

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

The D. Van Nostrand Company intend this book to be sold to the Public at the advertised price, and supply it to the Trade on terms which will not allow of reduction.

TT 270 , S64 1912 •

THE NEW STEAM TABLES

THE NEW STEAM TABLES

TOGETHER WITH THEIR DERIVATION AND APPLICATION

C. A. A. SMITH, M.Sc

(PROFESSOR OF ENGINEERING, UNIVERSITY OF HONG KONG)

AND

A. G. WARREN, B.Sc.

(LECTURER ON ENGINEERING, ASTON TECHNICAL SCHOOL)

WITH AN INTRODUCTION BY

SIR J. ALFRED EWING, K.C.B., F.R.S.

(DIRECTOR OF NAVAL EDUCATION)

NEW YORK
D. VAN NOSTRAND CO.
TWENTY-FIVE PARK PLACE
1912

.

PREFACE

THE following tables, together with the explanation of how the values have been calculated, are published in the hope that they will be of use to English engineers and students. has been based upon the researches of Professor H. L. Callendar, the importance of which does not seem to have been fully realised by engineers of this country and America. Continent Mollier has used it to compile tables in the metric system of units. Sir Alfred Ewing, in the latest edition of his book (1910), "The Steam Engine and Other Heat Engines," was the first English engineer to draw attention to the importance of Callendar's and Mollier's work. The authors gratefully acknowledge that the perusal of that new edition gave them the idea of going more fully into the subject. Although Mollier's values are given in that work, it was thought that more complete tables were needed.

It should be stated that these tables were calculated, originally, from Callendar's equations. Mollier's steam tables were not consulted until the final stage of proof correction. It was then suggested that the results should be checked against Mollier's, when it was possible to do so. (The values obtained by the authors had been checked several times, and appeared, by differences, to be reasonable.) On making comparisons with Mollier's tables—by translating the units—a few unimportant divergences were noted. In most cases the authors felt it right to bring their values into line with those of Mollier to avoid confusion of thought by anyone unable to appreciate the insignificance of the small divergences.

It is especially desired to thank Sir Alfred Ewing, K.C.B., for consenting to write the introduction to these tables, and for several suggestions which he has made. It is also desired to thank Professor Callendar for the trouble which he has taken, and for his uniform kindness.

It is only right to add that the Pound-Fahrenheit tables have been included because engineers still use them—not because the system is commended. It is to be sincerely hoped that all students will use the Pound-Centigrade tables, as there is no advantage, and several drawbacks, in using the Fahrenheit scale of temperature. It will undoubtedly gradually go out of use in this country.

At the end of the book will be found a chart representing the Total Heat of Steam on an entropy base. This graphical means of representing the properties of steam is due to Mollier and a reproduction of his diagram appears in Ewing's "The Steam Engine and Other Heat Engines." It already has an extensive use in connection with problems on steam turbines. It is here plotted in English Units.

C. A. M. S. A. G. W.

CONTENTS

PAGE
Introduction by Sir Alfred Ewing ix
DERIVATION AND APPLICATION
CENTIGRADE UNITS
TABLE I. (PROPERTIES OF SATURATED STEAM ON PRESSURE BASE-
Pound-Centigrade Units)
TABLE II. (PROPERTIES OF SATURATED STEAM ON CENTIGRADE
Temperature Base)
TABLE III. (SPECIFIC HEATS OF SUPERHEATED STEAM AT VARIOUS
Temperatures—Centigrade—and Pressures) 48—58
TABLE IV. (AVERAGE SPECIFIC HEATS OF SUPERHEATED STEAM
FROM SATURATION TO TABULATED TEMPERATURES—CENTIGRADE
AT VARIOUS PRESSURES)
FAHRENHEIT UNITS
TABLE V. (PROPERTIES OF SATURATED STEAM ON PRESSURE BASE-
Pound-Fahrenheit Units)
•
TABLE VI. (PROPERTIES OF SATURATED STEAM ON FAHRENHEIT
Temperature Base)
TABLE VII. (Specific Heats of Superheated Steam at Various
Temperatures—Fahrenheit—and Pressures) 88—96
TABLE VIII. (AVERAGE SPECIFIC HEATS OF SUPERHEATED STEAM
FROM SATURATION TO TABULATED TEMPERATURES -FAHRENHEIT
-AT VARIOUS PRESSURES)
TABLE IX. (LOGARITHMS AND ANTILOGARITHMS) 98-10
IN DOGRAM OF COURT MOTTER CITARM

• •

INTRODUCTION

By Sir J. Alfred Ewing, K.C.B., F.R.S.

Professor Smith has asked me to write a brief introduction to the Steam Tables which he and Mr. Warren have prepared, and I willingly do so because it may be expected that this publication will do something towards making engineers better acquainted with the important service which Callendar has rendered them in supplying materials for a new determination of the properties of steam, and towards facilitating the use of correct values in steam calculations.

As I have already pointed out, in the Third Edition of my book on "The Steam Engine and Other Heat Engines" (1910), the steam tables which have for many years been generally accepted contain serious errors and inconsistencies. Professor Callendar has shown how tables may be calculated which escape these inconsistencies and give figures that are in agreement with the best experimental data. To quote from the account of his work given in the Appendix to my book:—

"He assumed a characteristic equation connecting pressure, volume and temperature, applicable to water-vapour generally whether saturated or superheated. This equation involves certain constants, and he adjusted these to accord with well-established results of experiment. He proceeded to show that it was practicable to deduce from the characteristic equation, in the form assumed by him, by aid of relations depending only on the general principles of thermodynamics, expressions for all the important properties of steam, from which numerical values could be deduced within the range to which the characteristic equation might be held applicable, namely, for pressures such as correspond to saturation temperatures extending from 0° to 200° C. or so. Within this range the values so deduced are found

to agree remarkably well with the results of such direct measurements as have been made, especially with those in which there are good grounds for believing the experiments to be accurate. At the time when Callendar devised his equation there was comparatively little material for such a comparison; but now, thanks especially to measurements of the volume and specific heat of steam carried out for the most part in the Laboratory of Technical Physics at Munich, there is considerably more. new data go to confirm the general correctness of Callendar's method, and to establish the conclusion that the values derived from his equation may be accepted with confidence for the purposes of engineering calculation within the stated range, which, moreover, is the range usual in engineering practice. These values have the great advantage of being thermodynamically consistent with one another, which cannot be said of the numbers in the older steam tables. For pressures such as correspond to saturation temperatures much beyond 200° C., experiments are lacking, and it may be expected that the Callendar equation will not apply to them with so high a degree of approximation as it does for pressures within the usual range."

To Professor Mollier of Dresden, who has made many valuable contributions to technical thermodynamics, belongs the distinction of being the first to appreciate the practical importance of Callendar's work. In 1906 he published a set of steam tables which were calculated by means of formulæ derived according to the method of Callendar. These tables gave numerical values, in metric units, of all the chief properties of saturated steam. Mollier also devised convenient means of exhibiting the properties of steam graphically, and included in his publication two most useful charts in which, by means of systems of lines, the properties of superheated, as well as saturated, steam are represented on a scale suitable for engineering requirements. By permission of Professor Mollier I reproduced his tables and charts in the book referred to above, making only a few additions to the tables with the view of adapting them to the needs of English students.

Once a student has learnt the use of such charts they are more valuable to him than any numerical tables. They are far more comprehensive as a statement of facts about steam, for they give continuous values and they include the region of superheat

—a region of much importance now that steam is commonly used in the superheated state. They enable the student to follow a process graphically with a better understanding of all its stages; moreover, many practical problems are solved by measurement from the chart with much less expenditure of time and trouble than would be needed in numerical calculations using data furnished in the columns of a table.

Messrs. Smith and Warren have independently applied the same methods of calculation, founded on Callendar's work, as were applied by Mollier, but using English units. Their results agree in all material particulars with Mollier's. If small differences are found here and there, they are due to a slightly different adjustment of the various constants which enter into the formulæ, or to steps of the calculation being carried out with a greater or less number of significant figures, and are in no case of practical consequence so far as engineering uses of the tables are concerned. It is to be hoped that with the additional assistance these tables supply, English engineers and students will realise that the new method of calculation should be adopted and the tables and formulæ of the old text-books be abandoned as obsolete.

The authors have, at my suggestion, adopted I as the symbol for "total heat" in the sense used by Callendar and Mollier, which is different from the sense in which the phrase "total heat" was used by Rankine and other early writers. Rankine's total heat of steam (usually written as H) was the heat required for its formation under constant pressure, starting from the state of water at 0° C. It was made up of first, the heat required to raise the water from 0° C. to the temperature at which steam was formed, and secondly, the "latent heat" taken in at that temperature in changing from water to steam. new "total heat" I comprises these two quantities and also a third one, namely, the heat-equivalent of the work which would be spent in forcing the water (at 0° C.) into a vessel under the constant pressure at which steam is to be formed. This term is a small one: the numerical values of I are therefore only slightly greater than those of H; but the difference in definition is very important. The total heat I under the new definition is a function of much greater convenience in thermodynamic calculations. Students will be less liable to confuse the two quantities when they have a different symbol for the new total heat from that which was generally used to express total heat in its old meaning.

The authors have included a set of tables in which the Fahrenheit scale of temperature is employed. This may be a prudent concession to national bad habits, but students cannot be too strongly urged to accustom themselves to the use of the Centigrade scale in all steam calculations. "To adhere to Fahrenheit degrees and the quantities dependent on them is to maintain a wholly unnecessary and exceedingly inconvenient barrier, not only between applied science and the science of the physical laboratory, but also between the engineering of England and that of other countries."

J. A. E.

November, 1912.

THE NEW STEAM TABLES

DERIVATION AND APPLICATION.

UNTIL quite recently steam tables have been calculated from a number of purely empirical formulæ based entirely upon experimental data. The thermodynamic relations existing between the various quantities were unrecognised by the earlier investigators. All the experimental errors were introduced, and the tables so compiled contained many inconsistencies. These have been exposed by the researches of Callendar,* upon whose work the present steam tables are founded.

Callendar developed the Joule-Thomson equation, and gave it in such a form as to represent accurately the properties of steam. whether superheated or saturated. Further, he demonstrated the thermodynamic relations existing between the various properties and deduced accurate formulæ for the calculation of quantities previously represented empirically. Such a method of attack renders the tables consistent. Subsequent research substantiated generally Callendar's deductions, and suggested slight adjustments of the experimentally determined constants. Mollier utilised Callendar's work. He made calculations and published tables, using the Continental units. The tables following represent the properties of steam, calculated in a similar manner, and given in English units. The fundamental equation, given by Callendar, connecting pressure volume and temperature is assumed. The immediate object is to deduce the formulæ from which the properties have been calculated, starting from the most elementary considerations in thermodynamics. The importance of the work has been accentuated by the development of the steam turbine. In nearly all calculations in which tables are used small differences of

^{* &}quot;On the Thermodynamical Properties of Gases and Vapours as deduced from a Modified Form of the Joule-Thomson Equation, with Special Reference to the Properties of Steam." H. L. Callendar, Proc. Roy. Soc., Vol. lxvii., 1900.

large quantities are dealt with. It is, therefore, more important that the tables should be consistent than that the absolute values of the quantities represented should be exact. For this reason, therefore, calculations are made to more significant figures than can be experimentally verified. This is permissible, for absolute errors made in the quantities cancel out in the differences. We thus obtain the differences to a greater accuracy than the absolute values.

Equations for Gases.—In a fluid we have three variables (pressure, volume and temperature), of which any two define the third. Taking p as the pressure, v the volume and θ the absolute temperature, we have the well-known relation for a perfect gas (when the volume is large) $pv = R \theta$. Various equations have been suggested to represent the deviations of vapours from this simple law. One suggested by Rankine in 1854 for CO_3 was

$$p v = R \theta - \frac{a}{\theta v} \tag{1}$$

Joule and Thomson subsequently modified this formula and wrote the equation in the form

$$v = \frac{R \theta}{p} - \frac{a}{R \theta^2}$$
 (2)

The final form of the equation, as given by Callendar, is

$$v - b = \frac{\mathbf{R}\,\boldsymbol{\theta}}{p} - c_o \left(\frac{\boldsymbol{\theta}_o}{\boldsymbol{\theta}}\right)^n = \mathbf{V} - c \tag{3}$$

The basis of this formula is, perhaps, best explained by quoting Callendar himself.*

"It is practically certain that the equation of a perfect, or plu-perfect, gas at high temperatures is not $pv = R \theta$, but $p(v-b) = R \theta$, where b is the minimum volume or 'co-volume' of Hirn and Van der Waals. The co-volume b is variously regarded as being equal to four times or $4\sqrt{2}$ times the absolute volume of the molecules. It is relatively small at moderate pressures (about one-thousandth of v at atmospheric pressure), and is often negligible, but may with great probability be taken as equal to the volume of the liquid at temperatures where the vapour pressure is small.

"It is usual in the kinetic theory of gases, either tacitly or explicitly, to make the fundamental assumption that the average total kinetic energy of the molecules of a gas, including motions of vibration or rotation, is directly proportional to the kinetic energy of translation, which is equal to $\frac{3 p v}{2}$ per unit mass at It follows, from this assumption, that the any temperature. limiting value of the specific heat of a gas in the ideal state $(p = o, v = \alpha)$, either at constant pressure or at constant volume, must be constant, if the molecule is stable, since it is directly proportional to $\frac{p \ v}{\theta}$, which tends to a constant limit when p = o, even in the case of vapours at temperatures far below their boiling points. These constant limiting values of the two fundamental specific heats will be denoted by the symbols* K_{po} and K_{vo} respectively. As a further simplification we may assume that the kinetic energy of a vapour is proportional to p(v-b) at all stages and not only in the limit. On this assumption it is also necessary to suppose that the index of θ in the small term $\frac{a}{\operatorname{R} \theta^2}$ in the Joule-Thomson equation is not 2 but $n = \frac{J K_{vo}}{R}$, the ratio of the limiting value of the specific heat at constant volume to the limiting value of $\frac{p \ v}{\theta}$. If we adopt the hypothesis of Clerk Maxwell with regard to the distribution of energy between the various degrees of freedom of a molecule, which, in the absence of certain knowledge with regard to the exact nature of a molecule, appears to be the only practical working hypothesis, the theoretical value of this limiting ratio should be 1.5 for a monatomic gas like argon, 2.5 for a diatomic gas like oxygen and hydrogen, 8.5 for a triatomic gas like steam or CO₂, and so on, increasing by unity for each additional atom The value 3.5 for the index is closely verified in the molecule. in the case of steam by the experiments to be described on the Joule-Thomson effect, and also by the experiments on the specific heat, by which this relation was first suggested."

^{*} New symbols are here substituted for those used by Callendar.

"Adopting these two modifications, of which the second is the more important, the equation may be written in the form shown above (equation 8), in which v is taken as a convenient abbreviation for the ideal volume $\frac{R}{p}$, and the co-volume b is taken as constant and equal to the volume of the liquid. The small correction c, representing the state of co-aggregation of the molecules, is called the "co-aggregation volume," and is a function of the temperature only, varying inversely as the n-th power of the absolute temperature, where the index n is used as an abbreviation for $\frac{J K_{vo}}{R}$. It is a quantity of the same dimensions as a volume."

We are solely concerned with steam, in which case the constant n is taken as $\frac{10}{8}$. This value is the modification of 3.5 made by Callendar (since confirmed by further research) to bring the results closer into line with experimental data. The constant b (the co-volume) is taken as 01602 cubic feet, being the volume of 1 lb. of water at a low temperature when the pressure is small. The value of the constant R is determined from the molecular weight of water, and is taken as 154.1 (temperature measured in °C.).

Thermodynamics of Steam.—In order to develop the thermodynamics we shall have to make considerable use of simple partial differential equations. It is therefore advisable to state one or two fundamental facts concerning them.

Suppose we have any three quantities, u, x and y, such that any two determine the third, then we have

$$du = \left(\frac{du}{dx}\right)_{\mathbf{v}} dx + \left(\frac{du}{dy}\right)_{\mathbf{x}} dy \tag{4}$$

Illustration.

If
$$P V = R \theta$$
 then $d \theta = \left(\frac{d \theta}{d P}\right)_v d P + \left(\frac{d \theta}{d V}\right)_p d V$
= $\frac{V}{R} \cdot d P + \frac{P}{R} d V$.

Further, the existence of such a condition as above (equation 4) is a proof* that u is a function of x and y, and always returns to

^{*} See Perry's "Calculus for Engineers," pp. 142-143.

the same value when x and y return to their original values. Since $\left(\frac{d^2 u}{d y \cdot d x}\right) = \left(\frac{d^2 u}{d x \cdot d y}\right)$ we have if u is a function of x and y, and du = K dx + B dy, then $K = \left(\frac{d u}{d x}\right)_y$ and $B = \left(\frac{d u}{d y}\right)_x$ and therefore

$$\left(\frac{d \mathbf{K}}{d y}\right) = \left(\frac{d \mathbf{B}}{d x}\right) \tag{5}$$

The application of this follows. Since the state of a gas is completely defined by two of the three variables we have, during any small addition of heat, d I,

$$d\mathbf{I} = \mathbf{K} d\theta + \mathbf{B} dv \tag{6}$$

$$= C d \theta + D d p \tag{7}$$

$$= \mathbf{E} \, d \, p + \mathbf{F} \, d \, v, \tag{8}$$

where K, B, C, D, E and F are all functions of the state of the stuff. If E is the internal energy, we have

$$dE = dI - j p \cdot d v, (9)$$

where j is the reciprocal of Joule's equivalent. Now, from the first law of thermodynamics, $d \to a$ is a complete differential. Substituting for $d \to a$ from (6), we obtain

$$d\mathbf{E} = \mathbf{K} d\theta + (\mathbf{B} - j p) dv. \tag{10}$$

Applying (5)

$$\left(\frac{d \mathbf{K}}{d v}\right)_{\theta} = \left(\frac{d (\mathbf{B} - j p)}{d \theta}\right)_{v}$$

$$\left(\frac{d \mathbf{K}}{d v}\right)_{\theta} = \left(\frac{d \mathbf{B}}{d \theta}\right)_{v} - j \left(\frac{d p}{d \theta}\right)_{v}$$
(11)

Also

$$d \mathbf{E} = d \mathbf{I} - j p \cdot d v$$

= $\mathbf{C} d \theta + \mathbf{D} d p - j p d v$,

but

$$dv = \left(\frac{dv}{d\theta}\right)_{p} d\theta + \left(\frac{dv}{dp}\right)_{v} dp$$

whence $d E = d \theta \left\{ C - j p \left(\frac{d v}{d \theta} \right)_p \right\} + d p \left\{ D - j p \left(\frac{d v}{d p} \right) \right\}$

Again applying (5)

$$\left(\frac{d c}{d p}\right)_{\theta} - j \left(\frac{d v}{d \theta}\right)_{p} - j p \left(\frac{d^{2} v}{d p \cdot d \theta}\right) = \left(\frac{d D}{d \theta}\right)_{p} - j p \left(\frac{d^{2} v}{d \theta \cdot d p}\right) \\
\left(\frac{d C}{d p}\right)_{\theta} - \left(\frac{d D}{d \theta}\right)_{p} = j \left(\frac{d v}{d \theta}\right)_{p} \tag{12}$$

or

If ϕ is the entropy we have

$$d \phi = \frac{d I}{\theta} = \frac{K}{\theta} d \theta + \frac{B}{\theta} d v,$$

$$\therefore \frac{1}{\theta} \left(\frac{d K}{d v} \right)_{\theta} = \frac{1}{\theta} \left(\frac{d B}{d \theta} \right)_{v} - \frac{B}{\theta^{2}}$$

$$\left(\frac{d K}{d v} \right)_{\theta} = \left(\frac{d B}{d \theta} \right)_{v} - \frac{B}{\theta}.$$
(13)

or

From (11) and (13)

$$\frac{\mathbf{B}}{\theta} = j \left(\frac{d \, p}{d \, \theta} \right)_{\mathbf{r}}.\tag{14}$$

Partially differentiating (14) with respect to θ , considering v constant, we have

$$\frac{1}{\theta} \left(\frac{d B}{d \theta} \right)_{v} - \frac{B}{\theta^{2}} = j \left(\frac{d^{2} p}{d \theta^{2}} \right)_{v} = \frac{1}{\theta} \left(\frac{d K}{d v} \right)_{\theta} \text{ from (13)}$$

$$\left(\frac{d K}{d v} \right)_{\theta} = j \theta \left(\frac{d^{2} p}{d \theta^{2}} \right)_{v}.$$
(15)

or

Also from (7)

$$d \phi = \frac{\mathbf{C}}{\theta} d \theta + \frac{\mathbf{D}}{\theta} d p,$$

$$\therefore \frac{1}{\theta} \left(\frac{d \mathbf{C}}{d p} \right)_{\theta} = \frac{1}{\theta} \left(\frac{d \mathbf{D}}{d \theta} \right)_{p} - \frac{\mathbf{D}}{\theta^{2}}$$

$$\left(\frac{d \mathbf{C}}{d p} \right)_{\theta} = \left(\frac{d \mathbf{D}}{d \theta} \right)_{p} - \frac{\mathbf{D}}{\theta}.$$
(16)

or

From (12)

$$\begin{pmatrix} \left(\frac{d \, C}{d \, p}\right)_{\theta} = \left(\frac{d \, D}{d \, \theta}\right)_{p} + j \left(\frac{d \, v}{d \, \theta}\right)_{p} \cdot
\text{Hence} \qquad j \left(\frac{d \, v}{d \, \theta}\right)_{p} = -\frac{D}{\theta}. \tag{17}$$

Partially differentiating (17) with respect to θ , p being considered constant, we have

$$j^{p} \left(\frac{d^{2} v}{d \theta^{2}} \right)_{p} = \frac{D}{\theta^{2}} - \frac{1}{\theta} \left(\frac{d D}{d \theta} \right)_{p} = -\frac{1}{\theta} \left(\frac{d C}{d p} \right)_{\theta} \text{ from (16),}$$

$$\left(\frac{d C}{d p} \right)_{\theta} = -j \theta \left(\frac{d^{2} v}{d \theta^{2}} \right)_{p}.$$
(18)

or

Equations (15) and (16) are the two fundamental equations from which Callendar has derived the whole of the properties of steam. It will be noticed that in a constant volume change of state K equals the addition of heat divided by the increase of

temperature, or it is the specific heat at constant volume $(K = K_v)$. Similarly $C = K_p$.

Let us apply equation (18) to (3).

We have
$$v - b = \frac{R}{p} \theta - c_0 \left(\frac{\theta_0}{\theta}\right)^n = V - c.$$
whence
$$\left(\frac{d^2 v}{d \theta^2}\right)_p = -\frac{n (n+1) c}{\theta^2}$$

$$- j \theta \left(\frac{d^2 v}{d \theta^2}\right)_p = \frac{n (n+1) c j}{\theta} = \left(\frac{d C}{d p}\right)_{\theta}.$$

Integrating we have

$$K_p = C = K_{po} + \frac{n (n+1) c j p}{\theta}.$$
 (19)

where K_{po} is the constant of integration, and is the limiting value of K_p when the pressure is zero.

We have also from (3)

$$p V = R \theta, \tag{20}$$

whence

$$V\left(\frac{d\ p}{d\ \theta}\right)_{v} + p\left(\frac{d\ V}{d\ \theta}\right)_{v} = R \tag{21}$$

and

$$V\left(\frac{d^2 p}{d\theta^2}\right)_v + 2\left(\frac{dV}{d\theta}\right)_v \left(\frac{dp}{d\theta}\right)_v + p\left(\frac{d^2 V}{d\theta^2}\right)_v = 0$$
 (22)

but

$$\left(\frac{d}{d}\frac{\mathbf{V}}{\theta}\right)_{\mathbf{r}} = -\frac{n}{\theta},\tag{23}$$

and hence from (21)
$$\left(\frac{d}{d}\frac{p}{\theta}\right)_v = \frac{p}{V\theta} (V + nc).$$
 (24)

Also
$$\left(\frac{d^2 V}{d \theta^2}\right)_v = \frac{n (n+1) c}{\theta^2}.$$
 (25)

Substituting from (23), (24) and (25) in (22) we obtain

$$V\left(\frac{d^{2} p}{d \theta^{2}}\right)_{v} = \frac{p c}{\theta^{2}} \left(\frac{2 n^{2} c}{V} + n - n^{2}\right)$$

$$j \theta \left(\frac{d^{2} p}{d \theta^{2}}\right)_{v} = j R c \left(\frac{2 n^{2} c}{V^{3}} - \frac{n^{2} - n}{V^{2}}\right) = \left(\frac{d K_{v}}{d v}\right)_{\theta}$$

$$= j \left(\frac{d K_{v}}{d V}\right)_{\theta} \text{ from (15)}. (26)$$

Integrating

$$\begin{split} \mathbf{K}_{v} &= \int j \, \mathbf{R} \, c \, \left(\frac{2 \, n^{2}}{\mathbf{V}^{8}} - \frac{n^{2} - n}{\mathbf{V}^{2}} \right) \, d \, \, \mathbf{V}, \\ &= \mathbf{K}_{vo} + \frac{n^{2} - n}{\mathbf{V}} \, j \, \mathbf{R} \, c - \frac{n^{2} \, c}{\mathbf{V}} \, j \, \mathbf{R} \, c, \end{split}$$

but

$$n R = J K_{vo}$$
.

whence

Hence
$$K_v = K_{vo} \left\{ 1 + \frac{n c}{V} - \frac{c}{V} - \frac{n c^2}{V^2} \right\}$$

= $K_{vo} \left\{ 1 + \frac{n c}{V} \right\} \left\{ 1 - \frac{c}{V} \right\}.$ (27)

The value of c may be calculated for any temperature if known for one, since

$$c = c_0 \left(\frac{\theta_0}{\theta}\right)^n. \tag{28}$$

Both c and n may be determined by the measurement of the fall in temperature per unit drop in pressure when steam passes through a restricted orifice. The theory is as follows:

From (7) and (17) we have

$$\left(\frac{d}{d}\frac{I}{p}\right)_{\theta} = D = -\theta j \left(\frac{d}{d}\frac{v}{\theta}\right)_{p}.$$
 (29)

If I is the total heat of steam then

$$I_{t} = E + j p v$$

$$d I_{t} = d E + j d (p v)$$

$$= d E + j v d p + j p d v$$

$$= d I + j v d p$$

$$= \left(\frac{d I}{d \theta}\right)_{p} d \theta + \left(\frac{d I}{d p}\right)_{\theta} d p + j v d p$$

$$= K_{p} d \theta - \left\{\theta j \left(\frac{d v}{d \theta}\right)_{p} - j v\right\} d p \text{ from (29)}.$$

In expansion through a restricted orifice the total heat is constant, i.e., $dI_t = 0$.

Hence
$$K_{p}\left(\frac{d\theta}{dp}\right)_{I} = \theta j \left(\frac{dv}{d\theta}\right)_{p} - jv.$$
 (31)

Applying (31) to (3) we obtain

$$K_{p}\left(\frac{d \theta}{d p}\right)_{I_{t}} = \theta j \left(\frac{R}{p} + \frac{n c}{\theta}\right) - j v$$

$$= j (v - b + c + n c) - j v$$

$$= j (n + 1) c - j b.$$
(32)

whence n and c can be found experimentally.

As before stated n is taken as $\frac{10}{3}$; c_o is taken as 1.2014 cub. ft. Since $K_{vo} = n j R$ and $K_{po} = K_{vo} + j R$ it follows that $K_{vo} = .367$ and $K_{po} = .477$.

Isothermal change from pressure p_0 to p_1 at temperature θ_0 .—Defining the change in state by the variables p and θ we have for an isothermal

$$d \phi = \left(\frac{d \phi}{d p}\right)_{\theta} d p$$

$$d \phi = \frac{d \mathbf{I}}{\theta} = \frac{\mathbf{C}}{\theta} d \theta + \frac{\mathbf{D}}{\theta} d p \text{ from (7)}.$$

but

Since $d\theta = 0$ we have $\left(\frac{d\phi}{dp}\right)_{\theta} = \frac{D}{\theta} = -j\left(\frac{dv}{d\theta}\right)_{p}$ from (17).

Whence
$$d \phi = -j \left(\frac{d v}{d \theta}\right)_p d p = -j \left(\frac{R}{p} + \frac{n c_0}{\theta_0}\right) d p$$
 (88)

$$\therefore \quad \phi_{1} - \phi_{0} = j \int_{p_{0}}^{p_{1}} \left(-\frac{R}{p} d \, p - \frac{n \, c_{o}}{\theta_{0}} d \, p \right)$$

$$= R \, j \log_{e} \frac{p_{0}}{p_{1}} + \frac{n \, c_{o} j}{\theta_{0}} (p_{0} - p_{1}). \tag{84}$$

The heat added $I_1 - I_0 = \theta_0 (\phi_1 - \phi_0)$

$$= R j \theta_0 \log_e \frac{p_0}{p_1} + n c_o j (p_0 - p_1). \tag{35}$$

The work done

$$W = \int_{v_0}^{v_1} p \, dv$$

$$= \int_{v_0}^{v_1} \frac{R \, \theta_0}{v - b + c_0} \, dv$$

$$= \left[R \, \theta_0 \log_e \left(v - b + c_0 \right) \right]_{v_0}^{v_1}$$

$$= R \, \theta_0 \log_e \frac{p_0}{p_1} \, \text{ft. lbs.}$$

$$= R \, j \, \theta_0 \log_e \frac{p_0}{p_1} \, \text{lb. calories.}$$
 (36)

... The change of internal energy

$$E_1 - E_0 = n c_0 j (p_0 - p_1)$$
 lb. calories.

Constant pressure change from temperature θ_1 to θ_2 at pressure p_1 .

The heat added
$$I_2 - I_1 = \int_{\theta_1}^{\theta_2} K_p d\theta$$

$$= \int_{\theta_1}^{\theta_2} K_{po} d\theta + n(n+1) j p_1 \int_{\theta_1}^{\theta_2} \frac{c}{\theta} d\theta$$

$$= K_{po} (\theta_2 - \theta_1) + (n+1) j p_1 (c_1 - c_2). \tag{37}$$

The work done W =
$$\int_{v_1}^{v_2} p_1 dv = p_1 (v_2 - v_1)$$

= R $(\theta_2 - \theta_1) + p_1 (c_1 - c_2)$ ft. lbs. (38)

Whence change of internal energy

$$E_2 - E_1 = K_{vo}(\theta_2 - \theta_1) + n j p_1(c_1 - c_2)$$
(39)

The change of entropy $(\phi_2 - \phi_1) = \int_{\theta_1}^{\theta_2} K_{po} \frac{d \theta}{\theta}$

$$= K_{po} \log_{\bullet} \frac{\theta_2}{\theta_1} + n p_1 \left(\frac{c_1}{\theta_1} - \frac{c_2}{\theta_2} \right). \tag{40}$$

Any change in state from $p_0 v_0 \theta_0$ to a state $p_2 v_2 \theta_2$ may be considered as made up of an isothermal change and of a constant pressure change. The change of internal energy and of entropy is independent of the path.

Noting that $\theta_0 = \theta_1$, $c_0 = c_1$, and $p_1 = p_2$ we have

$$E_2 - E_0 = K_{vo} (\theta_2 - \theta_0) + n j (p_0 c_0 - p_2 c_2)$$
 (41)

and
$$(\phi_2 - \phi_0) = K_{p_0} \log_{\bullet} \frac{\theta_2}{\theta_0} - j R \log_{\bullet} \frac{p_2}{p_0} - n j \left(\frac{p_2 c_2}{\theta_2} - \frac{p_0 c_0}{\theta_0} \right)$$
. (42)

Measuring both the internal energy and the entropy from 0°C we may conveniently write these expressions—

$$E = K_{vo} T - n j p c + const.$$
 (48)

 $\mathbf{a}\mathbf{n}\mathbf{d}$

$$\phi = K_{po} \log_{\bullet} \theta - j R \log_{\bullet} p - \frac{n j p c}{\theta} + \text{const.}$$
 (44)

The total heat I = E + j p v

$$= K_{vo} T - n j p c + j p \left(\frac{R \theta}{p} - c + b\right) + \text{const.}$$

$$= K_{vo} T + j R T - j p c (n + 1) + j p b + \text{const.}$$

$$= K_{po} T - j p \{ (n + 1) c - b \} + \text{const.}$$
(45)

The constants of integration can be found from experimental results. For instance, in equation (45) we may take $T=100^{\circ}$ C., $p=14.7\times144$ lbs. square foot, and I=639.6. Putting in these values we have

$$639.6 = 47.7 - \frac{14.7 \times 144}{1,400} \left\{ \frac{13}{3} \left(\frac{273}{373} \right)^{\frac{16}{3}} \times 1.2014 - 0.01602 \right\}$$

+ const. whence the constant = 594.7.

Further, ϕ for saturated steam is equal to $\phi_w + \frac{L}{\theta}$. From the determination of ϕ_w (given later) and of L, determined experi-

(50)

mentally, we may assign the value 1.759 to the entropy of saturated steam at 100° C. Whence from equation (44)

$$1.759 = .477 \log_e 878 - \frac{154.1}{1400} \log_e 14.7 \times 144 - \frac{10 \times 14.7 \times 144}{8 \times 1400}$$

$$\times \left(\frac{273}{373}\right)^{19} \times \frac{1\cdot2014}{373} + \text{const.}$$

from which the const. = -0.217.

Similarly the constant in equation (43) is 564.6.

Mollier has put these expressions into a more convenient form for the purposes of numerical calculations. In place of $j \{(n+1)c-b\}$ and $\frac{n c j}{\theta}$ he used two single symbols, which, following Ewing's notation, we shall write as Y and Z respectively. Then if values of c, Y and Z are calculated the necessary quantities can be tabulated. We have for the volume of saturated or superheated steam

$$v = 154 \cdot 1 \frac{\theta}{p} - c + 0160 \tag{46}$$

for the total heat,

$$I = 594.7 + 0.477 T - Y p (48)$$

for the entropy,

$$\phi = 0.477 \log_{e} \theta - 0.1101 \log_{e} p - Z p - 0.217 \tag{49}$$

or $\phi = 1.0984 \log_{10} \theta - 0.2585 \log_{10} p - Z p - 0.217$ for the internal energy

$$E = 564.6 + 0.367 T - \frac{10}{8} \times 1400 c p$$
 (51)

and for the specific heat at constant pressure

$$K_p = 0.477 + \frac{18}{3} Z p.$$
 (52)

The internal energy of water may be calculated sufficiently accurately from Regnault's formula—

$$e = T + 0.00002 T^2 + 0.0000003 T^8$$
 (53)

The total heat of water $i = e + j p v_w(54)$ where v_w is the volume of 1 lb. of water, and may be taken equal to b (neglecting the compressibility of water). The specific heat of water is obtained by differentiating equation (53). Calling the specific heat s the entropy of water

$$\phi_w = \int_{273}^{\theta} \frac{s \, d \, \theta}{\theta} = 2.4819 \log_{10} \frac{\theta}{273} - 0.0002057 \,\mathrm{T} + 0.00000045 \,\mathrm{T}^2$$
 (55)

The latent heat
$$L = I - i$$
 (56)
 $= \theta (\phi_* - \phi_*).$ (57)

Equations (56) and (57) define the relation between pressure and temperature for saturated steam. The relation is, however, so involved that it cannot be practically applied. The method used is to assume the relation between pressure and temperature, to calculate the quantities, and make the necessary adjustments to bring these two relations, (56) and (57) into line.

The Uses of the Steam Tables.

Total Heat of Steam.—In the case of saturated steam the total heat (I) can be directly obtained from the tables.

In the case of *initially wet* steam the total heat = i + x L where x is the dryness fraction. Thus at 100 lbs. per square inch, if x = 8 the total heat $= 166.2 + .8 \times 495.9 = 562.9$ lb.-calories.

In the case of superheated steam the total heat = I + k_a (T₁ - T₂) where k_a is the average specific heat from saturation to T₁, the temperature to which the steam is superheated, and T₂ = temperature of saturation. Thus at 100 lbs. per square inch, if T₁ = 300° C., we have from the tables I = 662·1, T₂ = 164·1° C., and k_a = ·526. Hence total heat = 662·1 + ·526 (300-164·1), = 793·6 lb.-calories.

The Entropy of Steam.—In the case of saturated steam the entropy is given in the tables (ϕ_s) .

In the case of initially wet steam the entropy $= \phi_w + x \ (\phi_s - \phi_w)$. Thus at 100 lbs. per sq. inch, if x = 8 the entropy = 476 + 8 (1610 - 476) = 1383 ranks.

In the case of superheated steam the entropy may be calculated from the formula given in the previous chapter. It is, however considerably simpler, and sufficiently accurate, to assume that the entropy = $\phi_s + k_a \log_e \frac{\theta_1}{\theta_2}$ where θ_1 and θ_2 are respectively the absolute temperature of superheat and of saturation. Thus for steam superheated to 300° C. at 100 lbs. per square inch, the entropy = 1.610 + .526 $\log_e \frac{573}{437.1}$ = 1.752.

Throttling of Steam.—When steam is throttled, it can be shown readily that the total heat remains constant. This fact being given, the condition of the steam after throttling can be determined from the tables. Thus steam at 100 lbs. pressure is throttled to a pressure of 40 lbs. per square inch, to find the final condition when the steam is (1) initially saturated; (2) initially 80 per cent. dry; (3) initially superheated to 300° C.

Case 1.—Total heat = 662·1 B.Th.U. The total heat of saturated steam at 30 lbs. per square inch pressure is 651·2. Hence the steam after throttling will be superheated, the superheat being 10·9 B.Th.U. This corresponds roughly to 20° superheat. From the tables we then obtain the value ·521 for the average specific heat. The actual superheat is therefore $\frac{10·9}{\cdot 521}$ or 20·9° C. The final temperature is 130·6 + 20·9 = 151·5° C.

Case 2.—The steam is initially 80 per cent. dry, and the total heat is 562.9. This being less than 651.2, the steam will be finally wet. At 40 lbs. pressure i = 131.7 and L = 519.5. Since the total heat = i + x L we have $121.7 + x \times 519.5 = 562.9$, whence x = 88.00 per cent.

Case 3.—The steam is initially superheated to 300° C., and the total heat is 733.6. It will remain superheated and the superheat will be 733.6-651.2 or 82.4 B.Th.U. This is roughly 160° C. of superheat, and the specific heat is 501. The exact superheat is therefore $\frac{82.4}{.501}$ or 164.5° C. The final temperature is therefore 130.6 + 164.5 or 295.1° C.

Adiabatic Flow of Steam.—In any adiabatic change the entropy of the substance is unaltered. This condition suffices for the determination of the state of steam after such a change. Consider the case of steam expanding adiabatically from 100 lbs. per square inch to 40 lbs. per square inch, to find the final state if the steam is (1) initially saturated, (2) initially 80 per cent. dry, (3) initially superheated to 300° F.

Case 1.—The entropy = 1.610 ranks. The entropy of saturated steam at 40 lbs. per square inch = 1.681. Hence after expansion the steam will be wet, and its entropy will be $\phi_w + x$ ($\phi_s - \phi_w$). At 40 lbs. pressure $\phi_w = .394$ and $\phi_s = 1.681$. Hence $.394 + x \times 1.287 = 1.610$, whence x = .94.5 per cent.

Case 2.—The steam is initially 80 per cent. dry. The entropy = 1.383 ranks. At 40 lbs. pressure we have $.394 + x \times 1.287 = 1.383$, whence x = .76.8 per cent.

Case 3.—The steam is initially superheated to 300° C., and the entropy = 1.752 ranks. This is greater than the entropy of saturated steam at 40 lbs. per square inch, and hence the steam is still superheated after expansion. The entropy of superheat is 1.752 - 1.681 = .071 ranks. This corresponds to a superheat to about 190° C., whence k_a (from tables) = .513. Then .513 loge $\frac{\theta_1}{403.6} = .071$, whence the exact temperature of superheat = 190.5° C.

It will be noticed that in an adiabatic expansion the steam becomes wetter. This is always the case so long as the steam is initially fairly dry. If the steam is initially very wet it will become dryer on expansion. One example may be added, to find the dryness fraction of steam which on expanding from 100 lbs. per square inch to 40 lbs. per square inch becomes neither wetter nor dryer. We have $\cdot 476 + x (1.610 - \cdot 476) = \cdot 394 + x (1.681 - \cdot 394)$, whence x = 53.6 per cent.

Heat Drop.—In the flow of steam through a channel of varying action, such as a turbine nozzle, the kinetic energy acquired by the steam is equal to the drop in its total heat. If the flow is adiabatic the condition of the steam can be found as above and the change of total heat calculated with the aid of the tables. The Mollier diagram may be conveniently used for this purpose.

Approximate Formulæ.

The following formulæ (for lb.-Centigrade units) are found to hold approximately for temperatures above 100° C.

$$e = T + .00002 T^2 + .0000003 T^3$$
 (1)

$$i = T + .00001 T^2 + .0000004 T^3$$
 (2)

$$I = 589 + .602 T - .00096 T^{2}$$
 (3)

$$L = 588 - .375 T - .00114 T^{2}$$
 (4)

$$p V^{1.0676} = 491 (5)$$

$$\log_{10} p = A - \frac{B}{\theta} - \frac{C}{\theta^2}. \tag{6}$$

where

$$A = 6.10405$$

 $log_{10} B = 3.1821693$
 $log_{10} C = 5.0772011$.

For pressures below atmospheric

$$\begin{array}{c} A = 6.18123 \\ \log_{10} B = 3.1977522 \\ \log_{10} C = 5.0392819. \end{array}$$

 $H-L=1+.977 T+.00018 T^2$. This quantity should equal h, and it will be found to do so extremely closely over ordinary ranges.

For adiabatic expansion $p v^n = C$. Over the range 200 - 40 lbs. square inch for various initial dryness fractions n is given as follows:

x.	n.
1.0	1.144
•9	1.133
•8	1.120
.7	1.102
	Į

In lb.-Fahrenheit units the formulæ which are found to hold approximately for temperatures above 212° F. are

$$e = (T - 32) + .000011 (T - 32)^{2} + .00000009 (T - 32)^{3}$$

$$i = (T - 32) + .000009 (T - 32)^{2} + .00000011 (T - 32)^{3}$$

$$I = 1050.6 + .56 T - .0004 T^{2}$$

$$L = 1080.8 - .515 T - .0005 T^{2}$$

$$\log_{10}p = A - \frac{B}{\theta} - \frac{C}{\theta^{2}}.$$

For pressures above atmosphere

$$A = 6.10405$$

 $log_{10} B = 3.4374418$
 $log_{10} C = 5.5877461$.

For pressures below atmosphere

$$A = 6.18123$$

 $log_{10} B = 3.4530247$
 $log_{10} C = 5.5498269$.

