Supplementary Appendix

Risk Aversion in Share Auctions:

Estimating Import Rents from TRQs in Switzerland.*

Samuel Häfner[†]

July 7, 2020

Contents

A	Proof of Proposition 1	2
В	Inequality Violations By Groups	11
	B.1 Bidder Groups	11
	B.2 Auction Groups	12
\mathbf{C}	An alternative functional form for the cdf of $\mathcal{D}(p)$	14
\mathbf{D}	All Estimates	16

^{*}The main paper is available at $\frac{1}{\text{https://dx.doi.org/10.2139/ssrn.3397027}}$. Replicator files incl. data set are available at $\frac{1}{\text{https://github.com/SamuelHaefner/RiskAversionInShareAuctions}}$.

[†]University of St. Gallen, School of Economics and Political Science, samuel.haefner@unisg.ch.

A Proof of Proposition 1

The proof starts with an auxiliary lemma, which gives the interim utility for any opponent strategy profile μ_{-i} and will be useful later on. To this end, I define

$$W_{i}(q|b_{i}, \mu_{-i}) = 1 - \int_{\mathcal{V}^{n-1}} \int_{\mathcal{B}^{n-1}} H_{i}^{b}(q) d\mu_{1}(b_{1}|v_{1}) ... d\mu_{i-1}(b_{i-1}|v_{i-1}) d\mu_{i+1}(b_{i+1}|v_{i+1}) ... d\mu_{n}(b_{n}|v_{n}) d\eta_{-i}(v_{-i}),$$

which returns the (decreasing) probability that the allocated quantity q_i^c for bidder i with valuation v_i strictly exceeds $q \in [0, Q]$ when the submitted demand schedule is b_i and the opponent strategy profile is μ_{-i} . Writing $V_i(q) = \int_0^q v_i(q) dq$ and $B_i(q) = \int_0^q \beta_{b_i}(q) dq$ for the respective gross valuation and gross payment accruing to bidder i, we have:

Lemma A.1. Given an opponent strategy profile $\mu_{-i} \in \mathcal{M}^{n-1}$, the interim utility $\Pi_i(b_i, v_i, \mu_{-i})$ for bidder $i \in \{1, ..., n\}$ of type v_i when submitting a bid schedule $b_i \in \mathcal{B}$ is

$$\Pi_i(b_i, v_i, \mu_{-i}) = \sum_{j=1}^k \int_{q^{j-1}}^{q^j} \phi'(V_i(q) - B_i(q)) \left[v_i(q) - p_i^j \right] W_i(q|b_i, \mu_{-i}) dq.$$
(A.1)

Proof of Lemma A.1. Let

$$H_i^{(b_i,v_{-i})}(q) = \int_{\mathcal{B}^{n-1}} H_i^{(b_i,b_{-i})}(q) d\mu_1(b_1|v_1)...d\mu_{i-1}(b_{i-1}|v_{i-1}) d\mu_{i+1}(b_{i+1}|v_{i+1})...d\mu_n(b_n|v_n)$$
(A.2)

be the distribution of the quantity q_i^c that bidder i submitting b_i receives when his opponents play according to their strategies in μ_{-i} and the opponent type profile is v_{-i} . Combining (1) and (A.2), the interim utility $\Pi_i(b_i, v_i, \mu_{-i})$ of player i can be written as

$$\Pi_i(b_i, v_i, \mu_{-i}) = \int_{\mathcal{V}^{n-1}} \int_0^Q \phi(V_i(q) - B_i(q)) \, dH_i^{(b_i, v_{-i})}(q) \, d\eta_{-i}(v_{-i}). \tag{A.3}$$

Because $\phi(V_i(q) - B_i(q))$ is continuous and $H^{(b_i,v_{-i})}(q)$ is monotone, the inner integral of the right-hand side in (A.3) can be integrated by parts (cf. Apostol, 1974, Theorem 7.6),

yielding

$$\Pi_{i}(b_{i}, v_{i}, \phi, \mu_{-i}) = \int_{\mathcal{V}^{n-1}} \left[-\int_{0}^{Q} \phi'(V_{i}(q) - B_{i}(q)) \left[v_{i}(q) - \beta_{b_{i}}(q) \right] H_{i}^{(b_{i}, v_{-i})}(q) dq + \phi(V_{i}(q) - B_{i}(q)) H^{(b_{i}, v_{-i})}(q) \Big|_{0}^{Q} \right] d\eta_{-i}(v_{-i}).$$
(A.4)

We can rewrite (A.4) as

$$\Pi_{i}(b_{i}, v_{i}, \mu_{-i}) = -\int_{\mathcal{V}^{n-1}} \int_{0}^{Q} \phi'(V_{i}(q) - B_{i}(q)) \left[v_{i}(q) - \beta_{b_{i}}(q)\right] \times H_{i}^{(b_{i}, v_{-i})}(q) dq d\eta_{-i}(v_{-i}) + \phi(V_{i}(Q) - B_{i}(Q)). \quad (A.5)$$

Because $f(v_{-i}, q) = \phi'(V_i(q) - B_i(q)) [v_i(q) - \beta_i(q)] H^{(b_i, v_{-i})}(q)$ is measurable and bounded on $\mathcal{V}^{n-1} \times [0, Q]$, the Fubini-Tonelli theorem (cf. Rudin, 1970, Theorem 8.8) can be applied to get that (A.5) is

$$\Pi_{i}(b_{i}, v_{i}, \mu_{-i}) = -\int_{0}^{Q} \phi'(V_{i}(q) - B_{i}(q)) \left[v_{i}(q) - \beta_{b_{i}}(q)\right] \times \int_{\mathcal{V}^{n-1}} H^{(b_{i}, v_{-i})}(q) d\eta_{-i}(v_{-i}) dq + \phi(V_{i}(Q) - B_{i}(Q)). \quad (A.6)$$

By definition we have

$$W_i(q|b_i, \mu_{-i}) = 1 - \int_{v_{n-1}} H^{(b_i, v_{-i})}(q) d\eta_{-i}(v_{-i}),$$

which allows to rewrite (A.6) as

$$\Pi_{i}(b_{i}, v_{i}, \mu_{-i}) = -\sum_{j=1}^{k+1} \int_{q_{i}^{j-1}}^{q_{i}^{j}} \phi'(V_{i}(q) - B_{i}(q)) \left[v_{i}(q) - p_{i}^{j}\right] (1 - W_{i}(q|b_{i}, \mu_{-i})) dq + \phi(V_{i}(Q) - B_{i}(Q)),$$

yielding (A.1), because $W_i(q|b_i, \mu_{-i}) = 0$ for all $q \in (q_i^k, Q]$ holds by assumption.

Now, for finite natural h, let $\mathcal{B}_{i,h}$ be a discrete action space for bidder i defined as

$$\mathcal{B}_{i,h} = \left\{ \left\{ p_i^j, q_i^j \right\}_{j=1,\dots,k} \in [P_{i,h} \times Q_h]^k : p_i^j \ge p_i^{j+1}, q_i^j \le q_i^{j+1}, q_i^{k+1} = Q, p_i^{k+1} = 0 \right\},$$

where

$$P_{i,h} = \left\{0, \frac{i}{nh^2}, \frac{1}{h}\left[\overline{p} + \frac{i}{nh}\right], \frac{1}{h}\left[2\overline{p} + \frac{i}{nh}\right], \dots, \frac{1}{h}\left[(h-1)\overline{p} + \frac{i}{nh}\right]\right\}$$

$$Q_h = \left\{\frac{Q}{h}, 2\frac{Q}{h}, 3\frac{Q}{h}, \dots, Q\right\}.$$

For h large enough we have $\mathcal{B}_{i,h} \subset \mathcal{B}$. Moreover, $\lim_{h\to\infty} \mathcal{B}_{i,h} = \mathcal{B}$. The strategy of the proof is to first establish existence of an equilibrium μ_h^* in the restricted auction with bidder-specific action spaces $\mathcal{B}_{i,h}$ and, second, to use these equilibria to construct a sequence μ_h^* of equilibria whose limit μ^* is an equilibrium of the unrestricted auction with action space \mathcal{B} for all bidders. For this approach it is crucial that ties cannot occur at positive prices by the construction of the action spaces $\mathcal{B}_{i,h}$ (cf. the proof to Lemma A.3 below).

