Constraint-based Modeling of Cellular Networks

Solution to homework of exercise 3

3. 11. 2022

Translate text into LP model

- Two products paintings (P) and cards (C)
- Material/ Constraint: time
- Painting2 hours
- Card 1 hours

She cannot spend more than 20 hours a week.

She should make not more than 12 paintings and cards per week.

She makes a profit of

- 50€ on paintings
- 30€ on each card

How many paintings and cards should she make each week to maximize her profit?

$$max z = 50*P + 30*C$$

objective

s.t.

$$2*P + C \le 20$$

P + C \le 12

 $P \ge 0$ $C \ge 0$ constraints

Graphical solution

$$max z = 50*P + 30*C$$

objective

s.t.

$$2*P + C \le 20$$

$$P + C \le 12$$

$$P \ge 0$$

$$C \ge 0$$

constraints

See next page for MATLAB code that creates this Figure!

Matlab Code for Figure

```
constraint 1 = Q(P)(2*P-20)./-1; % time per week
constraint 2 = @(P)(-P+12); % number of paintings and cards
% define x values for plotting (paintings on x-axis)
xrange = 0:15;
% set limits for x and y axes
xlim([0,15])
ylim([0,15])
% plot two lines
hold on
line (xrange, constraint 1 (xrange), 'Color', 'b', 'LineWidth', 1.5)
xlabel("Number of paintings", 'FontSize', 14)
ylabel ("Number of cards", 'FontSize', 14)
line (xrange, constraint 2 (xrange), 'Color', 'r', 'LineWidth', 1.5)
% plot lower and upper limits
legend('2*P + C \le 20','P + C <= 12')
legend boxoff
```

Graphical solution – optimal solution

To find optimal sale evaluate objective at each **extreme point**

$$z(P,C) = 50*P + 30*C$$
 (objective function)

$$z(0,12) = 50*0 + 30*10 = 300$$
€

$$z(10,0) = 50*10 + 30*0 = 500$$
€

Optimal profit when making 8 paintings and 4 cards per week.

Solving LP using Simplex

Reformulation into system of equalities!

max z =
$$50*P + 30*C$$

s.t.
 $2*P + C \le 20$
 $P + C \le 12$
 $P >= 0$
 $C >= 0$

To use simplex we first convert all inequalities to equalities.

```
Row 1: z - 50*P - 30*C - 0*s - 0*t = 0
Row 2: 2*P + C + s = 20
Row 3: P + C + t = 12
P,C,s,t>=0
```

Initial tableau

Basic variable: variable isolated in a constraint that can be set to the right-hand side of that constraint

Row number	Basic variable	Z	P	С	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	-50	-30	0	0	0	
2	S	0	2	1	1	0	20	
3	t	0	1	1	0	1	12	

Optimality conditions:

- 1. The objective row of the tableau is 0 in the basic columns
- 2. There is no negative entry in the objective row

Identify entering and leaving variable

Row number	Basic variable	Z	P	С	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	-50	-30	0	0	0	
2	S	0	2	1	1	0	20	20/2=10
3	t	0	1	1	0	1	12	12/1=12

Second tableau

• Fill basic variables

Previous table

Row number	Basic variable	z	Р	С	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	-50	-30	0	0	0	
2	S	0	2	1	1	0	20	10
3	t	0	1	1	0	1	12	12

Row number	Basic variable	Z	P	С	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0			0		
2	Р	0	1	0.5	0.5	0	10	
3	t	0	0			1		

Becomes basic variable

Second tableau

• Update the coefficients of the tableau (T2(i,j) = T1(i,j) - T1(i,entering variable)) * T2(leaving variable,j))

Row number	Basic variable	Z	P	С	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-5	25	0	500	
2	Р	0	1	0.5	0.5	0	10	
3	t	0	0	0.5	-0.5	1	2	

Initial tableau	-
tableau	

Row number	Basic variable	Z	Р	С	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	-50	-30	0	0	0	
2	S	0	2	0.5	1	0	20	10
3	t	0	1	1	0	1	12	12

Second tableau

Optimality conditions:

- 1. The objective row of the tableau is 0 in the basic columns
- 2. There is no negative entry in the objective row

Row number	Basic variable	Z	P	С	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-5	25	0	500	
2	Р	0	1	0.5	0.5	0	10	
3	t	0	0	0.5	-0.5	1	2	

Identify entering and leaving variable

- Basic variable: variable isolated in a constraint that can be set to the right-hand side of that constraint
- Entering variable: nonbasic variable which is associated the most negative (for maximization) coefficient in the objective
- Leaving variable: variable which will be changed from a non-zero to zero value in the next solution
 -> choose the one that has smallest upper bound on entering variable

Row number	Basic variable	z	P	С	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	-5	25	0	500	
2	Р	0	1	0.5	0.5	0	10	10/0.5=20
3	t	0	0	0.5	-0.5	1	2	2/0.5=4

Third tableau

• Enter the basic variable for the new tableau.

