- Гетероскедастичность и автокорреляция

Обобщенный МНК

• • • План лекции

- Обобщенная линейная регрессионная модель
- Последствия для оценок МНК
- Оценивание
- Гетероскедастичность
 - Оценивание
 - Тестирование
 - Тест Голдфельда-Квандта
 - Тест Бройша-Пагана
 - Тест Уайта

• План лекции

- Автокорреляция
 - Определение стационарности
 - Типы автокорреляции
 - AR(1)
 - AR(p)
 - MA(q)
 - ARMA(p,q)
 - Оценивание при AR(1)
 - Тестирование автокорреляции
 - Тест Дарбина-Уотсона
 - Q-тест Бокса-Льюнга
 - Тест Бройша-Пагана (Годфри) / Тест множителя Лагранжа (AR(p), MA(q))

• • Обобщенная линейная регрессионная модель

- \bullet Пусть $Y = X\beta + \varepsilon$
- Х для простоты пока детерминированная матрица
- Предположения об ошибке:

$$E(\varepsilon) = 0 \ E(\varepsilon \varepsilon') = \Sigma = \sigma_{\varepsilon}^{2} \Omega$$

 $E(\varepsilon) = 0$ $E(\varepsilon\varepsilon') = \Sigma = \sigma_\varepsilon^2 \Omega$ где Σ симметричная положительно определенная матрица

• Рассмотрим детально два случая: гетероскедастичность и автокорреляцию

Обобщенная линейная регрессионная модель

• Ошибки гетероскедастичны, если они имеют разную дисперсию для различных наблюдений. Это явление характерно для пространственных (cross-section) выборок, когда масштаб зависимой переменной о объясняющая сила модели варьируются от наблюдения к наблюдению

$$E(\varepsilon_{i}\varepsilon_{j}) = \begin{cases} \sigma_{i}^{2} & ecnu \ i = j \\ 0 & ecnu \ i \neq j \end{cases}$$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \dots & 0 & \sigma_n^2 \end{pmatrix}$$

Обобщенная линейная регрессионная модель

• Ошибки автокоррелированы, если их корреляция не равна нулю. Это явление характерно для временных рядов (timeseries), когда зависимая переменная имеет «память» и ее изменения от периода к периоду взаимосвязаны.

$$E(\varepsilon_{t}\varepsilon_{s}) \neq 0 \quad ecnu \ t \neq s$$

$$\Sigma = \begin{pmatrix} 1 & \rho & \rho^{2} & \dots & \rho^{T-1} \\ \rho & 1 & \rho & \dots & \rho^{T-2} \\ \rho^{2} & \rho & 1 & \dots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{T-1} & \rho^{T-2} & \dots & \dots & 1 \end{pmatrix} \quad \begin{array}{l} \mathcal{L}_{\mathcal{L}\mathcal{R}} \quad AR(1) \\ \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad AR(1) \\ \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \\ \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \\ \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}} \\ \mathcal{L}_{\mathcal{L}} \quad \mathcal{L}_{\mathcal{L}$$

Последствия для оценок МНК

- Как изменятся свойства оценок МНК, если нарушено предположение 3 теоремы Гаусса-Маркова?
- о Теперь, когда $E(\varepsilon \varepsilon') = \Sigma \neq \sigma_{\varepsilon}^2 I$
 - Оценки $\hat{eta}_{M\!H\!K}$ остаются несмещенными, т.к. $E(\hat{eta}_{M\!H\!K}) \!\!= \! eta \! + \! (X'\!X)^{\!-\!1} X'\!E(arepsilon) \!\!= \! eta$
 - Ковариационная матрица изменится, т.к.

$$\begin{split} V\Big(\hat{\beta}_{MHK}\Big) &= V\Big((X'X)^{-1}X'Y\Big) = V\Big((X'X)^{-1}X'\varepsilon\Big) = \\ &= (X'X)^{-1}X'V(\varepsilon)X(X'X)^{-1} = \\ &= (X'X)^{-1}X'\Sigma X(X'X)^{-1} = \sigma_{\varepsilon}^{2}(X'X)^{-1}X'\Omega X(X'X)^{-1} \neq \sigma_{\varepsilon}^{2}(X'X)^{-1} \end{split}$$

