ÁLGEBRA I (MATEMÁTICAS, GRUPO B) Curso 21-22.

Relación 4

1. Argumenta si los siguientes anillos son, o no, Dominios de Integridad:

$$\mathbb{Z}_8$$
, $\mathbb{Z}[\sqrt{2}]$, \mathbb{Z}_3 , $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}_6[X]$, $\mathbb{Z}[i]$, $\mathbb{Z}_5[X]$.

- 2. ¿Es el anillo definido por el conjunto $\mathbb{Z} \times \mathbb{Z}$ con las operaciones (a,a') + (b,b') = (a+b,a'+b') y (a,a')(b,b') = (ab,ab'+a'b) un Dominio de Integridad? (ver el Ejercicio 3 de la Relación 3)
- 3. ¿Es el anillo definido por el conjunto $\mathbb Z$ de los números enteros con las operaciones $a\oplus b=a+b-1$ y $a\otimes b=a+b-ab$ un Dominio de Integridad? (ver el Ejercicio 2 de la Relación 3)
- 4. Demuestra que un Dominio de Integridad finito es un cuerpo.
- 5. Sea $n \in \mathbb{Z}$ un entero no cuadrado en \mathbb{Z} . Demuestra que el cuerpo de fracciones de $\mathbb{Z}[\sqrt{n}]$ es $\mathbb{Q}[\sqrt{n}]$.
- 6. Se define el cuerpo $\mathbb{Q}(x)$ como el cuerpo de fracciones del anillo $\mathbb{Z}[x]$, esto es $\mathbb{Q}(x) := \mathbb{Q}(\mathbb{Z}[x])$. Demuestra que $\mathbb{Z}[x]$ y $\mathbb{Q}[x]$ tienen el mismo cuerpo de fracciones. Esto es.

$$\mathbb{Q}(\mathbb{Q}[x]) = \mathbb{Q}(x).$$

- 7. Sea $A = \{ \frac{m}{2^k} \in \mathbb{Q} \mid m \in \mathbb{Z} \text{ y } k \geq 0 \}$. Argumentar que
 - (a) A es subanillo de \mathbb{Q} .
 - (b) $\mathbb{Z} \subsetneq A$.
 - (c) El cuerpo de fracciones de A es el mismo que el de \mathbb{Z} , o sea \mathbb{Q} .
- 8. Argumentar la veracidad o falsedad de las siguientes porposiciones referidas a elementos de un Dominio de Integridad
 - (a) $a \mid b \land a \nmid c \Rightarrow a \nmid b + c$.
 - (b) $a \nmid b \land a \nmid c \Rightarrow a \nmid b + c$.
- 9. Sea A un DE y $a,b \in A \{0\}$. Demuestra que son equivalentes las siguientes afirmaciones:
 - (i) a|b.
 - (ii) Todo resto de dividir b entre a es 0.
 - (iii) 0 es un resto de dividir b entre a.
- 10. Para n un número natural, calcular $mcd(n, n^2)$, mcd(n, n+1) y mcd(n, n+2).
- 11. ¿Podremos rellenar con precisión un depósito de 5.388.033 litros usando un recipiente de 371? En caso afirmativo ¿Cuantas veces usaremos el recipiente?
- 12. Determinar, si existe, un polinomio $p(x) \in \mathbb{Q}[x]$ tal que

$$\Big(\frac{3}{5}x^3 + \frac{1}{2}x + \frac{2}{3}\Big)p(x) = \frac{9}{20}x^5 + \frac{147}{40}x^3 + \frac{1}{2}x^2 + \frac{11}{4}x + \frac{11}{3}.$$

- 13. Calcular el cociente y el resto de dividir, en el anillo $\mathbb{Q}[x]$, el polinomio $\frac{9}{20}x^5 + \frac{147}{40}x^3 + \frac{1}{2}x^2 + \frac{17}{4}x + \frac{17}{3}$ entre el polinomio $\frac{3}{5}x^3 + \frac{1}{2}x + \frac{2}{3}$.
- 14. Determinar, si existe, un polinomio $p(x) \in \mathbb{Z}_3[x]$ tal que

$$(2x^2 + x + 2)p(x) = 2x^7 + x^6 + 2x^4 + 2.$$

- 15. En el anillo $\mathbb{Z}[i]$, calcular cociente y resto de dividir 1+15i entre 3+5i.
- 16. ¿Es $2 + 5\sqrt{3}$ un divisor de $39 9\sqrt{3}$ en el anillo $\mathbb{Z}[\sqrt{3}]$?
- 17. Resolver en $\mathbb Z$ las ecuaciones diofánticas

$$10x + 46y = 4050$$
, $60x + 36y = 12$, $35x + 6y = 8$, $12x + 18y = 11$.

- 18. "Cuarenta y seis náufragos cansados arribaron a una bella isla. Allí encontraron ciento veintiséis montones de cocos, de no más de cincuenta cada uno, y catorce cocos sueltos, y se los repartieron equitativamente . . ." (cuento oriental del año 850 a.c.) ¿Cuántos cocos había en cada montón?
- 19. Disponemos de 15 euros para comprar 40 sellos de correos, de 10, 40, y 60 céntimos y, al menos, necesitamos 2 de cada tipo ¿Cuántos sellos de cada clase podremos comprar?
- 20. En una torre eléctrica, se nos ha roto una pata de 4 m de altura. Para equilibrarlo provisionalmente, disponemos de 7 discos de madera de 50 cm de grosor y de otros 12 de 30 cm. ¿Cuál de las siguientes afirmaciones es verdadera?
 - \square No podremos equilibrar la torre.
 - □ Podremos equilibrar la torre, y de una única manera.
 - □ Podremos equilibrar la torre, y de dos únicas maneras.
 - □ Podremos equilibrar la torre, y de más de 2 maneras distintas.
- 21. Calcular el máximo común divisor y el mínimo común múltiplo, en el anillo $\mathbb{R}[x]$, de los polinomios $x^3 2x^2 5x + 6$ y $x^3 3x^2 x + 3$. Encontrar todos los polinomios P(x) y g(x) en $\mathbb{R}[x]$, ambos de grado 3, tales que

$$(x^3 - 2x^2 - 5x + 6)p(x) + (x^3 - 3x^2 - x + 3)g(x) = x^3 - 6x^2 + 11x - 6.$$

22. Calcular el máximo común divisor y el mínimo común múltiplo, en el anillo $\mathbb{Z}_3[x]$, de los polinomios $x^4 + x^3 - x - 1$ y $x^5 + x^4 - x - 1$. Encontrar todos los polinomios P(x) y g(x) en $\mathbb{Z}_3[x]$, con grado de g(x) igual a 7, tales que

$$(x^4 + x^3 - x - 1)p(x) + (x^5 + x^4 - x - 1)g(x) = x^4 + x^2 + 1.$$

23. En el anillo $\mathbb{Z}[\sqrt{-2}]$, calcular

$$mcd(2-3\sqrt{-2},1+\sqrt{-2}), \text{ y } mcm(2-3\sqrt{-2},1+\sqrt{-2}).$$

- 24. En $\mathbb{Z}[\sqrt{3}]$, calcula $mcd(3 + \sqrt{3}, 2)$ y $mcm(3 + \sqrt{3}, 2)$.
- 25. Determina los enteros $x,y\in\mathbb{Z}$ tales que, en el anillo $\mathbb{Z}[i]$, se verifique la ecuación

$$(-2+3i)x + (1+i)y = 1+11i.$$

26. Resolver la siguiente ecuación en el anillo $\mathbb{Z}[\sqrt{2}]$:

$$(4+\sqrt{2})x + (6+4\sqrt{2})y = \sqrt{2}.$$