ALGORITHMS

Contents

CH1: Analyzing the complexity of Algorithms

CH2: Sorting Algorithms

A - Internal Sorting Algorithms

1- Bubble Sort

2- Insertion Sort

3- Selection Sort

4- Quick Sort

5- Merge Sort

6- Heap Sort

7- Two Radix

B- External Sorting Algorithms

1- Balanced Merge Sort

2- PolyPhase Sort

CH3: Graph Algorithms (Shortest Path Algorithms)

1- Dijkstra's Algorithm

2- Greedy's Algorithm

3- Floyd's Algorithm

4- Modified Floyd's Algorithm

CH4: Spanning Tree Algorithms

1- Boruvka's Algorithm

2- Kruskal's Algorithm

3- Prim's Algorithm

CH5: Storing in Binary Search Tree (AVL Tree)

CH6: Storing in Multy Way Search Tree

1- B-Tree Algorithms

2- B*-Tree Algorithms

CH7: Hashing Algorithms

CH1: Analyzing the complexity of Algorithms

Algorithm: A finite sequence of instructions for solving a problem.

- ** Two-Reasons to choose an Algorithm:
- 1. Human Reason:

To understand and implement the algorithm.

2. Machine Reason:

Time, Space.

Cost of algorithm:

```
Cost = (Cost of understanding and programming + Cost of running the program)
= Software Cost + Hardware Cost
```

Hardware Cost = (Cost of running program once) * number of execution

(Choosing the algorithm is dependent on the cost of the algorithm)

- ** How do you compare the efficiency of two algorithms (for one problem)?
- 1. Compare the execution time.
- 2. Compare the size of program or (algorithm)

Size of program or algorithm is dependent on:

- The number of lines.
- The number of instructions.

```
** It's better \
```

to measure the complexity of algorithm, that means (count number of basic operations).

Type of Basic Operations:

- 1. By Searching (Comparing or logical operations)...[<, <=, \neq , >, >=, ==]
- 2. By arithmetic operations $[+, -, *, /, %, ++, --, ^, *=, ...]$

Three types to determine cost of algorithm:-

- 1. Worst case complexity
- 2. Best case complexity
- 3. Average case complexity

Suppose $n \ge 0$ (The size of input):

1. Best case complexity:

```
n \ge 0, \forall I (instances of problem) define :
```

B(n) = the minimum value of T(I),

where T(I) the number of basic operations for instance I.

(B(n) the Best case complexity of the algorithm

- 2. Worst case complexity:
 - $n \ge 0$, \forall I (instances of problem) define :
 - W(n) = the maximum value of T(I),

where T(I) the number of basic operations for instance I.

(W(n) the worst case complexity of the algorithm)

3. Average complexity:

$$A(n) = \sum P(I) * T(I)$$

Where P(I) is the probability that the instance I will occur and

T(I) the number of basic operations for instance I.

→ Two ways to define the notation of complexity of an algorithm to solve a class of problems (Worst or Average case copmlexity):

Examples:

Example1 - Meaning of Instance I:

Suppose we have a one dim array length 10 containing different int keys

19	22	13	45	34	31	100	90	75	60
1	2	3	4	5	6	7	8	9	10

Problem: Searching a given key Algorithm: Sequential Searching

- → There are 11 Instances of this problem :
 - I_1 : Find first \rightarrow $T(I_1) = 1$ B.O.
 - I_2 : Find second \rightarrow $T(I_2) = 2$ B.O.
 - I_3 : Find third \rightarrow $T(I_3) = 3$ B.O.

• • •

. . . .

 I_{10} : Find Last \rightarrow $T(I_{10}) = 10$ B.O.

 I_{11} : Not found \rightarrow $T(I_{11}) = 10$ B.O.

Best case complexity = B(n) = B(10) = 1 B.O.

Worst case complexity = W(n) = W(10) = 10 B.O.

Average case complexity =

$$A(n) = A(10) = \sum_{j=1}^{11} P(lj) * T(lj) = (1/11)*1 + (1/11)*2 + ... + (1/11)*10 + (1/11)*10 = ?$$

Example2:

Analyze and find the worst case complexity of the following algorithm:

Basic Op	Count
<=	N
<= < ++	$ \mathbf{n}^2 $
++	$ \mathbf{n}^2 $
+=	$ \mathbf{n}^2 $
%	n ²
>	n^3
	\mathbf{n}^3
*	n ³
>	N
-	<= n
+	N

→ W(n) =
$$4n + 4n^2 + 3n^3$$

Example3:

Given following:

Problem with input size $n \to \infty$?

Solved

Algorithm₁ (P₁)

W₂(n) = 100n

W₂(n) = 4n²

Two algorithms P_1 , P_2 for solving the same problem with W_1 , W_2 as worst case complexities of both algorithms :

P1: $W_1(n) = 100n$ P2: $W_2(n) = 4n^2$

1. suppose the input size : n < 25

 $n=1 \Rightarrow W_1(n)=100n=100 \text{ B.O.}$, $W_2(n)=4n^2=4 \text{ B.O.}$ \Rightarrow In this case it's better to use P_2

 $\begin{array}{l} n=2 \ \Rightarrow W_1(n)=100n=200 \ B.O. \quad , \ W_2(n)=4n^2=16 \ B.O. \\ \Rightarrow \text{In this case it's better to use } P_2 \ \text{than } P_1 \end{array}$

 $n=3 \Rightarrow W_1(n) = 100n = 300 \text{ B.O.}$, $W_2(n) = 4n^2 = 36 \text{ B.O.}$ \Rightarrow In this case it's better to use P_2 than P_1

 $n = 24 \implies W_1(n) = 100n = 2400 \text{ B.O.}$, $W_2(n) = 4n^2 = 2304 \text{ B.O.}$ \implies In this case it's better to use P_2 than P_1

2. Suppose the input size : $n = 25 \rightarrow$

 $W_1(n) = 100n = 2500$ B.O. , $W_2(n) = 4n^2 = 2500$ B.O. \Rightarrow In this case P_1 and P_2 are same

3. suppose the input size : n > 25

$$n=26 \Rightarrow W_1(n)=100n=2600 \text{ B.O.}$$
, $W_2(n)=4n^2=2704 \text{ B.O.}$
 $\Rightarrow W_2(n)>W_1(n)$
 \Rightarrow In this case it's better to use P_1 than P_2

In general:

 $\Rightarrow \forall$ n: P_1 better than P_2 , (using the same computer)

Definitions:

 $f, g: N^+ \rightarrow R^+ \setminus (\text{Two positive real valued functions})$ Then:

1.
$$g(n)$$
 is $O(f(n))$ (read: $g(n)$ is big O of $f(n)$) $\Leftrightarrow \exists k \in \mathbb{R} \setminus \{0\}, n_0 \in \mathbb{N}^+$ such that $g(n) \leq k * f(n) \quad \forall n \geq n_0$

2.
$$g(n)$$
 is Ω ($f(n)$) ($\underline{read:}$ $g(n)$ is big Omega of $f(n)$) $\Leftrightarrow \exists \ k \in \mathbb{R} \setminus \{0\}, \ n_0 \in \mathbb{N}^+$ such that $g(n) \geq k * f(n) \quad \forall \ n \geq n_0$

3.
$$g(n)$$
 is $\theta(f(n))$ (read: $g(n)$ is big Theta of $f(n)$) $\Leftrightarrow \exists k_1, k_2 \in R \setminus \{0\}, n_0 \in N^+ \text{ such that } k_1 * f(n) \leq g(n) \leq k_2 * f(n) \quad \forall n \geq n_0$

** if g(n) is O(f(n)) but f(n) is not $O(g(n)) \Rightarrow O(g(n))$ better than O(f(n)).

<u>That means</u> an algorithm with worst case complexity g(n) runs faster than one with worst case complexity f(n)

 \Rightarrow an algorithm is <u>efficient</u> \Leftrightarrow W(n) is O(n^k), where $k \in N \setminus \{0\}$.

Examples:

Ex1:

Given two positive real functions $W_1(\boldsymbol{n})$ and $W_2(\boldsymbol{n})$, where

$$W_1(n) = 100n$$
 and $W_2(n) = 4n^2$

Question: 1-
$$W_1(n)$$
 is $O(W_2(n))$? or 2- $W_2(n)$ is $O(W_1(n))$?

1- $W_1(n)$ is $O(W_2(n))$?

Solution:

Suppose
$$k = 1$$
 and $n_0 = 25$, $g(n) = W_1(n)$ and $f(n) = W_2(n)$ \Rightarrow $g(n) \le k * f(n) ? $\forall n \ge n_0$ $W_1(n) \le 1 * W_2(n) ? $\forall n \ge 25$ $100n \le 1 * 4n^2 ? $\forall n \ge 25$ $25 \le n ? \Rightarrow Yes $\forall n \ge 25$ $\Rightarrow W_1(n) \text{ is } O(W_2(n))$$$$$

2- $W_2(n)$ is $O(W_1(n))$?

Solution:

Ex2:

$$W_2(n)$$
 is $\Omega(W_1(n))$?

Solution:

Suppose
$$k = 1$$
 and $n_0 = 25$, $g(n) = W_2(n)$ and $f(n) = W_1(n)$ \Rightarrow $g(n) \ge k*f(n)$? $\forall n \ge n_0$ $W_2(n) \ge 1*W_1(n)$? $\forall n \ge 25$ $4n^2 \ge 100n$? $\forall n \ge 25$ $\Rightarrow YES \ \forall n \ge 25$ $\Rightarrow W_2(n)$ is $\Omega(W_1(n))$

Try with other values for k and n_0 , e.g. k = 1/2 and $n_0 = 50$

Other Definitions (using limit):

 $f, g: N^+ \rightarrow R^+$ (Two positive real valued functions) Then:

- 1. g(n) is $O(f(n)) \Leftrightarrow \lim_{n\to\infty} g(n)/f(n) = c$, where $c \ge 0$, c nonnegative real number $c \in \mathbb{R}^+$
- 2. g(n) is $\Omega(f(n)) \Leftrightarrow \lim_{n \to \infty} g(n)/f(n) = c$, where c>0, strictly positive real number $\mathbf{OR} \quad \lim_{n \to \infty} g(n)/f(n) = \infty$
- 3. g(n) is $\theta(f(n)) \Leftrightarrow \lim_{n \to \infty} g(n)/f(n) = c$ where $0 < c < \infty$, c positive real number
- ** If $\lim g(n) / f(n) = c$, c > 0 positive real number: $\Rightarrow \lim f(n) / g(n) = 1/c$, 1/c > 0
 - \Rightarrow g(n) is O(f(n)) and f(n) is O(g(n))
- ** If $\lim g(n) / f(n) = 0$ $\Rightarrow g(n) \text{ is } O(f(n)) \text{ but } f(n) \text{ is not } O(g(n))$ $\Rightarrow g(n) \text{ is better than } f(n)$

Examples: (classes of positive real functions)

1. Infinite constant functions

(like
$$g(n) = 1/2$$
, = $1/5$, = 7.5 , = 10000 , 10^{20} ,)

2. Infinite log functions

(Like
$$g(n) = \log_2 n$$
, $3.5 \cdot \log_2 n$, $10000 \cdot \log_2 n$, $5 \cdot \log_2 n + 1000 \cdot 9.5$, ...)

3. Infinite linear functions

(Like
$$g(n) = 100*n$$
,)

4. Infinite linear log functions

(Like
$$g(n) = 7*n*log_2n$$
,)

5. Infinite polynomial functions

(like
$$g(n) = n^2$$
, n^3 , n^5 , $15*n^4 - n*log_2n$,)

6. Infinite expontial functions

(Like
$$g(n) = 2^n, 3^n,$$
)

- \rightarrow 1. lim (any constant function) / log₂(n) = 0, likes g(n) = 1/2, g(n) = 1000, $g(n) = 10^{200}$
 - 2. $\lim (\log_2(n)/n)$ =0
 - 3. $\lim (n / (n*\log_2(n))) = 0$
 - 4. $\lim ((n*\log_2(n)) / n^2) = 0$
 - 5. $\lim (n^p/n^q)$
 - = 0 ... If (p < q) and p, q >= 3 $= 0 ... \forall positive integer indices p$ 6. $\lim (n^p/2^n)$

Efficiency of algorithms:

- 1. O(1) [constant functions] is better than O(log₂n)
- 2. $O(log_2 n)$ [log functions] is better than O(n)
- 3. O(n) [linear functions] is better than O(n log₂n)
- 4. O(n log_2 n) [log linear functions] is better than O(n²)
- 5. O(n^p) [**polynomial functions**] is better than O(n^q) ...

if
$$(p < q)$$
 and $p,q >= 2$

6. $O(n^p)$ [polynomial functions] is better than $O(2^n)$... \forall positive integer indices p >=0

$$\begin{array}{l} OR: \backslash \\ O(1) \, < \, O(\, log_2 n) \, < \, O(n) \, < \, O(\, n\, log_2 n) \, < \, O(n^2) \, < O(n^p) \ \, (p > 2) < O(2^n) \end{array}$$

Example : (Calculation the complexity of algorithms)

Given following:

Problem with input size $n \rightarrow \infty$? Algorithm₁ (P₁) $W_1(n) = 100n$ Algorithm₂ (P₂) $W_2(n) = 4n^2$

Two algorithms P_1 , P_2 for solving the same problem with W_1 , W_2 as worst case complexities of both algorithms:

 $P_1: W_1(n) = 100n$ $P_2: W_2(n) = 4n^2$

Which algorithm is better to use than the other?

