Séparation de sources multicanale par machine learning

Stéphane KOMBO*,

Alexandre GUÉRIN†, Lauréline PEROTIN†, Srđan KITIƆ

*TELECOM SudParis †Orange Labs Cesson-Sévigné

Plan de l'exposé

- I. Contexte
 - A. Djingo, Smart Speaker d'Orange
 - B. Traitement d'antenne
- II. Localisation: Velocity Vector Module (VVM)
 - A. Format ambisonique
 - B. Algorithme, implémentation
- III. Filtrage spatial: Séparation multicanale par machine learning
 - A. Fonctionnement du système
 - B. Optimisation du système

Bilan du stage

I. Contexte

Smart Speaker

Enceinte connectée capable de dialoguer en "langage naturel"

Smart Speaker

Enceinte connectée capable de dialoguer en "langage naturel"

Prise de son "far-field"

Problématique: environnement bruyant et réverbérant

Nettoyage du signal par traitement d'antenne :

- Localisation
- Filtrage spatial

II. Localisation: Velocity Vector Module

Format ambisonique

Une représentation multicanale

- 1. Intérêts de l'ambisonie
- 2. Format B

Format ambisonique

Une représentation spatiale du champ acoustique

- Captation spatiale homogène
- Rendu indépendant du système de restitution
- Capacités à effectuer du traitement d'antenne : localisation, focalisation, ...

Format ambisonique

Format B: composantes d'ordres 0 et 1

- Ordre 0 : composante omnidirectionnelle W
 → pression du champ sonore
- Ordre 1: composantes directionnelles X, Y, Z

 → gradients du champ sonore ⇔ direction de
 propagation du champ sonore
- Ordres supérieurs : information directionnelle plus robuste

Algorithme, implémentation

Localisation basée sur l'intensité acoustique

- 1. Intensité acoustique
- 2. Localisation et suivi des sources
- 3. Implémentation orientée objet

Intensité acoustique

Pour une source seule en milieu anéchoïque

$$\begin{bmatrix} W \\ X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1 \\ \cos \theta \cos \phi \\ \sin \theta \cos \phi \\ \sin \phi \end{bmatrix} p$$

$$\vec{I}(t) = \begin{bmatrix} I_X(t) \\ I_Y(t) \\ I_Z(t) \end{bmatrix} = \begin{bmatrix} W(t)X(t) \\ W(t)Y(t) \\ W(t)Z(t) \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\phi \\ \sin\theta\cos\phi \\ \sin\phi \end{bmatrix} p^2(t)$$

Localisation et suivi des sources

Analyse temps-fréquence dans le cas multisource

Histogramme pour une trame (40 ms)

Histogramme pour 50 trames (2 s)

Architecture du programme

Préparation des signaux

classe RawSignal()

Attributs : w, x, y, z, l

Méthode : __init__()

Localisation via les histogrammes

classe Quantized(RawSignal)

Attribut : index(θ, φ)

Méthodes : __init__(),
histogram(), localisation()

Traitement complet		
fonction loc_multisource()		
Argument : signal ambisonique s		
Retour : localisation [$\theta(t)$, $\phi(t)$ for t in len(\mathbf{s})]		
Paramétrisation Boucle principale		
sound = RawSignal()	awSignal() sound.l(t, f)	
sound.w(t), sound.x(t) sound.y(t), sound.z(t)	sig = Quantized(sound) sig.localisation()	

III. Filtrage spatial: Séparation multicanale par machine learning

Fonctionnement du système

Filtrage et machine learning

- Filtre de Wiener multicanal
- Estimation des matrices de covariance
- 3. La solution globale

Filtre en sous-bande optimal

Mélange additif :

$$\mathbf{x}(t, f) = \mathbf{s}(t, f) + \mathbf{n}(t, f)$$

- Mélange additif :
- Filtrage linéaire :

$$\mathbf{x}(t,f) = \mathbf{s}(t,f) + \mathbf{n}(t,f)$$

$$y(t, f) = \mathbf{w}(f)^H \mathbf{x}(t, f)$$

$$\mathbf{x}(t, f) = \mathbf{s}(t, f) + \mathbf{n}(t, f)$$

$$y(t, f) = \mathbf{w}(f)^H \mathbf{x}(t, f)$$

• Critère:
$$\mathbf{w}(f) = \operatorname{argmin}_{\mathbf{h}} \mathbb{E}\{|s(t,f) - \mathbf{h}(f)^H \mathbf{x}(t,f)|^2\}$$

$$\mathbf{x}(t, f) = \mathbf{s}(t, f) + \mathbf{n}(t, f)$$

$$y(t, f) = \mathbf{w}(f)^H \mathbf{x}(t, f)$$

• Critère:
$$\mathbf{w}(f) = \operatorname{argmin}_{\mathbf{h}} \mathbb{E}\{|s(t,f) - \mathbf{h}(f)^H \mathbf{x}(t,f)|^2\}$$

• Solution:
$$\mathbf{w}(f) = [\mathbf{\Phi_{ss-r1}}(f) + \mathbf{\Phi_{nn}}(f)]^{-1} \mathbf{\Phi_{ss-r1}}(f) \mathbf{u}_0$$

$$\mathbf{x}(t, f) = \mathbf{s}(t, f) + \mathbf{n}(t, f)$$

$$y(t, f) = \mathbf{w}(f)^H \mathbf{x}(t, f)$$

$$\mathbf{w}(f) = \operatorname{argmin}_{\mathbf{h}} \mathbb{E}\{|s(t, f) - \mathbf{h}(f)^{H} \mathbf{x}(t, f)|^{2}\}$$

$$\mathbf{w}(f) = [\mathbf{\Phi_{ss-r1}}(f) + \mathbf{\Phi_{nn}}(f)]^{-1} \mathbf{\Phi_{ss-r1}}(f) \mathbf{u}_0$$

Matrices de covariances de la forme :

$$\mathbf{\Phi_{ss}}(f) = \frac{1}{T} \sum_{t=0}^{T-1} \tilde{\mathbf{s}}(t, f) \tilde{\mathbf{s}}^H(t, f)$$

Matrices de covariances de la forme :

$$\mathbf{\Phi_{ss}}(f) = \frac{1}{T} \sum_{t=0}^{T-1} \tilde{\mathbf{s}}(t, f) \tilde{\mathbf{s}}^H(t, f)$$

Estimation de **s** par masquage :

$$\tilde{\mathbf{s}}(t,f) = M_S(t,f)\mathbf{x}(t,f)$$

Matrices de covariances de la forme :

$$\mathbf{\Phi_{ss}}(f) = \frac{1}{T} \sum_{t=0}^{T-1} \tilde{\mathbf{s}}(t, f) \tilde{\mathbf{s}}^H(t, f)$$

Estimation de **s** par masquage :

$$\tilde{\mathbf{s}}(t,f) = M_S(t,f)\mathbf{x}(t,f)$$

Masque estimé par réseau de neurones et apprentissage supervisé :

$$M_S(t, f) = \frac{|\mathbf{s}_W(t, f)|^2}{|\mathbf{s}_W(t, f)|^2 + |\mathbf{n}_W(t, f)|^2}$$

La solution globale

Optimisation du système

Synthèse des tests menés

- 1. Travaux sur les canaux d'entrée
- 2. Optimisation de l'apprentissage

Réseau initial

Entrées du réseau

Beamformers

$$|\hat{s}(t,f)| = |\mathbf{b}_0^H \mathbf{x}(t,f)|$$
$$|\hat{n}(t,f)| = |\mathbf{b}_1^H \mathbf{x}(t,f)|$$

Mélange omnidirectionnel

$$|\mathbf{x}_W(t,f)|$$

Signal	WER
Mélange omni	89 %
Beamformer	71 %
Masque prédit	72 %
Filtre spatial	26 %
Source cible	7 %

Entrées : rapports énergétiques

Idée: corréler entrée et sortie

Masque à prédire :

$$M_S(t, f) = \frac{|\mathbf{s}_W(t, f)|^2}{|\mathbf{s}_W(t, f)|^2 + |\mathbf{n}_W(t, f)|^2}$$

Rapports énergétiques :

$ \hat{s}(t,f) $	$ \hat{n}(t,f) $
$\overline{ \mathbf{x}_W(t,f) }$	$\overline{ \mathbf{x}_W(t,f) }$

WER Signal	Rapports énergétiques	Réf.
Mélange omni	89 %	89 %
Beamformer	72 %	71 %
Masque prédit	78 %	72 %
Filtre spatial	31 %	26 %
Source cible	7 %	

Beamformers:
$$|\hat{s}(t,f)|, |\hat{n}(t,f)|$$

Entrées : rapports énergétiques

Idée: corréler entrée et sortie

Masque à prédire :

$$M_S(t, f) = \frac{|\mathbf{s}_W(t, f)|^2}{|\mathbf{s}_W(t, f)|^2 + |\mathbf{n}_W(t, f)|^2}$$

Rapports énergétiques :

$$\frac{|\hat{s}(t,f)|}{|\mathbf{x}_W(t,f)|}, \frac{|\hat{n}(t,f)|}{|\mathbf{x}_W(t,f)|}$$

Beamformers:
$$|\hat{s}(t,f)|, |\hat{n}(t,f)|$$

Réseau initial : normalisation canal par canal

$$\tilde{C}(seq,t,f) = \frac{C(seq,t,f) - \overline{m}_C(seq,f)}{\overline{\sigma}_C(seq,f)}$$

$$C \in \{|\tilde{\hat{s}}|, |\tilde{\hat{n}}|, |\tilde{\mathbf{x}}|\}$$

Inconvénient : casse la relation entre les canaux

Normalisation unique pour toutes les entrées

Idée: préserver les niveaux relatifs entre les entrées

$$\tilde{C}(seq,t,f) = \frac{C(seq,t,f) - \overline{m}(seq,f)}{\overline{\sigma}(seq,f)}$$

$$C \in \{|\tilde{\hat{s}}|, |\tilde{\hat{n}}|, |\tilde{\mathbf{x}}|\}$$

Statistiques calculées sur toutes les entrées

WER Signal	Normalisation unique	Réf.
Mélange omni	89 %	89 %
Beamformer	72 %	71 %
Masque prédit	73 %	72 %
Filtre spatial	27 %	26 %
Source cible	7 %	

Échelle : linéaire ou logarithmique

Idée : limiter les outlayers des entrées

$$\log_{10} |\hat{s}(t, f)|$$

$$\log_{10} |\hat{n}(t, f)|$$

$$\log_{10} |\mathbf{x}_{W}(t, f)|$$

WER Signal	Logarithmique	Linéaire (Réf.)
Mélange omni	89 %	89 %
Masque prédit	77 %	72 %
Filtre spatial	25 %	26 %
Source cible	7 %	

Optimisation de l'apprentissage

$$\mathbb{E}_{seq,1 < t < 25,f} \{ |\widetilde{M}_S(seq,t,f) - M_S(seq,t,f)|^2 \}$$

$$n = 0$$
 $n = 3$ $n = 12$

$$\mathbb{E}_{n+1 \le t \le 25} \{ |\widetilde{M}_S(seq, t, f) - M_S(seq, t, f)|^2 \}$$

Optimisation de l'apprentissage

$$\mathbb{E}_{n+1 < t < 25} \{ |\widetilde{M}_S(seq, t, f) - M_S(seq, t, f)|^2 \}$$

WER Signal	n = 12	n = 3	n = 0 (Réf.)
Mélange omni	89 %	89 %	89 %
Beamformer	72 %	72 %	72 %
Masque prédit	74 %	70 %	71 %
Filtre spatial	29.0 %	28.1 %	27.7 %
Source cible	7 %		

Résultats:

- Pas d'amélioration
- Manque de données ?

Bilan du stage

Bilan du stage

Pour Orange

Une nouvelle version du VVM pour la localisation

- Une implémentation en Python
- Un code plus modulaire et évolutif

Travaux sur la séparation de sources complétés

- Une implémentation plus maniable et performante
- Une méthode d'apprentissage optimisée

Bilan du stage

Pour moi

Un expérience technique enrichissante

- Progrès en traitement du signal, machine learning
- Découverte de l'acoustique

Un début de carrière en Recherche et Développement

- Projet professionnel : ingénieur de recherche
- Thèse : traitement automatique de la parole en réunion

Merci

Des questions?

Annexes

Optimisation de l'apprentissage

Classe DataGenerators de Keras

Implémentation objet

 De meilleures méthodes pour l'apprentissage et la prédiction Small Datasets

fit()

predict()

Larger Datasets

fit_generator()

predict_generator()

Masque estimé par réseau de neurone

$$\tilde{\mathbf{s}}(t,f) = M_S(t,f)\mathbf{x}(t,f)$$

 $M_S(t,f)$

Masque estimé par réseau de neurone