GENERAL PROBLEM SOLVING WITH SEARCH ALGORITHMS

8-PUZZLE PROBLEM SOLVING

Input:

1	2	3
	4	5
7	8	6

Goal:

1	2	3
4	5	6
7	8	

8-PUZZLE PROBLEM SOLVING

8-PUZZLE PROBLEM SOLVING

1 2 3
Goal 7 8

Problem Solving = Graph Search

- Search algorithm creates a Search Tree
- Branching Factor may increase or decrease, for the above: 2, 3, 4
- Tree Search: Same pattern may be repeated!
 - That may mean looping
- Really, Graph Search: use memory to remember visited nodes

Problem Solving = Graph Search

- Note, in AI it is being <<dynamically>> performed: Generate-and-Test
 - Test in each iteration, if solution is reached
 - Search tree is dynamically getting generated during search
 - Generate-test (AI-search) = Map-reduce (LISP) = Map-reduce (Hadoop-BigData)
- AI search: The Graph may NOT be statically available as input
- Some input board may not even have any solution!

Problem Solving = Graph Search

- Problem Solving in AI is often (always!): Graph Search
 - It is mostly graph search, but often we treat it as a tree search,
 - ignoring, repeat visit of nodes
 because memorizing & checking for past-visited nodes is too expensive!
- Each node is a "state": State space of nodes is searched
- Control types:
 - Breadth First Search (BFS)
 - Depth First Search (DFS)

Sliding Puzzle Solving with BFS/DFS

Think of input data structure.

• Input	Size <i>n</i> =
---------	-----------------

• 8-Puzzle: 3x3 slots, n=9

• 15-Puzzle: 4x4 slots, n=16

•

Input or Problem instance

1	2	
4	5	3
7	8	6

Goal			
1	2	3	
4	5	6	
7	8		

- Problem Complexity= Total number of <u>feasible steps</u> over a search tree
 - What are the steps: Left/Right/Up/Down
 - Complexity as O(f(n))
 - #Steps: O(bⁿ), for average branching factor b:
 - Branching means, how many options available at each step

AI Problem Solving

- •NP-hard problems: likely to be $O(k^n)$, for some k>1, exponential
 - Clever, efficient algorithms exist, but worst case remains exponential
 - AI is often about efficiently solving with clever algorithm!

BFS: 8-PUZZLE PROBLEM SOLVING

What is the typical data structure for BFS? Queue or Stack?

Breadth First Search

```
Algorithm BFS(s): s start node
0. Initialize a Q with s;
1.v = Pop(Q); // BFS is Queue based algorithm
2.If v is "goal" return success;
3.mark node v as visited; // done!
                                    // absent in "tree" search mode
   operate on v; // e.g., evaluate if it is the goal node, if so, return
5. for each node w accessible from node v do
         if w is not marked as visited then // with generate-and-test this may not be time consuming
                  Push w at the back of Q;
   end for;
End algorithm.
```

Code it!

DFS: 8-PUZZLE PROBLEM SOLVING

Depth First Search

```
Algorithm DFS(v) // recursive
1.mark node v as visited; // done!
                                    // absent in "tree" search mode
2.If v is "goal" return success;
3. operate on v; // e.g., evaluate if it is the goal node, if so, return
4.for each node w accessible from node v do
5. if w is not marked as visited then // again, absent in "tree" search mode
6.
                           DFS(w); // an iterative version of this
                                    //will maintain its own stack
   end for;
End algorithm.
```

Driver algorithm

```
Input: Typical Graph search input is a Graph G: (nodes V, arcs E)

// Here we have: a board as a node p, and operators for modifying board correctly

// i.e, we generate the graph as we go: "Generate and Test"

Output: Path to a goal node g, computer may display the next node on the path

call DFS(p); // input board p as a node in search tree G

End.
```

DFS: 8-PUZZLE PROBLEM SOLVING

BFS vs DFS

• **BFS**:

- Memory intensive: ALL children are to be stored from all levels ⊗
 - At least all nodes of the last level are to be stored, and that grows fast too!
 - Also, you cannot do the above if the path from start node to goal is needed!
- If goal exists, BFS is guaranteed to find it: complete algorithm
 - (systematically finds it, level by level) ©
- If goal is <u>nearby</u> (at a shallow level), BFS quickly finds it ©
- Memory intensive, all nodes in memory ⊗
- Queue for implementation

• *DFS*:

