Definition of MeasurementSet AIPS++ Note 191

M.H. Wieringa, ATNF T.J. Cornwell, NRAO

October 4, 1996

Contents

1	Sun	nmary	2
2	Deta	ails	2
3	Mea	asurementSet classes	3
4	MS	layout	4
	4.1	MAIN table: Coordinates, Data, pointers and Flags	7
	4.2	ANTENNA: antenna characteristics	9
	4.3	ARRAY: Array characteristics	10
	4.4	FEED: Feed characteristics	11
	4.5	FIELD: Field positions for each source	13
	4.6	OBSERVATION: Observation information	14
	4.7	OBS_LOG: Observation log information	15
	4.8	SOURCE: Source information	16
	4.9	SPECTRAL_WINDOW: Spectral window setups	17
	4.10	SYSCAL: System calibration	19
	4.11	WEATHER: weather station information	20

1 Summary

A MeasurementSet is an AIPS++ Table containing data from a telescope. Telescopes all record data in their own way, the MeasurementSet layout describes how these measurements are to be stored within the AIPS++ system. This document describes the predefined columns and keywords (including subtables) of the MeasurementSet (MS). The predefined items include required and optional ones. In addition to the predefined columns, MeasurementSets can contain instrument specific columns, keywords or subtables. These additional items would only be accessed from instrument specific code.

2 Details

- The purpose of the columns and tables described here is to store information that one can expect to arrive from a telescope. Calibrated data will be the DATA column in a calibrated MS that is otherwise simply a reference to the original MS (note that the UNITs of the DATA column may therefore be different in original and calibrated MSes). Predicted data will similarly show up as a DATA column in an MS.
- There is only one subtable of each type and that is stored as a keyword of the table. This simplifies selection since it can be done on a table (e.g. SOURCE NAME is '3C84') and the keys then used to select from the main table.
- We want to keep as many columns as possible common to both Single Dish and Synthesis.
 Furthermore, we regard most of the columns identified here as required. It simplifies code
 tremendously and the Miriad storage manager avoids significant disk space usage. However,
 we have identified a couple of cases where following these guidelines would result in too much
 wasted storage and introduced some optional columns to cope with this (e.g., FLOAT_DATA
 for single dish).
- The model is that each ANTENNA has an unrestricted number of FEEDs. For each FEED there are some RECEPTORS, probably one per polarization state (e.g. R and L or X and Y). A number of SPECTRAL_WINDOW setups are allowed. Different setups are expected in different rows of the Main table. Thus, for example, different VLA IFs show up as different rows.
- We think that PHASED_ANTENNAS and PHASED_FEEDS table will be needed but since these are quite specialized, we have refrained from specifying contents. We think that these should be implemented first as TELESCOPE specific tables (e.g. NRAO_GBT_FEEDARRAY) and then a common format agreed upon. Such tables should probably index into the ANTENNA and FEED tables to get information.

- The SOURCE table contains information that is often not present in on-line formats, therefore we have made the use of the table optional. It could be added during later processing to organize the data by source. The FIELD table is the place to describe pointings.
- The CORRELATOR table is still unspecified. Instruments like the VLBA will require it, but at present it will usually be empty.
- The PULSAR table appears to be very telescope specific so we haven't described any format.
 Perhaps this possibility would provide a good impetus for the pulsar community to make common cause.
- Non-standard information may be added in various ways as per Bob Garwood's proposal:
 - As a new column in an existing table e.g. NS_NRAO_GBT_WHATEVER
 - As an e.g. NRAO-approved column NRAO_GBT_WHATEVER or NRAO_WHATEVER
 - As a Project approved column WHATEVER.
- Units and Measures. All columns representing physical quantities should be specified in the correct units, as specified in the table descriptions. Columns representing AIPS++ Measures should have a MEASURE keyword giving the AIPS++ Measure name minus the initial 'M' (e.g., DIRECTION or EPOCH) and a MEASURE_REFERENCE keyword giving the Measure enum type as a String (e.g., "J2000" or "UTC")

