-	4.95	0.157	0.008			
Solids, mg/kg	47.9	48.9	-	26.8	-	_			
(<8-u), µg/1	3.47	2.85	0.53	1.90	0.67	TRACE			
(<0.45-µ),µg/1	3.31	2.62	0.56	1.65	0.52	TRACE			
(<0.05-µ),µg/1	4.47	2.39	0.49	1.00	0.31	TRACE			
Titanium									
Slurry Total, mg/1	5.24	2.74	TRACE	8.30	0.26	TRACE			
Solids, mg/kg	78.6	74.2	-	45.6	-	-			
(<8-u), ug/1	4.33	3.17	TRACE	1.97	1.53	-			
(<0.45-µ),µg/1	4.32	3.04	TRACE	1.83	1.45	_			

Table 5 (Continued)

			Number 0	f Samples		
		Pinto Island		1	Grassy Island	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water
- urameters	· · · · · · · · · · · · · · · · · · ·	Littacire			- Littudine	
(<0.05-μ), μg/1	2	12	2	4	6	_
Dil & Grease Fraction, µg/1	4	12	-	4	6	1
Percent Of Total						
(Oil & Grease), %	4	12	-	4	6	1
In Dry Oil & Grease, ppm	4	12	-	4	5	1
Vanadium						
Slurry Total, mg/l	6	12	_	6	6	1
Solids, mg/kg	6	11	-	6	-	~
(<8-µ), µg/1	4	12	2	4	6	1
(<0.45-μ),μg/1	4	12	2	4	6	1
(<0.05-μ),μg/1	4	12	2	4	6	-
Dil & Grease Fraction, µg/l Percent Of Total	4	12	-	4	6	-
(Oil & Grease), %	4	12	_	4	6	~
In Dry Oil & Grease, ppm	4	11	-	4	4	-
Carbonate Phase, mg/kg	6	12	_	6	-	-
Exchangeable Phase, mg/kg	6	12	-	6	-	-
Zinc						
Slurry Total, µg/l	6	12	2	6	6	1
Solids, mg/kg	6	11	-	6	-	-
(<8-μ), μg/1	4	12	2	4	6	1

			Average	Values		
		Pinto Island			Grassy Island	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Backgroun Water
(<0.05-μ), μg/1	4.49	2.88	TRACE	1.51	1.43	_
Oil & Grease Fraction, µg/1 Percent Of Total	0.66	0.12	-	1.45	0.23	TRACE
(Oil & Grease), %	0.013	0.004	-	0.018	0.080	TRACE
In Dry Oil & Grease, ppm	1.45	2.62	-	0.283	9.94	TRACE
Vanadium						
Slurry Total, mg/1	3.68	2.02	-	5.44	0.21	0.003
Sollds, mg/kg	56.7	50.2	-	29.4	-	_
(<8-u), µg/1	7.57	4.12	TRACE	3.45	2.85	0.11
(<0.45-u), ug/1	6.96	4.02	TRACE	3.10	2.29	0.07
(<0.05-u),ug/1	6.58	3.79	TRACE	2.60	1.89	-
011 & Grease Fraction, ug/1	1.78	0.93		0.40	1.01	-
Percent Of Total (Oil & Grease), %	0.048	0.046	_	0.007	0.480	-
In Dry Oil & Grease, ppm	3.90	20.7	-	0.076	67.3	-
Carbonate Phase, mg/kg	4.23	0.367	-	1.75	_	-
Exchangeable Phase, mg/kg	TRACE	TRACE	-	TRACE		-
Zinc					- 10	
Slurry Total, µg/1	16.4	10.7	1.12	24.2	0.48	0.23
Solids, mg/kg	237	272	-	127		
(<8-u), µg/1	1.55	1.19	0.425	209	1.84	2.19

Table 5 (Continued)

			Number 0	f Samples			
		Pinto Island		Grassy Island			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	
(<0.45-u), ug/1	4	12	2	4	6	_	
(<0.05-μ), μg/1 0il & Grease	4	12	2	4	6	1	
Fraction, µg/l Percent Of Total	4	12	2	4	6	1	
(Oil & Grease), %	4	12	2	4	6	1	
In Dry Oil & Grease, ppm	4	11	2	4	4	1	
Carbonate Phase, mg/kg	6	12	-	6	_	_	
Exchangeable Phase, mg/kg	6	f2	-	6	-	-	
Chlorinated Hydrocarbons OP' DDD							
Slurry Total, µg/l Supernatant After	3	3	1	3	3	1	
2 hr. settling,µg/l Supernatant After	3	-	1	3	-	1	
12 hrs. settling,µg/1 Supernatant After	3	-	1	3	-	1	
48 hrs. settling, ug/1	3	_	1	3	-	1	

			Average	e Values		
		Pinto Island		l G	rassy Island	1
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Backgroun Water
(<0.45-u), ug/1	0.28	1.11	1.15	143	1.65	_
(<0.05-μ), μg/1 0il & Grease	0.28	1.04	0.94	101	1.54	2.00
Fraction, µg/1 Percent Of Total	3.28	1.12	0.735	2.52	2.75	0.83
(Oil & Grease), %	0.020	0.011	0.065	0.010	0.573	0.365
In Dry Oil & Grease, ppm	7.19	24.9	210	0.470	183	26.3
Carbonate Phase, mg/kg	44.2	55.2	-	165	-	-
Exchangeable Phase, mg/kg	0.29	5.55		4.8	· · · ·	-
Chlorinated Hydrocarbons OP' DDD						
Slurry Total, µg/l Supernatant After	272	111	1	9580	97.0	60
2 hr. settling,µg/1	52	-	1	2180	-	13
Supernatant After 12 hrs. settling,µg/1	3	-	TRACE	137	-	TRACE
Supernatant After 48 hrs. settling,µg/l	TRACE	-	TRACE	9	-	TRACE

Table 5 (Continued)

			Number Of				
		Pinto Island		Grassy Island			
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water	
PP' DDD							
Slurry Total, µg/l Supernatant After	3	3	1	3	3	1	
2 hr. settling,µg/l	3		1	3	7 - 1	1	
Supernatant After 12 hrs.settling,µg/1	3	-	1	3	-	1	
Supernatant After 48 hrs.settling,µg/l OP' DDE	3	-	1	3	-	1	
Slurry Total, µg/1	3	3	1	3	3	1	
Supernatant After 2 hr. settling,ug/l	3	-	1	3	-	1	
Supernatant After 12 hrs.settling,ug/l	3	-	1	3	-	1	
Supernatant After 48 hrs.settling,µg/l PP' DDE	3	-	1	3	-	1	
Slurry Total, µg/l Supernatant After	3	3	1	3	3	1	
2 hr. settling,µg/l Supernatant After	3	~	1	3	-	1_	
12 hrs.settling,µg/l Supernatant After	3	-	1	3	-	1	
48 hrs.settling,µg/l	3	_	1	3	-	1	

			Average	Values		
		Pinto Island			Grassy Island	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water
PP' DDD						
Slurry Total, µg/1	466	140	2	35700	150	80
Supernatant After 2 hr. settling.ug/l	103		4	8100	_	9
Supernatant After	6	_	TRACE	507	_	TRACE
Supernatant After	TRACE					
48 hrs.settling,µg/l OP' DDE			TRACE	22.7		TRACE
Slurry Total, µg/1	162	40	2	16200	52	50
Supernatant After 2 hr. settling,µg/l	42		2	3680	-	10
Supernatant After 12 hrs.settling,ug/1	2	_	TRACE	228	-	TRACE
Supernatant After	TRACE		TRACE	13	-	TRACE
PP' DDE Siurry Total, ug/1	442	109	4	40900	246	80
Supernatant After 2 hr. settling,µg/l	198	_	13	17800	_	18
Supernatant After 2 hrs.settling.ug/l	24	_	TRACE	2230	_	TRACE
Supernatant After	2	_	TRACE	210	_	TRACE

Table 5 (Continued)

	Number Of Samples								
		Pinto Island		Grassy Island					
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water			
OP' DDT									
Slury Total, µg/l	3	3	1	3	3	1			
Supernatant After 2 hr. settling, µg/l	3	-	1	3	-	1			
Supernatant After 12 hrs.settling, µg/l	3	_	1	3	-	1			
Supernatant After 48 hrs.settling, µg/1	3		1	3	-	1			
PP' DDT Slurry Total, μg/l	3	3	1	3	3	1			
Supernatant After 2 hr. settling, µg/1	3	-	1	3	-	1			
Supernatant After 12 hrs.settling, µg/l	3	-	1	3	_	1			
Supernatant After 48 hrs.settling, µg/1	3	-	1	3	_	1			
TOTAL DDT Slurry Total, µg/l	3	3	1	3	3	1			
Supernatant After 2 hr. settling, µg/1	3	-	1	3	<u>-</u>	1			
Supernatant After 12 hrs.settling, µg/'	3	_	1	3	_	1			
Supernatant After 48 hrs.settling, ug/1	3	_	1	3		1			

	Average Values									
		Pinto Island		G	rassy Island					
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water				
OP' DDT										
Slury Total, µg/1	186	TRACE	TRACE	6480	50	20				
Supernatant After 2 hr. settling, µg/1	121	-	TRACE	4300	-	4				
Supernatant After 12 hrs.settling, µg/l	28	-	TRACE	1070	-	180				
Supernatant After 8 hrs.settling, µg/l	4	-	TRACE	46.7	-	TRACE				
PP' DDT Slurry Total, µg/l	472	TRACE	TRACE	7840	47	40				
Supernatant After 2 hr. settling, µg/l	309	~	TRACE	3370	-	18				
Supernatant After 2 hrs.settling, µg/l	37	-	TRACE	433	-	TRACE				
Supernatant After 8 hrs.settling, μg/l	2	-	TRACE	35	-	TRACE				
TOTAL DDT Slurry Total, µg/1	2010	400	9	117000	605	330				
Supernatant After 2 hr. settling, µg/l	874	-	20	39500	-	72				
Supernatant After 2 hrs.settling, µg/1	87	-	TRACE	2950	-	TRACE				
Supernatant After 18 hrs.settling, µg/l	7	-	TRACE	337	-	TRACE				

Table 5 (Continued)

			Number Of	Samples		
		Pinto Island		(rassy Island	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water
rarameters	Influent	Ellident	water	inituent	ETTTUENT	water
Aroclor 1242						
Slurry Total, µg/1	3	3	1	3	3	1
Supernatant After						
2 hr. settling, μg/l	3	-	1	3	-	1
Supernatant After				1		
2 hrs.settling, µg/l	3	_		3	_	1
Supernatant After 8 hrs.settling, ug/1	3		1	2	_	
Aroclor 1254	,			,		
Slurry Total, µg/1	3	3	1	3	3	1
Supernatant After						
2 hr. settling, μg/l	3	-	1	3	-	1
Supernatant After						
2 hrs.settling, μg/l	3	_	1	3	-	1
Supernatant After				,		
8 hrs.settling, μg/1 Aroclor 1260	3			3	1 T	1
Slurry Total, µg/1	3	3	1	3	3	1
Supernatant After						
2 hr. settling, μg/1	3	_	1	3	-	1

			Average	e Values		
		Pinto Island			Grassy Island	
		5661	Background	Influent	Effluent	Background Water
Parameters	Influent	Effluent	Water	Influent	Effluent	water
Aroclor 1242	006		T0105	57200	(50	200
Slurry Total, µg/l	806	33	TRACE	57200	650	200
Supernatant After 2 hr. settling, µg/l Supernatant After	217	-	TRACE	14100	-	100
12 hrs.settling, µg/l	87	-	TRACE	3520	-	TRACE
Supernatant After 48 hrs.settling, µg/1 Aroclor 1254	TRACE	-	TRACE	560		TRACE
Slurry Total, µg/1	443	13	TRACE	16900	37	10
Supernatant After 2 hr. settling, µg/l	73	-	TRACE	2600	-	1
Supernatant After 12 hrs.settling, µg/l	17	-	TRACE	433		TRACE
Supernatant After 48 hrs.settling, ug/1	TRACE	-	TRACE	51.7	-	TRACE
Aroclor 1260 Slurry Total, µg/1	136	1	TRACE	5900	12	1
Supernatant After 2 hr. settling, µg/l	33	-	TRACE	960	-	0.1

Table 5 (Concluded)

	Number Of Samples									
		Pinto Island	1	1 G	rassy Island	d				
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water				
Supernatant After										
12 hrs. settling, µg/1	3	-	1	3	-	1				
Supernatant After										
48 hrs. settling, μg/1 TOTAL PCB	3	-	1	3	-	1				
Slurry Total, µg/l Supernatant After	3	3	1	3	3	1				
2 hr. settling, µg/l Supernatant After	3	-	1	3	-	1				
2 hrs. settling, µg/1 Supernatant After	3	-	1	3	-	1				
48 hrs. settling, g/l	3	-	1	3	-	1				

	1		Average	Values		
		Pinto Island			Grassy Island	
Parameters	Influent	Effluent	Background Water	Influent	Effluent	Background Water
Supernatant After 12 hrs. settling, µg/1	2		TRACE	157	_	TRACE
Supernatant After 48 hrs. settling, µg/1 TOTAL PCB	TRACE	-	TRACE	17.7	-	TRACE
Slurry Total, µg/1	1380	48	TRACE	80100	715	210
Supernatant After 2 hr. settling, µg/l	323	-	TRACE	17800	-	100
Supernatant After 12 hrs. settling, µg/l	105	-	TRACE	4080	-	TRACE
Supernatant After 48 hrs. settling, g/l	TRACE	-	TRACE	629	_	TRACE

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES

CHARACTERIZATION OF CONFINED DISPOSAL AREA INFLUENT AND EFFLUEN--ETC(U)

MAY 78 J C LU, B EICHENBERGER, M KNEZEVIC

DACW39-76-C-0038 UNCLASSIFIED WES-TR-0-78-16 NL 2 of 2 AD A056371 END DATE 9 -78

AD-A056 371

TABLE 6

SIZE FRACTIONATION OF CHEMICAL SPECIES IN INFLUENT, EFFLUENT, AND BACKGROUND WATER SAMPLES FROM THE PINTO ISLAND, MOBILE BAY, ALABAMA AND GRASSY ISLAND, DETROIT, MICHIGAN DREDGED MATERIAL DISPOSAL SITES

			PINT	ISLAND			
Parameters	Fractions *	Influent	% OF TOTAL	Effluent	% OF TOTAL	Background Water	% OF TOTAL
	T (mg/1)	59	100	94	100	18.2	100
Total Carbon	A (mg/1)	38	64	53	56	12.3	68
	B (mg/1)	2	3	4	14	1.6	9
	C (mg/1)	19	33	37	40	4.3	24
140-11	T (mg/1)	19	100	40	100	7.2	100
Total Organic	A (mg/1)	10	53	7	18	3.1	43
Carbon	B (mg/1)	0	0	1.5	3	1.4	19
	C (mg/1)	9	47	31.5	79	2.7	38
	T (mg/1)	10.2	100	13.2	100	TRACE	. 100
NH ₃ - N	A (mg/1)	9.4	92	1.21	9	TRACE	
	B (mg/1)	0	0	0.91	7	TRACE	
	C (mg/1)	5.1	50	11,1	84	TRACE	•
	T (mg/1)	31.1	100	12.4	100	0.91	100
Organic N	A (mg/1)	9.05	29	5.50	44	0.24	26
	B (mg/1)	0	0	1.96	16	0.40	44
	C (mg/1)	23.6	76	4.94	40	0.27	30
	T (mg/1)	74.3	100	42.5	100	0.19	100
Total P	A (mg/1)	TRACE	~0	TRACE	~0	TRACE	~0
	B (mg/1)	TRACE	~0	TRACE	∿0	TRACE	~0
	C (mg/1)	∿4.3	∿100	√42.5	∿100	√0.19	∿100

				GRASS	Y ISLAND		
Parameters	Fractions *	INFLUENT	% OF TOTAL	EFFLUENT	% OF TOTAL	Background Water	% OF TOTAL
	T (mg/1)	214	100	96	100	38	100
Total Carbon	A (mg/1)	130	61	59	61	28	74
rotar darden	B (mg/1)	36	17	9 28	9	1.5	4
	C (mg/1)	48	22	28	30	8.5	22
	T (mg/1)	63	100	24	100	12	100
Total Organic	A (mg/1)	19	30	14	58	3.0	25
Carbon	B (mg/1)	7	11	6	25	2.2	18
	C (mg/1)	37	59	4	17	6.8	57
	T (mg/1)	83.8	100	14.2	100	TRACE	100
NH3 - N	A (mg/1)	41.0	49	12.8	90	TRACE	
	B (mg/1)	0	0	0.40	3	TRACE	•
	C (mg/1)	43.1	51	1.00	7	TRACE	•
	T (mg/1)	60.5	100	2.57	100	1.10	100
Organic N	A (mg/1)	5.62	9	1.76	68	0.80	73
	B (mg/1)	1.15	2	0.22	9	0.16	15
	C (mg/1)	53.7	89	0.59	23	0.14	12
	T (mg/1)	129	100	0.147	100	0.06	100
Total P	A (mg/1)	TRACE	~0	TRACE	∿0	TRACE	~
	B (mg/1)	TRACE	~0	TRACE	√0	TRACE	~0
	C (mg/1)	~129	∿100	√0.147	∿100	√0.06	∿100

^{*}T = Total Slurry.

A = Soluble Fraction <0.05-μ.

B = Medium-Size Fraction, 0.05 to 8μ.

C = Settleable Fraction, >8-μ.

• = Cannot Determine Since Dealing with Trace Values.

— = Not Determined (Indicates Insufficient Sample or Sample Destroyed in Transit).

