

Base de Dados II

Msc Sérgio Mavie Eng. Cristiliano Maculuve

Clementina Elihud

Agenda

- ☐ Introdução ao processamento de transações
- ☐ Definição, Propriedades
- ☐ Conceito ACID de Transações
- ☐ Problemas de Concorrência em Transações

Transação

Unidade de execução de um programa que acessa ou altera o conteúdo da BD Sequência de operações de escrita/leitura na BD

- Características
- é delimitada por declarações da forma início da transação e fim da transação
- todas as operações de escrita/leitura entre essas duas declarações são consideradas parte de uma mesma transação
- um programa de aplicação pode conter mais do que uma transacção, se as operações de escrita/leitura são limitadas por diferentes pares de declaração início da transacção e fim da transacção

Operações das Transacções

- begin_transaction
- início da execução de uma transacção
- read ou write
- operações de leitura ou escrita nos dados do BD
- end_transaction
- final da execução de uma transacção
- deve ser verificado se a transacção executará
 commit ou abort

Operações das Transacções

commit_transaction

- indica que a transacção foi finalizada com sucesso
- torna permanente as alterações realizadas no BD

abort_transaction (rollback)

- indica que a transacção foi finalizada sem sucesso
- descarta as alterações já realizadas no BD

Diagrama de estados das Transações

- Transações são sequência de Ações (Operações de Banco de Dados) que são executadas como "um conjunto":
 - Ou todas são executas com sucesso
 - Ou Nenhuma delas
- Exemplo
 - Um banco transfere dinheiro entre duas contas (retirada + deposito)
 - Se qualquer uma das operações falhar, a trasferência será cancelada

Sintaxe geral:

```
DEGIN

OPERACAO 1;

OPERACAO 2;

OPERACAO N;

COMMIT;

NOLLBACK;
```

Base de Dados II INFOS2A2L2023

- Transações garantem a consistência e intregridade do banco de dados
 - Todas as modificações da transação são "temporárias"
 - Modificações são "persistidas" apenas após o Commit
 - A qualquer momento (Antes do commit) as modificações podem ser canceladas através de um Rollback
- Todas as operações são executadas como uma unidades (ou nenhuma será)

Exemplo: Caixa Automática (ATM)

Levantar 100Mt

- 1. Ler o saldo atual
- 2. Saldo = Saldo atual Saque
- 3. Registrar Saldo
- 4. Entregar Dinheiro

Exemplo: Caixa Automática (ATM)

Transferência 100Mt da conta1 para conta2

- 1. Ler saldo conta1
- 2. Saldo conta1= Saldo atual conta1 100
- Ler Saldo conta2
- 4. Saldo conta2 = Saldo Anterior conta2+ 100
- 5. Gravar Saldo conta1
- 6. Gravar saldo conta2

Imagine que:

- Algumas operações falham!
 - Ex., Falhas de Software, comunicação, Base de Dados ou Hardware
- Interferência entre transacções!
 - O que acontece se multiplas alterações forem feitas na mesma conta?
- Parte dos dados é perdida ...
 - Comunicação falha entre a Retirada e o Depósito.

Proriedades ACID

- •ACID Siginifica:
 - Atomicidade
 - Consistência
 - Isolamento
 - <u>D</u>urabilidade

Atomicidade

- Atomicidade significa que
 - Transações são executadas como uma UNIDADE atómica
 - SGDB garante que todas as operações são executadas ou desfeitas
- Exemplos
 - Transferência de valores entre contas
 - Ou a retirada+Depósito são registados com sucesso ou nenhum dos dois será
 - Em caso de falha a BD permanece inalterada

Consistência

- Consistência significa que:
 - A Base de dados está consistente (íntegra) antes e depois da transação
 - Apenas dados válidos foram gravados
 - A Transação não pode quebrar regras de integridade e respeita:
 - Chaves primárias, estrangeiras e únicas
 - Exemplo
 - Transação não pode terminar com chave duplicada

Isolamento

- Isolamento significa que
 - Múltiplas transacções simultâneas não afectam umas as outras
 - Transações não enxergam dados não COMMITADOS.
 - O nível de isolamento define o quanto uma transacção "enxerga" alterações das outras
 - Read committed, read uncommitted, repeatable read, serializable, etc.
- Exemplo
 - Gerentes podem ver transferências entre contas (débito ou crédito) mas não as 2 operações.

