BOANSOITTEUTOPSLIPERSOARTIÉS NICO NETOVOORKT

Ficha extra

A ficha extra é constituída por 10 questões. As respostas certas valem os valores indicados. Respostas erradas descontam de acordo com as fórmulas de cotação.

Classificação Total: 12
Pergunta: 1 Cotação: 2 Classificação: 2
Considere o sistema de equações lineares nas variáveis x , y e z representado pela matriz $\begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & a & b \end{bmatrix}$.
Faça a discussão do sistema em função dos parâmetros ${f a}$ e ${f b}$. A resposta correta é:
O Sistema é determinado sse $a \neq 0$ e é indeterminado sse $a = 0$
\bigcirc O Sistema é possível sse $a \neq 0$ e é impossível sse $a = 0$
O Sistema é determinado sse a ≠ 0, é impossível sse a = 0 e b ≠ 0 e é indeterminado sse a = 0 e b = 0 ✓
\bigcirc O Sistema é determinado sse $a \neq 0$, é impossível sse $a = 0$ e $b = 0$ e é indeterminado sse $a = 0$ e $b \neq 0$
Pergunta: 2 Cotação: 2 Classificação: 2
Sejam \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 e \mathbf{v}_5 vetores não nulos de um espaço vectorial e \mathcal{L} { \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , \mathbf{v}_5 } o subespaço V por eles gerado. Admitindo que: $\mathbf{v}_2 \in \mathcal{L}\{\mathbf{v}_1\}$ $\mathbf{v}_1 + 3\mathbf{v}_2 + \mathbf{v}_3 = 0$ $\mathbf{v}_4 \notin \mathcal{L}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ $-2\mathbf{v}_1 - 3\mathbf{v}_2 + 3\mathbf{v}_3 + 2\mathbf{v}_5 = 0$ descubra qual a dimensão de V . O 5 O 3
Pergunta: 3 Cotação: 2 Classificação: 2
Considere o seguinte modelo de mobilidade da população numa dada região. Cada ano, 50% da população da cidade desloca-se para viver nos arredores. Por outro lado, anualmente, 45% da população que vive nos arredores passa a viver na cidade. Indique todas as afirmações verdadeiras.
A matriz de mobilidade da população da região em causa é dada por $\begin{pmatrix} 0.5 & 0.45 \\ 0.5 & 0.55 \end{pmatrix}$
Suponha que em 2011 a população de 1 000 000 de habitantes dessa região dividia-se em 300000 habitantes da cidade e 700000 habitantes dos arredores. A distribuição da população em 2014 será: 523837 pessoas na cidade e 476162 pessoas nos arredores.
□ O vector estacionário para a distribuição da população é dado por 52,6316% de população a residir na cidade e 47,3684% a residir nos arredores. □ Nenhuma
Pergunta: 4 Cotação: 2 Classificação: -0,67
Considere a aplicação linear T de \mathbb{R}^2 em \mathbb{R}^2 que transforma o paralelogramo da figura 1 no da figura 2, sendo cada triângulo levado no correspondente triângulo da mesma cor. Qual das seguintes matrizes é a matriz da transformação T?

Pergunta: 5 Cotação: 2 Classificação: 2

Considere a aplicação linear $\mathcal T$ de $\mathbb R^3$ em $\mathbb R^2$ que transforma o cubo unitário $C=\{\,x_1\stackrel{\rightarrow}{=}_1+x_2\stackrel{\rightarrow}{=}_2+x_3\stackrel{\rightarrow}{=}_3:x_1$, x_2 , $x_3\in[0,1]$ $\}$ na figura em baixo.

Tendo em conta que \mathcal{T} satisfaz $\mathbb{T} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, qual dos seguintes vectores é $\mathbb{T} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$?

$$\bigcirc \begin{pmatrix} 8 \\ 0 \end{pmatrix} \checkmark
\bigcirc \begin{pmatrix} 0 \\ 8 \end{pmatrix}
\bigcirc \begin{pmatrix} 8 \\ -5 \end{pmatrix}
\bigcirc \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

Pergunta: 6 Cotação: 2 Classificação: -0,67

Considere a transformação linear que tomando um vector de \mathbb{R}^2 o reflete relativamente ao eixo dos yy, seguidamente o roda $\frac{\pi}{3}$ no sentido dos ponteiros do relógio e finalmente o projecta ortogonalmente no eixo dos yy. Diga qual das seguintes matrizes é a matriz canónica da transformação linear.

$$\bigcirc \begin{bmatrix} 0 & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & 0 \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} 0 & \sqrt{3} \\ -\frac{\sqrt{3}}{2} & 0 \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} 0 & \frac{\sqrt{3}}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} 0 & -\frac{\sqrt{3}}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$$

Pergunta: 7 Cotação: 2 Classificação: 2

 $\mbox{Qual o determinante da matriz} \left(\begin{array}{cccc} 5 & 0 & 0 & 3 \\ 0 & -5 & 0 & 1 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & \alpha & \beta \end{array} \right) ?$

- Ο 125α 25αβ
- \bigcirc 25 $\beta \alpha$ + 125 α
- O 125α + 125β
- 125 α 125 β

Pergunta: 8 Cotação: 2 Classificação: 2

- O conjunto constitui uma base do espaco nulo da matriz A 0 1 -6
- 0 0 2 -8 -2
- \square O espaço das linhas de A tem dimensão 1.
- ☐ O espaço nulo de A tem dimensão 1.
- Nenhuma

Pergunta: 9 Cotação: 2

Classificação: -0,67

Considere o subespaço de \mathbb{R}^3 definido por $W=\{(x,y,z)\in\mathbb{R}^3:3y+4z=0\}$ e o produto interno usual em \mathbb{R}^3

Seja
$$\mathbf{v} = \begin{pmatrix} -1 \\ -3 \\ -4 \end{pmatrix}$$
, a distância de \mathbf{v} a \mathbf{W} é:

O 25

O 125 **0**5

Pergunta: 10 Cotação: 2 Classificação: 2

Seja o espaço linear \mathcal{P}_2 dos polinómios reais de variável real de grau menor ou igual a 2 e a transformação linear definida por $T: \mathcal{P}_2 \longrightarrow \mathcal{P}_2$ $f(t) \mapsto 2f''(t) - f'(t) + 2f(t)$ onde f'' representa a segunda derivada e f' representa a primeira derivada de f em ordem a f'.

A matriz canónica que representa T é dada por

A matriz canónica que
$$\bigcirc \begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 2 & -1 & 4 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 2 & 0 & 4 \\ 0 & 2 & -2 \\ 4 & -2 & 2 \end{pmatrix}$$

$$\bigcirc \begin{pmatrix} 2 & 0 & 4 \\ -2 & 2 & 0 \\ -1 & 2 & 0 \\ 4 & -2 & 2 \end{pmatrix}$$

Voltar