Climate Risk Hedging

Thomas Lorans

June 11, 2024

Contents

In	ntroduction	V
	ESG Taste and Climate Risk Premia 1.1 ESG Preferences	
2	Sources of ESG Factor and Climate Risk 2.1 ESG Factor Risk	5
	2.2 Climate Risk	5

iv CONTENTS

Introduction

Chapter 1

ESG Taste and Climate Risk Premia

1.1 ESG Preferences

1.1.1 Expected Utility and Optimal Portfolio

Let's assume a single period model, from t=0 to t=1. We have N stocks. The investor i has an exponential CARA utility function, with $\tilde{W}_{1,i}$ the wealth at period 1, and X_i the $N \times 1$ vector of portfolio weights.

$$V(\tilde{W}_{1,i}, X_i) = -\exp(-A_i \tilde{W}_{1,i} - b_i^T X_i)$$
(1.1)

with A_i agent's absolute risk aversion, b_i an $N \times 1$ vector of nonpecuniary benefits.

$$b_i = d_i g \tag{1.2}$$

with g an $N \times 1$ vector and $d_i \geq 0$ a scalar measuring the agent's taste for the nonpecuniary benefits.

The expectation of agent i's in period 0 are:

$$E_0(V(\tilde{W}_{1,i}, X_i)) = E_0(-\exp(-A_i \tilde{W}_{1,i} - b_i^T X_i))$$
(1.3)

We can replace $\tilde{W}_{1,i}$ by the relation $\tilde{W}_{1,i} = W_{0,i}(1 + r_f + X_i^T \tilde{r}_1)$ and define $a_i := A_i W_{0,i}$. The idea is to make out from the expectation the terms that we know about (in period 0), and reexpress the terms within the expectation

as a function of the portfolio weights X_i . The last two steps use the fact that $\tilde{r}_1 \sim N(\mu, \Sigma)$.

$$E_{0}(V(\tilde{W}_{1,i}, X_{i})) = E_{0}(-\exp(-A_{i}W_{0,i}(1 + r_{f} + X_{i}^{T}\tilde{r}_{1}) - b_{i}^{T}X_{i}))$$

$$= E_{0}(-\exp(-a_{i}(1 + r_{f} + X_{i}^{T}\tilde{r}_{1}) - b_{i}^{T}X_{i}))$$

$$= E_{0}(-\exp(-a_{i}(1 + r_{f}) - a_{i}X_{i}^{T}\tilde{r}_{1} - b_{i}^{T}X_{i}))$$

$$= -\exp(-a_{i}(1 + r_{f}))E_{0}(-\exp(-a_{i}X_{i}^{T}\tilde{r}_{1} - b_{i}^{T}X_{i}))$$

$$= -\exp(-a_{i}(1 + r_{f}))E_{0}(-\exp(-a_{i}X_{i}^{T}(\tilde{r}_{1} + \frac{b_{i}}{a_{i}})))$$

$$= -\exp(-a_{i}(1 + r_{f}))\exp(-a_{i}X_{i}^{T}(E_{0}(\tilde{r}_{1}) + \frac{b_{i}}{a_{i}}) + \frac{1}{2}a_{i}^{2}X_{i}^{T}\operatorname{Var}(\tilde{r}_{1})X_{i})$$

$$= -\exp(-a_{i}(1 + r_{f}))\exp(-a_{i}X_{i}^{T}(\mu + \frac{b_{i}}{a_{i}}) + \frac{1}{2}a_{i}^{2}X_{i}^{T}\Sigma X_{i})$$

The investors choose their optimal portfolios at time 0. The optimal portfolio X_i is the one that maximizes the expected utility. To find it, we differentiate the expected utility with respect to X_i and set it to zero, to obtain the first-order condition.

