

Visual Navigation for Flying Robots

Motion Planning

Dr. Jürgen Sturm

in.tum.summer party & career forum

The Department of Informatics would like to invite its students and employees to its summer party and career forum.

July 4, 2012

3 pm – 6 pm **Career Forum**:

Presentations given by Google, Capgemini etc, stands, panel discussion: TUM alumni talk about their career paths in informatics

3 pm - 6 pm Foosball Tournament

Starting at 5 pm **Summer Party**: BBQ, live band and lots of fun!

www.in.tum.de/2012summerparty

Motivation: Flying Through Forests

Motion Planning Problem

 Given obstacles, a robot, and its motion capabilities, compute collision-free robot motions from the start to goal.

Motion Planning Problem

What are good performance metrics?

Motion Planning Problem

What are good performance metrics?

- Execution speed / path length
- Energy consumption
- Planning speed
- Safety (minimum distance to obstacles)
- Robustness against disturbances
- Probability of success
- •

Motion Planning Examples

Motion planning is sometimes also called the piano mover's problem

Robot Architecture

Agenda for Today

- Configuration spaces
- Roadmap construction
- Search algorithms
- Path optimization and re-planning
- Path execution

Configuration Space

- Work space
 - Typically 3D pose (position + orientation) → 6 DOF
- Configuration space
 - Reduced pose (position + yaw) → 4 DOF
 - Full pose → 6 DOF
 - Pose + velocity → 12 DOF
 - Joint angles of manipulation robot
 - **-** ...
- Planning takes place in configuration space

Configuration Space

- The configuration space (C-space) is the space of all possible configurations
- C-space topology is usually not Cartesian
- C-space is described as a topological manifold

Notation

- Configuration space $C \subset \mathbb{R}^d$
- Configuration $q \in C$
- Free space C_{free}
- lacktriangle Obstacle space $C_{
 m obs}$

Properties

$$C_{\text{free}} \cup C_{\text{obs}} = C$$

$$C_{\text{free}} \cap C_{\text{obs}} = \emptyset$$

Free Space Example

- What are admissible configurations for the robot? Equiv.: What is the free space?
- "Point" robot

- What are admissible configurations for the robot? Equiv.: What is the free space?
- "Point" robot

- What are admissible configurations for the robot? Equiv.: What is the free space?
- Circular robot

- What are admissible configurations for the robot? Equiv.: What is the free space?
- Circular robot

- What are admissible configurations for the robot? Equiv.: What is the free space?
- Large circular robot

Computing the Free Space

- Free configuration space is obtained by sliding the robot along the edge of the obstacle regions "blowing them up" by the robot radius
- This operation is called the Minowski sum

$$A \oplus B = \{a + b \mid a \in A, b \in B\}$$

where $A, B \subset \mathbb{R}^d$

Example: Minowski Sum

Triangular robot and rectangular obstacle

Polygonal robot, translation only

 C-space is obtained by sliding the robot along the edge of the obstacle regions

Basic Motion Planning Problem

Given

- Free space $C_{
 m free}$
- lacktriangle Initial configuration ${f q}_I$
- lacktriangle Goal configuration ${f q}_G$

Goal: Find a continuous path

$$\tau:[0,1]\to C_{\mathrm{free}}$$

with
$$\tau(0) = \mathbf{q}_I$$
, $\tau(1) = \mathbf{q}_G$

Motion Planning Sub-Problems

- C-Space discretization
 (generating a graph / roadmap)
- Search algorithm
 (Dijkstra's algorithm, A*, ...)
- 3. Re-planning (D*, ...)
- Path tracking
 (PID control, potential fields, funnels, ...)

C-Space Discretizations

Two competing paradigms

- Combinatorial planning (exact planning)
- Sampling-based planning (probabilistic/randomized planning)

Combinatorial Methods

- Mostly developed in the 1980s
- Extremely efficient for low-dimensional problems
- Sometimes difficult to implement
- Usually produce a road map in $C_{\rm free}$
- Assume polygonal environments

Roadmaps

A roadmap is a graph in C_{free} where

- lacktriangle Each vertex is a configuration $\mathbf{q} \in C_{\mathrm{free}}$
- Each edge is a path $\tau:[0,1]\to C_{\text{free}}$ for which $\tau(0)$ and $\tau(1)$ are vertices

(Desired) Properties of Roadmaps

Accessibility

From anywhere in C_{free} , it is easy to compute a path that reaches at least one of the vertices

Connectivity-preserving

If there exists a path between q_I and q_G in C_{free} then there must also exist a path in the road map

We consider here three combinatorial methods:

- Trapezoidal decomposition
- Shortest path roadmap
- Regular grid
- ... but there are many more!

Afterwards, we consider two **sampling-based** methods:

- Probabilistic roadmaps (PRMs)
- Rapidly exploring random trees (RRTs)

- Decompose horizontally in convex regions using plane sweep
- Sort vertices in x direction. Iterate over vertices while maintaining a vertically sorted list of edges

- Place vertices
 - in the center of each trapezoid
 - on the edge between two neighboring trapezoids
- Resulting road map

Quick check on properties:

- Accessibility
- Connectivity-preserving?

Example Query

Compute path from \mathbf{q}_I to \mathbf{q}_G

- Identify start and goal trapezoid
- Connect start and goal location to center vertex
- Run search algorithm (e.g., Dijkstra)

Properties of Trapezoidal Decomposition

- + Easy to implement
- + Efficient computation
- + Scales to 3D

 Does not generate shortest path

Shortest-Path Roadmap

- Contains all vertices and edges that optimal paths follow when obstructed
- Imagine pulling a tight string between \mathbf{q}_I and \mathbf{q}_G

- Vertices = all sharp corners (>180deg, red)
- Edges
 - Two consecutive sharp corners on the same obstacle (light blue)
 - 2. Bitangent edges (when line connecting two vertices extends into free space, dark blue)

Example Query

Compute path from \mathbf{q}_I to \mathbf{q}_G

- Connect start and goal location to all visible roadmap vertices
- Run search algorithm (e.g., Dijkstra)

Example Query

- + Easy to construct in 2D
- + Generates shortest paths

 Optimal planning in 3D or more dim. is NP-hard

Approximate Decompositions

- Construct a regular grid
- High memory consumption (and number of tests)
- Any ideas?

Approximate Decompositions

- Construct a regular grid
- Use quadtree/octtree to save memory
- Sometimes difficult to determine status of cell

Approximate Decompositions

+ Easy to construct

- High number of tests
- Most used in practice

Summary: Combinatorial Planning

- Pro: Find a solution when one exists (complete)
- Con: Become quickly intractable for higher dimensions

Alternative: Sampling-based planning
 Weaker guarantees but more efficient

Sampling-based Methods

- Abandon the concept of explicitly characterizing $C_{\rm free}$ and $C_{\rm obs}$ and leave the algorithm in the dark when exploring $C_{\rm free}$
- The only light is provided by a **collision-detection algorithm** that probes C to see whether some configuration lies in $C_{\rm free}$
- We will have a look at
 - Probabilistic road maps (PRMs)
 - Rapidly exploring random trees (RRTs)

Probabilistic Roadmaps (PRMs)

[Kavraki et al., 1992]

- Vertex: Take random sample from C, check whether sample is in $C_{\rm free}$
- Edge: Check whether line-of-sight between two nearby vertices is collision-free

- Options for "nearby": k-nearest neighbors or all neighbors within specified radius
- Add vertices and edges until roadmap is dense enough

PRM Example

- 1. Sample vertex
- 2. Find neighbors
- 3. Add edges

Step 3: Check edges for collisions, e.g., using discretized line search

Probabilistic Roadmaps

- + Probabilistic. complete
- + Scale well to higher dimensional C-spaces
- + Very popular, many extensions

- Do not work well for some problems (e.g., narrow passages)
- Not optimal, not complete

[Lavalle and Kuffner, 1999]

Idea: Grow tree from start to goal location

Algorithm

- 1. Initialize tree with first node \mathbf{q}_I
- 2. Pick a random target location (every 100th iteration, choose q_G)
- 3. Find closest vertex in roadmap
- 4. Extend this vertex towards target location
- Repeat steps until goal is reached
- Why not pick q_G every time?

Algorithm

- 1. Initialize tree with first node \mathbf{q}_I
- 2. Pick a random target location (every 100th iteration, choose q_G)
- 3. Find closest vertex in roadmap
- 4. Extend this vertex towards target location
- Repeat steps until goal is reached
- Why not pick q_G every time?
- lacktriangle This will fail and run into $C_{
 m obs}$ instead of exploring

[Lavalle and Kuffner, 1999]

 RRT: Grow trees from start and goal location towards each other, stop when they connect

RRT Examples

2-DOF example

3-DOF example (2D translation + rotation)

Non-Holonomic Robots

- Some robots cannot move freely on the configuration space manifold
- Example: A car can not move sideways
 - 2-DOF controls (speed and steering)
 - 3-DOF configuration space (2D translation + rotation)

Non-Holonomic Robots

- RRTs can naturally consider such constraints during tree construction
- Example: Car-like robot

- + Probabilistic. complete
- Balance between greedy search and exploration
- Very popular, many extensions

- Metric sensitivity
- Unknown rate of convergence
- Not optimal, not complete

Summary: Sampling-based Planning

- More efficient in most practical problems but offer weaker guarantees
- Probabilistically complete (given enough time it finds a solution if one exists, otherwise, it may run forever)
- Performance degrades in problems with narrow passages

Motion Planning Sub-Problems

- C-Space discretization (generating a graph / roadmap)
- 2. Search algorithms
 (Dijkstra's algorithm, A*, ...)
- **3.** Re-planning (D*, ...)
- 4. Path tracking (PID control, potential fields, funnels, ...)

Search Algorithms

- Given: Graph G consisting of vertices and edges (with associated costs)
- Wanted: find the best (shortest) path between two vertices

What search algorithms do you know?

Uninformed Search

Breadth-first

- Complete
- Optimal if action costs equal
- Time and space $O(b^d)$

Depth-first

- Not complete in infinite spaces
- Not optimal
- Time $O(b^d)$
- Space O(bd) (can forget explored subtrees)

Example: Dijkstra's Algorithm

 Extension of breadth-first with arbitrary (nonnegative) costs

Dijkstra's algorithm

www.combinatorica.com

Informed Search

Idea

- lacktriangle Select nodes for further expansion based on an evaluation function f(n)
- First explore the node with lowest value
- What is a good evaluation function?

Informed Search

Idea

- Select nodes for further expansion based on an evaluation function f(n)
- First explore the node with lowest value
- What is a good evaluation function?
- Often a combination of
 - Path cost so far g(n)
 - Heuristic function h(n) (e.g., estimated distance to goal, but can also encode additional domain knowledge)

Informed Search

Greedy best-first search

Simply expand the node closest to the goal

$$f(n) = h(n)$$

Not optimal, not complete

A* search

Combines path cost with estimated goal distance

$$f(n) = g(n) + h(n)$$

• Optimal and complete (if h(n) never overestimates actual cost)

What is a Good Heuristic Function?

- Choice is problem/application-specific
- Two popular choices
 - Manhattan distance (neglecting obstacles)
 - Euclidean distance (neglecting obstacles)
 - Value iteration / Dijkstra (from the goal backwards)

Comparison Search Algorithms

Problems on A* on Grids

- 1. The shortest path is often very close to obstacles (cutting corners)
 - Uncertain path execution increases the risk of collisions
 - Uncertainty can come from delocalized robot, imperfect map, or poorly modeled dynamic constraints
- 2. Trajectories are aligned to grid structure
 - Path looks unnatural
 - Paths are longer than the true shortest path in continuous space

Problems on A* on Grids

- When the path turns out to be blocked during traversal, it needs to be re-planned from scratch
 - In unknown or dynamic environments, this can occur very often
 - Replanning in large state spaces is costly
 - Can we re-use (repair) the initial plan?

Let's look at solutions to these problems...