Table 6 (Continued)

			PINT	O ISLAND			
Parameters	Fractions *	Influent	% OF TOTAL	Effluent	% OF TOTAL	Background Water	% OF TOTAL
	T (mg/1)	_	100	_	100	_	100
Na	A (mg/1)	7570	-	5850	-	1320	-
	B (mg/1)	890	-	880	-	0	-
	C (mg/1)	-	-	-	-	-	-
	T (mg/1)	1630	100	745	100	-	100
K	A (mg/1)	164	10	126	17	-	-
	B (mq/1)	20	1	10	1	-	-
	C (mg/1)	1446	89	609	82	-	-
	T (mg/1)	668	100	513	100	68	100
Ca	A (mg/1)	440	66	287	56	62.1	91
	B (mg/1)	30	4	40	8	3.7	5
	C (mg/1)	198	30	186	36	2.2	4
	T (mg/1)	_	100	-	100	_	100
Mg	A (mg/1)	1165	-	923	-	192	_
	B (mg/1)	166	_	139	-	30	-
	C (mg/1)	- :	-		-	_	-
	T (µg/1)	89	100	73	100	2.38	100
Cd	A (µg/1)	2.69	3	2.01	3	0.67	28
	B (µg/1)	0.70	1	0.92	1	0.320	13
	C (µg/1)	85.6	96	70.1	96	1.39	59
	T (mg/1)	2.73	100	1.31	100	0.43	100
Cu	A (µg/1)	3.11	0.10	4.51	0.30	1.86	0.40
	B (µg/1)	1.48	0.05	0.93	0.07	0.13	0.03
	C (mg/1)	∿2.73	∿99.85	∿1.31	∿99.63	√0.43	∿99.5

				GRA	SSY ISLAND		
Parameters	Fractions *	Influent	% OF TOTAL	Effluent	% OF TOTAL	Background Water	% OF TOTAL
17.51.11	T (mg/1)	235	100	-	100	-	100
Na	A (mg/1)	20.8	9	22.8	-	13.0	-
	B (mg/1)	3.7	2	6.0	-	16.5	_
	C (mg/1)	210	89	-	-	-	-
	T (mg/1)	886	100	345	100	-	100
K	A (mg/1)	129	15	113	33	-	-
	B (mg/1)	19	2	10	3	-	-
	C (mg/1)	738	83	222	64	-	-
	T (mg/1)	62.4	100	35.0	100	4.51	100
Ca	A (mg/1)	46.4	74	27.2	78	3.42	76
	B (mg/1)	3.3	5	3.6	10	10.0	22
	C (mg/1)	12.7	21	4.2	12	0.09	2
	T (mg/1)	174	100	156	100	9.2	100
Mg	A (mg/1)	72.0	41	32.9	21	8.9	97
	B (mg/1)	15.8	9	5.3	3	0	0
	C (mg/1)	86.0	50	118	76	0.4	3
	T (µg/1)	435	100	1.86	100	1.27	100
Cd	A (µg/1)	3.67	1	0.70	38	0.09	7
	B (µg/1)	1.45	0.5	0.18	10	0.03	2
	C (µg/1)	430	98.5	0.97	52	1.15	91
	T (mg/1)	22.4	100	1.62	100	0.27	100
Cu	A (µg/1)	9.60	0.04	4.43	0.3	2.3	0.90
	B (µg/1)	2.60	0.01	1.17	0.1	0.3	0.10
	C (mg/1)	√22.4	∿99.95	-	-	∿0.27	∿99.0

Table 6 (Continued)

			PINT	O ISLAND			
Parameters	Fractions *	Influent	% OF TOTAL	Effluent	% OF TOTAL	Background Water	% OF TOTAL
Fe	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	2290 102 116 √2290	100 0.004 0.005 ∿100	1230 13.8 81.7 ~1230	100 0.001 0.007 ∿100	1.2 3.1	100 _ _ _
Mn	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	45.4 4.72 0.35 ~45.4	100 0.01 0.0001 ∿100	21 3.58 0.29 ~21	0.02 0.001 0.99.98	2.3 - - -	100 - - -
Нд	T (μg/l) A (μg/l) B (μg/l) C (μg/l)	34 0,22 0.06 33.7	100 0.6 0.2 99.2	22 0.17 0.02 21.8	100 0.8 0.1 99.1	TRACE 0.030 0.005 0	100
Ni	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	1.83 7.54 0.90 1.82	100 0.40 0.05 99.55	0.60 6.55 1.24 0.59	100 1 0.2 98	0.004 3.02 0.45 0.53	100 76 11 13
РЬ	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	5,22 5,49 1,05 ∿5,22	100 0,1 0.02 ~99.88	3.40 3.85 0.79 ~3.40	100 0.1 0.02 ~99,88	0.44 1.04 0.41 ~0.44	100 0.2 0.1 ∿99.7

					GRASSY ISLAND		
Parameters	Fractions *	Influent	% OF TOTAL	Effluent	% OF TOTAL	Background Water	% OF TOTAL
Fe	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	5620 87.8 603 ~5620	100 0.002 0.01 ~99.99	46.8 4.00 2.44 ~46.8	100 0.009 0.005 ~99.99	0,03 4.3 9.2 0,017	100 14 30 56
Mn	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	26.1 76 11 ∿26.1	100 0.3 0.04 ∿99.66	0.60 49 13 0.54	100 8 2 90	- 2 0 -	100
Нд	T (μg/1) A (μg/1) B (μg/1) C (μg/1)	84.8 0.13 0.11 84.6	100 0.2 0.1 99.7	3.1 0.13 0.11 2.86	100 4 3 93	1.0 0.05 0.02 0.93	100 5 2 93
Ni	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	11.5 14.0 1.2 ~11.5	100 0.1 0.01 ~99.89	0.53 12.3 1.7 ~0.53	100 2 0.3 ~97.7	0,004 2.2 0.57 1.17	100 55 15 30
РЬ	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	12.3 5.22 0.77 ~12.3	100 0.04 0.01 ~99.95	0.105 5.99 0.56 0.100	100 4.5 0.5 95	0.047 1.1 — —	100 2 - -

Table 6 (Concluded)

			PINTO	ISLAND			
Parameters	Fractions *	Influent	% OF TOTAL	Effluent	% OF TOTAL	Background Water	% OF TOTAL
Se	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	3.10 4.47 0 √3.10	100 0.1 0 ~99.90	1.89 2.40 0.45 ~1.89	100 0.1 0.02 ~99.88	0.49 0.04	100 - - -
Ti	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	5.24 4.48 0 ∿5.24	100 0.1 0 ~99.90	2.74 2.88 0.28 √2.74	100 0.1 0.01 √99.89	TRACE TRACE TRACE TRACE	100
ν.	T (mg/l) A (μg/l) B (μg/l) C (mg/l)	3.68 6.58 0.98 ∿3.68	100 0.2 0.03 ~99.77	2.02 3.79 0.33 √2.02	100 0.2 0.02 ∿99.78	TRACE TRACE	100
Zn	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	16.4 0.30 1.25 ∿16.4	100 0.002 0.008 ~99.99	10.7 1.04 0.15 ∿10.7	100 0.01 0.001 ~99.99	1.12 0.94 0 ∿1.12	100 0.1 0 ~99.90

					GRASSY ISLAN	IP	
Parameters	Fractions *	Influent	% OF TOTAL	Effluent	% OF TOTAL	Background Water	% OF TOTAL
Se	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	4.95 1.00 0.90 ∿4.95	100 0.02 0.02 ~99.96	0.157 0.32 0.35 ~0.157	100 0,2 0,2 ~99,60	0.008 TRACE TRACE ~0.008	100 ∿0 ∿0 ∿100
ті	T (mg/l) A (µg/l) B (µg/l) C (mg/l)	8.30 1.51 0.47 ~8.30	100 0.02 0.01 0.99.97	0.26 1.43 0.10 ~0.26	100 0.6 0.04 ∿99.36	TRACE	100
٧	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	5.44 2.60 0.85 ~5.44	100 0.05 0.02 ~99.93	0.21 1.89 0.96 ~0.21	100 1 0.5 ~98.50	0.003 - - 2,89	100 - - 96
Zn	T (mg/1) A (μg/1) B (μg/1) C (mg/1)	24.2 100 109 24.0	100 0.4 0.5 99.10	0.48 1.54 0.30 ~0.48	100 0.3 0.06 ∿99.64	0.23 2.00 0.19 ~0.23	100 1 0.1 298.5

TABLE 7

Concentrations and Ratios of Petroleum Hydrocarbons of Influent, Effluent and Background Water Samples for Pinto Island (Mobile Bay, Alabama) and Grassy Island (Detroit, Michigan) Dredged Material Disposal Areas

Background W BW - A	1	1	I	1	~	1	▽	0.67	3.00	1.16
Grassy Island Effluent Ba EFF - 1D	1	1	1	1	₽	1	29	0.30	1.33	0.07
Influent INF - 2D	1.10	0.05	0.24	1.30	2.7	0.05	9	0.10	1.33	0.08
Background W BW - D	1	1	ı	1	₽	I		ı	1	ı
Pinto Island Effluent EFF - 3D	1	0.03	1	1	!	1	29	3.0	09.0	0.10
Influent INF - 10	1	1	1	1	~	1	9	2.0	2.00	0.76
Sample ID * Parameters	Phenanthrene, µg/l	Naphthalene, µg/l	Methyl-Naphthalene, µg/l	Dimethyl-Naphthalene, µg/l	Automatic Total, µg/l	Naphthalene-Phenanthrene Ratio	Total Alkanes, µg/l	Pristane to C ₁₇ Ratio	Pristane to Phytane Ratio	Normal to Branched Ratio

^{*} Analyzed on Total (Slurry) Sample.

⁻ None Detected.

COMPARISON OF PINTO ISLAND AND GRASSY ISLAND EFFLUENTS WITH MARINE WATER CRITERIA

	Proposed EPA	Proposed NAS	Ocean D	Ocean Discharge	Eft	Effluents		Back	Background
Parameters	Marine Water	Marine Water	Standards of	rds of ia (1972)	Pinto	Grassy	sy ye	_	Water
	(6)	(6)	(8)	(8)			,	(0.05-µ	(0.05-µ Filtrate)
			50% of	10% of	**	40	**	Pinto	Grassy
			time	time				Island	Island
Ηd	6.5-8.5	6.5-8.5	<0.2 changes	<0.2 changes	7.8	8.3		7.6 •	7.3 •
D.0. (mg/1)	9	1	<10% changes	<10% changes	2.4 △	7.	3 △	7.6 △	7.0 △
NH3-N (mg/1)	4.0	4.0	1	1	1.21 13.2	12.8	14.2	trace	trace
NO3-N (mg/1)	1	1	1	1	0.23 —	0.11	1	0.09	0.10
P (mg/1)	0.01	0.005	1	ı	trace 42.50	trace	0.147	trace	trace
Oil and Grease (mg/1)	not visible	not visible	10	15	45		5	3.5	32
Suspended Solids (mg/l)	1	1	50	75	80		9	10	trace
As (µg/1)	200	200	10	20	1	-	1	1	1
(1/gµ) b3	100	10	20	30	2.0 73	0.7	1.86	0.67	0.09
Cr (µg/1)	100	20	5	10	1	1	1	_	1
(1/g/l) no	1	1	200	300	4.51 1310	4.43	1620	1.86	2.3
Fe (µg/1)	300	100	1	1	13.8 1.2×10 ⁶	00.4	46,800	1.2	4.3
Pb (µg/1)	1	50	100	200		5.99	105	1.04	1.1
Mn (µg/1)	1	1	100	100	3.58 21000	64	900	1	2
(I/gц) gH	100	100	-	2		0.13	3.1	0.03	0.05
	100	1000	100	200	6.55 600	12.3	530	3.02	2.2
(1/bn) V	200	200	1	1	3.79 2020	1.89	210	trace	1
Zn (µg/1)	100	1	300	500	1.04 10,700	1.54	780	76.0	2.0
Total Chlorinated			c	4	8	13	1330	c	cho
nydrocarbons (µg/1)	ı	1	7	•	oldeol + too	cottoshlo	240	201110-	U
					200000000000000000000000000000000000000	32.5		able	able

* * . 4

Soluble $(<0.05-\mu)$. Total. $0.45-\mu$ Filtrates. Field Data Averages.

Figure 1. Pinto Island Disposal Site, Mobile, Alabama.

Figure 2. Grassy Island Disposal Site, Detroit, Michigan.

Figure 3. Relationships between Alkalinity and Total Soluble Inorganic Carbon.

Figure 4. Influent Oil and Grease Concentration vs. Settling Time.

23

Figure 6. Influent Oil and Grease Concentration vs. Settling Time.

Figure 10. Supernatant Concentration of op'DDE vs. Settling Time.

Figure 13. Supernatant Concentration of pp'DDT vs. Settling Time.

Figure 14. Supernatant Concentration of Total DDT vs. Settling Time.

Figure 16. Supernatant Concentration of PCB 1254 vs. Settling Time.

Figure 17. Supernatant Concentration of PCB 1260 vs. Settling Time·

Figure 18. Supernatant Concentration of Total PCB vs. Settling Time.

Figure 19. Supernatant Concentration of op'DDD vs. Settling Time.

Figure 20. Supernatant Concentration of pp'DDD vs. Settling Time.

Figure 21. Supernatant Concentration of op'DDE vs. Settling Time.

Figure 22. Supernatant Concentration of pp'DDE vs. Settling Time.

Figure 23. Supernatant Concentration of op'DDT vs. Settling Time.

Figure 24. Supernatant Concentration of pp'DDT vs. Settling Time.

Figure 25. Supernatant Concentration of Total DDT vs. Settling Time.

Figure 26. Supernatant Concentration of PCB 1242 vs. Settling Time.

Figure 27. Supernatant Concentration of PCB 1254 vs. Settling Time.

Figure 28. Supernatant Concentration of PCB 1260 vs. Settling Time.

Figure 29. Supernatant Concentration of Total PCB vs. Settling Time.

APPENDIX A: VEGETATIVE LISTING PINTO ISLAND, MOBILE BAY ALABAMA

- 1. Echinochloa walteri (Pursh) Heller
- 2. Scirpus maritimums L.
- 3. Sesbania drummondii (Rydb.) Cory.
- 4. Panicum repens L.
- 5. Rumex chrysocarpus Moris.
- 6. Paspalum vaginatum Sw.
- 7. Distichlis spicata (L.) Greene
- 8. Cyperus strigosus L.
- 9. Sabatia capestria Nutt.
- 10. Sebania vesicaria (Jacq.) Ell.
- 11. Myrica cerifera L.
- 12. Heliotropium curassavicum L.
- 13. Heterotheca subaxillairs (Lam.) Britt. & Rusby
- 14. Crotalaria spectabilis Roth.
- 15. Kosteletzkya virginica (L.) Gray
- 16. Hypericum gentianoides (L.) B.S.P.
- 17. Andropogon spp.
- 18. Diodia teres Walt.
- 19. Fimbristylis castanea (Michx.) Vahl.
- 20. Erechites hieracifolia (L.) Raf.
- 21. Baccharis halimifolia L.
- 22. Verbena brasiliensis Vell.
- 23. Cyperus compressus L.
- 24. Strophostyles helvola (L.) Ell.
- 25. Xanthocephalium dracunculoides (DC.) Shinners
- 26. Salincornia bigelovii Torr.
- 27. Sapium sebiferum (L.) Roxb.
- 28. Cinnamomum camphora (L.) Nees and Eberm.
- 29. Eragrostis oxylepis (Torr.) Torr.
- 30. Phytolacca americana L.
- 31. Solanum sisymbriifolium lam.

- 32. Aster subulatus Michx. (A. exilis of some suth.)
- 33. Typha angustifolia L.
- 34. Paspalum urvillei Steud.
- 35. Panicum dichotomiflorum Michx.
- 36. Eupatorium serotinum Michx.
- 37. Solidago sempervirens L.
- 38. Eupatorium capillifolium (Lam.) Small
- 39. Helenium amarum (Raf.) Rock.
- 40. Salix nigra L.
- 41. Pluchea purpurascens (Sw.) DC.
- 42. Cynodon dactylon (L.) Pers.
- 43. Mollugo verticillata L.
- 44. Chenopodium ambrosioides L.
- 45. Leptochloa fascicularis (Lam.) A. Gray
- 46. Panicum spp.
- 47. Juncus spp.
- 48. Crotalaria spp.

General Notes

- 1. Barren areas appear to approach the 14' elevation where vegetation then begins. Annual herbs appear from approximately 15 to 19 feet elevation, shrubs and perennial herbs from 19 to 22 feet elevation.
- 2. Dominant herbs at lower elevations are Pluchea purpurascens, Aster subulatus and Panicum dichotomiflorum. At higher elevations Panicum rapens, Solidago sempervirens, Andropogon spp. and Strophostyles helvola are very common. Shrubs (Baccharis halimifolia and Myrica certifera) and trees (Salix nigra) occur at the highest elevations along with Phragmites communis.
- 3. Pools of saline water occur at the lowest elevations. A gull rookery exists on barren dry land areas between dredging periods.

