Arhetip

Andraž Sitar

Kazalo

1	Uvod	4
2	Naloge	•
3	Povzetek	

1 Uvod

Teorija ter izpeljave enačb.

2 Naloge

Opombe in razjasnitve pri meritvah. Začetek in konec vnosa in obdelave podatkov označimo z \pkt{eqsb} in \pkt{eqse}

Imena spremenljivk so na levi (vključno z enotami), njihova definicija pa na desni strani enačaja. Uvoženih spremenljivk privzeto ni v končni datoteki.

$$l_{primer} = (100 \pm 1) \cdot 10^{-9} \text{ m} = (100 \pm 1) \cdot 10^{-9} \text{ m}$$

$$a_1 = 2 \cdot a = \begin{pmatrix} \begin{bmatrix} 1, 8 \\ 3 \\ \vdots (4) \end{bmatrix} \pm 0, 2 \end{pmatrix} \cdot 10^{-3} \text{ m}$$

$$N = \mathbb{N}^{12} \cdot 10^3 = \begin{bmatrix} 1 \\ 2 \\ \vdots (10) \end{bmatrix} \cdot 10^3$$

Kot vrednost opazimo vektor, ki predstavlja zaporedne meritve, število ob tropičju pa predstavlja število meritev, ki niso prikazane.

Uvožene spremenljivke pa lahko vidimo v tej tabeli.

$l_{primer} [10^{-9} \text{ m}]$	$a [10^{-6} \text{ m}]$	b[s]	$a_{sest} [10^{-6}]$	$N[10^3]$	$M [10^3]$
100 ± 1	800 ± 100	1 ± 0.5	800 ± 100	1	5.342
	1000 ± 100	2 ± 0.5	1000 ± 100	2	0.378
	1000 ± 100	3 ± 0.5	1000 ± 100	3	92.784
	2000 ± 100	4 ± 0.5	2000 ± 100	4	4.828
	3000 ± 100	5 ± 0.5	3000 ± 100	5	3.799
	3000 ± 100	6 ± 0.5	3000 ± 100	6	894839.347
			1000 ± 200	7	
			3000 ± 200	8	
			3000 ± 200	9	
			5000 ± 200	10	
			6000 ± 200	11	
			6000 ± 200	12	

Bolj nazorno je meritve ter izračune prikazati na grafu.

Slika 1: Graf \boldsymbol{a} v odvisnosti od \boldsymbol{b} ter dodaten opis

Grafu odvisnosti spremenljivk lahko spreminjamo nastavitve, nekatere izmed njih so že uporabljene.

Lahko narišemo tudi histogram.

Slika 2: Verjetnostna porazdelitev $\boldsymbol{r}_1,\boldsymbol{r}_2,\boldsymbol{r}_3,$ ter dodaten opis

Sledijo enačbe, izpeljane v uvodu.

$$a_{sest} = a \oplus a_{1} = \begin{pmatrix} \begin{bmatrix} 900 \\ 1000 \\ \vdots (10) \end{bmatrix} \pm \begin{bmatrix} 100 \\ 100 \\ \vdots (10) \end{bmatrix} \cdot 10^{-6}$$

$$K_{izm} = \frac{d(a)}{db} = (510 \pm 30) \cdot 10^{-6} \frac{m}{s}$$

$$r_{1,avg} = \overline{r_{1}} = (10 \pm 10) \cdot 10^{-3}$$

$$s_{1} = \sigma_{r_{1}} = (300 \pm 10) \cdot 10^{-3}$$

$$r_{2,avg} = \overline{r_{2}} = 2 \pm 0,02$$

$$s_{2} = \sigma_{r_{2}} = (510 \pm 20) \cdot 10^{-3}$$

$$r_{3,avg} = \overline{r_{3}} = 4 \pm 0,04$$

$$s_{3} = \sigma_{r_{3}} = (810 \pm 30) \cdot 10^{-3}$$

Vidimo, da so pri izračunih enote količin ustrezne. Program preveri različne kombinacije enot ter sešteje potence posameznih enot v ulomku (ali produktu) ter izbere tisto, katere vsota potenc je najmanjša. Zato morda izbere neustrezen, krajši zapis enote. Sestavljene enote lahko definiramo v "configu".

3 Povzetek

Kratek povzetek poteka meritev, primerjava rezultatov s kolegi po Svetu, npr. $K_{izm} = (510 \pm 30) \cdot 10^{-6} \frac{\text{m}}{\text{s}}$, kar vidimo na sliki (1) (ime oznake najdemo v izhodnem dokumentu), ter komentar rezultatov.