D7.1. Determine the transfer function $\frac{\mathbb{V}_0}{\mathbb{V}_1}(j\omega)$ for the circuit in Figure D7.1 and locate the poles and zeros of the function.

$$\frac{V_{o}}{V_{i}}(j\omega) = \frac{4}{(j\omega)^{2} + 5j\omega + 4}$$

$$V_{i}(j\omega) \qquad C = \frac{1}{4} \text{ F} \qquad V_{o}(j\omega)$$

$$FIGURE D7.1$$

Ans:
$$\frac{\mathbf{V}_0}{\mathbf{V}_1}(j\omega) = \frac{4}{(j\omega)^2 + 5j\omega + 4}$$
, there are no zeros and the pole locations are $j\omega = -1$ and $j\omega = -4$.

D7.3. Determine the half-power frequency for each of the filters in Figure D7.3 and identify the type of filter.

D7.4. Given the network in Figure D7.4, find the value of *C* that will place the circuit in resonance at 1800 rad/s.

Ans: $C = 3.09 \, \mu \text{F}.$

D7.5. Given the network in D7.4, determine the Q of the network and the magnitude of the voltage across the capacitor.

BW =
$$\frac{R}{L} = \frac{2R}{40 \text{ mH}} = \frac{1000}{20} = \frac{50 \text{ rad/s}}{40 \text{ kp}^{-3} \times 100 \times 10^{-1}} = \frac{500 \text{ rad/s}}{1000 \times 10^{-1}}$$

D7.6. A series *RLC* circuit is composed of $R = 2 \Omega$, L = 40 mH, and $C = 100 \mu\text{F}$. Determine the bandwidth of this circuit about its resonant frequency.

Ans:
$$BW = 50 \text{ rad/s}, \omega_0 = 500 \text{ rad/s}.$$

D7.7. A series *RLC* circuit has the following properties: $R = 4 \Omega$, $\omega_0 = 4000 \text{ rad/s}$, and BW = 100 rad/s. Determine the values of *L* and *C*.

Ans:
$$L = 40 \text{ mH}, C = 1.56 \mu\text{F}.$$

$$BW = \frac{R}{2} = 100 \qquad 2 = \frac{4}{100} = 0.0 \text{ MH}.$$

$$W_0 = \frac{1}{\sqrt{12}} = 4000 \qquad \frac{1}{12} = 4^3 + 10^6$$

$$C = \frac{4^3 + 10^6}{4^3 + 10^6} = 1.56 \text{ MF}$$

Example
$$W_0 = \frac{1}{\sqrt{LL}} = \frac{1}{\sqrt{20 \times 150}} = \frac{1}{\sqrt{304}} = 577 \text{ rad/s}$$

$$BW = \frac{1}{Rc} = \frac{1}{2 \times 10^3 \times 150 \times 10^{-6}} \approx 3.9 \text{ rad/s}$$

$$Q = \frac{W_0}{BW} = \frac{300 \text{ m}}{\sqrt{306}} \approx 175$$

D7.8. A parallel RLC circuit has the following parameters: $R = 2 \text{ k}\Omega$, L = 20 mH, and $C = 150 \mu F$. Determine the resonant frequency, the Q, and the bandwidth of the circuit.

Ans:
$$\omega_0 = 577 \text{ rad/s}$$
, $BW = 3.33 \text{ rad/s}$, $Q = 173$.

D7.9. A parallel *RLC* circuit has the following parameters: $R = 6 \text{ k}\Omega$, BW = 1000 rad/s, and Q = 120. Determine the values of L, C, and ω_0 .

Ans:
$$C = 0.167 \,\mu\text{F}$$
, $L = 416.7 \,\mu\text{H}$, $\omega_0 = 119760 \,\text{rad/s}$.

$$\frac{(W_0)}{BW} = 120 \quad W_0 = 120 \times 1000 = 120000$$

$$C = \frac{1}{6000k} = 0.169 \times \frac{1}{100} = 0.169 \text{ a.f.}$$

$$2 = \frac{1}{C \cdot W_0^2} = \frac{6 \cdot 10^6}{12^2 \cdot 10^4} \approx 416.9 \text{ a.f.}$$

• Ex1

(10 points) In the following circuit, the input signal is $v_i(t)$ and the output signal is $v_o(t)$.

- (a) (4 points) Find the frequency response of $V_o(j\omega)/V_i(j\omega)$.
- (b) (4 points) Find the magnitude and phase of the frequency response from (a).
- (c) (2 points) Find the magnitude of the frequency response at $\omega=0$ rad/s, $\omega=1$ rad/s, and $\omega=\infty$ rad/s.

(b) magnetude
$$\sqrt{(w^2D^2+dw^2)}$$
, phase = $-tan^{-1}(\frac{d^2w}{w^2-1})$
(c) $W=0$, $|FR|=0$, phase = 0 $W=1$, $|FR|=\frac{1}{2}$ phase = 0 $w=\infty$, $|FR|=1$, phase = 0

• Ex2

(10 points) Consider the following circuit. The input signal is $v_i(t)$ and the output signal is $j_o(t)$.

- (a) (4 points) Find the frequency response, $I_o(j\omega)/V_i(j\omega)$.
- (b) (4 points) 3-dB bandwidth in the unit of Hz.
- (c) (2 points) Determine the type of the filter. (low-pass filter, high-pass filter, bandpass filter, or band-rejection filter).

(b)
$$\sqrt{1} \times \sqrt{1} = Magnitude \frac{R}{2\pi L} He$$
 (c) Cow Pass fetter

$$2R^2 = R^2 + (WL)^2$$

$$W = \frac{R}{C}$$