Pattern Analysis and Recognition

Lecture 7: Clustering, Expectation Maximization

Resources

Some of the material in this slides was borrowed from:

C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

Some related material available:

http://research.microsoft.com/enus/um/people/cmbishop/prml/index.htm

D. MacKay, "Information Theory, Inference and Learning Algorithms", Cambridge University Press, 2003. Book available online:

http://www.inference.phy.cam.ac.uk/mackay/

R.O. Duda, P.E. Hart, D.G. Stork, "Pattern Classification", Wiley & Sons, 2000

Have a look inside at selected chapters:

http://books.google.es/books/about/Pattern Classification.html?id =Br33IRC3PkQC&redir esc=y

Pattern recognition algorithms

There are many pattern recognition algorithms. Specific scenarios exist, such as when samples come in a sequence. Different branches such as statistical, syntactic and structural pattern recognition...

Supervised learning

In supervised learning, the "right answers" (ground truth) are given

Training Set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$

Unsupervised learning

In unsupervised learning, the "right answers" (ground truth) are not given

Training Set: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$

Market segmentation

Astronomical data analysis

Social network analysis

Medical Image Analysis

K-MEANS CLUSTERING ALGORITHM

Step 1 Initialize K "means" μ_k , one for each class

Hint: we can use random starting points, or choose k points randomly from the set of samples

Optimization Objective

Let's define some notation to describe the assignment of data points to clusters:

For each data point $x^{(n)}$ we introduce a corresponding set of binary indicator variables:

$$r_{nk} \in \{0,1\}$$

where k = 1, ..., K describing which of the K clusters the data point $x^{(n)}$ is assigned to

We define an objective function (cost function, distortion measure) as:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \mathbf{x}^{(n)} - \mathbf{\mu}_{k} \|^{2}$$

which represents the sum of the squares of distances of each data point to its assigned vector μ_{k}

Optimization Objective

Goal: find the values for the $\{r_{nk}\}$ and the $\{\mu_k\}$ so as to minimize J

Intuition: we can do this through an iterative procedure in which each iteration involves two successive steps corresponding to successive optimizations with respect to the $\{r_{nk}\}$ and the $\{\mu_k\}$

Note: We will see next that these two steps correspond to the E (expectation) and M (Maximization) steps of the EM algorithm

Expectation step

Observe:

- J is a linear function of r_{nk} -> closed form solution
- The terms involving different n are independent -> we can optimise for each n separately by choosing r_{nk} to be 1 for whichever value of k gives the minimum value of $\|\mathbf{x}^{(n)} \mathbf{\mu}_k\|^2$

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \left\| x^{(n)} - \mu_{j} \right\|^{2} \\ 0 & \text{otherwise} \end{cases}$$

Maximisation Step

Observe:

• *J* is a quadratic function of μ_{nk} -> minimise setting the derivative with respect to μ_{nk} to zero

$$\frac{\partial J}{\partial \boldsymbol{\mu}_{k}} = 2\sum_{n=1}^{N} r_{nk} \left(\mathbf{x}^{(n)} - \boldsymbol{\mu}_{k} \right) = 0$$

$$\boldsymbol{\mu}_{k} = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}^{(n)}}{\sum_{n=1}^{N} r_{nk}}$$

K-Means Algorithm Revisited

Random Initialization

Random Initialization

A possible solution: repeat many times and select the best fit.

```
for i=1 to 100 {
   Randomly initialize K-means
   Run K-means, and get the \{r_{nk}\} and the \{\mu_k\}
   Compute the cost function J
}

Pick clustering that gave lowest cost J
```

Choosing the number of Clusters

What is the right number (K) of classes?

Choosing the number of Clusters

The first clusters will add much information (explain a lot of variance / reduce a lot the value of the cost function), but at some point the marginal gain will drop, giving an angle in the graph. The number of clusters is chosen at this point, hence the "elbow criterion". This "elbow" cannot always be unambiguously identified.

Limitations of K-means

- A point can only pertain to one class (hard classification)
- Clusters have the same "shape" (only parameters are the means μ_k)

GAUSSIAN MIXTURE MODELS

A Gaussian Density

A Gaussian Mixture

$$N(\mathbf{x}|\mathbf{\mu}_1, \mathbf{\Sigma}) + N(\mathbf{x}|\mathbf{\mu}_2, \mathbf{\Sigma})$$

A Gaussian Mixture

A Gaussian Mixture

Gaussian Mixture Distribution

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x} | \mathbf{\mu}_k, \mathbf{\Sigma}_k)$$

A Different Formulation

Given a mixture of Gaussians as an underlying probability distribution each sample is produced in two steps, by first choosing one of the Gaussian mixture components, and then according to the selected component's probability density

Intuition: We do not directly observe which component was responsible for each sample – this "responsible component" can be represented by a latent (hidden) variable z

A Different Formulation

The latent variable z is a K-dimensional binary random variable having a 1-of-K representation

$$z_k = \begin{cases} 1 & \text{for a particular element, } k = i \\ 0 & \text{for all other elements, } k \neq i \end{cases}$$

$$z_k \in \{0,1\}$$

$$\sum_{k} z_{k} = 1$$

We define:
$$p(z_k = 1) = \pi_k$$

A Different Formulation

As z uses a 1-of-K representation we can write:

$$p(z_k = 1) = \pi_k \to p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$$

Similarly, for the conditional distribution of x given a particular value of z:

$$p(\mathbf{x}|z_k = 1) = N(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \rightarrow p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K N(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$

Finally, the marginal distribution of x over all possible states of z:

$$p(\mathbf{x}) = \sum_{z} p(\mathbf{x}, \mathbf{z}) = \sum_{z} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x}|\mathbf{\mu}_k, \mathbf{\Sigma}_k)$$

A Different Formulation

Using the Bayes theorem:

$$\gamma(z_k) = p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k N(\mathbf{x}|\mathbf{\mu}_k, \mathbf{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j N(\mathbf{x}|\mathbf{\mu}_j, \mathbf{\Sigma}_j)}$$

 $\gamma(z_k)$ can be seen as the "responsibility" that component k takes for "explaining" the observation **x**

K-means vs Mixture of Gaussians

K-Means

 K-means is a ("hard") classifier

- Parameters to estimate
 - Means $\{\mu_k\}$

Mixture of Gaussians

- Mixture of Gaussians is a probability model
- We can USE it as a "soft" classifier
- Parameters to estimate
 - Means $\{\mu_k\}$
 - Covariances $\{\Sigma_k\}$
 - Mixing coefficients $\{\pi_k\}$

Maximum Likelihood

Goal: given a data set of observation $\{x(1), x(2), ..., x(N)\}$ we wish to model the data using a mixture of Gaussians

Intuition: follow the same practice as before and maximise the (log) likelihood of the model parameters

$$\ln p(X|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(\mathbf{x}^{(n)}|\mathbf{\mu}_k,\mathbf{\Sigma}_k) \right\}$$

Problem: contrary to estimating the parameters of a single Gaussian, the presence of singularities makes this not a well posed problem

EXPECTATION MAXIMISATION FOR GAUSSIAN MIXTURES

K-Means Algorithm Reminder

Initialization

Initialize the parameters of K Gaussians (μ_k , Σ_k , π_k)

Hint: we can use the K-means result to initialize

$$\begin{aligned} & \mu_k \leftarrow \mu_k \\ & \Sigma_k \leftarrow \text{cov}(\text{cluster}(k)) \\ & \pi_k \leftarrow \frac{\text{\# points in cluster } k}{\text{Total number of points}} \end{aligned}$$

$$\gamma(z_{nk}) = \frac{\pi_k N(\mathbf{x}^{(n)} | \mathbf{\mu}_k, \mathbf{\Sigma}_k)}{\sum_{j=1}^K \pi_j N(\mathbf{x}^{(n)} | \mathbf{\mu}_j, \mathbf{\Sigma}_j)}$$

 $\gamma(z_{nk})$ is called "responsibility": how much is the Gaussian k responsible for the point $x^{(n)}$

$$\boldsymbol{\mu}_{k}^{\text{new}} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}^{(n)} \qquad N_{k} = \sum_{n=1}^{N} \gamma(z_{nk})$$

Initialization Initialize the parameters of K Gaussians (μ_k, Σ_k, π_k) Expectation Give each point $x^{(n)}$ an assignment score $y(z_{nk})$ for each cluster kMaximisation Given the scores, adjust $\{\mu_k, \pi_k, \Sigma_k\}$ for each cluster k

$$\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}^{(n)} - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}^{(n)} - \boldsymbol{\mu}_k^{\text{new}})^T \qquad N_k = \sum_{n=1}^N \gamma(z_{nk})$$

Initialization Initialize the parameters of K Gaussians (μ_k, Σ_k, π_k)

Expectation

Give each point $x^{(n)}$ an assignment score $\gamma(z_{nk})$ for each cluster k

Maximisation

Given the scores, adjust $\{\mu_k, \pi_k, \Sigma_k\}$ for each cluster k

$$\pi_k^{\text{new}} = \frac{N_k}{N}$$

$$N_k = \sum_{n=1}^N \gamma(z_{nk})$$

THE GENERAL EXPECTATION MAXIMISATION ALGORITHM

General EM Algorithm

See sections
9.3, 9.4 for more details

SUMMARY

Summary

- K-Means is an unsupervised method for data clustering
- K-means yields "hard" cluster assignments
- Gaussian Mixture Models are useful for modelling data with "soft" cluster assignments
- Expectation Maximization is a method used when we have a model with latent (hidden) variables
- K-Means can be seen as a special case of the EM algorithm $(\Sigma = \varepsilon \cdot I, \varepsilon \rightarrow 0)$

What's Next

		Mondays	Tuesdays				
		16:00 - 18:00	15:00 - 17:00				
Practical Sessions		М	Т	W	T	F	Lectures
	Feb	8	9	10	11	12	Introduction and Linear Regression
PO. Introduction to Python, Linear Regression		15	16	17	18	19	Logistic Regression, Normalization
P1. Text non-text classification (Logistic Regression)		22	23	24	25	26	Regularization, Bias-variance decomposition
	Mar	29	1	2	3	4	Normalization and subspace methods (dimensionality reduction)
		7	8	9	10	11	Probabilities, Bayesian inference
Discussion of intermediate deliverables / project presentations		14	15	16	17	18	Parameter Estimation, Bayesian Classification
		21	22	23	24	25	Easter Week
	Apr	28	29	30	31	1	Clustering, Gausian Mixture Models, Expectation Maximisation
P2. Feature learning (k-means clustering, NN, bag of words)		4	5	6	7	8	Nearest Neighbour Classification
		11	12	13	14	15	
		18	19	20	21	22	Kernel methods
Discussion of intermediate deliverables / project presentations		25	26	27	28	29	Support Vector Machines, Support Vector Regression
P3. Text recognition (multi-class classification using SVMs)	May	2	3	4	5	6	Neural Networks
		9	10	11	12	13	Advanced Topics: Metric Learning, Preference Learning
		16	17	18	19	20	Advanced Topics: Deep Nets
Final Project Presentations		23	24	25	26	27	Advanced Topics: Structural Pattern Recognition
	Jun	30	31	1	2	3	Revision

LEGEND						
	Project Follow Up					
	Project presentations					
	Lectures					
	Project Deliverable due date					
	Vacation / No Class					