

Project Summary

• In an assembly line for a factory or manufacturer, there is a robotic arm that is tasked with finding and moving selected pieces. We must build a vision system that recognizes the needed items even if they are occluded, or covered, by other objects and inform the arm of their locations.

Project/Subsystem Overview

Major Project Changes for 404

- Remaking dataset with new parts
- Reconstructing 2D Camera Subsystem

Project Timeline

	Sept 22	Oct 6	Oct 20	Nov 3	Nov 8	Nov 15
New parts ordered /received						
New dataset finished						
Error Detection / 2D Camera integration						
AI / 2D Camera integration						
AI / 3D Camera integration						
Total Project Integration						

Accomplished since 403	Ongoing progress/problems
	 convert working python code to working google collab code Setup raspberry pi camera and incorporate into code rework dataset with new parts

- I have to transfer from code in pycharm to google collab
- I have to train a new data set with new parts
- I have to connect the raspberry pi camera into the working google collab code
- Validate that trained dataset is 70% passing when

tested on new dataset

Accomplished since 403	Ongoing progress/problems
	 Rework the dataset with new parts. get camera code to raspberry pi. Get a overhead tripod for the camera.

- I'll have to move all my work from 403 to raspberry pi.
- I'll have to work with new parts that will make better results compare to the previous parts(bolts, nuts, screws) because of their size.

Object Classification Subsystem

Accomplished since 403	Ongoing progress/problems
	 Fix prediction errors Export trained dataset to google colab, expect memory issues connect ai to the localization camera subsystem

Machine Learning Subsystem

- After training subsystem, there is a good chance that every prediction will be the same result, such as 100% of guesses being "screw"
- Some trainings result in perfect predictions, having changed no parameters or dataset information.

Error Detection & Handling Subsystem

Accomplished since 403	Ongoing progress/problems
	 Implement a more efficient method to handle the errors Integrate this subsystem with the 2D camera subsystem to take live pictures and detect the errors

Error Detection & Handling Subsystem

- I have to come up with a way to better handle the parts/objects that are occluded
- Need to implement some sort of a csv file or a different method to log the errors
- Run the code with the new dataset to check if we run into a new type of error

Parts Ordering Status

- New PVC Parts (already acquired one of each, waiting on multiple of each)
- TriPods for 2D and 3D camera

Execution Plan

Thank You

Questions?