碳糊电极阳极伏安法测定秋水仙碱

于素华 胡效亚* 冷宗周*

(扬州大学医学院化学教研室、* 师范学院化学化工系,扬州 225002)

摘要 在 $0.05 \text{ mol} \cdot \text{L}^{-1} \text{H}_2 \text{SO}_4$ 介质中,用碳糊电极(石墨粉: 液体石蜡油= 1.5 l) 阳极扫描伏安法测定秋水仙碱,检测限 $1 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$,检测线性范围 $4.0 \times 10^{-7} \sim 1 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$,氧化时出现两个氧化峰,峰电位分别为 1.07 V 和 1.33 V vs SCE,峰电位随 pH 值升高而正移。对原料和片剂进行了测定,均获得满意的结果。

关键词 秋水仙碱:伏安法:碳糊电极

秋水仙碱是典型的抑制细胞有丝分裂的药物,对乳腺癌有较好疗效,对其它癌症也有不同程度的疗效^[1],也被用于研究 AIDS 病的治疗^[2],现有的分析方法较多如分光光度法^[3]、色谱法^[4,5]。用电化学方法检测秋水仙碱有灵敏度高、方法简便等优点。Holak W 等用示差脉冲极谱法^[6], Wang J 用吸附伏安法^[7]分别检测秋水仙碱。Bishop E 等用金、铂电极阳极伏安法^[8]测定秋水仙碱,虽简便,但灵敏度不高。本文用碳糊电极阳极扫描伏安法测定秋水仙碱,设备和测定方法较简单,而且灵敏度较高,重现性良好。

实 验 部 分

1 仪器与试剂

DH-1 型多功能双恒电位仪(长春应用化学研究所); 3086X-Y 记录仪(四川仪表四厂)。

碳糊电极: 光谱纯石墨粉与液体石蜡油 (1.5.1 w/w)充分混均,将碳糊均匀涂在一直 径为 8 mm 的石墨电极表面 [9] 待用。

2 秋水仙碱的测定方法

在 $0.05 \text{ mol}^{\bullet} \text{L}^{-1} \text{H}_2 \text{SO}_4$ 介质中, 碳糊电极为工作电极, 铂片为辅助电极, 甘汞电极为参比

电极, 加入样品经一定时间搅拌后, 静置 20 s, 电位从 0 V 扫至 + 1.4 V, 扫描速度为 $36 \text{ mV} \cdot \text{s}^{-1}$ 或 $90 \text{ mV} \cdot \text{s}^{-1}$, 每次测量后在 0 V 处搅拌 2 min, 再进行下一次测量。

结果 与讨论

1 氧化峰电位

秋水仙碱在电极上被氧化出现 2 个峰被认为是两个 2 电子步骤, 用铂电极或金电极做工作电极时两个氧化峰非常接近, 而且峰电位较正, 约在 1.5 V vs SCE 左右^[8], 用碳糊电极作工作电极时两个氧化峰分得较开, 第一个氧化峰的峰电位在 1.10 V 左右(随酸度而变)(图1), 这样可显著地减少其它物质干扰的可能性。本文用峰电位为 1.10 V 的氧化峰作定量分析。

2 不同介质对测定的影响

分别用 $0.10 \text{ mol} \cdot \text{L}^{-1} \text{H}_3\text{PO4}, \ 0.10 \text{ mol} \cdot \text{L}^{-1} \text{HAc}, \ 0.10 \text{ mol} \cdot \text{L}^{-1} \text{HNO}_3 \ 和 \ 0.05 \text{ mol} \cdot \text{L}^{-1} \text{H}_2\text{SO}_4 作测定体系的介质, 比较测量的灵敏度及峰电位。结果显示, 在 <math>\text{H}_2\text{SO}_4$ 介质中测量的灵敏度和信噪比最高, 峰电位值 Ep 也最小, HAc 作底液时灵敏度最低, 这与 HAc 的酸性较弱有关。

Fig 1 Anodic stripping voltammogram of colchicine in 0.05 mol $^{\bullet}$ L $^{-1}$ H $_2$ SO $_4$ with carbon paste electrode. Scan rate 90 mV $^{\bullet}$ s $^{-1}$. Colchicine concentration: 2×10^{-6} mol $^{\bullet}$ L $^{-1}$ (solid line). Dashed line: colchicine absent.

3 酸浓度的影响

酸浓度降低,氧化峰电位向正移动,在 $H_2PO_4^{-}$ - HPO_4^{2-} 缓冲液(pH 7.0)的介质中几乎看不到秋水仙碱的氧化峰,在 HAe-NaAe缓冲液(pH 4.6)中出现了两个氧化峰,但灵敏度不高,表 1 列出了在不同浓度 H_2SO_4 介质中,秋水仙碱的峰电位及峰电流。

Tab 1 Influence of H₂SO₄ concentration on peak potential

H_2SO_4 concentration	Peak potential	Peak current
(mol• L- 1)	(V)	(μA)
0. 005	1. 16	3. 6
0. 050	1. 10	4. 2
0. 500	1. 07	4. 2
1. 500	1. 05	4. 0

从表 1 可见 H_2SO_4 浓度越高, 峰电位向负移动, 峰电流有增加倾向, 但 H_2SO_4 浓度过高, 残余电流增大, 信噪比下降, 峰电流下降, 所以选用 $0.05\ mol^{\bullet}L^{-1}\sim0.5\ mol^{\bullet}L^{-1}H_2SO_4$ 做介质较适宜。