- Infinite search may happen, in the worst case $\ extcolor{f extco$
 - May get stuck on an infinite depth in a branch,
 - Even if the goal may be at a shallow level on a different branch
- Linear memory growth, depth-wise © WHY?
 - but, go to the point number 1 above → memory may explode for large depth!
- Stack for implementation (equivalent to recursive implementation)

BFS vs DFS

• Time complexity: Worst case for <u>both</u>, all nodes searched: O(b^d)
b branching factor, d depth of the goal

- Memory:
 - BFS O(bd) remember all nodes

- DFS O(bd), only one set of children at each level, up to goal depth
 - But the depth may be very large, up to infinity ③
 - DFS <forgets> previously explored branches ©

Depth Limited Search (<u>DLS</u>): *To avoid infinite search of DFS*

- Stop DFS at a *fixed* depth *l*, no mater what
- Goal, may NOT be found: *Incomplete Algorithm*
 - If goal depth d > l
- Why DLS? To avoid getting stuck at infinite (read: large) depth
- Time: O(bl), Memory: O(bl)

Iterative Deepening Search (IDS)

- Repeatedly stop DFS at a fixed depth l (i.e., DLS), AND
 - If goal is not found,
 - then RESTART from start node again, with l = l+1
- Complete Algorithm
 - Goal <<will>> be found when l = = d, goal depth
- Isn't repetition very expensive?
- Time: $O(b^1 + b^2 + b^3 + ... b^d) = O(b^{d+1})$, as opposed to $O(b^d)$,
 - For b=10, d=5, this is 111,000 to 123,450 increase, 11%
- Memory:
 - IDS vs DFS: same O(bd)
 - IDS vs BFS: O(bd) vs O(bd)

Informed Search (Heuristics Guided Search)

Informed Search (Heuristics Guided Search, or "AI search")

- Available is a "heuristic" function f(n) node n, to chose a best Child node from alternative nodes
- Example: Guessed distance from goal
 - You can see the Eiffel tower (goal), move towards it!
- Best child = Child w with minimum f(w)
 - We will use h(w) for node w as guessed distance to goal
- AI-searches are optimization problems
- Both BFS and DFS may be guided: Informed search

Best First Search

h (heuristic distance)

GOAL

Algorithm ucfs(v)

- 1. Enqueue start node s on a min-priority queue Q; // distance g(s) = 0
- 2. While $Q \neq empty do$
- 3. v = pop(Q);
- 4. If v is a goal, return success;
- 5. Operate on v (e.g., display board);
- 6. For each child w of v,
- 7. Insert w in Q such that cost(w) is the lowest;

// cost(w) is path cost from the child node w to a goal node,
// replacing cost(w) with g(w), path-cost of w from source, makes it
Djikstra's algorithm

// Q is a priority-queue to keep lowest cost-node in front

Uniform Cost Search:

Breadth First with weights rather than levels

```
Algorithm ucs(v)

1. Enqueue start node s on a min-priority queue Q; // distance h(s) = 0

2. While Q \neq empty do

3. v = pop(Q); // lowest path-cost node

4. If v is a goal return success;

5. operate on v (e.g., display board);

6. For each child w of v, if w is not-visited before,

7. Insert w in Q such that g(w) is the lowest; // use priority-que or heap for Q
```

```
Status of Q on BFS:
(when g is not used)

Q: 30
Q: 5, 10
Q: 10, 11, 7
Q: 11, 7, 12, G
Q: 7, 12, G, x
Q: 12, G, x, ...
Q: G, x, ...
```


Consider mouse/robot in a maze

Success

Best First Search:

Find shortest path to a goal
Similar to Djikstra's shortest path-finding algorithm (from source)

In a graph, the cost of a node may be updated via a different path

310, Success, but continue until finished

Q: 177, 278

Q: 278

278, Success, and finished all nodes

We may stop if just finding a Goal is enough, And shortest path is not needed, e.g., in typical 8-puzzle problem

Animation of Best First Search

transparent nodes below are no longer in the Priority Queue

Two properties of search algorithms

- Completeness: does it find a goal if it exists within a finite size path?
- Optimality: does it find the shortest path-distance to a goal?
 - Note: not to confuse with optimal-algorithm, as in complexity theory: lowest time in Omega Ω notation
 - Our "optimal" is optimal-search algorithm, in AI
 - "Completeness" is somewhat similar in both the context

Greedy search: A* Search

- "Heuristic" function f(n) = g(n) + h(n)
 g(n) = current distance from start to current node n
 h(n) = a guessed distance to goal
- Best-first strategy:
 - Out of all frontier nodes pick up n' that has minimum h(n')
 - Use heap

Mouse/robot can see a pole at the exit gate

Greedy Depth-first search: A* Search

- Example:
 - g(n): how far have you traveled
 - h(n): how far does the Eiffel tower appear to be!
 - Go toward smallest f = g+h
 - least f = least path to goal
 - Why least path, rather than any path?
 - Because: a larger path may be infinite!

