Logică pentru informatică - note de curs

Universitatea Alexandru Ioan Cuza, Iași Facultatea de Informatică Anul universitar 2023-2024

> Ștefan Ciobâcă Andrei Arusoaie Rodica Condurache Cristian Masalagiu

Cuprins

1	Intr	oducere	5		
2	Logica propozițională informală				
	2.1	Propoziții	7		
	2.2	Propoziții atomice	8		
	2.3	Conjuncții	8		
	2.4	Disjuncții	9		
	2.5	Implicații	9		
	2.6	Negațiile	11		
	2.7	Echivalențe	12		
	2.8	Conectorii logici	12		
	2.9	Ambiguități în limba română	12		
	2.10	Fișă de exerciții	13		
3	Sint	Sintaxa formală a logicii propoziționale 1			
	3.1	· · · · · · · · · · · · · · · · · · ·	15		
	3.2		16		
	3.3	9 ,	16		
	3.4		17		
	3.5		18		
	3.6		19		
	3.7		20		
	3.8		21		
	3.0		າາ		

Capitolul 1

Introducere

Dacă aritmetica este știința care studiază numerele și operațiile cu numere, logica este știința în care obiectul studiului este reprezentat de *propoziții* și de operații cu propoziții.

De exemplu, dacă în aritmetică observăm că suma a două numere pare este un număr par, în logică am putea observa că disjuncția a două propoziții adevărate este o propoziție adevărată.

Logica se găsește la intersecția filosofiei, matematicii și informaticii și a cunoscut cea mai mare dezvoltare începând cu anii 1950, datorită aplicațiilor numeroase în Informatică.

În acest curs, vom studia la nivel introductiv logica propozițională și logica de ordinul I.

Logica propozițională este extrem de simplă, dar conceptele pe care le studiem, metodele pe care le învățăm și problemele pe care le întâlnim în logica propozițională se pot generaliza la alte logici mai complexe. De asemenea, logica propozițională corespunde în mod fidel organizării interne la nivel abstract a calculatoarelor, în sensul în care circuitele electronice se pot modela ca formule din logica propozițională. Logica propozițională are o teorie bogată și interesantă din punct de vedere matematic (exemple: teorema de compactitate, teorema de interpolare a lui Craig). Problema satisfiabilității pentru logica propozițională are multe aplicații în informatică. Este deosebit de importantă atât din punct de vedere teoretic (fiind problema canonică NP-completă) cât și practic (cu aplicații în verificarea programelor, în verificarea circuitelor, în optimizare combinatorială ș.a.).

Logica de ordinul I este o extensie a logicii propoziționale și are de asemenea aplicații numeroase în informatică, dar și în matematică. De exemplu, toată matematica pe care ați învățat-o în gimnaziu/liceu se bazează pe o așa numită teorie din logica de ordinul I numită **ZFC** (teoria **Z**ermelo-**F**raenkel a mulțimilor, împreună cu axioma alegerii – Axiom of Choice). În Infor-

matică, aplicații ale logicii de ordinul I apar în domeniul complexității descriptive, în baze de date relaționale, în verificarea automată a hardware-ului și software-ului, ș.a. De asemenea, multe alte logici (de exemplu, logicile de ordin superior) au aplicații în teoria limbajelor de programare, în fundamentele matematicii, teoria tipurilor etc.

Capitolul 2

Logica propozițională informală

Logica propozițională este logica propozițiilor, conectate între ele prin conectori logici cum ar fi sau, și și non. În acest capitol, vom trece prin bazele logicii propoziționale.

2.1 Propoziții

O propoziție este o afirmație care este sau adevărată, sau falsă. Iată câteva exemple de propoziții:

- 1. Port o cămașă albastră;
- 2. Tu deții un laptop și o tabletă, dar nu un telefon inteligent;
- 3. 2+2=4 (Doi și cu doi fac patru);
- 4. 1 + 1 = 1 (Unu plus unu este 1);
- 5. $1+1 \neq 1$ (Unu cu unu nu fac 1);
- 6. Dacă 1 + 1 = 1, atunci Pământul este plat;
- 7. Toate numerele naturale sunt întregi;
- 8. Toate numere raționale sunt întregi.

Iată câteva exemple de expresii care nu sunt propoziții:

1. Roșu și negru (nu este o afirmație);

- 2. π (nu este o afirmație);
- 3. Plouă? (întrebare, nu afirmație);
- 4. Pleacă! (exclamație, nu afirmație);
- 5. x > 7 (aici avem un predicat care depinde de x; după ce fixăm o valoare pentru x, obținem o propoziție);
- 6. Această afirmație este falsă. (deși este o afirmație, nu este propoziție, deoarece nu este sau adevărată sau falsă: dacă ar fi adevărată, atunci ar fi și falsă și invers).

