

TRABAJO TERMINAL I 2024-B068

DESARROLLO DE RED DE COMUNICACIÓN PARA ESTACIÓN DE CARGA

ORIENTADO A VEHÍCULOS ELÉCTRICOS

PRESENTAN: Maldonado Flores Marco de Jesús Méndez Barrera Román Jared Urbina Villa Noé

DIRECTORES:

Santillan Luna Raúl Alcántara Méndez Alberto Jesús

Introducción

La adopción de vehículos eléctricos (VE) ha aumentado significativamente en la última década gracias a los avances tecnológicos, la conciencia ambiental y las regulaciones gubernamentales.

La infraestructura de carga es clave para el éxito de los VE, ya que permite una recarga eficiente y conveniente.

Objetivos del proyecto

Explorar el estado actual del desarrollo de redes de comunicación para estaciones de carga de VE, analizando protocolos, tecnologías emergentes, desafíos y oportunidades para mejorar la eficiencia y sostenibilidad.

Crecimiento de la Adopción de Vehículos Eléctricos

La adopción de VE ha crecido notablemente debido a esfuerzos globales para reducir emisiones y enfrentar el cambio climático, impulsados por avances tecnológicos, conciencia ambiental y regulaciones.

Red de Comunicación para Estaciones de Carga

Desarrollar una red de comunicación eficiente es crucial para la transición a la movilidad eléctrica. Esta red optimiza la interacción entre vehículo y estación, mejora el rendimiento operativo y la experiencia del usuario.

Contexto

Adopción de Vehículos Eléctricos

- 2022: 10.5 millones de coches eléctricos vendidos.
- 2023: 18% de las ventas globales serán de VE.
- -México 2024: 214,000 unidades eléctricas producidas.

Infraestructura de Carga

- México: 2,100 estaciones de carga.
- -Requerimiento para 2025: 15,000-20,000 estaciones.
- Evergo México: 15,000 puntos de carga para 2024.
- Carga: 31% en casa, 24% en trabajo/escuela.

Red de Comunicación

- Protocolos: OCPP, CCS, CHAdeMO, SAE J1772, IEC-62196.
- Mercado: Superará \$140 mil millones para 2027.

Importancia de la Infraestructura de Carga

Las estaciones de carga son esenciales para la adopción de VE, proporcionando recarga conveniente y eficiente. La inteligencia en la gestión de estaciones es crucial para una transición exitosa hacia la movilidad eléctrica.

Objetivo General

Desarrollar una red de comunicación para optimizar la gestión de estaciones de carga de VE.

Objetivos Específicos

- **1.** Monitoreo y gestión de energía.
- 2. Detección y reporte de errores.
- **3.** Optimización del tiempo de carga y experiencia del usuario.

Protocolos de Carga

- **OCPP:** Interoperabilidad entre estaciones y gestores de carga.
- CCS: Combina carga CA y CC.
- **CHAdeMO:** Carga rápida DC, popular en Japón.
- SAE J1772: Conector estándar en América
- del Norte.

IEC-62196: Conector tipo 2 en Europa.

Situación Actual

- 2,100 estaciones de carga.
- Necesidad de 15,000-20,000 estaciones para 2025.

Plan de Expansión

• Evergo México: 15,000 puntos de carga para 2024.

Estadísticas de Uso

- 31% carga en casa.
- 24% en trabajo o escuela.

Funciones Principales

- Facilitar la interacción vehículo-estación.
- Optimizar el rendimiento operativo.
- Gestionar el consumo de energía.
- Mejorar la experiencia del usuario con información en tiempo real.

Desarrollo del Sistema

Hardware Utilizado

• Raspberry Pi 4 Modelo B (8GB RAM).

Software y Lenguajes

- Python: Gestión de datos.
- HTML, CSS, JavaScript: Interfaz de usuario.
- Librerías: Flask, Chart.js.

Componentes del Sistema

- Sensores de Medición.
- Raspberry Pi: Nodo de comunicación.
- Servidor en Azure.
- Interfaz de Usuario: Visualización en tiempo real.

Código PrincipalFuncionalidades

- Conexión de estaciones de carga.
- Retransmisión de datos a servidor en Azure.
- Visualización de datos en tiempo real.

Descripción

- Conexión y gestión de estaciones de carga con Raspberry Pi.
- Monitoreo en tiempo real.

Funciones Implementadas

 Energía consumida, detección de errores, costos y tiempos de carga.

Simulación de Datos

Pruebas con datos simulados.

Visualización de los Datos

Diseño Intuitivo

- Conexión y gestión de estaciones de carga con Raspberry Pi.
- Monitoreo en tiempo real.

Diseño Minimalista

• Claridad y facilidad de uso.

Desafíos

- Fiabilidad y resistencia a interferencias.
- Implementación a gran escala.
- Mantenimiento y actualización del sistema.

Oportunidades

- Implementar IA y machine learning.
- Expansión global.
- Colaboraciones estratégicas con fabricantes y gobiernos.

Login

Pantalla de datos de usuario

Pantalla de inicio

Pantalla para ubicar estaciones de carga

Pantalla para editar datos de usuario

Implementación del Sistema

- Desarrollo de sistema de monitoreo y gestión.
- Pruebas en entornos controlados y reales.

Monitoreo en Tiempo Real

• Datos precisos y actualizados.

Limitaciones

- Dependencia de una infraestructura de red robusta.
- Capacidad de procesamiento y almacenamiento de datos.
- Inversión significativa en hardware y software.
- Políticas gubernamentales y regulaciones.

GRACIAS A TODOS

Por su atención

