1							
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12 i k}{(3+4 k^2)^2 t_1}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

_
←
S
\subseteq
densi
0
\Box
an
<u>.</u>
\subseteq
Ø
F
agrangi
Ľ

Unitarity conditions

 $_{lpha}\partial^{\kappa}f_{\lambda\kappa}+rac{2}{3}\,r_{1}\,\partial_{\kappa}\omega^{lphaeta heta}\,\partial^{\kappa}\omega_{lphaeta heta}-rac{2}{3}\,r_{1}\,\partial_{\kappa}\omega^{ hetalphaeta}\,\partial^{\kappa}\omega_{lphaeta heta}+$ $_{\kappa} + r_{1} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}$ $\sigma_{\alpha\beta\chi} + r_1\,\partial_{,}\omega^{\kappa\lambda}_{\kappa}\,\partial^{\prime}\omega_{\alpha}^{\alpha}$ $+2t_1 \omega_{i\kappa\theta} \partial^{\kappa} f^{i\theta}$ $-\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{\beta}\partial_{\kappa}\omega^{\alpha\beta\theta}+\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{\beta}\partial_{\kappa}\omega^{\theta\alpha\beta}+$ $(-\frac{8}{3}r_1\partial^{\beta}\omega_{\lambda}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime}-r_1\partial_{\alpha}\omega_{\lambda}^{\ \ \alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\ \ \prime})$ $\frac{1}{3}t_1 \omega_{\alpha}^{\alpha\prime} \omega_{\kappa\alpha}^{\kappa} - t_1 \omega_{\kappa\lambda}^{\kappa} \omega_{\kappa\lambda}^{\prime} + f^{\alpha\beta}$

(No massless particles)

$f_{1^-}^{\#2} \alpha$	0	0	0	<i>آ لا د ۱</i>	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	$\frac{\mathbb{E}}{\mathbb{T}_2}$	0	$-\frac{1}{3}$ \bar{l} $\sqrt{2}$ kt_1
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_1^{\#1} + \alpha \beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{+} a_{eta} t$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#_2} + ^{\alpha\beta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^-}^{\#1} +^\alpha$	$f_{1}^{#2} + \alpha$

Source constraints

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$-\frac{1}{t_1}$	
$\tau_0^{\#2}$	0	0	0	0	
$\tau_0^{\#1}$	0	0	0	0	
⊣ +	_				
σ_0^*	0	0	0	0	
# ⁰	$\sigma_{0}^{\#1} + \boxed{0}$	$\tau_0^{\#1} \uparrow 0$	$\tau_{0}^{#2} + \boxed{0}$	$\sigma_{0}^{\#1} + \boxed{\mathbb{C}}$	

 $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$

0

 $\frac{2}{(1+2k^2)^2t_1}$

 $\sigma_2^{\#1} + \alpha \beta$

 $\tau_2^{\#1} + ^{\alpha\beta}$

SO(3) irreps	#
$\sigma_{0}^{\#1} == 0$	
$\tau_0^{\#1} == 0$	П
$\tau_0^{\#2} == 0$	П
$\tau_{1}^{\#2}{}^{\alpha} + 2 i k \sigma_{1}^{\#1}{}^{\alpha} == 0$	е
) ==	т
$\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$	m
$\tau_{1+}^{\#1}\alpha\beta + \bar{l}k \ \sigma_{1+}^{\#2}\alpha\beta == 0$	т
$\tau_{2}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2}^{\#1}{}^{\alpha\beta} = 0$	2
Total #:	20

• 0	$r_1 < 0 && t_1 >$
> 0	0