PHYS 3031 Course Notes

Mathematical Methods in Physics II

LIN, Xuanyu

MATH METHODS IN PHYSICS

PHYS 3031 Mathematical Methods in Physics II

November 9, 2023

Contents

T	Ser	les	2	
	1.1	Convergence Condition for Positive Series	2	
	1.2	Convergence Condition for Alternating Series	2	
	1.3	Power Series	2	
	1.4	Asymptotic Series 渐近级数	2	
2	Tay	lor Expansion	2	
	2.1	Leibniz Rule	3	
	2.2	Error Estimation when N Terms are Kept	3	
		2.2.1 Alternating Series	3	
		2.2.2 "Positive" Series	3	
	2.3	L'Ĥopital's Rule	3	
3	Complex Analysis			
	3.1	Complex Functions	3	
	3.2	Line Integrals	4	
	3.3	Taylor Series	5	
	3.4	Lauren Series	5	
	3.5	Analytic Continuation 解析延拓	5	
	3.6	Residue Theorem 留数定理	5	
		3.6.1 Rational Trignometric Function	6	
		3.6.2 Improper Intergral	7	
		3.6.3 Other Possible Integral Path	8	
	3.7	Argument (Phase) Principle	9	
4	\mathbf{Spe}	pecial Functions 1		
5	Par	tial Differential Equations	12	
	5.1	2D Laplace Equation	12	

1 Series

1.1 Convergence Condition for Positive Series $\sum_{n=1}^{\infty} a_n$

Necessary condition: $\lim_{N\to\infty} a_N = 0$

Hierarchy: $N! > a^N > N^b > \ln N$

Stirling's Formula $\ln N! \approx N \ln N - N \approx N \ln N$

Comparison Test $1 \sum a_n < \sum b_n$, b converges $\rightarrow a$ converges

Comparison Test 2 (Integral Test) $\sum a_n \& \int a(n) dn$ share the same fate

Ratio Test $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho, \ \rho > 1 \to \text{Diverges}, \ \rho < 1 \to \text{Converges}$

Extended (Special) Comparison Test $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$, then $\sum a_n \& \sum b_n$ share the same fate

1.2 Convergence Condition for Alternating Series $\sum\limits_{n=1}^{\infty} (-1)^n a_n$

If $a_n > 0$, $\lim_{n \to \infty} a_n = 0$, this series may diverge.

- (1) Absolute Convergence: If $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges
- (2) Convergence Condition: $\lim_{n\to\infty} \text{ and } a_n>a_{n+1}$
- (3) Diverge: If $a_n < a_{n+1}$, then the series diverges

1.3 Power Series $\sum_{n=0}^{\infty} a_n (x - x_0)^n \to f(x)$

Convergent condition for x: $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} (x - x_0) \right| < 1$

1.4 Asymptotic Series 渐近级数

For functions f(z) and $\phi(z) \neq 0$ defined in $\mathring{U}(z_0)$, we say that $f(z) = O(\phi(z))$ at $z \to z_0$ if $f(z)/\phi(z)$ is bounded, and that $f(z) = o(\phi(z))$ at $z \to z_0$ if $f(z)/\phi(z) \to 0$.

If for $\forall m$, when $z \to z_0$,

$$f(z) - \sum_{n=0}^m a_n \phi_n(z) = o(\phi_m(z))$$

we say that $\sum_{n=0}^{m} a_n \phi_n(z)$ is an asymptotic series for f(z), even though the series may not converge:

$$f(z) \sim \sum_{n=0}^{m} a_n \phi_n(z)$$

2 Taylor Expansion $\sum_{n=0}^{\infty} a_n (x - x_0)^n$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \qquad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \qquad \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots \qquad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} + \dots$$

$$\arctan x = \int_0^x \sum_{n=0}^\infty (-t^2)^n dt = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2n+1}$$
, where $|x| < 1$

2.1 Leibniz Rule

$$\frac{\mathrm{d}^{(M)}}{\mathrm{d}x^M}(u\cdot v) = \left(\frac{\mathrm{d}u}{\mathrm{d}x}\frac{\partial}{\partial u} + \frac{\mathrm{d}v}{\mathrm{d}x}\frac{\partial}{\partial v}\right)^M(u\cdot v) = \sum_{n=0}^M C_M^n \left(\frac{\mathrm{d}^{(M-n)}u}{\mathrm{d}x^{(M-n)}}\right) \left(\frac{\mathrm{d}^{(n)}v}{\mathrm{d}x^n}\right)$$

