Specification Document

Omkar Girish Kamath

November 24, 2022

Contents

1	\mathbf{Pro}	cessor	2
	1.1	Instruction Set	2
	1.2	Major Modules and Their Functions	3
		1.2.1 Program Counter	3
		1.2.2 Instruction Register	3
		1.2.3 Accumulator	3
		1.2.4 Decoder	3
		1.2.5 ALU	4
	1.3	Functioning of the processor	4
	1.4	Input Output Interface	5
	1.5	Timing Diagrams	5
2	Mer	nory	5
	2.1	Description	5
	2.2	I/O of the Memory device	6

1 Processor

1.1 Instruction Set

In this instruction syntax X=Not used, K=Constant, A=Instruction Address, P=Data Address

Table 1: Instruction Set of the Simple CPU

Opcode	Instruction	RTL
Load ACC kk	OOOO XXXX KKKKKKKK	ACC <- KK
Add ACC kk	0100 XXXX KKKKKKKK	ACC <- ACC + KK
And ACC kk	0001 XXXX KKKKKKKK	ACC <- ACC & KK
Sub ACC kk	O11O XXXX KKKKKKKK	ACC <- ACC - KK
Input ACC pp	1010 XXXX PPPPPPPP	ACC <- M[PP]
Output ACC pp	1110 XXXX PPPPPPPP	M[PP] <- ACC
Jump U aa	1000 XXXX AAAAAAA	PC <- AA
Jump Z aa	1001 OOXX AAAAAAA	IF Z=1 PC <- AA ELSE PC <- PC + 1
Jump C aa	1001 10XX AAAAAAA	IF C=1 PC <- AA ELSE PC <- PC + 1
Jump NZ aa	1001 01XX AAAAAAA	IF Z=O PC <- AA ELSE PC <- PC + 1
Jump NC aa	1001 11XX AAAAAAA	IF C=O PC <- AA ELSE PC <- PC + 1

Here '->' indicates updated with .

The processor has an extra cycle to save on hardware which would have been required for incrementing the PC. So the processor follows **fetch-decode-execute-increment** cycle. The processor uses a 1 GHz frequency clock.

1.2 Major Modules and Their Functions

1.2.1 Program Counter

Program Counter (PC): 8 bit register used to store the address in memory of the current instruction being executed.

1.2.2 Instruction Register

Instruction Register (IR): 16 bit register, updated at the end of the fetch phase with the instruction to be processed (decoded and executed).

1.2.3 Accumulator

8 bit register, a general purpose data register, providing data (operand) to be processed by the ALU and used to store any result produced. Note, we can only store one 8 bit value at a time on the processor, other data values will need to be buffered in external memory.

1.2.4 Decoder

It decodes the 16 bit instruction recieved, tracks the state of the processor and generates control signals based on the first two.

1.2.5 ALU

It is the arithmetic and logic unit, which can take in 1 or 2 8bit inputs and perform arithmetic and logic based operations on the operand.

1.3 Functioning of the processor

Step 1: reset, clear line pulsed to reset all flip-flop, initialising all registers to their default values. First fetch phases initiated, ADDR MUX selects PC i.e. the value 0, memory address 0 read, first instruction (INPUT) stored in IR.

Step 2: decode, opcode field decoded, instruction identified as an INPUT instruction, control-logic configures data paths to route absolute address (6)

stored in IR to address bus using ADDR MUX. Memory read, data at address 6 accessed (250), data driven onto data-in bus, routed through DATA MUX to input of ACC.

Step 3: execute, ACC updated with accessed data, at the end of this phase ACC = 250.

Step 4: increment, instruction completed, processor needs to increment PC to the address of the next instruction. Control-logic configures ALU to perform increment function, PC routed to ALU, value incremented and stored back into PC.

Step 5: fetch, instruction at address 1 read (ADD) and stored in IR.

1.4 Input Output Interface

Table 2: I/O interface of the processor

Signals	Type	Size	Active	Description
clk	input	1 bit	-	square wave used to main-
				tain synchronousity in the
				device
rst	input	1 bit	Low	resets the chip to a pre de-
				cided state
[15:0] d_in	input	16 bits	_	the instruction sent from
				memory
[7:0] adrs	output	8 bits	_	the address of the required
				instruction sent to memory
rw	output	1 bit	_	read write control signal
				sent to memory
[7:0] d_out	output	8 bits	_	output data from the pro-
				cessor

1.5 Timing Diagrams

2 Memory

2.1 Description

Size of RAM -> 4 Kilobytes

RAM used is Volatile BJT type Synchronous Static RAM.

Instruction length is $16\ bit$, maximum number of instructions and data than can be stored is 256 (address 0 to 255). Address length required is 8 bits.

2.2 I/O of the Memory device

Table 3: I/O of the Memory device

Signals	Type	Size	Active	Description
clk	input	1 bit	-	square wave used
				to maintain syn-
				chronousity in the
				device
rst	input	1 bit	Low	resets the memory to a
				pre decided state
[15:0] mem_in	input	16 bits	-	the data sent by chip
[7:0] adrs	input	8 bits	-	the address of the re-
				quired instruction
rw	input	1 bit	-	read write control signal
				sent to memory
[15:0] mem_out	output	16 bits	-	output data/instruction
				from the memory