

FCC Measurement/Technical Report on

Host-based multiradio module with Wi-Fi, Bluetooth and NFC

EMMY-W163

in WLAN 5 GHz mode

FCC ID: XPYEMMYW163

IC: 8595A-EMMYW163

Test Report Reference: MDE_LESSW_1701_FCCc

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

9	Photo Report	33
8	Measurement Uncertainties	33
7	Setup Drawings	32
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	31
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	30
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	29
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	28
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	27
6 6.1	Antenna Factors, Cable Loss and Sample Calculations LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	26 26
5	Test Equipment	24
4.1 4.2	Undesirable Emissions; General Field Strength Limits Band Edge	15 20
4	Test Results	15
3.8	Product labelling	14
3.7	Operating Modes	13
3.6	EUT Setups	13
3.5	Auxiliary Equipment	12
3.4	Ancillary Equipment	12
3.3	WLAN Power Table	9
3.2	EUT Main components	8
3 .1	General EUT Description	7
3	Test object Data	7
2.4	Manufacturer Data	6
2.3	Applicant Data	6
2.2	Project Data	6
2.1	Testing Laboratory	6
2	Administrative Data	6
1.3	Measurement Summary / Signatures	5
1.2	FCC-IC Correlation Table	4
1.1	Applied Standards	3
1	Applied Standards and Test Summary	3

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-15 Edition) and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- Part 15, Subpart E Unlicensed National Information Infrastructure Devices
- § 15.403 Definitions
- § 15.407 General technical requirements

Note 1:

The tests were selected and performed with reference to the FCC Public Notice "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02 General U-NII Test Procedures v02r01, 2017-12-14".

ANSI C63.10-2013 is applied.

FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules") is applied.

Note 2:

Not all possible operating modes were tested. Worst case operating modes were determined at the beginning of the test period.

TEST REPORT REFERENCE: MDE_LESSW_1701_FCCc Page 3 of 33

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for UNII / LE-LAN (e.g. WLAN 5 GHz) equipment from FCC and IC

UNII equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.403 (i) (26 dB) / § 15.407 (e) (6 dB)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1 (99%) RSS-247 Issue 2: 6.2.4.1 (6 dB)
Maximum conducted output power	§ 15.407 (a) (1),(2),(3),(4)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1, 6.2.4.1
Maximum power spectral density	§ 15.407 (a) (1),(2),(3),(5)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1, 6.2.4.1
Transmitter undesirable emissions; General Field Strength Limits, Restricted Bands	§ 15.407 (b) § 15.209 (a)	RSS-Gen Issue 4: 6.13/8.9/8.10; RSS-247 Issue 2: 3.3/6.2 6.2.1.2, 6.2.2.2, 6.2.3.2, 6.2.4.2
Frequency stability	§ 15.407 (g)	RSS-Gen Issue 4: 6.11/8.11
Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	§ 15.407 (h)	RSS-247 Issue 2: 6.2.2.1, 6.2.3.1, 6.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	_	-

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

FCC §15.407 (b), (1),(2),(3),(4); FCC §15.205, §15.209, §15.407 (b) (5),(6)

Undesirable Emissions; General Field Strength Limits	
The measurement was performed according to ANSI C63.10	

Final Result

OP-Mode	
Radio Technology, Operating Frequency, Measurement range,	
Subband	

FCC IC

Subband

DE1072001 Passed

Passed

WLAN a, low, 1GHz - 26GHz, U-NII-1 Remark: 6 Mbit/s

aa01

Setup

Pas

47 CFR CHAPTER	I	FCC	PART	15	Subpart E
815.407					-

FCC §15.407 (b), (1),(2),(3),(4)

The measurement was performed according to ANSI C63.	10	Final Re	sult
OP-Mode Radio Technology, Operating Frequency, Subband	Setup	FCC	IC
WLAN a, low, U-NII-1 Remark: 6 Mbit/s	DE1072001 aa01	Passed	Passed
WLAN a, low, U-NII-2A Remark: 6 Mbit/s	DE1072001 aa01	Passed	Passed
WLAN a, low, U-NII-3 Remark: 6 Mbit/s	DE1072001 aa01	Passed	Passed
WLAN n 20 MHz, low, U-NII-2C Remark: MCS0	DE1072001 aa01	Passed	Passed
WLAN n 20 MHz, high, U-NII-2C Remark: MCS0	DE1072001 aa01	Passed	Passed
WLAN n 20 MHz, high, U-NII-3 Remark: MCS0	DE1072001 aa01	Passed	Passed

Remark:

Band Edge

Reduced test plan has been used in order to confirm a Class II Permissive Change

(responsible for accreditation scope)

