Aplication la spation vectoriale Aniel 1 20)

Nachlemed Nr. 1 ilse sportful meet orbid general de vectoria V, =(2,1,11,2): V= -(1,0,4,-1): V=(2,1,5,6); Vn=(11,4,5,5) fa se detest unive d'unenniques se n', buse a su. [Ve, Ve, Vs, Vn] = { X, V, + de Ve + d 3 Va + d n Vn | die E, 1=1,45. = undflored totaletar countribation civilare construite en ea 4 nectori - subsportivel general en en 4 vectoris Dimensioner aerskui Lubrja. Alle ende dase de per vectoria Risiat Independent divitie en 4 wett-ohi. face de ovier Moulte d'édre de de de l'édre veetetri aunt limide independent of euron unmetholder este este egal en d'une noinne i postinon; (29) =1 fahredte ciller a brea. 4, -1) + x3(2,1,5,6) + xn (4,4,5,5)= d1(2,1,11,2)+d2(1,0, en 4 neembersense (2d) + d2 + 2 d3 + 11 dy =0 da + d3 + 4 dn 20 11d1 + 4d2 +5d3 +5d4 2d1 -d2 +6d3 +5dn $A = \begin{pmatrix} 2 & 1 & 2 & 11 & 6 \\ 1 & 0 & 1 & 5 & 6 \\ 11 & 4 & 5 & 5 & 6 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 11 \\ 0 & -1 & 0 & -3 \\ 0 & -3 & -12 & -111 \\ 2 & -1 & 6 & 5 \\ 2 & 1 & 22 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & -3 & -12 & -111 \\ 2 & -1 & 6 & 5 \\ 2 & 1 & 22 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & -3 & -12 & 144 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & -3 & -12 & 144 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & -3 & -12 & 144 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 0 & 1 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 14 \\ 2 & 1 & 2$ an = 2 +0; die = 1+0.; die = 2+0 tung & = tang \$ = 4 = 1 mitemal all sal. unice

VI, Vz, Vs, Vn enut limint independente => din [] =9 => [V1, 12, 13, 14)=1R'. braklence 3 ftl V= (1, 2, -5); 12=(-3,1,2); V=(-2,3,-3) den R3. Versticati dans sunt limiar independent. det. dem ensiense subspektolini gewert de esi isei nectori. Sara cei trai mectori anut lindar dependente, na ne determine relatta de dependenta dintre ei d, V, + d, V, + d, V, =(0,0,0) (=1 (-3 -2 0) ~ (0 -3 -2 0) [7 2 0 0] [-3 -2 0] [-3 -2 0 0] [-3 -2 0 0] [-3 -2 0 0] [-3 -2 0 0] [-3 -2 0 0] [-3 -2 0 0] [-5 0 $\frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0$ Aug #= 2 = 5 [Vi, vi, vi) out dimensioner 2 Del. swith lei 3 meetali; -d3. N1-d3. N2+d3. N3 = (0,00) /ds =1 - V, - V2 + V3 = 9 (=) V3 = V, + V2 Drathernes File vectorii: V_=(2,1,-3); V==(-1,2,4) Ja ne Nefer mine dimensioner onlistationer general de sa ne Nefer mine dimensioner onlistationer independent cet trei nectoric. I) barea rectoria ment esman independent rei ne ne afte coedrolonatelle hertolulur V=19-2, 13) rei ne ne afte coedrolonatelle hertolulur V=19-2, 13) in haza acestrii subsportin. ai delig dem SP[V, ve, vz]= 3 (=> {V, vz, vz)= ase á

d, V, + de /2 + d; 13 = (0, 0, 0) (0) $\begin{pmatrix}
2 & -1 & 3 & 9 \\
-1 & 2 & -4 & -2 \\
-3 & 4 & 1 & 13
\end{pmatrix}$ $\begin{pmatrix}
2 & -1 & 3 & 7 \\
0 & 5 & -11 & -13 \\
0 & 5 & 11 & 53
\end{pmatrix}$ $\begin{pmatrix}
0 & 0 & 4 & 32 \\
0 & 5 & -11 & -13 \\
0 & 0 & 110 & 330
\end{pmatrix}$ $\begin{pmatrix}
0 & 0 & 110 & 330 \\
0 & 0 & 110 & 330
\end{pmatrix}$ = i n'item campartient unie deter univat.

- i { v, v, v, v; = hare in 123

martin rect in 123 coald next V = (9, -2, 13) in accasta base runt $d_1 = 2$; $d_2 = 4$; $d_3 = 3$) ex-y+2-t=1 of the all of the care partient smaller

+ + y + at + t = 8 nedeter minat;

y + 2 + b.t = 8 nedeter minat;

b) to as misuse Inga rat, falour a, port carefasti
loss to the mister of minutes. Have d=-1 m' b=-1 m' r=1=+ rang A=2 (=) Local d = -1 m' s = -1 m's from the sungh = 3 = s Local d = -1 m' s = -1 m's from the fort.

Local d = -1 m' s = -1 m's from the fort.

Local d = -1 m' s = -1 m' s = s rangh = 3 = s angh Saci d = -1 or B f - 1 = 1 rangh = 3 = langh = 1 m's 2 este campalient minuten a state hundred campalital nimpen redeterwinet: Mish: x, y, ± iar bara x + -1 et s=-1= langt = 3 = langt = 4 ontestet un wats

bara x + -1 et s=-1= langt pen redetet un wats

rep. pt: x, 22 ; t, = rec. Rec.

rep. pt: x, 22 ; t, = rec. Rec.

Alte Exemple la sporti rectotiale. of for se orate cà nectolii shwethi most liwar independenti in 12°. Unico (0,2,1); Vz = (1,0,1); Vz=(1,3,5) (=> oxice countrinable limins null a color their weetoble are lac = josti caeficientii cauntrination must uniti. File d, V, + d2. V2 + ds. V3 = (0, 0, 0) d₁(0,2,1) + d2(1,0,1) + d3(1,3,5) = (0,0,0) (0, 2d1, d1) + (d2, 0, d2) + (d3, 3d3, 5d3) = (0, 0) (0+d2+d3, 2d1+0+3d3, 2, +d2+5d3) = (0,0,0)=1 $\begin{cases} 2d_{1} & d_{2} + d_{3} = 0 \\ + 3d_{3} = 0 \end{cases} = \begin{cases} 0 & 1 & 1 \\ 2 & 0 & 3 \\ 1 & 1 & 5 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 2d_{1} & 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} 2d_{1} & 1 \\ 0$ = 8 fintern omagem, slim 3 ec. en their near their retainst tie cate calaans a sa fiind und him can their retains (1) 1 1 0 × (0) × -1 JV1, Ve, V3 sent Cimar independant VI, Ve, Vs E P. Mr weets shar filiad, de se veratati, lei o lui. legal en dinnensiuner spatien lin 123 =5

AMblema 3 Arataki ca rectohi: V, =(1,2,2,1) V2 = (5,6,6,5/; V2 = (-1,-3, 4,0); Un = (0,4-3,-1) must brimare supendense n' deteluiment relibre de dependonte donte el. x, V, +dz V2 +d, V3 +dn Vn = Dy = $\begin{pmatrix} 4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix}$ = lang A = 3 = lang A = 4 Sint.camp. redute luminat

Her. M. X_1, A_2, A_3 $X_1 A_2 A_3 X$ Her. Sec. $X_4 = X$ 1-4 d1 = - #2 $\begin{cases} -4 & = -4 \\ -4 & = -4 \\ -4 & = -4 \\ 4 &$ (+, V, + 3, V2 + V3 + Vn), > ~ (0,0,0,0) 1:1 (+V1+3 V2+ h V3+ h Vn = (0,0,0)