Estructura Electrónica de Materias: Cálculo desde primeros principios

Guía Práctica N°4

A. Resultados para Fe con estructura BBC y pseudopotenciales GGA:

(1) Caso magnético:

Convergencia en KPOINTS:		Conver	Convergencia en ENCUT.	
K	Energía total	ENCUT	Energía total	
4	-4.085001	300	-4.121582	
6	-4.108849	350	-4.119746	
8	-4.121582	400	-4.117555	
10	-4.121930	450	-4.117370	
12	-4.121572	500	-4.117559	

(2) Caso no magnético:

· ·			
Convergencia	α n	וטא	II MITG.
Convergencia	$_{\rm UII}$	171 (J T IV T 10 .

K	Energía total
4	-3.797970
6	-3.847494
8	-3.822858
10	-3.828644
12	-3.825857
14	-3.826873

Convergencia en ENCUT.

ENCUT	Energía total
300	-3.830041
350	-3.828032
400	-3.825857
450	-3.825617
500	-3.825819

5. Para los casos estudiados anteriormente, la convergencia de la energía total a la variación del parámetro de red se muestra en la siguiente figura:

6. Resultados para Fe con estructura BCC y pseudopotenciales LDA:

(1) Caso magnético:

Convergencia en KPOINTS:

K	Energía total	ENCUT	Energía total
4	-4.513904	240	-4.531648
6	-4.543464	270	-4.553569
8	-4.553608	300	-4.557551
10	-4.554087	330	-4.557006

En la siguiente figura se comparan los resultados obtenidos del cálculo de Fe con estructura BCC utilizando los pseudopotenciales GGA (línea solida negra) y LDA (línea discontinua negra).

360

380

400

Convergencia en ENCUT.

-4.555172

-4.554126

-4.553608

7. Ajustamos la energía total en función del volumen del Fe-bcc con la ecuación de estado Birch-Murnaghan para los resultados obtenidos con los pseudopotenciales GGA y LDA. Nuevamente, implementando el paquete curve_fit de scipy integrado en python, los parámetros de ajuste encontrados fueron:

Parámetros de BCC GGA magnético: Parámetros de BCC LDA magnético: E0 = -4.1136 E0 = -4.6005 B0 = 1.0410 B0 = 1.4034 V0 = 5.7612 V0 = 5.1892 B0' = 4.5862 B0' = 4.6272

Calculando el parámetro de red a partir de los valores encontrados de VO, tenemos:

a_GGA= 2.8457 a_LDA= 2.7482

Por lo tanto, el cálculo que permite reproducir el valor experimental del parámetro de red $(a_{exp} = 2,866\text{Å})$ es el cálculo de estructura BCC con un pseudopotencial con correcciones de gradiente GGA.