

More Useful Antiderivative formulas (memorize)

Function	Antiderivative
e^{ax}	$\frac{1}{a}e^{ax}$
$\frac{1}{x}$	$\ln x $ ✓
$\frac{1}{\sqrt{1-(ax)^2}}$	$\frac{1}{a}\sin^{-1}(ax)$
$\frac{1}{1+(ax)^2}$	$\frac{1}{a}\tan^{-1}(ax)$
b^{ax}	$\frac{1}{a \ln b} b^{ax}, b > 0, b \neq 1$

In the previous example, $a = -2$
 $\rightarrow \int e^{-2x} dx = -\frac{1}{2}e^{-2x} + C$

(know these)

We will cover this one on Wednesday! ~
(Understand how to quickly derive this formula)

Preview: $b^{ax} = e^{ax \cdot \ln(b)} \Rightarrow \frac{d}{dx}[b^{ax}] = a \ln(b) \cdot b^{ax}$

Example 3.1:

Evaluate the following indefinite integral:

$$\int (2 \tan x + 1) \sec^2(x) dx \geq \int 2 \tan x \sec^2 x dx *$$

$$f' = 2x \xrightarrow{R(x)} = x^2 + \int \sec^2 x dx *$$

$$\int \sec^2 x dx = \tan x + C \quad \frac{d}{dx} [\sec x]$$

$$\begin{aligned} & \int 2 \tan x \cdot \sec x \cdot \sec x dx = \tan x \sec x \\ &= \sec^2 x + C \end{aligned}$$

$$\frac{d}{dx} [\sec^2 x] = 2 \sec x \cdot \frac{d}{dx} [\sec x]$$

$$= \tan x + \sec^2 x + C$$

Example 3.2:

recall: $\int \frac{dx}{\sqrt{1-(ax)^2}} = \frac{1}{a} \sin^{-1}(ax) + C$

Evaluate the following indefinite integral:

$$\int \frac{dx}{\sqrt{16 - x^2}}$$

$$\sqrt{16 - x^2} = \sqrt{16} \sqrt{1 - \left(\frac{x}{4}\right)^2}$$

$$= \frac{1}{4} \int \frac{dx}{\sqrt{1 - (x/4)^2}} \quad (a = 1/4)$$

$$= \frac{1}{4} \cdot 4 \sin^{-1}\left(\frac{x}{4}\right) + C = \sin^{-1}\left(\frac{x}{4}\right) + C$$

Example 3.3:

How would you find a formula for the following indefinite integral?

$$\int \frac{dx}{x^2 - x + 1}$$

brain storm: \rightarrow Complete the Square

\rightarrow make it look like a $\tan^{-1}(\dots)$ antiderivative

Section 5.1-5.3: Area under the curve and the definite integral

Math 1552 lecture slides adapted from the course materials

By Klara Grodzinsky (GA Tech, School of Mathematics, Summer 2021)

Learning Goals

- Understand how to partition an interval
- Draw a picture to approximate the area under the curve with a given number of rectangles
- Compute the Upper and Lower sums
- Calculate the midpoint estimate
- Average value of $f(x)$ on $[a, b]$ (AV)

Basic Methodology

- Idea: Find the area bounded by a function $f(x)$, the lines $x=a$, $x=b$, and the x -axis.

geometric interpretation:
"area under the curve"

area under
the curve

approximate
area

Riemann Sums

- Idea: Find the area bounded by a function $f(x)$, the lines $x=a$, $x=b$, and the x -axis.
- Procedure: Break the interval $[a,b]$ into n subintervals, and draw a rectangle in each subinterval.
- Summing the areas of the rectangles will approximate the area under the curve.

Defining Sigma Notation

We denote the next (finite) sum of terms by:

$$\sum_{i=1}^n a_i = \overset{i=1}{a_1} + \overset{i=2}{a_2} + \dots + \overset{i=N}{a_n}$$

(Practice some sums – examples)

Ex1: $\sum_{k=0}^5 k = 0 + 1 + 2 + 3 + 4 + 5$

Ex2: $\sum_{k=1}^3 \frac{(-1)^{k+1}}{k+1} = \frac{(-1)^2}{1+1} - \frac{1}{1+2} + \frac{1}{1+3}$

Riemann Sums (cont.)

