Exercice 1 : Une suite d'intégrales

- 1. $J_1 = \int_0^1 \frac{e^x}{1 + e^x} dx = [\ln(1 + e^x)]_0^1 = \ln(1 + e) \ln(2)$. Par linéarité de l'intégrale, $J_0 + J_1 = \int_0^1 \frac{1 + e^x}{e^x + 1} dx = \int_0^1 1 dx = 1$. On en déduit $J_0 = 1 \ln(1 + e) + \ln(2)$.
- 2. Soit $n \in \mathbb{N}$. Par linéarité de l'intégrale, $J_n + J_{n+1} = \int_0^1 \frac{e^{nx} + e^{(n+1)x}}{e^x + 1} dx = \int_0^1 \frac{e^{nx} + e^{nx}e^x}{e^x + 1} = \int_0^1 e^{nx} dx$. Dans le cas où n = 0, on obtient $J_0 + J_1 = 1$. Si n est non nul, on a $J_n + J_{n+1} = \left[\frac{e^{nx}}{n}\right]_0^1 = \frac{e^n 1}{n}$.
- 3. Soit $n \in \mathbb{N}$ et $x \in [0,1]$. Alors $nx \le (n+1)x$ car $x \ge 0$. Comme l'exponentielle est croissante, on a $e^{nx} \le e^{(n+1)x}$. Enfin, $1/(e^x+1) \ge 0$, donc $\frac{e^{nx}}{e^x+1} \le \frac{e^{(n+1)x}}{e^x+1}$. On en déduit par croissance de l'intégrale, $\int_0^1 \frac{e^{nx}}{e^x+1} dx \le \int_0^1 \frac{e^{(n+1)x}}{e^x+1} dx$, soit $J_n \le J_{n+1}$.
- 4. (a) Soit $n \in \mathbb{N}$ et $x \in [0,1]$. Alors $e^0 \le e^x \le e^1$, donc $0 < 2 \le e^x + 1 \le 1 + e$. D'après la décroissance de la fonction inverse sur \mathbb{R}_+^* , on a $\frac{1}{2} \ge \frac{1}{e^x + 1} \ge \frac{1}{1 + e}$. Comme $e^{nx} \ge 0$, on en déduit $\frac{e^{nx}}{2} \ge \frac{e^{nx}}{e^x + 1} \ge \frac{e^{nx}}{1 + e}$.
 - (b) Soit $n \in \mathbb{N}^*$. La croissance de l'intégrale implique d'après l'inégalité précédente $\int_0^1 \frac{e^{nx}}{2} dx \ge \int_0^1 \frac{e^{nx}}{e^x + 1} dx \ge \int_0^1 \frac{e^{nx}}{2} dx$, i.e $\frac{1}{1 + e} \frac{e^n 1}{n} \le J_n \le \frac{1}{2} \frac{e^n 1}{n}$.
 - (c) D'après les croissances comparées, $\frac{1}{1+e}\frac{e^n-1}{n}\xrightarrow[n\to+\infty]{}+\infty$. On en déduit que $J_n\xrightarrow[n\to+\infty]{}+\infty$.

Exercice 2 : Une suite définie par récurrence

- 1. Supposons $\forall n \in \mathbb{N}, u_n > n$. Alors $\forall n \in \mathbb{N}, u_{n+1} = u_n n$, donc par télescopage $\forall n \in \mathbb{N}^*, u_n = u_0 + \sum_{k=0}^{n-1} (-k) = u_0 n(n-1)/2$. Alors la suite u tend vers $-\infty$, alors que $\forall n \in \mathbb{N}^*, u_n \geq 0$. Cette absurdité entraı̂ne qu'il existe un entier naturel p non nul tel que $u_p \leq p$.
- 2. Prouvons le par récurrence. La question précédente vient de l'initialiser en p. Soit $n \ge p$, supposons $u_n \le n$. Démontrons que $u_{n+1} \le n+1$. Alors $u_{n+1} = |u_n n| = n u_n \le n+1$ car u est à valeurs positives.
- 3. Analyse: soit a et b deux tels réels. $\forall n \in \mathbb{N}$, a+bn+a+b(n+1)=n. Ces expressions polynomiales permettent d'identifier les coefficients, ce qui donne 2a+b=0 et 2b=1, soit b=1/2 et a=-1/4. Réciproquement, la suite $((2n-1)/4)_{n\in\mathbb{N}}$ est valide.
- 4. Soit $n \ge p$. Alors $\beta_{n+1} = u_{n+1} \alpha_{n+1} = n u_n (n \alpha_n) = -(u_n \alpha_n) = -\beta_n$. On en est présence d'une suite géométrique de raison -1. Donc $\forall n \ge p, \beta_n = \beta_p (-1)^{n-p}$
- 5. D'après l'expression précédente, $\forall n \geq p, u_n \frac{2n-1}{4} = (-1)^{n+p}(u_p \frac{2p-1}{4})$. Par conséquent, $\forall n \geq p, \frac{2u_n}{n} = 1 + \frac{1}{2n} + \frac{(-1)^{n+p}(2u_p (2p-1))}{2n}$. Comme $(-1)^{n+p}(2u_p 2p+1)$ est bornée, $2u_n/n \xrightarrow[n \to +\infty]{} 1$.

