CS 215 Homework 3 Lucas Vas 09/29/2024

Problem 1A

Representing the function F as POS and SOP:

$$\begin{split} POS &= \bar{A}(\bar{B}\bar{C} + BC) + A(\bar{B}C + B\bar{C}) \\ SOP &= \bar{A}\bar{B}\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C} \end{split}$$

Problem 1B

Gate-level logic circuits for each of the representations.

Product of Sums:

Sum of Products:

Problem 1C

Truth table for the function's SOP and POS representations:

A	В	С	SOP	POS
0	0	0	1	1
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Problem 2 - Optimization of Circuit

This is the function form of the circuit:

$$F = \bar{A}\bar{B}C + \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C$$

We'll use a Quine-McCluskey table to simplify the function:

Term	Matched?	
$\bar{A}\bar{B}C$	Yes	
$\bar{A}B\bar{C}$	Yes	
$\bar{A}BC$	No	
$A\bar{B}C$	No	

Matched terms are like so:

$$\begin{split} \bar{A}\bar{B}C + \bar{A}BC &= \bar{A}C \\ \bar{A}\bar{B}C + A\bar{B}C &= \bar{B}C \\ \bar{A}B\bar{C} + \bar{A}BC &= \bar{A}B \end{split}$$

The table for this function then becomes:

	$\bar{A}\bar{B}C$	$\bar{A}B\bar{C}$	$\bar{A}BC$	$A\bar{B}C$
$ar{A}C \ ar{B}C$	X		X	
$\bar{B}C$	X			X
$\bar{A}B$		X	X	

Therefore, the simplified function is $\bar{A}B + \bar{B}C$, which can be represented as a gate-level circuit as follows:

