Deep Learning for NLP - Project

Adil Rhoulam

arhoulam@ens-paris-saclay.fr

1) Using the orthogonality and the properties of the trace, prove that, for X and Y two matrices: $W^* = argmin_{W \in O_d(R)} ||WX - Y||_F = UV^T$, with $U\Sigma V^T = SVD(YX^T)$

Answer: We have : $||WX - Y||_F^2 = ||WX||_F^2 + ||Y||_F^2 - 2 < WX, Y >_F$

Since $W \in O_d(R)$, we get : $||WX||_F^2 = Tra(X^TW^TWX) = Tra(X^TX) = ||X||_F^2$

then: $argmin_{W \in O_d(R)} ||WX - Y||_F = argmax_{W \in O_d(R)} \langle WX, Y \rangle_F$

and: $\langle WX, Y \rangle_F = Tra(X^TW^TY) = Tra(YX^TW^T)$

Using the SVD of YX^T : $YX^T = U\Sigma V^T$, with $U, V \in O_d(R)$ and Σ is a diagonal matrix with non-negative real numbers on the diagonal

We get : $\langle WX, Y \rangle_F = Tra(U\Sigma V^T W^T) = Tra(\Sigma V^T W^T U)$

Since: $U^TWV \in O_d(R)$ we get: $argmax_{W \in O_d(R)} Tra(\Sigma V^T W^T U) = argmax_{W \in O_d(R)} Tra(\Sigma W^T)$

Since Σ is diagonal : $[\Sigma W]_{i,i} = \sum_{k=1}^p [\Sigma]_{i,k} [W]_{k,i} = [\Sigma]_{i,i} [W]_{i,i}$

which gives : $Tra(\Sigma W^T) = \sum_{i=1}^{p} [\Sigma]_{i,i}[W]_{i,i}$

Since $W \in O_d(R)$, we have : $\forall j, \sum_{i=1}^p [W]_{i,j}^2 = 1$ which gives $-1 \leq [W]_{i,j} \leq 1 \quad \forall i,j$

We conclude that : $argmax_{W \in O_d(R)} < WX, Y >_F \le \sum_{i=1}^p [\Sigma]_{i,i} = Tra(\Sigma)$.

This maximum is attainable when $W = UV^T$, since $< UV^TX, Y>_F = Tra(Y^TUV^TX) = Tra(XY^TUV^T) = Tra(V\Sigma U^TUV^T) = Tra(\Sigma)$

Finally, $UV^T = argmax_{W \in O_d(R)} < WX, Y >_F = argmin_{W \in O_d(R)} ||WX - Y||_F$ with $U\Sigma V^T = \text{SVD}(YX^T)$

Question: What is your training and dev errors using either the average of word vectors or the weighted-average?

Answer: Using the average of word vectors and the Logistic Regression classifier, we get an accuracy of:

 \bullet On train set : 47.94 %

• On dev set : 43.6 %

Using the weighted-average of word vectors and the Logistic Regression classifier, we get an accuracy of:

 \bullet On train set : 48.68 %

 \bullet On dev set : 42.51 %

Question: Which loss did you use? Write the mathematical expression of the loss you used for the 5-class classification.

The loss that I used is the 'categorical_crossentropy'. Its mathematical expression for the 5-class classification is:

$$L(\hat{y}, y) = -\frac{1}{5} \sum_{i=1}^{5} (y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i))$$