대단원 마무리 문제

I. 실수와 그 계산

482~484

01 ④

02 ②

03 $-\sqrt{6}$

04 4

05 ⑤

06 72.59

07 ①

08 ①

09 ③

00 ①

0, ©

10 $3-\sqrt{5}$

11 경호

12 ④

13 ⑤

- **14** ③
- 15 $-\frac{2\sqrt{5}}{3}$
- **16** ①

- 17 $2\sqrt{2}$
- 18 $\sqrt{125-m} \sqrt{232+n}$ 이 가장 큰 정수가 되려면 $\sqrt{125-m}$ 이 가장 큰 자연수이어야 하고, 125보다 작은 제

곱수 중에서 가장 큰 수는 121이므로

$$125-m=121, m=4$$

4 6

또 $\sqrt{232+n}$ 이 가장 작은 자연수이어야 하고, 232보다 큰 제곱수 중에서 가장 작은 수는 256이므로

$$232+n=256, n=24$$

4 (4)

따라서

$$\sqrt{m+n} = \sqrt{4+24} = \sqrt{28} = 2\sqrt{7}$$

■ (F)

단계	채점기준	배점
7	m의 값 구하기	40 %
4	n의 값 구하기	40 %
(E)	$\sqrt{m+n}$ 을 $a\sqrt{b}$ 의 꼴로 나타내기	20 %

19 $(\sqrt{18} - \sqrt{12}) \div \sqrt{2} - \sqrt{2}(\sqrt{8} + \sqrt{12})$

$$= \! \left(\frac{\sqrt{18}}{\sqrt{2}} \! - \! \frac{\sqrt{12}}{\sqrt{2}} \right) \! - (\sqrt{2} \! \times \! \sqrt{8} \! + \! \sqrt{2} \! \times \! \sqrt{12})$$

$$=(3-\sqrt{6})-(4+2\sqrt{6})$$

(1)

$$=-1-3\sqrt{6}$$

■ (4)

단계	채점기준	배점
P	곱셈과 나눗셈 계산하기	50 %
(L)	덧셈과 뺄셈 계산하기	50 %

20 직각이등변삼각형 OAB의 빗변이 아닌 한 변의 길이를 *a*라고 하자.

$$P=\frac{9}{2}$$
에서

$$\frac{1}{2} \times a \times a = \frac{9}{2}, \quad a^2 = 9$$

$$a > 0$$
이므로 $a = 3$

■ Ø

직각이등변삼각형 ACD의 빗변이 아닌 한 변의 길이를 b라 τ 하자

$$Q=2P=2\times\frac{9}{2}=9$$
에서

$$\frac{1}{2} \times b \times b = 9$$
, $b^2 = 18$

$$b > 0$$
이므로 $b = 3\sqrt{2}$

■ (4)

직각이등변삼각형 CEF의 빗변이 아닌 한 변의 길이를 c라고 하자.

 $R = 2Q = 2 \times 9 = 18$ 에서

$$\frac{1}{2} \times c \times c = 18$$
, $c^2 = 36$

c>0이므로 c=6

◀ ④

따라서 점 F의 *x*좌표는

$$a+b+c=3+3\sqrt{2}+6=9+3\sqrt{2}$$

이고. y좌표는 c=6이므로 점 F의 좌표는

$$(9+3\sqrt{2}, 6)$$

● ②

단계	채점기준	배점
?	직각이등변삼각형 OAB 의 빗변이 아닌 한 변의 길이 구하기	25 %
U)	직각이등변삼각형 ACD 의 빗변이 아닌 한 변의 길이 구하기	25 %
(F)	직각이등변삼각형 CEF의 빗변이 아닌 한 변의 길 이 구하기	25 %
a	점 F의 좌표 구하기	25 %

Ⅱ. 이차방정식

485~487쪽

01 ③

02 ④

03 ⑤

- **04** ③
- **05** 2x-1
- **06** ①
- **07** $20a^2 13ab + 4b^2$
- **08** ⑤

09 14

10 ③

11 4

12 ②

13 ②

- **14** ⑤
- **15** $x = \frac{-5 \pm \sqrt{33}}{2}$
- 16 ②

17 치영이가 인수분해한 식은

 $(x-2)(4x-3)=4x^2-11x+6$

도연이가 인수분해한 식은

$$(x+3)(4x-1)=4x^2+11x-3$$

이때 치영이는 x의 계수를 잘못 보았으므로 처음 식의 상수 항은 6이고, 도연이는 상수항을 잘못 보았으므로 처음 식의 x의 계수는 11이다.

즉. 처음의 이차식은 $4x^2 + 11x + 6$ 이다.

