Beamer Report

- A Beamer template for easily positioning and manipulating content

Huangrui Mo

Institute of Mechanics, CAS

October 28, 2021

Compilation: requires LATEX environment

- 1 Just compile like an ordinary Beamer/LATEX: pdflatex+biber+pdflatex+pdflatex
- 2 Or use compilation script:
 - Windows: double click art ratex.bat.
 - Linux or MacOS: run in terminal
 - ./artratex.sh pb: full compilaiton with reference cited in biblatex format
 - ./artratex.sh p: run pdflatex only, no biber for reference
- 3 Switch to Chinese: just add the "CJK" option in "artrabeamer.tex":
 \usepackage[CJK, biber, authoryear, tikz, table, xlink] {Style/artrabeamer}
- 4 Many other functionalities: check the available options below the line \usepackage[biber, authoryear, tikz, table, xlink] {Style/artrabeamer} in "artrabeamer.tex"

Useful commands added to generic LATEX

- \enorcn{English} {Chinese}: automatically switch between English and Chinese versions
- \tikzart[t=m] { }: draw coordinate system to help you position contents
- \tikzart[t=p, x=-7, y=3, w=4] "comments" {figname}: position a picture named "figname" at location "(x,y)" with width "w=4" and comments below the picture.
- \tikzart[t=0, x=0, y=-0.8, s=0.8] {objects-such-as-tikz-diagrams}: position objects at location "(x,y)" with scaling "s=0.8"
- \tikzart[t=v, x=9.5, y=-6.5, w=0.5] {Video/vortex_preserve_geo. mp4} [\includegraphics{cover_image}]: position a video at location "(x,y)" with a cover image of width "w=0.5"
- \lolt{lowlight}, \hilt{highlight}: make the item show in different color when in different state

Smart diagrams + Position objects + Citation + Trim figures + Low/Highlight

(Reed et al. 2008, Nat. Phys.)

(Zhang et al. 2010, IDS)

(Zhang et al. 2009, JPP)

Macroscale

Smart diagrams + Position objects + Citation + Trim figures + Low/Highlight

(Reed et al. 2008, Nat. Phys.)

Microscale

(Zhang et al. 2010, IDS)

(Zhang et al. 2009, JPP)

Math + Position text + Full citation + Notes

$$\psi_I = f(\{\psi_N\}, \psi_O)$$

Introduction

- 1 Prediction step: $\psi_I^* = \left[\sum w(d_N) \psi_N \right] / \left[\sum w(d_N) \right]$
- Boundary condition enforcement step: $\psi_O = C\psi_I + RRHS$
- Correction step: $\psi_I = \left[\psi_I^* + \frac{w(d_O)}{\sum w(d_N)} \psi_O \right] / \left[1 + \frac{w(d_O)}{\sum w(d_N)} \right]$

H. Mo et al. (2018). "An immersed boundary method for solving compressible flow with arbitrarily irregular and moving geometry". In: Int. J. Numer. Methods Fluids 88.5, pp. 239-263

Туре	Example form	С					RRHS					
Dirichlet	$\psi_{\mathcal{O}}=g$	0					g					
Neumann	$\left. \frac{\partial \psi}{\partial n} \right _{O} = \left. \frac{\partial \psi_{O}}{\partial n} \right.$			1	$- \mathbf{x}_I - \mathbf{x}_O \frac{\partial \psi_O}{\partial n}$							
Robin	$\alpha\psi_{O} + \beta \left. \frac{\partial\psi}{\partial n} \right _{O} = g$	$\frac{\beta}{\beta - \boldsymbol{x}_I - \boldsymbol{x}_O \alpha}$						$\frac{- \mathbf{x}_I - \mathbf{x}_O g}{\beta - \mathbf{x}_I - \mathbf{x}_O \alpha}$				
Cauchy	$\begin{aligned} \left. \left(\boldsymbol{V} \cdot \mathbf{n} \right) \right _{\boldsymbol{x} = \boldsymbol{x}_O} &= \boldsymbol{V}_S \cdot \mathbf{n} \\ \left. \frac{\partial \left(\boldsymbol{V} \cdot \hat{\boldsymbol{t}} \right)}{\partial n} \right _{\boldsymbol{x} = \boldsymbol{x}_O} &= 0 \\ \left. \frac{\partial \left(\boldsymbol{V} \cdot \hat{\boldsymbol{t}} \right)}{\partial n} \right _{\boldsymbol{x} = \boldsymbol{x}_O} &= 0 \end{aligned}$		n_y \hat{t}_y \tilde{t}_y	$ \begin{bmatrix} n_z \\ \hat{t}_z \\ \tilde{t}_z \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} 0 \\ \hat{t}_x \\ \tilde{t}_x \end{bmatrix} $	$\begin{matrix} 0 \\ \hat{t}_y \\ \tilde{t}_y \end{matrix}$	$\begin{bmatrix} 0 \\ \hat{t}_z \\ \tilde{t}_z \end{bmatrix}$	$\begin{bmatrix} n_X \\ \hat{t}_X \\ \tilde{t}_X \end{bmatrix}$	n_y \hat{t}_y \hat{t}_y	$ \begin{bmatrix} n_z \\ \hat{t}_z \\ \tilde{t}_z \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} n_x \\ 0 \\ 0 \end{bmatrix} $	<i>n_y</i> 0 0	$\begin{bmatrix} n_z \\ 0 \\ 0 \end{bmatrix} \cdot \boldsymbol{V}_S$	

Position animation + Make Table

To play the video, the compiled PDF should be moved out from the "Tmp" directory

$m_x \times m_y$	L ₁ error	L ₁ order	L ₂ error	L ₂ order	L_{∞} error	L_{∞} order
40 × 20	3.536e-2	_	6.097e-2	_	4.105e-1	_
80×40	9.113e-3	1.956	2.497e-2	1.288	1.997e - 1	1.039
160×80	$2.034e{-3}$	2.163	6.548e-3	1.931	$5.236e{-2}$	1.931
320×160	5.114e-4	1.992	1.640e-3	1.997	1.278e - 2	2.035
640×320	1.287e-4	1.990	4.097e-4	2.001	3.119e - 3	2.034
1280×640	$3.233e{-5}$	1.993	1.024e-4	2.000	$7.818e{-4}$	1.996

Ordinary text

A 3D, high-resolution, parallelized, gas-solid flow solver

- Establishes a numerical framework for the direct simulation of gas-solid flows.
- Solves coupled and interface-resolved fluid-fluid, fluid-solid, and solid-solid interactions.
- Addresses shocked flow conditions, irregular and moving geometries, and multibody contact and collisions.

Advancement in understanding particle clustering and jetting

- Demonstrates a valid statistical dissipative property in solving explosively dispersed granular materials with respect to Gurney velocity.
- Extends the time range of the velocity scaling law with regard to Gurney energy in the Gurney theory from the steady-state termination phase to the unsteady evolution phase.
- Proposes an explanation for particle clustering and jetting instabilities to increase the understanding of experimental observations.

Thank you for your attention!

Appendix

Part I

Appendix

AppendixClassic Beamer StyleReferences

Sod's problem (Sod 1978)

$$H = 300$$

$$\rho = 1;$$
 $u = 0;$ $p = 1$ if $0 \le x < 1$
 $\rho = 0.125;$ $u = 0;$ $p = 0.1$ if $1 < x \le 2$

References I

Mo, H. et al. (2018). "An immersed boundary method for solving compressible flow with arbitrarily irregular and moving geometry". In: Int. J. Numer. Methods Fluids 88.5, pp. 239–263.

Reed, E. J. et al. (2008). "A transient semimetallic layer in detonating nitromethane". In: Nat. Phys. 4.1, p. 72.

Sod, G. A. (1978). "A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws". In: J. Comput. Phys. 27.1, pp. 1–31.

Zhang, F., A. Yoshinaka, and R. Ripley (2010). "Hybrid detonation waves in metalized explosive mixtures". In: Proc. 14th Int. Detonation Symp. Pp. 11–16.

Zhang, F., K. Gerrard, and R. C. Ripley (2009). "Reaction mechanism of aluminum-particle-air detonation". In: J. Propuls. Power 25.4, pp. 845–858.