Application of Complex Networks:

Control of Networked

Multi-Agent Systems

Hideaki Ishii

Department of Computer Science ishii@c.titech.ac.jp

Complex Networks, Dec 25th, 2017

What Are ``Multi-Agent Systems''?

2

Cooperative Behaviors of Animals

Wikipedia: Nikunj vasoya

Mikinedia: Geoff Gallice

3

Model of Birds' Flocking: Boids

- Formation flying without any leader
- What are the simple control laws for each bird?

Model of Birds' Flocking: Boids

■ Three rules: Use the information within its own sensor range only.

Simulation-based study

Raynolds (1987)

Boids Simulation

Autonomous Group Robots

Dancing of Drones (ETH)

What Are Multi-Agent Systems?

- Constituting elements
 - Numerous agents which can make decisions autonomously
- Cooperation
 - Through mutual interactions, desired behaviors of the entire system can be realized
- Tasks
 - The agents possess a common goals/tasks

"Control" of multi-agent systems

- System theory not constrained by particular applications
- More complex and larger scale systems via networking

9

10

Relations to Other Areas

Outline

- What are Multi-Agent Systems?
- Application Examples
 - Groups of autonomous vehicles
 - Wireless sensor networks
- System Characterization
 - Information exchange among agents
 - Network structure and its description
- Related Areas

12

NecSys 2016

Dates: September 8th-9th, 2016

Place: Tokyo International Exchange Center, Odaiba

Cooperative Control of Vehicle Groups

13

15

Astronomical Observation by Groups of Satellites (1)

- NASA started for exploration of extrasolar planets (since 2000)
- Formation control: Centralized methods difficult for large numbers
- System design through distributed control is necessary

Courtesy NASA/JPL-Caltech http://planetquest.ipl.nasa.gov/TPF-I/tpf-I_index.cfm

Astronomical Observation by Groups of Satellites (1)

Astronomical Interferometer

- Resolution depends not on sizes of individual telescopes, but on distances between them.
- Using data from multiple telescopes, images are synthesized

Vehicle Groups and Array Antennas

- Cluster of small robots for planetary exploration
 - High flexibility and reliability at lowcost
 - Communication is limited by on-board power
- Multiple antennas coupled for directed transmission
- Formation of robots based on distributed control laws

NASA Curiosity on Mars

Consensus Problem

- Realization of Array Antennas
 - 1. Vehicles at various locations come together.
 - 2. They make desired formations and then maintain them.
- Based on local information, agents agree on their variables.
- One of the most fundamental problems in distributed control

18

20

Kiva Systems

Wireless Sensor Networks

Wireless Sensor Networks (WSNs)

- Spatially distributed autonomous sensors with wireless communication capability
- Cost reduction for implementation and wide-area measurements
- Various application areas

21

Application Example of WSNs (1)

Health monitoring of large-scale structures

- To prevent accidents in buildings and bridges from aging
- Vibration is measured at multiple locations and then the data is analyzed.

22

Multi-hop Communication

- Without any data center, nodes communicate with each other
- Autonomously routes are constructed
- Battery driven: Most power is used for wireless communication

System Structures

- Centralized: All data is collected at a data center
 - Possible to make global decisions
 - Data center has high load, and vulnerable against failures
- Distributed: Nodes make local decisions via info exchanges
 - When all nodes should share a specific value (average, etc)

Centralized

Multi-agent systems approach Distributed

24

Application Example of WSNs (2)

Clock Synchronization

- Consistency in time among data is critical.
- Clocks in sensors have different speeds.
 - Error in time may occur among sensor nodes

Vulnerable to node failures

Protocol based on consensus problem
High precision and robustness 25

Modeling of Agent Systems

Clock Model in Sensor Nodes

lacksquare Clock of the ith sensor $au_i(t)=lpha_i t+eta_i$

 α_i : Drift

 β_i : Offset

Modified clock with parameters $\hat{\alpha}_i$, $\hat{\beta}_i$

t: Absolute time

$$\hat{\tau}_i(t) = \hat{\alpha}_i \tau_i(t) + \hat{\beta}_i = \underline{\alpha_i \hat{\alpha}_i} t + \underline{\hat{\beta}_i + \beta_i \hat{\alpha}_i}$$
Adjusted drift Adjusted offset

All sensors share a clock = Clock synchronization

Information Exchanges among Agents (1)

Characteristics of agent systems

- Each agent has dynamics, and autonomously makes decisions
- Data is exchanged for collaboration
 - Different information is physically distributed.

1. Wireless communication

- Speed/distance: Constrained by power consumptions
 - 10kbps~100 kbps, a few meters ~a few hundred meters
- Reliability/quality: More interference in large-scale systems
 - Low realtime capabilities influence sensing and control

Information Exchanges among Agents (2)

2. Interactions via sensors Agents determine neighbors' positions

Distance sensors

Ultra-sonic: Short distance (a few meters)

Devices are small/inexpensive

Lazer and infrared light:

∼a few 10 m, Very accurate

Vision sensors (Camera)

Image processing

Marking on objects to be measured

■ Wide area in one image but in 2D

Modeling of Network Structure (1)

- At system level, important to know presence of data exchanges
- Mathematical description by graphs
- We can employ notions/tools from graph theory

Modeling of Network Structure (1)

Static networks

■ Vehicles measure each other's
■ Network changes depending locations at all times

Dynamic networks

on states and environment.

Multi-Agent Systems in Related Areas

Power Systems

- Large-scale system connecting various generators to consumers
- In Smart Grids, communication and distributed control become critical.

Synchronization in Power Grids

- Critical to synchronize output AC powers must synchronize
- Must consider network structures and nonlinear dynamics of various generators

33

2/

Search Engine Google

Network of Web Pages

PageRank Algorithm

- Exploits the link structure among web pages
- Computes popularity/importance of pages: Used for ranking
- Based on agent systems' viewpoint, distributed computation has been developed

Brin & Page (1998), Ishii & Tempo (2014)

37

Network Science

- Focus on network structures of complex systems
 - Traffic networks (roads and flight routes), Metabolic network of biological systems, Citation of academic papers, ...
- Extracting common features: Scale free networks, Small world networks

38

Byzantine Agreement Problem in Comp. Science

- Loyal generals vs Traitorous generals
- How can the loyal ones come to agreement?
- Robustness against faults in distributed algorithms

Agents with Malicious Behaviors

- Some agents may misbehave due to noise, faults, adversaries...
- Malicious agents might attempt to deceive normal agents who work following a given protocol.

Vaidya, Tseng, & Liang (2012), LeBlanc, Zhang, Koutsoukos, & Sundaram (2013) Dibaji & Ishii (2015)

Major Black Out due to Cyber Attacks

Conclusion

42

Conclusion

- Goals of "Control of multi-agent systems"
- Starting point: "Cooperation" & "distributed autonomous control" in nature
- Applications: Groups of autonomous vehicles, WSNs
- Modeling: Information exchanges and network structures
- New developments through interdisciplinary studies

Relations to Other Areas

