Течения вязкой жидкости при малых числах Рейнольдса

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики ФФ НГУ

25 февраля 2019 г.

Аннотация

Обтекание сферы вязкой жидкостью

Постановка задачи (G.G Stokes, 1851)

Определить силу , действующую на сферу радиуса a, движущуюся со скоростью U в потоке вязкой жидкости плотности ρ и динамической вязкостью μ , при малых числах Рейнольдса

$$\mathrm{Re} = \frac{2aU\rho}{\mu} \ll 1.$$

Математическая постановка задачи

Задача обтекания движущейся сферы со скоростью U эквивалентна задаче обтекания покоящейся сферы в начале координат с заданным значением скорости потока на бесконечности. Стационарное течение жидкости около сферы описывается уравнениями Навье-Стокса:

$$\begin{aligned} \operatorname{div} \vec{v} &= 0, \\ (\nabla \cdot \vec{v}) \vec{v} &= -\frac{1}{\rho} \nabla p + \nu \Delta \vec{v} \end{aligned}$$

с граничным условием на сфере $(r = \sqrt{x^2 + y^2 + z^2})$

$$\vec{v}|_{r=a} = 0$$

и на бесконечности при $r \to \infty$

$$v_x
ightarrow 0, \quad v_v
ightarrow 0, \quad v_z
ightarrow U_z
ightarrow 0$$

Уравнения Стокса

Оценка слагаемых в уравнениях Навье-Стокса

$$\frac{\rho|(\nabla \cdot \vec{v})\vec{v}|}{\mu|\Delta \vec{v}|} \sim \frac{\rho U^2}{2a} : \frac{\mu U}{(2a)^2} = \text{Re} \ll 1.$$

Уравнения Стокса

Оценка слагаемых в уравнениях Навье-Стокса

$$\frac{\rho |(\nabla \cdot \vec{v}) \vec{v}|}{\mu |\Delta \vec{v}|} \sim \frac{\rho U^2}{2a} : \frac{\mu U}{(2a)^2} = \mathrm{Re} \ll 1.$$

Модель Стокса для описания ползущих течений Отбрасывая нелинейные инерционные члены в уравнении импульса из модели Навье-Стокса, получим уравнения

$$\operatorname{div} \vec{v} = 0, \quad \nabla p = \mu \Delta \vec{v},$$

которые будем решать в сферической системе координат.

Данная модель является линейной относительно функций p и \vec{v} вида

$$v_r = v_r(r, \theta), \quad v_\theta = v_\theta(r, \theta), \quad v_\lambda = 0, \quad p = p(r, \theta).$$

Задача обтекания сферы в постановке Стокса

Основные уравнения

$$\begin{split} \frac{\partial p}{\partial r} &= \mu \left(\frac{\partial^2 v_r}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{2}{r} \frac{\partial v_r}{\partial r} + \frac{\operatorname{ctg} \theta}{r^2} \frac{\partial v_r}{\partial \theta} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} - \frac{2}{r^2} \frac{\partial v_\theta$$

Граничные условия

$$v_r(a,\theta) = 0, \quad v_\theta(a,\theta) = 0.$$

 $v_r \stackrel{r \to \infty}{\longrightarrow} U \cos \theta, \quad v_\theta \stackrel{r \to \infty}{\longrightarrow} -U \sin \theta.$

Вид искомых функций

$$v_r(r,\theta) = f(r)\cos\theta$$
, $v_\theta(r,\theta) = -g(r)\sin\theta$, $p(r,\theta) = \mu h(r)\cos\theta$.

Упрощение исходной системы

$$h' = f'' + \frac{2}{r}f' - \frac{4(f-g)}{r^2},$$

$$\frac{h}{r} = g'' + \frac{2}{r}g' + \frac{2(f-g)}{r^2},$$

$$f' + \frac{2(f-g)}{r} = 0.$$

Начальные условия

$$f(a) = 0$$
, $g(a) = 0$, $f(\infty) = U$, $g(\infty) = U$.

Метод исключения переменных

$$\begin{cases} g = f'r/2 + f, \\ h = f'''r^2/2 + 3rf'' + 2f', \\ r^3f^{(4)} + 8r^2f^{(3)} + 8rf'' - 8f' = 0. \end{cases}$$

Метод исключения переменных

$$\begin{cases} g = f'r/2 + f, \\ h = f'''r^2/2 + 3rf'' + 2f', \\ r^3f^{(4)} + 8r^2f^{(3)} + 8rf'' - 8f' = 0. \end{cases}$$

Решение для уравнения типа Эйлера Пусть $f = r^k$, тогда

$$k(k-1)(k-2)(k-3) + 8k(k-1)(k-2) + 8k(k-1) - 8k = 0.$$

Решение

$$k = 0$$
, $k = 2$, $k = -1$, $k = -3$.

Общий вид
$$f,g,h$$

$$f=\frac{A}{r^3}+\frac{B}{r}+C+Dr^2,$$

$$g=-\frac{A}{2r^3}+\frac{B}{2r}+C+2Dr^2,\quad h=\frac{B}{r^2}+10Dr.$$

Уточнение констант из граничных условий

$$D = 0$$
, $C = U$, $B = -\frac{3}{2}Ua$, $A = \frac{1}{2}Ua^3$.

Скорость и давление

$$v_r(r,\theta) = U\cos\theta \left[1 - \frac{3}{2}\frac{a}{r} + \frac{1}{2}\frac{a^3}{r^3}\right],$$

$$v_{\theta}(r,\theta) = -U\sin\theta \left[1 - \frac{3}{4}\frac{a}{r} - \frac{1}{4}\frac{a^3}{r^3}\right],$$

$$p(r,\theta) = -\frac{3}{2}\mu \frac{Ua}{r^2}\cos\theta.$$

Скорость и давление

$$v_r(r,\theta) = U\cos\theta \left[1 - \frac{3}{2}\frac{a}{r} + \frac{1}{2}\frac{a^3}{r^3}\right],$$

$$v_{\theta}(r,\theta) = -U\sin\theta \left[1 - \frac{3}{4}\frac{a}{r} - \frac{1}{4}\frac{a^3}{r^3}\right],$$

$$p(r,\theta) = -\frac{3}{2}\mu \frac{Ua}{r^2}\cos\theta.$$

Компоненты тензора напряжений на поверхности сферы

$$\sigma_{rr}|_{r=a} = \left(-p + 2\mu \frac{\partial v_r}{\partial r}\right)_{r=a} = \frac{3}{2}\mu \frac{Ua}{r^2}\cos\theta,$$

$$\sigma_{r\theta}|_{r=a} = \mu \left(\frac{1}{r}\frac{\partial v_r}{\partial \theta} + \frac{\partial v_{\theta}}{\partial r} - \frac{v_{\theta}}{r}\right)_{r=a} = -\frac{3\mu U}{2a}\sin\theta.$$

Литература

• Лойцянский Л. Г. Механика жидкости газа и плазмы: Учеб. для вузов. — 7-е изд., испр. – М.:Дрофа, 2003