Réseaux, information et communications (INFO-F303)

Partie Théorie de l'Information

8. Quelques familles de codes linéaires

Christophe Petit

Université libre de Bruxelles

Plan du cours

- 1. Notion de code
- 2. Source aléatoire et codes efficaces
- 3. Entropie et codage efficace
- 4. Compression sans perte
- Canal bruité
- 6. Codes correcteurs d'erreurs
- 7. Codes linéaires
- 8. Quelques familles de codes linéaires
- A. Rappels mathématiques (chapitre 7.1 du syllabus)

Théorie des codes

- Shannon: "il existe un code qui transmet sans erreur sur un canal bruité, tant que le débit du code est inférieur à la capacité du canal"
- ► Théorème d'existence, preuve non constructive
- En pratique, on souhaite des codes avec bons débit et capacité de correction, mais aussi des fonctions d'encodage et de décodage efficaces

Rappel: contraintes connues

- ► Second théorème de Shannon : $k/n \le C_p$ (borne atteinte asymptotiquement)
- ▶ Borne de Singleton : d < n k + 1
- ▶ Borne de Hamming : $B_s \le q^{n-k}$ avec $s = \left \lfloor \frac{d-1}{2} \right \rfloor$
- ► Borne de Gilbert-Varshamov : $B_{d-1} \ge q^{n-k}$ (pour les codes maximaux)

Codes approchant la capacité maximale

- ▶ Pour canal bruité donné, par exemple un canal symétrique de paramètres p et r, on veut un code [n, k, d] avec
 - ► Grande capacité de détection et correction d'erreurs (asymptotiquement on veut $d \ge 2pn$)
 - \blacktriangleright Haut débit k/n (approchant la capacité du canal)
 - ► Algorithmes rapides de détection et correction

Codes parfaits

- ▶ Borne de Hamming : $B_s \le q^{n-k}$ avec $s = \left \lfloor \frac{d-1}{2} \right \rfloor$
- ► Codes parfaits ssi borne de Hamming atteinte
- "Corrige toutes les erreurs détectables"
- Exemples : codes de Hamming, codes de Golay
- ► "Parfaits"? Tous les codes de Hamming ont d = 3 (asymptotiquement, taux d'erreur est 1)

Codes MDS (maximal distance separable)

- ▶ Borne de Singleton : $d \le n k + 1$
- ► Codes MDS ssi borne de Singleton atteinte
- ▶ "Corrige le maximum d'erreurs pour redondance fixée"
- ► Exemple : codes de **Reed-Solomon** $[n, k, n k + 1]_q$ avec $q \ge n$
 - Paramètres très genéraux, mais contrainte q ≥ n augmente la probabilité d'erreur sur un symbole (car chaque symbole est codé sur au moins log q bits)
 - Souvent q = n + 1 et le code est aussi un **code BCH** (voir plus loin)

Transparents suivants

- Codes polynomiaux
- Codes cycliques
- Codes BCH
- Codes linéaires parfaits et codes de Hamming
- Brièvement
 - Codes de Reed-Muller
 - ► Codes de Reed-Solomon

Mots et polynômes

 Message à coder x de k caractères est vu comme le polynôme en la variable Z

$$X(Z) = \sum_{i=0}^{k-1} x_i Z^i$$

de degré inférieur à k

- Mot à décoder y de n caractères est un polynôme $Y(Z) = \sum_{i=0}^{n-1} y_i Z^i$ de degré inférieur à n
- ▶ Syndrome σ est un polynôme $\Sigma(Z) = \sum_{i=0}^{n-k-1} \sigma_i Z^i$ de degré inférieur à (n-k)
- ▶ Arithmétique sur l'anneau de polynômes F[Z]

Codes polynomiaux

- ▶ Un **code polynomial** de dimension *k* et de longueur *n* sur un corps F est l'ensemble des multiples de degrés inférieurs à n d'un polynôme $G \in F[Z]$ de degré (n - k)
- Cas particulier des codes linéaires
- ▶ Polynôme *G*(*Z*) est le **polynôme générateur** du code
- Pour le syndrome, on peut prendre un simple résidu

$$\Sigma(Z) = \sigma(Y) := Y(Z) \bmod G(Z)$$

On a $\sigma(Y' + Y) = \sigma(Y')$ pour tout mot du code Y et $\sigma(Y) = 0 \Leftrightarrow Y \in K$

Exemple de code polynomial binaire

► Code linéaire sur $F = \mathbb{F}_2$, dimension k = 2, longueur n = 5, engendré par $G(Z) = Z^3 + Z + 1$ est

$$K = \left\{0, \ 1 + Z + Z^3, \ Z + Z^2 + Z^4, \ 1 + Z^2 + Z^3 + Z^4\right\}$$

▶ Matrice génératrice : colonnes sont les images des 2 vecteurs d'une base de $F[Z]_{\deg<2}$, par exemple $\{Z,1\}$

$$G = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \hline 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Codes polynomiaux : forme canonique

