

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP3 – 1º semestre de 2016 – GABARITO

Na colur	na à direita, são aprese	ntadas cai	
		(LS) (LS) (DV)	Cálculo centralizado de rotas Implementado nos protocolos OSPF e IS-IS Roteadores calculam as rotas de maneira coor- denada
		(LS)	Mapa topológico da rede é utilizado pelo cálculo de rotas
(DV) (LS)	Vetor de distâncias Estado de enlace	(LS)	Cálculo de rotas baseado em algoritmos como Prim ou Dijkstra
		(\mathbf{DV})	Troca de informações topológicas da rede e cálculo de rotas são etapas alternantes
		(\mathbf{DV})	Implementado no protocolo RIP
		(\mathbf{DV})	Atinge melhor desempenho com a ajuda de técnicas como envenenamento reverso
		(\mathbf{DV})	Tabela de distâncias é utilizada pelo cálculo de rotas
		(LS)	Exige um algoritmo de broadcast para difusão de informações topológicas

(a) A rede da empresa é dada pelo endereço de rede 212.80.186.0/24, a ser dividida nas subredes R_1 (com 30 estações), R_2 (com 50 estações), R_3 (com 60 estações), R_4 (com 40 estações) e R_5 (com 20 estações). Mostre que é impossível realizar esta divisão.

AP3 - 2016/1 Página 1 de 4 (questão 2 continua)

Resposta:

O endereço de rede de cada uma das subredes deve satisfazer um valor máximo de máscara de subrede, para que elas tenham pelo menos tantos endereços quanto a quantidade de estações desejada — R_1 deve utilizar, no máximo, máscara /28 (e, por isso conter pelo menos 64 endereços), R_2 , no máximo máscara /28 (ao menos 64 endereços), R_3 , no máximo máscara /28 (ao menos 64 endereços), R_4 , no máximo máscara /28 (ao menos 64 endereços) e R_5 , no máximo máscara /28 (ao menos 32 endereços). Isto significa que, em qualquer alocação que satisfaça todas as subredes, serão necessários no mínimo 288 endereços. No entanto, a rede principal (212.80.186.0/24) possui apenas 256 endereços, logo é impossível realizar essa divisão.

(b) A rede da empresa é dada pelo endereço de rede 65.112.167.0/25, a ser dividida nas subredes R_1 (com 4 estações), R_2 (com 6 estações), R_3 (com 9 estações), R_4 (com 4 estações) e R_5 (com 12 estações). Você deixou esta tarefa com o estagiário e ele lhe apresentou as seguintes propostas de subdivisão:

	Proposta 1	Proposta 2
R_1	65.112.167.40/29	65.112.167.48/30
R_2	65.112.167.32/29	65.112.167.24/29
R_3	65.112.167.16/28	65.112.167.0/28
R_4	65.112.167.48/29	65.112.167.16/29
R_5	65.112.167.0/28	65.112.167.32/28

Determine quais destas subdivisões são válidas e quais não são, e justifique as que não estiverem de acordo.

Resposta:

A proposta 1 é válida, pois todas as subredes possuem endereços de rede válidos, suas faixas de endereços estão contidas na faixa de endereços 65.112.167.0/25 da rede principal, não se sobrepõem, e receberam pelo menos tantos endereços quanto requisitado. Já a proposta 2 não satisfaz à última destas restrições, pois associa o endereço de rede 65.112.167.48/30 para a rede R_1 , não cumprindo os requisitos de alocação apresentados para esta rede.

- - (a) A longo prazo, qual a taxa de transmissão que uma estação alcança se somente ela possuir dados para transmitir? E se todas as estações possuírem dados para transmitir?

Resposta:

Em ambos os cenários, a estação em questão somente pode acessar o meio em um slot a cada 4, e deve ficar em silêncio nos slots restantes. Isto leva a uma taxa de transmissão de $0 \cdot 3/4 + 20 \cdot 1/4 = 5$ Mbps.

(b) Suponha que, a partir do instante t = 0.0 ms, a estação 1 deseja transmitir um total de 1.2 Mbits, e a partir do instante t = 27.0 ms, a estação 2 deseja transmitir um total de 0.4 Mbits. Determine o retardo inicial de ambas as transmissões (isto é, o tempo que cada estação aguarda para iniciar a transmissão após adquirir os dados a serem enviados) e o instante de tempo em que cada transmissão termina.

Resposta:

A estação 1 irá iniciar sua transmissão no instante t=0.0 ms, com um retardo inicial de 0.0 ms, e irá encerrar sua transmissão no instante t=210.0 ms. Já a estação 2 irá iniciar sua transmissão no instante t=50.0 ms, com um retardo inicial de 23.0 ms, e irá encerrar sua transmissão no instante t=70.0 ms.

(a) Suponha que ocorre a transmissão de um fluxo de quadros de s2 para h6. Por quais equipamentos (estações, servidores, hubs e switches) esse fluxo irá transitar?

Resposta:

A transmissão será vista por h6, s2, S1, S2, S3, S4 e S5.

(b) Considere que todos os servidores e estações possuem dados a transmitir para a Internet. Qual o número máximo destes equipamentos que podem realizar essa transmissão simultaneamente, sem que ocorram colisões? Descreva um cenário em que este máximo é atingido.

Resposta:

Pode haver no máximo 7 transmissões simultâneas para a Internet, sem que haja colisão. Este máximo é atingido, por exemplo, com transmissões de h1, h4, h6, h7, s2, s3 e s5.

Suponha também que, para cada grupo de 3 pacotes consecutivos, o servidor irá criar um pacote adicional FEC, contendo o XOR destes pacotes. Este pacote será incluído na transmissão, logo após o grupo correspondente, e sua transmissão irá ocupar um slot a mais. Caso o último grupo tenha menos que 3 pacotes, o último FEC será aplicado nos pacotes restantes.

(a) Qual é o objetivo da transmissão destes pacotes FEC?

Resposta:

O objetivo é permitir que pacotes que eventualmente sejam perdidos durante a transmissão possam ser recuperados sem que o cliente precise pedir que o servidor transmita-os novamente, pois este procedimento é muito demorado para reprodução de vídeo por *streaming*.

(b) Quantos pacotes (tanto vídeo como FEC) o servidor irá enviar ao cliente nesta transmissão?

Resposta:

Serão transmitidos 34 pacotes, sendo 25 pacotes de vídeo e 9 pacotes FEC.

(c) Suponha que, nos slots 2, 4, 6, 10, 19, 28 e 29, os pacotes enviados se percam durante a transmissão (nos slots restantes, o pacote chega com sucesso). Quais pacotes de vídeo o cliente não irá receber?

Resposta:

O cliente não irá receber os pacotes de vídeo 2, 5, 8, 15 e 22.

(d) No cenário descrito do item anterior, quais pacotes de vídeo o cliente não irá reproduzir?

Resposta:

Utilizando os pacotes FEC e os outros pacotes recebidos, o cliente será capaz de recuperar os pacotes 5, 8, 15 e 22. Logo, ele não irá reproduzir os pacotes de vídeo e 2.