bestanden / nicht bestanden

Mathematisches Institut der Albert-Ludwigs-Universität Freiburg

Klausur Lineare Algebra I

30.3.2010

Name:						
Vorname:	:					
Matrikeln	ummer:					
Bachelor:		□ Ja	□ Nein			
Studienfa	ch:		· ————————			
anzufertigen. Choice Aufga Sitzplatz sind unternimmt, w	Neben Papier ur ben müssen alle nicht erlaubt. W vird von der Kla	id Schreibgerä Antworten aus er gegen diese usur (und auch	n. Bitte überprüfe ter, blauer oder g t sind keinerlei I sführlich und nac v Vorschriften ven n der Nachklausu enntnisnahme di	rüner Tinte (kei Hilfsmittel zugel chvollziehbar be rstößt, oder sons er) ausgeschlosse	n Bleistift, kei lassen. Außer egründet werd st einen Täusc en.	in Rotstift) bei Multiple
Erklärung: Ich bitte darun	n, mein Klausur	ergebnis unter	dem unten ange	gehenen Codow		ebsite der 1
Codewort:						
Unterschrift:						
Erreichte Pu	nkte:					
1	2	3	4	5	6	Summe

Note:

1. Teil: Multiple-Choice

1. Bei den folgenden Fragen ist jeweils genau eine Antwort richtig; diese ist anzukreuzen bzw. einzusetzen. Beweise oder Begründungen sind hier nicht erforderlich. Für eine richtige Antwort bekommen Sie jeweils 2 Punkte; für eine falsche Antwort be $kommen\ Sie\ dieselbe\ Punktzahl\ abgezogen.$ Sollte sich dadurch für diese Aufgabe insgesamt eine negative Punktzahl ergeben, wird die ganze Aufgabe mit 0 Punkten gewertet. (a) Es sei V ein k-Vektorraum und $U \subset V$ ein Untervektorraum. Was kann man über das Komplement $V \setminus U$ sagen? $\square \ V \setminus U$ ist stets ein Untervektorraum von V. \Box Es gibt sowohl Fälle, in denen $V\setminus U$ ein Untervektorraum von Vist, als auch Fälle, in denen dies nicht zutrifft. $\hfill\Box\ V\setminus U$ ist niemals ein Untervektorraum von V.(b) Es sei V ein endlich-dimensionaler Vektorraum über einem Körper k und U,WUntervektorräume von $\,V.\,$ Welche der folgenden Aussagen ist korrekt? $\Box \ \dim(U+W) = \dim U + \dim W$ $\Box \ \dim(U+W) = \dim U + \dim W - \dim(U \cap W)$ $\Box \ \dim(U+W) = \dim U + \dim W + \dim(U \cap W)$ (c) Welche Dimension hat der Vektorraum der linearen Abbildungen $\mathbb{R}^5 \to \mathbb{R}^2$? (Bitte einsetzen.) (d) Es sei k ein Körper. Ist die Menge der invertierbaren $(n \times n)$ -Matrizen eine Untergruppe von $(M(n \times n, k), +)$? \Box Ja □ Nein (e) Es sei V ein k-Vektorraum, $f:V\to V$ eine invertierbare lineare Abbildung und λ ein Eigenwert von f. Dann ist λ Eigenwert von f^{-1} $\frac{1}{\lambda}$ Eigenwert von f^{-1} $-\lambda$ Eigenwert von f^{-1} Es läßt sich keine allgemeine Aussage treffen.

(f) Betrachte die folgenden Elemente σ und τ von S_5 : $\sigma = (312)(54)$ und $\tau =$ (5 1 2 3 4). Sind σ und τ konjugiert in S_5 ? □ Ja □ Nein (g) Es sei $A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in M(3 \times 3, \mathbb{R})$. Welche Dimension hat der Eigenraum von A zum Eigenwert 3? \Box 0 \Box 1 \square 2 (h) Es seien V und W k-Vektorräume und $f:V\to W$ eine lineare Abbildung. Welche der folgenden Bedingungen ist zur Injektivität von f äquivalent? \square Im(f) = W \square ker $(f) = \{0\}$ \square Im $(f) = \{0\}$ (i) Es sei V ein k-Vektorraum und es seien $f,g:V\to V$ zwei lineare Abbildungen. Es existiere ein $\varphi \in GL(V)$ mit $f = \varphi g \varphi^{-1}$. Dann haben f und g stets □ die gleichen Eigenwerte. \Box die gleichen Eigenvektoren. □ die gleichen Eigenräume. (j) Es sei $f: \mathbb{R}^n \to \mathbb{R}^m$ linear und $f^*: (\mathbb{R}^m)^* \to (\mathbb{R}^n)^*$ die duale Abbildung. Welche der folgenden Aussagen ist korrekt? $\Box \ f$ ist injektiv $\Rightarrow n < m$ $\Box \ f^*$ ist injektiv $\Rightarrow n \leq m$

