Tutorial on anoint package

FDA PACES Workshop, June 25, 2013

Stephanie Kovalchik Research Fellow, National Cancer Institute

anoint, for ANalysis Of INTeractions, is a package written in the R language, which provides a suite of tools for investigating heterogeneity of treatment effect in a clinical trial.

Description of anoint Package

- · Open-source software
- · Written in the R language
- · Provides methods for assessing heterogeneity of treatment effect, including:
 - Proportional interactions modeling
 - Unrestricted multiple interaction regression
 - Conventional subgroup analyses
 - Forest plots

First...A Very Brief Introduction to R

- · R is a statistical programming environment
- · It is maintained by the R Development Core Team
- · It can be run on Windows, Linux, and Mac OS platiforms
- · It can be downloaded from http://cran.r-project.org/

You Can Use R as a Calculator

(1:3)^2

[1] 1 4 9

(1:3) * (4:6)

[1] 4 10 18

You Can Use R to Store & Manipulate Data

```
object <- data.frame(x = 1:6, y = rep(1, 6))
object</pre>
```

```
## x y
## 1 1 1
## 2 2 1
## 3 3 1
## 4 4 1
## 5 5 1
## 6 6 1
```

```
object[1, ]
```

```
## x y
## 1 1 1
```

You Can Use R to Import Data

thedata <- read.csv("filename")</pre>

You Can Use R to Perform Statistical Analyses of All Kinds

quantile(object\$x)

```
## 0% 25% 50% 75% 100%
## 1.00 2.25 3.50 4.75 6.00
```

You Can Use R to Perform Statistical Analyses of All Kinds

qqnorm(rnorm(100))

You Can Extend R by Writing Functions

You Can Also Extend R by Installing Contributed Packages

- The rapid development of R is owing to the contributions of a growing community of programmers (mostly academics), who are willing to share their work with others.
- After passing some quality checks, these packages are posted to the Comprehensive R Archive Network (CRAN), which can be accessed directly from the R environment.

install.packages	("package-name")
------------------	------------------

Getting Started

- 1. Install R (http://cran.r-project.org/)
- 2. Install anoint package from CRAN (Version 1.3)
- · Run R
- · If you have an active web connection, use the following code:

install.packages("anoint")

· If needed, install any dependent packages

Getting Started with anoint

All sessions with the anoint begin by loading the package.

library(anoint)

· anoint's dependent packages will need to be installed

Getting Help

An index of all of the functions of anoint can be obtained by using the help function.

Click the link for any function to bring up documentation describing its use.

help(package = "anoint")

Getting Help

You can also use `?' as a shortcut to a function's documentation.

`?`(anoint)

Overview of anoint package

Function	Description
anoint	Creates an analysis of interactions object
obo	Extract one-by-one subgroup analyses from anoint object
uim	Extract unrestricted multiple interaction regression from anoint object
pim.subsets	Perform all subsets proportional interactions modeling
pim.fit	Fit a specific proportional interactions model
forest.subsets	Forest plot of all subsets procedure

Examples with bootstrap SOLVD-T

We will demonstrate the major tools of the anoint package with a bootstrap SOLVD-T dataset.

If this is located in the current directory, it can be loaded into the R session with the function load.

```
setwd("~/master/project/anoint/tutorial") # On My System
load("solvd.RData")
```

Description of SOLVD-T Dataset

str(solvd) # Show Structure

```
## 'data.frame':
                  2569 obs. of 10 variables:
## $ enal : int 0 0 0 0 0 0 0 0 0 ...
## $ deathdays : num 723 835 1547 1051 1449 ...
## $ death
             : num 0 0 0 0 0 1 1 0 0 0 ...
## $ vaso
             : int 0 0 1 0 1 0 0 1 0 1 ...
  $ ischemia : int 1 1 1 1 1 0 1 1 0 1 ...
  $ sodium : int 144 140 142 140 135 143 139 136 142 136 ...
             : int 35 28 24 26 24 15 17 35 22 16 ...
  $ lvef
             : int 2 2 3 3 3 2 2 2 3 2 ...
## $ nyha
## $ sodium.cat: Ord.factor w/ 3 levels "<140"<"140-141"<..: 3 2 3 2 1 3 1 1 3 1 ...
  $ lvef.cat : Ord.factor w/ 3 levels "<23"<"23-29"<...: 3 2 2 2 2 1 1 3 1 1 ...
```

Description of SOLVD-T Variables

- · enal: Indicator of enalapril treatment group (1=enalapril, 0=placebo)
- · deathdays: Days to death or last date of follow-up if still alive
- · death: Indicator of death
- vaso: Indicator of prior vasodilator use (1=use, 0=no use)
- · ischemia: Indicator of ischemic cause of congestive heart failure
- · sodium: Sodium level (mmol/liter)
- lvef: Left ventricular ejection fraction (as percent)
- nyha: NYHA prognostic class (1 4, 1=best and 4=worst)

Syntax of anoint Object

anoint(formula, data, family, ...)

Argument	Description
formula	Model formula
data	Data frame containing formula variables
family	coxph or any of glm families, i.e. gaussian, binomial, etc.

anoint Formula Specification

The formula used to create an anoint object requires

- · a response (appropriate for the model)
- · covariates
- · a treatment variable

Example: anoint Formula Specification

Suppose:

- · response = y
- · covariates = a, b, c
- treatment variable = trt

formula = $y \sim (a + b + c) * trt$

Example: anoint

```
fit <- anoint(
  formula = Surv(deathdays, death) ~ (vaso + ischemia + lvef + sodium + nyha) * enal,
  data = solvd,
  family = "coxph")</pre>
```

Example: anoint

class(fit)

```
## [1] "anoint"

## attr(,"package")

## [1] "anoint"
```

Methods for anoint Object

Method	Description
print	Shows formula
summary	Shows formula, covariates
obo	Returns results of one-by-one subgroup analyses
uim	Returns unrestricted interaction model

Example: print Method for anoint

fit

```
## Surv(deathdays, death) ~ (vaso + ischemia + lvef + sodium + nyha) *
## enal
```

The obo Method for anoint

Returns a list with the following named components:

- · fit: list of model objects; length equal to the number of covariates
- · LRT: vector of likelihood ratio test (LRT) statistics for interaction
- pvalue: vector of unadjusted p-values for LRTs

Example: obo Method

```
subgroups <- obo(fit)
names(subgroups)</pre>
```

```
## [1] "fit" "LRT" "pvalue"
```

Example: obo Method

subgroups\$LRT

```
## vaso ischemia lvef sodium nyha
## 2.4068 1.4669 4.1930 0.2081 3.7393
```

subgroups\$pvalue

```
## vaso ischemia lvef sodium nyha
## 0.12081 0.22584 0.04059 0.64828 0.05315
```

Example: obo method

```
subgroups$fit[[1]] ## Cox model for vasodilator
```

Example: obo method

```
\verb|betas <- sapply(subgroups\$fit, function(x) x\$coef[1])| ## Covariate effects in placebo group betas|
```

```
##
           Surv(deathdays, death) ~ vaso * enal.vaso
##
                                            -0.005044
  Surv(deathdays, death) ~ ischemia * enal.ischemia
##
                                            -0.057539
##
           Surv(deathdays, death) ~ lvef * enal.lvef
##
                                            -0.047876
       Surv(deathdays, death) ~ sodium * enal.sodium
##
##
                                            -0.040647
##
           Surv(deathdays, death) ~ nyha * enal.nyha
                                             0.549418
##
```

Example: obo Method

```
interactions <- sapply(subgroups$fit, function(x) x$coef[3]) # Interaction
interactions</pre>
```

```
##
           Surv(deathdays, death) ~ vaso * enal.vaso:enal
##
                                                  0.201191
   Surv(deathdays, death) ~ ischemia * enal.ischemia:enal
##
##
           Surv(deathdays, death) ~ lvef * enal.lvef:enal
##
                                                  0.019561
       Surv(deathdays, death) ~ sodium * enal.sodium:enal
##
##
                                                  0.009408
##
           Surv(deathdays, death) ~ nyha * enal.nyha:enal
                                                 -0.189664
##
```

Example: obo Method

```
interactions/betas + 1 # implied proportional effects
```

```
##
          Surv(deathdays, death) ~ vaso * enal.vaso:enal
##
  Surv(deathdays, death) ~ ischemia * enal.ischemia:enal
##
                                                   -2.0324
##
          Surv(deathdays, death) ~ lvef * enal.lvef:enal
##
##
      Surv(deathdays, death) ~ sodium * enal.sodium:enal
##
##
           Surv(deathdays, death) ~ nyha * enal.nyha:enal
##
                                                    0.6548
```

The uim Method for anoint

Returns a list with the same named components as obo:

- · fit: fitted model object
- · LRT: value of global likelihood ratio test (LRT) for any interaction
- · pvalue: value of corresponding LRT

Example: uim Method

```
unrestricted <- uim(fit) # Cox multiple interaction model
names(unrestricted)</pre>
```

```
## [1] "fit" "LRT" "pvalue"
```

Example: uim Method

unrestricted\$LRT

[1] 7.693

unrestricted\$pvalue

[1] 0.174

Example: uim Method

unrestricted\$fit

```
## Call:
## coxph(formula = object@formula@formula, data = object@data)
##
##
                    coef exp(coef) se(coef)
## vaso
               -3.15e-02 0.9690 0.09271 -0.339303 7.3e-01
                1.16e-05 1.0000 0.10174 0.000114 1.0e+00
## ischemia
## lvef
               -3.82e-02 0.9626 0.00677 -5.636172 1.7e-08
## sodium
               -4.07e-02 0.9601 0.01434 -2.837351 4.5e-03
                4.64e-01 1.5897 0.06782 6.835390 8.2e-12
## nyha
## enal
               -2.45e+00
                         0.0863 2.89633 -0.845774 4.0e-01
               1.73e-01 1.1889 0.13286 1.302541 1.9e-01
## vaso:enal
## ischemia:enal 1.44e-01
                           1.1547 0.14823 0.970554 3.3e-01
## lvef:enal
               9.85e-03
                           1.0099 0.00974 1.010600 3.1e-01
## sodium:enal
                1.65e-02
                           1.0167 0.02062 0.801963 4.2e-01
## nyha:enal
               -1.44e-01
                            0.8655 0.09909 -1.457243 1.5e-01
##
## Likelihood ratio test=154 on 11 df, p=0 n= 2569, number of events= 966
```

Example: uim Method

```
betas <- unrestricted$fit$coef[1:5] # covariate placebo effects
betas</pre>
```

```
## vaso ischemia lvef sodium nyha
## -3.146e-02 1.157e-05 -3.815e-02 -4.069e-02 4.636e-01
```

Example: uim Method

interactions <- unrestricted\$fit\$coef[7:11] # interaction effects
interactions</pre>

```
## vaso:enal ischemia:enal lvef:enal sodium:enal nyha:enal ## 0.173049 0.143865 0.009846 0.016537 -0.144392
```

Example: uim Method

```
interactions/betas + 1 # implied proportional effect
```

```
## vaso:enal ischemia:enal lvef:enal sodium:enal nyha:enal ## -4.5014 12438.0717 0.7419 0.5936 0.6885
```

Proportional Interactions All Subsets

• We see from the subgroup and unrestricted interaction effects that there is some suggestion of proportionality among the SOLVD-T candidate effect modifiers.

· To investigate this formally, we can use the function pim.subsets