Information Science 7: Repetition and Recursion II: Combinations and Tower of Hanoi

Naonori Kakimura 垣村尚徳

kakimura@global.c.u-tokyo.ac.jp

- > Recursion
 - Define a function using the function itself

$$\operatorname{sum}(n) = \begin{cases} \operatorname{sum}(n-1) + n & (n \ge 2) \\ 1 & (n = 1) \end{cases}$$

- Simpler description
 - □ no "···", no loop

Ex)
$$sum(3)=sum(2)+3$$

= $(sum(1)+2)+3$
= $(1+2)+3$

- Sometimes it takes much more time to compute than using repetition
 - Observe how it works today

Today's Contents: Recursion

- Review
 - Summation
- > Number of Combinations
 - Using recursion
 - Using repetition
- Exercises
 - Sierpinski triangle
 - Tower of Hanoi

Combination Number n^{C_k}

▶ the number of combinations when we choose k items out of n items

Ex. choose 2 items out of the 5 elements

```
AB BC CD 10 possibilities
AC BD CE
AD BE DE
AE
```

Combination Number n^{C_k}

▶ the number of combinations when we choose k items out of n items

Ex. choose 2 items out of the 5 elements

Ans. First item: 5 possibilities (one out of (A, B, C, D, E))

2nd item: 4 possibilities (one other than the 1st one)

Reduce "double counting" (both AB & BA are counted)

Ans = 5*4/2=10

Combination Number n^{C_k}

▶ the number of combinations when we choose k items out of n items

Choose *k* items out of *n* elements

choosing k elements

$$nC_{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots2\cdot1}$$
 notation reduce "double counting" due to the ordering

$$=\frac{n!}{k!(n-k)!}$$

Recursive Definition of Combinations

□Cf) Exercise 5-11

choosing k items out of n items

choosing k-1 items out of the first n-1 items (the case the last one is chosen)

choosing k items out of the first n-1 items (the case the last one is not chosen)

Today's Contents: Recursion

- > Review
 - Summation
- Number of Combinations
 - Using recursion
 - natural implementation using recursion
 - Using repetition
- Exercises
 - Sierpinski triangle
 - Tower of Hanoi

```
def combination(n,k)
                                                                                                   10
      if k > n
                                                                                  (when k > n)
                                      _{n}C_{k}=\left\{ egin{array}{ll} \mathbf{0} & & & & & & \\ 1 & & & & & & & \\ n_{-1}C_{k-1}+_{n-1}C_{k} & & & & & & \\ \end{array} 
ight. & & & & & & & & \\ \end{array} 
ight.
                                                                                 (when k = 0)
     else
        if k == 0
        else
              combination(n-1,k-1) + combination(n-1,k)
        end
     end
```

end

combination.rb

Today's Contents: Recursion

- > Review
 - Summation
- Number of Combinations
 - Using recursion
 - Using repetition
 - Faster implementation
- Exercises
 - Sierpinski triangle
 - Tower of Hanoi

Toward Faster Computation using Repetition

Relationship

The upper-right part is 0
The 1st column is 1

$n\setminus k$	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

The value of ${}_{n}C_{k}$

Equations in the Table

$$_{n}C_{k}=\left\{ egin{array}{ll} 0 & (\mbox{when k}>\mbox{n}\) & \cdots \mbox{ The upper-right part is 0} \\ 1 & (\mbox{when k}=\mbox{0}\) & \cdots \mbox{ The 1st column is 1} \\ n_{-1}C_{k-1}+_{n-1}C_{k} & (\mbox{otherwise}) & \mbox{Relationship btw 2 lines} \end{array}
ight.$$

a row is determined by the row above

$n \setminus k$	0	1	2	3	4	5	6
0	1						
1	1.	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

