

Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung

BEST AVAILABLE COPY

Aktenzeichen: 102 37 183.0

Anmeldetag: 14. August 2002

Anmelder/Inhaber: Continental Teves AG & Co oHG,
Frankfurt am Main/DE

Bezeichnung: Befüll- und Entlüftungskonzept für EHB-
Bremssysteme

IPC: B 60 T, F 15 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.

München, den 12. November 2003
Deutsches Patent- und Markenamt
Der Präsident

Im Auftrag

Höß

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Continental Teves AG & Co. OHG
Frankfurt/M

12.August 2002
GP/Du

P 10504
M. Baechle
M. Hitzel
A. Wagner

Befüll- und Entlüftungskonzept für EHB-Bremssysteme

Da das EHB System ein offenes System ist, das auch selbstständig hohe Drücke im Rad erzeugen kann, ohne dass das Pedal betätigt wird, sind für Arbeiten an der Bremse besondere Vorbereitungen notwendig. Diese werden durch die Werkstatt-Entlüftungsprozesse sichergestellt.

Für die Nacharbeit im Werk ist ebenfalls ein neuer Prozess erforderlich, der eine undefiniert gefüllte EHB-Anlage (schlimmstenfalls komplett trocken) in einen betriebsfähigen Zustand versetzen kann.

1. Serviceentlüftung incl. Bremsflüssigkeitswechsel

Bei Arbeiten an der Bremsanlage, bei denen der Saugschlauch geöffnet wird (Tausch der Belüftigung, Tausch der HCU, Tausch der Saugleitung, ...), gelangt zwangsläufig Luft in den Ansaugbereich der Pumpe. Diese Luft kann nur durch Ansteuerung von Pumpe und Ventilen mit anliegendem Entlüfterdruck (2 bar) durch die Anlage in Richtung Radentlüfter gespült werden. Ein selbstständiges Aufsteigen der Luft aus dem Saugschlauch in Richtung Behälter kann nicht sichergestellt werden.

Für die Serviceentlüftung wird daher ein Entlüftergerät (2 bar Fülldruck) und eine Entlüfterflasche benötigt. Die Ansteuerungssequenzen sind im Regler abgelegt, sie werden über ein Werkstatt-Diagnosegerät aufgerufen. Dazu sind synchron zum Prozess verschiedene Werkeraktionen durchzuführen. Der Prozess ist detailliert im Ablaufdiagramm bzw. in den hydraulischen Schaltfolgen beschrieben (siehe angehängte Dateien Ablauf Serviceentlüftung mit Btl. Wechsel Update 5.pdf und Schaltfolge Serviceentlüftung mit Btl. Wechsel Update 5.pdf).

Die Durchführung dieses Prozesses tauscht gleichzeitig die Bremsflüssigkeit der gesamten Anlage aus.

2. Bremsflüssigkeitswechsel

Die Volumina von Bremsflüssigkeit in der EHB Anlage, die nicht in der hydraulischen Rückfallebene liegen (Saug- und Rücklaufleitung, Speichervolumen), sind im Vergleich zum konventionellen System nicht zu vernachlässigen. Daher ist eine Ansteuerung der Aktuatoren erforderlich.

Für den Bremsflüssigkeitstausch werden eine Entlüfterflasche und eine Kanne zum Nachgießen neuer Bremsflüssigkeit benötigt. Ferner muss der Werker an vorgegebenen Stellen im Prozess das Bremspedal betätigen. Die Ansteuersequenzen sind im Regler abgelegt, sie können über ein Werkstattdiagnosegerät oder über Schalter im Fahrzeug aktiviert werden. Die Kommunikation mit dem Werker erfolgt dabei über das Display des Diagnosegeräts oder über ein Display im Fahrzeug. Der Prozess ist detailliert im Ablaufdiagramm bzw. in den hydraulischen Schaltfolgen beschrieben (siehe angehängte Dateien Ablauf Bremsflüssigkeitswechsel Update 5.pdf und Schaltfolge Bremsflüssigkeitswechsel Update 5.pdf).

3. Belagwechsel

Blatt 2

Für Arbeiten an der Bremse HCU abwärts (Radleitungen, Sättel, Beläge) muss das EHB System stillgelegt werden, da durch ein unbeabsichtigtes Aktivieren der Anlage im Precheck hohe Raddrücke auftreten können, die den Werker gefährden.

Dieser Prozess schaltet das Brake by Wire System ab. Arbeiten an der Radbremse können wie gewohnt durchgeführt werden. Auch eine konventionelle Entlüftung der Radbremse ist hiermit möglich.

Nach Beendigung der Arbeiten werden die Beläge durch einen gesteuerten Druckaufbau beigestellt.

