AI-Based Multi-disease Diagnostic System

Akshansh Singh(211020408) Shiva Chunbuk(211020447)

Supervisor name: Dr.Mithilesh Kumar Chaube

Date: 12th October 2023

Dr. Shyama Prasad Mukherjee International Institute of Information Technology, Naya Raipur

Content

- Introduction
- Motivation: Issues and Challenges
- Literature Review
- Problem definition
- Objectives
- Proposed Framework/Model/System/Methodology
 - Explain with a block diagram and others
- Experimental results and discussion
- Plan of action for the remaining project work

Introduction

- Addressing Healthcare Challenges: In response to the growing healthcare burden, we've
 developed the AI Doctor Assistant for more efficient diagnoses.
- Leveraging the Power of AI and machine learning: The AI Doctor is poised to revolutionize disease diagnosis, improve patient outcomes, and enhance the efficiency of healthcare delivery.
- Comprehensive Medical AI Tool: It predicts diseases and offers a virtual assistant, enhancing diagnostic capabilities and doctor-patient interaction.

Motivation

 Rising healthcare system demands: The escalating burden on healthcare systems globally has necessitated the development of the AI Doctor Assistant.

 Critical need for improved disease diagnosis: The primary objective of this tool is to facilitate quicker and more efficient disease Identification, enabling doctors to make well-informed decisions with greater speed.

 Empowering doctors: The AI Doctor Assistant is designed to be a valuable resource that supports healthcare professionals in their diagnostic processes, ultimately improving patient care. global escalating burden on healthcare systems

Literature Review

[1] Z. Wang et al., "Breast Cancer Detection Using Extreme Learning Machine Based on Feature Fusion With CNN Deep Features," in IEEE Access, vol. 7, pp. 105146-105158, 2019, doi: 10.1109/ACCESS.2019.2892795.

- The model proposes a breast CAD method based on fusion deep features. Its main idea is to apply deep features extracted from CNN.
- ELM classifier is used to classify the multi dimensional dataset.
- Accuracy achieved through this model is 76.25%.

[2] N. Abdulhadi and A. Al-Mousa, "Diabetes Detection Using Machine Learning Classification Methods," 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 2021, pp. 350-354, doi: 10.1109/ICIT52682.2021.9491788.

- This model produced an accuracy of 78% based on the random forest classifier model.
- This model mainly focuses on the prediction of diabetes specifically in females.

Problem Definition/Problem statement

Scarcity of Expertise: Rural healthcare providers often lack immediate access to specialized medical knowledge and expertise, making complex diagnoses challenging.

Delayed Decision-Making: This lack of expertise can lead to delayed decision-making and treatment, potentially affecting patient outcomes and increasing healthcare costs.

Accurate and Interpretable diagnostic predictions: The AI doctor is a medical AI tool that can predict various diseases like breast cancer, healthy/unhealthy heart, lung, and diabetes. The AI model is trained on relevant medical data and uses state-of-the-art algorithms to make predictions.

Research Gap

Multi-model Data Integration:

Our model integrates all the four diseases and provides a user friendly interface that can help the doctors for more accurate and fast prediction.

Accuracy:

The accuracy of our Al model and its ability to predict diseases with high precision is something we are particularly proud of

Chatbot:

The user-friendly interface of the chatbot and its ability to quickly provide relevant information makes our tool unique and valuable.

Objective (s) of the Project

- Enhance Diagnosis Speed and Accuracy
- Al Doctor project extends to both healthcare professionals and patients.
- User-friendly front-end interface for healthcare professionals to interact with the AI Doctor.

Proposed Framework/Methodology

Database description

Features

pelvic_incidence Age Pregnancies clump thickness Gender uniform cell size Glucose pelvic_tilt Total Bilirubin uniform cell shape BloodPressure Direct Bilirubin lumbar_lordosis_angle marginal adhesion SkinThickness Alkaline Phosphotase sacral_slope single epithelial size Alamine Aminotransferase Insulin bare nuclei Aspartate Aminotransferase pelvic_radius BMI bland chromatin Total Protiens grade_of_spondyolistesis DiabetesPedigreeFunction normal nucleoli Albumin Age Albumin and Globulin Ratio diagnose mitoses

Dataset	No. of Entries	No. of Features
Diabetes Dataset	768	8
Liver Dataset	583	10
Sickle Cell Dataset	655	7
Breast Cancer Dataset	699	9

Experimental Results:

Predictions

Breast Cancer

Metric	Value
Accuracy	95.6%
False Positive Rate	5.6%
Precision	96.1%
Recall	94.8%
F1Score	95.5%

Sickle cell

Metric	Value	
Accuracy	88.2%	
False Positive Rate	11.2%	
Precision	87.8%	
Recall	89.3%	
F1Score	88.5%	

Diabetes

Metric	Value
Accuracy	91.7%
False Positive Rate	8.3%
Precision	92.3%
Recall	91.1%
F1 Score	91.7%

Liver

Evaluation Metric	Result
Accuracy	0.85
Precision	0.88
Recall	0.80
F1 Score	0.84

Plan of action for the remaining project work

NAYA RAIPUR TROPHOLOGO NAYA RAIPUR TO TO THE CHANGE OF THE

- Develop an Intuitive User Interface
- Seamlessly Integrate with Backend
- We plan on expanding our database and exploring new algorithms that can further increase the tool's accuracy
- Enhance User Experience

Thank You

Dr. Shyama Prasad Mukherjee International Institute of Information Technology, Naya Raipur