

Determining an Optimal Threshold on the Online Reserves of a Bitcoin Exchange

Samvit Jain, Class of 2017

Advisor: Edward Felten

Motivation

- Bitcoin theft is alarmingly pervasive
 - Impacts both major businesses (i.e. Bitcoin exchanges and wallet services) and individuals
 - 3.4 million instances of Bitcoin malware detected in 2014, 22% of all financial malware (Kaspersky Labs)
- What is being stolen?
 - \circ Private keys used to construct (authorize) transaction from A \rightarrow B
 - Bitcoin ownership established through public key cryptography
- Mechanisms of theft
 - Malicious smartphone applications
 - Fraudulent Bitcoin management services
 - 150 strains of Bitcoin malware
 - Steal private keys stored on (Internet-connected) device
 - Steal login credentials to online wallet services
 - (Businesses) External attackers
 - Exploit vulnerabilities in client-facing software
 - Hack servers or databases
 - (Businesses) Insiders with access privileges

A Series of Models

- Methodology probabilistic reasoning about net effect of memoryless processes (deposits, withdrawals, hot wallet theft) and discrete events $(C \rightarrow H \text{ transfers, cold wallet theft})$
- To find net balance at T, developed theory (i.e. probability density functions) characterizing various subsystems of dual wallet structure
 - 1) Net income D W into the exchange
 - Skellam (Poisson Diff.) distribution
 - 2) Hot wallet only, no theft
 - Q: Probability distribution at T?

- 3) Hot wallet only, theft λ_{th}
 - Thefts reset state of system, so only time of last theft matters
 - Poisson processes are memoryless

$$P(H_{bal}(T) = k \mid \lambda_d, \lambda_w, \lambda_{t_h}) = \int_{1}^{T} (\lambda_{t_h} e^{-\lambda_{t_h} t}) PD_k(t) dt + e^{-\lambda_{t_h} T} PD_k$$

- 4) Hot wallet and cold wallet
 - $C \rightarrow H$ transfers occur after hot wallet is emptied
 - Want to know expected time to empty hot wallet, X_{ij}
 - Key idea: hot wallet balance as continuous time random walk
 - Can write recurrence relation with boundary conditions

Skellam PMF for various values of λ_1 , λ_2

 $\mu_{1}=1, \mu_{2}=1 \\
\mu_{1}=2, \mu_{2}=2 \\
\mu_{1}=3, \mu_{2}=3 \\
\mu_{1}=1, \mu_{2}=3 \\$

$$X_{k} = t + (\lambda_{d}t)X_{k+1} + (\lambda_{w}t)X_{k-1} + (1 - (\lambda_{d} + \lambda_{w})t)X_{k}$$

Problem Formulation

- Storage schemes
 - Online storage (hot wallet) i.e., encrypted file on computer, iPhone app
 - Provides accessibility and convenience, but vulnerable to malware (botnets, spyware, ransomware) and other network-based attacks
 - Offline storage (cold wallet) i.e., file on hard disk locked in safe, paper wallet
 - Less convenient, but more secure, so contains bulk of organization's reserves
 - Crucial nuance: must be connected to Internet to move bitcoins out

- Problem setup
 - Poisson processes
 - Cold wallet theft with fixed probability (p_{t_c})
- Online algorithm
 - Overflow if full (safe)
 - Refill if empty (risky)
- Goal
 - Maximize net balance of wallets over [0, T]

- The dilemma
 - Organization must service customer deposit and withdrawal requests
 - Storing too much in hot wallet attrition due to recurrent, network-based theft
 - Storing too little in hot wallet must access cold wallet to refill (risky)
 - \circ Central question what ceiling μ on hot wallet balance minimizes losses?

The Expected Balance

- Net balance at T is determined by events since the time of last cold wallet theft t₁
 - \circ Net balance at T = net arrivals in $[t_1, T]$ losses to hot wallet theft in $[t_1, T]$

$$Ex[B] = (\lambda_d - \lambda_w) \frac{X_{\mu}}{p_{t_c}} - (\gamma \mu) \left(\lambda_{t_h} \frac{X_{\mu}}{p_{t_c}} \right)$$

• Optimal value of μ

Theory (γ = 0.84)	Empirical (absolute max.)	Empirical (interpolation)
$\mu = 112.88$	$\mu = 114$	$\mu = 111.05$

- Evaluation of theoretical result
 - Within 1% of absolute empirical maximum
 - Within 2% of maxima of interpolated polynomial

Expected Net Balance vs. Hot Wallet Threshold μ

Prior Work – Better Wallet Security

- Multi-signature transactions
 - o *n* private keys for one public address; need *m-of-n* to construct transaction
 - Ensures that bitcoins aren't lost (stolen) if single machine is compromised
- Threshold cryptography
 - One private key split between n key holders (secret sharing protocol)
 - Benefits: privacy of signatory parties, bypasses limits of Bitcoin Script
- Deterministic wallets
 - Multiple keys derived from single seed via one-way hash fn.
 - Allows easy backups, recovery
 - Hierarchical deterministic wallets (BIP0032)
- All three important advancements in wallet security, privacy, usability

Hierarchical deterministic (HD) wallet

Event Driven Simulations

- Wrote test modules ExpectedTimeToEmpty and ExpectedBalance to evaluate equations for X_u and Ex[B] respectively
- Chose sets of values for parameters λ_d , λ_w , λ_{th} , p_{tc} to test predictions made by theoretical models against empirical values
 - Chose time frame [0, T] to be long enough to allow many (\sim 200) hot wallet thefts and several (3-60) cold wallet thefts
- Main body of simulation
 - while (hotWalletBalance > 0) { ... } ExpectedTimeToEmpty:
 - ExpectedBalance: while (time < T) { ... }
 - Drew pseudorandom numbers from exponential distribution to generate waiting times to deposits, withdrawals, and hot wallet theft
 - Tracked hot/cold wallet balance over [0, T]
- Each data point (μ, X_{μ}) and (μ, B) corresponds to average over 1000 iterations of simulation

Further Work – More Complex Architectures

- Calibrated threshold
 - If deposit/withdrawal rates demonstrate predictable trends or periodicity...
 - Set threshold based on recent history (arrivals and thefts in last *k* hours)
- Multiple wallet systems
 - Goal: refills should not endanger reserves
 - "Retirement fund" wallets
 - Two cold wallets: 1) checking account and 2) savings account
 - Pyramid model
 - Multiple layers of cold storage
 - Bottom: more BTC, less frequent access

