Data Mining Classification: Alternative Techniques

Imbalanced Class Problem

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line

Challenges

 Evaluation measures such as accuracy is not well-suited for imbalanced class

 Detecting the rare class is like finding needle in a haystack

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy
$$\Box \frac{a \Box d}{a \Box b \Box c \Box d} \Box \frac{TP \Box TN}{TP \Box TN \Box FP \Box FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because the model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Precision (p)
$$\Box \frac{a}{a \Box c}$$

Recall (r)
$$\Box \frac{a}{a \Box b}$$

F-measure (F)
$$\Box \frac{2rp}{r \Box p} \Box \frac{2a}{2a \Box b \Box c}$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p)
$$\Box \frac{10}{10 \Box 10} \Box 0.5$$

Recall (r) $\Box \frac{10}{10 \Box 0} \Box 1$

F-measure (F) $\Box \frac{2*1*0.5}{1 \Box 0.5} \Box 0.62$

Accuracy $\Box \frac{990}{1000} \Box 0.99$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) $\Box \frac{10}{10 \Box 10} \Box 0.5$
$\operatorname{Recall}(r) \square \frac{10}{10 \square 0} \square 1$
F - measure (F) $\Box \frac{2*1*0.5}{1 \Box 0.5} \Box 0.62$
Accuracy $\square \frac{990}{} \square 0.99$

1000

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	1	9
CLASS	Class=No	0	990

Precision (p)
$$\Box \frac{1}{1 \Box 0} \Box 1$$

Recall (r) $\Box \frac{1}{1 \Box 9} \Box 0.1$

F - measure (F) $\Box \frac{2*0.1*1}{1 \Box 0.1} \Box 0.18$

Accuracy $\Box \frac{991}{1000} \Box 0.991$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) \square 0.8

Recall (r) \square 0.8

F - measure (F) \square 0.8

Accuracy \square 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) \square 0.8
Recall (r) \square 0.8
F - measure (F) \square 0.8
Accuracy \Box 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	1000	4000

Precision (p) $\square \sim 0.04$ Recall (r) $\square 0.8$ F - measure (F) $\square \sim 0.08$ Accuracy $\square \sim 0.8$

Measures of Classification Performance

	PREDICTED CLASS		
		Yes	No
ACTUAL CLASS	Yes	TP	FN
	No	FP	TN

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$ErrorRate = 1 - accuracy$$

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN \ Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) \square 0.8
TPR \square Recall (r) \square 0.8
FPR □ 0.2
F - measure (F) \square 0.8
Accuracy □ 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	1000	4000

Precision (p) $\square \sim 0.04$ TPR \square Recall (r) \square 0.8 FPR \square 0.2 F - measure (F) $\square \sim 0.08$ Accuracy $\square \sim 0.8$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	40
CLASS	Class=No	10	40

Precision (p) \square 0.5
TPR \square Recall (r) \square 0.2
FPR □ 0.2

	PREDICTED CLASS		
		Class=Yes	Class=No
A G.T.I.A.I	Class=Yes	25	25
ACTUAL CLASS	Class=No	25	25

Precision (p) \square 0.5	
TPR \square Recall $(r) \square 0$.	5
FPR □ 0.5	

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	40	10

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve
 - Changing the threshold parameter of classifier changes the location of the point

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

Example: Decision Trees

Decision Tree

ROC Curve Example

$\alpha = 0.3$		Predicted Class	
		Class o	Class +
Actual	Class o	645	209
Class	Class +	298	948

$\alpha = 0.7$		Predicted Class	
		Class o	Class +
Actual	Class o	181	673
Class	Class +	78	1168

ROC Curve Example

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t is classified as positive

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct an ROC curve

	1											
	Class	+	-	+	-	-	•	+	-	+	+	
Threshold	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Handling Class Imbalanced Problem

- Class-based ordering (e.g. RIPPER)
 - Rules for rare class have higher priority

- Cost-sensitive classification
 - Misclassifying rare class as majority class is more expensive than misclassifying majority as rare class

Sampling-based approaches

Cost Matrix

	PREDICTED CLASS					
ACTUAL		Class=Yes	Class=No			
CLASS	Class=Yes	f(Yes, Yes)	f(Yes,No)			
	Class=No	f(No, Yes)	f(No, No)			

C(i,j): Cost of misclassifying class i example as class j

Cost Matrix	PREDICTED CLASS				
	C(i, j)	Class=Yes	Class=No		
ACTUAL	Class=Yes	C(Yes, Yes)	C(Yes, No)		
CLASS	Class=No	C(No, Yes)	C(No, No)		

Cost
$$\Box \sum C(i,j) \times f(i,j)$$

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS				
ACTUAL CLASS	C(i,j)	+	-		
	+	-1	100		
	•	1	0		

Model M ₁	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	150	40	
OLAGO	-	60	250	

Model M ₂	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	250	45	
OLAGO	-	5	200	

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost Sensitive Classification

- Example: Bayesian classifer
 - Given a test record x:
 - Compute p(i|x) for each class i
 - Decision rule: classify node as class k if

$$k \square \arg \max_{i} p(i \mid x)$$

- For 2-class, classify x as + if p(+|x) > p(-|x)
 - ◆ This decision rule implicitly assumes that C(+|+) = C(-|-) = 0 and C(+|-) = C(-|+)

Cost Sensitive Classification

- General decision rule:
 - Classify test record x as class k if

$$k \square \underset{j}{\operatorname{arg\,min}} \sum_{i} p(i \mid x) \times C(i, j)$$

- 2-class:
 - Cost(+) = p(+|x) C(+,+) + p(-|x) C(-,+)
 - Cost(-) = p(+|x) C(+,-) + p(-|x) C(-,-)
 - Decision rule: classify x as + if Cost(+) < Cost(-)

• if
$$C(+,+) = C(-,-) = 0$$
:
$$p(\Box \mid x) \Box \frac{C(-,\Box)}{C(-,\Box) \Box C(\Box,-)}$$

Sampling-based Approaches

- Modify the distribution of training data so that rare class is well-represented in training set
 - Undersample the majority class
 - Oversample the rare class

Advantages and disadvantages