

Bottani Sophie Chiarini Emanuele Gatteschi Giulia Giannelli Enrico



### **DATASETS**

### 1) Visual Crossing

Collects all the information regarding the weather in Washington DC by day and hour between February and April 2021. There are 2,122 observations and 17 variables:

- Name
- Date time
- Maximum Temperature
- Minimum Temperature
- Temperature
- Wind Chill

- Heat Index
- Precipitation
- Snow
- Snow Depth
- Wind Speed
- WInd Gust

- Wind Direction
- Visibility
- Cloud Cover
- Relative Humidity
- Conditions

### **DATASETS**



### 2) Capital Bikeshare

Contains information about each ride made by users in Washington DC and 13 variables:

- ride\_id
- rideable\_type
- started\_at
- ended\_at
- start\_station\_name
- start\_station\_id
- end\_station\_name

- end\_station\_id
- start\_lat
- start\_lng
- end\_lat
- end\_lng
- member\_casual

# DATA PREPARATION: Weather Data



# DATA PREPARATION: Capital Bikeshare



# **CLUSTERING**

K-Means algorithm:
 Sklearn implementation, K-Means++
 initialization

 Scaling of the data:
 Min-Max scaler and division by 2 of longitude/latitude

 Elbow Method: based on distortion



### FIRST CLUSTERING

Performed a k-means algorithm on a dataset including some key variables from the rides and weather dataset:

- Starting and ending points of the ride
- Starting hour and day of the week
- User membership
- Precipitation and snow during ride starting hour

Results showed clusters differ a lot on the starting hour and day of the week



# FIRST CLUSTERING: RESULTS

| cluster | start_hour | weekday  | member_casual_enc | precipitation | snow     |
|---------|------------|----------|-------------------|---------------|----------|
| o       | 14.810727  | 0.978842 | 0                 | 0.023104      | 0.000779 |
| 1       | 9.379898   | 1.098204 | 1                 | 0.045631      | 0.004504 |
| 2       | 14.250042  | 5.423992 | 0                 | 0.012805      | 0.000469 |
| 3       | 14.866767  | 5.491965 | 1                 | 0.032369      | 0.001730 |
| 4       | 14.953224  | 3.535300 | 0                 | 0.017098      | 0.007454 |
| 5       | 17.282812  | 3.021910 | 1                 | 0.041091      | 0.000645 |
| 6       | 17.197825  | 0.537447 | 1                 | 0.008417      | 0.000570 |
| 7       | 8.859675   | 3.913729 | 1                 | 0.065571      | 0.036877 |

Means of the variables of interest across clusters

### **SECOND CLUSTERING**

~

Decided to explore this pattern further!

Performed a second k-means algorithm on:

- Starting and ending points of the ride
- Starting hour and day of the week

Found a very interesting cluster that is:

- Small
- Concentrated on the weekend
- Concentrated in the first hours of the day
- Mostly made up by non-members rides



# **SECOND CLUSTERING: RESULTS**

|         |          | start_hour |          | weekday  |          | member_casual_enc |          |
|---------|----------|------------|----------|----------|----------|-------------------|----------|
| Cluster | count    | mean       | std      | mean     | std      | mean              | std      |
| 0       | 64381.0  | 1.801168   | 1.960109 | 5.127771 | 0.888774 | 0.470123          | 0.499110 |
| 1       | 290390.0 | 10.53412   | 2.521691 | 3.508891 | 0.499922 | 0.628486          | 0.483210 |
| 2       | 397084.0 | 17.32061   | 2.425293 | 0.503629 | 0.499987 | 0.605978          | 0.488640 |
| 3       | 401115.0 | 11.57136   | 1.903248 | 5.460227 | 0.498416 | 0.489426          | 0.499889 |
| 4       | 369600.0 | 18.10133   | 2.230353 | 3.519916 | 0.499604 | 0.586991          | 0.492375 |
| 5       | 392404.0 | 17.75938   | 2.315284 | 5.449646 | 0.497459 | 0.473280          | 0.499286 |
| 6       | 220382.0 | 16.90673   | 2.841537 | 2.00000  | 0.000000 | 0.623068          | 0.484619 |
| 7       | 325139.0 | 8.893722   | 2.651249 | 0.960408 | 0.775859 | 0.664611          | 0.472127 |

# A POTENTIAL BUSINESS OPPORTUNITY



First need to understand why these rides are being done

Could be coming home from a night out

increases this type of usage

Let's visualize where these rides and the Washington's nightlife are!



- We created some heat maps to see which areas are more popular in terms of starting points and routes
- We used the Plotly library
- We compared the starting station and routes between the whole dataset and our cluster of interest

# **DATA VISUALIZATION: starting stations**



start\_count Cleveland Park 700 Columbia deights Woodley Par 600 500 400 300 · Washington Theodore 200 Roosevelt Bridge National 100

Starting stations for the whole dataset

Starting stations for rides made during the night

# **DATA VISUALIZATION: routes**





# A PEAK AT DC'S NIGHTLIFE

- Rides are concentrated north of the National Mall
- Since they are done during a weekend night we expect the nightlife of Washington D.C. to be located in this area



# A PEEK AT DC'S NIGHTLIFE



- We wanted to confirm this intuition
- To do so we used the list of all venues selling alcohol as a proxy
- Extracted the data from the pdf with records on DC's municipal government.
- Cleaned them and retrieved their latitude, longitude and category

# A PEEK AT DC'S NIGHTLIFE

- Applying a K-means algorithm at this scraped data yields four main clusters of Washington's nightlife
- The main one is located in the center of the city, another in the North, one South East and the last in the east





## A PEEK AT DC'S NIGHTLIFE

- The composition of the clusters is really different
- The percentage of clubs compared to bars and taverns in the main cluster in the city center is significantly higher compared to the other three
- This confirms our theory that the region from where many of the rides during the night start is the main hub of the nightlife in Washington and that, thus, these rides are related to it



### **INITIAL BUSINESS THEORY**

Adding to what we've found up to now that:

- Washington is among the safest cities in the US
- Majority of citizens not scared of roaming around it at night
- One of the highest bikeability among US cities
- Most of these rides not part of a membership
- Increasing utilization rates may boost profitability as most costs are fixed



### **INITIAL BUSINESS THEORY**



# Opportunity to increase profits by increasing night rides!

#### Our three business ideas are:

- A bundle that would allow users to "book" a bike for the whole night
- A free return ride for any ride during the night
- A discount on rides that end in DC's nightlife main cluster

### STORY TREE

#### CAPITAL BIKESHARE'S STORY

- People during the night need cheap and versatile means of transportation
- The Metro system closes early, using your own car may be difficult in big cities and services like Taxis or Ubers are expensive and may have long waiting times
- Using discounts or offers to encourage revelers to use bikes as a mean of transportation can solve the problems mentioned before for them, while also increasing utilization rates for Capital Bikeshare bikes during the night



Prior: people would use bikes to come home from and go to nightlife hotspots if they were cheap and easy to take

|              | People are willing to use bikes for moving at night | People are not |
|--------------|-----------------------------------------------------|----------------|
| Develop Idea | +++                                                 | -              |
| Do not       | 0                                                   | 0              |

We will accept the first scenario if 4 out of the 5 hypotheses we use to test it will be verified



Prior: college students are the perfect target customers

|                               | Service is more<br>relevant for college<br>students | Service is equally relevant for college students and the rest of the population | Service is more<br>useful for rest of<br>population |
|-------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|
| Focus marketing on students   | ++                                                  | +                                                                               | -                                                   |
| Run unfocused marketing       | +                                                   | +                                                                               | +                                                   |
| Focus on non-students clients | -                                                   | +                                                                               | ++                                                  |



Prior: one of the three offers (say X) is preferred to the others

|                         | Offer X is more attractive than the other | The offers are equally attractive |
|-------------------------|-------------------------------------------|-----------------------------------|
| Implement offer X       | +++                                       | ++                                |
| Implement another offer | +                                         | ++                                |





#### **Objective:**

- Assess general sentiment towards biking in
  Washington DC → especially at night
- Assess which of the offers is most popular
- Surveyed Washington DC residents only as willingness to ride bike highly depends on city's attributes (infrastructure, crime rate, traffic ...)



