				.11.			Neutralität: $A \Leftrightarrow A \lor 0 \Leftrightarrow A \land 1$	• Ein x kann zu jedem y zugeteilt werden, so dass	• Mengen enthalten von jedem Element genau
\boldsymbol{A}	\boldsymbol{B}	* 1	* 2	* 3	* 4	* 5	Bsp.: Sei φ eine Tautologie, dann ist $\neg \varphi$ eine Kon-	Eigenschaft A gilt: $\exists x \forall y : A(x,y)$	eines.Es gibt eine Menge ohne Elemente, die leere
-		-	_	3	•	3	tradiktion Subjunktion und Implikation: Eine wahre Sub-	Verneinung der Quantoren:	Menge Ø
1	1	0	1	0	0	0	junktion $\varphi := A \rightarrow B$ heißt Implikation .	$\bullet \neg (\forall x : A(x)) \Leftrightarrow \exists x : \neg A(x)$	• Die Elemente in einer Menge sind nicht geordnet.
							Notation: $A \Rightarrow B$	$\bullet \neg (\exists x : A(x)) \Leftrightarrow \forall x : \neg A(x)$	Es gilt: $\{1,2\} = \{2,1\}$
1	0	0	0	1	0	0		Ausklammerungsregel:	 Mengen können neben Zahlen auch Funktio-
1	U	O	U	1	U	· ·	Logikregeln	$\bullet \ \forall x : A(x) \land B(x) \Leftrightarrow (\forall x : A(x)) \land (\forall x : B(x))$	nen/Abbildungen und auch Mengen als Elemente
0	4	0	0	0	4	0	Kommutativgesetz:	• $\exists x : A(x) \lor B(x) \Leftrightarrow ((\exists x : A(x)) \lor (\exists x : B(x))$	enthalten: Bsp.1: (Menge mit Abbildungen) Basis der Polyno-
0	1	0	0	0	1	0	• $X \wedge Y \equiv Y \wedge X$ • $X \vee Y \equiv Y \vee X$	a l. Ea abassaduii alsa	me n-ten Grades:
							Assoziativgesetz:	a.l. Fachausdrücke" Aussage A ist genau dann erfüllt wenn Aussage	$\{1, x, x^2,, x^{n-1}, x^n\}$
0	0	0	0	0	0	1	• $X \wedge (Y \wedge Z) \equiv (X \wedge Y) \wedge Z$	B erfüllt ist", bedeutet:	Bsp: 2: (Menge mit Mengen) Potenzmenge
							• $X \lor (Y \lor Z) \equiv (X \lor Y) \lor Z$	" Aussage A ist erfüllt" \Leftrightarrow " Aussage B ist erfüllt".	$\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}$
sprachli nterpret		0	AND	⇒	ݗ	NOR	Distributivgesetz:	• Beliebige viele x bedeutet unendlich viele x	• Um eine Aussagen zu treffen ob ein Element in der Menge enthalten ist: $2 \in \mathbb{N}$
interpret	lation	· ·	^	<i>A</i> ∧(¬B)	(¬A)∧B	V	$\bullet \ X \land (Y \lor Z) \equiv (X \land Y) \lor (X \land Z)$	" Aussage A gilt für fast alle x"bedeutet:	Oder ob ein Element nicht enthalten ist: $\pi \notin \mathbb{N}$
							$\bullet (X \vee Y)(X \vee Z) \equiv X \vee (Y \wedge Z)$	" Aussage A wird von endlich vielen x nicht erfüllt".	wird das Epsilon-Zeichen , also \in , \notin , verwendet.
\boldsymbol{A}	\boldsymbol{B}	* 6	* - *	8 * 9	* 10	* 11	Idempotenz:	2 Allgemeines Dio Zohl w C Diot gone do: 3k C Dio 2 k - w	•
-	_	0	,	,	10	11	• $X \equiv X \wedge X$; • $X \equiv X \vee X$	Die Zahl $n \in \mathbb{N}$ ist gerade: $\exists k \in \mathbb{N} : 2 \cdot k = n$ Die Zahl $n \in \mathbb{N}$ ist ungerade: $\exists k \in \mathbb{N}_0 : (2 \cdot k) + 1 = n$	Mengenoperationen mit Aussagenlogik
1	1	1	1	1 0	0	0	Absorption:	Anmerkung: n ungerade $\Leftrightarrow n$ nicht gerade	• $x \in (A \cup B) \Leftrightarrow (x \in A) \lor (x \in B)$ heißt Vereinigung
-	•	-	-				• $X \wedge (X \vee Y) \equiv X$;	mineralis. " ungerade \rightarrow " ment gerade	• $x \in (A \cap B) \Leftrightarrow (x \in A) \land (x \in B)$ heißt Schnitt
1	0	1	0	0 1	1	0	• $X \vee (X \wedge Y) \equiv X$	Eine Teilmenge $M' \subset M$ ist nach oben beschränkt :	• $x \in (A \setminus B) \Leftrightarrow (x \in A) \land (x \notin B)$ heißt Differenz
1	U	1	0 '		1		0 und <u>1</u> :	$\exists a \in M \forall m \in M' : m \leq a$	• $x \in (A \Delta B) \Leftrightarrow (x \in A \land x \notin B) \lor (x \notin A \land x \notin B)$ heißt
0	4	0	4	0 1		4	$\bullet X \wedge \overline{X} = 0$	D 1	symmetrische Differenz Für diese Aussagen verwenden wir nicht mehr das
0	1	0	1	0 1	0	1	• $X \lor X = 1$ • $0 \land X = 0$;	Bzgl. natürliche Zahlen:	= ⇔
							$\bullet \ 1 \land X \equiv X$	Jede nach oben beschränkte Teilmenge natürlicher	
0	0	0	0	1 0	1	1	$\bullet \ 0 \lor X \equiv X$	Zahlen, hat ein eindeutige Maximum.	Zwei Mengen gelten als disjunkt, wenn sie sich
							\bullet $\frac{1}{2} \lor X = 1$	Schachtelung natürlicher Zahlen: $\forall n \in \mathbb{N}$: Es	nicht schneiden. Es gilt: $A \cap B = \emptyset$
sprachli nterpret		\boldsymbol{A}	B	⇒ XOR	$\neg B$	$\neg A$	• $\frac{0}{4} = 1$;	gibt kein $c \in \mathbb{N}$: $n < c < n + 1$	Die Mangen A. A. heißen manysies dieiunkt
neer pree							• 1 = 0 De Morgan:	(Un)Gerade Potenzen: Sei $n \in \mathbb{N}$	Die Mengen $A_1,,A_n$ heißen paarweise disjunkt , wenn gilt: $\forall i, j \in \{1,,n\}, i \neq j : A_i \cap A_j = \emptyset$
							• $\overline{X} \wedge \overline{Y} \equiv \overline{X} \vee \overline{Y};$	• n gerade $\Leftrightarrow n^2$ gerade	weining give. $\forall i,j \in \{1,,n\}, i \neq j : n_i + n_j = \emptyset$
\boldsymbol{A}	\boldsymbol{B}	* 12	* 13	* 14	* 15	* 16	$ \bullet \stackrel{X \land I}{X \lor Y} = \stackrel{X}{X} \lor \stackrel{I}{Y}; $	• n ungerade $\Leftrightarrow n^2$ ungerade.	Eine Teilmenge T von A ist eine Menge, das
$\overline{}$							$\bullet \ X \lor I \equiv X \land I$	ů ů	die Elemente enthält, die auch A enthält:
1	1	1	1	1	0	1	Seien $(x_1,,x_n)$ a.l. Variablen mit $i = 1,,2^n$	ABC-Formel: Die Nullstellen von $p(x) = ax^2 + bx + c$	$T \subseteq A :\Leftrightarrow (x \in T) \Rightarrow (x \in A)$
							Belegungen $(x_1^{(i)},,x_n^{(i)})$, f eine Logikfunktion.	sind: $\frac{1}{1+\sqrt{1/2}-4}$	Anmerkung: Jede Menge ist zu sich selbst eine Teilmenge: $A \subseteq A$
1	0	1	1	0	1	1	beleguigen $(x_1,, x_n)$, j eine Logikiunktion.	$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	Spezialfall: Die leere Menge, also \emptyset , ist von jeder
1	U	-	•		•	-	Konjunktive Normalform (KNF):	2a C 1 D: N 11 (12 C () 2	Menge eine Teilmenge!
0	1	1	0	1	1	1	Für $x_i^{(i)} = 1 : (\neg) x_i^{(i)} = x_i^{(i)},$	p-q-Formel: Die Nullstellen von $f(x) = x^2 + px + q$ sind:	
0	1	1	0	1	1	1			Eine echte Teilmenge R von A
							Für $x_j^{(i)} = 0$: $(\neg)x_j^{(i)} = x_j^{(i)}$:	$x_{1/2} = -\frac{p}{2} \pm \sqrt{\frac{b^2}{4} - q}$	ist immer ungleich $A: R \subset A :\Leftrightarrow (R \subseteq A) \land (R \neq A)$
0	0	0	1	1	1	1	$f(x_1,,x_n) = \bigwedge_i \left(\bigvee_j (\neg) x_i^{(i)} \right)$	3 Abbildungen & Mengenlehre	Die Potenzmenge \mathcal{P} einer Menge A ist die Menge
								floor- und ceil-Funktion Sei $x \in \mathbb{R}$:	aller Teilmengen von A : $2^A := \mathcal{P}(A) := \{A' \subseteq A\}$
sprachli nterpret		OR v	←	⇒	NAND	1	Disjunkte Normalform (DNF):	$floor(x) := \lfloor x \rfloor := \max\{n \in \mathbb{Z} n \le x\}$	Die Mächtigkeit/Kardinalität einer Menge ist die
p		٧	A∨(¬B)	(¬A)∨B	ΙΔ.		Für $x_i^{(i)} = 0$: $(\neg)x_i^{(i)} = \overline{x_i^{(i)}}$,	$ceil(x) := \lceil x \rceil := min\{n \in \mathbb{Z} n \ge x\}$ Alternativdefinition:	Anzahl ihrer Elemente:
Äquivalenz:							J J	Afternative elimition: $r = \lfloor x \rfloor : \Leftrightarrow r \in \mathbb{Z}, \lfloor x \rfloor \leqslant r < \lfloor x \rfloor + 1$	Notation: A oder #A
$A \Leftrightarrow B :\equiv (A \Rightarrow B) \land ((B \Rightarrow A)) \equiv \overline{A} \lor B$					В		Für $x_i^{(i)} = 1$: $(\neg)x_i^{(i)} = x_i^{(i)}$. Dann gilt:	$s = [x] : \Leftrightarrow s \in \mathbb{Z}, [x] + 1 > s \geqslant [x]$	A I D' M'' LOLL 'C D'
XOR:							,		Anmerkung:Die Mächtigkeit einer Potenzmen-
$A \otimes B :\equiv A \text{ xor } B :\equiv \overline{A \Leftrightarrow B}$							$f(x_1,, x_n) = \bigvee_i \left(\bigwedge_j (\neg) x_j^{(i)} \right)$	Ganzzahliger Anteil: $\{x\} := x - \lfloor x \rfloor$	ge $\mathcal{P}(A)$ ist immer $2^{ A }$.
Eine Tautologie/Kontradiktion ist eine Aussage,						ussage,	In der Aussagenlogik sind Junktoren die logi-	Daraus folgt: $x = \lfloor x \rfloor + \{x\}$ Rechenregeln für floor und ceil	Summanragal zur Kardinalität.
die für jede Variablenbelegung immer wahr/falsch						/ raiscn	in der massagemogik sind junktoren die logi-	Kechenregein für moor und cen	Summenregel zur Kardinalität:

Lineare Algebra-Übersicht, Version 1.3 von Adrian Danisch, page 1 of 4

Binäroperatortabele, n-äre Operatoren

• Es gibt genau 4 unare (z.B. ≠)

• und 16 binäre Operatoren.

Eine Abb. $f\{1,0\}^n \rightarrow \{1,0\}$ heißt **Logikfunktion**.

1 Aussagenlogik

ist.

einstellige Tautologien

Widerspruch: $A \wedge \overline{A}$ Mit Idempotenzen:

 \bullet (A \vee A) \Leftrightarrow A,

 \bullet $(A \land A) \Leftrightarrow A$

Doppelte Verneinung: $\overline{\overline{A}} \Leftrightarrow A$

Ausgeschlossener Dritter: $A \vee \overline{A}$

• $\forall k \in \mathbb{Z} : \lfloor x + k \rfloor = \lfloor x \rfloor + k \text{ und } \lceil x + k \rceil = \lceil x \rceil + k$ • $\lfloor x/2 \rfloor + \lceil x/ + 2 \rceil = x \Leftrightarrow x \in \mathbb{Z}$

Eigenschaften von Mengen

Existenzquantor: \exists ; Es existiert ein x, die Ei- $\bullet \lceil x \rceil - \lfloor x \rfloor = \begin{cases} 0 \text{ falls } x \in \mathbb{Z} \\ 1 \text{ falls } x \notin \mathbb{Z} \end{cases}$

genschaft E erfüllt: $\exists x : E(x)$

 $\forall x \exists y : A(x,y)$

Kombinationen mit beiden Quantoren:

• Zu jedem x gibt es ein y so dass Eigenschaft A gilt:

Sei $f: A \to B$ eine Abbildung, $C \subseteq B$. Das Urbild von C ist definiert als: $f^{-1}(C) = \{x \in A f(x) \in C\}$ Ist	Bemerkung: Seien $a, b, p \in \mathbb{Z}$, dann gilt: 1) $(p a \land p b) \Rightarrow p (a+b)$	
$C = \{b\}$ einelementig, so heisst $f^{-1}(C) = f^{-1}(\{b\})$ Faser von b .	2) $(p a \wedge p a' + b) \Longrightarrow p b'$	
Mengen und Bilder mit Logik: Sei $f: A \rightarrow B$ eine Abbildung und f^{-1} die dazuge-	eines modulo $p \in \mathbb{Z}$, wenn gilt: $p (a-b)$. Notation : $a \equiv b \mod p$	
hörige Umkehrabbildung. Dann gilt für $A_1 \subseteq A$: $y \in f(A_1) \Leftrightarrow \exists x \in A_1 : f(x) = y$ und für $B_1 \subseteq B$ gilt:	Bemerkung: Sei $i \in \mathbb{N}_0$ und $p \in \{3,9\}$, dann gilt: $10^i \equiv 1 \mod p$.	
Bilder von verknüpften Mengen: Seien $f: X \rightarrow Y$, $A, B \subseteq X$, $U, V \subseteq Y$, dann gilt: • $f(A \cup B) = f(A) \cup f(B)$	Sei G eine Menge und $M \subseteq G \times G$ mit folgenden Eigenschaften: • (Reflexivität) Für $a \in G : (a,a) \in M$ • (Symmetrie) $a,b \in G : (a,b) \in M$, dann auch	
• Falls f injektiv: $f(A \setminus B) = f(A) \setminus f(B)$ • $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$	• (Transzendenz) $a,b,c \in G : ((a,b) \in M \land (b,c) \in M) \Rightarrow (a,c) \in M$	•
$\bullet f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$	die sich wie folgt dargestellt wird: $\forall a,b \in G: a \sim_M b:\Leftrightarrow (a,b) \in M$	
Verknüpfung injektiver/surjektiver Abbildungen: Seien $f: A \rightarrow B$ und $g: B \rightarrow C$: • Für f injektiv und g injektiv $\Rightarrow g$ of injektiv	Die Menge $[a]_{\sim_M}:=\{b\in G b\sim_M a\}$ wird als Äquivalenzklasse definiert.	
 Für g∘f injektiv ⇒ f injektiv Für f surjektiv und g surjektiv ⇒ g∘f surjektiv 	Anmerkung: Die Elemente aus $\mathbb{Z}/n\mathbb{Z}$ sind Äquivalenzklassen, da sie Mengen von zueinander kongruenten Zahlen bzgl. des Modulo n sind.	
Sei <i>G</i> eine Menge und ∘ ein Operator auf <i>G</i> . Das 2-	Sei G eine multiplikative Gruppe und $a \in G$ mit $a \neq 0$. Die Zahl $b \in G$ mit $b \neq 0$ heißt Nullteiler ,	
gilt, also: $\forall a, b, c \in G : (a \circ b) \circ c = a \circ (b \circ c)$ Anmerkung Sei $\circ : \emptyset \times \emptyset \to \emptyset$ die leere Verknüpfung.	wenn $ab = 0$ gilt. Anmerkung: Somit wäre auch b ein Nullteiler	
Sei (G, \circ) eine Halbgruppe. Sie heißt Gruppe	Eine Gruppe ohne Nullteiler heißt nullteiler frei.	
 (i) G≠∅ (ii) Es existiert ein neutrales Element e ∈ G: 	Sei (G, \circ) eine Gruppe, dann wird ein Element $c \in G$ Einheit genannt, wenn es bezüglich \circ ein (inverses) Element $b \in G$	
(iii) Es existiert zu jedem Element $a \in G$ ein inverses Element $b \in G$: $a \circ b = b \circ a = e$ Notation: G wird als Gruppe bezeichnet, wenn es	gibt mit: $b \circ c = c \circ b = e$ Die Menge $G^{\times} := \{a \in G a \text{ ist eine Einheit in } G\} \subseteq G$	
im Kontext klar ist, dass es sich um (G, \circ) handelt. Anmerkung: Das neutrale Element ist eindeutig und jede inverse Element in einer Gruppe ist eindeutig. Sonst wäre es keine Gruppe.	Sei (G, \circ) eine Gruppe, $a \in G$. Die Potenz von a bezüglich \circ ist: $\forall n \in \mathbb{N} : a^n := a \circ \circ a$	
Eine Gruppe G heisst abelsch bzw. kommutativ , wenn für alle $a, b \in G : a \circ b = b \circ a$ gilt.	Das Erzeugnis von <i>a</i> bezüglich \circ ist: $(a) := (a^n u \in \mathbb{N}) = (a \cdot a^2 \cdot a^3 \cdot a^n)$	
Eine Menge G heißt additive Gruppe, wenn $(G,+)$ eine Gruppe, und multiplikative Gruppe, wenn	$\{a' := \{a'' \mid n \in \mathbb{N}\} = \{a, a'', a'', \dots, a''\}$ Eine Gruppe (G, \circ) , mit G endlich, heißt endlich erzeugt oder zyklisch , wenn es ein $a \in G$ gibt mit	
	von C ist definiert als: $f^{-1}(C) = \{x \in A f(x) \in C\}$ Ist $C = \{b\}$ einelementig, so heisst $f^{-1}(C) = f^{-1}(\{b\})$ Faser von b . Mengen und Bilder mit Logik: Sei $f: A \to B$ eine Abbildung und f^{-1} die dazugehörige Umkehrabbildung. Dann gilt für $A_1 \subseteq A$: $y \in f(A_1) \Leftrightarrow \exists x \in A_1: f(x) = y$ und für $B_1 \subseteq B$ gilt: $x \in f^{-1}(B_1) \Leftrightarrow f(x) \in B_1$ Bilder von verknüpften Mengen: Seien $f: X \to Y$, $A, B \subseteq X$, $U, V \subseteq Y$, dann gilt: • $f(A \cup B) = f(A) \cup f(B)$ • $f(A \cap B) = f(A) \cap f(B)$ • Falls f injektiv: $f(A \setminus B) = f(A) \setminus f(B)$ • $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$ • $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$ Verknüpfung injektiver/surjektiver Abbildungen: Seien $f: A \to B$ und $g: B \to C$: • Für f injektiv und g injektiv $g \circ f$ injektiv • Für $g \circ f$ injektiv und g surjektiv $g \circ f$ surjektiv 4 Algebraische Strukturen & Zahlentheorie Sei G eine Menge und $G \circ G$ corrections at $G \circ G$. Das 2-Tupel $G \circ G \circ G$ corrections at $G \circ G \circ G \circ G$ corrections at $G \circ G $	von C ist definiert als: $f^{-1}(C) = \{x \in A f(x) \in C\}$ Ist $C = \{b\}$ einelementig, so heisst $f^{-1}(C) = f^{-1}(\{b\})$ 2) 2) $(p a \wedge p a + b) \Rightarrow p (a + b)$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Abbildung g, wenn $g_1 \circ g = id$

Hierbei wird f_1 auch als f^{-1} bezeichnet.

Umkehrabbildung, wenn sie bijektiv ist.

Eine linksinverse Abbildung f_l zur Abbildung

f heißt **Umkehrabbildung**, wenn f_l eindeutig ist.

Satz: Eine Abbildung *f* hat genau dann eine

Lineare Algebra-Übersicht, Version 1.3

Für zwei disjunkte Mengen A, B gilt: $|A \cup B| = |A| + |B|$

Allgemeiner: Für paarweise disjunkte Mengen

Anmerkung: Sie ist ein Spezialfall der Inklusions-

von Adrian Danisch, page 2 of 4

 $A_1,...,A_n$ gilt: $|\dot{\bigcup}_{i=1}^n A_i| = \sum_{i=1}^n |A_i|$

Exklusions-Formel!

eine additive Gruppe.

Man schreibt auch a|b.

Inverse verknüpfter Elemente: Sei *G* eine Gruppe,

Seien $a, b \in \mathbb{Z}$. Die Zahl a ist ein **Teiler** von b

wenn es ein $c \in \mathbb{Z}$ gibt mit der Eigenschaft: $a \cdot c = b$.

dann gilt für $a, b \in G : (a \circ b)^{-1} = b^{-1} \circ a^{-1}$

• Für eine Primzahl p und $a \in \mathbb{Z} \setminus \{0, p\}$ ist $a, b \in \mathbb{Z}$ sind **kongruent** bezüglich ggT(p,a)=1. $p \in \mathbb{Z}$, wenn gilt: p|(a-b). (Erweiterter) Euklidischer Algorithmus: Seien $b \mod p$ $a, b \in \mathbb{Z}$ mit a < b. Der ggT(a, b) lässt sich wie folgt algorithmisch ermitteln: Sei $i \in \mathbb{N}_0$ und $p \in \{3, 9\}$, dann gilt: (1) Berechne die ganzzahlige Division b/a = c und die Restedivision $b\%a = r = b \mod a$. (2) Falls r = 0, dann stoppe die Routine. Dann ist Henge und $M \subseteq G \times G$ mit folgen-Sonst wiederhole Schritt 1. mit b := a und a := r.) Für $a \in G : (a, a) \in M$ Erweiterung: Setze bei jeden Schritt von 1. das e) $a,b \in G : (a,b) \in M$, dann auch r = b - c * a dar. In jedem r müssen die ursprünglichen Zahlen a, b vom Anfang enthalten sein. enz) $a,b,c \in G : ((a,b) \in M \land (b,c) \in$ Anmerkung 1: Auch Reste können negativ werden, z.B. 119: 4 = 29 Rest 3 oder 119: 4 = 30 Rest -1.M eine Aquivalenzrelation definiert, Anmerkung 2: Mithilfe des erweiterten eukliolgt dargestellt wird:

> also $\lambda, \mu \in \mathbb{Z} : ggT(a, b) = \lambda a + \mu b$. Somit lassen sich multiplikativ inverse Zahlen berechnen (bzgl. eines Modulos b). ggT-Rechenregeln: $\bullet \ \forall a \in \mathbb{Z} : ggT(a,1) = 1$ • $\forall a \in \mathbb{Z} : ggT(a, 0) = a$ $\bullet ggT(a,b) = c :\Leftrightarrow [c|a] \land [c|b] \land [\forall t : (t|a \land t|b) \Rightarrow t|c]$ \bullet ggT(a, b) = ggT(b, a)

> **Eulersche Phi-Funktion:** Anzahl aller zu *n* tei-

Sonderfall: Sei p_k die k-te Primzahl. Dann gilt:

Bei Primzahlpotenzen: Sei *p* eine Primzahl. Dann

Multiplikativität: Seien *m*, *n* teilerfremd. Dann gilt:

Satz von Euler: Seien $a,b \in \mathbb{Z}$ und zueinander teilerfremd. Dann gilt für $a < b : a^{\phi(b)} \equiv 1 \mod b$

Kleiner Satz von Fermat: Seien $p \in \mathbb{P}$ und $a \in \mathbb{Z}_p^{\times}$,

Anmerkung: Für $p \in \mathbb{P}$ ist $(\mathbb{Z}_p, +)$ eine abelsche

dann gilt: $a^{p-1} \equiv 1 \mod p$ bzw. $a^p \equiv a \mod p$

gilt: $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1) = p^k(1-\frac{1}{p})$

Berechnungsformel: $\phi(n) = n \cdot \prod_{p|n} (1 - \frac{1}{p})$

• $\forall k \in \mathbb{Z} : ggT(a, b) = ggT(b, a - kb)$

• $ggT(a, b) = ggT(b, \mod(a, b))$

lerfremden Zahlen, die $\leq n$ sind.

 $\phi(n \cdot m) = \phi(n)\phi(m)$

 $\phi(n) := |\{a \in \mathbb{N} | 1 \leqslant a \leqslant n \land ggT(a, n) = 1\}|$

dischen Algorithmus lässt sich jeder ggT(a,b) als

Linearkombination von a und b darstellen. Es gibt

Zwei Zahlen a, b sind teilerfremd, wenn kein

Anmerkung: Insbesondere sind Primzahlen zu

Der größte gemeinsame Teiler von a,b, ist die

• Zwei Zahlen $c, d \in \mathbb{Z}$ sind teilerfremd genau dann,

größte natürliche Zahl t mit t|a und t|b.

Teiler von *a* die Zahl *b* nicht teilt und umgekehrt.

allen Zahlen teilerfremd.

in kurz: ggT(a, b) = t

Bei Teilerfremdheit:

wenn ggT(c,d) = 1.

Sei G eine endliche multiplikative Gruppe und **Imaginäranteil** bezeichnet. $a \in G$. Die **Ordnung von** a ist die kleinste Potenz Notation: $n \in \mathbb{N}$, sodass $a^n = e$ ist. Also ord(a) := n. Re(z) = Re(a + ib) := aIm(z) = Im(a + ib) := b $(\mathbb{C}, +, \cdot)$ ist ein Körper, also $(\mathbb{C}, +)$ und $(\mathbb{C} \setminus \{0\}, \cdot)$ sind Folgerung aus dem Satz von Lagrange: Sei (G, 0) abelsche Gruppen und es gelten die beidseitigen eine Gruppe und G endlich, dann teilt die Ordnung **Anmerkung:** Falls klar ist, dass $(V, +, \cdot)$ ein K-VR ist, Distributivgesetze. jedes Elementes $x \in G$ die Mächtigkeit von G. so schreibt man nur: V ist ein K-VR. In kurz: Nach Lagrange gilt, dass die Elementord-Die reellen Zahlen R sind eine echte Teilmennung die Mächtigkeit der zugehörigen Gruppe teilt. ge von \mathbb{C} , da jede reelle Zahl $r \in R$, eine komplexe Žahl mit Imaginäranteil gleich 0 ist. Also $r = \bar{r} + i0$. Sei G eine endliche Gruppe und $H \subseteq G$ eine Untergruppe von G. Für $a \in G$ wird die Menge Das additive Inverse einer Zahl z = a + ib ist $aH := \{ah | h \in H\}$ als **Linksnebenklasse** in G zur Untergruppe H bezeichnet, und $Ha := \{ha | h \in H\}$ Das **multiplikativ Inverse** einer Zahl $z = a + ib \neq 0$ als **Rechtsnebenklasse** in G zur Untergruppe H ist $\frac{1}{z} = z^{-1} = \frac{a}{a^2 + h^2} - i \frac{b}{a^2 + h^2} = \frac{a - ib}{a^2 + h^2}$ bezeichnet. **Anmerkung:** Jeder *K*-VR ist zu sich selbst ein Das **komplex konjugierte** einer Zahl z = a + ibFalls aG = Ga ist, so ist $G/aG := \{g(aG) | g \in G\}$ ist $\overline{z} := a + ib$. Für $(\mathbb{Z}, +)$ ist das $\mathbb{Z}/n\mathbb{Z} = \{\{k + ng | g \in \mathbb{Z}\} : k \in \mathbb{Z}\}$ Der Betrag einer komplexen Zahl z = a + ib ist Die Elemente $\{k + ng | g \in \mathbb{Z}\}$ werden auch als $|z| = \sqrt{a^2 + b^2}$ die **Kongruenzklassen** [k] bezeichnet (Alternative Schreibweise: \overline{k}) und $\mathbb{Z}/n\mathbb{Z}$ als **Restklassenring**. **Rechenregeln:** Sei z = (a + ib)Zur Vektoraddition: • $z^2 = (a+ib)^2 = (a^2+b^2)+i(2ab)$ Zahlentheoretische Aussagen und Tricks Sei G eine $\bullet \overline{z}^2 = (a - ib)^2 = (a^2 + b^2) - i(2ab)$ Gruppe und H eine Untergruppe von G• Sei $(\mathbb{Z}_{m}^{\times})$ eine zyklische Gruppe. Die **Anzahl der** • $z\overline{z} = (a+ib)(a-ib) = a^2 + b^2$ **Erzeuger** ist gleich $\phi(m)$. • Die Nebenklassen zur Untergruppe *H* in *G* lassen sich schrittweise durch finden aller *aH* ermitteln. **Anmerkung:** $\forall a, b \in \mathbb{R}_0^+ : \sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$ Alle Nebenklassen sind entweder paarweise disjunkt oder gleich. 6 Lineare Algebra **Lineare Gleichungssysteme:** Seien i = 1,...,n, j =• Die Vereinigung aller Nebenklassen ergibt die **Vektorräume** Sei $(K, +_K, \cdot_K)$ ein Körper bzw. $(K, +_K)$ Gruppe (G, \cdot) . und $(K \setminus \{0\}, \cdot_K)$ jeweils abelsche Gruppen, wo das links- und rechtsseitige Distributivgesetz gilt. Sei (G, \circ) eine abelsche Gruppe und (G, *) eine Gegeben sei eine Menge *V* mit den Verknüpfungen: Halbgruppe. Dann wird $(G, \circ, *)$ als **Ring** bezeich-Vektoraddition: net, wenn zusätzlich das links- und rechtsseitige $+: V \times V \rightarrow V, (v, w) \mapsto v + w$ Vektoraddition Distributivgesetz gilt: Skalarmultiplikation: $[a*(b \circ c) = a*b \circ a*c] \land [(a \circ b)*c = a*c \circ b*c]$ Ist mind. ein $b_i \neq 0$, dann ist das LGS **inhomogen.** $\cdot: K \times V \to V, (\lambda, v) \mapsto \lambda \cdot v$ Zusätzlich mit den Eigenschaften: Sei $(G, \circ, *)$ ein Ring. Es ist ein **Körper**, wenn Lösbarkeit eines LGS: V1 (V, +) ist eine abelsche Gruppe, mit 0 als neutra-(*G*,*) ebenfalls eine abelsche Gruppe ist. les Element und $(-v) \in V$ als Inverses von $v \in V$. 5 Komplexe Zahlen V2 Folgende Rechenregeln: $\forall \lambda, \mu \in K \text{ und } v, w \in V$: **a)** $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ Definiere hierfür eine Obermenge von \mathbb{R} , die $\sqrt{-1}$ **b)** $\lambda \cdot (v + w) = \lambda \cdot + \lambda \cdot w$ Die Menge $\mathbb{C} := \mathbb{R} + i\mathbb{R} = \{x + iy | x, y \in \mathbb{R} \land i^2 = -1\}$ c) $\lambda \cdot (\lambda \cdot v) = (\lambda \cdot \mu) \cdot v$ d) $1 \cdot v = v$ heißt Menge der komplexe Zahlen. Dann heißt die Struktur $(V,+,\cdot)$ K-Vektorraum Darstellungen der **komplexen Zahlen**. Für ein (kurz: K-VR). oder nicht lösbar. **Vektorschreibweise:** Sei $z = \binom{a}{b} \in \mathbb{C}$: **Notation:** Ist - anhand der Zahlen und aus welcher • Hat das inhomogene LGS **mehr Spalten als Zei**- Vektoren aus *E* entfernt werden.

• Addition: $\binom{a}{b} + \binom{c}{d} = \binom{a+c}{b+d}$

 $z = a + ib \in C$:

(a+c)+i(b+d)

(ac - bd) + i(ad + bc)

• Multiplikation: $\binom{a}{b} \cdot \binom{c}{d} = \binom{ac-bd}{ad+bc}$

Summenschreibweise: (die eigentlich gängige): Sei

Addition: (a + ib) + (c + id) = a + c + ib + id =

Multiplikation: $(a+ib)\cdot(c+id) = ac+iad+ibc-bd =$

Hierbei werden bei einer komplexen Zahl z = a + ib

die Zahl $a \in \mathbb{R}$ als **Realanteil** und die Zahl $b \in \mathbb{R}$ als

Die Gleichung $x^2 + 1 = 0$ hat in \mathbb{R} keine Lösung.

Lineare Algebra-Übersicht, Version 1.3 von Adrian Danisch, page 3 of 4

tigen Distributivgesetze gelten).

Gruppe und $(\mathbb{Z}_p^{\times},\cdot)$ eine abelsche Gruppe. Man

nennt hier $(\mathbb{Z}, +, \cdot)$ auch Körper (da auch die beidsei-

Sei *G* eine endliche Gruppe. Die **Ordnung von**

G ist die Mächtigkeit von G. Also ord(G) := |G|.

enthält.

Anmerkung: Sei $(K,+,\cdot)$ ein Körper. Dann ist $V := K^n = K \times ... \times K \text{ ein } K - Vektorraum.$ n-mal

Operation zu welcher Menge gehört, so kann anstatt

+, bzw. +, auch als +, geschrieben werden.

Weitere Rechenregeln: Aus den Vektorraum-Eigenschaften lassen sich weitere Rechenregel herleiten (sei V ein K-VR und $v \in V$): **b)** $\lambda \cdot 0 = 0$ c) $[\lambda \cdot v = 0] \Rightarrow [(\lambda = 0) \lor (v = 0)]$

Sei V ein K-VR und $U \subseteq V$. Falls für die Struktur $(U,+,\cdot)$ gilt: a) $\forall u, v \in U : (u+v) \in U$ **b)** $\forall \lambda \in K, u \in U : (\lambda u) \in U$ Dann heißt $(U, +, \cdot)$ ein **Untervektorraum** von V. (Abkürzung: *U* ist ein UVR von *V*)

> Sei K ein Körper. Dann ist K^n ein K-VR. Des weiteren seien $\lambda \in K$, $x,y \in V$ mit $x = (x_1,...,x_n)$ und $y = (y_1, ..., y_n)$. Für $i \in \{1, ..., n\}$ heißt x_i bzw. y_i der *i*-te Eintrag bzw. *i*-te Komponente von Vektor x

 $x + y = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$ Zur Skalarmultiplikation: $\lambda x = \lambda(x_1, ..., x_n) = (\lambda x_1, ..., \lambda x_n).$

Anmerkung: Ein Körper K kann selbst als eindimensionaler K-VR aufgefasst werden.

 $1,...,m, a_{ij} \in K, b_i \in Ein lineares Gleichungs$ system (LGS) mit n Zeilen und m Spalten bzw. Unbekannten x_m : $\forall i: a_{i1} + \dots + a_{im} = b_i$ Falls $b_1 = b_2 = ... = b_n = 0$, dann ist das LGS **homo**-

• Das LGS kann via Gauß-Algorithmus gelöst • Ein homogenes LGS ist immer mehrdeutig lös-• Die triviale Lösung eines homogenen LGS ist

 $x_1 = ... = x_m = 0$ • Ein inhomogenes LGS ist entweder eindeutig, mehrdeutig oder nicht lösbar. • Hat das inhomogene LGS mind. genausoviele

Zeilen wie Spalten, so ist es entweder eindeutig

Andernfalls sind die Vektoren $v_1, v_2, ..., v_r$ linear Sei V ein K-VR und $T \subseteq V$ mit $T = \{v_1, ..., v_n\}$. Für $\lambda_1,...,\lambda_n \in K$ wird der Vektor $w \in V$: $w := \sum_{i=1}^{n} \lambda_i a_i$ als **Linearkombination** der Vekto-

Sei V ein K-VR, $v_1, v_2, ..., v_r \in V$. Die Vektoren

 $[\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_r v_r = 0] \Rightarrow [\lambda_1 = \lambda_2 = \dots = \lambda_r = 0]$

ren aus *T* bezeichnet. **Anmerkung:** Jeder Vektor aus *T* ist ebenfalls eine Linearkombination von Vektoren aus T, da $a_i = 0 \cdot a_1 + 0 \cdot a_2 + \dots + 0 \cdot a_{i-1} + 1 \cdot a_i + 0 \cdot a_{i+1} + \dots + 0 \cdot a_n$

Sei V ein K-VR und $A = \{a_1, ..., a_n\} \subseteq V$.

 $v_1, v_2, ..., v_r$ sind linear unabhängig:

Menge sie stammen - im Kontext klar, welche len, so ist es entweder mehrdeutig oder nicht lösbar.

Die **Lineare Hülle** von *A* ist: $span(A) := \{ \sum_{i=1}^{n} \lambda_i a_i | \lambda_i \in K, a_i \in A, n \in \mathbb{N} \}$ Es ist die Menge aller Linearkombinationen der **Anmerkung:** Jeder K-VR V ist zu sich selbst die lineare Hülle, also span(V) = V.

des System von V, falls jeder Vektor aus V als Linearkombination von Vektoren aus A dargestellt werden kann. Also V = span(A). Anmerkung: Wird die Menge A in einem Tupel geschrieben, so gilt die Reihenfolge der Vektoren im Gegensatz zur Mengenstruktur.

Sei V ein K-VR und $A \subseteq V$. A heißt erzeugen-

 \mathcal{A} heißt **Basis**, wenn zusätzlich gilt, dass alle Vektoren in \mathcal{A} linear unabhängig sind. Die Dimension von V ist gleich der Mächtigkeit seiner Basis.

Anmerkung: Eines K-VR V kann eventuell mehrere Basen haben, jedoch haben alle Basen die gleiche Mächtigkeit. Für $V = K^n$ wird die Basis $\{e_1, ..., e_n\}$ mit:

 $e_1 := (1,0,...,0)^T$, $e_2 := (0,1,0,...,0)^T$,..., $e_n :=$ als kanonische Basis bezeichnet. Austauschlemma von Steinitz: Sei V ein K-VR,

 $B \subseteq V$ eine Basis von V und $v_1,...v_k \in V$ linear Die Vektoren aus B können mit den Vektoren $v_1,...,v_k$ ausgetauscht werden. B bleibt weiterhin

eine Basis von V. **Basisergänzungs-Satz:** Sei *V* ein *K*-VR. Jede Menge $E \subseteq V$ mit linear unabhängigen Vektoren, lässt sich durch hinzufügen weiterer Vektoren aus V zu einer

Basis von *V* ergänzen.

Kürzen von Erzeugenden Systemen: Sei V ein K-VR und $E \subseteq V$ ein erzeugendes System von V. Falls die Vektoren in E linear abhängig sind, so kann E zu einer Basis umgewandelt werden, indem

keit von Mengen. Lineare Algebra-Übersicht, Version 1.3 von Adrian Danisch, page 4 of 4

Mengenaddition: Seien *M*, *N* Mengen. $N + M := \{x + y | x \in N, y \in M\}$

Seien $U_1,...,U_n$ UVR von V und es gilt:

Mit der Mengenaddition, dem Basisergänzungs-Satz und Linearkombinationen, lässt sich ein $K ext{-}\mathrm{VR}\ V$ als Summe von UVR von V, darstellen.

 $\begin{bmatrix} U_1 + U_2 + \dots + U_n = V \end{bmatrix} \wedge \begin{bmatrix} U_1 \cap U_2 \cap \dots \cap U_n = \{0_V\} \end{bmatrix}$ Dann ist: $V = U_1 \oplus U_2 \oplus \dots \oplus U_n$ und wird als **direkte** Summe bezeichnet.

Durch Zeilenoperationen wird
$$A$$
 in die Matrix A' überführt, die in Gauß-Jordan-Form vorliegt. Die

Anzahl der " Zeilenabstufungenïst der **Rang von** A (und somit auch von A' und jeder Matrix, die aus Zeilenoperationen von A resultiert). Lineare Abbildungen Seien V, W K-VR und

 $f: V \to W$. Die Abb. f heißt **linear** wenn: **1.** $\forall a, b \in V : f(a+b) = f(a) + f(b)$ (f ist also ein

Vektorraum-Homomorphismus) **2.** $\forall \lambda \in K, a \in V : f(\lambda a) = \lambda f(a)$

Eigenschaften von linearen Abbildungen:

1. Sei $H = \{f \in Abb(V, W) | f \text{ linear}\}$ die Menge aller linearen Abbildungen, mit der Addition von Funktionen und der Skalarmultiplikation bildet H einen K-VR.

Anmerkung: Für V = K mit K Körper bzw. ein K-VR über sich selbst, wird H auch als **Dualraum** bezeichnet mit $V^* := H$.

2. Sei $F: V \to W$, $G: U \to V$ jeweils linear. Dann ist $F \circ G$ auch linear.

3. Sei die lineare Abbildung f invertierbar. Dann ist auch f^{-1} linear.

4. Sei $F: V \to W$ linear und $A = (a_1, ..., a_n)$ Basis von V. F ist bereits eindeutig festgelegt, wenn bereits die Werte $F(a_1),...,F(a_n)$ bekannt sind.

Bild und Kern:

Seien V, W K-VR und $f: V \rightarrow W$ eine lineare Abbildung:

 $Im(f) := \tilde{f}(V) := \{f(v) | v \in V\}$

 $Ker(f) := \{ v \in V | f(v) = 0_W \}$ **Anmerkung:** Im(f) ist ein UVR von W und Ker(f)ist ein UVR von V

Bild-Kern-Formel (Rangsatz): Seien V, W K-VR und $f: V \rightarrow W$ linear.

 $\dim(V) = \dim(Im(f)) + \dim(Ker(f))$

Dimensionsformel: Sei V ein K-VR und U_1 , U_2 UVR von V. Dann gilt:

 $\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$ Anmerkung: Die Dimensionsformel hat eine starke Ähnlichkeit mit der Summenregel für die Mächtig- Spezielle Matrizen:

Matrizen Sei K ein Körper, $n,m \in \mathbb{N}$. Dann ist $K^{n\times m}$ die Menge aller Matrizen, mit n Zeilen und m Spalten. **Notation:** Sei $A \in K^{n \times m}$, mit Einträgen a_{ij} für $i \in \{1, ..., n\}, j \in \{1, ..., m\}.$ Dann ist: $(a_{ij})_{i=1,...,n} := A$

schrieben werden. Spezialfall Vektor: Ein Vektor aus K^n kann als $n \times 1$ -Matrix aufgefasst werden: $x \in K^{n \times 1}$, bzw. x^T als $1 \times n$ -Matrix (also

Ist der Kontext klar, so kann auch $(a_{ij})_{i,j} = A$ ge-

 $x^T \in K^{1 \times 1}$ Sei $l, m, n \in \mathbb{N}$, und K ein Körper. Dann ist die Matrixmultipliation "."wie folgt definiert:

 $K^{l \times m} \times K^{m \times n} \rightarrow K^{l \times n}, (A, B) \mapsto C$ mit $c_{ik} = \sum_{i=1}^{m} a_{ij} \cdot b_{jk}$ Wichtig: Die Spaltenanzahl der linken Matrix muss mit der Zeilenanzahl der rechten Matrix überein-

Anmerkung: Mit dem Multiplikationstableau ist es wesentlich schneller zu rechnen, als die Formel in der Definition zu verwenden!

Ausnahme: Seien $x, y \in K^n$ zwei Vektoren. Dann ist $x \cdot y^T$ eine Matrix, die durch die 2 Vektoren im Prinzip der Verknüpfungstabelle äufgespannt"wird.

Seien V, W K-VR und $f: V \rightarrow W$ linear. Des weiteren sei $\mathcal{B} = \{b_1, ..., b_n\}$ Basis von V und $C = \{c_1, ..., c_m\}$ Basis von W. Für $k \in \{1, ..., n\}$ gilt: $f(b_k) = \lambda_1^{(k)} c_1 + ... \lambda_m^{(k)} c_m$ Dabei ist (k) ein zweiter Index (keine Potenz!).

Die Abbildungsmatrix von f bezüglich den Basen \mathcal{B},\mathcal{C} ist definiert als:

$$M_{\mathcal{C}}^{\mathcal{B}}(f) := \begin{pmatrix} \lambda_1^{(1)} & \dots & \lambda_1^{(n)} \\ \vdots & \dots & \vdots \\ \lambda_m^{(1)} & \dots & \lambda_m^{(n)} \end{pmatrix}$$

Lineare Abbildung als Matrixmultiplikation: Sei V, W K-VR und $f: V \rightarrow W$ linear. Des weiteren sei \mathcal{E}_n kanonische Basis von V und \mathcal{E}_m kanonische Basis von W. Dann gilt:

 $\forall v \in V : f(v) = M_{\mathcal{E}}^{\mathcal{E}_n}(f) \cdot v$

Abbildungsverknüpfung als Matrixmultiplikati-

Seien V, W, Z jeweils K-VR und $f: V \to W$; $g: W \to W$ Z jeweils linear. Des weiteren ist $\mathcal{B} = \{b_1, ..., b_n\}$ Basis von V, $C = \{c_1,...,c_m\}$ Basis von W und $\mathcal{D} = \{d_1, ..., d_n\}$ Basis von Z Für die Abbildungsmatrix $g \circ f$ bzgl. den Basen \mathcal{B}

und \mathcal{D} gilt: $M_{\mathcal{D}}^{\mathcal{B}}(g \circ f) = M_{\mathcal{C}}^{\mathcal{B}}(g) \cdot M_{\mathcal{D}}^{\mathcal{C}}(f)$

verse von A, wenn gilt: $C \cdot A = E_n$ A ist hierbei die Rechtsinverse von C und E_n die Determinantenregeln: • Jede Zeilen und/oder Spaltenoperation ändert die Einheitsmatrix. Letztere ist immer quadratisch und eine spezielle Diagonalmatrix!

$$diag(a_1,...,a_n) := \begin{bmatrix} 0 & a_2 & ... & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & ... & a_n \end{bmatrix}$$

$$E_n = diag(\underbrace{1,...,1})$$

Bei einer quadratischen Matrix A, also $A \in K^{n \times n}$, ist die Linksinverse C von A gleichzeitig die Rechtsinverse, und ist zudem eindeutig bestimmt! Diese (allgemeine) **Inverse** *C* ist ebenfalls Element in $K^{n \times n}$ und wird als A^{-1} bezeichnet. **Anmerkung:** Ein LGS Ax = b lässt sich mithilfe der Inversen A^{-1} lösen, da:

Spezielle lineare Abbildungen:

 $A^{-1}Ax = A^{-1}b \Rightarrow E_n x = x = A^{-1}b$

Seien V, W K-VR und $f: V \rightarrow W$ linear. Falls W = V, also $f: V \to V$, dann ist f ein **Endomor**phismus. Notation: $f \in \text{End}(V)$ Îst f zusätzlich bijektiv, dann ist f automorph. Notation: $f \in Aut(V)$.

Anmerkung: Da id eine lineare, bijektive und endomorphe Abbildung ist, gilt: $id \in Aut(V)$ Sei V ein K-VR, $f \in \text{End}(V)$, $\mathcal{B} = \{b_1,...,b_n\}$, $\mathcal{C} =$

 $\{c_1,...,c_n\}$ jeweils Basen von V. Die Matrix $M_c^{\mathcal{B}}(id)$ heißt Transformationsmatrix von der Basis $\ddot{\mathcal{B}}$ zur Basis \mathcal{C} . Es gilt:

Basiswechsel/-transformation: Sei V ein K-VR,

 $M_{\mathcal{C}}^{\mathcal{B}}(id) = \left(M_{\mathcal{B}}^{\mathcal{C}}(id)\right)^{-1}$ bzw. $M_{\mathcal{P}}^{\mathcal{C}}(id) = \left(M_{\mathcal{C}}^{\mathcal{B}}(id)\right)^{-1}$

Zeile und der *j*-ten Spalte.

 $f \in \text{End}(V), \mathcal{B} = \{b_1, ..., b_n\}, \mathcal{C} = \{c_1, ..., c_n\}, \text{ und } \mathcal{A} = \{c_n, ..., c_n\}$ $\{a_1,...,a_n\}$ jeweils Basen von V. Dann gilt: $M_{\mathcal{C}}^{\mathcal{B}}(f) = M_{\mathcal{C}}^{\mathcal{A}}(id) \cdot M_{\mathcal{A}}^{\mathcal{A}}(f) \cdot M_{\mathcal{A}}^{\mathcal{B}}(id)$ bzw. $M_{\mathcal{C}}^{\mathcal{B}}(f) = \left(M_{A}^{\mathcal{C}}(id)\right)^{-1} \cdot M_{A}^{\mathcal{A}}(f) \cdot M_{A}^{\mathcal{B}}(id)$

Sei K Körper und $A \in K^{n \times m}$ mit n > 1, m > 1. Die Matrix $A_{[i,j]} \in K^{(n-1) \times (m-1)}$ heißt Streich/Untermatrix von A. Sie entsteht

durch das Entfernen/Löschen/Streichen der i-ten

Sei $A \in K^{n \times n}$ eine Matrix. Die **Determinante** einer Matrix lässt sich wie folgt bestimmen: 1) Falls A eine 1×1 -Matrix ist, dann $det(A) = a_1 1$

die Determinante. 2) Falls n > 1, so wende den Laplaceschen Entwicklungssatz an:

 $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{[i,j]})$ $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{[i,j]})$

WARNUNG: Die Sarrus-Regel gilt nie für 4×4 oder

Sei $A \in K^{n \times m}$. Die Matrix $C \in K^{m \times n}$ heißt **Linksin**- größer!

Determinante nicht. • Die Multiplikation von entweder einer Zeile oder einer Spalte mit $\lambda \in K$, multipliziert die ganze

Determinante mit λ . $\Rightarrow \det(\lambda A) = \lambda^n A$ • Das Vertauschen von entweder einer Zeile oder einer Spalte ändert das Vorzeichen der Determinante.

Zusammenfassung LGS: Sei $f \in End(V)$, \mathcal{A}, \mathcal{B} Basen von V und $A = M_{\mathcal{B}}^{\mathcal{A}}(f)$.

Dann sind folgende Aussagen äquivalent: • A ist invertierbar

• A hat den vollen Rang. Also rang(A) = n

• *A* ist invertierbar • Das homogene LGS Ax = 0 ist eindeutig lösbar.

• $det(A) \neq 0$ • f ist surjektiv • f ist injektiv

 $Av = \lambda v$ erfüllt ist, so heißt λ **Eigenwert** von A und v Eigenvektor von A. Sei $\lambda \in K, A \in K^{n \times n}$. Das Polynom: $det(A - \lambda E_n)$

Sei $v \in K^n$, $A \in K^{n \times n}$, $\lambda \in K$. Falls die Gleichung

heißt Charakteristisches Polynom. Die Nullstellen dieses Polynom sind die **Eigenwerte von** A. Sei $A \in \mathbb{K}^{n \times n}$. Sei $p(X) = a_0 E_n + a_1 X + ... + a_n X^n$ ein Polynom mit matrixwertigen Unbekannten. Das

Polynom p heißt **Minimalpolynom** von A, wenn

für kleinstmöglichstes *n* gilt: $p(A) = 0_{K^{n \times n}}$ **Anmerkung:** Sei n^* das minimalste n des Minimalpolynoms p von A. Die Nullstellen des Polynoms $p^*(x) = a_0 + a_1 x + ... + a_{n^*} x^{n^*} \in K[t]$ sind die Eigenwerte von A und zugleich die Nullstellen des charakteristischen Polynoms.

Das Polynom p^* hat also die selbe Gestalt wie das Minimal polynom p. Anmerkung: Das Minimalpolynom ist ein Teil des charakteristischen Polynoms.

Sei $f \in \text{End}(V)$, A Abbildungsmatrix von f und λ Eigenwert von A. Der Raum Eig(f, λ) := $ker(f - \lambda id)$ heißt **Eigenraum** von A bzgl. λ . Jeder Eigenvektor ν bzgl. λ liegt in $\operatorname{Eig}(f,\lambda)$. Die Vorkommen von λ als Nullstelle von

 $det(A - \lambda E_n)$ heißt algebraische Vielfachheit, die Dimension von $\operatorname{Eig}(f,\lambda)$ ist die **geometrische Vielfachheit** von λ .

und $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$

Die Matrix $A \in K^{n \times n}$ heißt diagonalisierbar, wenn es eine Diagonalmatrix D und invertierbare Matrix S gibt: $SAS^{-1} = D$ **Anmerkung:** A ist genau dann diagonalisierbar, wenn für jeden Eigenwert λ von A jeweils in ihrer algebraischen und geometrischen Vielfachheit

entsprechen. Dann ist $S = (\text{Eig}(A, \lambda_1), ..., \text{Eig}(A, \lambda_n))$