ГЛАВА 1. ФУНКЦИИ ОГРАНИЧЕННОЙ ВАРИАЦИИ И АБСОЛЮТНО НЕПРЕРЫВНЫЕ ФУНКЦИИ

1 МОНОТОННЫЕ ФУНКЦИИ

Опр. Пусть f(x) - заданная на отрезке [a,b] функция. Будем называть ее монотонно неубывающей на [a,b], если из $a \leqslant x_1 < x_2 \leqslant b$ следует, что $f(x_1) \leqslant f(x_2)$ и – монотонно невозрастающей, если из $a \leqslant x_1 < x_2 \leqslant b$ следует, что $f(x_1) \geqslant f(x_2)$. Монотонно неубывающие и монотонно невозрастающие функции будем называть монотонными функциями.

Утверждение 1.1. Всякая монотонная функция, заданная на отрезке [a, b], измерима и суммируема на [a, b].

Доказательство. Пусть f – неубывающая функция. Заметим, что множество $E_a = \{x \in [a,b] \mid f(x) > a\}$ представляет собой либо отрезок либо интервал либо пустое множество. Действительно, если $E_a \neq \emptyset$, то положив $c = \inf E_a$, имеем f(x) > a для $x \in (c,b]$ и f(x) < a для всех x < c. Следовательно $E_a = (c,b]$ либо $E_a = [c,b]$. Таким образом, множество E_a измеримо.

Так как $f(a) \leqslant f(x) \leqslant f(b)$ для всех $x \in [s,b]$, то функция f ограничена. Из ограниченности и измеримости в силу теоремы Лебега следует суммируемость f на [a,b].

Утверждение доказано.

Утверждение 1.2. Пусть функция f монотонна на [a,b]. Тогда существуют односторонние пределы

$$f(x_0 + 0) = \lim_{x \to x_0 + 0} f(x) \quad \forall x_0 \in [a, b),$$

$$f(x_0 - 0) = \lim_{x \to x_0 - 0} f(x) \quad \forall x_0 \in (a, b].$$

Доказательство. Пусть f не убывает на [a,b] и $x_0 \in [a,b)$. Положим $A = \inf\{f(x), \ x \in (x_0,b]$. По определению точной нижней грани

$$\forall \varepsilon > 0 \quad \exists x' \in (x_0, b] : \quad A \leqslant f(x') < A + \varepsilon.$$

Следовательно

$$|f(x) - A| \le |f(x') - A| < \varepsilon \quad \forall x \in (x_0, x'),$$

TO ECTS $A = \lim_{x \to x_0 + 0} f(x)$.

Аналогично $\sup \{f(x), x \in [a, x_0)\} = \lim_{x \to x_0 = 0} f(x).$

Утверждение доказано.

Обозначим через $[f](x_0)$ cкачок функции f в точке x_0 определенный формулой

$$[f](x_0) = \begin{cases} f(x_0 + 0) - f(x_0 - 0), & x_0 \in (a, b), \\ f(a + 0) - f(a), & x_0 = a, \\ f(b) - f(b - 0), & x_0 = b. \end{cases}$$

Замечание 1.1. Если f непрерывна в точке x_0 , то $[f](x_0) = 0$.

Утверждение 1.3. Всякая монотонная на отрезке [a, b] функция имеет не более чем счетное множество точек разрыва.

Доказательство. Пусть f — неубывающая функция. Если x_0 — точка разрыва, то $0 < [f](x_0) < b - a$. Обозначим через E множество точек разрыва. Ясно, что

$$E = \bigcup_{k=1}^{\infty} E_k, \tag{1.1}$$

где $E_k = \{x \in [a, b] \mid [f](x) > 1/k\}.$

Пусть $a\leqslant x_1< x_2< \cdots < x_N$ — точки разрыва функции f, принадлежащие E_k . Положим $x_{j-1/2}=(x_{j-1}+x_j)/2,\ 2\leqslant j\leqslant m$.

Заметим, что

$$f(b) - f(a) =$$

$$= f(b) - f(x_{N-1/2}) + \sum_{j=1}^{N-1} [f(x_{j+1/2}) - f(x_{j-1/2})] + f(x_{1/2}) - f(a) \geqslant$$

$$\geqslant \sum_{j=1}^{N} [f](x_j) > N/k.$$

Следовательно N < k(f(b) - f(a)), то есть множество E_k конечно. Из формулы (1.1) следует, что множество E не более чем счетно.

Утверждение доказано.

Функция скачков

Пусть на получегменте [a,b) задано конечное или счетное множество точек $\{x_n\}_{n\geqslant 1}$ и пусть каждой точке x_n сопоставлено число $h_n>0$ так, что $\sum_n h_n<+\infty$. Определим функцию скачков H(x) формулой

$$H(x) = \sum_{x_n < x} h_n.$$

Утверждение 1.4. Φ ункция H – неубывающая.

Доказательство. Пусть $a \leqslant x' < x'' \leqslant b$. Тогда

$$H(x') = \sum_{x_n < x'} h_n \leqslant \sum_{x_n < x''} h_n = H(x'').$$

Утверждение доказано.

Замечание 1.2. Заметим, что H(a) = 0, $H(b) = \sum_{n} h_n$.

Утверждение 1.5. Функция H непрерывна слева во всех точках $x_0 \in (a,b]$.

Доказательство. Пусть $a \leqslant x < x_0$. Заметим, что

$$H(x_0) - H(x) = \sum_{x_n < x_0} h_n - \sum_{x_n < x} h_n = \sum_{x \leqslant x_n < x_0} h_n \to 0 \ \text{при} \ x \to x_0 - 0.$$

Утверждение доказано.

Утверждение 1.6. Множеество точек разрыва функции H совпадает с множееством $\{x_n\}_{n\geqslant 1}$.

Доказательство. Пусть $x = x_k$ для некоторого $k \geqslant 1$. Тогда

$$[H](x_k) = \lim_{x' \to x_k + 0} H(x') - H(x_k) = \lim_{x' \to x_k + 0} \sum_{x_k \leqslant x_n < x'} h_n =$$

$$= h_k + \lim_{x' \to x_k + 0} \sum_{x_k < x_n < x'} h_n = h_k.$$

Если $x \notin \{x_n\}_{n\geqslant 1}, x \neq b$ то

$$[H](x) = \lim_{x' \to x+0} H(x') - H(x) = \lim_{x' \to x+0} \sum_{x < x_n < x'} h_n = 0.$$

Утверждение доказано.

Пример функции разрывной во всех рациональных точках и непрерывной во всех иррациональных точках.

Пусть $\{x_n\}_{n=1}^{\infty}$ – последовательность рациональных точек из полусегмента [a,b), а $\{h_n\}_{n=1}^{\infty}$ - последовательность положительных чисел такая, что $\sum_{n=1}^{\infty} h_n < \infty$. Тогда соответствующая функция скачков H разрывна во всех рациональных точках из полусегмента [a,b) и непрерывна во всех иррациональных точках из [a,b).