We are going to do it step by step:

1. Combine the Exponential Terms:

$$E_0(V(\tilde{W}_{1,i}, X_i)) = -\exp\left(-a_i(1+r_f) - a_i X_i^T (\mu + \frac{b_i}{a_i}) + \frac{1}{2} a_i^2 X_i^T \Sigma X_i\right)$$
(1.5)

and let $f(X_i)$ be the exponent:

$$E_0(V(\tilde{W}_{1,i}, X_i)) = -\exp f(X_i)$$
(1.6)

2. Differentiate $f(X_i)$ with respect to X_i . We have the chain rule:

$$\frac{\partial h}{\partial X_i} = \frac{\partial h}{\partial f} \frac{\partial f}{\partial X_i} \tag{1.7}$$

If $h = -\exp(f)$, then $\frac{\partial h}{\partial f} = -\exp(f)$. Therefore we have:

$$\frac{\partial h}{\partial X_i} = -\exp\left(f\right) \frac{\partial f}{\partial X_i} \tag{1.8}$$

To tackle the derivative of $f(X_i)$, we use two rules. First $\frac{\partial x^T b}{\partial x} = b$ and $\frac{\partial x^T A x}{\partial x} = 2Ax$ if A is symmetric. We have:

$$\frac{\partial f}{\partial X_i} = -a_i(\mu + \frac{b_i}{a_i}) + a_i^2 \Sigma X_i \tag{1.9}$$

Combining:

$$\frac{\partial h}{\partial X_i} = -\exp(f)(-a_i(\mu + \frac{b_i}{a_i}) + a_i^2 \Sigma X_i)$$
 (1.10)

3. Set the derivative to zero:

$$-\exp(f)(-a_i(\mu + \frac{b_i}{a_i}) + a_i^2 \Sigma X_i) = 0$$

$$-a_i(\mu + \frac{b_i}{a_i}) + a_i^2 \Sigma X_i = 0$$
(1.11)

where the exponential term is always positive, so we can drop it.

4. Rearrange and solve for X_i :

$$a_i^2 \Sigma X_i = a_i \left(\mu + \frac{b_i}{a_i}\right)$$

$$a_i \Sigma X_i = \mu + \frac{b_i}{a_i}$$

$$\Sigma X_i = \frac{1}{a_i} \left(\mu + \frac{b_i}{a_i}\right)$$

$$X_i = \frac{1}{a_i} \Sigma^{-1} \left(\mu + \frac{b_i}{a_i}\right)$$

$$(1.12)$$

For the sake of simplicity, we assume that $a_i = a$ for all investors. We now have:

$$X_i = \frac{1}{a} \Sigma^{-1} \left(\mu + \frac{b_i}{a} \right)$$

$$= \frac{1}{a} \Sigma^{-1} \left(\mu + \frac{d_i}{a} g \right)$$
(1.13)

Therefore, the optimal portfolio differs across investors due to the ESG characteristics g of the stocks and the investors' taste for nonpecuniary benefits d_i .

PLACEHOLDER

Figure 1.1: Efficient Frontier with ESG Preferences

1.1.2 Heterogeneous Investors and Expected Returns

The nth element of investor i's portfolio weight vector X_i is:

$$X_{i,n} = \frac{W_{0,i,n}}{W_{0,i}} \tag{1.14}$$

with $W_{0,i,n}$ the wealth invested in stock n by investor i at time 0. The total wealth invested in stock n at time 0 is:

$$W_{0,n} := \int_{i} W_{0,i,n} di \tag{1.15}$$

The *n*th element of the market-weight vector w_m is:

$$w_{m,n} = \frac{W_{0,n}}{W_0} \tag{1.16}$$

We can now express $W_{0,n}$ in terms of individual investors' wealths by using the definition of $W_{0,n}$:

$$w_{m,n} = \frac{1}{W_0} \int_i W_{0,i,n} di \tag{1.17}$$

We now that $W_{0,i,n} = W_{0,i}X_{i,n}$, so we can rewrite the equation:

$$w_{m,n} = \frac{1}{W_0} \int_i W_{0,i} X_{i,n} di \tag{1.18}$$

Defining $\omega_i = \frac{W_{0,i}}{W_0}$, we have:

$$w_{m,n} = \int_{i} \frac{W_{0,i}}{W_{0}} X_{i,n} di$$

$$= \int_{i} \omega_{i} X_{i,n} di$$
(1.19)

1.2 Climate Risk

Chapter 2

Sources of ESG Factor and Climate Risk

- 2.1 ESG Factor Risk
- 2.2 Climate Risk