

KARATINA UNIVERSITY

UNIVERSITY EXAMINATIONS

2024/2025 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER REGULAR
EXAMINATIONS

FOR THE DEGREE OF:

BACHELOR OF SCIENCE (P102,P103,P106,P107)

AND BACHELOR OF EDUCATION (E101)

COURSE CODE: MAT 317

COURSE TITLE: NUMERICAL ANALYSIS I

DATE: 18th DECEMBER, 2024 TIME: 9:00AM -11:00 AM

Instructions: See Inside

Answer all questions in section A and any other two from section B.

SECTION A

Answer all questions from this section

QUESTION ONE (30 MARKS)

- (a) Compute the hexadecimal equivalent of the decimal number (2745)₁₀. [3 Marks]
- (b) Evaluate $\sqrt{42}$ correct to 5 dp using Newton-Raphson formula [6 Marks]
- (c) From the following table, find the area bounded by the curve y=f(x) and the x-axis from x=7.47 to x=7.52 using trapezoidal rule taking h=0.001

X	7.47	7.48	7.49	7.50	7.51	7.52
у	1.93	1.93	1.98	2.01	2.03	2.06

[6 Marks]

(d) The following is a table of values of a polynomial degree. If it is given that f(3) is in error, correct the error

X	0	1	2	3	4	5	6
f(x)	1	2	33	254	1054	3126	7777

[6 Marks]

(e) Construct the forward difference table for the set of data given

X	1	2	3	4	5
y=f(x)	4	6	9	12	17

[3 Marks]

(f) Using the method of Regula falsi, find the real roots of the equation

$$x^4 - 11x + 8 = 0$$
 accurate to 4dp

[6 Marks]

MAT 317 Page 2 of 5

SECTION B

Answer any TWO questions from this section

QUESTION TWO (20 MARKS)

(a) Obtain the missing entry in the following table

X	0	1	2	3	4	5
у	1	3	11	-	189	491

[5 Marks]

(b) A slider in a machine moves along a fixed straight line. its distance is x metres along the rod are given in the following table for the various values of time t in seconds

t(seconds)	1	2	3	4	5	6
x(metres)	0.0201	0.0844	0.3444	1.0100	2.3660	4.7719

Compute its velocity and acceleration

[8 Marks]

(c) Using Newton's divided difference formula, determine f'(6)

X	0	2	3	4	7	9
y=f(x)	4	26	58	112	466	922

[7 Marks]

QUESTION THREE (20 MARKS)

(a) Given

$$\sqrt{15500} = 124.4990, \quad \sqrt{15510} = 124.5392, \quad \sqrt{15520} = 124.5793$$

and
$$\sqrt{15530} = 124.6194$$
. Find the value of $\sqrt{15516}$ [9 Marks]

(b) Compute and interpret the condition number for

$$f(x) = \sin x$$
 for $a = 0.51\pi$

[5 marks]

MAT 317 Page 3 of 5

(c) The area between the x-axis and the line x = 0 and x = 1 and a curve passes through the points with the following coordinates

X	0.00	0.25	0.50	0.75	1.00
у	1.0000	0.9896	0.9589	0.9089	0.8415

Using Simpson's third rule, determine the volume of a solid of revolution formed by rotating a curve about x-axis. [6 marks]

QUESTION FOUR (20 MARKS)

(a) Solve the following system of linear equation using Gauss Jacobi's Iteration Method

$$15x + 3y - 2z = 85$$

 $2x + 10y + z = 51$
 $x - 2y + 8z = 5$

[10 Marks]

(b) Using Gauss Seidel iterative method with x=y=z=0 as the initial values solve

$$8x + 2y - 2z = 8$$

 $x - 8y + 3z = -4$
 $2x + y + 9z = 12$

[10 marks]

MAT 317 Page 4 of 5

QUESTION FIVE (20 MARKS)

(a) Compute the root of the equation

$$x^3 - 4x - 8.95 = 0$$

accurate to 3 decimal places using Bisection method

[7 Marks]

(b) The following is a table of values of a polynomial. If it is given that f(3) is in error, correct the error

X	0	1	2	3	4	5	6
f(x)	1	2	33	254	1054	3126	7777

[5 Marks]

(c) Given that

$$\int_0^{\frac{1}{2}} e^{x^2} dx = 0.544987104184$$

Determine the accuracy of the approximation obtained by replacing the integrand

$$f(x) = e^{x^2} = 1 + x^2 + rac{x^4}{2!} + rac{x^6}{3!} + rac{x^8}{4!} \dots rac{x^{2n}}{n!}$$

with a truncated Taylor series correct to 7 decimal places

$$P_5(x) = 1 + x^2 + rac{x^4}{2!} + rac{x^6}{3!} + rac{x^8}{4!}$$

[8 Marks]

MAT 317 Page 5 of 5