Let $\mathcal{M}_{i,h}$ be the space of distributional strategies on $\mathcal{B}_{i,h} \times \mathcal{V}$ for player i. The next Lemma, which is a direct application of Milgrom and Weber (1985), establishes existence of an equilibrium μ_h^* in the restricted auction for any $h \in \mathbb{N}_+$.

Lemma A.2. There is an equilibrium $\mu_h^* \in \times_{i \in \{1,...,n\}} \mathcal{M}_{i,h}$ in the restricted auction for any h.

Proof. It follows from the Helly's selection theorem (Rudin, 1964) that \mathcal{V} is compact, and thus complete and separable. Because the action spaces $\mathcal{B}_{i,h}$ are finite, they are compact and condition (a) in Proposition 1 of Milgrom and Weber (1985) is satisfied. Together with the type space assumption (A1) the assumptions of Theorem 1 in Milgrom and Weber (1985) are thus satisfied, and we have existence of an equilibrium that we denote by μ_h^* .

Having existence of an equilibrium $\mu_h^* \in \times_{i \in \{1,\dots,n\}} \mathcal{M}_{i,h}$ allows me to show existence of an equilibrium with a distinct structure that we will need in the following. For $q \in Q_h$, let

$$\theta_i(q; v_i) = \max \{ p \in P_{i,h} : p \le v_i(q - Q/h) \},$$

and let $\bar{\mathcal{M}}_{i,h} \subset \mathcal{M}_{i,h}$ be the set of strategies on

$$\{(b_i, v_i) \in \mathcal{B}_{i,h} \times \mathcal{V} : \beta_{b_i}(q) \le \theta_i(q; v_i), \ \forall q \in Q_h\}.$$

That is, the support of the strategies in $\bar{\mathcal{M}}_{i,h}$ consists of bids such that, in the limit $h \to \infty$, the corresponding step functions lie weakly below the marginal valuation function. For

further reference, let $\bar{\mathcal{M}} = \lim_{h\to\infty} \bar{\mathcal{M}}_{i,h} \subseteq \mathcal{M}$ be the strategy space in this limit, which is independent of the bidder's identity, because $\lim_{h\to\infty} \mathcal{B}_{i,h} = \mathcal{B}$ as observed above.

Lemma A.3. An equilibrium μ_h^* satisfying $\mu_h^* \in \times_{i \in \{1,...,n\}} \bar{\mathcal{M}}_{i,h}$ exists for any h.

Proof. Fix an equilibrium $\mu_h^* \in \times_{i \in \{1,...,n\}} \mathcal{M}_{i,h}$. I first argue that it is without loss of generality to assume that all bids b_i in the support of the equilibrium strategy of any bidder i with valuation $v_i \in V$ satisfy

$$q_i^j \leq q_i^{j+1} - Q/h$$
 whenever $p_i^j > 0$

for all $j \in \{1, ..., k-1\}$. To see this, consider a bid b_i for which this is not the case, that is, suppose we have b_i with $q_i^j = q_i^{j+1}$ for at least one $j \in \{1, ..., k-1\}$. As the price-quantity-pairs (p_i^{j+1}, q_i^{j+1}) will be ignored by the auctioneer and there is zero probability to win a quantity q for which the price bid is zero, such a bid b_i yields the same payoff as a bid b_i' that is equal to b_i except that the price-quantity-pairs (p_i^{j+1}, q_i^{j+1}) are deleted and there is an equal number of price-quantity pairs (0, Q) appended at the end. For example, if there is one such pair j, then we have

$$b_i' = \left\{ (p_i^1, q_i^1), ..., (p_i^j, q_i^j), (p_i^{j+2}, q_i^{j+2}), ..., (p_i^k, q_i^k), (0, Q) \right\}.$$

Any bid b'_i that is thus altered does not change the utility of the other players, and hence for any equilibrium strategy $\mu^*_{i,h}$ having b_i in its support there is an alternative strategy $\mu'_{i,h}$ constructed from $\mu^*_{i,h}$ with all the mass on b_i appropriately shifted to b'_i , so that $\mu^{*'}_h = (\mu'_{i,h}, \mu^*_{-i})$ is also an equilibrium.

So, suppose $b_i = \{(p_i^1, q_i^1), ..., (p_i^k, q_i^k)\} \in \mathcal{B}_{i,h}$ with $q_i^j \leq q_i^{j+1} - Q/h$ for $j \in \{1, ..., \ell_i - 1\}$ where $\ell_i \leq k$, and, if $\ell_i < k$, with $(p_i^j, q_i^j) = (0, Q)$ for $j \in \{\ell_i + 1, ..., k\}$ is in the support of the equilibrium strategy of bidder i with valuation v_i . I now show that $\beta_{b_i}(q) \leq \theta_i(q; v_i)$ holds for all $q \in Q_h$. By optimality, we get from interim utility (A.1) that is holds, for any $j \in \{1, ..., \ell_i\}$ (taking $q_i^{k+1} = Q$ and $p_i^{k+1} = 0$),

$$\int_{q_{i}^{j-1}}^{q_{i}^{j}} \phi' \left(V_{i}(q) - B_{i}(q) \right) \left[v_{i}(q) - p_{i}^{j} \right] W_{i}^{j}(q|b_{i}, \mu_{-i}) dq
+ \int_{q_{i}^{j}}^{q_{i}^{j+1}} \phi' \left(V_{i}(q) - B_{i}(q) \right) \left[v_{i}(q) - p_{i}^{j+1} \right] W_{i}^{j+1}(q|b_{i}, \mu_{-i}) dq \ge
\int_{q_{i}^{j-1}}^{q_{i}^{j} - Q/h} \phi' \left(V_{i}(q) - B_{i}(q) \right) \left[v_{i}(q) - p_{i}^{j} \right] W_{i}^{j}(q|b'_{i}, \mu_{-i}) dq
+ \int_{q_{i}^{j} - Q/h}^{q_{i}^{j+1}} \phi' \left(V_{i}(q) - B_{i}(q) \right) \left[v_{i}(q) - p_{i}^{j+1} \right] W_{i}^{j+1}(q|b'_{i}, \mu_{-i}) dq, \quad (A.7)$$

where b'_i is equal to b_i except for the j-th quantity point, q_i^j , which is replaced by $q_i^j - Q/h$.

Because ties at positive prices cannot happen and no quantities for which the price bid is zero are ever allocated, the probability to win a certain quantity only depends on the price bid for that quantity. That is, we have $W_i^j(q|b_i,\mu_{-i})=W_i^j(q|b_i',\mu_{-i})$ on $[q_i^{j-1},q_i^j-Q/h]$ and $W_i^{j+1}(q|b_i,\mu_{-i})=W_i^{j+1}(q|b_i',\mu_{-i})$ on $[q_i^j,q_i^{j+1}]$. Consequently, it follows from (A.7) that

$$\int_{q_{i}^{j}-Q/h}^{q_{i}^{j}} \phi'\left(V_{i}(q)-B_{i}(q)\right) \left[v_{i}(q)-p_{i}^{j}\right] W_{i}^{j}(q|b_{i},\mu_{-i}) dq$$

$$\geq \int_{q_{i}^{j}-Q/h}^{q_{i}^{j}} \phi'\left(V_{i}(q)-B_{i}(q)\right) \left[v_{i}(q)-p_{i}^{j+1}\right] W_{i}^{j+1}(q|b_{i}',\mu_{-i}) dq. \quad (A.8)$$

First, consider step $j = \ell_i$. Because no quantities for which a prize of zero is bid are ever won, condition (A.8) becomes

$$\int_{q_i^{\ell_i} - Q/h}^{q_i^{\ell_i}} \phi'(V_i(q) - B_i(q)) \left[v_i(q) - p_i^{\ell_i} \right] W_i^{\ell_i}(q|b_i, \mu_{-i}) dq \ge 0,$$

which together with the assumptions that $\phi'(.) > 0$ and that the marginal value v_i is decreasing gives us that

$$p_i^{\ell_i} \le v_i (q_i^{\ell_i} - Q/h) \tag{A.9}$$

must hold.

But with inequality (A.9) at hand, I can now argue that $p_i^j \leq v_i(q_i^j - Q/h)$ must hold for every $j \in \{1, ..., \ell_i\}$: Suppose, to the contrary, that it does not hold for some $j < \ell_i$; i.e., we have $p_i^j > v_i(q_i^j - Q/h)$. Because v_i is decreasing, this implies that the left side of (A.8) is strictly negative, so that it must hold that $p_i^{j+1} > v_i(q_i^j)$, which is necessary for right side of (A.8) to be strictly negative, too. But because $q_i^j \leq q_i^{j+1} - Q/h$ holds and v_i is decreasing, $p_i^{j+1} > v_i(q_i^j)$ in turn implies that $p_i^{j+1} > v_i(q_i^{j+1} - Q/h)$ holds, as well. Repeating this for every j' > j, ultimately yields $p_i^{\ell_i} > v_i(q_i^{\ell_i} - Q/h)$, which contradicts (A.9). As we can apply this argument to any $j < \ell_i$, we get that

$$p_i^j \le v_i(q_i^j - Q/h), \ \forall j \in \{1, ..., k\}$$

must hold for any v_i , thus giving us the claim.

Next, consider a sequence of auctions with restricted action space $\times_{i \in \{1,...,n\}} \mathcal{B}_{i,h}$ having equilibria $\mu_h^* \in \times_{i \in \{1,...,n\}} \bar{\mathcal{M}}_{i,h}$ for $h \to \infty$. Because the space \mathcal{M} of probability measures on $\mathcal{B} \times \mathcal{V}$ is compact in the weak*-topology (Milgrom and Weber, 1985), the sequence $\mu_h^* \in \times_{i \in \{1,...,n\}} \bar{\mathcal{M}}_{i,h} \subset \mathcal{M}^n$ has a converging subsequence. Pick such a subsequence and suppose it

converges to some μ^* . By Remark 3.1 in Reny (1999) μ^* is an equilibrium in the unrestricted auction if the unrestricted auction with strategy space $\bar{\mathcal{M}}^n$ is better reply secure and if for every $\epsilon > 0$ there is H > 0 such that for all h > H the profile μ_h^* in the respective subsequence is an ϵ -equilibrium of the unrestricted auction. In the following I write $U_i(\mu) = \int \Pi_i(b_i, v_i, \mu_{-i}) d\mu_i$ for player i's payoff function, where Π_i is player i's interim utility as defined in Lemma A.1.

Definition 1 (Better-Reply Security, cf. Reny 1999). Game $G = (\bar{\mathcal{M}}, U_i)_{i \in \{1, \dots, n\}}$ where each player $i = 1, \dots, n$ has a strategy space $\bar{\mathcal{M}}$ and a payoff function $U_i(\mu)$, $\mu \in \bar{\mathcal{M}}^n$, is better-reply secure if whenever (μ^*, u^*) is in the closure of the graph of its vector payoff function U, $\{(\mu, u) : u = U(\mu)\}$, and μ^* is not a Nash equilibrium, then some player i can secure a payoff strictly above u_i^* at μ^* : There exists some $\tilde{\mu}_i$ such that $U_i(\tilde{\mu}_i, \mu_{-i}) > u_i^*$ for all μ_{-i} in some open neighborhood of μ^*_{-i} .

Definition 2 (ϵ -equilibrium). A strategy profile $\mu \in \bar{\mathcal{M}}^n$ is an ϵ -equilibrium of game $G = (\bar{\mathcal{M}}, U_i)_{i \in N}$ if for all players $i \in N$ it holds $U_i(\hat{\mu}_i, \mu_{-i}) - U_i(\mu) \leq \epsilon$ for every $\hat{\mu}_i \in \bar{\mathcal{M}}$.

Step I: Better-Reply Security. I start by showing better reply security, for which I adapt the argument given in Reny (1999) for the multi-unit auction case. For opponent profile $\mu_{-i} \in \bar{\mathcal{M}}^{n-1}$, let

$$B^{\epsilon}(\mu_{-i}) = \left\{ \mu_i \in \bar{\mathcal{M}} : \left| U_i(\mu_i, \mu_{-i}) - \sup_{\tilde{\mu}_i \in \bar{\mathcal{M}}} U_i(\tilde{\mu}_i, \mu_{-i}) \right| \le \epsilon \right\}$$

be the set of strategies μ_i that yield utility within $\epsilon > 0$ of the supremum. The following observation is needed below.

Lemma A.4. Fix $\tilde{\mu}_{-i} \in \bar{\mathcal{M}}^{n-1}$. Then, for every $\epsilon > 0$ sufficiently small and for any $\mu_i \in B^{\epsilon}(\tilde{\mu}_{-i})$, $U_i(\mu_i, \mu_{-i})$ is continuous in μ_{-i} at $(\mu_i, \tilde{\mu}_{-i})$.

Proof. By contradiction. Take $\mu_i \in B^{\epsilon}(\tilde{\mu}_{-i})$ and suppose $U_i(\mu_i, \mu_{-i})$ is not continuous in μ_{-i} at $(\mu_i, \tilde{\mu}_{-i})$. If $U_i(\mu_i, \mu_{-i})$ is not continuous in μ_{-i} at $(\mu_i, \tilde{\mu}_{-i})$, then there must be a bidder $j \in \{1, ..., n\} \setminus i$ and a clearing price p^c such that bidder i and bidder j tie at p^c with positive probability. That is, there are $X, Y \subset \mathcal{V}$ with $\eta_i(X), \eta_j(Y) > 0$ such that both bidders have price points $p_i^{m_i} = p^c$ and $p_j^{m_j} = p^c$ (where the steps m_i and m_j might be distinct for the two bidders) in the support of their strategies $\mu_i(.|v_i)$ and $\mu_j(.|v_j)$ whenever they are of a type $v_i \in X$ and $v_j \in Y$, respectively.

The discontinuity together with the fact that $\sum_{i \in N} q_i^c = Q$ implies that at least one tying bidder is rationed with positive probability. Without loss suppose this to be bidder i. From Assumption (A4) we then obtain that the expected allocated quantity lies in

 $[q_i^{m_i-1}, \min\{q_i^j, Q - \lim_{p \searrow p^c} \sum_i \beta_{b_i}^{-1}(p)\})$. Moreover, (A4) implies that bidder i could secure a quantity of at least $\min\{q_i^j, Q - \lim_{p \searrow p^c} \sum_i \beta_{b_i}^{-1}(p)\}$ by marginally raising the price point $p_i^{m_i}$. Now, recall that it follows from (A2) that there are $X', X'' \subset X_1$ with $\eta_i(X'), \eta_i(X'') > 0$ where $\forall f \in X'$ and $\forall g \in X''$ it holds that $f(q) > g(q), \forall q \in [0,1]$. Because ϕ is strictly increasing, this gives us that there is indeed a set of bidder i types with strictly positive measure that strictly prefer to avoid the tie by marginally raising $p_i^{m_i}$. As the increase in utility is strict, we have, for any $\epsilon > 0$ sufficiently small, a contradiction to the assumption that $\mu_i \in B^{\epsilon}(\tilde{\mu}_{-i})$.

Next, consider some (μ^*, u^*) which is in the closure of the graph of the payoff function (i.e., there is a sequence $\mu_m \to \mu^*$ such that $u^* = \lim_{m \to \infty} U(\mu_m)$) without μ^* being an equilibrium. To show better-reply security, we need to establish that there is some bidder i that can secure a payoff strictly above u_i^* by deviating from μ_i^* even if the other bidders also slightly deviate. Two cases need to be considered: (i) U(.) is continuous at μ^* and (ii) U(.) is not continuous at μ^* .

- (i) Consider first the case of U(.) being continuous at μ^* . Then there is a bidder i, an $\epsilon > 0$ small enough, and some $\mu_i \in B^{\epsilon}(\mu_{-i}^*)$ such that $U_i(\mu_i, \mu_{-i}^*) > U(\mu^*) = u^*$. As $U_i(\mu_i, .)$ is continuous at μ_{-i}^* by Lemma A.4, we have better reply security.
- (ii) Second, consider the case of U(.) being discontinuous at μ^* : There must be at least two bidders i and j, a clearing price p^c , and a sequence $\mu_m \to \mu^*$ such that both bidders have a positive measure of types that have price points $p_i^{t_i} = p^c$ and $p_j^{t_j} = p^c$ (where the steps t_i and t_j might be distinct for the two bidders) in the support of their strategies in the limit μ^* but do not tie at p^c for any μ_m along the sequence whenever m is sufficiently high. Without loss, suppose $p_i^{t_i} < p_j^{t_j}$ for any μ_m with sufficiently high m.

