Chrome-Dino Run Game using Deep Reinforcement Learning

By Group #6

- Yogesh Jadhav
- Sameer Shinde
- Pooja Thakoor

Why we chose this project?

- Dino Run an endless real-time runner game based on JavaScript in Chrome browser. It's addictive and fun!
- Something fancier than conventional Supervised Learning!
- Exploring Reinforcement Learning

Let's have a look at the gameplay!

Inspiration and Tricks

A 2013 publication by Google's DeepMind titled 'Playing Atari with Deep Reinforcement Learning'.

Key ideas from the paper:

- 1. <u>Experience Replay Buffer (ERB)</u>: A data structure with fixed max size to store previous experiences which supports random sampling and deletion operations.
- 2. <u>Random Exploration</u>: A technique by which agent takes random actions initially to explore new states.

Project Structure

State

Current Snapshot of Game [Image]

Actions

Jump (1)

Stay (0)

Reward

0.1 for every step

-1 for terminal state

Algorithm Overview

- 1. Have a empty ERB
- 2. Initialize Q-function approximator network with random weights
- 3. Repeat for all the games:
 - a. Start a new game and observe the initial state S
 - b. Repeat till the game is not over
 - i. Select action A with RANDOM-EXPLORATION and carry out A on S to get S'
 - ii. Observe reward R for taking action A on S
 - iii. Store experience <S, A, R, S'> in ERB
 - iv. S = S'
 - v. Sample random experiences <s, a, r, s'> from the ERB.
 - vi. Train the network on the MSE (New Q(s, a), Q(s, a)) loss.

Algorithm Overview

New Q(s,a) =
$$Q(s,a) + \alpha [R(s,a) + \gamma maxQ'(s',a') - Q(s,a)]$$

- New Q Value for that state and the action
- Learning Rate
- Reward for taking that action at that state
- Current Q Values
- Maximum expected future reward given the new state (s') and all possible actions at that new state.
- Discount Rate

Challenges we faced (and solved!)

- Frame drops Small enough model to predict action A on state S faster. Smaller batch size to train.
- Learn the game speed: Stack 4 consecutive states together to create a state S.
- Converge faster Guided start for the model.

Overview

- Image Capturing and Preprocessing
- Model Architecture
- Results

Image Capturing & Preprocessing

Image Capturing

- Two way interface between browser and model
- Open Al Gym Environment
 gym-chrome-dino
- Real time frame capture
- 80 x 160 image
- Unstacked & Stacked image

Unstacked Image

Stacked Image

Image Processing

Image Processing

Model Architecture

Action prediction using Neural Network

Exploration-Exploit Dilemma

Random Exploration

Why:

- With certain probability, try to explore all states by Random Exploration
- Initially this probability has to be big
- As you progress, reduce this gradually

How:

TRAINING_FACTOR = CURRENT_ERB_SIZE / MAX_ERB_SIZE

Experience Replay Buffer

Why

- Learn from previous gameplay
- Separate the simulation part from the training part.
- Provides "revision" of the past experiences to make model less forgetful to past learning.

How

 Train randomly sampled experiences from ERB

Guided Start

Seeding ERB with few correct experiences to start the training with!

Guided Start

Results

Scores over 250 episodes (Stacked Input)

- Max Score: 200
- Score increases gradually

Scores over 250 episodes (Stacked Input with Guided Start)

- Max Score: 712
- Learns Faster

Scores over 250 episodes (Unstacked Input)

- Max Score: 140
- Slow learning compared to stacked input

Observation

Stacked version learns better as compared to unstacked version as we train more

Experiments

What all things did we try?

- 1. Preprocessing stage
 - Different input image structure and sizes
 - Stacked / unstacked input
- 2. Architecture stage
 - Different hyperparameters and layers complexity
- 3. Guided start

Future Scope

Future Scope

- Long sighted model use wider view of the gameplay for state by cropping less
- Additional Training Training on more episodes

References

- https://github.com/elvisyjlin/gym-chrome-dino/tree/master/gym_ chrome_dino
- 2. https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
- 3. https://www.intel.ai/demystifying-deep-reinforcement-learning/

