WHAT IS CLAIMED IS:

1	1.	A\method of inhibiting the generation of active thrombin on the	
2	surface of a cell of a	mammal, the method comprising producing an ER resident	
3	chaperone protein in	said dell.	
1	2.	The method of claim 1, wherein said cell is an endothelial cell.	
1	3.	The method of claim 1, wherein said cell is a smooth muscle cell.	
1	4.	The method of claim 1, wherein said cell is a macrophage.	
1	5.	The method of claim 1, wherein said cell is a monocyte.	
1	6.	The method of claim 1, wherein said ER resident chaperone protein	
2	is GRP78/BiP.		
1	7.	The method of claim 1, wherein said ER resident chaperone protein	
2	is selected from the g	group consisting of GRP 4, GRP72, Calreticulin, Calnexin, Protein	
3	disulfide isomerase,	cis/trans-Prolyl isomerase and HSP47.	
	_		
1	8.	The method of claim , wherein the production of said ER resident	
2	chaperone protein within said cell results in a decrease in the level of tissue factor		
3	procoagulant activity	on the surface of said cell.	
1	9.	The method of claim 1, wherein said cell is present within said	
2	mammal.		
1	10.	The method of claim 9, wherein said cell is present within an	
2	atherosclerotic plaque	e in said mammal.	
1	11.	The method of claim 1, wherein a polynucleotide encoding said ER	
2	resident chaperone pi	rotein, operably linked to a promoter, is introduced into said cell,	
3	whereby said ER resident chaperone protein is produced.		
1	12.	The method of claim 11, wherein said polynucleotide is introduced	
2	into said cell using a	viral vector.	

1	13. The method of claim 12, wherein said viral vector is an adenovira		
2	vector.		
1	14. The method of claim 11, wherein said polynucleotide is introduce		
2	into said cell using a nonviral vector.		
1	15. The method of claim 14, wherein said nonviral vector is introduce		
2	into said cell as naked DNA or using liposome-mediated transfection.		
1	16. The method of claim 1, wherein said ER resident chaperone protein		
2	is produced by administering to said cell a compound that induces the expression or		
3	activation of an endogenous ER resident chaperone protein.		
1	17. The method of claim 16, wherein said compound is a cytokine.		
1	18. A method of preventing or treating a thrombotic disease or		
2	condition in a mammal, the method comprising producing an ER resident chaperone		
3	protein within a population of cells of said mammal, whereby the generation of active		
4	thrombin on the surface of said population of cells is inhibited.		
1	19. The method of claim 18, wherein said population of cells		
-	\		
2	comprises endothelial cells.		
1	20. The method of claim 8, wherein said population of cells		
2	comprises smooth muscle cells.		
1	21. The method of claim 18, wherein said population of cells		
2	comprises macrophages.		
1	22. The method of claim 18, wherein said population of cells		
2	comprises monocytes.		
1	23. The method of claim 18, wherein said ER resident chaperone		
2	protein is GRP78/BiP.		
1	24. The method of claim 18, wherein said ER resident chaperone		
2	protein is selected from the group consisting of GRP94, GRP72, Calreticulin, Calnexin,		
3	Protein disulfide isomerase, cis/trans-Prolyl isomerase, and HSP47.		
_	1 totom distinct isomorase, of mails-1 toty i isomorase, and 1151 pr.		

1 2

1	25.	The method of claim 18, wherein the production of said ER	
2	resident chaperone	e protein within said population of cells results in a decrease in the level	
3	of tissue factor pro	ocoagulant activity on the surface of said population of cells.	
1	26.	The method of claim 18, wherein said population of cells is present	
2	within an atherosc	lerotic plaque in said mammal.	
1	27.	The method of claim 18, wherein said mammal has had a	
2 .	myocardial infarct	ion and is undergoing angioplasty or stenting.	
1	28.	The method of claim 27, wherein said mammal is undergoing	
2	stenting, and said	population of cells is present on the surface of a stent within said	
3	mammal.		
1	29.	The method of claim 18, wherein said mammal is undergoing	
2	cranial radiation.		
1	30.	The method of claim 18, wherein said mammal is undergoing	
2	vascular surgery.		
1	31.	The method of claim 18, wherein a polynucleotide encoding said	
2	ER resident chaperone protein, operably linked to a promoter, is introduced into said		
3	population of cells	s, whereby said ER resident chaperone protein is produced.	
1	32.	The method of claim 31, wherein said polynucleotide is introduced	
2.	into said cell using	g a viral vector.	
1	33.	The method of claim 32, wherein said viral vector is an adenoviral	
2	vector.		
1	34.	The method of claim 31, wherein said polynucleotide is introduced	
2	into said cell using a nonviral vector.		

into said cell as naked DNA or using liposome-mediated transfection.

The method of claim 34, wherein said nonviral vector is introduced

35.

1	36. The method of claim 18, wherein said ER resident chaperone		
2	protein is produced by administering to said population of cells a compound that induces		
3	the expression or activation of an endogenous ER resident chaperone protein.		
1	37. The method of claim 36, wherein said compound is a cytokine.		
1	38. A method of identifying a compound that is useful in the treatmen		
2	or prevention of a thrombotic disease or condition, the method comprising:		
3	(1) contacting a cell that expresses an ER resident chaperone protein, or		
4	that is capable of expressing an ER resident chaperone protein, with said compound; and		
5	(2) detecting the functional effect of said compound on said ER resident		
6	chaperone protein;		
7	wherein an increase in the expression or activity of said ER resident		
8	chaperone protein in said cell indicates that said compound would be useful in the		
9	treatment or prevention of said thrombotic disease or condition.		
1	39. The method of claim 38, wherein said ER resident chaperone		
2	protein is GRP78/BiP.		
1	40. The method of claim 38, wherein said ER resident chaperone		
2	protein is selected from the group consisting of GRP94, GRP72, Calreticulin, Calnexin,		
3	Protein disulfide isomerase, cis/trans-Prolyl isomerase, and HSP47.		
1	41. The method of claim 38, wherein said cell is an endothelial cell.		
1	42. The method of claim 38, wherein said cell is a smooth muscle cell.		
1	43. The method of claim 38, wherein said cell is a macrophage.		
1	44. The method of claim 38, wherein said cell is a monocyte.		
1	45. The method of claim 38, wherein said compound induces said		
2	expression or activation of said ER resident chaperone protein in said cell without		
3	inducing ER stress in said cell.		

