Digital Signal Processing

Chapter V. Frequency Analysis of Discrete Systems

Response of LTI systems to harmonic signals

- ▶ We consider an LTI system with h[n]
- ▶ Input signal = complex harmonic (exponential) signal $x[n] = Ae^{i\omega_0 n}$
- ► Output signal = convolution

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$
$$= \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega_0 k}Ae^{j\omega_0 n}$$
$$= H(\omega_0) \cdot x[n]$$

▶ $H(\omega_0)$ = Fourier transform of h[[n] evaluated for $\omega = \omega_0$

Eigen-function

- Complex exponential signals are eigen-functions (functii proprii) of LTI systems:
 - ▶ output signal = input signal × a (complex) constant
- $ightharpoonup H(\omega_0)$ is a constant that multiplies the input signal
 - Amplitude of input gets multiplies by $|H(\omega_0)|$
 - ▶ Phase of input signal is added with $\angle H(\omega_0)$
- Why are sin/cos/exp functions important?
 - ▶ If input signal = sum of complex exponential (= coses + sinuses),
 - since the system is linear,
 - then output = same sum of complex exponentials, each scaled with some coefficients

Response to cosine and sine

- ▶ Cosine / sine = sum of two exponentials, via Euler
- System is linear and real =>
 - amplitude is multiplied by $|H(\omega_0)|$
 - ▶ phase increases by $\angle H(\omega_0)$
- See proof at blackboard

Frequency response

- Names
 - $H(\omega)$ = frequency response of the system
 - ▶ $|H(\omega)|$ = amplitude response
 - $ightharpoonup \angle H(\omega) = \text{phase response}$
- ▶ Phase response might have jumps of 2π
- ▶ Stitching the pieces in a continuous function = phase *unwrapping*
 - Example: at blackboard
- ▶ Wrapped phase: $\in [-\pi, \pi]$, may have jumps of 2π
- ▶ Unwrapped phase: continuous function, may go outside interval

Permanent and transient response

- ▶ The above harmonic signals start at $n = -\infty$, not at 0.
- ▶ What if the signal starts at some time n = 0?
- ► Total response = transient response + permanent response
 - transient response goes towards 0 as $n \to \infty$
 - permanent response = the above
- ► So the above relations are valid only in **permanent regime**
 - ▶ i.e. after the transient regime has passed
 - i.e. after the transient response has practically vanished
 - i.e. when the signal started very long ago (from $n=-\infty$)
- Example at blackboard

Permanent response of LTI systems to periodic inputs

- Assume the input x[n] is periodic with period N
- ▶ Then it can be represented as a Fourier series:

$$x[n] = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$$

▶ Since the system is linear, the output to each component *k* is

$$c_k H\left(\frac{2\pi}{N}k\right) e^{j2\pi kn/N}$$

So the total output is:

$$y[n] = \sum_{k=0}^{N-1} c_k H\left(\frac{2\pi}{N}k\right) e^{j2\pi kn/N}$$

The output is still periodic, same period, same frequencies

Response of LTI systems to non-periodic signals

▶ The output = input convolution with impulse response

$$y[n] = x[n] * h[n]$$

$$Y(\omega) = X(\omega) \cdot H(\omega)$$

- In polar form:
 - modulus get multiplied
 - phases get added
- The system attenuates/amplifies the input frequencies and changes their phases
- $H(\omega)$ = the transfer function
- ▶ H(z) = the system function
- $H(\omega) = H(z = e^{j\omega})$ if unit circle is in CR

Power spectral density

- ▶ The poles and zeros of $S(\omega)$ come in pairs (z, 1/z) and (z, 1/z)

Digital filters

- ▶ LTI systems are also known as **filters** because their transfer function shapes (*filters*) the frequencies of the input signals
- ▶ The transfer function can be found from H(z) and $z = e^{j\omega}$
- ► Alternatively, the transfer function can be found by the **geometrical method** based on the locations of poles and zeros

Ideal filters

- Ideal low-pass filter: example at whiteboard
- Ideal band-pass filter: example at whiteboard
- Ideal high- pass filter: example at whiteboard
- Ideal band-stop filter: example at whiteboard
- ▶ Ideal all-pass filter (*changes the phase*): idem