Простейший пример функции скачков дает неубывающая кусочно постоянная функция, непрерывная в точках разрыва слева.

Теорема 1.1. Всякую неубывающую на отрезке [a,b] и непрерывную слева функцию f можно представить в виде суммы

$$f(x) = H(x) + \varphi(x),$$

где H – функция скачков, φ – непрерывная неубывающая функция.

Доказательство. Пусть $\{x_n\}$ – множество точек разрыва функции f. Положим $h_n = [f](x_n), \, n \geqslant 1$ и пусть H – соответствующая функция скачков.

Положим $\varphi(x)=f(x)-H(x)$. Функция φ непрерывна, так как

$$[\varphi](x) = [f](x) - [H](x) = 0 \quad \forall x \in [a, b].$$

Покажем, что функция φ неубывающая. Пусть $a \leqslant x' < x'' \leqslant b$. Тогда

$$\varphi(x'') - \varphi(x') = f(x'') - f(x') - \sum_{x' \le x_n < x''} [f](x_n).$$

Для каждой конечной суммы

$$\sum_{x' \leqslant x_n < x'', \ 1 \leqslant n \leqslant N} [f](x_n) \leqslant f(x'') - f(x').$$

Поэтому $\varphi(x'') - \varphi(x') \geqslant 0$.

Теорема доказана.

Справедлива следующая теорема.

Теорема 1.2. Каждая неубывающая на отрезке [a,b] функция f для почти всех $x \in [a,b]$ имеет конечную производную. Эта производная интегрируема по Лебегу u

$$\int_{a}^{b} f'(x) dx \leqslant f(b) - f(a).$$

2 ФУНКЦИИ ОГРАНИЧЕННОЙ ВАРИАЦИИ

Опр. Заданная на отрезке [a,b] функция f называется функцией ограниченной вариации (или функцией c ограниченным изменением), если существует такая постоянная C>0, что для любого разбиения отрезка [a,b] точками $a=x_0< x_1< ...< x_n=b$ (где n - произвольно) выполняется неравенство

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \leqslant C.$$

Опр. Пусть f - функция ограниченной вариации на [a,b]. Полной вариацией (или полным изменением) функции f на отрезке [a,b] называется величина

$$\operatorname{var}_{[a,b]} f = \sup_{a=x_0 < x_1 < \dots < x_n = b} \sum_{k=1}^n |f(x_k) - f(x_{k-1})|.$$

Для полной вариации используются также обозначения: $\bigvee_a^b f$ и $\bigvee_a^b f$. Далее будем обозначать множество функций ограниченной вариации на [a,b] через BV[a,b] или V[a,b].

Замечание 2.1. Очевидно, что для монотонной на отрезке [a,b] функции $\text{var}_{[a,b]}f = |f(b) - f(a)|$.

Замечание 2.2. Очевидно, что $C^1[a,b] \subset BV[a,b]$ и

$$\operatorname{var}_{[a,b]} f \leqslant \max_{a \leqslant x \leqslant b} |f'(x)|(b-a) \quad \forall f \in C^1[a,b].$$

Замечание 2.3. Ясно, что $Lip[a,b] \subset BV[a,b]$ и

$$\operatorname{var}_{[a,b]} f \leqslant L(b-a) \quad \forall f \in Lip[a,b],$$

где L – постоянная Липшица.

Замечание 2.4. Заметим, что непрерывная на отрезке функция не обязана быть функцией ограниченной вариации. Рассмотрим, например, функцию

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & 0 < x \le 1, \\ 0, & x = 0. \end{cases}$$

Положим $x_n = \frac{1}{\pi n + \pi/2}$, $1 \leqslant n \leqslant N$. Заметим, что

$$\sum_{n=1}^{N-1} |f(x_n) - f(x_{n+1})| = \sum_{n=1}^{N-1} (x_{n+1} + x_n) \geqslant \sum_{n=1}^{N-1} x_n =$$

$$= \sum_{n=1}^{N-1} \frac{1}{\pi n + \pi/2} \geqslant \sum_{n=1}^{N-1} \frac{1}{\pi (n+1)} \to \infty, \quad N \to \infty.$$

Утверждение 2.1. Всякая функция ограниченной вариации ограничена.

Доказательство.

$$|f(x)| \le |f(a)| + |f(x) - f(a)| + |f(b) - f(x)| \le |f(a)| + \operatorname{var}_{[a,b]} f.$$

Утверждение 2.2. Пусть $f \in BV[a,b]$. Тогда $\alpha f \in BV[a,b]$ и $\mathrm{var}_{[a,b]} f = |\alpha| \, \mathrm{var}_{[a,b]} f.$

Утверждение 2.3. Пусть $f,g \in BV[a,b]$. Тогда $f \pm g \in BV[a,b]$ u

$$\operatorname{var}_{[a,b]}(f+g) \leqslant \operatorname{var}_{[a,b]}f + \operatorname{var}_{[a,b]}g.$$

Следствие 2.1. BV[a,b] – линейное пространство.

Заметим, что пространство BV[a,b] становится нормированным, если определить в нем норму как

$$||f||_{BV[a,b]} = \sup_{a \le x \le b} |f(x)| + \operatorname{var}_{[a,b]} f$$

ИЛИ

$$||f||_{BV[a,b]} = |f(a)| + \operatorname{var}_{[a,b]} f.$$

Теорема 2.1. Пространство BV[a, b] банахово.

Доказательство. Рассмотрим фундаментальную в BV[a,b] последовательность $\{f_n\}_{n=1}^{\infty}$. Она такова, что для всякого $\varepsilon>0$ существует номер $N(\varepsilon)$ такой, что

$$||f_n - f_m||_{BV[a,b]} < \varepsilon \quad \forall n, m > N(\varepsilon).$$

Как следствие,

$$|f_n(x) - f_m(x)| < \varepsilon \quad \forall n, m > N(\varepsilon) \quad \forall x \in [a, b],$$
 (2.1)

$$\sum_{k=1}^{K} |(f_n(x_k) - f_m(x_k)) - (f_n(x_{k-1}) - f_m(x_{k-1}))| < \varepsilon \quad \forall n, m > N(\varepsilon)$$
(2.2)

для всякого разбиения $a = x_0 < x_1 < \dots < x_K = b$.

