Unknown Knowledge Mining: An Incremental Fuzzy Approach

Presented to

Dr. Ali Jaoua

By: Md. Abdullah Al Mamun (201610594)

Seeba AbdulKader (sa1606892)

Mays Alshaikhli (200753008)

Outline

- Introduction
- Database Description
- Methodology Adopted
- Live Demo
- Results
- Comparative Analysis
- Conclusion

Introduction

- ➤ **Machine learning** is discovering knowledge from databases in order to classify new patterns in an efficient way.
 - ➤ Relational database —class labels and attributes
 - Analyze the data, build a classifier and decides upon the class assignment.(IT-THEN)
 - Fuzzy set theory used for dealing with imprecise and uncertain data.
- Fuzzy incremental production rule (FIPR) system is a rule that generated imprecise and uncertain IF-THEN rules from data record.
- ▶ Incremental learning aims at enhancement of knowledge.
- The aim of our project is to develop self adaptive algorithm, which involves improving performance over time.

Advantages of Fuzzy classifier

- Classification behavior can be easily understood by human users (expressed in linguistic forms) by checking carefully the fuzzy if-then rules in the fuzzy classifier.
- Nonlinearity in classification, which leads to high generalization ability of fuzzy rule-based classifiers while its classification behavior is linguistically understood.

Database Description

- > The experiments are done on the IRIS database.
- ► It is 150 records with 3 classes (SENTOSA, VERSICOLOR, VERGINICA)
- > Each class contains fifty patterns
- Each pattern is described by four numerical attributes (Petal Length, Petal Width, Sepal Length, Sepal Width)
- ➤ We can use 6 machine learning methods to classify the new coming flower (PVM, IPR, FIPR, CART, ID3, SIPINA)
 - Our project implements FIPR.
 - Comparative analysis was done with new methods
 - > CNN
 - > RNN

Dataset

- Train Data = 30 of each
- Validate = 10 of each
- Test = 10 of each

Petal Length	Petal Width	Flower Name		
1.4	0.2	I. Setosa		
4	1	I. Versicolor		
6.6	2.1	I. Verginica		

Classification

86	4.5	Iris-versicolor	
107	4.5	Iris-virginica	
55	4.6	Iris-versicolor	
59	4.6	Iris-versicolor	
92	4.6	Iris-versicolor	
51	4.7	Iris-versicolor	
57	4.7	Iris-versicolor	
64	4.7	Iris-versicolor	
74	4.7	Iris-versicolor	
87	4.7	Iris-versicolor	
71	4.8	Iris-versicolor	
77	4.8	Iris-versicolor	
127	4.8	Iris-virginica	
139	4.8	Iris-virginica	
53	4.9	Iris-versicolor	
73	4.9	Iris-versicolor	
122	4.9	Iris-virginica	
124	4.9	Iris-virginica	
128	4.9	Iris-virginica	
78	5	Iris-versicolor	
114	5	Iris-virginica	

Methodology

- Fuzzification.
- Membership function: Petal Length
- Alpha cut = 0.15
- Variables
 - Input: low, medium, high
 - Output: C1, C2, C3

Fuzzification

• Step 1: Linguistic representation

Petal Lengt h	Class
1.5	C1
4.4	C2
4.8	C2
5.7	C3
6.1	C3

PL	pl1	pl2	pl3	C
1.5	1	0	0	C1
4.4	0	1	0	C2
4.8	0	0.8 6	0.1 4	C2
5.7	0	0	1	C3
6.1	0	0	1	C3

Fuzzyfication

Step 2: Rectangular Decomposition of a Fuzzy Binary Relation

Ob	pl1	pl2	pl3	C		Ob	pl1	pl2	pl3	C
J					$\propto = 0.15$	J				
O1	1	0	0	C1	W = 0.13	01	1	0	0	C1
O2	0	1	0	C2		O2	0	1	0	C2
O3	0	0.8	0.1	C2		O3	0	1	0	C2
		6	4			04	0	0	1	C3
O4	0	0	1	C3						
					•	O5	0	0	1	C3
O_5	0	0	1	C3	RE2: {(O2,O3),(pl2)}	DБ	2. ((()	1 05	\ (m19)	O)
RE:	1: {(O]	l),(pl1 • *Pl			O2* O3* *pl2	О	3: {(U) 4*\ 5*)4,O5) *	pl3	! }

Minimal coverage of R_{α} (α =0.15): C_v ={RE1,RE2,RE3}

Fuzzyfication

• Step 3: Incremental Learning

Object	PL
6	5.2

Objec t	pl1	pl2	pl3	C
6	0	0	1	C3

RE3: {(O4,O5,O6),(pl3)}

Algorithm

Begin

- 1. Let R_{α} be partitioned into p packages P_1, \ldots, P_p .
- 2. **FOR** k = 1 **to** p **DO**
- 2.1. Sort the couples of P_k by the value of the gain function in a decreasing order
- 2.2. While $(P_k \neq \emptyset)$ Do
 - Select a couple (a, b) in P_k by the sorted order
 - Search PR: the pseudo-rectangle containing (a,b) within $R_k = CV_{k-1} \cup P_k$
 - Search RE: the optimal rectangle containing (a, b) within PR
 - $CV_k = (CV_{k-1} \{r \in CV_{k-1}/r \subseteq RE\}) \cup \{RE\}$. (Delete all the redundant rectangles from CV_k)

$$\mathbf{P}_k = \mathbf{P}_k - \{(X, Y) \in P_k / (X, Y) \in \mathbf{RE}\}$$

End While

End FOR

End

Demonstration

Live Demo

Versicolor				
PL	PW			
53	78			
73	71			
78				
84				

Virginica				
PL	PW			
(107)	135			
127	120			
139	134			
	130			
	107			

Results and Discussion

Method s	Error Rate	Accuracy	Complexity	Knowledge Representation
CNN	0.12	0.88	$O(\sum_{l=1}^{d} n_{l-1} s_{l}^{2} n_{l} m l^{2})$ $l = index of layers$ $d = depth of layers$ $n_{l} = number of filters$ $m_{l} = spatial size$	Multi-layer
RNN	0.09	0.91		Multi-layer
FIPR	0.01	99.0	n^2 (c+d) ² c = number of attributes d = number of patterns n=cd	Linguistic

Conclusion

- Classifications of new objects are done using FIPR, the accuracy approved a lot when compared to other methods, the time complexity proves that it's with acceptable in compared to existing systems.
- The FIPR maintain the knowledge base with minimal overhead.
- The rule that extracted from the databases with FIPR system handles imprecise and uncertain IF-THEN rules in a linguistic terms.