Diskretne strukture Vaje 2

- 1. Prepričaj se, da so spodnji pari izjavnih izrazov enakovredni. Nalogo reši s pomočjo resničnostne tabele in s poenostavljanjem.
 - (a) $(p \Rightarrow q) \Leftrightarrow (p \Rightarrow r)$ in $p \Rightarrow (q \Leftrightarrow r)$
 - (b) $(p \Rightarrow q) \Leftrightarrow (p \Rightarrow \neg q)$ in $\neg p$
 - (c) $p \Rightarrow (q \Rightarrow (r \Rightarrow (p \land q)))$ in 1
 - (d) $(p \land (q \lor r)) \Leftrightarrow (p \Rightarrow \neg (q \lor r))$ in 0
- 2. S poenostavljanjem izrazov pokaži, da sta izraza enakovredna:
 - (a) $(p \Rightarrow q) \land (\neg p \Rightarrow r) \Rightarrow (q \lor r)$ in 1,
 - (b) $p \vee (p \wedge q)$ in $\neg (p \Rightarrow q)$,
 - (c) $(p \land q) \veebar (\neg p \land r)$ in $(\neg r \lor p) \Rightarrow q \land p$.
- 3. Ali obstaja tak izraz I, odvisen le od spremenljivk p in q, da bo
 - (a) izraz $(p \Rightarrow (I \land q)) \Leftrightarrow ((p \lor q) \Rightarrow I)$ protislovje?
 - (b) izraz $(p \Rightarrow (I \land q)) \Leftrightarrow ((p \lor q) \Rightarrow I)$ tavtologija?

Za vsako možno rešitev poišči vsaj en izraz I.

- 4. Ali obstaja tak izraz I, v katerem nastopajo spremenljivke p, q in r, da bo
 - (a) izraz $(p \Rightarrow (I \land r)) \Leftrightarrow ((q \lor \neg r) \Rightarrow I)$ tavtologija?
 - (b) izraz $(p \Rightarrow (I \land r)) \Leftrightarrow ((q \lor \neg r) \Rightarrow I)$ nevtralen?
- 5. Določi izjavo I tako, da bo izjava

$$(p \Rightarrow (q \downarrow r)) \veebar (I \Leftrightarrow (q \Leftrightarrow r) \uparrow p)$$

tavtologija. Dobljeno izjavo čimbolj poenostavi.

- 6. Poišči izjavni izraz X, ki ima v resničnostni tabeli tak stolpec logičnih vrednosti:
 - (a) 01000111,
 - (b) 01010000.

Dobljena izraza poenostavi.

- 7. Kateri izmed spodaj naštetih naborov izjavnih veznikov so polni?
 - (a) $\{\Rightarrow, \land\}$
 - (b) $\{\Leftrightarrow, \land\}$
 - (c) $\{\Leftrightarrow, \land, 0\}$
 - $(d) \{\uparrow\}$
 - (e) $\{\downarrow\}$
 - (f) $\{A\}$, kjer je $A(p,q,r) \sim p \Leftrightarrow (\neg q \vee \neg r)$
 - (g) $\{A, 1\}$, kier je $A(p, q, r) \sim p \Leftrightarrow (\neg q \vee \neg r)$

- 8. Za tromestni veznik V naj ima V(p,q,r) nasprotno vrednost kot večina od argumentov p,q,r.
 - (a) Sestavi resničnostno tabelo za veznik V.
 - (b) Poenostavi izraze V(p,p,p), V(p,p,q), in $V(p,q,\neg q).$
 - (c) Pokaži, da samo z veznikoma V in \neg ne moremo izraziti izraza $p \land q$ (torej da $\{V, \neg\}$ ni poln nabor).
- 9. Veznik A je definiran s predpisom $A(p,q,r) \sim (p \wedge q) \vee (\neg p \wedge \neg r)$.
 - (a) Samo z veznikom Azapiši izraze 1, $p \wedge q$ in $p \Rightarrow q.$
 - (b) Kateri izmed naborov $\{A\},\ \{A,1\},\ \{A,0\},\ \{A,\Rightarrow\},\ \{A,\veebar\}$ so polni?