Die Ansteuersequenz ist im Regelr abgelegt, sie kann über ein Werkstattdiagnosegerät oder über Schalter im Fahrzeug aktiviert werden. Die Kommunikation mit dem Werker erfolgt dabei über das Display des Diagnosegeräts oder über ein Display im Fahrzeug. Der Prozess ist detailliert im Ablaufdiagramm beschrieben (siehe angehängte Datei Ablaufdiagramm Belagwechsel Update5.pdf).

4. Check der Entlüftungsqualität

Die erweiterte Sensorik des EHB Systems erlaubt eine Kontrolle der durchgeföhrten Arbeiten am Bremsystem durch Messung der Volumenaufnahme der Bremsanlage. Damit ist die Verfügbarkeit der hydraulischen Rückfallebene nach Arbeiten am Bremsystem sichergestellt.

Der Check der Entlüftungsqualität schließt sich direkt an jede der 3 vorher beschriebenen Prozesse an, kann jedoch auch separat über Diagnosetester oder über Schalter im Fahrzeug aktiviert werden. Die Kommunikation mit dem Werker erfolgt dabei über das Display des Diagnosegeräts oder über ein Display im Fahrzeug. Der Werker wird aufgefordert, zwei Betätigungen durchzuführen. Die erste dient dazu, eventuelles Lüftspiel beizustellen, die zweite stellt den Messhub dar. Der Prozess ist detailliert im Ablaufdiagramm beschrieben (siehe angehängte Datei Ablauf Entlüftungscheck Update 6.pdf), der Entlüftungscheck wurde bereits als gesonderte Erfindungsmeldung eingereicht (2002/109).

5. Nacharbeitsentlüftung (EHB Bleedmaster)

In der Nacharbeit im Werk liegt an der Befüllstation ein undefinierter Entlüftungszustand vor. Das System kann je nach Fehlerart während des Bandbefüllprozesses teilbefüllt oder vollständig trocken sein. Daher ist eine Vakumbefüllung nicht mehr möglich, dass System muss durch Spülverfahren befüllt werden. Dazu ist Entlüfterdruk auf dem Behälter notwendig, die Lult wird durch gezielte Schaltung von Pumpe und Ventilen aus den Radentlüftern gespült. Auch hier sind von dem Werker synchron zum Prozess Tätigkeiten wie Öffnen bestimmter Radentlüfter durchzuführen, die Kommunikation Werker-Prozess erfolgt über das Display eines Diagnose-Ansteuergeräts. Die genauen Schaltfolgen der Pumpe und der Ventile sind in den angehängten Diagrammen dargestellt (siehe angehängte Dateien EHB BM F06 Teil 1.pdf und EHB BM F06 Teil 2.pdf).

Entlüftungscheck

Stand: 01.07.2002, Update 6

Einstieg von Entlüftungsmenü
oder automatisch nach allen
Entlüftungsprozessen

nein

Bei Einstieg aus
Entlüftungsmenü:
Ausführungs eintrag
gesetzt?
ja/nein

1. ggf. Verriegelung
MPD
2. Fehler eintrag in
EEPROM
3. Sprung zu "Start
Serviceentlüftung"

ja

1. Aufforderung zum
Überprüfen der
Entlüftungsqualität,
Meldung: Pedal völlig
entlasten
weiter/zurück

zurück

Fehlermeldung
zu Fehler
a, b, c, d

Fehlermeldung

- a) "Anlage defekt"
- b) THz-Leitung
vertauscht od. Leck
- c) Volumenaufnahme
RFE zu groß, Anlage
schlecht entlüftet
- d) Pumpleistung zu
gering

weiter

Ausführungs eintrag in EEPROM
(Entlüftungsstatus), falls Einstieg
aus Entlüftungsmenü

a) $U < 10 \text{ V}$

Überwachung
U, s, p

a) Speicherschutz (s,p)

Speicherzustand feststellen, ggf.
Ablassen (Überwacht)

a) $U < 10 \text{ V}$
b) BWE n.i.O
c) Entl. druck noch da
d) bei Nullabgleich nicht
Betätigen, THz-Weg überw.

Flüssigkeitsstand im Behälter
kontrollieren, Nullabgleich allei
6 Drucksensoren (dabei
Einhaltventile schalten)

Überwachung
U, s, p, BWE,
THz-Weg

a) Speicherschutz (s,p)

Speicher
Laden (Boost
Mode)

Überwachung
U, s, p, Q,
BWE

a) $U < 10 \text{ V}$
b) BWE n.i.O.

2. Aufforderung zur 1
Betätigung (Belag anlegen)
Meldung: Langsam,
gleichmäßig und kräftig
Betätigen,

Fehlermeldung
zu Fehler
a, b, c, d

a) Speicherschutz (s,p)
d) $Q < 0,5 \text{ cm}^3/\text{s} (T > 10^\circ\text{C})$
 $Q < 4,5 \text{ cm}^3/\text{s} (T < 10^\circ\text{C})$

Legende:

Interaktion mit Werker

Innterer Ablauf

Überwachungsfunktion

Info:

- Wird Klemme 15 ausgeschaltet (Zündung aus), erfolgt nach erneutem Einschalten Sprung zum Start der unterbrochenen Routine.
- Routine muß mit gleichem Tool beendet werden wie sie aktiviert wird (Lenkradtasten oder Tasten)
- Bei I.Q Durchlauf dürfen keine Fehlermeldungen in den Fehlerspeicher aufgenommen werden
- Wo ist Timeout erforderlich?
- Wann darf Eintritt in Routine erfolgen? (Raddrehzahlabfrage, Komponentencheck...)

Große Serviceentlüftung incl. Bremsflüssigkeitswechsel
Update 5, Stand: 17.06.2002

Schaltsequenz 1

Es folgt
Schaltsequenz 2

1 2 3 4 5 6

Sequenz 1.1 Sequenz 1.2 Sequenz 1.3 Sequenz 1.4

zu Beginn Speicher
entleeren

Nr. - Wörkeraktionen, Haltepunkt im Prozeß
mit Haltestellennummer

Große Serviceentlüftung incl. Brennstoffwechsel

Schallsequenz 2

Es folgt
Schallsequenz 3

Sequenz 2.1

Sequenz 2.2

8

Evil. Rückgriff auf vorh. Speicher Ablauf-Routine

Große Serviceentlüftung incl. Bremsflüssigkeitswechsel

Schallsequenz 3

Große Serviceentlüftung incl. Bremsflüssigkeitswechsel

Schaltsequenz 4

Es folgt Schaltsequenz 5

Die Zeiten für das Speicher Laden und Entladen können noch angepasst werden, evtl.
Rückgriff auf reguläre Speicher Laderegelung möglich

Große Sekundärventilfütigung incl. Bremsflüssigkeitswechsel

Schaltsequenz 5

- *: bei Erreichen von 20 bar Raddruck liegt Leitungsverlauschung bzw. Entlüfterschleier (falscher Entlüfter offen oder Entlüfter nicht vollständig offen) vor. Folgehandlung: Pumpe sofort aus, Druckabbau über Auslaßventil, Ventile aus, Fehlermeldung
- **: Auslaßventilschaltung bis Raddruck <2 bar.
- ***: Solange Spülen, bis Werker saubere und blasenfrei Bremsflüssigkeit aus Entlüfter austreten sieht (Bestätigung durch Tastendruck)

Bremsflüssigkeitswechsel Update 5 Stand 17.06.2002

Schaltsequenz 1

zu Beginn Speicher
Entleeren

Nr. = Werkeraktionen, Haltepunkt im Prozeß
mit Haltestellennummer

Haltestelle 2:
Behälter Entleeren
Frische Btl. auffüllen

Bremsflüssigkeitswechsel

Schaltsequenz 2

Es folgt
Schaltsequenz 3

Sequenz 2.1

7:

Sequenz 2.2

8:

EvL Rückgriff auf vorh. Speicher Ablaß-Routine

Bremsflüssigkeitswechsel

Schaltsequenz 3

Bremsflüssigkeitswechsel

Schaltsequenz 4

Es folgt Schaltsequenz 5

- Die Zeiten für das Speicher Laden und Entladen können noch angepasst werden, evtl. Rückgriff auf reguläre Speicher Ladederegelung möglich

Bremsflüssigkeitswechsel

Schaltsequenz 5

bei Erreichen von 20 bar Raddruck liegt
Leitungsverbauschung bzw. Entlüfterfehler
(falscher Entlüfter offen oder Entlüfter nicht
vollständig offen) vor. Folgehandlung: Pumpe
sofort aus, Druckabbau über Auslaßventil,
Ventile aus, Fehlermeldung

": Auslaßventilschaltung bis Raddruck <2 bar.

": Solange betätigen, bis Werker saubere und
blasenfreie Bremsflüssigkeit aus Entlüfter
austreten sieht (Bestätigung durch Tastendruck)

EHB Bleedmaster Teil 1 Update 1 (Stand 11-2)

1. Spalten der Tabelle
mit 2. Spalten der Tabelle
mit 3. Spalten der Tabelle
mit 4. Spalten der Tabelle

2. Spalten der Tabelle
mit 3. Spalten der Tabelle
mit 4. Spalten der Tabelle

3. Spalten der Tabelle
mit 2. Spalten der Tabelle
mit 4. Spalten der Tabelle

4. Spalten der Tabelle
mit 2. Spalten der Tabelle
mit 3. Spalten der Tabelle

Ablauf Bremsflüssigkeitswechsel (ohne Entlüftergerät)

