

Amendment to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1-28. (Cancelled)

29. (Previously presented) A compound of the structure

wherein m is an integer between 1 and 10, inclusive; A and A¹ are L-amino acid residues such that the A in each repeating bracketed unit can be a different amino acid residue; the C bonded to B is in the L-configuration; the bonds between A and N, A¹ and C, and A¹ and N are peptide bonds; and each X¹ and X² is, independently, a hydroxyl group or a group capable of being hydrolyzed to a hydroxyl group at physiological pH.

30. (Previously presented) The compound of claim 29, wherein A and A¹ are, independently, L-proline or L-alanine residues.

31. (Previously presented) The compound of claim 29, wherein m is 1 or 2.

32. (Previously presented) The compound of claim 29, wherein X¹ and X² are hydroxyl groups.

33. (Previously presented) The compound of claim 29, wherein the compound has a binding or dissociation constant to DP-IV of at least 10^{-9} M, 10^{-8} M, or 10^{-7} M.
34. (Previously presented) A pharmaceutical composition comprising the compound of claim 29 and a pharmaceutically acceptable carrier or diluent.
35. (Previously presented) A compound of the structure:
 $[Z - \text{Ala}]_p - X - \text{Pro} - Y - \text{boroPro}$
wherein each Y, X and Z, independently, is any amino acid, and
wherein p is 0,1 or more than 1.
36. (Previously presented) The compound of claim 35, wherein Z is proline.
37. (Previously presented) The compound of claim 35, wherein p is 1.
38. (Previously presented) A compound of the structure:
 $[Z - \text{Pro}]_p - X - \text{Pro} - Y - \text{boroPro}$
wherein each Y, X and Z, independently, is any amino acid, and
wherein p is 0, 1 or more than 1.
39. (Previously presented) The compound of claim 38, wherein Z is proline.
40. (Previously presented) The compound of claim 38, wherein p is 0-3.
41. (Previously presented) The compound of claim 38, wherein p is 1.
42. (Currently amended) A compound of the structure:
Group I – Group II
wherein Group I is

wherein H represents a hydrogen; C represents a carbon; O represents an oxygen; N represents a nitrogen; each R, independently, is chosen from the group consisting of the R groups of an amino acid; each broken line, independently, represents a bond between N and the R group or absence of a bond, and when the broken line represents a bond, H' is absent; p is an integer between 1 and 4 inclusive;

and Group II is selected from the group consisting of

(i)

wherein T is selected from a group consisting of a group of the formula

(1)

wherein each D¹ and D², independently, is a hydroxyl group or a group which is capable of being hydrolysed to a hydroxyl group in aqueous solution at physiological pH;

(2) a group of the formula

wherein G is either H, fluorine (F) or an alkyl group containing 1 to 20 carbon atoms and optional heteroatoms which can be N, S (sulfur) or O; and

(3) a phosphonate group of the formula

wherein each J, independently, is O-alkyl, N-alkyl or alkyl comprising 1-20 carbon atoms and optionally heteroatoms which can be N, S or O; and

wherein each R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , and R^8 separately is a group which does not significantly interfere with site specific recognition of the inhibitory compound by DP-IV and allows a complex to be formed with DP-IV.

43. (Previously presented) The compound of claim 42, wherein Group I is
(1)

wherein H represents a hydrogen; C represents a carbon; O represents an oxygen; N represents a nitrogen; each R, independently, is chosen from the group consisting of the R groups of an amino acid; each broken line, independently, represents a bond between N and the R group or absence of a bond, and when the broken line represents a bond, H' is absent; p is an integer between 1 and 4 inclusive;

and Group II is

- (i)

wherein T is

(1)

wherein each D¹ and D², independently, is a hydroxyl group or a group which is capable of being hydrolysed to a hydroxyl group in aqueous solution at physiological pH; and

Y is R³—C—R⁴,

wherein each R¹, R², R³, and R⁴ separately is a group which does not significantly interfere with site specific recognition of the inhibitory compound by DP-IV and allows a complex to be formed with DP-IV.

44. (Currently amended) A method for inhibiting DP-IV activity in a mammal comprising administering to a mammal in need thereof an effective amount of the compound of claim 29, 35, 38, [[or]] 42, 45, or 47.

45. (Previously presented) A compound having the structure:

wherein each Y, X and Z, independently, is any amino acid, and
wherein p is 1.

46. (Previously presented) The compound of claim 45, wherein Z is proline.

47. (Previously presented) A compound having the structure:

[Z – Pro]_p – X – Pro – Y – boroPro

wherein each Y, X and Z, independently, is any amino acid, and
wherein p is 1, 2 or 3.

48. (Previously Presented) The compound of claim 47, wherein Z is proline.
49. (Previously Presented) The compound of claim 47, wherein p is 1.
50. (Previously Presented) The compound of claim 47, wherein p is 2.
51. (Previously Presented) The compound of claim 47, wherein p is 3.