To continue, observe that there is some sufficiently small $\epsilon > 0$ and some $\hat{\mu}_i \in B^{\epsilon}(\mu_{-i}^*)$ such that $U_i(\hat{\mu}_i, \mu_{-i}^*) > U_i(\mu^*)$, which, by the same argument as in the proof to Lemma A.4, involves a positive mass of types marginally increasing the price point which was equal to the clearing price p^c . But then, $\hat{\mu}_i$ yields for these types a strictly higher utility than $\mu_{i,m}$ does against $\mu_{-i,m}$ for any sufficiently high m (because by marginally raising the respective price point discontinuously raises the winning probability for the respective quantities for all sufficiently high m); i.e. there is $\delta > 0$ and M > 0 such that

$$U_i(\hat{\mu}_i, \mu_{-i,m}) - U_i(\mu_m) > \delta, \forall m > M.$$

Because $U_i(\hat{\mu}_i, \mu_{-i})$ is continuous in μ_{-i} at μ_{-i}^* by Lemma A.4, it follows that

$$U_i(\hat{\mu}_i, \mu_{-i}^*) > \lim_{m \to \infty} U_i(\mu_m) = u_i^*,$$

giving us better-reply security in this case, too.

Step II: ϵ -Equilibria. I follow Reny (2011) and show that for every $\epsilon > 0$ there is h high enough such that for every feasible action b_i there is a feasible action $b_{i,h}$ such that the ex-post loss from choosing $b_{i,h}$ rather than b_i is smaller than ϵ , and that this holds uniformly in the strategies μ_{-i} of the other players.

Fix some finite natural h, some bidder i with type (v_i, ϕ) and any b_i for which it holds that $\beta_{b_i}(q) \leq \theta_i(q; v_i)$, $\forall q \in Q_h$. If $b_i \in \mathcal{B}_{i,h}$ then we are done. So consider $b_i \notin \mathcal{B}_{i,h}$. Let

$$b_i = \{(p_i^1, q_i^1), ..., (p_i^k, q_i^k)\},\$$

and define

$$b_{i,h} = \{(p_{i,h}^1, q_{i,h}^1), ..., (p_{i,h}^k, q_{i,h}^k)\},$$

with

$$p_{i,h}^{j} = \min \left\{ p \in P_{i,h} : p \ge p_{i}^{j} \right\}$$

$$q_{i,h}^{j} = \max \left\{ q \in Q_{h} : q \le q_{i}^{j} \text{ and } p_{i,h}^{j} \le v_{i}(q - Q/h) \right\},$$

for all $j \in \{1, ..., k\}$. Above definitions guarantee that $\beta_{b_{i,h}}(q) \leq \theta_i(q, v_i)$ holds for all $q \in Q_h$, and hence that $b_{i,h}$ is a feasible action, as well as that $q_{i,h}^j \to q_i^j$. The ex-post loss sources from switching from b_i to $b_{i,h}$ are threefold:

1. There might be shares q at which it holds that $\beta_{b_{i,h}}(q) > \beta_{b_i}(q)$ and that are won under b_i , that are also won under b_i^h yet at a higher price. The loss from such quantities is bounded above by

$$\phi\left(V_{i}(q_{i}^{k}) - B_{i}(q_{i}^{k})\right) - \phi\left(V_{i}(q_{i}^{k}) - B_{i}(q_{i}^{k}) - \sum_{j=1}^{k} (q_{i}^{j} - q_{i}^{j-1}) \frac{\overline{p}}{h}\right). \tag{A.10}$$

2. There might be shares q at which it holds that $\beta_{b_{i,h}}(q) > v_i(q) \ge \beta_{b_i}(q)$ and that are not won under b_i , but that are won under b_i^h . The loss from such quantities is also bounded above by

$$\phi\left(V_{i}(q_{i}^{k}) - B_{i}(q_{i}^{k})\right) - \phi\left(V_{i}(q_{i}^{k}) - B_{i}(q_{i}^{k}) - \sum_{j=1}^{k} (q_{i}^{j} - q_{i}^{j-1}) \frac{\overline{p}}{h}\right). \tag{A.11}$$

3. There might be shares q at which it holds that $\beta_{b_{i,h}}(q) < \beta_{b_i}(q)$ and that are won under b_i , but that are not won under b_i^h . The loss from such quantities is bounded above by

$$\sum_{j=1}^{k} \int_{q_{i,h}^{j}}^{q_{i}^{j}} \phi' \left(V_{i}(q) - B_{i}(q) \right) v_{i}(q) dq.$$
(A.12)

All three bounds (A.10)–(A.12) vanish as $h \to \infty$ independently, and hence uniformly, in the strategies μ_{-i} of the other players, because $\phi'(.)$ is bounded on \mathbb{R} . Consequently, we have that μ_h^* is a sequence of ϵ -equilibria of the unrestricted auction where $\epsilon \to 0$ when $h \to \infty$, as required.

We can conclude that an equilibrium exists. Moreover, absence of ties follows from the same argument as in the proof of Lemma A.4: If a tie were to happen with positive probability than there would always be a non-negligible set of types for at least one of the bidders that strictly prefer to avoid the tie.

B Inequality Violations By Groups

B.1 Bidder Groups

Table 1 reports the estimated values of $\Theta_g(\rho)$ across the three groups g = 1, 2, 3 that I use for estimation. For a discussion, see the main text, Section 5.2.

Table 1: The three table describe the estimate of $\Theta(\rho)$ for the three different bidder groups used for estimation.

Group 1			Group 2			Group 3		
ρ	Theta	se	ρ	Theta	se	ρ	Theta	se
0.0	0.5209	0.01503	0.0	0.4971	0.01409	0.0	0.4866	0.01892
4.54e - 5	0.4736	0.0139	4.54e - 5	0.3369	0.01272	4.54e - 5	0.2988	0.01775
7.485e - 5	0.4496	0.01341	7.485e - 5	0.2945	0.01278	7.485e - 5	0.2756	0.01733
0.0001234	0.4184	0.01251	0.0001234	0.2522	0.01259	0.0001234	0.2601	0.01714
0.0002035	0.3817	0.01177	0.0002035	0.2152	0.01203	0.0002035	0.2453	0.01582
0.0003355	0.3405	0.01097	0.0003355	0.1858	0.01101	0.0003355	0.2433	0.01594
0.0005531	0.2977	0.01009	0.0005531	0.1672	0.01227	0.0005531	0.256	0.01711
0.0009119	0.2569	0.009342	0.0009119	0.1597	0.01289	0.0009119	0.2798	0.01501
0.001503	0.2218	0.008908	0.001503	0.1679	0.0138	0.001503	0.3007	0.0128
0.002479	0.1945	0.009117	0.002479	0.1927	0.01444	0.002479	0.3302	0.01375
0.004087	0.1783	0.009188	0.004087	0.2348	0.01503	0.004087	0.3768	0.01581
0.006738	0.1755	0.009987	0.006738	0.2915	0.01497	0.006738	0.4336	0.01557
0.01111	0.1874	0.01088	0.01111	0.3614	0.01636	0.01111	0.4842	0.0154
0.01832	0.2142	0.01208	0.01832	0.4412	0.01558	0.01832	0.5394	0.01844
0.0302	0.2564	0.01219	0.0302	0.5211	0.01731	0.0302	0.5805	0.01606
0.04979	0.3088	0.01199	0.04979	0.5945	0.01836	0.04979	0.607	0.01475
0.08208	0.3714	0.01348	0.08208	0.6495	0.01614	0.08208	0.6261	0.01363
0.1353	0.4429	0.01523	0.1353	0.6821	0.01382	0.1353	0.6412	0.01323
0.2231	0.5163	0.01563	0.2231	0.6997	0.01203	0.2231	0.6523	0.0132
0.3679	0.5787	0.01534	0.3679	0.7078	0.01035	0.3679	0.6618	0.01196
0.6065	0.6277	0.01455	0.6065	0.712	0.00939	0.6065	0.6702	0.01116
1.0	0.6633	0.01329	1.0	0.7151	0.00895	1.0	0.6763	0.01076

B.2 Auction Groups

Figure 1 and Table 2 compare the inequality violations, $\Theta(\rho)$, across the three different auction groups that I use for estimation. The estimate $\Theta(\rho)$ is U-shaped in all three groups. The values of ρ that minimize the estimated $\Theta(\rho)$ differ between groups 1 – 2, where the minimum is at $\rho = 0.0025$, and group 3 where the minimum is at $\rho = 0.0111$. Nevertheless, the 95% confidence around the values of Θ at $\rho^* = 0.0041$ (corresponding to $\ln(\rho) = -4.5$) for either of these groups overlap with those around their respective minima.

