Le sujet comprend 8 pages numérotées de 1 à 8.

On désigne par \mathbb{N}^* l'ensemble des entiers $\geqslant 1$. On notera $d \mid n$ la relation de divisibilité entre deux entiers d et n. On appelle fonction arithmétique tout élément de $\mathcal{F}(\mathbb{N}^*,\mathbb{C})$. On munit $\mathcal{F}(\mathbb{N}^*,\mathbb{C})$ d'une loi de composition interne * appelée convolution et définie par

$$(f * g)(n) := \sum_{d|n} f(d)g(n/d),$$

où la somme porte sur l'ensemble des diviseurs d de n. On admettra que la convolution est bien une opération interne et qu'elle est commutative et associative.

On appelle série de Dirichlet associée à f la série, dépendant d'un paramètre réel s,

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s}.$$

On note L(s, f) la somme de cette série en tout point de convergence $s \in \mathbb{R}$. On considère la fonction $\tau_k \in \mathcal{F}(\mathbb{N}^*, \mathbb{C})$ définie par $\tau_k = \mathbf{1} * \cdots * \mathbf{1}$ où $\mathbf{1} \in \mathcal{F}(\mathbb{N}^*, \mathbb{C})$ désigne la fonction constante valant 1. Lorsque $n \in \mathbb{N}^*$, on a donc

signe la fonction constante valant 1. Lorsque
$$n \in \mathbb{N}^*$$
, on a donc
$$\tau_k(n) = \sum_{\substack{(m_1, \dots, m_k) \in (\mathbb{N}^*)^k \\ m_1 \cdots m_k = n}} 1 = \operatorname{card}\{(m_1, \dots, m_k) \in (\mathbb{N}^*)^k : m_1 \cdots m_k = n\}.$$

Ainsi $\tau_2(n)$ désigne le nombre de diviseurs de l'entier n et $\tau_1(n) = 1$ pour tout $n \in \mathbb{N}^*$.

On note $D_k(s,f) = L(s,\tau_k f)$ la somme de la série de Dirichlet associée au produit (classique) $\tau_k f$ des fonctions arithmétiques τ_k et f en tout point de convergence $s \in \mathbb{R}$. Finalement, étant donné un nombre premier p, on introduit la fonction $\mu_p : \mathcal{F}(\mathbb{N}^*, \mathbb{C}) \to \mathbb{C}$ définie par

$$\mu_p(f) := \sum_{k=1}^p f(k).$$

Le but de ce problème est d'étudier dans quel cas une fonction $f \in \mathcal{F}(\mathbb{N}^*, \mathbb{C})$ qui est p-périodique satisfait $D_k(1, f) = 0$. On obtiendra un résultat complet lorsque f est à valeurs dans \mathbb{Q} .

On introduit aussi la somme $S_f : \mathbb{R}^+ \to \mathbb{C}$ appelée fonction sommatoire associée à la fonction arithmétique $f \in \mathcal{F}(\mathbb{N}^*, \mathbb{C})$ définie par

$$S_f(x) := \sum_{1 \leqslant n \leqslant x} f(n),$$

où $x \in \mathbb{R}^+$. La sommation sur les entiers n tels que $1 \le n \le x$ signifie que l'on somme n entre 1 et [x] où [x] désigne la partie entière de x.

I-Séries de Dirichlet et formules de sommation.

Soit p un nombre premier. On note $\mathfrak{F}(\mathbb{Z},K)$ l'ensemble des applications de \mathbb{Z} dans K où K est un corps qui pourra être \mathbb{R} , \mathbb{C} ou \mathbb{Q} et $\mathcal{F}_p^-(\mathbb{Z},K)$ l'ensemble des éléments de $\mathcal{F}(\mathbb{Z},K)$ qui sont de plus impairs et p-périodiques.

- 1. Lorsque $f \in \mathcal{F}_p^-(\mathbb{Z}, \mathbb{C})$, montrer que l'on a $\mu_p(f) = 0$.
- 2. Sommation d'Abel. Soient $g:[1,+\infty[\to\mathbb{C}$ une fonction dérivable sur l'intervalle $[1,+\infty[$ tout entier et $h\in\mathcal{F}(\mathbb{N}^*,\mathbb{C})$ une fonction arithmétique. Montrer que l'identité suivante est valable pour tout $x \ge 1$,

$$\sum_{1 \leqslant n \leqslant x} h(n)g(n) = S_h(x)g(x) - \int_1^x S_h(t)g'(t) dt.$$

(3) La méthode de l'hyperbole. Montrer que pour toutes $f,g \in \mathcal{F}(\mathbb{N}^*,\mathbb{C})$ et tous $x, y \in \mathbb{R}$ tels que $1 \leq y \leq x$ on a :

$$S_{f*g}(x) = \sum_{1 \leqslant n \leqslant y} g(n)S_f(x/n) + \sum_{1 \leqslant n \leqslant x/y} f(n)S_g(x/n) - S_f(x/y)S_g(y).$$

4. a) Soient $f \in \mathcal{F}(\mathbb{N}^*, \mathbb{C})$ bornée et s > 1. Montrer que la série

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$

est absolument convergente. On note L(f,s) sa somme.

b) Soient f et g dans $\mathcal{F}(\mathbb{N}^*,\mathbb{C})$. Montrer que lorsque les séries $\sum_{i=1}^{\infty} \frac{f(n)}{n^s}$

et $\sum_{s=1}^{\infty} \frac{g(n)}{n^s}$ sont absolument convergentes, alors la série $\sum_{s=1}^{\infty} \frac{(f*g)(n)}{n^s}$ est encore absolument convergente.

c) On appelle fonction complètement multiplicative une fonction $f \in \mathcal{F}(\mathbb{N}^*, \mathbb{C})$ vérifiant f(mn) = f(n)f(m) pour tous $m, n \in \mathbb{N}^*$. Soit $f \in \mathcal{F}(\mathbb{N}^*, \mathbb{C})$ complètement multiplicative. Montrer que pour tout s > 1 on a

$$L(s,f) = \prod_{\ell \, ext{premier}} \Big(1 - rac{f(\ell)}{\ell^s}\Big)^{-1}.$$

5. a) Soit $f \in \mathcal{F}(\mathbb{N}^*, \mathbb{C})$ telle qu'il existe $\alpha > 0$ et M > 0 tels que $|S_f(x)| \leq Mx^{\alpha}$ pour tout $x \ge 1$. En utilisant une sommation d'Abel (Question I.2), montrer que, pour tout $s > \alpha$, la série $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ converge et que sa somme vaut

$$L(s,f) = s \int_1^{+\infty} S_f(t) t^{-s-1} dt.$$

b) En déduire que l'application $]\alpha, +\infty[\to \mathbb{C}, s\mapsto L(s, f)$ est continue.

c) Soit $f \in \mathcal{F}_p^-(\mathbb{Z}, \mathbb{C})$. Montrer que, pour tout réel s > 0, la série $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ est convergente et que l'application $]0, +\infty[\to \mathbb{C}, s \mapsto L(s, f)$ est continue.

d) On pose $\zeta(s) := L(s,1)$ en tout point de convergence $s \in \mathbb{R}$. Soit s > 1. Montrer que la série $\sum_{n=1}^{\infty} \frac{1}{n^s}$ est bien convergente. En s'inspirant de la question a), montrer

$$\lim_{\substack{s \to 1 \\ s > 1}} \left((s-1)\zeta(s) \right) = 1.$$

II– Caractères modulo p.

Nous rappelons que p est un nombre premier fixé. Soit $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$ le groupe multiplicatif des éléments inversibles de l'anneau $\mathbb{Z}/p\mathbb{Z}$. Soit

$$\widehat{G} = \{g \,:\, G \to \mathbb{U} \text{ morphisme} \}$$

le groupe des morphismes de G vers le groupe multiplicatif $\mathbb U$ des nombres complexes de module 1. On munit $\widehat G$ de la loi de groupe déduite de la multiplication dans $\mathbb U$. On peut relever un morphisme $g\in \widehat G$ en une fonction $\chi\in \mathfrak F(\mathbb Z,\mathbb C)$ en posant

$$\chi(n) = \begin{cases} g(n) & \text{si pgcd}(n, p) = 1, \\ 0 & \text{sinon.} \end{cases}$$

On dit alors que χ est un caractère modulo p. On appelle caractère principal modulo p la fonction $\chi_0 \in \mathcal{F}(\mathbb{Z}, \mathbb{C})$ associée à l'élément neutre de \widehat{G} . Autrement dit χ_0 est définie par

$$\chi_0(n) = \begin{cases} 1 & \text{si pgcd}(n, p) = 1, \\ 0 & \text{sinon.} \end{cases}$$

On définit le conjugué $\overline{\chi}$ d'un caractère χ par $\overline{\chi}(n) = \overline{\chi(n)}$ pour tout $n \in \mathbb{Z}$.

6. Soit χ un caractère modulo p.

- a) Montrer que χ est une fonction arithmétique complètement multiplicative.
- b) Montrer que χ est impair si, et seulement si, l'on a $\chi(-1) = -1$.
- c) Montrer que, pour tous entiers $k \ge 1$ et $n \ge 1$, on a

$$(\chi \tau_{k+1})(n) = (\chi * (\chi \tau_k))(n).$$

7. Soit H un groupe fini commutatif.

- a) Soient $x \in H$ d'ordre s et $y \in H$ d'ordre t avec $\operatorname{pgcd}(s,t) = 1$. Montrer qu'il existe un élément $z \in H$ d'ordre égal à st.
- b) En déduire que si $x \in H$ est d'ordre s et $y \in H$ est d'ordre t avec $\operatorname{pgcd}(s,t) = 1$ alors il existe $z \in H$ tel que l'ordre de z soit $\operatorname{ppcm}(s,t)$.
 - c) Soit $h \in H$ d'ordre maximal. Montrer que pour tout $x \in H$ l'ordre de x divise l'ordre de h.
 - En déduire que le groupe $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique.

8. a) Montrer que \widehat{G} est un groupe de cardinal p-1 et que \widehat{G} est cyclique.

b) Soit χ caractère non principal modulo p différent de χ_0 . Montrer que $\mu_p(\chi) = 0$.

c) Montrer de plus que, pour tout entier c premier à p, on a :

$$\sum_{\chi \bmod p} \chi(n) \overline{\chi}(c) = \begin{cases} p-1 & \text{si } n \equiv c \bmod p, \\ 0 & \text{sinon.} \end{cases}$$

9 a) Soit $\varepsilon > 0$. On admettra qu'il existe un nombre réel $T_{2,\varepsilon}$ tel que, pour tout $n \in \mathbb{N}^*$, on ait $\tau_2(n) \leqslant T_{2,\varepsilon}n^{\varepsilon}$. Montrer qu'alors, pour tout entier $k \geqslant 3$, il existe un nombre réel $T_{k,\varepsilon}$ tel que, pour tout $n \in \mathbb{N}^*$, on ait $\tau_k(n) \leqslant T_{k,\varepsilon}n^{\varepsilon}$.

b) On pourra utiliser librement la question a) pour répondre à la question suivante. Soit χ un caractère modulo p différent de χ_0 . En utilisant la méthode de l'hyperbole (Question I.3) avec un choix pertinent de y, montrer que, pour tout $k \in \mathbb{N}^*$ et tout $\varepsilon > 0$, il existe $M_k(p,\varepsilon)$ tel que, pour tout $x \in \mathbb{R}^+$ on ait

$$|S_{\chi \tau_k}(x)| \leq M_k(p,\varepsilon) x^{1-1/k+\varepsilon}.$$

10. Soit χ un caractère modulo p différent de χ_0 et soit k un entier > 0. Déduire de la question précédente que, pour tout $s \in]1-1/k, +\infty[$, la série $\sum_{n=1}^{\infty} \frac{\tau_k(n)\chi(n)}{n^s}$ est convergente et que la fonction $]1-1/k, +\infty[\to \mathbb{C}, s \mapsto D_k(s,\chi)$ est une fonction continue. Montrer la relation

$$D_k(1,\chi) = L(1,\chi)^k.$$

III- Calculs autour de $D_k(1, f)$.

Étant donné un nombre premier p, un entier strictement positif k et un entier relatif r, on considère la somme finie

$$x_k(r;p) := \frac{1}{p^k} \sum_{\substack{(m_1,\dots,m_k) \in \{1,\dots,p-1\}^k \\ m_1 \cdots m_k \equiv r \bmod p}} \cot\left(\frac{\pi m_1}{p}\right) \cdots \cot\left(\frac{\pi m_k}{p}\right),$$

où cot désigne la fonction cotangente qui est le rapport du cosinus avec le sinus. Lorsque cette somme est vide, on conviendra qu'elle vaut 0.

On note $\langle x \rangle := x - [x]$ la partie fractionnaire d'un nombre réel x et aussi $B: \mathbb{R} \to \mathbb{R}$ la première fonction de Bernoulli définie par

$$B(x) := \begin{cases} \langle x \rangle - \frac{1}{2} & \text{si } x \notin \mathbb{Z}, \\ 0 & \text{sinon.} \end{cases}$$

On admettra que, pour tout $x \in \mathbb{R}$, la série

$$\frac{-1}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi nx)}{n}$$

converge simplement vers B(x).

- 11. Montrer que l'application $\mathbb{Z} \to \mathbb{C}$, $r \mapsto x_k(r; p)$ est impaire et p-périodique.
- Soit k un entier strictement positif et soit r un entier relatif premier à p. Montrer que

$$\lim_{N \to +\infty} \left(\sum_{\substack{|n| \leqslant N \\ n \equiv r \bmod p}} \frac{\tau_k(|n|)}{n} \right) = \frac{1}{p-1} \sum_{\substack{\chi \bmod p \\ \chi \neq \chi_0}} \overline{\chi}(r) (1 - \chi(-1)) L(1, \chi)^k.$$

13. On note, dans cette question et dans les questions suivantes,

$$e(t) = e^{2\pi it}$$
 $(t \in \mathbb{R}).$

Soit m un entier relatif premier à p. Montrer que

$$\sigma_p(m) := \sum_{a=1}^{p-1} B\left(\frac{a}{p}\right) e\left(\frac{am}{p}\right) = -\frac{i}{2}\cot\left(\frac{\pi m}{p}\right).$$

14. Soient χ un caractère modulo p et un entier $n \in \mathbb{Z}$. On appelle somme de Gauss le nombre complexe $\tau(\chi, n)$ défini par la somme finie

$$au(\chi,n) := \sum_{m=1}^p \chi(m) \mathrm{e}(mn/p).$$

On notera simplement $\tau(\chi)$ le nombre $\tau(\chi, 1)$.

a) Supposons $\chi \neq \chi_0$. Montrer que

$$\tau(\chi, n) = \overline{\chi}(n)\tau(\chi).$$

b) Supposons $\chi \neq \chi_0$. En calculant $\sum_{n=1}^p |\tau(\chi,n)|^2$, montrer que

$$|\tau(\chi)|^2 = p.$$

c) En utilisant les questions a et b, montrer que

$$L(1,\chi) = \frac{\pi i \tau(\chi)}{p} \sum_{a=1}^{p} \overline{\chi}(a) B\left(\frac{a}{p}\right).$$

15. Soit χ un caractère modulo p impair. En utilisant la formule de la question précédente, montrer que

$$L(1,\chi) = \frac{\pi}{2p} \sum_{m=1}^{p} \chi(m) \cot\left(\frac{\pi m}{p}\right).$$

16. Soit $k \in \mathbb{N}^*$ et soit r un entier relatif premier à p. Montrer que

$$x_k(r;p) = \frac{1}{2} \left(\frac{2}{\pi}\right)^k \lim_{N \to +\infty} \left(\sum_{\substack{|n| \leqslant N \\ n \equiv r \bmod p}} \frac{\tau_k(|n|)}{n} \right).$$

En déduire que pour tout $f \in \mathcal{F}_p^-(\mathbb{Z}, \mathbb{C})$ on a

$$D_k(1,f) = 2\left(\frac{\pi}{2}\right)^k \sum_{r=1}^{(p-1)/2} f(r)x_k(r;p).$$

17. Soit s > 1. Montrer que

$$\sum_{\substack{n \in \mathbb{N}^* \\ n \equiv 0 \bmod p}} \frac{\tau_k(n)}{n^s}$$

est convergente de somme égale à $\zeta(s)^k - L(s,\chi_0)^k$. Puis montrer que

$$L(s, \chi_0)^k = \zeta(s)^k (1 - 1/p^s)^k$$

18. Dans cette question, on suppose que le nombre premier p est impair. Soient k un entier ≥ 2 et f une fonction p-périodique dans- $\mathcal{F}(\mathbb{Z},\mathbb{C})$. Montrer que $D_k(s,f)$ tend vers une limite finie lorsque s tend vers 1 par valeur supérieure si, et seulement si, f(0) = 0 et $\mu_p(f) = 0$. Dans ce cas-là, montrer que l'on a

$$\lim_{\substack{s \to 1 \\ s > 1}} D_k(s, f) = \frac{1}{p - 1} \sum_{\substack{\chi \\ \chi \neq \chi_0}} c_{\chi}(f) L(1, \chi)^k,$$

où la somme porte sur l'ensemble des caractères modulo p et où $c_{\chi}(f) = \sum_{r=1}^{p} f(r)\overline{\chi}(r)$. Pour cela, on pourra utiliser la question III.16.

IV- Un peu d'algèbre linéaire ...

- 19. Soit α un nombre complexe qui annule un polynôme non nul de $\mathbb{Q}[X]$. Soit $\mathbb{Q}[\alpha] = \{z \in \mathbb{C} : \exists P \in \mathbb{Q}[X] \ z = P(\alpha)\}$. On considère π_{α} le polynôme unitaire de $\mathbb{Q}[X]$ de degré minimal qui admet pour racine α .
 - a) Montrer que $\mathbb{Q}[\alpha]$ est un \mathbb{Q} -espace vectoriel de dimension $\deg(\pi_{\alpha})$.
- b) Soit x un élément non nul de $\mathbb{Q}[\alpha]$. Montrer que la multiplication par x induit un endomorphisme de $\mathbb{Q}[\alpha]$. En déduire que x admet un inverse dans $\mathbb{Q}[\alpha]$.
 - c) En déduire que $\mathbb{Q}[\alpha] = \mathbb{Q}(\alpha)$ avec

$$\mathbb{Q}(\alpha) = \Big\{ z \in \mathbb{C} \ : \quad \exists P, R \in \mathbb{Q}[X] \quad z = P(\alpha)/R(\alpha) \,, \quad R(\alpha) \neq 0 \Big\}.$$

On rappelle que p est un nombre premier fixé.

20. Dans cette question, on pourra utiliser librement que si $P \in \mathbb{Z}[X]$ est un polynôme de degré n de la forme $P(X) = \sum_{0 \le k \le n} a_n X^n$ satisfaisant $p \nmid a_n, p \mid a_k$ pour tout $0 \le k \le n-1$ et $p^2 \nmid a_0$, alors P est irréductible dans $\mathbb{Q}[X]$.

a) Soit $P_p(X) = X^{p-1} + X^{p-2} + \ldots + 1$. En considérant $P_p(X+1)$, montrer que

le polynôme P_p est irréductible dans $\mathbb{Q}[X]$.

b) Soient $\xi_p = e(1/p)$. Montrer que P_p est le polynôme minimal de ξ_p . Montrer que pour, tout entier $1 \leqslant c \leqslant p-1$, on a $P_p(\xi_p^c) = 0$.

c) Soit c un entier premier à p. Montrer qu'il existe une application Φ_c : $\mathbb{Q}[\xi_p] \to \mathbb{Q}[\xi_p]$ vérifiant

$$\Phi_c\Big(P(\xi_p)\Big) = P(\xi_p^c).$$

Montrer que Φ_c définit un automorphisme du corps $\mathbb{Q}[\xi_p]$. d) Soient Q et $R \in \mathbb{Q}[X]$ tels que $R(\xi_p) \neq 0$. Montrer que

$$\Phi_c\left(\frac{Q(\xi_p)}{R(\xi_p)}\right) = \frac{Q(\xi_p^c)}{R(\xi_p^c)}.$$

On supposera dorénavant que le nombre premier p est impair.

21. Soient k un entier strictement positif et r un entier relatif premier à p.

a) Montrer que $i^k x_k(r; p) \in \mathbb{Q}(\xi_p)$.

b) Montrer que $\Phi_c(i^k x_k(r;p)) = i^k x_k(c^k r;p)$.

Soit $\mathbf{v} = (v_0, \dots, v_{m-1}) \in \mathbb{C}^m$. On pose

$$A_{m}(\mathbf{v}) := \begin{pmatrix} v_{0} & v_{1} & \dots & v_{m-2} & v_{m-1} \\ v_{1} & v_{2} & \dots & v_{m-1} & -v_{0} \\ \vdots & \vdots & & \vdots & \vdots \\ v_{m-1} & -v_{0} & -v_{1} & \dots & -v_{m-2} \end{pmatrix}.$$

- **22.** Soient k un entier naturel premier à p-1 et $f \in \mathcal{F}_p^-(\mathbb{Z},\mathbb{Q})$ tels que $D_k(1,f)=0$. On note a un générateur du groupe cyclique $(\mathbb{Z}/p\mathbb{Z})^{p\times 2}$
 - a) Montrer que

$$\sum_{j=0}^{p-2} f(a^j) x_k(a^j, p) = 0.$$

En utilisant les morphismes Φ_c , montrer que, pour tout $\ell \in \mathbb{Z}$, on a

$$\sum_{j=0}^{p-2} f(a^j) x_k(a^{j+\ell}, p) = 0.$$

En déduire la relation

$$\sum_{j=0}^{(p-3)/2} f(a^j) x_k(a^{j+\ell}, p) = 0.$$

b) Soient $\mathbf{x} = (x_k(1, p), x_k(a, p), \dots, x_k(a^{(p-3)/2}, p)) \in \mathbb{C}^{(p-1)/2}$ et \mathbf{y} le vecteur colonne défini par ${}^t\mathbf{y} = (f(1), f(a), \dots, f(a^{(p-3)/2})) \in \mathbb{C}^{(p-1)/2}$. Déduire de la question précédente que

$$A_{(p-1)/2}(\mathbf{x}) \cdot \mathbf{y} = 0 \in \mathbb{C}^{(p-1)/2}.$$

23. Le but de cette question est de montrer pour tout $m \ge 1$ et $\mathbf{v} \in \mathbb{C}^m$ on a

$$\det\left(A_m(\mathbf{v})\right) = \left(\cos(\frac{1}{2}\pi m) + \sin(\frac{1}{2}\pi m)\right) \prod_{\substack{\ell=0\\\ell \text{ impair}}}^{2m} \left(\sum_{j=0}^{m-1} v_j \xi_{2m}^{j\ell}\right).$$

- a) Commencer par vérifier cette formule lorsque $\mathbf{v} = \mathbf{e}_1$ où $\mathbf{e}_1 = (1, 0, \dots, 0)$.
- b) Soit $(\mathbf{e}_j)_{j=0}^{m-1}$ la base canonique de \mathbb{C}^m . Montrer que $A_m(\mathbf{v})A_m(\mathbf{e}_1)=C_m(\mathbf{v})$ avec

$$C_m(\mathbf{v}) = \left(egin{array}{cccc} v_0 & -v_{m-1} & \dots & -v_2 & -v_1 \ v_1 & v_0 & \dots & -v_3 & -v_2 \ dots & dots & dots & dots & dots \ v_{m-1} & v_{m-2} & v_1 & \dots & v_0 \end{array}
ight).$$

c) Montrer que les vecteurs

$$c_{\ell} = {}^{t}(\xi_{2m}^{m\ell}, \xi_{2m}^{(m-1)\ell}, \dots, \xi_{2m}^{\ell})$$

avec ℓ impair et $1 \leq \ell \leq 2m$ sont des vecteurs propres de $C_m(\mathbf{v})$ dont on calculera les valeurs propres.

- d) En déduire le résultat concernant la valeur de dét $(A_m(\mathbf{v}))$.
- 24. a) Déduire de la question précédente que pour

$$\mathbf{x} = (x_k(1, p), x_k(a, p), \dots, x_k(a^{(p-3)/2}, p))$$

on a

$$\det\left(A_{(p-1)/2}(\mathbf{x})\right) = \left(\cos(\frac{1}{4}\pi(p-1)) + \sin(\frac{1}{4}\pi(p-1))\right) \frac{2^{(k-1)(p-1)/2}}{\pi^{k(p-1)/2}} \prod_{\substack{\ell=0 \text{impair} \\ \ell \text{ impair}}}^{p-1} L(1,\chi_*^{\ell})^k,$$

où χ_* est un générateur du groupe des caractères modulo p.

b) Soit $V = \mathcal{F}_p^-(\mathbb{Z}, \mathbb{Q})$. Déduire de a) que, si $L(1, \chi) \neq 0$ pour tout caractère χ impair modulo p, alors la dimension du \mathbb{Q} -sous-espace vectoriel

$$\{f \in V : D_k(1,f) = 0\}$$

vaut 0.

25. Soient $p \equiv 3 \mod 4$ et χ est un caractère réel impair modulo p. Montrer à partir du résultat de la question III-14c que l'on a $L(1,\chi) \neq 0$.

* * *