

SLAM을 활용한 병원 자율주행 서비스 로봇

Autonomous Service Robot for Hospitals Using SLAM Technology

김서연, 남현수, 임승원

목차

- 1. 서론
 - 1.1 기획 배경

2. 본론

- 2.1 주요 기능 및 흐름도
- 2.2 프로젝트 특/장점
- 2.3 다학제적 접근
- 2.4 자율 주행
- 2.5 얼굴 랜드마크 인식
- 2.6 음성 처리 기술
- 2.7 GUI 인터페이스

- 3. 사업화 방향
- 4. 미래 신산업 부합도
- 5. 결론

1. 서론

1.1 기획 배경

■ 의료 토탈 서비스 로봇 개발의 필요성

의료진 측면

- ① 의료진은 인력 부족으로 인하여 의료업무에 더해 다양한 업무를 맡고 있음.
- ② 반복 업무 및 서비스의 경우 로봇으로 대체 · 자동화 가능함.
- → AI 로봇을 도입하여 의료진의 업무 부담 ↓, 병원 운영 효율화

환자 측면

- ① 병원은 유동 인구가 많은 환경이며 환자들은 다양한 서비스를 필요로 함.
- ② 고령자를 포함한 다양한 유형의 환자가 동등하고 편리하게 의료 서비스를 이용할 수 있어야 함.
- → 의료 접근성 높여 모든 환자에게 친화적 의료 서비스 제공

2.1 주요 기능 및 흐름도

- 환자용・의료진용 서비스 제공 및 인터페이스 상호 전환
- 인공지능 기반 기술을 활용한 다양한 기능 탑재

적용 기술: Face detection, STT(Speech-to-Text), TTS(Text-to-Speech), 자율 주행

주요 기능 및 흐름도

- 환자용·의료진용 서비스 제공 및 인터페이스 상호 전환
- 인공지능 기반 기술을 활용한 다양한 기능 탑재

적용 기술: Face detection, STT(Speech-to-Text), TTS(Text-to-Speech), 자율 주행

2.1 주요 기능 및 흐름도

2.2 프로젝트 특/장점

- 1) 토탈 서비스 로봇
- 단순 업무 보조, 안내 역할을 수행하는 기존 병원 로봇에 비해 다양한 서비스를 제공
- 2) 대상에 맞춘 개별화된 서비스
- 환자 및 의료진 모드를 동시에 제공하는 HCI 인터페이스로 다양한 기능 수행
- 하나의 소프트웨어에서 환자와 의료진을 구분하여 사용자 맞춤형 서비스를 제공
- 3) 얼굴 인식과 잠금장치가 결합된 서비스
- 얼굴 인식과 잠금장치가 결합된 서비스로 각 기능의 보안성 확보

2.2 프로젝트 특/장점

- 4) 사용자와 상호작용
- 음성 인식 기술을 통해 사용자와 로봇 간 상호작용

5) 자율주행

- SLAM 기반으로 병원 내 환경을 탐색하고 실시간으로 맵을 생성하여, 경로 탐색 및 최적 경로 계획으로 장애물을 회피하며 목적지까지 이동 가능

2.3 다학제적 접근

2.3 다학제적 접근

2.4 자율 주행

■ SLAM 맵 구성 시스템 구조도

2.4 자율 주행

SLAM 지도 작성

SLAM(Simultaneous Localization and Mapping)

- 로봇이 실시간으로 위치를 추정하는 동시에 그 환경의 지도를 작성하는 기술
- 라이다(Lidar) 센서: 레이저를 사용한 고정밀 거리 측정으로 2D 지도 생성
- IMU(관성 측정 장치): 로봇의 움직임과 회전을 측정하여 정밀한 위치 추정

Navigation

DWA(Dynamic Window Approach) & Localization

- 장애물 회피와 최단 경로 이동을 고려한 최적의 경로 계획
- odometry 정보와 출발 위치를 바탕으로 맵에 Localization하여 현재 위치 추정
- 최적 경로로 주행하기 위한 속도와 각속도를 실시간으로 계산

2.5 얼굴 랜드마크 인식

- 목적: 신원 확인
- 적용 기능: 의료진 대상 기능, 환자 대상 '접수' 기능
- Mediapipe: 얼굴 특징점 468개를 추출
- FAISS: L2 거리로 특징점 벡터 간 유사도 측정 $oldsymbol{d}(oldsymbol{p},oldsymbol{q})^2=(q_1-p_1)^2+(q_2-p_2)^2$ L2 거리식
- 유사도 < 임계값 → 신원 일치

병원 내 건강보험 본인 확인 의무화 안내

얼굴 인식 GUI 하면

2.5 얼굴 랜드마크 인식

- 임계값에 따른 얼굴 인식 성능 차이를 비교 실험
 - 1) 본인의 얼굴 랜드마크를 추출
 - 2) 저장된 랜드마크와 본인의 얼굴을 200번씩 비교
 - 3) 다른 참가자의 랜드마크와 본인의 얼굴을 100번씩 비교 *독립시행 가정

2.5 얼굴 랜드마크 인식

성능 평가 지표

- True Positive (TP): positive로 정확하게 예측한 것
 - ⇒ 기준인 사람 결과가 신원일치가 나오는 경우
- False Positive (FP): 실제로 negative인 값을 positive로 잘못 예측한 것
 - ⇒ 기준이 아닌 사람 결과가 신원 일치가 나오는 경우
- True Negative (TN): negative로 정확하게 예측한 것
 - ⇒ 기준이 아닌 사람 결과가 신원 불일치가 나오는 경우
- False Negative (FN): 실제로 positive인 값을 negative라고 잘못 예측한 것
 - ⇒ 기준인 사람 결과가 신원 불일치가 나오는 경우

2.5 얼굴 랜드마크 인식

■ 실험 결과

임계값 $\land \rightarrow$ 유사도 판단 기준 완화 임계값 $\land \rightarrow$ Accuracy, Precision, F1-Score \downarrow , Recall \land

신원 확인의 목적 ⇒ 보안

∴ 최적의 임계값: 0.0001

$$\label{eq:accuracy} \text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}$$

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$F1\text{-score} = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

임계값	0.0001	0.0002	0.00025
TP(True Positive)	172	183	195
FP(False Positive)	2	37	164
TN(True Negative)	198	163	36
FN(False Negative)	28	17	5
Accuracy	0.925	0.865	0.578
Precision	0.989	0.832	0.543
Recall	0.860	0.915	0.975
F1-Score	0.920	0.872	0.698

표 1. 임계값에 따른 얼굴 인식 성능평가 지표

2.6 음성 처리 기술

STT (Speech to Text, 음성 인식)

- 사용자의 요구사항 또는 질문을 음성 데이터로 받아와 텍스트로 변환하는 기술
- speech_recognition 모듈은 음성 인식을 위한 라이브러리로, Google Web Speech API를 사용하여 음성을 텍스트로 변환

```
# 음성 인식 함수

def recognize_speech(): 1개의 사용 위치
    recognizer = sr.Recognizer()
    with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source:
        audio = recognizer.record(source)

try:
    recognized_text = recognizer.recognize_google(audio, language="ko-KR") # 한국어 설정
    print(f*Recognized Text: {recognized_text}*)

except sr.UnknownValueError:
    print("Google Web Speech API could not understand the audio")
    recognized_text = ""

except sr.RequestError as e:
    print(f*Could not request results from Google Web Speech API; {e}*)
    recognized_text = ""

return recognized_text
```

recognizer.recognize_google(audio, language="ko-KR")

Google Web Speech API에 음성 데이터를 전송해 한국어로 변환된 텍스트를 반환

2.6 음성 처리 기술

STT (Speech to Text, 음성 인식)

- 적용 기능: 환자 대상 길안내, 의료진 대상 '의약품 배송'
- 사용자의 음성 데이터를 추출하여 길 안내를 제공받을 목적지, 배달할 의약품을 음성 데이터로 수집
- Google Speech API 및 후처리를 통하여 높은 정확도의 음성 인식을 구현
- 음성 인식 후, 인식된 물품과 목적지를 확인하는 GUI 페이지를 통해 재확인하여 정확도 향상

[그림1] 마이크로 음성 정보 수집

[그림2] 배송 물품과 목적지 확인

2.6 음성 처리 기술

TTS (Text to Speech, 음성 합성)

- 텍스트 데이터를 자연스러운 음성으로 변환하는 기술
- 로봇은 안내, 설명, 답변 등 다양한 텍스트 형태의 정보를 음성으로 제공
- Google Text-to-Speech API를 활용
- 사용자의 요청 사항에 대한 답변을 텍스트로 생성한 후 스피커를 통해 음성으로 안내

[그림3] 스피커로 길 안내 서비스 제공

2.6 음성 처리 기술

```
import pyaudio
import wave
import speech_recognition as sr
import pyttsx3

# 음성 녹음 설정
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 44100
CHUNK = 1024
WAVE_OUTPUT_FILENAME = "output.wav"

# 결찾기 대상 단어 설정
TARGET_WORDS = ["보호자 대기실", "화장실", "A 병동", "B 병동", "C 병동", "약국", "엘리베이턴"]
RESPONSE_YES = "길 안내 기능을 제공해도리겠습니다."
RESPONSE_NO = "길찾기 기능을 제공함수 없습니다."
PROMPT = "목적지를 말씀해주세요."

# 음성 합성기 초기화
engine = pyttsx3.init()
```

pyttsx3: 로컬에서 동작하는 TTS 엔진. 인터넷 연결 없이 텍스트를 음성으로 변환

pyaudio: 음성 녹음 기능을 구현하는 데 사용, 마이크로부터 실시간으로 음성을 캡처해 output.wav 파일로 저장

```
# 메인 함수

def main(): 1개의 사용 위치

# 사용자에게 모적지를 말해달라고 요청
engine.say(PROMPT)
engine.runAndWait()

# 음성 녹음 및 인식
record_audio()
recognized_text = recognize_speech()

# 인식된 텍스트 후처리
recognized_text = preprocess_text(recognized_text)

# 인식된 텍스트에 따라 응답
if any(preprocess_text(word) in recognized_text for word in TARGET_WORDS):
    print(RESPONSE_YES)
    engine.say(RESPONSE_YES)
else:
    print(RESPONSE_NO)
    engine.runAndWait()

if __name__ == "__main__":
    main()
```

engine.say(PROMPT)

텍스트 형식으로 준비된 로봇의 질문/답변/안내멘트 등을 음성으로 변환해 출력

2.7 GUI 인터페이스

환자용 '병원 내 길찾기'와 '접수 및 수납 ' 을 위한 Home 화면

사용자의 음성을 인식하여 목적지에 대한 최단 경로를 음성 및 텍스트로 안내함

※ PyQt: Qt의 레이아웃에 Python의 코드를 연결하여 GUI 프로그램을 만들 수 있게 해주는 프레임워크

길찾기 선택시

2.7 GUI 인터페이스

접수 선택 시, 얼굴인식을 통한 신원 인식을 위해 카메라를 이용함.

추출을 위해 카메라를 이용함

랜드마크를 추출 완료 후의 화면

3. 사업화 방향

전국의 상급 종합병원 및 종합병원에 적용

환자 수가 많은 병원에 도입하여 의료진의 업무 부담 경감

지역 의료 균형 발전에 기여 고품질 의료 서비스 제공

충북대학교병원

지역 경제 활성화에 이바지

로봇 지원 센터 설립 및 지역 인재를 활용한 직무 창출

글로벌 병원 시장 진출

국내 병원에서 성공적으로 활용된 후 해외 진출

시장 확장 가능성

대학병원 뿐만 아니라 요양병원, 재활병원 등 다양한 의료 시설에 도입

4. 미래 신산업 부합도

5대 신성장 산업

이차전지

전기차

반도체

디스플레이

바이오 헬스

5대 신성장 사업 관련 병원 토탈 서비스 로봇 기능

- 전기 에너지로 충전되어 이동
- 반도체를 이용하여 센서 데이터 처리 및 움직임 제어
- 로봇과 사용자 간 상호작용을 위한 디스플레이 탑재
- 환자와 의료진 모두의 편의를 증진하는 기술
- ⇒ 의료진의 작업을 효율적으로 지원, 환자 치료에 기여하여 의료 서비스 수준 제고

5. 결론

의료 토탈 서비스 로봇

의료진의 업무 부담 감소

병원 운영 효율화

