

M270HTN01.0

AU OPTRONICS CORPORATION

()	Preliminary Specification
(V	Final Specification

Module	27" Color TFT-LCD
Model Name	M270HTN01.0

Customer	Date	
Approved by		
		.
Note: This Specification	is subject to	
change without no	tice.	

Approved by	Date
<u>Howard Lee</u>	Oct. 18, 2013
Prepared by	Date
<u>Evelyn Sung</u>	Oct. 18, 2013
AU Optronics	corporation

Contents

1 Handling Precautions	5
2 General Description	6
2.1 Display Characteristics	6
2.2 Absolute Maximum Rating of Environment	7
2.3 Optical Characteristics	8
2.4 Mechanical Characteristics	12
3 TFT-LCD Module	13
3.1 Block Diagram	13
3.2.1 Connector Type	14
3.2.2 Connector Pin Assignment	14
3.3 Electrical Characteristics	17
3.3.1 Absolute Maximum Rating	17
3.3.2 Recommended Operating Condition	17
3.4 Signal Characteristics	18
3.4.1 LCD Pixel Format	18
3.4.2 LVDS Data Format	18
3.4.3 Color versus Input Data	19
3.4.4 LVDS Specification	20
3.4.5 Input Timing Specification	22
3.4.6 Input Timing Diagram	
3.5 Power ON/OFF Sequence	24
4 Backlight Unit	
4.1 Block Diagram	25
4.2 Interface Connection	
4.2.1 Connector Type	26
4.2.2 Connector Pin Assignment	
4.3 Electrical Characteristics	29
4.3.1 Absolute Maximum Rating	29
4.3.2 Recommended Operating Condition	
5 Reliability Test	
6 Shipping Label	
7 Mechanical Characteristics	
8 Packing Specification	

AU OPTRONICS CORPORATION

Record of Revision

Version	Date	Page	Old description	New Description	Remark
0.1	2013/3/22	All	First version release	-	
1.1	2013/5/2	13	3.2.1 Connector Type (30 pin)	3.2.1 Connector Type (30 pin & 40 pin)	
	2013/5/2	13-15	3.2.2 Connector Pin Assignment	Modify 3.2.2 Connector Pin Assignment	
	2013/5/2	17	3.4.1 LCD Pixel Format 1 2 1919 1920 131 Line	3.4.1 LCD Pixel Format	
	2013/5/2	32	7 Mechanical Characteristics	7 Mechanical Characteristics	
2.1	2013/5/24	21	3.4.5 Input Timing Specification Part Part Part Part Part Part Part	3.4.5 Input Timing Specification 0, mind Devertibles Min Type Min Link Research Tr	
2.2	2013/5/30	27	4.3.2 Recommended Operating Condition LED Light Bar Power Consumption Max 24.7 Watt	4.3.2 Recommended Operating Condition LED Light Bar Power Consumption Max 22.5 Watt	
2.3	2013/6/27	28	4.3.1 Absolute Maximum Rating Symbol Description Min Max Unit Remark Is LED String Current 0 150 [mA] 100% duty ratio 300 [mA] Duty ratio 10% Pulse time=10 ms	4.3.1 Absolute Maximum Rating Symbol Descripton Mile Max Unit Redurk	
3.3	2013/6/30	6	Power Consumption 29.52 (Typ.) LCD module : PDD (Typ.)=8.92 @ Black pattern,Fv=144Hz	Power Consumption 27.85 (Typ.) LCD module : PDD (Typ.) =7.25 @ Black pattern,Fv=144Hz	

