(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-309119 (P2002-309119A)

(43)公開日 平成14年10月23日(2002.10.23)

(51) Int.Cl.7		識別記号	F I	7	f-7J-ド(参考)
C 0 9 B	47/24		C 0 9 B 47/24		2H111
B41M	5/26		C 0 7 D 487/22		4 C 0 5 0
C 0 7 D	487/22		G 1 1 B 7/24	5 1 6	5 D O 2 9
G 1 1 B	7/24	5 1 6	B 4 1 M 5/26	Y	

審査請求 未請求 請求項の数2 OL (全 13 頁)

(21)出願番号	特願2001-118841(P2001-118841)	(71)出願人	000006747
			株式会社リコー
(22)出願日	平成13年4月17日(2001.4.17)	(-)	東京都大田区中馬込1丁目3番6号
		(71)出願人	000179306
			山田化学工業株式会社
			京都府京都市南区上鳥羽上調子町1番地1
		(72)発明者	大石 卓生
			東京都大田区中馬込1丁目3番6号 株式
			会社リコー内
		(74)代理人	100074505
			弁理士 池浦 敏明
			最終頁に続く

(54) 【発明の名称】 フタロシアニン化合物

(57)【要約】

【課題】 有機溶剤への高い溶解性や、高感度でかつ高速記録が可能な記録特性、高い光安定性など、CD-R 用色素として好適な性質を有する新規なフタロシアニン 化合物を提供する。

【解決手段】 下記一般式(1)で表されることを特徴とするフタロシアニン化合物。

【化1】

$$0 = S = 0$$

(式中、Rは置換基を有していてもよいアルキル基又は 炭素数 $1\sim4$ の置換基を有していてもよいアリール基を 表し、MはC u、N i 、C o 、Z n 、P d 、C d 、V O 又はT i Oを表し、フタロシアニン骨格周辺の $1\sim1$ 6 の数字は炭素原子の位置番号を示し、置換基R (O=) $_2$ SO-の酸素原子は $1\sim4$ のいずれか、 $5\sim8$ のいずれか、 $9\sim1$ 2のいずれか又は $13\sim1$ 6のいずれかからそれぞれ選ばれる4個の炭素原子に結合している)

【特許請求の範囲】

【請求項1】 下記一般式(1)で表されることを特徴*

*とするフタロシアニン化合物。

【化1】

(式中、Rは置換基を有していてもよいアルキル基又は 炭素数 $1\sim 4$ の置換基を有していてもよいアリール基を 表し、MはCu、Ni、Co、Zn、Pd、Cd、VO 又はTiOを表し、フタロシアニン骨格周辺の $1\sim 16$ の数字は炭素原子の位置番号を示し、置換基R(O=) 2SO-の酸素原子は $1\sim 4$ のいずれか、 $5\sim 8$ のいず れか、 $9\sim 1$ 2のいずれか又は $13\sim 16$ のいずれかか らそれぞれ選ばれる 4 個の炭素原子に結合している)

【化2】

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$
(2)

(式中、 R_1 、 R_2 及び R_3 はそれぞれ独立して水素原子、ハロゲン原子、炭素数 $1\sim 4$ のアルキル基又は炭素数 $1\sim 4$ のフッ素置換アルキル基を表す)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光記録用色素、カラーフィルター用色素、光電変換素子、電子写真感光体、有機半導体素子、触媒及びガスセンサー、カラーフィルターに利用可能な新規なフタロシアニン化合物に関するものである。より詳しくは、本発明は、特に追記可能なコンパクトディスクであるCD-R用の色素として好適な新規なフタロシアニン化合物に関するものである。

[0002]

※【従来の技術】近年の情報機器や通信環境の発達にともない、記録媒体としてのCD(コンパクトディスク)やCD-R(追記可能なコンパクトディスク)の需要は著しく増大している。CD-RはCDと互換性のある追記20型記録媒体であり、そのバイト単価の安さや操作の簡便さが受け入れられて市場が拡大する一方、使用頻度が増すに従い、記録速度の高速化がいっそう求められるようになってきている。

【0003】フタロシアニン類を光記録用色素として利 用することは、特公平7-56019などにより広く知 られている。しかし、これら従来の技術においては、記 録速度を上げれば上げるほど記録マーク(ピット)間あ るいはトラック (グルーブと呼ばれる案内溝)間の熱的 干渉が増大し、記録が困難になるという問題がある。C 30 D-Rは、記録層に含まれる有機色素を、レーザー光を 使って熱分解することによって情報を記録するものであ るが、高速記録用に高エネルギーのレーザー光を照射し た場合、記録層の変形が過剰に起こって、目的の場所以 外の場所までが変形することになるからである。この問 題を解決するためには、高速で熱応答性よく分解する色 素が求められるが、有機色素でこのような特性を持つ色 素は得にくいのが実状である。何故なら色素で分解速度 の速いものの多くは、分解が爆発的に起こるため、その 影響の及ぶ範囲が大きくなりがちだからである。

40 【0004】本発明者らは、すでに光記録用のフタロシアニン色素として、特開平10-45761、特開平11-49773等に示すような色素を提案しており、これらの色素は、有機溶剤への高い溶解性や、高感度な記録特性、高い光安定性など、CD-R用色素として好適な性質を有している。しかしながら、上述したようにCD-Rの記録速度のより高速化の要求に伴い、これに対応しうる記録材料の実現が求められている。

[0005]

【発明が解決しようとする課題】本発明は、かかる実状 ※50 に鑑み、有機溶剤への高い溶解性や、高感度でかつ高速

記録が可能な記録特性、高い光安定性など、CD-R用 色素として好適な性質を有する新規なフタロシアニン化 合物を提供することをその課題とする。

[0006]

