2-SAT est linéaire Malory Marin

2-SAT est linéaire

Référence: 131 Développements pour l'oral, D.Lesesvre, P. Montagnon.

Définition 1 (2-SAT).

Données:

- un ensemble de variable propositionnelle $X = \{x_1, ..., x_n\}$
- une formule F sous forme normale conjonctive où chaque clause est composée de 2 littéraux (un littéral étant une variable ou sa négation).

Problème: existe-t-il une valuation $d: \{x_1, ..., x_n\} \rightarrow \{0, 1\}$ telle que d(F) = 1?

On se propose de montrer le théorème suivant :

Théorème 1. 2-SAT est décidable en temps linéaire.

Construction du graphe. Soit $X = \{x_1, ..., x_n\}$ et $F = C_1 \wedge C_2 \wedge ... \wedge C_m$ une instance de 2-SAT. On construit le graphe orienté G = (V, E) avec :

- $-- S = \{x_1, \overline{x_1}, ..., x_n, \overline{x_n}\};$
- pour $1 \leq i \leq m$, en notant $C_i = u \vee v$, on a $(\overline{u}, v) \in E$ et $(\overline{v}, u) \in E$.

Remarque 1. On remarque que la taille du graphe est linéaire en la taille de la formule.

Caractérisation de la satisfiabilité. On peut alors montrer le résultat suivant :

Théorème 2. F est satisfiable ssi aucune composante fortement connexe de G ne contient à la fois une variable x et son complément \overline{x} .

Lemme 1. Soit d une valuation. On a d(F) = 0 ssi il existe un chemin $l_1...l_k$ dans G avec $d(l_1) = 1$ mais $d(l_k) = 0$.

Démonstration. Si d(F) = 0, alors il existe une clause $C = u \vee v$ telle que d(C) = 0. On prend alors le chemin $\overline{u}v$, et on a $d(\overline{u}) = 1$ et d(v) = 0.

Réciproquement, on suppose d(F)=1. Montrons tout d'abord que si $uv \in E$ et d(u)=1, alors d(v)=1. En effet, si $uv \in E$, alors on a dans F la clause $\overline{u} \vee v$ ou la clause $v \vee \overline{u}$ (donc la même clause). On a directement d(v)=1.

Ainsi, s'il existait un chemin $l_1...l_k$ dans G avec $d(l_1)=1$, alors on a immédiatement $d(l_2)=...=d(l_k)=1$.

Sens direct du théorème 2. Par contraposée, on suppose qu'il existe x et \overline{x} dans la même composante fortement connexe. Soit d une valuation, montrons d(F) = 0. Il y a deux cas :

- si d(x) = 1, alors puisqu'il existe un chemin $x \leadsto \overline{x}$ et $d(\overline{x}) = 0$, on conclut par le lemme 1 que d(F) = 0;
- si d(x) = 0, alors on a $d(\overline{x}) = 1$ et il existe un chemin $\overline{x} \leadsto x$ dans G. On conclut de la même manière.

Ainsi, F n'est pas satisfiable.

Sens indirect du théorème 2. On suppose maintenant que pour tout $x \in X$, on a x et \overline{x} dans des composantes fortement connexes différentes. On utilisera le lemme suivant.

2-SAT est linéaire Malory Marin

Lemme 2. Pour toute composante fortement connexe C de G, il existe une composante fortement connexe \overline{C} tel que $u \in C$ ssi $\overline{u} \in C$.

 $D\acute{e}monstration$. Soit $u \in C$, on pose \overline{C} la composante de \overline{u} . On montre alors que $v \in C$ ssi $\overline{c} \in \overline{C}$.

On a $v \in C$ ssi $u \leadsto v$ et $v \leadsto u$. Or s'il existe un chemin $u_1...u_k$ dans G, on a par définition de G aussi le chemin $\overline{u_k}...\overline{u_1}$. Ainsi, on a $u \leadsto v$ ssi $\overline{v} \leadsto \overline{u}$ et on peut conclure facilement. \square

On peut maintenant construire la valuation. On considère le graphe des composantes fortement connexes de G. C'est un DAG et on peut alors prendre un tri-topologique de ce graphe $C_1....C_n$. On construit la valuation d de la manière suivante : pour i=1...n, si C_i n'a toujours pas été traité, alors on pose $d(C_i)=1$ et $d(\overline{C_i})=0$.

La fonction d est bien définie par hypothèse. Par l'absurde, si d(F) = 0, alors il existe un chemin $l_1....l_k$ dans G avec $d(l_1) = 1$ mais $d(l_k) = 0$. En particulier, il existe une arête ll' sur le chemin avec d(l) = 1 et d(l') = 0. On a l et l' dans deux CFC différente C et C'.

Puisque d(C) = 1, \overline{C} est après dans le tri topologique ($\overline{C} < C$). Puisque d(C') = 0, $\overline{C'}$ a été traité avant et donc $C' < \overline{C'}$. Enfin, puisqu'on a une arête entre C et C', on a C < C', et donc :

$$\overline{C} < C < C' < \overline{C'}$$

Or, puisque $ll' \in E$, on a $\overline{l'l} \in E$, et donc $\overline{C'} < \overline{C}$, c'est absurde. Finalement, F est satisfiable.

Le théorème ?? est alors un corollaire du théorème 2 puisqu'il suffit de calculer les composantes fortement connexes en temps linéaire (via Tarjan ou Kosaraju), et de vérifier linéairement si une variable et sa négation sont dans la même CFC.