MODELARE SI SIMULARE 2024 – EXEMPLU DE PROBLEMA DE COLOCVIU

Pentru sistemul hidraulic de mai jos, se cunosc valorile de regim staţionar: \overline{Q} , $\overline{H_1}$, $\overline{H_2}$, $\overline{H_3}$, $\overline{H_1} = \overline{H_2}$. La t=0, debitul de intrare variază de la \overline{Q} la \overline{Q} + q_i (q_i este mica).

- 1. Dacă $h_1, h_2, h_3, q_1, q_2, q_0$ sunt si ele variații mici fata de valorile de regim stationar, se cer ecuatiile dinamice corespunzatoare. Toate rezistentele sunt liniare.
- 2. Se cere modelul Simulink, folosindu-se un subsistem creat la laborator. Se va simula dinamica sistemului atunci cand intrarea q_i este o treapta cu valoarea 1.
- 3. Determinati prin cel putin doua metode cand se va indeplini prima data conditia h₂>h₃
- 4. Intrarea q_i este acum aleatoare (pas de esantionare egal cu 0.01) si este furnizata in fisierul *intrare.mat* atasat. Cum va varia nivelul h₃? Graficul lui h₃ va fi realiza in Matlab si valorile sale vor fi salvate intr-un fisier .mat.

Bonus (2 puncte). Se cere funcția de transfer $\frac{Q_o(s)}{Q_i(s)}$.

Valorile cunoscute:

$$\rho = 1000 \frac{kg}{m^3}$$
; C₁= C₂=C₃=0.2; R₁=R₂=R₃=50

$$\overline{H_3} = 2$$
, $\overline{H_1} = \overline{H_2} = 1$; $\overline{Q} = 20$

