

Plan zajęć

▶ Wprowadzenie

- specyfika problemu wielokryterialnego
- optymalizacja a wspomaganie decyzji
- proces podejmowania decyzji

Wielokryterialne wspomaganie decyzji

- czym jest wariant?
- jak wyrażać preferencje?
- · czym jest kryterium?
- wielokryterialny problem decyzyjny

> Zastosowanie metody ELECTRE III

- charakterystyka metody
- ranking usługodawców logistycznych
- **▶** Podsumowanie

Piotr Sawicki / Ekotransport i ekologistyka

Wprowadzenie

Problem jedno- a wielokryterialny

▶ Problem jednokryterialny

- zagadnienie do rozwiązania (decyzja do podjęcia)
- wybór odbywa się w oparciu o jedno reprezentatywne kryterium oceny
 - np. problem wyboru pojazdu
 - o cena zakupu

Problem wielokryterialny

- zagadnienie do rozwiązania (decyzja do podjęcia)
- wybór odbywa się w oparciu o więcej niż jedno kryterium oceny
 - np. problem wyboru pojazdu o najwyższej jakości
 - trwałość,
 - o nowoczesność silnika,
 - o niezawodność,
 - o wyposażenie,
 - o cena zakupu,
 - o ...

Wprowadzenie Problem jedno- a wielokryterialny ▶ Problem jednokryterialny ▶ Problem wielokryterialny • charakteryzuje się ścisłą strukturą • nie musi posiadać ścisłej struktury (model) - model programowania wielokryterialnego: posiada ścisłą - funkcja celu strukturę - ograniczenia - w przypadku specyficznych problemów (wybór, klasyfikacja, ranking): brak jest ścisłej struktury rozwiązywany za pomocą narzędzi w przypadku ścisłej struktury mamy optymalizacji - optymalizacja do czynienia z optymalizacją jednokryterialna wielokryterialną w przeciwnym przypadku konieczne jest wspomaganie decyzji (WWD)

Wielokryterialne wspomaganie decyzji 1 Zbiór wariantów 2 Preferencje 3 Zbiór kryteriów 4 Kategorie problemów wielokryterialnych 5 Metoda ELECTRE III

Zbiór wariantów

▶ Rodzaje zbiorów wariantów

- z uwagi na sposób definiowania wariantów w zbiorze A
 - bezpośredni
 - o skończona (policzalna) lista obiektów
 - pośredni
 - o zbiór charakterystycznych własności obiektów (potencjalnych rozwiązań)
- z uwagi na moment definiowania zbioru wariantów A
 - stabilny
 - o zdefiniowany a'priori
 - o nie podlegający zmianom w trakcie procedury decyzyjnej
 - ewolucyjny
 - o zdefiniowany aposteriori
 - o istnieje możliwość modyfikacji zbioru w trakcie procedury decyzyjnej
- z uwagi na wzajemne związki pomiędzy wariantami w zbiorze A
 - globalny
 - o każdy element zbioru A wyklucza pozostałe warianty ze zbioru
 - cząstkowy
 - $\circ \;\;$ dowolny element zbioru A może tworzyć wariant z innym elementem (-ami) tego zbioru

Piotr Sawicki / Ekotransport i ekologistyka

11

Wielokryterialne wspomaganie decyzji

Zbiór wariantów

▶ Przykłady

- przypadek 1 → lokalizacja terminala przeładunkowego
 - nowy terminal musi być wybudowany w jednym z regionów Polski
 - rozważa się 15 potencjalnych lokalizacji → decyzja dotyczy wyboru tylko jednej z nich
 - zbiór A zdefiniowany jest jako lista lokalizacji
 - zbiór
 - o <u>bezpośredni</u>
 - o stabilny
 - o globalny

iotr Sawicki / Ekotransport i ekologistyl

Zbiór wariantów

▶ Przykłady

- przypadek 3 → zarządzanie projektami inwestycyjnymi
 - w dużym przedsiębiorstwie transportowym grupa specjalistów dokonuje selekcji nowych inwestycji (przyjąć / odrzucić)
 - zbiór A stanowi listę projektów, zbiór jest <u>bezpośredni</u> <u>ewolucyjny</u> <u>czastkowy</u> (wspólna realizacja niektórych projektów)

iotr Sawicki / Ekotransport i ekologistyl

Wielokryterialne wspomaganie decyzji Preferencje Przykład Analiza pojazdów z punktu widzenia komfortu jazdy Renault Clio (a) jest równoważny z VW Polo (b) a l b VW Passat (c) jest preferowany nad Renault Clio (a) c P a Mercedes SLR (d) jest nieporównywalny z Renault Clio (a) d J a