3 MeasurementSet classes

The MeasurementSet is coded as a series of related classes. Each subtable follows the same basic scheme as the MAIN table. The namespace in each table is separate. For each (sub)table there is a separate class which provides various conversion and inquiry functions for the columns and keywords and defines the required set of columns and keywords. The main MeasumentSet class provides access to the subtables via these classes. E.g., MeasurementSet has a member function antenna() which gives access to the ANTENNA subtable. More detailed documentation on these classes can be found in the on-line documentation (directory: code/trial/implement/MeasurementSet).

The definite descriptions of the MS tables are contained within the AIPS++ class documentation files in the MeasurementSet module. For each of the MeasurementSet tables there is a file (e.g. MSMainEnums.html, MSAntennaEnums.html) giving a description for the enum name (e.g., DATA, POSITION) used for a particular column or keyword. Examples on how to use these classes to write a filler for a particular instrument can be found by looking at existing fillers, e.g., uvfitsfiller.

4 MS layout

There is a MAIN table containing a number of data columns and keys into various subtables. There is at most one of each subtable. The subtables are stored as keywords of the MS.

	Subtables	
Table	Contents	Keys
ANTENNA	Antenna characteris-	ANTENNA_ID, AR-
	tics	RAY_ID
ARRAY	Array characteristics	ARRAY_ID
CORRELATOR	Correlator setup	CORRELATOR_ID
FEED	Feed characteristics	FEED_ID, AN-
		TENNA_ID, AR-
		RAY_ID, TIME, SPEC-
		TRAL_WINDOW_ID
FIELD	Position etc for each	FIELD_ID
	pointing.	
FLAGGING_LOG	Log of flagging opera-	ANTENNA_ID,
	tions	ARRAY_ID,
		FEED_ID, SPEC-
		TRAL_WINDOW_ID,
		FIELD_ID, TIME,
		INTERVAL
OBSERVATION	Observer, Schedule,	OBSERVATION_ID
	etc	
OBS_LOG	Log from on-line sys-	OBSERVATION_ID,
	tem	TIME
SOURCE	Positions, etc for each	SOURCE_ID, SPEC-
	source	TRAL_WINDOW_ID,
		TIME
SPECTRAL_WINDOW	Spectral window se-	SPECTRAL_WINDOW_ID
	tups	
SYSCAL	System calibration	FEED_ID, AN-
	characteristics	TENNA_ID, AR-
		RAY_ID, TIME, SPEC-
		TRAL_WINDOW_ID
WEATHER	Weather info for each	ANTENNA_ID, AR-
	antenna	RAY_ID, TIME

Note that there are two types of subtables. For the first, simpler type, the key (ID) is the row number in the subtable. Examples are ARRAY, FIELD, SPECTRAL_WINDOW, OBSERVATION

and CORRELATOR. For the second, the key is a collection of parameters, usually including TIME. Examples are ANTENNA, FEED, SOURCE, SYSCAL, WEATHER. We think the Calabretta interpolation test is a good one: CORRELATOR setups cannot be sensibly interpolated and thus a different ID is required for each setup. For the interpolable tables, one needs to decide what value is actually to be used. We think this belongs in access routines independent of the MS.

Notes:

- All ID columns are zero-based, a value of -1 indicates that there is no corresponding subtable present.
- All required columns should be filled with suitable defaults if not actually used.
- For time dependent tables, a value of DBL_MAX (defined by including aips/Mathematics/Constants.h) for interval can be used to specify non time dependent entries.
- The layout of the CORRELATOR and FLAGGING_LOG table is currently unspecified. We need to gain some experience with specific implementations of these before specifying a general format.

