Axiomas, teoremas, corolarios y definiciones $_{\mbox{\tiny Joao Lucas Marquez Barbosa}}$

por FODE

Índice general

1.	El eje de la incidencia y el orden	3
2.	El axioma de los paralelos	4

1

El eje de la incidencia y el orden

Axioma .1 Cualquiera que sea la recta, hay puntos que pertenecen a la recta y puntos que no pertenecen a la recta.

Axioma .2 Dados dos puntos distintos, hay una sola recta que contiene estos puntos.

Proposición 1.1 Dos líneas distintas no se cruzan o se cruzan en un solo punto.

Axioma II.3 Dados tres puntos de una recta, uno y solo uno de ellos se ubica entre los otros dos.

Definición 1.1 El conjunto que consta de dos puntos A y B y todos los puntos entre A y B se llama segmento AB. Los puntos A y B se denominan extremos o extremos del segmento.

Definición 1.2 Si A y B son puntos distintos, el conjunto que consta de los puntos del segmento AB y todos los puntos C tales que B está entre A y C, se denomina semi-recta de origen A que contiene el punto B y está representado por S_{AB} . El punto A se llama entonces el origen del S_{AB} semi-recto.

Proposición 1.2 .

- a) $S_{AB} \cup S_{BA}$ y la recta determinada por A y B.
- **b)** $S_{AB} \cap S_{BA} = AB$.

Axioma II.4 Dados dos puntos A y B siempre existe un punto C entre A y B y un punto D tal que B está entre A y D.

Definición 1.3 Sea m una recta y A un punto que no pertenece a m. El conjunto que consta de los puntos d e m y todos los puntos B tales que A y B están en el mismo lado de la recta m es llamado semiplano determinado por m que contiene a A, y estará representado por P_mA .

Axioma II.5 Una recta m determina exactamente dos semiplanos distintos cuya intersección es la recta m.

El axioma de los paralelos

Axioma II.6 Para un punto fuera de la recta m, se puede trazar una sola recta paralela a la recta m.

Proposición 2.1 Si la recta m es paralela a las rectas n_1 y n_2 , entonces n_1 y n_2 son paralelas o coincidentes

Corolario 2.1 Si una recta corta uno de dos paralelos, también corta otro.

Proposición 2.2 Sean $m, n, \widehat{1}$ y $\widehat{2}$ como en la figura (6,1). Si $\widehat{1} = \widehat{2}$, entonces las rectas m y n son paralelas.

Proposición 2.3 Si, al cortar dos rectas con una transversal, obtenemos $\widehat{3} + \widehat{2} = 180^{\circ}$ entonces las rectas son paralelas.

Proposición 2.4 Si, cuando cortamos dos rectas con una transversal, los ángulos correspondientes son iguales, entonces las rectas son paralelas.

Proposición 2.5 Si dos rectas paralelas están cortadas por una transversal, entonces los ángulos correspondientes son iguales.

Teorema 2.1 La suma de los ángulos internos de un triángulo es 180°.

Corolario 2.2 a) La suma de las medidas de los ángulos agudos de un triángulo rectángulo es 90circ.

- b) Cada ángulo de un triángulo equilátero mide 60°.
- c) a medida de un ángulo externo de un triángulo es igual a la suma de las medidas de los ángulos internos que no son adyacentes a él.
- d) La suma de los ángulos internos de una cuadrilátero es 360°.

Teorema 2.2 Si m y n son rectas paralelas, entonces todos los puntos de m están a la misma distancia de la recta n.

Proposición 2.6 En un paralelogramo, los lados y ángulos opuestos son congruentes.

Definición 2.1 Un paralelogramo es un cuadrilátero cuyos lados opuestos son paralelos.

Proposición 2.7 En un paralelogramo, los lados y ángulos opuestos son congruentes.

Proposición 2.8 Las diagonales de un paralelogramo se cruzan en un punto que es el punto medio de las dos diagonales.

Proposición 2.9 Si dos lados opuestos de un cuadrilátero son congruentes y paralelos, entonces el cuadrilátero es un paralelogramo.

Teorema 2.3 El segmento que conecta los puntos medios en dos lados de un triángulo es paralelo al tercer lado y tiene la mitad de su longitud.

Proposición 2.10 Suponga que tres rectas paralelas, a, b y c cortan las rectas m y n en los puntos A, B y C y en los puntos A', B' y C' respectivamente. Si el punto B está entre A y C, entonces el punto B' también está entre A' y C'. Si AB = BC, entonces también hay A'B' = B'C'

Corolario 2.3 Suponga que k rectas paralelas $a_1, a_2, ..., a_k$ cortan dos rectas m y n en los puntos $A_1, A_2, ..., A_k$ y en los puntos $A_1, A_2, ..., A_k$, respectivamente. Si $A_1A_2, ..., A_2A_3 = A_{k-1}A_k$ entonces $A_1A_2 = A_2A_3 = A_{k-1}A_k$

Teorema 2.4 Si una recta, paralela a un lado de un triángulo, corta los otros dos lados, entonces se divide en la misma proporción.