Universidade do Minho

22 de julho de 2021

Exame de época especial de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2 horas

Este exame é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(1,b,D)	(1, a, D)	$(2, \Delta, E)$
2	(2, a, E)	(3,b,E)	
3	(3,b,E)	(3, a, E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}babaaabb)$.
- c) Identifique o domínio D da função g. Para cada elemento $u \in D$, determine a palavra g(u).
- **2**. Considere o alfabeto $A = \{a, b\}$ e a linguagem

$$L = \{a^n u b^n : n \in \mathbb{N}_0, u \in A^*, |u| = n\}.$$

- a) Construa uma máquina de Turing com duas fitas que reconheça L e descreva informalmente a estratégia dessa máquina.
- b) Mostre que L se reduz polinomialmente à linguagem $K = a^*$.
- **3**. Seja h a função obtida por recursão primitiva das funções $f: \mathbb{N}_0^2 \to \mathbb{N}_0, \ (x,y) \mapsto x+2y$ e $g: \mathbb{N}_0^4 \to \mathbb{N}_0, \ (x,y,z,w) \mapsto xy+w.$
 - a) Identifique a função h.
 - **b)** Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_g de minimização de g.

4. Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}aabbaaaab)$ e diga se a palavra aabbaaaab é aceite por \mathcal{T} .
- b) Para que palavras $u \in A^*$, a partir de $(0, \underline{\Delta}u)$ pode ser computada uma configuração de rejeição?
- c) Para que palavras $v \in A^*$, $(0, \underline{\Delta}v)$ é uma configuração de ciclo?
- d) Identifique a linguagem L reconhecida por \mathcal{T} .
- e) Diga, justificando, se a máquina \mathcal{T} é um algoritmo e se a linguagem L é recursiva.
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) O seguinte problema é decidível: Dada uma máquina de Turing \mathcal{T} de alfabeto A, será que $L(\mathcal{T})$ é recursivamente enumerável?
 - b) Não existe uma máquina de Turing de código

$$x^2yxyx^2yxyx^3y^2x^3yx^3yx^2yx^3yx^2y^2x^2yx^2yx^2yx^2y^2$$
.

- c) Se L e K são linguagens recursivamente enumeráveis, então LK também é recursivamente enumerável.
- d) A linguagem reconhecida pela composição sequencial $\mathcal{T}_1 \longrightarrow \mathcal{T}_2$ de duas máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 , está contida em $L(\mathcal{T}_1) \cap L(\mathcal{T}_2)$.

(FIM)

$$\text{Cotação:} \left\{ \begin{array}{l} \textbf{1.} & 3,5 \text{ valores } (1+1+1,5) \\ \textbf{2.} & 4 \text{ valores } (2,5+1,5) \\ \textbf{3.} & 3,5 \text{ valores } (1,5+1+1) \\ \textbf{4.} & 5 \text{ valores } (1+1+1+1+1) \\ \textbf{5.} & 4 \text{ valores } (1+1+1+1) \end{array} \right.$$