Из (2.1) следует, что для каждого $x \in [a,b]$ числовая последовательность $\{f_n(x)\}_{n=1}^\infty$ фундаментальна. Поэтому определена функция

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Переходя к пределу при $m \to \infty$ в (2.1), (2.2), имеем

$$|f_n(x) - f(x)| \le \varepsilon \quad \forall n > N(\varepsilon) \quad \forall x \in [a, b],$$

$$\sum_{k=1}^{K} |(f_n(x_k) - f(x_k)) - (f_n(x_{k-1}) - f(x_{k-1}))| \leqslant \varepsilon \quad \forall n > N(\varepsilon).$$

Как следствие

$$\sup_{a \leqslant x \leqslant b} |f_n(x) - f(x)| \leqslant \varepsilon, \quad \operatorname{var}_{[a,b]}(f_n - f) \leqslant \varepsilon \quad \forall n > N(\varepsilon).$$

Таким образом, $f_n - f \in BV[a,b]$ и $f = f_n - (f_n - f) \in BV[a,b]$. Кроме того,

$$||f_n - f||_{BV[a,b]} \le 2\varepsilon \quad \forall n > N(\varepsilon).$$

Значит, $f_n \to f$ в BV[a,b].

Теорема доказана.

Теорема 2.2. Пусть функция f определена на [a,b] и $c \in (a,b)$. В этом случае $f \in BV[a,b]$ тогда и только тогда, когда $f \in BV[a,c]$ и $f \in BV[c,b]$. При этом

$$\operatorname{var}_{[a,b]} f = \operatorname{var}_{[a,c]} f + \operatorname{var}_{[c,b]} f$$

Доказательство. Пусть $f \in BV[a,b]$ и

$$a = x_0 < x_1 < x_2 < \dots < x_n = c < x_{n+1} < \dots < x_N = b.$$

Тогда

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| + \sum_{k=n}^{N} |f(x_k) - f(x_{k-1})| \le \operatorname{var}_{[a,b]} f.$$

Отсюда

$$\operatorname{var}_{[a,c]} f + \operatorname{var}_{[c,b]} f \leqslant \operatorname{var}_{[a,b]} f.$$

Пусть теперь $f \in BV[a,c]$ и $f \in BV[c,b]$. Рассмотрим произвольное разбиение $a=x_0 < x_1 < x_2 < \cdots < x_N=b$. Существует n такое, что $x_n \leqslant c \leqslant x_{n+1}$. Значит,

$$\sum_{k=1}^{N} |f(x_k) - f(x_{k-1})| \leq \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| + |f(c) - f(x_n)| + |f(x_{k-1}) - f(c)| + \sum_{k=n}^{N} |f(x_k) - f(x_{k-1})| \leq \operatorname{var}_{[a,c]} f + \operatorname{var}_{[c,b]} f.$$

Следовательно

$$\operatorname{var}_{[a,b]} f \leqslant \operatorname{var}_{[a,c]} f + \operatorname{var}_{[c,b]} f$$

Теорема доказана.

Утверждение 2.4. Пусть $f \in BV[a,b]$, Тогда функция

$$v(x) = \begin{cases} 0, & x = a, \\ var_{[a,x]}f, & a < x \leq b \end{cases}$$

неубывающая.

Доказательство. В силу теоремы 2.2 из $x_1 < x_2$ следует, что

$$v(x_2) - v(x_1) = \text{var}_{[x_1, x_2]} f \geqslant 0.$$

Теорема 2.3. Пусть $f \in BV[a,b]$ и функция f непрерывна слева (справа) в точке $x = c \in [a,b]$. Тогда функция v непрерывна слева (справа) в точке x = c.

Доказательство. Пусть f непрерывна в точке c слева. Тогда существует $\delta(\varepsilon)>0$ такое, что

$$|f(x) - f(c)| < \varepsilon \quad \forall x \in (c - \delta(\varepsilon), c).$$

Так как

$$v(c) = \sup_{a=x_0 < x_1 < \dots < x_n = c} \sum_{j=1}^n |f(x_j) - f(x_{j-1})|,$$

то существует разбиение $a = x_0 < x_1 < \dots < x_n = c$ такое, что

$$\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| > v(c) - \varepsilon.$$
 (2.3)

Мы можем считать, что точка $x_* = x_{n-1} \in (c - \delta(\varepsilon), c)$. Если это не так, добавим ее в разбиение. При этом неравенство (2.3) сохранится. Из $|f(c) - f(x_*)| < \varepsilon$ следует, что

$$\sum_{j=1}^{n-1} |f(x_j) - f(x_{j-1})| > v(c) - 2\varepsilon.$$

Следовательно

$$v(x_*) > v(c) - 2\varepsilon$$
.

В силу монотонности v имеем

$$v(x) > v(c) - 2\varepsilon \quad \forall x \in (x_*, c).$$

Значит, v непрерывна слева в точке c.

Пусть теперь f непрерывна справа в точке c. Существует разбиение $c = x_0 < x_1 < \dots x_n = b$ такое,

$$\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| > \underset{[c,b]}{\text{var }} f - \varepsilon.$$

Так как сумма только возрастает при добавлении новых точек, то можно считать, что $x_*=x_1\in(c,c+\delta(\varepsilon))$. Но тогда

$$\sup_{[x_*,b]} f + |f(x_1) - f(x_0)| > \sup_{[c,b]} f - \varepsilon.$$

Отсюда

$$v(b) - v(x_*) > v(b) - v(c) - 2\varepsilon,$$

то есть

$$v(x_*) - v(c) < 2\varepsilon.$$

Тогда

$$v(x) - v(c) \leqslant v(x_*) - v(c) < 2\varepsilon \quad \forall x \in (c, x_*).$$

Теорема доказана.

Теорема 2.4. Пусть $f, g \in BV[a, b]$. Тогда $fg \in BV[a, b]$, причем

$$||fg||_{BV[a,b]} \le ||f||_{BV[a,b]} ||g||_{BV[a,b]}.$$
 (2.4)

Если дополнительно $|g(x)| \geqslant c_0 > 0$ для всех $x \in [a,b]$, то $1/g, f/g \in BV[a,b]$, причем

$$\operatorname{var}_{[a,b]}(1/g) \leqslant \frac{1}{c_0^2} \operatorname{var}_{[a,b]} g,$$

$$\|f/g\|_{BV[a,b]} \leqslant \|f\|_{BV[a,b]} \|1/g\|_{BV[a,b]}.$$

Доказательство.

$$\sum_{j=1}^{n} |f(x_{j})g(x_{j}) - f(x_{j-1})g(x_{j-1})| \le$$

$$\le \sum_{j=1}^{n} |(f(x_{j}) - f(x_{j-1}))g(x_{j}) + f(x_{j-1})(g(x_{j}) - g(x_{j-1}))| \le$$

$$\le \sup_{a \le x \le b} |g| \sum_{j=1}^{n} |f(x_{j}) - f(x_{j-1})| + \sup_{a \le x \le b} |f| \sum_{j=1}^{n} |g(x_{j}) - g(x_{j-1})| \le$$

$$\le \sup_{a \le x \le b} |g| \operatorname{var}_{[a,b]} f + \sup_{a \le x \le b} |f| \operatorname{var}_{[a,b]} g.$$

Отсюда

$$||fg||_{BV[a,b]} = \sup_{a \leqslant x \leqslant b} |fg| + \operatorname{var}_{[a,b]}(fg) \leqslant$$

$$\leqslant \sup_{a \leqslant x \leqslant b} |f| \sup_{a \leqslant x \leqslant b} |g| + \sup_{a \leqslant x \leqslant b} |g| \operatorname{var}_{[a,b]} f + \sup_{a \leqslant x \leqslant b} |f| \operatorname{var}_{[a,b]} g \leqslant$$

$$\leqslant ||f||_{BV[a,b]} ||g||_{BV[a,b]}.$$

Пусть теперь $|g(x)| \ge c_0 > 0$. Тогда

$$\sum_{j=1}^{n} |1/g(x_j) - 1/g(x_{j-1})| = \sum_{j=1}^{n} \frac{|g(x_j) - g(x_{j-1})|}{|g(x_{j-1})||g(x_j)|} \leqslant \frac{1}{c_0^2} \operatorname{var}_{[a,b]} g,$$

$$||f/g||_{BV[a,b]} \leqslant ||f||_{BV[a,b]} ||g||_{BV[a,b]}.$$

Теорема доказана.

Теорема 2.5. Функция f, заданная на [a,b], является функцией ограниченной вариации тогда и только тогда, когда она представима в виде разности двух неубывающих функций.

Доказательство. Если f представима в виде разности двух неубывающих функций, то, очевидно, $f \in BV[a,b]$.

Пусть теперь $f \in BV[a,b]$. Положим

$$v(x) = \operatorname{var}_{[a,x]} f, \quad \varphi(x) = \operatorname{var}_{[a,x]} f - f(x).$$

Тогда

$$f(x) = v(x) - \varphi(x).$$

Функция v неубывающая. Покажем, что φ также неубывающая. Пусть $a \leqslant x_1 < x_2 \leqslant b$. Тогда

$$\varphi(x_2) - \varphi(x_1) = \left[\operatorname{var}_{[a, x_2]} f - \operatorname{var}_{[a, x_1]} f \right] - \left[f(x_2) - f(x_1) \right] =$$

$$= \underset{[x_1, x_2]}{\operatorname{var}} f - |f(x_2) - f(x_1)| \ge 0.$$

Теорема доказана.

Следствие 2.2. Множество точек разрыва функции ограниченной вариации не более чем счетно, причем в каждой точке разрыва $x_0 \in [a,b)$ существует $\lim_{x \to x_0 + 0} f(x)$, а в каждой точке разрыва $x_0 \in (a,b]$ существует $\lim_{x \to x_0 - 0} f(x)$.

Следствие 2.3. Функция конечной вариации для п.в. $x \in [a,b]$ имеет конечную производную f'(x), причем $f' \in L_1(a,b)$.

Теорема 2.6. (Принцип выбора Хелли. Вторая теорема Хелли.) Из всякой ограниченной в BV[a,b] последовательности функций $\{f_n\}_{n=1}^{\infty}$ можно выбрать подпоследовательность, которая для всех $x \in [a,b]$ сходится к $f \in BV[a,b]$. При этом

$$\sup_{[a,b]} |f(x)| \leqslant \sup_{n \geqslant 1} \sup_{[a,b]} |f_n(x)|, \tag{2.5}$$

$$\operatorname{var}_{[a,b]} f \leqslant \sup_{n \geqslant 1} \operatorname{var}_{[a,b]} f_n.$$
(2.6)

Доказательство. Предположим сначала, что все функции f_n неубывающие. Пусть $\{q_k\}_{k=1}^{\infty}$ – последовательность всех рациональных точек из отрезка [a,b]. Используя диагональный процесс Кантора, выберем из $\{f_n\}_{n=1}^{\infty}$ подпоследовательность $\{f_{n_k}\}_{k=1}^{\infty}$, сходящуюся во всех рациональных точках. Ее пределом будет неубывающая функция f, определенная в рациональных точках. Доопреде-

лим ее в иррациональных точках, принадлежащих (a,b] значением

$$f(x) = \sup_{q_k < x} f(q_k).$$

Покажем, что полученная таким образом неубывающая функция f во всех своих точках непрерывности x_* является пределом последовательности $\{f_{n_k}(x_*)\}$. Для заданного $\varepsilon > 0$ существует $\delta(\varepsilon)$ такое, что $|f(x') - f(x_*)| < \varepsilon/6$ для всех $x' \in (x_* - \delta(\varepsilon), x_* + \delta(\varepsilon))$. Выберем рациональные q', q'' такие, что

$$x_* - \delta(\varepsilon) < q' < x_* < q'' < x_* + \delta(\varepsilon).$$

Пусть теперь k настолько велико, что $|f_{n_k}(q')-f(q')|<\varepsilon/6$ и $|f_{n_k}(q'')-f(q'')|<\varepsilon/6$. Тогда

$$|f_{n_k}(q'') - f_{n_k}(q')| \le |f_{n_k}(q'') - f(q'')| + |f(q'') - f(x_*)| + |f(x_*) - f(q')| + |f(q') - f_{n_k}(q')| < 2\varepsilon/3.$$

Так как функция f_{n_k} неубывающая, то

$$|f_{n_k}(x_*) - f_{n_k}(q')| \le |f_{n_k}(q'') - f_{n_k}(q')| \le 2\varepsilon/3.$$

Поэтому

$$|f(x_*) - f_{n_k}(x_*)| \le$$

 $\le |f(x_*) - f(q')| + |f(q') - f_{n_k}(q')| + |f_{n_k}(q') - f_{n_k}(x_*)| <$
 $< \varepsilon/6 + \varepsilon/6 + 2\varepsilon/3 = \varepsilon.$

Таким образом, $f(x_*) = \lim_{k \to \infty} f_{n_k}(x_*)$ во всех точках непрерывности функции f.

Так как функция f монотонна, то множество E ее точек разрыва не более чем счетно. Выберем из последовательности $\{f_{n_k}\}$ подпоследовательность $\{f'_{n_k}\}_{k=1}^{\infty}$, сходящуюся в точках $x \in E$. Последовательность $\{f'_{n_k}\}_{k=1}^{\infty}$ сходится теперь во всех точках $x \in [a,b]$. Переопределяя функцию f значением $f(x) = \lim_{k \to \infty} f'_{n_k}(x)$ для $x \in E$, получим желаемый результат. Заметим, что функция f монотонна.

Рассмотрим теперь общий случай. Представим каждую из функций f_n в виде разности двух неубывающих функций $f_n = v_n - \varphi_n$, где

$$v_n(x) = \operatorname{var}_{[a,x]} f_n, \quad \varphi_n(x) = \operatorname{var}_{[a,x]} f_n - f_n(x).$$

Как нетрудно видеть, последовательности $\{v_n\}_{n=1}^{\infty}$ и $\{\varphi_n\}_{n=1}^{\infty}$ ограничены в BV[a,b].

