Seat No.: **Enrolment No.:**

GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering/Diploma Architecture (DA) – SEMESTER – 1/2 – **EXAMINATION – Winter-2023**

Subject Code: 4300001 Date: 02-02-2024

Subject Name: Mathematics

Time: 10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

1. Attempt all questions.

- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of non-programmable scientific calculator is permitted.
- 6. English version is authentic.

Fill in the blanks using appropriate choice from the given options. **Q.1** 14 $\begin{vmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{vmatrix} = \underline{\hspace{1cm}}.$ 1 b. -1 a. 0 c. 1 d. 2 $\begin{vmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{vmatrix} = \underline{\qquad}.$ ٩

ક. 1 અ. 0 5.2 2

If $f(x) = x^3 - 1$ then f(-1) =_____. b. -1 d. -2

જો $f(x) = x^3 - 1$ કોય તો f(-1) =_____. 5. -2

 $\log 1 * \log 2 * \log 3 * \log 4 =$ _____. c. log 10 b. log 24 d. 10

 $\log 1 * \log 2 * \log 3 * \log 4 = \underline{\hspace{1cm}}$ 3 બ. log 24 ۶. log 10 5. 10

 $\log x - \log y = \underline{\qquad}$ a. $\log xy$ b. $\log \frac{x}{y}$ c. $\log \frac{y}{x}$ 4 d. $\log(x - y)$

 $\log x - \log y =$ ______ અ. $\log xy$ બ. $\log \frac{x}{y}$ 8 $5.\log(x-y)$

Principal Period of sin(2x + 7) =a. 2π b. 3π d. 7π

 $\sin(2x+7)$ નું મુખ્યઆવર્તમાન _____ છે. પ S. 7π

 $450^{\circ} = \underline{\qquad} radian$ d. $\frac{3\pi}{2}$

 $450^{\circ} = \underline{\qquad} radian$

7 d. $\frac{\pi}{2}$ c. 2π

 $S.\frac{\pi}{2}$ §. 2π

|2i - 3j + 4k| =____. a. $\sqrt{29}$ b. $\sqrt{20}$ c. 29 d. 20

9 For vector
$$\overline{a} \times \overline{a} =$$
____.
a. $|a|^2$ b. $|a|$ c. a^2 d. 0

10 If two lines having a slop m_1 and m_2 are perpendicular to each other then

$$\overline{\text{a. } m_1 \cdot m_2} = 1$$
 b. $m_1 = m_2$ c. $m_1 \cdot m_2 = -1$ d. $m_1 \cdot m_2 = 0$

11 If
$$x^2 + y^2 = 25$$
 then its radius _____.
a. 2 b. 3 c. 5 d. 25

11 If
$$x^2 + y^2 = 25$$
 then its radius _____.
a. 2 b. 3 c. 5 d. 25
11 Solve 19 Solve 19 Solve 19 Solve 29 Solve 19 Solve 29 So

12
$$\lim_{\theta \to 0} \frac{\sin 5\theta}{\tan 7\theta} =$$
a. $\frac{7}{5}$ b. $\frac{5}{7}$ c. $\frac{2}{5}$ d. 35

13
$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{e^x - 1}{x} = \underline{\qquad}.$$
a. e b. -1 c. 1 d. 0

૧૩
$$\lim_{x \to 0} \frac{e^x - 1}{x} = \underline{\qquad}.$$
 આ . e બ. -1 ક. 1

$$\lim_{\substack{x \to 1 \\ \text{a. -2}}} \frac{x^2 - 1}{x - 1} = \underline{\qquad}.$$

98
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0.2}{4.1}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0.2}{4.1}$$

$$\lim_{x \to 1} \frac{5.-1}{x - 1} = \frac{0.2}{5.2}$$

(a) Attempt any two કોઇપણ બે ના જવાબ આપો. **Q.2**

1. If
$$f(x) = \frac{1-x}{1+x}$$
 then prove that $(1)f(x) \cdot f(-x) = 1$ (2) $f(x) + f(\frac{1}{x}) = 0$.

1. If
$$f(x) = \frac{1-x}{1+x}$$
 then prove that $(1)f(x) \cdot f(-x) = 1$ $(2) f(x) + f\left(\frac{1}{x}\right) = 0$.
9. $\Re f(x) = \frac{1-x}{1+x}$ હોય તો સાબિત કરો કે $(1)f(x) \cdot f(-x) = 1$ $(2) f(x) + f\left(\frac{1}{x}\right) = 0$.

