Schaltungstechnik 1

Kirchhoff-Gesetze

Anwendbarkeit

Konzentriertheitshypothese muss erfüllt sein:

 $d << \lambda = \frac{c}{f}$

d: Größe der Schaltung

 λ : Wellenlänge

Knotenregel (KCL)

Für jeden Knoten gilt:

Die Summe aller Ströme ist Null.

$$\sum_{Knoten} i_j(t) = 0$$

(herausfließende Ströme positiv)

Anzahl linear unabhängiger Knotengleichungen: (n-1)

n: Anzahl der Knoten

KCL in Matrix form: $\mathbf{A} \cdot \underline{i} = \underline{0}$

Maschenregel (KVL)

Für jede Masche gilt:

Die Summe der Teilspannungen ist Null.

$$\sum_{Umlauf} u_j(t) = 0$$

(Spannungen in Umlaufrichtung positiv)

Anzahl linear unabhängiger Schleifengleichungen: b-(n-1)

b: Anzahl der Zweige

n: Anzahl der Knoten

KVL in Matrixform: $\underline{u} - \mathbf{A}^T \cdot u_k = \underline{0} \quad (\mathbf{M} = \mathbf{A}^T)$

Resistive Eintore

Darstellungsformen

Implizit: $f_F(u,i) = 0$ Explizit: u = r(i), i = g(u)Parametrisiert: $u = u(\lambda), i = i(\lambda)$

Eigenschaften

F ist... Kennlinie von F...

- stromgesteuert \exists Darstellung u = r(i)- spannungsgesteuert \exists Darstellung i = g(u)

- ungepolt ... ist punktsymmetrisch zu (0/0)- passiv ... verläuft nur im I. oder III. Quadr.

- aktiv ... ist nicht passiv - verlustlos ... liegt nur auf den Achsen

- linear ... ist eine beliebige Gerade - stückweise linear ... besteht aus Geradenstücken

Umpolung

Punktspiegelung der Kennline am Ursprung $(u,i) \in F \Leftrightarrow (-u,-i) \in \overline{F}$

Dualität

Für $R_d=1\Omega$: Spiegelung an der Winkelhalbierenden. $(u,i)\in F\Leftrightarrow (R_di,\frac{u}{R_d})\in F^d$

Widerstände

 $u = R \cdot i$ $R = \frac{1}{G}$ $R_1 || R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2}$ (Parallel)

 $\begin{array}{ll} \text{Reihenschaltung:} & R_{gesamt} = R_1 + \ldots + R_i \\ \text{Parallelschaltung:} & \frac{1}{R_{gesamt}} = \frac{1}{R_1} + \ldots + \frac{1}{R_i} \\ \end{array}$

Leitwerte

 $i = G \cdot u$ $G = \frac{1}{R}$ $G_1 || G_2 = \frac{G_1 \cdot G_2}{G_1 + G_2}$ (Seriell)

 $\begin{array}{ll} \text{Reihenschaltung:} & \frac{1}{G_{gesamt}} = \frac{1}{G_1} + \ldots + \frac{1}{G_i} \\ \text{Parallelschaltung:} & G_{gesamt} = G_1 + \ldots + G_i \\ \end{array}$

Spannungsteiler / Stromteiler

Spannungsteiler

$$\begin{aligned} u_i &= u_{ges} \cdot \frac{R_i}{R_{ges}} = u_{ges} \cdot \frac{G_{ges}}{G_i} \\ R_{ges} &= R_1 + \ldots + R_n \\ G_{1+2} &= \frac{G_1 \cdot G_2}{G_1 + G_2} \end{aligned}$$

Stromteiler

$$\begin{split} i_i = i_{ges} \cdot \frac{R_{ges}}{R_i} = i_{ges} \cdot \frac{G_i}{G_{ges}} \\ G_{ges} = G_1 + \ldots + G_n \\ R_{1+2} = \frac{R_1 \cdot R_2}{R_1 + R_2} \end{split}$$

$$\begin{split} u_{ges} &= R_{ges} i_{ges} \\ R_{ges} &= R_2 + \frac{R_2 R_3}{R_2 + R_3} \\ u_{R1} &= \frac{1}{1 + \frac{R_2 R_3}{R_1 (R_2 + R_3)}} u_{ges} \\ u_{R2} &= \frac{1}{1 + \frac{R_1 (R_2 + R_3)}{R_2 R_3}} u_{ges} \\ u_{R3} &= u_{R2} \end{split}$$

Quellwandlung linearer Quellen

Wichtig: Pfeilrichtung I_0 Für jede lineare Quelle gilt: $u = R_i \cdot i + U_0$ bzw. $i = G_i \cdot u - I_0$

Kennlinienbestimmung von verschalteten Bauteilen

Parallel

Die Spannung ist an jedem Bauteil gleich. Die Ströme werden nach der Knotenregel addiert.

Grafisch: Kennlinien entlang der i-Achse addieren.

Seriell

Der Strom ist in jedem Bauteil gleich. Die Spannungen werden nach der Maschenregel addiert.

Grafisch: Kennlinien entlang der u-Achse addieren.

Arbeitspunktbestimmung

Q: Quelleneintor

 Q^x : Quelleneintor gespiegelt an der u-Achse

F: Lasteintor

Rechnerisch: $i_Q = -i_F$

Graphisch: $AP = F \cap Q^x$

Linearisierung im Arbeitspunkt

z.B. Leitwertsbeschreibung:

$$\begin{split} \Delta i_F &= \left. \frac{\partial i_F}{\partial u_F} \right|_{AP} \cdot \Delta u_F \\ (i_F &= I_{AP} + \Delta i_F; \quad u_F = U_{AP} + \Delta u_F) \\ i_{F,lin} &= \left. \frac{\partial i_F}{\partial u_F} \right|_{AP} \cdot (u_F - U_{AP}) + I_{AP} \\ i_{F,lin} &= \left. \underbrace{\frac{\partial i_F}{\partial u_F}} \right|_{AP} \cdot u_F - \underbrace{\left. \frac{\partial i_F}{\partial u_F} \right|_{AP} \cdot U_{AP} + I_{AP}}_{I_{0,AP}} \end{split}$$

Ersatzschaltbilder

Zuerst alle Bauteile im Arbeitspunkt linearisieren. Erhalte $u_1 = U + \Delta u$

Großsignal: Alle Wechselquellen weglassen. $u_1 = U$ Kleinsignal: Alle Konstantquellen weglassen. $U_1 = \Delta u$

Ersetzen von Quellen

Bauelemente

Nullator

Strom/spannungsgesteuert, ungepolt, passiv, verlustlos, quellenfrei, streng linear. Dual zu Nullator.

Norator

Ungepolt, aktiv, quellenfrei, streng linear. Dual zu Norator.

Leer lauf

Spannungsgesteuert, ungepolt, passiv, verlustlos, quellenfrei, streng linear. Dual zu Kurzschluss.

Kurzschluss

Stromgesteuert, ungepolt, passiv, verlustlos, quellenfrei, streng linear. Dual zu Leerlauf.

Ohmscher Widerstand

Spannungs-/Stromgesteuert (R > 0/G > 0), ungepolt, passiv für $R \ge 0$, aktiv für R < 0, quellenfrei, streng linear. Dual zu Widerstand mit $R_2 = \frac{1}{R_1}$.

Ideale Stromquelle

Für I > 0: Spannungsgesteuert, gepolt, aktiv, nicht verlustlos, nicht quellenfrei, linear. Dual zu Spannungsquelle.

Ideale Spannungsquelle

Für U > 0: Stromgesteuert, gepolt, aktiv, nicht verlustlos, nicht quellenfrei, linear. Dual zu Stromquelle.

Ideale Diode

Nicht Strom/Spannungsgesteuert, gepolt, passiv, quellenfrei, stückweise linear. Dual zu umgepoltem selbst.

Reale Diode

Spannungs/Stromgesteuert, gepolt, passiv, quellenfrei, nicht linear.

Photodiode

Nicht Strom/Spannungsgesteuert, gepolt, aktiv, nicht line-

Zener dio de

Strom/Spannungsgesteuert, gepolt, passiv, quellenfrei, nicht linear.

Tunneldiode

Spannungsgesteuert, gepolt, passiv, quellenfrei, nicht linear.

Konkaver Widerstand

i=0 für $u \leq U_0$

$$i = G \cdot (u - U_0)$$
 für $u \ge U_0$

Spannungsgesteuert, gepolt, passiv, quellenfrei $(U_0 \geq 0)$, stückweise linear. Dual zu konvexem Widerstand.

Konvexer Widerstand

u=0 für $i \leq I_0$

$$u = R \cdot (i - I_0)$$
 für $i \ge I_0$

Stromgesteuert, gepolt, passiv, quellenfrei ($I_0 \geq$ stückweise linear.

Lineare Quellen

 $U_0 = I_0 \cdot R;$ $I_0 = U_0 \cdot G$ Spannungs/Stromgesteuert (R > 0/G > 0), gepolt, aktiv $(I_0 > 0 \Leftrightarrow U_0 > 0)$,

Resistive Zweitore

Darstellungsformen

Implizit

$$\underbrace{\begin{bmatrix} \mathbf{M} & \mathbf{N} \end{bmatrix} \cdot \frac{u}{\underline{i}} \end{bmatrix} = \underline{0}}_{Kern} \underbrace{\begin{bmatrix} \mathbf{M} & \mathbf{N} \end{bmatrix}}$$
 quellenfrei

 $F = Kern \begin{bmatrix} \mathbf{M} & \mathbf{N} \end{bmatrix} + \frac{u_0}{\underline{i_0}}$ nicht quellenfrei Explizit \Rightarrow Implizit: $i = Gu \Rightarrow 0 = Gu - 1 \Rightarrow [MN] =$ [G-1]

Explizit

Größe mit konstantem Nullwert (KS, LL, Nullator) kann keine Steuergröße sein. Größe mit beliebigem Wert (Norator) kann nicht gesteuert werden.

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \mathbf{G} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} g_{11}u_1 + g_{12}u_2 \\ g_{21}u_1 + g_{22}u_2 \end{bmatrix}$$

Leitwertsbeschr.

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \mathbf{R} \cdot \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} r_{11}i_1 + r_{12}i_2 \\ r_{21}i_1 + r_{22}i_2 \end{bmatrix}$$

Widerstandsbeschr.

$$\begin{bmatrix} u_1 \\ i_2 \end{bmatrix} = \mathbf{H} \cdot \begin{bmatrix} i_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} h_{11}i_1 + h_{12}u_2 \\ h_{21}i_1 + h_{22}u_2 \end{bmatrix}$$

hybride Beschr.

$$\begin{bmatrix} i_1 \\ u_2 \end{bmatrix} = \mathbf{H'} \cdot \begin{bmatrix} u_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} h'_{11}u_1 + h'_{12}i_2 \\ h'_{21}u_1 + h'_{22}i_2 \end{bmatrix}$$

inverse hybride Beschr.

$$\begin{bmatrix} u_1 \\ i_1 \end{bmatrix} = \mathbf{A} \cdot \begin{bmatrix} u_2 \\ -i_2 \end{bmatrix} = \begin{bmatrix} a_{11}u_2 - a_{12}i_2 \\ a_{21}u_2 - a_{22}i_2 \end{bmatrix}$$

Kettenbeschr.

$$\begin{bmatrix} u_2 \\ i_2 \end{bmatrix} = \mathbf{A'} \cdot \begin{bmatrix} u_1 \\ -i_1 \end{bmatrix} = \begin{bmatrix} a'_{11}u_1 - a'_{12}i_1 \\ a'_{21}u_1 - a'_{22}i_1 \end{bmatrix}$$

inverse Kettenbeschr.

