МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

КАФЕДРА АППАРАТНО-ПРОГРАММНЫХ КОМПЛЕКСОВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Курсовая работа

по дисциплине

«Моделирование»

на тему

«Компьютерный расчёт показателей разомкнутой системы массового обслуживания с неограниченным временем ожидания»

Выполнил: студент группы Р3455 Федюкович С. А.,

Проверил: Сентерев Ю. А.

Санкт-Петербург

2021г.

Содержание

Зғ	Задание					
Bı	веде	ние	3			
1 Теоретические аспекты СМО						
	1.1	Системы массового обслуживания с отказами	4			
	1.2	Система массового обслуживания с ограниченной длиной очереди	5			
	1.3	Системы массового обслуживания с ожиданием	6			
	1.4	Система массового обслуживания с ограниченным временем ожидания	9			
2	Пра	актическая реализация СМО	11			
	2.1	Решение задачи	11			
	2.2	Расчёт показателей	11			
	2.3	Расчёт показателей при помощи электронных таблиц	12			
За	клю	очение	20			
\mathbf{C}_{1}	писо	к литературы	21			

Задание

В пункте химчистки имеется три аппарата для чистки, r=3. Интенсивность потока посетителей $\lambda=6$ (чел./ ч). Интенсивность обслуживания посетителей одним аппаратом $\mu=3$ (чел./ч). Среднее число посетителей, покидающих очередь, не дождавшись обслуживания, $\nu=1$ (чел./ ч). Найти абсолютную пропускную способность пункта химчистки.

Введение

Теория массового обслуживания — область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого, варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоев каналов обслуживания.

1 Теоретические аспекты СМО

1.1 Системы массового обслуживания с отказами

СМО с отказами является такая система, в которой приходящие для обслуживания требования, в случае занятости всех каналов обслуживания, сразу её покидают.

Вероятности состояний системы определяются из Выражения (1):

$$P_k = \frac{\rho^k}{k!} P_0,\tag{1}$$

где k = 1, 2, ..., N — общее число каналов;

$$\rho = \frac{\lambda}{\nu} - \text{нагрузка}; \tag{2}$$

 λ — интенсивность входящего потока требований, ν — интенсивность (производительность) одного канала (прибора) обслуживания, а вероятность отсутствия требований из Выражения (3):

$$P_0 = \left[\sum_{i=0}^{N} \frac{\rho^i}{i!}\right]^{-1}.$$
 (3)

К основным характеристикам качества обслуживания рассматриваемой СМО относятся:

1. Вероятность отказа $P_{\text{отк}}$ из Выражения (4):

$$P_{\text{otk}} = P_N = \frac{\rho^N / N!}{\sum_{i=0}^N \rho^i / i!}.$$
 (4)

2. Среднее число занятых узлов обслуживания $M_{\text{зан}}$ из Выражения (5):

$$M_{\text{3aH}} = \rho(1 - P_N) \tag{5}$$

3. Среднее число свободных узлов обслуживания M_{cs} из Выражения (6):

$$M_{\rm cB} = N - M_{\rm 3aH}. \tag{6}$$

4. В системах с отказами события отказа и обслуживания составляют полную группу событий из Выражения (7):

$$P_{\text{OTK}} + P_{\text{obc}} = 1. \tag{7}$$

5. Относительная пропускная способность определяется по Выражению (8):

$$Q = P_{\text{obc}} = 1 - P_{\text{otk}} = 1 - P_N. \tag{8}$$

6. Абсолютная пропускная способность СМО с отказами считается по Выражению (9):

$$A = \lambda P_{\text{obc}}. (9)$$

7. Коэффициент занятости узлов обслуживания определяется отношением средним числом занятых каналов к общему числу каналов по Выражению (10):

$$K_3 = \frac{M_{3\text{aH}}}{N}.\tag{10}$$

1.2 Система массового обслуживания с ограниченной длиной очереди

СМО с ограниченной длиной очереди является такой системой, в которой требование, поступающее на обслуживание, покидает систему, если заняты все каналы обслуживания, и в накопителе заняты все места.

