Página Principal ▶ Mis cursos ▶ Cálculo I 2021 ▶ Cuestionarios en Moodle. ▶ Cuestionario 1

Pregunta 1

Sin responder aún

Puntúa como 20.00

Sea la función $f(x) = (x+a)^{2/3} x^2$ definida en [-a,1] para 0 < a.

Tildar la(s) alternativa(s) correcta(s):

Seleccione una o más de una:

- a. La función cumple las hipótesis del Teorema de Rolle en el intervalo dado.
- \Box b. La función posee dos números críticos en el intervalo (-a,1).
- c. La función tiene un máximo relativo en $x=-\frac{3}{4}a$.
- d. La pendiente de la recta secante entre los puntos (-a,f(-a)) y (1,f(1)) es $m=(1+a)^{-1/3}$.
- e. Ninguna de las opciones anteriores es correcta

Pregunta 2

Sin responder aún

Puntúa como 20,00

PROBLEMA L. Se desea construir una lata de forma cilíndrica, como indica la figura, con tapa y base, de manera que tenga un volumen dado V, minimizando el material a utilizar.

Si pide tildar la(s) alternativa(s) correcta(s).

Seleccione una o más de una:

- a. El diseño óptimo para la lata solución del problema es tal que su altura es igual al radio.
- b. Para el volumen fijado **V**, conforme el radio de la base disminuye, la cantidad de material a utilizar es cada vez mayor.
- c. Para el volumen fijado **V**, conforme el radio de la base se considere cada vez mayor en el diseño, se incrementará cada vez más la cantidad de material a utilizar.
- d. Existen dos diseños óptimos posibles para la construcción de la lata con uso de la menor cantidad posible de material: uno en el que la altura es tres veces el radio y otro en el que el radio es tres veces la altura.
- e. Si el PROBLEMA L se modifica y se propone encontrar el diseño óptimo de la lata que, con tapa y base, ahora para una cantidad de material fijada S maximice el volumen, las dimensiones de la misma deben ser tales que la altura sea igual al diámetro de la base.

Pregunta 3

Sin responder aún

Puntúa como 20.00

Se consideran las tres gráficas siguientes:

Seleccione una o más de una:

- \Box a. $g''(x) > 0 \ \ \forall \, x \in (-\infty, a)$.
- b. Sea m(x) una función cuya derivada es continua $\forall x \in \mathbb{R}$. Si x=c es un máximo relativo de m'(x), entonces $\exists \epsilon > 0$ para el cual en el intervalo $(c-\epsilon,c)$ la función m(x) es cóncava hacia abajo.
- \Box c. f' crece en el intervalo $(0, \infty)$.
- d. Sea j(x) una función definida y con recta tangente $\forall \, x \in \mathbb{R}$. Si x=c es de inflexión de j(x), entonces x=c es punto crítico de j'(x).
- \Box f. $h''(x) < 0 \ \ orall \ x \in (0,\infty)$.
- \Box g. g' decrece en el intervalo $(-\infty, a)$.

Pregunta **4**

Sin responder aún

Puntúa como 20,00

Considerar la curva $ax^2+xy+2y^3=b$, donde a,b son números reales y a distinto de cero.

Tildar la(s) alternativa(s) correcta(s):

Seleccione una o más de una:

- b. Sea un punto $Q(x_0,y_0)$ de la gráfica de la ecuación. La recta tangente a la gráfica en Q está dada por $(x_0+6y_0^2)(y-y_0)=(-2ax_0-y_0)(x-x_0)$.
- d. Los puntos de la gráfica en los cuales la recta tangente es vertical satisfacen la condición $6y^2=-x$.
- e. Ninguna de las opciones es correcta.

Pregunta 5 Sin responder aún Puntúa como 20,00	Sean g y h funciones continuas en $[a,b]$ tales que $0 < g(x) < 1 \ \forall x \in [a,b]$ y $h(x) = \int_a^x g(t) dt$. Tildar la(s) alternativa(s) correcta(s).		
. uu. 556 25,05	Seleccione una o más de una:		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	$oxedge$ b. Es posible que $h(c) < 0$ para algún $c \in [a,b].$		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	x=a y $x=c$.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	 e. Ninguna de las anteriores es correcta. 		

■ Un método alternativo para separar en Fracciones Parciales (Semana 6)

Ir a		~	,
------	--	---	---