Klausur im Lehrgebiet

Signale und Systeme

- Prof. Dr.-Ing. Thomas Sikora -

Na	me:					☐ Bachelor	□ ET
						□ Master	□ TI
Vo	rname:					□ Diplom	□ WiIng
						☐ Magister	□ PI
Ma	tr.Nr:		••			☐ Erasmus	□
	Ich bin mit der Veröffer unter meiner verkürzte		U		U		
		A1	A2	A3	BP	Summe	
Hiny	weise:						
1.	Füllen Sie vor Bearbeitur	ng der l	Klausuı	r das D	eckblat	t vollständig und	sorgfältig aus.
2.		_				_	ılb der Aufgabenstellung.
3.		en, ist	denno	ch kein	eigen	es Papier zu ver	Sollte der Platz auf der wenden. Die Klausurauf-
4.	Ein nicht programmierbarer Taschenrechner und ein einseitig handbeschriebenes DIN-A4-Blatt sind als Hilfsmittel erlaubt.						
5.	Bearbeitungszeit: 90 mir	1.					
6.	Keinen Bleistift und auch keinen Rotstift verwenden!						
7.	7. Bei Multiple-Choice-Fragen gibt es je richtiger Antwort einen halben Punkt, je falscher Antwort wird ein halber Punkt abgezogen. Im schlechtesten Fall wird die Aufgabe mit null Punkten bewertet.						
8.	8. Grundsätzlich müssen bei allen Skizzen die Achsen vollständig beschriftet werden.						
Ich l	nabe die Hinweise gelesen ı	ınd ver	stande	n:			(Unterschrift)
	Technische Universität Berl	in		Kl	ausur im	Lehrgebiet	
	Fachgebiet Nachrichtenübertrag	gung		Si	gnale un	d Systeme	Blatt: 1

am 22.07.2015

Prof. Dr.-Ing. T. Sikora

Erklärung zur Prüfungsfähigkeit

Ich erkläre, dass ich mich prüfungsfähig fühle. (§ 7 (10) Satz 5+6 AllgPO vom 13. Juni 2012)
(Datum und Unterschrift der Studentin/ des Studenten)

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 2
Prof. DrIng. T. Sikora	am 22.07.2015	

Inhaltsverzeichnis

1	Zeitkontinuierliche Signale	4
2	Zeitkontinuierliche Systeme und Abtastung	13
3	Zeitdiskrete Signale und Systeme	10

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 3
Prof. DrIng. T. Sikora	am 22.07.2015	

1 Zeitkontinuierliche Signale

11,5 Punkte

- 1.1 Gegeben sei das zeitkontinuierliche Signal $u_1(t)$ mit: 3,5 P $u_1(t)=A\cdot \sqcap_T(t+1,5T)+A\cdot \sqcap_T(t-1,5T)+A\cdot \sigma(t+2T)-A\cdot \sigma(t-2T)$
- a) Zeichnen Sie das Signal $u_1(t)$. 1 P

b) Bestimme die Funktion des zeittransformierten Signals $u_2(t)$ in Abhängigkeit 1,5 P von $u_1(t)$.

$$U_2(+) = -\frac{1}{2} U_1 \left(2(+ \frac{1}{2} + 1) \right)$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 4
Prof. DrIng. T. Sikora	am 22.07.2015	

c) Bestimmen Sie die Energie des Signals $u_2(t)$.

$$W_{n} = \int_{-\frac{3}{2}7}^{-7} (-A)^{2} dt + \int_{-7}^{0} (-\frac{A}{2})^{2} dt + \int_{0}^{\frac{4}{2}7} (-A)^{2} dt$$

$$= A^{2} \cdot (\frac{4}{2}7) + \frac{A^{2}}{4} \cdot 7 + A^{2} \cdot \frac{4}{2}7$$

$$= \frac{5}{4}A^{2}7$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 5
Prof. DrIng. T. Sikora	am 22.07.2015	

1 P

1.2 Gegeben seien das Eingangssignal x(t) und ein Filter mit der Impulsantwort 6 P h(t).

a) Bestimmen Sie das Ausgangssignal y(t).

$$y(t) = \chi(t) + h(t) = \int_{-\infty}^{\infty} \chi(\tau) h(t-\tau) d\tau$$

$$t-\tau=-27 \implies \tau=t+27$$

$$t-\tau=-27 \implies \tau=t-27$$

 $N(t) = \left(\frac{31}{54} \cdot f + \frac{3}{8} A\right) \cdot 1 \cdot 1 \cdot \frac{3}{2} \cdot 1$

4,5 P

- 0 tartet = 0 t c-7
 y(t)=0
 - @ t+2727 ∧ t+27247 => -74tc21

 $y(t) = \int_{T}^{t+27} AB(-\frac{2}{37}x^{2} + \frac{8}{3}) dx$ $= AB \cdot (-\frac{1}{37} \cdot x^{2} + \frac{8}{3}x) \Big|_{T}^{t+27}$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4HT - T^{2}) + \frac{8}{3} \cdot (t + T)]$ $= AB \cdot [-\frac{1}{37} \cdot (t^{2} + 4T^{2} + 4$

 $y(t) = \int_{7}^{47} AB \left[-\frac{1}{37}(BT^{2}) + \frac{8}{3} \right] dr$ $= AB \cdot \left[-\frac{1}{37}(BT^{2}) + \frac{8}{3} \cdot 37 \right]$ $= AB \cdot 37$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 6
Prof. DrIng. T. Sikora	am 22.07.2015	

t-27 > 7 n t-27 < 47 9(+)= J4T Ab (-31 72 + 8)dr = AB[-37.[16+2-67-472+447]+8(67-6)] = 37 [-1642+ t3+4T3-4ET+4872-8ET] $= \frac{AB}{37} \left[36T^{2} + 1^{2} - 12tT \right]$ $y(6T) = \frac{AB}{37} \left[36T^{2} + 36T^{2} - 12\cdot6T^{2} \right]$

6x6×2 - 1x6x2=0

b) Skizzieren Sie das Ausgangssignal y(t) im Bereich $-6T \le t \le 6T$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 7
Prof. DrIng. T. Sikora	am 22.07.2015	

1.3 Berechnen Sie die Fouriertransformierte des folgenden Signals w(t). Fassen Sie das Ergebnis so weit wie möglich zu trigonometrischen Funktionen zusammen.

2 P

$$w'(t) = \frac{1}{4} \cdot \delta(t+3T) - \frac{3}{4} \cdot \delta(t+2T) + \frac{3}{4} \cdot \delta(t+T) + \frac$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 8
Prof. DrIng. T. Sikora	am 22.07.2015	

2 Zeitkontinuierliche Systeme und Abtastung

9,5 Punkte

2.1 Gegeben sei das folgende Spektrum $U(j\omega)$.

5,5 P

a) Bestimmen Sie
$$u(t)$$
. (Hinweis: $\mathcal{F}^{-1}\{2\pi\delta(\omega)\}=1$)

1 P

$$\begin{aligned} V(jw) &= 7L\delta(w+w_w) + 2T\delta(w) + 7L\delta(w-w_u) \\ u(t) &= \frac{1}{2T} \cdot \left(7Le^{jwu} + 7Le^{-jwu} + 2TL \right) \\ &= \cos(wu) + \Lambda \end{aligned}$$

b) Das Signal werde ideal mit $\omega_T=2\omega_u$ abgetastet. Zeichnen Sie $U_A(j\omega)$ im 1 P Bereich $-6\omega_u\leq\omega\leq6\omega_u$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 9
Prof. DrIng. T. Sikora	am 22.07.2015	

c) Zeichnen Sie das Blockschaltbild des Shape-Top-Samplings.

