Стохастический анализ Домашнее задание №1

Будем обозначать буквами $T, S, S_1, \ldots, S_n, \ldots$ марковские моменты (stopping times), а буквами $U, R, R_1, \ldots, R_n, \ldots$ — марковские моменты в широком смысле (wide-sense stopping times).

Требуется проверить все нижеперечисленные утверждения.

- 1. R является \mathcal{F}_{R-} измеримой функцией; T является \mathcal{F}_{T-} измеримой функцией.
- 2. $S \leq T \implies \mathcal{F}_S \subseteq F_T$.
- 3. $R < U \implies \mathcal{F}_{R-} \subset \mathcal{F}_{U-}, \mathcal{F}_{R+} \subset \mathcal{F}_{U+}$.
- 4. $\mathcal{F}_S \cap \mathcal{F}_T = \mathcal{F}_{S \wedge T}$.
- 5. $A \in \mathcal{F}_{S \vee T} \implies A\{S \leq T\} \in \mathcal{F}_T, A\{S < T\} \in \mathcal{F}_T, A\{S = T\} \in \mathcal{F}_{S \wedge T}.$
- 6. $\mathcal{F}_S \vee \mathcal{F}_T = \mathcal{F}_{S \vee T} = \{A \cup B : A \in \mathcal{F}_S, B \in \mathcal{F}_T, AB = \emptyset\}.$
- 7. $A \in \mathcal{F}_{R+} \implies A\{R < U\} \in \mathcal{F}_{U-}$.
- 8. $A \in \mathcal{F}_{\infty} \implies A\{R = \infty\} \in \mathcal{F}_{R-}$.
- 9. $R \leq U$ и R < U на множестве $\{R < \infty\} \implies \mathcal{F}_{R+} \subseteq \mathcal{F}_{U-}$ (ср. с п. 2).
- 10. $S \leq T$ и S < T на множестве $\{T > 0\} \implies \mathcal{F}_S \subseteq \mathcal{F}_{T-}$.
- 11. Если $R = \bigvee_n R_n$ и $U = \bigwedge U_n$, то

$$\mathcal{F}_{R-} = \bigvee_{n} \mathcal{F}_{R_{n-}}, \ \mathcal{F}_{U+} = \bigwedge_{n} \mathcal{F}_{R_{n+}}.$$

12. Если $S = \bigvee_n S_n$ и для каждого n выполнено $S_n < S$ на множестве $\{0 < S_n < \infty\}$, то

$$F_{S-} = \bigvee_{n} F_{S_n}.$$