MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

2. Sucesiones y Series

- 2.1. Usa la definición de límite de una sucesión para probar que:
- 1. $\lim_{n \to \infty} \frac{n}{n^2 + n + 1} = 0;$
- 2. si $\inf\{\frac{1}{n}: n \in \mathbb{N}\setminus\{0\}\}=0$, entonces $\lim_{n\to\infty}\frac{1}{n}=0$;
- 3. $\lim_{n\to\infty}\frac{n^2}{3n^2+1}=\frac{1}{3}$. Halla un número natural N tal que para todo $n\geq N$ se tenga que $\left| \frac{n^2}{3n^2 + 1} - \frac{1}{3} \right| < 10^{-4}$.
- **2.2.** De la sucesión $(x_n)_{n=1}^{\infty}$ se sabe que es convergente y que sus términos son alternativamente positivos y negativos. ¿Cuál es su límite? Razona la respuesta. Pon un ejemplo.
- 2.3. Determina como son los conjuntos siguientes y calcula los respectivos supremos e infimos si existen.

a)
$$\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, \frac{2n-1}{n+3}\right]$$
 b) $\bigcup_{n=1}^{\infty} \left[\frac{n^2}{6n^2+2}, \frac{n^2}{6n^2+2}\right]$

a)
$$\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, \frac{2n-1}{n+3}\right]$$
 b) $\bigcup_{n=1}^{\infty} \left[\frac{n^2}{6n^2+2}, \frac{n^2}{3n^2+1}\right]$ c) $\bigcap_{n=1}^{\infty} \left[\frac{n^2}{6n^2+2}, \frac{n^2}{3n^2+1}\right]$

- **2.4.** Sea $x \in \mathbb{R}$ cuya forma decimal es $x = r, a_1 a_2 ... a_n a_{n+1} ...$. Se considera la sucesión $(x_k)_{k=1}^{\infty} = (r, a_1...a_k)_{k=1}^{\infty}$. Prueba que $\lim_{k\to\infty} x_k = x$.
- **2.5.** Una sucesión $(x_n)_{n=1}^{\infty} \subset \mathbb{R}$ se dice que converge a infinito $(\lim_{n\to\infty} x_n = \infty)$ si para todo M > 0 existe n_0 tal que si $n > n_0$ entonces $x_n > M$.
- a) ¿Qué significa entonces que $\lim_{n\to\infty} x_n = -\infty$?
- b) Prueba que toda sucesión no acotada tiene una subsucesión convergente a ∞ o a
- c) Prueba que si lím $_{n\to\infty} x_n = \pm \infty$, entonces lím $_{n\to\infty} \frac{1}{x_n} = 0$. d) Si x > 1, comprueba que lím $_{n\to\infty} x^n = \infty$. Deduce que si $x \in (0,1)$, entonces $\lim_{n\to\infty} x^n = 0.$
 - 2.6. Calcula los siguientes límites:

1)
$$\lim_{n \to \infty} \frac{2^n + 5^n}{2^{n+2} + 5^{n+1}}$$

$$2) \lim_{n \to \infty} \sqrt{n^2 + n} - \sqrt{n}$$

$$3) \lim_{n \to \infty} \frac{\sqrt{2n} - 1}{2\sqrt{n} + 2}.$$

1)
$$\lim_{n \to \infty} \frac{2^n + 5^n}{2^{n+2} + 5^{n+1}}$$
 2)
$$\lim_{n \to \infty} \sqrt{n^2 + n} - \sqrt{n}$$
 3)
$$\lim_{n \to \infty} \frac{\sqrt{2n} - 1}{2\sqrt{n} + 2}.$$
 4)
$$\lim_{n \to \infty} \left(\frac{n - 1}{(n^2 + 1)} + \frac{n - 1}{(n^2 + 2)} + \dots + \frac{n - 1}{(n^2 + n)} \right)$$
 5)
$$\lim_{n \to \infty} \left(\frac{1}{2^2 - 1} + \frac{1}{3^2 - 1} + \dots + \frac{1$$

5)
$$\lim_{n \to \infty} \left(\frac{1}{2^2 - 1} + \frac{1}{3^2 - 1} + \dots + \frac{1}{3^2 - 1} + \dots \right)$$

2.7. a) Se considera una sucesión $(x_n)_{n=1}^{\infty}$ creciente de modo que existe

$$\lim_{n \to \infty} \frac{x_n + x_{n+1}}{2} = r.$$

Prueba que $\lim_{n\to\infty} x_n = r$.

b) Encuentrar un ejemplo de una sucesión $(y_n)_{n=1}^{\infty}$ no convergente de modo que exista

$$\lim_{n\to\infty}\frac{y_n+y_{n+1}}{2}.$$

2.8. Prueba que la sucesión $((1+1/n)^n)_{n=1}^{\infty}$ es creciente y acotada; por tanto convergente. Se define el número real e como:

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Calcula los límites de las sucesiones siguientes: a) $((1+\frac{1}{n+3})^{\frac{n}{3}})_{n=1}^{\infty}$ b) $((1-\frac{1}{n-1})^{2n})_{n=2}^{\infty}$ c) $((\frac{n^2+2n}{n^2+n})^{2n})_{n=1}^{\infty}$.

a)
$$((1+\frac{1}{n+3})^{\frac{n}{3}})_{n=1}^{\infty}$$

b)
$$((1-\frac{1}{n-1})^{2n})_{n=2}^{\infty}$$

c)
$$\left(\left(\frac{n^2+2n}{n^2+n}\right)^{2n}\right)_{n=1}^{\infty}$$

- **2.9.** Sea el conjunto $A = \{x \in \mathbb{R} : 0 \le \sqrt{\frac{9}{4}x^2 1} < \sqrt{\frac{77}{4}}\}$. Una de las siguientes sucesiones tiene todas sus entradas fuera de A, pero sin embargo converge a un punto de A. ¿Cuál es la sucesión?
- $a)\left(\frac{3n-1}{n}\right)_{n=1}^{\infty}$
- b) $\left(\frac{-2n+3}{3n}\right)_{n=1}^{\infty}$
- c) $(\frac{2n+3}{3n})_{n=1}^{\infty}$ d) $(\frac{1}{2n})_{n=1}^{\infty}$
- 2.10. Sucesiones recurrentes: A) Determina si las sucesiones siguientes son convergentes o no.
- a1) $a_{n+1} = a_n \frac{n}{n+7}$, con $a_1 = 7$. a2) $x_{n+2} = \frac{x_{n+1} + x_n}{2}$, con $x_1 = 1$ y $x_2 = 3$ (Indicación: ver que es de Cauchy). a3) $x_{n+1} = \sqrt{1 + x_n^2}$, con $x_1 > 1$.
- a4) $a_n = \frac{1}{n+1} + \dots + \frac{1}{n+n}$. B) Comprueba que las sucesiones siguientes son convergentes y calcula su límite. b1) $x_{n+1} = \frac{1}{3-x_n}$ con $x_1 = 2$. b2) $x_{n+1} = \frac{x_n^2 + m}{2x_n}$ con $x_1 = m > 1$ (Verifica que estamos ante un algoritmo para calcular \sqrt{m}).
- 2.11. De cada una de las dos sucesiones siguientes se pide determinar ¿si está acotada? ¿Si es convergente? ¿Si lím $_{n\to\infty} x_n = \infty$? Y también, encontrar una subsucesión convergente especificando su límite.

convergente especificando su fimite.
$$a)x_n = \begin{cases} p + \frac{1}{k} & \text{si} \quad n = p^k & \text{con } p \text{ primo y } k \in \mathbb{N} \\ 0 & \text{en otro caso.} \end{cases}$$

$$b)x_n = \begin{cases} \frac{(-1)^n n}{n+1} & \text{si} \quad n = 3k & \text{con } k \in \mathbb{N} \\ \sqrt{n+1} - \sqrt{n} & \text{si} \quad n = 3k+1 & \text{con } k \in \mathbb{N} \\ \frac{1}{1-x_{n-2}+x_{n-1}} & \text{si} \quad n = 3k+2 & \text{con } k \in \mathbb{N} \end{cases}$$

- **2.12.** Sea a_n el número de instrucciones de un determinado algoritmo para su ejecución sobre n datos de entrada. Se sabe que dicho algoritmo actúa de la siguiente manera:
 - 1) con solo un dato de entrada resuelve el problema usando una instrucción.
- 2) con n datos de entrada usa 4n instrucciones para reducir el problema a n-1datos y se ejecuta sobre ellos el mismo algoritmo.

Se pide: a) definir la sucesión recurrente $(a_n)_{n=1}^{\infty}$. b) Estudiar la monotonía y acotación de la misma. c) Probar por inducción que $|a_n - 2n^2| < 2n$ para todo n. d) Deducir que $\lim_{n\to\infty} \frac{a_n}{2n^2} = 1$.

- **2.13.** a)Calcula la suma de : $\sum_{n=1}^{\infty} \frac{6^n 2^n}{16^n}$ y $\sum_{n=1}^{\infty} \frac{2^{n+5}}{3^{n+3}}$.
- b) Suma $\frac{2}{\pi} \frac{4}{\pi^2} + \frac{8}{\pi^3} + \cdots + (-1)^{n-1} (\frac{2}{\pi})^n + \cdots$
- c) Se considera la sucesión $a_{n+1} = 2 + \frac{1}{a_n^2}$, con $a_1 = 2$. Hay que probar que es una sucesión de Cauchy y después calcular su límite. (Indicación: Comprueba que $|a_{n+1} - a_n| \le \frac{6}{16} |a_n - a_{n-1}|$. Después intenta acotar $|a_{n+k} - a_n|$ y usa que la sucesión $((\frac{6}{16})^n)_{n=1}^{\infty}$ es geométrica).
- **2.14.** Sea (u_n) una serie geométrica de primer término $u_0 = 1$ y razón $q \in (0, \infty)$. Llamemos $S_n = \sum_{k=0}^n u_k$. Justificar la certeza o falsedad de las siguientes expresiones:
- a) Si $\exists n \in \mathbb{N}$ tal que $S_n > 2009$, entonces q > 1.
- b) Si q < 1, entonces $\lim_{n \to \infty} u_n = q$
- c) Si q > 1, entonces la sucesión $(S_n)_{n \in \mathbb{N}}$ no está acotada.
- d) Si $\lim_{n\to\infty} S_n = 3$, entonces q = 1/2.
- e) Si q=2, entonces $S_4=15$.
- **2.15** Sean (a_n) y (b_n) dos sucesiones tales que $a_n = b_n b_{n+1}$. 1) Prueba que $\sum_{n=1}^{\infty} a_n$ es convergente si y solo si la sucesión (b_n) es convergente y se tiene que:

$$\sum_{n=1}^{\infty} a_n = b_1 - \lim_{n \to \infty} b_n$$

- 2) prueba que para cualquier serie $\sum_{n=1}^{\infty} a_n$ se puede encontrar una sucesión (b_n) que verifica las condiciones del apartado anterior.
- 3) Aplica 1) al cálculo de la suma de las series:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}, \qquad \sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)}, \qquad \sum_{n=1}^{\infty} \frac{2^{n-1}}{(1+2^n)(1+2^{n-1})} \quad \text{y} \quad \sum_{n=2}^{\infty} \ln(1-\frac{1}{n^2}).$$

2.16. Estudia la convergencia de las series:

1)
$$\sum_{n=21}^{\infty} \frac{n^2}{n^3 + 1}$$
 2) $\sum_{n=1}^{\infty} a^n n^a$ $a > 0$ 3) $\sum_{n=1}^{\infty} \frac{1}{n^{1 + \frac{1}{n}}}$ 4) $\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^n$ 5) $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ 6) $\sum_{n=2}^{\infty} \frac{2 - \sec(\frac{n\pi}{2})}{n^3}$

4)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^n$$
 5) $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ 6) $\sum_{n=2}^{\infty} \frac{2 - \sin(\frac{n\pi}{2})}{n^3}$

7)
$$\sum_{n=1}^{\infty} \frac{1 \times 3 \times 5 \cdots \times (2n+1)}{3 \times 6 \times \cdots \times 3n}$$

8)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^k}$$
 $k > 0$ 9) $\sum_{n=2}^{\infty} \frac{1}{p \ln n}$ $p > 0$ $10) \sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 1} - n}{n}$.

2.17. Determina si cada una de las series siguientes es absolutamente convergente, condionalmente convergente o ninguna de ambas cosas:

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^n}{(\ln n)^k}$$
 $k > 0$ b) $\frac{3}{2} - \frac{4}{3} + \frac{5}{4} - \frac{6}{5} + \dots$ c) $\sum_{k=1}^{\infty} \frac{(-n)^n}{(n+1)^{n+1}}$.

$$d) \sum_{n=1}^{\infty} \frac{1/2 + \cos(n\pi)}{n^2}$$

2.18 Si
$$\sum_{n=1}^{\infty} |b_n| = \infty$$
 y $\lim_{n \to \infty} \frac{b_n}{a_n} = 0$, entonces

a)
$$\lim_{n \to \infty} a_n = 1$$
 b) $\lim_{n \to \infty} a_n = \infty$ c) $\sum_{n=1}^{\infty} a_n$ es convergente. d) $\sum_{n=1}^{\infty} a_n = \infty$.

- e) Con esta condiciones no está determinado el carácter de la serie $\sum_{n=1}^{\infty} a_n$
- **2.19.** La serie $\sum_{n=1}^{\infty} \frac{a_n}{10^n}$, donde $a_1 = 1, a_2 = 3$ y $a_n = 3 \forall n > 2$, representa el número real:
- c) 2/15d) 0.134. a) 0, 13 b) 0, 14
- 2.20. Un sabio pirata decidió enterrar su tesoro en la isla Calavera en la posición límite de los puntos siguientes: partiendo del único manantial de la isla se avanza 1 hacia el este, después la mitad hacia el norte, de nuevo la mitad hacia el este, de nuevo al norte la mitad que en el paso anterior y así sucesivamente. ¿Sabrías donde encontrar el tesoro?
- **2.21.** Sean las series: $\sum_{k=0}^{\infty} \frac{x^k}{k!}$, $\sum_{k=0}^{\infty} \frac{x^{2k}}{2k!} (-1)^k$ y $\sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!} (-1)^{k+1}$. Prueba que todas son absolutamente convergentes en todo $x \in \mathbb{R}$. (Se verá que: e^x , $\cos x$ y sen x son las sumas, respectivamente, de las series anteriores).
 - **2.22.** Calcula el dominio de las funcines

1)
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{3n}$$
 2) $g(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{3^n}$ 3) $h(x) = \sum_{n=1}^{\infty} \frac{3\cos(n\pi)x^n}{n^2}$.

3)
$$h(x) = \sum_{n=1}^{\infty} \frac{3\cos(n\pi)x^n}{n^2}$$
.