【課題を解決するための手段】本発明者らは、上記課題*

*を解決しさらに記録の高速化を実現するため検討を重ね た結果、本発明を完成するに至った。即ち、本発明によ れば、下記一般式(1)で表されることを特徴とするフ タロシアニン化合物が提供される。

【化3】

(3)

(式中、Rは置換基を有していてもよいアルキル基又は 炭素数1~4の置換基を有していてもよいアリール基を 20 表し、MはCu、Ni、Co、Zn、Pd、Cd、VO 又はTiOを表し、フタロシアニン骨格周辺の $1\sim16$ の数字は炭素原子の位置番号を示し、置換基R(O=) 2SO-の酸素原子は1~4のいずれか、5~8のいず れか、9~12のいずれか又は13~16のいずれかか らそれぞれ選ばれる4個の炭素原子に結合している) 【0007】また、本発明によれば、上記構成におい て、Rが下記一般式(2)で表されるアリール基であ り、MがCu、Ni、Co、Zn、Pd、Cd、VO又 はTiOのいずれかであり、置換基R(O=)2SO-の酸素原子が1~4のいずれか、5~8のいずれか、9 ~12のいずれか又は13~16のいずれかからそれぞ れ選ばれる4個の炭素原子に結合していることを特徴と※

※するフタロシアニン化合物が提供される。

【化4】

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$
(2)

(式中、R1、R2及びR3はそれぞれ独立して水素原 子、ハロゲン原子、炭素数1~4のアルキル基又は炭素 数1~4のフッ素置換アルキル基を表す)

[0008]

【発明の実施の形態】以下本発明を詳細に説明する。本 30 発明による新規なフタロシアニン化合物は下記一般式 (1)で表される。

【化5】

(式中、Rは置換基を有していてもよいアルキル基又は 炭素数1~4の置換基を有していてもよいアリール基を 表し、MはCu、Ni、Co、Zn、Pd、Cd、VO 又はTi○を表し、フタロシアニン骨格周辺の1~16★50 らそれぞれ選ばれる4個の炭素原子に結合している)

★の数字は炭素原子の位置番号を示し、置換基R (O=) 2S〇-の酸素原子は1~4のいずれか、5~8のいず れか、9~12のいずれか又は13~16のいずれかか

【0009】本発明の好ましい形態のフタロシアニン化 合物は、上記一般式(1)で表されるフタロシアニン化 合物において、Rが下記一般式(2)で表されるアリー ル基であり、MがCu、Ni、Co、Zn、Pd、C d、VO又はTiOのいずれかであり、置換基R(O $=)_2SO-の酸素原子が1~4のいずれか、5~8の$ いずれか、9~12のいずれか又は13~16のいずれ かからそれぞれ選ばれる4個の炭素原子に結合してい る。

[化6]
$$R_1$$

$$R_2$$
(2)

(式中、R1、R2及びR3はそれぞれ独立して水素原 子、ハロゲン原子、炭素数1~4のアルキル基又は炭素 数1~4のフッ素置換アルキル基を表す)

【0010】本発明に係るフタロシアニン化合物は、置 換基としてカルボン酸エステル基を有するものである。 これらの置換基の効果により、本発明の色素は低い分解 20 とができる。 温度を示す。

【 0 0 1 1 】 本発明に係るフタロシアニン化合物は、上 記一般式(1)で表される化合物であって、置換基Rの 具体例としては、例えば、アルキル基、アルコキシアル キル基、パーフルオロアルキル基、フッ素置換アルキル 基、置換基を有していてもよいフェニル基、置換基を有 していてもよいナフチル基などが挙げられる。フェニル 基及びナフチル基の置換基の例としては、例えば、フッ* *素原子、塩素原子、臭素原子もしくはヨウ素原子のハロ ゲン原子、メチル基、エチル基、n-プロピル基、イソ プロピル基、nーブチル基、tertーブチル基、イソ ブチル基などのアルキル基、メトキシ基、エトキシ基、 nープロポキシ基、イソプロポキシ基、nーブトキシ基 などのアルコキシ基、トリフルオロメチル基などのポリ フルオロアルキル基、2,2,2-トリフルオロエトキ シ基、2,2,3,3,3-ペンタフルオロプロポキシ 基などのポリフルオロアルコキシ基、メトキシエチル

6

10 基、エトキシエチル基などのアルコキシ置換アルキル基 などが挙げられる。

【0012】上記一般式(1)で表されるフタロシアニ ン化合物は、下記一般式(3)で示されるようなアルコ キシ基を有するフタロニトリル化合物を環化して、下記 一般式(4)で示されるフタロシアニン化合物を合成す る。次いで、これをアルコキシ開裂反応にかけることに よって下記一般式(5)で示されるようなテトラヒドロ キシフタロシアニン化合物を合成し、この化合物に酸ハ ロゲン化物を反応させることによりそれぞれ合成するこ

$$(4.7)$$

$$X$$

$$O \longrightarrow CN$$

$$CN$$

$$(3)$$

(式中、Xは置換基を有していてもよいアルキル基を表 す)

【化8】

(式中、Xは上記一般式(3)と同じ意味を有し、フタ ロシアニン骨格周辺の1~16の数字は炭素原子の位置※

※番号を表している)

