Билеты по дискретной математике, 5 модуль

ПАДИИ, 2 курс

25 октября 2024 г.

1 Остовные деревья. Мотивация. Рекуррентная формула вычисления количества остовных деревьев в графе(формула Кэли).

Определение:

Дерево - связный граф без циклов.

Определение:

Остовное дерево графа G - ациклический связный подграф G, в который входят все вершины из G.

Количество остовных деревьев в графе (формула Кэли):

Пусть G - граф (возможно, с петлями и кратными ребрами), $e \in E(G)$ и e - не петля.

$$T(G) = T(G \setminus e) + T(G * e),$$

где T(G) - количество остовных деревьев в графе G.

Доказательство:

Количество остовных деревьев графа G без ребра e равно $T(G \setminus e)$. Между остовными деревьями графа G*e и остовными деревьями, содержащими ребро e, существует взаимно однозначное соответствие.

Значит,

$$T(G) = T(G \setminus e) + T(G * e).$$

2 Остовные деревья. Количество деревьев в полном графе (Теорема Кэли).

Теорема Кэли:

$$T(K_n) = n^{n-2}$$

Доказательство:

Построим взаимно однозначное соответствие между остовными деревьями K_n и числовыми последовательностями длины n-2, в которых каждый член принимает значение от 1 до n.

Пусть T - дерево на вершинах [1...n]. Пусть l_1 - висячая вершина наименьшего номера в дереве T, тогда t_1 - единственная смежная с l_1 вершина дерева T.

То же самое проделаем для вершин дерева $T_1 = T \setminus l_1$, и т.д. будем повторять процесс, пока не получим последовательность длины n-2.

Теперь построим обратное соответствие.

Пусть дана последовательность $t_1,...,t_{n-2}$ с элементами из [1...n]. По построению каждая вершина x встречается в последовательности дерева T ровно $\deg_T(x)-1$ раз, поэтому вершины, которые не встречаются в этой последовательности, - висячие.

Выберем такую вершину l_1 с наименьшим номером и соединим ее с t_1 , после этого удалим l_1 из списка номеров. И так далее, повторим такую операцию n-2 раза. В результате будет использована вся последовательность и проведено n-2 ребра, останется множество V_{n-2} , состоящее из 2 вершин и одно непроведенное ребро дерева T.

3 Остовные деревья. Матричная теорема.

Определение:

Лаплассиан графа G L(G) - матрица $n \times n$, где $l_{ii} = \deg i$, $l_{ij} = -1$, если ребро между вершинами i и j существует, $l_{ij} = 0$, если ребро не существует.

Теорема Кирхгофа:

G - граф без петель (возможно, с кратными ребрами) на $n \geq 2$ вершинах, L - его лаплассиан.

Тогда

$$T(G) = (-1)^{i+j} \det A_{k \neq i, l \neq j}$$

Доказательство:

При одновременной перестановке пары строк и пары столбцов с такими же номерами знак определителя не меняется. Поэтому нумерация вершин не имеет значения, что мы будем использовать.

Индукция по числу вершин.

База: n = 1. Очевидно.

Переход: $n \longrightarrow n+1$.

Случай $\deg(1)=0$. T(G)=0, т.к. граф не связный. Тогда в L первая строка и первый столбец состоят из нулей. Сумма элементов в каждой строке и столбце матрицы $L_{1,1}$ равна нулю $\Longrightarrow \det =0$.

Случай $deg(1) \ge 1$.

Предположим, что граф на n+1 вершине содержит ребро e. Не умаляя общности считаем, что e соединяет вершины 1 и 2.

Знаем, что $T(G) = T(G \setminus e) + T(G * e)$. Пусть H = G * e, из которого удалили петли, T(H) = T(G * e). L' - лаплассиан графа $G \setminus e$, L^* - лаплассиан графа H.

По индукционному предположению $T(G \setminus e) = \det L'_{1,1}$ и $T(G * e) = \det L^*_{1,1}$. При удалении ребра e степени 1 и 2 уменьшаются на 1, а к l_{12} и l_{21} прибавляется 1.

