Appunti di Analisi e Geometria I

Mattia Ruffini

Settembre 2021

Indice

1	Insiemi					
	1.1	Numeri Naturali, Interi, Razionali e Reali	2			
	1.2	I numeri razionali non bastano	2			
	1.3	L'insieme dei numeri Reali	3			
	1.4	Insiemi limitati	4			
	1.5	La proprietà di Archimede	5			
2	Suc	Successioni in $\mathbb R$ e limite di una successione				
	2.1	Convergenza di una successione	6			
	2.2	Unicità del limite	8			
3	Inte	Intervalli compatti inscatolati				
	3.1	Esistenza ed unicità dell'elemento superiore di due classi contigue di numeri reali	10			
4	Q è	è denso in $\mathbb R$				
5	Cardinalità di $\mathbb Q$ e $\mathbb R$					
	5.1	\mathbb{Q} è numerabile	12			
	5.2	$\mathbb R$ non è numerabile	13			
6	Significato dell'allineamento infinito					
7	Funzioni continue					
	7.1	Intorno di un punto	15			
	7.2	Limiti	17			

Λ.	punti	٦٠	Λ1		1
Δ \mathbf{r}	munti	α	Δ ngi	101	
4×10	punn	uı	4 111CO	LUL	

Mattia Ruffini

Insiemi

1.1 Numeri Naturali, Interi, Razionali e Rea-

Insieme dei numeri naturali Comprende i numewri naturali, interi non negativi, che rispondono all'esigenza di "contare".

Insieme dei numeri Interi Sono i numeri interi positivi e negativi.

Insieme dei numeri razionali Sono i numeri del tipo $\frac{m}{n}$ dove $m, n \in \mathbb{Z}, n \neq 0$. Rispondono all'esigenza di misurare i rapporti di grandezze omogenee.

_____ a

Quando $\frac{1}{m}a = \frac{1}{n}b$, a e b si dicono **grandezze commensurabili**, cioè *ammettono un sottomultiplo comune*. Formalmente si dice che $\frac{a}{b} = \frac{m}{n}$. Tuttavia è sempre vero che esiste un sottomultiplo di a e uno di b? Ovvero, esistono sempre coppie di segmenti non commensurabili tra loro?

1.2 I numeri razionali non bastano

Teorema 1. La diagonale e il lato di un quadrato costituiscono una coppia di segmenti non commensurabili tra loro.

Dimostrazione sull'insufficienza dei numeri razionali Per assurdo supponiamo che esistano due numeri m ed $n \in \mathbb{R} \mid (\frac{m}{n})^2 = 2$, cioè $m^2 = 2n^2$. Non è restrittivo pensare che m ed n siano primi tra loro, cioè che non abbiano fattori primi in comune. Da $m^2 = 2n^2$ segue che m^2 è pari, quindi anche m è pari. Se così non fosse allora $m = 2h + 1m^2 = (2h + 1)^2 = 4h^2 + 4h + 1 =$

 $2(2h^2 + 2h) + 1$ cioè m^2 è dispari. Possiamo riscrivere $m = 2k(k \in \mathbb{N}$. Allora $m^2 = 4k^2$ e alla fine dell'uguaglianza si giunge a $n^2 = 2k^2$ 2. Allora n è pari, ma se entrambi m ed n sono pari significa che hanno un sottomultiplo comune, che è 2, ed era escluso nelle ipotesi.

 \nexists un numero razionale del tipo $\frac{m}{n}\mid (\frac{m}{n})^2=2$. Ovvero i numeri razionali sono insufficienti.

c.v.d.

1.3 L'insieme dei numeri Reali

In questa sezione ci occupiamo di una **presentazione assiomatica**, ovvero non ci interroghiamo riguardo la natura del numero reale (una domanda a cui non avrebbe senso rispondere) bensì **quali sono le proprietà dei numeri reali**.

Definizione di Campo Tra le proprietà presenti in un campo sono presenti le proprietà di addizione e moltiplicazione, la proprietà di ordinamento e la proprietà di completezza.

Proprietà di addizione e sottrazione

Ordinamento del campo Un campo è ordinato quando si richiede che, si postula che, ci sia una relazione di minore, maggiore e uguale tra due numeri.

Relazione di ordine totale. Se $x, y, z \in \mathbb{R}x < y$ e y < z, allora x < z (transitività). Se $x, y \in \mathbb{R} \lor x < y \lor x = y \lor x > y$ (trioctomia). La relazione di ordine totale deve essere compatibile con le somme, ovvero:

- Se x < y allora x + z < y + z;
- Se x < y e z > 0, allora $xz > yz^{-1}$;

La completezza del campo In $\mathbb R$ saranno presenti gli elementi di $\mathbb N, \mathbb Z, \mathbb Q$. Tuttavia mancano alcuni punti in $\mathbb Q$, come per esempio $\sqrt{2}$ che corrisponderebbe ad un vuoto. I numeri razionali infatti sono pochissimi rispetto quelli reali. Per dire che un insieme "non ha buchi" si introduce l'assioma di completezza.

