MES KALLADI COLLEGE MANNARKKAD DEPARTMENT OF COMPUTER SCIENCE

PROGRAMMING LAB: DATA STRUCTURE USING C

IVth Semester BCA & B.Sc COMPUTER SCIENCE

INDEX

SL.NO	PROGRAM NAME	REMARK
1	Reverse a String	
2	Pattern Matching Algorithm	
3	Search in 2D Array	
4	Appending of Arrays	
5	Binary Search	
6	Sparse Matrix	
7	Create a Singly Linked List	
8	Deletion from a Singly Linked List	
9	Doubly Linked List	
10	Stack Operation using Array	
11	Stack Operation using Linked List	
12	Evaluation of Postfix Expression	
13	Queue Operation using Array	
14	Queue Operation using Linked List	
15	Search an element in a binary search tree	
16	Exchange Sort	
17	Selection Sort	
18	Insertion Sort	

PROGRAM:1-Reverse a String using Pointer

```
#include<stdio.h>
#include<conio.h>
int main()
{
char str[50];
char revstr[50];
char *strptr=str;
char *revptr=revstr;
int len=-1;
clrscr();
printf("enter the string:\n");
scanf("%s",str);
while(*strptr)
strptr++;
len++;
while(len>=0)
strptr--;
*revptr=*strptr;
```

```
revptr++;
--len;
}
*revptr='\0';
printf("reverse of a string is \n\n%s",revstr);
getch();
return 0;
}
```

PROGRAM:2 – Implement Pattern Matching Algorithm

```
#include<stdio.h>
#include<string.h>
#include<conio.h>
void main()
{
    char txt[20],pat[20];
    int a,b,i,j;
    clrscr();
    printf("enter the string:\n");
    gets(txt);
    printf("enter the patern to find:\n");
    gets(pat);

a=strlen(pat);
```

```
b=strlen(txt);
for(i=0;i<=b-a;i++)
{
for(j=0;j<a;j++)
if(txt[i+j]!=pat[j])
break;
if(j==a)
printf("\n pattern found at index %d\n",i+1);
}
getch();
}
```

PROGRAM:3 -Search an element in the 2-dimensional Array

```
#include<stdio.h>
#include<conio.h>
void main()
{
  int m,n,i,j,srchno,count=0,a[50][50];
  clrscr();
  printf("Enter number of rows and column:\n");
  scanf("%d%d",&m,&n);

printf("Enter %d elements :\n",(m*n));
  for(i=0;i<m;i++)</pre>
```

```
for(j=0;j< n;j++)
scanf("\%d",\&a[i][j]);
printf("Enter elements to get the position:\t");
scanf("%d",&srchno);
for(i=0;i<m;i++)
for(j=0;j< n;j++)
if(a[i][j]==srchno)
printf("(\%d\ \%d)\n",i,j);
count++;
if(count==0)
printf("not Found");
getch();
```

PROGRAM:4 - Append two Arrays

```
#include<stdio.h>
#include<conio.h>
void main()
int ar[30],br[30],cr[30],i,j,m,n;
clrscr();
printf("\n enter limit of 1st array:");
scanf("%d",&m);
printf("\n enter limit of 2nd array:");
scanf("%d",&n);
printf("\n enter elements of 1st array:");
for(i=0;i<m;i++)
scanf("%d",&ar[i]);
 }
printf("\n enter elements of 2nd array:");
for(j=0;j< n;j++)
{
scanf("%d",&br[j]);
 for(i=0;i<m;i++)
 cr[i]=ar[i];
 for(j=0;j< n;j++)
```

```
cr[i+j]=br[j];
printf("\n after appending array is:");
for(i=0;i<m+n;i++)
{
    printf("%d\t",cr[i]);
}
getch();
}</pre>
```

