Grundlagen der Rechnerarchitektur

Tim Luchterhand, Paul Nykiel (Abgabegruppe 117) 28. Januar 2019

1 Zähler

(a)

Flanke	$ state_2[t] $	$\mathrm{state}_1[t]$	$\mathrm{state}_0[t]$	$state_2[t+1]$	$state_1[t+1]$	$state_0[t+1]$
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	0	1	1
1	0	0	0	0	0	1
1	0	0	1	0	1	0
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	0	0	0

(b)

$$\begin{array}{lll} \operatorname{state}_0[t+1] &=& \operatorname{Flanke} \cdot (\overline{\operatorname{state}_2[t]} \cdot \overline{\operatorname{state}_1[t]} \cdot \overline{\operatorname{state}_0[t]} + \\ && \overline{\operatorname{state}_2[t]} \cdot \overline{\operatorname{state}_1[t]} \cdot \overline{\operatorname{state}_0[t]} + \\ && \overline{\operatorname{state}_2[t]} \cdot \overline{\operatorname{state}_1[t]} \cdot \overline{\operatorname{state}_0[t]} + \\ && \overline{\operatorname{state}_2[t]} \cdot \overline{\operatorname{state}_1[t]} \cdot \overline{\operatorname{state}_0[t]} + \\ && \overline{\operatorname{Flanke}} \cdot \overline{\operatorname{state}_0[t]} + \overline{\operatorname{Flanke}} \cdot \overline{\operatorname{state}_0[t]} \\ &=& \overline{\operatorname{Flanke}} \cdot \overline{\operatorname{state}_0[t]} + \overline{\operatorname{Flanke}} \cdot \overline{\operatorname{state}_0[t]} \\ &=& \overline{\operatorname{Flanke}} \cdot \overline{\operatorname{state}_0[t]} \end{array}$$

$$\begin{array}{lll} \operatorname{state}_{1}[t+1] &=& \operatorname{Flanke} \cdot (\overline{\operatorname{state}_{2}[t]} \cdot \overline{\operatorname{state}_{1}[t]} \cdot \operatorname{state}_{0}[t] + \\ && \overline{\operatorname{state}_{2}[t]} \cdot \operatorname{state}_{1}[t] \cdot \overline{\operatorname{state}_{0}[t]} + \\ && \operatorname{state}_{2}[t] \cdot \overline{\operatorname{state}_{1}[t]} \cdot \overline{\operatorname{state}_{0}[t]} + \\ && \operatorname{state}_{2}[t] \cdot \operatorname{state}_{1}[t] \cdot \overline{\operatorname{state}_{0}[t]}) \\ && + \overline{\operatorname{Flanke}} \cdot \operatorname{state}_{1}[t] \\ &=& \operatorname{Flanke} \cdot (\operatorname{state}_{1}[t] \oplus \operatorname{state}_{0}[t]) + \overline{\operatorname{Flanke}} \cdot \operatorname{state}_{1}[t] \end{array}$$

$$\begin{array}{lll} \operatorname{state}_2[t+1] &=& \operatorname{Flanke} \cdot (\overline{\operatorname{state}_2[t]} \cdot \operatorname{state}_1[t] \cdot \operatorname{state}_0[t] + \\ && \operatorname{state}_2[t] \cdot \overline{\operatorname{state}_1[t]} \cdot \overline{\operatorname{state}_0[t]} + \\ && \operatorname{state}_2[t] \cdot \overline{\operatorname{state}_1[t]} \cdot \operatorname{state}_0[t] + \\ && \operatorname{state}_2[t] \cdot \operatorname{state}_1[t] \cdot \overline{\operatorname{state}_0[t]}) \\ && + \overline{\operatorname{Flanke}} \cdot \operatorname{state}_2[t] \\ &=& \operatorname{Flanke} \cdot (\overline{\operatorname{state}_2[t]} \cdot \operatorname{state}_1[t] \cdot \operatorname{state}_0[t] + \\ && \operatorname{state}_2[t] \cdot \overline{\operatorname{state}_1[t]} \cdot \operatorname{state}_0[t]) + \\ && \overline{\operatorname{Flanke}} \cdot \operatorname{state}_2[t] \end{array}$$

(c)

