

Note:

The rising edge detection at the event trigger is enabled with the start of each basic cycle. The first rising edge triggers the compare of the actual cycle time with TTGTP0.CTP. All further edges until the beginning of the next basic cycle are ignored.

# 40.4 Registers

This section describes the registers within the MCMCAN module. All the registers are prefixed as CAN0\_, CAN1\_ or CAN2\_ for MCMCAN modules, if the corresponding module exist for a particular product variant (Refer Appendix). The registers are grouped as three different sections:

- · General Configuration Registers
- User Interface Registers
- Registers within M\_CAN

The registers listed in **Figure 604** are not included in the MCMCAN module kernel (part of general module IP blocks), some registers must be programmed for proper operation of the MCMCAN module.

The additional ACCEN registers, are MCMCAN specific.



Figure 604 CAN Implementation-specific Special Function Registers

### 40.4.1 MCMCAN RAM address space

Table 378 Register Address Space - MCMCAN RAM

| Module  | Base Address           | End Address            | Note          |
|---------|------------------------|------------------------|---------------|
| CANRAM0 | F020 0000 <sub>H</sub> | F020 7FFF <sub>H</sub> | RAM Area CAN0 |
| CANRAM1 | F021 0000 <sub>H</sub> | F021 3FFF <sub>H</sub> | RAM Area CAN1 |
| CANRAM2 | F022 0000 <sub>H</sub> | F022 3FFF <sub>H</sub> | RAM Area CAN2 |

Note: Refer Appendix of a product variant for the register address space of MCMCAN and available RAM modules.



# 40.4.2 MCMCAN register overview

Table 379 Register Overview - CAN (ascending Offset Address)

| Short Name  | Long Name                                                   | Offset                                     | Access | Mode     | Reset                | Page   |  |
|-------------|-------------------------------------------------------------|--------------------------------------------|--------|----------|----------------------|--------|--|
|             |                                                             | Address                                    | Read   | Write    |                      | Number |  |
| RAM         | Embedded SRAM for<br>messages<br>(008000 <sub>H</sub> Byte) | 000000 <sub>H</sub>                        |        |          |                      |        |  |
| CLC         | CAN Clock Control Register                                  | 008000 <sub>H</sub>                        | U,SV   | SV,E,P   | Application<br>Reset | 83     |  |
| ID          | Module Identification<br>Register                           | 008008 <sub>H</sub>                        | U,SV   | nBE      | Application<br>Reset | 70     |  |
| MCR         | Module Control Register                                     | 008030 <sub>H</sub>                        | U,SV   | SV,U,P   | Application<br>Reset | 70     |  |
| BUFADR      | Buffer receive address and transmit address                 | 008034 <sub>H</sub>                        | U,SV   | SV,U,P   | Application<br>Reset | 73     |  |
| MECR        | Measure Control Register                                    | 008040 <sub>H</sub>                        | U,SV   | SV,U,P   | Application<br>Reset | 74     |  |
| MESTAT      | Measure Status Register                                     | 008044 <sub>H</sub>                        | U,SV   | SV,U,P   | Application<br>Reset | 75     |  |
| ACCENCTR0   | Access Enable Register<br>Control 0                         | 0080DC <sub>H</sub>                        | U,SV   | SV,SE,P  | Application<br>Reset | 79     |  |
| ocs         | OCDS Control and Status                                     | 0080E8 <sub>H</sub>                        | U,SV   | SV,P,OEN | Debug Reset          | 76     |  |
| KRSTCLR     | Kernel Reset Status Clear<br>Register                       | 0080EC <sub>H</sub>                        | U,SV   | SV,E,P   | Application<br>Reset | 81     |  |
| KRST1       | Kernel Reset Register 1                                     | 0080F0 <sub>H</sub>                        | U,SV   | SV,E,P   | Application<br>Reset | 81     |  |
| KRST0       | Kernel Reset Register 0                                     | 0080F4 <sub>H</sub>                        | U,SV   | SV,E,P   | Application<br>Reset | 80     |  |
| ACCEN0      | Access Enable Register 0                                    | 0080FC <sub>H</sub>                        | U,SV   | SV,SE    | Application<br>Reset | 78     |  |
| ACCENNODEi0 | Access Enable Register CAN<br>Node i 0                      | 008100 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,SE,P  | Application<br>Reset | 79     |  |
| STARTADRI   | Start Address Node i                                        | 008108 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,SE,P  | Application<br>Reset | 89     |  |
| ENDADRi     | End Address Node i                                          | 00810C <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,SE,P  | Application<br>Reset | 89     |  |
| ISREGi      | Interrupt Signalling Register i                             | 008110 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | nBE      | Application<br>Reset | 86     |  |
| GRINT1i     | Interrupt routing for Groups 1 i                            | 008114 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P   | Application<br>Reset | 83     |  |
| GRINT2i     | Interrupt routing for Groups 2 i                            | 008118 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P   | Application<br>Reset | 85     |  |



**Table 379 Register Overview - CAN (ascending Offset Address)** (cont'd)

| Short Name | Long Name                                   | Offset                                          | Access | Mode   | Reset                | Page  |  |
|------------|---------------------------------------------|-------------------------------------------------|--------|--------|----------------------|-------|--|
|            |                                             | Address                                         | Read   | Write  |                      | Numbe |  |
| NTCCRi     | Node i Timer Clock Control<br>Register      | 008120 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 90    |  |
| NTATTRi    | Node i Timer A Transmit<br>Trigger Register | 008124 <sub>H</sub> U,SV<br>+i*400 <sub>H</sub> |        | SV,U,P | Application<br>Reset | 91    |  |
| NTBTTRi    | Node i Timer B Transmit<br>Trigger Register | 008128 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 92    |  |
| NTCTTRi    | Node i Timer C Transmit<br>Trigger Register | 00812C <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 92    |  |
| NTRTRi     | Node i Timer Receive<br>Timeout Register    | 008130 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 93    |  |
| NPCRi      | Node i Port Control Register                | 008140 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 87    |  |
| TTCRi      | Time Trigger Control<br>Register            | 0081F0 <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 88    |  |
| CRELi      | Core Release Register i                     | 008200 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | nBE    | See page 95          | 95    |  |
| ENDNi      | Endian Register i                           | 008204 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | nBE    | Application<br>Reset | 95    |  |
| DBTPi      | Data Bit Timing & Prescaler<br>Register i   | 00820C <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 96    |  |
| TESTi      | Test Register i                             | 008210 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 97    |  |
| RWDi       | RAM Watchdog i                              | 008214 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 98    |  |
| CCCRi      | CC Control Register i                       | 008218 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 99    |  |
| NBTPi      | Nominal Bit Timing & Prescaler Register i   | 00821C <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 101   |  |
| TSCCi      | Timestamp Counter<br>Configuration i        | 008220 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 103   |  |
| TSCVi      | Timestamp Counter Value i                   | 008224 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 104   |  |
| TOCCi      | Timeout Counter<br>Configuration i          | 008228 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 104   |  |
| TOCVi      | Timeout Counter Value i                     | 00822C <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 105   |  |
| ECRi       | Error Counter Register i                    | 008240 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | nBE    | Application<br>Reset | 106   |  |
| PSRi       | Protocol Status Register i                  | 008244 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | nBE    | Application<br>Reset | 107   |  |



Table 379 Register Overview - CAN (ascending Offset Address) (cont'd)

| Short Name | Long Name                                      | Offset                                     | Access | Mode   | Reset                | Page   |  |
|------------|------------------------------------------------|--------------------------------------------|--------|--------|----------------------|--------|--|
|            |                                                | Address                                    | Read   | Write  |                      | Number |  |
| TDCRi      | Transmitter Delay<br>Compensation Register i   | 008248 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 111    |  |
| IRi        | Interrupt Register i                           | 008250 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 112    |  |
| lEi        | Interrupt Enable i                             | 008254 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 115    |  |
| GFCi       | Global Filter Configuration i                  | 008280 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 117    |  |
| SIDFCi     | Standard ID Filter<br>Configuration i          | 008284 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 118    |  |
| XIDFCi     | Extended ID Filter<br>Configuration i          | 008288 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 119    |  |
| XIDAMi     | Extended ID AND Mask i                         | 008290 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 120    |  |
| HPMSi      | High Priority Message<br>Status i              | 008294 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | nBE    | Application<br>Reset | 120    |  |
| NDAT1i     | New Data 1 i                                   | 008298 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 121    |  |
| NDAT2i     | New Data 2 i                                   | 00829C <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 122    |  |
| RXF0Ci     | Rx FIFO 0 Configuration i                      | 0082A0 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 122    |  |
| RXF0Si     | Rx FIFO 0 Status i                             | 0082A4 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | nBE    | Application<br>Reset | 123    |  |
| RXF0Ai     | Rx FIFO 0 Acknowledge i                        | 0082A8 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 124    |  |
| RXBCi      | Rx Buffer Configuration i                      | 0082AC <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 125    |  |
| RXF1Ci     | Rx FIFO 1 Configuration i                      | 0082B0 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 125    |  |
| RXF1Si     | Rx FIFO 1 Status i                             | 0082B4 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | nBE    | Application<br>Reset | 126    |  |
| RXF1Ai     | Rx FIFO 1 Acknowledge i                        | 0082B8 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 127    |  |
| RXESCi     | Rx Buffer/FIFO Element Size<br>Configuration i | 0082BC <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 127    |  |
| TXBCi      | Tx Buffer Configuration i                      | 0082C0 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | SV,U,P | Application<br>Reset | 129    |  |
| TXFQSi     | Tx FIFO/Queue Status i                         | 0082C4 <sub>H</sub><br>+i*400 <sub>H</sub> | U,SV   | nBE    | Application<br>Reset | 130    |  |



**Table 379 Register Overview - CAN (ascending Offset Address)** (cont'd)

| Short Name | Long Name                                             | Offset                                          | Access | Mode   | Reset                | Page  |
|------------|-------------------------------------------------------|-------------------------------------------------|--------|--------|----------------------|-------|
|            |                                                       | Address                                         | Read   | Write  |                      | Numbe |
| TXESCi     | Tx Buffer Element Size<br>Configuration i             | 0082C8 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 131   |
| TXBRPi     | Tx Buffer Request Pending i                           | 0082CC <sub>H</sub> U,SV<br>+i*400 <sub>H</sub> |        | SV,U,P | Application<br>Reset | 132   |
| TXBARi     | Tx Buffer Add Request i                               | 0082D0 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 132   |
| TXBCRi     | Tx Buffer Cancellation<br>Request i                   | 0082D4 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 133   |
| ТХВТОі     | Tx Buffer Transmission<br>Occurred i                  | 0082D8 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | nBE    | Application<br>Reset | 134   |
| TXBCFi     | Tx Buffer Cancellation<br>Finished i                  | 0082DC <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | nBE    | Application<br>Reset | 134   |
| TXBTIEi    | Tx Buffer Transmission<br>Interrupt Enable i          | 0082E0 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 135   |
| TXBCIEi    | Tx Buffer Cancellation<br>Finished Interrupt Enable i | 0082E4 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 135   |
| TXEFCi     | Tx Event FIFO Configuration i                         | 0082F0 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 136   |
| TXEFSi     | Tx Event FIFO Status i                                | 0082F4 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | nBE    | Application<br>Reset | 137   |
| TXEFAi     | Tx Event FIFO Acknowledge i                           | 0082F8 <sub>H</sub><br>+i*400 <sub>H</sub>      | U,SV   | SV,U,P | Application<br>Reset | 137   |
| ГТТМСі     | TT Trigger Memory<br>Configuration i                  | 008300 <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 138   |
| TTRMCi     | TT Reference Message<br>Configuration i               | 008304 <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 138   |
| TTOCFi     | TT Operation Configuration i                          | 008308 <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 139   |
| TTMLMi     | TT Matrix Limits i                                    | 00830C <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 141   |
| TURCFi     | TUR Configuration i                                   | 008310 <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 142   |
| TTOCNI     | TT Operation Control i                                | 008314 <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 144   |
| TTGTPi     | TT Global Time Preset i                               | 008318 <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 146   |
| ГТТМКі     | TT Time Mark i                                        | 00831C <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 147   |
| ΓΤΙRi      | TT Interrupt Register i                               | 008320 <sub>H</sub>                             | U,SV   | SV,U,P | Application<br>Reset | 148   |

# **AURIX™ TC3xx**



### **CAN Interface (MCMCAN)**

# Table 379 Register Overview - CAN (ascending Offset Address) (cont'd)

| <b>Short Name</b> | Long Name                | Offset              | Access     | Mode   | Reset                | Page   |  |
|-------------------|--------------------------|---------------------|------------|--------|----------------------|--------|--|
|                   |                          | Address             | Read Write |        |                      | Number |  |
| TTIEi             | TT Interrupt Enable i    | 008324 <sub>H</sub> | U,SV       | SV,U,P | Application<br>Reset | 151    |  |
| TTOSTi            | TT Operation Status i    | 00832C <sub>H</sub> | U,SV       | nBE    | Application<br>Reset | 153    |  |
| TURNAi            | TUR Numerator Actual i   | 008330 <sub>H</sub> | U,SV       | nBE    | Application<br>Reset | 155    |  |
| TTLGTi            | TT Local & Global Time i | 008334 <sub>H</sub> | U,SV       | nBE    | Application<br>Reset | 156    |  |
| ТТСТСі            | TT Cycle Time & Count i  | 008338 <sub>H</sub> | U,SV       | nBE    | Application<br>Reset | 156    |  |
| TTCPTi            | TT Capture Time i        | 00833C <sub>H</sub> | U,SV       | nBE    | Application<br>Reset | 157    |  |
| TTCSMi            | TT Cycle Sync Mark i     | 008340 <sub>H</sub> | U,SV       | nBE    | Application<br>Reset | 157    |  |



### **40.4.3 General Configuration Registers**

This section describes the global module registers, system registers, access enable registers and kernal reset registers.

### 40.4.3.1 Global Module Registers

Global Module Registers, are registers, which are not part of M\_CAN nodes.

#### **Module Identification Register**

The Module Identification Register ID contains read-only information about the module version.

| ID<br>Modul | e Ident  | ificatio | on Regi | ister |    |    | (00800) | 08 <sub>H</sub> ) |    | Ap | plicatio | n Rese | et Valu | e: 00B8 | COXX, |
|-------------|----------|----------|---------|-------|----|----|---------|-------------------|----|----|----------|--------|---------|---------|-------|
| 31          | 30       | 29       | 28      | 27    | 26 | 25 | 24      | 23                | 22 | 21 | 20       | 19     | 18      | 17      | 16    |
|             | ı        |          | ı       | •     | ı  |    | MOD_N   | IUMBER            | ·  | •  | •        | ı      |         |         | ı     |
|             | <u> </u> | 1        | I       | 1     | 1  | 1  | 1       | r                 | I  | 1  | 1        | 1      | 1       | 1       |       |
| 15          | 14       | 13       | 12      | 11    | 10 | 9  | 8       | 7                 | 6  | 5  | 4        | 3      | 2       | 1       | 0     |
|             |          | 1        | MOD     | TYPE  | !  | !  | 1       |                   | ı  |    | MOD      | _REV   | 1       |         | ı     |
| <u> </u>    | <u> </u> | 1        | 1       | r     | 1  | -  | -1      |                   | 1  | 1  | 1        | r      | 1       | 1       | 1     |

| Field          | Bits  | Type | Description                                                                                                                                  |
|----------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| MOD_REV        | 7:0   | r    | <b>Module Revision Number</b> MOD_REV defines the revision number. The value of a module revision starts with $01_{\rm H}$ (first revision). |
| MOD_TYPE       | 15:8  | r    | Module Type CO <sub>H</sub> Define the module as a 32-bit module.                                                                            |
| MOD_NUMBE<br>R | 31:16 | r    | Module Number Value This bit field defines the MCMCAN module identification number 00B8 <sub>H</sub> .                                       |

### **Module Control Register**

The Module Control Register MCR contains basic settings that determine the operation of the MCMCAN module. The write access to the lowest byte of the MCR register becomes only valid, if and only if, MCR.CCCE and MCR.CI are already set during write access. To switch the clocks on or off, the bits of MCR.CCCE and MCR.CI have to be reset afterwards. Before this sequence hasn't taken place, no write access to the corresponding nodes, can be done.

Note: If the baud rate logic is supplied from an unstable clock source, or no clock at all, the CAN functionality is not guaranteed.

To be able to change the clock settings the following programming sequence needs to be met:

uwTemp = CANn\_MCR.U;

uwTemp |= (0xC0000000 | CLKSELx);

CANn\_MCR.U = uwTemp;

uwTemp &= ~0xC0000000;



CANn\_MCR.U = uwTemp;

The clock settings for CAN nodes becomes active.

To be able to start the RAM initialization, the following programming sequence need to be met:

CANn\_MCR |= 0xC0000000;

Wait until CANn\_MCR.RBUSY is 0b

Set CANn\_MCR.RINIT to 0b

Set CANn\_MCR.RINIT to 1b

Dummy read CANn\_MCR

Wait until CANn\_MCR.RBUSY is 0b

Set CANn\_MCR.RINIT to 0b

CANn\_MCR &= ~0xC0000000;

RAM initialization is finished

#### **MCR**

| Module Control Register (0080 |    |       |        |      |    |      |    |     |      | Ар  | plicati | on Res | et Valu | e: 0000 | 0000 <sub>H</sub> |
|-------------------------------|----|-------|--------|------|----|------|----|-----|------|-----|---------|--------|---------|---------|-------------------|
| 31                            | 30 | 29    | 28     | 27   | 26 | 25   | 24 | 23  | 22   | 21  | 20      | 19     | 18      | 17      | 16                |
| CCCE                          | CI | RINIT | RBUSY  | DXCM |    | NODE |    |     |      | ı   | •       | 0      | ı       | ı       | 1                 |
| rw                            | rw | rw    | rh     | rw   |    | rw   |    |     |      |     |         | r      |         |         |                   |
| 15                            | 14 | 13    | 12     | 11   | 10 | 9    | 8  | 7   | 6    | 5   | 4       | 3      | 2       | 1       | 0                 |
|                               |    | 1     | ,<br>, | )    |    | 1 1  |    | CLK | SEL3 | CLK | SEL2    | CLK    | SEL1    | CLK     | SEL0              |
| 1                             |    | +     |        | r    |    |      |    | r۱  | N    | r   | W       | r      | W       | r       | W                 |

| Field   | Bits | Туре | Description                                                                                                                                                                                                                                                                      |
|---------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLKSELO | 1:0  | rw   | Clock Select 0 This bitfield is MCR.CI and MCR.CCCE protected.  00 <sub>B</sub> No clock supplied  01 <sub>B</sub> The asynchronous clock source is switched on  10 <sub>B</sub> The synchronous clock source is switched on  11 <sub>B</sub> Both clock sources are switched on |
| CLKSEL1 | 3:2  | rw   | Clock Select 1 This bitfield is MCR.CI and MCR.CCCE protected.  00 <sub>B</sub> No clock supplied  01 <sub>B</sub> The asynchronous clock source is switched on  10 <sub>B</sub> The synchronous clock source is switched on  11 <sub>B</sub> Both clock sources are switched on |
| CLKSEL2 | 5:4  | rw   | Clock Select 2 This bitfield is MCR.CI and MCR.CCCE protected.  00 <sub>B</sub> No clock supplied  01 <sub>B</sub> The asynchronous clock source is switched on  10 <sub>B</sub> The synchronous clock source is switched on  11 <sub>B</sub> Both clock sources are switched on |



| Field   | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                           |
|---------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLKSEL3 | 7:6   | rw   | Clock Select 3  This bitfield is MCR.CI and MCR.CCCE protected.  00 <sub>B</sub> No clock supplied  01 <sub>B</sub> The asynchronous clock source is switched on  10 <sub>B</sub> The synchronous clock source is switched on  11 <sub>B</sub> Both clock sources are switched on                                                                     |
| NODE    | 26:24 | rw   | Node This bit field determines the CAN node i which is used for debug over CAN. This bitfield only exists on CAN0.  000 <sub>B</sub> Node 0  011 <sub>B</sub> Node 3                                                                                                                                                                                  |
| DXCM    | 27    | rw   | Debug Over CAN Messages Enable This bit enables the debug over serial connections between DAP and CAN0 module. If enabled the lowest receive/transmit message buffer is reserved for debugger communication. DXCM is described in detail in the OCDS chapter. This bit only exists on CAN0.  0 <sub>B</sub> DXCM disabled 1 <sub>B</sub> DXCM enabled |
| RBUSY   | 28    | rh   | RAM BUSY  This bit shows that the RAM Initialization is running. This bit is set back to 0b by hardware when the RAM intialization is completed.                                                                                                                                                                                                      |
| RINIT   | 29    | rw   | RAM Init This bit is MCR.CI and MCR.CCCE protected. This bit starts the initialization of the RAM block to all 0x0. The RAM initialization is started only when this bit is changed from 0b to 1b and also RBUSY is 0b.                                                                                                                               |
| CI      | 30    | rw   | Change Init  Needs to be set to enable and disable clocks.  O <sub>B</sub> Change Init disabled  1 <sub>B</sub> Change Init enabled (takes effect with CCCE:=1)                                                                                                                                                                                       |
| CCCE    | 31    | rw   | Clock and RAM Change Enable  Needs to be set to enable and disable the clocks.  O <sub>B</sub> Clock and RAM Change disabled  1 <sub>B</sub> Clock and RAM Change enabled (takes effect with CI:=1)                                                                                                                                                   |
| 0       | 23:8  | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                                       |

#### **Debug over CAN (DXCM feature)**

The MCMCAN controller supports debugging using standard CAN tool access in parallel to regular CAN bus traffic. This is achieved by transmitting DAP telegrams and replies as regular CAN messages (DXCM DAP over CAN Messages). DXCM uses the lowest message buffers and it is strongly recommended to use also the same CAN pins as for DXCPL (DAP over CAN Physical Layer). DXCM is enabled with the MCR.DXCM bit. Please refer to the OCDS chapter for more information about DAP, DXCM and DXCPL.



Debug over CAN shall be only available on CANO. TX Buffer 0 will be the sending transmit object. For receive at least one message buffer has to be configured. Meaning that RX Buffer 0 will be used for receiving DAP telegrams. The starting address of the message buffer and the receiving address of the message buffer have to be configured within BUFADR register.

#### Assigning the buffer start address

The following register assigns the start address to all features needing the message buffers inside the corresponding M\_CAN, which are for receive and transmit.

#### Buffer receive address and transmit address

#### **BUFADR**

| Buffer   | receiv | e addre | ess and | l trans | mit add | dress | (0080 | 34 <sub>H</sub> ) |     | Ар | plicati | on Res | et Valu | e: 000 | 0000 <sub>H</sub> |
|----------|--------|---------|---------|---------|---------|-------|-------|-------------------|-----|----|---------|--------|---------|--------|-------------------|
| 31       | 30     | 29      | 28      | 27      | 26      | 25    | 24    | 23                | 22  | 21 | 20      | 19     | 18      | 17     | 16                |
| (        | )      |         | Į.      |         |         |       | 1     | RX                | BUF | ļ  | ļ       | ļ      | ļ       | ļ      | '                 |
| -        | r      |         | I       | ı       | ı       | ı     | 1     | r                 | W   | 1  | 1       | 1      | 1       | 1      | 1                 |
| 15       | 14     | 13      | 12      | 11      | 10      | 9     | 8     | 7                 | 6   | 5  | 4       | 3      | 2       | 1      | 0                 |
| (        | )      |         | ·       |         |         |       | ļ     | TX                | BUF | !  | ,       | !      | ,       | !      | '                 |
| <u> </u> | r      | 1       | l       | 1       | 1       | 1     | -     | r                 | W   | 1  | 1       | 1      | 1       | 1      | 1                 |

| Field | Bits            | Туре | Description                                                                                     |
|-------|-----------------|------|-------------------------------------------------------------------------------------------------|
| TXBUF | 13:0            | rw   | Transmit Buffer start address This is the start address of the first dedicated transmit buffer. |
| RXBUF | 29:16           | rw   | Receive Buffer start address This is the start address of the first dedicated receive buffer.   |
| 0     | 15:14,<br>31:30 | r    | Reserved Shall read 0; shall be written with 0.                                                 |

#### **Pretended Networking**

The registers above are intended to support Pretended Networking. As an application example, the SPB bus is clocked at 40MHz. The asynchronous module part is clocked either with 40MHz as well or even more power saving with direct drive from the oscillator. The cores are in idle mode.

Messages can be received and a receive interrupt can be generated. It is possible to trigger messages with or without changing the content by the timers provided. For example the network management message and two related messages can be triggered without any CPU interaction.

As mostly the operating system is still running, messages can be changed without any problem during the time, where the operating system is active.

#### **Oscillator calibration**

The following registers support the oscillator calibration on which the decision is taken to increase or decrease the frequency. A detailed description will be provided as Application Node.



# **Measure Control Register**

The Measure Control Register MECR controls the CAN edge timing measurement function for calibration purposes. This feature only exists on CANO.

### **MECR**

| Measu | re Con | trol Re | gister |    |    | (008040 <sub>H</sub> ) |       |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |           |    |  |
|-------|--------|---------|--------|----|----|------------------------|-------|----|----|-------------------------------------------------|----|----|----|-----------|----|--|
| 31    | 30     | 29      | 28     | 27 | 26 | 25                     | 24    | 23 | 22 | 21                                              | 20 | 19 | 18 | 17        | 16 |  |
| 0     | SOF    |         | DEPTH  | I  | 0  | CAPEI<br>E             | ANYED | 0  |    | NODE                                            |    |    | IN | <b>IP</b> | ı  |  |
| r     | rw     |         | rw     | I  | r  | rw                     | rw    | r  |    | rw                                              |    |    | r  | W         |    |  |
| 15    | 14     | 13      | 12     | 11 | 10 | 9                      | 8     | 7  | 6  | 5                                               | 4  | 3  | 2  | 1         | 0  |  |
|       |        |         |        |    |    |                        | ті    | Н  |    |                                                 |    |    |    |           |    |  |
| I     | 1      | 1       | 1      | I. |    | I                      | rv    | V  | 1  | -1                                              |    | 1  | 1  | 1         |    |  |

| Field  | Bits  | Туре | Description                                                                                                                                                                                                                                                                            |
|--------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ТН     | 15:0  | rw   | Threshold This bit field contains the threshold value for the measurement timer. If TH = 0000 <sub>H</sub> , the timer is stopped and the capture function is disabled.                                                                                                                |
| INP    | 19:16 | rw   | Interrupt Node Pointer INP selects the interrupt output line INT_Om (m = 0-15) for a capture event interrupt.  0 <sub>H</sub> Interrupt output line INT_O0 is selected  F <sub>H</sub> Interrupt output line INT_O15 is selected                                                       |
| NODE   | 22:20 | rw   | Node This bit field determines the CAN node i whose input line RXDCANi is used for start and capture of the measurement timer.  000 <sub>B</sub> Node 0  011 <sub>B</sub> Node 3                                                                                                       |
| ANYED  | 24    | rw   | Any Edge This bit enables capture on any edge of CAN input line specified by NODE.  0 <sub>B</sub> Capture on falling (dominant) edge only  1 <sub>B</sub> Capture on rising (recessive) or falling (dominant) edge                                                                    |
| CAPEIE | 25    | rw   | Capture Event Interrupt Enable This bit enables the capture event interrupt. Bit field INP selects the interrupt output line which becomes activated at this type of interrupt.  O <sub>B</sub> Capture event interrupt is disabled  1 <sub>B</sub> Capture event interrupt is enabled |



| Field                 | Bits             | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|-----------------------|------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <b>DEPTH</b> 29:27 rw |                  | rw   | Digital Glitch Filter Depth  DEPTH determines the number of input samples clocked with f <sub>SYNi</sub> that are taken into account for the calculation of the floating average. The higher DEPTH is chosen to be, the longer the glitches that are suppressed and the longer the delay of the input signal introduced by this filter.  000 <sub>B</sub> off, default  001 <sub>B</sub> Filter depth of 8 cycles  010 <sub>B</sub> Filter depth of 16 cycles  011 <sub>B</sub> Filter depth of 64 cycles  100 <sub>B</sub> Filter depth of 128 cycles  110 <sub>B</sub> Filter depth of 255 cycles  110 <sub>B</sub> Filter depth of 255 cycles  111 <sub>B</sub> not allowed, reserved |  |  |  |  |  |
| SOF                   | 30               | rw   | Start Of Frame This bit selects falling edge or any edge as measurement for start of frame detection.  OB Measurement starts with any falling edge  1B Measurement starts with falling Start of Frame edge. i.e any falling edge that occurs while the CAN node is in idle state                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 0                     | 23,<br>26,<br>31 | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |

# **Measure Status Register**

The Measure Status Register MESTAT contains the status information of the CAN edge timing measurement. This feature only exists on CANO.

#### **MESTAT**

| Measu    | re Stat | us Reg | ister |    |    |     | (0080 | 44 <sub>H</sub> ) |    | Ар | plicati | on Res | et Valı | ıe: 0000 | 0 0000 <sub>H</sub> |
|----------|---------|--------|-------|----|----|-----|-------|-------------------|----|----|---------|--------|---------|----------|---------------------|
| 31       | 30      | 29     | 28    | 27 | 26 | 25  | 24    | 23                | 22 | 21 | 20      | 19     | 18      | 17       | 16                  |
|          | ı       | ı      |       | '  | ı  | '   | 0     | '                 | '  | ı  | ı       |        | ı       | CAPE     | CAPRE<br>D          |
|          | 1       | 1      | 1     | 1  | 1  | l . | r     | -1                | 1  | 1  | 1       | 1      |         | rwh      | rh                  |
| 15       | 14      | 13     | 12    | 11 | 10 | 9   | 8     | 7                 | 6  | 5  | 4       | 3      | 2       | 1        | 0                   |
|          | 1       | ı      | ı     | 1  | ı  | I   | C     | APT               | 1  | 1  | ı       | ı      | ı       | ı        |                     |
| <u> </u> | 1       | 1      | 1     | 1  | 1  | -   | 1     | rh                | 1  | 1  | 1       | 1      | 1       |          | 1                   |



| Field  | Bits  | Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAPT   | 15:0  | rh   | Captured Timer  This bit field contains the captured measurement timer content.  The timer itself is cleared and started by the first falling (dominant) edge of a CAN frame on the input line of the CAN node specified by MECR.NODE. The timer is incremented by the module control clock f <sub>SYNi</sub> and will be stopped when FFFF <sub>H</sub> is reached. If MECR.TH = 0000 <sub>H</sub> , the timer is always stopped.  A capture will take place if all the following conditions are met:  1. MECR.TH > 0000 <sub>H</sub> 2. Timer is cleared and started by new frame  3. Timer reaches MECR.TH  4. This node is not sending and first edge (as specified by MECR.ANYED) after 3. occurs on input line  Capture will be repeated for the following CAN frames until MECR.TH is cleared. |
| CAPRED | 16    | rh   | Captured Rising Edge This bit indicates the type of edge that caused the last capture event.  O <sub>B</sub> Capture occurred on falling (dominant) edge  1 <sub>B</sub> Capture occurred on rising (recessive) edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CAPE   | 17    | rwh  | Capture Event This flag is set on a capture event. It must be reset by software. An interrupt request is generated if MECR.CAPEIE = 1. If CAPE=1 then no further measurement results are posted to MESTAT.CAPT and MESTAT.CAPRED. CAPE bit has to be cleared to re-enable update of MESTAT.CAPT and MESTAT.CAPRED.  0 <sub>B</sub> No capture event has occurred since last flag reset 1 <sub>B</sub> Capture event has occurred since last flag reset                                                                                                                                                                                                                                                                                                                                                |
| 0      | 31:18 | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# 40.4.3.2 System Registers

#### **OCDS Control and Status**

**OCDS Trigger Bus (OTGB)** The OCDS Control and Status (OCS) register is cleared by Debug Reset. The OCS register can only be written when the OCDS is enabled. If OCDS is being disabled, the OCS register value will not change. When OCDS is disabled the OCS suspend control is ineffective. Write access requires Supervisor Mode.



**TGS** 

rw

TG\_P

W

**TGB** 

rw

### **CAN Interface (MCMCAN)**

#### ocs **OCDS Control and Status** $(0080E8_{H})$ Debug Reset Value: 0000 0000<sub>H</sub> 30 29 27 26 25 24 22 21 20 16 **SUSST** SUS\_P 0 SUS 0 rh W rw 15 14 13 12 11 10

0

| Field  | Bits           | Туре | Description                                                                                                                                                                                                                                                                                                                                                               |
|--------|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TGS    | 1:0            | rw   | Trigger Set for OTGB0/1  00 <sub>B</sub> No Trigger Set output  01 <sub>B</sub> TS16_CAN  others, reserved                                                                                                                                                                                                                                                                |
| TGB    | 2              | rw   | OTGB0/1 Bus Select  0 <sub>B</sub> Trigger Set is output on OTGB0  1 <sub>B</sub> Trigger Set is output on OTGB1                                                                                                                                                                                                                                                          |
| TG_P   | 3              | W    | TGS, TGB Write Protection TGS and TGB are only written when TG_P is 1, otherwise unchanged. Read as 0.                                                                                                                                                                                                                                                                    |
| SUS    | 27:24          | rw   | OCDS Suspend Control Controls the sensitivity to the suspend signal coming from the OCDS Trigger Switch (OTGS)  0 <sub>H</sub> Will not suspend  1 <sub>H</sub> Hard suspend. Clock is off immediately. Do not use this mode in normal CAN applications, this mode is meant for debugging the peripheral IP.  2 <sub>H</sub> Soft suspend of CAN nodes.  others, reserved |
| SUS_P  | 28             | w    | <b>SUS Write Protection</b> SUS is only written when SUS_P is 1, otherwise unchanged. Read as 0.                                                                                                                                                                                                                                                                          |
| SUSSTA | 29             | rh   | Suspend State  0 <sub>B</sub> CAN nodes are not (yet) suspended  1 <sub>B</sub> All CAN nodes are suspended                                                                                                                                                                                                                                                               |
| 0      | 23:4,<br>31:30 | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                                                           |

# **OCDS Trigger Bus (OTGB) Interface**

The MCMCAN Trigger Set is shown in **Table 380**. Its output is on OTGB0 or OTGB1 controlled by the **OCDS Control** and **Status** register. Links are only for CAN0, but the feature is available for all CAN modules.



Table 380 TS16\_CAN Trigger Set MCMCAN

| Value<br>s | Name | Description                             |
|------------|------|-----------------------------------------|
| i          | AF   | Acceptance filtering done for node i    |
| i + 4      | MR   | Message successfully received on node i |
| i + 8      | FDR  | Fast Data Phase reception on node i     |
| i + 12     | FDT  | Fast Data Phase transmission on node i. |

#### 40.4.3.3 Access Enable Registers ACCEN

The access enable bits control the access on the module itself.

#### **Access Enable Register 0**

The Access Enable Register 0 controls write access<sup>1)</sup> for transactions with the on chip bus master TAG ID  $000000_B$  to  $011111_B$  (see On Chip Bus chapter for the products TAG ID <-> master peripheral mapping). The BPI\_FPI is prepared for a 6-bit TAG ID. The registers ACCEN0 provides one enable bit for each possible 6-bit TAG ID encoding. Mapping of TAG IDs to ACCEN0.ENy: EN0 -> TAG ID  $000000_B$ , EN1 -> TAG ID  $000001_B$ , ..., EN31 -> TAG ID  $011111_B$ .

| Λ | C | ^ |   | NI | ^ |
|---|---|---|---|----|---|
| н | L | L | ᆮ | IV | u |

| Access | Enable | e Regis | ter 0 |      |      | (0080FC <sub>H</sub> ) |      |      |      | Application Reset Value: FFFF FFFF <sub>H</sub> |      |      |      |      |      |
|--------|--------|---------|-------|------|------|------------------------|------|------|------|-------------------------------------------------|------|------|------|------|------|
| 31     | 30     | 29      | 28    | 27   | 26   | 25                     | 24   | 23   | 22   | 21                                              | 20   | 19   | 18   | 17   | 16   |
| EN31   | EN30   | EN29    | EN28  | EN27 | EN26 | EN25                   | EN24 | EN23 | EN22 | EN21                                            | EN20 | EN19 | EN18 | EN17 | EN16 |
| rw     | rw     | rw      | rw    | rw   | rw   | rw                     | rw   | rw   | rw   | rw                                              | rw   | rw   | rw   | rw   | rw   |
| 15     | 14     | 13      | 12    | 11   | 10   | 9                      | 8    | 7    | 6    | 5                                               | 4    | 3    | 2    | 1    | 0    |
| EN15   | EN14   | EN13    | EN12  | EN11 | EN10 | EN9                    | EN8  | EN7  | EN6  | EN5                                             | EN4  | EN3  | EN2  | EN1  | ENO  |
| rw     | rw     | rw      | rw    | rw   | rw   | rw                     | rw   | rw   | rw   | rw                                              | rw   | rw   | rw   | rw   | rw   |

| Field        | Bits | Type | Description                                                                                                                                                                                             |
|--------------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENy (y=0-31) | у    | rw   | Access Enable for Master TAG ID y                                                                                                                                                                       |
|              |      |      | This bit enables write access to the module kernel addresses for transactions with the Master TAG ID y.  O <sub>B</sub> Write access will not be executed  1 <sub>B</sub> Write access will be executed |

# 40.4.3.4 Additional Access Enable Registers ACCENCTR and ACCENNODEi

The access enable bits help the application to control the access rights via bus master TAG ID. Inside the CAN node registers, an additional address range can be defined, called STARTADR and ENDADR.

The ACCENNODEi registers are protecting node i and the memory range defined in the STARTADRi and ENDADRi register. To disable the mechanism the STARTADRi has to be higher than the corresponding ENDADRi of the node.

<sup>1)</sup> The BPI\_FPI Access Enable functionality controls only write transactions. Read transactions are not influenced. SW has to take care for destructive/modifying read functionality in kernel registers-



#### **Access Enable Register Control 0**

The Access Enable Register Control 0 controls write access for transactions with the on chip bus master TAG ID  $000000_B$  to  $011111_B$  (see On Chip Bus chapter for the products TAG ID  $\leftrightarrow$  master peripheral mapping). The BPI\_FPI is prepared for a 6-bit TAG ID. The registers ACCENCTR0 provides one enable bit for each possible 6-bit TAG ID encoding. The control registers (address range  $8020_H$  to  $804F_H$ ) are protected by this register.

Mapping of TAG IDs to ACCENCTR0.ENy: EN0  $\rightarrow$  TAG ID 000000<sub>B</sub>, EN1  $\rightarrow$  TAG ID 000001<sub>B</sub>, ..., EN31  $\rightarrow$  TAG ID 011111<sub>B</sub>.

| Access | ccess Enable Register Control 0 |      |      |      |      |      | (0080DC <sub>H</sub> ) |      |      |      | Application Reset Value: FFFF FFFF <sub>H</sub> |      |      |      |      |  |  |
|--------|---------------------------------|------|------|------|------|------|------------------------|------|------|------|-------------------------------------------------|------|------|------|------|--|--|
| 31     | 30                              | 29   | 28   | 27   | 26   | 25   | 24                     | 23   | 22   | 21   | 20                                              | 19   | 18   | 17   | 16   |  |  |
| EN31   | EN30                            | EN29 | EN28 | EN27 | EN26 | EN25 | EN24                   | EN23 | EN22 | EN21 | EN20                                            | EN19 | EN18 | EN17 | EN16 |  |  |
| rw     | rw                              | rw   | rw   | rw   | rw   | rw   | rw                     | rw   | rw   | rw   | rw                                              | rw   | rw   | rw   | rw   |  |  |
| 15     | 14                              | 13   | 12   | 11   | 10   | 9    | 8                      | 7    | 6    | 5    | 4                                               | 3    | 2    | 1    | 0    |  |  |
| EN15   | EN14                            | EN13 | EN12 | EN11 | EN10 | EN9  | EN8                    | EN7  | EN6  | EN5  | EN4                                             | EN3  | EN2  | EN1  | ENO  |  |  |
| rw     | rw                              | rw   | rw   | rw   | rw   | rw   | rw                     | rw   | rw   | rw   | rw                                              | rw   | rw   | rw   | rw   |  |  |

| Field        | Bits | Туре | Description                                                                                                                                                                                            |
|--------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENy (y=0-31) | у    | rw   | Access Enable for Master TAG ID y                                                                                                                                                                      |
|              |      |      | This bit enables write access to the module kernel addresses for transactions with the Master TAG ID y  0 <sub>B</sub> Write access will not be executed  1 <sub>B</sub> Write access will be executed |

#### Access Enable Register CAN Node i 0

The Access Enable Register CAN Node i Control 0 controls write access for transactions with the on chip bus master TAG ID  $000000_B$  to  $011111_B$  (see On Chip Bus chapter for the products TAG ID  $\leftrightarrow$  master peripheral mapping). The BPI\_FPI is prepared for a 6-bit TAG ID. The registers ACCENNODEi0 provides one enable bit for each possible 6-bit TAG ID encoding. This register controls node y registers, including the STARTADR0 and ENDADR0 register included in the node control area  $(8100_H + i^*0400_H + i^*0400_{H^-} + i^*$ 

Mapping of TAG IDs to ACCENNODEi0.ENy: EN0  $\rightarrow$  TAG ID 000000<sub>B</sub>, EN1  $\rightarrow$  TAG ID 000001<sub>B</sub>, ..., EN31  $\rightarrow$  TAG ID 011111<sub>B</sub>.

#### ACCENNODEio (i=0-3)

| Access | access Enable Register CAN Node i 0 |      |      |      |      |      | (008100 <sub>H</sub> +i*400 <sub>H</sub> ) |      |      |      | Application Reset Value: FFFF FFFF <sub>H</sub> |      |      |      |      |  |  |
|--------|-------------------------------------|------|------|------|------|------|--------------------------------------------|------|------|------|-------------------------------------------------|------|------|------|------|--|--|
| 31     | 30                                  | 29   | 28   | 27   | 26   | 25   | 24                                         | 23   | 22   | 21   | 20                                              | 19   | 18   | 17   | 16   |  |  |
| EN31   | EN30                                | EN29 | EN28 | EN27 | EN26 | EN25 | EN24                                       | EN23 | EN22 | EN21 | EN20                                            | EN19 | EN18 | EN17 | EN16 |  |  |
| rw     | rw                                  | rw   | rw   | rw   | rw   | rw   | rw                                         | rw   | rw   | rw   | rw                                              | rw   | rw   | rw   | rw   |  |  |
| 15     | 14                                  | 13   | 12   | 11   | 10   | 9    | 8                                          | 7    | 6    | 5    | 4                                               | 3    | 2    | 1    | 0    |  |  |
| EN15   | EN14                                | EN13 | EN12 | EN11 | EN10 | EN9  | EN8                                        | EN7  | EN6  | EN5  | EN4                                             | EN3  | EN2  | EN1  | ENO  |  |  |
| rw     | rw                                  | rw   | rw   | rw   | rw   | rw   | rw                                         | rw   | rw   | rw   | rw                                              | rw   | rw   | rw   | rw   |  |  |



| Field        | Bits | Туре | Description                                                                                                                                                                        |
|--------------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENy (y=0-31) | у    | rw   | Access Enable for Master TAG ID y                                                                                                                                                  |
|              |      |      | This bit enables write access to the module kernel addresses for transactions with the Master TAG ID y $0_B$ Write access will not be executed $1_B$ Write access will be executed |

### 40.4.3.5 Kernel Reset Registers

The Kernel Reset Registers give the user the possibility to reset the module without resetting the device.

# **Kernel Reset Register 0**

The Kernel Reset Register 0 is used to reset the related module kernel. Kernel registers related to the Debug Reset (Class 1) are not influenced. To reset a module kernel it is necessary to set the RST bits by writing with '1' in both Kernel Reset Registers related to the module kernel reset. The RST bit will be reset by the BPI with the end of the BPI kernel reset sequence.

Kernel Reset Register 0 includes a kernel reset status bit that is set to '1' by the BPI\_FPI in the same clock cycle the RST bit is reset by the BPI\_FPI. This bit can be used to detect that a kernel reset was processed. The bit can be reset to '0' by writing to KRSTCLR.CLR with '1'.

During the execution of the kernel reset until RSTSTAT is set, access to the kernel registers will result in an error acknowledge.

#### **KRSTO**



| Field | Bits | Туре | Description                                                                                                                                                                                                        |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RST   | 0    | rwh  | Kernel Reset This reset bit can be used to request for a kernel reset. The kernel reset                                                                                                                            |
|       |      |      | will be executed if the reset bits of both kernel registers are set.  The RST bit will be cleared (reset to '0') by the BPI_FPI after the kernel reset was executed.  O <sub>B</sub> No kernel reset was requested |
|       |      |      | 1 <sub>B</sub> A kernel reset was requested                                                                                                                                                                        |



| Field   | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                        |
|---------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSTSTAT | 1    | rh   | Kernel Reset Status This bit indicates wether a kernel reset was executed or not. This bit is set by the BPI_FPI after the execution of a kernel reset in the same clock cycle both reset bits. This bit can be cleared by writing with '1' to the CLR bit in the related KRSTCLR register.  O <sub>B</sub> No kernel reset was executed  1 <sub>B</sub> Kernel reset was executed |
| 0       | 31:2 | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                                                                    |

### Kernel Reset Register 1

The Kernel Reset Register 1 is used to reset the related module kernel. To reset a module kernel it is necessary to set the RST bits by writing with '1' in both Kernel Reset Registers (KRST1.RST and KRST0.RST) related to the module kernel reset. The RST bit will be reset (cleared to '0') by the BPI with the end of the BPI kernel reset sequence.

KRST1

| Kerne | l Reset | Regist | er 1 |    |    | (0080F0 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |     |
|-------|---------|--------|------|----|----|------------------------|----|----|----|-------------------------------------------------|----|----|----|----|-----|
| 31    | 30      | 29     | 28   | 27 | 26 | 25                     | 24 | 23 | 22 | 21                                              | 20 | 19 | 18 | 17 | 16  |
|       |         |        |      |    |    |                        |    | 0  |    |                                                 |    |    |    |    |     |
| 1     |         |        |      |    |    |                        |    | r  |    |                                                 |    |    |    |    |     |
| 15    | 14      | 13     | 12   | 11 | 10 | 9                      | 8  | 7  | 6  | 5                                               | 4  | 3  | 2  | 1  | 0   |
|       | 1       |        |      | 1  | ı  | 1                      | 0  | 1  | 1  | 1                                               | ı  |    | 1  |    | RST |
|       |         |        |      |    |    |                        | r  |    |    |                                                 |    |    |    |    | rwh |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                |
|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RST   | 0    | rwh  | Kernel Reset This reset bit can be used to request for a kernel reset. The kernel reset will be executed if the reset bits of both kernel reset registers is set. The RST bit will be cleared (reset to '0') by the BPI_FPI after the kernel reset was executed.  0 <sub>B</sub> No kernel reset was requested 1 <sub>B</sub> A kernel reset was requested |
| 0     | 31:1 | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                                            |

### **Kernel Reset Status Clear Register**

The Kernel Reset Clear Register is used to clear the Kernel Reset Status bit (KRST0.RSTSTAT).



#### **KRSTCLR**

| Kernel | Reset | Gernel Reset Status Clear Register |    |    |    |          |    | (0080EC <sub>H</sub> ) |    |    |          | Application Reset Value: 0000 0000 <sub>H</sub> |          |          |     |  |  |  |
|--------|-------|------------------------------------|----|----|----|----------|----|------------------------|----|----|----------|-------------------------------------------------|----------|----------|-----|--|--|--|
| 31     | 30    | 29                                 | 28 | 27 | 26 | 25       | 24 | 23                     | 22 | 21 | 20       | 19                                              | 18       | 17       | 16  |  |  |  |
|        | 1     |                                    | 1  |    | 1  | !        | '  | 0                      | 1  | 1  |          | !                                               | ı        | !        | '   |  |  |  |
|        | İ     | <u>I</u>                           | İ  | 1  | İ  | <u>I</u> | İ  | r                      | İ  | İ  | <u>I</u> | <u>I</u>                                        | <u>i</u> | <u>I</u> |     |  |  |  |
| 15     | 14    | 13                                 | 12 | 11 | 10 | 9        | 8  | 7                      | 6  | 5  | 4        | 3                                               | 2        | 1        | 0   |  |  |  |
|        | 1     |                                    | 1  | 1  | 1  |          | 0  | ı                      | 1  | 1  |          |                                                 |          |          | CLR |  |  |  |
| 1      |       | 1                                  |    | 1  |    | 1        | r  | 1                      |    |    | 1        | 1                                               | I        | 1        | W   |  |  |  |

| Field | Bits | Туре | Description                                            |
|-------|------|------|--------------------------------------------------------|
| CLR   | 0    | w    | Kernel Reset Status Clear                              |
|       |      |      | Read always as 0.                                      |
|       |      |      | 0 <sub>B</sub> No action                               |
|       |      |      | 1 <sub>B</sub> Clear Kernel Reset Status KRST0.RSTSTAT |
| 0     | 31:1 | r    | Reserved                                               |
|       |      |      | Shall read 0; shall be written with 0.                 |



### 40.4.4 MCMCAN User Interface Registers

This section describes the registers for clock control, port connections, interrupt control, and address decoding.

#### 40.4.4.1 The Clock Control Register

#### **CAN Clock Control Register**

The Clock Control Register CLC allows the programmer to adapt the functionality and power consumption of the module to the requirements of the application. The description below shows the clock control register functionality which is implemented in the standard interface for the module. Where a module kernel is connected to the CLC clock control interface, CLC controls the  $f_{\rm SYN}$  and  $f_{\rm ASYN}$  module clock signal, sleep mode and fast shutoff mode for the module.

| CLC<br>CAN CI | ock Co | ntrol R | Registe | r  |        |        | (00800) | 00 <sub>H</sub> ) |    | Ар | plicati | on Rese | et Valu | e: 0000 | 0003 <sub>H</sub> |
|---------------|--------|---------|---------|----|--------|--------|---------|-------------------|----|----|---------|---------|---------|---------|-------------------|
| 31            | 30     | 29      | 28      | 27 | 26     | 25     | 24      | 23                | 22 | 21 | 20      | 19      | 18      | 17      | 16                |
|               | •      | •       | •       |    |        | 1      |         | 0                 | •  | '  | ı       |         |         | 1       | '                 |
| 1             | 1      | 1       | 1       |    |        |        |         | r                 |    | 1  | I       |         |         | I       |                   |
| 15            | 14     | 13      | 12      | 11 | 10     | 9      | 8       | 7                 | 6  | 5  | 4       | 3       | 2       | 1       | 0                 |
|               | 1      | 1       | 1       | 1  | '<br>' | ,<br>) | 1       | 1                 | 1  | 1  |         | EDIS    | 0       | DISS    | DISR              |
| ,             |        |         |         |    | · .    | r      |         |                   |    |    |         | rw      | r       | rh      | rw                |

| Field | Bits       | Туре | Description                                                                                                                                                                                                                                                                                                                              |
|-------|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DISR  | 0          | rw   | Module Disable Request Bit Used for enable/disable control of the module. The synchronous and asynchronous clock is switched on/off Note that no register access is possible to any register while module is disabled. A disable request is granted, if the M_CAN clock is disabled, or all M_CAN nodes acknowledge the disable request. |
| DISS  | 1          | rh   | Module Disable Status Bit Bit indicates the current status of the module.                                                                                                                                                                                                                                                                |
| EDIS  | 3          | rw   | Sleep Mode Disable Control Used to control module's sleep mode.                                                                                                                                                                                                                                                                          |
| 0     | 2,<br>31:4 | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                          |

# 40.4.4.2 Interrupt Grouping and Signalling Registers

#### Interrupt routing for Groups 1 i

GRINT1i is the first of two grouping registers. In this register, the interrupt line within the module is fixed. Please be reminded, that the interrupt sources need to be enabled to be mapped. The total module has 16 interrupts and the interrupt node can be chosen within GRINT1i and GRINT2i.

Meaning:

0000<sub>B</sub> Interrupt output line INT\_O0 is selected.



 $0001_{\rm B}$  Interrupt output line INT\_O1 is selected.

...<sub>B</sub> ...

 $1110_{\rm B}$  Interrupt output line INT\_O14 is selected.

 $1111_{\rm B}$  Interrupt output line INT\_O15 is selected.

# **GRINT1i** (i=0-3)

| Interru | upt rou | ting fo | r Grou | ps 1 i | (008114 <sub>H</sub> +i*400 <sub>H</sub> ) |     |    |     |    | Ар  | Application Reset Value: 0000 0000 <sub>H</sub> |        |    |    |    |
|---------|---------|---------|--------|--------|--------------------------------------------|-----|----|-----|----|-----|-------------------------------------------------|--------|----|----|----|
| 31      | 30      | 29      | 28     | 27     | 26                                         | 25  | 24 | 23  | 22 | 21  | 20                                              | 19     | 18 | 17 | 16 |
|         | L       | OI      | ,      |        | ВО                                         | FF  | ,  |     | SA | ΙFE | ,                                               |        | МС | ER | 1  |
|         | 'n      | W       | 1      |        | r                                          | W   | 1  |     | r  | W   | 1                                               |        | r  | W  |    |
| 15      | 14      | 13      | 12     | 11     | 10                                         | 9   | 8  | 7   | 6  | 5   | 4                                               | 3      | 2  | 1  | 0  |
|         | ALRT    |         |        |        | W                                          | ATI |    | НРЕ |    |     |                                                 | TEFIFO |    |    |    |
|         | rw      |         |        |        | rw                                         |     |    | rw  |    |     |                                                 | rw     |    |    |    |

| Field  | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEFIFO | 3:0   | rw   | Transmit Event FIFO Incidents are mapped here. IR.TEFF (Transmit Event FIFO Full) and IR.TEFN (Transmit Event FIFO New Entry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HPE    | 7:4   | rw   | High Priority Events are mapped here, giving IR.HPM an interrupt level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WATI   | 11:8  | rw   | Watermark interrupts are mapped here: IR.TEFW (Transmit FIFO warning interrupt reached), IR.RF1W (Receive FIFO 1 warning interrupt reached). IR.RF0W (Receive FIFO 0 warning interrupt reached)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ALRT   | 15:12 | rw   | ALERTS  All kind of alerts are mapped here. IR.EW (warning status), IR.EP (error passive), IR.TSW (timestamp wrap around), IR.TEFL (Transmit Event FIFO Element Lost), IR.RF0L (Receive FIFO 0 Message Lost), IR.RF1L (Receive FIFO 1 Message Lost). The following TTCAN error messages and warnings are also shown here: TTIR. CER (Configuration Error), TTIR.AW Application Watchdog, TTIR.WT (Watch Trigger), TTIR.IWT Initialization Watch Trigger, TTIR.ELC (Error Level Changed), TTIR.SE2 (Scheduling Error 2), TTIR.SE1 (Scheduling Error), TTIR.TXO (Tx Count Overflow), TTIR.TXU (TX Count Underflow), TTIR.GTE (Global Time Error), TTIR.GTD (Global Time Discontinuity) and TTIR.GTW (Global Time Wrap) |
| MOER   | 19:16 | rw   | Module errors IR.WDI (watchdog interrupt) and IR.MRAF (message RAM access failure) are mapped here.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SAFE   | 23:20 | rw   | Safety counter overflow  The interrupt node for IR.ELO showing a safety counter overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BOFF   | 27:24 | rw   | Bus Off has been reached  Mapped to IRi.BO flag indication the change in Bus_Off status. To get out of bus off, the CCCRn.INIT bit has to be reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



| Field | Bits  | Туре | Description                                                                                                                                            |
|-------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOI   | 31:28 | rw   | Last Error Interrupts The interrupt sources IR.PED (Protocol Error in Data Phase) and IR.PEA (Protocol Error in Arbitration Phase) are signalled here. |

### **Interrupt routing for Groups 2 i**

GRINT2i has the same functionality as GRINT1i, but for other interrupt sources. The interrupt sources need to be enabled to be mapped.

# **GRINT2i (i=0-3)**

| Interru | ıpt rou | ting fo | r Grou | ps 2 i | (008118 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |       |    | Ар  | Application Reset Value: 0000 0000 <sub>H</sub> |       |    |     |    |  |
|---------|---------|---------|--------|--------|--------------------------------------------|----|----|-------|----|-----|-------------------------------------------------|-------|----|-----|----|--|
| 31      | 30      | 29      | 28     | 27     | 26                                         | 25 | 24 | 23    | 22 | 21  | 20                                              | 19    | 18 | 17  | 16 |  |
|         | TR      | ACO     | 1      |        | TR                                         | AQ | 1  |       | RE | ETI | 1                                               |       | Rx | FON | 1  |  |
|         | r       | W       | 1      |        | r                                          | W  | 1  |       | r  | W   | 1                                               |       | r  | W   | 1  |  |
| 15      | 14      | 13      | 12     | 11     | 10                                         | 9  | 8  | 7     | 6  | 5   | 4                                               | 3     | 2  | 1   | 0  |  |
|         | RxF1N   |         |        |        | RxF0F                                      |    |    | RxF1F |    |     |                                                 | REINT |    |     |    |  |
| 1       | rw      |         |        |        | rw                                         |    |    | rw    |    |     |                                                 | rw    |    |     |    |  |

| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REINT | 3:0   | rw   | Message stored in dedicated receive buffer interrupt (IR.DRX) is assigned to interrupt node.                                                                                                                                                                                                                                                                                                                                                                                                         |
| RxF1F | 7:4   | rw   | IR.RF1F Receive FIFO1 full interrupt assigned to an interrupt node                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RxF0F | 11:8  | rw   | IR.RF0F Receive FIFO0 full interrupt assigned to an interrupt node                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RxF1N | 15:12 | rw   | IR.RF1N Receive FIFO1 new message assigned to an interrupt node                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RxF0N | 19:16 | rw   | IR.RFON Receive FIFO0 new message assigned to an interrupt node                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RETI  | 23:20 | rw   | Receive Timeouts can be assigned here. IR.TOO (time-out event) and TE (Timer Event)                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TRAQ  | 27:24 | rw   | Transmission Queue Events can be assigned here. IR.TFE Transmission FIFO Empty                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TRACO | 31:28 | rw   | Interrupts of the transmission control can be assigned here. IR.TCF (Transmission Cancellation Finished) and IR.TF (Transmission Completed). As an additional information the copy of a local time event is shown here with TTIR.SWT (Stop Watch Event). Further on the TTIR.TTMI Trigger Time Event Internal, TTIR.RTMI (Register Time Mark), TTIR.SOG (Start of Gap), TTIR.CSM (Change of Synchronization Mode), TTIR.SMC (Start Matrix Cycle) and TTIR.SBC (Start of Basic Cycle) are shown here. |



#### **Interrupt Signalling Register i**

The groups by the GRINT registers are also shown inside the ISREG (interrupt signalling register) register. Inside the interrupt signalling register a 1 means, that one of the corresponding bits inside the interrupt (status) register of the corresponding M\_CAN node, at least one group member is showing an interrupt. ISREG is purely ORing the interrupt status bits of the group to enable SW to have proper handling of the bits. Writing to ISREGi has no effect. If ISREGi is written, this shall have no effect on the interrupt status inside the M\_CAN nodes. The bits have to be reset inside the corresponding M\_CAN nodes, see register CANn\_IRi.

| ISREG   | i (i=0-3 | )       |        |      |      |         |                     |                     |         |       |           |        |         |         |                   |
|---------|----------|---------|--------|------|------|---------|---------------------|---------------------|---------|-------|-----------|--------|---------|---------|-------------------|
| Interru | upt Sig  | nalling | Regist | eri  |      | (00     | 8110 <sub>H</sub> + | ·i*400 <sub>H</sub> | )       | Ар    | plication | on Res | et Valu | e: 0000 | 0000 <sub>H</sub> |
| 31      | 30       | 29      | 28     | 27   | 26   | 25      | 24                  | 23                  | 22      | 21    | 20        | 19     | 18      | 17      | 16                |
|         | ı        | !       | 1      | I    |      | ı       | '                   | D                   | ı       | I     | ı         |        |         |         | '                 |
|         | 1        | ı       | 1      | l    | ı    | 1       | 1                   | r                   | 1       | l     | 1         | ı      | ı       | ı       |                   |
| 15      | 14       | 13      | 12     | 11   | 10   | 9       | 8                   | 7                   | 6       | 5     | 4         | 3      | 2       | 1       | 0                 |
| LOI     | BOFF     | SAFE    | MOER   | ALRT | WATI | HPE     | TEFIF<br>O          | TRAC<br>O           | TRAQ    | RETI  | RxF0N     | RxF1N  | RxF0F   | RxF1F   | REINT             |
| rh      | rh       | rh      | rh     | rh   | rh   | rh      | rh                  | rh                  | rh      | rh    | rh        | rh     | rh      | rh      | rh                |
| Field   |          | Bits    |        | Туре | De   | scripti | ion                 |                     |         |       |           |        |         |         |                   |
| REINT   |          | 0       |        | rh   |      |         |                     | ed in a             | receive | buffe | r interr  | unt    |         |         |                   |

| Field  | Bits  | Type | Description                                     |
|--------|-------|------|-------------------------------------------------|
| REINT  | 0     | rh   | A message stored in a receive buffer interrupt  |
| RxF1F  | 1     | rh   | Receive FIFO1 is full interrupt                 |
| RxF0F  | 2     | rh   | Receive FIFO0 is full interrupt                 |
| RxF1N  | 3     | rh   | Receive FIFO1 got a new message interrupt       |
| RxF0N  | 4     | rh   | Receive FIFO0 got a new message interrupt       |
| RETI   | 5     | rh   | A receive timeout event interrupt               |
| TRAQ   | 6     | rh   | A transmission queue event interrupt            |
| TRACO  | 7     | rh   | A transmission control event interrupt          |
| TEFIFO | 8     | rh   | A Transmit Event FIFO Incident interrupt        |
| HPE    | 9     | rh   | A high priority event interrupt                 |
| WATI   | 10    | rh   | A watermark interrupt has been reached          |
| ALRT   | 11    | rh   | An alert interrupt                              |
| MOER   | 12    | rh   | Module error interrupt                          |
| SAFE   | 13    | rh   | The safety counter interrupt ELO                |
| BOFF   | 14    | rh   | Bus Off Interrupt                               |
| LOI    | 15    | rh   | Last Error Interrupt                            |
| 0      | 31:16 | r    | Reserved Shall read 0; shall be written with 0. |



# 40.4.4.3 Node Port Control Register

# **Node i Port Control Register**

The Node Port Control Register NPCRi configures the CAN bus transmit/receive ports.

### **NPCRi (i=0-3)**

| N | lode i | Port C | ontrol | Regist | er |      | (008140 <sub>H</sub> +i*400 <sub>H</sub> ) |     |    |    |     | Application Reset Value: 0000 0000 <sub>H</sub> |     |     |       |    |  |
|---|--------|--------|--------|--------|----|------|--------------------------------------------|-----|----|----|-----|-------------------------------------------------|-----|-----|-------|----|--|
|   | 31     | 30     | 29     | 28     | 27 | 26   | 25                                         | 24  | 23 | 22 | 21  | 20                                              | 19  | 18  | 17    | 16 |  |
|   |        | •      | •      | •      | ļ  | '    | ı                                          | •   | D  | •  | ı   |                                                 | ı   |     | '     |    |  |
| L |        | 1      | 1      | 1      | I  | I    | I                                          |     | r  | 1  | I . | I                                               | I . | l . |       |    |  |
|   | 15     | 14     | 13     | 12     | 11 | 10   | 9                                          | 8   | 7  | 6  | 5   | 4                                               | 3   | 2   | 1     | 0  |  |
|   |        |        | 0      |        | ı  | DELE | LOUT                                       | LBM |    | 1  | 0   | 1                                               | ı   |     | RXSEL |    |  |
| 1 |        |        | r      |        |    | rw   | rw                                         | rw  |    |    | r   |                                                 |     |     | rw    |    |  |

| Field | Bits          | Туре | Description                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| RXSEL | 2:0           | rw   | Receive Select RXSEL selects one out of 8 possible receive inputs. The CAN receive signal is performed by the selected input. (see the device related chapter for RXSEL)                                                                                                                                                                                                           |  |  |  |  |  |  |
| LBM   | 8             | rw   | Loop-Back Mode  0 <sub>B</sub> Loop-Back Mode is disabled. 1 <sub>B</sub> Loop-Back Mode is enabled. This node is connected to an internal (virtual) loop-back CAN bus. All CAN nodes which are in Loop-Back Mode are connected to this virtual CAN bus so that they can communicate with each other internally. The external transmit line is forced recessive in Loop-Back Mode. |  |  |  |  |  |  |
| LOUT  | 9             | rw   | Loop Back Mode Out The loop back bus is switched to the external CAN bus of the node.                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| DELE  | 10            | rw   | Enable destructive read on ECRi.CEL  If this bit is set, the destructive read on ECRi.CEL and on the PSR register takes place. Meaning, that with read access on ECRi, the CEL is reset. The same is true for the PSR register, for the bits PXE, RFDF, RBRS, RESI, LEC and DLEC. After the destructive read it is advised to reset the bit again.                                 |  |  |  |  |  |  |
| 0     | 7:3,<br>31:11 | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |



# 40.4.4.4 Time Trigger Control Register

# **Time Trigger Control Register**

### TTCR0

| Time 1 | Γrigger | Contro | l Regis | ter |        |    | (0081F |        | Application Reset Value: 0000 0000 <sub>H</sub> |        |    |          |     | 0000 <sub>H</sub> |    |
|--------|---------|--------|---------|-----|--------|----|--------|--------|-------------------------------------------------|--------|----|----------|-----|-------------------|----|
| 31     | 30      | 29     | 28      | 27  | 26     | 25 | 24     | 23     | 22                                              | 21     | 20 | 19       | 18  | 17                | 16 |
|        | 1       | ı      | Į.      | ļ   | ı      | ı  |        | )      | •                                               | •      | ı  | ı        | ı   |                   |    |
|        | 1       | I      | 1       | I   | I      | 1  |        | r      |                                                 | 1      | 1  | <u> </u> | 1   | 1                 |    |
| 15     | 14      | 13     | 12      | 11  | 10     | 9  | 8      | 7      | 6                                               | 5      | 4  | 3        | 2   | 1                 | 0  |
|        | '       | 0      | ı       |     | TTCTSS | ·  |        | ,<br>) |                                                 | ETSSEL |    | ETE      | SEL |                   | 0  |
| 1      | 1       | r      | I.      | ı   | rw     | I. |        | r      | 1                                               | rw     | I. | r        | W   |                   | r  |

| Field  | Bits       | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|--------|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ETSSEL | 3:2<br>6:4 | rw   | <ul> <li>External Trigger Event Selection</li> <li>This bit field defines the external trigger event that can be used to trigger the transmission of the reference message. The event causes the Event Trigger to be triggered. Control settings for this will not be influenced.</li> <li>00<sub>B</sub> The external event ECTTx does not trigger the transmission of the reference message.</li> <li>01<sub>B</sub> The reference message will be transmitted when a negative edge is detected at the selected input line ECTTx.</li> <li>10<sub>B</sub> The reference message will be transmitted when a positive edge is detected at the input line ECTTx.</li> <li>11<sub>B</sub> The reference message will be transmitted when a negative edge or a positive edge is detected at the input line ECTTx.</li> </ul> |  |  |  |  |  |  |
| ETSSEL | 6:4        | rw   | External Trigger Source Selection  This bit fields selects the input source for the external reference messag trigger.  000 <sub>B</sub> External trigger input line ECTT1 selected  001 <sub>B</sub> External trigger input line ECTT2 selected  010 <sub>B</sub> External trigger input line ECTT3 selected  011 <sub>B</sub> External trigger input line ECTT4 selected  100 <sub>B</sub> External trigger input line ECTT5 selected  101 <sub>B</sub> External trigger input line ECTT6 selected  110 <sub>B</sub> External trigger input line ECTT7 selected  111 <sub>B</sub> External trigger input line ECTT7 selected  111 <sub>B</sub> External trigger input line ECTT8 selected                                                                                                                               |  |  |  |  |  |  |
| TTCTSS | 11:9       | rw   | TTCapture Time Trigger Source Select  This bit selects the input source for the TT Capture Time (TTCPT) trigger.  This register influences the stop watch event trigger  000 <sub>B</sub> No TTCPT trigger input allowed  001 <sub>B</sub> Local time register capture trigger input TTCPT_TRIG1 selected   100 <sub>B</sub> Local time register capture trigger input TTCPT_TRIG4 selected  others, Reserved; do not use this combination                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |



| Field | Bits                  | Туре | Description                                     |
|-------|-----------------------|------|-------------------------------------------------|
| 0     | 1:0,<br>8:7,<br>31:12 | r    | Reserved Shall read 0; shall be written with 0. |

# 40.4.4.5 Message RAM start address register

#### Start Address Node i

In case the RAM shall not be protected, the STARTADR has to be higher than the corresponding ENDADR of the node.



| Field | Bits          | Туре | Description                                                                                                              |
|-------|---------------|------|--------------------------------------------------------------------------------------------------------------------------|
| START | 15:2          | rw   | Message RAM start The address within the RAM area of the MCMCAN, of node i, where the message RAM to be protected starts |
| 0     | 1:0,<br>31:16 | r    | Reserved Shall read 0; shall be written with 0.                                                                          |

# 40.4.4.6 Message RAM end address register

### **End Address Node i**

### ENDADRi (i=0-3)

| End Ad | ldress I | Node i |    |    |    | (00810C <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 0000 |    |    |    |    |    |
|--------|----------|--------|----|----|----|--------------------------------------------|----|----|----|------------------------------------|----|----|----|----|----|
| 31     | 30       | 29     | 28 | 27 | 26 | 25                                         | 24 | 23 | 22 | 21                                 | 20 | 19 | 18 | 17 | 16 |
|        |          |        |    |    |    |                                            |    | 0  |    |                                    |    |    |    |    |    |
| 1      |          |        |    |    |    |                                            |    | r  |    |                                    |    |    |    |    |    |
| 15     | 14       | 13     | 12 | 11 | 10 | 9                                          | 8  | 7  | 6  | 5                                  | 4  | 3  | 2  | 1  | 0  |
| END    |          |        |    |    |    |                                            |    |    |    |                                    |    | 0  |    |    |    |
| rw     |          |        |    |    |    |                                            |    |    |    |                                    |    |    | r  |    |    |



| Field | Bits          | Туре | Description                                                                                                          |
|-------|---------------|------|----------------------------------------------------------------------------------------------------------------------|
| END   | 15:2          | rw   | Message RAM end The address within the RAM area of the MCMCAN, of node i, where the message RAM to be protected ends |
| 0     | 1:0,<br>31:16 | r    | Reserved Shall read 0; shall be written with 0.                                                                      |

### 40.4.4.7 NTCCR

The Node i Timer Clock Control and Node i Timer A/B/C Transmit Trigger Registers offer additional timing functions for the node.

# **Node i Timer Clock Control Register**

The Node i Timer Clock Control Register NTCCRi controls the functions of the node timer.

# NTCCRi (i=0-3)

| Node i      | Timer       | ,<br>Clock ( | Contro | l Regis | ter | (00 | 8120 <sub>H</sub> + | -i*400 <sub>H</sub> | )  | Application Reset Value: 0000 000 |         |    |    |    |    |  |
|-------------|-------------|--------------|--------|---------|-----|-----|---------------------|---------------------|----|-----------------------------------|---------|----|----|----|----|--|
| 31          | 30          | 29           | 28     | 27      | 26  | 25  | 24                  | 23                  | 22 | 21                                | 20      | 19 | 18 | 17 | 16 |  |
|             | , ,         |              |        |         | 0   |     |                     |                     |    |                                   | TRIGSRC |    |    | 0  |    |  |
|             |             |              | 1      | 1       | r   | 1 1 |                     | 1                   | 1  | 1                                 | rw      |    | 1  | r  |    |  |
| 15          | 14          | 13           | 12     | 11      | 10  | 9   | 8                   | 7                   | 6  | 5                                 | 4       | 3  | 2  | 1  | 0  |  |
| STSTA<br>RT | STRES<br>ET | (            | 0      |         | TP  | SC  |                     |                     |    |                                   |         | 0  |    |    |    |  |
| rw          | rw          |              | r      |         | r   | W   | 1                   | 1                   |    | 1                                 |         | r  |    |    |    |  |

| Field   | Bits | Туре | Description                                                                                                                                  |
|---------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| TPSC    | 11:8 | rw   | <b>Timer Prescaler</b> The duration of one timer clock is given by (TPSC + 1) CAN bit times for all NTCCRi.TRIGSRC settings.                 |
| STRESET | 14   | rw   | Stamping Reset  This bit gives the possibility to reset the time stamp for CAN FD messages.                                                  |
| STSTART | 15   | rw   | Stamping Start  This bit starts the external timer used for CAN FD messages. The source and the prescaler are identical to the timers A/B/C. |



| Field   | Bits   | Туре | Description                                                                                       |
|---------|--------|------|---------------------------------------------------------------------------------------------------|
| TRIGSRC | 20:18  | rw   | Trigger Source                                                                                    |
|         |        |      | This bit selects the trigger source for the different modes in the node                           |
|         |        |      | timer.                                                                                            |
|         |        |      | $000_{\rm B}$ Node i Timer is decremented per $f_{\rm SYNi}$ prescaled by (TPSC + 1) timing to 0. |
|         |        |      | 001 <sub>B</sub> System Timer (STM) trigger event enabled                                         |
|         |        |      | Node i Timer is decremented per STM trigger event prescaled by (TPSC + 1).                        |
|         |        |      | 010 <sub>B</sub> General Timer (GTM) trigger event enabled                                        |
|         |        |      | Node i Timer is decremented per GTM trigger event prescaled by (TPSC + 1).                        |
|         |        |      | others, Reserved, do not use                                                                      |
| 0       | 7:0,   | r    | Reserved                                                                                          |
|         | 13:12, |      | Shall read 0; shall be written with 0.                                                            |
|         | 17:16, |      |                                                                                                   |
|         | 31:21  |      |                                                                                                   |

# 40.4.4.8 CAN Node timers for pretended networking

# Node i Timer A Transmit Trigger Register

The Node i Timer A Transmit Trigger Register NTATTRi controls the node timing functions for Transmit Trigger Mode.

# NTATTRi (i=0-3)

| Node i   | Timer       | A Tran | smit Tı | rigger I | Register | (00 | 8124 <sub>H</sub> + | i*400 <sub>H</sub> | )  | Application Reset Value: 0001 0000 <sub>H</sub> |    |          |    |          |    |  |
|----------|-------------|--------|---------|----------|----------|-----|---------------------|--------------------|----|-------------------------------------------------|----|----------|----|----------|----|--|
| 31       | 30          | 29     | 28      | 27       | 26       | 25  | 24                  | 23                 | 22 | 21                                              | 20 | 19       | 18 | 17       | 16 |  |
|          | 0 STRT TXMO |        |         |          |          |     |                     |                    |    |                                                 |    | ·        | '  |          |    |  |
|          | r           |        |         |          |          |     |                     |                    |    |                                                 |    | r        | 1  | I        |    |  |
| 15       | 14          | 13     | 12      | 11       | 10       | 9   | 8                   | 7                  | 6  | 5                                               | 4  | 3        | 2  | 1        | 0  |  |
| RELOAD   |             |        |         |          |          |     |                     |                    |    |                                                 |    |          | 1  |          |    |  |
| <u> </u> | 1           | 1      |         |          | -        |     | r                   | Λ/                 | -  | <b>I</b>                                        | -  | <b>I</b> |    | <b>I</b> |    |  |

| Field  | Bits  | Туре | Description                                                                                                                         |
|--------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------|
| RELOAD | 15:0  | rw   | <b>Reload Value</b> This bit field contains the reload value for the timer. The timer will restart when RELOAD is written.          |
| ТХМО   | 23:16 | r    | Transmit Message Object This transmit trigger is fixed to transmit buffer 1                                                         |
| STRT   | 24    | rw   | Timer Start This bit field controls the operation of the timer.  0 <sub>B</sub> Timer is stopped.  1 <sub>B</sub> Timer is started. |



| Field | Bits  | Туре | Description                            |
|-------|-------|------|----------------------------------------|
| 0     | 31:25 | r    | Reserved                               |
|       |       |      | Shall read 0; shall be written with 0. |

# **Node i Timer B Transmit Trigger Register**

The Node i Timer B Transmit Trigger Register NTBTTRi controls the node timing functions for Transmit Trigger Mode.