PROGRAM:5 -Search an element in the array using binary Search

```
#include<stdio.h>
#include<conio.h>
void main()
{
   int list[25],max,first,last,middle,i,item,loc=-1;
   clrscr();
   printf("\n enter the limit:");
   scanf("%d",&max);
   printf("\n enter array elements:");
   for(i=0;i<max;i++)
   {
      scanf("%d",&list[i]);
   }
   printf("\n Enter item to be searched:");
   scanf("%d",&item);</pre>
```

```
first=0;
last=max-1;
while(first<=last)</pre>
middle=(first+last)/2;
if(item==list[middle])
{
loc=middle;
break;
if(item<list[middle])</pre>
last=middle-1;
else
first=middle+1;
if(loc!=-1)
printf("\n the item is found at position %d",loc+1);
else
printf("not found");
getch();
```

PROGRAM:6-Read a sparse matrix and display its triplet representation using array

```
#include<stdio.h>
#include<conio.h>
```

```
void main()
int i,j,m,n,ar[10][10],br[10][10],s=0;
clrscr();
printf("\n enter order of matrix :");
scanf("%d%d",&m,&n);
printf("\n elements of matrix:");
for(i=0;i<m;i++)
for(j=0;j< n;j++)
scanf("%d",&ar[i][j]);
}
printf("\n the given matrix is:\n");
for(i=0;i<m;i++)
for(j=0;j< n;j++)
printf("%d\t",ar[i][j]);
printf("\n");
for(i=0;i<m;i++)
```

```
for(j=0;j< n;j++)
if(ar[i][j]!=0)
{
br[s][0]=i;
br[s][1]=j;
br[s][2]=ar[i][j];
s++;
printf("the sparse matrix is:\n ");
for(i=0;i<s;i++)
for(j=0;j<3;j++)
{
printf("\%d\t",br[i][j]);
printf("\n");
getch();
```

PROGRAM:7-Create a singly linked list of n nodes and display it

Source Code:

#include<stdio.h>

```
#include<conio.h>
#include<stdlib.h>
struct node
int data;
struct node *nextptr;
};
struct node*stNode;
static void createList(int n);
static void displaylist();
static void createList(int n)
struct node *nNode;
struct node *ndBuffer;
int nData;
int i;
stNode=(struct node*)malloc(sizeof(struct node));
if(stNode==NULL)
{
printf("memory can not be allocated");
else
printf("Input data for node 1:");
```

```
scanf("%d",&nData);
stNode->data=nData;
stNode->nextptr=NULL;
ndBuffer=stNode;
for(i=2;i \le n;i++)
nNode=(struct node *)malloc(sizeof(struct node));
if(nNode==NULL)
printf("memory can not be allocated");
break;
else
printf("input data for node %d :",i);
scanf("%d",&nData);
nNode->data=nData;
nNode->nextptr=NULL;
ndBuffer->nextptr=nNode;
ndBuffer=ndBuffer->nextptr;
}
static void displaylist()
```

```
struct node *ndBuffer;
ndBuffer=stNode;
if(ndBuffer==NULL)
{
printf("list is empty");
}
else
{
while(ndBuffer!=NULL)
{
printf("Data=%d\n",ndBuffer->data);
ndBuffer=ndBuffer->nextptr;
}
void main()
int num;
clrscr();
printf("Input the number of nodes:");
scanf("%d",&num);
createList(num);
printf("Data entered in the list\n");
```

```
displaylist();
getch();
}
```

