Ideals, Varieties and Symbolic Computation

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Lecture: Sep 24, 2014

Agenda:

- Wish to build a polynomial algebra model for hardware
- Modulo arithmetic model is versatile: can represent both bit-level and word-level constraints
- To build the algebraic/modulo arithmetic model:
 - Rings, Fields, Modulo arithmetic
 - Polynomials, Polynomial functions, Polynomial Rings
 - Ideals, Varieties, Symbolic Computing and Gröbner Bases
 - Decision procedures in verification

2 / 9

Ideals in Rings

R = ring, Ideal $J \subseteq R$, s.t.:

- 0 ∈ J
- $\bullet \ \forall x,y \in J, x+y \in J$
- $\forall x \in J, z \in R, x \cdot z \in J$

Ideals in Rings

R = ring, Ideal $J \subseteq R$, s.t.:

- 0 ∈ J
- $\bullet \ \forall x,y \in J, x+y \in J$
- $\forall x \in J, z \in R, x \cdot z \in J$

- Examples of Ideals: $R = \mathbb{Z}, J = 2\mathbb{Z}, 3\mathbb{Z}, \dots, n\mathbb{Z}$
- Ideals versus Subrings: $\mathbb{Z} \subset \mathbb{Q}$, but \mathbb{Z} not an ideal in \mathbb{Q}
- $1 \in Ring R$, but 1 need not be in ideal J

Definition

Ideals of Polynomials: Let $f_1, f_2, \dots, f_s \in R = \mathbb{F}[x_1, \dots, x_d]$. Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_1, \dots, h_s \in R \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators (basis) of J. [Note, h_i : arbitrary elements in R]

Definition

Ideals of Polynomials: Let $f_1, f_2, \ldots, f_s \in R = \mathbb{F}[x_1, \ldots, x_d]$. Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_1, \dots, h_s \in R \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators (basis) of J. [Note, h_i : arbitrary elements in R]

Definition

Ideals of Polynomials: Let $f_1, f_2, \dots, f_s \in R = \mathbb{F}[x_1, \dots, x_d]$. Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_1, \dots, h_s \in R \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators (basis) of J. [Note, h_i : arbitrary elements in R]

Definition

Ideals of Polynomials: Let $f_1, f_2, \dots, f_s \in R = \mathbb{F}[x_1, \dots, x_d]$. Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_1, \dots, h_s \in R \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators (basis) of J. [Note, h_i : arbitrary elements in R]

Is
$$0 \in J$$
? Put $h_i = 0$

Definition

Ideals of Polynomials: Let $f_1, f_2, \ldots, f_s \in R = \mathbb{F}[x_1, \ldots, x_d]$. Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_1, \dots, h_s \in R \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators (basis) of J. [Note, h_i : arbitrary elements in R]

Is
$$0 \in J$$
? Put $h_i = 0$
Given $f_i, f_i \in J$ is $f_i + f_i \in J$?

Definition

Ideals of Polynomials: Let $f_1, f_2, \ldots, f_s \in R = \mathbb{F}[x_1, \ldots, x_d]$. Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_1, \dots, h_s \in R \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators (basis) of J. [Note, h_i : arbitrary elements in R]

Is
$$0 \in J$$
? Put $h_i = 0$

Given
$$f_i, f_j \in J$$
 is $f_i + f_j \in J$? Put $h_i, h_j = 1$

Definition

Ideals of Polynomials: Let $f_1, f_2, \ldots, f_s \in R = \mathbb{F}[x_1, \ldots, x_d]$. Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_1, \dots, h_s \in R \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators (basis) of J. [Note, h_i : arbitrary elements in R]

Given the above definition, prove that J is indeed an ideal.

Is $0 \in J$? Put $h_i = 0$ Given $f_i, f_j \in J$ is $f_i + f_j \in J$? Put $h_i, h_j = 1$ Given $f_i \in J, h_i \in R$ is $f_i \cdot h_i \in J$?

- An ideal may have many different generators
- It is possible to have:

$$J = \langle f_1, \dots, f_s \rangle = \langle p_1, \dots, p_l \rangle = \dots = \langle g_1, \dots, g_t \rangle$$

- Where $f_i, p_j, g_k \in \mathbb{F}[x_1, \dots, x_d]$ and $J \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Does there exist a Canonical representation of an ideal?
- A Gröbner Basis is a canonical representation of the ideal, with many nice properties that allow to solve many polynomial decision questions
- Buchberger's Algorithm allows to compute a Gröbner Basis
 - Given $F = \{f_1, \ldots, f_s\} \in \mathbb{R}[x_1, \ldots, x_d]$

- An ideal may have many different generators
- It is possible to have:

$$J = \langle f_1, \dots, f_s \rangle = \langle p_1, \dots, p_l \rangle = \dots = \langle g_1, \dots, g_t \rangle$$

- Where $f_i, p_j, g_k \in \mathbb{F}[x_1, \dots, x_d]$ and $J \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Does there exist a Canonical representation of an ideal?
- A Gröbner Basis is a canonical representation of the ideal, with many nice properties that allow to solve many polynomial decision questions
- Buchberger's Algorithm allows to compute a Gröbner Basis
 - Given $F = \{f_1, \ldots, f_s\} \in \mathbb{R}[x_1, \ldots, x_d]$
 - ullet It finds $G=\{g_1,\ldots,g_t\}$, such that

- An ideal may have many different generators
- It is possible to have:

$$J = \langle f_1, \ldots, f_s \rangle = \langle p_1, \ldots, p_l \rangle = \cdots = \langle g_1, \ldots, g_t \rangle$$

- Where $f_i, p_j, g_k \in \mathbb{F}[x_1, \dots, x_d]$ and $J \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Does there exist a Canonical representation of an ideal?
- A Gröbner Basis is a canonical representation of the ideal, with many nice properties that allow to solve many polynomial decision questions
- Buchberger's Algorithm allows to compute a Gröbner Basis
 - Given $F = \{f_1, \dots, f_s\} \in \mathbb{R}[x_1, \dots, x_d]$
 - It finds $G = \{g_1, \dots, g_t\}$, such that
 - $J = \langle F \rangle = \langle G \rangle$

- An ideal may have many different generators
- It is possible to have:

$$J = \langle f_1, \dots, f_s \rangle = \langle p_1, \dots, p_l \rangle = \dots = \langle g_1, \dots, g_t \rangle$$

- Where $f_i, p_j, g_k \in \mathbb{F}[x_1, \dots, x_d]$ and $J \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Does there exist a Canonical representation of an ideal?
- A Gröbner Basis is a canonical representation of the ideal, with many nice properties that allow to solve many polynomial decision questions
- Buchberger's Algorithm allows to compute a Gröbner Basis
 - Given $F = \{f_1, \dots, f_s\} \in \mathbb{R}[x_1, \dots, x_d]$
 - It finds $G = \{g_1, \dots, g_t\}$, such that
 - $J = \langle F \rangle = \langle G \rangle$
 - Why is this important? [We'll see a little later....]

•
$$I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$$

- $\bullet \ I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$

- $\bullet \ I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $\bullet \ I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$

- $I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$
- $g_1 = 2x^2 + 3y^2 11$; $g_2 = x^2 y^2 3$;

- $I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$
- $g_1 = 2x^2 + 3y^2 11$; $g_2 = x^2 y^2 3$;
- Is $g_1 \in I_1$? Is $g_2 \in I_1$?

- $I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$
- $g_1 = 2x^2 + 3y^2 11$; $g_2 = x^2 y^2 3$;
- Is $g_1 \in I_1$? Is $g_2 \in I_1$?
- $g_1 = 2f_1 + 3f_2$; $g_2 = f_1 f_2$; $\Longrightarrow g_1, g_2 \in I_1$, so $I_2 \subseteq I_1$.

- $I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$
- $g_1 = 2x^2 + 3y^2 11$; $g_2 = x^2 y^2 3$;
- Is $g_1 \in I_1$? Is $g_2 \in I_1$?
- $g_1 = 2f_1 + 3f_2$; $g_2 = f_1 f_2$; $\Longrightarrow g_1, g_2 \in I_1$, so $I_2 \subseteq I_1$.
- ullet Similarly, show that $\mathit{f}_1,\mathit{f}_2\subseteq \mathit{I}_2$

