

Universidade do Vale do Paraíba Colégio Técnico Antônio Teixeira Fernandes

Introdução as Linguagens de Programação (POO-II)

Prof. Responsável Wagner Santos C. de Jesus

www1.univap.br/wagner wagner@univap.br

Assuntos Abordados

- 1. Conceito de Linguagem de Programação;
- 2. Definição de Linguagem de Programação;
- 3. Motivação para uso de uma Linguagem de Programação;
- 4. Compiladores ou Interpretadores;
- 5. Origem de Algumas Linguagens;
- 6. Programação para Microcontroladores;
- 7. Linguagem para Desenvolvimento de Jogos;
- 8. Linguagens API (Interface de Aplicação de Programas);

Processamento de Dados

- Banco de Dados
- Modelagem de dados
- Mineração de dados
- Geoprocessamento
- Arquitetura de dados
- Administração de dados

Mercado de Trabalho

Disponível em: . Acesso em 22 de Jan. 2019.

Técnica de Mineração de Dados (CLUSTER)

Conceito de Linguagem de Programação (LP)

Conhecimentos necessário para o aprendizado de programação:

- Matemática (Estatística)
- Linguagens naturais (Inglês, Português ..).
- Comunicação verbal e interpretativa.

 No guindaste montado no caminhão, determine o menor ângulo α para que o caminhão não tombe quando a carga P de 15 kN for levantada.

Alunos

Pergunta dos alunos

Sem Planejamento

wagner@univap.br

Máquina de Von Neumann

John Von Neumann, nascido Margittai Neumann János Lajos (Budapeste, 28 de dezembro de 1903 — Washington, D.C., 8 de fevereiro de 1957) foi um matemático húngaro de origem judaica, naturalizado estadunidense.

Mecânica de Hardware

Proposto por Von Neumann

Função de uma LP (Linguagem de Programação)

Definição de Linguagem de Programação

Definição

Uma **linguagem de programação** é um método padronizado para comunicar instruções para um computador. É um conjunto de regras sintáticas e semânticas usadas para definir um programa de computador. Permite que um programador especifique precisamente sobre quais dados um computador vai atuar, como estes dados serão armazenados ou transmitidos e quais ações devem ser tomadas sob várias circunstâncias.

Característica principais de uma LP

- Sintaxe
- Semântica
- Pragmática

Exemplo de Características de uma LP

Motivação para uso de uma Linguagem de Programação

Porque usar uma LP

Uma das principais metas das linguagens de programação é que programadores tenham uma maior produtividade, permitindo expressar suas intenções mais facilmente do que quando comparado com a linguagem que um computador entende nativamente (código de máquina).

Mapeamento Hexadecimal

```
CODE: 00404DFF OF 85 C4 00 00 00
                                    inz loc 404EC9
                                   push offset LibFileName : "DbdDevAPI.dll"
CODE:00404E05 68 D4 4E 40 00
CODE:00404E0A E8 C9 EB FF FF
                                   call LoadLibraruA
CODE: 00404E8F A3 20 B1 40 00
                                   nov ds:hModule, eax
CODE:00404E14 83 3D 20 B1 40 00+
                                   cmp ds:hModule, 0
CODE:00404E18 OF 84 A8 00 00 00
                                        1oc 484EC9
                                   iz
                                   push offset aDbddevopen 0 ; "DbdDevOpen"
CODE:00404E21 68 E4 4E 40 00
CODE:08484E26 A1 20 B1 40 80
                                   mov eax, ds:hModule
CODE:00404E2B 50
                                                         : hModule
                                   bush eax
CODE: 99494E2C E8 77 EB FF FF
                                   call GetProcAddress
CODE:00404E31 A3 04 D3 40 00
                                        ds:DbdDevOpen, eax
                                   push offset aDbddevclose 0 : "DbdDevClose"
CODE:00404E36 68 F0 4E 40 00
CODE: 00404E3B A1 20 B1 40 00
                                   mov eax, ds:hModule
                                                         : hModule
CODE:00404E40 50
                                   push eax
CODE: 00404E41 E8 62 EB FF FF
                                   call GetProcAddress
CODE:00484E46 A3 08 D3 40 00
                                   nov ds:DbdDevClose, eax
                                   push offset aDbddevgetinfo ; "DbdDevGetInfo"
CODE:00404E48 68 FC 4E 40 00
CODE: 00404E50 A1 20 B1 40 00
                                        eax, ds:hModule
                                                         : hModule
CODE: 08484E55 58
                                   push eax
CODE:00404E56 E8 40 EB FF FF
                                   call GetProcAddress
CODE:00404E5B A3 0C D3 40 00
                                        ds:DbdDevGetInfo, eax
                                   push offset aDbddevregistercallback 0 : "DbdD
CODE: 88484E68 68 8C 4F 48 88
CODE:00404E65 A1 20 B1 40 00
                                   nov eax. ds:hModule
```


Classificação das LP

Objetivo prático

Linguagens de programação são ferramentas importantes para que programadores e engenheiros de software possam escrever programas mais organizados e com maior rapidez.

Evolução das Linguagens de Programação

Primeira geração Segunda geração Terceira geração Quarta geração

Quinta geração

(1946-1954)

(1955-1964)

(1964-1977)

(1977-1991)

(1991 -)

Primeira geração - linguagem de máquina

Segunda geração - linguagens de montagem (assembly).

Terceira geração - Linguagens procedurais.

Quarta geração - Linguagens aplicativas

Quinta geração - Linguagens voltadas a Inteligência artificial como as linguagens lógicas (Prolog) e as linguagens funcionais (Lisp).

Classificação da Linguagem Programação

- Genéricas
- Específicas

Genérica

Possibilitam o desenvolvimento para qualquer tipo de aplicação. (Cientifica e ou Comercial).

Exemplo (Java, C++, C# e Basic)

Específica

Possibilitam o desenvolvimento para qualquer um tipo de aplicação.

Exemplo (Php, ActionScript, CSS e HTML)

Áreas de atuação de uma Linguagem de Programação

Exemplo de Linguagem Cientificas

Octave originalmente criado por volta de 1988, com o propósito de ser um software apoio a um livro graduação projetos em reator químico, escrito por Rawlings James da Universidade Wisconsinde Madison e John G. Ekerdt da Universidade do Texas. Originalmente foi idealizado ferramenta muito como especializada relacionado criação de reatores químicos. Posteriormente, após constatar as limitações dessa abordagem, optou-se pela construção de uma ferramenta mais flexível.

Exemplo de Linguagem Comercial

COBOL (sigla de *COmmon Business Oriented Language*) - Linguagem Comum Orientada para os Negócios é uma linguagem de programação orientada para o processamento de banco de dados comerciais.

- 1 IDENTIFICATION DIVISION
- 2 ENVIRONMENT DIVISION
- 3 DATA DIVISION
- 4 PROCEDURE DIVISION

Funcionamento das Linguagens de Programação

LP – Compiladas ou Interpretadas

Compilador

Interpretador

Origem de Algumas Linguagens

Criador da LP (Pascal)

Criada Tendo em mente encorajar o uso de código estruturado.

Niklaus Wirth 1970 (Suiço)

IFUNDAÇÃO IVALEPARAIBANA Exemplo Programa Pascal


```
program Soma_Pares;
uses crt;
var superior, soma, num: integer;
begin
 soma:=0;
 write ('Entre com o limite superior');
  readln (superior);
   num:=2;
  repeat
      soma:=soma+num;
       num:=num+2;
   until (num > superior);
   writeln('A soma dos números pares de 2 até ', superior,' é ', soma);
  readIn;
end.
```

Trundação Os criadores da linguagem C Colégios C

Linguagem criada para desenvolvimento do kernell do sistema operacional Unix

Ken Thompson e Dennis Ritchie (da esquerda pra direita)

Exemplo de Programa C


```
main(){
   int superior, soma, num, i;
   soma = 0;
   printf("Entre com limite Superior:");
   scanf("%d",&superior);
   num = 2;
   do {
    soma += num;
    num += 2;
   } while(num <= superior);</pre>
   printf("Soma dos numeros pares de 2 ate %d = %d \n", superior, soma);
   printf("-----");
   int d;
   scanf("%s",&d);
                               wagner@univap.br
```


A Linguagem Java

Desenvolvida na década de 90 por uma equipe de programadores chefiada por <u>James</u>
 <u>Gosling</u>, na empresa Sun Microsystems.

Os mentores do projeto eram Patrick Naughton, Mike Sheridan, e <u>James Gosling</u>.

Programador Canadense Foto 2005

Exemplo de Programa Java


```
import java.util.Scanner;
public class Somapar {
    public static void main(String args[]){
         int superior, soma, num, i;
         soma = 0;
         Scanner entrada = new Scanner(System.in);
         System.out.println("Entre com limite Superior:");
         superior = entrada.nextInt();
         num = 2;
         do {
            soma += num;
            num += 2;
         } while(num <= superior);</pre>
         System.out.printf("Soma dos numeros pares de 2 ate %d = %d \n", superior, soma);
```


Linguagens Residentes (Embarcadas)

Hardware Linguagem Residente

CP 200

CP 500

Programação para Microcontrolador

Exemplo de Microcontrolador


```
P1.0
                                          40 Vcc
                                                        #include <8051.h>
         P1.1
                                          39 PO.0
         P1.2
                                          38 PO.1
                                                        void main(void) {
                        8031
         P1.3
                                          37 PO.2
         P1.4
                                          36 PO.3
                                                         while(true) {
                        8051
         P1.5
                                          35 PO.4
         P1.6
                                          34 PO.5
                                                           if(P1 \ 0 == 1)
                                          33 PO.6
         P1.7
                                          32 PO.7
        RESET
                                          31 EA
P3.0 (Rxd/Dados) 10
P3.1 (Txd/Clock) 11
                                          30 ALE
                                                               P2 0 = ^P2 0;
                                         29 PSEN
    P3.2 (INTO) 12
                                          28 P2.7
    P3.3 (INT1) 13 I
    P3.4 (T/C0) 14
                                         27 P2.6
    P3.5 (T/C1) 15
                                          26 P2.5
     P3.6 (WR) 16 I
                                          25 P2.4
     P3.7 (RD) 17
                                          24 P2.3
      CRISTAL1 18
                                          23 P2.2
     CRISTAL2 19
                                          22 P2.1
       TERRA 20
                                         21 P2.0
                     © Carlos Sica 2006
```


Exemplo de Linguagem para Desenvolvimento de Jogos

Exemplo ActionScript


```
onClipEvent (enterFrame) {
    if(Key.isDown (Key.RIGHT)){
      root["Atirador"]. x+=10
    if(Key.isDown (Key.LEFT )){
      root["Atirador"]. x-=10
    if(Key.isDown (Key.SPACE)) {
           _root["Tiro"]._x = _root["Atirador"]._x
           root["Tiro"]. y = root["Atirador"]. y
           root["Tiro"]. visible = true;
           root.pontos = 140;
           //_root.controle_tiro = 1;
```


Linguagens API (Interface de Aplicação de Programas)

Linguagem para Computação Gráfica


```
class Cone {
 public static void main(String[] args) {
     Navegation.NavegationInfo("Cone");
     Materialpr material = new Materialpr();
     material.setdiffuseColor("0 1 0");
     BaseCirclepr basecircle = new BaseCirclepr();
             basecircle.setheight("2");
             basecircle.setbottomRadius("1");
             basecircle.setside("TRUE");
             basecircle.setbottom("TRUE");
             Conepr cone = new Conepr (material,basecircle, "Cone");
     Viewpr.display("Cone");
```