【化9】

【0013】上記一般式(3)で示されるフタロニトリ ル化合物は、公知のアルコール誘導体とニトロフタロニ トリル、もしくはハロゲン化フタロニトリルを公知の条 件下で反応させることにより得ることができる。上記一 般式(3)で示されるフタロニトリル化合物を環化し て、上記一般式(4)で示されるフタロシアニン化合物 を得るには、上記一般式(3)で示されるフタロニトリ ル化合物を必要な金属塩とともに有機塩基である1,8 -ジアザビシクロ[5.4.0]-7-ウンデセン(D BU)、1,5-ジアザビシクロ[4.3.0]-5-20 ノネン(DBN)、ナトリウムアルコキシド、カリウム アルコキシド等の存在下、メタノール、エタノール、プ ロパノール、ブタノール、ペンタノール、メトキシエタ ノール、エトキシエタノール、エトキシプロパノール等 のアルコール溶媒中で反応させればよい。この反応にお いては、例えば、アンモニアやホルムアミド、尿素など のアンモニアを発生しうる物質を用いて反応を円滑に進 行させることもできる。

【0014】上記一般式(4)で示されるフタロシアニン化合物から上記一般式(5)で示されるテトラヒドロ 30キシフタロシアニン化合物を得るには、上記一般式(4)で示されるフタロシアニン化合物をアルコキシ開裂反応にかければよい。一般的な方法としては、例えば、上記一般式(4)で示されるフタロシアニン化合物をピリジン塩酸塩中で加熱する方法、ベンゼン、トルエン、ジクロロメタン、もしくは四塩化炭素などの有機溶剤中で三臭化ホウ素と反応させる方法、あるいはDMF中でナトリウムチオラートと反応させる方法などがある。

【 O O 1 5 】上記一般式(1)で示されるフタロシアニ 40 ン化合物は、上記一般式(5)で示されるテトラヒドロキシフタロシアニン化合物と酸ハロゲン化物をTHF、ジオキサン、DMF、DMSO、DMI、ジメチルアセトアミド、Nーメチルー2ーピロリドン、アセトニトリル、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶剤中、水素化ナトリウム、水素化カリウム、トリエチルアミン、トリブチルアミン、ピリジン、Nーメチルモルホリン、DBU、DBN、N,N,N'、N'ーテトラメチルエチレンジアミン、N,N,N'、N'ーテトラメチルー1、3ープロパンジアミン、N,*50

*N, N', N'ーテトラメチルー1, 4ーブタンジアミン、N, N, N', N'ーテトラメチルー1, 6ーへキサンジアミン等の塩基の存在下で反応させればよい。

【0016】上記のようにして得られた上記一般式

(1)で表されるフタロシアニン化合物は、分解開始温度が100~400℃の範囲、多くは250~350℃の範囲内にあり、これはCD-R用色素の分解温度としては適切なものである。これ以上分解温度が高いと記録感度が悪くなり、分解温度が低すぎると耐熱性が悪くなる。

【0017】上記一般式(1)で表されるフタロシアニン化合物は、また、有機溶剤に対する溶解度が良いので、適当な有機溶媒に溶解し、スピンコートすることにより容易に薄膜化して記録層とすることができる。これらのフタロシアニン化合物は、単独で用いて記録層を形成してもかまわないし、2種以上混合して用いてもかまわない。あるいは本発明で示す以外の化合物、例えば前記特開平10-45761、特開平11-49773等に開示されているようなフタロシアニン化合物と混合して用いてもよい。

[0018]

【実施例】以下、本発明を実施例により更に具体的に説 明する。これらの実施例で得られた化合物の構造を後記 表1及び表2に示す。なお、以下の説明でフタロシアニ ン化合物の置換基を示すのに、「 α 」、「 β 」という表 示を用いることがある。フタロシアニン骨格はテトラア ザポルフィリン骨格の外側に4つのベンゼン環が縮合し た形をしているが、各ベンゼン環部分に4ヶ所ずつ置換 基が入りうる場所がある。このうち、テトラアザポルフ ィリン骨格に近い位置2ヶ所をα位、遠い位置2ヶ所を β位と呼ぶ。例えば、3位が置換されたフタロニトリル 化合物を環化すると、α位に置換基が入ったフタロシア ニン化合物が生成するが、それは下記のような4種の異 性体混合物となっている。以下で説明する操作では、こ れら下記のような4種の異性体の混合物となっているの で、これらの異性体混合物を一括して取り扱っている が、必要に応じてそれぞれ分離して用いることも可能で ある。

[0019]

【化10】

(式中、Yは置換基を表す。)

体)

【0020】実施例 $1:\alpha,\alpha,\alpha,\alpha-$ テトラキス[4-(トリフルオロメチル)フェニルスルホニルオキシ]バナジルフタロシアニン(化合物1)の合成(1)3-メトキシフタロニトリル(化合物1の中間

冷却管を付けた反応フラスコに3ーニトロフタロニトリル86.5g、メタノール19.2g、無水炭酸カリウム165.6g、及びDMSO350m1を仕込み、窒素気流下65℃で4時間撹拌した。加熱、撹拌を止め、反応混合物を水2000m1中に排出し、析出した結晶を沪取、水洗、乾燥して66.4g(収率84.1%)の目的化合物を得た。この化合物をGC/MS分析した結果、分子イオンピークM+=158を確認した。

(2) α , α , α , α -テトラメトキシバナジルフタロシアニン(化合物 1 の中間体)

冷却管を付けた反応フラスコに上記(1)で得た3-メトキシフタロニトリル19.8g、ナトリウムメトキシド8.50g、ホルムアミド6.00g、及び1-ペンタノール188m1を仕込み、加熱、昇温した。90℃で三塩化バナジウム6.45gを加え、窒素ガスを導入して90~100℃で5時間撹拌した。加熱、撹拌を止め、反応混合物をメタノール2000m1中に排出し、結晶を沪取、メタノール、次いでアセトンで洗浄、乾燥して21.9gの粗製色素を得た。この粗製色素のうち10.0gを採取し、カラムクロマトグラフィー(シリカゲル/クロロホルム:THF=15:1~4:1)により分離精製し、3.86gの目的色素を得た。

