Universiteit van Stellenbosch

Toegepaste Wiskunde 314

Tutoriaal 1: Donderdag 19 Februarie 2004

MEMORANDUM

- (1) (a) 14 (m = 26)
 - (b) 2 (m = 16)
 - (c) 3 (m = 16)
 - (d) $24 \ (m=26)$
 - (e) 2 (m = 17)
- (2) Gestel $a \equiv b \pmod{m}$ en $c \equiv d \pmod{m}$. Dan bestaan daar heelgetalle p en q sodat a = b + pm en c = d + qm. Gevolglik is

$$ac = (b+pm)(d+qm)$$

$$= bd + bqm + dpm + pqm^{2}m$$

$$= bd + m(bq + dp + pqm).$$

Omdat bq + dp + pqm 'n heelgetal is, volg dit dus dat $ac \equiv bd \pmod{m}$.

(3)	Skoonteks:	r	О	m	a	n	e	m	p	i	r	e
	$x \rightarrow$	17	14	12	0	13	4	12	15	8	17	4
	$y = x + 15 \pmod{26} \rightarrow$	6	3	2	15	2	19	1	4	23	6	19
	Kriptoteks:	G	D	В	Ρ	\mathbf{C}	Τ	В	\mathbf{E}	X	G	T

- (6) s = 1: oiuighig
 - s=2: nhthfghf
 - s=3: mgsgefge
 - s=4: lfrfdefd
 - s=5: keqecdec
 - s=6: jdpdbcdb
 - s=7: icocabca
 - s=8: hbnbzabz

s=9: gamayzay

s=10: fzlzxyzx

s = 11: fzlzxyzx

s=12: dxjxvwxv

s=13: cwiwuvwu

s=14: byhytuvt

s=15: augustus \rightarrow "Augustus" $\Rightarrow s=15$.

(7) Euklidiese Algoritme:

(a) ggd(3699, 264) = 3:

i	p_i	q_{i}	r_i	s_i
0	3699	264	3	14
1	264	3	0	88
2	3	0	_	_

(b) ggd(2090, 1862) = 38:

i	p_i	q_i	r_i	s_i
0	2 090	1862	228	1
1	1862	228	38	8
2	228	38	0	6
3	38	0	_	_

(8) Gewysigde Euklidiese Algoritme:

(a) $5^{-1} \equiv 5 \pmod{24}$:

i	p_i	q_i	r_i	s_i	x_i	y_i
0	24	5	4	4	0	1
1	5	4	1	1	1	-4
2	24 5 4 1	1	0	4	-4	5
3	1	0	_	_	_	_

(b) $5^{-1} \equiv 3 \pmod{14}$:

i	p_i	q_i	r_i	s_i	x_i	y_i
0	14	5	4	2	0	1
1	5	4	1	1	1	-2
2	4	1	0	4	$ \begin{array}{c} 0 \\ 1 \\ -2 \\ - \end{array} $	3
3	1	0	_	_	_	

3 | 1 0 - - - - | (c) $14^{-1} \pmod{24}$ bestaan nie, want $ggd(14, 24) = 2 \neq 1$.