M270HTN01.0

AU OPTRONICS CORPORATION

		13	3.1 Block Diagram	3.1 Block Diagram	
		17	3.3.2 Recommended Operating Condition	3.3.2 Recommended Operating Condition	
		20	3.4.4 LVDS Specification a. DC Characteristics: Symbol Description Min Typ Max Units Condition V ₁₁ LVDS Differential liped - +100 V ₁₁ LVDS Differential liped - - +100 V ₁₁ LVDS Differential liped - -	3.4.4 LVDS Specification a. DC Characteristics: Symbol Description Min Typ Max Uoits Condition U ₁ U ₂ U ₂ U ₃ U ₄ U ₄	
		22	3.4.5 Input Timing Specification Symbol Description Min. Typ. Max. Unit Remark Typ. Typ.	3.4.5 Input Timing Specification Symbol Description Miles Typ. Max. Unix Remark Typ. Typ. Max. Unix Typ. Max. Unix Typ. Max. Unix Remark Typ. Typ. Max. Unix Typ. Max. Unix Typ. Typ	
		24	Power Sequence Timing Value	Power Sequence Timing Value Unit Remark	
		18	3.4.2 LVDS Data Format	3.4.2 LVDS Data Format ROCCERN ROCCENN ROCCEN	
3.4	2013/7/15	30		Add Note 4-6	
3.5	2013/10/18	24	Power Sequence Timing T2 Min 250 / Max 300 ms	Power Sequence Timing T2 Min 0 / Max 50 ms	

M270HTN01.0

AU OPTRONICS CORPORATION

1 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case a TFT-LCD Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Otherwise the TFT-LCD Module may be damaged.
- 10) Insert or pull out the interface connector, be sure not to rotate nor tilt it of the TFT-LCD Module.
- 11) Do not twist nor bend the TFT -LCD Module even momentary. It should be taken into consideration that no bending/twisting forces are applied to the TFT-LCD Module from outside. Otherwise the TFT-LCD Module may be damaged.
- 12) Please avoid touching COF position while you are doing mechanical design.
- 13) When storing modules as spares for a long time, the following precaution is necessary: Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.

M270HTN01.0

AU OPTRONICS CORPORATION

2 General Description

This specification applies to the 27 inch wide Color a-Si TFT-LCD Module M270HTN01.0. The display supports the Full HD - 1920(H) x 1080(V) screen format and 16.7M colors (RGB 6-bits + Hi-FRC data). The input interface is Four channel LVDS and this module doesn't contain an driver board for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	685.65(27")
Active Area	[mm]	597.6 (H) x 336.15 (V)
Pixels H x V	-	1920(x3) x 1080
Pixel Pitch	[um]	311.25 (per one triad) ×311.25
Pixel Arrangement	-	R.G.B. Vertical Stripe
Display Mode	-	TN Mode, Normally White
White Luminance (Center)	[cd/m ²]	300 (Typ.)
Contrast Ratio	-	1000:1 (Typ.)
Response Time	[msec]	5ms (Typ., on/off)
Power Consumption	[Watt]	27.85 (Typ.)
(LCD Module + Backligh unit)		LCD module: PDD (Typ.) =7.25 @ Black pattern,Fv=144Hz
		Backlight unit: P _{BLU} (Typ.) =20.6 @Is=120mA
Weight	[Grams]	2860
Outline Dimension	[mm]	630 (W) × 368.2 (H) × 14.1(D)
Electrical Interface	-	Four channel LVDS
Support Color	-	16.7M colors (RGB 6-bit + Hi_FRC)
Surface Treatment	-	Anti-Glare, 3H
Temperature Range		
Operating	[°C]	0 to +50
Storage (Shipping)	[℃]	-20 to +60
RoHS Compliance	-	RoHS Compliance
TCO Compliance	-	TCO 6.0 Compliance

2.2 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Symbol Description		Max.	Unit	Remark
TOP	TOP Operating Temperature		+50	[°C]	Note 2-1
TGS	TGS Glass surface temperature (operation)		+65	[°C]	Note 2-1 Function judged only
HOP	Operation Humidity	5	90	[%RH]	Note 2-1
TST	Storage Temperature	-20	+60	[°C]	
HST	Storage Humidity	5	90	[%RH]	

Note 2-1: Temperature and relative humidity range are shown as the below figure.