• Последствия для оценок МНК

- Стандартные t- и F- тесты будут давать неверные выводы
- Оценки МНК теряют эффективность (больше не BLUE)
- Есть три пути решения проблемы:
 - использовать другой метод обобщенный МНК (ОМНК)
 - использовать оценки МНК \hat{eta}_{MHK} для коэффициентов, но с откорректированной ковариационной матрицей

$$V(\hat{\beta}_{MHK}) = (X'X)^{-1}X'\Sigma X(X'X)^{-1}$$

 Менять спецификацию уравнения, т.к. часто корень проблемы лежит в пропущенных переменных или неверно выбранной функциональной форме регрессионной зависимости

• • • OMHK

- Идея метода: трансформировать модель так, чтобы в новой ошибки подчинялись теореме Гаусса-Маркова

$$\Omega = C\Lambda C', \quad C'C = I$$

$$\Omega^{-1} = C\Lambda^{-1}C' = P'P, \quad P = C\Lambda^{-1/2}C'$$

• С помощью матрицы преобразования Р можно трансформировать модель $PY = PX\beta + P\mathcal{E}$

$$\widetilde{Y} = \widetilde{X}\beta + \widetilde{\varepsilon}, \quad \widetilde{Y} = PY, \, \widetilde{X} = PX, \, \widetilde{\varepsilon} = P\varepsilon$$

• • • OMHK

 Ошибки новой модели будут удовлетворять условиям теоремы Гаусса-Маркова

$$E(\widetilde{\varepsilon}) = E(P\varepsilon) = PE(\varepsilon) = 0$$

$$V(\widetilde{\varepsilon}) = V(P\varepsilon) = PV(\varepsilon)P' = \sigma_{\varepsilon}^{2}P\Omega P' = \sigma_{\varepsilon}^{2}P(P'P)^{-1}P' = \sigma_{\varepsilon}^{2}PP^{-1}P'^{-1}P' = \sigma_{\varepsilon}^{2}I$$

 МНК оценка трансформированной модели называется оценкой ОМНК и будет BLUE

$$\hat{\beta}_{OMHK} = (\tilde{X}'\tilde{X})^{-1}\tilde{X}'\tilde{Y} = (X'P'PX)^{-1}X'P'PY =$$

$$= (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}Y$$

• • Свойства оценки ОМНК

• Оценки будут несмещенными, т.к.

$$E(\hat{\beta}_{OMHK}) = E((X'\Omega^{-1}X)^{-1}X'\Omega^{-1}(X\beta + \varepsilon)) =$$

$$= \beta + (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}E(\varepsilon) = \beta$$

• Ковариационная матрица оценок

$$\begin{split} V\Big(\hat{\beta}_{OMHK}\Big) &= V\Big(\!\big(X'\!\Omega^{-1}X\big)^{\!-1}X'\,\Omega^{-1}Y\Big) = V\Big(\!\big(X'\!\Omega^{-1}X\big)^{\!-1}X'\,\Omega^{-1}\varepsilon\Big) = \\ &= \Big(X'\!\Omega^{-1}X\Big)^{\!-1}X'\,\Omega^{-1}V(\varepsilon)\Omega^{-1}X\Big(X'\!\Omega^{-1}X\Big)^{\!-1} = \\ &= \sigma_{\varepsilon}^2 \Big(X'\!\Omega^{-1}X\Big)^{\!-1}X'\,\Omega^{-1}\Omega\Omega^{-1}X\Big(X'\!\Omega^{-1}X\Big)^{\!-1} = \\ &= \sigma_{\varepsilon}^2 \Big(X'\!\Omega^{-1}X\Big)^{\!-1} = \Big(X'\!\Sigma^{-1}X\Big)^{\!-1} \end{split}$$