2.2 Error Estimation when N Terms are Kept

$$f(x)\approx \sum_{n=0}^N (-1)^n a_n (x-x_0)^n \qquad b_n\equiv a_n (x-x_0)^n>0$$

2.2.1 Alternating Series $S = \sum_{n=0}^{\infty} (-1)^n b_n$

Maximum possible error for f(x) is

$$b_{N+1} = a_{N+1} |x - x_0|^{N+1}$$

2.2.2 "Positive" Series $S = \sum_{n=0}^{\infty} a_n (x - x_0)^n, a_n (x - x_0)^n > 0$

If it converges when $|x - x_0| < 1$, and $|a_{n+1}| < |a_n|$, then

$$S - S_N < \frac{\left|a_{N+1}\right| \left|x - x_0\right|^{N+1}}{1 - \left|x - x_0\right|}$$

Note: In practice, Taylor Expansion is useful when $|x - x_0| << 1$, and an upper limit of error ϵ to be tolerated is given, even if the series converges for any value of $(x - x_0)$.

2.3 L'Ĥopital's Rule

Theorem 1:
$$\lim_{x\to x_0} \frac{f(x)}{g(x)} \overset{f(x_0)=0}{\underset{g(x_0)=0}{\longrightarrow}} \overset{0}{0} \implies \lim_{x\to x_0} \frac{f(x)}{g(x)} \longrightarrow \frac{f'(x)}{g'(x)}$$

Theorem 2: $\lim_{x\to x_0} \frac{f(x)}{g(x)} \xrightarrow[g(x_0)=0]{} \frac{\infty}{\infty} \implies \lim_{x\to x_0} \frac{f(x)}{g(x)} \longrightarrow \frac{f'(x)}{g'(x)}$ (proved by the inverse of the fraction)

3 Complex Analysis

Convergence of the Complex Series $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} a_n + i \sum_{n=1}^{\infty} b_n \implies a_n$ and b_n both converges.

Complex Power Series $\sum_{n=0}^{\infty} c_n z^n = f(z)$ with convergence region $\lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}z\right| < 1$.

Euler's Formula: $e^z = \cos z + i \sin z$ help solving the inverse trigonometric functions.

3.1 Complex Functions f(z) = f(x+iy) = u(x,y) + iv(x,y)

Analytic Function

Property: $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\delta z}$ is **unique** regardless how $\Delta z \to 0$.

Necessary and Sufficient Conditions:

Cauchy-Riemann Conditions in Cartesian Coordinate: $\partial_x u = \partial_y v$, $\partial_y u = -\partial_x v$

Cauchy-Riemann Conditions in Polar Coordinate: $\partial_{\theta}u=-\rho\partial_{\rho}v,\quad \partial_{\theta}v=\rho\partial_{\rho}u$

Isolated Zeros 孤立零点

If f is analytic at z_0 , then f has a zeo of order $m \ge 1$ at z_0 if

$$f(z_0)=f'(z_0)=\cdots=f^{(m-1)}(z_0)=0$$

and $f^{(m)}(z_0) \neq 0$. Note that f becomes a **branch point** if m is not an integer, and that f is not analytic at that point.

Theorem: If z = a is a zero of f(z) which is not a constant at $\mathring{U}(a)$, then $\exists \rho > 0$, f(z) doesn't have any zeros in the region $0 < |z - a| < \rho$.

3.2 Line Integrals

With the substitution of line c: y = g(x), dy = g'(x)dx

$$\lim_{\delta z_n \to 0} \sum_{z_n \in c} f(z_n) \Delta z_n = \int_c f(z) \mathrm{d}z = \int_c f(x+iy) (\mathrm{d}x+i\mathrm{d}y) = \int_a^b f(x+ig(x)) (1+ig'(x)) \mathrm{d}x \implies \int_c f(z) \mathrm{d}z = -\int_{-c} f(z) \mathrm{d}z$$

Cauchy's Theorem for Analytic Functions:

$$\oint_C f(z) \mathrm{d}z = 0$$

Two Foundation Lemmas - Jordan's Lemma

• Small Arc Lemma (小圆弧引理):

If f(z) is continuous in $\mathring{U}(a)$, and (z-a)f(z) approaches k consistently as $|z-a|\to 0$ within $\theta_1\leq \arg(z-a)\leq \theta_2$, then

$$\lim_{\delta \to 0} \int_{C_\delta} f(z) \mathrm{d}z = ik(\theta_2 - \theta_1)$$

● Big Arc Lemma (大圆弧引理):

If f(z) is continuous in $\mathring{U}(\infty)$, and zf(z) approaches K consistently as $z \to \infty$ within $\theta_1 \le \arg(z-a) \le \theta_2$, then

$$\lim_{R\to\infty}\int_{C_R}f(z)\mathrm{d}z=iK(\theta_2-\theta_1)$$

Cauchy's Integral Formula: f(z) is analytic inside and on the contour, then for $\forall z_0$ inside the contour,

$$\implies f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z) dz}{z - z_0} \implies f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta$$
 (Mean Value Theorem 均值定理)

i.e. Get full information inside by the information on the boundary only.

