Neural Networks

Slide credits: Vineeth N Balasubramanian

Classification Methods

- k-Nearest Neighbors
- Decision Trees
- Naïve Bayes
- Support Vector Machines
- Logistic Regression
- Neural Networks (Deep Learning)
- Ensemble Methods (Boosting, Random Forests)

Neural Networks (aka) Deep Learning

Introduction

Deep learning: A sub-area of machine learning, that is today understood as representation learning

Introduction

- Rebirth of neural networks
- Inspired by the human brain (networks of neurons)

History of Deep Learning

How do they learn?

-0.06

W1

-2.5 <u>W2</u>

W3

1.4

How do they learn?

-0.06

 $\mathbf{W}1$

-2.5 <u>W2</u>

W3

$$\int f(x)$$

$$x = -0.06 \times 2.7 + 2.5 \times 8.6 + 1.4 \times 0.002 = 21.34$$

1.4

How do they learn?

A dataset

Fields			class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

How do they learn?

Training data

Fields			class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Initialise with random weights

How do they learn?

Training data

Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Present a training pattern

How do they learn?

Training data

_Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Feed it through to get output

How do they learn?

Training data

_Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Compare with target output

How do they learn?

Training data

_	Fiel	lds		class	
	1.4	2.7	1.9	0	
	3.8	3.4	3.2	0	
	6.4	2.8	1.7	1	
	4.1	0.1	0.2	0	
	etc	• • •			

Adjust weights based on error

How do they learn?

Training data

Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Present a training pattern

How do they learn?

Training	aata	
Fields		class
1.4 2.7	1.9	0
0001	0.0	0

3.8 3.4 3.2 0

Training data

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc ...

Feed it through to get output

How do they learn?

Training data

U			
Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Compare with target output

How do they learn?

Training data

O			
Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Adjust weights based on error

How do they learn?

Training data

Fields

class

1.4 2.7 1.9

0

3.8 3.4 3.2

()

6.4 2.8 1.7

1

4.1 0.1 0.2

 $\mathbf{0}$

etc ...

Repeat this thousands, maybe millions of times – each time taking a random training instance, and making slight weight adjustments, reduce the error

Source: Prof Corne, Heriot-Watt Unviersity, UK

And so on

Called "Gradient Descent"

Initial random weights

12-Nov-20

Present a training instance / adjust the weights

Present a training instance / adjust the weights

Present a training instance / adjust the weights

Present a training instance / adjust the weights

Eventually

Perceptrons

$$1 \quad \text{if} \quad \sum_{i=1}^{n} x_i w_i \ge \theta$$

z =

$$0 \quad \text{if} \quad \sum_{i=1}^{n} x_i w_i < \theta$$

- Learn weights such that an objective function is maximized.
- What objective function should we use?
- What learning algorithm should we use?

Perceptrons

$$z = \begin{cases} 1 & \text{if } \bigotimes_{i=1}^{n} x_i w_i \leq q \\ 0 & \text{if } \bigotimes_{i=1}^{n} x_i w_i \leq q \end{cases}$$

First Training Instance

Second Training Instance

Perceptron Rule Learning

$$\Delta w_i = c(t-z) x_i$$

- Where w_i is the weight from input i to perceptron node, c is the learning rate, t_j is the target for the current instance, z is the current output, and x_i is ith input
- Least perturbation principle
 - Only change weights if there is an error
 - small c sufficient to make current pattern correct
 - Scale by x_i
- Create a perceptron node with *n* inputs
- Iteratively apply a pattern from the training set and apply the perceptron rule
- Each iteration through the training set is an *epoch*
- Continue training until total training set error ceases to improve
- Perceptron Convergence Theorem: Guaranteed to find a solution in finite time if a solution exists

Multi-Layer Perceptrons

- Extension of perceptrons to multiple layers
- 1. Initialize network with random weights
- 2. For all training cases (called examples):
 - a. Present training inputs to network and calculate output
 - b. For all layers (starting with output layer, back to input layer):
 - i. Compare network output with correct output (error function)
 - ii. Adapt weights in current layer

Multi-Layer Perceptrons

- Method for learning weights in feed-forward (FF) nets
- Can't use Perceptron Learning Rule
 - no teacher values are possible for hidden units
- Use gradient descent to minimize the error
 - propagate deltas to adjust for errors
 - backward from outputs to hidden layers to inputs

Multi-Layer Perceptrons

- The idea of the algorithm can be summarized as follows:
- 1. Computes the error term for the output units using the observed error.
- 2. From output layer, repeat
 - propagating the error term <u>back to the previous layer</u> and <u>updating the weights</u> <u>between the two layers</u> until the earliest hidden layer is reached.