• Доступный (реализуемый) ОМНК

- На практике, вид матрицы
 Ω неизвестен,
 и она подлежит оцениванию
- $oldsymbol{\hat{eta}}_{POMHK}$ вместо \hat{eta}_{OMHK} используется $\hat{eta}_{POMHK} = \left(X' \hat{\Omega}^{-1} X \right)^{-1} X' \hat{\Omega}^{-1} Y$
- Подходы к оценке \(\Omega \) зависят от вида гетероскедастичности или автокорреляции

Гетероскедастичность

Оценивание и тестирование

Гетероскедастичность (оценивание ОМНК)

• Матрица преобразования при г/ск

$$P = \begin{pmatrix} 1/\sigma_1 & 0 & \dots & 0 \\ 0 & 1/\sigma_2 & \dots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \dots & 0 & 1/\sigma_n \end{pmatrix}$$
 о Вид преобразованной модели
$$\frac{Y_i}{\sigma_i} = \left(\frac{X_i}{\sigma_i}\right)'\beta + \frac{\varepsilon_i}{\sigma_i}$$

$$\frac{Y_i}{\sigma_i} = \left(\frac{X_i}{\sigma_i}\right) \beta + \frac{\varepsilon_i}{\sigma_i}$$

• Оценка ОМНК (взвешенного МНК)

$$\hat{\beta}_{OMHK} = \left(\sum_{i=1}^{n} \frac{1}{\sigma_i^2} X_i X_i'\right)^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_i^2} X_i Y_i$$

Гетероскедастичность (оценивание РОМНК)

• На практике используется

$$\hat{\beta}_{POMHK} = \left(\sum_{i=1}^{n} \frac{1}{\hat{\sigma}_{i}^{2}} X_{i} X_{i}'\right)^{-1} \sum_{i=1}^{n} \frac{1}{\hat{\sigma}_{i}^{2}} X_{i} Y_{i}$$

- Оценки получаются из следующих соображений
 - Если $\sigma_i^2 = Z_i' lpha$, то состоятельные оценки $\hat{\sigma}_i^2 = Z_i' \hat{lpha}$

$$\varepsilon \partial e \hat{\alpha} : \hat{\varepsilon}_i^2 = Z_i' \alpha + u_i$$

• Если
$$\sigma_i^2 = \sigma_\varepsilon^2 \exp(Z_i'\alpha)$$
, то состоятельные оценки $\hat{\sigma}_i^2 = \exp\left(Z_i'\hat{\alpha} + \ln \sigma_\varepsilon^2\right)$ $\varepsilon \partial e \hat{\alpha} : \ln \hat{\varepsilon}_i^2 = Z_i'\alpha + \ln \sigma_\varepsilon^2 + u_i$

• Петероскедастичность (оценки МНК с поправками Уайта)

- $oldsymbol{\hat{eta}}_{MHK} = (X'X)^{-1}X'Y$
- Но с ковариационной матрицей

$$V(\hat{\beta}_{MHK}) = \left(\sum_{i=1}^{n} X_{i} X_{i}'\right)^{-1} \left(\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} X_{i} X_{i}'\right) \left(\sum_{i=1}^{n} X_{i} X_{i}'\right)^{-1}$$

• В работе Уайта (1980) показано, что

$$\frac{1}{n}\sum_{i=1}^{n}\hat{\varepsilon}_{i}^{2}X_{i}X_{i}'$$

состоятельная оценка для $\frac{1}{2}\sum_{i}\sigma_{i}^{2}X_{i}X_{i}'$

$$\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}^{2}X_{i}X_{i}'$$

• • Гетероскедастичность (тестирование)

- Для тестирования г/ск используются квадраты остатков МНК
 - Полезно строить графики остатков от переменных - предполагаемых «виновников» г/ск
 - В большинстве тестов строятся вспомогательный регрессии квадратов остатков МНК на предполагаемых «виновников» г/ск

• Тест Голдфельда-Квандта (1965)

• Выбирается предполагаемый «виновник» г/ск и тестируются

$$H_0: \ \ \sigma_i^2 = \sigma_arepsilon^2 \ \ \ \partial$$
ля $\ \ orall i, \ \ H_A: \ \ \sigma_i^2 = \sigma_arepsilon^2 X_i^2$

- Для построения тестовой статистики выборка разбивается на две группы размерами n1 и n2 предположительно с высокой и низкой дисперсией ошибок
- По каждой подвыборке оценивается МНК регрессия и вычисляются

$$s_1^2 = RSS_1/(n_1-k-1), s_2^2 = RSS_2/(n_2-k-1)$$

• Строится статистика

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - k - 1, n_2 - k - 1)$$

ullet Основная гипотеза отвергается, если $F > F_{lpha}ig(n_{\!\scriptscriptstyle 1} - k - 1, n_{\!\scriptscriptstyle 2} - k - 1ig)$

Тест Бройша-Пагана/Годфри (1980)

• Выбирается предполагаемый «виновник» г/ск и тестируются

$$H_0^2$$
: $\sigma_i^2 = \sigma_\varepsilon^2$ для $\forall i,$

$$H_A: \sigma_i^2 = f(\alpha_0 + Z_i'\alpha)$$

- Для построения тестовой статистики оценивается МНК исходная регрессия, из которой извлекаются остатки
- По квадратам остатков исходной регрессии оценивается МНК вспомогательная регрессия

$$\hat{\varepsilon}_i^2 = \gamma_0 + Z_i' \gamma_1 + u_i |_{H_0}$$

- $\hat{\mathcal{E}}_i^2=\gamma_0+Z_i'\gamma_1+u_i$ и вычисляется статистика $nR^2\stackrel{H_0}{ hicksim}\chi_p^2$
- где р число регрессоров вспомогательной регрессии
- Основная гипотеза отвергается, если $nR^2>\chi^2_{n,\alpha}$

• • Тест Уайта (1980)

• Тестируются

$$H_0: \quad \sigma_i^2 = \sigma_\varepsilon^2 \quad \partial$$
ля $\forall i,$

 $H_{\scriptscriptstyle A}$: иначе

- Для построения тестовой статистики оценивается МНК исходная регрессия, из которой извлекаются остатки
- По остатков исходной регрессии оценивается МНК вспомогательная регрессия на все исходные регрессоры, их квадраты и перекрестные произведения
- о и вычисляется статистика H_0

$$nR^2 \sim \chi_p^2$$

- где р число регрессоров вспомогательной регрессии (исключая константу)
- ullet Основная гипотеза отвергается, если $nR^2>\chi^2_{p,lpha}$

Автокорреляция

Оценивание и тестирование

Определение слабой стационарности

• Случайный процесс Y_t называется слабо стационарным, если выполнены следующие условия:

 $E(Y_t)$

- не зависит от t
- $V(Y_t) > 0$
- конечна и не зависит от t
- \circ $\operatorname{cov}(Y_t, Y_s)$
- конечная функция t-s, но не t и не s

Характеристики ошибок при слабой стационарности

- ullet Ожидаемое значение $E(\mathcal{E}_t) = 0$
- Автоковариация $\operatorname{cov}(\mathcal{E}_t,\mathcal{E}_{t-s}) = \gamma_s$
- Автокорреляция

$$corr(\varepsilon_{t}, \varepsilon_{t-s}) = \frac{E(\varepsilon_{t}, \varepsilon_{t-s})}{\sqrt{V(\varepsilon_{t})V(\varepsilon_{t-s})}} = \rho_{s}$$

• Существует множество типов автокорреляции, каждая приводит к специфическому виду $V(\mathcal{E}) = \sigma_{\mathcal{E}}^2 \Omega$

• • Aвтокорреляция типа AR(1)

 Наиболее популярная форма а/к ошибок – авторегрессионный процесс 1-го порядка

$$Y_{t} = X_{t}'\beta + \varepsilon_{t}, \quad t = 1,...,T$$

$$\varepsilon_{t} = \rho \varepsilon_{t-1} + u_{t}, \quad u_{t} \sim iid(0, \sigma_{u}^{2})$$

• Условие стационарности этого процесса

$$|\rho| < 1$$

- Это предположение обеспечивает конечность и положительность дисперсии
- \circ Ситуация $|\rho|=1$ называется «единичный корень»

Свойства ошибок при AR(1)

• Можно представить ошибки в виде $\varepsilon_{t} = \sum_{i=0}^{\infty} \rho^{j} u_{i-j}$

$$\varepsilon_t = \sum_{j=0}^{\infty} \rho^j u_{i-j}$$

• Тогда

$$V(\varepsilon_{t}) = \sum_{j=0}^{\infty} \rho^{2j} V(u_{i-j}) = \frac{\sigma_{u}^{2}}{1 - \rho^{2}}$$

$$\operatorname{cov}(\varepsilon_t, \varepsilon_{t-s}) = \operatorname{cov}\left(\sum_{j=0}^{\infty} \rho^j u_{i-j}, \sum_{j=0}^{\infty} \rho^j u_{i-s-j}\right) = \frac{\sigma_u^2 \rho^{|s|}}{1 - \rho^2}$$

$$V(\varepsilon) = \sigma_{\varepsilon}^{2} \Omega = \frac{\sigma_{u}^{2}}{1 - \rho^{2}} \begin{pmatrix} 1 & \rho & \rho^{2} & \dots & \rho^{T-1} \\ \rho & 1 & \rho & \dots & \rho^{T-2} \\ \rho^{2} & \rho & 1 & \dots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{T-1} & \rho^{T-2} & \dots & \dots & 1 \end{pmatrix}$$

• • Автокорреляция AR(p)

- Когда мы имеем дело с квартальными или ежемесячными данными, ошибки в один и тот же период, но в разные годы могут коррелировать
- Например, для квартальных данных

$$\begin{split} & \mathcal{E}_t = \rho \mathcal{E}_{t-4} + u_t, \\ & \mathcal{E}_t = \rho_1 \mathcal{E}_{t-1} + \rho_2 \mathcal{E}_{t-2} + \rho_3 \mathcal{E}_{t-3} + \rho_4 \mathcal{E}_{t-4} + u_t \end{split}$$

• В общем случае

$$\varepsilon_{t} = \rho_{1}\varepsilon_{t-1} + \rho_{2}\varepsilon_{t-2} + \dots + \rho_{p}\varepsilon_{t-p} + u_{t}$$

Автокорреляция типа МА(1)

- В некоторых случаях экономическая теория предполагает, что только отдельные компоненты ошибки коррелированы, а остальные нет
- Такая ситуация описывается процессом скользящего среднего MA(q)

$$\varepsilon_{t} = u_{t} + \lambda_{1}u_{t-1} + \lambda_{2}u_{t-2} + \dots + \lambda_{q}u_{t-q}$$

• Для процесса MA(1) $\begin{pmatrix} 1+\lambda^2 & \lambda & 0 & \dots & 0 \\ \lambda & 1+\lambda^2 & \lambda & \dots & 0 \\ 0 & \lambda & 1+\lambda^2 & \dots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & 1+\lambda^2 \end{pmatrix}$

• • Процесс ARMA(p,q)

$$\begin{split} \mathcal{E}_{t} &= \rho_{1} \mathcal{E}_{t-1} + \rho_{2} \mathcal{E}_{t-2} + ... + \rho_{p} \mathcal{E}_{t-p} + u_{t} + \\ &+ \lambda_{1} u_{t-1} + \lambda_{2} u_{t-2} + ... + \lambda_{q} u_{t-q} \end{split}$$