2. If
$$\begin{vmatrix} x & 2 & 3 \\ 5 & 0 & 7 \\ 3 & 1 & 2 \end{vmatrix} = 30$$
 then find the value of x .

2. $\begin{cases} x & 2 & 3 \\ 5 & 0 & 7 \\ 3 & 1 & 2 \end{vmatrix} = 30$ then find the value of x .

3. $\begin{cases} x & 2 & 3 \\ 5 & 0 & 7 \\ 3 & 1 & 2 \end{vmatrix} = 30$ then find the value of x .

ર.
$$\begin{vmatrix} 3 & 1 & 2 & 3 \\ 5 & 0 & 7 \\ 3 & 1 & 2 \end{vmatrix} = 30 \text{ d) } x ની કિમંત શોધો.$$

3. Prove that
$$\tan 55^\circ = \frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ}$$

3. Prove that
$$\tan 55^\circ = \frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ}$$
.

3. સાબિત કરો કે $\tan 55^\circ = \frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ}$.

(b) Attempt any two કોઇપણ બે ના જવાબ આપો.

1. Prove that
$$\frac{1}{\log_{xy} xyz} + \frac{1}{\log_{yz} xyz} + \frac{1}{\log_{zx} xyz} = 2.$$

06

08

d. 0

- સાબિત કરો કે $\frac{1}{\log_{xy} xyz} + \frac{1}{\log_{yz} xyz} + \frac{1}{\log_{zx} xyz} = 2.$
- If $\log\left(\frac{a+b}{3}\right) = \frac{1}{2}(\log a + \log b)$ then prove that $a^2 + b^2 = 7ab$. જો $\log\left(\frac{a+b}{3}\right) = \frac{1}{2}(\log a + \log b)$ હોય તો સાબિત કરો કે $a^2 + b^2 = 7ab$. If $\frac{\log x \times \log 16}{\log 32} = \log 256$ then find the value of x. જો $\frac{\log x \times \log 16}{\log 32} = \log 256$ હોય તો x ની કિમંત શોધો.

- Attempt any two કોઇપણ બે ના જવાબ આપો. **Q.3** (a)
 - 1. Prove that $\frac{\sin(\frac{\pi}{2}+\theta)}{\cos(\pi-\theta)} + \frac{\cot(\frac{3\pi}{2}-\theta)}{\tan(\pi-\theta)} + \frac{\csc(\frac{\pi}{2}-\theta)}{\sec(\pi+\theta)} = -3.$
 - સાબિત કરો કે $\frac{\sin(\frac{\pi}{2}+\theta)}{\cos(\pi-\theta)} + \frac{\cot(\frac{3\pi}{2}-\theta)}{\tan(\pi-\theta)} + \frac{\csc(\frac{\pi}{2}-\theta)}{\sec(\pi+\theta)} = -3.$ Prove that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}.$ ٩.
 - 2.
 - સાબિત કરો કે $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}$. ₹.
 - Find the equation of the line passing through the points (1,6) and (-2,5). 3. Also find the slope of the line.
 - (1,6) અને (-2,5) માંથી પસાર થતી રેખાનું સમીકરણ મેળવો. તથા તેનો ઢાળ પણ 3. શોધો.
 - Attempt any two કોઇપણ બે ના જવાબ આપો. **(b)**
 - 1. Draw the graph of $y = \sin x$; $0 \le x \le \pi$.
 - $y = \sin x$; $0 \le x \le \pi$ નો આવેખ દોરો. ٩.
 - 2.
 - Prove that $\frac{\sin\theta + \sin 2\theta + \sin 4\theta + \sin 5\theta}{\cos\theta + \cos 2\theta + \cos 4\theta + \cos 5\theta} = \tan 3\theta.$ $\text{Higher solution} \frac{\sin\theta + \sin 2\theta + \sin 4\theta + \sin 5\theta}{\cos\theta + \cos 2\theta + \cos 4\theta + \cos 5\theta} = \tan 3\theta.$ The constant forces i j + k, i + j 3k and 4i + 5j 6k act on a particle. ₹.
 - 3. Under the action of these forces, particle moves from the point 3i - 2i + k to the point i + 3j - 4k. Find the total work done by the forces.
 - કોઈકણ પર i j + k, i + j 3k અને 4i + 5j 6k જેટલાં બળો લાગે છે આ 3. બળની અસરથી કણ બિંદુ 3i-2j+k થી બિંદુ i+3j-4k જેટલું ખસે છે તો બળ દારા થયેલું કાર્ય શોધો.
- Attempt any two કોઇપણ બે ના જવાબ આપો. **Q.4** (a)
 - If $\bar{a} = 3i j 4k$, $\bar{b} = 4j 2i 3k$ and $\bar{c} = 2j k i$ then find the 1. $|3\bar{a}-2\bar{b}+4\bar{c}|$.
 - જો $\bar{a} = 3i j 4k$, $\bar{b} = 4j 2i 3k$ અને $\bar{c} = 2j k i$ તો $\left| 3\bar{a} 2\bar{b} + 4\bar{c} \right|$ શોધો. ٩.
 - For what value of m, the vectors 2i 3j + 5k and mi 6j 8k are 2. perpendicular to the each other?
 - m ની કઈ કિમંત માટે સિંદશ 2i 3j + 5k અને mi 6j 8k એકબીજાને લંબ થશે. ₹.
 - 3. Find the equation of the circle having centre (4,3) and passing through the points (7, -2).
 - (7, -2) માંથી પસાર થતાં અને (4,3) કેન્દ્ર વાળા વર્તુળનું સમીકરણ મેળવો. 3.
 - Attempt any two કોઇપણ બે ના જવાબ આપો. **(b)**
 - 1. Prove that the angle between the vectors i + 2j and i + j + 3k is $\sin^{-1} \sqrt{\frac{46}{55}}$.