TABLE Properties of Saturated Steam on

Pressure in lbs. per	Temperature in degrees	Absolute temperature	Specific volume in cubic feet	Total heat of	Internal heat of water in
square inch.	Centigrade.	in degrees Centigrade.	per 1b.	lbcalories.	lbcalories.
p.	T.	θ.	v.	í.	е.
0.1	1.6	274.6	2937	1.6	1.6
0.2	11.8	284.8	1523	11.8	11.8
0.3	18.1	291·1	1037	18.1	18.1
0.4	22.8	295.8	790.5	22.8	22.8
0.2	26.6	299.6	640.3	26.6	26·6
0.6	29.7	302.7	539·1	29.7	29.7
0.7	32.4	305.4	466.1	32.4	32.4
0.8	34.8	307.8	410.9	34.8	34.8
0.9	37.0	310.0	367.8	37.0	37.0
1.0	38.9	311.9	333.0	39.0	39.0
1.1	40.6	313.6	304:3	40.7	40.7
1.2	42.3	315.3	280.4	42.4	42.4
1.3	43.9	316.9	$260\overline{1}$	44.0	44.0
1.4	45.3	318.3	242.6	45.4	45.4
1.5	46.6	319.6	227.3	46.7	46.7
1.6	47:9	320.9	012.0	10-0	40.0
1.7	49.1	320 9 322·1	213·9 202·1	48·0 49·2	48.0
1.8	50.3	323·3			49.2
1.9	50·3 51·4	323 3 324·4	191.5	50·4	50.4
2.0	52.4	32 4*4 325:4	182.0	51·5	51.5
20	924	323 4	173:4	52.5	52·5
2.1	53.4	326.4	165.6	53·5	53.5
2.2	54.4	327.4	158.6	54.5	54.5
2.3	55·3	328.3	152.1	55.4	55.4
2.4	56.2	$329 \cdot 2$	146.1	56.3	$56.\overline{3}$
2.5	57.0	3 30·0	140.6	57·1	57.1
2.6	57.8	330.8	135.5	57:9	57:9
2.7	58.6	331.6	130.8	58.7	58.7
2.8	59.4	332.4	126.4	59·5	59·5
2.9	60.2	333.2	122.3	60.3	60.3
3.0	60.9	333.9	118.5	61.0	61.0
3.2	62:3	335.3	111:5	62:5	60.5
3.4	63.6	336·6	105.4	63·8	62.5
3.6	64.8	337·8	99.85	65.0	63.8
3.8	66.0	339.0	99.83	66·2	65.0
4.0	67.2	340.2	94.91	67·4	66.2
1 40	012	JIU 4	9U 41	01.4	67.4

I.

PRESSURE BASE (POUND CENTIGRADE UNITS).

Total heat of steam in libcalories. I. Total heat of steam in libcalories. Total heat of steam in lib		 				
595·4 565·2 593·8 0·006 2·168 0·1 600·2 568·9 588·4 0·042 2·108 0·2 603·3 571·3 585·2 0·064 2·074 0·3 605·4 572·9 582·6 0·080 2·050 0·4 607·1 574·2 580·5 0·093 2·030 0·5 608·6 575·4 578·9 0·103 2·015 0·6 609·9 576·4 577·5 0·112 2·003 0·7 611·0 577·2 576·2 0·120 1·992 0·8 612·0 578·0 575·0 0·127 1·982 0·9 612·9 578·7 573·9 0·133 1·973 1·0 613·7 579·3 573·0 0·139 1·965 1·1 614·5 579·9 572·1 0·144 1·958 1·2 615·2 580·4 571·2 0·149 1·951 1·3 615·8 <td>of steam in</td> <td>heat of steam in</td> <td>of steam in</td> <td>water in</td> <td>steam in</td> <td>lbs. per</td>	of steam in	heat of steam in	of steam in	water in	steam in	lbs. per
595·4 565·2 593·8 0·006 2·168 0·1 600·2 568·9 588·4 0·042 2·108 0·2 603·3 571·3 585·2 0·064 2·074 0·3 605·4 572·9 582·6 0·080 2·050 0·4 607·1 574·2 580·5 0·093 2·030 0·5 608·6 575·4 578·9 0·103 2·015 0·6 609·9 576·4 577·5 0·112 2·003 0·7 611·0 577·2 576·2 0·120 1·992 0·8 612·0 578·0 575·0 0·127 1·982 0·9 612·9 578·7 573·9 0·133 1·973 1·0 613·7 579·3 573·0 0·139 1·965 1·1 614·5 579·9 572·1 0·144 1·958 1·2 615·2 580·4 571·2 0·149 1·951 1·3 615·8 <td>τ.</td> <td>E.</td> <td>L.</td> <td>δ.</td> <td>φ</td> <td>p. </td>	τ.	E.	L.	δ.	φ	p.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	595.4	565.2	593.8	0.006	2.168	0.1
603·3 571·3 585·2 0·064 2·074 0·3 605·4 572·9 582·6 0·080 2·050 0·4 607·1 574·2 580·5 0·093 2·030 0·5 608·6 575·4 578·9 0·103 2·015 0·6 609·9 576·4 577·5 0·112 2·003 0·7 611·0 577·2 576·2 0·120 1·992 0·8 612·0 578·0 575·0 0·127 1·982 0·9 612·9 578·7 573·9 0·133 1·973 1·0 613·7 579·3 573·0 0·139 1·965 1·1 614·5 579·9 572·1 0·144 1·958 1·2 615·2 580·4 571·2 0·149 1·951 1·3 615·3 580·8 570·4 0·154 1·945 1·4 616·4 581·3 569·0 0·162 1·935 1·6 617·6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
605·4 572·9 582·6 0·080 2·050 0·4 607·1 574·2 580·5 0·093 2·030 0·5 608·6 575·4 578·9 0·103 2·015 0·6 609·9 576·4 577·5 0·112 2·003 0·7 611·0 577·2 576·2 0·120 1·992 0·8 612·0 578·0 575·0 0·127 1·982 0·9 612·9 578·7 573·9 0·133 1·973 1·0 613·7 579·3 573·0 0·139 1·965 1·1 614·5 579·9 572·1 0·144 1·958 1·2 615·2 580·4 571·2 0·149 1·951 1·3 615·3 580·8 570·4 0·154 1·945 1·4 616·4 581·3 569·0 0·162 1·935 1·6 617·6 582·2 568·4 0·166 1·930 1·7 618·1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
607·1 574·2 580·5 0·093 2·030 0·5 608·6 575·4 578·9 0·103 2·015 0·6 609·9 576·4 577·5 0·112 2·003 0·7 611·0 577·2 576·2 0·120 1·992 0·8 612·0 578·0 575·0 0·127 1·982 0·9 612·9 578·7 573·9 0·133 1·973 1·0 613·7 579·3 573·0 0·139 1·965 1·1 614·5 579·9 572·1 0·144 1·958 1·2 615·2 580·4 571·2 0·149 1·951 1·3 615·8 580·8 570·4 0·154 1·945 1·4 616·4 581·3 569·0 0·162 1·935 1·6 617·0 581·8 569·0 0·162 1·935 1·6 617·0 581·8 569·0 0·162 1·935 1·6 617·0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
608·6 575·4 578·9 0·103 2·015 0·6 609·9 576·4 577·5 0·112 2·003 0·7 611·0 577·2 576·2 0·120 1·992 0·8 612·0 578·0 575·0 0·127 1·982 0·9 612·9 578·7 573·0 0·139 1·965 1·1 613·7 579·3 573·0 0·139 1·965 1·1 614·5 579·9 572·1 0·144 1·958 1·2 615·2 580·4 571·2 0·149 1·951 1·3 615·8 580·8 570·4 0·154 1·945 1·4 616·4 581·3 569·7 0·158 1·940 1·5 617·0 581·8 569·0 0·162 1·935 1·6 617·6 582·2 568·4 0·166 1·930 1·7 618·1 582·6 567·7 0·169 1·926 1·8 618·6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	007.1	5742	990.9	0.093	2.030	0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000.0	1	5500	0.100	0.015	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		578.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	612.9	578.7	573.9	0.133	1.973	1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ļ					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	613.7	579.3	573.0	0.139	1.965	1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		579.9	572.1	0.144	1.958	1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	615.2					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0104	901.9	5097	0.190	1 340	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	617:0	501.0	560.0	0.169	1.025	1.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	619.1	583.4	566.6	0.176	1.918	2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0100					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		584.6				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		584.9	564.7	0.187	1.902	2.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	621.3	585.1	564.2	0.190	1.899	2.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	621.6	585.4	563.7	0.192	1.896	2.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	621.9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	022 8	0000	201.9	0 202	1 000	"
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	699.5	596.9	561.0	0.906	1.990	2.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
625.7 588.5 558.3 0.221 1.862 4.0						1
	625.7	988.9	558.3	0.551	1.862	4.0

TABLE I.
Properties of Saturated Steam on

lbs. per in degrees temperature in cubic feet water in of water in				i i		
p. T. 6. V. i. c. 4·2 68·3 34·1·3 86·42 68·5 68·5 4·4 69·4 342·4 82·74 69·6 69·6 4·6 70·4 343·4 79·35 70·6 70·6 4·8 71·4 344·4 76·25 71·6 71·6 5 72·4 345·4 73·39 72·6 72·6 6 76·7 349·7 61·87 77·0 77·0 7 80·5 353·5 53·56 80·8 80·8 8 83·8 356·8 47·27 84·1 84·1 9 86·8 359·8 42·33 87·2 87·2 10 89·6 362·6 38·37 90·0 90·0 11 92·1 365·1 35·09 92·5 92·5 12 94·4 367·4 32·35 94·9 94·9 13 96·6 36·9·7 30·01<	lbs. per	in degrees	in degrees	in cubic feet	water in	Internal heat of water in lbcalories.
4·4 69·4 342·4 82·74 69·6 69·6 4·6 70·4 343·4 79·35 70·6 70·6 4·8 71·4 344·4 76·25 71·6 71·6 5 72·4 345·4 73·39 72·6 72·6 6 76·7 349·7 61·87 77·0 77·0 7 80·5 353·5 53·56 80·8 80·8 8 83·8 356·8 47·27 84·1 84·1 9 86·8 359·8 42·33 87·2 87·2 10 89·6 362·6 38·37 90·0 90·0 11 92·1 365·1 35·09 92·5 92·5 12 94·4 36·4 32·35 94·9 94·9 13 96·6 369·7 30·01 97·1 97·1 14·7 100·0 373·6 26·25 100·5 100·5 15 100·6 373·6	p.	T.	-	₹.	i.	е.
4·4 69·4 342·4 82·74 69·6 69·6 4·6 70·4 343·4 79·35 70·6 70·6 4·8 71·4 344·4 76·25 71·6 71·6 5 72·4 345·4 73·39 72·6 72·6 6 76·7 349·7 61·87 77·0 77·0 7 80·5 353·5 53·56 80·8 80·8 8 83·8 356·8 47·27 84·1 84·1 9 86·8 359·8 42·33 87·2 87·2 10 89·6 362·6 38·37 90·0 90·0 11 92·1 365·1 35·09 92·5 92·5 12 94·4 36·4 32·35 94·9 94·9 13 96·6 369·7 30·01 97·1 97·1 14·7 100·0 373·6 26·25 100·5 100·5 15 100·6 373·6	4.2	68:3	341:3	86.42	68:5	68:5
4·6 70·4 343·4 79·35 70·6 70·6 4·8 71·4 344·4 76·25 71·6 71·6 5 72·4 345·4 73·39 72·6 72·6 6 76·7 349·7 61·87 77·0 77·0 7 80·5 353·5 53·56 80·8 80·8 8 83·8 356·8 47·27 84·1 84·1 9 86·8 359·8 42·33 87·2 87·2 10 89·6 362·6 38·37 90·0 90·0 11 92·1 365·1 35·09 92·5 92·5 12 94·4 36·7 30·01 97·1 97·1 14 98·7 371·7 28·01 99·2 99·2 14·7 100·0 373·0 26·75 100·5 10·5 15 100·6 373·6 26·25 101·1 10·7 16 102·4 375·4	4.4					
4·8 71·4 344·4 76·25 71·6 71·6 71·6 71·6 71·6 71·6 71·6 71·6 71·6 71·6 71·6 71·6 72·6 82·8 83·8 35·6 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·8 80·9 80·9 90·9 90·9 90·9 90·9 90·9 90·9 90·9 90·9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
5 72·4 345·4 73·39 72·6 72·6 6 76·7 349·7 61·87 77·0 77·0 7 80·5 353·5 53·56 80·8 80·8 8 83·8 356·8 47·27 84·1 84·1 9 86·8 359·8 42·33 87·2 87·2 10 89·6 362·6 38·37 90·0 90·0 11 92·1 365·1 35·09 92·5 92·5 12 94·4 367·4 32·35 94·9 94·9 13 96·6 369·7 30·01 97·1 97·1 14 98·7 371·7 28·01 99·2 99·2 14·7 100·0 373·6 26·75 100·5 100·5 15 100·6 373·6 26·25 101·1 101·1 16 102·4 375·4 24·71 103·0 102·9 17 10·1 37·1						
6 76·7 349·7 61·87 77·0 77·0 7 80·5 353·5 53·56 80·8 80·8 8 83·8 356·8 47·27 84·1 84·1 9 86·8 359·8 42·33 87·2 87·2 10 89·6 362·6 38·37 90·0 90·0 11 92·1 365·1 35·09 92·5 92·5 12 94·4 367·4 32·35 94·9 94·9 13 96·6 369·7 30·01 97·1 97·1 14 98·7 371·7 28·01 99·2 99·2 14·7 100·0 373·0 26·75 100·5 100·5 15 100·6 373·6 26·25 101·1 101·1 16 102·4 375·4 24·71 103·0 102·9 17 104·1 377·1 23·35 104·7 104·7 18 105·8 378·8 </td <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td>						
7 80·5 353·5 53·56 80·8 80·8 8 83·8 356·8 47·27 84·1 84·1 9 86·8 359·8 42·33 87·2 87·2 10 89·6 362·6 38·37 90·0 90·0 11 92·1 365·1 35·09 92·5 92·5 12 94·4 367·4 32·35 94·9 94·9 13 96·6 369·7 30·01 97·1 97·1 14 98·7 371·7 28·01 99·2 99·2 14·7 100·0 373·0 26·75 100·5 100·5 15 100·6 373·6 26·25 101·1 101·1 16 102·4 375·4 24·71 103·0 102·9 17 104·1 37·1 23·35 104·7 104·7 18 105·8 378·8 22·14 106·4 106·4 19 10·3 380·3	o	72.4	3454	13.39	12.0	12.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	76.7	349.7	61.87	77.0	77.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	80.5	353.5	53.56	80.8	80.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					84.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 "			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	090	302 0	30 31	30 0	900
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	92.1	365.1	35.09	92.5	92.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		94.4		32.35	9 4 ·9	94.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	96.6	369.7	30.01	97.1	97.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	98.7		28.01	99.2	99.2
15 100·6 373·6 26·25 101·1 101·1 16 102·4 375·4 24·71 103·0 102·9 17 104·1 377·1 23·35 104·7 104·7 18 105·8 378·8 22·14 106·4 106·4 19 107·3 380·3 21·04 107·9 107·9 20 108·8 381·8 20·06 109·5 109·4 21 110·3 383·3 19·16 111·0 110·9 22 111·7 384·7 18·35 112·4 112·3 23 113·0 386·0 17·60 113·8 113·7 24 114·3 387·3 16·91 115·1 115·0 25 115·5 388·5 16·28 116·3 116·2 26 116·7 389·7 15·70 117·5 117·4 27 117·9 390·9 15·16 118·7 118·6 28 1	14.7	100.0	373.0	26.75	100:5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				26.25		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1000	0.00		1011	1011
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		102.4	1 0.0 -			
19 107·3 380·3 21·04 107·9 107·9 20 108·8 381·8 20·06 109·5 109·4 21 110·3 383·3 19·16 111·0 110·9 22 111·7 384·7 18·35 112·4 112·3 23 113·0 386·0 17·60 113·8 113·7 24 114·3 387·3 16·91 115·1 115·0 25 115·5 388·5 16·28 116·3 116·2 26 116·7 389·7 15·70 117·5 117·4 27 117·9 390·9 15·16 118·7 118·6 28 119·1 392·1 14·65 120·0 119·9 29 120·2 393·2 14·18 121·1 121·0	17	104.1	377.1	23.35	104.7	104.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	105.8	378.8	22.14	106.4	106.4
20 108·8 381·8 20·06 109·5 109·4 21 110·3 383·3 19·16 111·0 110·9 22 111·7 384·7 18·35 112·4 112·3 23 113·0 386·0 17·60 113·8 113·7 24 114·3 387·3 16·91 115·1 115·0 25 115·5 388·5 16·28 116·3 116·2 26 116·7 389·7 15·70 117·5 117·4 27 117·9 390·9 15·16 118·7 118·6 28 119·1 392·1 14·65 120·0 119·9 29 120·2 393·2 14·18 121·1 121·0	19	107:3	380.3	21.04	107:9	107.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	108.8	381.8	20.06	109.5	109.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
23 113·0 386·0 17·60 113·8 113·7 24 114·3 387·3 16·91 115·1 115·0 25 115·5 388·5 16·28 116·3 116·2 26 116·7 389·7 15·70 117·5 117·4 27 117·9 390·9 15·16 118·7 118·6 28 119·1 392·1 14·65 120·0 119·9 29 120·2 393·2 14·18 121·1 121·0	21		383.3	19.16		110.9
24 114·3 387·3 16·91 115·1 115·0 25 115·5 388·5 16·28 116·3 116·2 26 116·7 389·7 15·70 117·5 117·4 27 117·9 390·9 15·16 118·7 118·6 28 119·1 392·1 14·65 120·0 119·9 29 120·2 393·2 14·18 121·1 121·0		111.7	384.7	18.35	112.4	112.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23	113.0	386.0	17.60	113.8	113.7
25 115·5 388·5 16·28 116·3 116·2 26 116·7 389·7 15·70 117·5 117·4 27 117·9 390·9 15·16 118·7 118·6 28 119·1 392·1 14·65 120·0 119·9 29 120·2 393·2 14·18 121·1 121·0	24	114.3	387.3	16.91	115.1	115.0
27 117·9 390·9 15·16 118·7 118·6 28 119·1 392·1 14·65 120·0 119·9 29 120·2 393·2 14·18 121·1 121·0		115.5	388.5	16.28		
27 117·9 390·9 15·16 118·7 118·6 28 119·1 392·1 14·65 120·0 119·9 29 120·2 393·2 14·18 121·1 121·0	00		000 #	17.70		
28 119·1 392·1 14·65 120·0 119·9 29 120·2 393·2 14·18 121·1 121·0						
29 120-2 393-2 14-18 121-1 121-0						
30 121·3 394·3 13·73 122·2 122·1			1			121.0
	30	121.3	394.3	13.73	122.2	122.1
31 122·3 395·3 13·31 123·2 123·1	21	199.2	305.2	12.21	199.9	199.1
32 123.3 396.3 12.92 124.2 124.1						
34 125·3 398·3 12·22 126·3 126·2						
35 126·2 399·2 11·89 127·2 127·1	აე	120.5	399.2	11.99	127.2	127.1

(continued).

Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	ϕ_{w} .	ϕ_{s} .	p.
696.9	F00.0	F 5 7 . F	0.004	1.050	4.9
626.2	588.9	557.7	0.224	1.858	4.2
626.7	589.2	557·1	0.227	1.854	4.4
627.2	5 89·6	556·6	0.230	1.850	4.6
627.6	589.9	556.0	0.233	1.847	4.8
628.0	590.2	555.4	0.236	1·844	5
629.9	591.7	552·9	0.2483	1.829	6
631.5	592.9	550.7	0.2593	1.817	7
632.9	594.0	548·8	0.2687	1.807	8
634.2	595.0	547.0	0.2771	1.797	9
635.4	595.9	545.4	0.2849	1.789	10
000 1		0101	0 2010	1.00	1 -0
636.5	596.8	544.0	0.2918	1.782	11
637.4	597.5	542.5	0.2983	1.775	12
638.3	598.2	541.2	0.3042	1.768	13
639.1	598.8	539.9	0.3099	1.762	14
639.6	599.1	539.1	0.3136	1.759	14.7
639.9	599.3	538.7	0.3152	1.757	15
0399	999.5	996 (0.3192	1 151	15
640.6	599.9	537.6	0.3200	1.752	16
641.3	600.5	536.6	0.3246	1.748	17
642.0	601.0	535.6	0.3291	1.743	18
642.6	601.5	534.7	0.3331	1.739	19
643.2	602.0	533.7	0.3371	1.735	20
010 2	0020	000 .	0 5511	1.00	20
643·8	602.4	532.8	0.3409	1.731	21
644.3	602.8	531.9	0.3446	1.727	22
644.8	603.1	531.1	0.3481	1.724	23
645.3	603.5	530.2	0.3515	1.720	$\begin{array}{c c} 24 \end{array}$
645.7	603.8	529.4	0.3548	1.717	25
010 1	0000	020 1	0.0010		20
646.2	604.2	528.6	0.3580	1.714	26
646.6	604.5	527.8	0.3610	1.711	27
647.1	604.9	527.1	0.3639	1.708	$\overline{28}$
647.5	605.2	526.4	0.3668	1.705	$\widetilde{29}$
647.9	605.5	525.7	3.3696	1.703	30
שובט	0000	0201	2 2020	1100	50
648.2	605.8	525.0	0.3723	1.700	31
648.6	606.1	524.4	0.3749	1.698	32
649.0	606.5	523.7	0.3775	1.696	33
649.4	606.7	523.1	0.3800	1.693	34
649.7	606.9	522.5	0.3824	1.691	35
0491	000 9	022 0	0 0024	1 001	40

TABLE I. Properties of Saturated Steam on

Pressure in lbs. per square inch.	Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories.
p.	T.	θ.	v.	i.	е.
36	127-1	400.1	11.58	128-1	128:0
37	128.0	401.0	11.29	129.0	128.9
38	128.9	401.9	11.01	129.9	129.8
39	129.8	402.8	10.74	130.8	130.7
40	130.6	403.6	10.48	131.7	131.6
41	131.4	404 [.] 4	10.24	132.5	132.4
42	132.2	405.2	10.00	133.3	133· 2
43	133.0	406.0	9.787	134.2	134·1
44	133.8	406.8	9.587	135.0	134.9
45	134 [.] 6	407.6	9.393	135.8	135.7
46	135.4	408:4	9.205	136.6	136.5
		409.2	9.023	137.4	137.3
47	136.2				
48	136.9	409.9	8.847	138.1	138.0
49	137.6	410.6	8.677	138.9	138.8
50	138:3	411.3	8.513	139.6	139.5
51	139.0	412.0	8:354	140.3	140.2
52	139.7	412.7	8.203	141.0	140.9
53	140.4	413.4	8 058	141.7	141.6
54	141.0	414.0	7.918	142.3	141.2
55	141.6	414.6	7.783	142.9	142.8
50	140.0	415.9	7.050	149.0	149.5
56	142.3	415.3	7.652	143.6	143.5
57	142.9	415.9	7.526	144.2	144.1
58	143.5	416.5	7.405	144.8	144.7
59	144.1	417.1	7.288	145.5	145.4
60	144.7	417.7	7.175	146·1	146.0
61	145.3	418.3	7:066	146.7	146.6
$6\overline{2}$	145.9	418.9	6.960	147:3	147.2
63	146.5	419.5	6.857	147.9	147.8
64	147.1	420.1	6.756	148.5	148.4
65	147.6	420.6	6.657	149.1	149.0
6.5		103.0			
66	148.2	421.2	6.561	149.7	149.6
67	148.8	421.8	6.469	150.3	150.2
68	149.4	422.4	6.380	150.9	150.8
69	149.9	422.9	6.294	151.5	151.4
70	150.4	423.4	6.211	152.0	151.9

(continued).

	·			·	 1
Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	r.	L.	ϕ_{w} .	ϕ_s .	p.
650.0	607.2	521.9	0.3848	1.689	36
650.3	607.4	521.3	0.3871	1.687	37
650.6	607.6	520.7	0.3893	1.685	38
650.9	607.8	520.1	0.3915	1.683	39
651.2	608.0	519.5	0.3936	1.681	40
051 2	0000	3193	0 5550	1 001	10
651.4	608.3	518.9	0.3957	1.679	41
651.7	608.5	518.4	0.3978	1.677	42
652.0	608.7	517.8	0.3998	1.675	43
652.3	608.9	517.3	0.4018	1.673	44
652.6	609.1	516·8	0.4037	1.671	45
0020	000 1	0200	0 200.	10.1	
652.9	609.3	516 ·3	0.4056	1.669	46
653.2	609.5	515.8	0.4075	1.668	47
653.4	609.7	515.3	0.4093	1.666	48
653.7	609.9	514.8	0.4111	1.664	49
653.9	610.0	514.3	0.4129	1.663	50
0000	010 0	0110	0 1110	1 000	
654.1	610.2	513.8	0.4146	1.661	51
654.4	610.4	513.4	0.4163	1.660	52
654.6	610.6	513.0	0.4180	1.658	53
654.8	610.8	512.5	0.4196	1.657	54
655.0	610.9	512.1	0.4212	1.656	55
			_		
655.2	611.1	511.6	0.4228	1.654	56
655.4	611.2	511.2	0.4243	1.653	57
655.6	611.4	510.7	0.4258	1.651	58
655.8	611.6	510.3	0.4273	1.650	59
656.0	611.7	509.9	0.4288	1.649	60
656.2	611.9	509.4	0.4303	1.647	61
656.4	612.0	509.0	0.4318	1.646	62
656.6	612.2	508.6	0.4332	1.645	63
656.8	612.3	508.2	0 4346	1.644	64
657.0	612.4	507.8	0.4360	1.643	65
657.1	612.5	507.4	0.4374	1.641	66
657:3	612.7	507.0	0.4387	1.640	67
657.5	612.8	506.6	0.4401	1.639	68
657.7	613.0	506.2	0.4414	1.638	69
657.9	613.1	505.9	0.4427	1.637	70
L		L	l	<u></u>	1

TABLE I.
Properties of Saturated Steam on

Pressure in	Temperature	Absolute temperature	Specific volume	Total heat of	Internal heat
lbs. per square inch.	in degrees Centigrade.	in degrees Centigrade.	in cubic feet per lb.	water in lb. calories.	of water in lbcalories.
p.	T.	θ.	v.	i.	e.
71	150.9	423.9	6.130	152.5	152.4
72	151.5	424.5	6.051	153·1	153.0
73	152.0	425.0	5.973	153.7	153.6
74	152.5	425.5	5.897	154.2	154.1
75	153.0	426.0	5.822	154.7	154.6
"	1000	1200	0022	101 (1010
76	153.5	426.5	5.750	155.2	155.1
77	154.0	427.0	5.680	155.7	155.6
78	154.5	427.5	5.612	156.2	156·1
79	155.0	428.0	5.546	156.7	156.6
80	155.4	428.4	5.481	157.1	157.0
	-00 -		0 101	20. 1	20.0
81	155.9	428.9	5.417	157.6	157 ·5
82	156.4	429.4	5.355	158.1	158.0
83	156.9	429.9	5.295	158.6	158.5
84	157.4	430.4	5.236	159.1	159.0
85	157.8	430.8	5.179	159.6	159.5
	1010	450 0	0119	109 0	1090
86	158.3	431·3	5.123	160·1	160.0
87	158.8	431.8	5.068	160.6	160.5
88	159.2	432.2	5.014	161.0	160.9
89	159.6	432.6	4.961	161.5	161.4
90	160.0	433.0	4.908	161.9	161.8
	1000	1000	1 200	1010	1010
91	160.5	433.5	4.856	162 [.] 4	162.3
92	160.9	433.9	4.806	162.8	162.7
93	161.3	434.3	4.758	163.3	163.5
94	161.7	434.7	4.711	163.7	163.6
95	162.1	435.1	4.665	164·1	164.0
	105 1	100 1	1 000	1011	1010
96	162·5	435.5	4.620	164.5	164.4
97	162.9	435.9	4.575	164.9	164.8
98	163.3	436.3	4.531	165·4	165.2
99	163.7	436.7	4·488	165.8	165.6
100	164·1	437.1	4.446	166·2	166.0
100	1011	401 I	7 440	100 2	1000
101	164.5	437.5	4.404	166 [.] 6	166·4
102	164.9	437.9	4.363	167.0	166.8
103	165.3	438.3	4.323	167.4	167.2
104	165.7	438.7	4·284	167.8	167.6
105	166.1	439.1	4.246	168.2	168.0
100	100 1	T 60£	7 240	100 2	100 U

(continued).

1		i			1
Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	ϕ_w .	φ ₈ .	p.
658:0	613.3	505.5	0.4440	1.636	71
658.2	613.4	505.1	0.4453	1.635	72
	613.6	504.7	0.4465	1.634	73
658.4					
658.5	613.7	504.3	0.4478	1.633	74
658.7	613.8	504.0	0.4490	1.632	75
658.8	613.9	503.6	0.4502	1.631	76
659.0	614.0	503.3	0.4514	1.630	77
659.1	614.1	502.9	0.4526	1.629	78
659.3	614.2	502.6	0.4538	1.628	79
659.4	614.3	502.3	0.4550	1.627	80
0594	014 0	302 3	0.4000	1 021	30
659.5	614.5	501.9	0.4561	1.626	81
659.7	614.6	501.6	0.4572	1.625	82
659.8	614.7	501.2	0.4583	1.624	83
660.0	614 [.] 8	501.9	0.4594	1.623	84
660.2	614.9	500.6	0.4604	1.622	85
0002	0110				
660.3	615.0	500.3	0.4615	1.621	86
660.5	615.1	499.9	0.4626	1.620	87
660.6	615.2	499.6	0.4636	1.619	88
660.8	615.3	499.3	0.4647	1.618	89
660.9	615.4	499.0	0.4657	1.618	90
1		400.0	0.4005	1.017	0.1
661.0	615.5	498.6	0.4667	1.617	91
661.1	615.6	498.3	0.4677	1.616	92
661.3	615· 7	498.0	0.4687	1.615	93
661.4	615.8	497.7	0.4697	1.614	94
661.5	615.9	497.4	0.4707	1.614	95
661.6	616·0	497:1	0.4716	1.613	96
661.6		496.8	0.4716	1.612	90
661.7	616.1				
661.9	616.2	496.5	0.4736	1.611	98
662.0	616.2	496.2	0.4745	1.610	99
662.1	616.3	495.9	0.4755	1.610	100
662.2	616 [.] 4	495·6	0.4764	1.609	101
662.3	616.5	495.3	0.4774	1.608	102
662.4	616.5	495.0	0.4783	1.607	103
662.5	616.6	494.7	0.4792	1.606	103
662.6	616.7	494.4	0.4801	1.606	105
002 0	010 (4344	0.4001	1 000	100

TABLE I.
Properties of Saturated Steam on

Pressure in lbs. per square inch.	Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal hear of water in lbcalories.
p.	T.	θ.	v.	i.	e.
106	166.5	439.5	4.208	168.6	168.4
107	166.9	439.9	4.171	169.0	168.8
108	167.3	440.3	4.135	169.4	169.2
109	167.7	440.7	4.100	169.8	169.6
110	168.0	441.0	4.065	170.2	170.0
111	168.4	441.4	4.030	170.6	170.4
112	168.8	441.8	3.996	171·0	
113	169.1	442.1	3.963	171.0 171.3	170.8
113	169.5		3.931		171.1
114	169.8	442·5 442·8	3.899	171·7 172·0	171·5 171·8
		•			
116	170.2	443.2	3.867	172·4	172.2
117	170.5	443·5	3.836	$172 \cdot 8$	172.6
118	170.9	443.9	3.805	173.2	173.0
119	171.3	444.3	3.775	173.6	173.4
120	171.6	444.6	3.746	173.9	173.7
121	172.0	445.0	3.717	174.3	174.1
122	172.3	445.3	3.688	174.7	174.5
123	172.7	445.7	3.660	175.0	174.8
$\overline{124}$	173.0	446.0	3.632	175.4	175.2
125	173.3	446.3	3.605	175.7	175.5
126	173.7	446.7	3.578	176.1	175.9
127	174.0	447.0	3.552	176.4	176.2
128	174.4	447.4	3.526	176.8	176.6
129	174.7	447.7	3.200	170 8 177·1	176.9
130	175.0	448.0	3.475	177.4	177.2
101	155.4	440.4	0.450		
131	175.4	448.4	3.450	177.8	177.6
132	175.7	448.7	3.425	178.1	177.9
133	176.0	449.0	3.401	178.5	178.3
134	176.3	449.3	3.377	178.8	178.6
135	176.6	449.6	3.354	179.1	178.9
136	177.0	450.0	3.331	179.5	179.3
137	177:3	450.3	3.308	179.8	179.6
138	177.6	450.6	3.285	180.2	180.0
139	177.9	450.9	3.263	180.5	180.3
140	178.2	451.2	3.241	180.8	180.6

(continued).

					 1
Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	ϕ_w .	ϕ_{s} .	p.
662.7	616.8	494.1	0.4810	1.605	106
662.8	616.8	493.8	0.4819	1.604	107
662.9	616.9	493.5	0.4828	1.603	108
663.0	617.0	493.2	0.4837	1.602	109
663.1	617.1	492.9	0.4845	1.602	110
663.2	617.2	492.7	0.4854	1.601	111
663.3	617.2	492.4	0.4862	1.601	112
663.4	617.3	492.1	0.4871	1.600	113
663.5	617.4	491.8	0.4880	1.599	114
663.6	617.5	491.6	0.4888	1.599	115
663.7	617.5	491.3	0.4897	1.598	116
663.8	617.6	491.0	0.4905	1.598	117
663.9	617.7	490.7	0.4913	1.597	118
664.0	617.8	490.4	0.4921	1.596	119
664.1	617.8	490.2	0.4929	1.596	120
664.2	617.9	489.9	0.4937	1.595	121
664.3	618.0	489.7	0.4945	1.594	122
664.4	618.1	489.4	0.4953	1.594	123
664.5	618.1	489.1	0.4961	1.593	124
664.6	618.2	488.9	0.4969	1.592	125
664.7	618.3	488.6	0.4977	1.592	126
664.8	618.3	488.4	0.4984	1.591	127
664.9	618.4	488.1	0.4992	1.590	128
665.0	618.5	487.9	0.5000	1.590	129
665.0	618.5	487.6	0.5008	1.589	130
665.1	618.6	487.4	0.5016	1.589	131
665.2	618.7	487.1	0.5023	1.588	132
665.3	618.7	486.9	0.5031	1.588	133
665.4	618.8	486.6	0.5039	1.587	134
665.5	618.9	486 [.] 4	0.5046	1.586	135
665.6	618.9	486.1	0.5054	1.586	136
665.7	619.0	485.9	0.5061	1.585	137
665.8	619.1	485.6	0.5068	1.584	138
665.9	619.1	485·4	0.5075	1.584	139
665.9	619.2	485·1	0.5082	1.583	140
I	1			<u> </u>	<u> </u>

TABLE I.
PROPERTIES OF SATURATED STEAM ON

Pressure in lbs. per square inch.	Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories.
p.	T.	θ.	v.	i.	e.
141	178:5	451.5	3.219	181·1	180.9
142	178.8	451.8	3.198	181·4	181.2
142	179.1	452.1	3.177	181·8	181.6
143	179.4		3.156	182·1	
144 145	1794	452.4	3.136	182.4	181·9 182·2
140	1797	452.7	3 130	102 4	182.2
146	180.0	453.0	3·116	182.7	182.4
147	180.3	453.3	3.096	183.0	182.7
148	180.6	453.6	3.076	183.3	183.0
149	180.9	453.9	3.056	183.6	183.3
150	181.2	454.2	3.037	183.9	183.6
151	181.5	454·5	3.018	184.2	183.9
152	181.8	454·8	2.999	184.5	184.2
153	182.1	455·1	2.981	184·8	184.5
154	182.4	455.4	2.963	$185 \cdot 1$	184.8
155	182.6	455.6	2.945	185.4	185.1
	100.0	455.0	0.007	105.5	105.4
156	182.9	455.9	2.927	185.7	185.4
157	183.2	456.2	2.909	186.0	185.7
158	183.5	456.5	2.892	186.3	186.0
159	183.8	456.8	2.875	186.6	186.3
160	184.0	457.0	2.858	186.8	186.5
161	184.3	457:3	2.841	187.1	186.8
162	184.6	457.6	2.824	187.4	187.1
163	184.9	457.9	2.808	187.7	187.4
164	185.2	458.2	2.792	188.0	187.7
165	185.4	458.4	2.776	188.3	188.0
166	185.7	458.7	2.760	188.6	188.3
167	186.0	459.0	2.745	188.9	188.6
168	186.2	459.2	2.730	189.1	188.8
169	186.5	459.5	2.715	189.4	189.1
170	186.7	459.7	2.700	189.7	189.4
171	187.0	460.0	2.685	190.0	189.7
		460.2	2.670	190.2	189.9
172	187.5			190.5	189'9
$\frac{173}{174}$	187.5	460.5	2.655	190 [.] 5	190.5
174	187.8	460.8	2.641	190'8	190.5
175	188.0	461.0	2.627	191 0	1907

(continued).

Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	φ _w .	ϕ_{g} .	p_{\bullet}
666.0	619:3	484.9	0.5089	1.583	141
666.1	619.3	484.6	0.5096	1.582	142
666.2	619.4	484.4	0.5103	1.582	143
666.2	619.5	484 1	0.5110	1.581	143
666.3	619.5	483.9	0.5117	1.580	145
000.9	019.9	403 9	0 3117	1 900	149
666.4	619.6	483.6	0.5124	1.580	146
666.4	619.6	483.4	0.5131	1.579	147
666.5	619.7	483.2	0.5138	1.579	148
666.6	619.7	483.0	0.5145	1.578	149
666.7	619.8	482.8	0.5151	1.578	150
0001.	0100	1020	00101	10.0	100
666.7	619.8	482.5	0.5158	1.577	151
666.8	619.9	482.3	0.5164	1.577	152
666.9	619.9	482.1	0.5171	1.576	153
666.9	620.0	482.8	0.5177	1.576	154
667.0	620.0	481.6	0.5183	1.575	155
00.0	0200	101 0	0 0100	20.0	100
$667 \cdot 1$	620.1	481.4	0.5190	1.575	156
667.2	620.1	481.2	0.5196	1.574	157
667.2	620.2	480.9	0.5203	1.574	158
667.3	620.2	480.7	0.5209	1.573	159
667.3	620.3	480.5	0.5215	1.573	160
667.4	620.3	480.3	0.5222	1.572	161
667.5	620.4	480.1	0.5228	1.572	162
667.5	620.4	479.8	0.5234	1.571	163
667.6	620.5	479.6	0.5240	1.571	164
667.7	620.6	479.4	0.5246	1.570	165
667.7	620.6	479.2	0.5252	1.570	166
667.8	620.7	479.0	0.5258	1.569	167
667:8	620.7	478.7	0.5264	1.569	168
667.9	620.7	478.5	0.5270	1.569	169
668.0	620.8	478.3	0.5276	1.568	170
660.0	600.0	470.1	0.5000	1.560	171
668.0	620.8	478.1	0.5282	1.568	171
668.1	620.9	477.9	0.5288	1.568	172
668.2	620.9	477.7	0.5294	1.567	173
668.3	620.9	477.5	0.5300	1.567	174
668.3	621.0	477:3	0.5305	1.566	175

TABLE I. Properties of Saturated Steam on

				DATORALED	DIEAM OF
Pressure in 1bs. per square inch.	Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories.
р.	T.	θ.	v.	i.	e.
176	188.3	461.3	0.019	101.0	101.0
$\frac{177}{177}$	188.5	461·5	2·613 2·599	191.3	191.0
178	188.8	461.8		191.5	191.2
179	189.0	462.0	2.585	191.8	191.5
180	189.3	462·3	$2.571 \ 2.558$	192.0	191.7
100	1093	402 3	2 996	192.3	192.0
181	189.5	462.5	2.545	192.5	192-2
182	189.8	462.8	2.532	192.8	192.5
183	190.1	463.1	2.519	193.1	192.8
184	190.3	463.3	2.506	193.4	193.1
185	190.6	463.6	2.493	193.7	193.4
			2 200	200 .	100 1
186	190.8	463.8	2.480	193.9	193.6
187	191·1	464.1	2.467	194.2	193.9
188	191.3	464.3	2.455	194.4	194.1
189	191.6	464.6	2.443	194.7	194.4
190	191.8	464.8	2.431	195.0	194.7
191	192.0	465.0	2.419	195.2	194.9
192	192.3	465.3	2.407	195.5	195.2
193	192.5	465.5	2.395	195.7	195.4
194	192.8	465.8	2.383	196.0	195.7
195	193.0	466.0	2.372	196.2	195.9
196	193-2	100.0	0.001	100.4	1001
190	193.5 193.5	466.2	2.361	196.4	196.1
198	193.7	466.5	2.349	196.7	196.4
199	194.0	466.7	2.338	197.0	196.7
200	194.2	$rac{467\cdot 0}{467\cdot 2}$	2.327	197·3	197.0
200	134 2	4072	2:316	197.5	197.2
201	194.4	467:4	2:305	197.7	197.4
202	194.6	467.6	2.294	197.9	197.6
203	194.9	467.9	2.283	198.2	197.9
204	195.1	468.1	2.273	198.4	198.1
205	$195\overline{\cdot 3}$	468.3	2.263	198.7	198.4
			2 200	1001	100 1
206	195.6	468.6	2.253	199.0	198.7
207	195.8	468.8	2.243	199.2	198.9
208	196 1	469.1	2.233	199.5	199.1
209	196.3	469.3	2.223	199.7	199.3
210	196.5	469.5	2.213	199.9	199.5

(continued).

Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	φ _w .	ϕ_s .	p.
668.4	621.0	477.1	0.5311	1.566	176
668.4	621.1	476.9	0.5317	1.565	177
668.5	621.1	476.7	0.5323	1.565	178
668:5	621.2	476.5	0.5329	1:564	179
668.6	621.2	476.3	0.5334	1.564	180
	221.0	4707	0 5040		
668.6	621.3	476.1	0.5340	1.563	181
668.7	621.3	475.9	0.5345	1.563	182
668.8	621.4	475.6	0.5351	1.562	183
668.8	621.4	475.4	0.5356	1.562	184
668.9	621.4	475.2	0.5362	1.561	185
668:9	621:5	475.0	0.5367	1.561	186
669.0	621.5	474.8	0.5373	1.560	187
669.0	621.6	474.6	0.5379	1.560	188
669.1	621.6	474.4	0.5384	1.559	189
669.2	621.7	474.2	0.5390	1.559	190
669.2	621.7	474.0	0.5395	1.559	191
669.3	621.8	473.8	0.5401	1.558	192
669.3	621.8	473.6	0.5406	1.558	193
669.4	621.9	473.4	0.5412	1.558	194
669.5	621.9	473.3	0.5417	1.557	195
000.5	001.0	470.1	0.5400	1.555	100
669.5	621.9	473.1	0.5422	1.557	196
669.6	622.0	472.9	0.5428	1.556	197
669.7	622.0	472.7	0.5433	1.556	198
669.7	622.1	472.5	0.5439	1.556	199
669.8	622.1	472.3	0.5444	1.555	200
669.8	622.1	472.1	0.5449	1.555	201
669.9	622.2	471.9	0.5455	1.555	202
669.9	622.2	471.7	0.5460	1.554	203
669.0	622.3	471.5	0.5465	1.554	203
670.0	622.3				204
0100	022 3	471.3	0.5470	1.554	200
670.1	622.3	471.1	0.5476	1.553	206
670.1	622.4	471.0	0.5481	1.553	207
670.2	622.4	471.8	0.5486	1.553	208
670.2	622.5	471.6	0.5491	1.552	209
670:3	622.5	470.4	0.5496	1.552	210

TABLE I.
Properties of Saturated Steam on

Pressure in lbs. per square inch.	Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories.
p.	T.	0.	v.	i.	e.
211	196.7	469.7	2.203	200.2	199.8
212	196.9	469.9	2.193	200.4	200.0
213	197.2	470·2	2.183	200.7	200.3
213 214	197.4	470.4	2.173	200.9	200.5
$\begin{array}{c} 214 \\ 215 \end{array}$	197.6	470.6	2.164	200 9 201·1	200.7
219	1970	4700	2 104	2011	200 1
216	197.8	470.8	2.154	201.3	200.9
217	198.1	471.1	2.145	201.6	201.2
218	198.3	471.3	2.136	201.8	201.4
219	198.5	471.5	2.127 .	202.0	201.6
220	198.7	471.7	2.118	202.2	201.8
	100 .	2.2.			2010
221	198.9	471.9	2.109	202.4	202.0
222	199.1	472.1	2.100	202.6	202.2
223	199.4	472.4	2.091	202.9	202.5
224	199.6	472.6	2.082	203.1	202.7
225	199.8	472.8	2.073	203.4	203.0
226	200.0	473.0	2.065	203.6	203.2
227	200.2	473.2	2.056	203.8	203.4
228	200.4	473·4	2.047	204.1	203.7
229	200.6	473.6	2.039	204.3	203.9
230	200.8	473.8	2.031	204.5	204.1
231	201.0	474.0	2.022	204.7	204.3
232	201.2	474.2	2.014	204.9	204.5
233	201.5	474.5	2.006	205.5	204.8
234	201.7	474.7	1.998	205·4	205.0
235	201.9	474.9	1.990	205.6	205.2
233	2019	414 9	1 990	2000	200 2
236	202.1	475·1	1.982	205.8	205.4
237	202.3	475.3	1.974	206.0	205.6
238	202.5	475.5	1.966	206.2	205.8
239	202.7	475.7	1.958	206.4	206.0
240	202.9	475.9	1.950	206.6	206.2
941	902.1	47C.1	1:049	906.0	OOG.A
241	203.1	476.1	1.942	206.8	206.4
242	203.3	476.3	1.934	207:0	206.6
243	203.5	476.5	1.926	207.2	206.8
244	203.7	476.7	1.919	207.4	207.0
245	203.9	476.9	1.912	207.7	207.3

(continued).

