

Hamza Arshad

Portfolic

The purpose of my portfolio is to demonstrate my engineering experience and competency to potential employers by highlighting these experiences and connecting them to engineering-related skills, specifically to skills needed for design engineers.

The intended audience of my portfolio are mechanical engineering employers hiring design engineers, specifically for the aerospace industry.

INTRODUCTION

- See myself in a "design engineering" role
 - Considers both theory and application
 - Personally, I value a career of applying theoretical knowledge into new, improved products
- Specifically, interested in aerospace engineering and designing new mechanical structures for space systems

I'll highlight three skills that showcase my competency for aerospace engineering:

Use Of Engineering Tools

- Use of 'SolidWorks' to CAD various components of a satellite for the 'University Of Toronto Aerospace Team' (UTAT), including:
 - New actuation board for popping microfluidic blisters
 - 2700 batteries
- Use of 'SolidWorks' to CAD the gearbox of a mechanical rover for the MIE243 design project
- Used the 'CES' software to benchmark the prices of custom made axles on the mechanical rover for the MIE243 design project

CAD OF A NEW ACTUATION PLATFORM

- Designed and dimensionally constrained a new, potential actuation board for popping microfluidic blisters in the satellite
- Needed to pop blisters, in order to allow the fluid inside to flow towards another area of the satellite to start a microbiology experiment
- Showcases the use of CAD software, a vital engineering tool

USED PREVIOUS CADS TO CONSTRAIN THE DIMENSIONS

- Used previous and current satellite CADs to determine the right dimensions
- Showcases a critical use of available engineering tools

2700 BATTERY CADS; COMPLETED FOR THERMAL TESTING

Use Of Engineering Tools

- Use of 'SolidWorks' to CAD various components of a satellite for the 'University Of Toronto Aerospace Team' (UTAT), including:
 - New actuation board for popping microfluidic blisters
 - 2700 batteries
- Use of 'SolidWorks' to CAD the gearbox of a mechanical rover for the MIE243 design project
- Used the 'CES' software to benchmark the prices of custom made axles on the mechanical rover for the MIE243 design project

- The rover requires a large torque at its backwheels to move, so it was necessary to create a gearbox for increasing torque
- Used 'SolidWorks' to create gears and mates to simulate the torque conversion
- Showcases my knowledge of mechanical and basic mates in the software

Use Of Engineering Tools

- Use of 'SolidWorks' to CAD various components of a satellite for the 'University Of Toronto Aerospace Team' (UTAT), including:
 - New actuation board for popping microfluidic blisters
 - 2700 batteries
- Use of 'SolidWorks' to CAD the gearbox of a mechanical rover for the MIE243 design project
- Used the 'CES' software to benchmark the prices of custom made axles on the mechanical rover for the MIE243 design project

USED THE 'CES' SOFTWARE TO DETERMINE IDEAL MATERIALS

- Used the 'CES' software to find a material for the axles of the rover, with low price and high strength as factors
- Determined "cast iron" to be the ideal choice
- Showcases both a use of an engineering material selection software and engineering design principles by prioritizing certain material factors

I'll highlight three skills that showcase my competency for aerospace engineering:

TEAMWORK

- UTAT
 - Have to work with a multi-disciplinary team, consisting of people with different backgrounds, such as biology and computer science
 - Example: 2700 Batteries Designed for a thermal team to do insulation testing on them
 - Mainly, I work closely with the mechanical/structures team
- Student Council
 - Worked with a team of six to implement events and assemblies at Jarvis Collegiate Institute
 - Helped to bring on "grade representatives"

THERMAL INSULATION TESTING WAS DONE ON THE 2700 BATTERIES

- In order for the 2700 batteries used by 'UTAT' to function in space, they have to be insulated; hence, the need for insulation testing
- Showcases the multi-disciplinary work at 'UTAT' and how I worked with two different teams on a single project

SUBSYSTEM OVERVIEW

STRUCTURES

Designs mass efficient mechanical features throughout the satellite Includes primary, secondary, and payload structures

COMMUNICATIONS

Responsible for data TX/RX Includes configuring radios and designing antennas for the spacecraft and ground station

PAYLOAD

Unique biological payload aimed to assess the risk of infections during long-term space missions. Includes biology, microfluidics, and instrumentation

THERMAL

Designs the controls that maintain operational temperatures for all spacecraft units and models the orbital environment

POWER

Designs the circuitry that distributes solar generated power to all on-board systems

COMMAND & DATA >

The Brain of the satellite Handles and stores data, controls the exchange of information, and maintains system health

SIX OF SEVEN TEAMS OF UTAT'S SPACE SYSTEMS DIVISION

- Taken from https://www.utat.ca/space-systems/
- Showcases the number of teams at the "space systems" division of UTAT, where I work

TEAMWORK

- UTAT
 - Have to work with a multi-disciplinary team, consisting of people with different backgrounds, such as biology and computer science
 - Example: 2700 Batteries Designed for a thermal team to do insulation testing on them
 - Mainly, I work closely with the mechanical/structures team
- Student Council
 - Worked with a team of six to implement events and assemblies at Jarvis Collegiate Institute
 - Helped to bring on "grade representatives"

- One of the events planned by the student council that I was a part of; My contributions consisted of making the tickets and a "masters list" of ticket purchasers
- Important, as it shows how I've worked with a non-technical team, developing strong communication skills with people not from engineering; Shows that I can work with a wide range of people

POSTER FOR THE "HALLOWEEN DANCE"

I'll highlight three skills that showcase my competency for aerospace engineering:

DESIGN

- WeavAir
 - Part of 'Engineering Strategies And Practice II' design course
 - Created a solution space of up to fifty solutions for a new 'HVAC' interface system and went through major design iterations
- UTAT
 - Solve an actuation engineering problem
 - Came up with a solution space to define this design problem
- MIE243 Design Project
 - Used a weighted decision matrix and graphical matrix to determine the "best" engineering solution to a mechanical rover design problem

- In order to prioritize my team's objectives of "quick access to data" and "simple to use and navigate", three major design iterations were performed on one design
- Showcases the use of engineering criteria of functions, objectives, and constraints to define and improve potential designs

DESIGN

- WeavAir
 - Part of 'Engineering Strategies And Practice II' design course
 - Created a solution space of up to fifty solutions for a new 'HVAC' interface system and went through major design iterations
- UTAT
 - Solve an actuation engineering problem
 - Came up with a solution space to define this design problem
- MIE243 Design Project
 - Used a weighted decision matrix and graphical matrix to determine the "best" engineering solution to a mechanical rover design problem

CAD of a potential "pressure system" solution to the Design problem

- An engineering problem with the actuation board was the synchronization of motors (two motors were being used at either end of the board)
- Alongside a team member, we drafted a document with potential solutions, such as:
 - Pressure system board (figure on the left)
 - Replace one motor with a spring
 - Showcases how I defined a design problem and used engineering tools (Ex: SolidWorks) to improve a previous design

DESIGN

- WeavAir
 - Part of 'Engineering Strategies And Practice II' design course
 - Created a solution space of up to fifty solutions for a new 'HVAC' interface system and went through major design iterations
- UTAT
 - Solve an actuation engineering problem
 - Came up with a solution space to define this design problem
- MIE243 Design Project
 - Used a weighted decision matrix and graphical matrix to determine the "best" engineering solution to a mechanical rover design problem

"GRAPHICAL MATRIX" AND "WEIGHTED DECISION MATRIX" FOR THE ROVER
DESIGN

- Used two important design criteria, simplicity and reliability, to narrow down potential rover designs
- Also, used a "weighted decision matrix" to further narrow down to three rover solutions
- Showcases the use of important factors, either requested by the client or found through research, to define narrow engineering design choices