DRL Agent For Car Racing Game

Qidi Fang, Tian Huang, Jlajin Huo

what problem did we solving?

- Applied DRL in Car Racing GameGym Box2D Car Racing
- Compared the performances and time costs of Double DQN, Actor-Critic and PPO

Target of the game: Keep on track

Related Work

Car Racing Game:

- A3C Jaritz et al.
- SAC https://github.com/trackmania-rl/tmrl
- Combined state-of-the-art, model-free, deep reinforcement learning algorithms in Gran Turismo

OpenAl gym Car Racing:

- PPO https://notanymike.github.io/Solving-CarRacing/
- DQN https://github.com/andywu0913/OpenAI-GYM-CarRacing-DQN
- PID
 https://medium.com/@kartha.kishan/solving-openai-carracing-v0-using-image-processing-5e1005ee0cb

Environment

Action Space & State Space

Action Space	Box([-1. 0. 0.], 1.0, (3,), float32)	
Observation Space	Box(0, 255, (96, 96, 3), uint8)	
import	gymnasium.make("CarRacing-v2")	

Reward Function

The reward is -0.1 every frame and +1000/N for every track tile visited, where N is the total number of tiles visited in the track. For example, if you have finished in 732 frames, your reward is 1000 - 0.1*732 = 926.8 points.

Wrapped Environment

State Space

Reward Function

 $\text{reward} = \begin{cases} -0.1 & \text{for each frame,} \\ +1.0 & \text{for each tile passed in a counterclockwise direction,} \\ -5.0 & \text{for each frame of running off the track.} \end{cases}$

Action Space

Index	Discrete action	Continuous action
0	Accelerate hard	[0.0, 0.5, 0.0]
1	Accelerate oft	[0.0, 1.0, 0.0]
2	Turn left hard & Accelerate soft	[-1.0, 0.5, 0.0]
3	Turn left hard & Brake soft	[-1.0, 0.0, 0.5]
4	Turn left soft & Accelerate soft	[-0.5, 0.5, 0.0]
5	Turn left soft & Brake soft	[-0.5, 0.0, 0.5]
6	Turn right hard & Accelerate soft	[1.0, 0.5, 0.0]
7	Turn right hard & Brake soft	[1.0, 0.0, 0.5]
8	Turn right soft & Accelerate soft	[0.5, 0.5, 0.0]
9	Turn right soft & Brake soft	[0.5, 0.0, 0.5]
10	Turn left hard	[-1.0, 0.0, 0.0]
11	Turn left soft	[-0.5, 0.0, 0.0]
12	Turn right hard	[1.0, 0.0, 0]
13	Turn right soft	[0.5, 0, 0.0]

Table 1: Mapping of discrete actions to continuous action space.

Double DQN

Actor-Critic Algorithm

policy network (actor)

value network (critic)

PPO-Clip Algorithm

$$\operatorname{clip}\left(rac{\pi_{ heta}(a|s)}{\pi_{ heta_k}(a|s)}, 1-\epsilon, 1+\epsilon
ight)A^{\pi_{ heta_k}}(s,a)$$

figure 1

figure 2

Experiments

Hyper Parameter:

```
actor_lr = 1e-3

critic_lr = 1e-3

gamma = 0.98

epsilon = 0.1

batch_size = 64

buffer = 10000

target_update = 10/10000 steps
```

https://github.com/NoahF1205/CS138-Final-Project

Result 1: Training Time

Result 2: Total reward per episode

Agent Performance