APPENDIX B: ANALYTICAL METHODS

Metals

Total sample

l. Total sample for the determination of metals (except Hg) was digested by concentrated HF, HNO_3 and HClO_3 at $175^{\mathrm{O}}\mathrm{F}$ in a Teflon beaker (with Teflon cover) until the solution cleared. Atomic absorption spectrophotometers (Perkin-Elmer Models 305B and 460) were used for the analysis of metals. Both flame and heated graphite atomizers (HGA 2100) were used for total sample analysis. The choice of an atomizer is dependent on the suitable linear range of the element. The following table is a guide for choosing the atomizer:

Optimum Working Range

	Flame Atomizer (mg/1)	Heated Graphite Atomizer (pg)*
Na	0.03 - 1	20 - 2000
K	0.1 - 2	10 - 2500
Ca	0.2 - 20	20 - 1000
Mg	0.02 - 2	1 - 40
As	0.002 - 0.02	50 - 1000
Cd	0.05 - 2	3 - 100
Cu	0.2 - 10	50 - 2000
Fe	0.3 - 10	30 - 1000
Нд	10 - 300	500 - 7000
Mn	0.1 - 10	10 - 500
Ni	0.3 - 10	200 - 5000
Pb	1 - 20	50 - 1500
Se	0.002 - 0.02	50 - 1000
Ti	5 - 100	1000 - 80000
V	2 - 100	400 - 20000
Zn	0.05 - 2	1 - 70

- * based on interrupt flow of argon gas
- 2. Samples for total mercury analysis were digested in Teflon bombs (Parr no. 4745). The procedures are as follows:
 - a. Weigh in triplicate 0.1-1 g of sample and and place in bottom of a Teflon acid digestion bomb.

- $\underline{\mathbf{b}}$. Carefully add 10-ml conc. HNO3, 3 ml 48% HF and close the digestion bomb tightly.
- c. Place the digestion bomb into an oven (or hot plate) and adjust the temperature to 70°C.
- \underline{d} . Digest the sample until solution is clear.

Filtrate sample

- 3. Analyses of trace metal in filtrates (except Hg) were performed by flameless atomic absorption spectrophotometry. A Perkin-Elmer HGA 2100 was used. If the concentration of trace metals was below the detection limit of the graphite furnace atomizer, then the APDC-MIBK extraction method was used 11.
- 4. The cold vapor atomic absorption method was used for Hg determination. Major cations in the filtrate sample (Ca, Mg, K, and Na) were analyzed by flame atomic absorption spectrophotometry.

Hexane extracts (oil and grease sample)

5. The analysis of trace metals in hexane extracts was performed by direct injection of extracts in a heated graphite atomizer. Mercury analysis was not performed due to insufficient sample. Samples for major ions were prepared by drying the hexane extracts and redissolving into HNO_3 (pH \leq 1).

Phosphorus

- 6. Total phosphorus was measured using the mcdified ascorbic acid method. The procedures are described as follows:
 - a. Measure 1 5 ml of slurry sample and put in Teflon beaker (if filtrate sample, use 50-100 ml).
 - b. Digest the sample at water boiling temperature using HF (1 ml) and HClO₄ (2 ml) with Teflon cover.
 - \underline{c} . After solution is clear, remove the cover and

heat to dryness.

- d. Cool, add 2 ml of H₂O₂ and heat to dryness again.
- \underline{e} . Add 20 ml of H_2O and 5 ml of $10N H_2SO_4$.
- \underline{f} . Filter the sample through a glass fiber filter and dilute to 100 ml.
- g. Take 40 ml of sample and add 3 ml of 1.6% ammonium molybdate and 4 ml of mixed reagent. (Mixed reagent = 50 ml of tartrate + 50 ml of 10% ascorbic acid.) (If dilution is required, the reagents to sample ratio should be kept constant. An appropriate amount of 10N H₂SO₄ should be used to keep the final pH value constant.)
- $\underline{\text{h.}}$ Measure the sample by spectrophotometer at 717 nm.
- 7. The measurement of orthophosphate in filtrates was performed as above without the digestion procedures.

Acid Soluble Sulfide

- 8. Total acid soluble sulfide was determined by stripping and titrimetric processes.
 - \underline{a} . Measure 5 ml ZnAc and 95 ml distilled water into absorption flasks. Connect the two adsorption flasks with a 1-liter reaction flask and purge the system with N₂ gas for 5 minutes.
 - b. Transfer 10-to-50-ml slurry sample into the reaction flask and add distilled water to 500 ml, then mix completely.
 - c. Acidify the sample with 10 ml conc. H₂SO₄ and replace the prepared 2-hole stopper tightly. Pass N₂ through sample for approximately one hour.
 - Add 10 ml of iodine solution and 2.5 ml conc. HCl to each of the absorption flasks, shake and mix thoroughly.
 - e. Transfer contents of both flasks to a 500-ml flask and back-titrate with 0.025N sodium thiosulfate titrant, using starch solution as indicator.

Chlorinated Hydrocarbons

9. The extraction, separation, and identification of chlorinated hydrocarbons were performed in accordance with the published literature $^{12-19}$. The details of the operation are described as follows.

Extraction

10. 500-ml slurry sample (300-ml supernatant sample) was weighed into a 500-ml Erlenmeyer flask with ground glass stopper. To this flask was added 250 ml of acetonitrile (pesticide quality, Mallinkrodtt). The flask was then shaken for 1 hr on a reciprocal shaker. The sample was kept in a constant temperature chamber (14 ± 2°C) overnight. Next, the sample was again shaken for 2 hrs and filtered through 5 g of Celite (Celite 545, Sargent Welch) media on Whatman No. 4 filter paper under mild vacuum. At this time another 100-ml of acetonitrile was added to avoid the possible loss of chlorinated hydrocarbons on the flask wall, Celite, or residue. The filtrate was transferred to a 500ml Kuderna-Danish concentrator and concentrated to 5 ml in a water bath. The concentrated extract (filtrate) was then transferred to a 1000-ml separatory funnel containing 200 ml of double-distilled water and 10 ml of saturated aqueous NaCl. Eighty ml of petroleum ether (pesticide quality) was used to clean the concentrator, and was then added to the separatory funnel. The funnel was shaken by hand for 5 min and then kept still until clear separation of phases occurred. The aqueous phase (bottom layer) was drained into another separatory funnel containing 80 ml of petroleum ether for the second extraction. After the third extraction, the aqueous phase was discarded and all petroleum ether extracts were collected into a Kuderna-Danish concentrator. After the petroleum ether extract was concentrated to approximately 5 ml, it was then eluted on the prepared actitivated florisil column. Florisil column elution

11. A chromatographic tube (450 x 28 mm) with a removable frittered glass and Teflon stopcock was packed with 15 g of activated florisil (60/100 mesh, G.C. grade) and topped with 15 g of anhydrous sodium sulfate (analytical grade, Mallinkrodtt). The column was then washed with 70 ml of petroleum ether. The petroleum ether extract (concentrated) was added when the petroleum ether wash sank through the top surface of the anhydrous sodium sulfate. Elution was then carried out, first with 175 ml of petroleum ether (0% E.E. = 0%v ethyl ether + 100%v petroleum ether; 6% E.E. = 6%v ethyl ether + 94%v petroleum ether; and 15%v E.E. = 15%v ether + 85%v petroleum ether); next with 100 ml of 6% E.E.; and finally, with 150 ml of 15% E.E. During elution, flow rate was controlled by the stopcock at approximately 2 ml/min. With this florisil column elution, PCB's and most of the DDE were recovered in 0% E.E.; most organochlorine compounds in 6% E.E.; endrin and dieldrin in 15% E.E. The eluted sample was again concentrated and the exact volume was measured.

Identification and quantification

- 12. Standard solutions of chlorinated hydrocarbons used in this study are more than 99% pure. The DDT series were obtained from Supelco, PCB's from Monsanto, and dieldrin from Shell Chemical. A Hewlett-Packard Research Gas Chromatograph Model 5750 equipped with a Ni 63 electron capture detector was used throughout the study. The glass column (1220 x 4 mm) was packed with 5% QF-1 (Chromosorb W-HP, 80/100 mesh, Sargent-Welsh). The carrier gas was 95% argon and 5% methane.
- 13. The sample components were identified by comparison of retention times of unknown peaks to the known peaks of reference standard solutions, and were quantified by comparison of the peak height of the identified component to

the peaks of the component in the reference standard solution.

- 14. Preliminary sample injections were always performed to decide whether further concentration or dilution of the sample would be required, and to judge which series of reference standard solutions should be used.
- 15. Chlorinated hydrocarbons in the oil and grease fraction were analyzed by the same method as mentioned above. However, the acetronitrile extractant was omitted and the petroleum ether was directly used for the extraction.

Hydrocarbons

16. The following methods and comments pertain to GC-MS mass fragment graphic analysis of hydrocarbons in dredged material slurry and water samples. A high resolution glass capillary column was used to separate the sample components and mass fragment graphic analysis was also performed for hydrocarbon samples.

Reagents

Silica gel 923	Davison
Methylene Chloride	distilled-in-glass
Hexane	distilled-in-glass
Na ₂ SO ₄	ACS, grade or better, with either Alundum boiling chips, broken in 1-mm fragments.

Gas Chromatography

17. All gas chromatography was performed in a Finnigan 9500 GC which is part of a Finnigan 1015D GC-MS system. The extracts were separated in a 30-meter x 0.25-mm glass capillary column coated with SE-30. The column was temperature-programmed from 100° to 220° C at 2° /min with no initial isothermal hold. The final hold was variable since no timer was available to control the parameter.

In some cases the temperatures were isothermal to permit rapid repetitive analysis of compound, e.g., naphthalene. The temperature for phenanthrene was 180°C while the temperature for naphthalene was 100°C. The split ratio for the column was 10 to 1. The column inlet pressure was 21 pound/in2. The dead volume of the column was 2 min for helium carrier gas.

Mass spectrometer parameters

Emission current	450 pump µamp
Preamp range	10^{-8} amp/volt
Mass coil	10-250 range
Electron multiplier voltage	1.9 kV

Electron energy 70 eV

Programmable multiple-ion monitor settings

alkanes	m/e 99 & m/e 85
naphthalene	m/e 128
phenanthrene	m/e 178
other aromatics	m/e 162, 156, 142

Quantification with PROMIN

- 19. The Finnigan PROMIN combined with the 1015D gives an inherently linear response in the concentration range under consideration. Quantification is therefore determined by the peak height ratio between standard and sample. For example, if a 4-µq naphthalene standard gives a peak height of 30 divisions and the sample has a peak of 25 divisions, then the sample has $\frac{25}{30}$ x 4- μ g, or 3.33- μ g of naphthalene.
- Total alkane is calculated by summing all of the peak heights of the alkane peaks. A factor of 20-µg per 12 divisions was used to calculate the total amount of al-This factor is an average value. A more precise way to perform this calculation is to prepare a mixed standard containing all hydrocarbons observed in the sample and use a computer to integrate peak areas and calculate concentrations. It should be pointed out, however, that without

GC resolution of all hydrocarbons, the computer programs cannot accurately quantify fused peaks.

Computer parameters

21. A Systems Industries System 150 data system was used as adjunct to the PROMIN, particularly for the aromatics. The data system acquired the data in the scan mode. Ions specific for naphthalene, methylnaphthalenes, dimethylnaphthalenes, and phenanthrene were used to construct mass chromatograms. These mass chromatograms were examined with respect to ion current (GC peaks) at retention times appropriate for the specified organics. The GC peaks were integrated by the computer and the peak area compared to mass chromatograms generated from standards.

Scan parameters

Mass range: 100 to 255

Integration time: 20 milliseconds

Sample:

Thrashold: 1

Total run time: 50 min.

Preparation of silica gel column

- a. Heat Davison 923 silica gel for 2 hr at 180 °C. Deactivate by shaking 2 hr with 3 ml water per 100 g of silica gel. Allow to stand overnight in tightly sealed glass container.
- Prepare column as shown in diagram (Figure B1).

Sample extraction

22. Sediment samples

- a. Weight sediment sample into mortar and grind with 5x sample weight of 3% deactivated silica gel 923.
- b. Place mixture into Randall fat extractor thimble and lower thimble into boiling methanol.
- c. Reflux for two hours.
- d. Raise thimble out of methanol into the condensate stream to rinse and complete extrac-

Figure B1. Silica Gel Column.

tion for 2 additional hours.

- e. Concentrate the methanol to about 20 ml then dilute to 250 ml with water (methylene chloride-washed) and extract 3 times with 25 ml of methylene chloride.
- f. Add the methylene chloride to a Kuderna-Danish concentrator along with 30 ml hexane (redistilled in glass) and concentrate to 5 ml.
- Transfer the hexane concentrate to the 4-cm g. x 1-cm silica 923 column. Wash the concentrator with 5 ml of hexane and add the hexane to the column. Wash the alkanes through the column with 25 ml hexane. Collect and concentrate the hexane fraction to 5 ml in a Kuderna-Danish concentrator. Transfer the concentrate to a rigorously-cleaned 5-ml screw-cap test tube. Allow the liquid to concentrate to 1 ml at ambient temperature. Loosely cover the test tubes with aluminum foil during this process. After the volume has reached 1 ml, tightly seal the test tubes with a clean, foil-lined screw cap. This test tube contains the alkanes. Wash the column with 25 ml of ethyl ether. Collect and concentrate to 5 ml in the K-D concentrator. Add 1 ml of hexane and transfer to a screw-cap test tube. Allow to concentrate as above. This fraction contains the aromatics.

23. Water slurry or samples

- a. Decant the water into a clean separatory funnel. Hold for later steps.
- b. Transfer the sediment portion into a Randall extraction thimble with methanol washes.
- c. Reflux the sediment as described previously and concentrate the methanol to ~20 ml.
- d. Add the methanol to the separatory funnel (step two) and concentrate as previously described.

Sensitivity

24. The absolute sensitivity of the capillary column GC-MS system for a particular compound depends upon split ratio, electron multiplier voltage, mass coil, MS resolution, and the structure of the individual compound. This

sensitivity will vary from day to day because of the aggrate small changes in several of the above parameters. The sensitivities for individual compounds given below are conservative and may not reflect the very best obtainable.

naphthalene:

0.5 µg

phenanthrene:

0.5 µg

an individual alkane:

1 µg

25. The detection limit for a specific alkane does not necessarily reflect the detection limit of total alkanes. In order to determine total alkanes, the chromatograph must be spread across 10 GC peaks, in which case, an alkane with as low a concentration as 0.1 μ g/gm might be detected. The detection limit takes into account both sample size and sensitivity of instrumentation

APPENDIX C: ANALYTICAL LABORATORY DATA

TABLE C1

PINTO ISLAND: GENERAL PARAMETERS OF INFLUENTS, EFFLUENTS, AND BACKGROUND WATER

						Total*		Cation	Total Acid
Sample 1D	e ID	₩	Salinity*	Conductivity*	Dry	Alkalinity	Chloride*	Exchange	Soluble
					Weight	mg/l as		Capacity	Sulfide
			00/00	mMhos	86	CaCO3	mg/l	meq/1	mg/1
Background	8-M8	7.6	3		0.42	95	1.90		trace
Water	BW-C	7.5	3	4.0	0.50	20	1.90		trace
	INF-1B	8.0	27	22.54	7.54	192	15.2	3.6	18.1
	INF-1C	7.8	28	25.62	4.80	202	15.2	1.8.1	
Influent	INF-28	7.1	24	25.19	5.37	174	12.2	43.5	15.1
	INF-2C	7.1	24	25.19	8.76	174	12.2	58.7	27.9
	INF-38	7.2	26	24.74	-: =	82	13.0	29.7	19.9
	INF-3C	7.1	24	25.85	7.80	80	13.3	16.7	17.1
	EFF-18	7.6	81	19.80	3.72	262	10.3	1.81	4.2
	EFF-1C	8.1	18	18.01	3.63	254	10.3	21.7	3.8
	EFF-10	7.9	81	18.40	3.42	234	9.01	6.5	5.9
	EFF-1E	7.4	22	21.20	3.09	180	10.1	4.3	2.1
	EFF-28	7.7	22	21.47	3.44	230	12.8	ካ ካ	2.2
Effluent	EFF-2C	8.2	81	18.70	3.54	188	12.2	5.3	1.5
	EFF-2D	8.2	21	25.31	71.7	270	10.1	19.6	2.2
	EFF-2E	6.7	22	23.34	3.61	190	12.2	4.4	3.3
	EFF-38	7.5	22	25.42	3.89	136	13.0	11.6	5.0
	EFF-3C	-		•	-	•	-	(8.0)	-
	EFF-30	7.5	23	24.60	5.32	200	13.3	12.8	3.4
	EFF-3E	8.2	22	25.88	4.33	200	13.0	24.6	2.7

 $_{\odot}$ Analyses were performed on 0.45- μ filtrate. - Not determined (indicates insufficient sample or sample destroyed in transit).

TABLE C2

GRASSY ISLAND: GENERAL PARAMETERS OF INFLUENTS, EFFLUENTS AND BACKGROUND WATER

						Total*		Cation	Total Acid
Sample 1D		*Hd	Salinity*	Conductivity*	Dry	Alkalinity	Chloride*	Exchange	Soluble
					Weight	mg/l as		Capacity	Sulfide
			00/00	mMhos	%	CaCO3	mg/l	meq/1	mg/1
Background Water	BW A	7.3	trace	40.0	∫(10.0)	130	26.8	-	trace
	INF-18	8.4	trace	0.125	17.8	0/4	40.7	37.7	31.2
	INF-1C		trace	0.114	16.6	310	46.1	36.2	38.0
Influent	INF-28		trace	0.125	18.9	019	67.8	161.6	39.9
8	INF-2C		trace	0.125	20.6	009	67.8	6.09	48.9
	INF-38		trace	0.080	24.0	520	40.7	81.2	38.1
	INF-3C		trace	0.080	13.9	520	40.7	38.0	34.0
	EFF-18	4.8	trace	0.068	(0.04)	250	53.9	-	0.2
	EFF-1C	8.2	trace	0.057	(0.03)	220	44.9	-	trace
	EFF-28	8.3	trace	0.057	(0.10)	198	46.1	-	0.3
Effluent	EFF-2C	9.8	trace	0.068	(0.04)	286	46.1	-	trace
	EFF-38	8.1	trace	080.0	(50.0)	220	48.8	-	trace
	EFF-3C	8.0	trace	0.068	(0.10)	290	-	-	4.0

Analyses were performed on a 0.45- μ filtrate. Not determined (indicates insufficient sample or sample destroyed in transit). Due to the insufficient amount of the solids, values in () are for reference only.