Durabilidade

- Durabilidade significa que
 - Se uma transação é confirmada (COMMIT) ela será persistente
 - Não pode ser perdida nem desfeita
 - Garantida através de LOGS de TRANSACÇÂO e Backup
- Exemplo
 - Ápós concluida a transferência, a energia falha
 - Ao retornar, os dados continuam íntegros e registrados conforme o momento imediatamente anterior à falha

Concorrência

- Num sistema de bases de dados **multiutilizador**, as transacções podem ser executadas, basicamente de duas formas:
 - **Execução série**: As várias transacções submetidas ao sistema são executadas sequencialmente, só se iniciando uma quando a anterior tiver finalizado.
 - Execução concorrente: Dado que a execução de uma transacção é constituída, entre outras coisas, por vários acessos de leitura e escrita à base de dados, poder-se-á pensar em executar as várias transacções concorrentemente, combinando e intercalando, quando possível, as suas operações de leitura e escrita na base de dados.

Concorrência

- Quando duas ou mais transacções são executadas concorrentemente, em algumas situações, poder surgir problemas decorrentes de interferências entre si, como consequências ao nível da integridade da base de dados.
- Se todas as aplicações e utilizadores estão apenas a realizar operações de consulta, os problemas da concorrência não se põem. Estes só acontecem quando duas ou mais transacções acedem aos mesmos dados, envolvendo, pelo menos uma delas, a execução de modificações.

Exemplo

Producto 12:00

T1

Codigo	Nome	Quant.
41004	ACT	139

T2

12:01
SELECT Quant
FROM Producto
WHERE codigo=41004

Resp: 139

Pedido 100

12:04 UPDATE Producto SET Quant=39 WHERE codigo=41004

Producto 12:04

Codigo	Nome	Quant.
41004	ACT	39

12:02		
SELECT Quant		
FROM Producto		
WHERE codigo=41004		
Resp: 139		
+		
Pedido 125		

12:05
UPDATE Producto
SET Quant=14
WHERE codigo=41004

Producto 12:05

Codigo	Nome	Quant.
41004	ACT	14

Actualização Perdida

• Essa situação ocorre quando duas transações que acessam o mesmo item de dado têm suas operações intercaladas de maneira a tornar o dado incorreto.

• O Problema da Actualização Perdida

T ₁	T ₂	
Read(X);		1
X=X-N;		
	Read(X);	
	X=X+M;	tempo
Write(X)		
Read(Y);		
	Write(X);	
	Commit	
Y=Y+N;		\
Write(Y);		·
Commit		

Base de Dados II INFOS2A2L2023

- Dependência de uma actualização não confirmada ou leitura suja.
 - Ocorre quando uma transação actualiza ou recupera um registro que fora atualizado por outra transação, mas que ainda não foi confirmada. Caso a transação falhe, as operações realizadas serão desfeitas (ROLLBACK).

• Dependência de uma atualização não confirmada ou leitura suja.

- O Problema da análise inconsistente
 - Se uma transação está calculando uma função de agregação sobre um número de registros, enquanto outras estão atualizando alguns desses registros, a função de agregação pode calcular alguns valores antes que eles sejam atualizados e outros após suas atualizações!

• O Problema da análise inconsistente

Exercícios

- ☐ O que é uma transação?
- Quais são as Características de uma transação?
- ☐ O que significa a propriedade ACID?
- Quando é que ocorre problemas de concorrência nas transações?
- Aponte alguns problemas de concorrência nas transações

Exercícios de Controle

- ☐ O que é uma transação?
- Quais são as Características de uma transação?
- ☐ O que significa a propriedade ACID?
- ☐ Quando é que ocorre problemas de concorrência nas transações?
- Aponte alguns problemas de concorrência nas transações

TPC

- □Ler e discutir os tipos de falhas nas transação pg. 505(ELMASRI)
- □O que significa a execução concorrente de transacoes em um sistema multiusuário?
- □ Discuta as acções tomadas pelas operações read-item e write_item em um banco de dados.
- Desenhe um diagrama de estados para um caso concreto de transação e discuta os estados típicos pelos quais a transação passa durante a execução.

Base de Dados II INFOS2A2L2023

Referências

- 1. ELMASRI, R.; NAVATHE, S. B., Fundamentals of Database Systems, Addison-Wesley Publishing; 2000, ISBN: 013057591
- 2. DATE, C. J., *An Introduction to Database Systems*, Addison-Wesley Pub Co; 6th edition, 2000, ASIN: 020154329X
- 3. PEREIRA, J. L., Tecnologias de Base de Dados, FCA, 3 edição, ISBN: 972-722-143-2
- 4. SILBERSCHATZ, A., KORTH, H. F., SUDARSHAN, S.. Sistemas de Bancos de Dados. Campus, 1999.