Stand: 24.06.2002, Update 5

0. Hauptmenü ▲

Auswahl: Entlüften

zurück zum Hauptmenü

Welche Routine soll ausgeführt werden?
a) Serviceentlüftung incl. Bfl. WechselSprung zu
Entlüftungs-Check

b) Bfl. Wechsel (ohne Entlüftergerät)

c) Belagwechsel

d) Entlüftungscheck

Auswahl/ zurück zu Hauptmenü

*Prozeß nur mit Werkstatttester aufrufbar

A

A

Auswahl:

Bremsflüssigkeits-
wechsel

nein

Ausführungseintrag
gesetzt?
Ja/ nein

ja

▼

1. Start
Bremsflüssigkeitswechsel
weiter/ zurück

zurück

A

weiter

▼

1. Ausführungseintrag
in EEPROM
(Entlüftungsstatus)
2. Speicherer Ablassen
(überwacht, bis leer)
3. Nullabgleich aller 6
Drucksensoren (dabei
Einlaßventile Schalten)

Fehlermeldung
zu Fehler a, b, c

▲ a) U<10 V
b) Stoptaste
c) bei Nullabgleich nicht
Betätigen, THz-Weg=0

Fehlermeldung
"Anlage defekt"zurück ▲ 2. Aufforderung
Behälter leeren,
frisch (Bfl. auffüllen
weiter/ zurück

weiter

Überwachung
U, s, p, Stoptaste,
THz-Weg

Speicherschutz (s,p)

A

zurück ▲ 3. Aufforderung
Entlüfter VR
Öffnen, anschl.
20 Betätigungen
weiter/ zurück

weiter

Stoptaste

Fehlermeldung
zu Fehler
a, b, c

▲ a) U<10 V
b) Stoptaste
c) zu wenig Betätigungen

20 Pedalbetätigungen
(Schaltsequenz 1.1)Überwachung
U, s, p, BWE,
Stoptaste, Anzahl der
Betätigungen

Speicherschutz (s,p)

BWE

Seite 1

A

▼
18. Aufforderung
Bremsflüssigkeitspegel auf
Max-Marke einstellen
weiter/ zurück

weiter

▼
Sprung zu
Entlüftungscheck

Legende:

Interaktion mit Werkor

Interner Ablauf

Überwachungsfunktion

Info:

-Wird Klemme 15 ausgeschaltet (Zündung aus),
erfolgt nach erneutem Einschalten Sprung zum
Start der unterbrochenen Routine.

-Routine muß mit gleichem Tool beendet werden
wie sie aktiviert wird (Lenkradlasten oder Tester)

-Bei I.O. Durchlauf dürfen keine Fehlermeldungen
in den Fehler Speicher aufgenommen werden

-Wo ist Timeout erforderlich?

-Wann darf Eintritt in Routine erfolgen?
(Raddrehzahlabfrage, Komponentencheck..)

Ablauf Belagwechsel (ohne Entlüftergerät)

Stand: 24.06.2002, Update 5

Legende:

Interaktion mit Werker

Innterner Ablauf

Überwachungsfunktion

Info:

- Wird Klemme 15 ausgeschaltet (Zündung aus), erfolgt nach erneutem Einschalten Sprung zum Start der unterbrochenen Routine.
- Routine muß mit gleichem Tool beendet werden wie sie aktiviert wird (Lenkradlasten oder Testler).
- Bei i.O. Durchlauf dürfen keine Fehlermeldungen in den Fehlerspeicher aufgenommen werden.
- Wo ist Timeout erforderlich?
- Wann darf Eintritt in Routine erfolgen?
(Radfrehzahlabfrage Komponentencheck ...)

Ablauf Serviceentlüftung incl. Bremsflüssigkeitswechsel

Stand: 24.06.2002 Update 5

Legende:

Interaktion mit Werker

Interner Ablauf

Überwachungsfunktion

Info:

- Wird Kleinme 15 ausgeschaltet (Zündung aus), erfolgt nach erneutem Einschalten Sprung zum Start der unterbrochenen Routine.
- Routine muß mit gleichem Tool beendet werden wie sie aktiviert wird (Lenkradtaisen oder Tester)
- Bei i.O. Durchlauf dürfen keine Fehlermeldungen in den Fehlerspeicher aufgenommen werden
- Wo ist Timeout erforderlich?
- Wann darf Eintritt in Routine erfolgen? (Raddrehzahlabfrage, Komponentencheck ..)

EHD Bleedmaster Teil 2 Update 1 (Stand 14.06.2002)

↓ Schaltungen
↓ Steuerung↓ Regelung
↓ Steuerung↓ Regelung
↓ Steuerung

This Page is inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLORED OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
- OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents *will not* correct images
problems checked, please do not report the
problems to the IFW Image Problem Mailbox