- 1. 90% RH Max (Ta \leq 39 $^{\circ}$ C)
- 2. Max wet-bulb temperature at 39°C or less. (Ta \leq 39°C)
- 3. No condensation

Operating Range

Storage Range

+

2.3 Optical Characteristics

The optical characteristics are measured on the following test condition.

Test Condition:

1. Equipment setup: Please refer to Note 2-2.

2. Panel Lighting time: 30 minutes

3. VDD=5.0V, Fv=144Hz,Is=120mA,Ta=25 $^{\circ}$ C

Symbol	Descriptio	Min.	Тур.	Max.	Unit	Remark	
L _w	White Luminance (Center of screen)		240	300	-	[cd/m2]	Note 2-2 By SR-3
L _{uni}	Luminance Uniformit	y (9 points)	75	80	-	[%]	Note 2-3 By SR-3
CR	Contrast Ratio (Cente	er of screen)	600	1000	-	-	Note 2-4 By SR-3
θ_{R}	Horizontal Viewing Angle	Right	75	85	-		
θ_{L}	(CR=10)	Left	75	85	-		
Φ_{H}	Vertical Viewing Angle	Up	70	80	-		
$\Phi_{ t L}$	(CR=10)	Down	70	80	-	[degree]	Note 2-5
θ_{R}	Horizontal Viewing Angle	Right	75	88	-		By SR-3
θ_{L}	(CR=5) Vertical Viewing Angle	Left	75	88	ı		
Φ_{H}		Up	70	85	ı		
$\Phi_{ t L}$	(CR=5)	Down	70	85	-		
T_R		Rising Time	-	3.8	5.5		
T_F	Response Time	Falling Time	-	1.2	2.5	[msec]	Note 2-6
-		Rising + Falling	-	5	8		By TRD-100
R _x		Red x	0.615	0.645	0.675		
R _y		Red y	0.315	0.345	0.375		
G _x		Green x	0.291	0.321	0.351		
G _y	Color Coordinates	Green y	0.603	0.633	0.663		
B _x	(CIE 1931)	Blue x	0.121	0.151	0.181	-	By SR-3
Ву		Blue y	0.018	0.048	0.078		
W _x		White x	0.283	0.313	0.343		
W _y		White y	0.299	0.329	0.359		
CT	Crosstalk		-	-	1.5	[%]	Note 2-7 By SR-3
F _{dB}	Flicker (Center of screen)		-	-	-20	[dB]	Note 2-8 By SR-3

Note 2-2: Equipment setup :

Note 2-3: Luminance Uniformity Measurement

Definition:

Luminance Uniformity = $\frac{\text{Minimum Luminance of 9 Points (P1 \sim P9)}}{\text{Maximum Luminance of 9 Points (P1 \sim P9)}}$

a. Test pattern: White Pattern

Note 2-4: Contrast Ratio Measurement

Definition:

 $Contrast Ratio = \frac{Luminance of White pattern}{Luminance of Black pattern}$

a. Measured position: Center of screen (P5) & perpendicular to the screen $(\theta=\Phi=0^{\circ})$

Note 2-5: Viewing angle measurement

Definition: The angle at which the contrast ratio is greater than 10 & 5.

a. Horizontal view angle: Divide to left & right ($\theta_L \& \theta_R$) Vertical view angle: Divide to up & down ($\Phi_H \& \Phi_L$)

Note 2-6: Response time measurement

The output signals of photo detector are measured when the input signals are changed from "Black" to "White" (rising time, T_R), and from "White" to "Black" (falling time, T_F), respectively. The response time is interval between the 10% and 90% of optical response. (*Black & White color definition: Please refer section 3.4.3*)

Note 2-7: Crosstalk measurement

Definition:

 $CT = Max. (CT_H, CT_V);$

Where

a.Maximum Horizontal Crosstalk:

$$CT_H = Max. (|Y_{BL} - Y_{AL}| / Y_{AL} \times 100 \%, |Y_{BR} - Y_{AR}| / Y_{AR} \times 100 \%);$$

Maximum Vertical Crosstalk:

$$CT_V = Max. (|Y_{BU} - Y_{AU}|/Y_{AU} \times 100 \%, |Y_{BD} - Y_{AD}|/Y_{AD} \times 100 \%);$$

b. Y_{AU} , Y_{AD} , Y_{AL} , Y_{AR} = Luminance of measured location without Black pattern Y_{BU} , Y_{BD} , Y_{BL} , Y_{BR} = Luminance of measured location with Black pattern

Note 2-8: Flicker measurement

a. Test pattern: It is listed as following.

R: Red, G: Green, B:Blue

b. Measured position: Center of screen (P5) & perpendicular to the screen ($\theta=\Phi=0^{\circ}$)

AU OPTRONICS CORPORATION

2.4 Mechanical Characteristics

Symbol	Description	Min.	Max.	Unit	Remark
P_bc	Backside Compression	2.5		[Kgf]	Note 2-9

Note 2-9: Test Method:

The point is at a distance from right-downside 25mm x 25mm defined as the Start Point of Measure Points, and the point is at a distance 25mm from left-side & around 10mm from PCB defined as the End Point.

Align 50mm x 50mm block from Start Point on the Bezel Back, and the corners of each block are Measure Points.

If the distance from the last block to each side of the End Point \geq 25mm, add other blocks to make sure that most area of Bezel Back can be measured.

AU OPTRONICS CORPORATION

3 TFT-LCD Module

3.1 Block Diagram

The following shows the block diagram of the 27 inch Color TFT-LCD Module.

Control Board

M270HTN01.0

AU OPTRONICS CORPORATION

3.2 Interface Connection

3.2.1 Connector Type

30 Pin

TFT-LCD Connector	Manufacturer	STARCONN	STM	
TET-LOD Connector	Part Number	093G30-02001AM4	MSCKT2407P30HB	
Mating Connector	Manufacturer	JAE		
Mating Connector	Part Number	FI-X30HL (Locked Type)		

40 Pin

TFT-LCD Connector	Manufacturer	STARCONN
TFT-LCD Connector	Part Number	115F40-R000RA-M3
Mating Connector	Manufacturer	JAE
Mating Connector	Part Number	FI-NX40HL (Locked Type)

3.2.2 Connector Pin Assignment

Pin number	Signal name	Description
1	RxO1CN0	F path_ Negative LVDS differential data input (Odd data)
2	RxO1CP0	F path_ Positive LVDS differential data input (Odd data)
3	RxO1CN1	F path_ Negative LVDS differential data input (Odd data)
4	RxO1CP1	F path_ Positive LVDS differential data input (Odd data)
5	RxO1CN2	F path_ Negative LVDS differential data input (Odd data)
6	RxO1CP2	F path_ Positive LVDS differential data input (Odd data)
7	GND	Power Ground
8	RxO1CCLKN	F path_ Negative LVDS differential clock input (Odd clock)
9	RxO1CCLKP	F path_ Positive LVDS differential clock input (Odd clock)
10	GND	Power Ground
11	RxO1CN3	F path_ Negative LVDS differential data input (Odd data)
12	RxO1CP3	F path_ Positive LVDS differential data input (Odd data)
13	NC	Do not connect (for AUO test only.)
14	NC	Do not connect (for AUO test only.)
15	GND	Power Ground
16	RxE2CN0	F path_ Negative LVDS differential data input (Even data)
17	RxE2CP0	F path_ Positive LVDS differential data input (Even data)
18	RxE2CN1	F path_ Negative LVDS differential data input (Even data)
19	RxE2CP1	F path_ Positive LVDS differential data input (Even data)
20	RxE2CN2	F path_ Negative LVDS differential data input (Even data)
21	RxE2CP2	F path_ Positive LVDS differential data input (Even data)
22	GND	Power Ground
23	RxE2CCLKN	F path_ Negative LVDS differential clock input (Even clock)
24	RxE2CCLKP	F path_ Positive LVDS differential clock input (Even clock)