Figure 1: The figure show the fraction of inequality violations, $\Theta(\rho)$, for the different auction groups used for estimation.

Table 2: The three table describe the estimate of $\Theta(\rho)$ for the three different auction groups used for estimation.

Group 1			Group 2			Group 3		
ρ	Theta	se	ρ	Theta	se	ρ	Theta	se
0.0	0.6147	0.02368	0.0	0.5098	0.02186	0.0	0.4575	0.02615
4.54e - 5	0.5336	0.02077	4.54e - 5	0.4317	0.01983	4.54e - 5	0.4273	0.02513
7.485e - 5	0.4989	0.01894	7.485e - 5	0.4015	0.01922	7.485e - 5	0.4143	0.02464
0.0001234	0.4556	0.01743	0.0001234	0.3653	0.01791	0.0001234	0.3972	0.02368
0.0002035	0.409	0.01643	0.0002035	0.3254	0.01663	0.0002035	0.3752	0.02222
0.0003355	0.3592	0.01512	0.0003355	0.2851	0.01519	0.0003355	0.3474	0.0208
0.0005531	0.3116	0.01382	0.0005531	0.2477	0.0139	0.0005531	0.3145	0.01898
0.0009119	0.2701	0.01404	0.0009119	0.2148	0.01314	0.0009119	0.2805	0.0164
0.001503	0.2387	0.01506	0.001503	0.1912	0.01368	0.001503	0.2465	0.0136
0.002479	0.2231	0.01649	0.002479	0.1783	0.01536	0.002479	0.2131	0.01035
0.004087	0.2252	0.01795	0.004087	0.1802	0.01629	0.004087	0.1825	0.008568
0.006738	0.2458	0.01891	0.006738	0.1963	0.01797	0.006738	0.1603	0.009067
0.01111	0.279	0.02042	0.01111	0.2266	0.01925	0.01111	0.1526	0.009824
0.01832	0.3212	0.02126	0.01832	0.2714	0.02017	0.01832	0.1617	0.01169
0.0302	0.3752	0.02455	0.0302	0.3268	0.01881	0.0302	0.1881	0.01442
0.04979	0.4387	0.02671	0.04979	0.3837	0.01752	0.04979	0.2304	0.01761
0.08208	0.5068	0.02876	0.08208	0.4443	0.01785	0.08208	0.285	0.02218
0.1353	0.5748	0.02735	0.1353	0.5064	0.0188	0.1353	0.3534	0.0295
0.2231	0.6339	0.02364	0.2231	0.5687	0.01857	0.2231	0.4276	0.0339
0.3679	0.6757	0.01853	0.3679	0.6199	0.01683	0.3679	0.4971	0.03683
0.6065	0.7031	0.015	0.6065	0.6577	0.01536	0.6065	0.559	0.0368
1.0	0.7197	0.01238	1.0	0.6837	0.01344	1.0	0.609	0.0349

C An alternative functional form for the cdf of D(p)

Figure 2 shows the estimates of $\Theta(\rho)$ under the assumption that the residual demand D(p) follows a log normal distribution on $(0, \infty)$. As under the assumption of a gamma distribution, the lowest value of $\Theta(\rho)$ is at $\rho = 0.0041$. The numbers in Table 3 below show that the fraction of best response violations is comparable under the two assumptions.

Figure 2: The graph show $\Theta(\rho)$ when when W_i^* and w_i^* are estimated under the assumption of a log normal distribution for D(p).

Table 3: The tables show the values of $\Theta(\rho)$ when W_i^* and w_i^* are estimated under the assumption of a log normal distribution for D(p) and when assuming a gamma distribution (as in the main text).

Log Normal			_	Gamma		
ρ	Theta	se		ρ	Theta	se
0.0	0.4933	0.01318		0.0	0.5172	0.01399
4.54e - 5	0.436	0.0117		4.54e - 5	0.4527	0.0125
7.485e - 5	0.4135	0.01131		7.485e - 5	0.4265	0.01202
0.0001234	0.3858	0.01099		0.0001234	0.3943	0.01121
0.0002035	0.3543	0.01055		0.0002035	0.3581	0.01048
0.0003355	0.3205	0.009955		0.0003355	0.3193	0.009631
0.0005531	0.2859	0.009527		0.0005531	0.2808	0.008858
0.0009119	0.2538	0.008919		0.0009119	0.2456	0.008331
0.001503	0.2264	0.008752		0.001503	0.2172	0.00817
0.002479	0.2067	0.008579		0.002479	0.1976	0.008675
0.004087	0.1975	0.00867		0.004087	0.19	0.008902
0.006738	0.2	0.008971		0.006738	0.1959	0.009611
0.01111	0.2155	0.009619		0.01111	0.2158	0.01053
0.01832	0.2433	0.01071		0.01832	0.2498	0.01147
0.0302	0.2833	0.01087		0.0302	0.2966	0.01158
0.04979	0.3311	0.01133		0.04979	0.3509	0.01158
0.08208	0.3848	0.01227		0.08208	0.4115	0.0128
0.1353	0.4435	0.01329		0.1353	0.4769	0.01418
0.2231	0.5041	0.01405		0.2231	0.542	0.01445
0.3679	0.5571	0.01369		0.3679	0.5965	0.01408
0.6065	0.6008	0.01355		0.6065	0.639	0.01331
1.0	0.6346	0.01286		1.0	0.6699	0.01225

D All Estimates

The following table reports the estimated bounds for all auctions t=1,...,39. The estimates are obtained using the standard bounds (Tight = no) both under risk neutrality ($\rho=0$) and under risk aversion ($\rho=\rho^*$), as well as using the tighter bounds (Tight = yes) under risk aversion. Estimates are bagged from 200 bootstrap runs.