Wielokryterialne wspomaganie decyzji Preferencje

- ▶ Podstawowe własności struktur preferencji
 - asymetria: a P b ⇒ b \ a a
 (vW Passat) P (Renault Clio) ⇒ (Renault Clio) \ (vw Passat)
 - symetria: a I b ⇒ b I a
 (Renault Clio) I(VW Polo) ⇒ (VW Polo) I(Renault Clio)
 - zwrotność: a / a
 (Renault Clio) /(Renault Clio)

Plotr Sawicki / Ekotransport i ekologistyka 18

Wielokryterialne wspomaganie decyzji Preferencje

- Uwzględniając moment wyrażania preferencji decydenta w procedurze decyzyjnej wyróżnia się 3 sytuacje
 - preferencje ustalane a priori
 - preferencje ustalane a posteriori
 - preferencje wyrażane w procedurze interaktywnej (dialogowej)

▶ Przykłady

- preferencje ustalane a priori
 - "preferuję pojazdy sportowe, które osiągają prędkość powyżej 200 km/h i są w kolorze srebrnym – metalicznym"
- preferencje ustalane a posteriori
 - "mając do wyboru 3 samochody: VW Passat, Peugeot 607 oraz Mercedes S-Class uważam, że: VW i Peugeot są równoważne, natomiast zdecydowanie preferuję Mercedesa"
- preferencje ustalane *w procedurze interaktywnej* (dialogowej)
 - "mając do wyboru Peugeot 607 oraz Mercedesa S-Class zdecydowanie preferuję Mercedesa"
 - "mając do wyboru Mercedesa S-Classe oraz Jaguara zdecydowanie preferuję Jaguara"

Piotr Sawicki / Ekotransport i ekologistyka

4

Wielokryterialne wspomaganie decyzji 1 Zbiór wariantów 2 Preferencje 3 Zbiór kryteriów 4 Kategorie problemów wielokryterialnych 5 Metoda ELECTRE III

Wielokryterialne wspomaganie decyzji Kryterium

▶ Rodzaje kryteriów

· kryterium prawdziwe

funkcja kryterialna g taka, że

$$g(a) \ge g(b) = \begin{cases} alb & \text{jeżeli } g(a) = g(b) \\ aPb & \text{jeżeli } g(a) > g(b) \end{cases}$$

- nie ma różnicy pomiędzy wariantami a oraz b tylko wtedy, gdy g(a) = g(b)
- każda różnica g(a) g(b) stanowi miarodajną informację o sile preferencji wariantu a względem b

Przykłady kryteriów prawdziwych

- średnia prędkość środka transportu na trasie 250 km
- czas biegacza na dystansie 100 m

Wielokryterialne wspomaganie decyzji Kryterium

▶ Rodzaje kryteriów

- · pseudo-kryterium
 - funkcja kryterialna g, taka, że

$$g(a) \ge g(b) = \begin{cases} aPb & \text{jeżeli } g(a) > g(b) + p \\ aQb & \text{jeżeli } g(b) + p \ge g(a) > g(b) + q \\ alb & \text{jeżeli } |g(a) - g(b)| \le q \end{cases}$$

- relacja preferencji zostaje rozróżniona: słaba i silna preferencja
- $-\,$ różnica pomiędzy wariantami a oraz b może wskazywać trzy potencjalne sytuacje
 - o równoważność wariantów **I** różnica ocen wariantu a oraz wariantu b mieści się w granicy "tolerancji" wyznaczonej progiem równoważności q
 - o słaba preferencja wariantu ${\bf Q}$ różnica ocen wariantu a i b jest większa od progu równoważności q ale mniejsza od progu preferencji p
 - silna preferencja wariantu P różnica ocen wariantu a i b jest większa od wartości progu preferencji – p
- wartość progu q i p wyrażona jest w postaci funkcji lub stałej wartości

Piotr Sawicki / Ekotransport i ekologistyk

Wielokryterialne wspomaganie decyzji Kryterium ▶ Rodzaje kryteriów • pseudo-kryterium ...cd funkcja kryterialna g taka, że aPb jeżeli g(a) > g(b) + p $g(a) \ge g(b) = \left\{ aQb \text{ jeżeli } g(b) + p \ge g(a) > g(b) + q \right\}$ |a|b jeżeli $|g(a)-g(b)| \leq q$ a**P**b bPa | bQa a**l**b a Q b roczna liczba uszkodzeń lokomotywy (q=5; p=20) • przychód ze sprzedaży biletów g(b)-p g(b)-q g(b) g(b)+qg(b)+p g(a)(*q*=14.000; *p*=29.000)

Problem wielokryterialny

▶ Klasyfikacja wielokryterialnych problemów decyzyjnych

- określenie podzbioru najlepszych wariantów ze zbioru A z punktu widzenia zbioru kryteriów F
 - problem wyboru
- podział zbioru ${\it A}$ na podzbiory, zgodnie z ustalonymi normami określonymi na podstawie zbioru kryteriów ${\it F}$
 - problem klasyfikacji (lub sortowania)
- uszeregowanie wszystkich wariantów ze zbioru ${\cal A}$ od najlepszego do najgorszego, z punktu widzenia zbioru kryteriów ${\cal F}$
 - problem szeregowania (rankingowania)

Wielokryterialne wspomaganie decyzji

Problem wielokryterialny

- Przykłady wielokryterialnych problemów transportowych/ logistycznych
 - · problem wyboru
 - wybór nowego typu autobus(u)-ów dla przedsiębiorstwa autobusowego
 - wybór najlepszej opcji finansowania zakupu środków transportowych
 - konstrukcja portfela usług transportowych oferowanych na rynku
 - problem klasyfikacji
 - konkurs ofert firm transportowych na obsługę przedsiębiorstwa produkcyjnego
 - (i) oferty przyjęte bez dalszych analiz
 - (ii) oferty odrzucone
 - (iii) oferty odesłane do uzupełnienia
 - problem szeregowania
 - ranking firm transportowych z punktu widzenia jakości świadczonych usług
 - ranking autobusów do obsługi systemu komunikacji miejskiej

Metody wspomagania decyzji

Wieloatrybutowa teoria użyteczności (szkoła amerykańska)

- Ralph Keeney, Howard Raiffa
- agregowanie różnych kryteriów (punktów widzenia) do jednej funkcji użyteczności
 - kryterium globalne
 - funkcja optymalizowana

$$Min U(z) = U(z_1, z_2, ..., z_n)$$

- zakłada się, że wszystkie analizowane kryteria z F są porównywalne między sobą
- preferencje są "zakorzenione" w świadomości decydenta

Relacja przewyższania (szkoła europejska)

- Bernard Roy, Philippe Vincke, Roman Słowiński
- modelowanie preferencji odbywa się za pomocą relacji przewyższania S
- dopuszcza się nieporównywalność pomiędzy rozważanymi kryteriami z rodziny F
- preferencje decydenta ulegają ewolucji w trakcie procesu decyzyjnego

Piotr Sawicki / Ekotransport i ekologistyka

46

Wielokryterialne wspomaganie decyzji 1 Zbiór wariantów 2 Preferencje 3 Zbiór kryteriów 4 Kategorie problemów wielokryterialnych 5 Metoda ELECTRE III

Sposób modelowania preferencji	Moment definiowania preferencji				
	a'priori	a'posteriori	dialogow		
Metody wykorzystujące wieloatrybutową funkcję użyteczności					
Metody wykorzystujące relację przewyższania	© ELECTRE				

Wielokryterialne wspomaganie decyzji Rodzina metod ELECTRE ▶ Podział metod z rodziny ELECTRE • ELECTRE I • ELECTRE TRI - B.Roy, 1968 - J.Moscarola, B.Roy, 1978 problem wyboru - problem klasyfikacji - kryterium prawdziwe - pseudo-kryterium • ELECTRE II - B.Roy, P.Bertier, 1971 - problem rankingu - kryterium prawdziwe • ELECTRE III - B.Roy, 1978 - problem rankingu kryterium przedziałowe • ELECTRE IV - J.Hugonnard, B.Roy, 1982 - problem rankingu - pseudo-kryterium pominięcie ważności kryteriów

