Title: Fuzzy Set

Problem Statement:

Implement Union, Intersection, Complement and Difference operations on fuzzy sets. Also create fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on any two fuzzy relations.

Objectives:

- 1. Understand Fuzzy Set & its operations
- 2. To implement different operations of Fuzzy Set

Outcomes:

- 1. Understood the concepts of Fuzzy Set
- 2. Implemented different operations of Fuzzy Set

Software & Hardware Requirements:

- Jupyter-Notebook / Google Colab
- 64 bit OS

Theory:

- Fuzzy set allows that objects belong to a set, or couples of objects belong to a relation to a given degree.
- It allows partial membership of an object to different classes and also takes into account the relative importance of each neighbor with repect to the test instances.
- A fuzzy set in *X* is an $X \rightarrow [0,1]$ mapping, while a fuzzy relation in *X* is a fuzzy set in $X \times X$.
- For all *y* in *X*, the R-forest of *y* is the fuzzy set *Ry* which is defined by

$$Ry(x) = R(x,y)$$

Operations of Fuzzy Set:

Having two fuzzy sets A and B, the universe of information U and an element y of the universe, the following relations express the union, intersection and complement operation on fuzzy sets.

1. Union / Fuzzy 'OR' $\mu A^{\sim} \cup B^{\sim}(y) = \mu A^{\sim} \vee \mu B^{\sim} , \forall y \in U$ Here \vee represents the 'max' operation.

2. Intersection / Fuzzy 'AND' $\mu A^{\sim} \cap B^{\sim}(y) = \mu A^{\sim} \wedge \mu B^{\sim} , \forall y \in U$ Here \wedge represents the 'min' operation.

3. Complement / Fuzzy 'NOT' $\mu A^{\sim} = 1 - \mu A^{\sim}(y) \quad , y \in U$

Complement of a fuzzy set

Properties of Fuzzy Set:

Having three fuzzy sets *A*, *B*, and *C*, the different properties of fuzzy sets are as follows.

1. Commutative Property

$$A^{\sim} \cup B^{\sim} = B^{\sim} \cup A^{\sim}$$
$$A^{\sim} \cap B^{\sim} = B^{\sim} \cap A^{\sim}$$

2. Associative Property

$$A^{\sim} \cup (B^{\sim} \cup C^{\sim}) = (A^{\sim} \cup B^{\sim}) \cup C^{\sim})$$
$$A^{\sim} \cap (B^{\sim} \cap C^{\sim}) = (A^{\sim} \cap B^{\sim}) \cap C^{\sim})$$

3. Distributive Property

$$A^{\sim} \cup (B^{\sim} \cap C^{\sim}) = (A^{\sim} \cup B^{\sim}) \cap (A^{\sim} \cup C^{\sim})$$
$$A^{\sim} \cap (B^{\sim} \cup C^{\sim}) = (A^{\sim} \cap B^{\sim}) \cup (A^{\sim} \cap C^{\sim})$$

Conclusion:

Thus, we successfully understood the concepts of fuzzy set and implemented different operations on the same.