TABLE C3

AND OIL AND GREASE IN INFLUENT, EFFLUENT, AND BACKGROUND WATER SAMPLES PINTO ISLAND: CONCENTRATION OF TOTAL CARBON, TOTAL ORGANIC CARBON

	48 hrs.	Settling	mg/1	trace		133	671	22	22	3.5	35		23	67			36	07			77	00	
E	24 hrs.	Settling	mg/1	trace		107		76	30	00	97		12	71			71	2			5	25	
OIL AND GREASE	12 hrs.	Settling	mg/1	trace		11.1	=	C.	20	,,	9		,	0			1,1	-			00	53	
10	2 hrs.	Settling	mg/1	53	o	1.01.	.471	2.1.5	۲,	1.1.5	-		5"	÷			26	7			52	'n	
	Total*		mg/1	14	3,	684 ¹	465	287,	301	488	511	231	16	91	57	28)	62	22	20	57	-	105	63
7	0.05-μ	Filtrate	mg/l	3.0	3.2	10.5	8.2	13.0	12.5	7.8	6.5	5.2	7.5	6.3	5.3	6.3	4.5	12.5	8.4	5.3	,	4.6	7.5
TOTAL ORGANIC CARBON	0.45-µ	Filtrate	mg/1	3.8	2.5	11.5	7.5	14.2	14.5	7.0	7.0	5.0	7.5	2.5	6.2	4.5	8.5	12.5	3.5	5.0	,	9.7	5.0
TOTAL ORG	п−8	Filtrate	mg/1	5.0	0.4	10.0	9.3	13.6	14.5	7.5	7.0	6.5	7.5	2.5	6.2	4.5	9.5	16.3	5.5	11.3		11.5	12.1
	Total*		mg/l	10.0	4.4	22.4	12.7	32.5	31.3	10.0	7.5	10.0	0.01	8.5	7.5	13.8	33.8	764	7.1	22.5	1	26.5	,
	0.05-µ	Filtrate	mg/1	12.5	12.0	47.5	48.0		47.0	26.5	23.0	57.6	65.0	56.3	41.3	53.8	49.0	72.5	42.5	39.0	•	9.84	52.5
TOTAL CARBON	0.45-µ	Filtrate	mg/1	11.3	11.3	49.0	47.5		47.6	25.0	23.2	8.89	65.0	57.5	0.94	53.8	52.5	75.0	47.3	0.04	1	49.2	52.5
TOTAL	n-8	Filtrate	mg.'1	13.8	14.0	52.5	0.64	,	49.5	25.0	23.0	65.5	65.0	57.5	47.8	53.8	57.5	76.3	49.2	45.0	•	50.5	9.65
	Total*		mg/l	20.0	16.3	61.5	56.3	,	93.8	45.0	40.0	80.0	80.0	58.8	62.5	58.8	85.0	342	9.65	58.8	,	52.5	
	e 10			8M-8	BW-C	INF-18	INF-1C	INF-28	INF-2C	INF-38	INF-3C	EFF-18	EFF-1C	EFF-10	EFF-1E	EFF-28	EFF-2C	EFF-20	EFF-2E	EFF-38	EFF-3C	EFF-30	EFF-3E
	Sample 1D			Background	Water			Influent								Effluent							

Samples were shaken and then allowed to settle. The supernatant was withdrawn with a Hamilton Syringe (406-12 opening) and injected into the TOC Analyzer. Not determined (indicates insufficient sample or sample destroyed in transit). Composite sample.

TABLE C4

AND OIL AND GREASE IN INFLUENT, EFFLUENT, AND BACKGROUND WATER SAMPLES GRASSY ISLAND: CONCENTRATION OF TOTAL CARBON, TOTAL ORGANIC CARBON

			TOTAL	TOTAL CARBON		1	TOTAL ORGANIC CARBON	IC CARBON			10	OIL AND GREASE	36	
Sample 15		Total*	1-8	0.45-u	0.05-u	Total*	8-µ	0.45-µ	0.05-µ	Total*	2 hrs.	12 hrs.	24 hrs.	48 hrs.
		1/bm	mg/l		mg/1	l/gm	mg/l	_	mg/l	mg/1	mg/1	mg/1	mg/1	mg/1
Background Water	BW A	38	29.5	30	28	12	5.2	3.5	3.0	32	6 0	trace	12	
	INF-18	178	147	135	106	35	15	15		3082		2035	1010	702
	INF-1C	155	135	135	110	52	91	13	2	3600		500	2	100
	INF-28	276	248	224	170	98	49	53	47	54301		1670	2300	189
Influent	INF-2C	509	165	163	142	71	19	21	91	,0064		2/2	70007	3
	INF-38	546	170	144	130	89	32	25	22	8420,		7183	1,000	33
	INF-3C	516	133	124	120	65	13	15	13	6150		100	2001	75
	EFF-18	101	49	59		24	34	4		11,	در	11.	1.7	17
	EFF-1C	98	09	29	54	21	27	56	29	28	^	-	-	,
	EFF-28	86	63	1 9	65	23	2	2	01	13,	35	1,	α	13
Effluent	EFF-2C	96	49	54	53	29	13	12	6		1		>	2
	EFF-38	101	76	75	52	56	21	&	œ	-	35	4	4	4
	FFF-3C	85	81	73	70	19	20	15	12	∞	,	>	,	,

Samples were shaken and then allowed to settle. The supernatant was immediately withdrawn with a Hamilton Syringe (406-u opening) and injected into the TOC Analyzer.
 Not determined (indicates insufficient sample or sample destroyed in transit).
 Composite sample.

TABLE C5

PINTO ISLAND: CONCENTRATION OF NITROGEN AND PHOSPHORUS SPECIES IN INFLUENT, EFFLUENT, AND BACKGROUND WATER SAMPLES

				NH3-N			ORC	ORGANIC N	
Sample 1D		Total	8-µ Filtrate	0.45-μ Filtrate	0.05-μ Filtrate	Total	8-µ Filtrate	0-45-μ Filtrate	0.05-µ Filtrate
		1/6m	l/gm	mg/1	mg/1	mg/l	mg/1	mg/1	mg/1
Background Water BW-A	BW-A	trace	trace	trace	trace	16.0	79.0	0.34	0.24
	INF-1A	22.3	13.1	12.6	9.40	17.5	6.22	6.10	6.10
Influent	INF-2A	6.38	1.43	1.27		31.9	9.17	13.5	12.0
	INF-3A	1.90	0.78	79.0	1	43.8	7.02	42.9	,
	EFF-1A	8.93	3.29	3.19	1.81	8.20	7.44	6.10	5.50
Effluent	EFF-2A		•	,	•	-			,
	EFF-3A	17.5	96.0	0.80	19.0	16.7	7.49	8.05	

Ol olome?			TOTAL	1L P		N-80N	N02-N
		Total	8-µ	0.45-µ	0.05-µ	0.45-µ	0.45-u
		1/bm	mg/1	mg/1	mg/1	mg/1	mg/l
Background Water	BW-A	0.19	trace	trace	trace	60.0	trace
	INF-1A	75	trace	trace	trace	0.27	trace
Influent	INF-2A	89	trace	trace	trace	0.26	trace
	INF-3A	80	trace	trace	trace	0.30	trace
	EFF-1A	47.5	trace	trace	trace	0.22	trace
Effluent	EFF-2A	1	1	1	-	1	trace
	EFF-3A	37.5	trace	trace	trace	0.24	trace

⁻ Not determined (indicates insufficient sample).

GRASSY ISLAND: CONCENTRATION OF NITROGEN
AND PHOSPHORUS SPECIES IN INFLUENT,
EFFLUENT, AND BACKGROUND WATER SAMPLES

-		The second secon				The second secon			
-			Ż	NH3-N			ORGANIC N	IIC N	
Sample ID		Total	n−8	0.45-µ	n-50.0	Total	n-8	0.45-µ	0.05-µ
			Filtrate	Filtrate	Filtrate		Filtrate	Filtrate	Filtrate
		mg/l	mg/l	mg/l	mg/1	mg/1	mg/l	mg/1	mg/1
Background Water	BW-A	trace	trace	trace	trace	1.10	0.96	0.80	08.0
	INF-1A	70.2	34.9	32.6	-	111	7.13	5.59	
Influent	INF-2A	97.3	85.2	81.5	80.7	61.2	12.1	11.1	11.0
	INF-3A		1.90	1.60	1.20	2.39	1.08	0.77	0.24
	EFF-1A	13.8	13.1	12.4	1	2.23	2.15	1.83	1
Effluent	EFF-2A	14.0	13.2	13.9		2.87	2.20	0.83	•
	EFF-3A	14.8	13.2	12.8	12.8	2.60	1.60	1.75	1.76
			T0T	TOTAL P		N02-N	N-con		
Ol olanca						,	7		
al aldilles		Total	n-8	0.45-µ	η-50.0	n-54.0	-		
			Filtrate	Filtrate	Filtrate	Filtrate	Filtrate	e	
		mg/l	mg/l	mg/l	mg/1	mg/l	l/gm		
Background Water	BW-A	90.0	trace	trace	trace	01.0	trace		
	INF-1A	148	trace	trace	trace	0.22	trace		
Influent	INF-2A	230	trace	trace	trace	0.18	trace		
	INF-3A	9.38	trace	trace	trace	0.20	trace		
	EFF-1A	0.19	trace	trace	trace	01.0	trace		
Effluent	EFF-2A	0.19	trace	trace	trace	0.11	trace		
	EFF-3A	90.0	trace	trace	trace	0.12	trace		

- Not determined (indicates insufficient sample).

TABLE C7

PINTO ISLAND: CONCENTRATION OF METALS IN INFLUENT, EFFLUENT, AND BACKGROUND WATER SAMPLES

				Na Na				×		
Samp	Sample ID	Total *	8-µ Filtrate	0.45-µ Filtrate	0.05-µ Filtrate	Total *	.+Pilos	8-µ Filtrate	0.45-µ Filtrate	0.05-µ Filtrate
		mg/1	mg/1	mg/1	mg/1	mg/l	mg/kg	mg/l	mg/1	mg/1
Background	8M-8		1200	1200						
Water	BW-C	'	1350	1350	1320			•		
	INF-18	-	8700	-	7950	1110	14700	188	172	159
	INF-1C	•	8700	7950	7700	2700	26200	180	169	171
Influent	INF-28		87005	•	76505	1540	21800/	1785	1735	1715
	INF-2C									
	INF-38		7950	7350	7200	20211	147005	191	1845	156
	INF-3C	,	8250	7500	7350	2/11	20/11			25
	EFF-18	'				894	20600	129	123	
	EFF-1C		6300	5700	5700	723	19900	128	125	121
	EFF-10		6300		5700	923	27000	152	147	138
	EFF-1E	-	7350		5700	653	21100	144	135	133
	EFF-28	,	6300		0009	785	22800	129	123	118
E 6 6 1	EFF-2C	,	7050	,		583	16500	123	118	113
בווחפוור	EFF-20		7350		6150	781	18900	124	117	114
	EFF-2E		0069	0099	1	149	17800	911	108	98
	EFF-38			•		777	20000	155	142	133
	EFF-3C					863	,	134	128	152
	EFF-30		•	•	•	751	14100	143	132	127
	EFF-3E	•	6300	•		693	16000	149	153	156
					(Continued)	(pa				

Table C7 (Continued)

Sample ID Totals Solid + Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtate Filtrate Filtate Filtrate Filtrate Filtrate Filtrate Filtrate Filtrate Filtate Filtrate F					Ca					₩ _g		
BN-B 66.3 15800 65.0 65.2 62.8 - 229 210	Samp	ole 10	Total	+ Pilos	п-8	0.45-µ	1	1	+ pilos	n-8	0.45-µ	0.05-µ
May					Filtrate	Filtrate				Filtrate	Filtrate	Filtrate
BW-B 66.3 15800 65.0 63.3 62.8 - 215 210 BW-C 69.7 13900 66.5 65.2 61.4 - 229 223 INF-1B 65.3 86.5 45.5 45.3 4.7 - 229 223 INF-2B 6794 9610 45.5 45.3 - - 1440 1312 INF-2B 6794 9610 45.0 45.7 4184 - - 1440 1312 INF-2B 6794 9610 45.0 45.7 4184 - - 1500 1420 INF-2B 778 47.3 - - 1150 1022 INF-3C 40.9 47.3 - - 1150 1022 INF-3C 44.9 12400 279 255 23 23 23 23 23 255 - - 1120 1130 EFF-1B 44.9 <th></th> <th></th> <th>1/6m</th> <th>mg/kg</th> <th>mg/1</th> <th>mg/l</th> <th></th> <th></th> <th>mg/kg</th> <th>mg/1</th> <th>mg/1</th> <th>mg/l</th>			1/6m	mg/kg	mg/1	mg/l			mg/kg	mg/1	mg/1	mg/l
BW-C 69.7 13900 66.5 65.2 61.4 - - 229 223 INF-18 623 8760 455 453 447 - - 1440 1312 INF-28 679 9610 450 457 418 - - 1510 1420 INF-28 10 679 9610 450 457 418 - - 1440 1312 INF-28 679 9610 450 457 418 - - 1440 1312 INF-36 10 473 250 499 473 - 1150 1022 INF-36 10 450 450 499 473 - 1150 1022 INF-36 10 450 450 499 473 - 1150 1022 EFF-1B 449 1240 279 255 237 - 1250 1015 976 EFF-2B 425 1200 275 2	Background	BW-B	66.3	15800	65.0	63.3			-	215	210	195
INF-18 623 8260 455 453 447 1440 1312 INF-28 652 13600 455 438 423 1510 1420 1420 INF-38 7185 9610 4505 4995 4735 1255 11305 10225 INF-38 7185 9035 5205 4995 4735 12255 11305 INF-38 7185 7200 279 255 273 1025 1004 EFF-20 517 12500 294 286 273 1182 1004 EFF-20 517 12500 362 352 343 1280 1375 EFF-30 518 13200 315 355 247 1220 1155 EFF-30 573 13200 363 352 359 1220 1155 INF-38 573 13200 363 352 359 1220 1155 INF-38 573 13200 363 352 359 1220 1155 INF-38 7185 7185 7185 7185 INF-38 7185	Water	BW-C	69.7	13900	66.5	65.2			1	229	223	189
INF-1C 652 13600 455 438 423 -		INF-18	623	8260	455	453	1	-	1	1440	1312	1218
INF-2B 679f 9610 450f 457f 418f - - 1150f 1022f INF-3C 1NF-3C 499f 473f - - 1150f 1022f INF-3C 718f 903f 520f 499f 473f - - 1225f 1130f EFF-1B 423 11400 279 255 237 - - 125f 130f EFF-1C 543 12400 291 278 255 - - 889 884 EFF-1C 543 1500 340 323 315 - - 1015 972 EFF-1C 543 1500 332 318 295 - - 1015 972 EFF-2B 437 12700 294 286 273 - - 1024 974 EFF-2B 537 14900 317 295 288 - - 1024 976		INF-1C	652	13600	455	438			1	1510	1420	1312
INF-36 718 f 903 f 520 f 499 f 473 f - 1225 f 1130 f IN-3C b 118-3C b 11400 279 255 237 - 759 752 EFF-1D c 449 12400 291 255 - - 759 752 EFF-1D c 543 12400 291 278 255 - - 889 884 EFF-2D c 517 16700 332 318 295 - - 1175 820 EFF-2D c 517 12500 362 352 343 - - 1182 1004 EFF-2D c 517 12500 362 352 343 - - 1021 994 EFF-3D c 570 14900 317 295 288 - - 1024 994 EFF-3B c 530 14900 278 255 247 - 1240 1137	Influent	INF-2B	<i>f</i> 6 <i>L</i> 9	9610	1450	J L54		ı	•	1150	10225	∫996
EFF-1B 423 11400 279 255 237 - 759 752 EFF-1C 449 12400 291 278 255 - - 889 884 EFF-1D 543 15900 340 233 315 - - 1015 972 EFF-2B 437 16700 294 286 273 - - 1182 1004 EFF-2C 517 12500 362 362 263 263 - - 1021 959 EFF-2D 517 12500 362 352 343 - - 1024 994 EFF-3D 537 14900 317 295 288 - - 1024 994 EFF-3B 530 13600 415 398 217 - 1240 1137 EFF-3B 585 11000 278 255 247 - 953 871		INF-38	7187	€06	520€	∫664		-	ı	12255	11305	1165
EFF-1C 449 12400 291 278 255 - 889 884 EFF-1D 543 15900 340 323 315 - - 1015 972 EFF-2B 437 12700 294 286 273 - 1175 820 EFF-2C 437 12700 275 269 263 - 1182 1004 EFF-3C 517 12500 362 352 343 - - 1024 994 EFF-3D 517 12500 317 295 288 - - 1024 994 EFF-3D 530 415 398 217 - 1280 976 EFF-3B 530 415 356 348 - - 1240 1137 EFF-3B 585 11000 278 255 247 - 953 871 EFF-3D 573 13200 363		EFF-18	423	11400	279	255				759	752	892
EFF-1D 543 15900 340 323 315 - - 1015 972 EFF-1E 517 16700 332 318 2295 - - 1015 972 EFF-2B 437 12700 294 286 273 - 1182 1004 EFF-2C 425 12000 275 269 263 - - 1182 1004 EFF-2D 517 12500 362 352 343 - - 1021 959 EFF-3B 530 14900 317 295 288 - - 1240 976 EFF-3B 530 13600 415 398 217 - - 1240 1137 EFF-3C 618 - 375 356 247 - 990 980 EFF-3D 573 13200 363 352 359 - - 1220 1155 <td></td> <td>EFF-1C</td> <td>644</td> <td>12400</td> <td>291</td> <td>278</td> <td></td> <td></td> <td></td> <td>889</td> <td>884</td> <td>857</td>		EFF-1C	644	12400	291	278				889	884	857
EFF-1E 517 16700 332 318 295 - - 1175 820 EFF-2B 437 12700 294 286 273 - 1182 1004 EFF-2C 425 12000 275 269 263 - 1021 959 EFF-2D 517 12500 362 352 343 - - 1024 994 EFF-3B 537 14900 317 295 288 - - 1280 976 EFF-3B 530 415 398 217 - - 1240 1137 EFF-3C 618 - 375 356 348 - - 990 980 EFF-3D 573 13200 363 352 359 - - 953 871 EFF-3D 573 13200 363 352 - - 1220 1155		EFF-10	543	15900	340	323		•	,	1015	972	862
EFF-2B 437 12700 294 286 273 - - 1182 1004 EFF-2C 425 12000 275 269 263 - - 1021 959 EFF-2D 517 12500 362 352 343 - - 1024 994 EFF-3B 537 14900 317 295 288 - - 1280 976 EFF-3B 530 14500 415 398 217 - - 1240 1137 EFF-3B - - 1240 1137 - - 990 980 EFF-3C - - - 990 980 - - 953 871 EFF-3D 573 13200 363 352 359 - - 1220 1155		EFF-1E	517	16700	332	318			1	1175	820	787
EFF-2C 425 12000 275 269 263 - - 1021 959 EFF-2D 517 12500 362 352 343 - - 1024 994 EFF-3B 537 14900 317 295 288 - - 1280 976 EFF-3B 530 13600 415 398 217 - - 1240 1137 EFF-3C 618 - 375 356 348 - - 990 980 EFF-3D 585 11000 278 255 247 - 953 871 EFF-3D 573 13200 363 352 359 - - 1220 1155		EFF-28	437	12700	294	286		,		1182	1004	1015
EFF-2D 517 12500 362 352 343 - - 1024 994 EFF-3E 537 14900 317 295 288 - - 1280 976 EFF-3B 13600 415 398 217 - 1240 1137 EFF-3C 585 11000 278 255 247 - 990 980 EFF-3D 573 13200 363 352 359 - - 953 871 1155 11200 363 352 359 - - 1220 1155	Effluent	EFF-2C	425	12000	275	269			,	1021	959	852
537 14900 317 295 288 - - 1280 976 530 13600 415 398 217 - - 1240 1137 618 - 375 356 348 - - 990 980 585 11000 278 255 247 - 953 871 573 13200 363 352 359 - - 1220 1155		EFF-20	517	12500	362	352		1	1	1024	466	973
530 13600 415 398 217 - - 1240 1137 618 - 375 356 348 - - 990 980 585 11000 278 255 247 - 953 871 573 13200 363 352 359 - - 1220 1155		EFF-2E	537	14900	317	295		'	,	1280	926	1033
618 - 375 356 348 - - 990 980 585 11000 278 255 247 - - 953 871 573 13200 363 352 359 - - 1220 1155		EFF-38	530	13600	415	398		1	1	1240	1137	1099
585 11000 278 255 247 - - 953 871 573 13200 363 352 359 - - 1220 1155		EFF-3C	618		375	356		,	1	990	980	871
573 13200 363 352 359 - 1220 1155		EFF-30	585	11000	278	255		1	1	953	871	792
		EFF-30	573	13200	363	352		-		1220	1155	1046

Table C7 (Continued)

				PJ					3		
Sample 1D	01	Total*	+ Pilos	n-8	0.45-µ		Total*	Solid+	η -8	0.45-u]
				Filtrate	Filtrate	L			Filtrate	Filtrate	-
		1/gn	mg/kg	1/gr	1/gr		mg/1	mg/kg	1/gr	1/gn	
Background	BM-B	2.63	0.63	0.87	96.0		0.31	73	2.15	2.11	
Water	BW-C	2.12	0.42	=:-	0.87		0.55	110	1.83	1.98	
	INF-18	100	1.33	3.75	3.18		1.79	23.7	2.41	2.33	
	INF-1C	101	2.10	3.0	2.79		2.17	45.2	6.17	5.33	
Influent	INF-28	101	1.88	2000	1 1,7		2.28	42.5) (3	786 7	
	INF-2C	104	1.19	5.39	./4.7		3.01	34.4	2.26.6	4.500	
	INF-38,	63	0.57	111	1 22 6		2.71	56.5	1. 27	2000	
	INF-3C	67	1.40	3.417	5.35	4.43	14.41	91.7	4.27	3.0%	3.17
	EFF-18	19	1.64	4.56	3.42		1.32	35.5	4.77	4.31	
	EFF-1C	48.9	1.35	4.11	3.41		0.97	26.7	8.11	7.31	
	EFF-10	47.4	1.39	0.43	0.21		1.17	34.2	5.22	4.58	
	EFF-1E	71.8	2.32	3.73	2.45		0.67	21.7	86.9	6.63	
	EFF-28	51.5	1.50	0.77	0.52		1.39	40.4	3.11	2.93	
Effluent	EFF-2C	84	2.37	2.56	2.31		2.34	1.99	4.55	3.85	
	Eff-2D	72.3	1.75	2.79	2.20		0.78	18.8	3.34	2.86	
	EFF-2E	69.5	1.93	4.87	3.72		1.67	46.3	7.91	7.43	
	EFF-38	93.5	2.40	0.44	0.43		1.53	39.3	4.05	3.56	
	EFF-3C	94.5	,	2.23	1.12		1.77		5.72	5.65	
	EFF-30	88.9	1.67	5.23	4.21		0.70	13.2	4.85	4.22	
	EFF-3E	93.7	2.16	3.31	2.79		1.37	31.6	6.71	6.58	
					(Continued	ed)					

Table C7 (Continued)

Sample 1D				Fe					Н		
	01 6	Total*	Solid+	8-1	0.45-u	0.05-μ	Total*	Solid+	1-8	0.45-µ	0.05-11
				Filtrate	u.	Filtrate			Filtrate	Filtrate	Filtrate
		I/bm	mg/kg	1/gn		1/gr	1/61	mg/kg	l/gr	1/611	1/611
Background	8M-8			3.92	4.2	1.3	trace	-	0.05	0.05	0.05
Water	BW-C	•		4.62	1.4	1.2	trace		0.02	0.02	trace
	INF-18	2400	31800	750	350	310	27	0.34	0.23	0.17	0.18
	INF-1C	1660	34600	31.0	34.7	15.6	31	0.65	0.23	0.20	0.20
Influent	INF-2B	1760	32800	₹6.65	56.45	52.15	7 7 7 7 7	0.80	0.265	0.215	0.245
	INF-38	4080	36800	32 45	20 45	20 25	21	0.20	0 385	1080	2750
	INF-3C	1460	30400	75.7		.6.67	37	0.77	00.0	0.35	73.0
	EFF-18	1140	30600	42.1	16.4	9.3	17	94.0	0.33	0.32	0.33
	EFF-1C	1340	36900	43.7	6.1	5.8	20	0.55	0.33	0.29	0.28
	EFF-10	1210	35400	37.8	7.1	2.7	24	0.70	0.18	0.17	0.17
	EFF-1E	903	29200	245	3.5	7.4	23	0.74	0.19	0.15	91.0
	EFF-28	863	25100	20.8	6.3	3.8	21	0.61	0.21	0.20	0.22
Effluent	EFF-2C	1310	37000	22.5	5.3	2.4	28	0.79	0.21	0.17	0.17
	EFF-2D	1440	34800	12.0	35.2	24.1	30	0.72	0.08	90.0	0.07
	EFF-2E	1080	29900	195	36.2	30.6	22	0.61	0.09	0.08	0.08
	EFF-38	1260	32400	32.7	17.6	13.5	24	0.62	0.22	0.18	0.18
	EFF-3C	1390	•	77.6	55.1	32.8	19		0.26	0.22	0.23
	EFF-30	1450	27300	134	32.4	28.7	17	0.32	90.0	90.0	0.07
	EFF-3E	1400	32300	283	14.2	3.9	18	0.41	0.07	90.0	90.0

Table C7 (Continued)

				W u					z		
Sample ID	e 10	Total*	+Pilos	n-8	0.45-µ	0.05-µ	Total*	Solid+	n-8	n-54.0	0.05-µ
				Filtrate	Filtrate	Filtrate			Filtrate	Filtrate	Filtrate
		mg/l	mg/kg	1/gr	1/gr	1/gr	mg/l	mg/kg	1/6rl	1/gr	1/61
Background	8M-8	2.3	247				900.0		5.11	4.9	4.23
Water	BW-C				•	,	0.002	,	1.83	1.7	8
	INF-18	33.3	442	5.17	5.00	4.78	1.31	17.4	8.24	7.13	7.31
	INF-1C	41.6	998	4.92	4.72	4.55	1.52	12.8	9.76	8.32	8.3
Influent	INF-28	48.8	806	186.4	16.4	4.75	1.76	32.8	8.445	8.325	8.235
1000	INF-2C	9.44	509	2	:		2.03	23.2		-	(1)
	INF-38,	50.6	456	100	1, 04,	4 82	3.11	28.0	7 325	6 875	6 315
	INF-3C	53.7	1118	27.6	4.74	70.1	1.27	26.5	.76.1	10:0	0.0
	EFF-18	17.0	457	3.71	3.56	3.44	0.51	13.7	6.32	6.87	6.32
	EFF-1C	19.3	532	3.98	3.72	3.56	0.73	20.1	8.88	7.99	7.93
	EFF-10	15.3	447	3.33	3.14	3.11	44.0	12.9	7.32	6.58	6.39
	EFF-1E	16.9	547	4.56	4.42	4.33	0.63	20.4	10.43	8.32	7.91
Effluent	EFF-28	12.6	366	4.01	3.86	3.62	0.81	23.5	9.57	9.51	8.75
	EFF-2C	9.7	274	4.13	3.93	3.92			6.78	6.21	5.95
	EFF-20	20.9	505	3.62	3.55	3.34	0.78	18.8	7.13	6.73	6.2
	EFF-2E	28.3	784	3.91	3.72	3.52	0.51	14.1	6.41	5.93	5.90
	EFF-38	23.4	109	2.45	2.37	2.11	0.44	11.3	9.32	7.72	6.51
	EFF-3C	27.7		5.11	4.77	4.54	0.56		5.42	5.23	4.95
	EFF-30	30.5	573	3.91	3.83	3.87			6.72	5.79	5.51
	EFF-3E	28.7	663	3.72	3.77	3.56			9.21	8.02	6.32

Table C7 (Continued)

				2					טי		
San	Sample 1D	Total*	Solid+	п-8	U-45-□	0.05-u	Total*	Solid+	n-8	0.45-u	0.05-µ
				Filtrate	Filtrate	Filtrate			Filtrate	Filtrate	Filtrate
		mg/l	mg/kg	1/gr	l/gu	l/gr	mg/1	mg/kg	1/gr	1/gn	1/gn
Background	8M-8	0.52	123	1.77	1.72	1.17	-		0.59	19.0	0.51
Water	BW-C	0.37	74	1.13	=:-	0.92	•	1	0.47	0.50	0.47
	INF-18	5.20	0.69	5.55	5.31	4.17	2.88	38.2	1.71	19.1	•
	INF-1C	3.52	73.3	6.42	5.89	5.22	2.73	56.9	4.18	3.91	•
Influent	INF-28	5.57	104	7 315	6.83	6.53	3.77	70.2	1 515	117	14 47
	INF-2C	6.21	70.9		5:5		3.11	35.5	:		:
	INF-38,	6.81	4.19	100	100	Je v 3	3.43	30.9	•	,	1
	INF-3C	4.02	83.8	./0.0	6.55	6.03	2.68	55.8	•	,	
	EFF-18	1.88	50.5	5.11	4.89	4.75	1.42	38.2	3.99	3.71	3.23
	EFF-1C	1.70	8.94	3.99	3.82	3.39	2.33	64.2	2.34	2.14	1.82
	EFF-10	2.03	59.4	4.25	3.93	3.27	0.98	28.7	2.18	1.96	1.97
	EFF-1E	3.15	101.9	4.92	4.52	4.11	1.73	55.9	2.73	2.76	2.34
	EFF-26	3.06	88.9	5.83	5.11	4.73	2.02	58.7	4.73	3.80	3.34
Effluent	EFF-2C	3.24	91.5	4.13	3.72	2.88	2.54	71.8	2.97	2.79	2.77
	EFF-2D	3.38	81.6	5.22	4.75	4.37	2.38	57.5	2.49	2.41	2.36
	EFF-2E	3.48	4.96	4.38	3.97	3.24	1.15	31.9	2.73	2.61	2.45
	EFF-38	3.07	78.9	69.4	4.55	4.12	1.31	33.7	3.53	3.34	3.16
	EFF-3C	8.83	•	5.21	4.73	4.28	2.07	•	1.97	1.70	1.56
	EFF-3D	3.29	8.19	4.13	3.83	3.87	2.63	49.4	1.83	1.69	1.47
	EFF-3E	3.71	85.7	3.88	3.72	3.22	2.11	48.7	2.73	2.52	2.31

				Ti					^		
Samp	Sample 10	Total*	+ Pilos	n-8	0.45-µ	0.05-µ	Total*	+ Pilos	n-8	0.45-u	η-90.0
				Filtrate	Filtrate	Filtrate			Filtrate	Filtrate	Filtrate
		mg/l	mg/kg	1/61	1/gn	1/gr	l/gm	mg/kg	1/61	1/gr	1/gr
Background	8M-8	trace	-	trace	trace	trace	,		trace	trace	trace
Water	BW-C	trace	•	trace	trace	trace	,	•	trace	trace	trace
	INF-18	4.31	57.2	3.93	3.87		3.21	42.6	6.17	5.87	5.21
	INF-1C	3.87	9.08	4.17	4.22	•	3.87	79.8	6.55	6.47	5.88
	INF-28	5.83	108.6	1 30 /	1000	1112	3.76	70.0	7 81 6	7 21 6	2007
Influent	INF-2C	6.71	9.9/	2.30	2.77	2.14.	3.73	42.6	. 10./	/	
	INF-38,	6.31	56.8	2 00 5	, 00 ,	2 02 6	4.33	39.0) 22 0	0 17 6) 22 0
	INF-3C	4.41	91.9	3.037	5.37	5.05	3.17	0.99	3.73	0.1/2	0.23
	EFF-18	3.71	99.7	3.41	3.38	3.22	2.02	54.3	2.47	2.31	2.11
	EFF-1C	3.21	88.4	2.72	2.65	2.17	2.16	59.5	2.83	2.45	2.33
	EFF-10	3.28	95.9	2.13	1.95	1.72	1.73	9.05	2.51	2.36	1.97
	EFF-1E	2.77	9.68	3.71	3.67	3.17	1.58	51.1	4.13	3.92	3.38
	EFF-28	2.75	79.9	2.93	2.84	2.83	1.63	47.4	4.83	4.54	4.34
Effluent	EFF-2C	2.31	65.3	4.38	4.23	4.17	1.66	6.94	5.21	2.67	5.11
	EFF-20	2.32	56.0	2.83	2.78	2.63	1.21	29.2	3.27	3.87	3.47
	EFF-2E	2.28	63.2	2.79	2.62	2.58	1.15	31.9	3.79	3.47	3.14
	EFF-38	2:23	8.19	3.31	3.11	3.17	2.13	54.8	5.76	5.32	5.83
	EFF-3C	2.44	•	4.52	4.33	4.27	2.78	,	6.43	6.27	6.03
	EFF-30	2.67	50.2	2.38	2.11	2.04	4.13	77.6	4.37	4.21	4.21
	EFF-3E	2.87	66.3	2.97	2.77	2.63	2.11	48.7	3.82	3.87	3.56
					(Continued	(pa					

Table C7 (Concluded)

				u7		
Samp	Sample 1D	Total*	+ Pilos	n-8	0.45-11	0.05-μ
				Filtrate	Filtrate	Filtrate
		mg/1	mg/kg	1/6n	1/61	1/gr
Background	8M-8	1.12		0.52	1.68	1.32
Water	BW-C	1.13	•	0.33	0.63	0.56
	1NF-1B	18.5	245	3.6	trace	trace
	INF-1C	10.5	219	7.1	trace	trace
	INF-28	12.4	230)	,	,
Influent	INF-2C	20.6	235	LIACE	racer	race
	INF-38	22.9	506)	1 13	1 12
	INF-3C	13.7	285	,7.1		.71.1
	EFF-18	11.2	300	0.72	1.95	1.93
	EFF-1C	9.7	267	0.43	0.87	=:-
	EFF-10	9.8	287	0.23	0.50	0.38
	EFF-1E	9.5	298	1.31	1.62	1.32
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EFF-28	8.9	198	0.49	1.90	1.78
ETTIUENT	EFF-2C	7.3	506	0.88	1.91	1.53
	EFF-20	12.1	292	0.22	1.66	1.43
	EFF-2E	9.6	566	1.37	0.56	0.63
	EFF-38	11.9	306	0.11	0.55	0.43
	EFF-3C	13.5	•	2.95	0.62	1.17
	EFF-30	1.4.1	592	3.68	0.88	0.62
	EFF-3E	13.3	307	- 88	0.29	0.17

