CS 561/571: Categorization: Similarity, VSM, K-NN etc.

Text Categorization Applications

- Web pages
 - Recommending
 - Yahoo-like classification
- Newsgroup/Blog Messages
 - Recommending
 - spam filtering
 - Sentiment analysis for marketing
- News articles
 - Personalized newspaper
- Email messages
 - Routing
 - Prioritizing
 - Folderizing
 - spam filtering
 - Advertising on Gmail

Textual Similarity Metrics

- Measuring similarity of two texts: a well-studied problem
- Standard metrics:
 - bag of words model of a document that ignores word order and syntactic structure
- May involve removing common "stop words" and stemming to reduce words to their root form
- *Vector-space model* from Information Retrieval (IR) is the standard approach
- Other metrics (e.g. *edit-distance*) are also used

The Vector-Space Model

- Assume *t* distinct terms remain after *preprocessing*; call them *index terms or the vocabulary*
- These "orthogonal" terms form a vector space Dimension = t = |vocabulary|
- Each term, i, in a document or query, j, is given a real-valued weight, w_{ii} .
- Both documents and queries are expressed as t-dimensional vectors:

$$d_j = (w_{1j}, w_{2j}, ..., w_{tj})$$

Graphic Representation

 T_3

Example:

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$D_2 = 3T_1 + 7T_2 + T_3$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$D_2 = 3T_1 + 7T_2 + T_3$$

 T_2

- Is D_1 or D_2 more similar to Q?
- How to measure the degree of similarity? Distance? Angle? Projection?

Document Collection

- A collection of *n* documents can be represented in the vector space model by a term-document matrix
- An entry in the matrix corresponds to the "weight" of a term in the document; zero means the term has no significance in the document or it simply doesn't exist in the document

```
 \begin{bmatrix} T_1 & T_2 & \dots & T_t \\ D_1 & w_{11} & w_{21} & \dots & w_{t1} \\ D_2 & w_{12} & w_{22} & \dots & w_{t2} \\ \vdots & \vdots & \vdots & & \vdots \\ D_n & w_{1n} & w_{2n} & \dots & w_{tn} \end{bmatrix}
```

Term Weights: Term Frequency

• More frequent terms in a document are more important, i.e. more indicative of the topic

$$f_{ij}$$
 = frequency of term i in document j

• May want to normalize *term frequency* (*tf*) dividing by the frequency of the most common term in the document:

$$tf_{ij} = f_{ij} / max_i \{f_{ij}\}$$

Term Weights: Inverse Document Frequency

• Terms that appear in many *different* documents are *less* indicative of overall topic

```
df_i = document frequency of term i

= number of documents containing term i

idf_i = inverse document frequency of term i,

= \log_2 (N/df_i)

(N: total number of documents)
```

- An indication of a term's discrimination power
- Log used to dampen the effect relative to tf

TF-IDF Weighting

• A typical combined term importance indicator is *tf-idf weighting*:

$$w_{ij} = tf_{ij} idf_i = tf_{ij} \log_2 (N/df_i)$$

- A term occurring frequently in the document but rarely in the rest of the collection is given high weight
- Many ways exist for determining term weights
- Experimentally, *tf-idf* has been found to work well

Computing TF-IDF -- An Example

Given a document containing terms with given frequencies:

Assume collection contains 10,000 documents and document frequencies of these terms are:

Then:

```
A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3
```

B:
$$tf = 2/3$$
; $idf = log(10000/1300) = 2.0$; $tf-idf = 1.3$

C:
$$tf = 1/3$$
; $idf = log(10000/250) = 3.7$; $tf-idf = 1.2$

Similarity Measure

• A similarity measure is a function that computes the *degree of similarity* between two vectors

- Using a similarity measure between the query and each document:
 - It is possible to rank the retrieved documents in the order of presumed relevance
 - It is possible to enforce a certain threshold so that the size of the retrieved set can be controlled

Similarity Measure - Inner Product

• Similarity between vectors for the document d_j and query q can be computed as the vector inner product:

$$\operatorname{sim}(\boldsymbol{d}_{j},\boldsymbol{q}) = \boldsymbol{d}_{j} \cdot \boldsymbol{q} = \sum_{i=1}^{t} w_{ij} \cdot w_{iq}$$

where w_{ij} is the weight of term i in document j and w_{iq} is the weight of term i in the query

- *For binary vectors*: inner product is the number of matched query terms in the document (size of intersection)
- For weighted term vectors: sum of the products of the weights of the matched terms

Properties of Inner Product

The inner product is unbounded

• Favors long documents with a large number of unique terms

 Measures how many terms matched but not how many terms are not matched

Inner Product -- Examples

Binary: retrieval database computer management database computer management

- D = 1, 1, 0, 1, 0 Size of vector = size of vocabulary = 7
- Q = 1, 0, 1, 0, 0, 1, 1

0 means corresponding term not found in document or query

$$sim(D, Q) = 3$$

Weighted:

$$D_1 = 2T_1 + 3T_2 + 5T_3$$
 $D_2 = 3T_1 + 7T_2 + 1T_3$
 $Q = 0T_1 + 0T_2 + 2T_3$

$$sim(D_1, Q) = 2*0 + 3*0 + 5*2 = 10$$

$$sim(D_2, Q) = 3*0 + 7*0 + 1*2 = 2$$

Cosine Similarity Measure

- Cosine similarity measures the cosine of the angle between two vectors
- Inner product normalized by the vector lengths

lengths
$$\operatorname{CosSim}(d_{j}, q) = \frac{\vec{d}_{j} \cdot \vec{q}}{\left|\vec{d}_{j}\right| \cdot \left|\vec{q}\right|} = \frac{\sum_{i=1}^{t} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} w_{ij}^{2} \cdot \sum_{i=1}^{t} w_{iq}^{2}}} \frac{D_{1}}{\theta_{2}}$$

$$D_1 = 2T_1 + 3T_2 + 5T_3 \quad \text{CosSim}(D_1, Q) = 10 / \sqrt{(4+9+25)(0+0+4)} = 0.81$$

$$D_2 = 3T_1 + 7T_2 + 1T_3 \quad \text{CosSim}(D_2, Q) = 2 / \sqrt{(9+49+1)(0+0+4)} = 0.13$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

 D_1 is 6 times better than D_2 using cosine similarity but only 5 times better using inner product.

K Nearest Neighbor for Text

Training:

For each training example $\langle x, c(x) \rangle \in D$ Compute the corresponding TF-IDF vector, \mathbf{d}_x , for document x

Test instance y:

Compute TF-IDF vector **d** for document y

For each $\langle x, c(x) \rangle \in D$

Let $s_x = \cos \operatorname{Sim}(\mathbf{d}, \mathbf{d}_x)$

Sort examples, x, in D by decreasing value of s_x

Let N be the first k examples in D (get most similar neighbors)

Return the majority class of examples in N

Illustration of 3 Nearest Neighbor for Text

Nearest Neighbor Time Complexity

- Training Time: $O(|D| L_d)$ to compose TF-IDF vectors
- Testing Time: $O(L_t + |D|/|V_t|)$ to compare to all training vectors
 - Assume lengths of \mathbf{d}_x vectors are computed and stored during training, allowing $\cos \operatorname{Sim}(\mathbf{d}, \mathbf{d}_x)$ to be computed in time proportional to the number of non-zero entries in \mathbf{d} (i.e. $/V_t/$)
- Testing time can be high for large training sets

Nearest Neighbor with Inverted Index

- Determining *k* nearest neighbors is same as determining the *k* best retrievals using the test document as a query to a database of training documents
- An index that points from words to documents that contain them allows more rapid retrieval of similar documents

- After stop-words removal
 - remaining words are rare
 - an inverted index narrows attention to a relatively small number of documents that share meaningful vocabulary with the test document

Nearest Neighbor with Inverted Index

• Testing Time: $O(B/V_t/)$, where B is the average number of training documents in which a test-document word appears

- Overall classification: $O(L_t + B/V_t/)$
 - Typically $B \ll |D|$

Relevance Feedback in IR

- After initial retrieval results are presented, allow the user to provide feedback on the relevance of one or more of the retrieved documents
- Use this feedback information to reformulate the query
- Produce new results based on reformulated query
- Allows more interactive, multi-pass process

Relevance Feedback Architecture

Using Relevance Feedback (Rocchio)

- Relevance feedback methods can be adapted for text categorization
 - relevance feedback can be viewed as 2-class classification
 - Relevant vs. nonrelevant documents
- Use standard TF/IDF weighted vectors to represent text documents
- For training documents in each category, compute a *prototype* vector by summing the vectors of the training documents in the category
 - Prototype = centroid of members of class
- Assign test documents to the category with the closest prototype vector based on cosine similarity

Definition of centroid

$$\frac{\mathbf{r}}{\mu(c)} = \frac{1}{|D_c|} \sum_{d \in D_c} \mathbf{r}(d)$$

• Where D_c is the set of all documents that belong to class c and v(d) is the vector space representation of d

• Note that centroid will in general not be a unit vector even when the inputs are unit vectors

Rocchio Text Categorization Algorithm (Training)

```
Assume the set of categories is \{c_1, c_2, ... c_n\}
For i from 1 to n let \mathbf{p}_i = <0, 0, ..., 0> (init. prototype vectors)
For each training example < x, c(x) > \in D
Let \mathbf{d} be the frequency normalized TF/IDF term vector for doc x
Let i = j: (c_j = c(x))
(sum all the document vectors in c_i to get \mathbf{p}_i)
Let \mathbf{p}_i = \mathbf{p}_i + \mathbf{d}
```

Rocchio Text Categorization Algorithm (Test)

```
Given test document x
Let d be the TF/IDF weighted term vector for x
Let m = -2 (init. maximum cosSim)
For i from 1 to n:
   (compute similarity to prototype vector)
   Let s = \cos \operatorname{Sim}(\mathbf{d}, \mathbf{p}_i)
   if s > m
       let m = s
       let r = c_i (update most similar class prototype)
Return class r
```

Illustration of Rocchio Text Categorization

Rocchio Time Complexity

- Note: The time to add two sparse vectors is proportional to minimum number of non-zero entries in the two vectors
- Training Time: $O(|D|(L_d + |V_d|)) = O(|D| L_d)$ where L_d is the average length of a document in D and V_d is the average vocabulary size for a document in D
- Test Time: $O(L_t + |C|/V_t)$ where L_t is the average length of a test document and $|V_t|$ is the average vocabulary size for a test document
 - Assumes lengths of \mathbf{p}_i vectors are computed and stored during training, allowing $\cos \operatorname{Sim}(\mathbf{d}, \mathbf{p}_i)$ to be computed in time proportional to the number of non-zero entries in \mathbf{d} (i.e. $/V_t/$)

Conclusions

- Many important applications of classification to text
- Requires an approach that works well with large, sparse features vectors, since typically each word is a feature and most words are rare
 - Naïve Bayes
 - kNN with cosine similarity
 - SVMs