Informatik Datenbanken

5. Klasse TFO Brixen

Michael Mutschlechner

- ▶ PROBLEME NICHT ADÄQUATER MODELLIERUNG -ANOMALIEN
- NORMALFORMEN

Normalisierung

Nach der Anforderungsdefinition, dem ER-Modell und dem relationalen Datenmodell haben wir einen Datenbankentwurf. Nun folgt die Normalisierung des Datenbankentwurfs.

- Was versteht man unter Normalisierung?
 - Dazu das Beispiel des "Schwarzen Brettes".
 - Wir nehmen folgende Datenstruktur an: Alle Daten seien in einer Tabelle
 - Legende: Anz.Nr.: Anzeigennummer, Ins.Nr.: Inserentennummer, Rub.Nr.: Rubriknummer

Beispiel

Anz.Nr.	Anzeigentext, -datum	Ins.Nr.	Nickname, E-Mail	Rub.Nr.	Rubrikbezeichnung
501	Mountainbike, 15.03.2016	214	Sissi sissi@jker.de	2	Zweiräder
502	5 Kinderbücher, 15.03.2016	211	Franki franki@qwert.it	5	Bücher
505	Harry Potter 5, 14.03.2016	211	Franki franki@qwert.it	5	Bücher
507	Buch TCP/IP Grundl., 02.03.2016	210	Jens jens@wert.au	3	Computer
507	Buch TCP/IP Grundl., 02.03.2016	210	Jens jens@wert.au	5	Bücher
507	Buch TCP/IP Grundl., 02.03.2016	210	Jens jens@wert.au	6	Sonstiges
508	Gebr. Trekkingrad, 02.03.2016	214	Sissi sissi@jker.de	2	Zweiräder

Redundanz und Anomalien

- Redundante Informationen sind Informationen, die mehrfach vorkommen
 - ▶ Beispiel: Anzeigentext zu Anzeigennummer 507 kommt dreimal vor...
 - Speicherplatz wird verschwendet
- Redundanzen führen außerdem zu Anomalien:
 - Einfüge-Anomalie
 - ▶ Eine neue Anzeigenrubrik kann nur dann eingetragen werden, wenn auch eine zugehörige Anzeige aufgenommen wird, denn der Primärschlüssel für den Datensatz muss gesetzt werden
 - Lösch-Anomalie
 - ▶ Wenn Anzeige 507 gelöscht wird, geht die Rubrik Computer verloren
 - Anderungs-Anomalie
 - Falls sich die E-Mail Adresse von Jens ändert, sind mehrere Datensätze zu ändern

(Relationale) Entwurfstheorie / Ausgangspunkt

- Welchen prinzipiellen Anforderungen müssen DB-Schemata genügen, damit die eben genannten (und weitere) Anomalien nicht auftreten?
 - Ursprünglich wurden von Codd (1971/72) drei Normalformen vorgeschlagen (1NF, 2NF, 3NF)
 - ▶ Jede "Stufe" (1NF → 2NF → 3NF) stellt eine Verschärfung hinsichtlich der Anforderungen (und damit der "Qualität" des Schemas) bezogen auf die vorherige Stufe dar
 - Der Normalisierungsprozess führt i. A. zur Aufspaltung (Zerteilung) von Relationen
 - Definition der 3. Normalform hatte einige Schwächen und wurde später (ca. 1974) revidiert (→ Boyce-Codd-NF, (BCNF)).
 - Später kamen viele weitere, spezielle Normalformen hinzu
 - Fagin führte 1977 eine "neue" Normalform 1 und 1979 eine "projectionjoin normal form" 2 ein, die heute überwiegend als 4. und 5. Normalform bezeichnet werden

Normalformen

Wichtige Fragestellungen darüber hinaus:

- Welche Zerlegungen sind verlustfrei ?
 - kein Verlust von Information
 - keine "neuen" (falschen) Informationen
- Welche Zerlegungen sind abhängigkeitsbewahrend?
 - kein Verlust von Integritätsbedingungen

Hinweise:

- Normalformen sind Regeln/Hinweise ("guidelines") für guten DB-Entwurf, kein "Kochrezept"
- > Strikte Normalisierung führt i.d.R. zu einer größeren Anzahl von Relationen
- Normalisierung erfordert Wissen über die Bedeutung von Attributen und ihre (konkreten!) Zusammenhänge
- ▶ Je weiter (2NF \rightarrow 3NF \rightarrow ...) normalisiert werden soll, desto höher sind die Anforderungen an das Hintergrundwissen über die Daten
- Nach der Normalisierung sollte geprüft werden, ob evtl. Zusammenfassungen möglich sind (→ "Relationen-Synthese")

Einschub: Funktionale Abhängigkeit (functional dependencies, FD's)

- Definition: Funktionale Abhängigkeit (FD)
 - sch(R)... Menge der Attribute der Relation R.
 - Seien X, Y ⊆ sch(R). Eine Funktionale Abhängigkeit (FD) X → Y ist in R erfüllt, wenn für alle Ausprägungen val(R) gilt: t1, t2 ∈ val(R) : t1(X) = t2(X) ⇒ t1(Y) = t2(Y)
 - In Worten:
 - Falls t1(X) = t2(X), dann muss auch t1(Y) = t2(Y) gelten
- Eine Funktionale Abhängigkeit (FD) wird folgendermaßen geschrieben:
 - $X \rightarrow Y$
 - Sprechweisen:
 - "X bestimmt Y (funktional)"
 - "Y hängt von X ab"

Funktionale Abhängigkeit: Beispiel

Gegeben sind folgende Relation funktionale Abhängigkeiten. Entscheide jeweils, ob in der Relation die angegebene funktionale Abhängigkeit gilt und begründe kurz!

Λ	\rightarrow	BC
\vdash		DC

$$\rightarrow$$
 AB \rightarrow C

A	В	С
3	7	8
I	2	6
5	7	8
9	8	5
5	7	9
3	7	8

A \rightarrow BC ist nicht funktional abhängig, da es zu einem A verschiedene BC gibt: 5 \rightarrow 7,8 5 \rightarrow 7,9

AB → C ist nicht funktional abhängig, da es zu einem AB verschiedene C gibt: 5,7 →8 5,7 →9

Gegeben sind folgende Relation funktionale Abhängigkeiten. Entscheide jeweils, ob in der Relation die angegebene funktionale Abhängigkeit gilt und begründe kurz!

- \rightarrow AD \rightarrow BC
- \rightarrow B \rightarrow D

A	В	С	D
4	5	7	3
6	9	6	4
6	8	7	3
4	6	7	3
2	7	4	3
2	8	5	3

Gegeben sind folgende Relation funktionale Abhängigkeiten. Entscheide jeweils, ob in der Relation die angegebene funktionale Abhängigkeit gilt und begründe kurz!

- \rightarrow AB \rightarrow AB
- ightharpoonup C
 ightharpoonup AB

A	В	С
4	4	7
6	9	6
6	8	7
3	2	5
3	1	5

- ▶ R = (PERSONALNR, ABTEILUNG, ADRESSE)
- ▶ $F = \{PERSONALNR \rightarrow ABTEILUNG, ABTEILUNG \rightarrow ADRESSE\}$

a) PERSONALNR	ABTEILUNG	ADRESSE
1 2	Buchhaltung	1010 Wien
13	Verkauf	1030 Wien
11	Filiale	8010 Graz
14	Buchhaltung	1010 Wien
	, 12 13 11	13 Verkauf 11 Filiale

h١	PERSONALNR	ABTEILUNG	ADRESSE
b)	12	Buchhaltung	1010 Wien
	13	Verkauf	1030 Wien
	11	Filiale	8010 Graz
	14	Buchhaltung	5010 Salzburg

Gegeben ist die Relation r(R):

- Gib an, welche der folgenden Abhängigkeiten r erfüllt.
 - a. $A \rightarrow D$
 - b. $AB \rightarrow D$
 - c. $C \rightarrow BDE$
 - d. $E \rightarrow A$
 - e. $A \rightarrow E$
 - $A \rightarrow BC$

Normalisierung

Redundanzen werden mittels standardisierten Vorgangsweisen der Normalisierung Schritt für Schritt aufgehoben

Erste Normalform

Die 1. Normalform verlangt, dass sich ein Attribut nicht weiter unterteilen lässt. Außerdem benötigt eine Tabelle einen Primärschlüssel.

Definition:

- Eine Relation R ist in der ersten Normalform, wenn all ihre Domänen (Attribute) nur elementare Werte enthalten.
 oder
- Eine Tabelle befindet sich in der ersten Normalform, wenn alle Attribute atomar vorliegen.
 - Atomar (griechisch: atomos "unteilbar") heißt, dass sich ein Attribut nicht in weitere Attribute unterteilen lässt.
- Zwischenfrage: Im Beispiel ist der Primärschlüssel Anzeigennummer und Rubriknummer. Warum?

