

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 199 141
A2

⑫

EUROPEAN PATENT APPLICATION

⑬ Application number: 86104321.4

⑬ Int. Cl.⁴: C 07 K 15/00

⑭ Date of filing: 27.03.86

C 12 P 21/00, C 12 N 5/00
C 12 N 15/00, G 01 N 33/577
G 01 N 33/573
//(C12P21/00, C12R1:91)

⑮ Priority: 19.04.85 US 724991

⑯ Inventor: Yin, Beatrice
136-76 72nd Avenue
Flushing New York 11367(US)

⑯ Date of publication of application:
29.10.86 Bulletin 86/44

⑯ Inventor: Sakamoto, Junichi
404 Minamigaoka Iris 1-10-62 Minamigaoka
Chikusaku Nagoya(JP)

⑯ Designated Contracting States:
DE GB

⑯ Inventor: Watanabe, Tedashi
Fujigaoki-162 Kodan 4-401
Meito-ku Nagoya 465(JP)

⑯ Applicant: Sloan-Kettering Institute For Cancer
Research
1275 York Avenue
New York New York 10021(US)

⑯ Inventor: Furukawa, Kolchi
524 East 84th Street
New York New York 10028(US)

⑯ Inventor: Lloyd, Kenneth O.
4525 Henry Hudson Parkway West
Bronx New York 10021(US)

⑯ Inventor: Old, Lloyd J.
600 West End Avenue
New York New York 10024(US)

⑰ Monoclonal antibodies to human gastrointestinal cancer.

⑰ Representative: Patentanwälte Schulze Horn und
Hoffmeister
Goldstrasse 36
D-4400 Münster(DE)

⑰ Diagnostic panels for human gastrointestinal abnormalities such as cancer using mouse monoclonal antibodies are disclosed. These panels can be used in diagnosis and in therapeutic applications such as colon cancer.

EP 0 199 141 A2

1 This invention was partially made with United States
government support under CA 08748 awarded by the National
Cancer Institute. The government has certain rights in this
invention.

5

Background

10 This invention concerns monoclonal antibodies
recognizing human gastrointestinal (GI) cells. The
monoclonal antibodies recognize antigenic markers on normal
as well as cancerous GI cells. Capable of distinguishing
among normal GI cells as well as colon carcinomas, these
mAbs are useful in diagnosis and prognosis of colon and
15 gastrointestinal cancer. Examination of human GI specimens:
tissues wastes, exudates, and fluids with these mAbs is a
diagnostic procedure to probe for cancer of the
gastrointestinal tract and especially colon cancer. These
mAbs are of special importance because of the widespread
20 occurrence of colon and stomach cancer.

25 In 1975 Köhler and Millstein introduced a
procedure for the production of monoclonal antibodies (mAbs)
using hybrid cells (hybridomas) which allows the production
of almost unlimited quantities of antibodies of precise and
reproducible specificity. Conventional antisera, produced

1 by immunizing animals with tumor cells or other antigens,
contain a myriad of different antibodies differing in their
specificity and properties, whereas hybridomas produce a
single antibody with uniform characteristics. The
5 Kohler-Millstein procedure entails the fusion of spleen
cells from an immunized animal with an immortal myeloma cell
line. From the fused cells (hybridomas), clones are
selected that produce antibody of the desired specificity.
Each clone continues to produce only that one antibody. As
10 hybridoma cells can be cultured indefinitely (or stored
frozen in liquid nitrogen), a constant supply of antibody is
assured.

15 Antibodies are proteins that have the ability to
combine with and recognize other molecules, known as
antigens. Monoclonal antibodies are no different from other
antibodies except that they are very uniform in their
properties and recognize only one antigen or a portion of an
antigen known as a determinant.

20

In the case of cells, the determinant recognized is an
antigen on or in the cell which reacts with the antibody.
It is through these cell antigens that a particular antibody
recognizes, i.e. reacts with, a particular kind of cell.
25 Thus the cell antigens are markers by which the cell is
identified.

30

b199141

These antigenic markers may be used to observe the normal process of cell differentiation and to locate abnormalities within a given cell system. The process of differentiation is accompanied by changes in the cell surface antigenic phenotype, and antigens that distinguish cells belonging to distinct differentiation lineages or distinguish cells at different phases in the same differentiation lineage may be observed if the correct antibody is available. Initial recognition of differentiation antigens came about through analysis of surface antigens of T-cell leukemias of the mouse and the description of the TL, Thy-1, and Lyt series of antigens. (Old, Lloyd J., Cancer Research, 41, 361-375, February 1981) The analysis of these T-cell differentiation antigens was greatly simplified by the availability of normal T cells and B cells of mouse and man and is relatively advanced. (See Patents #4,361,549-550; #4,364,932-37 and #4,363,799 concerning mAb to Human T-cell antigens). There is further experimentation to be done concerning differentiation antigens displayed on normal and neoplastic cells belonging to other lineages.

The preparation of hybrid cell lines can be successful or not depending on such experimental factors as nature of the innoculant, cell growth conditions, hybridization

1 conditions etc. Thus it is not always possible to predict
successful hybridoma preparation with one cell line although
success may have been achieved with another cell line.

5 Progress in defining surface antigens on melanocytes
was made possible by the recently discovered technique of
culturing melanocytes from normal skin (Eisinger, et al.,
Proc. Nat'l. Acad. Sci. USA, 79 2018 (March 1982). This
method provides a renewable source of proliferating cells
10 for the analysis of melanocyte differentiation antigens.
Likewise, a large number of cell lines derived from
melanomas have now been established and these have
facilitated the analysis of melanoma surface antigens. The
advent of mAbs has greatly accelerated knowledge about the
15 surface antigens of malignant melanoma. Cell markers on
both melanomas and melanocytes have been identified. A
panel of typing monoclonal antibodies has been selected
which recognizes differentiation antigen characteristics at
each stage of development in both melanocytes and melanomas.
20 These differentiation antigens may be used to classify
melanocytes and melanomas and to group them into
characteristic sub-sets. Dippold et al. Proc. Nat'l. Acad.
Sci. U.S.A. 77, 6114 (1980) and Houghton, et al. J. Exp.
Med. 156, 1755 (1982). Immunoassay of melanocytes and
25 melanoma cells within sub-sets is thus made possible.

1

Summary

Cancers of the gastrointestinal tract are especially widespread; stomach cancer in Japan, colon cancer in the west and U.S.A. Early diagnosis would be desireable to prevent loss of life and prescribe alternatives to drastic surgery. Positive diagnosis can help to support the surgical decision. Cytohistological methods to date are not always successful. A panel group of mAbs of the present invention recognizing cancerous GI cells enables such a distinction. In addition, the panel distinguishes normal from cancerous cells.

The invention thus comprises hybridoma cell lines producing mAbs recognizing human colon cancer cells, from the group of AS33, AS37, CLK314, CLH70, HT29/15, HT29/26, CLT307, CLT86, V-215, V-715. A preferred group comprises AS33, AS37, CLH70, CLK314, CLT86, CLT307, HT29-15, and HT29-26. These mAbs of the invention recognize colon or GI glycoprotein (gp) antigens molecular weights 25kd, 29kd and 95kd (mAbs CLH70, HT29/26 and CLT479 respectively). mAb CLT152 recognizes a protein antigen of 52 kd. The antigens for CLH6, CLT85, CLT174 and HT29/36 are heat stable and therefore probably glycolipids. CLT85, CLT479, CLT174, HT29/36, CLH68, CLT152 and HT29/15 are gamma sub one

0199141. . .

1 (gamma₁) immunoglobulins. HT29/26 is a gamma sub 2A
2 (gamma_{2A}) immunoglobulin. HT29/36 is a gamma sub 3 (gamma₃)
3 immunoglobulin and CLT218, CLT307, CLT86 and CLH6 are mu
4 immunoglobulins. (HT 29/36 is the same mAb as HT 29-36 or
5 29/36. HT 29/15 is the same mAb as HT 29-15 or 29/15 and HT
6 29/26 is the same mAb as HT 29-26 or 29/26. As 33 is the
7 same monoclonal antibody as A-33 and AS37 is the same as
8 A-37. In the tables below, CLH6 is the same mAb as 6, CLT86
9 is the same as 86, CLT85 is the same as 85, CLT307 is the
10 same as 307, CLT479 is the same as 479, CLT174 is the same
11 as 174, CLH 70 is the same as 70, CLT 15 is the same as 15,
12 CLH70 is the same as 70, CLT152 is the same as 152. The
13 following hybridoma cell lines and monoclonal antibodies
14 produced therefrom namely: HT 29/15, HT 29/26, HT 29/36, CLH
15 6 (or 6), CLT 85 (or 85), CLT 479 (or 479), CLT 174 (or
16 174), CLH68 (or 68), CLT 152 (or 152), CLH 70 (or 70) CLT
17 218 (or 218), CLT 15 (or 15), CLT 307 (or 307) and CLT 86
18 (or 86) have been disclosed and claimed in a previously
19 filed, co-pending application filed March 11, 1983, Serial
20 No. 474,415 herein incorporated by reference. These are
described in a publication Sakamoto et al _____ herein
incorporated by reference.

25 Description

A preferred embodiment of the present invention is to
test a human specimen as for example human body tissues,
wastes, fluids and exudates with each of the monoclonal

antibodies of the panel. The cells are tested or contacted separately with each of the monoclonal antibodies in a series of dilutions. Thus, an assay for cancer is possible with minimal patient disruption. Indeed, the present invention permits testing of human GI waste specimens for cell fragments containing antigenic markers for the monoclonal antibodies. Entire cells need not be present. Cytohistological methods requiring whole cells are not always successful.

10

The monoclonal antibodies of the present invention were prepared by the Kohler-Millstein procedure wherein spleen cells from a mouse (or other mammal) immunized with human cancerous colon cells or pancreas from established human tumor cell lines of fresh tumor tissue were fused with mouse myeloma to form hybridomas. By serological screening, antibodies from these hybridomas were found which recognize differentiation antigens on normal bladder and/or cancerous bladder. Other tissues, both normal and cancerous, may be recognized as well by some of these monoclonal antibodies. A system of classification of normal as well as cancerous colon based on these differentiation antigens is now possible, and serological assays for tumors of the colon have been developed. These assays are of special use in the early diagnosis of gastrointestinal cancer especially colon cancer.

1 TISSUE CULTURE:

Cultured human colon cancer cell lines came from Leibowitz and from the collection of J. Fogh at Sloan-Kettering Institute. Cultures of other established 5 human cell lines and normal tissue cells have been described.

PRODUCTION OF MOUSE MONOCLONAL ANTIBODIES

BALB/c mice were immunized with either a colon 10 carcinoma or pancreas carcinoma cell line or with fresh colon cancer tissues. Subcutaneous and intraperitoneal injections of 1×10^6 cells were given three to ten times at intervals of 2 weeks. Three days after the last injection, the fusion of immune spleen cells with mouse myeloma MOPC-21 15 NS/1 cells was performed as described. Culture supernatants were tested for antibody by the anti-mouse Ig mixed hemmaglutination assay (MHA) or Protein A assay (PA) on a panel of cultured cell lines of colon and other types of tissue cells. After subcloning five to six times, hybridoma 20 cells were injected subcutaneously into nu/nu mice (Swiss background) and sera from mice with tumors were collected and used for serological, immunopathological and biochemical characterization. In general these methods have been 25 described in Ueda et al. (1981) Proc. Natl. Acad. Sci. U.S.A. 78:5122, Dippold et al. (1980) Proc. Natl. Acad. Sci. U.S.A. 77:6114.

1 SEROLOGICAL PROCEDURES:

The MHA, on cultured cells using rabbit anti-mouse Ig and mouse anti-SRBC has been described. Absorption tests, assessment of heat stability and proteinase sensitivity and antibody subclass determination were also performed as described. See Dippold et al, Supra and Ueda et al. Supra, Pfreundschuh et al. (1978) Proc. Natl. Acad. Sci. USA 75:5122, Ueda et al. (1979) J. Exp. Med. 150:564

10 IMMUNOPATHOLOGICAL PROCEDURES

Immunofluorescent staining of cryostat sections with fluorescein conjugated goat anti-mouse Ig (Cappel Laboratories) was performed as described. (Fradet et al. (1984) Proc. Natl. Acad. Sci USA January _____.
15 Immunoperoxidase staining, using monoclonal antibody, peroxidase conjugated goat anti-mouse Ig and 3-amino-9-ethylcarbazol (AEC) (Histoset, Ortho Diagnostic system) was carried out following procedures recommended by the manufacturer.

20

IMMUNOPRECIPITATION PROCEDURES:

Antibodies were tested for immunoprecipitation activity by using detergent solubilized cell extracts labeled by [³H] glucosamine. Nonidet P-40 solubilization of cells and
25

1 immunoprecipitation procedures using *Staphylococcus aureus*
have been described. Aliquots of 2X10 [³H] cpm from
unfractionated cell extracts were used. Precipitated
molecules were extracted with 60 l of 0.01M Tris-Hcl PH
5 7.2/2.0% NaDdSO₄ / 12.0mg of dithiothreitol per ml/15%
(weight/volume) sucrose/0.01% pyronin Y by heating 5 min at
100°C and were analysed by polyacrylamide gel
electrophoresis. Dippold et al. Supra. Cairncross et al.,
(1962) Proc. Natl. Acad. Sci. USA 79:5641.

