Explicit Solution for Position Constrained Markowitz Problems

Alex Bernstein

abernstein@ucsb.edu

joint work with Alexander Shkolnik

SIAM Conference on Financial Mathematics and Engineering June 4, 2019

Department of Statistics & Applied Probability University of California, Santa Barbara

The Markowitz Problem

The Markowitz Minimum Variance Portfolio solves:

(1)
$$\min_{x \in \mathbb{R}^p} x^{\mathsf{T}} \Sigma x$$
 subject to:
$$\left\{ \sum_k x_k = 1, \right.$$

where Σ is the covariance matrix for the vector of securities x. Explicit Solution:

(2)
$$x = \frac{\Sigma^{-1} \vec{1}}{\vec{1}^{\top} \Sigma^{-1} \vec{1}}$$

Performance of Minimum Variance Portfolio

Percent Return Over Time of Market vs. Minimum Variance

(Clarke, de Silva & Thorley 2011)

Minimum Variance Portfolio has usually beaten Market
 Portfolio (1000 largest US Equities). This is the Low-Volatility anomaly: low beta stocks get a higher than expected return.

Long-Only Markowitz Problem

The Long-Only Markowitz Minimum Variance Portfolio* solves:

- * We assume no minimum return constraint for notational simplicity where Σ is the covariance matrix for the vector of securities x.
 - Long-only constraint makes the model investable, as it does not require constant rebalancing.
 - No Explicit Solution in general; requires numerical optimization.

Motivation

Why look for explicit solutions?

• For $\Sigma = \sigma^2 \beta \beta^{\top} + \Delta$ where $\beta \in \mathbb{R}^p$ and Δ is a diagonal $p \times p$ matrix of specific variances δ_i^2 (CAPM, i.e. a one-factor model), solution is:

(4)
$$x_i = \begin{cases} \frac{\sigma^2}{\delta_i^2} \left(1 - \frac{\beta^{(i)}}{\beta^*}\right) & \text{if } \beta_i < \beta^* \\ 0 & \text{otherwise} \end{cases}$$

where β^* is a cutoff value computed as a fixed point (Clarke et al. 2011)

 Want a more formal proof and more flexibility as empirical evidence suggests there is more than one factor.

5

Structural Mode

Structured Covariance matrix Σ with M factors:

(5)
$$\Sigma = BB^{T} + \Delta$$

$$B = \begin{bmatrix} \vdots & \vdots & & \vdots \\ \beta_{1} & \beta_{2} & \dots & \beta_{M} \\ \vdots & \vdots & & \vdots \end{bmatrix}, \quad \Delta = \begin{bmatrix} \delta_{1}^{2} & & \\ & \ddots & \\ & & \delta_{p}^{2} \end{bmatrix}$$

$$\xrightarrow{p \times M}$$

Model assumes $M \ll p$.

- Interested in solutions with more factors
- Want to analyze the underlying mathematics of minimum variance factor models

6

Structural Model

Why structure a Covariance Matrix?

- Factor Analysis/Low-dimensional approximation; can be estimated with statistical methods such as PCA or MLE
- Compatible with Pricing theory such as CAPM and Arbitrage Pricing Theory (APT). For example:
 - CAPM: M = 1
 - Fama-French: M = 3

Long-Short under Structural Model

Note that:

(6)
$$\min_{x \in \mathbb{R}^p} x^{\mathsf{T}} \Sigma x = \min_{x \in \mathbb{R}^p} x^{\mathsf{T}} B B^{\mathsf{T}} x + x^{\mathsf{T}} \Delta x$$

both are subject to $x^{\top}\vec{1} = 1$. We have a tradeoff between:

- Hedge Risk Factors in B
- Stay fully invested $(x^{\top}\vec{1} = 1)$

Further, we have that:

(7)
$$x \propto \vec{1} - \sum_{j=1}^{k} \theta_j \beta_j$$

Notation

We use the following notation:

- M- number of factors
- *p* number of securities
- $\beta_k^{(i)}$ i^{th} element of k^{th} factor
- x_{i} ith element of the weight vector, x
- δ_i^2 i^{th} specific variance (specific variance of i^{th} security)
- σ_k^2 variance of k^{th} factor
- $\boldsymbol{\bullet} \ \, \boldsymbol{\theta}_k = \frac{\sigma_k^2 \bigg(\sum_{j=1}^p \beta_k^{(i)} \boldsymbol{x}_i \bigg)}{\ell} \ \, \big(\boldsymbol{\ell} \ \, \text{is the Lagrange multiplier of our fully invested constraint- not important for the solution} \big)$

g

Important Functions

Define the following functions of θ :

$$\begin{split} a_k(\theta) &= \frac{1}{\sigma_k^2} + \sum_{\{i: \, f_i(x,\theta) < 1\}} \frac{(\beta_k^{(i)})^2}{\delta_i^2}, \qquad b_k(\theta) = \sum_{\{i: \, f_i(x,\theta) < 1\}} \frac{\beta_k^{(i)}}{\delta_i^2} \\ c_{kl}(\theta) &= \sum_{\{i: \, f_i(x,\theta) < 1\}} \frac{\beta_k^{(i)} \beta_l^{(i)}}{\delta_i^2}, \qquad f_i(x,\theta) = \sum_{k=1}^M \theta_k \beta_k^{(i)} \end{split}$$