	1	AvP_l^{pr}	e		AvP_u^{pr}	e		AvP_l^{pos}	t		AvP_u^{pr}	e		AvP_l^{ratio}	2	A	AvP_u^{rati}	o
ρ	0	ρ^*	ρ^*	0	ρ^*	ρ^*	0	$ ho^*$	$ ho^*$	0	ρ^*	ρ^*	0	$ ho^*$	$ ho^*$	0	ρ^*	ρ^*
Tight	no	no	yes	no	no	yes	no	no	yes	no	no	yes	no	no	yes	no	no	yes
Auction																		
1	8.18	7.869	7.924	12.84	12.73	9.29	0.3666	0.05637	0.1112	5.031	4.918	1.476	0.03475	0.006726	0.01635	0.459	0.4551	0.2127
2	10.13	7.395	7.525	14.79	12.99		2.939	0.2058	0.3359		5.796		0.1735	0.01805	0.04121	0.522	0.4985	0.3064
3	6.472	6.345	6.399	11.43	11.4	7.69	0.1728	0.04578	0.1004	5.136	5.106	1.391	0.02726	0.00844	0.01674	0.5222	0.5213	0.239
4	10.12	9.926	9.99	15.79	15.75	11.81	0.2475	0.05823	0.1224	5.924	5.887	1.943	0.02323	0.005147	0.01431	0.4226	0.4216	0.1923
5	18.22	11.77	11.95	22.25	19.64	16.71	8.437	1.981	2.167	12.46	9.851	6.93	0.4474	0.08165	0.1003	0.5711	0.5117	0.3956
6	8.703	7.425	7.493	13.46	12.83	9.517	1.43	0.1516	0.2202	6.182	5.555	2.244	0.1485	0.0153	0.03031	0.4607	0.4391	0.2517
7	9.985	9.69	9.768	15.06	15.0	11.24	0.3565	0.06131	0.1389	5.434	5.374	1.615	0.0399	0.01038	0.02489	0.4154	0.4132	0.1878
8	17.04	12.55	12.72	22.69	22.25	20.0	5.445	0.9587	1.126	11.1	10.65	8.402	0.333	0.0668	0.08103	0.4992	0.4868	0.4043
9	16.04	10.43	10.53	20.34	17.68	14.5	7.638	2.022	2.125	11.93	9.271	6.092	0.3995	0.1159	0.1397	0.5914	0.5474	0.4226
10	7.465	7.326	7.386	12.83	12.81	8.82	0.1813	0.04281	0.1028	5.55	5.528	1.536	0.02576	0.00643	0.01509	0.4775	0.4769	0.2194
11	5.219	4.934	5.81	11.71	11.63	8.459	0.3308	0.04565	0.9224	6.824	6.741	3.571	0.08944	0.01574	0.06477	0.5985	0.5959	0.3748
12	7.504	7.382	7.433	14.04	14.03	9.094	0.1453	0.02302	0.07362	6.681	6.666	1.735	0.01488	0.003806	0.01276	0.489	0.4885	0.2231
13	6.197	6.11	6.152	11.26	11.24	7.458	0.1173	0.02972	0.07189	5.184	5.164	1.377	0.02496	0.006095	0.01359	0.5155	0.5141	0.2303
14	7.037	6.604	6.688	12.81	12.69	8.244	0.476	0.04249	0.1266	6.247	6.132	1.682	0.03561	0.006373	0.01538	0.557	0.5551	0.2627
15	9.294	8.656	8.718	15.82	15.62	10.69	0.7008	0.06261	0.125	7.23	7.025	2.101	0.06068	0.007708	0.02027	0.4981	0.4919	0.2471
16	17.2	10.73	10.85	21.53	17.12	14.13	7.831	1.367	1.484	12.17	7.753	4.76	0.412	0.07337	0.09211	0.5779	0.5254	0.3726
17	11.0	9.37	9.473	15.27	14.53	11.47	1.763	0.138	0.2406	6.037	5.294	2.234	0.09015	0.008592	0.02457	0.4667	0.4566	0.2384
18	11.79	8.669	8.808	16.3	14.99	11.87	3.46	0.3384	0.4778	7.972	6.662	3.538	0.2363	0.02189	0.04351	0.5059	0.4746	0.3007
19	7.664	6.799	6.869	15.13	14.84	9.399	0.9601	0.09521	0.165	8.423	8.139	2.694	0.1054	0.014	0.03081	0.5556	0.5468	0.298
20	7.303	6.608	6.673	13.13	12.8	8.373	0.7546	0.05938	0.1238	6.58	6.252	1.824	0.0775	0.009585	0.02269	0.5497	0.5421	0.2752
21	7.47	7.045	7.132	13.81	13.7	8.917	0.4717	0.04722	0.1343	6.813	6.7	1.919	0.043	0.005939	0.0165	0.5565	0.5536	0.2839
22	9.043	8.476	8.505	13.62	13.07	9.713	0.6614	0.09433	0.1229	5.238	4.687	1.331	0.07024	0.006143	0.01896	0.4979	0.4885	0.232
23	9.891	8.629	8.675	14.86	14.11	10.31	1.523	0.2612	0.3074	6.494	5.74	1.944	0.1114	0.01873	0.03459	0.4861	0.4743	0.2503
24	15.13	12.01	12.15		20.74		3.74	0.6269	0.7619	10.13	9.351	5.852	0.2185	0.03028	0.04898	0.4798	0.463	0.3284
25	19.46	13.45	13.52	22.77	21.69	18.87	10.36	4.345	4.414	13.67	12.59	9.765	0.523	0.1835	0.2008	0.6079	0.5792	0.4943
			18.77		22.56		6.876	4.811	4.836	9.017			0.3072	0.2021	0.2076	0.3949		0.365
27		16.71		23.0		22.34	2.635	1.92	1.983	8.213			0.1777	0.1331	0.1419	0.3607		0.341
		6.842			12.09				0.09916					0.006989	0.01513		0.5037	
29		5.123			9.412			0.08683	0.1899		4.376		0.1279	0.01718	0.04596		0.4919	
30		6.053			12.97				0.08172	7.003				0.006492	0.01672		0.5215	
31		9.853		23.0		15.42			0.03125	13.16				0.003995		0.57		0.3262
32		17.74			22.92		8.159	6.205	6.29	11.44			0.3908	0.3097	0.3243		0.5074	
		14.33		23.0			1.528	0.8556	0.8568				0.09153	0.06139	0.06368			
34		8.502			13.42			0.07708	0.137	5.248				0.009089	0.02618		0.4475	
35		7.462			13.32		2.842	0.2058	0.2884	7.669			0.2432	0.02453	0.04451		0.5057	
36		13.76		23.0		19.46	0.9989	0.8507	0.8664	10.09			0.1052	0.0862	0.09111		0.4393	
37		11.0			16.66		5.041	1.062	1.118	9.462			0.3078	0.06711	0.08129		0.4487	
38		14.68			20.81		8.19	3.666	3.709	11.59			0.4247	0.169	0.1905		0.4967	
39	13.96	13.93	13.93	23.0	23.0	22.57	0.2851	0.2533	0.2557	9.327	9.327	6.894	0.0163	0.01481	0.01516	0.4059	0.4059	0.3778

The following table reports the standard errors of the estimated bounds for all auctions t = 1, ..., 39. These are bootstrap standard errors obtained from 200 bootstrap estimates.

