Chapitre 21: Intégration

Dans tout le chapitre : I désigne un intervalle de $\mathbb R$

1 Fonctions en escalier, fonctions continues par morceau

1.1 Subdivisions d'un segment

Définition 1.1.

- * Une <u>subdivision</u> du segment [a,b] est une famille $\sigma=(x_0,...,x_n)$, où $a=x_0< x_1<...< x_n=b$
- * les x_i sont les points de la subdivision
- * les intervalles $[x_i, x_{i+1}]$ (resp. $]x_i, x_{i+1}[$) sont les <u>composantes fermées</u> (resp. <u>ouverte</u>) de σ
- * le pas de la subdivision σ est max $\{x_{i+1} x_i \mid i \in [0, n-1]\}$

Définition 1.2. Soit σ , σ' deux subdivisions d'un segment [a, b].

On dit que σ' <u>raffine</u> σ (ou : est plus fine que σ) si toute composante (ouverte) de σ' est incluse dans une composante (ouverte) de σ .

Proposition 1.3. Deux subdivisions σ_1 , σ_2 de [a,b] possèdent toujours un raffinement commun.

1.2 Fonctions en escalier

Définition 1.4.

- * Une fonction $\varphi:[a,b]\to\mathbb{R}$ sera dite <u>en escalier</u> s'il existe une subdivision σ de [a,b] telle que φ soit constante sur chaque composante de σ
- * On dit alors que σ est adaptée à φ

Proposition 1.5. L'ensemble $\mathcal{E}([a,b])$ des fonctions en escalier sur [a,b] est une sous-algèbre de $\mathbb{R}^{[a,b]}$ et, $\forall f \in \mathcal{E}([a,b]), |f| \in \mathcal{E}([a,b])$

1.3 Fonctions continues par morceaux

Définition 1.6. Une fonction $f : [a, b] \to \mathbb{R}$ est <u>continue par morceaux</u> s'il existe une subdivision $\sigma = (x_0, ..., x_n)$ de [a, b] telle que :

- * la restriction $f_{||x_i,x_{i+1}|}$ de f à chaque composante ouverte est continue
- * f admet des limites à gauche (resp. à droite) en tout point de la subdivision, sauf $a = x_0$ (resp. $b = x_0$)

Lemme 1.7. L'ensemble $C_{vm}^0([a,b])$ des fonctions continues par morceaux est la somme $C^0([a,b]) + \mathcal{E}([a,b])$.

Corollaire 1.8. Toute fonction continue par morceaux est bornée.

2 Convergence uniforme

2.1 Convergence simple

Définition 2.1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $I\to\mathbb{R}$.

On dit que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers $f:I\to\mathbb{R}$ si $\forall x\in I, f_n(x)\xrightarrow[n\to+\infty]{} f(x)$

On notera

$$f_n \xrightarrow[n \to +\infty]{CS} f$$

Définition 2.2. Si $f: I \to \mathbb{R}$ est bornée, on définit sa norme uniforme : $||f||_{\infty} = \sup\{|f(t)| \mid t \in I\}$

Proposition 2.3. La norme uniforme $\|.\|_{\infty}$ est une <u>norme</u> sur l'espace vectoriel $L^{\infty}(I)$ des fonctions $I \to \mathbb{R}$ bornées :

- * Positivité : $\forall f \in L^{\infty}(I)$, $||f||_{\infty} \geq 0$
- * Séparation : $\forall f \in L^{\infty}(I), ||f||_{\infty} = 0 \implies f = 0$
- * Homogénéité : $\forall f \in L^{\infty}(I)$, $\forall \lambda \in \mathbb{R}$, $\|\lambda f\|_{\infty} = |\lambda| \cdot \|f\|_{\infty}$
- * Inégalité triangulaire : $\forall f, g \in L^{\infty}(I), \|f + g\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty}$

Définition 2.4. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions $I\to\mathbb{R}$ bornées et $f:I\to\mathbb{R}$ bornées.

