PATTERN RECOGNITION AND MACHINE LEARNING LAB REPORT ASSIGNMENT-4

Lavangi Parihar B22EE044

Question 1 LDA

Task 1- Generating myLDA

• Data Loading and Preparation:

The code loads data from a CSV file named 'data.csv', where each row represents a sample with two features (x, y) and a class label (0 or 1).

- LDA Functions:
 - `ComputeMeanDiff(X)`: Computes the mean difference vector between the class
 - `ComputeSW(X)`: Computes the within-class scatter matrix.
 - `ComputeSB(X)`: Computes the between-class scatter matrix.
 - `GetLDAProjectionVector(X)`: Computes the LDA projection vector.
 - `project(x, y, w)`: Projects a 2-dimensional point onto the LDA projection vector.
- Results:
 - `ComputeMeanDiff(X)`:

```
[2.986 3.024].
```

- `ComputeSW(X)`:

```
[[ 2.213 -0.119]
[-0.119 2.28 ]]
```

- `ComputeSB(X)`:

```
[[8.914 9.029]
[9.029 9.146]]
```

- `GetLDAProjectionVector(X)`:

```
[0.713 0.701]
```

- `project(x, y, w)`:

```
Input x dimension of a 2-dimensional point: 5
Input y dimension of a 2-dimensional point: 7
8.472916093359904
```

Task 2- Plotting LDA projection Vector

• LDA Computation:

- The part initializes an LDA classifier using `LDA()` from scikit-learn.
- It fits the LDA model to the data using `lda.fit(X, y)`.
- The LDA model learns the optimal projection vector during the fitting process.
- The learned projection vector is stored in `lda_projection_vector`.

Plotting:

- The scatter plot visualizes the original data points in 2D space, where each class is represented by a different color.
- The yellow arrow represents the LDA projection vector, which maximizes the separation between the classes.
- LDA projects the data onto this vector, effectively reducing the dimensionality while preserving class discriminability.
- The plot provides an intuitive understanding of how LDA transforms the data for classification.

Task 3– Computing Performance

- 1. Data Splitting:
 - The part splits the original dataset (`X`, `y`) into training and testing sets (`X_train`, `X_test`, `y_train`, `y_test`) using `train_test_split` from scikit-learn.
 - The testing set size is set to 30% of the original data, and a random state of 42 is used for reproducibility.
- Original Data Classification (1-NN):
 - It initializes a 1-nearest neighbor classifier (`knn_original`) using `KNeighborsClassifier` from scikit-learn.
 - The classifier is trained on the original training data (`X_train`, `y_train`) using `knn_original.fit()`.
 - Predictions are made on the testing set ('X_test') using 'knn_original.predict()'.
 - The accuracy of the classifier on the original data is computed using `accuracy_score` from scikit-learn.

• LDA Projection:

- An LDA object is initialized ('lda') using 'LDA()' from scikit-learn.
- The training data is projected onto a lower-dimensional space using LDA with `lda.fit_transform(X_train, y_train)`. Similarly, the testing data is transformed using `lda.transform(X_test)`.
- Projected Data Classification (1-NN):
 - A new 1-nearest neighbor classifier (`knn_projected`) is initialized.
 - This classifier is trained on the projected training data (`X_train_projected`, `y_train`) using `knn_projected.fit()`.
 - Predictions are made on the projected testing set (`X_test_projected`) using `knn_projected.predict()`.
 - The accuracy of the classifier on the projected data is computed using `accuracy_score`.

Accuracy Scores:

Accuracy on Original Data: 0.89

Accuracy on Projected Data: 0.8716666666666667

Question 1 LDA

Task 1– Calculating Prior Probabilities:

- Probability Calculation:
 - `p_play_yes`: The prior probability of the event 'play' (label 'yes'), calculated by dividing the count of 'yes' samples by the total number of samples.
 - `p_play_no`: The prior probability of the event 'not play' (label 'no'), calculated by dividing the count of 'no' samples by the total number of samples.
- Prior probabilities represent the probabilities of classes before observing any evidence or features of the data.
- In this context, `p_play_yes` represents the probability of playing given no other information, and `p_play_no` represents the probability of not playing given no other information.
- These probabilities serve as the baseline probabilities for the classes in the classification problem.
- They are essential for Bayesian inference and are used in many machine learning algorithms, including Naive Bayes classifiers.

Task 2 and Task 5— Calculating Likelihood Probabilities Using laplace smoothing:

- Pseudocount Definition:
 - `pseudocount`: This variable holds the value of the pseudocount used in Laplace smoothing. It's set to 1 in this code.
- Likelihood Probabilities with Laplace Smoothing:
 - A dictionary `likelihood_probabilities_smoothed` is initialized to store the likelihood probabilities with Laplace smoothing.
 - The part iterates over each feature in the training data and for each unique feature value calculates the likelihood probability for each class using Laplace smoothing.
 - Laplace smoothing is applied by adding the pseudocount to the numerator and adjusting the denominator to account for the added counts.
 - The calculated likelihood probabilities are stored in the dictionary.
- Prior Probabilities with Laplace Smoothing:
 - Prior probabilities for both classes ('yes' and 'no') are calculated using Laplace smoothing.
 - Laplace smoothing is applied by adding the pseudocount to the numerator and adjusting the denominator to account for the added counts.

- Laplace smoothing is applied to avoid zero probabilities when a feature value has not been observed with a particular class label in the training data.
- Pseudocount is added to both the numerator and the denominator to ensure that every feature value has a nonzero probability estimate.
- Likelihood probabilities represent the probability of observing a particular feature value given the class label.
- Prior probabilities represent the probability of each class occurring before observing any feature information.

Task 3— Calculating Posterior Probabilities:

- Calculation of Posterior Probabilities:
 - For each sample in the testing set (`X_test`), the code calculates the posterior probability for both classes ('yes' and 'no') using the Naive Bayes formula.
 - The prior probability of each class is multiplied by the likelihood probabilities of the features given the class, which were previously calculated with Laplace smoothing.
 - The resulting posterior probabilities for each class are stored in the respective dictionaries.

Normalization:

- The probabilities in `posterior_probabilities_yes` and `posterior_probabilities_no` are normalized to ensure that they sum up to 1.
- This is done by dividing each probability by the total probability of all samples classified as 'yes' and 'no', respectively.
- Posterior probabilities represent the probability of each class given the observed features of a sample.
- By comparing the posterior probabilities of the classes, the code can predict the class label for each sample in the testing set.

```
Posterior probabilities for Play = yes:
Sample 9: 0.9090909090909091
Sample 11: 0.090909090909088

Posterior probabilities for Play = no:
Sample 9: 0.28825622775800713
Sample 11: 0.7117437722419929
```

Task 4- Making Predictions for test dataset:

- For each sample in the testing set (`X_test`), the code compares the posterior probabilities calculated for both classes ('yes' and 'no').
- If the posterior probability for class 'yes' is greater than the posterior probability for class 'no', the prediction for the sample is 'yes'. Otherwise, it is 'no'.
- The predicted class label for each sample is appended to the 'predictions' list.

