CMPUT 609 Assignment 3

Shaurya Seth

February 5, 2023

Question 1

It is better to minimize the projected Bellman error because the Bellman error is not learnable. The projected Bellman error can be learned directly from the data distribution and will have a unique minimizer.

Question 2

False. Baird's counterexample shows a case where TD(0) diverges.

Question 3

$$\overline{\text{RE}}(\mathbf{w}) = \mathbb{E}[(G_t - \hat{v}(S_t, \mathbf{w}))^2]
= \sum_S \mu(s)(G_t - \hat{v}(S_t, \mathbf{w}))^2
= \sum_S \mu(s)([G_t - v^*(s)] + [v^*(s) - \hat{v}(S_t, \mathbf{w})])^2
= \sum_S \mu(s)([G_t - v^*(s)]^2 + [v^*(s) - \hat{v}(S_t, \mathbf{w})]^2)
= \overline{\text{VE}}(\mathbf{w}) + \mathbb{E}[(G_t - v_{\pi}(S_t))^2]$$

Question 4

- a) In the case of genuine approximation, $\overline{\text{VE}}$ is not expected to have a zero.
- b) The $\overline{\text{VE}}$ is zero given by $\overline{\text{VE}}(\mathbf{w}) = ||v_{\mathbf{w}} v_{\pi}||_{u}^{2}$.
- c) No, the $\overline{\text{VE}}$ is not learnable. It is not a unique function of the data distribution.
- d) Yes, the $\overline{\text{VE}}$ is optimizable.
- e) The minimum of $\overline{\text{RE}}$ is greater than the minimum of $\overline{\text{VE}}$ because of the variance term. This can be seen from the equation $\overline{\text{RE}}(\mathbf{w}) = \overline{\text{VE}}(\mathbf{w}) + \mathbb{E}[(G_t v_{\pi}(S_t))^2]$.
- f) Yes, $\overline{\text{RE}}$ and $\overline{\text{VE}}$ have the same minimizer.
- g) Yes, the \overline{RE} is learnable.
- h) If \mathbf{w} is a zero of the $\overline{\text{VE}}$ then $v_{\mathbf{w}}(s) = v_{\pi}(s)$. Since v_{π} solves the Bellman equation exactly the $\overline{\text{BE}}(\mathbf{w})$ is zero.
- i) If **w** is a zero of $\overline{\text{BE}}$ then it solves the Bellman equation exactly and $v_{\mathbf{w}}(s) = v_{\pi}(s)$. So it is also a zero of the $\overline{\text{VE}}$.
- j) No, the $\overline{\rm BE}$ is not learnable.
- k) Yes, the PBE is learnable. It can be directly determined from the data.

- l) There will always be a zero of $\overline{\text{PBE}}$ which is \mathbf{w}_{TD} .
- m) The $\overline{\text{BE}}$ will generally not be zero at the \mathbf{w}_{TD} .
- n) There will always be a zero of \overline{PBE} which is \mathbf{w}_{TD} .
- o) Yes, the TDE is learnable. It can be directly determined from the data.
- p) In general, the minimums of the other four measures are non-zero.
- q) The minimum of $\overline{\text{TDE}}$ is unlikely to be zero. Minimizing the $\overline{\text{TDE}}$ is naive.
- r) No, in general the minimizer of $\overline{\text{TDE}}$ is different from the other measures.
- s) Linear semi-gradient TD(0) converges to the TD fixed point. It minimizes the \overline{PBE} to zero.

Question 5

For each state, the expected number of times it is visited is:

$$\mu(a) = 2$$
$$\mu(b) = 1$$

$$\mu(c) = 2$$

For each state, the Bellman error is:

$$\overline{\delta}_{\mathbf{w}}(a) = (0.5[2+4] + 0.5[1+4]) - 4 = 1.5$$

$$\overline{\delta}_{\mathbf{w}}(b) = (1[1+4]) - 4 = 1$$

$$\overline{\delta}_{\mathbf{w}}(c) = (0.5[2+4] + 0.5[2+4]) - 4 = 2$$

The overall \overline{BE} for the first MRP is 4.5 while for the second MRP is 9. So these identical appearing MRPs have a different \overline{BE} . Since it is not unique for the data distribution, it is not learnable.

For $\gamma=1$ the expression for the $\overline{\rm BE}$ for both MRPs does not depend on w. So the value for w that minimizes the $\overline{\rm BE}$ cannot be found. The $\overline{\rm BE}$ is not optimizable.