Date		
Date		
Date	•	

NO.1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

MATHEMATICS CLASSROOM TEST

2022-23

Under the guidance of K. Venkanna

MATHEMATICS

COMPLEX ANALYSIS CLASS TEST

Date: 27	lan. 2022

Time: 03:00 Hours Maximum Marks: 250

INSTRUCTIONS

- 1. Write your Name & Name of the Test Centre in the appropriate space provided on the right side.
- Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- 3. Candidates should attempt All Question.
- 4. The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 5. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 6. All questions carry equal marks.
- 7. All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- 8. All rough work should be done in the space provided and scored out finally.
- 9. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

READ	INSTR	UCT	IONS	ON THE
LEFT	SIDE	ΟF	THIS	PAGE
CAREI	FULLY			

CAREFULLI
Name:
Mobile No.
Test Centre
Email.:
I have read all the instructions and sha abide by them
Signature of the Candidate
I have verified the information filled by th candidate above
Signature of the invigilator

2 of 38

INDEX TABLE

Question	Page No.	Max. Marks	Marks Obtained
1.		10	
2.		12	
3.		15	
4.		15	
5.		13	
6.		15	
7.		20	
8.		10	
9.		10	
10.		16	
11.		10	
12.		10	
13.		16	
14.		07	
15.		13	
16.		10	
17.		15	
18.		15	
19.		18	

Total Marks

1. Prove that $u(x, y) = 4xy - x^3 + 3xy^2$ is a harmonic function. Determine its harmonic Conjugate, hence find corresponding analytic function f(z) interms of z. **[10]**

2.	Prove that the function f defined by $f(z) = \begin{cases} 1 & \text{of } z \\ 1 & \text{of } z \end{cases}$	$\frac{z^3}{\overline{z}^2}$	for z≠(
		0	for $z = 0$

Satisfies the C-R equation at the origin, yet it is not differentiable there.

[12]

3. Use canchy's theorem and /or Cauchy integralformula

(i)
$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$
,

(ii)
$$\oint_C \frac{e^{2z}}{(z+1)^4} dz$$
 where C is the circle $|z| = 3$.

(iii)
$$\oint_C \frac{e^{-z}}{z+1} dz$$
, where C is the circle $|z| = \frac{1}{2}$

	-	. 4 .
4.	Prove	that

$$\int_0^{2\pi} \frac{\cos^2 3\theta}{1 - 2p\cos 2\theta + p^2} d\theta = \pi \frac{1 - p + p^2}{1 - p}, 0 [15]$$

5	Let $f(z) = \frac{1}{2}$	$a_0 + a_1 z + \dots + a_{n-1} z^{n-1}, b_n \neq$	Λ
J.	Let $f(2) = 1$	$b_0 + b_1 z + \dots + b_n z^n$, $b_n \neq 0$	U.

Assume that the zeroes of the denominator are simple. Show that the sum of the residues of f(z) at its poles is equal to $\frac{a_{n-1}}{b_n}$. [13]

		[12-30]	
6.	Use the method of	contour integration to prove that	
	d heta	$2\pi a$	
	$\int_{0}^{\pi} \frac{1}{(a+b\cos\theta+c\sin\theta)^{2}} dt$	$\frac{1}{3} = \frac{2\pi a}{\sqrt[3]{a^2 - b^2 - c^2}}, a^2 > b^2 + c^2$	[15]
	,	·	

- 7. (i) Let f = u + iv be an analytic function on the unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$. Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$ at all points of D.
 - (ii) Determine all entire functions f(z) such that 0 is a removable singularity of $f\left(\frac{1}{z}\right)$. [20]

8. Prove that the function f(z) = u + iv, where

$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}, z \neq 0; f(0) = 0$$

satisfies Cauchy-Riemann equations at the origin, but the derivative of f at z=0 does not exist. [10]

9.	Prove that if $b e^{a+1} < 1$ where a and b are positive and real, then the function
	$z^n e^{-a} - b e^z$ has n zeroes in the unit circle. [10]
	11

Show that an isolated singular point z_0 of a function f(z) is a pole of order m if and only if f(z) can be written in the form $f(z) = \frac{\phi(z)}{(z-z_0)^m}$ where $\phi(z)$ is analytic and non-zero at z_0 . Moreover $\underset{z=z_0}{\operatorname{Res}} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$ if $m \ge 1$.

11. Expand the function $f(z) = \frac{2z^2 + 11z}{(z+1)(z+4)}$ in a Laurent's series valid for $2 < z < 3$. [10]

13.	(i) Suppose $f(z)$ is analytic function on a domain D in \angle and satisfies the equation Im $f(z) = (\text{Re } f(z))^2$, $Z \in D$. Show that $f(z)$ is a constant in D.
	(ii) Evaluate the integral $\int_{C} \text{Re}(z^2) dz$ from 0 to 2 + 4i along the curve C where C is a
	parabola $y = x^2$. [16]

14.	Using Cauchy's Integral formula, evaluate the integral	
	$\oint_C \frac{dz}{(z^2+4)^2} \text{ where } C: z-i = 2.$	[07]
	$\left(\mathbf{z}^{2}+4\right)$	

15.	If the function $f(z)$ is analytic and one valued in $ z-a < \mathbf{R}$, prove that for $0 < r < \mathbf{R}$	
	$f'(a) = \frac{1}{\pi r} \int_0^{2\pi} P(\theta) e^{-i\theta} d\theta$, where P(\theta) real part of (a + r e ^{i\theta}).	[13]

[28-38]			
6.	Let $c:[0, 1] \to \mathbb{C}$ be curve, where $c(t) = e^{4\pi i t}$, $0 \le t \le 1$. Evaluate the con	tour	
	integral $\int_{c} \frac{dz}{2z^2 - 5z + 2}$	[10]	

17.	Find the Laurent series expansion of $f(z) = \frac{z^2 - z + 1}{z(z^2 - 3z + 2)}$ in the powers of $(z + z)$	+ 1) in
	the region $ z+1 >3$.	[15]

18.	Let f be an entire function whose Taylor series expansion with centre $z = 0$ has
	infinitely many terms. Show that $z = 0$ is an essential singularity of $f\left(\frac{1}{z}\right)$. [15]

19. Using contour integration, evaluate the integral $\int_{-\infty}^{\infty} \frac{\sin x dx}{x(x^2 + a^2)}$, $a > 0$.	[18]

No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS (FROM 2008 TO 2019)

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152