On peut choisir comme fonction d'encodage

$$K \colon X(Z) \mapsto Z^{n-k} \ X(Z) - \left(\left(Z^{n-k} \ X(Z)\right) \ \mathsf{mod} \ G(Z)\right)$$

▶ Bits de redondance correspondent au polynôme

$$P_X(Z) = -\left(Z^{n-k} \ X(Z)\right) \bmod G(Z)$$

de degré inférieur à (n-k)

• G au transparent précédent est sous cette forme

Codes cycliques (CRC)

Le décalage circulaire d'une position d'un mot

$$y=(y_0,y_1,\ldots,y_{n-1})$$

est le mot

$$y' = (y_{n-1}, y_0, y_1, \dots, y_{n-2})$$

- Un code linéaire est cyclique si et seulement s'il contient tous les décalages circulaires de ses mots
- Dans une représentation polynomiale,

$$Y'(Z) = Z \cdot Y(Z) - y_{n-1}Z^n + y_{n-1}$$

= $Z \cdot Y(Z) - y_{n-1}(Z^n - 1)$
= $Z \cdot Y(Z) \mod (Z^n - 1)$

Codes cycliques : polynôme générateur

- ▶ Soit G(Z) mot de degré minimal d'un code cyclique. Alors G(Z) divise $Z^n - 1$.
- ▶ Pour tout A(Z), le polynôme

$$R(Z) = A(Z)G(Z) \bmod (Z^n - 1)$$

est un mot du code

▶ Supposons $G \nmid (Z^n - 1)$. Alors il existe A, R tels que

$$R(Z) = Z^n - 1 - A(Z)G(Z),$$
 deg $R < \deg G$

▶ Donc R est dans le code et deg R < deg G : contradiction

Codes cycliques : polynôme générateur

- Tout code cyclique a un polynôme générateur $G(Z) = \sum_{i=0}^{n-k} g_i Z^i$ qui est un **diviseur de Z**ⁿ – 1
- ▶ Tout diviseur de $Z^n 1$ engendre un code cyclique
- Matrice génératrice

$$G = \begin{bmatrix} g_{n-k} & 0 & \cdots & 0 \\ g_{n-k-1} & g_{n-k} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ g_0 & \cdots & & \ddots & 0 \\ 0 & \ddots & & & g_{n-k} \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & \cdots & 0 & g_0 & g_1 \\ 0 & \cdots & 0 & g_0 \end{bmatrix}$$

Codes cyclique : polynôme de contrôle

Polynôme de contrôle

$$H(Z)=\frac{Z^n-1}{G(Z)}$$

- ▶ On a $P(Z) \in K \Leftrightarrow P(Z)H(Z) = 0 \mod (Z^n 1)$
- Matrice de contrôle associée est

$$H = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0 \\ 0 & h_k & \ddots & & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \cdots & h_k & \cdots & h_1 & h_0 \end{bmatrix}$$

Codes BCH

- BCH = Bose-Chaudhury-Hocquenghem
- ▶ Codes polynomiaux cycliques $[q^{\mu}-1, q^{\mu}-1-\rho, d]_q$ avec $\rho < \mu(\delta - 1)$ et $d > \delta$
- Contrôle de la distance minimale
- ▶ Codes MDS (Maximal Distance Separable) si $\mu = 1$: codes $[q-1, q-d, d]_q$
- Utilisés dans les communications satellites, CD, DVD, etc

Codes BCH : préliminaires

- \blacktriangleright Soit q une puissance de premier et μ un entier
- ullet Soit \mathbb{F}_{q^μ} corps fini à q^μ éléments et soit $n:=q^\mu-1$
- Le groupe multiplicatif associé $\mathbb{F}_{a^{\mu}}^*$ est un groupe cyclique à *n* éléments, toutes les racines *n*èmes de l'unité
- Soit α un générateur de $\mathbb{F}_{a^{\mu}}^*$. On a

$$Z^n - 1 = \prod_{i=1}^n (Z - \alpha^i)$$

▶ La plupart des α^i sont définies sur \mathbb{F}_{a^μ} , mais certains sont définis dans le sous-corps \mathbb{F}_a (par exemple $1 = \alpha^n$)

Codes BCH : préliminaires

- ► Soit $I_i = \{\alpha^i, \alpha^{iq}, \alpha^{iq^2}, \ldots\}$ (au plus μ éléments car $\alpha^{q^{\mu}} = \alpha$)
- ▶ Tous les $\alpha \in I_i$ ont le même polynôme minimal sur \mathbb{F}_a égal à

$$M_i(Z) = \prod_{\alpha \in I_i} (Z - \alpha)$$

(polynôme invariant par conjugaison de Galois i.e. si coefficients élevés à la puissance q)

