

Last Time:

- Introduced predicates and propositional functions
- Started on universal and existential quantifiers

Universal Quantifier:

• $\forall x P(x)$: "For all x in my domain P(x) is true "

Existential Quantifier:

• $\exists x \ P(x)$: "There exists an x in my domain s.t. P(x) is true"

Warm-Up Problems: Let the domain for x be the set of all Natural Numbers, $\mathbb{N} = \{0, 1, 2, ...\}$

Example: Determine the truth value of $\forall n \ (3n \le 4n)$

Example: Determine the truth value of $\exists x \ (x^2 = x)$

Last time we showed the following equivalences

DeMorgan's Laws for Quantifiers:

- $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- $\neg \exists x P(x) \equiv \forall x \neg P(x)$

Distribution Laws for Quantifiers:

- $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$
- $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$

Note: Distribution of ∀ over ∨ and ∃ over ∧ didn't work

A Computer Sciency Way of Viewing Quantifiers

Think of quantified statements as loops that do logic checks

Example: $\forall x P(x)$

```
In [ ]: for x in domain:
    if P(x) == False:
        return False
    return True
```

- If we find an x in domain where P(x) is False, return False
- If we make it through loop then return True

A Computer Sciency Way of Viewing Quantifiers

Think of quantified statements as loops that do logic checks

Example: $\exists x P(x)$

```
In [ ]: for x in domain:
    if P(x) == True:
        return True
    return False
```

- If we find an x in domain where P(x) is True, return True
- If we make it through loop without finding one, return False

Interesting things happen when we include multiple quantifiers

Example: What does this say: $\forall x \ \exists y \ (x + y = 0)$?

It really helps to read these outloud: "For all x, there exists a y, such that the sum of x and y is zero"

What do you think? Is this true or false?

Nested Quantifiers as Loops

Example: $\forall x \exists y P(x, y)$?

- If we make it through y-loop without finding a True, return
 False
- If we make it through entire x-loop then return True

Nested Quantifiers as Loops

Example: $\forall x \ \exists y \ (x + y = 0)$?

```
In [7]: def check_additive_inverse(domain):
    for x in domain:
        exists_y = False
        for y in domain:
            if x + y == 0:
                exists_y = True
        if exists_y == False:
            return False
    return True

domain = [-3, -2, -1, 0, 1, 2, 3]
    check_additive_inverse(domain)
```

Out[7]: True

Nested Quantifiers as Loops

Example: $\forall x \ \exists y \ (x + y = 0)$?

```
In [8]: def check_additive_inverse(domain):
    for x in domain:
        exists_y = False
        for y in domain:
            if x + y == 0:
                 exists_y = True
        if exists_y == False:
            return False
    return True

domain = [-2, -1, 0, 1, 2, 3]
    check_additive_inverse(domain)
```

Out[8]: False

Nested Quantifiers as Loops

Example: $\forall x \ \forall y \ P(x, y)$?

- If we ever find an (x, y)-pair that makes P(x, y) False,
 return False
- If we make it through both loops, return True

Example: How could we express the law of **commutation of** addition (that is, that x + y = y + x)?

Let's go back to the previous example:

Example: $\forall x \ \exists y \ (x + y = 0)$

Question: What happens if we change the order here?

Answer: A lot! The new expression $\exists y \ \forall x \ (x + y = 0)$ says

• "There exists some number y such that for every x out there, x+y=0"

Can you think of such a number?

Rules for Switching Quantifiers:

- OK to switch $\forall x$ and $\forall y$
- OK to switch $\exists x$ and $\exists y$
- **NOT** OK to switch $\forall x$ and $\exists y$

Example: Now we'll switch the domain to all real numbers

How can you express the fact that all numbers of have a multiplicative inverse

Example: How could you express that there are an infinite number of natural numbers?

If domains for x and y are the set of natural numbers, we could say

$$\forall x \; \exists y \; (y > x)$$

This just says that every natural number has a number that is larger

Example: Translate the statement "You can fool some of the people all of the time"

Example: Translate the statement "You can fool all of the people some of the time"

Example: Translate the statement "You can't fool all of the people all of the time"

Quantifications with more than two quantifiers are also common

Example: Let Q(x, y, z) mean "x + y = z". What are the truth values of

- $\forall x \ \forall y \ \exists z \ Q(x, y, z)$
- $\exists z \ \forall x \ \exists y \ Q(x, y, z)$

End of Representational Logic

- We now know how to represent standard propositions
- We know how to represent propositions with quantifiers
- We know how to prove and derive logical equivalences

Next Time We Start Learning to Argue

- Rules of inference
- Valid and sound arguments
- Proof types and strategies