1/2 ~

METHOD AND APPARATUS FOR FULLY AUTOMATIC AGGLUTINATION IMMUNE ANALYSIS

Publication number: JP1035374 Publication date:

1989-02-06

Inventor:

SAITO TOMOO; SAKURABAYASHI KYOSUKE; HIKITA AKIO; INOUCHI TOSHITSUGU; SONE TAKASHI; SUZUKI NORIHIRO; HIRAKAWA ATSUKO;

KIKUCHI YASUSUKE

Applicant:

FUJIREBIO KK

Classifications

- International:

G01N21/17; G01N33/543; G01N35/02; G01N21/17; G01N33/543; G01N35/02; (IPC1-7): G01N21/17; G01N33/543;

G01N35/02

- european:

Application number: JP19870190214 19870731 Priority number(s): JP19870190214 19870731

Report a data error here

Abstract of JP1035374

PURPOSE:To fully automate an agglutination immune analysis by providing a detector which takes in the agglutination image of the agglutination immune reaction and a decision device which makes image processing of the image taken therein. CONSTITUTION: The agglutination image of a well 8 on a microplate 7 is picked up by a TV camera 12 under adequate illumination and is stored as a video image into an image memory 13. The stored video image is received in a decision device part. The differential image is first obtd. by an image processor 14 at this time, and further, the contour and area of the agglutination image are determined. A standard deviation S with picture elements having >=0 brightness level is obtd. by a standard deviation calculator 15; furthermore, the coefft. CV of fluctuation is obtd. by a coefft. of fluctuation calculator 16. The coefft. CV of fluctuation and the area obtd. by the image processing 14 are inputted to a plotter 17 and is compared with

(全10頁)

[®]公開特許公報(A)

昭64-35374

@Int_C] •
G 01 N 23/543
Z1/17
35/02

母公開 昭和64年(1989)2月6日

発明の数 2

35/Q2 2-1436-20 2-6923-2G 9発明の名称 全自動競集免疫分析方法およびその装置

❷特 顧 紹62−190214

學出 蘇 昭62(1987)7月31日

の発明者 斎藤 智 雄 の発明者 梅 林 恭 朝

^②発明者 疋田 彰夫

^{包発 明 者} 井之内 寿嗣

⑪出 願 人 「富士レビオ株式会社 最終頁に続く 東京都新宿区下落合4丁目6番7号 富士レビオ株式会社 内

等查請求 未請求

東京都新宿区下落合4丁目6番7号 富士レビオ株式会社

東京部新宿区下幕合も丁目6番7号 富士レビオ株式会社 内

東京都新宿区下落合 4 丁目 6 番 7 号 富士レビオ株式会社

東京都新宿区下落合4丁目6番7号

明 和 者

1.强男の名称

全自動収集免疫分析方法かよびその要促 2.特許別求の範囲

- (2) 反応容器に被休を分注し、聚集免疫以来を加え、推律する數処型段階と、聚集免疫反応直接から速統的に發集便を取り込む。または聚集免疫反応数了及此聚集健を取り込む核仏即階と、得られる聚集保を面像処理して判定する何定股階と、から取り、これら領処理股階、後出股階かよび判定股階を選択的に行りことから成る。全自動類集免疫分析方法。

から成る。会日動硬象免択分析吸佐。

3. 强明 ② 詳細 な配勢 🌣

(強弾上の羽用分野)

本発明は、臨床検査にかける免疫学的な終集及 応を利用した金自動凝集免疫分析方法かよびその 様保に囲する。

(従来の技術)

免疫等的な緊集反応を利用した分析方法は、特異性、腐異に優れ、臨床検査の分野で気用されている。 古くは、赤血球を用いて、その要集盤から血液変の同足を行う分析方法があり、最近では赤血球に代替する新しい担体を用いて、微生物や無関連の状態や狭体を類定する凝集免疫分析方法へと多根化している。

及無免疫分析方法を用いる装置を自動化したものは、自動血液設制定装度(雰開略 55-146044) あるいは汎用型自動分析方法か上び装置(特開略 57-111447、 特開曜 58-11858、特語昭 58-22955、 停降昭 58-105065)等少知られている。

これらは、免疫学的健康反応に基く一連の操作を自動化し、模類像の調光的分析により免疫反応の有無を判定している。しかしなから、その判定

特別的64~35374(7)

-622···

特開昭64-35374(9)

 $(\)$

(:

<u>Translation in-part of Japanese Unexamined Patent</u> <u>Publication No. 35374/1989 (Reference 2)</u>

Page 3, upper right column, line 15 to lower left column line 7

The detecting means according to the present invention can employ the method for processing and detecting the agglutination image which is constantly taken in just after the agglutination reaction begins and the method for processing and detecting the agglutination image which is taken when the agglutination reaction ends. For these methods, it is desirable in order to efficiently process micro plates which are transported successively that micro plates are deposited in the position for successive detection by means of a device transporting system. As the device transporting system, a system such as a turn table can be employed. By putting micro plate on the table, successive detection can be done as the table turns.

