Math 132 Homework 7

Jiaping Zeng

11/16/2020

$$4.4.2 \ \frac{\sin z}{e^z}, z_0 = 1 + 7i.$$

Answer: $\frac{\sin z}{e^z}$ is analytic everywhere, so $R = \infty$.

$$4.4.3 \ \frac{z}{z-3i}, z_0=0.$$

Answer: $\frac{z}{z-3i}$ is analytic for $z \neq 3i$, so $R = |z_0 - 3i| = |0 - 3i| = 3$.

4.4.5
$$\frac{z+1}{z-i}$$
, $z_0 = 2+i$.

Answer: $\frac{z+1}{z-i}$ is analytic for $z \neq i$, so $R = |z_0 - i| = |2 + i - i| = 2$.

$$4.4.6 \ \frac{\sin z}{z^2 + 4}, z_0 = 3.$$

Answer: $\frac{\sin z}{z^2 + 4}$ is analytic for $z \neq \pm 2i$, so $R = \min\{|z_0 - 2i|, |z_0 + 2i|\} = \min\{|3 - 2i|, |3 + 2i|\} = \min\{\sqrt{13}, \sqrt{13}\} = \sqrt{13}$.

4.5.1
$$\frac{1}{1+z^2}$$
, $1 < |z|$.

Answer: Let $w = \frac{1}{z^2}$; then $1 < |z| \implies \left|\frac{1}{z^2}\right| = |w| < 1$. By substitution we have $\frac{1}{1+z^2} = \frac{\frac{1}{z^2}}{1+\frac{1}{z^2}} = w \cdot \frac{1}{1-(-w)}$. Since |w| < 1, we can use the geometric series as follows: $w \cdot \frac{1}{1-(-w)} = w \sum_{n=0}^{\infty} (-w)^n = \sum_{n=0}^{\infty} (-1)^n w^{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{2n+2}}$.

$$4.5.2 \ \frac{3+z}{2-z}, 2<|z|.$$

Answer

$$4.5.4 \ z + \frac{1}{z}, 1 < |z - 1|.$$

Answer:

4.5.13
$$\frac{z}{(z+2)(z+3)}$$
, $2 < |z| < 3$.

Answer: By partial fraction we have $\frac{z}{(z+2)(z+3)} = \frac{A}{z+2} + \frac{B}{z+3} \implies z = A(z+3) + B(z+2) \implies A = -2, B = 3.$

P1 Use the geometric series formula to derive the power series expansion for the given function f centered at the given point z_0 :

1

- (a) $f(z) = \frac{z}{1-z}$, centered at $z_0 = 0$.
- (b) $f(z) = \frac{z^2+1}{z-1}$, centered at $z_0 = 0$.
- (c) $f(z) = \frac{1}{(1-z)^3}$, centered at $z_0 = 0$.
- (d) $f(z) = \frac{1}{1-2z^3}$, centered at $z_0 = 0$.

P2 Find the Laurent series for $\frac{1}{(z-i)(z+2i)}$ in the given domain:

- (a) $A_{1,2}(0)$
- (b) $A_{0,3}(i)$
- (c) $A_{3,\infty}(i)$