ELECTRE III / Ogólna charakterystyka

▶ Metoda ELECTRE III

- Bernard Roy, Université Paris-Dauphine, 1978
- bazuje na relacji przewyższania, zdefiniowanej na zbiorze wariantów A
- · wykorzystywana jest do szeregowania wariantów
- dostępna jest wersja demonstracyjna
 - 8 wariantów
 - 5 kryteriów
 - http://www.lamsade.dauphine.fr

▶ Procedura obliczeniowa składa się z 3 głównych etapów

- e1: konstrukcja macierzy ocen i definiowania preferencji decydenta
- e2: budowa wartościowanej relacji przewyższania S
- e3: wykorzystywanie wartościowanej relacji przewyższania

Piotr Sawicki / Ekotransport i ekologistyka

33

46

Wielokryterialne wspomaganie decyzji

ELECTRE III / Etapy metody

▶ Etap I

- definiowana jest spójna rodzina kryteriów F, oceniających analizowany zbiór wariantów A
- każdy z wariantów A = {a, b, c,...} oceniany jest z punktu widzenia wszystkich analizowanych kryteriów g_i, j=1,2,...,n, stąd: g_i(a), g_i(b), ...
- definiowany jest model preferencji decydenta (osobno dla każdego z kryteriów j), uwzględniający w ELECTRE III
 - równoważność wariantów ($a I_j b$)
 - słabą preferencję jednego wariantu nad drugim ($a\ Q_i\ b$ lub $b\ Q_i\ a$)
 - silną preferencję jednego wariantu nad drugim (a P_i b lub b P_i a)
 - nieporównywalność wariantów ($a J_j b$ lub $b J_j a$)
- model preferencji definiowany jest w postaci wartości progowych
 - $-\,\,$ próg równoważności: q_j
 - próg preferencji: p_j
 - próg veta: ν_i
 - współczynnik ważności kryterium: k_i

Piotr Sawicki / Ekotransport i ekologistyk

Wielokryterialne wspomaganie decyzji **ELECTRE III / Etapy metody** ▶ Etap I (cd) • porównanie dwóch wariantów a i b prowadzi do sytuacji a jest równoważne z b $a I_i b \Leftrightarrow g_i(a) - g_i(b) \leq \mathbf{q}_i$ a jest słabo preferowane nad b $a Q_i b \Leftrightarrow g_i(b) + \mathbf{q}_i < g_i(a) \le g_i(b) + \mathbf{p}_i$ - a jest silnie preferowane nad b $a P_i b \Leftrightarrow g_i(b) + \mathbf{p_i} < g_i(a) \le g_i(b) + \mathbf{v_i}$ a jest nieporównywalne z b $a J_i b \Leftrightarrow g_i(a) > g_i(b) + \mathbf{v_i}$ próg v_i ma tę własność, że nie można przyjąć twierdzenia, że aSb nawet, jeżeli z punktu widzenia pozosťałych kryteriów twierdzenie takie jest prawdziwe aI_ib aQ_ib aP_ib aJ_ib $g_i(b)+v_i$ $g_i(b)$ $g_i(b)+q_i$ $g_i(b)+p_i$ $g_i(a)$

Wielokryterialne wspomaganie decyzji

ELECTRE III / Etapy metody

▶ Etap II

 relacji przewyższania ocenia stopień wiarygodności, że a jest co najmniej tak dobry jak b, wyrażony za pomocą współczynnika zgodności C(a,b)

$$C(a,b) = \frac{1}{K} \sum_{j=1}^{n} k_j \cdot c_j(a,b)$$
, przy czym $K = \sum_{j=1}^{n} k_j$

gdzie

 k_i – współczynnik ważności jtego kryterium,

c_i(a,b) – współczynnik zgodności z punktu widzenia j-tego kryterium

miarą zaprzeczenia relacji aSb jest współczynnika niezgodności D_i(a,b)

ELECTRE III / Etapy metody

▶ Etap II (cd)

• ostatecznie, stopień przewyższania S(a,b) zdefiniowany jest jako:

$$S(a,b) = \begin{cases} C(a,b) \text{ jeżeli } D_j(a,b) \leq C(a,b), \forall j \\ C(a,b) \prod_{j \in J(a,b)} \frac{1 - D_j(a,b)}{1 - C(a,b)} \end{cases}$$

gdzie:

J(a,b) – zbiór kryteriów, dla których $D_i(a,b) > C(a,b)$.