▶ Polynôme $Z^n - 1$ ne se factorise pas nécessairement en facteurs linéaires sur \mathbb{F}_a ; c'est le produit de tous les polynômes minimaux $M_i(Z)$

Exemple

- Soit q = 3 et $\mu = 2$ et $n = q^{\mu} 1 = 8$
- ▶ Soit $\alpha \in \mathbb{F}_0^*$ générateur (donc $\alpha^4 = -1$)
- On a $I_0 = \{1\}$, $I_1 = I_3$, $I_2 = I_6$, $I_4 = \{-1\}$, $I_5 = I_7$
- Sur \mathbb{F}_3 on a la factorisation irréductible

$$Z^{8}-1=(Z-1)(Z+1)(Z^{2}+1)(Z^{2}-Z-1)(Z^{2}+Z-1)$$

- Les deux premiers facteurs correspondent aux racines +1 et -1 déjà dans le corps
- Le suivant à une extension par une racine 4^e de 1

$$\iota^{2} + 1 = 0 \Leftrightarrow \iota^{4} = 1 \text{ et } \iota^{2} = -1 \neq 1$$

► Les deux derniers correspondent aux racines 8e primitives regroupées deux par deux en racines conjuguées

Codes BCH: construction

- Soit q premier et μ entier
- ▶ Soit $n = q^{\mu} 1$
- Soit α un générateur de $\mathbb{F}_{a^{\mu}}^*$
- Soit $\delta > 1$ borne inférieure sur distance minimale
- ► Code BCH est le code cyclique généré par

$$G(Z) = \operatorname{lcm} \left\{ M_i(Z) \,\middle|\, i = 1 \dots (\delta - 1) \right\}$$

- ▶ On a $k = n \deg G$ et $\deg G \le \mu(\delta 1)$
- ▶ On va prouver $d \ge \delta$

Codes BCH: distance minimale

- ▶ Soit $Y(Z) = \sum_{i=0}^{n-1} y_i Z^i \in K$ avec $w = w_H(Y) < \delta$
- Soit $\{i_1, \ldots, i_w\} = \{i \mid v_i \neq 0\}$
- On a $Y(Z) = A(Z)G(Z) + B(Z)(Z^n 1)$ donc $Y(\alpha^j) = 0$ pour $j = 1, \dots, \delta - 1$ donc

$$\begin{pmatrix} \alpha^{i_1} & \alpha^{i_2} & \cdots & \alpha^{i_w} \\ \alpha^{2i_1} & \alpha^{2i_2} & \cdots & \alpha^{2i_w} \\ \vdots & \vdots & & \vdots \\ \alpha^{wi_1} & \alpha^{wi_2} & \cdots & \alpha^{wi_w} \end{pmatrix} \begin{pmatrix} y_{i_1} \\ y_{i_2} \\ \vdots \\ y_i \end{pmatrix} = 0$$

- ▶ Déterminant vaut $\prod_{i=1}^{w} \alpha^{i_j} \prod_{1 < j < k < w} (\alpha^{i_j} \alpha^{i_k})$
- Déterminant nul ssi deux racines égales (contradiction)

Codes BCH : cas $\mu=1$

- ▶ n = q 1
- α un générateur de \mathbb{F}_a^*
- $ightharpoonup Z^n 1 = \prod_{i=1}^n (Z \alpha^i) \text{ sur } \mathbb{F}_q$
- $G(Z) = \prod_{i=1}^{\delta-1} (Z \alpha^i)$
- ▶ deg $G = \delta 1$ donc $k = n \delta + 1$
- $\delta \leq d \leq n-k+1 = \deg G + 1 = \delta \operatorname{donc} d = \delta$
- ightharpoonup Code MDS $[q-1, q-d, d]_q$

Codes BCH : décodage

Equation clé

$$\Lambda_P(Z) \cdot S_V(Z) + \Xi_V(Z) \cdot Z^{\delta-1} = \Omega_V(Z)$$

avec

- \triangleright $S_{\nu}(Z) = \sum_{i=1}^{\delta-1} Y(\alpha^i) Z^{i-1}$ syndrome dans l'extension
- $ightharpoonup \Lambda_P(Z) = \prod_{i=1}^t (1 \alpha^{p_i}.Z)$ polynôme de localisation des erreurs (en position p_i)
- $ightharpoonup \Omega_{\nu}(Z)$ polynôme d'évaluation des erreurs
- Algorithme
 - ightharpoonup Calcul de S_v à partir de Y
 - $ightharpoonup \Lambda_P$, $\Xi_v(Z)$ et Ω_v par l'algorithme d'Euclide étendu
 - ▶ Positions des erreurs via les racines de Λ_P
 - ▶ Valeur des erreurs via $\Omega_{\nu}(Z)$

