三、基本模拟程序的结构

- 根据模拟的方法不同,主要有两类基本的模拟程序:编译法和表格驱动法。早期的模拟程序为编译法,近代的程序大多为表格驱动法。因为驱动法更适合处理延迟,同时可以减少模拟时间。
- 软件是程序的编写,与硬件直接打交道的是硬件控制层。软件要实现对硬件的控制,必须经过硬件抽象层、设备驱动层、硬件控制层的桥接,这个桥接的实现就是编译。

1. 编译法

例:一个三输入"与非"门(NAND3)可以编译成以下的程序。

INPUT A, B, C

FETCH A 取数A

COLLATE B A与B为AB

COLLATE C AB与C为ABC

 INVERT 将ABC取反为 $\overline{\mathit{ABC}}$

STORE Z 使 $Z = \overline{ABC}$

VHDL语言的实现

LIBRARY IEEE
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY ex IS
PORT(a, b, c: IN STD_LOGIC;
z: OUT STD_LOGIC);
END ex;

ARCHITECTURE one OF IS BEGIN

z<=NOT(aANDbANDc); END one;

Verilog语言实现

Module ex(a, b, c, z);
input a, b, c;
output z;
assign z=~(a&&b&&c);
End module

表格驱动面向事件单位延迟模拟 (鼠标滑过播放视频)

2. 表格驱动面向事件单位延迟模拟

- •程序结构的思想:有两个表格La,Lb,a≠b, a,b∈{0,1},La用来记录必须处理的活动元件以 及它们的信号值Vi的输出在模拟时刻t应取的新值。 Lb用来记录由于La中出现的事件(活动)而变成 活动的元件j,及这些元件的输出在t+1时刻取的 新值增加模拟事件单位(再加1),交换Lb和La, 清空Lb内容,使用La处理活动元件,在Lb中又 记录了下一部分活动电路元件的元件号j,这些元 件在t+2时刻取新的输出,依次类推完成一个输 入向量下的全部活动电路的模拟。输入新的向量, 重复上述过程,直至完成全部输入时序(向量)。
- ・面向事件单位延迟、表格驱动的算法流程

2. 表格驱动面向事件单位延迟模拟

•程序结构的思想:有两个表格La, Lb, a≠b, a,b∈{0,1}, La用来记录必须处理的活动元件以 及它们的信号值Vi的输出在模拟时刻t应取的新值。 Lb用来记录由于La中出现的事件 (活动) 及这些元件的输出在t+1时刻取的 新值增加模拟事件单位 (再加1) 交换Lb和La, 使用La处理活动元件, 3录了下一部分活动电路元件的元件号i, 件在t+2时刻取新的输出, 依次类推完成一个输 入向量下的全部活动电路的模拟。 输入新的向量, 重复上述过程, 直至完成全部输入时序

・面向事件单位延迟、表格驱动的算法流程

· RS触发器的具体算法实现

- 1.La←L0, Lb←L1
- 2.V1'←0, V2'←1
- 3.1 La≠Φ
- 4.1 V1←0, V2←1
- 5.1 V3'=1=V2, V4'=V4=μ; Lb(3,1), La=Φ
- 6.1 交换La, Lb
- 3.2 La≠Φ
- 4.2 V3←1

- 5.2 V4'=0≠V4; Lb:(4,0),La=Φ
- 6.2交换La, Lb
- 3.3 La≠Φ
- 4.3 V4←0
- 5.3 V3'=1=V3; Lb=Ф, La=Ф
- 6.3 交换La, Lb
- 3.1 La=Φ
- 稳定,无向量变化,结束。

1.La←L0, Lb←L1	V1← V1← V1 ←V1←µ	t=1
2.V1'←0, V2'←1	La: (1,0),(2,1);1号线网为0,2号线网为1	
3.1 La≠Φ		
4.1 V1←0, V2←1	V1、V1赋予新值	
5.1 V3'=1=V2, V4'=V4=μ; Lb(3,1), La=Φ	产生将要变化的线网集合Lb(3,1)	
6.1 交换La,Lb		t=2
3.2 La≠Φ		
4.2 V3←1		
5.2 V4'=0≠V4; Lb:(4,0),La=Φ		
6.2交换La,Lb		t=3
3.3 La≠Φ		
4.3 V4←0		
5.3 V3'=1=V3; Lb=Φ, La=Φ		
6.3 交换La,Lb		t=4
3.1 La=Φ	稳定,无向里变化,结束	

§3.测试码生成

- •逻辑模拟的两个主要作用:一是评价系统;二是分析故障。
- 分析故障必然需要将测试信号加在被测电路上,然后测量输出响应与电路应有的功能是否一致。这样的输入信号和应有的输出量称为测试码或测试序列(测试矢量)。
- 简单的说,用于测试电路的一组输入/输出信号就叫测试码或测试矢量。

