МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра систем штучного інтелекту

Лабораторна робота №1 3 курсу "Дискретна математика"

> Виконав: ст.гр. КН-110 Крушельницький Юрій Викладач: Мельникова Н.І.

Тема: Моделювання основних логічних операцій

Мета: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинності значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Теоретичні відомості:

Просте висловлювання (атомарна формула, атом) — це розповідне речення, про яке можна сказати, що воно істинне (Т або 1) або хибне (F або 0), але не те й інше водночас.

Складне висловлювання — це висловлювання, побудоване з простих за допомогою логічних операцій (логічних зв'язок). Найчастіше вживаними операціями є 6: заперечення (читають «не», позначають ☑ , ¬), кон'юнкція (читають «і», позначають ☑), диз'юнкція (читають «або», позначають ☑), імплікація (читають «якщо ..., то», позначають ☑), альтернативне «або» (читають «додавання за модулем 2», позначають ☑), еквівалентність (читають «тоді і лише тоді», позначають ☑). Запереченням довільного висловлювання Р називають таке висловлювання ☑Р, істиносне значення якого строго протилежне значенню Р. Кон'юнкцією або логічним множенням двох висловлювань Р та Q називають складне висловлювання Р Q, яке набуває істинного значення тільки в тому випадку, коли істинні обидві його складові. Диз'юнкцією або логічним додаванням двох висловлювань Р та Q називають складне висловлювання Р Q, яке набуває істинного значення в тому випадку, коли істинною є хоча б одна його складова. Імплікацією двох висловлювань Р та Q називають умовне висловлювання «якщо Р, то Q» (Ріі Q), яке прийнято вважати хибним тільки в тому випадку, коли передумова (антецедент) Р істинна, а висновок (консеквент) Q хибний. У будь-якому іншому випадку його вважають істинним. Альтернативним "або" двох висловлювань Р та Q називають складне висловлювання Ріі Q, яке набуває істинного значення тоді і лише тоді, коли Р та Q мають різні логічні значення, і є хибним в протилежному випадку.

Еквіваленцією двох висловлювань Р та Q називають складне висловлювання Р Д Q, яке набуває істинного значення тоді і лише тоді, коли Р та Q мають однаковілогічні значення, і є хибним в протилежному випадку, тобто логічно еквівалентні складні висловлювання — це висловлювання, які набувають однакових значень істинності на будь-якому наборі істиносних значень своїх складових.

Тавтологія – формула, що виконується у всіх інтерпретаціях (тотожно істинна формула).

Протиріччя — формула, що не виконується у жодній інтерпретації (тотожно хибна формула). Формулу називають нейтральною, якщо вона не є ні тавтологією, ні протиріччям (для неї існує принаймні один набір пропозиційних змінних, на якому вона приймає значення T, і принаймні один набір, на якому вона приймає значення F).

Виконана формула — це формула, що не є протиріччям (інакше кажучи, вона принаймні на одному наборі пропозиційних змінних набуває значення T).

Завдання з додатку 1:

- 1. Формалізувати речення.
 - Ні Микола, ні Василь не отримали призові місця на олімпіаді.
- 2. Побудувати таблицю істинності для висловлювань:

$$(x \lor y) \Leftrightarrow (y \land \bar{z}) \Leftrightarrow (x \lor y)$$

3. Побудовою таблиць істинності вияснити чи висловлювання є тавтологіями або суперечностями:

$$((p \land q) \Rightarrow \overline{(q \Leftrightarrow r)} \Rightarrow \overline{(p \land r)}$$

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологіями висловлювання.

$$(p \lor q) \land (p \Rightarrow r) \land (q \Rightarrow s) \Rightarrow (r \lor s)$$

5. Довести, що формули еквівалентні:

$$p \wedge \overline{q} \Rightarrow \overline{p} \operatorname{Ta} \overline{(p \wedge q)} \vee (\overline{q} \wedge r)$$

Розв'язання:

1. Р – Микола отримав призове місце.

Q – Василь отримав призове місце.

 $ar{P} \wedge ar{Q}$ - Ні Микола, ні Василь не отримали призові місця на олімпіаді.

2. Таблиця істинності:

$$(x \lor y) \Leftrightarrow (y \land \bar{z}) \Leftrightarrow (x \lor y)$$

х	У	Z	$(x \lor y)$	$(ar{z})$	$(y \wedge \bar{z})$	$(x \lor y) \Leftrightarrow (y \land \bar{z})$	$(x \lor y) \Leftrightarrow (y \land \bar{z}) \Leftrightarrow (x \lor y)$	
0	0	0	0	1	0	1	0	
0	0	1	0	0	0	1	0	
0	1	0	1	1	1	1	1	
0	1	1	1	0	0	0	0	
1	0	0	1	1	0	0	0	
1	0	1	1	0	0	0	0	
1	1	0	1	1	1	1	1	
1	1	1	1	0	0	0	0	

3. Побудовою таблиць істинності вияснити чи висловлювання є тавтологіями або суперечностями:

$$\overline{((p \land q) \Rightarrow \overline{(q \Leftrightarrow r)}} \Rightarrow \overline{(p \land r)}$$

р	q	r	p∧q	$q \Leftrightarrow r$	$\overline{q} \Leftrightarrow \overline{r}$	$(p \land q) \Rightarrow \overline{(q \Leftrightarrow r)}$	$\overline{((p \land q) \Rightarrow \overline{(q \Leftrightarrow r)}}$	p∧r	$\overline{(p \wedge r)}$	$ \overline{((p \land q) \Rightarrow \overline{(q \Leftrightarrow r)}} \Rightarrow \overline{(p \land r)} $
0	0	0	0	1	0	1	0	0	1	1
0	0	1	0	0	1	1	0	0	1	1
0	1	0	0	0	1	1	0	0	1	1
0	1	1	0	1	0	1	0	0	1	1
1	0	0	0	1	0	1	0	0	1	1
1	0	1	0	0	1	1	0	1	0	1
1	1	0	1	0	1	1	0	0	1	1
1	1	1	1	1	0	0	1	1	0	0

Висновок: висловлювання не ε тавтологією і не ε суперечність, а ε виконуваною.

