THEORIE DES LANGAGES ET AUTOMATES

INTRODUCTION

- Les automates ont été définis dans les années 40-50.
- Ils sont utilisés dans les beaucoup de domaines comme:
 - Compilation des langages
 - Reconnaissance de texte
 - Conception de protocoles
 - Synthèse de programmes
 - Vérification de programmes
- Fin des années 50, Chomsky un linguiste a commencé l'étude des grammaires formelles.
- Les liens entre les grammaires et les automates ont été étudiés par la suite

 Alan Turing a étudié en 1930, avant que n'existe le premier ordinateur, une question fondamentale en Informatique:

Existe-t-il une limite à ce qu'on peut calculer?

Sa réponse:

oui, il y a des problèmes qu'on ne peut pas résoudre à l'aide d'un ordinateur même si on suppose une mémoire non bornée

Bibliographie

- P. Dehornoy, "Mathématiques d l'Informatique", Dunod, 2000.
- J. Hopcroft et J. Ullmann, "Introduction to automata theory, Languages and Computations", Addison-Wesley, 1979.
- Webographie
 - http://njussien.e-constraints.net/lla/
 - http://brassens.upmf-grenoble.fr/~alecomte/

Plan

- Mots et langages
- Automates à états finis
- Langages réguliers
- Grammaires
- Langages hors contextes et automates à pile
- Machine de Turing

Mots et langages

Mots

- Un alphabet Σ est un ensemble fini non vide de lettres (ou symboles)
- Un mot est une suite finie de symboles de l'alphabet Σ
 Exemple: 001110 est un mot sur Σ= {0, 1}
- Un mot w constitué de m symboles est dit de longueur m. On note |w| = m.

Exemple:
$$|001110| = 6$$
 $|\epsilon| = 0$

- On note Σ^* l'ensemble des mots sur Σ
- Σ^i est l'ensemble des mots de longueur i . On a : $\Sigma^* = \cup_n \Sigma^n$
- NB : On note Σ^+ l'ensemble $\Sigma^* \setminus \{\epsilon\}$

Opérations

Concaténation

Soit $x \in \Sigma^*$ et $y \in \Sigma^*$ tels que |x| = m et |y| = n. La concaténation de x et y notée xy est le mot de longueur m + n dont les m premiers symboles sont ceux de x et les n derniers ceux de y

- Propriétés de la concaténation
 - associativité
 - non commutativité
 - ε neutre pour la concaténation

Portions de mots:

Soient w, x, y, z quatre mots tels que : w = xyz

- x est un préfixe de w
- y est une sous-chaîne de w
- z est un suffixe de w

Exemple

Si le mot considéré est w = 00110

- préfixes : ε, 0, 00, 001, 0011 et w
- suffixes : ϵ , 0, 10, 110, 0110 et w
- sous-chaînes : ε, 0, 1, 00, 01, 10, 11, 001, 011, 110, 0011,0110 et

- L'opération miroir est définie de la manière suivante :
 - si |w| = 0, alors w = ε et w^R = ε
 - Sinon |w| > 0, w = au ($a \in \Sigma$ et $u \in \Sigma^*$), $w^R = u^R a$.

Si w est tel que $w^R = w$ alors w est un **palindrome**.

Langages

Langage

Un langage (formel) L sur un alphabet Σ est un sous-ensemble quelconque de Σ^* tel que $L \subseteq \Sigma^*$

Exemple

Le langage des nombres est défini sur un alphabet Σ = {0, 1, . . . , 9}. 02, 00310, 3200 sont alors des mots sur Σ . On définira le langage des nombres comme les mots sur Σ qui ne commencent pas par 0. Ainsi, 1233 et 3200 seront des mots du langages mais pas 00310.

Concaténation de langages

Soient L1 et L2 deux langages, leur concaténation est le langage

$$L1L2 = \{xy | x \in L1, y \in L2\}$$

- Propriétés de la concaténation
 - associative
 - non commutative
 - $\{\epsilon\}$ neutre
 - − Ø absorbant

Clôture de Kleene

- L² = LL la concaténation de L avec lui-même
- $L^0 = \{\epsilon\}$
- clôture de Kleene

$$L^* = \bigcup_{i=0 \to \infty} L^i$$

- Autres opérations sur les langages:
 - $A + B (ou A \cup B) = \{w \in X^* | w \in A ou w \in B\}$
 - $-A \cap B = \{w \in X^* | w \in A \text{ et } w \in B\}$
 - -A-B (ou $A \setminus B$) = { $w \in X^* | w \in A \text{ et } w \notin B$ }
 - L^R={u^R|u∈L} (image miroir d'un langage)

Propriétés:

- $-A\varnothing = \varnothing A = \varnothing$
- $A = A \{3\} = \{3\} A = A$
- $-A \subset B \Rightarrow AC \subset BC$
- $-A^* = \bigcup_{i=0 \to \infty} A^i$
- $-A^{+}=\cup_{i=1\rightarrow\infty}A^{i}$

Remarque:

On n' a pas la distributivité de la concaténation par rapport à l'intersection

Théorème d'Arden

A, B langages sur Σ . Si $\varepsilon \notin A$ alors l'équation L=AL+B admet une unique solution L= A*B

Automates à Etats finis (AEF)

Automates à états finis

- Un Automate à Etats Finis (AEF) est défini par la donnée de:
 - un ensemble fini non vide de **symboles** Σ
 - un ensemble fini d'états Q
 - un élément distingué de Q, appelé état initial
 - un sous-ensemble F de Q, appelé ensemble des états finaux
 - une fonction partielle δ: Q×Σ→Q, appelée fonction de transition.

représentation concrète:

un ruban, illimité à droite, divisé en cases une tête de lecture positionnée sur une seule case à la fois

chaque case du ruban contient au plus un symbole, c'est alors nécessairement un symbole de Σ celles qui ne contiennent pas de symbole: cases vides, ou occupées par des blancs (« _ »)

		a	a	c	b	b					

$$\Sigma = \{a, b, c\}$$

Au départ: tête de lecture sur première case non vide à partir de la gauche

si ruban vide: sur n'importe quelle case

			a	a	c	b	b						
						(1	`					
		<u>'</u>			$\Sigma =$	{a,	b, c	}					

Au départ: tête de lecture sur première case non vide à partir de la gauche dans l'état initial q_0 si ruban vide: sur n'importe quelle case

La tête de lecture se déplace uniquement vers la droite, d'une seule case à chaque instant du calcul son mouvement est déterminé par la fonction δ

Si $\delta(\mathbf{q}_0, \mathbf{a}) = \mathbf{q}_1$ alors la tête de lecture passe à l'état \mathbf{q}_1 puis se déplace d'une case vers la droite

But: mot accepté si et seulement si

- 1- mot entièrement « lu »
- 2- arrêt dans un état final

Exemple d'automate

$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$Q = \{q_0, q_1, q_2\}$$

$$Q_f = \{q_0\}$$

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
d0	q0	q 1	q 2
91	q 1	q 2	q0
q 2	q 2	q0	q 1

2	5	1	7	0	4	6	2					
q_0												

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
q0	q0	q 1	q 2
q 1	q 1	q 2	q0
q 2	q 2	q0	91

	2	5	1	7	0	4	6	2					
		q_2											

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
q0	q0	q 1	q 2
91	q 1	q 2	q0
q 2	q 2	q0	q 1

	2	5	1	7	0	4	6	2					
			q_1										

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
q0	q0	q 1	q 2
91	q 1	q 2	q 0
q 2	q 2	q0	91

	2	5	1	7	0	4	6	2					
				q_2									

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
d0	q0	q 1	q 2
91	q 1	q 2	q 0
q 2	q 2	q0	q 1

	2	5	1	7	0	4	6	2					
					q_0								

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
d0	q0	q 1	q 2
91	q 1	q 2	q 0
q 2	q 2	q0	q 1

	2	5	1	7	0	4	6	2					
						q_0							

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
d0	q0	q 1	q 2
91	q 1	q 2	q 0
q 2	q 2	q0	q 1

	2	5	1	7	0	4	6	2					
							q_1						

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
q0	q0	q 1	q 2
91	q 1	q 2	q 0
q 2	q 2	q0	91

	2	5	1	7	0	4	6	2					
								q_1					

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
q0	q0	q 1	q 2
q 1	q 1	q 2	q0
q 2	q 2	q0	q 1

	2	5	1	7	0	4	6	2						
									O .					

τ:	0, 3, 6, 9	1, 4, 7	2, 5, 8
d0	q0	q 1	q 2
91	q 1	q 2	q 0
q 2	q 2	q0	q 1

soit à reconnaître le mot 25170462

- L'automate s'arrête dans un état final,
- il ne reste plus rien à lire
- le mot est donc accepté

Représentation par diagramme

- états = sommets
- transitions = arcs étiquetés (par les lettres)
- état initial = sommet de départ
- état final = sommet d'arrivée
- mot = chemin
- mot accepté = chemin allant de l'état initial à un état final

reconnaître 25170462

reconnaître 25170462

Configuration : couple (q, w) avec q∈Q et w∈Σ*
 (q représente l'état courant et w le mot qui reste à lire sur le ruban)

Succession immédiate

```
(q',w') suit immédiatement (q,w):

(q, w) \rightarrow (q', w')

si et seulement si

-w = xw' avec x \in \Sigma

-\delta(q, x) = q'
```


Succession:

il existe un entier $n\ge 0$ et une suite (q_0, w_0) , (q_1, w_1) ,..., (q_n, w_n)

telle que:

- $(q_0, w_0) = (q, w)$
- $-(q_n, w_n) = (q', w')$
- $(q_0, w_0) \rightarrow (q_1, w_1) \rightarrow ... \rightarrow (q_n, w_n)$
- le cas particulier n = 0, la suite se réduit alors à (q₀,w₀) (réflexivité)

- Mot accepté par A = <Σ, Q, q₀, F, δ>
 w ∈Σ* est accepté par A
 si et seulement si
 (q₀, w) →* (q, ε) avec q∈F
- Langage accepté par A : L(A) défini par
 L(A) = {w ∈ Σ*; w accepté par A}
- * : fermeture réflexive transitive
- † fermeture transitive non réflexive

 Un automate fini sur un alphabet Σ est complet si pour chaque symbole x∈Σ, et chaque état q, il existe au moins une transition étiquetée x qui quitte q.

- Un automate fini sur un alphabet Σ est **non ambigüe** si pour chaque symbole $x \in \Sigma$, et chaque état q, il existe au plus une transition étiquetée x qui quitte q.
- Un automate est dit déterministe ssi il est complet et non ambigüe.

Automates finis non déterministes

- Un **AFN** (Automate Fini Non déterministe) est un quintuplet $A = (Q, \Sigma, \delta, q_0, F)$ tel que
 - E est l'ensemble fini d'états
 - Σ est un vocabulaire (d'entrée) fini
 - $\delta: \mathbf{Q} \times \Sigma \to \mathcal{P}(\mathbf{Q})$ est une fonction dite de transition
 - q₀∈ Q est l'état initial
 - F ⊆ Q est l'ensemble des états terminaux (ou d'acceptation)

Exemple:

 $A = (\{e_0, e_1, e_2\}, \{0, 1\}, e_0, \{e_2\})$

 Le prolongement de δ noté δ* à Q × Σ* est défini de la façon suivante :

- $\forall q \in Q, \delta^*(q, \varepsilon) = \{q\}$
- $\forall q \in Q, \ \forall x \in \Sigma, \ \forall w \in \Sigma^*,$ $\delta^*(q,wx) = \bigcup_{e \in \delta^*(q,w)} \delta(e,x)$
- Un mot est accepté par l'automate lorsqu'au moins un des états de sortie est terminal

- Exemple chaîne d'entrée 00101
 - $-\delta^*(e_0,\epsilon) = \{e_0\}$
 - $-\delta^*(e_0, 0) = \delta(e_0, 0) = \{e_0, e_1\}$
 - $-\delta^*(e_0, 00) = \delta(e_0, 0) \cup \delta(e_1, 0) = \{e_0, e_1\} \cup \emptyset = \{e_0, e_1\}$
 - $\delta^* (e_0, 001) = \delta(e_0, 1) \cup \delta(e_1, 1) = \{e_0\} \cup \{e_2\} = \{e_0, e_2\}$
 - $-\delta^*(e_0, 0010) = \delta(e_0, 0) \cup \delta(e_2, 0) = \{e_0, e_1\} \cup \emptyset = \{e_0, e_1\}$
 - $\delta^* (e_0, 00101) = \delta(e_0, 1) \cup \delta(e_1, 1) = \{e_0\} \cup \{e_2\} = \{e_0, e_2\}$

Langage reconnu par un automate fini non déterministe:

$$L(A) = \{x \in V^* \mid \delta^*(q_0, x) \cap F \neq \emptyset\}$$

Exemple

$$L(A) = \{w \mid \exists y \in V^*, w = y01\}$$

Déterminisation d'un AFN:

Soit un AFN N = $(Q_N, \Sigma, \delta_N, e_0, F_N)$. On construit un AFD D = $(Q_D, \Sigma, \delta_D, e_0, F_D)$ comme suit:

- $Q_D = \mathcal{P}(Q_N)$
- $F_D = \{G \subseteq Q_N | G \cap F_N \neq \emptyset \}$
- $\ \forall G \subseteq Q_N \ (G \in \mathscr{F}(Q_N)), \ \forall x \in V, \ \delta_D(G, x) = \bigcup_{e \in G} \delta_N(e, x)$

Théorème (Equivalence AFN – AFD)

Soit N = $(Q_N, \Sigma, \delta_N, e_0, F_N)$ et D = $(Q_D, \Sigma, \delta_D, e_0, F_D)$ construit comme précédemment à partir de N. On a alors L(D) = L(N)

Principe de déterminisation:

considérer des ensembles d'états plutôt que des états

- Partir de l'état initial
- 2. Rajouter dans la table de transition tous les nouveaux états produits avec leurs transitions
- 3. Recommencer 2 jusqu'à ce qu'il n'y ait plus de nouvel état
- Tous les états contenant au moins un terminal deviennent terminaux

Exemple

	0	1
Ø	Ø	Ø
{e0}	{e0,e1}	{e0}
{e1}	Ø	{e2}
{e2}	Ø	Ø
{e0,e1}	{e0,e1}	{e0,e2}
{e0,e2}	{e0,e1}	{e0}
{e1,e2}	Ø	{e2}
{e0,e1,e2}	{e0,e1}	{e0,e2}

Minimisation d'AEF

Principe:

On définit des classes d'équivalence d'états par raffinements successifs. Chaque classe obtenue forme une seul même état du nouvel automate

Hypothèse de l'algorithme:

AFD complet dont tous les états sont accessibles.

Minimisation d'AEF

- Faire deux classes: l'une contenant les états terminaux et l'autre les états non terminaux
- 2. S'il existe un symbole a et deux états e1 et e2 d'une même classe tels que δ (e1,a) et δ (e2,a) n'appartiennent pas à la même classe, alors créer une nouvelle classe et séparer e1 et e2
- Recommencer 2 jusqu'à ce qu'il n'y ait plus de classes à séparer
- Chaque classe restante forme un état du nouvel automate