Total heat of steam in	Internal				1
lbcalories.	heat of steam in bcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	φ _w	ϕ_{g} .	p.
670.3	622.5	470.2	0.5501	1.552	211
670.4	622.6	470.0	0.5506	1.551	212
670.4	622.6	469.8	0.5510	1.551	213
670.5	622.7	469.6	0.5515	1.551	214
670.5	622.7	469.5	0.5520	1.550	215
670.6	622.7	469:3	0.5525	1.550	216
670.6	622.8	469.1	0.5530	1·549	217
				1:549	218
670.7	622.8	468.9	0.5534	1.549	218
670.7	622.9	468.8	0.5539		
670.8	622.9	468·6	0.5544	1.548	220
670.8	622.9	468.4	0.5549	1.548	221
670.8	623.0	468.2	0.5554	1.548	222
670.9	623.0	468.0	0.5558	1.547	223
670.9	623.1	467.8	0.5563	1:547	224
671.0	623.1	467.7	0.5568	1.546	225
3,12	0201	2011			
671.1	623.1	467.5	0.5572	1.546	226
671.1	623.2	467.3	0.5577	1.546	227
671.2	623.2	467.1	0.5582	1.545	228
671.2	623.3	466.9	0.5587	1.545	229
671.3	623.3	466.8	0.5591	1.544	230
051.0	000.0	400.0	0.5506	1.544	001
671.3	623.3	466.6	0.5596	1.544	231
671.4	623.4	466.4	0.5600	1.544	232
671.4	623.4	466.3	0.5605	1.543	233
671.5	623.4	466.1	0.5610	1.543	234
671.5	623.5	466.0	0.5614	1.543	235
671.6	623.5	465.8	0.5619	1.542	236
671.6	623.5	465.7	0.5623	1.542	237
671.7	623.6	465.5	0.5628	1.542	238
671.7	623.6	465.4	0.5632	1.541	239
671.8	623.6	465.2	0.5637	1.241	240
0,10	0200	#00 C	0 0001	TOTI	210
671.8	623.6	465·0	0.5641	1.541	241
671.9	623.7	464.9	0.5646	1.541	242
671.9	623.7	464.7	0.5650	1.540	243
671.9	623.7	464.5	0.5655	1.540	244
672.0	623.8	464·4	0.5659	1.540	245

TABLE I.
PROPERTIES OF SATURATED STEAM ON

Pressure in lbs. per square inch.	Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Specific volume in cubic feet per 1b.	Total heat of water in lbcalories.	Internal heat of water in lbcalories,
<i>p</i> .	Т.	ø.	v.	<u>ı.</u>	е.
246	204·1	477.1	1.905	207:9	207:5
247	204.3	477.3	1.898	208.1	207.7
248	204.5	477.5	1.891	208.3	207.9
	204.7	477.7		208·5	207 9
249			1.884		
250	204.9	477.9	1.877	208.7	208.3
251	205·1	478.1	1.870	208.9	208.5
				209.1	
252	205.3	478.3	1.863		208.7
253	205.5	478.5	1.856	209.3	208.9
254	205.7	478.7	1.849	209.5	209.1
255	205.9	478.9	1.842	209.7	209.3
256	206.0	479.0	1.835	209:9	209.5
257	206.2			210·1	209.7
		479.2	1.828		
258	206.4	479.4	1.822	210.3	209.9
259	206.6	479.6	1.815	210.5	210.1
260	206.8	479.8	1.809	210.7	210.3
261	207.0	480.0	1.802	210.9	210.5
262	207.2	480.2	1.796	211.1	210.7
263	207.4	480.4	1.789	211.3	210.9
264	207.6	480.6	1.783	211.5	211·1
265	207.7	480.7	1.777	211.7	211.3
200	2011	400 1	1 111	211 (211 5
266	207.9	480.9	1.770	211.9	211.5
267	208.1	481.1	1.764	$212 \cdot 1$	211.7
268	208:3	481:3	1.758	212.3	211.9
269	208.5	481.5	1.752	212·5	$212 \cdot 1$
270	208.7	481.7	1.746	212.7	212.3
271	208.9	481.9	1.740	212.9	212.5
272	209.1	482·1	1.734	213.1	212.7
273	209.3	482.3	1.728	213.3	212.9
274	209.4	482.4	1.722	213.5	213.1
275	209.6	482.6	1.716	213.7	213.3
	200.0			0100	010 7
276	209.8	482.8	1.710	213.9	213.5
277	210.0	483.0	1.704	214.0	213.6
278	210.1	483.1	1.698	214.2	213.8
279	210.3	483.3	1.692	214.4	214.0
280	210.5	483.5	1.687	214.6	214.2

(continued).

Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	φ	ϕ_s .	p.
672.0	623.8	464.2	0.5663	1.539	246
672.1	623.8	464.0	0.5668	1.539	247
672.1	623.9	463.9	0.5672	1.539	248
	623.9	463.7	0.5677	1.538	249
672.2					
672.2	623.9	463.5	0.5681	1.538	250
672.3	623.9	463.4	0.5686	1.538	251
672.3	624.0	463.2	0.5690	1.537	252
672.3	624.0	463.0	0.5694	1.537	253
672.4	624.0	462.9	0.5698	1.537	254
672.4	624.1	462.7	0.5702	1.536	255
0124	0241	402 /	0 3102	1 550	200
$672 \cdot 4$	624.1	462·5	0.5707	1.536	256
672.5	624.1	462.4	0.5711	1.536	257
672.5	624.1	462·2	0.5715	1.535	258
672.6	624.2	462.1	0.5719	1.535	259
672.6	624.2	461.9	0.5723	1.535	260
012 0	0215		00120	1 000	200
672.6	624.2	461.7	0.5727	1.534	261
672.7	624.3	461.6	0.5731	1.534	262
672.7	624.3	461.4	0.5735	1.534	263
672.7	624.3	461.2	0.5739	1.534	264
672.8	624.3	461.1	0.5743	1.533	265
4 - 0	2011	4000	0.5545	1.700	000
672.8	624.4	460.9	0.5747	1.533	266
672.9	624.4	460.8	0.5751	1.533	267
672.9	624.4	460.6	0.5755	1.532	268
672.9	624.5	460.5	0.5759	1.532	269
673.0	624·5	460.3	0.5763	1.532	270
673.0	624.5	460:1	0.5767	1.532	271
673.0	624.5	460.0	0.5771	1.531	272
673·1	624.6	459·8		1.531	273
			0.5775		
673.1	624.6	459.7	0.5779	1.531	274
673.1	624.6	459.5	0.5783	1.530	275
673.2	624.6	459.3	0.5786	1.530	276
673.2	624.7	459.1	0.5790	1.530	277
673.2	624.7	459.0	0.5794	1.530	278
673.3	624.7	458.8	0.5798	1.529	279
673.3	624.7	458.7	0.5802	1.529	280
	UDI.	1001	0 0002	1 020	200

TABLE I.
PROPERTIES OF SATURATED STEAM ON

Pressure in lbs. per square inch.	Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories.
p.	T.	0 .	V .	í.	e.
281	210.7	483-7	1.681	214.8	214·4
282	210-9	483-9	1.676	2150	214.6
283	211.0	484.0	1.670	215·1	214.7
284	211.2	484.2	1.665	215.3	214.9
285	211.4	484.4	1.659	215.5	215.1
286	211.5	484.5	1.654	215.7	215.3
287	. 211.7	484.7	1.648	215.9	215.5
288	211.9	484.9	1.643	216.1	215.7
289	212.0	485.0	1.637	216.2	215.8
290	212-2	485.2	1.632	216.4	216.0
291	212.4	485.4	1.626	216 6	216.2
292	212 6	485.6	1.621	216.8	216.4
293	212.7	485.7	1.616	217.0	216.6
294	212.9	485.9	1.611	217.2	216.8
295	213-1	486.1	1.605	217.4	217.0
296	213-2	486.2	1.600	217.6	217:1
297	213.4	486.4	1.595	217.8	217.3
298	213.6	486.6	1.590	218.0	217.5
299	213.8	486.8	1.585	218.2	217.7
300	213.9	486.9	1.580	218.3	217.8

(continued).

Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	φ ₁₀ .	φ,.	р.
673.3	624.7	458.5	0.5806	1.529	281
673.4	624.8	458.4	0.5810	1.528	282
673.4	624.8	458.2	0.5813	1.528	283
673.4	624.8	458.1	0.5817	1.528	284
673.4	624.8	457.9	0.5821	1.527	285
673.5	624.8	457.8	0.5824	1.527	286
673.5	624.9	457.6	0.5828	1.527	287
673.5	624.9	457.5	0.5832	1.527	288
673.6	624.9	457.3	0.5836	1.526	289
673.6	624.9	457.2	0.5839	1.526	290
673.6	624.9	457:0	0.5843	1.526	291
673.7	625.0	456.9	0.5846	1.525	292
673.7	625.0	456.7	0.5850	1.525	293
673.7	625.0	456.6	0.5854	1.525	294
673.8	625.0	456.4	0.5857	1.524	295
673.8	625.0	456.2	0.5861	1.524	296
	1				
673.8	625.0	456.1	0.5864	1.524	297
673.9	625.1	455.9	0.5868	1.523	298
673.9	625.1	455.8	0.5871	1.523	299
673.9	625.1	455 [.] 6	0.5875	1.523	300

TABLE PROPERTIES OF SATURATED STEAM

T. 6. p. v. c. c. 25 298 0'455 699 5 25 0 25 0 25 0 26 299 0'483 661 2 26 0 26 0 26 0 27 300 0'512 625 8 27 0 27 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 28 0 29 0 29 0 29 0 30 0 3	Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Pressure in lbs. per square inch.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories.
26 299 0·483 661·2 26·0 26·0 27 300 0·512 625·8 27·0 27·0 28 301 0·543 592·5 28·0 28·0 29 302 0·576 560·8 29·0 29·0 30 303 0·610 530·8 30·0 30·0 31 304 0·646 503·2 31·0 31·0 32 305 0·684 476·7 32·0 32·0 33 306 0·724 451·7 33·0 33·0 34 307 0·765 428·5 34·0 34·0 35 308 0·809 406·7 35·0 35·0 36 309 0·856 386·0 36·0 36·0 37 310 0·904 366·5 37·0 37·0 38 311 0·954 348·2 38·0 38·0 39 312 1·007 330·9 <th>T.</th> <th></th> <th>p.</th> <th>v.</th> <th>i.</th> <th>e.</th>	T.		p.	v.	i.	e.
27 300 0.512 625.8 27.0 27.0 28 301 0.543 592.5 28.0 28.0 29 302 0.576 560.8 29.0 29.0 30 303 0.610 530.8 30.0 30.0 31 304 0.646 503.2 31.0 31.0 32 305 0.684 476.7 32.0 32.0 33 306 0.724 451.7 33.0 33.0 34 307 0.765 428.5 34.0 34.0 35 308 0.809 406.7 35.0 35.0 36 309 0.856 386.0 36.0 36.0 37 310 0.904 366.5 37.0 37.0 38 311 0.954 348.2 38.0 38.0 39 312 1.007 330.9 39.0 39.0 40 313 1.063 314.6 <td>25</td> <td>298</td> <td>0.455</td> <td>699.5</td> <td>25.0</td> <td>25.0</td>	25	298	0.455	699.5	25.0	25.0
27 300 0·512 625·8 27·0 27·0 28 301 0·543 592·5 28·0 28·0 29 302 0·576 560·8 29·0 29·0 30 303 0·610 530·8 30·0 30·0 31 304 0·646 503·2 31·0 31·0 32 305 0·684 476·7 32·0 32·0 33 306 0·724 451·7 33·0 33·0 34 307 0·765 428·5 34·0 34·0 35 308 0·809 406·7 35·0 35·0 36 309 0·856 386·0 36·0 36·0 37 310 0·904 366·5 37·0 37·0 38 311 0·954 348·2 38·0 38·0 39 312 1·007 330·9 39·0 39·0 40 313 1·063 314·6 <td></td> <td>299</td> <td>0.483</td> <td>661.2</td> <td>26.0</td> <td>26.0</td>		299	0.483	661.2	26.0	26.0
28 301 0·543 592·5 28·0 28·0 29 302 0·576 560·8 29·0 29·0 30 303 0·610 530·8 30·0 30·0 31 304 0·646 503·2 31·0 31·0 32 305 0·684 476·7 32·0 32·0 33 306 0·724 451·7 33·0 33·0 34 307 0·765 428·5 34·0 34·0 35 308 0·809 406·7 35·0 35·0 36 309 0·856 386·0 36·0 36·0 37 310 0·904 366·5 37·0 37·0 38 311 0·954 348·2 38·0 38·0 39 312 1·007 330·9 39·0 39·0 40 313 1·063 314·6 40·1 40·1 41 41 1·182 284·5	27	300	0.512			
29 302 0.576 560.8 29.0 29.0 30 303 0.610 530.8 30.0 30.0 31 304 0.646 503.2 31.0 31.0 32 305 0.684 476.7 32.0 32.0 33 306 0.724 451.7 33.0 33.0 34 307 0.765 428.5 34.0 34.0 35 308 0.809 406.7 35.0 35.0 36 309 0.856 386.0 36.0 36.0 37 310 0.904 366.5 37.0 37.0 38 311 0.954 348.2 38.0 38.0 39 312 1.007 330.9 39.0 39.0 40 313 1.063 314.6 40.1 40.1 41 314 1.121 299.1 41.1 41.1 42 315 1.182 284.5 <td>28</td> <td>301</td> <td>0.543</td> <td>1</td> <td></td> <td>28.0</td>	28	301	0.543	1		28.0
30 303 0·610 530·8 30·0 30·0 31 304 0·646 503·2 31·0 31·0 32 305 0·684 476·7 32·0 32·0 34 307 0·765 428·5 34·0 34·0 35 308 0·809 406·7 35·0 35·0 36 309 0·856 386·0 36·0 36·0 37 310 0·904 366·5 37·0 37·0 38 311 0·954 348·2 38·0 38·0 39 312 1·007 330·9 39·0 39·0 40 313 1·063 314·6 40·1 40·1 41 314 1·121 299·1 41·1 41·1 42 315 1·182 284·5 42·1 42·1 43 316 1·246 270·7 43·1 43·1 44 317 1·312 25·7·8 <td>29</td> <td>302</td> <td>0.576</td> <td>1 00-0</td> <td></td> <td></td>	29	302	0.576	1 00-0		
32 305 0·684 476·7 32·0 32·0 33 306 0·724 451·7 33·0 33·0 34 307 0·765 428·5 34·0 34·0 35 308 0·809 406·7 35·0 35·0 36 309 0·856 386·0 36·0 37·0 37·0 38 311 0·954 348·2 38·0 38·0 39 312 1·007 330·9 39·0 39·0 40 313 1·063 314·6 40·1 40·1 41 314 1·121 299·1 41·1 41·1 42 315 1·182 284·5 42·1 42·1 43 316 1·246 270·7 43·1 43·1 44 317 1·312 257·8 44·1 44·1 45 318 1·382 245·7 45·1 45·1 46 319 1·455		303	0.610	1		
32 305 0·684 476·7 32·0 32·0 33 306 0·724 451·7 33·0 33·0 34 307 0·765 428·5 34·0 34·0 35 308 0·809 406·7 35·0 35·0 36 309 0·856 386·0 36·0 37·0 37·0 38 311 0·904 366·5 37·0 37·0 37·0 38 311 0·954 348·2 38·0 38·0 39 312 1·007 330·9 39·0 39·0 40 313 1·063 314·6 40·1 40·1 41 314 1·121 299·1 41·1 41·1 42 315 1·182 284·5 42·1 42·1 43 316 1·246 270·7 43·1 43·1 44 317 1·312 257·8 44·1 46·1 47 320	31	304	0.646	503.2	31.0	31.0
33 306 0.724 451.7 33.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 35.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 37.0 37.0 37.0 37.0 37.0 37.0 38.8 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0		305	0.684	476.7		32.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	306	0.724			
35 308 0·809 406·7 35·0 35·0 36 309 0·856 386·0 36·0 36·0 37 310 0·904 366·5 37·0 37·0 38 311 0·954 348·2 38·0 38·0 39 312 1·007 330·9 39·0 39·0 40 313 1·063 314·6 40·1 40·1 41 314 1·121 299·1 41·1 41·1 42 315 1·182 284·5 42·1 42·1 43 316 1·246 270·7 43·1 43·1 44 317 1·312 257·8 44·1 44·1 45 318 1·382 245·7 45·1 45·1 46 319 1·455 234·2 46·1 46·1 47 320 1·531 223·3 47·1 47·1 48 321 1·610 212·8 <td>34</td> <td>307</td> <td></td> <td></td> <td></td> <td></td>	34	307				
37 310 0.904 366.5 37.0 37.0 38 311 0.954 348.2 38.0 38.0 39 312 1.007 330.9 39.0 39.0 40 313 1.063 314.6 40.1 40.1 41 314 1.121 299.1 41.1 41.1 42 315 1.182 284.5 42.1 42.1 43 316 1.246 270.7 43.1 43.1 44 317 1.312 257.8 44.1 44.1 45 318 1.382 245.7 45.1 45.1 46 319 1.455 234.2 46.1 46.1 47 320 1.531 223.3 47.1 47.1 48 321 1.610 212.8 48.1 48.1 49 322 1.693 203.0 49.1 49.1 50 323 1.780 193.6 <td>35</td> <td>308</td> <td></td> <td></td> <td></td> <td></td>	35	308				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.856	386:0	36.0	36.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	310	0.904			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	311	0.954			
40 313 1.063 314.6 40·1 40·1 41 314 1.121 299·1 41·1 41·1 41·1 42 315 1.182 284·5 42·1 42·1 42·1 43 316 1.246 270·7 43·1 43·1 43·1 44 317 1.312 257·8 44·1 44·1 44·1 45 318 1.382 245·7 45·1 45·1 46 319 1.455 234·2 46·1 46·1 47 320 1.531 223·3 47·1 47·1 48 321 1.610 212·8 48·1 48·1 49 322 1.693 203·0 49·1 49·1 50 323 1.780 193·6 50·1 50·1 51 324 1.870 184·7 51·1 51·1 52 325 1.965 176·4 52·1 52·1 <t< td=""><td>39</td><td>312</td><td></td><td></td><td></td><td></td></t<>	39	312				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	313	1.063			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	314	1.121	299.1	41.1	41.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		315	1.182	284.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	316	1.246	270.7	43.1	
45 318 1 382 245 7 45 1 45 1 46 319 1 455 234 2 46 1 46 1 46 1 47 320 1 531 223 3 47 1 47 1 47 1 48 321 1 610 212 8 48 1 48 1 48 1 49 322 1 693 203 0 49 1 49 1 50 1 50 323 1 780 193 6 50 1 50 1 50 1 51 324 1 870 184 7 51 1 51 1 52 1 52 325 1 965 176 4 52 1 52 1 52 1 53 326 2 063 168 5 53 1 53 1 53 1 54 327 2 166 161 0 54 1 54 1 54 1 55 328 2 273 153 9 55 1 55 1 56 329 2 384 147 1 56 1 56 1	44	317	1.312	257.8		
47 320 1·531 223·3 47·1 47·1 48 321 1·610 212·8 48·1 48·1 49 322 1·693 203·0 49·1 49·1 50 323 1·780 193·6 50·1 50·1 51 324 1·870 184·7 51·1 51·1 52 325 1·965 176·4 52·1 52·1 53 326 2·063 168·5 53·1 53·1 54 327 2·166 161·0 54·1 54·1 55 328 2·273 153·9 55·1 55·1 56 329 2·384 147·1 56·1 56·1	45	318	1.382	245.7	45.1	
48 321 1 610 212 8 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 49 1 49 1 49 1 49 1 49 1 49 1 49 1 50 1		319	1.455	234.2	46.1	46.1
49 322 1·693 203·0 49·1 49·1 50 323 1·780 193·6 50·1 50·1 51 324 1·870 184·7 51·1 51·1 52 325 1·965 176·4 52·1 52·1 53 326 2·063 168·5 53·1 53·1 54 327 2·166 161·0 54·1 54·1 55 328 2·273 153·9 55·1 55·1 56 329 2·384 147·1 56·1 56·1				223.3	47.1	47.1
50 323 1.780 193.6 50.1 50.1 51 324 1.870 184.7 51.1 51.1 52 325 1.965 176.4 52.1 52.1 53 326 2.063 168.5 53.1 53.1 54 327 2.166 161.0 54.1 54.1 55 328 2.273 153.9 55.1 55.1 56 329 2.384 147.1 56.1 56.1			1.610	212.8	48.1	48.1
51 324 1.870 184.7 51.1 51.1 52 325 1.965 176.4 52.1 52.1 53 326 2.063 168.5 53.1 53.1 54 327 2.166 161.0 54.1 54.1 55 328 2.273 153.9 55.1 55.1 56 329 2.384 147.1 56.1 56.1				203.0	49.1	49.1
52 325 1'965 176'4 52'1 52'1 53 326 2'063 168'5 53'1 53'1 54 327 2'166 161'0 54'1 54'1 55 328 2'273 153'9 55'1 55'1 56 329 2'384 147'1 56'1 56'1	50	323	1.780	193.6	50.1	50.1
52 325 1.965 176.4 52.1 52.1 53 326 2.063 168.5 53.1 53.1 54 327 2.166 161.0 54.1 54.1 55 328 2.273 153.9 55.1 55.1 56 329 2.384 147.1 56.1 56.1						51.1
54 327 2·166 161·0 54·1 54·1 54·1 54·1 55·1 55·1 55·1 55·1 55·1 55·1 55·1 56·1	52		1.965		52.1	
54 327 2·166 161·0 54·1 54·1 54·1 55·1 55 328 2·273 153·9 55·1 55·1 56 329 2·384 147·1 56·1 56·1			2.063	168.5	53·1	53.1
56 329 2.384 147.1 56.1 56.1				161.0	54·1	54·1
1 1 1 1 001	55	328	2.273	153.9	55·1	55.1
			2:384	147·1	56.1	56·1
		330	2.500	140.7	57.1	57.1
58 331 2.621 134.6 58.1 58.1				134.6	58.1	
59 332 2.748 128.8 59.1 59.1					59.1	
60 333 2.879 123.3 60.1 60.1	60	333	2.879	123.3	60.1	60.1

II. on **CENTIGRADE** TEMPERATURE BASE.

	 				
Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Tempera- ture in degrees Centigrade.
I.	E.	L.	φ _w .	ϕ_{s} .	Т.
606.5	573.7	581.5	0.0877	2.039	25
607:0	574·1	581.0	0.0911	2.034	26
607.4	574.4	580.4	0.0945	2.029	27
607.9	574.8	579.9	0.0978	2.023	28
608.3	575·1	579.3	0.1011	2.019	
608.8	575.5	578.8	0.1011	2.019	29 30
609.2	575.8	578-2	0.1077	2.010	31
609.7	576.2	577· 7	0.1110	2.005	32
610.1	576.5	577.1	0.1143	2.000	33
610.6	576·9	576.6	0.1176	1.995	34
611.1	577.2	576·1	0.1208	1.991	35
611.5	577.G	575·5	0.1941	1.000	
	577·6		0.1241	1.986	36
612.0	577.9	575.0	0.1273	1.981	37
612.4	578.3	574.4	0.1305	1.977	38
612.9	578.6	573.9	0.1337	1.972	39
613.4	579.0	573.3	0.1369	1.968	40
613.8	579.4	572.8	0.1401	1.963	41
614.3	579.7	572.2	0.1433	1.959	42
614.8	580.1	571.7	0.1465	1.955	43
615.2	580.4	571.1	0.1497	1.951	44
615.7	580.8	570.6	0.1528	1.947	45
616.2	581.2	570.1	0.1560	1.943	46
616.6	581.5	569·5	0.1591	1.939	47
617.1	581.9	56 9·0	0.1623	1.935	48
617.5	582.2	568·4	0.1654	1.931	49
618.0	582.6	567:9	0.1685	1.927	50
618.4	582.9	567:3	0.1716	1.923	51
618.9	583.3	566·8	0.1747	1.919	52
619.4	5 83· 6	566·3	0.1778	1.915	53
619.8	584.0	565· 7	0.1809	1.911	54
620.3	584.3	565·2	0.1839	1.907	55
620.7	584.6	564.6	0.1870	1.903	56
621.2	585.0	564.1	0.1900	1.899	57
621.6	585.3	563.5	0.1931	1.895	58
622.1	585.7	563.0	0.1961	1.891	59
622.5	586.0	562.4	0.1991	1.888	60
					"

TABLE II.
PROPERTIES OF SATURATED STEAM

Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Pressure in lbs. per square inch.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories,
т.	Ø.	p.	v.	i	e.
			<u> </u>		
61	334	3.015	118.0	61.1	61.1
62	335	3.157	113.0	62.2	62.2
63	336	3.303	108.2	63.2	63.2
64	337	3.457	103.7	64.2	64.2
65	338	3.616	99.48	65.2	65.2
			00	002	•• -
6 6	339	3.782	95.45	66.2	66.2
67	340	3.953	91.57	$67.\overline{2}$	67.2
68	341	4.131	87.85	68.2	68.2
69	342	4.316	84.30	69.2	69.2
70	343	4.508	80.90	70.2	70.2
71	344	4.707	77.65	71.2	71.2
72	345	4.912	74.58	72 ·2	72.2
73	346	5.127	71.63	73.2	73.2
74	347	5.348	68.86	74.3	74.3
75	348	5.579	66.23	75.3	75.3
		1			
76	349	5.816	63.71	76 ·3	76.3
77	350	6.062	61.29	77:3	77:3
78	351	6.317	58.96	78·3	78·3
79	352	6.582	56.73	79.3	79.3
80	353	6.857	54.60	80.3	80.3
81	954	7.140	50.50	01.0	01.0
82	354 355	7·140 7·433	52.58	81.3	81·3 82·3
83	ააა 356	7.735	50·64 48·78	82.3	83.3
84	357	8.048	47.00	83·3 84·3	84.3
85	358	8.373	45.29	85·3	85.3
69	990	0 3/3	40 29	99.9	69.9
86	359	8.708	43.67	86.3	86.3
87	360	9.053	42.12	87.3	87.3
88	361	9.411	40.62	88.4	88.3
89	362	9.779	39.17	89.4	89.4
90	364	10.16	37.79	90.4	90.4
• •	001	-0 -0	0	00 1	
91	364	10.56	36.45	91.4	91.4
92	365	10.97	35.18	92.4	92.4
93	366	11.39	33.98	93.4	93.4
94	367	11.82	32.83	94.4	94.4
95	368	12.26	31.71	95.4	95·4
					I

(continued).

Total heat of	Internal heat	Latent heat		Entropy of	Tempera-
steam in lbcalories.	of steam in lbcalories.	of steam in lbcalories.	Entropy of water in ranks.	steam in ranks.	ture in degrees
T.	E.	L.	φ _w .	φ ₈ .	Centigrade. T.
623.0	586.4	561.9	0.5051	1.884	61
623·5	586.7	561.3	0.2021	1.880	62
623·9	587.1	560.7	0.2031	1.877	63
	587·4	560.2	0.2081	1.873	64
624.4		559.6	0.2111	1.870	65
624.8	587.8	999.0	0'2141	1.910	09
625.2	588.1	5 59·0	0.2171	1.866	66
625.7	5 88∙5	558·5	0.2200	1.863	67
$626 \cdot 1$	588.8	557.9	0.2230	1.859	68
626.5	589.2	557:3	0.2260	1.856	69
626.9	589∙5	556.7	0.2289	1.852	70
627:4	589.8	556.2	0.2318	1.849	71
627.8	590.1	555.6	0.2347	1.845	72
628.2	590.5	555.0	0.2376	1.842	73
628.7	590.8	554.4	0.2402	1.838	74
629.1	591.1	553.8	0.2434	1.835	75
629.5	591·5	553.2	0.2463	1.831	76
630.0	591.8	552.7	0.2492	1.828	77
630.4	592.1	552.1	0.2521	1.825	78
530.9	592.4	551.6	0.2550	1.822	79
631.3	592.8	551.0	0.2578	1.819	80
631.7	593.2	550.4	0.2607	1.815	81
632.2	593·5	549.9	0.2635	1.812	82
632.6	593.8	549.3	0.2664	1.809	83
633.0	594·2	548.7	0.2692	1.806	84
633.4	594·5	548.1	0.2720	1.803	85
633.8	594.8	547:5	0.2748	1.800	86
634.3	595.1	547·0	0.2776	1.797	87
634.8	595·5	547 U 546·4	0.2804	1.794	88
635.2	595°5 595°8	545 [.] 8	0.2832	1.794	89
635.6	596·1	545.2	0.2860	1.788	90
บออ บ	990 T	9 1 9 &	0 2000	1 100	30
636.0	596.4	544 .6	0.2888	1.785	91
636.4	596.7	544.0	0.2916	1.782	92
636.8	597.0	543.4	0.2944	1.779	93
637.2	597.3	542.8	0.2972	1.776	94
637.6	597.6	542.2	0.2999	1.773	95

TABLE II.
Properties of Saturated Steam

Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Pressure in lbs. per square inch.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories.
T.	θ.	p.	v.	i.	e.
			-		
96	369	12.72	30.63	96.4	96.4
97	370	13.19	29.60	97.5	97.5
98	371	13.68	28.61	98.5	98.5
99	372	14.18	27.66	99.5	99.5
100	373	14.70	26.75	100.5	100.5
100	0.0		20.0	2000	2000
101	374	15.23	25.87	101.5	101.5
102	375	15.78	25.03	102.5	102.5
103	376	16.35	24.22	103.5	103.5
104	377	16.93	23.44	104.5	104.2
105	378	17:53	22.69	105.6	105.6
	""	2.00			
106	379	18.15	21.98	106.6	106.6
107	380	18.78	21.28	107.6	107.6
108	381	19.43	20.61	108.6	108.6
109	382	20.11	19.96	109.6	109.6
110	383	20.80	19:34	110.7	110.6
111	384	21:51	18.74	111.7	111.7
112	385	22.24	18.17	112.7	112.7
113	386	22.99	17:61	113.7	113.7
114	387	23.76	17:07	114.7	114.7
115	388	24.55	16.56	115.8	115.7
					l
116	389	25.36	16.06	116.8	116.7
117	390	26.20	15.58	117.8	117.8
118	391	27.06	15.13	118.8	118.8
119	392	27.94	14.69	119.8	119.8
120	393	28.84	14.25	120.8	120.8
			İ		
121	394	29.77	13.83	121.9	121.8
122	395	30.72	13.43	122.9	122.8
123	396	31.70	13.04	123.9	123.9
124	397	32.70	12.66	124.9	124.9
125	398	33.73	12:30	125.9	125.9
					1
126	399	34.79	11.95	127.0	126.9
127	400	35.86	11.61	128.0	127.9
128	401	36.97	11.29	129.0	129.0
129	402	38.11	10.97	130.0	130.0
130	403	39.27	10.67	131.1	131.0

(continued).

Total heat of steam in	Internal heat of steam in	Latent heat of steam in	Entropy of	Entropy of steam in	Tempera- ture in
lbcalories.	lbcalories.	lbcalories.	water in ranks.	ranks.	degrees Centigrade.
I.	E.	L.	φ _w .	Φ ₈ .	Centigrade. T.
638.0	597.9	541·6	0.3026	1.770	96
638.4	598.2	541.0	0.3054	1.767	97
638.8	598.5	540.4	0.3081	1.764	98
639.2	598.8	539.8	0.3109	1.761	99
639.6	599.1	539.1	0.3136	1.759	100
0550	0001	0001	0 5150	1 100	100
640.0	599.4	538·5	0.3163	1.756	101
640.4	599.7	537.9	0.3190	1.753	102
640.8	600.0	537.3	0.3217	1.750	103
641.2	600.4	536.7	0.3244	1.747	104
641.6	600.7	536.0	0.3270	1.745	105
642.0	601.0	535·4	0.3297	1.742	106
642.4	601.3	534.8	0.3324	1.740	107
642.8	601.6	534.2	0.3351	1.737	108
643.2	601.9	533.6	0.3378	1.735	109
643.6	602.2	532·9	0.3404	1.732	110
0450	002 2	992 9	0 3404	1 132	110
644.0	602.5	532.3	0.3431	1.729	111
644.4	602.8	531.7	0.3457	1.727	112
644.7	603.1	531.0	0.3484	1.724	113
645.1	603.4	530· 4	0.3510	1.722	114
645.5	603.7	529.7	0.3536	1.719	115
645.9	604.0	529.1	0.3562	1.716	116
646.2	604.3	528·4	0.3588	1.714	117
646.6	604.6	527.8	0.3614	1.711	118
647.0	604.9	527.2	0.3640	1.709	119
647.4	605.1	526.5	0.3665	1.706	120
647.8	605.4	525·9	0.3691	1.704	121
648.1	605.7	525.2	0.3717	1.701	122
648.5	606.0	524.6	0.3743	1.699	123
648.8	606.3	524·0	0.3769	1.696	124
649.2	606.6	523.3	0.3794	1.694	125
U10 L	0000	0200		1001	120
649.6	606.9	522.7	0.3820	1.692	126
650.0	607.2	522.0	0.3846	1.689	127
650.4	607.5	521·4	0.3871	1.687	128
650.7	607.7	520.7	0.3897	1.685	129
651.1	608.0	520.0	0.3922	1.683	130
		L	<u> </u>		<u> </u>

TABLE II.
PROPERTIES OF SATURATED STEAM

Temperature in degrees	Absolute temperature	Pressure in lbs. per	Specific volume in cubic feet	Total heat of water in	Internal heat of water in
Centigrade.	in degrees Centigrade.	square inch.	per lb.	lbcalories.	lbcalories.
T.	ŏ.	p.	v.	i.	е.
131	404	40.47	10.37	$132 \cdot 1$	132.0
132	405	41.68	10.09	$133 \cdot 1$	133.0
133	406	42.93	9.815	134.1	$134 \cdot 1$
134	407	44.21	9.557	135.2	135.1
135	40 8	45 ·52	9.290	136.2	136·1
136	409	46 ·8 7	9.042	137.2	137·1
137	410	48.25	8.802	138.2	138·1
138	411	49.65	8.569	139.3	139.2
139	412	51.09	8.343	140.3	140.2
140	413	52·55	8.123	141.3	141.2
141	414	54 ·06	7.910	142.3	142.2
142	415	55.61	7.704	143.4	143.3
143	416	57.18	7.505	144.4	144.3
144	417	58.79	7.312	145.4	145.3
145	418	60:44	7.126	146.4	146 [.] 3
146	419	62.13	6.945	147.5	147.4
147	420	63.85	6.769	148.5	148.4
148	421	65.61	6.599	149.5	149.4
149	422	67:41	6.434	150.5	150.4
150	423	69.24	6.274	151.6	151·5
			2.1.0	1700	4707
151	424	71.12	6.118	152.6	152.5
152	425	73.04	5.967	153.6	153.5
153	426	75.00	5.820	154.6	154.5
154	427	77.00	5.677	155.7	155.6
155	428	79.05	5:541	156.7	156.6
1	400	01.14	- 470	1555	7.7.0
156	429	81.14	5.410	157.7	157.6
157	430	83.27	5.281	158.8	158.7
158	431	85.44	5.155	159.8	159.7
159	432	87.66	5.032	160.8	160.7
160	433	89.93	4.911	161.9	161.7
101	494	00.04	4.700	169.0	160.0
161	434	92.24	4.792	162.9	162.8
162	435	94.61	4.678	163.9	163.8
163	436	97.02	4.570	165.0	164.8
164	437	99.47	4.466	166.0	165.9
165	438	102.0	4.364	167.0	166.9

(continued).

	·		· · · · · · · · · · · · · · · · · · ·		
Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Tempera- ture in degrees
I.	E.	L.	ϕ_w .	φ,.	Centigrade. T.
					
651.5	608.3	519.4	0.3947	1.680	131
6 51·8	608.5	518.7	0.3972	1.678	132
$652 \cdot 1$	608.8	518.0	0:3997	1.676	133
652.5	609.1	517.3	0.4022	1.673	134
652.8	609.3	516.6	0.4047	1.671	135
		00	" - " - "		
653.2	609.6	516.0	0.4072	1.669	136
653.5	609.8	515.3	0.4097	1.667	137
653.9	610.1	514·6	0.4122	1.664	138
654.2	610.3	513.9	0.4147	1.662	139
654·5	610.6	513.2	0.4172	1.660	140
				1	
654.8	610.8	512.5	0.4197	1.658	141
655.2	611.1	511·8	0.4221	1.656	142
655·5	611·3	511.1	0.4246	1.653	143
655.8	611.6	510.4	0.4270	1.651	144
656.1	611.8	509.7	0.4295	1.649	$\overline{145}$
656.5	612.0	509.0	0.4319	1.647	146
656.8	612.3	508:3	0.4344	1.644	147
657:1	612.5	507.6	0.4368	1.642	148
657.4	612.8	506.9	0.4393	1.640	149
657:7	613.0	506.1	0.4417	1.638	150
27.0					l i
658.0	613.2	505.4	0.4442	1.636	151
658.3	613.5	504.7	0.4466	1.634	152
658.6	613.7	504.0	0.4490	1.632	153
658.9	614.0	503.3	0.4514	1.630	154
659.2	614.2	502.5	0.4538	1.628	155
659.5	614.4	501.0	0.4569	1.000	150
	614.4	501.8	0.4562	1.626	156
659.9	614.7	501.1	0.4586	1.624	157
660·2 660·5	614.9	500.4	0.4610	1.622	158
	615.1	499.7	0.4634	1.620	159
660.8	615.3	498.9	0.4657	1.618	160
661.1	615.6	498.2	0.4681	1.616	161
661.4	615.8	497.5	0.4705	1.614	162
661.7	616.0	496.7	0.4729	1.612	163
662.0	616.2	496.0	0.4753	1.610	164
662.3	616.5	495.2	0.4776	1.608	165
002 0	0100	100 2	0 3110	1 000	100
		·	·	•	

TABLE II.
PROPERTIES OF SATURATED STEAM

Temperature in degrees Centigrade.	Absolute temperature in degrees Centigrade.	Pressure in lbs. per square inch.	Specific volume in cubic feet per lb.	Total heat of water in lbcalories.	Internal heat of water in lbcalories.
т.	θ.	р.	ļ	7.	e.
166	439	104.5	4.266	168-1	167.9
167	440	107.1	4.169	169.1	169.0
168	441	109.7	4.073	170.2	170.0
169	442	112.4	3.981	171.2	171.0
	443	115.2	3.891	172.2	172.0
170	443	1102	9 091	1122	1120
171	444	118.0	3.802	173:3	173.1
172	445	120.9	3.718	174.3	174.1
173	446	123.8	3.635	175:3	175.1
174	447	126.8	3.555	176.4	176.2
175	448	129.9	3.477	177.4	177.2
110	110	1200	0 1	1	15
176	449	133.0	3.401	178:5	178.3
177	450	136.1	3.328	179.5	179.3
178	450 451	139.3	3.257	180.2	180.3
	451 452	142.6	3.187	181.6	181.4
179			3.118	182.6	182.4
180	453	145.9	3110	102'0	1024
181	454	149:3	3.051	183.7	183.4
182	455	152.7	2.985	184.7	184.5
183	456	156.2	2.923	185.8	185.5
184	457	159.8	2.862	186.8	186.5
185	458	163.4	2.802	187.9	187.6
100	400	100 4	2 002	10. 5	10.0
186	459	167.1	2.742	188.9	188.6
187	460	170.9	2.685	189.9	189.7
188	461	174.7	2.630	191.0	190.7
189	462	178.6	2.577	192.0	191.7
190	463	182.6	2.524	193.1	192.8
150	100	1020	2021	100 1	1020
191	464	186.6	2.473	194.1	193.8
192	465	190.7	2.423	195.2	194.9
193	466	194.9	2:374	196.2	195.9
193	467	199.1	2.326	197.3	197.0
194	468	203.4	2.279	198.3	198.0
190	4:00	200 4	2213	1900	1000
196	469	207.8	2.234	199.4	199.0
197	470	212.2	2.190	200.4	200.1
198	471	216.7	2.148	201.5	201.1
199	472	221.3	2.105	202.5	202.2
200	473	226.0	2:064	202.5	202.2
200	410	2200	2 004	2000	2002

(continued).

