Chemická väzba

Chem. väzby = sú sily, ktorými sú atómy pútané v molekulách

- nezlúčené atómy pri vzniku chemickej väzby majú v normálnych podmienkach iba vzácne plyny (He₂, Ne₂.....)
- atómy pri vzniku chemickej väzby sa zlučujú vytvárajú molekuly, ktoré sa od seba líšia veľkosťou, štruktúrou, stabilitou
- ak sa zlúčia 2 atómy prvkov (rovnakých alebo rôznych), hovoríme, že vznikla chemická väzba

Platí:

- pri vzniku chemickej väzby sa E uvoľňuje
- Pri zániku/štiepení je potrebné E dodať
- Energia potrebná na rozštiepenie chem. väzby sa nazýva **disociačná=väzbová**, je uvedená v chemických tabuľkách a je prepočítaná na 1 mol väzieb, jednotka kJ.mol⁻¹
- závisí od ďalších atómov a väzieb v zlúčeninách

Platí, že: čím je väčšia hodnota E (vyššia číselná hodnota), tým je väzba pevnejšia, t.j. stálejšia

<u>Typy väzieb: 1.</u>kovalentná, 2.kovová (väzba v kovoch), 3.koordinačná (donorno-akceptorná), 4.iónová, 5. medzimolekulové sily – a)vodíkové väzby b) van der Walsové sily

Princíp a podmienky vzniku chem.v.:

- 1. predpokladom je, aby sa atómy priblížili a zrazili sa,
- dochádza k prieniku ich el. obalov (valenčných vrstiev), zvýši sa el. hustota medzi jadrami atómov -vzniká 1 al. viac el.párov
- okrem príťažlivých síl sa uplatňujú aj príťažlivé sily a odpudivé sily kladných jadier a elektrónov (v e. obaloch)
- 2. Elektróny v elektrónovom obale musia byť usporiadané tak, aby mohlo dôjsť k vytvoreniu väzbových elektrónových párov **musia mať opačný spin!!!!!!!**
- 1, Kovalentná väzba najsilnejšia hodnota jej disociačnej energie je 150-300 kJ.mol-1
- ide o spoločné spoluzdieľanie 1 alebo viacerých väzbových e- párov!!!!!!!!!!!!
- predpona "ko" = spoluzdieľanie
- má smerový charakter, atómy musia mať nespárené e- a musia mať opačné spiny !!!!!!!!

Pr. Metán, je zlúčenina s chemickým vzorcom CH₄, väzba C-H má hodnotu 414 kJ.mol⁻¹

Aká je hodnota disociačnej energie potrebnej na rozštiepenie všetkých väzieb v molekule metánu?

• Riešenie: $4x 414 \text{ kJ.mol}^{-1} = 1656 \text{ kJ.mol}^{-1}$

Pr. Väzbová energia väzby H-O je 463 kJ.mol⁻¹aká je väzbová energia potrebná na rozštiepenie všetkých väzieb v molekule vody?

• Riešenie: $2x463 \text{ kJ.mol}^{-1} = \text{kJ.mol}^{-1}$

_

- pri vzniku väzieb sa uplatňujú **príťažlivé sily** ale aj **odpudivé sily** jadier a elektrónov (medzijadrová vzdialenosť u vodíka je experimentálne zistená a je 0,074 nm)
- vzniká spoločný väzbový elektrónový pár

konfiguráciu 1s¹ a má opačný spin

Keď sa dva atómy vodíka zlúčia – molekula H₂ má konfiguráciu 1s², teda taká ako najbližší vzácny plyn.

Problémová otázka? Prečo sa atómy zlučujú a vytvárajú molekuly a zlúčeniny? Zlúčeniny a molekuly po zlúčení atómov majú <u>nižšiu energiu</u> a sú tak stálejšie!!!!!

Kovalentná väzba môže byť:

- **Jednoduchá** napríklad v molekule H₂, Cl₂ (Cl-Cl)
- **Dvojitá** napríklad v molekule O_2 (O=O)
- **Trojitá** napríklad v molekule N_2 $(N \equiv N)$

Dĺžka väzieb:

$$C-C$$
 $C=C$ $C\equiv C$ $0,154 \text{ nm}$ $0,134 \text{ nm}$ $0,120 \text{ nm}$

klesá medzijadrová vzdialenosť nárast pevnosti väzby

Jednoduchá kovalentná väzba- označuje sa sigma _____, vzniká prekrytím orbitálov na spojnici jadier, najvyššia elektrónová hustota medzi jadrami !!!!! **Násobná kovalentná väzba** – označuje sa pí π , vzniká prekrytím orbitálov kolmo na spojnicu jadier, najvyššia elektrónová hustota nad a pod spojnicou jadier !!!!!

Elektronegativita = miera schopnosti priťahovať väzbové elektrony, je v tabuľkách, Paulingova a Mullikenova elektronegativita označuje sa X

- počíta sa ako absolútna hodnota rozdielu zlúčených prvkov
- rozdiel elektronegativít prvkov slúži na určenie typu väzby:

Príklady zlúčenín:

 Cl_2 – nepolárna 3,5-3,5 = 0

$$H_2O$$
, HCl – polárna, lebo $X = /3,5 - 2,1/ = 0,4$

NaCl – iónová, lebo rozdiel elektronegativít je väčší ako 1,7

-počet kovalentných väzieb prvku nám určuje jeho **väzbovosť** Platí:

Vodík	vždy 1-väzbový
Dusík	Vždy 3-väzbový (výnimka NH ₄ + - tu je

	4-väzbový)
Kyslík	Vždy 2-väzbový
Halogény (F,Cl, Br, I)	Vždy 1-väzbové
Uhlík	4-väzbový

Excitovaný stav uhlíka !!!!!!!

-uhlík podľa elektrónovej konfigurácie by mal byť je 2 väzbový, to je ale menej výhodné, dochádza k preskočeniu elektrónu z 2s orbitálu do 2 pz a je tak 4-väzbový – tentostav sa označuje hviezdičkou – excitovaný stav=vzbudený

