CRP Genarate. $(d \times$

$\mathbf{s} \leftarrow \mathrm{POK}$	\longrightarrow $\mathbf{h} \leftarrow \mathrm{FE.Gen}(\mathbf{s})$
	$\mathbf{e} \leftarrow \bar{\Psi}_{\alpha}$
	$\mathrm{DB} \leftarrow (\mathbf{s}, \mathbf{h}, \mathbf{e})$
	$\mathbf{r} \leftarrow \mathrm{TRNG}()$
	$seed_{\mathbf{a}'} \leftarrow TRNG()$
	$\mathbf{X} \leftarrow \mathrm{TRNG}()$
	$\mathbf{b'} \leftarrow \mathrm{LFSR}(\mathrm{seed}_{\mathbf{a'}})^T \mathbf{s} + \mathbf{X}^T \mathbf{e} + \mathbf{r} \lfloor q/2 \rfloor$

 $\mathbf{c}' \leftarrow (\operatorname{seed}_{\mathbf{a}'}, \mathbf{b}')$

 $DB \leftarrow (\mathbf{c'}, \mathbf{r})$

$$\tilde{\mathbf{s}} \leftarrow \text{POK}$$
 $\qquad \qquad \mathbf{h}, \mathbf{c}'$ $\qquad \qquad \mathbf{h}, \mathbf{c}', \mathbf{r} \leftarrow \text{DB}$

$$\mathbf{s} \leftarrow \mathrm{FE.Rec}(\tilde{\mathbf{s}}, \mathbf{h})$$

$$\tilde{\mathbf{r}} \leftarrow \mathrm{PUF}(\mathbf{c}', \mathbf{s})$$
 _____ accept if $\mathrm{HD}(\tilde{\mathbf{r}}, \mathbf{r}) < th$