Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2009/12/17

System Check 835MHz 091217

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_850_091217 Medium parameters used: f = 835 MHz; $\sigma = 0.924$ mho/m; $\epsilon_r = 42$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.7; Liquid Temperature: 21.2

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.3, 6.3, 6.3); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.05 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 34.8 V/m; Power Drift = 0.00204 dB Peak SAR (extrapolated) = 1.44 W/kg SAR(1 g) = 0.976 mW/g; SAR(10 g) = 0.637 mW/g Maximum value of SAR (measured) = 1.05 mW/g

System Check_835MHz_091217

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850_091217 Medium parameters used: f = 835 MHz; $\sigma = 0.978$ mho/m; $\varepsilon_r = 53.3$; $\rho =$

Date: 2009/12/17

 1000 kg/m^3

Ambient Temperature: 22.4; Liquid Temperature: 21.4

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.09, 6.09, 6.09); Calibrated: 2009/5/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2009/8/24
- Phantom: ELI 4.0 Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.09 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.5 V/m; Power Drift = 0.000 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.668 mW/g

Maximum value of SAR (measured) = 1.09 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2009/12/17

System Check 1900MHz 091217

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900_091217 Medium parameters used: f = 1900 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 39.5$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4; Liquid Temperature: 21.6

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.11, 5.11, 5.11); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.62 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.5 V/m; Power Drift = 0.0025 dB Peak SAR (extrapolated) = 6.82 W/kg SAR(1 g) = 3.88 mW/g; SAR(10 g) = 2.02 mW/g Maximum value of SAR (measured) = 4.42 mW/g

