INF623

2024/1

Inteligência Artificial

A25: Aprendizado supervisionado II

Plano de aula

- ▶ k-Nearest Neighbors
 - Hipótese
 - Métricas de distância
 - Convergência
 - ► A maldição da dimensionalidade
 - Implementação

k-Nearest Neighbors (k-NN)

Hipótese

▶ 0 k-NN assume que vetores **x** que estão próximos no espaço possuem o mesmo rótulo y

Exemplos

k-Nearest Neighbors (k-NN)

Qual é a classe desse vetor de caratetísticas **x**?

Hipótese

 $lackbox{ O k-NN assume que vetores } \mathbf{x}$ que estão próximos no espaço possuem o mesmo rótulo \mathbf{y}

Exemplos

- k = 1
- k = 4

k-Nearest Neighbors (k-NN)

Implementação do kNN

```
def kNN(z, k, D, dist):
1. dists = []
2. for (x, y) in D:
3. d = dist(x, z)
4. dists.append({'distance': dist, 'class': y})
5. sorted dists = sort(dists)
6. k nearest neighbors = sorted dists[1:k]
7. predicted class = majority vote(k nearest neighbors)
```


Métricas de distâncias para o kNN

def kNN(z, k, D, dist):

O k-NN depende fundamentalmente de uma **métrica de distância**.

- Duanto melhor essa métrica refletir a similaridade do rótulo, melhor será a classificação.
- ▶ A escolha mais comum é a distância de Minkowski:

$$dist(\mathbf{x}, \mathbf{z}) = (\sum_{i=1}^{d} |x_i - z_i|^p)^{\frac{1}{p}}$$

- Essa métrica é bastante genérica e representa diversas métricas de distância conhecidas:
 - p = 1?
 - p = 2?
 - $p \to \infty$?

Métricas de distâncias para o kNN

Distância de Minkowski: $dist(\mathbf{x}, \mathbf{z}) = (\sum_{i=1}^{d} |x_i - z_i|^p)^{\frac{1}{p}}$

Distância de manhattan (p = 1)

$$dist(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{d} |x_i - z_i|$$

Distância euclidiana (p = 2)

$$dist(\mathbf{x}, \mathbf{z}) = \sqrt{\sum_{i=1}^{d} |x_i - z_i|^2}$$

Distância chebyshev $(p \to \infty)$

$$dist(\mathbf{x}, \mathbf{z}) = max_d |x_d - z_d|$$

Convergência do k-NN

O k-NN converge para a os rótulos reais quando $m
ightarrow \infty$

Demonstração do k-NN

Abrir o seguinte colab:

https://colab.research.google.com/drive/1EDFQ4FTYVTx2XW4iz6FHcO_GCYy2aoUg?usp=sharing

Visualizar:

- Métricas de distância
- Classificação com k-NN
- Convergência do k-NN quando o múmero de exemplos cresce

kNN para regressão

ilderQual é o valor y desse vetor de caratetísticas ${f x}$?

Média dos rótulos y_i

$$y = \frac{1}{k} \sum_{i}^{k} y_{i}$$

Exemplo

$$y = \frac{8+6+5}{3} = 6.333$$

A maldição da dimensionalidade

A **maldição da dimensionalidade** no contexto do k-NN mostra que a distância euclidiana é inútil em dimensões altas porque todos os vetores \mathbf{x} são quase equidistantes do vetor de teste \mathbf{z} :

- Considere que todos os exemplos de treinamento foram amostrados uniformemente de um cubo de lado 1
- $lackbox{ Seja l o comprimento do$ **menor cubo**que contém todos os <math>k vizinhos mais próximos do ponto de teste ${f z}$

$$l^d \approx \frac{k}{m} \to l \approx (\frac{k}{m})^{\frac{1}{d}}$$

• Se m = 1000, qual o comprimento l?

d	l
2	0,1
10	0,63
100	0,955
1000	0,9954
<u> </u>	

Próxima aula

A26: Aprendizado supervisionado III

Árvores de decisão