# NTBTTRi (i=0-3)

| Node i | Timer | B Tran | smit T | rigger I | Registe | (008128 <sub>H</sub> +i*400 <sub>H</sub> ) |      |     |    | Application Reset Value: 0002 000 |    |    |    |    |    |  |
|--------|-------|--------|--------|----------|---------|--------------------------------------------|------|-----|----|-----------------------------------|----|----|----|----|----|--|
| 31     | 30    | 29     | 28     | 27       | 26      | 25                                         | 24   | 23  | 22 | 21                                | 20 | 19 | 18 | 17 | 16 |  |
|        |       |        | 0      | 1        |         |                                            | STRT |     | ı  |                                   | тх | МО | 1  | 1  |    |  |
|        | r     |        |        |          |         |                                            |      |     |    |                                   |    | r  |    |    |    |  |
| 15     | 14    | 13     | 12     | 11       | 10      | 9                                          | 8    | 7   | 6  | 5                                 | 4  | 3  | 2  | 1  | 0  |  |
|        |       |        | 1      | 1        |         |                                            | REL  | OAD |    |                                   |    |    |    | 1  |    |  |
|        | rw    |        |        |          |         |                                            |      |     |    |                                   |    |    |    |    |    |  |

| Field  | Bits  | Туре | Description                                                                                                                         |
|--------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------|
| RELOAD | 15:0  | rw   | <b>Reload Value</b> This bit field contains the reload value for the timer. The timer will restart when RELOAD is written.          |
| ТХМО   | 23:16 | r    | Transmit Message Object This transmit object is fixed to transmit buffer 2                                                          |
| STRT   | 24    | rw   | Timer Start This bit field controls the operation of the timer.  0 <sub>B</sub> Timer is stopped.  1 <sub>B</sub> Timer is started. |
| 0      | 31:25 | r    | Reserved Shall read 0; shall be written with 0.                                                                                     |

# Node i Timer C Transmit Trigger Register

The Node i Timer C Transmit Trigger Register NTCTTRi controls the node timing functions for Transmit Trigger Mode.

# NTCTTRi (i=0-3)

| Node i   | Timer       | C Tran | smit T | rigger I | Application Reset Value: 0003 0000 <sub>H</sub> |    |    |    |    |    |    |    |    |    |    |
|----------|-------------|--------|--------|----------|-------------------------------------------------|----|----|----|----|----|----|----|----|----|----|
| 31       | 30          | 29     | 28     | 27       | 26                                              | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|          | 0 STRT TXMO |        |        |          |                                                 |    |    |    |    |    |    |    |    | !  |    |
|          | r rw r      |        |        |          |                                                 |    |    |    |    |    |    |    |    |    |    |
| 15       | 14          | 13     | 12     | 11       | 10                                              | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| RELOAD   |             |        |        |          |                                                 |    |    |    |    |    |    |    |    |    |    |
| <u> </u> |             | 1      |        | 1        |                                                 |    | r۱ | N  |    |    |    | 1  |    | 1  | 1  |



| Field  | Bits  | Туре | Description                                                                                                                         |
|--------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------|
| RELOAD | 15:0  | rw   | Reload Value This bit field contains the reload value for the timer. The timer will restart when RELOAD is written.                 |
| ТХМО   | 23:16 | r    | Transmit Message Object This transmit trigger is fixed to transmit buffer 3                                                         |
| STRT   | 24    | rw   | Timer Start This bit field controls the operation of the timer.  0 <sub>B</sub> Timer is stopped.  1 <sub>B</sub> Timer is started. |
| 0      | 31:25 | r    | Reserved Shall read 0; shall be written with 0.                                                                                     |

# 40.4.4.9 Node Timer Receive Timerout Register

# **Node i Timer Receive Timeout Register**

The Node i Timer Receive Timeout Register NTRTRi controls the node timing functions for Receive Timeout Mode. This feature is independent of Classical CAN and CAN FD.

This mode exists, to have for example network management supervision.

# NTRTRi (i=0-3)

| Node i Timer Receive Timeout Register |    |    |    |    | (00 | (008130 <sub>H</sub> +i*400 <sub>H</sub> ) |     |     |      | Application Reset Value: 0000 000 |    |    |    |    |    |
|---------------------------------------|----|----|----|----|-----|--------------------------------------------|-----|-----|------|-----------------------------------|----|----|----|----|----|
| 31                                    | 30 | 29 | 28 | 27 | 26  | 25                                         | 24  | 23  | 22   | 21                                | 20 | 19 | 18 | 17 | 16 |
|                                       |    | 1  | (  | 0  |     |                                            | 1   | TE  | TEIE |                                   | ı  | •  | D  | ı  | '  |
|                                       | I  |    |    | r  |     |                                            | 1   | rwh | rw   |                                   | 1  |    | r  | 1  |    |
| 15                                    | 14 | 13 | 12 | 11 | 10  | 9                                          | 8   | 7   | 6    | 5                                 | 4  | 3  | 2  | 1  | 0  |
|                                       | 1  | 1  |    | 1  | 1   |                                            | REL | OAD |      |                                   |    | i  |    | ı  |    |
| 1                                     | 1  | +  | 1  | +  | 1   |                                            | r   | w   |      |                                   | -  | -  | -  | 1  | 1  |

| Field  | Bits | Туре | Description                                                                                                                                                                                                                                                                                               |
|--------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RELOAD | 15:0 | rw   | Reload Value This bit field contains the reload value for the timer. The timer will start when RELOAD ≠ 0 is written. After half the time of the RELOAD value, the interrupt flags of the receive buffers will be cleared automatically, to ensure, that no message receive will be missed.               |
| TEIE   | 22   | rw   | Timer Event Interrupt Enable This bit enables the node timer event interrupt of CAN node i. Bit field GRINT2.RETI selects the interrupt output line which becomes activated at this type of interrupt.  O <sub>B</sub> Timer event interrupt is disabled  1 <sub>B</sub> Timer event interrupt is enabled |

# **AURIX™ TC3xx**



### **CAN Interface (MCMCAN)**

| Field | Bits            | Туре | Description                                                                                                                                                                                                                                                                                                                                                       |
|-------|-----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TE    | 23              | rwh  | Timer Event This flag is set on a node timer transition from 1 to 0 in Receive Timeout Mode. This bit must be reset (i.e Write to '0') by software, writing a '1' has no effect.  An interrupt request is generated if TEIE = 1.  O <sub>B</sub> No timer event has occurred since last flag reset  1 <sub>B</sub> Timer event has occurred since last flag reset |
| 0     | 21:16,<br>31:24 | r    | Reserved Shall read 0; shall be written with 0.                                                                                                                                                                                                                                                                                                                   |

# 40.4.5 Registers within M\_CAN



# 40.4.5.1 Standard Registers

# Core Release Register i

# CRELi (i=0-3)

| Core R | elease | Regist | er i |    | (008200 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    |     |      |    | Reset Value: Table 381 |    |    |    |  |
|--------|--------|--------|------|----|--------------------------------------------|----|----|----|-----|------|----|------------------------|----|----|----|--|
| 31     | 30     | 29     | 28   | 27 | 26                                         | 25 | 24 | 23 | 22  | 21   | 20 | 19                     | 18 | 17 | 16 |  |
|        | RI     | EL     | ·    |    | ST                                         | EP | ·  |    | SUB | STEP |    |                        | YE | AR | ,  |  |
|        | 1      | ſ      | I    | 1  |                                            | r  | I  |    |     | r    | 1  | 1                      |    | r  | 1  |  |
| 15     | 14     | 13     | 12   | 11 | 10                                         | 9  | 8  | 7  | 6   | 5    | 4  | 3                      | 2  | 1  | 0  |  |
|        |        |        | M    | ON |                                            | ·  | ·  |    | ·   | I    | D  | AY                     | ·  | ·  |    |  |
| 1      | 1      | 1      | 1    | r  | 1                                          | l  | 1  | 1  | 1   | 1    | 1  | r                      | 1  | l  |    |  |

| Field   | Bits  | Туре | Description                                    |
|---------|-------|------|------------------------------------------------|
| DAY     | 7:0   | r    | Time Stamp Day                                 |
| MON     | 15:8  | r    | Time Stamp Month                               |
| YEAR    | 19:16 | r    | Time Stamp Year                                |
| SUBSTEP | 23:20 | r    | Sub-step of Core Release One digit, BCD-coded. |
| STEP    | 27:24 | r    | Step of Core Release One digit, BCD-coded.     |
| REL     | 31:28 | r    | Core Release One digit, BCD-coded.             |

# Table 381 Reset Values of CRELi (i=0-3)

| Reset Type        | Reset Value            | Note                        |
|-------------------|------------------------|-----------------------------|
| Application Reset | 3215 0323 <sub>H</sub> | Node (i = 0) with TTCAN     |
| Application Reset | 3215 0320 <sub>H</sub> | Nodes (i > 0) without TTCAN |

# **Endian Register i**

# ENDNi (i=0-3)

| Endiar | n Regis | ter i |    |    |    | (00 | 8204 <sub>H</sub> + | -i*400 <sub>H</sub> | <sub>ı</sub> ) | Application Reset Value: 8765 4 |    |    |    |    | 5 4321 <sub>H</sub> |
|--------|---------|-------|----|----|----|-----|---------------------|---------------------|----------------|---------------------------------|----|----|----|----|---------------------|
| 31     | 30      | 29    | 28 | 27 | 26 | 25  | 24                  | 23                  | 22             | 21                              | 20 | 19 | 18 | 17 | 16                  |
|        | ļ       |       |    |    | ļ  | ļ   | E.                  | TV                  |                |                                 | ļ. | ļ  | i  | ļ  |                     |
|        | 1       | 1     | 1  | 1  | 1  | 1   | I                   | r                   | 1              | 1                               | I  | 1  | 1  | 1  |                     |
| 15     | 14      | 13    | 12 | 11 | 10 | 9   | 8                   | 7                   | 6              | 5                               | 4  | 3  | 2  | 1  | 0                   |
|        |         |       |    |    |    |     | , E.                | TV                  |                |                                 |    |    |    |    |                     |
| 1      | 1       |       | 1  | 1  | 1  | 1   |                     | r                   | 1              | 1                               |    | 1  |    | 1  |                     |



| Field | Bits | Туре | Description                              |
|-------|------|------|------------------------------------------|
| ETV   | 31:0 | r    | Endianness Test Value                    |
|       |      |      | The endianness test value is 0x87654321. |

#### Data Bit Timing & Prescaler Register i

This register is only writable if bits CCCR.CCE and CCCR.INIT are set. The CAN bit time may be programmed in the range of 4 to 49 time quanta. The CAN time quantum may be programmed in the range of 1 to 32 clock cycles.  $t_q = (DBRP + 1)$  clock cycles.

DTSEG1 is the sum of Prop\_Seg and Phase\_Seg1. DTSEG2 is Phase\_Seg2.

Therefore the length of the bit time is (programmed values) [DTSEG1 + DTSEG2 + 3]  $t_q$  or (functional values) [Sync\_Seg + Prop\_Seg + Phase\_Seg1 + Phase\_Seg2]  $t_q$ .

The Information Processing Time (IPT) is zero, meaning the data for the next bit is available at the first clock edge after the sample point.

#### **Notes**

- 1. With a CAN clock of 8 MHz, the reset value of 0x00000A33 configures the M\_CAN for a fast bit rate of 500 kbit/s.
- 2. The bit rate configured for the CAN FD data phase via DBTP must be higher or equal to the bit rate configured for the arbitration phase via NBTP.

#### **DBTPi (i=0-3)**

|    | it Timi  | ng & Pı | rescale | r Regi | ster i   | (00820C <sub>H</sub> +i*400 <sub>H</sub> ) |    |     |     | Ар  | Application Reset Value: 0000 0A33 |    |      |          |    |  |
|----|----------|---------|---------|--------|----------|--------------------------------------------|----|-----|-----|-----|------------------------------------|----|------|----------|----|--|
| 31 | 30       | 29      | 28      | 27     | 26       | 25                                         | 24 | 23  | 22  | 21  | 20                                 | 19 | 18   | 17       | 16 |  |
|    | '        | •       |         | 0      | '        | •                                          |    | TDC | (   | 0   |                                    |    | DBRP | '        | '  |  |
|    | <u>I</u> | 1       | 1       | r      | <u>I</u> | 1                                          | 1  | rw  |     | r   |                                    | 1  | rw   | <u> </u> |    |  |
| 15 | 14       | 13      | 12      | 11     | 10       | 9                                          | 8  | 7   | 6   | 5   | 4                                  | 3  | 2    | 1        | 0  |  |
|    | 0        | 1       |         | 1      | DTSEG1   | <b>L</b>                                   | 1  |     | DTS | EG2 | 1                                  |    | DS   | JW       |    |  |
| 1  | r        | 1       | ı       |        | rw       | ı                                          |    | -1  | r   | W   |                                    |    | r    | N        |    |  |

| Field  | Bits | Type | Description                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|--------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| DSJW   | 3:0  | rw   | Data (Re) Synchronization Jump Width This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Valid values are 0 to 15. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used. |  |  |  |  |  |
| DTSEG2 | 7:4  | rw   | Data time segment after sample point This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Valid values are 0 to 15. The actual interpretation by the hardware of this value is such that one more than the programmed value is used.      |  |  |  |  |  |



| Field  | Bits                      | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|---------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DTSEG1 | 12:8                      | rw   | Data time segment before sample point This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Valid values are 0 to 31. The actual interpretation by the hardware of this value is such that one more than the programmed value is used.                                                                                                                                                                         |
| DBRP   | 20:16                     | rw   | Data Baud Rate Prescaler This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. The value by which the oscillator frequency is divided for generating the bit time quanta. The bit time is built up from a multiple of this quanta. Valid values for the Baud Rate Prescaler are 0 to 31. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used. |
| TDC    | 23                        | rw   | Transmitter Delay Compensation This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  0 <sub>B</sub> Transmitter Delay Compensation disabled 1 <sub>B</sub> Transmitter Delay Compensation enabled                                                                                                                                                                                                             |
| 0      | 15:13,<br>22:21,<br>31:24 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                       |

# Test Register i

Write access to the Test Register has to be enabled by setting bit CCCR.TEST to '1'. All Test Register functions are set to their reset values when bit CCCR.TEST is reset.

Loop Back Mode and software control of transmit pin are hardware test modes. Programming of TEST.TX ≠ "00" may disturb the message transfer on the CAN bus.

# TESTi (i=0-3)

| Test Register i |    |    |    | (008210 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    | Ap | Application Reset Value: 0000 00X0 <sub>H</sub> |    |      |    |    |    |    |
|-----------------|----|----|----|--------------------------------------------|----|----|----|----|-------------------------------------------------|----|------|----|----|----|----|
| 31              | 30 | 29 | 28 | 27                                         | 26 | 25 | 24 | 23 | 22                                              | 21 | 20   | 19 | 18 | 17 | 16 |
|                 | '  | •  |    | •                                          | •  | •  |    | 0  | •                                               |    |      |    | •  | 1  | '  |
| <u>I</u>        | I  | 1  | 1  | 1                                          | 1  | 1  | 1  | r  | 1                                               | 1  |      |    | 1  | I  |    |
| 15              | 14 | 13 | 12 | 11                                         | 10 | 9  | 8  | 7  | 6                                               | 5  | 4    | 3  | 2  | 1  | 0  |
|                 |    |    |    | 0                                          |    | 1  | 1  | RX | Т                                               | X  | LBCK | 0  | 0  | 0  | 0  |
| 1               | 1  |    | 1  | r                                          | 1  |    | 1  | rh | rv                                              | vh | rwh  | r  | r  | r  | r  |



| Field | Bits                         | Туре | Description                                                                                                                                                                                                                                                                                                                     |
|-------|------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LBCK  | 4                            | rwh  | Loop Back Mode This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. This is the external loop back mode, visible on the outside. $0_B$ Reset value, Loop Back Mode is disabled $1_B$ Loop Back Mode is enabled                                                                          |
| тх    | 6:5                          | rwh  | Control of Transmit Pin  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  OOB Reset value, TX pin controlled by the CAN Core, updated at the end of the CAN bit time  O1B Sample Point can be monitored at the TX pin  Dominant ('0') level at TX pin.  Recessive ('1') at RX pin. |
| RX    | 7                            | rh   | Receive Pin  Monitors the actual value of RX pin. $0_B$ The CAN bus is dominant (RXD = '0') $1_B$ The CAN bus is recessive (RXD = '1')                                                                                                                                                                                          |
| 0     | 0,<br>1,<br>2,<br>3,<br>31:8 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                 |

### **RAM Watchdog i**

The RAM Watchdog monitors the READY output of the Message RAM. A Message RAM access via the M\_CAN's Generic Master Interface starts the Message RAM Watchdog Counter with the value configured by RWD.WDC. The counter is reloaded with RWD.WDC when the Message RAM signals successful completion. In case there is no response from the Message RAM until the counter has counted down to zero, the counter stops and interrupt flag IR.WDI is set. The RAM Watchdog Counter is clocked by the Host clock.

#### RWDi (i=0-3) (008214<sub>H</sub>+i\*400<sub>H</sub>) **RAM Watchdog i** Application Reset Value: 0000 0000<sub>H</sub> WDV **WDC** rh rw



| Field | Bits  | Туре | Description                                                                                                                                                                                                      |
|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WDC   | 7:0   | rw   | Watchdog Configuration This bitfield is CCE and INIT protected. Writes will only have effect, if both                                                                                                            |
|       |       |      | bits are set. Start value of the Message RAM Watchdog Counter. With the reset value of "00" the counter is disabled.  00 <sub>H</sub> Watchdog disabled  others, Start value of the Message RAM Watchdog Counter |
| WDV   | 15:8  | rh   | Watchdog Value Actual Message RAM Watchdog Counter Value.                                                                                                                                                        |
| 0     | 31:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                  |

#### **CC Control Register i**

The CCCRi register enables and disables CAN bus participation and basic protocol functions. Due to synchronization mechanisms between the clock domains, after a write operation to CCCRi, the register shall be read back, until the set values are written to the register. Please keep in mind, that the register also includes hardware influenced bits.

Note: After enabling the CAN clocks in MCR register, the application software has to wait for 10 hostclock

cycles before accessing the kernel registers.

Note: LDMST or SWAPMSK.W instructions should be used only with bit mask enabled for rwh bits in this

register.

#### CCCRi (i=0-3) **CC Control Register i** (008218<sub>H</sub>+i\*400<sub>H</sub>) Application Reset Value: 0000 0001, 22 20 31 30 29 28 26 25 24 23 21 19 27 18 17 16 0 15 14 9 8 7 6 5 4 3 2 0 13 12 11 10 1 **NISO TXP EFBI PXHD** 0 **BRSE FDOE TEST** DAR MON **CSR CSA ASM** CCE INIT rwh rh rwh rwh rw rw rw rw rw rw rw rw rw rw



| Field | Bits | Type | Description                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| INIT  | 0    | rwh  | Note: Due to the synchronization mechanism between the two clock                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|       |      |      | domains, there may be a delay until the value written to INIT can be read back. Therefore the programmer has to assure that the previous value written to INIT has been accepted by reading INIT before setting INIT to a new value.                                                                                                                                 |  |  |  |  |  |  |  |
|       |      |      | <ul><li>0<sub>B</sub> Normal Operation</li><li>1<sub>B</sub> Initialization is started</li></ul>                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| CCE   | 1    | rw   | Configuration Change Enable  0 <sub>B</sub> The CPU has no write access to the protected configuration registers  1 <sub>B</sub> The CPU has write access to the protected configuration registers (while CCCR.INIT = '1')                                                                                                                                           |  |  |  |  |  |  |  |
| ASM   | 2    | rwh  | Restricted Operation Mode Bit ASM can only be set by the Host when both CCE and INIT are set to '1'. In can also be set by the M_CAN. The bit can be reset by the Host at any time. For a description of the Restricted Operation Mode see paragraph Restricted Operation Mode.  0 <sub>B</sub> Normal CAN operation 1 <sub>B</sub> Restricted Operation Mode active |  |  |  |  |  |  |  |
| CSA   | 3    | rh   | Clock Stop Acknowledge  0 <sub>B</sub> No clock stop acknowledged  1 <sub>B</sub> M_CAN may be set in power down by stopping the synchronous and the asynchronous clock source                                                                                                                                                                                       |  |  |  |  |  |  |  |
| CSR   | 4    | rw   | Clock Stop Request  0 <sub>B</sub> No clock stop is requested  1 <sub>B</sub> Clock stop requested. When clock stop is requested, first INIT and then CSA will be set after all pending transfer requests have been completed and the CAN bus reached idle.                                                                                                          |  |  |  |  |  |  |  |
| MON   | 5    | rwh  | Bus Monitoring Mode Bit MON can only be set by the Host when both CCE and INIT are set to '1'. The bit can be reset by the Host at any time.  0 <sub>B</sub> Bus Monitoring Mode is disabled  1 <sub>B</sub> Bus Monitoring Mode is enabled                                                                                                                          |  |  |  |  |  |  |  |
| DAR   | 6    | rw   | Disable Automatic Retransmission  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Automatic retransmission of messages not transmitted successfully enabled  1 <sub>B</sub> Automatic retransmission disabled                                                                                           |  |  |  |  |  |  |  |



| Field | Bits            | Туре | Description                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|-------|-----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| TEST  | 7               | rw   | Test Mode Enable The TEST register can only be set, if CCE, INIT and TEST are set. Writes to test will only have effect, if all three bits are set.  O <sub>B</sub> Normal operation, register TEST holds reset values  1 <sub>B</sub> Test Mode, write access to register TEST enabled                                                                         |  |  |  |  |  |  |  |
| FDOE  | 8               | rw   | FD Operation Enable This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> CAN FD frame format disabled.  1 <sub>B</sub> CAN FD frame format enabled.                                                                                                                                                     |  |  |  |  |  |  |  |
| BRSE  | 9               | rw   | Bit Rate Switch Enable This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Bit rate switching for transmission disabled.  1 <sub>B</sub> Bit rate switching for transmission enabled.                                                                                                                  |  |  |  |  |  |  |  |
| PXHD  | 12              | rw   | Protocol Exception Handling Disable This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  OB Protocol exception handling enabled.  1B Protocol exception handling disabled. (When protocol exception handling is disabled, the M_CAN will transmit an error frame when it detects a protocol exception condition.       |  |  |  |  |  |  |  |
| EFBI  | 13              | rw   | Edge Filtering during Bus Integration This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Edge filter disabled 1 <sub>B</sub> Two consecutive dominant tq required to detect an edge for hard synchronization.                                                                                         |  |  |  |  |  |  |  |
| ТХР   | 14              | rw   | Transmit Pause This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. If this bit is set, the M_CAN pauses for two CAN bit times before starting the next transmission after itself has successfully transmitted a frame (see Tx Handling).  0 <sub>B</sub> Transmit pause disabled 1 <sub>B</sub> Transmit pause enabled |  |  |  |  |  |  |  |
| NISO  | 15              | rw   | Non ISO Operation  If this bit is set, the M_CAN uses the CAN FD frame format as specified by the Bosch CAN FD Specification V1.0.  O <sub>B</sub> CAN FD frame format according to ISO11898-1  1 <sub>B</sub> CAN FD frame format according to Bosch CAN FD Specification V1.0                                                                                 |  |  |  |  |  |  |  |
| 0     | 11:10,<br>31:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |

# Nominal Bit Timing & Prescaler Register i

This register is only writable if bits CCCR.CCE and CCCR.INIT are set.



The CAN bit time may be programmed in the range of 4 to 385 time quanta. The CAN time quantum may be programmed in the range of 1 to 512 clock periods.  $t_a = (NBRP + 1)$  clock periods.

NTSEG1 is the sum of Prop\_Seg and Phase\_Seg1. NTSEG2 is Phase\_Seg2.

Therefore the length of the bit time is (programmed values) [NTSEG1 + NTSEG2 + 3]  $t_q$  or (functional values) [Sync\_Seg + Prop\_Seg + Phase\_Seg1 + Phase\_Seg2]  $t_q$ .

The Information Processing Time (IPT) is zero, meaning the data for the next bit is available at the first clock edge after the sample point.

Note: With a CAN clock of 8 MHz, the reset value of  $0600_{H}0A03$  configures the M\_CAN for a bit rate of 500 kbit/s.

### NBTPi (i=0-3)

| Nomin | nal Bit 1 | Timing | & Pres | caler R | <sub>1</sub> ) | Application Reset Value: 0600 0A03 <sub>+</sub> |    |    |    |    |      |       |    |    |    |
|-------|-----------|--------|--------|---------|----------------|-------------------------------------------------|----|----|----|----|------|-------|----|----|----|
| 31    | 30        | 29     | 28     | 27      | 26             | 25                                              | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17 | 16 |
|       | II.       | !      | NSJW   | ·       |                | ,                                               |    |    | ,  | !  | NBRP |       | ,  |    | '  |
|       | 1         | 1      | rw     | I       | 1              | 1                                               |    | 1  | 1  | 1  | rw   | 1     | 1  | 1  |    |
| 15    | 14        | 13     | 12     | 11      | 10             | 9                                               | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1  | 0  |
|       |           |        | NTS    | EG1     |                |                                                 |    | 0  |    |    |      | NTSEG | 2  |    |    |
| 1     | 1         | I.     | r      | W       | 1              |                                                 | 1  | r  |    |    | 1    | rw    |    | 1  |    |

| Field  | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NTSEG2 | 6:0   | rw   | Nominal Time segment after sample point This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Valid values are 1 to 127. The actual interpretation by the hardware of this value is such that one more than the programmed value is used.                                                                                                                                                                  |
| NTSEG1 | 15:8  | rw   | Nominal Time segment before sample point This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Valid values are 1 to 255. The actual interpretation by the hardware of this value is such that one more than the programmed value is used.                                                                                                                                                                 |
| NBRP   | 24:16 | rw   | Baud Rate Prescaler This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. The value by which the oscillator frequency is divided for generating the bit time quanta. The bit time is built up from a multiple of this quanta. Valid values for the Baud Rate Prescaler are 0 to 511. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used. |
| NSJW   | 31:25 | rw   | (Re) Synchronization Jump Width This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Valid values are 0 to 127. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.                                                                                                                                                                     |



| Field | Bits | Туре | Description                            |
|-------|------|------|----------------------------------------|
| 0     | 7    | r    | Reserved                               |
|       |      |      | Shall read 0, shall be written with 0. |

# **Timestamp Counter Configuration i**

For a description of the Timestamp Counter see chapter Timestamp Generation

### TSCCi (i=0-3)

| Timest | Timestamp Counter Configuration i |    |    |    |    |    | (008220 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |  |  |
|--------|-----------------------------------|----|----|----|----|----|--------------------------------------------|----|----|----|-------------------------------------------------|----|----|----|----|--|--|
| 31     | 30                                | 29 | 28 | 27 | 26 | 25 | 24                                         | 23 | 22 | 21 | 20                                              | 19 | 18 | 17 | 16 |  |  |
|        | ı                                 | I  | 0  |    |    |    |                                            |    |    |    |                                                 |    | TO | CP |    |  |  |
|        |                                   |    |    |    |    | r  |                                            |    |    |    |                                                 |    | r  | W  |    |  |  |
| 15     | 14                                | 13 | 12 | 11 | 10 | 9  | 8                                          | 7  | 6  | 5  | 4                                               | 3  | 2  | 1  | 0  |  |  |
|        | 1                                 | 1  | 1  | 0  |    |    |                                            |    |    |    | 1                                               | 1  | 1  | T  | SS |  |  |
| *      | r                                 |    |    |    |    |    |                                            |    |    |    |                                                 |    | •  | r  | W  |  |  |

| Field | Bits           | Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
|-------|----------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| TSS   | 1:0            | rw   | Time segment before sample point  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O1 <sub>B</sub> Timestamp counter value incremented according to TCP  10 <sub>B</sub> External timestamp counter value used, timer to be started in NTCCRy, the clock source as well as the chosen prescaler has to be configured before using this feature.  others, Timestamp Counter Prescaler      |  |  |  |  |  |  |  |  |  |
| ТСР   | 19:16          | rw   | Timestamp Counter Prescaler  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  Configures the timestamp and timeout counters time unit in multiples of CAN bit times [116]. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.  Note: With CAN FD an external counter is required for timestamp generation (TSS = "10") |  |  |  |  |  |  |  |  |  |
| 0     | 15:2,<br>31:20 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |



### Timestamp Counter Value i

# TSCVi (i=0-3)

| Timest | tamp C | ounter | <b>Value</b> | i  |     | (008224 <sub>H</sub> +i*400 <sub>H</sub> ) |    |        |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |    |  |
|--------|--------|--------|--------------|----|-----|--------------------------------------------|----|--------|----|-------------------------------------------------|----|----|----|----|----|--|
| 31     | 30     | 29     | 28           | 27 | 26  | 25                                         | 24 | 23     | 22 | 21                                              | 20 | 19 | 18 | 17 | 16 |  |
|        |        |        |              |    |     |                                            |    | ,<br>D |    |                                                 |    |    |    |    |    |  |
|        | I      |        | 1            | 1  | I   |                                            |    | r      | I  |                                                 |    |    |    |    |    |  |
| 15     | 14     | 13     | 12           | 11 | 10  | 9                                          | 8  | 7      | 6  | 5                                               | 4  | 3  | 2  | 1  | 0  |  |
| TSC    |        |        |              |    |     |                                            |    |        |    |                                                 |    |    |    |    |    |  |
|        | -      |        | -            | -  | rwh |                                            |    |        |    |                                                 |    |    |    |    |    |  |

| Field        | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field<br>TSC | 15:0  | rwh  | Timestamp Counter The internal/external Timestamp Counter value is captured on start of frame (both Rx and Tx). When TSCC.TSS = "01", the Timestamp Counter is incremented in multiples of CAN bit times [116] depending on the configuration of TSCC.TCP. A wrap around sets interrupt flag IR.TSW. Write access resets the counter to zero. When TSCC.TSS = "10", TSC reflects the external Timestamp Counter value. A write access has no impact. |
|              |       |      | Note: A "wrap around" is a change of the Timestamp Counter value from non-zero to zero not caused by write access to TSCV.                                                                                                                                                                                                                                                                                                                           |
| 0            | 31:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                      |

# **Timeout Counter Configuration i**

For a description of the Timeout Counter see **Timeout Counter** 

### TOCCi (i=0-3)

| Timeo | ut Cou | nter Co | onfigur | ation i |    | (00 | 8228 <sub>H</sub> + | -i*400 <sub>H</sub> | <sub>ı</sub> ) | Application Reset Value: FFFF 0000 <sub>H</sub> |    |    |    |    |      |
|-------|--------|---------|---------|---------|----|-----|---------------------|---------------------|----------------|-------------------------------------------------|----|----|----|----|------|
| 31    | 30     | 29      | 28      | 27      | 26 | 25  | 24                  | 23                  | 22             | 21                                              | 20 | 19 | 18 | 17 | 16   |
|       | ı      | ı       | ı       | ı       | I  | I   | T                   | OP .                | ı              | I                                               | I  | I  | I  | I  |      |
| 1     | I      | 1       | 1       | 1       | I  | 1   | r                   | W                   | 1              | 1                                               | 1  | 1  | 1  | 1  | 1    |
| 15    | 14     | 13      | 12      | 11      | 10 | 9   | 8                   | 7                   | 6              | 5                                               | 4  | 3  | 2  | 1  | 0    |
|       | 1      | 1       | 1       | 1       | ı  | 0   | 1                   | 1                   | 1              |                                                 |    |    | Т  | os | ЕТОС |
|       |        |         |         |         |    | r   |                     |                     | 1              |                                                 |    |    | r  | W  | rw   |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETOC  | 0     | rw   | Enable Timeout Counter  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  Note: For use of timeout function with CAN FD see chapter Timeout Counter.  O <sub>B</sub> Timeout Counter disabled 1 <sub>B</sub> Timeout Counter enabled                                                                                                                                                                                                                                                                                                                                                                  |
| TOS   | 2:1   | rw   | Timeout Select This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. When operating in Continuous mode, a write to TOCV presets the counter to the value configured by TOCC.TOP and continues down-counting. When the Timeout Counter is controlled by one of the FIFOs, an empty FIFO presets the counter to the value configured by TOCC.TOP.  Down-counting is started when the first FIFO element is stored.  00 <sub>B</sub> Continuous operation 01 <sub>B</sub> Timeout controlled by Tx Event FIFO 10 <sub>B</sub> Timeout controlled by Rx FIFO 0 11 <sub>B</sub> Timeout controlled by Rx FIFO 1 |
| ТОР   | 31:16 | rw   | Timeout Period This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Start value of the Timeout Counter (down-counter). Configures the Timeout Period.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 15:3  | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

### **Timeout Counter Value i**

### TOCVi (i=0-3)

| Timeo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ut Cou | nter Va | lue i |    |    | (00822C <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 FFFF <sub>H</sub> |    |    |    |    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------|----|----|--------------------------------------------|----|----|----|-------------------------------------------------|----|----|----|----|----|
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30     | 29      | 28    | 27 | 26 | 25                                         | 24 | 23 | 22 | 21                                              | 20 | 19 | 18 | 17 | 16 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |       |    |    |                                            |    | 0  |    |                                                 |    |    |    |    |    |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |        |         |       |    |    |                                            |    |    |    |                                                 |    |    |    |    |    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14     | 13      | 12    | 11 | 10 | 9                                          | 8  | 7  | 6  | 5                                               | 4  | 3  | 2  | 1  | 0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | ı       | 1     | ı  | 1  | 1                                          | T  | oc | 1  | 1                                               | 1  | 1  | 1  | 1  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rwh    |         |       |    |    |                                            |    |    |    |                                                 |    |    |    |    |    |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                          |
|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| тос   | 15:0  | rwh  | Timeout Counter The Timeout Counter is decremented in multiples of CAN bit times [116] depending on the configuration of TSCC.TCP. When decremented to zero, interrupt flag IR.TOO is set and the Timeout Counter is stopped. Start and reset/restart conditions are configured via TOCC.TOS. Any write access will lead to clearing of the counter. |
| 0     | 31:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                      |

# Error Counter Register i

### ECRi (i=0-3)

| Error (  | •  | r Regis | ter i |        |    | (00 | 8240 <sub>H</sub> + | i*400 <sub>H</sub> | )  | Ар | plication | on Res | et Valu | e: 0000 | 0000 <sub>H</sub> |
|----------|----|---------|-------|--------|----|-----|---------------------|--------------------|----|----|-----------|--------|---------|---------|-------------------|
| 31       | 30 | 29      | 28    | 27     | 26 | 25  | 24                  | 23                 | 22 | 21 | 20        | 19     | 18      | 17      | 16                |
|          |    |         |       | )<br>D |    |     |                     |                    |    |    | C         | EL     |         |         |                   |
| <u> </u> | 1  | 1       |       | r      |    | 1   | I                   |                    |    |    | r         | h      | I       |         |                   |
| 15       | 14 | 13      | 12    | 11     | 10 | 9   | 8                   | 7                  | 6  | 5  | 4         | 3      | 2       | 1       | 0                 |
| RP       |    | 1       | 1     | REC    | ı  | 1   | ı                   |                    | ı  | ı  | ТІ        | EC     | 1       | 1       | 1                 |
| rh       |    |         |       | rh     |    |     |                     | ,                  | ,  |    | r         | h      |         |         |                   |

| Field | Bits | Type | Description                                                                                                                                                                                                                                             |  |  |  |  |  |
|-------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| TEC   | 7:0  | rh   | <b>Transmit Error Counter</b> Actual state of the Transmit Error Counter, values between 0 and 255                                                                                                                                                      |  |  |  |  |  |
| RFC   |      |      | Note: When CCCR.ASM is set, the CAN protocol controller does not increment TEC and REC when a CAN protocol error is detected, but CEL is still incremented.                                                                                             |  |  |  |  |  |
| REC   | 14:8 | rh   | Receive Error Counter  Actual state of the Receive Error Counter, values between 0 and 127  Note: When CCCR.ASM is set, the CAN protocol controller does not increment TEC and REC when a CAN protocol error is detected, but CEL is still incremented. |  |  |  |  |  |
| RP    | 15   | rh   | Receive Error Passive  0 <sub>B</sub> The Receive Error Counter is below the error passive level of 128  1 <sub>B</sub> The Receive Error Counter has reached the error passive level of 128                                                            |  |  |  |  |  |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                            |
|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CEL   | 23:16 | rh   | CAN Error Logging The counter is incremented each time when a CAN protocol error causes the Transmit Error Counter or the Receive Error Counter to be incremented. It is reset by read access to CEL. The counter stops at 0xFF; the next increment of TEC or REC sets interrupt flag IR.ELO. The counter is reset on read, if the bit NPCRi.DELE is set for the node. |
| 0     | 31:24 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                        |

# **Protocol Status Register i**

| PSRi ( | (i=0-3) |
|--------|---------|
|        |         |

| Protoc | •   | us Reg | ister i |      |    | (008244 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 0707 <sub>H</sub> |    |      |    |     |    |
|--------|-----|--------|---------|------|----|--------------------------------------------|----|----|----|-------------------------------------------------|----|------|----|-----|----|
| 31     | 30  | 29     | 28      | 27   | 26 | 25                                         | 24 | 23 | 22 | 21                                              | 20 | 19   | 18 | 17  | 16 |
|        | •   |        |         | 0    | '  | •                                          | ı. | '  |    | i.                                              | '  | TDCV | '  | •   |    |
|        |     | 1      | 1       | r    |    |                                            | I  |    |    | I                                               | 1  | r    |    |     |    |
| 15     | 14  | 13     | 12      | 11   | 10 | 9                                          | 8  | 7  | 6  | 5                                               | 4  | 3    | 2  | 1   | 0  |
| 0      | PXE | RFDF   | RBRS    | RESI |    | DLEC                                       | ı  | во | EW | EP                                              | A  | СТ   |    | LEC |    |
| r      | rh  | rh     | rh      | rh   | I  | rh                                         | 1  | rh | rh | rh                                              | r  | h    | I  | rh  | 1  |