On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f si $||f_n-f||_{\infty} \xrightarrow[n\to+\infty]{} 0$

On note alors

$$f_n \xrightarrow[n \to +\infty]{CU} f$$

Proposition 2.5. Soit $(\varphi_n)_{n\in\mathbb{N}}$ et $(\psi_n)_{n\in\mathbb{N}}$ deux suites de fonctions bornées sur I et $f,g:I\to\mathbb{R}$ bornées telles que

$$\begin{cases} \varphi_n \xrightarrow[n \to +\infty]{CU} f \\ \psi_n \xrightarrow[n \to +\infty]{CU} g \end{cases}$$

Alors:

*
$$\forall \lambda \in \mathbb{R}, \, \varphi_n + \lambda \psi_n \xrightarrow[n \to +\infty]{CU} f + \lambda g$$

*
$$|\varphi_n| \xrightarrow[n \to +\infty]{CU} f$$

Théorème 2.6. Soit $(\varphi_n)_{n\in\mathbb{N}}$ une suite de fonctions bornées et $f:I\to\mathbb{R}$ bornée telle que $\varphi_n\xrightarrow[n\to+\infty]{CU}f$. Alors, si pour tout $n\in\mathbb{N}$, φ_n est continue, f l'est aussi.

2.2 Approximation uniforme

Théorème 2.7. Soit $f \in C^0_{pm}([a,b])$.

Alors il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escalier telle que $\varphi_n \xrightarrow[n \to +\infty]{CU} f$

3 Définition de l'intégrale

3.1 Intégrale des fonctions en escalier

Définition 3.1. Soit $\varphi \in \mathcal{E}([a,b])$ et $\sigma = (a = x_0,...,x_n = b)$ une subdivision adaptée à φ . On peut donc écrire

$$\varphi = \sum_{i=0}^{n} \lambda_{i} \mathbb{1}_{x_{i}} + \sum_{j=0}^{n-1} \mu_{j} \mathbb{1}_{]x_{j}, x_{j+1}[}$$

On définit alors l'intégrale de φ :

$$\int_{a}^{b} \varphi = \sum_{j=0}^{n-1} \mu_{j} (x_{j+1} - x_{j})$$

Proposition 3.2.

- * Cette intégrale est bien définie.
- * L'intégrale est une forme linéaire $\int\limits_a^b:\mathcal{E}([a,b]) o\mathbb{R}$
- * (Inégalité triangulaire & contrôle uniforme) : $\forall f \in \mathcal{E}([a,b])$,

$$\left| \int_{a}^{b} \varphi \right| \leq \int_{a}^{b} |\varphi| \leq (b-a) \|\varphi\|_{\infty}$$

* Relation de Chasles : si a < b < c, on a $\forall \varphi \in \mathcal{E}([a,b])$, $\int\limits_a^c \varphi = \int\limits_a^b \varphi + \int\limits_a^c \varphi$

3.2 Lemme fondamental et définition

Théorème 3.3. Soit $f \in C^0_{pm}([a,b])$ et $(\varphi_n)_{n \in \mathbb{N}}$ une suite d'éléments de $\mathcal{E}([a,b])$ convergent uniformément vers f.

Alors:

- * La suite $(\int_a^b \varphi_n)_{n\in\mathbb{N}}$ converge.
- * Si $(\psi)_{n\in\mathbb{N}}\in\mathcal{E}([a,b])^{\mathbb{N}}$ vérifie également $\psi_n\xrightarrow[n\to+\infty]{CU}f$, alors $\lim_{n\to+\infty}\int\limits_a^b\varphi_n=\lim_{n\to+\infty}\int\limits_a^b\varphi_n$

Définition 3.4. Soit $f \in C^0_{pm}([a,b])$

On définit <u>l'intégrale de f</u>: $\int_a^b f = \int_a^b f(t)dt$ comme la limite $\lim_{n \to +\infty} \int_a^b \varphi_n$ où $(\varphi_n)_{n \in \mathbb{N}}$ est une suite de fonctions en escalier convergeant uniformément vers f.

3.3 Propriétés de base

Théorème 3.5.

- * L'intégrale est une forme linéaire $\int_a^b : C^0_{pm}([a,b]) \to \mathbb{R}$
- * Inégalité triangulaire et contrôle uniforme : $\forall f \in C^0_{pm}([a,b])$,

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f| \le (b-a) \|f\|_{\infty}$$

- * si $f,g \in C^0_{pm}([a,c])$ et que f et g coïncident sur le complémentaire d'un ensemble fini, alors $\int_a^b f = \int_a^b g$
- * Positivité : Soit $f \in C^0_{pm}([a,b])$ positive. Alors $\int_a^b f \ge 0$
- * Croissance: Soit $f, g \in C^0_{pm}([a, b])$ telles que $f \leq g$. Alors $\int_a^b f \leq \int_a^b g$

Théorème 3.6 (stricte positivité).

