= <u>LAB 2</u> =

Problem 1: Lowest length path between extents and conds using forward.
BIS from the starting vertex.

EXAMPLE 1)

V= {0,1,2,3,4}; E= {0,4,(1,0),(1,2),(1,3),(2,0),(2,3),(3,0),(3,2),(6,0),(4,0)}

We'll run lowest_leigth-juth (1,4).

Tirely, the function - lowest_lingth - poths runs a modified virsion of BFS starting from < start > and ending at < end >.

-- dict-out: {0:[4], 1:[0,2,3], 2:[1,3], 3:[0,2], 4:[0,1] }

15tart=1, end=4		top-of-onew	neighbour	P: 0 1 2 3 4	dist-dictionary prev - dictionary 4: 0 1 2 3 4 2: 0 1 2 3 4 v: 0 0 0 0 0 0 0 0; he Man How No.	
		* 1	0	01234	01234 0125U	
	<u> </u>		ર	0 1 2 3 4	0 1 2 3 5 0 1 2 3 T	Von
	0236		3	0 1 2 3 4 TTTTF	0 1 2 3 4 0 1 2 3 1 0 1 1 00 1 1 Work 1 1 1	100

Alart = 1,) end = 4	guene	top-of- 2 mene	neighbour	visited -dictionaly	dut-dictionaly prev-dictionaly
4	23 =		4	0 1 2 3 4 7 7 7 7	0 1 2 3 4 0 1 2 3 4 1 1 0 1 1 0

- reverse - path = [1,0,4] - this list will be returned by the function

 $V = \{0, 1, 2, 3, 4\}; E = \{(0, 0), (0, 2), (1, 0), (1, 2), (2, 0), (2, 3), (2, 4), (3, 4), (4, 0), (4, 3)\}$

We'll run lowest - leigth- path (0,3).

-- did-out: {0:[0,2], 1:[0,2], 2:[0,3,4], 3:[4], 4:[0,3] }

start=0, end=3	2neme	top-of-green	neighbour —	Visited 0 1 2 3 4 T F F F F	0 1 2 3 4 0 0 0 0 0 0	Now Nove None None Name
	<u></u>	0	2	0 1 2 3 4 T F T F F	0 1 2 3 4	O 1 2 3 4 None None O None None
		2	3	0 1 2 3 4 T F T T F	0 1 2 3 4	0 1 2 3 4 None None 0 2 None
				STOP preverse_p		Mone J

Problem 1 Bonus: Find the strongly connected components of a graph in O(n+m).

 $V = h \circ, 1, 2, 3, 4, 3; E = h \circ, 4), (1, 0), (1, 2), (1, 3), (2, 1), (2, 3), (3, 0), (3, 2), (4, 0), 3$

-- dict-out: {0:[4], 1: [0,2,3], 2:[1,3], 3: [0,2], 4:[0,1]}

dfs1:

stack	revited	vertex	l stac	k visited	westex	6
[7	[False] *5	0	$\sqrt{\int_{3}}$		00000	
	T = + = 7	h	1 1 2 2	[T]* 5	3	
	$T_1 = T_1 = T_2$		[3, 2]		2	
	$[T, \mp, \mp, \mp, T]$	1	[3, 2,1]		1	
	$[T,T,\mp,\mp,T]$	2	[3,2,1,4]	7	4	
	$[\tau, \tau, \tau, \mp, \tau]$	3	[3, 2,1,4,		0	
	$[\tau, \tau, \tau, \tau, \tau]$					

stack = [3, 2, 1, 4, 0]

transpose-graph () => --dict-out: {0:[1,3,4], 1:[2,4], 2:[1,3], 3:[1,2], 4:[0]}

stock	rolex	ivsite d	scc	
[3, 2,1,4,0]		[False] * 5		
[3, 2, 1, 4]	0	[T, 7, 7, 7]		someonents of the
	1	[T,T,T,T]	[[0]]	components of the example graph are:
	2	[T,T,T,T]	[[0,1]]	[[20,1,2,3,4]]
	3	[T,T,T,T]	[[0,1,2,3]]	(just one scc)
	2			
	1			
	14	[T,T,T,T]	$\left\{ \left[\left[0,1,2,3,4\right] \right] \right\}$	

-dict-out: {0:[0,1], 1:[2,3], 2:[1,3], 3:[], 4[]}

ays	1 :		
stock	viviled	voltex	0
[]	[False] * 5	0	
	$[T_i \mp_i \mp_i \mp_i \mp]$	1	
	$[T,T,\mp,\mp,\mp]$	2	
	$[\tau, \tau, \tau, \tau]$		
	$[\top, \top, \top, \top, \mp]$		
[3])		,1

stock	visited	vertex
[3]		2
[3,2]		1 1
[3,2,1]		0
[3, 2, 1, 0]		4
[3, 2, 1, 0, 4]		

stack = [3, 2, 1, 0, 4] transpore - graph => -- did-out: 40: [0], 1: [0,2], 2: [1], 3: [12], 4: [7]

ds2

			1
steck	writex	wisted	, sec
[3, 2, 1, 0, 4]	4	[F, F, F, F, F]	
[3,2,1,0]		[7,7,7]	[[4]].
[3, 2, 1]	0	$[T, \overline{\tau}, \overline{\tau}, \overline{\tau}, T]$	$\int \left\{ \left[L_{1},\left[\right] \right] \right\}$
[3, 2]	1	$[T_iT_i\mp_i\mp_iT]$	[[4], [0]]
	1	[T, T, T, F, T]	[[5],[0],[]]
[3]	2		[[4], [0], [1]] [[4], [0], [1,2]]
	3	[ナ,ナ,ナ,]	[[h], [o], [1,2], [7] [[h], [o], [1,2], [3]]
	J		- 12-12121

Donne sted somyonents are.

[[4], [0], [1,2], [3]]