The value of ${}_{n}C_{k}$

Concept: Suffices to Obtain The Table

- \rightarrow Make an $(n+1)\times(n+1)$ array
- > Fill in the entries from i=0 to n

when n=6

the next row is determined by the last row

$n\setminus k$	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

The value of ${}_{n}C_{k}$

Concept: Suffices to Obtain The Table

- \rightarrow Make an $(n+1)\times(n+1)$ array
- > Fill in the entries from i=0 to n

when n=6

the next row is determined by the last row

The value of ${}_{n}C_{k}$

```
16
```

```
load ("./make2d.rb")
def combination_loop(n,k)
  c = make2d(n+1,n+1)
  for i in 0...n # for each row, do the following
     c[i][0] = 1
                                  # 1st column
     for j in 1..(i-1) # 2nd to (i-1)th column
        c[i][j] = c[i-1][j-1] + c[i-1][j]
     end
     c[i][i] = 1
                                  # i-th column
  end
  c[n][k]
end
                            combination loop.rb
```

When we call combination_loop(6,3)

Make a 2-dimansional array c with 7×7

n ∖ k	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5	400						
6							

Fill in the first row

i=0

n ∕ k	0	1	2	3	4	5	6
0	1	0	0	0	0	0	0
1							
2							
3							
4							
5							
6							

Case k>n is omitted in the table

Fill in the second row

i=1

n ∕ k	0	1	2	3	4	5	6
0	1	0					
1	1	1					
2							
3							
4							
5							
6							

Fill in the 3rd row

i=2

c[i][0]=1

n ∕ k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1						
3							
4							
5							
6							

Fill in the 3rd row

i=2

c[i][j] = c[i-1][j-1] + c[i-1][j]

n ∕ k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2					
3							
4							
5							
6							

Fill in the 3rd row

i=2

c[i][i]=1

n ∕ k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3							
4							
5							
6							

i=3

c[i][0]=1

n ∕ k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1						
4							
5							
6							

i=3

c[i][j] = c[i-1][j-1] + c[i-1][j]

n ∕ k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3					
4							
5							
6							

i=3

c[i][j] = c[i-1][j-1] + c[i-1][j]

n ∕ k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3				
4							
5							
6							

i=3

c[i][i] = 1

n ∕ k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4							
5							
6							

In the End

i=6

n ∕ k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

$$6^{C_3} = c[6][3]$$

- > Confirm that
 - Two functions combination and combination_loop return the same values for some k and n's
 - Compare the computation times for two functions when n and k are large
 - \square combination(n,100) & combination_loop(n,100) for n=100, 200, ..., 1000
 - Press Ctrl+C (and Return) to force-quit

Today's Contents: Recursion

- Review
 - Summation
- Number of Combinations
 - Using recursion
 - Using repetition
- > Exercises
 - Sierpinski triangle
 - Tower of Hanoi

Exercise: Sierpinski Triangle

Draw the following image using isrb

$n \setminus k$	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

The value of ${}_{n}C_{k}$

Remainders of n choose k when divided by 2

n 📉 k	0	1	2	3	4	5	6		
0	1					44			
1	1	1						coin	cidence
2	1	0	1			1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	erene. E		
3	1	1	1	1					
4	1	0	0	0	1	4.4		<u>AAAAA</u>	<u>AAAA</u>
5	1	1	0	0	1	1			
6	1	0	1	0	1	0	1		
	1	1	1	1	1	1	1	1	
	1	0	0	0	0	0	0	0	1

Exercise1: Run sierpinski_loop(128)

Modifying combination_loop, make a function that makes the image

```
load ("./make2d.rb")
def sierpinski_loop(n)
  c = make2d(n+1,n+1)
  for i in 0...n
     c[i][0] =
     for j in 1..(i-1)
      end
     c[i][i]
                        Add a few lines to flip 0 and 1:
   end
                        for each entry in c
                            c[i][j] = 1 - c[i][j]
```

Cf) Fractal

- http://en.wikipedia.org/wiki/Fractal
- Images with self-similarity

Today's Contents: Recursion

- Review
 - Summation
- Number of Combinations
 - Using recursion
 - Using repetition
- > Exercises
 - Sierpinski triangle
 - Tower of Hanoi

Exercise: Tower of Hanoi

- You can play at
 - http://www.mathsisfun.com/games/to wer-of-hanoi-2.html

- > Goal:
 - move all the discs from the left peg to the middle one
- > Rule:
 - Only one disc may be moved at a time.
 - A disc can be placed either on an empty peg or on top of a larger disc.
- > Try to move all the discs using the smallest number of moves possible.