#### Develop/Not develop

|   | Hypothesis                                                       | Prior                                               |
|---|------------------------------------------------------------------|-----------------------------------------------------|
| 1 | People use the bike to go<br>out at night                        | > 60% use bike at night                             |
|   |                                                                  |                                                     |
| 2 | People use bike-sharing at night but the market is not saturated | > 30% and <50% use<br>bike-sharing bike at<br>night |

#### "Do you currently use a bike to go out at night?"

| Answer                           | Freq. | Perc.[%] | Cum.[%] |
|----------------------------------|-------|----------|---------|
| Yes, my own bike                 | 72    | 31.58    | 31.58   |
| Yes, a bike-sharing service bike | 87    | 38.16    | 69.74   |
| No                               | 69    | 30.26    | 100.00  |
|                                  | 228   | 100      |         |





Develop/Not develop

Out of those who replied "Yes" to the previous question

|   | Hypothesis                                        | Prior                                                                     |
|---|---------------------------------------------------|---------------------------------------------------------------------------|
| 3 | People <b>often</b> use a bike to go out at night | > 35% always use bike at<br>night<br>> 25% sometimes use<br>bike at night |



if we convince some other users to use a bike at night the offer could succeed in making them **repeated** customers!

# "Out of the times you go out at night how many times do you use a bike?"

| Answer    | Freq. | Perc.[%] | Cum.[%] |
|-----------|-------|----------|---------|
| Always    | 66    | 41.51    | 41.51   |
| Sometimes | 80    | 50.31    | 91.82   |
| Rarely    | 13    | 8.18     | 100.00  |
|           | 159   | 100      |         |

Develop/Not develop

| ı \ | 1 | / 1 |   | Hypothesis                                           | Prior                                      |
|-----|---|-----|---|------------------------------------------------------|--------------------------------------------|
| \1  |   |     | 4 | People are <b>interested</b> in a bike sharing offer | > 50% "probably yes" &<br>"definitely yes" |



# "Would you be interested in a bike-sharing offer for renting a bike at night?"

| Answer             | Freq. | Perc.[%] | Cum.[%] |
|--------------------|-------|----------|---------|
| Definitely yes     | 72    | 31.58    | 31.58   |
| Probably yes       | 47    | 20.61    | 52.19   |
| Might or might not | 53    | 23.25    | 75.44   |
| Probably not       | 38    | 16.67    | 92.11   |
| Definitely not     | 18    | 7.89     | 100.00  |
|                    | 159   | 100      |         |







|   | Hypothesis                                                | Prior                                     |
|---|-----------------------------------------------------------|-------------------------------------------|
| 5 | People are not scared of biking at night in Washington DC | < 20% scared of riding a<br>bike at night |

| 39.13% × 30.26% = <b>11.84%</b> | of the people do not feel |
|---------------------------------|---------------------------|
| safe riding a bike at night     |                           |

| Answer                                        | Freq. | Perc.[%] | Cum.[%] |
|-----------------------------------------------|-------|----------|---------|
| I use other means of transportation           | 33    | 47.83    | 47.83   |
| There are no bikes available when I need them | 2     | 2.90     | 50.73   |
| I do not feel safe riding a bike<br>at night  | 27    | 39.13    | 89.86   |
| I do not know how to ride a<br>bike           | 2     | 2.90     | 92.76   |
| Other                                         | 5     | 7.25     | 100.00  |
|                                               | 69    | 100      |         |

#### "Do you currently use bike to go out at night?"

| Answer | Freq. | Perc.[%] | Cum.[%] |
|--------|-------|----------|---------|
| No     | 69    | 30.26    | 100.00  |

Target

| Hypothesis |                                                               | Prior                                                                                    |
|------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 6          | College students will<br>be more interested<br>in the service | (interest in offer   college<br>student ) > (interest in offer  <br>non-college student) |

Ordered logistic regression, interest as dependent variable. Interested in the coefficient of student=2

Positive coefficient but **not statistically significant! Prior not confirmed** 

#### "Would you be interested in a bike-sharing offer for renting a bike at night?"

| Answer             | interest |
|--------------------|----------|
| Definitely yes     | 1        |
| Probably yes       | 2        |
| Might or might not | 3        |
| Probably not       | 4        |
| Definitely not     | 5        |

- Gender
- Age
- Bike sharing member

# "Do you currently use a bike when you go out at night?"

| Answer                   | bikenight |
|--------------------------|-----------|
| Yes, my own bike         | 1         |
| Yes, a bike-sharing bike | 2         |
| No                       | 3         |

