

AU OPTRONICS CORPORATION

- () Preliminary Specifications
- (V) Final Specifications

Module	17.3"(17.26") HD+ 16:9 Color TFT-LCD with LED Backlight design
Model Name	B173RTN02.2 (H/W: 3A)
Note (🗭)	LED Backlight with driving circuit design

Customer	Date
Checked & Approved by	Date
Note: This Specification change without notice.	is subject to

Approved by	Date			
<u>Wen Hua</u>	<u>05/09/17</u>			
Prepared by	Date			
<u>Tommy Chang</u>	05/09/17			
AU Optronics corporation				

AU OPTRONICS CORPORATION

Contents

1. Handling Precautions	
2. General Description	5
2.1 General Specification	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	11
4. Absolute Maximum Ratings	12
4.1 Absolute Ratings of TFT LCD Module	12
4.2 Absolute Ratings of Environment	12
5. Electrical Characteristics	13
5.1 TFT LCD Module	13
5.2 Backlight Unit	16
6. Signal Interface Characteristic	17
6.1 Pixel Format Image	
6.2 Integration Interface Requirement	18
6.3 Interface Timing	21
6.4 Power ON/OFF Sequence	22
7. Panel Reliability Test	25
7.1 Vibration Test	25
7.2 Shock Test	25
7.3 Reliability Test	25
8. Mechanical Characteristics	26
8.1 LCM Outline Dimension	26
9. Shipping and Package	28
9.1 Shipping Label Format	28
9.2 Carton Package	29
9.3 Shipping Package of Palletizing Sequence	30
10. Appendix: EDID Description	
10.1 EDID Description	
10.2 Notes	34

AU OPTRONICS CORPORATION

Record of Revision

Ver	rsion and Date	Page	Old description	New Description	Remark
0.1	2017/04/11	All	First Edition for Customer		
0.2	2017/05/09	31-34		Add EDID	

AU OPTRONICS CORPORATION

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12)Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostatic breakdown.

AU OPTRONICS CORPORATION

2. General Description

B173RTN02.2 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 HD+, 1600(H) x900(V) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are eDP(Embedded DisplayPort) interface compatible.

B173RTN02.2 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 $^{\circ}\mathrm{C}$ condition:

Items	Unit		Specif	ications			
Screen Diagonal	[mm]	17.3"(17.26	5)				
Active Area	[mm]	382.08 X 214.92					
els H x V		1600x3(RGB) x 900					
el Pitch	[mm]	0.2388X0.2388					
el Format		R.G.B. Island					
Display Mode		Normally White					
White Luminance (ILED=22mA) (Note: ILED is LED current)	[cd/m ²]	220 typ. (5 points average) 187 min. (5 points average)					
Luminance Uniformity		1.25 max. (5 points)					
Contrast Ratio		500 typ					
Response Time	[ms]	8 typ / 16 M	lax				
Nominal Input Voltage VDD	[Volt]	+3.3 typ.					
Power Consumption	[Watt]	3.8 max. (Ir	nclude Logic	and Blu po	wer)		
Weight	[Grams]	550 max.					
Physical Size	[mm]		Min.	Тур.	Max.		
Include bracket		Length	397.6	398.1	398.6		
		Width	250	250.5	251		
		Thickness -		-	4		
Electrical Interface		1 Lane eDP1.2					
Glass Thickness	[mm]	0.5					
Surface Treatment		Glare, Hard	lness 3H,				

Support Color		262K colors (RGB 6-bit)
Temperature Range Operating Storage (Non-Operatina) RoHS Compliance	[°C]	0 to +50 -20 to +60 RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25° C (Room Temperature):