Parametrisiert

$$\underbrace{\frac{\underline{u}}{\underline{i}} = \begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix} \cdot \underline{c}}_{Bild} = \begin{bmatrix} \underline{u}^{(1)} & \underline{u}^{(2)} \\ \underline{i}^{(1)} & \underline{i}^{(2)} \end{bmatrix} \cdot \underline{c} \quad \text{quellenfrei}$$

$$F = Bild \begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix} + \frac{u_0}{\underline{i_0}}$$
 nicht quellenfrei

mit $\frac{1}{V}\underline{u}, \frac{1}{A}\underline{i}, \underline{c} \in \mathbb{R}^{n \times 1}$ und $\frac{1}{V}\mathbf{U}, \frac{1}{A}\mathbf{I} \in \mathbb{R}^{n \times n}$

Eigenschaften

F ist we	nn
----------	----

- passiv
$$\forall \, \frac{\underline{u}}{\underline{i}} \bigg] \in F : P = \underline{u}^T \cdot \underline{i} \geq 0$$

- aktiv
$$\exists \frac{\underline{u}}{\underline{i}} \mid \in F : P = \underline{u}^T \cdot \underline{i} < 0$$

- verlustlos
$$\forall \, \frac{\underline{u}}{\underline{i}} \bigg] \in F : \underline{u}^T \cdot \underline{i} = 0$$

$$\mathbf{U}^T \mathbf{I} + \mathbf{I}^T \mathbf{U} = \mathbf{0}$$

$$\mathbf{R} = -\mathbf{R}^T; \quad \mathbf{G} = -\mathbf{G}^T$$

- umkehrbar Symmetrisch

$$G = P \cdot G \cdot P$$
; $R = P \cdot R \cdot P$; $A = A$

$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 "Zeilentausch + Spaltentausch"

- reziprok
$$\mathbf{U}^T\mathbf{I} - \mathbf{I}^T\mathbf{U} = \mathbf{0}; \mathbf{G} = \mathbf{G}^T; \mathbf{R} = \mathbf{R}^T$$

$$det(\mathbf{A}) = det(\mathbf{A'}) = 1$$

Netzwerk besteht nur aus R, C und L

Dualität
$$\begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix}^d = \begin{bmatrix} R_d \mathbf{I} \\ \frac{1}{R_d} \mathbf{U} \end{bmatrix} = \begin{bmatrix} 0 & R_d \mathbf{1} \\ \frac{1}{R_d} \mathbf{1} & 0 \end{bmatrix} \cdot \mathbf{U}$$
$$\mathbf{G}^d = \frac{1}{R_c^2} \mathbf{R}; \ \mathbf{R}^d = R_d^2 \mathbf{G}$$

Kurzschluss/Leerlauf-Methode

Verfahre nach "Berechnung Beschreibungsmatrix". Jeweils eine steuernde Größe auf Null setzen (Spannungsquelle \rightarrow KS; Stromquelle \rightarrow LL).

$$r_{21} = \frac{u_2}{i_1}\Big|_{i_2=0}$$
 $r_{22} = \frac{u_2}{i_2}\Big|_{i_1=0}$

$$\begin{array}{ccc} \mathbf{H} & h_{11} = \frac{u_1}{i_1} \Big|_{u_2 = 0} & h_{12} = \frac{u_1}{u_2} \Big|_{i_1 = 0} \\ & h_{21} = \frac{i_2}{i_1} \Big|_{u_2 = 0} & h_{22} = \frac{i_2}{u_2} \Big|_{i_1 = 0} \end{array}$$

$$\begin{array}{llll} \mathbf{A} & h_{11} \equiv \frac{i_{1}}{i_{1}}\Big|_{u_{2}=0} & h_{12} \equiv \frac{i_{2}}{u_{2}}\Big|_{i_{1}=0} \\ & h_{21} \equiv \frac{i_{2}}{i_{1}}\Big|_{u_{2}=0} & h_{22} \equiv \frac{i_{2}}{u_{2}}\Big|_{i_{1}=0} \\ & \mathbf{H'} & h'_{11} \equiv \frac{i_{1}}{u_{1}}\Big|_{u_{2}=0} & h'_{12} \equiv \frac{i_{1}}{i_{2}}\Big|_{u_{1}=0} \\ & h'_{21} \equiv \frac{u_{2}}{u_{1}}\Big|_{i_{2}=0} & h'_{22} \equiv \frac{u_{2}}{i_{2}}\Big|_{u_{1}=0} \\ & \mathbf{A} & a_{11} \equiv \frac{u_{1}}{u_{2}}\Big|_{i_{2}=0} & a_{12} \equiv -\frac{u_{1}}{i_{2}}\Big|_{u_{2}=0} \\ & a_{21} \equiv \frac{i_{1}}{u_{2}}\Big|_{i_{2}=0} & a'_{12} \equiv -\frac{i_{1}}{i_{2}}\Big|_{u_{2}=0} \\ & \mathbf{A'} & a'_{11} \equiv \frac{u_{2}}{u_{1}}\Big|_{i_{1}=0} & a'_{12} \equiv -\frac{u_{1}}{i_{2}}\Big|_{u_{1}=0} \end{array}$$