* Soit $f \in C^0_{pm}([a,b])$ à valeurs ≥ 0 . Soit $x_0 \in [a,b]$ un point en lequel f est continue et $f(x_0) > 0$ Alors $\int_0^b f > 0$

3

Alors $\int_{a}^{b} f > 0$ * Soit $f \in C_{pm}^{0}([a,b])$ à valeurs ≥ 0 Si $\int_{a}^{b} f = 0$, alors f = 0 **Proposition 3.7.** Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues par morceaux sur [a,b] qui converge uniformement vers $f \in C^0_{pm}([a,b])$

Alors
$$\int_{a}^{b} f_{n} \xrightarrow[n \to +\infty]{b} \int_{a}^{b} f$$

3.4 Brève extension aux fonctions à valeurs complexes

Définition 3.8.

- * Une fonction $f:[a,b]\to\mathbb{C}$ est dite <u>continue par morceaux</u> si $\operatorname{Re} f$ et $\operatorname{Im} f:[a,b]\to\mathbb{R}$ sont continues par morceaux.
- * Pour une telle fonction, on définit

$$\int_{a}^{b} f = \int_{a}^{b} \operatorname{Re}(f) + i \int_{a}^{b} \operatorname{Im}(f)$$

Les propriétés "algébriques" (linéarité, Chasles, etc...) s'étendent sans difficulté.

Proposition 3.9. Soit $f \in C^0_{pm}([a,b];\mathbb{C})$ On a

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

4 Calcul intégral

4.1 "Théorème fondamental"

Théorème 4.1. Soit $f \in C^0_{pm}([a,b])$

- * Alors $x \to \int_a^x f$ est une <u>primitive</u> de f (càd une fonction dérivable F telle que F' = f
- * <u>Les</u> primitives de f sont les fonctions de la forme $x \to \int_a^x f + \kappa$, où $\kappa \in \mathbb{R}$

Corollaire 4.2. Toute fonction continue sur un intervalle *I* admet une primitive/

Corollaire 4.3. Soit $f \in C^0_{pm}([a,b])$ et F une primitive de f.

Alors
$$\int_{a}^{b} f = F(b) - F(a) = [F]_{a}^{b} = [F(x)]_{x=a}^{b}$$

Corollaire 4.4 (IAF pour $f \in C^1(I; \mathbb{C})$). Soit $f \in C^1(I; \mathbb{C})$ et $M \in \mathbb{R}_+$ tel que $\forall x \in I$, $|f'(x)| \leq M$ Alors f est M-lipschitzienne : $\forall a, b \in I$, $|f(b) - f(a)| \leq M|b - a|$

4

4.2 Formulaire

	Sur un intervalle inclus dans	les primitives de	sont:
	${\mathbb R}$	exp	$\exp +\kappa$
_	\mathbb{R}^*	$x\mapsto \frac{1}{x}$	$x \mapsto \ln x + \kappa$
	\mathbb{R} (si $\alpha \in \mathbb{N}$)		
	\mathbb{R}^* (si $lpha \in \mathbb{Z}$)	$x\mapsto x^{\alpha}$	$x\mapsto \frac{x^{\alpha+1}}{\alpha+1}+\kappa$
	\mathbb{R}_+^* (si $lpha\in\mathbb{R}$)		
	${\mathbb R}$	sin	$-\cos +\kappa$
		cos	$\sin + \kappa$
		sinh	$\cosh + \kappa$
		cosh	$\sinh + \kappa$
	${\mathbb R}$	$x \mapsto \frac{1}{1+x^2}$	$\arctan + \kappa$
]1,1[$x \mapsto \frac{1}{\sqrt{1-x^2}}$	$\arcsin + \kappa$

C'est un tableau de dérivées à l'envers.