一、测试方法

① 完全测试

有两种说法: (1)对应输入的所有可能的信号进行测试,共有2N个测试输入,N 为输入端数,它可以测到包括冗余故障以外的所有节点,但会出现一个节点被几次测试的问题;(2)对除冗余故障以外的所有节点的故障测试,对应每个故障产生一组测试矢量。第二种方法的测试矢量,即若用N1表示第一种方法的测试矢量,N2表示第二种测试矢量数,有N1≥N2。

②功能测试

只就电路功能进行测试,只要电路满足功能的完成即可。显然会出现有些节点重复测试、有些节点没被测试的情况。通常对ASIC采用功能测试,而对CPU之类的芯片采用完全测试。

故障的检测 (鼠标滑过播放视频)

二、故障的检测

设节点A有故障As-a-1:

为使A的故障在Z点有反映,必须使所有通路全打开,让Z=A。:B=0,F=A,C=1,G=A,D=E=0时Z=A,所以要使Z=A,那么为反映节点A的故障A=0,必须B=D=E=0,C=1。正常情况,若A=0,则Z=0。而有故障情况,A=0,Z=1,表明有故障。

若G有故障"1",为反映G,让Z=G,则D=E=0。为反映G=1故障,门2输出FC=0,则C=0或F=0。则A=0,B=0即对应输入A,B,C,D,E为00×00或××000。共有5个输入序列能反映G=1故障,即00000,00100,01000,10000,11000。

二、故障的检测

• 设节点A有故障As-a-1:

为使A的故障在Z点有反映,必须使所有通路全打开,让Z=A。∵B=0,F=A,C=1,G=A,D=E=0时Z=A,所以要使Z=A,那么为反映节点A的故障A=0,必须B=D=E=0,C=1。正常情况,若A=0,则Z=0。而有故障情况,A=0,Z=1,表明有故障。

• 若G有故障 "1",为反映G,让Z=G,则D=E=0。为反映G=1故障,门2输出FC=0,则C=0或F=0。则A=0,B=0即对应输入A,B,C,D,E为00×00或××000。共有5个输入序列能反映G=1故障,即00000,00100,01000,10000,11000。

• 要检测C点的s-a-1故障, C点要为0, 对应A+B=0, 必须A=B=0, 但A=B=0, 则D=1, 所以没有一组测试矢量能检测到这个故障, 或者说该点故障不会影响电路功能。因为除输入为A=B=0以外的输入使C点都应为1, 对应Z=1, 而C点应为0时, D点又会为1, Z仍为1。

而C点应为0时, D点又会为1, Z仍为1。
• 出现这种情况, 电路对故障C是冗余的, 称为故障冗余, 这种电路叫冗余电路。该电路相当于Z = 1, 在测试中不用再考虑。通常这种电路可以

用一固定信号将其固化,所以叫冗余的。

	ъ	~		7
A	В	C	D	Z
0	0	0	1	1
0	μ	μ	1	1
0	1	1	1	1
μ	0	μ	1	1
μ	μ	μ	μ	μ
μ	1	1	μ	1
1	0	1	1	1
1	μ	1	μ	1
1	1	1	0	1

•电路的三值真值表可以看出,这仍然是一个静态1冒险的电路,若需要固定输出1电平,就要避免输出μ状态,即A、B不允许同时改变状态。

A	В	С	D	Z
0	0	0	1	1
0	μ	μ	1	1
0	1	1	1	1
μ	0	μ	1	1
μ	μ	μ	μ	μ
μ	1	1	μ	1
1	0	1	1	1
1	μ	1	μ	1
1	1	1	0	1

•若是在A、B端接一个双稳态电路,那么在电路上电的初始状态输出 L 状态之后, A、B不允许同时为0或1状态,从电路的三值真值表可以看出,这个电路避免了成为一个静态1冒险的电路,可以实现固定输出1电平。

三、故障模型

• 物理故障 开路、短路、老化

•逻辑故障 固定型故障、桥接故障

・常用故障模型

故障模型	说明
单固定型故障 (SSAF)	一条线网总为0或1
多固定型故障(MFF)	两条或多条线网有固定值,但值不一定相同
桥接故障 (BF)	两条或多条绝缘线网的连接
固定开路故障(SOP)	晶体管总处于开路状态
固定导通故障(SON)	晶体管总处于导通状态
时延故障(Delay Fault)	电路因路径时延引起的故障
间歇故障(Valve Fault)	电路中的信号值时常不正确,是由内部参数老 化引起的故障,会持续到永久失效为止
瞬时故障(Transient Fault)	因耦合干扰引起错误的信号值。包括电容耦合 或电感耦合,也有内部源和外部源及粒子辐射 的原因。

