1 Hauptklausur

1.1 Aufgabe (4 Punkte)

Sei $f: M \to N$ eine glatte Abbildung glatter geschlossener Mannigfaltigkeiten der Dimension n. W sei eine glatte kompakte (n+1)-dimensionale Mannigfaltigkeit mit Rand $\partial W = M.$ F sei eine glatte Fortsetzung von f auf W. $p \in N$ sei regulär für F und f.

Zeigen Sie:

$$\deg_p f \equiv 0 \mod 2$$

1.2 Aufgabe (4 Punkte)

Sei $f:M\to\mathbb{R}^n$ eine glatte Abbildung. $N\subset\mathbb{R}^n$ sei eine glatte Untermannigfaltigkeit. $\varepsilon>0$ sei beliebig.

Zeigen Sie: Es gibt ein $v \in \mathbb{R}^n$ mit $||v|| < \varepsilon$, sodass die Abbildung

$$g(x) := f(x) + v$$

transversal zu N steht.

Hinweis: Benutzen Sie die Abbildung

$$F: M \times N \longrightarrow \mathbb{R}^n$$

 $(x,y) \longmapsto y - f(x)$

Lösungsskizze? F hat laute dem Satz von Sard einen regulären Wert v mit $||v|| < \varepsilon$. Für die Transversalität müssen wir das Differential von g für alle $g(x) \in N$ bestimmen. Tatsächlich gilt durch einen Paralleltransport

$$g_*(T_xM) \cong f_*(T_xM)$$

und

$$F_* = \mathrm{Id}_{N_*} - f_*$$

Da F regulär für v ist, gilt somit bei der Stelle $(x,y) \in M \times N$

$$T_v\mathbb{R}^n = F_*(T_xM\times T_yN) = \operatorname{Id}_N^*(T_yN) + f_*(T_xM) = T_yN + f_*(T_xM) \cong T_yN + g_*(T_xM)$$

1.3 Aufgabe (4 Punkte)

Sei $f: S^3 \to S^2$ glatt. $\omega \in \Omega^2(S^2)$ sei eine glatte 2-Form.

1.3.1 Teilaufgabe (1 Punkt)

Zeigen Sie: Es gibt ein $\beta \in \Omega^1(S^3)$ mit

$$\mathrm{d}\beta = f^*(\omega)$$

1.3.2 Teilaufgabe (3 Punkte)

Zeigen Sie: Das Integral $\int_{S^3} f^*(\omega) \wedge \beta$ ist unabhängig von der Wahl von $\beta \in \Omega^1(S^3)$ mit $d\beta = f^*(\omega)$.

1.4 Aufgabe (4 Punkte)

Es bezeichne T^2 den zweidimensionalen Torus. $p \in T^2$ sei ein beliebiger Punkt.

Berechnen Sie: Die Kohomologiegruppen $H^k(T^2-\{p\})$ der zweidimensionalen Mannigfaltigkeit $T^2-\{p\}$ für k=0,1,2.

1.5 Aufgabe (4 Punkte)

1.5.1 Teilaufgabe (1 Punkt)

Geben sie Definition von Immersion und Submersion wieder.

1.5.2 Teilaufgabe (1 Punkt)

Geben sie Definition von Parallelisierbar wieder.

1.5.3 Teilaufgabe (1 Punkt)

Ist S^2 parallelisierbar? Warum / Warum nicht?

1.5.4 Teilaufgabe (1 Punkt)

Ist S^3 parallelisierbar? Warum / Warum nicht?