Machine Learning Systems Design

LolFFate

Milestone 2

Context

- League of Legends (LoL) is one of the most popular video game in the world.
- It is:
 - o a **5v5 multiplayer** game;
 - which mixes strategy and skills;
 - o and is known for causing lots of **frustration**.
- Players can ForFeit (FF) after 15 min of gameplay

source: https://wiki.leagueoflegends.com/en-us/

Our solution: LolFFate

- FFate is a platform allowing LoL players to predict their probability of winning or losing their current game.
- The predictions are made thanks to an ML model and are served through a Flask application.
- As of now, our app has **2 versions**:
 - The online version on Google Cloud;
 - The **local** version for the **player's machine**.

Milestone 1: Feedback consideration

- Available on GitHub in <u>Documentation/Milestone2</u>
- **Experimentation** review
 - Further explanations for our motivations:
 - Addressing features **relevance** & **selection**;
 - Addressing our model evaluation.
- Use case review
 - Better **definition** of our product value:
 - Prediction of the winning probability;
 - Proposition of an online dashboard;
 - Allows an improved decision making.

Architecture for Model Serving

- A Flask application serves our model.
- The Flask web platform provides different functionalities to the users:
 - Get the prediction probability of a game by inputting a game ID;
 - See the explanations on the features relevance in the prediction for a better understanding of it.

Model Deployment

- The **Flask application** can be packaged in a **Docker** Container and run **locally**.
- However, the application is also available on Google Cloud
 - It can therefore be accessed remotely
 - → https://flask-app-30182159501.europe-west1.run.app/
- The online version of our application currently makes predictions on existing matches from the training dataset.
 - For example, try entering the match ID EUW1_6880890229 '

Model Pipeline

- Vertex Al API pipelines to build our model automatically through different steps:
 - o Data ingestion
 - Dataset pre-processing
 - Dataset splitting
 - Model training
 - Model evaluation
 - Model deployment
- **After running,** the pipeline provides us:
 - The model evaluation metrics
 - The deployed model and its endpoint

Model Pipeline

Our Pipeline Topology:

Riot API & Local Version

- Integration of Riot API(s)
 - Riot Web API (online)
 - Players history, rank, details about past games
 - Client API (local)
 - Information about local live game
- The local version of our application uses the Client API to make predictions on the ongoing matches that are launched in the local machine of the player.
- Further improvement : **combining** the two versions

Machine Learning Systems Design

LolFFate

Thank you for listening!