		- EMI BIAI OIL			
Total heat of steam in lbcalories.	Internal heat of steam in lbcalories.	Latent heat of steam in lbcalories.	Entropy of water in ranks.	Entropy of steam in ranks.	Tempera- ture in degrees Centigrade. T.
` 1.	E.	L.	φ _w .	φ,.	T.
662.6	616.7	494.5	0.4800	1.606	166
662.9	616.9	493.7	0.4823	1.604	167
663.2	617.2	493.0	0.4846	1.602	168
663.5	617.4	492.3	0.4869	1.600	169
663.7	617.6	491.5	0.4892	1.599	170
0001	0110	491 0	0 4032	1 555	1.0
664.0	617.8	490.8	0.4916	1.507	171
664.3				1.597	
	618.0	490.0	0.4939	1.595	172
664.6	618.2	489.3	0.4963	1.593	173
664.9	618.4	488.5	0.4986	1.591	174
665.1	618 [.] 6	487.7	0.2009	1.589	175
665.4	618.8	487.0	0.5032	1.587	176
665.7	619.0	486.2	0.5055	1.585	177
665.9	619.2	485.4	0.5078	1.583	178
666.2	619.4	484.6	0.5100	1.581	179
666.4	619.6	483.8	0.5123	1.580	180
					-55
666.7	619.8	483.0	0.5146	1.578	181
666.9	620.0	482.2	0.5169	1.576	182
667.2	620.2	481.4	0.5192	1.574	183
667.4	620.4	480.6	0.5215	1.572	184
667.7	620.6	479.8	0.5238	1.572	185
0011	0200	4190	0 5256	1311	109
667.9	620.8	479.0	0.5260	1.569	186
668.1	621.0	478.2	0.5283		187
668.4				1.568	
	621.2	477.4	0.5306	1.566	188
668.6	621.4	476.6	0.5328	1.565	189
668.9	621.5	475.8	0.5350	1.563	190
0001					
669.1	621.7	475.0	0.5373	1.561	191
669.3	621.9	474.1	0.5395	1.559	192
669.5	622.0	473.3	0.5417	1.558	193
669.8	622.2	472.5	0.5440	1.556	194
670.0	622.3	471.6	0.5462	1.554	195
670.2	622.5	470.8	0.5484	1.552	196
670.4	622.6	469.9	0.5507	1.551	197
670.6	622.7	469.1	0.5529	1.549	198
670.8	622.9	468.2	0.5551	1.548	199
671.0	623.0	467.4	0.5573	1.546	200
0.20	0200	10.1	00010	1 010	200
	·	` 	·	·	

TABLE II. Properties of Saturated Steam

Temperature in degrees Centigrade. T.	Absolute temperature in degrees Centigrade.	Pressure in lbs. per square inch.	Specific volume in cubic feet per 1b. V.	Total heat of water in lbcalories.	Internal heat of water in 1bcalories.
201	474	230·8	2·024	204·6	204·3
202	475	235·6	1·986	205·7	205·3
203	476	240·5	1·948	206·7	206·3
204	477	245·5	1·910	207·7	207·4
205	478	250·6	1·873	208·8	208·4
206	479	255·7	1·836	209·9	209·5
207	480	261·0	1·801	210·9	210·5
208	481	266·3	1·767	212·0	211·6
209	482	271·7	1·734	213·0	212·6
210	483	277·2	1·703	214·1	213·7

(continued).

Total heat of steam in lbcalories. I.	Internal heat of steam in lbcalories. E.	Latent heat of steam in lbcalories. L.	Entropy of water in ranks. ϕ_{w} .	Entropy of steam in ranks. ϕ_s	Tempera- ture in degrees Centigrade. T.
671·2	623·2	466·6	0·5595	1·544	201 ⁻
671·4	623·3	465·8	0·5617	1·543	202
671·6	623·5	464·9	0·5639	1·541	203
671·8	623·6	464·1	0·5661	1·540	204
672·1	623·8	463·3	0·5683	1·538	205
672·3	624·0	462.5	0·5705	1·536	206
672·6	624·1	461.6	0·5727	1·535	207
672·8	624·3	460.8	0·5749	1·533	208
673·0	624·4	460.0	0·5771	1·532	209
673·2	624·6	459.1	0·5792	1·530	210

NOTE ON TABLE III.

The following values represent the specific heat of superheated steam at the tabulated temperatures (Centigrade) at various pressures.

TABLE III.

Specific Heats of Superheated Steam at Various Temperatures (CENTIGRADE) and Pressures.

Tompere			Pressu	res in lbs.	per square	inch.		
Tempera- ture T°C.	20.	40.	во.	80.	100.	120.	140.	160.
108.8	0.508							
110 115 120 125 130	0·507 0·506 0·504 0·502 0·501							
130.6		0.525						
135 140	0·500 0·499	0·523 0·521						
144.7			0.539					
145 150 155	0:498 0:497 0:496	0·518 0·516 0·514	0·539 0·536 0·533					
155.4				0.551				
160	0.495	0.513	0.530	0.548				:
164.1					0.562			
165 170	0·494 0·493	0·511 0·509	0·528 0·525	0·545 0·541	0·561 0·557			
171.6						0.572		
175	0.492	0.508	0.523	0.538	0.554	0.269		
178.2							0.281	
180	0.492	0.206	0.521	0.536	0.550	0.564	0.579	
184.0								0.589

TABLE III.
SPECIFIC HEATS OF SUPERHEATED STEAM AT VARIOUS

Tempera-		Pressures in lbs. per square inch.											
Tempera- ture T°C.	20.	40.	60.	80.	100.	120.	140.	160.					
185	0.491	0.505	0.519	0.533	0.547	0.560	0.574	0.588					
189.3								•					
190	0.490	0.504	0.517	0.530	0.543	0.556	0.570	0.583					
194.2													
195	0.490	0.502	0.515	0.528	0.540	0.553	0.566	0.578					
198·7													
200	0.489	0.201	0.513	0.525	0.537	0.549	0.562	0.574					
202.9													
205	0.489	0.500	0.512	0.523	0.535	0.546	0.558	0.569					
206.8							•						
210	0.488	0.499	0.510	0.521	0.532	0.543	0.554	0.565					
210.5													
213.9													
220 230	0·487 0·486	0·497 0·496	0·507 0·505	0·517 0·514	0·528 0·523	0·538 0·533	0·548 0·542	0·558 0·551					
240 250	0·485 0·485	0· 4 94 0· 4 93	0·502 0·500	0·511 0·508	0·519 0·516	0·528 0·524	0·536 0·531	0·545 0·539					
260 270	0·484 0·484	0·491 0·490	0·499 0·497	0·506 0·504	0·513 0·510	0.520 0.517	$0.527 \\ 0.523$	0·534 0·530					
280	0.483	0.489	0.495	0.502	0.508	0.514	0.520	0.526					
290	0.483	0.488	0.494	0.500	0.505	0.511	0.517	0.522					
300	0.482	0.487	0.493	0.498	0.503	0.508	0.514	0.519					
310	0.482	0.487	0.492	0.496	0.501	0.506	0.511	0.516					
320 330	0·482 0·481	0.486 0.485	0·491 0·490	0·495 0·494	0.500 0.498	0·504 0·502	0·509 0·506	0·513 0·511					
000	0.401	0.409	0 330	0 404	0 400	0 002	0 000	0 011					

(continued).

TEMPERATURES (CENTIGRADE) AND PRESSURES (continued).

Pressures in lbs. per square inch.									
180.	200.	220.	240.	260.	280.	800.	Temperatur T° C.		
	į						185		
0.597							189.3		
0.596							190		
	0.605						194.2		
0.591	0.604						195		
		0.611					198.7		
0.586	0.598	0.610					200		
			0.618				202.9		
0.581	0.592	0.604	0.615				205		
				0.624			206.9		
0.576	0.587	0.598	0.609	0.620			210		
					0.631		210.5		
						0.637	213.9		
0.568	0.578	0.588	0.598	0.608	0.618	0.629	220		
0.560	0.570	0.579	0.588	0.597	0.607	0.616	230		
0.553	0.262	0.571	0.579	0.587	0.596	0.604	240		
0.547	0.555	0.563	0.571	0.578	0.586	0.594	250		
0.542	0.549	0.556	0.564	0.570	0.578	0.585	260		
0.537	0.544	0.550	0.557	0.563	0.570	0.577	270		
0.532	0.539	0.545	0.551	0.557	0.563	0.569	280		
0.528	0.534	0.540	0.545	0.551	0.556	0.562	290		
0.524	0.530	0.535	0.540	0.545	0.550	0.556	300		
0.524	0.526	0.531	0.536	0.540	0.545	0.550	310		
0.518	0.520	0.527	0.531	0.536	0.540	0.545	320		
).515	0.519	0.523	0.527	0.532	0.536	0.540	330		

TABLE III.

Specific Heats of Superheated Steam at Various

Tempera-			Press	ures in lbs.	per square	inch.		
ture To C.	20.	40.	60.	80.	100.	120.	140.	160.
340	0.481	0.485	0.489	0.493	0.497	0.500	0.504	0.508
350	0.481	0.484	0.488	0.492	0.495	0.499	0.503	0.506
360	0.480	0.484	0.487	0.491	0.494	0.497	0.501	0.504
370	0.480	0.483	0.487	0.490	0.493	0.496	0.499	0.502
380	0.480	0.483	0.486	0.489	0.492	0.495	0.498	0.501
390	0.480	0.483	0.485	0.488	0.491	0.494	0.497	0.499
400	0.480	0.482	0.485	0.487	0.490	0.493	0.495	0.498
410	0.479	0.482	0.484	0.487	0.489	0.492	0.494	0.497
420	0.479	0.482	0.484	0.486	0.489	0.491	0.493	0.496
430	0.479	0.481	0.484	0.486	0.488	0.490	0.492	0.495
440	0.479	0.481	0.483	0.485	0.487	0.489	0.491	0.494
450	0.479	0.481	0.483	0.485	0.487	0.489	0.491	0.493
460	0.479	0.481	0.483	0.484	0.486	0.488	0.490	0.492
470	0.479	0.480	0.482	0.484	0.486	0.487	0.489	0.491
480	0.479	0.480	0.482	0.483	0.485	0.487	0.488	0.490
490	0.479	0.480	0.482	0.483	0.485	0.486	0.488	0.489
500	0.478	0.480	0.481	0.483	0.484	0.486	0.487	0.488
510	0.478	0.480	0.481	0.482	0.484	0.485	0.487	0.488
520	0.478	0.480	0.481	0.482	0.483	0.485	0.486	0.487
530	0.478	0.479	0.481	0.482	0.483	0.484	0.486	0.487
540	0.478	0.479	0.480	0.482	0.483	0.484	0.485	0.486
550	0.478	0.479	0.480	0.481	0.483	0.484	0.485	0.486
								<u></u>

(continued).
Temperatures (CENTIGRADE) and Pressures (continued).

	Temperature To C.						
180.	200.	220.	240.	260.	280.	800.	Ťo C.
0.512	0.516	0.520	0.524	0.528	0.532	0.536	340
0.510	0.514	0.517	0.521	0.525	0.528	0.532	350
0.508	0.511	0.515	0.518	0.521	0.524	0.528	360
0.506	0.209	0.512	0.515	0.518	0.521	0.525	370
0.504	0.507	0.210	0.513	0.216	0.519	0.522	380
0.502	0.505	0.508	0.511	0.514	0.516	0.519	390
0.501	0.503	0.506	0.509	0.511	0.514	0.516	400
0.499	0.501	0.504	0.507	0.509	0.211	0.514	410
0.498	0.500	0.502	0.202	0.507	0.509	0.512	420
0.497	0.499	0.501	0.503	0.502	0.508	0.510	430
0.496	0.498	0.500	0.502	0.504	0.506	0.508	440
0.495	0.497	0.498	0.200	0.502	0.504	0.506	450
0.494	0.496	0.497	0.499	0.501	0.503	0.505	460
0.493	0.494	0.496	0.498	0.499	0.501	0.203	470
0.491	0.493	0.495	0.496	0.498	0.499	0.501	480
0.491	0.492	0.494	0.495	0.497	0.498	0.500	490
0.490	0.491	0.493	0.494	0.496	0.497	0.498	500
0.489	0.491	0.492	0.493	0.495	0.496	0.497	510
0.489	0.490	0.491	0.492	0.494	0.495	0.496	520
0.488	0.489	0.490	0.492	0.493	0.494	0.495	530
0.487	0.489	0.490	0.491	0.492	0.493	0.494	540
0.487	0.488	0.490	0.491	0.492	0.493	0.494	550

NOTE ON TABLE IV.

The following values represent the average specific heat of superheated steam from saturation to the tabulated temperatures (centigrade) at various pressures. The values are those most commonly required. The average specific heat over any other range is best obtained from Table III.

TABLE IV.

Average Specific Heats of Superheated Steam from Saturation to Tabulated Temperatures (**CENTIGRADE**)

at Various Pressures.

Tempers.			Pressu	res in lbs.	per square	inch.		
Tempera- ture T° C.	20.	40.	60.	80.	100.	120.	140.	160.
108.8	0.508							
110 120 130	0·507 0·506 0·505							
130.6	-	0.525						
140	0.503	0.523						
144.7			0.539					
150	0.502	0.521	0.538			·		
155.4				0.551				
160	0.501	0.519	0.535	0.549				
164.1					0.562			
170	0.200	0.517	0.532	0.546	0.559		-	
171.6						0.572		
178.2							0.581	
180	0.499	0.515	0.530	0.543	0.556	0.568	0.580	
184.0								0.589

TABLE IV.

Average Specific Heats of Superheated Steam from

Various

Tempers.			Pressu	res in lbs.]	per square	inch.		
Tempera- ture T° C.	20.	40.	60.	80.	100.	120	140.	160.
189.3								
190	0.498	0.513	0.527	0.540	0.553	0.564	0.575	0.586
194.2					_			
198.7					•			
200	0.497	0.512	0.525	0.538	0.550	0.561	0.571	0.581
202.9								
206.8								
210.5								
213.9				ļ				
220 240 260 280	0·495 0·493 0·492 0·491	0·509 0·506 0·504 0·502	0·521 0·518 0·515 0·512	0·533 0·528 0·524 0·521	0·544 0·538 0·533 0·529	0·554 0·547 0·542 0·537	0·563 0·556 0·550 0·545	0·573 0·565 0·558 0·552
300 320 340 360	0·491 0·490 0·489 0·489	0·501 0·500 0·498 0·497	0·510 0·508 0·506 0·504	0·518 0·515 0·513 0·511	0·526 0·523 0·520 0·517	0·533 0·530 0·526 0·523	0·541 0·537 0·533 0·530	0·548 0·543 0·539 0·535
380 400 425 450	0·488 0·487 0·486 0·486	0·496 0·495 0·493 0·492	0·503 0·501 0·499 0·498	0·509 0·507 0·505 0 503	0·515 0·513 0·510 0·508	0·521 0·518 0·515 0·513	0·527 0·524 0·521 0·518	0·532 0·529 0·526 0·523
475 500 525 550	0·486 0·485 0·485 0·485	0·491 0·491 0·490 0·490	0·497 0·496 0·495 0·494	0·501 0·500 0·499 0·498	0·506 0·505 0·503 0·502	0·511 0·509 0·507 0·506	0·516 0·514 0·512 0·510	0·520 0·518 0·515 0·513

(continued).

Saturation to Tabulated Temperatures (CENTIGRADE) at Pressures (continued).

		Pressures	in lbs. per se	Pressures in lbs. per square inch.						
180.	200.	220.	240.	260.	280.	800.	Temperature T° C.			
0.597							189.3			
0.596							190			
	0.605						194.2			
		0.611					198.7			
0.591	0.601	0.610					200			
			0.618				202.9			
				0.624			206.8			
					0.631		210.5			
						0.637	213.9			
0·582 0·573 0·566 0·560 0·554 0·549 0·544 0·540 0·537 0·533 0·530 0·527	0·591 0·582 0·574 0·567 0·561 0·555 0·550 0·546 0·542 0·538 0·534 0·531	0.600 0.590 0.581 0.574 0.567 0.561 0.556 0.551 0.546 0.542 0.538 0.534	0.608 0.597 0.588 0.581 0.573 0.567 0.561 0.556 0.551 0.547 0.542 0.538	0.616 0.605 0.595 0.587 0.579 0.572 0.566 0.561 0.556 0.551 0.546 0.542	0.625 0.613 0.602 0.593 0.585 0.578 0.571 0.566 0.551 0.556 0.551 0.546	0.633 0.620 0.609 0.599 0.591 0.583 0.576 0.570 0.565 0.555 0.550	220 240 260 280 300 320 340 360 380 400 425 450			
0·522 0·519 0·517	0·525 0·522 0·520	0·528 0·525 0·523	0·532 0·529 0·526	0·535 0·532 0·529	0·538 0·535 0·532	0·542 0·538 0·535	500 525 550			

TABLE PROPERTIES OF SATURATED STEAM ON

Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb. V.	Total heat of water in - B. Th. U.	Internal heat of water in B. Th. U.
P.				••	
0.1	34.9	494.3	2937	2.9	2.9
0.2	53.2	512.6	1523	$2\overline{1}\cdot\overline{2}$	21.2
0.3	64.6	524 ·0	1037	32.6	32.6
0.4	73.0	532.4	790.5	41.0	41.0
0.5	79.9	539.3	640.3	47.9	47.9
		000 0	0100	11.5	1.0
0.6	85.5	544.9	539.1	53 [.] 6	53.6
0.7	90.3	549.7	436.1	58.4	58.4
0.8	94.6	554·0	410.9	62.7	62.7
0.9	98.5	557.9	367.0	66.6	66.6
1.0	102.0	561.4	333.0	70.1	70.1
1	102 0	JUI 4	333 0	101	.01
1.1	105.1	564·5	304.3	73.2	73.2
1.2	108.1	567.5	280.4	76.2	76.2
1.3	111.0	570·4	260.1	79.1	79.1
1.4	113.5	572·9	242.6	81.6	81.6
1.5	115.9	575·3	227.3	84.0	84.0
10	110 9	0100	2213	040	040
1.6	118.2	577.6	213.9	86.3	86.3
1.7	120.4	579.8	202.1	88.5	88.5
1.8	122.5	581.9	191.5	90.7	90.7
1.9	124.5	583.9	182.0	92.7	92.7
2.0	126.3	585.7	173.4	94.5	94.5
	1200	000 .	1.01	010	010
2.1	128.1	587.5	165.6	96.3	96.3
2.2	129.8	589.2	158.6	98.0	98.0
2.3	131.5	590.9	152-1	99.7	99.7
2.4	133.1	592.5	146.1	101.3	101.3
2.5	134.6	594.0	140.6	102.8	102.8
				1 -02 0	-32-3
2.6	136.1	595.5	135.5	104.2	104.2
2.7	137.5	596.9	130.8	105.7	105.7
2.8	138.9	598.3	126.4	107.1	107.1
2.9	140.3	599.7	122.3	108.5	108.5
3.0	141.6	601.0	118.5	109.9	109.9
1		552.5	1100	1000	1000
3.2	144.1	603.5	111.5	112.4	112.4
3.4	146.5	605.9	105.4	114.8	114.8
3.6	148.7	608.1	99.85	117.0	117.0
3.8	150.8	610.2	94.91	119.1	119.1
4.0	152.9	612.3	90.47	121.2	121.2
	1000	, 0120	1 00 11	1	1010

V. Pressure Base (**POUND-FAHRENHEIT** Units).

Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L. K.f.S	ϕ_{w} .	φε.	p.
1071.6	1017:3	1068.7	0.006	2.168	0.1
1080.3	1023.9	1059.1	0.042	2.108	0.5
1086.0	1028.2	1053.4	0.064	2.074	0.3
1089.7	1031.5	1048.7	0.080	2.050	0.4
1092.8	1031.5	1044.9	0.093	2.030	0.5
1032 0	1055 5	1044 5	0 030	2 000	0.5
1095.4	1035.6	1041.8	0.103	2.015	0.6
1097.7	1037.4	1039.3	0.115	2.003	0.7
1099:8	1038-9	1037·1	0.150	1.992	0.8
1101.5	1040:3	1034.9	0.127	1.982	0.9
1103.0	1041.6	1032.9	0.133	1.973	1.0
1104.5	1040.0	1001.0	0.100	1.005	1.1
1104.5	1042.8	1031.3	0.139	1.965	1.1
1105.9	1043.8	1029.7	0.144	1.958	1.2
1107.2	1044.7	1028.1	0.149	1.951	1.3
1108.3	1045.5	1026.6	0.154	1.945	1.4
1109.4	1046.3	1025.4	0.158	1.940	1.5
1110.5	1045.1	1024-2	0.162	1.935	1.6
1111.5	1045.9	1023.0	. 0.166	1.930	$\bar{1}\cdot\bar{7}$
1112.4	1046.7	1021.7	0.169	1.926	1.8
1113.3	1047.4	1020.6	0.173	1.922	1.9
1114.2	1050.1	1019.7	0.176	1.918	$\overline{2}\cdot\overline{0}$
1115-1	1050.8	1018.8	0.179	1.914	2.1
1116.0	1051:4	1018.0	0.182	1.910	2.2
1116.9	1052·1	1017.2	0.185	1.906	2.3
1117.7	1052.7	1016.4	0.187	1.902	2.4
1118.4	1053.2	1015.6	0.190	1.899	2.5
1119.0	1053.7	1014.7	0.192	1.896	2.6
11190	1054.1	10147	0.192	1.893	$\frac{20}{2\cdot7}$
1119'0			0 -00	1	2.8
1120 1	1054.5	1013.0	0.197	1.890	2.9
	1054.9	1012.2	0.200	1.888	3.0
1121-2	1055.3	1011.4	0.202	1.885	3.0
1122.5	1056-2	1010.1	0.206	1.880	3.2
1123.7	1057.0	1008.9	0.510	1.875	3.4
1124.7	1057.8	1007.6	0.214	1.870	3.6
1125.5	1058.6	1006.3	0.218	1.866	3.8
1126.3	1059.3	1005.0	0.221	1.862	4.0
	2000	10000		1 302	

TABLE V. Properties of Saturated Steam on Pressure

Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
p.	T.	θ.	v.	i.	е.
4.2	154.9	614.3	86.42	123.3	123·3
4.4	156.8	616·2	82.74	125.2	125.2
4.6	158.7	618·1	79.35	127.1	127.1
4.8	160.5	619.9	76.25	128.9	128.9
5.0	162.3	621.7	73.39	130.7	130.7
		022.		100 .	100 1
6	170.1	6 29·5	61.87	138.6	138.6
7	176.9	636.3	53.56	145.4	145.4
8	182.9	642.3	47.27	151.4	151.4
9	188.2	647.6	42.33	156.8	156.8
10	193.3	652.7	38.37	161.9	161.9
10	1000	002 1	0001	101.9	101.9
11	197:8	657:2	35.09	166.5	166.5
12	202.0	661.4	32.35	170.8	170.8
13	205.9	665.3	30.01		
14	209.7	669.3		174.8	174.8
14.7	212.0		28.01	178.6	178.6
15		671.4	26.75	180.9	180.8
19	213.0	672.4	26.25	182·0	181.9
16	216.3	675.7	24.71	185.4	185:3
17	219.4	678.8	23.35	188.5	188.4
18	222.4	681.8	22.14	191.5	191.4
19	225.1	684.5	21.04	$191.5 \\ 194.2$	1914
20	227.8	687.2	20.06	194.2	
20	2210	0012	20'00	196.9	196.8
21	230.5	689.9	19.16	199.6	199.5
22	233.0	692.4	18.35	202.2	202.1
23	235.4	694.8	17.60	204.6	204.5
24	237.7	697.1	16.91	206.9	206.8
$\overline{25}$	240.0	699.4	16.28	209.2	209.1
				2002	2001
26	242.2	701.6	15.70	211.5	211.4
$\frac{1}{27}$	244.4	703.8	15.16	213.7	213.6
$\frac{1}{28}$	246.4	705.8	14.65	215.8	215.7
29	248.4	707.8	14.18	217.8	217.7
30	250.3	709.7	13.73	219.8	219.7
	2000	'00'	1010	2190	2181
31	252.2	711.6	13.31	221.7	221.6
32	254.0	713.4	12.92	223.6	223.5
33	255.7	715.1	12.56	225.4	225.3
34	257.5	716.9	12.22	227.2	227.1
35	259.2	718.6	11.89	229.0	228.9
		.100	1100	2230	220 9

(continued).

·			- CHIIS)	(CONCONCIONA)	
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	φ _w	φ _e	p.
1127-1	1060.0	1003.9	0.224	1.858	4.2
1128.0	1060.6	1002.8	0.227	1.854	4.4
1128.9	1061.2	1001.8	0.530	1.850	4.6
1129.7	1061.8	1000.8	0.233	1.847	4.8
1130.5	1062.4	999.8	0.236	1.844	1
12000	1005	0000	0 230	1044	5.0
1133.8	1065.0	995.2	0.2483	1.829	6
1136.7	1067.2	991.3	0.2593	1.817	7
1139.2	1069.2	987.8	0.2687	1.807	8
1141.5	1071.0	984.7	0.2771	1.797	9.
1143.7	1072.6	981.8	0.2849	1.789	10
	10.20	3.51.0	0 2049	1 109	10
1145.6	1074.1	979-1	0.2918	1.782	11
1147.3	1075.5	976.5	0.2983	1.775	12
1148.9	1076.7	974.1	0.3042	1.768	
1150.4	1077.8	971.8	0.3098	1.762	13
1151.4	1078.6	970.5	0.3136	1.759	14
1151.8	1078.8	969.7	0.3151		14.7
11010	10.00	303 1	0.9191	1.757	15
1153-1	1079-9	967.7	0.3200	1.752	16
1154.3	1080.9	965.8	0.3246	1.748	17
1155.5	1081.8	964.1	0.3290	1.743	18
1156.7	1082.7	962.4	0.3332	1.739	19
1157.8	1083.6	960.8	0.3371	1.735	20
			0 00.1	1,00	20
1158.8	1084.4	959.2	0.3409	1.731	21
1159.7	1085.1	957.6	0.3446	1.727	22
1160.6	1085.7	956.1	0.3481	1.724	23
1161.5	1086.3	954.6	0.3515	1.720	24
1162.3	1086.9	953.1	0.3548	1.717	25
Ì					
1163.2	1087.5	951.7	0.3580	1.714	26
1164.0	1088.1	950.3	0.3610	1.711	27
1164.8	1088.7	949.0	0.3639	1.708	28
1165.5	1089.2	947.7	0.3668	1.705	29
1166.2	1089.8	946.4	0.3696	1.703	30
1166.9	1090.3	945.2	0.3723	1.700	31
1167.6	1090.8	944.0	0.3749	1.698	32
1168.2	1091.3	942.8	0.3775	1.696	33
1168.8	1091.8	941.6	0.3800	1.693	3 4
1169.5	$1092 \ 3$	940.5	0.3824	1.691	35
	J			1 2002	00

TABLE V. Properties of Saturated Steam on Pressure

Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
p.	T.	0 .	v.	i.	e.
36	260.9	720.3	11.28	230.7	230.6
37	262·5	721.9	11.29	232.4	232.3
38	264·1	723.5	11.01	234.0	233.9
39	265.6	725·0	10.74	235.6	235.5
40			10.48		
40	267·1	726.5	1048	237.1	237.0
41	268.5	727.9	10.24	238.5	238.4
42	270.0	729.4	10.00	240.0	239.9
43	271.5	730.9	9.787	241.5	241.4
44	272.9	731.3	9.587	243.0	242.9
45	274.3	733.7	9.393	244.4	214.3
10	5,10	'00'	0 000	511 1	2110
46	275.7	735·1	9.205	245.8	245.7
47	277.1	736.5	9.023	247.2	247.1
48	278.4	737.8	8.847	248.5	248.4
49	279.7	739.1	8.677	249.8	249.7
50	280.9	740.3	8.513	251.0	250.9
00	2000	1100	0010	2010	2000
51	28 2 ·1	741 [.] 5	8.354	252.3	252.2
52	283·3	742.7	8.203	253.6	2 53· 5
53	284.5	743·9	8.058	254.8	254.6
54	285.7	745.1	7.918	256.0	255.8
55	286.9	746·3	7.783	257.2	257.0
50	900.0	747.4	7.650	050.4	050.0
56	288.0	747.4	7.652	258.4	258.2
57	289.2	748.6	7.526	259.6	259.4
58	290.3	749.7	7.405	260.7	260.5
59	291.4	750.8	7.288	261.9	261.7
60	292.5	751.9	7.175	263.0	262•8
61	293.6	753·0	7.066	264.1	263.9
62	294.7	754·1	6.960	265.2	265.0
63	295.7	755·1	6.857	266.3	266.1
64	296.8	756·2	6.756	267.4	267.2
65	297.8	757·2	6.657	268.5	268.3
00	2910	1012	0 001	2000	200 3
66	29 8·8	758.2	6.561	269.6	269·4
67	299.8	759 ·2	6.469	270.6	270.4
68	300.8	760.2	6.380	271.6	271.4
69	301.8	761.2	6.294	272.6	272.4
70	302.7	762.1	6.211	273.6	273.4
	302 .		0 2 1 1		2,01

(continued). BASE (POUND-FAHRENHEIT UNITS) (continued).

,				· · · · · · · · · · · · · · · · · · ·	
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
ı.	R.	L.	φ _w .	φ,.	p.
1170.1	1092.8	939.4	0.3848	1.689	36
1170.7	1093.2	938·3	0.3871	1.687	37
1171.2	1093.7	937.2	0.3893	1.685	38
1171.7	1094·1	936.1	0.3912	1.683	39
1172.2	1094.5	935·1	0.3936	1.681	40
1172.7	1094.9	934·1	0.3957	1.679	41
1173.2	1095.3	933·1	0.3978	1.677	42
1173.7	1095.7	932.2	0.3998	1.675	43
1174.2	1096.0	931.2	0.4018	1.673	44
1174.7	1096.4	930.3	0.4037	1.671	4 5
1175.2	1096.8	929.4	0.4056	1.669	46
1175.7	1097·1	928.5	0.4075	1.668	47
1176.1	1097.5	927.6	0.4093	1.666	48
1176.5	1097:8	926.7	0.4111	1.664	49
1176.9	1098.1	925.8	0.4129	1.663	50
1177:3	1098.4	924.9	0.4146	1.661	51
1177.7	1098.7	$924 \cdot 1$	0.4163	1.660	52
1178.1	1099.0	923.3	0.4180	1.658	53
1178.5	1099:3	922.5	0.4196	1.657	54
1178.9	1099.6	921.7	0.4212	1.656	55
1179.3	1099.9	920.9	0.4228	1.654	56
1179.7	1100.2	920.1	0.4243	1.653	57
1180.0	1100.4	919.3	0.4258	1.651	58
1180.4	1100.7	918.5	0.4273	1.650	59
1180.8	1101.0	917.8	0.4288	1.649	60
1181·1	1101.2	917.0	0.4303	1.647	61
1181.5	1101.5	916.2	0.4318	1.646	62
1181.8	1101.8	915·5	0.4332	1.645	63
1182.2	1102.0	914.8	0.4346	1.644	64
1182.6	1102.3	914.1	0.4360	1.643	65
1183.0	1102.6	913.4	0.4374	1.641	66
1183.3	1102.9	912.7	0.4387	1.640	67
1183.6	1103.1	912.0	0.4401	1.639	68
1183.9	1103.4	911.3	0.4414	1.638	69
1184.2	1103.6	910.6	0.4427	1.637	70
*****				l	

TABLE V. PROPERTIES OF SATURATED STEAM ON PRESSURE

Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
p.	T.	θ.	v.	i.	e.
	202 =	=00.1	0.100	0740	0744
71	303.7	763.1	6.130	274.6	274.4
72	304.6	764.0	6.051	275.5	275.3
73	305.6	765.0	5.973	276.5	276.3
74	306.5	765.9	5.897	277.4	277.2
75	307.4	766.8	5.822	278.3	278.1
	200.2	707.7	5.750	970.9	970.0
76	308.3	767.7		279.3	279.0
77	309.2	768.6	5.680	280.2	279.9
78	310.1	769.5	5.612	281.1	280.8
79	311.0	770.4	5.546	282.0	281.7
80	311.8	771.2	5.481	282.9	282.6
81	312.7	772.1	5.417	283.8	283.5
82	313.6	773.0	5.355	284.7	284.4
83	314.4	773.8	5.295	285.6	285.3
84	315.2	774.6	5.236	286.5	286.2
85	316.0	775.4	5.179	287:3	287.0
86	316.8	776.2	5.123	288.2	287.9
87	317.6	777.0	5.068	289.0	288.7
88	318.4	777.8	5.014	289.8	289.5
89	319.2	778.6	4.961	290.6	290.3
90	320.0	779.4	4.908	291.4	291.1
				_	
91	320.8	780.2	4.856	292.2	291.9
92	321.5	780.9	4.806	293.0	292.7
93	322.3	781.7	4.758	293.8	293.5
94	324.1	782.5	4.711	294.6	294.3
95	323.8	783.2	4.665	295.4	295·1
00	904.0	704.0	4.690	000.0	905.0
96	324.6	784.0	4.620	296.2	295.9
97	325.3	784.7	4.575	296.9	296.6
98	326.1	785.5	4.531	297.7	297.4
99	326.9	786.3	4.488	298.5	298.2
100	327.6	787.0	4.446	299-2	298.9
101	328.3	787.7	4.404	300.0	299.7
102	329.0	788.4	4.363	300.7	300.4
102	329.7	789.1	4.323	301.4	301.1
103	330.4	789.8	4.284	302.1	301.8
104	331.0	790.4	4.246	302.1	302.5
109	991 0	1904	4 240	302 0	304 3

(continued).

Base (POUND-FAHRENHEIT Units) (continued).

		1			
Total heat	Internal heat	Latent heat	Entropy of	Entropy of	Pressure in
of steam	of steam	of steam	water in ranks.	steam in ranks.	lbs. per square inch.
in B. Th. U.	in B. Th. U.	in B. Th. U.		in ranks.	square men.
I.	E.	L.	ϕ_w .	ϕ_{s} .	p.
1104.5	1100.0	000.0		1.696	71
1184.5	1103.9	909.9	0.4440	1.636	71 70
1184.7	1104.1	909.2	0.4453	1.635	72
1185.0	1104.3	908.5	0.4465	1.634	73
1185.3	1104.6	907:8	0.4478	1.633	74
1185.6	1104·8	907:2	0.4490	1.632	75
1185.8	1105.0	906.5	0.4502	1.631	76
1186.1	1105.2	905.8	0.4514	1.630	77
1186.4	1105.4	905.2	0.4526	1.629	78
1186.7	1105.6	904.6	0.4538	1.628	79
1187.0	1105.8	904.0	0.4550	1.627	80
1187.2	1106.0	903.4	0.4561	1.626	81
1187.5	1106.2	902.8	0.4572	1.625	82
1187.8	1106.4	902.2	0.4583	1.624	83
1188-1	1106.6	901.6	0.4594	1.623	84
1188.3	1106.8	901.1	0.4604	1.622	85
		0011			
1188.6	1107.0	900.5	0.4615	1.621	86
1188.9	1107.2	899.9	0.4626	1.620	87
1189.1	1107.4	899.3	0.4636	1.619	88
1189.3	1107.5	898.7	0.4647	1.618	89
1189.6	1107.7	898.2	0.4657	1.618	90
11000	110.	0002	0 1001	120	
1189.8	1107.9	897.6	0.4667	1.617	91
1190.0	1108.1	897.0	0.4677	1.616	92
1190.3	1108.2	896.5	0.4687	1.615	93
1190.5	1108.4	895.9	0.4697	1.614	94
1190.8	1108.6	895.4	0.4707	1.614	95
11000	11000	000 1	0 1.01	1011	
1191.0	1108.7	894.8	0.4716	1.613	96
1191.2	1108.9	894.2	0.4726	1.612	97
1191.4	1109.0	893.7	0.4736	1.611	98
1191.6	1109.1	893.1	0.4745	1.610	99
1191.8	1109.3	892.6	0.4755	1.610	100
1131 0	11090	032 0	0 1100	1 010	100
1192.0	1109.5	892.0	0.4764	1.609	101
1192.2	1109.6	891.5	0.4774	1.608	102
1192.4	1109.8	891.0	0.4783	1.607	103
1192.5	1109.9	890.4	0.4792	1.606	104
1192.7	11109 9	889.9	0.4801	1.606	105
1192 1	11101	0000	0 1001	1 1000	

TABLE V. Properties of Saturated Steam on Pressure

Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
p.	Т.	θ.	v.	i.	e.
106	331.6	791:0	4.208	303.5	303:2
107	332.3	791.7	4.171	304.2	
108	333.0	792.4			303.9
109			4.135	304.9	304.6
	333.7	793.1	4.100	305.6	305.3
110	334.4	793.8	4.065	306.3	306.0
111	335.0	794.4	4.030	306.9	306.6
112	335.7	795.1	3.996	307.6	307.3
113	336.4	795.8	3.963		308.0
114	337.0	796.4	3.931	308.9	
115	337.7	797:1	3.899		308.6
110	3311	191 1	2 699	309.6	309.3
116	338.4	797.8	3.867	310.3	310.0
117	339.0	798.4	3.836	311.0	310.6
118	339.6	799:0	3.805	311.7	311.3
119	340.2	799.6	3.775	312.3	311.9
120	340.9	800.3	3.746	313.0	$311.9 \\ 312.6$
121	941.5	000.0	0.77		
122	341.5	800.9	3.717	313.6	313.2
	342.1	801.5	3.688	314.3	313.9
123	342.8	802.2	3.660	315.0	314.6
124	343.4	802.8	3.632	315.6	315.2
125	344.0	803.4	3.605	316.2	315.8
126	344.6	804:0	3.578	316.9	316.5
$\overline{127}$	345.2	804.6	3.552	317.5	
128	345.8	805.2	3.526		317.1
129	346.4	805.8		318.1	317.7
130	347.0		3.500	318.7	318.3
130	3470	806.4	3.475	319.3	318.9
131	347.6	807.0	3.450	320.0	319.6
132	348.1	807.5	3.425	320.6	320.5
133	348.7	808.1	3.401	321.2	320.8
134	349.3	808.7	3.377	321.8	321.4
135	349.9	809.3	3.354	322.4	322.0
136	350:4	900.0	0.001	0000	•••
130 137		809.8	3.331	323.0	322.6
	351.0	810.4	3.308	323.6	$323 \cdot 2$
138	351.6	811.0	3.285		323.8
139	352.1	811.5	3.263	324.8	324.4
1 4 0	352.7	$812^{\cdot}1$	3.241	325.4	325.0

				1	
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	ϕ_w .	φ ₈ .	p.
1100.0	1110.9	000.4	0.4810	1.605	106
1192.9	1110.3	889.4			
1193.0	1110.4	888.8	0.4819	1.604	107
1193.2	1110.6	888.3	0.4828	1.603	108
1193.4	1110.7	887:8	0.4837	1.602	109
1193.6	1110.8	887:3	0.4845	1.602	110
1193.7	1111:0	886.8	0.4854	1.601	111
1193.9	1111.1	886.3	0.4862	1.601	112
	1111.3	885.8	0.4871	1.600	113
1194.1				1.599	
1194.3	1111.4	885.3	0.4880		114
1194.5	1111.5	884.8	0.4888	1.599	115
1194·6	1111 [.] 6	884.3	0.4897	1.598	116
1194.8	1111.8	883;8	0.4905	1.598	117
1195.0	1111.9	883.3	0.4913	1.597	118
1195.2	1112.0	882.8	0.4921	1.596	119
	1112.1	882.4	0.4921	1.596	120
1195.4	11121	0024	0 4929	1 990	120
1195.5	1112.2	881.9	0.4937	1.595	121
1195.7	1112·4	881.4	0.4945	1.594	122
1195.9	1112.5	880.9	0.4953	1.594	123
1196.0	1112.6	880.4	04961	1.593	124
1196.2	1112.7	880.0	0.4969	1.592	125
					100
1196.4	1112.8	879.5	0.4977	1.592	126
1196.6	1113.0	879.1	0.4984	1.591	127
1196.7	1113.1	878.6	0.4992	1.590	128
1196.9	1113.2	878.1	0.5000	1.590	129
1197.0	1113.3	877.7	0.5008	1.589	130
11070	1119.5	077.0	0.5016	1.589	131
1197.2	1113.5	877.2	0.5016		132
1197.4	1113.6	876.8	0.5023	1.588	132 133
1197.5	1113.7	876.4	0.5031	1.588	
1197.7	1113.9	875.9	0.5039	1.587	134
1197.8	1114.0	875.5	0.5046	1.586	135
1198.0	1114.1	875.0	0.5054	1.586	136
1198.2	1114.2	874·6	0.5061	1.585	137
	1114.4	874·1	0.5068	1.584	138
1198.3			0.5075	1.584	139
1198.5	1114.5	873.7	0.5082	1.583	140
1198.6	1114.6	873.2	0 0002	1 909	110

TABLE V. Properties of Saturated Steam on Pressure

p. T. 6. V. 6. c. 141 353:3 812:7 3:219 326:0 325:6 142 353:8 813:2 3:198 326:5 326:1 143 354:4 813:8 3:177 327:1 326:7 144 355:0 814:4 3:156 327:7 327:3 145 355:5 814:9 3:136 328:3 327:9 146 356:1 815:5 3:116 328:9 328:5 147 356:6 816:0 3:096 329:4 329:0 148 357:1 816:5 3:076 330:0 329:6 149 357:6 817:0 3:036 330:5 330:1 150 358:1 817:5 3:037 331:0 330:6 151 358:7 818:1 3:018 331:6 331:2 152 359:2 818:6 2:999 332:1 33:7 153 360:	Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
142 353.8 813.2 3.198 326.5 326.1 143 354.4 813.8 3.177 327.1 326.7 144 355.0 814.4 3.156 327.7 327.3 145 355.5 814.9 3.136 328.3 327.9 146 356.1 815.5 3.116 328.9 328.5 147 356.6 816.0 3.096 329.4 329.0 148 357.1 816.5 3.076 330.0 329.6 149 357.6 817.0 3.056 330.5 330.1 150 358.1 817.5 3.037 331.0 330.6 151 358.7 818.1 3.018 331.6 331.2 152 359.2 818.6 2.999 332.1 331.7 153 359.7 819.1 2.981 332.7 332.2 154 360.2 819.6 2.963 333.2 332.7 155	р.	T.	θ.	v.	i.	е.
142 353.8 813.2 3.198 326.5 326.1 143 354.4 813.8 3.177 327.1 326.7 144 355.0 814.4 3.156 327.7 327.3 145 355.5 814.9 3.136 328.3 327.9 146 356.1 815.5 3.116 328.9 328.5 147 356.6 816.0 3.096 329.4 329.0 148 357.1 816.5 3.076 330.0 329.6 149 357.6 817.0 3.056 330.5 330.1 150 358.1 817.5 3.037 331.0 330.6 151 358.7 818.1 3.018 331.6 331.2 152 359.2 818.6 2.999 332.1 331.7 153 359.7 819.1 2.981 332.7 332.2 154 360.2 819.6 2.963 333.2 332.7 155	141	353.3	812.7	3.219	326.0	325.6
143 354·4 813·8 3·177 327·1 326·7 144 355·0 814·4 3·156 327·7 327·3 145 355·5 814·9 3·136 328·3 327·9 146 356·1 815·5 3·116 328·9 328·5 147 356·6 816·0 3·096 329·4 329·0 148 357·1 816·5 3·076 330·0 329·6 149 357·6 817·0 3·056 330·5 330·1 150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·2 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·3 333·3 156						
144 355·0 814·4 3·156 327·7 327·3 145 355·5 814·9 3·136 328·3 327·9 146 356·1 815·5 3·116 328·9 328·5 147 356·6 816·0 3·096 329·4 329·0 148 357·1 816·5 3·076 330·0 329·6 149 357·6 817·0 3·056 330·5 330·1 150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 334·3 334·8 157						
145 355·5 814·9 3·136 328·3 327·9 146 356·1 815·5 3·116 328·9 328·5 147 356·6 816·0 3·096 329·4 329·0 148 357·1 816·5 3·076 330·0 329·6 149 357·6 817·0 3·056 330·5 330·1 150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 33·2 33·2 154 360·2 819·6 2·963 33·2 33·2 155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 34·3 33·8 157 361·7 821·1 2·909 33·4·8 33·3 158						
146 356·1 815·5 3·116 328·9 328·5 147 356·6 816·0 3·096 329·4 329·0 148 357·1 816·5 3·076 330·0 329·6 149 357·6 817·0 3·056 330·5 330·1 150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·7 333·2 155 361·2 820·6 2·927 34·3 33·8 157 361·7 821·1 2·909 34·8 334·3 158 362·2 821·6 2·892 335·3 335·8 159						
147 356·6 816·0 3·096 329·4 329·0 148 357·1 816·5 3·076 330·0 329·6 149 357·6 817·0 3·056 330·5 330·1 150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 334·3 333·8 157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 335·8 159 362·7 822·1 2·875 335·8 335·3 160	140	333 3	014.0	5 150	520 5	02.10
148 357·1 816·5 3·076 330·0 329·6 149 357·6 817·0 3·056 330·5 330·1 150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·7 332·2 155 360·7 820·1 2·945 333·7 333·2 155 361·2 820·6 2·927 334·3 33·3·2 156 361·2 820·6 2·927 334·3 33·3·3 157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 33·8 159 362·7 822·1 2·875 335·8 335·3 160 <td>146</td> <td>356.1</td> <td></td> <td>3.116</td> <td>328.9</td> <td>328.5</td>	146	356.1		3.116	328.9	328.5
148 357·1 816·5 3·076 330·0 329·6 149 357·6 817·0 3·056 330·5 330·1 150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·7 332·2 155 360·7 820·1 2·945 333·7 333·2 155 361·2 820·6 2·927 334·3 33·3·2 156 361·2 820·6 2·927 334·3 33·3·3 157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 33·8 159 362·7 822·1 2·875 335·8 335·3 160 <td>147</td> <td>356.6</td> <td>816.0</td> <td>3.096</td> <td>329.4</td> <td>329.0</td>	147	356.6	816.0	3.096	329.4	329.0
150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 334·3 33·8 157 361·7 821·1 2·909 334·8 334·3 158 362·2 82·16 2·892 335·3 33·8 159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163	148	357.1	816.5	3.076	330.0	329.6
150 358·1 817·5 3·037 331·0 330·6 151 358·7 818·1 3·018 331·6 331·2 152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 334·3 33·8 157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 33·8 159 362·7 822·1 2·875 335·8 335·3 160 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164	149	357.6	817.0	3.056	330.5	330.1
152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 334·3 333·8 157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 33·8 159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165		358.1	817.5	3.037	331.0	330.6
152 359·2 818·6 2·999 332·1 331·7 153 359·7 819·1 2·981 332·7 332·2 154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 334·3 333·8 157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 33·8 159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165				:		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
154 360·2 819·6 2·963 333·2 332·7 155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 334·3 333·8 157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 334·8 159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 339·9 167		359.2	818.6	2·9 9 9		
155 360·7 820·1 2·945 333·7 333·2 156 361·2 820·6 2·927 334·3 333·8 157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 334·8 159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 339·9 167 366·8 826·2 2·765 339·9 339·4 168	153	359.7	819·1	2.981	332.7	332.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	154	360.2	819.6	2.963		332.7
157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 334·8 159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170	155	360.7	820.1	2.945	333.7	333.2
157 361·7 821·1 2·909 334·8 334·3 158 362·2 821·6 2·892 335·3 334·8 159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170						
158 362·2 821·6 2·892 335·3 334·8 159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171						
159 362·7 822·1 2·875 335·8 335·3 160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172						
160 363·2 822·6 2·858 336·3 335·8 161 363·8 823·2 2·841 336·9 336·4 162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9	160	363.2	822.6	2.858	336.3	335.8
162 364·3 823·7 2·824 337·4 336·9 163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9	161	262.0	292.9	9.941	336.0	336.4
163 364·8 824·2 2·808 337·9 337·4 164 365·3 824·7 2·792 338·4 337·9 165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9	160					
$\begin{array}{ c c c c c c c c }\hline 164 & 365 \cdot 3 & 824 \cdot 7 & 2 \cdot 792 & 338 \cdot 4 & 337 \cdot 9 \\ 165 & 365 \cdot 8 & 825 \cdot 2 & 2 \cdot 776 & 338 \cdot 9 & 338 \cdot 4 \\ \hline 166 & 366 \cdot 3 & 825 \cdot 7 & 2 \cdot 740 & 339 \cdot 4 & 338 \cdot 9 \\ 167 & 366 \cdot 8 & 826 \cdot 2 & 2 \cdot 765 & 339 \cdot 9 & 339 \cdot 4 \\ 168 & 367 \cdot 3 & 826 \cdot 7 & 2 \cdot 730 & 340 \cdot 4 & 339 \cdot 9 \\ 169 & 367 \cdot 8 & 827 \cdot 2 & 2 \cdot 715 & 340 \cdot 9 & 340 \cdot 4 \\ 170 & 368 \cdot 2 & 827 \cdot 6 & 2 \cdot 700 & 341 \cdot 4 & 340 \cdot 9 \\ \hline 171 & 368 \cdot 7 & 828 \cdot 1 & 2 \cdot 685 & 341 \cdot 9 & 341 \cdot 4 \\ 172 & 369 \cdot 2 & 828 \cdot 6 & 2 \cdot 670 & 342 \cdot 4 & 341 \cdot 9 \\ \hline \end{array}$						
165 365·8 825·2 2·776 338·9 338·4 166 366·3 825·7 2·740 339·4 338·9 167 366·8 826·2 2·765 339·9 339·4 168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	305.8	829.2	2.110	558.8	330°4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	166	366.3	825.7	2.740	339.4	338.9
168 367·3 826·7 2·730 340·4 339·9 169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9						
169 367·8 827·2 2·715 340·9 340·4 170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9						
170 368·2 827·6 2·700 341·4 340·9 171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9						
171 368·7 828·1 2·685 341·9 341·4 172 369·2 828·6 2·670 342·4 341·9						
172 369·2 828·6 2·670 342·4 341·9	1.0	500 5	32.0		-	0200
	171	368.7	828.1	2.685	341.9	341.4
	172	369.2	828.6	2.670	342.4	341.9
1 173 309'0 829'0 2'099 342'8 342'3	173	369.6	829.0	2.655	342.8	342.3
174 370·1 829·5 2·641 343·3 342·8			829.5	2.641	343.3	342.8
175 370.5 829.9 2.627 343.8 343.3			829.9	2.627	343.8	343.3

BASE (POUND-FAHRENHEIT UNITS) (continued).

DADE (200				·	·
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	φ,,.	φ ₈ .	<i>p</i> .
1198.8	1114.7	872.8	0.5089	1.583	141
		872:3	0.5096	1.582	142
1198.9	1114.8			1.582	143
1199.0	1114.9	871.9	0·5103 0·5110	1.581	143
1199.2	1115.0	871.4		1.580	145
1199.3	1115.1	871.0	0.5117	1 300	149
1199.5	1115.2	870.6	0.5124	1.580	146
1199.6	1115.3	870.1	0.2131	1.579	147
1199.7	1115.4	869.7	0.5138	1.579	148
1199.8	1115.5	869.3	0.5145	1.578	149
1200.0	1115.6	868.9	0.5151	1.578	150
12000	11190	000 8	0.0101	10.0	100
1200.1	1115.7	868.5	0.5158	1.577	151
1200.2	1115.8	868.1	0.5164	1.577	152
1200.4	1115.9	867.7	0.5171	1.576	153
1200 4	1116.0	867.3	0.5177	1.576	154
	1116.0	866.9	0.5183	1.575	155
1200.6	1110.0	000 9	0 5165	1010	100
1200.8	1116.1	866.5	0.5190	1.575	156
1200.9	1116.2	866.1	0.5196	1.574	157
1201.0	1116.3	865.7	0.5203	1.574	158
1201.1	1116.4	865.3	0.5209	1.573	159
1201.2	1116.5	864.9	0.5215	1.573	160
12012	11100	0010	0 0210		
1201.4	1116.6	864.5	0.5222	1.572	161
1201.5	1116.7	864.1	0.5228	1.572	162
1201.6	1116.8	863.7	0.5234	1.571	163
1201.7	1116.9	863.3	0.5240	1.571	164
1201.8	1117.0	862.9	0.5246	1.570	165
				1	
1201.9	1117.1	862.5	0.5252	1.570	166
1202.0	1117.2	862.1	0.5258	1.569	167
1202.2	1117:3	861.8	0.5264	1.569	168
1202.3	1117.4	861.4	0.5270	1.569	169
1202.4	1117.4	861.0	0.5276	1.568	170
		222 =	0.5000	1.700	171
1202.6	1117.5	860.7	0.5282	1.568	171
1202.7	1117.6	860.3	0.5288	1.568	172
1202.8	1117.7	859.9	0.5294	1.567	173
1202.9	1117.8	859.5	0.5300	1.567	174
1203.0	1117.8	859.2	0.5305	1.566	175
L	1		1	<u> </u>	

150.2 83.35

THE NEW STEAM TABLES

TABLE V. Properties of Saturated Steam on Pressure

Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
p.	T.	θ.	v.	i.	e.
176	371.0	830.4	2.613	344.3	343.8
177	371.4	830.8	2.599	344.7	344.2
178	371.9	831.3	2.585	345.2	344.7
179	372.3	831.7	2.571	345.7	345.2
180	372.8	832.2	2.558	346.2	345.7
181	373.3	832.7	2.545	346.7	346.2
182	373.7	833.1	2.532	347.2	346.6
183	374.2	833.6	2.519	347.7	347.1
184	374.6	834.0	2.506	348.2	347.6
185	375.1	834.5	2.493	348.7	348.1
186	375.6	835.0	2.480	349.2	348.6
187	376.0	835.4	2.467	349.6	349.0
188	376.4	835.8	2.455	350.1	349.5
189	376.9	836.3	2.443	350.6	350.0
190	377.3	836.7	2.431	351.0	350.4
191	377.7	837.1	2.419	351.4	350.8
192	378.2	837.6	2.407	351.9	351.3
193	378.6	838.0	2:395	352.3	351.7
194	379.0	838.4	2.383	352.8	352.2
195	379.4	838.8	2.372	353.2	352.6
196	379.9	839:3	2:361	353.7	353.1
197	380.3	839.7	2.349	354.1	353.5
198	380.7	840.1	2.338	354.6	354.0
199	381.2	840.6	2.327	355.1	354.5
200	381 6	841.0	2.316	355.5	354.9
201	382.0	841.4	2:305	356.0	355.4
202	382.4	841.8	2.294	356.4	355.8
203	382.9	842.3	2.283	356.9	356.3
204	383.3	842.7	2.273	357.3	356.7
205	383.7	843.1	2.263	357.7	357· 1
206	384.1	843.5	2.253	358·1	357·5
207	384.5	843.9	2.243	358.5	357.9
208	385.0	844.4	2.233	359.0	358.4
209	385.4	844.8	2.223	359·4	358.8
210	385.8	845.2	2:213	359.8	359.2
210	0000	0902	2 213	599 O	399°Z

70

(continued).

Base (POUND-FAHRENHEIT Units) (continued).

				· · · ·	
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	ϕ_w .	ϕ_s .	p.
10001					
1203.1	1117.9	858· 8	0.5311	1.566	176
1203.2	1118.0	858.4	0.5317	1.565	177
1203.3	1118·1	858.1	0.5323	1.565	178
1203.4	1118.2	857.7	0.5329	1.564	179
1203.5	1118.2	857:3	0.5334	1.564	180
1203.6	1110.9	0500	0.7040	1.500	
	1118.3	856.9	0.5340	1.563	181
1203.7	1118.4	856.5	0.5345	1.563	182
1203.8	1118.5	856.1	0.5351	1.562	183
1204.0	1118.6	855.8	0.5356	1.562	184
1204.1	1118.6	855.4	0.5362	1.561	185
1204.2	1118.7	855.0	0.5367	1.561	100
1204.3	1118.8	854·7		1.560	186
1204.4	1118.9	854.3	0·5373 0·5379	1.560	187
1204.5	1118.9		0.5384	1.559	188
1204.6	1110 9	853.9			189
1204 0	11190	853.6	0.5390	1.559	190
1204.7	1119.1	853.2	0.5395	1.559	191
1204.8	1119.2	852.9	0.5401	1.558	192
1204.9	1119 [.] 3	852.6	0.5406	1.558	193
1205.0	1119.3	852.2	0.5412	1.558	194
1205.1	1119.4	851.9	0.5417	1.557	195
1205.2	1119.4	851.5	0.5422	1.557	196
1205.3	1119.5	851.2	0.5428	1.556	197
1205.4	1119:6	850.8	0.5433	1.556	198
1205.5	1119.6	850.5	0.5439	1.556	199
1205.6	1119.8	850.2	0.5444	1.555	200
1005.5	1110.0	040.0	0.5440		004
1205.7	1119.9	849.8	0.5449	1.555	201
1205.8	1120.0	849.5	0.5455	1.555	202
1205.9	1120.0	849.1	0.5460	1.554	203
1206.0	1120.1	848.8	0.5465	1.554	204
1206;1	1120.2	848.4	0.5470	1.554	205
1206.2	1120.2	848.1	0.5476	1.553	206
1206.3	1120.2	847.7	0.5481	1.553	206 207
1206.4	1120 3	847.4	0.5486	1.553	207
1206.4	1120 4	847.0	0.5491	1.552	208
1206.5	1120.5	846.7	0.5496	1.552	209 210
12000	1.1200	0401	0 9490	1 002	210

TABLE V. Properties of Saturated Steam on Pressure

,					
Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
p.	T.	θ.	v.	i.	ļ ,
211	386.2	845.6	2.203	360:2	359.6
212	386.6	846.0	2.193	360.6	360.0
213	387.0	846.4	2.183		
214				361.1	360.5
1	387.4	846.8	2.173	361.5	360.9
215	387.8	847.2	2.164	361.9	361.3
					1
216	388.2	847.6	2.154	362.3	361.7
217	388.6	848.0	2.145	362.8	362.2
218	388.9	848.3	2.136	363.2	362.6
219	389.3	848.7	2.127	363.6	363.0
220	389.7	849.1			
220	309 1	0491	2.118	364.0	363.4
221	390.1	849.5	0.100	004.4	0000
			2.109	364.4	363.8
222	390.5	849.9	2.100	364.8	364.2
223	390.8	850.2	2.091	$365^{\cdot}2$	364.6
224	391.2	850.6	2.082	365.6	365.0
225	391.6	851.0	2.073	366.0	365.4
	""		20.0	0000	000 1
226	392.0	851.4	2.065	366.5	365.8
227	392.4	851.8	2.056	366.9	366.2
228	392.7	852.1	2.047	367.3	366.6
229	393.1	852.5	2.039	367·7	
230					367.0
230	393.5	852.9	2.031	368.1	367.4
231	393.9	853.3	0.000	960.5	207.0
			2.022	368.5	367.8
232	394.3	853.7	2.014	368.9	368.2
233	394.6	854.0	2.006	$369^{\cdot}2$	368.5
234	395.0	854.4	1.998	369.6	368.9
235	395.4	854.8	1.990	370.0	369.3
ķ					
236	395.8	855.2	1.982	370.4	369.7
237	396.1	855.5	1.974	370.7	370.0
238	396.5	855.9	1.966	371.1	370.4
239	396.8	856.2	1.958	371.5	1
240	397.2	856·6			370.8
240	0912	090.0	1.950	371.9	371.2
241	397.6	857.0	1.942	372:3	971.6
242	397.9	857.3			371.6
			1.934	372.6	371.9
243	398.3	857.7	1.926	373.0	372.3
244	398.6	858.0	1.919	373.4	372.7
245	399.0	858.4	1.912	373.8	373.1
<u></u>	L	L	<u> </u>		

(continued).

				1 7	
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	ϕ_{w} .	ϕ_{g} .	p.
1206.5	1120.6	846:3	0.5501	1.552	211
1206.6	1120.7	846.0	0.5506	1.551	212
1206.7	1120.7	845.7	0.5510	1.551	213
1206.8	1120.8	845.3	0.5515	1.551	214
1206.9	1120.9	845.0	0.5520	1.550	214 215
1200 9	1120 9	0490	0 0020	1 550	213
1207.0	1120.9	844.7	0.5525	1.550	216
1207.1	1121.0	844.4	0.5530	1.549	217
1207.2	1121.1	844.0	0.5534	1.549	218
1207.3	1121.2	843.7	0.5539	1.549	219
1207.4	1121.2	843.4	0.5544	1.548	220
1207.5	1121.3	843.1	0.5549	1.548	221
1207.6	1121.4	842.8	0.5554	1.548	222
1207.6	1121.4	842.4	0.5558	1.547	223
1207.7	1121.5	842.1	0.5563	1.547	224
1207.8	1121.6	841.8	0.5568	1.546	225
_					
1207.9	1121.6	841.5	0.5572	1.546	226
1208.0	1121.7	841.1	0.5577	1.546	227
1208.1	1121.8	840.8	0.5582	1.545	228
1208.2	1121.8	840.5	0.5587	1.545	229
1208.3	1121.9	840.2	0.5591	1.544	230
10000	1100.0	0000	0.5500	1.544	001
1208.3	1122.0	839.9	0.5596	1.544	231
1208.4	1122.0	839.6	0.5600	1.544	232
1208.5	1122.1	839.3	0.5605	1.543	233
1208.6	1122.2	839.0	0.5610	1.543	234
1208.7	1122-2	838.7	0.5614	1.543	235
1208.8	1122:3	838.4	0.5619	1.542	236
1208.9	1122.3	838.1	0.5623	1.542	237
1209.0	1122.4	837.8	0.5628	1.542	238
1209 0	1122.4	837.5	0.5632	1.541	239
1209 1	1122.5	837.3	0.5637	1.541	240
12092	1.1220	0010	0 0001	1041	240
1209.3	1122.6	837.0	0.5641	1.541	241
1209.3	1122.6	836.7	0.5646	1.541	242
1209.4	1122.7	836.4	0.5650	1.540	243
1209.5	1122.7	836.1	0.5655	1.540	244
1209.6	1122.8	835.8	0.5659	1.540	245
					L

TABLE V. PROPERTIES OF SATURATED STEAM ON PRESSURE

Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
p •	T.	θ.	v.	i.	e.
246	399.4	050.0	1.005	0740	0707
247	399.7	858.8	1.905	374.2	373.5
248	400.1	859.1	1.898	374.5	373.8
249		859.5	1.891	374.9	374.2
250	400.5	859.9	1.884	375.3	374.6
250	400.8	860.2	1.877	375.6	374.9
251	401.2	860.6	1.870	376.0	375.3
252	401.5	860.9	1.863	376·4	375·6
253	401.9	861.3	1.856	376·8	
254	402.2	861.6	1.849		376.0
255	402.5	861.9		377.2	376.4
200	402.0	901.9	1.842	377.5	376.7
256	402.9	862.3	1.835	377.9	377.1
257	403.2	862.6	1.828	$378 \cdot 2$	377.4
258	403.5	862.9	1.822	378.6	377.8
259	403.9	863.3	1.815	379.0	378·2
260	404.2	863.6	1.809	379.3	378.5
200	1012	0050	1 009	3183	310.9
261	404.6	864.0	1.802	379.7	378.9
262	404.9	864.3	1.796	380.0	379.2
263	405.3	864.7	1.789	380.4	379.6
264	405.6	865.0	1.783	380.7	379.9
265	405.9	865:3	1.777	381.1	380.3
000					
266	406.3	865.7	1.770	381.5	380.7
267	406.6	866.0	1.764	381.8	381.0
268	407.0	866.4	1.758	$382 \cdot 2$	381.4
269	407.3	866.7	1.752	382.6	381.8
270	407.6	867.0	1.746	382.9	$382 \cdot 1$
271	408.0	067.4	1.740	000.0	900 5
272	408.3	867.4	1.740	383.3	382.5
273	408.7	867.7	1.734	383.6	382.8
273		868.1	1.728	384.0	383.2
274	409.0	868.4	1.722	384.3	383.5
219	409:3	868.7	1.716	384.6	383.8
276	409.7	869.1	1.710	385.0	384.2
277	410.0	869.4	1.704	385.3	384.5
278	410.3	869.7	1.698	385.7	384.9
279	410.6	870.0	1.692		
280	410.9	870·3	1.687	386.0	385.2
	410.0	0100	1 001	386.3	385.5

(continued).

Base (POUND-FAHRENHEIT Units) (continued).

Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
1.	Fi.	ъ.		φ ₈ .	<i>p</i> .
1209.7	1122.8	835.5	0.5663	1.539	246
1209.7	1122.9	835.2	0.5668	1.539	247
1209.8	1122.9	834.9	0.5672	1.539	248
1209.9	1123.0	834.6	0.5677	1.538	249
1210.0	1123.0	834.3	0.5681	1.538	250
12100	11200	0010	0 0001	1 000	200
1210.0	1123·1	834.0	0.5686	1.538	251
1210.1	1123.1	833.7	0.5690	1.537	252
1210.2	1123.2	833.4	0.5694	1.537	253
1210.3	1123.3	833.1	0.5698	1.537	254
1210.3	1123.3	832.8	0.5702	1.536	255
12100	11200	0020	0 0 1 02	2000	200
1210.4	1123.4	832.5	0.5707	1.536	256
1210.5	1123.4	832.2	0.5711	1.536	257
1210.5	1123.5	831.9	0.5715	1.535	258
1210.6	1123.5	831.6	0.5719	1.535	259
1210.7	1123.6	831.4	0.5723	1.535	260
	22200	0011	00.20		
1210.8	1123.6	831.1	0.5727	1.534	261
1210.8	1123.7	830.8	0.5731	1.534	262
1210.9	1123.7	830.5	0.5735	1.534	263
1211.0	1123.8	830.5	0.5739	1.534	264
1211.0	1123.8	829.9	0.5743	1.533	265
	11200	3200	0 0 0 20		
1211-1	1123.9	829.6	0.5747	1.533	266
1211.1	1123.9	829.3	0.5751	1.533	267
1211.2	1124.0	829.0	0.5755	1.532	268
1211.3	1124.0	828.7	0.5759	1.532	269
1211.4	1124.1	828.5	0.5763	1.532	270
		-	-		
1211.5	1124·1	828.2	0.5767	1.532	271
1211.5	1124.2	827.9	0.5771	1.531	272
1211.6	1124.2	827.6	0.5775	1.531	273
1211.6	1124.3	827:3	0.5779	1.531	274
1211.7	1124.3	827.1	0.5783	1.530	275
1211.8	1124.3	82 6 ·8	0.5786	1.530	276
1211.8	1124.4	826.5	0.5790	1.530	277
1211.9	1124.4	826.2	0.5794	1.530	278
1211.9	1124.4	825.9	0.5798	1.529	279
1212.0	1124.5	825.7	0.5802	1.529	280

TABLE V. PROPERTIES OF SATURATED STEAM ON PRESSURE

Pressure in lbs. per square inch.	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
p.	T.	θ.	v.	i.	e.
281	411.3	870.7	1.681	386.7	385.9
282	411.6	871.0	1.676	387.0	386.2
283	411.9	871.3	1.670	387.3	386.5
284	412.2	871.6	1.665	387.7	386.9
285	412·5	871.9	1.659	388.0	387.2
			,		
286	412·8	$872 \cdot 2$	1.654	388.4	387.5
287	413·1	872.5	1.648	388.7	387.8
288	413.4	872.8	1.643	389.1	388.2
289	413.7	873.1	1.637	389.4	388.5
290	414.0	873.4	1.632	389.7	388.8
Į.					
291	414.3	873.7	1.626	390.0	389.1
292	414·6	874.0	1.621	390.3	389.4
293	414.9	874.3	1.616	390.7	389.8
294	415.2	874.6	1.611	391.0	390.1
295	415·5	874.9	1.605	391.3	390.4
296	415.8	$875 \cdot 2$	1.600	391.6	390.7
297	416.1	875.5	1.595	392.0	$391 \cdot 1$
298	416.4	875.8	1.590	$392 \cdot 3$	391.4
299	416.7	876.1	1.585	392.6	391.7
300	417.0	876.4	1.580	392.9	392.0

(continued).

Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Pressure in lbs. per square inch.
I.	E.	L.	ϕ_w .	ϕ_s .	p.
1212.0	1124.5	825.4	0.5806	1.529	281
1212.1	1124.5	825.1	0.5810	1.528	282
1212.1	1124.6	824.8	0.5813	1.528	283
1212.2	1124.6	824.5	0.5817	1.528	284
1212.2	1124.6	824.3	0.5821	1.527	285
1212.3	1124.7	824.0	0.5824	1.527	286
1212.4	1124.7	823.7	0.5828	1.527	287
1212.4	1124.7	823.4	0.5832	1.527	288
1212.5	1124.8	823.1	0.5836	1.526	289
1212.5	1124.8	822.9	0.5839	1.526	290
1212.6	1124.8	822.6	0.5843	1.526	291
1212 [.] 6	1124.9	822:3	0.5846	1.525	292
1212.7	1124.9	822.0	0.5850	1.525	293
1212.7	1124.9	821.7	0.5854	1.525	294
1212.8	1125.0	821.5	0.5857	1.524	295
	·				
1212.8	1125.0	821.2	0.5861	1.524	296
1212.9	1125.1	820.9	0.5864	1.524	297
1212.9	1125.1	820.6	0.5868	1.523	298
1212.9	1125.1	820.3	0.5871	1.523	299
1213.0	1125.2	820.1	0.5875	1.523	300

TABLE PROPERTIES OF SATURATED STEAM ON

Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Pressure in lbs. per square inch.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
т.	θ.	p.	v.	i.	е.
80	539.4	0.202	637.9	48.0	48.0
82	541 [.] 4	0.536	599.5	50.0	50.0
84	543.4	0.572	564.2	52.0	52.0
86	545.4	0.610	530.8	54.0	54 ·0
88	547.4	0.650	500.6	56.1	56.0
90	549.4	0.692	471.6	58.1	58·1
92	551.4	0.737	444.0	60.1	60.1
94	553.4	0.785	418.6	62·1	$62 \cdot 1$
96	555.4	0.835	395.1	64.1	64.1
98	557.4	0.888	392.9	66.1	$66^{\cdot}1$
100	559.4	0.943	352.3	68.1	68.1
102	561.4	1.002	332.9	70.1	70.1
104	563.4	1.063	314.6	$72\cdot 1$	$7\overset{\cdot}{2}\overset{\cdot}{1}$
106	565.4	1.127	297.6	74.1	$74 \cdot \overline{1}$
108	567.4	1.196	281.4	$76\cdot\hat{1}$	$76\overline{\cdot 1}$
110	569.4	1.267	266.5	78.1	78.1
112	571.4	1.343	252·4	80.1	80.1
114	573.4	1.422	$239 \cdot 3$	82.1	$82 \cdot 1$
116	575.4	1.504	227.0	84.1	84.1
118	577.4	1.592	215.2	86.2	86.1
120	579.4	1.684	204.0	88.2	83.1
122	581.4	1.780	193.6	90.2	90.1
124	583.4	1.881	183.8	92.2	92.2
126	585.4	1.986	174.6	94.2	94.2
128	587.4	2.097	166.0	96.2	96.2
130	589.4	2.213	157.8	98.2	98.2
132	591.4	2.344	150.2	100.2	100.2
134	593.4	2.461	142.8	102.2	102.2
136	595.4	2.594	136.0	104.2	104.5
138	597.4	2.734	129.4	106.3	106.2
140	599.4	2.879	123.3	108.3	108.2
142	601:4	3:031	117:5	110:3	110.2
144	603.4	3.189	112.0	112.3	110.2
146	605.4	3.354	106.9	114.3	114.3
148	607.4	3.528	101.9	116.3	116.3
150	609.4	3.707	97.17	118.3	118.3

VI. **FAHRENHEIT** TEMPERATURE BASE.

r		MPERATURI	E DASE.			
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Temperature in degrees Fahrenheit.	
I.	E	L.	φ _w .	φ ₈ .	т.	
1093.0	1033.7	1045.0	0.0933	2.031	80	
1093.9	1034.4	1043.9	0.0970	2.026	82	
1094.9	1035.1	1042.8	0.1007	2.020	84	
1095.8	1035.8	1041.8	0.1044	2.015	86	
1096.7	1036.5	1040.7	0.1081	2.009	88	
1097.6	1037.2	1039.6	0.1118	2.004	90	
1098.6	1037.9	1038.5	0.1154	1.998	92	
1099.5	1038.6	1037.4	0.1190	1.993	94	
1100.5	1039.3	1036.4	0.1226	1.988	96	
1101.4	1040.0	1035.3	0.1262	1.983	98	
1102.3	1040·8	1034.2	0.1297	1.978	100	
1103-2	1041.5	1033·1	0.1333	1.973	102	
1104.1	1042.2	1032.0	0.1369	1.968	104	
1105.1	1042.9	1031.0	0.1404	1.963	106	
1106.0	1043.6	1029.9	0.1439	1.958	108	
1106.9	1044.4	1028.8	0.1475	1.954	110	
1107.8	1045-1	1027.7	0.1510	1.949	112	
1108.7	1045.8	1026.6	0.1545	1.945	114	
1109.6	1046.5	1025.5	0.1580	1.940	116	
1110.6	1047.2	1024.4	0.1615	1.936	118	
1111.5	1047.9	1023.3	0.1650	1.931	120	
1112.4	1048.6	1022-2	0.1685	1.927	122	
1113.3	1049.3	1021.1	0.1719	1.922	124	
1114.2	1050.0	1020.0	0.1753	1.918	126	
1115.1	1050.7	1018.9	0.1788	1.913	128	
1116.0	1051.4	1017:8	0.1822	1.909	130	
1116.9	·1052·1	1016.7	0.1856	1.904	132	
1117.8	1052.8	1015.6	0.1890	1.900	134	
1118 7	1053·5	1014.5	0.1924	1.896	136	
1119.6	1054.2	1013.4	0.1958	1.892	138	
1120.5	1054.8	1012-2	0.1991	1.888	140	
1121.4	1055.5	1011-1	0.2025	1.884	142	
1122.3	1056.2	1010.0	0.2058	1.880	144	
1123.2	1056.9	1008.9	0.2091	1.876	146	
1124.1	1057.6	1007.8	0.2124	1.872	148	
1125.0	1058.3	1006.7	0.2157	1.868	150	

THE NEW STEAM TABLES

TABLE VI.
PROPERTIES OF SATURATED STEAM ON

Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Pressure in lbs. per square inch.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
T.	θ.	<i>p</i> .	V. i.		e.
152	611.4	3.895	92.78	120:3	120.3
154	613.4	4.091	88.60	122.4	122.3
156	615.4	4.297	84.64	124.4	124.3
158	617.4	4.508	80.90	126.4	126·3
160	619.4	4.729	77:37	128·4	128.4
162	621.4	4.960	74.01	130.4	130.4
164	623.4	5.201	70.81	$132^{\cdot}4$	132.4
166	625.4	5 [.] 45 l	67.77	134.4	134.4
168	627.4	5.711	64.86	136.5	136.4
170	629.4	5.981	62.06	138.5	138.4
172	631.4	6.260	59.45	140.5	140.4
174	633.4	6.523	56.96	142·5	142.4
176	635.4	6.857	54.60	144 [.] 5	144.5
178	637.4	7.175	52.34	146.5	146.5
180	639.4	7.500	50.20	148.6	148.5
182	641.4	7.840	48·11	150.6	150.5
184	643.4	8.193	46.17	152.6	152.5
186	645.4	8.559	44.33	154.6	154.5
188	647.4	8·9 3 8	42.59	156.6	156.6
190	649.4	9.330	40.92	158.7	158.6
100	051.4	0.505	90.99	100.7	100.0
192	651.4	9.737	39.32	160.7	160.6
194	653.4	10.16	37.79	162.7	162.6
196	655.4	10.60	36.32	164.7	164.6
198	657.4	11:05	34.92	166.7	$166.6 \\ 168.7$
200	659.4	11.52	33.60	168.8	108.1
202	661.4	12.01	32.35	170.8	170.7
202	663.4	12.51	31.12	172.8	$17\overset{\cdot}{2}$.7
204	665.4	13.03	29.95	174.8	174.7
208	667.4	13.57	28.82	176.9	176.8
210	669.4	14.12	27.76	178.9	178.8
210	000 1	1116		1.00	
212	671.4	14.70	26.75	180.9	180.8
214	673.4	15.29	25.77	183.0	182.8
216	675.4	15.91	24.84	185.0	184.9
218	677.4	16·54	23.95	187.0	185.9
220	679.4	17.20	23.09	189.1	189.0
1 220	1 0,0 1				

			I	I	
Total heat	Internal heat	Latent heat	Entropy of	Entropy of	Temperature in
of steam in B. Th. U.	of steam in B. Th. U.	of steam in B. Th. U.	water in ranks.	steam in ranks.	degrees Fahrenheit.
ı.	E.	L.	ϕ_w . ϕ_{g} .		T.
1125.9	1059:0	1005.5	0.2190	1.864	152
1126.8	1059.7	1004.4	0.5253	1.860	$1\overline{54}$
1127.7	1060.4	1003.3	0.2256	1.856	156
1128.6	1061.1	1003.3	0.2289	1.852	158
1129.4	1061.7	1002.2	0.2321	1.848	160
1129 4	1001 /	1001 0	0 2321	1010	100
1130.3	1062.4	999-9	0.2354	1.844	162
1131.1	1063 1	998.7	0.2386	1.841	164
1132.0	1063.8	997.6	0.2418	1.837	166
1132.9	1064.5	996.4	0.2450	1.834	168
1133.8	1065.1	995.3	0.2482	1.830	170
1104.77	1005.0	004.1	0.2514	1.826	172
1134.7	1065.8	994.1			174
1135.2	1066.4	993.0	0.2546	1.823	
1136.4	1067.1	991.8	0.2578	1.819	176
1137.2	1067.7	990.7	0.2610	1.816	178
1138.1	1068.4	989.5	0.2641	1.812	180
1138.9	1069.0	988.4	0.2672	1.809	182
1139.8	1069.7	987.2	0.2704	1.805	18 4
1140.6	1070.3	986.0	0.2735	1.802	186
1141.5	1071.0	984.8	0.2767	1.798	188
1142.3	1071.6	983.6	0.2798	1.795	190
1140.1	1073.0	000.5	0.0000	1.792	192
1143.1	1072.2	$982.5 \\ 981.3$	0·2829 0·2860	1.788	194
1144.0	1072.9				194
1144.8	1073.5	980.1	0.2891	1.785	198
1145.7	1074.2	978.9	0.2922	1.781	200
1146.5	1074.8	977· 7	0.2953	1.778	200
1147:3	1075.5	976:5	0.2984	1.774	202
1148.1	1076.1	975.3	0.3014	1.771	204
1148.9	1076.7	974.1	0.3045	1.768	206
1149.8	1077.3	972.9	0.3075	1.765	208
1150 6	1077.9	971.7	0.3106	1.762	210
1151.4	1070.0	070.5	0.9196	1.759	212
1151.4	1078.6	970.5	0.3136	1.759	212
1152.2	1079.2	969.2	0.3166		214
1153.0	1079.8	968.0	0.3196	1.753	
1153.8	1080.4	966.7	0.3226	1.750	218
1154.6	1081.0	965.5	0.3256	1.747	220

TABLE VI.
PROPERTIES OF SATURATED STEAM ON

	Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Pressure in lbs. per square inch.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
ł	T.	θ.	p.	v.	i.	e.
Γ	222	681.4	17:87	22.29	191·1	191:0
	224	683.4	18:57	21.50	193.1	193.0
1	226	685.4	19:29	20:74	195.2	195.1
1	228	687.4	20.04	20.03	197.2	197.1
	230	689.4	20.80	19:34	199.2	199.1
	200	005 1	20 00	1001	100 =	1331
	232	691.4	21.59	18.68	201.3	201.2
	234	693.4	22.40	18.05	20 3 ·3	203.2
1	236	695.4	23.23	17.43	205.3	205.2
	238	697.4	24.10	16.84	207.4	207.2
	24 0	699.4	25.00	16.29	209.4	209.3
1	242	701.4	25.92	15.74	211.4	211.3
	244	703.4	26.87	15·23	213.5	213.4
	246	705.4	27.84	14.74	215.5	215.4
	248	707.4	28.84	14.25	217.6	217.5
	250	709.4	29.87	13.79	219.6	219.5
1						
1	252	711.4	30.94	13.34	221.6	221.5
1	254	713.4	32.03	12.91	223.7	223.6
1	256	715.4	33.16	12.50	225.7	225.6
ł	258	717.4	34.31	12.10	227.8	227.6
	260	719.4	35.50	11.73	229.8	229.7
	000	501.4	00.70	11.00	001.0	001.7
1	262	721.4	36.73	11.36	231.8	231.7
	264	723.4	37.98	11.01	233.9	233.7
	266	725.4	39.27	10.67	235.9	235.8
	268	727.4	40.59	10.34	238.0	237.8
	270	729.4	41.95	10.03	240.0	239.9
	272	731.4	43.35	9.730	242.0	241.9
	274	733.4	44.79	9.434	244.1	243.9
1	276	735.4	46.25	9.150	246.1	246.0
	278	737.4	47.86	8.881	248.2	248.0
	280	739.4	49.32	8.620	250.2	250.1
	200	.001	1000	0.020	2002	2001
	282	741.4	50.91	8:367	252.3	252·1
	284	743.4	52.55	8.123	254.3	254.2
-	286	745.4	54.23	7.887	256.4	256.2
	288	747.4	55.95	7.660	258.4	258.3
	290	749.4	57.71	7.441	260.5	260.3
1	200	1	1 0	,		1 2000

					1
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Temperature in degrees Fahrenheit.
I.	E.	L.	ϕ_w .	φ _s .	т.
1155.4	1081.6	964:3	0.3286	1.744	222
1156.1	1082.2	963.0	0.3315	1.741	224
1156.9	1082.8	961.8	0.3345	1.738	226
1157.7	1082.6	960.5	0.3374	1.735	228
		959.3	0.3404	1.732	230
1158.5	1084.0	909 5	0.5404	1 132	250
1159.3	1084.6	958.0	0.3434	1.729	232
1160.0	1085.2	956.8	0.3463	1.726	234
1160.8	1085.8	955.5	0.3492	1.723	236
1161.6	1086.4	954.2	0.3521	1.720	238
1162.3	1086.9	952.9	0.3550	1.717	240
1102 5	1000 3	0020	0 0000	1	
1163.0	1087.5	951.6	0.3579	1.714	242
1163.8	1088.1	950.3	0.3608	1.711	244
1164.5	1088.7	949.0	0.3637	1.708	246
1165.3	1089.3	947.7	0.3665	1.706	248
		946.4	0.3694	1.703	250
1166.0	1089.8	9404	0 3094	1 103	200
1166.7	1090.4	945·1	0.3723	1.700	252
1167.5	1090.9	943.8	0.3751	1.698	254
1168.2	1091.5	942.5	0.3780	1.695	256
1169.0	1092.0	941.2	0.3808	1.693	258
1169.7	1092.6	939.9	0.3837	1.690	260
11097	1092 0	959 9	0 3031	1 050	200
1170.4	1093.2	938.6	0.3865	1.688	262
1171.2	1093.7	937:3	0.3894	1.685	264
1171.9	1094.3	935.9	0.3922	1.683	266
1172.6	1094.8	934.6	0.3950	1.680	268
1173.3	1095.4	933.3	0.3978	1.677	270
11.00	1000 1		000,0		
1174.0	1095.9	931.9	0.4006	1.675	272
1174.7	1096.4	930.6	0.4034	1.672	274
1175.3	1097.0	929.2	0.4062	1.670	276
1176.0	1097.5	927.9	0.4090	1.667	278
1176.7	1098.0	926.5	0.4117	1.665	280
1110.1	1090 0	<i>92</i> 0 0	0 4111	1 000	200
1177.4	1098.5	$925 \cdot 1$	0.4144	1.663	282
1178.0	1099.0	923.7	0.4172	1.660	284
1178.7	1099.5	922.3	0.4199	1.658	286
1179:3	1100.0	920.9	0.4227	1.655	288
1180.0	1100.5	919.5	0.4254	1.653	290
1100 0	11000	0100	0 1001		0

TABLE VI.
PROPERTIES OF SATURATED STEAM ON

Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Pressure in lbs. per square inch.	Specific volume in cubic feet per 1b.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.	
Т.	θ.	p.	v.	i.	e.	
292	751.4	59.52	7.230	262.5	262.4	
294	753.4	61.36	7.026			
296	755.4	63.27		264.6	264·4	
298			6.828	266.6	266·5	
	757.4	65.21	6.637	268.7	268.5	
300.	759.4	67.20	6.453	270.8	270.6	
302	761.4	69.24	6.274	272.8	272.6	
304	763.4	71.35	6.103	274.9	274.7	
306	765.4	73.48	5.936	276.9	276.7	
308	767.4	75.67	5.774	279.0	278.8	
310	769.4	77·91	5.619	281.1	280.8	
			0 010	2011	200 0	
312	771.4	80.20	5.470	283.1	282.8	
314	773.4	82.55	5.326	285.2	284.9	
316	775.4	84.96	5.183	287.2	286.9	
318	777:4	87.42	5:046	289.3	289.0	
320	779.4	89.93	4.911	291.4	291.1	
322	781.4	92.51	1.790	902.4	000.1	
324	783.4	95·14	4.780	293.4	293.1	
326	785.4		4.654	295.5	295.2	
$\frac{320}{328}$		97.83	4.536	297.6	297.3	
	787.4	100.6	4.422	299.6	299.3	
330	789.4	103.4	4.309	301.7	301.4	
332	791.4	106.3	4.201	303.8	303.5	
334	793.4	109.2	4.095	305.9	305.6	
336	795.4	112.2	3.990	307.9	307.6	
338	797.4	115.2	3.891	310.0	307 0 309·7	
340	799.4	118.3	3.795	$\frac{3100}{312\cdot 1}$	311.7	
342	901.4	101.5	0.700	07.40		
344	801.4	121.5	3.702	314.2	313.8	
344 346	803.4	124.8	3.610	316.2	315.8	
	805.4	128.1	3.521	318.3	317.9	
348	807.4	131.5	3.436	320.4	320.0	
350	809.4	135.0	3.353	322.5	$322 \cdot 1$	
352	811.4	138 [.] 6	3.273	324.6	324·1	
354	813.4	142.2	3.195	326.6	326.2	
356	815.4	145.9	3.118	$\frac{3200}{328.7}$		
358	817.4	149.7	3.043		328.3	
360	819.4	153.5		330.8	330.4	
	019.4	199 9	2.972	332.9	$332 \cdot 4$	

	1				·
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Temperature in degrees Fahrenheit.
I.	E.	L.	ϕ_w .	φ _g .	T.
1180.6	1101:0	918-1	0.4282	1.651	292
1181.3	1101.5	916.7	0.4309	1.648	294
1181.9	1102.0	915.3	0.4336	1.646	296
1182.6	1102.5	913.9	0.4363	1.643	298
1183.2	1102.9	913 9 912·4	0.4390	1.641	300
1100 2	1102.9	9124	0.4390	1.041	300
1183.8	1103.4	911.0	0.4417	1.638	302
1184.5	1103.9	909.6	0.4444	1.636	304
1185.1	1104.4	908.2	0.4471	1.634	306
1185.8	1104.9	906.7	0.4498	1.631	308
1186.4	1105.3	905:3	0.4525	1.629	310
			0 1010		3 _ *
1187.0	1105.8	903.9	0.4551	1.626	312
1187.6	1106.2	902.4	0.4578	1.624	314
1188-2	1106.7	901.0	0.4604	1.622	316
1188.8	1107.1	899.5	0.4631	1.620	318
1189.5	1107.6	898.1	0.4657	1.618	320
11000	110.0	000 1	0 1001	1 010	020
1190.1	1108.0	896.7	0.4684	1.615	322
1190.7	1108.5	895.2	0.4710	1.613	324
1191.3	1108.9	893.7	0.4736	1.611	326
1191.9	1109.4	892.2	0.4762	1.609	328
1192.4	1109.8	890.7	0.4788	1.607	330
11021	11000	000.	0 1100	1001	980
1193.0	1110.2	889.2	0.4814	1.605	332
1193.6	1110.7	887.7	0.4840	1.603	334
1194·1	1111.1	886.2	0.4866	1.601	336
1194.7	1111.6	884.7	0.4892	1.599	338
1195.2	1112.0	883.1	0.4918	1.597	340
12332	12220		0 20.0	331	
1195.8	1112.4	881.6	0.4944	1.594	342
1196:3	1112.8	880.0	0.4970	1.592	344
1196.8	1113.2	878.5	0.4996	1.590	346
1197:3	1113.6	876.9	0.5022	1.588	348
1197.8	1114.0	875.4	0.5047	1.586	350
11010	11140	0104	0 001	1 500	000
1198.4	1114.4	873.8	0.5073	1.584	352
1198.9	1114.8	872.3	0.5098	1.582	354
1199.4	1115.2	870.7	0.5123	1.580	356
1200.0	1115.6	869.2	0.5149	1.578	358
1200.5	1116.0	867.6	0.5174	1.576	360
12000	11100	1 0010	1 00114	1 3.0	1 000

TABLE VI.
PROPERTIES OF SATURATED STEAM ON

Temperature in degrees Fahrenheit.	Absolute temperature in degrees Fahrenheit.	Pressure in lbs. per square inch.	Specific volume in cubic feet per lb.	Total heat of water in B. Th. U.	Internal heat of water in B. Th. U.
T.	θ.	p.	v.	i.	e.
362	821.4	157.4	2.903	335.0	334.5
364	823.4	161.4	2.835	337.1	336.6
366	825.4	165·5	2.770	339.2	338.7
368	827.4	169.6	2.708	341.3	340.8
370	829.4	173.8	2.644	343.3	342.8
372	831.4	178.1	2.584	345.4	344.9
374	833.4	182.6	2.524	347.5	346.9
376	835.4	187.0	2.468	349.6	349.0
378	837.4	191.6	2.412 .	351.7	351.1
3 80	839.4	196.3	2.358	353.8	$353 \cdot 2$
382	841.4	201.0	2.305	355.9	355.3
384	843.4	205.8	2.254	358.0	357.4
386	845.4	210:8	2.204	360·1	359.5
388	847.4	215.8	2.157	362.2	361.6
390	849.4	220.8	2.110	364.3	363.7
392	851.4	226.0	2.064	366.4	365.8
394	853.4	231.3	2.020	3 6 8·5	367.9
396	855.4	236.7	1.977	370.6	370.0
39 8	857.4	$242 \cdot 2$	1.934	372.7	$372 \cdot 1$
400	859.4	247.7	1.893	374.8	374.2
402	861.4	253.4	1.852	377.0	376.3
404	863.4	$259 \cdot 2$	1.813	$379 \cdot 1$	378.4
406	865.4	265.1	1.775	381.2	380.4
40 8	867.4	$271 \cdot 1$	1.738	383.3	382.5
410	869.4	277.2	1.703	385.4	384.6

	1				1
Total heat of steam in B. Th. U.	Internal heat of steam in B. Th. U.	Latent heat of steam in B. Th. U.	Entropy of water in ranks.	Entropy of steam in ranks.	Temperature in degrees Fahrenheit.
I.	E.	I.	ϕ_w .	ϕ_s .	T.
1201.0	1116.4	866.1	0.5200	1:574	362
1201.5	1116.8	864.5	0.5225	1.572	364
1202.0	1117.2	862.9	0.5250	1.570	366
1202.5	1117.6	861.3	0.5275	1.568	36 8
1203.0	1117.9	859.7	0.5300	1.567	370
1203.5	1118.3	858.1	0.5325	1.565	372
1204.0	1118.6	856·5	0.5350	1.563	374
1204.5	1119.0	854.9	0.5375	1.561	376
1205.0	1119.3	853.3	0.5400	1.559	378
1205.4	1119.7	851.6	0.5425	1.557	380
1205.9	1120.0	950.0	0.5450	1.555	900
1205.9	1120.4	850·0 848·3	0.5450	1.555	382
1206.8	11204	846.7	0.5499	1·553 1·551	384
1200 8	11207	845.0	0.5523	1.549	386 388
1207.7	1121.4	843·4	0.5548	1.548	390
1207 7	11214	0404	0 9940	1 348	390
1208·1	1121.7	841.7	0.5573	1.546	392
1208.6	1122.0	840.1	0.5597	1.544	394
1209:0	1122.3	838.4	0.5622	1.542	396
1209.4	1122.6	836.7	0.5646	1.540	398
1209.8	1122-9	835.0	0.5671	1.539	400
1910.9	1123-2	099.9	0.5605	1.595	400
$1210.3 \\ 1210.7$	1123·2 1123·5	833·3 831·6	0·5695 0·5719	1.537	402
1210.7	1123.8	831.6	0.5719	1.535	404
1211.1	1123.8	829 [.] 9 828·2	•	1.533	406
1211.9	1124.1	826.5	$0.5768 \\ 0.5792$	1·531 1·530	408 410
1211 9	1124 4	0200	0.9192	1.990	410

NOTE ON TABLE VII.

For explanation of Table VII. see page 48, reading Fahrenheit for Centigrade.

TABLE VII.

Specific Heats of Superheated Steam at Various
Temperatures (**FAHRENHEIT**) and Pressures.

Tempera-	Pressure in lbs. per square inch.									
Tempera- ture T° F.	20.	40.	60.	80.	100.	120.	140.	160.		
227.8	0.508									
230 240 250 260	0·507 0·506 0·504 0·503									
267·1		0.525								
270 280 290	0·501 0·500 0·498	0·524 0·522 0·519								
292.5			0.539							
300 310	0·497 0·496	0·517 0·515	0·536 0·533							
311.8				0.551			,			
320	0.495	0.213	0.530	0.548						
327.6					0.562					
330 340	0·494 0·493	0·511 0·509	0·527 0·524	0·544 0·540	0·561 0·556					
340.9						0.572				
350	0.492	0.507	0.522	0.537	0.552	0.567	,			
352.7							0.581			
360	0.491	0.506	0.520	0.534	0.548	0.563	0.577			
363.2				, , , , , , , , , , , , , , , , , , , ,				0.289		

TABLE VII.

Specific Heats of Superheated Steam at Various

Tempera-	Pressures in lbs. per square inch.								
Tempera- ture T° F.	20.	40.	60.	80.	100.	120.	140.	160.	
370	0.491	0.504	0.518	0.531	0.545	0.559	0.572	0.586	
372.7									
380	0.490	0.503	0.516	0.529	0.541	0.554	0.567	0.580	
381.6			i			:	1		
389.7						,			
390	0.489	0.201	0.514	0.526	0.538	0.550	0.562	0.574	
397.2									
400	0.489	0.500	0.512	0.523	0.535	0.547	0.558	0.569	
404.2									
410	0.488	0.499	0.510	0.521	0.532	0.543	0.554	0.565	
410.9									
417.0									
420 440 460 480	0·488 0·487 0·486 0·485	0:498 0:496 0:494 0:493	0.508 0.505 0.503 0.501	0·519 0·515 0·512 0·509	0·530 0·525 0·520 0·516	0·540 0·534 0·529 0·524	0·551 0·544 0·538 0·532	0 561 0·553 0·546 0·540	
500 520 540 560	0·484 0·484 0·483 0·483	0·491 0·490 0·489 0·488	0·499 0·497 0·495 0·494	0·506 0·503 0·501 0·499	0·513 0·510 0·507 0·505	0·520 0·517 0·513 0·510	0·527 0·523 0·519 0·516	0·535 0·530 0·525 0·521	
580 600 620 640	0·482 0·482 0·481 0·481	0·487 0·486 0·486 0·485	0·492 0·491 0·490 0·489	0·497 0·496 0·494 0·493	0·502 0·500 0·499 0·497	0·507 0·505 0·503 0·501	0·513 0·510 0·507 0·505	0·518 0·515 0·512 0·509	

THE NEW STEAM TABLES

(continued).

TEMPERATURES (FAHRENHEIT) AND PRESSURES (continued).

		Pressures	in lbs. per s	quare inch.			Temperature
180.	200.	220.	240.	260.	280.	300.	Temperature T° F.
							370
0.597							372.7
0.593							380
	0.605						381.6
		0.611					389.7
0.587	0.599	0.611					390
	i		0.618				397:2
0.581	0 593	0.604	0.616				400
				0.624			404.2
0.576	0.587	0.598	0.609	0.620			410
					0.631		410.9
						0.637	417.0
0·572 0·563 0·555 0·548 0·542 0·536 0·531 0·527	0·582 0·572 0·564 0·556 0·549 0·543 0·537 0·532	0·593 0·582 0·572 0·563 0·550 0·550 0·544 0·538	0.603 0.591 0.581 0.571 0.563 0.556 0.549 0.543	0.614 0.601 0.589 0.579 0.570 0.562 0.555 0.549	0.624 0.610 0.598 0.587 0.577 0.569 0.562 0.555	0.635 0.620 0.607 0.595 0.585 0.576 0.567	420 440 460 480 500 520 540 560
0·523 0·519 0·516 0·513	0·528 0·524 0·520 0·517	0·533 0·529 0·525 0·521	0·538 0·533 0·529 0·525	0·543 0·538 0·533 0·529	0·548 0·542 0·537 0·533	0·553 0·547 0·542 0·537	580 600 620 640

TABLE VII.
SPECIFIC HEATS OF SUPERHEATED STEAM AT VARIOUS

Tempera- ture.			Press	ures in lbs.	per square	inch.		
T° F.	20.	40.	60.	80.	100.	120.	140.	160.
660	0.481	0.484	0.488	0.492	0.495	0.499	0.503	0.506
680	0·480 0·480	0·484 0·483	0·487 0·487	0.491	0.494	0·497 0·496	0.501	0.504
700 720	0.480	0.483	0.486	0.489	0.493	0.495	0.498	0·502 0·501
740	0.480	0.482	0.485	0.488	0.491	0.493	0.496	0.499
760	0.480	0.482	0 485	0.487	0.490	0.492	0.495	0.497
780 800	0·479 0·479	0·482 0·482	0·484 0·484	0·487 0·486	0·489 0·488	0·491 0·490	0·494 0·493	0.496 0.495
800	0419	0 402	0 404	0 400	0 400	0 430	0433	0 490
820	0.479	0.481	0.483	0 485	0.487	0.489	0.492	0.494
840	0.479	0.481	0.483	0.485	0.487	0.489	0.491	0.492
860 880	0·479 0·479	0·481 0·480	0.483	0·484 0·484	0·486 0·486	0·418 0·487	0·490 0·489	$0.492 \ 0.491$
000	0419	0400	0 402	0.404	0 400	0401	0 409	0 491
900	0.479	0.480	0.482	0.483	0.485	0.487	0.488	0.490
920	0.478	0.480	0.481	0.483	0.484	0.486	0.487	0.489
940	0.478	0.480	0.481	0.483	0.484	0.485	0.487	0.488
960	0.478	0.480	0.481	0.482	0.484	0.485	0.486	0.488
980	0.478	0.479	0.481	0.482	0.483	0.484	0.486	0.487
1000	0.478	0.479	0.481	0.482	0.483	0.484	0.485	0.486

(continued).

TEMPERATURES (FAHRENHEIT) AND PRESSURES (continued).

		Pressures i	n lbs. per so	uare inch.			Temperature
180.	200.	220.	240.	260.	280.	300.	Temperature T° F.
0.510	0.514	0.517	0.521	0.525	0.528	0.532	660
0.508	0.511	0.514	0.518	0.521	0.524	0.528	680
0.506	0.509	0.512	0.515	0.518	0.521	0.525	700
0.504	0.506	0.509	0.512	0.515	0.518	0.521	720
0.502	0.504	0.507	0.510	0.513	0.516	0.518	740
0.500	0.502	0.505	0.508	0.510	0.513	0.515	760
0.499	0.501	0.503	0.506	0.508	0.511	0.513	780
0.497	0.200	0.502	0.504	0.206	0.509	0.511	800
0.496	0.498	0.500	0.502	0.504	0.506	0.508	820
0.494	0.496	0.498	0.500	0.502	0.504	0.506	840
0.494	0.496	0.497	0.499	0.501	0.503	0.505	860
0.492	0.494	0.496	0.498	0.499	0.501	0.203	880
0.491	0.493	0.494	0.496	0.498	0.499	0.501	900
0.490	0.492	0.493	0.495	0.496	0.498	0.499	920
0.490	0.491	0.492	0.494	0.495	0.497	0.498	940
0.489	0.490	0.491	0.493	0.494	0.496	0.497	960
0.488	0.489	0.491	0.492	0.493	0.494	0.496	980
0.488	0.489	0.490	0.491	0.492	0.493	0.495	1000

NOTE ON TABLE VIII.

For explanation of Table VIII. see page 54, reading Fahrenheit for Centigrade.

TABLE VIII.

AVERAGE SPECIFIC HEATS OF SUPERHEATED STEAM FROM SATURATION TO TABULATED TEMPERATURES (**FAHRENHEIT**) AT VARIOUS PRESSURES.

Tempera			Pressu	res in lbs. 1	er square i	nch.		
Tempera- ture T° F.	20.	40.	60.	80.	100.	120.	140.	160.
227.8	0.508							
240 260	0·507 0·505							
267·1		0.525		:				
280	0.504	0.524						
292.5			0.539				·	
300	0.502	0.521	0.538					
311.8				0.551				
320	0.501	0.519	0.535	0.549				
327.6					0.562			
340	0.500	0.517	0.532	0.545	0.559			
340.9						0.572		
352.7							0.581	
360	0.499	0.515	0.529	0.542	0.555	0.56	0.579	
363.2								0.589

TABLE VIII.

Average Specific Heats of Superheated Steam from at Various

372·7 380 0· 381·6 389·7 397·2	498 	40. 0·513	0.526	90. 0-539 0-536	0.552	0.563	0.574	0.584
380 0. 381.6 389.7 397.2		,						
381·6 389·7 397·2		,						
389.7	,		0.524	0.536	0.548	0:559	0:560	0-774
397.2	497	0.211	0.524	0.536	0.548	0.559	0:560	0-770
1	497	0.211	0.524	0.536	0.548	0.559	0.280	0-770
400 0	197	0.211	0.524	0.536	0.548	0.559	0.560	0
			ļ .			3	0 000	0.579
404.2								
410.9			!					
417.0				! ! !		÷		
440 0	495	0.508	0.520	0.531	0.542	0.552	0.561	0.570
	493_{\pm}	0.502	0.516	0.526	0.536		0.223	0.562
	492	0.503	0.513	0.522	0.231	0.239	0.547	0.222
560 0.	491	0.201	0.210	0.519	0.527	0.534	0.242	0.249
600 0	490	0.500	0.508	0.516	0.523	0.530	0.537	0.544
640 0.	489	0.498	0.506	0.513	0.520	0.526	0.233	0.239
680 0	489	0.497	0.504	0.511	0.517	0.523	0.530	0.535
720 0	48 8	0.496	0.503	0.209	0.212	0.521	0.527	0.532
	487	0.494	0.201	0.507	0.513	0.218	0.524	0.529
	486	0.493	0.499	0.505	0.210	0.212	0.521	
,	486 i	0 10	0.498	0.203	0.508	0.513	0.518	0.523
880 0.	486 ¦	0.491	0.497	0.501	0.506	0.211	0.516	0.520
	485	0.491	0.496	0.200	0.505	0.509	0.514	0.518
	485	0.490	0.495	0.499	0.503	0.507	0.512	0.516
1000 0.4	485	0.490	0.494	0.498	0.202	0.506	.0.510	0.514

(continued).

Saturation to Tabulated Temperatures (FAHRENHEIT)

Pressures (continued).

		Pressures	in lbs. per se	quare inch.			Temperature
180.	200.	220.	240.	260.	280.	300.	Temperature To F.
0.597							372.7
0 594							380
	0.605						381.6
		0.611		,			389.7
			0.618				397.2
0.589	0.599	0.608	0.617				400
				0.624			404.2
					0.631		410.9
						0.637	417.0
0·579 0·570 0·563 0·556	0·588 0·578 0·570 0·563	0·596 0·586 0·577 0·569	0.604 0.593 0.584 0.576	0.613 0.601 0.591 0.582	0.621 0.608 0.597 0.588	0.629 0.615 0.604 0.594	440 480 520 560
0 550 0·545 0·540 0·537	0·556 0·551 0·546 0·542	0·562 0·557 0·551 0·546	0·568 0·562 0·556 0·551	0·574 0·567 0·561 0·556	0·579 0·572 0·566 0·560	0·585 0·577 0·570 0·564	600 640 680 720
0·533 0·530 0·527 0·524	0·538 0·534 0·531 0·528	0·542 0·538 0·534 0·531	0·546 0·542 0·538 0·535	0·551 0·546 0·542 0·539	0·555 0·551 0·546 0·542	0·559 0·555 0·550 0·546	760 800 840 880
0·522 0·520 0·518	0·526 0·523 0·521	0·529 0·526 0·524	0·532 0·529 0·527	0·536 0·533 0·530	0·539 0·536 0·533	0·542 0·539 0·536	920 960 1000

TABLE

LOGARITHMS.

	0	1	2	8	4	5	6	7	8	9	1	2	8		8	6	7	8	•	,
10	0000	0048	0086	0128	0170	0212	0258	0294	0884	0874	44		18 1 12 1		21 20	26 24				
11	0414	0458	0492	0581	0569	0607	0645	0682	0719	0755	4 4		12 1 11 1		19 19	23 22				
12	0792	0828	0864	0899	0984	0969	1004	1088	1072	1106	8		11 1 10 1		18 17	21 20				
13	1139	1178	1206	1289	1271	1808	1885	1367	1899	1480	3		10 1 10 1		16 16	20 19				
14	1461	1492	1523	1558	1584	1614	1644	1678	1708	1732	8 3	6	9 1 9 1		15 15	18 17				
18	1761	1790	1818	1847	1875	1903	1981	1959	1987	2014	8 3	6	9 1 8 1		14 14	17 16			3 20	
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	8	5 5	8 1 8 1		14 13				2 2	
17	2304	2330	2855	2880	2405	2430	2455	2480	2504	2529	8 2	5 5		0	13 12				0 2: 9 2	
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2 2	5	7	9	12 11	14	16	3 3 9	9 2	1
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2 2	4	7	9	11 11	13	16	3 18	8 2 7 1	0
20	8010	3032	8054	3075	3096	8118	3139	8160	8181	8201	2	4	6	8	11		_		71	
21 22 23 24	3222 3424 3617 3802	3248 3444 3686 3820	3263 3464 3655 3838	3284 8483 3674 3856	3304 3502 3692 3874	3324 3522 8711 3892	3345 3541 8729 3909	3365 3560 3747 2927	3885 3579 3766 8945	3404 8598 8784 3962	2 2 2 2 2	4 4 4 4	6 6 6 5	8 8 7	10 10 9	12 11	14	1 1: 3 1:	6 l 5 l 5 l 4 l	7
25	3979	3997	4014	4081	4048	4065	4082	4099	4116	4188	2	3	5	7	9	10	1:	2 1	4 1	5
26 27 28 29	4150 4814 4472 4624	4166 4380 4487 4639	4183 4346 4502 4654	4200 4862 4518 4669	4216 4878 4538 4683	4232 4893 4548 4698	4249 4409 4564 4718	4265 4425 4579 4728	4281 4440 4594 4742	4298 4456 4609 4757	2 2 2 1	8 8 8	5 5 4	7 6 6 6	8 8 8 7	9	11	1 1 1 1	3 1 3 1 2 1 2 1	4
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	8	4	в	7	8	10	0 1	1]	13
31 32 33 34	4914 5051 5185 5315	4928 5065 5198 5828	4942 5079 5211 5840	4955 5092 5224 5353	4969 5105 5237 5366	4983 5119 5250 5378	4997 5182 5263 5891	5011 5145 5276 5408	5024 5159 5289 5416	5038 5172 5302 5428	1 1 1 1	8 8 8	4 4 4	6 5 5 5	7 7 6 6	8 8 8	3 9	9 1 9 1	1 1 0 1	12 12
35	5441	5458	5465	5478	5490	5502	5514	5527	5589	5551	ī	2	4	5	6	7	r :	9 1	0	11
36 37 38 39	5568 5682 5798 5911	5575 5694 5809 5922	5587 5705 5821 5933	5599 5717 5832 5944	5611 5729 5848 5955	5628 5740 5855 5966	5685 5752 5866 5977	5647 5763 5877 5988	5658 5775 5888 5999	5670 5786 5899 6010	1 1 1	2 2 2 2	4 8 8 8	5 5 5 4	6 6 6 5	17 17 17 17	7	8	10 9 9	
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	8	4	5	1	6	8	9	10
41 42 43 44	6128 6232 6335 6435	6138 6243 6345 6444	6149 6253 6355 6454	6160 6263 6365 6464	6170 6274 6375 6474	6180 6284 6385 6484	6191 6294 6395 6493	6201 6804 6405 6503	6212 6314 6415 6513	6222 6325 6425 6522	1 1 1 1	2 2 2 2	3 3 8 8	4 4 4 4	5 5 5 5		6 6 6	7 7 7	8 8 8	9 9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5		6	7	8	9
46 47 48 49	6628 6721 6812 6902	6687 6730 6821 6911	6646 6739 6830 6920	6856 6749 6839 6928	6665 6758 6848 6987	6675 6767 6857 6946	6684 6776 6866 6955	6698 6785 6875 6964	6702 6794 6884 6972	6712 6803 6893 6981	1 1 1 1	2 2 2 2	3 8 8 8	4 4 4	5 5 4 4		6 5 5 5	7 6 6	7777	8 8
50	6990	6998	7007	7016	7024	7088	7042	7050	7059	7067	1	2	S	8	4	-	5	6	7	

THE NEW STEAM TABLES

IX.

LOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
51 52 53 54	7076 7160 7248 7324	7084 7168 7251 7832	7093 7177 7259 7840	7101 7185 7267 7348	7110 7193 7275 7356	7118 7202 7284 7364	7126 7210 7292 7872	7135 7218 7300 7360	7143 7226 7308 7388	7152 7285 7316 7396	1 1 1	2 2 2 2	3 2 2 2	3 3 3 3	4 4 4	5 5 5 5	6 6 6	7 6 6	8 7 7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	в	7
56 57 58 59	7482 7559 7634 7709	7490 7566 7642 7716	7497 7574 7649 7723	7505 7582 7657 7781	7513 7589 7664 7738	7520 7597 7672 7745	7528 7604 7679 7752	7536 7612 7686 7760	7548 7619 7694 7767	7551 7627 7701 7774	1 1 1	2 2 1 1	2 2 2 2	3 8 8 8	4 4 4	5 4 4	5 5 5 5	6 6 6	777
60	7782	7789	7796	7803	7810	7818	7825	7832	7889	7846	1	1	2	8	4	4	5	6	6
61 62 63 64	7853 7924 7993 8062	7860 7931 8000 8069	7868 7938 8007 8075	7875 7945 8014 8082	7882 7952 8021 8089	7889 7959 8028 8096	7896 7966 8035 8102	7903 7973 8041 8109	7910 7980 8048 8116	7917 7987 8055 8122	1 1 1	1 1 1 1	2 2 2 2	8 3 8 8	4 8 8 3	4 4 4 4	5 5 5 5	6 6 5 5	6 6 6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	8	3	4	5	5	6
66 67 68 69	8195 8261 8825 8888	8202 8267 8331 8395	8209 8274 8338 8401	8215 8280 8344 8407	8222 8287 8351 8414	8228 8293 8857 8420	8235 8299 8363 8426	8241 8306 8370 8432	8248 8312 8376 8439	8254 8319 8382 8445	1 1 1	1 1 1	2 2 2 2	3 3 8 2	3 3 3 8	4 4 4	5 4 4	5 5 5 5	6 6 6
70	8451	8457	8463	8470	8476	8482	8488	8194	8500	8506	1	1	2	2	3	4	4	5	6
71 72 73 74	8513 8573 8633 8692	8519 8579 8689 8698	8525 8585 8645 8704	8581 8591 8651 8710	8597 8597 8657 8716	8543 8603 8633 8722	8549 8609 8669 8727	8555 8615 8675 8733	8561 8621 8681 8739	8567 8627 8686 6745	1 1 1	1 1 1	2 2 2 2	2 2 2 2	3 3 3	4 4 4	444	5 5 5 5	5 5 5 5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76 77 78 79	8508 8865 8921 8976	8814 8871 8927 8982	8820 8876 8932 8987	8825 8882 8938 8993	8881 8887 8948 8998	8837 8893 8949 9004	8842 8899 8954 9009	8848 8904 8960 9015	8854 8910 8965 9020	8859 8915 8971 9025	1 1 1	1 1 1	2 2 2 2 2	2 2 2 2	3 3 3	8 8 8	4 4 4 4	5 4 4 4	5 5 5
80	9031	9086	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81 82 83 84	9085 9138 9191 9243	9090 9148 9196 9248	9096 9149 9201 9253	9101 9154 9206 9258	9106 9159 9212 9268	9112 9165 9217 9269	9117 9170 9222 9274	9122 9175 9227 9279	9128 9180 9232 9284	9133 9186 9238 9289	1 1 1	1 1 1	2 2 2 2	2 2 2 2	3 8 8	3 3 3	4 4 4	4 4 4	5 5 5 5
85	9294	9299	9304	9809	9315	9320	9825	9330	9335	9340	1	1	2	2	3	3	4	4	5
86 87 88 39	9845 9895 9445 9494	9350 9400 9450 9499	9355 9405 9455 9504	9360 9410 9460 9509	9365 9415 9465 9513	9870 9420 9469 9518	9375 9425 9474 9523	9380 9430 9479 9528	9385 9485 9484 9588	9390 9440 9489 9538	1 0 0 0	1 1 1	2 1 1 1	2 2 2 2	3 2 2 2	3 3 3	4 3 3	4 4 4	5 4 4 4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91 92 93 94	9590 9638 9685 9781	9595 9643 9689 9786	9600 9647 9694 9741	9605 9652 9699 9745	9609 9657 9708 9750	9614 9661 9708 9754	9619 9666 9713 9759	9624 9671 9717 9763	9628 9675 9722 9768	9633 9680 9727 9773	0000	1 1 1	1 1 1	2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 8 3	4 4 4	4 4 4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96 97 98 99	9828 9868 9912 9956	9827 9872 9917 9961	9832 9877 9921 9965	9836 9881 9926 9969	9841 9886 9930 9974	9845 9890 9934 9978	9850 9894 9939 9988	9854 9899 9943 9987	9859 9903 9948 9991	9863 9908 9952 9996	0000	1 1 1 1	1 1 1	2 2 2 2	2 2 2 2	3 3 9 3	3 3 3	4 4 3	4 4 4

TABLE IX.

ANTILOGARITHMS.

	•	1	3	3	4		•	7		9	1	2	3	4	5	6	7	8
*	100 0	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2
01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	ī	2	2
02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	lŏ	ŏ	ĩ	ī	ī	Ιī	2	3
83	1072	1074	1076	1079	1061	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2
04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2
65	1122	1125	1127	1130	. 1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2
*	1148	1151	1158	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2
07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2
-06	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2
4	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	L°	1	1	1	1	2	2	2
·10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2
11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	Ŏ	1	1	1	2	2	2	5
·13 ·13	1318	1321 1352	1324 1355	1327	1330 1361	1334 1365	1337 1368	1340	1343	1346	Ŏ	1	1	1	2	2	2	2
14	1349 1380	1384	1387	1890	1393	1396		1371 1403	1374 1405	1377 1409	8	1	1	1	2 2	2 2	2	1
-18	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	:
16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	5	1	1	1		2	2	:
·17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	ŏ	ī	ī	î	2	2	2	•
18	1514	1517	1521	1524	1528	3531	1535	1538	1542	1545	Ó	1	1	1	2	2	2	:
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	1
26	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	:
21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	1
. 2	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	1
23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	1
-24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1 —-	2	2	2	3	1
·25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	8	-
26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	Ŏ	1	1	2	2	8	8	3
·27 ·28	1862 1905	1866 1910	1871	1875 1919	1879 1923	1884 1928	1888 1932	1892 1936	1897	1901 1945	0	1	1	2 2	2 2	3	3	1
-20	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	ŏ	i	i	2	2	3	3	•
.30	1995	2000	2001	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	-
·31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	٦,
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	
.83	2138	2143	2148	2153	2158	2163	2103	2173	2178	2183	0	1	1	2	2	8	3	•
·34	2188	2193	2198	2203	2.08	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	_'
·35	2 2 39	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4
·36	2291	2296	2301	2307	2312	2317	2323	2323	2333	2339	ı	1	2	2	3	3	4	4
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2419	1	1	2	2	8	3	4	4
·39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	8	3	4	
·40	2512	2518	2528	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	8	4	4	
41	2570	2576	2.82	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	8	4	4	
.43	2680	2636	2642	2649	2655	2 61	2607	2673	2679	2685	1	1	2	2	8	4	4	
43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	8	4	4	1
-44	2754	2761	2767	2770	2780	2786	2793	2799	2805	2812	1	1	2	3	8	4	4	-
·45	2818	2825	2881	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	ŧ
46	2884	2891	2897	2904	2911	2917	2924	2981	2938	2944	1	1	2	3	3	4	5	
<u> </u>	2951	2958	2965	2972	2979	2985	2 92	1999	3306	3013	ļ.	1	2	3	8	4	5	
48	3020 3090	3027	8084	3041 2119	3048	8055	3062 3133	8009	3076	3083	1	1	2 2	3	4	4	5	(
49 i		3097	8105	3112	3119	3126	2122	3141	3143	3155		•	4	0	-	-	•	•

(continued).

ANTILOGARITHMS.

		0	1	2	3	4	8	6	7	8	9	1	2	3	4	5	8	7	8	9
583 8811 8819 8927 8934 8342 8350 8360 8404 8412 8420 8428 8485 8450 8428 8485 8451 8428 8485 8451 8429 8508 8501 8504 8450 1 2 3 4 5 6 6 7 586 8467 8475 8488 8491 8508 8501 8504 8502 8501 8502 8511 2 3 4 5 6 7 596 8503 8504 8505 8506 8601 8507 8508 8614 8622 1 2 2 3 4 5 6 7 7 500 8505 8608 8508 8808 8908 8808 8908 8808 8907 8908 8908 8908 8908 8908 8908 8908 8908 8908 8908 8908 8908 8908	·50	8162	8170	3177	8184	3192	3199	8206	3214	3221	8228	1	1	2	3	4	4	5	6	7

38 3467 3475 3483 3491 3499 3508 3516 3524 3582 3540 1 2 2 3 4 5 6 6 7 38 3548 3556 3556 3573 3581 3583 3581 3590 3507 377 3776 3784 3701 2 3 8 4 4 5 6 7 7 8 38 3551 3583 3583 3583 3583 3570 3768 3777 3776 3784 3701 2 8 8 4 4 5 6 7 7 8 38 3556 3573 3574 3750 3768 3777 3776 3784 3701 2 8 8 4 4 5 6 7 7 8 38 3590 3808 3811 3838	.23							8857								- 1				
86 8881 3889 848 8586 3664 8678 8681 3690 3698 3707 1 2 3 3 3 4 5 6 7 8 8 8 802 8811 8819 8828 8837 8816 8855 8864 8878 8882 12 3 4 4 5 6 7 8 8 8 802 8811 8819 8828 8837 8816 8855 8864 8878 8882 8837 8882 12 3 4 4 5 6 7 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	-54																			
88 /r 89 /r 88 /r 89 /r 88 /r 8 /r <th< th=""><th>-55</th><th>3548</th><th>8556</th><th>8565</th><th>3573</th><th>8581</th><th>8589</th><th>3597</th><th>3606</th><th>3614</th><th>8622</th><th>1</th><th>2</th><th>2</th><th>8</th><th>4</th><th>5</th><th>6</th><th>7</th><th>7</th></th<>	-55	3548	8556	8565	3573	8581	8589	3597	3606	3614	8622	1	2	2	8	4	5	6	7	7
88 8 802 881 8809 881 8809 882 881 882 882 883 888 882 1 2 3 4 4 5 5 6 7 8 5 6 7 8 5 6 7 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	·56	3631	3639	8648	3656	3664	8678	8681	3690	3698	8707	1	2	8	3	4	5	6	7	8
																			7	
**Bot **Bo																			7	
683 4169 4178 4188 4189 4297 4217 4227 4286 4264 4265 1 2 8 4 5 6 7 8 9 64 4365 4375 4385 4395 4406 4416 4429 4436 4446 4467 1 2 8 4 5 6 7 8 9 65 4407 4487 4488 4508 4509 4529 4539 4560 4660 1 2 8 4 5 6 7 8 9 65 4477 4488 4609 4704 4721 4782 4742 4783 4764 4777 1 2 8 4 5 6 7 8 9 70 5012 5023 5035 5047 5068 5070 5082 5068 5070 5082 5068 5070 5082 5068 5070	-	8981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
684 4266 4275 4285 4395 4395 4395 4395 4395 4395 4395 4395 4395 4395 4385 4385 4385 4385 4385 4385 4385 4385 4367 1 8 4 5 6 7 8 9 68 4407 4477 4488 4608 4519 4629 4539 4550 4660 1 2 8 4 5 6 7 8 9 68 4671 4581 4499 4710 4721 4732 4742 4753 4764 4775 1 2 8 4 5 6 7 8 910 68 4898 4009 4920 4932 4948 4958 4964 4877 4989 5000 1 2 3 4 5 6 7 8 910 70 5022 5023 5035	·61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	ī	2	8	4	5	6	7	8	9
18	·62				4198	4207	4217	4227	4236		4256	1				5	6	7	8	9
68 4467 4477 4487 4498 4508 4519 4529 4539 4560 4660 1 2 3 4 5 6 7 8 9 68 4571 4581 4592 4603 46113 4624 4684 4665 4667 1 2 8 4 5 6 7 9 10 68 4877 4488 4699 4710 4721 4732 4742 4758 4764 4775 1 2 3 4 5 7 8 9 10 68 4898 4809 4920 4832 4855 4968 4877 4898 5000 1 2 3 4 5 6 7 8 9 10 70 5012 5023 5035 5047 5068 5070 5082 5093 5105 5117 1 2 4 5 6 7 8 <th></th>																				
66 4571 4581 4592 4603 4613 4624 4684 4645 4667 1 2 8 4 5 6 7 9 10 477 4488 4099 4710 4721 4732 4742 4758 4764 4775 1 2 8 4 5 7 8 9 10 68 4898 4909 4920 4932 4948 4858 4864 4875 4887 1 2 8 6 7 8 9 10 70 5012 5023 5035 5047 5068 5070 5082 5093 5106 5117 1 2 4 5 6 7 8 9 10 71 5129 5140 5152 5164 5176 5188 5200 5212 5226 5272 5383 5486 5485 5450 5450 5450 5450 5450 <th>_</th> <th></th> <th>Ŀ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th>	_											Ŀ						_		
687 44768 4488 4699 4710 4721 4782 4742 4758 4764 4776 4878 4878 4898 4899 4898 4890 4920 4932 4943 4955 4968 4897 4898 5000 1 2 3 4 6 7 8 9 10 70 5012 5023 5035 5047 5068 5070 5082 5093 5106 5117 1 2 4 5 6 7 8 9 10 71 5129 5140 5152 5164 5176 5188 5200 5212 5286 520 5272 5286 520 5272 5583 5406 5408 5406 5483 5445 5458 5407 5488 5436 5486 5480 5470 5488 3 3 4 5 6 8 9 10 12 76 5754 5768 5761 5692 <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>												-								
68 4786 4797 4808 4819 4881 4842 4858 4966 4977 4989 5000 1 2 3 5 6 7 8 9 10 70 5012 5023 5035 5047 5058 5070 5082 5093 5106 5117 1 2 4 5 6 7 8 9 1 71 5129 5140 5152 5164 5176 5176 5188 5200 5212 5224 5236 527 5284 5297 5809 5931 5333 5846 5358 1 2 4 5 6 7 8 9 10 73 5628 5636 5649 5662 5675 5659 5572 5755 5578 5674 1 3 4 5 7 8 9 10 12 76 5628 5781 5784																				
-70 5012 5023 5035 5047 5058 5070 5082 5098 5105 5117 1 2 4 5 6 7 8 9 11								4858												
71 5129 5140 5152 5164 5176 5188 5200 5212 5224 5236 1 2 4 5 6 7 8 10 11 72 5248 5260 5272 5284 5297 5895 5321 5333 5346 5358 1 2 4 5 6 7 9 10 11 73 5370 5383 5395 5408 5420 5433 5445 5468 5470 5483 1 3 4 5 6 8 9 10 11 74 5495 5508 5521 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 9 10 12 78 5495 5508 5621 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 9 10 12 78 5628 5636 5621 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 7 8 9 10 12 78 5628 5734 5788 5781 5794 5888 5902 5916 5929 5943 5957 5970 5984 5998 5912 1 3 4 5 7 8 9 11 12 78 6026 6099 6058 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 8 10 11 12 79 6166 6180 6194 6209 6228 6237 6252 6266 6281 6295 1 8 4 6 7 9 10 11 18 78 6026 6096 6082 6086 6883 6898 6099 6714 6707 6622 6637 6653 6683 6690 6714 6730 6745 2 3 5 6 8 9 11 12 14 78 6918 6994 6995 6998 6998 7015 7016 6776 6792 6808 6932 6998 7015 7031 7047 7063 2 3 5 6 8 9 11 12 14 78 6918 6934 6950 6966 6932 6998 7015 7031 7047 7063 2 3 5 6 8 9 11 12 14 78 7418 7480 7447 7444 7482 7499 7516 7534 7551 7585 7599 792 7780 7798 7816 7838 7656 7674 7891 7799 7798 7816 7838 7656 7674 7891 7709 7727 7745 2 4 5 7 9 11 13 14 16 794 7748 7748 7890 7798 7798 7798 7798 7798 7798 779			<u> </u>									<u> </u>		_		_		_		_
-72 5248 5260 5972 5284 5297 5809 5321 5333 5346 5358 1 2 4 5 6 7 9 10 11 775 5870 5893 5895 5408 5420 5438 5445 5468 5470 5483 1 3 4 5 6 8 9 10 11 775 5495 5508 5521 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 9 10 11 775 5885 592 5768 5781 5794 5808 5821 5834 5848 5848 5861 1 3 4 5 7 8 9 10 12 775 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 5 7 8 9 11 12 775 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 5 7 8 10 11 12 775 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 5 7 8 10 11 12 775 5886 6039 6053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 9 10 11 13 775 6166 6180 0194 6209 6228 6237 6252 6266 6281 6295 1 8 4 6 7 9 10 11 13 780 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 8 4 6 7 9 10 11 13 780 6360 6077 6622 6637 6653 6668 6483 6690 6714 6730 6745 2 3 5 6 8 9 11 12 14 783 6761 6776 6792 6808 6823 6839 6855 6871 6837 6902 2 3 5 6 8 9 11 12 14 783 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 9 11 12 14 783 6781 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 10 11 13 15 783 7418 7480 7447 7464 7482 7499 7516 7534 7551 7568 2 3 5 7 8 10 12 13 15 783 7748 7483 7497 7447 7444 7482 7489 7516 7534 7551 7568 2 3 5 7 9 10 12 14 16 783 7748 7748 7749 7749 77516 7534 7749 7745 7745 7745 7745 7745 7745 774			<u> </u>							 		_				_				
-78 5370 5383 5396 5408 5420 5438 5446 5559 5572 5585 5598 5610 1 3 4 5 6 8 9 10 12 -76 5628 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 6 8 9 10 12 -76 5628 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 7 8 9 10 12 -77 5888 5902 5916 5929 5943 5957 5970 5948 5908 6012 1 3 4 5 7 8 9 11 12 -78 6106 6180 6194 6209 6228 6237 6252 6266 6281 6295 1 3 4 6 7 9 10 11 13																				
-74 5495 5508 5521 5584 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 9 10 12 -75 5628 5036 5649 5662 5675 5689 5702 5715 5728 5741 1 8 4 5 7 8 9 10 12 -76 5754 5768 5781 5794 5808 5821 5884 5841 5875 1 3 4 5 7 8 9 10 12 -77 5886 5902 5916 5929 5948 6957 5970 5984 5998 6012 1 3 4 5 7 8 9 11 12 -78 6166 6189 6533 6388 6883 6397 6412 6427 6442 1 8 4 7 9 10 12 18 -81 6457 6471 6486 6501 <t< th=""><th></th><th></th><th>5383</th><th></th><th></th><th></th><th></th><th></th><th></th><th>5470</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			5383							5470										
-76 5754 5768 5781 5794 5808 5821 5834 5848 5861 5875 1 3 4 5 7 8 911 12 77 5888 5902 5916 5929 5943 8957 5970 5984 5998 6012 1 3 4 5 7 8 10 11 12 78 6026 6039 6053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 9 10 11 12 80 6310 6324 6339 6553 6368 6383 6397 6412 6427 6442 1 8 4 6 7 9 10 11 12 14 80 6471 6486 6501 6516 6531 6546 6561 6577 6502 2 3 5 8 9 11													3	4						
-77	·75	5628	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	8	4	5	7	8	9	10	12
-78 6026 6089 6058 6007 6081 6005 6106 6124 6138 6152 1 3 4 6 7 9 10 11 13 -80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 3 4 6 7 9 10 11 13 -81 6467 6471 6486 6501 6516 6531 6546 6561 6577 6502 2 3 5 6 8 9 11 12 14 -82 6407 6622 6637 6653 6663 6683 6683 6690 6714 6730 6745 2 3 5 6 8 9 11 12 14 -83 6761 6776 6792 6808 6823 6839 0855 6871 6887 6902 2 3 5 6 8 9 11 12 14 -84 6918 6934 6950 6966 6082 6998 7016 7031 7047 7063 2 3 5 6 8 9 11 12 14 -85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 6 8 10 11 13 15 -86 7244 7261 7278 7296 7311 7328 7345 7362 7379 7366 2 3 5 7 8 10 12 13 15 -86 7244 7261 7278 7296 7311 7328 7345 7362 7379 7366 2 3 5 7 9 10 12 14 16 -86 7566 7603 7621 7688 7656 7674 7691 7709 7727 7745 2 4 5 7 9 11 12 14 16 -80 7762 7780 7798 7816 7834 7852 7870 7889 7907 7925 2 4 5 7 9 11 13 14 16 -90 7948 7962 7980 7998 8017 8035 8054 8072 8091 8110 2 4 6 7 9 11 13 15 17 -91 8128 8147 8166 8185 8204 8222 8241 8260 8279 8299 2 4 6 8 9 11 12 14 16 -96 9120 9141 9162 9183 9204 9226 9247 9268 8929 0311 2 4 6 8 10 12 15 17 16 -96 9120 9141 9162 9183 9204 9226 9247 9268 9290 0311 2 4 6 8 10 12 15 17 16 -96 9120 9141 9162 9183 9204 9226 9247 9268 9290 0311 2 4 6 8 10 12 15 17 16 -97 9838 9834 9876 9807 9919 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 16 -97 9838 9854 9876 9807 9919 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 16 -97 9838 9854 9876 9807 9919 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 16 -97 9838 9854 9876 9807 9919 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 16 -97 9838 9854 9876 9807 9919 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 16 -97 9838 9854 9876 9807 9916 9036 9077 9727 9726 2 4 7 9 11 13 15 17 16 -97 9838 9854 9876 9807 9919 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 16 -97 9838 9854 9876 9807 9919 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 16 -97 9838 9854 9876 9807 9919 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 18 18 18 18 18 18 18 18 18 18 18 18 18																				
-79 6166 6180 6194 6209 6228 6287 6252 6266 6281 6295 1 8 4 6 7 9 10 11 18 -80 6310 6324 6339 6353 6368 6388 6397 6412 6427 6442 1 8 4 6 7 9 10 12 18 -81 6467 6471 6486 6501 6516 6531 6546 6561 6577 6502 2 3 5 6 8 9 11 12 14 -82 6407 6622 6637 6653 6668 6698 6698 6690 6714 6730 6745 2 3 5 6 8 9 11 12 14 -84 6918 6934 6950 6966 6092 6908 7015 7031 7047 7063 2 3 5 6 8 9 11 13 14 -84 6918 6934 6950 6966 6092 6998 7015 7031 7047 7063 2 3 5 6 8 10 11 13 15 -85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 12 18 15 -86 7244 7261 7278 7295 7311 7328 7345 7362 7379 7396 2 3 5 7 8 10 12 18 15 -87 7418 7430 7447 7464 7482 7409 7516 7531 7551 7568 2 3 5 7 9 10 12 14 16 -89 7762 7780 7798 7816 7834 7852 7870 7889 7907 7925 2 4 5 7 9 11 12 14 16 -90 7043 7962 7980 7993 8017 8035 8054 8072 8091 8110 2 4 6 7 9 11 13 15 17 -91 8128 8318 8397 8356 8375 8395 8414 8433 8453 8472 8492 2 4 6 8 10 12 14 16 17 -94 8710 8730 8750 8770 8790 810 8630 8650 8650 8670 8690 2 4 6 8 10 12 14 16 17 -95 8918 8933 8954 8974 8995 9016 9036 9057 9078 9009 2 4 6 8 10 12 14 16 17 -96 9120 9141 9162 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 11 13 15 17 16 -97 9833 9354 9376 9307 9419 9441 9402 9484 9506 9528 2 4 7 9 11 13 15 17 17 -97 9835 9354 9376 9307 9419 9441 9402 9484 9506 9528 2 4 7 9 11 13 15 17 16 -97 985 9550 9572 9594 9616 9636 9661 9683 9705 9727 9760 2 4 7 9 11 13 15 17 16																				
-81 6457 6471 6486 6501 6516 6531 6546 6561 6577 6502 2 3 5 6 8 9 11 12 14 14 14 12																				
-82 6407 6622 6637 6655 6668 6688 6698 6695 6714 6730 6745 2 3 5 6 8 9 11 12 14 6 18 918 6918 6950 6896 6082 6998 7015 7031 7047 7068 2 3 5 6 8 9 11 12 14 6 18 918 6918 6950 6896 6082 6998 7015 7031 7047 7068 2 3 5 6 8 10 11 13 14 18 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	·80	6310	6324	6339	6853	6368	6383	6397	6412	6427	6442	1	8	4	6	7	9	10	12	18
-82 6407 6622 6637 6655 6668 6688 6698 6695 6714 6730 6745 2 3 5 6 8 9 11 12 14 6 18 918 6918 6950 6896 6082 6998 7015 7031 7047 7068 2 3 5 6 8 9 11 12 14 6 18 918 6918 6950 6896 6082 6998 7015 7031 7047 7068 2 3 5 6 8 10 11 13 14 18 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	·81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
-84 6918 6934 6950 6966 6982 6998 7015 7031 7047 7063 2 3 5 6 8 10 11 18 15 15 18 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 12 18 15 18 18 18 18 18 18 18 18 18 18 18 18 18	-82	6407	6622	6637	6653	6668	6683	6699	6714	6730	6745				6	8	9	11	12	14
-85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 8 5 7 8 10 12 18 15 18 18 18 18 18 18 18 18 18 18 18 18 18																				
86 7244 7261 7278 7295 7311 7328 7345 7362 7370 7806 2 3 5 7 8 10 12 13 15 87 7418 7480 7447 7494 7482 7499 7516 7531 7551 7568 2 3 5 7 9 10 12 14 16 38 7586 7656 7674 7691 7709 7727 7745 2 4 5 7 9 11 12 14 16 89 7907 7925 2 4 5 7 9 11 12 14 16 89 7907 7925 2 4 5 7 9 11 13 14 16 89 7907 7925 2 4 5 7 9 11 13 15 17 13 14 12 4 6 7 9		0919		- 0890	0900	6982	0990	7018	1031		·	┡		_		. <u> </u>	10	11	10	
-87 7418 7490 7447 7444 7482 7499 7516 7534 7551 7568 2 3 5 7 9 10 12 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18				-	-	-l	 			-		₽								
-88 7588 7608 7601 7608 7601 7608 7606 7607 7816 7824 7850 7700 7727 7745 2 4 5 7 0 11 12 14 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18																				
-89 7762 7780 7780 7816 7884 7852 7870 7889 7907 7925 2 4 5 7 9 11 13 14 16 90 7943 7962 7980 7998 8017 8035 8054 8072 8091 8110 2 4 6 7 9 11 13 14 16 91 8128 8147 8166 8185 8204 8222 8241 8260 8279 8299 2 4 6 8 9 11 13 15 17 92 8318 8387 856 8375 8395 8414 8433 8472 8492 2 4 6 8 10 12 14 15 17 98 800 2 4 6 8 10 12 14 16 16 14 16 16 16 14 16																	111	12	14	16
91 8128 8147 8166 8185 8204 8222 8241 8260 8279 8299 2 4 0 8 9 9 11 13 15 17 92 8318 8387 8368 8375 8395 8414 8483 8453 8472 8492 2 4 6 8 10 12 14 15 17 93 851 8581 8581 8581 8581 8581 8581 8581 8581 8581 8581 8581 8872 8890 2 4 6 8 10 12 14 16 18 14 16 18 94 8710 8790 8750 8770 8790 8810 8831 8851 8872 8892 2 4 6 8 10 12 14 16 18 95 8918 8933 8954 8974 8995 9016 9036 9057 9078 9090 2 4 6 8 10 12 15 17 16 96 9120 9141 9162 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 11 13 15 17 17 97 9835 9854 9876 <td< th=""><th>-89</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2</th><th>4</th><th></th><th>7</th><th>9</th><th>11</th><th>13</th><th>14</th><th>16</th></td<>	-89											2	4		7	9	11	13	14	16
-92 8318 8357 8356 8375 8395 8414 8433 8453 8472 8492 2 4 6 8 10 12 14 15 15 95 15 8570 8570 8590 8610 8630 8650 8670 8690 2 4 6 8 10 12 14 16 16 94 8710 8780 8750 8770 8790 8810 8831 8851 8872 8892 2 4 6 8 10 12 14 16 18 95 8918 8933 8954 8974 8995 9016 9036 9057 9078 9099 2 4 6 8 10 12 15 17 16 96 9120 9141 9162 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 11	90	7943	7962	7980	7993	8017	8085	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
93 8511 8581 8581 8570 8640 8610 8630 8650 8670 8690 2 4 6 8 10 12 14 16 16 94 8710 8790 870 8810 8810 8831 8851 8872 8892 2 4 6 8 10 12 14 16 16 95 8918 8933 8954 8974 8995 9016 9036 9057 9078 9009 2 4 6 8 10 12 14 16 16 96 9120 9141 9162 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 11 13 15 17 16 97 9837 9874 9876 9874 9461 9481 9402 9484 9506 9528 2 4 7 9 11																				
94 8710 8780 8750 8770 8790 8810 8831 8851 8872 8892 2 4 6 8 10 12 14 16 16 95 8918 8938 8954 8074 8995 9016 9036 9057 9078 9099 2 4 6 8 10 12 15 17 16 96 9120 9141 9162 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 11 13 15 17 16 97 9838 9850 987 9419 9441 9402 9484 9506 9528 2 4 7 9 11 13 15 17 98 9550 9572 9594 9616 0388 9705 9727 9760 2 4 7 11 13 18 18 18	.65																			
'96 9120 9141 9162 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 11 13 15 17 16 97 9833 9354 9376 9307 9419 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 24 3 9 11 13 15 17 24 3 9 11 13 15 17 24 3 9 11 13 15 17 24 3 9 11 13 15 17 24 3 9 11 13 15 17 24 3 9 11 13 15 17 24 3 9 9 14 9 9 22 4 7 9 11 13 16 18 24 14 7 9																				
97 983 9854 9376 9897 9419 9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 26 98 9550 9572 9594 9616 9638 9661 9683 9705 9727 9750 2 4 7 9 11 13 16 18 26	95	8918	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
98 9550 9572 9594 9616 9638 9661 9683 9705 9727 9750 2 4 7 9 11 13 16 18 26																				
99 9772 9795 9817 9840 9868 9886 9993 9931 9954 9977 2 5 7 9 11 13 10 18 20										9506										
	- 242 246											2	5							
	_			1	1						1	Ĺ	_			<u> </u>				

