Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра обчислювальної техніки

Домашня контрольна робота з дисципліни "Комп'ютерна логіка. Частина 1"

Тема: «Автомат управління на тригерах»

Виконав: Давидчук А. М.

Група: IO-41 Номер варіанту: № 4108

Оцінка:

Викладач: Жабін В.І., Верба О.А.

Виконання роботи

Мій варіант 4108, що у двійковому коді 0001 0000 0000 1100, тому h_9 = 0, h_8 = 0, h_7 = 0, h_6 = 0, h_5 = 0, h_4 = 1, h_3 = 1, h_2 = 0, h_1 = 0

1.1 Структурний синтез автомата управління на тригерах

За моїм варіантом:

Порядок з'єднання фрагментів ($h_8^{}h_4^{}h_2^{}=010$): 2, 1, 3

Послідовність логічних умов ($h_8^{}h_7^{}h_3^{}=001$): $x_1^{}, x_2^{}, \overline{x_1^{}}$

Послідовність керуючих сигналів ($h_9h_4h_1=010$): y_1,y_2,y_4,y_3,y_1,y_2

Тип автомата ($h_1 = 0$): Мілі

Тип тригера $(h_9 h_4 = 01)$: D

Мікроалгоритм автомата:

Граф автомата:

Таблиця кодування станів:

Стан	$Q_{_3}$	Q_{2}	$Q_{_{1}}$
<i>z</i> ₁	0	0	0
Z_2	0	0	1
Z_3	0	1	1
Z_4	0	1	0
z_{5}	1	1	0
<i>s</i> ₁	1	0	0

Структурна таблиця автомата

ПС		Код ПС	C	НС	Код НС		Логічні Кер умови		Керуючі сигнали			Функції збудження тригерів				
	Q_3^{t}	Q_2^{t}	Q_1^{t}		Q_3^{t+1}	Q_2^{t+1}	Q_1^{t+1}	x_{1}	x_2	<i>y</i> ₁	y_2	y_3	y_4	D_3	D_{2}	D_{1}
z_{1}	0	0	0	z_2	0	0	1	-	1	1	0	0	0	0	0	1
z_2	0	0	1	Z_3	0	1	1	1	-	0	1	0	0	0	1	1
z_2	0	0	1	z_3	0	1	1	0	ı	0	0	0	0	0	1	1
z_3	0	1	1	Z_{4}	0	1	0	ı	ı	0	0	0	1	0	1	0
Z_{4}	0	1	0	Z ₅	1	1	0	ı	1	0	0	1	0	1	1	0
Z_{4}	0	1	0	z_3	0	1	1	-	0	0	0	0	0	0	1	1
z ₅	1	1	0	<i>s</i> ₁	1	0	0	1	-	1	0	0	0	1	0	0
z ₅	1	1	0	<i>s</i> ₁	1	0	0	0	-	0	1	0	0	1	0	0
<i>s</i> ₁	1	0	0	<i>z</i> ₁	0	0	0	-	-	0	0	0	0	0	0	0

1.2. Синтез комбінаційних схем для автомата

Система функцій вихідних сигналів в МДНФ:

$$egin{cases} y_1 = \overline{Q_3} \, \overline{Q_2} \, \overline{Q_1} ee Q_3 Q_2 \overline{Q_1} x_1 \ y_2 = \overline{Q_3} \, \overline{Q_2} Q_1 x_1 ee Q_3 Q_2 \overline{Q_1} \, \overline{x_1} \ y_3 = \overline{Q_3} Q_2 \overline{Q_1} x_2 \ y_4 = \overline{Q_3} Q_2 Q_1 \end{cases}$$

Система функцій вихідних сигналів в МКНФ:

$$\begin{cases} y_1 = (Q_3 \vee Q_2 \vee \overline{Q_1} \vee \overline{x_1})(Q_3 \vee Q_2 \vee \overline{Q_1} \vee x_1)(Q_3 \vee \overline{Q_2} \vee \overline{Q_1})(Q_3 \vee \overline{Q_2} \vee Q_1 \vee \overline{x_2})(Q_3 \vee \overline{Q_2} \vee Q_1 \vee x_2)(\overline{Q_3} \vee \overline{Q_2} \vee Q_1 \vee x_1)(\overline{Q_3} \vee Q_2 \vee Q_1)\\ y_2 = (Q_3 \vee Q_2 \vee Q_1)(Q_3 \vee Q_2 \vee \overline{Q_1} \vee x_1)(Q_3 \vee \overline{Q_2} \vee \overline{Q_1})(Q_3 \vee \overline{Q_2} \vee Q_1 \vee \overline{x_2})(Q_3 \vee \overline{Q_2} \vee Q_1 \vee x_2)(\overline{Q_3} \vee \overline{Q_2} \vee Q_1 \vee \overline{x_1})(\overline{Q_3} \vee Q_2 \vee Q_1)\\ y_3 = (Q_3 \vee Q_2 \vee Q_1)(Q_3 \vee Q_2 \vee \overline{Q_1} \vee \overline{x_1})(Q_3 \vee Q_2 \vee \overline{Q_1} \vee x_1)(Q_3 \vee \overline{Q_2} \vee \overline{Q_1})(Q_3 \vee \overline{Q_2} \vee \overline{Q_1} \vee x_2)(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1} \vee \overline{x_1})(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1} \vee x_1)(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1})\\ y_4 = (Q_3 \vee Q_2 \vee Q_1)(Q_3 \vee Q_2 \vee \overline{Q_1} \vee \overline{x_1})(Q_3 \vee Q_2 \vee \overline{Q_1} \vee x_1)(Q_3 \vee \overline{Q_2} \vee Q_1 \vee \overline{x_2})(Q_3 \vee \overline{Q_2} \vee Q_1 \vee x_2)(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1} \vee \overline{x_1})(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1} \vee x_1)(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1})\\ y_4 = (Q_3 \vee Q_2 \vee Q_1)(Q_3 \vee Q_2 \vee \overline{Q_1} \vee \overline{x_1})(Q_3 \vee Q_2 \vee \overline{Q_1} \vee x_1)(Q_3 \vee \overline{Q_2} \vee \overline{Q_1} \vee \overline{x_2})(Q_3 \vee \overline{Q_2} \vee \overline{Q_1} \vee x_2)(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1} \vee \overline{x_1})(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1} \vee x_1)(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1})\\ y_4 = (Q_3 \vee Q_3 \vee Q_3 \vee \overline{Q_3} \vee \overline{Q_3$$

Система функції збудження тригерів у формі МДНФ:

$$\left\{egin{aligned} D_3 &= \overline{Q_3} Q_2 \overline{Q_1} x_2 ee Q_3 Q_2 \overline{Q_1} x_1 ee Q_3 Q_2 \overline{Q_1} \ \overline{x_1} \ D_2 &= \overline{Q_3} \ \overline{Q_2} \overline{Q_1} x_1 ee \overline{Q_3} \ \overline{Q_2} Q_1 \overline{x_1} ee \overline{Q_3} \overline{Q_2} Q_1 \overline{x_1} ee \overline{Q_3} Q_2 \overline{Q_1} ee \overline{Q_3} \overline{Q_2} \overline{Q_1} \overline{x_2} \ D_1 &= \overline{Q_3} \ \overline{Q_2} \overline{Q_1} ee \overline{Q_3} \ \overline{Q_2} \overline{Q_1} x_1 ee \overline{Q_3} \overline{Q_2} \overline{Q_1} \overline{x_1} ee \overline{Q_3} \overline{Q_2} \overline{Q_1} \overline{x_1} ee \overline{Q_3} \overline{Q_2} \overline{Q_1} \overline{x_2} \ \end{array}
ight.$$

Система функції збудження тригерів у формі МКНФ:

$$\begin{cases} D_3 = (Q_3 \vee Q_2 \vee Q_1)(Q_3 \vee Q_2 \vee \overline{Q_1} \vee \overline{x_1})(Q_3 \vee Q_2 \vee \overline{Q_1} \vee x_1)(Q_3 \vee \overline{Q_2} \vee \overline{Q_1})(Q_3 \vee \overline{Q_2} \vee \overline{Q_1})(Q_3 \vee \overline{Q_2} \vee Q_1 \vee x_2)(\overline{Q_3} \vee Q_2 \vee \overline{Q_1})\\ D_2 = (Q_3 \vee Q_2 \vee Q_1)(\overline{Q_3} \vee \overline{Q_2} \vee Q_1 \vee \overline{x_1})(\overline{Q_3} \vee \overline{Q_2} \vee Q_1 \vee x_1)(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1})\\ D_1 = (Q_3 \vee \overline{Q_2} \vee \overline{Q_1})(Q_3 \vee \overline{Q_2} \vee \overline{Q_1} \vee \overline{x_2})(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1} \vee \overline{x_1})((\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1} \vee \overline{x_1})(\overline{Q_3} \vee \overline{Q_2} \vee \overline{Q_1}) \end{cases}$$

Проводитиму мінімізацію за Квайном і отримаю наступні мінімізовані системи функцій:

Мінімізована система функцій вихідних сигналів в МДНФ:

$$egin{cases} y_1 = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} ee Q_3 Q_2 \overline{Q_1} x_1 \ y_2 = \overline{Q_3} \ \overline{Q_2} Q_1 x_1 ee Q_3 Q_2 \overline{Q_1} \ \overline{x_1} \ y_3 = \overline{Q_3} Q_2 \overline{Q_1} x_2 \ y_4 = \overline{Q_3} Q_2 Q_1 \end{cases}$$

Мінімізована система функцій вихідних сигналів в МКНФ:

Мінімізована система функцій вихідних сигналів в МКНФ
$$\begin{cases} y_1=\overline{Q_1}(Q_2ee\overline{Q_3})(Q_3ee\overline{Q_2})(x_1ee\overline{Q_3})\ y_2=(Q_1ee Q_2)(Q_3ee x_1)(\overline{Q_1}ee\overline{Q_3})(\overline{Q_2}ee\overline{x_1})\ y_3=\overline{Q_3}Q_2\overline{Q_1}x_2\ y_4=\overline{Q_3}Q_2Q_1 \end{cases}$$

Мінімізована система функції збудження тригерів у формі МДНФ:

$$egin{cases} D_3 = Q_3 Q_2 \overline{Q_1} ee Q_2 \overline{Q_1} x_2 \ D_2 = \overline{Q_3} \overline{Q_1} ee \overline{Q_3} Q_2 \ D_1 = \overline{Q_3} \overline{Q_2} ee \overline{Q_3} \overline{Q_2} \overline{Q_1} \overline{x_2} \end{cases}$$

Мінімізована система функції збудження тригерів у формі МКНФ:

$$egin{cases} D_3 = \overline{Q_2}\overline{Q_1}(Q_3ee x_2)\ D_2 = \overline{Q_3}(Q_2ee Q_1)\ D_1 = \overline{Q_3}(\overline{Q_2}ee \overline{Q_1})(\overline{Q_2}ee \overline{x_2}) \end{cases}$$

Мінімізована система вихідних функцій у формі І/АБО:

$$egin{cases} y_1 = \overline{Q_3} \, \overline{Q_2} \, \overline{Q_1} ee Q_3 Q_2 \overline{Q_1} x_1 \ y_2 = \overline{Q_3} \, \overline{Q_2} Q_1 x_1 ee Q_3 Q_2 \overline{Q_1} \, \overline{x_1} \ y_3 = \overline{Q_3} Q_2 \overline{Q_1} x_2 \ y_4 = \overline{Q_3} Q_2 Q_1 \end{cases}$$

Мінімізована система вихідних сигналів у формі І/АБО-НЕ:

$$egin{cases} y_1 = \overline{Q_1 ee \overline{Q_2}Q_3 ee \overline{Q_3}Q_2 ee Q_3 \overline{x_1}} \ y_2 = \overline{\overline{Q_2}} \, \overline{\overline{Q_1}} ee \overline{Q_3} \overline{x_1} ee Q_3 \overline{x_1} ee Q_3 Q_1 ee Q_2 x_1 \ y_3 = \overline{Q_3 ee \overline{Q_2} ee Q_1} ee \overline{Q_2} ee \overline{Q_1} ee \overline{x_2} \ y_4 = \overline{Q_3 ee \overline{Q_2} ee \overline{Q_1}} \end{aligned}$$

Мінімізована система функцій збудження тригерів у формі І/АБО:

$$egin{cases} D_3 = Q_3Q_2\overline{Q_1}ee Q_2\overline{Q_1}x_2 \ D_2 = \overline{Q_3}Q_1ee \overline{Q_3}Q_2 \ D_1 = \overline{Q_3}\overline{Q_2}ee \overline{Q_3}\overline{Q_2} orall \overline{Q_3}\overline{Q_2} \end{aligned}$$

Мінімізована система функцій збудження тригерів у формі І/АБО-НЕ:

$$egin{cases} D_3 = \overline{\overline{Q_2} ee Q_1 ee \overline{Q_3} \overline{x_2}} \ D_2 = \overline{Q_3 ee \overline{Q_2} \ \overline{Q_1}} \ D_1 = \overline{Q_3 ee Q_2 Q_1 ee Q_2 x_2} \end{cases}$$

Звідси система ПЛМ1:

$$egin{cases} D_3 = \overline{Q_3Q_2\overline{Q_1}} ee Q_2\overline{Q_1}x_2 \ D_2 = \overline{Q_3} ee \overline{Q_2} \ \overline{Q_2} \ \overline{Q_1} \ \overline{Q_2} ee \overline{Q_3} \ \overline{Q_1} \ \overline{x_2} \end{cases}$$

Система ПЛМ2:

$$egin{cases} y_1 = \overline{Q_3} \, \overline{Q_2} \, \overline{Q_1} ee Q_3 Q_2 \overline{Q_1} x_1 \ y_2 = \overline{Q_3} \, \overline{Q_2} Q_1 x_1 ee Q_3 Q_2 \overline{Q_1} \, \overline{x_1} \ y_3 = \overline{Q_3} Q_2 \overline{Q_1} x_2 \ y_4 = \overline{Q_3} Q_2 Q_1 \end{cases}$$

1.3. Побудова комбінаційних схем на ПЛМ

ПЛМ1 можна реалізувати як ПЛМ(4, 6, 4), а ПЛМ2 – як ПЛМ(8, 6, 8). Далі: мнемонічні схеми ПЛМ1 та ПЛМ2:

ПЛМ1:

ПЛМ2:

Де
$$P_1 = \overline{Q_3} \overline{Q_2} \overline{Q_1}$$
, $P_2 = Q_3 Q_2 \overline{Q_1} x_1$, $P_3 = \overline{Q_3} \overline{Q_2} Q_1 x_1$, $P_4 = Q_3 Q_2 \overline{Q_1} \overline{x_1}$, $P_5 = \overline{Q_3} Q_2 \overline{Q_1} x_2$, $P_6 = \overline{Q_3} Q_2 Q_1$.

Карта кодування для ПЛМ1:

$Q_3(x_3)$	$Q_2(x_2)$	$Q_1(x_1)$	$x_{2}(x_{0})$	P_{i}	$D_3(y_3)$	$\overline{D_2(y_2)}$	$D_1(y_1)$	$-(y_0)$
1	1	0	-	P_{1}	1	0	0	-
-	1	0	1	P_{2}	1	0	0	-
1	-	-	-	P_{3}	0	1	0	-
-	0	0	-	$P_{\overline{4}}$	0	1	0	-
0	0	-	-	P_{5}	0	0	1	-
0	_	0	0	P_{6}	0	0	1	-

Карта кодування для ПЛМ2:

$Q_3(x_7)$	$Q_2(x_6)$	$Q_1(x_5)$	$-(x_{4})$	$-(x_3)$	$x_{2}(x_{2})$	$x_1(x_1)$	$-(x_0)$	P_{i}	$-(y_{7})$	$-(y_{6})$	$-(y_{5})$	y ₄ (y ₄)	$y_{3}(y_{3})$	y ₂ (y ₂)	$y_1(y_1)$	$-(y_0)$
0	0	0	-	-	-	-	-	P_{1}	-	-	-	0	0	0	1	-
1	1	0	-	-	-	1	-	P_{2}	-	-	-	0	0	0	1	-
0	0	1	-	-	-	1	-	P_3	-	-	-	0	0	1	0	-
1	1	0	-	-	-	0	-	$P_{\overline{4}}$	-	-	-	0	0	1	0	-
0	1	0	-	-	1	-	-	P_{5}	-	-	-	0	1	0	0	-
0	1	1	-	-	-	-	-	P_{6}	-	-	-	1	0	0	0	-

УГП ПЛМ1:

УГП ПЛМ2:

1.4. Розробка функціональної схеми автомата

Вхідні дані та вивід:

$x_{2}x_{1}$:

1.5. Дослідження функції на входження у функціональні класи

Об'єкт дослідження: функція
$$D_1 = Y = \overline{Q}_3 \overline{Q}_2 \vee \overline{Q}_3 \overline{Q}_1 \overline{x}_2$$
.

За теоремою Поста-Яблонського, об'єкт дослідження (функція) є функціонально повним, якщо він не входить в класи: K0, K1, KM, KЛ та KC. Побудуємо таблицю істинності для цієї функції:

Q3	Q2	Q1	X2	Υ
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Тепер перевіряємо на входження до класів К0, К1, КМ:

- Y(0, 0, 0, 0) = 1 не входить в клас K0.
- Y(1, 1, 1, 1) = 0 не входить в клас K1.
- Функція входить в клас КМ, якщо при будь-якій змінні однієї змінної, значення функції не зменшується. При Y(0, 1, 0, 0) = 1 та Y(0, 1, 0, 1) = 0 можемо зробити висновок, що функція зменшується, тобто функція не входить в клас КМ.

Функція входить в клас КЛ, якщо її можна представити лінійним поліномом Жегалкіна.

Поліном Жегалкіна можна дістати з ДДНФ функції замінюючи V на ⊕ та застосовуючи аксіоми алгебри Жегалкіна:

$$Y = \overline{Q_3} \overline{Q_2} \overline{Q_1} \overline{x_2} \vee \overline{Q_3} \overline{Q_2} \overline{Q_1} x_2 \vee \overline{Q_3} \overline{Q_2} Q_1 \overline{x_2} \vee \overline{Q_3} \overline{Q_2} Q_1 x_2 \vee \overline{Q_3} Q_2 \overline{Q_1} \overline{x_2}$$

Поліном Жегалкіна в нашому контексті матиме вигляд:

$$f(Q_3, Q_2, Q_1, x_2) = ((Q_3 \oplus 1)(Q_2 \oplus 1)(Q_1 \oplus 1)(x_2 \oplus 1)) \oplus$$

$$\oplus \ ((Q_{\scriptscriptstyle 3} \oplus \ 1)(Q_{\scriptscriptstyle 2} \oplus \ 1)(Q_{\scriptscriptstyle 1} \oplus \ 1)x_{\scriptscriptstyle 2}) \ \oplus \ ((Q_{\scriptscriptstyle 3} \oplus \ 1)(Q_{\scriptscriptstyle 2} \oplus \ 1)(x_{\scriptscriptstyle 2} \oplus \ 1)Q_{\scriptscriptstyle 1}) \ \ \oplus$$

$$\oplus \ ((Q_{\scriptscriptstyle 3} \oplus \ 1)(Q_{\scriptscriptstyle 2} \oplus \ 1)Q_{\scriptscriptstyle 1}x_{\scriptscriptstyle 2}) \ \oplus \ ((Q_{\scriptscriptstyle 3} \oplus \ 1)(Q_{\scriptscriptstyle 1} \oplus \ 1)(x_{\scriptscriptstyle 2} \oplus \ 1)Q_{\scriptscriptstyle 2})$$

Після розкриття дужок отримаємо:

Після скорочень парних термів, отримаємо:

$$f(Q_3,Q_2,Q_1,x_2) = 1 \oplus Q_3 \oplus Q_2Q_1 \oplus Q_2x_2 \oplus Q_3Q_2Q_1 \oplus Q_3Q_2x_2 \oplus Q_2Q_1x_2 \oplus Q_3Q_2Q_1x_2$$

Звідси ми можемо бачити, що поліном ϵ нелінійним: деякі мономи містять більше однієї змінної, тобто функція Y ϵ нелінійною — не входить в клас КЛ.

Функція входить в КС, якщо
$$Y(Q_3, Q_2, Q_1, x_2) = \overline{Y(\overline{Q}_3, \overline{Q}_2, \overline{Q}_1, \overline{x}_2)}$$

Тобто
$$\overline{Q_3} \overline{Q_2} \vee \overline{Q_3} \overline{Q_1} \overline{x_2} = \overline{Q_3 Q_2 \vee Q_3 Q_1 x_2}$$

Побудую таблицю істинності для функції $\overline{Q_3Q_2} \vee \overline{Q_3Q_1x_2}$ – якщо вона буде збігатися з таблицею істинності функції Y, то ця функція входить в клас КС:

Q3	Q2	Q1	X2	M
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Як можна спостерігати, таблиці істинності не збігаються, а значить

функція У не входить в клас КС.

Висновок:

Функція Y не входить в класи: K0, K1, KM, KC, KЛ – а значить функція Y, тобто D_3 за теоремою Поста-Яблонського ϵ функціонально повною.

Висновок:

На основі мікроалгоритму, я провів синтез абстрактного, а потім, структурного автомата Мілі. Для функцій переходів та виходів використовував 2 програмовані логічні матриці. Системи, які б мали найменшу кількість термів (а звідси й шин для матриці) я діставав з двох форм систем цих функцій: у формі МДНФ та у МКНФ. Мінімізацію проводив за методом Квайна (цього не показав задля збереження компактності роботи). Кожна функція виходів системи у формі МДНФ містить найменшу кількість термів, так само як і кожна функція переходів, але функція D_2 системи МДНФ та МКНФ має однакову кількість термів, але терм з МКНФ функції містив менше змінних, тому я обрав його. Провів програмування матриць та побудував КС. Розмітка станів відбувалась за кодом Грея задля протигоночного кодування. Вірність схеми продемонстрував на часових діаграмах. Також провів дослідження функції D_3 на функціональну повноту — результат: позитивний.

Рекомендована література:

Жабін В.І. Прикладна теорія цифрових автоматів: Навч. Посібник / В.І.Жабін, І.А.Жуков, І.А.Клименко, В.В.Ткаченко. – К.: Вид-во НАУ, 2009. – 364 с. (Гриф МОН України), https://www.twirpx.com/file/590265/

Дичка, І. А. Основи прикладної теорії цифрових автоматів [Електронний ресурс] : підручник / І. А. Дичка, В. П. Тарасенко, М. В. Онай ; КПІ ім. Ігоря Сікорського., https://ela.kpi.ua/items/94956eac-7ce0-4817-b489-0f01a6293e86

Комп'ютерна логіка. Частина 1. Практикум. Видання друге перероблене та доповнене. [Електронний ресурс]: навч. посібн. для здобувачів ступеня бакалавра за освітньою програмою «Комп'ютерні системи та мережі» спеціальності 123 «Комп'ютерна інженерія» / Укладачі: В. І. Жабін, В. В. Жабіна, О. А. Верба; КПІ ім. Ігоря Сікорського. — Електронні текстові дані (1 файл: 1,31 Мбайт). — Київ: КПІ ім. Ігоря Сікорського, 2023. — 91 с. (Гриф надано Методичною радою КПІ ім. Ігоря Сікорського, протокол № 5 від 29.02.2024 р.). https://ela.kpi.ua/handle/123456789/65999