A* Search is Best-first with f

- f is "correct", iff DFS is guided toward the goal correctly
 - "Admissible" heuristic:

```
f is \leq actual g(goal), in minimize problem
```

- Say, f(n) = 447, then there should be no path to goal <u>via</u> n costing 440
- f(n) must be lower than TRUE distance to the goal via n
 - f(n) should be an honest guess toward "true" value
 - If f(n) over-estimates, then a minimizer algo may be wrongly guided
 - Admissibility is required in order to guide correctly: for "optimality"
- Why not use true distance for f? Then, who needs a search:)
 - Heuristic \equiv You are just trying to guess!

2) Consistent Heuristic for $A^* \equiv$ Guides only toward correct direction

- For every pair of nodes n, n, such that n is a child of n on a path from start to goal node
- If, true distance $d(n, n') \ge h(n) h(n')$ (consistent)
 - Means Triangle inequality, or
 - Heuristic function increases monotonically: $h(n')+d(n,n') \ge h(n)$
- Then, Guidance is perfect \equiv Never in a wrong direction \equiv Consistent
 - NO backtrack necessary beyond "depth contour" of goal on DFS
 - [backtracking wastes time]

Note: heuristic function is f(n) = g(s to n) + h(estimated from n to goal)and, d(n, n') = actual distance in input between n and n'

Consequence of Consistent Heuristic for A*

- Consistent ≡ Guidance is perfect:
 will find a path if it exists &
 will find a shortest path
- Search "flows" like water downhill toward the goal,
 - following the best path
 - Flows perpendicular to the contours of equal f-values
- Otherwise,

// proof: book slides Ch04a sl 30

Consequence of Consistent Heuristic for A*

- If, true distance $d(n, n') \ge h(n) h(n')$
- Heuristic function increases monotonically: $h(n)+d(n,n') \ge h(n')$
- Then, Guidance is perfect ≡ Never in a wrong direction ≡ Consistent
- NO backtrack necessary on DFS [backtracking wastes time]
- Otherwise,

Say,
$$h(n) - h(n') = 300-270=30$$
, but $h(n) - h(n'') = 300-240=60$ d(n,n'') = 50, i.e. 50 not \geq 60, or heuristic is **not** consistent

Optimality of A*

- The book has a bit of confusion on finding the goal vs. finding "a" best path to the goal
- Admissibility is *necessary*, i.e., without admissibility guidance may be wrongly directed; but not *sufficient*: may get into infinite loop (same *f*)
- Consistency (f must increase) implies admissibility as well
- For consistent heuristic DFS

 No backtracking is necessary (beyond goal f_{goal})
 - Optimality of consistency = if stuck, then no finite path to goal
- HOWEVER, generic search is NP-hard problem, there may be Exponential number of nodes within the contour of the goal

Iterative deepening and $A^* = \underline{IDA^*}$

- Consistent heuristic is difficult to have in real life
- Inconsistent heuristic needs backtracking on A*
 - Just as we discussed in DFS
- A misguided search (with inconsistent heuristic) may get stuck:
 - infinite search
 - So, what to do? Answer: IDA*

Iterative deepening and $A^* = IDA^*$

- IDS + A* provides *guarantee* of finding solution: IDA* at the cost of repeated run of A*
- Do not let A* go to arbitrary depth
- IDA*: fixed depth A*,
 - increase depth (by f) incrementally and restart A*
 - Note: backtrack is allowed on A*
 but no need for that with consistent heuristic

Recursive Best-first Search

- It is still by, f = g + h
- Remember second best *f* of some ancestors
- If current f ever becomes > that (say, node s = best-f-so-far),
 - then jump back to that node s (Fig 3.27)
- Needs higher memory than DFS (more nodes in memory), but a compromise between DFS and BFS

Forgetful search: SMA*

- Often memory is the main problem with A* variations
- *Memory bounded search*:
 - Forget some past explored nodes,
 - Some similarity with depth-limited search
- SMA* optimizes memory usage
- A*, but drops worst f node in order to expand, when memory is full
 - However, the f value of the forgotten node is not deleted
 - It is kept on the parent of that node
 - When current f crosses that limit,
 it restarts search from that parent (Simplified MA*)
- SMA* is complete: goal is found always, provided start-to-goal path can fit in memory (no magic!)

