

8085 Microprocessor

Dr. Manju Khurana Assistant Professor, CSED TIET, Patiala manju.khurana@thapar.edu

Pin Diagram of Intel 8085

8085 Pin Description

- The 8085 is an 8-bit general purpose microprocessor that can address 64K Byte of memory.
- It has 40 pins and uses +5V for power. It can run at a maximum frequency of 3 MHz.
- The pins on the chip can be grouped into 9 groups:
 - Address Bus and Data Bus
 - Status Signals
 - Control signal
 - Interrupt signal
 - Power supply and Clock signal
 - Reset Signal
 - DMA request Signal
 - Serial I/O signal
 - Externally Initiated Signals.

The Address and Data Busses

Address Bus (Pin 21-28)

- 16 bit address lines A₀ to A₁₅
- The address bus has 8 signal lines $A_8 A_{15}$ which are unidirectional.
- The other 8 address lines A_0 to A_7 are multiplexed (time shared) with the 8 data bits.

_	Higher-order Address								Lower-order Address							
A ₁	5	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	AD ₇	AD ₆	AD ₅	AD ₄	AD ₃	AD ₂	AD ₁	AD ₀

Data Bus (Pin 19-12)

- To save the number of pins lower order address pin are multiplexed with 8 bit data bus (bidirectional)
- So, the bits $AD_0 AD_7$ are bi-directional and serve as $A_0 A_7$ and $D_0 D_7$ at the same time.
- During the execution of the instruction, these lines carry the address bits during the early part $(T_1 \text{ state})$, then during the late parts $(T_2 \text{ state})$ of the execution, they carry the 8 data bits.

Status Signals

Status Pins – ALE, S_1 , S_0

- 1. ALE(Address Latch Enable): (Pin 30)
 - Used to demultiplexed the address and data bus
 - +ve going pulse generated when a new operation is started by microprocessor.
 - ALE = 1 when the $AD_0 AD_7$ lines have an address
 - ALE = 0 When it is low it indicates that the contents are data.
 - This signal can be used to enable a latch to save the address bits from the AD lines.
- 2. S_1 and S_0 (Status Signal): (Pin 33 and 29)
 - Status signals to specify the kind of operation being performed.
 - Usually un-used in small systems.

Sı	So	Operation
0	0	HALT
0	1	WRITE
1	0	READ
1	1	FETCH

Control Signals

Control Pins – RD, WR, IO/M (active low)

- 1. RD: Read (Active low) (Pin 32)
 - Read Memory or I/O device
 - Indicated that data is to be read either from memory or I/P device and data bus is ready for accepting data from the memory or I/O device.
- 2. WR: Write (Active low) (Pin 31)
 - Write Memory or I/O device
 - Indicated that data on the data bus are to be written into selected memory or I/P device.
- 3. IO/M: (Input Output/Memory-Active low) (Pin 34)
 - Signal specifies that the read/write operation relates to whether memory or I/O device.
 - When (IO/M=1) the address on the address bus is for I/O device
 - When (IO/M=0) the address on the address bus is for memory

IO/M(active low)	RD	WR	Control Signal	Operation
0	О	1	MEMR	M/M Read
О	1	О	MEMW	M/M write
1	О	1	IOR	I/O Read
1	1	0	IOW	I/O Write

Control and status Signals

When S_0 , S_1 is combined with IO/M (active low), we get status of machine cycle

IO/M	Sı	So	OPERATION	Control Signal	
О	1	1	Opcode fetch	RD = o	
О	1	o	Memory read	RD= o	
О	О	1	Memory write	$\overline{WR} = o$	
1	1	О	I/O read	$\overline{RD} = o$	
1	О	1	I/O write	$\overline{WR} = o$	
1	1	o	Interrupt Acknowledge	INTA = o	
Z	О	О	Halt		
Z	x	x	Hold	RD, WR = Z and $\overline{INTA} = 1$	
Z	x	x	Reset	and intA=1	

Interrupts

- They are the signals initiated by an external device to request the microprocessor to do a particular task or work.
- There are five hardware interrupts called, (Pin 6-11)
- On receipt of an interrupt, the microprocessor acknowledges the interrupt by the active low INTA (Interrupt Acknowledge) signal.

Power supply and Clock Signal

- □ Vcc (Pin 40): single +5 volt power supply
- Vss (Pin 20) : Ground
- \vee X₀ and X₁: (Pin 1-2)
 - Crystal or R/C network or LC network connections to set the frequency of internal clock generator.
 - The frequency is internally divided by two.
 - Since the basic operating timing frequency is 3 MHz, a 6 MHz crystal is connected to the X_0 and X_1 pins.
- ✓ CLK (output) : (Pin 37)
 - Clock Output is used as the system clock for peripheral and devices interfaced with the microprocessor.

Reset Signals

Reset In (input, active low) (Pin 36)

- This signal is used to reset the microprocessor.
- The program counter inside the microprocessor is set to zero (0000H)
- The buses are tri-stated.

Reset Out (Output, Active High) (Pin 3)

- It indicates microprocessor is being reset.
- Used to reset all the connected devices when the microprocessor is reset.

DMA Request Signals

DMA:

- When 2 or more devices are connected to a common bus, to prevent the devices from interfering with each other, the tristate gates are used to disconnect all devices except the one that is communicating at a given instant.
- The CPU controls the data transfer operation between memory and I/O device.
- DMA operation is used for large volume data transfer between memory and an I/O device directly.
- The CPU is disabled by tri-stating its buses and the transfer is effected directly by external control circuits.

■ HOLD (Pin 38)

- This signal indicates that another device is requesting the use of address and data bus.
- So it relinquish the use of buses as soon as the current machine cycle is completed.
- Microprocessor regains the bus after the removal of a HOLD signal

HLDA (Pin 39)

- On receipt of HOLD signal, the MP acknowledges the request by sending out HLDA signal and leaves out the control of the buses.
- After the HLDA signal the DMA controller starts the direct transfer of data.
- After the removal of HOLD request HLDA goes low.

Serial I/O Signals

These pins are used for serial data communication

SID (input) Serial input data (Pin 4)

- It is a data line for serial input
- Used to accept serial data bit by bit from external device
- The data on this line is loaded into accumulator bit 7 whenever a RIM instruction is executed.

✓ SOD (output) Serial output data (Pin 5)

- It is a data line for serial output
- Used to transmit serial data bit by bit to the external device
- The 7th bit of the accumulator is outputted on SOD line when SIM instruction is executed.

Externally Initiated signal

Ready (input) (Pin 35)

- Memory and I/O devices will have slower response compared to microprocessors.
- Before completing the present job such a slow peripheral may not be able to handle further data or control signals from CPU.
- The processor sets the READY signal after completing the present job to access the data.
- It synchronize slower peripheral to the processor.
- The microprocessor enters into WAIT state while the READY pin is disabled.

