Examen

Durée 3h00. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. Les exercices sont indépendants. La qualité de la rédaction sera prise en compte.

Topologie et formes quadratiques

Soit $(a,b) \in \mathbb{R}^2$ et $\phi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ définie par Exercice 1.

$$\phi((x_1, x_2), (y_1, y_2)) = x_1 y_1 + 4x_1 y_2 + bx_2 y_1 + ax_2 y_2 \quad \forall ((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2.$$

- 1. Justifier que ϕ est bilinéaire. Montrer qu'elle est symétrique si et seulement si b=4. Exprimer alors la matrice associée.
- 2. On suppose b=4. Exprimer une condition sur a pour que ϕ soit définie positive.
- 3. A quelle condition sur la paire (a, b) l'application ϕ définit-elle un produit scalaire sur \mathbb{R}^2 .
- 4. On pose b = 4 et a = 16. Montrer que l'ensemble

$$C = \{(x_1, x_2) \in \mathbb{R}^2 \mid \phi((x_1, x_2), (x_1, x_2)) = 1\}$$

est un fermé et le dessiner dans un repère orthonormé. C est-il compact?

Courbes paramétrées

ercice 2. Soit $\Gamma(t) = (\sin t, \frac{\sin t}{2 + \cos t})$ pour $t \in [0, \pi]$. 1. Donner le tableau de variation de Γ . Exercice 2.

- 2. Déterminer le point double de Γ . Calculer les tangentes en ce point double
- 3. Déterminer points de Γ qui admettent une tangente horizontale ou une tangente verticale.
- 4. Tracer la courbe $t \mapsto \Gamma(t)$ pour $t \in [-\pi, \pi]$.

Calcul différentiel

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par Exercice 3.

$$f(x,y) = \begin{cases} \sin(y-x) & \text{si } y > |x| \\ 0 & \text{si } y = |x| \\ \frac{x-y}{\sqrt{x^2+y^2}} & \text{si } y < |x| \end{cases}$$

- 1. La fonction f est-elle continue sur \mathbb{R}^2 ?
- 2. La fonction f est-elle différentiable sur \mathbb{R}^2 ?
- 3. La fonction f est-elle C^1 sur \mathbb{R}^2 ?

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par Exercice 4.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1. La fonction f est-elle continue sur \mathbb{R}^2 ?
- 2. Soit $v \in \mathbb{R}^2$ un vecteur non nul. La fonction f admet-elle une dérivée en suivant v sur \mathbb{R}^2 ?
- 3. La fonction f est-elle différentiable sur \mathbb{R}^2 ?

Exercice 5. Soit la fonction $f:(x,y)\mapsto |x|\,e^{-x^2-y^2}$ définie sur \mathbb{R}^2 .

- 1. Déterminer l'ensemble D de \mathbb{R}^2 sur lequel f est \mathcal{C}^2 .
- 2. Déterminer les valeurs de f sur $\mathbb{R}^2 \setminus D$. En déduire la nature des extremum de f sur cet ensemble.
- 3. Calculer les points critiques de la f. En donner leur nature.
- 4. Faire le bilan : lister les extrema de f.

4 Intégration

Exercice 6. Centre de gravité

exo Pour tout entier pair $n \geq 2$ on considère Δ_n , le domaine du plan délimité par les courbes d'équations $y = x^n$ et $x = y^n$.

- 1. Calculer l'aire S_n de Δ_n .
- 2. Vérifier que $\lim_{n\to+\infty} S_n=1$ et expliquer pour quoi cette valeur était attendue.

Exercice 7. Pour R > 0, on considère le domaine $\Delta = \{(x, y, z) \in \mathbb{R}^3 ; x^2 + y^2 + z^2 \le R^2, z \ge 0\}.$

- 1. Dessiner et caractériser géométriquement Δ .
- 2. Donner son volume V sans faire obligatoirement de calcul.
- 3. Calculer la hauteur z_G de son centre de gravité.