1. Support Vector Machines

Load the Iris dataset from sklearn.

• Create a scatter plot of the dataset.

The points in the dataset are of 3 classes: Setosa, Versicolour, and Virginica. Split the dataset into train, val and test.

- Using your favorite library, train an SVM classifier to predict the class of a given datapoint. Report the accuracy, precision, recall and f1-score.
- Modify the parameters of the SVM to get a soft-margin as well as a hard-margin classifier. Compare the performances of the two. Tune the respective hyperparameters to get the best results on the validation set. Which parameter effects the hardness of the classifier?
- Apply the Gaussian, RBF and polynomial kernels to better classifier(hard-margin or soft-margin). Which kernel gives the best performance? You may need to tune the parameters of the kernels to get the best result for each.

2. Singular Value Decomposition

Load the following images from skimage

```
from skimage import data
from skimage.color import rgb2gray
from ipywidgets import interact,interactive,interact_manual

[] from skimage import img_as_ubyte,img_as_float
gray_images = {
    "cat":rgb2gray(img_as_float(data.chelsea())),
    "astro":rgb2gray(img_as_float(data.astronaut())),
    "camera":data.camera(),
    "coin": data.coins(),
    "clock":data.clock(),
    "blobs":data.binary_blobs(),
    "coffee":rgb2gray(img_as_float(data.coffee()))
}
```

Since an image is basically a matrix, we can compute the SVD of the matrix.

- Plot any one of these images using matplotlib and extract the data matrix for this image.
- Compute the SVD of the matrix, and compute a rank-k approximation of the image, where k is user-defined. This will be the reconstructed image

- For different values of k, plot the original image as well as the reconstructed image. How does the quality vary with k?
- Note that, if the original image is of size M x N, and we are computing a k rank approximation, then we need to store the M x k left singular matrix, the N x k right singular matrix as well as k singular values. What is the compression ratio with respect to the original image? Report the compression ratio for different values of k

Repeat these 4 questions in case of color images. (How do you convert an RGB image, having shape M x N x 3 into a 2D matrix, so that you can apply SVD?)