

Boost _ ADA _ GBM

구름 도시공학과 일반대학원

한양대학교

- 1. Adaboost
- 2. GBM
- 3. 종합

의사결정나무 알고리즘 확장

Adaboost (Adaptive Boosting)

약한 분류기(weak learner)를 여러 개 연결하여 강한 분류기(Strong Learner)를 생성하는 메타 알고리즘

- 1. 학습데이터 세트 내 모든 데이터의 선택 확률 동일하게 초기화 (w_i)
- 2. 선택확률을 이용해 데이터 샘플 복원 추출
- 3. Weak Learner 모델을 이용하여 학습 (G_m)
- 4. 사용한 데이터 샘플로 학습 정확도 계산 (err_m)
- 5. 모델 가중치를 계산 (α_m)
- 6. 학습데이터 선택 확률 갱신 (w_i)
- 7. 2~6번 반복 (*M*)
- 8. 최종 모델 (G)

Adaboost (Adaptive Boosting)

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

S-dot Data (x = 도로, y = 대지)

Stump Tree

대 > 0.4067인 경우 데이터 수 = 854, 고온 수 : 560(0.66), 저온 수 : 294(0.34)

대 < 0.4067인 경우 데이터 수 = 177, 고온 수 : 34(0.19), 저온 수 : 143(0.81)

$err_m =$ 예측값과 실제값이 다를 확률 = 0.3181

$$\alpha_m = \ln\left(\frac{1 - err_m}{err_m}\right) = 모델 가중치 = 0.7623$$

$$w_i = w_i \times exp[\alpha_m \times I(y_i \neq G_m(x_i))]$$

오답 데이터의 가중치 증가

100 번 반복 학습 진행

최종 모델

Output
$$G(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

개별 모델의 예측 값(+1, -1) 에 각 모델의 가중치를 곱하여 Sum 0 기준으로 크면 +1, 작으면 -1로 예측

Adaboost feature importance

= 개별모델의 feature importance * 가중치

Adaboost Learning Rate

가중치 = LearningRate *
$$\ln \left(\frac{1 - err_m}{err_m} \right)$$

- 1. Adaboost
- 2. GBM
- 3. 종합

GBM (Gradient Boosting Machine)

Adaboost

- 1. Weak learner 모델을 연결하여 예측
- 2. 이전 모델의 오분류 데이터에 가중치를 부여하여 학습데이터셋 추출

GBM

- 1. Weak learner 모델을 연결하여 예측
- 2. Gradient Descent(경사 하강) 개념을 통해 다음 학습데이터셋 생성

Gradient Descent (경사하강법)

선택 가능 변수 1개 가정 (2차원 공간)

Х	у		
2	6		
6	26		
5	23		
3			
3 5	12 22		
5	24		
2	6		
10	50		
9	41		
9 1 5 4 7 5 8	41 2		
5	23		
4	16		
7	32		
5	32 22		
8	40		
1	4		
8	40		
7	35		
4	19		
8	38		

Gradient Descent (경사하강법)

f(x)	=	2x

	V				
Х	у	y_hat	loss		
2	6	4	4		
6	26	12	196		
5	23	10	169		
3	12	6	36		
5	22	10	144		
5	24	10	196		
2	6	4	4		
10	50	20	900		
9	41	18	529		
1	2	2	-		
5	23	10	169		
4	16	8	64		
7	32	14	324		
5	22	10	144		
8	40	16	576		
1	4	2	4		
8	40	16	576		
7	35	14	441		
4	19	8	121		
8	38	16	484		

Loss

Loss =
$$\frac{1}{2} \sum (y_i - (2x_i))^2$$

Gradient Descent (경사하강법)

$$f(x) = \alpha x$$

$$Loss = \frac{1}{2} \sum (y_i - (\alpha x_i))^2$$

$$\frac{\partial \text{Loss}}{\partial \alpha} = \sum x_i^2 \alpha - \sum y_i x_i$$