Row number	Basic variable	z	Р	С	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	0				
2	Р	0	1	0				
3	С	0	0	1	-1	2	4	

previous
tableau

Row number	Basic variable	Z	P	С	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-5	25	0	500	
2	Р	0	1	0.5	0.5	0	10	10/0.5=20
3	t	0	0	0.5	-0.5	1	2	2/0.5=4

Third tableau

• Update the coefficients of the tableau (V(i,j) = O(i,j) - O(i,entering variable) * V(leaving variable,j))

Row number	Basic variable	z	P	С	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	0	20	10	520	
2	Р	0	1	0	1	-1	8	
3	С	0	0	1	-1	2	4	

previous
tableau

Row number	Basic variable	Z	P	С	S	t	Right-hand side	Upper bound on entering variable
1	Z	1	0	-5	25	0	500	
2	Р	0	1	0.5	0.5	0	10	10/0.5=20
3	t	0	0	0.5	-0.5	1	2	2/0.5=4

Optimality conditions

- ✓ The objective row of the tableau is 0 in the basic columns
- ✓ There is no negative entry in the objective row

Row number	Basic variable	z	P	С	S	t	Right- hand side	Upper bound on entering variable
1	Z	1	0	0	20	10	520	
2	Р	0	1	0	1	-1	8	
3	С	0	0	1	-1	2	4	

Solution: P = 8, C = 4, z = 520€

Solving LP with additional constraint C≥5 using Simplex

Reformulation into system of equalities!

```
max z = 50*P + 30*C
s.t.
2*P + C <= 20
P + C <= 12
C >= 5
P >= 0
C >= 0
```

To use simplex we first convert all inequalities to equalities.

```
Row 1: z - 50*P - 30*C - 0*s - 0*t = 0

Row 2: 2*P + C + s = 20

Row 3: P + C + t = 12

Row 4: C - u = 5

P,C,s,t >= 0
```

Inital solution – Big M-method

To obtain an initial solution we add artificial variable w to row 4

Row 1: z - 50*P - 30*C - 0*s - 0*t = 0

Row 2: 2*P + C + s = 20

Row 3: P + C + t = 12

Row 4: C - u + w = 5

P,C,s,t>=0

Initial feasible solution is

$$P = C = u = 0$$
, $s = 20$, $t = 12$, $w = 5$

$$w = 5 - C + u$$

Only solutions with w=0 are feasible therefore we penalize w with large constant such that it is driven to be zero. Hence, we change objective to

$$z - 50*P - 30*C - 0*s - 0*t + 5000*w = 0$$

Substitute w in objective with 5-C+u

z-50*P-30*C-0*s-0*t+5000*(5-C+u) = z-50*P-5030*C-0*s-0*t+5000*u +25000

Initial tableau for LP with additional constraint C>5

$$z-50*P-5030*C-0*s-0*t+5000*u +25000$$

 $2*P+C+s=20$
 $P+C+t=12$
 $C-u+w=5$

Row number	Basic variable	z	P	С	S	t	u	W	Right- hand side	Upper bound on entering variable
1	Z	1	-50	-5030	0	0	5000	0	-25000	
2	S	0	2	1	1	0	0	0	20	
3	t	0	1	1	0	1	0	0	12	
4	W	0	0	1	0	0	-1	1	5	

Solve the problem using *linprog* (version 1)

```
\min f^T \cdot x
A = [2 \ 1; \ % \ constraint \ 1 - time per week]
     1 1]; % constraint 2 - number per week
                                                                        A \cdot x < b
                                                                      Aeq \cdot x = beq
b = [20; 12]; % right-hand side of equations
                                                                      lb \le x \le ub
lb = [0;0];% number of cards and paintings
            % cannot have negative numbers
ub = [12; 12]; % from constraint 2,
                % but solution is the same if larger values are used
c = [50; 30]; % coefficients in objective
[X, FVAL, EXIT] = linprog(-c, A, b, [], [], lb, ub)
```

Solve the problem using *linprog* (version 2)

```
\min f^T \cdot x
A = [2 \ 1; \ % \ constraint \ 1 - time per week]
     1 1]; % constraint 2 - number per week
                                                                       A \cdot x \leq b
                                                                     Aeq \cdot x = beq
b = [20; 12]; % right-hand side of equations
                                                                      lb < x < ub
% additional constraint C >= 5
lb = [0; 5]; % number of cards and paintings
            % cannot have negative numbers
ub = [12; 12]; % from constraint 2,
                % but solution is the same if larger values are used
c = [50; 30]; % coefficients in objective
[X, FVAL, EXIT] = linprog(-c, A, b, [], [], lb, ub)
```