TABLE C8

GRASSY ISLAND: CONCENTRATION OF METALS IN INFLUENT,

EFFLUENTS, AND BACKGROUND WATER SAMPLES

						The second secon				
				Na				¥		
Sample 1D		Total*	8-u Filtrate	0.45-µ Filtrate	0.05-µ Filtrate	Total*	Solid+	8-u Filtrate	0.45-µ Filtrate	0.05-µ Filtrate
		l/gm	mg/1	mg/1	mg/1	mg/1	mg/kg	mg/1	mg/l	1/gm
Background Water	BW-A		29.5	13.5	13.0					
	1NF-18		24.5	23.5	20.5	492	2450	173	167	152
	INF-1C	225	•	•		518	3120	135	128	123
19-1	INF-28	245	•	10 20	10.10	1217	20313	1385	1361	1118
Intluent	INF-2C			72.02	21.02	/171	0010	130	071	011
	INF-38	•	•	20.20	•	1215	Johos	11.7	122/	122
	INF-3C			45.02	,	1010	0240	./+!	.761	143,
	EFF-18	-		30.5	29.0	330	,	113	107	109
	EFF-1C			32.0	22.5	379		117	=	102
	EFF-28		26.5	23.5	21.0	427		153	148	137
Effluent	EFF-2C		29.0		13.0	452	1	168	156	152
	EFF-38		30.5	•	25.0	158	,	73.1	78.5	75.9
	EFF-3C	1	29.0	1	21.0	323		114	107	105

(Continued)

Table C8 (Continued)

				Ca					£		
Sample 1D		Total*	+Pilos	8-u Filtrate	0.45-µ Filtrate	0.05-µ Filtrate	Total*	Solid+	8-µ Filtrate	0.45-µ Filtrate	0.05-µ Filtrate
		1/bm	mq/kg	1/bm	1/6m	mg/1	mg/1	ma/ka	mg/1	mg/1	mg/1
Background Water	BW-A	4.51	1	1	3.38	3.42	9.2	,	8.8	8.0	8.9
	INF-18	72.8	407	57.2	56.3	52.8	156.3	873	53.5	49.7	33.8
	INF-1C	55.7	336	43.9	42.7	41.6	137.4	828	61.5	52.1	8.94
Influent	INF-2B	61.7	312	53.7	52.5	49.3	128.3	₅ 059	56.7	40.5	36.5
	INF-38	59.5	3125	44.3	4.3.7	41.8	273.4	1440	179.3	176.2	170.9
	EFF-18	43.8		36.4	35.6	33.6	123.7	1	55.1	52.1	43.6
	EFF-1C	33.3	'	30.1	29.7	27.7	156.3		29.3	29.7	31.7
	EFF-28	40.7	,	34.8	33.6	31.4	183.4	1	42.6	38.3	32.3
Ettluent	EFF-2C	28.3	•	25.6	23.6	21.9	168.7	1	33.4	33.0	21.0
	EFF-38	35.3		32.7	29.4	27.3	157.4	•	32.0	33.5	33.0
	EFF-3C	28.4	-	25.2	22.3	21.4	149.3		37.0	34.5	36.0
					(Continued)	(pen					

Table C8 (Continued)

	-		-	-	-					-	
				P3					no		
Sample 1D		Total*	Solid+	п-8	0.45-µ	0.05-µ	Total*	Solid+	n−8	0.45-	0.05-₩
				Filtrate	Filtrate	Filtrate			_	Filtrate	Filtrate
		l/gr	mg/kg	1/gr	1/6d	l/gri	mg/1	mg/kg	1/gr	1/gr	1/gn
Background Water	BW-A	1.27		0.12	0.13	60.0	0.27			2.1	2.3
	1NF-1B	381	2.13	2.83	2.75	2.32	20.1	112	10.3	9.1	8.1
	INF-1C	004	2.41	10.95	7.87	6.33	26.7	160	1.6	8.2	7.3
Influent	INF-2B	580	3.09	3.91	3.79	3.56	233	123	11.8	9.3	8.15
	INF-3B	330	1.40	2.81	2.945	2.48	21.1	88	17.45	15.25	14.9
	INF-3C	210	1.51				10./	134			
	EFF-18	2.46		0.78	0.63	0.55	1.63		4.9	5.8	6.4
	EFF-1C	1.31	•	0.83	0.81	0.76	1.87	ı	3.4	2.9	1.7
1	EFF-28	2.89	•	0.42	0.39	0.31	1.14	,	7.8	6.3	6.2
Ellident	EFF-2C	1.49	,	1.17	1.98	1.16	1.39	,	3.0	2.8	2.2
	EFF-38	,		0.89	0.73	0.62	1.93	1	4.3	7. 7	4.1
	EFF-3C	1.15	1	1.23	1.07	0.84	1.76		8.7	8.2	7.5
					(Continued	(pani					

Table C8 (Continued)

				Fe		
Sample 1D		Total*	Solid+	n-8	0.45-μ	0.05-₩
				Filtrate	Filtrate	Filtrate
		mg/1	mg/kg	1/gn	1/gr	1/gn
Background Water	BW -A	0.03	•	13.5	5.5	4.3
	INF-18	6830	38200	532	29	15.7
	INF-1C	5020	30200	789	35	30.6
	INF-28	5080	26900	رمور	June	167
InTluent	INF-2C	5780	28100	2885	305	12/5
	INF-38	6130	25500	01.0	170/	1871
	INF-3C	4870	35000	045	113	140
	EFF-18	37.8	-	9.6	6.3	8.9
	EFF-1C	48.2	•	10.1	12.7	8.5
	EFF-28	50.1		3.95	2.7	1.6
ETTIUENT	EFF-2C	51.3	,	2.2	3.2	3.2
	EFF-38	47.2	'	6.7	2.7	9.1
	FFF-3C	46.3		5.8	3.6	2.5

* Based on wet slurry sample.
 + Based on dry weight of sample.
 f Composite sample.
 Not determined (indicates insufficient sample or sample destroyed in transit).

(Continued)

Table C8 (Continued)

Background Water BW-A 1.0 - 0.07 Background Water BW-A 1.0 - 0.07 INF-1B 76 0.42 0.20 INF-2B 112 0.59 0.22 INF-2B 12 0.35 0.20 INF-3B 89 0.37 0.23 INF-3B 89 0.37 INF-3B 89 0.37 EFF-1B 3.6 - 0.20 EFF-1C 3.2 - 0.34 EFF-1C 2.2 - 0.22	- +					UE.		
BW-A 1.0 - 1	-	0.45-u	0.05-µ	Total*	Solid+	8-u-8	0.45-µ	0.05-µ
NW-A 1.0 -	Н	pg/1	ng/1	1/6m	mg/kg	ng/1	ng/1	ng/1
INF-18 76 0.42 INF-28 112 0.59 INF-26 72 0.35 INF-36 77 0.35 INF-36 77 0.55 EFF-18 3.6 - EFF-18 3.6 - EFF-28 4.8 - EFF-20 2.2 -		0.07	0.05		1	2	2	2
INF-1C 83 0.50 INF-2B 112 0.59 INF-2C 72 0.35 INF-3C 77 0.35 INF-3C 77 0.55 EFF-1B 3.6 - EFF-1C 8.2 - EFF-2B 4.8 - EFF-2C 2.2	-	0.24	0.13	15.6	87.2	78	63	58
INF-28 112 0.59 INF-38 72 0.35 INF-38 77 0.37 INF-36 77 0.55 EFF-16 3.6 - EFF-28 4.8 - EFF-20 2.2 -	-	0.15	0.08	17.3	104	83	89	83
INF-38 89 0.37 INF-3C 77 0.55 FF-18 3.6 - EFF-1C 3.2 - EFF-2B 4.8 - EFF-2C 2.2 -		0.175	0.145	28.4	137	∫\$6	√68	825
EFF-18 3.6 - EFF-18 3.6 - EFF-28 4.8 - EFF-20 2.2 -	-	,	70.	35.2	147)
EFF-18 3.6 - EFF-1C 3.2 - EFF-28 4.8 - EFF-2C 2.2 -	<u>.</u>	0.19	0.18	37.3	268	95	83.	81.
EFF-1C 3.2 - EFF-2B 4.8 - EFF-2C 2.2 -	-	0.20	0.14	1.38		92	53	64
EFF-28 4.8 -	- 0.34	0.20	0.18	0.73	•	73	17	78
EFF-2C 2.2 -	- 0.17	0.15	0.13	0.58	,	53	64	38
	- 0.22	0.15	0.13	0.63	,	28	52	15
	0.18	0.15	0.13	0.23		52	47	43
•	- 0.34	0.22	0.08	0.38		47	38	35

Table C8 (Continued)

				ï					Pb		
Sample 1D		Total*	Solid+	8-µ Filtrate	0.45-µ Filtrate	0.05-µ Filtrate	Total*	Solid+	8-µ Filtrate	0.45-μ Filtrate	0.05-µ Filtrate
		I/gm	mg/kg	1/6n	1/611	1/6п	l/gm	mg/kg	1/gr	1/gn	1/61
Background Water	BW-A	0.004		2.83	2.7	2.2	0.047	-	-		
	INF-18	9.3	52.0	14.6	1.4.1	14.7	8.11	62.9	4.83	4.45	4.13
	INF-1C	7.8	47.0	13.9	13.3	12.0	12.1	72.9	5.12	1.20	4.39
Influent	INF-2B	11.7	61.9	15.9	1	14.8	13.7	72.5	6.83	6.17	5.82
	27		25.5						•	•	•
	INF-38	2.4.3	59.6	16.3	15.8	14.7	13.3	55.4	7.18	6.67	6.55
	INF-3C	9.01	76.3				10.3	74.1			
	EFF-18	0.82		15.7	13.3	13.2	0.182		5.68	5.14	5.07
	EFF-1C	0.87		16.3	14.2	12.1	0.079		7.80	7.54	7.32
1992	EFF-28	0.32		16.3	16.3	15.3	0.098	1	9.64	9.28	9.23
ETTIUENT	EFF-2C	0.45	•	12.0	10.2	9.72	0.046	1	5.43	5.11	5.28
	EFF-38	0.17		11.3	11.7		0.155	1	4.91	4.37	4.22
	EFF-3C	0.57		12.6	12.3	12.4	0.068	1	5.55	5.14	4.82

Table C8 (Continued)

Sample 1D			Se					F		
	Total*	+Pilos	n−8	0.45−µ	0.05−⊓	Total*	Solid+	п ф	0.45 ⁻¹	0.05−µ
			Filtrate	Filtrate	Filtrate			Filtrate	Filtrate	Filtrate
	I/Gm	mg/kg	1/gr	1/gr	1/gr/	mg/1	mg/kg	1/gr	1/gr	1/gr
Background Water BW	BW -A 0.008	-	trace	trace	trace	trace		•	•	
INF-18	7	26.1	1.78	1.55	0.37	19.8	48.1	2.19	1.98	1.47
INF-10	- 2	31.3	1.70	1.67	1.31	7.65	1.94	1.90	1.90	1.30
Influent INF-28	28 5.13	27.1	1.95		1.54	7.53	39.8	2.10	1.83	1.82
-381		23.4	•	•	1	9.21	38.4			
INF-3C	, m	26.1	2.15/	1.72	0.78	8.43	9.09	1.71	1.647	1.44
EFF-	0		trace	trace	trace	0.27		1.68	1.53	1.48
EFF	0		2.01	1.83	1.12	0.19		1.91	1.72	1.53
EFF-28	0		trace	trace		0.37	•	1.33	1.89	1.56
ETTIUENT EFF-2C	0		trace	trace	trace	0.25		1.76	1.46	1.47
EFF-38	-	•	trace	trace	trace	0.30	•	0.1	0.83	1.43
EFF-3C	-		2.03	1.32	0.45	0.16		1.51	1.24	

Table C8 (Concluded)

				>					Zn		
Sample 1D		Total*	Solid+	n-8	ղ-54.0	0.05-µ	Total*	Solid+	п-8	0.45-µ	0.05-µ
				Filtrate	Filtrate	Filtrate			Filtrate	Filtrate	Filtrate
		l/gm	mg/kg	1/6rd	1/61	1/6n	1/6m	mg/kg	1/gr	1/gr	1/61
Background Water	BW-A	0.003		0.11	0.07		0.23		2.19		2.00
	INF-18	5.13	28.7	2.93	2.36	1.86	17.7	98.9	178	176	112
	INF-1C	5.19	31.3	3.21	2.95	2.63	16.8	101	275	107	105
1-61	INF-2B	5.61	29.7	186 1	1 87	2 64	20.7	110	159	112	£87
nument	INF-2C	60.9	29.6	4.20	10.6	5.5	37.1	180	120	711	00
	INF-38,	6.21	25.9	200	701.	7 2 2	35.6	148	7.100	1001	1117
	INF-3C	4.39	31.6	3.30	3.10	4.3/	17.1	123		1/02	./11
	EFF-18	0.17		3.84	3.21	2.81	0,40	,	99.0	0.11	0.23
	EFF-1C	0.31	,	4.21	2.86	2.24	74.0		1.76	1.51	1.53
	EFF-28	0.12	•	2.43	2.13	1.75	0.94	1	0.59	0.61	0.73
ETTIUENT	EFF-2C	0.18		1.87	1.48	1.13	0.33		2.74	2.66	2.53
	EFF-38	0.15		1.94	1.17	1.21	0.38	1	2.18	2.22	1.89
	EFF-3C	0.32		2.81	2.87	2.22	0.36		3.11	2.78	2.31

TABLE C9

PINTO ISLAND: CONCENTRATION OF

DDE, DDD, DDT AND PCB SPECIES IN INFLUENT,

EFFLUENT, AND BACKGROUND WATER SAMPLES

			do	000 1 000			dd	PP' 000	
		-		101	1.0	1000	2 1 2	12 420	A Pro
Sample 10		lotal	Z nrs.	IZ NES.	40 115.	10191	, L III S.		
			Settling	Settling	Settling		Settling	Settling	Settling
		mg/l	mg/1	mg/l	mg/l	mg/l	mg/l	mg/l	mg/1
Background Water	BW-D	-	-	trace	trace	2	4	trace	trace
	INF-1D	53	12	trace	trace	162	38	3	trace
Influent	INF-2D	277	52	3	trace	362	85	5	trace
	INF-30	984	92	7	trace	4/8	185	10	trace
	EFF-1F	04			-	73	-	-	1
Effluent	EFF-2F	123		1		162	-	-	1
	EFF-3F	171		-	-	981	-	-	
			00 ' 00E	DOE			PP' 00E	DDE	
Sample 1D		Total	2 hrs.	12 hrs.	48 hrs.	Total	2 hrs.	12 hrs.	48 hrs.
			Settling	Settling	Settling		Settling	Settling	Settling
		mg/1	mg/l	mg/1	mg/1	mg/l	mg/1	mg/1	mg/l
Background Water	BW-D	7	2	trace	trace	4	13	trace	trace
	INF-1D	99	15	trace	trace	233	113	14	_
Influent	INF-2D	61	23		trace	597	129	91	-
	INF-3D	345	87	9	trace	828	353	42	4
	EFF-1D	20	-	•	-	59	-		•
E f f 1	EFF-2D	37	•	-	-	98	-	-	1
The later	EFF-3D	63	•	•	-	171	•	ı	1
			3)	(Continued)					

- Not determined (indicates insufficient sample).

TABLE C9 (Continued)

(Continued) - Not determined (indicates insufficient sample).

TABLE C9 (Concluded)

			AROC	AROCLOR 1242			AROCL	AROCLOR 1254	
Sample 1D		Total	2 hrs.	12 hrs.	48 hrs.	Total	2 hrs.	12 hrs.	48 hrs.
			Settling	Settling	Settling		Settling	Settling	Settling
		l/gm	mg/l	mg/1	mg/1	mg/l	mg/l	mg/1	mg/l
Background Water	0-M8	trace	trace	trace	trace	trace	trace	trace	trace
	INF-1D	370	90	20	trace	350	09	10	trace
Influent	INF-2D	790	250	100	trace	380	09	10	trace
	INF-3D	1260	310	140	trace	009	100	30	trace
	01-333	30	-	-	-	10	-	-	,
Effluent	EFF-2D	30	•	•	-	20	-	•	
	EFF-30	04		•		10		-	,
			AROCI	AROCLOR 1260			T01	TOTAL PCB	
Sample 1D		Total	2 hrs.	12 hrs.	48 hrs.	Total	2 hrs.	12 hrs.	48 hrs.
			Settling	Settling	Settling		Settling	Settling	Settling
		1/gm	l/gm	mg/l	mg/l	1/gm	mg/l	1/bm	l/bw
Background Water	D-M8	trace	trace	trace	trace	trace	trace	trace	trace
	1NF-1D	110	30		trace	830	180	31	trace
Influent	INF-2D	120	30		trace	1280	340	111	trace
	INF-3D	180	04	3	trace	2040	450	173	trace
	01-443	-		-	-	41	•		
Effluent	EFF-2D	2	-	-	•	52	•	•	
	EFF-30	-	•	•	•	51	•	•	

- Not determined (indicates insufficient sample).

TABLE C10

AND PCB SPECIES IN INFLUENT, EFFLUENT, AND BACKGROUND WATER SAMPLES

			90	OP' DDE			d	PP' DDE	
Sample 1D		Total	2 hrs.	12 hrs.	48 hrs.	Total	2 hrs.	-	48 hrs.
			Settling	Settling	Settling		Settling	Settling	Settling
		mg/1	mg/l	mg/1	mg/l	mg/1	mg/l		mg/l
Background Water	BM-A	20	10	trace	trace	80	18	trace	trace
	INF-1D	13300	3030	180	-6	57200	24800	3110	300
Influent	INF-2D	33400	7600	780	21	59200	25760	3230	300
	INF-3D	1800	410	25	10	6420	2800	350	30
	EFF-1D	04		-	-	300	,	1	
Effluent	EFF-2D	48				380	,		
	EFF-3D	32	-	-	_	09	•	-	
			90	0P ' DDD			b	PP' 000	
Sample 1D		Total	2 hrs.	12 hrs.	48 hrs	Total	2 hrs.	12 hrs.	48 hrs.
			Settling	Settling	Settling		Settling	Settling	Settling
		mg/1	mg/1	mg/l	mg/1	mg/1	mg/1	mg/1	mg/1
Background Water	BW-A		13	trace	trace	80	6	trace	trace
	INF-1D	12100	2740	170	∞	24100	0446	340	15
Influent	INF-2D	15200	3460	220	10	78300	17800	1110	50
	INF-3D	-	330	20	6	0094	1040	70	3
	EFF-10	120	-			170	,		
Effluent	EFF-2D	140	-	-		200	,	ı	
	EFF-3D	32	-	-	-	80	-	-	-
				100)	(Continued)				

- Not determined (indicates insufficient sample).