Mr. Marco Kullik

(responsible for testing and report)
Mr. Imad Hjije

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11 40880 Ratingen

Germany

This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

DAkkS D-PL-12140-01-00 Laboratory accreditation no:

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2018-01-10

2.2 PROJECT DATA

Responsible for testing and report: Mr. Imad Hjije

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2018-03-21

Testing Period: 2018-03-05 to 2018-03-07

2.3 APPLICANT DATA

Company Name: u-blox AG

Address: Zürcherstrasse 68

8800 Thalwil Switzerland

Contact Person: Mr. Giulio Comar

2.4 MANUFACTURER DATA

Company Name: please see applicant data

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	WLAN 2.4 GHz, 5 GHz, BT, NFC, SRD (5.8 GHz) - Single Antenna
Product name	Host-based multiradio module with Wi-Fi, Bluetooth and NFC for "Mercedes-Benz Link"
Туре	EMMY-W163
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	normal: 3.3 V DC low: 3.0 V DC high: 3.6 V DC
Modulation Type for WLAN 5 GHz	OFDM, HT20 MCS0 - MCS7, HT40 MCS0 -MCS7, VHT20 MCS0 - MCS8, VHT40 MCS0 - MCS9, VHT80 MCS0 - MCS9 please see each test protocol
General product description	EMMY-W163 are ultra-compact multi-radio modules providing Wi-Fi, Classic Bluetooth, Bluetooth low energy and NFC mode of operation. It is designed for both simultaneous and independent operations of: • Wi-Fi IEEE 802.11ac and a/b/g/n • Dual-mode Bluetooth 4.2 • NFC
Specific product description for the EUT	EMMY-W161: Shielded module, single antenna pin for WLAN 802.11 ac/a/b/g/n and Bluetooth communication
The EUT provides the following ports:	- DC power supply - antenna port - signal ports
Data rates	WLAN a: please see chapter "WLAN Power Table" WLAN n 20 MHz: please see chapter "WLAN Power Table" WLAN n 40 MHz: please see chapter "WLAN Power Table" WLAN ac 20: please see chapter "WLAN Power Table" WLAN ac 40: please see chapter "WLAN Power Table" WLAN ac 80: please see chapter "WLAN Power Table"
Access point use	Indoor or outdoor
Device type	Master or client, mobile and portable client
Special software used for testing	Special software used to setup EUT for testing: u-blox Labtool

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

TEST REPORT REFERENCE: MDE_LESSW_1701_FCCc Page 7 of 33

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code		Description
DE1072001aa01	aa01		
Sample Parameter		Value	2
Integral Antenna	Antenova SR42W001		
Serial No.	D4CA6E50CAC4		
HW Version	-		
SW Version	15.26.7.p101		
Comment	-		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 WLAN POWER TABLE

Declared Power limits vs channel for FCC, U-NII-1 & 2A, 20 MHz BW

Modulation WLAN TX Power in dBm at frequency in MHz group									
J	5180	5200	5220	5240	5260	5280	5300	5320	
OFDM 6, 9, 12, 18 Mbps	13	16	16	16	16	16	16	13	
OFDM 24, 36 Mbps	13	16	16	16	16	16	16	13	
OFDM 48, 54 Mbps	13	13	13	13	13	13	13	13	
HT20 MCS0, MCS1, MCS2	13	16	16	16	16	16	16	13	
HT20 MCS3, MCS4	13	16	16	16	16	16	16	13	
HT20 MCS5, MCS6, MCS7	13	13	13	13	13	13	13	13	
VHT20 MCS0, MCS1, MCS2	13	16	16	16	16	16	16	13	
VHT20 MCS3, MCS4	13	16	16	16	16	16	16	13	
VHT20 MCS5, MCS6, MCS7	13	13	13	13	13	13	13	13	
VHT20 MCS8	13	13	13	13	13	13	13	13	

Declared Power limits vs channel for FCC, U-NII-1 & 2A, 40 MHz BW

Decial ed For	Declared Fower littles vs challier for FCC, 0-NII-1 & ZA, 40 MHz BW									
Modulation group	WLAN TX Power in dBm at frequency in MHz									
	5190	5230	5270	5310						
HT40 MCS0, MCS1, MCS2	12	16	16	12						
HT40 MCS3, MCS4	12	16	16	12						
HT40 MCS5, MCS6, MCS7	12	12	12	12						
VHT40 MCS0, MCS1, MCS2	12	16	16	12						
VHT40 MCS3, MCS4	12	16	16	12						
VHT40 MCS5, MCS6, MCS7	12	12	12	12						
VHT40 MCS8, MCS9	10	10	10	10						

Declared Power limits vs channel for FCC, U-NII-1 & 2A, 80 MHz BW

Decial ed Fov	Declared Fower minits vs channel for FCC, 0-M11-1 & ZA, 60 M112 DW									
Modulation	WLAN TX Power in dBm at frequency in MHz									
group										
	5210	5290								
VHT80 MCS0, MCS1, MCS2	8	8								
VHT80 MCS3, MCS4	8	8								
VHT80 MCS5, MCS6, MCS7	8	8								
VHT80 MCS8, MCS9	8	8								

Declared Power limits vs channel for FCC, U-NII-2C, 20 MHz BW

Modulation WLAN TX Power in dBm at frequency in MHz group						MHz						
3 1	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700	5720
OFDM 6, 9, 12, 18 Mbps	13	16	16	16	16	16	16	16	16	16	13	-
OFDM 24, 36 Mbps	13	16	16	16	16	16	16	16	16	16	13	1
OFDM 48, 54 Mbps	13	13	13	13	13	13	13	13	13	13	13	-
HT20 MCS0, MCS1, MCS2	13	16	16	16	16	16	16	16	16	16	13	-
HT20 MCS3, MCS4	13	16	16	16	16	16	16	16	16	16	13	-
HT20 MCS5, MCS6, MCS7	13	13	13	13	13	13	13	13	13	13	13	I
VHT20 MCS0, MCS1, MCS2	13	16	16	16	16	16	16	16	16	16	16	16
VHT20 MCS3, MCS4	13	16	16	16	16	16	16	16	16	16	16	16
VHT20 MCS5, MCS6, MCS7	13	13	13	13	13	13	13	13	13	13	13	13
VHT20 MCS8	13	13	13	13	13	13	13	13	13	13	13	13

Declared Power limits vs channel for FCC, U-NII-2C, 40 MHz BW

_ Declared Power milits vs channel for FCC, 0-M11-2C, 40 MHz BW									
Modulation group	WLAN TX Power in dBm at frequency in MHz								
•	5510	5550	5590	5630	5670	5710			
HT40 MCS0, MCS1, MCS2	12	16	16	16	12	-			
HT40 MCS3, MCS4	12	16	16	16	12	-			
HT40 MCS5, MCS6, MCS7	12	12	12	12	12	-			
VHT40 MCS0, MCS1, MCS2	12	16	16	16	16	16			
VHT40 MCS3, MCS4	12	16	16	16	16	16			
VHT40 MCS5, MCS6, MCS7	12	12	12	12	12	12			
VHT40 MCS8, MCS9	10	10	10	10	10	10			

Declared Power limits vs channel for FCC, U-NII-2C, 80 MHz BW

Modulation group	WLAN TX Power in dBm at frequency in MHz						
,	5530	5610	5690				
VHT80 MCS0, MCS1, MCS2	8	12	16				
VHT80 MCS3, MCS4	8	13	13				
VHT80 MCS5, MCS6, MCS7	8	10	10				
VHT80 MCS8, MCS9	8	8	8				

Note 1:

Industry Canada RSS-247 Issue 1

6.2.3 Frequency Bands 5470-5600 MHz and 5650-5725 MHz

Until further notice, devices subject to this section shall not be capable of transmitting in the band 5600-5650 MHz. This restriction is for the protection of Environment Canada's weather radars operating in this band.

Declared Power limits vs channel for FCC, U-NII-3, 20 MHz BW

Modulation group	ion WLAN TX Power in dBm at frequency in MHz							
g. 3 a p	5745	5765	5785	5805	5825			
OFDM 6, 9, 12, 18 Mbps	14	16	16	16	14			
OFDM 24, 36 Mbps	14	16	16	16	14			
OFDM 48, 54 Mbps	13	13	13	13	13			
HT20 MCS0, MCS1, MCS2	13	16	16	16	13			
HT20 MCS3, MCS4	13	16	16	16	13			
HT20 MCS5, MCS6, MCS7	13	13	13	13	13			
VHT20 MCS0, MCS1, MCS2	13	16	16	16	16			
VHT20 MCS3, MCS4	13	16	16	16	16			
VHT20 MCS5, MCS6, MCS7	13	13	13	13	13			
VHT20 MCS8	13	13	13	13	13			

Declared Power limits vs channel for FCC, U-NII-3, 40 MHz BW

_ Declared Power minics vs channel for PCC, 0-M11-3, 40 Minz BW								
Modulation	WLAN TX Power in dBm at frequency in MHz							
group			1					
	5755	5795						
HT40 MCS0,	12	16						
MCS1, MCS2	12	10						
HT40 MCS3,	12	16						
MCS4	12	10						
HT40 MCS5,	12	12						
MCS6, MCS7	12	12						
VHT40 MCS0,	12	12						
MCS1, MCS2	12	12						
VHT40 MCS3,	12	12						
MCS4	12	12						
VHT40 MCS5,	12	12						
MCS6, MCS7	12	12						
VHT40 MCS8,	12	12						
MCS9	12	12						

Declared Power limits vs channel for FCC, U-NII-3, 80 MHz BW

Modulation group	WLAN TX Power in dBm at frequency in MHz					
	5775					
VHT80 MCS0, MCS1, MCS2	8					
VHT80 MCS3, MCS4	8					
VHT80 MCS5, MCS6, MCS7	8					
VHT80 MCS8, MCS9	8					

3.4 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
target platform	lesswire GmbH, MB Link, -, -	telematics unit

3.5 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
AC/DC power supply (115 V 60 Hz)	PeakTech, -, -, 081062045	PeakTech 6005D

3.6 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
DE1072001aa01	DE1072001aa01, target platform, AC/DC power supply	Setup for radiated measurement

3.7 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.7.1TEST CHANNELS

a-mode, n-mode

U-NII-Subband 1			U-NII-Subband 2A			U-NII-Subband 2C			U-NII-Subband 3			Nom.
5150 - 52	5150 - 5250 MHz			5250 - 5350 MHz			5470 - 5725 MHz		5725 - 5850 MHz			BW
low	mid	high	low	mid	high	low	mid	high	low	mid	high	20 MHz
36	44	48	52	56	64	100	116	140	149	157	165	ChNo.
5180	5220	5240	5260	5280	5320	5500	5580	5700	5745	5785	5825	MHz
low	mid	high	low	mid	high	low	mid	high	low	mid	high	40 MHz
38	N/A	46	54	N/A	62	102	110	134	151	N/A	159	ChNo.
5190	N/A	5230	5270	N/A	5310	5510	5550	5670	5755	N/A	5795	MHz

ac-mode

	U-NII-Subband 1 5150 - 5250 MHz			U-NII-Subband 2A 5250 - 5350 MHz			U-NII-Subband 2C 5470 - 5725 MHz		U-NII-Subband 3 5725 - 5850 MHz			Nom. BW
low	mid	high	low	mid	high	low	mid	high	low	mid	high	20 MHz
36	44	48	52	56	64	100	116	144	149	157	165	ChNo.
5180	5220	5240	5260	5280	5320	5500	5580	5720	5745	5785	5825	MHz
low	mid	high	low	mid	high	low	mid	high	low	mid	high	40 MHz
38	N/A	46	54	N/A	62	102	110	142	151	N/A	159	ChNo.
5190	N/A	5230	5270	N/A	5310	5510	5550	5710	5755	N/A	5795	MHz
low	mid	high	low	mid	high	low	mid	high	low	mid	high	80 MHz
N/A	42	N/A	N/A	58	N/A	106	122	138	155	N/A	N/A	ChNo.
N/A	5210	N/A	N/A	5290	N/A	5530	5610	5690	5775	N/A	N/A	MHz

In case of testing another channel, the measurement summary state "additional channel" and the channel or centre frequency of the operating frequency is stated in the test protocol.

TEST REPORT REFERENCE: MDE_LESSW_1701_FCCc Page 13 of 33

Page 14 of 33

3.7.2TEST MODULATIONS

If not stated in the test protocols following operating modes are used:

WLAN a-Mode; 20 MHz; 6 Mbit/s; 100 % duty cycle
WLAN n-Mode; 20 MHz; 6,5 Mbit/s MCS0; 100 % duty cycle
WLAN n-Mode; 40 MHz;13,5 Mbit/s MCS0; 100 % duty cycle
WLAN ac-Mode; 20 MHz; 6,5 Mbit/s MCS0; 100 % duty cycle
WLAN ac-Mode; 40 MHz; 13,5Mbit/s MCS0; 100 % duty cycle
WLAN ac-Mode; 80 MHz; 433 Mbit/s MCS9; 100 % duty cycle

3.8 PRODUCT LABELLING

3.8.1FCC ID LABEL

Please refer to the documentation of the applicant.

3.8.2LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 UNDESIRABLE EMISSIONS; GENERAL FIELD STRENGTH LIMITS

Standard FCC Part 15 Subpart E

The test was performed according to:

ANSI C63.10

4.1.1TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

•Anechoic chamber

Antenna distance: 3 mDetector: Peak-Maxhold

•Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

•Frequency steps: 0.05 kHz and 2.25 kHz

•IF-Bandwidth: 0.2 kHz and 9 kHz

•Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

•Open area test side

•Antenna distance: according to the Standard

•Detector: Quasi-Peak

•Frequency range: 0.009 - 30 MHz

•Frequency steps: measurement at frequencies detected in step 1

•IF-Bandwidth: 0.2 - 10 kHz

•Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: ± 45 ° around the determined value

- Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated this contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Above 26 GHz the measurement distance is reduced to 1 m.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 1 MHz - Measuring time: 1 s

4.1.2TEST REQUIREMENTS / LIMITS

A) FCC

FCC Part 15 Subpart E, §15.407 (b)(1)

For transmitters operating in the 5150-5250 MHz band:

Limit: -27 dBm/MHz EIRP outside of the band 5150-5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(2)

For transmitters operating in the 5250-5350 MHz band:

Limit: -27 dBm/MHz EIRP outside of the band 5150-5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(3)

For transmitters operating in the 5470-5725 MHz band:

Limit: -27 dBm/MHz EIRP outside of the band 5470-5725 MHz.

FCC Part 15 Subpart E, §15.407 (b)(4)

For transmitters operating in the 5725-5850 MHz band:

Limit: -27 dBm/MHz EIRP outside of the band 5715-5860 MHz and additionally

Limit: -17 dBm/MHz EIRP within the frequency ranges 5715-5725 and 5850-5860 MHz.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1 (2), Emissions outside the band 5150-5250 MHz, indoor operation only: Limit: -27 dBm/MHz EIRP outside of the band 5150-5250 MHz.

RSS-247, 6.2.2 (2), Emissions outside the band 5250-5350 MHz:

Limit: -27 dBm/MHz EIRP outside of the band 5250-5350 MHz.

RSS-247, 6.2.3 (2), Emissions outside the bands 5470-5600 MHz and 5650-5725 MHz:

Limit: -27 dBm/MHz EIRP outside of the band 5470-5725 MHz.

Note: No operation is permitted for the frequency range 5600-5650 MHz.

RSS-247, 6.2.4 (2), Emissions outside the band 5725-5825 MHz:

Limit: -27 dBm/MHz EIRP outside of the band 5715-5835 MHz and additionally

Limit: -17 dBm/MHz EIRP within the frequency ranges 5715-5725 and 5825-5835 MHz.

C) FCC & IC

FCC Part 15 Subpart E, §15.405

The provisions of §§ 15.203 and 15.205 are included.

§15.407 (b)(6)

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

§15.407 (b)(7)

The provisions of §15.205 apply to intentional radiators operating under this section

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)		
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m		
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m		
1.705 - 30	30@30m	3	29.5@30m		

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor:

- •Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)
- •Limit $(dB\mu V/m) = EIRP [dBm] 20 log (d [m]) + 104.8$

Limit types (in result tables on next page):

RB - Emissions falls into a "Restricted Band" according FCC §§15.205 and 15.209 *)

UE - "Undesirable Emission Limit" according FCC §15.407

BE-RB - Band Edge Limit basing on "Restricted Band Limits"

BE-UE - Band Edge Limit basing on "Undesirable Emission Limit"

*) Below 1 GHz the limits of §15.209 are applied for all frequencies.

4.1.3TEST PROTOCOL

Ambient temperature: 24–29 °C Air Pressure: 1000–1009 hPa

Humidity: 33-49 %

WLAN a-Mode; 20 MHz; 6 Mbit/s

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type
36,0	5180,0	5148.4	44,16	AV	1000,0	54.00	9,84	RB
36,0	5180,0	5148.4	58.95	PEAK	1000,0	74.00	15.05	RB
36,0	5180,0	15536	39.04	AV	1000,0	54.00	14.96	RB
36,0	5180,0	15536	54.50	PEAK	1000,0	74.00	19.50	RB
36,0	5180,0	20719.7	49.35	AV	1000,0	54.00	4.65	RB
36,0	5180,0	20719.7	55.79	PEAK	1000,0	74.00	18.21	RB

Remark: Please see next sub-clause for the measurement plot.

4.1.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Operating mode = WLAN a, low, U-NII-1

4.2 BAND EDGE

Standard FCC Part 15 Subpart E

The test was performed according to:

ANSI C63.10

4.2.1TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.2.2TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

 $\S15.35(b)$..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

TEST REPORT REFERENCE: MDE_LESSW_1701_FCCc Page 20 of 33

4.2.3TEST PROTOCOL

Ambient temperature: 24-29 °C Air Pressure: 1000-1009 hPa

Humidity: 33–49 % WLAN a-Mode; 20 MHz; 6 Mbit/s

U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type	FCC /IC?
	36,0	5180,0	5148,4	58,95	PEAK	1000,0	74,0	15,05	BE- RB	FCC&IC
	36,0	5180,0	5148,4	44,16	AV	1000,0	54,0	9.84	BE- RB	FCC&IC
1	36,0	5180,0	15536	54.50	PEAK	1000,0	74,0	19.50	BE- RB	FCC&IC
	36,0	5180,0	15536	39.04	AV	1000,0	54,0	14.96	BE- RB	FCC&IC
	36,0	5180,0	20719,7	55.79	PEAK	1000,0	74,0	18.21	BE- RB	FCC&IC
	36,0	5180,0	20719,7	49.35	AV	1000,0	54,0	4.65	BE- RB	FCC&IC
2A	64,0	5320,0	5350,0	4627	AV	1000,0	54,0	7,73	BE- RB	FCC&IC
	64,0	5320,0	5350,0	58,91	PEAK	1000,0	74,0	15,09	BE- RB	FCC&IC
3	149,0	5745,0	5725,9	55,14	PEAK	1000,0	78,2	5,35	BE- UE	FCC&IC

