Econ 6190: Econometrics I Confidence Interval

Chen Qiu

Cornell Economics

2024 Fall

Contents

- Finding Confidence Interval by Pivotal Quantities
- Finding Confidence Interval by Test Inversion
- Evaluation of Confidence Interval

Reference

• Hansen Ch. 14

3

1. Motivation

Interval estimation

- We've seen point estimation of a parameter θ : report a single value as a guess of θ
- In this note, we consider interval estimation as a tool to report estimation uncertainty
- **Definition**: Given sample $\mathbf{X} = \{X_1, X_2 \dots X_n\}$, an interval estimator of a real-valued parameter θ is an interval $C = C(\mathbf{X}) = [L(\mathbf{X}), U(\mathbf{X})]$
 - L(X) and U(X) are functions of X so they are random
 - For $\mathbf{X} = \mathbf{x}$, $[L(\mathbf{x}), U(\mathbf{x})]$ are realized values of the interval
 - If $L(X) = -\infty$, we have one-sided interval $(-\infty, U(X)]$
 - If $L(X) = \infty$, we have one-sided interval $[L(X), +\infty)$

Example: interval estimator for normal mean

- Consider a random sample $\{X_1, X_2, X_3, X_4\}$ from $N(\mu, 1)$
- An interval estimator for μ could be $[\bar{X}-1,\bar{X}+1]$: we assert that μ is in this interval
- Reporting $[\bar{X}-1,\bar{X}+1]$ is less precise than report \bar{X}
- Why do we want to report $[\bar{X} 1, \bar{X} + 1]$ instead of \bar{X} ?
 - By giving up some precision, we gain some confidence that our assertion is true

- Note $P\{\bar{X} = \mu\} = 0$
- However

$$P\{\bar{X} - 1 \le \mu \le \bar{X} + 1\}$$

$$= P\{-1 \le \bar{X} - \mu \le 1\}$$

$$= P\left\{-2 \le \frac{\bar{X} - \mu}{\sqrt{\frac{1}{4}}} \le -2\right\}$$

$$= P\{-2 \le Z \le -2\}$$

$$= 0.9544$$

$$\left(\frac{\bar{X} - \mu}{\sqrt{\frac{1}{4}}} \text{ is standard normal}\right)$$

• We have 95% chance of **covering** μ

7

Coverage probability and confidence interval

• **Definition**: For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of parameter θ , the **coverage probability** of $[L(\mathbf{X}), U(\mathbf{X})]$ is the probability that the random interval contains the true θ , denoted by

$$P\{L(\mathbf{X}) \le \theta \le U(\mathbf{X})\}, \text{ or } P\{\theta \in [L(\mathbf{X}), U(\mathbf{X})]\}$$

- The probability statements refers to X and depends on its distribution F
- Equivalent to $P\{L(\mathbf{X}) \leq \theta, U(\mathbf{X}) \geq \theta\}$
- **Definition**: A $1-\alpha$ confidence interval for θ is an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ which has coverage probability $1-\alpha$

8

Asymptotic confidence interval

- When the finite sample distribution is unknown we can approximate the coverage probability by its asymptotic limit
- The asymptotic coverage probability of interval estimator [L(X), U(X)] is

$$\liminf_{n\to\infty} P\{\theta\in [L(\mathbf{X}),U(\mathbf{X})]\}$$

• An $1-\alpha$ asymptotic confidence interval for θ is an interval estimator $[L(\mathbf{X}),U(\mathbf{X})]$ with asymptotic coverage probability $1-\alpha$

ç

2. Finding Confidence Interval by Pivotal Quantities

Pivotal quantity

- **Definition**: A random variable $Q(\mathbf{X}, \theta) = Q(X_1, X_2, \dots X_n, \theta)$ is a pivotal quantity (or pivot) if the distribution of $Q(\mathbf{X}, \theta)$ is independent of parameters θ . That is, if $\mathbf{X} \sim F(\mathbf{x}, \theta)$, then $Q(\mathbf{X}, \theta)$ has the same distribution for all values of θ
- Example
 - Let $\{X_1, X_2, \dots X_n\}$ be a random sample from $\mathsf{N}(\mu, \sigma^2)$
 - Then the t statistic

$$\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}$$

is a pivot since it follows a t_{n-1} distribution and does not depend on μ or σ^2

Once we have a pivot, finding confidence interval is easy

Example: confidence interval for normal mean

• Again let $\{X_1, X_2, \dots X_n\}$ be a random sample from $N(\mu, \sigma^2)$. Then

$$\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}\sim t_{n-1}$$

- Specify a coverage probability 1α
- Let $q_{1-\alpha/2}$ be the $(1-\alpha/2)$ -th quantile of t_{n-1} . Then

$$\begin{split} P\left\{-q_{1-\alpha/2} \leq \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \leq q_{1-\alpha/2}\right\} & = 1 - \alpha \\ \Rightarrow P\left\{\bar{X} - q_{1-\alpha/2} \frac{s}{\sqrt{n}} \leq \mu \leq q_{1-\alpha/2} \frac{s}{\sqrt{n}} + \bar{X}\right\} & = 1 - \alpha \end{split}$$

