Network Layer

Anand Baswade anand@iitbhilai.ac.in

Sources

TCP/IP Protocol Suite

Outline

- Introduction to Network Layer (Overview)
- Network Layer Services
- IP Header Format Fragmentation
- IP addressing
 - Subnetting, Supernetting
 - IP allocation Dynamic Host Configuration Protocol (DHCP)
- Network Address Translation (NAT)
- Address Resolution Protocol (ARP)
- Internet Control Message Protocol (ICMP)
- Routing (RIP, OSPF, BGP)

Top-Down Approach

Message

UDP / TCP segment

IP Packet

Application

Transport

Network

Data Link

Physical

Internet protocol stack

application: supporting network applications

HTTP, SMTP, IMAP, FTP

transport: process-process data transfer

TCP, UDP

network: routing of datagrams from source to destination

IP, routing protocols

application
transport
network
link
physical

Protocols @ Different layers

Source: http://walkwidnetwork.blogspot.com/2013/04/application-layer-internet-protocol.html

Communication between two remote Machine

Internet as a Black Box

Internet as a combination of LANs and WANs connected together

A connectionless packet-switched network

Forwarding process in a connectionless network

Destination-based forwarding

forwarding table					
Destinatio	Destination Address Range				
11001000 through	00010111	000 <mark>10000</mark>	00000000		Λ
11001000 through	00010111	000 <mark>10000</mark>	00000100		3
_	00010111	000 <mark>10000</mark>	00000111		J
11001000	00010111	000 <mark>11000</mark>	11111111		
11001000 through	00010111	000 <mark>11001</mark>	0000000		2
11001000	00010111	000 <mark>11111</mark>	11111111		
otherwise					3

Q: but what happens if ranges don't divide up so nicely?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination .	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise				3

examples:

11001000	00010111	00010110	10100001	which interface?
11001000	00010111	00011000	10101010	which interface?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination .	Link interface			
11001000	00010111	00010***	*****	0
11001000	000.0111	00011000	*****	1
11001000	match! 1	00011***	*****	2
otherwise				3

examples

11001000 00010111 00010 110 10100001 which interface?
11001000 00010111 00011000 10101010 which interface?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination .	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011 * * *	*****	2
otherwise	1			3
	المامية			

examples:

longest prefix match

11001000

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

00010111

Destination .	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	000 0111	00011***	*****	2
otherwise	match!			3
11001000	000 0111	00010110	10100001	which interface?

00011000

examples:

Delay in a connectionless network

Two key network-layer functions

network-layer functions:

- forwarding: move packets from a router's input link to appropriate router output link
 - routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
 - routing: process of planning trip from source to destination

Network Layer: Internet

host, router network layer functions:

IP Header

- Packets in the network (internet) layer are called datagrams.
- A datagram is a variable-length packet consisting of two parts: header and data.
- The header is 20 to 60 bytes in length and contains information essential to routing and delivery.

TCP/IP Protocol Suite

TCP/IP Protocol Suite

IP Datagram format

The total length field defines the total length of the datagram including the header.

Checksum in IP covers only the header, not the data.

Fragmentation at routers, reassembling at destination only.

Encapsulation of a small datagram in an Ethernet frame

Multiplexing

 Table 7.2
 Protocols

Value	Protocol	Value	Protocol
1	ICMP	17	UDP
2	IGMP	89	OSPF
6	TCP		

An IP packet has arrived with the first 8 bits as shown:

01000010

The receiver discards the packet. Why?

Solution

There is an error in this packet. The 4 left-most bits (0100) show the version, which is correct. The next 4 bits (0010) show the wrong header length ($2 \times 4 = 8$). The minimum number of bytes in the header must be 20. The packet has been corrupted in transmission.

Example

In an IP packet, the value of HLEN is 1000 in binary. How many bytes of options are being carried by this packet?

Solution

The HLEN value is 8, which means the total number of bytes in the header is 8×4 or 32 bytes. The first 20 bytes are the base header, the next 12 bytes are the options.

Example

In an IP packet, the value of HLEN is 5_{16} and the value of the total length field is 0028_{16} . How many bytes of data are being carried by this packet?

Solution

The HLEN value is 5, which means the total number of bytes in the header is 5×4 or 20 bytes (no options). The total length is 40 bytes, which means the packet is carrying 20 bytes of data (40 - 20).

An IP packet has arrived with the first few hexadecimal digits as shown below:

45000028000100000102...

How many hops can this packet travel before being dropped? The data belong to what upper layer protocol?

Solution

To find the time-to-live field, we skip 8 bytes (16 hexadecimal digits). The time-to-live field is the ninth byte, which is 01. This means the packet can travel only one hop. The protocol field is the next byte (02), which means that the upper layer protocol is IGMP.