Item		Symbol	Condit		Min.	Тур.	Max.	Unit	Note
White Lumin ILED=20m			5 points a	verage	187	220	-	cd/ m²	1, 4, 5.
Viewing Angle		θ _R θ _L	Horizontal CR = 10	(Right) (Left)	40	45 45	-	degr	
		Ψн	Vertical	(Upper)	40 10	45 15	-	ee	4, 9
		ΨL	CR = 10	(Lower)	30	35	-		
Luminance Uniformity		δ _{5P}	5 Poir	nts	-	-	1.25		1, 3, 4
Luminance Uniformity δ _{13P}		13 Points		-	-	1.60		2, 3, 4	
Contrast Ratio		CR			400	500	-		4, 6
Cross ta	lk	%					4		4, 7
Response 1	Time	T _{RT}	Rising + F	alling	-	8	16	msec	4, 8
	Red	Rx			0.581	0.611	0.641		
	Red	Ry			0.325	0.355	0.385		
Color /	Green	Gx				0.341	0.371		
Color / Chromaticity	010011	Gy			0.573	0.603	0.633		
Coodinates	Blue	Вх	CIE 19	931	0.125	0.155	0.185		4
	DIO C	Ву			0.072	0.102	0.132		
	White	Wx			0.283	0.313	0.343		
	VVIIIIC	Wy			0.299	0.329	0.359		
NTSC		%			-	60	-		

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

$$\delta_{W5} = \frac{\text{Maximum Brightness of five points}}{\text{Minimum Brightness of five points}}$$

$$\delta_{W13} = \frac{\text{Maximum Brightness of thirteen points}}{\text{Minimum Brightness of thirteen points}}$$

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be

measured in the center of screen.

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points , $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$ L (x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 7: Definition of Cross Talk (CT)

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

AU OPTRONICS CORPORATION

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AU OPTRONICS CORPORATION

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 17.3 inches wide Color TFT/LCD 30 Pin

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions	
Operating	TOP 0 +50 [°C]		TOP 0		Note 4	
Operation Humidity	HOP	5	95	[%RH]	Note 4	
Storage Temperature	TST	-20	+60	[°C]	Note 4	
Storage Humidity	HST	5	95	[%RH]	Note 4	

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Note 5: The packing material of system forbid to involve ammonium component

Note 6: The reliability test conditions of system do not exceed the verified conditions of TFT module

Note 7: Be sure the panel test condition do not exceed the component limitation of TFT module(TN Liquid crystal, for example)

Operating Range

Storage Range

+

AU OPTRONICS CORPORATION

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	_	-	1.00	[Watt]	Note 1
IDD	IDD Current	-	-	340	[mA]	Note 1
lRush	Inrush Current	-	=	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	p-p	

Note 1: Maximum Measurement Condition: Mosaic Pattern at 3.3V driving voltage. (Pmax=V3.3 x lblack)

Typical Measurement Condition: Mosaic Pattern

Note 2: Measure Condition

AU OPTRONICS CORPORATION

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Display Port main link signal:

	Display port main link							
		Min	Тур	Max	unit			
VCM	RX input DC Common Mode Voltage		0		V			
VDiff _{P-P}	Peak-to-peak Voltage at a receiving Device	100		1320	mV			

Fallow as VESA display port standard

AU OPTRONICS CORPORATION

	Display port AUX_CH						
		Min	Тур	Max	unit		
VCM	AUX DC Common Mode Voltage		0		V		
VDiff _{P-P}	AUX Peak-to-peak Voltage at a receiving Device	0.4	0.6	0.8	V		

Fallow as VESA display port standard

Display Port VHPD signal:

	Display port VHPD				
		Min	Тур	Max	unit
VHPD	HPD Voltage	2.25		3.6	٧

Fallow as VESA display port standard

AU OPTRONICS CORPORATION

5.2 Backlight Unit

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	1	1	2.8	[Watt	(Ta=25, Vin =12V), Note 1
LED Life-Time	N/A	10,000	-	1	Hour	(Ta=25°C , I _F =20 mA) , Note 2

Note 1: Calculator value for reference $P_{LED} = VF$ (Normal Distribution) * IF (Normal Distribution) / Efficiency Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