(3) α , α , α , α -テトラヒドロキシバナジルフタロシアニン(化合物1の前駆体)

冷却管を付けた反応フラスコにピリジン110.6gを 仕込み、氷水浴中撹拌しながら濃塩酸146.0gを滴 下した。減圧蒸留にて水を完全に留去した後、100℃* Y-N-M-N-N-Y

*まで昇温して上記(2)で得たフタロシアニン化合物 8.46gを加え、200~210℃で4時間撹拌し た。加熱を止め、反応混合物の温度が110℃となった 20 ところで、これを10%塩酸で希釈した。1時間撹拌し た後、析出した結晶を戸取、水洗、アセトンで洗浄、乾 燥して6.00gの目的色素を得た。

(4) α , α , α , α -テトラキス [4-(トリフルオロメチル)フェニルスルホニルオキシ]バナジルフタロシアニン(化合物1)

冷却管を付けた反応フラスコに上記(3)で得たフタロ シアニン化合物 0.75gと無水THF10m1を仕込 み、撹拌しながら水素化ナトリウム(60%オイルサス ペンジョン) 0. 41 gを加え、40℃で10分撹拌し 30 た。そこに4-(トリフルオロメチル)ベンゼンスルホ ニルクロリド2.52gを加え、50~55℃で120 時間撹拌した。加熱、撹拌を止め、反応混合物をメタノ ール100m1で希釈し、水20m1を滴下して析出し た結晶を沪取、メタノール/水(1/1)で洗浄、乾燥 して1.62gの粗製色素を得た。この粗製色素をカラ ムクロマトグラフィー (活性アルミナ/トルエン:酢酸 エチル=100:1~50:1)により分離精製し、 0.56gの精製色素を得た。このフタロシアニン化合 物のクロロホルム中での入maxは703nmであっ た。また、TG分析で測定される補外減量開始温度は2 93℃であり、DSC分析で測定される補外発熱開始温 度は280℃、発熱量は109J/g、発熱ピークの半 値幅は13℃であった。なお、これらの熱分析はいずれ も窒素気流下で測定されたものであり、他の実施例の熱 分析値についても同様である。この化合物をLC/MS 分析した結果、分子イオンピークM+=1474を確認 した。 I Rスペクトルを図1に示す。 元素分析値は下記 の通りであった。

F (%)

C(%) H(%) N(%)

実測値 48.82 1.91 7.59 15.44 1.90 7.60 48.85 15.46 計算値

(C60H28F12N8O13S4V=1474EU7)

【0021】実施例 $2:\alpha,\alpha,\alpha,\alpha-$ テトラキス (フェニルスルホニルオキシ) バナジルフタロシアニン (化合物2)

冷却管を付けた反応フラスコに実施例1の(3)で得た フタロシアニン化合物 0.75gと無水THF10m1 を仕込み、撹拌しながら水素化ナトリウム(60%オイ ルサスペンジョン) O. 41gを加え、40℃で10分 10 撹拌した。そこにベンゼンスルホニルクロリド1.82 gを加え、50~55℃で100時間撹拌した。加熱、 撹拌を止め、反応混合物をメタノール100m1で希釈 し、析出した結晶を沪取、メタノールで洗浄、乾燥して 1.35gの粗製色素を得た。この粗製色素をカラムク ロマトグラフィー (活性アルミナ/トルエン:酢酸エチ ル=50:1) により分離精製し、0.31gの精製色 素を得た。このフタロシアニン化合物のクロロホルム中 でのAmaxは702nmであった。また、TG分析で 測定される補外減量開始温度は289℃であり、DSC 分析で測定される補外発熱開始温度は275℃、発熱量 は228J/g、発熱ピークの半値幅は11℃であっ た。この化合物をLC/MS分析した結果、分子イオン ピークM+=1203を確認した。 元素分析値は下記の 通りであった。

C (%) H (%) N (%) 55.89 2.68 9.30 55.85 2.66 9.31

(C56H32N8O13S4V=1203ELT)【0022】実施例 $3:\alpha,\alpha,\alpha,\alpha$ ーテトラキス (p-トルエンスルホニルオキシ) バナジルフタロシア ニン(化合物3)

実測値

計算值

冷却管を付けた反応フラスコに実施例1の(3)で得た フタロシアニン化合物 0.75gと無水THF10m1 を仕込み、撹拌しながら水素化ナトリウム(60%オイ ルサスペンジョン) O. 41gを加え、40℃で10分 撹拌した。そこにp-トルエンスルホニルクロリド1. 82gを加え、50~55℃で100時間撹拌した。加 熱、撹拌を止め、反応混合物をメタノール100m1で 希釈し、析出した結晶を沪取、メタノールで洗浄、乾燥 して1.35gの粗製色素を得た。この粗製色素をカラ ムクロマトグラフィー (活性アルミナ/トルエン:酢酸 エチル=50:1)により分離精製し、0.31gの精 製色素を得た。このフタロシアニン化合物のクロロホル ム中でのλmaxは702nmであった。また、TG分 析で測定される補外減量開始温度は289℃であり、D SC分析で測定される補外発熱開始温度は275℃、発 熱量は228J/g、発熱ピークの半値幅は11℃であ った。この化合物をLC/MS分析した結果、分子イオ