6 / 9

- $I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$
- $g_1 = 2x^2 + 3y^2 11$; $g_2 = x^2 y^2 3$;
- Is $g_1 \in I_1$? Is $g_2 \in I_1$?
- $g_1 = 2f_1 + 3f_2$; $g_2 = f_1 f_2$; $\Longrightarrow g_1, g_2 \in I_1$, so $I_2 \subseteq I_1$.
- Similarly, show that $f_1, f_2 \subseteq I_2$
- If $I_1 \subset I_2$, and $I_2 \subset I_1$ then $I_1 = I_2$

- $I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$
- $g_1 = 2x^2 + 3y^2 11$; $g_2 = x^2 y^2 3$;
- Is $g_1 \in I_1$? Is $g_2 \in I_1$?
- $g_1 = 2f_1 + 3f_2$; $g_2 = f_1 f_2$; $\Longrightarrow g_1, g_2 \in I_1$, so $I_2 \subseteq I_1$.
- Similarly, show that $f_1, f_2 \subseteq I_2$
- If $I_1 \subset I_2$, and $I_2 \subset I_1$ then $I_1 = I_2$

- $I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$
- $g_1 = 2x^2 + 3y^2 11$; $g_2 = x^2 y^2 3$;
- Is $g_1 \in I_1$? Is $g_2 \in I_1$?
- $g_1 = 2f_1 + 3f_2$; $g_2 = f_1 f_2$; $\Longrightarrow g_1, g_2 \in I_1$, so $I_2 \subseteq I_1$.
- Similarly, show that $f_1, f_2 \subseteq I_2$
- If $I_1 \subset I_2$, and $I_2 \subset I_1$ then $I_1 = I_2$

The Ideal Membership Testing Problem

Given $R = \mathbb{F}[x_1, \dots, x_d], f_1, \dots, f_s, f \in R$, let $J = \langle f_1, \dots, f_s \rangle \subseteq R$. Find out whether $f \in J$?

- $\bullet \ I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$
- $f_1 = x^2 4$; $f_2 = y^2 1$
- $I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$
- $g_1 = 2x^2 + 3y^2 11$; $g_2 = x^2 y^2 3$;
- Is $g_1 \in I_1$? Is $g_2 \in I_1$?
- $g_1 = 2f_1 + 3f_2$; $g_2 = f_1 f_2$; $\Longrightarrow g_1, g_2 \in I_1$, so $I_2 \subseteq I_1$.
- Similarly, show that $f_1, f_2 \subseteq I_2$
- If $I_1 \subset I_2$, and $I_2 \subset I_1$ then $I_1 = I_2$

The Ideal Membership Testing Problem

Given $R = \mathbb{F}[x_1, \dots, x_d], f_1, \dots, f_s, f \in R$, let $J = \langle f_1, \dots, f_s \rangle \subseteq R$. Find out whether $f \in J$?

f= specification, J= implementation, Do an equivalence check: Is $f\in J$? [Or something like that...]

Varieties of Ideals

Given $R = \mathbb{F}[x_1, \dots, x_d], f_1, \dots, f_s, \in R$, let $J = \langle f_1, \dots, f_s \rangle \subseteq R$. The set of all solutions to:

$$f_1=f_2=\cdots=f_s=0$$

is called the variety $V(f_1,\ldots,f_s)$

P. Kalla (Univ. of Utah)

Varieties of Ideals

Given $R = \mathbb{F}[x_1, \dots, x_d], f_1, \dots, f_s, \in R$, let $J = \langle f_1, \dots, f_s \rangle \subseteq R$. The set of all solutions to:

$$f_1=f_2=\cdots=f_s=0$$

is called the variety $V(f_1,\ldots,f_s)$

Variety depends not just on the given set of polynomials f_1, \ldots, f_s , but rather on the ideal $J = \langle f_1, \ldots, f_s \rangle$ generated by these polynomials.

