qpp 0.1

Generated by Doxygen 1.8.7

Thu Oct 23 2014 22:16:17

Contents

1	qua	ntum++	- A C++1	1 quantum computing library	1
2	Nan	nespace	Index		3
	2.1	Names	space List	t	. 3
3	Hier	rarchica	l Index		5
	3.1	Class	Hierarchy		. 5
4	Clas	ss Index			7
	4.1	Class	List		. 7
5	File	Index			9
	5.1	File Lis	st		. 9
6	Nan	nespace	Docume	entation	11
	6.1	qpp Na	amespace	Reference	. 11
		6.1.1	Typedef	Documentation	. 17
			6.1.1.1	bra	. 17
			6.1.1.2	cmat	. 17
			6.1.1.3	cplx	. 17
			6.1.1.4	dmat	. 17
			6.1.1.5	DynMat	. 17
			6.1.1.6	ket	. 17
		6.1.2	Function	n Documentation	. 17
			6.1.2.1	absm	. 17
			6.1.2.2	adjoint	. 18
			6.1.2.3	anticomm	. 18
			6.1.2.4	channel	. 19
			6.1.2.5	channel	. 20
			6.1.2.6	choi	. 21
			6.1.2.7	choi2kraus	. 22
			6.1.2.8	comm	. 23
			6129	compnerm	24

iv CONTENTS

6.1.2.10	conjugate	25
6.1.2.11	cosm	25
6.1.2.12	cwise	26
6.1.2.13	det	26
6.1.2.14	disp	27
6.1.2.15	disp	27
6.1.2.16	disp	27
6.1.2.17	disp	27
6.1.2.18	displn	28
6.1.2.19	displn	28
6.1.2.20	displn	28
6.1.2.21	displn	29
6.1.2.22	entanglement	29
6.1.2.23	evals	29
6.1.2.24	evects	30
6.1.2.25	expandout	31
6.1.2.26	expm	31
6.1.2.27	funm	32
6.1.2.28	gconcurrence	33
6.1.2.29	grams	33
6.1.2.30	grams	33
6.1.2.31	grams	34
6.1.2.32	hevals	34
6.1.2.33	hevects	35
6.1.2.34	inverse	36
6.1.2.35	invperm	37
6.1.2.36	kron	37
6.1.2.37	kron	38
6.1.2.38	kron	38
6.1.2.39	kron	39
6.1.2.40	kronpow	39
6.1.2.41	load	40
6.1.2.42	loadMATLABmatrix	40
6.1.2.43	loadMATLABmatrix	40
6.1.2.44	loadMATLABmatrix	40
6.1.2.45	logdet	40
6.1.2.46	logm	41
6.1.2.47	mket	41
6.1.2.48	mket	42
6.1.2.49	mket	42

CONTENTS

6.1.2.50	multiidx2n	43
6.1.2.51	n2multiidx	43
6.1.2.52	norm	44
6.1.2.53	omega	44
6.1.2.54	operator""""_i	45
6.1.2.55	operator""""_i	45
6.1.2.56	powm	45
6.1.2.57	prj	46
6.1.2.58	ptrace	46
6.1.2.59	ptrace1	47
6.1.2.60	ptrace2	48
6.1.2.61	ptranspose	49
6.1.2.62	qmutualinfo	51
6.1.2.63	rand	51
6.1.2.64	rand	51
6.1.2.65	rand	52
6.1.2.66	rand	52
6.1.2.67	randH	52
6.1.2.68	randint	52
6.1.2.69	randket	53
6.1.2.70	randkraus	53
6.1.2.71	randn	53
6.1.2.72	randn	53
6.1.2.73	randn	54
6.1.2.74	randn	54
6.1.2.75	randperm	54
6.1.2.76	randrho	55
6.1.2.77	randU	55
6.1.2.78	randV	55
6.1.2.79	renyi	55
6.1.2.80	renyi_inf	56
6.1.2.81	reshape	56
6.1.2.82	save	56
6.1.2.83	saveMATLABmatrix	56
6.1.2.84	saveMATLABmatrix	57
6.1.2.85	saveMATLABmatrix	57
6.1.2.86	schmidtcoeff	57
6.1.2.87	schmidtprob	58
6.1.2.88	schmidtU	58
6.1.2.89	schmidtV	59

vi CONTENTS

		6.1.2.90	shannon	59
		6.1.2.91	sinm	59
		6.1.2.92	spectralpowm	60
		6.1.2.93	sqrtm	60
		6.1.2.94	sum	61
		6.1.2.95	super	61
		6.1.2.96	syspermute	62
		6.1.2.97	trace	63
		6.1.2.98	transpose	64
		6.1.2.99	tsallis	65
	6.1.3	Variable I	Documentation	65
		6.1.3.1	chop	65
		6.1.3.2	ee	65
		6.1.3.3	eps	65
		6.1.3.4	gt	65
		6.1.3.5	maxn	65
		6.1.3.6	pi	65
		6.1.3.7	rdevs	66
		6.1.3.8	st	66
6.2	qpp::in	ternal Nan	nespace Reference	66
	6.2.1	Detailed	Description	66
	6.2.2	Function	Documentation	67
		6.2.2.1	_check_col_vector	67
		6.2.2.2	_check_dims	67
		6.2.2.3	_check_dims_match_cvect	67
		6.2.2.4	_check_dims_match_mat	67
		6.2.2.5	_check_dims_match_rvect	67
		6.2.2.6	_check_eq_dims	67
		6.2.2.7	_check_nonzero_size	67
		6.2.2.8	_check_perm	67
		6.2.2.9	_check_row_vector	67
		6.2.2.10	_check_square_mat	67
		6.2.2.11	_check_subsys_match_dims	67
		6.2.2.12	_check_vector	67
		6.2.2.13	_kron2	67
		6.2.2.14	_multiidx2n	67
		6.2.2.15	_n2multiidx	67
		6.2.2.16	variadic_vector_emplace	67
		6.2.2.17	variadic_vector_emplace	68

CONTENTS vii

7	Clas	s Docu	mentation		69
	7.1	qpp::D	iscreteDistr	ibution Class Reference	69
		7.1.1	Construct	or & Destructor Documentation	69
			7.1.1.1	Discrete Distribution	69
			7.1.1.2	Discrete Distribution	69
			7.1.1.3	Discrete Distribution	69
		7.1.2	Member F	Function Documentation	69
			7.1.2.1	probabilities	69
			7.1.2.2	sample	70
		7.1.3	Member [Data Documentation	70
			7.1.3.1	_d	70
	7.2	qpp::D	iscreteDistr	ibutionAbsSquare Class Reference	70
		7.2.1	Construct	or & Destructor Documentation	71
			7.2.1.1	DiscreteDistributionAbsSquare	71
			7.2.1.2	DiscreteDistributionAbsSquare	71
			7.2.1.3	DiscreteDistributionAbsSquare	71
			7.2.1.4	DiscreteDistributionAbsSquare	71
		7.2.2	Member F	Function Documentation	71
			7.2.2.1	cplx2weights	71
			7.2.2.2	probabilities	71
			7.2.2.3	sample	71
		7.2.3	Member [Data Documentation	71
			7.2.3.1	_d	71
	7.3	qpp::E	xception Cl	ass Reference	71
		7.3.1	Member E	Enumeration Documentation	73
			7.3.1.1	Type	73
		7.3.2	Construct	or & Destructor Documentation	74
			7.3.2.1	Exception	74
			7.3.2.2	Exception	74
		7.3.3	Member F	function Documentation	74
			7.3.3.1	_construct_exception_msg	74
			7.3.3.2	what	74
		7.3.4	Member [Data Documentation	74
			7.3.4.1	_custom	74
			7.3.4.2	_msg	74
			7.3.4.3	_type	74
			7.3.4.4	_where	74
	7.4	qpp::G	ates Class	Reference	74
		7.4.1	Construct	or & Destructor Documentation	76
			7.4.1.1	Gates	76

viii CONTENTS

	7.4.2	Member Function Documentation
		7.4.2.1 apply
		7.4.2.2 applyCTRL
		7.4.2.3 CTRL
		7.4.2.4 Fd
		7.4.2.5 ld
		7.4.2.6 Rn
		7.4.2.7 Xd
		7.4.2.8 Zd
	7.4.3	Friends And Related Function Documentation
		7.4.3.1 Singleton < const Gates >
	7.4.4	Member Data Documentation
		7.4.4.1 CNOTab
		7.4.4.2 CNOTba
		7.4.4.3 CZ
		7.4.4.4 FRED
		7.4.4.5 H
		7.4.4.6 ld2
		7.4.4.7 S
		7.4.4.8 SWAP
		7.4.4.9 T
		7.4.4.10 TOF
		7.4.4.11 X
		7.4.4.12 Y
		7.4.4.13 Z
7.5	qpp::No	ormalDistribution Class Reference
	7.5.1	Constructor & Destructor Documentation
		7.5.1.1 NormalDistribution
	7.5.2	Member Function Documentation
		7.5.2.1 sample
	7.5.3	Member Data Documentation
		7.5.3.1 _d
7.6	qpp::Qı	dit Class Reference
	7.6.1	Constructor & Destructor Documentation
		7.6.1.1 Qudit
	7.6.2	Member Function Documentation
		7.6.2.1 getD
		7.6.2.2 getRho
		7.6.2.3 measure
		7.6.2.4 measure

CONTENTS

	7.6.3	Member Data Documentation
		7.6.3.1 _D
		7.6.3.2 _rho
7.7	qpp::R	andomDevices Class Reference
	7.7.1	Constructor & Destructor Documentation
		7.7.1.1 RandomDevices
	7.7.2	Friends And Related Function Documentation
		7.7.2.1 Singleton < Random Devices >
	7.7.3	Member Data Documentation
		7.7.3.1 _rd
		7.7.3.2 _rng
7.8	qpp::Si	ingleton < T > Class Template Reference
	7.8.1	Constructor & Destructor Documentation
		7.8.1.1 Singleton
		7.8.1.2 ~Singleton
		7.8.1.3 Singleton
	7.8.2	Member Function Documentation
		7.8.2.1 get_instance
		7.8.2.2 operator=
7.9	qpp::St	tates Class Reference
	7.9.1	Constructor & Destructor Documentation
		7.9.1.1 States
	7.9.2	Friends And Related Function Documentation
		7.9.2.1 Singleton < const States >
	7.9.3	Member Data Documentation
		7.9.3.1 b00
		7.9.3.2 b01
		7.9.3.3 b10
		7.9.3.4 b11
		7.9.3.5 GHZ
		7.9.3.6 pb00
		7.9.3.7 pb01
		7.9.3.8 pb10
		7.9.3.9 pb11
		7.9.3.10 pGHZ
		7.9.3.11 pW
		7.9.3.12 px0
		7.9.3.13 px1
		7.9.3.14 py0
		7.9.3.15 py1

CONTENTS

		7.9.3.16 pz0
		7.9.3.17 pz1
		7.9.3.18 W
		7.9.3.19 x0
		7.9.3.20 x1
		7.9.3.21 y0
		7.9.3.22 y1
		7.9.3.23 z0
		7.9.3.24 z1 88
7.10	qpp::Ti	mer Class Reference
	7.10.1	Constructor & Destructor Documentation
		7.10.1.1 Timer
	7.10.2	Member Function Documentation
		7.10.2.1 seconds
		7.10.2.2 tic
		7.10.2.3 toc
	7.10.3	Friends And Related Function Documentation
		7.10.3.1 operator<< 88
	7.10.4	Member Data Documentation
		7.10.4.1 _end
		7.10.4.2 _start
7.11	qpp::Ur	niformIntDistribution Class Reference
	7.11.1	Constructor & Destructor Documentation
		7.11.1.1 UniformIntDistribution
	7.11.2	Member Function Documentation
		7.11.2.1 sample
	7.11.3	Member Data Documentation
		7.11.3.1 _d
7.12	qpp::Ur	niformRealDistribution Class Reference
	7.12.1	Constructor & Destructor Documentation
		7.12.1.1 UniformRealDistribution
	7.12.2	Member Function Documentation
		7.12.2.1 sample
	7.12.3	Member Data Documentation
		7.12.3.1 _d
File [Docume	entation 91
8.1	include	/channels.h File Reference
8.2	include	/classes/exception.h File Reference
8.3	include	/classes/gates.h File Reference

8

CONTENTS xi

8.	4	include	e/classes/c	qudit.h File	Refere	nce .			 	 	 		 			93
8.	5	include	e/classes/r	andevs.h	File Refe	erence			 	 	 		 			93
8.	6	include	e/classes/s	singleton.h	File Re	ferenc	е		 	 	 		 			94
		8.6.1	Macro D	efinition D	ocumen	tation			 	 	 		 			94
			8.6.1.1	CLASS_	CONST	_SINC	GLET	NC	 	 	 		 			94
			8.6.1.2	CLASS	SINGLE	TON			 	 	 		 			94
8.	.7	include	e/classes/s	stat.h File	Reference	ce			 	 	 		 			95
8.	8	include	e/classes/s	states.h Fi	le Refere	ence .			 	 	 		 			95
8.	9	include	e/classes/t	imer.h File	e Refere	nce .			 	 	 		 			96
8.	10	include	e/constants	s.h File Re	eference				 	 	 		 			96
8.	11	include	e/entangle	ment.h Fil	e Refere	nce .			 	 	 		 			97
8.	12	include	e/entropies	s.h File Re	ference				 	 	 		 			98
8.	13	include	e/functions	.h File Re	ference				 	 	 		 			99
8.	14	include	e/internal.h	File Refe	erence .				 	 	 		 			102
8.	15	include	e/io.h File I	Reference					 	 	 		 			103
8.	16	include	e/matlab.h	File Refe	rence				 	 	 		 			104
8.	17	include	e/qpp.h File	e Referen	ce				 	 	 		 			105
8.	18	include	e/random.h	r File Refe	erence .				 	 	 		 			106
8.	19	include	e/types.h F	ile Refere	nce				 	 	 		 			107
Index	(108

Chapter 1

quantum++ - A C++11 quantum computing library

Version

0.1

Author

Vlad Gheorghiu

Date

24 October 2014

quantum++ - A C++	11 quantum	computing lib	rary

Chapter 2

Namespace Index

2.1	Namespace	List
-----	-----------	------

Her	is a list of all namespaces with brief descriptions:	paces with brief descriptions:	
	pp	11	
	pp::internal	66	

4 Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

qpp::DiscreteDistribution	69
qpp::DiscreteDistributionAbsSquare	70
exception	
qpp::Exception	71
qpp::NormalDistribution	80
qpp::Qudit	81
qpp::Singleton< T >	84
qpp::Gates	74
qpp::RandomDevices	
qpp::Singleton < const Gates >	84
qpp::Singleton < const States >	84
qpp::States	85
qpp::Singleton < RandomDevices >	84
лине	88
gpp::UniformIntDistribution	89
nno::IniformRealDistribution	89

6 **Hierarchical Index**

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

u::DiscreteDistribution	69
::DiscreteDistributionAbsSquare	70
::Exception	71
o::Gates	74
::NormalDistribution	80
:::Qudit	81
::RandomDevices	83
::Singleton < T >	84
::States	85
o::Timer	88
::UniformIntDistribution	89
::UniformRealDistribution	89

8 Class Index

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

include/channels.h	91
include/constants.h	96
include/entanglement.h	97
include/entropies.h	98
include/functions.h	99
include/internal.h	02
include/io.h	03
	04
	05
	06
	07
include/classes/exception.h	92
include/classes/gates.h	92
include/classes/qudit.h	93
include/classes/randevs.h	93
include/classes/singleton.h	94
include/classes/stat.h	95
include/classes/states.h	95
include/classes/timer.h	96

10 File Index

Chapter 6

Namespace Documentation

6.1 qpp Namespace Reference

Namespaces

· internal

Classes

- · class DiscreteDistribution
- · class DiscreteDistributionAbsSquare
- class Exception
- · class Gates
- · class NormalDistribution
- · class Qudit
- class RandomDevices
- class Singleton
- · class States
- class Timer
- class UniformIntDistribution
- · class UniformRealDistribution

Typedefs

```
    using cplx = std::complex < double >
        Complex number in double precision.
```

• using cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

using dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

using ket = Eigen::Matrix < cplx, Eigen::Dynamic, 1 >
 Complex (double precision) dynamic Eigen column matrix.

using bra = Eigen::Matrix < cplx, 1, Eigen::Dynamic >

Complex (double precision) dynamic Eigen row matrix.

```
    template < typename Scalar >
        using DynMat = Eigen::Matrix < Scalar, Eigen::Dynamic, Eigen::Dynamic >
        Dynamic Eigen matrix over the field specified by Scalar.
```

Functions

Adjoint.

```
    cmat super (const std::vector < cmat > &Ks)

     Superoperator matrix representation.

    cmat choi (const std::vector < cmat > &Ks)

     Choi matrix representation.

    std::vector< cmat > choi2kraus (const cmat &A)

     Extracts orthogonal Kraus operators from Choi matrix.

    template<typename Derived >

  cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks)
     Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

    template<typename Derived >

  cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std::vector<
  std::size t > &subsys, const std::vector< std::size t > &dims)
     Applies the channel specified by the set of Kraus operators Ks to the part of the density matrix rho specified by
     subsys.

    constexpr std::complex< double > operator""_i (unsigned long long int x)

      User-defined literal for complex i = \sqrt{-1} (integer overload)

    constexpr std::complex< double > operator""_i (long double x)

      User-defined literal for complex i = \sqrt{-1} (real overload)

    std::complex< double > omega (std::size_t D)

     D-th root of unity.

    template<typename Derived >

  cmat schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)
• template<typename Derived >
  cmat schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

    template<typename Derived >

  cmat schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)

    template<typename Derived >

  cmat schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)
• template<typename Derived >
  double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

    template<typename Derived >

  double gconcurrence (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double shannon (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi_inf (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &subsys,
  const std::vector< std::size_t > &dims)

    template<typename Derived >

  DynMat< typename Derived::Scalar > transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.

    template<typename Derived >

  DynMat< typename Derived::Scalar > conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  DynMat< typename Derived::Scalar > adjoint (const Eigen::MatrixBase< Derived > &A)
```

```
• template<typename Derived >
  DynMat< typename Derived::Scalar > inverse (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)
      Trace.
• template<typename Derived >
  Derived::Scalar det (const Eigen::MatrixBase< Derived > &A)
     Determinant.

    template<typename Derived >

  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)
     Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)
     Element-wise sum.
• template<typename Derived >
  double norm (const Eigen::MatrixBase< Derived > &A)
      Trace norm.

    template<typename Derived >

  cmat evals (const Eigen::MatrixBase< Derived > &A)
     Eigenvalues.

    template<typename Derived >

  cmat evects (const Eigen::MatrixBase< Derived > &A)
     Eigenvectors.

    template<typename Derived >

  dmat hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.
• template<typename Derived >
  cmat hevects (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvectors.

    template<typename Derived >

  cmat funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)

    template<typename Derived >

  cmat sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.

    template<typename Derived >

  cmat absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolut value.

    template<typename Derived >

  cmat expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.
• template<typename Derived >
  cmat logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.

    template<typename Derived >

  cmat sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.
• template<typename Derived >
  cmat cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.

    template<typename Derived >

  cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
```

Matrix power.

• template<typename Derived >

DynMat< typename Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, std::size_t n)

Matrix power.

• template<typename OutputScalar , typename Derived >

DynMat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const typename Derived::Scalar &))

Functor.

• template<typename T >

DynMat< typename T::Scalar > kron (const T &head)

Kronecker product (variadic overload)

• template<typename T , typename... Args>

DynMat< typename T::Scalar > kron (const T &head, const Args &...tail)

Kronecker product (variadic overload)

• template<typename Derived >

DynMat< typename Derived::Scalar > kron (const std::vector< Derived > &As)

Kronecker product (std::vector overload)

template<typename Derived >

DynMat< typename Derived::Scalar > kron (const std::initializer list< Derived > &As)

Kronecker product (std::initializer_list overload)

• template<typename Derived >

DynMat< typename Derived::Scalar > kronpow (const Eigen::MatrixBase< Derived > &A, std::size_t n)

Kronecker power.

template<typename Derived >

DynMat< typename Derived::Scalar > reshape (const Eigen::MatrixBase< Derived > &A, std::size_t rows, std::size_t cols)

Reshape.

• template<typename Derived >

System permutation.

• template<typename Derived >

DynMat< typename Derived::Scalar > ptrace1 (const Eigen::MatrixBase< Derived > &A, const std::vector<
std::size_t > &dims)

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Partial trace.

• template<typename Derived >

Partial transpose.

• template<typename Derived1 , typename Derived2 >

Commutator.

• template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen ← ::MatrixBase< Derived2 > &B)

Anti-commutator.

• template<typename Derived >

DynMat< typename Derived::Scalar > prj (const Eigen::MatrixBase< Derived > &V)

Projector.

• template<typename Derived >

DynMat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, std::size_t pos, const std::vector< std::size_t > &dims)

Expand out.

template<typename Derived >

DynMat< typename Derived::Scalar > grams (const std::vector< Derived > &Vs)

Gram-Schmidt orthogonalization (std::vector overload)

template<typename Derived >

DynMat< typename Derived::Scalar > grams (const std::initializer_list< Derived > &Vs)

Gram-Schmidt orthogonalization (std::initializer list overload)

template<typename Derived >

DynMat< typename Derived::Scalar > grams (const Eigen::MatrixBase< Derived > &A)

Gram-Schmidt orthogonalization (Eigen expression (matrix) overload)

std::vector< std::size_t > n2multiidx (std::size_t n, const std::vector< std::size_t > &dims)

Non-negative integer index to multi-index.

• std::size_t multiidx2n (const std::vector< std::size_t > &midx, const std::vector< std::size_t > &dims)

Multi-index to non-negative integer index.

ket mket (const std::vector< std::size t > &mask)

Multi-partite qubit ket.

ket mket (const std::vector< std::size t > &mask, const std::vector< std::size t > &dims)

Multi-partite qudit ket (different dimensions overload)

ket mket (const std::vector < std::size_t > &mask, std::size_t d)

Multi-partite qudit ket (same dimensions overload)

std::vector< std::size_t > invperm (const std::vector< std::size_t > &perm)

Inverse permutation.

std::vector< std::size_t > compperm (const std::vector< std::size_t > &perm, const std::vector< std::size_t > &sigma)

Compose permutations.

template<typename T >

void disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

• template<typename T >

void displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

• template<typename T >

void disp (const T *x, const std::size_t n, const std::string &separator, const std::string &start="[", const std
::string &end="]", std::ostream &os=std::cout)

• template<typename T >

void displn (const T *x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

• template<typename Derived >

void disp (const Eigen::MatrixBase< Derived > &A, double chop=chop, std::ostream &os=std::cout)

template<typename Derived >

void displn (const Eigen::MatrixBase< Derived > &A, double chop=chop, std::ostream &os=std::cout)

- void disp (const cplx c, double chop=chop, std::ostream &os=std::cout)
- void displn (const cplx c, double chop=chop, std::ostream &os=std::cout)
- template<typename Derived >

void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

• template<typename Derived >

DynMat< typename Derived::Scalar > load (const std::string &fname)

• template<typename Derived > Derived loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) template<> dmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) template<> cmat loadMATLABmatrix (const std::string &mat file, const std::string &var name) $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$ void saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat file, const std↔ ::string &var name, const std::string &mode) • template<> void saveMATLABmatrix (const Eigen::MatrixBase < dmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode) template<> void saveMATLABmatrix (const Eigen::MatrixBase < cmat > &A, const std::string &mat file, const std::string &var name, const std::string &mode) template<typename Derived > Derived rand (std::size t rows, std::size t cols, double a=0, double b=1) template<> dmat rand (std::size_t rows, std::size_t cols, double a, double b) template<> cmat rand (std::size t rows, std::size t cols, double a, double b) double rand (double a=0, double b=1) • long long randint (long long a, long long b) template<typename Derived > Derived randn (std::size_t rows, std::size_t cols, double mean=0, double sigma=1) template<> dmat randn (std::size t rows, std::size t cols, double mean, double sigma) template<> cmat randn (std::size t rows, std::size t cols, double mean, double sigma) double randn (double mean=0, double sigma=1) cmat randU (std::size_t D) cmat randV (std::size_t Din, std::size_t Dout) std::vector< cmat > randkraus (std::size t n, std::size t D) • cmat randH (std::size t D) ket randket (std::size_t D) cmat randrho (std::size_t D) std::vector< std::size_t > randperm (std::size_t n) constexpr double chop = 1e-10 ::chop. • constexpr double eps = 1e-12 Used to decide whether a number or expression in double precision is zero or not. constexpr std::size_t maxn = 64 Maximum number of qubits.

Variables

Used in qpp::disp() and qpp::displn() for setting to zero numbers that have their absolute value smaller than qpp::ct←

constexpr double pi = 3.141592653589793238462643383279502884

constexpr double ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

RandomDevices & rdevs = RandomDevices::get_instance()

gpp::RandomDevices Singleton

const Gates & gt = Gates::get_instance()

6.1.1 Typedef Documentation

6.1.1.1 using qpp::bra = typedef Eigen::Matrix < cplx, 1, Eigen::Dynamic >

Complex (double precision) dynamic Eigen row matrix.

6.1.1.2 using qpp::cmat = typedef Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

6.1.1.3 using qpp::cplx = typedef std::complex < double >

Complex number in double precision.

6.1.1.4 using qpp::dmat = typedef Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

6.1.1.5 template<typename Scalar > using qpp::DynMat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>

Dynamic Eigen matrix over the field specified by Scalar.

Example:

```
auto mat = DynMat<float>(2,3); // type of mat is Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
```

6.1.1.6 using qpp::ket = typedef Eigen::Matrix<cplx, Eigen::Dynamic, 1>

Complex (double precision) dynamic Eigen column matrix.

6.1.2 Function Documentation

6.1.2.1 template<typename Derived > cmat qpp::absm (const Eigen::MatrixBase< Derived > & A)

Matrix absolut value.

Parameters

A | Eigen expression

Returns

Matrix absolut value of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.2 template<typename Derived > DynMat<typename Derived::Scalar> qpp::adjoint (const Eigen::MatrixBase< Derived > & A)

Adjoint.

Parameters

A Eigen expression

Returns

Adjoint (Hermitian conjugate) of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.3 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::anticomm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Anti-commutator.

Anti-commutator $\{A,B\} = AB + BA$ Both A and B must be Eigen expressions over the same scalar field

Parameters

A	Eigen expression
В	Eigen expression

Returns

Anti-commutator AB + BA, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.4 template<typename Derived > cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< cmat > & Ks)

Applies the channel specified by the set of Kraus operators *Ks* to the density matrix *rho*.

Parameters

rho	Eigen expression
Ks	std::vector of Eigen expressions representing the set of Kraus operators

Returns

Output density matrix, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.5 template<typename Derived > cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< cmat > & Ks, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

Applies the channel specified by the set of Kraus operators *Ks* to the part of the density matrix *rho* specified by *subsys*.

Parameters

rho	Eigen expression
Ks	std::vector of Eigen expressions representing the set of Kraus operators
subsys	Subsystems' indexes
dims	Dimensions of the multi-partite system

Returns

Output density matrix, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.6 cmat qpp::choi (const std::vector < cmat > & Ks)

Choi matrix representation.

Constructs the Choi matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|,\,|0\rangle\langle 1|$ etc.

Note

the superoperator matrix S and the Choi matrix C are related by $S_{ab,mn} = C_{ma,nb}$

Parameters

Ks	std::vector of Eigen expressions representing the set of Kraus operators

Returns

Choi matrix representation, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.7 std::vector<cmat> qpp::choi2kraus (const cmat & A)

Extracts orthogonal Kraus operators from Choi matrix.

Extracts a set of orthogonal (under Hilbert-Schmidt operator norm) Kraus operators from the Choi representation *A* of the channel

Note

The Kraus operators satisfy $Tr(K_i^\dagger K_j) = \delta_{ij}$ for all i
eq j

Parameters

Α	Choi matrix
---	-------------

Returns

std::vector of dynamic matrices over the complex field representing the set of Kraus operators

Here is the call graph for this function:

 $\begin{array}{ll} \hbox{6.1.2.8} & \hbox{template$<$typename$ Derived1$, typename Derived2$ > DynMat$<$typename Derived1::Scalar$> qpp::comm (const Eigen::MatrixBase$< Derived2$ > & B) \\ \end{array}$

Commutator.

Commutator [A,B] = AB - BA

Both A and B must be Eigen expressions over the same scalar field

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Commutator AB - BA, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

Compose permutations.

perm	Permutation
sigma	Permutation

Returns

Composition of the permutations *perm* o *sigma* = perm(sigma)

Here is the call graph for this function:

6.1.2.10 template<typename Derived > DynMat<typename Derived::Scalar> qpp::conjugate (const Eigen::MatrixBase< Derived > & A)

Complex conjugate.

Parameters

|--|

Returns

Complex conjugate of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

 $6.1.2.11 \quad template < typename \ Derived > cmat \ qpp::cosm \ (\ const \ Eigen::MatrixBase < Derived > \& \ \textit{A} \)$

Matrix cos.

Α	Eigen expression
---	------------------

Returns

Matrix cosine of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.12 template < typename OutputScalar , typename Derived > DynMat < OutputScalar > qpp::cwise (const Eigen::MatrixBase < Derived > & A, OutputScalar(*)(const typename Derived::Scalar &) f)

Functor.

Parameters

Α	Eigen expression
f	Pointer-to-function from scalars of A to OutputScalar

Returns

Component-wise f(A), as a dynamic matrix over the *OutputScalar* scalar field

Here is the call graph for this function:

6.1.2.13 template < typename Derived > Derived::Scalar qpp::det (const Eigen::MatrixBase < Derived > & A)

Determinant.

Α	Eigen expression

Returns

Determinant of A, as a dynamic matrix over the same scalar field Returns $\pm\infty$ when the determinant overflows/underflows

Here is the call graph for this function:

- 6.1.2.14 template<typename T > void qpp::disp (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 6.1.2.15 template < typename T > void qpp::disp (const T * x, const std::size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 6.1.2.16 template<typename Derived > void qpp::disp (const Eigen::MatrixBase< Derived > & A, double chop = chop, std::ostream & os = std::cout)
- 6.1.2.17 void qpp::disp (const cplx c, double chop = chop, std::ostream & os = std::cout)

6.1.2.18 template<typename T > void qpp::displn (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

6.1.2.19 template<typename T > void qpp::displn (const T * x, const std::size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

6.1.2.20 template < typename Derived > void qpp::displn (const Eigen::MatrixBase < Derived > & A, double chop = chop, std::ostream & os = std::cout)

6.1.2.21 void qpp::displn (const cplx c, double chop = chop, std::ostream & os = std::cout)

Here is the call graph for this function:

6.1.2.22 template < typename Derived > double qpp::entanglement (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Here is the call graph for this function:

6.1.2.23 template < typename Derived > cmat qpp::evals (const Eigen::MatrixBase < Derived > & A)

Eigenvalues.

Α	Eigen expression
---	------------------

Returns

Eigenvalues of A, as a diagonal dynamic matrix over the complex field, with eigenvalues on the diagonal

Here is the call graph for this function:

6.1.2.24 template<typename Derived > cmat qpp::evects (const Eigen::MatrixBase< Derived > & A)

Eigenvectors.

Parameters

Α	Eigen expression

Returns

Eigenvectors of A, as columns of a dynamic matrix over the complex field

Expand out.

Expand out A as a matrix in a multi-partite system Faster than using qpp::kron(I, I, ..., I, A, I, ..., I)

Parameters

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I$, with A on position pos, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.26 template<typename Derived > cmat qpp::expm (const Eigen::MatrixBase< Derived > & A)

Matrix exponential.

Α	Eigen expression

Matrix exponential of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.27 template < typename Derived > cmat qpp::funm (const Eigen::MatrixBase < Derived > & A, cplx(*)(const cplx &) f)

Functional calculus f(A)

Parameters

Α	Eigen expression
f	Pointer-to-function from complex to complex

Returns

f(A), as a dynamic matrix over the complex field

6.1.2.28 template < typename Derived > double qpp::gconcurrence (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

6.1.2.29 template<typename Derived > DynMat<typename Derived::Scalar> qpp::grams (const std::vector< Derived > & Vs)

Gram-Schmidt orthogonalization (std::vector overload)

Parameters

Vs	std::vector of Eigen expressions as column vectors
----	--

Returns

Gram-Schmidt vectors of Vs as columns of a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.30 template<typename Derived > DynMat<typename Derived::Scalar> qpp::grams (const std::initializer_list< Derived > & Vs)

Gram-Schmidt orthogonalization (std::initializer list overload)

Vs	std::initializer list of Eigen expressions as column vectors

Returns

Gram-Schmidt vectors of Vs as columns of a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.31 template < typename Derived > DynMat < typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > & A)

Gram-Schmidt orthogonalization (Eigen expression (matrix) overload)

Parameters

Α	Eigen expression, the input vectors are the columns of A

Returns

Gram-Schmidt vectors of the columns of A, as columns of a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.32 template<typename Derived > dmat qpp::hevals (const Eigen::MatrixBase< Derived > & A)

Hermitian eigenvalues.

Α	Eigen expression
---	------------------

Returns

Eigenvalues of Hermitian A, as a diagonal dynamic matrix over the real field, with eigenvalues on the diagonal

Here is the call graph for this function:

6.1.2.33 template < typename Derived > cmat qpp::hevects (const Eigen::MatrixBase < Derived > & A)

Hermitian eigenvectors.

Parameters

Α	Eigen expression

Returns

Eigenvectors of Hermitian A, as columns of a dynamic matrix over the complex field

6.1.2.34 template < typename Derived > DynMat < typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase < Derived > & A)

Inverse.

Α	Eigen expression

Returns

Inverse of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.35 std::vector<std::size_t> qpp::invperm (const std::vector< std::size_t> & perm)

Inverse permutation.

Parameters

perm	Permutation

Returns

Inverse of the permutation perm

Here is the call graph for this function:

6.1.2.36 template < typename T > DynMat < typename T::Scalar > qpp::kron (const T & head)

Kronecker product (variadic overload)

Used to stop the recursion for the variadic template version of qpp::kron()

head	Eigen expression

Its argument head

6.1.2.37 template<typename T , typename... Args> DynMat<typename T::Scalar> qpp::kron (const T & head, const Args &... tail)

Kronecker product (variadic overload)

Parameters

head	Eigen expression
tail	Variadic Eigen expression (zero or more parameters)

Returns

Kronecker product of all input parameters, evaluated from left to right, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.38 template < typename Derived > DynMat < typename Derived::Scalar > qpp::kron (const std::vector < Derived > & As)

Kronecker product (std::vector overload)

	As	std::vector of Eigen expressions
--	----	----------------------------------

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.39 template < typename Derived > DynMat < typename Derived::Scalar > qpp::kron (const std::initializer_list < Derived > & As)

Kronecker product (std::initializer_list overload)

Parameters

As	std::initializer list of Eigen expressions, such as {A1, A2,, Ak}
AS	stdinitializer_list of Ligeri expressions, such as {A1, A2, ,Ak}

Returns

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.40 template<typename Derived > DynMat<typename Derived::Scalar> qpp::kronpow (const Eigen::MatrixBase < Derived > & A, std::size_t n)

Kronecker power.

Α	Eigen expression
n	Non-negative integer

Kronecker product of A with itself n times $A^{\otimes n}$, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

- 6.1.2.41 template < typename Derived > DynMat < typename Derived::Scalar > qpp::load (const std::string & fname)
- 6.1.2.42 template<typename Derived > Derived qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 6.1.2.43 template <> dmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 6.1.2.44 template<> cmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- 6.1.2.45 template<typename Derived > Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > & A)

Logarithm of the determinant.

Especially useful when the determinant overflows/underflows

Α	Eigen expression

Logarithm of the determinant of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.46 template < typename Derived > cmat qpp::logm (const Eigen::MatrixBase < Derived > & A)

Matrix logarithm.

Parameters

Α	Eigen expression

Returns

Matrix logarithm of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.47 ket qpp::mket (const std::vector< std::size_t > & mask)

Multi-partite qubit ket.

Constructs the multi-partite qubit ket $|mask\rangle$, where mask is a std::vector of 0's and 1's

mask	std::vector of 0's and 1's
------	----------------------------

Returns

Multi-partite qubit state vector, as a dynamic column vector over the complex field

Here is the call graph for this function:

6.1.2.48 ket qpp::mket (const std::vector < std::size_t > & mask, const std::vector < std::size_t > & dims)

Multi-partite qudit ket (different dimensions overload)

Constructs the multi-partite qudit ket $|mask\rangle$, where mask is a std::vector of non-negative integers Each element in mask has to be smaller than the corresponding element in dims

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Multi-partite qudit state vector, as a dynamic column vector over the complex field

Here is the call graph for this function:

6.1.2.49 ket qpp::mket (const std::vector< std::size_t > & mask, std::size_t d)

Multi-partite qudit ket (same dimensions overload)

Constructs the multi-partite qudit ket $|mask\rangle$ in a multi-partite system, all subsystem having equal dimension d mask is a std::vector of non-negative integers, and each element in mask has to be strictly smaller than d

mask	std::vector of non-negative integers
d	Subsystems' dimension

Returns

Multi-partite qudit state vector, as a dynamic column vector over the complex field

Here is the call graph for this function:

6.1.2.50 std::size_t qpp::multiidx2n (const std::vector < std::size_t > & midx, const std::vector < std::size_t > & dims)

Multi-index to non-negative integer index.

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

midx	Multi-index
dims	Dimensions of the multi-partite system

Returns

Non-negative integer index

Here is the call graph for this function:

6.1.2.51 std::vector<std::size_t> qpp::n2multiidx (std::size_t n, const std::vector< std::size_t> & dims)

Non-negative integer index to multi-index.

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

n	Non-negative integer index
dims	Dimensions of the multi-partite system

Returns

Multi-index of the same size as dims

Here is the call graph for this function:

6.1.2.52 template < typename Derived > double qpp::norm (const Eigen::MatrixBase < Derived > & A)

Trace norm.

Parameters

Α	Eigen expression

Returns

Trace norm (Frobenius norm) of A, as a real number

Here is the call graph for this function:

6.1.2.53 std::complex<double> qpp::omega (std::size_t D)

D-th root of unity.

D	Non-negative integer

D-th root of unity $\exp(2\pi i/D)$

6.1.2.54 constexpr std::complex<double> qpp::operator""_i (unsigned long long int x)

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

Example:

```
auto z = 4_i; // type of z is std::complex<double>
```

6.1.2.55 constexpr std::complex<double> qpp::operator""_i (long double x)

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

Example:

```
auto z = 4.5_i; // type of z is std::complex<double>
```

6.1.2.56 template<typename Derived > DynMat<typename Derived::Scalar> qpp::powm (const Eigen::MatrixBase< Derived > & A, std::size_t n)

Matrix power.

Explicitly multiplies the matrix A with itself n times

By convention $A^0 = I$

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Matrix power A^n , as a dynamic matrix over the same scalar field

6.1.2.57 template<typename Derived > DynMat<typename Derived::Scalar> qpp::prj (const Eigen::MatrixBase< Derived > & V)

Projector.

Normalized projector onto state vector

Parameters

V	Eigen expression

Returns

Projector onto the state vector V, or the matrix Zero if V has norm zero (i.e. smaller than qpp::eps), as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.58 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptrace (const Eigen::MatrixBase < Derived > & A, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

Partial trace.

Partial trace of the multi-partite density matrix over a list of subsystems

Α	Eigen expression
subsys	Subsystems' indexes
dims	Dimensions of the multi-partite system

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.59 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptrace1 (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & dims)

Partial trace.

Partial trace of density matrix over the first subsystem in a bi-partite system

Α	Eigen expression
dims	Dimensions of bi-partite system (must be a std::vector with 2 elements)

Partial trace $Tr_A(\cdot)$ over the first subsytem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

Partial trace.

Parameters

Α	Eigen expression
dims	Dimensions of bi-partite system (must be a std::vector with 2 elements)

Returns

Partial trace $Tr_B(\cdot)$ over the second subsystem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

Partial transpose.

Partial transpose of the multi-partite density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystems' indexes
dims	Dimensions of the multi-partite system

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field

6.1.2.62 template < typename Derived > double qpp::qmutualinfo (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & subsys, const std::vector < std::size_t > & dims)

- 6.1.2.63 template < typename Derived > Derived qpp::rand (std::size_t rows, std::size_t cols, double a = 0, double b = 1)
- 6.1.2.64 template <> dmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b)

6.1.2.65 template <> cmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b)

Here is the call graph for this function:

6.1.2.66 double qpp::rand (double a = 0, double b = 1)

Here is the call graph for this function:

6.1.2.67 cmat qpp::randH (std::size_t D)

Here is the call graph for this function:

6.1.2.68 long long qpp::randint (long long a, long long b)

6.1.2.69 ket qpp::randket (std::size_t D)

Here is the call graph for this function:

6.1.2.70 std::vector<cmat> qpp::randkraus (std::size_t n, std::size_t D)

Here is the call graph for this function:

- 6.1.2.71 template<typename Derived > Derived qpp::randn (std::size_t rows, std::size_t cols, double mean = 0, double sigma = 1)
- 6.1.2.72 template<> dmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)

6.1.2.73 template<> cmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)

Here is the call graph for this function:

6.1.2.74 double qpp::randn (double mean = 0, double sigma = 1)

Here is the call graph for this function:

6.1.2.75 std::vector<std::size_t> qpp::randperm (std::size_t n)

6.1.2.76 cmat qpp::randrho (std::size_t D)

Here is the call graph for this function:

6.1.2.77 cmat qpp::randU (std::size_t D)

6.1.2.78 cmat qpp::randV (std::size_t Din, std::size_t Dout)

Here is the call graph for this function:

6.1.2.79 template<typename Derived > double qpp::renyi (const double alpha, const Eigen::MatrixBase< Derived > & A)

6.1.2.80 $template < typename Derived > double qpp::renyi_inf (const Eigen::MatrixBase < Derived <math>>$ & A)

Here is the call graph for this function:

6.1.2.81 template<typename Derived > DynMat<typename Derived::Scalar> qpp::reshape (const Eigen::MatrixBase< Derived > & A, std::size_t rows, std::size_t cols)

Reshape.

Uses column-major order when reshaping (same as MATLAB)

Parameters

Α	Eigen expression
rows	Number of rows of the reshaped matrix
cols	Number of columns of the reshaped matrix

Returns

Reshaped matrix with rows rows and cols columns, as a dynamic matrix over the same scalar field

- 6.1.2.82 template < typename Derived > void qpp::save (const Eigen::MatrixBase < Derived > & A, const std::string & fname)
- 6.1.2.83 template < typename Derived > void qpp::saveMATLABmatrix (const Eigen::MatrixBase < Derived > & A, const std::string & mat_file, const std::string & mode)

6.1.2.84 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< dmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

6.1.2.85 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< cmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

6.1.2.86 template < typename Derived > cmat qpp::schmidtcoeff (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

6.1.2.87 template < typename Derived > cmat qpp::schmidtprob (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Here is the call graph for this function:

6.1.2.89 template<typename Derived > cmat qpp::schmidtV (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & dims)

Here is the call graph for this function:

6.1.2.90 template<typename Derived > double qpp::shannon (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

6.1.2.91 template < typename Derived > cmat qpp::sinm (const Eigen::MatrixBase < Derived > & A)

Matrix sin.

Α	Eigen expression
---	------------------

Returns

Matrix sine of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.92 template<typename Derived > cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > & A, const cplx z)

Matrix power.

Uses the spectral decomposition of \emph{A} to compute the matrix power By convention $\emph{A}^0 = \emph{I}$

Parameters

A	Eigen expression
Z	Complex number

Returns

Matrix power A^z , as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.93 template<typename Derived > cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > & A)

Matrix square root.

Parameters

Α	l Eigen expression
---	--------------------

Returns

Matrix square root of A, as a dynamic matrix over the complex field

Here is the call graph for this function:

6.1.2.94 template < typename Derived > Derived::Scalar qpp::sum (const Eigen::MatrixBase < Derived > & A)

Element-wise sum.

Parameters

A Eigen expression

Returns

Element-wise sum of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.95 cmat qpp::super (const std::vector < cmat > & Ks)

Superoperator matrix representation.

Constructs the superoperator matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Parameters

Ks	std::vector of Eigen expressions representing the set of Kraus operators
----	--

Returns

Superoperator matrix representation, as a dynamic matrix over the complex field

Here is the call graph for this function:

System permutation.

Permutes the subsystems in a state vector or density matrix The qubit perm[i] is permuted to the location i

Parameters

Α	Eigen expression
perm	Permutation
dims	Subsystems' dimensions

Returns

Permuted system, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.97 template<typename Derived > Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > & A)

Trace.

Parameters

Α	Eigen expression

Returns

Trace of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.98 template<typename Derived > DynMat<typename Derived::Scalar> qpp::transpose (const Eigen::MatrixBase < Derived > & $\bf A$)

Transpose.

Parameters

```
A Eigen expression
```

Returns

Transpose of A, as a dynamic matrix over the same scalar field

Here is the call graph for this function:

6.1.2.99 template < typename Derived > double qpp::tsallis (const double alpha, const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

6.1.3 Variable Documentation

6.1.3.1 constexpr double qpp::chop = 1e-10

Used in *qpp::disp()* and *qpp::displn()* for setting to zero numbers that have their absolute value smaller than *qpp ⇔ ::ct::chop*.

6.1.3.2 constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

6.1.3.3 constexpr double qpp::eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

Example:

```
if(std::abs(x) < qpp::ct::eps) // x is zero</pre>
```

6.1.3.4 const Gates& qpp::gt = Gates::get_instance()

qpp::Gates const Singleton

Initializes the gates, see the class *qpp::Gates*

6.1.3.5 constexpr std::size_t qpp::maxn = 64

Maximum number of qubits.

