F_{π} with σ_3

March 2, 2022

By measuring the pion mass with σ_1 , we had obtained the results of F_{π} shown in Table 1. Using σ_3 the results are slightly different and we show them in Table 2

β	F_{π} variance	F_{π} chi-squared
2	0.392(2)	0.393(3)
3	0.3923(8)	0.3925(11)
4	0.3937(9)	0.393(1)
5	0.3956(10)	0.3962(13)

Table 1: F_{π} obtained through a fit of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L}$. The pion mass was measured with σ_{1}

β	F_{π} variance	F_{π} chi-squared
2	0.3866(9)	0.3867(9)
3	0.3887(5)	0.3887(7)
4	0.3871(9)	0.3877(11)
5	0.3919(6)	0.3923(6)

Table 2: F_{π} obtained through a fit of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L}$. The pion mass was measured with σ_{3}

From figure 1 to 5 we show the pion mass, measured with σ_3 , as a function of $(m_{\rm pcac}^2 g)^{1/3}$ for $\beta=2,3,4$ and 5 and several lattices. We fitted a function of the form $\sqrt{a+b\,x^3}$ to the data.

In figure 6 we show the behavior of the residual pion mass as a function of 1/L for $\beta = 2, 3, 4$ and 5, together with a fit of the form a/L.

Figure 1: m_{π} vs. $(m_{\text{pcac}}^2 g)^{1/3}$ for $\beta = 2$. The pion mass was measured using σ_3 .

Figure 2: m_{π} vs. $(m_{\text{peac}}^2 g)^{1/3}$ for $\beta = 3$. The pion mass was measured using σ_3 .

Figure 3: m_{π} vs. $(m_{\text{pcac}}^2 g)^{1/3}$ for $\beta = 4$. The pion mass was measured using σ_3 .

Figure 4: m_{π} vs. $(m_{\text{peac}}^2 g)^{1/3}$ for $\beta = 5$. The pion mass was measured using σ_3 .

Pion decay constant

Figure 5: m_{π}^R vs. 1/L. We fitted a function of the form $m_{\pi}^R = \frac{1}{2F_{\pi}^2L}$