PROGRAM: 8 - Delete a given node from a singly linked list

```
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
struct node
int num;
struct node *nextptr;
}*stnode;
void create(int n);
void delete(int pos);
void display();
void create(int n)
struct node *fnnode,*tmp;
int num,i;
stnode=(struct node *)malloc(sizeof(struct node));
if(stnode==NULL)
{
printf("memory can not be allocated");
```

```
}
else
printf("Input data for node 1 \n");
scanf("%d",&num);
stnode->num=num;
stnode->nextptr=NULL;
tmp=stnode;
for(i=2;i<=n;i++)
{
fnnode=(struct node *)malloc(sizeof(struct node));
if(fnnode==NULL)
{
printf("memory can not be allocated");
break;
}
else
printf("Input data for node %d \n",i);
scanf("%d",&num);
fnnode->num=num;
fnnode->nextptr=NULL;
tmp->nextptr=fnnode;
tmp=tmp->nextptr;
}
```

```
}
void delete(int pos)
int i;
struct node *todel,*prenode;
if(stnode==NULL)
printf("There is no nodes in the list");
else
todel=stnode;
prenode=stnode;
for(i=2;i \le pos;i++)
prenode=todel;
todel=todel->nextptr;
if(todel==NULL)
break;
if(todel!=NULL)
```

```
if(todel==stnode)
stnode=stnode->nextptr;
prenode->nextptr=todel->nextptr;
todel->nextptr=NULL;
free(todel);
}
else
{
printf("Deletion can not be possible from that position");
}
void display()
struct node *tmp;
if(stnode==NULL)
{
printf("No data found in the list");
else
tmp=stnode;
while(tmp!=NULL)
{
printf("Data=%d\n",tmp->num);
```

```
tmp=tmp->nextptr;
}
}
void main()
int n,num,pos;
clrscr();
printf("Input the number of nodes:\t");
scanf("%d",&n);
create(n);
printf("Data entered in the list are:\n");
display();
printf("\nInput the position of node to delete:\t");
scanf("%d",&pos);
if(pos \le 1 || pos \ge n)
printf("Deletion can not be possible from that position\n");
}
 if(pos>1 && pos<n)
 printf("Deletion completed successfully\n");
   delete(pos);
```

```
printf("The new list are:\n");
display();
getch();
}
```

PROGRAM:9 - Create a doubly linked list of integers and display in forward and backward directions

```
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
struct node
{
int data;
struct node *rptr,*lptr;
};
struct node * create(struct node *,struct node **,int);
void display(struct node *);
void displays(struct node *,struct node *);
struct node*create(struct node *head1,struct node **tail1,int dat)
{
 struct node *newnode, *temp;
 newnode=(struct node*)malloc(sizeof(struct node));
 newnode->data=dat;
```

```
newnode->rptr=newnode->lptr=NULL;
 if(head1==NULL)
 {
  newnode->lptr=newnode->rptr=NULL;
  head1=newnode;
 }
temp=head1;
while(temp->rptr!=NULL)
temp=temp->rptr;
temp->rptr=newnode;
newnode->lptr=temp;
newnode->rptr=NULL;
*tail1=newnode;
temp=temp->rptr;
return head1;
}
void display(struct node *head)
while(head!=NULL)
{
printf("%d\n",head->data);
head=head->rptr;
}
}
```

```
void displays(struct node *tail,struct node *head)
{
while(tail!=head)
{
printf("%d\n",tail->data);
tail=tail->lptr;
}
if(tail==head)
printf("%d\n",tail->data);
}
void main()
{
 int i,n,value;
 struct node *head,*tail;
 head=NULL;
 tail=NULL;
 clrscr();
 printf("Enter the limit:");
 scanf("%d",&n);
 for(i=0;i<n;i++)
 {
```

```
printf("Enter the numbers:");
scanf("%d",&value);
head=create(head,&tail,value);
}
printf("\nThe data in the forward direction is printed below\n");
display(head);
printf("\nThe data in the backward direction is printed below\n");
displays(tail,head);
getch();
}
```

PROGRAM:10 - Implement stack operation using array

```
#include<stdio.h>
#include<conio.h>
int stack[100],choice,top,n,val,i;

void push();
void pop();
void display();

int main()
{

top=-1;
clrscr();
```

```
printf("enter size of the stack:\t");
scanf("%d",&n);
printf("-----");
printf("\n 1.push 2.pop 3.display 4.exit\n");
do
printf("\n enter your choice:");
scanf("%d",&choice);
switch(choice)
case 1:push();
    break;
case 2: pop();
       break;
case 3: display();
       break;
case 4:printf("exit point");
    break;
default:printf("invalid choice");
}
}while(choice!=4);
return 0;
```

```
void push()
if(top < n-1)
{
printf("\n enter elements to be pushed:");
scanf("%d",&val);
top++;
stack[top]=val;
}
else
printf("stack overflow");
void pop()
{
if(top>-1)
printf("the popped elements is %d",stack[top]);
top--;
else
printf("stack underflow");
```

```
}
void display()
{
if(top>=0)
{
printf("the elements of stack are:\n");
for(i=top;i>=0;i--)
printf("%d\n",stack[i]);
}
else
{
printf("stack is empty");
}
```