Page 3, lower right column line 7 to line 12

Means of judging the results comprises a step of determining the reference value based on the reference substrate and a step of detecting the analyte based on the reference value. In the case there are some kinds of successive image signals, the reference number should be set on more factors than when there is one kind of final image signal but the result is obtained faster than when there is one kind of final image signal.

Page 5, upper left column line 7 to the upper right column

As mentioned above, three kinds of analytical votice

- 2 .

plotted to obtain the deviation per unit time by plotting the data unchanged when there is one kind final image (case 1) or by plotting the data based on the time relation when there are some kinds of images.

Firstly, the reference number in case of the final image is set based on the above mentioned process. The reference number is set based on plural kinds of reference substrates. The reference substrates are either positive, negative, or standard (middle of positive and negative). Calculate standard deviation of the areas of the plural reference substrates, and then obtain the fluctuation coefficient of picture elements of deviation image whose luminance is not equal to zero. Plot the relation between the fluctuation coefficient and the area and results of each visual judgment for agglutination images. Store such a line as a standard that makes the overlapping area of the positive and negative of visual judgment smallest.

Analyte determination is done by plotting the data in the same manner as the reference substrates to judge whether there is agglutination or not. In the case there are some kinds of successive images, obtain deviation per unit time and set the reference value in such a manner that the deviation pre area over the value is determined to be negative and the deviation per are equal to or under the value is determined to be positive. Then measure the analyte by comparing the reference value which is obtained based on the deviation per area with the time change and it is determined whether there is agglutination or not.

Page 5, lower left column, line 9 to the lower right column line 3

Immune analysis basically contains two methods, "Rate

method" for measuring rate of reaction at the beginnings of the reaction and "End point method" for measuring the reaction end. When the successive agglutination images are obtained, "Rate method" is used. When one final image is obtained, "End point method" is used. First reaction having large deviation is employed by "Rate method". Steady state is measure by "End point method". "Rate method" allows fast measurement but needs at least two data. On the other hand, "End point method" needs only one data and the sensitivity of the method is high, but it takes more time. According to the present invention, if the result of the measurement is needed immediately, "Rate method" can be employed by getting the successive images.

Explanation of Reference Numbers

5	stand for plates
7	micro plate
8	well
9	hole for positioning
12	TV camera
13	image memory
14	device for processing image
15	device for calculating standard deviation
16	device for calculating fluctuation coefficient
17	plotter
20	device for determining the line
21	memory
22	device for comparison
23	device for calculating contrast

measuring. device for judg

device for

特開昭64-35374(8)。

第 10 函

Oupper device for analyte distribution

* device for analyte distribution

@ distributing and storing

3 device for judo inna

特爾昭64-35374(9)

concentration analyte whose absorbance exceeds absorbance Ah in a short time and whose deviation of the absorbance cannot be measured can be determined whether it needs reduction re-examination in real time and to start re-examination. As for high concentration value analyte S3 shown in Fig.5, for example, the number of sample in the range of Ah is one. Therefore, it is determined that re-examination is needed at the time t2 and reduction re-examination is operated without delay. On the contrary, as for analyte whose final absorbance exceeds Ah, if the number of samples in the region Ah is equal to or more than 3, re-examination is not carried out because deviation is measured appropriately and deviation of absorbance in the range Ah in the same manner as normal analyte S1.

Moreover, when analyte needs reduction re-examination, it is determined whether standard re-examination is needed or not and to start the re-examination for high concentration analyte exceeding the threshold value Ch.

100351

[0034]

()

In this embodiment, system for multiple analyses which can switch End point method or Rate method is shown. However this invention can employ only one of the modes.

Explanation of Reference Numbers

- 1 automatic analyzer
- 2 analyte sampling table
- 3 reagent distribution table