

Deep Learning with MATLAB

Fred Liu

Application Engineer

What is Deep Learning?

Deep Learning

- Subset of machine learning that performs automatic feature extraction
 - Learns features and tasks directly from data

Example 1: Detection and localization using deep

YOLO v2 (You Only Look Once)

Semantic Segmentation using SegNet

Example 2: Analyzing signal data using deep

learning

Signal Classification using LSTMs

Speech Recognition using CNNs

Example 3: Robot walking with deep reinforcement learning

Simulation During Training

Trained Agent (DQN, DDPG, etc.)

Agenda

Machine Learning Overview

How to use Pretrained model

Create Deep Learning Model(MNIST)

Try to do Transfer Learning

Agenda

Machine Learning Overview

How to use Pretrained model

Create Deep Learning Model(MNIST)

Try to do Transfer Learning

Unsupervised
Learning
[No Labeled Data]

Machine Learning
Supervised Learning
[Labeled Data]

Reinforcement
Learning
[Interaction Data]

Learning

Machine Learning

Unsupervised Learning [No Labeled Data]

Supervised Learning [Labeled Data]

Reinforcement Learning [Interaction Data]

Learning

Machine Learning

Unsupervised
Learning
[No Labeled Data]

Supervised Learning [Labeled Data]

Reinforcement Learning [Interaction Data]

Learning

Machine Learning

Unsupervised Learning [No Labeled Data]

Supervised Learning [Labeled Data]

Reinforcement Learning [Interaction Data]

Deep Learning and Reinforcement Learning Workflow

PREPARE DATA

Data access and preprocessing

Ground truth labeling

Simulation-based data generation

TRAIN MODEL

Model design, Hyperparameter tuning

Model exchange across frameworks

Hardwareaccelerated training

DEPLOY SYSTEM

Multiplatform code generation (CPU, GPU)

Embedded deployment

Enterprise Deployment

Iteration and Refinement

Agenda

Machine Learning Overview

How to use Pretrained model

Create Deep Learning Model(MNIST)

Try to do Transfer Learning

Download and Install Pre-trained Networks

1. Go to the **Home** tab and click the **Add-Ons** icon.

2. Search 'pretrained models'. Click AlexNet add-on to open its detailed information page.

Download and Install Pre-trained Networks

3. Install the add-on.

4. Import the model by typing **net** = **alexnet** in command window!

```
command Window
>>> net = alexnet

net =

SeriesNetwork with properties:
```

AlexNet
VGG-16
Caffe
PRETRAINED MODEL

Layers: [25x1 nnet.cnn.layer.Layer]

Cat

What is Deep Learning?

Deep learning is a type of **machine learning** that learns tasks directly from data

Car

Bird

Deep Learning In 5 Lines of Code

Deep Learning In 5 Lines of Code

```
net = resnet50;
im = imread('r01.jpg');
imshow(im);
imResized = imresize(im,[224 224]);
label = classify(net,imResized)
```


label = categorical wood rabbit

Object Recognition Using Deep Learning

Training (GPU)	Millions of images from 1000 different categories
Prediction	Real-time object recognition using a webcam connected to a laptop

Manage Large Sets of Images – (1)

imds = imageDatastore(ImagesPath, ...

'IncludeSubfolders', true,...

'LabelSource','foldernames',...

'ReadFcn', @customreader);

Customized MATLAB function

```
function lout = customreader(filename)
  I = imread(filename);
  % Some images may be grayscale. Replicate the image 3 times to
  % create an RGB image.
  if ismatrix(l)
    I = cat(3,1,1,1);
  end
  % Resize the image as required for the CNN.
  lout = imresize(I, [227 227]);
```

Manage Large Sets of Images – (2)

- Methods for ImageDatastore:
 - **splitEachLabel**: Split ImageDatastore labels by proportions
 - countEachLabel: Count files in ImageDatastore labels
 - readimage: Read specified image from ImageDatastore

5×2 table

Label	Count
MathWorks Cap	15
MathWorks Cube	15
MathWorks Playing Cards	15
MathWorks Screwdriver	15
MathWorks Torch	15

Lahel

Count

Why is Deep Learning So Popular Now?

Computer Vision Tasks in Deep Learning

Classification Classification + Localization CAT CAT Single object

Multiple object

No object, just pixel

Agenda

Machine Learning Overview

How to use Pretrained model

Create Deep Learning Model(MNIST)

Try to do Transfer Learning

Deep Learning:

Convolutional Neural Networks (CNN/ConvNet)

Multi-layered neural network

Convolutional Neural Networks (CNN/ConvNet)

Thinking about Layers

- Layers are like blocks
 - Stack on top of each other
 - Replace one block with a different one
- Each hidden layer processes the information from the previous layer

Thinking about Layers

- Layers are like blocks
 - Stack on top of each other
 - Replace one block with a different one
- Each hidden layer processes the information from the previous layer
- Layers can be ordered in different ways

Convolution Layer

Core building block of a CNN

Convolve the filters sliding them across the input, computing the dot

product

Intuition: learn filters that activate when they "see" some specific feature

Convolution Layers Search for Patterns

These patterns would be common in the number 0

Convolution Layer – (2)

Input image

Feature Maps

Rectified Linear Unit (ReLU) Layer

- Frequently used in combination with Convolution layers
- Allows for faster and more effective training
- f(x) = max(0, x), activation is thresholded at 0

Pooling Layer

- Perform a downsampling operation across the spatial dimensions
- Goal: reducing the number of parameters
- Max pooling and average pooling methods

Visualizing and Debugging Intermediate Results

MNIST: The "Hello, World!" of Computer Vision – (1)

What?	A set of handwritten digits from 0-9
Why?	An easy task for machine learning beginners
How many?	60,000 training images 10,000 test images
Best results?	99.79% accuracy

Sources: http://yann.lecun.com/exdb/mnist/

https://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results

MNIST: The "Hello, World!" of Computer Vision – (2)

```
imds= imageDatastore(location);
layers = [ ...
  imageInputLayer([28 28 1], 'Normalization', 'none');
  convolution2dLayer(5, 20);
  reluLayer();
  maxPooling2dLayer(2, 'Stride', 2);
  fullyConnectedLayer(10):
  softmaxLayer();
  classificationLayer()];
opts = trainingOptions('sgdm',...
             'MaxEpochs', 5,...
             'InitialLearnRate', 0.01,...
             'MiniBatchSize',128,...
             'ExecutionEnvironment', 'multi-gpu',...
             'Plots','training-progress');
net = trainNetwork(imds, layers, opts);
label = classify(net, img)
```


Handle training images.

Create the layers for CNN.

Set training options and train.

Classify image.

Agenda

Machine Learning Overview

How to use Pretrained model

Create Deep Learning Model(MNIST)

Try to do Transfer Learning

Transfer Learning with Pretrained Models

Inception-v3

MobileNet-v2

VGG-16

Inception-ResNet-v2

ResNet-18/50/101

GoogLeNet

DenseNet-201

NASNet

SqueezeNet

AlexNet

Places365-GoogLeNet

Xception

Import & Export Models Between Frameworks

Keras-Tensorflow Importer

Caffe Model Importer

ONNX Model Converter

Two Ways to Work with TensorFlow and PyTorch

Model Exchange with MATLAB

Transfer Learning Workflow

Load pretrained network Early layers that learned Last layers that low-level features learned task (edges, blobs, colors) specific features 1 million images 1000s classes

Thank you!

