# **FODS-A2 REPORT**

Name ID No.

SUPRIYAM AGARWAL
KARTIKAY DHALL
2020B4A7PS2341H
2020A7PS2087H

3. RAGHAV KRISHNA 2020B3PS1382H

# 2A- Building a regression model by finding max linear relationship.

After loading the dataset, we drop the "Appliances" column from the data frame and store it in the variable Y, while the remaining columns are stored in the variable X. We select the first 25 columns of the data frame and add a column of ones to the front, which is then stored in the X variable. The 26th column of the dataframe is then extracted and stored in the y variable as a NumPy array.

The theta variable is then initialized as an array of zeros to be used as the initial values for the model's parameters in the linear regression algorithm.

We implement a function pearson that calculates the Pearson correlation coefficient between two vectors. It then calculates the Pearson correlation coefficient between each column of a list of 26 vectors, var\_list, and a label vector, Y. It then sorts the resulting list of correlation coefficients in descending order and prints the resulting list.

#### Pearson correlation coefficient with Appliances Column

| Appliances | 1.000000 |
|------------|----------|
| RH_out     | 0.157888 |
| T6         | 0.115799 |
| T2         | 0.109542 |
| T_out      | 0.098908 |
| RH_8       | 0.091040 |
| Windspeed  | 0.090048 |
| RH_6       | 0.083081 |
| T3         | 0.080892 |
| RH 1       | 0.076796 |

| RH_2        | 0.066223 |
|-------------|----------|
| RH_7        | 0.059254 |
| RH_9        | 0.051292 |
| T1          | 0.047674 |
| T4          | 0.035641 |
| T8          | 0.032599 |
| Press_mm_hg | 0.029705 |
| RH_3        | 0.026723 |
| T7          | 0.020004 |
| RH_4        | 0.013502 |
| T5          | 0.012428 |
| RH_5        | 0.011210 |
| Tdewpoint   | 0.009925 |
| Visibility  | 0.004848 |
| T9          | 0.004509 |
| rv1         | 0.000058 |
| rv2         | 0.000058 |
|             |          |

| No. of features | Training Error      | Testing Error      |
|-----------------|---------------------|--------------------|
| 1               | 0.4921568413562548  | 0.5520359362626265 |
| 2               | 0.4920410454077345  | 0.5518863960110728 |
| 3               | 0.48769953551004896 | 0.5486912354772934 |
| 4               | 0.4870886520933431  | 0.5486692542982696 |
| 5               | 0.4865683920662211  | 0.5460424973543863 |
| 6               | 0.4850319236138159  | 0.54552161208197   |
| 7               | 0.47808223710328723 | 0.5383632317919431 |
| 8               | 0.47124404444404716 | 0.5340475380333828 |

| 9  | 0.46505767168266715 | 0.5349830658313164 |
|----|---------------------|--------------------|
| 10 | 0.45375709493471295 | 0.5181125758079219 |
| 11 | 0.45550548652278844 | 0.5173472279323555 |
| 12 | 0.44986000354321765 | 0.5137618055774885 |
| 13 | 0.4496963695253775  | 0.514309520750087  |
| 14 | 0.45022316657735784 | 0.5142857708087621 |
| 15 | 0.45163832886960603 | 0.5164220948027677 |
| 16 | 0.45141614049830486 | 0.5160875186345181 |
| 17 | 0.4477061681402078  | 0.5135101368001967 |
| 18 | 0.44044782006302163 | 0.5072498835297861 |
| 19 | 0.44030161716089833 | 0.5067868193522788 |
| 20 | 0.44496503293198186 | 0.5105151952012404 |
| 21 | 0.4433505470922482  | 0.5092754477315665 |
| 22 | 0.4399134847500075  | 0.5061823521695902 |
| 23 | 0.44916532481635624 | 0.513839820893271  |
| 24 | 0.44817223274792706 | 0.5129475163979652 |
| 25 | 0.4423838116098763  | 0.5107451635987253 |
| 26 | 0.4422423179729102  | 0.5105948374622102 |

# No. of features vs. Training errors



## No. of features vs. Testing errors



### **Principal Component Analysis**

Principal component analysis (PCA) is a statistical technique that is commonly used for dimensionality reduction. It works by transforming the data into a new set of orthogonal axes, called principal components, which are ordered such that the first principal component has the largest possible variance, the second principal component has the second largest variance, and so on.