d) Nun werde das Signal u(t) mittels Shape-Top-Sampling ($\omega_T=3\omega_u,\,\alpha=0,7$) 1 P abgetastet. Skizzieren Sie $U_A(j\omega)$ im Bereich $-6\omega_u\leq\omega\leq6\omega_u$.

max Amblituden = QUIGN/2 0.7.27 = 1.67

1 P

- e) Was ist Aliasing? Wie entsteht Aliasing?
- Aliasing sind Spiegelungseffekte beim rekonstruierten Signal. 0,5 Punkte Überlappen der Spektren im Frequenzbereich, zu kleine Abtastfrequenz 0,5 Punkte Die gespiegelten Spektren wurden nicht ausreichend gefiltert, Flankensteilheit des Tiefpasses zu gering 0,5 Punkte

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 10
Prof. DrIng. T. Sikora	am 22.07.2015	

f) Zeichnen Sie das Blockschaltbild des Flat-Top-Samplings.

1* P

g) Leiten Sie aus dem Blockschaltbild die Beschreibung von $v_A(t)$ ab und bestimmen Sie daraus das Spektrum $V_A(j\omega)$. Vereinfachen Sie so weit wie möglich, lösen Sie dabei die Faltung vollständig auf.

$$\begin{aligned} &\text{Va(t)} = (u(t) \cdot S_{7}(t)) \neq \bigcap_{\alpha_{7}(t)} \\ &\text{Va(jw)} = \left(\frac{1}{27L}(u(jw) + W_{1} \cdot Sw_{1}(t)) \cdot \alpha \cdot 7 \cdot Si\left(\frac{wx_{7}}{2}\right) \cdot m_{1}^{2}Cu_{1} > \frac{27}{7} \\ &= \frac{1}{27L} \cdot \frac{27L}{2} \cdot \alpha_{7}^{2} \cdot \frac{5}{2} \text{V(j(w-kw_{7}))} \cdot Si\left(\frac{wx_{7}}{2}\right) \\ &= \alpha_{8}i\left(\frac{wx_{7}}{2}\right) \cdot \frac{5}{2} u(j(w-kw_{7})) \end{aligned}$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 11
Prof. DrIng. T. Sikora	am 22.07.2015	

h) Gegeben sei das Spektrum $V(j\omega)$. Nun werde das Signals mittels Flat-Top-Sampling ($\omega_T=2\omega_v,~\alpha=0,9$) abgetastet. Skizzieren Sie $V_A(j\omega)$ im Bereich $-6\omega_v\leq\omega\leq6\omega_v$.

1* P

1* P

- i) Lässt sich das Signal v(t) perfekt rekonstruieren? Begründen Sie Ihre Antwort.
 - ia Ablast theorem enfilt

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 12
Prof. DrIng. T. Sikora	am 22.07.2015	

- 2.2 Gegeben sei das folgende Blockschaltbild. Geben Sie die Gesamtübertragungsfunktion $H_{\rm Ges}(s)$ in Abhängigkeit von den Einzelübertragungsfunktionen $H_i(s)$, i=1,...,4 an. Fassen Sie das Ergebnis so weit wie möglich zusammen
- 2 P

$$H(S) = \frac{Y(S)}{X(S)} = \frac{H_2(S)}{1 - H_A(S)H_2(S) + H_2(S)H_3(S) + H_2(S)H_3(S)H_4(S)}$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 13
Prof. DrIng. T. Sikora	am 22.07.2015	

- 2.3 Von einem realen, zeitkontinuierlichen System seien nachfolgende Eigenschaften bekannt. Skizzieren Sie das PN-Diagramm des Systems. Erläutern Sie Ihre Schlussfolgerungen aus den genannten Eigenschaften.
- 2 P

- a) $|H(j\omega)| = \text{konst.}$
- b) Es gibt genau vier Extremstellen.
- c) Der Imaginärteil einer Polstelle ist 2.
- d) Der Realteil mindestens einer Nullstelle ist 2.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 14
Prof. DrIng. T. Sikora	am 22.07.2015	