Codes parfaits

Rayons d'empilement et de recouvrement égaux

$$t = c = s$$
 et $d = 2t + 1$

Borne de Hamming atteinte

$$|B_s| = |B_t| = \sum_{i=0}^t \binom{n}{i} (q-1)^i = q^{n-k}$$

Codes parfaits

$$|B_s| = |B_t| = \sum_{i=0}^t \binom{n}{i} (q-1)^i = q^{n-k}$$

- t=0: on a d=1 et $K=\mathbb{F}_q^n$ trivial
- t = n: on a $K = \{0\}$ trivial
- ▶ t=1: on a d=3 et $n=\frac{q^{n-k}-1}{q-1}$ codes de Hamming
- ▶ Code à répétitions sur \mathbb{F}_2 avec n = 2t + 1
- Codes de Golay
- Exemples non linéaires avec t=1

Codes de Hamming

- ▶ 1950 : code de Hamming binaire (7,4) : encodage demi-octet avec taux d'erreur élevé
- Codes de Hamming : famille de codes parfaits avec t = 1, d = 3 et $n = \frac{q^{n-k}-1}{q-1}$
- Codes dérivés :
 - Codes de Hamming étendu : bit additionel de parité (donc d = 4; corrige une erreur, mais en détecte 2)
 - ightharpoonup Code simplexe : **dual** du code de Hamming ($G \leftrightarrow H$)

Code de Hamming binaire

- Famille de codes parfaits avec $n = 2^m 1$, $k = 2^m - 1 - m$. d = 3
- ▶ Un mot $c = c_1 \dots c_n \in \{0,1\}^n$ du code de Hamming binaire est tel que les bits c_i dont l'indice i est une puissance de deux sont des bits de contrôle, les autres sont des bits de données
- Le bit de contrôle d'indice c_i pour $i=2^{\ell}$ est la somme modulo 2 de tous les bits de données c_i dont l'indice jécrit en base 2 a le $(\ell+1)^{\text{ème}}$ bit à 1

Exemple : code de Hamming binaire (7,4)

- ▶ Pour n = 7, un mot $c = c_1 \dots c_7$ du code de Hamming est tel que
 - les bits c_1, c_2, c_4 sont des bits de contrôle
 - les bits c_3, c_5, c_6, c_7 sont des bits de données
- ▶ On a

$$c_1 = c_{110} + c_{101} + c_{111} = c_3 + c_5 + c_7 \mod 2$$

 $c_2 = c_{110} + c_{011} + c_{111} = c_3 + c_6 + c_7 \mod 2$
 $c_4 = c_{101} + c_{011} + c_{111} = c_5 + c_6 + c_7 \mod 2$

Exemple : code de Hamming binaire

- ightharpoonup On a d=3: tout changement d'un bit de donnée $c_{\sum_{i=0}^{m-1}e_{j}2^{j}}$ impacte tous les bits de contrôle $c_{2^{j}}$ pour $e_{i}=1$
- ▶ Le code est 1-correcteur. En effet, considérons la somme e des indices des bits de contrôle erronés. S'il n'y a qu'une seule erreur, elle ne peut provenir que du bit d'indice e

Codes de Reed-Muller

- Codes linéaires avec décodage rapide par majorité
- Codes $[2^{\mu}, \sum_{i=0}^{\delta} {\mu \choose i}, 2^{\mu-\delta}]_2$
- ▶ Mots du codes \sim fonctions de μ variables et degré $\leq \delta$, évaluées en chaque valeur possible des μ variables
- Utilisés pour communications satellites dans les années 60
- Cfr syllabus d'Yves Roggeman

Codes de Reed-Solomon

- ▶ Codes linéaires $[n, k, n-k+1]_a$
- Codes MDS (borne de Singleton atteinte)
- ▶ Mots du code : évaluation d'un polynôme de degré < k</p> sur \mathbb{F}_a en *n* valeurs distinctes
- ▶ Intuition : polynôme déterminé par évaluation en k points
- ▶ Codes BCH si q = n + 1
- ▶ Décodage par l'algorithme Peterson-Gorenstein-Zierler. ou techniques semblables aux codes BCH

Questions?

?

Crédits et remerciements

- Mes transparents suivent fortement les notes de cours développées par le Professeur Yves Roggeman pour le cours INFO-F303 à l'Université libre de Bruxelles
- ▶ Une partie des transparents et des exercices ont été repris ou adaptés des transparents développés par le Professeur Jean Cardinal pour ce même cours
- ▶ Je remercie chaleureusement Yves et Jean pour la mise à disposition de ce matériel pédagogique, et de manière plus large pour toute l'aide apportée pour la reprise de ce cours
- Les typos et erreurs sont exclusivement miennes (merci de les signaler!)