Тогда $L'_{1,1}$ отличается от графа $L_{1,1}$ только в элементе $l_{2,2}$: у $L'_{1,1}$ он на 1 меньше.

В графе H перенумеруем вершины так, что вершина, полученная объединением вершин 1 и 2 имеет номер 1, остальные номера остаются как прежде. Тогда все элементы матрицы L^* вне 1 строки и 1 столбца равны элементам L с соответствующими индексами, т.е.

$$L_{1,1}^* = (L_{1,1})_{1,1}$$

Разложим $\det L_{1,1}$ по первой строке:

$$\det L_{1,1} = \sum_{j=2}^{n} (-1)^{2+j} l_{2j} \det((L_{1,1})_{2,j})$$

$$\det L_{1,1} = \det(L_{1,1}^*) + \left((l_{22} - 1) \cdot \det(L_{1,1}^*) + \sum_{j=3}^n (-1)^{2+j} l_{2j} \det((L_{1,1})_{2,j}) \right)$$

$$\det L_{1,1} = \det L_{1,1}^* + \det L_{1,1}'$$

Теорема доказана.

Следствие:

$$T(G) = (-1)^{i+j} \det(L_{ij}) \forall i, j$$

Доказательство:

4 Остовные деревья. Теорема Шустера.

Обозначение

U(T) - число висячих вершин в дереве T.

 $Teope {\it мa}\ {\it Шycmepa}$

G - произвольный граф.

 T, T_* - остовные деревья G.

$$U(T) = m, \ U(T_*) = n, \ m < n.$$
 Тогда З $T_{m+1}, T_{m+2}, ..., T_{n-1}: \ U(T_i) = i.$

Доказательство

Шаг 1. Пусть построены $T_m, T_{m+1}, ..., T_i, i \in [m, n-1]$. Покажем, что переход $i \longrightarrow i+1$ корректен.

 $T_i \neq T_* \Longrightarrow \exists e_i \in E(T_*) \setminus E(T_i).$

Шаг 2. Рассмотрим граф $G_i = T_i \cup \{e_i\}$. В G_i существует цикл, он простой и единственный.

Шаг 3. Возьмем ребро f_i , которое есть в цикле, и при этом $f_i \notin T_*$. Оно точно найдется, т.к. если бы все ребра в цикле принадлежали T_* , то T_* не было бы остовным.

Шаг 4. Рассмотрим граф $T_{i+1} = \widetilde{G}_i = G_i \setminus \{f_i\}$ - это остовное дерево.

Заметим, что с каждым повторением шагов 1 - 4 в графе \widetilde{G}_j становится все больше ребер из $E(T_*)$, поэтому в какой-то момент случится, что $\widetilde{G}_j = T_*$.

Т.к. \widetilde{G}_{j} отличается от G_{j} двумя ребрами, то

$$|U(G_j) - U(\widetilde{G_j})| \le 2.$$

Нужно показать, что для каждого $i \in [m+1, n-1]$ остовное дерево с i висячими вершинами существует. Предположим обратное.

Тогда из неравенства следует, что должны существовать T_j и T_{j+1} , причем $U(T_j)=i-1,\ U(T_{j+1})=i+1.$ $T_{j+1}=G_j\setminus\{f_j\}$ и $T_j=G_j\setminus\{e_j\}.$ Это значит, что в цикле существуют вершины степени 2 и вершины степени > 2, т.е.

$$\exists uv \in E(G_i): \deg u = 2, \deg v > 2$$

Получается, при удалении uv из G_j появляется ровно 1 висячая вершина (та, у которой степень равнялась 2), т.е. остовное дерево с i висячими вершинами построить можно.

5 Остовные деревья. Теорема Клейтмана-Веста.

Теорема Клейтмана-Веста:

В связном графе G с $\delta(G) \ge 3$ существует остовное дерево с не менее чем $V(G) \cdot \frac{1}{4} + 2$ висячими вершинами.

Доказательство:

Эта оценка точная: возьмем граф из воздушных змеев.

