[CSED233-01] Data Structure

Sorting

Jaesik Park

Sorting

- Given a collection of elements
 - Each element is a pair (key, info)
- Reordering/arranging the elements in a certain order
 - Mostly
 - Numerical order
 - Lexicographical order (a generalization of the alphabetical order)
 - Linear (or total) ordering on keys:
 - Trichotomy (three categories): For any keys a and b, exactly one of a < b, a = b, or a > b is true
 - Transitivity: For any a, b, and c, if a < b and b < c, then a < c

Types of Sorting: Memory Usage

- Internal (In-memory) sort
 - Appropriate for sorting a collection of elements that fit in main memory
 - Simple, but relatively slow $O(n^2)$
 - bubble sort, selection sort, insertion sort
 - Considerably better O(n log n) on average
 - heap sort, quick sort, merge sort
- External sort
 - Too large collection of elements to fit in main memory, so the records must reside in external memory
 - Based on *merge sort*

Types of Sorting: Comparison

- Comparison sorts
 - Use only the relation among the keys (pair-wise comparison)
 - bubble / selection / insertion sort
 - heap / merge / quick sort

- Non-comparison sorts
 - Use some properties of keys
 - bucket sort (examines bits of keys)
 - radix sort (examines individual bits of keys)
 - counting sort (indexes using key values)

Types of Sorting: Stability

- Stable sort
 - Retain the original relative ordering of elements with duplicate keys
 - (e.g.) For given pairs (4, a) (3, y) (3, x) (5, b)
 - (3, y) (3, x) (4, a) (5, b) : order maintained
 - (3, x) (3, y) (4, a) (5, b) : order changed

Bubble Sort

- On path k, the k-th lowest key rises to k-th position
 - Iteratively swap the adjacent items if the below item has a lower key value
 - If there were no swap in the current iteration, the array is sorted

- $O(n^2)$ in the average & worst cases
 - Only useful for a small collection (n < 100), $O(n^2)$ swaps
- O(n) in the *best case* (over an already-sorted list)

Selection Sort

- On path k, select the k-th lowest key & swap with A[k]
 - For each iteration, find the minimum element from the unsorted part and putting it at the beginning
 - At most one swapping happens for each iteration

i	nitial	k = 1	k = 2	k = 3	k = 4	k = 5
	42	13	13	13	13	13
	20	20	14	14	14	14
	17	17	17	17	17	17
	13	42	42	42	20	20
	28	28	28	28	28	28
\downarrow	14		20	↓ 20	↓ 42	42

- $O(n^2)$ in the best, average, and worst cases
- Fewer (*n*-1) *record swaps* than Bubble sort

Insertion Sort

- On path k, A[k] is inserted at the correct position within an already sorted list A[1], A[2], ..., A[k-1]
- Values from the unsorted part are placed at the correct position in the sorted part

- $O(n^2)$ in the average & worst cases
 - $\Theta(n^2)$ swaps
- O(n) in the *best case* (if keys begin in sorted order)

Bucket Sort

- Non-comparison sort
 - Phase 1: scattering keys into a number of buckets
 - If you need to sort a single bucket list, sort each non-empty bucket (either recursively or using a different sorting algorithm, e.g., insertion sort)
 - Phase 2: gathering
 - Visit the buckets in order & empty them into the original list

- Simple example:
 - A list of n (key, info) pairs with key range [0, N-1]

Bucket Sort

• Phase 1: scattering into buckets \rightarrow O(n)

• Phase 2: Gathering \rightarrow O(n + M)

- O(n + N) time in the average case
- Efficient
 - if keys come from a small interval [0, N 1]

Bucket Sort

- What if your keys are floating numbers?
 - <0.78, 0.12, 0.45, 0.26, 0.36, 0.48, 0.11 >
- Can you apply bucket sort here as well?

Mergesort

- Divide-and-Conquer (DQ) algorithm
 - Split a list of elements into two equal sublists
 - Sort each of the sublists recursively
 - Combine the two sorted sublists into one sorted list
 - Using "merge" process
- Complexity: O(n log n)
- Usually implemented *non-recursively*

Recursive Mergesort

```
Merge-sort (L, n) {
  if n = 1 then
    \underline{\text{return}}(L)
  else begin
    break L into two halves L_1 and L_2 of length n/2;
    return (merge (Merge-sort(L_1, n/2), Merge-sort(L_2, n/2)));
  end
```

Merge Two Sorted Lists

- Given two sorted lists
 - A = <13, 17>
 - B = <14, 15, 23, 28>
 - C = <>: the output list

Merge Two Sorted Lists

- Compare the first elements of A and B, and append the smaller into the output list C
 - Step 1
 - A = <17>
 - B = <14, 15, 23, 28>
 - C = <13>
 - Step 2
 - A = <17>
 - $B = \langle 15, 23, 28 \rangle$
 - C = <13, 14>
 - Step 3
 - A = <17>
 - $B = \langle 23, 28 \rangle$
 - C = <13, 14, 15>
 - Step 4
 - A = <>
 - $B = \langle 23, 28 \rangle$
 - $C = \langle 13, 14, 15, 17 \rangle$

When one of A and B becomes empty, append the other list to C.