M270HTN01.0

AU OPTRONICS CORPORATION

25	GND	Power Ground					
26	RxE2CN3	F path_ Negative LVDS differential data input (Even data)					
27	RxE2CP3	F path_ Positive LVDS differential data input (Even data)					
28	NC	Do not connect (for AUO test only.)					
29	NC	Do not connect (for AUO test only.)					
30	GND	Power Ground					

Pin number	Signal name	Description
1	RxO3CN0	B path_ Negative LVDS differential data input (Odd data)
2	RxO3CP0	B path_ Positive LVDS differential data input (Odd data)
3	RxO3CN1	B path_ Negative LVDS differential data input (Odd data)
4	RxO3CP1	B path_ Positive LVDS differential data input (Odd data)
5	RxO3CN2	B path_ Negative LVDS differential data input (Odd data)
6	RxO3CP2	B path_ Positive LVDS differential data input (Odd data)
7	GND	Power Ground
8	RxO3CCLKN	B path_ Negative LVDS differential clock input (Odd clock)
9	RxO3CCLKP	B path_ Positive LVDS differential clock input (Odd clock)
10	GND	Power Ground
11	RxO3CN3	B path_ Negative LVDS differential data input (Odd data)
12	RxO3CP3	B path_ Positive LVDS differential data input (Odd data)
13	NC	Do not connect (for AUO test only.)
14	NC	Do not connect (for AUO test only.)
15	GND	Power Ground
16	RxE4CN0	B path_ Negative LVDS differential data input (Even data)
17	RxE4CP0	B path_ Positive LVDS differential data input (Even data)
18	RxE4CN1	B path_ Negative LVDS differential data input (Even data)
19	RxE4CP1	B path_ Positive LVDS differential data input (Even data)
20	RxE4CN2	B path_ Negative LVDS differential data input (Even data)
21	RxE4CP2	B path_ Positive LVDS differential data input (Even data)
22	GND	Power Ground
23	RxE4CCLKN	B path_ Negative LVDS differential clock input (Even clock)
24	RxE4CCLKP	B path_ Positive LVDS differential clock input (Even clock)
25	GND	Power Ground
26	RxE4CN3	B path_ Negative LVDS differential data input (Even data)
27	RxE4CP3	B path_ Positive LVDS differential data input (Even data)
28	NC	Do not connect (for AUO test only.)
29	NC	Do not connect (for AUO test only.)
30	GND	Power Ground
31	NC	Do not connect (for AUO test only.)
32	NC	Do not connect (for AUO test only.)
33	GND	Power Ground
34	GND	Power Ground
35	GND	Power Ground
36	VDD	Power +5V
37	VDD	Power +5V
38	VDD	Power +5V
39	VDD	Power +5V
40	VDD	Power +5V

3.3 Electrical Characteristics

3.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	6.0	[Volt]	Ta=25°C

3.3.2 Recommended Operating Condition

Symbol	Description	Min	Тур	Max	Unit	Remark
VDD	Power supply Input voltage	4.5	5.0	5.5	[Volt]	
IDD	Power supply	ı	0.8	0.96	[A]	VDD= 5.0V, Black Pattern, Fv=60Hz
טטו	Input Current (RMS)		1.45	1.74	[A]	VDD= 5.0V, Black Pattern, Fv=144Hz
PDD	VDD Power	-	4	4.8	[Watt]	VDD= 5.0V, Black Pattern, Fv=60Hz
רטט	Consumption		7.25	8.7	[Watt]	VDD= 5.0V, Black Pattern, Fv=144Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 3-1
VDDrp	Allowable VDD Ripple Voltage	ı	-	500	[mV]	VDD= 5.0V, Black Pattern, Fv=75Hz

Note 3-1: Inrush Current measurement:

The duration of VDD rising time: 470us.