Выберем подпоследовательность $\{f_{n_k}\} = \{v_{n_k} - \varphi_{n_k}\}$ так, чтобы для всех $x \in [a,b]$ существовали пределы $v(x) = \lim_{k \to \infty} v_{n_k}(x)$ и $\varphi(x) = \lim_{k \to \infty} \varphi_{n_k}(x)$ и положим $f(x) = v(x) - \varphi(x)$.

Из неравенства

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| \leqslant \sup_{n \geqslant 1} \sup_{[a,b]} |f_n(x)|$$

следует неравенство (2.5).

Из неравенства

$$\sum_{j=1}^{N} |f(x_{j+1}) - f(x_j)| = \lim_{n \to \infty} \sum_{j=1}^{N} |f_n(x_{j+1}) - f_n(x_j)| \leqslant \sup_{n \geqslant 1} \operatorname{var}_{[a,b]} f_n$$

следует неравенство (2.6).

Теорема доказана.

3 ИНТЕГРАЛ РИМАНА-СТИЛТЬЕСА

Пусть f, g — заданные на [a, b] ограниченные функции. Обозначим через $T = \{x_k\}_{k=0}^n$ произвольное разбиение отрезка [a, b] точками $a = x_0 < x_1 < \dots x_n = b$. Выберем произвольные $\xi_i \in [x_{i-1}, x_i]$, $1 \le i \le n$ и построим интегральную сумму

$$\sigma(T, f, g) = \sum_{i=1}^{n} f(\xi_i)[g(x_i) - g(x_{i-1})].$$

Предположим, что существует число I такое, что для всякого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$ такое, что для всякого T, удовлетворяющего условию $\max_{1 \le i \le n} (x_i - x_{i-1}) < \delta(\varepsilon)$ справедливо неравенство

$$|\sigma(T, f, g) - I| < \varepsilon.$$

Тогда число I называется интегралом Римана-Стилтьеса от функции f по функции g и обозначается

$$\int_{a}^{b} f(x)dg(x). \tag{3.1}$$

Теорема 3.1. Если существуют интегралы

$$\int_{a}^{b} f_1(x)dg(x), \quad \int_{a}^{b} f_2(x)dg(x),$$

то для любых $\alpha, \beta \in \mathbb{R}$ существует интеграл

$$\int_{a}^{b} (\alpha f_1(x) + \beta f_2(x)) dg(x) = \alpha \int_{a}^{b} f_1(x) dg(x) + \beta \int_{a}^{b} f_2(x) dg(x).$$

Если существуют интегралы

$$\int_{a}^{b} f(x)dg_{1}(x), \quad \int_{a}^{b} f(x)dg_{2}(x),$$

то для любых $\alpha, \beta \in \mathbb{R}$ существует интеграл

$$\int_{a}^{b} f(x)d(\alpha g_1 + \beta g_2)(x) = \alpha \int_{a}^{b} f(x)dg_1(x) + \beta \int_{a}^{b} f(x)dg_2(x).$$

Теорема 3.2. Пусть $f \in C[a,b], g \in BV[a,b]$. Тогда интеграл (3.1) существует.

Доказательство. Заметим, что из теоремы о представлении функции ограниченной вариации в виде разности двух неубывающих функций следует, что достаточно доказать теорему в случае, когда g – неубывающая функция.

Определим нижнюю и верхнюю интегральные суммы

$$s(T, f, g) = \sum_{i=1}^{n} m_i [g(x_i) - g(x_{i-1})],$$

$$S(T, f, g) = \sum_{i=1}^{n} M_i [g(x_i) - g(x_{i-1})],$$

где

$$m_i = \min_{[x_{i-1}, x_i]} f(x), \quad M_i = \max_{[x_{i-1}, x_i]} f(x).$$

Ясно, что

$$s(T, f, g) \leqslant S(T, f, g).$$

Заметим, что при добавлении к разбиению T дополнительной точки нижняя интегральная сумма не убывает, а верхняя не возрастает.

Пусть теперь T_1 и T_2 – два произвольных разбиения. Положим $T_3 = T_1 \cup T_2$. Тогда

$$s(T_1, f, g) \le s(T_3, f, g) \le S(T_3, f, g) \le S(T_2, f, g).$$
 (3.2)

Положим

$$I = \sup_{T} s(T, f, g).$$

Из (3.2) следует, что

$$s(T, f, g) \leqslant I \leqslant S(T, f, g)$$

для всех T. Следовательно

$$|\sigma(T, f, g) - I| \le S(T, f, g) - s(T, f, g) = \sum_{i=1}^{n} (M_i - m_i)[g(x_i) - g(x_{i-1})].$$

В силу равномерной непрерывности функции f для любого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$ такое, что $M_i - m_i < \varepsilon$, если $x_i - x_{i-1} < \delta(\varepsilon)$. Поэтому для всякого разбиения T, удовлетворяющего условию $\max_{1 \le i \le n} (x_i - x_{i-1}) < \delta(\varepsilon)$, имеем

$$|\sigma(T, f, g) - I| < [g(b) - g(a)]\varepsilon.$$

Теорема доказана.

Теорема 3.3. (Теорема о среднем.) Пусть функция f ограничена, $g \in BV[a,b]$ и интеграл (3.1) существует. Тогда

$$\left| \int_{a}^{b} f(x) dg(x) \right| \leqslant \sup_{[a,b]} |f| \operatorname{var}_{[a,b]} g. \tag{3.3}$$

Доказательство. Заметим, что

$$|\sigma(T, f, g)| \le \sup_{[a,b]} |f| \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})| \le \sup_{[a,b]} |f| \underset{[a,b]}{\text{var }} g.$$

Предельный переход в этом неравенстве дает (3.3).

Теорема доказана.

Теорема 3.4. (Формула интегрирования по частям.) Если существует один из интегралов $\int\limits_a^b f(x)dg(x), \int\limits_a^b g(x)df(x),$ то существует и другой, причем

$$\int_{a}^{b} f(x)dg(x) = -\int_{a}^{b} g(x)df(x) + f(b)g(b) - f(a)g(a).$$
 (3.4)

Доказательство. Предположим, что существует второй из интегралов. Пусть $a=x_0 < x_1 < \cdots < x_n = b, \ \xi_i \in [x_{i-1},x_i], 1 \leqslant i \leqslant n$. Положим $\xi_0=x_0,\ \xi_{n+1}=x_n$.

Заметим, что

$$\sum_{i=1}^{n} f(\xi_i)[g(x_i) - g(x_{i-1})] = \sum_{i=1}^{n} f(\xi_i)g(x_i) - \sum_{i=0}^{n-1} f(\xi_{i+1})g(x_i) = -\sum_{i=0}^{n} [f(\xi_{i+1}) - f(\xi_i)]g(x_i) + f(\xi_{n+1})g(x_n) - f(\xi_0)g(x_0)$$

и обратим внимание на то, что

$$\sum_{i=0}^{n} [f(\xi_{i+1}) - f(\xi_i)]g(x_i)$$

можно рассматривать как интегральную сумму для $\int_{a}^{b} g(x) df(x)$

Так как $\max_{0 \le i \le n} (\xi_{i+1} - \xi_i) \le 2 \max_{1 \le i \le n} (x_i - x_{i-1})$, то из существования предела второй интегральной суммы следует существование предела первой и равенство (3.4).

Теорема доказана.

Теорема 3.5. Пусть a < c < b. Если существует интеграл (3.1), то существуют интегралы

$$\int_{a}^{c} f(x)dg(x), \quad \int_{c}^{b} f(x)dg(x)$$
 (3.5)

u

$$\int_{a}^{b} f(x)dg(x) = \int_{a}^{c} f(x)dg(x) + \int_{c}^{b} f(x)dg(x).$$
 (3.6)

Доказательство. Обозначим через \underline{I}_n и \overline{I}_n точную нижнюю и точную верхние грани значений интегральных сумм, отвечающих интегралу $\int_a^b f \, dg$ с $\max_{1 \le i \le N} (x_i - x_{i-1}) < 1/n$. (Точка c включена в разбиение.)

Через \underline{I}_n^1 , \overline{I}_n^1 и \underline{I}_n^2 , \overline{I}_n^2 обозначим аналогичные точные нижние и точные верхние грани значений интегральных сумм, отвечающих интегралам $\int_a^c f \, dg$ и $\int_c^b f \, dg$ соответственно.

Заметим, что

$$\underline{I}_n \leqslant \underline{I}_n^1 + \underline{I}_n^2 \leqslant \overline{I}_n^1 + \overline{I}_n^2 \leqslant \overline{I}_n. \tag{3.7}$$

В силу существования интеграла $\int\limits_a^b f\,dg$ имеем

$$\lim_{n \to \infty} \underline{I}_n = \lim_{n \to \infty} \overline{I}_n = \int_a^b f \, dg.$$

Поэтому

$$\overline{I}_n^1 - \underline{I}_n^1 \to 0, \quad \overline{I}_n^2 - \underline{I}_n^2 \to 0 \quad \text{при} \quad n \to \infty.$$

Поскольку последовательности \overline{I}_n^1 , \underline{I}_n^1 , \overline{I}_n^2 , \underline{I}_n^2 монотонны, существуют пределы

$$I^1 = \lim_{n \to \infty} \underline{I}_n^1 = \lim_{n \to \infty} \overline{I}_n^1, \quad I^2 = \lim_{n \to \infty} \underline{I}_n^2 = \lim_{n \to \infty} \overline{I}_n^2.$$

Ясно, что

$$I^{1} = \int_{a}^{c} f \, dg, \quad I^{2} = \int_{c}^{b} f \, dg.$$

и из (3.7) следует равенство (3.6).

Теорема доказана.

Замечание 3.1. Из существования интегралов (3.5) не следует существование интеграла (3.1). Рассмотрим соответствующий пример. Пусть f, g определены на [-1,1] формулами

$$f(x) = \begin{cases} 0, & -1 \le x \le 0, \\ 1, & 0 < x \le 1, \end{cases} \qquad g(x) = \begin{cases} 0, & -1 \le x < 0, \\ 1, & 0 \le x \le 1. \end{cases}$$

Ясно, что

$$\int_{-1}^{0} f(x)dg(x) = 0, \quad \int_{0}^{1} f(x)dg(x) = 0.$$

Пусть $-1 = x_0 < \dots < x_m < 0 < x_{m+1} < \dots x_n = 1$. Тогда

$$\sum_{i=1}^{n} f(\xi_i)[g(x_i) - g(x_{i-1})] = f(\xi_{m+1}) = \begin{cases} 0, & \xi_{m+1} > 0, \\ 1, & \xi_{m+1} < 0. \end{cases}$$

Поэтому предела интегральных сумм не существует.

Теорема 3.6. Пусть $f \in C[a,b]$, а функция g дифференцируема на [a,b], причем ее производная g' интегрируема по Риману на [a,b]. Тогда

$$\int_{a}^{b} f \, dg = (R) \int_{a}^{b} f g' \, dx. \tag{3.8}$$

Доказательство. Производная g' интегрируема по Риману и поэтому ограничена. Значит, $g \in BV[a,b]$ и интеграл, стоящий в левой части равенства (3.8) существует. Из интегрируемости по Риману функции g' следует, что функция fg' ограничена и непрерывна почти всюду. Следовательно интеграл, стоящий в правой части равенства (3.8), также существует.

В силу формулы конечных приращений Лагранжа

$$g(x_j) - g(x_{j-1}) = g'(\xi_j)(x_j - x_{j-1}).$$

Составим интегральную сумму для правого интеграла, взяв за промежуточные точки именно точки ξ_j и получим равенство

$$\sum_{j=1}^{n} f(\xi_j) g'(\xi_j) (x_j - x_{j-1}) = \sum_{j=1}^{n} f(\xi_j) [g(x_j) - g(x_{j-1})].$$
 (3.9)

Переходя в нем к пределу при $\lim_{1 \leqslant j \leqslant n} (x_j - x_{j-1}) \to 0$, получим (3.8). **Теорема доказана**.

Теорема 3.7. Пусть $f \in C[a,b]$, а функция g определена на [a,b] и постоянна на каждом из интервалов $(a,c_1), (c_1,c_2), \ldots, (c_m,b),$ где

$$a < c_1 < c_2 < \cdots < c_m < b.$$

Tог ∂a

$$\int_{a}^{b} f \, dg = f(a)[g](a) + \sum_{j=1}^{m} f(x_j)[g](c_j) + f(b)[g](b). \tag{3.10}$$

Доказательство.

$$\int_{a}^{b} f \, dg = \int_{a}^{c_{1}} f \, dg + \sum_{j=1}^{m-1} \int_{c_{j}}^{c_{j+1}} f \, dg + \int_{c_{m}}^{b} f \, dg.$$

Заметим, что

Складывая эти равенства, приходим к (3.10).

Теорема доказана.

Теорема 3.8. Пусть $\{f_n\}_{n=1}^{\infty} \subset C[a,b], f \in C[a,b] \ u \ g \in BV[a,b].$ Если $f_n \to f \ e \ C[a,b], \ mo$

$$\int_{a}^{b} f_n \, dg \to \int_{a}^{b} f \, dg.$$

Доказательство. В силу теоремы о среднем

$$\left| \int_a^b f_n \, dg - \int_a^b f \, dg \right| \leqslant \|f_n - f\|_{C[a,b]} \operatorname{var}_{[a,b]} g \to 0.$$

Теорема доказана.

Теорема 3.9. (Первая теорема Хелли.) Пусть $f \in C[a,b]$ и $\{g_n\}_{n=1}^{\infty} \subset BV[a,b]$, причем $g_n(x) \to g(x)$ для всех $x \in [a,b]$ и $\text{var } g_n \leqslant K$ для всех $n \geqslant 1$. Тогда $g \in BV[a,b]$ и [a,b]

$$\lim_{n \to \infty} \int_{a}^{b} f(x) dg_n(x) = \int_{a}^{b} f(x) dg(x).$$

Доказательство. Ясно, что $g \in BV[a,b]$ и var $g \leqslant K$.

Фиксируем $\varepsilon > 0$ и разобъем отрезок [a,b] на такие подотрезки, на которых колебание функции f меньше $\frac{\varepsilon}{3K}$. Тогда

$$\int_{a}^{b} f(x)dg(x) = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x)dg(x) =$$

$$= \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} [f(x) - f(x_i)]dg(x) + \sum_{i=1}^{n} f(x_i) \int_{x_{i-1}}^{x_i} dg(x)$$

Ясно, что

$$\left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} [f(x) - f(x_i)] dg(x) \right| \leqslant \varepsilon/3.$$

Таким образом,

$$\int_{a}^{b} f(x)dg(x) = \sum_{i=1}^{n} f(x_i)[g(x_i) - g(x_{i-1})] + \theta\varepsilon, \quad |\theta| \leq 1/3.$$

Аналогично

$$\int_{a}^{b} f(x)dg_{n}(x) = \sum_{i=1}^{n} f(x_{i})[g_{n}(x_{i}) - g_{n}(x_{i-1})] + \theta_{n}\varepsilon, \quad |\theta_{n}| \leq 1/3.$$

Ho для $n > N(\varepsilon)$

$$\left| \sum_{i=1}^{n} f(x_i) [g_n(x_i) - g_n(x_{i-1})] - \sum_{i=1}^{n} f(x_i) [g(x_i) - g(x_{i-1})] \right| < \varepsilon/3.$$

Как следствие,

$$\left| \int_{a}^{b} f(x) dg_{n}(x) - \int_{a}^{b} f(x) dg(x) \right| < \varepsilon \quad \forall n > N(\varepsilon).$$

Теорема доказана.

Теорема 3.10. (Ф. Рисс) Для всякого функционала $F \in (C[a,b])^*$ существует функция $g \in BV[a,b]$ такая, что

$$F(f) = \int_{a}^{b} f(x)dg(x) \quad \forall f \in C[a, b],$$

 $npuчем var_{[a,b]} g = ||F||.$

4 АБСОЛЮТНО НЕПРЕРЫВНЫЕ ФУНКЦИИ

Опр. Функция f, заданная на отрезке [a,b], называется abconomno непрерывной на нем, если для каждого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$ такое, что какова бы ни была конечная система попарно непересекающихся интервалов $\{(a_k,b_k)\}_{k\geqslant 1}\subset [a,b]$ с суммой длин, меньшей $\delta(\varepsilon)$ (то есть такая, что $\sum_{k=1}^n (b_k-a_k)<\delta$), для нее выполнено неравенство $\sum_{k=1}^n |f(b_k)-f(a_k)|<\varepsilon$.

Множество абсолютно непрерывных на [a,b] функций будем обозначать AC[a,b]. Ясно, что AC[a,b] – линейное пространство.

Утверждение 4.1. $AC[a,b] \subset C[a,b]$.

Замечание 4.1. Из того, что $f \in C[a,b]$, не следует, что $f \in AC[a,b]$. Действительно, рассмотрим функцию Кантора τ . Пусть K – канторово множество. Фиксируем $\varepsilon > 0$. Так как K имеет нулевую меру, то существует открытое множество G_{ε} с мерой меньше ε такое, что $K \subset G_{\varepsilon}$. Так как G_{ε} является объединением семейства непересекающихся интервалов, то в силу леммы Гейне - Бореля из этого семейства можно выделить конечный набор интервалов (α_n, β_n) такой, что $K \subset \bigcup_{n=1}^N (\alpha_n, \beta_n)$.

Заметим, что $\tau(x)$ постоянна на отрезках $[\beta_n, \alpha_{n+1}]$. Поэтому

$$1 = \tau(1) - \tau(0) = \tau(1) - \tau(\beta_1) + \sum_{k=2}^{n-1} [\tau(\beta_k) - \tau(\alpha_k)] + \tau(1) - \tau(\alpha_n).$$

Замечание 4.2. Заметим, что $C^1[a,b] \subset [a,b]$ и $Lip[a,b] \subset AC[a,b]$. Утверждение 4.2. $AC[a,b] \subset BV[a,b]$.

Доказательство. Пусть $f \in AC[a,b]$. Фиксируем $\varepsilon_0 > 0$ и разобъем отрезок [a,b] на N подотрезков $[a_k,b_k]$ длины меньше $\delta(\varepsilon_0)$. Для каждого подотрезка при выборе $a_k = x_0 < x_1 < \dots x_N = b_k$ имеем

$$\sum_{j=1}^{N} |f(x_j) - f(x_{j-1})| < \varepsilon_0.$$

 $\sum_{j=1}^N |f(x_j)-f(x_{j-1})|<\varepsilon_0.$ Отсюда $\underset{[a_k,b_k]}{\mathrm{var}} f\leqslant \varepsilon_0.$ Следовательно $\underset{[a,b]}{\mathrm{var}} f\leqslant N\varepsilon_0.$

Утверждение доказано.

Утверждение 4.3. Пусть $f \in AC[a,b]$. Тогда $|f| \in AC[a,b]$.

Утверждение 4.4. Пусть $f,g \in AC[a,b]$. Тогда $f \cdot g \in AC[a,b]$. Если дополнительно $|g(x)| \geqslant c_0 > 0$, то $f/g \in AC[a,b]$.

Утверждение 4.5. Пусть a < c < b. Тогда $f \in AC[a,b]$ тогда uтолько тогда, когда $f \in AC[a,c]$ и $f \in AC[c,b]$.

Теорема 4.1. Пусть $f \in AC[a,b], g \in AC[\alpha,\beta],$ причем g монотонна и $g: [\alpha, \beta] \to [a, b]$. Тогда суперпозиция $\varphi(x) = f(g(x))$ абсолютно непрерывна на $[\alpha, \beta]$.

Доказательство. Пусть δ_f и δ_g – величины, входящие в определение абсолютной непрерывности функций f и q. При фиксированном $\varepsilon > 0$ положим $\delta(\varepsilon) = \delta_q(\delta_f(\varepsilon))$. Тогда для любой системы попарно непересекающихся интервалов $\{(a_k,b_k)\}_{k\geqslant 1}\subset (\alpha,\beta)$ с суммой длин, меньшей δ , выполнено неравенство

$$\sum_{k=1}^{n} [g(b_k) - g(a_k)] < \delta_g(\varepsilon).$$

Следовательно

$$\sum_{k=1}^{n} |f(g(b_k)) - f(g(a_k))| < \varepsilon.$$

Теорема доказана.

