Two Strata Case

Ravjot Singh Kohli

Apr 2023

1 Kähler Reduction on \mathbb{C}^n

The simplest example of Kähler reduction with an isolated singular point is a linear action. Let (z^1, \ldots, z^n) be holomorphic coordinates on \mathbb{C}^n . The standard Kähler form on \mathbb{C}^n is given by,

$$(\omega_{std})_z = \sum_{k=1}^n \frac{i}{2} dz^k \wedge d\bar{z}^k \tag{1}$$

The complex structure in these coordinates is given by

$$J_{std}\left(\frac{\partial}{\partial z^{j}}\right) = i\frac{\partial}{\partial z^{j}}, \qquad J_{std}\left(\frac{\partial}{\partial \bar{z}^{j}}\right) = -i\frac{\partial}{\partial \bar{z}^{j}}$$
 (2)

The standard hermitian metric on \mathbb{C}^n is given by

$$g_{std}(z) = \omega_{std}(-, J_{std}-) = \sum_{k=1}^{n} dz^{k} \otimes d\bar{z}^{k}$$
 (3)

Recall that $\mathbb{C}^n\setminus\{0\}\simeq (0,\infty)\times S^{2n-1}$ with coordinates on the right given by polar coordinates (r,θ) . Here r=|z| and θ denotes the coordinates on S^{2n-1} . The standard metric in these coordinates takes the form

$$g_{std}(r,\theta) = dr^2 + r^2 g_{S^{2n-1}}(\theta)$$
 (4)

Now let $G \subset U(n)$ be a compact Lie group acting on \mathbb{C}^n . We assume that apart from the fixed point set, the action is free. Hence we have two strata given by the orbit types, $(\mathbb{C}^n)_G$ of orbit type (G) and $(\mathbb{C}^n)_e = (\mathbb{C}^n) \setminus (\mathbb{C}^n)_G$ of orbit type (e) where $e \in G$ is the identity element. Note that $(\mathbb{C}^n)_G$ is a linear symplectic subspace. Let $W := ((\mathbb{C}^n)_G)^{\perp}$ denote the perpendicular subspace with respect to the standard metric on \mathbb{C}^n . Then W is a symplectic subspace as well.

Lemma 1.1. The subspaces $(\mathbb{C}^n)_G$ and W are symplectic and complex subspaces of \mathbb{C}^n

Proof. $(\mathbb{C}^n)_G$ is a complex subspace is clear from the fact that if $v_1, v_2 \in (\mathbb{C}^n)_G$ then $av_1 + bv_2 \in (\mathbb{C}^n)_G$ for all $a, b \in \mathbb{C}$ since G action is via unitary matrices which are complex linear. W being the orthogonal complement w.r.t the

We can write the stratum $(\mathbb{C}^n)_e$ as the product

$$(\mathbb{C}^n)_e = (\mathbb{C}^n)_G \times (W \setminus \{0\}) \tag{5}$$

Note that the standard Riemannian metric and the symlectic form restricted to $(\mathbb{C}^n)_e$ is then compatible with respect to the above decomposition. Let (u_1, \ldots, u_m) be the coordinates for $(\mathbb{C}^n)_G$ and let (w_1, \ldots, w_l) the coordinates for W. Then for a point $z = (u, w) \in (\mathbb{C}^n)_e$,

$$g_{std}(u,w) = \sum_{k=1}^{m} du^{k} \otimes d\bar{u}^{k} + \sum_{k=1}^{l} dw^{k} \otimes d\bar{w}^{k}$$
 (6)

Let $A \in \mathfrak{g} \subset \mathfrak{u}(n)$. The vector field generated on \mathbb{C}^n by the group action, denoted $A_{\mathbb{C}^n}$, is given by

$$A_{\mathbb{C}^n}(z) = \frac{d}{dt}\Big|_{t=0} \exp(tA) \cdot z = \begin{cases} 0 & z \in (\mathbb{C}^n)_G \\ A \cdot z & z \in (\mathbb{C}^n)_e \end{cases}$$
(7)

The moment map with respect to this action is given by

$$\Phi_{std}(z)(A) = (\omega_{std})_z(A_{\mathbb{C}^n}(z), z)$$

where $A \in \mathfrak{g} \subset \mathfrak{u}(n)$ is a skew-Hermitian matrix. From (7), we see that $(\mathbb{C}^n)_G \subset \Phi_{std}^{-1}(0)$.

Lemma 1.2. The zero level set $Z_{std} := \Phi_{std}^{-1}(0)$ is a cone, i.e., $Z_{std} \simeq [0, \infty) \times L$ where $L = Z_{std} \cap S^{2n-1}$

Proof. Let $p \in Z_{std}$. Consider the scalar multiplication of \mathbb{R}^+ on \mathbb{C}^n denoted by $t \cdot p$. Then we have

$$\Phi_{std}(t \cdot p)(A) = (\omega_{std})_{t \cdot p}(A_{\mathbb{C}^n}(t \cdot p), t \cdot p)
= (\omega_{std})_p(t \cdot A_{\mathbb{C}^n}(p), t \cdot p)
= t^2 \Phi_{std}(p)(A)
= 0$$

where we have used that $(\omega_{std})_p$ is independent of the point $p \in \mathbb{C}^n$ and that scalar multiplication on \mathbb{C}^n is linear and commutes with the action of $\mathfrak{u}(n)$.

Note that $0 \in Z_{std} \subset \mathbb{C}^n$ is the only singular point and $Z_{std} \setminus \{0\}$ is a smooth manifold. The reduced space defined as the quotient $\pi: Z_{std} \to Z_{std}/G =$: $(\mathbb{C}^n)_0$ has two strata, the point $\pi(0)$ and the rest. Hence outside the point $\pi(0)$, we can talk about the symplectic form $(\omega_{std})_0$ and the Riemannian metric $(g_{std})_0$ on the manifold $(\mathbb{C}^n)_0 \setminus \{\pi(0)\}$ coming from smooth Kähler reduction.

Note that the G-action on $Z_{std} \setminus \{0\} \simeq (0, \infty) \times L$ acts only on the link L and so

$$(\mathbb{C}^n)_0 \setminus \{\pi(0)\} \simeq (0, \infty) \times (L/G) \tag{8}$$

Now combining ??, ??, and the above decomposition, we get that the metric on the reduced space can be written as

$$(g_{std})_0(r,\phi) = dr^2 + r^2 g_{L/G}(\phi)$$
(9)

where $g_{L/G}$ is the quotient metric on manifold L/G (with coordinates (ϕ)).