# Lecture 3: Dynamic Programming

Friday, November 12, 2021

Reinforcement Learning, Winter Term 2021/22

Joschka Boedecker, Gabriel Kalweit, Jasper Hoffmann

Neurorobotics Lab University of Freiburg



## Lecture Overview

Policy Iteration

2 Value Iteration

Wrapup

## Lecture Overview

- Policy Iteration
- 2 Value Iteration
- Wrapup

# Recap: Bellman Optimality Equations

### Bellman Optimality Equation for $v_{st}$

The Bellman Equation for the optimal value function  $v_{st}$  is defined as:

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')].$$

### Bellman Optimality Equation for $q_*$

The Bellman Equation for the optimal action-value function  $q_st$  is:

$$q_*(s, a) = \sum_{s', r} p(s', r|s, a) [r + \gamma \max_{a'} q_*(s', a')].$$

How can we turn these equations into practical algorithms to find optimal policies  $\pi_*$ ?

# Policy Iteration: Overview

Idea: Alternate **evaluating** the value function  $v_{\pi}$  and **improving** the policy  $\pi$  to convergence.

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

# Policy Evaluation

Compute the state-value function  $v_{\pi}$  for an arbitrary policy  $\pi$ .  $\forall s \in S$ :

$$v_{\pi}(s) \doteq \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[ r + \gamma v_{\pi}(s') \right]$$

If the environments dynamics are completely known, this is a system of  $|\mathcal{S}|$  simultaneous linear equations in  $|\mathcal{S}|$  unknowns. With the Bellman equation, we can iteratively update an initial approximation  $v_0$ :

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s \right]$$
  
=  $\sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[ r + \gamma v_k(s') \right]$ 

## Policy Evaluation

#### Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input  $\pi$ , the policy to be evaluated

Algorithm parameter: a small threshold  $\theta > 0$  determining accuracy of estimation Initialize V(s), for all  $s \in S^+$ , arbitrarily except that V(terminal) = 0

#### Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S} \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ \text{until } \Delta < \theta \end{array}$$



|    | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 |    |

 $R_t = -1$  on all transitions

# Policy Improvement

Once we have the value function for a policy, we consider which action a to select in a state s when we follow our old policy  $\pi$  afterwards. To decide this, we look at the Bellman equation of the state-action value function:

$$q_{\pi}(s, a) \doteq \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s, A_t = a\right]$$
$$= \sum_{s', r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s')\right]$$

### Policy improvement theorem

Let  $\pi$  and  $\pi'$  be any pair of deterministic policies. If,  $\forall s \in S$ ,

$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s),$$

then the policy  $\pi'$  must be as good as, or better than,  $\pi$ . It follows that,  $\forall s \in S$ :

$$v_{\pi'}(s) \ge v_{\pi}(s)$$

# Policy Improvement

To implement this, we compute  $q_{\pi}(s,a)$  for all states and all actions, and consider the greedy policy:

$$\pi'(s) \doteq \underset{a}{\operatorname{arg max}} q_{\pi}(s, a)$$

$$= \underset{a}{\operatorname{arg max}} \mathbb{E} \left[ R_{t+1} + \gamma v_{\pi}(S_{t_1}) | S_t = s, A_t = a \right]$$

$$= \underset{a}{\operatorname{arg max}} \sum_{s', r} p(s', r | s, a) \left[ r + \gamma v_{\pi}(s') \right]$$



greedy policy w.r.t.  $v_k$ 









$$k = 1$$

| 0.0  | -1.0 | -1.0 | -1.0 |
|------|------|------|------|
| -1.0 | -1.0 | -1.0 | -1.0 |
| -1.0 | -1.0 | -1.0 | -1.0 |
| -1.0 | -1.0 | -1.0 | 0.0  |



| 0.0  | -1.7 | -2.0 | -2.0 |
|------|------|------|------|
| -1.7 | -2.0 | -2.0 | -2.0 |
| -2.0 | -2.0 | -2.0 | -1.7 |
| -2.0 | -2.0 | -1.7 | 0.0  |



$$k = 2$$

| 0.0  | -1.7 | -2.0 | -2.0 |
|------|------|------|------|
| -1.7 | -2.0 | -2.0 | -2.0 |
| -2.0 | -2.0 | -2.0 | -1.7 |
| -2.0 | -2.0 | -1.7 | 0.0  |

$$k = 3$$

| 0.0  | -2.4 | -2.9 | -3.0 |
|------|------|------|------|
| -2.4 | -2.9 | -3.0 | -2.9 |
| -2.9 | -3.0 | -2.9 | -2.4 |
| -3.0 | -2.9 | -2.4 | 0.0  |



| 0.0  | -2.4 | -2.9 | -3.0 |
|------|------|------|------|
| -2.4 | -2.9 | -3.0 | -2.9 |
| -2.9 | -3.0 | -2.9 | -2.4 |
| -3.0 | -2.9 | -2.4 | 0.0  |

$$k = 10$$

| 0.0  | -6.1 | -8.4 | -9.0 |
|------|------|------|------|
| -6.1 | -7.7 | -8.4 | -8.4 |
| -8.4 | -8.4 | -7.7 | -6.1 |
| -9.0 | -8.4 | -6.1 | 0.0  |

$$k = \infty$$

| 0.0  | -14. | -20. | -22. |
|------|------|------|------|
| -14. | -18. | -20. | -20. |
| -20. | -20. | -18. | -14. |
| -22. | -20. | -14. | 0.0  |



## Policy Iteration

#### Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

- 1. Initialization
  - $V(s) \in \mathbb{R}$  and  $\pi(s) \in \mathcal{A}(s)$  arbitrarily for all  $s \in \mathcal{S}$
- 2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each  $s \in S$ :

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until  $\Delta < \theta$  (a small positive number determining the accuracy of estimation)

3. Policy Improvement policy-stable  $\leftarrow true$ 

For each  $s \in S$ :

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If  $old\text{-}action \neq \pi(s)$ , then  $policy\text{-}stable \leftarrow false$ 

If policy-stable, then stop and return  $V \approx v_*$  and  $\pi \approx \pi_*$ ; else go to 2

# Example: Car rental



## Lecture Overview

- Policy Iteration
- 2 Value Iteration
- Wrapup

#### Value Iteration

Performing policy evaluation to convergence *in every iteration* is costly and often not necessary. A special case is to evaluate just once and combine it with the policy improvement step:

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E} [R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a]$$
  
=  $\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_k(s')]$ 

### Value Iteration

#### Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold  $\theta > 0$  determining accuracy of estimation Initialize V(s), for all  $s \in S^+$ , arbitrarily except that V(terminal) = 0

```
Loop:
```

Output a deterministic policy,  $\pi \approx \pi_*$ , such that

$$\pi(s) = \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

## Gambler's Problem





## Additional topics

- Asynchronous Dynamic Programming
- Generalized Policy Iteration
- Efficiency of Dynamic Programming



## Lecture Overview

- Policy Iteration
- 2 Value Iteration
- Wrapup

# Summary by Learning Goals

Having heard this lecture, you can now...

- formulate and apply Policy Iteration
- formulate and apply Value Iteration