Sampling Distributions

and where to find them

Objectives

- Define the sampling distribution of a statistic, give two examples.
- State the Central Limit Theorem.
- Use the bootstrap to approximate the sampling distribution of a statistic.
- Use the Central Limit Theorem to describe the sampling distribution of the mean.
- Use either the Central Limit Theorem or the Bootstrap to compute a confidence interval for a sample statistic.

A Sampling Distribution

The distribution of a sample statistic over repeated re-samplings of the population.

For example: the sampling distribution of sample means.

Or, the sampling distribution of:

- Sample maximum
- Sample 75th percentiles
- Sample medians
- Sample correlation (given multi-variate samples).

- Compiling sampling distributions involves re-sampling the population.
- Generally we only get one chance to sample.
- How can we get a variety of samples when we only have one sample?

Numerical technique: The Bootstrap

- We don't have the population to sample from.
- We have the next best thing a representative of the population, the sample.
- We can sample from the sample.
- The bootstrap sample is a set of items, the same size as our sample, drawn from our sample uniformly and with replacement.

```
def bootstrap(data):
   indices = np.random.randint(0, len(data), size=len(data))
   return data[indices]
```

Question: will data be repeated in the bootstrap? Will data be left out? How much?

Closed-form technique: The Central Limit Theorem

- One situation where the bootstrap is both less convenient and less accurate than a closed-form solution.
- The central limit theorem asserts that as we take the mean of larger and larger samples, the distribution of sample means becomes more and more normal.

Statement of the Central Limit Theorem

Suppose $X_1, X_2, ...$ are i.i.d. copies of a random variable with finite expectation and variance

$$Var(X_1) = Var(X_2) = \cdots = \sigma^2$$

Then the distribution of sample means tends to a normal distribution with the appropriate mean and standard deviation:

$$\frac{X_1 + X_2 + \dots + X_k}{k} \to N\left(\mu, \frac{\sigma}{\sqrt{k}}\right)$$

as $k \to \infty$.

What's the point?

- Give us a means to state the confidence interval for the population statistic.
- For example, if 95% of the time the mean of our samples falls between a and b, we would be 95% confident reporting that the population mean is between a and b.
- Between the Central Limit Theorem and The Bootstrap, we have the means of deriving this confidence interval for almost any statistic.
- Consider: sometimes population statistics are used to fit a model.

Appendix A: Compare/contrast BS and CLT for sample distribution of sample means

```
In [242]: # define the bootstrap
    def bootstrap(sampleset):
        indices = np.random.randint(0, len(sampleset), size=len(sampleset))
        return sampleset[indices]

In [243]: # compute a large number of bootstrap samples
    bootstraps = []
    for i in range(10000):
        a_bootstrap = bootstrap( sampleset )
```

bootstraps.append(a bootstrap)

bootstrap means = [bs.mean() for bs in bootstraps]

In [244]: # find the means of those bootstrap samples

In [245]: # observe the empirical sample distribution of sample means
 plt.hist(bootstrap_means, bins=50, density=True)
 plt.show()


```
In [246]: # alternatively, compute the mean and standard deviation of our sampleset
    sample_mean = sampleset.mean()
    sample_std = sampleset.std()
    sample_mean, sample_std

Out[246]: (0.9200564907043876, 0.5314990916225957)

In [247]: from scipy.stats import norm

In [248]: # and use them to create a normal distibution
    # in accordance with the central limit theorem
```

standard_error = sample_std/len(sampleset)**0.5
N = norm(loc=sample mean, scale=standard error)

```
In [249]: # plot the PDF of normal derived from CLT
  # the empirical distribution of sample means derived
  # from the bootstrap is included, because it's cool

meanspace = np.linspace(0.7, 1.2)
  p_meanspace = N.pdf(meanspace)
  plt.plot(meanspace, p_meanspace)
  plt.hist(bootstrap_means, bins=50, density=True)
  plt.show()
```

