DAFTAR ISI

DAFTAR ISI	j
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Target Luaran	2
1.3 Manfaat Program	2
BAB 2. TINJAUAN PUSTAKA	
2.1 DNA Marker	2
2.2 Elektroforesis	2
2.3 Jenis Gel dalam Elektroforesis Asam Nukleat	3
2.3.1 Gel Agarosa	
2.3.2 Gel Poliakrilamida	
2.4 PCR	
BAB 3. TAHAP PELAKSANAAN	
3.1 Waktu dan Tempat	
3.2 Bahan dan Alat	
3.3 Variabel Kegiatan	
3.4 Tahapan Kegiatan	
3.5 Prosedur Kegiatan	
3.5.2 Polymerase Chain Reaction	
3.5.3 Elektroforesis	
3.5.4 DNA Marker	
3.6 Indikator Capaian Setiap Tahapan	
3.7 Teknik Pengumpulan Data	
3.8 Analisis Data	
3.9 Cara Penafsiran	
3.10 Penyimpulan Hasil Kegiatan	
3.11 Publikasi Kegiatan	
BAB 4. BIAYA DAN JADWAL KEGIATAN	
4.1 Anggaran Biaya	
4.2 Jadwal Kegiatan	
DAFTAR PUSTAKA	9
LAMPIRAN	11
Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamp	oing11
Lampiran 2. Justifikasi Anggaran Kegiatan	
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagia	
Lampiran 4. Surat Pernyataan Ketua Pelaksana	20
Lampiran 5. Gambaran Teknologi yang akan Dikembangkan	21

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknik biologi molekuler yang pesat memicu peningkatan penggunaan *polymerase chain reaction* (PCR). PCR berguna sebagai metode amplifikasi DNA secara masif (Lorenz, 2012). Hasil amplifikasi DNA dari PCR (*amplicon*) memerlukan *DNA marker* untuk mengetahui perkiraan ukuran molekul DNA.

Penggunaan PCR dalam dunia kedokteran juga berkembang cukup pesat, terutama untuk diagnosis penyakit. DNA suatu patogen dapat dideteksi dari sampel pasien menggunakan primer (pelacak DNA patogen). Perlekatan primer dan sampel DNA terjadi dalam reaksi PCR. Elektroforesis dapat memvisualisasi DNA hasil PCR sekaligus mengetahui perkiraan ukurannya dengan bantuan *DNA marker*. Penegakan diagnosis melalui PCR akan berhasil apabila ukuran DNA hasil PCR memenuhi *expected amplicon length*. Penyakit-penyakit yang menggunakan PCR untuk diagnostik, antara lain leishmaniasis, tuberculosis, *dengue*, filariasis, dan lainnya dengan target ukuran *amplicon* 50-1000 bp (Ferlianti et al., 2012; Kurniati et al., 2019; Molina et al., 2011; Rahman et al., 2011). Selain penegakan diagnosis, PCR juga digunakan dalam bidang forensik dan analisis lainnya (Putra et al., 2020).

DNA marker yang digunakan di Indonesia seluruhnya masih bergantung pada impor luar negeri. DNA marker komersial tersedia dalam kemasan 10 bp, 50 bp, 100 bp, dan 1000 bp. Sekali pemakaian memerlukan 0,5 μg (5 μL) DNA marker. DNA marker komersial tersedia dengan berat 50 μg dan 250 μg dengan kisaran harga masing-masing Rp 1,0 juta dan Rp 4,2 juta. Jika diperkirakan, sekali pemakaian DNA marker adalah Rp 8.400-10.000. Namun, biaya tersebut masih di luar biaya pengiriman. Produksi DNA marker secara mandiri akan memberikan biaya yang lebih terjangkau.

Transportasi *DNA marker* merupakan kendala lain. Waktu pengiriman yang lama dapat mengurangi efisiensi kegiatan biologi molekular. Pengiriman *DNA marker* dari dalam negeri akan jauh lebih menghemat waktu dibandingkan dari luar negeri.

DNA marker umumnya dibentuk dari plasmid bakteri Eschericia coli. Bakteri ini perlu dikultur terlebih dahulu sebelum DNA dapat diekstraksi (Paredes et al., 2017). DNA marker juga dapat berasal dari organisme lain dengan syarat memiliki amplicon DNA yang sesuai (Wang et al., 2010). Kegiatan ini mengajukan penggunaan DNA manusia sebagai bahan utama fragmen DNA marker 50-1000 bp. Penggunaan DNA manusia dari sampel darah akan dapat mengefisiensikan waktu karena tidak perlu melalui tahap kultur terlebih dahulu. Ukuran fragmen DNA 50-1000 bp menyesuaikan dengan tingginya tingkat penggunaan saat ini.

