Register Number	1 3				

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – I

Question Paper

Degree & Branch	B.E CSE		**		Semester	V
Subject Code & Name UCS1505 & INTRODUCTION TO CRYPTOGRAPHIC TECHNIQUES				Regulation: 2018		
Academic Year	2022-23 ODD	Batch	2020-24	Date	21.09.2022 FN	
Time: 8.15 – 9.45 AM (90 Minutes)	Answer All Questions			Maximum	: 50 Marks	

 $Part - A (6 \times 2 = 12 Marks)$

K2	1. Outline the formal definition of the Gen, Enc, and Dec algorithms for the mono-alphabetic substitution cipher.	CO1	1.4.1
K2	2. Show how many keys are required for two people to communicate via symmetric and asymmetric ciphers?	CO1	1.3.1
К3	3. Apply the Vigenère cipher and decrypt the ciphertext VEQPJIREDOZXOE with the key café.	CO1	1.4.1
K2	4. Outline Kerchoff's principle and justify it.	CO1	1.3.1 1.4.1
K3	5. Compare and contrast the encryption, MAC and Hash functions	CO2	1.3.1 2.4.3
K2	6. Summarize the properties of hash function.	CO2	1.4.1

Part – B $(3\times6 = 18 \text{ Marks})$

	7.	Caesar wants to arrange a secret meeting with Marc Antony, either at the		1.4.1
1/2		Tiber (the river) or at the Coliseum (the arena). He sends the shift cipher text		13.3.1
K3		EVIRE. However, Antony does not know the key, so he tries all possibilities. Apply the appropriate decryption algorithm and deduce where he will meet	CO1	
		Caesar?		
,	8.	Assume an attacker knows that a user's password is either abcd or bedg.		1.4.1
77.0		Say the user encrypts his password using the shift cipher, and the attacker		13.3.1
K3		sees the resulting ciphertext. Apply the appropriate decryption algorithm and	CO1	
		show how the attacker can determine the user's password or explain why this	0	
		is not possible.		
K2	9.	Outline the formal definition for the construction of CBC MAC with proper	CO2	1.4.1
		illustration.	CO2	13.3.1

 $Part - C (2 \times 10 = 20 Marks)$

		10. Let (E, D) be a semantically secure cipher with key space $K = \{0,1\}^l$.		1.4.1
ŀ		A bank wishes to split a decryption key $k \in \{0,1\}^l$ into two pieces p_1 and p_2	18 TH	13.3.1
	КЗ	so that both are needed for decryption. The piece p_1 can be given to one executive	CO1	
	5 5	and p_2 to another so that both must contribute their pieces for decryption to	COI	
		proceed.		
		The bank generates random k_1 in $\{0,1\}^l$ and sets $k_1' \leftarrow k \oplus k_1$.		

	Note that $k_1 \oplus k'_1 \to k$. The bank can give k_1 to one executive and k'_1 to another. Both must be present for decryption to proceed since, by itself, each piece		
a .	contains no information about the secret key k (note that each piece is a one-time		n
	pad encryption of k).		
	Now, suppose the bank wants to split k into three pieces p_1, p_2, p_3 so that any two of the pieces enable decryption using k. This ensures that even if		
	one executive is out sick, decryption can still succeed. To do so the bank		
	generates two random pairs (k_1, k'_1) and (k_2, k'_2) as in the previous paragraph so		
	that $k_1 \oplus k'_1 = k_2 \oplus k'_2 = k$. Solve the given problem and show how the bank assign pieces, so that any two		a a
	pieces enable decryption using k, but no single piece can decrypt?		
	Check whether this combination of the keys $p_1 = (k_1, k_2), p_2 = (k'_1), p_3 =$		•
	(k_2') works, if not provide the correct combination.		
	OR		
	11. Apply the concept of perfect secrecy and prove that the cryptosystem built is		1.4.1
	perfectly secure? 1 1 1		13.3.1
	$P(X = a) = \frac{1}{2}, P(X = b) = \frac{1}{3}, P(X = c) = \frac{1}{6},$		
	$P(K = k_1) = P(K = k_2) = P(K = k_3) = \frac{1}{3}$		
	Plaint text $P = \{a, b, c\}$, Cipher text $C = \{1, 2, 3, 4\}$	ii.	
K3	Encryption Matrix	CO1	
	a b c		d
	k1 1 2 3		
2	k2 2 3 4		
=	k3 3 4 1	: ,	
	12. Consider the shift cipher, but with the following distribution over M:		1.3.1
	Pr[M = kim] = 0.5, Pr[M = ann] = 0.2, Pr[M = boo] = 0.3 Solve the problem and compute the probability for $C = DQQ$?		13.3.1
К3	Also prove or Refute: For every encryption scheme that is perfectly secret it	CO2	
9	holds that for every distribution over the message space M, every $m, m^1 \in$		
	Mand every $c \in C$: $\Pr[M = m C = c] = \Pr[M = m' C = c]$.		
	OR		
	13. Alice wants to send a message M with a message authentication code		1.3.1
	MAC(M) to Bob. Alice and Bob share a secret key k and have agreed on		13.3.1
	using a specific algorithm MAC function which takes input parameters M and k to produce MAC(M).		
17.0	a. Apply the MAC algorithm and outline the steps that Alice must follow for		
K3	sending M and the steps that recipient Bob must follow for verifying the	CO2	
	authenticity of M.		
	b. Make of use the principle of MAC and explain why the MAC proves to Bob		
	that a received message is authentic, and why Bob is unable to prove to a third party that the message is authentic.		e e

Prepared By	Reviewed By	Approved By
N. M. 1910	13/9/22	Al X13/19/22
Course Coordinator	PAC Team	HOD