Autor: Szymon Tokarz

Data: 26.11.2024 r. Godz. 8.00

Ćwiczenie: Głębokie sieci neuronowe

Rezultaty

Część 1

Sieć AlexNet wykorzystywana w ćwiczeniu ma 8 warstw. Na wejściu dostaje obraz o rozmiarach 227x227 3 – kanałowy i jest w stanie rozpoznać 1000 obiektów.

Rozmiar filtru w warstwie CONV1: 11,11. Ilość filtrów w warstwie CONV1: 96.

FilterSize to rozmiar filtru, NumChannels to liczba kanałów, a Stride to parametr, który ustala ruch kernela albo filtra.

tablica filtrow/wag warstwy CONV1)

aktywacje wartstwy CONV1

najsilniejsza aktywacja wartstwy CONV1

najsilniejsza aktywacja wartstwy CONV5

Część 2

Dokładność na zbiorze walidacyjnym: 100%

Dokładność na zbiorze testowym: 96.7%

Najczęściej mylone klasy to C i B (telefon i ręka).

Analiza

Pytania

Wymień rodzaje warstw sieci konwulucyjnych i ich role

Prosta konwolucja

1x1 konwolucja

Grupowa konwolucja

Mieszana grupowa konwolucja

Wyjaśnij pojęcie transfer learningu

Transfer Learning jest techniką wykorzystywaną w machine learningu polegającą na ponownym użyciu modelu do zwiększenia jakości lub szybkości rozwiązania dla podobnego zadania. Definicja brzmi następująco:

Dla dziedziny źródła D_s i zadania uczącego T_s , dziedzina celu D_t i zadania uczącego T_t , transfer learning ma na celu poprawę efektów uczenia funkcji przewidywania celu f_t () w dziedzinie D_t wykorzystując wiedzę w dziedzinie D_s i zadaniu T_s , gdzie $D_s \neq D_t$ oraz $T_s \neq T_t$.