Note: If z_0 were outside the contour, then

- \bullet If f is analytic inside C, then $\frac{1}{2\pi i}\oint_C \frac{f(z)\mathrm{d}z}{z-z_0}=0$
- If f is analytic outside C and $\lim_{z\to\infty} f(z) = K$, then $\frac{1}{2\pi i} \oint_C \frac{f(z)dz}{z-z_0} = f(z_0) K$
- The above two lemmas are NOT contradictory. In fact, if a complex function is analytic and bounded within $U(\infty)$, then it must be a constant function.

Liouville Theorem (in Complex Analysis) 刘维尔定理

Every bounded entire function must be constant. That is, every holomorphic function f for which there exists a positive number M such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$ is constant. Equivalently, non-constant holomorphic functions on \mathbb{C} have unbounded images.

Poisson's Formula

Idea: If f(z=x+iy)=u(x,y)+iv(x,y) is analytic on the upper-half plane and that we only know the value of u(x,0) or v(x,0), we can first get the value of $f(x \in \mathbb{R})$, then apply the Cauchy's Integral Formula to get all the complex value on the upper-half plane:

$$f(z) = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u(\xi, 0)}{\xi - (x + iy)} d\xi = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(\xi, 0)}{\xi - (x + iy)} d\xi$$
$$f(z) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(\xi - x)^2 + y^2} d\xi = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{(\xi - x)f(\xi)}{(\xi - x)^2 + y^2} d\xi$$

3.3 Taylor Series

Derivative of f(z)

$$f^{(n)}(a) \equiv \frac{\mathrm{d}^{(n)}f}{\mathrm{d}a^n} = \frac{n!}{2\pi i} \oint_C \frac{f(z)\mathrm{d}z}{(z-a)^{n+1}}$$

Taylor Series $f(z) = \sum a_n (z - z_0)^n$

Suppose f(z) has a singular point at z_1 , we can expand f(z) at z_0 :

$$\begin{split} f(z) &= \frac{1}{2\pi i} \oint_C \frac{f(z') \mathrm{d}z'}{z' - z} = \frac{1}{2\pi i} \sum_{n = 0}^{\infty} (z - z_0)^n \oint_C \frac{f(z') \mathrm{d}z'}{(z' - z_0)^{n + 1}} = \sum_{n = 0}^{\infty} a_n (z - z_0)^n \\ a_n &\equiv \frac{1}{2\pi i} \oint_C \frac{f(z') \mathrm{d}z'}{(z' - z_0)^{n + 1}} = \frac{1}{n!} \frac{\mathrm{d}^n f(z_0)}{\mathrm{d}z^n} \end{split}$$

3.4 Lauren Series

Suppose f(z) has a pole at z_0 , define the hole as order $N \ge 1$ at z_0 if $\lim_{z \to z_0} (z - z_0)^N f(z)$ is finite and non-zero. ("Essential Pole" if such $N \to \infty$ like $e^{1/z}$ at z = 0)

f(z) can be expressed as

$$\begin{split} f(z) &= \sum_{m=0}^{\infty} a_m (z-z_0)^m + \sum_{n=1}^N \frac{b_m}{(z-z_0)^n} \text{ as } \lim_{z \to z_0} (z-z_0)^N f(z) = b_N \\ f(z) &= \frac{1}{2\pi i} \oint_{C_1} \frac{f(z') \mathrm{d}z'}{z'-z} + \oint_{C_2} \frac{f(z') \mathrm{d}z'}{z'-z} = I_1 + I_2 \end{split}$$

We have

$$a_n = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z') \mathrm{d}z'}{(z'-z_0)^{n+1}} \quad b_1 = \frac{1}{2\pi i} \oint_{C_2} f(z') \mathrm{d}z' \quad b_{n+1} = \frac{1}{2\pi i} \oint_{C_2} f(z') (z'-z_0)^n \mathrm{d}z' \quad \text{(Not Useful)}$$

Z₁ C₁ Z₀ Z₁ Z₁ Z₂ Z₂

Note that when f(z) is analytic at z_0 , a_n becomes the same as the coefficient in Taylor Series, and $b_i \equiv 0$ for $\forall i$.