4.1 MAIN table: Coordinates, Data, pointers and Flags

MAIN	table: Coordinates,	Data,	pointers and I	lags
Name	Format	Units	Measure	Comments
Columns			1	
$Coordinate\ information$				
ANTENNA1	Int			First antenna
ANTENNA2	Int			Second antenna
EXPOSURE	Double	s		The effective integra-
				tion time
FEED1	Int			Feed on ANTENNA1
FEED2	Int			Feed on ANTENNA2
INTERVAL	Double	s		Sampling interval
PULSAR_BIN	Int			Pulsar bin number
SCAN_NUMBER	Int			Scan Number
TIME	Double	s	EPOCH	Midpoint of the inte-
	Double	Б	Li ocii	gration.
TIME_EXTRA_PREC	Double	s		add to TIME for extra
	Double	5		precision (optional)
UVW	Double(3)	m	UVW	UVW coordinates
Pointers into subtables	Double(9)	1111	O V VV	C v vv coordinates
ARRAY_ID	Int			
CORRELATOR_ID	Int			
FIELD_ID	Int			
OBSERVATION_ID	Int			
PULSAR_ID SPECTRAL_WINDOW_ID	Int			
	Int			
Data DATA	C1/NIIM COD	т	I	C1:-:1:1:t
DATA	Complex(NUM_COR	π,		Complex visibility ma-
	NUM_CHAN)			trix (synthesis arrays,
EL CATE DATEA	El (MIM CODD			optional)
FLOAT_DATA	Float(NUM_CORR,			Float data matrix (sin-
CICIA	NUM_CHAN)			gle dish, optional)
SIGMA	Float(NUM_CORR)			Estimated rms noise
CICMA CDECEDIM	EL //NILVE CODE			for single channel
SIGMA_SPECTRUM	Float(NUM_CORR,			Estimated rms noise
MDIGHT	NUM_CHAN)			(optional)
WEIGHT	Float			Weight for whole data
THE CHE CONTROL	D1 (ATT 5 CT 1)			matrix
WEIGHT_SPECTRUM	Float(NUM_CHAN)			Weight for each chan-
				nel (optional)
Flag information				
FLAG	Bool(NUM_CORR,			The data flags
	NUM_CHAN)			
FLAG_HISTORY	Bool (NUM_CORR,			History of flags (op-
	NUM_CHAN,	77		tional)
	NUM_HIS)	Y		
$FLAG_ROW$	Bool			The row flag

Notes:

- **DATA, FLOAT_DATA** At least one of these columns should be present in any MeasurementSet. In special cases both could be present (e.g., single dish data used in synthesis imaging or a mix of auto and crosscorrelations on a multi-feed single dish)
- ANTENNA1, ANTENNA2 For Single dish ANTENNA1=ANTENNA2
- **PULSAR_BIN** For a pulsar the correlations are assumed to be measured for a limited number of pulse phase bins. This is the particular bin for which this data was measured.
- FLAG An array of bools with the same shape as DATA. Data is flagged bad if FLAG is True.
- **FLAG_HISTORY** A set of NUM_HIS flags for each data point, each for a different category of flagging (e.g. on-line, calibration, interactive, etc.)

Next we describe the various subtables. The columns are categorized into Keys, Data description, Data, and Flags.

4.2 ANTENNA: antenna characteristics

	ANTENNA: ant	enna cl	naracteristics	
Name	Format	Units	Measure	Comments
Columns		1	,	
Coordinate information	,			
ANTENNA_ID	Int			Key
ARRAY_ID	Int			Key
Pointers				
ORBIT_ID	Int			Orbit parameters
PHASED_ARRAY_ID	Int			Phased array
Data				
DISH_DIAMETER	Double	m		Diameter of dish
MOUNT	String			Mount type:alt-az,
				equatorial, X-Y, orbit-
				ing, bizarre
NAME	String			Antenna name
OFFSET	Double(3)	m	POSITION	Axes offset of mount to
				FEED REFERENCE
				point
POSITION	Double(3)	m	POSITION	Antenna X,Y,Z phase
				reference positions
STATION	String			Station name

Notes:

POSITION In a right-handed frame, X towards the intersection of the equator and the Greenwich meridian, Z towards the pole. The exact frame should be specified in the MEASURE_REFERENCE keyword (ITRF or WGS84). The reference point is the point on the az or ha axis closest to the el or dec axis.

