

Parameter-Free Attentive Scoring for Speaker Verification

Jason Pelecanos, Quan Wang, Yiling Huang, Ignacio Lopez Moreno [paper]

Agenda

- ⁰¹ Background
- O2 Attentive Scoring
- ⁰³ Results
- 04 Conclusions

Section 1

Background

Embedding based similarity scoring methods

Common approaches

- Cosine scoring
- Softmax Cross Entropy training followed by a PLDA stage [Snyder, 2018]
- Added Margins (for example, ECAPA-TDNN system [Desplanques, 2020])

Uncertainty Statistics

- Neural network estimates embeddings which include uncertainty statistics for parametric scoring [Silnova, 2020]
- Decision-Residual Vectors (Dr-Vectors)
 - Compare embeddings using a small neural network as a residual estimate [Pelecanos, 2021]
- Attention based neural network scoring
 - Learns an attention based neural network [Li, 2020; Jung, 2021]

Attentive scoring: A simple approach?

- We currently use cosine based similarity scoring for comparing speakers
 - For multiple enrollment utterances, embeddings are <u>averaged</u>.
 - Not ideal if enrollment utterances are from different and perhaps more relevant devices
- How can we improve performance for multiple enrollment utterances?
 - "Attend" (weight) the enrollment utterances depending on relevance to the test utterance.
 - We can also attend to relevant parts within an utterance (not the initial focus).
- How can we use attention for scoring?
 - We can adapt the scaled dot-product attention from the Transformers <u>paper</u> [Vaswani,
 2017] to the speaker recognition problem.

Section 2

Parameter-Free Attentive Scoring

Cosine and attentive scoring

Attentive Scoring (expanded as a single dot product)

Parameter-free attentive scoring

Cosine Similarity:
$$s_{\cos}(\mathbf{t},\mathbf{e}) = rac{\mathbf{t}\cdot\mathbf{e}}{\|\mathbf{t}\|_2\|\mathbf{e}\|_2}$$

$$extstyled{\mathsf{queries}} \hspace{0.2cm} extstyled{\mathsf{values}}$$
 $extstyled{\mathsf{Test}} \Rightarrow \hspace{0.2cm} extstyled{\mathsf{U}}_t = \{ extstyled{\mathsf{q}}_m, extstyled{\mathsf{t}}_m\}_{m=1,...,N}$ $extstyled{\mathsf{Enroll}} \Rightarrow \hspace{0.2cm} extstyled{\mathsf{U}}_e = \{ extstyled{\mathsf{k}}_n, extstyled{\mathsf{e}}_n\}_{n=1,...,N}$ keys values

$$s_{ ext{att}}(\mathbf{U}_t, \mathbf{U}_e) = \sum_{m=1}^{M} \sum_{n=1}^{N} w_{mn} \mathbf{t}_m \cdot \mathbf{e}_n$$
 $w_{mn} = \frac{\exp(lpha \, \mathbf{q}_m \cdot \mathbf{k}_n)}{\sum_{i=1}^{M} \sum_{j=1}^{N} \exp(lpha \, \mathbf{q}_i \cdot \mathbf{k}_j)}$

Model architecture

Section 3

Results

Data

Speech data

- Vendor collected speech data, LibriVox, CN-Celeb & LDC sourced data.
- Most recordings are short utterance recordings of a few seconds using different devices such as cell phone or laptop
- Training and evaluation data are also augmented with noisy speech based on simulated additive noise and reverberation effects

Training

- 9 languages (+ other supplementary languages)
- o 230k speakers, 74M utterances

Evaluation:

- 9 languages
- 25k speakers, 1.7M utterances
- Trials per <u>language</u>: 93-200k target trials, 200k non-target trials

Results overview

- Comparison across normalizations
- Varying the number of keys
- Tied versus Independent keys and queries
- Mean versus joint estimation for embeddings

Comparison across normalizations

	#	# Dimensions		Single Enroll		Multi Enroll		Task	
System	Key-Value	Per Per		EER (%)		EER (%)		Average	
	Pairs	Key	Value	Total	Clean	Noisy	Clean	Noisy	EER (%)
	-	-	-	256	2.23	3.38	0.67	1.23	1.88
Baseline (Cosine Similarity)	-	-	-	512	2.31	3.34	0.68	1.20	1.88
	-	-	-	2304	2.22	3.35	0.67	1.23	1.87
Attentive Scoring:									
No normalization	8	32	256	2304	2.15	3.26	0.69	1.29	1.85
Layer Normalization [19]	8	32	224	2048	2.15	3.30	0.71	1.30	1.86
Key & Value L2-Norm (A)	8	32	256	2304	2.03	3.20	0.65	1.21	1.77
Key & Value L2-Norm	32	16	48	2048	2.01	3.20	0.65	1.22	1.77
Key & Global L2-Norm	8	32	256	2304	1.94	3.15	0.61	1.20	1.72
Key & Global L2-Norm (B)	32	16	48	2048	1.93	3.02	0.60	1.15	1.68

Relative Improvement: 13% 10% 10% 4% 10%

Varying the number of keys

Task average EER as a function of the number of keys

Section 4

Conclusions

Conclusions

- Proposed a parameter-free attentive scoring approach.
 - Relatively straightforward to implement
 - Scoring is a simple function of the embeddings (+ scaling factor)

Results

- Attentive scoring normalization plays an important role in system performance.
 - Overall "Global L2-normalization" performed best
- Significantly increasing the number of keys can help (at the cost of more parameters).
- Also explored the effects of:
 - Tied/Independently estimated keys/queries
 - Mean/Joint estimation for multiple enrollment utterances

Future work

Significant scope for exploring other configurations/normalizations.