Вероятности состояний S_0, S_1, \dots, S_N находятся по Выражению (11):

$$P_k = \frac{\rho^k}{k!}$$
, где $(k = 1, 2, ..., N)$. (11)

А вероятности состояний $S_{N+1}, S_{N+2}, ..., S_{N+l}$ находятся по Выражению (12):

$$P_k = \frac{\rho^k}{N^{k-N}N!}$$
, где $(k = N+1,...,N+l), l$ — максимальная длина очереди. (12)

Вероятность P_0 рассчитывается по Выражению (13):

$$P_0 = \left[\sum_{k=0}^{N} \frac{\rho^k}{k!} + \sum_{k=N+1}^{N+l} \frac{\rho^i}{N^{k-N}N!} \right]^{-1}$$
 (13)

В большинстве практических задач должно соблюдаться отношение $\frac{\rho}{N}$ < 1, тогда выражение для P_0 можно переписать в следующем виде по Выражению (14):

$$P_0 = \left[\sum_{k=0}^{N} \frac{\rho^k}{k!} + \frac{\rho^{N+1}}{N \cdot N!} \frac{1 - (\frac{\rho}{N})^l}{1 - \frac{\rho}{N}} \right]^{-1}.$$
 (14)

Вероятность отказа в обслуживании определяется из Выражения (15):

$$P_{\text{отк}} = P_{N+l} = \frac{\rho^N}{N!} \left(\frac{\rho}{N}\right)^l P_0. \tag{15}$$

Среднее число каналов, занятых в обслуживании, и коэффициент занятости определяются по Выражению (16):

$$M_{\text{3aH}} = \sum_{k=1}^{N} k P_k + N \sum_{i=1}^{l} P_{N+i}; K_3 = \frac{M_{\text{3aH}}}{N}.$$
 (16)

Среднее число свободных аппаратов и коэффициент простоя определяются по Выражению (17):

$$M_0 = N - M_{\text{3aH}}; K_0 = \frac{M_0}{N}.$$
 (17)

Средняя длина очереди определяется с помощью Выражения (18):

$$M_{\text{oq}} = \sum_{k=1}^{l} k P_{N+k} = \frac{\rho^N}{N!} P_0 \sum_{k=1}^{l} k \left(\frac{\rho}{N}\right)^k.$$
 (18)

1.3 Системы массового обслуживания с ожиданием

СМО с ожиданием аналогична системе массового обслуживания с ограниченной длиной очереди при условии, что граница очереди отодвигается в бесконечность.

Вероятность состояний СМО с ожиданием находят по формулам Выражений (19) и (20):

$$P_k = \frac{\rho^k}{k!} P_0$$
, для $(k = 1, 2, ..., N)$, (19)

$$P_k = \frac{\rho^k}{N!N^{k-N}}P_0$$
, для $(k = N+1, ..., N+k, ..., N+\infty)$. (20)

При $\rho/N>1$ наблюдается явление «взрыва» — неограниченный рост средней длины очереди, поэтому для определения P_0 должно выполняться ограничивающее условие $\rho/N<1$, и с учетом его запишем Выражение (21):

$$P_0 = \left[\sum_{k=0}^{N} \frac{\rho^k}{k!} + \frac{\rho^{N+1}}{N!(N-\rho)}\right]^{-1}.$$
 (21)

К основным характеристикам качества обслуживания СМО с ожиданием относят:

1. Вероятность наличия очереди $P_{\text{оч}}$, т.е. вероятность того, что число требований в системе больше числа узлов по Выражению (22):

$$P_{\text{oq}} = \frac{\rho^{N+1}}{N!(N-\rho)} P_0. \tag{22}$$

2. Вероятность занятости всех узлов системы $P_{\text{зан}}$ по Выражению (23):

$$P_{\text{3aH}} = \frac{\rho^N}{(N-1)!(N-\rho)} P_0. \tag{23}$$

3. Среднее число требований в системе $M_{\rm TP}$ по Выражению (24):

$$M_{\rm TP} = P_0 \left(\rho \sum_{k=0}^{N-1} \frac{\rho^k}{k!} + \frac{\rho^{N+1}(N+1-\rho)}{(N-1)!(N-\rho)^2} \right). \tag{24}$$

4. Средняя длина очереди $M_{\text{оч}}$ по Выражению (25):

$$M_{\text{oq}} = \frac{\rho^{N+1} P_0}{(N-1)!(N-\rho)^2}.$$
 (25)

5. Среднее число свободных каналов обслуживания M_{cs} по Выражению (26):

$$M_{\rm CB} = P_0 \sum_{k=1}^{N} k \frac{\rho^k}{(N-k)!}.$$
 (26)

6. Среднее число занятых каналов обслуживания $M_{\text{зан}}$ по Выражению (27):

$$M_{3\text{aH}} = N - M_{\text{CB}}.\tag{27}$$

7. Коэффициент простоя K_0 и коэффициент загрузки K_3 каналов обслуживания системы по Выражению (28):

$$K_0 = \frac{M_{\text{CB}}}{N}; K_3 = \frac{M_{\text{3aH}}}{N}.$$
 (28)

8. Среднее время ожидания начала обслуживания $T_{\text{ож}}$ для требования, поступившего в систему по Выражению (29):

$$T_{\text{ож}} = \frac{\rho^N}{\mu(N-1)!(N-\rho)^2} P_0. \tag{29}$$

9. Общее время, которое проводят в очереди все требования, поступившие в систему за единицу времени $T_{\text{оож}}$ по Выражению (30):

$$T_{\text{оож}} = \frac{\rho^{N+1}}{(N-1)!(N-\rho)^2} P_0. \tag{30}$$

10. Среднее время $T_{\rm rp}$, которое требование проводит в системе обслуживания по Выражению (31):

$$T_{\rm TD} = T_{\rm OW} + \mu^{-1}$$
. (31)

11. Суммарное время, которое в среднем проводят в системе все требования, поступившие за единицу времени $T_{\rm crp}$ по Выражению (32):

$$T_{\rm ctp} = T_{\rm ook} + \rho. \tag{32}$$

1.4 Система массового обслуживания с ограниченным временем ожидания

В системах массового обслуживания с ограниченным временем ожидания время ожидания в очереди каждого требования ограничено случайной величиной $t_{\text{ож}}$, среднее значение которого $\overline{t_{\text{ож}}}$.

Величина, обратная среднему времени ожидания, означает среднее количество требований, покидающих очередь в единицу времени, вызванное появлением в очереди одного требования: $\nu=1$ / $\overline{t_{\rm ox}}$.

При наличии в очереди k требований интенсивность потока покидающих очередь требований составляет $k\nu$.

Для дальнейшего рассмотрения СМО с ограниченным временем ожидания введём новый параметр $\beta = \frac{\nu}{\mu}$, означающий среднее число требований, покидающих систему не обслуженными, приходящиеся на среднюю скорость обслуживания требований.

Формулы для определения вероятностей состояний такой системы имеют вид по Выражениям (33) и (34):

$$P_k = \frac{\rho^k}{k!} \cdot P_0$$
, при $k = 1, 2, ..., N;$ (33)

$$P_{N+l} = P_N \cdot \frac{\rho^l}{\prod_{i=1}^l (N+i\beta)}, \text{ при } i = N+1, ..., N+l.$$
 (34)

Вероятность P_0 определяют по Выражению (35):

$$P_0 = \left[\sum_{k=0}^{N} \frac{\rho^k}{k!} + \frac{\rho^N}{N!} \sum_{l=1}^{\infty} \frac{\rho^l}{\prod_{i=1}^{l} (N+i\beta)} \right]^{-1}, \tag{35}$$

где
$$\prod_{i=1}^l (N+i\beta)$$
 — произведение сомножителей $N+i\beta$.

В практических задачах сумму бесконечного ряда вычислить достаточно просто, так как члены ряда быстро убывают с увеличением номера.

Средняя длина очереди по Выражению (36):

$$M_{\text{oq}} = \frac{\rho^N}{N!} P_0 \sum_{l=1}^{\infty} l \frac{\rho^l}{\prod_{i=1}^l (N+i\beta)}.$$
 (36)

Вероятность отказа по Выражению (37):

$$P_{\text{отк}} = \frac{\beta}{\rho} M_{\text{оч}}.$$
 (37)

Среднее число занятых каналов обслуживания и коэффициент загрузки по Выражениям (38) и (39):

$$M_{3aH} = \sum_{k=1}^{N} kP_k + N \sum_{l=1}^{\infty} P_{N+l};$$
 (38)

$$K_3 = \frac{M_{\text{3aH}}}{N}. (39)$$

Среднее число свободных каналов обслуживания и коэффициент простоя по Выражению (40):

$$M_{\rm cb} = N - M_{\rm 3aH}; K_0 = \frac{M_{\rm 3aH}}{N}.$$
 (40)

Относительная пропускная способность по Выражению (41):

$$Q = 1 - P_{\text{otk}}. (41)$$

2 Практическая реализация СМО

2.1 Решение задачи

Сперва необходимо решить поставленную в работе задачу на бумаге.

Имеем: $r=3, \lambda=6, \mu=3, \nu=1$. Находим: $\rho=\lambda/\mu=6/3=2$

$$P_0 = \left[1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^3}{3!} \cdot 1,219\right]^{-1} \approx 0,126.$$

Вероятность занятости всех приборов равна $P_{\text{зан}}=1-P_0=0,874$. Тогда абсолютная пропускная способность может быть получена как произведение: $A=NP_{\text{зан}}=3\cdot 0,874=2,622$. Таким образом, A=2,622 посетителя в час.

2.2 Расчёт показателей

Следующим шагом рассчитаем все основные показатели СМО для последующей проверки:

1. Вероятности состояний системы:

$$P_{1} = \frac{2^{1}}{1!} \cdot 0,126 = 0,252; \ \rho_{1} = \frac{0,252 \cdot 1!}{0,126} = 2;$$

$$P_{2} = \frac{2^{2}}{2!} \cdot 0,126 = 0,252; \ \rho_{1} = \frac{0,252 \cdot 2!}{0,126} = 4;$$

$$P_{3} = \frac{2^{3}}{3!} \cdot 0,126 = 0,168; \ \rho_{1} = \frac{0,168 \cdot 3!}{0,126} = 8.$$

2. Средняя длина очереди:

$$M_{\text{oq}} = \frac{2^3}{3!} \cdot 0,126 \cdot 2,343 \approx 0,392$$

3. Среднее число требований:

$$\beta = \frac{1}{3}$$

4. Вероятность отказа:

$$P_{\text{otk}} = \frac{1}{3} \cdot \frac{1}{2} \cdot 0,392 = 0,065$$

5. Среднее число занятых каналов обслуживания и коэффициент загрузки:

$$M_{\text{3aH}} = 1 \cdot 0,252 + 2 \cdot 0,252 + 3 \cdot 0,168 + 3 \cdot 0,461 \approx 1,869;$$

$$K_3 = \frac{1,721}{3} \approx 0,623.$$

6. Среднее число свободных каналов обслуживания и коэффициент простоя:

$$M_{\text{CB}} = 3 - 1,869 = 1,131;$$

 $K_0 = \frac{1,721}{3} = K_3 = 0,623.$

7. Относительная пропускная способность:

$$Q = 1 - P_{\text{OTK}} = 0,935.$$

2.3 Расчёт показателей при помощи электронных таблиц

Электронная таблица — компьютерная программа, позволяющая проводить вычисления с данными, представленными в виде двумерных массивов, имитирующих бумажные таблицы.

В данной работе в качестве электронной таблицы будет использоваться Google Sheets.

Для расчёта была создана новая таблица и введена информация о характеристиках СМО в колонки на Рисунке 1:

	A	ט		
1	Характеристики СМО:			
2	r:	3		
3	lamda:	6		
4	mu:	3		
5	nu:	1		
6				

Рисунок 1: Характеристики СМО

Следующим шагом рассчитаем значение ρ , введя нужную формулу в ячейку E2 на Рисунке 2:

		← →	-	,	
2	→ fx =B3 / B4				
	A	В	С	D	Е
1	Характеристики	CMO:		Расчитанные >	карактеристики:
2	r:	3		rho:	2
3	lamda:	6			
4	mu:	3			
5	nu:	1			
_					

Рисунок 2: Расчёт ρ СМО

Дальше рассчитаем значение β , введя формулу в ячейку E3 на Рисунке 3:

Рисунок 3: Расчёт β СМО

После пишем формулу для вероятности того, что все каналы свободны на Рисунке 4:

=P_0(E2; B2; E3)				
Α	В	С	D	Е
ктеристики	CMO:		Расчитанные >	карактеристики:
	3		rho:	2
a:	6		beta:	0,333
	3		P_0	0,126

Рисунок 4: Расчёт P_0 СМО

В данном случае функция P_0 является макросом, написанным на языке JavaScript, код которого приведён ниже.

Находим вероятность того, что все каналы заняты на Рисунке 5:

- 1	I 2000 - р. 10 10 100 120 - 110 Jиполации - 10			
fx	=1 - E4			
,	D	Е		
	beta:	0,333		
	P_0	0,126		
	Р_зан	0,874		

Рисунок 5: Расчёт $P_{\text{зан}}$ СМО

В итоге, находим абсолютную пропускную способность пункта химчистки на Рисунке 6:

	← →		,	
K =B2 * E5	=B2 * E5			
)		Е	
beta:				0,333
P_0				0,126
Р_зан				0,874
Α				2,623

Рисунок 6: Расчёт A СМО

Находим вероятности состояний системы, написав формулу один раз и перенеся её на три строчки ниже, на Рисунке 7:

=CTENEHb(\$E\$2; 3) / ФАКТР(3) * \$E\$4		
D	Е	
Р_зан:	0,874	
A:	2,623	
P_1:	0,251	
P_2:	0,251	
P_3:	0,168	

Рисунок 7: Расчёт вероятностей СМО

Аналогично добавим формулы вероятностей на Рисунке 8:

[=	=(E9 * Φ AKTP(3)) / \$E\$4		
	D	Е	
Р	2_3:	0,168	
р	_1:	2	
p	_2:	4	
p	_3:	8	

Рисунок 8: Расчёт вероятностей СМО

Дальше добавим формулу M_{oq} на Рисунке 9:

=M_	=M_Q(E2; B2; E4; E3)			
	С	D	Е	
		p_2:	4	
		p_3:	8	
		М_оч:	0,392	

Рисунок 9: Расчёт $M_{\text{оч}}$ СМО

Следующим шагом рассчитаем вероятность отказа $P_{\text{отк}}$ на Рисунке 10:

fx =	fx =(E3 / E2) ★ E13					
3	С	D	Е			
		p_2:	4			
		p_3:	8			
		М_оч:	0,392			
		Р_отк	0,065			
			I T			

Рисунок 10: Расчёт $P_{\text{отк}}$ СМО

После рассчитаем M_{3aH} на Рисунке 11:

_B(E7:E9;	E2; E3)	
C	D	Е
	М_оч:	0,392
	Р_отк	0,065
	М_зан:	1,869

Рисунок 11: Расчёт $M_{\rm 3ah}$ СМО

Дальше найдём коэффициент загрузки K_3 на Рисунке 12:

r		
=E15 / B2		
С	D	Е
	М_оч:	0,392
	Р_отк	0,065
	М_зан:	1,869
	К_з:	0,623

Рисунок 12: Расчёт K_3 СМО

Последней характеристикой рассчитаем относительную пропускную способность Q на Рисунке 13:

=1 - E14		
D	Е	
М_зан:	1,869	
К_з:	0,623	
M_cb:	1,131	
Q:	0,935	

Рисунок 13: Расчёт Q СМО

В итоге, получаем таблицу со всеми характеристиками СМО на Рисунке 14:

Характеристики СМО:		Расчитанные ха	Расчитанные характеристики:	
r:	3	rho:	2	
lamda:	6	beta:	0,333	
mu:	3	P_0:	0,126	
nu: 1	1	Р_зан:	0,874	
		A:	2,623	
	P_1:	0,251		
	P_2:	0,251		
		P_3:	0,168	
		p_1:	2	
	p_2:	4		
	p_3:	8		
	М_оч:	0,392		
		Р_отк	0,065	
	М_зан:	1,869		
	К_3:	0,623		
		М_св:	1,131	
		Q:	0,935	