4.3 ARRAY: Array characteristics

	ARRAY:	Array	characteristics	
Name	Format	Units	Measure	Comments
Data				
NAME POSITION	String Double(3)	m	POSITION	Name of array (e.g. 'VLAA', 'EVN', 'VLBA-PT'). Informational only Array reference position (optional), same frame as antenna positions.

4.4 FEED: Feed characteristics

	FEED: Feed cl	naracte	ristics	
Name	Format	Units	Measure	Comments
Columns			•	
Keys				
ANTENNA_ID	Int			Antenna id
ARRAY_ID	Int			Array id
FEED_ID	Int			Feed id
INTERVAL	Double	s		Interval
SPECTRAL_WINDOW_ID	Int			Spectral Window id
TIME	Double	S	EPOCH	Midpoint of validity
				range of parameters
Data description				
NUM_RECEPTORS	Int			# receptors on this feed
Data				
BEAM_ID	Int			Beam model
${ m BEAM_OFFSET}$	Double(2,	rad	DIRECTION	Beam position offset
	NUM_RECEPTORS)			(on sky but in antenna
				reference frame).
PHASED_FEED_ID	Int			Phased feed
POLARIZATION_TYPE	String			Type of polarization to
	(NUM_RECEPTORS))		which a given RECEP-
				TOR responds. Proba-
				bly R, L or X, Y.
POL_RESPONSE	Complex			D-matrix i.e. leakage
	(NUM_RECEPTORS,			between two receptors
	NUM_RECEPTORS)			
POSITION	Double(3)	m	POSITION	Position of feed relative
				to feed reference posi-
				tion for this antenna
RECEPTOR_ANGLE	Double	rad		The reference angle for
	(NUM_RECEPTORS))		polarization. Converts
				into Parallactic angle
				in the Sky domain.

Notes:

FEED A FEED is e.g. a single horn. A FEED can have one or two RECEPTORs that respond to different polarization states. Feeds are numbered from 0 on each separate antenna and for each SPECTRAL_WINDOW_ID. So FEED_ID should be non-zero only in the case of feed-arrays, i.e., multiple simultaneous beams on the sky at the same frequency and polarization.

SPECTRAL_WINDOW_ID A value of -1 indicates the row is valid for all spectral windows.

BEAM_ID Points to an optional BEAM subtable with parameters (or image) for the primary beam for

this antenna with this feed. No format specified yet for the BEAM table.

4.5 FIELD: Field positions for each source

	FIELD: Field posit	ions for	each source	
Name	Format	Units	Measure	Comments
Columns				
Keys				
FIELD_ID	Int			Field Id
Data				
CODE	String			Special characteristics of field
DELAY_DIR	Double(2)	rad	DIRECTION	Direction of delay center.
DELAY_DIR_RATE	Double(2)	rad/s		Rate of change of direction of delay direction
NAME	String			Name of field
PHASE_DIR	Double(2)	rad	DIRECTION	Phase center.
PHASE_DIR_RATE	Double(2)	rad/s		Rate of change of direction of phase center.
POINTING_DIR	Double(2)	rad	DIRECTION	Pointing center
POINTING_DIR_RATE	Double(2)	rad/s		Rate of change of direc-
				tion of pointing center.
REFERENCE_DIR	Double(2)	rad	DIRECTION	Reference center
REFERENCE_DIR_RATE	Double(2)	rad/s		Rate of change of direc-
				tion of reference center.
SOURCE_ID	Int			Index in Source table
TIME	Double	s	EPOCH	Time origin for the di-
				rections and rates

Notes:

SOURCE_ID Points to an entry in the optional SOURCE subtable, a value of -1 indicates there is no corresponding source defined.

