Econometría

Diplomado Banco Central de Honduras

Instituto de Economía

Pontificia Universidad Católica de Chile

Juan Ignacio Urquiza — Junio 2022

Propiedades estadísticas

Supuestos:

- Linealidad en parámetros (RLM.1).
- Muestreo aleatorio (RLM.2).
- □ Colinealidad imperfecta (RLM.3).
- Media condicional cero (RLM.4).
- Homocedasticidad (RLM.5).
- Se puede demostrar que:
 - Bajo los supuestos RLM.1 a RLM.4, los estimadores de MCO son insesgados.
 - Bajo los supuestos RLM.1 a RLM.5, son los de mínima varianza entre los estimadores lineales insesgados.

- □ Linealidad en parámetros (RLM.1):
 - La relación poblacional entre las variables sigue un modelo lineal:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u = X\beta + u$$

- □ Si el modelo analítico no es lineal, hay que linealizarlo.
- Por ejemplo:

$$y = AK^{\beta_1}L^{\beta_2}$$

Entonces:

$$\rightarrow \ln y = \beta_0 + \beta_1 \ln K + \beta_2 \ln L$$

- Muestreo aleatorio (RLM.2):
 - Las observaciones provienen de una muestra aleatoria de la población:

$$\{(x_{i1}, x_{i2}, \dots, x_{ik}, y_i) : i = 1, 2, \dots, n\}$$

Esto significa que las observaciones son independientes:

$$cov(u_i, u_j | X) = 0 \quad \forall i \neq j$$

 En un contexto de series de tiempo, esto implica que los errores no tienen autocorrelación.

- □ Colinealidad imperfecta (RLM.3):
 - No hay relaciones lineales exactas entre las variables independientes.
 - Los regresores pueden estar correlacionados entre sí, sólo que no pueden hacerlo en forma perfecta.
 - Esto permite la identificación de los parámetros.
 - Sin embargo, tal como lo veremos más adelante, una colinealidad alta dificulta la identificación.

- □ Media condicional cero E(u|X) = 0 (RLM.4):
 - También se puede escribir como $E(u|x_1,...,x_k) = 0$.
 - Significa que ninguno de los factores en el término del error correlaciona con las variables explicativas.
 - Implica que:

$$E(y|X) = E(X\beta + u|X) = X\beta$$
$$E[E(u|X)] = E(u) = 0$$

- Este supuesto puede no cumplirse por varias razones:
 - Especificación incorrecta de la forma funcional, omisión de variables relevantes, errores de medición, etc.

- □ Homocedasticidad $V(u|X) = \sigma^2 I$ (RLM.5):
 - \blacksquare También se puede escribir como $V(u|x_1,...,x_k) = \sigma^2$.
 - Es decir, la varianza del error no depende de haber observado una realización particular de X.
 - Cuando este supuesto no se cumple, se dice que el modelo presenta heterocedasticidad.
 - □ ¿Gráficamente?

Propiedades estadísticas

□ Insesgamiento:

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'y$$

$$= (X'X)^{-1}X'(X\boldsymbol{\beta} + u)$$

$$= \boldsymbol{\beta} + (X'X)^{-1}X'u$$

Por lo tanto:

$$E(\widehat{\beta}|X) = \beta + (X'X)^{-1}X'E(u|X) = \beta$$
$$\to E(\widehat{\beta}) = E[E(\widehat{\beta}|X)] = \beta$$

lacktriangle Esto implica que el promedio de los estimadores $oldsymbol{\widehat{eta}}$ obtenidos a partir de todas las muestras aleatorias posibles es igual a $oldsymbol{eta}$.

Propiedades estadísticas

□ Varianza:

$$V(\widehat{\beta}|X) = \sigma^2(X'X)^{-1}$$

$$V(\widehat{\beta}|X) = E\left[(\widehat{\beta} - \beta)(\widehat{\beta} - \beta)'|X\right]$$

$$= E\left[(X'X)^{-1}X'uu'X(X'X)^{-1}|X\right]$$

$$= (X'X)^{-1}X'E\left[uu'|X\right]X(X'X)^{-1}$$

$$= (X'X)^{-1}X'(\sigma^{2}I)X(X'X)^{-1}$$

$$= \sigma^{2}(X'X)^{-1}X'X(X'X)^{-1}$$

$$= \sigma^{2}(X'X)^{-1}$$

Teorema de Gauss-Markov

 \square Cualquier estimador lineal de $oldsymbol{eta}$ se puede escribir como:

$$\widetilde{\boldsymbol{\beta}} = A'y = A'(X\boldsymbol{\beta} + \boldsymbol{u}) = A'X\boldsymbol{\beta} + A'\boldsymbol{u}$$