1. 1. 1. 1. 1. 1. 1. 1.			AvP_l^{pre} (se)			AvP_u^{pre} (se)			AvP_l^{post} (se)			AvP_u^{pre} (se)			$\begin{array}{c} AvP_l^{ratio} \\ \text{(se)} \end{array}$			AvP_u^{ratio} (se)	
1. 1. 1. 1. 1. 1. 1. 1.	d	0	*•	*0		* 0	*0	0	*•	*0	0	*\d	* 0	0	*0		0	* 0	* 0
1, 12, 12, 12, 12, 12, 12, 12, 12, 12,	Tight		ou	yes		ou	yes	ou	ou	yes	ou	ou	yes	ou	ou		ou	ou	yes
0.675.9 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747 0.0481 0.04814	Auc.	0.082	0.02044	7 02654	0.09911	0.06946	0.08218		- 1	02654	0.09911	0.06946	0.08218	0.007614	0.001939		0.003921	0.003093	0.006988
0.04317 0.04849 <t< td=""><td>- 2</td><td>0.8739</td><td>0.1747</td><td>0.1772</td><td>0.936</td><td>0.5259</td><td>0.5209</td><td></td><td></td><td>0.1772</td><td>0.936</td><td>0.5259</td><td>0.5209</td><td>0.03248</td><td>0.008981</td><td></td><td>0.01882</td><td>0.0146</td><td>0.02218</td></t<>	- 2	0.8739	0.1747	0.1772	0.936	0.5259	0.5209			0.1772	0.936	0.5259	0.5209	0.03248	0.008981		0.01882	0.0146	0.02218
0.137 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.137 0.1384 0.0384 0		0.04615	0.006491	0.02315		0.04807	0.08133		_	0.02315	0.05662	0.04807	0.08133	0.00693	0.001243	0.002538	0.001902	0.001593	0.005419
1.15 1.15 1.25 1.26 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.0	4	0.1371		0.09793		0.6661	0.7336		_	09793	0.6615	0.6661	0.7336	0.0061	0.001329	0.005095	0.004443	0.00436	0.01055
0.0256 0.1090 0.1000<	ro	1.515		1.262		1.248	1.431	1.515	1.277	1.262	0.6213	1.248	1.431	0.05117	0.05576	0.05344	0.01064	0.02399	0.04356
1.51.2 1.02 0.01476 0.0248 0.	9	0.356	0.1079	0.1089	0.4297	0.3016	0.3025		0.1079	0.1089	0.4297	0.3016	0.3025	0.02736	0.005797	0.006685	0.01675	0.01332	0.01961
1.51 1.02 1.03 1.040	7		0.004786	0.0319	$^{\circ}$	0.055	0.1378		0.004786	0.0319	0.07615	0.055		0.008771	0.002701	0.007195	0.005746	0.00532	0.01073
1.122 1.0056 1.0138 1.0138 1.0148.2 1.0148 1.104 1.115 1.112 1.1138 1.113 1.11	∞	1.813	0.9374	0.956		0.4034	0.8577		0.9374	0.956	0.2805	0.4034	0.8577	0.0735	0.05125	0.04994	0.003978	0.009659	0.03597
0.05112 0.002633 0.021013 0.04823 0.02013 0.02013 0.02013 0.02013 0.02013 0.02013 0.02003 0.02013 0.02003 0.02013 0.02003 0.02013 0.02003 0.02013 0.02003 0.02013 0.02003 0.02013 0.02003 0.02	6	1.122	1.036	1.031		1.06	1.101		1.036	1.031	1.006	1.06	1.101	0.0356	0.04663	0.04612	0.01782	0.02106	0.0341
0.00933 0.8563 0.8563 0.0364 0.0344 0.04733 0.8563 0.0304 0.03473 0.05783 0.03594 0.03404 0.04733 0.04033 0.000050 0.00039 0.00039 0.000050 0.00039 0.	10			0.02116			0.0659		_	0.02116	0.04882	0.04019		0.006921	0.001022	0.00254	0.002257	0.00203	0.006091
0.00399 0.004615 0.01366 0.00428 0.00569 0.007610 0.00399 0.004507 0.01049 0.00428 0.00389 0.00428 0.00389 0.004507 0.01049 0.00489 0.00499 0.	11	0.07363		0.8563	0.3501	0.3404	0.4273		0.02133	0.8563	0.3501	0.3404	0.4273	0.01818	0.005076	0.01601	0.006653	0.005978	0.01711
0.00237 0.00248 0.00258 0.00258 0.00258 0.0258 0.0258 0.0258 0.00258 0.0	12		0.004615	0.01365		0.03559	0.07601		0.004615	0.01365	0.04238	0.03559	0.07601	0.004239	0.0007951	0.001795	0.001935	0.001743	0.005445
0.09939 0.004637 0.094639 0.004637 0.004639 0.004637 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004639 0.004637 0.004639	13			0.01041	0.06488		0.1318		0.002237	0.01041	0.06488	0.06267	0.1318	0.004073	0.0005396	0.001385	0.002277	0.002117	0.004867
0.01594 0.014854 0.01596 0.1462 0.019378 0.1063 0.01485 0.01289 0.01083 0.01083 0.01083 0.01083 0.01083 0.01083 0.01083 0.01083 0.01083 0.01084 0.01089 0.00084 0.01893 0.0189 <td>14</td> <td>0.09939</td> <td>0.004507</td> <td>0.02982</td> <td>0.09059</td> <td>0.06208</td> <td>0.07521</td> <td></td> <td>0.004507</td> <td>0.02982</td> <td>0.09059</td> <td>0.06208</td> <td>0.07521</td> <td>0.006366</td> <td>0.0005299</td> <td>0.001681</td> <td>0.002374</td> <td>0.00189</td> <td>0.004932</td>	14	0.09939	0.004507	0.02982	0.09059	0.06208	0.07521		0.004507	0.02982	0.09059	0.06208	0.07521	0.006366	0.0005299	0.001681	0.002374	0.00189	0.004932
1.744 0.9555 0.941 0.9556 0.941 0.9556 0.941 0.9556 0.941 0.9556 0.941 0.9451 0.9451 0.9451 0.9451 0.9451 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.9458 0.0458 0.0487 0.0489 0.0487 0.0489	15	0.1594		0.02569		0.09358	0.1063	0.1594		0.02569	0.1462	0.09358	0.1063	0.01425	0.0008613	0.002482	0.004829	0.003213	0.007176
0.05645 0.07791 0.08797 0.08979 0.08987 0.7389 0.8889 0.3389 0.3389 0.03791 0.00202 0.00203 0.	16	1.749	0.9595	0.9417	0.9884	0.9451	1.109		0.9595	0.9417	0.9884	0.9451	1.109	0.06026	0.03973	0.04128	0.01299	0.01837	0.03868
0.0558 0.0254 0.2584 0.2584 0.2584 0.2584 0.0497 0.01497 0.01065 0.0118 0.01497 0.01065 0.0118 0.01497 0.01497 0.01085 0.0284 0.00864<	17	0.5645		0.09374	0.6087	0.3699	0.3933		_	0.09374	0.6087	0.3699	0.3933	0.02762	0.002419	0.004271	0.01237	0.009269	0.01763
0.0253 0.02543 0.02543 0.02543 0.02543 0.02042 0.02043 0.02043 0.02043 0.02040 0.02059 0.000849 0.000 0.1181 0.02134 0.0214 0.0214 0.0214 0.0214 0.02034 0.000 0.0224 0.0269 0.0249 0.0024 0.0224 0.0224 0.0224 0.0269 0.0249 0.0034	18	0.9563		0.2593	0.9789	0.6887			0.2549	0.2593	0.9789	0.6887	0.7019	0.04497	0.01065	0.01218	0.0225	0.0169	0.02683
0.0112 0.0321 0.03754 (0.1156 0.1148 0.1142 0.03221 0.03754 (0.1152 0.1144 0.1142 0.1444 0.1142 0.11	19	0.2536		0.06635	0.2784	0.1786	0.1801		_	0.06635	0.2784	0.1786	0.1801	0.02122	0.004037	0.005995	0.008649	0.006452	0.014
0.00348 0.002568 0.02578 <	20	0.1812		0.03754	0.21	0.1156	0.1148		_	0.03754	0.21	0.1156	0.1148	0.01333	0.002694	0.003529	0.005984	0.004439	0.008716
0.2739 0.07002 0.07702 0.07702 0.02703 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02172 0.02182 0.02172 0.02182 0.02172 0.02182 0.02182 0.02172 0.02182 0.02182 0.02172 0.02182 0.00182 <th< td=""><td></td><td>0.09129</td><td></td><td>0.02274</td><td>0.1262</td><td>0.1055</td><td>0.1141</td><td></td><td>_</td><td>0.02274</td><td>0.1262</td><td>0.1055</td><td>_</td><td>0.007726</td><td>0.0004105</td><td>0.001885</td><td>0.00344</td><td>0.002898</td><td>0.005872</td></th<>		0.09129		0.02274	0.1262	0.1055	0.1141		_	0.02274	0.1262	0.1055	_	0.007726	0.0004105	0.001885	0.00344	0.002898	0.005872
0.6328 0.1036 0.2040 0.0087 0.0087 0.0087 0.01359 0.01359 0.01359 0.01359 0.01359 0.01359 0.0087 0.01359 0.0141 0.01444 0.01541 0.01444 0.01444 0.05541 0.01444 0.01444 0.05541 0.01444 0.01444 0.05541 0.01444 0.01444 0.05541 0.01444 0.01444 0.05541 0.01444 0.01444 0.05441 0.01444 0.05441 0.01452 0.01444 0.05441 0.05953 0.01444 0.05441 0.0545	22			0.07288	0.5856	0.2172	0.1274		_	0.07288	0.5856	0.2172	0.1274	0.0245	0.003067	0.00502	0.01196	0.007084	0.01397
1.4 0.4048 0.4083 0.8862 1.219 0.4084 0.70351 0.01984 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01954 0.01852 0.06954 0.06954 0.0854 0.0854 0.0854 0.0854 0.0854 0.01854 0.00914 0.0578 0.0257 0.00917 0.06958 0.0134 0.0144 0.0578 0.0402 0.06924 0.0299 0.00917 0.0257 0.0292 0.00917 0.0144 0.0578 0.0426 0.00917 0.00948 0.0157 0.0294 0.0144 0.0544 0.0578 0.00929 0.0002176	23	0.0	0.1961	0.1987	0.6204	0.2352	0.2489		0.1961	0.1987	0.6204	0.2352	0.2489	0.03272	0.006874	0.009482	0.01359	0.009339	0.01818