10

The assay of the present invention comprises contacting
a tissue containing colon cells with the antibody
recognizing colon cell antigens, preferably monoclonal
antibodies to one or more cell antigens of the
15 gastrointestinal antigenic system, and observing the
immunoserological or immunopathological antigenic reaction
between said monoclonal antibody and said antigen. In a
preferred embodiment of the invention, the tissue sample to
be contacted is gastrointestinal tissue and the antigenic
20 reaction of the contacted tissue is observed by well known
techniques such as immunofluorescence, Rosette formation
with sheep or human red blood cells linked to Protein A or
anti-Ig direct absorption and the like. In another
embodiment of the present invention, the tissue to be
25 assayed is first excised and is then either freshly, or

1 after being frozen or embedded in paraffin by methods
well-known in the art, contacted with the monoclonal
antibodies of the invention. Observation of the reaction is
as before.

5

In another preferred embodiment of the present invention, the tissue to be assayed comprises the intact body of an individual or a whole portion thereof. The antibody, tagged with a radioactive or other energy-producing element, is administered to the individual, and the whole body or part thereof is scanned externally for localization of radioactivity at the site of cancerous gastrointestinal cells. In another preferred embodiment cancerous colon cells are located.

15

The present invention also makes possible the treatment of gastrointestinal tumors in a patient wherein the monoclonal antibody recognizing the cell antigen of cancerous colon or other cancerous GI cells, is administered to the patient in an amount effective to inhibit the growth or proliferation of cancer cells. In a preferred embodiment of this method, the antibody is tagged with a potentially tissue destructive agent which causes destruction of the cancer cells. Examples of tissue destructive agents comprise chemotoxic agents, chemotherapeutic agents

25

30

1 including vaccines, radionuclides, toxins, complement activators, clotting activators and the like. These examples are for illustrative purposes only and are not meant to limit the scope of the invention.

5

The following examples are intended to illustrate the invention without limiting same in any manner especially with respect to substantially functional equivalents of hybridomas, monoclonal antibodies and cell lines described and claimed herein.

10

The monoclonal antibodies selected for use in the present invention were derived from spleen cells of mice immunized with whole cells of colon carcinoma cell lines such as Tallevi and HT-29 fresh tumor cell lines or pancreatic tumor cell lines by fusion methods well known in the art.

20

A group of monoclonal antibodies which were found to recognize specific cell antigens of gastrointestinal cells, was selected as the gastrointestinal panel. This panel and other mAbs and the antigenic systems recognized are given in Tables I, II, III and IV. Heterogeneity of human colon carcinoma is therein noted. The table data point out and define the heterogeneity of colon carcinomas.

25

1 Gastrointestinal antigenic systems are defined by these
mAbs as determined by serological analysis with over 70
tumor cell lines; 18 colon cancers, over 50
5 non-gastrointestinal cancers as well as immunopathology on
frozen sections of normal adult and normal fetal tissue and
cancer tissue. (See Table I, II, III and IV Reactivity with
tissue of cancer patients is shown in Table V)

10 Eight monoclonal antibodies to cell surface antigens of
human colon carcinoma were obtained by immunization with
cultured human colon and pancreas carcinomas or with lysates
of colon cancer cells. The distribution of the antigens
detected was analysed on 164 normal and malignant cell lines
(Table III) and on frozen sections of normal adult and fetal
15 tissues (Table IV). Fifty five colon carcinomas and normal
colonic tissue from the same patient were also examined
(Table V).

20 One very restricted antigen, V-215 (gp140), were
detected only on colon and four other cancer cell lines
(Table III). In several patients, the antigen were
expressed only on colon cancers but not in normal adjacent
colon tissues (Table V).

0199141

1 A-33 antigen was found only on colonic and pancreatic cancer cell lines, and not in any normal adult tissues, it was present on both tumor and normal adjacent colonic tissues (Tables III, IV and V).

5

K-314 antigen (gp170) was only on colon and a few lung cancer cell lines (Tables III). In immunopathology, the antigen was not found in any normal adult tissues except some part of the proximal tubules of the kidney (Table IV).

10

A-37 antigen was on colon, some renal and hematopoietic cell lines but was found only in the proximal tubules of kidney in immunopathology staining (Tables III and IV).

15

HT-29-15 antigen (H-15) (Tables I-IV) was detected on colon, breast and lung cancer cell lines and also, in certain patients, was expressed on colon cancer tissues but not on their normal counterparts (Table V). H-15 determinants are carried on a high molecular weight glycoprotein and are neuraminidase-sensitive.

20

V-715 antigen (gp120) was expressed on colon, lung and renal cancers (Tables III and IV). V-715 antigen has a similar serological, and immunopathological characteristics with the Adenosine deaminase protein. H-70 (Table I-IV) antigen (gp29) was expressed on colon, lung, renal cancer and neuroblastoma cell lines.

25
30

1 HT-29-26 antigen (gp31) (H-26) was detected on almost
all the epithelial tissues, but not in other tissues (Tables
I-IV).

5 None of the antigens were related to A, B, H, I or
Lewis blood group specificities.

Example I

Several of the antigens, as defined by the monoclonal
10 antibodies of the panel, are expressed differentially by
cell populations within the adult GI system. CLT152 antigen
is expressed by epithelial cells of the GI mucosa of
esophagus, stomach, small intestine and colon, but is not
found in other adult tissues. CLH70, CLT307, CLT86 and
15 CLH68 antigens are expressed by adult stomach, small
intestine and colon. CLT218 is expressed by adult small
intestine and colon. HT29/26 is expressed by colon and some
cells of small intestine in the adult. CLT15 also is
expressed by normal colon epithelium as well as some upper
20 GI cells except stomach in adult tissues. Thus the mAbs
antigens HT29/26, CLT15, CLT218, CLH70, CLT307, CLT86 and
CLH68 occur in adult colon epithelial cells; they vary among
themselves in their pattern of distribution within the rest
of the GI tract. There is some limited expression of these
25 antigens in epithelial cells of other tissues as well [See

0199141

1 Table III]. Thus, for example, CLT218, CLT86, HT29/26
antigens are expressed on bronchial epithelium whereas CLH6,
HT29/36 and HT29/15 are not. Thus, the panel antibodies
differ in their expression on normal cells even as to
5 similar cells of other tissues.

10 It is important that the mAbs CLH6, CLT85, and 29/36 do
not react with normal adult tissue in immunopathology of
frozen tissue sections but do react with distinct subsets of
colon adenocarcinomas.

15 Serologically CLT85 reacts with approximately 11 of 17
colon cancer lines, and CLH6 with approximately 8 out of 17
colon cancer cell lines. CLT85 and CLH6 show no reaction
with normal adult cells in serology.

