03/09/22 LITERATURE REVIEW – FLIGHT DELAY PREDICTION MODEL

TEAM MEMBERS

- 917719C012 Blessy Karunya J
- 917719C015 Dhanushree B
- 917719C039 Jasmitha R
- 917719C110 Varshini S

LITERATURE REVIEW

S.No	Author	Title of the paper	Year of publication	Algorithm/ Method	Results
1.	Guan	Flight Delay	18	Long- Short	Experimental
	Gui, Fan	Prediction Based	November	Term Memory	results show
	Liu,	on Aviation Big	2019	(LSTM) based	that long short-
	Jinlong	Data and		method,	term memory
	Sun, Jie	Machine		Random	(LSTM) is
	Yang,	Learning		Forest based	capable of
	Ziqi			model	handling the
	Zhou,				obtained
	Dongxu				aviation
	Zhao				sequence data,
					but overfitting
					problem occurs
					in our limited
					dataset.

					Compared with the previous schemes, the proposed random forest- based model can obtain higher prediction accuracy (90.2% for the binary classification) and can overcome the overfitting problem.
2.	Kaiquan Cai, Yue Li, Yi- Ping Fang, Yanbo Zhu,	A Deep Learning Approach for Flight Delay Prediction Through Time- Evolving Graphs	12 August 2021	Graph Convolutional Neural Network (GCN)	Through extensive experiments, it has been shown that the proposed approach outperforms benchmark methods with a satisfying accuracy

2	Than	A novel hybrid	Santambar	Hwheid	improvement at the cost of acceptable execution time. The obtained results reveal that deep learning approach based on graph- structured inputs have great potentials in the flight delay prediction problem.
3.	Zhen Guo, Bin Yu, Mengyan Hao, Wensi Wang, Yu Jiang,	A novel hybrid method for flight departure delay prediction using Random Forest Regression and Maximal	September 2021	Hybrid method of Random Forest Regression and Maximal Information	The proposed RFR-MIC model exhibits good performance compared with linear regression (LR),

Fang	Information	Coefficient	k-nearest
Zong	Coefficient	(RFR-MIC)	neighbors (k-
			NN), artificial
			neural network
			(ANN), and
			standard
			Random Forest
			Regression
			(RFR). The
			results also
			show that flight
			information on
			multiple air
			routes can
			certainly
			improve the
			accuracy of
			flight departure
			delay
			prediction.

4.	Fan Liu,	Generalized	30 June	Gradient	Experimental
	Jinlong	Flight Delay	2020	boosting	results show
	Sun,	Prediction		decision tree	that the
	Miao	Method Using		(GBDT) based	proposed
	Liu, Jie	Gradient		model	GBDT-based
	Yang,	Boosting			model can
	Guan	Decision Tree			obtain higher
	Gui				prediction
					accuracy
					(87.72% for the
					binary
					classification)
					when handling
					limited dataset.

REFERENCES

- https://ieeexplore.ieee.org/document/8903554
- https://ieeexplore.ieee.org/document/9512525
- https://www.sciencedirect.com/science/article/abs/pii/S1270963821003321
- https://ieeexplore.ieee.org/document/9129110