PRVI MEĐUISPIT IZ ELEKTRONIKE 1

20.10.2008.

PRVA SKUPINA ZADATAKA

1. Na CR mrežu dovodi se simetrični pravokutni signal za koji vrijedi $T >> \tau$. Na kojoj je slici prikazan točan odziv u stacionarnom stanju (1 bod)?

2. Zadana su dva CR člana čije se vremenske konstante odnose kao $\tau_1 << \tau_2$. Kako se odnose srednje vrijednosti izlaznog napona tih dviju mreža ako im je na ulaz doveden napon sa slike (1 bod)?

(a)
$$U_{AVG1} < U_{AVG2}$$
,
(b) $U_{AVG1} >> U_{AVG2}$,
(c) $U_{AVG1} = U_{AVG2}$,
(d) $U_{AVG1} = 5U_{AVG2}$,

(c)
$$U_{AVG1} = U_{AVG2}$$

(d)
$$U_{AVG1} = 5U_{AVG2}$$

(e)
$$5U_{AVG1} = U_{AVG2}$$
.

- **3.** Pločica silicija dopirana je donorima i akceptorima koncentracije N_D i N_A . Ako povećamo temperaturu pločice, vrijedi sljedeća tvrdnja (1 bod):
 - (a) n_i raste i vrijedi $n-p = N_D N_A$,
 - (b) n_i ostaje ista i vrijedi $n = p = n_i$,
 - (c) n_i pada i vrijedi $n = N_D N_A$,
 - (d) n_i raste i vrijedi $n = N_D N_A$,
 - (e) n_i raste i vrijedi $p = N_A N_D$.
- **4.** Kako se mijenja driftna struja kod intrinzičnog poluvodiča ako se temperatura povećava, uz konstantnu vrijednost polja (1 bod)?
 - (a) Opada,
 - (b) ne mijenja se,
 - (c) raste,
 - (d) prvo raste, potom opada,
 - (e) ovisi o iznosu polja.
- **5.** Ako se napon na pn-spoju s kontaktnim potencijalom od 0,7 V poveća za 100 mV, ukupni kapacitet tog spoja poveća se 54,6 puta. Temperatura je sobna, $U_T = 25$ mV. Za ovaj pn-spoj vrijedi sljedeća tvrdnja (1 bod):
 - (a) dominantan je kapacitet osiromašenog područja i pn-spoj je propusno polariziran,
 - (b) dominantan je kapacitet osiromašenog područja i pn-spoj je zaporno polariziran,
 - (c) dominantan je difuzijski kapacitet i pn-spoj je propusno polariziran,
 - (d) dominantan je difuzijski kapacitet i pn-spoj je zaporno polariziran,
 - (e) difuzijski kapacitet i kapacitet osiromašenog područja su usporedivi i pn-spoj je zaporno polariziran.
- **6.** Za silicijski pn-spoj na T=300 K s koncentracijama primjesa iznosa $N_D=N_A=10^{16}$ cm⁻³, $\tau_n=\tau_p$, $\mu_n=3\mu_p$, te uskim p i n stranama širine $W_p=20W_n$ vrijedi (1 bod):
 - (a) $I_{Sn} > I_{Sp}$ i osiromašeno područje se dominantno širi na n stranu,
 - (b) $I_{Sn} = I_{Sp}$ i osiromašeno područje se jednako širi na obe strane,
 - (c) $I_{Sn} > I_{Sp}$ i osiromašeno područje se jednako širi na obe strane,
 - (d) $I_{Sn} < I_{Sp}$ i osiromašeno područje se jednako širi na obe strane,
 - (e) $I_{Sn} > I_{Sp}$ i osiromašeno područje se dominantno širi na p stranu.
- 7. Koliku valnu duljinu upadnog zračenja može detektirati fotodioda sa širinom zabranjenog pojasa od 2 eV i kakva mora biti polarizacija fotodiode za tu detekciju (1 bod)?
 - (a) $\lambda > 620$ nm, propusna polarizacija,
 - (b) λ < 620 nm, propusna polarizacija,
 - (c) $\lambda > 620$ nm, nije polarizirana,
 - (d) λ < 620 nm, zaporna polarizacija,
 - (e) $\lambda > 620$ nm, zaporna polarizacija.
- 8. Za sklop s diodom na slici (a), na koji je priključena kombinacija istosmjernog i malog izmjeničnog napona, u koordinatni sustav karakteristike diode ucrtani su statički i dinamički radni pravac prema slici (b). Koliki je otpor R_2 ako je $R_1 = 200 \Omega$ (1 bod)?

(b)
$$R_2 = 300 \Omega$$
,

(c) nema dovoljno podataka,

(d)
$$R_2 = 3 \text{ k}\Omega$$
,

(e) $R_2 = 120 \text{ k}\Omega$.

a)

DRUGA SKUPINA ZADATAKA

ZADATAK 1. Na slici je zadana RC mreža i napon koji je priključen na njen ulaz.

- Izračunati vrijednosti izlaznog napona u t = 0 ms (1 bod). 1.1.
- Izračunati vrijednosti izlaznog napona u t = 5 ms (1 bod). 1.2.
- 1.3. Izračunati vrijednosti izlaznog napona u t = 10ms (1 bod).
- Izračunati vrijednosti izlaznog napona u t = 15 ms (1 bod). 1.4.
- Izračunati vrijednosti izlaznog napona u t = 20ms (1 bod).

ODGOVORI:

1.4.

1.1. (a)
$$u_{iz}(0\text{ms}) = 1{,}09\text{ V}$$

(a)
$$u_{iz}(5\text{ms}) = -1.5 \text{ V}$$

1.3. (a)
$$u_{iz}(10\text{ms}) = 0 \text{ V}$$

(b)
$$u_{iz}(0\text{ms}) = 5 \text{ V}$$

(b)
$$u_{iz}(5\text{ms}) = 5 \text{ V}$$

(b)
$$u_{iz}(10\text{ms}) = 5 \text{ V}$$

(c)
$$u_{iz}(0\text{ms}) = 3.91 \text{ V}$$

(c)
$$u_{iz}(5\text{ms}) = 3.91 \text{ V}$$

(c)
$$u_{iz}(10\text{ms}) = 3.91 \text{ V}$$

(d)
$$u_{iz}(0\text{ms}) = 0 \text{ V}$$

(d)
$$u_{iz}(5\text{ms}) = 1,09 \text{ V}$$

(e) $u_{iz}(5\text{ms}) = 0 \text{ V}$

(d)
$$u_{iz}(10\text{ms}) = 1,09 \text{ V}$$

(e)
$$u_{iz}(0\text{ms}) = -1.5 \text{ V}$$

(c)
$$u_{l\bar{z}}(SIIIS)$$

(e)
$$u_{iz}(10\text{ms}) = -1.5 \text{ V}$$

(a)
$$u_{iz}(15\text{ms}) = 0 \text{ V}$$

(b)
$$u_{iz}(15\text{ms}) = 3.91 \text{ V}$$

1.5. (a)
$$u_{iz}(20\text{ms}) = 0 \text{ V}$$

(b) $u_{iz}(20\text{ms}) = -1.5 \text{ V}$

(b)
$$u_{iz}(15\text{ms}) = 3.91 \text{ V}$$

(c) $u_{iz}(15\text{ms}) = -1.5 \text{ V}$

(c)
$$u_{iz}(20\text{ms}) = 1,3 \text{ V}$$

(d)
$$u_{iz}(15 \text{ ms}) = 5 \text{ V}$$

(c)
$$u_{iz}(201118) = 5.91$$

(d)
$$u_{iz}(15\text{ms}) = 5 \text{ V}$$

(d)
$$u_{iz}(20\text{ms}) = 1,09 \text{ V}$$

(e)
$$u_{iz}(15\text{ms}) = 1,09 \text{ V}$$

(e)
$$u_{iz}(20\text{ms}) = 5 \text{ V}$$

ZADATAK 2. Silicij je dopiran akceptorima koncentracije 1,5·10¹⁵ cm⁻³. Nakon toga se silicij dodatno dopira donorima koncentracije 2.10^{15} cm⁻³. U oba slučaja temperatura je T = 250 °C.

- Kolika je intrinzična koncentracija (1 bod)?
- Odrediti položaj Fermijeve energije u odnosu na sredinu zabranjenog pojasa nakon prvog dopiranja
- 2.3. Kolika je koncentracija šupljina nakon drugog dopiranja (1 bod)?
- Odredite položaj Fermijeve energije u odnosu na sredinu zabranjenog pojasa nakon drugog dopiranja (1 bod).
- 2.5. Koliki je otpor silicijske pločice poprečnog presjeka $S = 0.1 \text{ mm}^2$ i duljine $l = 10 \mu\text{m}$ ako je specifična vodljivost $\sigma = 0.2$ S/cm (1 bod)?

ODGOVORI:

2.1. (a)
$$n_i = 1,08 \cdot 10^8 \text{ cm}^{-3}$$

(a)
$$E_{Fi}$$
 + 0,261 eV

(a)
$$p = 1.45 \cdot 10^{10} \text{ cm}^{-3}$$

(b)
$$n_i = 1.45 \cdot 10^{10} \text{ cm}^{-3}$$

(b)
$$E_{Fi} - 0.039 \text{ eV}$$

(b)
$$p = 5.91 \cdot 10^{13} \text{ cm}^{-3}$$

(c)
$$n_i = 5.91 \cdot 10^{13} \text{ cm}^{-3}$$

(d) $n_i = 10^{14} \text{ cm}^{-3}$

(c)
$$E_{Fi}$$
 – 0,299 eV
(d) E_{Fi} – 0,045 eV

(c)
$$p = 10^{14} \text{ cm}^{-3}$$

(d) $p = 1.5 \cdot 10^{15} \text{ cm}^{-3}$

(e)
$$n_i = 6.37 \cdot 10^{14} \text{ cm}^{-3}$$

(e)
$$E_{Fi} = 0.043 \text{ eV}$$

(e) $E_{Fi} + 0.039 \text{ eV}$

(e)
$$p = 4.34 \cdot 10^{14} \text{ cm}^{-3}$$

2.4. (a)
$$E_{Fi} + 0.185 \text{ eV}$$
 (b) $E_{Fi} + 0.270 \text{ eV}$

(a)
$$R = 200 \Omega$$

(b) $R = 0.05 \Omega$

(c)
$$E_{Fi} - 0.514 \text{ eV}$$

(c)
$$R = 20 \text{ m}\Omega$$

(d)
$$E_{Fi}$$
 + 0,017 eV
(e) E_{Fi} - 0,017 eV

(d)
$$R = 500 \Omega$$

(e) $R = 5 \Omega$

ZADATAK 3. Skokoviti pn-spoj ima homogeno dopirane strane s $N_A = 10^{15}$ cm⁻³ i $N_D = 10^{17}$ cm⁻³. Vrijedi da je $w_p >> L_n$ i $w_n = 1$ μm $<< L_p$. Vremena života manjinskih nosilaca iznose $\tau_n = 0.5$ μs i $\tau_p = 0.3$ μs, a pokretljivosti su 850 cm²/Vs i 350 cm²/Vs. Površina pn-spoja je S = 1 mm². Temperatura je T = 300 K.

- **3.1.** Izračunati elektronsku komponentu struje zasićenja, I_{Sn} (1 bod).
- **3.2.** Izračunati šupljinsku komponentu struje zasićenja, I_{Sp} (1 bod).
- **3.3.** Koliki je napon priključen na pn-spoj ako je struja kroz diodu I = 10 mA (1 bod)?
- **3.4.** Kolika je rubna koncentracija manjinskih šupljina uz priključen napon U = 0.7 V (1 bod)?
- **3.5.** Uz neki napon priključen na pn-spoj poteče struja I = 5 mA. Koliki je pri tome dinamički otpor pn-spoja (1 bod)?

ODGOVORI:

3.1 (a)
$$I_{Sn} = 2,23 \cdot 10^{-12}$$
 A (b) $I_{Sn} = 2,748 \cdot 10^{-14}$ A (b) $I_{Sp} = 2,23 \cdot 10^{-12}$ A (c) $I_{Sp} = 2,23 \cdot 10^{-12}$ A (d) $I_{Sp} = 2,23 \cdot 10^{-13}$ A (e) $U = 0,5$ V (f) $U = 0,7$ V (g) $U = 0,525$ V (e) $U = 0,525$ V

3.4. (a)
$$p_{n0} = 1,377 \cdot 10^{14} \text{ cm}^{-3}$$
 (b) $p_{n0} = 2,1 \cdot 10^{3} \text{ cm}^{-3}$ (b) $r_{d} = 5,17 \Omega$ (c) $p_{n0} = 1,377 \cdot 10^{10} \text{ cm}^{-3}$ (c) $r_{d} = 51,7 \Omega$ (d) $p_{n0} = 1,2 \cdot 10^{15} \text{ cm}^{-3}$ (d) $r_{d} = 5,17 \text{ k}\Omega$ (e) $p_{n0} = 10^{15} \text{ cm}^{-3}$ (e) $r_{d} = 0,517 \Omega$