3.5 Analytic Continuation 解析延拓

Suppose $f_1(z)$ is analytic in region g_1 , $f_2(z)$ is analytic in region g_2 , such that $g_1 \cap g_2 \neq \emptyset$. If $f_1(z) \equiv f_2(z)$ in $g_1 \cap g_2$, then $f_2(z)$ is the analytic continuation for $f_1(z)$ in region g_2 .

3.6 Residue Theorem 留数定理

We want to evaluate $\oint_C f(z)dz$ around the pole. By applying the Lauren Series, one can prove that

$$\oint_C f(z) \mathrm{d}z = 2\pi i b_1$$

To find b_1 , notice that $\lim_{z\to z_0}(z-z_0)^N f(z)$ is finite and all the other terms in the Lauren Series would disappear by taking (N-1) times derivatives and taking $z=z_0$:

$$b_1 = \lim_{z \to z_0} \frac{g^{(M-1)}(z)}{(M-1)!}$$
, where $g(z) \equiv (z - z_0)^M f(z)$, $M \ge N$

(" \geq " to overkill the denominator, theoretically taking M=N is enough)

We then define the coefficient b_1 of the Lauren Series at the pole z_0 as $b_1(z_0) \equiv R(z_0)$, and refer as the **residue** of f(z) at z_0

If f(z) has singular points z_1, z_2, \cdots, z_n inside contour C, then

$$\oint_C f(z) \mathrm{d}z = 2\pi i \sum_{n=1}^N R(z_n)$$

Residue at Infinity

If ∞ is NOT a non-isolated singularity, define

$$R(f(\infty)) = \frac{1}{2\pi i} \oint_{C'} f(z) \mathrm{d}z$$

where C' is a closed curve **clockwise** around a point at infinity.

Note that

$$\begin{split} R(f(\infty)) &= \frac{1}{2\pi i} \oint_{C'} f(z) \mathrm{d}z = -\frac{1}{2\pi i} \oint_{C'} \frac{f(1/t)}{t^2} \mathrm{d}t \\ &= -\frac{f(1/t)}{t^2} \quad t^{-1}\text{'s coefficient expanding at } t = 0 \\ &= -f(1/t) \quad t^{1}\text{'s coefficient expanding at } t = 0 \\ &= -f(z) \quad z^{-1}\text{'s coefficient expanding at } z = \infty \end{split}$$

Note: $R(f(\infty))$ may NOT be zero even if f(z) is analytic at $z = \infty$.

3.6.1 Rational Trignometric Function $\int_0^{2\pi} f(\sin \theta, \cos \theta) d\theta$

By applying the transformation below,

$$\sin \theta = \frac{z^2 - 1}{2iz} \quad \cos \theta = \frac{z^2 + 1}{2z} \quad d\theta = \frac{dz}{iz}$$
$$\int_0^{2\pi} f(\sin \theta, \cos \theta) d\theta = \oint_{|z|=1} f(\frac{z^2 - 1}{2iz}, \frac{z^2 + 1}{2z}) \frac{dz}{iz}$$

$$\begin{split} \int_{-\pi}^{\pi} \frac{1}{1+\epsilon \cos \theta} \mathrm{d}z \ (|\epsilon| < 1) &= \oint_{|z|=1} \frac{2}{\epsilon z^2 + 2z + \epsilon} \frac{\mathrm{d}z}{i} = 2\pi \sum_{|z|<1} R \bigg(\frac{2}{\epsilon z^2 + 2z + \epsilon} \bigg) \\ &= 2\pi \frac{2}{\frac{\mathrm{d}}{\mathrm{d}z} (\epsilon z^2 + 2z + \epsilon) \big|_{z=(-1+\sqrt{1-\epsilon^2})/\epsilon}} = \frac{2\pi}{\sqrt{1-\epsilon^2}} \end{split}$$

3.6.2 Improper Intergral (over \mathbb{R}) $\int_{-\infty}^{\infty} f(x) dx$

Example:

$$\int_{-\infty}^{\infty}\frac{1}{1+x^2}\mathrm{d}x=\oint_{C_1+C_2}\frac{1}{1+z^2}\mathrm{d}z=2\pi iR(i)=\pi$$

Note: This requires the integral around the infinite point to be exist, so that when the radius of the integral path $C_2 \to \infty$, the integral $\to 0$.

Properties:

In general,

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \mathrm{d}x = 2\pi i \sum_{i=1}^{N} R(z_n)$$

where P(x) and Q(x) are polynomials and that Q(x) is at least two orders higher than P(x), and have no real roots (i.e. No extra poles on the x-axis).

Such order difference is required because

$$\int_{C_2} \frac{P(z)}{Q(z)} \mathrm{d}z \text{ as } C_2 \to \infty \text{ requires } \lim_{\rho \to \infty} \frac{P(\rho e^{i\theta})}{Q(\rho e^{i\theta})} i \rho e^{i\theta} \sim \lim_{\rho \to \infty} \rho^{1-M} = 0 \implies \text{Integer } M \ge 2$$

To deal with the poles on the x-axis when computing the (improper) integral over the real numbers, one can make use of the Jordan's Lemma (See Page 4) to compute the integral over a semi-circle to get the **Principal Value (PV)** at that point.

Properties for Poles on the Real Axis (Corollary of Jordan's Lemma):

Make substitutions: $z - z_0 = \rho e^{i\theta}$, $dz = i\rho e^{i\theta} d\theta$

$$PV(z_0) = \int_{C(z_0)} f(z) \mathrm{d}z = \lim_{\rho \to 0} \int_{C_0(z_0)} f(z) \mathrm{d}z = i \lim_{\rho \to 0} \int_{\theta_1}^{\theta_2} f(z_0 + \rho e^{i\theta}) \rho e^{i\theta} \mathrm{d}\theta$$

Suppose z_0 is a pole of order 1 on the real axis. According to the Lauren Series:

$$\begin{split} f(z) &= \sum_{m=0}^{\infty} a_m (z-z_0)^m + \frac{b_1}{z-z_0} \\ &\Longrightarrow \int_{C(z_0)} (z-z_0)^m \mathrm{d}z = \lim_{\rho \to 0} \int_{C(z_0)} \rho^m e^{im\theta} i \rho e^{i\theta} \mathrm{d}\theta = i \lim_{\rho \to 0} \int_{\theta_1}^{\theta_2} \rho^{m+1} e^{i(m+1)\theta} \mathrm{d}\theta = 0 \\ &\Longrightarrow PV = i \lim_{\rho \to 0} \int_{\theta_1}^{\theta_2} f(z_0 + \rho e^{i\theta}) \rho e^{i\theta} \mathrm{d}\theta = i b_1 \lim_{\rho \to 0} \int_{\theta_1}^{\theta_2} \frac{\rho e^{i\theta}}{\rho e^{i\theta}} \mathrm{d}\theta = i b_1 (\theta_2 - \theta_1) = i (\theta_2 - \theta_1) R(z_0) \end{split}$$

Example: PV of the Integeal of $\frac{1}{x}$

In general,

$$\int_{x_1}^{x_2} \frac{\mathrm{d}x}{x} = \ln \left| \frac{x_2}{x_1} \right|$$

where, when $x_1 < 0, x_2 > 0$,

$$PV(\int_{x_1}^{x_2} \frac{\mathrm{d}x}{x}) = \lim_{\epsilon \to 0} \left[\int_{x_1}^{-\epsilon} \frac{\mathrm{d}x}{x} + \int_{\epsilon}^{x_2} \frac{\mathrm{d}x}{x} \right] = \lim_{\epsilon \to 0} \left[\ln \left| \frac{-\epsilon}{x_1} \right| + \ln \left| \frac{x_2}{\epsilon} \right| \right] = \ln \left| \frac{x_2}{x_1} \right|$$

3.6.3 Other Possible Integral Path

Figure 1: HKUST PHYS3031, 2023, Complex Analysis Page 93-97

3.7 Argument (Phase) Principle

Theorem 1:

If f(z) has a root z_1 of order n_1 within the contour C, then

$$I = \oint_C \frac{f'(z)}{f(z)} \mathrm{d}z = 2\pi i n_1$$

Proof goes as $G(z) = \frac{d}{dz} \ln(f(z))$ has a pole of order 1 at z_1 with residue n_1 .

Theorem 2

If f(z) has a pole z_1 of order p_1 within the contour C, then

$$I = \oint_C \frac{f'(z)}{f(z)} \mathrm{d}z = -2\pi i p_1$$

Proof goes according to the Lauren Series of f(z).

