디끼털 신호 처리 응용

목 차

- 개요
- 음성 및 오디오 신호 처리
- 영상 신호 처리
- 통신 신호 처리

개요

- 디지털 신호처리(DSP) 이론
 - 시간 영역과 주파수 영역에서
 - 신호와 시스템의 성질 분석
 - 시스템의 출력 신호 계산
 - 원하는 성질의 시스템 설계
- 대표적인 DSP 응용 분야
 - 음성, 오디오, 영상, 비디오 신호 등의 멀티미디어 신호 처리
 - 무선 및 유선 통신 신호 처리

- 음성 신호의 핵심 정보
 - 피치(pitch) 주파수 : 음의 높낮이
 - 스펙트럼 포락선(spectral envelope) : 발음
 - 음성 신호의 피치 주파수와 스펙트럼 포락선 분석을 통하여 음성 압축/ 인식/합성 수행

- 음성 신호의 발성 모델
 - 성대(vocal cord)
 - 진동 장치, 피치 주파수를 결정, 유성음 발성
 - 그대로 통과하면 무성음 발성
 - 성도(vocal tract)
 - 성대 이후의 모든 발성 기관
 - 공명(resonance) 장치, 특정 주파수 성분을 강화
 - 성도의 공명 주파수 = 포먼트(formant) 주파수

● 음성 신호의 스펙트럼 포락선 예

- 오디오 신호 압축의 기본 개념
 - 오디오 신호 x(n)을 주파수 변환하여 X(k) 계산
 - 인간의 청각이 인지하지 못하는 수준으로 X(k)를 양자화
 - 양자화 오차를 수학적 오차가 아니라 청각적 왜곡으로 측정
- 주파수 변환
 - MP3(MPEG-1 Layer 3)
 - 32개의 대역 통과 필터와 MDCT(modified discrete cosine transform)
 - MPEG-2/4 AAC(advanced audio coding)
 - MDCT

- 영상신호처리
 - 음성 및 오디오 신호처리와 더불어 대표적인 신호처리 응용분야
 - 영상 신호 (2차원 공간 도메인에서 표현)
 - 비디오 신호 (시간 도메인으로 확장)
 - 음성 및 오디오 신호 (1차원 시간 도메인에서 표현)
- 영상신호처리의 분류
 - 잡음제거, 화질개선, 영상복원
 - 지문인식, 얼굴인식, 영상압축
 - 인공지능분야

- 영상 신호의 2차원 표현
 - 영상신호를 표현하는 2차원 공간 축
 - 정의역(domain)
 - 2차원 직교좌표계
 - Euclidean space
 - (x, y)
 - 화소의 위치
 - F(x, y)
 - (x, y) 화소의 밝기값

	0	1	2	3	х
0	f(0,0)	f(1,0)	f(2,0)	f(3,0)	
1	f(0,1)	f(1,1)	f(2,1)	f(3,1)	
2	f(0,2)	f(1,2)	f(2,2)	f(3,2)	
3	f(0,3)	f(1,3)	f(2,3)	f(3,3)	
у ,					1

- 2차원 영상 필터링
 - 필터링 (Filtering)
 - 원하는 신호와 원하지 않는 신호를 구분
 - 잡음제거
 - 특정 주파수의 영상을 추출
 - 마스크 (Mask)
 - 공간영역에서 표현/처리

w(-1,-1)	w(0,—1)	w(1,—1)		
w(-1,0)	w(0,0)	w(1,0)		
w(-1,1)	w(0,1)	w(1,1)		

$$\begin{split} f'(x,\,y) &= w(-\,1,-\,1) \times f(x-1,\,y-1) + w(0,-\,1) \times f(x,\,y-1) \\ &+ w(1,-\,1) \times f(x+1,\,y-1) + w(-\,1,0) \times f(x-1,\,y) \\ &+ w(0,0) \times f(x,\,y) + w(1,0) \times f(x+1,\,y) \\ &+ w(-\,1,1) \times f(x-1,\,y+1) + w(0,1) \times f(x,\,y+1) \\ &+ w(1,1) \times f(x+1,\,y+1) \end{split}$$

- 마스크 (Mask)
 - 저역 통과 필터

1 9	1/9	1/9		1/16	<u>2</u> 16	1/16	<u>2</u> 25	3 25	<u>2</u> <u>25</u>	
<u>1</u> 9	1/9	1/9		$\frac{2}{16}$	$\frac{4}{16}$	$\frac{2}{16}$	$\frac{3}{25}$	$\frac{5}{25}$	$\frac{3}{25}$	
1/9	1/9	1/9		1/16	<u>2</u> 16	1/16	$\frac{2}{25}$	$\frac{3}{25}$	$\frac{2}{25}$	
(a)				(b)			(c)			

<3x3 저역 통과 필터 마스크의 예>

- 마스크 (Mask)
 - 고역 통과 필터

<3x3 고역 통과 필터 마스크의 예>

(a) 원본 영상

(b) 고역 통과 필터 적용

- 영상 신호에 대한 2차원 DCT 변환
 - 변환 (Transform)
 - 신호가 표현되는 정의역 (domain)을 바꾸는 과정
 - 공간 영역에서 주파수 영역으로 변환하는 것이 일반적
 - DCT (Discrete Cosine Transform)
 - JPEG, MPEG과 같은 영상 압축 표준에서 사용하는 변환 방법

$$X(i, j) = \alpha(i)\alpha(j) \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} x(m, n) \cos\left[\frac{\pi}{N}\left(m + \frac{1}{2}\right)i\right] \cos\left[\frac{\pi}{N}\left(n + \frac{1}{2}\right)j\right]$$

$$\alpha(k) = \begin{cases} \sqrt{\frac{1}{N}}, & k = 0\\ \sqrt{\frac{2}{N}}, & \text{다른 경우} \end{cases}$$

DFT와 DCT의 에너지 집중 성질 비교

- 영상 신호의 압축
 - 압축(compression)
 - 카메라로부터 취득된 미가공(raw)의 동영상 또는 정지 영상은 많은 데이터 량이 필요
 - 영상에 대한 저장 및 전송을 위해서 압축이 필요
 - 압축 표준 (compression standard)
 - 동영상 표준
 - MPEG-1, MPEG-2, MPEG-4
 - H.261, H.263, H.264/AVC
 - 정지 영상 표준
 - JPEG, JPEG-LS, JPEG-2000, JBIG

- JPEG(Joint Photographic Experts Group) 알고리즘
 - 정지 영상 압축의 가장 대표적인 표준
- 1. 레벨 오프셋
- 2. 8x8 DCT
- 3. 양자화
- 4. DC 계수
 - DPCM
 - 가변 길이 부호화
- 5. AC 계수
 - 지그재그스캐닝
 - 런 길이 부호화
 - 가변 길이 부호화

- 영상 신호 처리를 통한 얼굴 인식
 - 패턴 인식
 - 2D 영상 신호 처리의 대표적 응용분야
 - 문자인식, 생체인식
 - 얼굴 인식
 - 입력된 영상에 해당하는 얼굴이 누구의 것인지를 판단하는 과정
 - 얼굴인식 수행과정

- 영상 취득 (image acquisition)
 - 카메라로부터 피검출자의 얼굴을 포함하는 영상을 얻는 과정

- 전처리과정 (pre-processing)
 - 조명, 카메라센서, 얼굴과 카메라의 각도, 잡음 등의 왜곡을 보정하는 과정

- 얼굴 검출 (face detection)
 - 전체 영상에서 얼굴 영역을 분리하는 과정

- 얼굴 표준화 (standardization)
 - 입력 영상을 유사한 환경으로 인식하기 위해 크기, 전체 밝기 등을 표준화하는 과정

- 얼굴 인식 (recognition)
 - 표준화된 얼굴 영상을 이용하여 다양한 인식 알고리즘에 따라 각 얼굴들을 구분하는 과정
 - PCA (principal component analysis)
 - 주성분분석법
 - 통계적 분석에서 사용하는 방법
 - 최적의 고유 얼굴 성분을 찾는 방법

- OFDM(Orthogonal Frequency Division Multiplexing)
 - 차세대 이동통신 환경에서의 다양한 통신 요구 조건의 충족 필요
 - 한정되어 있는 무선 채널의 전력과 주파수의 효율적 사용
 - 요구되는 BER(Bit Error Rate)성능에 대하여 최대의 효율
 - 고속 데이터 전송의 필요성
 - OFDM의 특성
 - 다중 반송파 변조 방식의 일종
 - 다중 경로, 이동 수신환경에서 우수한 성능
 - 지상파 디지털 TV 및 디지털 음성 방송에 적합한 방식

- OFDM 신호의 전송 원리
 - 다중 반송파를 이용한 병렬 전송
 - 고속의 심벌을 전송율이 낮은 여러 개의 부반송파로 나누어 전송
 - 다수의 부반송파를 이용하여 각각 직렬로 입력된 데이터는 부반송파의 개수만큼 병렬로 변환
 - 시간영역에서 심벌 길이는 부반송파의 개수만큼 확장

- OFDM 전송 방식
 - OFDM 전송 방식의 핵심 기술은 다중 부반송파와 직교성 (Orthogonality)
 - 보내고자 하는 데이터는 N개로 나누어 각 부반송파를 곱해서 전송
 - 전송하는 부반송파 간에 직교성의 유지 여부가 시스템의 성능과 직결

- 직교 부반송파의 배치
 - 높은 주파수 효율 가능

• OFDM 변조 블록도

• OFDM 복조 블록도

- IDFT / DFT
 - IDFT (Inverse Discrete Fourier Transform) 변조

$$x(n) = \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}$$

DFT (Discrete Fourier Transform) 복조

$$X(k) = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{kn}{N}}$$

<Frequency Spectrum>

● OFDM 통신시스템의 송수신단 블록도

Transmitter

