

Lecture 5

Charts and Histograms

Announcements

Data Visualization

Discussion Question

Which of the following questions can be answered by this chart?

Among survey responders...

- What proportion did **not** use their phone for online banking?
- What proportion either used their phone for online banking or to look up real estate listings?
- Did everyone use their phone for at least one of these activities?
- Did anyone use their phone for both online banking and real estate?

More than Half of Smartphone Owners Have Used Their Phone to get Health Information, do Online Banking

% of smartphone owners who have used their phone to do the following in the last year

Area Principle

Areas should be proportional to the values they represent

In 2013,

30% of accidental deaths of males were due to automobile accidents

20% of accidental deaths of females were due to automobile accidents

WHERE YOUR FOOD COMES FROM

Imports of foods have doubled in a decade and now account for a fifth of what Americans eat.

Source: Mercury Research; Well's Fargo Securities, LLC

Numerical Data

How Do You Generate This Chart?

Types of Data

All values in a column should be both the same type and be comparable to each other in some way

- Numerical Each value is from a numerical scale
 - Numerical measurements are ordered
 - Differences are meaningful
- Categorical Each value is from a fixed inventory
 - May or may not have an ordering
 - Categories are the same or different

"Numerical" Data

Just because the values are numbers, doesn't mean the variable is numerical

- Census example had numerical SEX code (0, 1, and 2)
- It doesn't make sense to perform arithmetic on these "numbers", e.g. 1 0 or (0+1+2)/3 are nonsense here
- The variable SEX is still categorical, even though numbers were used for the categories

Terminology

- Individuals: those whose features are recorded
- Variables: features; these vary across individuals
- Variables have different values
- Values can be numerical, or categorical, or of many other types
- Distribution: For each different value of the variable, the frequency of individuals that have that value
- Frequency is measured in counts. Later we will use proportions or percents.

Plotting Two Numerical Variables

Scatter plot: scatter

Line graph: plot

Categorical Data

Bar Charts of Counts

Distributions:

- The distribution of a variable (a column) describes the frequency of its different values
- The group method counts the number of rows for each value in a column

Bar charts can display the distribution of categorical values

- Proportion of how many US residents are male or female
- Count of how many top movies were released by each studio

Categorical Distributions

bar chart: barh

(But when the values of the variable have a rank ordering, or fixed sizes relative to each other, more care might be needed.)

Binning

Binning Numerical Values

Binning is counting the number of numerical values that lie within ranges, called bins.

- Bins are defined by their lower bounds (inclusive)
- The upper bound is the lower bound of the next bin

Histogram

Chart to display the distribution of numerical values using bins

The Density Scale

Histogram Axes

By default, hist uses a scale (normed=True) that ensures the area of the chart sums to 100%

- The horizontal axis is a number line (e.g., years)
- The vertical axis is a rate (e.g., percent per year)
- The area of a bar is a percentage of the whole

How to Calculate Height

The [20, 40) bin contains 59 out of 200 movies

- "59 out of 200" is 29.5%
- The bin is 40 20 = 20 years wide

```
29.5 percent

Height of bar = -----

20 years
```

= 1.475 percent per year

Height Measures Density

- The height measures the percent of data in the bin relative to the amount of space in the bin.
- So height measures crowdedness, or density.

Area Measures Percent

```
Area = % in bin = Height x width of bin
```

- "How many individuals in the bin?" Use area.
- "How crowded is the bin?" Use height.

Discussion Question

What's the height of each bar in these two histograms?

actress.hist(1, bins=[0,15,25,85])

actress.hist(1, bins=[0,15,35,85])

What are the vertical axis units?

Jennifer Lawrence Scarlett Johansson

Name

Angelina Jolie Jennifer Aniston Anne Hathaway

Melissa McCarthy Bingbing Fan

Sandra Bullock Cara Delevingne Reese Witherspoon

Amy Adams

Emma Stone

Natalie Portman Margot Robbie Meryl Streep Mila Kunis

Kristen Stewart

Triblei Otewart	
Amanda Seyfried	
Tina Fey	
Julia Roberts	

10.5
10
10

2016 Income (millions)

> 61.7 57.5

> > 40

24

24

20

20

15

15

15

10.5

24.75

10
10
8.5

10
8.5
8

Chart Types

Bar Chart Versus Histogram

Bar Chart

- 1 categorical axis &1 numerical axis
- Bars have arbitrary (but equal) widths and spacings
- For distributions:
 height (or length) of bars
 are proportional to the
 percent of individuals

Histogram

- Horizontal axis is numerical, hence to scale with no gaps
- Height measures density; areas are proportional to the percent of individuals