Graphes
Représentation carte Course d'Orientation

Christophe Viroulaud

Terminale - NSI

Algo 13

Notion de graphe

1 TOPTICECS

mémoire

Dictionnaire d'adjacence

otion de graphe

Propriétés

Représentations er mémoire

Dictionnaire d'adjaceno Passage d'une structure

lotion de graphe /ocabulaire

Représentations en mémoire

Matrice d'adjacence
Dictionnaire d'adjacence
Passage d'une structure à

Notion de graphe

Dronriétée

Proprietes

mémoire

Dictionnaire d'adjacence

Comment représenter un graphe en mémoire?

Sommaire

Graphes Représentation carte Course d'Orientation

Notion de graphe

1. Notion de graphe

Notion de graphe

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulaii

Froprietes

mémoire

Matrice d'adjacence

Passage d'une structure

Un graphe est défini par :

- ses sommets (ou nœuds),
- ses arêtes (ou arcs) qui relient deux sommets.

Vocabulaire

À retenir

- L'ordre du graphe est le nombre de ses sommets.
- ► Un graphe est **non orienté** quand ses arêtes peuvent être parcourues dans les deux sens.

FIGURE 1 – Graphe non orienté d'ordre 4

Graphes Représentation carte Course d'Orientation

Vocabulaire

Deux sommets reliés par une arête sont **adjacents**.

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulaire

rroprietes

Représentations en mémoire

atrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à l'autre

- Deux sommets reliés par une arête sont **adjacents**.
- ► Le **degré d'un sommet** est le nombre d'arêtes de ce sommet.

Graphes Représentation carte Course d'Orientation

Notion de graphe Vocabulaire

Représentations en mémoire

viatrice d adjacence

Dictionnaire d'adjacence Passage d'une structure à l'autre

Un graphe est **complet** si tous ses sommets sont adjacents.

FIGURE 2 - Graphe complet d'ordre 4

Graphes Représentation carte Course d'Orientation

Notion de graphe

Toprietes

Représentations en mémoire

latrice d'adjacence

Passage d'une structure

Sommaire

Graphes Représentation carte Course d'Orientation

Propriétés

1. Notion de graphe

- 1.2 Propriétés

Propriétés

À retenir

La somme des degrés d'un graphe est pair.

$$\sum_{s \in S} deg(s) = 2.A$$

 $\ensuremath{\mathrm{Figure}}$ 3 – Chaque arête est comptée deux fois.

Graphes Représentation carte Course d'Orientation

Notion de graphe Vocabulaire

Propriétés

Représentations en mémoire

Matrice d'adjacence
Dictionnaire d'adjacence
Passage d'une structure à

Un arbre est un graphe qui ne possède pas de cycle.

FIGURE 4 – Graphe avec au moins un cycle.

FIGURE 5 – Arbre

Graphes Représentation carte Course d'Orientation

lotion de graphe

Propriétés

Représentations en mémoire

Matrice d'adjacence
Dictionnaire d'adjacence
Passage d'une structure à
l'autre

Sommaire

Graphes Représentation carte Course d'Orientation

Représentations en mémoire

- 2. Représentations en mémoire

Représentations en mémoire - matrice d'adjacence

À retenir

La **matrice d'adjacence** est la représentation mathématique dont le terme a_{ij} vaut 1 si les sommets i et j sont reliés par une arête et 0 sinon.

$\sqrt{0}$	1	1	0	0	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
1	0	0	0	0	0
1	0	0	1	1	0
					1
0	0	1	0	0	0
$\backslash 1$	0	0	1	0	0/

Graphes Représentation carte Course d'Orientation

Notion de graphe Vocabulaire

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à

Vocabulai	ne		
Propriétés			

Proprietes

Matrice d'adjacence

Passage d'une structure l'autre

	Α	В	C	D	Ε	F
Α	0	1	1	0	0	1
В	1	0	0	0	0	0
C	1	1 0 0 0 0	0	1	1	0
D	0	0	1	0	0	1
Ε	0	0	1	0	0	0
F	1	0	0	1	0	0

Remarque

Dans un graphe non orienté la matrice est symétrique.

Activité 1:

- 1. Déterminer une structure de données permettant de représenter en mémoire la matrice d'adjacence représentative d'un graphe.
- 2. Construire la matrice d'adjacence du graphe suivant :

Vocabulaire

Propriétés

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à l'autre

Correction

Code 1 - Tableau de tableau

Graphes Représentation carte Course d'Orientation

Vocabulaire
Propriétés

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à

Observation

Cette représentation peut être gourmande en mémoire : si le nombre d'arêtes est faible, la structure contient peu d'informations. La matrice est **creuse**.

Graphes Représentation carte Course d'Orientation

Notion de graphe

Propriétés

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure l'autre

Sommaire

- 2. Représentations en mémoire
- 2.1 Matrice d'adjacence
- 2.2 Dictionnaire d'adjacence
- 2.3 Passage d'une structure à l'autre

Graphes Représentation carte Course d'Orientation

Notion de graphe

VOCADUIAII

Proprietes

Mepresentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence

Passage d'une structure à l'autre

Dictionnaire d'adjacence

À retenir

Un dictionnaire d'adjacence liste les sommets adjacents à chaque sommet.

- ► A : B, C, F
- ▶ B : A
- ► C : A, D, E
- ▶ D : C, F
- ▶ E : C
- ► F : A, D

Graphes Représentation carte Course d'Orientation

Notion de graphe

Propriétés

Représentations en mémoire

atrice d adjacence

Dictionnaire d'adjacence Passage d'une structure à

Passage d'une structure à l'autre

Activité 2 : Construire le dictionnaire d'adjacence en Python du graphe suivant :

Graphes Représentation carte Course d'Orientation

Dictionnaire d'adjacence

Correction

Code 2 - Dictionnaire de tableau

Graphes Représentation carte Course d'Orientation

Vocabulaire
Propriétés

Représentations er mémoire

latrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à

Sommaire

Graphes Représentation carte Course d'Orientation

Notion de graphe

Propriétés

Représentations en mémoire

Dictionnaire d'adjacence

Passage d'une structure à l'autre

- Notion de graphe
- 2. Représentations en mémoire
- 2.1 Matrice d'adjacence
- 2.2 Dictionnaire d'adjacence
- 2.3 Passage d'une structure à l'autre

Passage d'une structure à l'autre

Activité 3 : Écrire la fonction mat_to_dic(mat: list) → dict qui construit le dictionnaire d'adjacence à partir de la matrice d'adjacence.

Indication : Les nœuds sont nommés en suivant l'ordre alphabétique majuscule. La première ligne de la matrice représente les adjacences de A. La fonction native chr(n: int) → str renvoie le caractère correspondant au point de code UTF-8 n.

Graphes Représentation carte Course d'Orientation

Notion de graphe Vocabulaire

Représentations en mémoire

Dictionnaire d'adjacence
Passage d'une structure à l'autre

Dictionnaire d'adjacence
Passage d'une structure à

l'autre

```
1
   def mat to dic(mat: list) -> dict:
        dico = {}
2
        for i in range(len(mat)):
3
            # nom du noeud
4
            noeud = chr(65+i)
5
            dico[noeud] = []
6
            for j in range(len(mat[i])):
                if mat[i][j] == 1:
9
                     # noeud adjacent
10
                     adj = chr(65+j)
11
12
                     dico[noeud].append(adj)
        return dico
13
```

Passage d'une structure à

l'autre

Activité 4 : Écrire la fonction dic to mat(dic: dict) → list qui construit la matrice d'adjacence à partir de la matrice d'adjacence.

Indication : La fonction native ord(c: str) → int renvoie le point de code UTF-8 correspondant au caractère c.

```
Vocabulaire
Propriétés
```

Représentations er mémoire

Dictionnaire d'adjacence
Passage d'une structure à

l'autre

```
def dic_to_mat(dic: dict) -> list:
1
       # taille de la matrice connue
2
       mat = [[0 for _ in range(len(dic))] for _
3
       in range(len(dic))]
       for noeud, adjacents in dic.items():
4
5
            # indice de la ligne
            ind noeud = ord(noeud)-65
6
            for adj in adjacents:
8
                # indice de la colonne
9
                ind_adj = ord(adj)-65
10
                mat[ind_noeud][ind_adj] = 1
11
12
       return mat
```