Real life AI search algorithms

- Two more strategies in search algorithms are prevalent,
 - in addition to these search algorithms
- 1. Learning: Even from early AI days
 - Learn how to play better, success/failure as training
 - To learn h function, or other strategies
- 2. Pattern Database:
 - Human experts use patterns in memory!
 - IBM DeepBlue series stored and matched successful patterns
 - Google search engine evolved toward this
 - Database indexing becomes the key problem, for fast matching

Summary of informed search

- Best first search uses some f(node) to guide search
- f(n) = g(n), actual distance on the path from source
 - → search is on circular contour
- $f(n) = g(n) + h(n) \rightarrow A^*$ search
- Admissible heuristic, $h(n) \le h^*(n)$, actual optimum
 - → A* is complete, optimal, but may include suboptimal path to goal, however, it will not stop until optimal path is found
 - → A* follows narrowing contour, until C* contour but no more
- Consistent, $h(n) \le h(n_1) + d(n,n_1)$, if n is expanded before n_1
 - → Euclidean triangle inequality is preserved
 - → No suboptimal path to goal is explored
 - → Less node explored, most efficient situation
- Consistent means admissible, but not the other way round

Code A* search and run on the Romanian road problem, or your favorite search problem

Our Next Module: Local Search

MORE SEARCH ALGORITHMS

- Local search: Only achieving a *goal* is needed,
 - not the path to the goal
- Possibilities:
 - Non-determinism in state space (graph)
 - Partially-observable state space
 - On-line search (full search space is not available)

- Only goal is needed, <u>NOT the path</u> (8-puzzle)
- Sometimes: No goal is provided, only how to do "better"
- Algorithm is allowed to forget past nodes
- Search on objective function space $(f(\underline{x}), \underline{x})$
 - \underline{x} , node / state / location / coordinate, may be a vector
 - f is continuous or discrete,
 - f continuous means direction of betterment is available as *Grad(f)*
- Examples:
 - *n*-queens problem (on chess board, no queen to attack another)
 - Search space: a node -n queens placed on n columns
 - VLSI circuit layout
 - (possibly!) *n* elements connected, optimize total area
 - Or, given a fixed area, make needed connections

- <u>Hill-climbing search</u> → *A Greedy Algorithm*
- Take the best move out of all possible current moves
- 8-queens problem: minimize f = # attacks: Fig 4.3
 - Move a queen on its column, 8x7 next moves (8q, 7col to try for each)

- Representation may be important for efficiency
 - Queen positioned at (x, y)?
 - ~ 8x8=64 possibilities: 64x8 search space
 - Alternative: Queen is linked to a column (cannot have more than one queen per column) and its position is row# y,
 7 possibilities only: 7x8 search space
 - Complexity may depend on representation

- Consequence of forgetting past: may get stuck at a local minimum
 - If problem is *NP-hard*, typically exponential # local minima
- <u>Local</u> peak, ridge, local plateau, shoulder (max-problem):
 - No better move available, but..
 - There may exist better maxima after one/more valley
- Solution? Jump out of local minima, random move
 - 8-queens problem: random restart the algorithm
- How do you know your next optimum is better than the last one?
 - Why do you have to forget everything?
 - Just remember the last best optimum and update if necessary!
 - Still not guaranteed to find <<Global>> optimum, but f^{\land} converges

LOCAL SEARCH ALGORITHMS: Simulated Annealing

- *Systematic* Random move
- If improvement $delta-e \equiv d >$ threshold, then make the move
 - Otherwise, $(d \le \text{threshold})$, generate a random number r and
 - If $r \ge \exp(d/T)$, then take the "wrong" move anyway
 - Otherwise, randomly jump to a node
- T: a constant, but from a sequence of reverse sort
 - Reduces in each iteration: less and less random restarts
 - E.g., 128, 64, 32, 16, 12, 8, 6, 4, 3, 2, 1
- Concept comes from metallurgy/ condensed matter physics:
 - slowly reduce temp *T* from high to low:
 - molecules settle to lowest energy = strongest bonding

LOCAL SEARCH ALGORITHMS: Beam search

- Keep *k* best nodes in memory, and do Hill-climbing from each
 - Same time!
- Independent *k* nodes, but they are best *k* nodes so far
- Still has a tendency to converge to a local minimum, unless
 - k initial samples are "good" samples in statistical sense
- Some form of evolution is taking place!
 - With k children producing k offspring
 - Why not formalize it? → *Stochastic Beam Search*
 - Stochastic Beam Search: Choose k offspring probabilistically

LOCAL SEARCH ALGORITHMS: Genetic Algorithm: Fig. 4.6-7

- Further formalization of Stochastic Beam Search from Biology
 Genetic Algorithm
- •Keep independent *k* (even number) nodes in memory
- •Pair up, and crossover → two new nodes
 - •Needs special representation of states/nodes: see 8-q
 - Crossover position is random
- •Participation in reproduction is based on objective function *f*:
 - •Not all k nodes participate in the crossover, some are culled
 - •Higher f means higher probability of participation
- •Random mutation between iterations are allowed
 - With a very low probability (infrequently)
 - •To jump out of any local optima
- •Many types of variation of GA's exist, on each of the above choices

CONTINUOUS SPACE: LOCAL SEARCH

- Numerical optimization in Math
 - a 200 year old subject
- $(f(\underline{x}), \underline{x})$: \underline{x} is continuous, and f is continuous differentiable
- Infinite search space (not a graph search), even if bound
 - (infinite states if \underline{x} is real)
- SA is useful in continuous space, but not GA
 - GA needs discrete representation
 - Discretization of \underline{x} is some-times used in GA for continuous space
- Local search:
 - Typically, start coordinate and the resulting path is not important
- Main help comes from the existence of derivative of f:
 - Second or higher order derivatives may be needed:
 - analytic f: Cauchy-Riemann condition helps

CONTINUOUS SPACE: LOCAL SEARCH Optimization theory in Math

- Gradient provides direction of next move,
 - $\underline{\mathbf{x}} \leftarrow \underline{\mathbf{x}} + \mathbf{a} * (-\operatorname{sign_of}(\operatorname{Del}[f(\underline{\mathbf{x}})])), f \text{ is the objective function}$
 - but, how far? What value of *a*?
 - Many algorithms exist for finding *a*
 - E.g., "line search" algorithm
- Newton-Raphson:
 - 1D: $x \leftarrow x f(x)/f'(x)$, if analytic solution exists
 - nD: derived by using *gradient(f)* = 0
 - $a = Hessian, H^{-1}(f),$
 - // a partial-double derivative matrix, $H_{ij} = d^2 / dx_i dy_j$
- Conjugate gradient: faster convergence
 - better optimization for longer vision ahead
 - winds down along the valleys

CONTINUOUS SPACE: LOCAL SEARCH Constrained Optimization

- Typically, optimization needs constraints:
 - Limit the search space!
- *Linear programming*, with inequality constraints:
 - Search space is a closed polygon (lines enclosed by lines)
 - Simplex algorithm, Interior-point search algorithm
- Quadratic Programming
- General case: Machine learning
 - Support vector machine
 - Neural network
 - •

NON-DETERMINISTIC SEARCH SPACE

- Typically, discrete, or else ⊗
- If-else on nodes,
 - condition dependent
 - You do not know what will show up on a node plan ahead!
 - Example: Mars rover
- Not as bad as it seems: *And-Or tree*
- Deterministic search: 'Or' graph, chose a node or the other
- Non-deterministic search: All nodes may need to be looked into
 - And-Or tree search
 - 'And' on if-else node: take all options in search: Fig 4.10
- Non-determinism may come from failure from a move
 - Loops are possible → try and try again, until give up!

PARTIALLY OBSERVABLE SEARCH SPACE

- *Unobservable* = completely blind = unknown search space, really! ⊗
 - Not as bad as it sounds: just get the job done! Fig. 4.9
- *Partially observable*: think of a blind person with the stick!
 - Sensor driven search
- State space: beliefs on which nodes (a set) the agent may be in
 - A node does not know its own exact id
 - Discrete space, please!
- Action reduces possibilities or nodes, ...
 - Action may be exploratory, just to reduce uncertainty of possible nodes the agent is in
 - Converging (fast) to the goal node → you are sure you attained it!
 - See the vacuum cleaner example:
 - A few moves blindly → room is cleaned

"ON-LINE" SEARCH

- Off-line: Search space is known, at least static
 - Non-deterministic: at least possibilities are known or "static"
- On-line: Robots
 - Compute-act-sense-compute-.....
 - State space <u>develops</u> as-we-go:
 - not "thinking" algorithm, actually make the move, no way to un-commit
 - Not much different
- Strategy, heuristics,
 - but no set of nodes, may be finite/infinite