#### "Are you a college student?"

| Answer            | student |
|-------------------|---------|
| Yes               | 1       |
| No                | 2       |
| Prefer not to say | 3       |

|              |                | Prior                                                                              | Signal                                               | Decision |
|--------------|----------------|------------------------------------------------------------------------------------|------------------------------------------------------|----------|
|              | Hypothesis 1   | > 60% use bike at night                                                            | 69.74% use bike at night                             | <b>©</b> |
|              | Hypothesis 2   | > 30% and <50% use bike-sharing bike at night                                      | 38.16 use bike-sharing at night                      | <b>S</b> |
| Develop idea | Hypothesis 3   | > 35% always bikes at night and<br>> 25% sometimes bikes at night                  | 31.6% always<br>38.2% sometimes                      | <b>©</b> |
| Develop idea | Hypothesis 4   | > 50% definitely yes + probably yes interested in offer                            | 52.19% definitely yes +<br>probably yes              | <b>(</b> |
|              | Hypothesis 5   | < 20% not scared of riding a bike at night                                         | 11.84% do not ride a bike<br>because they are scared | <b>S</b> |
| Target       | Hypothesis T-1 | (interest in offer   college student ) > (interest in offer   non-college student) | Prior confirmed but not stat significant             | *        |



#### Most popular offer

|                    | Whole night |       |        |
|--------------------|-------------|-------|--------|
| Answer             | Freq.       | Perc  | Cum.   |
| Definitely yes     | 59          | 25.88 | 25.88  |
| Probably yes       | 30          | 13.16 | 39.04  |
| Might or might not | 55          | 24.12 | 63.16  |
| Probably not       | 56          | 24.56 | 87.72  |
| Definitely not     | 28          | 12.28 | 100.00 |
|                    | 228         | 100   |        |

| Free return |       |        |  |
|-------------|-------|--------|--|
| Freq.       | Perc  | Cum.   |  |
| 85          | 37.28 | 37.28  |  |
| 54          | 23.68 | 60.96  |  |
| 50          | 21.93 | 82.89  |  |
| 22          | 9.65  | 92.54  |  |
| 17          | 7.46  | 100.00 |  |
| 228         | 100   |        |  |

| Park discount |       |        |  |
|---------------|-------|--------|--|
| Freq.         | Perc  | Cum.   |  |
| 95            | 41.67 | 41.67  |  |
| 43            | 18.86 | 60.53  |  |
| 50            | 21.93 | 82.46  |  |
| 24            | 10.53 | 92.98  |  |
| 16            | 7.02  | 100.00 |  |
| 228           | 100   |        |  |

**Need A/B testing** to assess the best offer!



Offers on free return and park discount are best

### **UPDATED BUSINESS MODEL**

After the results of the first survey, we did another experiment to determine the best offer among the two most popular:

- 50% discount when parking a bike near clubs/restaurants
- Free return ride



Prior: one offer is preferred to the other

|                            | 50% discount for trips<br>that end near club/bar<br>more attractive | Equally attractive | One-way gets you<br>return trip free more<br>attractive |
|----------------------------|---------------------------------------------------------------------|--------------------|---------------------------------------------------------|
| Implement 50%<br>discount  | +++                                                                 | ++                 | +                                                       |
| Implement free return trip | +                                                                   | ++                 | +++                                                     |



# A/B Test



We have thus created a second survey where 50% of the respondents are shown a question regarding their interest in one of the first offer and the other 50% on the second. The two offers are

- A. Free return
- B. Discount if parked in nightlife hubs
- Objective : find most popular offer
- Surveyed Washington DC residents only



- Balance checks on age and gender passed
- Regression on **likelihood** and **offer\_type** ( offer A = 1, B = 0)
- The regression yielded a significant coefficient for offer\_type of -0.883, suggesting that people who have been asked question A have higher likelihood of taking advantage of the offer

# "It's Saturday evening and you decided to go out. Offer A/B. Would you take the offer?"

| Answer             | likelihood |
|--------------------|------------|
| Definitely yes     | 1          |
| Probably yes       | 2          |
| Might or might not | 3          |
| Probably not       | 4          |
| Definitely not     | 5          |

### "How important was the offer for your choice?"

| Answer               | offer_impact |
|----------------------|--------------|
| Extremely important  | 1            |
| Very important       | 2            |
| Moderately important | 3            |
| Slightly important   | 4            |
| Not at all important | 5            |

- Performed ordered logistic regression for offer A and B on likelihood by(offer\_impact)
- Offer has significant impact on decision!

Offer A wins on offer B!

## **CONCLUSIONS**

- Preference for the bundle offering a free return trip for a night outward journey
- Proceed with a live-test of this business ideas on the app's users
- Target users that usually do not use a bike at night
- Send notification detailing the offer during,
  Friday or Saturday afternoon
- Almost non-existent downside, potential significant higher profit





Do you have any questions?



Bottani Sophie Chiarini Emanuele Gatteschi Giulia Giannelli Enrico