Câteodată nu este foarte clar dacă o afirmație este propoziție cu adevărat, sau nu este foarte clară valoarea ei de adevăr. De exemplu, suntem de acord că zăpada este albă în general, dar la fel de bine se poate susține și contrariul: de exemplu, există zăpadă neagră (pe stradă în țările subdezvoltate în timpul iernii), astfel încât valoarea de adevăr a afirmației zăpada este albă este pusă în discuție. Faptul că o afirmație este propoziție sau nu este mai mult o problemă de logică filosofică.

2.2 Propoziții atomice

Unele propoziții sunt atomice, în sensul în care nu pot fi descompuse în propoziții mai mici:

- 1. Port o cămașă albastră;
- 2. Tu deții un laptop;
- 3. 2+2=4 (Doi și cu doi fac patru).

2.3 Conjuncții

Unele propoziții sunt compuse din altele mai mici. De exemplu, propoziția afară plouă și eu sunt supărat este compusă din afară plouă și din sunt supărat, legate între ele prin și. Dacă două propoziții, φ și respectiv ψ , sunt legate printr-un și, propoziția rezultată, φ și ψ , se numește o conjuncție (conjuncția lui φ și ψ).

O conjuncție este adevărată dacă ambele părți componente sunt adevărate. De exemplu, propoziția afară plouă și eu sunt supărat este adevărată dacă atât propoziția afară plouă cât și propoziția sunt supărat sunt adevărate. În particular, din moment ce nu sunt supărat, această conjuncție este falsă.

O conjuncție nu conține neapărat cuvântul $\dot{s}i$ în mod explicit. De exemplu, propoziția afară plouă, dar eu am o umbrelă este de asemenea o conjuncție, iar părțile ei componente sunt afară plouă $\dot{s}i$ eu am o umbrelă. Aceste propoziții sunt legate prin conjuncția adversativă dar.

Exercițiul 1. Găsiți părțile componente ale conjuncției mă joc acasă și învăț la scoală.

Exercițiul 2. Dați un exemplu de o conjuncție falsă și un exemplu de o conjunctie adevărată.

2.4 Disjuncții

Disjuncțiile sunt propoziții legate între ele prin sau. De exemplu, afară plouă sau sunt supărat este o disjunctie a propozițiilor afară plouă si sunt supărat.

Exercițiul 3. Găsiți părțile componente ale disjuncției Voi cumpăra un laptop sau o tabletă. Atenție! Cele două părți componente trebuie să fie propoziții (anumite cuvinte din cele două părți componente pot să fie implicite și în consecință să nu apară în text).

O disjuncție este adevărată dacă cel puțin una din părțile sale componente este adevărată. De exemplu, disjuncția 7>8 sau 8>7 este adevărată, deoarece 8>7 este adevărată.

Acest înțeles al disjuncțiilor se numește sau inclusiv și este standard în matematică. Câteodată cuvântul sau este folosit în limbaj natural în sensul de sau exclusiv. De exemplu, în propoziția albul sau negrul câștigă într-un joc de go, cuvântul sau are înțeles de sau exclusiv. Înțelesul este că sau albul câștigă, sau negrul, dar nu amândoi simultan (este exclusă opțiunea să fie ambele adevărate în același timp).

În continuare, prin disjuncție vom înțelege $sau\ inclusiv$ (interpretarea standard în matematică).

Exercițiul 4. Dați un exemplu de o disjuncție falsă și un exemplu de o disjuncție adevărată.

Exercițiul 5. Când este disjuncția φ sau ψ falsă (în funcție de valorile lui φ și ψ)?

2.5 Implicații

Implicațiile sunt propoziții de forma $dacă \varphi \ atunci \psi$. Propoziția φ se numește antecedent al implicației, iar propoziția ψ se numește consecvent (sau concluzie) al implicației.

Un exemplu de implicație este dacă trec la Logică, dau o petrecere. Antecedentul este trec la Logică, iar concluzia este dau o petrecere. Când este o implicație adevărată/falsă? O implicație este falsă dacă și numai dacă antecedentul este adevărat, dar consecventul este fals. Să presupunem că trec la Logică și că totuși nu dau o petrecere. Atunci implicația dacă trec la Logică, dau o petrecere, în ansamblul său, este falsă (antecedentul este adevărat, dar consecventul fals).