*の通りであった。

C (%) H (%) N (%) 実測値 57.20 3. 16 8.88 計算値 57.19 3. 18 8.90

12

(C60H40N8013S4V=1259ELT)【0023】実施例 $4:\alpha,\alpha,\alpha,\alpha$ ーテトラキス (2,4,6-トリメチルフェニルスルホニルオキシ) バナジルフタロシアニン(化合物4)

冷却管を付けた反応フラスコに実施例1の(3)で得た フタロシアニン化合物 0.50gと無水THF6m1を 仕込み、撹拌しながら水素化ナトリウム(60%オイル サスペンジョン) O. 25gを加え、40℃で10分撹 拌した。そこに2,4,6-トリメチルベンゼンスルホ ニルクロリド1.36gを加え、50~55℃で124 時間撹拌した。加熱、撹拌を止め、反応混合物をメタノ ール100m1で希釈し、析出した結晶を沪取、メタノ ールで洗浄、乾燥して0.89gの粗製色素を得た。こ の粗製色素をカラムクロマトグラフィー(活性アルミナ /トルエン:酢酸エチル=100:1~50:1)によ り分離精製し、0.38gの精製色素を得た。このフタ ロシアニン化合物のクロロホルム中でのAmaxは70 5 n mであった。また、TG分析で測定される補外減量 開始温度は269℃であり、DSC分析で測定される補 外発熱開始温度は253℃、発熱量は155 J/g、発 熱ピークの半値幅は10℃であった。この化合物をLC **/MS分析した結果、分子イオンピークM+=1371** を確認した。元素分析値は下記の通りであった。

C (%) H (%) N (%)

実測値 8.16 59.50 4. 10 59.52 4.08 計算値 8.17

(C68H56N8O13S4V=1371として) 【0024】実施例 $5:\alpha,\alpha,\alpha,\alpha$ ーテトラキス (2,4,6-トリイソプロピルフェニルスルホニルオ キシ)バナジルフタロシアニン(化合物5)

冷却管を付けた反応フラスコに実施例1の(3)で得た フタロシアニン化合物 0.50gと無水THF10m1 を仕込み、撹拌しながら水素化ナトリウム(60%オイ ルサスペンジョン) 0.27gを加え、40℃で10分 撹拌した。そこに2,4,6-トリイソプロピルベンゼ ンスルホニルクロリド2.07gを加え、50~55℃ で100時間撹拌した。加熱、撹拌を止め、反応混合物 をメタノール100m1で希釈し、析出した結晶を沪 取、メタノールで洗浄、乾燥して0.86gの粗製色素 を得た。この粗製色素をカラムクロマトグラフィー(活 性アルミナ/トルエン:酢酸エチル=100:1~5 0:1)により分離精製し、0.13gの精製色素を得 ンピークM+=1259を確認した。元素分析値は下記*50 た。このフタロシアニン化合物のクロロホルム中での入

maxは700nmであった。また、TG分析で測定される補外減量開始温度は267℃であり、DSC分析で測定される補外発熱開始温度は245℃、発熱量は51 J/g、発熱ピークの半値幅は20℃であった。この化合物をLC/MS分析した結果、分子イオンピークM+=1707を確認した。元素分析値は下記の通りであった。

 C(%)
 H(%)
 N(%)

 実測値
 64.65
 6.07
 6.55

 計算値
 64.67
 6.09
 6.56

(C92H104N8O13S4V=1707として) 【0025】実施例6: α , α , α , α -テトラキス (4-クロロフェニルスルホニルオキシ) バナジルフタロシアニン (化合物6)

冷却管を付けた反応フラスコに実施例1の(3)で得た フタロシアニン化合物0.50gと無水THF6m1を 仕込み、撹拌しながら水素化ナトリウム(60%オイル サスペンジョン) 0.27gを加え、40℃で10分撹 拌した。そこに4-クロロベンゼンスルホニルクロリド 1. 44gを加え、50~55℃で114時間撹拌し た。加熱、撹拌を止め、反応混合物をメタノール100 m1で希釈し、析出した結晶を沪取、メタノールで洗 浄、乾燥して0.95gの粗製色素を得た。この粗製色 素をカラムクロマトグラフィー(活性アルミナ/トルエ ン:酢酸エチル=100:1~50:1)により分離精 製し、0.23gの精製色素を得た。このフタロシアニ ン化合物のクロロホルム中でのλmaxは701nmで あった。また、TG分析で測定される補外減量開始温度 は291℃であり、DSC分析で測定される補外発熱開 始温度は264℃、発熱量は196J/g、発熱ピーク の半値幅は15℃であった。この化合物をLC/MS分 析した結果、分子イオンピークM+=1340を確認し た。元素分析値は下記の通りであった。

 C(%)
 H(%)
 N(%)

 実測値
 50.11
 2.14
 3.35

 計算値
 50.15
 2.16
 8.36

(C56H28C14N8O13S4V=1340として)

【0026】実施例 $7:\alpha,\alpha,\alpha,\alpha-$ テトラキス (4-tert-ブチルフェニルスルホニルオキシ)バ 40 ナジルフタロシアニン(化合物7)

冷却管を付けた反応フラスコに実施例1の(3)で得たフタロシアニン化合物0.50gと無水THF10m1を仕込み、撹拌しながら水素化ナトリウム(60%オイルサスペンジョン)0.27gを加え、40℃で10分撹拌した。そこに4-tert-ブチルベンゼンスルホニルクロリド1.59gを加え、50~55℃で100時間撹拌した。加熱、撹拌を止め、反応混合物をメタノール100m1で希釈し、析出した結晶を沪取、メタノールで洗浄、乾燥して0.86gの粗製色素を得た。こ50

14

の粗製色素をカラムクロマトグラフィー(活性アルミナ /トルエン:酢酸エチル=100:1~50:1)により分離精製し、0.18gの精製色素を得た。このフタロシアニン化合物のクロロホルム中での入maxは703 nmであった。また、TG分析で測定される補外減量開始温度は295℃であり、DSC分析で測定される補外発熱開始温度は284℃、発熱量は215J/g、発熱ピークの半値幅は10℃であった。この化合物をLC/MS分析した結果、分子イオンピークM+=1427 を確認した。元素分析値は下記の通りであった。

 C(%)
 H(%)
 N(%)

 実測値
 60.54
 4.46
 7.83

 計算値
 60.55
 4.48
 7.85

(C72H64N8O13S4V=14272LT)【0027】実施例 $8:\alpha,\alpha,\alpha,\alpha$ ーテトラキス [2-(1-ブトキシ)-5-メチルフェニルスルホニ ルオキシ] バナジルフタロシアニン(化合物8) 冷却管を付けた反応フラスコに実施例1の(3)で得た フタロシアニン化合物1.00g、N,N,N',N' ーテトラメチルー1,6-ヘキサンジアミン4.29 g、及びN-メチルー2-ピロリドン15m1を仕込 み、氷水浴中で冷却下撹拌しながら2-(1-ブトキ シ)-5-メチルベンゼンスルホニルクロリド4.00 gを2時間かけて滴下した。滴下終了後、反応混合物の 温度を室温まで戻して80時間撹拌した。撹拌を止め、 反応混合物をメタノール100m1で希釈し、析出した 結晶を沪取、メタノールで洗浄、乾燥して1.90gの 粗製色素を得た。この粗製色素をカラムクロマトグラフ ィー(活性アルミナ/クロロホルム:酢酸エチル=5 0:1)により分離精製し、1.10gの精製色素を得 た。このフタロシアニン化合物のクロロホルム中での入 maxは705nmであった。また、TG分析で測定さ れる補外減量開始温度は299℃であり、DSC分析で 測定される補外発熱開始温度は273℃、発熱量は60 J/g、発熱ピークの半値幅は9℃であった。この化合 物をLC/MS分析した結果、分子イオンピークM+= 1547を確認した。元素分析値は下記の通りであっ た。

 C(%)
 H(%)
 N(%)

 実測値
 58.93
 4.66
 7.22

 計算値
 58.95
 4.65
 7.24

(C76H72N8O17S4V=1547として) 【0028】実施例9: α , α , α , α -テトラキス [2-(1-ブトキシ)-5-tert-ブチルフェニルスルホニルオキシ] バナジルフタロシアニン(化合物9)

冷却管を付けた反応フラスコに実施例1の(3)で得たフタロシアニン化合物1.00g、N,N,N',N'ーテトラメチルー1,6ーへキサンジアミン4.29g、及びN-メチルー2-ピロリドン15m1を仕込

み、氷水浴中で冷却下撹拌しながら2-(1-ブトキ シ) -5-tert-ブチルベンゼンスルホニルクロリ ド4.27gを1時間かけて投入した。投入完了後、反 応混合物の温度を室温まで戻して48時間撹拌した。撹 拌を止め、反応混合物をメタノール240m1で希釈 し、水60m1を滴下して析出した結晶を取り、メタノ ール/水(6/1)で洗浄、乾燥して1.55gの粗製 色素を得た。この粗製色素をカラムクロマトグラフィー (活性アルミナ/クロロホルム:酢酸エチル=300: 1~250:1)により分離精製し、1.20gの精製 10 色素を得た。このフタロシアニン化合物のクロロホルム 中でのλmaxは704nmであった。また、TG分析 で測定される補外減量開始温度は290℃であり、DS C分析で測定される補外発熱開始温度は263℃、発熱 量は75J/g、発熱ピークの半値幅は10℃であっ た。この化合物をLC/MS分析した結果、分子イオン ピークM+=1715を確認した。元素分析値は下記の 通りであった。

 C(%)
 H(%)
 N(%)

 実測値
 61.55
 5.57
 6.50

 計算値
 61.57
 5.60
 6.53

(C76H72N8O17S4V=1547として) 【0029】実施例10: α , α , α , α -テトラキス(p-トルエンスルホニルオキシ) 亜鉛フタロシアニン(化合物10)

 $(1)\alpha,\alpha,\alpha,\alpha-$ テトラメトキシ亜鉛フタロシア ニン(化合物 10の中間体)

冷却管を付けた反応フラスコに実施例1の(1)で得た3ーメトキシフタロニトリル19.8g、ナトリウムメトキシド8.50g、ホルムアミド6.00g、及び1ーペンタノール188m1を仕込み、加熱、昇温した。90℃で塩化亜鉛6.04gを加え、窒素ガスを導入して90~100℃で5時間撹拌した。加熱、撹拌を止め、反応混合物をメタノール2000m1中に排出し、結晶を沪取、メタノール、次いでアセトンで洗浄、乾燥して19.0gの粗製色素を得た。この粗製色素のうち10.0gを採取し、カラムクロマトグラフィー(シリカゲル/クロロホルム:THF=10:1~2:1)により分離精製し、6.98gの目的色素を得た。

(2) α , α , α , α -テトラヒドロキシ亜鉛フタロシアニン(化合物 10の前駆体)

冷却管を付けた反応フラスコにピリジン110.6gを 仕込み、氷水浴中撹拌しながら濃塩酸146.0gを滴 下した。減圧蒸留にて水を完全に留去した後、100℃ まで昇温して上記(1)で得たフタロシアニン化合物 6.98gを加え、200~210℃で4時間撹拌し た。加熱を止め、反応混合物の温度が110℃となった ところで、これを10%塩酸で希釈した。1時間撹拌し た後、析出した結晶を沪取、水洗、アセトンで洗浄、乾 燥して5.50gの目的色素を得た。