Multi-Layer Perceptrons

- Initialize weights (typically random!)
- Keep doing epochs
 - For each example e in training set do
 - forward pass to compute
 - y = neural-net-output(network,e)
 miss = (T-y) at each output unit
 - backward pass to calculate deltas to weights
 - update all weights

- end

until tuning set error stops improving

Gradient Descent

- Think of the N weights as a point in an N-dimensional space
- Add a dimension for the observed error
- Try to minimize your position on the "error surface"

Gradient Descent

- Trying to make error decrease the fastest
- Compute:
 - Grad_F = [dE/dw1, dE/dw2, . . ., dE/dwn]
- Change i-th weight by
 - delta_{wi} = -alpha * dE/dwi
- We need a derivative!
- Activation function must be continuous, differentiable, non-decreasing, and easy to compute

Updating Hidden-to-Output

$$\min_{\mathbf{W},\mathbf{v}} \quad \sum_{n} \frac{1}{2} \left(y_n - \sum_{i} v_i f(\mathbf{w}_i \cdot \mathbf{x}_n) \right)^2$$

$$\nabla_{\boldsymbol{v}} = -\sum_{n} e_{n} \boldsymbol{h}_{n}$$

Neural Networks Training: Backpropagation

Updating Hidden

$$\mathcal{L}(\mathbf{W}) = \frac{1}{2} \left(y - \sum_{i} v_{i} f(\mathbf{w}_{i} \cdot \mathbf{x}) \right)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}_{i}} = \frac{\partial \mathcal{L}}{\partial f_{i}} \frac{\partial f_{i}}{\partial \mathbf{w}_{i}}$$

$$\frac{\partial \mathcal{L}}{\partial f_{i}} = -\left(y - \sum_{i} v_{i} f(\mathbf{w}_{i} \cdot \mathbf{x}) \right) v_{i} = -ev_{i}$$

$$\frac{\partial f_{i}}{\partial \mathbf{w}_{i}} = f'(\mathbf{w}_{i} \cdot \mathbf{x}) \mathbf{x}$$

Here we have general formula with derivative, next we use for sigmoid

- for sigmoid the derivative is, f'(x) = f(x) * (1 - f(x))

$$\nabla_{\boldsymbol{w}_i} = -e\boldsymbol{v}_i f'(\boldsymbol{w}_i \cdot \boldsymbol{x}) \boldsymbol{x}$$

Derivative of activation function

Making Choices

Backpropagation

- Number of hidden layers *empirically determined*
 - Too few ==> can't learn
 - Too many ==> poor generalization
- Number of neurons in each hidden layer empirically determined
- Activation functions
- Error/loss functions
- Learning rate
- Gradient descent methods

Activation Functions

$$y = max(0, x)$$

Loss Functions

- Euclidean loss / Squared loss $L = \frac{1}{2} \|x_i y_i\|_2^2$ Derivative w.r.t. $\mathbf{x_i}$ $\frac{\partial L}{\partial x_i} = x_i y_i$
- Soft-max loss/multinomial logistic regression loss

$$p_i = \frac{e^{x_i}}{\sum_k e^{x_k}} \quad L = -\sum_i y_i log(p_i)$$
 • Derivative w.r.t. $\mathbf{x_i}$ $\frac{\partial L}{\partial x_i} = p_i - y_i$

- Also called: Cross-entropy loss

neural networks loss function is non-convex and optimization is sensitive to their initialization.

Gradient Descent Methods

- Batch gradient descent (vs) Stochastic gradient descent (vs) Mini-batch stochastic gradient descent
 - Mini-batch SGD the most popularly used
- Using momentum
- Setting learning rate
 - Fixed learning rate
 - Using learning rate schedules
 - Adaptive learning rate methods: Adam, Adadelta, Adagrad, RMSProp

Deep Learning Architectures

Variants

Convolutional Neural Networks for Image and Video Understanding

CNNs: Typical Architecture

A typical deep convolutional network

Deep Learning in Computer Vision: The Turning Point

AlexNet in the ImageNet Challenge

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification Task:

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca : ~15 % (NIPS-2012)

Deep Learning Architectures

Variants

Recurrent Neural Networks for Time Series and Sequence Data Understanding

Deep Learning Architectures

Variants

Deep Autoencoders for Dimensionality Reduction

Why is it successful?

Why has use of multiple layers led to success?

- Captures compositionality: world is compositional!
 - Image recognition: Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object
 - Text: Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story
 - Speech: Sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow word
- Exploiting compositionality gives an exponential gain in representational power

Why is it successful?

- Learns representations of data that are useful (Other ML algorithms are "shallow")
- Similar to the human brain
- Then, why was it not successful earlier (in the 90s)?
 - Computational power
 - Data power

Applications and Successes

 AlexNet (Object Recognition): The network that catapulted the success of deep learning in 2012

Applications and Successes

Speech understanding and natural language processing

Apple Siri

Windows Cortana

Applications and Successes

• Game playing: https://www.youtube.com/watch?v=V1eYniJ0Rnk

More?

Where to look?

- One-stop shop
 - https://github.com/ChristosChristofidis/awesome-deep-learning
- Check this out for hours of fun and amazement
 - http://fastml.com/deep-nets-generating-stuff/
- Books (on Deep Learning)
 - http://www.deeplearningbook.org
 - http://neuralnetworksanddeeplearning.com/
- Programming
 - Tensorflow, PyTorch, Theano/Pylearn2, Caffe, Torch, Keras

Readings

- "Introduction to Machine Learning" by Ethem Alpaydin, Chapters 11.1-
- Bishop, PRML, Sec 5.1-5.3, 5.5