

Lecture notes 2015-2016

Organization

Professors:

- ► Lectures: Nicolae Cleju (nikcleju@etti.tuiasi.ro)
- ► Laboratories: Daniel Matasaru (..@etti.tuiasi.ro)

Grades

Final grade = 0.75 Exam + 0.25 Lab

Time schedule

- ▶ 14 weeks of lectures (3h each)
- ▶ 14 weeks of laboratories (2h each)

Course structure

- 1. Chapter I: Discrete Information Sources
- 2. Chapter II: Discrete Transmission Channels
- 3. Chapter III: Source Coding
- 4. Chapter IV: Channel Coding

Bibliography

- 1. Elements of Information Theory, Valeriu Munteanu, Daniela Tarniceriu, Ed. CERMI 2007
- 2. Elements of Information Theory, Thomas M. Cover, Joy A. Thomas, 2nd Edition, Wiley 2006
- 3. *Information and Coding Theory*, Gareth A. Jones, J. Mary Jones, Springer 2000
- 4. Transmisia si codarea informatiei, lectures at ETTI (Romanian)

Basic notions of probability

- ▶ Random variable = the outcome of an experiment
- Distribution (probability mass function)
- Discrete distribution
- Alphabet

Basic properties

► Two independent events:

$$P(A \cap B) = P(A) \cdot P(B)$$

Block diagram of a communication system

Figure 1: Block diagram of a communication system

What is information?

Example:

- ▶ I tell you the following sentence: "your favorite football team lost the last match".
- Does this message carry information? How, why, how much?
- Consider the following facts:
 - the message carries information only because you didn't already know the result.
 - if you already known the result, the message is useless (brings no information)
 - since you didn't know the result, there were multiple results possible (win, equal or lose)
 - the actual information in the message is that lost happened, and not win or equal
 - if the result was to be expected, there is little information. If the result is highly unusual, there is more information in this message

Information source

- We will always consider information in a context similar to the above example.
- ► We will use terminology from probability theory to define information:
 - there is a probabilistic source that can produce a number of different events.
 - each event has a certain probability. We know all the probabilities beforehand.
 - at one time, an event is randomly selected according to its probability.
 - ▶ afterwards, a new message can be selected, and so on ==> a stream of messages is produced.
- ► The source is called an *information source* and the selected event is a *message*.
- ▶ A message carries the information that **it** happened, and not the other possible message events that could have been selected.
- ▶ The quantity of information is dependent in its probability.

Discrete memoryless source

- ➤ A discrete memoryless source (DMS) is an information source where the messages are **independent**, i.e. the choice of a message at one time does not depend on what were the previous messages
- ► Each message has a fixed probability. The set of probabilities is the *distribution* of the source.

$$S:\begin{pmatrix}s_1&s_2&s_3\\\frac{1}{2}&\frac{1}{4}&\frac{1}{4}\end{pmatrix}$$

- Properties:
 - Discrete: it can take a value from a discrete set (alphabet)
 - Complete: $\sum p(s_i) = 1$
 - Memoryless: succesive values are independent of previous values (e.g. successive throws of a coin)
- A message from a DMS is also called a random variable in probabilistics.

Examples

▶ A coin is a discrete memoryless source (DMS) with two messages:

$$S: \begin{pmatrix} coin_head & coin_tail \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

▶ A dice is a discrete memoryless source (DMS) with six messages:

$$S: \begin{pmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

▶ Playing the lottery can be modeled as DMS:

$$S: \begin{pmatrix} s_1 & s_2 \\ 0.9999 & 0.0001 \end{pmatrix}$$

Examples

▶ An extreme type of DMS containing the certain event:

$$S:\begin{pmatrix} s_1 & s_2 \\ 1 & 0 \end{pmatrix}$$

▶ Receiving an unknown bit (0 or 1) with equal probabilities:

$$S:\begin{pmatrix}0&1\\\frac{1}{2}&\frac{1}{2}\end{pmatrix}$$

Information

- When a DMS provides a new message, it gives out some new information, i.e. the information that a particular message took place.
- The information attached to a particular event (message) is rigorously defined as:

$$i(s_i) = -\log_2(p(s_i))$$

- Properties:
 - $i(s_i) \geq 0$
 - ▶ lower probability (rare events) means higher information
 - higher probability (frequent events) means lower information
 - ▶ a certain event brings no information: -log(1) = 0
 - an event with probability 0 brings infinite information (but it never happens..)