WLAN n-Mode; 20 MHz; 6,5 Mbit/s MCS0

U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type	FCC /IC?
	100,0	5500,0	5459,4	44,87	AV	1000,0	54,0	9,13	BE- RB	FCC&IC
2C	100,0	5500,0	5459,4	57,55	PEAK	1000,0	74,0	16,45	BE- RB	FCC&IC
	140,0	5700,0	5726,2	63,25	PEAK	1000,0	68,2	4,95	BE- UE	FCC&IC
3	165,0	5825,0	5850,4	63,12	PEAK	1000,0	78,2	15,08	BE- UE	FCC&IC

4.2.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Operating mode = WLAN a, low, U-NII-1

Operating mode = WLAN n 20, high, U-NII-2C

4.2.5TEST EQUIPMENT USED

Radiated Emissions

5 TEST EQUIPMENT

1 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2017-05	2018-05
1.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2017-10	2018-10
1.3	Opus10 TPR (8253.00)	sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
1.4	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2016-05	2019-05
1.5	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2015-06	2018-06
1.6	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
1.7	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.8	Fully Anechoic Room	8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2015-06	2018-06
1.9	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.10	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.11	FSW 43		Rohde & Schwarz	103779	2016-12	2018-12
1.12	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
1.13	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.14	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.15	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.16	JS4-00102600- 42-5A		Miteq	619368		
1.17	TT 1.5 WI		Maturo GmbH			
1.18	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.19	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
1.20	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
1.21	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2014-11	2017-11

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.22	Opus10 THI (8152.00)	- , , , ,	Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
1.23	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
1.24	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.25	AS 620 P	Antenna mast	HD GmbH	620/37		
1.26	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
1.27	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
1.28	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.29	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
1.30	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0,15	10,1
5	10,3
7	10,5
10	10,5
12	10,7
14	10,7
16	10,8
18	10,9
20	10,9
22	11,1
24	11,1
26	11,2
28	11,2
30	11,3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z5	uator)
dB	dB
0,1	10,0
0,1	10,2
0,2	10,3
0,2	10,3
0,3	10,4
0,3	10,4
0,4	10,4
0,4	10,5
0,4	10,5
0,5	10,6
0,5	10,6
0,5	10,7
0,5	10,7
0,5	10,8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0,009	20,50	-79,6
0,01	20,45	-79,6
0,015	20,37	-79,6
0,02	20,36	-79,6
0,025	20,38	-79,6
0,03	20,32	-79,6
0,05	20,35	-79,6
0,08	20,30	-79,6
0,1	20,20	-79,6
0,2	20,17	-79,6
0,3	20,14	-79,6
0,49	20,12	-79,6
0,490001	20,12	-39,6
0,5	20,11	-39,6
0,8	20,10	-39,6
1	20,09	-39,6
2	20,08	-39,6
3	20,06	-39,6
4	20,05	-39,5
5	20,05	-39,5
6	20,02	-39,5
8	19,95	-39,5
10	19,83	-39,4
12	19,71	-39,4
14	19,54	-39,4
16	19,53	-39,3
18	19,50	-39,3
20	19,57	-39,3
22	19,61	-39,3
24	19,61	-39,3
26	19,54	-39,3
28	19,46	-39,2
30	19,73	-39,1

(3 11.12	30 1 11 12	-,	1	1		1
cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used}
(inside				(-40 dB/	`	(meas.
`	(outside	(switch	(to		distance	distance
chamber) dB	chamber) dB	unit) dB	receiver) dB	decade) dB	(limit)	(used)
				-80	m 300	
0,1	0,1 0,1	0,1 0,1	0,1 0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,3	0,1	-40	30	3
0,4	0,1	0,3	0,1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

$(d_{Limit} = 3 m)$

(ULIMIT - 3 II	- /	
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30		
	18,6	0,6
50	6,0	0,9
100	9,7	1,2
150	7,9	1,6
200	7,6	1,9
250	9,5	2,1
300	11,0	2,1 2,3
350	12,4	2,6
400	13,6	2,9
450	14,7	3,1
500	15,6	
550	16,3	3,2 3,5
600	17,2	3,5
650	18,1	3,6
700	18,5	3,6
750	19,1	4,1
800	19,6	4,1
850	20,1	4,4
900	20,8	4,7
950	21,1	4,8
1000	21,6	4,9

T-						
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0,29	0,04	0,23	0,02	0,0	3	3
0,39	0,09	0,32	0,08	0,0	3	3
0,56	0,14	0,47	0,08	0,0	3	3
0,73	0,20	0,59	0,12	0,0	3	3
0,84	0,21	0,70	0,11	0,0	3	3
0,98	0,24	0,80	0,13	0,0	3	3
1,04	0,26	0,89	0,15	0,0	3	3
1,18	0,31	0,96	0,13	0,0	3	3
1,28	0,35	1,03	0,19	0,0	3	3
1,39	0,38	1,11	0,22	0,0	3	3
1,44	0,39	1,20	0,19	0,0	3	3
1,55	0,46	1,24	0,23	0,0	3	3
1,59	0,43	1,29	0,23	0,0	3	3
1,67	0,34	1,35	0,22	0,0	3	3
1,67	0,42	1,41	0,15	0,0	3	3
1,87	0,54	1,46	0,25	0,0	3	3
1,90	0,46	1,51	0,25	0,0	3	3
1,99	0,60	1,56	0,27	0,0	3	3
2,14	0,60	1,63	0,29	0,0	3	3
2,22	0,60	1,66	0,33	0,0	3	3
2,23	0,61	1,71	0,30	0,0	3	3

$(d_{Limit} = 10 m)$

30	18,6	-9,9	0,29	
50	6,0	-9,6	0,39	
100	9,7	-9,2	0,56	_
150	7,9	-8,8	0,73	
200	7,6	-8,6	0,84	
250	9,5	-8,3	0,98	
300	11,0	-8,1	1,04	
350	12,4	-7,9	1,18	
400	13,6	-7,6	1,28	
450	14,7	-7,4	1,39	
500	15,6	-7,2	1,44	
550	16,3	-7,0	1,55	
600	17,2	-6,9	1,59	
650	18,1	-6,9	1,67	
700	18,5	-6,8	1,67	
750	19,1	-6,3	1,87	
800	19,6	-6,3	1,90	
850	20,1	-6,0	1,99	
900	20,8	-5,8	2,14	_
950	21,1	-5,6	2,22	_
1000	21,6	-5,6	2,23	

0,29	0,04	0,23	0,02	-10,5	10	3
0,39	0,09	0,32	0,08	-10,5	10	3
0,56	0,14	0,47	0,08	-10,5	10	3
0,73	0,20	0,59	0,12	-10,5	10	3
0,84	0,21	0,70	0,11	-10,5	10	3
0,98	0,24	0,80	0,13	-10,5	10	3
1,04	0,26	0,89	0,15	-10,5	10	3
1,18	0,31	0,96	0,13	-10,5	10	3
1,28	0,35	1,03	0,19	-10,5	10	3
1,39	0,38	1,11	0,22	-10,5	10	3
1,44	0,39	1,20	0,19	-10,5	10	3
1,55	0,46	1,24	0,23	-10,5	10	3
1,59	0,43	1,29	0,23	-10,5	10	3
1,67	0,34	1,35	0,22	-10,5	10	3
1,67	0,42	1,41	0,15	-10,5	10	3
1,87	0,54	1,46	0,25	-10,5	10	3
1,90	0,46	1,51	0,25	-10,5	10	3
1,99	0,60	1,56	0,27	-10,5	10	3
2,14	0,60	1,63	0,29	-10,5	10	3
2,22	0,60	1,66	0,33	-10,5	10	3
2,23	0,61	1,71	0,30	-10,5	10	3
-						

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24,4	-19,4
2000	28,5	-17,4
3000	31,0	-16,1
4000	33,1	-14,7
5000	34,4	-13,7
6000	34,7	-12,7
7000	35,6	-11,0

cable loss 1 (relay + cable	cable loss 2	cable loss 3 (switch unit, atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0,99	0,31	-21,51	0,79	
1,44	0,44	-20,63	1,38	
1,87	0,53	-19,85	1,33	
2,41	0,67	-19,13	1,31	
2,78	0,86	-18,71	1,40	
2,74	0,90	-17,83	1,47	
2,82	0,86	-16,19	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31,0	-23,4
4000	33,1	-23,3
5000	34,4	-21,7
6000	34,7	-21,2
7000	35,6	-19,8