PROGRAM:11 -Stack Operation using Linked List

```
#include<stdio.h>
#include<conio.h>
struct node
{
  int info;
  struct node *ptr;
```

```
}*top,*top1,*temp;
int push(int a);
void pop();
void display();
int count=0;
int main()
 int choice,val;
clrscr();
printf("-----");
printf("\n 1.push 2.pop 3.display 4.exit\n");
do
{
printf("\n enter your choice:");
scanf("%d",&choice);
switch(choice)
{
case 1:printf("enter elements to be pushed: ");
    scanf("%d",&val);
   push(val);
    break;
```

```
case 2: pop();
       break;
case 3: display();
       break;
case 4:printf("exit point");
    break;
default:printf("invalid choice");
}
}while(choice!=4);
return 0;
}
int push(int a)
{
if(top==NULL)
{
 top=(struct node*)malloc(1*sizeof(struct node));
 top->ptr=NULL;
 top->info=a;
 else
 temp=(struct node *)malloc(1*sizeof(struct node));
 temp->info=a;
 temp->ptr=top;
 top=temp;
```

```
count++;
 return 0;
void pop()
top1=top;
if(top1==NULL)
printf("stack underflow");
else
top1=top1->ptr;
printf("the popped elements is %d\n",top->info);
free(top);
top=top1;
count--;
void display()
top1=top;
if(top1==NULL)
{
```

```
printf("stack is empty");
}
else
{
printf("the elements are:\n");
while(top1!=NULL)
{
printf("%d\n",top1->info);
top1=top1->ptr;
}
}
```

PROGRAM:12-Evaluation of postfix expression

```
#include<stdio.h>
#include<conio.h>
int stack[20];
int top=-1;
void push(int x)
{
    stack[++top]=x;
}
int pop()
{
    return stack[top--];
```

```
}
void main()
char exp[20];
char *e;
int n1,n2,n3,num;
clrscr();
printf("enter the postfix Expression:\t");
scanf("%s",exp);
e=exp;
while(*e!='\0')
{
if(isdigit(*e))
num=*e-48;
push(num);
else
n1=pop();
n2=pop();
switch(*e)
case'+':
{
```

```
n3=n1+n2;
break;
case'-':
n3=n2-n1;
break;
}
case'*':
n3=n1*n2;
break;
}
case'/':
n3=n2/n1;
break;
}
push(n3);
e++;
printf("The \ result \ of \ the \ postfix \ expression \ \%s=\%d\n\n",exp,pop());
getch();
```

PROGRAM:13-Implement Queue using Array

```
#include<stdio.h>
#include<conio.h>
int array[100],n,front=-1,rear=-1,val,choice,i;
void insert();
void delete();
void display();
int main()
clrscr();
printf("enter size of the queue:\t");
scanf("%d",&n);
printf("\n-----Queue operation-----\n");
printf("\n 1.insert 2.delete 3.display 4.exit\n");
do
printf("\n enter your choice:");
scanf("%d",&choice);
switch(choice)
case 1:insert();
```

```
break;
case 2: delete();
       break;
case 3: display();
       break;
case 4:printf("exit point");
    break;
default:printf("invalid choice");
}
}while(choice!=4);
return 0;
void insert()
if(rear==n-1)
printf("overflow");
else
{
if(front==-1)
front=0;
printf("\n enter elements to be inserted:");
scanf("%d",&val);
rear=rear+1;
```

```
array[rear]=val;
}
void delete()
if(front==-1)
{
printf("Queue underflow");
return;
}
else
{
printf("the deleted elements is %d",array[front]);
front=front+1;
}
void display()
{
if(front==-1)
printf("Queue is empty");
else
```

```
printf("the elements of queue are:\n");
for(i=front;i<=rear;i++)
printf("%d\n",array[i]);
}</pre>
```