Selain alasan ekonomis dan efisiensi waktu, *DNA marker* yang dibuat secara mandiri membuktikan kualitas peneliti Indonesia. Penggunaan bahan dan alat buatan Indonesia dapat mengurangi ketergantungan Indonesia terhadap impor *DNA*

marker. Oleh karena itu, sebagai bentuk realisasi transformasi ekonomi menuju Indonesia mandiri, *DNA marker* khususnya *DNA marker* 50 bp perlu diproduksi secara mandiri.

1.2 Target Luaran

Target Luaran dari program ini berupa laporan kemajuan, laporan akhir, produk *DNA marker* 50 bp, dan akun media sosial yang berisi konten edukasi terkait kegiatan PKM yang dilaksanakan dan diiklankan pada jadwal tertentu.

1.3 Manfaat Program

- 1. Mengurangi biaya penyediaan *DNA marker* 50 bp dalam pekerjaan biologi molekular.
- 2. Menghindari waktu transportasi pembelian *DNA marker* 50 bp sehingga memudahkan kegiatan penelitian biologi molekular.

BAB 2. TINJAUAN PUSTAKA

2.1 DNA Marker

DNA marker adalah kumpulan fragmen pasangan basa (*base pair*/bp). Fragmen ini sudah diketahui ukurannya sebagai referensi perkiraan ukuran molekul fragmen DNA. Estimasi ukuran fragmen DNA dapat diketahui dengan memisahkan larutan DNA berdasarkan ukuran molekulnya yang dijalankan bersamaan dengan *DNA marker*. Ukuran *DNA marker* yang dijual secara komersial bervariasi mulai dari 50-10.000 bp dalam kemasan 10-150 bp, 50-1.000 bp, 100-1.000 bp, dan 1000-10.000 bp.

DNA marker secara tradisional dibentuk secara enzimatik dengan restriction enzyme. DNA marker ini dapat dibentuk dengan mudah dan memiliki harga yang cukup murah, tetapi distribusi fragmennya tidak merata. Metode pembuatan DNA marker yang lain berupa metode Aval, yaitu penggunaan enzim restriksi parsial yang dapat mengamplifikasi DNA dengan masif dan homogen. Namun, fragmen DNA yang terlalu banyak dapat mempersulit visualisasi untuk membedakan dengan fragmen lainnya. Saat ini, pembuatan DNA marker sudah menggunakan mesin PCR. Hasil visualisasi dari mesin PCR inilah yang paling baik (Dongyi et al., 2008).

DNA organisme yang digunakan pada *DNA marker* beragam. *DNA marker* umumnya berasal dari plasmid *E. coli* atau DNA genom bakterioafag. Namun, *DNA marker* juga dapat berasal dari organisme lain, termasuk manusia, dengan syarat memiliki ukuran molekul fragmen DNA hasil amplifikasi yang sesuai (Wang et al., 2010).

2.2 Elektroforesis

Elektroforesis berfungsi untuk memisahkan molekul-molekul, seperti protein, DNA, dan RNA. Pemisahan dilakukan dengan memanfaatkan medan listrik

yang dihasilkan oleh elektroda. DNA/RNA bermuatan negatif akan tertarik ke elektroda positif (Anthara et al., 2022).

Elektroforesis memerlukan gel agarosa sebagai media pemisah berpori. Kecepatan DNA melewati jalur berpori tersebut tergantung pada ukuran pasangan basanya (Wittmeier & Hummel, 2022). Semakin kecil ukurannya, pergerakan fragmen DNA akan semakin cepat.

Gel agarose merupakan campuran bubuk agarosa dengan dapar tris asetat EDTA (TAE) dan etidium bromida (Etbr). Penggunaan dapar berfungsi untuk mempertahankan pH di dalam gel agarose. Kandungan elektrolit di dalam TAE dapat membantu pergerakan aliran listrik (Harahap, 2018). Etbr merupakan pewarna DNA karena dapat berikatan dengan molekul DNA. Tampakan warna merah-oranye di bawah sinar utraviolet menandakan keberadaan DNA yang sudah terintegrasi dengan Etbr (Paredes et al., 2017).

2.3 Jenis Gel dalam Elektroforesis Asam Nukleat

2.3.1 Gel Agarosa

Gel agarosa merupakan gel polisakarida yang paling umum digunakan dalam elektroforesis. Agarosa merupakan polimer yang tersusun atas beberapa disakarida, yaitu agarobiosa. Agarobiosa terdiri dari galaktosa dan 3,6-anhidrogalaktosa. Tingkat porositas agarosa lebih konsisten daripada pati. Porositas ini dapat divariasikan dengan mengubah konsentrasi awal suspensi. Konsentrasi rendah menghasilkan pori-pori besar, sedangkan konsentrasi tinggi menghasilkan pori-pori yang lebih kecil (Rabindra & Raju, 2012).

