Exaktní metody řešení rozhodovacího problému batohu

NI-KOP DÚ 1

Tomáš Kalabis

Zadání

Je dáno

- celé číslo n (počet věcí)
- celé číslo M (kapacita batohu)
- celé kladné číslo B
- konečná množina V = {v₁, v₂, ..., v_n} (hmotnosti věcí)
- konečná množina C = {c₁, c₂, ..., c_n} (ceny věcí)

Je možné zkonstruovat množinu $X=\{x_1, x_2, ..., x_n\}$, kde každé x_i je 0 nebo 1, tak, aby platilo $v_1x_1+v_2x_2+...+v_nx_n \le M$ (aby batoh nebyl přetížen).

a výraz

$$C_1X_1 + C_2X_2 + ... + C_nX_n \ge B$$

tj. nabýval hodnoty alespoň B (cena věcí v batohu byla alespoň vyžadovaná)?

Výsledkem tak je množina vybraných věcí v batohu, které jsou lehčí než kapacita batohu (číslo *M*) a cennější než minimální požadovaná hodnota věcí (číslo *B*).

Program

Jako hlavní technologie byl vybrán jazyk *Python* verze 3.9.5 pro svou uživatelskou přívětivost, jednoduchou práci s moduly a jejich bohatou podporu jako je například *matplotlib* (modul pro vykreslování grafů) nebo *numpy* (modul pro matematické výpočty). Pro programování bylo použito prostředí *Jupyter Notebook*.

Program se spouští vyhodnocením všech buněk v Jupyter Notebooku. Aby program správně fungoval, musí být vytvořená složka results/ v adresáři s programem a složky NR/ a ZR/ by měly být také ve stejné složce jako program (případně upravit volání funkce).

Řešení a metody

Metoda Hrubou silou (Brute Force)

Metoda Hrubou silou je nejpomalejší z metod řešení tohoto problému. Metoda projde všechny případy uložených věcí v batohu a zkontroluje, zda instance plnění batohu splňuje uvedené podmínky. Značnou nevýhodou této metody je, že prochází instance plnění batohu který nedokáže splnit minimální hodnotu v batohu. Časová složitost tohoto problému je $\Theta(2^n)$.

Metoda Větví a hranic (Branch and Bound)

Tato metoda řeší problém zmíněný v předchozím odstavci. Metoda je implementovaná jako stromová rekurze v jehož každém uzlu se kontroluje, zda podstrom tohoto uzlu je schopen naplnit minimální požadavek na celkovou cenu plnění batohu. V negativním případě se podstrom tohoto uzlu vůbec nezkouší, jelikož víme, že nemá šanci na úspěch. Časová náročnost této metody je O(2ⁿ).

Experimenty

Experimenty probíhaly na sadách NR a ZR, které byly dodány se zadáním. Zkoumali se počty navštívených uzlů při jednotlivých instancích, jednotlivých hodnotách n a jednotlivých metodách.

Testování probíhalo na notebooku s následujícími parametry:

Operační systém: Ubuntu 21

RAM: 8GB DDR4

Procesor: i5-6300HQ 2.3GHz

Výsledky

Poznámka: v následujících tabulkách jsou zaznamenány počet navštívených uzlů Hrubou silou. Od n > 15 však již hrubá síla nebyla testována a hodnoty tak byly doplněny o své očekávané hodnoty.

	Průměrný počet vyzkoušených konfigurací			
n	Hrubá síla	NR – metoda větví	ZR – metoda větví	
4	2 ⁴ = 16	3.066	3.16	
10	2 ¹⁰ = 1 024	136.6	77.368	
15	2 ¹⁵ = 32 768	4 412.048	1 288.946	
20	2 ²⁰ = 1 048 576	154 225.908	26 976.58	
22	2 ²² = 4 194 304	652 626.246	82 840.82	

Maximální počet vyzkoušených konfigurací

n	Hrubá síla	NR – metoda větví	ZR – metoda větví
4	$2^4 = 16$	15	8
10	$2^{10} = 1\ 024$	1 010	205
15	2 ¹⁵ = 32 768	32 760	4271
20	$2^{20} = 1\ 048\ 576$	1 048 519	98 689
22	2 ²² = 4 194 304	4 194 267	350 659

Předchozí 2 tabulky zobrazují vyzkoušený počet různých konfigurací při jednotlivých metodách a sadách (hrubá síla je vůči rozdílným sadám stejná). Patrné je zlepšení oproti metodě Hrubé síly a maximální počet vyzkoušených konfigurací je vždy menší než počet při použití metody Hrubé síly.

Na grafu rozdělení sady NR pro n=15 je patrné, že velká většina rozložení je rovna 0. Mnoho instancí tedy nemá řešení pro rozhodovací problém, jelikož se algoritmus zastavil již v počátku – součet cen všech možných věcí v batohu je menší než minimální požadovaná cena (konstanta B). Z dosavadních zjištění se tak jeví, že sada byla generována náhodně.

Rozdělení sady ZR pro n=22 připomíná klasickou Gaussovu křivku s největším shlukem uprostřed, a neexistují žádné příklady, kde nebyly žádné operace – všechny instance měli součet cen věcí větší nebo rovno minimální požadované hodnotě ceny (konstanta B).

Závěr

Ověřili jsme rapidní zrychlení při použití metody větví a hranic oproti metodě hrubé síly. Po zkoumání sad NR a ZR jsme zjistili, že v sadě ZR se téměř nevyskytuje instance, jejíž minimální cenu *B* není možné překročit a naopak sada NR obsahuje mnoho takových instancí.