Used internally to statically allocate arrays (for speed reasons)

6.1.3.6 constexpr double qpp::pi = 3.141592653589793238462643383279502884

 π

6.1.3.7 RandomDevices& qpp::rdevs = RandomDevices::get_instance()

qpp::RandomDevices Singleton

Initializes the random devices, see the class *qpp::RandomDevices*

6.1.3.8 const States& qpp::st = States::get_instance()

qpp::States const Singleton

Initializes the states, see the class *qpp::States*

6.2 qpp::internal Namespace Reference

Functions

- void n2multiidx (std::size t n, std::size t numdims, const std::size t *dims, std::size t *result)
- std::size t multiidx2n (const std::size t *midx, std::size t numdims, const std::size t *dims)
- template<typename Derived >

bool <u>_check_square_mat</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool <u>check_vector</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool <u>_check_row_vector</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool <u>_check_col_vector</u> (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ template {<} typename \ T >$

bool <u>_check_nonzero_size</u> (const T &x)

- bool <u>_check_dims</u> (const std::vector < std::size_t > &dims)
- template<typename Derived >

 $\label{local_bool_check_dims_match_mat} \mbox{ (const std::vector} < \mbox{ std::size_t} > \mbox{\&dims, const Eigen::MatrixBase} < \mbox{ Derived} > \mbox{\&A})$

template<typename Derived >

bool _check_dims_match_cvect (const std::vector< std::size_t > &dims, const Eigen::MatrixBase< Derived > &V)

• template<typename Derived >

 $\label{local_check_dims_match_rvect} \mbox{ (const std::vector} < \mbox{ std::size_t} > \& \mbox{ dims, const Eigen::MatrixBase} < \mbox{ Derived} > \& \mbox{ V)}$

- bool check eq dims (const std::vector < std::size t > &dims, std::size t dim)
- bool _check_subsys_match_dims (const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)
- bool _check_perm (const std::vector< std::size_t > &perm)
- template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > _kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::

MatrixBase< Derived2 > &B)

template<typename T >

void variadic_vector_emplace (std::vector< T > &)

template<typename T, typename First, typename... Args>
 void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

6.2.1 Detailed Description

Internal functions, do not modify or use directly

- 6.2.2 Function Documentation
- 6.2.2.1 template < typename Derived > bool qpp::internal::_check_col_vector (const Eigen::MatrixBase < Derived > & A)
- 6.2.2.2 bool qpp::internal::_check_dims (const std::vector < std::size_t > & dims)
- 6.2.2.3 template<typename Derived > bool qpp::internal::_check_dims_match_cvect (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 6.2.2.4 template<typename Derived > bool qpp::internal::_check_dims_match_mat (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & A)
- 6.2.2.5 template<typename Derived > bool qpp::internal::_check_dims_match_rvect (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 6.2.2.6 bool qpp::internal::_check_eq_dims (const std::vector< std::size_t > & dims, std::size_t dim)
- 6.2.2.7 template<typename T > bool qpp::internal::_check_nonzero_size (const T & x)
- 6.2.2.8 bool qpp::internal::_check_perm (const std::vector< std::size_t > & perm)
- 6.2.2.9 template < typename Derived > bool qpp::internal::_check_row_vector (const Eigen::MatrixBase < Derived > & A)
- 6.2.2.10 template < typename Derived > bool qpp::internal::_check_square_mat (const Eigen::MatrixBase < Derived > & A)
- 6.2.2.11 bool qpp::internal::_check_subsys_match_dims (const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)
- $6.2.2.12 \quad template < typename \ Derived > bool \ qpp::internal::_check_vector \ (\ const \ Eigen::MatrixBase < Derived > \& \ A \)$
- $\begin{array}{ll} \textbf{6.2.2.13} & \textbf{template} < \textbf{typename Derived1} \ , \ \textbf{typename Derived2} > \textbf{DynMat} < \textbf{typename Derived1::Scalar} > \textbf{qpp::internal::_kron2} \ (\\ \textbf{const Eigen::MatrixBase} < \textbf{Derived1} > \& \textit{A}, \ \textbf{const Eigen::MatrixBase} < \textbf{Derived2} > \& \textit{B} \) \end{array}$

Here is the call graph for this function:

- 6.2.2.14 std::size_t app::internal::_multiidx2n (const std::size_t * midx, std::size_t numdims, const std::size_t * dims)
- 6.2.2.15 void qpp::internal::_n2multiidx (std::size_t n, std::size_t numdims, const std::size_t * dims, std::size_t * result)
- 6.2.2.16 template < typename T > void qpp::internal::variadic_vector_emplace (std::vector < T > &)

6.2.2.17 template < typename T , typename First , typename... Args > void qpp::internal::variadic_vector_emplace (std::vector < T > & v, First && first, Args &&... args)

Here is the call graph for this function:

Chapter 7

Class Documentation

7.1 qpp::DiscreteDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- template<typename InputIterator >
 DiscreteDistribution (InputIterator first, InputIterator last)
- Discrete Distribution (std::initializer_list< double > weights)
- Discrete Distribution (std::vector< double > weights)
- std::size_t sample ()
- std::vector< double > probabilities () const

Protected Attributes

```
std::discrete_distributionstd::size_t > _d
```

7.1.1 Constructor & Destructor Documentation

- 7.1.1.1 template < typename InputIterator > qpp::DiscreteDistribution::DiscreteDistribution (InputIterator first, InputIterator last) [inline]
- 7.1.1.2 qpp::DiscreteDistribution::DiscreteDistribution (std::initializer_list < double > weights) [inline]
- 7.1.1.3 qpp::DiscreteDistribution::DiscreteDistribution (std::vector< double > weights) [inline]

7.1.2 Member Function Documentation

```
7.1.2.1 std::vector<double> qpp::DiscreteDistribution::probabilities ( ) const [inline]
```

7.1.2.2 std::size_t qpp::DiscreteDistribution::sample() [inline]

Here is the call graph for this function:

7.1.3 Member Data Documentation

7.1.3.1 std::discrete_distribution<std::size_t> qpp::DiscreteDistribution::_d [protected]

The documentation for this class was generated from the following file:

· include/classes/stat.h

7.2 qpp::DiscreteDistributionAbsSquare Class Reference

#include <stat.h>

Public Member Functions

- template<typename InputIterator >
 DiscreteDistributionAbsSquare (InputIterator first, InputIterator last)
- DiscreteDistributionAbsSquare (std::initializer_list< cplx > amplitudes)
- DiscreteDistributionAbsSquare (std::vector< cplx > amplitudes)
- template<typename Derived >
 DiscreteDistributionAbsSquare (const Eigen::MatrixBase< Derived > &V)
- std::size_t sample ()
- std::vector< double > probabilities () const

Protected Member Functions

template<typename InputIterator >
 std::vector< double > cplx2weights (InputIterator first, InputIterator last) const

Protected Attributes

std::discrete_distributionstd::size_t > _d

7.2.1 Constructor & Destructor Documentation

- 7.2.1.1 template < typename InputIterator > qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (InputIterator *lirst*, InputIterator *last*) <code>[inline]</code>
- 7.2.1.2 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (std::initializer_list< cplx > amplitudes) [inline]
- 7.2.1.3 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (std::vector < cplx > amplitudes) [inline]
- 7.2.1.4 template<typename Derived > qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (const Eigen::MatrixBase< Derived > & V) [inline]

7.2.2 Member Function Documentation

- 7.2.2.1 template<typename InputIterator > std::vector<double> qpp::DiscreteDistributionAbsSquare::cplx2weights (InputIterator first, InputIterator last) const [inline], [protected]
- **7.2.2.2** std::vector<double> qpp::DiscreteDistributionAbsSquare::probabilities () const [inline]
- **7.2.2.3** std::size_t qpp::DiscreteDistributionAbsSquare::sample() [inline]

Here is the call graph for this function:

7.2.3 Member Data Documentation

7.2.3.1 std::discrete_distribution<std::size_t> qpp::DiscreteDistributionAbsSquare::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

7.3 qpp::Exception Class Reference

#include <exception.h>

Inheritance diagram for qpp::Exception:

Collaboration diagram for qpp::Exception:

Public Types

• enum Type {

Type::UNKNOWN_EXCEPTION = 1, Type::ZERO_SIZE, Type::MATRIX_NOT_SQUARE, Type::MATRIX_← NOT_CVECTOR,

Type::MATRIX_NOT_RVECTOR, Type::MATRIX_NOT_VECTOR, Type::MATRIX_NOT_SQUARE_OR_C↔ VECTOR, Type::MATRIX_NOT_SQUARE_OR_RVECTOR,

Type::MATRIX_NOT_SQUARE_OR_VECTOR, Type::DIMS_INVALID, Type::DIMS_NOT_EQUAL, Type::D↔ IMS_MISMATCH_MATRIX,

 $\label{type::DIMS_MISMATCH_CVECTOR} Type::DIMS_MISMATCH_RVECTOR, Type::DIMS_MISMATCH_VE \leftarrow CTOR, Type::SUBSYS_MISMATCH_DIMS,$

Type::PERM_INVALID, Type::NOT_QUBIT_GATE, Type::NOT_QUBIT_SUBSYS, Type::NOT_BIPARTITE, Type::OUT_OF_RANGE, Type::TYPE_MISMATCH, Type::UNDEFINED_TYPE, Type::CUSTOM_EXCEPT → ION }

Public Member Functions

- Exception (const std::string &where, const Type &type)
- Exception (const std::string &where, const std::string &custom)
- virtual const char * what () const noexceptoverride

Private Member Functions

• std::string _construct_exception_msg ()

Private Attributes

- · std::string where
- std::string _msg
- Type type
- std::string custom

7.3.1 Member Enumeration Documentation

7.3.1.1 enum qpp::Exception::Type [strong]

Enumerator

UNKNOWN_EXCEPTION Unknown exception

ZERO_SIZE Zero sized object, e.g. empty Eigen::Matrix or std::vector with no elements

MATRIX_NOT_SQUARE Eigen::Matrix is not square

MATRIX_NOT_CVECTOR Eigen::Matrix is not a column vector

MATRIX_NOT_RVECTOR Eigen::Matrix is not a row vector

MATRIX_NOT_VECTOR Eigen::Matrix is not a row/column vector

MATRIX NOT SQUARE OR CVECTOR Eigen::Matrix is not square nor a column vector

MATRIX_NOT_SQUARE_OR_RVECTOR Eigen::Matrix is not square nor a row vector

MATRIX_NOT_SQUARE_OR_VECTOR Eigen::Matrix is not square nor a row/column vector

DIMS_INVALID std::vector<std::size_t> representing the dimensions has zero size or contains zeros

DIMS_NOT_EQUAL std::vector<std::size_t> representing the dimensions contains non-equal elements

DIMS_MISMATCH_MATRIX Product of the dimenisons' std::vector<std::size_t> is not equal to the number of rows of Eigen::Matrix (assumed to be square)

DIMS_MISMATCH_CVECTOR Product of the dimenisons' std::vector<std::size_t> is not equal to the number of cols of Eigen::Matrix (assumed to be a column vector)

DIMS_MISMATCH_RVECTOR Product of the dimenisons' std::vector<std::size_t> is not equal to the number of cols of Eigen::Matrix (assumed to be a row vector)

DIMS_MISMATCH_VECTOR Product of the dimenisons' std::vector<std::size_t> is not equal to the number of cols of Eigen::Matrix (assumed to be a row/column vector)

SUBSYS_MISMATCH_DIMS std::vector<std::size_t> representing the subsystems' labels has duplicatates, or has entries that are larger than the size of the std::vector<std::size_t> representing the dimensions

PERM_INVALID Invalid std::vector<std::size_t> permutation

NOT_QUBIT_GATE Eigen::Matrix is not 2 x 2

NOT_QUBIT_SUBSYS Subsystems are not 2-dimensional

NOT_BIPARTITE std::vector<std::size t> representing the dimensions has size different from 2

OUT_OF_RANGE Parameter out of range

TYPE_MISMATCH Types do not match (i.e. Matrix<double> vs Matrix<cplx>)

UNDEFINED_TYPE Templated function not defined for this type

CUSTOM_EXCEPTION Custom exception, user must provide a custom message

7.3.2 Constructor & Destructor Documentation

7.3.2.1 qpp::Exception::Exception (const std::string & where, const Type & type) [inline]

Here is the call graph for this function:

7.3.2.2 qpp::Exception::Exception (const std::string & where, const std::string & custom) [inline]

Here is the call graph for this function:

7.3.3 Member Function Documentation

- 7.3.3.1 std::string qpp::Exception::_construct_exception_msg() [inline], [private]
- 7.3.3.2 virtual const char* qpp::Exception::what () const [inline], [override], [virtual], [noexcept]
- 7.3.4 Member Data Documentation
- **7.3.4.1 std::string qpp::Exception::_custom** [private]
- **7.3.4.2 std::string qpp::Exception::_msg** [private]
- 7.3.4.3 Type qpp::Exception::_type [private]
- **7.3.4.4 std::string qpp::Exception::_where** [private]

The documentation for this class was generated from the following file:

• include/classes/exception.h

7.4 qpp::Gates Class Reference

#include <gates.h>

Inheritance diagram for qpp::Gates:

Collaboration diagram for qpp::Gates:

Public Member Functions

- cmat Rn (double theta, std::vector< double > n) const
- cmat Zd (std::size t D) const
- cmat Fd (std::size t D) const
- cmat Xd (std::size_t D) const
- template<typename Derived = Eigen::MatrixXcd>
 Derived Id (std::Size_t D) const
- template<typename Derived1 , typename Derived2 >
 DynMat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &ctrl, const std::vector< std::size_t > &subsys, std::size t n, std::size t d=2) const
- template<typename Derived >
 DynMat< typename Derived::Scalar > CTRL (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &ctrl, const std::vector< std::size_t > &subsys, std::size_t n, std::size_t d=2) const

Public Attributes

```
cmat Id2 { cmat::Identity(2, 2) }
cmat H { cmat::Zero(2, 2) }
cmat X { cmat::Zero(2, 2) }
cmat Y { cmat::Zero(2, 2) }
cmat Z { cmat::Zero(2, 2) }
cmat S { cmat::Zero(2, 2) }
cmat T { cmat::Zero(2, 2) }
cmat CNOTab { cmat::Identity(4, 4) }
cmat CX { cmat::Identity(4, 4) }
cmat CNOTba { cmat::Zero(4, 4) }
cmat SWAP { cmat::Identity(4, 4) }
cmat TOF { cmat::Identity(8, 8) }
cmat FRED { cmat::Identity(8, 8) }
```

Private Member Functions

• Gates ()

Friends

class Singleton < const Gates >

Additional Inherited Members

7.4.1 Constructor & Destructor Documentation

```
7.4.1.1 qpp::Gates::Gates() [inline], [private]
```

7.4.2 Member Function Documentation

Here is the call graph for this function:

7.4.2.2 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::Gates::applyCTRL (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< std::size_t > & ctrl, const std::vector< std::size_t n, std::size_t n, std::size_t d = 2) const [inline]

7.4.2.3 template<typename Derived > DynMat<typename Derived::Scalar> qpp::Gates::CTRL (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & ctrl, const std::vector< std::size_t > & subsys, std::size_t n, std::size_t d = 2) const [inline]

Here is the call graph for this function:

7.4.2.4 cmat qpp::Gates::Fd (std::size_t D) const [inline]

Here is the call graph for this function:

- 7.4.2.5 template<typename Derived = Eigen::MatrixXcd> Derived qpp::Gates::Id (std::size_t D) const [inline]
- 7.4.2.6 cmat qpp::Gates::Rn (double theta, std::vector < double > n) const [inline]

7.4.2.7 cmat qpp::Gates::Xd (std::size_t D) const [inline]

Here is the call graph for this function:

7.4.2.8 cmat qpp::Gates::Zd (std::size_t D) const [inline]

Here is the call graph for this function:

- 7.4.3 Friends And Related Function Documentation
- **7.4.3.1** friend class Singleton < const Gates > [friend]
- 7.4.4 Member Data Documentation
- 7.4.4.1 cmat qpp::Gates::CNOTab { cmat::Identity(4, 4) }
- 7.4.4.2 cmat qpp::Gates::CNOTba { cmat::Zero(4, 4) }
- 7.4.4.3 cmat qpp::Gates::CZ { cmat::Identity(4, 4) }
- 7.4.4.4 cmat qpp::Gates::FRED { cmat::Identity(8, 8) }
- 7.4.4.5 cmat qpp::Gates::H { cmat::Zero(2, 2) }
- 7.4.4.6 cmat qpp::Gates::ld2 { cmat::ldentity(2, 2) }
- 7.4.4.7 cmat qpp::Gates::S { cmat::Zero(2, 2) }
- 7.4.4.8 cmat qpp::Gates::SWAP { cmat::Identity(4, 4) }
- 7.4.4.9 cmat qpp::Gates::T { cmat::Zero(2, 2) }

```
    7.4.4.10 cmat qpp::Gates::TOF { cmat::Identity(8, 8) }
    7.4.4.11 cmat qpp::Gates::X { cmat::Zero(2, 2) }
    7.4.4.12 cmat qpp::Gates::Y { cmat::Zero(2, 2) }
    7.4.4.13 cmat qpp::Gates::Z { cmat::Zero(2, 2) }
```

The documentation for this class was generated from the following file:

• include/classes/gates.h

7.5 qpp::NormalDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- NormalDistribution (double mean=0, double sigma=1)
- double sample ()

Protected Attributes

• std::normal_distribution_d

7.5.1 Constructor & Destructor Documentation

7.5.1.1 qpp::NormalDistribution::NormalDistribution (double mean = 0, double sigma = 1) [inline]

7.5.2 Member Function Documentation

7.5.2.1 double qpp::NormalDistribution::sample() [inline]

Here is the call graph for this function:

7.5.3 Member Data Documentation

7.5.3.1 std::normal_distribution qpp::NormalDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

7.6 qpp::Qudit Class Reference

```
#include <qudit.h>
```

Public Member Functions

- Qudit (const cmat &rho=States::get_instance().pz0)
- std::size_t measure (const cmat &U, bool destructive=false)
- std::size_t measure (bool destructive=false)
- cmat getRho () const
- std::size_t getD () const

Private Attributes

- cmat _rho
- std::size_t _D

7.6.1 Constructor & Destructor Documentation

```
7.6.1.1 qpp::Qudit::Qudit ( const cmat & rho = States::get_instance () .pz0 ) [inline]
```

Here is the call graph for this function:

7.6.2 Member Function Documentation

- 7.6.2.1 std::size_t qpp::Qudit::getD () const [inline]
- 7.6.2.2 cmat qpp::Qudit::getRho() const [inline]

7.6.2.3 std::size_t qpp::Qudit::measure (const cmat & U, bool destructive = false) [inline]

Here is the call graph for this function:

7.6.2.4 std::size_t qpp::Qudit::measure (bool destructive = false) [inline]

Here is the call graph for this function:

7.6.3 Member Data Documentation

7.6.3.1 std::size_t qpp::Qudit::_D [private]

7.6.3.2 cmat qpp::Qudit::_rho [private]

The documentation for this class was generated from the following file:

• include/classes/qudit.h

7.7 qpp::RandomDevices Class Reference

#include <randevs.h>

Inheritance diagram for qpp::RandomDevices:

Collaboration diagram for qpp::RandomDevices:

Public Attributes

• std::mt19937 _rng

Private Member Functions

• RandomDevices ()

Private Attributes

• std::random_device _rd

Friends

class Singleton < RandomDevices >

Additional Inherited Members

7.7.1 Constructor & Destructor Documentation

7.7.1.1 qpp::RandomDevices::RandomDevices() [inline], [private]

7.7.2 Friends And Related Function Documentation

7.7.2.1 friend class Singleton < Random Devices > [friend]

7.7.3 Member Data Documentation

7.7.3.1 std::random_device qpp::RandomDevices::_rd [private]

7.7.3.2 std::mt19937 qpp::RandomDevices::_rng

The documentation for this class was generated from the following file:

• include/classes/randevs.h

7.8 qpp::Singleton < T > Class Template Reference

#include <singleton.h>

Inheritance diagram for qpp::Singleton < T >:

Static Public Member Functions

• static T & get_instance ()

Protected Member Functions

- Singleton ()=default
- virtual ∼Singleton ()
- Singleton (const Singleton &)=delete
- Singleton & operator= (const Singleton &)=delete

7.8.1 Constructor & Destructor Documentation

- 7.8.1.1 template < typename T > qpp::Singleton < T >::Singleton () [protected], [default]
- 7.8.1.2 template<typename T> virtual qpp::Singleton < T>:: \sim Singleton () [inline], [protected], [virtual]

7.8.2 Member Function Documentation

- 7.8.2.1 template<typename T> static T& qpp::Singleton < T>::get_instance() [inline], [static]
- 7.8.2.2 template<typename T> Singleton& qpp::Singleton< T>::operator= (const Singleton< T>&) [protected], [delete]

The documentation for this class was generated from the following file:

• include/classes/singleton.h

7.9 qpp::States Class Reference

#include <states.h>

Inheritance diagram for qpp::States:

Collaboration diagram for qpp::States:

Public Attributes

```
    ket x0 { ket::Zero(2) }

ket x1 { ket::Zero(2) }
ket y0 { ket::Zero(2) }

    ket y1 { ket::Zero(2) }

    ket z0 { ket::Zero(2) }

ket z1 { ket::Zero(2) }

    cmat px0 { cmat::Zero(2, 2) }

cmat px1 { cmat::Zero(2, 2) }
cmat py0 { cmat::Zero(2, 2) }
cmat py1 { cmat::Zero(2, 2) }
• cmat pz0 { cmat::Zero(2, 2) }

    cmat pz1 { cmat::Zero(2, 2) }

ket b00 { ket::Zero(4) }
ket b01 { ket::Zero(4) }
ket b10 { ket::Zero(4) }
ket b11 { ket::Zero(4) }

    cmat pb00 { cmat::Zero(4, 4) }

cmat pb01 { cmat::Zero(4, 4) }

    cmat pb10 { cmat::Zero(4, 4) }

cmat pb11 { cmat::Zero(4, 4) }

    ket GHZ { ket::Zero(8) }

    ket W { ket::Zero(8) }

    cmat pGHZ { cmat::Zero(8, 8) }

    cmat pW { cmat::Zero(8, 8) }
```

Private Member Functions

• States ()

Friends

class Singleton < const States >

Additional Inherited Members

```
Constructor & Destructor Documentation
7.9.1.1
        qpp::States::States() [inline],[private]
7.9.2
        Friends And Related Function Documentation
7.9.2.1 friend class Singleton < const States > [friend]
7.9.3
        Member Data Documentation
7.9.3.1
        ket qpp::States::b00 { ket::Zero(4) }
7.9.3.2
        ket qpp::States::b01 { ket::Zero(4) }
        ket qpp::States::b10 { ket::Zero(4) }
7.9.3.3
        ket qpp::States::b11 { ket::Zero(4) }
        ket qpp::States::GHZ { ket::Zero(8) }
        cmat qpp::States::pb00 { cmat::Zero(4, 4) }
7.9.3.7
        cmat qpp::States::pb01 { cmat::Zero(4, 4) }
7.9.3.8 cmat qpp::States::pb10 { cmat::Zero(4, 4) }
7.9.3.9
        cmat qpp::States::pb11 { cmat::Zero(4, 4) }
7.9.3.10 cmat qpp::States::pGHZ { cmat::Zero(8, 8) }
7.9.3.11 cmat qpp::States::pW { cmat::Zero(8, 8) }
7.9.3.12 cmat qpp::States::px0 { cmat::Zero(2, 2) }
7.9.3.13 cmat qpp::States::px1 { cmat::Zero(2, 2) }
7.9.3.14 cmat qpp::States::py0 { cmat::Zero(2, 2) }
7.9.3.15 cmat qpp::States::py1 { cmat::Zero(2, 2) }
7.9.3.16 cmat qpp::States::pz0 { cmat::Zero(2, 2) }
7.9.3.17 cmat qpp::States::pz1 { cmat::Zero(2, 2) }
7.9.3.18 ket qpp::States::W { ket::Zero(8) }
7.9.3.19 ket qpp::States::x0 { ket::Zero(2) }
7.9.3.20 ket qpp::States::x1 { ket::Zero(2) }
7.9.3.21 ket qpp::States::y0 { ket::Zero(2) }
7.9.3.22 ket qpp::States::y1 { ket::Zero(2) }
```

```
7.9.3.23 ket qpp::States::z0 { ket::Zero(2) }7.9.3.24 ket qpp::States::z1 { ket::Zero(2) }
```

The documentation for this class was generated from the following file:

• include/classes/states.h

7.10 qpp::Timer Class Reference

```
#include <timer.h>
```

Public Member Functions

- Timer ()
- void tic ()
- void toc ()
- double seconds () const

Protected Attributes

- std::chrono::steady_clock::time_point _start
- · std::chrono::steady_clock::time_point_end

Friends

std::ostream & operator<< (std::ostream &os, const Timer &rhs)

7.10.1 Constructor & Destructor Documentation

```
7.10.1.1 qpp::Timer::Timer( ) [inline]
```

7.10.2 Member Function Documentation

```
7.10.2.1 double qpp::Timer::seconds ( ) const [inline]
```

```
7.10.2.2 void qpp::Timer::tic() [inline]
```

- 7.10.2.3 void qpp::Timer::toc() [inline]
- 7.10.3 Friends And Related Function Documentation
- 7.10.3.1 std::ostream& operator << (std::ostream & os, const Timer & rhs) [friend]

7.10.4 Member Data Documentation

```
7.10.4.1 std::chrono::steady_clock::time_point qpp::Timer::_end [protected]
```

7.10.4.2 std::chrono::steady_clock::time_point qpp::Timer::_start [protected]

The documentation for this class was generated from the following file:

• include/classes/timer.h

7.11 qpp::UniformIntDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- UniformIntDistribution (int a=0, int b=1)
- int sample ()

Protected Attributes

· std::uniform_int_distribution_d

7.11.1 Constructor & Destructor Documentation

7.11.1.1 qpp::UniformIntDistribution::UniformIntDistribution (int a = 0, int b = 1) [inline]

7.11.2 Member Function Documentation

7.11.2.1 int qpp::UniformIntDistribution::sample() [inline]

Here is the call graph for this function:

7.11.3 Member Data Documentation

7.11.3.1 std::uniform_int_distribution qpp::UniformIntDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

7.12 qpp::UniformRealDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- UniformRealDistribution (double a=0, double b=1)
- double sample ()

Protected Attributes

· std::uniform_real_distribution_d

7.12.1 Constructor & Destructor Documentation

7.12.1.1 qpp::UniformRealDistribution::UniformRealDistribution (double a = 0, double b = 1) [inline]

7.12.2 Member Function Documentation

7.12.2.1 double qpp::UniformRealDistribution::sample() [inline]

Here is the call graph for this function:

7.12.3 Member Data Documentation

7.12.3.1 std::uniform_real_distribution qpp::UniformRealDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

Chapter 8

File Documentation

8.1 include/channels.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- cmat qpp::super (const std::vector< cmat > &Ks)
 - Superoperator matrix representation.
- cmat qpp::choi (const std::vector< cmat > &Ks)

Choi matrix representation.

- std::vector< cmat > qpp::choi2kraus (const cmat &A)
 - Extracts orthogonal Kraus operators from Choi matrix.
- $\bullet \ \ \text{template}{<} \text{typename Derived} >$
 - cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks)

Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std \leftrightarrow ::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part of the density matrix rho specified by subsys.

92 File Documentation

8.2 include/classes/exception.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Exception

Namespaces

• qpp

8.3 include/classes/gates.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Gates

Namespaces

qpp

8.4 include/classes/qudit.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Qudit

Namespaces

• qpp

8.5 include/classes/randevs.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::RandomDevices

Namespaces

qpp

94 File Documentation

8.6 include/classes/singleton.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Singleton< T >

Namespaces

qpp

Macros

- #define CLASS_SINGLETON(Foo)
- #define CLASS_CONST_SINGLETON(Foo)

8.6.1 Macro Definition Documentation

8.6.1.1 #define CLASS_CONST_SINGLETON(Foo)

Value:

8.6.1.2 #define CLASS_SINGLETON(Foo)

Value:

8.7 include/classes/stat.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

- class qpp::NormalDistribution
- class qpp::UniformRealDistribution
- class qpp::UniformIntDistribution
- class qpp::DiscreteDistribution
- class qpp::DiscreteDistributionAbsSquare

Namespaces

• qpp

8.8 include/classes/states.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

class qpp::States

96 File Documentation

Namespaces

• qpp

8.9 include/classes/timer.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Timer

Namespaces

qpp

8.10 include/constants.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- constexpr std::complex< double > qpp::operator""_i (unsigned long long int x)
 - User-defined literal for complex $i = \sqrt{-1}$ (integer overload)
- constexpr std::complex< double > qpp::operator"" i (long double x)
 - User-defined literal for complex $i = \sqrt{-1}$ (real overload)
- std::complex < double > qpp::omega (std::size_t D)
 - D-th root of unity.

Variables

- constexpr double qpp::chop = 1e-10
 - Used in qpp::disp() and qpp::displn() for setting to zero numbers that have their absolute value smaller than qpp::ct← ::chop.
- constexpr double qpp::eps = 1e-12
 - Used to decide whether a number or expression in double precision is zero or not.
- constexpr std::size_t qpp::maxn = 64
 - Maximum number of qubits.
- constexpr double qpp::pi = 3.141592653589793238462643383279502884
 - π
- constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

8.11 include/entanglement.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

- template<typename Derived >
 cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
- template<typename Derived >
 cmat qpp::schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

- template<typename Derived >
 cmat qpp::schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
- template<typename Derived >
 cmat qpp::schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
- template<typename Derived >
 double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
- template<typename Derived >
 double qpp::gconcurrence (const Eigen::MatrixBase< Derived > &A)

8.12 include/entropies.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

- template<typename Derived > double qpp::shannon (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi_inf (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &subsys,
 const std::vector< std::size_t > &dims)

8.13 include/functions.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

```
    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  DynMat< typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)
      Inverse.
template<typename Derived >
  Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > &A)
      Trace.

    template<typename Derived >

  Derived::Scalar <a href="mailto:qpp::det">qpp::det</a> (const Eigen::MatrixBase</a> Derived > &A)
      Determinant.
template<typename Derived >
  Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > &A)
      Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar qpp::sum (const Eigen::MatrixBase< Derived > &A)
      Element-wise sum.
• template<typename Derived >
  double <a href="mailto:qpp::norm">qpp::norm</a> (const Eigen::MatrixBase</a> Derived > &A)
      Trace norm.

    template<typename Derived >
```

cmat qpp::evals (const Eigen::MatrixBase< Derived > &A)

```
Eigenvalues.
• template<typename Derived >
  cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)
      Eigenvectors.
• template<typename Derived >
  dmat qpp::hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.
• template<typename Derived >
  cmat <a href="mailto:qpp::hevects">qpp::hevects</a> (const Eigen::MatrixBase</a> Derived > &A)
     Hermitian eigenvectors.

    template<typename Derived >

  cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
      Functional calculus f(A)

    template<typename Derived >

  cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)
      Matrix square root.
• template<typename Derived >
  cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)
      Matrix absolut value.

    template<typename Derived >

  cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.

    template<typename Derived >

  cmat <a href="mailto:qpp::logm">qpp::logm</a> (const Eigen::MatrixBase</a> Derived > &A)
      Matrix logarithm.
• template<typename Derived >
  cmat qpp::sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.

    template<typename Derived >

  cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)
      Matrix cos.

    template<typename Derived >

  cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
      Matrix power.
• template<typename Derived >
  DynMat< typename Derived::Scalar > qpp::powm (const Eigen::MatrixBase< Derived > &A, std::size_t n)
      Matrix power.
• template<typename OutputScalar , typename Derived >
  DynMat< OutputScalar > qpp::cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const type-
  name Derived::Scalar &))
     Functor.
template<typename T >
  DynMat< typename T::Scalar > qpp::kron (const T &head)
      Kronecker product (variadic overload)

    template<typename T, typename... Args>

  DynMat< typename T::Scalar > qpp::kron (const T &head, const Args &...tail)
      Kronecker product (variadic overload)

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::kron (const std::vector< Derived > &As)
      Kronecker product (std::vector overload)

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::kron (const std::initializer list< Derived > &As)
      Kronecker product (std::initializer list overload)
```

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, std::size_t n)

Kronecker power.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::reshape (const Eigen::MatrixBase< Derived > &A, std::size_t rows, std::size_t cols)

Reshape.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &perm, const std::vector< std::size t > &dims)

System permutation.

• template<typename Derived >

 $\label{lem:def:def:DynMat} DynMat < typename \ Derived::Scalar > qpp::ptrace1 \ (const \ Eigen::MatrixBase < Derived > &A, \ const \ std \\ ::vector < std::size_t > &dims)$

Partial trace.

• template<typename Derived >

 $\label{lem:def:DynMat} \mbox{DynMat} < \mbox{typename Derived::Scalar} > \mbox{qpp::ptrace2} \mbox{ (const Eigen::MatrixBase} < \mbox{Derived} > \&\mbox{A, const std} \\ \mbox{::vector} < \mbox{std::size_t} > \&\mbox{dims})$

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std⇔ ::vector< std::size t > &subsys, const std::vector< std::size t > &dims)

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Partial transpose.

• template<typename Derived1 , typename Derived2 >

 $\label{lem:def:def:DynMat} \mbox{ Derived1::Scalar } > \mbox{qpp::comm (const Eigen::MatrixBase} < \mbox{ Derived1 } > \mbox{\&A, const Eigen::MatrixBase} < \mbox{ Derived2 } > \mbox{\&B)}$

Commutator.

template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)

Anti-commutator.

 $\bullet \ \ {\sf template}{<} {\sf typename \ Derived} >$

DynMat< typename Derived::Scalar > qpp::prj (const Eigen::MatrixBase< Derived > &V)

Projector.

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::expandout (const Eigen::MatrixBase< Derived > &A, std::size ← _t pos, const std::vector< std::size_t > &dims)

Expand out.

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::grams (const std::vector< Derived > &Vs)

Gram-Schmidt orthogonalization (std::vector overload)

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::grams (const std::initializer list< Derived > &Vs)

Gram-Schmidt orthogonalization (std::initializer_list overload)

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase< Derived > &A)

Gram-Schmidt orthogonalization (Eigen expression (matrix) overload)

std::vector< std::size t > qpp::n2multiidx (std::size t n, const std::vector< std::size t > &dims)

Non-negative integer index to multi-index.

std::size_t qpp::multiidx2n (const std::vector < std::size_t > &midx, const std::vector < std::size_t > &dims)
 Multi-index to non-negative integer index.

ket qpp::mket (const std::vector< std::size t > &mask)

Multi-partite qubit ket.

ket qpp::mket (const std::vector < std::size_t > &mask, const std::vector < std::size_t > &dims)

Multi-partite qudit ket (different dimensions overload)

ket qpp::mket (const std::vector< std::size_t > &mask, std::size_t d)

Multi-partite qudit ket (same dimensions overload)

- std::vector< std::size_t > qpp::invperm (const std::vector< std::size_t > &perm)
 Inverse permutation.
- std::vector< std::size_t > app::compperm (const std::vector< std::size_t > aperm, const std::vector< std
 ::size_t > aperm, const std::vector< std
 ::size_t

Compose permutations.