2.3.2 Gel Poliakrilamida

Gel poliakralimida merupakan bentuk polimerisasi akrilamid yang berikatan secara silang dengan N,N'-methylenebisacrylamide. Penggunaan inisiator ammonium persulfat (APS) dan katalis N,N,N',N'-tetramethylenediamine (TEMED) menghasilkan reaksi polimerisasi radikal bebas pada gel. Gel poliakrilamida bersifat neurotoxin dan secara umum lebih sulit untuk dipersiapkan karena waktu persiapan yang lama jika dibandingkan dengan gel agarosa. Keuntungan gel poliakralimida adalah stabil secara kimiawi, sangat baik digunakan untuk memisahkan fragmen DNA yang kecil, memiliki resolusi visualisasi yang baik dengan jumlah DNA yang besar, dan memiliki kemurnian DNA yang sangat baik (Barril & Nates, 2012).

2.4 PCR

PCR digunakan untuk mengamplifikasi gen-gen dari sampel DNA hasil ekstraksi. PCR memiliki beberapa tahapan, yaitu: (1) denaturasi awal, (2) denaturasi, (3) perlekatan primer dengan DNA template (annealing), (4) pemanjangan (ekstensi), (5) penyempurnaan (ekstensi akhir). Tahap (2)-(4) merupakan tahapan yang berulang (siklus). Siklus PCR berfungsi untuk mengamplifikasi jumlah amplicon secara eksponensial dalam waktu yang singkat.

PCR umumnya memiliki 25-35 siklus (Lorenz, 2012).

Reaksi PCR berlangsung dalam beberapa fase. Fase denaturasi merupakan tahap pemisahan rantai DNA dari *double stranded* menjadi *single stranded*. Kemudian pada fase *annealing*, primer akan melekat pada susunan DNA *template* yang saling berkomplemen. Komplemen primer dan DNA *template* ini akan mengalami pemanjangan dengan bantuan DNA *polymerase* pada fase ekstensi (Budiarto, 2015).

BAB 3. TAHAP PELAKSANAAN

3.1 Waktu dan Tempat

Kegiatan ini akan dilakukan selama 3 bulan di Laboratorium Terpadu, Fakultas Kedokteran, Universitas Sumatera Utara.

3.2 Bahan dan Alat

Bahan yang digunakan dalam kegiatan ini adalah darah manusia, agarosa, PCR *master mix*, DNA, dapar TAE 1X, *DNA extraction kit*, set primer, dan 6X DNA *loading buffer*.

Alat yang digunakan dalam kegiatan ini adalah *micropipette sets, micropipette tip sets, erlenmeyer flask,* sarung tangan, *PCR tube, microtube* 1,5 mL, *Biorad electrophoresis system, thermal cycler* (mesin PCR), dan *gel documentation system*.

3.3 Variabel Kegiatan

Variabel kegiatan ini, yaitu (1) pita-pita fragmen DNA hasil amplifikasi PCR (*amplicon*) berukuran 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, dan 1000 bp, (2) konsentrasi *amplicon* dari setiap fragmen DNA, dan (3) formulasi *DNA marker* 50 bp.

3.4 Tahapan Kegiatan

Kegiatan ini akan melalui tahapan-tahapan sebagai berikut: pengumpulan sampel darah, ekstraksi DNA asal darah, penentuan kemurnian dan konsentrasi DNA hasil ekstraksi, optimasi kondisi PCR, penentuan kemurnian dan konsentrasi DNA hasil PCR, elektroforesis DNA, formulasi jumlah *DNA marker* 50 bp, analisis data, dan penarikan kesimpulan.

3.5 Prosedur Kegiatan

3.5.1 Pengumpulan Darah dan Isolasi DNA

Pengumpulan darah dilakukan oleh tenaga terampil sebanyak ± 3 mL. Darah dimasukkan pada tabung *ethylenediamine tetraacetic acid* (EDTA). DNA dari darah diekstraksi dengan menggunakan metode *spin-column* dan kit isolasi DNA (GIN170, Sigma-Aldrich). Selanjutnya, kuantitas dan kualitas DNA hasil ekstraksi

ditentukan dengan spektofotometri. Kuantitas DNA direpresentasikan melalui konsentrasi DNA yang ditentukan pada penyerapan panjang gelombang 260 nm (A260). Kualitas DNA ditentukan oleh kemurnian DNA dengan rasio absorbansi panjang gelombang 260 dan 280 nm (A260/280) (Nzilibili et al., 2018).

3.5.2 Polymerase Chain Reaction

Komponen reaksi PCR dimasukkan ke dalam tabung PCR bersamaan dengan sampel DNA dengan volume tertentu sesuai dengan rekomendasi *manufacturer* (Tabel 3.1). PCR dilakukan dalam 3 tingkatan suhu dengan total 35 siklus (Tabel 3.2). Temperatur *annealing* pada setiap set primer ditentukan dengan metode *gradient* PCR. Set primer untuk masing-masing fragmen bp didesain dengan menggunakan *software* Primer-BLAST NCBI (Tabel 3.3).