Solution:

$$P_1: W_1(n) = 100n$$
→ $\lim W_1(n)/n = \lim 100n/n = 100 \neq \infty$ → $W_1(n)$ is $O(n)$

 \rightarrow It is better to use P₁ than P₂ for all cases

Example:

Suppose we have an algorithm P with worst case complexity W(n), Every basic operation costs $\,\tau\,$ times (the Algorithm written as Program runs on a machine)

T the used time to run the algorithm for the input n,

$$\rightarrow$$
 T = W(n)* τ

when we solve the equation , we can know the maximum input size , which can be handled in T time .

Examples:

Ex1:

Suppose
$$\tau$$

$$\tau = 1 \text{ ms },$$

$$W(n) = n^2 ,$$

$$T = 1 \text{ hour }$$

$$\Rightarrow T = W(n) * \tau$$
$$\Rightarrow 60*60*sec = n^2 * 10^{-3}*sec$$

$$\Rightarrow n^2 = 6* 10^5$$

$$\Rightarrow n = 600 * \sqrt{10} \approx 1897 \text{ input size}$$

Ex2:

Given an algorithm with $W(n) = 2^n$ runs on two different machines so that the time for execution a basic operation for the first machine equal to τ and for the other one equal to τ/k , where k >= 2.

Calculate n_1 , n_2 maximum input size for two machines which can be handled in T time (Same time interval)

Runs on two different machines (Computers) using the same time (T)

Solution:

Using the equation $T = W(n) * \tau$

$$T = W(n_1)^*\tau \quad // \text{ running on com} p_1$$

$$T = \tau/k^*W(n_2) \quad // \text{ running on com}_2$$

$$\Rightarrow$$

$$W(n_1)^*\tau = T = \tau/k^*W(n_2)$$

$$\Rightarrow W(n_2) = k^*W(n_1)$$

Now we have the complexity $W(n) = 2^n$ $W(n_2) = k*W(n_1)$ $\Rightarrow 2^{n^2} = k*2^{n^1} | using log_2$ $\Rightarrow log_2(2^{n^2}) = log_2(k*2^{n^1})$

$$\Rightarrow$$
 $n_2 = log_2k + n_1$

 $\Rightarrow n_2 > n_1$

CH2: SORTING ALGORITHMS

Two types for sorting algorithms:

- 1. Internal sorting algorithms
- 2. External sorting algorithms

Declarations:

```
K = any \ ordered \ data \ type \ ;
T = a \ group \ of \ objects \ with \ key \in K
E a collection of T (like array or file of T)
```

 \Rightarrow If E small enough to fit into internal memory (algorithm called internal sorting algorithm).

Otherwise E too large \Rightarrow sorting the elements of E in a file saved in external memory like hard disk,... (algorithm called external sorting algorithm).

Type of internal sorting algorithms:

Type of external sorting algorithms:

- Balanced merge sort
 Natural merge sort
 Polyphase sorting

 The keys saved in a file
- ** Searching in sorted elements costs O(log₂n).
- ** Searching in unsorted elements costs O(n).

INTERNAL SORTING ALGORITHMS

Declaration:

```
N = ... (the size of the array A to be sorted)
Index = 1... N;
```

Bubble sort:

The elements in the array will be sorted in (N-1) passes beginning with i=2, in the first pass comparing A[N] with A[N-1], if (A[N].key < A[N-1]) \Rightarrow swapping until we reach the comparing of A[i] with A[i-1].

Body of algorithm:

```
For i = 2 to N do
{
    for j := N down to i do
        if A[j].key < A[j-1] then
            Swap( A[j-1], A[j]) ;
    }
```

Example:

Sort the following array of integers using Bubble sort.

	8	2	6	4
	1	2	3	4
1. Round (Out	ter loop	<u>):</u>		
$i=2$ \Rightarrow	j = N	to 2		
j = 4 =	⇒ swap	(A[i]	.Aſi-1	.1)
J	- r	([,]]	,LJ -	1/
	8	2	4	6
	1	2	3	4
j = 3 =	- → nothi	ng to	do	•
j – 3 –	→ Houn	ing to	uo	
	8	2	1	6
	0	2	4	6
	1	2	3	4
j=2	> swap	(A[i].	A[i-1]])
3	1	. 1,337	-5	
	2.	8	4	6
	<u> </u>		-	Ū
	1	2	3	4

2. Round (Outer loop):

$$\frac{\mathbf{i} = 3}{\mathbf{j} = 4} \Rightarrow \mathbf{j} = 4 \text{ to } 3$$

$$\mathbf{j} = 4 \Rightarrow \text{ nothing to do}$$

$$2 \quad 8 \quad 4 \quad 6$$

$$1 \quad 2 \quad 3 \quad 4$$

$$\mathbf{j} = 3 \Rightarrow \text{swap (A[j],A[j-1])}$$

$$2 \quad 4 \quad 8 \quad 6$$

$$1 \quad 2 \quad 3 \quad 4$$

3. Round (Outer loop):

Complexity of bubble sort:

Value of
$$i=2$$
, 3, 4, ..., N-1, N
No of comparisons for each round: N-1, N-2, N-3 ..., 2, 1
Comparisons in i-th round: $(N-i+1)$

The number of comparisons = (N-1) + (N-2) + ... + 3 + 2 + 1 = 1/2N(N-1) \Rightarrow worst case complexity of bubble sort W(N) = 1/2N(N-1), is O(?)

$$\begin{array}{l} lim \ W(N)/N^2 = lim \ [1/2N(N\text{-}1)]/N^2 = 1/2*lim \ (N\text{-}1)/N = 1/2 \neq \infty \\ \Rightarrow W(N) = \ 1/2N(N\text{-}1) \ \ is \ O(N^2) \end{array}$$

Insertion sort:

Idea:

We begin with for i = 2 to N (N the number of elements)

Comparing i-th element with the preceding entries with index (i-1), (i-2),...,2, 1 in the array until either we reach a smaller element or reach the left hand end of the array.

Body of algorithm:

```
void insertion ( int A[ ] , int n )
{    int i , j , x ;
    for ( i = 2 ; i <= n ; ++i )
    {        x = A[i] ;
        A[0] = x ;
        j = i - 1 ;
        while ( A[j] > x )
        {        A[j+1] = A[j] ;
              A[j] = x ;
              j - 1 ;
        }
    }
}
```

Example:

Sort the following array of integers using insertion sort.

8	2	6	4
1	2	3	4

1. Round:

j := j - 1 = 0,

A[0] comparing with $x \rightarrow A[0] = x$ out of the loop.

2. Round:

$$\frac{i=3}{x=A[3]=6}
A[0]=6$$

$$\frac{6}{0} \quad \frac{2}{0} \quad \frac{8}{0} \quad \frac{6}{0} \quad 4$$

$$j = i - 1 = 2$$

$$j = j - 1 = 1;$$

 $j = 1$
 $A[1] > x \rightarrow$
 $2 > 6 \rightarrow NO$
 \rightarrow out of the loop

3. Round :

$$i = 4$$

$$j = i - 1 = 3$$

while:
$$A[j] > x$$

 $8 > 4 \rightarrow YES$

$$→$$
 A[j+1] = A[j]
A[4] = A[3] = 8
A[3] = 4

$$j = j - 1 = 2$$

while:
$$A[j] > x$$

$$6 > 4 \rightarrow YES$$

 $\rightarrow A[j+1] = A[j]$
 $A[3] = A[2] = 6$

$$j = j - 1 = 1$$
while: A[j] > x
$$2 > 4 \rightarrow NO$$

$$\rightarrow Out of while (STOP)$$

$$\boxed{2 \mid 4 \mid 6 \mid 8}$$

Complexity of insertion sort:

The number of comparisons = (N-1) + (N-2) + ... + 3 + 2 + 1 = 1/2N(N-1)

 \Rightarrow worst case complexity of insertion sort W(N) = 1/2N(N-1) is O(N²)

Selection sort:

Idea:

For i = 1 to N-1:

In the i_th round comparing the key in i_th position with the keys in the (i+1)_th, (i+2)_th,..., N_th positions, each time we find a key less than the key in i_th position (swap).

Body of algorithm:

```
void selection ( int A[ ] , int n )
{    int i = 1 , k ;
    int tmp , x ;

for ( ; i <= n - 1; ++i )
    {    k = i;
        x = A[i];
        for ( int j = i + 1; j <= n; ++j )
        if ( A[j] < x )
        {    k = j;
            x = A[j];
        }
        tmp = A[k];
        A[k] = A[i];
        A[i] = tmp;
    }
}</pre>
```

Example:

Sort the following array of integers using selection sort.

1. Round:

$$\frac{i=1}{k=1}$$

$$x = A[1] = 8$$

inner loop:

$$j = i + 1 = 2 \Rightarrow A[2] < x \Rightarrow 2 < 8 \Rightarrow YES \Rightarrow k = j = 2$$

 $x = A[2] = 2$

$$j = 3 \rightarrow A[3] < x \rightarrow 6 < 2 \rightarrow \underline{NO}$$
 (nothing to do)

$$j = 4 \rightarrow A[4] < x \rightarrow 4 < 2 \rightarrow \underline{NO}$$
 (noting to do)

2. Round :

i = 2

$$k = 2$$
$$x = A[2] = 8$$

inner loop:

$$j = i + 1 = 3 \rightarrow A[3] < x \rightarrow 6 < 8 \rightarrow \underline{YES}$$

 $\rightarrow k = j = 3$
 $x = A[3] = 6$

$$j = 4 \rightarrow A[4] < x \rightarrow 4 < 6 \rightarrow \underline{YES}$$

 $\rightarrow k = j = 4$
 $x = A[4] = 4$

3. Round :

$$\frac{\overline{i=3}}{k=3}$$

$$x = A[3] = 6$$

inner loop:

$$j = i + 1 = 4 \rightarrow A[4] < x \rightarrow 8 < 6 \rightarrow NO$$

 \rightarrow (Nothing to do)

Complexity of selection sort:

Value of i =

1 , 2 , 3 , ... , N-2 , N-1No of comparisons for each round : N-1, N-2, N-3,

(N - i)

Comparisons in i-th round:

The number of comparisons = (N-1) + (N-2) + ... + 3 + 2 + 1 = 1/2N(N-1)

 \Rightarrow worst case complexity of insertion sort W(N) = 1/2N(N-1) is $O(N^2)$

Quick sort : (RECURSION)

Choose a key (*Pivot*) from given array then:

<u>Idea</u>:

Two stages:

- 1. Function $find_pivot(i,j)$; // i is the index of the first element in the array and j is the last element in the array
- 2. Method: Partition(i, j, p, k); the Method returns the index of the first element of the right hand subarray
- 3. Apply stage 1 and stage 2 recursively

Body of the algorithm:

Tecniques to find Pivot :

- 1. Random to find m as positive of pivot in i...j,
 - \rightarrow find_Pivot(i,j) \rightarrow A[m]
- 2. define Pivot as Middle element in the array,
 - \rightarrow find_Pivot(i,j) \rightarrow A[(i+j)/2].
- 3. Small sample of elements in subarray then define find_Pivot(i,j)→ median of the keys .

.

1. First Stage: How to Find Pivot

Comparing the elements A[i],..,A[j] until we find two elements with different keys \rightarrow choosing the larger of these as pivot .