• • Оценивание в случае AR(1) ОМНК

• Преобразование Кокрена-Уоркутта

$$Y_{t} - \rho Y_{t-1} = (X_{t} - \rho X_{t-1})' \beta + u_{t}, \quad t = 2,...,T$$

• Поправки для первых наблюдений Прайса-

Уинстона
$$\sqrt{1-\rho^2}Y_1 = \sqrt{1-\rho^2}X_1'\beta + u_1$$

• Матрица преобразования исходных

переменных

$$P = \begin{pmatrix} \sqrt{1 - \rho^2} & 0 & 0 & \dots & 0 \\ -\rho & 1 & 0 & \dots & 0 \\ 0 & -\rho & 1 & \dots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & -\rho & 1 \end{pmatrix}$$

• • Оценивание в случае AR(1) РОМНК

- Для трансформации исходных переменных необходима оценка параметра а/к
- Оценив исходную модель МНК и вычислив ее остатки, можно получить

$$\hat{\rho} = \frac{\sum_{t=2}^{T} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t-1}}{\sum_{t=2}^{T} \hat{\varepsilon}_{t-1}^{2}}$$

- На 1-ом шаге МНК оценивается исходная модель
- По остаткам регрессии 1-го шага вычисляется оценка параметра а/к
- Исходная модель трансформируется и оценивается МНК

$$Y_{t} - \hat{\rho}Y_{t-1} = (X_{t} - \hat{\rho}X_{t-1})'\beta + u_{t}, \quad t = 2, ..., T$$

$$\sqrt{1 - \hat{\rho}^{2}}Y_{1} = \sqrt{1 - \hat{\rho}^{2}}X_{1}'\beta + u_{1}$$

 По остаткам регрессии 3-го шага вычисляется оценка параметра а/к и т.д.

• Оценки МНК с поправками Ньюи-Уэста

- Используются $\hat{\beta}_{MHK} = (X'X)^{-1}X'Y$
- С ковариационной матрицей

$$\hat{V}(\hat{\beta}_{MHK}) = \frac{1}{T} \left(\frac{1}{T} X X \right)^{-1} S \left(\frac{1}{T} X X \right)^{-1}$$

о где

$$S = \frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2} X_{t} X_{t}' + \frac{1}{T} \sum_{l=1}^{L} \sum_{t=l+1}^{T} w_{l} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t-l} (X_{t} X_{t-l}' + X_{t-l} X_{t}')$$

$$o \ \text{Beca} \quad w_l = 1 - \frac{l}{L+1}$$

• • Тестирование а/к

- Тест Дарбина-Уотсона для AR(1)
 - Проверяются H_0 : $\rho = 0$, H_A : $\rho \neq 0$
 - На 1-ом шаге МНК оценивается исходная модель
 - По остаткам регрессии 1-го шага вычисляется статистика Дарбина-Уотсона

$$DW = \frac{\sum_{t=2}^{T} (\hat{\varepsilon}_{t} - \hat{\varepsilon}_{t-1})^{2}}{\sum_{t=2}^{T} \hat{\varepsilon}_{t}^{2}} \approx 2(1 - \rho) \quad E(DW) \approx 2 + \frac{2(k-1)}{n-k}$$

• С помощью специальных таблиц выясняется, в какую зону попадает DW и делается вывод

• • Тестирование а/к

- Ограничения теста Дарбина-Уотсона
 - работает только для AR(1)
 - в регрессии должна быть константа
 - в регрессии не должно быть стохастических регрессоров, например, лага Y
 - наличие зон неопределенности

Тестирование а/к

- Тест Бройша-Пагана/Годфри (1978) на AR(p), MA(q)
 - Тест позволяет использовать лаги Ү в модели
 - Проверяются H_{\circ} : нет автокорреляции,

$$H_A: \quad \varepsilon_{t} = AR(p) \quad unu \quad \varepsilon_{t} = MA(q)$$

- Оценивается исходная регрессия МНК
- По остаткам исходной модели строится вспомогательная регрессия

$$\hat{\varepsilon}_{t} = X_{t}'\gamma + \delta_{1}\hat{\varepsilon}_{t-1} + \delta_{2}\hat{\varepsilon}_{t-2} + \dots + \delta_{p}\hat{\varepsilon}_{t-p} + u_{t}$$

