

IIT - ORGANIC CHEMISTRY NURTURE

Corporate Office: NAIVEDHYAM, Plot No. SP-11, Old INOX, Indra Vihar, Kota (Raj.) 324005

DPP # 07 Time : 30 Min.

Call: 0744-2799900

1. For the given molecule

Column - I

(Group(Z))

$$(A) - \overset{\scriptscriptstyle{\oplus}}{N} H_3$$

$$(C)$$
 $--OC_2H_5$

$$(D) - O^{\Theta}$$

Column - II

(Effect of group 'Z' in above compound)

- (P) The group donates the e⁻ inductively as well as through resonance
- (Q) The group withdraws the e⁻ inductively and donates through resonance
- (R) The group withdraw the e⁻ inductively but does not donate or withdraw e⁻ through resonance
- (S) The group withdraw the e⁻ inductively and donate or with draw through resonance
- (T) The group increases net e density on benzene

2. Which of the given group exhibit +R as well as -R effect when attached with suitable group:

(D)
$$-CH=CH_2$$

3. Most stable resonating structure is :

4. In which of the following compound bond order is 1.5 for indicated bond?

$$(A) H_3C$$
 O
 O
 O
 O
 O
 O

(B)
$$CH_2 = CH - O^{\epsilon}$$

(C)
$$CH_2=CH_{-}CH=CH_2$$

5. Which of the following encircled group does not participate in resonance:

6. Which resonating structure of nitroethene is never possible?

(B)
$$\overset{\oplus}{\text{CH}}_2$$
– $\overset{\Theta}{\text{CH}}$ – $\overset{\oplus}{\text{N}}$ =O

(C)
$$\overset{\oplus}{\text{CH}_2}$$
-CH=N=C

(A)
$$CH_2=CH-\overset{\oplus}{N}=O$$
 (B) $\overset{\oplus}{C}H_2-\overset{\Theta}{C}H-\overset{\oplus}{N}=O$ (C) $\overset{\oplus}{C}H_2-CH=\overset{\Theta}{N}=O$ (D) $\overset{\oplus}{C}H_2-CH=\overset{\oplus}{N}=O$

Call: 0744-2799900

7. Total resonating structures of the product (A) is

(A) 7

(B) 8

(C) 9

(D) 10

8. Total number of structures which are most stable resonating structures among all their respective resonating structures :

(i)
$$CH_2$$
= CH - CH = CH_2 (ii) $\overset{\Theta}{CH}_2$ - $\overset{\Theta}{N}$ = N (iii) $\overset{\Theta}{CH}_2$ -

(iii)
$$\overset{\Theta}{\text{CH}}_2\text{--}\text{C}\overset{\Theta}{\overset{\Theta}{\overset{}_{\text{H}}}}$$

(v)
$$\overset{\Theta}{\text{CH}}_2 - \text{CH} = \text{CH} - \text{CH} = \overset{\oplus}{\text{O}} - \text{CH}$$

(vii)
$$CH_2 = \overset{\oplus}{F}$$

Call: 0744-2799900

(viii)
$$\Theta = \stackrel{\oplus}{N} = \Theta$$

9. How many resonating structures of carbocation 'M' as shown below are possible which involves monocation (excluding given resonating structure):

10. $X = Number of \pi$ electrons present in the compound 'P':

Y = Number of π electrons involve in conjugation in compound 'P':

Then value of (X-Y) is: