Digital Image Processing (CSE/ECE 478)

Lecture-19b: Image Restoration

Ravi Kiran and Sudipta Banerjee

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Mathematical Model of Image Degradation/Restoration

$$g(x,y) = h(x,y) \star f(x,y) + \eta(x,y)$$
$$G(u,v) = H(u,v) F(u,v) + N(u,v)$$

Noise based Degradation

Assuming H is identity, model reduces to:

$$g(x,y) = f(x,y) + \eta(x,y)$$

$$G(u,v) = F(u,v) + N(u,v)$$

Noise Models

FIGURE 5.2 Some important probability density functions.

Restoration (in presence of noise only)

original

Original + salt and pepper noise

Arithmetic mean filter

Geometric mean filter

Median filter

Alpha Trimmed filter

Estimation of degradation function

- Three main ways:
 - Observation → look, find, iterate
 - Experimentation → important idea for calibration
 - Mathematical modelling

$$H_{S}(u,v) = \frac{G_{S}(u,v)}{\widehat{F}_{S}(u,v)}$$

Blind

deconvolution

Recovering image (in presence of both Noise and degradation)

 Direct inverse filtering: Assuming H is known or obtained using any of the 3 methods:

$$\hat{F}(u,v) = rac{G(u,v)}{H(u,v)}$$

$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$
 $\Rightarrow \hat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)}$

Even if we know the degradation function we cannot recover the un-degraded image!!

Two problems:

- 1. N(u,v) is a random function whose fourier transform is not known
- 2. If degradation has zero or small values $\rightarrow N(u,v)/H(u,v)$ will dominate

Weiner filter (Minimum Mean Square Error)

Consider image and noise as random variables

$$e^2 = E\{(f-\hat{f})^2\}$$

Explicitly incorporates both degradation function and statistical characteristics of noise in restoration process

Assumption:

- Noise and image are uncorrelated

Weiner filter

The minimum of the error function 'e' is given by:

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)S_f(u,v)}{S_f(u,v)|H(u,v)|^2 + S_{\eta}(u,v)} \right] G(u,v) \qquad \hat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$$

$$|H(u,v)|^2 = H^*(u,v)H(u,v)$$

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_{\eta}(u,v)/S_f(u,v)} \right] G(u,v)$$

$$S_{\eta}(u,v) = |N(u,v)|^2$$
 Power spectrum of the noise (autocorrelation of noise)

$$S_f(u,v) = |F(u,v)|^2$$
 Power spectrum of the undegraded image

Weiner filter

• When two spectrums are not known or cannot be estimated, the equation is approximated as:

$$\hat{F}(u,v)=\left[rac{1}{H(u,v)}rac{|H(u,v)|^2}{|H(u,v)|^2+K}
ight]G(u,v) \qquad \hat{F}(u,v)=rac{G(u,v)}{H(u,v)}$$

$$SNR = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} |F(u,v)|^2 / \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} |N(u,v)|^2$$

Weiner filter

Reduced noise variance by one order of magnitude

Reduced noise variance by five orders of magnitude

Image Restoration

Inverse problems

Known	Problem type
H,g	Recovery
g	Blind recovery
g, H partially	Semi blind recovery
f,g	System identification

Geometric Distortion

Pinhole and the Perspective Projection

Common Lens Related Issues - Summary

Compound (Thick) Lens

Vignetting

Chromatic Abberation

Lens has different refractive indices for different wavelengths.

Radial and Tangential Distortion

Lens Glare

• Happens when very bright sources are present in the scene.

Vignetting

Vignetting appears as radial darkening towards frame corners

- Natural vignetting is caused due to light reaching different locations of camera sensor at different angles. Optical vignetting caused by shading from lens barrel
- Mechanical vignetting is due to physical obstruction in front of lens (filter rings)

Chromatic Aberrations

longitudinal chromatic aberration (axial)

transverse chromatic aberration (lateral)

Refractive index of medium depends on wavelength. Lens is not able to focus all wavelengths at same focal point

Geometric Lens Distortions

who said distortion is a bad thing?

blur ...

noise ...

geometric ...