Corollary

If f(z) is analytic everywhere, for a very large contour C that contains all roots,

Nouns	Explanations
Analytic (Holomorphic) Point	A point which the function has a derivative at and in a neighborhood around that point
Branch Point 分枝点	A point such that all of its neighborhoods contain a point that has more than n values
Regular Point	A point in the function's domain where the function is differentiable
Singularity 奇点	Essential Singularity 本性奇点: $\lim_{z\to z_0}(z-z_0)^N f(z)$ is always infinite Isolated Singularity 孤立奇点: One that has no other singularities close to it Pole 极点: Lauren Series contains finitely many negative power terms Removable Singularity 可去奇点: Lauren Series doesn't contain term with negative power terms

Table 1: Explanation of Important Nouns

4 Special Functions

5 Partial Differential Equations

Typical Types of PDE

Laplace Equation:
$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0$$

Diffusion Equation: $\alpha^2 \nabla^2 u = \frac{\partial u}{\partial t}$

Wave Equation: $\nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$

5.1 2D Laplace Equation

$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

Case 1

Separation of variables: T(x,y) = X(x)Y(y)

$$\implies \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d}x^2} = -\frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} = \lambda$$

Raises two sets of solution for $\lambda > 0$ and $\lambda < 0$.

For the given boundary condition, we have $\lambda = K^2 < 0$, then

$$\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} = -K^2 X \implies X(x) = A\cos Kx + B\sin Kx$$

$$\frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} = K^2 Y \implies Y(y) = C\cosh Ky + D\sinh Ky$$

With the boundary condition, the general solution is given by

$$T(x,y) = \sum_{n=1}^{\infty} a_n T_n(x,y) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi x}{L_x} e^{-\frac{n\pi y}{L_x}}$$

Compare with te remaining boundary condition

$$\begin{split} T(x,0) &= f(x) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi x}{L_x} \\ \Longrightarrow a_n &= \frac{2}{L_x} \int_0^{L_x} f(x) \sin \frac{n\pi x}{L_x} \mathrm{d}x = \frac{2}{L_x} \langle f(x), \sin \frac{n\pi x}{L_x} \rangle \end{split}$$

For constant function f(x) = C,

$$a_n = \frac{4C}{n\pi}$$
 for odd m , 0 otherwise

Case 2

This also requires x-direction to be sinusoidal, and y-direction to be exponential.

$$\begin{split} T(x,y) &= \sum_{n=1}^{\infty} a_n T_n(x,y) = \sum_{n=1}^{\infty} a_n \sin K_n x \sinh[K_n(L_y-y)] \\ \text{with } a_n &= \frac{2}{L_x \sinh(K_n L_y)} \int_0^{L_x} f(x) \sin K_n x \mathrm{d}x \end{split}$$

Linearity of the Solution

If $T_1(x,y)$ and $T_2(x,y)$ are solutions to the Laplace equation, then $T(x,y)=aT_1(x,y)+bT_2(x,y)$ is also a solution.

Uniqueness Theorem

Because of the orthogonality of the eigenfunctions $\sin(K_n x)$, if two functions T_1 and T_2 both satisfies the Laplace equation and the boundary condition, then the difference of these two functions raise $a_n \equiv 0 \implies T_1 = T_2$. Thus, the solution to the Laplace equation is unique.

Case 3

 $\bar{0}$ refers to the boundary condition of $\partial_x T = 0$

$$\begin{cases} X(x) = A \sin Kx + B \cos Kx \text{ with } X'(x) = 0 \text{ at boundaries } \implies K_n = \frac{n\pi}{L_x} \\ Y(y) = C e^{Ky} + D e^{-Ky} \text{ with finite value at } y \to \infty \implies Y_n = e^{-K_n y} \end{cases}$$

For $K=0,\,T(x,y)=A_0+A_1x+A_2y+A_3xy$ with boundary consitions $\implies A_1=A_2=A_3=0$

$$\implies T(x,y) = A_0 + \sum_{n=1}^{\infty} B_n e^{-K_n y} \cos(K_n x)$$

Applying Fourier Transformation,

$$T(x,y) = \frac{L_x}{2} - \frac{4L_x}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} e^{-K_{2n+1}y} \cos(K_{2n+1}x)$$

Usefal Integrals:

$$\begin{split} & \int_0^{L_x} x \cos(K_n x) \mathrm{d}x = -\frac{2}{K_n^2} = -\frac{2L_x^2}{n^2 \pi^2} \\ & \int_0^{L_x} x \sin(K_n x) \mathrm{d}x = \frac{(-1)^{n+1} L_x^2}{n \pi} \end{split}$$