ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА $\Gamma.\ 3ЛОБІН$

СИСТЕМИ КОМП'ЮТЕРНОЇ МАТЕМАТИКИ В НАУКОВИХ ДОСЛІДЖЕННЯХ

завдання до лабораторних робіт

У практикумі подані завдання до лабораторних робіт з ку математики в наукових дослідженнях" для студентів че електроніки Львівського національного університету імені Івана	гвертого		-
Для студентів старших курсів університетів.			
Рецензенти:			
Рекомендовано до використання у навчальному про радіофізики. Протокол № від20 р.	цесі на	засіданні	кафедри

Права авторів застережено.

Використання усього тексту посібника або його фрагментів у інших (електронних або друкованих) документах можливо лише за згодою авторів.

Зміст	
Частина I. CKM Scilab	
Лабораторна робота № 1.1. Робота з комплексними числами	4
Лабораторна робота № 1.2. Ряд Фур'є	5
Лабораторна робота № 1.3. Дослідження вільних коливань лінійних динамічних систем	6
Лабораторна робота № 1.4. Дослідження вимушених коливань лінійних динамічних	
систем	6
Лабораторна робота № 1.5. Дослідження коливань нелінійних динамічних систем	6
Частина II. СКА MAXIMA	
Лабораторна робота № 2.1. Робота з комплексними числами	8
Лабораторна робота № 2.2. Ряд Фур'є	11
Лабораторна робота № 2.3. Дослідження вільних коливань лінійних динамічних систем	11
Лабораторна робота № 2.4. Дослідження вимушених коливань лінійних динамічних	
систем	12
Лабораторна робота № 2.5. Дослідження коливань нелінійних динамічних систем	13
Додатки	
Додаток 1. Розбиття простору параметрів автогенератора із жорстким самозбудженням	14
Додаток 2. Зони нестійкості рівняння Матьє	14
Додаток 3. Нарахування балів поточної успішності за виконані лабораторні роботи	15

Частина I. СКМ Scilab

Лабораторна робота № 1.1. Робота з комплексними числами

Для заданого викладачем електричного кола знайдіть комплексний коефіцієнт передачі кола. Для виконання завдання використайте формули для комплексних опорів $Z_R=R$, $Z_C=1/(iwC)$, $Z_L=iwL$ та формули паралельного і послідовного сполучення опорів

Поєднуючи формули послідовного і паралельного сполучення опорів зведіть задане коло до такого вигляду

K(iw) = Z2/(Z1+Z2)

Для заданих параметрів кола обчисліть модуль коефіцієнта передачі кола як функцію частоти. Побудуйте графік модуля коефіцієнта передачі кола у заданому викладачем діапазоні частот.

Лабораторна робота № 1.2. Ряд Фур'є

Завдання до роботи:

Ряд Фур'є широко використовують для задання періодичних процесів

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cdot \cos(\omega \cdot k \cdot t) + b_k \cdot \sin(\omega \cdot k \cdot t) \right]$$

де $\omega=2\pi/T$, а коефіцієнти a_0 , a_k , b_k задаються співвідношеннями

$$a_0 = \frac{2}{T} \cdot \int_0^T s(t) dt$$

$$a_k = \frac{2}{T} \cdot \int_0^T s(t) \cos(\omega \cdot k \cdot t) dt$$

$$b_k = \frac{2}{T} \cdot \int_0^T s(t) \sin(\omega \cdot k \cdot t) dt$$

У цій для роботі використовується скінченна сума ряду Φ ур'є

$$s_M(t) = \frac{a_0}{2} + \sum_{k=1}^{M} \left[a_k \cdot \cos(\omega \cdot k \cdot t) + b_k \cdot \sin(\omega \cdot k \cdot t) \right]$$

$$k = 0, 1, 2 \dots M$$

Числові значення означених інтегралів, які задають коефіцієнти a_0 , a_k , b_k ,можна обчислити за методом прямокутників

$$a_0 = \frac{2 \cdot h}{T} \cdot \sum_{i=1}^{N} s(t_i)$$

$$a_k = 2 \frac{h}{T} \sum_{i=1}^{N} s(t_i) \cdot \cos(\omega \cdot k \cdot t_i)$$

$$b_k = 2 \frac{h}{T} \sum_{i=1}^{N} s(t_i) \cdot \sin(\omega \cdot k \cdot t_i)$$

$$1.$$

$$t_i = (i-1)h, i = 1, 2, 3, ..., N$$

Частина I.

Для заданого викладачем сигналу обчисліть значення a_0 , та десяти гармонік a_k , b_k .

Частина II.

Підрахуйте суму десяти гармонік ряду Фур'є та побудуйте її графік.

Лабораторна робота № 1.3. Дослідження вільних коливань лінійних динамічних систем

Завдання до роботи:

Користуючись функцією ode знайдіть частковий розв'язок дифрівняння.

$$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + x = 0$$

Числові параметри задаються викладачем

δ	x(0)	dx(0)
		dt

Побудуйте фазовий портрет системи (графік залежності dx/dt від x) .

Лабораторна робота № 1.4. Дослідження вимушених коливань лінійних динамічних систем

Завдання до роботи: Користуючись функцією ode знайдіть періодичний розв'язок заданого викладачем дифрівняння. Побудуйте його графік.

$$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + x = \gamma \sin \nu t$$

Числові параметри задаються викладачем

δ	x(0)	$\frac{dx(0)}{dt}$	γ	ν

Лабораторна робота № 1.5. Дослідження коливань нелінійних динамічних систем

Завдання до роботи:

Користуючись функцією ode отримайте розв'язок заданого викладачем нелінійного дифрівняння та побудуйте задані викладачем графіки.

Варі -ант	Дифрівняння	Примітка
1	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \sin x = \gamma_0$	Система ФАПЧ
2	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \sin(x) = \gamma_0 + \gamma \sin \nu t$	Неавтономна система ФАПЧ

3	$\frac{d^2x}{dt^2} - \delta(1-x^2)\frac{dx}{d\theta} + x = 0 \qquad \delta \in [0.1;5]$	Автогенератор Ван дер Поля
4	$\frac{d^2x}{dt^2} - (\lambda - \gamma x^2 - x^4) \frac{dx}{dt} + x = 0 (\text{числові параметри із додатку 1})$	Автогенератор з жорстким самозбудженням
5	$\frac{d^2x}{dt^2} + 2\delta(1+\beta x^2)\frac{dx}{dt} + (1+m\cos(\omega_n t))x = 0$ (числові параметри із додатку 2)	Параметричний генератор
6	$\frac{d^2 x}{dt^2} + 2 \delta \frac{dx}{d \theta} - \frac{x}{2} (1 - x^2) = a * \cos(0.8t) a \in [1; 15]$	Система із можливістю виникнення стохастичних рухів
7	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \sin x = a\cos(x)\cos(0.8t) a \in [1;15]$	Система із можливістю виникнення стохастичних рухів

Частина II. СКА MAXIMA

Лабораторна робота № 2.1. Робота з комплексними числами

Завдання до роботи:

Частина I.

Для заданих варіантів запишіть комплексне число у декартовій формі, у полярній формі, знайдіть його дійсну, уявну частини, модуль, аргумент спочатку аналітично у зошиті, а потім з використанням СКМ Махіта.

No	Завдання
1	(3+5i)*(7+2i), (3+5i)/(7+2i)
2	(3+4i)*(5+2i), (3+4i)/(5+2i)
3	(4-2i)*(-2+i), (4-2i)/(-2+i)
4	(-3+i)*(5-i), (-3+i)/(5-i)
5	(5-3i)*(-3-2i), (5-3i)/(-3-2i)
6	(-3+i)*(4-2i), (-3+i)/(4-2i)
7	(4+4i)*(3+5i), (4+4i)/(3+5i)
8	(-1-i)*(-1+i), (-1-i)/(-1+i)
9	(1+i)*(1-i), (1+i)/(1-i)
10	(1+i)^3, (1+i)^-3
11	(1-2i)*(1+2i), (1-2i)/(1+2i)
12	1/(1+3i)^2, (1+3i)^2
13	(2-2i)*(2+i), (2-2i)/(2+i)
14	(3-i)*(-1+2i), (3-i)/(-1+2i)
15	(1-3i)*(1+3i), (1+3i)/(1-3i)
16	(3-2i)*(2-3i), (3-2i)/(2-3i)
17	(3+4i)*(5+2i), (3+4i)/(5+2i)
18	(2+5i)*(7+2i), (2+5i)/(7+2i)
19	(3+5i)*(7+2i), (3+5i)/(7+2i)
20	(2+9i)*(7+2i), (2+9i)/(7+2i)

Частина II. Знайти дійсну та уявну частини числа

№	Завдання	Ваша відповідь
1	$e^{i2\pi}$	
2	$e^{i\pi}$	
3	$e^{\frac{3\pi}{2}i}$	
4	$e^{\frac{i\pi}{2}}$	
5	$e^{\frac{i\pi}{3}}$	
6	$e^{\frac{i\pi}{4}}$	
7	$e^{i\frac{\pi}{5}}$	
8	$e^{i\frac{\pi}{6}}$	
9	$e^{rac{i\pi}{10}}$	
10	$e^{rac{i\pi}{12}}$	
11	$e^{\frac{i\pi}{15}}$	
12	$e^{rac{i\pi}{9}}$	
13	$e^{i2\pi}$	
14	$e^{i\pi}$	
15	$e^{\frac{3\pi}{2}i}$	
16	$e^{rac{i\pi}{2}}$	
17	$e^{rac{i*\pi}{14}}$	
18	$e^{\frac{i*\pi}{16}}$	
19	$e^{\frac{i*\pi}{18}}$	
20	$e^{\frac{i*\pi}{20}}$	

Частина III. Для заданого викладачем електричного кола знайдіть комплексний коефіцієнт передачі кола. Для виконання завдання використайте формули для комплексних опорів Z_R =R, Z_C =1/(iwC), Z_L = iwL та формули паралельного і послідовного сполучення опорів

Поєднуючи формули послідовного і паралельного сполучення опорів зведіть задане коло до такого вигляду

K(iw) = Z2/(Z1+Z2)

Для заданих параметрів кола обчисліть модуль коефіцієнта передачі кола як функцію частоти.

Частина IV. Для знайденого модуля коефіцієнта передачі обчисліть границі для $w \to 0$, $w \to \infty$

Частина V. Побудуйте графік модуля коефіцієнта передачі кола у заданому викладачем діапазоні частот.

Лабораторна робота № 2.2. Ряд Фур'є

Завдання до роботи:

Частина I.

Для заданого викладачем сигналу отримайте вирази для a_0 , a_k , b_k . Збережіть отримані вирази у файл для використання в ЛР4. Для заданого значення періоду отримайте числові значення a_0 , та десяти гармонік a_k , b_k .

Частина II.

Підрахуйте суму десяти гармонік ряду Фур'є та побудуйте графік.

Лабораторна робота № 2.3. Дослідження вільних коливань лінійних динамічних систем

Завдання до роботи:

Частина I.

Користуючись функцією ode знайдіть частковий розв'язок дифрівняння.

$$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + x = 0$$

Числові параметри задаються викладачем

δ	x(0)	dx(0)
		dt

Побудуйте фазовий портрет системи.

Частина II.

Для завдання із частини I знайдіть частковий розв'язок заданого викладачем дифрівняння користуючись функцією desolve. Побудуйте фазовий портрет.

Лабораторна робота № 2.4. Дослідження вимушених коливань лінійних динамічних систем

Завдання до роботи:

Частина I.

Користуючись функцією ode2 або desolve (за вибором викладача) знайдіть періодичний розв'язок заданого викладачем дифрівняння. Побудуйте його графік.

$$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + x = \gamma \sin \nu t$$

Числові параметри задаються викладачем

δ	<i>x</i> (0)	$\frac{dx(0)}{dt}$	γ	ν

Частина II.

Для сигналу із ЛР2 отримайте вирази для реакції заданого викладачем дифрівняння на гармоніки сигналу.

Частина III.

Підрахуйте суму десяти гармонік ряду Фур'є та побудуйте графік періодичного розв'язку дифрівняння у випадку негармонічного збудження.

Лабораторна робота № 2.5. Дослідження коливань нелінійних динамічних систем

Завдання до роботи:

Користуючись функцією rk отримайте розв'язок заданого викладачем нелінійного дифрівняння та побудуйте задані викладачем графіки.

Варі-	Дифрівняння	Примітка
1	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \sin x = \gamma_0$	Система ФАПЧ
2	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \sin(x) = \gamma_0 + \gamma \sin \nu t$	Неавтономна система ФАПЧ
3	$\frac{d^2x}{dt^2} - \delta(1 - x^2)\frac{dx}{d\theta} + x = 0 \qquad \delta \in [0.1; 5]$	Автогенератор Ван дер Поля
4	$\frac{d^2x}{dt^2} - (\lambda - \gamma x^2 - x^4) \frac{dx}{dt} + x = 0$	Автогенератор з жорстким самозбудженням
	(числові параметри із додатку 1)	
5	$\frac{d^2x}{dt^2} + 2\delta(1+\beta x^2)\frac{dx}{dt} + (1+m\cos(\omega_n t))x = 0$	Параметричний генератор
	(числові параметри із додатку 2)	
6	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{d\theta} - \frac{x}{2}(1 - x^2) = a * \cos(0.8t)$	Система із можливістю виникнення стохастичних рухів
	$a \in [1;15]$	
7	$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \sin x = a\cos(x)\cos(0.8t)$ $a \in [1;15]$	Система із можливістю виникнення стохастичних рухів
	u ~ [1,13]	

Додаток 1. Розбиття простору параметрів автогенератора із жорстким самозбудженням

Додаток 2. Зони нестійкості рівняння Матьє

1 — контур без втрат, 2 - контур із втратами

Додаток 3. Нарахування балів поточної успішності за виконані лабораторні роботи

№ роботи	Сума балів за виконану роботу			
Частина I. CKM Scilab				
ЛР 1.1	4			
ЛР 1.2	6 (кожна частина по 3 бали 2*3=6)			
ЛР 1.3	5			
ЛР 1.4	5			
ЛР 1.5	5			
Реферат "Створення графічних додатків в Scilab"	35			
Всього:	60			
Частина II. СКА MAXIMA				
ЛР 2.1	10 (кожна частина по 2 бали 5*2=10)			
ЛР 2.2	6 (кожна частина по 3 бали 2*3=6)			
ЛР 2.3	6 (кожна частина по 3 бали 2*3=6)			
ЛР 2.4	12 (кожна частина по 4 бали 3*4=12)			
ЛР 2.5	6			
Всього:	40			
Всього:	100			