AU OPTRONICS CORPORATION

3.4 Signal Characteristics

3.4.1 LCD Pixel Format

3.4.2 LVDS Data Format

Note 3-2:

- a. O1 and O3 = "Odd Pixel Data" E2 and E4 = "Even Pixel Data"
- b. Refer to 3.4.1 LCD pixel format, the 1st data is O1 (Odd Pixel Data), the 2nd data is E2 (Even Pixel Data), the 3rd data is O3 (Even Pixel Data), the 4th data is E4 (Even Pixel Data), and the last data is 1920 (Even Pixel Data).

M270HTN01.0

AU OPTRONICS CORPORATION

3.4.3 Color versus Input Data

The following table is for color versus input data (8bit). The higher the gray level, the brighter the color.

			Color Input Data																							
Color	Gray Level					data , LS E						G (MSE		N dat		l		BLUE data (MSB:B7, LSB:B0)				Remark				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	ВЗ	B2	B1	В0	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray 127	-	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Red	:		• • •			:	• • •			:	• •	• • •	:		:	:	:			:	:	:	:	:	:	
	L255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	

3.4.4 LVDS Specification

a. DC Characteristics:

	LVDS Receiver Differential Input								
Symbol	Parameter	Min.	Max.	Unit	Condition				
R _{xVTH}	Differential input high threshold voltage		+0.1	٧	R _{xVCM} =1.2V				
R _{xV™}	Differential input low threshold voltage	-0.1		٧	H _{XVCM} = 1.2 v				
R _{XVIN}	Input voltage range (singled-end)	0	2.4	٧					
R _{xVCM}	Differential input common mode voltage	V _{ID} /2	2.4 - V _{ID} /2	٧					
V _{ID}	Differential input voltage	0.1	0.6	٧					
RV_{xliz}	Differential input leakage current	-10	+10	uA	. 1				

LVDS Signal Waveform:

Use RxOCLK- & RxOCLK+ as example.

b. AC Characteristics:

Symbol	Description	Min	Max	Unit	Remark
F _{DEV}	Maximum deviation of input clock frequency during Spread Spectrum	-	± 3	%	
F _{MOD}	Maximum modulation frequency of input clock during Spread Spectrum	-	200	KHz	

Fclk: LVDS Clock Frequency

3.4.5 Input Timing Specification

It only support DE mode, and the input timing are shown as the following table.

Symbol	Descript	Min.	Тур.	Max.	Unit	Remark	
Tv		Period	1098	1130	3000	Th	
Tdisp (v)	Vertical Section	Active	1080	1080	1080	Th	
Tblk (v)	Torriodi Godiion	Blanking	18	50	1920	Th	
Fv		Frequency	50	120	144	Hz	
Th		Period	510	560	715	Tclk	
Tdisp (h)	Horizontal Section	Active	480	480	480	Tclk	
Tblk (h)		Blanking	30	80	235	Tclk	
Fh		Frequency	50	136	191	KHz	Note 3-3
Tclk	LVDS Clock	Period	10.3	13.2	35.7	ns	1/Fclk
Fclk		Frequency	28	75.9	97.2	MHz	Note 3-4

^{For 2D mode(FHD), the suggestion in 144Hz frame rate: Tv=1098 Th, and Th=520 Tclk}

Note 3-3: The equation is listed as following. Please don't exceed the above recommended value.

```
Fh (Min.) = Fclk (Min.) / Th (Min.);
Fh (Typ.) = Fclk (Typ.) / Th (Typ.);
Fh (Max.) = Fclk (Max.) / Th (Min.);
```

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

```
Fclk (Min.) = Fv (Min.) x Th (Min.) x Tv (Min.);
Fclk (Typ.) = Fv (Typ.) x Th (Typ.) x Tv (Typ.);
Fclk (Max.) = Fv (Max.) x Th (Typ.) x Tv (Typ.);
```

^{For 3D mode(FHD), the suggestion in 120Hz frame rate: Tv=1588 Th , and Th=510 Tclk}

3.4.6 Input Timing Diagram

AU OPTRONICS CORPORATION

3.5 Power ON/OFF Sequence

VDD power,LVDS signal and backlight on/off sequence are as following. LVDS signals from any system shall be Hi-Z state when VDD is off.