4.3 Intégration par parties

Théorème 4.5. Soit $f, g \in C^1([a, b])$

On a:

$$\int_{a}^{b} fg' = \underbrace{f(b)g(b) - f(a)g(a)}_{[fg]_{a}^{b}} - \int_{a}^{b} f'g$$

Changement de variables

Théorème 4.6. Soit $f \in C^0(I)$ et $\varphi : [a, b] \mapsto I$ de classe C^1

On a alors:

$$\int_a^b f(\varphi(t))\varphi'(t)\,dt = \int_{\varphi(a)}^{\varphi(b)} fu\,du$$

Exponentielle fois (co)sinus

Exemple : Cherchons les primitives de $x \mapsto e^{2x} \cos(3x)$

On a
$$\forall x \in \mathbb{R}$$
, $e^{2x} \cos(3x) = \operatorname{Re} \underbrace{(e^{2x}e^{3x})}_{=e^{(2+3i)x}}$
Une primitive de $x \mapsto e^{(2+3i)x}$ est $x \mapsto \frac{1}{2+3i}e^{(2+3i)x}$

Donc une primitive de $x \mapsto e^{2x} \cos(3x) = \text{Re}(e^{(2+3i)x})$ est

$$x \mapsto \text{Re}\left(\frac{1}{2+3i}e^{(2+3i)x}\right) = \text{Re}\left(\frac{2-3i}{13}e^{(2+3i)x}\right)$$
$$= \frac{2}{13} \text{Re}\left(e^{(2+3i)x}\right) + \frac{3}{13} \text{Im}\left(e^{(2+3i)x}\right)$$
$$= \frac{2}{13}e^{2x} \cos(3x) + \frac{3}{13}e^{2x} \sin(3x)$$
$$= \frac{e^{2x}}{13}(2\cos(3x) + 3\sin(3x))$$

Polynômes trigonométriques

Il est facile d'interpréter un polynôme trigonométrique une fois linéarisé :

Exemple : Trouvont une primitive de $x \mapsto \cos^3(x)$

Pour $x \in \mathbb{R}$,

$$\cos^{3}(x) = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{3}$$
$$= \frac{1}{8}(e^{i3x} + 3e^{ix} + 3e^{-ix} + e^{-i3x})$$
$$= \frac{\cos(3x)}{4} + \frac{3}{4}\cos(x)$$

Donc une primitive de $x \mapsto \cos^3(x)$ est $x \mapsto \frac{\sin(3x)}{12} + \frac{3}{4}\sin(x)$

4.7 Fractions rationnelles

La méthode standard pour calculer une intégrale de $F \in \mathbb{R}(X)$ est de décomposer en éléments simples et d'intégrer les différents éléments simples.

<u>Première espèce</u>: Une primitive de $x\mapsto \frac{1}{(x-a)^n}$ est $x\mapsto \ln|x-a|$ Une primitive de $x\mapsto \frac{1}{(x-a)^n}$ est $x\mapsto \frac{1}{1-n}\frac{1}{(x-a)^{n-1}}$

Deuxième espèce, exposant 1 :

Il y a deux briques de base:

* $\frac{Q'}{Q}$ qui donnera une primitive $x\mapsto \ln |Q(x)|$

* $\frac{1}{Q}$, que l'on ramène à $\frac{1}{X^2+1}$, qui va donner des primitives de arctan

Par CL, on obtient tous les $\frac{P}{O}$, $P \in \mathbb{R}_1[X]$

Deuxième espèce, exposant quelconque : On obtient une relation de récurrence par intégration par parties.

5 Sommes de Riemann

Théorème 5.1. Soit $f \in C^0_{pm}([a,b])$

Alors

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \xrightarrow[n \to +\infty]{} \int_a^b f$$

Formules de Taylor globales

Formule de Taylor avec reste intégrale

Théorème 6.1. Soit $f \in C^{n+1}(I)$ et $a \in I$ On a $\forall x \in I$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + \int_{a}^{x} \frac{(x - t)^{n}}{n!} f^{(n+1)}(t) dt$$

Inégalité de Taylor-Lagrange

Théorème 6.2. Soit $f \in \mathbb{C}^{n+1}(I)$ et $a \in I$ tel que $f^{(n+1)}$ soit bornée.

On a $\forall x \in I$

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \right| \le \frac{|x - a|^{n+1}}{(n+1)!} ||f^{(n+1)}||_{\infty}$$