4 扫描速度的影响

扫描速度(v)的提高有利于提高灵敏度,改善检测限。在相同条件下,改变扫描速度,测

出 1×10^{-5} mol·L⁻¹秋水仙碱的峰电流 i_p, 通过对 $v^{1/2} \sim i_p$ 作图可得一很好的直线关系。秋水仙碱在电极上的氧化为不可逆氧化。若在扫描前在较负电位下(如-0.4 V) 富集一定的时间,则氧化峰会略有升高, 增加富集时间, 对灵敏度的提高无显著影响。

5 重现性

每次测量后,在 0.0~V~vs~SCE 处保持 2~min,并充分搅拌,使电极表面的氧化产物扩散 到溶液中(氧化产物的水溶性较好),以保持测量前的表面态,在 $4\times10^{-7}\sim1\times10^{-3}~mol^{\bullet}~L^{-1}$ 范围内可获得极佳的重现性。在 $8.8\times10^{-6}~mol^{\bullet}~L^{-1}$ 的秋水仙碱溶液中,重复测定 $6~\chi$,平均值电流为 $6.20~\mu$ A,标准偏差 0.04%。

6 线性范围

适当改变测量条件, 可使测量的线性范围 从 4×10^{-7} 到 1×10^{-3} mol·L⁻¹, 如在测量 $4 \times 10^{-7} \sim 5 \times 10^{-6}$ mol·L⁻¹的秋水仙碱时, 可提高扫描速度($90 \text{ mV} \cdot \text{s}^{-1}$), 测量高浓度秋水仙碱时, 适当降低扫描速度, 线性响应的斜率为 $362 \text{ mA} \cdot \text{mol}^{-1} \cdot \text{L}^{-1}$ 。

7 回收率

在 $0.05 \text{ mol} \cdot \text{L}^{-1} \text{H}_2 \text{SO}_4$ 溶液中, 采用加入标准法测定秋水仙碱(上海试剂厂, 进口分装)不同加入量的含量(见表 2) 其回收率为 $95\% \sim 103\%$ 。 1000 倍的 K^+ , Na^+ , NH_4^+ , NO_3^- , PO_4^{3-} , Ac^- , Rz, 葡萄糖, 柠檬酸; 200 倍的麻黄碱, 毛果芸香碱; 100 倍的咖啡因等均无显著干扰。

Tab 2 Recovery test

Added (mg)	Found (mg)	Recovery ($\%$)
0. 0120	0. 0122	102.0
0. 0200	0. 0190	95. 0
0. 1000	0. 0980	98. 0
1. 6000	1. 6400	103. 0
7. 9900	7. 9100	99. 0

8 样品分析

将一定量秋水仙碱片剂磨碎,准确称取一 定量配成溶液,不需过滤,用加入标准法测出,6、 个数据, 平均值为 0.887 mg/片, RSD=1.6%, 采用药典法测出 3 个数据, 平均值为 0.900 mg/片。

参考文献

- 1 徐叔云. 临床用药指南. 合肥: 安徽科学技术出版社, 1989: 8
- 2 Baum R, Dogani R. AIDS research advances steadily, but disease still exacting high toll. Chem Eng News, 1989, 67(26/27): 7
- 3 中华人民共和国卫生部药典委员会编. 中华人民共和国药典. 北京: 化学工业出版社, 1990 358
- 4 Ko RJ, Li WY, Kada RT. Determination of the antimitotic agents N-desacetylcolchicine, demecolcine and colchicine in serum and urine. J Chromatogr, 1990, 525, 411

- 5 Popova OI, Kudrin SA. Quantitative determination of colchamine and colchicine by gas chromatography. *Khim Farm Zh*, 1991, **25** 59
- 6 Holak W, Plank WM. Differential pulse polarographic determination of colchicine. J Pharm Sci., 1980, 69, 1426
- Wang J, Ozsoz M. Trace measurements of colchicine by adsorptive stripping voltammetry. *Talanta*, 1990, 37, 783
- 8 Bishop E, Hussein W. Anodic voltammetry of colchicine. *A nalyst*, 1984, **109**: 623
- 9 Hu XY, Leng ZZ. Determination of L-ascorbic acid by adsorption potentiometry with carbon paste electrode. Anal Lett, 1995, 28 2263

MEASUREMENT OF COLCHICINE BY ANODIC VOLTAMMETRY WITH CARBON PASTE ELECTRODE

SH Yu, XY Hu* and ZZ Leng*

(Department of Chemistry, Medical College;

* Department of Chemistry, Teacher's College, Yangzhou University, Yangzhou 225002)

ABSTRACT Colchicine is determined by anodic voltammetry using a carbon paste electrode (graphite powder: paraffin liquid= 1.5: 1) in 0.05 mol $^{\bullet}$ L $^{-1}$ H $_2$ SO $_4$, with a linear range of 4.0 × 10 $^{-7}$ ~ 1.0 × 10 $^{-3}$ mol $^{\bullet}$ L $^{-1}$, detection limit 1 × 10 $^{-7}$ mol $^{\bullet}$ L $^{-1}$. Two waves at 1.07 and 1.33 V vs SCE were observed in the anodic scan, peak potential is increased with pH.

The raw material and tablets of colchicine have been analysed with good results.

KEY WORDS Colchicine; Voltammetry; Carbon paste electrode