In the pca\_function function, the PCA class is first instantiated with n\_components set to the value of the num\_components parameter. The fit method is then called on this object, which fits the PCA model to the data. The transform method is then called on the pca object to transform the data using the fitted model. The transformed data is returned by the function. We also define a list called pca\_list and a function called pca\_for\_all that iterates over a range of values from 1 to 27, calling the pca\_function for each value and appending the result to the pca\_list list

| No.of principal components | Training error      | Testing error      |
|----------------------------|---------------------|--------------------|
| 1                          | 0.4740006626515382  | 0.5928531127592372 |
| 2                          | 0.4733636927971104  | 0.5928686007895481 |
| 3                          | 0.4727770217198106  | 0.5931331379380866 |
| 4                          | 0.46203327484179635 | 0.5805071307456146 |
| 5                          | 0.4613382919990127  | 0.5803379630335854 |
| 6                          | 0.46133559595993534 | 0.5803710906780852 |
| 7                          | 0.45995570140893616 | 0.5807448783287809 |
| 8                          | 0.45975153464699214 | 0.5810017325981207 |
| 9                          | 0.4594219406130878  | 0.580781606029845  |
| 10                         | 0.44713554614229933 | 0.5636552156710399 |
| 11                         | 0.43798722626210324 | 0.5500285726729904 |

| 12 | 0.4373899567612342  | 0.5492125495578889 |
|----|---------------------|--------------------|
| 13 | 0.4354799743595863  | 0.5437996438292892 |
| 14 | 0.43406141392990016 | 0.5398656218196638 |
| 15 | 0.4327104131442044  | 0.5344334233806202 |
| 16 | 0.4325274203958965  | 0.5335014286107879 |
| 17 | 0.4314795125939306  | 0.5324061877326598 |
| 18 | 0.42668967631169086 | 0.527489140393435  |
| 19 | 0.4266409084714607  | 0.5275038375475165 |
| 20 | 0.4239835715563329  | 0.5212375201881939 |
| 21 | 0.42061121578837074 | 0.5154002293358066 |
| 22 | 0.41752473339288076 | 0.5128099208458522 |
| 23 | 0.4145341734161583  | 0.5113376316864465 |
| 24 | 0.41125511258169406 | 0.5041796275737003 |
| 25 | 0.41077474915064266 | 0.50399979960485   |
| 26 | 0.41075533214126825 | 0.5040519703718098 |

### Percentage variance captured by each feature sets-

- 1. 0.35896089
- 2. 0.6307988
- 3. 0.70818005
- 4. 0.77699652
- 5. 0.8183059
- 6. 0.85539066
- 7. 0.89131133
- 8. 0.91280068
- 9. 0.93306365
- 10. 0.94783511
- 11. 0.9582695
- 12. 0.96503675
- 13. 0.97062846
- 14. 0.97593166
- 15. 0.98057846
- 16. 0.9849769
- 17. 0.98864056
- 18. 0.99145579
- 19. 0.99400824
- 20. 0.99571697
- 21. 0.99735433
- 22. 0.99845068
- 23. 0.99930645
- 24. 0.99986255
- 25. 1
- 26. 1

# No.of principal components vs Training error



# No.of principal components vs Testing error



### 2B- Greedy Forward Feature Selection

We perform greedy forward feature selection by first calculating training error for individual features. Out of these, we select the feature with min. error and make subsets including this particular feature. We repeat the process until we get all the features in our subset. To obtain the best model, we take the one with the least error.

#### Subset of Features - Training Error for subset

| 20                                                              | 0.48680015461964066 |
|-----------------------------------------------------------------|---------------------|
| 20, 1                                                           | 0.47876425151156193 |
| 20, 1, 13                                                       | 0.4666603806862409  |
| 20, 1, 13, 3                                                    | 0.4586681323141413  |
| 20, 1, 13, 3, 4                                                 | 0.4553998929958801  |
| 20, 1, 13, 3, 4, 16                                             | 0.4438715738285372  |
| 20, 1, 13, 3, 4, 16, 2                                          | 0.4402796080303145  |
| 20, 1, 13, 3, 4, 16, 2, 15                                      | 0.43795452191317347 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14                                  | 0.4362773385293425  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10                              | 0.4351074668752276  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18                          | 0.4340268728461876  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9                       | 0.4330884731463834  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11                   | 0.4325762267681773  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12               | 0.4317988224114434  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22           | 0.43119176059793324 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17       | 0.4307254531547224  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7    | 0.43030312708673796 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0 | 0.43004183354412656 |

| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23                          | 0.4298658430262162  |
|----------------------------------------------------------------------------------------------|---------------------|
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21                      | 0.429739142819956   |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8                   | 0.42965805991529105 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19               | 0.4295988940580948  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24           | 0.42956388814876895 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24, 6        | 0.429534988010786   |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24, 6, 5     | 0.42953139922111233 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24, 6, 5, 25 | 0.4298261516231515  |



### Subset of Features

### Testing Error for subset

| 20                         | 0.49005330524602564 |
|----------------------------|---------------------|
| 20, 1                      | 0.4826694827488317  |
| 20, 1, 13                  | 0.4630711516307173  |
| 20, 1, 13, 3               | 0.45197750995775404 |
| 20, 1, 13, 3, 4            | 0.4499250405572726  |
| 20, 1, 13, 3, 4, 16        | 0.43230224306078935 |
| 20, 1, 13, 3, 4, 16, 2     | 0.4266002682364598  |
| 20, 1, 13, 3, 4, 16, 2, 15 | 0.42461635463702363 |

| 20, 1, 13, 3, 4, 16, 2, 15, 14                                                               | 0.42260255536680724 |
|----------------------------------------------------------------------------------------------|---------------------|
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10                                                           | 0.42059716882519904 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18                                                       | 0.41889638921527844 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9                                                    | 0.41856128439184503 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11                                                | 0.41839935949532386 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12                                            | 0.41828840411846746 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22                                        | 0.4181813888202191  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17                                    | 0.41810222368517597 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7                                 | 0.4180026227052914  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0                              | 0.4179453605172386  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23                          | 0.4178856425727393  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21                      | 0.41785704182919275 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8                   | 0.4178441838713094  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19               | 0.41783569998587566 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24           | 0.41782799861676    |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24, 6        | 0.41782135718172236 |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24, 6, 5     | 0.4178211520695694  |
| 20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24, 6, 5, 25 | 0.417917510103053   |
|                                                                                              |                     |



### **Greedy Backward Feature Selection**

In the greedy backward feature selection method, we start off with all the features as our subset and keep on removing a feature to obtain the one with the least error. Once we get that subset, we build successive subsets from it and continue similarly to get the subset with least error until we get exactly one feature.

#### Subset of Features

#### Training Error for subset

| 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | 0.44851398853687796 |
|-------------------------------------------------------------------------------------------|---------------------|
| 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24     | 0.4623684564209405  |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24        | 0.46665595087069733 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24            | 0.4697199191634084  |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24                | 0.47250331259379336 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24                    | 0.47910378302079176 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20, 21, 22, 23, 24                        | 0.481258496589659   |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20, 22, 23, 24                            | 0.48386610483282466 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 22, 23, 24                                | 0.4853495325742465  |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 22, 24                                    | 0.4890012371199762  |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 22, 24                                        | 0.49272158742872757 |
| 0, 2, 3, 6, 7, 8, 9, 10, 11, 12, 18, 19, 22, 24                                           | 0.4956400958241931  |
| 0, 3, 6, 7, 8, 9, 10, 11, 12, 18, 19, 22, 24                                              | 0.4976132611385842  |
| 3, 6, 7, 8, 10, 11, 12, 18, 19, 22, 24                                                    | 0.49913804230272113 |

| ,                                  |                    |
|------------------------------------|--------------------|
|                                    |                    |
| 3, 6, 7, 8, 10, 11, 18, 19, 22, 24 | 0.5007819365564705 |
| 6, 7, 8, 10, 11, 12, 18, 19, 24    | 0.5019854528932531 |
| 6, 7, 8, 10, 11, 12, 19, 24        | 0.5029189047038953 |
| 6, 7, 8, 11, 12, 19, 24            | 0.5038578041951691 |
| 6, 7, 8, 12, 19, 24                | 0.5049538788701197 |
| 6, 7, 8, 12, 24                    | 0.505348824850478  |
| 7, 8, 12, 24                       | 0.5055987012166471 |
| 8, 12, 24                          | 0.5057011104805499 |
| 8, 24                              | 0.5057317747971535 |
| 24                                 | 0.5057448157960615 |