¹Analogamente è possibile dimostrare l'inverso, cioè se z < 0 allora xz > yz

Se A e B sono due sottoinsiemi non vuoti di \mathbb{R} , se $\forall a \in A, \forall binB, a < b, allora \exists \lambda \in \mathbb{R} \mid a \leq \lambda \leq b$.

Esempio: A è l'insieme dei numeri razionali positivi minori di 2, B è l'insieme dei numeri razionali positivi maggiori di 2. Esiste un certo $\lambda = \sqrt{2}$, tuttavia la radice quadrata di 2 non è compresa nei numeri reali.

Si possono dimostrare due cose:

- 1. L'esistenza di modelli di campo ordinato completo, che si possono costruire, ad esempio, da Q, N. (Sezioni di Dedekind, intervalli inscatolati, costruzioni geometriche).
- 2. Il campo ordinato e completo è unico.

Teorema 2. Unicità del campo ordinato completo. Se K e K' sono due campi ordinati e completi, allora esiste un isomorfismo (e uno solo) da K a K', cioè esiste un'unica applicazione biounivoca f: K - > K', che preserva la somma, il prodotto e l'ordinamento. Ovvero due campi K e K' ordinati e completi si possono identificare tra loro come lo stesso campo.

1.4 Insiemi limitati

Archimede per trovare la lunghezza della circonferenza considera i poligoni di n lati inscritti e circoscritti. A parità del numero di lati i poligoni circoscritti approssimano il perimetro per eccesso, quelli inscritti per difetto, dunque la lunghezza della circonferenza equivale all'estremo inferiore di A (insieme dei perimetri dei poligoni circoscritti) e l'estremo superiore di B (insieme dei perimetri dei poligoni inscritti).

Sia $E \subset \mathbb{R}$:

- 1. E è limitato superiormente se $\exists \beta \in \mathbb{R} \mid \forall x \in E : x \leq \beta$.
- 2. E è limitato inferiormente se $\exists \alpha \in \mathbb{R} \mid \forall x \in E : \alpha \leq x$.

Teorema 3. Esistenza della minima limitazione superiore. Se $E \subset \mathbb{R}$ non vuoto e limitato superiormente, l'insieme delle limitazioni superiori ha sempre una minima. Analogamente esiste una massima limitazione inferiore.

Questo teorema non vale in \mathbb{Q} , perchè la sua minima limitazione superiore è radice di 2, che non esiste in \mathbb{Q} .

Definizione di estremo superiore Se $E \subset \mathbb{R}$ è non vuoto e limitato superiormente, la minima limitazione superiore di E si denota come supE e si chiama **estremo superiore di E**. Il numero s=supE ha le seguenti proprietà:

- $\forall x \in Ex \leqslant s$;
- $\forall s' \leq s, \exists x \in E \mid x > s';$

Se $E \subset \mathbb{R}$ non è limitato superiormente si pone $\sup E = +\infty$

Dimostrazione dell'esistenza del sup Si denota $Z = z \in \mathbb{R} \mid \forall x \in E, x \leqslant z$, cioè Zè l'insieme delle limitazioni di E, con $Z \neq 0$ perchè per ipotesi E è limitato superiormente. Per l'assioma di completezza (proprietà di separazione) $\exists \lambda \mid \forall x \in E, \forall z \in Z$: $x \leqslant \lambda \leqslant z$, ovvero:

- $\forall x \in E, x \leq \lambda$, cioè λ è una limitazione superiore;
- $\lambda \leq z$, cioè λ è la minima limitazione superiore di E.

c.v.d.

1.5 La proprietà di Archimede

"L'insieme N dei numeri naturali non è limitato superiormente"

Dimostrazione Per assurdo L è l'estremo superiore di N. L-1 (¡L) non può essere l'estremo superiore minimo. Quindi deve esistere un numero $N_0 \mid N_0 > L - 1$, ma se $N_0 > L - 1$, cioè $N_0 1 > L \not$ L=supN non esiste! c.v.d.

"Siano $a, b \in \mathbb{R}, a < b$. Allora esiste un numero naturale n tale che na > b.

Dimostrazione Supponiamo per assurdo che non esiste n nell'insieme dei numeri naturali tale per cui na > b, cioè $\forall nin \mathbb{N} na \leq b : n \leq \frac{b}{a}$. Significa dire che N è limitato superiormente, cioè $\frac{b}{a} = \sup N \nleq$.

c.v.d.

