Х22-Т6 — Колебания в заряженном цилиндре

Вам может понадобиться интеграл:

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \operatorname{arth} \frac{x}{\sqrt{a^2 + x^2}} + C,$$

где $\operatorname{arth} y$ обозначает обратный гиперболический тангенс числа y.

A1^{0.50} Диск радиусом R заряжен поверхностной плотностью заряда σ_R . Определите потенциал $\varphi(y)$ в точке на оси на расстоянии y от центра диска. Потенциал равен нулю на бесконечности.

A2^{1.00} Два таких диска радиусом R заряжены поверхностной плотностью заряда $\sigma_R > 0$ находятся параллельно друг другу. Расстояние между центрами дисков равно 2L, центры находятся на оси дисков. В положении равновесия находятся заряд q массой m, который может двигаться только вдоль оси дисков. Определите угловую частоту ω_1 колебаний такого заряда. Какой знак заряда?

A3^{1.00} Теперь этот заряд может двигаться только в перпендикулярном направлении. Выразите угловую частоту ω_2 колебаний в таком случае через ω_1 . Какой теперь знак заряда?

B1^{1.00} Боковая поверхность цилиндра радиусом R и длиной L заряжена поверхностной плотностью заряда σ_L . Определите потенциал в точке на оси на расстоянии z от центра одного из оснований цилиндра. Потенциал равен нулю на бесконечности.

Рис. 1: Плотность заряда боковой поверхности равна σ_L .

B2^{1.00} Два таких цилиндра (радиусом R и длиной L, поверхность заряжена поверхностной плотностью заряда $\sigma_L > 0$) поставлены рядом вплотную и имеют общую ось. В положении равновесия находятся заряд q массой m, который может двигаться только вдоль оси цилиндров. Определите угловую частоту ω_3 колебаний такого заряда. Какой знак заряда?

B3^{0.50} Теперь этот заряд может двигаться только в перпендикулярном направлении. Выразите угловую частоту ω_4 колебаний в таком случае через ω_3 . Какой теперь знак заряда?

С1^{1.50} Заряженный цилиндр радиусом R высотой L=40R/9 состоит из боковой поверхности и одного основания. Поверхностная плотность заряда боковой поверхности σ_L , основания σ_R . Если поместить точечный заряд в центр противоположного основания, то он окажется в положении равновесия. Определите отношение σ_L/σ_R .

Рис. 2: Плотность заряда боковой поверхности равна σ_L , нижнего основания σ_R

 ${f C2^{2.50}}$ Заряженный цилиндр радиусом R=28b высотой L=45b состоит из боковой поверхности и одного основания. Заряд боковой поверхности $\sigma_L=-8\sigma_0$, заряд основания $\sigma_R=25\sigma_0>0$. На оси этой системы помещают частицу с зарядом q>0. Оцените численно координаты z (в единицах b) положений равновесия если частица может двигаться только вдоль оси. Координата z отсчитывается как на картинке. Сделайте это максимально точно, однако, достаточно с точностью 1%. Ответы попадающие в 1% от правильного получат полный балл.

C3^{1.00} В условиях предыдущего пункта частицу поместили в ближайшее к цилиндру положение равновесия, её масса m. Определите угловую частоту ω малых колебаний частицы.