### Testing Error for subset

| 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | 0.3983779565976855  |
|-------------------------------------------------------------------------------------------|---------------------|
| 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24     | 0.42176418143494565 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24        | 0.4341430827221132  |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24            | 0.44120223281223014 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24                | 0.4447553138467746  |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24                    | 0.44919366196079535 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20, 21, 22, 23, 24                        | 0.4528144579418528  |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20, 22, 23, 24                            | 0.45442235443402995 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 22, 23, 24                                | 0.45613270477078544 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 22, 24                                    | 0.45902983675903497 |
| 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 22, 24                                        | 0.4611154902666174  |
| 0, 2, 3, 6, 7, 8, 9, 10, 11, 12, 18, 19, 22, 24                                           | 0.46265714118149304 |
| 0, 3, 6, 7, 8, 9, 10, 11, 12, 18, 19, 22, 24                                              | 0.4654630463611771  |
| 3, 6, 7, 8, 10, 11, 12, 18, 19, 22, 24                                                    | 0.46759782989293025 |
| 3, 6, 7, 8, 10, 11, 18, 19, 22, 24                                                        | 0.46770620810032826 |
| 6, 7, 8, 10, 11, 12, 18, 19, 24                                                           | 0.469962064688233   |
| 6, 7, 8, 10, 11, 12, 19, 24                                                               | 0.47002684482090146 |
| 6, 7, 8, 11, 12, 19, 24                                                                   | 0.47094830016163264 |
|                                                                                           | I .                 |

| 6, 7, 8, 12, 19, 24 | 0.47486178200585666 |
|---------------------|---------------------|
| 6, 7, 8, 12, 24     | 0.4748675448504311  |
| 7, 8, 12, 24        | 0.4758058423209765  |
| 8, 12, 24           | 0.4761420922397325  |
| 8, 24               | 0.4762144373442774  |
| 24                  | 0.47666924140204225 |



### 2C - Comparative Analysis

#### Regression model with all 26 features:

We have built the linear regression model using gradient descent for the dataset as:

$$y = w0 + w1x1 + w2x2 + .....+w26x26$$

The optimal weights are:

[-0.00911838 -0.00031681 0.06172803 0.0347887 -0.02735899 0.03583962 0.03290145 -0.00933532 0.01735667 -0.02580388 0.01460424 0.03562633 -0.0116559 -0.01784221 -0.03917831 0.00010665 -0.05316706 -0.0304389 -0.02926148 0.02223491 -0.01333347 -0.05631209 0.04709571 0.01000656 -0.0102225 0.00322865 0.00322865]

The training error is: 0.4478255580731643 The testing error is: 0.5616366429583213

The best model obtained from **the Pearson correlation method** is with 22 features taken according to maximum correlation with target attribute.

The optimal weights for this model are:

The training error for this model is: 0.4399134847500075

The testing error for this model is: 0.5061823521695902

Using **PCA** we found out that considering 22 principal components will be best on the basis of training error.

The training error is 0.41752473339288076 and the testing error for this model is 0.5128099208458522.

Using **Forward feature selection**, [20, 1, 13, 3, 4, 16, 2, 15, 14, 10, 18, 9, 11, 12, 22, 17, 7, 0, 23, 21, 8, 19, 24, 6, 5] is the best subset of features as the testing error is minimum for this model.

The testing error is 0.4178211520695694 and the training error is 0.42953139922111233.

Using Backward Feature selection, [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] is the best subset of features.

The testing error for this model is 0.3983779565976855 and training error is 0.44851398853687796.

Finally, the best model that we found is using the backward feature selection as it gives minimum testing error