Компютърно упражнение №5

Диференчни методи за решаване на гранични задачи за параболични ЧДУ.

За задачата

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad 0 < x < 1, \quad 0 < t \le 2,$$

$$u(x,0) = u_0(x), \quad 0 \le x \le 1,$$

$$\alpha_1 u(0,t) + \beta_1 \frac{\partial u}{\partial x}(0,t) = \mu_1(t), \quad 0 \le t \le 2,$$

$$\alpha_2 u(1,t) + \beta_2 \frac{\partial u}{\partial x}(1,t) = \mu_2(t), \quad 0 \le t \le 2$$

- да се напишат явна и чисто неявна диференчна схема с локална грешка на апроксимацията $O(\tau + h^2)$.
 - да се напише програма за решаване на съответната дискретна задача, като в случая на неявна схема се използва метода на прогонката;
 - през интервал 0.5 по времето да се запишат във файл стойностите на приближеното и точно решение и разликата между тях в 11 точки от интервала [0, 1];
 - да се осъществят (пред асистента) по няколко изпълнения на програмата с различни стойности на отношението $\alpha = \tau / h^2$ с цел експериментиране на устойчивостта на схемите.

Стъпките τ и h да са параметри, които се задават.

Файловете да изглеждат така:

 $TIME = \dots$

x_i	Точно	Приближено	Разлика
	решение	решение y_i	$\varepsilon_i = u(x_i) - y_i$
	$u(x_i)$		

No	u_0	f(x)	α_1	α_2	$oldsymbol{eta}_1$	eta_2	μ_1	μ_2	Точно решение
1.	0	$\frac{x(1+tx)+2t^2}{\left(1+tx\right)^3}$	1	0	0	1	0	$\frac{t}{\left(1+t\right)^2}$	$\frac{tx}{1+tx}$
2.	$\frac{x^2}{2} - x$	$-e^{-t}\left(\frac{x^2}{2}-x+1\right)$	1	0	0	1	0	0	$e^{-t}\left(\frac{x^2}{2}-x\right)$
3.	x	$-e^{-t}x$	1	1	0	1	0	$2e^{-t}$	$e^{-t}x$
4.	$\sin \frac{\pi x}{2}$	$\left(\left(\frac{\pi}{2}\right)^2 - 1\right)e^{-t}\sin\frac{\pi x}{2}$	1	0	0	1	0	0	$e^{-t}\sin\frac{\pi x}{2}$
5.	$x\sin\frac{\pi x}{2}$	$-\pi e^{-t} \cos \frac{\pi x}{2} + \left(\left(\frac{\pi}{2} \right)^2 - 1 \right) e^{-t} x \sin \frac{\pi x}{2}$	1	1	1	0	0	e^{-t}	$e^{-t}x\sin\frac{\pi x}{2}$
6.	0	$\frac{\cos t}{1+x} - \frac{2\sin t}{\left(1+x\right)^3}$	1	1	0	1	sin t	$\frac{1}{4}\sin t$	$\frac{\sin t}{1+x}$
7.	0	x	1	1	0	1	0	2t	tx
8.	0	$\frac{x}{(1+t)^2}$	1	1	0	1	0	$\frac{2t}{1+t}$	$\frac{tx}{1+t}$
9.	0	$\left(1+t\left(\frac{\pi}{2}\right)^2\right)\sin\left(\frac{\pi x}{2}\right)$	1	0	0	1	0	0	$t\sin\left(\frac{\pi x}{2}\right)$

No	u_0	f(x)	α_1	α_2	$oldsymbol{eta}_1$	eta_2	$\mu_{\scriptscriptstyle 1}$	μ_2	Точно решение
10.	0	$\frac{x(1+tx)+2t^2}{(1+tx)^3}$	1	0	0	1	0	$\frac{t}{(1+t)^2}$	$\frac{tx}{1+tx}$
11.	$\frac{x^2}{2} - x$	$-e^{-t}\left(\frac{x^2}{2}-x+1\right)$	1	0	0	1	0	0	$e^{-t}\left(\frac{x^2}{2}-x\right)$
12.	X	$-e^{-t}x$	1	1	0	1	0	$2e^{-t}$	$e^{-t}x$
13.	$\sin\frac{\pi x}{2}$	$\left(\left(\frac{\pi}{2}\right)^2 - 1\right)e^{-t}\sin\frac{\pi x}{2}$	1	0	0	1	0	0	$e^{-t}\sin\frac{\pi x}{2}$
14.	$x\sin\frac{\pi x}{2}$	$-\pi e^{-t} \cos \frac{\pi x}{2} + \left(\left(\frac{\pi}{2}\right)^2 - 1\right) e^{-t} x \sin \frac{\pi x}{2}$	1	1	1	0	0	e^{-t}	$e^{-t}x\sin\frac{\pi x}{2}$
15.	0	$\frac{\cos t}{1+x} - \frac{2\sin t}{(1+x)^3}$	1	1	0	1	sin t	$\frac{1}{4}\sin t$	$\frac{\sin t}{1+x}$
16.	0	x	1	1	0	1	0	2t	tx
17.	0	$\frac{x}{(1+t)^2}$	1	1	0	1	0	$\frac{2t}{1+t}$	$\frac{tx}{1+t}$
18.	0	$\left(1+t\left(\frac{\pi}{2}\right)^2\right)\sin\left(\frac{\pi x}{2}\right)$	1	0	0	1	0	0	$t\sin\left(\frac{\pi x}{2}\right)$

No	u_0	f(x)	α_1	α_2	$oldsymbol{eta}_1$	$oldsymbol{eta_2}$	$\mu_{\scriptscriptstyle 1}$	μ_2	Точно решение
19.	0	$x(x^2-6t)$	0	1	1	0	0	t	tx ³
20.	0	$x(x^2-6t)$	0	1	1	0	0	t	tx ³
21.	0	$x(x^2-6t)$	1	1	1	0	0	t	tx ³
22.	0	$x(x^2-6t)$	1	1	1	0	0	t	tx ³
23.	0	$x(x^2-6t)$	1	0	0	1	0	3t	tx ³
24.	0	$x(x^2-6t)$	1	0	0	1	0	3 <i>t</i>	tx ³
25.	x^3	1 – 6 <i>x</i>	0	1	1	0	0	1+t	$x^3 + t$
26.	x^3	1 – 6 <i>x</i>	0	1	1	0	0	1+t	$x^3 + t$
27.	0	x	1	0	0	1	0	t	xt