Successioni in $\mathbb R$ e limite di una successione

Distanza tra due punti La distanza tra due punti x ed y è così definita:

$$d(x,y) = |x - y|, x, y \in \mathbb{R}$$
(2.1)

La distanza conserva alcune proprietà:

- 1. $d(x, y) > 0, d(x, y) = 0 \Leftrightarrow x = y;$
- 2. d(x,y) = d(y,x);
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Dunque alla definizione di \mathbb{R} come campo ordinato e completo si aggiunge che è anche uno **spazio metrico**.

Successione Si chiama successione in un insieme A (o di elementi di A) una qualunque funzione da $\mathbb{N} \longrightarrow A$, il cui dominio è l'insieme dei numeri naturali \mathbb{R} , ed il codominio è A.

$$(a_n)n \in \mathbb{N}; (a_n); a_n \tag{2.2}$$

Esempi di successioni sono : $a_n = \frac{1}{n}$, oppure $a_n = \frac{1}{2n}$.

2.1 Convergenza di una successione

Consideriamo una successione a_n in \mathbb{R} , con $L \in \mathbb{R}$. Allora a_n converge in L e si scrive $\langle a_n \longrightarrow L$ oppure $\lim_{n\to\infty} a_n = L$, se: $\forall \epsilon > 0 \exists N_0 \in \mathbb{R} \mid \forall nin \mathbb{N}, n > N_0 \Longrightarrow |a_n - L| < \epsilon$. In forma sintetica si può scrivere:

$$(\forall \epsilon > 0)(\exists N_0 \in \mathbb{N})(\forall n \in \mathbb{N}), n > N_0 \Longrightarrow |a_n - L| < \epsilon \tag{2.3}$$

Riformulazione Sia a_n una successione in \mathbb{R} , con $L \in \mathbb{R}$, $\lim_{n\to\infty} a_n = L$ se $\forall \epsilon > 0 | a_n - L | < \epsilon$ definitivamente, cioè valga per tutti gli n sufficientemente grandi.

Dimostrazione La dimostrazione segue dalla proprietà di Archimede. Sia $\epsilon > 0$, $\exists N \mid N > \frac{1}{\epsilon}$, e tale N esiste perché $\mathbb N$ non è limitato superiormente. Allora $\forall n \geq N$ abbiamo $0 < \frac{1}{n} < \frac{1}{N} < \epsilon$, e quindi $|\frac{1}{n} - 0| < \epsilon$ (la distanza da 1/n a 0 è minore di ϵ).

Per esempio $\frac{1}{n}$ è decrescente, cioè $\frac{1}{n-1} > \frac{1}{n} > \frac{1}{n+1\dots}$. Come esercizio si può dimostrare che $\frac{1}{2n}$ converge a 0.

Teorema 4. Sia a_n una successione in R monotona crescente (in senso lato, cioè ... $a_n \leq a_{n+1}$...) e superiormente limitata (cioè $\exists k \in \mathbb{R} \mid \forall n, a_n < k$. Allora la successione converge in \mathbb{R} , e converge ad un limite finito L, che è dato dall'estremo superiore dei suoi elementi.

Un esempio è il numero di Napier e, estremo superiore delle successioni del tipo $a_n = (1 + \frac{1}{n})^n$.

Dimostrazione Poniamo $A = \{a_n, n \in \mathbb{N}\}$, e poniamo L=supA (il supA esiste ed è finito per la completezza di \mathbb{R} . Prendiamo un $\epsilon > 0$ qualsiasi:

• $L-\epsilon < L$, dunque $L-\epsilon$ non è una limitazione superiore di A, quindi $\exists kin \mathbb{R} \mid L-\epsilon < a_k;$

• La successione a_n è non decrescente. Quindi $\forall n > k, L - \epsilon < a_n \leq L$ (perchè L=supA). Dunque per l'arbitrarietà di ϵ , la successione converge a L.

Se una successione è monotona crescente ed è superiormente limitata allora questa converge all'estremo superiore dei suoi elementi.

2.2 Unicità del limite

Teorema 5. Una successione in \mathbb{R} ha al più un limite, ed è unico.

$$L'' - \varepsilon L'' L'' + \varepsilon \qquad L' - \varepsilon L' L' + \varepsilon$$

Supponiamo che $a_n \to L', a_n \to L'', L' \neq L''$. Prendiamo $\epsilon = \frac{1}{2}|L' - L''| > 0$. Esistono $k', k'' \in \mathbb{N} \mid n > k' \to |a_n - L'| < \epsilon; n > k'' \to |a_n - L''| < \epsilon$. Pongo $K = \max\{k', k''\}, \forall n \geq K$: $|L' - L''| = |L' - a_n + a_n - L''| \leq |L' - a_n| + |a_n - L''| < \epsilon + \epsilon = |L' - L''|;$

Teorema della permanenza del segno

Teorema 6. Sia a_n una successione in \mathbb{R} , $e L \in \mathbb{R}$. Se $a_n \to L, L > 0(L < 0)$ allora $a_n > 0(a_n < 0)$ definitivamente.