A
$$a_{11} = \frac{u_1}{u_2} \Big|_{\substack{i_2 = 0 \\ i_2 = 0}} a_{12} = -\frac{u_1}{i_2} \Big|_{\substack{u_2 = 0 \\ \dots \ | u_2 = 0}}$$

$$a_{21} = \frac{i_1}{u_2} \Big|_{\substack{i_2 = 0}} \qquad a_{22} = -\frac{i_1}{i_2} \Big|_{\substack{u_2 = 0}}$$

A'
$$a'_{11} = \frac{u_2}{u_1}\Big|_{\substack{i_1=0 \ u'_{21} = \frac{i_2}{u_1}}} a'_{12} = -\frac{u_2}{i_1}\Big|_{\substack{u_1=0 \ u'_{21} = \frac{i_2}{u_1}}}$$

Berechnung Beschreibungsmatrix

Bei quellenbehafteten Zweitoren:

z.B.
$$\underline{i} = \mathbf{G} \cdot \underline{u} + I_0$$

1) Setze interne Quellen zu Null (Spannungsquelle \rightarrow KS;

- Stromquelle \rightarrow LL) \rightarrow bestimme Funktionen der Matrix (hier: $i = \mathbf{G} \cdot u$)
- 2) Setze Steuergrößen zu Null \rightarrow bestimme Quellenvektor (hier: $\underline{i} = \underline{I}_0$ für $\underline{u} = 0$)).

Linearisierung im AP

Explizit

z.B. Leitwertsbeschreibung: $i_{lin}(u) = G_{lin}(u - U_{AP}) + I_{AP},$

$$I_{lin}(u) = G_{lin}(u - U_{AP}) + I_{AP},$$

 $G_{lin} = \frac{\partial i}{\partial u}$ mit $u = U_{AP}$ einsetzen.

$$\begin{split} \underline{\Delta i} &= \mathbf{J} \cdot \underline{\Delta u} \\ (\underline{i} &= \underline{I} + \underline{\Delta i}; \quad \underline{u} = \underline{U} + \underline{\Delta u}) \end{split}$$

$$\begin{aligned} i_1 \\ i_2 \end{bmatrix} = \underbrace{ \begin{bmatrix} \frac{\partial g_1}{\partial u_1} & \frac{\partial g_1}{\partial u_2} \\ \frac{\partial g_2}{\partial u_1} & \frac{\partial g_2}{\partial u_2} \end{bmatrix} \bigg|_{AP}}_{\mathbf{J}(Jacobimatrix)} \cdot \frac{\Delta u_1}{\Delta u_2} \end{bmatrix} + \underbrace{I_1}_{I_2}]$$

Implizit

$$\underbrace{\begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} \end{bmatrix}}_{\mathbf{M}} \cdot \underbrace{\frac{\Delta u_1}{\Delta u_2}}_{\mathbf{A}u_2} + \underbrace{\begin{bmatrix} \frac{\partial f_1}{\partial i_1} & \frac{\partial f_1}{\partial i_2} \\ \frac{\partial f_2}{\partial i_1} & \frac{\partial f_2}{\partial i_2} \end{bmatrix}}_{\mathbf{N}} \cdot \underbrace{\frac{\Delta i_1}{\Delta i_2}}_{\mathbf{N}} = \mathbf{0}$$

Zusammenschaltung von Zweitoren

Es muss immer darauf geachtet werden, dass die Torbedingungen eingehalten werden (außer bei Kettenschaltung)!

Parallels chaltung

$$\mathbf{G}_{ges} = \mathbf{G}_1 + \mathbf{G}_2$$

Serienschaltung

$$\mathbf{R}_{ges} = \mathbf{R}_1 + \mathbf{R}_2$$

Hybride Verschaltung

$$\mathbf{H}_{ges} = \mathbf{H}_1 + \mathbf{H}_2$$

Inverse hybride Verschaltung

$$\mathbf{H'}_{ges} = \mathbf{H'}_1 + \mathbf{H'}_2$$

Kettenschaltung

Inverse Kettenschaltung

Umrechnung der Zweitor-Matrizen

Implizit ightarrow explizit

$$\begin{split} \left[\mathbf{M} \quad \mathbf{N}\right] \cdot \frac{\underline{u}}{\underline{i}} &= \underline{0} \quad |M^{-1} \cdot \quad \left[\mathbf{M} \quad \mathbf{N}\right] \cdot \frac{\underline{u}}{\underline{i}} \right] = \underline{0} \quad |N^{-1} \cdot \underline{u}| \\ \underline{u} + \mathbf{M}^{-1} \mathbf{N} \cdot \underline{i} &= \underline{0} \quad \mathbf{N}^{-1} \mathbf{M} \cdot \underline{u} + \underline{i} &= \underline{0} \\ \underline{u} &= \underbrace{-\mathbf{M}^{-1} \mathbf{N}}_{\mathbf{R}} \cdot \underline{i} \quad \underline{i} &= \underbrace{-\mathbf{N}^{-1} \mathbf{M}}_{\mathbf{G}} \cdot \underline{u} \end{split}$$

