Algoritmi e Strutture Dati Lezione 16

4 novembre 2022

Alberi binari "quasi completi"

Definizione

Un *albero binario* è *quasi completo* quando è completo almeno fino al penultimo livello

in modo equivalente:

ogni nodo di profondità minore di h-1 possiede entrambi i figli, dove h è la profondità dell'albero

$$h = \lfloor \lg_2 n \rfloor$$

Heap

Definizione

Uno heap (o max-heap) è un albero binario quasi completo in cui la chiave contenuta in ciascun nodo è maggiore o uguale delle chiavi contenute nei figli

Per comodità, consideriamo heap in cui le foglie dell'ultimo livello si trovano più a sinistra possibile

Costruzione di heap

Dato un albero binario quasi completo contenente gli elementi da ordinare, come posso trasformarlo in uno heap?

Soluzione 1: Tecnica divide-et-impera (strategia top-down)

Soluzione 2: Dai sottoalberi più piccoli a quelli più grandi (strategia bottom-up)

ALGORITMO heapfort (Array A) -> Rista

Crea us heap H a parrize & A / rastorm A is a albert

V = Pict 1120a

Creatlesp (A) WHILE H # Ø DO - l'imoi de Hil valore della tadice e agjogilo all'inino di X - rimuoir l'ultim Poylin di H e colloare il vulore cella zaove - Misister (H)

HeapSort: implementatione in Coco

Heap Soit: riassumendo

- · Alystitmo di ordinamento IN LOCO
- · No memoria aggisstiva (con creatterp bottom-up)
- ·# CFR (n egn)
- Temps $\Theta(n \log n)$ se i cfr costano O(1)
- · Merodo NOW STABILE

10, 10, 20

10, 10, 20