2. Teil: Rechenaufgaben

2. Es sei

$$A := \begin{pmatrix} 0 & 1 & 0 & -3 \\ 1 & 2 & 0 & 1 \\ -1 & 3 & -1 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix} \in M(4 \times 4, \mathbb{R}).$$

- (a) (8 Punkte) Berechnen Sie det A. Erläutern Sie hierbei Ihre Rechnung.
- (b) (8 Punkte) Es sei $b:=\begin{pmatrix}1\\0\\-1\\0\end{pmatrix}$. Lösen Sie das Gleichungssystem Ax=b, falls dies möglich ist.

3. Es sei

$$A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix} \in M(3 \times 3, \mathbb{R}).$$

(a) (9 Punkte) Zeigen Sie:

$$\det(A - 2 \cdot E_3) = 0,$$

wobei E_3 die (3×3) -Einheitsmatrix bezeichne. Berechnen Sie zudem eine Basis des Eigenraumes von A zum Eigenwert 2.

(b) (9 Punkte) Es sei $B = gAg^{-1}$ für ein $g \in GL_3(\mathbb{R}) = \{\text{invertierbare } (3 \times 3) - \text{Matrizen} \}$. Berechnen Sie (mit Erläuterung) das charakteristische Polynom $P_B(t)$.

3. Teil: Definitionen und Sätze

- 4. Es seien V, W, V_1, V_2, V_3 endlich-dimensionale Vektorräume über einem Körper k.
 - (a) Vervollständigen Sie die folgenden Definitionen der jeweils unterstrichenen Begriffe:(je 2 Punkte)
 - (i) "Es sei G eine Gruppe, M eine Menge. Eine Abbildung $\varphi:G\times M\to M$ heißt Gruppenwirkung, falls …"
 - (ii) "Die zu einer linearen Abbildung $F:V\to W$ duale Abbildung ist ..."
 - (iii) "Eine endliche Teilmenge $\{v_1,\dots,v_n\}$ von V heißt linear unabhängig, falls …"
 - (b) (4 Punkte) Es seien $\alpha: V_1 \to V_2$ und $\beta: V_2 \to V_3$ lineare Abbildungen. Eine Sequenz $0 \to V_1 \xrightarrow{\alpha} V_2 \xrightarrow{\beta} V_3 \to 0$ heißt exakt, falls ...
 - (c) (4 Punkte) Formulieren Sie den Basisergänzungssatz.

4. Teil: Kleine Beweise

- 5. Es seien V ein endlich-dimensionaler k-Vektorraum und $U \subset V$ ein Untervektorraum. Mit $\pi: V \to V/U$ bezeichnen wir die kanonische Abbildung in den Quotientenvektorraum und mit $\imath: U \to V$ die Inklusionsabbildung von U nach V.
 - (a) (6 Punkte) Beweisen Sie: die Sequenz

$$0 \to U \xrightarrow{\imath} V \xrightarrow{\pi} V/U \to 0$$

ist exakt.

(b) (6 Punkte) Es seien V und W endlich-dimensionale Vektorräume über einem Körper k. Es sei $f:V\to W$ eine surjektive lineare Abbildung. Beweisen Sie: es existiert eine lineare Abbildung $g:W\to V$ so dass $f\circ g=Id_W$ gilt.

- (c) Es sei $f:V\to V$ ein Endomorphismus mit der Eigenschaft, dass $f\circ f=f.$ Beweisen Sie:
 - (i) (4 Punkte) Für alle $v \in Im(f)$ gilt: v = f(v).
 - (ii) (4 Punkte) $Kerf \cap Imf = \{0\}.$
 - (iii) (3 Punkte) Kerf + Imf = V. (Hinweis: Dimensionsformeln)
 - (iv) (2 Punkte) Es existiert eine Basis B von V, so dass

$$M_B^B(f) = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix},$$

wobei E die Einheitsmatrix geeigneter Größe, und 0 Null-Matrizen geeigneter Größe bezeichnen.

6. Es sei V ein endlich-dimensionaler k-Vektorraum. Es sei $\{v_1, \ldots, v_n\}$ eine Basis von V und $\{\varphi_1, \ldots, \varphi_n\}$ sei die duale Basis von V^* . Zeigen Sie, dass für alle $v \in V$ und für alle $\varphi \in V^*$ gilt:

(a)
$$v = \sum_{j=1}^{n} \varphi_j(v)v_j$$
 sowie

(b)
$$\varphi = \sum_{j=1}^{n} \varphi(v_j) \varphi_j$$
.