

Object Proposal

Siyang Li

Advisor: C-C Jay Kuo

Outline

- Problem definition
- Motivation
- History
- Challenges
- Evaluation
- Popular approaches
- Recent work
- Future research

Problem definition

- What is object proposal?
 - Find a small set of regions that are highly likely to contain objects
 - The proposed regions are category-independent usually, but category-dependent proposals are possible

Problem definition

- Proposals as bounding boxes
- Proposals as segmentation masks

- Observations
 - All object of interest share common visual properties that distinguish them from the background
 - Human have the ability to localize objects without recognizing them

In the following images, you can find the strange instrument as an object without knowing what it exactly is.

- Problems with traditional detectors
 - Sliding windows paradigm
 - About a million windows to evaluate per image

location

- Object proposal serves as a pre-processing step
 - Do not propose obvious false window
 - Enable more complex classifier such as CNN detectors

History

Challenges

Size variation

Large objects

Challenges

Illumination change

Challenges

Occlusion

Person, laptop, bed

- A good proposal approach should
 - Achieve high recall (detection rate) given required localization accuracy
 - Generate a small number of proposals (~1000)
 - Obtain a high computation efficiency
 - Generalize across object categories

- Recall (detection rate)
 - Overlap $IoU(A,B) = \frac{A \cap B}{A \cup B}$ (Localization accuracy)
 - $\mathbf{7} \quad \text{Best overlap} \quad b(O_k) = \max_P \{IoU(O_k, P)\}$

- Accuracy of localization
 - **Recall vs. alpha** with a fixed number of proposals

- The number of proposals
 - **Recall**@fixed alpha vs. #proposals

- Computation efficiency
 - # seconds needed for an image (secs/image)
 - # images can be processed in one second (FPS)

- Generalization across objects
 - Split the dataset: use half of categories for training, the other half for testing
 - Train on PASCAL and test on COCO

Popular approaches

- Bounding box based
 - **ℬ** BING (CVPR'14)
 - **➣** Edge Boxes (ECCV'14)
- Segmentation based
 - Selective Search (IJCV'13)
 - MCG (CVPR'14)

Edge Boxes

- Edge detection (Structured Edge detector)
- Edge grouping in to edge pieces
- Score a window based on the pattern of edge
 - How many pieces are in the box?
 - How many pieces are straddling the box?

Edge Boxes

Edge Boxes

- **₹** Fast (~0.4secs/image)
- Biased towards larger boxes

Selective Search

- Generate superpixels on image of multiple scales
 - **7** FH segmentation algorithm [1]
 - Group connected pixels with similar color

[1] Efficient Graph-Based Image Segmentation P. Felzenszwalb, D. Huttenlocher International Journal of Computer Vision, Vol. 59, No. 2, September 2004

Selective Search

- Generate superpixels on image of multiple scales
- Group similar superpixels to generate proposals
 - Similarity measured on low-level features

Summary

Approaches	Speed (secs/image)
BING	0.2
Edge Boxes	0.25
Selective Search	~10
MCG	34.3

Summary

- Bounding box based approaches
 - Faster
- Segmentation based approaches
 - More accurate localization

Recent work: add-ons

- Research on improve existing approaches
 - MTSE (CVPR'15)
 - **♂** Contour box (ICCV'15)

Multi-Thresholding Straddling Expansion (MTSE)

- Superpixel generation
- Expand bounding boxes to include straddling superpixels

Multi-Thresholding Straddling Expansion (MTSE)

- Edge detection (SE detector)
- Find the **optimal contour** in a box
 - Completeness -- penalty for opening
 - → Tightness -- distance to the border

Goal: find a closed path that maximizes (sum of value / path length)

- The optimal contour problem is **NP-hard** in Cartesian coordinates
- Solution: dynamic programming can give a good approximation in polar coordinates

Goal: find path from top to down that maximize the sum of value Easily solved by dynamic programming

A box with high score

Not tight enough

Open contour

Boxes with low score

Recent work: CNN and object proposal

- Use CNN features for proposal
 - Deep Proposal (ICCV'15)
 - Novotny et al. (ICCV'15)
- Use CNN to re-rank proposals
 - Deep Box (ICCV'15)
- Share CNN features for both proposal and detection
 - **₹ Faster R-CNN** (NIPS'15)

CNN brief review

AlexNet (NIPS'12): Image classification

CNN and object proposal

₹ Earliest CNN detector: R-CNN (CVPR'14)

R-CNN: Regions with CNN features

warped region

1. Input image

2. Extract region proposals (~2k)

4. Classify regions

tvmonitor? no.

aeroplane? no.

person? yes.

CNN and object proposal

- R-CNN uses object proposals to reduce computation load
 - CNN-based object detector is much more expensive than traditional detectors
 - Applying CNN-based detector on all possible regions (e.g. sliding window) is computationally impossible
- R-CNN largely encourages research in object proposal since it is important for CNN-based detectors
- Later, people leverage the power of CNN to generate object proposals

Deep Proposal

- Train a simple classifier on CNN features (plus non-CNN features)
 - CNN features are extracted from a pre-trained model

Deep Proposal

- Reversely cascade conv layers
 - High conv layers have summary of a region
 - Low conv layers have location details

Deep Proposal

Reduce the number of candidates

Deep Box

Re-rank proposals from non-CNN approaches

Deep Box

- Higher recall with less proposals
- Tuned for specific proposal approaches

Faster R-CNN

- Share conv layers between proposal network and detection network
 - RPN is tuned for specific object categories and detection classifiers

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks". NIPS 2015. Szegedy, Christian, et al. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014).

Faster R-CNN

Region Proposal Network: a module to adjust bounding boxes based on anchor boxes

Faster R-CNN

Highly reduces the number of candidates needed for detection because of fine-tuning

Future research

- Generalization across dataset
 - The size of dataset grows; fully-labeled dataset not possible
 - It is extremely hard to label <u>all objects</u> in an image

Future research

- Combine with CNN detectors
 - What property is the most important for CNN detectors?
 - Which one is better? Bounding box better or segmentation?
 - Does CNN need really accurate localization?

Future research

- Computation efficiency
 - Consider advantages of GPU