Behind the Code: Analyzing Global Developer Preferences and Trends

Swati Bansode

28-06-2025

© IBM Corporation. All rights reserved.

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Collected and analyzed global developer survey data to uncover patterns in technology preferences, career satisfaction, and compensation.
- Identified the **most commonly used** and **most admired** programming languages, frameworks, and databases across regions and experience levels.
- Dominant across both usage and future interest categories:
 - Python
 - JavaScript
 - SQL
- Discovered significant variation in job satisfaction and compensation based on age, experience level, and employment type.
- Created multiple visualizations (histograms, stacked charts, scatter plots) to explore compensation, job satisfaction, and technology adoption trends.
- Highlighted a strong correlation between **professional** coding experience and median yearly compensation.

INTRODUCTION

- This project analyzes global developer survey data to understand key trends in technology usage, preferences, and career satisfaction.
- The goal is to explore how factors like experience level, employment type and age influence developer choices and outcomes.
- Target audience: Tech or Data Hiring Managers, Curriculum Designers, Product or Engineering Team Leads, Stakeholders in Tech Education or Policy.
- The project combines data visualization, statistical analysis, and storytelling to derive actionable insights from real-world data.
- The analysis covers areas such as:
 - Programming languages and web frameworks
 - Databases and AI tools
 - Compensation patterns
 - Job satisfaction

METHODOLOGY

- Data Source: Used given developer survey data in CSV and SQLite formats provided via URLs.
- **Data Cleaning**: Removed duplicate records and handled missing values across key columns. Normalized columns with multiple values using split and explode techniques (appendix).
- Mapped age ranges and experience levels to numeric values for quantitative analysis (appendix).
- Visualization Techniques: Used Python libraries like Pandas, Matplotlib, and Seaborn.
- Synthesized results into interactive dashboards using Looker Studio for storytelling and insight presentation.

RESULTS

- •Programming Languages: Python, JavaScript, and SQL emerged as the most-used and most-desired languages across all demographics (Dashboard tab 1&2).
- •Database Trends: MySQL, PostgreSQL, and SQLite were the most commonly used databases. PostgreSQL and MongoDB were among the top databases respondents want to work with next year (Dashboard tab 1&2).
- •Job Satisfaction: Median satisfaction scores were highest among respondents with 5–15 years of experience. Freelancers and full-time workers reported comparable satisfaction levels, but part-time and temporary roles scored lower.
- •Compensation Trends: Compensation increased steadily with experience up to around 20 years.
- •Employment: Most respondents were employed full-time and preferred remote or hybrid work setups.
- •Regional Insights: The United States, India, and Germany had the highest respondent counts (Dashboard 3).

PROGRAMMING LANGUAGE TRENDS

2024

2025

Python

PROGRAMMING LANGUAGE TRENDS - FINDINGS & IMPLICATIONS

Findings

- Python, JavaScript, and SQL are consistently the top three languages used by respondents globally.
- Experienced developers (10+ years) continue to rely on traditional languages like **Java** and **C++**, though usage is gradually declining among new entrants.
- There's a significant overlap between languages developers currently use and languages they want to work with.

Implications

- Developers should consider learning Python and TypeScript to align with both current demand and future interest.
- Companies should invest in JavaScript/TypeScript expertise for frontend roles and Python for backend, automation, and AI-driven roles.
- Educational institutions should prioritize Python, JavaScript, and SQL in their curricula.

DATABASE TRENDS

2024 2025

DATABASE TRENDS - FINDINGS & IMPLICATIONS

Findings

- MySQL, PostgreSQL, and SQLite are the most commonly used databases among respondents.
- PostgreSQL appears in both top-used and most-wanted lists—highlighting its growing popularity.
- MongoDB ranks high among databases that respondents want to work with.

Implications

- Emphasize support for PostgreSQL and MongoDB to align with modern developer preferences.
- Candidates with PostgreSQL experience may be better suited.
- Education curriculum should include MySQL, PostgreSQL, and an introduction to MongoDB.

DASHBOARDS

IBM Cognos Analytics:

https://us3.ca.analytics.ibm.com/bi/?perspective=das hboard&pathRef=.my_folders%2FDashboards&action =view&mode=dashboard&subView=model00000197e b017180_0000000

PDF Dashboards Cognos.pdf

DASHBOARD TAB 1 - Current Technology Usage

DASHBOARD TAB 2 - Future Technology Trend

Top 10 Webframe Want To Work With

DASHBOARD TAB 3 - Demographics

DISCUSSION

- The analysis suggest that developers often enjoy working with technologies they already use effectively.
- Python and JavaScript continue to dominate the ecosystem and there's a growing interest in PostgreSQL and MongoDB.
- Job satisfaction trends correlate closely with years of experience and compensation.
- Most respondents prefer remote or hybrid setups.
- The data emphasizes the need for continuous learning and adaptability.

OVERALL FINDINGS & IMPLICATIONS

Findings

- Python, JavaScript, and SQL are the most widely used and most admired programming languages across all age groups and experience levels.
- PostgreSQL and MongoDB stand out as top databases that developers want to work with, reflecting a shift toward opensource and NoSQL systems.
- Job satisfaction increases with experience up to a point but tends to level off. Compensation correlates strongly with professional coding experience and age group.

Implications

- Developers should invest in learning high-demand tools like Python, React, PostgreSQL, and AI platforms to stay competitive.
- **Employers** should align their tech stacks with developer preferences to attract and retain talent.
- Educators should revise curricula to focus on in-demand languages and frameworks, and introduce AI/ML foundations early.

CONCLUSION

- This project provided a comprehensive analysis of global developer preferences, compensation, and satisfaction using real-world survey data.
- Key insights revealed strong alignment between developer admiration and usage of tools like Python and PostgreSQL.
- Experience and age are strong indicators of higher compensation and stable satisfaction.
- Interactive dashboards and visualizations enable deeper exploration and support data-driven decision-making for individuals, teams, and organizations.
- The rise of **remote work**, **AI tools**, and modern frameworks highlights the industry's dynamic nature and the need for ongoing skill development.

APPENDIX

Data Pre-Processing Steps:

```
## Write your code here
# Map Age to numeric values
age map = {
    'Under 18 years old': 16,
    '18-24 years old': 21,
    '25-34 years old': 29.5,
    '35-44 years old': 39.5,
    '45-54 years old': 49.5,
    '55-64 years old': 59.5,
    '65 years or older': 67,
    'Prefer not to say': None
df['Age_numeric'] = df['Age'].map(age_map)
# Drop missing values for all relevant columns
df_filtered = df[['ConvertedCompYearly', 'JobSatPoints_6', 'Age_numeric']].dropna()
# Optional: Remove extreme compensation outliers for better visualization
df filtered = df filtered[df filtered['ConvertedCompYearly'] < 300000]</pre>
```


POPULAR LANGUAGES BY AGE

LANGUAGE PREFERENCE BY AGE

POPULAR DATABASES BY AGE

POPULAR WEB FRAMEWORKS

AGE vs JOB SATISFACTION

JOB SATISFACTION ACROSS EXPERIENCE

WORK EXPERIENCE vs AGE (COUNTRY)

MEDIAN COMPENSATION BY AGE

COMPENSATION BY COUNTRY

JOB POSTINGS

THANK YOU