Dimostrazione

- 1. Fissiamo $\epsilon \mid L \epsilon > 0$. Siccome $a_n \to L$ per ipotesi, allora $\exists N_0 in \mathbb{N} \mid \forall n > N_0 : 0 < L \epsilon < a : n < L + \epsilon$;
- 2. Se $a_n \to L, a_n > 0 \forall n$, allora $L \ge 0$. Se L < 0, allora $a_n < 0$ definitivamente, contro l'ipotesi.

Intervalli compatti inscatolati

Se $a \le b$, l'insieme $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ si chiama **intervallo chiuso** e **limitato**, oppure **intervallo compatto**.

Teorema 7. Sia $I_n = [a_n, b_n] \subset \mathbb{R}$ una successione di intervalli compatti (cioè chiusi e limitati) detti inscatolati, poiché: $I_0 \subseteq I_1 \subseteq ... \subseteq I_n$

Allora:

- 1. \exists almeno un punto che appartiene a tutti gli intervalli I_n : $\cap_{n=0}^{+\infty} I_n \neq 0$;
- 2. Se le lunghezze, o ampiezze $(B_n a_n) \to 0$ allora esiste unico punto $c \in \mathbb{R}$ che appartiene a tutti gli intervalli I_n : $\bigcap_{n=0}^{+\infty} I_n = \{c\}$;

Dimostrazione Sia $\alpha = \lambda = \beta$ se $(B_n - a_n) \to 0$.

$$\alpha = \lambda = \beta \quad (\text{se } (b_n - a_n) \to 0)$$

$$a_0 \quad a_1 \quad a_{n-1} \quad a_n \quad \alpha\beta \quad b_n \quad b_{n-1} \quad b_1 \quad b_0$$

$$a_0 \le a_1 \le \dots \le a_n \le a_{n+1} \le \dots \le b_{n+1} \le b_n \le \dots b_1 \le b_0$$

- 1. Prendiamo $A = \{a_n, n \in \mathbb{R}\}$ e $B = \{b_m, m \in \mathbb{R}\}$ e $\forall n, m \in \mathbb{N}, a_n < b_m$. Quindi A è limitato superiormente, perché un qualunque elemento di B è una limitazione superiore di A. Analogamente B è limitato inferiormente. Per la proprietà di completezza: $a_n \leq \alpha \leq \beta \leq b_m$. In particolare per n = m si ha: $\bigcap_{n=0}^{+\infty} I_n[a, b] \neq 0$ perchè stiamo parlando di un intervallo compatto. Questo intervallo include l'intervallo $[\alpha, \beta]$ che si dice inscatolato in $[a_n, b_m]$.
- 2. Supponiamo ora che $(B_n a_n) \to 0$, allora supponiamo per assurdo che $\alpha < \beta$. Quindi valgono le seguenti disuguaglianze: $a_n < \alpha < \beta < b_m$, quindi $b_m a_n > \beta \alpha$, ma se $(B_n a_n) \to 0$ non può essere maggiore o uguale di un **numero finito positivo**.

Gli intervalli I_n hanno un unico punto in comune.

c.v.d.

3.1 Esistenza ed unicità dell'elemento superiore di due classi contigue di numeri reali

Diciamo che A,B è una coppia di classi contigue di numeri reali se $A, B \subset \mathbb{R}$, cioè sono sottoinsiemi non vuoti di R che soddisfano le seguenti proprietà:

- 1. Ogni a in a è minore di ogni b in B;
- 2. Preso un ϵ qualsiasi, esiste una coppia b,a $|b-a| < \epsilon$.

Teorema 8. Se A e B sono classi contigue di numeri reali, allora esiste un unico $\lambda \in \mathbb{R}$ che soddisfa: $a \leq \lambda \leq b$, presi un qualsiasi a in A, ed un qualsiasi b in B.

Se esistessero λ_1, λ_2 allora $a - b < \lambda_1 - \lambda_2$ cioè A e B non possono essere classi contigue

\mathbb{Q} è denso in \mathbb{R}

Teorema 9. $\forall a, b \in \mathbb{R}, a < b, \exists r \in \mathbb{Q} \mid a < r < b$. Presi due numeri reali qualsiasi allora tra di essi è compreso un numero razionale, cioè l'insieme dei razionali è denso in R.