Main Computational Ingredient

Define the following linear system:

(8)
$$\underbrace{\begin{pmatrix} a_1 & \dots & c_{1M} \\ \vdots & \ddots & \vdots \\ c_{1M} & \dots & a_M \end{pmatrix}}_{C \in \mathbb{R}^{M \times M}} \underbrace{\begin{pmatrix} \theta_1 \\ \vdots \\ \theta_M \end{pmatrix}}_{\theta \in \mathbb{R}^M} = \underbrace{\begin{pmatrix} b_1 \\ \vdots \\ b_M \end{pmatrix}}_{b \in \mathbb{R}^M}$$

where $C = C(\theta)$ and $b = b(\theta)$. This system defines a fixed point mapping:

$$\Psi: \mathbb{R}^M \to \mathbb{R}^M$$

with

(9)
$$\theta = \Psi(\theta) = C(\theta)^{-1}b(\theta)$$

Theorem

Let $B = [\beta_1, \ldots, \beta_M]$ be a factor matrix, such that each $\beta_j \in \mathbb{R}^p$, p > k and $\Delta = diag(\delta_1^2, \ldots, \delta_p^2)$. For a structured matrix of the form $\Sigma = BB^\top + \Delta$, the solution to the Long-Only Markowitz problem is given by:

(10)
$$x_i = \frac{\left(1 - \sum_{k=1}^M \theta_k \beta_k^{(i)}\right)_+}{Z\delta_i^2}, \quad Z = \sum_{i=1}^p \frac{\left(1 - \sum_{k=1}^M \theta_k \beta_k^{(i)}\right)_+}{\delta_i^2}$$

which can be computed as the solution to the fixed-point mapping

(11)
$$\theta = \Psi(\theta) = C(\theta)^{-1}b(\theta) \qquad \theta \in \mathbb{R}^M$$

Sketch of Proof

Idea of Proof:

- Use KKT Conditions on Lagrangian with implicit inclusion of positivity constraint by squaring; i.e. $x_i = v_i^2$; define v^2 as the vector of v_i^2 elements.
- We can rewrite the long-only minimization problem as:

$$\min_{\|v\|_2 = 1} (v^2)^{\mathsf{T}} \Sigma v^2$$

• θ_k represents a scaling vector for β_k ; If the elements of β_k get too big, they get set to 0 by our positivity requirement.

Fixed Point Algorithm

We solve the following fixed point:

$$\theta = \Psi(\theta)$$
$$\theta = C(\theta)^{-1}b(\theta)$$

This can be computed as follows:

- 1. Initialize θ^0 as some initial condition; Define ε as some small tolerance.
- 2. Iterate $\theta^{n+1} = C(\theta^n)^{-1}b(\theta^n)$ (or equivalently, solve $C(\theta^n)\theta^{n+1} = b(\theta^n)$)
- 3. Terminate when $\left|\theta^{n+1} \theta^n\right| < \varepsilon$.

Advantages/Comments

- Interpretability of the Solution:
 - Portfolio Composition
 - Sensitivity to Parameters
 - (semi)-explicit formulae are useful, in general
- Note that factor variances $(\sigma_k^2, k \in \{1 ..., M\})$ have very little effect; only appear in the term a_k and are relatively unimportant.
- Efficiency (can compute optimal very quickly)- solving for θ is now a function of M (number of factors) and not p (number of equities)- can lead to very fast recalculation of portfolios.
- Actual convergence rate and convergence guarantees are still an open question we are working on.

Computational Speed

Portfolio Size	Explicit Average Time (ms)	Numeric Average Time (ms)	Time Ratio (Numeric/Explicit)
256	0.341	17.942	5.27×10^{1}
512	0.444	103.060	2.32×10^{2}
1024	1.644	1128.559	6.86×10^2
2048	0.932	2757.903	2.96×10^{3}
4096	1.521	21930.225	1.44×10^4

- All portfolio optimizations repeated and averaged across 100 trials. Randomized 6-factor model was used.
- (L^2) norm differences in portfolio values at termination on the order of 10^{-9} for each example.

Summary and Conclusions

Summary and Conclusions:

- Now have semi-explicit formulas for solutions to long-only Markowitz Portfolios under factor-model constraints
 - Mathematically analyze portfolio sensitivity to parameters
 - Can study geometry of the solution
- Significant efficiency gains for portfolio calculations of these models

Future Work

Future Areas to Explore:

- Generalize to coordinate constrained programming for quadratic optimization
- Use of Random Matrix Theory to understand distributions of portfolio weights
- Efficiency gains potentially allow for recalculation of portfolios in milliseconds, which could make it usable in High-Frequency Trading

References

The Roger, Harindra de Silva & Steven Thorley (2011), 'Minimum-variance portfolio composition', *The Journal of Portfolio Management* 37(2), 31–45.

URL: https://jpm.iijournals.com/content/37/2/31