Entropy of a DMS

- ▶ We usually don't care about a single message. We are interested in a large number of them (think millions of bits of data).
- We are interested in the average information of a message from a DMS.
- ▶ Definition: the entropy of a DMS source S is the average information of a message:

$$H(S) = \sum_{k} p_{k}i(s_{k}) = -\sum_{k} p_{k}log_{2}(p_{k})$$

where $p_k = p(s_k)$ is the probability of message k.

The choice of logarithm

- Any base of logarithm can be used in the definition.
- ▶ Usual convention: use binary logarithm log₂(). H(S) measured in bits (bits / message)
- ▶ If using natural logarithm In(), H(S) is measured in *nats*.
- Logarithm bases can be converted to/from one another:

$$log_b(x) = \frac{log_a(x)}{log_a(b)}$$

Entropies using different logarithms differ only in scaling:

$$H_b(S) = \frac{H_a(S)}{\log_a(b)}$$

Examples

- ▶ Coin: H(S) = 1bit/message
- ▶ Dice: H(S) = log(6)bits/message
- Lottery: H(S) = -0.9999 log(0.9999) 0.0001 log(0.0001)
- ▶ Receiving 1 bit: H(S) = 1bit/message (hence the name!)

Interpretation of the entropy

All the following interpretations of entropy are true:

- ▶ H(S) is the average uncertainty of the source S
- ▶ H(S) is the average information of messages from source S
- ▶ A long sequence of N messages from S has total information $\approx N \cdot H(S)$
- ► H(S) is the minimum number of bits (0,1) required to uniquely represent an average message from source S

Properties of entropy

We prove the following properties of entropy:

- 1. $H(S) \ge 0$ (non-negative)
- 2. H(S) is maximum when all n messages have equal probability $\frac{1}{n}$. The maximum value is maxH(S) = log(n).
- 3. Diversfication of the source always increases the entropy

Example - Game

Game: I think of a number between 1 and 8. You have to guess it by asking yes/no questions.

- ▶ How much uncertainty does the problem have?
- ▶ How is the best way to ask questions? Why?
- What if the questions are not asked in the best way?
- On average, what is the number of questions required to find the number?

Example - Game v2

► Suppose I choose a number according to the following distribution:

$$S: \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

- On average, what is the number of questions required to find the number?
- What questions would you ask?
- What if the distribution is:

$$S: \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ 0.14 & 0.29 & 0.4 & 0.17 \end{pmatrix}$$

- ▶ In general:
 - ▶ What distribution makes guessing the number the most difficult?
 - ▶ What distribution makes guessing the number the easiest?

Information flow of a DMS

- ▶ Suppose that message s_i takes time t_i to be transmitted via some channel.
- ▶ Definition: the information flow of a DMS *S* is **the average information transmitted per unit of time**:

$$H_{\tau}(S) = \frac{H(S)}{\overline{t}}$$

where \overline{t} is the average duration of transmitting a message:

$$H(S) = \sum_{i} p_{i} t_{i}$$

Extended DMS

▶ Definition: the *n*-th order extension of a DMS S, Sⁿ is the source with messages has as messages all the combinations of n messages of S:

$$\sigma_i = \underbrace{s_j s_k ... s_l}_{n}$$

- ▶ If S has k messages, S^n has k^n messages
- ► Since *S* is DMS

$$p(\sigma_i) = p(s_j) \cdot p(s_k) \cdot ... \cdot p(s_l)$$

Extended DMS - Example

Examples:

$$S: \begin{pmatrix} s_1 & s_2 \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

$$S^2: \begin{pmatrix} \sigma_1 = s_1 s_1 & \sigma_2 = s_1 s_2 & \sigma_3 = s_2 s_1 & \sigma_4 = s_2 s_2 \\ \frac{1}{16} & \frac{3}{16} & \frac{3}{16} & \frac{9}{16} \end{pmatrix}$$

$$S^3: \begin{pmatrix} s_1 s_1 s_1 & s_1 s_1 s_2 & s_1 s_2 s_1 & s_1 s_2 s_2 & s_2 s_1 s_1 & s_2 s_1 s_2 & s_2 s_2 s_1 \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

Extended DMS - Another example

▶ Long sequence of binary messages:

010011001110010100...

► Can be grouped in bits, half-bytes, bytes, 16-bit words, 32-bit long words, and so on.

Property of DMS

► Theorem: The entropy of a *n*-th order extension is *n* times larger than the entropy of the original DMS

$$H(S^n) = nH(S)$$

Interpretation: grouping messages from a long sequence in blocks of n does not change total information (e.g. groups of 8 bits = 1 byte)

An example [memoryless is not enough]

▶ The distribution (frequencies) of letters in English:

letter	probability	letter	probability
A	.082	N	.067
B	.015	0	.075
C	.028	P	.019
D	.043	Q	.001
E	.127	R	.060
F	.022	S	.063
G	.020	T	.091
H	.061	U	.028
I	.070	V	.010
J	.002	W	.023
K	.008	X	.001
L	.040	Y	.020
M	.024	Z	.001

► Text from a memoryless source with these probabilities:

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL

(taken from Elements of Information Theory, Cover, Thomas)

► What's wrong? **Memoryless**

Sources with memory

- ▶ **Definition**: A source has memory of order *m* if the probability of a message depends on the last *m* messages.
- ▶ The last m messages = the **state** of the source (S_i) .
- ▶ A source with *n* messages and memory $m => n^m$ states in all.
- For every state, messages can have a different set of probabilities. Notation: $p(s_i|S_k) = \text{"probability of } s_i \text{ in state } S_k \text{"}.$
- Also known as Markov sources.

Example

- ▶ A source with n = 4 messages and memory m = 1
 - ▶ if last message was s₁, choose next message with distribution

$$S_1: \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ 0.4 & 0.3 & 0.2 & 0.1 \end{pmatrix}$$

▶ if last message was s₂, choose next message with distribution

$$S_2: \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ 0.33 & 0.37 & 0.15 & 0.15 \end{pmatrix}$$

 \triangleright if last message was s_3 , choose next message with distribution

$$S_3: \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ 0.2 & 0.35 & 0.41 & 0.04 \end{pmatrix}$$

▶ if last message was s4, choose next message with distribution

$$S_4: \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ 0.1 & 0.2 & 0.3 & 0.4 \end{pmatrix}$$

Transitions

▶ When a new message is provided, the source transitions to a new state:

$$S_i S_j S_k S_l$$
old state
$$S_i S_j S_k S_l$$
new state

▶ The message probabilities = the probabilities of transitions from some state S_u to another state S_v

Transition matrix

► The transition probabilities are organized in a **transition matrix** [T]

$$[T] = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1N} \\ p_{21} & p_{22} & \dots & p_{2N} \\ \dots & \dots & \dots & \dots \\ p_{N1} & p_{N2} & \dots & p_{NN} \end{bmatrix}$$

- $ightharpoonup p_{ij}$ is the transition probability from state S_i to state S_j
- ▶ *N* is the total number of states

Graphical representation

Example here

Entropy of sources with memory

► Each state S_k has a different distribution -> each state has a different entropy H(S_k)

$$H(S_k) = -\sum_i p(s_i|S_k) \cdot log(p(s_i|S_k))$$

Global entropy = average entropy

$$H(S) = \sum_{k} p_{k}H(S_{k})$$

where p_k = probability that the source is in state S_i (i.e. after a very long sequence of messages, how many times the source was in state S_k)

Ergodic sources

- Let $p_i^{(t)}$ = the probability that source S is in state S_i at time t.
- ▶ In what state will it be at time t+1? (after one more message) (probabilities)

$$[p_1^{(t)}, p_2^{(t)}, ... p_N^{(t)}] \cdot [T] = [p_1^{(t+1)}, p_2^{(t+1)}, ... p_N^{(t+1)}]$$

After one more message:

$$[p_1^{(t)}, p_2^{(t)}, ... p_N^{(t)}] \cdot [T] \cdot [T] = [p_1^{(t+2)}, p_2^{(t+2)}, ... p_N^{(t+2)}]$$

▶ In general, after *n* messages the probabilities that the source is in a certain state are:

$$[p_1^{(0)}, p_2^{(0)}, ... p_N^{(0)}] \cdot [T]^n = [p_1^{(n)}, p_2^{(n)}, ... p_N^{(n)}]$$

Ergodicity

▶ A source is called **ergodic** if every state can be reached from every state, in a finite number of steps.

Property of ergodic sources:

After many messages, the probabilities of the states become stationary (converge to some fixed values), irrespective of the initial probabilities.

$$\lim_{n\to\infty}[p_1^{(n)},p_2^{(n)},...p_N^{(n)}]=[p_1,p_2,...p_N]$$

Finding the stationary probabilties

After n messages and after n + 1 messages, the probabilties are the same:

$$[p_1, p_2, ...p_N] \cdot [T] = [p_1, p_2, ...p_N]$$

- Also $p_1 + p_2 + ... + p_N = 1$.
- => solve system of equations, find values.

Entropy of ergodic sources with memory

▶ The entropy of an ergodic source with memory is

$$H(S) = \sum_{k} p_k H(S_k) = -\sum_{k} p_k \sum_{i} p(s_i|S_k) \cdot log(p(s_i|S_k))$$

Example English text as sources with memory

(taken from Elements of Information Theory, Cover, Thomas)

Memoryless source, equal probabilities:

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

TIZIN ANDY TOBE SEACE CTISBE

- Memoryless source, probabilities of each letter as in English: ocro HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRI.
- ► Source with memory m = 1, frequency of pairs as in English:

 ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
 ACHIN DIL ONASIVE TUCOOWE AT TEASONABE FUSO
- ► Source with memory m = 2, frequency of triplets as in English:

 IN NO IST LAT WHEY CRATICT FROURE BERS GROCID
 PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
 REGOACTIONA OF CRE
- ► Source with memory m=3, frequency of 4-plets as in English: THEGENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE, ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG. (INSTATES CONS ERATION. NEVER ANY OF PUBLICAND TO THEORY, EVENTIAL CALLEGAND TO ELAST BENERATED IN WITH PIES AS IS WITH THE)

Chapter summary

- ▶ Information of a message: $i(s_i) = -log_2(p(s_i))$
- ► Entropy of a memoryless source: $H(S) = \sum_{k} p_{k} i(s_{k}) = -\sum_{k} p_{k} log_{2}(p_{k})$
- Properties of entropy:
 - 1. $H(S) \ge 0$
 - 2. Is maximum when all messages have equal probability $(H_{max}(S) = log(n))$
 - 3. Diversfication of the source always increases the entropy
- Sources with memory: definition, transitions
- Stationary probabilities of ergodic sources with memory: $[p_1, p_2, ...p_N] \cdot [T] = [p_1, p_2, ...p_N], \sum_i p_i = 1.$
- Entropy of sources with memory:

$$H(S) = \sum_{k} p_k H(S_k) = -\sum_{k} p_k \sum_{i} p(s_i|S_k) \cdot log(p(s_i|S_k))$$

What are they?