8.4.4 P-Values

In the above discussions, we only reported an "accept" or a "reject" decision as the conclusion of a hypothesis test. However, we can provide more information using what we call P-values. In other words, we could indicate how close the decision was. More specifically, suppose we end up rejecting H_0 at at significance level $\alpha=0.05$. Then we could ask: "How about if we require significance level $\alpha=0.01$?" Can we still reject H_0 ? More specifically, we can ask the following question:

What is the lowest significance level α that results in rejecting the null hypothesis?

The answer to the above question is called the P-value.

P-value is the lowest significance level α that results in rejecting the null hypothesis.

Intuitively, if the P-value is small, it means that the observed data is very unlikely to have occurred under H_0 , so we are more confident in rejecting the null hypothesis. How do we find P-values? Let's look at an example.

Example 8.29

You have a coin and you would like to check whether it is fair or biased. More specifically, let θ be the probability of heads, $\theta = P(H)$. Suppose that you need to choose between the following hypotheses:

 H_0 (the null hypothesis): The coin is fair, i.e., $\theta = \theta_0 = \frac{1}{2}$.

 H_1 (the alternative hypothesis): The coin is not fair, i.e., $\theta > \frac{1}{2}$.

We toss the coin 100 times and observe 60 heads.

- 1. Can we reject H_0 at significance level $\alpha = 0.05$?
- 2. Can we reject H_0 at significance level $\alpha = 0.01$?

Solution

Let X be the random variable showing the number of observed heads. In our experiment, we observed X=60. Since n=100 is relatively large, assuming H_0 is true, the random variable

$$W = \frac{X - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} = \frac{X - 50}{5}$$

is (approximately) a standard normal random variable, N(0,1). If H_0 is true, we expect X to be close to 50, while if H_1 is true, we expect X to be larger. Thus, we can suggest the following test: We choose a threshold c. If $W \le c$, we accept H_0 ; otherwise, we accept H_1 . To calculate P(type I error), we can write

$$P(\text{type I error}) = P(\text{Reject } H_0 \mid H_0)$$

= $P(W > c \mid H_0)$.

Since $W \sim N(0,1)$ under H_0 , we need to choose

$$c=z_{\alpha},$$

to ensure significance level α . In this example, we obtain

$$W = \frac{X - 50}{5} = \frac{60 - 50}{5} = 2.$$

1. If we require significance level $\alpha = 0.05$, then

$$c = z_{0.05} = 1.645$$

The above value can be obtained in MATLAB using the following command: norminv(1 – 0.05). Since we have W = 2 > 1.645, we reject H_0 , and accept H_1 .

2. If we require significance level $\alpha = 0.01$, then

$$c = z_{0.01} = 2.33$$

The above value can be obtained in MATLAB using the following command: norminv(1-0.01). Since we have $W=2 \le 2.33$, we fail to reject H_0 , so we accept H_0 .

3. P-value is the lowest significance level α that results in rejecting H_0 . Here, since W=2, we will reject H_0 if and only if c<2. Note that $z_{\alpha}=c$, thus

$$\alpha = 1 - \Phi(c)$$
.

If c=2, we obtain

$$\alpha = 1 - \Phi(2) = 0.023$$

Therefore, we reject H_0 for $\alpha > 0.023$. Thus, the P-value is equal to 0.023.

The above example suggests the following way to compute *P*-values:

Computing P-Values

Consider a hypothesis test for choosing between H_0 and H_1 . Let W be the test statistic, and w_1 be the observed value of W.

- 1. Assume H_0 is true.
- 2. The *P*-value is P(type I error) when the test threshold c is chosen to be $c = w_1$.

To see how we can use the above method, again consider **Example 8.29**. Here,

$$W = \frac{X - 50}{5},$$

which is approximately N(0,1) under H_0 . The observed value of W is

$$w_1 = \frac{60 - 50}{5} = 2.$$

Thus,

$$P$$
 - value = P (type I error when $c=2$)
= $P(W>2)$
= $1 - \Phi(2) = 0.023$