Linear-phase filters

Consider a constant filter with linear phase function:

$$H(\omega) = C \cdot e^{-j\omega n_0}$$

► The output signal is

$$Y(\omega) = X(\omega) \cdot C \cdot e^{-j\omega n_0}$$

$$y[n] = C \cdot x[n - n_0]$$

- Linear phase means just a delaying of the input signal
 - ▶ Fourier property: $x[n-n_0] < --> X(\omega)e^{-j\omega n_0}$

Group delay

- ightharpoonup = The time delay experienced by a component of frequency ω when passing through the filter
- Group delay of the filter:

$$au_{\mathsf{g}}(\omega) = rac{d\Theta(\omega)}{d\omega}$$

Linear phase = constant group delay = all frequencies delayed the same = whole signal delayed

Filter distortions

- When a filter is non-ideal:
 - non-constant amplitude -> amplitude distortions
 - non-linear phase -> phase distortions
- Phase distortions may be tolerated by certain applications
 - e.g. human ears are insensitive to phase distortions of sounds

Filter order

- ▶ The **order** of a filter = maximum degree in numerator or denominator of H(z)
 - ▶ i.e. largest power of z
- Any filter can be implemented, in general, with this number of unit delay blocks (z^{-1})
- ► Higher order -> better filter transfer function
 - closer to ideal filter
 - more complex to implement
 - more delays (bad)
- Lower order
 - worse transfer function (not close to ideal)
 - simpler, cheaper
 - faster response

Filter design by pole and zero placements

- ► Based on geometric method
- ► The gain coefficient must be found by separate condition
 - ▶ i.e. specify the desired magnitude response at one frequency
- Examples at blackboard

Zero-phase transfer function

▶ Normally, $|H(\omega|)$ is strictly positive

$$|H(\omega)| \geq 0$$

- ▶ When $H(\omega)$ the function passes through 0:
 - $|H(\omega)|$ remains positive
 - $\angle H(\omega)$ has a jump of π
- Zero-phase transfer function
 - $H_R(\omega) = \pm |H(\omega)|$, including the sign (can be positive or negative)
 - $lackbox{ }\Theta_R(\omega)$ doesn't have anymore the jumps of π

$$H(\omega) = H_R(\omega)e^{j\Theta_R(\omega)}$$

- Everything else still applies
 - \vdash $H_R(\omega)$ is even
 - \triangleright $\Theta_R(\omega)$ is odd

2018-2019 Exam

2018-2019 Exam

▶ Skip next 3 slides (up to "Particular classes of filters")

Linear-phase FIR filters

- Only FIR filters can have linear phase!
- ▶ IIR filters cannot have linear phase (no proof)

Symmetry conditions for linear-phase FIR

- ▶ Let filter order be M
- ▶ The filter coefficients are $h[0], \ldots h[M-1]$
- Linear-phase is guaranteed in two cases
- Positive symmetry

$$h[n] = h[M - 1 - n]$$

Negative symmetry (anti-symmetry)

$$h[n] = -h[M-1-n]$$

Cases of linear-phase FIR

- Proofs at blackboard
- 1. Positive symmetry, M = odd
- 2. Positive symmetry, M = even
- 3. Negative symmetry, M = odd
- 4. Negative symmetry, M = even
- ▶ Check constraints for H(0) and $H(\pi)$
- ► For what types of filters is each case appropriate?

Particular classes of filters

- Digital resonators
 - very selective band pass filters
 - poles very close to unit circle
 - may have zeros in 0 or at 1/-1
- Notch filters
 - have zeros exactly on unit circle
 - will completely reject certain frequencies
 - has additional poles to make the rejection band very narrow
- Comb filters
 - periodic notch filters

Digital oscillators

- Oscillator = a system which produces an output signal even in absence of input
- ▶ Has a pair of complex conjugate poles exactly on unit circle
- Example at blackboard

Inverse filters

- Sometimes is necessary to undo a filtering
 - e.g. undo attenuation of a signal passed through a channel
- ▶ Inverse filter: has inverse system function:

$$H_I(z) = \frac{1}{H(z)}$$

- ▶ Problem: if H(z) has zeros outside unit circle, $H_I(z)$ has poles outside unit circle -> unstable
- Examples at blackboard