Grupo 3

Participantes:

David Arias Calderón 20181020149 Luis Miguel Polo 20182020158

Taller 2 Ejercicio 7

Enunciado

Implementar un sistema de control con modelo de referencia neuronal para una planta con la siguiente función de referencia:

$$G(s) = \frac{4}{2s^3 + 2s^2 + 5s + 1}$$

Requerimientos de diseño

- Entrada de referencia escalón unitario $\mu(t)$.
- Oscilación en estado estable inferior al 10%.

Solución

Scope de la función de transferencia

Modelo de la planta

Modelo de la planta de referencia

Sistema de control en simulink

Configuración de controlador de red neuronal

Plant Identification				
Network Architecture				
Size of Hidden Layer	5		No. Delayed Plant Inputs	2
Sampling Interval (sec)	0.1	N	lo. Delayed Plant Outputs	2
Normalize Training Data				
Training Data				
Training Samples	800		Limit Output Data	
Maximum Plant Input	0.5		Maximum Plant Output	Inf
Minimum Plant Input	0		Minimum Plant Output	-Inf
Maximum Interval Value (sec)	10		Simulink Plant Model:	Browse
Minimum Interval Value (sec)	6 ModeloPlanta7			
Generate Training Data	Import Data		Export Data	
Training Parameters —				
Training Epochs	300		Training Function trainl	m ~
✓ Use Current Weights	Use Validat	ion Data	Use Testing Dat	ta
Train Network	OK		Cancel A _I	oply

Gráfica de simulación