Înțelesul unei implicații merită o discuție mai amănunțită, deoarece poate fi contraintuitiv. Implicațiile, așa cum apar în matematică, pot fi diferite de implicațiile pe care le folosim în viața de zi cu zi. În viața de zi cu zi, când spunem dacă trec la logică, dau o petrecere, înțelegem că avem o legătura de cauzalitate între faptul de a trece la Logică și faptul de a da o petrecere. Alte exemple de astfel de legătură de cauzalitate: dacă am bani, cumpăr o mașină sau dacă mă ajuți, te ajut. În limbajul de zi cu zi, nu ne-am gândi niciodată să conectăm două propoziții printr-o implicație dacă cele două propoziții nu au legătură de cauzalitate între ele. De exemplu, propoziția dacă pământul este rotund, atunci 2 + 2 = 4 nu ar avea sens (deși este adevărată).

Implicația folosită în matematică se numește *implicație materială*. Valoarea de adevăr a unei implicații depinde doar de valorile de adevăr ale părților componente (antecedentul și consecventul), nu și de legătura de cauzalitate dintre ele. Acest înțeles al implicației materiale nu corespunde tot timpul cu înțelesul din limbajul natural (e.g., limba română), dar practica arată că este singurul înțeles rezonabil în matematică (și informatică).

În particular, atât propoziția dacă pământul este plat, atunci 2+2=5, cât și propoziția dacă pământul este plat, atunci 2+2=4 sunt adevărate, deoarece antecedentul este fals.

Exercițiul 6. Care sunt valorile de adevăr ale propozițiilor dacă 2 + 2 = 4, atunci Pământul este plat i dacă 2 + 2 = 5, atunci Pământul este plat?

Valoarea de adevăr a implicației $dacă \varphi$, $atunci \psi$ depinde doar de valorile de adevăr ale antecedentului, φ , și consecventului, ψ , și este prezentată în următorul tabel de adevăr:

arphi	ψ	dacă φ , atunci ψ
fals	fals	$adevreve{a}rat$
fals	$adev reve{a}rat$	$adevreve{a}rat$
$adev reve{a} rat$	fals	fals
$adevreve{a}rat$	$adevreve{a}rat$	$adevreve{a}rat$

Următorul exemplu arată că tabelul de adevăr de mai sus este singura intrepretare rezonabilă a implicației. Sunteți cu siguranță de acord că orice număr natural este număr întreg. Altfel spus, propoziția pentru orice număr x, dacă x este număr natural, atunci x este număr intreg este adevărată. În

particular veți fi de acord că propoziția este adevărată în cazurile particulare x = -10, x = 10 și x = 1.2 (din moment ce este vorba despre *orice număr x*).

Obținem cazurile particulare dacă -10 este număr natural, atunci -10 este număr întreg, dacă 10 este număr natural, atunci 10 este număr întreg și dacă 1.2 este număr natural, atunci 1.2 este număr întreg., care trebuie toate să fie adevărate. Aceste cazuri particulare exemplifică rândurile 2, 4 și 1 ale tabelului de adevăr de mai sus (de obicei, studenții nu au încredere în rândul 2). Cât despre a treia linia, o propoziție de forma dacă φ , atunci ψ , unde φ este adevărată, dar ψ este falsă, nu poate fi decât falsă. Altfel, ar trebui să acceptăm ca fiind adevărate propoziții cum ar fi Dacă 2+2=4, atunci 2+2=5. (antecedentul, 2+2=4, este adevărat, consecventul, 2+2=5, este fals).

Unele implicații pot fi relativ dificil de identificat. De exemplu, în propoziția trec la Logică doar dacă învăț, antecedentul este (împotriva aparențelor) trec la Logică, iar consecventul este învăț. Atenție! Propoziția de mai sus nu are același înțeles cu dacă învăț, trec la Logică.

Atenție! În propozițiile de forma trec la Logică doar dacă învăț sau trec la Logică numai dacă învăț, antecedentul este trec la Logică, iar consecventul este învăț. Aceste două propoziții nu au același înțeles cu propoziția dacă învăț, atunci trec la Logică.

Implicațiile în limba română pot câteodată să nu folosească șablonul dacă ... atunci De exemplu, sensul cel mai rezonabil al propoziției trec la Logică sau renunț la facultate (aparent o disjuncție), este că dacă nu trec la Logică, renunț la facultate (implicație). Din fericire, cele două propoziții sunt echivalente, într-un sens pe care îl vom studia în cursurile următoare.

2.6 Negațiile

O propoziție de forma nu este adevărat $c\breve{a}$ φ (sau pur și simplu nu φ) se numește negația lui φ . De exemplu, nu $plou\breve{a}$ este negația propoziției $plou\breve{a}$. Valoarea de adevăr a negației unei propoziții φ este opusul valorii de adevăr al propoziției φ . În momentul în care scriu acest text, propoziția $plou\breve{a}$ este falsă, și deci propoziția nu $plou\breve{a}$ este adevărată.

