E0 225: Homework 9

Deadline: 5 pm on January 2, 2021 (Saturday)

Problem 1. Review and succinctly (in, say, 3-4 lines) describe each of the following NP-complete problems.

A useful compendium is available at https://www.csc.kth.se/~viggo/problemlist/compendium.html

• Graph Theory: Max Clique, 3-Coloring

• Network Design: Max Cut

• Sets and Partitions: Set Cover, Subset Sum, Max 3-D Matching, Min Hitting Set

• Sequencing: Hamiltonian Cycle

• Mathematical Programming: Integer Linear Programming

Problem 2. In the Path Cover problem, we are given an undirected graph G and an integer k, along with a set of m shortest paths $\mathcal{P} = \{P_1, P_2, \dots, P_m\}$. That is, each path P_i , for $i \in [m]$, is a shortest path between some pair of vertices in G. The objective of the problem is to determine where there exists at most k paths in \mathcal{P} such that their union covers all the edge in G. Show that the Path Cover problem is NP-complete.