The Conjugate Gradient Method

Christian Feichtinger

Friedrich-Alexander Universität Erlangen-Nürnberg

8.12.06

Outline

- Motivation Colloids
- **Steepest Descent**
- **Conjugate Directions**
- **Conjugate Gradient**

Motivation

Colloids

- Colloids consist from a continuous phase and a dispersed material
- Aim: Control of the agglomeration or the stabilization
- Possible solution: Electrostatic stabilization
- One aspect: Calculation of the potential

Examples

Colloids

- Colloids consist from a continuous phase and a dispersed material
- Aim: Control of the agglomeration or the stabilization
- Possible solution: Electrostatic stabilization
- One aspect: Calculation of the potential

Stabilization

Colloids

- Colloids consist from a continuous phase and a dispersed material
- Aim: Control of the agglomeration or the stabilization
- Possible solution: Electrostatic stabilization
- One aspect: Calculation of the potential

Agglomeration

- Electrostatic interaction influences the structure of the agglomerate
- In drying processes:
- Higher electrostatic repulsion results in dense agglomerates
- Lower repulsion in porous structures

Problem

Solve linear system of equations: $\mathbf{A}\vec{x} = \vec{b}$

Problem

Solve linear system of equations: $\mathbf{A}\vec{x} = \vec{b}$

Definitions

- A is a square, symmetric, positive-definite matrix
 - symmetric: $\mathbf{A} = \mathbf{A}^T$
 - positive-definite: $\vec{x}^T \mathbf{A} \vec{x} > 0 \quad \forall \vec{x} \neq 0$
- \circ \vec{x} unknown vector
- \circ \vec{b} right hand side
- restriction for simpification only
- other matricies need extensions to the algorithm

Problem

Solve linear system of equations: $\mathbf{A}\vec{x} = \vec{b}$

Solutions

- Direct Methods
 - Gaussian Elimination
 - LU Factorization
- Iterative Methods
 - Gauss-Seidel
 - SOR
 - Multigrid
 - Conjugate Gradient

Linear System Example

Example

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$$
$$3x_1 + 2x_2 = 2$$
$$2x_1 + 6x_2 = -8$$

Conjugate Directions

From Linear Equation to a Minimizing Problem

Quadratic Form

$$f(\vec{x}) = 0.5 \vec{x}^T \mathbf{A} \vec{x} - b^T \vec{x} + c$$

Example

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$$

From Linear Equation to a Minimizing Problem

Quadratic Form

$$f(\vec{x}) = 0.5 \vec{x}^T \mathbf{A} \vec{x} - b^T \vec{x} + c$$

Minimum Search

$$\vec{f}'(\vec{x}) = 0.5 \mathbf{A}^T \vec{x} + 0.5 \mathbf{A} \vec{x} - \vec{b}$$

 $\vec{f}'(\vec{x}) = \mathbf{A} \vec{x} - \vec{b} \text{ (by symmetry of A)}$
 $0 = \mathbf{A} \vec{x} - \vec{b} \text{ (} \vec{f}'(\vec{x}) = 0\text{)}$

Idea of CG

Find the minimum of $f(\vec{x})$ instead of solving the linear system

$$\mathbf{A}\vec{x}=\vec{b}$$

Steepest Descent

• Take a series of steps: $\vec{x}_{(0)}$, $\vec{X}_{(1)},...,\vec{X}_{(m)}$

Conjugate Directions

- Go in direction of steepest descent of $f(\vec{x}_{(i)}) \rightarrow -\vec{f}'(\vec{x}_{(i)})$
- $\vec{x}_{(i+1)} = \vec{x}_{(i)} + \alpha(-1)\vec{f}'(\vec{x}_{(i)})$
- $\vec{r}_{(i)} = \vec{b} \mathbf{A}\vec{x}_{(i)} = -\vec{f}'(\vec{x}_i)$
- Done when $\vec{r}_{(i)}$ is small enough

Determination of α

- Aim: Minimize f
- Go in direction $\vec{r}_{(i)}$ until the minimum of f along the search direction is reached

Determination of α

Principle

• At
$$\vec{x}_{(i+1)}$$
: $\vec{r}_{(i+1)}^T \vec{d}_{(i)} = 0$

- Also valid for CD and CG
- For SD: $\vec{x}_{(i+1)}$: $\vec{r}_{(i+1)}^T \vec{r}_{(i)} = 0$

Conjugate Directions

Convergence

• Energy Norm: $\|\vec{e}_{(i)}\|_{\mathbf{A}}^2 = \vec{e}_{(i)}^T \mathbf{A} \vec{e}_{(i)}$

Conjugate Directions

$$\|\vec{e}_{(i+1)}\|_{\mathbf{A}}^2 < \|\vec{e}_{(i)}\|_{\mathbf{A}}^2$$

- Bad convergence due to steps in same search direction
- Although $\vec{r}_{(i+1)}^T \vec{r}_{(i)} = 0$
- $\vec{r}_{(i+1)}$ must not be orthogonal to $\vec{r}_{(i-1)}$

Concept

• Choose search direction $\vec{d}_{(i)}$ in a way, that it is linear independant to all previous $\vec{d}_{(i)}$

Side Remark

• Decomposition of $\vec{e}_{(0)}$ in *n* orthogonal, linear independent vectors

Conjugate Directions

• Use the orthogonal search directions $\vec{d}_{(i)}$

$$\vec{e}_{(0)} = \sum_{i=0}^{n-1} \alpha_i \vec{d}_i \ \vec{e}_{(0)} \in R^n$$

Example

$$\vec{e}_{(0)} = -5\vec{d}_0 - 1\vec{d}_1$$
 $\vec{e}_{(1)} = -1\vec{d}_1$

$$\vec{d}_{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \vec{d}_{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Concept

• Choose search direction $\vec{d}_{(i)}$ in a way, that it is linear independent to all previous $\vec{d}_{(i)}$

Conjugate Directions

- Step in each direction only once
- Eliminate the error component $\alpha \vec{d}_{(i)}$ of $\vec{e}_{(0)}$ in iteration i

Example

$$\vec{e}_{(0)} = -5\vec{d}_0 - 1\vec{d}_1$$
 $\vec{e}_{(1)} = -1\vec{d}_1$

$$\vec{d}_{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \vec{d}_{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Concept

- Bad convergence of SD avoided
- Done after n-steps for $\vec{x} \in R^n$ (Exact Solution)

Example

$$\vec{e}_{(0)} = -5\vec{d}_0 - 1\vec{d}_1 \ \vec{e}_{(1)} = -1\vec{d}_1$$

Conjugate Directions

$$\vec{d}_{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \vec{d}_{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

First Idea

- Use as search vectors the coordinate axes \vec{u}_i
- $\alpha_{(i)} = -\frac{\vec{d}_{(i)}^T \vec{e}_{(i)}}{\vec{d}_{(i)}^T \vec{d}_{(i)}} \rightarrow \text{not possible!}$

Example

$$\vec{e}_{(0)} = -5\vec{d}_0 - 1\vec{d}_1$$
 $\vec{e}_{(1)} = -1\vec{d}_1$

Conjugate Directions

$$\vec{d}_{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \vec{d}_{(1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

First Idea

- Use as search vectors the coordinate axes \vec{u}_i
- $\alpha_{(i)} = -\frac{\vec{a}_{(i)}^T \vec{e}_{(i)}}{\vec{d}_{(i)}^T \vec{d}_{(i)}} \rightarrow \text{not possible!}$