Tabel 3.1 Komponen Reaksi PCR

Komponen	Volume Reaksi PCR (μL)
PCR-grade water	5,5
2x KAPA2G Fast Readymix	12,5
10 μM forward primer	1,0
10 μM reverse primer	1,0
DNA dari darah	5,0
Total	25,0

Tabel 3.2 Siklus Pengoperasian PCR

Proses	Suhu	Durasi	Siklus
Denaturasi awal	94 °C	5 menit	1
Denaturasi	94 °C	1 menit	
Annealing	X °C	45 detik	35
Ekstensi	72°C	45 detik	
Ekstensi akhir	72°C	5 menit	1
Hold	4°C	∞	1

Tabel 3.3 Set Primer untuk PCR

Marker (bp)	Nama Gen	Gene ID	F/R	Primer Sequence
50	Homo sapiens mitochondrion, complete	NC_012	F	GTACTTCGAGTCT CCCTTCACC
	genome	920.1	R	ATGTTGAGCCGT AGATGCCG
100	Homo sapiens notch receptor 2(NOTCH2),	NG_008 163.1	F	TGCCTCAGGTG GCATTGATT
100	RefSeqGene on chromosome 1		163.1	R

Marker (bp)	Nama Gen	Gene ID	F/R	Primer Sequence
150	Homo sapiens chromosome 11,	NC_000	F	GGCCCATTTGTAA AGCGGTG
130	GRCh38.p14 Primary Assembly	011.10	R	AGGGACTGCATGC TGAAAGA
200	Homo sapiens mitochondrion,	NC_012	F	ACACAATTCTC CGATCCGTCC
200	complete genome	920.1	R	GCTTACTGGTT GTCCTCCGAT
250	Homo sapiens chromosome	NC_00001	F	TAGCCCTTTAAGAT GGCCAGG
230	17,GRCh38.p14 Primary Assembly	7.11	R	TGGTTACGTTGCCT CCTGAT
300	Homo sapiens chromosome 17,	NC_000	F	TTCGGGACTTGAC TAGTTTCGC
300	GRCh38.p14 Primary Assembly	017.11	R	TTAGACACATTGC CAGGATACAT
400	Homo sapiens chromosome 10,	NC_000 010.11	F	ATGCTCCTTCCC TCAGACCT
400	GRCh38.p13 Primary Assembly		R	TCGCAAAACAT GGCCACAAG
500	Homo sapiens chromosome 17,	NC_000	F	AGCTCCCCTAGTTT GACCTC
300	GRCh38.p14 Primary Assembly	017.11	R	CGAAACTAGTCA AGTCCCGAA
600	Homo sapiens chromosome 9,	NC_000	F	CTTCCTCCGA AGCCCATTT
000	GRCh38.p13 Primary Assembly	009.12	R	GTGCGGATGAG GGTGGG
700	Homo sapiens chromosome 12,	NC_000	F	CTGAGACGGGT TCACAGACC
700	GRCh38.p13 Primary Assembly	012.12	R	GGTGCGGATGA GGGTGGG
800	Homo sapiens chromosome 17,	NC_000	F	CACCATGGTAAACC CCGAGA
	GRCh38.p14 Primary Assembly	017.11	R	TCCGGCCTTCTTC ATCCTGA
900	Homo sapiens chromosome 9,	NC_000 009.12	F	CGGCCAGGTAT ACGGTCATC

Marker (bp)	Nama Gen	Gene ID	F/R	Primer Sequence
	GRCh38.p13		R	GCGGATGAGGG
	Primary Assembly		K	TGGGG
	Homo sapiens	NC_000 009.12	F	CTGAGACGGGT
1000	chromosome 9,		Г	TCACAGACC
1000	GRCh38.p13		R	CTTCTGCTGCCGCC
	Primary Assembly		K	CTAATC

3.5.3 Elektroforesis

Larutan DNA hasil PCR yang digunakan dalam elektroforesis sebanyak 5 μL. Elektroforesis menggunakan gel agarosa 1% (b/v). Elektroforesis dilakukan pada tegangan 80 mV dan arus 400 mA selama 90 menit. Hasil elektroforesis divisualisasi dengan *gel documentation system*.

3.5.4 DNA Marker

DNA marker dibuat dengan campuran dari seluruh fragmen amplicon. Jumlah setiap fragmen amplicon yang dicampurkan ditentukan dengan konsentrasi DNA setiap amplicon. Total volume seluruh fragmen amplicon DNA yang dicampurkan adalah 5 µL. Kumpulan fragmen amplicon ini merupakan DNA marker. Selanjutnya, kualitas DNA marker buatan sendiri akan dibandingkan dengan DNA marker komersial serupa.

