Main change from the previous discussion

- Adding one table to store the unit and condition of living stock for phenotyping and genotyping measurment – we could call that table 'OU'
- Storing the hierarchical 'living stock' data in Stock table instead of OU table
 - It's almost like changing the name from OU to Stock, and add a new table called 'OU'
 - OU is for both observation_unit [a living stock, part of living stock (specimen), or a clone of a living stock] and environment (treatments, collection year, etc)
- Why? To add another layer on phenotype (genotype) data
 - Project plant (Fuji) phenotype (sugar content)
 - Project plant (Fuji) property (planted in plot A, treated with fertilizer B, and collected in 2008) - phenotype (sugar content)
 - Those properties can't be stored in the phenotype assay (sugar content assay)
- Examples:
 - GDPDM
 - ICIS (International Crop Information System)

**Chado user could choose to store individual clone or specimen in 'stock' – then 'ou' table will be more to store environment/collection date..

Example breeding data

				spring '04	fall '04	fall '05	Flower	Fruit	
PlantYear	Orchard	*Code	**Rep	Diam(mm)	Diam(mm)	Diam(mm)	Number	Number	Mean wt
2004	Α	13	2		18	36	77	17	232
2004	Α	6	2		16	34	32	2	241
2004	Α	3	2		18	37	60	24	92
2004	Α	8	2		16	25	36	6	164
2004	Α	12	2		19	27	46	27	250
2004	Α	5	2		19	25	22	6	210

^{*}genotoype; **plot number

- Users would like to search for all the stocks with Fruit number over 20
- Only the "fruit number" can be a phenotype, not orchard, plot number, plant year or any treatment

1. Stock

- Stock (germplasm) named by breeders, researchers or germplasm centers
- can be a population, an established cultivar/breeding line or an individual (eg. collected from wild or from a cross) but not likely to be clones that are propagated in breeding programs (presentation on Germplasm Ontology)
- link to pedigree and passport data

2. OU

- observational unit with specific properties (inventory/plot number, treatment, plant/harvest date, etc)
- links to a distinct phenotype and genotype value per assay
- can be any of the below with SPECIFIC FACTORs
- 1) Stock
- 2) Group of stocks (eg. F3 population)

Breeding Data (apple)

Female x Male

Test 1st seedlings (1st Phase)

Pick 50 genotypes and propagate (15 trees per genotype)

Test in three different trial sites (5 trees per genotype in each site) Controls are included (2nd Phase)

Pick 15 genotypes and propagate (100 trees per genotype)

Test in four different sites (25 trees per genotype in each site) Controls are included (3rd Phase) All seedlings are stored in Stock and OU (property include site, date, etc)

The 50 genotypes with specific properties (site, date, etc) is stored in OU The phenotype value will be the mean of 5 trees

The 5 individual tree with specific properties (position in a plot, site, date, etc) will be stored in OU

Breeding Data (apple)

Female x Male

Test 1st seedlings (one of them WSU123)

Pick 50 genotypes and propagate (15 trees per genotype)

Test in three different trial sites (5 trees per genotype in each site) Controls are included

Pick 15 genotypes and propagate (100 trees per genotype)

Test in four different sites
(25 trees per genotype in each site)
Controls are included

OU entries

- 1. Wsu123 @ nursery @tested on 1/1/2008 @1st phase
- 2. Wsu123 @ site 1 @tested on 1/1/2009@2nd phase
- Wsu123 @ site 2 @plot 1 @tested on 1/1/2009@2nd phase

Stock entry WSU123

1 and 2 is 'stock' and 3 is 'part of stock'

QTL (tomato data from SGN)

2. The F2 population of 102 is stored in OU. The phenotype value will be the mean of 107 lines

The OU entries for 1 is 'stock' type and the OU entry for 2 is 'group of stocks/population'

Genotype/phenotype diversity data (Data from GRIN)

Pedigree Data

(rice data generated from ICIS pedigree viewer)

Germplasm is created by methods below

This pedigree shows only parentage, empty arrow is female parent and filled arrow is male parent. Green is for generative methods and brown is for maintenance. PETA went through maintenance step(s) and CINA and LATISAIL is the parents of the cross before those maintenance step(s).

In Germplasm Ontology

Group_ID: Identification code for last instance of germplasm produced by a generative process (cross) from which the current instance was derived.

Source_ID: Identification code for the immediate source of a derived or preserved germplasm. (Not valid for generated (by cross) germplasm.

eg. When a Gala tree (Gala), generated by a cross, is imported to a WSU breeder, it will get a new germplasm_id (Gala_wsu), and the id of the original gala (Gala) would be group_id. When WSU gala is imported to a MSU breeder, the source_id would be Gala_wsu, and group_id would be Gala.

STOCK

stock_id dbxref_id Organism_id Name Uniquename Description type_id Is_obsolete

STOCK_CVTERM

Stock_cvterm_id Stock_id cvterm_id Pub_id

STOCK_RELATIONSHIP

stock_relationship_id subject_id object_id type_id value

[type_id is 'is a female parent of', 'is a group_id of', 'is a source_id' etc]

STOCK_RELATIONSHIP_CVTERM

Stock_relationship_cvterm_id Stock_relationship_id cvterm_id Pub_id

[cvterm_id is generative, derivative, or maintenance]

[type_id is 'living_stock', 'DNA sample?' Then do we need 'subtype_id' for cultivar, breeding/research material, 'wild/unimproved', etc?

CROSSEXPERIMENTPROP

crossexperimentprop_id crossexperiment_id cvterm_id value Rank

CROSSEXPERIMENT

crossexperiment_id name expdate experimenter_id geolocation_id type_id

[to store name of the cross, type of the cross (F1, BC1, etc)]

CROSSEXPERIMENT_PROJECT

PROJECT

CROSSEXPERIMENT STOCK

crossexperiment_stock_id
crossexperiment_id
Stock_id
type_id

[parental stock for cross Type_id would be maternal_parent, etc]

STOCK RELATIONSHIP

stock_relationship_id subject_id object_id type_id value

STOCK

stock_id dbxref_id Organism_id Name Uniquename Description type_id Is_obsolete

DBXREF

Dbxref_id
Db_id
Accession
Version
description

[identifiers]

STOCK DBXREF

Stock_dbxref_id Stock_id Dbxref_id Is_current

STOCK_CVTERM

Stock_cvterm_id Stock_id cvterm_id Pub id

STOCK RELATIONSHIP CVTERM

Stock_relationship_cvterm_id Stock_relationship_id cvterm_id Pub_id