# **AURIX™ TC3xx**





| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|-------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| LEC   | 2:0  | rh   | Last Error Code The LEC indicates the type of the last error to occur on the CAN bus. This field will be cleared to '0' when a message has been transferred (reception or transmission) without error. This bit field is set to 0x7 on read, if NPCRi.DELE is set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|       |      |      | Note: The Bus_Off recovery sequence (see ISO11898-1) cannot be shortened by setting or resetting CCCR.INIT. If the device goes Bus_Off, it will set CCCR.INIT of its own accord, stopping all bus activities. Once CCCR.INIT has been cleared by the CPU, the device will then wait for 129 occurrences of Bus Idle (129 * 11 consecutive recessive bits) before resuming normal operation. At the end of the Bus_Off recovery sequence, the Error Management Counters will be reset. During the waiting time after the resetting of CCCR.INIT, each time a sequence of 11 recessive bits has been monitored, a Bit0Error code is written to PSR.LEC, enabling the CPU to readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to monitor the Bus_Off recovery sequence. ECR.REC is used to count these sequences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|       |      |      | <ul> <li>No Error: No error occurred since LEC has been reset by successful reception or transmission.</li> <li>Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a received message where this is not allowed.</li> <li>Form Error: A fixed format part of a received frame has the wrong format.</li> <li>Ack Error: The message transmitted by the M_CAN was not acknowledged by another node.</li> <li>Bit1 Error: During the transmission of a message (with the exception of the arbitration field), the device wanted to send a recessive level (bit of logical value '1'), but the monitored bus value was dominant.</li> <li>Bit0 Error: During the transmission of a message (or acknowledge bit, or active error flag, or overload flag), the device wanted to send a dominant level (data or identifier bit logical value '0'), but the monitored bus value was recessive. During Bus_Off recovery this status is set each time a sequence of 11 recessive bits has been monitored. This enables the CPU to monitor the proceeding of the Bus_Off recovery sequence (indicating the bus is not stuck at dominant or continuously disturbed).</li> <li>CRC Error: The CRC check sum of a received message was incorrect. The CRC of an incoming message does not match with the CRC calculated from the received data.</li> <li>No Change: Any read access to the Protocol Status Register reinitializes the LEC to '7'. When the LEC shows the value '7', no CAN bus event was detected since the last CPU read access to the</li> </ul> |  |  |  |  |  |  |



| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                  |
|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACT   | 4:3  | rh   | Activity Monitors the module's CAN communication state.                                                                                                                                                                                                                                                                                                                      |
|       |      |      | Note: ACT is set to "00" by a Protocol Exception Event.                                                                                                                                                                                                                                                                                                                      |
|       |      |      | <ul> <li>00<sub>B</sub> Synchronizing - node is synchronizing on CAN communication</li> <li>01<sub>B</sub> Idle - node is neither receiver nor transmitter</li> <li>10<sub>B</sub> Receiver - node is operating as receiver</li> <li>11<sub>B</sub> Transmitter - node is operating as transmitter</li> </ul>                                                                |
| EP    | 5    | rh   | Error Passive                                                                                                                                                                                                                                                                                                                                                                |
| Er    | 3    |      | <ul> <li>The M_CAN is in the Error_Active state. It normally takes part in bus communication and sends an active error flag when an error has been detected</li> <li>The M_CAN is in the Error_Passive state</li> </ul>                                                                                                                                                      |
| EW    | 6    | rh   | Warning Status                                                                                                                                                                                                                                                                                                                                                               |
|       |      |      | <ul> <li>O<sub>B</sub> Both error counters are below the Error_Warning limit of 96</li> <li>1<sub>B</sub> At least one of error counter has reached the Error_Warning limit of 96</li> </ul>                                                                                                                                                                                 |
| ВО    | 7    | rh   | Bus_Off Status                                                                                                                                                                                                                                                                                                                                                               |
|       |      |      | <ul> <li>O<sub>B</sub> The M_CAN is not in Bus_Off<sup>1)</sup></li> <li>1<sub>B</sub> The M_CAN is in Bus_Off state</li> </ul>                                                                                                                                                                                                                                              |
| DLEC  | 10:8 | rh   | Data Phase Last Error Code Type of last error that occurred in the data phase of a CAN FD format frame with its BRS flag set. Coding is the same as for LEC. This field will be cleared to zero when a CAN FD format frame with its BRS flag set has been transferred (reception or transmission) without error. This bit field is set to 0x7 on read, if NPCRi.DELE is set. |
|       |      |      | Note: When a frame in CAN FD format has reached the data phase with BRS flag set, the next CAN event (error or valid frame) will be shown in DLEC instead of LEC. An error in a fixed stuff bit of a CAN FD CRC sequence will be shown as a Form Error, not Stuff Error.                                                                                                     |
| RESI  | 11   | rh   | ESI flag of last received CAN FD Message                                                                                                                                                                                                                                                                                                                                     |
|       |      |      | This bit is set together with REDF, independent of acceptance filtering. This bit is reset after read access, if NPCRi.DELE is set.  O <sub>B</sub> Last received CAN FD message did not have its ESI flag set  1 <sub>B</sub> Last received CAN FD message had its ESI flag set                                                                                             |
| RBRS  | 12   | rh   | BRS flag of last received CAN FD Message This bit is set together with REDF, independent of acceptance filtering. This bit is reset after read access, if NPCRi.DELE is set.  0 <sub>B</sub> Last received CAN FD message did not have its BRS flag set  1 <sub>B</sub> Last received CAN FD message had its BRS flag set                                                    |



| Field | Bits         | Туре | Description                                                                                                                                                                                                                                                                                                          |
|-------|--------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RFDF  | 13           | rh   | Received a CAN FD Message This bit is set independent of acceptance filtering. This bit is reset after read access, if NPCRi.DELE is set.  O <sub>B</sub> Since this bit was reset by the CPU, no CAN FD message has been received  1 <sub>B</sub> Message in CAN FD format with FDF flag set, has been received     |
| PXE   | 14           | rh   | Protocol Exception Event This bit is reset after read access, if NPCRi.DELE is set.  0 <sub>B</sub> No protocol exception event occurred since last read access 1 <sub>B</sub> Protocol exception event occurred                                                                                                     |
| TDCV  | 22:16        | r    | Transmitter Delay Compensation Value Position of the secondary sample point, defined by the sum of the measured delay from TX to RX and TDCR.TDCO. The SSP position is, in the data phase, the number of mtq between the start of the transmitted bit and the secondary sample point. Valid values are 0 to 127 mtq. |
| 0     | 15,<br>31:23 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                      |

<sup>1)</sup> The Bus\_Off recovery sequence (see ISO11898-1) cannot be shortened by setting or resetting CCCR.INIT. If the device goes Bus\_Off, it will set CCCR.INIT of its own accord, stopping all bus activities. Once CCCR.INIT has been cleared by the CPU, the device will then wait for 129 occurrences of Bus Idle (129 \* 11 consecutive recessive bits) before resuming normal operation. At the end of the Bus\_Off recovery sequence, the Error Management Counters will be reset. During the waiting time after the resetting of CCCR.INIT, each time a sequence of 11 recessive bits has been monitored, a Bit0Error code is written to PSR.LEC, enabling the CPU to readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to monitor the Bus\_Off recovery sequence. ECR.REC is used to count these sequences.

### **Transmitter Delay Compensation Register i**

### TDCRi (i=0-3)

| Transr | nitter l | Delay C | ompei    | nsation | Regis | ter i(00 | 8248 <sub>H</sub> - | ⊦i*400 <sub>⊦</sub> | 1) | Ар | plicati  | on Res | et Valu | e: 0000 | 0000 <sub>H</sub> |
|--------|----------|---------|----------|---------|-------|----------|---------------------|---------------------|----|----|----------|--------|---------|---------|-------------------|
| 31     | 30       | 29      | 28       | 27      | 26    | 25       | 24                  | 23                  | 22 | 21 | 20       | 19     | 18      | 17      | 16                |
|        | 1        | !       | !        | ı       | ·     |          | •                   | )                   |    | !  | !        | 1      | !       | !       | ,                 |
|        | 1        | 1       | <u> </u> |         | 1     |          |                     | r                   | 1  | I  | <u> </u> | 1      | I       | I       |                   |
| 15     | 14       | 13      | 12       | 11      | 10    | 9        | 8                   | 7                   | 6  | 5  | 4        | 3      | 2       | 1       | 0                 |
| 0      |          | 1       | ı        | TDCO    | ı     | ı        | 1                   | 0                   |    | 1  | ı        | TDCF   | 1       | ı       | 1                 |
| r      |          |         | 1        | rw      |       | 1        |                     | r                   |    |    | 1        | rw     |         | 1       |                   |

| Field | Bits | Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TDCF  | 6:0  | rw   | Transmitter Delay Compensation Filter Window Length This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Defines the minimum value for the Secondary Sample Point position, dominant edges on RX that would result in an earlier Secondary Sample Point position are ignored for transmitter delay measurement. This feature is enabled when TDCF is configured to a value greater than TDCO. Valid values are from 0 to 127 mtq. |



| Field | Bits        | Туре | Description                                                                                                                                                                                                                                                                                                                                |
|-------|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TDCO  | 14:8        | rw   | Transmitter Delay Compensation Offset This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Offset value defining the distance between the measured delay from TX to RX and the secondary sample point. Valid values are 0 to 127 mtq. The duration of one mtq is equal to the fASYNi clock period. |
| 0     | 7,<br>31:15 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                            |

### Interrupt Register i

The flags are set when one of the listed conditions is detected (edge-sensitive). The flags remain set until the Host clears them. A flag is cleared by writing a "1" to the corresponding bit position. Writing a "0" has no effect. The configuration of IE controls whether an interrupt is generated.

Note:

LDMST or SWAPMSK.W instructions should be used only with bit mask enabled for all rwh bits in this register.

#### IRi (i=0-3)

| Interru | •    | gister i |      |     |     | (008250 <sub>H</sub> +i*400 <sub>H</sub> ) |     |      |      | Application Reset Value: 0000 0000 |      |      |      |      | 0000 <sub>H</sub> |
|---------|------|----------|------|-----|-----|--------------------------------------------|-----|------|------|------------------------------------|------|------|------|------|-------------------|
| 31      | 30   | 29       | 28   | 27  | 26  | 25                                         | 24  | 23   | 22   | 21                                 | 20   | 19   | 18   | 17   | 16                |
|         | 0    | 0        | PED  | PEA | WDI | во                                         | EW  | EP   | ELO  | 0                                  | 0    | DRX  | тоо  | MRAF | TSW               |
|         | r    | r        | rwh  | rwh | rwh | rwh                                        | rwh | rwh  | rwh  | r                                  | r    | rwh  | rwh  | rwh  | rwh               |
| 15      | 14   | 13       | 12   | 11  | 10  | 9                                          | 8   | 7    | 6    | 5                                  | 4    | 3    | 2    | 1    | 0                 |
| TEFL    | TEFF | TEFW     | TEFN | TFE | TCF | тс                                         | нРМ | RF1L | RF1F | RF1W                               | RF1N | RF0L | RF0F | RFOW | RFON              |
| rwh     | rwh  | rwh      | rwh  | rwh | rwh | rwh                                        | rwh | rwh  | rwh  | rwh                                | rwh  | rwh  | rwh  | rwh  | rwh               |

| Field | Bits | Туре | Description                                                          |
|-------|------|------|----------------------------------------------------------------------|
| RFON  | 0    | rwh  | Rx FIFO 0 New Message                                                |
|       |      |      | 0 <sub>B</sub> No new message written to Rx FIFO 0                   |
|       |      |      | 1 <sub>B</sub> New message written to Rx FIFO 0                      |
| RFOW  | 1    | rwh  | Rx FIFO 0 Watermark Reached                                          |
|       |      |      | 0 <sub>B</sub> Rx FIFO 0 fill level below watermark                  |
|       |      |      | 1 <sub>B</sub> Rx FIFO 0 fill level reached watermark                |
| RF0F  | 2    | rwh  | Rx FIFO 0 Full                                                       |
|       |      |      | O <sub>B</sub> Rx FIFO 0 not full                                    |
|       |      |      | 1 <sub>B</sub> Rx FIFO 0 full                                        |
| RF0L  | 3    | rwh  | Rx FIFO 0 Message Lost                                               |
|       |      |      | 0 <sub>B</sub> No Rx FIFO 0 message lost                             |
|       |      |      | Rx FIFO 0 message lost, also set after write attempt to Rx FIFO 0 of |
|       |      |      | size zero                                                            |
| RF1N  | 4    | rwh  | Rx FIFO 1 New Message                                                |
|       |      |      | 0 <sub>B</sub> No new message written to Rx FIFO 1                   |
|       |      |      | 1 <sub>B</sub> New message written to Rx FIFO 1                      |



| Field | Bits | Туре   | Description                                                                                   |
|-------|------|--------|-----------------------------------------------------------------------------------------------|
| RF1W  | 5    | rwh    | Rx FIFO 1 Watermark Reached  0 <sub>B</sub> Rx FIFO 1 fill level below watermark              |
|       |      |        | 1 <sub>B</sub> Rx FIFO 1 fill level reached watermark                                         |
| RF1F  | 6    | rwh    | Rx FIFO 1 Full                                                                                |
|       |      |        | 0 <sub>B</sub> Rx FIFO 1 not full                                                             |
| -     |      |        | 1 <sub>B</sub> Rx FIFO 1 full                                                                 |
| RF1L  | 7    | rwh    | Rx FIFO 1 Message Lost                                                                        |
|       |      |        | 0 <sub>B</sub> No Rx FIFO 1 message lost                                                      |
|       |      |        | 1 <sub>B</sub> Rx FIFO 1 message lost, also set after write attempt to Rx FIFO 1 of size zero |
| НРМ   | 8    | rwh    | High Priority Message                                                                         |
| ПРМ   | 0    | IVVII  | 0 <sub>R</sub> No high priority message received                                              |
|       |      |        | 1 <sub>B</sub> High priority message received                                                 |
| TC    | 9    | rwh    | Transmission Completed                                                                        |
|       |      | 1 0011 | 0 <sub>B</sub> No transmission completed                                                      |
|       |      |        | 1 <sub>B</sub> Transmission completed                                                         |
| TCF   | 10   | rwh    | Transmission Cancellation Finished                                                            |
|       |      |        | 0 <sub>B</sub> No transmission cancellation finished                                          |
|       |      |        | 1 <sub>B</sub> Transmission cancellation finished                                             |
| TFE   | 11   | rwh    | Tx FIFO Empty                                                                                 |
|       |      |        | 0 <sub>B</sub> Tx FIFO non-empty                                                              |
|       |      |        | 1 <sub>B</sub> Tx FIFO empty                                                                  |
| TEFN  | 12   | rwh    | Tx Event FIFO New Entry                                                                       |
|       |      |        | 0 <sub>B</sub> Tx Event FIFO unchanged                                                        |
|       |      |        | 1 <sub>B</sub> Tx Handler wrote Tx Event FIFO element                                         |
| TEFW  | 13   | rwh    | Tx Event FIFO Watermark Reached                                                               |
|       |      |        | 0 <sub>B</sub> Tx Event FIFO fill level below watermark                                       |
|       |      |        | 1 <sub>B</sub> Tx Event FIFO fill level reached watermark                                     |
| TEFF  | 14   | rwh    | Tx Event FIFO Full                                                                            |
|       |      |        | 0 <sub>B</sub> Tx Event FIFO not full                                                         |
|       |      |        | 1 <sub>B</sub> Tx Event FIFO full                                                             |
| TEFL  | 15   | rwh    | Tx Event FIFO Element Lost                                                                    |
|       |      |        | 0 <sub>B</sub> No Tx Event FIFO element lost                                                  |
|       |      |        | Tx Event FIFO element lost, also set after write attempt to Tx Event                          |
|       |      |        | FIFO of size zero                                                                             |
| TSW   | 16   | rwh    | Timestamp Wraparound                                                                          |
|       |      |        | 0 <sub>B</sub> No timestamp counter wrap-around                                               |
|       |      |        | 1 <sub>B</sub> Timestamp counter wrapped around                                               |



| Field | Bits | Туре  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MRAF  | 17   | rwh   | Message RAM Access Failure The flag is set, when the Rx Handler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |      |       | <ul> <li>has not completed acceptance filtering or storage of an accepted<br/>message until the arbitration field of the following message has been<br/>received. In this case acceptance filtering or message storage is<br/>aborted and the Rx Handler starts processing of the following<br/>message.</li> </ul>                                                                                                                                                                                                                                                         |
|       |      |       | <ul> <li>was not able to write a message to the Message RAM. In this case<br/>message storage is aborted.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |      |       | In both cases the FIFO put index is not updated resp. the New Data flag for a dedicated Rx Buffer is not set, a partly stored message is overwritten when the next message is stored to this location.  The flag is also set when the Tx Handler was not able to read a message from the Message RAM in time. In this case message transmission is aborted. In case of a Tx Handler access failure the M_CAN is switched into Restricted Operation Mode. To leave Restricted Operation Mode, the Host CPU has to reset CCCR.ASM.  OB No Message RAM access failure occurred |
| T00   | 18   | rwh   | 1 <sub>B</sub> Message RAM access failure occurred  Timeout Occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100   | 10   | 10011 | 0 <sub>B</sub> No timeout 1 <sub>B</sub> Timeout reached                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DRX   | 19   | rwh   | Message stored to Dedicated Rx Buffer  The flag is set whenever a received message has been stored into a dedicated Rx Buffer.  O <sub>B</sub> No Rx Buffer updated  1 <sub>B</sub> At least one received message stored into an Rx Buffer                                                                                                                                                                                                                                                                                                                                  |
| ELO   | 22   | rwh   | Error Logging Overflow  0 <sub>B</sub> CAN Error Logging Counter did not overflow  1 <sub>B</sub> Overflow of CAN Error Logging Counter occurred                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EP    | 23   | rwh   | Error Passive  0 <sub>B</sub> Error_Passive status unchanged  1 <sub>B</sub> Error_Passive status changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EW    | 24   | rwh   | Warning Status  0 <sub>B</sub> Error_Warning status unchanged  1 <sub>B</sub> Error_Warning status changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| во    | 25   | rwh   | Bus_Off Status  0 <sub>B</sub> Bus_Off status unchanged  1 <sub>B</sub> Bus_Off status changed                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WDI   | 26   | rwh   | Watchdog Interrupt  0 <sub>B</sub> No Message RAM Watchdog event occurred  1 <sub>B</sub> Message RAM Watchdog event due to missing READY                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Field | Bits                       | Туре | Description                                                                                                                                                                                        |
|-------|----------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEA   | 27                         | rwh  | Protocol Error in Arbitration Phase (Nominal Bit Time is used)  0 <sub>B</sub> No protocol error in arbitration phase  1 <sub>B</sub> Protocol error in arbitration phase detected (PSR.LEC ≠ 0,7) |
| PED   | 28                         | rwh  | Protocol Error in Data Phase (Data Bit Time is used)  0 <sub>B</sub> No protocol error in data phase detected  1 <sub>B</sub> Protocol error in data phase detected (PSR.DLEC ≠ 0,7)               |
| 0     | 20,<br>21,<br>29,<br>31:30 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                    |

### Interrupt Enable i

The settings in the Interrupt Enable register determine which status changes in the Interrupt Register will be signalled on an interrupt line.

IEi (i=0-3)

| Interrupt Enable i |       |           |       |      |      |     | (008254 <sub>H</sub> +i*400 <sub>H</sub> ) |       |       |           | Application Reset Value: 0000 0000 <sub>H</sub> |       |       |           |       |
|--------------------|-------|-----------|-------|------|------|-----|--------------------------------------------|-------|-------|-----------|-------------------------------------------------|-------|-------|-----------|-------|
| 31                 | 30    | 29        | 28    | 27   | 26   | 25  | 24                                         | 23    | 22    | 21        | 20                                              | 19    | 18    | 17        | 16    |
|                    | 0     | 0         | PEDE  | PEAE | WDIE | вое | EWE                                        | EPE   | ELOE  | 0         | 0                                               | DRXE  | TOOE  | MRAF<br>E | TSWE  |
|                    | r     | r         | rw    | rw   | rw   | rw  | rw                                         | rw    | rw    | r         | r                                               | rw    | rw    | rw        | rw    |
| 15                 | 14    | 13        | 12    | 11   | 10   | 9   | 8                                          | 7     | 6     | 5         | 4                                               | 3     | 2     | 1         | 0     |
| TEFLE              | TEFFE | TEFW<br>E | TEFNE | TFEE | TCFE | TCE | НРМЕ                                       | RF1LE | RF1FE | RF1W<br>E | RF1NE                                           | RFOLE | RFOFE | RFOW<br>E | RFONE |
| rw                 | rw    | rw        | rw    | rw   | rw   | rw  | rw                                         | rw    | rw    | rw        | rw                                              | rw    | rw    | rw        | rw    |

| Field | Bits | Туре | Description                                  |
|-------|------|------|----------------------------------------------|
| RFONE | 0    | rw   | Rx FIFO 0 New Message Interrupt Enable       |
|       |      |      | 0 <sub>B</sub> Interrupt disabled            |
|       |      |      | 1 <sub>B</sub> Interrupt enabled             |
| RF0WE | 1    | rw   | Rx FIFO 0 Watermark Reached Interrupt Enable |
|       |      |      | 0 <sub>B</sub> Interrupt disabled            |
|       |      |      | 1 <sub>B</sub> Interrupt enabled             |
| RF0FE | 2    | rw   | Rx FIFO 0 Full Interrupt Enable              |
|       |      |      | 0 <sub>B</sub> Interrupt disabled            |
|       |      |      | 1 <sub>B</sub> Interrupt enabled             |
| RF0LE | 3    | rw   | Rx FIFO 0 Message Lost Interrupt Enable      |
|       |      |      | 0 <sub>B</sub> Interrupt disabled            |
|       |      |      | 1 <sub>B</sub> Interrupt enabled             |



| Field | Bits | Туре | Description                                                                                                              |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------|
| RF1NE | 4    | rw   | Rx FIFO 1 New Message Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled              |
| RF1WE | 5    | rw   | Rx FIFO 1 Watermark Reached Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled        |
| RF1FE | 6    | rw   | Rx FIFO 1 Full Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                     |
| RF1LE | 7    | rw   | Rx FIFO 1 Message Lost Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled             |
| НРМЕ  | 8    | rw   | High Priority Message Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled              |
| TCE   | 9    | rw   | Transmission Completed Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled             |
| TCFE  | 10   | rw   | Transmission Cancellation Finished Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled |
| TFEE  | 11   | rw   | Tx FIFO Empty Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                      |
| TEFNE | 12   | rw   | Tx Event FIFO New Entry Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled            |
| TEFWE | 13   | rw   | Tx Event FIFO Watermark Reached Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled    |
| TEFFE | 14   | rw   | Tx Event FIFO Full Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                 |
| TEFLE | 15   | rw   | Tx Event FIFO Element Lost Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled         |
| TSWE  | 16   | rw   | Timestamp Wraparound Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled               |
| MRAFE | 17   | rw   | Message RAM Access Failure Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled         |
| TOOE  | 18   | rw   | Timeout Occurred Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                   |



| Field | Bits                       | Туре | Description                                                                                                                 |
|-------|----------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|
| DRXE  | 19                         | rw   | Message stored to Dedicated Rx Buffer Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled |
| ELOE  | 22                         | rw   | Error Logging Overflow Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                |
| EPE   | 23                         | rw   | Error Passive Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                         |
| EWE   | 24                         | rw   | Warning Status Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                        |
| ВОЕ   | 25                         | rw   | Bus_Off Status Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                        |
| WDIE  | 26                         | rw   | Watchdog Interrupt Enable  0 <sub>B</sub> Interrupt disabled  1 <sub>B</sub> Interrupt enabled                              |
| PEAE  | 27                         | rw   | Protocol Error in Arbitration Phase Enable  0 <sub>B</sub> Interrupt disabled 1 <sub>B</sub> Interrupt enabled              |
| PEDE  | 28                         | rw   | Protocol Error in Data Phase Enable  0 <sub>B</sub> Interrupt disabled 1 <sub>B</sub> Interrupt enabled                     |
| 0     | 20,<br>21,<br>29,<br>31:30 | r    | Reserved Shall read 0, shall be written with 0.                                                                             |

### **Global Filter Configuration i**

Global settings for Message ID filtering. The Global Filter Configuration controls the filter path for standard and extended messages as described in **Figure 594** and **Figure 595**.

|   | GFCi (i<br>Global | =0-3)<br>Filter | Config | uratior | ni     |        | (00 | 8280 <sub>H</sub> + | -i*400 <sub>H</sub> | )  | Ар | plicatio | on Res | et Valu | ie: 0000 | 0000 <sub>H</sub> |
|---|-------------------|-----------------|--------|---------|--------|--------|-----|---------------------|---------------------|----|----|----------|--------|---------|----------|-------------------|
|   | 31                | 30              | 29     | 28      | 27     | 26     | 25  | 24                  | 23                  | 22 | 21 | 20       | 19     | 18      | 17       | 16                |
|   |                   |                 |        |         |        |        |     | '<br>'              | 0                   |    |    |          |        |         | 1        |                   |
| ı |                   |                 |        |         |        |        |     |                     | r                   |    |    |          |        |         |          |                   |
| - | 15                | 14              | 13     | 12      | 11     | 10     | 9   | 8                   | 7                   | 6  | 5  | 4        | 3      | 2       | 1        | 0                 |
|   |                   | 1               | ı      | ı       | '<br>' | ,<br>D | 1   | 1                   | 1                   | ı  | AN | IFS      | AN     | IFE     | RRFS     | RRFE              |
| L |                   | ı               | 1      | 1       |        | r      | ı   | II.                 | II.                 | 1  | r  | W        | r      | W       | rw       | rw                |



| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                             |
|-------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RRFE  | 0    | rw   | Reject Remote Frames Extended This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Filter remote frames with 29-bit extended IDs  1 <sub>B</sub> Reject all remote frames with 29-bit extended IDs                                                                                                              |
| RRFS  | 1    | rw   | Reject Remote Frames Standard This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Filter remote frames with 11-bit standard IDs  1 <sub>B</sub> Reject all remote frames with 11-bit standard IDs                                                                                                              |
| ANFE  | 3:2  | rw   | Accept Non-matching Frames Extended This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  Defines how received messages with 29-bit IDs that do not match any element of the filter list are treated.  00 <sub>B</sub> Accept in Rx FIFO 0  01 <sub>B</sub> Accept in Rx FIFO 1  10 <sub>B</sub> Reject  11 <sub>B</sub> Reject |
| ANFS  | 5:4  | rw   | Accept Non-matching Frames Standard This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  Defines how received messages with 11-bit IDs that do not match any element of the filter list are treated.  00 <sub>B</sub> Accept in Rx FIFO 0  01 <sub>B</sub> Accept in Rx FIFO 1  10 <sub>B</sub> Reject  11 <sub>B</sub> Reject |
| 0     | 31:6 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                         |

### Standard ID Filter Configuration i

Settings for 11-bit standard Message ID filtering. The Standard ID Filter Configuration controls the filter path for standard messages.

### SIDFCi (i=0-3)





| Field | Bits          | Туре | Description                                                                                                                                                                                                                                                                                        |
|-------|---------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FLSSA | 15:2          | rw   | Filter List Standard Start Address This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Start address of standard Message ID filter list (32-bit word address).                                                                                            |
| LSS   | 23:16         | rw   | List Size Standard This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  00 <sub>H</sub> No standard Message ID filter 01 <sub>H</sub> 1 Message ID filter elements  80 <sub>H</sub> 128 Message ID filter elements others, 128 Message ID filter elements |
| 0     | 1:0,<br>31:24 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                    |

### **Extended ID Filter Configuration i**

Settings for 29-bit extended Message ID filtering. The Extended ID Filter Configuration controls the filter path for standard messages as described in **Figure 595**.

# XIDFCi (i=0-3)

| Extend | ded ID I | Filter C | onfigu | ration | i  | (008288 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |     |    |    |    |  |  |
|--------|----------|----------|--------|--------|----|--------------------------------------------|----|----|----|----|-------------------------------------------------|-----|----|----|----|--|--|
| 31     | 30       | 29       | 28     | 27     | 26 | 25                                         | 24 | 23 | 22 | 21 | 20                                              | 19  | 18 | 17 | 16 |  |  |
|        | ·!       | Į.       | Į.     | 0      |    |                                            | ļ  | ļ  |    | i  | ļ.                                              | LSE | ļ  | Į. |    |  |  |
| L      | I        | I        | I      | r      |    |                                            | 1  | 1  |    | 1  | 1                                               | rw  | 1  | I  |    |  |  |
| 15     | 14       | 13       | 12     | 11     | 10 | 9                                          | 8  | 7  | 6  | 5  | 4                                               | 3   | 2  | 1  | 0  |  |  |
|        | FLESA    |          |        |        |    |                                            |    |    |    |    |                                                 | 1   | 1  |    | 0  |  |  |
|        | 1        |          |        | -      | 1  | 1                                          | 1  | 1  | 1  |    |                                                 | r   |    |    |    |  |  |

| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                               |
|-------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FLESA | 15:2  | rw   | Filter List Extended Start Address This bitfield is CCE and INIT protected. Writes will only have effect, if both                                                                                                                                                                                                         |
|       |       |      | bits are set. Start address of extended Message ID filter list (32-bit word addess).                                                                                                                                                                                                                                      |
| LSE   | 22:16 | rw   | List Size Extended This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  00 <sub>H</sub> No standard Message ID filter 01 <sub>H</sub> 1 extended Message ID filter element  40 <sub>H</sub> 64 extended Message ID filter element others, 64 extended Message ID filter elements |



| Field | Bits  | Туре | Description                            |
|-------|-------|------|----------------------------------------|
| 0     | 1:0,  | r    | Reserved                               |
|       | 31:23 |      | Shall read 0, shall be written with 0. |

#### **Extended ID AND Mask i**

### XIDAMi (i=0-3)

| Extend | ded ID / | AND Ma | isk i |    |    | (00 | 8290 <sub>H</sub> + | ⊦i*400 <sub>⊦</sub> | 1)   | Application Reset Value: 1FFF FFFF $_{ m H}$ |    |    |    |    |    |  |
|--------|----------|--------|-------|----|----|-----|---------------------|---------------------|------|----------------------------------------------|----|----|----|----|----|--|
| 31     | 30       | 29     | 28    | 27 | 26 | 25  | 24                  | 23                  | 22   | 21                                           | 20 | 19 | 18 | 17 | 16 |  |
|        | 0        | •      |       | •  |    |     | ı                   | '                   | EIDM |                                              |    | •  |    |    |    |  |
| 1      | r        |        |       |    |    |     |                     |                     |      |                                              |    |    |    |    |    |  |
| 15     | 14       | 13     | 12    | 11 | 10 | 9   | 8                   | 7                   | 6    | 5                                            | 4  | 3  | 2  | 1  | 0  |  |
| EIDM   |          |        |       |    |    |     |                     |                     |      |                                              |    |    |    |    |    |  |
|        | 1        | 1      |       | 1  | 1  | 1   | r                   | W                   |      |                                              | 1  | 1  | 1  | 1  |    |  |

| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                               |
|-------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EIDM  | 28:0  | rw   | Extended ID Mask This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. For acceptance filtering of extended frames the Extended ID AND Mask is ANDed with the Message ID of a received frame. Intended for masking of 29-bit IDs in SAE J1939. With the reset value of all bits set to one the mask is not active. |
| 0     | 31:29 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                           |

### **High Priority Message Status i**

This register is updated every time a Message ID filter element configured to generate a priority event matches. This can be used to monitor the status of incoming high priority messages and to enable fast access to these messages.

### **HPMSi (i=0-3)**

| High P | riority | Messa | ge Stat | tus i |     | (00 | 8294 <sub>H</sub> + | -i*400 <sub>H</sub> | )  | Application Reset Value: 0000 0000 |    |    |    |    |    |
|--------|---------|-------|---------|-------|-----|-----|---------------------|---------------------|----|------------------------------------|----|----|----|----|----|
| 31     | 30      | 29    | 28      | 27    | 26  | 25  | 24                  | 23                  | 22 | 21                                 | 20 | 19 | 18 | 17 | 16 |
|        | !       |       | !       | !     |     |     | '                   | 0                   |    |                                    |    | !  | !  | 1  | ,  |
|        |         | 1     |         |       |     |     |                     | r                   |    |                                    |    |    | l  | 1  |    |
| 15     | 14      | 13    | 12      | 11    | 10  | 9   | 8                   | 7                   | 6  | 5                                  | 4  | 3  | 2  | 1  | 0  |
| FLST   |         |       | !       | FIDX  | ı   | ı   | i                   | М                   | SI | BIDX                               |    |    |    |    |    |
| rh     | 1       | 1     | 1       | rh    | l . | l . | l .                 | r                   | h  |                                    |    |    |    |    |    |



| Field | Bits  | Туре | Description                                                                                                                                                                        |
|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIDX  | 5:0   | rh   | Buffer Index Index of Rx FIFO element to which the message was stored. Only valid when MSI[1] = '1'.                                                                               |
| MSI   | 7:6   | rh   | Message Storage Indicator  00 <sub>B</sub> No FIFO selected  01 <sub>B</sub> FIFO message lost  10 <sub>B</sub> Message stored in FIFO 0  11 <sub>B</sub> Message stored in FIFO 1 |
| FIDX  | 14:8  | rh   | Filter Index Index of matching filter element. Range is 0 to SIDFC.LSS - 1 resp. XIDFC.LSE - 1.                                                                                    |
| FLST  | 15    | rh   | Filter List Indicates the filter list of the matching filter element. $0_B$ Standard Filter List $1_B$ Extended Filter List                                                        |
| 0     | 31:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                    |

#### New Data 1 i

The register holds the New Data flags of Rx Buffers 0 to 31.

Note:

LDMST or SWAPMSK.W instructions should be used only with bit mask enabled for all rwh bits in this register.

# NDAT1i (i=0-3)

| New D | ata 1 i |      |      |      |      | (00  | 8298 <sub>H</sub> + | i*400 <sub>H</sub> | )    | Application Reset Value: 0000 0000 <sub>H</sub> |      |      |      |      |      |
|-------|---------|------|------|------|------|------|---------------------|--------------------|------|-------------------------------------------------|------|------|------|------|------|
| 31    | 30      | 29   | 28   | 27   | 26   | 25   | 24                  | 23                 | 22   | 21                                              | 20   | 19   | 18   | 17   | 16   |
| ND31  | ND30    | ND29 | ND28 | ND27 | ND26 | ND25 | ND24                | ND23               | ND22 | ND21                                            | ND20 | ND19 | ND18 | ND17 | ND16 |
| rwh   | rwh     | rwh  | rwh  | rwh  | rwh  | rwh  | rwh                 | rwh                | rwh  | rwh                                             | rwh  | rwh  | rwh  | rwh  | rwh  |
| 15    | 14      | 13   | 12   | 11   | 10   | 9    | 8                   | 7                  | 6    | 5                                               | 4    | 3    | 2    | 1    | 0    |
| ND15  | ND14    | ND13 | ND12 | ND11 | ND10 | ND9  | ND8                 | ND7                | ND6  | ND5                                             | ND4  | ND3  | ND2  | ND1  | NDO  |
| rwh   | rwh     | rwh  | rwh  | rwh  | rwh  | rwh  | rwh                 | rwh                | rwh  | rwh                                             | rwh  | rwh  | rwh  | rwh  | rwh  |

| Field        | Bits | Type | Description                                                                                                                                                                                                                                                                                                                        |
|--------------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NDy (y=0-31) | у    | rwh  | New Data in Rx Buffer y - ND                                                                                                                                                                                                                                                                                                       |
|              |      |      | The flag is set when the respective Rx Buffer has been updated from a received frame. The flags remain set until the Host clears them. A flag is cleared by writing a "1" to the corresponding bit position. Writing a "0" has no effect.  O <sub>B</sub> Rx Buffer not updated  1 <sub>B</sub> Rx Buffer updated from new message |



#### New Data 2 i

The register holds the New Data flags of Rx Buffers 32 to 63.

Note:

LDMST or SWAPMSK.W instructions should be used only with bit mask enabled for all rwh bits in this register.

