Mapping Rules

From ER (or EER) to Relational Schema

Inputs :ER Outputs: Data Model

Mapping Regular Entities to Relations

- 1. Simple attributes: E-R attributes map directly onto the relation
- 2. Composite attributes: Use only their simple, component attributes
- 3. Multi-valued Attribute Becomes a separate relation with a foreign key taken from the superior entity

Mapping a regular entity

(a) CUSTOMER entity type with simple attributes

(b) CUSTOMER relation

Mapping a composite attribute

Mapping a multivalued attribute

Multivalued attribute becomes a separate relation with foreign key

1 – to – many relationship between original entity and new relation

Mapping Weak Entities

- Becomes a separate relation with a foreign key taken from the superior entity
- Primary key composed of:
 - Partial identifier of weak entity
 - Primary key of identifying relation (strong entity)

Example of mapping a weak entity

(a) Weak entity DEPENDENT

Relations resulting from weak entity

Mapping Binary Relationships

- One-to-Many Primary key on the one side becomes a foreign key on the many side
- Many-to-Many Create a *new relation* with the primary keys of the two entities as its primary key
- One-to-One Primary key on the mandatory side becomes a foreign key on the optional side

Example of mapping a 1:M relationship

(a) Relationship between customers and orders

Mapping the relationship

Example of mapping an M:N relationship (a) ER diagram (M:N)

The Supplies relationship will need to become a separate relation

Three resulting relations

Mapping a binary 1:1 relationship

Resulting relations

Mapping Associative Entities

- Identifier Not Assigned
 - Default primary key for the association relation is composed of the primary keys of the two entities (as in M:N relationship)
- Identifier Assigned
 - It is natural and familiar to end-users
 - Default identifier may not be unique

Mapping an associative entity

Three resulting relations

Mapping Unary Relationships

- One-to-Many Recursive foreign key in the same relation
- Many-to-Many Two relations:
 - One for the entity type
 - One for an associative relation in which the primary key has two attributes, both taken from the primary key of the entity

Mapping a unary 1:N relationship

(b) EMPLOYEE relation with recursive foreign key

Mapping a unary M:N relationship

(a) Bill-of-materials relationships (M:N)

(b) ITEM and COMPONENT relations

Mapping Ternary (and n-ary)
Relationships

- One relation for each entity and one for the associative entity
- Associative entity has foreign keys to each entity in the relationship

Mapping a ternary relationship (a) Ternary relationship with associative entity

Mapping the ternary relationship

Mapping Supertype/Subtype Relationships

- One relation for supertype and for each subtype
- Supertype attributes (including identifier and subtype discriminator) go into supertype relation
- Subtype attributes go into each subtype; primary key of supertype relation also becomes primary key of subtype relation
- 1:1 relationship established between supertype and each subtype, with supertype as primary table

Supertype / subtype elationships

Mapping Supertype/subtype relationships to relations

What constitutes a Well structured Relation:

-Minimal Redundancy
 - Allows users to insert , update and delete rows without inconsistencies.

.....Next Lecture