Dictionaries

Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is ordered*, changeable and do not allow duplicates.

```
In [1]:
         # a dictionary is a key value pair
         height = {
              "Faith":160,
              "Tim":180,
              "Tom":175
         }
         #extract the data
         height["Faith"]
         160
Out[1]:
In [ ]: |
         ## Exercise On Dictionaries
In [35]: # age in years, height in cm, weight in kg
         age = [25, 25, 27, 29, 30, 23, 25, 28, 29, 30, 30, 27]
         height = [160, 165, 170, 160, 165, 160, 168, 155, 167, 169, 169, 175]
         weight = [55, 60, 58, 58, 69, 49, 57, 60, 55, 61, 61, 65]
         friends = {
              "Nancy": [25,160, 55],
              "Steve":[25,165, 60],
              "Mike":[27,170, 58],
              "Nancy":[29,160, 58],
              "Billy":[30,165, 69],
              "Max":[23,160, 49],
              "Jane":[25,168, 57],
              "Dustin":[28,155, 60],
              "Chrissy":[29,167, 55],
              "Jonathan":[30,169, 61],
              "Jonathan":[30,169, 61],
              "Lucas":[27,175, 65],
         }
         friends["Nancy"]
         [29, 160, 58]
Out[35]:
         #get number of items
In [36]:
         print(len(friends))
         10
In [37]: #check type if it is in dictionary form
         print(type(friends))
         <class 'dict'>
In [38]: #get the list of keys
         print(friends.keys()) #or use x = friends.keys() and the print x
```

```
dict_keys(['Nancy', 'Steve', 'Mike', 'Billy', 'Max', 'Jane', 'Dustin', 'Chrissy',
         'Jonathan', 'Lucas'])
In [39]: #change current value
          #print
         print('Original:')
         print(friends["Lucas"])
         #car["color"] = "red"
         Original:
         [27, 175, 65]
In [40]: #change age
         friends.update({"Lucas":[27,175,71]})
         print('After update:')
         print(friends["Lucas"])
         After update:
         [27, 175, 71]
In [41]: #change using loops
         for key, value in friends.items():
             if key == 'Billy':
                 friends[key] = [30,165, 67]
         print(friends["Billy"])
         [30, 165, 67]
```

Pandas

```
In [51]: | # pandas - these are tables in python and they are important for data analysis
         #import the pandas library
         import pandas as pd
         #initialize an empty panda
         x_df = pd.DataFrame()
         print(x_df) #has no columns
         Empty DataFrame
         Columns: []
         Index: []
In [ ]:
In [52]: #create columns
         x_df = pd.DataFrame(columns=['Name', 'Age', 'Birth City', 'Gender'])
         print(x_df)
         Empty DataFrame
         Columns: [Name, Age, Birth City, Gender]
         Index: []
In [60]: #dataframe with columns and indecies
         df = pd.DataFrame(
```

```
columns=['Age', 'Birth City', 'Gender'],
              index=['Jane', 'Melissa', 'John', 'Matt'])
         print(df)
                   Age Birth City Gender
         Jane
                   NaN
                              NaN
                                     NaN
         Melissa
                              NaN
                                     NaN
                   NaN
         John
                   NaN
                              NaN
                                     NaN
         Matt
                   NaN
                              NaN
                                     NaN
         #check if dataframe is still empty
In [54]:
         print(df.empty)
         False
In [ ]:
         #use the LOC() fuction to add data to the dataframe
In [61]:
         df.loc['Jane',:] = [23, 'London', 'F']
         print(df)
                   Age Birth City Gender
                    23
                           London
         Jane
         Melissa
                  NaN
                              NaN
                                     NaN
         John
                   NaN
                              NaN
                                     NaN
         Matt
                   NaN
                              NaN
                                     NaN
 In [ ]:
```

Pandas - Extracting Files

```
In [43]: dataframe = pd.read_csv("https://gist.githubusercontent.com/curran/a08a1080b88344&
# read a csv file thats stored on github
dataframe.head()# show the top 5 rows in the data
```

Out[43]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

In [45]: dataframe.tail()# show the botton 5 rows

Out[45]:		sepal_length	sepal_width	petal_length	petal_width	species
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

Out[46]:

In [46]: dataframe.describe()# create a summary of the columns in the data

```
sepal_length sepal_width petal_length petal_width
        150.000000
                      150.000000
                                    150.000000
                                                 150.000000
count
           5.843333
                        3.054000
                                      3.758667
                                                   1.198667
mean
           0.828066
                        0.433594
                                      1.764420
                                                   0.763161
  std
 min
           4.300000
                        2.000000
                                      1.000000
                                                   0.100000
           5.100000
                                                   0.300000
 25%
                        2.800000
                                      1.600000
 50%
           5.800000
                        3.000000
                                      4.350000
                                                   1.300000
 75%
           6.400000
                        3.300000
                                      5.100000
                                                   1.800000
           7.900000
                        4.400000
                                      6.900000
                                                   2.500000
 max
```

```
In [49]: # extract one column with 10 rows
dataframe["sepal_length"].head(10)
```

Out[49]:

- 0 5.1
- 1 4.9
- 2 4.7
- 3 4.6
- 4 5.0
- 5 5.4
- 6 4.6
- 7 5.0
- 8 4.4
- 9 4.9

Name: sepal length, dtype: float64

In [50]: dataframe[["sepal_length", "sepal_width"]].head()# extract two or more columns

Out[50]: sepal_length sepal_width 0 5.1 3.5

1	4.9	3.0
2	4.7	3.2
3	4.6	3.1

4 5.0 3.6