- 1. Разорвем один из мостиков. В каждом квадрате не более 1 висячей вершины, значит, посередине $\leq n-2$ висячих вершины и по краям ≤ 2 у одного крайнего квадрата и ≤ 2 у другого крайнего квадрата. Значит, всего $\leq n+2$ висячих вершин.
- 2. Если в квадрате удаляем связность, то в нем ≤ 3 висячих вершин, в остальных квадратах ≤ 1 висячая вершина. Значит, всего $\leq n-1+3=n+2$ висячих вершин.

Пусть F - дерево в графе G. Назовем вершину x дерева F мертвой, если все соседи x в G также включены в дерево. Обозначим количество висячих вершин за u(F), количество мертвых вершин за b(F).

$$\alpha(F) = \frac{3}{4}u(F) + \frac{1}{4}b(F) - \frac{1}{4}v(F)$$

Пусть F - остовное.

$$\alpha(F) = u(F) - \frac{1}{4}v(F),$$

т.к. все висячие вершины являются мертвыми.

$$\alpha(F) \ge 2 \Longrightarrow u(F) \ge \frac{1}{4}v(F) + 2 = \frac{1}{4}v(G) + 2$$

Значит, нужно показать, что $\alpha(F) \geq 2$.

Теперь покажем, что в любом графе G, удовлетворяющем условию теоремы Клейтмана-Веста, найдется дерево F_0 , т.ч. $\alpha(F_0) \geq \frac{3}{2}$.

Возьмем вершину с максимальной степенью - это будет корень дерева.

1. Ее степень $k \ge 4$. Тогда наше дерево - ёжик.

$$\alpha(F_0) = \frac{3}{4}u(F_0) + \frac{1}{4}b(F_0) - \frac{1}{4}v(F_0)$$

$$\alpha(F_0) = \frac{3}{4}k + (\ge 0) - \frac{1}{4}(k+1) \ge \frac{2k-1}{4} \ge \frac{7}{4} > \frac{3}{2}$$

 $2. \ \forall v \deg v = 3.$ Если хотя бы одна из вершин, смежных с корнем мертвая, то

$$\alpha(F_0) = \frac{3}{4} \cdot 3 + (\ge \frac{1}{4}) - 1 \ge \frac{6}{4} = \frac{3}{2}$$

Если мертвых нет, то существует вершина, не соединенная с двумя другими, значит, еще 2 висячих вершины существуют.

$$\alpha(F_0) = \frac{3}{4} \cdot 4 + (\ge 0) - \frac{6}{4} \ge \frac{3}{2}$$

Значит, F_0 - нужное нам дерево.

Теперь предъявим алгоритм построения такого дерева.

Пусть $P = \alpha(F_i) - \alpha(F_{i-1}) = \frac{3}{4}\Delta u + \frac{1}{4}\Delta b - \frac{1}{4}\Delta v$ - доход шага. Нужно показать, что он неотрицательный.

Шаг 1. Если в дереве F есть невисячая вершина x, смежная с y из еще не добавленных вершин, то присоединим у к дереву.

$$\Delta u = 1, \Delta v = 1, \Delta b \ge 0 \Longrightarrow P \ge \frac{1}{2}$$

Шаг 2. Если в дереве есть вершина x, смежная с еще не добавленными вершинами y_1, y_2 , то присоединим их к дереву.

$$\Delta u = 1, \Delta v = 2, \Delta b \ge 0 \Longrightarrow P \ge \frac{1}{4}$$

Шаг 3. Если существует не добавленная вершина y, смежная с деревом Fи хотя бы с двумя недобавленными вершинами, то присоединим к дереву вершину у и эти две вершины.

$$\Delta u = 1, \Delta v = 3, \Delta b > 0 \Longrightarrow P > 0$$

Шаг 4. Если существуют не вошедшие в дерево вершины, то существует не присоединенная вершина y, смежная с вершиной x из дерева. Соединим их.

$$\Delta u = 0, \Delta v = 1, \Delta b \ge 1 \Longrightarrow P \ge 0$$

Значит, каждый доход неотрицательный.

Покажем, что итоговая оценка $\alpha(F) \geq 2$.

