

HOME CREDIT DEFAULT RISK

- Iganasius Frans De Sale Tyas Neno
- 2. Hendy Nurhidayat
- Ira Rizkillah Koswara

Latar Belakang

Business Step

Profile Perusahaan

HCME CREDIT

PT Home Credit Indonesia atau yang lebih dikenal dengan Home Credit merupakan perusahaan pembiayaan multiguna multinasional. Perusahaan ini menyediakan layanan pembiayaan berbasis teknologi.

Business Understanding

Banyak orang berjuang untuk mendapatkan pinjaman karena sejarah kredit yang tidak mencukupi atau tidak ada. Dan, sayangnya, populasi ini sering dimanfaatkan oleh pemberi pinjaman yang tidak dapat dipercaya.

Business Understanding

TARGET

Menemukan kelayakan user yang tidak memiliki rekening bank dalam melakukan pengajuan kredit berdasarkan parameter-parameter tertentu yang telah tersedia dari fitur-fitur aplikasi pengajuan kredit yana telah di lakukan sebelumnya oleh user tersebut

Business Understanding

Strategi Bisnis

01 Memaksimalkan Metode Statisika

02 Memaksimalkan Metode Machine Learning

METADATA

METADATA

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

Kita mempunyai 122 kolom dengan 307511 baris data #fact1

Exploratory Data Analysis

Dataset statistics

Number of variables	122
Number of observations	307511
Missing cells	9152465
Missing cells (%)	24.4%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	286.2 MiB
Average record size in memory	976.0 B

Variable types

Numeric	70
Categorical	49
Boolean	3

Dalam data yang telah di eksplor di temukan missing value yang bernilai 24.4% dan dihitung berdasarkan cells yang memiliki nilai missingvalue

Dataset statistics

Number of variables	122
Number of observations	307511
Missing cells	9152465
Missing cells (%)	24.4%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	286.2 MiB
Average record size in memory	976.0 B

Variable types	
Numeric	70
Categorical	49
Boolean	3
•	↓

Dari 122 Variable yang kita miliki kita mendapat 3 kategori tipe data yaitu Numeric, Categorical, dan Boolean.

Distinct	2
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	2.3 MiB

TARGET Categorical

Pada kolom target bisa di katakan terjadi imbalance sehingga perlu di lakukan sampling pada kolom ini untuk meningkatkan akurasi pada model yang akan kita buat.

Feature Selection

TARGET Categorical

Pada kolom target bisa di katakan terjadi imbalance sehingga perlu di lakukan sampling pada kolom ini untuk meningkatkan akurasi pada model yang akan kita buat.

Feature Correlation

Fitur yang digunakan karena memiliki korelasi positifyaitu:

- AMOUNT CREDIT
- AMOUNT ANNUITY
- AMOUNT GOODS PRICE
- CNT_FAM_MEMBERS
- CNT_CHILDREN

Feature Selection

Dalam korelasi fitur yang terlihat kita akan menggunakan beberapa fitur saja yang memungkinkan untuk permodelan.

Skewness & Missing Value

Jumlah missing value pada setiap variabel

AMT_GOODS_PRICE	278
AMT_ANNUITY	12
CNT_FAM_MEMBERS	2
CNT_CHILDREN	0
AMT_CREDIT	0
TARGET	0
dtype: int64	

Nilai Skewnes dari setiap kategori

AMT CREDIT	1.234778
AMT_CREDIT	1.254//6
AMT_ANNUITY	1.579777
AMT_GOODS_PRICE	1.349000
CNT_FAM_MEMBERS	0.987543
CNT_CHILDREN	1.974604
dtype: float64	

Berdasarkan literasi statistik maka pada feature yang telah di pilih, bisa disimpulkan semua missing value akan diisi dengan nilai mean(rata- rata) hal ini di karenakan nilai skewness yang di dapat masuk dalam kategori normal.

Sudah tidak ada nilai missing value


```
SK_ID_CURR 0
TARGET 0
CNT_CHILDREN 0
AMT_CREDIT 0
AMT_ANNUITY 0
AMT_GOODS_PRICE 0
CNT_FAM_MEMBERS 0
dtype: int64
```


Dummy Data

dumies_df.head()							
	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	CNT_FAM_MEMBERS
0	100002	1	0	406597.5	24700.5	351000.0	1.0
1	100003	0	0	1293502.5	35698.5	1129500.0	2.0
2	100004	0	0	135000.0	6750.0	135000.0	1.0
3	100006	0	0	312682.5	29686.5	297000.0	2.0
4	100007	0	0	513000.0	21865.5	513000.0	1.0

Split Data

```
X = dumies_df.drop(['TARGET', 'SK_ID_CURR'], axis = 1)
y = dumies_df['TARGET']

M from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,stratify = y,random_state = 123)
```

Imbalance Handling

Undersampling

MinMax Scaler

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_transform = scaler.fit_transform(X_under)
X_transform = pd.DataFrame(X_transform,columns = X.columns)
```

	CNT_CHILDREN	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	CNT_FAM_MEMBERS
0	0.090909	0.191743	0.108091	0.177215	0.166667
1	0.000000	0.061864	0.128309	0.063291	0.083333
2	0.090909	0.158185	0.164871	0.177215	0.166667
3	0.090909	0.045196	0.069774	0.050633	0.083333
4	0.090909	0.205279	0.104782	0.189873	0.166667
34749	0.000000	0.146886	0.214891	0.164557	0.083333
34750	0.000000	0.047600	0.099475	0.044304	0.000000
34751	0.090909	0.102143	0.151755	0.091139	0.166667
34752	0.090909	0.045485	0.044794	0.032911	0.083333
34753	0.090909	0.056382	0.073467	0.050633	0.166667

Accuracy

```
def evaluasi_model(model,X_test,y_test):
    from sklearn.metrics import accuracy_score
    y_pred = model.predict(X_test)
    return accuracy_score(y_test,y_pred)*100
```

KNN

from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(X_transform,y_under) accuracy = evaluasi_mode1(knn,X_test,y_test) print('accuracy : {0:.5f}%'.format(accuracy)) /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). accuracy : 91.92230%

Decission Tree

```
from sklearn.tree import DecisionTreeClassifier
model_tree = DecisionTreeClassifier()
model_tree.fit(X_transform, y_under)
accuracy = evaluasi_model(model_tree,X_test,y_test)
print('accuracy : {0:.5f}%'.format(accuracy))
accuracy : 91.92664%
```


KNN = 91.92230% Decission Tree = 91.92664%

Conclusion

Conclusion

Feature yang memiliki nilai korelasi yang tinggi dapat membantu menilai kelayakan customer yang tidak memiliki rekening dalam melakukan pengajuan kredit.

Feature-feature yang dimaksud antara lain:

- □ Count Children
- □ Amount Credit
- □ Amount Annuity
- Amount Goods Price
- □ Count Family Members

TERIMA KASIH

