Routing & Forwarding: Logical View of a Router

IP Forwarding & IP/ICMP Protocol

ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate networklevel information
 - error reporting:
 unreachable host, network,
 port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>		description
U	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to destination
 - first set has TTL =1
 - second set has TTL=2, etc.
 - unlikely port number
- when datagram in nth set arrives to nth router:
 - router discards datagram and sends source ICMP message (type 11, code 0)
 - ICMP message include name of router & IP address

 when ICMP message arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

CSci4211:

Network Layer: Control Plane Part II

What is Network Management?

- autonomous systems (aka "network"): 1000s of interacting hardware/software components
- other complex systems requiring monitoring, control:
 - jet airplane
 - nuclear power plant
 - others?

"Network management includes the deployment, integration and coordination of the hardware, software, and human elements to monitor, test, poll, configure, analyze, evaluate, and control the network and element resources to meet the real-time, operational performance, and Quality of Service requirements at a reasonable cost."

Infrastructure for Network Management

definitions:

managed devices
contain managed
objects whose data is
gathered into a
Management
Information Base
(MIB)

SNMP Protocol

Two ways to convey MIB info, commands:

request/response mode

trap mode

SNMP Protocol: Message Types

Message type		<u>Function</u>
	GetRequest tNextRequest tBulkRequest	manager-to-agent: "get me data" (data instance, next data in list, block of data)
-	InformRequest	manager-to-manager: here's MIB value
	SetRequest	manager-to-agent: set MIB value
	Response	Agent-to-manager: value, response to Request
	Trap	Agent-to-manager: inform manager of exceptional event

CSci4211: Network Layer: Control Plane Part II

SNMP Protocol: Message Formats

More on network management: see earlier editions of textbook!

CSci4211: Network Layer: Control Plane Part II

Network Layer Summary

- Network Layer Functions and Service Models
 - Addressing, Routing and Forwarding
 - Virtual Circuit vs. Datagram; Programmable Data Plane via SDN
 - Distributed vs. Centralized Control Plane
- IP Addressing Scheme: CIDR; DHCP
- IP Forwarding and IP Protocol
 - IP Datagram Forwarding Model: dest. in same net vs. diff. net
 - IPv4: Datagram Format, IP Fragmentation, ...; IPv6
- Network Layer Routing
 - Fundamental Issues
 - Two Basic Distributed Algorithms: LS and DV
 - Routing in the Internet: Intra-AS vs. Inter-AS routing
 - Intra-AS: RIP and OSPF (distributed routing protocols)
 - Inter-AS: BGP and Policy Routing
- Openflow switches, SDN Controllers & Centralized Control Plane
- ICMP & SNMP