故障模型 (鼠标滑过播放视频)

固定型故障 (SAF-Stuck At Fault)

• 当某个信号线的信号被固定在某

个逻辑电平的电位上,即为固定型故障。如果该线(或该点)固定在逻辑高电平上,则称为固定1故障(stuch-at-1),记为(s-a-1);若信号固定在逻辑低电平上则称为固定0故障(stuck-at-0),记为(s-a-0)。
•固定型故障模型在实际应用中用的最普遍,约占发生故障总数的90%。

固定开路故障(stuck-open)

固定型故障 (SAF-Stuck At Fault)

- 当某个信号线的信号被固定在某个逻辑电平的电位上,即为固定型故障。如果该线(或该点)固定在逻辑高电平上,则称为固定1故障(stuchat-1),记为(s-a-1);若信号固定在逻辑低电平上,则称为固定0故障(stuck-at-0),记为(s-a-0)。
- •固定型故障模型在实际应用中用的最普遍,约占发生故障总数的90%。

时滞故障 (delay fault) 模型

◆时滞故障是一种动态故障,这种故障在低频时工作正常,随着信号频率的升高,元件的延迟时间有可能超过规定的值,从而导致时序配合上的错误,使电路的功能出错,这种故障称为时滞故障。

桥接故障

(BF-Bridging Fault)

•当两条以上信号线短路在一起并建立逻辑时,就会产生桥接故障。若故障涉及n个线网(n>2),就称为n重桥接故障,否则称为简单桥接故障。一般在芯片原始的输入端口比较容易发生多重桥接故障。

①元件输入端之间的桥接故障

•这种故障将导致"线与"、"线或"的效果,从而改变电路的逻辑关系。

AD HILLIAM

正确或逻辑		四辑				绀	与故障	章		
X ₁	X ₂	F ₁		X_1	X_2	F ₂		X_1	X_2	F ₂
0	0	0	X ₁ X ₂ X ₃	0	X	0	=>	0	0	0
0	1	1	x3 -					0	1	0
1	0	1		X	0	0	=>	1	0	0
1	1	1		1	1	1	=>	1	1	1
真	值表	(a)		真	值表(b)		真	值表	(c)
<i>F</i> ₁ =	= X ₁ -	+ X2						F_2	$=X_1$	X_2
TE W	角与逻	岩				绀	或故障	<u></u>		
(۳ مللا	10 3 ~~	- T-+				~	V->VHXI			
X ₁	X ₂	F ₁		X ₁	X ₂	F ₂	77.47.1	X ₁	X 2	F ₂
					X ₂		=>		1 1	F ₂
X ₁	X ₂	F ₁	X ₁ X ₂ X ₃			F ₂		X ₁	2	
X ₁	X ₂	F ₁	X ₁ X ₂ X ₃			F ₂	=>	X ₁	0	0
X ₁ 0 0	0 1	F ₁	X ₁ X ₂ X ₃		0	F ₂	=>	0 0	0	0
X ₁ 0 0 1 1	X ₂ 0 1	F ₁ 0 0 1	X ₁ X ₂ X ₃	(0	F ₂	=>	0 0 1	0 1 0	0 1 1 1

◈桥接故障

固定故障使电路的逻辑值出错,但不会改变电路的结构。然而桥接故障不但改变电路的逻辑值, 而且也可能改变电路的拓扑结构。

桥接引起的功能变化

状态号	Α	В	С	D	Z1	Z2	逻辑
1	0	0	0	0	1	1	Т
2	0	0	0	1	1	1	Т
3	0	0	1	0	1	1	T
4	0	0	1	1	0	0	T
5	0	1	0	0	1	1	T
6	0	1	0	1	1	1	T
7	0	1	1	0	1	0	F
8	0	1	1	1	0	0	T
9	1	0	0	0	1	1	T
10	1	0	0	1	1	0	F
11	1	0	1	0	1	1	T
12	1	0	1	1	0	0	T
13	1	1	0	0	0	0	T
14	1	1	0	1	0	0	T
15	1	1	1	0	0	0	T
16	1	1	1	1	0	0	T

错误发生率=(N-T)/N=(16-14)/16=1/8

e. 宽线上层的边对边 Side to over wide metal

f. 通孔的角对角 Via-corner to via-corner

②反馈桥接

桥接故障的另一种重要的故障方式是桥接线跨接在输入和输出端,这种情况称为反馈桥接故障。这种故障将组合电路转变为时序电路,并增加了时序电路的状态,将使电路出现振荡,或者反馈。

