單板 NVIDIA JETSON NANO 人臉辨識

國立勤益科技大學 電機工程系

指導老師:簡伯霖老師

班級:四電三丙

學生:高天儀、江嘉哲

摘要

本專題使用 NVIDIA JETSON NANO 單板以及 Ubuntu 的作業系統來進行人臉辨識,Ubuntu 是以桌面 應用為主的 Linux 發行版,Ubuntu 是著名的 Linux 發行版之一,也是目前最多使用者的 Linux 版本。運用 Visual Studio Code (簡稱 VS Code) 跨平台的免費原始 碼編輯器,程式方面使用 C++和 OpenCV,使用已經訓練好的 caffemodel 檔以及執行檔 prototxt 來進行簡單的人臉辨識。其中 Caffe 全稱為 Convolutional Architecture for Fast Feature Embedding,是一個被廣泛使用的開源深度學習框架。

關鍵字:NVIDIA JETSON NANO、Visual Studio Code、 人臉辨識

一、簡介

隨著時代的進步,人們的生活也越來越便利, 現在人手一機的時代,手機的功能也越來越便利,而 在大部分的手機都有一個功能叫做「人臉辨識」,而 我們的專題則是使用 NVIDIA JETSON NANO 來執 行。

本專題應用 NVIDIA JETSON NANO 搭配攝影機, 將攝影機鏡頭內的畫面即時顯示,對畫面中的所有人 像進行即時人臉辨識,並將所有的人臉偵測數據顯示 出來,而利用能夠同時偵測多數目標的功能,就能夠 在鏡頭的範圍內辨識出有多少人會在這一個空間,進 一步的達到人流管制的功能,也應用到現今社會在公 共場合的特殊需求。

二、理論基礎

本專題使用 NVIDIA JETSON NANO,輸入裝置 有鍵盤、滑鼠還有攝影機,輸出裝置只有螢幕,作業 系統是使用 Ubuntu,軟體方面我們用 Visual Studio Code 來寫,使用 C++語言配合 OpenCV 來進行即時人 臉辨識,程式中我們有用已經訓練好的 Caffemodel 檔, 在 Visual Studio Code 中 OpenCV 需要三個負責環境配置的檔案,主要重點是 OpenCV 的位置要設置好,如果沒設置好將無法執行有使用 OpenCV 的程式檔。

三、系統架構

本專題研究使用 NVIDIA JETSON NANO 當作主體,並使用 Ubuntu 作業系統、C++程式、VS code、Opencv、Caffe 模型來執行,使用攝影機即時顯示畫面,進行人臉辨識。

3.1 硬體

圖 3-1 硬體架構圖

圖 3-2 設備接線圖

如圖 3.1 所示。本專題之硬體部份分別為:1.

單板 NVIDIA JETSON NANO 2. Logitech C270 HD 網路攝影機 3. 鍵盤 4. 螢幕。應用 Visual Studio Code編譯軟體,用鍵盤手動控制程式,將攝影機畫面即時顯示至螢幕,由程式抓取人像位置,進行人臉辨識並顯示數據。

3.1.1 介紹 NVIDIA JETSON NANO

NVIDIA JETSON 是 NVIDIA 為嵌入式系統設計的人工智慧平台,而我們專題所使用的是 NVIDIA JETSON NANO,硬體外觀的尺寸只有 70 x 45 mm,並且具備了 472 GFLOP(每秒 10 億的浮點運算次數)的運算能力,能夠同時執行多個神經網路(例如 Caffe),以及同步處理數個高解析度感應器,而且只需要耗費5 到 10 瓦特。軟體方面則支援深度學習框架,以及OpenCV 等電腦視覺應用[1]。

	模組技術規格
GPU	NVIDIA Maxwell [™] 架構,配備 128 個 NVIDIA CUDA [®] 核心,運算效能可達 0.5 兆灾 浮點運算 (FP16)
CPU	四核心 ARM [®] Cortex [®] -A57 MPCore 處理器
記憶體	4 GB 64 位元 LPDDR4 1600 MHz 25.6 GB/秒
儲存空間	16 GB eMMC 5.1 快閃記憶體
影片編 碼	4Kp30 4x 1080p30 9x 720p30 (H.264/H.265)
影片解 碼	4Kp60 2x 4Kp30 8x 1080p30 18x 720p30 (H.264/H.265)
攝影機	12 個通道 (3x4 或 4x2) MIPI CSI-2 D-PHY 1.1 (18 Gbps)
連線能力	Wi-Fi 需外接晶片
	10/100/1000 BASE-T 乙太網路
顯示器	HDMI 2.0 或 DP1.2 eDP 1.4 DSI (1x2) 2 個同步
UPHY	1 個 1/2/4 PCIE、1 個 USB 3.0、3 個 USB 2.0
1/0	3 個 UART、2 個 SPI、2 個 I2S、4 個 I2C、GPIO
冶 4	69.6 公釐×45 公釐
機械規格	260-pin 邊緣接頭