따라서 $4x^2 + 11x + 6$ 을 인수분해하면

$$4x^2+11x+6=(x+2)(4x+3)$$

단계	채점기준	배점
?	치영이와 도연이가 인수분해한 식을 각각 전개하기	40 %
4	처음의 이차식 구하기	30 %
<u></u>	처음의 이차식을 인수분해하기	30 %

18 x와 y의 분모를 각각 유리화하면

$$x = \frac{1}{\sqrt{5} + \sqrt{3}} = \frac{\sqrt{5} - \sqrt{3}}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}$$
$$= \frac{\sqrt{5} - \sqrt{3}}{2}$$

$$y = \frac{1}{\sqrt{5} - \sqrt{3}} = \frac{\sqrt{5} + \sqrt{3}}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})}$$
$$= \frac{\sqrt{5} + \sqrt{3}}{2}$$

 $x^2y + xy^2$ 을 인수분해하면

$$x^2y + xy^2 = xy(x+y)$$

이고

$$x+y = \frac{\sqrt{5} - \sqrt{3}}{2} + \frac{\sqrt{5} + \sqrt{3}}{2} = \sqrt{5}$$

$$xy = \frac{\sqrt{5} - \sqrt{3}}{2} \times \frac{\sqrt{5} + \sqrt{3}}{2}$$

$$= \frac{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})}{4} = \frac{1}{2}$$

따라서

$$x^{2}y + xy^{2} = xy(x+y) = \frac{1}{2} \times \sqrt{5} = \frac{\sqrt{5}}{2}$$

단계	채점기준	배점
7	x와 y 의 분모를 각각 유리화하기	40 %
4	x^2y+xy^2 을 인수분해하기	20 %
(4)	x+y와 xy 의 값을 각각 구하기	20 %
a	x^2y+xy^2 의 값 구하기	20 %

19 이차방정식 (x+3)(x+5)+1=0의 좌변을 정리하면

$$x^2 + 8x + 16 = 0$$

좌변을 인수분해하면

$$(x+4)^2=0$$

따라서 주어진 이차방정식의 해는

x = -4**●** (□)

단계	채점기준	배점
7	좌변을 정리하기	40 %
4	좌변을 인수분해하기	30 %
(1)	해 구하기	30 %

Ⅲ. 이차함수

● (万)

■ (L)

488~490쪽

01 ④	02 ④
03 ⑤	04 ④
05 ②	06 ③
07 ③	08 4
09 -2	10 -6

12 ⑤ 11 ③

13 2 **14** 6

15 ㄱ. ㄹ

16
$$y = \frac{1}{2}x^2$$
에 $y = 4$ 를 대입하면 $4 = \frac{1}{2}x^2$ 에서

$$x = -2\sqrt{2}$$
 또는 $x = 2\sqrt{2}$

이때 점 D가 제1사분면의 점이므로 $D(2\sqrt{2}, 4)$ \blacktriangleleft ② $2\overline{\text{CE}} = \overline{\text{CD}}$ 이고 $\overline{\text{DE}} = 2\sqrt{2}$ 이므로

$$\overline{\text{CE}} = \frac{1}{3}\overline{\text{DE}} = \frac{2\sqrt{2}}{3}$$

$$\stackrel{\simeq}{\vdash}$$
, $C\left(\frac{2\sqrt{2}}{3}, 4\right)$

점 $C\left(\frac{2\sqrt{2}}{3}, 4\right)$ 가 $y=ax^2$ 의 그래프 위의 점이므로

$$4 = a \times \left(\frac{2\sqrt{2}}{3}\right)^2 \text{ or } a = \frac{9}{2}$$

배점
40 %
40 %

● □

단계 채점기준 점 D의 좌표 구하기 점 C의 좌표 구하기 ④ a의 값 구하기 20 %

17 A $(a-5, 2(a-5)^2)$.

 $B(a, 2a^2)$ 이고 C(a, 0).

D(a-5, 0)라고 하자.

직선 AB의 기울기는

$$-6 = \frac{2a^2 - 2(a-5)^2}{a - (a-5)}$$

에서

$$\frac{20a-50}{5}$$
 = $4a-10=-6$

$$4a = 4$$
. $a = 1$

●②

4 (4)

즉, A(-4, 32), B(1, 2), C(1, 0), D(-4, 0)이고

 \overline{AD} =32, \overline{BC} =2이므로

사다리꼴 ABCD의 넓이는

$$\frac{1}{2} \times (32+2) \times 5 = 85$$

 $2:\sqrt{2}=\sqrt{2}:\overline{HD}, 2\overline{HD}=2, \overline{HD}=1$ (cm) $\overline{CH} = \overline{DH} = 1 \text{ cm}$

 $=\sqrt{(\sqrt{2})^2+(\sqrt{2})^2}=2$ (cm)