Exercițiul 7. Dați un exemplu de o propoziție falsă care folosește atât o negație, cât și o conjuncție.

2.7 Echivalențe

O propoziție de forma φ dacă și numai dacă ψ se numește echivalență sau dublă implicație. O astfel de propoziție, în ansamblul său, este adevărată dacă φ și ψ au aceeași valoare de adevăr (ambele false sau ambele adevărate).

De exemplu, în momentul în care scriu acest text, propoziția *plouă dacă și numai dacă ninge* este adevărată. De ce? Deoarece atât propoziția *plouă* cât și propoziția *ninge* sunt false.

Exercițiul 8. Care este valoarea de adevăr a propoziției Numărul 7 este impar dacă și numai dacă 7 este număr prim?

Echivalențele sunt, din punct de vedere semantic, conjuncția a două implicații: φ dacă și numai dacă ψ transmite aceeași informație cu

$$\underbrace{\varphi \ dac\check{a} \ \psi}_{implicația \ invers\check{a}} \quad \underbrace{\sharp i \ \ \underbrace{\varphi \ numai \ dac\check{a} \ \psi}_{implicația \ direct\check{a}}.$$

Propoziția φ dacă ψ este aceeași cu dacă ψ , atunci φ (doar că are altă topică). Propoziția φ numai dacă ψ are același înțeles cu φ doar dacă ψ și cu dacă φ , atunci ψ , după cum am discutat în secțiunea referitoare la implicații.

2.8 Conectorii logici

Cuvintele/expresiile *și*, *sau*, *dacă-atunci*, *doar dacă*, *non*, *dacă-și-numai-dacă* (și altele similare) sunt numite *conectori logici*, deoarece pot fi folosite pentru a conecta propozitii mai mici pentru a obtine propozitii mai mari.

Atenție! O propoziție este *atomică* în logica propozițională dacă nu poate fi despărțită în propoziții mai mici separate de conectorii logici discutați mai sus. De exemplu, propoziția *orice număr natural este și număr întreg* este o propoziție atomică (în logica propozițională).

Aceeași propoziție nu mai este neapărat atomică într-o altă logică mai bogată. De exemplu, în logica de ordinul I (pe care o vom studia în partea a doua a cursului), avem doi conectori suplimentari numiți cuantificatori. În logica de ordinul I, propoziția orice număr natural este și număr întreg nu este atomică.

2.9 Ambiguități în limba română

Am prezentat mai sus limbajul logicii propoziționale: propoziții atomice conectate prin *și*, *sau*, *non* etc. Până în acest moment, am folosit limba română.

Totuși, limba română (și orice alt limbaj natural) nu este potrivită pentru scopul nostru din cauza ambiguităților.

Iată exemple de propoziții ambigue:

- 1. Ion și Maria sunt căsătoriți (înțelesul 1: între ei; înțelesul 2: căsătoriți, dar posibil cu alte persoane);
- 2. Văd negru (înțeles 1: sunt supărat; înțeles 2: mă simt rău; înțeles 3: nu este lumină în jur etc.);
- 3. Trimit mesajul lui Ion (înțeles 1: mesajul este al lui Ion și eu îl trimit, nu se știe unde; înțeles 2: am un mesaj și îl trimit către Ion);
- 4. *Nu vorbesc și mănânc* (înțeles 1: neg faptul că și vorbesc și mănânc; înțeles 2: nu vorbesc, dar mănânc).

Astfel de ambiguități sunt cel puțin neplăcute dacă scopul nostru este să determinăm valoarea de adevăr a unei propoziții (dacă nici măcar nu suntem siguri ce înseamnă propoziția). Pentru peste 2000 de ani, logica a lucrat cu limbaj natural. Nevoia de a introduce un limbaj formal, simbolic, fără ambiguități, a apărut în secolele XVIII - XIX, odată cu dezvoltarea logicii matematice. În logica simbolică/formală, pe care urmează să o studiem, vom lucra cu un limbaj artificial, numit limbaj formal, care este proiectat de o asemenea manieră încât să nu conțină nicio ambiguitate.

În fapt, primul limbaj formal pe care îl vom studia va fi limbajul formal al logicii propoziționale (pe scurt, logica propozițională).

2.10 Fisă de exercitii

Exercițiul 9. Stabiliți care dintre următoarele expresii sunt propoziții:

- 1. Tu ai un laptop.
- 2. Zăpada este albă.
- 3. Zăpada nu este albă.
- 4. Tatăl meu merge la servici și eu merg la școală.
- 5. Afară plouă, dar eu am umbrelă.
- 6. Mâine va ploua sau nu va ploua.
- 7. Dacă obțin notă de trecere la logică, voi sărbători.
- 8. 2+2=4. (Doi plus doi egal cu 4.)

- 9. Rosu și Negru.
- 10. π .
- 11. Plouă?
- 12. Hai la pescuit!
- 13. x este mai mare decât 7.
- 14. Această afirmație este falsă.

Exercițiul 10. Pentru toate propozițiile identificate, stabiliți dacă sunt propoziții atomice sau compuse, iar dacă sunt compuse, stabiliți dacă sunt conjuncții, disjuncții, implicații, negații, echivalențe.

Exercițiul 11. Stabiliți dacă propozițiile de mai jos sunt propoziții atomice sau compuse, iar dacă sunt compuse, stabiliți tipul acestora (conjuncții, disjuncții, implicații, negații, echivalențe). Pentru fiecare propoziție compusă, discutați care sunt valorile de adevăr în funcție de valorile de adevăr ale componentelor.

- 1. Am mâncat atât de mult, încât mi-a fost rău.
- 2. Nu am rochie, nici pantofi.
- 3. Ma întorc acasă sau la amicul meu.
- 4. Merg afară dacă nu plouă.
- 5. Mă duc la el doar dacă nu mă ascultă.
- 6. Dacă nu merg la pescuit atunci soarele nu este rotund.
- $7.\,$ Dacă soarele nu este rotund atunci merg la pescuit.

Exercițiul 12. Reformulați exemplele de propoziții din Secțiunea 2.9 astfel încât ambiguitățile să fie evitate. Puteți să alegeți oricare înțeles.

Capitolul 3

Sintaxa formală a logicii propoziționale

În continuare, vom studia limbajul formal al logicii propoziționale.

Prin sintaxă înțelegem, în general, un ansamblu de reguli pentru scrierea corectă. După cum am promis în capitolul anterior, în acest capitol vom dezvolta un limbaj artificial, pe care îl vom numi logica propozițională formală (sau, pe scurt, doar logica propozițională). Sintaxa formală a logicii propoziționale se referă la regulile de scriere pentru acest limbaj.

3.1 Noțiunea de alfabet în informatică

În contextul informaticii, prin *alfabet* se înțelege o mulțime. Elementele unui alfabet se numesc *simboluri*. De cele mai multe ori, alfabetul este o mulțime finită (dar nu în cazul logicii propozitionale).

Care este diferența dintre o mulțime și un alfabet? A priori, niciuna. Contează intenția – ce vom face cu elementele mulțimii/alfabetului mai departe. Folosim elementele unui alfabet pentru a crea *cuvinte*. Un *cuvânt* peste un alfabet este o secvență de simboluri din alfabet.

Exemplul 13. Fie alfabetul $X = \{0,1\}$. Sirurile/secvențele de simboluri 001010, 101011 și 1 sunt exemple de cuvinte peste alfabetul X.

Cuvântul vid, format din 0 simboluri ale alfabetului este notat de obicei cu $\varepsilon.$

3.2 Alfabetul logicii propoziționale

Limbajul logicii propoziționale este format din *formule propoziționale*, care modelează propoziții din logica propozițională, propoziții despre care am discutat în capitolul anterior.

Formulele propoziționale sunt cuvinte peste alfabetul logicii propoziționale (anumite cuvinte sunt formule; nu toate).

Alfabetul logicii propoziționale este format din reuniunea următoarelor multimi:

- 1. $A = \{p, q, r, p', q_1, \ldots\}$, multimea variabilelor propozitionale;
- 2. $\{\neg, \land, \lor\}$, multimea conectorilor logici;
- 3. {(,)}, mulțimea simbolurilor auxiliare (un simbol pentru paranteză deschisă și un simbol pentru paranteză închisă).

Astfel, mulțimea $L = A \cup \{\neg, \land, \lor\} \cup \{(,)\}$ este alfabetul logicii propoziționale. Iată exemple de cuvinte peste mulțimea L:

```
    1. ))p ∨ ∧;
    2. ∨ ∨ ¬(p);
    3. p;
    4. ppp;
    5. ¬(p ∨ q).
```

În cele ce urmează vom vedea ca doar anumite cuvinte se numesc formule propoziționale. Unii autori folosesc termenul de well-formed formula sau wff, dar în aceste note de curs vom utiliza doar noțiunea de formulă.

De exemplu, ultimul cuvânt de mai sus, $\neg(p \lor q)$, este o formulă a logicii propoziționale, dar al doilea cuvânt, $\lor \lor \neg(p)$, nu este formulă. Următoarea definiție surprinde cu precizie care cuvinte sunt formule și care cuvinte nu sunt formule propoziționale.