圖 3-3 NVIDIA JETSON NANO 模組技術規格 (圖片擷取 NVIDIA 官網)

	開發套件技術規格
GPU	128-core NVIDIA Maxwell™
СРИ	Quad-core ARM A57 @ 1.43 GHz
記憶體	4GB 64-bit LPDDR4 25.6GB/s
儲存空間	microSD (不包含記憶卡)
影片編碼器	4Kp30 4x 1080p30 9x 720p30 (H.264/H.265)
影片解碼器	4Kp60 2x 4Kp30 8x 1080p30 18x 720p30 (H.264/H.265)
連線能力	Gigabit Ethernet, M.2 Key E
攝影機	2x MIPI CSI-2 connectors
顯示器	HDMI 與 DP
USB	4x USB 3.0, 1x USB 2.0 Micro-B
其他	40 pin 排針連接器 (SPIO、I2C、I2S、SPI、UART) 12 pin 排針連接器 (電源及相關訊號、UART) 4 pin 風扇排針連接器
機械規格	100 mm x 80 mm x 29 mm

圖 3-4 NVIDIA JETSON NANO 開發套件技術規格 (圖片擷取 NVIDIA 官網)

圖 3-5 NVIDIA JETSON NANO 正視圖

圖 3-6 NVIDIA JETSON NANO 側視圖

3.2 軟體

圖 3-7 軟體流程圖

圖 3.7 所示為軟體流程圖,當 Visual Studio Code 編譯軟體按下執行鍵,會將預先設置好的畫面大小設置完成,再讀取已學習完成的 Caffemodel 檔,接著找尋已接上 USB 接孔的攝影機,完成預設好的攝影機設定(攝影機畫面長寬、自動對焦),進行人臉辨識運算以及資料處理加工,螢幕顯示攝影機畫面及相關數據(頭像在畫面中的大小、頭像畫面左上角的位置、頭像編號、分辨機率、分辨頭像在畫面中的位置(左右)、頭像中間點),按 ESC 結束程式所有動作。

3.2.1 Ubuntu 作業系統

Ubuntu 是著名的 Linux 發行版之一,也是目前最多使用者的 Linux 版本,而 Ubuntu 專案完全遵從開源軟體的開發原則[2]。 Ubuntu 和我們常用的 windows 10 有些不一樣,其中最明顯的就是操作介面,剛開始用有些不熟悉,不過 Ubuntu 有很多事都可以靠在terminal(終端機)內輸入指令完成,下載、解壓縮、安裝、卸載等等,都是用terminal 完成,terminal 幾乎可以做到所有的事。

