

Fitting & Alignment

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares, total least squares
 - Robust least squares
 - Iterative closest point (ICP)

- Hypothesize and test
 - RANSAC
 - Generalized Hough transform

Fitting: Issues

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions
- Case study: Lane detection

Hypothesize and test Recall: RANSAC

- 1. Propose parameters
 - Try possible models as many as possible
 - Each point votes for consistent parameters
 - Repeatedly sample enough points to solve for parameters
- 2. Score the given parameters
 - Number of consistent points (inliers)
- 3. Choose best parameters among the sets of parameters
 - Global or local maximum of scores
- 4. Possibly refine parameters using inliers

Voting schemes

 Let each feature (point) vote for all the models that are compatible with it

Voting에 기반한 방법들이 가지는 건대 장점은 outlier 들은 쉽게 제거학수 있다.

- भाष ધર્મું દૂયામુટ્ટા કે Hopefully, the noisy features will not vote consistently for any single model
- Missing data doesn't matter if there are enough features to agree on a good model

Hough Transform: Outline

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

- An early type of voting scheme
- General outline
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

Parameter space representation

- What does a point in the image space map to in the Hough space?
 - Mapped to a single line in the Hough space
 - A point $(x_0, y_0) \to A$ line $b = -x_0 m + y_0$
 - Hough space: space of parameter we want to estimate

Parameter space representation

- Mapping multiple points in the image space
 - Two points (x_0, y_0) , (x_1, y_1) two lines $b = -x_0 m + y_0$, $b = -x_1 m + y_1$
- Intersection of two lines in the Hough space
 - Compatible parameters for the two points

Parameter space representation

- A line (infinitely many points) in the image
 - A point in the Hough space

Hough transform

 Given a set of points, find the parameters of a line that explains the data points best

Hough transform

Polar representation for lines

- Problems in the Hough space (m,b):
 - Unbounded parameter domain
 - **m**=[- inf, ..., 0, ..., inf]
 - Vertical lines require infinite m
 - Require infinitely large number of bins for voting

parameter space & Ish: hough transform

Polar representation for lines

Alternative

Map a point in the image to a single sinusoidal line in the Hough space

Polar representation

 Any line through (x,y) in image space can be parametrized in polar representation

$$-\rho = x \cdot \cos\theta + y \cdot \sin\theta$$

 $\rho, \theta \rightarrow$ 작性 転性 가능 → 극좌発用 polar representation

• Image point $(x,y) \rightarrow parameters (\rho, \theta)$

• What are $\rho \& \theta$?

$$-\rho = A \cdot \cos(\theta - \delta)$$
, $A = \sqrt{x^2 + y^2}$, $\delta = \tan^{-1}(y/x)$

- Result
 - Given (x,y) in image spcae → A cosine function in the parameter (Hough) space

Algorithm outline

- Initialize all bins ($H(\theta, \rho) = 0$)
- For each point (x,y) in the image

For
$$\theta = 0$$
 to 180

$$\rho = x \cos \theta + y \sin \theta$$

$$H(\theta, \rho) = H(\theta, \rho) + 1$$
end

end

- The detected line in the image is given by,
 - $\rho^* = x \cos \theta^* + y \sin \theta^*$

H: accumulator array (votes)

Basic illustration

Effect of noise

Peak gets fuzzy and hard to locate

Effect of large noise

Issue: spurious peaks due to uniform noise

1. Image → Edge (with Canny edge detector)

→ dominant lines tin → edge detection

2. Canny → Hough votes

3. Hough votes → Edges

Find peaks and post-process

Celletal not of south dominant to the sta >

Hough transform example

edge map > 以充 學是 对时子 > Wave 不 发生 > 以色对 Zz C. dominant line

Properties

What happens with parallel lines?

Same angles θ, different distances ρ

$$\rho = A \cdot \cos(\theta - \delta)$$
 , $A = \sqrt{x^2 + y^2}$, $\delta = \tan^{-1}(y/x)$

Properties

What happens with perpendicular lines?

Angles θ are 90 deg apart, distances ρ are different

$$\rho = A \cdot \cos(\theta - \delta)$$
 , $A = \sqrt{x^2 + y^2}$, $\delta = \tan^{-1}(y/x)$

Parameter Space has Structure!

Several lines

RANSAC/ Hough transform multiple fitting %% otreal of 25% 가실수 있을 (line sturiol 发始)

Practical details for line detection

- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket

 কেন্যোশ মণ্ডা ভূপাণ্ড ভূপা খুলু গড়
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets

생겨가 안될수있을

> 시네게이고 grid 크기 적다히 너게 (Hyperparameter)

Hough transform for circles

라인 별만 해ル 때 작성가능 Circle: center (a,b) and radius r

 $(x_i - a)^2 + (y_i - b)^2 = r^2$

For a fixed radius r

Equation of set of circles that all pass through a point?

Hough transform for circles

Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r, - 변수 3개 밀모

Hough transform for circles

Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r,

光星五門 沙路 空间 正相比 特別 地川曼

Example: detecting circles with Hough

was used for each circle radius (quarters vs. penny).

Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulate was used for each circle radius (quarters vs. penny).

Example: detecting circles with Hough

Combined detections

Summary

- Good 여러가지 9덱은 한번에 찾은수 있은 multiple model fitting 가능
 - Robust to outliers: each point votes separately
 - Fairly efficient (much faster than trying all sets of parameters)
 - Provides multiple good fits
- Bad
 - Some sensitivity to noise data of bolt 12 best parameter 對 otalary
 - Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
 - Not suitable for more than a few parameters
 - grid size grows exponentially
- Common applications

타라이터 찾기 ㅋ 성도 트렌스폼을 젤 먼저 22月

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are position/scale/oriental
- Object category recognition (parameters are position/scale)

Thank you!