 \square Para que $\widetilde{m{\beta}}$ sea insesgado:

$$E(\widetilde{\boldsymbol{\beta}}|X) = A'X\boldsymbol{\beta} + A'E(\boldsymbol{u}|X) = A'X\boldsymbol{\beta} = \boldsymbol{\beta} \leftrightarrow A'X = \boldsymbol{I}$$

□ ¿Varianza?

$$V(\widetilde{\boldsymbol{\beta}}|X) = A'V(\boldsymbol{u}|X)A = \sigma^2 A'A$$

Por lo tanto:

$$V(\widetilde{\boldsymbol{\beta}}|X) - V(\widehat{\boldsymbol{\beta}}|X) = \sigma^{2}[A'A - (X'X)^{-1}]$$
$$= \sigma^{2}[A'A - A'X(X'X)^{-1}X'A]$$

Teorema de Gauss-Markov

Por lo tanto:

$$V(\widetilde{\boldsymbol{\beta}}|X) - V(\widehat{\boldsymbol{\beta}}|X) = \sigma^2 A' [I - X(X'X)^{-1}X']A$$
$$= \sigma^2 A' MA$$

- \square Dado que M es simétrica e idempotente, entonces A'MA es semi-definida positiva.
- \square Esto implica que para cualquier vector c:

$$V(c'\widetilde{\beta}|X) - V(c'\widehat{\beta}|X) = c'[V(\widetilde{\beta}|X) - V(\widehat{\beta}|X)]c \ge 0$$

 Por lo tanto, esto establece que el estimador de MCO es el mejor estimador lineal insesgado (MELI).

Varianza del estimador de MCO

□ Bajo los supuestos RLM.1 a RLM.5, se cumple que:

$$V(\widehat{\beta_j}|\mathbf{X}) = \frac{\sigma^2}{SCT_j \times (1 - R_j^2)} \quad \forall j = 1, 2, ..., k.$$

donde:

- \square SCT_i es la suma de cuadrados totales de x_i .
- $Arr R_j^2$ es el R^2 resultante de la regresión de x_j (como variable dependiente) sobre todas las demás variables independientes. En otras palabras, el R_j^2 indica cuánto de la variable x_j es explicado por los otros regresores.

Varianza del estimador de MCO

- $\square V(\widehat{\beta_i}|X)$ es creciente en σ^2 :
 - $lue{}$ Mientras más ruido haya, más difícil será estimar el efecto parcial de x_i sobre y.
- $\square V(\widehat{\beta_j}|X)$ es decreciente en SCT_j :
 - $lue{z}$ Es decir, se prefiere una mayor variación muestral en x_i . Por ejemplo, aumentando el tamaño de la muestra.
- $\square V(\widehat{\beta_j}|X)$ es creciente en R_i^2 :
 - El supuesto RLM.3 asegura que el $R_j^2 < 1$ pero nótese que cuando $R_j^2 \to 1$, entonces $V(\widehat{\beta}_j | X) \to \infty$. Esto se conoce como multicolinealidad.

Gráficamente

Multicolinealidad

- Se define como una correlación elevada pero no perfecta entre 2 o más variables explicativas.
- En muchos casos, la correlación elevada entre algunas variables resulta irrelevante. Por ejemplo, cuando x₂ y x₃ están muy correlacionadas entre sí pero éstas no se correlacionan con la variable de interés, x₁.
- Un intento por reducir la varianza del estimador podría ser eliminar algún regresor y con ello el disminuir el R_j^2 . Sin embargo, como se verá más adelante, la omisión de variables relevantes produce estimadores sesgados.
- En definitiva, no implica violación alguna de los supuestos anteriores y, por lo tanto, MCO sigue siendo MELI.

- □ Normalidad $u \sim N(0, \sigma^2)$ (RLM.6):
 - $f \Box$ El error poblacional es independiente de las variables explicativas y está distribuido normalmente, con media cero y varianza σ^2 .
 - Esto implica que:

$$y|X \sim N(X\beta, \sigma^2)$$

Este supuesto es clave para hacer inferencia acerca de los valores de parámetros.

Distribución del estimador de MCO

□ La normalidad de los errores se traduce en distribuciones muestrales normales de los estimadores de MCO:

$$\widehat{\beta_j}|X \sim N\left(\beta_j, V(\widehat{\beta_j}|X)\right)$$

Esto implica que, condicional en los regresores:

$$\frac{\widehat{\beta}_j - \beta_j}{\sqrt{V(\widehat{\beta}_j | \boldsymbol{X})}} \sim N(0, 1)$$

□ Sin embargo, $V(\widehat{\beta}_j|X)$ depende de σ^2 que en la práctica es desconocido. Por lo tanto, debemos estimarlo. ¿Cómo?

Estimador MCO de σ^2

 Dado que los errores son inobservables, se utilizan los residuos de MCO:

$$\widehat{\sigma}^2 = \left(\frac{1}{n-k-1}\right) \times \sum_{i=1}^n \widehat{u_i}^2$$

- \square Bajo los supuestos RLM.1 a RLM.5, $E(\hat{\sigma}^2|X)=\sigma^2$.
- Por lo tanto, bajo los supuestos RLM.1 a RLM.6, se cumple que, condicional en los regresores:

$$\frac{\widehat{\beta_j} - \beta_j}{s.e.(\widehat{\beta_j})} \sim t_{n-k-1}$$

donde:
$$s.e.(\widehat{\beta}_j) = \sqrt{\widehat{V}(\widehat{\beta}_j|X)}$$
.

. reg testscr str el_pct expn_stu

Source	SS	df	MS	Number of obs	=	420
				F(3, 416)	=	107.45
Model	66409.8837	3	22136.6279	Prob > F	=	0.0000
Residual	85699.7099	416	206.008918	R-squared	=	0.4366
				Adj R-squared	=	0.4325
Total	152109.594	419	363.030056	Root MSE	=	14.353

testscr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
str	2863992	.4805232	-0.60	0.551	-1.230955	.658157
el_pct	6560227	.0391059	-16.78	0.000	7328924	5791529
expn_stu	.0038679	.0014121	2.74	0.006	.0010921	.0066437
_cons	649.5779	15.20572	42.72	0.000	619.6883	679.4676

. estat vce

Errores estándar

Covariance matrix of coefficients of regress model

e(V)	str	el_pct	expn_stu	_cons
str el_pct expn_stu _cons	.23090254 00344264 .00042012 -6.7125805	.00152927 -3.220e-06 .06060743	1.994e-06 01879395	231.21388

Test sobre un parámetro individual

Description Suponga que desea evaluar si el coeficiente que acompaña a X_i es estadísticamente distinto de a_i . Es decir:

$$H_0: \beta_j = a_j$$

$$H_1: \beta_j \neq a_j$$

- En el caso particular en que $a_j=0$, se busca determinar si X_j es una variable "significativa o relevante". Si se rechaza H_0 , decimos entonces que X_i es significativa.
- $lue{}$ Para esto usamos el estadístico t construido bajo H_0 :

$$t_{\widehat{\beta_j}} = \frac{\widehat{\beta_j} - a_j}{s.e.(\widehat{\beta_i})} \sim t_{n-k-1}$$

Test sobre un parámetro individual

- \Box $t_{\widehat{\beta_j}}$ mide en cuántas desviaciones estándar estimadas de $\widehat{\beta_j}$ se aleja $\widehat{\beta_j}$ de a_j .
- $lacksymbol{\square}$ Valores de $t_{\widehat{eta_j}}$ alejados de 0 son evidencia contraria a H_0 .
- Suponga que se fija en α la probabilidad de cometer error del tipo I.
- □ Sea $t_{\alpha/2}$ el percentil $(1-\alpha/2)$ de la distribución t-Student con n-k-1 grados libertad.
- $lue{}$ Entonces, se rechaza H_0 cuando:

$$\left| \frac{\widehat{\beta}_j - a_j}{s. e. (\widehat{\beta}_j)} \right| \ge t_{\alpha/2}$$

Gráficamente

Intervalo de confianza

Además, sabemos que:

$$\left|\frac{\widehat{\beta}_j - \beta_j}{s. e. (\widehat{\beta}_j)}\right| \ge t_{\alpha/2}$$

es equivalente a decir que:

$$Pr\left(-t_{\alpha/2} \leq \frac{\widehat{\beta}_j - \beta_j}{s. e.(\widehat{\beta}_j)} \leq t_{\alpha/2}\right) = (1 - \alpha)$$

 $lue{}$ Esto implica que el intervalo de confianza para eta_i es:

$$\widehat{\beta}_j - t_{\alpha/2} \times s.e.(\widehat{\beta}_j) \le \beta_j \le \widehat{\beta}_j + t_{\alpha/2} \times s.e.(\widehat{\beta}_j)$$

 \square Si β_i no está en el intervalo, entonces se rechaza H_0 .

Valor-p

Se define al valor-p de una prueba como:

$$Pr\left(|T| > \left|t_{\widehat{\beta_j}}\right|\right)$$

donde T es una variable t-Student con n-k-1 grados libertad y $t_{\widehat{\beta_j}}$ es el valor del estadístico de contraste obtenido.

- $\ \square$ En otras palabras, el valor-p es el mínimo nivel de significancia a partir del cual se rechaza H_0 .
- Por ejemplo, si se evalúa H_0 : $\beta_j = 0$ y se obtiene un valor- ρ igual a 6.4%, se concluye que β_j es significativo a un nivel de significancia del 10% pero no al 5%.
- oxdot Entonces, valores- $oldsymbol{
 ho}$ pequeños son evidencia contraria a $H_{oldsymbol{0}}.$

Test sobre un parámetro individual

Considere ahora una hipótesis alternativa del tipo:

$$H_1: \beta_j > a_j \quad o \quad H_1: \beta_j < a_j$$

 Sin pérdida de generalidad, suponga un test cuya hipótesis alternativa es:

$$H_1: \beta_j < a_j$$

- \square Esto significa que valores positivos del estadístico $t_{\widehat{\beta_j}}$ no representan evidencia contraria a H_0 .
- $_{\square}$ Entonces, se rechaza H_0 en favor de H_1 cuando $t_{\widehat{eta_i}} < -t_{lpha}.$
- En estos test de 1 cola, el valor-p correspondiente es la mitad del valor-p del test de 2 colas.

Combinación lineal de parámetros

Suponga ahora que queremos evaluar si $\beta_1 = \beta_2$. Esto se puede reescribir como:

$$H_0$$
: $\beta_1 - \beta_2 = 0$

- Dado los estimadores de MCO siguen una distribución normal,
 su diferencia sigue también una distribución normal.
- $lue{}$ Entonces, podemos utilizar el siguiente estadístico t:

$$\frac{\widehat{\beta_1} - \widehat{\beta_2}}{s.e.(\widehat{\beta_1} - \widehat{\beta_2})} = \frac{\widehat{\beta_1} - \widehat{\beta_2}}{\sqrt{\widehat{V}(\widehat{\beta_1}) + \widehat{V}(\widehat{\beta_2}) - 2 \times \widehat{C}(\widehat{\beta_1}, \widehat{\beta_2})}} \sim t_{n-k-1}$$

 En definitiva, podemos aplicar este mismo enfoque para evaluar cualquier combinación lineal de parámetros.

Pruebas de exclusión

Considere ahora el siguiente MRL múltiple:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + u$$

- Description Suponga que se desea probar que cuando controlamos por X_1 , las variables X_2 y X_3 no tienen efecto parcial sobre Y.
- Es decir:

$$H_0$$
: $\beta_2 = 0$, $\beta_3 = 0$

- $lue{}$ Hablamos entonces de 2 restricciones de exclusión bajo $H_{oldsymbol{0}}.$
- \square Si rechazamos H_0 , decimos que X_2 y X_3 son conjuntamente significativas. El test no indica qué variable tiene un efecto significativo; puede ser una variable, la otra o ambas.

