Computer Graphics (COMP0027) 2022/23

Local Illumination

Tobias Ritschel

Introduction

- Local illumination
 - How a point light and one surface location interact
 - Valid for ray-tracing and for z buffer (projection)
 - Notation (
 - I_r Intensity radiating from the object (What we're looking for)
 - *I*_i Normalized intensity of the light (Characteristic of the light)
 - k proportion of the light reflected rather than absorbed by the material (Characteristic of the surface; varies with light wavelength)

Main idea

Color

- Light has different wavelengths
- Illumination is independent
- Red-in-green-out odes not exist (exception: fluorescence)
- We do all computation independently on RGB 3-vectors

Ambient Light

- 此小了
- Approximation to global illumination
 - Each object is illuminated to a certain extent by "stray" light
 - Constant across a whole object
- Often used simply to make sure everything is lit, just in case it isn't struck by light direct from a light source

Ambient Light

- Ambient light usually set for whole scene (I_a)
- Each object reflects only a proportion of that (k_a)
- So far then $I_r = k_3 l_3$

each object

Lambert's Law

Diffuse reflector scatters ### Iight

- Assume equality in all directions
- Called Lambertian surface
- Angle of incoming light is still critical

Lambert's Law

- Incoming intensity of light is proportional to d
- d is proportional to $\cos \theta = \langle \mathbf{n}, \mathbf{l} \rangle^+ = \max(0, \langle \mathbf{n}, \mathbf{l} \rangle)$
- No negative length or light
- Reflected intensity proportional to $\cos \theta$

 The normalised intensity of the light incident on the surface due to a ray from a light source

- The light reflected due to Lambert's law
- Proportion of light reflected rather than absorbed (k_d)

Normals

 To do Lambertian shading, we need the normal n of a sphere at p at the intersection point x

Lighting Equation #2

• Ambient and diffuse components k_a and k_a

$$I_{\rm r} = k_{\rm a}I_{\rm a} + k_{\rm d}I_{\rm i} < \mathbf{n}, \mathbf{l} >^+$$

Multiple Lights?

- Light adds linear
- Just add

$$I_{\rm r} = k_{\rm a}I_{\rm a} + k_{\rm d}I_{\rm 1} < \mathbf{n}, \mathbf{l}_{\rm 1} >^{+} + k_{\rm d}I_{\rm 2} < \mathbf{n}, \mathbf{l}_{\rm 2} >^{+} + \cdots$$

 We see importance of clamping: Adding without clamping, lights would cancel! Not in this universe

The Image - Diffuse

Perfect Specularity (mi)/0/

• Would almost **never** see the specular highlight

Imperfect Specularity (Phong)

e is the direction to the eye

n is the normal

I is the direction to the light

• h bisects e and L. F (R.)

为了让这种也以较大

Specular Component

Lighting Equation #3

$$V_{each} = chi chi k + k_s (\langle \mathbf{h}, \mathbf{n} \rangle^+)^m)$$

$$I_r = k_a I_a + I_i (k_d \langle \mathbf{n}, \mathbf{l} \rangle^+ + k_s (\langle \mathbf{h}, \mathbf{n} \rangle^+)^m)$$

- Ambient, diffuse & specular components
- Again if there are multiple lights there is a sum of the specular and diffuse components for each light

The Image – Specular

Web Page

- Web page for exercises (soon)
- Web page for demos (now)

uclcg.github.io/uclcg/

Conclusions

- We can now colour the pixels by combining
 - Ambient light
 - Diffuse reflections
 - Specular reflectionsSummed over several light sources
- We need
 - Shadows
 - Better model for light reflection of the object: BRDF
 - Global illumination