Problem:

- The array contains only one element?
- The keys of the array are the same?
- → We do nothing, because the array is sorted

```
public int pivotIndex( int A[] , int i , int j )
    \{ int z, p, q; 
     boolean found = false;
     p = i-1;
      q = I;
      do
      \{ p = p + 1;
         q = q+1;
         if(A[p] != A[q])
          found = true;
        if(A[p] < A[q])
         z = q;
        else
          z = p;
        } while (p!=j-1) && (!found));
    if (!found) z = 0;
 return z;
```

2. Second Stage: Partitioning the array

Idea of the partitioning :

- 1. Define two pointers left and right : left = i and right = j.
- 2. Right moving of left pointer, while A[left] < pivot
- 3. Left moving of right pointer while A[right] >= pivot
- 4. if left < right \rightarrow swapping (A[left], A[right]).
- 5. No crossing by left and right pointers that means (right is still greater then left)

 → goto step 2 else goto step 6
- 6. k = left: means the left position of right subarray is equal to the value of left.

```
public int partition ( int A[] , int i , int j , int p)
    { int left , right , tmp;
    left = I;
    right = j;
    do
    { while ( A[left] < p)
        Left = left+1;
        while (A[right] >= p)
            right = right-1;
        if (left<right)
        { tmp = A[left];
            A[left] = A[right];
            A[right] = tmp;
        }
    } while(left > right);
    return left;
}
```

Apply stage 1 and stage 2 recursively

```
public void quick ( int A[] , int i , int j)
    { int p , k , n;
        n = pivotIndex(A,i,j);
        if ( ( n!=0)&&(j>i))
        {
            p = A[n];
            k = partition(A,i,j,p);
            quick(A,i,k-1);
            quick(A,k,j);
        }
    }
}
```

```
class QuickSort
   public int pivotIndex( int A[] , int i , int j )
    \{ int z, p, q ; 
      boolean found = false;
      p = i-1;
      q = i;
      do
       \{ p = p + 1;
         q = q+1;
         if(A[p] != A[q])
           found = true;
         if(A[p] < A[q])
          z = q;
         else
           z = p;
         } while (p!=j-1) && (!found));
     if (!found) z = 0;
  return z;
public int partition ( int A[] , int i , int j , int p)
  { int left, right, tmp;
    left = I;
   right = j;
   do
    { while (A[left] < p)
         Left = left+1;
      while (A[right] >= p)
        right = right-1;
      if (left<right)
       \{ tmp = A[left];
         A[left] = A[right];
        A[right] = tmp;
   } while(left > right);
return left;
}
 public void quick ( int A[] , int i , int j)
 { int p, k, n;
   n = pivotIndex(A,i,j);
   if( (n!=0)&&(j>i))
      P = A[n];
      k = partition(A,i,j,p);
      quick(A,i,k-1);
      quick(A,k,j);
 }
}
```


$$\begin{split} n &= 2 \\ p &= A[n] = A[2] = car \\ k &= partition(A,i,j,p) = partition(A,1,8,car) \end{split}$$

partition (A, 1, 8, car):

pie >= car
$$\rightarrow$$
 yes \rightarrow right = right -1 = 7
sum >= car \rightarrow yes \rightarrow right = 7 - 1 = 6
bee >= car \rightarrow no \rightarrow stop

4- if (left < right)

$$2 < 6 \rightarrow \text{yes} \rightarrow \text{swap} (A[left], A[right]) = \text{swap}(car, bee)$$

5- while (left < right) [means : No Crossing] \rightarrow yes \rightarrow goto step 2

Again:

2- while (
$$A[left] < car$$
)

bee
$$<$$
 car \Rightarrow yes \Rightarrow left = left +1 =3 sup $<$ car \Rightarrow no \Rightarrow stop

3- while
$$(A[right] >= car)$$

$$car >= car \rightarrow yes \rightarrow right = right -1 = 5$$

the
$$\Rightarrow$$
 car \Rightarrow yes \Rightarrow right = 5 - 1 = 4

and
$$>=$$
 car \rightarrow no \rightarrow stop

4- if (left < right)

$$3 < 4 \Rightarrow \text{yes} \Rightarrow \text{swap} (A[left], A[right]) = \text{swap}(\text{sup}, \text{and})$$

5- while (left < right) [means : No Crossing] \rightarrow yes \rightarrow goto step 2

Again:

5- while (left < right) [means : No Crossing] $4 < 3 \implies$ no \implies there is Crossing \implies goto step 6

Recursion:

Quick(A[], 1, 3)

$$\begin{array}{l} n=1\\ p=A[n]=A[1]=beg\\ k=partition(A,i,j,p)=partition\left(\;A,\;1\;,\;3\;,\;beg\;\right)\\ \ldots\ldots\\ \end{array}$$

quick(A[], 4,8)

$$n=5$$

$$p=A[n]=A[5]=\text{the} \\ k=\text{partition}(A,i,j,p)=\text{partition}\;(\;A,\,4\;,\,8\;,\,\text{the}\;)\\ \ldots\ldots$$

Complexity of quick sort

1.Worst case Complexity (General):

The number of comparisons [needed to partition an array of length N]: is either N (if pivot is \underline{NOT} one of the entries in the array) or N-1 (if pivot is one of the entries in the array)

First Instance:

Apply quick sort using an array with following properties:

- Number of keys is equal to N
- Sorted keys.
- Different keys.
- The pivot is larger of the first two entries.

After the 1. Partition:

After the 2. Partition:

After the 3. Partition:

After the Last Partition:

- \Rightarrow Worst case complexity of quick sort = (N-1)+(N-2)+...+2+1 = 1/2N(N-1)
- \Rightarrow the worst case complexity of quick sort is $O(N^2)$

Second Instance:

Apply quick sort using an array with following properties:

- Number of keys is equal to $N = 2^{m}$, where m >= 1
- Unsorted keys.
- After each parition, the array will be divided into exactly equal parts.
- pivot is not one of the elements.

→ Worst case complexity =
$$2^m + 2^m + \dots + 2^m = m * 2^m = N * log_2 N$$

m times

$$N = 2^m$$

$$\Rightarrow m = log_2 N$$

→
$$w(N) = N*log_2N$$
 is $O(Nlog_2N)$

2. Average complexity of quick sort :

Suppose we have an unsorted array with different items and the pivot is one of its entries.

→ left subarray consists 1 or 2 or 3, N-1

Let A(N) average complexity of array length N:

$$A(N) = \sum P(I) * T(I)$$

replacing N in (1) by N-1:

Where P(I) is the probability that the instance I will occur and T(I) the number of basic operations for instance I

$$N = 1 \implies A(1) = 0$$

 $N > 1$:

A(N-1) = (N-2) + [2*A(1) + ... + 2*A(N-2)] / (N-2) (2)

In (9) Replacing $(N-1) \rightarrow N$:

Using LN(N) in (10):

$$\Rightarrow$$
 B(N) = 1.4*log₂N + 1/N -3 (B(N) = A(N)/N)

- \Rightarrow A(N)/N = 1.4*log₂N + 1/N -3
- \Rightarrow A(N) =1.4N*log₂N+1-3N
- \Rightarrow Average complexity of quick sort is $O(N*log_2N)$

Heap sort:

Definition (Heap array):

A Heap Array H is a one dimensional array with length N. (*refer to the definition in Data Structure*)

For any index i: 1.....N

$$H[i/2] > H[i] > max (H[2*i], H[2*i+1])$$

Example:

Heap Array indexed by 1..15

Н	96	90	70	80	75	42	60	17	44	10	72	14			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Idea of Heap Sort:

- 1. Make heap array.
- 2. SWAP (first element, last element).
- 3. Make heap array of the remains (N-1) elements.
- 4. Goto to step (2).
- 5. Make heap array of the remains (N-2) elements.
- 6. Goto to step (2).
- 7. And so on until the array is sorted.

• Make Heap (Heapifying)

Idea:

- 1- Calculate N : No of keys in the array.
- 2- Starting at index i = N/2: (*Outer loop*)

A- if
$$(H[i] < max (H[2*i], H[2*i+1])$$

- \rightarrow Trickling down: swap (H[i], max (H[2*i], H[2*i+1]))
- **B-** Calculate new index j of H[i]: (if H[j] has any children) [inner loop]

if
$$(H[j] < max (H[2*j], H[2*j+1])$$

- \rightarrow Trickling down: swap (H[j], max (H[2*j], H[2*j+1]))
- C- Calculate i = i 1
- 3- while (true $\setminus i >= 1$) goto step 2 else
- 4- Stop

Example:

Sort the following array of integers using Heap sort.

5	10	27	60	59	62	14	73
1	2	3	4	5	6	7	8

Make heap array →

73	60	62	10	59	27	14	5
1	2	3	4	5	6	7	8

Swap (first with last)

5	60	62	10	59	27	14	73
1	2	3	4	5	6	7	8

Make heap array for (N-1) elements \rightarrow

62	60	27	10	59	5	14	73
1	2	3	4	5	6	7	8

Swap (first with last)

14	60	27	10	59	5	62	73
1	2	3	4	5	6	7	8

Make heap array for (N-2) elements \rightarrow

60	59	27	10	14	5	62	73
1	2	3	4	5	6	7	8

Swap (first with last)

5	59	27	10	14	60	62	73
1	2	3	4	5	6	7	8

• • •

...

Then the array is sorted:

5	10	14	27	59	60	62	73
1	2	3	4	5	6	7	8

Complexity of Heap Sort:

- 1. Heaping costs 2.5*N
- 2. TrickleDown (1, j, A) cost 2log₂j each time
- 3. The number of executions trickle is $2\log_2(N-1) + 2\log_2(N-2) + ... + 2\log_2 1 = 2\log_2(N-1)!$ $\approx N*\log_2 N+3N$
- \Rightarrow Worst case complexity Of heap sort is $O(N*log_2N)$.

Merge sort:

Idea:

- 1. A, B two sorted arrays with length N, M
- 2. Define an array C of length N + M
- 3. Comparing each element of A with each element of B:

$$if A[i] \le B[j] \ then \ \{ \ C[k] = A[i]; \ i = i + 1; \ \} \ else \ \{ \ C[k] = B[j]; \ j = j + 1; \ \} \ k = k + 1;$$

Where i = 1 to M, j = 1 to N and k = 1 to N+M

4. A empty and B not empty \rightarrow copy the remains of B to C *else* B empty and A not empty \rightarrow copy remains of A to C

Examples:


```
void \underline{merge} (A, B, C)// merge A and B into C
\{ i: 1..M; \}
  j : 1..N;
  k : 1..N+M;
  int l;
  i = 1; j = 1; k = 1;
  while ((i \le M) \text{ and } (j \le N))
   \{ if(A[i] \leq B[j]) \}
          \{C[k] = A[i];
            i = i + 1;
      else
         \{C[k] := B[j];
          j = j+1;  }
     k = k+1;
 if (i > M)
   for l = j to N do
       C[k] = B[l];
       k = k+1;  }
if(j > N)
   for l := i to M do
     {
       C[k] := A[l];
       k := k+1; \}
```

```
void sortByMerge( low, high : Index)
{ mid : low..high;
  B : array[low..high] of T;

if ( low < high )
  { mid = (low+high)/2;
    sortByMerge ( low , mid );
    sortByMerge ( mid+1 , high );
    merge (A[low..mid] , A[mid+1..high]) , B );
    copy B to A[low.. high]
  }
}</pre>
```

Example:

1

Sort the following array using merge sort

3

2

74

45

Complexity of Merge Sort:

By merge two sorted arrays length L1 , L2 \Rightarrow cost is proportional to L1 + L2

 $\rightarrow c*(L1+L2)$ or

2L-1 (exactly), if A and B same length L.

Suppose $N = 1 \rightarrow W(1) = a$, to sort an array length 1 N > 1, $N = 2^k$, where k >= 1 :

→ W(N) = W(1/2N) + W(1/2N) + cN , constant W(N) =
$$2^{1*}\frac{W(1/2^{1}N)}{N}$$
 + 1cN

To calculate W(1/2N):

 \Rightarrow Worst case complexity of merge sort is $O(N*log_2N)$

OTHER INTERNAL SORTING ALGORITHM

** Sorting the keys of a queue with values between 0..99

Two Pass Radix Algorithm:

First pass:

Test the key by MOD function, then enqueuing this key in **Qu** indexed by the least significant digit of its key,where Qu is defined as one array length 10 containing 10 queues.

 \rightarrow Concatenate the queues Qu[0], Qu[1],..., Qu[9] to the queue Q

Second pass:

Test the key by DIV function, then enqueuing this key in $\mathbf{Q}\mathbf{u}$ indexed by the most significant digit of its key .

```
While (!empty(Q)) 
{ dequeue (Q, x); 
 j = x/10; 
 engueue (x,Qu[j]); 
}
```

igorup Concatenate the queues Qu[0] , Qu[1],..., Qu[9] to one queue Q

Example:

50 / 63 / 03 / 09 / 77 / 67 / 20

First Pass:

igorup Concatenation the 10 queues Qu[0] , Qu[1] , ... , Qu[9] to Q igorup

Second Pass:

 \rightarrow Concatenation the 10 queues Qu[0], Qu[1], ..., Qu[9] to Q \rightarrow

Complexity:

- 1- Extraction of one of the digits of keys → 2*N
- 2- Enqueuing each element with proper place → cost is proportional to N (after each pass).
- 3- Concatenation cost (only concatenating the next field of Qu[i] to Qu[i+1]
 - \rightarrow Worst case complexity of Two Pass Radix algorithm is O(N).

EXTERNAL SORTING ALGORITHMS

1) Blanaced Merge Sort algorithm:

Idea:

- Define 5 files:
 - F as master file containing the keys, and F1, F2, F3, F4 as help files
- Number of keys in **F** is equal to **N**
- Define one dim array (called RUN) length M , where M << N
- Define $\mathbf{r} = \mathbf{N}/\mathbf{M}$, number of RUNS
- Use any internal Sort Algorithms (heapSort...., with worst case in O(Nlog₂N))

Body of B.M.S. Algorithm:

Containing two Stages:

- 1- Distribution stage
- 2- Merge Stage

1- Distribution stage:

- 1- Open F read only, open F1, F2 rewriting: **RESET(F)**; **REWRITE(F1, F2)**
- 2- Read from F, M keys in one dim array (RUN) in the internal memory
- 3- Sort the keys in this array (using any internal algorithm, like heapSort, ...)
- 4- Write the sorted keys in this array in F1 or F2 (alternately)
- 5- Goto step (2) until F eof.

2- Merge Stage :

- 1- Open F1,F2 read only, rewriting F3, F4: **RESET** (F1, F2); **REWRITE**(F3, F4).
- 2- While not eof(F1) and not eof(F2) do
 - Read 2 RUNS of F1 and F2
 - Merge these and write the new RUN to F3 or F4 (using F3, F4 files alternately)
 - Goto step (2)
 - If one of the files (F1,F2) empty and the other still contains the last RUN
 - → Read this RUN from the file (F1 or F2) then write it to (F3 or F4)
- 3- **Again :** Using (F1,F2) and (F3,F4) alternately for reading and rewriting until there is only on RUN in one file of (F1,F2,F3,F4)
 - → One of these files contains the sorted keys .

