國立虎尾科技大學機械設計工程系 113 學年度『機械工程實驗(二):熱流力實驗』

期末報告

一、創新夾持裝置機械設計 二、環境量測與控制裝置機械設計

指導老師:周榮源

班 級:四設四乙

組 别:5

組 員:詹耀賢 41023241

陳瑨維 41023228

葉桓亞 41023240

莊雨薰 41023203

陳靚芸 41023205

日期:中華民國 113年 01月 03日

B. 內容

一、 概論(問題描述與產業應用分析、文獻回顧、資料與專利蒐集與分析)

主題一、創新夾持裝置機械設計

- 1. 整理各式(家)真空產生器的特點
- 2. 整理各式(家)真空產生器的產品與功能介紹

主題二、環境量測與控制裝置機械設計

- 1. 整理各式(家)散熱器元件或模組的特點
- 2. 整理各式(家)散熱器元件或模組的產品與功能介紹

二、 原理與設計方法(機械設計與繪圖)

主題一、創新夾持裝置機械設計

- 1. 整理真空產生器設計與要求規範
- 2. 整理真空產生器設計方法
- 3. 依據原理與工件大小之零組件設計圖

主題二、環境量測與控制裝置機械設計

- 1. 整理散熱器設計與要求規範
- 2. 整理散熱器設計方法
- 3. 依據原理與工件大小之零組件設計圖

三、 實驗量測與數據分析

主題一、創新夾持裝置機械設計

- 1. 依照 Excel 檔進行設計參數計算
- 2. 詳細列出軟體分析之過程(CAD 模型、條件、材料常數、計算方法、其他)

主題二、環境量測與控制裝置機械設計

- 1. 依照 Excel 檔進行設計參數計算
- 2. 詳細列出軟體分析之過程(CAD 模型、條件、材料常數、計算方法、其他)

主題三、bladeless wind turbine 結構設計(僅 Fluent 模擬)

1. 詳細列出軟體分析之過程(CAD 模型、條件、材料常數、計算方法、其他)

四、 結果與討論

主題一、創新夾持裝置機械設計

- 1. 依照 Excel 檔建立真空產生器與周邊 3D 設計圖(零件、組合、爆炸)
- 2. 依照 Excel 檔建立真空產生器計算書(公式法)
- 3. 繪圖並討論數值模擬結果及計算書結果與數值模擬(CAE法)之誤差?
- 4. 繪圖並討論實驗測試結果及可能誤差大小與原因?

主題二、環境量測與控制裝置機械設計

- 1. 依照 Excel 檔建立散熱器與周邊 3D 設計圖(零件、組合、爆炸)
- 2. 依照 Excel 檔建立散熱器計算書(公式法)
- 3. 繪圖並討論數值模擬結果及計算書結果與數值模擬(CAE 法)之誤差?
- 4. 繪圖並討論實驗測試結果及可能誤差大小與原因?

結論

主題一、創新夾持裝置機械設計

主題二、環境量測與控制裝置機械設計

一、概論(問題描述與產業應用分析、文獻回顧、資料與專利蒐集與分析)

主題一、創新夾持裝置機械設計

1. 整理各式(家)真空產生器的特點

FT系列真空產生器

多種型號選擇:FT 系列包含多個型號,如 FT-050、FT-100、FT-150 和 FT-200,以滿足不同的應用需求。

高真空度:該系列真空產生器的最大真空度可達 -91.8 kPa(-680 mmHg), 適用於需要高真空度的作業環境。

廣泛的使用壓力範圍:FT系列的使用壓力範圍為 0.1 至 1.6 MPa, 適應多種工作條件。

適用溫度範圍:可在 0 至 60 ℃ 的環境下運行,適合多種工業環境。

規格 Specification

型 號 Model	FT-050	FT-100	FT-150	FT-200			
使用流體 Operating Fluid	空氣 / Air						
使用溫度範圍 Range of Operating Temperature		0 ~	60℃				
給油 Lubrication	不要 / No						
使用壓力範圍 Working-pressure Range	0.	1 ~ 1.6 (1.0	~ 6.0kgf/cr	m²)			
噴嘴直徑 Nozzle Diameter(mm)	Ф0.5	Ф1.0	Ф1.5	Ф2.0			
到達真空度 Max. Vacuum Value	-91.8kpa(-680mmHg)						
接管口徑 Port Size	M5	1/8PT	1/4PT	3/4PT			

