Przetwarzanie danych przestrzennych (zadania) SQL/MM Spatial

Krzysztof Jankiewicz Politechnika Poznańska, Instytut Informatyki

Ćwiczenie 1

Standard SQL/MM Part: 3 Spatial.

A. Wykorzystując klauzulę CONNECT BY wyświetl hierarchię typu ST_GEOMETRY.

```
select lpad('-',2*(level-1),'|-') || t.owner||'.'||t.type_name||' (FINAL:'||t.final||
 , INSTANTIABLE: '||t.instantiable||', ATTRIBUTES: '||t.attributes||', METHODS: '||t.methods||')'
from all_types t
start with t.type_name = 'ST_GEOMETRY'
connect by prior t.type_name = t.supertype_name
       and prior t.owner = t.owner;
LPAD('-',2*(LEVEL-1),'|-')||T.OWNER||'.'||T.TYPE NAME||'(FINAL:'||T.FINAL||'
MDSYS.ST GEOMETRY (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:41)
|-MDSYS.ST CURVE (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:52)
|-|-MDSYS.ST_CIRCULARSTRING (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:55)
|-|-MDSYS.ST_COMPOUNDCURVE (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:60)
|-|-MDSYS.ST_LINESTRING (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:56)
|-MDSYS.ST GEOMCOLLECTION (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:48)
|-|-MDSYS.ST MULTICURVE (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:50)
|-|-|-MDSYS.ST_MULTILINESTRING (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:50)
|-|-MDSYS.ST_MULTIPOINT (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:48)
|-|-MDSYS.ST_MULTISURFACE (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:49)
|-|-|-MDSYS.ST MULTIPOLYGON (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:53)
|-MDSYS.ST_POINT (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:49)
|-MDSYS.ST SURFACE (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:44)
|-|-MDSYS.ST_CURVEPOLYGON (FINAL:NO, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:54)
|-|-|-MDSYS.ST POLYGON (FINAL:YES, INSTANTIABLE:YES, ATTRIBUTES:1, METHODS:63)
```

15 rows selected

B. Wyświetl nazwy metod typu ST_POLYGON.

- C. Utwórz tabelę MYST_MAJOR_CITIES o następujących kolumnach:
 - FIPS_CNTRY VARCHAR2(2),
 - CITY_NAME VARCHAR2(40),
 - STGEOM ST POINT.

Table created

D. Przepisz zawartość tabeli MAJOR_CITIES (znajduje się ona w schemacie ZTPD) do stworzonej przez Ciebie tabeli MYST_MAJOR_CITIES dokonując odpowiedniej konwersji typów.

123 rows inserted

Ćwiczenie 2

Standard SQL/MM Part: 3 Spatial – definiowanie geometrii

A. Wstaw do tabeli MYST_MAJOR_CITIES informację dotyczącą Szczyrku. Załóż, że centrum Szczyrku znajduje się w punkcie o współrzędnych 19.036107; 49.718655. Wykorzystaj 3-argumentowy konstruktor ST_POINT (ostatnim argumentem jest identyfikator układu współrzędnych).

1 row inserted

Ćwiczenie 3

Standard SQL/MM Part: 3 Spatial – pobieranie własności i miar

- A. Utwórz tabelę MYST_COUNTRY_BOUNDARIES z następującymi atrybutami
 - FIPS_CNTRY VARCHAR2(2),
 - CNTRY_NAME VARCHAR2(40),
 - STGEOM ST_MULTIPOLYGON.

Table created

B. Przepisz zawartość tabeli COUNTRY_BOUNDARIES do nowo utworzonej tabeli dokonując odpowiednich konwersji.

19 rows inserted

C. Sprawdź jakiego typu i ile obiektów przestrzennych zostało umieszczonych w tabeli MYST_COUNTRY_BOUNDARIES.

TYP_OBIEKTU	ILE
ST MULTIPOLYGON	7
ST_POLYGON	12

D. Sprawdź czy wszystkie definicje przestrzenne uznawane są za proste.

19 rows selected

Ćwiczenie 4

Standard SQL/MM Part: 3 Spatial – przetwarzanie danych przestrzennych

A. Sprawdź ile miejscowości (MYST_MAJOR_CITIES) zawiera się w danym państwie (MYST_COUNTRY_BOUNDARIES).

Uwaga: Jeśli przy dodawaniu Szczyrku podany został inny układ współrzędnych, niż ten w którym zdefiniowane są pozostałe miasta zawarte w tabeli, to zapytanie skończy się poniższym komunikatem o błędzie:

ORA-13295: obiekty geometrii znajdują się w różnych systemach współrzędnych

Jeśli powyższy błąd wystąpił, to usuń jego przyczynę i ponownie wydaj zapytanie.

CNTRY_NAME	COUNT(*)
Denmark Poland	1 51
 Lithuania Ukraine	1 7

15 rows selected

B. Znajdź te państwa, które graniczą z Czechami.

A_NAME	B_NAME	
Austria	Czech Republic	
Poland	Czech Republic	
Germany	Czech Republic	
Slovakia	Czech Republic	

C. Znajdź nazwy tych rzek, które przecinają granicę Czech – wykorzystaj tabelę RIVERS (z racji korzystania z implementacji SQL/MM w Oracle konieczne jest wykorzystanie także konstruktora typu ST_LINESTRING).

CNTRY_NAME	NAME
Czech Republic	Spree
Czech Republic	Morava
Czech Republic (Odra
Czech Republic	Vltava
Czech Republic	Labe

D. Sprawdź, jaka powierzchnia jest Czech i Słowacji połączonych w jeden obiekt przestrzenny.

E. Sprawdź jakiego typu obiektem są Węgry z "wykrojonym" Balatonem – wykorzystaj tabelę WATER_BODIES.

Ćwiczenie 5

Standard SQL/MM Part: 3 Spatial – indeksowanie i przetwarzanie przy użyciu operatorów SDO_NN i SDO_WITHIN_DISTANCE.

A. Wykorzystując operator SDO_WITHIN_DISTANCE znajdź liczbę miejscowości oddalonych od terytorium Polski nie więcej niż 100 km. (wykorzystaj tabele MYST_MAJOR_CITIES i MYST_COUNTRY_BOUNDARIES). Obejrzyj plan wykonania zapytania. (Uwaga: We wcześniejszych wersjach Oracle użycie tych operatorów

nawet dla standardowych typów SQL/MM było możliwe tylko z pomocą indeksu przestrzennego. Bez niego zapytanie kończyło się błędem "ORA-13226: interfejs nie jest obsługiwany bez indeksu przestrzennego".)

B. Zarejestruj metadane dotyczące stworzonych przez Ciebie tabeli MYST_MAJOR_CITIES i/lub MYST_COUNTRY_BOUNDARIES.

1 row inserted

C. Utwórz na tabelach MYST_MAJOR_CITIES i/lub MYST_COUNTRY_BOUNDARIES indeks R-drzewo.

Index created

D. Ponownie znajdź liczbę miejscowości oddalonych od terytorium Polski nie więcej niż 100 km. Sprawdź jednocześnie, czy założone przez Ciebie indeksy są wykorzystywane wyświetlając plan wykonania zapytania.

A_NAME	COUNT(*)
Poland	67

Plan hash value: 2247583427

 	Id	 	Operation	Name			Rows	1	Bytes	1	Cost	(%CPU)	Time	
	1 2		SELECT STATEMENT SORT GROUP BY NOSORT NESTED LOOPS				1 1 1	1 1 1	7672 7672 7672	İ	7 7 7	(0)	00:00:01 00:00:01 00:00:01	İ
7	· 3		TABLE ACCESS FULL DOMAIN INDEX	_	UNTRY_BOUNDARIES JOR_CITIES_IDX	1	1	I	3841	1	5	(0)	00:00:01	1

Predicate Information (identified by operation id):

```
3 - filter("B"."CNTRY NAME"='Poland')
```

^{4 -} access("MDSYS"."SDO_WITHIN_DISTANCE"("C"."STGEOM","B"."STGEOM",'distance=100 unit=km')='TRUE')