From Blockchains to Nash

Pavel Hubáček

Chethan Kamath

Krzysztof Pietrzak

Alon Rosen

Guy Rothblum

Arka Rai Choudhuri

Part 1: Blockchains

Verifiable Delay Function(s)

Verifiable Lottery via Randomness Beacon

Randomness Beacon [Rabin'83]

Ideal service that periodically publishes random values that cannot be predicted or manipulated.

- Blocks produced periodically.
- Solution has some amount of unpredictability.

- 1) Blocks produced periodically.
- 2) Solution has some amount of unpredictability.

- 1) Blocks produced periodically.
- 2) Solution has some amount of unpredictability.

- 1) Blocks produced periodically.
- 2) Solution has some amount of unpredictability.

Lottery ticket

Consider proof of work (PoW) blockchains.

- Blocks produced periodically.
- 2) Solution has some amount of unpredictability.

Lottery ticket

Consider proof of work (PoW) blockchains.

- Blocks produced periodically.
- 2) Solution has some amount of unpredictability.

Extractor($\boxed{}$) $\stackrel{?}{=}$ 12345

Lottery ticket

Consider proof of work (PoW) blockchains.

confirmed blocks

Can we force Extract to take a long time to compute?

$$f(x) = x^{2^T} \bmod N$$

 $N=p \cdot q$ for primes p and q

$$x, T, N$$
 $\xrightarrow{x \to x^2 \to x^4 \to x^8 \dots \to x^{2^T}} \pmod{N}$

RSW Assumption [Rivest-Shamir-Wagner'96]

 $=p \cdot q$ for primes p and q

Input:
$$N = \mathbf{p} \cdot \mathbf{q}$$
, $x \in \mathbb{Z}_N^*$, T

Goal: Find $x^{2^T} \mod N$

$$\underbrace{x \longrightarrow x^2 \longrightarrow x^4 \longrightarrow x^8 \cdots \longrightarrow x^{2^T}}_{T \text{ squarings}} \pmod{N}$$

Any algorithm that computes $x^{2^T} \mod N$ requires sequential time not much less than T.

$$f(x) = x^{2^T} \bmod N$$

 $N=p \cdot q$ for primes p and q

$$x, T, N$$
 $\xrightarrow{x \to x^2 \to x^4 \to x^8 \cdots \to x^{2^T}} \pmod{N}$

$$\chi, T, N, p, q \longrightarrow \phi(N) = (p-1)(q-1) \qquad \underbrace{z = 2^T \pmod{\phi(N)}, \ x^z \pmod{N}}_{\text{2 exponentiations}}$$

$$f(x) = x^{2^T} \bmod N$$

 $N=p \cdot q$ for primes p and q

$$\underbrace{x, T, N} \xrightarrow{x \to x^2 \to x^4 \to x^8 \cdots \to x^{2^T}} \pmod{N}$$

$$\xrightarrow{T \text{ squarings}} \pmod{N}$$

$$\chi, T, N, p, q \longrightarrow \phi(N) = (p-1)(q-1) \qquad \underbrace{z = 2^T \pmod{\phi(N)}, \ x^z \pmod{N}}_{2 \text{ exponentiations}}$$

Efficient public verification?

Verifiable Delay Functions [Boneh-Bonneau-Bünz-

Fisch'18]

public parameters pp x, T, pp T sequential steps y, π proof

Verifiable Delay Functions [Boneh-Bonneau-Bünz-

Fisch'18]

Verifiable Delay Functions [Boneh-Bonneau-Bünz-

Fisch'18]

- 1) Blocks produced periodically.
- 2) Solution has some amount of unpredictability.

- Blocks produced periodically.
- Solution has some amount of unpredictability.

VDF Application: Resource Efficient Blockchains

Annualized Total Footprints

https://digiconomist.net/bitcoin-energy-consumption

VDF Application: Resource Efficient Blockchains

Annualized Total Footprints

https://digiconomist.net/bitcoin-energy-consumption

[Wesolowski'19,Pietrzak'19]

public parameters N

$$x, T, N \longrightarrow y = x^{2^T} \bmod N$$

[Wesolowski'19,Pietrzak'19]

public parameters N

$$x, T, N \longrightarrow y = x^{2^T} \bmod N$$

proof

[Wesolowski'19,Pietrzak'19]

[Wesolowski'19,Pietrzak'19]

[Wesolowski'19,Pietrzak'19]

VDF from Repeated Squaring

[Wesolowski'19,Pietrzak'19]

 $(N, x, T = 2^t, y)$

$$\mu_1 = x_1^{2^{\frac{T}{2}}}$$

 μ_1

$$\mu_1 = x_1^{2^{\frac{T}{2}}}$$

$$x_2 = x_1^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot y_1$$

$$x_2 = x_1^{r_1} \cdot \mu_1$$

 $r_1 \leftarrow \mathbb{Z}_{2^{\lambda}}$

$$y_2 = \mu_1^{r_1} \cdot y_1$$

$$\mu_1 = x_1^{2^{\frac{T}{2}}}$$

$$x_2 = x_1^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot y_1$$

$$x_2 = x_1^{r_1} \cdot \mu_1$$

 $r_1 \leftarrow \mathbb{Z}_{2^{\lambda}}$

$$y_2 = \mu_1^{r_1} \cdot y_1$$

$$\mu_1 = x_1^{2^{\frac{T}{2}}}$$

$$x_2 = x_1^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot y_1$$

 r_2

Costs of the Pietrzak VDF

Time to compute y + proof

O(T)

Size of the proof

$$\pi = (N, x, T, y, \mu_1, \cdots, \mu_t)$$

 $O(\operatorname{polylog}(T))$

Time to verify Proof

 $O(\log(T))$ exponentiations - $O(\operatorname{polylog}(T))$

[Ephraim-Freitag-Komargodski-Pass'20]

[Ephraim-Freitag-Komargodski-Pass'20]

\$5 Million prize to compute y

[Ephraim-Freitag-Komargodski-Pass'20]

\$5 Million prize to compute y $x, T, \mathbf{pp} \longrightarrow y, \pi$ proof

[Ephraim-Freitag-Komargodski-Pass'20]

[Ephraim-Freitag-Komargodski-Pass'20]

How does Alice transfer a state that Bob is able to verify?

 $x \xrightarrow{1} x^{2^{1}} x^{2^{2}} x^{2^{2}} x^{2^{2}} x^{2^{3}} x^{2^{3}} x^{2^{4}} x^{2^{4}} x^{2^{4}} x^{2^{5}} x^{2^{5}} x^{2^{5}} x^{2^{6}} x^{2^{6}} x^{2^{6}} x^{2^{7}} x^{2^{7}} x^{2^{8}}$

$$x^{2^7} \xrightarrow{1} x$$

For T squarings, number of proofs is O(T)!

Merge proofs into a single proof in $poly(\lambda)$ time

Merge proofs into a single proof in $poly(\lambda)$ time

Merge proofs into a single proof in $poly(\lambda)$ time

Merge proofs into a single proof in poly(λ) time $x \xrightarrow{4} x^{2^4}$ $x \xrightarrow{4} x^{2^4}$ $x \xrightarrow{7} x^{2^2}$ $x \xrightarrow{7} x^{2^1}$ $x^{2^1} \xrightarrow{7} x^{2^2}$ $x^{2^2} \xrightarrow{7} x^{2^3}$ $x^{2^2} \xrightarrow{7} x^{2^4}$ $x^{2^2} \xrightarrow{7} x^{2^4}$ $x^{2^2} \xrightarrow{7} x^{2^4}$

For T squarings, number of proofs is O(1)!

[C-Hubáček-Kamth-Pietrzak-Rosen-Rothblum'19]

$$\mu_1 = x^{2^1}$$

$$x_2 = x^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot x^{2^2}$$

$$\mu_1 = x^{2^1}$$

$$x_2 = x^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot x^{2^2}$$

$$\pi = (N, \mathbf{x}, 2, x^{2^2}, \mu_1)$$

$$\mu_1 = x^{2^1}$$

$$x_2 = x^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot x^{2^2}$$

$$\mu_1 = x^{2^1}$$

$$x_2 = x^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot x^{2^2}$$

$$\pi = (N, x, 2, x^{2^2}, \mu_1)$$

$$\mu_1 = x^{2^1}$$

$$x_2 = x^{r_1} \cdot \mu_1$$

$$y_2 = \mu_1^{r_1} \cdot x^{2^2}$$

$$\pi = (N, x, 2, x^{2^2}, \mu_1)$$

$$x_{2} = x^{r_{1}} \cdot \mu_{1}$$

$$y_{2} = \mu_{1}^{r_{1}} \cdot x^{2^{2}}$$

 μ_1

$$\mu_1 = x^{2^2}$$

$$x_2 = x^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot x^{2^4}$$

$$\mu_2 = x_2^{2^1}$$

$$x_3 = x_2^{r_2} \cdot \mu_2 y_3 = \mu_2^{r_2} \cdot y_2$$

 $(N, x, 4, x^{2^4})$

$$\mu_1$$

 r_1

 μ_2

 r_2

$$\mu_1 = x^{2^2}$$

$$x_2 = x^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot x^{2^4}$$

$$\mu_2 = x_2^{2^1}$$

$$x_3 = x_2^{r_2} \cdot \mu_2 y_3 = \mu_2^{r_2} \cdot y_2$$

 $(N, x, 4, x^{2^2})$

 μ_1

 r_1

 μ_2

 r_2

 $\pi = (N, x, 4, x^{2^4}, \mu_1, \mu_2)$

$$\mu_1 = x^{2^2}$$

$$x_2 = x^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot x^{2^4}$$

$$\mu_2 = x_2^{2^1}$$

$$x_3 = x_2^{r_2} \cdot \mu_2 y_3 = \mu_2^{r_2} \cdot y_2$$

 $(N, x, 4, x^{2^2})$

 r_2

$$\pi = (N, x, 4, x^{2^4}, \mu_1, \mu_2)$$

Merge two proof for T/2 squarings in O(T/2) time.

$$\mu_1 = x^{2^2}$$

$$x_2 = x^{r_1} \cdot \mu_1 y_2 = \mu_1^{r_1} \cdot x^{2^4}$$

$$\mu_2 = x_2^{2^1}$$

$$x_3 = x_2^{r_2} \cdot \mu_2 y_3 = \mu_2^{r_2} \cdot y_2$$

 $(N, x, 4, x^{2^2})$

 r_1

 μ_1

$$r_2$$

$$\pi = (N, x, 4, x^{2^4}, \mu_1, \mu_2)$$

Merged and discarded

Haven't reached yet

Merged and discarded

the term $x \xrightarrow{5} x^{2^4}$ $x \xrightarrow{2} x^{2^4}$ $x^{2^2} \xrightarrow{2} x^{2^4}$ $x^{2^2} \xrightarrow{2} x^{2^4}$ $x^{2^2} \xrightarrow{3} x^{2^4}$

Verifying i-th state:

- 1. Determine which nodes are active in i-th step of depth first traversal.
- 2. Verify proofs in each active node.

Depth first traversal of the ternary tree

Putting it together: cVDF

Compute $x \xrightarrow{T} x^{2^T}$ in a continuous verifiable manner

Compute root of ternary tree

Prover cost

$$P(T) = 3P(T/2)$$

Proof size

 $O(\operatorname{polylog}(T))$

Part 2: Nash Equilibrium

Sink of Verifiable Line (SVL)

Game Theory and Nash Equilibrium

	Left	Right
Left	1 \ -1	-1\1
Right	-1 \ 1	1 \ -1

[Nash'51]: A (mixed) equilibrium always exists

How hard is finding a Nash Equilibrium?

	Left	Right
Left	1 \ -1	-1\1
Right	-1 \ 1	1 \ -1

How hard is finding a Nash Equilibrium?

	Left	Right
Left	1 \ -1	-1\1
Right	-1 \ 1	1 \ -1

Complexity of Computing a Nash Equilibrium

Computing Nash unlikely to be FNP-hard

Look to Cryptography for hardness

Known from strong assumptions of obfuscation

[Bitansky-Paneth-Rosen'15]

[Garg-Pandey-Srinivasan'16]

[Komorgodski-Segev'17]

Complexity of Computing a Nash Equilibrium

Known from strong assumptions of obfuscation

[Bitansky-Paneth-Rosen'15]

[Garg-Pandey-Srinivasan'16]

[Komorgodski-Segev'17]

Sink of Verifiable Line (SVL)

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

Goal: Find (T, σ_T) that verifies for an exponential T

Internal State of cVDF

Verifying i-th state:

- 1. Determine which nodes are active in i-th step of depth first traversal.
- 2. Verify proofs in each active node.

Depth first traversal of the ternary tree

Internal State of cVDF

Depth first traversal of the ternary tree

- 1. Set T to be exponential in λ .
- 2. Verification time $polylog(T) = poly(\lambda)$.
- 3. Hard for $poly(\lambda)$ time adversary to compute $x^{2^T} \mod N$.

Hard instance of SVL from hardness of repeated squaring (and Fiat-Shamir heuristic).

Verifying i-th state:

- 1. Determine which nodes are active in i-th step of depth first traversal.
- 2. Verify proofs in each active node.

Open Problems

VDFs from different assumptions?

VDFs from supersingular isogenies

Instantiating the Fiat-Shamir Heuristic in VDFs?

[Lombardi-Vaikuntanathan'19]

Other applications of continuous VDFs?

Hardness of Nash based on Factoring or other assumptions?

Thank you. Questions?

Arka Rai Choudhuri achoud@cs.jhu.edu