8.14 include/internal.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp::internal
- qpp

Functions

- void qpp::internal::_n2multiidx (std::size_t n, std::size_t numdims, const std::size_t *dims, std::size_t *result)
- std::size t qpp::internal:: multiidx2n (const std::size t *midx, std::size t numdims, const std::size t *dims)
- template<typename Derived >

bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool qpp::internal::_check_row_vector (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \mathsf{template}{<} \mathsf{typename} \ \mathsf{Derived} >$

bool qpp::internal::_check_col_vector (const Eigen::MatrixBase< Derived > &A)

• template<typename T >

bool qpp::internal::_check_nonzero_size (const T &x)

bool qpp::internal::_check_dims (const std::vector< std::size_t > &dims)

- template<typename Derived >
 bool qpp::internal::_check_dims_match_mat (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_cvect (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &V)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_rvect (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &V)
- bool qpp::internal::_check_eq_dims (const std::vector< std::size_t > &dims, std::size_t dim)
- bool qpp::internal::_check_subsys_match_dims (const std::vector< std::size_t > &subsys, const std
 ::vector< std::size_t > &dims)
- bool qpp::internal::_check_perm (const std::vector< std::size_t > &perm)
- template<typename Derived1, typename Derived2 >
 DynMat< typename Derived1::Scalar > qpp::internal::_kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)
- template<typename T >
 void qpp::internal::variadic_vector_emplace (std::vector< T > &)
- template<typename T, typename First, typename... Args>
 void qpp::internal::variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

8.15 include/io.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

- template<typename T >
 void qpp::disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]",
 std::ostream &os=std::cout)
- template<typename T >
 void qpp::displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::disp (const T *x, const std::size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)

- template<typename T >
 void qpp::displn (const T *x, const std::size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename Derived > void qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=chop, std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::displn (const Eigen::MatrixBase< Derived > &A, double chop=chop, std::ostream &os=std::cout)
- void qpp::disp (const cplx c, double chop=chop, std::ostream &os=std::cout)
- void qpp::displn (const cplx c, double chop=chop, std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)
- template<typename Derived >
 DynMat< typename Derived::Scalar > qpp::load (const std::string &fname)

8.16 include/matlab.h File Reference

```
#include "mat.h"
#include "mex.h"
Include dependency graph for matlab.h:
```


Namespaces

• qpp

- template < typename Derived >
 Derived qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 dmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 cmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<typename Derived >
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< dmat > &A, const std::string &mat_file, const std
 ::string &var_name, const std::string &mode)

template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< cmat > &A, const std::string &mat_file, const std
 ::string &var_name, const std::string &mode)

8.17 include/qpp.h File Reference

```
#include <algorithm>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <ostream>
#include <random>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "constants.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/singleton.h"
#include "classes/states.h"
#include "classes/randevs.h"
#include "internal.h"
#include "functions.h"
#include "classes/gates.h"
#include "classes/stat.h"
#include "entropies.h"
#include "entanglement.h"
#include "channels.h"
#include "io.h"
#include "random.h"
#include "classes/qudit.h"
#include "classes/timer.h"
Include dependency graph for qpp.h:
```


Namespaces

• qpp

Variables

```
    RandomDevices & qpp::rdevs = RandomDevices::get_instance()
    qpp::RandomDevices Singleton
```

const Gates & qpp::gt = Gates::get_instance()

qpp::Gates const Singleton

• const States & qpp::st = States::get_instance()

qpp::States const Singleton

8.18 include/random.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

```
    template<typename Derived >
        Derived qpp::rand (std::size_t rows, std::size_t cols, double a=0, double b=1)
```

template<>

dmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b)

template<>

cmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b)

- double qpp::rand (double a=0, double b=1)
- long long qpp::randint (long long a, long long b)
- $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

Derived qpp::randn (std::size_t rows, std::size_t cols, double mean=0, double sigma=1)

template<>

dmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)

• template/>

cmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)

- double qpp::randn (double mean=0, double sigma=1)
- cmat qpp::randU (std::size_t D)
- cmat qpp::randV (std::size_t Din, std::size_t Dout)
- std::vector < cmat > qpp::randkraus (std::size_t n, std::size_t D)
- cmat qpp::randH (std::size_t D)

- ket qpp::randket (std::size_t D)
- cmat qpp::randrho (std::size_t D)
- std::vector< std::size_t > qpp::randperm (std::size_t n)

8.19 include/types.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Typedefs

- using qpp::cplx = std::complex < double >
 - Complex number in double precision.
- using qpp::cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

• using qpp::dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

- using qpp::ket = Eigen::Matrix< cplx, Eigen::Dynamic, 1 >
 - Complex (double precision) dynamic Eigen column matrix.
- using qpp::bra = Eigen::Matrix < cplx, 1, Eigen::Dynamic >

Complex (double precision) dynamic Eigen row matrix.

 $\bullet \ \ \text{template}{<} \text{typename Scalar} >$

 $using \ qpp::DynMat = Eigen::Matrix < Scalar, \ Eigen::Dynamic, \ Eigen::Dynamic > \\$

Dynamic Eigen matrix over the field specified by Scalar.

Index

aham	07
absm	qpp, 27
qpp, 17	displn
adjoint 18	qpp, 27, 28
qpp, 18	dmat
anticomm	qpp, 17
qpp, 18	ee
bra	qpp, 65
qpp, 17	entanglement
ЧРР, 17	qpp, 29
CUSTOM EXCEPTION	eps
qpp::Exception, 73	qpp, 65
channel	evals
qpp, 19	qpp, 29
choi	evects
qpp, 21	qpp, 30
choi2kraus	expandout
qpp, 22	qpp, 30
chop	expm
qpp, 65	qpp, 31
cmat	
qpp, 17	funm
comm	qpp, <mark>32</mark>
qpp, 23	
compperm	gconcurrence
qpp, 23	qpp, 32
conjugate	grams
qpp, 25	qpp, 33, 34
cosm	gt
qpp, 25	qpp, 65
cplx	hevals
qpp, 17	qpp, 34
cwise	hevects
qpp, 26	qpp, 35
DIME INIVALID	
DIMS_INVALID	inverse
qpp::Exception, 73 DIMS_MISMATCH_CVECTOR	qpp, <mark>35</mark>
qpp::Exception, 73	invperm
DIMS MISMATCH MATRIX	qpp, 37
qpp::Exception, 73	lead
DIMS MISMATCH RVECTOR	ket
qpp::Exception, 73	qpp, 17 kron
DIMS MISMATCH VECTOR	qpp, 37–39
qpp::Exception, 73	kronpow
DIMS NOT EQUAL	qpp, 39
qpp::Exception, 73	qpp, oo
det	load
qpp, 26	qpp, 40
disp	logdet
•	<u> </u>

INDEX 109

qpp, 40	qpp, 50
logm qpp, 41	qpp, 11 absm, 17
4ρρ , •1	adjoint, 18
MATRIX_NOT_CVECTOR	anticomm, 18
qpp::Exception, 73	bra, 17
MATRIX_NOT_RVECTOR	channel, 19
qpp::Exception, 73	choi, 21
MATRIX_NOT_SQUARE	choi2kraus, 22
qpp::Exception, 73	chop, 65
MATRIX_NOT_SQUARE_OR_CVECTOR	cmat, 17
qpp::Exception, 73 MATRIX_NOT_SQUARE_OR_RVECTOR	comm, 23
qpp::Exception, 73	compperm, 23
MATRIX_NOT_SQUARE_OR_VECTOR	conjugate, 25 cosm, 25
qpp::Exception, 73	cplx, 17
MATRIX_NOT_VECTOR	cwise, 26
qpp::Exception, 73	det, 26
maxn	disp, 27
qpp, 65	displn, 27, 28
mket	dmat, 17
qpp, 41, 42	ee, 65
multiidx2n	entanglement, 29
qpp, 43	eps, 65
n2multiidx	evals, 29
qpp, 43	evects, 30
NOT_BIPARTITE	expandout, 30 expm, 31
qpp::Exception, 73	funm, 32
NOT_QUBIT_GATE	gconcurrence, 32
qpp::Exception, 73	grams, 33, 34
NOT_QUBIT_SUBSYS	gt, 65
qpp::Exception, 73	hevals, 34
norm	hevects, 35
qpp, 44	inverse, 35
OUT OF RANGE	invperm, 37
qpp::Exception, 73	ket, 17
omega	kron, 37–39
qpp, 44	kronpow, 39
	load, 40 logdet, 40
PERM_INVALID	logm, 41
qpp::Exception, 73	maxn, 65
pi qpp, 65	mket, 41, 42
powm	multiidx2n, 43
qpp, 45	n2multiidx, 43
prj	norm, 44
qpp, 45	omega, 44
ptrace	pi, 65
qpp, 46	powm, 45
ptrace1	prj, 45 ptrace, 46
qpp, 47	ptrace, 46
ptrace2	ptrace2, 48
qpp, 48 ptranspose	ptranspose, 49
qpp, 49	qmutualinfo, 50
111 F 7 F 7	rand, 51, 52
qmutualinfo	randint, 52

110 INDEX

randket, 53	qpp, 54
randkraus, 53	randrho
randn, 53, 54	qpp, 54
randperm, 54	rdevs
randrho, 54	qpp, 65
rdevs, 65	renyi
renyi, 55	qpp, 55
reshape, 56	reshape
save, 56	gpp, 56
schmidtcoeff, 57	۹۳۴, ۵۵
schmidtprob, 58	SUBSYS MISMATCH DIMS
shannon, 59	qpp::Exception, 73
sinm, 59	save
spectralpowm, 60	qpp, 56
	schmidtcoeff
sqrtm, 60	qpp, 5 7
st, 66	schmidtprob
sum, 61	
super, 61	qpp, 58
syspermute, 62	shannon
trace, 63	qpp, 59
transpose, 64	sinm
tsallis, 64	qpp, 59
qpp::Exception	spectralpowm
CUSTOM_EXCEPTION, 73	qpp, 60
DIMS_INVALID, 73	sqrtm
DIMS_MISMATCH_CVECTOR,	73 qpp, 60
DIMS MISMATCH MATRIX, 73	
DIMS MISMATCH RVECTOR,	
DIMS MISMATCH VECTOR, 73	
DIMS NOT EQUAL, 73	qpp, 61
MATRIX_NOT_CVECTOR, 73	super
MATRIX NOT RVECTOR, 73	qpp, 61
MATRIX NOT SQUARE, 73	syspermute
MATRIX NOT SQUARE OR C	
MATRIX_NOT_SQUARE_OR_C	, _
	TVDE MICMATOLI
MATRIX_NOT_SQUARE_OR_V	qpp::Exception, 73
MATRIX_NOT_VECTOR, 73	trace
NOT_BIPARTITE, 73	qpp, 63
NOT_QUBIT_GATE, 73	transpose
NOT_QUBIT_SUBSYS, 73	qpp, 64
OUT_OF_RANGE, 73	tsallis
PERM_INVALID, 73	
SUBSYS_MISMATCH_DIMS, 73	gpp, 64
TYPE_MISMATCH, 73	UNDEFINED TYPE
UNDEFINED_TYPE, 73	qpp::Exception, 73
UNKNOWN_EXCEPTION, 73	UNKNOWN EXCEPTION
ZERO_SIZE, 73	-
	qpp::Exception, 73
rand	ZERO SIZE
qpp, 51, 52	qpp::Exception, 73
randint	qppexception, 73
qpp, <mark>52</mark>	
randket	
qpp, 53	
randkraus	
qpp, 53	
randn	
qpp, 53, 54	
randperm	