3 Zeitdiskrete Signale und Systeme

11 Punkte

3.1 PN-Diagramme zeitdiskreter Systeme

4 P

3 P

a) Gegeben sei das folgende PN-Diagramm eines zeitdiskreten Systems. Kreuzen Sie rechts die entsprechenden Eigenschaften des Systems an.

b) Zerlegen Sie, falls möglich, das System aus Teilaufgabe 3.1 a) in ein Allpassund Minimalphasensystem. Zeichnen Sie die resultierenden Extremstellen in das passende PN-Diagramm.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 15
Prof. DrIng. T. Sikora	am 22.07.2015	

- 3.2 Gegeben sei die Systemfunktion $H(z) = \frac{z^2 + 2z + 1}{z^3 + z}$.
- a) Bestimmen Sie die Differenzengleichung y(n). 2 P

$$\lambda(\bar{x}) + \lambda(\bar{x}) \cdot \bar{x}_{J} = \bar{x}_{-1} \times (\bar{x}) + J \bar{x}_{J} \times (\bar{x} + \bar{x}_{J}) \times (\bar{x})$$

$$\lambda(\bar{x}) = \chi(\bar{x}), \quad \frac{\bar{x}_{J} + \bar{y}}{\bar{x}_{J} + J \bar{x} + \chi} = \frac{1 + \bar{x}_{J}}{\bar{x}_{-1} + J \bar{x}_{-J}} \times (\bar{x})$$

$$H(\bar{x}) \approx \frac{\chi(\bar{x})}{\lambda(\bar{x})}$$

y(n) = &(n-1)+2 &(n-2)+ &(n-3)-y(n-2)

3 P

b) Bestimmen Sie die Lage der Pol- und Nullstellen von H(z) und zeichnen Sie 1 P das zugehörige PN-Diagramm.

$$H(2) = \frac{(2+1)^2}{2(2+1)(2-1)}$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 16
Prof. DrIng. T. Sikora	am 22.07.2015	

n=0123

3.3 Gegeben sei die Folge $\{2; 0; 1; 2\}$.

4 P

2 P

a) Berechnen Sie die DFT der Folge.

$$\Delta \Omega = \frac{2\pi}{N} = \frac{\pi}{3}$$

$$U_{\text{PFT}}(n) = \frac{3}{100} U(k) Q$$

$$= U(0) + U(1) Q - \frac{1}{2} n \cdot \frac{\pi}{3} + U(1) Q - \frac{1}{2} n \cdot \frac{\pi}{3}$$

$$= U(0) + U(1) Q + \frac{1}{2} n \cdot \frac{\pi}{3} + U(1) Q + \frac{1}{2} n \cdot \frac{\pi}{3}$$

$$U_{\text{DFT}}(0) = 2 + 0 + 1 + 2 \cdot d = \pm U_{\text{DFT}}(1) = 2 + 0 + 1 \cdot e^{-j\pi} + 2 \cdot e^{-jn\frac{3}{2}\pi} = 2 + (-1) + 2 \cdot (j) = 1 + 2j$$

$$U_{\text{DFT}}(2) = 2 + 0 + 1 \cdot e^{-j2\pi} + 2 \cdot e^{-j3\pi} = 2 + 1 + 2 \cdot (-1) = 1$$

$$U_{\text{DFT}}(3) = 1 - 2j$$

b) Welche Eigenschaften unterscheiden die DFT von der gewöhnlichen Fouriertransformation?

- 时间信号被解释为好像它们是周期性的。0.5分
- 频谱被周期性地延续。0.5 分

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 17
Prof. DrIng. T. Sikora	am 22.07.2015	

c) Beweisen Sie allgemein die Symmetrieeigneschaft $U_{DFT}(N-n)=U_{DFT}^*(n)$ 1 P der diskreten Fouriertransformation.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 18
Prof. DrIng. T. Sikora	am 22.07.2015	