圖 3-8 Ubuntu 作業系統執行畫面

3.2.2 安裝 Ubuntu 作業系統步驟

Step1 準備一片 SD 卡,官方建議最低要 16GB,我們 取用 64GB。

Step2 使用有內建 SD 卡讀卡機的筆記型電腦。

Step3 下載官方提供的映像檔,下載後請將檔案解壓縮,並記得存檔路徑。

Step4 安裝映像檔燒錄軟體 balenaEtcher。

Step5 執行 balenaEtcher, 進行燒錄。

Step6 將 SD 卡插入 NVIDIA JETSON NANO 卡槽。

Step7 啟動NVIDIA JETSON NANO並設定以下內容: 同意條款、選擇語言、選擇鍵盤排列方式、選 擇時區、設定帳號及密碼。

圖 3-9 64GB SD 卡

圖 3-10 balenaEtcher 燒錄軟體

3.2.3 介紹 Sudo 指令

sudo 是 Unix/Linux 平臺上的一個非常好用的工具,其中 Linux 系統最高權限的管理者帳號為 root,而 sudo 指令就可以用來取得 root 的權限,在使用 sudo 指令時,是輸入自己的密碼而不是輸入 root 號的密碼,以確保安全性 [3]。

```
kk@kk-desktop:~

kk@kk-desktop:~$ sudo apt-get update
[sudo] password for kk:

Get:1 file:/var/cuda-repo-10-0-local-10.0.326 InRelease
Ign:1 file:/var/cuda-repo-10-0-local-10.0.326 InRelease
Ign:2 file:/var/visionworks-repo InRelease
Ign:2 file:/var/visionworks-repo InRelease
Get:3 file:/var/visionworks-repo InRelease
Ign:3 file:/var/visionworks-sfm-repo InRelease
Ign:3 file:/var/visionworks-sfm-repo InRelease
Get:4 file:/var/visionworks-tracking-repo InRelease
Get:5 file:/var/visionworks-tracking-repo InRelease
Ign:4 file:/var/visionworks-tracking-repo InRelease
Get:5 file:/var/visionworks-sfm-repo Release [2003 B]
Get:6 file:/var/visionworks-sfm-repo Release [2003 B]
Get:7 file:/var/visionworks-sfm-repo Release [2008 B]
Get:5 file:/var/visionworks-repo Release [2008 B]
Get:6 file:/var/visionworks-repo Release [2008 B]
Get:6 file:/var/visionworks-repo Release [2008 B]
Get:7 file:/var/visionworks-tracking-repo Release [2008 B]
Get:8 file:/var/visionworks-tracking-repo Release [2008 B]
Hit:9 https://repo.download.nvidia.com/jetson/common r32 InRelease
Hit:10 https://fepo.download.nvidia.com/jetson/common r32 InRelease
Hit:11 https://repo.download.nvidia.com/jetson/common r32 InRelease
Hit:11 https://packages.microsoft.com/repos/code stable InRelease
Hit:12 http://packages.microsoft.com/repos/code stable InRelease
Get:14 http://packages.microsoft.com/repos/code stable InRelease
Hit:17 http://packages.microsoft.com/repos/code stable InRelease
```

圖 3-11 Sudo 軟體更新包

3.2.4 介紹 Visual Studio Code (VS code)

Visual Studio Code 是一款免費原始碼編輯器, Visual Studio Code 預設支援非常多的程式語言,也可 以通過下載擴充支援 Python、C/C++[4]。Visual Studio Code 如果要使用 opency 的話,就必須要再使用另外 三個檔案,這三個檔案分別是 c_cpp_properties.json、 tasks.json、launch.jason,主要是把 opency 的檔案位置 設置完成,如果沒設置好,程式在一開始的宣告就會 出現錯誤,導致沒辦法使用。

圖 3-12 Visual Studio Code 編譯軟體

3.2.5 介紹 OpenCV

Open Source Computer Vision Library(簡稱 OpenCV)是一個跨平台的電腦視覺庫[5]。OpenCV 可用於開發即時的圖像處理、電腦視覺以及圖形識別程式。OpenCV 可以在 Windows、Linux 等平台上執行,它的主要介面是 C++語言。在圖像和影像處理方面使用 OpenCV 可以節省很多時間,我們專題使用的版本是 OpenCV 4.1。

3.2.6 介紹 C++

C++是一種被廣泛使用的電腦程式設計語言,它是一種通用程式設計語言[6]。支援多重程式設計模式。 C++是由 C 語言衍生而來,因此它包含了 C 語言的所有功能,幾乎所有的 C 語言程式在 C++裡只需要修改部分的程式碼,甚至不需要修改程式碼的情况下,便可正確的執行。

3.2.7 介紹 caffe

Caffe(快速特徵嵌入的卷積結構)是一個清晰、高效的深度學習框架[7]。核心語言是 C++,與支援 Python 和 Matlab,是一個經過認證後的開放原始碼軟體。我們專題所使用的 caffemodel 檔是使用別人已經訓練好的檔案,在執行的時候必須搭配 prototxt 執行檔,否則無法使用。

四、專題程式

4.1 專題程式介紹

```
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <string>
using namespace cv::dnn;
using namespace cv;
using namespace std;
int main(int argc, char** argv)
```

圖 4-1 2-8 行 宣告

圖 4-2 11-12 行 設定畫面大小

```
Net net = readNetFromCaffe("deploy.prototxt", "res10_300x300_ssd_iter_140000.caffemodel")
```

圖 4-3 14 行 讀取 caffemodel 檔

```
VideoCapture cap(0);
cap.set(CAP_PROP_FRAME_WIDTH, inWidth);
cap.set(CAP_PROP_FRAME_HEIGHT, inHeight);
cap.set(CAP_PROP_AUTOFOCUS, 1);
```

圖 4-4 16-19 行 相機設定

```
20 21 string window name = "Display" + to_string(inWidth) + "x" + to_string(inHeight);
22 namedWindow(window_name);
```

圖 4-5 21-22 行 視窗設定

```
while (getWindowProperty(window_name, WNO_PROP_AUTOSIZE) >= 0)

{
    Mat color_mat;
    cap > color_mat;

Mat inputBlob = blobFromImage(color_mat, 1.0, color_mat.size(), Scalar(104.0, 177.0, 123.0), false);
    net.setInputLinputBlob, 'datar');

Mat detection = net.forward();

Nat detectionMat(detection.size[2], detection.size[3], CV_32F, (float*)detection.data);

float confidenceThreshold = 0.5;

Vec1b color[] = { Vec3b(255,255,0), Vec3b(0,255,0), Vec3b(0,255,255), Vec3b(255,255,127) };

in num = 8**
```

圖 4-6 24-37 行 人臉辨識運算

圖 4-7 38-72 資料處理加工顯示

```
79 | if (waitKey(100) == 27)break;
80    }
81    destroyAllWindows();
82    return 0;
83 }
```

圖 4-9 79-83 行 按 ESC 結束程式關閉畫面

4.2 專題環境設定

圖 4-10 c_cpp_properties.json

圖 4-11 tasks.json

```
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387

version: "0.2.0",

"configurations: []

"name": "(gdb) Launch",
"type": "cppdbg",
"request": "launch",
"program: "${workspaceFolder}/${fileBasenameNoExtension}.out",
"args": [],
"stopAtEntry": false,
"ow": "${workspaceFolder}",
"environment": [],
"externalConsole": false,
"MIMode": "gdb",
"preLaunchTask": build",
"setupCommands": [
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"gignoreFailures": true
}
}
```

圖 4-12 launch.jason

五、實驗結果

數據顯示頭像在畫面中的大小、頭像畫面左上 角的位置、頭像編號、分辨機率、分辨頭像在畫面中 的位置(左右)、頭像中間點(如圖 5-1),並在人臉 下方顯示頭像編號以及分辨機率(如圖 5-2)。

```
頭
                                               頭像編號
                                                                           分辨機率
像
在
                                                                                                                     頭
畫
            113 x 145 from (233, 41)]#0 Prob=0.999707

115 x 146 from (232, 38)]#0 Prob=0.999753

113 x 140 from (228, 46)]#0 Prob=0.999831

114 x 142 from (228, 45)]#0 Prob=0.999858

114 x 149 from (232, 37)]#0 Prob=0.999658

114 x 147 from (232, 40)]#0 Prob=0.999667
                                                                                                                     像
面
                                                                                                                      中
中
的
                                                                                                                     間
大
小
                                                                               分辨頭像在畫面
          頭像畫面左上角的位置
                                                                                中的位置(左右)
```

圖 5-1

圖 5-2

圖 5-3

圖 5-4

圖 5-5 戴口罩也能夠進行辨識

六、結論

本專題運用 NVIDIA JETSON NANO 單板進行即時人臉辨識,主要是以 C++來編寫該程式,其中運用了 Opencv 和 Caffe 的相關技術來執行,人臉辨識結果的機率很高即使有戴口罩也可以識別出來,畫面上也可以一次辨識多個人臉,也可以定位畫面的中間點。

六、參考資料

6.1 軟體介紹參考資料

- 1. https://www.nvidia.com/zh-tw/autonomous-machines/embedded-systems/jetson-nano/product-development/
- 2. https://zh.wikipedia.org/zh-tw/Ubuntu
- 3. https://blog.gtwang.org/linux/sudo-su-comm and-tutorial-examples/
- 4. https://zh.wikipedia.org/zh-tw/Visual Studio
 Code
- 5. https://zh.wikipedia.org/zh-tw/OpenCV
- 6. https://zh.wikipedia.org/zh-tw/C%2B%2B
- 7. https://zh.wikipedia.org/zh-tw/Caffe

6.2 程式參考資料

- 1. https://shengyu7697.github.io/opencv-4-1-1-build-install-in-ubuntu/
- 2. https://linuxize.com/post/how-to-install-visu al-studio-code-on-ubuntu-18-04/
- 3. https://blog.csdn.net/sunzhao1000/article/details/103185875
- 4. https://zhuanlan.zhihu.com/p/363035298

- 5. https://www.youtube.com/watch?v=VYzzk
 HIvBhw&ab channel=An-WenDengAn-We
 nDeng
- 6. https://github.com/gopinath-balu/computer vision/tree/master/CAFFE DNN
- 7. https://www.rs-online.com/designspark/jetso n-nano-1-cn