Problème: Une partie dense

1. (a) Soit $x \in [-1,1]$. Si x=1, alors pour tout entier n non nul, $-1 \le 1 - 1/n < 1$, donc on dispose de a_n dans A tel que $1-1/n < a_n < 1$. Le théorème d'encadrement assure que la suite $(a_n)_n$ ainsi construite est convergente de limite 1. De plus, elle est à valeurs dans A. Si x < 1, alors pour tout entier naturel n, $x < x + (1-x)/n \le 1$, donc on dispose de a_n dans A tel que $x < a_n < x + (1-x)/n$. Le théorème d'encadrement assure la convergence de $(a_n)_n$ vers x.

- (b) Soit $(x,y) \in [-1,1]^2$ tel que x < y. Alors $a = (x+y)/2 \in [-1,1]$, donc on dispose d'une suite $(a_n)_n \in A^{\mathbb{N}}$ telle que $a_n \xrightarrow[n \to +\infty]{} a$. Or $\varepsilon = (y-x)/2 > 0$, donc on dispose d'un rang N tel que $\forall n \ge N$, $|a_n (x+y)/2| < (y-x)/2$. En particulier, $x < a_N < y$. Donc A est dense dans [-1,1].
- (c) Soit $x \in [-1,1]$. Si $x = \pm 1$, les suites constantes égales à x suffisent car 1 et -1 sont rationnels. Si $x \in]-1,1[$, d'après la densité de $\mathbb Q$ dans $\mathbb R$, on dispose d'une suite de rationnels de limite x. A partir d'un certain rang, elle est à valeurs dans [-1,1], donc on vérifie la caractérisation séquentielle de la densité dans [-1,1].
- 2. (a) La racine carrée est dérivable sur \mathbb{R}_+^* et l'exponentielle imaginaire est dérivable donc f est dérivable en tant que composée. De plus,

$$\forall x > 0, f'(x) = \frac{i}{2\sqrt{x}}e^{i\sqrt{x}}$$

On en déduit en particulier,

$$\forall x > 0, \left| f'(x) \right| = \frac{1}{2\sqrt{x}}$$

(b) Soit x, y réels strictement positifs tels que $x \le y$. A l'aide de l'angle moitié, on a

$$e^{i\sqrt{x}} - e^{i\sqrt{y}} = e^{i\frac{\sqrt{x} + \sqrt{y}}{2}} 2i \sin\left(\frac{\sqrt{x} - \sqrt{y}}{2}\right)$$

On en déduit

$$\left| e^{i\sqrt{x}} - e^{i\sqrt{y}} \right| = 2 \left| \sin\left(\frac{\sqrt{x} - \sqrt{y}}{2}\right) \right|$$

Via l'inégalité classique $\forall a \in \mathbb{R}$, $|\sin(a)| \le |a|$, on a alors

$$\left| e^{i\sqrt{x}} - e^{i\sqrt{y}} \right| \le 2 \left| \frac{\sqrt{x} - \sqrt{y}}{2} \right| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}}$$

D'après la croissance de la racine carrée, on a $\sqrt{x} + \sqrt{y} \ge 2\sqrt{x} > 0$. On en déduit, toutes quantités positives

$$\left| e^{i\sqrt{x}} - e^{i\sqrt{y}} \right| \le \frac{|x - y|}{2\sqrt{x}}$$

- 3. (a) Le cosinus est continu et monotone de $[0,\pi]$ dans [1,-1] donc surjectif d'après le TVI. Donc, il existe θ dans $[0,\pi]$ tel que $x=\cos(\theta)$.
 - (b) Il suffit de poser pour tout entier naturel k non nul, $x_k = (\theta + 2k\pi)^2$.
 - (c) D'après la construction précédente, $x_k \xrightarrow[k \to +\infty]{} +\infty$. D'après les encadrements de la partie entière, $\forall k \in \mathbb{N}^*, x_k 1 \le n_k$. Donc $n_k \xrightarrow[n \to +\infty]{} +\infty$.
 - (d) Soit $k \in \mathbb{N}^*$. On exploite le résultat de la question 2.b) avec les réels $\sqrt{x_k}$ et $\sqrt{n_k}$. On a $n_k \le x_k$, donc ils vérifient $\sqrt{n_k} \le \sqrt{x_k}$ et $n_k > 0$. Ainsi,

$$\left| e^{i\sqrt{x_k}} - e^{i\sqrt{n_k}} \right| \le \frac{|x_k - n_k|}{2\sqrt{n_k}}$$

Or $n_k \le x_k < n_k + 1$, donc $|x_k - n_k| \le 1$. D'autre part, $e^{i\sqrt{x_k}} = e^{i(\theta + 2k\pi)} = e^{i\theta}$. En conclusion,

$$\left| e^{i\theta} - e^{i\sqrt{n_k}} \right| \le \frac{1}{2\sqrt{n_k}}$$

(e) On connaît les majorations $\forall z \in \mathbb{C}, |\Re(z)| \le |z|$, on en déduit alors de ce qui précède

$$\forall k \in \mathbb{N}^*, |\cos(\theta) - \cos(\sqrt{n_k})| \le |e^{i\theta} - e^{i\sqrt{n_k}}| \le \frac{1}{2\sqrt{n_k}}$$

D'après la question 3.c, $n_k \xrightarrow[k \to +\infty]{} +\infty$, donc $\frac{1}{2\sqrt{n_k}} \xrightarrow[n \to +\infty]{} 0$. On en déduit par théorème d'encadrement, que $(\cos(\sqrt{n_k}))_{k \in \mathbb{N}^*}$ est convergente de limite $\cos(\theta) = x$ d'après 3.a.

4. Pour tout réel x dans [-1,1], on a construit une suite à valeurs dans E convergente de limite x. D'après 1.b), cela entraîne la densité de E dans [-1,1].

2