CSE 12 — Basic Data Structures and Object-Oriented Design Lecture 10

Greg Miranda & Paul Cao, Winter 2021

Announcements

- Quiz 10 due Monday @ 8am
- Survey 4 due Friday @ 11:59pm
- PA3 due tonight @ 11:59pm
- Exam 1 on Friday (no class)
 - Released @ 8am on Friday
 - Closes @ 10pm on Saturday
 - More details on Piazza

4 60 minutes 1-8

Topics

- Questions on Lecture 10?
- Big O

Questions on Lecture 10?

Let
$$f(n) = 100$$
Big O $P(N) \leq C + g(N)$

Which of the following is NOT a correct bound?

5 A.
$$f(n)$$
 is $O(2^n)$

O \mathcal{B} . f(n) is $O(n^2)$

2 %. f(n) is O(n)

None of these

For each function in the list below, it is related to the function below it by O, and the reverse is **not** true. That is, $n ext{ is } O(n^2)$ but $n^2 ext{ is } \textbf{not } O(n)$.

- $f(n) = 1/(n^2)$
- f(n) = 1/n
 - f(n) = 1
- f(n) = log(n)
- f(n) = sqrt(n)
- f(n) = n
- $f(n) = n^2$
- $f(n) = n^3$
- $f(n) = n^4$
- ... and so on for constant polynomials ...
- $f(n) = 2^n$
- f(n) = n!
- f(n) = nⁿ

Big C

• Which of the following is a correct bound?

void printAllElementOfArray(int[] arr) { for (int i = 0; i < arr.legnth; i++) { printf("%d\n", arr[i]); } }
$$f(N) = 3N + 2$$

- Which of the following is a correct bound?
- A. f(n) is O(log(n)) X
 B. f(n) is O(n²) √
- 21 C. f(n) is O(n) V
 O D. f(n) is O(n³) V
- More than one of these

$$3N + 2N = 5N$$

$$9(N) = N$$

$$C = 5$$

$$N_{1} = 6$$

void printAllPossibleOrderedPairs(int arr[]) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = 0; j < arr.length; j++) {
 printf("%d = %d\n", arr[i], arr[j]);
 }
 • Which of the following is a correct bound?

A.
$$f(n)$$
 is $O(log(n))$ X

B. $f(n)$ is $O(n^2)$ Y

C. $f(n)$ is $O(n)$ X

57E. More than one of these

D. f(n) is $O(n^3)$

int fibonacci(int num) {
 if (num <= 1) return num;
 return fibonacci(num - 2) + fibonacci(num - 1);
 }

• Which of the following is a correct bound?

• Which of the following is a correct bound?

•
$$P(S)$$

• $P(S)$

• $P(S)$