1.381 2.009 2.008 2.008 2.008 0.03695 0.03095 0.0813 0.006993 0.00 1.341 2.009 2.008 2.008 1.144 1.365 1.144 1.368 0.03998 0.00917 0.009928 0.009928 0.009928 0.009928 0.009928 0.009928 0.009928 0.009928 0.009928 0.009928 0.009928 0.009928 0.0144 0.05748 0.03997 0.009928 0.009928 0.0159 0.02997 0.009928 0.0159 0.02997 0.009928 0.0159 0.02947 0.02997 0.02997 0.009928 0.0159 0.02997 0.02997 0.009928 0.0159 0.02997 0.009928 0.0174 0.02997 0.009928 0.0159 0.02997 0.009928 0.00929 0.009928 0.009928 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 <td>24</td> <td></td> <td>0.4048</td> <td>0.4008</td> <td></td> <td>0.8862</td> <td>1.219</td> <td></td> <td>0.4048</td> <td>0.4008</td> <td>0.7393</td> <td>0.8862</td> <td>1.219</td> <td>0.06551</td> <td>0.01984</td> <td>0.01947</td> <td>0.01563</td> <td>0.01995</td> <td>0.04691</td>	24		0.4048	0.4008		0.8862	1.219		0.4048	0.4008	0.7393	0.8862	1.219	0.06551	0.01984	0.01947	0.01563	0.01995	0.04691
1.041 1.834 0.01444 0.05598 0.05939 0.01444 0.05799 0.04039 0.009209	25		2.009	2.008		1.164	1.368		2.009	2.008	0.3625	1.164	1.368	0.03095	0.08296	0.08131	0.006963	0.01961	0.03545
0.9798 1.13 1.121 0.01444 0.05748 0.04402 0.05523 0.05523 0.05524 0.0002176 0.000 0.0913 0.0913 0.01444 0.05748 0.04402 0.05524 0.05523 0.05524 0.000524 0.000454 0.000 0.0913 0.002688 0.114 0.0297 0.0239 0.114 0.0239 0.114 0.0234 0.00447 0.0294 0.005523 0.01056 0.0294 0.0294 0.00523 0.01059 0.0294 0.00523 0.01059 0.0294 0.00403 0.00403 0.0044 0.0044 0.00523 0.01059 0.0294 0.00403 0.00403 0.0044 0.0044 0.00523 0.01059 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00523 0.00403 0.00523 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403 0.00403	26		1.834	1.831		0.5817	0.9651		1.834	1.831	0.1167	0.5817	0.9651	0.03598	0.06917	0.06795	0.001852	0.009277	0.0205
0.0913 0.005688 0.01579 0.02997 0.02997 0.009090 0.00153 0.004054 0.009 0.0913 0.009688 0.01579 0.02997 0.02997 0.009090 0.00152 0.004054 0.00 0.174 0.0253 0.174 0.0253 0.1513 0.0447 0.6184 0.6596 0.02503 0.0152 0.00377 0.006885 0.0152 0.00 0.174 0.0253 0.01408 0.01403 0.0244 0.6184 0.6596 0.03504 0.00337 0.00488 0.0113 0.0447 0.0183 0.0403 0.00333 0.0113 0.003503 0.00493 0.00349 0.00340 0.00340 0.00340 0.00340 0.00340 0.00340 0.00340 0.00340 0.00404 0.00340 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404 0.00404	27	0.9798	1.13	1.121	0.01341	0.01444	0.05748			1.121	0.01341	0.01444	_	0.04402	0.05923	0.05829	0.0002176	0.0002218	0.0009213
0.174 0.02539 0.1513 0.0447 0.0539 0.1513 0.04250 0.00350 0.0150 0.00503 0.0150 0.00503 0.0150 0.00503 0.0150 0.00503 0.0150 0.00503 0.0150 0.00503 0.01402 0.00503 0.0141 0.0250 0.0033 0.01403 0.01403 0.01403 0.00503 0.00503 0.00452 0.00353 0.01403 0.00503 0.00503 0.00452 0.00504 0.00553 0.001409 0.00503	28	0.0913	0.009688	0.01579	0.2947	0.279	0.2997	_	_	0.01579	0.2947	0.279		0.007919	0.0009209	0.00153	0.004054	0.002785	0.00585
0.05356 0.0033 0.10156 0.09203 0.08613 0.1412 0.08613 0.1412 0.08613 0.1412 0.00534 0.00255 0.000525 0.00165 0.000535 0.00165 0.0025 0.00165 0.0025 0.0016 0.0054 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00534 0.00545 0.00534 0.00534 0.00545 0.00534 0.00534 0.00545 0.00534 0.00544 0.00545 0.00455 0.00454 0.00545 0.00454 0.00545 0.00454 0.00454 0.00545 0.00445 0.00544 0.00544 0.00545 0.00444 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00444 0.00544 0.01	29			0.1513		0.6184	0.6696			0.1513	0.6447	0.6184	_	0.02505	0.003077	0.006885	0.01522	0.01285	0.02284
0.05341 0.07534 0.07534 0.07534 0.07534 0.094035 0.02443 0.02443 0.02434 0.07534 0.01365 0.01365 0.01365 0.003433 0.0113e 1.13e	30	0.05356		0.01056	0.09203	0.08613	0.1412		_	0.01056	0.09203	0.08613		0.006348	0.0005253	0.001649	0.002586	0.002237	0.005589
1.481 2.066 2.068 0.05117 0.1581 0.0544 0.0544 0.0704 0.0704 0.07049 0.00499 0.7142 0.5889 0.5901 0.0142 0.0589 0.5901 0.0589 0.5901 0.0582 0.5901 0.00409 0.0586 0.03408 0.03408 0.03231 5.656-17 <t< td=""><td>31</td><td>0.05341</td><td>0.007593</td><td>0.02414</td><td>0.0</td><td>0.0</td><td>0.04035</td><td>_</td><td>_</td><td>0.02414</td><td>0.0</td><td>0.0</td><td>0.04035</td><td>0.01365</td><td>0.002453</td><td>0.003393</td><td>1.113e - 16</td><td>1.113e - 16</td><td>0.003827</td></t<>	31	0.05341	0.007593	0.02414	0.0	0.0	0.04035	_	_	0.02414	0.0	0.0	0.04035	0.01365	0.002453	0.003393	1.113e - 16	1.113e - 16	0.003827
0.7142 0.5889 0.5901 0.0 0.1425e - 14 0.7142 0.5889 0.5901 0.562e - 15 3.562e - 15 3.562e - 15 0.03408 0.03563 0.037129 0.565e - 17 5.565e - 17<	32		2.066	2.068		0.1581	0.3748		2.066	2.068	0.05117	0.1581	0.3748	0.05444	0.07004	0.06781	0.001499	0.0035	0.01196
0.226 0.04175 0.04888 0.236 0.04175 0.04888 0.2397 0.1109 0.1207 0.01974 0.003563 0.00174 0.003563 0.00174 0.003 0.8886 0.1836 0.1836 0.1836 0.1836 0.1836 0.1836 0.1836 0.1836 0.1836 0.1836 0.1836 0.1836 0.1836 0.04609 0.04526 0.04526 0.01332 0.01332 0.00332 0.0 0.3867 0.3867 0.3869 0.4009 0.0 0.01035 0.0424 0.0424 0.0429 0.0429 0.0426 0.0332 0.0 1.351 0.6823 0.4009 0.0 0.01035 0.0424 0.04244 0.04345 0.02449 0.02449 0.0444	33		0.5889	0.5901	0.0			0.7142	0.5889	0.5901		3.562e - 153	.562e - 15	0.03408	0.03239			5.565e - 17	1.67e - 16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	0.226		0.04868	0.2397		0.1207	0.226	_	0.04868	0.2397	0.1119	0.1207	0.01974	0.003563	0.007129	0.01074	0.007417	0.01218
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35		0.1836	0.1809	1.063	0.4609	0.4526		0.1836	0.1809	1.063	0.4609	0.4526	0.04622	0.01322	0.01339	0.02382	0.01583	0.02601
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36		0.3959	0.4009	0.0	0.0	0.01035	0.3667	0.3959	0.4009	0.0	0.0	0.01035	0.04244	0.04092		5.565e - 17	5.565e - 17	9.346e - 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1.351	0.6823	0.6802	1.302	0.9698	0.9745		0.6823	0.6802	1.302	0.9698	0.9745	0.0514	0.03445	0.03384	0.02499	0.02425	0.03746
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	38		1.702	1.694		0.7793	1.152		1.702	1.694	0.5981	0.7793	1.152	0.04368	0.09039	0.08825	0.007146	0.016	0.04552
	39	0.1937	0.1629	0.166	0.0	0.0		0.1937	0.1629	0.166	0.0	0.0 1	.781e - 15	0.01041	0.009554				$-16\ 1.67e-16$

References

- APOSTOL, T. M. (1974): Mathematical Analysis, Addison Wesley Publishing Company.
- MILGROM, P. R. AND R. J. WEBER (1985): "Distributional Strategies for Games with Incomplete Information," *Mathematics of Operations Research*, 10, 619–632.
- RENY, P. J. (1999): "On the Existence of Pure and Mixed Strategy Equilibria in Discontinuous Games," *Econometrica*, 67, 1029–1056.
- ——— (2011): "On the Existence of Monotone Pure-Strategy Equilibria in Bayesian Games," *Econometrica*, 79, 499–553.
- Rudin, W. (1964): Principles of Mathematical Analysis, vol. 3, McGraw-Hill New York.
- ——— (1970): Real and Complex Analysis, McGraw-Hill.