- [4]
- Q.5 i. Differentiate between monotonic reasoning and non-monotonic 4 reasoning?
  - ii. Bag I contain 4 white and 6 black balls while another Bag II contains 4 **6** white and 3 black balls. One ball is drawn at random from one of the bags and it is found to be black. Find the probability that it was drawn from Bag I.
- OR iii. How forward and backward reasoning work in Knowledge and 6 reasoning?
- Q.6 Attempt any two:
  - i. Explain problem reduction with example. Describe the MINIMAX 5 search strategy.
  - ii. Find out alpha and beta value for given {A, B, C, D, E, F, G} node 5 using alpha beta pruning algorithm?



iii. Explain block world problem in Robotics?

\*\*\*\*\*

Total No. of Questions: 6

Total No. of Printed Pages:4

### Enrollment No.....



# Faculty of Engineering

# End Sem (Even) Examination May-2019 CS3EA01/ IT3EA01 / EC3ET01 / EI3ET01

## Artificial Intelligence

Programme: B.Tech. Branch/Specialisation: CSE/IT/EC/EI

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 i. The "Turing Test" is

1

- (a) A test devised by Alan Turing to determine whether a secret code is breakable
- (b) A test to determine whether a Turing Machine will halt
- (c) A test of whether a machine is intelligence prescribed by Turing
- (d) None of these

ii. Weak AI is

1

- (a) The embodiment of human intellectual capabilities within a computer.
- (b) A set of computer programs that produce output that would be considered to reflect intelligence if it were generated by humans
- (c) The study of mental faculties through the use of mental models implemented on a computer.
- (d) All of these

#### iii. CSPs are

5

1

- (a) Ways of formulating problems using variables and constraints
- (b) Problems that come in the way of satisfying constraints
- (c) Problems that arise after constraint satisfaction
- (d) None of these

iv. What is a heuristic function?

1

- (a) A function to solve mathematical problems
- (b) A function which takes parameters of type string and returns an integer value
- (c) A function whose return type is nothing
- (d) A function that maps from problem state descriptions to measures of desirability

P.T.O.

|     | v.         | v. The sentence (¬A ∨ A) in Propositional Logic is.                                                          |   |  |
|-----|------------|--------------------------------------------------------------------------------------------------------------|---|--|
|     |            | (a) A tautology (b) A contradiction                                                                          |   |  |
|     |            | (c) A contingency (d) None of these                                                                          |   |  |
|     | vi.        | The motivation for Semantic Nets is                                                                          |   |  |
|     |            | (a) To create a new type of computer network.                                                                |   |  |
|     |            | (b) To define the formal semantics of an FOL predicate.                                                      |   |  |
|     |            | (c) To link related formulas to avoid searching through a flat KB.                                           |   |  |
|     |            | (d) None of these                                                                                            |   |  |
|     | vii.       | How to eliminate the redundant rule matching attempts in the forward                                         | 1 |  |
|     |            | chaining?                                                                                                    |   |  |
|     |            | (a) Decremental forward chaining                                                                             |   |  |
|     |            | (b) Incremental forward chaining                                                                             |   |  |
|     |            | (c) Data complexity                                                                                          |   |  |
|     |            | (d) None of these                                                                                            | 1 |  |
|     | V111.      | Which closely resembles propositional definite clause?                                                       | 1 |  |
|     |            | (a) Resolution (b) Inference                                                                                 |   |  |
|     | :          | (c) Conjunction (d) First-order definite clauses                                                             | 1 |  |
|     | ix.        | Which search is equal to minimax search but eliminates the branches that can't influence the final decision? | 1 |  |
|     |            | (a) Depth-first search (b) Breadth-first search                                                              |   |  |
|     |            | (c) Alpha-beta pruning (d) None of these                                                                     |   |  |
|     | х.         | Programming a robot by physically moving it through the trajectory you                                       | 1 |  |
|     | Λ.         | want it to follow is called:                                                                                 |   |  |
|     |            | (a) Contact sensing control (b) Continuous-path control                                                      |   |  |
|     |            | (c) Robot vision control (d) Pick-and-place control                                                          |   |  |
|     |            | (a) Fick and place control                                                                                   |   |  |
|     | i.         | If branches are b and depth is d then what is space and time complexity                                      | 2 |  |
|     |            | of BFS and DFS?                                                                                              |   |  |
| ii. |            | Suppose you design a machine to pass the Turning Test. What are                                              | 3 |  |
|     |            | capabilities machine must have?                                                                              |   |  |
|     | iii.       | What is production system? Explain any four different type of                                                | 5 |  |
|     |            | production systems.                                                                                          |   |  |
|     | iv.        | What are possible steps required to solve any AI problem?                                                    | 5 |  |
|     |            |                                                                                                              |   |  |
|     | i.         | Which type of the problem you will suggest AO* algorithm?                                                    | 2 |  |
|     | ii.        | Find out path from start node to goal node with the help of A*                                               | 8 |  |
|     | algorithm? |                                                                                                              |   |  |
|     |            |                                                                                                              |   |  |

Q.2

OR

Q.3

## Problem Statement is given below:



#### and if Heuristic value is:

| Node | Value of the nodes |
|------|--------------------|
| S    | 7                  |
| A    | 6                  |
| В    | 2                  |
| С    | 1                  |
| D    | 0                  |

- OR iii. (a) Prove that if a heuristic is consistent, it must be admissible. 8

  Construct an admissible heuristic that is not consistent.
  - (b) Define constraint satisfaction problem with suitable example?
- Q.4 i. Construct the truth table for (pV¬p) and (p^¬p) and also find out which one is tautologies and contradiction?
  - ii. Rules are below:
    - (a) A ∨ B ∨ ¬D
    - (b) A V B V C V D
    - (c) ¬B ∨ C
    - (d) ¬A
    - (e)  $\varphi = C$

Show that  $\{a,b,c,d\} \vdash \text{Res } \varphi$ , prove (from)  $\{a,b,c,d\}$  using resolution?

OR iii. Define semantic net with suitable example and how it is differ from 7 Frame?

P.T.O.

3

7

# Marking Scheme CS3EA01/IT3EA01/EC3ET01/EI3ET01 Artificial Intelligence

| Q.1 | i.    | The "Turing Test" is                                                                                                                                                                     |                       | 1 |  |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|--|
|     | ii.   | <ul><li>(c) A test of whether a machine is intelligence preset</li><li>Weak AI is</li><li>(c) The study of mental faculties through the u</li></ul>                                      | , ,                   | 1 |  |
|     | iii.  | implemented on a computer. CSPs are  (a) Ways of formulating problems using variables                                                                                                    |                       | 1 |  |
|     | iv.   | What is a heuristic function?                                                                                                                                                            |                       | 1 |  |
|     |       | (d) A function that maps from problem state des of desirability                                                                                                                          | criptions to measures |   |  |
|     | v.    | The sentence $(\neg A \lor A)$ in Propositional Logic is.                                                                                                                                |                       | 1 |  |
|     | vi.   |                                                                                                                                                                                          |                       |   |  |
|     | vii.  | (c) To link related formulas to avoid searching through a flat KB.<br>How to eliminate the redundant rule matching attempts in the forward                                               |                       | 1 |  |
|     |       | chaining?                                                                                                                                                                                |                       |   |  |
|     | viii. | <ul><li>(b) Incremental forward chaining</li><li>Which closely resembles propositional definite clauses</li><li>(d) First-order definite clauses</li></ul>                               | use?                  | 1 |  |
|     | ix.   | Which search is equal to minimax search but eliminates the branches that can't influence the final decision?                                                                             |                       |   |  |
|     | х.    | <ul><li>(c) Alpha-beta pruning</li><li>Programming a robot by physically moving it through the trajectory you want it to follow is called:</li><li>(b) Continuous-path control</li></ul> |                       |   |  |
| Q.2 | i.    | BFS                                                                                                                                                                                      | 1 mark                | 2 |  |
|     |       | DFS                                                                                                                                                                                      | 1 mark                |   |  |
|     | ii.   | Capabilities machine must have                                                                                                                                                           |                       | 3 |  |
|     | iii.  | Production system                                                                                                                                                                        | 2 marks               | 5 |  |
| OR  | iv.   | Any four different type of production systems Possible steps required to solve any AI problem                                                                                            | 3 marks               | 5 |  |
| OK  | IV.   | 1 mark for each step                                                                                                                                                                     | (1 mark * 5)          | J |  |
| Q.3 | i.    | Type of the problem you will suggest AO* algorithm                                                                                                                                       | m                     | 2 |  |
| -   | ii.   | Find out path from start node to goal node with the help of A* algorithm                                                                                                                 |                       |   |  |
|     |       | Apply Correct algorithm                                                                                                                                                                  | 4 marks               |   |  |
|     |       | Complete Solution +                                                                                                                                                                      | 4 marks               |   |  |

| OR  | iii. | (a) Prove that if a heuristic is consistent, it must be admissible. Construct an admissible heuristic that is not consistent. |           |   |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------|-----------|---|
|     |      | Correct approach                                                                                                              | 3 marks   |   |
|     |      | Complete Solution                                                                                                             | + 2 marks |   |
|     |      | (b) Define constraint satisfaction problem wit                                                                                | -         |   |
|     |      | Constraint satisfaction problem                                                                                               | 2 marks   |   |
|     |      | Example                                                                                                                       | 1 mark    |   |
| Q.4 | i.   | Construct the truth table for (pV ¬p) and (p ^ out which one is tautologies and contradiction                                 | =         | 3 |
|     |      | Truth table                                                                                                                   | 1 mark    |   |
|     |      | Tautologies                                                                                                                   | 1 mark    |   |
|     |      | Contradiction                                                                                                                 | 1 mark    |   |
|     | ii.  | Correct approach                                                                                                              | 4 marks   | 7 |
|     |      | Complete solution                                                                                                             | + 3 marks |   |
| OR  | iii. | Define semantic net                                                                                                           | 3 marks   | 7 |
|     |      | Example                                                                                                                       | 2 marks   |   |
|     |      | Differ from Frame                                                                                                             | 2 marks   |   |
| Q.5 | i.   | Monotonic reasoning                                                                                                           | 2 marks   | 4 |
|     |      | Non-monotonic reasoning                                                                                                       | 2 marks   |   |
|     | ii.  | Apply correct theorem                                                                                                         | 4 marks   | 6 |
|     |      | Complete solution                                                                                                             | + 2 marks |   |
| OR  | iii. | Forward reasoning work                                                                                                        | 3 marks   | 6 |
|     |      | Backward reasoning work                                                                                                       | 3 marks   |   |
| Q.6 |      | Attempt any two:                                                                                                              |           |   |
|     | i.   | Problem reduction                                                                                                             | 2 marks   | 5 |
|     |      | Example                                                                                                                       | 1 mark    |   |
|     |      | MINIMAX search strategy.                                                                                                      | 2 marks   |   |
|     | ii.  | Apply correct algorithm                                                                                                       | 3 marks   | 5 |
|     |      | Complete solution                                                                                                             | + 2 marks |   |
|     | iii. | Block world problem in Robotics                                                                                               |           | 5 |
|     |      |                                                                                                                               |           |   |

\*\*\*\*\*