1.2. Эффект Комптона

Хурсик Екатерина

Цель работы

1)С помощью сцинтиляционного спектрометра исследовать энергетический спектр γ -квантов, рассеянных на графите. 2)Определить энергию рассеянных γ -квантов в зависимости от угла рассеяния, 3)а также энергию покоя частиц, на которых происходит комптоновское рассеяние.

1 Метод достижения цели

2)

Для определения энергии γ -квантов нужно исследовать кривую распределения по амплитуде электрических импульсов на выходе ФЭУ (Под действием монохроматического излучения на выходе ФЭУ возникает распределение электрических импульсов. В памяти компьютера происходит накопление числа пришедших импульсов в соответствии с их амплитудой и при помощи специальной программы компьютер выводит на экран гистограмму, по оси иксов которого откладывается амплитуда анализирующего импульса (она же номер канала), а по оси игреков – число импульсов заданной амплитуды в данном канале.)

Устанавливая сцинтиляционный счётчик под разными углами θ к первоначальному направлению полёта γ -квантов и вводя значения этих углов в ЭВМ, снимаем амплитудные спектры и определим положения фотопиков для каждого значения угла θ .

3)

Для определения энергии покоя частиц, на которых происходит комптоновское рассеяние:

- Строим график, откладывая по оси иксов $1-\cos\theta$, а по оси игреков $\frac{1}{N(\theta)}$. Проводим через полученные точки наилучшую прямую.
- Пользуемся графиком и формулой $E_r = E_{\gamma} = \frac{N_{\text{наил}}(90)}{N_{\text{наил}}(0) N_{\text{наил}}(90)}$. (Пересечение построенной прямой с осью игреков определяет значение $N_{\text{наил}}(0)$, а пересечение этой прямой с прямой $\cos \theta = 0$ даёт значение $N_{\text{наил}}(90)$.)

2 Ход работы

Устанавливая сцинтиляционный счётчик под разными углами θ к первоначальному направлению полёта γ -квантов и вводя значения этих углов в ЭВМ, снимим амплитудные спектры и определим положения фотопиков для каждого значения угла θ .

Измерения будем проводить с шагом 10° в диапазоне от 0° до 120° . Результаты измерений:

θ	Ν(θ)	1-cosθ	1/N
0	875	0,00	0,0011
10	836	0,02	0,0012
20	837	0,06	0,0012
30	702	0,13	0,0014
40	658	0,23	0,0015
50	533	0,36	0,0019
60	472	0,50	0,0021
70	417	0,66	0,0024
80	388	0,83	0,0026
90	337	1,00	0,0030
100	318	1,17	0,0031
110	283	1,34	0,0035
120	253	1,50	0,0040

Построим график $\frac{1}{N}(1-\cos\theta)$:

По данным графика рассчитаем энергию покоя электронов: при
$$\theta=0^\circ$$
: $\frac{1}{N}=k(1-\cos\theta)+b$ \to $\frac{1}{N}=b+k$

при
$$\theta = 90^{\circ}$$
: $\frac{1}{N} = k(1 - \cos \theta) + b$ \rightarrow $\frac{1}{N} = b$

$$E_r = E_{\gamma} = \frac{N_{\text{\tiny HAMJ}}(90)}{N_{\text{\tiny HAMJ}}(0) - N_{\text{\tiny HAMJ}}(90)} = \frac{\frac{1}{(b+k)}}{\frac{1}{b} - \frac{1}{(b+k)}} = \frac{b}{k} = 527 \,\text{M} \cdot \text{B}$$
 (1)

$$\varepsilon = 3,8\%$$
 \rightarrow $E_r = (527 \pm 20)$ МэВ

3 Выводы

- 1) Достаточно точно определили энергию рассеянных γ -квантов в зависимости от угла рассеяния. Для этого в формулу $E_r = E_\gamma = \frac{N(90)}{N(0)-N(90)}$ подставили значения $N_{\text{наил}}(0)$ и $N_{\text{наил}}(90)$, полученные с помощью графика. Это позволило уменьшить роль случайных погрешностей, вызванных, например, колебаниями напряжения, существенно влияющими на Φ ЭУ.
- 2) Определили энергии покоя частиц, на которых происходит комптоновское рассеяние, которая в пределах погрешности совпадает с табличной.