A-Orthogonal Approach

- Expand Equation for α with **A**
- \bullet $\vec{r}_{(i)} = -\mathbf{A}\vec{e}_{(i)}$
- Search directions have to be A-orthogonal
- \bullet $\vec{d}_{(i)} \mathbf{A} \vec{d}_{(i)} = 0 \ \forall \ j \neq i$
- Search directions still linearly independent
- In iteration *i* the error component $\alpha \vec{d}_{(i)}$ is removed from $\vec{e}_{(i)}$

Determination of $\vec{d}_{(i)}$

Task

Search directions have to be A-orthogonal to all previous search directions

Solution: Gram-Schmidt Conjugation

- Use coordinate axes \vec{u}_i to construct $\vec{d}_{(i)}$
- Remove the parts of \vec{u}_i , that are parallel to any previous search direction
- $\vec{d}_{(i)} = \vec{u}_i + \sum_{k=0}^{i-1} \beta_{ik} \vec{d}_{(k)}$
- ullet eta specifies the length of the parallel part

Calculation of $\vec{d}_{(i)}$

$$\vec{d}_{(i)} = \vec{u}_i + \sum_{k=0}^{i-1} \beta_{ik} \vec{d}_{(k)}$$

Gram-Schmidt Conjugation

- Calculation of β : $O(n^2)$ operations (Matrix-Vector multiplication)
- $O(n^3)$ operations needed for full set
- \bullet β depends on the current search direction and the previous
- Previous search directions have to be stored
- Roundoff errors may cause the search vectors to loose A-orthogonality

Algorithm

- Use \vec{u}_0 as initial search direction
- For i = 0 to n 1
 - Compute $\vec{r}_{(i)} = \vec{b} \mathbf{A}\vec{x}_{(i)}$
 - $\bullet \ \ \text{Compute} \ \alpha_{(i)} = \frac{\vec{d}_{(i)}^T \vec{r}_{(i)}}{\vec{d}_{(i)}^T \mathbf{A} \vec{d}_{(i)}}$
 - $\bullet \ \vec{\mathbf{x}}_{(i+1)} = \vec{\mathbf{x}}_{(i)} + \alpha_{(i)} \vec{\mathbf{d}}_{(i)}$
 - Compute new direction $\vec{d}_{(i+1)}$

Conjugate Gradient

Problem

Improve the computation of the search directions

Solution

Construct $\vec{d}_{(i)}$ from $\vec{r}_{(i)}$ instead of \vec{u}_i

Example

Conjugate Gradient

Problem

Improve the computation of the search directions

Solution

Construct $\vec{d}_{(i+1)}$ from $\vec{r}_{(i+1)}$ instead of \vec{u}_{i+1}

Implications

- Previous search directions $\vec{d}_{(j)}$ are not needed to make $\vec{d}_{(i+1)}$ A-orthogonal i>j
- $\vec{r}_{(i+1)}$ already A-orthogonal to $\vec{d}_{(i)}$ i > j
- $\vec{r}_{(i+1)}^T \vec{d}_{(j)} = 0 \quad i \geq j$
- $\vec{r}_{(i)}^T \vec{r}_{(j)} = 0$ $i \neq j$ (needed for Gram-Schmidt Conjugation)

Equations

$$\vec{d}_{(i+1)} = \vec{r}_{(i+1)} + \sum_{k=0}^{i} \beta_{ik} \vec{d}_{(k)}$$
 $\vec{d}_{(i+1)} = \vec{r}_{(i+1)} + \beta_{(i)} \vec{d}_{(i)}$

Conjugate Gradient

Algorithm

$$\vec{d}_{(0)} = \vec{r}_{(0)} = \vec{b} - \mathbf{A}\vec{x}_{(0)}$$

• for
$$((i = 0 \text{ to } n - 1)$$

- Compute α
- Determine the new position $\vec{x}_{(i+1)}$
- Calculate the next residual $\vec{r}_{(i+1)}$
- Determine $\beta_{(i+1)}$
- Compute the new search direction $\vec{d}_{(i+1)}$

Optimality of the Error Term

Statement

Motivation

CG finds the best solution within the bonds of where it has been allowed to explore

Where it has been allowed to explore?