06

08

06

08

- ٩. સાબિત કરો કે સદીશો i + 2j અને i + j + 3k વચ્ચેનો ખૂણો $\sin^{-1} \sqrt{\frac{46}{55}}$ છે.
- If $\bar{x} = -2k + 3i$ and $\bar{y} = 5i + 2j 4k$ then find the value of $|(\bar{x} + \bar{y}) \times (\bar{x} \bar{y})|$. 2.
- જો સિંદિશ $\bar{x} = -2k + 3i$ અને $\bar{y} = 5i + 2j 4k$ હોય તો $|(\bar{x} + \bar{y}) \times (\bar{x} \bar{y})|$ શોધો. ₹.
- 3.
- Evaluate : $\lim_{n \to \infty} \left(\sqrt{n^2 + n + 1} n \right)$ કિમંત મેળવો : $\lim_{n \to \infty} \left(\sqrt{n^2 + n + 1} n \right)$ 3.
- Attempt any two કોઇપણ બે ના જવાબ આપો. **Q.5** (a)

06

- Evaluate : $\lim_{x \to -2} \frac{x^3 + 2x^2 + x + 2}{x^2 + x 2}$ કિમંત મેળવો : $\lim_{x \to -2} \frac{x^3 + 2x^2 + x + 2}{x^2 + x 2}$ Evaluate : $\lim_{x \to \frac{\pi}{2}} \frac{1 \sin x}{\cos^2 x}$ 1.
- ٩.
- કિમંત મેળવો : $\lim_{x \to \frac{\pi}{2}} \frac{1 \sin x}{\cos^2 x}$ ₹.
- Evaluate: $\lim_{x \to \infty} \left(1 + \frac{5}{x}\right)^{2x}$ 3.
- કિમંત મેળવો : $\lim_{x \to \infty} \left(1 + \frac{5}{r} \right)^{2x}$ 3.
- **(b)** Attempt any two કોઇપણ બે ના જવાબ આપો.

- 08
- 1. Find the equation of the line passing through the point (2,4) and perpendicular to the line 5x - 7y + 11 = 0.
- બિંદુ (2,4) માંથી પસાર થતી અને રેખા 5x 7y + 11 = 0 ને લંબ રેખાનું સમીકરણ ٩. મેળવો.
- If the equation of the circle is $2x^2 + 2y^2 + 4x 8y 6 = 0$ then find its centre 2.
- જો વર્તળનું સમીકરણ $2x^2 + 2y^2 + 4x 8y 6 = 0$ હોય તો તેના કેન્દ્ર અને ત્રિજ્યા ₹. મેળવો.
- Find the equation of tangent and normal of the circle $x^2 + y^2 2x + 4y 20 = 0$ at 3. the point (-2, 2).
- વર્તુળ $x^2 + y^2 2x + 4y 20 = 0$ નું બિંદુ (-2, 2) આગળ સ્પર્શક અને 3. અભિલંબનાં સમીકરણ મેળવો.