3.3 Formule propoziționale

Definiția 14 (Mulțimea formulelor propoziționale, notată \mathbb{LP}). *Mulțimea* \mathbb{LP} (mulțimea formulelor propoziționale) este cea mai mică mulțime de cuvinte peste alfabetul logicii propoziționale care satisface următoarele proprietăți:

- Cazul de Bază. Orice variabilă propozițională, văzută ca un cuvânt de lungime 1, este în multimea LP;
- Cazul Inductiv 1. Dacă $\varphi \in \mathbb{LP}$, atunci $\neg \varphi \in \mathbb{LP}$ (sau: dacă cuvântul φ este o formulă propozițională, atunci și cuvântul care începe cu simbolul \neg și continuă cu simbolurile din φ este formulă propozițională);
- Cazul Inductiv 2. Dacă $\varphi_1, \varphi_2 \in \mathbb{LP}$, atunci $(\varphi_1 \wedge \varphi_2) \in \mathbb{LP}$ (sau: ...-exercitiu pentru acasă);
- Cazul Inductiv 3. Dacă $\varphi_1, \varphi_2 \in \mathbb{LP}$, atunci $(\varphi_1 \vee \varphi_2) \in \mathbb{LP}$ (sau: ...-exercițiu pentru acasă).

Iată câteva exemple de elemente ale mulțimii LP:

Iată exemple de cuvinte care nu sunt în \mathbb{LP} :

$$pp, \qquad q\neg q, \qquad q \wedge \neg p, \qquad p+q.$$

Definiția mulțimii \mathbb{LP} este un exemplu de definiție inductivă. Astfel de definiții sunt foarte importante în informatică și este obligatoriu să ajungem să le înțelegem foarte bine. Într-o definiție inductivă, există de obicei unul sau mai multe cazuri de bază, care definesc cele mai mici elemente ale mulțimii (în cazul nostru, variabilele propoziționale). Cazurile inductive arată cum se pot construi elemente mai mari pornind de la alte elemente mai mici, despre care știm deja că sunt în mulțime. Alt element important este restricția de minimalitate (subliniată în definiția de mai sus), care indică că **doar** elementele care pot fi construite apelând la cazurile de bază și la cazurile inductive fac parte din mulțime. Această restricție de minimalitate asigură unicitatea mulțimii (nu există o altă mulțime cu cele 4 proprietăți și care să fie minimală) și ne permite să arătăm ca anumite elemente nu fac parte din mulțime (cele care nu pot fi construite prin cazurile de bază/inductive).

De exemplu, cuvântul pp nu este în mulțimea \mathbb{LP} , deoarece nu poate fi construit prin aplicarea niciunui caz dintre cele 4 (cazul de bază sau cele trei cazuri inductive).

Cum arătăm că un cuvânt face parte din 3.4 \mathbb{LP}

Putem arăta că un cuvânt face parte din LP explicând cum se pot aplica pasul de bază și pașii inductivi. Iată o demonstrație a faptului că $\neg(p \lor q) \in \mathbb{LP}$:

- 1. $p \in \mathbb{LP}$ (din pasul de bază, deoarece $p \in A$);
- 2. $\mathbf{q} \in \mathbb{LP}$ (din pasul de bază, deoarece $\mathbf{q} \in A$);
- 3. $(p \lor q) \in \mathbb{LP}$ (din pasul inductiv 3, unde $\varphi_1 = p$ și $\varphi_2 = q$);
- 4. $\neg(p \lor q) \in \mathbb{LP}$ (din pasul inductiv 1, unde $\varphi = (p \lor q)$).

Putem rearanja lista de mai sus într-un arbore de construcție adnotat echivalent pentru formula $\neg(p \lor q)$:

$$\frac{ \overline{p \in \mathbb{LP}} \ pas \ de \ baz \breve{a} }{ (p \lor q) \in \mathbb{LP} } \ pas \ de \ baz \breve{a} } \ pas \ inductiv \ 3 }{ \neg (p \lor q) \in \mathbb{LP} } \ pas \ inductiv \ 1$$

Vom vedea acest tip de notatie de mai multe ori în Informatică si de aceea e important să ne familiarizăm cu ea. Fiecare linie orizontală se numește inferentă; sub fiecare astfel de linie este concluzia inferenței și deasupra ei sunt ipotezele (0, 1 sau mai multe ipoteze). Inferențele cu 0 ipoteze se numesc axiome. Lângă fiecare linie se găsește numele regulii care a fost aplicată.

Dacă renunțăm la adnotații, obținem următorul arbore de construcție pentru formula $\neg(p \lor q)$:

$$\frac{\frac{-}{p} \quad q}{(p \lor q)}$$
$$\frac{\neg (p \lor q)}{\neg (p \lor q)}$$

Este ușor de văzut că un cuvânt aparține LP dacă și numai dacă există un arbore de construcție pentru acel cuvânt.

