Provided benchmark tests of this library

New users may read the provided readme-file. The following benchmark tests can be called inside the library.

One-dimensional benchmark tests

Test number	Function	Visualization over the normalized parametric domain
P1	for $x \in [-1.5, 5]$, $\mathcal{M}_{SH,1D}(x) = 3x - \frac{0.05}{(x - 4.75)^2 + 0.04} - \frac{0.07}{(x - 4.45)^2 + 0.005} - 6,$	15 — Msund 5 — 3 0 -5 — 10 -15 0 0.2 0.4 0.6 0.8 1
P2	for $x \in [-0.5, 5]$, $\mathcal{M}_{Hump,1D}(x) = 5x + \frac{0.05}{(x - 0.45)^2 + 0.002} - \frac{0.5}{(x - 3.5)^2 + 0.03} - 6$	30 25 20 15 10 5 0 0.2 0.4 0.6 0.8 1
Р3	for $x \in [-1.5, 1.0]$, $\mathcal{M}_{Gr,1D}(\boldsymbol{x}) = \frac{60\sin(6\pi x)}{2\cos(x)} + (x-1)^4$	40
P4	for $x \in [-1.5, 6.0]$, $\mathcal{M}_{AdGr, 1D}(\boldsymbol{x}) = \begin{cases} t_1(\boldsymbol{x}) & \text{if } x \in]0.5, 2.5] \\ t_2(\boldsymbol{x}) & \text{if } x > 2.5 \\ t_3(\boldsymbol{x}) & \text{else} \end{cases}$	100 0 >> -100 -200 -300 0 0.2 0.4 0.6 0.8 1

 ${\bf Table~1}-{\bf One\text{-}dimensional~benchmark~functions~(P1~{\bf to~P7})}$

 ${\bf Two-dimensional\ benchmark\ tests}$

Test number	Function	Visualization over the normalized
		parametric domain
P8	for $(x_1, x_2) \in [0, \pi]^2$, $\mathcal{M}_{Mi,2D}(\boldsymbol{x}) = -\sum_{i=1}^3 \sin(x_i) \sin^{20} \left(\frac{ix_i^2}{\pi}\right)$	0.5 0.5 0.5 y 0 0 0 x

P9	for $(x_1, x_2) \in [-0.6, 0.9]^2$, $\mathcal{M}_{DW,2D}(\boldsymbol{x}) = -\frac{1 + \cos(12\sqrt{x_1^2 + x_2^2})}{0.5(x_1^2 + x_2^2) + 2}$	0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.
P10	for $(x_1, x_2) \in [-10.0, 10.0]^2$, $\mathcal{M}_{Booth, 2D}(\boldsymbol{x}) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$	3000 1000 0 1 0.5 0.5 0.5
P11	for $(x_1, x_2) \in [-100.0, 100.0]^2$, $\mathcal{M}_{Boha, 2D}(\boldsymbol{x}) = x_1^2 + 2x_2^2 - 0.3\cos(3\pi x_1)$ $-0.4\cos(4\pi x_2) + 0.7$	×10 ⁴ 3 2 2 2 3 W 1 0.5 0.5 0.5
P12	for $(x_1, x_2) \in [-5.0, 10.0] \times [0.0, 15.0]$, $\mathcal{M}_{Br,2D}(\boldsymbol{x}) = \left(x_2 - \frac{5.1}{\pi^2}x_1^2 + \frac{5}{\pi}x_1 - 6\right)^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos(x_1) + 10$	200 200 200 100 100 100 100 100 100 100
P13	for $(x_1, x_2) \in [-0.5, 1.0]^2$, $\mathcal{M}_{Fr,2D}(\boldsymbol{x}) = 1.875 \exp\left(-\frac{(9x_1 - 2)^2}{4} - \frac{(9x_2 - 2)^2}{4}\right)$ $+ 1.125 \exp\left(-\frac{(9x_1 + 1)^2}{49} - \frac{9x_2 + 1}{10}\right)$ $+ 0.5 \exp\left(-\frac{(9x_1 - 7)^2}{4} - \frac{(9x_2 - 3)^2}{4}\right)$ $- 1.6 \exp\left(-(9x_1 - 4)^2 - (9x_2 - 7)^2\right)$	

Table 2 – Two-dimensional benchmark tests (P8 to P17)

Higher-dimensional benchmark tests

Test number	Function	Visualization over the normalized parametric domain
P18	for $(x_1, \dots, x_3) \in [-5.12, 5.12\pi]^3$, $\mathcal{M}_{Sp,3D}(\boldsymbol{x}) = \sum_{i=1}^3 x_i^2$	$x_{i} = 0.0 \ \forall i > 2$
P19	for $(x_1, x_2, x_3) \in [-1, 1]^3$ $\mathcal{M}_{Ha,3D}(\boldsymbol{x}) = -\sum_{i=1}^4 \alpha_i \exp\left(-\sum_{j=1}^3 A_{ij}(x_j - P_{ij})^2\right),$ where $\boldsymbol{\alpha} = (1.0, 1.2, 3.0, 3.2)^T$ $\boldsymbol{A} = \begin{bmatrix} 3.0 & 10 & 30 \\ 0.1 & 10 & 35 \\ 3.0 & 10 & 30 \\ 0.1 & 10 & 35 \end{bmatrix}$ $\boldsymbol{P} = 10^{-4} \begin{bmatrix} 3689 & 1170 & 2637 \\ 4699 & 4387 & 7470 \\ 1091 & 8732 & 5547 \\ 381 & 5743 & 8828 \end{bmatrix}$	$x_{3} = 1$ 0 0 0.5 x_{2} 0 0 0.5 x_{2} 0 0 0.005 x_{3} 0.015 0.002 0.002 0.002 0.002 0.002 0.003 x_{3} 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P20	for $(x_1, x_2, x_3) \in [0, 4\pi]^3$, $\mathcal{M}_{Ish,3D}(\boldsymbol{x}) = \sin(x_1) + 7\sin^{2(x_2)} + 0.05x_3^3 \sin(x_1)$,	$x_3 = \pi$ $x_3 = \pi$ $x_3 = \pi$ $x_4 = 2\pi$ $x_2 = 2\pi$ $x_3 = \pi$ $x_4 = 2\pi$ $x_5 = 2\pi$

Table 3 – Higher-dimensional benchmark tests (P18 to P24)