Совместное администрирование баз данных и серверов

1. Сравнительная таблица СУБД

СУБД	Преимущества	Недостатки
PostgreSQL	- Открытый исходный код, бесплатная - Поддержка расширенных типов данных и GIS - Высокая надежность и соответствие стандартам SQL - Расширяемость (модули, расширения) - Современные механизмы репликации и отказоустойчивости	- Меньше инструментов для администрирования по сравнению с коммерческими СУБД - Более высокая сложность настройки для новичков - Иногда медленнее MySQL на простых задачах
MySQL	 - Быстродействие на простых и средних нагрузках - Простота установки и настройки - Большое сообщество, множество руководств - Бесплатная версия (Community) 	- Ограниченная поддержка расширенных SQL-функций - Меньше возможностей для сложной аналитики - Некоторые функции доступны только в коммерческой версии (Enterprise)
Microsoft SQL Server	- Высокая производительность и масштабируемость - Гибкая безопасность и управление доступом - Отличная интеграция с продуктами Microsoft - Развитые ВІ-инструменты и аналитика - Удобные графические инструменты для администрирования	- Высокая стоимость лицензий - Требует Windows (хотя есть версии для Linux) - Ресурсоемкость, особенно для больших внедрений - Vendor lock-in (зависимость от экосистемы Microsoft)

MariaDB	- Открытый исходный код,	- Меньше корпоративной
	бесплатная	поддержки по сравнению с MySQL
	- Высокая совместимость с MySQL	- Некоторые расширения
	- Активное развитие и поддержка	несовместимы с MySQL
	сообществом	- Меньше инструментов для
	- Улучшенная производительность и	крупных ВІ-задач
	расширенные механизмы хранения	
	данных	

2. Анализ предметной области: Автоматизированная система обнаружения трещин в бетонных конструкциях

Краткое описание

Автоматизированная система обнаружения трещин предназначена для мониторинга состояния бетонных конструкций (мосты, здания, тоннели и др.) с целью своевременного выявления дефектов и предотвращения аварийных ситуаций. Современные решения используют компьютерное зрение, нейросети и базы данных для хранения результатов контроля.

Особенности предметной области

Типы данных: Изображения бетонных поверхностей, аннотированные данные о трещинах (координаты, ширина, длина), метаданные (дата, место, оборудование).

Объемы данных: Для обучения моделей и хранения результатов требуется хранить десятки тысяч изображений и связанных с ними метаданных.

Требования к точности: Высокая точность обнаружения и классификации трещин (до 99% по современным моделям).

Автоматизация: Минимизация человеческого фактора, сокращение времени на инспекции и обработку данных.

Интеграция с ИИ: Использование нейросетей (YOLO, CNN, Ridgelet NN) для анализа изображений и автоматической классификации дефектов.

```
id INT PRIMARY KEY IDENTITY,
               тип VARCHAR(100) NOT NULL,
               адрес VARCHAR(255) NOT NULL,
               дата_постройки DATE
            □CREATE TABLE Оборудование (
              id INT PRIMARY KEY IDENTITY,
               TUR VARCHAR(100) NOT NULL,
               серийный_номер VARCHAR(100) UNIQUE NOT NULL
            □CREATE TABLE Пользователь (
               id INT PRIMARY KEY IDENTITY,
               имя VARCHAR(100) NOT NULL,
               роль VARCHAR(50) NOT NULL,
               логин VARCHAR(100) UNIQUE NOT NULL,
               пароль VARCHAR(100) NOT NULL
            id INT PRIMARY KEY IDENTITY,
               объект_id INT NOT NULL FOREIGN KEY REFERENCES Объект(id),
               дата DATETIME NOT NULL,
               oneparop_id INT NOT NULL FOREIGN KEY REFERENCES Пользователь(id),
               оборудование_id INT NOT NULL FOREIGN KEY REFERENCES Оборудование(id)
            □CREATE TABLE Изображение (
               id INT PRIMARY KEY IDENTITY,
               обследование_id INT NOT NULL FOREIGN KEY REFERENCES Обследование(id),
               путь_к_файлу VARCHAR(255) NOT NULL,
               дата DATETIME NOT NULL
              );
            CREATE TABLE Трещина (
               id INT PRIMARY KEY IDENTITY,
               изображение_id INT NOT NULL FOREIGN KEY REFERENCES Изображение(id),
               координаты VARCHAR(255) NOT NULL,
               ширина FLOAT CHECK (ширина > 0),
               длина FLOAT CHECK (длина > 0),
                тип VARCHAR(50),
                вероятность FLOAT CHECK (вероятность >= 0 AND вероятность <= 1)
Безопасн );
                                                                                   ость:
```

□CREATE TABLE Объект (

Необходимость защищать данные от несанкционированного доступа и потерь.

3. Техническое задание (ТЗ) на разработку БД для автоматизированной системы обнаружения трещин в бетонных конструкциях

3.1. Описание целей и задач БД

а. Цель: Создать централизованную базу данных для хранения, обработки и анализа результатов автоматического контроля трещин в бетонных конструкциях.

Задачи:

- Хранение изображений и результатов анализа трещин.
- Ведение истории обследований и дефектов.
- Предоставление данных для аналитики и отчетности.
- Обеспечение безопасности и резервного копирования информации.

b. Требования к функциональности

- Загрузка и хранение изображений обследуемых объектов.
- Сохранение результатов автоматического анализа (координаты, размеры трещин, классификация).
- Ведение справочников объектов и оборудования.
- Формирование отчетов по объектам, дефектам, динамике состояния.
- Управление доступом пользователей (администратор, оператор, аналитик, читатель).
- Интеграция с внешними системами (например, системой визуального анализа).

с. Требования к данным

- Хранимые данные: Изображения, параметры трещин (координаты, ширина, длина, тип), информация об объекте (тип, адрес, дата постройки), результаты анализа, пользователи, оборудование.
- Объемы: Ожидается хранение десятков тысяч изображений и связанных с ними записей.
- Источники данных: Автоматизированные системы контроля, ручной ввод, внешние системы.

d. Ограничения

- Производительность: Быстрая обработка запросов и загрузка изображений.
- Безопасность: Шифрование данных, разграничение прав доступа.
- Масштабируемость: Возможность расширения объема хранимых данных и числа пользователей.

е. Сроки и этапы разработки

- Анализ требований и проектирование: 2 дня
- Разработка концептуальной и логической моделей: 2 дня
- Реализация физической модели и тестирование: 3 дня
- Внедрение и обучение пользователей: 1 день

3.2. Концептуальная модель (ЕR-диаграмма)

3.3. Логическая модель данных:

Таблица	Поля	Тип ключа	Описание поля	Связи
	(атрибуты)			(внешние
				ключи)
Объект	id (int)	PK	Уникальный	
	()	(первичный	идентификатор	
		ключ)	объекта	
	TVVV (vomelana)	,	Тип бетонной	
	тип (varchar)			
			конструкции	
	адрес		Адрес	_
	(varchar)		расположения	
			объекта	
	дата_построй		Дата постройки	_
	ки (date)			
Обследование	id (int)	PK	Уникальный	
, ,			идентификатор	
			обследования	
	объект id	FK	Ссылка на объект	1 Объект — M
	(int)	I'K	(Объект.id)	Обследование
	(IIII)		(Oobeki.id)	Обеледование
	дата		Дата проведения	
	(datetime)		обследования	
	оператор_id	FK	Ссылка на	1 Пользователь
	(int)		пользователя	— M
			(Пользователь.id)	Обследование
	оборудование	FK	Ссылка на	1
	_id (int)		оборудование	Оборудование
			(Оборудование.id)	— M
				Обследование
Изображение	id (int)	PK	Уникальный	
	()		идентификатор	
			изображения	
	обследование	FK	Ссылка на	1
	id (int)	TIX	обследование	Обследование
			(Обследование.id)	— M
			(остедование.та)	Изображение
	1		П	2130 Spancellile
	путь_к_файлу		Путь или ссылка на	
	(varchar)		файл изображения	

	дата (datetime)		Дата съемки изображения	
Трещина	id (int)	PK	Уникальный идентификатор трещины	_
	изображение_ id (int)	FK	Ссылка на изображение (Изображение.id)	1 Изображение — М Трещина
	координаты (varchar)		Координаты трещины на изображении	
	ширина (float)		Ширина трещины	_
	длина (float)		Длина трещины	_
	тип (varchar)		Тип трещины (например, поверхностная, глубокая)	
	вероятность (float)		Вероятность корректного определения трещины (01)	
Оборудование	id (int)	PK	Уникальный идентификатор оборудования	
	тип (varchar)		Тип оборудования	_
	серийный_но мер (varchar)	UNIQUE	Серийный номер оборудования	
Пользователь	id (int)	PK	Уникальный идентификатор пользователя	
	имя (varchar)		Имя пользователя	_

роль (varchar)		Роль пользователя	
		(админ, оператор,	
		аналитик)	
логин (varchar)	UNIQUE	Логин для входа	
пароль (varchar)		Хэшированный пароль	

3.4. Физическая модель (пример для Microsoft SQL Server)

```
□ PP07

    Tables
       FileTables
       External Tables
       ⊞ ш dbo.Изображение
       ⊞ dbo.О6следование
       ⊞ dbo.Объект
       ⊞ dbo.Трещина
       □CREATE TABLE Объект (
  id INT PRIMARY KEY IDENTITY,
  тип VARCHAR(100) NOT NULL,
  адрес VARCHAR(255) NOT NULL,
  дата_постройки DATE
□CREATE TABLE Оборудование (
  id INT PRIMARY KEY IDENTITY,
  тип VARCHAR(100) NOT NULL,
  серийный_номер VARCHAR(100) UNIQUE NOT NULL
CREATE TABLE Пользователь (
  id INT PRIMARY KEY IDENTITY,
  имя VARCHAR(100) NOT NULL,
  роль VARCHAR(50) NOT NULL,
  логин VARCHAR(100) UNIQUE NOT NULL,
  пароль VARCHAR(100) NOT NULL
ĠCREATE TABLE Обследование (
  id INT PRIMARY KEY IDENTITY,
  объект_id INT NOT NULL FOREIGN KEY REFERENCES Объект(id),
  дата DATETIME NOT NULL,
  oneparop_id INT NOT NULL FOREIGN KEY REFERENCES Пользователь(id),
  оборудование_id INT NOT NULL FOREIGN KEY REFERENCES Оборудование(id)
CREATE TABLE Изображение (
  id INT PRIMARY KEY IDENTITY,
  обследование id INT NOT NULL FOREIGN KEY REFERENCES Обследование(id),
  путь_к_файлу VARCHAR(255) NOT NULL,
  дата DATETIME NOT NULL
□CREATE TABLE Трещина (
  id INT PRIMARY KEY IDENTITY,
  изображениe_id INT NOT NULL FOREIGN KEY REFERENCES Изображениe(id),
  координаты VARCHAR(255) NOT NULL,
  \dot{}ширина FLOAT CHECK (ширина > 0),
  длина FLOAT CHECK (длина > 0),
  тип VARCHAR(50),
  вероятность FLOAT CHECK (вероятность >= 0 AND вероятность <= 1)
```

3.5. Бизнес-правила и ограничения

- Целостность данных: Все FK с ON DELETE CASCADE для автоматического удаления зависимых записей.
- СНЕСК: Ограничения на диапазоны числовых полей.
- UNIQUE: На логины пользователей и серийные номера оборудования.
- NOT NULL: Для обязательных полей.
- Триггеры/процедуры: Например, автоматическое создание записи о дефекте при загрузке нового изображения.

3.6. Регламент доступа и безопасности

- Роли: Администратор (полный доступ), Оператор (добавление данных), Аналитик (только чтение и отчеты), Читатель (только просмотр).
- Права доступа: Использование GRANT/REVOKE для разграничения доступа.
- Шифрование: Хранение паролей в зашифрованном виде.
- Резервное копирование: Автоматизированные ежедневные бэкапы.

3.7. Руководство администратора

- Резервное копирование: Использовать встроенные средства SQL Server для создания ежедневных бэкапов.
- Мониторинг: Настроить оповещения о сбоях, отслеживать логи опибок.
- Восстановление: Инструкция по восстановлению из резервной копии.
- Устранение сбоев: Проверка целостности БД, восстановление индексов, анализ журналов транзакций.

3.8. Словарь данных

Таблица	Поле	Описание
Объект	id	Уникальный идентификатор объекта
	тип	Тип конструкции
	адрес	Адрес расположения
	дата_постройки	Дата постройки
Оборудование	id	Уникальный идентификатор оборудования
	тип	Тип оборудования
	серийный_номер	Серийный номер
Пользователь	id	Уникальный идентификатор пользователя
	имя	Имя пользователя
	роль	Роль пользователя
	логин	Логин
	пароль	Пароль (зашифрованный)
Обследование	id	Уникальный идентификатор обследования
	объект_id	Ссылка на объект
	дата	Дата обследования

	оператор id	Ссылка на пользователя
	onepurop_ru	COBSTRUTTO TOSTOSOBUTOSTA
	оборудование_id	Ссылка на оборудование
Изображение	id	Уникальный идентификатор изображения
	обследование_id	Ссылка на обследование
	путь_к_файлу	Путь к файлу изображения
	дата	Дата съемки
Трещина	id	Уникальный идентификатор трещины
	изображение_id	Ссылка на изображение
	координаты	Координаты трещины на изображении
	ширина	Ширина трещины
	длина	Длина трещины
	тип	Тип трещины
	вероятность	Вероятность корректного определения