 Total time: O(n + m), where n and m are the # of elements initially in A and B, respectively

Mergesort (Downward Pass)

Mergesort (Upward Pass)

Time Complexity

- Recursion tree
 - # of leaf nodes: n
 - # of non-leaf nodes: *n*-1
- Downward pass over the recursion tree
 - O(1) time at each node
 - O(n) total time at all nodes
- Upward pass over the recursion tree
 - O(n) time to merge at each level that has a non-leaf node
 - O(log *n*) levels
- \rightarrow Total time = $O(n \log n)$

Non-recursive Version

- Eliminate downward pass
- Start with the sorted segments of size 1 and do pairwise merging of these sorted segments as in the upward pass

Non-recursive Mergesort

<36, 20, 17, 13, 28, 14, 23, 15, 32>

Complexity

- Mergesort is slower than Insertion Sort when approximately $n \le 15$
 - So, define a *small instance* to be an instance with $n \le 15$
 - And sort small instances using *Insertion Sort*

• Start with segment size = 15

Quicksort

- Divide phase
 - Select a pivot element from out of the n elements
 - *Partition* the elements into 3 groups
 - Left partition: key values < pivot
 - *Pivot* itself
 - Right partition: key values ≥ pivot
 - Sort the left & right partitions recursively

- Conquer phase
 - Answer is the sorted left partition, followed by the pivot and by the sorted right partition

Example (Partitioning)

- Select the leftmost as the pivot (*pivot* = 17)
- Method 1: When another lists L and R are available
 - Scan A from left to right, appending elements (< pivot) to L and the others to R

$$L = \begin{bmatrix} 15 & 2 & 14 \\ R = & 20 & 17 & 33 & 21 \end{bmatrix}$$

Sort L and R recursively

Quicksort

Example (Partitioning)

- Select the leftmost as the pivot (pivot = 17)
- Method 2: When another array B is available
 - Scan A from left to right, placing elements (< pivot) at the left end of B and the remaining at the right end of B

Sort the left and right groups recursively

Choice of Pivot in Many Ways

- Ideal case choose the median key value
 - All the elements can be partitioned into two halves
- Use the first (or last) element
 - If the input is sorted, this will produce poor partitioning with all elements to one side of the pivot
- Pick an element at random
 - Using a random number generator is relatively expensive
- Select the middle element

Choice of Pivot in Many Ways

- Using median-of-three rule
 - From the three elements (first, middle, & last), select the one with median key
 - (e.g.) When sorting an array A[1:9]
 - Examine A[1], A[5], and A[9]
 - If they have keys $\{30, 2, \underline{10}\} \rightarrow A[9]$
 - If $\{3, 2, 10\} \rightarrow A[1]$
 - If $\{35, \underline{20}, 10\} \rightarrow A[5]$

- Select the larger of the first two distinct elements
 - [in Aho83]

"In-Place" Partitioning

- Repeat
 - Find the leftmost element (L) ≥ pivot
 - Find the rightmost element (R) < pivot
 - Swap L & R if L is the left of R

Example (In-Place Partitioning)

- L is not to the left of R
- Thus, terminate process and swap pivot & R

Time Complexity

- To partition an array of n elements
 - O(*n*) time -----
- Let t(n) be the time needed to sort the n elements

•
$$t(n) = C$$
 $(n = 0, 1)$
 $t(||eft|) + t(|right|) + d*n (n > 1)$

where *c*, *d*: constant

- Best-case time when
 - |left| & |right| are equal (or differ by 1) at each partitioning step
 - O(n log n) time in the best & average cases

Complexity

- Worst-case time when
 - either |left| = 0 or |right| = 0 at each partitioning
 - the pivot is always the smallest element
 - the input is sorted and the leftmost element is chosen
 - $O(n^2)$ time in the worst case
- To improve performance
 - Define a small instance to be one with n ≤ 15, and sort small instances using insertion sort

Comparing Quick & Heap Sorts

	Quick sort		Heap sort		Insertion sort	
n	Compare	Exchange	Compare	Exchange	Compare	Exchange
100	712	148	2,842	581	2,596	899
200	1,682	328	9,736	1,366	10,307	3,503
500	5,102	919	53,113	4,042	62,746	21,083

- Heap sort? (heapify!)
- Empirically, quick sort is considerably faster than heap sort
- However, quick sort should never be used in applications which require a guarantee of response time unless it is treated as an $O(n^2)$ algorithm

Quick sort vs. Merge sort

- Quick sort can be implemented with in-place operation
 - No additional memory is required as in Merge sort
 - Working on a same array increases access speed of the data by making use of cache coherence (something that you can learn from computer architecture)
- In many cases, quick sort can avoid O(n²) by choosing a right pivot

References

- Further reading list and references
 - https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/

- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee