## A Replication of Carroll(1997)

Yusuf Suha Kulu, Jeongwon (John) Son, and Mingzuo Sun

## 1 Summary

This paper argues that the saving behaviour of a household is better described by the buffer stock version of the Life Cycle/Permanent Income Hypothesis (LC/PIH) than the traditional version of it. Buffer Stock Consumers set average consumption growth equal to average labor income growth, regardless of tastes. The buffer stock model predicts a higher marginal propensity to consume (MPC) out of transitory income, higher effective discount rate for future labor income, and a positive sign for the correlation between saving and expected labor income growth.

The finite horizon version of the model presented in the paper explains three emprical puzzles.

- Consumption/income parallel: Aggregate consumption parallels growth in income over periods of more than a few years.
- Consumption/income divergence: For individual households, consumption is far from current income. This implies the consumption/income parallel does not arise at the household level.
- Stability of the household age/wealth profile: The effects of the productivity growth slowdown after 1973 on the age/median-wealth profile and the extraordinarily high volatility of the household liquid wealth are explained.

The Traditional model is the following: Finite Horizon

$$c_t = \kappa_t [m_t + h_t] h_t = \sum_{i=t+1}^T R^{i-t} y_i \kappa_t = \frac{(1 - [R^{-1}(\beta R)^{1/\rho}])}{(1 - [R^{-1}(\beta R)^{1/\rho}]^{T-t+1})}$$
(1)

Infinite Horizon

$$c_t = \kappa_t [m_t + h_t] h_t = \sum_{i=t+1}^{\infty} R^{i-t} y_i \approx \frac{y_t}{r - g} \kappa = (1 - [R^{-1}(\beta R)^{1/\rho}])$$
 (2)

The Euler Equation in the buffer stock version of the model is the following:

$$1 = R\beta E_{t-1} \left[ \left\{ c_t \left[ R[m_{t-1} - c_{t-1}] / Gn_t + v_t \right] Gn_t / c_{t-1} \right\}^{-\rho} \right]$$
 (3)



Figure 1: Expected Consumption Growth as a Function of Cash on Hand

## 2 Appendix

|               | Agg Cons Growth Rate | Perm Inc Av Growth Rate | Cons Av Growth Rate | Agg Saving Rate | Av MPC   | Av Net Wealth | Target Net Wealth |
|---------------|----------------------|-------------------------|---------------------|-----------------|----------|---------------|-------------------|
| Base Model    | 0.020957             | 0.0148071               | 0.0149784           | 0.00626517      | 0.31582  | 0.34177       | 0.31377           |
| g = .04       | 0.0402904            | 0.0342252               | 0.0345081           | 0.00989084      | 0.414938 | 0.265945      | 0.246728          |
| DiscFac = .90 | 0.0208206            | 0.0148071               | 0.015143            | 0.00431013      | 0.477366 | 0.230806      | 0.214614          |

## References

Carroll, C. D. (1997). Buffer-stock saving and the life cycle/permanent income hypothesis. The Quarterly Journal of Economics, CXII, 1-55.