$Explizit \rightarrow implizit$

Parametrisiert ightarrow explizit

$$\frac{\underline{u}}{\underline{i}} = \begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix} \cdot \underline{c} \quad \Rightarrow \quad \frac{\underline{u}}{\underline{i}} = \frac{\mathbf{U} \cdot \underline{c}}{\mathbf{I} \cdot \underline{c}}$$

$$\underline{i} = \mathbf{I} \cdot \underline{c} \quad |\mathbf{I}^{-1} \cdot \underline{i}| \qquad \qquad \underline{u} = \mathbf{U} \cdot \underline{c} \quad |\mathbf{U}^{-1} \cdot \underline{u}|$$

$$\Rightarrow \mathbf{I}^{-1} \cdot \underline{i} = \underline{c} \qquad \qquad \Rightarrow \mathbf{U}^{-1} \cdot \underline{u} = \underline{c}$$

$$\Rightarrow \underline{u} = \underbrace{\mathbf{U} \cdot \mathbf{I}^{-1}}_{R} \cdot \underline{i} \qquad \Rightarrow \underline{i} = \underbrace{\mathbf{I} \cdot \mathbf{U}^{-1}}_{G} \cdot \underline{u}$$

$\textit{Explizit} \rightarrow \textit{parametrisiert}$

$$\underline{u} = \mathbf{R} \cdot \underline{i}$$
 $\underline{i} = \mathbf{G} \cdot \underline{u}$ $\mathbf{U} = \mathbf{R}; \quad \mathbf{I} = \mathbf{1}$ $\mathbf{U} = \mathbf{1}; \quad \mathbf{I} = \mathbf{G}$

Implizit ightarrow parametrisiert

$$\mathbf{U} = -\mathbf{M}^{-1}\mathbf{N}; \quad \mathbf{I} = \mathbf{1} \quad \text{oder} \quad \mathbf{U} = \mathbf{1}; \quad \mathbf{I} = -\mathbf{N}^{-1}\mathbf{M}$$

Parametrisiert ightarrow implizit

$$\mathbf{M} = -\mathbf{I} \cdot \mathbf{U}^{-1}; \quad \mathbf{N} = \mathbf{1} \quad \mathrm{oder} \quad \mathbf{M} = \mathbf{1}; \quad \mathbf{N} = -\mathbf{U} \cdot \mathbf{I}^{-1}$$

Explizit ightarrow explizit

$$\begin{split} & \underline{i} = \mathbf{G} \cdot \underline{u} + \underline{I}_0 \quad | \mathbf{R} \cdot \\ & \mathbf{R} \cdot \underline{i} = \underbrace{\mathbf{R} \cdot \underline{i}}_{\mathbf{1}} \cdot \underline{u} + \mathbf{R} \cdot \underline{I}_0 \qquad \qquad \mathbf{G} \cdot \underline{u} = \underbrace{\mathbf{G} \cdot \mathbf{R}}_{\mathbf{1}} \cdot \underline{i} + \mathbf{G} \cdot \underline{U}_0 \\ & \underline{u} = \mathbf{R} \cdot \underline{i} - \mathbf{R} \cdot \underline{I}_0 \qquad \qquad \underline{i} = \mathbf{G} \cdot \underline{u} - \mathbf{G} \cdot \underline{U}_0 \end{split}$$

	R					G						Н			
\mathbf{R}		$\begin{bmatrix} r_{11} \\ r_{21} \end{bmatrix}$	r_{12} r_{22}		$\frac{1}{det}$	$\overline{\mathbf{G})}$	$\begin{bmatrix} g_{22} \\ -g_2 \end{bmatrix}$		$-g_{12}$ g_{11}	2	$\frac{1}{h_{22}}$	$\begin{bmatrix} det(-h) \\ -h \end{bmatrix}$. /	$\begin{bmatrix} h_{12} \\ 1 \end{bmatrix}$	
\mathbf{G}	$\frac{1}{det(\mathbf{R})}$	$\begin{bmatrix} r_2 \\ -r \end{bmatrix}$		$-r_{12}$ r_{11}		١٣	/11 /21	g_{12} g_{22}			$\frac{1}{h_{11}}$	$\begin{bmatrix} 1 \\ h_{21} \end{bmatrix}$		$t(\mathbf{H})$	
Н	$\frac{1}{r_{22}}$	$\begin{bmatrix} det(1) \\ -r_2 \end{bmatrix}$,	$\begin{bmatrix} r_{12} \\ 1 \end{bmatrix}$	$\frac{1}{g_1}$	$-\left[g\right]$	1 /21	_	$egin{aligned} g_{12} \ (\mathbf{G}) \end{bmatrix}$			$\begin{bmatrix} h_{11} \\ h_{21} \end{bmatrix}$	h_1 : h_2 :		
н	$\frac{1}{r_{11}}$	$\begin{bmatrix} 1 \\ r_{21} \end{bmatrix}$	$\frac{-r}{det}$		$\frac{1}{g_2}$	- 1	$det(\mathbf{C}_{-g_2})$	-	$\begin{bmatrix} g_{12} \\ 1 \end{bmatrix}$		$\frac{1}{det(\mathbf{F})}$	$\overline{\Gamma}$ $\begin{bmatrix} h \\ -I \end{bmatrix}$	n_{21}	$\begin{bmatrix} -h_{12} \\ h_{11} \end{bmatrix}$	
A	$\frac{1}{r_{21}}$	$\begin{bmatrix} r_{11} \\ 1 \end{bmatrix}$	$det(r_2)$	` ′ [$\frac{1}{g_{21}}$		$-g_{22}$ $let(\mathbf{C}$		-1 $-g_1$		$\frac{1}{h_{21}}$	$-det($ $-h_2$		$\begin{bmatrix} -h_{11} \\ -1 \end{bmatrix}$	
Α,	$\frac{1}{r_{12}}$	$\begin{bmatrix} r_{22} \\ 1 \end{bmatrix}$	$det(r_1)$		$\frac{1}{g_{12}}$		$-g_{11} \ let({f C}$	글)	-1 $-g_2$		$\frac{1}{h_{12}}$	$\begin{bmatrix} 1 \\ h_{22} \end{bmatrix}$		$t_{11} t(\mathbf{H})$	

