February 19, 2020

1 Topic 2.1 - Motion

Formula booklet: four SUVAT equations

velocity

v = u + at

displacement

$$s = ut + \frac{1}{2}at^2$$

timeless

$$v^2 = u^2 + 2as$$

average displacement

$$s = \frac{(v+u)t}{2}$$

1.0.1 Question 1

A fly travels along the x-axis. His starting point is x = -8.0m and his ending point is x = -16m. His flight lasts 2.0 seconds. What is his velocity?

Given - $x_i = -8.0m$ - $x_f = -16m$ - t = 2s

Formula -
$$\Delta x = x_f - x_i$$
 - $v = \frac{\Delta x}{t}$

Solution -
$$\Delta x = x_f - x_i = -16 - (-8) = -8m$$
 - $v = \frac{\Delta x}{t} = \frac{-8}{2} = -4\frac{m}{s}$

Answer: The velocity of the fly is $-4\frac{m}{s}$.

```
[1]: x_i = -8.0  # initial point in m
x_f = -16  # final point in m
t = 2  # time to travel the distance in s

x = x_f - x_i # displacement in m
v = x / t  # velocity
print('The velocity of the fly is', v, 'm/s.')
```

The velocity of the fly is -4.0 m/s.

1.0.2 Question 2

A car traveling at $48ms^{-1}$ is brought to a stop in 3.0 seconds. What is its acceleration?

Given -
$$u = 48 \frac{m}{s}$$
 - $t = 3s$ - $v = 0$

Formula velocity - v = u + at

Solution - Since v=0 the formula rearranges: -u=at or $a=-\frac{u}{t}=-\frac{48}{3}=-16\frac{m}{s^2}$

Answer: The acceleration of the car is $-16\frac{m}{s^2}$.

```
[2]: v = 0  # final velocity - implicit - stop or zero
u = 48  # initial velocity
t = 3  # time to stop

a = -u / t  # acceleration is change in velocity over time
print('The acceleration of the car is',a,'m/s²')
```

The acceleration of the car is -16.0 m/s^2

[]: