

SESSION 2025 - BACCALAURÉAT PROFESSIONNEL ORAL DERATTRAPAGE

Epreuve de Mathématiques

Fonction polynôme de degré 3

Groupement: A, B ou C

Informations destinées au candidat

Préparation : 15 minutes

Entretien: 15 minutes

- Présenter brièvement le sujet ;
- Présenter la démarche de résolution, les résultats obtenus ;
- Répondre à la problématique.

L'usage de la calculatrice est autorisé (circulaire n° 2015-178 du 1er octobre 2015)

Enoncé

A partir d'une planche rectangulaire de dimensions respectives 42 cm sur 30 cm, une société souhaite fabriquer une boite en carton fermée pour l'expédition de pièces informatiques en suivant le patronci-contre. Les côtes sont encm.

Le but est de réussir à fabriquer une boite en carton ayant un volume maximal.

Questions

1. <u>Préciser</u> à quoi correspondent les dimensions h, l et L du carton, puis parmi les propositions suivantes justifier votre choix.

$$\circ 15 < h < 30$$

2. Sur Geogebra, on fait varier le curseur h. On relève pour chaque valeur de h, le volume de la boite correspondante (cf. *Document 1 en annexe*)

<u>Montrer</u> en vous appuyant sur ce document que l'on peut obtenir une estimation de la hauteur de la boite pour que son volume soit maximal.

- 3. Soit f la fonction de la variable réelle x définie sur l'intervalle [0; 15] par $f(x)=2x^3-72x^2+630x$ Proposer une méthode permettant de déterminer la valeur de x pour laquelle f admet un maximum.
 - 4. <u>En déduire</u> les dimensions de la boite pour répondre à la demande de votre société. Les résultats seront arrondis au dixième.

ANNEXE

Document 2

Fonction f	Dérivée de f
f(x)	f'(x)
ax + b	а
x ²	2 <i>x</i>
$\frac{1}{x}$; $x \neq 0$	$-\frac{1}{x^2}; x \neq 0$
\sqrt{x} ; $x \ge 0$	$\frac{1}{2\sqrt{x}}; x > 0$
<i>x</i> ³	3 <i>x</i> ²
u(x) + v(x)	u'(x) + v'(x)
a.u(x)	a.u'(x)

Document 3

Le volume de la boite est donné par la formule : $V = L \times l \times h$

On a
$$L = 30 - 2h$$
, $l = 21 - h$

En remplaçant dans la formule du volume on obtient :

$$V = (30 - 2h) \times (21 - h) \times h$$

$$V = 2h^3 - 72h^2 + 630h$$

DOCUMENT EXAMINATEUR

BACCALAURÉAT PROFESSIONNEL ORAL DE CONTRÔLE - MATHEMATIQUES

PISTES ENTRETIEN – FONCTION DE DEGRE 3

CONNAISSANCES ET CAPACITES CIBLEES DU PROGRAMME :

Utiliser les formules et les règles de dérivation pour déterminer d'une fonction polynôme de degré inférieur ou égal à 3 Dresser à partir du signe de la dérivée le tableau de variations de la fonction

Exploiter le tableau de variations d'une fonction polynôme f de degré inférieur ou égal à 3

Déterminer le nombre de solutions de l'équation f(x)=c

Déterminer les extremums locaux de la fonction f

Après avoir passé 15 minutes en salle de préparation, le candidat se présente devant l'examinateur et est invité à faire une brève présentation du problème posé

Le candidat est invité ensuite à répondre oralement aux questions. Les attendus sont précisés.

Ses réponses pouvant être très incomplètes ou absentes, voici quelques questions « types » pouvant être posées pour alimenter les échanges et obtenir un bilan de compétences le plus éclairé possible.

CANDIDAT	EXAMINATEUR Attendus et Questionnement possible	COMPETENCES
Le candidat est invité à faire une brève présentation du problème posé	Attendus: Le candidat expose en quelques mots le contexte Questions: — Que cherche t-on? — Que connait-on? — Y a-t-il des conditions? — Que représentent les valeurs données dans le texte?	S'APPROPRIER COMMUNIQUER
Préciser à quoi correspondent les dimensions h, l et L du carton, puis parmi les propositions suivantes justifier votre choix.	Attendus: $0 < h < 15$ Questionnement: - Pouvez-vous repérer sur le document fourni les dimensionsh, I et L - Que se passe t-il si certaines de ces grandeurs varient? - Que se passe t-il si h varie? - Si h=0 ? si h = 30 ?	S'APPROPRIER ANALYSER
Montrer en vous appuyant sur l'annexe fournie que l'on peut obtenir une estimation de la hauteur de la boite pour que son volume soit maximal	Attendus: En faisant varier le curseur on fait varier la hauteur h, on obtient le tracé de la courbe et on voit les valeurs du volume V sur le schéma apparaissent. On peut repérer une valeur V maximale Questions: — Que décrit cette courbe? — Quelle est l'allure de la courbe? — Pouvez décrire ses variations? — La courbe possède t-elle un maximum? — Quelle précision possède cette valeur?	ANALYSER VALIDER REALISER COMMUNIQUER
Proposer une méthode permettant de déterminer la valeur de x pour laquelle f admet un maximum	Attendus: Puisque la fonction dérivée de f change de signe entre 0 et 15, pour déterminer la valeur exacte du maximum atteint par f, il faut chercher la valeur qui annule f'. Et donc résoudre f'(x)=0 Questions: - Pourquoi cette valeur qui annule la dérivée correspond au maximun? - Comparer avec la valeur trouvée à la question2	ANALYSER VALIDER REALISER
En déduire les dimensions de la boite arrondis au dixième	Attendus : présentation de la démarche Sinon Donner x et demander d'expliquer comment on fait le lien avec le contexte	ANALYSER REALISER COMMUNIQUER