		н,				A		A'			
\mathbf{R}	$\frac{1}{h'_{11}} \left[h \right]$		$\begin{bmatrix} h'_{12} \\ (\mathbf{H}') \end{bmatrix}$	$\frac{1}{a_{21}}$	$\begin{bmatrix} a_{11} \\ 1 \end{bmatrix}$	det	` ′ [$\frac{1}{a'_{21}}$	$\begin{bmatrix} a'_{22} \\ det(\mathbf{A'}) \end{bmatrix}$	$\begin{bmatrix} 1 \\ a'_{11} \end{bmatrix}$	
\mathbf{G}		$et(\mathbf{H}')$ $-h'_{21}$	$\begin{bmatrix} h'_{12} \\ 1 \end{bmatrix}$	$\frac{1}{a_{12}}$	$a_{22} - 1$	-de		$\frac{1}{a'_{12}}$	$\begin{array}{c} a'_{11} \\ -det(\mathbf{A}') \end{array}$	$\begin{bmatrix} -1 \\ a'_{22} \end{bmatrix}$	
н	$\frac{1}{det(\mathbf{H'})}$	$\begin{bmatrix} h'_{22} \\ -h'_{21} \end{bmatrix}$		$\frac{1}{a_{22}}$	$\begin{bmatrix} a_{12} \\ -1 \end{bmatrix}$	det		$\frac{1}{a'_{11}}$	$\begin{array}{c} a'_{12} \\ -det(\mathbf{A}') \end{array}$	$\begin{bmatrix} 1 \\ a'_{21} \end{bmatrix}$	
н,		$egin{array}{cccc} ar{b}_{11} & h_{12}' \ h_{21}' & h_{22}' \end{array}$		$\frac{1}{a_{11}}$	a_{21} 1	-de		$\frac{1}{a_{22}'}$	$\begin{bmatrix} a'_{21} \\ det(\mathbf{A}') \end{bmatrix}$	$\begin{bmatrix} -1 \\ a'_{12} \end{bmatrix}$	
A	$\frac{1}{h'_{21}} \left[h \right]$		$\left[egin{array}{c} c_{22} \ (\mathbf{H}') \end{array} ight]$		$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$	$a_{12} \\ a_{22}$		$\frac{1}{det}$	$\begin{bmatrix} a'_{22} \\ a'_{21} \end{bmatrix}$	$\begin{bmatrix} a'_{12} \\ a'_{11} \end{bmatrix}$	
Α'	$\frac{1}{h'_{12}} \begin{bmatrix} -d \\ - \end{bmatrix}$	$et(\mathbf{H}')$ $-h'_{11}$	$\begin{bmatrix} -h'_{22} \\ -1 \end{bmatrix}$	$\frac{1}{det}$	<u> </u>		$\begin{bmatrix} a_{12} \\ a_{11} \end{bmatrix}$		$\begin{bmatrix} a'_{11} & a'_{12} \\ a'_{21} & a'_{22} \end{bmatrix}$		

Spezielle Zweitore

$VCCS\ Spannungsgesteuerte\ Stromquelle$

$$\mathbf{A} = \begin{bmatrix} 0 & -\frac{1}{g} \\ 0 & 0 \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} 0 & 0 \\ g & 0 \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 0 & 0 \\ -g & 0 \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$CCCS\ Stromggesteuerte\ Stromquelle$

$VCVS\ Spannungsgesteurte\ Spannungsquelle$

CCVS Stromgesteuerte Spannungsquelle

$$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ \frac{1}{r} & 0 \end{bmatrix} \quad \mathbf{R} = \begin{bmatrix} 0 & 0 \\ r & 0 \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} 0 & 0 \\ -r & 0 \end{bmatrix}$$

Null or

Quellenfrei, streng linear, nicht verlustlos

Gyrator

Dualwandler, Positiv-Immittanz-Inverter (PII)

Verlustlos
$$(R_1 = R_2 = R_d)$$

Pfeilrichtung \rightarrow für R_d

Pteilrichtung
$$\rightarrow$$
 für F
 $\mathbf{G} = -\mathbf{G}^T$

$$\mathbf{B} = -\mathbf{B}^T$$

Pfeilrichtung
$$\rightarrow$$
 für R_d
 $\mathbf{G} = -\mathbf{G}^T$
 $\mathbf{R} = -\mathbf{R}^T$
 $\det(\mathbf{A}) = \det(\mathbf{A}') = -1$
 $F_{Gyr} = F^d$

$$F_{Gyr} = F^d$$

$$\mathbf{G} = \begin{bmatrix} 0 & \frac{1}{R_2} \\ -\frac{1}{R_1} & 0 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} 0 & -R_1 \\ R_2 & 0 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} 0 & R_1 \\ \frac{1}{R_2} & 0 \end{bmatrix}$$

$$\mathbf{A'} = \begin{bmatrix} 0 & -R_2 \\ -\frac{1}{R_1} & 0 \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} 0 & R_1 \\ -R_2 & 0 \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Idealer Übertrager