Example:

F: 20, 8, 5, 17, 21, 9, 3, 11, 2, 18, 15, 23, 14, 6, 15, 24, 10, 21, 13, 16, 19, 15, 22, 5, 18, 20, 8, 5, 12, 1, 26, 25, 4, 15, 7

N = 35

Define M = 4 : r = N/M = 9

RUN 20 8 5 17 Sorting → RUN 5 8 17 20

Using any internal algorithm

And so on

DISTRIBUTION STAGE:

RESET (F), REWRITE(F1), REWRITE(F2)

F1: 5 8 17 20 / 2 15 18 23 / 10 13 16 21 / 5 8 18 20 / 4 7 15

F2: 3 9 11 21 / 6 14 15 24 / 5 15 19 22 / 1 12 25 26

MERGE STAGE:

First round:

RESET (F1, F2), REWRITE (F3, F4)

F3: 3 5 8 9 11 17 20 21 / 5 10 13 15 16 19 21 22 / 4 7 15

F4: 2 6 14 15 15 18 23 24 / 1 5 8 12 18 20 25 26

Second round:

RESET (F3, F4), REWRITE(F1, F2)

F1: 2 3 5 6 8 9 11 14 15 15 17 18 20 21 23 24 / 4 7 15

F2:1 5 5 8 10 12 13 15 16 18 19 20 21 22 25 26

Third round:

RESET (F1, F2), REWRITE(F3, F4)

F3: 1 2 3 5 5 5 6 8 8 9 10 11 12 13 14 15 15 15 16 17 18 18 19 20 20 21 21 22 23 24 25 26

F4:4 7 15

Fourth round:

RESET (F3, F4), REWRITE(F1, F2)

F1: 1 2 3 4 5 5 5 6 7 8 8 9 10 11 12 13 14 15 15 15 15 16 17 18 18 19 20 20 21 21 22 23 24 25 26

19 20 20 21 21 22 23 24 23 2

F2: empty

Complexity of Balanced Merge sort :

N number of keys in F to be sorted

M length of RUNS in distribution stage

 \rightarrow N/M = r number of RUNS at the distribution stage suppose $r = 2^k$

After each round of merge stage

- 1- Length of RUN doubled
- 2- Number of RUNS halved

1- Worst Case Complexity of Distr. Stage:

Cost for sorting one RUN (using internal sorted algorithm, like HeapSort) $: A*M*log_2M$, where A constant. is equal to

 \rightarrow Total Cost of RUNS is equal to : $\mathbf{r}^*(\mathbf{A}^*\mathbf{M}^*\mathbf{log}_2\mathbf{M})$

2- Worst Case Complexity of Merge Stage:

Remember:

By merge two sorted arrays length L1, L2 \Rightarrow cost is proportional to L1 + L2 $\rightarrow c*(L1+L2)$ or

2L-1 (exactly), if A and B same length L.

1. Round :

Merge r/2¹ pairs of RUNS length 2⁰M

Output: 1- RUNS length 2M 2- Number of RUNS r/2¹

Merge r/2² pairs of RUNS length 2¹M

Output: 1- RUNS length 2²M

2- Number of RUNS r/2²

3. Round : Merge r/2³ pairs of RUNS length 2²M

Output: 1- RUNS length 2³M

2- Number of RUNS r/2³

 $Cost = r/2^3 (2^3 M - 1)$

k. Round:

.

Merge r/2^k pairs of RUNS length 2^{k-1}M

Output: 1- RUNS length 2^kM 2- Number of RUNS r/2

 \rightarrow Cost = r/2^k(2^kM - 1)

 $Cost = r/2^{1}(2^{1}M - 1)$

 $Cost = r/2^2 (2^2 M - 1)$

⇒ Complexity by Merge Stage:

$$r/2^{1}(2^{1}M - 1) + r/2^{2}(2^{2}M - 1) + r/2^{3}(2^{3}M - 1) + \dots + r/2^{k}(2^{k}M - 1)$$

$$= \underline{\mathbf{r}^{*}M} - r/2^{1} + \underline{\mathbf{r}^{*}M} - r/2^{2} + \underline{\mathbf{r}^{*}M} - r/2^{3} + \dots + \underline{\mathbf{r}^{*}M} - r/2^{k}$$

$$= \underline{\mathbf{k}^{*}\mathbf{r}^{*}M} - r^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$< \mathbf{k}^{*}\mathbf{r}^{*}M - r^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - r^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k})$$

$$= \mathbf{k}^{*}\mathbf{r}^{*}M - \mathbf{r}^{*}(1/2 + 1/4 + \dots + 1/2^{k}) + \mathbf$$

Multiply with A \Rightarrow

Cost of Merge Stage = $A*N* log_2 r$

- → The complexity of Balanced Merge sort = the complexity of Distr. Stage + the complexity of Merge stage
 - $= A*M*r*log_2M + A*N*log_2 r$
 - $= A*N* log_2M+ A*N* log_2 r$
 - $= A*N (log_2M + log_2r)$
 - $= A*N * log_2(M*r)$
 - $= A*N log_2N$
- \rightarrow The worst case complexity of B.M.S is $O(N^* \log_2 N)$

2) Polyphase Sorting algorithm:

Fib number:

Fib:
$$N^+ \longrightarrow N^+$$

$$Fib(n) = n$$
, if $n = 0$ or $n = 1$
 $Fib(n) = Fib(n-1) + Fib(n-2)$ $n >= 2$

N	0	1	2	3	4	5	6	7	8	9	10	
FIB(n)	0	1	1	2	3	5	8	13	21	34	55	

PreCondition:

Suppose T a file contains r sorted RUNS (using any internal algorithm), where r any fib number ($\mathbf{r} = \mathbf{FIB}(\mathbf{n}) = \mathbf{FIB}(\mathbf{n-1}) + \mathbf{FIB}(\mathbf{n-2})$):

Body of Algorithm (Distribution and Merge Stages):

- 1- Create 3 writing files T1, T2, T3, choose two of them for rewriting **REWRITE(T1)**, **REWRITE(T2)**, and open T read only: **RESET(T)**
- 2- Read FIB(n-1) RUNS from T then write to T1 and read FIB(n-2) RUNS then write to T2
- 3- REWRITE (T3), RESET(T1), RESET(T2)
- 4- Merge FIB(n-2) Pairs of RUNS from T1, T2 writing to T3 → T2 empty, T1 still contains FIB(n-1)-FIB(n-2) = FIB(n-3) RUNS
- 5- REWRITE (T2), RESET(T3) and so on until all RUNS in one file sorted

Semi Example:

Let T contains r = FIB(8) = 21 RUNS (after sorting the record in T using any internal sort algorithm)

Distribution Stage:

REWRITE (T1), REWRITE(T2), RESET(T)

T1 : FIB(7) = 13 RUNS T2 : FIB(6) = 8 RUNS

Merge Stage:

1.Round:

RESET(T1), RESET(T2), REWRITE(T3)

Merge FIB(6) = 8 RUNS into T3 \Rightarrow

T1: FIB(5) = 5 RUNS

T2: empty

T3: FIB(6) = 8 RUNS

2.Round

RESET(T3), RESET(T1), REWRITE(T2)

Merge FIB(5) = 5 RUNS into T2 \Rightarrow

T1: empty

T2: FIB(5) = 5 RUNS

T3: FIB(4) = 3 RUNS

3.Round

RESET(T2), RESET(T3), REWRITE(T1)

Merge FIB(4) = 3 RUNS into T1 \Rightarrow

T1: FIB(4) = 3 RUNS

T2: FIB(3) = 2 RUNS

T3: empty

4.Round

RESET(T1), RESET(T2), REWRITE(T3)

Merge FIB(3) = 2 RUNS into T3 \Rightarrow

T1 : FIB(2) = 1 RUNS

T2: empty

T3 : FIB(3) = 2 RUNS

5.Round

RESET(T1), RESET(T3), REWRITE(T2)

Merge FIB(2) = 1 RUNS into T2 \Rightarrow

T1: empty

T2: FIB(2) = 1 RUNS

T3 : FIB(1) = 1 RUNS

6.Round

RESET(T2), RESET(T3), REWRITE(T1)

Merge FIB(1) = 1 RUNS into T1 \Rightarrow

T1 : FIB(1) = 1 RUN

T2: empty

T3: empty

Example:

Given following File T containing following keys:

Pre-Calculations:

N = 29

M = ? (needs algorithm)

r = N/M =any Fib() number (depends on M)

How to find M:

$$M = 2 \rightarrow r = N/M = 29/2 = 15$$
 is not a Fib number

$$M = 3 \rightarrow r = N/M = 29/3 = 10$$
 is not a Fib number

$$M = 4 \rightarrow r = N/M = 29/4 = 8$$
 is a Fib number $\rightarrow 8 = Fib(6) = Fib(5) + Fib(4)$

(Runwise sorted using any internal algorithm)

Distribution Stage:

RESET(T), REWRITE(T1,T2)

T1: 5-8-17-20/3-9-11-21/15-18-22-23/6-14-15-24/8-10-15-21/ Fib(5) = 5 RUNS

T2: 6-13-16-18/6-11-24-25/5

Fib(4) = 3 RUNS

Merge Stage:

1.Round:

RESET(T1,T2); REWRITE(T3)

T1: 6-14-15-24/8-10-15-21/

T2: EMPTY

T3: 5-6-8-13-16-17-18-20/3-6-9-11-11-21-24-25/5-15-18-22-23/

2.Round :

RESET(T1,T3), REWRITE(T2)

T1: EMPTY

T2:5-6-6-8-13-14-15-16-17-18-20-24/3-6-8-9-10-11-11-15-21-21-24-25/

T3: 5-15-18-22-23/

3.Round :

RESET(T2,T3), REWRITE(T1)

T1:5-5-6-6-8-13-14-15-15-16-17-18-18-20-22-23-24/

T2: 3-6-8-9-10-11-11-15-21-21-24-25/

T3: EMPTY

4.Round :

RESET(T1,T2), REWRITE(T3)

T1: EMPTY

T2: EMPTY

T3:3-5-5-6-6-6-8-8-9-10-11-11-13-14-15-15-15-16-17-18-18-20-21-21-22-23-24-24-25

CH3: Graph Algorithms (Shortest Path Algorithms)

Shorted path algorithms:

Let G = (V,E), where $V = \{v_0 \dots v_n\}$ set of vertices E set of edges

Suppose \mathbf{a} , $\mathbf{b} \in \mathbf{V}$ a k-edges path between \mathbf{a} and \mathbf{b} defined as

 $P: v_0 = \mathbf{a}$, v_1 , v_2 , ..., $v_k = \mathbf{b}$ with (k+1) vertices

A cycle is a k-edge path such that $v_0 = v_k$, $k \ge 2$

** Type of graphs:

- 1- Undirected graph , { $v_i,\,v_{i+1}$ } $\in~E~$ symmetric
- 2- Directed graph, $(v_i, v_{i+1}) \in E$ not symmetric
- 3- Undirected weighted graph
- 4- Directed weighted graph

Example:

Weight:

 $W : E \rightarrow R$ (or any other informations)

$$W(\{1,4\}) = 300 = W(\{4,1\})$$

$$W((1,4)) = 300 \neq W((4,1)) = \infty$$

$$W((1,1)) = 0$$

$$W(\{1,1\}) = 0$$

- $w(p) = w(\{v_0, v_1\}) + w(\{v_1, v_2\}) + \dots + w(\{v_{k-1}, v_k\})$ (undirected)
- $w(p) = w((v_0, v_1)) + w((v_1, v_2)) + \dots + w((v_{k-1}, v_k))$ (directed

shorted path **p** from **a** to **b** is a path such that for all \mathbf{p} from **a** to **b**: $\mathbf{w}(\mathbf{p}) \le \mathbf{w}(\mathbf{p})$

Four shortest path problems:

1- Single pair problem: Find a shortest path from one given vertex **a** to another vertex **b**

2- Single source problem : Given a source vertex \boldsymbol{a} , find for every vertex \boldsymbol{v} a

shortest path from **a** to **V**

3- Single sink problem : Given a sink vertex \mathbf{b} , find for every vertex \mathbf{v} a shortest

path from **v** to **b**

4- All pairs problem : For every orderd pair (a,b) of vertices find a shortest

path from **a** to **b**

(1) Dijkstra's Algorithm: (For single source problem)

- 1- Building up a set S of vertices, initialized to source vertex
- 2- Adding new vertex to S until all vertices of the graph in S
- 3- Define an array \mathbf{d} indexed by vertices (without the source vertex \mathbf{a}) contains the weights initialized with:

```
d[x] = \{ \ w((a,x)) \ , \ if \ (a,x) \in E \ (Directed), \qquad // \ w(\{a,x\}) \ , \ if \ \{a,x\} \in E \ (Undirected) \\ \{ \ \infty \qquad \text{other wise} \ .
```

This array is defined to insert a new vertex to S.