 $\overline{AD} = \sqrt{\overline{AB}^2 + \overline{BD}^2}$

 $\overline{\mathrm{AD}}:\overline{\mathrm{CD}}{=}\overline{\mathrm{BD}}:\overline{\mathrm{HD}}$ 이므로

◀ 🕒

따라서 △AHC에서

$$\tan x^{\circ} = \frac{\overline{CH}}{\overline{AH}} = \frac{\overline{CH}}{\overline{AD} + \overline{DH}}$$

$$= \frac{1}{2+1} = \frac{1}{3}$$

단계	채점기준	배점
7	점 $\overline{\mathrm{AD}}$ 의 연장선에 수선의 발 H 를 내려 닮	40 %
A	음인 삼각형 찾기	40 70
4	AD, DH, CH의 길이 구하기	40 %
<u> </u>	tan x°의 값 구하기	20 %

 $\frac{1}{2} \times 1 \times 2 = 1$

삼각형 OBC의 넓이는

삼각형 OAD의 넓이는

 $\frac{1}{2} \times 4 \times 32 = 64$

따라서 삼각형 AOB의 넓이는

 $\square ABCD - (\triangle OBC + \triangle OAD)$

=85-(1+64)=20

단계	채점기준	배점
P	a의 값 구하기	40 %
4	사다리꼴 ABCD의 넓이 구하기	30 %
(F)	삼각형 AOB의 넓이 구하기	30 %

Ⅳ. 삼각비 491~493쪽

01 3

02 2

03 ③

04 ③

05 $\frac{9\sqrt{7}}{28}$

06 4

07 3.3 m

- **08** $10\sqrt{7}$ m
- **09** $20(\sqrt{3}-1)$ m
- 10 $\frac{4\sqrt{2}}{9}$
- 11 $\frac{24}{7}$ cm
- 12 $2\sqrt{2}$ cm²
- 13 $18\sqrt{3}$ cm²
- 14 $\frac{\sqrt{2}}{2}$

- 15 $\frac{4\sqrt{34}}{17}$
- 16 오른쪽 그림과 같이 꼭짓점 C에서 \overline{AD} 의 연장선에 내 린 수선의 발을 H라고 하면 $\triangle ABD \circ \triangle CHD$

17 점 D에서 \overline{AC} 에 내린 수선의 발 을 H라고 하면 ∠A=60°이므로 △ADH에서

$$\overline{DH} {=} \overline{AD} {\times} \sin 60^{\circ} {=} 4 {\times} \frac{\sqrt{3}}{2} {=} 2\sqrt{3} \ (cm)$$

이고

$$\overline{FH} = \overline{AF} - \overline{AH} = 6 - 2 = 4 \text{ (cm)}$$

이므로

$$\overline{DF} = \sqrt{\overline{DH}^2 + \overline{FH}^2}$$
$$= \sqrt{(2\sqrt{3})^2 + 4^2} = 2\sqrt{7} \text{ (cm)}$$

△ADF≡△BED≡△CFE이므로

 $\overline{DF} = \overline{DE} = \overline{EF}$

따라서 △DEF는 정삼각형이므로

$$\overline{EF} = \overline{DF} = 2\sqrt{7} \text{ cm}$$

◀ (4)

◆ ②

단계	채점기준	배점
2	$\overline{ m DF}$ 의 길이 구하기	70 %
4	EF의 길이 구하기	30 %

V. 원의 성질

494~496쪽

01 ②

- 02 3 cm
- **03** $4\sqrt{15}$ cm
- **04** 8 cm
- **05** $\frac{29}{4}$ cm
- **06** $2\sqrt{3}$ cm

07 3 cm

08 $2\sqrt{10}\pi$ cm

09 ③

10 21°

11 72°

12 45°

13 $4\sqrt{3}$ cm²

14 45°

15 59°

16 60°

17 △OAP≡△OBP(RHS합동)이므로

$$\angle OPA = \angle OPB = \frac{1}{2} \angle APB$$

= $\frac{1}{2} \times 60^{\circ} = 30^{\circ}$

 $\overline{OA} = \overline{OE} = 10 \text{ cm}$ 이므로 직각삼각형 OAP에서

 $\overline{PA} = \sqrt{3} \times \overline{OA} = \sqrt{3} \times 10 = 10\sqrt{3} \text{ (cm)}$

● ②

 $\overline{DE} = \overline{DA}, \overline{CE} = \overline{CB}, \overline{PA} = \overline{PB}$ 이므로

(△CDP의 둘레의 길이)

 $=\overline{PD}+\overline{DC}+\overline{PC}$

 $=\overline{PD}+(\overline{DE}+\overline{CE})+\overline{PC}$

 $=(\overline{PD}+\overline{DA})+(\overline{CB}+\overline{PC})$

 $=\overline{PA}+\overline{PB}$

 $=2\overline{PA}$

■ (4)

