Active Contour

1. Bild laden

2. Setzen der Startkontur

3. Eingabe den Parametern

$$E_{snake}^* = \int_0^1 E_{int}(v(s)) + E_{image}(v(s)) + E_{con}(v(s))ds$$

$$E_{int}(v(s)) = \int_0^1 \alpha(s) \frac{|v(s)'|^2}{2} + \beta(s) \frac{|v(s)''|^2}{2} ds$$

$$E_{image}(v(s)) = w_{line}E_{line} + w_{edge}E_{edge} + w_{term}E_{term}$$

4. Segmentieren

Level-Set Methode

1. Bild laden

2. Eingabe den Parametern

$$\begin{split} F^{MS}(c_1,c_2,C) &= \mu \cdot Length(C) + v \cdot Area\big(inside(C)\big) + \lambda_1 \int_{inside(C)} u_0(x,y) - c_1^2 dx dy + \\ \lambda_2 \int_{outside(C)} |u_0(x,y) - c_2|^2 dx dy \end{split}$$

3. Setzen der kreisförmigen Startkontur

4. Segmentieren

Morphologische Snakes

1. Bild laden

2. Eingabe den Parametern

$$\frac{\partial u}{\partial t} = |\nabla u| \left(\mu div \ \frac{\nabla u}{|\nabla u|}\right) - v - \lambda_1 (I - c_1)^2 + \lambda_2 (I - c_2)^2 \right)$$

Dabei sind λ_1 und μ gleich eins.

3. Setzen der kreisförmigen Startkontur

4. Segmentieren

Wenn es

keine Eingabedaten bei "Iteration" gibt, werden Objekte automatisch segmentiert.

5. Ausgabe der Koordinaten der Punkte auf der Kontur

Man klickt auf den Button "Konturlist" und dann auf das Bild. Danach werden die Koordinaten der Punkte auf einer nächstliegenden Kontur ausgegeben.

6. Intensität

Man klickt auf den Button "Intensität" und dann auf das Bild. Die Intensität des geklickten Punktes wird ausgegeben.

7. Segmentieren von zahlreichen ähnlichen Bildern

Anzahl: Anzahl der Bilder, die verarbeitet werden.

Variante

1. Bild laden

2. Eingabe den Parametern

Expansion:

$$E_0^{außen} = \sum_{x} \sum_{y} E_{image}(x, y) u(x, y)$$
 3-1

$$u^{n+\frac{1}{2}}(x,y) = \begin{cases} u^{n+\frac{1}{2}}(x,y) = 0 & \text{if } \lambda E_0^{außen} - E_{image}(x,y) > 0 \\ u^{n+\frac{1}{2}}(x,y) = 1 & \text{else} \end{cases}$$
 3-2

$$u^{n+1}(x,y) = (IS_h \circ SI_h u^{n+\frac{1}{2}})(x,y)$$
3-3

Schrumpfung:

$$E_0^{innen} = \sum_{x} \sum_{y} E_{image}(x, y) (1 - u(x, y))$$
 3-4

$$u^{n+\frac{1}{2}}(x,y) = \begin{cases} u^{n+\frac{1}{2}}(x,y) = 1 & \text{if } \lambda E_0^{innen} - E_{image}(x,y) > 0\\ u^{n+\frac{1}{2}}(x,y) = 0 & \text{else} \end{cases}$$
 3-5

$$u^{n+1}(x,y) = (IS_h \circ SI_h u^{n+\frac{1}{2}})(x,y)$$
 3-6

3. Setzen der Startkontur

4. Segmentieren

