

Specification for Tutorial 5 of 8

- 1. List the members of the following sets:
 - a. $\{x \mid x \text{ is a negative integer and } x^2 < 50\}$

b. $\{x \mid x \text{ is the cube of an integer and } 0 \le x < 101\}$

2. Draw Venn diagrams for $(A \cup B) \cap \overline{C}$ and $\overline{(A \cap B)} \cup (B \cup \overline{C})$.

 $(A \cup B) \cap \overline{C}$

 $\overline{(A \cap B)} \cup (B \cup \overline{C})$

Specification for Tutorial 5 of 8

- 3. Prove or disprove the equivalence of the sets $\bar{B} \cap (A \cap C)$ and $\overline{(B \cup \bar{A})} \cap \overline{(B \cup \bar{C})}$ using...
 - a. ...membership tables.

A	В	С	\overline{B}	$(A \cap C)$	$\overline{B} \cap (A \cap C)$	
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	1	0	0	0	
1	0	0	1	0	0	
1	0	1	1	1	1	
1	1	0	0	0	0	
1	1	1	0	1	0	

A	В	С	Ā	\overline{B}	 <u></u> C	$B \cup \overline{A}$	$\overline{(B \cup \overline{A})}$	$(B \cup \overline{C})$	$\overline{(B \cup \overline{C})}$	$\overline{(B \cup \overline{A})} \cap \overline{(B \cup \overline{C})}$
0	0	0	1	1	1	1	0	1	0	0
0	0	1	1	1	0	1	0	0	1	0
0	1	0	1	0	1	1	0	1	0	0
0	1	1	1	0	0	1	0	1	0	0
1	0	0	0	1	1	0	1	1	0	0
1	0	1	0	1	0	0	1	0	1	1
1	1	0	0	0	1	1	0	1	0	0
1	1	1	0	0	0	1	0	1	0	0

b. ...a sequence of equivalences.

$$\overline{(B \cup \overline{A})} \cap \overline{(B \cup \overline{C})}$$

$$=(\overline{B}\cap A)\cap(\overline{B}\cap C)$$
 by DeMorgan's (and Double Negation)

$$= \ (\overline{B} \cap \overline{B}) \cap (A \cap C) \hspace{1cm} \text{by Associativity and Commutativity}$$

$$= \overline{B} \cap (A \cap C)$$
 by Idempotence

Specification for Tutorial 5 of 8

4. For the following questions, use the graph below.

- a. How many edges are in the graph? 20
- b. Are there any cut vertices? If yes, which?

5. Find the chromatic number of each of the following graphs.

A three-colouring exists for G_1 and is included below. Since a two-colouring cannot exist without a graph colouring violation in the K_3 subgraph (i.e., clique of size 3 from the green, blue, and red nodes), the chromatic number of G_1 is 3.

Since G_2 is a cycle with an even number of vertices, the chromatic number of G_2 is 2.

A four-colouring exists for G_3 and is included below. Since a three-colouring cannot exist without a graph colouring violation in the K_4 subgraph (i.e., clique of size 4 from the green, blue, red, and orange nodes), the chromatic number of G_3 is 4.

