Minimax Optimal Nonparametric Estimation of Heterogeneous Treatment Effects

Zijun Gao Yanjun Han Stanford Statistics
Stanford EE

NeurIPS 2020

HTE Estimation

Model: Assume n treated, n control units with covariates X_i^L follow

$$Y_i^L = \mu_L(X_i^L) + \varepsilon_i^L, \quad L \in \{t, c\}.$$

Goal: Estimate the heterogeneous treatment effect (HTE)

$$\tau(x) := \mu_t(x) - \mu_c(x).$$

Potential outcome model (Rubin 1974)

Picture from https://redfworkshop.org/learn/formal-evaluations

Covariate Design

Fixed design:

$$X_i^c = \text{Grid points};$$

 $X_i^t = X_i^c + \Delta.$

Random design:

$$X_i^L \stackrel{\text{i.i.d.}}{\sim} g_L.$$

Overlap: $\kappa^{-1} \leq g_c(x)/g_t(x) \leq \kappa$.

Assumptions

• Smoothness: μ_t , μ_c are β_μ -smooth, τ is β_τ -smooth,

$$\beta_{\mu} \leq \beta_{\tau} \implies \text{Simpler HTE!}$$

Simpler HTE (Hansen 2008, Kuënzel 2018)

• Error: ε_i^L are mutually independent, zero-mean, of variance σ^2 .

Literature of HTE Estimation

- (Semi)parametric: μ_t , μ_c (non)parametric, τ parametric.
 - Semiparametrically efficient estimator (Robinson 1988);
 - Debiased approach handling confounders (Chernozhukov et.al. 2018)
- Nonparametric: μ_t , μ_c , τ nonparametric.
 - Optimal non-parametric estimator given crude baseline estimators (Wager et.al. 2017)
 - Optimal non-parametric estimator of modeling μ_t , μ_c not τ (Alaa et.al. 2018)

Optimal non-parametric estimator of modeling μ_c , τ ?

Minimax Formulation

Fixed design:

$$R_{\text{fixed}}(n, d, \beta_{\mu}, \beta_{\tau}, \sigma, \Delta) \triangleq \inf_{\substack{\hat{\tau} \\ \tau \text{ } \beta_{\mu}\text{-smooth}}} \mathbb{E}_{\mu_{c}, \tau}[\|\hat{\tau} - \tau\|_{1}].$$

Random design:

$$R_{\mathrm{random}}(n,d,\beta_{\mu},\beta_{\tau},\sigma,\kappa) \triangleq \inf_{\substack{\hat{\tau} \\ \tau \mid \beta_{\tau}-\mathrm{smooth} \\ 1/\kappa \leq g_{c}/g_{t} \leq \kappa}} \mathbb{E}_{\mu_{c},\tau}[\|\hat{\tau} - \tau\|_{L_{1}(g_{c})}].$$

Fixed Design: Main Result

Theorem (Minimax risk under fixed design)

$$R_{ ext{fixed}}(n,d,eta_{\mu},eta_{ au},\sigma,\Delta) symp n^{-rac{eta_{\mu}}{d}} (n^{rac{1}{d}} \|\Delta\|_{\infty})^{eta_{\mu}\wedge 1} + \left(rac{\sigma^2}{n}
ight)^{rac{eta_{ au}}{2eta_{ au}+d}}.$$

Remark:

- Tight dependence on n, σ , Δ ;
- Matching bias + standard nonparametric estimation error;
- Faster than standard non-parametric rate with β_{μ} .

Blessing from simpler HTE!

Step 1: For each control, find the nearest $\beta_{\mu}+1$ treatment covariates.

Step 2.a: Compute weights of selected treated.

Step 2.b: Weight the responses of selected treated as pseudo-observation.

Step 3.a: Take the difference of pseudo-observation and control response.

Step 3.b: Apply kernel method to the differences with $\beta_{\tau}\text{-smooth}$ bandwidth.

Insight: Construct pseudo-observations!

Random Design: Main Result

Theorem (Minimax risk under random design)

If
$$\beta_{\tau} \leq 1$$
,

$$\begin{split} R_{\mathrm{random}} (n,d,\beta_{\mu},\beta_{\tau},\sigma,\kappa) &\asymp \\ & \left(\frac{\kappa}{n^2}\right)^{\frac{1}{d(\beta_{\mu}^{-1}+\beta_{\tau}^{-1})}} + \left(\frac{\kappa\sigma^2}{n^2}\right)^{\frac{1}{2+d(\beta_{\mu}^{-1}+\beta_{\tau}^{-1})}} + \left(\frac{\kappa\sigma^2}{n}\right)^{\frac{\beta_{\tau}}{2\beta_{\tau}+d}}. \end{split}$$

Remark:

- Tight dependence on n, σ , κ ;
- Three sources of errors instead of two;
- Again, faster than standard non-parametric rate with β_{μ} .

Query point x_0

Step 1: Find m_1 nearest control covariates to x_0

Step 2.a: Find the nearest treatment covariate of each selected control

Step 2.b: Select the closest $m_2 \leq m_1$ treatment-control pairs

Step 3: Compute the average difference of selected pairs' responses

Optimal Parameter Choice

Three sources of errors:

$$R_{\mathrm{random}} \leq \underbrace{\left(\frac{\kappa m_2}{n m_1}\right)^{\frac{\beta_{\mu}}{d}}}_{\text{matching bias of } m_2 \text{ pairs}} + \underbrace{\left(\frac{m_1}{n}\right)^{\frac{\beta_{\tau}}{d}}}_{\text{nearest neighbors}} + \underbrace{\frac{\sigma}{\sqrt{m_2}}}_{\text{noise}}.$$

Optimal (m_1, m_2) balance the three errors!

Simulation

HTE estimators

Baseline

Proposed method enjoys the simplicity of HTE!

selected matching: the minimax-optimal HTE estimator full matching: the minimax-optimal HTE estimator keeping all m_1 treatment-control pairs kNN differencing: difference of kNN estimators of baselines kernel differencing: difference of kernel estimators of baselines

Thank you

Full paper: arXiv 2002.06471.

Contact: {zijungao, yjhan}@stanford.edu.