Шаг 1 добавит $\geq \frac{1}{2}$ - в этом случае победа. Шаг 2 добавит $\frac{3}{4} + \frac{1}{2} - \frac{1}{2} = \frac{3}{4}$ - тоже победа. Шаг 3 добавит $\frac{3}{4} + \frac{1}{2} - \frac{3}{4} = \frac{1}{2}$ - успех. Шаг 4 добавит $\frac{3}{4} - \frac{1}{4} = \frac{1}{2}$ - успех.

Теорема доказана.

6 Паросочетания. Мотивация. Максимальные, наибольшие и совершенные паросочетания. Теорема Бержа о дополняющих путях.

Определение

Паросочетание - множество $P, P \subset E(G)$, т.ч.

$$\forall e_i, e_i \in P \not\exists v : I(e_i, v) \land I(e_i, v).$$

 $I(e_i, v)$ - инцидентность ребра e_i и вершины v.

Пачка определений

Паросочетание называется максимальным, если в него нельзя добавить ребро.

Паросочетание называется наибольшим, если не существует паросочетания с большей мощностью.

Паросочетание называется cosepmenhым, если оно покрывает все вершины в G.

Чередующаяся цепь - последовательность ребер, в которой чередуются ребра, лежащие в паросочетании и не лажащие.

Увеличивающая цепь - цепь, крайние вершины которой не принадлежат паросочетанию.

Теорема Бёржа

Паросочетание M является наибольшим \iff нет увеличивающих цепей.

Доказательство

 $" \Longrightarrow " :$

Пусть в графе G существует увеличивающая цепь $S = e_1 e_2 ... e_{2k}$.

Заменим ребра, входящие в M на не входящие, и наоборот. Размер паросочетания увеличился. Противоречие.

```
" ⇐= ":
```

Пусть M не является наибольшим. Рассмотрим M' - наибольшее, |M'|>|M|.

Пусть $N=M\triangle M'=(M\cup M')\setminus (M\cap M'),\ H=G(N)$ - индуцированный подграф G.

Степень каждой вершины в H не больше 2 (т.к. каждая вершина может быть инцидентна ребру из M и/или ребру из M'), значит H состоит из циклов и/или путей.

В каждом из этих путей/циклов ребра из M и M' чередуются. Т.к. в M' ребер больше, то в существует путь нечетной длины, в котором ребер из M' больше, и этот путь будет являться увеличивающей цепью для M. Противоречие, т.к. по условию увеличивающих цепей нет. Значит, M - наибольшее паросочетание.

7 Паросочетания. Алгоритм Куна.

Алгоритм Куна:

Пусть G(V, E) - двудольный граф.

Пока в G удаётся найти увеличивающую цепь, будем выполнять чередование паросочетания вдоль этой цепи и повторять процесс поиска увели-

чивающей цепи. Как только такую цепь найти не удастся, получившееся паросочетание будет наибольшим.

8 Паросочетания в двудольном графе. Лемма Холла.

Теорема:

Пусть $G=(V_1,V_2,E)$ - двудольный граф, причем $\forall U\subset V_1\ |U|\leq |N(U)|.$ Тогда это равносильно тому, что в графе существует паросочетание, покрывающее V_1 .

Доказательство:

⇐=: Очевидно.

⇒: простая индукция по построению.

Лемма Кёнига:

- а) Если G - двудольный регулярный граф, то существует совершенное паросочетание.
- б) Если G двудольный k-регулярный граф, то $G = \bigsqcup_{i=1}^k P_i$, где P_i совершенное паросочетание.

Доказательство:

a)

б) Пусть P_1 - совершенное паросочетание в графе $G.\ G\setminus P_1$ - двудольный (k-1)-регулярный граф. Продолжим выделять совершенные паросочетания, пока не кончатся ребра, т.е. k раз.

9 Величины $\alpha, \alpha', \beta, \beta'$. Соотношение между ними.

Определение:

Множество $U \subset V(G)$ называется nesaeucumым, если все его вершины попарно не смежные.

Множество $W\subset V(G)$ называется контролирующим, если оно покрывает все ребра графа.