Table C10 (Continued)

			00	0P' DDT			Ь	PP ' 00T	
Sample 10		Total	2 hrs.	12 hrs.	48 hrs.	Total	2 hrs.	12 hrs.	48 hrs.
			Settling	Settling	Settling		Settling	Settling	Settling
		mg/l	mg/l	mg/1	mg/l	mg/1	mg/1	mg/1	mg/1
Background Water	BW	20	7	180	trace	04	81	trace	trace
	INF-1D	7080	4720	1180	50	8940	3800	064	717
Influent	INF-2D	11000	7280	1820	80	12500	2440	700	09
	INF-3D	1360	910	220	10	2100	870	110	-
	EFF-1D	80	•	1		09		1	,
Effluent	EFF-2D	09		•	•	80	•		
	EFF-3D	10	-	-	-	2	_		
			T0T	TOTAL DDT					
Sample 1D		Total	2 hr.	12 hrs.	48 hrs.				
			Settling	Settling	Settling				
		mg/1	mg/l	mg/l	mg/1				
Background Water	BW	330	72	trace	trace				
	1NF-10	123000	00/44	2480	426				
Influent	INF-2D	209000	004/29	2560	521				
	INF-3D	17700	6360	820	63				
	EFF-1D	099	-	-	-				
Effluent	EFF-2D	046	•	-	-				
	EFF-30	216	•	•	-				

(Continued)

- Not determined (indicates insufficient sample).

Table C10 (Concluded)

			AROC	AROCLOR 1242			ARO	AROCLOR 1254	
Sample 1D		Total	2 hrs.	12 hrs.	48 hrs.	Total	2 hrs.	12 hrs.	48 hrs.
			Settling	Settling	Settling		Settling	Settling	Settling
		mg/l	mg/l	mg/l	mg/l	mg/l	mg/1	mg/l	mg/1
Background Water	BW-A	200	001	trace	trace	01		trace	trace
	INF-1D	61400	15300	3800	580	22000	3600	009	09
Influent	INF-2D	98700	24000	0009	1000	24400	0004	009	80
	INF-3D	11600	3000	750	100	4200	200	100	15
	EFF-1D	009	-	-	•	08	-		•
Effluent	EFF-2D	1200	1		•	20	-	-	•
	EFF-3D	150	-	•	-	10	-		•
			ARO	AROCLOR 1260			Tota	Total PCB	
Sample 1D		Total	2 hrs	12 hrs.	48 hrs.	Total	2 hrs.	12 hrs.	48 hrs.
			Settling	Settling	Settling		Settling	Settling	Settling
		mg/l	l/gm	mg/1	mg/l	mg/1	mg/l	mg/l	1/6m
Background Water	BW-A	-	1.0	trace	trace	210	100	trace	trace
	INF-1D	0089	1100	180	20	90300	20000	0854	099
Influent	INF-2D	9800	1600	260	30	133000	29600	08/9	1110
	INF-3D	=	180	30	3	16900	3880	880	118
	01-333	20	-	-	•	700	-	÷ -	1
Effluent	EFF-2D	10	•	•	•	1280	•	1	•
	EFF-30	9	-		-	991	-		•

- Not determined (indicates insufficient sample).

TABLE C11

PINTO ISLAND: CONCENTRATION OF METALS IN OIL AND GREASE FRACTION IN INFLUENT, EFFLUENT, AND BACKGROUND WATER SAMPLES

			As				PO				Cr		
Sample 1D	01 6	Total	3 110	\$ of	mdd	Total	011 &	% of	mmd	Total	3 110	% of	mdd
			Grease	Total	of dry		Grease	Total	of dry		Grease	Total	of dry
			Fraction		011 &		Fraction		011 8		Fraction		3 110
		µ9/1	1/gd		Grease	1/6n	µg/1		Grease	ng/1	1/gn		Grease
Background	8M-8	-				2.63	trace	trace	trace				
Water	BW-C			•	•	2.12	trace	trace	trace				
	INF-18	-	0.58	-	848	100	1.49	1.49	2.18		0.78		1.14
	INF-1C		0.53		1.14	101	1.33	1.32	2.86		0.32		.688
Influent	INF-28	•	0		,	101	1 56	1 53	5 21	•	0 80	•	3 03
111001111	INF-2C	•	66.0		10.7	104	06.1	76.1	1.5.6		6.00	•	5.6
	INF-38	•	22.0		-	63		, 7,	2 5.	•	0 03		1 86
	INF-3C	,	0.55		2	67	//:-	7/17	2.54		0.33		00.
	EFF-18		0.54	-	23.5	19	0.08	0.131	3.48		0.54		23.5
	EFF-1C		99.0		41.2	6.84	0.07	0.143	4.38	•	0.68		42.5
	EFF-10	•	0.92		57.5	47.4	trace	trace	trace		0.32		20.0
	EFF-1E		0.38	•	6.67	71.8	trace	trace	trace	1	0.45		7.37
	EFF-28	•	trace		trace	51.5	0.14	0.272	2.00		trace		trace
E 6 6 1 a. t	EFF-2C		0.42		6.77	84	0.13	0.155	2.10	1	0.33		5.32
1100111	EFF-20		trace	•	trace	72.3	trace	trace	trace		0.21		9.55
	EFF-2E	•	trace		trace	69.5	0.12	0.173	2.40		0.43		8.60
	EFF-38		trace		trace	93.5	trace	trace	trace	•	0.63		=:=
	EFF-3C		0.32			94.5	trace	trace	trace		64.0		
	EFF-30		trace		trace	88.9	trace	trace	trace		0.55		5.24
	EFF-3E	•	trace	•	trace	93.7	trace	trace	trace		0.69		11.0
						(Continued)	(p						

- Not determined (indicates insufficient sample).

Table Cll (Continued)

			73				Fe				Mn		
Samp	Sample 1D	Total	3 110	% of	mdd	Total	3 110	\$ of	mdd	Total	011 8	% of	mmd
			Grease	Total	of dry		Grease	Total	of dry		Grease	Total	of dry
			Fraction		011 8		Fraction		3 110		Fraction		011 &
		mg/1	1/64		Grease	mg/1	1/51		Grease	1/6m	1/61		Grease
Background	BW-B	0.31	1.13	0.365	283		1.81		453	2.3	trace	trace	trace
Water	BW-C	0.55	2.14	0.389	713	1	1.53		510	•	trace		trace
	INF-18	1.79	4.23	0.236	6.18	2400	82.3	0.003	120	33.3	1.73	0.005	2.53
	INF-1C	2.17	3.77	0.174	8.11	1660	089	0.041	1460	9.14	1.54	0.004	3.31
	INF-28	2.28	3 74	0.141	12.7	1760	576	0 028	1960	8.8	2 11	0 005	7.18
Influent	INF-2C	3.01				2400		0.040	1960	9.44		00.0	2
	INF-3B	2.71	2.31	0.065	4.62	1460	1490	0.054	2980	50.6	1.52	0.003	3.04
	EFF-18	1.32	2.38	0.180	103	1140	2.73	0.0002	119	17.0	1.47	0.009	63.9
	EFF-1C	0.97	2.57	0.265	191	1340	2.48	0.0002	155	19.3	1.38	0.007	86.3
	EFF-10	1.17	1.94	0.166	121	1210	2.07	0.0002	129	15.3	0.23	0.002	14.4
	EFF-1E	0.67	3.38	0.504	59.3	903	4.22	0.0005	74.0	16.9	1.47	0.009	25.8
	EFF-28	1.39	3.54	0.255	126	863	3.57	0.0004	128	12.6	1.52	0.012	54.3
Effluent	EFF-2C	2.34	1.87	080.0	30.2	1310	3.62	0.0003	58.4	9.7	0.93	0.010	15.0
	EFF-20	0.78	4.28	0.549	195	1440	3.24	0.0002	147	20.9	1.55	0.007	70.5
	EFF-2E	1.67	1.38	0.083	27.6	1080	4.43	0.0004	88.6	28.3	1.53	0.005	30.6
	EFF-38	1.53	2.11	0.138	37.0	1260	3.72	0.0003	65.3	23.4	1.47	900.0	25.8
	EFF-3C	1.77	2.19	0.124		1390	3.76	0.0003		27.7	1.58	900.0	
	EFF-30	0.70	2.40	0.343	22.9	1450	3.93	0.0003	37.4	30.5	1.63	0.005	15.5
	EFF-3E	1.37	2.15	0.157	34.1	1400	7.48	0.0005	119	28.7	1.78	900.0	28.3
- Not	Not determined (indicated inciting	1,000			٣	(Continued)	-						

- Not determined (indicates insufficient sample).

Table Cll (Continued)

			. N				Pb				Ţ		
Samp	Sample 1D	Total	3 110	% of	mdd	Total	011 &	% of	mdd	Total	011 &	% of	mdd
			Grease	Total	of dry		Grease	Total	of dry		Grease	Total	of dry
			Fraction		0i1 g		Fraction		011 8		Fraction		011 8
		mg/l	1/6n		Grease	mg/l	l/gu		Grease	mg/1	1/gn		Grease
Background	8M-8	900.0	trace	trace	trace	0.52	trace	trace	trace	trace			
Water	BW-C	0.002	trace	trace	trace		trace	trace	trace	trace			
	INF-18	1.31	5.53	0.422	8.08		2.38	940.0	3.48	4.31	0.55	0.013	. 804
	INF-1C	1.52	4.17	0.274	8.97		3.39	960.0	7.29	3.87	0.69	0.018	1.48
Influent	INF-2B	1.76	4.33	0.228	14.7	5.57	4.43	0.075	15.1	5.83	0.67	0.011	2.28
	1NG-28	2.2				10.7				0.71			
	INF-3C	1.27	4.14	0.189	8.29	4.02	5.27	0.097	9.01	4.41	0.72	0.013	1.44
	EFF-18	0.51	2.14	0.420	93.0	1.88	0.73	0.039	31.7	3.71	trace	trace	trace
	EFF-1C	0.73	5.17	0.708	323	1.70	0.87	0.051	54.4	3.21	trace	trace	trace
	EFF-10	0.44	3.32	0.755	208	2.03	0.83	0.041	51.9	3.28	0.62	0.019	38.8
	EFF-1E	0.63	1.15	0.183	20.2	3.15	96.0	0.030	16.8	2.77	trace	trace	trace
E661	EFF-28	0.81	2.22	0.274	79.3	3.06	0.85	0.028	30.4	2.75	trace	trace	trace
רווחפוור	EFF-2C		2.54	1	41.0	3.24	=:	0.034	17.9	2.31	trace	trace	trace
	EFF-20	0.78	5.38	0.690	245	3.38	1.31	0.008	59.5	2.32	0.23	0.010	10.5
	EFF-2E	0.51	5.17	1.014	103	3.48	1.23	0.035	24.6	2.28	0.24	0.010	4.80
	EFF-38	0.44	6.05	1.38	901	3.07	1.4.1	970.0	24.7	2.23	0.33	0.015	5.79
	EFF-3C	0.56	5.23	0.934	,	8.83	0.94	0.011	1	2.44	trace	trace	trace
	EFF-30	•	4.28		8.04	3.29	0.73	0.022	6.95	2.67	trace	trace	trace
	EFF-3E	-	2.27	-	36.0	3.71	0.64	0.017	10.2	2.87	trace	trace	trace
					9	(Continued							

- Not determined (indicates insufficient sample).

Table Cll (Concluded)

			>				Zn		
Sampl	Sample 10	Total	3 110	\$ of	mdd	Total	3 110	\$ of	mdd
			Grease	Total	of dry		Grease	Total	of dry
			Fraction		0118		Fraction		011 8
		mg/l	1/gd		Grease	mg/l	1/64		Grease
Background	8M-8	-			-	1.12	0.85	0.076	213
Water	D-M8			,	1	1.13	0.62	0.055	207
	INF-18	3.21	1.38	0.043	2.02	18.5	2.73	0.015	3.99
	INF-1C	3.87	1.52	0.039	3.27	10.5	3.14	0.030	6.75
Influent	INF-28	3.76	1.73	940.0	5.88	12.4	3.72	0.022	12.7
	INF-38	3.17	2.50	0.067	5.01	22.9	3.51	0.019	7.03
	EFF-18	2.02	1.17	0.058	50.9	11.2	1.45	0.013	62.2
	EFF-1C	2.16	1.23	0.057	76.9	9.7	1.13	0.012	70.6
	EFF-10	1.73	trace	trace	trace	9.8	0.82	0.008	51.3
	EFF-1E	1.58	2.03	0.128	35.6	9.5	1.06	0.012	18.6
	EFF-28	1.63	0.93	0.057	33.2	8.9	0.93	0.014	33.2
Effluent	EFF-2C	1.66	0.98	0.059	15.8	7.3	0.74	0.010	1.9
	EFF-20	1.21	0.73	090.0	33.2	12.1	trace	trace	trace
	EFF-2E	1.15	1.17	0.102	23.4	9.6	1.21	0.013	24.2
	EFF-38	2.13	81.	0.055	20.7	11.9	1.18	0.010	20.7
	EFF-3C	2.78	1.17	0.042		13.5	1.38	0.010	
	EFF-30	4.13	0.28	0.007	25.4	14.1	1.43	0.010	13.6
	EFF-3E	2.11	0.32	0.015	5.08	13.3	2.11	0.016	33.5

- Not determined (indicates insufficient sample).

TABLE C12

GRASSY ISLAND: CONCENTRATION OF METALS IN OIL AND GREASE FRACTION IN INFLUENT, EFFLUENT, AND BACKGROUND WATER SAMPLES

			As				Po				2		
Sample 1D		Total	011 &	\$ of	mdd	Total	011 &	\$ of	mdd	Total	011 &	\$ of	mdd
			Grease	Total	of dry		Grease	_	of dry		Grease	Total	of dry
			Fraction		3 110		Fraction	_	3 110		Fraction		011 6
		1/gr	1/61		Grease	1/gr	1/6n		Grease	ng/1	1/gr		Grease
Background Water	8V - A	-		-	•	1.27	trace		trace	-	-		
	INF-18		0.88		.286	381	0.21	0.055	890.		0.77		.250
	INF-1C	1	0.93		.258	004	0.15	0.038	.042		0.73		.203
	INF-28		70 0		163	580		00014	4	1	0 63	ı	101
Intiuent	INF-2C		6.0	•	601.	710	וופרב	וופרב	רומרנ		0.35		
	INF-38	•	0 0	•	137.	330		0 052	010	1	63 0	,	780
	INF-3C	'	60.0		*61.	210		0.035			60.0	-	900.
	EFF-18	-	0.37		33.6	2.46	0.14	5.69	12.7		0.72		65.5
	EFF-1C	'	0.62		22.1	1.31	trace	trace	trace		0.63		22.5
1000	EFF-28	•	09.0		46.2	2.89	trace	trace	trace	,	0.72		55.4
	EFF-2C		0.78		,	1.49	0.23	15.4		,	0.73	1	
	EFF-38	•	0.42				0.44	•			0.82		
	EFF-3C		0.77		96.3	1.15	0.43	37.4	53.8		0.53	,	66.3
						Continued	(p						

- Not determined (indicates insufficent sample).

Table C12 (Continued)

			n)				Fe				Mn		
Samula 17		Total	3 110	\$ of	mdd	Total	0118	% of	mdd	Total	011 8	% of	mdd
91000			Grease	Total	of dry		Grease	Total	of dry		Grease	Total	of dry
			Fraction		011 &		Fraction		3 110		Fraction		011 8
The same of the sa		1/6m	1/6n		Grease	l/gm	1/6n		Grease	mg/1	1/6n		Grease
Background Water	BW-A	0.27	16.0	0.337	28.4	0.03	2.34	7.8	73.1	-	trace	1	trace
	INF-18	20.1	5.15	0.026	1.67	6830	5.83	0.00008	1.89	15.6	0.78	0.005	.257
	INF-1C	26.7	4.32	910.0	1.20	5020	14.38	0.0003	3.99	17.3	99.0	0.004	.183
Indiana.	INF-28 1	23.3	10 1		170	5080	2,	2000	88 1	28.4	. 61.	000	121
THE PROPERTY	INF-2C	24.3	4.7	0.021	106.	5780	2.14	0.0002	00.	22.6	10.0	0.005	+71.
	INF-38 1	21.1	1. 1.0	000	213	6130	13 66	0000	70 1	35.2	0.89	0.002	.122
	INF-3C	18.7	4.40	0.023	610.	4870	13.30	0.0002	00.1	37.3			
	EFF-18	1.63	3.87	0.237	352	37.8	71.1	0.003	106	1.08	0.13	0.012	11.8
	EFF-1C	1.87	3.10	0.166	Ξ	48.2	5.79	0.012	207	0.73	3.58	0.490	128
5661	EFF-28	1.14	4.07	0.357	313	50.1	1.68	0.003	129	0.58	91.0	0.028	12.3
בווחפוו	EFF-2C	1.39	3.43	0.247	1	51.3	3.47	0.007	ı	0.63	0.28	0.044	1
	EFF-38	1.93	3.52	0.182	,	47.2	3.28	0.007		0.23	0.38	0.165	
	EFF-3C	1.76	2.78	0.158	348	46.3	4.47	0.010	559	0.38	0.11	0.029	13.8

- Not determined (indicates insufficent sample).

