1 Problem 3

1.1 Algorithm

We will work to fill a set C with stable, matched pairs $C \subseteq S \times I$ of coordinated departures in which set S holds scheduled students and I is the set of interviewers.

- 1. For each $s \in S$, have s create a preference list of interviewers where s' earliest interviewer is most preferred and the student's subsequent interviewers decrease in preference (i.e. student s' last interviewer is least preferred by s)
- 2. For each $i \in I$, have i create a preference list of students where i's earliest student is least preferred and subsequent students in the interviewer's schedule increase in preference
- 3. Apply the G-S algorithm to build the set of matched pairs C
- 4. Return C

1.2 Runtime

Assume we are given a valid interview schedule of students and interviewers. Creating a preference list for a student s takes O(n) as we iterate through n interviewers in schedule order. Because we must make a list for all n students, runtime of step 1 is $O(n^2)$. Similarly, creating a preference list for an interviewer i takes O(n) as we iterate through n students in reverse schedule order. Because we must make a list for all n interviewers, runtime of step 2 is $O(n^2)$. It was given in class that the G-S algorithm runs in $O(n^2)$ for sets of size n. Hence, our total running time is $O(n^2 + n^2 + n^2)$ or simply $O(n^2)$.

1.3 Correctness

We will show correctness using a proof by contradiction. Let C denote the set constructed by our algorithm from the set of students S and the set of interviewers I. Let (s_i, i_j) , in which $C \subseteq S \times I$, where $s_i \in S$ for $i \in [1, n]$ and $i_j \in I$ for $j \in [1, n]$ denote its elements. Let us call a matching stable if it does not exhibit the following instability

- 1. Some student s whose schedule has not yet been truncated (and so is still following his/her original schedule) shows up for an interview with an interviewer whos already left for the day. There exists two pairs $(s,i),(s',i') \in C$, in which if student s leaves with interviewer i, i misses interviewing student s', whose schedule was not yet truncated.
- **Lemma 1.** Given any valid schedule, there exists a stable matching that arranges a valid set the coordinated departures of the interviewers and students.

Proof of Lemma 1. To prove the algorithm will always produce a stable matching, we will prove by contradiction that the stated instability is unattainable.

There exists two pairs $(s,i),(s',i') \in C$, in which when student s leaves with interviewer

i, i misses interviewing student s', whose schedule was not yet truncated. It follows that s' prefers i and i prefers s', which contradicts our original assumption of stable matches (s,i),(s',i'). Thus, the instability is impossible.