Greining Rása

Fyrstu gráðu kerfi

Ólafur Bjarki Bogason

 $8.~\mathrm{mars}~2021$

Inngangur

- Ef rás með rýmd og/eða spani er örvuð með lind sem breytir gildi sínu skyndilega, þá tekur tíma fyrir spennur og strauma í rásinni að komast í stöðugt ástand aftur (ná æstæðri svörun).
- Til að lýsa hegðun rásarinnar á þessum tíma (svipulli svörun) þurfum við að leysa diffurjöfnur sem tengja rásabreytur við lindina.

- $\bullet\,$ Skoðum kerfi sem inniheldur engar lindir virkar eftir tímann t=0. Viljum finna strauma og/eða spennur fyrir t>0.
- Skoðum jöfnuna sem gildir um kerfið fyrir t > 0.
- Hún er á forminu

$$\frac{\mathrm{d}x}{\mathrm{d}t} + \alpha x = 0$$

fyrir fyrstu gráðu kerfi

• Beitum KVL á rásina fyrir t > 0 og fáum

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri = 0$$

eða

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = 0, \qquad t > 0$$

- Hér ekkert innmerki til staðar.
- Diffurjafnan sem fæst fyrir slíka rás er <u>óhliðruð</u>

 \bullet Setjum fastann R/L=k, þá er jafnan,

$$\frac{\mathrm{d}i}{\mathrm{d}t} + ki = 0, \qquad t > 0$$

- Við sjáum að fallið i(t) og diffurkvóti þess verða að hafa sama bylgjuformið, annars gæti summa þeirra ekki orðið núll
- Við vitum að diffurkvóti veldisfalls er einnig veldisfall, prófum því hvort veldisfallið er lausn
- Giskum á lausn

$$i(t) = Ae^{st}$$

þar sem A og s eru fastar.

Þá er

$$\frac{\mathrm{d}i}{\mathrm{d}t} = sAe^{st}$$

sem við setjum inn í diffurjöfnuna

$$sAe^{st} + kAe^{st} = 0$$

eða

$$s + k = 0$$
 Kennijafnan

eða

$$s = -k$$

svo að lausnin er

$$i(t) = Ae^{-kt}$$

 \bullet Við vitum að straumurinn er veldisfall og stuðullinn kákvarðast af stærð rásaeininganna

Jafnan

$$s + k = 0$$

kallast **kennijafna** eða **eiginjafna** kerfisins

- Lausn hennar, s = -k kallast **eigingildi** (**kennigildi**) kerfisins
- Lausn óhliðruðu diffurjöfnunnar kallast náttúruleg svörun kerfisins, því hún er eingöngu háð einingum og uppbyggingu kerfisins sjálfs, ekki neinum lindum sem drífa kerfið

Tímastuðull

- Tímastuðull τ er tíminnn sem það tekur svörunina að falla niður í $1/e \approx 0.37$ af upphafsgildi sínu
- Frá nátturulegu lausninni $i(t)=Ae^{-kt}$ sjáum við að tímastuðull fyrstu gráðu rásar er

$$\tau = 1/k$$

Náttúrulega svörun rásar sem inniheldur eina spólu eða einn þétti og engar lindir má finna á eftirfarandi hátt:

- 1. Finna diffurjöfnu sem gildir fyrir tímabilið sem skoða á (venjulega t>0). Þessi diffurjafna er óhliðruð (engar lindir)
- 2. Giska á lausn á forminu

$$x(t) = Ae^{st}$$

- 3. Setja þetta fall x(t) og diffurkvóta þess $\mathrm{d}x/\mathrm{d}t$ inn í diffurjöfnuna, deila í gegn með Ae^{st} og þá stendur kennijafnan eftir.
- 4. Finna eigingildið (rót kennijöfnunnar) og setja það inn í lausnina í skrefi 2

Tímastuðull

- Tímastuðulinn má finna beint út frá gildum rásaeininganna í fyrstu gráðu rásum
- Sé rásin með þétti þá er tímastuðullinn $\tau=RC$; sé rásin með spólu þá er tímastuðullinn $\tau=L/R$, þar sem R er í báðum tilfellum Théveninjafngildisviðnám rásarinnar séð frá þéttinum eða spólunni

Byrjunarskilyrði

Náttúruleg svöruna allra fyrstu gráðu kerfa er

$$x(t) = Ae^{st}$$

þar sem x(t) er straumurinn eða spennan sem finna á og s er eigingildið (rót kennijöfnunnar), sem er háð gildum rásaeininganna

• Setjum inn $t = 0^+$ og fáum

$$x(0^+) = Ae^{s0} = A$$

• Með því að skoða og greina rásina við tímann $t=0^+$ má því finna stuðulinn A.

Heildarsvörun

- Lítum nú á aðferð til að finna heildarsvörun fyrir línuleg kerfi (ekki bara fyrstu gráðu kerfi)
- $\bullet\,$ Skoðum nú rásir sem eru örvaðar með lindum fyrir t>0

Heildarsvörun fyrstu gráðu kerfa

Aðferðin til að leysa fyrstu gráðu rásir með lindum er því:

- 1. Skrifa diffurjöfnuna fyrir t > 0
- Leysa óhliðruðu diffurjöfnuna (finna náttúrulegu svörunina):
 - Gera ráð fyrir

$$x_n(t) = Ae^{st}$$

- Setja $x_n(t)$ inn í óhliðruðu diffurjöfnuna og finna s. A er enn óþekkt.
- 3. Finna sérlaus
n \boldsymbol{x}_p sem uppfyllir hliðruðu diffurjöfnuna
- 4. Leggja saman lausnir úr skrefi 2. og 3.

$$x(t) = x_n(t) + x_p(t)$$

5. Finna A með hjálp byrjunarskilyrða

Núllástandssvörun og núllinnmerkissvörun

Höfum séð að heildarsvörun kerfis er summa náttúrulegu lausnarinnar og sérlausnarinnar.

En við getum einnig hugsað okkur að heildarlausnin sé sett saman úr tveimur öðrum þáttum:

- Núllinnmerkislausn, sem er svörun eða örvun með upphafsgildum eingöngu (engar lindir)
- Núllástandslausn, sem er svörun við örvun með innmerki eingöngu (upphafsgildi öll núll).

Prepsvörun og **impúlssvörun** fyrstu gráðu kerfa eru skilgreindar sem núllástandslausn kerfisins þegar innmerkið er einingarþrep eða einingarimpúls (straumur eða spenna).

Engin orka er þá geymd í rásinni við tímann t = 0.

Ef straumur í þétti er impúls, þ.e.

$$i_C(t) = \delta(t)$$

þá stekkur spennan upp um 1/C volt, þ.e.

$$v_C(t) = \frac{1}{C} \int_{0^-}^t i_C(\tau) d\tau + v_C(0^-)$$

eða

$$v_C(0^+) - v_C(0^-) = \frac{1}{C} \int_{0^-}^{0^+} \delta(t) dt = \frac{1}{C}$$

Á sama hátt gildir að ef spenna yfir spólu er impúls, þ.e.

$$v_L(t) = \delta(t)$$

þá stekkur straumurinn upp um 1/L amper, þ.e.

$$i_L(t) = \frac{1}{L} \int_{0^-}^t v_L(\tau) d\tau + i_L(0^-)$$

eða

$$i_L(0^+) - i_L(0^-) = \frac{1}{L} \int_{0^-}^{0^+} \delta(t) dt = \frac{1}{L}$$

Ef við þekkjum innmerki x(t) og tilsvarandi útmerki (núllástandssvörun) y(t) fyrir línulegt kerfi og örvum síðan sama kerfi með innmerkinu $\mathrm{d}x/\mathrm{d}t$ þá er útmerkið $\mathrm{d}y/\mathrm{d}t$

Impúlssvörun má finna með því að diffra þrepsvörunina.

Heildarsvörun fundin með tegrun

Óhliðruðu fyrstu gráðu jöfnurnar sem við fáum eru á forminu

$$\frac{\mathrm{d}x}{\mathrm{d}t} + \alpha x = f(t)$$

og þær má ætíð leysa fyrir x(t) á eftirfarandi hátt:

Margföldum báðar hliðar jöfnunnar með $e^{\alpha t}$ þ.a.

$$e^{\alpha t} \frac{\mathrm{d}x}{\mathrm{d}t} + \alpha e^{\alpha t}x = e^{\alpha t}f(t)$$

sem skrifa má

$$\frac{\mathrm{d}}{\mathrm{d}t}(e^{\alpha t}x) = e^{\alpha t}f(t)$$

Tegrum báðar hliðar frá $-\infty$ til t

$$xe^{\alpha t} = \int_{-\infty}^{t} e^{\alpha \tau} f(\tau) d\tau = \int_{-\infty}^{0^{-}} e^{\alpha \tau} f(\tau) d\tau + \int_{0^{-}}^{t} e^{\alpha \tau} f(\tau) d\tau$$

Heildarsvörun fundin með tegrun

Fyrra tegrið er fasti, því mörkin eru fastar:

$$xe^{\alpha t} = K + \int_{0^{-}}^{t} e^{\alpha \tau} f(\tau) d\tau$$

Margföldum með $e^{-\alpha t}$

$$x(t) = Ke^{-\alpha t} + \int_{0^{-}}^{t} e^{-\alpha(t-\tau)} f(\tau) d\tau$$

þar sem fastinn Kákvarðast af byrjunar- skilyrðum; $Ke^{-\alpha t}$ er núllinnmerkislausn og

$$\int_{0^{-}}^{t} e^{-\alpha(t-\tau)} f(\tau) d\tau$$

er núllástandslausn.