# NDAT2i (i=0-3)

| ı | New D | ata 2 i | •    |      |      |      | (00  | 829C <sub>н</sub> + | i*400 <sub>H</sub> | )    | Application Reset Value: 0000 0000 <sub>H</sub> |      |      |      |      |      |
|---|-------|---------|------|------|------|------|------|---------------------|--------------------|------|-------------------------------------------------|------|------|------|------|------|
|   | 31    | 30      | 29   | 28   | 27   | 26   | 25   | 24                  | 23                 | 22   | 21                                              | 20   | 19   | 18   | 17   | 16   |
|   | ND63  | ND62    | ND61 | ND60 | ND59 | ND58 | ND57 | ND56                | ND55               | ND54 | ND53                                            | ND52 | ND51 | ND50 | ND49 | ND48 |
| 1 | rwh   | rwh     | rwh  | rwh  | rwh  | rwh  | rwh  | rwh                 | rwh                | rwh  | rwh                                             | rwh  | rwh  | rwh  | rwh  | rwh  |
| _ | 15    | 14      | 13   | 12   | 11   | 10   | 9    | 8                   | 7                  | 6    | 5                                               | 4    | 3    | 2    | 1    | 0    |
|   | ND47  | ND46    | ND45 | ND44 | ND43 | ND42 | ND41 | ND40                | ND39               | ND38 | ND37                                            | ND36 | ND35 | ND34 | ND33 | ND32 |
| 1 | rwh   | rwh     | rwh  | rwh  | rwh  | rwh  | rwh  | rwh                 | rwh                | rwh  | rwh                                             | rwh  | rwh  | rwh  | rwh  | rwh  |

| Field         | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                        |
|---------------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NDy (y=32-63) | y-32 | rwh  | New Data in Rx Buffer y - ND                                                                                                                                                                                                                                                                                                       |
|               |      |      | The flag is set when the respective Rx Buffer has been updated from a received frame. The flags remain set until the Host clears them. A flag is cleared by writing a "1" to the corresponding bit position. Writing a "0" has no effect.  O <sub>B</sub> Rx Buffer not updated  1 <sub>B</sub> Rx Buffer updated from new message |

# **Rx FIFO 0 Configuration i**

### **RXF0Ci (i=0-3)**

| Rx FIF | 0 Cor | nfigura | tion i |      |    | (00 | ⊦i*400 <sub>H</sub> | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |     |    |    |    |
|--------|-------|---------|--------|------|----|-----|---------------------|-------------------------------------------------|----|----|----|-----|----|----|----|
| 31     | 30    | 29      | 28     | 27   | 26 | 25  | 24                  | 23                                              | 22 | 21 | 20 | 19  | 18 | 17 | 16 |
| FOOM   |       | I       | I      | FOWM | ı  | ı   | ı                   | 0                                               |    | I  | ı  | FOS | ı  | ı  | 1  |
| rw     |       | I       | I      | rw   |    |     |                     | r                                               |    | I  | 1  | rw  | 1  | 1  |    |
| 15     | 14    | 13      | 12     | 11   | 10 | 9   | 8                   | 7                                               | 6  | 5  | 4  | 3   | 2  | 1  | 0  |
| FOSA   |       |         |        |      |    |     |                     |                                                 |    |    |    |     | 0  |    |    |
| rw     |       |         |        |      |    |     |                     |                                                 |    |    |    |     | r  |    |    |

| Field | Bits | Туре | Description                                                                                                                                                                     |
|-------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOSA  | 15:2 | rw   | Rx FIFO 0 Start Address                                                                                                                                                         |
|       |      |      | This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  Start address of Rx FIFO 0 in Message RAM (32-bit word address, see  Figure 605). |



| Field | Bits       | Туре | Description                                                                                                                                                                                                                                                                                 |
|-------|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOS   | 22:16      | rw   | Rx FIFO 0 Size This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  00 <sub>H</sub> No Rx FIFO 0  01 <sub>H</sub> 1 Rx FIFO 0 elements  40 <sub>H</sub> 64 Rx FIFO 0 elements others, 64 Rx FIFO 0 elements                                        |
| FOWM  | 30:24      | rw   | Rx FIFO 0 Watermark This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  01 <sub>H</sub> Level for Rx FIFO 0 watermark interrupt (IR.RF0W)  40 <sub>H</sub> Level for Rx FIFO 0 watermark interrupt (IR.RF0W) others, Watermark interrupt disabled |
| FOOM  | 31         | rw   | FIFO 0 Operation Mode This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. FIFO 0 can be operated in blocking or in overwrite mode (see Rx FIFOs).  0 <sub>B</sub> FIFO 0 blocking mode 1 <sub>B</sub> FIFO 0 overwrite mode                        |
| 0     | 1:0,<br>23 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                             |

### Rx FIFO 0 Status i

# RXF0Si (i=0-3)

| Rx FIF | •  | •  |    |    |    | (0082A4 <sub>H</sub> +i*400 <sub>H</sub> ) |     |    |    | Application Reset Value: 0000 000 |    |      |    |    | ) 0000 <sub>H</sub> |
|--------|----|----|----|----|----|--------------------------------------------|-----|----|----|-----------------------------------|----|------|----|----|---------------------|
| 31     | 30 | 29 | 28 | 27 | 26 | 25                                         | 24  | 23 | 22 | 21                                | 20 | 19   | 18 | 17 | 16                  |
|        | ı  |    | 0  |    | ,  | RFOL                                       | FOF | •  | D  |                                   |    | F    | PI | ı  |                     |
| L      | I  | 1  | r  | 1  | 1  | rh                                         | rh  |    | r  |                                   | 1  | r    | h  | l  |                     |
| 15     | 14 | 13 | 12 | 11 | 10 | 9                                          | 8   | 7  | 6  | 5                                 | 4  | 3    | 2  | 1  | 0                   |
|        | 0  |    | 1  | F  | GI |                                            |     | 0  |    | ı                                 | 1  | F0FL | ı  | ı  |                     |
| 1      | r  |    | 1  | r  | h  |                                            | 1   | r  |    | l                                 | 1  | rh   | 1  | 1  |                     |

| Field | Bits  | Туре | Description                                                                 |
|-------|-------|------|-----------------------------------------------------------------------------|
| FOFL  | 6:0   | rh   | Rx FIFO 0 Fill Level Number of elements stored in Rx FIFO 0, range 0 to 64. |
| FOGI  | 13:8  | rh   | Rx FIFO 0 Get Index Rx FIFO 0 read index pointer, range 0 to 63.            |
| FOPI  | 21:16 | rh   | Rx FIFO 0 Put Index Rx FIFO 0 write index pointer, range 0 to 63.           |



| Field | Bits                            | Туре | Description                                                                                                                                                                                                                                                                                                                                     |
|-------|---------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOF   | 24                              | rh   | Rx FIFO 0 Full  0 <sub>B</sub> Rx FIFO 0 not full  1 <sub>B</sub> Rx FIFO 0 full                                                                                                                                                                                                                                                                |
| RFOL  | 25                              | rh   | Rx FIFO 0 Message Lost This bit is a copy of interrupt flag IR.RF0L. When IR.RF0L is reset, this bit is also reset.  Note: Overwriting the oldest message when RXF0C.F0OM = '1' will not set this flag.  O <sub>B</sub> No Rx FIFO 0 message lost 1 <sub>B</sub> Rx FIFO 0 message lost, also set after write attempt to Rx FIFO 0 of size zero |
| 0     | 7,<br>15:14,<br>23:22,<br>31:26 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                 |

# Rx FIFO 0 Acknowledge i

### **RXF0Ai (i=0-3)**

| Rx FIF | •  | •  | dge i |    |    | (00 | 82A8 <sub>H</sub> + | ·i*400 <sub>H</sub> | <sub>I</sub> ) | Ар | plicati | on Res | et Valu | e: 0000 | 0000 <sub>H</sub> |
|--------|----|----|-------|----|----|-----|---------------------|---------------------|----------------|----|---------|--------|---------|---------|-------------------|
| 31     | 30 | 29 | 28    | 27 | 26 | 25  | 24                  | 23                  | 22             | 21 | 20      | 19     | 18      | 17      | 16                |
|        |    |    |       |    |    |     |                     | <b>D</b>            |                |    |         |        |         |         | '                 |
|        |    |    |       |    |    |     |                     | r                   | 1              |    |         |        |         |         |                   |
| 15     | 14 | 13 | 12    | 11 | 10 | 9   | 8                   | 7                   | 6              | 5  | 4       | 3      | 2       | 1       | 0                 |
|        |    |    | 1     |    | D  | 1   |                     | i                   |                |    |         | FC     | AI      |         | ,                 |
|        | 1  |    | 1     |    | r  | 1   | 1                   |                     | 1              | 1  |         | r      | W       |         |                   |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                            |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOAI  | 5:0  | rw   | Rx FIFO 0 Acknowledge Index  After the Host has read a message or a sequence of messages from Rx  FIFO 0 it has to write the buffer index of the last element read from Rx  FIFO 0 to F0AI. This will set the Rx FIFO 0 Get Index RXF0S.F0GI to F0AI + 1  and update the FIFO 0 Fill Level RXF0S.F0FL. |
| 0     | 31:6 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                        |



# **Rx Buffer Configuration i**

# RXBCi (i=0-3)

| Rx Buf | fer Cor | nfigura | tion i |    |     | (0082AC <sub>H</sub> +i*400 <sub>H</sub> ) |     |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |     |    |    |    |
|--------|---------|---------|--------|----|-----|--------------------------------------------|-----|----|----|-------------------------------------------------|----|-----|----|----|----|
| 31     | 30      | 29      | 28     | 27 | 26  | 25                                         | 24  | 23 | 22 | 21                                              | 20 | 19  | 18 | 17 | 16 |
|        | ı       | Į.      | Į.     | ,  | ı   | ı                                          |     | D  | ı  | ı                                               | Į. | ı   | ,  | Į. |    |
|        | 1       | I       | I      | 1  | l . | l .                                        | l . | r  | 1  | l .                                             | I  | l . | 1  | I  |    |
| 15     | 14      | 13      | 12     | 11 | 10  | 9                                          | 8   | 7  | 6  | 5                                               | 4  | 3   | 2  | 1  | 0  |
|        |         | ı       | ı      | 1  |     | RE                                         | SA  |    |    |                                                 | ı  |     | 1  | (  | 0  |
| 1      |         | l       | l      |    |     | r                                          | W   |    |    |                                                 | l  |     |    | l  | r  |

| Field | Bits          | Туре | Description                                                                                                                                                                                                           |
|-------|---------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RBSA  | 15:2          | rw   | Rx Buffer Start Address This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Configures the start address of the Rx Buffers section in the Message RAM (32-bit word address). |
| 0     | 1:0,<br>31:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                       |

# Rx FIFO 1 Configuration i

# RXF1Ci (i=0-3)

| Rx FIF | O 1 Cor | nfigura | tion i   |      |          | (00 | 82B0 <sub>H</sub> + | ⊦i*400 <sub>н</sub> | )  | Ар       | plicati | on Res | et Valu | e: 0000 | 0 0000 <sub>H</sub> |
|--------|---------|---------|----------|------|----------|-----|---------------------|---------------------|----|----------|---------|--------|---------|---------|---------------------|
| 31     | 30      | 29      | 28       | 27   | 26       | 25  | 24                  | 23                  | 22 | 21       | 20      | 19     | 18      | 17      | 16                  |
| F10M   |         | I       | I        | F1WM | l        | I   | ı                   | 0                   |    | I        | ı       | F1S    | I       | ı       |                     |
| rw     |         | 1       | <u> </u> | rw   | <u> </u> | 1   | 1                   | r                   |    | <u> </u> | 1       | rw     | 1       | 1       |                     |
| 15     | 14      | 13      | 12       | 11   | 10       | 9   | 8                   | 7                   | 6  | 5        | 4       | 3      | 2       | 1       | 0                   |
| '      |         |         | ,        | '    |          | F1  | .SA                 | 1                   |    | ·        | ,       | "      |         | (       | 0                   |
|        |         | l       |          |      | 1        | r   | W                   |                     | l  |          | 1       | 1      | l       |         | r                   |

| Field | Bits | Туре | Description                                                                                  |
|-------|------|------|----------------------------------------------------------------------------------------------|
| F1SA  | 15:2 | rw   | Rx FIFO 1 Start Address                                                                      |
|       |      |      | This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. |
|       |      |      | Start address of Rx FIFO 1 in Message RAM (32-bit word address).                             |



| Field | Bits       | Туре | Description                                                                                                                                                                                                                                                                                 |
|-------|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1S   | 22:16      | rw   | Rx FIFO 1 Size This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  00 <sub>H</sub> No Rx FIFO 1  01 <sub>H</sub> 1 Rx FIFO 1 elements  40 <sub>H</sub> 64 Rx FIFO 1 elements others, 64 Rx FIFO 1 elements                                        |
| F1WM  | 30:24      | rw   | Rx FIFO 1 Watermark This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  01 <sub>H</sub> Level for Rx FIFO 1 watermark interrupt (IR.RF1W)  40 <sub>H</sub> Level for Rx FIFO 1 watermark interrupt (IR.RF1W) others, Watermark interrupt disabled |
| F10M  | 31         | rw   | FIFO 1 Operation Mode This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. FIFO 1 can be operated in blocking or in overwrite mode.  0 <sub>B</sub> FIFO 1 blocking mode 1 <sub>B</sub> FIFO 1 overwrite mode                                       |
| 0     | 1:0,<br>23 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                             |

### Rx FIFO 1 Status i

# RXF1Si (i=0-3)

| Rx FIF | 0 1 Sta | •  |    |    |      | (0082B4 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |      | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |    |
|--------|---------|----|----|----|------|--------------------------------------------|----|----|------|-------------------------------------------------|----|----|----|----|----|
| 31     | 30      | 29 | 28 | 27 | 26   | 25                                         | 24 | 23 | 22   | 21                                              | 20 | 19 | 18 | 17 | 16 |
| (      | 0       |    | 0  |    | RF1L | F1F                                        | (  | D  | F1PI |                                                 |    |    |    | '  |    |
|        | r       | r  |    |    | rh   | rh                                         |    | r  | rh   |                                                 |    | 1  |    |    |    |
| 15     | 14      | 13 | 12 | 11 | 10   | 9                                          | 8  | 7  | 6    | 5                                               | 4  | 3  | 2  | 1  | 0  |
| (      | 0       |    |    | F1 | LGI  | 0                                          |    |    |      | F1FL                                            |    |    |    |    | '  |
| r      |         |    |    | h  | 1    |                                            | r  | 1  | rh   |                                                 |    |    |    |    |    |

| Field | Bits  | Туре | Description                                                                 |
|-------|-------|------|-----------------------------------------------------------------------------|
| F1FL  | 6:0   | rh   | Rx FIFO 1 Fill Level Number of elements stored in Rx FIFO 1, range 0 to 64. |
| F1GI  | 13:8  | rh   | Rx FIFO 1 Get Index Rx FIFO 1 read index pointer, range 0 to 63.            |
| F1PI  | 21:16 | rh   | Rx FIFO 1 Put Index Rx FIFO 1 write index pointer, range 0 to 63.           |



| Field | Bits                                      | Туре | Description                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|-------|-------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| F1F   | 24                                        | rh   | Rx FIFO 1 Full  0 <sub>B</sub> Rx FIFO 1 not full  1 <sub>B</sub> Rx FIFO 1 full                                                                                                     |  |  |  |  |  |  |  |  |
| RF1L  | 25                                        | rh   | Rx FIFO 1 Message Lost This bit is a copy of interrupt flag IR.RF1L. When IR.RF1L is reset, this bit is also reset.  Note: Overwriting the oldest message when RXF1C.F1OM = '1' will |  |  |  |  |  |  |  |  |
|       |                                           |      | not set this flag.  O <sub>B</sub> No Rx FIFO 1 message lost 1 <sub>B</sub> Rx FIFO 1 message lost, also set after write attempt to Rx FIFO 1 of size zero                           |  |  |  |  |  |  |  |  |
| 0     | 7,<br>15:14,<br>23:22,<br>29:26,<br>31:30 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                      |  |  |  |  |  |  |  |  |

### Rx FIFO 1 Acknowledge i

#### **RXF1Ai (i=0-3)**

| Rx FIF | 0 1 Ack | •  | dge i |    |    | (0082B8 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |    |  |
|--------|---------|----|-------|----|----|--------------------------------------------|----|----|----|-------------------------------------------------|----|----|----|----|----|--|
| 31     | 30      | 29 | 28    | 27 | 26 | 25                                         | 24 | 23 | 22 | 21                                              | 20 | 19 | 18 | 17 | 16 |  |
|        | ,       | ,  | ı     | ı  | Ţ  | •                                          |    | 0  | •  | Į.                                              | Ţ  | •  | ı  | Ţ  | '  |  |
| L      | 1       | 1  | 1     | 1  | 1  | 1                                          | 1  | r  | 1  | I                                               | 1  | 1  | 1  | 1  |    |  |
| 15     | 14      | 13 | 12    | 11 | 10 | 9                                          | 8  | 7  | 6  | 5                                               | 4  | 3  | 2  | 1  | 0  |  |
|        |         | 1  |       |    | 0  | 1                                          |    |    |    |                                                 |    | F1 | AI |    |    |  |
|        | 1       |    |       |    | r  | 1                                          | 1  | 1  | 1  |                                                 | 1  | r  | W  | 1  |    |  |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                           |
|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1AI  | 5:0  | rw   | Rx FIFO 1 Acknowledge Index                                                                                                                                                                                                                                           |
|       |      |      | After the Host has read a message or a sequence of messages from Rx FIFO 1 it has to write the buffer index of the last element read from Rx FIFO 1 to F1AI. This will set the Rx FIFO 1 Get Index RXF1S.F1GI to F1AI + 1 and update the FIFO 1 Fill Level RXF1S.F1FL |
| 0     | 31:6 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                       |

# Rx Buffer/FIFO Element Size Configuration i

Configures the number of data bytes belonging to an Rx Buffer / Rx FIFO element. Data field sizes > 8 bytes are intended for CAN FD operation only.



# RXESCi (i=0-3)

| Rx Buf | fer/FIF | O Elem | ent Si | ze Conf  | Application Reset Value: 0000 0000 <sub>H</sub> |      |    |    |    |      |          |    |    |      |    |
|--------|---------|--------|--------|----------|-------------------------------------------------|------|----|----|----|------|----------|----|----|------|----|
| 31     | 30      | 29     | 28     | 27       | 26                                              | 25   | 24 | 23 | 22 | 21   | 20       | 19 | 18 | 17   | 16 |
|        |         | ı      | I      | 1        | ı                                               | ı    |    | 0  | 1  | '    |          | •  |    | 1    | ı  |
|        | 1       | 1      | 1      | <u>I</u> | 1                                               | 1    |    | r  | 1  | 1    | <u> </u> | 1  | I  | 1    |    |
| 15     | 14      | 13     | 12     | 11       | 10                                              | 9    | 8  | 7  | 6  | 5    | 4        | 3  | 2  | 1    | 0  |
|        | 0       |        |        |          |                                                 | RBDS |    | 0  |    | F1DS |          | 0  |    | FODS |    |
|        | 1       | r      |        |          |                                                 | rw   |    | r  |    | rw   |          | r  |    | rw   |    |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| FODS  | 2:0  | rw   | Rx FIFO 0 Data Field Size                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|       |      |      | This bitfield is CCE and INIT protected. Writes will only have effect, if both                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|       |      |      | bits are set.                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|       |      |      | Note: In case the data field size of an accepted CAN frame exceeds the data field size configured for the matching Rx Buffer or Rx FIFO, only the number of bytes as configured by RXESC are stored to the Rx Buffer resp. Rx FIFO element. The rest of the frame's data field is ignored. |  |  |  |  |  |  |  |
|       |      |      | 000 <sub>B</sub> 8-byte data field                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|       |      |      | 001 <sub>B</sub> 12-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 010 <sub>B</sub> 16-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 011 <sub>B</sub> 20-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 100 <sub>B</sub> 24-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 101 <sub>B</sub> 32-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 110 <sub>B</sub> 48-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 111 <sub>B</sub> 64-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| F1DS  | 6:4  | rw   | Rx FIFO 1 Data Field Size                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|       |      |      | This bitfield is CCE and INIT protected. Writes will only have effect, if both                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|       |      |      | bits are set.                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|       |      |      | 000 <sub>B</sub> 8-byte data field                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|       |      |      | 001 <sub>B</sub> 12-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 010 <sub>B</sub> 16-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 011 <sub>B</sub> 20-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 100 <sub>B</sub> 24-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 101 <sub>B</sub> 32-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 110 <sub>B</sub> 48-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|       |      |      | 111 <sub>B</sub> 64-byte data field                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |



| Field | Bits  | Туре | Description                                                                    |
|-------|-------|------|--------------------------------------------------------------------------------|
| RBDS  | 10:8  | rw   | Rx Buffer Data Field Size                                                      |
|       |       |      | This bitfield is CCE and INIT protected. Writes will only have effect, if both |
|       |       |      | bits are set.                                                                  |
|       |       |      | 000 <sub>B</sub> 8-byte data field                                             |
|       |       |      | 001 <sub>B</sub> 12-byte data field                                            |
|       |       |      | 010 <sub>B</sub> 16-byte data field                                            |
|       |       |      | 011 <sub>B</sub> 20-byte data field                                            |
|       |       |      | 100 <sub>B</sub> 24-byte data field                                            |
|       |       |      | 101 <sub>B</sub> 32-byte data field                                            |
|       |       |      | 110 <sub>B</sub> 48-byte data field                                            |
|       |       |      | 111 <sub>B</sub> 64-byte data field                                            |
| 0     | 3,    | r    | Reserved                                                                       |
|       | 7,    |      | Shall read 0, shall be written with 0.                                         |
|       | 31:11 |      |                                                                                |

# Tx Buffer Configuration i

#### TXBCi (i=0-3)

|    | fer Con | figura | tion i   |    |     | (00 | 82C0 <sub>H</sub> - | ⊦i*400 <sub>н</sub> | 1) | Ар | 0000 <sub>H</sub> |    |    |    |    |
|----|---------|--------|----------|----|-----|-----|---------------------|---------------------|----|----|-------------------|----|----|----|----|
| 31 | 30      | 29     | 28       | 27 | 26  | 25  | 24                  | 23                  | 22 | 21 | 20                | 19 | 18 | 17 | 16 |
| 0  | TFQM    |        |          | TF | :QS | '   | 0                   |                     |    |    | •                 | ND | ТВ |    | '  |
| r  | rw      |        | <u> </u> | r  | W   | r   |                     |                     | rw |    |                   |    |    |    |    |
| 15 | 14      | 13     | 12       | 11 | 10  | 9   | 8                   | 7                   | 6  | 5  | 4                 | 3  | 2  | 1  | 0  |
|    | ,       | TBSA   |          |    |     |     |                     |                     |    |    |                   |    |    | 0  |    |
| 1  | 1       |        | 1        | 1  | 1   | r   | W                   | 1                   | 1  | 1  | 1                 | 1  |    | 1  | r  |

| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TBSA  | 15:2  | rw   | Tx Buffers Start Address This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Start address of Tx Buffers section in Message RAM (32-bit word address).                                                                                                                                                                                                                                                                                                      |
| NDTB  | 21:16 | rw   | Number of Dedicated Transmit Buffers  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  Note: Be aware that the sum of TFQS and NDTB may be not greater than 32. There is no check for erroneous configurations. The Tx Buffers section in the Message RAM starts with the dedicated Tx Buffers.  OO <sub>H</sub> No Dedicated Tx Buffers O1 <sub>H</sub> 1 Dedicated Tx Buffers 2O <sub>H</sub> 32 Dedicated Tx Buffers others, 32 Dedicated Tx Buffers |



| Field | Bits                 | Туре | Description                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|-------|----------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| TFQS  | 29:24                | rw   | Transmit FIFO/Queue Size This bitfield is CCE and INIT protected. Writes will only have effect, if b bits are set.  00 <sub>H</sub> No Tx FIFO/Queue 01 <sub>H</sub> 1 Tx Buffers used for Tx FIFO/Queue 20 <sub>H</sub> 32 Tx Buffers used for Tx FIFO/Queue others, 32 Tx Buffers used for Tx FIFO/Queue |  |  |  |  |  |  |  |
| TFQM  | 30                   | rw   | Tx FIFO/Queue Mode This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  0 <sub>B</sub> Tx FIFO operation 1 <sub>B</sub> Tx Queue operation                                                                                                                        |  |  |  |  |  |  |  |
| 0     | 1:0,<br>23:22,<br>31 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |

### Tx FIFO/Queue Status i

The Tx FIFO/Queue status is related to the pending Tx requests listed in register TXBRP. Therefore the effect of Add/Cancellation requests may be delayed due to a running Tx scan (TXBRP not yet updated).

# TXFQSi (i=0-3)

|   | _  | D/Que | ie Stat | us i     |          |      | (0082C4 <sub>H</sub> +i*400 <sub>H</sub> ) A |    |    |    |      | Application Reset Value: 0000 0000 <sub>H</sub> |    |       |    |    |  |
|---|----|-------|---------|----------|----------|------|----------------------------------------------|----|----|----|------|-------------------------------------------------|----|-------|----|----|--|
| ; | 31 | 30    | 29      | 28       | 27       | 26   | 25                                           | 24 | 23 | 22 | 21   | 20                                              | 19 | 18    | 17 | 16 |  |
|   |    | ı     | 1       | ı        |          | 0    |                                              | •  | '  |    | TFQF |                                                 | ı  | TFQPI |    | '  |  |
|   |    | 1     | 1       | <u>1</u> | <u>I</u> | r    | 1                                            | 1  | rh |    |      |                                                 | 1  | 1     |    |    |  |
|   | 15 | 14    | 13      | 12       | 11       | 10   | 9                                            | 8  | 7  | 6  | 5    | 4                                               | 3  | 2     | 1  | 0  |  |
|   |    | 0     | 1       |          | 1        | TFGI | 1                                            | 1  |    | 0  | TFFL |                                                 |    |       |    |    |  |
| 1 |    | r     | 1       | 1        | +        | rh   | 1                                            | r  |    |    | -1   | rh                                              |    |       |    |    |  |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TFFL  | 5:0  | rh   | Tx FIFO Free Level  Number of consecutive free Tx FIFO elements starting from TFGI, range 0 to 32. Read as zero when Tx Queue operation is configured (TXBC.TFQM = '1')  Note: In case of mixed configurations where dedicated Tx Buffers are combined with a Tx FIFO or a Tx Queue, the Put and Get Indices indicate the number of the Tx Buffer starting with the first dedicated Tx Buffers. Example: For a configuration of 12 dedicated Tx Buffers and a Tx FIFO of 20 Buffers a Put Index of 15 points to the fourth buffer of the Tx FIFO. |



| Field | Bits                    | Туре | Description                                                                                                                        |
|-------|-------------------------|------|------------------------------------------------------------------------------------------------------------------------------------|
| TFGI  | 12:8                    | rh   | Tx FIFO Get Index Tx FIFO read index pointer, range 0 to 31. Read as zero when Tx Queue operation is configured (TXBC.TFQM = '1'). |
| TFQPI | 20:16                   | rh   | Tx FIFO/Queue Put Index Tx FIFO/Queue write index pointer, range 0 to 31.                                                          |
| TFQF  | 21                      | rh   | Tx FIFO/Queue Full  0 <sub>B</sub> Tx FIFO/Queue not full  1 <sub>B</sub> Tx FIFO/Queue full                                       |
| 0     | 7:6,<br>15:13,<br>31:22 | r    | Reserved Shall read 0, shall be written with 0.                                                                                    |

# Tx Buffer Element Size Configuration i

Configures the number of data bytes belonging to a Tx Buffer element. Data field sizes > 8 bytes are intended for CAN FD operation only.

#### TXESCi (i=0-3)

| Tx Buf | fer Ele | •  | ize Coı | nfigura | tion i | (00      | 82C8 <sub>H</sub> + | ⊦i*400 <sub>н</sub> | <sub>1</sub> ) | Ар       | plicati | on Res | et Valu  | ie: 0000 | 0000 <sub>H</sub> |
|--------|---------|----|---------|---------|--------|----------|---------------------|---------------------|----------------|----------|---------|--------|----------|----------|-------------------|
| 31     | 30      | 29 | 28      | 27      | 26     | 25       | 24                  | 23                  | 22             | 21       | 20      | 19     | 18       | 17       | 16                |
|        | •       | •  | •       | •       | '      | '        |                     | 0                   | •              |          | •       | •      | '        | 1        | '                 |
|        | 1       | 1  | 1       | 1       | 1      | <u> </u> | 1                   | r                   | 1              | <u>I</u> | 1       | 1      | <u>I</u> | 1        | <u>L</u>          |
| 15     | 14      | 13 | 12      | 11      | 10     | 9        | 8                   | 7                   | 6              | 5        | 4       | 3      | 2        | 1        | 0                 |
|        | 1       | 1  | 1       | 1       | 1      | 0        | 1                   | 1                   | 1              | ı        | 1       | 1      |          | TBDS     | 1                 |
| 1      |         | 1  |         | 1       | 1      | r        |                     |                     |                |          |         |        |          | rw       |                   |

| Field | Bits | Туре                                                                                                                                                                                                                                  | Description                                                                                                                                                                                                                    |
|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TBDS  | 2:0  | rw                                                                                                                                                                                                                                    | <b>Tx Buffer Data Field Size</b> This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.                                                                                                  |
|       |      |                                                                                                                                                                                                                                       | Note: In case the data length code DLC of a Tx Buffer element is configured to a value higher than the Tx Buffer data field size TXESC.TBDS, the bytes not defined by the Tx Buffer are transmitted as "0xCC" (padding bytes). |
|       |      | 000 <sub>B</sub> 8-byte data field<br>001 <sub>B</sub> 12-byte data field<br>010 <sub>B</sub> 16-byte data field<br>011 <sub>B</sub> 20-byte data field<br>100 <sub>B</sub> 24-byte data field<br>101 <sub>B</sub> 32-byte data field | <ul> <li>001<sub>B</sub> 12-byte data field</li> <li>010<sub>B</sub> 16-byte data field</li> <li>011<sub>B</sub> 20-byte data field</li> <li>100<sub>B</sub> 24-byte data field</li> </ul>                                     |
|       |      |                                                                                                                                                                                                                                       | 111 <sub>B</sub> 64-byte data field                                                                                                                                                                                            |



| Field | Bits | Туре | Description                            |
|-------|------|------|----------------------------------------|
| 0     | 31:3 | r    | Reserved                               |
|       |      |      | Shall read 0, shall be written with 0. |

#### Tx Buffer Request Pending i

Each Tx Buffer has its own Transmission Request Pending bit. The bits are set via register TXBAR. The bits are reset after a requested transmission has completed or has been cancelled via register TXBCR.

TXBRP bits are set only for those Tx Buffers configured via TXBC. After a TXBRP bit has been set, a Tx scan (Tx Handling) is started to check for the pending Tx request with the highest priority (Tx Buffer with lowest Message ID).

A cancellation request resets the corresponding transmission request pending bit of register TXBRP. In case a transmission has already been started when a cancellation is requested, this is done at the end of the transmission, regardless whether the transmission was successful or not. The cancellation request bits are reset directly after the corresponding TXBRP bit has been reset.

After a cancellation has been requested, a finished cancellation is signalled via TXBCF

- after successful transmission together with the corresponding TXBTO bit
- when the transmission has not yet been started at the point of cancellation
- · when the transmission has been aborted due to lost arbitration
- when an error occurred during frame transmission

In DAR mode all transmissions are automatically cancelled if they are not successful. The corresponding TXBCF bit is set for all unsuccessful transmissions.

Note:

TXBRP bits which are set while a Tx scan is in progress are not considered during this particular Tx scan. In case a cancellation is requested for such a Tx Buffer, this "Add Request" is cancelled immediately, the corresponding TXBRP bit is reset.

#### TXBRPi (i=0-3)

| Tx Buf | fer Rec | uest P | ending | ; i   |       | (00   | 82CC <sub>H</sub> + | i*400 <sub>H</sub> | )     | Application Reset Value: 0000 0000 <sub>H</sub> |       |       |       |       |       |
|--------|---------|--------|--------|-------|-------|-------|---------------------|--------------------|-------|-------------------------------------------------|-------|-------|-------|-------|-------|
| 31     | 30      | 29     | 28     | 27    | 26    | 25    | 24                  | 23                 | 22    | 21                                              | 20    | 19    | 18    | 17    | 16    |
| TRP31  | TRP30   | TRP29  | TRP28  | TRP27 | TRP26 | TRP25 | TRP24               | TRP23              | TRP22 | TRP21                                           | TRP20 | TRP19 | TRP18 | TRP17 | TRP16 |
| rh     | rh      | rh     | rh     | rh    | rh    | rh    | rh                  | rh                 | rh    | rh                                              | rh    | rh    | rh    | rh    | rh    |
| 15     | 14      | 13     | 12     | 11    | 10    | 9     | 8                   | 7                  | 6     | 5                                               | 4     | 3     | 2     | 1     | 0     |
| TRP15  | TRP14   | TRP13  | TRP12  | TRP11 | TRP10 | TRP9  | TRP8                | TRP7               | TRP6  | TRP5                                            | TRP4  | TRP3  | TRP2  | TRP1  | TRP0  |
| rh     | rh      | rh     | rh     | rh    | rh    | rh    | rh                  | rh                 | rh    | rh                                              | rh    | rh    | rh    | rh    | rh    |

| Field         | Bits | Type | Description                                    |
|---------------|------|------|------------------------------------------------|
| TRPz (z=0-31) | Z    | rh   | Transmission Request Pending Tx Buffer z - TRP |
|               |      |      | 0 <sub>B</sub> No transmission request pending |
|               |      |      | 1 <sub>B</sub> Transmission request pending    |

#### Tx Buffer Add Request i

Each Tx Buffer has its own "Add Request" bit. Writing a '1' will set the corresponding "Add Request" bit; writing a '0' has no impact. This enables the Host to set transmission requests for multiple Tx Buffers with one write to



TXBAR. TXBAR bits are set only for those Tx Buffers configured via TXBC. When no Tx scan is running, the bits are reset immediately, else the bits remain set until the Tx scan process has completed.

Note:

If an add request is applied for a Tx Buffer with pending transmission request (corresponding TXBRP bit already set), this add request is ignored. LDMST or SWAPMSK.W instructions should be used only with bit mask enabled for all rwh bits in this register.

#### TXBARi (i=0-3)

| Tx Buf | fer Add | l Reque | est i |      |      | (00  | 82 <b>D</b> 0 <sub>H</sub> + | ·i*400 <sub>H</sub> | )    | Application Reset Value: 0000 0000 <sub>H</sub> |      |      |      |      |      |  |
|--------|---------|---------|-------|------|------|------|------------------------------|---------------------|------|-------------------------------------------------|------|------|------|------|------|--|
| 31     | 30      | 29      | 28    | 27   | 26   | 25   | 24                           | 23                  | 22   | 21                                              | 20   | 19   | 18   | 17   | 16   |  |
| AR31   | AR30    | AR29    | AR28  | AR27 | AR26 | AR25 | AR24                         | AR23                | AR22 | AR21                                            | AR20 | AR19 | AR18 | AR17 | AR16 |  |
| rwh    | rwh     | rwh     | rwh   | rwh  | rwh  | rwh  | rwh                          | rwh                 | rwh  | rwh                                             | rwh  | rwh  | rwh  | rwh  | rwh  |  |
| 15     | 14      | 13      | 12    | 11   | 10   | 9    | 8                            | 7                   | 6    | 5                                               | 4    | 3    | 2    | 1    | 0    |  |
| AR15   | AR14    | AR13    | AR12  | AR11 | AR10 | AR9  | AR8                          | AR7                 | AR6  | AR5                                             | AR4  | AR3  | AR2  | AR1  | ARO  |  |
| rwh    | rwh     | rwh     | rwh   | rwh  | rwh  | rwh  | rwh                          | rwh                 | rwh  | rwh                                             | rwh  | rwh  | rwh  | rwh  | rwh  |  |

| Field        | Bits | Туре | Description                                  |
|--------------|------|------|----------------------------------------------|
| ARz (z=0-31) | Z    | rwh  | Add Request Tx Buffer z - AR                 |
|              |      |      | 0 <sub>B</sub> No transmission request added |
|              |      |      | 1 <sub>B</sub> Transmission requested added  |

#### **Tx Buffer Cancellation Request i**

Each Tx Buffer has its own Cancellation Request bit. Writing a '1' will set the corresponding Cancellation Request bit; writing a '0' has no impact. This enables the Host to set cancellation requests for multiple Tx Buffers with one write to TXBCR. TXBCR bits are set only for those Tx Buffers configured via TXBC. The bits remain set until the corresponding bit of TXBRP is reset.

Note:

LDMST or SWAPMSK.W instructions should be used only with bit mask enabled for all rwh bits in this register.

#### TXBCRi (i=0-3)

| Tx Buf | fer Can | cellati | on Req | uest i |      | (00  | 82 <b>D4<sub>H</sub>+</b> | i*400 <sub>H</sub> | )    | Application Reset Value: 0000 0000 <sub>H</sub> |      |      |      |      |      |  |
|--------|---------|---------|--------|--------|------|------|---------------------------|--------------------|------|-------------------------------------------------|------|------|------|------|------|--|
| 31     | 30      | 29      | 28     | 27     | 26   | 25   | 24                        | 23                 | 22   | 21                                              | 20   | 19   | 18   | 17   | 16   |  |
| CR31   | CR30    | CR29    | CR28   | CR27   | CR26 | CR25 | CR24                      | CR23               | CR22 | CR21                                            | CR20 | CR19 | CR18 | CR17 | CR16 |  |
| rwh    | rwh     | rwh     | rwh    | rwh    | rwh  | rwh  | rwh                       | rwh                | rwh  | rwh                                             | rwh  | rwh  | rwh  | rwh  | rwh  |  |
| 15     | 14      | 13      | 12     | 11     | 10   | 9    | 8                         | 7                  | 6    | 5                                               | 4    | 3    | 2    | 1    | 0    |  |
| CR15   | CR14    | CR13    | CR12   | CR11   | CR10 | CR9  | CR8                       | CR7                | CR6  | CR5                                             | CR4  | CR3  | CR2  | CR1  | CR0  |  |
| rwh    | rwh     | rwh     | rwh    | rwh    | rwh  | rwh  | rwh                       | rwh                | rwh  | rwh                                             | rwh  | rwh  | rwh  | rwh  | rwh  |  |



| Field        | Field Bits Type Description |     |                                        |  |  |  |  |  |  |  |
|--------------|-----------------------------|-----|----------------------------------------|--|--|--|--|--|--|--|
| CRz (z=0-31) | Z                           | rwh | Cancellation Request Tx Buffer z - CR  |  |  |  |  |  |  |  |
|              |                             |     | 0 <sub>B</sub> No cancellation pending |  |  |  |  |  |  |  |
|              |                             |     | 1 <sub>B</sub> Cancellation pending    |  |  |  |  |  |  |  |

#### **Tx Buffer Transmission Occurred i**

Each Tx Buffer has its own Transmission Occurred bit. The bits are set when the corresponding TXBRP bit is cleared after a successful transmission. The bits are reset when a new transmission is requested by writing a '1' to the corresponding bit of register TXBAR.

#### TXBTOi (i=0-3)

| Tx Buf | fer Tra | nsmiss | ion Oc | curred | i    | (008 | 32D8 <sub>H</sub> + | i*400 <sub>H</sub> | )    | Application Reset Value: 0000 0000 <sub>H</sub> |      |      |      |      |      |
|--------|---------|--------|--------|--------|------|------|---------------------|--------------------|------|-------------------------------------------------|------|------|------|------|------|
| 31     | 30      | 29     | 28     | 27     | 26   | 25   | 24                  | 23                 | 22   | 21                                              | 20   | 19   | 18   | 17   | 16   |
| T031   | TO30    | TO29   | TO28   | T027   | TO26 | TO25 | T024                | TO23               | T022 | T021                                            | TO20 | TO19 | TO18 | T017 | TO16 |
| rh     | rh      | rh     | rh     | rh     | rh   | rh   | rh                  | rh                 | rh   | rh                                              | rh   | rh   | rh   | rh   | rh   |
| 15     | 14      | 13     | 12     | 11     | 10   | 9    | 8                   | 7                  | 6    | 5                                               | 4    | 3    | 2    | 1    | 0    |
| T015   | TO14    | TO13   | TO12   | T011   | TO10 | TO9  | TO8                 | <b>TO7</b>         | T06  | TO5                                             | T04  | тоз  | TO2  | T01  | тоо  |
| rh     | rh      | rh     | rh     | rh     | rh   | rh   | rh                  | rh                 | rh   | rh                                              | rh   | rh   | rh   | rh   | rh   |

| Field        | Bits | Туре | Description                             |
|--------------|------|------|-----------------------------------------|
| TOz (z=0-31) | Z    | rh   | Transmission Occurred Tx Buffer z - TO  |
|              |      |      | 0 <sub>B</sub> No transmission occurred |
|              |      |      | 1 <sub>B</sub> Transmission occurred    |

#### Tx Buffer Cancellation Finished i

Each Tx Buffer has its own Cancellation Finished bit. The bits are set when the corresponding TXBRP bit is cleared after a cancellation was requested via TXBCR. In case the corresponding TXBRP bit was not set at the point of cancellation, CF is set immediately. The bits are reset when a new transmission is requested by writing a '1' to the corresponding bit of register TXBAR.

