Confirmatory Factor Analysis Theory Construction and Statistical Modeling

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

SAPI

EFA and **CFA**

Confirmatory or Exploratory?

CFA in R

Scaling

Extra

South African Personality Inventory Project

Nel, J. A., Valchey, V. H., Rothmann, S., van de Vijver, F. J. R., Meiring, D., & de Bruin, G. P. (2012). Exploring the personality structure in the 11 languages of South Africa. Journal of Personality, 80, 915–948.

SAPI details

- 1216 participants from 11 official language groups
- From about 50,000 descriptive responses to 262 personality items
- Nine personality clusters:
 - Conscientiousness
 - Emotional Stability
 - Extraversion
 - Facilitating
 - Integrity
 - Intellect
 - Openness
 - Relationship Harmony
 - Soft-Heartedness (Ubuntu)
- Our data: selection of 1000 participants

Factor Analysis

Factor Analysis: Modeling measurement of a latent variable

- EFA: Exploratory Factor Analysis.
- CFA: Confirmatory Factor Analysis.

Both EFA and CFA use a "reflective" measurement model, not a "formative" model.

Reflective Constructs

- Items are dependent variables, caused by the factor!
- Latent variable 'extraversion' explains item correlations:
 The factor is the reason for the covariances/correlations.

Reflective Constructs

Thermometer readings are the dependent variables, caused by the temperature!

Reflective Constructs

Symptoms are the dependent variables, caused by the viral infection!

Formative Constructs

SES is an *index* defined as a (weighted) sum of the observed items.

- SES is the (latent) dependent variable, predicted by the items.
- This model is not empirically testable.

Interesting read

Interesting read on theory & latent variables:

Borsboom, D., Mellenbergh, G.J., & Van Heerden, J. (2003). The theoretical status of latent variables. *Psychological review, 110*(2), 203.

CONFIRMATORY OR EXPLORATORY?

Two Subscales of Extraversion

HAVING FUN

- Item 77: I enjoy telling funny stories
- Item 84: I am a good storyteller
- Item 170: I laugh a lot
- Item 196: I make others laugh

BEING LIKED

- Item 44: I am liked by everyone
- Item 63: I chat to everyone
- Item 76: I have many friends
- Item 98: I have good social skills

EFA

- All items load onto all factors
- No hypothesized measurement model
- Estimating latent covariances is optional
 - Oblique factors → Estimated
 - \circ Orthogonal factors \rightarrow Fixed
- Solution is not unique
- Use rotation to improve interpretability

CFA

- The statistical model represents the hypothesized measurement model
- No cross-loadings unless they're predicted by theory
- Almost always estimate the latent covariances
- A unique solution exists

CFA IN R

SAPI CFA in R

Load the SAPI data.

```
dataDir <- "../data/"
sapi <- read.table(paste0(dataDir, "sapi.txt"), header = TRUE, na.strings = "-999</pre>
```

Specify the lavaan model syntax.

```
mod1 <- '
fun =~ Q77 + Q84 + Q170 + Q196
liked =~ Q44 + Q63 + Q76 + Q98
'
```

Use the cfa() function to estimate the model.

```
out1 <- cfa(mod1, data = sapi)</pre>
```

SAPI CFA in R

Visualize the fitted model.

SAPI CFA in R

Error in path.expand(path): invalid 'path' argument

Step 9: Acquiring the summary

```
#The factors scores for each subject can be required via: predict(out1)
```


CFA: modification indices - lavaan commands

Remark: Blending confirmatory and exploratory! Make sure it makes sense!

In lavaan, modification indices can be requested

• within the summary call:

```
summary(out1, modindices = TRUE)
```

directly:

```
modindices(out1, sort = TRUE)
```

for specific parameters, say, factor loadings:

```
mi <- modindices(fit)
mi[mi$op == "=~",]</pre>
```

Also, have a look at the lavTestScore() function.

CFA: modification indices - interpretation

```
#modindices(fit, sort = TRUE, maximum.number = 7) # or:
modindices(out1, sort = TRUE)[1:7,] # first 7 rows
    lhs op rhs mi
                        epc sepc.lv sepc.all sepc.nox
28
    077 ~~
           Q84 37.984 0.198 0.198
                                     0.314
                                             0.314
41
   Q170 ~~ Q196 36.341 0.139 0.139 0.279 0.279
36
   Q84 ~~ Q196 30.175 -0.141 -0.141
                                    -0.275
                                            -0.275
35
   Q84 ~~ Q170 22.466 -0.129 -0.129 -0.182 -0.182
40
    Q84 ~~ Q98 15.821 0.090 0.090 0.154 0.154
25 liked =~
           Q84 12.916 0.550 0.234
                                    0.224
                                            0.224
24 liked =~
           Q77 12.862 -0.595
                           -0.253
                                    -0.234
                                             -0.234
```

- mi: If parameter freely estimated, overall Chi-square statistic could decrease by approximately this amount.
- epc (= expected parameter change): Approximate value that a parameter is expected to attain.

CFA: modification indices - cross-loadings

Cross-loadings:

```
lhs op rhs mi epc sepc.lv sepc.all sepc.nox
     Q170 ~~ Q196 36.273 0.138 0.138
                                       0.271
                                               0.271
     Q77 ~~ Q84 35.431 0.194 0.194
                                       0.305
                                               0.305
      084 ~~ 0196 31.126 -0.143 -0.143 -0.276
                                              -0.276
      084 ~~ 0170 20.426 -0.123 -0.123 -0.170
                                              -0.170
      084 ~~ 098 16.530 0.092 0.092 0.156 0.156
                                               0.222
3eingliked =~ Q84 13.085 0.552 0.234
                                       0.222
      077 ~~ 0170 12.876 -0.104
                             -0.104
                                      -0.166
                                               -0.166
Beingliked =~ 077 12.564 -0.586 -0.249
                                      -0.229
                                               -0.229
Havingfun = \sim 044 \ 11.853 \ -0.255
                             -0.203
                                               -0.221
                                      -0.221
      077 ~~ 044 10.621 -0.078
                                      -0.129
                                               -0.129
                             -0.078
```

CFA: modification indices - residual variances

Residual covariances:

	lhs	ор	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
	Q170	~~	Q196	36.273	0.138	0.138	0.271	0.271
	Q77	~~	Q84	35.431	0.194	0.194	0.305	0.305
	Q84	~~	Q196	31.126	-0.143	-0.143	-0.276	-0.276
	Q84	~~	Q170	20.426	-0.123	-0.123	-0.170	-0.170
	084	~~	098	16.530	0.092	0.092	0.156	0.156
_	iked	=~	084	13.085	0.552	0.234	0.222	0.222
	Q77	~~	Q170	12.876	-0.104	-0.104	-0.166	-0.166
Beingl	iked	=~	Q77	12.564	-0.586	-0.249	-0.229	-0.229
Havin	gfun	=~	Q44	11.853	-0.255	-0.203	-0.221	-0.221
	Q77	~~	Q44	10.621	-0.078	-0.078	-0.129	-0.129

CFA: modification indices - be aware!

CFA: modification indices - modification

lhs op rhs mi epc sepc.lv sepc.all sepc.nox

modindices(out1, sort = TRUE)[1,]

25 of 47

```
28 Q77 ~~ Q84 37.984 0.198 0.198 0.314 0.314
# Allow residuals of Q170 and Q196 to covary
# Modified model:
# two-factor CFA + residual covariance 0170 and 0196
model.2CFA_mod <- "
Having fun = ^{\sim} Q77 + Q84 + Q170 + Q196
Being liked = ^{\sim} Q44 + Q63 + Q76 + Q98
Q170 ~~ Q196
# Fit model
out1_mod <- cfa(model.2CFA_mod, data=data_sapi,
                    missing='fiml', fixed.x=F) # use FIML
Error in eval(sc, parent.frame()): object 'data_sapi' not found
```

CFA: modification indices - test modification

```
anova(out1, fit_2CFA_mod)[,-c(2,3)] # without AIC & BIC
Error in eval(expr, envir, enclos): object 'fit_2CFA_mod' not found
```

```
modindices(out1, sort = TRUE)[1,]
  lhs op rhs    mi   epc sepc.lv sepc.all sepc.nox
28 Q77 ~~ Q84 37.984 0.198   0.198   0.314   0.314
```


CFA: modification indices - new parameter value

```
parameterEstimates(out1_mod)[9,-c(5,6,7)] # no se, z, and p
Error in eval(expr, envir, enclos): object 'out1_mod' not found
```


CFA: cross-loadings approximately zero

Problem:

- Restricting cross-loadings to exactly zero can be too strict.
- Consequence: rejection of the model, model modifications that capitalise on chance.

(Possible) solution in Bayesian SEM (BSEM) blavaan:

- Replace exact zero restrictions with approximate ones.
- · Using Bayesian small-variance priors.

Interesting reading:

- Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal of Statistical Software, 85(4), 1–30. https://doi.org/10.18637/jss.v085.i04
- Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modelling: A more flexible representation of substantive theory.
 Psychological Methods, 17(3), 313-335.

Latent variable scaling

Latent variables are not observed, thus no inherent scale.

Latent variable scaling Ctd.

Therefore, set up model such that scale of latent variable is clear.

Three common ways

- 1. Marker-variable method
 Constrain one of the factor loadings (default).
- 2. Reference group method: Constrain the factor variance.
- 3. Effect coding: Constrain the average of the loadings.

1. Marker-variable method (default)

Default parameterization:

- First factor loading constrained at 1.
- Factor mean constrained at 0.

Other defaults:

- Mean of residuals is by definition 0.
- Residuals have a loading of 1.

Estimated:

- factor variance (Ψ),
- 'other' factor loadings (λ_2 , λ_3),
- all item intercepts (v₁, v₂, v₃),
- all residual variances (ϵ_1 , ϵ_2 , ϵ_3).

1. Default marker-variable method - lavaan

First factor loading constrained at 1:

```
Extraversion = ~
Q77 1.000
```

• Factor mean constrained at 0:

Extraversion 0.000

Default marker-variable method - lavaan Ctd

```
parameterEstimates(fit_1CFA)[1:4,-c(5,6,7)]
Error in eval(expr, envir, enclos): object 'fit_1CFA' not found
```

Factor loading of first indicator fixed to 1. all other loadings are relative to that.

If reference category changed, other loadings also change.

2. Reference-group method

Parameterization:

- Factor variance constrained at 1.
- Factor mean constrained at 0.

Defaults:

- Mean of residuals is by definition 0.
- Residuals have a loading of 1.

Estimated:

- all factor loadings (λ_1 , λ_2 , λ_3),
- all item intercepts (v₁, v₂, v₃),
- all residual variances (ϵ_1 , ϵ_2 , ϵ_3).

2. Reference-group method - lavaan

```
# Model
model.1CFA_RefGr <- '
  # Free first factor loading, using: NA*
  Extraversion = ^{\sim} NA*Q77 + Q84 + Q170 + Q196
  # Set factor variance to 1, using: 1*
  Extraversion ~~ 1*Extraversion
# Fit model
fit_1CFA_RefGr <- cfa(model.1CFA_RefGr, data=data_sapi,
                missing='fiml', fixed.x=F) # use FIML
Error in eval(sc, parent.frame()): object 'data_sapi' not found
```

Factor variance constrained at 1:

Extraversion 1.000

• Factor mean constrained at 0:

Extraversion

0.000

2. Reference-group method - lavaan Ctd

```
parameterEstimates(fit_1CFA_RefGr)[1:4,-c(5,6,7)]
Error in eval(expr, envir, enclos): object 'fit_1CFA_RefGr' not found
```

Advantage:

All factor loadings and scores on standardized metric.

Which method to choose?

1. Marker-variable method

2. Reference-group method

Does not matter for substantive conclusions. Sometimes, pragmatic reasons.

3. Effects-coding method

Parameterization:

- Constrain the average of the factor loadings to 1: $\frac{1}{3} \sum_{i=1}^{3} \lambda_i = 1$.
- Constrain the average of the item intercepts to 0: $\frac{1}{3} \sum_{i=1}^{3} v_i = 0$.

Defaults:

- Mean of residuals is by definition 0.
- Residuals have a loading of 1.

Estimated (subject to the constraints):

- factor variance (Ψ).
- factor mean (α),
- all factor loadings (λ_1 , λ_2 , λ_3),
- all item intercepts (v₁, v₂, v₃),
- all residual variances (ϵ_1 , ϵ_2 , ϵ_3).

3. Effects-coding method Ctd

Interpretations can be intuitive:

- Factor on similar scale as the indicators.
- Factor variance (Ψ): average variance of each indicator that can be explained by the factor.
- Factor mean (α): weighted mean of the indicator means

3. Effects-coding method - lavaan model

```
# Model
model.1CFA_EffC <- '
  # Label parameters, such that they can be constrained
  Extraversion = lambda1*077 + lambda2*084 +
                  lambda3*Q170 + lambda4*Q196
  # intercepts
  Q77 ~ nu1*1
  Q84 ~ nu2*1
  0170 ~ nu3*1
  Q196 ~ nu4*1
  # Constrain average of loadings to 1, i.e., set sum to 4
  lambda1 == 4 - lambda2 - lambda3 - lambda4
  # Constrain average of item intercepts to 0,
  # i.e., set sum to 0
  nu1 == 0 - nu2 - nu3 - nu4
```

3. Effects-coding method - fit lavaan model

Now, use the lavaan() function:

3. Effects-coding method - lavaan outpu

• Constrain the average of the factor loadings to 1: $\frac{1}{4}\sum_{i=1}^4 \lambda_i = 1$.

```
parameterEstimates(fit_1CFA_EffC)[1:4,1:5]
Error in eval(expr, envir, enclos): object 'fit_1CFA_EffC' not found
```

• Constrain the average of the item intercepts to 0: $\frac{1}{4} \sum_{i=1}^4 v_i = 0$.

```
parameterEstimates(fit_1CFA_EffC)[5:8,1:5]
Error in eval(expr, envir, enclos): object 'fit_1CFA_EffC' not found
```


Extra:

Categorical/Ordinal or continuous indicators?

Note: in cfa() you can, for example use 'ordered = TRUE' for endogenous variable.

Default then: estimator = "WLSMV".

More information on: https://lavaan.ugent.be/tutorial/cat.html

Remark!

Do NOT use a χ^2 test or IC (AIC or BIC) to compare categorical and continuous models:

- Obviously not nested (so, no χ^2 test anyway).
- AND likelihoods of categorical and continuous indicator models are incomparable!

Note: χ^2 test and IC are based on (log) likelihood (= fit).

Interesting Reading

https://lavaan.ugent.be/tutorial/cat.html

Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrica, 49(1), 115-132.

Rhemtulla, M., Brosseau-Liard, P.É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354-373.

Sventina, D., Rutkowski, D. (2020). Multiple group invariance with categorical outcomes using updated guidelines: an illustration using Mplus and the lavaan/semtools packages. Structural Equational Modelling: A Multidisciplinary Journal, 27(1), 111-130