cable loss 1 (relay inside chamber) dB 0,47 0,56	cable loss 2 (inside chamber) dB 1,87 2,41	cable loss 3 (outside chamber) dB 0,53 0,67	cable loss 4 (switch unit, atten- uator & pre-amp) dB -27,58 -28,23	cable loss 5 (to receiver) dB 1,33 1,31	used for FCC 15.247
0,61	2,78	0,86	-27,35	1,40	
0,58	2,74	0,90	-26,89	1,47	
0,66	2,82	0,86	-25,58	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35,6	-57,3
8000	36,3	-56,3
9000	37,1	-55,3
10000	37,5	-56,2
11000	37,5	-55,3
12000	37,6	-53,7
13000	38,2	-53,5
14000	39,9	-56,3
15000	40,9	-54,1
16000	41,3	-54,1
17000	42,8	-54,4
18000	44,2	-54,7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0,56	1,28	-62,72	2,66	0,94	1,46
0,69	0,71	-61,49	2,84	1,00	1,53
0,68	0,65	-60,80	3,06	1,09	1,60
0,70	0,54	-61,91	3,28	1,20	1,67
0,80	0,61	-61,40	3,43	1,27	1,70
0,84	0,42	-59,70	3,53	1,26	1,73
0,83	0,44	-59,81	3,75	1,32	1,83
0,91	0,53	-63,03	3,91	1,40	1,77
0,98	0,54	-61,05	4,02	1,44	1,83
1,23	0,49	-61,51	4,17	1,51	1,85
1,36	0,76	-62,36	4,34	1,53	2,00
1,70	0,53	-62,88	4,41	1,55	1,91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Fraguency	AF EMCO	Corr
Frequency MHz	3160-09	Corr. dB
	dB (1/m)	
18000	40,2	-23,5
18500	40,2	-23,2
19000	40,2	-22,0
19500	40,3	-21,3
20000	40,3	-20,3
20500	40,3	-19,9
21000	40,3	-19,1
21500	40,3	-19,1
22000	40,3	-18,7
22500	40,4	-19,0
23000	40,4	-19,5
23500	40,4	-19,3
24000	40,4	-19,8
24500	40,4	-19,5
25000	40,4	-19,3
25500	40,5	-20,4
26000	40,5	-21,3
26500	40,5	-21,1

(=0 0.				
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0,72	-35,85	6,20	2,81	2,65
0,69	-35,71	6,46	2,76	2,59
0,76	-35,44	6,69	3,15	2,79
0,74	-35,07	7,04	3,11	2,91
0,72	-34,49	7,30	3,07	3,05
0,78	-34,46	7,48	3,12	3,15
0,87	-34,07	7,61	3,20	3,33
0,90	-33,96	7,47	3,28	3,19
0,89	-33,57	7,34	3,35	3,28
0,87	-33,66	7,06	3,75	2,94
0,88	-33,75	6,92	3,77	2,70
0,90	-33,35	6,99	3,52	2,66
0,88	-33,99	6,88	3,88	2,58
0,91	-33,89	7,01	3,93	2,51
0,88	-33,00	6,72	3,96	2,14
0,89	-34,07	6,90	3,66	2,22
0,86	-35,11	7,02	3,69	2,28
0,90	-35,20	7,15	3,91	2,36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26,5	43,4	-11,2
27,0	43,4	-11,2
28,0	43,4	-11,1
29,0	43,5	-11,0
30,0	43,5	-10,9
31,0	43,5	-10,8
32,0	43,5	-10,7
33,0	43,6	-10,7
34,0	43,6	-10,6
35,0	43,6	-10,5
36,0	43,6	-10,4
37,0	43,7	-10,3
38,0	43,7	-10,2
39,0	43,7	-10,2
40,0	43,8	-10,1

cable	cable	cable	cable	distance	d _{Limit}	d _{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
4,4				-15,6	3	0,5
4,4				-15,6	3	0,5
4,5				-15,6	3	0,5 0,5
4,6				-15,6	3	0,5
4,7				-15,6	3	0,5
4,7				-15,6	3	0,5
4,8				-15,6	3	0,5
4,9				-15,6	3	0,5
5,0				-15,6	3	0,5
5,1				-15,6	3	0,5
5,1				-15,6	3	0,5
5,2				-15,6	3	0,5
5,3				-15,6	3	0,5
5,4		•		-15,6	3	0,5
5,5		•		-15,6	3	0,5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 SETUP DRAWINGS

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

Drawing 2: Setup for conducted radio tests.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty	
AC Power Line	Power	± 3.4 dB	
Field Strength of spurious radiation	Power	± 5.5 dB	
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz	
Conducted Output Power	Power	± 2.2 dB	
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz	
Frequency Stability	Frequency	± 25 Hz	
Power Spectral Density	Power	± 2.2 dB	

9 PHOTO REPORT

Please see separate photo report.