s.t.

UNIV. OF MICHIGAN,

BRADBURY, AGNEW & CO. LD., PRINTERS,
LONDON AND TONBRIDGE.

D. VAN NOSTRAND COMPANY 25 PARK PLACE

New York

SHORT-TITLE CATALOG

OF

Publications and Importations

OF

SCIENTIFIC AND ENGINEERING BOOKS

This list includes the technical publications of the following English publishers:

SCOTT, GREENWOOD & CO. CROSBY LUCKWOOD & SON CONSTABLE & COMPANY, Ltd. TECHNICAL PUBLISHING CO. ELECTRICIAN PRINTING & PUBLISHING CO.

for whom D. Van Nostrand Company are American agents.

SHORT-TITLE CATALOG

OF THE

Publications and Importations

OF

D. VAN NOSTRAND COMPANY

25 PARK PLACE, N. Y.

Prices marked with an asterisk (*) are NET.
All bindings are in cloth unless otherwise noted.

A B C Code. (See Clausen-Thue.)		
Ar Code. (See Clausen-Thue.)		
Abbott, A. V. The Electrical Transmission of Energy8vo,	*\$ 5	00
— A Treatise on Fuel. (Science Series No. 9.)	0	50
Testing Machines. (Science Series No. 74.)	0	50
Adam, P. Practical Bookbinding. Trans. by T. E. Maw12mo,	*2	50
Adams, H. Theory and Practice in Designing8vo,	*2	50
Adams, H. C. Sewage of Sea Coast Towns8vo	*2	00
Adams, J. W. Sewers and Drains for Populous Districts 8vo,	2	50
Addyman, F. T. Practical X-Ray Work8vo,	*4	00
Adler, A. A. Principles of Projecting-line Drawing8vo,	*1	00
Theory of Engineering Drawing8vo, (In	Pre	88.)
Aikman, C. M. Manures and the Principles of Manuring8vo,	2	50
Aitken, W. Manual of the Telephone 8vo,	*8	00
d'Albe, E. E. F., Contemporary Chemistry12mo,	*1	25
Alexander, J. H. Elementary Electrical Engineering12mo,	2	00
Universal Dictionary of Weights and Measures	3	50
"Alfrec." Wireless Telegraph Designs		
Allan, W. Strength of Beams Under Transverse Loads. (Science Series		
No. 19.)16mo,	0	50
— Theory of Arches. (Science Series No. 11.)16mo,		
Allen, H. Modern Power Gas Producer Practice and Applications. 12mo,	*2	50
Gas and Oil Engines8vo,	*4	50
Anderson, F. A. Boiler Feed Water8vo,	*2	50
Anderson, Capt. G. L. Handbook for the Use of Electricians8vo,	3	00
Anderson, J. W. Prospector's Handbook12mo,	I	50
Andés, L. Vegetable Fats and Oils8vo,	*4	00
- Animal Fats and Oils. Trans. by C. Salter8vo,	*4	00
- Drying Oils, Boiled Oil, and Solid and Liquid Driers8vo,	*5	00
Iron Corrosion, Anti-fouling and Anti-corrosive Paints. Trans. by	•	-
C. Salter8vo,	*4	00
•		

Andés, L. Oil Colors, and Printers' Ink. Trans. by A. Morris and	
H. Robson	*2 50
12mo,	*
Andrews, E. S. Reinforced Concrete Construction12mo,	*2 50
Annual Reports on the Progress of Chemistry.	*1 25
Vol. I. (1904)8vo,	*2 00
Vol. II. (1905)8vo,	*2 00
Vol. III. (1906)8vo,	*2 00
Vol. IV. (1907)8vo,	*2 00
Vol. V. (1908)	*2 00
Vol. VI. (1909)	*2 00
Vol. VII. (1910)8vo,	*2 00
Argand, M. Imaginary Quantities. Translated from the French by	
A. S. Hardy. (Science Series No. 52.)	0 50
Armstrong, R., and Idell, F. E. Chimneys for Furnaces and Steam Boilers.	
(Science Series No. 1.)	0 50
Arnold, E. Armature Windings of Direct-Current Dynamos. Trans. by	
F. B. DeGress	*2 00
Ashe, S. W., and Keiley, J. D. Electric Railways. Theoretically and Practically Treated. Vol. I. Rolling Stock	•
	*2 50
Ashe, S. W. Electric Railways. Vol. II. Engineering Preliminaries and	*
Direct Current Sub-Stations	*2 50
Electricity: Experimentally and Practically Applied	*2 00
Atkinson, J. J. Friction of Air in Mines. (Science Series No. 14.)16mo,	*1 50
Atkinson, J. J., and Williams, Jr., E. H. Gases Met with in Coal Mines.	0 50
(Science Series No. 13.)16mo,	o 50
Atkinson, P. The Elements of Electric Lighting12mo,	I 50
— The Elements of Dynamic Electricity and Magnetism12mo,	2 00
— Power Transmitted by Electricity	2 00
Auchincloss, W. S. Link and Valve Motions Simplified8vo,	*I 50
Ayrton, H. The Electric Arc8vo,	*5 00
1321011, 111 - 110 - 110 110 110 110 110 110 110	3 00
Bacon, F. W. Treatise on the Richards Steam-Engine Indicator 12mo,	1 00
Bailes, G. M. Modern Mining Practice. Five Volumes 8vo, each,	3 50
Bailey, R. D. The Brewers' Analyst	*5 00
Baker, A. L. Quaternions8vo,	*I 25
— Thick-Lens Optics(In Press.,	
Baker, Benj. Pressure of Earthwork. (Science Series No. 56.)16mo)	
Baker, I. O. Levelling. (Science Series No. q1.)	0 50
Baker, M. N. Potable Water. (Science Series No. 61.)16mo,	0 50
- Sewerage and Sewage Purification. (Science Series No. 18.)16mo,	0 50
Baker, T. T. Telegraphic Transmission of Photographs	*1 25
Bale, G. R. Modern Iron Foundry Practice. Two Volumes. 12mo.	-
Vol. I. Foundry Equipment, Materials Used	*2 50
Vol. II. Machine Moulding and Moulding Machines	* 1 50
Bale, M. P. Pumps and Pumping12mo,	1 50
Ball, J. W. Concrete Structures in Railways. (In Press.)8vo,	
Ball, R. S. Popular Guide to the Heavens8vo,	*4 50
Natural Sources of Power. (Westminster Series.)8vo,	*2 00

Ball, W. V. Law Affecting Engineers8vo,	*3 50
Bankson, Lloyd. Slide Valve Diagrams. (Science Series No. 108.) 16mo,	0 50
Barba, J. Use of Steel for Constructive Purposes	1 00
Barham, G. B. Development of the Incandescent Electric Lamp (In	
Barker, A. Textiles and Their Manufacture. (Westminster Series.). 8vo,	2 00
Barker, A. H. Graphic Methods of Engine Design	*I 50
Barnard, F. A. P. Report on Machinery and Processes of the Industrial	1 20
Arts and Apparatus of the Exact Sciences at the Paris Universal	
Exposition, 1867	- 00
Barnard, J. H. The Naval Militiaman's Guide 16mo, leather	5 00
Barnard, Major J. G. Rotary Motion. (Science Series No. 90.)16mo,	1 25
Barrus, G. H. Boiler Tests	o 50 *a aa
	*3 00
Engine Tests	*4 00 *6 00
The above two purchased together	
Barwise, S. The Purification of Sewage	3 50 *2 00
Baterden, J. R. Timber. (Westminster Series.)	-2 00
Bates, E. L., and Charlesworth, F. Practical Mathematics12mo,	
Part I. Preliminary and Elementary Course	*I 50
Part II. Advanced Course	*1 50
Beadle, C. Chapters on Papermaking. Five Volumes12mo, each,	*2 00
Beaumont, R. Color in Woven Design	*6 00
— Finishing of Textile Fabrics	*4 00
Beaumont, W. W. The Steam-Engine Indicator8vo,	2 50
Bechhold. Colloids in Biology and Medicine. Trans. by J. G. Bullowa	
(In Press.)	
Beckwith, A. Pottery	0 60
Bedell, F., and Pierce, C. A. Direct and Alternating Current Manual.8vo,	*2 00
Beech, F. Dyeing of Cotton Fabrics8vo,	*3 00
Dyeing of Woolen Fabrics8vo,	*3 50
Begtrup, J. The Slide Valve	*2 00
Beggs, G. E. Stresses in Railway Girders and Bridges(In Press.)	
Bender, C. E. Continuous Bridges. (Science Series No. 26.) 16mo,	0 50
Proportions of Piers used in Bridges. (Science Series No. 4.)	
16mo,	0 50
Bennett, H. G. The Manufacture of Leather	*4 50
— Leather Trades (Outlines of Industrial Chemistry). 8vo. (In I	ress.)
Bernthsen, A. A Text - book of Organic Chemistry. Trans. by G.	
M'Gowan	*2 50
Berry, W. J. Differential Equations of the First Species. 12mo. (In Prepar	ation.)
Bersch, J. Manufacture of Mineral and Lake Pigments. Trans. by A. C.	
Wright	*5 00
Bertin, L. E. Marine Boilers. Trans. by L. S. Robertson8vo,	5 00
Beveridge, J. Papermaker's Pocket Book	*4 00
Binns, C. F. Ceramic Technology	*5 00
— Manual of Practical Potting	*7 50
— The Potter's Craft	*2 00
Birchmore, W. H. Interpretation of Gas Analysis12mo,	*I 25
	•
Blaine, R. G. The Calculus and Its Applications	*1 50
Blake, W. H. Brewers' Vade Mecum8vo,	*1 50 *4 00
	*1 50

Blücher, H. Modern Industrial Chemistry. Trans. by J. P. Millington		
8vo,	*7	50
Blyth, A. W. Foods: Their Composition and Analysis8vo,		50
— Poisons: Their Effects and Detection	7	50
Böckmann, F. Celluloid12mo,	*2	50
Bodmer, G. R. Hydraulic Motors and Turbines	5	00
Boileau, J. T. Traverse Tables8vo,	5	00
Bonney, G. E. The Electro-platers' Handbook12mo,	1	20
Booth, N. Guide to the Ring-spinning Frame12mo,	*1	25
Booth, W. H. Water Softening and Treatment8vo,	*2	50
Superheaters and Superheating and Their Control8vo,	*1	50
Bottcher, A. Cranes: Their Construction, Mechanical Equipment and		
Working. Trans. by A. Tolhausen	*10	00
Bottler, M. Modern Bleaching Agents. Trans. by C. Salter12mo,	*2	50
Bottone, S. R. Magnetos for Automobilists	*I	00
Boulton, S. B. Preservation of Timber. (Science Series No. 82.).16mo,	0	50
Bourgougnon, A. Physical Problems. (Science Series No. 113.)16mo,	0	50
Bourry, E. Treatise on Ceramic Industries. Trans. by J. J. Sudborough.		
8vo,	*5	00
Bow, R. H. A Treatise on Bracing8vo,	I	50
Bowie, A. J., Jr. A Practical Treatise on Hydraulic Mining8vo,	5	00
Bowker, W. R. Dynamo, Motor and Switchboard Circuits8vo,	*2	50
Bowles, O. Tables of Common Rocks. (Science Series No. 125.)16mo,	0	50
Bowser, E. A. Elementary Treatise on Analytic Geometry12mo,		75
— Elementary Treatise on the Differential and Integral Calculus.12mo,	2	25
—— Elementary Treatise on Analytic Mechanics12mo,	_	00
Elementary Treatise on Hydro-mechanics12mo,		50
A Treatise on Roofs and Bridges	*2	-
Boycott, G. W. M. Compressed Air Work and Diving8vo,	*4	
Bragg, E. M. Marine Engine Design	*2	00
Brainard, F. R. The Sextant. (Science Series No. 101.)16mo,		
Brassey's Naval Annual for 19118vo,		00
Brew, W. Three-Phase Transmission	*2	00
Brewer, R. W. A. Motor Car Construction12mo,		
Briggs, R., and Wolff, A. R. Steam-Heating. (Science Series No.		
67.)		50
Bright, C. The Life Story of Sir Charles Tilson Bright8vo,	*4	50
Brislee, T. J. Introduction to the Study of Fuel. (Outlines of Indus-	•.	
trial Chemistry)		00
British Standard Sections	*1	00
Complete list of this series (45 parts) sent on application. Broadfoot, S. K. Motors, Secondary Batteries. (Installation Manuals		
Series)		75
Broughton, H. H. Electric Cranes and Hoists	-	00
Brown, H. Irrigation	*5	50
Brown, Wm. N. The Art of Enamelling on Metal12mo,	*1	
Handbook on Japanning and Enamelling12mo,	*1	
— House Decorating and Painting	*1	
History of Decorative Art	*1	
—— Dipping, Burnishing, Lacquering and Bronzing Brass Ware12mo,	*I	
	-	

Brown, Wm. N. Workshop Wrinkles 8vo,	* I 00
Browne, R. E. Water Meters. (Science Series No. 81.)16mo,	0 50
Bruce, E. M. Pure Food Tests	* 1 25
Bruhns, Dr. New Manual of Logarithms8vo, half morocco,	2 00
Brunner, R. Manufacture of Lubricants, Shoe Polishes and Leather	
Dressings. Trans. by C. Salter8vo,	*3 00
Buel, R. H. Safety Valves. (Science Series No. 21.)16mo,	0 50
Bulman, H. F., and Redmayne, R. S. A. Colliery Working and Manage-	
ment	6 00
Burgh, N. P. Modern Marine Engineering4to, half morocco,	10 00
Burstall, F. W. Energy Diagram for Gas. With Text8vo,	
Direction, F., w. Energy Diagram for Gas. with Text	1 50
— Diagram. Sold separately	*I 00
Burt, W. A. Key to the Solar Compass16mo, leather,	2 50
Burton, F. G. Engineering Estimates and Cost Accounts12mo,	*I 50
Buskett, E. W. Fire Assaying12mo,	*I 25
Byers, H. G., and Knight, H. G. Notes on Qualitative Analysis8vo,	* 1 50
Cain, W. Brief Course in the Calculus12mo,	*I 75
Elastic Arches. (Science Series No. 48.)	0 50
- Maximum Stresses. (Science Series No. 38.)	0 50
Practical Designing Retaining of Walls. (Science Series No. 3.)	
16mo.	0 50
Theory of Steel-concrete Arches and of Vaulted Structures.	- 50
(Science Series No. 42.)	0 50
—— Theory of Voussoir Arches. (Science Series No. 12.)16mo,	_
	0 50
—— Symbolic Algebra. (Science Series No. 73.)	0 50
Campin, F. The Construction of Iron Roofs8vo,	2 00
Carpenter, F. D. Geographical Surveying. (Science Series No. 37.). 16mo,	
Carpenter, R. C., and Diederichs, H Internal Combustion Engines. 8vo,	*5 00
Carter, E. T. Motive Power and Gearing for Electrical Machinery 8vo,	*5 00
Carter, H. A. Ramie (Rhea), China Grass12mo,	*2 00
Carter, H. R. Modern Flax, Hemp, and Jute Spinning8vo,	*3 00
Cathcart, W. L. Machine Design. Part I. Fastenings8vo,	*3 00
Cathcart, W. L., and Chaffee, J. I. Elements of Graphic Statics8vo,	*3 00
Short Course in Graphics	I 50
Caven, R. M., and Lander, G. D. Systematic Inorganic Chemistry 12mo,	*2 00
Chalkley, A. P. Diesel Engines8vo,	*3 00
Chambers' Mathematical Tables 8vo,	I 75
Charnock, G. F. Workshop Practice. (Westminster Series.)8vo (In	
Charpentier, P. Timber	*6 00
Chatley, H. Principles and Designs of Aeroplanes. (Science Series.)	0 00
No. 126.)	0 50
— How to Use Water Power	*1 00
Child, C. D. Electric Arc	
Child, C. T. The How and Why of Electricity12mo,	I 00
Christie, W. W. Boiler-waters, Scale, Corrosion, Foaming8vo,	*3 00
Chimney Design and Theory8vo,	*3 00
Furnace Draft. (Science Series No. 123.)	0 50
— Water: Its Purification for Use in the Industries 8vo, (In	Press.)
Church's Laboratory Guide. Rewritten by Edward Kinch8vo,	*2 50
Clapperton, G. Practical Papermaking 8vo,	2 50

Clark, A. G. Motor Car Engineering.	
Vol. I. Construction	*3 00
Vol. II. Design(In Press.)	
Clark, C. H. Marine Gas Engines	*I 50
Clark, D. K. Rules, Tables and Data for Mechanical Engineers8vo,	5 00
Fuel: Its Combustion and Economy12mo,	I 50
The Mechanical Engineer's Pocketbook	2 00
— Tramways: Their Construction and Working8vo,	5 00
Clark, J. M. New System of Laying Out Railway Turnouts12mo,	I 00
Clausen-Thue, W. A B C Telegraphic Code. Fourth Edition12mo,	*5 00
Fifth Edition8vo,	*7 00
—— The A I Telegraphic Code	*7 50
Cleemann, T. M. The Railroad Engineer's Practice12mo,	*I 50
Clerk, D., and Idell, F. E. Theory of the Gas Engine. (Science Series	
No. 62.)16mo,	0 50
Clevenger, S. R. Treatise on the Method of Government Surveying.	•
16mo, morocco	2 50
Clouth, F. Rubber, Gutta-Percha, and Balata8vo,	*5 00
Cochran, J. Treatise on Cement Specifications8vo, (In Press.)	3,33
Coffin, J. H. C. Navigation and Nautical Astronomy12mo,	*3 50
Colburn, Z., and Thurston, R. H. Steam Boiler Explosions. (Science	3 30
Series No. 2.)	o 50
	-
Cole, R. S. Treatise on Photographic Optics	I 50
Coles-Finch, W. Water, Its Origin and Use	*5 00
Collins, J. E. Useful Alloys and Memoranda for Goldsmiths, Jewelers.	
r6mo	0 50
Constantine, E. Marine Engineers, Their Qualifications and Duties. 8vo,	*2 00
Coombs, H. A. Gear Teeth. (Science Series No. 120.)16mo,	0 50
Cooper, W. R. Primary Batteries8vo,	*4 00
—— "The Electrician" Primers	*5 00
Part I	*1 50
Part II	*2 50
Part III	*2 00
Copperthwaite, W. C. Tunnel Shields4to,	*9 00
Corey, H. T. Water Supply Engineering	
Corfield, W. H. Dwelling Houses. (Science Series No. 50.)16mo,	0 50
— Water and Water-Supply. (Science Series No. 17.)16mo,	0 50
Cornwall, H. B. Manual of Blow-pipe Analysis8vo,	*2 50
Courtney, C. F. Masonry Dams8vo,	3 50
Cowell, W. B. Pure Air, Ozone, and Water12mo,	*2 00
Craig, T. Motion of a Solid in a Fuel. (Science Series No. 49.)16mo,	0 50
— Wave and Vortex Motion. (Science Series No. 43.)16mo,	0 50
Cramp, W. Continuous Current Machine Design8vo,	*2 50
Crocker, F. B. Electric Lighting. Two Volumes. 8vo.	
Vol. I. The Generating Plant	3 00
Vol. II. Distributing Systems and Lamps	3 00
Crocker, F. B., and Arendt, M. Electric Motors	*2 50
Crocker, F. B., and Wheeler, S. S. The Management of Electrical Ma-	- 30
	*I 00
chinery	1 00
tions. (Westminster Series.)8vo,	*2 00
uous. (westimuster benes.)	_ - -

·	
Crosskey, L. R. Elementary Perspective8vo,	I 00
Crosskey, L. R., and Thaw, J. Advanced Perspective8vo,	I 50
Culley, J. L. Theory of Arches. (Science Series No. 87.)16mo,	0 50
Davenport, C. The Book. (Westminster Series.)8vo,	* 2 00
Davies, D. C. Metalliferous Minerals and Mining8vo,	5 00
·	5 00
Earthy Minerals and Mining	-
Davies, E. H. Machinery for Metalliferous Mines8vo,	8 00
Davies, F. H. Electric Power and Traction8vo,	*2 00
Dawson, P. Electric Traction on Railways8vo,	*9 00
Day, C. The Indicator and Its Diagrams	*2 00
Deerr, N. Sugar and the Sugar Cane8vo,	*8 oo
Deite, C. Manual of Soapmaking. Trans. by S. T. King4to,	*5 00
De la Coux, H. The Industrial Uses of Water. Trans. by A. Morris.	
8vo,	*4 50
Del Mar, W. A. Electric Power Conductors8vo,	*2 00
Denny, G. A. Deep-level Mines of the Rand4to,	*10 00
— Diamond Drilling for Gold	*5 00
	•
De Roos, J. D. C. Linkages. (Science Series No. 47.)	0 50
Derr, W. L. Block Signal OperationOblong 12mo,	*1 50
— Maintenance-of-Way Engineering (In Preparation.)	
Desaint, A. Three Hundred Shades and How to Mix Them8vo,	*10 00
De Varona, A. Sewer Gases. (Science Series No. 55.)16mo,	0 50
Devey, R. G. Mill and Factory Wiring. (Installation Manuals Series.)	
12mo,	*I 00
Dibdin, W. J. Public Lighting by Gas and Electricity8vo,	* 8 oo
— Purification of Sewage and Water 8vo,	6 50
Dichmann, Carl. Basic Open-Hearth Steel Process12mo,	*3 50
Dieterich, K. Analysis of Resins, Balsams, and Gum Resins8vo,	*3 00
Dinger, Lieut. H. C. Care and Operation of Naval Machinery12mo,	*2 00
<u> </u>	2 00
Dixon, D. B. Machinist's and Steam Engineer's Practical Calculator.	
16mo, morocco,	1 25
Doble, W. A. Power Plant Construction on the Pacific Coast (In Press.)	
Dodd, G. Dictionary of Manufactures, Mining, Machinery, and the	
Industrial Arts12mo,	I 50
Dorr, B. F. The Surveyor's Guide and Pocket Table-book.	
16mo, morocco,	2 00
Down, P. B. Handy Copper Wire Table16mo,	*1 00
Draper, C. H. Elementary Text-book of Light, Heat and Sound12mo,	I 00
Heat and the Principles of Thermo-dynamics12mo,	I 50
Duckwall, E. W. Canning and Preserving of Food Products8vo,	*5 00
Dumesny, P., and Noyer, J. Wood Products, Distillates, and Extracts.	5
870,	*4 50
Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries.	7 30
• • •	*4 00
8vo,	4 00
Dunstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry.	
I2mo,	*I 40
Duthie, A. L. Decorative Glass Processes. (Westminster Series.). 8vo,	*2 00
• • • • • • • • • • • • • • • • • • • •	Press.)
Dyson, S. S. Practical Testing of Raw Materials8vo,	*5 00
Dyson, S. S., and Clarkson, S. S. Chemical Works8vo,	*7 50

Eccles, R. G., and Duckwall, E. W. Food Preservatives8vo, paper	0	50
Eddy, H. T. Researches in Graphical Statics8vo,	I	50
Maximum Stresses under Concentrated Loads	I	50
Edgcumbe, K. Industrial Electrical Measuring Instruments8vo,	*2	50
Eissler, M. The Metallurgy of Gold8vo	7	50
— The Hydrometallurgy of Copper8vo,	*4	50
The Metallurgy of Silver	4	00
— The Metallurgy of Argentiferous Lead	5	00
Cyanide Process for the Extraction of Gold	3	00
— A Handbook on Modern Explosives8vo,	5	00
Ekin, T. C. Water Pipe and Sewage Discharge Diagramsfolio,	*3	00
Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative		
Chemical Analysis12mo,	*1	25
Elliot, Major G. H. European Light-house Systems8vo,		00
Ennis, Wm. D. Linseed Oil and Other Seed Oils8vo,	*4	00
Applied Thermodynamics8vo	*4	
Flying Machines To-day	*1	-
	*1	-
Erfurt, J. Dyeing of Paper Pulp. Trans. by J. Hubner8vo,	*7	
Erskine-Murray, J. A Handbook of Wireless Telegraphy8vo,	*3	-
Evans, C. A. Macadamized Roads	3	30
Ewing, A. J. Magnetic Induction in Iron	*4	^^
Dwing, A. J. magnetic induction in fron	4	00
Fairie, J. Notes on Lead Ores	*I	^^
Notes on Pottery Clays12mo,	*1	
Fairley, W., and Andre, Geo. J. Ventilation of Coal Mines. (Science	•	5 º
	_	=-
Series No. 58.)		50
·	*3	
Fanning, J. T. Hydraulic and Water-supply Engineering	*5	00
	*-	
8vo,	*2	
Fay, I. W. The Coal-tar Colors	*4	
Fernbach, R. L. Glue and Gelatine8vo,	*3	
— Chemical Aspects of Silk Manufacture12mo,	*1	00
Fischer, E. The Preparation of Organic Compounds. Trans. by R. V.		
Stanford	*1	_
Fish, J. C. L. Lettering of Working Drawings Oblong 8vo,	-	00
Fisher, H. K. C., and Darby, W. C. Submarine Cable Testing 8vo,	*3	-
Fiske, Lieut. B. A. Electricity in Theory and Practice		50
Fleischmann, W. The Book of the Dairy. Trans. by C. M. Aikman. 8vo,	4	00
Fleming, J. A. The Alternate-current Transformer. Two Volumes. 8vo.		
Vol. I. The Induction of Electric Currents	*5	
Vol. II. The Utilization of Induced Currents	*5	
Propagation of Electric Currents8vo,	*3	
— Centenary of the Electrical Current8vo,	*0	-
Electric Lamps and Electric Lighting8vo,	*3	
—— Electrical Laboratory Notes and Forms4to,	*5	00
— A Handbook for the Electrical Laboratory and Testing Room. Two		
Volumes8vo, each,	*5	00
Fluery, H. The Calculus Without Limits or Infinitesimals. Trans. by		
C. O. Mailloux(In Press.)		

Paynn, P. J. Flow of Water. (Science Series No. 84.)16mo,	0	50
Hydraulic Tables. (Science Series No. 66.)		50
Foley, N. British and American Customary and Metric Measures. folio,	*3	00
Foster, H. A. Electrical Engineers' Pocket-book. (Sixth Edition.)		
12mo, leather,	5	00
Engineering Valuation of Public Utilities and Factories 8vo,		00
Foster, Gen. J. G. Submarine Blasting in Boston (Mass.) Harbor4to,		50
Fowle, F. F. Overhead Transmission Line Crossings12mo,		50
— The Solution of Alternating Current Problems8vo (In Press.)	-	50
Fox, W. G. Transition Curves. (Science Series No. 110.)16mo,	•	50
Fox, W., and Thomas, C. W. Practical Course in Mechanical Draw-	U	50
ing		25
Poye, J. C. Chemical Problems. (Science Series No. 69.)16mo,		50
— Handbook of Mineralogy. (Science Series No. 86.)		50
Prancis, J. B. Lowell Hydraulic Experiments4to,	15	00
Freudemacher, P. W. Electrical Mining Installations. (Installation		
Manuals Series)12mo,	*1	00
Frith, J. Alternating Current Design8vo,	*2	00
Pritsch, J. Manufacture of Chemical Manures. Trans. by D. Grant.		
8vo.	*4	00
Frye, A. I. Civil Engineers' Pocket-book12mo, leather,		
Fuller, G. W. Investigations into the Purification of the Ohio River.		
4to.	*10	00
Furnell, J. Paints, Colors, Oils, and Varnishes		00
Gairdner, J. W. I. Earthwork8vo, (In Press.)		
Gant, L. W. Elements of Electric Traction	*2	50
Garforth, W. E. Rules for Recovering Coal Mines after Explosions and	-	50
Fires12mo, leather,		50
Gandard, J. Foundations. (Science Series No. 34.)16mo,		-
Gear, H. B., and Williams, P. F. Electric Central Station Distribution	U	50
Systems8vo,		00
Geerligs, H. C. P. Cane Sugar and Its Manufacture8vo,		00
Geikie, J. Structural and Field Geology8vo,	•	00
Gerber, N. Analysis of Milk, Condensed Milk, and Infants' Milk-Food. 8vo,	I	25
Gerhard, W. P. Sanitation, Watersupply and Sewage Disposal of Country		
Houses12mo,	*2	00
— Gas Lighting. (Science Series No. 111.) 16mo,	0	50
Household Wastes. (Science Series No. 97.)	0	50
House Drainage. (Science Series No. 63.)	0	50
Sanitary Drainage of Buildings. (Science Series No. 93.) 16mo,	0	50
Gerhardi, C. W. H. Electricity Meters8vo,	*4	00
Geschwind, L. Manufacture of Alum and Sulphates. Trans. by C.	-	
Salter8vo,	*5	00
Gibbs, W. E. Lighting by Acetylene12mo,	*1	
— Physics of Solids and Fluids. (Carnegie Technical School's Text-	-	50
books.)	**	50
Gibson, A. H. Hydraulics and Its Application	*5	-
		00
Gilbreth, F. B. Motion Study		00

Gillmore, Gen. Q. A. Limes, Hydraulic Cements and Mortars8vo,	•	00
— Roads, Streets, and Pavements		00
Golding, H. A. The Theta-Phi Diagram		25
Goldschmidt, R. Alternating Current Commutator Motor8vo,		00
Goodchild, W. Precious Stones. (Westminster Series.)8vo,	*2	
Goodeve, T. M. Textbook on the Steam-engine12mo,		00
Gore, G. Electrolytic Separation of Metals 8vo,	*3	50
Gould, E. S. Arithmetic of the Steam-engine12mo,	I	00
Calculus. (Science Series No. 112.)	0	50
High Masonry Dams. (Science Series No. 22.)	0	50
Practical Hydrostatics and Hydrostatic Formulas. (Science Series		
No. 117.)16mo,	0	50
Grant, J. Brewing and Distilling. (Westminster Series.) 8vo (In Press.)		
Gratacap, L. P. A Popular Guide to Minerals 8vo (In Press.)		
Gray, J. Electrical Influence Machines	2	00
— Marine Boiler Design		
Greenhill, G. Dynamics of Mechanical Flight8vo, (In Press.)		
Greenwood, E. Classified Guide to Technical and Commercial Books. 8vo,	*2	00
Gregorius, R. Mineral Waxes. Trans. by C. Salter12mo,		00
Griffiths, A. B. A Treatise on Manures		00
		50
—— Dental Metallurgy		-
Gross, E. Hops	*4	-
Grossman, J. Ammonia and Its Compounds12mo,	*I	_
Groth, L. A. Welding and Cutting Metals by Gases or Electricity8vo,	*3	
Grover, F. Modern Gas and Oil Engines8vo,		00
Gruner, A. Power-loom Weaving8vo,	* 3	00
Güldner, Hugo. Internal Combustion Engines. Trans. by H. Diederichs.		
4to,	*10	
Gunther, C. O. Integration		25
Gurden, R. L. Traverse Tablesfolio, half morocco,		50
Guy, A. E. Experiments on the Flexure of Beams8vo,	*1	25
Haeder, H. Handbook on the Steam-engine. Trans. by H. H. P.		
Powles	,	00
Hainbach, R. Pottery Decoration. Trans. by C. Slater12mo,	_	00
Haenig, A. Emery and Emery Industry8vo, (In		
Hale W. J. Coloulations of Consent Chamisters		
Hale, W. J. Calculations of General Chemistry		00
Hall, C. H. Chemistry of Paints and Paint Vehicles	_	00
Hall, R. H. Governors and Governing Mechanism		00
Hall, W. S. Elements of the Differential and Integral Calculus8vo,		25
—— Descriptive Geometry		50
Haller, G. F., and Cunningham, E. T. The Tesla Coil		25
Halsey, F. A. Slide Valve Gears		50
— The Use of the Slide Rule. (Science Series No. 114.)16mo,		50
Worm and Spiral Gearing. (Science Series No. 116.)16mo,		50
Hamilton, W. G. Useful Information for Railway Men16mo,		00
Hammer, W. J. Radium and Other Radio-active Substances8vo,		00
Hancock, H. Textbook of Mechanics and Hydrostatics8vo,		50
Hardy, E. Elementary Principles of Graphic Statics 12mo,		50
Harrison, W. B. The Mechanics' Tool-book12mo,		50
Hart I W External Diumbing Work 840	*2	00

Hart, J. W. Hints to Plumbers on Joint Wiping8vo,	*3 00
Principles of Hot Water Supply8vo,	*3 00
— Sanitary Plumbing and Drainage8vo,	*3 00
Haskins, C. H. The Galvanometer and Its Uses16mo,	I 50
Hatt, J. A. H. The Coloristsquare 12mo,	* 1 50
Hausbrand, E. Drying by Means of Air and Steam. Trans. by A. C.	
Wright12mo,	*2 00
Evaporating, Condensing and Cooling Apparatus. Trans. by A. C.	
Wright8vo,	*5 00
Hausner, A. Manufacture of Preserved Foods and Sweetmeats. Trans.	3 00
by A. Morris and H. Robson	*3 00
Hawke, W. H. Premier Cipher Telegraphic Code4to,	
	*5 00
— 100,000 Words Supplement to the Premier Code	*5 00
Hawkesworth, J. Graphical Handbook for Reinforced Concrete Design.	
4to,	*2 50
Hay, A. Alternating Currents8vo,	*2 50
—— Electrical Distributing Networks and Distributing Lines8vo,	*3 50
— Continuous Current Engineering8vo,	*2 50
Heap, Major D. P. Electrical Appliances8vo,	2 00
Heaviside, O. Electromagnetic Theory. Two Volumes8vo, each,	*5 00
Heck, R. C. H. The Steam Engine and Turbine8vo,	*5 00
Steam-Engine and Other Steam Motors. Two Volumes.	0
Vol. I. Thermodynamics and the Mechanics	*3 50
Vol. II. Form, Construction, and Working8vo,	*5 00
Notes on Elementary Kinematics	*1 00
—— Graphics of Machine Forces	*1 00
Hedges, K. Modern Lightning Conductors8vo,	3 00
Heermann, P. Dyers' Materials. Trans. by A. C. Wright12mo,	*2 50
Hellot, Macquer and D'Apligny. Art of Dyeing Wool, Silk and Cotton.	
8vo,	*2 00
Henrici, O. Skeleton Structures8vo,	I 50
Hering, D. W. Essentials of Physics for College Students8vo,	*1 бо
Hering-Shaw, A. Domestic Sanitation and Plumbing. Two Vols8vo,	*5 00
—— Elementary Science8vo,	*2 00
Herrmann, G. The Graphical Statics of Mechanism. Trans. by A. P.	
Smith12mo,	2 00
Herzfeld, J. Testing of Yarns and Textile Fabrics 8vo,	*3 50
Hildebrandt, A. Airships, Past and Present8vo,	*3 50
Hildenbrand, B. W. Cable-Making. (Science Series No. 32.) 16mo,	0 50
Hilditch, T. P. A Concise History of Chemistry12mo,	*I 25
Hill, J. W. The Purification of Public Water Supplies. New Edition.	3
(In Press.)	
— Interpretation of Water Analysis	
Hiroi, I. Plate Girder Construction. (Science Series No. 95.) 16mo,	0 50
Statically-Indeterminate Stresses	*2 00
Hirshfeld, C. F. Engineering Thermodynamics. (Science Series No. 45.)	
16mo,	0 50
Hobart, H. M. Heavy Electrical Engineering8vo,	*4 50
—— Design of Static Transformers	*2 00
—— Electricity 8vo,	*2 00
Electric Trains	*2 50

Habest H M. Blaskie Beauties of Chica	
Hobart, H. M. Electric Propulsion of Ships8vo, Hobart, J. F. Hard Soldering, Soft Soldering and Brazing.12mo,	*2 00
(In Press.)	
Hobbs, W. R. P. The Arithmetic of Electrical Measurements12mo,	0 50
Hoff, J. N. Paint and Varnish Facts and Formulas	* 1 50
Hoff, Com. W. B. The Avoidance of Collisions at Sear6mo, morocco,	0 75
Hole, W. The Distribution of Gas8vo,	*7 50
Holley, A. L. Railway Practicefolio,	12 00
Holmes, A. B. The Electric Light Popularly Explained 12mo, paper,	0 50
Hopkins, N. M. Experimental Electrochemistry8vo,	*3 00
— Model Engines and Small Boats	I 25
Hopkinson, J. Shoolbred, J. N., and Day, R. E. Dynamic Electricity.	
(Science Series No. 71.)	0 50
Horner, J. Engineers' Turning	*3 50
Metal Turning12m0,	I 50
— Toothed Gearing 12mo,	2 25
Houghton, C. E. The Elements of Mechanics of Materials12mo,	*2 00
Houllevigue, L. The Evolution of the Sciences8vo,	*2 00
Howe, G. Mathematics for the Practical Man	*1 25
Howorth, J. Repairing and Riveting Glass, China and Earthenware.	1 -3
8vo, paper,	*o 50
Hubbard, E. The Utilization of Wood-waste	*2 50
Hübner, J. Bleaching and Dyeing of Vegetable and Fibrous Materials	2 30
(Outlines of Industrial Chemistry)	
Hudson, O. F. Iron and Steel. (Outlines of Industrial Chemistry.)	
8vo, (In Press.) Humper, W. Calculation of Strains in Girders	2 50
Humphreys, A. C. The Business Features of Engineering Practice 8vo,	2 50
	*I 25
Hunter, A. Bridge Work	*
Hurst, G. H. Handbook of the Theory of Color	*2 50 *3 00
— Dictionary of Chemicals and Raw Products	•
Lubricating Oils, Fats and Greases	*4 00
Soaps	*5 00
— Textile Soaps and Oils	*2 50
Hurst, H. E., and Lattey, R. T. Text-book of Physics	*3 00
Hutchinson, R. W., Jr. Long Distance Electric Power Transmission.	•
12m0,	*3 00
Hutchinson, R. W., Jr., and Ihlseng, M. C. Electricity in Mining . 12mo,	
(In Press)	
Hutchinson, W. B. Patents and How to Make Money Out of Them. 12mo,	1 25
Hutton, W. S. Steam-boiler Construction	6 00
Practical Engineer's Handbook 8vo,	7 00
The Works' Manager's Handbook	6 00
Hyde, E. W. Skew Arches. (Science Series No. 15.)16mo,	0 50
Induction Coils. (Science Series No. 53.)	0 50
Ingle, H. Manual of Agricultural Chemistry8vo,	*3 00
Innes, C. H. Problems in Machine Design12mo,	*2 00
Air Compressors and Blowing Engines12mo,	*2 00
Centrifugal Pumps12mo,	*2 00
— The Fan	*2 00
	2 30

Isherwood, B. F. Engineering Precedents for Steam Machinery8vo, Ivatts, E. B. Railway Management at Stations8vo,		50 50
Jacob, A., and Gould, E. S. On the Designing and Construction of Storage Reservoirs. (Science Series No. 6.)		=-
Jamieson, A. Text Book on Steam and Steam Engines8vo.		50 00
Elementary Manual on Steam and the Steam Engine12mo,	-	50
Jannettaz, E. Guide to the Determination of Rocks. Trans. by G. W. Plympton		-
Jehl, F. Manufacture of Carbons8vo,	_	50 00
Jennings, A. S. Commercial Paints and Painting. (Westminster Series.) 8vo (In Press.)	4	00
Jennison, F. H. The Manufacture of Lake Pigments8vo,	*3	00
Jepson, G. Cams and the Principles of their Construction	* _I	50
Jockin, W. Arithmetic of the Gold and Silversmith12mo,	*1	00
Johnson, G. L. Photographic Optics and Color Photography8vo,	*3	00
Johnson, J. H. Arc Lamps and Accessory Apparatus. (Installation Manuals Series.)	*0	75
Johnson, T. M. Ship Wiring and Fitting. (Installation Manuals	•	,,
Series)	*0	75
Johnson, W. H. The Cultivation and Preparation of Para Rubber8vo,	*3	00
Johnson, W. McA. The Metallurgy of Nickel		
and Geology12mo,	2	6о
Joly, J. Raidoactivity and Geology12mo,	*3	00
Jones, H. C. Electrical Nature of Matter and Radioactivity12mo,	*2	00
Jones, M. W. Testing Raw Materials Used in Paint12mo,	*2	00
Jones, L., and Scard, F. I. Manufacture of Cane Sugar8vo,	*5	00
Jordan, L. C. Practical Railway Spiral12mo, Leather, (In Press.)		
Joynson, F. H. Designing and Construction of Machine Gearing8vo,		00
Jüptner, H. F. V. Siderology: The Science of Iron8vo,	*5	00
Kansas City Bridge4to,	6	
Kapp, G. Alternate Current Machinery. (Science Series No. 96.) 16mo,		00
— Electric Transmission of Energy		50 50
Keim, A. W. Prevention of Dampness in Buildings8vo,	*2	-
Keller, S. S. Mathematics for Engineering Students. 12mo, half leather.	_	•
Algebra and Trigonometry, with a Chapter on Vectors	*1	75
Special Algebra Edition	*1	
Plane and Solid Geometry	*1	25
Analytical Geometry and Calculus	*2	
Kelsey, W. R. Continuous-current Dynamos and Motors8vo,	*2	50
Kemble, W. T., and Underhill, C. R. The Periodic Law and the Hydrogen		
Spectrum	*o	-
Kemp, J. F. Handbook of Rocks	*1	-
Kendall, E. Twelve Figure Cipher Code4to,	*12	50
Kennedy, A. B. W., and Thurston, R. H. Kinematics of Machinery.	_	# C
(Science Series No. 54.)	U	50
(Science Series No. 106.)	0	50

Kennedy, R. Modern Engines and Power Generators. Six Volumes. 4to,	15 00
Single Volumeseach,	3 00
Electrical Installations. Five Volumes4to,	15 00
Single Volumeseach,	3 50
Flying Machines; Practice and Design	*2 00
Principles of Aeroplane Construction	*I 50
Kennelly, A. E. Electro-dynamic Machinery	1 50
Kent, W. Strength of Materials. (Science Series No. 41.)16mo,	0 50
Kershaw, J. B. C. Fuel, Water and Gas Analysis8vo,	*2 50
Electrometallurgy. (Westminster Series.)	*2 00
— The Electric Furnace in Iron and Steel Production12mo,	*1 50
Kinzbrunner, C. Alternate Current Windings8vo,	*1 50
Continuous Current Armatures	*1 50
— Testing of Alternating Current Machines	*2 00
Kirkaldy, W. G. David Kirkaldy's System of Mechanical Testing4to,	10 00
Kirkbride, J. Engraving for Illustration	*1 50
Kirkwood, J. P. Filtration of River Waters4to,	7 50
Klein, J. F. Design of a High-speed Steam-engine8vo,	*5 00
	*1 50
Kleinhans, F. B. Boiler Construction	3 00
Knight, RAdm. A. M. Modern Seamanship8vo,	*7 50
Half morocco	*0 00
Knox, W. F. Logarithm Tables(In Preparation.)	,
Knott, C. G., and Mackay, J. S. Practical Mathematics8vo,	2 00
Koester, F. Steam-Electric Power Plants4to,	*5 00
— Hydroelectric Developments and Engineering4to,	*5 00
Koller, T. The Utilization of Waste Products	*3 50
—— Cosmetics	*2 50
Kretchmar, K. Yarn and Warp Sizing8vo,	*4 00
Krischke, A. Gas and Oil Engines12mo,	*1 25
	3
Lambert, T. Lead and its Compounds8vo,	*3 50
Bone Products and Manures8vo,	*3 00
Lamborn, L. L. Cottonseed Products8vo,	*3 00
— Modern Soaps, Candles, and Glycerin8vo,	*7 50
Lamprecht, R. Recovery Work After Pit Fires. Trans. by C. Salter. 8vo,	*4 00
Lanchester, F. W. Aerial Flight. Two Volumes. 8vo.	•
Vol. I. Aerodynamics	* 6 oo
Aerial Flight. Vol. II. Aerodonetics	*6 oo
Larner, E. T. Principles of Alternating Currents12mo,	*I 25
Larrabee, C. S. Cipher and Secret Letter and Telegraphic Code16mo,	0 60
La Rue, B. F. Swing Bridges. (Science Series No. 107.)16mo,	0 50
Lassar-Cohn, Dr. Modern Scientific Chemistry. Trans. by M. M. Patti-	
son Muir12m0,	*2 00
Latimer, L. H., Field, C. J., and Howell, J. W. Incandescent Electric	
Lighting. (Science Series No. 57.)	0 50
Latta, M. N. Handbook of American Gas-Engineering Practice8vo,	*4 50
American Producer Gas Practice4to,	*6 00
Leask, A. R. Breakdowns at Sea	2 00
Refrigerating Machinery12mo,	2 00
Lecky, S. T. S. "Wrinkles" in Practical Navigation8vo,	*8

Le Doux, M. Ice-Making Machines. (Science Series No. 46.)16mo,	0	50
Leeds, C. C. Mechanical Drawing for Trade Schoolsoblong 4to,		
High School Edition	*1	25
Machinery Trades Edition	*2	00
Lefévre, L. Architectural Pottery. Trans. by H. K. Bird and W. M.		
Binns4to,	*7	50
Lehner, S. Ink Manufacture. Trans. by A. Morris and H. Robson 8vo,	*2	
Lemstrom, S. Electricity in Agriculture and Horticulture8vo,	*1	_
Le Van, W. B. Steam-Engine Indicator. (Science Series No. 78.). 16mo,		_
		50
Lewes, V. B. Liquid and Gaseous Fuels. (Westminster Series.)8vo, Lewis, L. P. Railway Signal Engineering8vo,	*2	00 50
Lieber, B. F. Lieber's Standard Telegraphic Code		-
Code. German Edition		
Spanish Edition		
—— Terminal Index8vo,	*2	50
—— Lieber's Appendix folio,		
	*2	50
Bankers and Stockbrokers' Code and Merchants and Shippers' Blank		
Tables8vo,		
100,000,000 Combination Code8vo,	*10	00
Engineering Code8vo,	*12	
Livermore, V. P., and Williams, J. How to Become a Competent Motor-		-
man	*1	00
Livingstone, R. Design and Construction of Commutators8vo,		25
Lobben, P. Machinists' and Draftsmen's Handbook8vo,		50
Locke, A. G. and C. G. Manufacture of Sulphuric Acid8vo,		90
Lockwood, T. D. Electricity, Magnetism, and Electro-telegraph8vo,		
		50
— Electrical Measurement and the Galvanometer12mo,		75
Lodge, O. J. Elementary Mechanics		50
Signalling Across Space without Wires8vo,		00
Loewenstein, L. C., and Crissey, C. P. Centrifugal Pumps		50
Lord, R. T. Decorative and Fancy Fabrics8vo,	*3	50
Loring, A. E. A Handbook of the Electromagnetic Telegraph 16mo,	0	50
Handbook. (Science Series No. 39.)	0	50
Low, D. A. Applied Mechanics (Elementary)16mo,	0	80
Lubschez, B J. Perspective(In Press.)		
Lucke, C. E. Gas Engine Design8vo,	*3	00
- Power Plants: Design, Efficiency, and Power Costs. 2 vols. (In Prepare	ratio	n.)
Lunge, G. Coal-tar and Ammonia. Two Volumes8vo,		
— Manufacture of Sulphuric Acid and Alkali. Four Volumes8vo,	-3	
Vol. I. Sulphuric Acid. In two parts	***	00
Vol. II. Salt Cake, Hydrochloric Acid and Leblanc Soda. In two parts		
Vol. III. Ammonia Soda		
Vol. IV. Electrolytic Methods	.10	00
— Technical Chemists' Handbook	***	
	₹3	50
—— Technical Methods of Chemical Analysis. Trans. by C. A. Keane.		
in collaboration with the corps of specialists.		
Vol. I. In two parts8vo,		
Vol. II. In two parts8vo,	*18	00
Vol. III(In Preparation.)		

Lupton, A., Parr, G. D. A., and Perkin, H. Electricity as Applied to		د
Mining8vo,	*4	50
Luquer, L. M. Minerals in Rock Sections8vo,	*1	50
Macewen, H. A. Food Inspection8vo,	*2	ĔΩ
Mackenzie, N. F. Notes on Irrigation Works	*2	-
	*2	-
Mackie, J. How to Make a Woolen Mill Pay	. 2	00
16mo, leather,	_	00
Maguire, Wm. R. Domestic Sanitary Drainage and Plumbing 8vo,	-	00
Mallet, A. Compound Engines. Trans. by R. R. Buel. (Science Series	4	00
No. 10.)	_	
Mansfield, A. N. Electro-magnets. (Science Series No. 64.)16mo,		50
Marks, E. C. R. Construction of Cranes and Lifting Machinery12mo,		50
— Construction and Working of Pumps		50
Manufacture of Iron and Steel Tubes		00
— Mechanical Engineering Materials		00
Marks, G. C. Hydraulic Power Engineering8vo,	_	50
—— Inventions, Patents and Designs		00
Marlow, T. G. Drying Machinery and Practice8vo,	_	00
Marsh, C. F. Concise Treatise on Reinforced Concrete8vo,	*2	50
Reinforced Concrete Compression Member Diagram. Mounted on		
Cloth Boards		50
Marsh, C. F., and Dunn, W. Reinforced Concrete4to,	*5	00
Marsh, C. F., and Dunn, W. Manual of Reinforced Concrete and Con-		
crete Block Construction16mo, morocco,	*2	50
Marshall, W. J., and Sankey, H. R. Gas Engines. (Westminster Series.)		
8 v o,	*2	00
Martin. G, Triumphs and Wonders of Modern Chemistry8vo,	*2	00
Martin, N. Properties and Design of Reinforced Concrete.		
(In Press	.)	14
Massie, W. W., and Underhill, C. R. Wireless Telegraphy and Telephony.		
12mo,	*1	00
Matheson, D. Australian Saw-Miller's Log and Timber Ready Reckoner.		
12mo, leather,	I	50
Mathot, R. E. Internal Combustion Engines8vo,	*6	00
Maurice, W. Electric Blasting Apparatus and Explosives8vo,	*3	50
Shot Firer's Guide8vo,		50
Maxwell, J. C. Matter and Motion. (Science Series No. 36.)16mo,	0	50
Maxwell, W. H., and Brown, J. T. Encyclopedia of Municipal and Sani-		
tary Engineering4to,	*10	00
Mayer, A. M. Lecture Notes on Physics8vo,	2	00
McCullough, R. S. Mechanical Theory of Heat8vo,	3	50
McIntosh, J. G. Technology of Sugar8vo,		50
—— Industrial Alcohol8vo,		00
Manufacture of Varnishes and Kindred Industries. Three Volumes.	•	
8vo.		
Vol. I. Oil Crushing, Refining and Boiling	*3	50
Vol. II. Varnish Materials and Oil Varnish Making		. 00
Vol. III. Spirit Varnishes and Materials	•	50
McKnight, J. D., and Brown, A. W. Marine Multitubular Boilers	-	50

McMaster, J. B. Bridge and Tunnel Centres. (Science Series No. 20.)	
16mo,	0 50
McMechen, F. L. Tests for Ores, Minerals and Metals	
McNeill, B. McNeill's Code	*6 00
McPherson, J. A. Water-works Distribution	2 50
Melick, C. W. Dairy Laboratory Guide	*1 25
Merck, E. Chemical Reagents; Their Purity and Tests	*1 50
Merritt, Wm. H. Field Testing for Gold and Silver 16mo, leather,	1 50
Messer, W. A. Railway Permanent Way	
Design4to,	5 00
Michell, S. Mine Drainage8vo,	10 00
Mierzinski, S. Waterproofing of Fabrics. Trans. by A. Morris and H.	
Robson8vo,	*2 50
Miller, E. H. Quantitative Analysis for Mining Engineers8vo,	*1.50
Miller, G. A. Determinants. (Science Series No. 105.)16mo,	
Milroy, M. E. W. Home Lace-making12mo,	*I 00
Minisse, W. Mechanical Drawing8vo,	*4 00
Mitchell, C. A., and Prideaux, R. M. Fibres Used in Textile and Allied	
Industries8vo,	*3 00
Modern Meteorology12mo,	1 50
Monckton, C. C. F. Radiotelegraphy. (Westminster Series.)8vo,	*2 00
Monteverde, R. D. Vest Pocket Glossary of English-Spanish, Spanish-	
English Technical Terms64mo, leather,	*I 00
Moore, E. C. S. New Tables for the Complete Solution of Ganguillet and	
Kutter's Formula8vo,	*5 00
Morecroft, J. H., and Hehre, F. W. Short Course in Electrical Testing.	
870,	*1 50
Moreing, C. A., and Neal, T. New General and Mining Telegraph Code, 8vo,	*5 00
Morgan, A. P. Wireless Telegraph Apparatus for Amateurs 12mo,	*1 50
Moses, A. J. The Characters of Crystals8vo,	*2 00
Moses, A. J., and Parsons, C. L. Elements of Mineralogy8vo,	*2 50
Moss, S. A. Elements of Gas Engine Design. (Science Series No. 121.) 16mo,	0 50
The Lay-out of Corliss Valve Gears. (Science Series No. 119.). 16mo,	0 50
Mulford, A. C. Boundaries and Landmarks(In Press.)	
Mullin, J. P. Modern Moulding and Pattern-making12mo,	2 50
Munby, A. E. Chemistry and Physics of Building Materials. (Westmin-	*
ster Series.)	*2 00 1 00
	*2 00
Murray, J. A. Soils and Manures. (Westminster Series.)8vo,	-2 00
Naquet, A. Legal Chemistry12mo,	2 00
Nasmith, J. The Student's Cotton Spinning8vo,	2 00 3 ₹00
- Recent Cotton Mill Construction	2 00
Neave, G. B., and Heilbron, I. M. Identification of Organic Compounds.	2:00
reave, G. B., and Hendron, I. M. Identification of Organic Compounds.	*I 25
Neilson, R. M. Aeroplane Patents	*2 00
Nerz, F. Searchlights. Trans. by C. Rodgers	*3 00
Nesbit, A. F. Electricity and Magnetism(In Preparation.)	3 00
Neuberger, H., and Noalhat, H. Technology of Petroleum. Trans. by J.	
G. McIntosh	*10"00

W # 7 W D 40 H D		
Newall, J. W. Drawing, Sizing and Cutting Bevel-gears	I 50	
Nicol, G. Ship Construction and Calculations8vo,	*4 50	
Nipher, F. E. Theory of Magnetic Measurements	I 00	
Nisbet, H. Grammar of Textile Design8vo,	*3 00	
Nolan, H. The Telescope. (Science Series No. 51.)16mo,	0 50	
Noll, A. How to Wire Buildings	I 50	
North, H. B. Laboratory Notes of Experiments and General Chemistry.		
(In Press.)		
Nugent, E. Treatise on Optics	I 50	
O'Connor, H. The Gas Engineer's Pocketbook12mo, leather,	3 50	
—— Petrol Air Gas12mo,	* 0 75	
Ohm, G. S., and Lockwood, T. D. Galvanic Circuit. Translated by		
William Francis. (Science Series No. 102.)16mo,	0 50	
Olsen, J. C. Text-book of Quantitative Chemical Analysis 8vo,	*4 00	
Olsson, A. Motor Control, in Turret Turning and Gun Elevating. (U. S.	•	
Navy Electrical Series, No. 1.)12mo, paper,	*o 50	
Oudin, M. A. Standard Polyphase Apparatus and Systems8vo,	*3 00	
outing and in the following in the control of the c	3 00	
Pakes, W. C. C., and Nankivell, A. T. The Science of Hygiene. 8vo,	* ₁ 75	
, , ,		
Palaz, A. Industrial Photometry. Trans. by G. W. Patterson, Jr8vo,	*4 00	
	*10 00	
Parr, G. D. A. Electrical Engineering Measuring Instruments8vo,	*3 50	
Parry, E. J. Chemistry of Essential Oils and Artificial Perfumes 8vo,	*5 00	
Foods and Drugs. Two Volumes8vo,		
Vol. I. Chemical and Microscopical Analysis of Foods and Drugs.	*7 50	
Vol. II. Sale of Food and Drugs Act	*3 00	
Parry, E. J., and Coste, J. H. Chemistry of Pigments8vo,	*4 50	
Parry, L. A. Risk and Dangers of Various Occupations8vo,	*3 00	
Parshall, H. F., and Hobart, H. M. Armature Windings4to,	*7 50	
—— Electric Railway Engineering4to,	*10 00	
Parshall, H. F., and Parry, E. Electrical Equipment of Tramways(In	Press.)	
Parsons, S. J. Malleable Cast Iron8vo,	*2 50	
Partington, J. R. Higher Mathematics for Chemical Students12mo,	*2 00	
Passmore, A. C. Technical Terms Used in Architecture8vo,	*3 50	
Paterson, G. W. L. Wiring Calculations12mo,	*2 00	
Patterson, D. The Color Printing of Carpet Yarns8vo,	*3 50	
Color Matching on Textiles	*3 00	
The Science of Color Mixing	*3 00	
Paulding, C. P. Condensation of Steam in Covered and Bare Pipes.	•	
8vo,	*2 00	,
Transmission of Heat through Cold-storage Insulation12mo,	*1 00	,
Payne, D. W. Iron Founders' Handbook(In Press.)		
Peddie, R. A. Engineering and Metallurgical Books12mo,		
Peirce, B. System of Analytic Mechanics4to,	10 00	,
Pendred, V. The Railway Locomotive. (Westminster Series.)8vo,	*2 00	
Perkin, F. M. Practical Methods of Inorganic Chemistry12mo,	*1 00	
Perrigo, O. E. Change Gear Devices	1 00	
Perrine, F. A. C. Conductors for Electrical Distribution8vo,	*3 50	
Perry, J. Applied Mechanics8vo,	*2 50	
Petit, G. White Lead and Zinc White Paints8vo,	*1 50	
reut, G. white Lead and Line white Paints	1 20	,

Petit, R. How to Build an Aeroplane. Trans. by T. O'B. Hubbard, and	
J. H. Ledeboer	*.I 50
Pettit, Lieut. J. S. Graphic Processes. (Science Series No. 76.)16mo,	0 50
Philbrick, P. H. Beams and Girders. (Science Series No. 88.)16mo,	_
Phillips, J. Engineering Chemistry8vo,	*4 50
Gold Assaying8vo,	*2 50
Dangerous Goods8vo,	3 50
Phin, J. Seven Follies of Science	* 1 25
Pickworth, C. N. The Indicator Handbook. Two Volumes12mo, each,	I 50
Logarithms for Beginners12mo, boards,	0 50
— The Slide Rule	1 00
Plattner's Manual of Blow-pipe Analysis. Eighth Edition, revised. Trans.	
by H. B. Cornwall 8vo,	*4 00
Plympton, G. W. The Aneroid Barometer. (Science Series No. 35.) 16mo,	0 50
How to become an Engineer. (Science Series No. 100.)16mo,	0 50
— Van Nostrand's Table Book. (Science Series No. 104.)16mo,	o 50
Pochet, M. L. Steam Injectors. Translated from the French. (Science	
Series No. 29.)	0 50
Pocket Logarithms to Four Places. (Science Series No. 65.)16mo,	0 50
leather,	I 00
Polleyn, F. Dressings and Finishings for Textile Fabrics8vo,	*3 00
Pope, F. L. Modern Practice of the Electric Telegraph	1 50
Popplewell, W. C. Elementary Treatise on Heat and Heat Engines12mo, —— Prevention of Smoke	*3 00
	*3 50
Porter, J. R. Helicopter Flying Machine12mo,	*I 75
Potter, T. Concrete	*3 00
Potts, H. E. Chemistry of the Rubber Industry. (Outlines of Indus-	3 00
trial Chemistry)	*2 00
Practical Compounding of Oils, Tallow and Grease8vo,	*3 50
Practical Iron Founding	I 50
Pratt, K. Boiler Draught	*1 25
Pray, T., Jr. Twenty Years with the Indicator8vo,	2 50
— Steam Tables and Engine Constant8vo,	2 00
—— Calorimeter Tables 8vo,	I 00
Preece, W. H. Electric Lamps(In Press.)	
Prelini, C. Earth and Rock Excavation8vo,	*3 00
—— Graphical Determination of Earth Slopes8vo,	*2 00
Tunneling. New Edition8vo,	*3 00
— Dredging. A Practical Treatise8vo,	*3 00
Prescott, A. B. Organic Analysis8vo,	5 00
Prescott, A. B., and Johnson, O. C. Qualitative Chemical Analysis 8vo,	*3 50
Prescott, A. B., and Sullivan, E. C. First Book in Qualitative Chemistry.	
12mo,	*1 50
Prideaux, E. B. R. Problems in Physical Chemistry8vo,	*2 00
Pritchard, O. G. The Manufacture of Electric-light Carbons. 8vo, paper,	*o 60
Pullen, W. W. F. Application of Graphic Methods to the Design of	*
Structures	*2 50
— Injectors: Theory, Construction and Working	*1 50
Purchase W R Mesonry	4 00 *3 00

Putsch, A. Gas and Coal-dust Firing8vo,	*3 00
Pynchon, T. R. Introduction to Chemical Physics8vo,	3 00
Rafter G. W. Mechanics of Ventilation. (Science Series No. 33.). 16mo,	0 50
Potable Water. (Science Series No. 103.)	50
— Treatment of Septic Sewage. (Science Series No. 118.)16mo	50
Rafter, G. W., and Baker, M. N. Sewage Disposal in the United States.	•
4to,	*6 oo
Raikes, H. P. Sewage Disposal Works8vo,	*4 00
Railway Shop Up-to-Date	2 00
Ramp, H. M. Foundry Practice	2 00
Randall, P. M. Quartz Operator's Handbookx2mo,	2 00
Randau, P. Enamels and Enamelling8vo,	*4 00
	•
Rankine, W. J. M. Applied Mechanics8vo,	5 00
Civil Engineering	6 50
— Machinery and Millwork	5 00
The Steam-engine and Other Prime Movers	5 00
— Useful Rules and Tables8vo,	4 00
Rankine, W. J. M., and Bamber, E. F. A Mechanical Text-book8vo,	3 50
Raphael, F. C. Localization of Faults in Electric Light and Power Mains.	
8vo,	*3 00
Rasch, E. Electric Arc. Trans. by K. Tornberg(In Press.)	
Rathbone, R. L. B. Simple Jewellery8vo,	*2 00
Rateau, A. Flow of Steam through Nozzles and Orifices. Trans. by H.	
B. Brydon8vo,	* 1 50
Rausenberger, F. The Theory of the Recoil of Guns8vo,	*4 50
Rautenstrauch, W. Notes on the Elements of Machine Design. 8vo, boards,	*1 50
Rautenstrauch, W., and Williams, J. T. Machine Drafting and Empirical	
Design.	
Part I. Machine Drafting8vo,	*I 25
Part II. Empirical Design (In Preparation.)	_
Raymond, E. B. Alternating Current Engineering12mo,	*2 50
Rayner, H. Silk Throwing and Waste Silk Spinning8vo,	*2 50
Recipes for the Color, Paint, Varnish, Oil, Soap and Drysaltery Trades. 8vo,	*3 50
Recipes for Flint Glass Making	*4 50
Redfern, J. B. Bells, Telephones (Installation Manuals Series) 16mo,	4 0-
(In Press.)	
Redwood, B. Petroleum. (Science Series No. 92.)16mo,	0 50
Reed's Engineers' Handbook	*5 00
Key to the Nineteenth Edition of Reed's Engineers' Handbook8vo,	*3 00
— Useful Hints to Sea-going Engineers	-
	1 50
— Marine Boilers	2 00
Reinhardt, C. W. Lettering for Draftsmen, Engineers, and Students.	
oblong 4to, boards,	I 00
— The Technic of Mechanical Drafting oblong 4to, boards,	*1 00
Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris and	
H. Robson12mo,	*2 50
Reiser, N. Faults in the Manufacture of Woolen Goods. Trans. by A.	
Morris and H. Robson8vo,	*2 50
Spinning and Weaving Calculations	*5 00
Renwick, W. G. Marble and Marble Working 8vo.	5 00

Reynolds, O., and Idell, F. E. Triple Expansion Engines. (Science		
Series No. 99.)16mo,	0	50
Rhead, G. F. Simple Structural Woodwork12mo,	*1	00
Rice, J. M., and Johnson, W. W. A New Method of Obtaining the Differ-		
ential of Functions12mo,	0	50
Richards, W. A. and North, H. B. Manual of Cement Testing. (In Press.		•
Richardson, J. The Modern Steam Engine8vo,	•	50
Richardson, S. S. Magnetism and Electricity		00
Rideal, S. Glue and Glue Testing8vo,		00
Rings, F. Concrete in Theory and Practice		
· ·		50
Ripper, W. Course of Instruction in Machine Drawing folio,		00
Roberts, F. C. Figure of the Earth. (Science Series No. 79.)16mo,		50
Roberts, J., Jr. Laboratory Work in Electrical Engineering8vo,		00
Robertson, L. S. Water-tube Boilers8vo,		00
Robinson, J. B. Architectural Composition8vo,	*2	50
Robinson, S. W. Practical Treatise on the Teeth of Wheels. (Science		
Series No. 24.)16mo,	0	50
Railroad Economics. (Science Series No. 59.)	0	50
Wrought Iron Bridge Members. (Science Series No. 60.)16mo,		50
Robson, J. H. Machine Drawing and Sketching8vo,		50
Roebling, J A. Long and Short Span Railway Bridgesfolio,		00
Rogers, A. A Laboratory Guide of Industrial Chemistry12mo,	-	50
Rogers, A., and Aubert, A. B. Industrial Chemistry		90
	-	
Rogers, F. Magnetism of Iron Vessels. (Science Series No. 30.). 16mo,	0	50
Rohland, P. Colloidal and Cyrstalloidal State of Matter. Trans. by		- 4
W. J. Britland and H. E. Potts		25
Rollins, W. Notes on X-Light8vo,	*5	00
Rollinson, C. AlphabetsOblong, .12mo, (In Press.)		
Rose, J. The Pattern-makers' Assistant	2	50
Key to Engines and Engine-running	2	50
Rose, T. K. The Precious Metals. (Westminster Series.)8vo,	*2	00
Rosenhain, W. Glass Manufacture. (Westminster Series.)8vo,	*2	00
Ross, W. A. Plowpipe in Chemistry and Metallurgy	*2	00
Rossiter, J. T. Steam Engines. (Westminster Series.)8vo (In Press.)		
Pumps and Pumping Machinery. (Westminster Series.)8vo (In Pre-	288.)	
Roth. Physical Chemistry8vo,		00
Rouillion, L. The Economics of Manual Training8vo,		00
Rowan, F. J. Practical Physics of the Modern Steam-boiler8vo,		50
Rowan, F. J., and Idell, F. E. Boiler Incrustation and Corrosion.	•	50
(Science Series No. 27.)	_	
		50
Roxburgh, W. General Foundry Practice8vo,		50
Ruhmer, E. Wireless Telephony. Trans. by J. Erskine-Murray8vo,		50
Russell, A. Theory of Electric Cables and Networks8vo,	₹3	00
Sabine, R. History and Progress of the Electric Telegraph12mo,		25
Saeltzer A. Treatise on Acoustics12mo,	I	00
Salomons, D. Electric Light Installations. 12mo.		
Vol. I. The Management of Accumulators	2	50
Vol. II. Apparatus	2	25
Vol. III. Applications	I	50
Sanford, P. G. Nitro-explosives8vo,	*4	00

Saunders, C. H. Handbook of Practical Mechanics16mo,	I 00
leather,	1 25
Saunnier, C. Watchmaker's Handbook12mo,	3 00
Sayers, H. M. Brakes for Tram Cars8vo,	* I 25
Scheele, C. W. Chemical Essays8vo,	*2 00
Schellen, H. Magneto-electric and Dynamo-electric Machines8vo,	5 00
Scherer, R. Casein. Trans. by C. Salter8vo,	*3 00
Schidrowitz, P. Rubber, Its Production and Industrial Uses 8vo,	*5 00
Schindler, K. Iron and Steel Construction Works.	
Schmall, C. N. First Course in Analytic Geometry, Plane and Solid.	
12mo, half leather,	*I 75
Schmall, C. N., and Shack, S. M. Elements of Plane Geometry12mo,	*1 25
Schmeer, L. Flow of Water8vo,	*3 00
Schumann, F. A Manual of Heating and Ventilation12mo, leather,	1 50
Schwarz, E. H. L. Causal Geology8vo,	*2 50
Schweizer, V., Distillation of Resins	*3 50
Scott, W. W. Qualitative Analysis. A Laboratory Manual8vo,	*I 50
Scribner, J. M. Engineers' and Mechanics' Companion 16mo, leather,	1 50
Searle, A. B. Modern Brickmaking	*5 00
Searle, G. M. "Sumners' Method." Condensed and Improved. (Science	
Series No. 124.)	0 50
Seaton, A. E. Manual of Marine Engineering	6 oo
ing	3 00
Seeligmann, T., Torrilhon, G. L., and Falconnet, H. India Rubber and	3 00
Gutta Percha. Trans. by J. G. McIntosh8vo,	*5 00
Seidell, A. Solubilities of Inorganic and Organic Substances8vo,	*3 00
Sellew, W. H. Steel Rails	3 00
Senter, G. Outlines of Physical Chemistry12mo,	*1 75
— Textbook of Inorganic Chemistry12mo,	*I 75
Sever, G. F. Electric Engineering Experiments8vo, boards,	*1 00
Sever, G. F., and Townsend, F. Laboratory and Factory Tests in Electrical,	
Engineering8vo,	*2 50
Sewall, C. H. Wireless Telegraphy8vo,	*2 00
Lessons in Telegraphy	*I 00
Sewell, T. Elements of Electrical Engineering8vo,	*3 00
—— The Construction of Dynamos	*3 0 0
Sexton, A. H. Fuel and Refractory Materials 12mo,	*2 50
Chemistry of the Materials of Engineering12mo,	*2 50
Alloys (Non-Ferrous)8vo,	* 3 00
The Metallurgy of Iron and Steel	*6 50
Seymour, A. Practical Lithography8vo,	*2 50
— Modern Printing Inks8vo,	*2 00
Shaw, Henry S. H. Mechanical Integrators. (Science Series No. 83.)	
16mo,	0 50
Shaw, P. E. Course of Practical Magnetism and Electricity8vo,	*I 00
Shaw, S. History of the Staffordshire Potteries	*3 00
— Chemistry of Compounds Used in Porcelain Manufacture 8vo,	*5 00
Shaw, W. N. Forecasting Weather8vo,	*3 50
Sheldon, S., and Hausmann, E. Direct Current Machines12mo,	*2 50
Alternating Current Machines	*2 50

Sheldon, S., and Hausmann, E. Electric Traction and Transmission	
Engineering12mo,	*2 50
Sherriff, F. F. Oil Merchants' Manual	*3 50
Shields, J. E. Notes on Engineering Construction12mo,	I 50
Shock, W. H. Steam Boilers4to, half morocco,	15 00
Shreve, S. H. Strength of Bridges and Roofs8vo,	3 50
Shunk, W. F. The Field Engineer12mo, morocco,	2 50
Simmons, W. H., and Appleton, H. A. Handbook of Soap Manufacture.	
	*3 00
Simmons, W. H., and Mitchell, C. A. Edible Fats and Oils8vo,	*3(00
Simms, F. W. The Principles and Practice of Leveling8vo,	2 50
Practical Tunneling8vo,	7 50
Simpson, G. The Naval Constructor12mo, morocco,	*5 00
Simpson, W. Foundations	
Sinclair, A. Development of the Locomotive Engine 8vo, half leather,	5 00
Sinclair, A. Twentieth Century Locomotive 8vo, half leather,	*5 00
Sindall, R. W. Manufacture of Paper. (Westminster Series.)8vo,	*2 0 0
Sloane, T. O'C. Elementary Electrical Calculations12mo,	*2 00
Smith, C. A. M. Handbook of Testing, MATERIALS8vo,	*2 50
Smith, C. A. M., and Warren, A. G. New Steam Tables 8vo,	
Smith, C. F. Practical Alternating Currents and Testing	*2 50
Practical Testing of Dynamos and Motors	*2 00
Smith, F. E. Handbook of General Instruction for Mechanics12mo,	I 50
Smith, J. C. Manufacture of Paint8vo,	*3_00
Smith, R. H. Principles of Machine Work12mo,	*3 00
— Elements of Machine Work	*2 00
Smith, W. Chemistry of Hat Manufacturing	*3 00
Snell, A. T. Electric Motive Power	*4 00
Snow, W. G. Pocketbook of Steam Heating and Ventilation. (In Press.)	
Snow, W. G., and Nolan, T. Ventilation of Buildings. (Science Series No. 5.)	0 50
Soddy, F. Radioactivity	*3 00
Solomon, M. Electric Lamps. (Westminster Series.)8vo,	*2 00
Sothern, J. W. The Marine Steam Turbine	*5 00
Southcombe, J. E. Paints, Oils and Varnishes. (Outlines of Indus-	3 00
trial Chemistry.)	
Soxhlet, D. H. Dyeing and Staining Marble. Trans. by A. Morris and	
H. Robson8vo,	*2 50
Spang, H. W. A Practical Treatise on Lightning Protection12mo,	1 00
Spangenburg, L. Fatigue of Metals. Translated by S. H. Shreve.	
(Science Series No. 23.)16mo,	0 50
Specht, G. J., Hardy, A. S., McMaster, J.B., and Walling. Topographical	
Surveying. (Science Series No. 72.)	0 50
Speyers, C. L. Text-book of Physical Chemistry8vo,	*2 25
Stahl, A. W. Transmission of Power. (Science Series No. 28.)16mo,	
Stahl, A. W., and Woods, A. T. Elementary Mechanism12mo,	*2 00
Staley, C., and Pierson, G. S. The Separate System of Sewerage 8vo,	*3 00
Standage, H. C. Leatherworkers' Manual8vo,	*3 50
Sealing Waxes, Wafers, and Other Adhesives8vo,	*2 00
Agglutinants of all Kinds for all Purposes	*3 50
Stansbie, J. H. Iron and Steel. (Westminster Series.)8vo,	*2 00

Tidy, C. Meymott. Treatment of Sewage. (Science Series No. 94.).		.
	0	-
Tinney, W. H. Gold-mining Machinery	<u>*</u> 3	
Titherley, A. W. Laboratory Course of Organic Chemistry 8vo,	*2	
Toch, M. Chemistry and Technology of Mixed Paints8vo,	*3	
—— Materials for Permanent Painting	*2	
Todd, J., and Whall, W. B. Practical Seamanship	*7	50
Tonge, J. Coal. (Westminster Series.)8vo,	*2	00
Townsend, F. Alternating Current Engineering8vo, boards	*o	75
Townsend, J. Ionization of Gases by Collision8vo,	*I	25
Transactions of the American Institute of Chemical Engineers. 8vo.		
Vol. I. 1908	*6	00
Vol. II. 1909	*6	00
Vol. III. 1910	*6	00
Vol. IV. 1911	*6	
Traverse Tables. (Science Series No. 115.)	0	
morocco,	I	_
Trinks, W., and Housum, C. Shaft Governors. (Science Series No. 122.)	•	•
4	_	
IOMO,	0	-
Trowbridge, W. P. Turbine Wheels. (Science Series No. 44.)16mo,	0	-
Tucker, J. H. A Manual of Sugar Analysis	3	
Tumlirz, O. Potential. Trans. by D. Robertson12mo,	I	25
Tunner, P. A. Treatise on Roll-turning. Trans. by J. B. Pearse.		
8vo, text and folio atlas,	10	00
Turbayne, A. A. Alphabets and Numerals4to,	2	00
Turnbull, Jr., J., and Robinson, S. W. A Treatise on the Compound		
Steam-engine, (Science Series No. 8.)16mo,		
Turrill, S. M. Elementary Course in Perspective12mo,	*1	25
Underhill, C. R. Solenoids, Electromagnets and Electromagnetic Wind-		
ings12m0,	*2	00
Universal Telegraph Cipher Code12mo,	1	00
Urquhart, J. W. Electric Light Fitting	2	00
Electro-plating12mo,	2	00
Electrotyping	2	
Electric Ship Lighting	3	
	•	
Vacher, F. Food Inspector's Handbook12mo,	*2	50
Van Nostrand's Chemical Annual. Second issue 190912mo,	*2	-
— Year Book of Mechanical Engineering Data. First issue 1912(In		_
· · · · · · · · · · · · · · · · · · ·	e Tes	•
Van Wagenen, T. F. Manual of Hydraulic Mining		
Vega, Baron Von. Logarithmic Tables8vo, half morocco,	2	00
Villon, A. M. Practical Treatise on the Leather Industry. Trans. by F.	.	
	*10	
Vincent, C. Ammonia and its Compounds. Trans. by M. J. Salter. 8vo,	*2	
Volk, C. Haulage and Winding Appliances8vo,	*4	00
Von Georgievics, G. Chemical Technology of Textile Fibres. Trans. by		
C. Salter8vo,	*4	-
Chemistry of Dyestuffs. Trans. by C. Salter	*4	50
Vose, G. L. Graphic Method for Solving Certain Questions in Arithmetic		