- и вычисляется статистика $LM = nR^2 \stackrel{H_0}{\sim} \chi_n^2$
- где р число регрессоров вспомогательной регрессии Основная гипотеза отвергается, если $nR^2 > \chi^2_{p,\alpha}$

• • Тестирование а/к

- Тест Льюнга-Бокса на ARMA(p,q)
 - Тестовая статистика

$$Q_{k} = T(T+2) \sum_{k=1}^{K} \frac{1}{T-k} \hat{\rho}_{k}^{2}$$

$$\hat{\rho}_{k} = \frac{\frac{1}{T-k} \sum_{t=k+1}^{T} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t-k}}{\frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2}}$$

Если верна основная гипотеза

$$Q_k \sim \chi_{k-p-q}^2$$

Тестирование а/к

- Диаграммы АС и РАС
 - АС автокорреляционная функция (АКФ)

$$\hat{\rho}_k = \frac{\frac{1}{T - k} \sum_{t=k+1}^{T} \hat{\varepsilon}_t \hat{\varepsilon}_{t-k}}{\frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_t^2}$$

 РАС частная автокорреляционная функция (ЧАКФ), определяется из системы

линейных уравнений Юла-Уокера, связывающей значения АКФ и частной АКФ

$$\begin{cases} \rho_1 = \varphi_{k1} \cdot 1 + \varphi_{k2} \rho_1 + \varphi_{k3} \rho_2 + ... + \varphi_{kk} \rho_{k-1} \\ \rho_2 = \varphi_{k1} \rho_1 + \varphi_{k2} \cdot 1 + \varphi_{k3} \rho_1 + ... + \varphi_{kk} \rho_{k-2} \\ \\ \rho_k = \varphi_{k1} \rho_{k-1} + \varphi_{k2} \rho_{k-2} + \varphi_{k3} \cdot \rho_{k-3} + ... + \varphi_{kk} \cdot 1. \end{cases}$$

Автокорреляционная функция (AC)

Пусть X – некоторый временной ряд, тогда его теоретическая АКФ имеет вид:

$$\rho(\tau) = \frac{1}{Var(X_t)} E\{(X_t - \mu)(X_{t-\tau} - \mu)\}$$

Рис. 1. Значения автокорреляционной функции процесса AR(1) при значении коэффициента равном 0,8

Рис. 2. Значения автокорреляционной функции процесса AR(1) при значении коэффициента равном -0,8

Идентификация параметров ARMA (Магнус, Катышев,Пересецкий)

Вид коррелограмм АС и РАС для р>0

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		3 4 5	0.319 0.190 0.092 0.014	0.041 0.004 -0.029 -0.044	116.40 157.37 171.91 175.35 175.43 175.50	0.000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 1	7 8 9 10 11	-0.013 0.025 0.042 0.069 0.027 0.036	-0.026 0.059 0.018 0.042 -0.051 0.028	175.56 175.81 176.52 178.47 178.78 179.32	0.000 0.000 0.000 0.000

Идентификация параметров ARMA (Магнус, Катышев,Пересецкий)

Вид коррелограмм АС и РАС для р<0

Autocorrelation	Partial Correlation	A	IC.	PAC	Q-Stat	Prob
	i i	1 -0	.500	-0.500	100.19	0.000
1	i j i	2 0	.281	0.041	131.88	0.000
	r i ji	3 -0	.125	0.041	138.15	0.000
: 1	1 🗓	4 0	.104	0.063	142,49	0.000
. 🚺 1	161	5 -0	.106	-0.049	147.01	0.000
1	ılı	6 0	.090	0.009	150.33	0.000
g ii	t å I	7 -0	.096	-0.043	154.11	0.000
+ b	i i	8 0	080.6	0.011	156.70	0.000
4	1(1	9 -0	.068	-0.010	158.57	0.000
1	1 🗗	10 0	1.103	0.074	162.91	0.000
4)	1)1	11 -0	.081	0.009	165.60	0.000
1 0)	ıþı	12 0	0.063	-0.002	167.23	0.000
AR(1)	$Y_t = -1$	0.5	Y_{t-}	1 +	ε_{t}	-