 $=2\times10\sqrt{3}=20\sqrt{3}$ (cm)

● □

● ②

단계	채점기준	배점
?	PA의 길이 구하기	30 %
(△CDP의 둘레의 길이 간단히 하기	50 %
<u></u>	△CDP의 둘레의 길이 구하기	20 %

18 $\angle BCD = 180^{\circ} - 76^{\circ} = 104^{\circ}$

□ABCD가 원에 내접하므로

$$\angle BAD = 180^{\circ} - \angle BCD$$

= $180^{\circ} - 104^{\circ} = 76^{\circ}$

따라서 ∠BOD=2∠BAD

$$=2\times76^{\circ}=152^{\circ}$$

단계	채점기준	배점
?	∠BAD의 크기 구하기	50 %
<u>U</u>	∠BOD의 크기 구하기	50 %

19 원의 접선과 그 접점을 지나는 현이 이루는 각의 크기는 그 각의 내부에 있는 호에 대한 원주각의 크기와 같으므로

$$\angle ACT = \angle ABC$$

◀ (

한 원에서 원주각의 크기는 호의 길이에 비례하므로

 $\angle ABC = x$ °라고 하면

$$\widehat{AB} = \frac{1}{2}\widehat{CA}$$
에서 $\angle BCA = \frac{1}{2}x^{\circ}$

$$\widehat{BC} = \frac{3}{4}\widehat{CA}$$
에서 $\angle CAB = \frac{3}{4}x^{\circ}$

4 (

$$\angle$$
ABC+ \angle BCA+ \angle CAB=180°이므로 $x^{\circ}+\frac{1}{2}x^{\circ}+\frac{3}{4}x^{\circ}=180^{\circ}, \quad x^{\circ}=80^{\circ}$

따라서 ∠ACT=∠ABC=80°

● □

단계	채점기준	배점
?	∠ACT=∠ABC임을 알기	40 %
4	원주각의 크기와 호의 길이 사이의 관계 알기	40 %
(∠ACT의 크기 구하기	20 %

VI. 통계

497~499쫄

01 ③

02 ③

03 ③

04 $\frac{51}{7}$

05 ①

06 4

07 ⑤

08 2

09 ①

10 ②

11 ③

12 76 cm

13 ②

14 양의 상관관계

15 $\frac{2}{3}$

16 A 상자에 담긴 사과의 무게의 평균과 분산을 각각 구하면

(평균) =
$$\frac{1}{5}$$
 (108+102+92+98+100)
=100 (g)

(분산) =
$$\frac{1}{5}$$
 $\{8^2 + 2^2 + (-8)^2 + (-2)^2 + 0^2\}$
= $\frac{136}{5}$

B 상자에 담긴 사과의 무게의 평균과 분산을 각각 구하면

(평균) =
$$\frac{1}{5}$$
(95+98+103+102+102)
=100(g)

(분산) =
$$\frac{1}{5}$$
{ $(-5)^2$ + $(-2)^2$ + 3^2 + 2^2 + 2^2 }
= $\frac{46}{5}$

따라서 평균이 같고 B 상자에 담긴 사과의 무게의 분산이 더 작으므로 B 상자에 담긴 사과의 무게가 더 고르다.

즉, B 상자를 사야 한다.

◀ 🕒

■ (4)

● ②

단계	채점기준	배점
7	${ m A}$ 상자에 담긴 사과의 무게의 평균과 분산 각각 구하기	30 %
<u>u</u>	${ m B}$ 상자에 담긴 사과의 무게의 평균과 분산 각각 구하기	40 %
(사과의 무게가 더 고른 상자 판단하기	30 %

17 산점도에 나타난 공 던지기 기록을 작은 값부터 순서대로 나열하면 다음과 같다.

10, 11, 12, 12, 12, 13, 13, 14, 14, 15

따라서 중앙값은 $\frac{12+13}{2} = \frac{25}{2} (m)$

◀ ②

최빈값은 12 m

◀ ⑷

단계	채점기준	배점
P	중앙값 구하기	50 %
4	최빈값 구하기	50 %

18 몸무게가 40 kg 이상인 학생의 공 던지기 기록의 평균과 분산을 각각 구하면

(평균)=
$$\frac{1}{4}$$
(11+12+14+15)=13(m)

(분산)=
$$\frac{1}{4}$$
{ $(-2)^2$ + $(-1)^2$ + 1^2 + 2^2 }= $\frac{5}{2}$ 《 $\textcircled{9}$

단계	채점기준	배점
?	평균 구하기	50 %
<u>u</u>	분산 구하기	50 %