For the Second condition, it is widely believed that
the RSA collection is Strongly one-way.

Polynomial-lime reductions: Crimen two problems

Prond P2 we say that Produces to P2 in polynomial
time if there sunts a polynomial-lime algorithm

R that takes an instance x of problem Pronder

and converts it into instance y of public

P2 such that we can use the solution of y

to solve the instance x. We denote it is

P1 Sp P2. We use Sp sign which is similar to

I in terms of difficulty of solving the problems

There are four possibilities for difficulty of frond le:

(2) Pris easy, Pz is difficult. (Pr<Pz)

3 Pi is difficult, Pris easy. (P,>Pr)

4 Pi is difficult, Pz is difficult, (P=Pz)

If $l \leq p l^2$ then it rules out the possibility of 3 because we can some any instance x of l_1 easily by first converting x to $g \in l_2$ in polynomial-time using $l \in l_2$ in Solving $g \in l_3$ and then solving $g \in l_4$ solution of $g \in l_4$ solve $g \in l_4$ and $g \in l_4$ solve $g \in$

Inverting RSA Sp factoring: Suppose the

instance of Inverting RSA is (N, e, xt (mod N))
We convert this instance into a Factoring instance
as (N). Suppose we have an efficient algorithm
for factoring N. We will get fond Q easily.
Now we can easily compute f(N) = (P-1)(Q-1)and also $d \equiv e^{-1} \pmod{f(N)}$. Now using this
information, we can easily in vert the RSA
instance: $G(e^{-1}) \equiv \chi \pmod{f(N)}$.

Factoring $\leq p$ Inverting RSA?: This is an open problem.

The Chinese Remainder Theorem: Let $m_1, m_2, ..., m_n$ denote r positive integers that are relatively prime in pairs, and let $a_1, a_2, ..., a_n$ denote any r integers. Then the congruences $\chi \equiv a_1 \pmod{m_1}$, $\chi \equiv a_2 \pmod{m_2}$,

X = ar (mod mr). have common solution. If no is one such solution, then an integer x satisfies the above congruences if and only if x is of the form X = X0+ km for some integer k. Herem = mm2. -- mr. m is an integer and (m, m;)=) => for each; there is an integer by such-that $(\frac{m}{m_j})$ by $\equiv 1 \pmod{m_j}$. For $i \neq j$ we have $\left(\frac{m}{m_j}\right) bj \equiv 0 \pmod{m_j}$. Let $y_0 = \frac{x}{2} = \frac{m}{m_j} b_j \alpha_j \Rightarrow y_0 = \frac{m}{m_j} b_j \alpha_j = \alpha_i (m d_{m_j})$ => No is solution of the above congruences. If No and N, are two solutions then No = N, (modm;) for i=1,2,... n => No = X, (mod m) because m, me ... m are relatively frime in pairs. Onadratic Residues: For all a such that (a,m) = 1, a's Colled a quadrotic residue modulom if the conquence $\chi^2 = a \pmod{m}$ has a solution. If it has no solution, then a is called a quadrotic non-residue modulo m. For an odd prime p, exactly half the elements of Zpt are quodratic residues.