Map Smoothing

- Problem: Path gets close to obstacles
- Solution: Convolve the map with a kernel (e.g., Gaussian)

- Leads to non-zero probability around obstacles
- Evaluation function

$$f(n) = g(n) \cdot p_{\rm occ}(n) + h(n)$$

Example: Map Smoothing

Path Smoothing

- Problem: Paths are aligned to grid structure (because they have to lie in the roadmap)
- Paths look unnatural and are sub-optimal
- Solution: Smooth the path after generation
 - Traverse path and find pairs of nodes with direct line of sight; replace by line segment
 - Refine initial path using non-linear minimization (e.g., optimize for continuity/energy/execution time)

. . . .

Example: Path Smoothing

Replace pairs of nodes by line segments

Non-linear optimization

D* Search

- Problem: In unknown, partially known or dynamic environments, the planned path may be blocked and we need to replan
- Can this be done efficiently, avoiding to replan the entire path?

D* Search

- Idea: Incrementally repair path keeping its modifications local around robot pose
- Many variants:
 - D* (Dynamic A*) [Stentz, ICRA '94] [Stentz, IJCAI '95]
 - D* Lite [Koenig and Likhachev, AAAI '02]
 - Field D* [Ferguson and Stenz, JFR '06]

D* Search

Main concepts

- Invert search direction (from goal to start)
 - Goal does not move, but robot does
 - Map changes (new obstacles) have only local influence close to current robot pose
- Mark the changed node and all dependent nodes as unclean (=to be re-evaluated)
- Find shortest path to start (using A*) while reusing previous solution

D* Example

Situation at start

D* Example

After discovery of blocked cell

D* Search

- D* is as optimal and complete as A*
- D* and its variants are widely used in practice
- Field D* was running on Mars rovers Spirit and Opportunity

D* Lite for Footstep Planning

[Garimort et al., ICRA '11]

Humanoid Navigation with Dynamic Footstep Plans

Johannes Garimort - Armin Hornung - Maren Bennewitz

Humanoid Robots Laboratory, University of Freiburg

Real-Time Motion Planning

- What is the maximum time needed to re-plan in case of an obstacle detection?
- What if the robot has to react quickly to unforeseen, fast moving objects?
- Do we really need to re-plan for every obstacle on the way?

Real-Time Motion Planning

- What is the maximum time needed to re-plan in case of an obstacle detection?
 In principle, re-planning with D* can take arbitrarily long
- What if the robot has to react quickly to unforeseen, fast moving objects? Need a collision avoidance algorithm that runs in constant time!
- Do we really need to re-plan for every obstacle on the way?
 - Could trigger re-planning only if path gets obstructed (or robot predicts that re-planning reduces path length by p%)

Robot Architecture

Layered Motion Planning

- An approximate global planner computes paths ignoring the kinematic and dynamic vehicle constraints (not real-time)
- An accurate local planner accounts for the constraints and generates feasible local trajectories in real-time (collision avoidance)

Local Planner

- Given: Path to goal (sequence of via points), range scan of the local vicinity, dynamic constraints
- Wanted: Collision-free, safe, and fast motion towards the goal (or next via point)
- Typical approaches:
 - Potential fields
 - Dynamic window approach

Navigation with Potential Fields

 Treat robot as a particle under the influence of a potential field

Pro:

easy to implement

Con:

- suffers from local minima
- no consideration of dynamic constraints

[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

Consider a 2D planar robot

[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

Consider a 2D planar robot + 2D environment

[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

Consider additionally dynamic constraints

[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

Navigation function (potential field)

[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

Navigation function (potential field)

[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

Navigation function (potential field)

[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

- Discretize dynamic window and evaluate navigation function (note: window has fixed size = real-time!)
- Find the maximum and execute motion

Example: Dynamic Window Approach

[Brock and Khatib, ICRA '99]

Problems of DWAs

 DWAs suffer from local minima (need tuning), e.g., robot does not slow down early enough to enter doorway:

- Can you think of a solution?
- Note: General case requires global planning

Lessons Learned Today

- Motion planning problem and configuration spaces
- Roadmap construction
- Search algorithms and path optimization
- Local planning for path execution