경사의 반대로 이동 : $-\frac{\partial \text{Loss}}{\partial \alpha}$

- Loss
- $\bullet \frac{\partial \text{Loss}}{\partial \alpha}$

GBM에서의 경사 하강

1. Loss Function의 정의

$$\min L = \frac{1}{2} \sum (y_i - f(x_i))^2$$

2. 각 데이터셋의 예측 값의 Loss Function에 대한 기울기

$$\frac{\partial L}{\partial f(x_i)} = f(x_i) - y_i$$

3. Loss를 줄이기 위해 잔차를 추가로 예측하는 모델이 필요

$$-\frac{\partial L}{\partial f(x_i)} = y_i - f(x_i) = 잔차$$

GBM Algorithm

Input: training set $\{(x_i, y_i)\}_{i=1}^n$, a differentiable loss function L(y, F(x)), number of iterations M. Algorithm:

1. Initialize model with a constant value:

$$F_0(x) = rg \min_{\gamma} \sum_{i=1}^n L(y_i, \gamma).$$

- 2. For m = 1 to M:
 - 1. Compute so-called pseudo-residuals.

$$r_{im} = -igg[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}igg]_{F(x) = F_{m-1}(x)} \quad ext{for } i = 1, \dots, n.$$

- 2. Fit a base learner (or weak learner, e.g. tree) closed under scaling $h_m(x)$ to pseudo-residuals, i.e. train it using the training set $\{(x_i, r_{im})\}_{i=1}^n$.
- 3. Compute multiplier γ_m by solving the following one-dimensional optimization problem:

$$\gamma_m = rg \min_{\gamma} \sum_{i=1}^n L\left(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)
ight).$$

4. Update the model:

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

3. Output $F_M(x)$.

다양한 Loss function을 이용한 경사 하강

Continuous loss functions: (A) L2 squared loss function; (B) L1 absolute loss function; (C) Huber loss function; (D) Quantile loss function. Demonstration of fitting a smooth GBM to a noisy sinc(x) data: (E) original sinc(x) function; (F) smooth GBM fitted with L2 and L1 loss; (G) smooth GBM fitted with Huber loss with $\delta = \{4, 2, 1\}$; (H) smooth GBM fitted with Quantile loss with $\alpha = \{0.5, 0.1, 0.9\}$.

Categorical loss function : (A) Bernoulli loss function. (B) Adaboost loss function.

단순 평균값을 이용한 회귀 나무 모형 GBM

S-Dot 온도차이 vs 도로면적 비율

Learning Rate

경사도의 반대 방향으로 Loss 함수의 최소값을 향해 이동하더라도 이동하는 간격에 대한 고민이 필요.

Overfitting

GBM은 과적합 가능성이 높아짐

- 1. 과적합을 줄이기 위해 학습률을 통해 모델이 더해질수록 영향력을 shrinkage(수축)
- 2. Bagging 방식을 통해 Subsample을 이용해 학습 데이터의 과적합 제어
- 3. Random Forest처럼 Feature subsampling을 통해 변수 과적합 제어 (max_features)

XGBoost

2016년 대용량 데이터에서 GBM등의 알고리즘을 빠르게 병렬 수행이 가능하도록 만들어진 오픈소스

https://xgboost.readthedocs.io/en/latest/index.html

https://github.com/dmlc/xgboost/releases/tag/v1.4.0

Light GBM

2016년 MS에서 대용량 GBM 등의 알고리즘을 빠르게 병렬 수행이 가능하도록 만들어진 프레임워크

https://www.microsoft.com/en-us/research/project/lightgbm/

https://github.com/microsoft/LightGBM

Catboost

2017년 러시아 Yandex에서 카테고리컬 데이터의 Gradient Boost를 지원하는 오픈소스

https://catboost.ai/

https://github.com/catboost/catboost

- 1. Adaboost
- 2. GBM
- 3. 종합

Dtree, Bagging, Boosting 모델 동시 학습

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import confusion_matrix
from sklearn.inspection import permutation_importance

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
```

분석 결과 종합

구분	Dtree	Bagging Tree	Random Forest	AdaBoost	GBM
학습시간	1.34	3.22	0.46	0.67	1.34
Train ACC	95.98%	100%	100%	89.65%	95.08%
Test ACC	69.76%	68.60%	72.86%	73.64%	69.76%