A Brief Overview of Optimization Problems

Steven G. Johnson MIT course 18.335, Spring 2021

Why optimization?

- In some sense, *all engineering design* is optimization: choosing design parameters to improve some objective
- Much of *data analysis* is also optimization: extracting some model parameters from data while minimizing some error measure (e.g. fitting)
- *Machine learning* (e.g. deep neural nets) is based on optimizing a "loss" function over many model (NN) parameters
- Most *business decisions* = optimization: varying some *decision parameters* to maximize profit (e.g. investment portfolios, supply chains, etc.)

A general optimization problem

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to *m* constraints

$$f_i(x) \le 0$$

$$i = 1, 2, \dots, m$$

x is a *feasible point* if it satisfies all the constraints

minimize an objective function f_0 with respect to n design parameters x

(also called decision parameters, optimization variables, etc.)

— note that *maximizing* g(x) corresponds to $f_0(x) = -g(x)$

note that an *equality constraint* h(x) = 0

yields two inequality constraints

$$f_i(x) = h(x) \text{ and } f_{i+1}(x) = -h(x)$$

(although, in practical algorithms, equality constraints typically require special handling)

feasible region = set of all feasible x

Important considerations

- Global versus local optimization
- *Convex* vs. non-convex optimization
- Unconstrained or box-constrained optimization, and other special-case constraints
- Special classes of functions (linear, etc.)
- Differentiable vs. non-differentiable functions
- Gradient-based vs. derivative-free algorithms
- •
- Zillions of different algorithms, usually restricted to various special cases, each with strengths/weaknesses

Global vs. Local Optimization

- For *general nonlinear* functions, *most* algorithms only guarantee a local optimum
 - that is, a feasible x_0 such that $f_0(x_0) \le f_0(x)$ for all feasible x within some neighborhood $||x-x_0|| < R$ (for some small R)
- A much harder problem is to find a global optimum: the minimum of f_0 for all feasible x
 - exponentially increasing difficulty with increasing n, practically impossible to *guarantee* that you have found global minimum without knowing some special property of f_0
 - many available algorithms, problem-dependent efficiencies
 - *not* just genetic algorithms or simulated annealing (which are popular, easy to implement, and thought-provoking, but usually *very slow!*)
 - for example, non-random systematic search algorithms (e.g. DIRECT), partially randomized searches (e.g. CRS2), repeated local searches from different starting points ("multistart" algorithms, e.g. MLSL), ...

Convex Optimization

[good reference: *Convex Optimization* by Boyd and Vandenberghe, free online at www.stanford.edu/~boyd/cvxbook]

All the functions f_i (i=0...m) are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$
 where $\alpha + \beta = 1$
 $\alpha, \beta \in [0, 1]$

For a convex problem (convex objective & constraints) any local optimum *must* be a global optimum ⇒ efficient, robust solution methods available

Important Convex Problems

- LP (linear programming): the objective and constraints are *affine*: $f_i(x) = a_i^T x + \alpha_i$
- QP (quadratic programming): affine constraints + convexquadratic objective $x^{T}Ax+b^{T}x$
- SOCP (second-order cone program): LP + cone constraints $||Ax+b||_2 \le a^Tx + \alpha$
- SDP (semidefinite programming): constraints are that $\Sigma A_k x_k$ is positive-semidefinite

all of these have very efficient, specialized solution methods

Non-convex local optimization: a typical generic outline

[many, many variations in details !!!]

- At current \mathbf{x} , construct approximate model of f_i —e.g. affine, quadratic, ... often convex
- Optimize the model problem \Rightarrow new x

 use a *trust region* to prevent large steps
 - Evaluate new x:
 - if "acceptable," go to 1
 - if bad step (or bad model), update
 trust region / model and go to 2

Important special constraints

- Simplest case is the *unconstrained* optimization problem: *m*=0
 - e.g., line-search methods like steepest-descent,
 nonlinear conjugate gradients, Newton methods ...
- Next-simplest are *box constraints* (also called *bound constraints*): $x_k^{\min} \le x_k \le x_k^{\max}$
 - easily incorporated into line-search methods and many other algorithms
 - many algorithms/software *only* handle box constraints
- •
- Linear equality constraints Ax=b
 - for example, can be explicitly eliminated from the problem by writing $x=Ny+\xi$, where ξ is a solution to $A\xi=b$ and N is a basis for the nullspace of A

Derivatives of f_i

- Most-efficient algorithms typically require user to supply the gradients $\nabla_x f_i$ of objective/constraints
 - you should *always* compute these analytically
 - rather than use finite-difference approximations, better to just use a derivative-free optimization algorithm
 - in principle, one can always compute $\nabla_x f_i$ with about the same cost as f_i , using adjoint methods, or equivalently "reversemode" automatic differentiation (AD)
 - gradient-based algorithms can find (local) optima of problems with millions of design parameters!
- Derivative-free methods: only require f_i values
 - easier to use, can work with complicated "black-box" functions where computing gradients is inconvenient
 - may be only possibility for nondifferentiable problems
 - need > n function evaluations, bad for large n

Removable non-differentiability

consider the *non*-differentiable *unconstrained* problem:

$$\min_{x \in \mathbb{R}^n} |f_0(x)|$$

equivalent to *minimax* problem:

$$\min_{x \in \mathbb{R}^n} (\max\{f_0(x), -f_0(x)\})$$

...still nondifferentiable...

...equivalent to *constrained* problem with a "temporary" variable t:

$$\min_{\substack{\text{differentiable},\\ x \in \mathbb{R}^n, t \in \mathbb{R}}} t$$

subject to:
$$t \ge f_0(x)$$

 $t \ge -f_0(x)$

i.e.
$$f_1(x,t) = f_0(x) - t$$

 $f_2(x,t) = -f_0(x) - t$

Example: Chebyshev linear fitting

find the fit that minimizes the *maximum error*:

$$\min_{x_1, x_2} \left(\max_i |x_1 a_i + x_2 - b_i| \right)$$
$$= \min_{x \in \mathbb{R}^2} ||Ax - b||_{\infty}$$

... nondifferentiable minimax problem

equivalent to a *linear programming* problem (LP):

$$\min_{x_1,x_2,t} t$$

subject to 2N constraints:

$$t \ge x_1 a_i + x_2 - b_i$$

$$t \ge -x_1 a_i - x_2 + b_i$$

equivalently:

$$t \ge |x_1 a_i + x_2 - b_i|$$

Relaxations of Integer Programming

If x is integer-valued rather than real-valued (e.g. $x \in \{0,1\}^n$), the resulting integer programming or combinatorial optimization problem becomes much harder in general.

However, useful results can often be obtained by a *continuous* relaxation of the problem — e.g., going from $x \in \{0,1\}^n$ to $x \in [0,1]^n$... at the very least, this gives an lower bound on the optimum f_0

"Penalty terms" or "projection filters" (SIMP, RAMP, etc.) can be used to obtain x that ≈ 0 or ≈ 1 almost everywhere.

[See e.g. Sigmund & Maute, "Topology optimization approaches," *Struct*. *Multidisc*. *Opt*. **48**, pp. 1031–1055 (2013).]

Example: Topology Optimization

design a structure to do something, made of material A or B... let *every pixel* of discretized structure vary *continuously* from A to B

[+ tricks to impose minimum feature size and mostly "binary" A/B]

ex: design a cantilever to support maximum weight with a fixed amount of material

optimized structure, deformed under load

[Buhl et al, Struct. Multidisc. Optim. 19, 93–104 (2000)]

Stochastic Optimization

$$\min_{x \in \mathbb{R}^n} \mathbf{E}[f(x, \boldsymbol{\xi})]$$

where $E[\cdots]$ is expected value averaging over random vars ξ , computed by a Monte-Carlo approx.

Deep-learning example:

Fitting ("learning") to a huge "training set" by sampling a random subset Ξ (different for each x):

$$E[f(x,\xi)] \approx \frac{1}{|\Xi|} \sum_{\xi \in \Xi} f(x,\xi)$$

 $\nabla_x f$ often exists, but typically can't use standard gradient-based algorithms because of random "noise."

A popular algorithm: Adam [Kingma & Ba, 2014] "stochastic gradient descent"

Some Sources of Software

• NLopt: implements many nonlinear optimization algorithms callable from many languages (C, Python, R, Matlab, ...)

(global/local, constrained/unconstrained, derivative/no-derivative)

http://github.com/stevengj/nlopt

- Python: scipy.optimize, pyOpt, ...; Julia: JuMP, Optim,...
- Decision tree for optimization software: http://plato.asu.edu/guide.html
 - lists many (somewhat older) packages for many problems
- CVX: general convex-optimization package http://cvxr.com
 ... also Python CVXOPT, R CVXR, Julia Convex