TP 3.1. Transferts thermiques

Matériel expérience élève

- un chauffage
- un thermomètre interfacé
- une barre en cuivre
- une barre en aluminium
- une carte d'acquisition

1 Mesure de la conductivité thermique aluminium

Préparation

On se place d'abord en régime permanent : fixer le chauffage à une extrémité de la barre en aluminium, placer la gaine isolante, et attendre que toutes les températures se stabilisent.

Modèle

Dans le cadre d'une géométrie 1D cartésienne nous avons montré en cours la relation suivante :

$$R_{th} = \frac{T_2 - T_1}{\Phi_{2 \to 1}} = \frac{L}{\lambda S}$$

Schématiser la situation expérimentale et repérer sur les différentes grandeurs présentes dans les équations ci-dessous sur votre schéma.

Mesures

Effectuer une série de mesure permettant de valider la formule donnée pour la résistance thermique dans une géométrie à 1D cartésienne.

En déduire la valeur de la conductivité thermique du solide étudié et la comparer à une valeur théorique.

2 Vitesse de propagation par diffusion

Préparation

On va faire une étude dans le régime transitoire : placer le chauffage à l'arrêt à une extrémité de la barre en cuivre à température ambiante et placer la gaine isolante.

Modèle

L'équation de diffusion à l'intérieur du solide dans le cas à 1D cartésien s'écrit :

$$\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$$

avec
$$D = \frac{\lambda}{\rho c}$$

avec $D=\frac{\lambda}{\rho c}$ Par une analyse en ordre de grandeur on peut exprimer la durée de propagation τ d'une variation de température sur une distance L par

$$\tau = \frac{L^2}{D}$$

Schématiser la situation expérimentale et identifier les grandeurs présentes dans l'équation ci-dessus.

Mesures

Relever la montée en température d'un point de la barre de cuivre à partir de l'allumage du chauffage et pendant 5 min. Répéter cette opération pour plusieurs points de la barre.

Analyser vos résultats pour montrer la manifestation du modèle précédent.