Artificial Neural Network

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Books

- Chapter 6 of "Pattern Classification" by R.O. Duda, P. E. Hart and D. G. Stork
- Chapter 11 of "Introduction to Machine Learning" by Ethem Alpaydin.
- Chapter 4 of "Machine learning" by Tom M. Mitchel.

Perceptron modelling a neuron

A network of perceptrons provides a powerful model describing input / output relations.

Artificial Neural Network

- A network of perceptrons.
 - Input: A vector
 - Output: A vector / A scalar

Feed-forward Network

No feed back or loop in the network.

Layer-wise processing

i th layer takes input from (i-1)th layer and forwards its output to the input of next layer.

Fully connected (FC) feed-forward network.

Hidden Layer -1

Mathematical description of the model

- Let j th neuron of i th layer be $ne_i^{(i)}$.
- Its corresponding weights
 - $W_j^{(i)} = (W_{j1}^{(i)}, W_{j2}^{(i)}, \dots, W_{jn_{-}(i-1)}^{(i)})$
 - Bias: w_{i0}(i)
 - n (i-1): Dimension of input to the neuron
 - n i: Dimension of output at i th layer
- Output of the neuron:

$$y_j^{(i)} = f(W_j^{(i)^T} X^{(i-1)} + W_{j0}^{(i)})$$

Mathematical description of the model

Output of j th neuron in i th layer:

$$y_j^{(i)} = f(W_j^{(i)^T} X^{(i-1)} + W_{j0}^{(i)})$$

Input output relation in i th layer

Input output relation

b(i)

$$y_j^{(i)} = f(W_j^{(i)^T} X^{(i-1)} + W_{j0}^{(i)})$$

Output of j th neuron in i th layer:
$$y_j^{(i)} = f\left(W_j^{(i)^T}X^{(i-1)} + W_{j0}^{(i)}\right) \qquad Z^{(i)} = \begin{bmatrix} W_1^{(i)^T} \\ W_2^{(i)^T} \\ \vdots \\ W_{n, \stackrel{!}{J}}^{(i)} \end{bmatrix} X^{(i-1)} + \begin{bmatrix} w_{10}^{(i)} \\ w_{20}^{(i)} \\ \vdots \\ w_{n, \stackrel{!}{J}0}^{(i)} \end{bmatrix}$$
Input output relation in i th layer

Input output relation in i th layer

$$Y^{(i)} = f(\mathbf{W}^{(i)}X^{(i-1)} + \mathbf{b}^{(i)}) \equiv \begin{bmatrix} y_1^{(i)} \\ y_2^{(i)} \\ \vdots \\ y_{n_j}^{(i)} \end{bmatrix}$$
Input
$$\mathbf{W}^{(1),\mathbf{b}^{(1)}} = \mathbf{W}^{(2),\mathbf{b}^{(2)}} = \mathbf{W}^{(m),\mathbf{b}^{(m)}} = \mathbf{W}^{(m),\mathbf{b}^{(m)}}$$

Input output relation

$$\mathbf{Y}^{(i-1)} = \mathbf{f}(\mathbf{W}^{(i)}\mathbf{X}^{(i-1)} + \mathbf{b}^{(i)})$$

Optimization problem

Input
$$\Box$$
 $F(X;W)$ \Box Output

Given $\{(X_i, O_i)\}$, i=1,2,...,N, find **W** such that it produces O_i given input X_i for all i.

Minimize:
$$J_n(W) = \frac{1}{N} \sum_{i=1}^{N} ||O_i - F(X_i; W)||^2$$

Apply the same gradient descent procedure to obtain the solution.

Optimization problem

Input
$$\square$$
 $F(X;W)$ \square Output

Training samples:
$$\{(X_i, O_i)\}, i=1,2,...,N$$

Minimize:
$$J_n(W) = \frac{1}{N} \sum_{i=1}^{N} ||O_i - F(X_i; W)||^2$$

Apply the same gradient descent procedure to obtain the solution.

- 1. Start with an initial W_0 .
- 2. Update *W* iteratively.

$$W_{i} = W_{i-1} + \eta(i) \sum_{k} (O_{k} - F(X_{k}; W_{i-1})) \nabla F(X_{k}; W_{i-1})$$

Stochastic gradient descent:

$$W_{i} = W_{i-1} + \eta(i)(O_{k}-F(X_{k}; W_{i-1})) \nabla F(X_{k}; W_{i-1})$$

Chain rule of computing gradient of a single neuron

Target response: t

Error:

$$E = (t-o)^2$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial E}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial w_i}$$

$$-2(t-o) \qquad f'(z) \qquad x_i$$

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial E}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial w_{i}} \qquad \nabla(W) = \left(\frac{\partial E}{\partial w_{0}}, \frac{\partial E}{\partial w_{1}}, \dots, \frac{\partial E}{\partial w_{n}}\right) f(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial E}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial w_{i}} \qquad \frac{\partial E}{\partial w_{i}} = -2(t - o)f'(z)x_{i} \qquad f'(z) = \frac{e^{-z}}{(1 + e^{-z})^{2}}$$

$$f'(z) \qquad x_{i} \qquad \text{Analytical method!}$$

$$Computed given the \qquad 1 \qquad 1 \qquad 1$$

Computed given the functional values.
$$\frac{1}{1 + e^{-z}} \left(1 - \frac{1}{1 + e^{-z}}\right)$$

$$\frac{\partial E}{\partial x_i} = \frac{\partial E}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial x_i} \quad \frac{\partial E}{\partial x_i} = -2(t - o)f'(z)w_i + e^{-z}$$

Computing gradient: Back propagation method

- For multi-layered feed forward network.
- Apply chain rule.
 - From output to toward input.
 - From output layer to toward input layer.
 - Compute partial derivatives of weights at (i-1)th layer from the i th layer.

Back propagation: Concept

Back propagation: Concept

Back propagation: Delta rule

Back propagation: Delta rule

ANN training

- Initialize $W^{(0)}$.
- For each training sample (x_i, o_i) do
 - Compute functional values of each neuron in the forward pass.
 - Update weights of each link starting from the output layer using back propagation.
 - Continue till it converges.

Improving convergence

Momentum

 Gradients may change abruptly in consecutive iteration. To avoid we may use running average of weight updates to be added with the gradient.

$$\Delta w_i^{(t)} = \alpha \Delta w_i^{(t-1)} - \eta \frac{\partial E^{(t)}}{\partial w_i}$$
Usually ranges between 0.5 to 1.0

Adaptive learning rate:

 We increase learning rate at constant steps if error decreases, else decrease it geometrically.

 $\Delta \eta = \begin{cases} +a & \text{if } E^{t+T} < E^t \\ -b\eta & \text{Otherwise} \end{cases}$

Summary

- A perceptron models a neuron.
- A network of perceptron nodes provide a powerful model for classifying linearly non-separable classes as well.
- A multilayer feed forward network of neurons can be trained using back propagation algorithm (to compute gradients of error w.r.t weights).
- Can be used for regression as well.

