|--|

Wednesday, April 12th

ECHE 363 – Thermodynamics of Chemical Systems Midterm #2

Rules:

- 75 minutes total time. Once time is up, put aside answer sheets.
- Be sure to show all work to obtain maximum credit.
- There is one bonus question on the exam. This will be graded "all or nothing" (i.e., no partial credit).
- Closed book and no notes.
- Write your name on every page.
- Please only write on the front side of each page. Ask for additional paper if necessary.

For instructor use only:	
Problem 1 / 35	
Problem 2 / 25	
Problem 3 / 40	
Total / 100 points	

Name _____

Name

1. (35 points) A mysterious fluid obeys the Renner–renneR equation of state:

$$P(v_{\rm m} - b) = RT + \frac{aP^2}{T}$$

where the constants are:

$$a = 10^{-7} \text{ m}^3 \text{ K /(Pa mol)}$$

 $b = 8 \times 10^{-5} \text{ m}^3/\text{mol}$
 $c_{\text{p,m}}^{\text{ideal}} = 33.5 \text{ J/(mol K)}$

Using the provided property data, calculate the molar entropy change of the fluid for a change from $P_1 = 12$ bar, $T_1 = 300$ K to $P_2 = 12$ bar, $T_2 = 400$ K.

Name

Name

Name

- 2. (25 points) We are interested in the thermodynamic properties of a gas-phase system that contains charged molecules under the influence of an external electrostatic potential. These charged species have a molar charge of $\alpha_{\rm m}$. For a system where work can be done through both "PV work" and electrical work, the reversible work is: $dw_{\rm m,rev} = -Pdv_{\rm m} + \psi d\alpha_{\rm m}$, where ψ is the potential and α is the charge per mole.
 - a) (5 points) Come up with a fundamental equation for du_m for this system.
 - b) (10 points) Come up with a fundamental equation for dg_m for this system.
 - c) (10 points) Derive a Maxwell Relation equivalent to the partial derivative $\left(\frac{\partial s_{\rm m}}{\partial \alpha_{\rm m}}\right)_{T,P}$
 - d) **Bonus** (10 extra points): Derive a Maxwell Relation equal to the partial derivative $\left(\frac{\partial \alpha_{\rm m}}{\partial v_m}\right)_{s_{\rm m},\psi}$. You may need to define a new thermodynamic state function, $\chi_{\rm m}$.

Name

Name

Name

Name

- 3. (40 Points) Two solid phases, α and β , of a pure species exist in equilibrium. It is assumed that the molar volumes of both phases ($v_{\rm m}^{\alpha}$ and $v_{\rm m}^{\beta}$) are constant, as are the heat capacities ($c_{\rm p,m}^{\alpha}$ and $c_{\rm p,m}^{\beta}$). The enthalpy of the phase change, $\Delta h_{\rm m}^{\alpha \to \beta} = h_{\rm m}^{\beta} h_{\rm m}^{\alpha}$, is known at $T_{\rm o}$ and is equal to $\Delta h_{\rm m}^{\alpha \to \beta}(T_{\rm o})$. Using the measured equilibrium point of ($P_{\rm o}$, $T_{\rm o}$) as an integration constant, derive an equation to relate the temperature and pressure of phase equilibrium assuming:
 - a) (15 points) The enthalpy of phase change is a constant.
 - b) (25 points) The enthalpy of phase change depends on temperature.

Name