Il numero reale $\alpha = a_0.a_1a_2...a_n$ è il limite di una successione y_n di numeri razionali decimali. $|\alpha - y_n|| = \frac{1}{10^n}$, cioè y_k è l'approssimazione di α a meno di 10^k .

Dimostrazione Se $a, b \in \mathbb{R}, a < b$, allora esiste un razionale r tale che a < r < b.

Sia a, b > 0. Se $a, b > 0 \exists$ un naturale $n \in \mathbb{N}$ tale che n(b-a) > 1, cioè $n > \frac{1}{b-a}$. Allora $n(b-a) > 1 \to nb-na > 1$. Se questa disuguaglianza è vera allora na e nb sono numeri che distano fra di loro più di uno, cioè tra na e nb è presente un numero intero: na < m < nb. Quindi: $a < \frac{m}{n} < b$.

Analogamente si può dimostrare che l'insieme dei numeri irrazionali \mathbb{R}/\mathbb{Q} è denso in \mathbb{R}

Cardinalità di \mathbb{Q} e \mathbb{R}

La cardinalità di \mathbb{Q} è diversa rispetto alla cardinalità di \mathbb{R} , ovvero non esiste una corrispondenza biunivoca tra \mathbb{Q} ed \mathbb{R} .

Cosa significa che una funzione è biunivoca Dati un insieme X e un insieme Y, la funzione $X \xrightarrow{f} Y$:

- 1. **Iniettiva**: $\forall x, x' \in X, x \neq x'$ alloraanche $f(x) \neq f(x')$, ovvero per ogni elemento di Y esiste al più un x in X tale per cui f(x) = y.
- 2. Suriettiva: dati gli insiemi X e Y, se l'immagine di f è Y, cioè ad ogi elemento di X è corrisposto (deve esistere) un elemento di Y.

Per esempio la funzione $f(x) = x^2$ definita da $\mathbb{R} \xrightarrow{f} \mathbb{R}$ non è suriettiva. E' invece suriettiva la funzione $f(x) = x^2$ definita da $[0,1] \xrightarrow{f} [0,1]$.

Una funzione è biunivoca (biettiva) o invertibile se è sia iniettiva che suriettiva, cioè: $\forall y \in Y \exists ! x \in X : f(x) = y$.

Definizione di cardinalità Quando gli insiemi rispondono tra di loro di una corrispondenza biunivoca si dice che hanno la stessa **cardinalità**, cioè hanno lo stesso numero di elementi. Anche due insiemi infiniti che hanno una corrispondenza biunivoca hanno la stessa cardinalità. Non si è definita la cardinalità dell'insieme, ma il rapporto tra due insiemi.

Insieme numerabile Due insiemi infiniti hanno la stessa cardinalità? O meglio possiamo definire se un insieme è numerabile, cioè se ha la stessa cardinalità di \mathbb{N} .

5.1 \mathbb{Q} è numerabile

Dimostrazione trovata dal matematico *Cantor*. Consideriamo l'insieme dei numeri razionali positivi. Cantor ha avuto l'idea di disporli nel secondo ordine (mettendo nella prima fila tutti i razionali con numeratore uguale a 1, nella seconda fila tutti quelli numeratore 2 e così via):

Se volessi concettualmente contare tutti gli elementi positivi di Q potremmo contare gli elementi della prima fila, tuttavia questo processo durerebbe in eterno. Allora Cantor decide di contare gli elementi a "zig-zag", eliminando i razionali che si ripetono. In questo modo si possono contare tutti i razionali, e ogni numero compare una sola volta. Si aggiunge anche l'elemento zero. Per contare i negativi si modifica la successione:

Esiste una funzione biunivoca da $\mathbb N$ a Q. Di conseguenza Q è numerabile. c.v.d.

5.2 \mathbb{R} non è numerabile

Questa dimostrazione è solo una delle quattro trovate da Cantor. Supponiamo per assurdo che esista una corrispondenza biunivoca da $\mathbb{N} \stackrel{f}{\to} \mathbb{R}$. Per semplicità dimostriamo questa corrispondenza nell'intervallo [0,1], cioè $\mathbb{N} \stackrel{f}{\to} [0,1]$. Consideriamo il numero reale $0.\alpha_1^1\alpha_2^1\alpha_3^1...$

Al posto della cifra α_1^1 si metta una cifra diversa da α_1^1 , e che sia diversa da 0 e da 9 (questo perchè come visto in precedenza per una delle proprietà degli intervalli compatti inscatolati 0 corrisponde al periodo 9). Ora consideriamo il numero $0.\alpha_1^2\alpha_2^2\alpha_3^2...$ e il numero $0.\alpha_1^3\alpha_2^3\alpha_3^3...$ Sostituiamo con delle cifre diverse da quelle di partenza α_2^2 e α_3^3 .