37

Tower of Hanoi: #disc = 2

3 moves are enough

7 moves: known to be minimum

Exercises 2-1

- Try to solve the puzzle when n=4
 - By hand or
 - At
 - http://www.mathsisfun.com/games/tower-of-hanoi-2.html
 - http://www.softschools.com/games/logic_games/tower_of_ha noi/
- What is the minimum number necessary to move?
 - Explain briefly how you can obtain

Defining Ruby Functions

- > Hanoi_times(n, a, b, c)
 - Minimum # times of moving disks when we do Hanoi(n, a, b, c)
- > Hanoi(n, a, b, c)
 - Describe a procedure to move n disks from a to b

Exercise2-2:Complete the Programs

```
def hanoi_times(n)
 if n==0
 else
   hanoi_times(____) + 1 + hanoi_times(__
 end
end
```

Exercise2-3: Complete the Program

```
def hanoi(n, a, b, c)
   if n==1
      print "Move from ", a, "to ", b, "\u00e4n"
   else
      hanoi(____, __, __, __)
      print "Move from ", a , " to ", b , "\u00e4n"
      hanoi(____, __, ___, ___)
   end
end
```

Examples of Outputs

>> hanoi(3,"a","b","c")

Move from a to b Move from a to c Move from b to c Move from a to b Move from c to a Move from a to b Move from a to b

You need "" in the parameter because a,b,c are characters. Otherwise they are variables

Exercise 2-4: Comfirmation

Try hanoi(4,"a","b","c") and compare your answer in Exercise2-1

> Hints are put at the end of the slides

Today's Exercise

- > Solve
 - Sierpinski Triangle
 - Execute it on isrb2
 - submit an image and Ruby programs
 - Solve Tower of Hanoi (Exercise 2- 1--4)
 - □ Solve when n=4
 - Fill in the blanks and submit Ruby program
 - Confirm it works
 - If you have time
 - Optional quizzes of the last week
 - □Past exam 2013, Problem 2 (a)—(d)

- > By Nov. 23 (Wed) 23:59
 - Through ITC-LMS
 - Don't forget to send the outcome images

- > Next week
 - How to estimate computational time
 - How to evaluate the performance of programs

Tower of Hanoi: #disc = n

Tower of Hanoi: #disc = n

Move the first n-1 discs to the right

1 step to move the largest disc to the middle

Move the first n-1 discs to the middle

About Sierpinski Triangle

n ∕ k	0	1	2	3	4	5	6		
0	1					A.A.			
1	1	1				4444		coin	cidence
2	1	0	1			4.	<u>.ea.ea.e</u> `a		
3	1	1	1	1		AAAA			
4	1	0	0	0	1	4.4		<u>AAAAA</u>	<u>AAAA</u>
5	1	1	0	0	1	1			
6	1	0	1	0	1	0	1		
	1	1	1	1	1	1	1	1	
	1	0	0	0	0	0	0	0	1

About Sierpinski Triangle

n 📉 k	0	1	2	3	4	5	6	
0	1					A.A.		
1	1	1				4444		coincidence
2	1	0	1			4.	<u> </u>	
3	1	1	1	1		AAAA		
4	1	0	0	0	1	8.6	AAAAA	<u>AAAAAAAA</u>
5	1	1	0	0	1	1		
6	1	0	1	0	1	0	1	
	1	1	1	1	1	1	1	1
	1	0	0	0	0	0	0	0 1

