进程	Α	В	С	D	E	平均值
到达时间	0	1	3	9	12	
服务时间	3	5	2	5	5	
			FCFS			
完成时间	3	8	10	15	20	
驻留时间	3	7	7	6	8	6.2
T_r/T_s	1	1.4	3.5	1.2	1.6	1.74
			RR q=1			
完成时间	6	11	8	17	20	
驻留时间	6	10	5	9	8	7.6
T_r/T_s	2	2	2.5	1.8	1.6	1.98
			RR q=4			
完成时间	3	10	9	19	20	
驻留时间	3	9	6	10	8	7.2
T_r/T_s	1	1.8	3	2	1.6	1.88
			SPN			
完成时间	3	10	5	15	20	
驻留时间	3	9	2	6	8	5.6
T_r/T_s	1	1.8	1	1.2	1.6	1.32
			SRT			
完成时间	3	10	5	15	20	
驻留时间	3	9	2	6	8	5.6
T_r/T_s	1	1.8	1	1.2	1.6	1.32
			HRRN			
完成时间	3	8	10	15	20	
驻留时间	3	7	7	6	8	6.2
T_r/T_s	1	1.4	3.5	1.2	1.6	1.74

			FB q=1			
完成时间	7	11	6	18	20	
驻留时间	7	10	3	9	8	7.4
T_r/T_s	2.33	2	1.5	1.8	1.6	1.85
			FB $q=2^i$			
完成时间	4	10	8	18	20	
驻留时间	4	9	5	9	8	7
T_r/T_s	1.33	1.8	2.5	1.8	1.6	1.81

9.8

证明:

设: 等待执行的作业编号从1到N

作业: 1 2 i n

到达时间: t_1 t_2 t_i t_n

服务时间: r_1 r_2 r_i r_n

我们假设作业i在完成之前可以达到最高的响应时间比。当作业1到n都执行结束,总时间为

$$T_i = t + r_1 + r_2 + \ldots + r_i$$

作业 i 的响应比为 $R_i(T_i)+rac{T_i-t_i}{r_i}$,执行 i 的原因是它的相应比是以下作业在 T_i 时是最小的:

$$R_i(T_i) = min[R_1(T_i), R_2(T_i), \dots, R_i(T_i)]$$

考虑不同序列中同样的n各作业的排序结果

作业: a b j z

到达时间: t_a t_b t_i t_z

服务时间: r_a r_b r_i r_z

在新的序列中,我们选择最小的后继作业,从a到j,包括从1到i的后继。当作业a到j被执行结束,总时间为

$$T_i = t + r_a + r_b + \ldots + r_i$$

作业j的响应比是 $R_j(T_j)+rac{T_j-t_j}{r_j}$,由于作业1到j是作业a到j的一个子集,那么总的服务时间 T_i-t 一定小于等于总的服务时间 T_j-t 。又响应比随着时间增加而增加, $T_i<=T_j$,意味着 $R_j(T_j)>=R_j(T_i)$.作业j是作业1到i的其中之一,作业j在 T_i 有最小响应比。故有

$$R_j(T_j) \geq R_j(T_j) \geq R_i(T_i)$$

调度算法改变之后,会有作业到达响应比 $R_i(T_i)$,它会大于等于最高响应比 $R_i(T_i)$

9.16

a.

	Α	В	С	D	E
周转时间 (min)	45	35	13	26	42

平均周转时间 (45+35+13+26+42)/5=32.2min

b.

	Α	В	С	D	E
周转时间(min)	36	9	39	45	21

平均周转时间(36+9+39+45+21)/5=30min

c.

	Α	В	С	D	E
周转时间(min)	15	24	27	33	45

平均周转时间(15 + 24 + 27 + 33 + 45)/5 = 28.8min

d.

	Α	В	С	D	E
周转时间(min)	45	18	3	9	30

平均周转时间(45+18+3+9+30)/5=21min

10.2

		0	10	20	30	40	50	60	70	80	90	100	110
	到达时间		Α	В		С	D	E					
	启动最后期限				В			С	Е	D		А	
最早最后期限	到达时间		А	В		С	D	Е					
	服务		А	А	В	В	С	С	Е	E			
	启动最后期限				В			С	E	D (错 过)		А	
有自愿空闲时间的最早最后期限	到达时间		Α	В		C	D	E					
	服务			В	В	С	С	Е	Е	D	D	А	А
	启动最后期限				В			С	Е	D		А	

		0	10	20	30	40	50	60	70	80	90	100	110
先来先服务	到达时间		А	В		С	D	E					
	服务		Α	Α	В	В	С	С	D	D			
	启动最后期限				В			С	E(错 过)	D		Α	

10.7

a.

$$U_1 = C_1 / T_1 = 20 / 100 = 0.2$$

$$U_2 = C_2 \ / \ T_2 \ = \ 30 \ / \ 145 \ pprox \ 0.21$$

总利用率为 $U_1+U_2 \ = \ 0.41 \ < \ 2*(2^{1/2}-1)pprox 0.826$,所以这些任务可以成功调度

h

$$U_3 = C_3 \ / \ T_3 \ = \ 68 \ / \ 150 \ pprox \ 0.45$$

总利用率为 $U_1+U_2+U_3 = 0.86 > 3*(2^{1/3}-1) pprox 0.779$,所以不满足(10.2)式了

c.

P1、P2、P3三个进程执行完第一次之后时间最短为20+30+68=118,但是P1过100之后已经经历了一个周期,所以P3直到118+20=138才可以完成他第一次执行,138在P3的最后期限之内,所以三个任务可以实现。