I numeri che creiamo non saranno sicuramente presenti in quella lista, perchè il primo numero differisce della prima cifra decimale, il secondo per la seconda cifra decimale e così via. L'ennesima cifra differisce dell'ennesima cifra f(n).

Significato dell'allineamento infinito

Consideriamo per esempio il numero 0.111111111.... Questo numero reale può essere visto come:

- 1. Considero la successione $a_0=0$, $a_1=0.1$, $a_2=0.11$... Ciascuno dei termini della successione a_n è un'approssimazione per difetto di $0.\overline{1}$. Infatti: $a_1=\frac{1}{10}$; $a_2=\frac{1}{10}+\frac{11}{100}$; $a_3=\frac{1}{10}+\frac{11}{100}+\frac{111}{100}$... Quindi $0.\overline{1}$ è il limite della successione scritta, e poiché la successione è **crescente**, **superiormente limitata** per esempio (0.2 è un elemento maggiore di quelli della successione). Quindi $\lim_{n\to+\infty}a_n=0.\overline{1}$;
- 2. $0.\overline{1}$ è visto come l'estremo superiore di $\{a_i, i \in \mathbb{N}\};$

3. Serie geometrica.
$$0.\overline{1} = \frac{1}{10} + \frac{11}{100} + \frac{111}{10^{-3}} + \dots + \frac{1}{10^n}$$
. Cioè $0.\overline{1} = \sum_{n=1}^{+\infty} \frac{1}{10^n}$

Cosa significa sommare infiniti addendi? Prendiamo per esempio $q \in \mathbb{R}$, voglio calcolare la somma infinita $1 + q + q^2 + q^3 + ... + q^n$. Costruisco le somme parziali, cioè la somma del primo termine, quella del secondo e del terzo e così via...chiamiamo s_k la successione delle somme parziali. Poichè la successione è limitata superiormente ed è crescente converge ad L: $\lim_{k\to +\infty} s_k = L$.

Suppongo che
$$|q| < 1$$
, allora:
$$1 + q + q^2 + q^3 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

$$(1 + q + q^2 + q^3 + \dots + q^n)(1 - q)$$

$$1 + q + q^2 + q^3 + \dots + q^n - q - q^2 - q^3 - \dots - q^{n+1}$$

$$(1 + q + q^2 + q^3 + \dots + q^n)(1 - q) = 1 - q^{n+1}$$
 Quindi si ha $\lim_{n \to +\infty} \frac{1 - q^{n+1}}{1 - q} = L = 0$ (posto $|q| < 1$).

Funzioni continue

Definizione Sia $D \xrightarrow{f} \mathbb{R}$, $D \subset \mathbb{R}$, $x_0 \in S$. Si dice che f è continua nel punto x_0 , se $\forall \epsilon > 0$ esiste $\delta > 0$ per il quale è soddisfatta la seguente condizione: $\forall x \in D, |x - x_0| < \delta$, allora $|f(x) - f(x_0)| < \epsilon$.

Ovvero quando la distanza tra x e x_0 è minore di δ , allora $f(x) - f(x_0)$ è minore di ϵ , qualunque si fissi una tolleranza ϵ .

$$\forall \epsilon > 0 \exists \delta > 0 : \forall x \in D[d(x, x_0) < \delta \Longrightarrow d(f(x), f(x_0)) > \epsilon]$$

Riformulazioni intuitive

- 1. Se la distanza $d(x, x_0)$ è piccola, allora è sufficientemente piccola la distanza $d(f(x), f(x_0))$.
- 2. Supponiamo che x e y siano due grandezze fisiche. f è continua in x_0 se si approssima la misura $f(x_0)$ mediante f(x) con una tolleranza arbitraria $\epsilon > 0$. Affinché la misura x di x_0 sia fatta con sufficiente precisione si prende $\delta > 0$.

Esempi di funzioni continue

- 1. Funzione identità $\forall x, I(x) = x$. E' continua $\forall x$ scelti $\epsilon > 0, \delta > 0$ la condizione è soddisfatta;
- 2. Funzione reciproca $\mathbb{R} \setminus \{\} \xrightarrow{f} \mathbb{R}, x \neq 0$ $g(x) = \frac{1}{x}$ è continua. Ovvero $\forall x_0 \in R$, se $d(x, x_0) < \delta$, allora $d(\frac{1}{x}, \frac{1}{x_0}) < \epsilon$;
- 3. $\mathbb{R} \xrightarrow{f} \mathbb{R}, f(x) = x^2$ è continua;
- 4. $\mathbb{R} \xrightarrow{f} \mathbb{R}, f(x) = sin(x); f(x) = cos(x)$ è continua;

Dimostrazione continuità funzione reciproca

Significato funzione parte intera Un esempio di funzione non continua è la funzione parte intera.

7.1 Intorno di un punto

Consideriamo \mathbb{R} spazio metrico, ovvero vale d(x,y) = |x-y|. Dato $x_0 \in \mathbb{R}, r \in \mathbb{R} : r > 0$, si chiama **intorno simmetrico / intorno sferico / disco aperto** di centro x_0 e raggio r il sottoinsieme $I(x_0, r) = (x_0 - r, x_0 + r) = \{x \in \mathbb{R} \mid x_0 - r < x > x_0 + r\} = \{x \in \mathbb{R} \mid d(x, x_0) < r\}$

In generale, un insieme $U \subset \mathbb{R}$ si dice intorno di un punto x_0 se $\exists r > 0$ tale che:

$$U \supset (x_0 - r, x_0 + r)$$
$$U \supset \{x \in \mathbb{R} \mid d(x, x_0) < r\}$$

Definizione topologica di continuità Dati \mathbb{X} , \mathbb{Y} spazi metrici qualunque, per esempio $\mathbb{X} = \mathbb{Y} = \mathbb{R}$. $\mathbb{X} \xrightarrow{f} \mathbb{Y}$ è continua in $x_0 \in \mathbb{X}$, significa che: per ogni intorno $V \ni f(x_0)$ esiste un intorno $U \ni x_0$ tale che $f(U) \subset V$.

Teorema 10. Siano $\mathbb{X} \xrightarrow{f} \mathbb{Y} e \mathbb{Y} \xrightarrow{g} \mathbb{Z}$ due funzioni continue, allora $\mathbb{X} \xrightarrow{g \circ f} \mathbb{Z}$ è continua.

Questo perchè per definizione deve esistere un intorno $W:g(V)\subset W,$ ovvero:

$$g(f(U)) \subset g(V) \subset W$$

Sia data la seguente funzione $g(x) = \frac{\sin(x^3) + x^4}{1 + x^2 + \cos(x)^2}, x \in \mathbb{R}$. Poiché la funzione è composta da funzioni continue allora questa sarà continua.

Teorema 11. Continuità per successioni Siano $\langle D \subset \mathbb{R}, \mathbb{D} \xrightarrow{f} \mathbb{R}, x_0 \in D$. I due seguenti enunciati sono equivalenti:

- $f \grave{e}$ continua in x_0 ;
- Per ogni successione x_n in D, se $x_n \to x_0$, allora $f(x_n)_{n \to +\infty} f(x_0)$, cioè $\lim_{n \to +\infty} x_n = x_0$, allora $\lim_{n \to +\infty} f(x_n) = f(x_0)$

Le funzioni continue sono le funzioni che preservano i limiti di successioni. Questo teorema ha una particolare applicazione se si vuole dimostrare che una funzione non è continua. Ecco un esempio.

7.2 Limiti

Si dice che x_0 è punto di accumulazione di un sottoinsieme $D \subset \mathbb{R}$ se \exists una successione (a_n) in D tale che $a_n \to x_0$, e $a_n \neq x_0 \forall n \in \mathbb{N}$. Esempi:

- 1. $x_0 = 0$ è punto di accumulazione di $D = \mathbb{R} \setminus \{0\}$;
- 2. $x_0 = 1$ è punto di accumulazione di D = [0, 1], per esempio attraverso la successione $(a_n) = 1 1^n$;
- 3. $x_0 = 3$ non è un punto di accumulazione per D = [0, 1];

Definizione limite finito Siano $D \subset \mathbb{R}, x_0$ punto di accumulazione di D; $\mathbb{D} \xrightarrow{f} \mathbb{R}$ una funzione, $L \in \mathbb{R}$.

$$\lim_{x \to x_0} f(x) = L$$

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in D), 0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon$$

N.B.

- $0 < |x x_0|$ equivale a dire $x \neq x_0$, questo perché non siamo interessati se esiste x_0 nella funzione, ma soprattutto non ci importa del valore che la funzione assume in x_0 .
- Non è detto che il limite esista, ma se esiste è unico!.

Seconda versione Supponiamo che x_0 sia un punto di accumulazione di D, $\mathbb{D} \xrightarrow{f} \mathbb{R}$ una funzione, $L \in \mathbb{R}$ escludendo $L = \pm \infty$. $\lim_{x \to x_0} f(x) = L$ significa che ponendo $f(x_0) = L$, la funzione risulta continua in $f(x_0)$. Inoltre data la funzione $\mathbb{D} \xrightarrow{f} \mathbb{R}$, se x_0 è un punto di accumulazione per D e in più $x_0 \in D$, allora f è continua se $\lim_{x \to x_0} f(x) = f(x_0)$