5.2.2 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	5.0 *Note 2	12.0	21.0	[Volt]	
LED Enable Input High Level		2.2	-	5.5	[Volt]	
LED Enable Input Low Level	VLED_EN	-	-	0.6	[Volt]	5 "
PWM Logic Input High Level	VPWM EN	2.2	-	5.5	[Volt]	Define as Connector
PWM Logic Input Low Level		-	-	0.6	[Volt]	Interface (Ta=25°C)
PWM Input Frequency	FPWM	200	1K	10K	Hz	
PWM Duty Ratio	Duty	5 *Note 3		100	%	

Note 1: Recommend system pull up/down resistor no bigger than 10kohm

Note 2: If the PWM duty ratio(min) is set between 5% to 1%, the PWM input frequency should be set below 1KHz. The brightness-duty characteristic might not be able to keep in it's linearity if the dimming control is operated in 1% to 5% range.

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1				1600
1st Line	R G B	R G B		R G	B R G B
	1		1	1	
	1			1	
	,			,	:
				,	
	1			1	
		 			
900th Line	R G B	R G B		R G	B R G B

Product Specification AU OPTRONICS CORPORATION

6.2 Integration Interface Requirement

6.2.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	IPEX or compatible
Type / Part Number	IPEX 20455-030E-12
Mating Housing/Part Number	IPEX 20453-030T-11 or compatible

Product Specification AU OPTRONICS CORPORATION

eDP lane is a differential signal technology for LCD interface and high speed data transfer device

		al technology for LCD interface and high speed data transfer device. Function
TIN NO	Symbol NC	NC NC
2		
3	H_GND	High Speed Ground
	NC NC	NC NC
4	NC	NC
5	H_GND	High Speed Ground
6	Lane0_N	Complement Signal Link Lane 0
7	Lane0_P	True Signal Link Lane 0
8	H_GND	High Speed Ground
9	AUX_CH_P	True Signal Auxiliary Channel
10	AUX_CH_N	Complement Signal Auxiliary Channel
11	H_GND	High Speed Ground
12	LCD_VCC	LCD logic and driver power
13	LCD_VCC	LCD logic and driver power
14	LCD_Self_Test	LCD Panel Self Test
15	LCD_GND	LCD logic and driver ground
16	LCD_GND	LCD logic and driver ground
17	HPD	HPD signal pin
18	BL_GND	Backlight ground
19	BL_GND	Backlight ground
20	BL_GND	Backlight ground
21	BL_GND	Backlight ground
22	BL_ENABLE	Backlight On/Off
23	BL_PWM_DIM	System PWM signal input for dimming
24	YOE_S	YOE_S
25	NC-Reserved	Reserved
26	BL_PWR	Backlight power
27	BL_PWR	Backlight power
28	BL_PWR	Backlight power
29	BL_PWR	Backlight power
30	NC	NC

Note1: Start from right side.

Note2: Input signals shall be low or High-impedance state when VDD is off. Internal circuit of eDP inputs are as following.

AU OPTRONICS CORPORATION

6.3.1 Timing Characteristics

Basically, interface timings should match the 1600x900 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate		-	50	60	-	Hz
Clock frequency		1/ T _{Clock}	50	60	85	MHz
	Period	T _V	908	954	2047	
Vertical	Active	T vD	900			T Line
Section	Blanking	T ∨B	8	54		
Horizontal Section	Period	T _H	840	1082	2047	
	Active	T HD		800		T Clock
	Blanking	Тнв	40	282		

Note 1: The above is as optimized setting

Note 2 : The maximum clock frequency = (800+B)*(900+A)*60<80MHz

AU OPTRONICS CORPORATION

6.4 Power ON/OFF Sequence

Display Port panel power sequence:

Display port interface power up/down sequence, normal system operation

Display Port AUX_CH transaction only:

Display port interface power up/down sequence, AUX_CH transaction only

B173RTN02.2 Document Version: 0.2

Product Specification

AU OPTRONICS CORPORATION

Display Port panel power sequence timing parameter:

Timing	Dtusti	David Inc		Limits		Notes
parameter	Description	Reqd. by	Min.	Тур.	Max.	Notes
T1	power rail rise time, 10% to 90%	source	0.5ms		10ms	
Т2	delay from LCDVDD to black video generation	sink	0ms		200ms	prevents display noise until valid video data is received from the source
Т3	delay from LCDVDD to HPD high	sink	0ms		200ms	sink AUX_CH must be operational upon HPD high.
Т4	delay from HPD high to link training initialization	source				allows for source to read link capability and initialize.
Т5	link training duration	source				dependant on source link to read training protocol.
Т6	link idle	source				Min accounts for required BS-Idle pattern. Max allows for source frame synchronization.
T7	delay from valid video data from source to video on display	sink	0ms		50ms	max allows sink validate video data and timing.
Т8	delay from valid video data from source to backlight enable	source				source must assure display video is stable.
Т9	delay from backlight disable to end of valid video data	source				source must assure backlight is no longer illuminated.
T10	delay from end of valid video data from source to power off	source	0ms		500ms	
T11	power rail fall time, 905 to 10%	source			10ms	
T12	power off time	source	500ms			

Note1: The sink must include the ability to generate black video autonomously. The sink must automatically enable black video under the following conditions:

-upon LCDVDD power on (with in T2 max)-when the "Novideostream_Flag" (VB-ID Bit 3) is received from the source (at the end of T9).

-when no main link data, or invalid video data, is received from the source. Black video must be displayed within 64ms (typ) from the start of either condition. Video data can be deemed invalid based on MSA and timing information, for example.

Note 2: The sink may implement the ability to disable the black video function, as described in Note 1, above, for system development and debugging purpose.

Note 3: The sink must support AUX_CH polling by the source immediately following LCDVDD power on without causing damage to the sink device (the source can re-try if the sink is not ready). The sink must be able to respond to an AUX_CH transaction with the time specified within T3 max.

Product Specification AU OPTRONICS CORPORATION

Display Port panel B/L power sequence timing parameter:

	Min (ms)	Max (ms)
T13	0.2	-
T14	0	1.00
T15	-	
T16	-	
T17	0	-
T18	0	-
T19	1*	-
T20	1*	

Seamless change: T19/T20 = 5xT_{PWM}*

*T_{PWM}= 1/PWM Frequency

Note: When the adapter is hot plugged, the backlight power supply sequence is shown as below

Note: If T19,T20 < 5xTPWM*, This flash display may occur. We sUGGEST T19, T20 ≥ 5xTPWM* to reallize seamless change display.

AU OPTRONICS CORPORATION

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10 - 500Hz Random

Sweep: 30 Minutes each Axis (X, Y, Z)

7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: X,Y,Z .one time for each side

7.3 Reliability Test

	Note
Ta= 40℃, 90%RH, 300h	
Tα= 50℃, Dry, 300h	
Ta= 0℃, 300h	
Ta= 60°C, 35%RH, 300h	
Tα= -20℃, 50%RH, 250h	
Ta=-20°C to 60°C, Duration at 30 min, 100 cycles	
Contact: ±8 KV	Note 1
	Ta= 50°C, Dry, 300h Ta= 0°C, 300h Ta= 60°C, 35%RH, 300h Ta= -20°C, 50%RH, 250h Ta=-20°C to 60°C, Duration at 30 min, 100 cycles

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. Self-recoverable.

No data lost, No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION

8. Mechanical Characteristics

8.1 LCM Outline Dimension

B173RTN02.2 Document Version: 0.2 Page 26 of 34

AU OPTRONICS CORPORATION

Note: Prevention IC damage, IC positions not allowed any overlap over these areas.

B173RTN02.2 Document Version: 0.2 Page 27 of 34

AU OPTRONICS CORPORATION

9. Shipping and Package

9.1 Shipping Label Format

Manufactured 05/52 Model No: B173RTN02.2 **AU Optronics** Made in China (Z83)

H/W: 3A F/W:1

Manufactured 05/52 Model No: B173RTN02.2 **AU Optronics** Made in China (Z40)

H/W: 3A F/W:1

B173RTN02.2

Manufactured 05/52 Model No: B173RTN02.2 **AU Optronics** Made in China (S01)

H/W: 3A F/W:1

B173RTN02.2

Product Specification AU OPTRONICS CORPORATION

9.2 Carton Package

9.3 Shipping Package of Palletizing Sequence

Product Specification AU OPTRONICS CORPORATION

10. Appendix: EDID Description

10.1 EDID Description

Address	FUNCTION	Value	Value	Value	Note
HEX		HEX	BIN	DEC	
00	Header	00	00000000	0	
01		FF	11111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	11111111	255	
07		00	00000000	0	
08	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
0A	Product Code	9E	10011110	158	
0B	hex, LSB first	22	00100010	34	
0C	32-bit ser #	00	00000000	0	
0D		00	00000000	0	
0E		00	00000000	0	
0F		00	00000000	0	
10	Week of manufacture	0E	00001110	14	
11	Year of manufacture	1B	00011011	27	
12	EDID Structure Ver.	01	00000001	1	
13	EDID revision #	04	00000100	4	
14	Video input def. (digital I/P, non-TMDS, CRGB)	95	10010101	149	
15	Max H image size (rounded to cm)	26	00100110	38	
16	Max V image size (rounded to cm)	15	00010101	21	
17	Display Gamma (=(gamma*100)-100)	78	01111000	120	
18	Feature support (no DPMS, Active OFF, RGB, tmg Blk#1)	02	00000010	2	
19	Red/green low bits (Lower 2:2:2:2 bits)	EE	11101110	238	
1A	Blue/white low bits (Lower 2:2:2:2 bits)	85	10000101	133	
1B	Red x (Upper 8 bits)	9E	10011110	158	
1C	Red y/ highER 8 bits	59	01011001	89	
1D	Green x	50	01010000	80	
1E	Green y	9D	10011101	157	
1F	Blue x	26	00100110	38	
20	Blue y	1D	00011101	29	
21	White x	50	01010000	80	
22	White y	54	01010100	84	

23	Established timing 1	00	00000000	0	
24	Established timing 2	00	00000000	0	
25	Established timing 3	00	00000000	0	
26	Standard timing #1	01	00000001	1	
27	_	01	0000001	1	
28	Standard timing #2	01	00000001	1	
29		01	00000001	1	
2A	Standard timing #3	01	00000001	1	
2B		01	00000001	1	
2C	Standard timing #4	01	00000001	1	
2D		01	00000001	1	
2E	Standard timing #5	01	0000001	1	
2F		01	00000001	1	
30	Standard timing #6	01	00000001	1	
31		01	00000001	1	
32	Standard timing #7	01	00000001	1	
33		01	00000001	1	
34	Standard timing #8	01	0000001	1	
35		01	0000001	1	
36	Pixel Clock/10000 LSB	1C	00011100	28	
37	Pixel Clock/10000 USB	2A	00101010	42	
38	Horz active Lower 8bits	40	01000000	64	
39	Horz blanking Lower 8bits	52	01010010	82	
3A	HorzAct:HorzBlnk Upper 4:4 bits	61	01100001	97	
3B	Vertical Active Lower 8bits	84	10000100	132	
3C	Vertical Blanking Lower 8bits	1A	00011010	26	
3D	Vert Act : Vertical Blanking (upper 4:4 bit)	30	00110000	48	
3E	HorzSync. Offset	30	00110000	48	
3F	HorzSync.Width	20	00100000	32	
40	VertSync.Offset : VertSync.Width	36	00110110	54	
41	Horz‖ Sync Offset/Width Upper 2bits	00	00000000	0	
42	Horizontal Image Size Lower 8bits	7E	01111110	126	
43	Vertical Image Size Lower 8bits	D6	11010110	214	
44	Horizontal & Vertical Image Size (upper 4:4 bits)	10	00010000	16	
45	Horizontal Border (zero for internal LCD)	00	00000000	0	
46	Vertical Border (zero for internal LCD)	00	00000000	0	
47	Signal (non-intr, norm, no stero, sep sync, neg pol)	18	00011000	24	
48	Detailed timing/monitor	00	00000000	0	
49	descriptor #2	00	00000000	0	

4A		00	00000000	0	
4B		0F	00001111	15	
4C		00	00000000	0	
4D		00	00000000	0	
4E		00	00000000	0	
4F		00	00000000	0	
50		00	00000000	0	
51		00	00000000	0	
52		00	00000000	0	
53		00	00000000	0	
54		00	00000000	0	
55		00	00000000	0	
56		00	00000000	0	
57		00	00000000	0	
58		00	00000000	0	
59		20	00100000	32	
5A	Detailed timing/monitor	00	00000000	0	
5B	descriptor #3	00	00000000	0	
5C		00	00000000	0	
5D		FE	11111110	254	
5E		00	00000000	0	
5F	Manufacture	41	01000001	65	Α
60	Manufacture	55	01010101	85	U
61	Manufacture	4F	01001111	79	0
62		0A	00001010	10	
63		20	00100000	32	
64		20	00100000	32	
65		20	00100000	32	
66		20	00100000	32	
67		20	00100000	32	
68		20	00100000	32	
69		20	00100000	32	
6A		20	00100000	32	
6B		20	00100000	32	
6C	Detailed timing/monitor	00	00000000	0	
6D	descriptor #4	00	00000000	0	
6E		00	00000000	0	
6F		FE	11111110	254	
70		00	00000000	0	

Product Specification AU OPTRONICS CORPORATION

71	Manufacture P/N	42	01000010	66	В
72	Manufacture P/N	31	00110001	49	1
73	Manufacture P/N	37	00110111	55	7
74	Manufacture P/N	33	00110011	51	3
75	Manufacture P/N	52	01010010	82	R
76	Manufacture P/N	54	01010100	84	Т
77	Manufacture P/N	4E	01001110	78	N
78	Manufacture P/N	30	00110000	48	0
79	Manufacture P/N	32	00110010	50	2
7A	Manufacture P/N	2E	00101110	46	
7B	Manufacture P/N	32	00110010	50	2
7C		20	00100000	32	
7D		0A	00001010	10	
7E	Extension Flag	00	00000000	0	
7F	Checksum	СВ	11001011	203	

10.2 Notes

- The height of cell tape no higher than top polarizer 3.0mm
- Marking DPCD version, including PSR, PSR2, MBO, VESA DSC,...

DPCD Ver.	PSR	МВО	VESA DSC
1.2	Off	Off	Off

- 3) LED Driving Solution: Minimum change scale duty of the PWM is 0.1% @PWM frequency 200Hz.
- 4) When twisting or pressing LCD module, it may cause unexpected acoustic noises or sounds.
- 5) Maximum value of "Peak current" is as same as "Inruch current" in Electrical Characteristics (Power Specification)
- 6) VDiff_{P-P} (Peak-to-peak Voltage at a receiving Device) follow as VESA display port standard (test point, TP3, is on panel's PCBa)

- 7) Suggest ODMs do not use any parts that contain the ingredient of related Ammonium > 5ppb, and other ingredients, if any.
- 8) Suggest ODMs do not interfere with panel after system assembly in order to avoid possible mura, yellow spot, light leakage, water ripple or side defects by mechanical stress test.