Power Sequence Timing

Symbol		Value	Unit	Remark		
Symbol	Min.	Тур.	Max.	Unit		
T1	0.5	-	10	[ms]		
T2	0	-	50	[ms]		
Т3	500	-	-	[ms]		
T4	100	-	-	[ms]		
T5	0		50	[ms]	Note 3-5 Note 3-6	
T6	0	-	150	[ms]	Note 3-6	
T7	1000	-	-	[ms]		

Note 3-5 : Recommend setting T5 = 0ms to avoid electronic noise when VDD is off.

Note 3-6: During T5 and T6 period, please keep the level of input LVDS signals with Hi-Z state.

AU OPTRONICS CORPORATION

4 Backlight Unit

4.1 Block Diagram

The following shows the block diagram of the 27 inch Backlight Unit. And it includes 52 pcs LED in the LED light bar. (4 strings and 13 pcs LED of one string).

4.2 Interface Connection

4.2.1 Connector Type

Backlight Connector	Manufacturer	ENTERY
Buoking it Connector	Part Number	3707K-S06N-21R
Mating Course to	Manufacturer	ENTERY
Mating Connector	Part Number	H112K-P06N-00B (Non-Locking type) H112K-P06N-03B (Locking type)

Backlight Connector dimension:

 $H \times V \times D = 13.9 \times 3.00 \times 4.25$, Pitch = 1.0(unit = mm)

Mating Connector dimension:

AU OPTRONICS CORPORATION

4.2.2 Connector Pin Assignment

Pin#	Symbol	Description	Remark
1	Ch1	LED Current Feedback Terminal (Channel 1)	
2	Ch2	LED Current Feedback Terminal (Channel 2)	
3	V_{SLED}	LED Power Supply Voltage Input Terminal	
4	V_{SLED}	LED Power Supply Voltage Input Terminal	
5	Ch3	LED Current Feedback Terminal (Channel 3)	
6	Ch4	LED Current Feedback Terminal (Channel 4)	

4.3 Electrical Characteristics

4.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

(Ta=25°C)

Symbol	Description	Min	Max	Unit	Remark
ls	LED String Current		150	[mA]	100% duty ratio
		0	300	[mA]	Duty ratio≦ 10% Pulse time=10 ms
IFp	LED Pulse Forward Current		200	[mA]	Pulse Width=8~10ms
				Note 5	Duty=33% <i>Note 1</i>
			214	[mA]	Pulse Width=8~10ms
				Note 5	Duty=24% <i>Note 2</i>

Duty ratio= (A / B) X 100%; (A: Pulse time, B: Period)

Note 1: Current @33% duty~I=200mA lifetime=30khrs (base on Lextar's measurement,it's vender's limit)

Note 2: Current @24% duty~l=214mA lifetime=30khrs (base on Lextar 's measurement,it's vender's limit)

4.3.2 Recommended Operating Condition

(Ta=25°C)

Symbol	Description	Min.	Тур.	Max.	Unit	Remark
Is	LED String Current	-	120	132	[mA]	100% duty ratio of LED chip
Vs	LED String Voltage	39	42.9	46.8	[Volt]	Is= 120mA @ 100% duty ratio; <i>Note 4-1, Note 4-5</i>
ΔVs	Maximum Vs Voltage Deviation of light bar	-	-	2.6	[Volt]	Is= 120mA @ 100% duty ratio; <i>Note 4-2</i>
P _{BLU}	LED Light Bar Power Consumption	-	20.6	22.5	[Watt]	Note 4-3
LT _{LED}	LED Life Time	30,000	-	-	[Hour]	Note 4-4

M270HTN01.0

AU OPTRONICS CORPORATION

- **Note 4-1:** Vs (Typ.) = V_F (Typ.) X LED No. (one string);
 - a. V_F : LED chip forward voltage, V_F (Min.)=3.0V, V_F (Typ.)=3.3V, V_F (Max.)=3.6V b. The same euqation to calculate Vs(Min.) & Vs (Max.) for respective V_F (Min.) & V_F (Max.);

- **Note 4-2:** ΔVs (Max.) = ΔV_F X LED No. (one string);
 - a. $\Delta V_{F:}$ LED chip forward voltage deviation; (0.2 V, each Bin of LED V_F)
- **Note 4-3:** P_{BLU} (Typ.) = Vs (Typ.) X Is (Typ.) X 4; (4 is total String No. of LED Light bar) P_{BLU} (Max.) = Vs (Max.) X Is (Typ.) X 4;
- Note 4-4: Definition of life time:
 - a. Brightness of LED becomes to 50% of its original value
 - b. Test condition: Is = **120**mA and 25±2°C (Room Temperature)
- *Note 4-5:* Recommendation for LED driver power design:

Due to there are electrical property deviation in LED & monitor set system component after long time operation. AUO strongly recommend the design value of LED driver board OVP (over voltageprotection) should be 10% higher than max. value of LED string voltage (Vs) at least.

Note 4-6: AUO strongly recommend "Analog Dimming" method for backlight brightness control for Wavy Noise Free. Otherwise, recommend that Dimming Control Signal (PWM Signal) should be synchronized with Frame Frequency.

5 Reliability Test

AUO reliability test items are listed as following table. (Bare Panel only)

Items	Condition	Remark
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 60°C, 300hours	
Low Temperature Operation (LTO)	$Ta=0^{\circ}C$, 300hours	
High Temperature Storage (HTS)	Ta= 60° C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C/30min, 60°C /30min, 100 cycles	Note 5-1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Electro Static Discharge)	Contact Discharge: \pm 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	Note 5-2
LSD (LIECTIO STATIC DISCHARGE)	Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.	NOIE 5-2
Altitude Test	Operation:18,000 ft Non-Operation:40,000 ft	

- **Note 5-1**: a. A cycle of rapid temperature change consists of varying the temperature from -20° C to 60° C, and back again. Power is not applied during the test.
 - b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 5-2: EN61000-4-2, ESD class B: Certain performance degradation allowed No data lost

Self-recoverable No hardware failures.

M270HTN01.0

AU OPTRONICS CORPORATION

6 Shipping Label

The label is on the panel as shown below:

- Note 6-1: For Pb Free products, AUO will add 🔊 for identification.
- Note 6-2: For RoHS compatible products, AUO will add RoHS for identification.
- Note 6-3: For China RoHS compatible products, AUO will add 6 for identification.
- **Note 6-4:** The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

7 Mechanical Characteristics

8 Packing Specification

Pallet and shipment information

	14	Specification	Damada			
	Item	Q'ty Dimension		Weight(kg)	Remark	
1	Panel	1	630(H)mm x 368.2(V)mm x 14.1(D)mm	2.86		
2	Cushion	1	-	2.97		
3	Вох	1	715(L)mm x 261(W)mm x 455(H)mm	1.43	without Panel & cushion	
4	Packing Box	7 pcs/Box	715(L)mm x 261(W)mm x 455(H)mm	24.42	with panel & cushion	
5	Pallet	1	1070(L)mm x 740(W)mm x 138(H)mm	12		
6	Pallet after Packing	8 boxes/pallet	1070(L)mm x 740(W)mm x 138(H)mm	262.48		