• Thus a $1-\alpha$ confidence interval for μ is

$$[ar{X}-q_{1-lpha/2}rac{s}{\sqrt{n}},ar{X}+q_{1-lpha/2}rac{s}{\sqrt{n}}]$$

Example: confidence interval for normal variance

• Still let $\{X_1, X_2, \dots X_n\}$ be a random sample from $\mathbb{N}(\mu, \sigma^2)$. Then

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

- Specify a coverage probability 1α
- Let $c_{\alpha/2}, c_{1-\alpha/2}$ be the $\alpha/2$ -th and $(1-\alpha/2)$ -th quantile of χ^2_{n-1} . Then

$$P\left\{c_{\alpha/2} \le \frac{(n-1)s^2}{\sigma^2} \le c_{1-\alpha/2}\right\} = 1 - \alpha$$

$$\Rightarrow P\left\{\frac{(n-1)s^2}{c_{1-\alpha/2}} \le \sigma^2 \le \frac{(n-1)s^2}{c_{\alpha/2}}\right\} = 1 - \alpha$$

• Thus a $1-\alpha$ confidence interval for σ^2 is $\left[\frac{(n-1)s^2}{c_{1-\alpha/2}}, \frac{(n-1)s^2}{c_{\alpha/2}}\right]$

Example: asymptotic confidence intervals for non-normal mean

- Let $\{X_1, X_2, \dots X_n\}$ be a random sample from F with mean μ and variance σ^2
- By central limit theorem, as $n \to \infty$

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \stackrel{d}{\to} \mathsf{N}(0,1)$$

- ullet By weak law of large numbers, s is a consistent estimator of σ
- Hence by continuous mapping theorem

$$\frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \stackrel{d}{\to} \mathsf{N}(0,1)$$

and is an asymptotic pivot

- Specify a coverage probability $1-\alpha$
- Let $z_{1-\alpha/2}$ be the $(1-\alpha/2)$ -th quantile of $\mathrm{N}(0,1)$. Then as $n \to \infty$

$$\begin{split} P\left\{-z_{1-\alpha/2} &\leq \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \leq z_{1-\alpha/2}\right\} & \to 1 - \alpha \\ \Rightarrow P\left\{\bar{X} - z_{1-\alpha/2} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X} + z_{1-\alpha/2} \frac{s}{\sqrt{n}}\right\} & \to 1 - \alpha \end{split}$$

• Thus an **asymptotic** $1-\alpha$ confidence interval for μ is

$$[\bar{X}-z_{1-\alpha/2}\frac{s}{\sqrt{n}},\bar{X}+z_{1-\alpha/2}\frac{s}{\sqrt{n}}]$$

Example: asymptotic confidence intervals for estimated parameters

• Let $\hat{\theta}$ be an estimator of scalar valued parameter θ satisfying

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{d}{\rightarrow} N(0, V)$$

as $n \to \infty$ and \hat{V} is a consistent estimator of V

- Standard error for $\hat{ heta}$ is given by $s(\hat{ heta}) = \sqrt{rac{\hat{V}}{n}}$
- By continuous mapping theorem

$$\frac{\hat{\theta} - \theta}{s(\hat{\theta})} \stackrel{d}{\to} \mathsf{N}(0,1)$$

implying $[\hat{\theta} - z_{1-\alpha/2}s(\hat{\theta}), \hat{\theta} + z_{1-\alpha/2}s(\hat{\theta})]$ is an asymptotic $1-\alpha$ confidence interval

3. Finding Confidence Interval by Test Inversion

Test inversion

- A general way of getting confidence interval is by test inversion
- For a parameter $\theta \in \Theta$, consider testing

$$\mathbb{H}_0: \theta = \theta_0, \ \mathbb{H}_1: \theta \neq \theta_0$$

• Suppose we have a test statistic $T(\theta_0)$ and a critical value c such that the decision rule

accept
$$\mathbb{H}_0$$
 if $T(\theta_0) \leq c$ reject \mathbb{H}_0 if $T(\theta_0) > c$

has size α

Define the set

$$C = \{\theta \in \Theta : T(\theta) \le c\}$$

as the set of θ not rejected by the test

• This test inversion set *C* is a valid choice of confidence interval

Theorem

• If $T(\theta_0)$ has exact size α for all $\theta_0 \in \Theta$, then

$$C = \{\theta \in \Theta : T(\theta) \le c\}$$

is a $1-\alpha$ confidence interval for θ

- If $T(\theta_0)$ has asymptotic size α for all $\theta_0 \in \Theta$, then C is a asymptotic 1α confidence interval for θ
- **Proof**: Let the true value be θ_0 . Then

$$P\{\theta_0 \in C\} = P\{T(\theta_0) \le c\}$$
$$= 1 - P\{T(\theta_0) > c\}$$
$$= 1 - \alpha$$

where the last equality holds since $T(\theta_0)$ has exact size α If $T(\theta)$ has asymptotic size α , then applying limit to the second line yields the conclusion

Example: asymptotic confidence intervals for estimated parameters

• Again if $\frac{\hat{\theta}-\theta}{s(\hat{\theta})} \stackrel{d}{\to} N(0,1)$, then an asymptotic size α test for

$$\mathbb{H}_0: \theta = \theta_0, \ \mathbb{H}_1: \theta \neq \theta_0$$

is

accept
$$\mathbb{H}_0$$
 if $|T(\theta_0)| \leq z_{1-\alpha/2}$
reject \mathbb{H}_0 if $|T(\theta_0)| > z_{1-\alpha/2}$

where

$$T(\theta_0) = \frac{\hat{ heta} - heta_0}{s(\hat{ heta})}$$

and $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -th quantile of N(0,1)

The test inversion confidence interval is

$$C = \{\theta \in \Theta : |T(\theta)| \le z_{1-\alpha/2}\}$$

$$= \{\theta \in \Theta : -z_{1-\alpha/2} \le \frac{\hat{\theta} - \theta}{s(\hat{\theta})} \le z_{1-\alpha/2}\}$$

$$= \{\theta \in \Theta : \hat{\theta} - z_{1-\alpha/2}s(\hat{\theta}) \le \theta \le \hat{\theta} + z_{1-\alpha/2}s(\hat{\theta})\}$$

which is the same as what we derived in the previous section

• In fact, all the confidence intervals derived by using pivotal quantities rely on test inversion

Example: inverting Likelihood Ratio Test

• Consider a parametric model $f(x|\theta)$ with log likelihood $\ell_n(\theta) = \sum_{i=1}^n \log f(X_i|\theta)$

• The likelihood ratio statistic for testing $\mathbb{H}_0: \theta = \theta_0, \ \mathbb{H}_1: \theta \neq \theta_0$ is

$$LR_n(\theta_0) = 2(\max_{\theta \in \Theta} \ell_n(\theta) - \ell_n(\theta_0))$$

• Since $LR_n(\theta_0) \stackrel{d}{\to} \chi^2_{\dim(\theta)}$, an asymptotic size α test is

accept
$$\mathbb{H}_0$$
 if $LR_n(\theta_0) \leq q_{1-\alpha}$ reject \mathbb{H}_0 if $LR_n(\theta_0) > q_{1-\alpha}$

where $q_{1-\alpha}$ is the $1-\alpha$ -th quantile of $\chi^2_{\mathsf{dim}(\theta)}$

• Hence a test inversion $1-\alpha$ confidence interval is

$$\{\theta \in \Theta : LR_n(\theta) \leq q_{1-\alpha}\}$$

3. Evaluation of confidence interval

Length and coverage trade off

- For the same problem, we can find many different confidence intervals
- Naturally we want small length and large coverage probability
- We can always have large coverage probability by increasing the length of the interval
 - $(-\infty, +\infty)$ has coverage probability 1 but not useful
- One method is to minimize length subject to a specified coverage probability

Example: optimizing interval length for normal mean

• Let $\{X_1, X_2, \dots X_n\}$ be a random sample from $N(\mu, \sigma^2)$ with known σ^2 . Then

$$Z = rac{ar{X} - \mu}{rac{\sigma}{\sqrt{p}}} \sim \mathsf{N}(0,1)$$

is a pivot

Any number a and b such that

$$P\left\{a \le \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le b\right\} = 1 - \alpha$$

gives $1 - \alpha$ confidence interval

$$\left\{\mu: \bar{X} - b\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} - a\frac{\sigma}{\sqrt{n}}\right\}$$

- The length of the confidence interval is $(b-a)\frac{\sigma}{\sqrt{n}}$
- The constrained optimization problem we can consider is

$$\min(b-a) \ s.t. \ P\{a \le Z \le b\} = 1-\alpha$$

Three 90% normal confidence intervals

а	Ь	Probability	b — а
-1.34	2.33	$P\{Z < a\} = .09, P\{Z > b\} = .01$	3.67
-1.44	1.96	$P{Z < a} = .075, P{Z > b} = .025$	3.40
-1.65	1.65	$P\{Z < a\} = .05, P\{Z > b\} = .05$	3.30

• In this case, splitting α equally in the two tails results the shortest interval

Theorem

- Definition: A pdf f(x) is unimodal if there exists x^* such that f(x) is nondecreasing for $x \le x^*$ and f(x) is non increasing for $x \ge x^*$
- Let f(x) be a unimodal pdf. If [a, b] satisfies

 - 2 f(a) = f(b) > 0
 - 3 $a \le x^* \le b$ where x^* is a mode of f(x)

Then [a, b] is the shortest among all intervals satisfy $\mathbf{0}$