Nitride film 1 MT-455

Aim: To determine crystallite size and lattice strain for the given data.

Procedure:

Given the instrumental broadening value, $\mathbf{B_i} = 0.045^{\circ}$

Gaussian equation $\mathbf{B}_{R}^{2} = \mathbf{B}_{O}^{2} - \mathbf{B}_{i}^{2}$

Comparing the above equation with y = bx + a

$$b = Slope = \eta$$
Where,
$$a = Intercept = \frac{k\lambda}{L}$$

2θ	θ(rad)	B _o (fwhm)	B _o (rad)	B _o ²	B _i (deg)	B _i (rad)	B _i ²
33.76656	0.294669	1.27552	0.022262	0.000496	0.045	0.000785	6.17E-07
39.00728	0.340403	1.928	0.03365	0.001132	0.045	0.000785	6.17E-07
70.73872	0.617312	3.89281	0.067942	0.004616	0.045	0.000785	6.17E-07

$B_r^2 = B_o^2 - B_i^2$	Br	B _r cosθ	sinθ
0.000495	0.022248	0.021289	0.290423
0.001132	0.033641	0.03171	0.333867
0.004616	0.067938	0.055399	0.578845

Equation	y = a + b*x		
Plot	BrCosθ		
Weight	No Weighting		
Intercept	-0.00835 ± 0.00765		
Slope	0.11092 ± 0.01819		
Residual Sum of	1.6005E-5		
Squares			
Pearson's r	0.98682		
R-Square (COD)	0.97381		
Adj. R-Square	0.94762		

$$b = Slope = \eta$$

$$a = Intercept = \frac{\mathbf{k}\lambda}{\mathbf{L}}$$
Therefore, $\eta = 0.11092$

$$\frac{\mathbf{k}\lambda}{\mathbf{L}} = 0.00835$$

$$\mathbf{L} = \frac{\mathbf{k}\lambda}{0.00835}$$

$$\mathbf{L} = \frac{0.94 \times 0.154}{0.00835}$$

$$\mathbf{L} = 17.3365 \text{ nm}$$

Result

 $\eta = S$ train in the material=0.11092 L= Crystallite Size = 17.3365 nm