Introduction to Deep Learning

Olivier Augereau

Maugereau@enib.fr

Activation functions

Defines the output of a neuron given a set of inputs.

Constraints:

- continuous and infinite in domain,
- monotonic,
- nonlinear.

Linear Activation functions

• a neural network with only linear activations performs as well as a linear regression

 backpropagation cannot be applied to find how to change the neural weights based on the errors found: the gradient is a constant and do not depend on the input values

Activation functions

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid, Sofmax et ReLU

- smooth gradient, output values bound between 0 and 1.
- for high & low values of X, there is almost no change to the prediction, computationally expensive.

(softmax for multi classes)

- computationally efficient, allows the network to converge quickly.
- Pb of « dying » neuron if often <0