Ausgangslage

Anz.Nr.	Anzeigentext, -datum	Ins.Nr.	Nickname, E-Mail	Rub.Nr.	Rubrikbezeichnung
501	Mountainbike, 15.03.2016	214	Sissi sissi@jker.de	2	Zweiräder
502	5 Kinderbücher, 15.03.2016	211	Franki franki@qwert.it	5	Bücher
505	Harry Potter 5, 014.03.2016	211	Franki franki@qwert.it	5	Bücher
507	Buch TCP/IP Grundl., 02.03.2016	210	Jens jens@wert.au	3	Computer
507	Buch TCP/IP Grundl., 02.03.2016	210	Jens jens@wert.au	5	Bücher
507	Buch TCP/IP Grundl., 02.03.2016	210	Jens jens@wert.au	6	Sonstiges
508	Gebr. Trekkingrad, 02.03.2016	214	Sissi sissi@jker.de	2	Zweiräder

Erste Normalform am Beispiel

Die Attribute Anzeigentext und -datum sowie Nickname und E-Mail erfüllen nicht die 1. Normalform. Deshalb werden zwei neue Attribute eingeführt: Anzeigendatum und E-Mail

Erste Normalform am Beispiel

Anz.Nr.	Anzeigentext	Anzeigen- datum	Ins.Nr.	Nickname	E-Mail	Rub. Nr.	Rubrikbe- zeichnung
501	Mountainbike	15.03.2016	214	Sissi	sissi@jker.de	2	Zweiräder
502	5 Kinderbücher	15.03.2016	211	Franki	franki@qwert.it	5	Bücher
505	Harry Potter 5	14.03.2016	211	Franki	franki@qwert.it	5	Bücher
507	Buch TCP/IP Grundl.	02.03.2016	210	Jens	jens@wert.au	3	Computer
507	Buch TCP/IP Grundl.	02.03.2016	210	Jens	jens@wert.au	5	Bücher
507	Buch TCP/IP Grundl.	02.03.2016	210	Jens	jens@wert.au	6	Sonstiges
508	Gebr. Trekkingrad	02.03.2016	214	Sissi	sissi@jker.de	2	Zweiräder

Erste Normalform: Übung

Überprüfe ob folgende Tabelle in der ersten Normalform vorliegt und wandle sie gegebenfalls um!

Studenten

Vorname	Nachname	Informatikkenntnisse
Thomas	Müller	Java, C++, PHP
Ursula	Meier	PHP, Java
Igor	Müller	C++, Java

Studenten

Vorname	Nachname	Informatikkenntnisse
Thomas	Müller	C++
Thomas	Müller	PHP
Thomas	Müller	Java
Ursula	Meier	Java
Ursula	Meier	PHP
lgor	Müller	Java
lgor	Müller	C++

Zweite Normalform

Definition:

- ▶ Eine Tabelle befindet sich in der 2. Normalform, wenn die 1. Normalform erfüllt ist und jedes nicht dem Primärschlüssel angehörige Attribut funktional vom Primärschlüssel, aber nicht von Teilen des Primärschlüssels abhängt.
 - oder
- Eine Tabelle befindet sich in der 2. Normalform, wenn die 1. Normalform erfüllt ist und jedes nicht dem Primärschlüssel angehörige Attribut voll funktional vom Primärschlüssel abhängt.
- Definition: funktional abhängig
 - ▶ Gegeben sei Relation R(A1, ..., An) und X, Y Teilmengen aus {A1, ..., An}: Eine Attributkombination Y heißt funktional abhängig von X, (in Zeichen X → Y) wenn in jedem möglichen Tupel von R die Werte von Y durch die von X eindeutig bestimmt sind.
- Definition: voll funktional abhängig
 - X, Y wie oben. Eine Attributkombination Y heißt voll funktional abhängig von X, wenn Y funktional abhängig von X ist, aber nicht funktional abhängig von einer echten Teilmenge von X ist (in Zeichen: $X \rightarrow Y$).
- Funktionale Abhängigkeit liegt vor, wenn zu einem bestimmten Wert eines Attributs höchstens ein Wert des abhängigen Attributs möglich ist.

Beispiel: Ausgangslage nach der ersten Normalform

Anz.Nr.	Anzeigentext	Anzeigen- datum	Ins. Nr.	Nickname	E-Mail	Rub. <u>Nr.</u>	Rubrikbe- zeichnung
501	Mountainbike	15.03.2016	214	Sissi	sissi@jker.de	2	Zweiräder
502	5 Kinderbücher	15.03.2016	211	Franki	franki@qwert.it	5	Bücher
505	Harry Potter 5	14.03.2016	211	Franki	franki@qwert.it	5	Bücher
507	Buch TCP/IP Grundl.	02.03.2016	210	Jens	jens@wert.au	3	Computer
507	Buch TCP/IP Grundl.	02.03.2016	210	Jens	jens@wert.au	5	Bücher
507	Buch TCP/IP Grundl.	02.03.2016	210	Jens	jens@wert.au	6	Sonstiges
508	Gebr. Trekkingrad	02.03.2016	214	Sissi	sissi@jker.de	2	Zweiräder

Zweite Normalform am Beispiel

- ▶ Die Attribute Anzeigentext, Anzeigendatum, Ins.Nr., Nickname und E-Mail sind funktional vom Attribut Anzeigennummer abhängig. Da in der 2. Normalform eine funktionale Abhängigkeit vom gesamten Primärschlüssel – also Anzeigennummer und Rubriknummer – gefordert ist, ist die 2. Normalform verletzt.
- Die 2. Normalform lässt sich herstellen, indem die besprochenen Attribute in eine neue Tabelle ausgelagert werden. Im Beispiel bleiben in der Ausgangstabelle nur noch die Attribute Anzeigennummer und Rubriknummer übrig, da kein Attribut der Ausgangstabelle vom gesamten Primärschlüssel abhängig ist.

Zweite Normalform am Beispiel

Anz.Nr.	Rub.Nr.
501	2
502	5
505	5
507	3
507	5
507	6
508	2

Rub.Nr.	Rubrikbezeichnung
2	Zweiräder
5	Bücher
3	Computer
6	Sonstiges

Anz.Nr.	Anzeigentext	Anzeigen- datum	Ins.Nr.	Nickname	E-Mail
501	Mountainbike	15.03.2016	214	Sissi	sissi@jker.de
502	5 Kinderbücher	15.03.2016	211	Franki	franki@qwert.it
505	Harry Potter 5	14.03.2016	211	Franki	franki@qwert.it
507	Buch TCP/IP Grundl.	02.03.2016	210	Jens	jens@wert.au
508	Gebr. Trekkingrad	02.03.2016	214	Sissi	sissi@jker.de

Zweite Normalform: Beispiel

Beispiel:

- Proj_Mitarbeiter(Pers#, Proj#, N_name, ..., Proj_name, ...)
- ▶ Diese Relation ist in 1. NF, aber nicht in 2. NF, denn:
 - Alle Attribute die zur Person gehören, werden durch Pers# eindeutig identifiziert.
 - Alle Attribute die zum Projekt gehören, werden durch Proj# eindeutig identifiziert.

Auflösung:

- ▶ 3 Relationen, sind alle mindestens in 2. NF:
 - Person (<u>Pers#</u>, N_name, ...)
 - Projekt (<u>Proj#</u>, Proj_name, ...)
 - Proj_Mitarbeiter (Pers#, Proj#)

Zweite Normalform: Anmerkungen

- Relationen mit nur einem Schlüsselattribut sind stets in 2NF.
- Relationen, die nur aus Schlüsselattributen bestehen, sind ebenfalls stets in 2NF.
- Relationen, die nicht in 2NF sind,
 - ▶ führen i.d.R. zu redundanter Speicherung von Information (→
 Anomalien)
 - sind Kandidaten für eine Zerlegung

Zweite Normalform: Übung

- Zur Verwaltung der Prüfungsnoten sei folgende Relation gegeben:
 - Student(<u>IDSt</u>, StudentNachname, <u>IDProf</u>, ProfessorNachname, Note)
 - Alle Attribute sind einfach und einwertig.
- Zudem ist bekannt, dass folgende funktionale Abhängigkeiten existieren:
 - ▶ 1. Das Attribut "ProfessorNachname" ist funktional abhängig vom Attribut "IDProf" ("IDProf --> ProfessorNachname")
 - 2. Das Attribut "StudentNachname" ist funktional abhängig vom Attribut "IDSt" ("IDSt --> StudentNachname")
 - 3. Das Attribut "Note" ist voll funktional abhängig von den Attributen "IDSt" und "IDProf" ("IDSt, IDProf ==> Note")

Zweite Normalform: Übung

Überprüfe ob die Tabelle in der zweiten Normalform vorliegt und wandle sie gegebenfalls um!

Studenten

IDSt	Nachname	IDProf	Professor	Note
1	Müller	3	Schmid	5
2	Meier	2	Borner	4
3	Tobler	1	Bernasconi	6