Teorema 12. Teorema del confronto Siano $D \subset \mathbb{R}$ e f,g,h tre funzioni $\mathbb{D} \xrightarrow{f} \mathbb{R}$, con x_0 punto di accumulazione di D. Se:

$$f(x) \le g(x) \le h(x), \forall x \in D, x \ne x_0$$

e se

$$\lim_{x \to x_0} f(x) = L = \lim_{x \to x_0} h(x)$$

, allora:

$$\lim_{x \to x_0} g(x) = L$$

7.3 Intervallo di \mathbb{R}

Dati $x, y \in \mathbb{R}$, $x \leq y$, il segmento compatto (chiuso e limitato) delimitato da x, y, definito come [x, y] è l'insieme:

$$[x,y] = \{t \in \mathbb{R} \mid x \le t \le y\}$$

Un sottoinsieme I di $\mathbb R$ è un intervallo se soddisfa:

$$(\forall x, y \in I)(x \le y) \Rightarrow [x, y] \subseteq I$$

ovvero se I contiene due punti, allora I è un intervallo se contiene tutti i punti che compongono quel segmento. Esiste l'intervallo in cui x=y, ed esiste l'intervallo vuoto.

Teorema 13. Teorema degli zeri Sia $\mathbb{I} \xrightarrow{f} \mathbb{R}$ una funzione e un intervallo $I \subset \mathbb{R}$. Siano $a, b \in I$, con a < b. Supponiamo che f(a)ef(b) abbiano valori opposti. Allora esiste almeno un punto $c \in (a,b)$ in cui f(c) = 0.

Dimostrazione Supponiamo che f(a) < 0 < f(b), e chiamiamo $I_0 = [a_0, b_0]$ l'intervallo [a, b].

Consideriamo il punto medio del segmento ab, che chiamiamo $a_1 = \frac{a+b}{2}$. Se $a_1 = 0$ la dimostrazione è finita. Altrimenti se $f(a_1) < 0$, chiamo $I_1 = [a_1, b_0]$ (Se $a_1 > 0$ avrei chiamato $I_1 = [a_0, a_1]$). In questo intervallo si verifica la stessa condizione di partenza, quindi **iteriamo le bisezioni.**Se in uno dei punti medi la funzione si annulla la dimostrazione finisce, altrimenti costruiamo la successione di infiniti intervalli $I_n = [a_n, b_n]$, con $f(a_n) < 0, f(b_n) > 0 \forall n \in \mathbb{N}$.

Per il teorema di Cantore sugli intervalli compatti inscatolati $\exists c$ tale che appartiene alle infinite intersezioni della successione. Inoltre questo punto c deve essere unico perchè $\frac{b-a}{2^n}$ tende a zero.

Poichè la funzione è continua preserva i limiti di successioni:

- $a_n \to c \Rightarrow f(a_n) \to f(c)$;
- $b_n \to c \Rightarrow f(b_n) \to f(c)$;

Per il **Teorema della permanenza del segno** se $f(a_n) < 0$ allora $f(c) \le 0$ e allo stesso modo se $f(b_n) > 0$, $f(c) \ge 0$ di conseguenza f(c) = 0.

c.v.d

Teorema 14. Teorema dei valori intermedi Supponiamo che:

- 1. $\mathbb{I} \subset \mathbb{R}$ sia un intervallo; $\mathbb{I} \xrightarrow{f} \mathbb{R}$ è una funzione;
- 2. $a, b \in I$; a < b, f(a) < f(b);
- 3. $v \in \mathbb{R} : f(a) < v < f(b);$

Tesi: $\exists c \in (a,b) : f(c) = v$.

Se $\mathbb{I} \xrightarrow{f} \mathbb{R}$ è funzione continua su un intervallo I, la sua immagine J = f(I) 'e un intervallo. Le funzioni continue trasformano intervalli in intervalli.

Dimostrazione g(x) = f(x) - v in [a, b], e soddisfa le ipotesi del teorema. Consideriamo g(a) = f(a) - v < 0 e g(b) = f(b) - v > 0.Per il teorema degli zeri deve esistere $c \in (a, b) : g(c) = f(c) - v = 0 \Rightarrow$

$$f(c) = v$$

c.v.d.

N.B.

1. L'ipotesi che f(x) sia continua è necessaria;

2. Che f sia in un intervallo è necessario, per esempio la funzione inversa esiste nell'unione di intervalli $(-\infty,0) \bigcup (0,+\infty)$ che **non è un intervallo**;

Osservazione Se una funzione soddisfa la proprietà dei valori medi di Darboux, cioè presa una coppia di punti x_1 e $x_2 \in I$ dove I è l'intervallo in cui esiste la funzione, questa assume tutti i valori compresi tra $f(x_1)$ e $f(x_2)$. Si può concludere che se una funzione in un intervallo ha questa proprietà allora è sicuramente continua?