Levin Jian

Email: jianzhirong@gmail.com; Mobile: +86-13818429981

Github: https://github.com/LevinJ

Linkedin: https://cn.linkedin.com/in/levin-jian

Summary

I've been developing software that runs in various machines (like ATM, ticket checking machine), mainly using C++. Passionate about making machines become truly intelligent via artificial intelligence. Completed Machine Learning Engineer Nanodegree in year 2016, and am taking Self Driving Car Nanodegree at Udacity. Have project experiences in computer vision, deep learning and autonomous car.

Projects

SSD Object Recognition and Detection

- Used PASCAL VOC Dataset and SSD to develop a model that can perform object recognition and detection in real time
- Improved various aspects of baseline model to improve training/testing accuracy, including loss function, batch normalization, spatial dropout, data augmentation, and etc.
- Technology used: Python, Tensorflow, CNN, SSD, Deep learning
- Project report: https://github.com/LevinJ/SSD tensorflow VOC

Lane and Vehicle Detection/Tracking

- Project video link: https://youtu.be/5JI1VY1FgCk.
- find and track the position of the lane boundaries and vehicles in a real life video
- Implemented a image processing pipeline to find lanes, distortion correction, color transforms, gradient thresholding and image rectification.
- Implemented a HOG + sliding windows approach to detect and track vehicle.
- Technology used: Opency, Python, Image processing, computer vision
- Project report: https://github.com/LevinJ/CarND-Advanced-Lane-Lines,
 https://github.com/LevinJ/Vehicle-Detection-and-Tracking

Rider Driver Supply and Demand Gap Forecast (Di-Tech Challenge)

- A supervised regression learning problem, predicting the taxi demand and supply gap using real data provided by Didi (a ride-hailing company).
- Chosen as my Udacity machine learning Nanodegree Capstone project
- Implemented and experimented various models/algorithms, including Neural network, GBM,

KNN, Random Forest and etc.

- Coding language is Python, used learning library includes tensorflow, XGBoost, Sklearn.
- Project report: https://github.com/LevinJ/Supply-demand-forecasting

Relevant Experience

- Software Engineer at Glory Global Solutions, 2015 Present
- Team Lead at Diebold, 2008 2014
- Senior Software engineer at AltiGen Communications, Inc 2006 2008
- Senior Software engineer at AltiGen Communications, Inc. 2006 2008
- Software engineer at Huaming Intelligent Device, 2005 2006

Education

Udacity

Self Driving Car Nanodegree, 2016 - 2017

Udacity

Udacity Machine Learning Engineer Nanodegree, Machine learning, 2016 - 2016

Nanchang University

Master's degree, Mechanica and electrical engineering, 2002 - 2005

Nanchang University

Bachelor's degree, Mechanica and electrical engineering, 1998 - 2002

Interests

Basketball, badminton, bicycle riding