Analiza Algorytmów - Laboratorium 6

Wojciech Sęk

5 czerwca 2023

1 Zadanie 12

$$M_G = (1 - \alpha)P_G + \frac{\alpha}{n}J_n$$

Rozkłady stacjonarne:

α	$\{2,3\} \in E$	π
0	tak	(1.000, 0.000, 0.000, 0.000, 0.000, 0.000)
0.15	tak	(0.606, 0.073, 0.077, 0.114, 0.105, 0.025)
0.5	tak	(0.323 , 0.123 , 0.156 , 0.160 , 0.154 , 0.083)
1	tak	(0.167, 0.167, 0.167, 0.167, 0.167, 0.167)
0	nie	(0.500, 0.100, 0.000, 0.200, 0.200, 0.000)
0.15	nie	(0.429, 0.107, 0.046, 0.194, 0.199, 0.025)
0.5	nie	(0.292, 0.128, 0.125, 0.179, 0.192, 0.083)
1	nie	(0.167, 0.167, 0.167, 0.167, 0.167, 0.167)

Macierz J_n jest po to, żeby zapewnić zbieżność rozkładu.

 α to współczynnik znudzenia, bo w PageRank "nudzimy się" z prawdopodobieństwem α i skaczemy na dowolną stronę.

2 Zadanie 13

2.1 Podpunkt a

$$\pi = (0.235, 0.305, 0.263, 0.198)$$

2.2 Podpunkt b

 $P[\mathrm{stan}\ 3\ \mathrm{po}\ 32\ \mathrm{krokach}|\ \mathrm{zaczynamy}\ \mathrm{w}\ 0] = 0.26312568105363443$

2.3 Podpunkt c

 $P[\text{stan 3 po 128 krokach}|\ \text{zaczynamy w dowolnym stanie z równym ppb}] = 0.26311728395061695$

2.4 Podpunkt d

ε	t
0.1	7
0.01	14
0.001	22

Taka możliwość przydaje się, kiedy chcemy przybliżyć w jakim stanie znajdziemy startując ze stanu 0 w spacerze losowym. Może to się przydać np. gdy chcemy sprawdzić, gdzie trafimy startując z danej strony internetowej (alg. PageRank).

3 Zadanie 14

3.1 Alfa = 0

t	π_t
1	(0.240, 0.207, 0.140, 0.307, 0.107)
2	(0.328, 0.188, 0.141, 0.275, 0.068)
3	(0.288, 0.225, 0.178, 0.249, 0.061)
4	(0.261, 0.215, 0.156, 0.296, 0.071)
5	(0.310, 0.197, 0.145, 0.282, 0.066)
6	(0.295, 0.217, 0.168, 0.258, 0.062)
7	(0.271, 0.216, 0.160, 0.285, 0.068)
8	(0.299, 0.202, 0.149, 0.283, 0.067)
9	(0.296, 0.212, 0.163, 0.265, 0.063)
10	(0.278, 0.215, 0.161, 0.279, 0.067)
11	(0.293, 0.206, 0.152, 0.282, 0.067)
12	(0.295, 0.211, 0.160, 0.270, 0.064)
13	(0.283, 0.214, 0.161, 0.277, 0.066)
14	(0.290, 0.208, 0.155, 0.281, 0.067)
15	(0.294, 0.210, 0.158, 0.273, 0.065)
16	(0.286, 0.213, 0.160, 0.276, 0.066)
17	(0.289, 0.210, 0.156, 0.279, 0.066)
18	(0.292, 0.210, 0.158, 0.275, 0.065)
19	(0.288, 0.212, 0.159, 0.275, 0.066)
20	(0.288, 0.210, 0.157, 0.278, 0.066)
21	(0.291, 0.210, 0.157, 0.276, 0.066)
22	(0.289, 0.211, 0.159, 0.275, 0.066)
23	(0.289, 0.211, 0.158, 0.277, 0.066)
24	(0.291, 0.210, 0.157, 0.276, 0.066)
25	(0.289, 0.211, 0.158, 0.276, 0.066)

Ranking:

(0,3,1,2,4)