4.6 OBSERVATION: Observation information

	OBSERVATION: 0	Observat	tion informatio	n
Name	Format	Units	Measure	Comments
Columns				
Data				
CORR_SCHEDULE	String(*)			Correlator script
OBSERVER	String			Name of observer(s)
OBS_SCHEDULE	String(*)			Project Schedule
PROJECT	String			Project identification
				string.
Flags				

Notes:

OBSERVATION This contains information about the observation process. In the first instance, this would be a record only. Eventually we may want to be able to interpret Schedules for processing hints e.g. CALIBRATION_GROUPs. The OBSERVATION_ID is the row number.

4.7 OBS_LOG: Observation log information

	OBS_LOG: Obser	vation	log information	
Name	Format	Units	Measure	Comments
Columns				
Keys				
OBSERVATION_ID	Int			Points to OBSERVA-
				TION table
TIME	Double	s	EPOCH	Timestamp for message
Data				
MESSAGE	String			log message

4.8 SOURCE: Source information

	SOURCE: Sour	ce info	rmation	
Name	Format	Units	Measure	Comments
Columns				
Keys				
INTERVAL	Double	S		Interval
SOURCE_ID	Int			Source id
SPECTRAL_WINDOW_ID	Int			Spectral Window id
TIME	Double	s	EPOCH	Midpoint of time for
				which this set of pa-
				rameters is accurate
Data				
CALIBRATION_GROUP	Int			# grouping for calibra-
				tion purpose
CODE	String			Special characteristics
				of source, e.g. Band-
				pass calibrator
DIRECTION	Double(2)	rad	DIRECTION	Direction (e.g. RA,
				DEC)
NAME	String			Name of source as
				given during observa-
				tions
POSITION	Double(3)	m	POSITION	Position (e.g. for solar
				system objects)
PROPER_MOTION	Double(2)	rad/s		Proper motion
SYSVEL	Double	m/s	RADIAL VE-	Systemic velocity at
			LOCITY	reference

4.9 SPECTRAL_WINDOW: Spectral window setups

SPI	ECTRAL_WINDOW	: Spect	ral window setu	ıps
Name	Format	Units	Measure	Comments
Columns				
Data description columns	3			
CORR_TYPE	Int(NUM_CORR)			Polarization of correla-
				tion
CORR_PRODUCT	Int(2, NUM_CORR)			(see below)
IF_CONV_CHAIN	Int			The IF conversion
				chain
NUM_CHAN	Int			# spectral channels
NUM_CORR	Int			# correlations
Data				
CHAN_FREQ	Double(NUM_CHAN)	Hz	FREQUENCY	Center frequencies for
				each channel in the
				data matrix.
MOLECULE	String			Molecule observed (op-
				tional)
REF_FREQUENCY	Double	Hz	FREQUENCY	The reference fre-
				quency.
RESOLUTION	Double(NUM_CHAN)	Hz		The effective noise
				bandwidth of spectral
TOTAL DANDUNDELL	D 11			channels
TOTAL_BANDWIDTH	Double	Hz		total bandwidth for
TD ANGIDION	G			this window
TRANSITION	String			Transition of molecule
DECT EDECHENCY	D1-1-	TT_	EDECHENCY	(optional)
REST_FREQUENCY	Double	Hz	FREQUENCY	The rest frequency
				(spectral line)

Notes:

CHAN_FREQ Can be non-linear to allow for e.g. AOS

CORR_PRODUCT Pair of integers for each correlation product, specifying the receptors from which the signal originated. To get the meaning of the values (0 or 1), see the POLARIZATION_TYPE in the FEED table. An example would be (0,0), (0,1), (1,0), (1,1) for all correlations between whatever the receptors on FEED1 and FEED2 are measuring

CORR_TYPE An integer for each correlation product indicating the Stokes type as defined in the Stokes class enumeration.

