15.2-1

1	2	3	4	5	6	
0	150	330	405	1655	2010	1
	0	360	330	2430	1950	2
		0	180	930	1770	3
			0	3000	1860	4
				0	1500	5
					0	6

括号方案:

 $((A_1 A_2)((A_3 A_4)(A_5 A_6)))$

15.4-1

<1, 0, 0, 1, 1, 0> 或 <1, 0, 1, 0, 1, 0>...

15.5-2

0.06	0.28	0.62	1.02	1.34	1.83	2.44	3.12
	0.06	0.3	0.68	0.93	1.41	1.96	2.61
		0.06	0.32	0.57	1.04	1.48	2.13
			0.06	0.24	0.57	1.01	1.55
				0.05	0.30	0.72	1.20
					0.05	0.32	0.78
						0.05	0.34
							0.05

17.1-1

最坏情况下执行 n 次 MULTIPUSH 或者 循环执行 MULTIPUSH和 MULTIPOP的时间复杂度为 $\Theta(kn)$,摊还代价为 $\Theta(k)$

17.3-2

定义势函数为

$$\Phi(D_i) = egin{cases} 0 & i = 0 \ 2i - 2^{1 + \lfloor \lg i
floor} & i > 0 \end{cases}$$

当i=1时,

$$\widehat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 2i - 2^{1+\lfloor \lg i
floor} - 0 = 1$$

当i > 1,但不是2的幂时,

$$\widehat{c_i} = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 2i - 2^{1+\lfloor \lg i
floor} - 2(i-1) + 2^{1+\lfloor \lg (i-1)
floor} = 3$$

当i>1,但是2的幂时($i=2^j,\ j\in {
m N}$),

$$egin{aligned} \widehat{c_i} &= c_i + \Phi(D_i) - \Phi(D_{i-1}) \ &= i + 2i - 2^{1+j} - (2(i-1) - 2^{1+j-1}) \ &= i + 2i - 2i - 2i + 2 + i \ &= 2 \end{aligned}$$

17.3-3

定义势函数为

$$\Phi(D_i) = \sum_{k=1}^i \lg k$$

对于INSERT操作

$$egin{aligned} \widehat{c_i} &= c_i + \Phi(D_i) - \Phi(D_{i-1}) \ &= \lg i + \sum_{k=1}^i \lg k - \sum_{k=1}^{i-1} \lg k \ &= 2\lg i \ &= O(\lg i) \end{aligned}$$

对于EXTRACT - MIN操作

$$egin{aligned} \widehat{c_i} &= c_i + \Phi(D_i) - \Phi(D_{i-1}) \ &= \lg i + \sum_{k=1}^{i-1} \lg k - \sum_{k=1}^{i} \lg k \ &= 0 \ &= O(1) \end{aligned}$$

17.4-2

TABLE - DELETE 的势函数如下

$$\Phi(T) = egin{cases} 2 \cdot num_i - size_i & & lpha(T) \geq 1/2 \ size_i/2 - num_i & & lpha(T) < 1/2 \end{cases}$$

当 $\alpha_{i-1} \geq 1/2, \; \alpha_i \geq 1/2$ 时

$$egin{aligned} \widehat{c_i} &= c_i + \Phi(D_i) - \Phi(D_{i-1}) \ &= 1 + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1}) \ &= 1 + (2 \cdot (num_{i-1} - 1) - size_{i-1}) - (2 \cdot num_{i-1} - size_{i-1}) \ &= -1 \end{aligned}$$

当 $lpha_{i-1} \geq 1/2, \; lpha_i < 1/2$ 时

$$egin{aligned} \widehat{c_i} &= c_i + \Phi(D_i) - \Phi(D_{i-1}) \ &= 1 + (size_i/2 - num_i) - (2 \cdot num_{i-1} - size_{i-1}) \ &= 1 + (size_{i-1}/2 - (num_{i-1} - 1) - (2 \cdot num_{i-1} - size_{i-1}) \ &= 2 + rac{3}{2} size_{i-1} - 3 \cdot num_{i-1} \ &\leq 2 + rac{3}{2} size_{i-1} - rac{3}{2} size_{i-1} \ &= 2 \end{aligned}$$

21.2-3

UNION操作运行时间最多为 $O(n\lg n)$,则每一个都花费了最多 $O(\lg n)$ 的分摊时间

MAKE-SET和FIND-SET操作时只有恒定的工作量,也无法抵消UNION操作的成本,因此它们的运行时间上界都是O(1)