20 From 23 further Köhler-Milstein fusions done as above
of NS/1 myeloma with spleen cells, 8 more antibody producing
clones were selected for further detailed analysis as
discussed below. The serological specificities of these
antibodies were tested on a panel of 154 established human
cancer cell lines and on short term cultures of 10 human
fibroblast and kidney epithelial cells (Tables III and IV).
The immunopathological specificities of these antibodies
25 were determined on a panel of human adult and fetal tissues,
as well as normal colon epithelium and colon cancer tissues
from 55 patients (Table V).

Monoclonal antibodies V-215, K-314 and V-715 were obtained after immunization with fresh colon specimen; antibodies A-33, A-37 were obtained after immunization with pancreas cancer cell lines AsPc-1, and antibodies H-15, (HT 29/15 or HT29-15), H-70 and H-26 (HT 29/26 or HT29-26) were obtained after immunization with colon cancer cell line HT-29.

The heavy chain subclass of the eight antibodies are:
V-215, gamma-1; A-33, gamma-2b; K-314, gamma-1; A-37, gamma-1; H-15, gamma-1; H-70, mu; H-26, gamma-2a.

Example II

V-215: Antibody V-215 react with 9/17 colon cancer cell lines with a strongest titer of 5×10^4 against SW-1417 colon cancer cell line by rosetting. One lung, one ovarian, one terato-carcinoma and one melanoma cell lines were positive but all 152 other cell lines tested were negative in direct and absorption tests (Table III). The antigen was detected on secretion of bronchial epithelium and uterine endometrium, but not any other adult or fetal tissues tested (Table IV). In immunoperoxidase staining of the frozen section from 55 patients, V-215 was negative with normal but positive with colon tumor in 7 patients (Table V).

V-215 antigen was immunoprecipitated from [³H] glucosamine labelled cell extracts from colon cancer cell line SW-1417. The molecular weight is 140000 as estimated by polyacrylamide gel electrophoresis.

5

Example III

A-33: Antibody A-33 is an IgG2b antibody that reacts with 5/17 colon carcinomas and 1/3 pancreatic carcinoma (AsPc-1) with a titer of 10. A-33 also reacts with 3/6 T cell leukemia cell lines; all 155 other cell types tested were negative. Correlation between A-33 and T cell related antigens; OKT-6, T37,1, OKT-4, T,11, CL3-3 (13), CL3-40 (13), was examined by the inhibition tests and by rosetting assay on immunizing cell line AsPc-1 and all the antigens were negative in both tests.

Antibody A-33 react with normal adjacent colonic mucosa and carcinoma of the colon cancer patient (Table V). One 20 out of 5 pancreatic mucosa and pancreas cancer of one patient was also positive with the antigen. A-33 did not react with any other tissue sections examined on immunopathology staining (Table IV).

25

30

1 The antigen was not destroyed by heating at 100°C for 5
minutes and it was present in the choloroform/methanol
extract of AsPc-1 cells. In immunoprecipitation experiments
using cell extracts labelled with [³H]glucosamine,
5 radioactivity was precipitated that migrated at the dye
front in 9% acrylamide gels. These properties strongly
suggest that the antigen is a lipid.

10 EXAMPLE IV

K-314: Antibody K-314 reacted with 13/17 colon carcinomas
and 3/3 pancreas carcinomas, 7/25 lung carcinomas, 1/10
bladder carcinomas, and 3/5 chorio and teratocarcinomas; the
other 137 cell lines tested were negative (Table III).

15 In tissue sections, antibody K-314 reacted with lung,
uterus and heterogeneous population of gastrointestinal
tract epithelial cells of normal adult and fetal tissues
(Table IV). Among the gastrointestinal cancer patients,
20 K-314 is present in carcinoma but not in normal adjacent
mucosa in 11 colon cancer, 5 metastatic colon cancer to the
liver and 3 pancreas cancer patients (Table V).

25 K-314 was immunoprecipitated from [³H]glucosamine
labelled cell lysate of AsPc-1. The molecular weight of the
antigen is 170000 as estimated by polyacrylamide gel

1 electrophoresis.

EXAMPLE V

H-15: Antibody H-15 (HT-29-15) is an IgG1 antibody that
5 reacts with 12/17 colon cancers, 2/3 pancreatic cancers, 2/2
Hepatic and biliary cancers, 4/5 lung cancers, 1/8 bladder
cancers, 2/4 ovarian cancers and weak rosetting with one
melanoma and one renal cancer cell lines (Table III). H-15
is found in lung and in some proportion of gastrointestinal
10 mucosa in tissue sections (Table IV). H-15 is positive in
cancer but negative in normal counterpart of the same
patient in 8 colon cancers, 3 metastatic colon cancers and
in 2 pancreas cancers (Table V).

15 The antigen was not destroyed by heating at 100°C for 5
minutes and was proteinase resistant. The antigen
disappeared after treatment with neuraminidase. In
immunoprecipitation with [³H] glucosamine, weak broad band
of molecular weight over 200000 is observed.

Example VI

A-37: A-37 is present in 5/17 colon cancers and 3/3
pancreatic cancers, 3/20 renal cancers, 3/5 chorio- and
25 teratocarcinomas and in 15/25 hematopoietic cells tumors

1 (Table III). In tissue sections, the antigen was found only
on proximal tubules of the kidney but not in any other
tissues tested (Table IV). This antigen is also heat
stable, proteinase and neuraminidase resistant.

5

Example VII

V-715: V-715 antigen is in 8/17 colon cancers, 5/25 lung
cancers, 1/10 bladder cancers and in almost all renal cancer
10 cell lines (Table III). In tissue sections, V-175 is
present in proximal tubules of the kidney, but not in normal
gastrointestinal tract cells (Table IV). The antigen is
found on 9 colon and pancreas cancer specimen and on 4
normal adjacent colon and pancreas mucosa of those cancer
15 patients (Table V). The antigen is a glycoprotein and the
molecular weight is 120000.

The serology pattern with the cell lines and the
immunopathology staining pattern with the tissues are very
20 similar to the Adenosine deaminase binding protein which was
detected by renal cancer monoclonals (Andy, Robin J., et al.
(1984) J. Biol. Chem. 259:12844). Since V-175 is not
detected in normal colon, the determinant of V-715 is likely
to be the same as the epitope detected by monoclonal S-23.

25

Example VIII

1 H-70: H-70 is in 13/17 colon cancer cell lines and in
several other epithelial cancer cell lines. H-70 is also on
3/5 neuroblastoma cell lines. H-70 is detected in
5 epithelial tissues in immunopathology. Immunoprecipitation
with [³H]glucosamine was performed to determine its molecular
weight as 31000.

Example IX

10 H-26: Antigen H-26 (HT-29-26,C-26) is in almost all
epithelial cancer cell lines but is not present in any
neuroblastoma, melanoma or astrocytoma cell lines (Table
III).