Утверждение 4.6. Пусть $f \in AC[a,b]$. Тогда

$$v(x) = \underset{[a,x]}{\text{var}} f \in AC[a,b].$$

Доказательство. Пусть $\{(a_k,b_k)\}_{k\geqslant 1}\subset [a,b]$ – система попарно непересекающихся интервалов с суммой длин, меньшей $\delta(\varepsilon)$. Тогда, выполнив разбиение каждого из них, имеем

$$\sum_{k=1}^{n} \sum_{j=1}^{N_k} |f(x_{k,j}) - f(x_{k,j-1})| < \varepsilon.$$

Отсюда

$$\sum_{k=1}^{n} \operatorname{var}_{[a_k, b_k]} f = \sum_{k=1}^{n} (v(b_k) - v(a_k)) = \sum_{k=1}^{n} \operatorname{var}_{[a_k, b_k]} f \leqslant \varepsilon.$$

Утверждение доказано.

Следствие 4.1. Всякая абсолютно непрерывная на отрезке [a,b] функция может быть представлена в виде разности двух неубывающих абсолютно непрерывных функций.

Утверждение 4.7. Пусть $f(x) = \int_{a}^{x} g(s) ds + c$, где $g \in L_{1}(a,b)$. Тогда $f \in AC[a,b]$.

Доказательство. Достаточно заметить, что

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| \leqslant \sum_{k=1}^{n} \int_{a_k}^{b_k} |g(s)| \, ds$$

и воспользоваться абсолютной непрерывностью интеграла Лебега. **Утверждение доказано.**

Теорема 4.2. $f \in AC[a,b]$ тогда и только тогда, когда существуют функция $g \in L_1(a,b)$ и постоянная с такие, что

$$f(x) = \int_{a}^{x} g(s) ds + c, \quad x \in [a, b].$$

 Πpu этом g(x) = f'(x) почти всюду на [a,b].

Следствие 4.2. $Ecnu\ f \in AC[a,b],\ mo$

$$f(b) - f(a) = \int_a^b f'(x) dx.$$

Лемма 4.1. Eсли $f, g \in AC[a, b], mo$

$$(fg)' = f'g + fg' \tag{4.1}$$

noumu всюду на [a,b].

Теорема 4.3. Пусть $f, g \in AC[a, b]$. Тогда

$$\int_{a}^{b} f(x)g'(x) dx = -\int_{a}^{b} f'(x)g(x) dx + f(b)g(b) - f(a)g(a).$$

Доказательство. Нужно воспользоваться формулой (4.1).

Теорема 4.4. Пусть $f \in L_1(a,b)$, g абсолютно непрерывна, монотонна $u \ g(\alpha) = a, \ g(\beta) = b$. Тогда $f(g)g' \in L_1(\alpha,\beta)$ u

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(g(s))g'(s) ds.$$

Замечание 4.3. Пространство AC[a,b] является нормированным c

$$||f||_{AC[a,b]} = ||f||_{L_1(a,b)} + ||f'||_{L_1(a,b)}.$$

Этой норме эквивалентны нормы

$$||f||_{AC[a,b]} = ||f||_{C[a,b]} + ||f'||_{L_1(a,b)},$$

$$||f||_{AC[a,b]} = |f(a)| + ||f'||_{L_1(a,b)}.$$

Теорема 4.5. Пространство AC[a, b] банахово.

Доказательство. Заметим, что из равенства

$$f(x) = f(y) + \int_{y}^{x} f'(x) dx$$

следует оценка

$$||f||_{C[a,b]} \le \frac{1}{b-a} ||f||_{L_1(a,b)} + ||f'||_{L_1(a,b)}.$$

Пусть теперь $\{f_n\}_{n=1}^{\infty}$ — фундаментальная в AC[a,b] последовательность. Тогда $\{f_n\}_{n=1}^{\infty}$ сходится в C[a,b] к некоторой функции f, а $\{f'_n\}_{n=1}^{\infty}$ сходится в $L_1(a,b)$ к некоторой функции g.

Переходя к пределу в равенстве

$$f_n(x) = f_n(a) + \int_a^x f'_n(s) ds,$$

имеем

$$f(x) = f(a) + \int_{a}^{x} g(s) ds.$$

Таким образом, $f \in AC[a,b], g = f'$ и $f_n \to f$ в AC[a,b].

Теорема доказана.

Теорема 4.6. Пусть $f \in AC[a,b]$. Тогда

$$\operatorname{var}_{[a,b]} f = \int_{a}^{b} |f'(x)| \, dx. \tag{4.2}$$

Доказательство. Ясно, что

$$\operatorname{var}_{[a,b]} f \leqslant \int_{a}^{b} |f'(x)| \, dx.$$

Пусть $f \in C^1[a,b]$. Тогда

$$\operatorname{var}_{[a,b]} f \geqslant \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| = \sum_{j=1}^{n} |f'(\xi_j)| (x_j - x_{j-1})$$

Переходя к пределу при $\max_{1 \leq j \leq n} (x_j - x_{j-1}) \to 0$, получим

$$\operatorname{var}_{[a,b]} f \geqslant \int_{a}^{b} |f'(x)| \, dx.$$

Пусть теперь $f \in AC[a,b]$. Продолжим функцию f, положив f(x) = f(a) для x < a и f(x) = f(b) для x > b. Построим осреднение f_h . Заметим, что

$$\sum_{j=1}^{n} |f_h(x_j) - f_h(x_{j-1})| = \sum_{j=1}^{n} \left| \int_{-\infty}^{\infty} (f(x_j + y) - f(x_{j-1} + y)) \omega_h(y) \, dy \right| \le$$

$$\le \int_{-\infty}^{\infty} \sum_{j=1}^{n} |f(x_j + y) - f(x_{j-1} + y)| |\omega_h(y)| \, dy \le \operatorname{var}_{[a,b]} f.$$

Таким образом,

$$\operatorname{var}_{[a,b]} f_h = \int_a^b |f'_h(x)| \, dx \leqslant \operatorname{var}_{[a,b]} f.$$

Переходя к пределу при $h \to 0$, получим

$$\int_{a}^{b} |f'(x)| \, dx \leqslant \operatorname{var}_{[a,b]} f.$$

Теорема доказана.

Замечание. Нужно показать, что $(f_h)' = (f')_h$. Это верно, так как из

$$f_h(x) = \int_{-\infty}^{\infty} f(y)\omega_h(y-x) \, dy$$

следует, что

$$(f_h)'(x) = -\int_{-\infty}^{\infty} f(y)\omega_h'(y-x) \, dy = \int_{-\infty}^{\infty} f'(y)\omega_h(y-x) \, dy = (f')_h(x).$$