Middle East Technical University Department of Mechanical Engineering ME 485-CFD using FVM Fall 2024 Homework 2

Your task is to integrate diffusion computation methods into the *mefvm* code. You are going to solve a parabolic equation given as

$$\frac{\partial q}{\partial t} = \nabla \left(\mu \nabla q \right)$$

for constant coefficient μ and using the second-order cell-centered finite volume method.

Steps to Complete the Homework

1. Retrieve Code:

- Download the initial code version from the GitHub repository: GitHub Link.
- Ensure you work within the branch HW2.

2. Complete Missing Implementations:

- Navigate to the *solvers/parabolic* folder.
- Implement the following in the *ParabolicElements* class (located in *elements.py*):
 - $_make_compute_norm$: Compute the L_2 norm of error if it is known or the residual of the solution field if not.
 - _make_compute_fpts: Assign cell center values to element faces.
 - _make_grad: Compute the gradient of solution field. Note that the required operator is known.
- Implement the following in the *ParabolicIntInters* and *ParabolicBCInters* classes (located in *inters.py*):
 - _make_flux: Compute the diffusive flux with the flipped sign (note that the sign below) i.e.

$$-\int_{S} \mu \nabla q \cdot \mathbf{n} dS$$

using minimum correction, orthogonal correction and over_relaxed correction approaches. Note that these options can be given in the INI file.

- _make_grad_at_face: Compute the gradient at the face center using inverse distance weighted average of cell center gradients i.e.

$$(\nabla q)_{\text{face}} = w_l (\nabla q)_{\text{left element}} + w_r (\nabla q)_{\text{right element}}$$

3. Run and Test the Code:

- Check the provided *parabolic.ini* file (in the *unittests* folder) and the sample scripts *parabolic_test_mesh.py* and *kershaw_mesh.py* to generate sample test meshes.
- Execute the parabolic solver using the driver script *parabolic_test.py*.
- Perform tests across:
 - Mesh types: Triangles, quadrilaterals, structured, unstructured.
 - Different Kershaw meshes with various distortion levels i.e. just modify α term in $kershaw_mesh.py$ where $0 < \alpha < 0.5$.
 - Boundary conditions: Different configurations.

4. Error Computation and Reporting:

- Compute the L_2 error norm between exact and approximate solutions. You can provide any exact steady or unsteady solutions to measure the errors.
- Determine the performance of different correction approaches on various skewed mesh structures.
- Document your implementation process, results, and findings in a detailed report.
- Ensure the report includes:
 - Implementation details.
 - Observations from tests on various meshes and fields.

5. Submit Your Work:

- Provide the **complete code** (all folders) to allow replication of results.
- Submit a **PDF report** (other formats are not accepted).

Good luck!