Table C12 (Continued)

			ž				P.				Į.		
Sample 1D		Total	011 &	\$ of	mmd	Total	011 &	\$ of	mdd	Total	3 110	\$ of	mdd
			Grease	Total	of dry		Grease	Total	of dry		Grease	Total	of dry
			Fraction		011 8		Fraction		011 8		Fraction		011 8
		mg/1	1/6п		Grease	mg/1	1/gn		Grease	mg/1	1/gr		Grease
Background Water	BW-A	0.004	1.40	35.0	43.8	0.047	trace	trace	trace	trace	trace	trace	trace
	1NF-18	9.3	3.31	0.036	1.07	8.11	3.27	0.028	1.06	8.61	0.83	0.010	. 269
	INF-1C	7.8	4.13	0.053	1.15	12.1	1.57	0.013	.436	7.65	0.67	600.0	.186
Influent	INF-28	11.7	6.21	940.0	1.20	13.7	2.29	0.017	443	7.53	1.53	0.020	.296
	INF-2C	15.3				12.5			`	8.34			
	INF-38,	14.3	4.65	0.037	638	13.3	3.47	0.029	476	9.21	2.78	0.032	.382
	INE-3C	9.01		10000	200	10.3	7	0.00	2/	8.43	2/1-	-60.0	
	EFF- 18	0.82	3.57	0.435	325	0.182	0.87	0.478	79.1	0.27	trace	trace	trace
	EFF-1C	0.87	21.23	2.44	758	0.079	0.75	0.949	26.8	0.19	0.23	0.121	8.21
Effluent	EFF-28	0.32	3.35	1.05	258	0.098	4.14	4.22	318	0.37	0.54	0.146	41.5
	EFF-2C	0.45	2.79	0.62	1	9,000	0.99	2.15	ı	0.25	trace	trace	trace
	EFF-38	0.17	89.9	1.58		0.155	0.73	0.471		0.30	0.63	0.21	
	EFF-3C	0.57	2.52	0.442	315	0.068	1.14	1.68	143	0.16	trace	trace	trace
					3)	(Continued)							

- Not determined (indicates insufficient sample).

Table C12 (Concluded)

			>				Zn		
Sample 1D		Total	3 110	\$ 0f	mdd	Total	3 110	\$ of	шdd
			Grease	Total	of dry		Grease	Total	of dry
			Fraction		011 8		Fraction		011 8
		mg/1	1/gr		Grease	mg/1	1/6rl		Grease
Background Water	BW-A	0.003	-	-	,	0.23	0.84	0.365	26.3
	INF-18	5.13	0.55	0.011	179	17.7	2.44	0.014	.792
	INF-1C	5.19	0.31	900.0	980.	16.8	2.67	910.0	.742
Influent	INF-2B	19.5	90014	4	+	20.7	, 12	200	007
	INF-2C	60.9	וופרב	רופרב	רופנע	37.1	71.7	0.00	074.
	INF-38,	6.21	,			35.6			00
	INF-3C	4.39	0.72	0.014	. 099	17.1	2.83	0.011	.388
	EFF-18	0.17	11.0	0.065	10.0	0.40	1.74	0.453	158
	EFF-1C	0.31	trace	trace	trace	0.44	7.87	1.79	281
Effluent	EFF-28	0.12	0.17	0.142	13.1	0.94	96.0	0.102	73.8
	EFF-2C	0.18	0.28	0.156	•	0.33	1.83	0.555	1
	EFF-38	0.15	5.06	3.37		0.38	2.15	0.566	,
	EFF-3C	0.32	0.43	0.134	53.8	0.36	1.93	0.536	241

- Not determined (indicates insufficient sample).

PINTO ISLAND: CONCENTRATION OF EXCHANGEABLE METALS AND ACETIC ACID EXTRACTS IN INFLUENT AND EFFLUENT SAMPLES

	-			Exchi	Exchangeable Metals (mg/kg dry sediment)	Metals	(mg/kg c	ıry sedi	ment)		
Sample 10	2	As	PO	ړ	2	Fe	Mn		Pb	Zn	>
	INF-18	0.22	0.011	0.28	0.22	0.28	178	0.13	01.0	1.3	trace
	INF-1C	91.0	0.008	0.25	0.16	0.45	185	0.13	90.0	0.1	trace
19-1	INF-28	0.21	0.010	0.25	0.21	0.21	177	0.12	0.05	1.0	trace
Influent	INF-2C	0.34	0.016	0.21	0.15	0.17	170	0.23	60.0	0.1	trace
	INF-3B	41.0	0.005	0.14	0.13	0.12	91	0.08	0.05	0.08	trace
	INF-3C	80.0	0.007	0.15	91.0	0.89	124	0.08	90.0	0.08	trace
	EFF-18	0.11	0.042	0.19	0.32	0.25	9.11	0.23	0.12	3.8	trace
	EFF-1C	0.30	0.039	0.17	0.26	20.0	6.8	0.22	0.10	3.3	trace
	EFF-1D	48.0	140.0	0.22	0.39	0.10	1.7	0.31	0.11	3.5	trace
	EFF-1E	0.27	090.0	0.21	0.30	0.07	8.2	0.30	0.12	3.8	trace
Effluent	EFF-2B	0.25	0.067	94.0	0.50	0.17	26.7	0.38	0.17	6.3	trace
רוווחפוור	EFF-2C	64.0	0.088	0.24	0.53	0.27	10.4	0.16	0.11	5.3	trace
	EFF-2D	0.21	0.027	0.21	0.25	0.08	6.5	0.04	0.08	3.1	trace
	EFF-2E	0.31	050.0	0.25	0.37	0.12	6.3	91.0	0.13	3.0	trace
	EFF-38	0.27	0.034	0.15	0.20	0.05	8.95	0.17	0.03	0.4	trace
	EFF-3C	0.26	840.0	0.35	0.55	0.44	611	0.48	0.09	11.4	trace
	EFF-3D	0.23	0.045	0.21	0.35	90.0	128	0.29	0.10	8.2	trace
	EFF-3E	0.23	0.081	0.18	14.0	0.07	128	0.29	0.14	10.9	trace

Table Cl3 (Concluded)

As Cd Cr Cu 0.55 0.220 0.90 1.75 0.62 0.110 1.11 0.69 0.33 0.091 0.82 0.23 0.23 0.034 0.96 0.21 0.22 0.039 0.60 0.26 0.31 0.035 1.02 0.28 0.33 0.187 0.70 2.85 0.39 0.121 0.70 2.83 0.39 0.121 0.70 2.79 0.39 0.142 0.79 3.33 0.29 0.106 0.67 2.77 0.29 0.106 0.67 2.77 0.29 0.106 0.67 2.77 0.29 0.106 0.67 2.77 0.29 0.106 0.67 2.77 0.29 0.106 0.67 2.77 0.29 0.106 0.67 3.35 0.10 0.115 0.74 3.25 0.24 0.109 0.74 3.54	Acetic Acid Extract (Metal Carbonates) (mg/kg dry sediment	tract (Me	etal Carl	bonates	(mg/kg	dry sed	ment)	
INF-1B		n _O	Fe	Ä	ï	Pb	Zn	>
INF-1C 0.62 0.110 1.11 0.69 INF-2B 0.33 0.091 0.82 0.23 INF-2C 0.23 0.034 0.96 0.21 INF-3C 0.23 0.039 0.60 0.26 INF-3C 0.31 0.035 1.02 0.28 EFF-1B 0.28 0.133 0.70 2.85 EFF-1C 0.33 0.187 0.70 2.83 EFF-1C 0.39 0.121 0.70 2.79 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2C 0.29 0.106 0.67 2.77 EFF-3C 0.24 0.115 0.74 3.25 EFF-3C 0.24 0.136 0.68 1.76 EFF-3C 0.24 0.109 0.74 3.54 EFF-3C 0.27 0.206 1.07 3.42	0.220	1.75	2480	243	1.83	2.71	80.8	3.4
INF-2B 0.33 0.091 0.82 0.23 INF-2C 0.23 0.034 0.96 0.21 INF-3B 0.22 0.039 0.60 0.26 INF-3B 0.28 0.035 1.02 0.28 EFF-1B 0.28 0.133 0.70 2.85 EFF-1C 0.33 0.187 0.70 2.83 EFF-1E 0.32 0.199 0.92 2.24 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2C 0.29 0.106 0.67 2.77 EFF-2C 0.29 0.106 0.67 2.77 EFF-3C 0.24 0.115 0.74 3.25 EFF-3C 0.24 0.109 0.74 3.54 EFF-3C 0.27 0.206 1.07 3.42		0.69	3250	284	2.44	2.50	4.09	4.6
INF-2C 0.23 0.034 0.96 0.21 INF-3B 0.22 0.039 0.60 0.26 INF-3C 0.31 0.035 1.02 0.28 EFF-1B 0.28 0.133 0.70 2.85 EFF-1C 0.33 0.187 0.70 2.83 EFF-1E 0.32 0.199 0.92 2.24 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2C 0.29 0.106 0.67 2.77 EFF-2C 0.29 0.106 0.67 2.77 EFF-3C 0.24 0.115 0.74 3.25 EFF-3C 0.24 0.109 0.74 3.54 EFF-3C 0.27 0.206 1.07 3.42		0.23	4180	301	1.44	1.65	39.2	4.7
INF-3B 0.22 0.039 0.60 0.26 INF-3C 0.31 0.035 1.02 0.28 EFF-1B 0.28 0.133 0.70 2.85 EFF-1C 0.33 0.187 0.70 2.83 EFF-1D 0.39 0.121 0.70 2.79 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2C 0.29 0.106 0.67 2.77 EFF-2C 0.29 0.106 0.67 2.77 EFF-3C 0.24 0.115 0.74 3.25 EFF-3C 0.24 0.109 0.74 3.54 EFF-3C 0.27 0.206 1.07 3.42		0.21	5520	365	2.12	1.25	30.6	5.3
INF-3C 0.31 0.035 1.02 0.28 EFF-1B 0.28 0.133 0.70 2.85 EFF-1C 0.33 0.187 0.70 2.83 EFF-1D 0.39 0.121 0.70 2.79 EFF-1E 0.32 0.199 0.92 2.24 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2D 0.23 0.176 0.59 2.29 EFF-2E 0.40 0.115 0.74 3.25 EFF-3B 0.17 0.136 0.68 1.76 EFF-3B 0.27 0.206 1.07 3.42 EFF-3D 0.27 0.206 1.07 3.42		0.26	2390	143	- -:-	2.38	22.3	3.3
EFF-1B 0.28 0.133 0.70 2.85 EFF-1C 0.33 0.187 0.70 2.83 EFF-1D 0.39 0.121 0.70 2.79 EFF-1E 0.32 0.199 0.92 2.24 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2D 0.23 0.176 0.59 2.29 EFF-2E 0.40 0.115 0.74 3.25 EFF-3B 0.17 0.136 0.68 1.76 EFF-3C 0.24 0.109 0.74 3.54 EFF-3D 0.27 0.206 1.07 3.42		0.28	3670	142	98.0	2.67	32.1	4.1
EFF-1C 0.33 0.187 0.70 2.83 EFF-1D 0.39 0.121 0.70 2.79 EFF-1E 0.32 0.199 0.92 2.24 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2D 0.23 0.176 0.59 2.29 EFF-2E 0.40 0.115 0.74 3.25 EFF-3B 0.17 0.136 0.68 1.76 EFF-3B 0.27 0.206 1.07 3.42 EFF-3D 0.27 0.206 1.07 3.42		2.85	1940	298	1.71	1.25	61.9	trace
EFF-1D 0.39 0.121 0.70 2.79 EFF-1E 0.32 0.199 0.92 2.24 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2D 0.23 0.176 0.59 2.29 EFF-2E 0.40 0.115 0.74 3.25 EFF-3B 0.17 0.136 0.68 1.76 EFF-3C 0.24 0.109 0.74 3.54 EFF-3D 0.27 0.206 1.07 3.42		2.83	1810	268	1.57	1.18	56.6	trace
EFF-1E 0.32 0.199 0.92 2.24 EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2D 0.23 0.176 0.59 2.29 EFF-2E 0.40 0.115 0.74 3.25 EFF-3B 0.17 0.136 0.68 1.76 EFF-3C 0.24 0.109 0.74 3.54 EFF-3D 0.27 0.206 1.07 3.42		2.79	1820	312	1.55	1.39	54.7	trace
EFF-2B 0.63 0.142 0.79 3.33 EFF-2C 0.29 0.106 0.67 2.77 EFF-2D 0.23 0.176 0.59 2.29 EFF-2E 0.40 0.115 0.74 3.25 EFF-3B 0.17 0.136 0.68 1.76 EFF-3C 0.24 0.109 0.74 3.54 EFF-3D 0.27 0.206 1.07 3.42		2.24	1790	285	2.34	1.14	46.7	trace
EFF-2C 0.29 0.106 0.67 2.77 EFF-2D 0.23 0.176 0.59 2.29 EFF-2E 0.40 0.115 0.74 3.25 EFF-3B 0.17 0.136 0.68 1.76 EFF-3C 0.24 0.109 0.74 3.54 EFF-3D 0.27 0.206 1.07 3.42		3.33	2520	396	1.67	1.67	49.2	trace
EFF-2D 0.23 0.176 0.59 2.29 EFF-2E 0.40 0.115 0.74 3.25 EFF-3B 0.17 0.136 0.68 1.76 EFF-3C 0.24 0.109 0.74 3.54 EFF-3D 0.27 0.206 1.07 3.42		2.77	1920	320	1.70	1.60	48.4	trace
0.40 0.115 0.74 3.25 0.17 0.136 0.68 1.76 0.24 0.109 0.74 3.54 0.27 0.206 1.07 3.42		2.29	1540	366	2.10	1.22	50.4	trace
0.17 0.136 0.68 1.76 0.24 0.109 0.74 3.54 0.27 0.206 1.07 3.42		3.25	2210	338	1.30	1.37	49.7	trace
0.24 0.109 0.74 3.54 0.27 0.206 1.07 3.42		1.76	1360	136	1.22	2.00	50.9	9.0
0.27 0.206 1.07 3.42	0.109 0.74	3.54	1580	99	1.62	2.58	4.64	8.0
10 10000		3.42	2300	244	2.72	2.68	87.3	1.6
1.04 4.61	0.090 1.04	4.61	2080	89	2.08	2.44	56.9	1.4

TABLE C14

GRASSY ISLAND: CONCENTRATION OF EXCHANGEABLE METALS
AND ACETIC ACID EXTRACTS IN INFLUENT SAMPLES

Samp	Sample 1D			Exchê	angeable	Exchangeable Metals (mg/kg dry sediment)	(mg/kg d	ry sedir	meni)		
		As	PO	Cr	n _J	Fe .	Mn	ï.	Pb	Zn	>
	INF-18	0.12	0.017	0.11	0.21	0.16	41.8	0.99	0.63	3.2	trace
	1NF-1C	0.14	0.031	0.14	0.24	0.11	42.9	1.35	0.98	7.3	trace
Influent	INF-28	0.13	0.021	0.13	0.25	0.14	28.6	19.5	0.73	6.4	trace
חפות	INF-2C	0.13	0.021	0.11	0.16	0.11	23.2	12.5	0.45	3.5	trace
	INF-38	0.17	0.025	0.12	0.12	0.14	23.6	15.0	0.56	3.4	trace
INF-3C	INF-3C	0.15	0.034	0.14	0.16	0.05	27.5	13.4	0.63	5.0	trace
Samp	Sample 1D		Acetic	Acid Ext	tract (M	Acetic Acid Extract (Metal Carbonates) (mg/kg dry sediment	onates)	(mg/kg	dry sed	iment)	
		As	РЭ	Cr	no	Fe	Æ		Pb	Zn	>
	INF-18	99.0	0.149	14.07	0.75	6480	319	21.1	3.97	171	4.2
	INF-1C	0.84	0.310	11.75	99.0	5200	326	19.6	11.29	247	2.7
1-61	INF-28	0.52	0.170	16.36	0.80	7380	273	36.8	0.23	203	9.1
uninenc	INF-2C	0.45	0.090	14.25	0.54	5890	228	35.5	0.19	137	8.0
	INF-3B	0.32	0.090	10.72	0.75	8020	253	31.1	0.26	112	8.0
INF-3C	INF-3C	0.36	0.100	9.23	0.89	7700	267	37.4	0.26	122	4.0

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Lu, James C S
Characterization of confined disposal area influent and effluent particulate and petroleum fractions / by James C. S. Lu ... ret al., Environmental Engineering Program, University of Southern California, Los Angeles, Calif. Vicksburg, Miss.: U. S. Waterways Experiment Station; Springfield, Va.: available from National Technical Information Service, 1978.

iv, 45, $_{\rm c}$ 128, p. : ill. ; 27 cm. (Technical report - U. S. Army Engineer Waterways Experiment Station ; D-78-16)

Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under Contract No. DACW39-76-C-0038 (DMRP Work Unit No. 2D04)

References: p. 44-45.

1. Containment areas. 2. Dredged material. 3. Dredged material disposal. 4. Effluents. 5. Influents. 6. Particulates. 7. Petroleum. 8. Sampling. 9. Sedimentation. 10. Trace metals. 11. Waste disposal sites. 12. Water quality. I. Los Angeles. University of Southern California. II. United States. Army. Corps of Engineers. III. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report; D-78-16. TA7.W34 no.D-78-16