About Sierpinski Triangle

```
def sierpinski_loop(n)
  c = make2d(n+1,n+1)
  for i in 0..n
    c[i][0] = 1
    for j in 1..(i-1)
      c[i][j] = (c[i-1][j-1] + c[i-1][j])%2
    end
    c[i][i] = 1
  end
  for i in 0..n
    for j in 0...n
      c[i][j]=1-c[i][j]
    end
  end
```

Another Solution: Using combination(,)

```
def sierpinski_loop(n)
                                Computational time
  c = make2d(n+1,n+1)
  for i in 0..n
                                becomes large
    c[i][0] = 1
                                (later in exercises)
    for j in 1..(i-1)
      c[i][j] =
        if !even(combination_loop(i,j)) then 1
        else 0
      end
    end
                  Compute combination loop(i, j).
    c[i][i] = 1
                  If it is even, return 1, o/w, return 0
  end
```

end

Remarks on Exercises

- Submit complete programs
 - not only the corresponding part, to check the correctness easily by copy&paste
 - not only answers, but images,
 - to give a partial point
 - You can write what you did

Exercises' programs can be made by modifying sample programs

- > We have more exercises
 - Downloadable from CFIVE
 - Some are same as in the sessions
 - Some are interesting
 - Some may be useful for better understanding

Ans1: Run sierpinski_loop(128)

Modifying combination_loop, make a function that makes the image

```
load ("./make2d.rb")
def sierpinski_loop(n)
  c = make2d(n+1,n+1)
  for i in 0..n
     c[i][0] = 1
     for j in 1..(i-1)
        c[i][j] = (c[i-1][j-1] + c[i-1][j])%2
     end
     c[i][i] = 1
  end
                        For flipping 0 and 1, we need:
                          for each entry in c
                            c[i][j] = 1 - c[i][j]
```

```
def hanoi(n, a, b, c)
   if n==1
      print "Move from ", a, " to ", b, "\u00e4n"
   else
      hanoi(n-1, a, c, b)
      print "Move from ", a, " to ", b, "\u00e4n"
      hanoi(n-1, c, b, a)
   end
end
```

```
def hanoi_times(n)
    if n==0
        0
    else
        hanoi_times(n-1) + 1 + hanoi_times(n-1)
    end
end
```

Converting to binary – basic

Arrange the remainder when divided by 2 in reverse

Converting to binary - repetition

```
def binary_loop(n)
  while n >= 1
    s = s + (n\%2).to s()
    n = n / 2
  end
end
```

```
irb(main):007:0> binary_loop(25)
=> "10011"
```

Converting to Binary - recursion

```
def binary(n)
  if n < 2
     n.to s()
  else
     binary(n/2) + (n\%2).to s()
  end
end
```

```
irb(main):009:0> binary(25) => "11001"
```

```
def binary good(n)
  while n >= 1
    s = (n\%2).to_s() + s
    n = n / 2
  end
end
irb(main):008:0 > binary_loop(25)
=> "11001"
```


レポート

▶課題

- 再帰で絵を描いてみよう
 - □Sierpinski のカーペット・三角形
- ●再帰でハノイの塔の移動回数を解いてみよう
- 再帰でハノイの塔を解いてみよう
- ▶提出先

CFIVE

》《切

12月 1日 授業開始前

Cantor Set

```
Make an array with size 3**n
def cantor(n)
                                            All entries are 0
 a = make1d(3**n)
 subcantor(a, n, 0)
                                      Call subprocedure subcantor
                                            for the point 0
end
                                      Return a
def subcantor(a, n, x).
                                            Set to the array a the
 if n==0
                                            Cantor set of order n
                                                 around x
   a[x] = 1
                   If n is 0, it is just 1
 else
                                           Recursive calling.
                                           Notice its origin
   subcantor(a, n-1, x)
   subcantor(a, n-1, x+2*3**(n-1))
 end
end
```

cantor(2)

cantor(2)
subcantor(a,2,0)

cantor(2)
 subcantor(a,2,0)
 subcantor(a,1,0)

cantor(2)
subcantor(a,2,0)
subcantor(a,1,0)
subcantor(a,0,0)