$3.2 ext{ Alfa} = 0.25$

t	π_t
1	(0.230, 0.205, 0.155, 0.280, 0.130)
2	(0.280, 0.195, 0.156, 0.262, 0.108)
3	(0.263, 0.210, 0.171, 0.251, 0.105)
4	(0.254, 0.207, 0.164, 0.266, 0.109)
5	(0.266, 0.203, 0.162, 0.263, 0.107)
6	(0.263, 0.206, 0.166, 0.258, 0.106)
7	(0.260, 0.206, 0.165, 0.262, 0.107)
8	(0.263, 0.205, 0.164, 0.262, 0.107)
9	(0.262, 0.205, 0.165, 0.261, 0.107)
10	(0.261, 0.206, 0.164, 0.261, 0.107)
11	(0.262, 0.205, 0.164, 0.261, 0.107)
12	(0.262, 0.205, 0.164, 0.261, 0.107)
13	(0.262, 0.205, 0.164, 0.261, 0.107)
14	(0.262, 0.205, 0.164, 0.261, 0.107)
15	(0.262, 0.205, 0.164, 0.261, 0.107)
16	(0.262, 0.205, 0.164, 0.261, 0.107)
17	(0.262, 0.205, 0.164, 0.261, 0.107)
18	(0.262, 0.205, 0.164, 0.261, 0.107)
19	(0.262, 0.205, 0.164, 0.261, 0.107)
20	(0.262, 0.205, 0.164, 0.261, 0.107)
21	(0.262, 0.205, 0.164, 0.261, 0.107)
22	(0.262, 0.205, 0.164, 0.261, 0.107)
23	(0.262, 0.205, 0.164, 0.261, 0.107)
24	(0.262, 0.205, 0.164, 0.261, 0.107)
25	(0.262, 0.205, 0.164, 0.261, 0.107)

Ranking:

(0,3,1,2,4)

3.3 Alfa = 0.5

t	π_t
1	(0.220, 0.203, 0.170, 0.253, 0.153)
2	(0.242, 0.199, 0.170, 0.245, 0.144)
3	(0.237, 0.203, 0.175, 0.242, 0.143)
4	(0.235, 0.203, 0.174, 0.245, 0.143)
5	(0.237, 0.202, 0.173, 0.245, 0.143)
6	(0.237, 0.202, 0.174, 0.244, 0.143)
7	(0.236, 0.202, 0.173, 0.244, 0.143)
8	(0.237, 0.202, 0.173, 0.244, 0.143)
9	(0.237, 0.202, 0.173, 0.244, 0.143)
10	(0.237, 0.202, 0.173, 0.244, 0.143)
11	(0.237, 0.202, 0.173, 0.244, 0.143)
12	(0.237, 0.202, 0.173, 0.244, 0.143)
13	(0.237, 0.202, 0.173, 0.244, 0.143)
14	(0.237, 0.202, 0.173, 0.244, 0.143)
15	(0.237, 0.202, 0.173, 0.244, 0.143)
16	(0.237, 0.202, 0.173, 0.244, 0.143)
17	(0.237, 0.202, 0.173, 0.244, 0.143)
18	(0.237, 0.202, 0.173, 0.244, 0.143)
19	(0.237, 0.202, 0.173, 0.244, 0.143)
20	(0.237, 0.202, 0.173, 0.244, 0.143)
21	(0.237, 0.202, 0.173, 0.244, 0.143)
22	(0.237, 0.202, 0.173, 0.244, 0.143)
23	(0.237, 0.202, 0.173, 0.244, 0.143)
24	(0.237, 0.202, 0.173, 0.244, 0.143)
25	(0.237, 0.202, 0.173, 0.244, 0.143)

$3.4 ext{ Alfa} = 0.75$

t	π_t
1	(0.210, 0.202, 0.185, 0.227, 0.177)
2	(0.216, 0.201, 0.185, 0.225, 0.174)
3	(0.215, 0.201, 0.186, 0.224, 0.174)
4	(0.215, 0.201, 0.186, 0.224, 0.174)
5	(0.215, 0.201, 0.186, 0.224, 0.174)
6	(0.215, 0.201, 0.186, 0.224, 0.174)
7	(0.215, 0.201, 0.186, 0.224, 0.174)
8	(0.215, 0.201, 0.186, 0.224, 0.174)
9	(0.215, 0.201, 0.186, 0.224, 0.174)
10	(0.215, 0.201, 0.186, 0.224, 0.174)
11	(0.215, 0.201, 0.186, 0.224, 0.174)
12	(0.215, 0.201, 0.186, 0.224, 0.174)
13	(0.215, 0.201, 0.186, 0.224, 0.174)
14	(0.215, 0.201, 0.186, 0.224, 0.174)
15	(0.215, 0.201, 0.186, 0.224, 0.174)
16	(0.215, 0.201, 0.186, 0.224, 0.174)
17	(0.215, 0.201, 0.186, 0.224, 0.174)
18	(0.215, 0.201, 0.186, 0.224, 0.174)
19	(0.215, 0.201, 0.186, 0.224, 0.174)
20	(0.215, 0.201, 0.186, 0.224, 0.174)
21	(0.215, 0.201, 0.186, 0.224, 0.174)
22	(0.215, 0.201, 0.186, 0.224, 0.174)
23	(0.215, 0.201, 0.186, 0.224, 0.174)
24	(0.215, 0.201, 0.186, 0.224, 0.174)
25	(0.215, 0.201, 0.186, 0.224, 0.174)

Ranking:

(3,0,1,2,4)

3.5 Alfa = 0.85

t	π_t
1	(0.206, 0.201, 0.191, 0.216, 0.186)
2	(0.208, 0.201, 0.191, 0.215, 0.185)
3	(0.208, 0.201, 0.191, 0.215, 0.185)
4	(0.208, 0.201, 0.191, 0.215, 0.185)
5	(0.208, 0.201, 0.191, 0.215, 0.185)
6	(0.208, 0.201, 0.191, 0.215, 0.185)
7	(0.208, 0.201, 0.191, 0.215, 0.185)
8	(0.208, 0.201, 0.191, 0.215, 0.185)
9	(0.208, 0.201, 0.191, 0.215, 0.185)
10	(0.208, 0.201, 0.191, 0.215, 0.185)
11	(0.208, 0.201, 0.191, 0.215, 0.185)
12	(0.208, 0.201, 0.191, 0.215, 0.185)
13	(0.208, 0.201, 0.191, 0.215, 0.185)
14	(0.208, 0.201, 0.191, 0.215, 0.185)
15	(0.208, 0.201, 0.191, 0.215, 0.185)
16	(0.208, 0.201, 0.191, 0.215, 0.185)
17	(0.208, 0.201, 0.191, 0.215, 0.185)
18	(0.208, 0.201, 0.191, 0.215, 0.185)
19	(0.208, 0.201, 0.191, 0.215, 0.185)
20	(0.208, 0.201, 0.191, 0.215, 0.185)
21	(0.208, 0.201, 0.191, 0.215, 0.185)
22	(0.208, 0.201, 0.191, 0.215, 0.185)
23	(0.208, 0.201, 0.191, 0.215, 0.185)
24	(0.208, 0.201, 0.191, 0.215, 0.185)
25	(0.208, 0.201, 0.191, 0.215, 0.185)

Ranking:

(3,0,1,2,4)

$3.6 \quad Alfa = 1$

t	π_t
1	(0.200, 0.200, 0.200, 0.200, 0.200)
2	(0.200, 0.200, 0.200, 0.200, 0.200)
3	(0.200, 0.200, 0.200, 0.200, 0.200)
4	(0.200, 0.200, 0.200, 0.200, 0.200)
5	(0.200, 0.200, 0.200, 0.200, 0.200)
6	(0.200, 0.200, 0.200, 0.200, 0.200)
7	(0.200, 0.200, 0.200, 0.200, 0.200)
8	(0.200, 0.200, 0.200, 0.200, 0.200)
9	(0.200, 0.200, 0.200, 0.200, 0.200)
10	(0.200, 0.200, 0.200, 0.200, 0.200)
11	(0.200, 0.200, 0.200, 0.200, 0.200)
12	(0.200, 0.200, 0.200, 0.200, 0.200)
13	(0.200, 0.200, 0.200, 0.200, 0.200)
14	(0.200, 0.200, 0.200, 0.200, 0.200)
15	(0.200, 0.200, 0.200, 0.200, 0.200)
16	(0.200, 0.200, 0.200, 0.200, 0.200)
17	(0.200, 0.200, 0.200, 0.200, 0.200)
18	(0.200, 0.200, 0.200, 0.200, 0.200)
19	(0.200, 0.200, 0.200, 0.200, 0.200)
20	(0.200, 0.200, 0.200, 0.200, 0.200)
21	(0.200, 0.200, 0.200, 0.200, 0.200)
22	(0.200, 0.200, 0.200, 0.200, 0.200)
23	(0.200, 0.200, 0.200, 0.200, 0.200)
24	(0.200, 0.200, 0.200, 0.200, 0.200)
25	(0.200, 0.200, 0.200, 0.200, 0.200)

3.7 Zbieżność