Рисунок 14: Таблица с характеристиками СМО

Код макроса для расчёта характеристик:

```
/** @OnlyCurrentDoc */
function factorial (n) {
  if (n <= 1)
    return 1;
  return factorial(n - 1) * n;
}
function P_0(rho, n, beta) {
  return 1 / (
      Array(n + 1).fill(0).reduce(
        (res, v, k) => res + Math.pow(rho, k) / factorial(k),
         → 0)
       + (
        Math.pow(rho, n) / factorial(n))
      * Array(1000).fill(0).reduce(
        (res, v, 1) \Rightarrow res + Math.pow(rho, 1 + 1) / Array(1 +
         → 1).fill(0).reduce((resi, v, i) => resi * ( n + (i
         _{\rightarrow} + 1) * beta), 1),
      0)
  );
}
function M_Q(rho, n, p_0, beta) {
  return (Math.pow(rho, n) / factorial(n)) * p_0 *
  → Array(1000).fill(0).reduce(
    (res, v, 1) = res + (1 + 1) * Math.pow(rho, 1 + 1) /
     → Array(1 + 1).fill(0).reduce((resi, v, i) => resi * ( n
     \rightarrow + (i + 1) * beta), 1),
  0);
```

Все найденные характеристики сходятся с вычислительными значениями, а это значит, что всё выполнено верно.

Заключение

Теория массового обслуживания для химчистки — это, по сути, средство анализа затрат. Для отдела было бы непомерно дорого или свидетельствовало бы о том, что у них не так много клиентов, чтобы никому из их клиентов никогда не приходилось стоять в очереди. В качестве упрощенного примера, для химчистки, чтобы исключить обстоятельства, когда людям приходится стоять в очереди, чтобы постирать одежду. Таким образом, химчистка может использовать информацию, полученную из теории очередей, чтобы настроить свои операционные функции таким образом, чтобы найти баланс между стоимостью обслуживания клиентов и неудобствами для клиентов, вызванными простоями в очереди.

Работа химчистке отличается достаточно большим потоком информации от клиентов и сотрудников, которая достаточно быстро распределяется. При помощи имитационного моделирования, осуществлен расчёт основных характеристик СМО.

Список литературы

- 1. Головко Николай Иванович. Исследование моделей систем массового обслуживания в информационных сетях: диссертация ... доктора технических наук: 05.13.18 / Головко Николай Иванович; [Место защиты: Ин-т автоматики и процессов управления ДВО РАН].- Владивосток, 2007.- 404 с.;
- Климов Г.П. Теория массового обслуживания. / 2-е издание, переработанное. М.: Издательство Московского университета. 2011. 312с.
- 3. Mosquera, A., Olarte Pascual, C. y Juaneda Ayensa, E. (2017): Understanding the customer experience in the age of omni-channel shopping, Icono 14, volumen 15 (2), pp. 235-255. doi: 10.7195/ri14.v15i2.1070;
- 4. Ngai, E. W. T., Moon, K. K., Lam, S. S., Chin, E. S. K., & Tao, S. S. C. (2015). Social media models, technologies, and applications. Industrial Management & Data Systems, 115(5), 769–802;
- 5. Кетокиви М.А., Шредер Р.Г. (2004) Стратегические, структурные непредвиденные обстоятельства и институциональные объяснения в принятии инновационных методов производства. Дж Опер Манаг 22: 63–89;
- 6. Pourkhani, A. & Abdipour, Khadije & Baher, B. & Moslehpour, Massoud. (2019). The impact of social media in business growth and performance: A scien-tometrics analysis. International Journal of Data and Network Science;
- 7. Астахова Н.И. Менеджмент : учебник для прикладного бакалавриата / Н. И. Астахова [и др.] ; ответственный редактор Н. И. Астахова, Г. И. Моск-витин. Москва : Издательство Юрайт, 2020. 422 с;