Conectorul principal al unei formule 3.5

O formulă care constă doar dintr-o variabilă propozițională (cum ar fi formula p sau formula q) se numeste formulă atomică. Acest lucru explică de ce multimea A a variabilelor propozitionale se numeste A (A, de la atomic).

Formulele mai complexe, cum ar fi $\neg p$ sau $(p \lor q)$, se numesc *compuse* (sau, în engleză, *moleculare*).

Orice formulă compusă are un conector principal, care este dat de ultima inferență din arborele său de construcție. De exemplu, conectorul principal al formulei $\neg(p \lor q)$ este \neg (negația), în timp ce conectorul principal al formulei $(\neg p \lor q)$ este \lor (disjuncția). Numim formulele al căror conector principal este \land conjuncții. Similar, dacă conectorul principal al unei formule este \lor , formula este o disjuncție, iar dacă conectorul principal este \neg , atunci este o negație.

Orice formulă compusă are un conector principal.

3.6 Cum arătăm că un cuvânt nu face parte $\dim \mathbb{LP}$

Este puțin mai dificil (sau, mai bine spus, lung) să arătăm că un cuvânt nu face parte din \mathbb{LP} .

Dacă cuvântul nu este peste alfabetul corect, așa cum este cuvântul cu trei simboluri p+q (care folosește simbolul străin +), atunci este evident că acesta nu face parte din \mathbb{LP} , deoarece \mathbb{LP} conține doar cuvinte peste alfabetul logicii propoziționale.

Dacă cuvântul este peste alfabetul corect și vrem să arătăm că nu face parte din \mathbb{LP} , atunci trebuie să ne folosim de condiția de minimalitate. Iată cum putem arăta că $(p\neg q) \notin \mathbb{LP}$:

Să presupunem, prin reducere la absurd, că $(p\neg q) \in \mathbb{LP}$. În acest caz, din condiția de minimalitate, faptul că $(p\neg q) \in \mathbb{LP}$ trebuie să poată fi explicat prin una dintre cele patru reguli de formare (pasul de bază sau unul dintre cei trei pași inductivi).

Dar nu putem aplica cazul de bază pentru a arăta că $(p\neg q) \in \mathbb{LP}$, deoarece $(p\neg q) \notin A$.

De asemenea, nu putem aplica nici cazul inductiv 1, deoarece nu există nicio formulă φ astfel încât (p¬q) = ¬ φ (orice formulă $\varphi \in \mathbb{LP}$ am alege, primul simbol al părții stângi ar fi (, iar primul simbol al părții drepte ar fi

Nu putem aplica nici cazul inductiv 2, deoarece nu există formulele $\varphi_1, \varphi_2 \in \mathbb{LP}$ astfel încât $(p \neg q) = (\varphi_1 \land \varphi_2)$ (oricum am alege $\varphi_1, \varphi_2 \in \mathbb{LP}$, cuvântul din partea stângă nu conține simbolul \land , în timp ce cuvântul din dreapta îl conține).

Dintr-un motiv similar, nu putem aplica nici cazul inductiv 3.

Din moment ce niciunul dintre cele patru cazuri nu funcționează, presupunerea noastră este falsă, și deci $(p\neg q) \notin \mathbb{LP}$.

3.7 Proprietatea de citire unică

Definiția \mathbb{LP} are o proprietate importantă, care se numește *proprietatea de citire unică*:

Teorema 15 (Proprietatea de citire unică a formulelor propoziționale). Pentru orice formulă $\varphi \in \mathbb{LP}$, există un unic arbore de construcție.

Proprietatea de mai sus se mai numește și neambiguitatea gramaticii logicii propoziționale. Demonstrarea proprietății nu face parte din acest curs. Totuși, trebuie să înțelegem semnificația ei. În acest sens, vom considera o altă posibilă definiție (greșită) pentru LP și vom arată în ce sens această definiție alternativă este ambiguă.

Începutul unei definiții gresite pentru LP.

Să ne imaginăm că pasul inductiv 3 ar fi:

:

. • Cazul Inductiv 3. Dacă $\varphi_1, \varphi_2 \in \mathbb{LP},$ atunci $\varphi_1 \lor \varphi_2 \in \mathbb{LP};$

:

Singura diferență față de definiția corectă este că nu putem paranteze în jurul disjuncțiilor. Cu această definiție alternativă, fictivă, a lui \mathbb{LP} , am avea că $\neg p \lor q \in \mathbb{LP}$. Totuși, acest cuvânt ar avea doi arbori de construcție diferiți:

$$\frac{\frac{p}{p} \quad q}{p \lor q} \qquad \frac{\frac{p}{p}}{\neg p} \quad \frac{q}{q}$$

$$\frac{\neg p \lor q}{\neg p \lor q}$$

O astfel de ambiguitate ar fi deosebit de neplăcută pentru scopurile noastre, deoarece nu am putea ști dacă $\neg p \lor q$ este o disjuncție (ca în arborele de construcție din dreapta) sau o negație (ca în arborele de construcție din stânga). De fapt,

evitarea unor asemenea ambiguități sintactice a fost unul dintre motivele pentru care am părăsit sfera limbajului natural și am început să studiem logica formală.