Piotr Sawicki / Ekotransport i ekologistyka

37)

Wielokryterialne wspomaganie decyzji

ELECTRE III / Etapy metody

▶ Etap III

- etap ten oparty jest na algorytmie klasyfikacyjnym, wykorzystującym wartościowaną relację przewyższania
- algorytm bazuje na
 - wartości $\lambda = \max_{a,b=1} S(a,b)$
 - progu odcięcia s(λ)

na podstawie których definiowane są te pary wariantów (a,b), dla których S(a,b)

$$S(a,b) \ge \lambda - s(\lambda)$$

- dla obiektów spełniających tę relację określany jest współczynnik klasyfikacji, który jest różnicą pomiędzy liczbą wariantów, które wariant a przewyższa, a liczbą wariantów, przez który jest przewyższany
- wariant o najwyższej wartości wsp. klasyfikacji jest rozwiązaniem o najwyższej lokacie w preporządku zstępującym
- analogicznie budowany jest ranking wstępujący, z tym, że procedura rozpoczyna się od rozwiązania najgorszego – preporządek wstępujący
- · ranking finalny stanowi przecięcie obu preporządków

Piotr Sawicki / Ekotransport i ekologistyka

ELECTRE III / Zastosowanie / Przykład 1

- Rozważany jest problem oceny funkcjonowania firmy transportowej Ryder Polska, jako firmy obsługującej przedsiębiorstwo produkcyjne, na tle alternatywnych propozycji rynkowych (rok 2002)
- ▶ W celu stworzenia rankingu rozważanych wariantów (firm transportowych) od najlepszego do najgorszego zastosowano metodę ELECTRE III
- ▶ W rozważanym problemie pod rozwagę przyjęto zbiór 7 wariantów:
 - · Polkombi S.A.
 - No Limit Sp. z o.o.
 - Trans Universal Poland S.A.
 - C. Hartwig Katowice S.A.
 - Euroad Sp. z o.o.
 - Spedycja Polska SPEDPOL Sp. z o.o.
 - Ryder Polska Sp. z o.o.

Piotr Sawicki / Ekotransport i ekologistyka

4

Wielokryterialne wspomaganie decyzji

ELECTRE III / Zastosowanie / Przykład 1

- ▶ Do oceny każdego z wariantów zaproponowano zbiór 9 kryteriów oceny, stanowiący spójną rodzinę kryteriów
 - doświadczenie na rynku
 - efektywność majątku trwałego
 - · całkowity koszt obsługi
 - średni czas obsługi na terenie kraju
 - średni wiek taboru
 - efektywność pracowników
 - udział w rynku
 - kompleksowość usługi (a w tym: własne opakowania, środki komunikacji, magazynowanie, wdrożenie normy ISO, wiarygodność firmy, oryginalny software)
 - kwalifikacje pracowników

Piotr Sawicki / Ekotransport i ekologistyka

▶ Tablica ocen			Da	_		_	_	
		Euroad	C.Hartwig Katowice	Trans Universal	No Limit	Polkombi	Spedpol	Ryder Polska
Doświadczenie na rynku	lata	9	141	9	9	8	8	3
Efektywność majątku trwałego		2,61	8,78	4,16	2,16	5,33	4,46	18,92
Całkowity koszt obsługi	tys. zł	8.748	16.411	14.009	10.815	12.371	12.183	22.11
Średni czas obsługi na terenie kraju	godz.	24	24	24	48	72	24	24
Średni wiek taboru	lata	2	3	4	8	7	5	2
Efektywność pracowników	tys.zł /prac	207,25	107,02	145,26	113,20	473,36	183,66	341,8
Udział w rynku	%	1,20	2,76	0,84	0,22	0,76	5,50	0,67
Kompleksowość usługi	pkt.	7,5	3,0	7,0	8,0	2,5	12,0	4,0
Kwalifikacje pracowników	godz./ prac	3	8	0,39	32	50	3,2	70

Podsumowanie

- ▶ Rozwiązanie problemu
 - jednokryterialnego jest rozwiązaniem najlepszym
 - wielokryterialnego jest rozwiązaniem kompromisowym
- ▶ Rozwiązanie problemu wielokryterialnego
 - wymaga zdefiniowania preferencji ightarrow wspomaganie decyzji
- ► Metody wwd z racji uwzględnienia preferencji decydenta będą zawsze metodami uzyskiwania subiektywnych rozwiązań