3.6 Indikator Capaian Setiap Tahapan

Tabel 3.6 Indikator Capaian Setiap Tahapan

No.	Tahapan	Capaian					
1.	Pengumpulan darah	Tersedia sampel darah dari seorang					
		subjek					
2.	Ekstraksi DNA darah	Kuantitas dan kualitas DNA darah					
3.	PCR	Pita DNA berukuran 50, 100, 150, 200,					
		250, 300, 400, 500, 600, 700, 800, 900,					
		dan 1000 bp					
4.	Formulasi DNA marker	DNA marker buatan sendiri					
5.	Perbandingan DNA marker	Elektroforesis gel agarose 2% (b/v)					
	buatan sendiri dengan DNA						
	marker komersial serupa						

3.7 Teknik Pengumpulan Data

Pengukuran konsentrasi dan kemurnian DNA menggunakan alat nanophotometer (ImplenTM). Ukuran *amplicon* DNA dan kualitas *DNA marker* buatan sendiri akan ditentukan melalui elektroforesis gel agarosa 2% (b/v).

3.8 Analisis Data

Data hasil elektroforesis DNA marker buatan sendiri akan dianalisis secara

kualitatif deskriptif.

3.9 Cara Penafsiran

DNA marker buatan sendiri yang baik dapat divisualisasi dengan baik dan memiliki ukuran pasangan basa yang sama dengan *DNA marker* komersial.

3.10 Penyimpulan Hasil Kegiatan

Perbandingan kualitas *DNA marker* buatan sendiri dengan *DNA marker* komersial serupa.

3.11 Publikasi Kegiatan

Seluruh rangkaian kegiatan akan dipublikasikan secara reguler melalui akun media sosial berupa postingan mingguan. Sebanyak 5 postingan diantaranya akan diberi *adsense* (ads) yang akan ditayangkan pada tanggal 25 April 2023, 25 Mei 2023, 25 Juni 2023, 25 Juli 2023, dan 25 Agustus 2023, pukul 12.00 WIB.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Anggaran biaya yang diperlukan dalam kegiatan ini ditampilkan pada Tabel

4.1

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

	Taber 4.1 Rekapitatasi Reneana Miggaran Diaya					
No	Jenis Pengeluaran	Sumber Dana Besaran Da (Rp)				
		Belmawa	6.600.000			
1	Bahan habis pakai	Perguruan Tinggi	-			
		Instansi Lain (jika ada)	-			
		Belmawa	1.650.000			
2	Sewa dan jasa	Perguruan Tinggi	-			
		Instansi Lain (jika ada)	-			
	Belmawa		1.100.000			
3	Transportasi lokal	Perguruan Tinggi	-			
		Instansi Lain (jika ada)	-			
		Belmawa	1.650.000			
4	Lain-lain	Perguruan Tinggi	-			
		Instansi Lain (jika ada)	-			
		Jumlah	11.000.000			
		Belmawa	11.000.000			
	Rekap Sumber Dana	Perguruan Tinggi	-			
		Instansi Lain (jika ada)	-			

Jumlah	11.000.000

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan 1 2 3 4 5			Person Penanggung		
110	Jenis Regiatan			3	4	5	jawab
1	Pemesanan primer ke supplier						Muhammad
2	Pengumpulan darah						Putri, Muhammad,
	dan ekstraksi DNA						Bayu, dan Nurhazlin
3	Optimasi PCR						Muhammad dan
							Bayu
4	Penentuan kemurnian						Putri dan Nurhazlin
	dan konsentrasi DNA						
5	PCR rutin untuk seluruh set						Putri, Muhammad,
	primer						Bayu, dan Nurhazlin
6	Penentuan jumlah (amount)						Bayu
	setiap band DNA marker						
7	Posting konten PKM di akun						Nurhazlin
	media sosial						
8	Penulisan Laporan Kemajuan						Putri
9	Penulisan Laporan Akhir						Putri

DAFTAR PUSTAKA

- Anthara R, Immanuel, J. M., & Kaur, K. (2022). Electrophoresis Technique and Its Applications in Forensic Science-A Review. *International Journal of Creative Research Thoughts*, 10(6), 679–686.
- Barril, P., & Nates, S. (2012). Introduction to Agarose and Polyacrylamide Gel Electrophoresis Matrices with Respect to Their Detection Sensitivities (pp. 3–14)
- Budiarto R. (2015). Polymerase Chain Reaction (PCR): Perkembangan dan Perannya dalam Diagnostik Kesehatan. *BioTrends*, 6(2), 29–38. http://www.scienceguardian.com/blog/a-
- Dongyi, H., Longhai, Z., Huazong, Z., & Ye, C. (2008). Construction of *DNA marker* Plasmids Based on Taq Tailing Activity and Selective Recovery of Ligation Products. *Plant Molecular Biology Reporter*, *26*(4), 316–323. https://doi.org/10.1007/s11105-008-0041-8
- Ferlianti, R., Supali, T., & Wibowo, H. (2012). Optimization of Real Time PCR for the Diagnosis of Bancroftian Filariasis on Thick Blood Film Preparation. *Jurnal Kedokteran Yarsi*, 20(1), 14–022.
- Giri Putra, L. A., Yonathan, C. J., Niedhatrata, N. I., Rizka, M. H. F., & Yoewono, J. R. (2020). A Review of The development of Polymerase Chain Reaction technique and its uses in Scientific field. *Stannum: Jurnal Sains Dan Terapan Kimia*, 2(1), 14–30. https://doi.org/10.33019/jstk.v2i1.1619
- Harahap, R. (2018). *Elektroforesis: Analisis Elektronika Terhadap Biokimia Genetika*. 2(1), 21–26.
- Kurniati, A., Nyoman, D. S. S. D., & Nyoman, N. P. (2019). Rapid and Specific

- Detection of Mycobacterium Tuberculosis using Polymerase Chain Reaction. Journal of Vocational Health Studies, 03, 83–88. https://doi.org/10.20473/jvhs.V3I2.2019.83-88
- Lorenz, T. C. (2012). Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. *Journal of Visualized Experiments*, 63. https://doi.org/10.3791/3998
- Molina, D. D. O., Valdrinez, M., Lonardoni, C., Teodoro, U., Gomes, T., & Silveira, V. (2011). Comparison of different primes for PCR-based diagnosis of cutaneous leishmaniasis. *Brazilian Journal of Infectious Disease*, 15(3), 204–210.
- Nzilibili, S. M. M., Ekodiyanto, M. K. H., Hardjanto, P., & Yudianto, A. (2018). Concentration and Purity DNA Spectrophotometer: Sodium Monofluorophosphate forensic impended effect. *Egyptian Journal of Forensic Sciences*, 8(1), 1–7. https://doi.org/10.1186/s41935-018-0065-7
- Paredes, A. J., Naranjo-Palma, T., Alfaro-Valdés, H. M., Barriga, A., Babul, J., & Wilson, C. A. M. (2017). New visible and selective DNA staining method in gels with tetrazolium salts. *Analytical Biochemistry*, *517*, 31–35. https://doi.org/10.1016/j.ab.2016.11.004
- Rabindra, P., & Raju, N. (2012). Gel-Electrophoresis and Its Applications. In *Gel Electrophoresis and Its Applications* (pp. 16–32). InTech. https://doi.org/10.5772/38479
- Rahman, A. S., Wibawa, T., & Wijayanti, N. (2011). Early Detection and Serotyping of Dengue Viruses by Using Reverse Transcription Polymerase Chain Reaction (RT-PCR) 2 Primers. *Indonesian Journal of Biotechnology*, 16(2), 71–75.
- Wang, T. Y., Guo, L., & Zhang, J. H. (2010). Preparation of DNA ladder based on multiplex PCR technique. *Journal of Nucleic Acids*, 1–3. https://doi.org/10.4061/2010/421803
- Wittmeier, P., & Hummel, S. (2022). Agarose gel electrophoresis to assess PCR product yield: comparison with spectrophotometry, fluorometry and qPCR. *BioTechniques*, 72(4), 155–158. https://doi.org/10.2144/btn-2021-0094

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota serta Dosen Pendamping Biodata Ketua

A. Identitas Diri

No	Nama Lengkap	Putri Chalya Firjatu
1	Jenis Kelamin	Perempuan
2	Program Studi	Pendidikan Dokter
3	NIM -	200100110
4	Tempat dan Tanggal Lahir	Medan, 17 Mei 2002
5	Alamat Email	putrichalyaa@gmail.com
6	Nomor Telepon/HP	085210619889

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Jenis Kegiatan Status dalam Kegiatan				
1	Pemerintahan Mahasiswa (PEMA)	Bendahara	2023			
2	Standing Committee on Research Exchange	Sekretaris Manajer Divisi Jurnal	2022-2023			
3	Badan Analisis dan Pengembangan Nasional ISMKI	Anggota	2020-2021			

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan Tahur	
1	Juara 1 Esai Ilmiah	Perhimpunan Nefrologi Sumut-Aceh	2022
2	Juara 2 HI-FESTA	Universitas Udayana	2022
3	Juara 2 Lomba Poster Karya Tulis Ilmiah Nasional	Universitas Negeri Medan	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023