IF_CONV_CHAIN Identification of the electronic signal path for the case of multiple (simultaneous) IFs. (e.g. VLA: AC=0, BD=1, ATCA: Freq1=0, Freq2=1)

NUM_CORR RR would be 1, RR, LL would be 2, XX,YY,XY,YX would be 4, etc.

RESOLUTION The effective noise bandwidth of spectral channels (the frequency resolution of each channel), this may differ from the channel spacing (difference in frequency between the centers of adjacent channels). The Vector nature allows for variable-width channels.

4.10 SYSCAL: System calibration

	pa-
Keys ANTENNA_ID Int Antenna id Array id FeED_ID Int Feed id Interval SPECTRAL_WINDOW_ID Int SPECTRAL_WINDOW_ID Int Double s EPOCH Midpoint of time which this set of rameters is accurate Data description	pa-
ANTENNA_ID ARRAY_ID Int FEED_ID Int INTERVAL SPECTRAL_WINDOW_ID Int Double S EPOCH Antenna id Array id Feed id Interval Spectral window id Midpoint of time which this set of rameters is accurate	pa-
ARRAY ID FEED ID Int INTERVAL SPECTRAL_WINDOW ID TIME Double S EPOCH Array id Feed id Interval Spectral window id Midpoint of time which this set of parameters is accurate Data description	pa-
FEED_ID INTERVAL Double SPECTRAL_WINDOW_ID Int Double SPECTRAL_WINDOW_ID TIME Double SEPOCH Double SEPOCH Midpoint of time which this set of parameters is accurate	pa-
INTERVAL SPECTRAL_WINDOW_ID Int Double S EPOCH Interval Spectral window id Midpoint of time which this set of parameters is accurate Data description	pa-
SPECTRAL_WINDOW_ID Int Double s EPOCH Spectral window id Midpoint of time which this set of rameters is accurate Data description	pa-
TIME Double s EPOCH Midpoint of time which this set of parameters is accurate Data description	pa-
Which this set of rameters is accurate Data description	pa-
Data description rameters is accurate)
Data description	
	eed
NUM_RECEPTORS Int # receptors on this fe	eed
// 1000ptons on time it	
(1 or 2)	
Data	
PHASE_DIFF Float rad Phase difference	be-
tween receptor 2 a	and
receptor 1	
TCAL Float K Calibration temp	
(NUM_RECEPTORS)	
TRX Float K Receiver temperatur	re
(NUM_RECEPTORS)	
TSYS Float K System temp	
(NUM_RECEPTORS)	
TCAL_SPECTRUM Float K Calibration temp (op-
(NUM_RECEPTORS, tional)	
NUM_CHAN)	
TRX_SPECTRUM Float K Receiver temperate	ure
(NUM_RECEPTORS, (optional)	
NUM_CHAN)	
TSYS_SPECTRUM Float K System temp (op-
(NUM_RECEPTORS, tional)	
NUM_CHAN)	
Flags	
PHASE_DIFF_FLAG Bool Flag for PHASE_DI	$\overline{\mathrm{FF}}$
TCAL_FLAG Bool Flag for TCAL	
TRX_FLAG Bool Flag for TRX	
TSYS_FLAG Bool Flag for TSYS	

4.11 WEATHER: weather station information

WEATHER: weather station information				
Name	Format	Units	Measure	Comments
Columns				
Keys				
ANTENNA_ID	Int			Antenna number
ARRAY_ID	Int			Array id
INTERVAL	Double	S		Interval over which
				data is relevant
TIME	Double	s	EPOCH	
Data				
H2O	Float	m^{-2}		Average column den-
				sity of water
IONOS_ELECTRON	Float	m^{-2}		Average column den-
				sity of electrons
PRESSURE	Float	Pa		Ambient atmospheric
				pressure
REL_HUMIDITY	Float			Ambient relative hu-
				midity
TEMPERATURE	Float	K		Ambient Air Tempera-
				ture for an antenna
WIND_DIRECTION	Float	rad		Average wind direction
WIND_SPEED	Float	m/s		Average wind speed