- **5.** No
- **6.** No
- **7.** No.
- **8.** Yes
- 15. Commutative, associative.
- 16. not commutative; not associative
- 17. Commutative, associative.
- 18. Commutative, associative.
- 19. Commutative; not associative
- 20. a*a=GCD(a, a)=a, 故具有幂等性质

22.

*	a	b	С
a	b	С	a
b	С	b	a
С	a	a	С

25. (a) a, a. (b) c, b. (c) c, a. (d) Neither

27.

28. n^{n^2}

 $n^{\frac{n(n+1)}{2}}$ commutative operations.

- 29
- **32.** 证明 (A, ≤) 是一个偏序集
- 1. 自反性

有 a=a*a, 可知 a≤a, 故满足自反性

2. 反对称性

若 a \leq b,且 b \leq a,则有 b=a*b,且 a=b*a,又因为*满足交换律,所以 a*b=b*a,所以 a=b,故满足反对称性

3. 传递性

若有 $a \le b$, $b \le c$, 则有 b=a*b, c=b*c, 则有 c=(a*b)*c, 又因为*满足结合律,故 c=a*(b*c), c=a*c, 即 $a \le c$

所以 (A, \leq) 是一个偏序集 a*b=(a*a)*b=a*(a*b),故有 $a\leq a*b$ 同理有 $b\leq a*b$ 所以 a*b 是 a, b 的上界 任取 a, b 的上界 c 则有 $a\leq c$, $b\leq c$ 则有 c=a*c, c=b*c 所以 c=a*(b*c)=(a*b)*c 即 $a*b\leq c$ 故 a*b 的 a, b 的最小上界 即 LUB(a,b)=a*b

9.2

- 6. 半群,交换半群
- 8. 幺半群(单位元1),交换半群
- 10. 幺半群(单位元 I),交换半群
- 14. 幺半群(单位元 2),交换半群
- 18. 不是半群

21.

Let $f_1(a) = a$, $f_1(b) = a$; $f_2(a) = a$, $f_2(b) = b$; $f_3(a) = b$, $f_3(b) = a$; $f_4(a) = b$, $f_4(b) = b$. These are the only functions on S. It is not commutative.

0	f_1	f_2	f_3	f_4
$\overline{f_1}$	f_1	f_1	f_4	f_4
	f_1		f_3	f_4
f_3	f_1	f_3	f_2	f_1
f_4	f_1	f_4	f_4	f_4

22.

U	Ø	{a}	{b}	{a, b}
Ø	Ø	{a}	{b}	{a, b}
{a}	{a}	{a}	{a, b}	{a, b}
{b}	{b}	{a, b}	{b}	{a, b}

| {a, b} |
|--------|--------|--------|--------|--------|
| | | | | |

26.

设(S,*)的两个子半群分别为(S1,*)和(S2,*),设S1∩S2=S3.

对任意 a1, $a2 \in S3$, $a1*a2 \in S1$, $a1*a2 \in S2$, 所以 $a1*a2 \in S1 \cap S2=S3$, 所以*在 S3上封闭,是子半群。

27.

By Exercise 26, we need only check that $e \in S_1 \cap S_2$. But $e \in S_1$ and $e \in S_2$, because each is a submonoid of (S, *).

31.

Let $x, y \in S_1$.

$$(g \circ f)(x *_1 y) = g(f(x *_1 y))$$

$$= g(f(x) *_2 f(y))$$

$$= g(f(x)) *_3 g(f(y))$$

$$= (g \circ f)(x) *_3 (g \circ f)(y).$$

Hence $g \circ f$ is a homomorphism from $(S_1, *_1)$ to $(S_3, *_3)$.

32. 由 31 可知 g。f 是 S1->S3 的一个同态,又有 f:S1->S2, g:S2->S3 是都是同构。于是有 S1 到 S2 中元素是一一对应的,S2 到 S3 的元素是一一对应的。可得 S1 到 S3 中的元素也是一一对应的,所以有 g。f 是 S1->S3 的一个同构。

35.

Let $x, y \in \mathbb{R}^+$. $\ln(x * y) = \ln(x) + \ln(y)$ so \ln is a homomorphism. Suppose $x \in \mathbb{R}$. Then $e^x \in \mathbb{R}^+$ and $\ln(e^x) = x$ so \ln is onto \mathbb{R}^+ . Suppose $\ln(x) = \ln(y)$; then $e^{\ln(x)} = e^{\ln(y)}$ and x = y. Hence \ln is one to one and an isomorphism between (\mathbb{R}^+, \times) and $(\mathbb{R}, +)$.