Pruebas de exclusión

- Este test puede pensarse como una comparación entre un modelo libre y un modelo sobre el cual se imponen las restricciones.
- En particular, se puede demostrar que:

$$F = \frac{(SCR_r - SCR_{sr})}{SCR_{sr}} \times \frac{(n-k-1)}{q} \sim F(q, n-k-1)$$

donde SCR_r es la suma de cuadrados residuales del modelo restringido, SCR_{sr} la del modelo libre o no restringido, (n-k-1) son los grados de libertad del modelo libre, y q es el número de restricciones bajo H_0 .

 \square ¿Intuición? Evaluar si aumento en la SCR al pasar del modelo libre al modelo restringido es lo suficientemente grande.

Gráficamente

- $lue{}$ Valores de \widehat{F} alejados de 0 son evidencia contraria a H_0 .
- Suponga que se fija en α la probabilidad de cometer error del tipo I.
- \square Entonces, se rechaza H_0 cuando $\widehat{F} > F_lpha(q,n-k-1).$

No se rechaza H_0 Se rechaza H_0

. reg testscr str

Source	SS	df	MS		Number of obs	
Model Residual (Total	7794.11004 144315.484 152109.594	418 34	94.11004 5.252353 		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.0512 = 0.0490
testscr	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
str _cons	-2.279808 698.933	.4798256 9.467491	-4.75 73.82	0.000	-3.22298 680.3231	-1.336637 717.5428
. reg testscr	str el_pct ex	pn_stu				
Source	SS	df	MS		Number of obs	
Model Residual (66409.8837 85699.7099		136.6279 5.008918		Prob > F R-squared	= 0.0000 = 0.4366
Total	152109.594	419 36	3.030056		Adj R-squared Root MSE	
testscr	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
str el_pct expn_stu	2863992 6560227 .0038679	.4805232 .0391059 .0014121		0.551 0.000 0.006	-1.230955 7328924 .0010921	

. reg testscr str el pct expn_stu

Source	SS	df	MS		Number of obs		420
Model Residual	66409.8837 85699.7099		22136.6279 206.008918		F(3, 416) Prob > F R-squared	= =	107.45 0.0000 0.4366
Total	152109.594	419	363.030056		Adj R-squared Root MSE	=	0.4325 14.353
testscr	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
str el_pct expn_stu cons	2863992 6560227 .0038679 649.5779	.48052 .03910 .00141 15.205	59 -16.78 21 2.74	0.000	-1.230955 7328924 .0010921 619.6883		.658157 5791529 0066437 79.4676
_							

. test el_pct expn_stu

- (1) el_pct = 0
- (2) expn_stu = 0

$$F(2, 416) = 142.27$$

 $Prob > F = 0.0000$

$$\rightarrow F = \frac{(144315.48 - 85699.71)}{85699.71} \times \frac{(420 - 3 - 1)}{2} = 142.27$$

Contraste de regresión

- □ También conocido como test de significancia general o global.
- □ La hipótesis nula establece que ninguna variable explicativa tiene efecto sobre Y. Es decir:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

Entonces, el modelo restringido es:

$$Y = \beta_0 + u,$$

cuyo R^2 es igual a 0.

 \square Por lo tanto, el estadístico F se puede escribir a partir del R^2 del modelo no restringido:

$$F = \frac{R^2}{(1 - R^2)} \times \frac{(n - k - 1)}{k}$$

. reg testscr str el pct expn stu

Source	SS	df	MS		Number of obs	= 420
					F(3, 416)	= 107.45
Model	66409.8837	3 221	36.6279		Prob > F	= 0.0000
Residual	85699.7099	416 206	.008918		R-squared	= 0.4366
					Adj R-squared	= 0.4325
Total	152109.594	419 363	.030056		Root MSE	= 14.353
testscr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
str	2863992	.4805232	-0.60	0.551	-1.230955	. 658157
el_pct	6560227	.0391059	-16.78	0.000	7328924	5791529
expn stu	.0038679	.0014121	2.74	0.006	.0010921	.0066437
cons	649.5779	15.20572	42.72	0.000	619.6883	679.4676

. test str el_pct expn_stu

- (1) str = 0
- (2) el_pct = 0
- (3) expn_stu = 0

$$F(3, 416) = 107.45$$

 $Prob > F = 0.0000$

$$\rightarrow F = \frac{0.4366}{(1 - 0.4366)} \times \frac{(420 - 3 - 1)}{3} = 107.45$$