

a weight with larger derivative well have larger cactually we see the apposite)

Oi - E (Vi (E(L(f(2; 0)), y)))

The learning borameter should not be constant for all iterations

C relison is out of scope)

also, from pageneter to parameter

(Lets do this before Adam) € → global Trétial 9 5=10-1 r=0 (accumulation of gradient) while minibatch m $g \leftarrow \frac{1}{m} \nabla_0 \leq_i L(f(x_i), \theta), y^{(i)})$ V ← r + 161 -) element wise product but or is a vector,

RMSProp

- Modifies AdaGrad for a nonconvex setting Guogle
 - Change gradient accumulation into exponentially weighted moving average HinDV
 - Converges rapidly when applied to convex function

The RMSProp Algorithm

Require: Global learning rate ϵ , down rate ρ .

Require: Initial parameter θ

Require: Small constant of usually 10⁻⁶, used to stabilize division by small numbers.

Initialize accumulation variables r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})$

Accumulate squared gradient: $r \leftarrow (1 - \rho)g$

Compute parameter update: $\Delta \theta = \frac{\epsilon}{\sqrt{\pi i b}} \cdot g$

Apply update: $\theta \leftarrow \theta + \Delta \theta$ end while

BITS Pitani, Hyderabed Can

Algorithm: SGD with momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with

corresponding targets $y^{(i)}$.

Compute gradient estimate: $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})$

Compute velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \mathbf{g}$

Apply update: $\theta \leftarrow \theta + v$

end while

-) We aren't comparing adapted with momentum

> 5GD + momentum may be four better than adapted at times

But it is better than SUD!

Algorithm: SGD with Nesterov momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with

corresponding labels $y^{(i)}$. Apply interim update $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$

This line is added from plain momentum

Compute gradient (at interim point): $g \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})$

Compute velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \mathbf{g}$

Apply update: $\theta \leftarrow \theta + v$

end while

Algorithm: RMSProp with Nesterov momentum

Require: Global learning rate ϵ , decay rate ρ , momentum coefficient α

Require: Initial parameter θ , initial velocity v.

Initialize accumulation variable r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute interim update: $\theta \leftarrow \theta + \alpha v$

Compute gradient: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\mathbf{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \mathbf{y}^{(i)})$ Accumulate gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$

Compute velocity update: $v \leftarrow \alpha v - \frac{\zeta}{\sqrt{r}} \odot g$.

Apply update: $\theta \leftarrow \theta + v$

end while

Das has left the meeting

v < × v.

	The Adam Algorithm	
	Require: Step size ϵ (Suggested default: 0.001) Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0, 1). (Suggested defaults: 0.9 and 0.999 respectively) Require: Small constant δ used for numerical stabilization. (Suggested default: 10^{-8})	
	Require: Initial parameters θ	
	Initialize 1st and 2nd moment variables $s = 0, r = 0$	
	Initialize time step $t = 0$ while stopping criterion not met do	
A 0	Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with	
A look	Compute gradient: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$	
The lie	$t \leftarrow t + 1$	
features gine Lover	Update biased first moment estimate: $s \leftarrow \rho_1 s + (1 - \rho_1)g$ Update biased second moment estimate: $r \leftarrow \rho_2 r + (1 - \rho_2)g \odot g$ (cs 705) Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1 - \rho_1^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1 - \rho_2^t}$ to by the moments as expects	
Contures	Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{s-s}$	
aire lover	Correct bias in second moment: $\hat{r} \leftarrow \frac{1-\rho_1}{1-\rho_2}$ to but the moments in $\hat{r} \leftarrow \frac{1-\rho_1}{1-\rho_2}$	
(a) define	Compute update: $\Delta\theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r} + \delta}}$ (operations applied element-wise) (Thu ore Apply update: $\theta \leftarrow \theta + \Delta\theta$ end while) Specific Tray of update:	lower)
Opogra	Apply update: $\theta \leftarrow \theta + \Delta \theta$	e s=1=0
	end while) specific way of updates	
	J	