#### TXBCFi (i=0-3)

| Tx Buffer Cancellation Finished i |      |      |      |      | (00  | (0082DC <sub>H</sub> +i*400 <sub>H</sub> ) |      |      |      | Application Reset Value: 0000 0000 <sub>H</sub> |      |      |      |      |      |
|-----------------------------------|------|------|------|------|------|--------------------------------------------|------|------|------|-------------------------------------------------|------|------|------|------|------|
| 31                                | 30   | 29   | 28   | 27   | 26   | 25                                         | 24   | 23   | 22   | 21                                              | 20   | 19   | 18   | 17   | 16   |
| CF31                              | CF30 | CF29 | CF28 | CF27 | CF26 | CF25                                       | CF24 | CF23 | CF22 | CF21                                            | CF20 | CF19 | CF18 | CF17 | CF16 |
| rh                                | rh   | rh   | rh   | rh   | rh   | rh                                         | rh   | rh   | rh   | rh                                              | rh   | rh   | rh   | rh   | rh   |
| 15                                | 14   | 13   | 12   | 11   | 10   | 9                                          | 8    | 7    | 6    | 5                                               | 4    | 3    | 2    | 1    | 0    |
| CF15                              | CF14 | CF13 | CF12 | CF11 | CF10 | CF9                                        | CF8  | CF7  | CF6  | CF5                                             | CF4  | CF3  | CF2  | CF1  | CF0  |
| rh                                | rh   | rh   | rh   | rh   | rh   | rh                                         | rh   | rh   | rh   | rh                                              | rh   | rh   | rh   | rh   | rh   |



| Field        | Bits | Туре | Description                                          |
|--------------|------|------|------------------------------------------------------|
| CFz (z=0-31) | Z    | rh   | Cancellation Finished Tx Buffer z - CF               |
|              |      |      | 0 <sub>B</sub> No transmit buffer cancellation       |
|              |      |      | 1 <sub>B</sub> Transmit buffer cancellation finished |

### Tx Buffer Transmission Interrupt Enable i

Each Tx Buffer has its own Transmission Interrupt Enable bit.

### TXBTIEi (i=0-3)

| Tx Buf | Tx Buffer Transmission Interrupt Enable i (0082E0 <sub>H</sub> +i*400 <sub>H</sub> ) |       |       |       |       |       |       |       |       | Application Reset Value: 0000 0000 <sub>H</sub> |       |       |       |       |       |
|--------|--------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------------------------------------|-------|-------|-------|-------|-------|
| 31     | 30                                                                                   | 29    | 28    | 27    | 26    | 25    | 24    | 23    | 22    | 21                                              | 20    | 19    | 18    | 17    | 16    |
| TIE31  | TIE30                                                                                | TIE29 | TIE28 | TIE27 | TIE26 | TIE25 | TIE24 | TIE23 | TIE22 | TIE21                                           | TIE20 | TIE19 | TIE18 | TIE17 | TIE16 |
| rw     | rw                                                                                   | rw    | rw    | rw    | rw    | rw    | rw    | rw    | rw    | rw                                              | rw    | rw    | rw    | rw    | rw    |
| 15     | 14                                                                                   | 13    | 12    | 11    | 10    | 9     | 8     | 7     | 6     | 5                                               | 4     | 3     | 2     | 1     | 0     |
| TIE15  | TIE14                                                                                | TIE13 | TIE12 | TIE11 | TIE10 | TIE9  | TIE8  | TIE7  | TIE6  | TIE5                                            | TIE4  | TIE3  | TIE2  | TIE1  | TIEO  |
| rw     | rw                                                                                   | rw    | rw    | rw    | rw    | rw    | rw    | rw    | rw    | rw                                              | rw    | rw    | rw    | rw    | rw    |

| Field         | Bits | Туре | Description                                     |  |  |  |  |  |  |
|---------------|------|------|-------------------------------------------------|--|--|--|--|--|--|
| TIEz (z=0-31) | Z    | rw   | Transmission Interrupt Enable Tx Buffer z - TIE |  |  |  |  |  |  |
|               |      |      | 0 <sub>B</sub> Transmission interrupt disabled  |  |  |  |  |  |  |
|               |      |      | 1 <sub>B</sub> Transmission interrupt enable    |  |  |  |  |  |  |

### Tx Buffer Cancellation Finished Interrupt Enable i

Each Tx Buffer has its own Cancellation Finished Interrupt Enable bit.

### TXBCIEi (i=0-3)

# Tx Buffer Cancellation Finished Interrupt Enable i(0082E4<sub>H</sub>+i\*400<sub>H</sub>) Application Reset Value: 0000 0000<sub>H</sub>

| 31         | 30         | 29         | 28         | 27         | 26         | 25         | 24         | 23    | 22         | 21    | 20         | 19    | 18         | 17         | 16         |
|------------|------------|------------|------------|------------|------------|------------|------------|-------|------------|-------|------------|-------|------------|------------|------------|
| CFIE3      | CFIE3<br>0 | CFIE2<br>9 | CFIE2<br>8 | CFIE2<br>7 | CFIE2<br>6 | CFIE2<br>5 | CFIE2<br>4 | CFIE2 | CFIE2<br>2 | CFIE2 | CFIE2<br>0 | CFIE1 | CFIE1<br>8 | CFIE1<br>7 | CFIE1<br>6 |
| rw         | rw         | rw         | rw         | rw         | rw         | rw         | rw         | rw    | rw         | rw    | rw         | rw    | rw         | rw         | rw         |
| 15         | 14         | 13         | 12         | 11         | 10         | 9          | 8          | 7     | 6          | 5     | 4          | 3     | 2          | 1          | 0          |
| CFIE1<br>5 | CFIE1<br>4 | CFIE1      | CFIE1<br>2 | CFIE1      | CFIE1<br>0 | CFIE9      | CFIE8      | CFIE7 | CFIE6      | CFIE5 | CFIE4      | CFIE3 | CFIE2      | CFIE1      | CFIE0      |
| rw         | rw         | rw         | rw         | rw         | rw         | rw         | rw         | rw    | rw         | rw    | rw         | rw    | rw         | rw         | rw         |

| Field          | Bits | Type | Description                                                                                                                               |
|----------------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| CFIEz (z=0-31) | Z    | rw   | Cancellation Finished Interrupt Enable Tx Buffer z - CFIE                                                                                 |
|                |      |      | <ul> <li>O<sub>B</sub> Cancellation finished interrupt disabled</li> <li>1<sub>B</sub> Cancellation finished interrupt enabled</li> </ul> |



# Tx Event FIFO Configuration i

# TXEFCi (i=0-3)

| Tx Eve | nt FIFC | ,<br>Confi | guratio  | on i |    | (00 | (0082F0 <sub>H</sub> +i*400 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 ( |    |    |    |    |  |  |
|--------|---------|------------|----------|------|----|-----|--------------------------------------------|----|----|----|---------------------------------|----|----|----|----|--|--|
| 31     | 30      | 29         | 28       | 27   | 26 | 25  | 24                                         | 23 | 22 | 21 | 20                              | 19 | 18 | 17 | 16 |  |  |
|        | 0 EFWM  |            |          |      | WM | 0   |                                            |    |    |    | 1                               |    |    |    |    |  |  |
|        | r       |            | <u> </u> | r    | W  | 1   | <u>1</u>                                   |    | r  | rw |                                 |    |    |    |    |  |  |
| 15     | 14      | 13         | 12       | 11   | 10 | 9   | 8                                          | 7  | 6  | 5  | 4                               | 3  | 2  | 1  | 0  |  |  |
|        | 1       |            |          |      | 1  | EF  | SA                                         |    | 1  |    | 1                               |    |    |    | 0  |  |  |
| L      | 1       |            |          |      |    | r   | W                                          | 1  |    |    |                                 |    |    |    | r  |  |  |

| Field | Bits                    | Туре | Description                                                                                                                                                                                                                                                                                                                             |
|-------|-------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EFSA  | 15:2                    | rw   | Event FIFO Start Address This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Start address of Tx Event FIFO in Message RAM (32-bit word address).                                                                                                                                              |
| EFS   | 21:16                   | rw   | Event FIFO Size  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  The Tx Event FIFO elements are indexed from 0 to EFS - 1  00 <sub>H</sub> Tx Event FIFO disabled  01 <sub>H</sub> 1 Tx Event FIFO elements  20 <sub>H</sub> 32 Tx Event FIFO elements  others, 32 Tx Event FIFO elements |
| EFWM  | 29:24                   | rw   | Event FIFO Watermark This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  01 <sub>H</sub> Level for Tx Event FIFO watermark interrupt (IR.TEFW)  20 <sub>H</sub> Level for Tx Event FIFO watermark interrupt (IR.TEFW) others, Watermark interrupt disabled                                    |
| 0     | 1:0,<br>23:22,<br>31:30 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                         |



## Tx Event FIFO Status i

## TXEFSi (i=0-3)

| Tx Eve | nt FIFC | ) Statu | s i |    |    | (00  | 82F4 <sub>H</sub> + | i*400 <sub>H</sub> | )      | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |      |          |    |  |
|--------|---------|---------|-----|----|----|------|---------------------|--------------------|--------|-------------------------------------------------|----|----|------|----------|----|--|
| 31     | 30      | 29      | 28  | 27 | 26 | 25   | 24                  | 23                 | 22     | 21                                              | 20 | 19 | 18   | 17       | 16 |  |
|        |         |         | D   |    | !  | TEFL | EFF                 |                    | 0      | ·                                               |    | !  | EFPI |          | !  |  |
|        | r       |         |     |    |    |      | rh                  |                    | r      | I                                               |    | 1  | rh   | <u> </u> |    |  |
| 15     | 14      | 13      | 12  | 11 | 10 | 9    | 8                   | 7                  | 6      | 5                                               | 4  | 3  | 2    | 1        | 0  |  |
|        | 0 EFGI  |         |     |    |    |      | ,                   | (                  | ,<br>) | EFFL                                            |    |    |      |          |    |  |
| 1      | r       |         |     |    | rh | +    |                     |                    | r      |                                                 |    | r  | h    |          |    |  |

| Field | Bits                              | Туре | Description                                                                                                                                                                                                                                                                  |
|-------|-----------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EFFL  | 5:0                               | rh   | Event FIFO Fill Level Number of elements stored in Tx Event FIFO, range 0 to 32.                                                                                                                                                                                             |
| EFGI  | 12:8                              | rh   | Event FIFO Get Index Tx Event FIFO read index pointer, range 0 to 31.                                                                                                                                                                                                        |
| EFPI  | 20:16                             | rh   | Event FIFO Put Index Tx Event FIFO write index pointer, range 0 to 31.                                                                                                                                                                                                       |
| EFF   | 24                                | rh   | Event FIFO Full  0 <sub>B</sub> Tx Event FIFO not full  1 <sub>B</sub> Tx Event FIFO full                                                                                                                                                                                    |
| TEFL  | 25                                | rh   | Tx Event FIFO Element Lost This bit is a copy of interrupt flag IR.TEFL. When IR.TEFL is reset, this bit is also reset.  0 <sub>B</sub> No Tx Event FIFO element lost 1 <sub>B</sub> Tx Event FIFO element lost, also set after write attempt to Tx Event FIFO of size zero. |
| 0     | 7:6,<br>15:13,<br>23:21,<br>31:26 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                              |

# Tx Event FIFO Acknowledge i

## TXEFAi (i=0-3)

| Tx Eve | nt FIFC | ) Ackno | owledg | e i      |          | (00 | (0082F8 <sub>H</sub> +i*400 <sub>H</sub> ) A |    |    |    |    | pplication Reset Value: 0000 0000 <sub>H</sub> |      |          |          |  |  |
|--------|---------|---------|--------|----------|----------|-----|----------------------------------------------|----|----|----|----|------------------------------------------------|------|----------|----------|--|--|
| 31     | 30      | 29      | 28     | 27       | 26       | 25  | 24                                           | 23 | 22 | 21 | 20 | 19                                             | 18   | 17       | 16       |  |  |
|        |         | ı       | ı      | Į.       | ı        | ı   |                                              | 0  |    | ı  |    | •                                              | 1    | ļ        |          |  |  |
|        | 1       |         |        | <u> </u> | <u> </u> |     | <u> </u>                                     | r  | 1  |    | 1  |                                                |      | <u> </u> |          |  |  |
| 15     | 14      | 13      | 12     | 11       | 10       | 9   | 8                                            | 7  | 6  | 5  | 4  | 3                                              | 2    | 1        | 0        |  |  |
|        |         |         |        | ı        | 0        |     | i                                            |    |    |    |    | ı ı                                            | EFAI | !        |          |  |  |
| 1      |         | 1       | 1      | I.       | r        | 1   | I.                                           | 1  |    | 1  |    | 1                                              | rw   | I        | <u> </u> |  |  |



| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                    |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EFAI  | 4:0  | rw   | Event FIFO Acknowledge Index  After the Host has read an element or a sequence of elements from the Tx Event FIFO it has to write the index of the last element read from Tx Event FIFO to EFAI. This will set the Tx Event FIFO Get Index TXEFS.EFGI to EFAI + 1 and update the FIFO 0 Fill Level TXEFS.EFFL. |
| 0     | 31:5 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                |

# **TT Trigger Memory Configuration 0**

The TTCAN function exists only on CAN0 node 0.

## TTTMC0

| TT Trig | -  | emory | Config | uration | າ 0 | (008300 <sub>H</sub> ) |     |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |     |     |          |    |    |  |  |
|---------|----|-------|--------|---------|-----|------------------------|-----|----|----|-------------------------------------------------|-----|-----|----------|----|----|--|--|
| 31      | 30 | 29    | 28     | 27      | 26  | 25                     | 24  | 23 | 22 | 21                                              | 20  | 19  | 18       | 17 | 16 |  |  |
|         |    | •     | •      | 0       | •   |                        | '   | •  |    | •                                               |     | TME | '        |    | ·  |  |  |
|         | 1  | 1     | 1      | r       | 1   | 1                      | I   | 1  |    | 1                                               | 1   | rw  | <u>I</u> | 1  |    |  |  |
| 15      | 14 | 13    | 12     | 11      | 10  | 9                      | 8   | 7  | 6  | 5                                               | 4   | 3   | 2        | 1  | 0  |  |  |
|         | ı. | 1     | i      | '       | i   | TN                     | 1SA |    |    |                                                 | i i | 1   | ,        |    | 0  |  |  |
| 1       | 1  | +     | +      | 1       | +   | r                      | ١٨/ |    |    |                                                 | -   | +   |          | 1  | r  |  |  |

| Field | Bits  | Туре | Description                                                                                  |
|-------|-------|------|----------------------------------------------------------------------------------------------|
| TMSA  | 15:2  | rw   | Trigger Memory Start Address                                                                 |
|       |       |      | This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. |
|       |       |      | Start address of Trigger Memory in Message RAM.                                              |
| TME   | 22:16 | rw   | Trigger Memory Elements                                                                      |
|       |       |      | This bitfield is CCE and INIT protected. Writes will only have effect, if both               |
|       |       |      | bits are set.                                                                                |
|       |       |      | 00 <sub>H</sub> No Trigger Memory                                                            |
|       |       |      | 01 <sub>H</sub> 1 Trigger Memory element                                                     |
|       |       |      |                                                                                              |
|       |       |      | 40 <sub>H</sub> 64 Trigger Memory element                                                    |
|       |       |      | others, 64 Trigger Memory elements                                                           |
| 0     | 1:0,  | r    | Reserved                                                                                     |
|       | 31:23 |      | Shall read 0, shall be written with 0.                                                       |

# TT Reference Message Configuration 0

The TTCAN function exists only on CAN0 node 0. For details about handling of reference messages.



#### TTRMC0

| TT Refe | erence | Messa | ge Con | figura | tion 0 |    | (008304 <sub>H</sub> ) |    |     |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |  |  |
|---------|--------|-------|--------|--------|--------|----|------------------------|----|-----|----|-------------------------------------------------|----|----|----|----|--|--|
| 31      | 30     | 29    | 28     | 27     | 26     | 25 | 24                     | 23 | 22  | 21 | 20                                              | 19 | 18 | 17 | 16 |  |  |
| RMPS    | XTD    | 0     |        | 1      | ı      | I  | 1                      | ı  | RID | l. | ı                                               | ı  | I  | !  | '  |  |  |
| rw      | rw     | r     |        | 1      | 1      | I  | 1                      |    | rw  |    | 1                                               | 1  | I  |    |    |  |  |
| 15      | 14     | 13    | 12     | 11     | 10     | 9  | 8                      | 7  | 6   | 5  | 4                                               | 3  | 2  | 1  | 0  |  |  |
|         | 1      | 1     | 1      | 1      | 1      | 1  | R                      | ID | 1   |    | 1                                               | 1  | 1  |    |    |  |  |
|         | rw     |       |        |        |        |    |                        |    |     |    |                                                 |    |    |    |    |  |  |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RID   | 28:0 | rw   | Reference Identifier This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Identifier transmitted with reference message and used for reference message filtering. Standard or extended reference identifier depending on bit XTD. A standard identifier has to be written to ID[28:18].                                                                                       |
| XTD   | 30   | rw   | Extended Identifier This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  0 <sub>B</sub> 11-bit standard identifier 1 <sub>B</sub> 29-bit extended identifier                                                                                                                                                                                                                 |
| RMPS  | 31   | rw   | Reference Message Payload Select This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Ignored in case of time slaves.  0 <sub>B</sub> Reference message has no additional payload 1 <sub>B</sub> The following elements are taken from Tx Buffer 0: Message Marker MM, Event FIFO Control EFC, Data Length Code DLC, Data Bytes DB (Level 1: bytes 2-8, Level 0,2: bytes 5-8) |
| 0     | 29   | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                       |

# TT Operation Configuration 0

The TTCAN function exists only on CAN0 node 0.



| TT Ope | ration | Config | guratio | n 0  |      | (008308 <sub>H</sub> ) |      |    |       |    | Application Reset Value: 0001 0000 <sub>H</sub> |     |    |    |    |  |  |
|--------|--------|--------|---------|------|------|------------------------|------|----|-------|----|-------------------------------------------------|-----|----|----|----|--|--|
| 31     | 30     | 29     | 28      | 27   | 26   | 25                     | 24   | 23 | 22    | 21 | 20                                              | 19  | 18 | 17 | 16 |  |  |
| !      |        | 0      | ı       | 1    | EVTP | ECC                    | EGTF |    | ! !   |    | A                                               | WL  |    | 1  | '  |  |  |
|        |        | r      |         |      | rw   | rw                     | rw   |    |       |    | r                                               | W   |    | 1  |    |  |  |
| 15     | 14     | 13     | 12      | 11   | 10   | 9                      | 8    | 7  | 6     | 5  | 4                                               | 3   | 2  | 1  | 0  |  |  |
| EECS   |        | ı      | ı       | IRTO | 1    | I                      | ı    |    | LDSDL |    | ТМ                                              | GEN | 0  | O  | М  |  |  |
| rw     |        |        |         | rw   |      |                        |      |    | rw    |    | rw                                              | rw  | r  | r  | W  |  |  |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ОМ    | 1:0  | rw   | Operation Mode This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  00 <sub>B</sub> Event-driven CAN communication, default  01 <sub>B</sub> TTCAN level 1  10 <sub>B</sub> TTCAN level 2  11 <sub>B</sub> TTCAN level 0                                                                                                                                    |
| GEN   | 3    | rw   | Gap Enable This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Strictly time-triggered operation  1 <sub>B</sub> External event-synchronized time-triggered operation                                                                                                                                                                       |
| ТМ    | 4    | rw   | Time Master This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  0 <sub>B</sub> Time Master function disabled 1 <sub>B</sub> Potential Time Master                                                                                                                                                                                                          |
| LDSDL | 7:5  | rw   | LD of Synchronization Deviation Limit  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  The Synchronization Deviation Limit SDL is configured by its dual logarithm LDSDL with SDL = 2 <sup>(LDSDL+5)</sup> . It should not exceed the clock tolerance given by the CAN bit timing configuration.  LD of Synchronization Deviation Limit (SDL ≤ 324096) |
| IRTO  | 14:8 | rw   | Initial Reference Trigger Offset This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Positive offset, range from 0 to 127                                                                                                                                                                                                                                   |



| Field | Bits        | Туре | Description                                                                                                                                                                                                                                                                                                                                                                  |
|-------|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EECS  | 15          | rw   | Enable External Clock Synchronization This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. If enabled, TUR configuration (TURCF.NCL only) may be updated during TTCAN operation.  0 <sub>B</sub> External clock synchronization in TTCAN Level 0,2 disabled 1 <sub>B</sub> External clock synchronization in TTCAN Level 0,2 enabled |
| AWL   | 23:16       | rw   | Application Watchdog Limit This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. The application watchdog can be disabled by programming AWL to 0x00. Maximum time after which the application has to serve the application watchdog. The application watchdog is incremented once each 256 NTUs.                                     |
| EGTF  | 24          | rw   | Enable Global Time Filtering This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Global time filtering in TTCAN Level 0,2 is disabled  1 <sub>B</sub> Global time filtering in TTCAN Level 0,2 is enabled                                                                                                           |
| ECC   | 25          | rw   | Enable Clock Calibration This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Automatic clock calibration in TTCAN Level 0,2 is disabled  1 <sub>B</sub> Automatic clock calibration in TTCAN Level 0,2 is enabled                                                                                                   |
| EVTP  | 26          | rw   | Event Trigger Polarity This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  O <sub>B</sub> Rising edge trigger  1 <sub>B</sub> Falling edge trigger                                                                                                                                                                                 |
| 0     | 2,<br>31:27 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                              |

## **TT Matrix Limits 0**

The TTCAN function exists only on CAN0 node 0.

## TTMLM0

| TT Mat |    | its 0 |          |    |    | (00830C <sub>H</sub> ) |    |    |    |     | Application Reset Value: 0000 0000 |          |          |    |    |  |  |
|--------|----|-------|----------|----|----|------------------------|----|----|----|-----|------------------------------------|----------|----------|----|----|--|--|
| 31     | 30 | 29    | 28       | 27 | 26 | 25                     | 24 | 23 | 22 | 21  | 20                                 | 19       | 18       | 17 | 16 |  |  |
|        | C  | )     |          |    | •  | '                      | '  | •  | EN | ITT | •                                  |          |          | •  | '  |  |  |
|        | ı  | ſ     | <u> </u> |    | 1  | <u>I</u>               | I  | 1  | r  | W   | 1                                  | <u> </u> | <u> </u> | 1  | 1  |  |  |
| 15     | 14 | 13    | 12       | 11 | 10 | 9                      | 8  | 7  | 6  | 5   | 4                                  | 3        | 2        | 1  | 0  |  |  |
|        | 0  |       |          |    |    | EW                     |    | C  | SS |     |                                    | C        | СМ       |    |    |  |  |
| 1      |    | •     |          |    | r  | W                      |    | r  | W  |     |                                    | r        | W        |    |    |  |  |



| Field | Bits            | Туре | Description                                                                                                                                                                                                                                                                                                                          |
|-------|-----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ССМ   | 5:0             | rw   | <b>Cycle Count Max</b> This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.                                                                                                                                                                                                                  |
|       |                 |      | Note: ISO 11898-4, 5.2.1 requires, that only the listed cycle count values are configured. Other values are possible but may lead to inconsistent matrix cycles.                                                                                                                                                                     |
|       |                 |      | <ul> <li>1 Basic Cycle per Matrix Cycle</li> <li>2 Basic Cycles per Matrix Cycle</li> <li>4 Basic Cycles per Matrix Cycle</li> <li>8 Basic Cycles per Matrix Cycle</li> </ul>                                                                                                                                                        |
| CSS   |                 |      | 0F <sub>H</sub> 16 Basic Cycles per Matrix Cycle 1F <sub>H</sub> 32 Basic Cycles per Matrix Cycle 3F <sub>H</sub> 64 Basic Cycles per Matrix Cycle  others, Reserved                                                                                                                                                                 |
| CSS   | 7:6             | rw   | Cycle Start Synchronization This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Enables sync pulse output at start of cycle.  00 <sub>B</sub> No sync pulse 01 <sub>B</sub> Sync pulse at start of basic cycle 10 <sub>B</sub> Sync pulse at start of matrix cycle 11 <sub>B</sub> Reserved |
| TXEW  | 11:8            | rw   | Tx Enable Window This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Length of Tx enable window, 1-16 NTU cycles                                                                                                                                                                            |
| ENTT  | 27:16           | rw   | Expected Number of Tx Triggers This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Expected number of Tx Triggers in one Matrix Cycle                                                                                                                                                       |
| 0     | 15:12,<br>31:28 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                      |

## **TUR Configuration 0**

The TTCAN function exists only on CANO node 0.

The length of the NTU is given by: NTU = CAN Clock Period x NC /DC

NC is an 18-bit value. Its high part, NCH[17:16] is hard wired to 0b01. Therefore the range of NC is  $10000_{\rm H}...1$ FFFF<sub>H</sub>. The value configured by NCL is the initial value for TURNA.NAV[15:0]. DC is set to  $1000_{\rm H}$  by hardware reset and it may not be written to  $0000_{\rm H}$ .

Level 1:  $NC \ge 4 \times DC$  and NTU = CAN bit time

Level 0,2: NC ≥ 8 x DC

The actual value of TUR may be changed by the clock drift compensation function of TTCAN Level 0 and Level 2 in order to adjust the node's local view of the NTU to the time master's view of the NTU. DC will not be changed



by the automatic drift compensation, TURNA.NAV may be adjusted around NC in the range of the Synchronisation Deviation Limit given by TTOCF.LDSDL. NC and DC should be programmed to the largest suitable values in order to allow the best computational accuracy for the drift compensation process.

| TURCE | ration ( | )  |    |    | (008310 <sub>H</sub> ) |    |    |    | Application Reset Value: 1000 0000 <sub>F</sub> |    |    |    |    |    |    |
|-------|----------|----|----|----|------------------------|----|----|----|-------------------------------------------------|----|----|----|----|----|----|
| 31    | 30       | 29 | 28 | 27 | 26                     | 25 | 24 | 23 | 22                                              | 21 | 20 | 19 | 18 | 17 | 16 |
| ELT   | 0        |    | DC |    |                        |    |    |    |                                                 |    |    |    |    |    |    |
| rw    | r        |    |    |    |                        |    |    | r  | W                                               |    |    |    |    |    |    |
| 15    | 14       | 13 | 12 | 11 | 10                     | 9  | 8  | 7  | 6                                               | 5  | 4  | 3  | 2  | 1  | 0  |
|       |          | 1  |    | 1  |                        |    | N  | CL | 1                                               | 1  |    |    |    |    |    |
| •     |          |    |    |    | •                      | •  | r  | w  |                                                 | *  | •  | •  | •  | •  |    |

| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| NCL   | 15:0  | rw   | Numerator Configuration Low This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set. Write access to the TUR Numerator Configuration Low is only possible during configuration with TURCF.ELT = '0' or if TTOCF.EECS (external clock synchronization enabled) is set. When a new value for NCL is written outside TT Configuration Mode, the new value takes effect when TTOST.WECS is cleared to '0'. NCL is locked TTOST.WECS is '1'.  Note: If NC < 7 x DC in TTCAN Level 1, then it is required that subsequent time marks in the Trigger Memory must differ by at least 2 NTU.  0000 <sub>H</sub> Numerator Configuration Low |  |  |  |  |  |  |  |
| DC    | 29:16 | rw   | FFFF <sub>H</sub> Numerator Configuration  Denominator Configuration  This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.  0000 <sub>H</sub> Illegal value  0001 <sub>H</sub> Denominator Configuration   3FFF <sub>H</sub> Denominator Configuration                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |



| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                    |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELT   | 31   | rw   | <b>Enable Local Time</b> This bitfield is CCE and INIT protected. Writes will only have effect, if both bits are set.                                                                                                                                                                                                                                                          |
|       |      |      | Note: Local time is started by setting ELT. It remains active until ELT is reset or until the next hardware reset. TURCF.DC is locked when TURCF.ELT = '1'. If ELT is written to '0', the readable value will stay at '1' until the new value has been synchronized into the CAN clock domain. During this time write access to the other bits of the register remains locked. |
|       |      |      | <ul> <li>0<sub>B</sub> Local time is stopped, default</li> <li>1<sub>B</sub> Local time is enabled</li> </ul>                                                                                                                                                                                                                                                                  |
| 0     | 30   | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                |

# TT Operation Control 0

The TTCAN function exists only on CAN0 node 0.

## **TTOCNO**

| TT O | TT Operation Control 0 |   |      |          |          |     |          | (008314 <sub>H</sub> ) |        |          |      | Application Reset Value: 0000 0000 <sub>H</sub> |          |          |          |     |  |
|------|------------------------|---|------|----------|----------|-----|----------|------------------------|--------|----------|------|-------------------------------------------------|----------|----------|----------|-----|--|
| 31   | 30                     | ) | 29   | 28       | 27       | 26  | 25       | 24                     | 23     | 22       | 21   | 20                                              | 19       | 18       | 17       | 16  |  |
|      | ,                      | , | '    |          | 1        | '   | 1        |                        | ,<br>כ | ı        |      |                                                 |          |          |          |     |  |
|      |                        |   | ]    | <u> </u> | <u> </u> | 1   | <u> </u> | <u> </u>               | r      | <u>I</u> | 1    | <u> </u>                                        | <u> </u> | <u> </u> | <u> </u> |     |  |
| 15   | 14                     | 4 | 13   | 12       | 11       | 10  | 9        | 8                      | 7      | 6        | 5    | 4                                               | 3        | 2        | 1        | 0   |  |
| LCK  | c o                    | ) | ESCN | NIG      | TMG      | FGP | GCS      | TTIE                   | TN     | ИС       | RTIE | SV                                              | VS       | SWP      | ECS      | SGT |  |
| rh   | r                      |   | rw   | rwh      | rw       | rwh | rw       | rw                     | r      | W        | rw   | r                                               | N        | rw       | rwh      | rwh |  |

| Field      | Bits | Туре | Description                                                                                                                                                                                                                                                                                          |
|------------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SGT<br>ECS | 0    | rwh  | Set Global time Writing a '1' to SGT sets TTOST.WGDT if the node is the actual Time Master. SGT is reset after one Host clock period. The global time preset takes effect when the node transmits the next reference message with the Master_Ref_Mark modified by the preset value written to TTGTP. |
| ECS        | 1    | rwh  | External Clock Synchronization Writing a '1' to ECS sets TTOST.WECS if the node is the actual Time Master. ECS is reset after one Host clock period. The external clock synchronization takes effect at the start of the next basic cycle.                                                           |
| SWP        | 2    | rw   | Stop Watch Polarity  0 <sub>B</sub> Rising edge trigger  1 <sub>B</sub> Falling edge trigger                                                                                                                                                                                                         |



| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWS   | 4:3  | rw   | Stop Watch Source  00 <sub>B</sub> Stop Watch disabled  01 <sub>B</sub> Actual value of cycle time is copied to TTCPT.SWV  10 <sub>B</sub> Actual value of local time is copied to TTCPT.SWV  11 <sub>B</sub> Actual value of global time is copied to TTCPT.SWV                                                                                                                                                                                         |
| RTIE  | 5    | rw   | Register Time Mark Interrupt Pulse Enable Register time mark interrupts are configured by register TTTMK. A register time mark interrupt pulse with the length of one TTCAN clock period is generated when the time referenced by TTOCN.TMC (cycle, local, or global) equals TTTMK.TM, independent of the synchronization state.  0 <sub>B</sub> Register Time Mark Interrupt output disabled 1 <sub>B</sub> Register Time Mark Interrupt output enabled |
| ТМС   | 7:6  | rw   | Note: When changing the time mark reference (cycle, local, global time), it is recommended to first write TMC = "00", then                                                                                                                                                                                                                                                                                                                               |
|       |      |      | reconfigure TTTMK, and finally set TMC to the intended time reference.  Oo <sub>B</sub> No Register Time Mark Interrupt generated Oo <sub>B</sub> Register Time Mark Interrupt if Time Mark = cycle time Oo <sub>B</sub> Register Time Mark Interrupt if Time Mark = local time                                                                                                                                                                          |
|       | 0    |      | 11 <sub>B</sub> Register Time Mark Interrupt if Time Mark = global time                                                                                                                                                                                                                                                                                                                                                                                  |
| TTIE  | 8    | rw   | Trigger Time Mark Interrupt Pulse Enable  External time mark events are configured by trigger memory element  TMEX. A trigger time mark interrupt pulse is generated when the trigger memory element becomes active, and the M_CAN is in synchronization state In_Schedule or In_Gap.  O <sub>B</sub> Trigger Time Mark Interrupt output disabled  1 <sub>B</sub> Trigger Time Mark Interrupt output enabled                                             |
| GCS   | 9    | rw   | Gap Control Select  0 <sub>B</sub> Gap control independent from event trigger  1 <sub>B</sub> Gap control by the event trigger                                                                                                                                                                                                                                                                                                                           |
| FGP   | 10   | rwh  | Finish Gap Set by the CPU, reset by each reference message  0 <sub>B</sub> No reference message requested  1 <sub>B</sub> Application requested start of reference message                                                                                                                                                                                                                                                                               |
| ТМС   | 11   | rw   | Time Mark Gap  0 <sub>B</sub> Reset by each reference message  1 <sub>B</sub> Next reference message started when Register Time Mark interrupt TTIR.RTMI is activated                                                                                                                                                                                                                                                                                    |



| Field | Bits         | Туре | Description                                                                                                                                                                                                                                                                                                                     |
|-------|--------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NIG   | 12           | rwh  | Next is Gap This bit can only be set when the M_CAN is the actual Time Master and when it is configured for external event-synchronized time-triggered operation (TTOCF.GEN = '1')  0 <sub>B</sub> No action, reset by reception of any reference message 1 <sub>B</sub> Transmit next reference message with Next_is_Gap = '1' |
| ESCN  | 13           | rw   | External Synchronization Control  If enabled the M_CAN synchronizes its cycle time phase to an external event signalled by a rising edge at the event trigger. $0_B$ External synchronization disabled $1_B$ External synchronization enabled                                                                                   |
| LCKC  | 15           | rh   | TT Operation Control Register Locked  Set by a write access to register TTOCN. Reset when the updated configuration has been synchronized into the CAN clock domain. $0_B$ Write access to TTOCN enabled $1_B$ Write access to TTOCN locked                                                                                     |
| 0     | 14,<br>31:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                 |

#### **TT Global Time Preset 0**

If TTOST.WGDT is set, the next reference message will be transmitted with the Master\_Ref\_Mark modified by the preset value and with Disc\_Bit = '1', presetting the global time in all nodes simultaneously.

TP is reset to 0x0000 each time a reference message with Disc\_Bit = '1' becomes valid or if the node is not the current Time Master. TP is locked while TTOST.WGTD = '1' after setting TTOCN.SGT until the reference message with Disc\_Bit = '1' becomes valid or until the node is no longer the current Time Master.

The TTCAN function exists only on CAN0 node 0.

| TTGTP<br>TT Glo |    | ne Pres | et 0 |    |    |    | (00831 | L8 <sub>H</sub> ) |    | Ар | plication | on Res | et Valu  | e: 0000  | ) 0000 <sub>H</sub> |
|-----------------|----|---------|------|----|----|----|--------|-------------------|----|----|-----------|--------|----------|----------|---------------------|
| 31              | 30 | 29      | 28   | 27 | 26 | 25 | 24     | 23                | 22 | 21 | 20        | 19     | 18       | 17       | 16                  |
|                 | 1  | 1       | 1    | 1  |    |    | c.     | ТР                | 1  | !  | !         | !      | Į.       | Į.       | !                   |
|                 |    | 1       | 1    | 1  | I  | I  | rv     | vh                | 1  |    |           |        | <u> </u> | <u> </u> |                     |
| 15              | 14 | 13      | 12   | 11 | 10 | 9  | 8      | 7                 | 6  | 5  | 4         | 3      | 2        | 1        | 0                   |
|                 | •  | •       | •    | •  | ·  | ·  | т      | P                 | •  |    |           | ı      | ,        | ,        |                     |
|                 | İ  | 1       | 1    | 1  | 1  | l  | rv     | vh                | 1  | 1  | 1         | 1      | İ        | İ        |                     |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TP    | 15:0  | rwh  | Time Preset  CTP is write-protected while TTOCN.ESCN or TTOST.SPL are set.  0000 <sub>H</sub> Next Master Reference Mark = Master Reference Mark + TP   7FFF <sub>H</sub> Next Master Reference Mark = Master Reference Mark + TP  8000 <sub>H</sub> Reserved  8001 <sub>H</sub> Next Master Reference Mark = Master Reference Mark - (0x10000 - TP)   FFFF <sub>H</sub> Next Master Reference Mark = Master Reference Mark - (0x10000 - TP) |
| СТР   | 31:16 | rwh  | Cycle Time Target Phase  CTP is write-protected while TTOCN.ESCN or TTOST.SPL are set.  0000 <sub>H</sub> Defines target value of cycle time when a rising edge of the event trigger is expected   FFFF <sub>H</sub> Defines target value of cycle time when a rising edge of the event trigger is expected                                                                                                                                  |

#### TT Time Mark 0

A time mark interrupt (TTIR.RTMI = '1') is generated when the time base indicated by TTOCN.TMC (cycle time, local time, or global time) has the same value as TM.

The TTCAN function exists only on CAN0 node 0.

