Overview

- The likelihood that someone will take a loan in their lifetime is almost a guarantee in today's society.
- What are the chances, that a customer will subscribe to a loan?

Background

• Obrigado Bank is a Portuguese banking institution, with locations all over Portugal and Europe.

 Term deposits allow banks to hold onto a deposit for a specific amount of time, banks can invest in higher gain financial products to make a profit.

 Banks hold better chances to persuade term deposit clients into buying other products to increase their revenues.

Goals

- Create and implement a machine learning model that will classify customers that are more likely to subscribe to a loan.
- The model will have an AUC score higher than 90% and an FP score less than 10%.
- Find features any feature that may be significant with regards to the outcome of the model and the campaign.

Dataset

Data comes from UCI Machine Learning Repository

• Instances: 45211

Attributes/Features: 17

Data Wrangling

• The data came clean so there was no data wrangling needed.

Exploratory Data Analysis

Does being married play a factor in whether a person has a loan or not?

 Does having a specific profession or career factor in whether someone has a loan?

Does age play a big factor in who will take a loan?

Occupation

Continued

Campaign Performance

Continued

Heatmap

Feature Engineering

• First, we removed any features with correlation > 80%

Next we transformed our categorical data using Onehotencoding

Continued

Taking care of imbalanced data

Before

After

```
Before oversampling: Counter({'no': 36548, 'yes': 4640})
After oversampling: Counter({'no': 36548, 'yes': 36548})
```

Machine Learning

Models we are using are:

- KNN
- SVR
- Logistic Regression
- Random Forest
- XGBoost

Performance

Model	FP%	FN%	AUC%
KNN	7.9	7.3	96
LR	11	1.9	97
SVR	11	2.3	97
RF	7.1	5.2	98
XGBoost	9.2	2.9	97

Random Forest Confusion Matrix

LR ROC

Feature Importance

Recommendations

- Focus on calling customers Tues, Wed, Thur
- Drop any customer that hasn't subscribed in at least 15 days or 8 call attempts.
- Keep employees working and happy, any drop in workforce affects the campaign.
- Segment customers by age and incorporate lifestyle segmentation
- Focus on targeting entrepreneurs. Target the management occupation to help drive volume.

Takeaways

- April-August produces the highest results for the campaign.
- Age is a factor as we can see from the feature importances chart and heatmap
- Any chance of success will happen within 10 days of direct marketing to a customer; after 10 days there were no successful attempts.
- Employees carry high significance, with regards to the feature importances chart, with how many employees are there to make the calls

Future work

Include time

 Include more personal data such as loan balance, account balance, debt to income ratio

Include geographic location