За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологіями висловлювання:

$$(p \land q) \land (p \Rightarrow r) \land (q \Rightarrow s) \Rightarrow (r \land s)$$

Перевірка:

Використаємо метод «від супротивного»: допустимо, що $(p \lor q) \land (p \Rightarrow r) \land (q \Rightarrow s)$ істинне,

 $(r \land s)$ хибне, використовуючи аргументоване міркування, одержимо протиріччя. Імплікація набуває хибного значення лише тоді, коли ліва частина є істиною, а права – хибністю.

 $(r \land s)$ – хибний коли:

- r=0, s=0
- r=0, s=1
- r=1, s=0

Розглянемо коли r=0, s=1:

$$\left((p \lor q) \land \left(p \Rightarrow 0 \right) \land \left(q \Rightarrow 1 \right) \right) \Rightarrow 0$$

A)
$$p=0$$
, $q=0$

$$\left((0 \lor 0) \land \left(0 \Rightarrow 0 \right) \land \left(0 \Rightarrow 1 \right) \right) \Rightarrow 0$$

$$(0 \land 1 \land 1) \Rightarrow 0$$

$$0 \Rightarrow 0$$

1

Тавтологія

$$\left((0 \lor 1) \land \left(0 \Rightarrow 0 \right) \land \left(0 \Rightarrow 1 \right) \right) \Rightarrow 0$$

$$(1 \land 1 \land 1) \Rightarrow 0$$

$$1 \Rightarrow 0$$

0

Суперечність.

Це висловлювання є одночасно і тавтологією, і суперечністю, а отже не може бути тавтологією.

5. Довести, що формули еквівалентні:

$$p \wedge \bar{q} \Rightarrow \bar{p}$$

$$\overline{(p \wedge q)} \vee (\bar{q} \wedge r)$$

$$p \wedge \overline{\bar{q}} \vee \bar{p}$$

$$(\bar{p} \lor \bar{q}) \lor (\bar{q} \land r)$$

$$(p \land q) \lor \bar{p}$$

$$(p \wedge q) \vee \bar{p}$$
 $\bar{p} \vee \bar{q} \vee (\bar{q} \wedge r)$

$$(p \lor \bar{p}) \land (q \lor \bar{p}) \qquad \overline{p} \lor \overline{q}$$

$$\overline{p} \vee \overline{q}$$

$$T \wedge (q \vee \bar{p})$$

$$q \vee \overline{p}$$

6. Програма:

```
1 #include<stdio.h>
 2 int main()
 3 {
 4 int x,y,z;
 5
 6 do //loop
 7 {
 8 printf("\nx="); // show x
 9 scanf("%d",&x); // x entering in program
10 if ((x>1)||(x<0)) printf("try again"); //condition when numbers are not correct
12 while ((x>1)||(x<0)); //condition for loop
13 do
14 {
15 printf("\ny="); // show y
16 scanf("%d",&y); // y entering in program
17 if ((y>1)||(y<0)) printf("try again"); //condition when numbers are not correct
19 while ((y>1)||(y<0));//condition for loop
20 do
21 {
22 printf("\nz="); // show z
23 scanf("%d",&z); // z entering in program
24 if ((z>1)||(z<0)) printf("try again"); //condition when numbers are not correct
26 while ((z>1)||(z<0)); //condition for loop
28 if((x==0)\&\&(y==0)\&\&(z==0)) //condition that checks numbers which you inputted
29 {
30 printf("\nfalse\n\n");
31 }
32 if((x==0)\&\&(y==0)\&\&(z==0)) // similarly for rest
34 printf("\nfalse\n\n");
35
36 if ((x==0)&&(y==0)&&(z==1))
37 {
38 printf("\nfalse\n\n");
39 }
40 \text{ if}((x==0)&&(y==1)&&(z==0))
42 printf("\ntrue\n\n");
43 }
44 if((x==0)&&(y==1)&&(z==1))
46 printf("\nfalse\n\n");
47 }
48 if((x==1)&&(y==0)&&(z==0))
49 {
50 printf("\nfalse\n\n");
51 }
52 if((x==1)&&(y==0)&&(z==1))
54 printf("\nfalse\n\n");
55 }
56 if ((x==1)&&(y==1)&&(z==0))
57 {
58 printf("\ntrue\n\n");
59 }
60 if((x==1)&&(y==1)&&(z==1))
62 printf("\nfalse\n\n");
63 }
64 return 0;
65 }
```

Результат:

```
jharvard@appliance (~/DescretMath/Lab1): ./lab0

x=1

y=1

z=3
try again
z=1

false
jharvard@appliance (~/DescretMath/Lab1):
```

Висновок: Я ознайомився на практиці із основними поняттями математичної логіки, навчився будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинності значення таблицями істинності, використовувати закони алгебри логіки, освоїв методи доведень.