4- for
$$i = 1$$
 to $n-1$ do
{

 choose a vertex v not in S , for which $d[v]$ is least

 $\Rightarrow S = S \cup \{v\}$;

 for each vertex x not in S (inner loop)

 $\Rightarrow d[x] = min \{ d[x], d[v] + w((v,x)) \} // if (d[v] + w((v,x)) < d[x])$
 $\Rightarrow d[x] = d[v] + w((v,x))$
}

Example:

1- Initialized suppose a = 1 is the source vertex

⇒S ={1}
2- d[2]= 200
d[3] =
$$\infty$$

d[4] = 300

d[5] = 100 unchanged

→ d[5] = min { d[2], d[3], d[4],d[5] } = min {200, ∞, 300, 100} → v = 5
3- Join vertex 5 to S → S = S:= S U
$$\{v\}$$
 = { 1, 5}

4- x = 2, 3, 4 all are not in S (inner loop)

$$d[x] = min \{d[x],d[5]+w(5,x)\}$$

⇒
$$d[2] = min \{200,100+40\} = \underline{140} \ changed$$

 $d[3] = min \{\infty,100+70\} = \underline{170} \ changed$
 $d[4] = min \{300,100+\infty\} = 300 \ unchanged$

5- Again with outer loop: for all v not in S:

$$\rightarrow$$
 d[2] = min { d[2], d[3], d[4] } = min { 140, 170, 300} \rightarrow v = 2 \rightarrow S = S U {2} \rightarrow S = {1,5,2}

```
6- Again with step (4): x = 3, 4 all are not in S (inner loop)
    d[x] = \min \{d[x], d[2] + w(2,x)\}
         \rightarrow d[3] = min {170,140+10}=150 changed
             d[4] = min \{ 300,140+\infty \} = 300  unchanged
7- Again with outer loop: for all v not in S:
    \rightarrow d[3] = min { d[3], d[4] } = min { 150, 300} \rightarrow v = 3
    \rightarrow S = S U {3} \rightarrow S = {1,5,2,3}
8- Again with step (4): x = 4 all are not in S (inner loop)
    d[x] = min \{d[x],d[3]+w(3,x)\}
    d[4] = min \{300,150+20\} = 170  changed
    \rightarrow S = S U {4} \rightarrow S = {1,5,2,3,4}
The weight of the shortest path from 1 to the vertex 2 is d[2]=140,
     Path: 1 \rightarrow 5 \rightarrow 2
The weight of the shortest path from 1 to the vertex 3 is d[3]=150.
     Path: 1 \rightarrow 5 \rightarrow 2 \rightarrow 3
The weight of the shortest path from 1 to the vertex 4 is d[4] = 170,
     Path: 1 \rightarrow 5 \rightarrow 2 \rightarrow 3 \rightarrow 4
The weight of the shortest path from 1 to the vertex 5 is d[5]=100,
     Path : 1→5
```

(2) Greedy's Algorithm: (For single source problem)

- 1- Building up a set S of vertices, initialized to source vertex
- 2- Adding new vertex to S until all vertices of the graph in S
- 3- Define one dim. array \mathbf{d} indexed by vertices (<u>without the source vertex a</u>) contains the weights initialized with

```
d[x] = \{ \ w((a,x)) \ , \ if \ (a,x) \ \in \ E \ , // \ w(\{a,x\}) \ , \ if \ \{a,x\} \ \in \ E \ (Undirected) \\ \{ \ \infty \qquad \text{other wise} \ .
```

This array is defined to insert a new vertex to S.

- 4- Introduce one dim. array \mathbf{p} indexed by vertices other than the source, the entries of this array are vertices
- 5- Initialize **p** with source vertex

6- Body of algorithm

```
For i = 1 to n-1 do 

{
    Choose a vertex v not S, for which d[v] is least;
    S = S \ U \ \{v\};
    for each vertex x not in S do //d[x] = min \ \{d[x], d[v] + w((v,x))\}
    if (d[v] + w((v,x)) < d[x])
    {
        d[x] = d[v] + w((v,x));
        P[x] = v;
    }
}
```

Example:


```
Start vertex: A
```

1- Init
$$S = \{A\};$$

$$d[B] = 100 unchanged$$

$$d[C] = 250$$

$$d[D] = 500$$

$$d[E] = 200$$

2- Init **p** with source **A**

$$p[B] = A$$

$$p[C] = A$$

$$p[D] = A$$

$$p[E] = A$$

Body of algorithm:

Outer loop: for all verices v not in S:

$$d[B] = min \{ d[B], d[C], d[D], d[E] \} = min \{ 100, 250, 500, 200 \} = 100$$

 $\Rightarrow v = B$
 $\Rightarrow S = S \cup \{B\} = \{A,B\}$

Inner loop: for all vertices x not in S : x = C, D, E

$d[x] = min \{ d[x], d[B] + w((B,x)) \}$

$$x = C$$
: $d[C] = min \{250,100+\infty\} = 250$ **unchanged**
 $x = D$: $d[D] = min \{500,100+175\} = 275$ **changed**

$$x = E : d[E] = min \{ 200,100+20 \} = 120$$
 changed

 \Rightarrow

p[C] := A unchanged

p[D] := B changed

p[E] := B **changed**

Again Outer loop: for all vertices v not in S:

$$d[E] = min \{ d[C], d[D], d[E] \} = min \{ 250, 275, 120 \} = 120 \implies v = E \implies S = S \cup \{E\} = \{A, B, E\}$$

Again inner loop: for all vertices x not in S: x = C, D

```
d[x] = min \{ d[x], d[E] + w((E,x)) \}
```

$$x = C : d[C] = min \{250,120 + \infty\} = 250$$
 unchanged

$$x = D : d[D] = min \{275,120 + \infty\} = 275$$
 unchanged

 \Rightarrow

p[C] = A unchanged

p[D] = B unchanged

<u>Again Outer loop:</u> for all vertices v not in S:

$$d[C] = min \{ d[C], d[D] \} = min \{ 250, 275 \} = 250 \rightarrow v = C$$

 $\rightarrow S = S \cup \{C\} = \{ A, B, E, C \}$

Again inner loop: for all vertices x not in S : x = D

$$d[x] = min \{ d[x], d[C] + w((C,x)) \}$$

$$x = D : d[D] = min \{275, 250+20\} = 270$$
 changed

p[D] := C **changed**

Again Outer loop: for all vertices v not in S:

$$d[D] = min \{ d[D] \} = min \{ 270 \} = 270 \Rightarrow v = D$$

 $\Rightarrow S = S \cup \{D\} = \{ A, B, E, C, D \}$

Stop

$$\Rightarrow$$
 Output : S = { A, B, E, C, D }

$$d[B] = 100$$
 $p[B] = A$

$$d[C] = 250$$
 $p[C] = A$

$$d[D] = 270$$
 $p[D] = C$

$$d[E] = 120$$
 $p[E] = B$

The weight of the shortest path from A to the vertex B is d[B]=100,

Path : A→B

The weight of the shortest path from A to the vertex C is d[C]=250,

Path : $A \rightarrow C$

The weight of the shortest path from A to the vertex D is d[D]=270,

Path : $A \rightarrow C \rightarrow D$

The weight of the shortest path from A to the vertex E is d[E]=120,

Path: $A \rightarrow B \rightarrow E$

Single source problem:

- (1) Dijkstra's Algorithm
- (2) Greedy's Algorithm

All pairs problem:

(1) Folyd's Algorithm:

```
\begin{split} G(V,E) \ , \ V = & \{1,\dots,n\} \\ \text{1- Construct Adjacent matrix initialized with :} \\ D[i,j] = & \{ \ w((\ i\ ,j\ ))\ , \ \text{if the edge}\ (\ i\ ,j\ ) \in E \\ & \{ \ \infty \qquad \ , \ \text{other wise} \end{split}
```

- 2- Construct a sequence of matrices D_0 , D_1 ,..., D_n For k=1, 2,..., n construct D_k as follows $D_k[i,j] = min \{ D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j] \} = D_{k-1}[i,k]$
- 3- float D[nxn];

Body of Algorthim:

For
$$k = 1$$
 to n do
For $i = 1$ to n do
For $j = 1$ to n do
 $D[i, j] = min \{ D[i, j], D[i, k] + D[k, j] \};$

OR

For
$$k = 1$$
 to n do
For $i = 1$ to n do
For $j = 1$ to n do
if $(D[i, k] + D[k, j] < D[i, j])$
then $D[i, j] = D[i, k] + D[k, j]$;

Example:

Initialization:

$$D_0 = D$$

Body of Algorithm:

Outer loop: k = 1

* keep the 1. Row, 1. Column and the diagonal of D_0 to D_1 unchanged

* Use statement : $D[i,j] = min \{ D[i,j], D[i,k] + D[k,j] \}$ to calculate

1-
$$D[2,3] = min \{ D[2,3], D[2,1] + D[1,3] \}$$

= $min \{ 1,7+10 \} = 1$

2- D[3, 2] = min { D[3, 2], D[3, 1] + D[1, 2] }
= min {
$$\infty$$
, 2 + 3 } = 5

Outer loop: k = 2

* keep the 2. Row, 2. Column and the diagonal of D_1 to D_2 unchanged

* Use statement: $D[i,j] = min \{ D[i,j], D[i,k] + D[k,j] \}$ to calculate

Outer loop: k = 3

* keep the 3. Row , 3. Column and the diagonal of D_2 to D_3 unchanged

* Use statement : $D[i,j] = min \{ D[i,j], D[i,k] + D[k,j] \}$ to calculate

2-
$$D[2, 1] = min \{ D[2, 1], D[2, 3] + D[3, 1] \}$$

= $min \{ 7, 1 + 2 \} = 3$

All pairs	The weights of the	The shortest path
of vertices	shortest path using	using the matrix P
	the matrix D	
1,1	0	?
1,2	3	?
1,3	4	?
2,1	3	?
2,2	0	?
2,3	1	?
3,1	2	?
3,2	5	?
3,3	0	?

(2) Modify Floyd's algorithm: (ALL PAIRS PROBLEM)

Idea:

Modify Floyd's algorithm : producing a matrix ${\bf P}$ indexed (1..n,1..n) and the entries of this matrix are 0 or vertices

Given a graph G(V,E), $V = \{1,...,n\}$:

1- Construct Adjacent matrix initialized with:

$$\mathbf{D[i,j]} = \{ w((i,j)), \text{ if the edge } (i,j) \in E \\ \{ \infty, \text{ otherwise} \}$$

- 2- construct a matrix P_{nxn} : Initialize P[i,j]=0 , ~i=1,....,n and j=1,....,n
- 3- Construct a sequence of matrices $D_0 = D$, D_1 ,..., D_n For k = 1, 2,..., n construct D_k as follows $D_k[i,j] = min \{ D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j] \} = D_{k-1}[i,k]$

4- Body of Algorithm:

```
For k = 1 to n do

For i = 1 to n do

For j = 1 to n do

If (D[i, k] + D[k, j] < D[i, j])

\{

D[i, j] = d[i, k] + d[k, j];

P[i, j] = k

\}
```

5- P[i, j] = 0 → there is a shortest path (i, j) direct between i and j
Other wise → using a **procedure path(i, j)** to define all intermediate vertices between i and j

```
path (i, j) \\ \{ \\ x \in 0..n; \\ x = p[i, j]; \\ if (x <> 0) \\ \{ \\ Path (i, x); \\ S.O.P (x); \\ Path (x, j); \\ \} \\ \}
```

Example:

Suppose we have the following Adjacent matrix for a directed graph:

$$\mathbf{D}_0 = \mathbf{D}$$

0	90	100	70
40	0	5	10
7	8	0	4
20	10	7	0

$$\mathbf{P} = \begin{array}{c|ccccc} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{array}$$

 $\underline{k=1:}$ find $D[i,j]=min \{ D[i,j], D[i,k]+D[k,j] \}$, if changed P[i,j]=k

	0	90	100	70		0	0	0	0
$\mathbf{D}_1 =$	40	0	5	10	P =	0	0	0	0
	7	<u>97</u>	0	4	<u> </u>	0	1	0	0
	20	10	7	0		0	0	0	0

 $\underline{k=2}: find \ D[i,j] = min \ \{ \ D[i,j] \ , \ D[i,k] + D[k,j] \ \} \ , \ if \ changed \ P[i,j] = k$

	0	90	<u>95</u>	70		0	0	<u>2</u>	0	
$\mathbf{D}_2 =$	40	0	5	10	P =	0	0	0	0	_
	7	97	0	4	_	0	1	0	0	
	20	10	7	0		0	0	0	0	

 $\underline{k=3}: find \ D[i,j] = min \ \{ \ D[i,j] \ , \ D[i,k] + D[k,j] \ \} \ , \ if \ changed \ P[i,j] = k$

	0	90	95	70	_	0	0	2	0
$D_3 =$	<u>12</u>	0	5	<u>9</u>	P =	<u>3</u>	0	0	<u>3</u>
	7	97	0	4		0	1	0	0
-	<u>14</u>	10	7	0		<u>3</u>	0	0	0

 $\underline{k=4}: find \ D[i,j] = min \ \{ \ D[i,j] \ , D[i,k] + D[k,j] \ \} \ , if \ changed \ P[i,j] = k$

0)	<u>80</u>	<u>77</u>	70		0	4	<u>4</u>	0
$D_4 = 12$	2	0	5	9	P =	3	0	0	3
7	7	<u>14</u>	0	4		0	<u>4</u>	0	0
14	1	10	7	0		3	0	0	0

A 11 m o imo	The resided of the	The allegate of models
All pairs	The weights of the	The shortest path
of vertices	shortest path using	using the matrix P
	the matrix D	
1,1	0	1-1
1,2	80	1-4-2
1,3	77	1-4-3
1,4	70	1-4
2,1	12	2-3-1
2,2	0	2-2
2,3	5	2-3
2,4	9	2-3-4
3,1	7	3-1
3,2	14	3-4-2
3,3	0	3-3
3,4	4	3-4
4,1	14	4-3-1
4,2	10	4-2
4,3	7	4-3
4,4	0	4-4

By example: The shortest path between 1 and 2 is 1, 4, 2 with weight = 80

CH4: Spanning Tree Algorithms

$$G = (V,\!E) \ , \ V \! = \! \{ \ v_1 \! \ldots v_n \}$$

 $P: v_1, v_2, \ldots, v_k$ a path from v_1 to v_k

Defintions:

1- **Simple path** : if all intermediate vertices between v_I and v_k are distinct. 2- **Cycle Path** : if source $v_1 = v_k$ sink and there are at least 3 different

vertices.

- **3- Simple Cycle** : if the path is simple + cycle.
- 4- Connected graph: for all v, $w \in V$ there is at least a simple path from v to w.
- 5- **Tree graph**: is a connected graph with
 - a- If for all v, w distinct vertices

→ there is a unique simple path from v and w

b- A graph with n vertices has n-1 edges

6- Spanning tree:

G = (V, E) connected graph

A spanning tree defined as $G^{\sim}=(V\ ,E^{\sim})$ where E^{\sim} subset of E such that E^{\sim} has enough edges to form a tree .

7- **Min Spanning tree:** a spanning tree with least weight of edges.

Example: connected graph

Simple path : 1, 2, 3, 4 or

1,3,4,2

Not simple path : 1,2,3,4,3,2,4

Cycle : 1,2,4,1 <u>or</u>

4,3,1,2,4 <u>or</u> 1,4,2,3,4,1

Simple cycle : 1, 2, 4, 1 or

4,3,1,2,4

Not Simple Cycle: 1,4,2,3,4,1 **or**

1,2,1

Making min spanning tree:

Idea:

Given a connected graph by a cycle remove one edge such that the graph still have a connected graph repeating this procedure until no cycle exists.

Example:

Algorithms to construct a min spanning tree:

IDEA:

Colouring the edges:

- 2 sets of E one contains the **blue** edges the other contains **red** edges
- \rightarrow Min spanning tree of G which includes all the blue edges none of the red edges.

Construct two Procedures:

- 1- Blue rule procedure
- 2- Red rule procedure

<u>Definition:</u> X subset of V, $e=\{v,w\} \in E$

 $e = \{ v, w \}$ <u>protruded</u> from X if one end of e is in X the other is not

Example: (protruded edges)

$$E = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

Edges e	e prodruded from	e prodruded from	e prodruded from
	$\mathbf{X} = \{4\}$	$\mathbf{X} = \{1,4\}$	$X = \{1,3,4\}$
{1,2}	NO	YES	YES
{1,3}	NO	YES	NO
{1,4}	YES	NO	NO
{2,3}	NO	NO	YES
{2,4}	YES	YES	YES
{3,4}	YES	YES	NO

Blue rule:

- 1- Choose a non empty subset X of V.
- 2- Among the uncoloured edges protruded from X choose one of minimum weight and colour it blue

Red rule:

- 1- Choose a simple cycle K which includes no red edges
- 2- Among the uncoloured edges of K choose one of maximum weight and colour it red

Stop until n-1 edges coloured blue

- → 3 algorithms for constructing minimum spanning tree :
 - Boruvka's algorithm
 - Kruskal's algorithm
 - Prim's algorithm

1- Boruvka's Algorithm:

 $\overline{G} = (V, E)$ connected weighted graph all edges distinct

Idea:

- Construct a collection F of blue trees initialized with n single vertex trees.
- Repeating until F consist a single blue tree (with n 1 edges).

Body of algorithm:

- Choose a set F1 of F containing enough trees of F with different min weighted edges (protruded from these trees)
- Colouring these edges blue \rightarrow F is a forest
- Repeat until F contain single blue tree with n-1 edges

Example:

Initialize:

$$F = \{ (\{A\},\emptyset), (\{B\},\emptyset), (\{C\},\emptyset), (\{D\},\emptyset), (\{E\},\emptyset), (\{F\},\emptyset), (\{G\},\emptyset), (\{H\},\emptyset) \} \}$$

$$X = \{A\}$$

- \rightarrow AC(25),AB(55),AD(45) prodruded form X
- \longrightarrow Min edge from $\{\{A\},\emptyset\}$ is AC(25)

$X = \{B\} \dots \dots$	Min edge from $\{\{B\}, \emptyset\}$ is BE(5)
$X = \{C\}$	Min edge from $\{\{C\}, \emptyset\}$ is CA(25)
$X = \{D\}$	Min edge from $\{\{D\}, \emptyset\}$ is DE(20)
$X = \{E\}$	Min edge from $\{\{E\}, \emptyset\}$ is EB(5)
$X = \{F\}$	Min edge from $\{\{F\}, \emptyset\}$ is $FG(10)$
$X = \{G\}$	Min edge from $\{\{G\}, \emptyset\}$ is $GF(10)$
$X = \{H\}$	Min edge from $\{\{H\}, \emptyset\}$ is $HD(30)$

⇒ Eliminate doublicates :

Min edge from $\{\{A\}, \emptyset\}$ is AC(25)

Min edge from $\{\{B\}, \emptyset\}$ is BE(5)

Min edge from $\{\{D\}, \emptyset\}$ is DE(20)

Min edge from $\{\{F\}, \emptyset\}$ is FG(10)

Min edge from $\{\{H\}, \emptyset\}$ is HD(30)

We choose F1 subset of F as follows:

$$F1 = \{ (\{A\}, \varnothing), (\{B\}, \varnothing), (\{D\}, \varnothing), (\{F\}, \varnothing), (\{H\}, \varnothing) \}$$

 \rightarrow Colouring AC, BE, DE, FG, HD blue \Rightarrow

F1 defined now as follows

$$F1 = \{ T1, T2, T3 \}, \text{ where }$$

$$T1 = (\{ A, C \}, AC)$$

$$T2 = ({B, E, D, H}, BE, ED, DH)$$

$$T3 = ({F, G}, FG)$$

Again

 $X = \{A,C\}$ all vertices in T1

 \Rightarrow CE(40) AB(55), AD(45) protruded from X

 \Rightarrow Min edge from T1 is CE(40)

⇒ Eliminate doublicates :

Min edge from T1 is CE(40)

Min edge from T2 is EG(15)

We choose F1 subset of F as follows:

F1 = { T1, T2}
$$\rightarrow$$
 Colouring CE, EG blue \Rightarrow

$$F = \{ (A, B, C, D, E, F, G, H), AC, BE, CE, ED, EG, FG, DH \}$$
Number of blue edges is equal to $n - 1 = 7$

$$STOP$$

2- Kruskal's algorithm:

Given
$$G = (V,E)$$
, $V = \{v_1, ..., v_n\}$, $E = \{e_1, ..., e_m\}$

Initialization:

- F collection of blue tree initialized with (n single vertex trees)
- Ordering the edges in increasing order of weights : $w(e_1) \le ... \le w(e_m)$

Body of algorithm:

```
 \begin{split} i &= 1 \;; \\ REPEAT \\ &IF \; ( \; both \; ends \; of \; e_i \; are \; in \; the \; same \; blue \; tree \; ) \\ &THEN \; colouring \; e_i \; \textit{RED} \\ &ELSE \\ &colouring \; e_i \; \textit{BLUE} \\ &i = i+1 \;; \\ UNTIL \; ( \; there \; are \; n\text{--}1 \; \textit{BLUE} \; edges \; ) \end{split}
```

Example:

INITIALIZE:

- $-\ F = \{(\{A\},\varnothing),\,(\{B\},\varnothing),\,(\{C\},\varnothing),\,(\{D\},\varnothing),\,(\{E\},\varnothing),\,(\{F\},\varnothing),\,(\{G\},\varnothing),\,(\{H\},\varnothing)\ \}$
- Ordering the edges in increasing order:
 BE(5),FG(10),EG(15),ED(20), AC(25), DH(30), EF(35), CE(40), AD(45), GH(50), AB(55)

Body of algorithm:

i = 1;

 $e_1 = BE(5)$;

One end in the blue tree ({B}, \varnothing) the other in the blue ({E}, \varnothing) {different blue trees} \Rightarrow

Colouring BE(5) **BLUE**

 \Rightarrow

 $F = \{ \; (\{A\}, \varnothing) \; , \; (\{B\;,\!E\},\;BE) \; , \; (\{C\}, \varnothing) \; , \; (\{D\}, \varnothing) \; , \; (\{F\}, \varnothing) \; , \; (\{G\}, \varnothing) \; , (\{H\},\;\varnothing) \; \}$

i = 2:

 $e_2 = FG(10)$;

One end in the blue tree ({F}, \varnothing) the other in the blue ({G}, \varnothing){different blue trees} \Rightarrow

Colouring FG(10) **BLUE**

 \Rightarrow

 $F = \{ \; (\{A\},\varnothing) \; , \; (\{B\;,E\;\},BE) \; , \; (\{C\},\varnothing), \; (\;\{D\},\!\varnothing) \; , \; (\{F,G\},FG) \; , \; (\{H\},\varnothing) \; \}$

i = 3:

 $e_3 = EG(15)$;

One end in the blue tree ($\{B,E\}$,BE) the other in the blue ($\{F,G\}$, FG) **{different blue trees}** \Rightarrow

Colouring EG(15) **BLUE**

 \Rightarrow

 $F = \{ \; (\{A\},\varnothing), (\{B\;,E\;,F,G\},\;BE,EG,FG)\;, (\{C\},\varnothing), (\;\{D\},\varnothing)\;, (\{H\},\varnothing) \}$

i = 4:

 $e_4 = DE(20)$;

One end in the blue tree ({B,E, F,G},BE, EG, FG) the other in the blue ({D}, \varnothing) {different blue trees} \Rightarrow Colouring DE(20) *BLUE*

$$\Rightarrow$$
 F = { ({A}, Ø) , ({B , D , E , F , G }, BE , EG , FG , DE) , ({C}, Ø), ({H}, Ø) }

i = 5:

 $e_5 = AC(25)$;

One end in the blue tree ({A} , \varnothing) the other in the blue ({C}, \varnothing){different blue trees} \Rightarrow

Colouring AC(25) BLUE

$$\Rightarrow F = \{ (\{A, C\}, AC), (\{B, D, E, F, G\}, BE, EG, FG, DE), (\{H\}, \emptyset) \} \}$$

i = 6:

```
\begin{array}{l} \hline e_6 = DH(30)~;\\ \hline One~end~in~the~blue~tree~(\{B~,D,E~,F,G~\},~BE~,EG~,FG~,DE)~the~other~in~the~blue\\ \hline (\{H\},\varnothing)~\{ \mbox{different~blue~trees} \}\\ &\Rightarrow~Colouring~DH(30)~\mbox{\it BLUE}\\ \Rightarrow F = \{\\ \hline (\{A~,C\},~AC)~,(\{B~,D~,E~,F~,G~,H~\},~BE~,EG~,FG~,DE~,DH) \end{array}
```


i = 7:

e₇ = EF(35); Both ends in the blue tree ({B, D, E, F, G, H}, BE, EG, FG, DE, DH) {same blue trees} \Rightarrow Colouring EF(35) <u>RED</u> \Rightarrow F = { ({A, C}, AC),({B, D, E, F, G, H}, BE, EG, FG, DE, DH)

$\frac{i = 8:}{e_8 = CE(40)}$;

One end in the blue tree ({B , D , E , F , G , H }, BE , EG , FG , DE , DH) the other in the

blue tree ($\{A, C\}, AC$) {different blue trees}

⇒ Colouring CE(40) *BLUE*

 \Rightarrow

 $F = \{ (\{A, B, C, D, E, F, G, H\}, AC, BE, CE, EG, FG, DE, DH) \}$

STOP!! (we have n - 1 = 7 blue edges)

3- PRIM's algorithm:

- Initialization:

 $T = \{ \text{ One vertex blue tree } \}$

- Body of algorithm:

For i = 1 to n-1 do

Begin

1- Apply the **BLUE** rule to the set of edges protruded from T; // min edge blue colouring

 \rightarrow $T := T U \{ \text{ the new blue edge } \};$

2- Suppose ${m e}$, ${m e}$ two edges are <u>protruded</u> from T with ${m v}$ as common endpoint not in T

and $oldsymbol{e}$, $oldsymbol{e}$ form a \underline{cycle} $oldsymbol{K}$, a \underline{simple} \underline{cycle} without \underline{red} \underline{edges}

→ Apply RED rule to max { e, e };

END;

Example:

Suppose $T = \{(A), \emptyset\}$

1- AB(55) , AC(25) , $AD(45)\ \underline{\textbf{protruded}}$ from T

 \Rightarrow AC = min { AB(55), AC(25), AD(45) }

⇒ Colouring AC(25) *BLUE*

 \Rightarrow T = {(A,C), AC}

- 2- AB(55), CE(40), AD(45) **protruded** from T
 - \Rightarrow CE = min { AB(55), CE(40), AD(45) }
 - ⇒ Colouring CE(40) *BLUE*
 - \Rightarrow T = {(A, C, E), AC, CE}