P. Kalla (Univ. of Utah)

Varieties of Ideals

Given $R = \mathbb{F}[x_1, \dots, x_d], f_1, \dots, f_s, \in R$, let $J = \langle f_1, \dots, f_s \rangle \subseteq R$. The set of all solutions to:

$$f_1=f_2=\cdots=f_s=0$$

is called the variety $V(f_1, \ldots, f_s)$

Variety depends not just on the given set of polynomials f_1, \ldots, f_s , but rather on the ideal $J = \langle f_1, \ldots, f_s \rangle$ generated by these polynomials.

$$J=\langle f_1,\ldots,f_s
angle=\langle g_1,\ldots,g_t
angle$$
, then $V(f_1,\ldots,f_s)=V(g_1,\ldots,g_t)$

P. Kalla (Univ. of Utah)

• Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$

- Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$
- ullet Let ${f a}=(a_1,\ldots,a_d)$ be a point in ${\mathbb F}^d$

- Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$
- ullet Let ${f a}=(a_1,\ldots,a_d)$ be a point in ${\mathbb F}^d$
- Let $\mathbf{a} \in V(J)$

- Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Let $\mathbf{a} = (a_1, \dots, a_d)$ be a point in \mathbb{F}^d
- Let $\mathbf{a} \in V(J)$
- Then $f_1(\mathbf{a}) = \cdots = f_s(\mathbf{a}) = 0$

8 / 9

- Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Let $\mathbf{a} = (a_1, \dots, a_d)$ be a point in \mathbb{F}^d
- Let $\mathbf{a} \in V(J)$
- Then $f_1(\mathbf{a}) = \cdots = f_s(\mathbf{a}) = 0$
- Let $f \in J$

8 / 9

- Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Let $\mathbf{a} = (a_1, \dots, a_d)$ be a point in \mathbb{F}^d
- Let $\mathbf{a} \in V(J)$
- Then $f_1(a) = \cdots = f_s(a) = 0$
- Let $f \in J$
- Is $f(\mathbf{a}) = 0$?

- Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Let $\mathbf{a} = (a_1, \dots, a_d)$ be a point in \mathbb{F}^d
- Let $\mathbf{a} \in V(J)$
- Then $f_1(\mathbf{a}) = \cdots = f_s(\mathbf{a}) = 0$
- Let $f \in J$
- Is $f(\mathbf{a}) = 0$?
- $\bullet \ f = f_1 h_1 + \cdots + f_s h_s$

8 / 9

- Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Let $\mathbf{a} = (a_1, \dots, a_d)$ be a point in \mathbb{F}^d
- Let $\mathbf{a} \in V(J)$
- Then $f_1(\mathbf{a}) = \cdots = f_s(\mathbf{a}) = 0$
- Let $f \in J$
- Is f(a) = 0?
- $\bullet \ f = f_1h_1 + \cdots + f_sh_s$
- $f(\mathbf{a}) = f_1(\mathbf{a})h_1 + \cdots + f_s(\mathbf{a})h_s = 0$

8 / 9

- Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_d]$
- Let $\mathbf{a} = (a_1, \dots, a_d)$ be a point in \mathbb{F}^d
- Let $\mathbf{a} \in V(J)$
- Then $f_1(\mathbf{a}) = \cdots = f_s(\mathbf{a}) = 0$
- Let $f \in J$
- Is f(a) = 0?
- $\bullet f = f_1h_1 + \cdots + f_sh_s$
- $f(\mathbf{a}) = f_1(\mathbf{a})h_1 + \cdots + f_s(\mathbf{a})h_s = 0$
- Extend the argument to all $f \in J$ for all $\mathbf{a} \in V(J)$, and you can show that Variety depends on the ideal $J = \langle f_1, \dots, f_s \rangle$, not just on the set of polynomials $F = \{f_1, \dots, f_s\}$

$$\bullet \ I_1 = \langle f_1, f_2 \rangle \subset Q[x, y]$$

•
$$f_1 = x^2 - 4$$
; $f_2 = y^2 - 1$

•
$$I_2 = \langle g_1, g_2 \rangle \subset Q[x, y]$$

•
$$g_1 = 2x^2 + 3y^2 - 11$$
; $g_2 = x^2 - y^2 - 3$;

• Is
$$g_1 \in I_1$$
? Is $g_2 \in I_1$?

•
$$g_1 = 2f_1 + 3f_2$$
; $g_2 = f_1 - f_2$; $\Longrightarrow g_1, g_2 \in I_1$, so $I_2 \subseteq I_1$.

- Similarly, show that $f_1, f_2 \subseteq I_2$
- ullet If $I_1\subset I_2$, and $I_2\subset I_1$ then $I_1=I_2$

Note
$$V(I_1) = V(I_2) = \{(\pm 2, \pm 1)\}$$

9 / 9