36.

(1) A1 是 a=a1*a2*···*ak(a1, a2···ak∈A)组成的集合(用 A1 代表 4),所以 A1∈S

设 $a_m = a_{n1} * a_{n2} * ... * a_{nk}$, $a_p = a_{q1} * a_{q2} * ... * a_{qk}$, $a_m * a_p \in A1$, 所以 A1 是封闭的。

所以 A1 是(S,*)的一个子半群。

(2) 若从 A1 中去除任一元素 $a_x = a_{y1} * a_{y2} * ... * a_{yk}$, 设 b= $a_{y1} * a_{y2} * ... * a_{ym}$, c= $a_{y(m+1)} * a_{y(m+2)} * ... * a_{yk}$ 则 b*c=a \in A1, 则 A1 不在封闭,所以 A1 是包含 A 的(S, *)的最小子群。

9.3

2.

由定理 1 可知,如果(S,*)和(T,*')是半群,那么 $(S\times T,*")$ 是半群,其中 $(s_1,t_1)*"(s_2,t_2)=(s_1*s_2,t_1*'t_2);$ 因此,

 $\forall (s,t) \in S \times T$, $(e_s,e_t)^*$ " $(s,t) = (e_s^*s,e_t^*'t) = (s,t) = (s^*e_s,t^*'e_t) = (s,t)^*$ " (e_s,e_t) 所以, (e_s,e_t) 是 $S \times T$ 的单位元, $S \times T$ 也是一个幺半群。

4.

证明要点:

- 1、定义函数 $f: S \times T \to S \times T$, f(s,t) = (t,s);
- 2、证明 f 单射,略
- 3、证明f满射,略
- 4、证明同构,

$$f((s_1,t_1)*"(s_2,t_2)) = f((s_1*s_2,t_1*'t_2)) = (t_1*'t_2,s_1*s_2) = (t_1,s_1)*"(t_2,s_2) = f((s_1,t_1))*"f((s_2,t_2))$$

- **8.** Yes
- **10.** Yes
- **14.** Yes
- **16.** Yes

18.

设(S,*)上的两个同余关系分别为 R_1 , R_2 。显然 R_1 , R_2 为等价关系。由 4. 7 定理 5 可知 $R_1 \cap R_2$ 为等价关系。 $\forall a,b,a',b' \in S$,若 $aR_1 \cap R_2$ a', $bR_1 \cap R_2$ b',则 aR_1 a', bR_1 $b' \Rightarrow (a*b)$ R_1 (a'*b') $\Rightarrow (a*b)R_1 \cap R_2$ (a'*b'),因此 $R_1 \cap R_2$ 是同余关系。 aR_2 a', bR_2 $b' \Rightarrow (a*b)$ R_2 (a'*b')

 $S/R = \{[0], [1], [2], [3], [4]\},$ $[a] = \{z \mid z = 5k + a, k \in \mathbb{Z}\}, a = 0, 1, 2, 3, 4.$

\oplus	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

24.

(a) $S/R=\{[a],[c]\}, [a]=\{a,b\},[c]=\{c,d\}.$

(b)
$$f_R(a) = [a] = f_R(b), f_R(c) = [c] = f_R(d)$$

26.

- (a) $\forall a,b \in A^*$, 设 f(a) = m, f(b) = n, 则 $f(a \cdot b) = m + n = f(a) + f(b)$, 得证;
- (b) 证明要点:
 - 1) 证明 R 的等价性(自反,对称,传递);
 - 2) 证明同余: 设aRa',bRb',由 $f:A^* \to N$ 是同态,f(a) = f(a'),f(b) = f(b'), $f(a \cdot b) = f(a) + f(b) = f(a') + f(b') = f(a' \cdot b')$,即 $(a \cdot b)R(a' \cdot b')$;
- (c)参考定理4的证明。

28.

不同构。(证明要点,不存在一对一的函数 $f: Z_4 \to S$,列出 Z_4 和 S 的运算表 · · ·) **30.**

 $\forall R, a, a', b, b' \in S$,若 aRa', bRb', :: a*b = b $:: (a)*b R (a')*b' \Leftrightarrow (a*b) R (a'*b')$ 因此, R为同余关系