外觀尺寸 Overall Dimension

真空産生器 (標準型) Standard Type

真空産生器 (附檢知型)

2. 整理各式(家)真空產生器的產品與功能介紹

FT系列真空產生器功能

高效真空產生:利用壓縮空氣通過噴嘴產生真空,提供穩定的吸附能力。

多樣化應用:適用於自動化設備中的搬運、固定、包裝等需要真空的操作。

易於安裝:各型號配備不同的接管口徑(如 M5、1/8"、1/4"、3/8"),方便 集成到各類系統中。

型 號 Model	Α	В	С	D	Е	F	G	Н	ı	J	К	L	М	Ν(Φ)	0	消音器 silencer
FT-050(CK)	50	32	16	11	12	19	20	4.5	2-Ф4.2	Rp1/8	5	Rp1/8	44	21.5	14	Rp1/8
FT-100(CK)	50	32	16	11	12	19	20	4.5	2-Ф4.2	Rp1/8	5	Rp1/8	44	21.5	14	Rp1/8
FT-150	70	38	26	13	15	23	25	5	2-Ф4.5	Rp1/4	10	Rp1/4	44	21.5	17	Rp1/4
FT-150(CK)	63	38.5	19.5	11	10.5	20	25	5.5	2-Ф6	Rp1/4	15	Rp3/8	44	21	17	Rp1/2
FT-200(CK)	96	38	30	16	22	32	32	6.5	2-ф6	Rp3/8	10	Rp1/4	55	28	23.5	Rp1/2
FT-250	100	60	40	20	16	20	50	5.5	2-Ф6	Rp1/2	17	Rp3/8	71	40	28	Rp3/4
FT-300	118	60	40	20	20	33	50	5.5	2-Ф6	Rp3/4	20	Rp1/2	71	40	30	Rp3/4

VK 真空產生器

通過將各個單元模塊化並組合各種單元,可以選擇最適合使用目的的單元。

壓力傳感器選擇

LED 顯示壓力傳感器(2種開關輸出、1種開關輸出+類比輸出)。 低成本、易於使用的機械壓力傳感器,根據用途選擇適合的型式。

特點

■ 通過將各個單元模塊化並組合各種單元,可以選擇最適合使用目的的單元

VK 真空產生器功能

真空產生與破壞:內建真空產生和破壞電磁閥,實現快速切換,滿足不同工 序需求。

壓力監控:配備數字顯示壓力傳感器,實時監控真空壓力,確保系統穩定運行。

過濾與消音:內置真空過濾器和消音器,保護系統元件,降低運行噪音。

使用流體	空氣 (JIS B 8392-1:「符合等級1.2.1~2.4.3」)
使用壓力範圍	0.25~0.7 MPa
使用溫度範圍	5~+50℃(不結凍)
使用濕度範圍	35~85%RH(不結露)
耐振動性/耐衝擊性	50m/s ² 以下 / 150m/s ² 以下
保護構造	IP40相當
給油	不需要
耐壓力(空氣供給迴路)	1.05 MPa
耐壓力(真空迴路)	0.2 MPa

主題二、環境量測與控制裝置機械設計

1. 整理各式(家)散熱器元件或模組的特點

台灣協緯金屬:鋁擠型散熱片 03

特點:

材質:使用 A6063 鋁合金,該材料以其良好的導熱性和耐腐蝕性著稱,適合製作高效能散熱片。

應用廣泛:適用於各類電子設備,如電源供應器、手提電腦、交換器(Switch)、 集線器(HUB)、伺服器、數據機(Cable Modem)、不間斷電源系統(UPS)、 液晶顯示器(LCD)等,滿足不同設備的散熱需求。

多樣規格:提供多種規格和尺寸,以適應不同的設計要求和散熱需求。

製造工藝:公司具備沖壓型、鋁擠型和表面處理等多種製造工藝,確保產品質量和性能達到行業領先水平。

2. 整理各式(家)散熱器元件或模組的產品與功能介紹

台灣協緯金屬:鋁擠型散熱片 03

高效散熱: 鋁擠型設計提供了大表面積,有助於快速散發熱量,保護電子設備 在高溫環境下穩定運行。

熱能管理:能夠有效降低電子元件運作時產生的溫度,延長設備壽命,並提升 性能穩定性。

輕量化結構:使用 A6063 鋁合金製造,具有優良的導熱性,同時重量輕,適 合輕量化電子設備需求。

機械穩定性:經過精密加工和沖壓處理,結構穩定且堅固,能承受多樣化的安裝和使用場景。

多用途設計:適配多種電子設備,包括伺服器、電源供應器、液晶顯示器 (LCD)、數據機、UPS 系統等,廣泛應用於資訊通訊與工業自動化領域。

京業電子:複合材料散熱器(GDC Series-BCX 系列)

高導熱性:採用先進的複合材料,提供優異的導熱性能,能迅速將熱量從熱源傳導至散熱器表面,提升散熱效率。

輕量化設計:複合材料的應用使散熱器在保持高強度的同時,減輕了重量, 適合對重量敏感的應用場合。

耐腐蝕性:材料本身具有良好的抗腐蝕能力,適用於各種環境,延長產品使用壽命。

客製化能力:京業電子提供客製化服務,可根據客戶需求調整散熱器的尺寸、 形狀和性能,以滿足特定應用要求。

應用廣泛:適用於各類電子設備和工業應用,特別是在高功率密度和有限空間的情況下,提供有效的散熱解決方案。

Properties 特性	Test Method	GDC-B	GDC-C	GDC-X
Thermal Conductivity 熱傳導係數 (室溫)	ISO 22007-2.2 Hot Disk	1.0 W/m·k	3.0 W/m·k	7.0 W/m·k
Emissivity 熱輻射係數 (發射率)	ASTM E408	>0.5	>0.7	>0.7
Heat Deflection Temperature 熱變形溫度	ASTM D648	220 ℃	220 ℃	220 ℃
Tensile Strength 拉伸強度	ASTM D638	40±5 MPa	38±5 MPa	35±5 MPa
Tensile Modulus 拉伸模數	ASTM D638	12±2 GPa	11±2 GPa	9±2 GPa
Elongation at break 斷裂伸長率	ASTM D638	1.05±0.2 %	0.95±0.2 %	0.9±0.2 %
Bending Strength 彎曲強度	ASTM D790	65±7 MPa	62±7 MPa	58±7 MPa
Bending Modulus 彎曲模數	ASTM D790	13±2 GPa	11±2 GPa	9±2 GPa
Impact Strength 衝擊強度	ASTM D256	30±5 KJ/m2	28±5 KJ/m2	25±5 KJ/m2
Density 密度	ASTM D792	2.05±0.1 g/cm3	2.0±0.1 g/cm3	1.9±0.1 g/cm3
Water Absorption 吸水率 (24hr)	ASTM D570	<1.0 %	<1.0 %	<1.0 %
Flame Rating 耐燃等級	UL94	V0	V0	VO

京業電子:複合材料散熱器(GDC Series-BCX 系列)

高效熱量傳導:採用導熱性能卓越的複合材料,能快速將熱量從熱源傳遞至散 熱器表面,顯著降低熱源溫度。

熱平衡與均溫設計:複合材料內部結構經過優化,可均勻分布熱量,減少局部 過熱現象,提升設備運行穩定性。

空間節省:輕量化設計使其適合應用於有限空間中,特別適合微型化、高功率 密度的電子設備。

環境耐受性:材料本身具備高抗腐蝕性能,能夠在嚴苛的工作環境下長期穩定 運行。

静音運行:結合被動散熱技術,降低對風扇等主動散熱部件的需求,實現低噪音運行。

模組化與客製化支持:支援多樣化的尺寸與形狀定制,並可模組化集成到各類電子設備中,滿足不同應用需求。

二、原理與設計方法(機械設計與繪圖)

主題一、創新夾持裝置機械設計

- 1. 把壓縮空氣導入噴嘴
- 壓縮空氣在噴嘴受到節流。高速釋放到擴散室,膨脹擴散並散開流向廓壓
- 3. 通過空氣的高速流動,卷吸噴嘴周邊空氣,使擴散室的壓力下降,真空街口空氣會流入擴散器。
- 4. 流入的真空接口空氣和噴嘴放出的壓縮空氣一起,從擴散室釋放到大氣中。

1. 整理真空產生器設計方法

可由柏努力定理得流體流速與壓力關係如下:

Q=V1A1=V2A2=V3A3

$$P_1 + rac{1}{2}
ho v_1^2 +
ho g h_1 = P_2 + rac{1}{2}
ho v_2^2 +
ho g h_2$$

當流量固定,斷面截面積不同將造成不同的流速,以下分析三種斷面、流速及

壓力情形:

表1不同截面流速壓力比較表

A1	A2	A3
大	小	大
V1	V2	V3
小	大	小
P1	P2	P3
大	小	大
	P2< 大氣壓	

2. 依據原理與工件大小之零組件設計圖

3D視圖

排氣

真空區

進氣

主題二、環境量測與控制裝置機械設計

1. 整理散熱器設計與要求規範

散熱片的應用方式散熱片的選用,最簡單的方式是利用熱阻的概念來設計, 熱阻是電子熱管理技術中很重要的設計參數,定義為 $R = \Delta T / P$ 其中 ΔT 為溫度差,P為晶片之熱消耗。熱阻代表元件熱傳的難易度,熱阻越 大,元件得散熱效果越差,如果熱阻越小,則代表元件越容易散熱。 規範:

最大熱流密度:確保散熱器可應對設備的熱量輸出,避免局部過熱。

均溫性能:確保散熱表面的溫度分布均勻,提升整體散熱效果。

機械結構要求

尺寸公差:滿足設備裝配要求,避免過大或過小影響接觸面積。

鰭片厚度與間距: 需根據散熱需求和空氣流通條件進行設計。

2. 整理散熱器設計方法

1. 散熱器形狀與結構設計

鰭片設計:選擇合適的鰭片數量、厚度與間距。

尺寸與體積:散熱器應根據實際空間要求和熱量需求確定大小。

2. 選擇材料

導熱性:常用材料包括鋁(輕量且具良好導熱性)、銅(導熱性優越但較重)、 複合材料(結合高導熱性與輕量設計)。

3. CFD 模擬 (計算流體動力學模擬)

使用 CFD 軟件(如 ANSYS Fluent)進行流體流動與熱傳遞模擬,幫助優化散 熱器設計,尤其在強制對流散熱系統中,能更精確地預測氣流與熱量分布。

3. 依據原理與工件大小之零組件設計圖

三、實驗量測與數據分析

主題一、創新夾持裝置機械設計

1. 依照 Excel 檔進行設計參數計算

	Material:	air	flow rate (m^3/s	:)=	velocity (m/s)=		Re=			
	Inlet conditions:	velocity								
	Outlet conditions:	pressure								
	бтт	(slowly varying,	step階梯狀, tape	r-flat(venturi))						
Fluid media	Geometry	Cross-section(m2)	Inlet Vel. (m/s)	Inlet P1 (kPa)	喉部P2 (kPa)	喉部V2 (m/s)	喉部Q2 (m3/s)	Element type	Elements	Nodes
water	2D(Venturi_Example)	2.82743E-05	10	0.224	-5.53E-03	20.7	-79.96570847			
water	2D(Venturi_Example)	2.82743E-05	15	0.221	-0.316	36.4	-120.84187			
water	2D(Venturi_Example)	2.82743E-05	20	0.441	-0.41	42.3	-161.9008842			
air	2D_Asym(Venturi Exp)	2.82743E-05	б	0.0763	0.00387	15.4	-47.16550976			
air	2D_Asym(Venturi Exp)	2.82743E-05	9.7	0.117	-6.71E-02	23.8	-79.426934			
air	2D_Asym(Venturi Exp)	2.82743E-05	13.33	0.0967	-0.0348	33.8	-108.1405509			
air	2D(Generator)	(可以略過)	1		(可以略過)	(可以略過)				
air	2D(Generator)	(可以略過)	5		(可以略過)	(可以略過)				
air	2D(Generator)	(可以略過)	10		(可以略過)	(可以略過)				
air	3D(Venturi Exp)		6	0.0724	-0.224	22.1	-0.008239371			
air	3D(Venturi Exp)		9.7	0.175	-5.94E-01	35.7	-0.013457595			
air	3D(Venturi Exp)		13.33	0.317	-1.13	48.9	-0.018591266			
air	3D(Generator)		1	1.98E-01	-1.25E-01	1.99E+01	0.00037721			
air	3D(Generator)		5	4.84E+00	-3.63E+00	9.89E+01	0.001258386			
air	3D(Generator)		10	1.94E+01	-1.42E+01	1.96E+02	0.002086574			

- 2. 詳細列出軟體分析之過程(CAD 模型、條件、材料常數、計算方法、其他)
 - 1. 導入模型
 - 2. 在設置里設置入口面、出口、壁面後生成網格
 - 3. 進入分析介面,選擇空氣,設置入口邊界條件速度分別有 1.5.10,設置完後先初始化後,開始計算
 - 4. 查看跡線確認負壓區是否正確,及記錄數值

主題二、環境量測與控制裝置機械設計

1. 依照 Excel 檔進行設計參數計算

				134(11)	TIEI	/P/LIN			
Alignment	Material	Cross-section	Watt	Tip (℃)	Tm (℃)	Tb (°C)	Element type	Elements	Nodes
in-line	Cu	square	1	22.403	22.429	22.519			
	ADC12	square	1	22.348	22.41	22.624			
	Cu	square	3	23.209	23.287	23.558			
	ADC12	square	3	23.045	23.229	23.872			
	Cu	square	5	24.015	24.144	24.597			
	ADC12	square	5	23.741	24.048	25.12			
	Cu	circular	1	22.497	22.528	22.638			
	ADC12	circular	1	22.426	22.5	22.758			
	Cu	circular	3	23.49	23.584	23.914			
	ADC12	circular	3	23.279	23.501	24.275			
	Cu	circular	5	24.484	24.641	25.189			
	ADC12	circular	5	24.132	24.501	25.791			
staggerred	Cu	square	1	22.42	22.448	22.543			
	ADC12	square	1	22.362	22.427	22.653			
	Cu	square	3	23.261	23.343	23.63			
	ADC12	square	3	23.086	23.28	23.959			
	Cu	square	5	24.101	24.238	24.717			
	ADC12	square	5	23.81	24.133	25.265			
	Cu	circular	1	22.517	22.55	22.666			
	ADC12	circular	1	22.443	22.52	22.791			
	Cu	circular	3	23.552	23.651	23.998			
	ADC12	circular	3	23.329	23.561	24.374			
	Cu	circular	5	24.587	24.752	25.329			
	ADC12	circular	5	24.214	24,602	25.956			

- 2. 詳細列出軟體分析之過程(CAD 模型、條件、材料常數、計算方法、其他)
 - 1. 導入幾何模型
 - 2. 網格生成
 - 3. 邊界條件設置:

入口邊界:設置進入流體的速度、溫度等條件。

設置出口邊界:定義流體的出口壓力或質量流量。

設置壁面邊界:設定散熱器表面的熱傳遞條件,如 熱通量、溫度, 以及熱對流邊界條件。

- 5. 設置完後先初始化後,開始計算
- 6. 結果可視化

使用等溫線、流場可視化、熱流線圖等工具,分析散熱器的熱分布情況。

確認熱點區域,並觀察流場是否與預期一致,是否有流動死區或回流區域。

主題三、bladeless wind turbine 結構設計(僅 Fluent 模擬)

- 1. 詳細列出軟體分析之過程(CAD 模型、條件、材料常數、計算方法、其他)
 - 1. 導入模型
 - 2. 網格設置
 - 3. 設置邊界條件:

入口條件速度有 0.1,0.5,1,由於 0.1 過小,故需要選擇層流。

- 4. 設定分析項目:阻尼及升力
- 5. 初始化完後開始計算
- 6. 找到 time drag lift 文件位置後,在 EXCEL 生成圖表
- 7. 紀錄跡線及數據

	D (m)	V (m/s)	Re	mesh size	Lift Coefficie nt, Cl value	freq (Hz)	Strouhal number (Sr=fD/V(vorte x shedding frequency)	lement tyj	Elements	Nodes
circular	0.01	0.1	64	22mm	(以圖表示)	1	0.1			
	0.01	0.5	320	22mm	(以圖表示)	0.96	0.0192			
	0.01	1	640	22mm	(以圖表示)	0.98	0.0098			

四、結果與討論

主題一、創新夾持裝置機械設計

1. 依照 Excel 檔建立真空產生器與周邊 3D 設計圖(零件、組合、爆炸)

2. 依照 Excel 檔建立真空產生器計算書(公式法)

	Material:	air	flow rate (m^3/s	·)=	velocity (m/s)=		Re=			
	Inlet conditions:	velocity								
	Outlet conditions:	pressure								
	бтт	(slowly varying,	step階梯狀, tape	r-flat(venturi))						
Fluid media	Geometry	Cross-section(m2)	Inlet Vel. (m/s)	Inlet P1 (kPa)	喉部P2 (kPa)	喉部V2 (m/s)	喉部Q2 (m3/s)	Element type	Elements	Nodes
water	2D(Venturi_Example)	2.82743E-05	10	0.224	-5.53E-03	20.7	-79.96570847			
water	2D(Venturi_Example)	2.82743E-05	15	0.221	-0.316	36.4	-120.84187			
water	2D(Venturi_Example)	2.82743E-05	20	0.441	-0.41	42.3	-161.9008842			
air	2D_Asym(Venturi Exp)	2.82743E-05	6	0.0763	0.00387	15.4	-47.16550976			
air	2D_Asym(Venturi Exp)	2.82743E-05	9.7	0.117	-6.71E-02	23.8	-79.426934			
air	2D_Asym(Venturi Exp)	2.82743E-05	13.33	0.0967	-0.0348	33.8	-108.1405509			
air	2D(Generator)	(可以略過)	1		(可以略過)	(可以略過)				
air	2D(Generator)	(可以略過)	5		(可以略過)	(可以略過)				
air	2D(Generator)	(可以略過)	10		(可以略過)	(可以略過)				
air	3D(Venturi Exp)		6	0.0724	-0.224	22.1	-0.008239371			
air	3D(Venturi Exp)		9.7	0.175	-5.94E-01	35.7	-0.013457595			
air	3D(Venturi Exp)		13.33	0.317	-1.13	48.9	-0.018591266			
air	3D(Generator)		1	1.98E-01	-1.25E-01	1.99E+01	0.00037721			
air	3D(Generator)		5	4.84E+00	-3.63E+00	9.89E+01	0.001258386			
air	3D(Generator)		10	1.94E+01	-1.42E+01	1.96E+02	0.002086574			

3. 繪圖並討論數值模擬結果及計算書結果與數值模擬(CAE法)之誤差?

4. 繪圖並討論實驗測試結果及可能誤差大小與原因?

經過內插法求解後,發現本次實驗與分析數據誤差在23%,存在誤差可能性為加工時的誤差,由於直徑3的鑽頭不能一次貫穿,加上鑽床定位較差,加工時可能產生偏移,或者是鑽深未達標等因素,而解決辦法可以透過更好的加工設備,如銑床,透過光學尺的輔助可以使加工效果達到設計參數,從而減少誤差。

主題二、環境量測與控制裝置機械設計

- 1. 依照 Excel 檔建立散熱器與周邊 3D 設計圖(零件、組合、爆炸)
- 2. 依照 Excel 檔建立散熱器計算書(公式法)

				124.004	TIBL	/ExPH			
Alignment	Material	Cross-section	Watt	Tip (°C)	Tm (℃)	Tb (℃)	Element type	Elements	Nodes
in-line	Cu	square	1	22.403	22.429	22.519			
	ADC12	square	1	22.348	22.41	22.624			
	Cu	square	3	23.209	23.287	23.558			
	ADC12	square	3	23.045	23.229	23.872			
	Cu	square	5	24.015	24.144	24.597			
	ADC12	square	5	23.741	24.048	25.12			
	Cu	circular	1	22.497	22.528	22.638			
	ADC12	circular	1	22.426	22.5	22.758			
	Cu	circular	3	23.49	23.584	23.914			
	ADC12	circular	3	23.279	23.501	24.275			
	Cu	circular	5	24.484	24.641	25.189			
	ADC12	circular	5	24.132	24.501	25.791			
staggerred	Cu	square	1	22.42	22.448	22.543			
	ADC12	square	1	22.362	22.427	22.653			
	Cu	square	3	23.261	23.343	23.63			
	ADC12	square	3	23.086	23.28	23.959			
	Cu	square	5	24.101	24.238	24.717			
	ADC12	square	5	23.81	24.133	25.265			
	Cu	circular	1	22.517	22.55	22.666			
	ADC12	circular	1	22.443	22.52	22.791			
	Cu	circular	3	23.552	23.651	23.998			
	ADC12	circular	3	23.329	23.561	24.374			
	Cu	circular	5	24.587	24.752	25.329			
	ADC12	circular	5	24.214	24.602	25.956			

3. 繪圖並討論數值模擬結果及計算書結果與數值模擬(CAE 法)之誤差?

4. 繪圖並討論實驗測試結果及可能誤差大小與原因?

本次實驗誤差頂部在 12%, 底部在 15%, 存在誤差原因可能在於當天的溫度及濕度, 底部貼在桌面可能導致熱量被分散。

主題一、創新夾持裝置機械設計

本組這次在設計真空產生器之初,遇到負壓區無法在正確位置,所以在設計時花費大量時間,在第一次分析成功後,進行加工時卻失敗了,負壓區無法進行吸附,後來我們進行大量設計與模擬,發現空氣進入後在直徑3的管道被壓縮後我們的設計管道過長,導致在擴散時真空區的空氣不會被吸,反而成為出氣口,後來針對這點,我們在出氣口原來直徑3的地方擴成6直至與真空區的管道接觸,再進行實驗時已可以進行吸附,同時吸力也很好。

主題二、環境量測與控制裝置機械設計

在環境量測與控制裝置的機械設計中,結合了精確度、可靠性和耐用性的需求,以確保在各種環境條件下進行精確測量和控制。設計過程中,必須考量 到測量儀器的穩定性和反應時間,並確保控制系統的反應速度與精確性,這 樣才能在不斷變化的環境中保持高效運行。

『機械工程實驗(二):熱流力實驗』

學期團隊作業/專案設計

課號:0835(四設計四乙) 學年:113學年度第1學期

題目:期末專案

組別:第5組

成員:

項次	學號	姓名	分工內容	貢獻度
1	41023203	莊雨薰	實驗記錄、報告撰寫	15%
2	41023205	陳靚芸	實驗記錄、報告撰寫	15%
3	41023228	陳瑨維	真空管設計、計算實驗數據、分 析、網站維護	30%
4	41023241	詹耀賢	報告撰寫、真空管加工、分析	20%
5	41023240	葉桓亞	計算實驗數據、真空管設計、分 析	20%

貢獻度總計為100%,請自行核算。

完成日期: 113年 01月 03日

聲明

本人在此聲明,本設計作業皆由本人與同組成員共同獨立完成,並無 其他第三者參與作業之進行,若有抄襲或其他違反正常教學之行為, 自願接受該次成績以零分計。同時本人亦同意在上述表格中所記載之 作業貢獻度,並以此計算本次個人作業成績。

成員簽名:

/ / / / / / / / / / / / / / / / / / /	英相更	陳瑶紅
3 丰 日 土 日 土 日 村 石 一 一 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日		北京黑