Determining When and Why to Use Univariate Analysis

Guillermo Fernández
DATA SCIENTIST

@guillermo_ai

Summary

Get used to univariate analysis techniques

Understand when and why to use them

Understand the insight we can get from each technique

Perform univariate analysis techniques with Python

Tracing a Knowledge Map

Univariate Analysis Goal

Summarize Observations

To characterize data

Numerically and Visually

To represent information

Types of Variables

Quantitative

Defined by numbers

Qualitative, Categorical or Nominal

Defined by labels

Chronological

Defined by time

Techniques Map Comparison Relationship Distribution What would you like to show? Composition

Sources:

http://www.storytellingwithdata.com https://visual.ly/blog/graphic-continuum https://extremepresentation.typepad.com/files/choosing-a-good-chart-09.pdf

Characterizing Data

George Udny Yule Conditions

Independent of Observer

Depend on All Values of Series

Value Must Have a Concrete Meaning

Easy to Compute

Not Sensitive to Random Processes

Measures of Central Tendency and Dispersion

Local Concentration

Mean, Median, Mode, Quantiles

Dispersion

Standard deviation, Variance

Shape

Skewness, Kurtosis

Mean

$$\bar{X} = \frac{\sum_{i}^{N} X_{i}}{N}$$

Median

$$M = \begin{cases} X_{p+1} & if \ total \ observations \ are \ 2p+1 \\ X_p & if \ total \ observations \ are \ 2p \end{cases}$$

Mode

$$M_0 = 3M - 2\bar{X}$$

Quantiles, quartiles and deciles

$$Q_1 > 25\%$$
 $D_1 > 10\%$
 $Q_2 > 50\%$ $D_2 > 20\%$
 $Q_3 > 75\%$ $D_3 > 30\%$
 $D_4 > 40\%$
 $D_5 > 50\%$
 $D_6 > 60\%$
 $D_7 > 70\%$
 $D_8 > 80\%$
 $D_9 > 90\%$

Measures of Dispersion

$$S = \sqrt{\frac{\sum_{i}^{N} (X_i - \bar{X})^2}{N}}$$

Variance =
$$s^2$$

Outliers

Skewness and Kurtosis

Demo

Learn different ways to compute measures of central tendency and dispersion with Python

Using Python packages

- Statistics
- Pandas
- Numpy
- Scipy Stats

Plot our first graph with Seaborn

Demo Tools

colab.research.google.com

Visualization Libraries

Univariate Distribution Plots

Histogram

Frequency Polygon

Density Plot

Types of Frequency Curves

Box Plot

Violin Plot

Violin Plot

Strip Plot

Swarm Plot

Demo

Learn how to plot univariate distribution charts with Python

Using Python packages

- Matplotlib
- Seaborn

Learn how to customize some simple graph aesthetics

Univariate Comparison Plots

Bar Diagram

Line Chart

Run Chart

Sparkline

Lag Plot

Circular Area Chart

Cartogram

Demo

Learn how to plot univariate comparison charts with Python

Using Python packages

- Matplotlib
- Seaborn
- Pandas
- Geopandas
- Geoplot

Learn how to customize some simple graph aesthetics

Univariate Composition Plots

Pie Chart

Waffle Chart

Tree Map

Waterfall Chart

Demo

Learn how to plot univariate composition charts with Python

Using Python packages

- Matplotlib
- Seaborn
- Pandas
- PyWaffle
- Squarify

Learn how to customize some simple graph aesthetics

Univariate Analysis Tests

Hypothesis Testing

Formulate the null hypothesis (accepted fact)

State alternate hypothesis (chance)

State the rejection region (alpha level)

Test if the observed scenario is statistically significant

Hypothesis Testing: T-test

ANOVA - Analysis of Variance

Ho:
$$\mu_A = \mu_B = \cdots = \mu_N$$

H₁: at least one mean is different from the others

Assumptions

Normality

Datasets must behave with a normal distribution

Homoscedasticity

Variance of datasets should be homogeneous

Independent Observations

Datasets must be independent from each other

Demo

Learn how to perfom a quick hypothesis and ANOVA tests

Using Python package

- Scipy