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1	1 100000000	1	0.700	0.700	196.54	0.000
1 200	1	2	0.403	-0.171	261.80	0.000
) 11	1 1	3	0.203	-0.016	278.34	0.000
	10	4	0.072	-0.037	280.46	0.000
161		5	-0.006	-0.023	280.47	0.000
uje j	i)u	6	-0.021	0.035	280.64	0.000
(1)	i i	7	-0.022	-0.016	280.84	0.000
- i ja	() ()	8	0.017	0.071	280.95	0.000
ı b r	1)1	9	0.049	0.008	281.93	0.000
	1 1	10	0.071	0.025	283.99	0.000
1	10 1	11	0.051	-0.043	285.05	0.000
olje,	1 🖟	12	0.048	0.045	286.00	0.000

AR(2).
$$Y_t = 0.8Y_{t-1} - 0.2Y_{t-2} + \varepsilon_t$$
.

Autocomelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1 -	-0.670	-0.670	179.75	0.000
		2	0.353	-0.173	229.82	0.000
	1 1	3 -	-0.147	0.028	238.48	0.000
. 6	i	4	0.087	0.083	241.55	0.000
46	101	5 -	-0.088	-0.032	244.67	0.000
		6	0.090	0.009	247.99	0.000
6 r	ali I	7	-0.097	-0.042	251.78	0.000
- 1	i il. !	8	0.088	0.007	254.96	0.000
elī.	i di i	9	-0.086	-0.030	257.98	0.000
- Tas	ib	10	0.106	0.062	262.57	0.000
	i ji	11	-0.092	0.029	266.04	0.000
- 7∌	· iji	12	0.071	0.010	268.12	0.000

AR(2).
$$Y_t = -0.8Y_{t-1} - 0.2Y_{t-2} + \varepsilon_t$$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
i i i		1	-0.593	-0.593	140.88	0.000
· 🗷	- I	2	0.124	-0.351	147.01	0.000
1 1	■ 1	3	0.004	-0.185	147.02	0.000
1)1	464	4	0.026	-0.034	147.29	0.000
4€1.	4 + ;	5	-0.069	-0.068	149.21	0.000
19	1 1	6	0.076	0.003	151.55	0.000
•••	4	7	-0.074	-0.050	153.79	0.000
19	10	8	0.056	-0.014	155.06	0.000
11 1		9	-0.055	-0.058	156.32	0.000
1 0		10	0.088	0.050	159.47	0.000
q :	1)1	11	-0.077	0.024	161.89	0.000
1)1	. 1	12	0.035	0.010	162.40	0.000
MA(2	2). $Y_t = \varepsilon_t -$	0.	9ε _ι _	1 + 0	$0.2\varepsilon_{t-}$	2.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Autoconveration		1 2 3 4 5 6 7 8	0.449 0.389 0.320 0.246 0.162 0.161 0.100	0.449 0.234 0.108 0.025 -0.037 0.040 -0.021 0.053	80.885 141.60 182.89 207.30 217.92 228.44 232.54 238.50	0.000 0.000 0.000 0.000 0.000 0.000
		9 10 11 12	0.102 0.123 0.057 0.067	0.019 0.052 -0.053 0.002	242.73 248.91 250.23 252.10	0.000 0.000 0.000 0.000

ARMA(1,1).
$$Y_t = 0.8Y_{t-1} + \varepsilon_t - 0.5\varepsilon_{t-1}$$

Спасибо за внимание!