Ketua Tim

Putri Chalya Firjatu

Biodata Anggota

A. Identitas Diri

No	Nama Lengkap	Muhammad Ilmam Bariqi
1	Jenis Kelamin	Laki-laki
2	Program Studi	Pendidikan Dokter
3	NIM	200100212
4	Tempat dan Tanggal Lahir	Padang, 3 Desember 2001
5	Alamat Email	ilmambariqim@gmail.com
6	Nomor Telepon/HP	085364342355

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Pemerintahan Mahasiswa (PEMA)	Wakil Gubernur Mahasiswa	2023
2	Forum Studi Kedokteran Mahasiswa Muslim (FOSKAMI) Pemerintahan Mahasiswa FK USU	Ketua Umum	2022
3	Tim Bantuan Medis (TBM) FK USU PEMA FK USU	Anggota	2021-2022

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 Esai Ilmiah	Perhimpunan Nefrologi Sumut-Aceh	2022
2	Juara Favorit Poster Publik	FSKI FK Universitas Andalas	2022
3	Juara 3 Poster Ilmiah	FK Universitas Sriwijaya	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **PKM-KC**.

Medan, 14-2-2023 Anggota Tim

Muhammad Ilmam Bariqi

Biodata Anggota

A. Identitas Diri

No	Nama Lengkap	Bayu Harly Putra
1	Jenis Kelamin	Laki-laki
2	Program Studi	Pendidikan Dokter
3	NIM	200100064
4	Tempat dan Tanggal Lahir	Pasar Usang, 10 November 2001
5	Alamat Email	bayuharlyputra@gmail.com
6	Nomor Telepon/HP	085265404341

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Badan Analisis Pengembanan Ilmiah Nasional (BAPIN-ISMKI)	Kepala Divisi Jurnal Ilmiah Mahasiswa Kedokteran Indonesia (JIMKI)	2023
2	Standing Committee on Research Exchange (SCORE) PEMA FK USU	Direktur Eksekutif	2022-2023
3	Standing Committee on Research Exchange (SCORE) PEMA FK USU	Staf Muda Divisi Jurnal	2021-2022

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan Tahu	Tahun
1_	Finalis Lomba Poster	Perhimpunan Disiplin 2022	2022
	Ilmiah Pertemuan Ilmiah	Herbal Medik Indonesia	
	Nasional 2	5.6	
2	Juara 1 Lomba Inovasi	Universitas Tidar, Kota	2022
	Mahasiswa Nasional	Magelang	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023

Anggota Tim

Bayu Harly Putra

Biodata Anggota

A. Identitas Diri

No	Nama Lengkap	Nurhazlin
1	Jenis Kelamin	Perempuan
2	Program Studi	Pendidikan Dokter
3	NIM	210100043
4	Tempat dan Tanggal Lahir	Simp B Gajah, 08 Oktober 2003
5	Alamat Email	nhazlin073@gmail.com
6	Nomor Telepon/HP	081263240312

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Forum Studi Kedokteran Mahasiswa Muslim (FOSKAMI) PEMA FK USU	Wakil Sekretaris Umum	2023
2	Standing Committee on Research Exchange (SCORE) PEMA FK USU	Anggota	2022
3	Lembaga Pengembangan Tilawatil Qur'an USU	Anggota	2022-2023

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 2 Murattal Qira'at Sab'ah Remaja Putri MTQ Kota Medan	Pemerintahan Kota Medan	2022
2	Juara 3 <i>Murattal Qira'at Sab'ah</i> Remaja Putri MTQ Provinsi Sumatera Utara	Pemerintahan Provinsi Sumatera Utara	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023

Anggota Tim

Nurhazlin

Biodata Dosen Pendamping A. Identitas Diri

1	Nama Lengkap	dr. Zulham, M. Biomed, PhD
2	Jenis Kelamin	Laki-laki
3	Program Studi	Kedokteran Umum
4	NIP/NIDN	197407022002121002
5	Tempat dan Tanggal Lahir	Medan, 2 Juli 1974
6	Alamat Email	zulham@usu.ac.id
7	Nomor Telepon/HP	081266075812

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Kedokteran	Universitas Sumatera Utara	1997
2	Magister (S2)	Biomedik	Universitas Indonesia	2008
3	Doktor (S3)	Biokimia	Universiti Kebangsaan Malaysia	2019

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Keterampilan Dasar Laboratorium	Wajib	2
2	Biologi Molekular	Wajib	3

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Efek Ekstrak Daun Binahong	USU	2020
	(Anredera Cordifolia) terhadap		
	Penyembuhan Luka pada Tikus		
	Hiperglikemia melalui Modulasi		
	Ekspresi Matrix Metalloproteinase-9 di		
	Jaringan Luka		
2	Karakterisasi bakteri Neisseria	USU	2019
	gonorrheae resisten terhadap		
	antimikroba menggunakan real time		
	PCR		

Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Sosialisasi tentang penyakit menular	Mandiri	2018
	untuk anggota Aisyiyah Cabang		
	Medan Johor		
2	Sosialisasi Gaya Hidup Sehat	PT Pelabuhan	2018
	Untuk Badan Pengurus Pusat Persatuan	Indonesia I (Persero)	
	Istri Pegawai PT Pelabuhan Indonesia I		
	(Persero)		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Medan, 14-2-2023 Dosen Pendamping

Zulham

Lampiran 2. Justifikasi Anggaran Kegiatan

N.T.	Y : D	X 7.1	Harga	T (1 (D)
No	Jenis Pengeluaran	Volume	Satuan (Rp)	Total (Rp)
1	Belanja Bahan			
	Tip mikropipet putih	1 pack (100 pcs)	90.000	90.000
	Tip mikropipet kuning	1 pack (100 pcs)	90.000	90.000
	Laboratory grade agarose	Sudah tersedia	-	-
	Tabung darah berisi EDTA	20 tube	6.000	120.000
	Sarung tangan	3 kotak	50.000	150.000
	TAE 10X	Sudah tersedia	-	-
	Microtube 1,5 mL	Sudah tersedia	-	-
	PCR tube	Sudah tersedia	-	-
	Schott Duran Bottle	6 Botol	100.000	600.000
	DNA marker 50 bp komersial	1 set	1.000.000	1.000.000
	Set primer 50 bp	1 set	350.000	350.000
	Set primer 100 bp	1 set	350.000	350.000
	Set primer 150 bp	1 set	350.000	350.000
	Set primer 200 bp	1 set	350.000	350.000
	Set primer 250 bp	1 set	350.000	350.000
	Set primer 300 bp	1 set	350.000	350.000
	Set primer 400 bp	1 set	350.000	350.000
	Set primer 500 bp	1 set	350.000	350.000
	Set primer 600 bp	1 set	350.000	350.000
	Set primer 700 bp	1 set	350.000	350.000
	Set primer 800 bp	1 set	350.000	350.000
	Set primer 900 bp	1 set	350.000	350.000
	Set primer 1000bp	1 set	350.000	350.000
	DNA extraction kit	Sudah Tersedia	-	-
	PCR Master Mix	Sudah Tersedia	-	-
	SUB TOTAL			6.600.000
2	Belanja Sewa			

No	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)
	Sewa centrifuge	1 x 5 Bulan	55.000	275.000
	Sewa autoclave	1 x 5 Bulan	55.000	275.000
	Sewa lemari es	1 x 5 Bulan	55.000	275.000
	Sewa Biorad electrophoresis system	1 x 5 Bulan	55.000	275.000
	Sewa gel documentation system	1 x 5 Bulan	55.000	275.000
	Sewa UV Transluminator	1 x 5 Bulan	55.000	275.000
SUB TOTAL				1.650.000
3	Perjalanan lokal			
	Pengiriman bahan primer dari Jakarta menggunakan JNE		100.000	100.000
	Kegiatan pendampingan		600.000	600.000
	Kegiatan penelitian di Laboratorium		400.000	400.000
	SUB TOTAL			1.100.000
4	Lain-lain			
	Adsense media sosial	5 kali	100.000	500.000
	Masker	4 kotak	90.000	360.000
	Hand sanitizer	2 botol	20.000	40.000
	Kuota internet	5 bulan	40.000	200.000
	SUB TOTAL			1.100.000
	GRAND TOTAL			11.000.000
GR	GRAND TOTAL (Delapan Juta Rupiah)			

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Putri Chalya Firjatu/ 200100110	Pendidikan Dokter	Biomedik	7	Merekrut subjek, menyusun laporan, dan membuat proposal
2	Muhammad Ilmam Bariqi/ 200100212	Pendidikan Dokter	Biomedik	4	Kerja biologi molekular dan mengumpul kan daftar pustaka
3	Bayu Harly Putra/ 200100064	Pendidikan Dokter	Biomedik	4	Bendahara, kerja biologi molekular, dan analisis data
4	Nurhazlin/ 210100043	Pendidikan Dokter	Biomedik	4	Dokumenta si kegiatan, kerja biologi molekular, dan mendesain konten media sosial

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama Ketua Tim	:	Putri Chalya Firjatu
Nomor Induk Mahasiswa	:	200100110
Program Studi	:	Pendidikan Dokter
Nama Dosen Pendamping	:	dr. Zulham, M. Biomed, PhD
Perguruan Tinggi	:	Universitas Sumatera Utara

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul Inovasi "DNA Marker 50 bp dengan Fragmen DNA 50 bp-1000 bp yang Terintegrasi DNA Manusia Berbasis PCR" yang diusulkan untuk tahun anggaran 2023 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Medan, 14-2-2023 Yang menyatakan,

Putri Chalya Firjatu NIM. 200100110

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan

DNA Ladder 50 bp