Additional Material

Global L2-normalization

Similarity represented as one large dot-product:

$$s_{ ext{att}}(\mathbf{U}_t,\mathbf{U}_e) = \mathbf{a}\cdot\mathbf{b}$$
 $\mathbf{a} = egin{pmatrix} \sqrt{w_{1N}}\mathbf{t}_1 \ dots \ \sqrt{w_{MN}}\mathbf{t}_M \ dots \ \sqrt{w_{MN}}\mathbf{t}_M \end{pmatrix}$ $\mathbf{b} = egin{pmatrix} \sqrt{w_{MN}}\mathbf{e}_N \ dots \ \sqrt{w_{MN}}\mathbf{e}_N \end{pmatrix}$

Calculate cosine similarity:

$$s_{\parallel ext{att} \parallel}(\mathbf{U}_t, \mathbf{U}_e) = rac{s_{ ext{att}}(\mathbf{U}_t, \mathbf{U}_e)}{\sqrt{\|\mathbf{a}\|_2^2 \|\mathbf{b}\|_2^2}} = rac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\|\mathbf{a}\|_2^2 \|\mathbf{b}\|_2^2}}$$

How do we generate queries, keys & values?

Tied Queries and Keys (Queries and Keys Identical)

Similar packing/unpacking can be achieved for independent query and key estimation

Data

	Training			Evaluation				
Language	Spk	Utt	Spk	Utt	Tar	Non		
	[k]	[k]	[k]	[k]	[k]	[k]		
English (India)	6.0	2900	1.6	264	200	200		
English (US)	46.7	3329	12.4	543	200	200		
French	5.8	2458	1.4	161	152	200		
Hindi	8.3	1642	2.4	106	93	200		
Italian	5.2	2251	1.2	102	95	200		
Japanese	6.2	2048	1.7	106	97	200		
Korean	5.4	1407	1.5	160	151	200		
Portuguese (Brazil)	5.8	1675	1.5	107	97	200		
Spanish	4.6	2189	1.2	113	106	200		
Other Data/Sources [†]	139.8	54499	-	-	-	-		

[†] Includes vendor collected data from languages outside of the languages mentioned as well as LibriVox, CN-Celeb, and LDC sourced data.

Tied and independently estimated keys/queries

System	Query &	Total					Task	
	&	Dims	EER (%)		EER (%)		Average	
	Key	Dims	Clean	Noisy	Clean	Noisy	EER (%)	
(A)	Tied	2304	2.03	3.20	0.65	1.21	1.77	
	Indep	2560	2.06	3.08	0.63	1.14	1.73	
(B)	Tied	2048	1.93	3.02	0.60	1.15	1.68	
	Indep	2560	2.04	3.12	0.62	1.17	1.74	

System "A": 8x[Keys/Queries: 32d, Values: 256d]

System "B": 32x[Keys/Queries: 16d, Values: 48d]

Varying the number of keys

# Key-	Total	Single Enroll		Multi	Enroll	Task	
Value	Dims	EER	$\mathcal{L}(\%)$	EER	$\mathcal{L}(\%)$	Average	
Pairs	Dillis	Clean	Noisy	Clean	Noisy	EER (%)	
1	288	2.17	3.20	0.75	1.31	1.86	
2	576	2.08	3.23	0.70	1.30	1.83	
4	1152	2.12	3.21	0.68	1.21	1.80	
8	2304	2.03	3.20	0.65	1.21	1.77	
16	4608	1.99	3.09	0.62	1.15	1.71	
32	9216	1.95	3.10	0.61	1.16	1.70	
64	18432	1.89	3.10	0.60	1.15	1.68	
128	36864	1.97	3.10	0.61	1.18	1.72	

System "A": ?x[Keys/Queries: 32d, Values: 256d]

Mean versus joint estimation

	Estim	ation	Single Enroll		Multi Enroll		Task	
	Met	thod	EER (%)		EER (%)		Average	
T	rain	Eval	Clean	Noisy	Clean	Noisy	EER (%)	
J	oint	Joint	2.03	3.20	0.65	1.21	1.77]
J	oint	Mean	2.03	3.20	0.65	1.16	1.76	
M	Iean	Mean	2.32	3.57	0.67	1.14	1.92	