#### TTTMK0

| TT Tim | e Mark   | ( 0 |    |    |    |    | (0083 | 1C <sub>H</sub> ) |    | Ар | plicati | on Res | et Valu | e: 0000 | 0000 <sub>H</sub> |
|--------|----------|-----|----|----|----|----|-------|-------------------|----|----|---------|--------|---------|---------|-------------------|
| 31     | 30       | 29  | 28 | 27 | 26 | 25 | 24    | 23                | 22 | 21 | 20      | 19     | 18      | 17      | 16                |
| LCKM   |          |     |    |    | 0  |    |       |                   |    |    |         | TICC   |         |         |                   |
| rh     |          |     |    |    | r  |    |       |                   |    |    |         | rw     |         |         |                   |
| 15     | 14       | 13  | 12 | 11 | 10 | 9  | 8     | 7                 | 6  | 5  | 4       | 3      | 2       | 1       | 0                 |
| '      | I        | 1   | ı  | ı  | 1  | ı  | т     | М                 | 1  | ı  | 1       | 1      | !       | ı       |                   |
|        | <u> </u> | 1   | 1  |    |    | 1  | r     | W                 | 1  | l  | 1       | 1      |         | l       |                   |

| Field | Bits | Туре | Description                                                                                                                                                                            |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ТМ    | 15:0 | rw   | Time Mark                                                                                                                                                                              |
|       |      |      | Note: When using byte access to register TTTMK it is recommended to first disable the time mark compare function (TTOCN.TMC = "00") to avoid compares on inconsistent register values. |
|       |      |      | 0000 <sub>H</sub> Time Mark                                                                                                                                                            |
|       |      |      | <br>FFFF <sub>H</sub> Time Mark                                                                                                                                                        |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TICC  | 22:16 | rw   | Time Mark Cycle Code  Cycle count for which the time mark is valid.  00 <sub>H</sub> valid for all cycles  01 <sub>H</sub> valid every second cycle at cycle count mod2 = 0  03 <sub>H</sub> valid every second cycle at cycle count mod2 = 1  04 <sub>H</sub> valid every fourth cycle at cycle count mod4 = 0  07 <sub>H</sub> valid every fourth cycle at cycle count mod4 = 3  08 <sub>H</sub> valid every eighth cycle at cycle count mod8 = 7  10 <sub>H</sub> valid every sixteenth cycle at cycle count mod16 = 0  1F <sub>H</sub> valid every sixteenth cycle at cycle count mod16 = 15  20 <sub>H</sub> valid every thirty-second cycle at cycle count mod32 = 31  40 <sub>H</sub> valid every sixty-fourth cycle at cycle count mod64 = 63 |
| LCKM  | 31    | rh   | TT Time Mark Register Locked  Always set by a write access to registers TTOCN. Set by write access to register TTTMK when TTOCN.TMC ≠ "00". Reset when the registers have been synchronized into the CAN clock domain.  0 <sub>B</sub> Write access to TTTMK enabled  1 <sub>B</sub> Write access to TTTMK locked                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 30:23 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# **TT Interrupt Register 0**

Note:

The interrupt register for TTCAN related events.

1 0

register.

The TTCAN function exists only on CAN0 node 0.

LDMST or SWAPMSK.W instructions should be used only with bit mask enabled for all rwh bits in this



| TT | IR0 |
|----|-----|
|    |     |

| TT Inte | errupt | Registe | er O |     |     |     | (00832 | 20 <sub>H</sub> ) |     | Application Reset Value: 0000 0000 <sub>H</sub> |      |     |     |     |     |
|---------|--------|---------|------|-----|-----|-----|--------|-------------------|-----|-------------------------------------------------|------|-----|-----|-----|-----|
| 31      | 30     | 29      | 28   | 27  | 26  | 25  | 24     | 23                | 22  | 21                                              | 20   | 19  | 18  | 17  | 16  |
|         |        | •       |      |     | 1   | 0   | 1      | 1                 |     |                                                 |      | '   | CER | AW  | WT  |
|         | 1      | 1       | I    | 1   | I   | r   | I      | I                 | I   | 1                                               | 1    |     | rwh | rwh | rwh |
| 15      | 14     | 13      | 12   | 11  | 10  | 9   | 8      | 7                 | 6   | 5                                               | 4    | 3   | 2   | 1   | 0   |
| IWT     | ELC    | SE2     | SE1  | тхо | TXU | GTE | GTD    | GTW               | SWE | ттмі                                            | RTMI | sog | СЅМ | SMC | SBC |
| rwh     | rwh    | rwh     | rwh  | rwh | rwh | rwh | rwh    | rwh               | rwh | rwh                                             | rwh  | rwh | rwh | rwh | rwh |

| Field | Bits | Туре  | Description                                                                                                                                                                                   |
|-------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SBC   | 0    | rwh   | Start of Basic Cycle  0 <sub>B</sub> No Basic Cycle started since bit has been reset                                                                                                          |
| -     |      |       | 1 <sub>B</sub> Basic Cycle started                                                                                                                                                            |
| SMC   | 1    | rwh   | Start of Matrix Cycle                                                                                                                                                                         |
|       |      |       | 0 <sub>B</sub> No Matrix Cycle started since bit has been reset                                                                                                                               |
|       |      |       | 1 <sub>B</sub> Matrix Cycle started                                                                                                                                                           |
| CSM   | 2    | rwh   | Change of Synchronization Mode                                                                                                                                                                |
|       |      |       | <ul> <li>No change in master to slave relation or schedule synchronization</li> <li>Master to slave relation or schedule synchronization changed, also set when TTOST.SPL is reset</li> </ul> |
| SOG   | 3    | rwh   | Start of Gap                                                                                                                                                                                  |
|       |      |       | 0 <sub>B</sub> No reference message seen with Next_is_Gap bit set                                                                                                                             |
|       |      |       | 1 <sub>B</sub> Reference message with Next_is_Gap bit set becomes valid                                                                                                                       |
| RTMI  | 4    | rwh   | Register Time Mark Interrupt                                                                                                                                                                  |
|       |      |       | Set when time referenced by TTOCN.TMC (cycle, local, or global) equals                                                                                                                        |
|       |      |       | TTTMK.TM, independent of the synchronization state.  0 <sub>B</sub> Time mark not reached                                                                                                     |
|       |      |       | 1 <sub>B</sub> Time mark not reached                                                                                                                                                          |
| TTMI  | 5    | rwh   | Trigger Time Mark Event Internal                                                                                                                                                              |
|       |      |       | Internal time mark events are configured by trigger memory element                                                                                                                            |
|       |      |       | TMIN. Set when the trigger memory element becomes active, and the                                                                                                                             |
|       |      |       | M_CAN is in synchronization state In_Gap or In_Schedule.                                                                                                                                      |
|       |      |       | $0_B$ Time mark not reached $1_B$ Time mark reached (Level 0: cycle time TTOCF.IRTO $\cdot$ 0x200)                                                                                            |
| SWE   | 6    | rwh   | Stop Watch Polarity                                                                                                                                                                           |
| SWE   | O    | IVVII | Stop water rotality                                                                                                                                                                           |
|       |      |       | 0 <sub>B</sub> No rising/falling edge at stop watch trigger detected                                                                                                                          |
|       |      |       | 1 <sub>B</sub> Rising/falling edge at stop watch trigger detected                                                                                                                             |



| Field | Bits | Туре | Description                                                                                                                               |
|-------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| GTW   | 7    | rwh  | Global Time Wrap                                                                                                                          |
|       |      |      | O No slob al time o uma a programa d                                                                                                      |
|       |      |      | <ul> <li>0<sub>B</sub> No global time wrap occurred</li> <li>1<sub>B</sub> Global time wrap from 0xFFFF to 0x0000 occurred</li> </ul>     |
| CTD   | 0    | muh  |                                                                                                                                           |
| GTD   | 8    | rwh  | Global Time Discontinuity                                                                                                                 |
|       |      |      | 0 <sub>B</sub> No discontinuity of global time                                                                                            |
|       |      |      | 1 <sub>B</sub> Discontinuity of global time                                                                                               |
| GTE   | 9    | rwh  | Global Time Error                                                                                                                         |
|       |      |      | Synchronization deviation SD exceeds limit specified by TTOCF.LDSDL,                                                                      |
|       |      |      | TTCAN Level 0,2 only.                                                                                                                     |
|       |      |      | 0 <sub>B</sub> Synchronization deviation within limit                                                                                     |
|       |      |      | 1 <sub>B</sub> Synchronization deviation exceeded limit                                                                                   |
| TXU   | 10   | rwh  | Tx Count Underflow                                                                                                                        |
|       |      |      | 0 <sub>B</sub> Number of Tx Trigger as expected                                                                                           |
|       |      |      | <ul><li>0<sub>B</sub> Number of Tx Trigger as expected</li><li>1<sub>B</sub> Less Tx trigger than expected in one matrix cycle</li></ul>  |
| ТХО   | 11   | rwh  | Tx Count Overflow                                                                                                                         |
| IXU   | 11   | rwn  | 1x Count Overflow                                                                                                                         |
|       |      |      | 0 <sub>B</sub> Number of Tx Trigger as expected                                                                                           |
|       |      |      | 1 <sub>B</sub> More Tx trigger than expected in one matrix cycle                                                                          |
| SE1   | 12   | rwh  | Scheduling Error 1                                                                                                                        |
|       |      |      |                                                                                                                                           |
|       |      |      | 0 <sub>B</sub> No scheduling error 1                                                                                                      |
|       |      |      | 1 <sub>B</sub> Scheduling error 1 occurred                                                                                                |
| SE2   | 13   | rwh  | Scheduling Error 2                                                                                                                        |
|       |      |      | 0 <sub>B</sub> No scheduling error 2                                                                                                      |
|       |      |      | 1 <sub>B</sub> Scheduling error 2 occurred                                                                                                |
| ELC   | 14   | rwh  | Error Level Changed                                                                                                                       |
|       |      |      | Not set when error level changed during initialization.                                                                                   |
|       |      |      | O <sub>B</sub> No change in error level                                                                                                   |
|       |      |      | 1 <sub>B</sub> Error level changed                                                                                                        |
| IWT   | 15   | rwh  | Initialization Watch Trigger                                                                                                              |
|       |      |      | The initialization is restarted by resetting IWT.                                                                                         |
|       |      |      | 0 <sub>B</sub> No missing reference message during system startup                                                                         |
|       |      |      | 1 <sub>B</sub> No system startup due to missing reference message                                                                         |
| WT    | 16   | rwh  | Watch Trigger                                                                                                                             |
|       |      |      | 0 <sub>B</sub> No missing reference message                                                                                               |
|       |      |      | <ul><li>0<sub>B</sub> No missing reference message</li><li>1<sub>B</sub> Missing reference message (Level 0: cycle time 0xFF00)</li></ul> |
| A\A/  | 17   | muh  |                                                                                                                                           |
| AW    | 17   | rwh  | Application Watchdog                                                                                                                      |
|       |      |      | 0 <sub>B</sub> Application watchdog served in time                                                                                        |
|       |      |      | 1 <sub>B</sub> Application watchdog not served in time                                                                                    |



V2.0.0

2021-02

## **CAN Interface (MCMCAN)**

| Field | Bits  | Туре | Description                                   |
|-------|-------|------|-----------------------------------------------|
| CER   | 18    | rwh  | Configuration Error                           |
|       |       |      | Trigger out of order.                         |
|       |       |      | O <sub>B</sub> No error found in trigger list |
|       |       |      | 1 <sub>B</sub> Error found in trigger list    |
| 0     | 31:19 | r    | Reserved                                      |
|       |       |      | Shall read 0, shall be written with 0.        |

# **TT Interrupt Enable 0**

The settings in the TT Interrupt Enable register determine which status changes in the TT Interrupt Register will result in an interrupt.

R = Read, W = Write; -n = value after reset

| Т | Т | Ί | Ε | 0 |
|---|---|---|---|---|
|   |   |   |   |   |

| TT Inte | errupt | Enable | 0    |      |      |      | (008324 <sub>H</sub> ) Ap |      |      |       |       | plication Reset Value: 0000 0000 <sub>H</sub> |      |      |      |  |
|---------|--------|--------|------|------|------|------|---------------------------|------|------|-------|-------|-----------------------------------------------|------|------|------|--|
| 31      | 30     | 29     | 28   | 27   | 26   | 25   | 24                        | 23   | 22   | 21    | 20    | 19                                            | 18   | 17   | 16   |  |
|         | I      | I      | I    | I    | I    | 0    | I                         | I    | I    | ı     | l l   |                                               | CERE | AWE  | WTE  |  |
| II.     | I      | I      | I    | I    | 1    | r    | I                         | I    | I    | 1     |       |                                               | rw   | rw   | rw   |  |
| 15      | 14     | 13     | 12   | 11   | 10   | 9    | 8                         | 7    | 6    | 5     | 4     | 3                                             | 2    | 1    | 0    |  |
| IWTE    | ELCE   | SE2E   | SE1E | ТХОЕ | TXUE | GTEE | GTDE                      | GTWE | SWEE | TTMIE | RTMIE | SOGE                                          | CSME | SMCE | SBCE |  |
| rw      | rw     | rw     | rw   | rw   | rw   | rw   | rw                        | rw   | rw   | rw    | rw    | rw                                            | rw   | rw   | rw   |  |

| Field | Bits | Туре | Description                                                                                      |
|-------|------|------|--------------------------------------------------------------------------------------------------|
| SBCE  | 0    | rw   | Start of Basic Cycle Interrupt Enable                                                            |
|       |      |      | <ul><li>0<sub>B</sub> TT interrupt disabled</li><li>1<sub>B</sub> TT interrupt enabled</li></ul> |
| SMCE  | 1    | rw   | Start of Matrix Cycle Interrupt Enable                                                           |
|       |      |      | <ul><li>0<sub>B</sub> TT interrupt disabled</li><li>1<sub>B</sub> TT interrupt enabled</li></ul> |
| CSME  | 2    | rw   | Change of Synchronization Mode Interrupt Enable                                                  |
|       |      |      | <ul><li>0<sub>B</sub> TT interrupt disabled</li><li>1<sub>B</sub> TT interrupt enabled</li></ul> |
| SOGE  | 3    | rw   | Start of Gap Interrupt Enable                                                                    |
|       |      |      | <ul><li>0<sub>B</sub> TT interrupt disabled</li><li>1<sub>B</sub> TT interrupt enabled</li></ul> |
| RTMIE | 4    | rw   | Register Time Mark Interrupt Enable                                                              |
|       |      |      | <ul><li>0<sub>B</sub> TT interrupt disabled</li><li>1<sub>B</sub> TT interrupt enabled</li></ul> |



| Field | Bits | Туре | Description                                                                 |
|-------|------|------|-----------------------------------------------------------------------------|
| TTMIE | 5    | rw   | Trigger Time Mark Event Internal Interrupt Enable                           |
|       |      |      | O TT intowwent disabled                                                     |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled<br>1 <sub>B</sub> TT interrupt enabled |
|       |      |      |                                                                             |
| SWEE  | 6    | rw   | Stop Watch Polarity Interrupt Enable                                        |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| GTWE  | 7    | rw   | Global Time Wrap Interrupt Enable                                           |
|       |      |      |                                                                             |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| GTDE  | 8    | rw   | Global Time Discontinuity Interrupt Enable                                  |
|       |      |      | O TT interment dischard                                                     |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| GTEE  | 9    | rw   | Global Time Error Interrupt Enable                                          |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| TXUE  | 10   | rw   | Tx Count Underflow Interrupt Enable                                         |
|       |      |      |                                                                             |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| TXOE  | 11   | rw   | Tx Count Overflow Interrupt Enable                                          |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| SE1E  | 12   | rw   | Scheduling Error 1 Interrupt Enable                                         |
|       |      |      |                                                                             |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| SE2E  | 13   | rw   | Scheduling Error 2 Interrupt Enable                                         |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| ELCE  | 14   | rw   | Change Error Level Interrupt Enable                                         |
|       |      |      | O TT intermed disable d                                                     |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       | 4.5  |      | 1 <sub>B</sub> TT interrupt enabled                                         |
| IWTE  | 15   | rw   | Initialization Watch Trigger Interrupt Enable                               |
|       |      |      | 0 <sub>B</sub> TT interrupt disabled                                        |
|       |      |      | 1 <sub>B</sub> TT interrupt enabled                                         |



| Field | Bits  | Туре | Description                            |
|-------|-------|------|----------------------------------------|
| WTE   | 16    | rw   | Watch Trigger Interrupt Enable         |
|       |       |      | 0 <sub>B</sub> TT interrupt disabled   |
|       |       |      | 1 <sub>B</sub> TT interrupt enabled    |
| AWE   | 17    | rw   | Application Watchdog Interrupt Enable  |
|       |       |      | 0 <sub>B</sub> TT interrupt disabled   |
|       |       |      | 1 <sub>B</sub> TT interrupt enabled    |
| CERE  | 18    | rw   | Configuration Error Interrupt Enable   |
|       |       |      | 0 <sub>B</sub> TT interrupt disabled   |
|       |       |      | 1 <sub>B</sub> TT interrupt enabled    |
| 0     | 31:19 | r    | Reserved                               |
|       |       |      | Shall read 0, shall be written with 0. |

## **TT Operation Status 0**

R = Read, P = Protected write; -n = value after reset The TTCAN function exists only on CAN0 node 0.

## TTOST0

| TT Op | eration | Status | s 0 |     |    |     | 2C <sub>H</sub> ) |     | Ар         | plicatio | on Res | et Valu | e: 200 | 0 0080 <sub>H</sub> |    |
|-------|---------|--------|-----|-----|----|-----|-------------------|-----|------------|----------|--------|---------|--------|---------------------|----|
| 31    | 30      | 29     | 28  | 27  | 26 | 25  | 24                | 23  | 22         | 21       | 20     | 19      | 18     | 17                  | 16 |
| SPL   | WECS    | AWE    | WFE | GSI |    | ТМР | I                 | GFI | GFI WGTD 0 |          |        |         |        |                     |    |
| rh    | rh      | rh     | rh  | rh  |    | rh  |                   | rh  | rh         |          | I      |         | r      | 1                   |    |
| 15    | 14      | 13     | 12  | 11  | 10 | 9   | 8                 | 7   | 6          | 5        | 4      | 3       | 2      | 1                   | 0  |
|       | RTO     |        |     |     |    |     |                   |     |            | S        | /S     | M       | IS     | E                   | L  |
|       |         | l      | r   | h   |    |     | ļ.                | rh  | rh         | r        | h      | r       | h      | · .                 | ·h |

| Field | Bits | Туре | Description                                               |
|-------|------|------|-----------------------------------------------------------|
| EL    | 1:0  | rh   | Error Level                                               |
|       |      |      | 00 <sub>B</sub> Severity 0 - No Error                     |
|       |      |      | 01 <sub>B</sub> Severity 1 - Warning                      |
|       |      |      | 10 <sub>B</sub> Severity 2 - Error                        |
|       |      |      | 11 <sub>B</sub> Severity 3 - Severe Error                 |
| MS    | 3:2  | rh   | Master State                                              |
|       |      |      | 00 <sub>B</sub> Master_Off, no master properties relevant |
|       |      |      | 01 <sub>B</sub> Operating as Time Slave                   |
|       |      |      | 10 <sub>B</sub> Operating as Backup Time Master           |
|       |      |      | 11 <sub>B</sub> Operating as current Time Master          |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYS   | 5:4   | rh   | Synchronization State  00 <sub>B</sub> Out of Synchronization  01 <sub>B</sub> Synchronizing to TTCAN communication  10 <sub>B</sub> Schedule suspended by Gap (In_Gap)  11 <sub>B</sub> Synchronized to schedule (In_Schedule)                                                                                                                                                                                                                   |
| QGTP  | 6     | rh   | Quality of Global Time Phase Only relevant in TTCAN Level 0 and Level 2, otherwise fixed to '0'.  0 <sub>B</sub> Global time not valid 1 <sub>B</sub> Global time in phase with Time Master                                                                                                                                                                                                                                                       |
| QCS   | 7     | rh   | Quality of Clock Speed  Only relevant in TTCAN Level 0 and Level 2, otherwise fixed to '1'.  0 <sub>B</sub> Local clock speed not synchronized to Time Master clock speed  1 <sub>B</sub> Synchronization Deviation ≤ SDL                                                                                                                                                                                                                         |
| RTO   | 15:8  | rh   | Reference Trigger Offset  The Reference Trigger Offset value is a signed integer with a range from - 127 (0x81) to 127 (0x7F). There is no notification when the lower limit of - 127 is reached. In case the M_CAN becomes Time Master (MS[1:0] = "11"), the reset of RTO is delayed due to synchronization between Host and CAN clock domain. For time slaves the value configured by TTOCF.IRTO is read. Actual Reference Trigger offset value |
| WGTD  | 22    | rh   | Wait for Global Time Discontinuity  0 <sub>B</sub> No global time preset pending  1 <sub>B</sub> Node waits for the global time preset to take effect. The bit is reset when the node has transmitted a reference message with Disc_Bit = '1' or after it received a reference message.                                                                                                                                                           |
| GFI   | 23    | rh   | Gap Finished Indicator Set when the CPU writes TTOCN.FGP, or by a time mark interrupt if TMG = '1', or via event trigger input if TTOCN.GCS = '1'. Not set by Ref_Trigger_Gap or when Gap is finished by another node sending a reference message.  0 <sub>B</sub> Reset at the end of each reference message 1 <sub>B</sub> Gap finished by M_CAN                                                                                                |
| ТМР   | 26:24 | rh   | Time Master Priority  000 <sub>B</sub> Priority of actual Time Master   111 <sub>B</sub> Priority of actual Time Master                                                                                                                                                                                                                                                                                                                           |
| GSI   | 27    | rh   | Gap Started Indicator  0 <sub>B</sub> No Gap in schedule, reset by each reference message and for all time slaves  1 <sub>B</sub> Gap time after Basic Cycle has started                                                                                                                                                                                                                                                                          |
| WFE   | 28    | rh   | Wait for Event  O <sub>B</sub> No Gap announced, reset by a reference message with Next_is_Gap = '0'  1 <sub>B</sub> Reference message with Next_is_Gap = '1' received                                                                                                                                                                                                                                                                            |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                            |
|-------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AWE   | 29    | rh   | Application Watchdog Event The application watchdog is served by reading TTOST. When the watchdog is not served in time, bit AWE is set, all TTCAN communication is stopped, and the M_CAN is set into Bus Monitoring Mode.  0 <sub>B</sub> Application Watchdog served in time 1 <sub>B</sub> Failed to serve Application Watchdog in time            |
| WECS  | 30    | rh   | <ul> <li>Wait for External Clock Synchronization</li> <li>0<sub>B</sub> No external clock synchronization pending</li> <li>1<sub>B</sub> Node waits for external clock synchronization to take effect. The bit is reset at the start of the next basic cycle.</li> </ul>                                                                               |
| SPL   | 31    | rh   | Schedule Phase Lock The bit is valid only when external synchronization is enabled (TTOCN.ESCN = '1'). In this case it signals that the difference between cycle time configured by TTGTP.CTP and the cycle time at the rising edge at the event trigger is less or equal 9 NTU.  O <sub>B</sub> Phase outside range 1 <sub>B</sub> Phase inside range |
| 0     | 21:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                        |

#### **TUR Numerator Actual 0**

The TTCAN function exists only on CAN0 node 0.

There is no drift compensation in TTCAN Level 1 (NAV = NC). In TTCAN Level 0 and Level 2, the drift between the node's local clock and the time master's local clock is calculated. The drift is compensated when the Synchronisation Deviation (difference between NC and the calculated NAV) is not more than  $2^{(TTOCF,LDSDL + 5)}$ . With TTOCF.LDSDL  $\leq 7$ , this results in a maximum range for NAV of (NC - 0x1000)  $\leq$  NAV  $\leq$  (NC + 0x1000).

#### **TURNAO**

| TUR N | umerat | tor Act | ual 0 |    |    |    | (0083 | 30 <sub>H</sub> ) |    | Application Reset Value: 0001 0000 <sub>H</sub> |    |    |    |     |    |  |
|-------|--------|---------|-------|----|----|----|-------|-------------------|----|-------------------------------------------------|----|----|----|-----|----|--|
| 31    | 30     | 29      | 28    | 27 | 26 | 25 | 24    | 23                | 22 | 21                                              | 20 | 19 | 18 | 17  | 16 |  |
|       | ·      | ı       | ı     | !  | !  |    | 0     | ı                 | !  | ı                                               | !  | ,  |    | N   | AV |  |
|       | r      |         |       |    |    |    |       |                   |    |                                                 | r  | h  |    |     |    |  |
| 15    | 14     | 13      | 12    | 11 | 10 | 9  | 8     | 7                 | 6  | 5                                               | 4  | 3  | 2  | 1   | 0  |  |
|       |        |         |       |    |    |    | N     | AV                |    |                                                 |    |    |    |     |    |  |
| 1     | I .    | 1       | 1     | 1  | 1  | 1  | · I   | rh                | 1  | I .                                             | 1  | 1  | 1  | I . |    |  |

| Field | Bits | Туре | Description                                                                                                                        |
|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------|
| NAV   | 17:0 | rh   | Numerator Actual Value  0F000 <sub>H</sub> Actual numerator value  20FFF <sub>H</sub> Actual numerator value others, Illegal value |



| Field | Bits  | Туре | Description                            |
|-------|-------|------|----------------------------------------|
| 0     | 31:18 | r    | Reserved                               |
|       |       |      | Shall read 0, shall be written with 0. |

#### TT Local & Global Time 0

The TTCAN function exists only on CAN0 node 0.

## TTLGT0

| TT Local & Global Time 0 |    |    |    |    |    |    |    | (008334 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |  |
|--------------------------|----|----|----|----|----|----|----|------------------------|----|----|----|-------------------------------------------------|----|----|----|----|--|
| 3                        | 1  | 30 | 29 | 28 | 27 | 26 | 25 | 24                     | 23 | 22 | 21 | 20                                              | 19 | 18 | 17 | 16 |  |
|                          | ı  |    | I  | I  | I  | l  | I  | G                      | iΤ | ı  | I  | I                                               | ı  | ı  | I  |    |  |
|                          | rh |    |    |    |    |    |    |                        |    |    |    |                                                 |    |    |    |    |  |
| 1                        | 5  | 14 | 13 | 12 | 11 | 10 | 9  | 8                      | 7  | 6  | 5  | 4                                               | 3  | 2  | 1  | 0  |  |
|                          | ,  |    | 1  | 1  | 1  | 1  | 1  | L                      | T  | 1  | 1  | 1                                               | 1  | 1  | 1  |    |  |
| ,                        |    |    | ļ. | ļ. |    |    |    | r                      | h  |    |    |                                                 |    |    |    |    |  |

| Field | Bits  | Туре | Description                                                                                                                    |
|-------|-------|------|--------------------------------------------------------------------------------------------------------------------------------|
| LT    | 15:0  | rh   | Local Time  Non-fractional part of local time, incremented once each local NTU.  Local time value of TTCAN node                |
| GT    | 31:16 | rh   | Global Time  Non-fractional part of the sum of the node's local time and its local offset.  Global time value of TTCAN network |

## **TT Cycle Time & Count 0**

The TTCAN function exists only on CAN0 node 0.

#### TTCTC0

| TT Cyc | le Time | e & Cou | ınt 0 |    |    |    | (008338 <sub>H</sub> ) |    |    |    | Application Reset Value: 003F 0000 |    |    |    |    |  |
|--------|---------|---------|-------|----|----|----|------------------------|----|----|----|------------------------------------|----|----|----|----|--|
| 31     | 30      | 29      | 28    | 27 | 26 | 25 | 24                     | 23 | 22 | 21 | 20                                 | 19 | 18 | 17 | 16 |  |
|        | 0       |         |       |    |    |    |                        |    |    |    |                                    | C  | c  |    |    |  |
|        | r       |         |       |    |    |    |                        |    |    |    |                                    | r  | h  |    |    |  |
| 15     | 14      | 13      | 12    | 11 | 10 | 9  | 8                      | 7  | 6  | 5  | 4                                  | 3  | 2  | 1  | 0  |  |
|        | 1       | ı       | 1     | 1  | 1  | 1  | •                      | T  | 1  | 1  | 1                                  | 1  | 1  | 1  | 1  |  |
|        |         |         |       |    |    |    | r                      | 'h |    |    |                                    |    |    |    |    |  |

| Field | Bits | Туре | Description                                                                                                        |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------|
| СТ    | 15:0 | rh   | Cycle Time                                                                                                         |
|       |      |      | Non-fractional part of the difference of the node's local time and Ref_Mark. Cycle time value of TTCAN Basic Cycle |



| Field | Bits  | Туре | Description                                                   |  |
|-------|-------|------|---------------------------------------------------------------|--|
| СС    | 21:16 | rh   | Cycle Count Number of actual Basic Cycle in the System Matrix |  |
| 0     | 31:22 | r    | Reserved Shall read 0, shall be written with 0.               |  |

## **TT Capture Time 0**

The TTCAN function exists only on CAN0 node 0.

#### TTCPT0

| TT Cap | ture T | ime 0 |    |    |    |    | (00833 | BC <sub>H</sub> ) |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |    |  |
|--------|--------|-------|----|----|----|----|--------|-------------------|----|-------------------------------------------------|----|----|----|----|----|--|
| 31     | 30     | 29    | 28 | 27 | 26 | 25 | 24     | 23                | 22 | 21                                              | 20 | 19 | 18 | 17 | 16 |  |
|        | ,      | !     |    | ,  |    |    | SI     | WV                | !  | ,                                               |    | ·  | ·  | ,  | ,  |  |
| L      | 1      | 1     | I  | 1  | I  | I  | r      | h                 | I  | 1                                               | I  | I  | I  | 1  |    |  |
| 15     | 14     | 13    | 12 | 11 | 10 | 9  | 8      | 7                 | 6  | 5                                               | 4  | 3  | 2  | 1  | 0  |  |
|        |        |       |    |    | 0  |    |        |                   |    |                                                 |    | C  | CV |    |    |  |
|        | 1      | 1     | 1  |    | r  | 1  | I      | 1                 | 1  | 1                                               | 1  | r  | h  | 1  |    |  |

| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCV   | 5:0   | rh   | Cycle Count Value Cycle count value captured together with SWV. Captured cycle count value                                                                                                                                                                                                                                                                                  |
| SWV   | 31:16 | rh   | Stop Watch Value On a rising/falling edge (as configured via TTOCN.SWP) at the Stop Watch Trigger, when TTOCN.SWS is ≠ "00" and TTIR.SWE is '0', the actual time value as selected by TTOCN.SWS (cycle, local, global) is copied to SWV and TTIR.SWE will be set to '1'. Capturing of the next stop watch value is enabled by resetting TTIR.SWE. Captured Stop Watch value |
| 0     | 15:6  | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                             |

# TT Cycle Sync Mark 0

The TTCAN function exists only on CAN0 node 0.



| TTCSM<br>TT Cyc |    | c Mark | 0  |    |    | (008340 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |    |  |
|-----------------|----|--------|----|----|----|------------------------|----|----|----|-------------------------------------------------|----|----|----|----|----|--|
| 31              | 30 | 29     | 28 | 27 | 26 | 25                     | 24 | 23 | 22 | 21                                              | 20 | 19 | 18 | 17 | 16 |  |
|                 | '  |        |    |    |    |                        |    | )  | '  |                                                 |    | '  |    | '  |    |  |
|                 |    |        |    |    | 1  |                        |    | r  |    |                                                 |    |    | I  |    |    |  |
| 15              | 14 | 13     | 12 | 11 | 10 | 9                      | 8  | 7  | 6  | 5                                               | 4  | 3  | 2  | 1  | 0  |  |
|                 |    | ,      |    |    |    | ,                      | CS | SM |    |                                                 | ,  |    | ,  |    |    |  |
| 1               | rh |        |    |    |    |                        |    |    |    |                                                 |    |    |    |    |    |  |

| Field | Bits  | Туре | Description                                                                                                                                                                                                     |
|-------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSM   | 15:0  | rh   | Cycle Sync Mark The Cycle Sync Mark is measured in cycle time. It is updated when the reference message becomes valid and retains its value until the next reference message becomes valid. Captured cycle time |
| 0     | 31:16 | r    | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                 |



#### 40.4.6 Message RAM

M\_CAN

## 40.4.6.1 Message RAM Configuration

When operated in CAN FD mode the required Message RAM size strongly depends on the element size configured for Rx FIFO1, Rx Buffers, and Tx Buffers via RXESCi.F0DS, RXESCi.F1DS, RXESCi.RBDS, and TXESCi.TBDS.



Figure 605 Message RAM Configuration

When the M\_CAN addresses the Message RAM it addresses 32-bit words, not single bytes. The configurable start addresses are 32-bit word addresses i.e. only bits 15 to 2 are evaluated, the two least significant bits are ignored.



#### 40.4.6.2 Rx Buffer and FIFO Element

Up to 64 Rx Buffers and two Rx FIFOs can be configured in the Message RAM. Each Rx FIFO section can be configured to store up to 64 received messages. The structure of a Rx Buffer / FIFO element is shown in **Table 382** below. The element size can be configured for storage of CAN FD messages with up to 64 bytes data field via register RXESCi.

| Table 382 M | lessage Layout - | <b>Rx Buffer and</b> | I FIFO Element |
|-------------|------------------|----------------------|----------------|
|-------------|------------------|----------------------|----------------|

|     | 3 2            | 2                 | 1 | 1          | 8          | 7        | 0 |
|-----|----------------|-------------------|---|------------|------------|----------|---|
|     | 1 4            | 3                 | 6 | 5          |            |          |   |
| R0  | S C K ID[28:0] |                   | · |            |            |          |   |
| R1  | FIDX[6:0]      | 0 Ad SMS Drc[3:0] |   | RXTS[15:0] |            |          |   |
| R2  | DB3[7:0]       | DB2[7:0]          |   | DB1[7:0]   |            | DB0[7:0] |   |
| R3  | DB7[7:0]       | DB6[7:0]          |   | DB5[7:0]   |            | DB4[7:0] |   |
| ••• |                | •••               |   | •••        |            | •••      |   |
| Rn  | DBm[7:0]       | DBm-1[7:0]        |   | DBm-2[7:0] | DBm-3[7:0] |          |   |

#### Register 0

See Message layout, Table 382.

See Message layout.

#### RxMsgk\_R0 (k=0-63)

| Regist | er 0 |     |    |    |    | (00 | 0000 <sub>H</sub> | + k*48 <sub>ı</sub> | н)  | Application Reset Value: XXXX XXXX <sub>+</sub> |    |    |    |    |    |  |
|--------|------|-----|----|----|----|-----|-------------------|---------------------|-----|-------------------------------------------------|----|----|----|----|----|--|
| 31     | 30   | 29  | 28 | 27 | 26 | 25  | 24                | 23                  | 22  | 21                                              | 20 | 19 | 18 | 17 | 16 |  |
| ESI    | XTD  | RTR |    |    |    |     |                   |                     | ID  |                                                 |    |    |    |    |    |  |
| rwh    | rwh  | rwh |    |    |    |     |                   |                     | rwh |                                                 |    |    |    |    |    |  |
| 15     | 14   | 13  | 12 | 11 | 10 | 9   | 8                 | 7                   | 6   | 5                                               | 4  | 3  | 2  | 1  | 0  |  |
|        |      |     |    |    |    |     |                   | ID                  |     |                                                 |    |    |    |    |    |  |
| -      | -    | 1   | I  | 1  | I  |     | r۱                | wh                  | -1  | 1                                               |    | 1  | -  | 1  |    |  |

| Field | Bits | Туре | Description                                                                                           |
|-------|------|------|-------------------------------------------------------------------------------------------------------|
| ID    | 28:0 | rwh  | Identifier                                                                                            |
|       |      |      | Standard or extended identifier depending on bit XTD. A standard identifier is stored into ID[28:18]. |



| Field | Bits | Туре | Description                                                                                                                                                                                    |
|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RTR   | 29   | rwh  | Remote Transmission Request Signals to the Host whether the received frame is a data frame or a remote frame.                                                                                  |
|       |      |      | Note: There are no remote frames in CAN FD format. In case a CAN FD frame was received (FDF = 1'), bit RTR reflects the state of the reserved bit r1.                                          |
|       |      |      | <ul> <li>0<sub>B</sub> Received frame is a data frame</li> <li>1<sub>B</sub> Received frame is a remote frame</li> </ul>                                                                       |
| XTD   | 30   | rwh  | Extended Identifier Signals to the Host whether the received frame has a standard or extended identifier.  0 <sub>B</sub> 11-bit standard identifier 1 <sub>B</sub> 29-bit extended identifier |
| ESI   | 31   | rwh  | Error State Indicator  0 <sub>B</sub> Transmitting node is error active  1 <sub>B</sub> Transmitting node is error passive                                                                     |

# Register 1

See Message layout, Table 382.

See Message layout.

# RxMsgk\_R1 (k=0-63)

| Registe  | Register 1 (000004 <sub>H</sub> + |    |    |      |    |    |    |     | +k*48 <sub>H</sub> ) Application Reset Value: XXXX XXX |     |     |    |    |    |    |
|----------|-----------------------------------|----|----|------|----|----|----|-----|--------------------------------------------------------|-----|-----|----|----|----|----|
| 31       | 30                                | 29 | 28 | 27   | 26 | 25 | 24 | 23  | 22                                                     | 21  | 20  | 19 | 18 | 17 | 16 |
| ANMF     |                                   |    |    | FIDX |    |    |    |     | 0                                                      | FDF | BRS |    | DI | LC |    |
| rwh      |                                   |    |    | rwh  |    |    |    | r۱  | vh                                                     | rwh | rwh |    | rv | vh |    |
| 15       | 14                                | 13 | 12 | 11   | 10 | 9  | 8  | 7   | 6                                                      | 5   | 4   | 3  | 2  | 1  | 0  |
|          |                                   |    |    |      |    |    | R) | (TS |                                                        |     |     |    |    |    |    |
| <u> </u> |                                   | 1  | 1  | 1    | 1  | 1  | r۱ | wh  | 1                                                      |     |     | Į. | 1  | 1  |    |

| Field | Bits | Type | Description                                                                                                                                        |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| RXTS  | 15:0 | rwh  | Rx Timestamp                                                                                                                                       |
|       |      |      | Timestamp Counter value captured on start of frame reception.  Resolution depending on configuration of the Timestamp Counter  Prescaler TSCC.TCP. |



| Field | Bits  | Туре | Description                                                                                                 |
|-------|-------|------|-------------------------------------------------------------------------------------------------------------|
| DLC   | 19:16 | rwh  | Data Length Code                                                                                            |
|       |       |      | 0 <sub>H</sub> CAN + CAN FD: received frame has 0 data bytes                                                |
|       |       |      | 8 <sub>H</sub> CAN + CAN FD: received frame has 8 data bytes                                                |
|       |       |      | 9 <sub>H</sub> CAN FD: received frame has 12 (9*4-24) data bytes<br>CAN: received frame has 8 data bytes    |
|       |       |      | CAN FD: received frame has 24 (12*4-24) data bytes                                                          |
|       |       |      | CAN: received frame has 8 data bytes  D <sub>H</sub> CAN FD: received frame has 32 (13*16-176) data bytes   |
|       |       |      | D <sub>H</sub> CAN FD: received frame has 32 (13*16-176) data bytes<br>CAN: received frame has 8 data bytes |
|       |       |      | F <sub>H</sub> CAN FD: received frame has 64 (15*16-176) data bytes CAN: received frame has 8 data bytes    |
| BRS   | 20    | rwh  | Bit Rate Switch                                                                                             |
|       |       |      | 0 <sub>B</sub> Frame received without bit rate switching                                                    |
|       |       |      | 1 <sub>B</sub> Frame received with bit rate switching                                                       |
| FDF   | 21    | rwh  | Frame Data Format                                                                                           |
|       |       |      | 0 <sub>B</sub> Standard frame format                                                                        |
|       |       |      | 1 <sub>B</sub> CAN FD frame format (new DLC-coding and CRC)                                                 |
| FIDX  | 30:24 | rwh  | Filter Index  00 <sub>H</sub> Index of matching Rx acceptance filter element (invalid if ANMF = '1').       |
|       |       |      | Range is 0 to SIDFC.LSS - 1 resp. XIDFC.LSE - 1.                                                            |
|       |       |      | 7F <sub>H</sub> Index of matching Rx acceptance filter element (invalid if ANMF = '1').                     |
|       |       |      | Range is 0 to SIDFC.LSS - 1 resp. XIDFC.LSE - 1.                                                            |
| ANMF  | 31    | rwh  | Accepted Non-matching Frame                                                                                 |
|       |       |      | Acceptance of non-matching frames may be enabled via GFC.ANFS and GFC.ANFE.                                 |
|       |       |      | 0 <sub>B</sub> Received frame matching filter index FIDX                                                    |
|       |       |      | 1 <sub>B</sub> Received frame did not match any Rx filter element                                           |
| 0     | 23:22 | rwh  | Reserved Shall read 0, shall be written with 0.                                                             |

## Data Byte m

RxMsgk\_DBm (k=0-63;m=0-63)

| Data Byte m |   |          | (000008 <sub>H</sub> +k | *48 <sub>H</sub> +m) | A        | Application Reset Value: XX <sub>H</sub> |   |  |  |
|-------------|---|----------|-------------------------|----------------------|----------|------------------------------------------|---|--|--|
| 7           | 6 | 5        | 4                       | 3                    | 2        | 1                                        | 0 |  |  |
|             |   |          | D                       | В                    |          | '                                        |   |  |  |
|             |   | <u>İ</u> | rv                      | vh                   | <u>i</u> | 1                                        |   |  |  |



| Field | Bits | Туре | Description |
|-------|------|------|-------------|
| DB    | 7:0  | rwh  | Data Byte m |

Note:

Depending on the configuration of the element size (RXESC), between two and sixteen 32-bit words (Rn = 3...17) are used for storage of a CAN message's data field.

#### 40.4.6.3 Tx Buffer Element

The Tx Buffers section can be configured to hold dedicated Tx Buffers as well as a Tx FIFO / Tx Queue. In case that the Tx Buffers section is shared by dedicated Tx buffers and a Tx FIFO / Tx Queue, the dedicated Tx Buffers start at the beginning of the Tx Buffers section followed by the buffers assigned to the Tx FIFO or Tx Queue. The Tx Handler distinguishes between dedicated Tx Buffers and Tx FIFO / Tx Queue by evaluating the Tx Buffer configuration TXBCi.TFQS and TXBCi.NDTB. The element size can be configured for storage of CAN FD messages with up to 64 bytes data field via register TXESCi.

#### Table 383 Message Layout - Tx Buffer Element

|     | 3              | 2 | 2          | 1 | 1          | 8 | 7          | 0 |  |
|-----|----------------|---|------------|---|------------|---|------------|---|--|
|     | 1              | 4 | 3          | 6 | 5          |   |            |   |  |
| T0  | O X X ID[28:0] |   |            |   |            |   |            |   |  |
| T1  | MM[7:0]        |   | Drc[3:0]   |   | 0          |   |            |   |  |
| T2  | DB3[7:0]       |   | DB2[7:0]   |   | DB1[7:0]   |   | DB0[7:0]   |   |  |
| T3  | DB7[7:0]       |   | DB6[7:0]   |   | DB5[7:0]   |   | DB4[7:0]   |   |  |
| ••• |                |   |            |   |            |   |            |   |  |
| Tn  | DBm[7:0]       |   | DBm-1[7:0] |   | DBm-2[7:0] |   | DBm-3[7:0] |   |  |

#### **Transmit Buffer 0**

See Message layout.

## TxMsgk\_T0 (k=0-31)

| _   | nit Buf | Buffer 0 (000000 <sub>H</sub> + k*48 <sub>H</sub> ) Application Reset Value: XXXX XX |    |    |    |    |    |    |    |    | XXXX |    |    |    |    |
|-----|---------|--------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|------|----|----|----|----|
| 31  | 30      | 29                                                                                   | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20   | 19 | 18 | 17 | 16 |
| ESI | XTD     | RTR                                                                                  |    | 1  | ı  | ı  | 1  | 1  | ID | I  | ı    | 1  | ı  | ı  | '  |
| rw  | rw      | rw                                                                                   |    |    | 1  | 1  |    |    | rw | I  | 1    |    | 1  | 1  |    |
| 15  | 14      | 13                                                                                   | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4    | 3  | 2  | 1  | 0  |
|     |         |                                                                                      |    | 1  |    |    |    | D  |    | 1  |      | 1  | 1  |    | 1  |
|     |         |                                                                                      |    | 1  |    |    | r  | w  |    | 1  |      | 1  | 1  |    |    |

| Field | Bits | Туре | Description                                                                                                            |
|-------|------|------|------------------------------------------------------------------------------------------------------------------------|
| ID    | 28:0 | rw   | Identifier Standard or extended identifier depending on bit XTD. A standard identifier has to be written to ID[28:18]. |



| Field | Bits | <b>Type</b><br>rw | Description                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------|------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| RTR   | 29   |                   | Remote Transmission Request                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|       |      |                   | Note: When RTR = 1, the M_CAN transmits a remote frame according to ISO11898-1, even if CCCR.FDOE enables the transmission in CAN FD format.                                                                                                                                                                                              |  |  |  |  |  |
|       |      |                   | 0 <sub>B</sub> Transmit data frame                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|       |      |                   | 1 <sub>B</sub> Transmit remote frame                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| XTD   | 30   | rw                | Extended Identifier                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|       |      |                   | 0 <sub>B</sub> 11-bit standard identifier                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|       |      |                   | 1 <sub>B</sub> 29-bit extended identifier                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| ESI   | 31   | rw                | Error State Indicator                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|       |      |                   | Note: The ESI bit of the transmit buffer is OR'ed with the error passive flag to decide the value of the ESI bit in the transmitted FD frame. As required by the CAN FD protocol specification, an error active node may optionally transmit the ESI bit recessive, but an error passive node will always transmit the ESI bit recessive. |  |  |  |  |  |
|       |      |                   | <ul> <li>0<sub>B</sub> ESI bit in CAN FD format depends only on error passive flag</li> <li>1<sub>B</sub> ESI bit in CAN FD format transmitted recessive</li> </ul>                                                                                                                                                                       |  |  |  |  |  |

## **Transmit Buffer 1**

See Message layout.

# TxMsgk\_T1 (k=0-31)

| Transn | nit Buf | 7  |    |    |    | (00 | (000004 <sub>H</sub> +k*48 <sub>H</sub> ) |     |          |     | Application Reset Value: XXXX XXXX <sub>H</sub> |    |    |    |    |  |
|--------|---------|----|----|----|----|-----|-------------------------------------------|-----|----------|-----|-------------------------------------------------|----|----|----|----|--|
| 31     | 30      | 29 | 28 | 27 | 26 | 25  | 24                                        | 23  | 22       | 21  | 20                                              | 19 | 18 | 17 | 16 |  |
|        |         |    | M  | IM | '  | '   |                                           | EFC | 0        | FDF | BRS                                             |    | D  | LC | '  |  |
|        | İ       | 1  | r  | W  | 1  | 1   | İ                                         | rw  | rw       | rw  | rw                                              |    | r  | W  |    |  |
| 15     | 14      | 13 | 12 | 11 | 10 | 9   | 8                                         | 7   | 6        | 5   | 4                                               | 3  | 2  | 1  | 0  |  |
|        | 1       | 1  | 1  | ı  | •  |     | 1                                         | 0   | !        | ı   | 1                                               | Į. | !  |    | 1  |  |
|        | 1       | 1  | 1  | 1  | 1  | 1   | · ·                                       | w   | <u> </u> | 1   | 1                                               |    | 1  | 1  | 1  |  |



| Field | Bits  | Type | Description                                                                                                               |
|-------|-------|------|---------------------------------------------------------------------------------------------------------------------------|
| DLC   | 19:16 | rw   | Data Length Code                                                                                                          |
|       |       |      | 0 <sub>H</sub> CAN + CAN FD: received frame has 0 data bytes                                                              |
|       |       |      | 8 <sub>H</sub> CAN + CAN FD: received frame has 8 data bytes                                                              |
|       |       |      | 9 <sub>H</sub> CAN FD: received frame has 12 (9*4-24) data bytes                                                          |
|       |       |      | CAN: received frame has 8 data bytes                                                                                      |
|       |       |      | C <sub>H</sub> CAN FD: received frame has 24 (12*4-24) data bytes                                                         |
|       |       |      | CAN: received frame has 8 data bytes                                                                                      |
|       |       |      | D <sub>H</sub> CAN FD: received frame has 32 (13*16-176) data bytes                                                       |
|       |       |      | CAN: received frame has 8 data bytes                                                                                      |
|       |       |      | F <sub>H</sub> CAN FD: received frame has 64 (15*16-176) data bytes                                                       |
|       |       |      | CAN: received frame has 8 data bytes                                                                                      |
| BRS   | 20    | rw   | Bit Rate Switching                                                                                                        |
|       |       |      | Note: Bits ESI, FDF, and BRS are only evaluated when CAN FD                                                               |
|       |       |      | operation is enabled CCCR.FDOE = 1'. Bit BRS is only                                                                      |
|       |       |      | evaluated when in addition CCCR.BRSE = '1'.                                                                               |
|       |       |      | 0 <sub>B</sub> CAN FD frames transmitted without bit rate switching                                                       |
|       |       |      | 1 <sub>B</sub> CAN FD frames transmitted with bit rate switching                                                          |
| FDF   | 21    | rw   | FD Format                                                                                                                 |
|       |       |      | 0 <sub>B</sub> Frame transmitted in Classical CAN format                                                                  |
|       |       |      | 1 <sub>B</sub> Frame transmitted in CAN FD format                                                                         |
| EFC   | 23    | rw   | Event FIFO Control                                                                                                        |
|       |       |      | 0 <sub>B</sub> Don't store Tx events                                                                                      |
|       |       |      | 1 <sub>B</sub> Store Tx events                                                                                            |
| MM    | 31:24 | rw   | Message Marker                                                                                                            |
|       |       |      | Written by CPU during Tx Buffer configuration. Copied into Tx Event FIFO element for identification of Tx message status. |
| 0     | 15:0, | rw   | Reserved                                                                                                                  |
|       | 22    |      | Shall read 0, shall be written with 0.                                                                                    |

## Data Byte m

TxMsgk\_DBm (k=0-31;m=0-63)

| Data Byte m | . (K 0 51,111 0 | , | (000008 <sub>H</sub> +k | (*48 <sub>H</sub> +m) | Α | Application Reset Value: XX <sub>H</sub> |          |  |  |
|-------------|-----------------|---|-------------------------|-----------------------|---|------------------------------------------|----------|--|--|
| 7           | 6               | 5 | 4                       | 3                     | 2 | 1                                        | 0        |  |  |
|             | ı               | ' | D                       | В                     | ' | •                                        | "        |  |  |
|             | 1               | İ | r                       | W                     | İ | İ                                        | <u>i</u> |  |  |

| Field | Bits | Туре | Description |
|-------|------|------|-------------|
| DB    | 7:0  | rw   | Data Byte m |



V2.0.0

2021-02

## **CAN Interface (MCMCAN)**

Note:

Depending on the configuration of the element size (TXESC), between two and sixteen 32-bit words (Tn = 3...17) are used for storage of a CAN message's data field.

## 40.4.6.4 Tx Event FIFO Element

Each element stores information about transmitted messages. By reading the Tx Event FIFO the Host CPU gets this information in the order the messages were transmitted. Status information about the Tx Event FIFO can be obtained from register TXEFS.

## Table 384 Message Layout - Tx Event FIFO Element

|    | 3       | 2 2         | 1             | . 1        | 8 | 7 | ) |
|----|---------|-------------|---------------|------------|---|---|---|
|    | 1       | 3           | 6             | 5 5        |   |   |   |
| E0 | S       |             |               |            |   |   |   |
| E1 | MM[7:0] | ET<br>[1:0] | 75 S DFC[3:0] | TXTS[15:0] |   |   |   |

#### **Event 0**

See Message layout.

#### TxEventk\_E0 (k=0-31)

| Event |     | `   | •  |    |    | (0 | 00000 | ı + k*8) |     | App | olicatio | n Rese | t Value | e: XXXX | XXXX <sub>H</sub> |
|-------|-----|-----|----|----|----|----|-------|----------|-----|-----|----------|--------|---------|---------|-------------------|
| 31    | 30  | 29  | 28 | 27 | 26 | 25 | 24    | 23       | 22  | 21  | 20       | 19     | 18      | 17      | 16                |
| ESI   | XTD | RTR |    |    |    |    |       |          | ID  |     |          |        |         |         |                   |
| rwh   | rwh | rwh |    |    |    |    | I.    |          | rwh |     | I.       | I.     | I.      |         |                   |
| 15    | 14  | 13  | 12 | 11 | 10 | 9  | 8     | 7        | 6   | 5   | 4        | 3      | 2       | 1       | 0                 |
|       | ı   | ı   | ı  |    |    |    |       | D        |     |     |          | ı      | ı       | ı       |                   |
|       | 1   |     | 1  | 1  | 1  | 1  | r۱    | wh       | 1   |     |          |        |         | 1       |                   |

| Field | Bits | Туре | Description                                                                 |
|-------|------|------|-----------------------------------------------------------------------------|
| ID    | 28:0 | rwh  | Identifier Standard or extended identifier depending on bit XTD. A standard |
|       |      |      | identifier is stored into ID[28:18].                                        |
| RTR   | 29   | rwh  | Remote Transmission Request                                                 |
|       |      |      | 0 <sub>B</sub> Data frame transmitted                                       |
|       |      |      | 1 <sub>B</sub> Remote frame transmitted                                     |
| XTD   | 30   | rwh  | Extended Identifier                                                         |
|       |      |      | 0 <sub>B</sub> 11-bit standard identifier                                   |
|       |      |      | 1 <sub>B</sub> 29-bit extended identifier                                   |
| ESI   | 31   | rwh  | Error State Indicator                                                       |
|       |      |      | 0 <sub>B</sub> Transmitting node is error active                            |
|       |      |      | 1 <sub>B</sub> Transmitting node is error passive                           |

#### **Event 1**

See Message layout.



# TxEventk\_E1 (k=0-31)

| Event | 1  | •  | •  |    |    | (0 | 00004    | <sub>H</sub> +k*8) |    | App | olicatio | n Rese | t Value | e: XXXX | XXXX |
|-------|----|----|----|----|----|----|----------|--------------------|----|-----|----------|--------|---------|---------|------|
| 31    | 30 | 29 | 28 | 27 | 26 | 25 | 24       | 23                 | 22 | 21  | 20       | 19     | 18      | 17      | 16   |
|       | 1  | ı  | М  | М  | ļ. | •  | ļ.       | E                  | T  | FDF | BRS      |        | D       | LC      |      |
|       | 1  |    | rv | vh |    |    | <u> </u> | rv                 | vh | rwh | rwh      |        | rv      | vh      |      |
| 15    | 14 | 13 | 12 | 11 | 10 | 9  | 8        | 7                  | 6  | 5   | 4        | 3      | 2       | 1       | 0    |
|       | 1  |    |    |    |    | 1  | TX       | (TS                |    | 1   | 1        |        |         |         |      |
| 1     | 1  |    | 1  | ı  | 1  | ı  | r۱       | wh                 | 1  | 1   |          | ı      | 1       | 1       |      |

| Field | Bits  | Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|-------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| TXTS  | 15:0  | rwh  | <b>Tx Timestamp</b> Timestamp Counter value captured on start of frame transmission. Resolution depending on configuration of the Timestamp Counter Prescaler TSCC.TCP.                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| DLC   | 19:16 | rwh  | Data Length Code  0 <sub>H</sub> CAN + CAN FD: received frame has 0 data bytes  8 <sub>H</sub> CAN + CAN FD: received frame has 8 data bytes  9 <sub>H</sub> CAN FD: received frame has 12 (9*4-24) data bytes CAN: received frame has 8 data bytes  C <sub>H</sub> CAN FD: received frame has 24 (12*4-24) data bytes CAN: received frame has 8 data bytes  CAN: received frame has 8 data bytes  D <sub>H</sub> CAN FD: received frame has 32 (13*16-176) data bytes CAN: received frame has 8 data bytes  F <sub>H</sub> CAN FD: received frame has 64 (15*16-176) data bytes CAN: received frame has 8 data bytes |  |  |  |  |  |  |  |
| BRS   | 20    | rwh  | Bit Rate Switch  0 <sub>B</sub> Frame transmitted without bit rate switching  1 <sub>B</sub> Frame transmitted with bit rate switching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| FDF   | 21    | rwh  | FD Format  0 <sub>B</sub> Standard frame format  1 <sub>B</sub> CAN FD frame format (new DLC-coding and CRC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| ET    | 23:22 | rwh  | Event Type  00 <sub>B</sub> Reserved  01 <sub>B</sub> Tx event  10 <sub>B</sub> Transmission in spite of cancellation (always set for transmissions in DAR mode)  11 <sub>B</sub> Reserved                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| ММ    | 31:24 | rwh  | Message Marker Copied from Tx Buffer into Tx Event FIFO element for identification of Tx message status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |



# 40.4.6.5 Standard Message ID Filter Element

Up to 128 filter elements can be configured for 11-bit standard IDs. When accessing a Standard Message ID Filter element, its address is the Filter List Standard Start Address SIDFCi.FLSSA plus the index of the filter element (0...127).

## **Standard Message 0**

|    | gk_S0 (<br>ard Mes |    |      |    |    | (0 | 00000 <sub>H</sub> | + k*4) |     | App   | olicatio | n Rese | t Value | e: XXX) | ( XXXX <sub>H</sub> |
|----|--------------------|----|------|----|----|----|--------------------|--------|-----|-------|----------|--------|---------|---------|---------------------|
| 31 | 30                 | 29 | 28   | 27 | 26 | 25 | 24                 | 23     | 22  | 21    | 20       | 19     | 18      | 17      | 16                  |
| S  | FT                 |    | SFEC |    |    | •  | •                  | •      | ı   | SFID1 | '        | •      | •       | •       |                     |
| r  | W                  |    | rw   | l  |    | 1  | 1                  | 1      | l . | rw    | I .      | 1      | 1       | 1       | 1                   |
| 15 | 14                 | 13 | 12   | 11 | 10 | 9  | 8                  | 7      | 6   | 5     | 4        | 3      | 2       | 1       | 0                   |
|    | •                  | 0  |      |    |    | •  | •                  | •      | •   | SFID2 |          | •      | •       | •       |                     |

| Field | Bits | Туре | Description                                                                                                                                           |
|-------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| SFID2 | 10:0 | rw   | Standard Filter ID 2                                                                                                                                  |
|       |      |      | This bit field has a different meaning depending on the configuration of SFEC:                                                                        |
|       |      |      | 1) SFEC = "001""110" Second ID of standard ID filter element                                                                                          |
|       |      |      | 2) SFEC = "111" Filter for Rx Buffers or for debug messages                                                                                           |
|       |      |      | SFID2[5:0]                                                                                                                                            |
|       |      |      | defines the offset to the Rx Buffer Start Address RXBC.RBSA for storage of a matching message.                                                        |
|       |      |      | SFID2[8:6]                                                                                                                                            |
|       |      |      | is used to control the filter event pins. A one at the respective bit position enables generation of a pulse at the related filter event pin with the |
|       |      |      | duration of one host clock period in case the filter matches.  SFID2[10:9]                                                                            |
|       |      |      | decides whether the received message is stored into an Rx Buffer or                                                                                   |
|       |      |      | treated as message A, B, or C of the debug message sequence.                                                                                          |
|       |      |      | 000 <sub>H</sub> Store message into an Rx Buffer                                                                                                      |
|       |      |      |                                                                                                                                                       |
|       |      |      | 1FF <sub>H</sub> Store message into an Rx Buffer                                                                                                      |
|       |      |      | 200 <sub>H</sub> Debug Message A                                                                                                                      |
|       |      |      |                                                                                                                                                       |
|       |      |      | 3FF <sub>H</sub> Debug Message A                                                                                                                      |
|       |      |      | 400 <sub>H</sub> Debug Message B                                                                                                                      |
|       |      |      | 5FF <sub>H</sub> Debug Message B                                                                                                                      |
|       |      |      | 600 <sub>H</sub> Debug Message C                                                                                                                      |
|       |      |      | OOOH DEDUK MESSAKE C                                                                                                                                  |
|       |      |      | 7FF <sub>H</sub> Debug Message C                                                                                                                      |



| Field | Bits  | Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SFID1 | 26:16 | rw   | Standard Filter ID 1 First ID of standard ID filter element. When filtering for Rx Buffers or for debug messages this field defines the ID of a standard message to be stored. The received identifiers must match exactly, no masking mechanism is used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SFEC  | 29:27 | rw   | Standard Filter Element Configuration All enabled filter elements are used for acceptance filtering of standard frames. Acceptance filtering stops at the first matching enabled filter element or when the end of the filter list is reached. If SFEC = "100", "101" or "110", a match sets interrupt flag IR.HPM and, if enabled, an interrupt is generated. In this case register HPMS is updated with the status of the priority match.  000 <sub>B</sub> Disable filter element 001 <sub>B</sub> Store in Rx FIFO 0 if filter matches 010 <sub>B</sub> Store in Rx FIFO 1 if filter matches 111 <sub>B</sub> Reject ID if filter matches 110 <sub>B</sub> Set priority if filter matches 111 <sub>B</sub> Set priority and store in FIFO 1 if filter matches 111 <sub>B</sub> Store into Rx Buffer or as debug message, configuration of SFT[1:0] ignored |
| SFT   | 31:30 | rw   | Note: With SFT = "11" the filter element is disabled and the acceptance filtering continues (same behaviour as with SFEC = "000")  OOB Range filter from SF1ID to SF2ID (SF2ID ≥ SF1ID)  OOB Dual ID filter for SF1ID or SF2ID  OB Classic filter: SF1ID = filter, SF2ID = mask  The standard Filter Type  Note: With SFT = "11" the filter element is disabled and the acceptance is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0     | 15:11 | rw   | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# 40.4.6.6 Extended Message ID Filter Element

Up to 64 filter elements can be configured for 29-bit extended IDs. When accessing an Extended Message ID Filter element, its address is the Filter List Extended Start Address XIDFCi.FLESA plus two times the index of the filter element (0...63).

# Table 385 Message Layout - Extended Message ID Filter Element

| ₹ | 2 | 2 1 |   | 1 | 8 | 7 | 0 |
|---|---|-----|---|---|---|---|---|
| 1 | 4 | 3 6 | • | 5 |   |   |   |



## **Table 385** Message Layout - Extended Message ID Filter Element (cont'd)

| F0 | EFEC[    | 2:0 | EFID1[28:0] |  |  |  |  |  |  |  |  |  |
|----|----------|-----|-------------|--|--|--|--|--|--|--|--|--|
| F1 | EFT[1:0] | 0   | EFID2[28:0] |  |  |  |  |  |  |  |  |  |

#### Filter Element 0

See Message layout.

## ExtMsgk\_F0 (k=0-63)

|   | •  | Elemen |    | ,  |    |    | (0 | 00000 | ı + k*8) |       | Арр | olicatio | n Rese | t Value | : XXXX | XXXX <sub>H</sub> |
|---|----|--------|----|----|----|----|----|-------|----------|-------|-----|----------|--------|---------|--------|-------------------|
|   | 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24    | 23       | 22    | 21  | 20       | 19     | 18      | 17     | 16                |
|   |    | EFEC   |    |    |    | ļ  | ļ  | ļ.    | '        | EFID1 |     |          | ļ.     | Į.      | Į.     |                   |
| L |    | rw     |    |    |    | 1  | 1  | 1     | 1        | rw    |     |          |        | I       | I      |                   |
|   | 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8     | 7        | 6     | 5   | 4        | 3      | 2       | 1      | 0                 |
|   |    | 1      |    | 1  | 1  | 1  | 1  | EF    | ID1      | 1     |     | 1        |        | ı       | ı      |                   |
|   |    |        |    |    |    |    |    | r     | W        |       |     |          |        |         |        |                   |

| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EFID1 | 28:0  | rw   | Extended Filter ID 1  First ID of extended ID filter element.  When filtering for Rx Buffers or for debug messages this field defines the ID of an extended message to be stored. The received identifiers must match exactly, only XIDAMi masking mechanism is used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EFEC  | 31:29 | rw   | Extended Filter Element Configuration  All enabled filter elements are used for acceptance filtering of extended frames. Acceptance filtering stops at the first matching enabled filter element or when the end of the filter list is reached. If EFEC = "100", "101" or "110", a match sets interrupt flag IR.HPM and, if enabled, an interrupt is generated. In this case register HPMS is updated with the status of the priority match.  000 <sub>B</sub> Disable filter element  001 <sub>B</sub> Store in Rx FIFO 0 if filter matches  010 <sub>B</sub> Store in Rx FIFO 1 if filter matches  100 <sub>B</sub> Set priority if filter matches  101 <sub>B</sub> Set priority and store in FIFO 0 if filter matches  110 <sub>B</sub> Set priority and store in FIFO 1 if filter matches  111 <sub>B</sub> Store into Rx Buffer or as debug message, configuration of EFT[1:0] ignored |

## Filter Element 1

See Message layout.



|   | _   | k_F1 (<br>emen | k=0-63<br>t 1 | 3) |    |    | (0 | 00004 | <sub>H</sub> +k*8) |       | Арр | olicatio | n Rese | t Value | e: XXXX | XXXX <sub>H</sub> |
|---|-----|----------------|---------------|----|----|----|----|-------|--------------------|-------|-----|----------|--------|---------|---------|-------------------|
| 3 | 1   | 30             | 29            | 28 | 27 | 26 | 25 | 24    | 23                 | 22    | 21  | 20       | 19     | 18      | 17      | 16                |
|   | EFT | Г              | 0             |    |    | ·  | i. |       | i                  | EFID2 |     | i        | i      | ·       | '       |                   |
|   | rw  |                | rw            | 1  |    |    |    | 1     |                    | rw    |     |          |        |         |         |                   |
| 1 | 5   | 14             | 13            | 12 | 11 | 10 | 9  | 8     | 7                  | 6     | 5   | 4        | 3      | 2       | 1       | 0                 |
|   | ,   | '              |               | •  | •  | •  |    | EF    | ID2                | ' '   |     | •        | •      | •       |         | ,                 |

rw

| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EFID2 | 28:0  | rw   | Extended Filter ID 2  This bit field has a different meaning depending on the configuration of EFEC:  1) EFEC = "001""110" Second ID of extended ID filter element  2) EFEC = "111" Filter for Rx Buffers or for debug messages  EFID2[5:0]  defines the offset to the Rx Buffer Start Address RXBC.RBSA for storage of a matching message.  EFID2[8:6]  is used to control the filter event. A one at the respective bit position enables generation of a pulse at the related filter event pin with the duration of one host clock period in case the filter matches.  EFID2[10:9]  decides whether the received message is stored into an Rx Buffer or treated as message A, B, or C of the debug message sequence.  000000000H, Store message into an Rx Buffer   000001FFHStore message into an Rx Buffer  00000200H, Debug Message A  00000400H, Debug Message B  000005FFHDebug Message B  000005FFHDebug Message B  000005FFHDebug Message C |
| EFT   | 31:30 | rw   | 000007FF <sub>H</sub> Debug Message C  Extended Filter Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |       |      | <ul> <li>00<sub>B</sub> Range filter from EF1ID to EF2ID (EF2ID ≥ EF1ID)</li> <li>01<sub>B</sub> Dual ID filter for EF1ID or EF2ID</li> <li>10<sub>B</sub> Classic filter: EF1ID = filter, EF2ID = mask</li> <li>11<sub>B</sub> Range filter from EF1ID to EF2ID (EF2ID ≥ EF1ID), XIDAM mask not applied</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0     | 29    | rw   | Reserved Shall read 0, shall be written with 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



# 40.4.6.7 Trigger Memory Element

Up to 64 trigger memory elements can be configured. When accessing a Trigger Memory element, its address is the Trigger Memory Start Address TTTMC.TMSA plus the index of the trigger memory element (0...63)

Table 386 Message Layout - Trigger Memory Element

|   | 3        |     | 1        | .   - | 1 |         | 8 | 7 |        |      | 1         | 0 |
|---|----------|-----|----------|-------|---|---------|---|---|--------|------|-----------|---|
|   | 1        |     | 6        | ; [   | 5 |         |   |   |        |      |           |   |
| Т | TM[15:0] |     |          |       |   | CC[6:0] |   | 0 |        |      | TYPE[3:0] |   |
| М |          |     |          |       |   |         |   |   | $\geq$ | TMEX |           |   |
| 0 |          |     |          |       | 0 |         |   |   | TMIN   | Σ    |           |   |
| Т | 0        |     | MNR[6:0] | (     | О |         |   |   |        |      | MSC       |   |
| М |          | YPE |          |       |   |         |   |   |        |      | [2:0]     |   |
| 1 |          | F   |          |       |   |         |   |   |        |      |           |   |

## **Trigger Memory Element 0**

See Message layout, see Trigger Memory Element Overview.

| TrigMsg | k TMO | (k=0-63) |
|---------|-------|----------|
|         |       |          |

| Trigge | _  | ory Ele |    | )  |    | (0 | 00000 <sup>+</sup> | <sub>ı</sub> + k*8) |    | App  | olicatio | n Rese | t Value | e: XXXX | XXXX <sub>H</sub> |
|--------|----|---------|----|----|----|----|--------------------|---------------------|----|------|----------|--------|---------|---------|-------------------|
| 31     | 30 | 29      | 28 | 27 | 26 | 25 | 24                 | 23                  | 22 | 21   | 20       | 19     | 18      | 17      | 16                |
|        | •  | •       |    | •  | •  | '  | 1                  | М                   | •  | •    |          |        | •       | ı       | •                 |
|        |    |         |    |    |    |    | r                  | W                   |    |      |          |        |         |         |                   |
| 15     | 14 | 13      | 12 | 11 | 10 | 9  | 8                  | 7                   | 6  | 5    | 4        | 3      | 2       | 1       | 0                 |
| 0      |    | 1       | I  | СС | ı  | ı  | 1                  |                     | 0  | TMIN | TMEX     |        | TY      | PE      | 1                 |
| rw     | 1  |         | 1  | rw | 1  | 1  | 1                  | r                   | W  | rw   | rw       |        | r       | W       |                   |



| Field | Bits | Туре | Description                                                                                                                                                    |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TYPE  | 3:0  | rw   | Trigger Type                                                                                                                                                   |
|       |      |      | Note: No ASC implemented. If and only if implemented: For ASC operation (ASC = "10", "11") only trigger types Rx_Trigger and Time_Base_Trigger should be used. |
|       |      |      | 0 <sub>H</sub> Tx_Ref_Trigger - valid when not in Gap                                                                                                          |
|       |      |      | 1 <sub>H</sub> Tx_Ref_Trigger_Gap - valid when in Gap                                                                                                          |
|       |      |      | 2 <sub>H</sub> Tx_Trigger_Single - starts a single transmission in an exclusive time window                                                                    |
|       |      |      | 3 <sub>H</sub> Tx_Trigger_Continous - starts continuous transmission in an exclusive time window                                                               |
|       |      |      | 4 <sub>H</sub> Tx_Trigger_Arbitration - starts a transmission in an arbitrating time window                                                                    |
|       |      |      | 5 <sub>H</sub> Tx_Trigger_Merged - starts a merged arbitration window                                                                                          |
|       |      |      | 6 <sub>H</sub> Watch_Trigger - valid when not in Gap                                                                                                           |
|       |      |      | 7 <sub>H</sub> Watch_Trigger_Gap - valid when in Gap                                                                                                           |
|       |      |      | 8 <sub>H</sub> Rx_Trigger - check for reception                                                                                                                |
|       |      |      | 9 <sub>H</sub> Time_Base_Trigger - only control TMIN, TMEX, and ASC                                                                                            |
|       |      |      | Others, End_of_List - illegal type, causes config error                                                                                                        |
| TMEX  | 4    | rw   | Time Mark Event External                                                                                                                                       |
|       |      |      | 0 <sub>B</sub> No action                                                                                                                                       |
|       |      |      | 1 <sub>B</sub> When the time mark of the trigger memory element becomes active and TTOCN.TTMIE = '1'                                                           |
| TMIN  | 5    | rw   | Time Mark Event Internal                                                                                                                                       |
|       |      |      | 0 <sub>B</sub> No action                                                                                                                                       |
|       |      |      | TTIR.TTMI is set when trigger memory element becomes active                                                                                                    |



| Field | Bits  | Туре | Description                                                                  |
|-------|-------|------|------------------------------------------------------------------------------|
| СС    | 14:8  | rw   | Cycle Code                                                                   |
|       |       |      | Cycle count for which the trigger is valid. Ignored for trigger types        |
|       |       |      | Tx_Ref_Trigger, Tx_Ref_Trigger_Gap, Watch_Trigger,                           |
|       |       |      | Watch_Trigger_Gap, End_of_List.                                              |
|       |       |      | 00 <sub>H</sub> valid for all cycles                                         |
|       |       |      | 01 <sub>H</sub> valid for all cycles                                         |
|       |       |      | 02 <sub>H</sub> valid every second cycle at cycle count mod2 = c             |
|       |       |      | 03 <sub>H</sub> valid every second cycle at cycle count mod2 = c             |
|       |       |      | 04 <sub>H</sub> valid every fourth cycle at cycle count mod4 = cc            |
|       |       |      |                                                                              |
|       |       |      | 07 <sub>H</sub> valid every fourth cycle at cycle count mod4 = cc            |
|       |       |      | 08 <sub>H</sub> valid every eighth cycle at cycle count mod8 = ccc           |
|       |       |      |                                                                              |
|       |       |      | 0F <sub>H</sub> valid every eighth cycle at cycle count mod8 = ccc           |
|       |       |      | 10 <sub>H</sub> valid every sixteenth cycle at cycle count mod16 = cccc      |
|       |       |      |                                                                              |
|       |       |      | 1F <sub>H</sub> valid every sixteenth cycle at cycle count mod16 = cccc      |
|       |       |      | 20 <sub>H</sub> valid every thirty-second cycle at cycle count mod32 = ccccc |
|       |       |      | ···                                                                          |
|       |       |      | 3F <sub>H</sub> valid every thirty-second cycle at cycle count mod32 = ccccc |
|       |       |      | 40 <sub>H</sub> valid every sixty-fourth cycle at cycle count mod64 = cccccc |
|       |       |      |                                                                              |
|       |       |      | 7F <sub>H</sub> valid every sixty-fourth cycle at cycle count mod64 = cccccc |
| TM    | 31:16 | rw   | Time Mark                                                                    |
|       |       |      | Cycle time for which the trigger becomes active.                             |
| 0     | 7:6,  | rw   | Reserved                                                                     |
|       | 15    |      | Shall read 0, shall be written with 0.                                       |

See Message layout, see Trigger Memory Element Overview.

## TrigMsgk\_TM1 (k=0-63)

| 0  | 0 —      | •  | /  |    |     |          |       |                    |    |          |      |         |        |         |      |
|----|----------|----|----|----|-----|----------|-------|--------------------|----|----------|------|---------|--------|---------|------|
|    |          |    |    |    |     | (0       | 00004 | <sub>H</sub> +k*8) |    | P        | ower | On Rese | t Valu | e: XXXX | XXXX |
| 31 | 30       | 29 | 28 | 27 | 26  | 25       | 24    | 23                 | 22 | 21       | 20   | 19      | 18     | 17      | 16   |
|    | ı        | 1  |    | 0  | l . | ı        | 1     | FTYPE              |    | ı        | 1    | MMR     |        |         |      |
|    | <u> </u> | 1  | r  | W  | 1   | <u> </u> | 1     | rw                 |    | <u> </u> | 1    | rw      |        | 1       |      |
| 15 | 14       | 13 | 12 | 11 | 10  | 9        | 8     | 7                  | 6  | 5        | 4    | 3       | 2      | 1       | 0    |
|    | ı        | ı  | ı  |    | ı   | 0        | 1     | ' '                |    | I        | 1    | '       |        | MSC     |      |
|    | 1        | 1  | 1  | 1  | 1   | rw       | 1     | 1                  |    | I        | 1    |         |        | rwh     |      |

# **AURIX™ TC3xx**



| Field | Bits           | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSC   | 2:0            | rwh  | Counts scheduling errors for periodic messages in exclusive time windows. It has no function for arbitrating messages and in event-driven CAN communication (ISO11898-1).  Note: The trigger memory elements have to be written when the M_CAN is in INIT state. Write access to the trigger memory elements outside INIT state is not allowed. There is an exception for TMIN and TMEX when they are defined as part of a trigger memory element of TYPE Tx_Ref_Trigger. In this case they become active at the time mark modified by the actual Reference Trigger Offset (TTOST.RTO). |
|       |                |      | 000 <sub>B</sub> Actual status 111 <sub>B</sub> Actual status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MMR   | 22:16          | rw   | Message Number Transmission: Trigger is valid for configured Tx Buffer number. Valid values are 0 to 31. Reception: Trigger is valid for standard / extended message ID filter element number. Valid values are 0 to 63 resp. 0 to 127.                                                                                                                                                                                                                                                                                                                                                 |
| FTYPE | 23             | rw   | Filter Type  0 <sub>B</sub> 11-bit standard message ID  1 <sub>B</sub> 29-bit extended message ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0     | 15:3,<br>31:24 | rw   | Reserved Shall read 0, shall be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |