DIGITAL CIRCUITS

Week-8, Lecture-1 Multiplexers

Sneh Saurabh 25th September, 2018

Digital Circuits: Announcements/Revision

Combinational Circuit Design

Using Multiplexers

Shannon's Expansion Theorem

Shannon's Expansion Theorem:

Any Boolean function $f(w_1, w_2, ..., w_n)$ can be written in the form:

$$f(w_1, w_2, ..., w_n) = w'_1. f(0, w_2, ..., w_n) + w_1. f(1, w_2, ..., w_n)$$

- The term $f(0, w_2, ..., w_n)$ is known as the cofactor of f with respect to w'_1 (also called **negative cofactor** with respect to w_1)
- It is obtained by replacing all occurrences of w₁ in f with 0
- It is denoted as f_{w_1} ,

- The term $f(1, w_2, ..., w_n)$ is known as the cofactor of f with respect to w_1 (also called **positive cofactor** with respect to w_1)
- It is obtained by replacing all occurrences of w₁ in f with 1
- It is denoted as f_{w_1}

$$f(w_1, w_2, ..., w_n) = w'_1.f_{w_1'} + w_1.f_{w_1}$$

Shannon's Expansion Theorem: Illustration-1

Problem:

Do Shannon's expansion of: $f = w_1 \oplus w_2$ and implement in terms of 2-to-1 MUX.

Solution:

$$f = w_1 \oplus w_2 = w_1' \cdot w_2 + w_1 w_2'$$

$$f_{w_1'} = w_2$$

$$f_{w_1} = w_2'$$

$$f = w_1' \cdot f_{w_1'} + w_1 \cdot f_{w_1}$$

Shannon's Expansion Theorem: Applied Recursively

- Shannon Expansion Theorem can be applied to the co-factors (with respect to variables present in the co-factors)
- The expansion can be done again and again to the co-factors (recursively)
 - ➤ The recursion can be stopped when co-factors consist of only one variable or constants ("0" or "1")
- Shannon Expansion when applied recursively will yield a 2-to-1 MUX implementation of a function.
- The number of 2-to-1 MUX can be reduced by sharing MUXES that realize the same function

 Complement of a variable can be realized using one 2to-1 MUX

Shannon's Expansion Theorem: Applied Recursively

Problem:

Implement the function $f = w_1w_2 + w_1w_3 + w_2w_3$ using only **2-to-1 MUX**.

Solution:

Step 1: Expand with respect to w_1

$$f = w_1' \cdot f_{w_1'} + w_1 \cdot f_{w_1}$$

$$f_{w_1'} = \mathbf{w_2}\mathbf{w_3}$$

$$f_{w_1} = w_2 + w_3 + w_2 w_3$$

Step 2: Expand each co-factors with respect to w_2

$$f_{w_1'} = w_2'.f_{w_1'w_2'} + w_2.f_{w_1'w_2}$$

$$f_{w_1'w_2'} = \mathbf{0} \qquad f_{w_1'w_2} = \mathbf{w_3}$$

$$f_{w_1} = w_2' \cdot f_{w_1 w_2'} + w_2 \cdot f_{w_1 w_2}$$

$$f_{w_1w_2}' = w_3 \quad f_{w_1w_2} = 1$$

Shannon's Expansion Theorem: Applied Recursively

Problem:

Implement the function $f = w_1w_2 + w_1w_3 + w_2w_3$ using only **4-to-1 MUX**.

Solution:

Step 1: Expand with respect to w_1

$$f = w_1' \cdot f_{w_1'} + w_1 \cdot f_{w_1}$$

$$f_{w_1'} = \mathbf{w_2}\mathbf{w_3}$$

$$f_{w_1} = w_2 + w_3 + w_2 w_3$$

Step 2: Expand each co-factor with respect to w_2

$$f_{w_1'} = w_2'.f_{w_1'w_2'} + w_2.f_{w_1'w_2}$$

$$f_{w_1'w_2'} = \mathbf{0} \qquad f_{w_1'w_2} = \mathbf{w_3}$$

$$f_{w_1} = w_2' \cdot f_{w_1 w_2'} + w_2 \cdot f_{w_1 w_2}$$

$$f_{w_1w_2} = w_3 \quad f_{w_1w_2} = 1$$

- Choosing different variables for expansion can yield different implementations.
- If the order of variables in which the function is expanded is changed, then different implementations obtained can have different costs

Problem: Compute the cost of the implementation of the function $f = w_1'w_3 + w_2w_3'$ using only 2-to-1 MUX, when the function is expanded with respect to i) w_1 ii) w_2 iii) w_3

Solution:

*i) Expand with respect to w*₁

$$f = w_1'.f_{w_1'} + w_1.f_{w_1}$$

$$f_{w'_1} = w_3 + w_2 w'_3 = (w_3 + w_2)(w_3 + w'_3)$$

$$= w_3 + w_2$$

$$f_{w_1} = \mathbf{w_2}\mathbf{w_3}'$$

Step 2: Expand each co-factor with respect to w_2

$$f_{w_1'} = w_2'.f_{w_1'w_2'} + w_2.f_{w_1'w_2}$$

$$f_{w_1'w_2'} = \mathbf{w_3} \qquad f_{w_1'w_2} = \mathbf{1}$$

$$f_{w_1} = w_2'. f_{w_1w_2'} + w_2. f_{w_1w_2}$$

$$f_{w_1w_2'} = \mathbf{0}$$
 $f_{w_1w_2} = \mathbf{w_3}'$

Problem: Compute the cost of the implementation of the function $f = w_1'w_3 + w_2w_3'$ using only 2-to-1 MUX, when the function is expanded with respect to i) w_1 ii) w_2 iii) w_3

Solution:

*i) Expand with respect to w*₁

$$f = w_1'.f_{w_1'} + w_1.f_{w_1}$$

$$f_{w_1'} = w_3 + w_2 w_3' = (w_3 + w_2)(w_3 + w_3')$$

$$= w_3 + w_2$$

$$f_{w_1} = \mathbf{w_2}\mathbf{w_3}'$$

Step 2: Expand each co-factor with respect to w₃ instead of w₂

$$f_{w_1'} = w_3' \cdot f_{w_1'w_3'} + w_3 \cdot f_{w_1'w_3}$$

$$f_{w_1'w_3'} = \mathbf{w_2} \qquad f_{w_1'w_3} = \mathbf{1}$$

$$f_{w_1} = w_3'. f_{w_1w_3'} + w_3. f_{w_1w_3}$$

$$f_{w_1w_3'} = \mathbf{w_2} \qquad f_{w_1w_3} = \mathbf{0}$$

Three 2-to-1 MUX are used instead of four

Problem: Compute the cost of the implementation of the function $f = w_1'w_3 + w_2w_3'$ using only 2-to-1 MUX, when the function is expanded with respect to i) w_1 ii) w_2 iii) w_3

Solution:

ii) Expand with respect to w₂

Similar implementation. Cost is four 2-to-1 MUXes.

Do it yourself...

Problem: Compute the cost of the implementation of the function $f = w_1'w_3 + w_2w_3'$ using only 2-to-1 MUX, when the function is expanded with respect to i) w_1 ii) w_2 iii) w_3

Solution:

iii) Expand with respect to w₃

$$f = w_3'.f_{w_3'} + w_3.f_{w_3}$$

$$f_{w_3'} = \mathbf{w_2}$$

$$f_{w_3} = \mathbf{w_1}'$$

Two 2-to-1 MUX are sufficient

Conclusions:

- The order of variables chosen in the recursive Shannon's Expansion has a big impact on the cost of implementation
- In practice, tools try out various orders and come up with a minimized implementation

Implementing Boolean Functions using Multiplexers

Problem 1: Implement the function $f(x, y, z) = \Sigma m(3,5,6,7)$ using minimum 2-to-1 MUX (do not use any other gates)

Solution:

i) Draw the K-map

\ yz				
x	00	01	11	10
0	0	0	1	0
1	0	1	1	1

ii) Take *x* as the select input of the MUX:

$$f(x, y, z) = x'(yz) + x(y + z)$$

Can be implemented using three 2-to-1 MUX

iii) Take *y* as the select input of the MUX:

$$f(x,y,z) = y'(xz) + y(x+z)$$

Can be implemented using three 2-to-1 MUX

iv) Take z as the select input of the MUX:

$$f(x, y, z) = z'(xy) + z(x + y)$$

Can be implemented using three 2-to-1 MUX

Implementing Boolean Functions using Multiplexers

Problem 2: Implement the function $f(w, x, y, z) = \Sigma m(1,4,5,7,9,12,13)$ using a 4-to-1 MUX and minimum number of 2-to-1 MUX only.

Solution:

i) Draw the K-map

• For the 4-to-1 MUX, two select signals must be chosen out of four

• There can be six different combinations: wx, xy, yz, wz, wy, xz

- Different combination can require different number of 2-to-1 MUX
- The combination with minimum number of 2-to-1 MUX must be chosen

Implementing Boolean Functions using Multiplexers

Problem 2: Implement the function $f(w, x, y, z) = \Sigma m(1,4,5,7,9,12,13)$ using a 4-to-1 MUX and minimum number of 2-to-1 MUX only.

Solution:

i) Draw the K-map

For wx:	For xy:	For yz:
00: <i>y'z</i>	00: z	00: x
01: $y' + z$	01:0	01:1
10: y'z	10:1	10:0
11: y'	11: w'z	11: w'x
For wz:	For wy:	For <i>xz</i> :
00: xy'	00: x + z	00:0
01: x + y'	01: <i>xz</i>	01: y'
10: <i>xy</i> ′	10:0	10: y'
11: y'	11: x + z	11: y' + w'

Digital Circuits: Practice Problems

Problems 4.31-4.35

from "Digital Design" – M. Morris Mano & Michael D. Ciletti, Ed-5, Pearson (Prentice-Hall).

Problems 6.3-6.10, 4.9, 4.32

from Fundamentals of Digital Logic with Verilog Design - S. Brown, Z. Vranesic

Problem: Design XNOR gate using 4:1 multiplexer

Problem: Design XNOR gate using 2:1 multiplexers

Problem: Implement the function $f(w, x, y, z) = \Sigma m(1,4,5,7,9,12,13)$ using a 8-to-1 MUX and minimum number of 2-to-1 MUX only.

Problem: Implement the function $f(w, x, y, z) = \Sigma m(1,4,5,7,9,12,13)$ using a 8-to-1 MUX and minimum number of logic-gates only.