- 3- AB(55), AD(45), EB(5), ED(20), EG(15), EF(35) protruded from T
 - \Rightarrow EB(5) = min { AB(55), AD(45), EB(5), ED(20), EG(15), EF(35) }

And {A, B, E, C, A}, {A, C, E, D, A} are cycles without any RED edges

- \Rightarrow Colouring EB(5) **BLUE** and
- \Rightarrow Colouring AB and AD *RED* , where AB = max{AB , BE} and AD = max{AD , DE}
 - \Rightarrow T = {(A, B, C, E), EB, AC, CE}

- 4- AD(45), ED(20), EG(15), EF(35) protruded from T
 - \Rightarrow EG(15) = min { AD(45), ED(20), EG(15), EF(35) }
 - \Rightarrow Colouring EG(15) **BLUE**
 - \Rightarrow T = {(A, B, C, E, G), EB, AC, CE, EG}

- 5- AD(45), ED(20), FG(10), GH(50), EF(35) **protruded** from T
 - \Rightarrow FG(10) = min { AD(45), ED(20), FG(10), GH(50), EF(35) } And { E, F, G, E } is a *cycle* without any *RED* edges
 - \Rightarrow Colouring FG(10) **BLUE** and

- \Rightarrow Colouring EF(35) **RED**, where EF(35) = max{EF(35), FG(10)}
- \Rightarrow T = {(A, B, C, E, F, G), EB, AC, CE, FG, EG}

- 6- AD(45), ED(20), GH(50) **protruded** from T
 - \Rightarrow ED(20) = min { AD(45), ED(20), GH(50) }
 - ⇒ Colouring ED(20) *BLUE*
 - \Rightarrow T = {(A, B, C, D, E, F, G), EB, AC, ED, CE, FG, EG}

- 7- DH(30), GH(50) **protruded** from T
 - \Rightarrow DH(30) = min { DH(30) , GH(50) } And {D, E, G, H, D} is a *cycle* without any *RED* edges
 - \Rightarrow Colouring DH(30) **BLUE** and
 - \Rightarrow Colouring GH(50) **RED**, where GH(50) = max{DH(30), GH(50)}

STOP!!!

CH5: STORING IN BINARY SEARCH TREE

Review:

- Level of binary search tree : n = -1 if empty, n = 0 if only root, else
- Height of binary search tree: h = the no of the last level of the binary tree
- No of Node in a binary search tree with height equal to h : $\leq 2^{h+1}-1$
- No of leaves in a binary search tree with height equal to h: $\leq 2^h$

Example:

- Height: h = 2
- No of Nodes $\leq 2^{2+1} 1 = 7$
- No of leaves $\leq 2^2 = 4$

Data structure:

```
public class TreeNode
{
   protected int info; //key
   protected TreeNode left;
   protected TreeNode right;

public TreeNode ()
   {
    }

public TreeNode(int info, TreeNode left, TreeNode right)
   {
     this.info = info;
     this.left = left;
     this.right = right;
   }
}
```

Search: (RECURSION)

```
void treeSearch (int x ,TreeNode T )
   if (T == null) \rightarrow stop not found;
   else
     if ( T.info == x) \rightarrow stop found;
         if (T.info > x) \rightarrow treeSearch(x, T.left);
             else
              treeSearch (x , T.right);
  }
(NON-RECURSION)
  begin
   repeat
    if (T == null)
        \rightarrow stop; done = true;
  else
    if (T.info == x)
      \rightarrow stop; done = true;
    else
      done = false;
   if (x < T.info) \rightarrow T = T.left
    else
        T = T.right;
  until done
 end;
```

Complexity of binary search tree:

The max number of key comparisons is one more than the Height of the tree.

Example:

Cost of looking for an element in a binary search tree consists the elements 1,2,3,4,5,6,7

CASE 1

A - Looking for the element 0 costs 7 key comparisons

 $\rightarrow h = N-1 = 6$

 \longrightarrow no of comparsions = h + 1 = 6+1 = 7

5

B- Looking for the element 8 costs 7 key comparisons

 $\longrightarrow h = N-1 = 6$

 \longrightarrow no of comparsions = h + 1 = 6+1 = 7

CASE 2

Looking for the element 8 or 0 costs 3 key comparisons

- \rightarrow h = trunc (log₂N) = 2
- \rightarrow no of comparisons = h + 1 = 2 + 1 = 3

CASE 3

Looking for the element 8 or 0 costs between 3 and 7 key comparisons

- $\rightarrow 2 = trunc(log_27) < h < N-1 = 6$
- \rightarrow 3 < no of comarisons < 7

.....

.....

** The Height of a binary search tree : trunc $(log_2N) \le h \le N-1$, where N number of keys

** Differences between worst case complexities depends on the Height of B.S.T.:

- 1- If the Height of B.S.T. is equal to N-1:
 - \Rightarrow Worst case complexity = h + 1 = N
 - \Rightarrow Worst case complexity is O(N) (worst worst case complexity)
- 2- If the Height of B.S.T. is equal to $trunc(log_2N)$:
 - \Rightarrow Worst case complexity = h + 1 = trunc(log₂N) + 1
 - \Rightarrow Worst case complexity is $O(log_2N)$ (best worst case complexity)
- 3- If the Height of B.S.T. is between N-1 and $trunc(log_2N)$:
 - ⇒ Worst case complexity = $2*Ln N \approx 1.386* log_2N$
 - \Rightarrow Worst case complexity is $O(log_2N)$ (average worst case complexity)

Constructing Balanced tree (perfectly):

To reduce the comparisons is better to use balanced tree.

Two method to construct balanced tree:

- 1- Weight balancing tree
- 2- Height balancing tree

Perfectly balanced tree is a binary search tree where number of nodes in the left and the right

Subtrees differ by at most 1.

First algorithm (Weight balancing tree):

No of keys is equal to N

- 1- Choose one element in the root
- 2- Choose (N DIV 2) elements to construct left balanced tree (recursively)
- **3-** Remaind keys (N (N DIV 2) 1) to construct right balanced tree (recursivley)

Example:

construct a balanced tree (perfectly) of the following keys: 1,2,3,4,5,6,7

Choose 4 in the root:

4

Construct a left tree of (7 div 2) = 3: 1, 2, 3 (recursively) And the remaind keys = N - (N div 2) - 1 = 7 - 3 - 1 = 3 to construct a right tree: 5, 6, 7 (recursively)

Storing in AVL trees: Name: Adel'son Velskii Landis.

AVL tree is a binary search tree in which for every node the Heights of the left and right subtrees differ by at most 1.

Data structure of AVL_tree:

```
class TreeNode;
  {
     Object info;
     TreeNode left;
     TreeNode right;
     int balance; // balance \in [-1, 0, 1]
  }
```

Where balance = Height of left subtree - Height of right subtree;

Examples: -1 **Not AVL** -2 -1

<u>INSERTION IN AVL TREES :</u>
The AVL tree must have its properties after each insertion a new element.

Examples:

1- Insert the element 3 in the following AVL tree:

2- Insert the element **5** in the following AVL tree :

** How will be reconstructed the AVL tree after insertion?

There are two categories of problems:

1- L-Rotation :

with two versions:

a- LL-Rotation

b- LR-Rotation

2- R-Rotation:

with two versions:

a- RL-Rotation

b- RR-Rotation

L-Rotation:

Suppose we have AVL tree in which we would like to insert a new element with the following two conditions :

- **A** is *pivot* node with *balance* = 1, where A the last node with balance \neq 0 in the search path
- Insert in <u>Left</u> subtree of **A**, where the root of the left subtree is **B** with balance = 0

Where the Heights of $T_l(B)$, $T_r(B)$ and $T_r(A)$ are the same

Now there are two cases to consider:

1.1 First case LL-Rotation:

Insert in the left subtree $T_l(B)$ of B

 \Rightarrow T₁(B) with Height 1 greater than T_r(B)

Restructuring the above tree as follows:

- 1- The pointer, which points to A becomes a pointer to B
- 2- Right pointer of B becomes a pointer to A
- 3- The pointer, which points to B as (left pointer of A) becomes a pointer to T_r(B)

Example:

Insert 2 in the following tree:

Restructuring \Longrightarrow

1.2 Second case LR: Insert in the right subtree T_r(B) of B

a- $T_r(B) = NULL \implies T_1(B) = T_r(A) = NULL$

Insert C as new element in the right subtree of B.

Restructuring the above tree as follows:

- 1- The pointer, which points to A becomes a pointer to C
- 2- Right pointer of C becomes a pointer to A
- 3-Left pointer of C becomes a pointer to B

Example:

Insert 7 in the following tree: В

b- Right subtree of B $\underline{\mathit{not}}$ NULL with root C (left and right subtree of C possibly NULL)

- Insert in the $\underline{\textit{left}}$ subtree of C (in $T_l(C)$)

- 1- The pointer, which points to A becomes a pointer to C
- 2- Right pointer of C becomes a pointer to A
- 3- Left pointer of C becomes a pointer to B 4- Left pointer of A becomes a pointer to Tr(C)
- 5- Right pointer of B becomes a pointer to $\underline{\mathbf{T}}_{\mathbf{I}}(\mathbf{C})$

C- Right subtree of B $\underline{\textit{not}}$ NULL with root C (left and right subtree of C possibly NULL)

RESTRUCTURING

- 1- The pointer, which points to A becomes a pointer to C
- 2- Right pointer of C becomes a pointer to A
- 3- Left pointer of C becomes a pointer to B
- 4- Left pointer of A becomes a pointer to $\underline{\mathbf{T} \mathbf{r}(\mathbf{C})}$
- 5- Right pointer of B becomes a pointer to $T_1(C)$

Example:

Restructuring

R-Rotation: (Mirroring for L-Rotation)

Suppose we have AVL tree in which we would like to insert a new element with the following conditions:

- **A** is *pivot* node with *balance* = -1 , where A the last node with balance $\neq 0$ in the search path
- Insert in $\underline{\textbf{Right}}$ subtree of A ,where the root of the right subtree is B with balance = 0

Where the Heights of $T_l(B)$, $T_r(B)$ and $T_l(A)$ are the same

Now there are two cases to consider:

2.1 First case RR-Rotation :

Insert in the right subtree T_r(B) of B

 $\Rightarrow \overset{\,\,{}^{\,\,}}{\mathop{}^{\,\,}}_{r}\!(B)$ with Height 1 greater than $T_l(B)$

91

Restructuring the above tree as follows:

- 1- The pointer, which points to A becomes a pointer to B
- 2- Left pointer of B becomes a pointer to A
- 3- The pointer , which points to B as (right pointer of A) becomes a pointer to $T_1(B)$

Example:

Insert 12 or 16 in the following tree:

2.2 Second case RL:

Insert in the left subtree T_l(B) of B

a-
$$T_l(B) = NULL \implies T_r(B) = T_l(A) = NULL$$

Insert C as new element in the right subtree of B.

Restructuring the above tree as follows:

- 1- The pointer, which points to A becomes a pointer to C
- 2- Right pointer of C becomes a pointer to B
- 3-Left pointer of C becomes a pointer to A

Example:

Insert 7 in the following tree:

b- Left subtree of B $\,\underline{\it not}\,$ NULL with root C (left and right subtree of C possibly NULL)

- Insert in the $\underline{\textit{right}}$ subtree of C (in $T_r(C)$)

RESTRUCTURING

- 1- The pointer, which points to A becomes a pointer to C
- 2- Left pointer of C becomes a pointer to A
- 3- Right pointer of C becomes a pointer to B
- 4- Right pointer of A becomes a pointer to $T_1(C)$
- 5- Left pointer of B becomes a pointer to $\underline{\mathbf{T}_{r}(\mathbf{C})}$

C- Left subtree of **B** \underline{not} **NULL** with root **C** (left and right subtree of **C** possibly **NULL**)

- Insert in the <u>left</u> subtree of C (in $T_l(C)$)

RESTRUCTURING

- 1- The pointer, which points to A becomes a pointer to C
- 2- Left pointer of C becomes a pointer to A
- 3- Right pointer of C becomes a pointer to B
- 4- Right pointer of A becomes a pointer to $\underline{\mathbf{T}}_{\mathbf{l}}(\mathbf{C})$
- 5- Left pointer of B becomes a pointer to $T_r(C)$

Example:
Insert 17 or 19 in the following tree:

Complexity of searching in AVL-tree:

Suppose we have a binary search tree contains N elements with height h with

$$trunc(Log_2N) <= h <= N-1$$

THEN the worst case complexity of B.S.T. could be one of the following:

Case 1:
$$W(N) = h + 1 = N$$
 $\Longrightarrow W(N)$ is $O(N)$

Case 2:
$$W(N) = h + 1 = trunc(log_2N) + 1 \implies W(N)$$
 is $O(log_2N)$

Case 3:
$$W(N) = h + 1 = 1.386log_2N$$
 \implies $W(N)$ is $O(log_2N)$

** Now we calculate the worst case complexity of searching in AVL-tree:

1- First when we have a B.S.T. with N elements and height h \Rightarrow

$$h + 1 \le N \le 2^{h+1} - 1$$

$$N \le 2^{h+1} - 1$$

$$\Leftrightarrow 2^{h+1} >= N+1$$

$$\Leftrightarrow$$
 h + 1 >= log₂(N+1)

$$\Leftrightarrow h >= log_2(N+1) - 1 \qquad \dots \dots$$

2- Now suppose we have an AVL-tree with height h

Define $\,N_h\,$ as the least number of elements in AVL-tree with height $h\,$

$$h = 0 \implies N_0 = 1$$

$$h = 1 \implies N_1 = 2$$

 $h >= 2 \implies N_h = 1 + N_{h-1} + N_{h-2}$, where N_{h-1} and N_{h-2} the least number of elements in the left and the right subtrees of the AVL-tree

Example:

- Determine all B.S.T. with height h = 2:

- Determine all AVL trees with height h = 2:

- Determine all AVL trees with least number of nodes and with height h = 2:

$$N_h = N_2 = N_1 + N_0 + 1 = 2 + 1 + 1 = 4 \ Nodes$$

Using **FIB** number and **induction**
$$\Rightarrow$$
 \forall h>= 0 : N_h = 1 + N_{h-1} + N_{h-2} = FIB(h+3) - 1
Because N >= N_h \Rightarrow N >= N_h = FIB(h+3) - 1

FIB(k) >
$$1/\sqrt{5}*X^{k} - 1$$
, Where X = $1/2(1 + \sqrt{5})$

$$\Rightarrow N > 1/\sqrt{5*}X^{h+3} - 2$$
.....

Approximately the height of AVL-tree with N elements is $log_2N + 0.25$ \Rightarrow The worst case complexity of AVL-tree with height h for searching is $O(log_2N)$

CH6: STORING IN MULTIWAY TREES

MULTIWAY SEARCH TREE:

M.W.S.T of order n, $n \ge 2$ defined as follows:

- 1- Every Node contains between 1 and m records sorted in <u>increasing</u> order, where $1 \le m \le n-1$
- 2- Max number of subtrees for each **NON**-leaf Node is **m+1** or **n**
- 3- A Node with m records (key of the records : k_1 , k_2 , ..., k_{i-1} , k_i , k_{i+1} ,, k_m) and

with $S_1\,,S_2\,,S_3\,,\ldots,S_{m+1}\,$ as subtrees of this Node

 \Rightarrow

- For every record X in S_{m+1} : $X.key > k_m$

Data structure for M.W.S.T. of order n:

```
class TreeNode
{
   Object    element[m] ;
   TreeNode child[m+1] ; // child[n] OR child[order]
   int number ; //number of keys in any node
   .....
}
```


Searching in M.W.S.T.:

Two conditions must be satisfied to find an element:

- 1- The node, which hold the element
- 2- The position in the node : $1 \le i \le order -1$

*FUNCTION place(key, T)

```
: :
: :
```

if i = 1 : $k \le T.Element[1].key \Rightarrow place(k,T) = 1$

i

if i = n : $T.Element[order] < k \Rightarrow place(k,T) = order;$

Examples:

Build up a M.W.S.T. of order 5 using the following inputs:

a- 25 , 17 , 31 , 42 , 21 , 19 , 26 , 33 , 47 , 44 , 45 , 43 , 8 , 9

17	25	
1/	23	

.....

.....

b- 20 , 19 , 18 , 17 , 16 , 15 , 14 , 13 , 12 , 11 ,10 ,9 ,8 ,7 ,6 ,5 ,4 ,3 , 2 ,1

B-TREE OF ORDER $n \ge 2$ **:**

B-tree of order \mathbf{n} is M.W.S.T. of order \mathbf{n} such that:

- 1- The root node may contain between 1 and n-1 elements
- 2- Each NON-root-node contains between (n-1) DIV 2 and n-1 elements
- 3- All leaves in the same level

Insertion in B-tree:

- B-tree **NULL** \Rightarrow Create new Node with the new element
- ullet B-tree **NOT EMPTY** , find Node N which is **leaf** then :
 - 1- N NOT full with number of elements < **n-1** \Rightarrow insert and then sort the elements in the Node
 - 2- N full (means: N has n-1 elements) \Rightarrow Take the following steps:
 - **a-** Insert the new element with the elements in N sorted into temp one dim array N'

in increasing order \Rightarrow $X_1.key < X_2.key < ... < \!\! X_q < X_{q+1} < X_{q+2} < \!\! X_n.key,$

where q = (n-1) DIV 2

 ${f b}\text{-}$ Divide the elements in N' into two new leaves (left and right) as follows :

Left: X_1 , X_2 ,...., X_q Right: X_{q+2} ,...., X_n , where q = (n-1) DIV 2

And the X_{q+1} will be inserted (**recursively**) to the parent P of N

C- • **P** is parent of **N** \Rightarrow insert X_{q+1} in **P**

P NOT full \Rightarrow apply 1

P full \Rightarrow apply **2** (recursively)

• N has no parent, Create new Node containing X_{q+1}

(Where the Node with X_1 , X_2 ,...., X_q as left Node of X_{q+1} and the Node with X_{q+2} ,...., X_n as right Node of X_{q+1})

Example:

Insert with n = 5:

41, 61, 36, 53, 55, 52, 49, 43, 67, 45, 69, 71, 63, 65, 57 in the following B-tree, where the order of the tree is n=5:

21 31	51	
-------	----	--

SOLUTION:

1- Insert 41 ⇒

1				
	21	31	41	51

2- Insert 61 \Rightarrow calculate q = (n-1) DIV 2 = (5-1) DIV 2 = 2

Temp one dim array:

3- Insert 36, 53, 55 \Rightarrow

4- Insert 52 into following tree:

 \Rightarrow N is FULL and P parent of N is not full:

Temp one dim array:

		•			
	51	52	53	55	61
•	Left	t	to P	right	t

5- Insert 49, 43, 67 \Rightarrow

6- Insert 45 into following tree:

 \Rightarrow N is FULL and P parent of N is not full :

Temp one dim array:

	•			
43	45	49	51	52
Left	t	to P	right	t

 \Rightarrow

7- Insert 69 , 71 \Rightarrow

8- Insert 63, 65 ⇒

9- Insert 57 into following tree:

21 31

36

43 45

51 52

55 **57**

63 65

69 71

Deletion from B-Tree of order n >= 2:

- Deletion from B-tree is allowed only from a **leaf**.

Otherwise: (replace the element **x** [which will be deleted] with the element **y** in the mostleft Node in the right subtree of **x**)

Means:

Suppose P defined as pointer to the Node N, where we wish to delete from with element P.element[i], but N is NON-leaf-Node, so we search in P.child[i+1] (right child of P.element[i]) to find the least element in the leftmost leaf, replace this element with P.element[i] and then restructuring the B-Tree after replacing using the following algorithm (as Example)

Example (in general for NON-leaf-Node):

Solution:

Replacing x = 32 with $y = 34 \Rightarrow$ the B-Tree becomes

Deletion algorithm : (Example B-Tree of Order n = 5)

1- N is Leaf and Root contains 1 element ⇒ after deletion B-Tree is NULL or contains more than 1 elements ⇒ ex. Delete 7

- 2- Delete from N, N is leaf \Rightarrow
 - **A-** N has > q = (n-1) DIV 2 = (5-1)DIV 2 = 2 elements \Rightarrow No problem Example delete 34 from following B-Tree:

- B- N with exactly q = (n-1) DIV 2 = 2 elements ⇒
 Suppose P.child[i] points to N
 P.child[i-1] left sibling of N
 P.child[i+1] right sibling of N
 - **B.1-** Left or Right or (BOTH) sibling(s) with elements > q = (n-1) DIV 2

Choose the one of the siblings which has more than \mathbf{q} elements merge it with the rest of \mathbf{N} and the element which defined as parent of \mathbf{N} and then restructuring as follows:

Make temp array likes insertion algorithm containing the chosen Elements with $X_1,\,X_2,\,\ldots,\,X_q,\,X_{q+1},\,X_{q+2},\ldots$

Example: (Delete 22 and 42)

RESTRUCTURING ⇒

 \Rightarrow

Explaining the case of delete 22:

- Merge 10, 11, 15, 20, 24 temp. and sort in increasing order

10	11	15	20	24

- Splitting temp in two leaves left with elements (from X_1 to X_q and right from X_{q+2} to the last element then transferring X_{q+1} to parent P of N)

10	11	15	20	24
Left leaf		to P	right	leaf

B.2- Sibling(s) with exactly $\mathbf{q} = (n-1)$ DIV 2 elements \Rightarrow Form new Node \mathbf{N} ' as <u>leaf</u> with the rest (**q-1**) elements from \mathbf{N} and \mathbf{q} elements from the chosen sibling and the element from common parent of (\mathbf{N} and it's sibling), then restructuring the B-tree likes following example

(There are many cases to suppose):

Example1: (Delete 44 from the following B-Tree)

B.2.1- Choose left sibling of N (Parent of N NON-Root with elements > q): (Recurive)

(HomeWork : Choose right sibling)

$RESTRUCTURING \Rightarrow$

Merge 40, 41, 42, 50 in new Node N' in increasing order:

40	41	42	50
	N' as	new lea	af

Example2: (Delete 41 from the following B-Tree)

B.2.2- Choose right sibling of N (Parent of N Root with elements >1 elements):

(Recursive) \Rightarrow restructuring same as in B.2.1

$RESTRUCTURING \Rightarrow$

Merge 40, 42, 44, 50 in new Node N' in increasing order:

40	42	44	50
N'			

Example3: (Delete 40 from the following B-Tree)

B.2.3- Choose left [there is only left sibling] of N (Parent of N Root with elements <u>exactly</u> 1 element):

$RESTRUCTURING \Rightarrow$

:

Merge 10, 20, 30, 50 in new Node N' as leaf in increasing order:

Example4: (Delete 69 from the following B-Tree)

B.2.4- Choose left [there is only left sibling] of N

(Parent of N NON-Root with elements *exactly* q elements)

RESTRUCTURING ⇒

IF sibling of Parent with elements > q THEN using B.1

ELSE using B.2 [RECURSIVELY]

$RESTRUCTURING \Rightarrow$

B*-TREE OF ORDER n:

- \mathbf{B}^* -tree of order $\mathbf{n} \ge 2$ is M.W.S.T. of order $\mathbf{n} \ge 2$ such that :
 - 1- The root node may contain between 1 and 2((2n-2) DIV 3) elements
 - 2- Each NON-root-node contains between (2n-2) DIV 3 and (n-1) elements
 - 3- All leaves in the same level

<u>Insertion in B*-TREE of order n>=2:</u>

Idea: Insert into leaf N Algorithm's idea: IF (N is not full) \Rightarrow insert into N in increasing order; ELSE (N is full) \Rightarrow IF (N is root) \Rightarrow - Make one dim temp array containing keys of N and the new key in increasing order; - Make left leaf with X_1, \dots, X_q and right leaf with X_{q+2}, \dots , insert X_{q+1} into New Node as parent. (where q = (2n-2)DIV3). ELSE (N is NON-root) \Rightarrow - Looking for sibling(s) of N (left and right) - IF(sibling(s) not full)⇒choose left or right sibling, then <u>left shifting</u> or <u>right</u> shifting; ELSE (sibling(s) full) \Rightarrow ► Make temp array length **2n** containing keys of N, the chosen left or right sibling, the common key of parent, and the inserted key in increasing order; - Make 3 leaves as follows:

(2n-2) DIV 3 keys to left leaf		` /	J	2n DIV 3 keys to right leaf
Left Leaf	to Parent P	Mid Leaf	to the same Parent P	Right Leaf

Example:

Suppose we have a B*-Tree of order $\mathbf{n} = \mathbf{7} \implies$

- Root-Node contains between $\underline{\bf 1}$ and $\underline{\bf 8}$ elements [between 1 and 2(2n-2)DIV3)]
- **NON**-Root-Node contains between $\underline{\mathbf{4}}$ and $\underline{\mathbf{6}}$ [between (2n-2)DIV3 and (n-1)]

Insert 50 in the following B^* -Tree of order n = 7:

10	15	20	25	30	35	40	45
1	2	3	4	5	6	7	8

⇒ dim array

10	15	20	25	30	35	40	45	50
1	2	3	4	5	6	7	8	9

RESTRUCTURING ⇒

- Construct <u>left</u> Node with the first 4 elements
- Construct a Node as **Root** with the next element
- Construct <u>right</u> Node with the last 4 elements

Insert 55 and $60 \Rightarrow$

Insert 65 and 70 \Rightarrow looking for sibling (left), not full, make left shifting as following :

 \Rightarrow

N is NON-Root-Node (N and it's sibling is full)

⇒ restructuring as follows:

- Separate the elements (after insertion) in N and sibling (which chosen) and parent
- of $N \Rightarrow$ we have 2n elements
- Create 3 new leaves with following:
 First leaf with (2n-2) Div 3 elements (as left), the next element to parent P
 Second leaf with (2n-1) DIV 3 elements (as mid leaf), the next element to parent P

Third leaf with 2n DIV 3 elements (as right)

(2n-2) DIV $3 = 4$					(2n-1) DIV $3 = 4$					2n DIV 3 = 4			
10	15	20	25	30	35	40	45	50	55	60	65	70	75

Example 2: Insert the key with the value 33 into the following B^* -Tree of order n=5:

