

Algorithms - Examples and The Best Practices

Course: Algorithms

Faculty: Dr. Rajendra Prasath

Algorithms - Examples and The Best Practices

This class covers a few **Examples** with their complexity analysis and **the Best Practices**. This lecture illustrates the derivation of the **Worst Case Complexity** of a few selected problems and their analysis in detail.

2

Recap: Complexity Analysis

- Computational Complexity of the Algorithms
 - Best Case Analysis
 - Average Case Analysis and
 - Worst Case Analysis
 - Big O Notation, Omega Notation, Theta Notation and the choice to Data Structures
- How do we optimize the running time and space needed to solve the given problem?
 - Running Time Minimize or Maximize?
 - Space Needed Minimize or Maximize?

3

Simple / Efficient Algorithms

- Running Times of the algorithms may vary based on n
- Estimating runtime
 - Considering the input size
 - Growth in the order of magnitude of the input
 - Perform tight / upper bound analysis
 - Compute the space requirements and choose appropriate data structures
 - Efficient implementations with the right choice of the programming language for the given task

Estimating Runtime – 1

What is the runtime of g(n)?

```
void g(int n) {
    for (int i = 0; I < n; ++i)
        f();
}</pre>
```

Runtime $g(n) \approx n \cdot runtime (f(n))$

Estimating Runtime – 2

What is the runtime of g(n)?

```
void g(int n) {
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < n; ++j)
        f();
}</pre>
```

Runtime g(n) \approx n² • runtime (f(n))

Estimating Runtime – 3

What is the runtime of g(n)?

```
void g(int n) {
    for (int i= 0; i < n; ++i)
        for(int j = 0; j <= i; ++j)
        f();
}</pre>
```

```
Runtime g(n) \approx (1 + 2 + 3 + ••• + n) • runtime (f(n)) \approx (n (n+1) / 2) • runtime (f(n)) Complexity: O(n<sup>2</sup>)
```

7

Big O - Algorithms

A method to characterize the execution time of an algorithm:

- Adding two square matrices is O(n²)
- Searching in a dictionary is O(log n)
- Sorting a vector is O(n log n)
- Solving Towers of Hanoi is O(2ⁿ)
- Multiplying two square matrices is O(n³)
- •
- •
- •
- Count the dominating terms ... discard constants

Ranking Complexity

Function	Common name
n!	factorial
2^n	exponential
$n^d, d > 3$	polynomial
n^3	cubic
n^2	quadratic
$n\sqrt{n}$	
$n \log n$	quasi-linear
n	linear
\sqrt{n}	root - n
$\log n$	logarithmic
1	constant

Big-O: Examples

T(n)	Complexity
$5n^3 + 200n^2 + 15$	$O(n^3)$
$3n^2 + 2^{300}$	$O(n^2)$
$5\log_2 n + 15\ln n$	$O(\log n)$
$2\log n^3$	$O(\log n)$
$4n + \log n$	O(n)
2^{64}	O(1)
$\log n^{10} + 2\sqrt{n}$	$O(\sqrt{n})$
$2^n + n^{1000}$	$O(2^n)$

Count dominating terms ... discard constants

Complexity Analysis

Let us assume that f() has complexity O(1)

```
for(int i= 0; i< n; ++i) f();</li>→ O(n)
```

```
    for(int i= 0; i< n; ++i)</li>
    for(int j = 0; j < n; ++j) f();</li>
    → O(n²)
```

```
    for(int i= 0; i< n; ++i)</li>
    for(int j = 0; j <= i; ++j) f();</li>
    → O(n²)
```

Complexity Analysis

Let us assume that f() has complexity O(1)

```
    for(int i= 0; i< n; ++i)
        for(int j = 0; j < n; ++j)
        for(int k = 0; k < n; ++k) f();
        → O(n³)</li>
```

```
    for(int i= 0; i< m; ++i)
        for(int j = 0; j < n; ++j)
        for(int k = 0; k < p; ++k) f();</li>
    → O(mnp)
```

12

Best Practices

- Understanding the given problem
- Choosing right approach for solving the given problem
 - Perform tight bound analysis
 - Adaptable algorithm with increasing size of input
- Know the limitations
 - Explore ways to handle the optimization of the limitations
- Code Profiling
 - In terms of runtime... Representative Simulation
- Handling Memory Management
 - How to handle increasing number of variables?
- How to avoid wasting CPU Cycles?
 - Efficient use of CPU cycles ... even in Parallel executions
- Handle Loops efficiently
 - Avoid branching and I/O operations inside a loop
 - Process Data in blocks

Pitfalls

- How do we use the available memory efficiently?
 - Compute the required CPU cycles and plan your algorithm execution
 - Use of excessive memory will decrease the performance and increase the run time
 - Avoid performing I/O operations
 - Avoid writing to and/or reading from Disks too often
 - Perform trade-off between memory and space available in the given system
 - Avoid overloading the file systems
 - This would slowdown the simulation or the execution of the algorithm

A few problems

Let us try a Few Problems:

- Write an algorithm to add two numbers
- Write an algorithm to find the largest among three numbers
- Write an algorithm to find all the roots of quadratic equation
- Write an algorithm to find the factorial
- Write an algorithm to check prime number

Add two numbers

Write an algorithm to add two numbers

Begin

- 1: Declare variables num1, num2 and sum
- 2: Read values num1 and num2
- 3: Add num1 and num2 and assign result to sum sum←num1+num2
- 4: Print sum

End

Largest among 3 numbers

Write an algorithm to find the largest among three different numbers

```
Begin
```

```
    1: Declare variables a, b and c

    2: Read variables a, b and c

• 3: If a>b
       If a>c
           Display a is the largest number
       Else
           Display c is the largest number.
    Else
       If b>c
           Display b is the largest number.
       Else
           Display c is the greatest number.
```

17

End

Solve a Quadratic Equation

 Write an algorithm to find all roots of a quadratic equation ax²+bx+c=0

```
Begin
1: Declare variables a, b, c, D, x1, x2, rp and ip;
2: Calculate discriminant
      D←b2 - 4ac
3: If D ≥ 0
         r1 \leftarrow (-b + \sqrt{D})/2a
         r2←(-b-√D)/2a
         Display r1 and r2 as roots.
     Else
         Calculate real part and imaginary part
         rp←b/2a
         ip \leftarrow \sqrt{(-D)/2a}
         print rp+j(ip) and rp-j(ip) as roots
End
```

Help among Yourselves?

- Perspective Students (having CGPA above 8.5 and above)
- Promising Students (having CGPA above 6.5 and less than 8.5)
- Needy Students (having CGPA less than 6.5)
 - Can the above group help these students? (Your work will also be rewarded)
- You may grow a culture of collaborative learning by helping the needy students

Assistance

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- TA s would assist you to clear your doubts.
- You may leave me an email any time (email is the best way to reach me faster)

Thanks ...

