Hacer los impares y el 74:

10.2 Ejercicios

31. Use las ecuaciones paramétricas de una elipse $x = a \cos \theta$, $y = b \sin \theta$, $0 \le \theta \le 2\pi$ para encontrar el área que encierra.

32. Encuentre el área encerrada por la curva $x = t^2 - 2t$, $y = \sqrt{t}$ y el eje y.

33. Encuentre el área encerrada por el eje x y la curva $x = 1 + e^t$, $y = t - t^2$.

37-40 Plantee una integral que represente la longitud de la curva. Después utilice su calculadora para encontrar la longitud con una aproximación de cuatro decimales.

37. $x = t + e^{-t}$, $y = t - e^{-t}$, $0 \le t \le 2$

38. $x = t^2 - t$, $y = t^4$, $1 \le t \le 4$

39. $x = t - 2 \operatorname{sen} t$, $y = 1 - 2 \cos t$, $0 \le t \le 4\pi$

41-44 Encuentre la longitud exacta de la curva.

41. $x = 1 + 3t^2$, $y = 4 + 2t^3$, $0 \le t \le 1$

42. $x = e^t + e^{-t}$, y = 5 - 2t, $0 \le t \le 3$

43. $x = t \operatorname{sen} t$, $y = t \cos t$, $0 \le t \le 1$

45-46 Grafique la curva y encuentre su longitud.

45. $x = e^t \cos t$, $y = e^t \sin t$, $0 \le t \le \pi$

47. Grafique la curva x = sen t + sen 1.5t, $y = \cos t$ y encuentre su longitud con una aproximación de cuatro decimales.

57-60 Plantee una integral que represente el área de la superficie obtenida al rotar la curva dada en torno al eje *x*. Después utilice su calculadora para encontrar el área de la superficie con una aproximación de cuatro decimales.

57. $x = t \operatorname{sen} t$, $y = t \cos t$, $0 \le t \le \pi/2$

58. $x = \sin t$, $y = \sin 2t$, $0 \le t \le \pi/2$

59. $x = 1 + te^t$, $y = (t^2 + 1)e^t$, $0 \le t \le 1$

60. $x = t^2 - t^3$, $y = t + t^4$, $0 \le t \le 1$

61-63 Encuentre el área exacta de la superficie obtenida al rotar la curva dada en torno al eje x.

61. $x = t^3$, $y = t^2$, $0 \le t \le 1$

62. $x = 3t - t^3$, $y = 3t^2$, $0 \le t \le 1$

63. $x = a\cos^3\theta$, $y = a\sin^3\theta$, $0 \le \theta \le \pi/2$

65-66 Encuentre el área de la superficie generada al rotar la curva dada en torno al eje y.

65. $x = 3t^2$, $y = 2t^3$, $0 \le t \le 5$

74. Una vaca está atada a un silo con radio r por una cuerda lo suficientemente larga para alcanzar el lado opuesto del silo. Encuentre el área disponible para el apacentamiento de la vaca.

Respuestas:

31.
$$\pi ab$$
 33. $3-e$ 35. $2\pi r^2 + \pi d^2$ 37. $\int_0^2 \sqrt{2 + 2e^{-2t}} dt \approx 3.1416$ 39. $\int_0^{4\pi} \sqrt{5 - 4\cos t} dt \approx 26.7298$ 41. 4 43. $\frac{1}{2}\sqrt{2} + \frac{1}{2}\ln(1 + \sqrt{2})$

37.
$$\int_0^2 \sqrt{2 + 2e^{-2t}} dt \approx 3.1416$$

39.
$$\int_0^{4\pi} \sqrt{5-4\cos t} \ dt \approx 26.7298$$
 41. $4\sqrt{2}-2$

43.
$$\frac{1}{2}\sqrt{2} + \frac{1}{2}\ln(1+\sqrt{2})$$

45.
$$\sqrt{2} (e^{\pi} - 1)$$

47. 16.7102

49. 612.3053 **51.**
$$6\sqrt{2}$$
, $\sqrt{2}$

55. a)

b) 294

57.
$$\int_0^{\pi/2} 2\pi t \cos t \sqrt{t^2 + 1} dt \approx 4.7394$$

59.
$$\int_0^1 2\pi (t^2 + 1)e^t \sqrt{e^{2t}(t+1)^2(t^2 + 2t + 2)} dt \approx 103.5999$$

61.
$$\frac{2}{1215}\pi(247\sqrt{13}+64)$$
 63. $\frac{6}{5}\pi a^2$ **65.** $\frac{24}{5}\pi(949\sqrt{26}+1)$ **71.** $\frac{1}{4}$

$$65^{-24} = (0.40 \sqrt{26} + 1)$$
 71 \frac{1}{2}

74.
$$\frac{5}{6}\pi^3 r^2$$