Final_project

CeciliaHermosilla 24/6/2021

Download the data sets

Create R objects with datasets

```
training <- read.csv("training.csv")
testing <- read.csv("testing.csv")</pre>
```

Explore the training data set

```
names(training) #Variables
str(training) #Summary of the object and variables
```

Partition training data set to perform cross-validation

75% of the data will be kept on the training subset of the training set called "data_training" and the rest, in the testing subset called "test_training".

```
library("caret")

## Loading required package: lattice

## Loading required package: ggplot2

set.seed(1000)

intrain <- createDataPartition(y=training$classe,p=0.75,list=FALSE)
data_training <- training[intrain,]
test_training <- training[-intrain,]</pre>
```

Transformation of variables

Find variables to delete

```
#Delete variables with large missing data and number not-displayed (#DIV characters)
and delete them
miss <- data.frame(missing=colSums(is.na(data_training)))

#Check how many NA there are on every variable and delete them
rownames(miss) <- 1:nrow(miss)
miss_cols <- as.numeric(rownames(subset(miss,subset=missing!=0)))
data_training <- data_training[,-miss_cols]

#Find variables with #DIV characters due to errors in data
weird <- grep(pattern="#DIV.*",data_training)</pre>
```

A function was created to transform variables and delete columns that would not be helpful

```
#Transform outcome into factor variable
data_training$classe <- as.factor(data_training$classe)</pre>
#Function created
library("magrittr")
preproc fx <- function(z) {</pre>
  z$cvtd timestamp <- z$cvtd timestamp %>%
    as.factor() %>%
    sapply(FUN = unclass)
  z$new_window <- z$new_window %>%
    as.factor() %>%
    sapply(FUN = unclass) %>%
    as.numeric()
  z$user name <- z$user name %>%
    as.factor() %>%
    sapply(FUN = unclass)
  z <- z[,-weird]
  z$X <- NULL
  new data <<- z
}
```

Apply function to the training subset of the training set to transform the data

```
preproc_fx(data_training)
data_training <- new_data</pre>
```

```
#Plot the data
par(mfrow=c(1,2))
boxplot(data_training$gyros_forearm_y,main="before")

#Delete row with outliers and apparently many errors
data_training <- data_training[-4031,]

#Plot the data again
boxplot(data_training$gyros_forearm_y, main="after")</pre>
```


Establish correlation between variables

```
#Look for the correlation between all variables except the outcome
correlation <- abs(cor(data_training[,-59]))
diag(correlation) <- 0

#Establish variables >85% correlated
variables_correlated <- data.frame(which(correlation>0.85,arr.ind=T))
variables_correlated
```

```
##
                    row col
                         7
## total accel belt
                    10
## accel_belt_y
                    15
                         7
## accel belt z
                    16
                         7
## accel_belt_x
                    14 8
## magnet belt x
                    17
                         8
                     7 10
## roll belt
## accel belt y.1
                    15 10
## accel belt z.1
                    16 10
## pitch_belt
                    8 14
## magnet belt x.1
                    17 14
## roll_belt.1
                    7 15
## total accel belt.1 10 15
## accel_belt_z.2
                    16 15
## roll_belt.2
                    7 16
## total accel belt.2 10 16
## accel belt y.2
                   15 16
## pitch_belt.1
                    8 17
                    14 17
## accel belt x.1
## gyros_arm_y
                    25 24
                     24 25
## gyros_arm_x
```

Verification of the PCA for the seven variables >85% correlated between each other.

```
#Perform PCA in seven variables highly correlated to each other
featurePlot(x=data_training[,c(7:8,10,14:17)],y=data_training$classe,plot="pairs")
prePROC1 <- prcomp(data_training[,c(7:8,10,14:17)],center=TRUE,scale=TRUE)</pre>
summary(prePROC1)
#Assign color to values in outcome
data_training$color <- data_training$classe %>%
  gsub(pattern= "A", replacement="blue") %>%
  gsub(pattern="B", replacement="green") %>%
  gsub(pattern="C", replacement="orange") %>%
  gsub(pattern="D", replacement="magenta") %>%
  gsub(pattern="E", replacement="gray")
#Plot the PCA analysis
plot(prePROC1$x[,1],prePROC1$x[,2],
     col=alpha(data training$color,0.2),
     xlab="PC1",ylab="PC2",pch=20)
#Delete the variable just created
data training$color <- NULL
```

Fit models

Predict using PCA with the seven variables

The seven variables will be used through PCA and caret package to check how prediction is done.

```
#Transform data on the testing subset of the training set
test_training$classe <- as.factor(test_training$classe)
test_training <- test_training[,-miss_cols]
preproc_fx(test_training)
test_training <- new_data</pre>
```

```
#Predict using the first model fit
fit1_result <- confusionMatrix(test_training$classe, predict(fit1,test_training))</pre>
```

The accuracy was of 0.47, not too high even thought random forest was used.

Another fit to compare building one tree and using different variables than before

Other variables were chosen including one of the past seven, "total_accel_belt" and others chosen from the pool of variables with little correlation between each other (less than 30%).

```
variables_little_correlated <- data.frame(which(correlation<0.3,arr.ind=T))
head(variables_little_correlated)</pre>
```

The accuracy was of 0.49, if this was with one tree, it will be larger for many trees, so the same variables will be used with random forest method.

Using random forest on the same variables of second fit

Confusion Matrix and Statistics

```
Reference
```

```
##
  Prediction
                    С
                В
                      D
                          Ε
              Α
## 1
         A 1318 22 23 24
## 2
         B 48 851 38
                      7
                           5
## 3
         C 14 33 781 19
                           8
## 4
         D 27 10 49 714 4
         E 5 3
## 5
                    3 9 881
```

Overall Statistics

```
Accuracy: 0.9268
95% CI: (0.9191, 0.9339)
No Information Rate: 0.2879
P-Value [Acc > NIR]: < 2.2e-16

Kappa: 0.9074
```

Mcnemar's Test P-Value: 0.0004798

Statistics by Class:

```
##
                Measure Class A Class B Class C Class D Class E
## 1
             Sensitivity 0.9334 0.9260 0.8736
                                                0.9237
                                                        0.9724
## 2
             Specificity 0.9779 0.9754 0.9815
                                                0.9782
                                                        0.9950
## 3
          Pos Pred Value 0.9448 0.8967 0.9135
                                                0.8881
                                                        0.9778
          Neg Pred Value 0.9732 0.9828 0.9721
##
                                                0.9856
                                                        0.9938
## 5
              Prevalence 0.2879 0.1874 0.1823
                                                0.1576
                                                        0.1847
          Detection Rate 0.2688 0.1735
## 6
                                        0.1593
                                                0.1456
                                                        0.1796
## 7 Detection Prevalence 0.2845 0.1935 0.1743
                                                0.1639 0.1837
## 8
       Balanced Accuracy 0.9557 0.9507 0.9276
                                                0.9509 0.9837
```

This model will be selected since it has **accuracy = 0.93**, 95% CI[0.92-0.93], Specificity ranging 0.97-0.99 and Sensitivity ranging 0.87-0.93 even though the **out of sample error** will be higher but since the testing set has no classe assigned it cannot be proven exactly how much.

Predicting on the testing set with the model selected

```
#Transform the data as before
data_training <- data_training[,-miss_cols]
preproc_fx(testing)
testing <- new_data

#Predict using the model
prediction <- predict(fit3,testing)
prediction</pre>
```

[1] BAAAAEDBAABCBAEEABABLevels: ABCDE