Digital Signal Processing for Music

Part 13: Improving (Re-)Quantization Quality

Andrew Beck

Introduction

Quantization error properties are fixed, so there is no way of improving the quality

Or is there????

"Cheating" for Better Quality

Improving perceptual quality of errors due to:

- >> Quantization
 - >> Oversampling
 - >> Noise Shaping
- >> Re-Quantization / Word Length Reduction
 - >> Dither
 - >> Noise Shaping

Oversampling

- >> Recording at higher sample rates and downsampling
- >> Allows use of less steep anti-aliasing filters
- >> Also improves quantization error

Quantization error properties

- >> White noise (ie flat spectrum)
- >> Noise power sample rate independent

$$|Q(\mathrm{j}\omega)|^2 \sim rac{\Delta^2}{12\cdot\omega_\mathrm{S}}$$

Oversampling Process

Quantization Noise Spectrum for Oversampling Amount

SNR Gain from Oversampling

$$egin{aligned} |Q(\mathrm{j}\omega)|^2 &= rac{\Delta^2}{12 \cdot \omega_S^*} \ &= rac{\Delta^2}{12 \cdot L \cdot \omega_S} \ W_{\mathrm{Q,LP}}^* &= rac{\Delta^2}{12 \cdot L} \ &\Rightarrow \ SNR^* &= 6.02 \cdot w + 10 \log_{10}(L) + c_S \end{aligned}$$

Oversampling Summary

$$SNR = 6.02 \cdot w + c_S + 10 \log_{10}(L)$$

Every doubling of f_S adds ~3dB SNR

8

Dither

- >>> Previous assumption: Quantization error is white noise (ie, rect)
 - >> No correlation between signal and quantization error
- >> Not true for:
 - >> Low signal level
 - >> Low signal frequency

Solution: Add noise before quantization (dither)

Dither Process

Dither Simple Example

Input signal: DC at $1.3 \cdot \Delta$

- >> Without dither:
 - \rightarrow Output value: Δ
 - >> Quantization error constant: $0.3 \cdot \Delta$
- >> With dither:
 - \rightarrow Output range: $-\Delta/2...\Delta/2$
 - Signal is most frequently quantized to $\Delta(p = 0.7)$, but sometimes to $2 \cdot \Delta(p = 0.3)$
 - \Rightarrow Average output value: $1.3 \cdot \Delta$
 - >> Quantization error varying between $0.3 \cdot \Delta$ and $0.7 \cdot \Delta$

Dither Properties

Dither with Rectangular PDF, $-\frac{\Delta}{2}\dots\frac{\Delta}{2}$, Not Quantized

$$egin{aligned} x = 0 \cdot \Delta & o xar{
ho} = 0, \ \sigma_R(x) & = \Delta \sqrt{(-0)^2 \cdot 1.0} & = 0.0\Delta \ x = 0.1 \cdot \Delta & o xar{
ho} = 0.1\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.1)^2 \cdot 0.9 + (0.9)^2 \cdot 0.1} & = 0.3\Delta \ x = 0.3 \cdot \Delta & o xar{
ho} = 0.3\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.3)^2 \cdot 0.7 + (0.7)^2 \cdot 0.3} & = 0.46\Delta \ x = 0.5 \cdot \Delta & o xar{
ho} = 0.5\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.5)^2 \cdot 0.5 + (0.5)^2 \cdot 0.5} & = 0.5\Delta \ x = 0.7 \cdot \Delta & o xar{
ho} = 0.7\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.7)^2 \cdot 0.3 + (0.3)^2 \cdot 0.7} & = 0.46\Delta \ x = 0.9 \cdot \Delta & o xar{
ho} = 0.9\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.9)^2 \cdot 0.1 + (0.1)^2 \cdot 0.9} & = 0.3\Delta \ x = 1 \cdot \Delta & o xar{
ho} = 0, \ \sigma_R(x) = 0 \ \end{cases}$$

Dither with Triangular PDF, $-\Delta \dots \Delta$, Not Quantized

$$egin{aligned} x &= 0 \cdot \Delta &
ightarrow x_{
m Q} = 0, \ \sigma_R(x) &= 0.5\Delta & x &= 0.1 \cdot \Delta &
ightarrow x_{
m Q} = 0.1\Delta, \ \sigma_R(x) &= 0.5\Delta & x &= 0.3 \cdot \Delta &
ightarrow x_{
m Q} = 0.3\Delta, \ \sigma_R(x) &= 0.5\Delta & x &= 0.5 \cdot \Delta &
ightarrow x_{
m Q} = 0.5\Delta, \ \sigma_R(x) &= 0.5\Delta & x &= 0.7 \cdot \Delta &
ightarrow x_{
m Q} = 0.7\Delta, \ \sigma_R(x) &= 0.5\Delta & x &= 0.9 \cdot \Delta &
ightarrow x_{
m Q} = 0.9\Delta, \ \sigma_R(x) &= 0.5\Delta & x &= 1 \cdot \Delta &
ightarrow x_{
m Q} = 0, \ \sigma_R(x) &= 0.5\Delta & x &= 0.5\Delta & x &= 0.5\Delta \ \end{array}$$

Linearization and Noise Modulation

Linearization and Noise Modulation

Noise Properties

$$egin{aligned} d_{ ext{RECT}}(n) &= d(n) \ d_{ ext{TRI}}(n) &= d_{ ext{RECT},1}(n) + d_{ ext{RECT},2}(n) \ d_{ ext{HP}}(n) &= d(n) - d(n-1) \end{aligned}$$

Noise Properties

How Does the SNR Change by Adding Dither?

Noise power of d_{RECT} & d_{TRI}

$$W_{ ext{RECT}} = rac{\Delta^2}{12} \ W_{ ext{TRI}} = rac{\Delta^2}{6}$$

SNR of dithered full scale signal

$$SNR_{
m RECT} = SNR_{normal} - 3.01 \; [dB] \ SNR_{
m TRI} = SNR_{normal} - 4.77 \; [dB]$$

		Sine	Speech	Music
8-Bit	Trunc	→ →	▶ - ♦)	▶ - ♦)
	Rect	▶ - ♦)	▶ - ♦)	▶ - ♦)
	Tri	▶ - •)	→ →	→ →
4-Bit	Trunc	▶ - •	▶ - ♦	▶ - •
	Rect	▶ - ♦	▶ - ♦	▶ - •
	Tri	→ →	▶ - ♦	▶ - ♦
2-Bit	Trunc	▶ - •)	→ →	→ →
	Rect	→ →	▶ - ♦)	▶ - •
	Tri	▶ - •)	→ →	→ →