Esame scritto ALAN 19-07-2024, prima parte.

1) Data la matrice
$$A = \begin{pmatrix} 0 & 1 & 2 & -1 \\ 1 & 0 & -3 & 2 \\ 2 & 3 & 0 & 1 \end{pmatrix} \in M_{3,4}(\mathbb{R})$$

- a) calcolare rk(A).
- b) Dire se esiste una soluzione $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4$ non nulla perpendicolare a $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^4$ del sistema lineare omogeneo AX = 0

$$\text{2) Siano } \lambda \in \mathbb{R}, \, A = \begin{pmatrix} 1-\lambda & 2 & 1 & -1 \\ 1 & -3\lambda & 0 & 2 \\ 2 & 0 & 3 & \lambda \end{pmatrix} \in \mathrm{M}_{3,4}(\mathbb{R}) \,\,\mathrm{e}\,\, B = \begin{pmatrix} 1 \\ 0 \\ \lambda \end{pmatrix} \in \mathbb{R}^3.$$

- a) Stabilire il rango di A al variare di $\lambda \in \mathbb{R}$.
- b) Stabilire i $\lambda \in \mathbb{R}$ per cui il sistema AX = B non ammette soluzioni.
- 3) Data $A \in M_n(\mathbb{R})$ stabilire, motivando la risposta, se nelle seguenti situazioni la matrice A è invertibile o meno.
 - a) $A^3 A = I_n$.
 - b) I vettori colonna di A generano \mathbb{R}^n .
 - c) $A^5 = 0$.
- 4) Dati i vettori $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$, per ognuna delle seguenti situazioni esibire, se esiste, un vettore $v_3 \in \mathbb{R}^3$ che la soddisfi:

1

- a) v_1, v_2, v_3 generano \mathbb{R}^3 .
- b) v_1, v_2, v_3 non generano \mathbb{R}^3 , ma $v_3 \notin \langle v_1 \rangle \cup \langle v_2 \rangle$.
- c) v_1, v_2, v_3 sono una base ortogonale di \mathbb{R}^3 .