GROUPES ET ANNEAUX 2 FEUILLE DE TD N°1

FAITS BASIQUES SUR LES ACTIONS

Exercice 1. Considérer :

- (i) L'action de \mathfrak{S}_n sur $\{1,\ldots,n\}$;
- (ii) L'action de $GL_2(\mathbb{k})$ sur $\mathbb{P}^1(\mathbb{k})$;
- (iii) L'action de \mathcal{D}_n sur $\boldsymbol{\mu}_n$;
- (iv) L'action de \mathfrak{S}_n par conjugaison sur ses sous-groupes d'ordre 2.

Ces actions, sont-elles libres? Sont-elles transitives?

Exercice 2. Soit $\|_\|$ la norme euclidienne usuelle de \mathbb{R}^n , et soit O_n le sous-groupe de $GL_n(\mathbb{R})$ dont les éléments sont les matrices $A \in GL_n(\mathbb{R})$ telles que $\|Av\| = \|v\|$ pour tout $v \in \mathbb{R}^n$. On appelle O_n le groupe orthogonal de dimension n. Soit $S^{n-1} := \{v \in \mathbb{R}^n \mid \|v\| = 1\}$ la sphère de dimension n-1. Montrer que O_n agit transitivement, mais pas librement, sur S^{n-1} pour tout n > 1.

Exercice 3. L'action de \mathcal{D}_n sur les racines de l'unité μ_n est-elle une action par morphismes de groupe?

Exercice 4. Soit H < G un sous-groupe. Soit $G_{\rm L}$ l'ensemble G muni de l'action par translations à gauche de H, à savoir, $\rho_{\rm L}(h)(g) = hg$ pour tout $h \in H$ et $g \in G_{\rm L}$. Soit $G_{\rm R}$ l'ensemble G muni de l'action par translations à droite de H, à savoir, $\rho_{\rm R}(h)(g) = gh^{-1}$ pour tout $h \in H$ et $g \in G_{\rm R}$. Montrer que la fonction $_{-}^{-1}: G_{\rm L} \to G_{\rm R}$ est une bijection H-équivariante.

QUOTIENT PAR UNE ACTION

Exercice 5. En utilisant l'action de $GL_2(\mathbb{F}_2)$ sur l'espace projectif $\mathbb{P}^1(\mathbb{F}_2)$, montrer que $GL_2(\mathbb{F}_2) \cong \mathfrak{S}_3$. Similairement, utiliser l'action de \mathscr{D}_3 sur μ_3 pour montrer que $\mathscr{D}_3 \cong \mathfrak{S}_3$.

Exercice 6. Les quotients du point de vue géométrique.

- (i) Déterminer une bijection entre \mathbb{R}/\mathbb{Z} et le cercle S^1 .
- (ii) Soit $X = \mathbb{R}^2 \setminus \{0\}$ muni de l'action de \mathbb{R}^\times par multiplication scalaire. Déterminer une bijection entre X/\mathbb{R}^\times et le cercle S^1 .
- (iii) Considérer le sous-groupe

$$i(O_{n-1}) = \left\{ \begin{pmatrix} & & & 0 \\ & A & & \vdots \\ & & & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \middle| A \in O_{n-1} \right\} < O_n,$$

et construire une bijection entre $O_n/i(O_{n-1})$ et la sphère S^{n-1} .

Exercice 7. Soit p un nombre premier, n un entier strictement positif et G un groupe d'ordre p^n . On appelle parfois ces groupes des p-groupes finis.

(i) On se donne un G-ensemble fini X. Soit $x \in X$ tel que $|\operatorname{orb}(x)| > 1$. Montrer que $|\operatorname{orb}(x)| \equiv 0 \pmod p$. En déduire que

$$|X| \equiv |X^G| \pmod{p}.$$

- (ii) Soit F l'ensemble des fonctions $f: \mathbb{Z}/p\mathbb{Z} \to G$. Pour chaque $a \in \mathbb{Z}/p\mathbb{Z}$ et $f \in F$, soit $a \cdot f \in F$ la fonction définie par $(a \cdot f)(b) := f(a+b)$ pour tout $b \in \mathbb{Z}/p\mathbb{Z}$. Montrer que cela définit une action de $\mathbb{Z}/p\mathbb{Z}$ sur F. Identifier l'ensemble des points fixes de cette action.
- (iii) Considérons

$$X = \left\{ f \in F \mid \prod_{a \in \mathbb{Z}/p\mathbb{Z}} f(a) = e \right\}.$$

Montrer que X est stable par l'action de $\mathbb{Z}/p\mathbb{Z}$. Identifier l'ensemble des points fixes de cette action. En employant le point (i), montrer que G possède un élément d'ordre p.

Exercice 8. Soit H < G un sous-groupe d'un groupe G. Le normalisateur de H dans G est $N_G(H) := \{g \in G \mid gHg^{-1} = H\}$. Il s'agit d'un sous-groupe de G contenant H.

- (i) Soit $G=\mathcal{D}_n$ et $H=\langle S\rangle$ le sous-groupe engendré par la réflexion S. Déterminer $\mathcal{N}_G(H)$.
- (ii) En utilisant l'action de G par conjugaison sur ses sous-groupes, montrer que $[G: N_G(H)]$ est égal au nombre de conjugués de H.

Exercice 9. Soit H < G un sous-groupe d'un groupe G. On considère l'action de G sur G/H par translation à gauche. Déterminer $\operatorname{st}(gH)$ en fonction de H et de $g \in G$. Soit H' < G un autre sous-groupe de G. Montrer que les G-ensembles G/H et G/H' sont isomorphes si et seulement si H et H' sont conjugués.

Exercice 10 (Lemme de Burnside). Soit X un ensemble fini muni d'une action d'un groupe fini G. Pour tout $g \in G$, soit $fix(g) := \{x \in X \mid g \cdot x = x\}$ l'ensemble points fixes de g. On écrira parfois X^g pour fix(g). Montrer que

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

Indication: Soit $S = \{(g, x) \in G \times X \mid gx = x\}$, et soient $p_G : S \to G$ et $p_X : S \to X$ les projections naturelles. Calculer |S| en utilisant les images réciproques.

Exercice 11. Soit G un groupe d'ordre n agissant transitivement sur un ensemble X de cardinal m.

- (i) Montrer que $m \mid n$.
- (ii) Montrer que

$$\left| \bigcup_{x \in X} \operatorname{st}(x) \right| \leqslant n - m + 1.$$

- (iii) Montrer que, si $m \ge 2$, alors il existe au moins m-1 éléments de G qui n'ont pas de point fixe.
- (iv) Montrer qu'un groupe fini n'est jamais la réunion des conjugués d'un sousgroupe propre.
- (v) En étudiant l'action de $GL_2(\mathbb{C})$ sur l'espace projectif $\mathbb{P}^1(\mathbb{C})$, montrer que l'énoncé précédent est faux si G n'est pas fini.