3 Propositional Practice

(a) $(\exists x \in \mathbb{R}) \ (x \notin \mathbb{Q})$

True.

Consider $x = \pi$. $\pi \in \mathbb{R}$, and $\pi \notin \mathbb{Q}$, so the proposition is true.

(b)
$$(\forall x \in \mathbb{Z}) \left(\left((x \in \mathbb{N}) \lor (x < 0) \right) \land \left(\neg \left((x \in \mathbb{N}) \land (x < 0) \right) \right) \right)$$

True.

Let $x \in \mathbb{Z}$, so x >= 0 or x < 0, but not both.

If $x \ge 0$, then x is a natural number; if x < 0, then x is negative; x can't be both.

Thus, the proposition is true.

(c) $(\forall x \in \mathbb{N}) ((6 \mid x) \Longrightarrow ((2 \mid x) \lor (3 \mid x)))$

True.

Let $x \in \mathbb{N}$, x = 6 * k, so $k \in \mathbb{N}$

So x = 2 * (3k) where $3k \in \mathbb{N}$, which means that $2 \mid x$

So $((2 \mid x) \lor (3 \mid x))$ is true, which means that the proposition is true.

(d) All real numbers are complex numbers.

True

Let $x \in \mathbb{R}$, so x = x + 0 * i, and since $x, 0 \in \mathbb{R}$,

So by definition of complex numbers, x is a complex number.

(e) If an integer is divisible by 2 or is divisible by 3, then it is divisible by 6.

False.

Consider x = 2, so x is an integer.

Since x is divisible by 2, so it is divisible by 2 or by 3.

However, there's no such integer a such that 2 * a = 6

So by definition, x is not divisble by 6, so the proposition is false.

(f) If a natural number is greater than 7, then it can be expressed as the sum of two natural numbers.

True

Let $x \in \mathbb{N}, x > 7$

Consider a = 0, b = x, so $a, b \in \mathbb{N}$

Thus, since a + b = 0 + x = x, so the proposition is true.