© Declan Mccullagh Photography, mccullagh.org

Digital Image Processing (CSE/ECE 478)

Lecture-20: Image Compression

Ravi Kiran and Sudipta Banerjee

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Data Compression

 Data compression aims to <u>reduce</u> the amount of data while <u>preserving</u> as much <u>information</u> as possible.

Image Compression

 Goal: Reduce amount of data required to represent a digital <u>image</u> (signal).

.. By leveraging redundancies in image data

Compression Ratio

Compression ratio:
$$C_R = \frac{n_1}{n_2}$$

Relative Data Redundancy

$$R_D = 1 - \frac{1}{C_R}$$

Example:

If
$$C_R = \frac{10}{1}$$
, then $R_D = 1 - \frac{1}{10} = 0.9$

(90% of the data in dataset 1 is redundant)

if
$$n_2 = n_1$$
, then $C_R = 1$, $R_D = 0$

if
$$n_2 \ll n_1$$
, then $C_R \to \infty$, $R_D \to 1$

To put it on a 25 GB blu ray disc: required compression factor = 53.6

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types.

FIGURE 8.1 Computer generated $256 \times 256 \times 8$ bit images with (a) coding redundancy, (b) spatial redundancy, and (c) irrelevant information. (Each was designed to demonstrate one principal redundancy but may exhibit others as well.)

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types.

Coding - Definitions

- Code: a list of symbols (letters, numbers, bits etc.)
- Code word: a sequence of symbols used to represent some information (e.g., gray levels).
- Code word length: number of symbols in a code word.

Example: (binary code, symbols: 0,1, length: 3)

0: 000 4: 100 1: 001 5: 101 2: 010 6: 110 3: 011 7: 111

Optimal Information Coding

Assume an $M \times N$ image

 r_k : Discrete random variable in the range [0,L-1], i.e., the k-th intensity level $l(r_k)$: no. of bits used to represent each value of r_k

 $p_r(r_k)$: probability of r_k (each r_k occurs with probability $p_r(r_k)$) $p_r(r_k) = \frac{n_k}{MN}$, k = 0,1,2,...,L-1 (L is the no. of intensity values and n_k is the number of times that k^{th} intensity level appears in the image)

$$E(X) = \sum x. P(X = x)$$

Average no. of bits required to represent each pixel is $L_{avg} = \sum_{k=0}^{L-1} l(r_k) p_r(r_k)$ Total number of bits to represent the image = MNL_{avg}

Coding Redundancy

Case 1: I(r_k) = constant length

Example:

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	
$r_0 = 0$	0.19	000	3	
$r_1 = 1/7$	0.25	001	3	
$r_2 = 2/7$	0.21	010	3	
$r_3 = 3/7$	0.16	011	3	
$r_4 = 4/7$	0.08	100	3	
$r_5 = 5/7$	0.06	101	3	
$r_6 = 6/7$	0.03	110	3	
$r_7 = 1$	0.02	111	3	

Average # of bits: $L_{avg} = E(l(r_k)) = \sum_{k=0}^{L-1} l(r_k)P(r_k)$

Total # of bits: NML avg

Assume fixed-length code

Assume
$$l(r_k) = 3$$
, $L_{avg} = \sum_{k=0}^{7} 3P(r_k) = 3\sum_{k=0}^{7} P(r_k) = 3$ bits

Total number of bits: 3NM

Coding Redundancy (cont'd)

• Case 2: $I(r_k)$ = variable length

Table 6.1	Variable-Length Coding Example			variable length		
r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$	
$r_0 = 0$	0.19	000	3	11	2	
$r_1 = 1/7$	0.25	001	3	01	2	
$r_2 = 2/7$	0.21	010	3	10	2	
$r_3 = 3/7$	0.16	011	3	001	3	
$r_4 = 4/7$	0.08	100	3	0001	4	
$r_5 = 5/7$	0.06	101	. 3	00001	5	
$r_6 = 6/7$	0.03	110	3	000001	6	
$r_7 = 1$	0.02	111	3	000000	6	

$$C_R = \frac{n_1}{n_2}$$

$$L_{avg} = \sum_{k=0}^{7} l(r_k)P(r_k) = 2.7 \text{ bits}$$

Total number of bits: 2.7MN

$$C_R = \frac{3}{2.7} = 1.11 \text{ (about 10\%)}$$

$$R_D = 1 - \frac{1}{1.11} = 0.099$$

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types. **Spatial Redundancy**

- All 256 intensities are equiprobable
- Pixels are independent in vertical direction
- Pixels are maximally correlated in horizontal direction, each row has constant intensity

Run-length pairs:

• Each run-length pair specifies start of new intensity and the no. of consecutive pixels that have that intensity (I, n_I)

Row1: (23,256) Row2: (240,256)

8-bit code r_0 to r_{255}

Row256: (10,256)

Compression ratio =
$$\frac{256 \times 256 \times 8}{(256 + 256) \times 8} = \frac{2^{16}}{2^9} = 128:1$$

Spatial redundancy

- Interpixel/Intra-image redundancy exists → pixel values are correlated
- i.e., a pixel value can be reasonably predicted by its neighbors

auto-correlation

$$f(x) o g(x) = \int_{-\infty}^{\infty} f(x)g(x+a) da$$

auto-correlation: f(x)=g(x)

Interpixel redundancy (cont'd)

To reduce interpixel redundancy, some kind of transformation must be applied on the data (e.g., thresholding, DFT, DWT)

Example:

Spatial and temporal redundancy

frame t frame t+1

Inter-frame redundancy

Spatial and temporal redundancy

Types of Redundancy

- (1) Coding Redundancy
- (2) Spatial/Temporal Redundancy
- (3) Psychovisual Redundancy

 Image compression attempts to reduce one or more of these redundancy types.

Irrelevant information or perceptual redundancy

 Not all visual information is perceived by eye/brain, so throw away those that are not

Maybe use the average intensity alone (single 8-bit value!)

Psychovisual redundancy (cont'd)

Example: quantization

256 gray levels

16 gray levels

C=8/4=2:1

16 gray levels + random noise

add a small pseudo-random number to each pixel prior to quantization

Information theory

- Basic Premise: Generation of information can be treated as a probabilistic process defined over symbols.
- Symbol carrier of information
- Consider a symbol with an occurrence probability p.
- The amount of information contained in the symbol is defined as:

$$I = \log_2 \frac{1}{p}$$
 bits or $I = -\log_2 p$

Information theory: Entropy

- Consider a statistically-independent source that contains L possible symbols {s,i=0,1,2,...,L-1}
- With corresponding occurrence probabilities defined as $\{p_i, i=0,1,2,...,L-1\}$
- Entropy

$$H = -\sum_{i=0}^{L-1} p_i \log_2 p_i$$

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_{87} = 87$	0.25	01010111	8	01	2
$r_{128} = 128$	0.47	10000000	8	1	1
$r_{186} = 186$	0.25	11000100	8	000	3
$r_{255} = 255$	0.03	11111111	8	001	3
r_k for $k \neq 87, 128, 186, 255$	0	_	8	_	0

H=[0.25xlog(0.25)+0.47xlog(0.47)+0.25
xlog(0.25)+0.03xlog(0.03)=1.66
bits/pixel

Information theory: Shannon's noiseless coding theorem

Shannon's lossless source coding theorem: For a discrete, memoryless
information source, the minimum bit rate required to encode a symbol on
average is equal to the entropy of the source

- In other words: entropy provides a **lower bound** on compression that can be achieved when coding statistically independent symbols
- For correlated pixels, we can leverage spatial/temporal redundancy to get fewer average bits/pixel. If current output depends on finite past outputs, we get a Markov or finite memory source

Reference

 Ch 5 for Image Restoration and Ch 8 for Image Compression, G&W textbook