Upper estimate: use rectangles that over-approximate the area

Let $M_i = \max \{f(x)\}$ on $[x_{i-1}, x_i]$.

Then : $U_f = \sum_{i=1}^n M_i \Delta x.$

(height of rect
on $[x_{i-1}, x_i]$)

$$(\Delta x = \frac{b-a}{N})$$

approx area

Riemann Sums (cont.)

Lower estimate: use rectangles that under-approximate the area

Let $m_i = \min\{f(x)\}$ on $[x_{i-1}, x_i]$. (height of the rectangle $[x_{i-1}, x_i]$)
Then : $L_f = \sum_{i=1}^n m_i \Delta x$. ($\Delta x = \frac{b-a}{N}$)

approx area

Example 1:

We've seen this antiderivative before: $\int f(x) dx = \tan^{-1}(x) + C$

Find the upper and lower sums for the function

$$\underline{f(x)} = \frac{1}{x^2 + 1}$$

(FTC)

on the interval $[-1, 2]$ with $n=6$ subintervals.

$$\Delta x = \frac{b-a}{N} = \frac{3}{6} = \frac{1}{2}$$

① Upper sum:

$$U_f = \sum_{i=1}^n M_i \cdot \Delta x$$

$$= \frac{1}{2} (f(-1/2) + f(0) + f(0) \quad (U_f) \\ + f(1/2) + f(1) \\ + f(3/2))$$

$$f(x) = \frac{1}{1+x^2}$$

$$V_f = \frac{1}{2} \left(\frac{1}{1+1/4} + 1 + 1 + \frac{1}{1+1/4} + \frac{1}{1+1} \right.$$

$+ \frac{1}{1+1/4} \rightarrow$ Plugging into calculator

② lower estimate

(L_f)

$$L_f = \sum_{i=1}^6 M_i \cdot \Delta x$$

↗ × on graph

$$= \frac{1}{2} \left(f(-1) + f(-1/2) \overset{2}{+} f(1/2) \overset{3}{+} f(1) \overset{4}{+} f(3/2) \overset{6}{+} f(2) \right)$$

Pull out the
common Δx

→ Plan and change

$$f(x) = \frac{1}{x^2 + 1}$$

As we take rectangles of smaller and smaller width, and then add in more of them to fill up the interval evenly, we get close to the area under the smooth curve.

Key idea: We will compute a definite integral by writing down a Riemann sum for the area approximation and then take a limit as the size width of the rectangles tends to zero.

$\int_a^b f(x) dx$ → "definite integral"

Midpoint Estimate

Idea: Go for the middle ground approximation (value in between).
Plug in the midpoint of each subinterval.

On the subinterval $[x_{i-1}, x_i]$,

the midpoint is : $\frac{x_{i-1} + x_i}{2}$

and the midpoint sum is :

$$M_f = \sum_{i=1}^n f\left(\frac{x_{i-1} + x_i}{2}\right) \Delta x$$

Example 2:

Find a midpoint estimate to the area from Example 1.

Recall: We want to approximate the area underneath the function

$$f(x) = \frac{1}{x^2 + 1}$$

on the interval $[-1, 2]$ with $n=6$ subintervals.

$$\Delta x = \frac{b-a}{n} = \frac{1}{2}$$

MidPoints $\left(\frac{x_{i-1} + x_i}{2} \text{ for each } [x_{i-1}, x_i] \right)$

$\Rightarrow i = 1, 2, 3, 4, 5, 6$

$i=1$ 2 3 4 5 6
 $-\frac{3}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}$

$$M_f = \frac{1}{2} \left(f(-3/4) + f(-1/4) + f(1/4) + f(3/4) + f(5/4) + f(7/4) \right)$$

→ <Plug-and-chug> ☺