15 In immunopathology H-26 is present in all epithelial
cells and in kidney, it is present on distal and collecting
tubules (Table IV). H-26 is a glycoprotein and its
molecular weight is 29000.

20 Thus normal versus neoplastic cells of the colon, GI,
and pancreas can be differentiated and assayed by contacting
a specimen from a human patient with each of the monoclonal
antibodies of the panel in serial dilution, and observing
any antigen antibody reaction by any of the methods cited.
25 Although specific hybridomas producing monoclonal antibody

1 against gastrointestinal cell antigens are presented, it is
obvious that the present invention encompasses all the mAbs
exhibiting the characteristics described therein, especially
the embodiment describing reaction with normal as well as
5 tumor cell antigens of the GI tract.

10

15

20

25

30

1 One of the preferred panels of the invention for colon
cancer is:

SUMMARY OF MOUSE MONOCLONAL ANTIBODIES - COLON PANEL

5	Monoclonal Antibody (Ig subclass)	ATCC#	Molecular	Additional notes
	AS33 (IgG2b)	HB 8779		N Colon/some Colon Ca.
	AS37 (IgG1)	HB 8778		
	CLH70 (IgG2b)	HB 8245	Mr 29,000	
10	CLK314 (IgG1)	HB 8780		
	CLT86 (mu)	HB 8252		
	CLT307 (mu)	HB 8251		
	HT29-15 (IgG1)	HB 8246	Mr 200,000	
	HT29-26 (IgG2a)	HB 8247	Mr 40,000	epithelial cell marker

15 Changes in cell antigens are associated with different stages of differentiation and different stages of cancer.

Thus this invention technique defined cell antigens associated with differentiation and cancer of the GI tract and the pancreas.

20 Legend to Table I

Serological reaction of colon panel monoclonal antibodies with human tumor cell lines of various tissues by rosette formation with human red blood cells conjugated with

1 rabbit anti-Ig, Dippold Supra

where 0 = no reaction by rosette formation or absorption

- 5 2 = positive rosette reaction at less than 1,000 fold dilution antibody supernatant
- 3 = positive rosette reaction at greater than 1,000 fold dilution antibody supernatant
- 10 1 = positive reaction by absorption test only.

If there is no rosette reaction, the absorption test was
15 done. Thus if a mAb was negative for the rosette reaction but absorbed onto the test antigen system it was deemed to be a positive reaction such that

- 20 1 = positive reaction by the absorption test though mAb gives a negative test for rosette formation

i.e. 0 test for rosette reaction is further tested by the absorption test. Therefore 0 on this table indicates no reaction by either absorption or rosette reactions. For
25

1 comparison, mAb 19.9 was obtained from H. Kaprowski and
assayed as well alongside the mAbs of the present invention
Atkinson, B.F. et al., Cancer Research, 42:4820-4823(1982).

5 In Table I actual titers are included.

Immunogen for CLT series is Tallevi, for HT and CLH
antibodies the immunogen is HT-29.

10

Legend to Table II

15 Immunopathological reaction of some of the colon panel
monoclonal antibodies with fetal and adult normal human
tissue and cancer tissue in frozen section by indirect
immunofluorescence.

0 = no reaction

1 = positive reaction

2 = heterogeneous reaction within the tissue

20

The following monoclonal antibody-producing-hybridoma
cell lines are maintained on deposit at Sloan-Kettering
Institute for Cancer Research, 1275 York Avenue, New York,
New York 10021 namely:

25 V-215, K-314, V-715, As-33, As-37, CLH 70, CLK
314, CLT 86, CLT 307, HT 29-15 and HT 29-26.

30

0199141

TABLE I²⁹

Serology

**Serological Reaction of Monoclonal Antibodies
Produced from Human Colon Tumor Immunogen With Various
Human Cancer Cell Lines**

IMMUNIZING TUMOR: COLON

TABLE I³⁰

019914:

Serology

Serological Reaction of Monoclonal Antibodies
Produced from Human Colon Tumor Immunogen With Various
Human Cancer Cell Lines

IMMUNIZING TUMOR: COLON

CELLS TESTED	CLH	CLT	CLT	CLH	CLT	CLH	HT29	HT29	HT29	CLT	CLT	CLT	CLT	CLT	
	6	85	479	174	68	152	70	-15	-26	-36	218	15	307	86	19.9
<hr/>															
Breast Ca.:															
MDA MB 361	0	0	0	0	0	0	3	3	0	0	0	0	0	0	
MDA MB 231	0	0	0	0	0	0	2	3	3	0	0	0	3	0	
ZT 20	0	0	0	0	0	0	0	3	3	0	0	0	0	0	
CAMA	0	0	1	1	0	0	0	3	0	3	3	3	3	0	
ER-BR-3	0	0	0	0	0	0	0	3	0	0	0	0	0	0	
XLAB	0	0	0	0	0	0	3	3	0	0	0	0	0	0	
MCF-7	0	0	0	0	0	0	3	3	3	3	0	0	3	0	
Kidney Ca.:															
SK-RG-6	0	0	0	0	0	0	0	0	3	0	0	0	0	0	
-7	0	0	0	0	0	0	0	0	3	0				0	
-29	0	0	0	0	0	3	0	0	3	0	0	0	0	0	
-4	0	0	0	0	0	0	0	0	3	0	0	0	0	0	
Ovary Ca.:															
SK-OV-3	0	0	0	0	0	0	0	0	3	0	0	0	0	0	
ROAC	0	0	0	0	0	0	3	0	3	0	0	0	0	0	
2774	0	0	0	0	0	0	0	0	3	0	0	0	0	0	
SW 626	0	0	3	3	0	0	0	3	3	3	0	3	3	0	
Snustak	0	0	0	0	0	3	0	3	3	3	3	3	3	0	
Turanek	0	2	0	0	3	2	3	3	3	0	0	0	3	10	
Uterine Ca.:															
ME180	0	0	0	0	0	0	0	0	3	3	0	0	0	0	
Chorioepithelium:															
SVOC	0	0	2		0	0	0	0	3	0	0	3	0	0	

0198141

31
Table I
Serology

**Serological Reaction of Monoclonal Antibodies
 Produced from Human Colon Tumor Immunogen With Various
 Human Cancer Cell Lines**

IMMUNIZING TUMOR: COLON

CELLS TESTED	CLH	CLT	CLT	CLT	CLH	CLT	CLH	HT29	HT29	HT29	CLT	CLT	CLT	CLT	CLT
	6	85	479	174	68	152	70	-15	-26	-36	218	15	307	86	19.9
Lung Ca:															
SK-LC-3	0	0	2	0	0	0	3	3	3	0	0	0	0	0	0
-4	0	0	0	0	0	0	0	3	3	2	0	0	0	0	10
-5	1	0	0	0	0	0	0	3	3	0	0	0	0	0	0
-6	0	0	0	0	0	0	3	2	0	0	0	0	2	0	0
-7	0	0	0	0	0	0	0	0	3	2	0	0	0	0	0
-8	0	0	0	2	0	0	0	0	3	3	0	0	0	0	0
-13	0	0	0	0	0	0	2	0	3	2	0	0	0	0	0
Lawson	0	1	1	1	0	3	2	3	3	2	3	0	0	3	10 ³
Bladder Ca:															
T-24	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
TCC SUP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ZS3J	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0
639V	0	0	0	0	0	0	0	0	3	3	0	0	0	0	0
486P	0	0	0	0	0	0	3	3	3	0	0	0	0	0	0

0199141

Table II
Immunopathology

Normal Tissue Distribution of the Monoclonal Antibodies Produced from Human Colon Tumor Immunogen

0199141

33

SK 340
4/12/85

TABLE II

ImmunopathologyNormal Tissue Distribution of the Monoclonal
Antibodies Produced from Human
Colon Tumor Immunogen

A. FETAL TISSUES (Cont'd.)

	CLT	CLH	HT	HT	CLT	CLT	CLT	CLT	CLH	CLT	
	85	28	6	29/36	29/15	479	15	174	86	70	152 19.9
OVARY	0	0	0	0	0	0	0	0	0	0	0
Prim. Cells	0	0	0	0	0	0	0	0	0	0	0
Connect. T.	0	0	0	0	0	0	0	0	0	0	0
PALLOP. T.	0	0	0	0	0	0	0	0	0	0	0
UTERUS	0	0	0	0	0	0	0	+	+	0	0
Endometrium	0	0	0	0	0	0	0	+	+	0	0
Mycometrium	0	0	0	0	0	0	0	0	0	0	0
CERVIX	0	0	0	0	0	0	0	+	0	0	0
Endocervix	0	0	0	0	0	0	0	+	0	0	0
Exocervix	0	0	0	0	0	0	0	±	0	0	0
SKIN	0	0	0	0	0	±	0	+	0	+	0
Epidermis	0	0	0	0	0	±	0	±	0	±	0
Melanocytes	0	0	0	0	0	0	0	0	0	0	0
Sweat Gland	0	0	0	0	0	0	0	0	0	0	0
Sebac. Gld.	0	0	0	0	0	0	0	0	0	0	0
Hair Fol.	0	0	0	0	0	0	0	0	0	0	0
Dermis C.T.	0	0	0	0	0	0	0	0	0	0	0
BRAIN	0	0	0	0	0	0	0	0	0	0	0
Neurons	0	0	0	0	0	0	0	0	0	0	0
Glial Cells	0	0	0	0	0	0	0	0	0	0	0
Dendrites	0	0	0	0	0	0	0	0	0	0	0
LYMPH NODE	0	0	0	0	0	0	0	0	0	0	0
BLOOD VES.	0	0	0	0	0	0	0	0	0	0	0
Endoth. Cel.	0	0	0	0	0	0	0	0	0	0	0
Smooth Ms.	0	0	0	0	0	0	0	0	0	0	0
SOFT TIS.	0	0	0	0	0	0	0	0	0	0	0
SECRETION	±	0	0	0	0	+	0	+	+	+	+

0199141

34
TABLE IISK 340
4/12/85Immunopathology

Normal Tissue Distribution of the Monoclonal
 Antibodies Produced from Human
 Colon Tumor Immunogen

A. FETAL TISSUES (CONT'D.)

	CLT 307	CLT 218	HT 29/26	CLH 66
LUNG	+	+	+	0
Bronchial				
Epithelium	+	+	+	0
Cartilage	0	0	0	0
Pneumocytes	0	0	0	0
Connect. Tis	0	0	0	0
HEART	0	0	0	0
THYMUS	0	0	0	+
Hassal's C.	0	0	0	+
Thymocytes	0	0	0	0
SPLEEN	0	0	0	0
White Pulp	0	0	0	0
Red Pulp	0	0	0	0
LIVER	+	+	+	+
Hepatocytes	0	0	0	0
Biliary Epi				
Cells	+	+	+	+
GALLBLAD.	+	+	+	+
ESOPHAGUS	+	±	±	±
STOMACH	±	+	0	+
SMALL INT.	0	0	±	+
COLON	+	+	+	+
PANCREAS	+	+	+	0
Exocrine	+	+	+	0
Endocrine	0	0	0	0
KIDNEY	0	+	+	0
Glomerulus	0	0	0	0
Prox. Tub.	0	0	0	0
Distal Tub.	0	+	+	0
Collect. Tub	0	+	+	0
URETER	+	+	+	+
UR. BLAD.	+	+	+	+
ADRENAL	0	0	0	0
Cortex	0	0	0	0
Medulla	0	0	0	0
TESTES	0	0	0	0
Germ. Cells	0	0	0	0
Endoc. Cel.	0	0	0	0
Connect. T.	0	0	0	0

0199141

SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST
COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS

TABLE IIIA

SK 340

4/12/85

<u>NORMAL FETAL TISSUES</u>	85	28	6	29/36	29/15	479	15	174	86	70	152	307	218	29/26	68
	<u>MONOCLONAL ANTIBODIES</u>														
KIDNEY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glorenulus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Proximal Tubules	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distal Tubules	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Collecting Tubules	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
URETER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
URINARY BLADDER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADRENAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cortex	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medulla	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TESTES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Germ Cells	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Endocrine Cells	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Connective Tissue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OVARY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Germ Cells	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Connective Tissue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FALLOPIAN TUBES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UTERUS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Endometrium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Myometrium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CERVIX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Endocervix	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exocervix	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SK 840
4/12/85

TABLE IIIA
SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS

		<u>NORMAL FETAL TISSUES</u>		<u>85</u>		<u>23</u>		<u>5</u>		<u>29/36</u>		<u>29/15</u>		<u>479</u>		<u>15</u>		<u>174</u>		<u>86</u>		<u>70</u>		<u>152</u>		<u>307</u>		<u>218</u>		<u>29/26</u>		<u>68</u>	
0199141		LUNG		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Bronchial Epithelium		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Cartilage		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Pneumocytes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Connective Tissue		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		HEART		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		THYMUS		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Hassall's corpuscles		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Thymocytes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		SPLEEN		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		White pulp		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Red pulp		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		LIVER		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Hepatocytes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Biliary Epith. Cells		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		KIDNEY		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		BLADDER		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		ESOPHAGUS		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		STOMACH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		SMALL INTESTINE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		CLOAC		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		PANCREAS		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Exocrine		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
		Endocrine		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

TABLE IIIA

**SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST
COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS**

4/12/85

		MONOCLONAL ANTIBODIES														
		85	28	6	29/36	29/15	479	15	174	86	70	152	307	218	29/26	68
NORMAL FETAL TISSUES																
SKIN		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Epidermis		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Melanocytes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sweat Gland		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sebaceous Gland		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hair Follicle		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Dermis Connective Tissue		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
BRAIN																
Neurons		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Glia Cells		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Dendrites		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Lymph Node		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
BLOOD VESSEL		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Endothelial Cells		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Smooth Muscle		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SOFT TISSUE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SECRETION		0	0	0	0	0	0	0	0	0	0	0	0	0	0	

0199141

SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL, FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS

SK 340

SK 340
4/12/85
CIMENS

Table IIIA

SK 340
4/12/85

SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST
COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS

<u>NORMAL ADULT TISSUES</u>	<u>MONOCLONAL ANTIBODIES</u>														
	85	28	6	29/36	29/15	479	15	174	85	70	152	19.9	307	218	29/26
LUNG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bronchial Epithelium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cartilage	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glandular Epithelium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pneumocytes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Connective Tissue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEART MUSCLE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPLIEN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
White pulp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red pulp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIVER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hepatocytes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Biliary Epithelium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sinusoids	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GALLBLADDER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESOPHAGUS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STOMACH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL INTESTINE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COLOR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G.I. smooth muscle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANCREAS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exocrine	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Endocrine	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table II A

SK 340
4/12/85

SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS

MONOCLOINAL ANTIBODIES

4/12/85

TABLE IIIA

51

SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST
COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS

MONOCLOINAL ANTIBODIES	NORMAL ADULT TISSUES										CANCER TISSUE									
	85	28	6	29/36	29/15	479	15	174	86	70	152	19.9	307	218	29/26	68				
BLOOD VESSEL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Endothelium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Smooth Muscle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CAPILLARIES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SKELETAL MUSCLE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOFT TISSUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SECRETIONS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

52

**SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST
COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS**

SK 340

4/12/85

TABLE IIIA

<u>CANCER TISSUE</u>	<u>MONOCLONAL ANTIBODIES</u>														
	85	75	6	29/36	29/15	479	15	174	86	70	152	307	218	29/26	68
COLON CANCER	0	0	0	000000	00000	0	00000	0	00000	0	00000	0	00000	0	0
LUNG CANCER	0	0	0	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	0
BREAST CANCER	0	0	0	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	0
BLADDER CANCER	0	0	0	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	0
TERATOCARCINOMA	0	0	0	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	0
MELANOMA	0	0	0	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	000000	0

TABLE IIIA

SK 340
4/12/85

SUMMARY OF TISSUE DISTRIBUTION AND REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST COLON CANCER BY IMMUNOPATHOLOGY IN NORMAL FETAL, NORMAL ADULT AND CANCER TISSUE IN HUMAN SPECIMENS

0199144

44

TABLE III REACTIVITY OF MOUSE MONOClonAL ANTIBODIES GENERATED AGAINST COLORECTAL CANCERS.
BIOLOGICAL TEST WITH CULTURE HUMAN CELLS

SK 340
4/12/85

CELLS Immunoglobulin subclass Molecular weight	V-315	A-33	K-314	A-37	H-15	V-715	H-70	H-26
	Y-1	Y-2b	Y-1	Y-1	Y-1	gp 120	gp 31	Y-2A
EUROPEAN ORIGIN TUMORS								
COLCH								
HT-29, SK-430, SK-403	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-448, CACO-2, SK-1116	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-CO-10, SK-CO-13	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-1417, SK-122, SK-CO-15	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-620, SK-837, SK-CO-11	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-1063, SK-CO-12, SK-CO-1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
PANCREAS								
ASPC-1, CAPAN-1, CAPAN-2	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
HEPATIC AND BILIARY								
SK-HEP-1, SK-CHL-1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
LUNG								
J-82, CALU-1, CALU-5	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
CALU-6, SK-NES-1, SK-LU-1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-LC-1,-2,-4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-LC-5,-6,-9	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-LC-9,-10,-13	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-LC-15,-16,-17	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-LC-18,-19,-23	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-LC-24,-25,-28	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-LC-LL	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
FLADDER								
253-J, SK-780, TC7CSUP	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
5637, VM-CUB-1, VM-CUB-2	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
VM-CIP-1, 575-A, RT-4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
638-V	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
ECTODERM ORIGIN TUMORS								
BREAST								
MDA-MB-361, MCF-7, CAMA	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
SK-BR-3, MDA-MB-157, LAB	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

0199141

VH-88, HeWo, SK-MEL-13

13

SK 340
4/12/85

76

OTHER TUMOR

0199141								
OVARIAN CANCER	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
TURANECK,ROAC,A-7	0	0	0	0	0	0	0	0
SW-626								
TERATOCARCINOMA	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
577M, TERA 1,833 K	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
CHORIOCARCINOMA	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
SVCC,MHCC								

NORMAL CELLS

NORMAL FIBROBLAST	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
91,92,93	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
94,95,96	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
97,98	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
NORMAL KIDNEY CELLS	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
91,92,	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0

The symbols listed under the antibodies refer to the titer against the cell lines corresponding position in the left-hand side of the table. The titer of the antibodies defined as the highest dilution producing at least 50% rosetting in the MHA assay. •, 1×10^{-6} - 1×10^{-3} ; ○, positive reaction but with over 50% rosetting at 10^{-3} dilution of antibody; O, positive only with the absorption test; 0, no reactivity at antibody dilution of 10^{-3} .

b199141

REACTIVITY OF ANTIBODIES GENERATED AGAINST GASTROINTESTINAL
CANCERS: IMMUNOFLUORESCENCE TESTS WITH FROZEN SECTIONS OF NORMAL
HUMAN FETAL (F)* AND ADULT (A) TISSUES

Normal Human Tissues	V-215	A-33	K-314	A-37	H-15	V-715	H-70	H-2			
	F	A	F	A	F	A	F	A	F	A	F
Colon	0	0	0	0	0	0	0	0	0	0	0
Small intestine	0	0	0	0	0	0	0	0	0	0	0
Stomach	0	0	0	0	0	0	0	0	0	0	0
Esophagus	0	0	0	0	0	0	0	0	0	0	0
Pancreas-Endocrine	0	0	0	0	0	0	0	0	0	0	0
-Exocrine	0	0	0	0	0	0	0	0	0	0	0
Liver-Hepatocytes	0	0	0	0	0	0	0	0	0	0	0
-Biliary epithelium	0	0	0	0	0	0	0	0	0	0	0
Lung-Bronchial epithelium	0	0	0	0	0	0	0	0	0	0	0
-Pneumocytes	0	0	0	0	0	0	0	0	0	0	0
Prostate	0	0	0	0	0	0	0	0	0	0	0
Kidney-Glomerulus	0	0	0	0	0	0	0	0	0	0	0
-Proximal Tubules	0	0	0	0	0	0	0	0	0	0	0
-Henle's Loop	0	0	0	0	0	0	0	0	0	0	0
-Distal Tubules	0	0	0	0	0	0	0	0	0	0	0
-Collecting Tubules	0	0	0	0	0	0	0	0	0	0	0
Testis-Germ Cells	0	0	0	0	0	0	0	0	0	0	0
-Endocrine cells	0	0	0	0	0	0	0	0	0	0	0
Ovary	0	0	0	0	0	0	0	0	0	0	0
Placenta-Syncytiotrophoblast	0	0	0	0	0	0	0	0	0	0	0
-Cytotrophoblast	0	0	0	0	0	0	0	0	0	0	0
Uterus-Endometrium	0	0	0	0	0	0	0	0	0	0	0
-Myometrium	0	0	0	0	0	0	0	0	0	0	0
Cervix-Endocervix	0	0	0	0	0	0	0	0	0	0	0
-Exocervix	0	0	0	0	0	0	0	0	0	0	0
Breast-Duct cells	0	0	0	0	0	0	0	0	0	0	0
-Acinar cells	0	0	0	0	0	0	0	0	0	0	0
Adrenal	0	0	0	0	0	0	0	0	0	0	0
Skin-Epidermis	0	0	0	0	0	0	0	0	0	0	0
-Adnexa	0	0	0	0	0	0	0	0	0	0	0
-Melanocytes	0	0	0	0	0	0	0	0	0	0	0
Brain-Neurons	0	0	0	0	0	0	0	0	0	0	0
-Gliai cells	0	0	0	0	0	0	0	0	0	0	0
-Dendrites	0	0	0	0	0	0	0	0	0	0	0
Thyroid	0	0	0	0	0	0	0	0	0	0	0
Spleen-White Pulp	0	0	0	0	0	0	0	0	0	0	0
-Red Pulp	0	0	0	0	0	0	0	0	0	0	0
Lymph Nodes	0	0	0	0	0	0	0	0	0	0	0
Thymus	0	0	0	0	0	0	0	0	0	0	0
Heart	0	0	0	0	0	0	0	0	0	0	0
Muscle	0	0	0	0	0	0	0	0	0	0	0
Endothelial cells	0	0	0	0	0	0	0	0	0	0	0
Fibroblasts	0	0	0	0	0	0	0	0	0	0	0
Cartilage	0	0	0	0	0	0	0	0	0	0	0
Interstitial Matrix	0	0	0	0	0	0	0	0	0	0	0
Secretions	0	0	0	0	0	0	0	0	0	0	0

Reactivity of monoclonal antibodies with tissue sections is symbolized as follows:
 0, no immunofluorescence; *, immunofluorescence, @, heterogenous pattern of immunofluorescence.

*Fetal tissues were obtained from a 14 weeks old fetus.

0199141

48

A/17/85

TABLE V REACTIVITY OF MONOCLONAL ANTIBODIES WITH THE TUMOR AND NORMAL
ADJACENT PROXEN TISSUE SECTIONS OF CANCER PATIENT

48

Location	Patient	Monoclonal antibodies					
		V-215	A-33	K-313	H-15	V-715	H-26
Rectal colon	AR	-	+	-	-	-	+
	AY	-	+	0	+	-	+
Sigmoid colon	BR	-	+	+	0	-	+
	BT	-	+	+	+	-	+
	CH	0	+	+	0	0	+
	CR	-	+	+	+	-	+
	DE	-	+	0	-	-	+
	DN	0	+	0	0	0	+
	FA	-	+	0	-	0	+
	PU	-	+	0	-	-	+
	GA	-	+	0	-	+	+
	GP	-	+	+	+	-	+
	GY	0	+	0	+	-	+
	HT	-	+	0	0	-	+
	MK	-	+	+	+	-	+
	MS	-	+	0	+	-	+
	NC	-	+	+	-	-	+
	ND	-	-	-	-	-	+
	OT	-	+	+	0	0	+
	PP	-	-	+	-	-	+
	RD	-	+	0	0	+	+
	RT	-	+	0	0	+	+
	RV	-	+	+	-	-	+
	VC	-	+	+	-	-	+
Left colon	BW	-	+	+	-	-	+
	HL	0	+	0	+	-	+
	MT	-	+	+	-	0	+
	SM	-	-	+	-	-	+
	ST	-	+	+	-	-	+
Right colon	BA	0	+	+	-	-	+
	BG	-	+	+	-	-	+
	PS	-	+	0	+	-	+
	GA	-	+	+	-	-	+
	HA	-	+	+	-	-	+
	HU	-	+	+	-	-	+
	KP	-	-	0	0	-	+
	SH	-	-	-	-	-	+

1 What is Claimed:

- 1 1. Monoclonal antibodies characterized by immunological binding to human gastro-intestinal cell antigens and wherein said monoclonal antibody is selected from the group consisting of V-215, K-314, V-715, AS-33, and AS-37.
- 5 2. Monoclonal-antibody-producing-hybridoma cell line formed by fusing a myeloma cell line and spleen cells derived from a mammal immunized with established culture cell lines of human gastrointestinal cell carcinomas, pancreatic tumor cell lines, wherein the monoclonal antibody is selected from the group consisting of monoclonal antibody V-215, K-314, V-715, AS-33 and AS-37.
- 10 3. Panel of monoclonal antibodies for the diagnosis of human gastrointestinal cancer wherein the panel consists of two or more different monoclonal antibodies selected from the group consisting of V-215, K-314, V-715, AS-33, and AS-37.

- 1 4. Panel of claim 3 wherein the human gastrointestinal cancer diagnosed is human colon cancer.
- 5 5. Panel of monoclonal antibodies for the diagnosis of human gastrointestinal cancer wherein the panel consists of two or more different monoclonal antibodies selected from the group consisting of AS33, AS37, V-214, V-715, CLH70, CLK314, CLT86, CLT307, HT 29-15, and HT 29-26.
- 10 6. Panel of claim 5 wherein the human gastrointestinal cancer diagnosed is human colon cancer.
- 15 7. Method for differentiating normal and abnormal gastrointestinal cells which comprises contacting a human gastrointestinal specimen containing gastrointestinal cellular material with two or more of the monoclonal antibodies of from the group consisting of AS-33, AS-37, V-215, V-715, CLH70, CLK 314, CLT86, CLT307, HT29-15 and HT 29-26 and detecting the presence or absence of immune complex formation with two or more of said monoclonal antibodies indicating the presence or absence of abnormality in the gastrointestinal specimen.

1
8. Method of Claim 7 wherein the abnormality is gastro-intestinal cancer.

5 9. Method of Claim 7 wherein the abnormality is colon cancer.

10. Method of Claim 7 wherein the specimen is contacted singly, serially or in combination with each of the panel monoclonal antibodies.

15

20

25

30