The group G is isomorphic to the group labelled by [72, 43] in the Small Groups library. Ordinary character table of $G \cong (C3 \times A4) : C2$:

	1a	3a	2a	6a	3b	3c	3d	2b	4a
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1
χ_3	2	2	2	2	-1	-1	-1	0	0
χ_4	2	-1	2	-1	2	-1	-1	0	0
χ_5	2	-1	2	-1	-1	2	-1	0	0
χ_6	2	-1	2	-1	-1	-1	2	0	0
χ_7	3	3	-1	-1	0	0	0	1	-1
χ_8	3	3	-1	-1	0	0	0	-1	1
χ_9	6	-3	-2	1	0	0	0	0	0

Trivial source character table of $G \cong (C3 \times A4)$: C2 at p = 3:

$$\begin{split} P_1 &= Group([()]) \cong 1 \\ P_2 &= Group([(1,2,3)]) \cong \text{C3} \\ P_3 &= Group([(4,6,5)]) \cong \text{C3} \\ P_4 &= Group([(1,2,3)(4,6,5)]) \cong \text{C3} \\ P_5 &= Group([(1,2,3)(4,5,6)]) \cong \text{C3} \end{split}$$

invial source character table of $G = (GGX HI)$. Of all $p = G$.																
Normalisers N_i			N_1			N_2			N_3		N_4		N_5		N_6	
p-subgroups of G up to conjugacy in G			P_1			P_2			P_3		P_4		P_5		P_6	
Representatives $n_j \in N_i$		2a	2b	4a	1a	2b	2a	4a	1a	2a	1a	2a	1a	2a	1a	2a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	-3	1	-1	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	9	-3	-1	1	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	9	9	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	9	9	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	-1	1	-1	3	1	-1	-1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	3	-1	-1	1	3	-1	-1	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	-1	-1	3	-1	3	-1	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	1	1	3	1	3	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	-1	-1	0	0	0	0	3	-1	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	1	1	0	0	0	0	3	1	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	-1	-1	0	0	0	0	0	0	3	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	1	1	0	0	0	0	0	0	3	1	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	-1	-1	0	0	0	0	0	0	0	0	3	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	1	1	0	0	0	0	0	0	0	0	3	1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
\begin{split} P_6 &= Group([(1,2,3),(4,6,5)]) \cong \text{C3} \times \text{C3} \\ N_1 &= Group([(2,3)(5,6),(5,6,7),(1,2,3),(4,5)(6,7),(4,6)(5,7)]) \cong (\text{C3} \times \text{A4}) : \text{C2} \\ N_2 &= Group([(2,3)(5,6),(5,6,7),(1,2,3),(4,5)(6,7),(4,6)(5,7)]) \cong (\text{C3} \times \text{A4}) : \text{C2} \\ N_3 &= Group([(4,6,5),(1,2,3),(2,3)(5,6)]) \cong (\text{C3} \times \text{C3}) : \text{C2} \\ N_4 &= Group([(1,2,3)(4,6,5),(4,6,5),(2,3)(4,5)]) \cong (\text{C3} \times \text{C3}) : \text{C2} \\ N_5 &= Group([(1,2,3)(4,5,6),(4,5,6),(2,3)(4,6)]) \cong (\text{C3} \times \text{C3}) : \text{C2} \\ N_6 &= Group([(4,6,5),(1,2,3),(2,3)(4,5)]) \cong (\text{C3} \times \text{C3}) : \text{C2} \\ \end{split}
```