Positiv-Immittanz-Konverter (PIK)

Verlustlos Reziprok Umkehrbar für $\ddot{\mathbf{u}} = \pm 1$ $det(\mathbf{A}) = det(\mathbf{A}') = 1$

$$\mathbf{A} = \begin{bmatrix} \ddot{u} & 0 \\ 0 & \frac{1}{\ddot{u}} \end{bmatrix} \qquad \mathbf{A'} = \begin{bmatrix} \frac{1}{\ddot{u}} & 0 \\ 0 & \ddot{u} \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} 0 & \ddot{u} \\ -\ddot{u} & 0 \end{bmatrix}$$

$$\mathbf{H'} = \begin{bmatrix} 0 & -\frac{1}{\ddot{u}} \\ \frac{1}{\ddot{u}} & 0 \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 1 & -\ddot{u} \\ 0 & 0 \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} 0 & 0 \\ \ddot{u} & 1 \end{bmatrix}$$

NIK

Negativ-Immittanz-Konverter (NIK)

Aktiv, antireziprok, für |k| = 1 symmetrisch

F ist an der i_1 -Achse gespiegelter Zweipol k = -1 F ist an der u_1 -Achse gespiegelter Zweipol

$$\mathbf{A} = \begin{bmatrix} -k & 0 \\ 0 & \frac{1}{k} \end{bmatrix} \qquad \mathbf{A'} = \begin{bmatrix} -\frac{1}{k} & 0 \\ 0 & k \end{bmatrix} \quad \mathbf{H} = \begin{bmatrix} 0 & -k \\ -k & 0 \end{bmatrix}$$

$$\mathbf{H'} = \begin{bmatrix} 0 & -\frac{1}{k} \\ -\frac{1}{k} & 0 \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 1 & k \\ 0 & 0 \end{bmatrix} \qquad \mathbf{N} = \begin{bmatrix} 0 & 0 \\ 1 & \frac{1}{k} \end{bmatrix}$$

Bipolar-Transistoren

Kennlinien eines npn-Transistors

Basisschaltung

Emitterschaltung

Ebers-Moll-Modell (Basisschaltung, npn)

$$i_e = -I_{es} \cdot (e^{-\frac{u_{eb}}{U_T}} - 1) + \alpha_R I_{cs} \cdot (e^{-\frac{u_{cb}}{U_T}} - 1)$$
$$i_c = \alpha_F I_{es} \cdot (e^{-\frac{u_{eb}}{U_T}} - 1) - I_{cs} \cdot (e^{-\frac{u_{cb}}{U_T}} - 1)$$

Vereinfachung für Vorwärtsbetrieb (npn)

Bedingung für den Vorwärtsbetrieb: $u_{be} > 0 \land u_{cb} \ge 0$

Basisschaltung

Emitterschaltung

Linearisierung

(Emitterschaltung, Vorwärtsbetrieb, npn)

Großsignal-ESB:

Kleinsignal-ESB:

$$\begin{split} \beta_F &= \frac{i_c}{i_b} = \frac{\alpha_F}{1 - \alpha_F} \\ \alpha_F &= \frac{\beta_F}{1 + \beta_F} \\ g &= \left. \frac{\partial i_b}{\partial u_{be}} \right|_{AP} \approx -\frac{I_e}{\beta_F \cdot U_T} \\ g &\approx \frac{I_b}{U_T} = \frac{I_c}{\beta_E \cdot U_T} \end{split}$$

Dreipol Nullor $\mathbf{A} =$ Wie normaler Nullor.

Feldeffekt-Transistoren (FET)

nMOS

 $i_G = 0A$

Guter Pull-Down Source am niedrigeren Potential $(u_{DS} > 0)$

$$i_D = \begin{cases} 0 & u_{GS} < U_t(aus) \\ & \wedge u_{DS} \ge 0 \\ \beta \left(u_{GS} - U_t - \frac{u_{DS}}{2}\right) u_{DS} & u_{GS} > U_t \text{ (linear)} \\ & & \wedge 0 < u_{DS} < u_{GS} - U_t \\ \frac{\beta}{2} \left(u_{GS} - U_t\right)^2 & u_{GS} > U_t \text{ (S\"{a}ttigung)} \\ & & \wedge 0 < u_{GS} - U_t < u_{DS} \end{cases}$$

Enhancement-Typ (selbssperrend): $U_t \approx 1V$ Depletion-Typ (selbstleitend): $U_t \approx -1V$

Kanallängenmodulation: $i_D' = i_D \cdot (1 + \lambda \cdot u_{DS})$

pMOS

Guter Pull-Up Source am höheren Potential $(u_{DS} < 0)$

$$i_D = \begin{cases} 0 & u_{GS} > U_t(aus) \\ & \wedge u_{DS} \leq 0 \\ -\beta \left(u_{GS} - U_t - \frac{u_{DS}}{2}\right) u_{DS} & u_{GS} < U_t \text{ (linear)} \\ & \wedge 0 > u_{DS} > u_{GS} - U_t \\ \frac{-\beta}{2} \left(u_{GS} - U_t\right)^2 & u_{GS} < U_t \text{ (S\"{a}ttigung)} \\ & \wedge 0 > u_{GS} - U_t > u_{DS} \end{cases}$$

Enhancement-Typ (selbstsperrend): $U_t \approx -1V$

Kanallängenmodulation: $i'_D = i_D \cdot (1 - \lambda \cdot u_{DS})$

Kleinsignal-Ersatzschaltbilder (nMOS)

Linearer Bereich

$$g_m = \frac{\partial i_d}{\partial u_{gs}} \Big|_{AP} = \beta \cdot U_{ds}$$

$$g_0 = \frac{\partial i_d}{\partial u_{ds}} \Big|_{AP} = \beta \cdot (U_{gs} - U_T - U_{ds})$$

$S\"{a}ttigungsbereich$

Operationsverstärker

Operationsverstärker müssen immer über ihren invertierenden Eingang rückgekoppelt werden, da sich sonst eine Z-Kennlinie ergibt und der Arbeitspunkt somit nicht mehr eindeutig ist.

Ersatzschaltbilder

 u_d mit einzeichnen.

ESBI

$$u_d < 0$$

$$u_{out} = -U_{SAT}$$

ESB II

$$u_d = 0$$
$$|u_{out}| \le |U_{SAT}|$$

ESB III

$$u_d > 0$$

$$u_{out} = U_{SAT}$$

OP-Schaltungen

$Spannungsfolger\ (Impedanzwandler)$

$$u_{out} = u_{in}$$

$$v_u = 1$$

Nichtinvertierender Verstärker

 $u_{out} = -RC \cdot \dot{u}_{in}$

Integrierer

Differenzverstärker/Subtrahierer

$$u_{out} = \frac{R_2}{R_1} \cdot (u_2 - u_1)$$

$$u_{out} = \frac{R_4}{R_3} \cdot (u_2 - u_1)$$

Ideale Diode

Konvexer Widerstand

NIK

VCVS Voltage Controlled Voltage Source

 $\mu \geq 1$ Nichtinvertierender Verstärker

 $\mu < 0$ Spannungsfolger und invertierender Verstärker hintereinander

 $0 < \mu < 1$ Spannungsfolger und zwei invertierende Verstärker hintereinander

CCVS Current Controlled Voltage Source

r < 0 Invertierender Verstärker mit $R_1 = 0\Omega$

r>0 – Zusätzlich invertierenden Verstärker mit $v_u=-1$ nachschalten

Gyrator

- Parallelschaltung zweier VCCS
- Serienschaltung zweier CCVS
- Kettenschaltung eines NIK (k = -1) mit einem NII

Knotenspannungsanalyse (KSA)

$$\mathbf{Y}_k \cdot \underline{u}_k = \underline{i}_q$$

1. Nichtspannungsgesteuerte Elemente ersetzen

$Ideale\ Spannung squelle$

$I_0 = G \cdot U_0$

Idealer Übertrager

VCVS Voltage Controlled Voltage Source

$$u_2 = \mu \cdot u_1 \qquad i_2 = -\frac{\mu \cdot u_1}{R_D}$$

$$i_2 = -G \cdot \mu \cdot u_1$$

CCCS Current Controlled Current Source

$$i_2 = \beta \cdot i_1$$
 $u = R_d \cdot i_1$ $i_2 = \frac{\beta \cdot u}{R_d}$

CCVS Current Controlled Voltage Source

$$u_2 = \beta \cdot i_1$$
 $u = R_d \cdot i_1$ $i_2 = \frac{u}{R_d}$ $u_2 = -R_d \cdot i_1$

2. Knotenspannungsvektor U_k aufstellen

3. Knotenleitwertsmatrix Y_k aufstellen

Leitwert

Gyrator

Pfeilrichtung wichtig. $i_1 = \widetilde{Gu_2}, i_2 = -Gu_1$

VCCS Voltage Controlled Current Source

4. Quellvektor I_q aufstellen

5. Reduzierte Knotenleitwertsmatrix Y_k

Nullator

In \mathbf{Y}_k die entsprechenden Spalten addieren und eine davon streichen **UND** entsprechenden Eintrag im \underline{u}_k -Vektor streichen.

Falls mit Masse verbunden: Spalte und $\underline{u}_k\text{-}\textsc{Eintrag}$ streichen.

Norator

In \mathbf{Y}_k die entsprechenden Zeilen addieren und eine davon streichen \mathbf{UND} entsprechenden Eintrag im \underline{i}_q -Vektor streichen

Falls mit Masse verbunden: Zeile und $\underline{i}_q\text{-Eintrag}$ streichen.

Sonstiges

Tellegenscher Satz

Der Spannungsvektor steht immer senkrecht zum Stromvektor ($\mathbf{AB}^T = \mathbf{0}$ bzw. $\mathbf{BA}^T = \mathbf{0}$).

Tableau-Gleichungssystem

$$\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} \\ \mathbf{M} & \mathbf{N} \end{bmatrix} \cdot \frac{\underline{u}}{\underline{i}} \end{bmatrix} = \frac{\underline{0}}{\underline{e}} \end{bmatrix}$$

Superpositionsprinzip

Gilt für unabhängige Quellen in linearem Netzwerk für u, i.

- 1) Jeweils alle Quellen bis auf eine auf Null setzen.
- 2) Gesuchte Größe u_{ai} berechnen.
- 3) Resultierende Größe ist $u_a = u_{a1} + ... + u_{an}$

Substitutionsprinzip

Helmholtz/Thévenin

 \mathcal{N}_1 linear + resistiv \rightarrow

Mayer/Norton

Newton-Raphson

Findet Nullstellen, nicht zwingend konvergent.

- 1) Für Schätzwert \tilde{x}_k linearisiere am Punkt $(\tilde{x}_k, f(\tilde{x}_k))$
- 2) Finde Nullstelle der Gerade. Dieser Punkt ist neuer Schätzwert \tilde{x}_{k+1} .

Lizenz: CC BY-NC-SA 3.0

http://creativecommons.org/licenses/by-nc-sa/3.0/de/