Sfârșitul unei definiții greșite pentru LP.

După această incursiune, ar trebui să fie clar de ce teorema de citire unică este netrivială (ca un exercițiu pentru cei cu înclinare spre matematică, încercați să o demonstrați). De asemenea, ar trebui să fie clar de ce citirea unică este o proprietate esențială a definiției formulelor: ne arată că orice formulă propozițională poate fi citită într-un singur fel; cu alte cuvinte, orice formulă propozițională nu are ambiguități sintactice.

3.8 Limbaj-obiect și meta-limbaj

O particularitate a logicii este că studiem propoziții (analizăm, de exemplu, valoarea lor de adevăr), iar pentru a efectua studiul, ne folosim de raționament care, în mod natural, sunt și ele alcătuite din propoziții. De exemplu, în cursul studiului nostru, am putea efectua următorul raționament:

Propoziția nu merg la școală este falsă dacă propoziția merg la școală este adevărată.

De observat că afirmațiile care fac obiectul studiului (nu merg la școală și merg la școală) sunt propoziții, dar și întreaga afirmație Propoziția nu merg la școală este falsă dacă propoziția merg la școală este adevărată este la rândul ei o propoziție. Astfel, pare ca facem un raționament circular, în care studiem chiar metoda de studiu.

Această dificultate aparentă nu apare și în cazul aritmeticii, de exemplu. În aritmetică, studiem numere și operații peste numere, iar studiul îl facem folosind propozitii.

Dificultatea își are rezolvarea prin separarea strictă a limbajului obiect de meta-limbaj. Limbajul obiect este limbajul pe care îl studiem (\mathbb{LP}), iar meta-limbajul este limbajul pe care îl folosim pentru a efectua studiul (limba română).

Limbajul-obiect este limbajul care face obiectul studiului (în cazul nostru, logica propozițională). Meta-limbajul este limbajul pe care îl folosim pentru a comunica despre obiectul studiului (în cazul nostru, limba română).

În acest curs, pentru a diferenția ușor între cele două, facem următoarea convenție: toate elementele din limbajul-obiect le scriem cu font sans-serif albastru (de exemplu, $(p \land q)$), iar afirmațiile din meta-limbaj le scriem folosind font negru obișnuit (de exemplu, orice formulă atomică este o formulă).

Este extrem de important să facem diferența între limbajul-obiect și meta-limbaj. În acest scop, notele de curs folosesc o convenție tipografică. Elementele meta-limbajului sunt scrise cu font obișnuit, de culoare neagră. Elementele limbajului-obiect sunt scrise astfel: $(p \land q)$. Din acest motiv, dacă imprimați notele de curs, este recomandat să folosiți o imprimantă color.

3.9 Fisă de exerciții

Exercițiul 16. Arătați că următoarele cuvinte sunt formule propoziționale (adică elemente ale mulțimii \mathbb{LP}), explicând care sunt pașii de construcție (pas de bază, respectiv unul dintre cei trei pași inductivi):

```
    ¬q;
    (p<sub>1</sub> ∧ q);
    ¬(p ∨ q);
    (¬p ∨ ¬q);
    (¬p ∧ ¬q).
```

Exercițiul 17. Arătați că următoarele cuvinte nu sunt elemente ale mulțimii \mathbb{LP} (indicație: arătați că niciuna dintre cele 4 reguli de formare nu poate fi aplicată):

```
    1. (¬)q;
    2. q ∧ ¬;
    3. pq;
    4. p ∧ q;
    5. (p) ∧ (q).
```

Exercițiul 18. Care dintre următoarele cuvinte sunt formule din \mathbb{LP} și care nu sunt:

```
    p<sub>1</sub>;
    p<sub>1</sub> ∨ q<sub>1</sub>;
    (p<sub>1</sub> ∨ q<sub>1</sub>);
    (¬p<sub>1</sub> ∨ q<sub>1</sub>);
    ¬(p<sub>1</sub> ∨ q<sub>1</sub>);
    (¬p)?
```

Exercițiul 19. Dați exemple de 5 formule propoziționale interesante (cu mai mulți conectori, mai multe variabile propoziționale etc.) și justificați că sunt într-adevăr formule.