 $(3) \alpha, \alpha, \alpha, \alpha-rhj+z(p-h)x+zx$ ホニルオキシ) 亜鉛フタロシアニン(化合物10) 冷却管を付けた反応フラスコに上記3)で得たフタロシ アニン化合物1.09g、N, N, N', N'-テトラ メチル-1, 6-ヘキサンジアミン4.29g、及びNーメチルー2ーピロリドン15m1を仕込み、氷水浴中 で冷却下撹拌しながらャートルエンスルホニルクロリド 2.61gを1時間かけて投入した。投入完了後、反応 混合物の温度を室温まで戻して60時間撹拌した。撹拌 を止め、反応混合物をメタノール100m1で希釈し、 析出した結晶を沪取、メタノールで洗浄、乾燥して1. 24gの粗製色素を得た。この粗製色素をカラムクロマ トグラフィー (活性アルミナ/クロロホルム:酢酸エチ ル=30:1~20:1)により分離精製し、0.98 gの精製色素を得た。このフタロシアニン化合物のクロ ロホルム中での λ maxは674nmであった。また、 化合物をLC/MS分析した結果、分子イオンピークM +=1257を確認した。

16

【0030】実施例 $11:\alpha,\alpha,\alpha,\alpha-$ テトラキス (p-トルエンスルホニルオキシ) 銅フタロシアニン (化合物11)

 $(1)\alpha,\alpha,\alpha,\alpha-$ テトラメトキシ銅フタロシアニン (化合物 11 の中間体)

冷却管を付けた反応フラスコに実施例1の(1)で得た 3-メトキシフタロニトリル19.8g、ナトリウムメトキシド8.50g、ホルムアミド6.00g、及び1ーペンタノール188m1を仕込み、加熱、昇温した。 90℃で塩化銅(I)4.38gを加え、窒素ガスを導入して90~100℃で6時間撹拌した。加熱、撹拌を止め、反応混合物をメタノール2000m1中に排出し、結晶を沪取、メタノール、次いでアセトンで洗浄、乾燥して18.5gの粗製色素を得た。この粗製色素の 5510.0gを採取し、カラムクロマトグラフィー (シリカゲル/クロロホルム: $THF=10:1\sim2:1$)により分離精製し、7.23gの目的色素を得た。 (2) α , α , α , α -テトラヒドロキシ銅フタロシアニン (化合物11の前駆体)

冷却管を付けた反応フラスコにピリジン110.6gを 仕込み、氷水浴中撹拌しながら濃塩酸146.0gを滴 下した。減圧蒸留にて水を完全に留去した後、100℃ まで昇温して上記(1)で得たフタロシアニン化合物 7.23gを加え、200~210℃で3時間撹拌し た。加熱を止め、反応混合物の温度が110℃となった ところで、これを10%塩酸で希釈した。1時間撹拌し た後、析出した結晶を沪取、水洗、アセトンで洗浄、乾 燥して5.00gの目的色素を得た。

(3) α , α , α , α , α -テトラキス (p-トルエンスル ホニルオキシ) 銅フタロシアニン (化合物 1 1) 冷却管を付けた反応フラスコに上記 (3) で得たフタロ シアニン化合物 1.00g、N,N,N',N',-テト

であった。

17

ラメチルー1,6ーへキサンジアミン4.29g、及び N-メチルー2-ピロリドン15m1を仕込み、氷水浴中で冷却下撹拌しながら<math>p-トルエンスルホニルクロリド2.61gを1時間かけて投入した。投入完了後、反応混合物の温度を室温まで戻して<math>80時間撹拌した。撹拌を止め、反応混合物をメタノール100m1で希釈し、析出した結晶を $河取、メタノールで洗浄、乾燥して1.10gの粗製色素を得た。この粗製色素をカラムクロマトグラフィー(活性アルミナ/クロロホルム:酢酸エチル=<math>100:1\sim20:1$)により分離精製し、 $0.78gの精製色素を得た。このフタロシアニン化合物のクロロホルム中での<math>\lambda$ maxは684nmであった。また、化合物をLC/MS分析した結果、分子イオンピー2M+=1255を確認した。

【0031】比較例: α , α , α , α -テトラキス(2-メチルフェニルチオ) 亜鉛フタロシアニン 冷却管を付けた反応フラスコに3-(2-メチルフェニルチオ) フタロニトリル10.0g、1-ペンタノール80m1、DBU7.6gを仕込み撹拌しながら加熱し、80で位塩化亜鉛1.8gを加え、窒素気流下10 200°で5時間撹拌した。加熱、撹拌を止め、反応混合物をメタノール500m1で希釈して析出した結晶を沪取、メタノールで洗浄、乾燥して9.2gの粗製色素を得た。この粗製色素をわラムクロマトグラフィーで分離精製し、4.3gの精製色素を得た。この化合物の四塩

化炭素中での λ m a \times は720 n mであった。また、T G分析で測定される補外減量開始温度は418であり、DSC分析で測定される補外発熱開始温度は425で、発熱量は25 J/g、発熱ピークの半値幅は30 $\mathbb C$

18

【0032】上記の比較例の化合物のようなフェニルチオ基を有するフタロシアニン化合物の分解開始温度は、350~450℃の範囲にあるのが一般的である。これに対して、実施例1で得た化合物は分解開始温度が28100℃であり、DSCの半値幅も13℃と小さい。これは分解が低温で且つ応答性よく起こっていることを表しており、他の実施例の化合物も同様であることから、フェニルチオ基をフェニルスルホニルオキシ基に変えることで熱分解特性が大幅に改善されたことがわかる。

【0033】なお、以上の実施例、及び比較例の化合物を分析するにあたって、下記の分析装置を使用した。

GC/MS:株式会社島津製作所製GCMS-QP20 00GF

LC/MS:同社製LCMS-QP8000 IR :同社製FTIR-8000PC

DSC : 同社製DSC-50 TGA : 同社製TGA-50

【0034】 【表1】

19

化合物No.	置换基 R - S O ₃ -	直接位置	中心金属
1	oF ₃	æ	v o
2		æ	v o
3	н,с-(α	Vο
4	H ₃ C CH ₃ O CH ₃	oe :	vo
5		α	vo
6	cı—⟨	ot .	vo
7		a	v o

[0035]

* *【表2】

	13.21			
化合物 No.	置換基 R-SO₃-	置換位置	中心金属	
8	OCH ₂ CH ₂ CH ₂ CH ₃	a	vo	
9	och,ch,ch,ch,	Œ	v o	
1 0	H _s C-\(\sigma\) - \(\sigma\) 0 0 -	(k	Zn	
1 1	H,C-(-)-900-	œ	Cu	
比較例	CH,	α	Zn	

【0036】(ディスク化実験例)

実験例

直径120mm、厚さ1.2mmのポリカーボネイト透 化合物と3:7の割合で混合し、四塩化炭素、テトラヒ 明基板表面上に、深さ1700Åの案内溝を有する基板※50 ドロフラン、2-ブトキシエタノール、メチルシクロへ

※を用意した。表中、No.1に記載されているフタロシアニン化合物を、下記構造式で示されるフタロシアニン化合物と3:7の割合で混合し、四塩化炭素、テトラヒ

キサンからなる混合溶媒中に溶解させて色素塗布液を得た。当色素液をスピンコート方法により透明基板上に塗布し、光吸収層を得た。光吸収層の膜厚は約1500Åとした。光吸収層上にスパッタリング法により、銀膜を約1000Åの厚さで設け、光反射層を得た。さらに光反射層上に紫外線硬化樹脂(大日本インキ社製 SD-*

* 1700) からなる保護層をスピンコート法により、約 5μ mの厚さに設けて追記型コンパクトディスク(CD -R)を得た。

[0037]

【化11】

$$G(CF_3)_2$$
 $G(CF_3)_2$ $G($

【0038】比較実験例

直径120mm、厚さ1.2mmのポリカーボネイト透明基板表面上に、深さ1700Åの案内溝を有する基板を用意した。下記構造式で示されるフタロシアニン化合物をテトラヒドロフラン、2ーブトキシエタノール、メチルシクロヘキサンからなる混合溶媒中に溶解させて色素塗布液を得た。当色素液をスピンコート方法により透明基板上に塗布し、光吸収層を得た。光吸収層の膜厚は※

※約1500Åとした。光吸収層上にスパッタリング法により、銀膜を約1000Åの厚さで設け、光反射層を得た。さらに光反射層上に紫外線硬化樹脂(大日本インキ社製 SD-1700)からなる保護層をスピンコート法により、約5 μ mの厚さに設けて追記型コンパクトディスク(CD-R)を得た。

【化12】

【0039】上記実験例ならびに比較実験例にあるCD-Rを、市販のCDライター(シナノケンシ社製 PX-W124TSi)で12倍速記録し、エラーレート、ジッター、再生テストをした結果を下記に記す。なお、測定には下記装置(機器)を使用した。

エラーレート測定プレーヤー; CD-CATS (Audio Development社製)

★ジッター測定プレーヤー; Philips社 CD-9 20JT

再生テストプレーヤー (市販品); RICOH社 MP7080A X32倍速再生

本発明に係るフタロシアニン混合物を使用したCD-R (実施例)では、X12記録時においてジッターが少な ★50 く、エラーレートも低い良好な記録が可能である。また

再生互換性も良好である。(なお、CD規格では エラ *【OO40】 ーレート<220f/s ジッター<35nsである)* 【表3】

CD-Rサンプル	エラーレート	3 T ピットジッ	再生テスト
	(frame/s	ター (n s)	
	e c)		
実験例1	2. 4	27. 5	〇再生動作良好
実験例2	2. 3	26.0	○再生動作良好
比較実験例	22.8	45.0	△リード遅れあり

[0041]

【発明の効果】本発明のフタロシアニン化合物は種々の 有機溶媒に室温で容易に溶解する為、膜形成などの加工 10 も良好な品質の信号が得られる。 性に優れており、また形成された膜は高い吸光係数と鋭 敏な熱分解特性をもつので、追記型光記録材料として利 用価値の高いものである。特に、本発明のフタロシアニ※

※ン化合物は狭い温度範囲で瞬時に分解するため、これを 用いて追記型光記録媒体を作製すると、高速で記録して

【図面の簡単な説明】

【図1】化合物1のIRスペクトル図である。

【図1】

フロントページの続き

(72) 発明者 八代 徹

東京都大田区中馬込1丁目3番6号 株式 会社リコー内

(72)発明者 谷口 正俊

京都府京都市南区上鳥羽調子町1番地1 山田化学工業株式会社内

(72) 発明者 成塚 俊郎

京都府京都市南区上鳥羽調子町1番地1

山田化学工業株式会社内

(72)発明者 青井 宏尚

京都府京都市南区上鳥羽調子町1番地1

山田化学工業株式会社内

Fターム(参考) 2H111 EA03 EA22 FA12 FA14 FA23

FB45

4C050 PA13

5D029 JA04 JB28