- CG is allowed to choose the error $\vec{e}_{(i)}$ from $\vec{e}_{(0)} + D_i$
- D_i is the subspace, that is spanned by the search vectors $\vec{d}_{(0)},...,\vec{d}_{(i-1)}$
- $\vec{e}_{(i)} = \vec{e}_{(0)} + linear$ combination of the search vectors

Best solution?

CG chooses the error $\vec{e}_{(i)}$, that it minimizes $\|\vec{e}_{(i)}\|_A$

Optimality of the Error Term

Complexity of CG

Max Iterations

- Reduce $\|\vec{e}_{(i)}\| \leq \epsilon \|\vec{e}_{(0)}\|$
- Max number of iterations: $i \leq \left[0.5\sqrt{\kappa}\ln\frac{2}{\epsilon}\right]$

Dominating operations

- Matrix / Vector multiplications: O(m)
- Sparse matrices: O(n)
- m = number of non-zero entries in the matrix
- n = length of vector

Complexity

For sparse matrices: $O(\sqrt{\kappa}n)$

$$\kappa = rac{\lambda_{ extit{max}}}{\lambda_{ extit{min}}}$$

Preconditioning

Idea

- Complexity depends on $\kappa = \frac{\lambda_{max}}{\lambda_{min}} \geq 1$
- Improve condition number κ
- The lower the condition number, the more spherical the paraboloid is

Optimization

- Solve $M^{-1}A\vec{x} = M^{-1}\vec{b}$
- $\bullet \ \kappa(\mathbf{M}^{-1}\mathbf{A}) \ll \kappa(\mathbf{A})$
- Best $\kappa(\mathbf{M}^{-1}\mathbf{A})$ for $\mathbf{M}=\mathbf{A}$
- $\mathbf{M}\vec{x} = \vec{b}$ not useful
- There exist numerous preconditioners
- CG should be used with preconditioning

Preconditioning

Diagonal Preconditioning

- Choose for M only the diagonal part of A
- Effect: Scaling along the coord axes
- Perfect conditioner scales along the eigenvectors of A

Example

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}, \quad \kappa(\mathbf{A}) = 3.5, \quad \kappa(\mathbf{M}^{-1}\mathbf{A}) = 2.8$$

Starting and Stopping

Starting

 Use a priori knowledge of the solution, e.g. solution of the last time step

Conjugate Directions

• Otherwise use zero vector as starting position $\vec{x}_{(0)}$

Stopping

- Exact solution after n-steps (infinite machine precision)
- Iterative method: Stop when $\|\vec{r}_{(i)}\| < \epsilon \|\vec{r}_{(0)}\|$
- $\vec{r}_{(i)} = \vec{r}_{(i-1)} \alpha_{(i-1)} \mathbf{A} \vec{d}_{(i-1)}$
- Compute new $\vec{r}_{(i)}$ after some iterations, due to roundoff errors
- $\bullet \ \vec{r}_{(i)} = \vec{b} \mathbf{A}\vec{x}_{(i)}$

Conclusion

Overview

- Algorithms solve minimizing problem instead of a linear system
- CG used as an iterative solver for sparse large systems

Comparison of the three Algorithms

Attribute/Algorithm	SD	CD	CG
Search direction	residual	A-orthogonal	A-orthogonal
		directions	directions
Construction d _(i)	-	from coord-axes	from residuals
Convergence	finite number	at most n	at most n
	of steps	steps	steps
Complexity	$O(\kappa n)$		$O(\sqrt{\kappa}n)$
Else		$\vec{d}_{(i)}$ have to be	
		stored	
		compute	
		intensive	
	bad		
	convergence		

References

Motivation

- Jonathan Richard Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, August 1994
- Richard L. Burden, J.Douglas Faires, Numerical Analysis, 2001

Conjugate Gradient