PROGRAM:14- Implement Queue using Linked List

```
#include<conio.h>
#include<stdio.h>
#include<stdlib.h>
struct node
int info;
struct node *next;
};
typedef struct node *link;
link q;
link getnode()
{
link q;
q=(link)malloc(sizeof(struct node));
return(q);
}
```

```
void insert(link s,int y)
 link p;
 p=getnode();
 p->info=y;
 p->next=NULL;
 if(s->next==NULL)
 s->next=p;
 else
 q->next=p;
 q=p;
 }
void display(link s)
link p;
 p=getnode();
 p=s->next;
 while(p!=NULL)
 {
 printf("%d\t",p->info);
 p=p->next;
  }
```

```
void freenode(link p)
 free(p);
  }
 int delete(link s)
 link p;
 int y;
 p=getnode();
 p=s->next;
 if(p==q)
 q=s;
 else
 s->next=p->next;
 y=p->info;
 freenode(p);
 return(y);
}
void main()
  link s;
  int x,y;
  clrscr();
```

```
s=getnode();
   q=s;
  printf("\n\n 1.insert \n 2.delete the data \n 3.display the data \n 4.exit\n");
   do
   {
 printf("\nenter your choice:");
 scanf("%d",&x);
   switch(x)
{
case 1:
        printf("Enter the number to insert:");
        scanf("%d",&y);
        insert(s,y);
        break;
case 2: if(q!=s)
         {
        y=delete(s);
        printf("deleted number is %d:",y);
         }
        else
        printf("underflow");
        break;
```

PROGRAM:15-Search an element in a binary search tree

```
#include<stdio.h>
#include<conio.h>
void main()
{
   int i,first,last,middle,n,search,array[100];
   clrscr();
   printf("\n enter number of elements :");
   scanf("%d",&n);
   printf("\n enter %d integers\n",n);
   for(i=0;i<n;i++)
   scanf("%d",&array[i]);
   printf("enter value to find\n");
   scanf("%d",&search);
   first=0;
   last=n-1;</pre>
```

```
middle=(first+last)/2;
while(first<=last)</pre>
{
if(array[middle]<search)</pre>
first=middle+1;
else if(array[middle]==search)
{
printf("%d found at location %d\n",search,middle+1);
break;
}
else
last=middle-1;
middle=(first+last)/2;
}
if(first>last)
printf("not found! %d is not present in the list\n");
getch();
```

PROGRAM:16- Implement Exchange Sort

```
#include<stdio.h>
#include<conio.h>
```

```
void main()
int a[100],i,n,j,t;
clrscr();
printf("enter a limit:\t");
scanf("%d",&n);
printf("Enter the elements to be sorted:\n");
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n-1;i++)
for(j=i+1;j< n;j++)
if(a[i]>a[j])
t=a[i];
a[i]=a[j];
a[j]=t;
}
printf("the sorted list of elements:\n");
for(i=0;i<n;i++)
printf("%d\n",a[i]);
getch();
```

PROGRAM:17

Selection Sort

```
#include<stdio.h>
#include<conio.h>
void main()
int ar[25],n,i,j,min,pos;
clrscr();
printf("Enter the limit:\n");
scanf("%d",&n);
printf("Enter elements:\n");
for(i=0;i<n;i++)
scanf("%d",&ar[i]);
for(i=0;i<n-1;i++)
min=ar[i];
pos=i;
for(j=i+1;j< n;j++)
if(ar[j]<min)</pre>
min=ar[j];
pos=j;
if(pos!=i)
```

```
ar[pos]=ar[i];
ar[i]=min;
}

printf("sorted array is \n");
for(i=0;i<n;i++)
{
    printf("%d\t",ar[i]);
}
getch();
}</pre>
```

PROGRAM:18- Implement Insertion Sort

```
#include<stdio.h>
#include<conio.h>
void main()
{
  int a[100],i,n,j,temp;
  clrscr();
  printf("enter no of elements:");
  scanf("%d",&n);
  printf("Enter the elements:");
  for(i=0;i<n;i++)
  {
    scanf("%d",&a[i]);
}</pre>
```

```
for(i=1;i<=n-1;i++)
j=i;
while(j>0 && a[j-1]>a[j])
{
temp=a[j];
a[j]=a[j-1];
a[j-1]=temp;
j--;
printf("The sorted elements are:\n");
for(i=0;i<=n-1;i++)
printf("%d\n",a[i]);
getch();
```