cantor(2)
subcantor(a,2,0)
subcantor(a,1,0)
subcantor(a,0,0)
a[0] = 1

cantor(2) subcantor(a,2,0) subcantor(a,1,0) subcantor(a,0,0) a[0] = 1subcantor(a,0,0+2*3**0) a: 1 0 1 0 0 0 0 0 0

```
cantor(2)

subcantor(a,2,0)

subcantor(a,1,0)

subcantor(a,0,0)

a[0] = 1

subcantor(a,0,0+2*3**0)

a[2] = 1
```

```
a: 1 0 1 0 0 0 0 0 0
```

```
cantor(2)

subcantor(a,2,0)

subcantor(a,1,0)

subcantor(a,0,0)

a[0] = 1

subcantor(a,0,0+2*3**0)

a[2] = 1

subcantor(a,1,0+2*3**1)
```

	0	_1_	2	3	4	5	6	7	8
a:	1	0	1	0	0	0	0	0	0

```
cantor(2)

subcantor(a,2,0)

subcantor(a,1,0)

subcantor(a,0,0)

a[0] = 1

subcantor(a,0,0+2*3**0)

a[2] = 1

subcantor(a,1,0+2*3**1)

subcantor(a,0,6)
```

	0	_1_	2	3	4	5	6	7	8
a:	1	0	1	0	0	0	1	0	0

```
cantor(2)
  subcantor(a,2,0)
    subcantor(a,1,0)
      subcantor(a,0,0)
        a[0] = 1
      subcantor(a,0,0+2*3**0)
        a[2] = 1
    subcantor(a,1,0+2*3**1)
      subcantor(a,0,6)
        a[6] = 1
```

```
a: 1 0 1 0 0 0 1 0 0
```

```
cantor(2)
  subcantor(a,2,0)
    subcantor(a,1,0)
      subcantor(a,0,0)
        a[0] = 1
      subcantor(a,0,0+2*3**0)
        a[2] = 1
    subcantor(a,1,0+2*3**1)
      subcantor(a,0,6)
        a[6] = 1
      subcantor(a,0,6+2*3**0)
```

	0	_1_	2	3	4	5	6	7	8
а	1	0	1	0	0	0	1	0	1

```
cantor(2)
  subcantor(a,2,0)
    subcantor(a,1,0)
      subcantor(a,0,0)
        a[0] = 1
      subcantor(a,0,0+2*3**0)
        a[2] = 1
    subcantor(a,1,0+2*3**1)
      subcantor(a,0,6)
        a[6] = 1
      subcantor(a,0,6+2*3**0)
        a[8] = 1
```

- Delete 1/3 of interval [0,1]
- > For the remaining two interval, do the same.
- Repeat the same thing infinite times
- > The remaining set is called the Cantor set.
- > It is known that
- > しらべる
- the measure(length) of the Cantor set is 0.
- ▶しかし、濃度(点の数)は、もとの区間 [0,1] の実数に等しい。

Exercise: Sierpinski Carpet

Cantor set の 2 次元版。 cf. Cantor dust

- > Sierpinski のカーペット
 - n 次のカーペットは、縦横が 3**n で、n-1 次ののカーペットを 8 枚敷き詰めて作られる。真ん中は空いている。0 次のカーペットは、縦横 1 の黒い正方形とする。(実際のプログラムでは、白黒が反転する。)

- ➤ Sierpinski の三角形
 - 関数 sierpinski2d(n) を 再帰的に定義せよ。n 次 の三角形は、縦横が 2**n で、n-1 次のの三 角形を 3 枚敷き詰めて作 られる。真ん中は空いて いる。(見易さのために 白黒を逆にしている。)

When we use a function, do not forget to specify parameters

- Let Hanoi(n) be a function that computes the minimum number of steps to move n discs to the right. Describe a recursive relation of the function.
- Express Hanoi(n) not recursively only using n.
- Make the function Hanoi(n), and compute Hanoi(4), Hanoi(5), Hanoi(6), and Hanoi(64).