Определение:

 α - размер наибольшего независимого множества вершин.

 α' - размер наибольшего паросочетания.

 β - размер наименьшего контролирующего множества.

 β' - размер наименьшего реберного покрытия.

Теорема Кёнига:

G - двудольный граф.

Тогда

$$\alpha' = \beta$$
.

Доказательство:

 U_1 - наименьшее контролирующее множество, U_2 - множество вершин, входящих в наибольшее паросочетание.

1.
$$\alpha' \geq \beta$$
.

От противного: пусть $\alpha' < \beta$. Возьмем $v \in U_1, v \notin U_2$.

Если все ее соседи входят в U_1 , тогда уберем v из U_1 . Наименьшее контролирующее множество уменьшилось \Longrightarrow противоречие.

Если у v есть соседи, которые не входят в U_1 , тогда проведем между ними ребро и добавим в U_2 , т.е. увеличим наибольшее паросочетание. Противоречие.

Значит, $\alpha' \geq \beta$.

$$2. \alpha' \leq \beta.$$

От противного: пусть $\alpha' > \beta$. Контролирующее множество вершин покрывает все ребра графа, в том числе ребра, входящие в наибольшее паросочетание, значит, $\alpha' \geq \beta \Longrightarrow$ противоречие.

Получается, $\alpha' = \beta$.

Формула:

 $U\subset V(G)$ - контролирующее множество $\Longleftrightarrow V(G)\setminus U$ - независимое множество.

Тогда

$$\alpha(G) + \beta(G) = V(G).$$

Теорема Галлаи:

$$\alpha'(G) + \beta'(G) = |V(G)|.$$

Доказательство:

1.
$$\alpha'(G) + \beta'(G) \le |V(G)|$$
.

 ${\cal P}$ - наибольшее паросочетание, ${\cal U}$ - множество вершин, не покрытых ${\cal P},$ тогда

$$|U| = |V| - 2\alpha'$$

Выберем множество F из |U| ребер, покрывающее U, тогда $F \cup P$ - покрытие графа G.

$$\beta'(G) \le |F \cup P| \le \alpha'(G) + |V(G)| - 2\alpha'(G) \Longrightarrow \alpha' + \beta' \le |V|.$$

2. $\alpha'(G) + \beta'(G) \ge |V(G)|$.

Пусть L - наименьшее реберное покрытие.

Рассмотрим граф H=(V(G),L). В нем C(H) компонент связности. Возьмем по 1 ребру из каждой компоненты, получим какое-то паросочетание Q в графе H.

Тогда

$$\begin{cases} \alpha' \ge |Q| = |C(H)| \\ \beta' = |L| = |E(H)| \ge |V(H)| - |C(H)| = |V(G)| - |C(H)| \end{cases} \implies \alpha' + \beta' \ge |V(G)|. \tag{1}$$

Формула:

G - двудольный граф. Тогда

$$\alpha(G) = \beta'(G).$$

10 Паросочетания в произвольном графе. Teoрема Татта.

Определение:

O(G) - количество нечетных компонент связности графа G.

Условие Татта:

 $O(G \setminus S) \leq |S|$ - условие Татта.

Множество Татта:

S - множество Татта, если $O(G \setminus S) > |S|$.

теорема Татта:

 $\forall S \subset V(G) \ O(G \setminus S) \leq |S| \iff$ в G есть совершенное паросочетание.

Доказательство:

— Пусть $S\subset V(G),\,M$ - совершенное паросочетание. Тогда хотя бы одна из вершин каждой нечетной компоненты связности графа $G\setminus S$ должна быть соединена с вершиной из S ребром из паросочетания M, получили $O(G\setminus S)\leq |S|.$

 \Longrightarrow Пусть существует граф G, в котором нет совершенного паросичетания, и который не содержит множество Татта. Возьмем такой, что в нем

максимальное число ребер и минимальное число вершин.

Лемма 1

Пусть u и v - не смежные вершины. Тогда

$$O(G \cup uv) \leq O(G)$$
.

Доказательство:

Добавление ребра не увеличивает число нечетных компонент связности.

Лемма 2

Если G не содержит множество Татта и u,v - несмежные вершины, то $G \cup uv$ тоже не содержит множество Татта.

Доказательство:

Рассмотрим $S \subset V(G)$.

 $(G\cup uv)\setminus S)$ равен $G\setminus S$ или $(G\setminus S)\cup uv$, значит, $O((G\cup uv)\setminus S)\leq O(G\setminus S)\Longrightarrow O((G\cup uv)\setminus S)\leq |S|.$

Вернемся к доказательству теоремы Татта.

G содержит четное число вершин, т.к. он удовлетворяет условию Татта. $G \neq K_n.$

Рассмотрим $U = \{v | \deg v = n-1\}, U \neq V(G).$

Лемма 3

Компоненты связности $G \setminus U$ - полные графы.

Доказательство:

Предположим, что в $G \setminus U$ есть компонента связности, которая не является полным графом. В ней как минимум 2 ребра.

Выберем ребра xy и xz, т.ч. y и z не связаны ребром. $x \notin U \Longrightarrow \exists w,$ т.ч. x и w не связаны ребром.

Заметим, что при добавлении любого ребра в G в нем появится совершенное паросочетание (мы так его определили).

Если добавим в G ребро yz, получим совершенное паросочетание $M_1, yz \in M_1$.

Если добавим в G ребро xw, получим совершенное паросочетание $M_2, xw \in M_2$

В $M = M_1 \oplus M_2$ содержатся какие-то ребра из G, а также yz и xw.

В M содержатся только циклы и изолированные вершины (путей быть не может, т.к. все вершины покрыты паросочетанием) \Longrightarrow все компоненты связности M - циклы.

1. yz и xw содержатся в разных компонентах связности M.

Найдем паросочетание в G без ребер yz и xw: в компоненте связности, содержащей yz, выберем ребра из M_2 , в компоненте связности, содержащей xw, выберем ребра из M_1 , в остальных компонентах связности возьмем любое

паросочетание. Если какие-то ребра лежали в $M_1 \cap M_2$, то их всех возьмем. Получается, в G существует совершенное паросочетание (в котором нет ребер yz и xw).

 $2. \ yz$ и xw лежат в одной компоненте связности M.

Тогда в правой части цикла возьмем ребра из M_1 , в левой части цикла возьмем ребра из M_2 . Тогда останутся непокрытыми 2 вершины: x и z. Ребро xz существует, добавим его в паросочетание. Получили совершенное паросочетание в G.

Аналогично рассматривается ситуация для ребра xy.

По предположению в G нет совершенного паросочетания, значит, такой ситуации не существует. Получается, в $G\setminus U$ все компоненты связности - полные графы.

Воспользуемся леммой 3: граф $G\backslash U$ распался на несколько компонент связности (т.к. вершины в U имеют степень n-1, соответственно, они связывают между собой все вершины). В четных компонентах связности выделим совершенные паросочетания (это можно сделать, т.к. по лемме граф распался на полные подграфы). В нечетных компонентах связности выберем наибольшее паросочетание, тогда останется некоторое количество непокрытых вершин.

U не является множеством Татта $\Longrightarrow O(G\setminus U) \leq |U|$. Тогда для каждой непокрытой вершины из нечетных компонент связности выберем вершину из U и добавим ребро между ними в паросочетание (это можно сделать, т.к. вершины из U соединены со всеми вершинами в графе G).

Оставшиеся вершины из U соединим парами между собой. Значит, в G существует совершенное паросочетание.

Теорема доказана.

11 Паросочетания в произвольном графе. Теорема Петерсена о кубическом графе.

Лемма:

G - k-регулярный граф, $U\subset V(G),\, |U|$ нечетно, m - число ребер, соединяющих вершины U с $V(G)\setminus U.$ Тогда

$$m \equiv k \mod 2$$
.

Доказательство:

$$m = \big(\sum_{v \in U} \deg v\big) - 2|E(G(U))| = k|U| - 2|E(G(U))| \equiv k \mod 2$$

Теорема Петерсена:

Любой кубический граф, имеющий не более 2 мостов, обладает совершенным паросочетанием.

Доказательство:

Пусть в таком графе нет совершенного паросочетания. Тогда $\exists S \subset V(G): O(G \setminus S) > |S|.$

Пусть $U_1,...,U_n$ - компоненты связности нечетного размера.

Из каждой U_i могут идти ребра только в S, причем для каждой U_i их нечетное число по лемме. Обозначим количество таких ребер за $m_1, ..., m_n$.

В G не более 2 мостов \Longrightarrow только у двух m_i мощность равна 1, у остальных мощность хотя бы 3.

 $O(G\setminus S)>|S|$. Количество вершин в кубическом графе четно (по лемме о рукопожатиях), $S\neq\emptyset$, $O(G\setminus S)\equiv |S|\mod 2$. Значит, $n=O(G\setminus S)\geq |S|+2$.

$$\sum_{v \in S} \deg v \ge \sum_{i=1}^{n} m_i \ge 3n - 4 \ge 3(|S| + 2) - 4 > 3|S| = \sum_{v \in S} \deg v.$$

Противоречие. Значит, любой кубический граф обладает совершенным паросочетанием.

12 Дефицит графа. Формула Бержа.

Определение:

Дефицит графа - множество вершин, не покрытых наибольшим паросочетанием.

Теорема Бержа:

$$|V(G)| - 2\alpha'(G) = \max(O(G \setminus S) - |S|)$$

Доказательство:

 $\forall S |V(G)| + |S| + O(G \setminus S) \equiv 0 \mod 2.$

 \geq : Пусть M - наибольшее паросочетание графа $G, S \subset V(G), n = O(G \setminus S), U_1, ..., U_n$ - все нечетные компоненты связности $G \setminus S$.

Тогда в каждой U_i существует хотя бы одна вершина u_i , которая не покрыта ребром M или покрыта ребром $e=u_ix_i\in M$, где $x_i\in S$.

Значит, не менее n-|S| из вершин $u_1,...,u_n$ не покрыты M, т.е.

$$def(G) \ge O(G \setminus S) - |S|$$

.

≤: Пусть

$$k = \max_{S \subset V(G)} O(G \setminus S) - |S|.$$

Если k=0, то в графе существует совершенное паросочетание и def(G)=0. Пусть k>0. Создадим граф $W=K_k$, т.е. $W\cap V(G)=\emptyset$. H - граф, полученный присоединением W к G, причем каждая из вершин W смежна со всеми вершинами из G.

Докажем, что $\forall S \subset V(H) \ O(G \setminus S) \leq |S|$.

Рассмотрим $S \subset V(H)$.

- 1. Если W не является подмножеством S, то W связный. Тогда $O(H \setminus S) \leq 1.$
- a) $O(H \setminus S) = 0$ все хорошо.
- b) $O(H \setminus S) = 1$.

 $|V(H)|=n+k=n+O(G\setminus A)-|A|$ - четное число, значит, |S| нечетная, т.е. $|S|\geq 1.$

2. $W \subset S$.

$$O(H \setminus S) = O(G \setminus (S \cap V(G))) \le |S \cap V(G)| + k \le |S|.$$

Значит, в графе H выполняется условие Татта и в нем есть совершенное паросочетание.

В графе существует паросочетание M, т.ч. $|M| \ge |N| - k$, значит,

$$\alpha'(G) \ge |M| \ge \frac{V(G) + k}{2} - k = \frac{V(G) - k}{2}$$

13 Фактор-критические графы. Теорема Галлаи о фактор-критическом графе.

Определение:

Фактор-критический граф - граф, в котором при удалении любой вершины можно построить совершенное паросочетание.

Теорема Галлаи:

$$G$$
 - фактор-критический $\iff \alpha'(G \setminus u) = \alpha'(G)$.

Доказательство:

⇒ по определению.

Пусть
$$v \in S, G' = G \setminus v, S' = S \setminus v.$$
 $G' \setminus S' = G \setminus S.$ Тогда

$$def(G \setminus v) = def(G') \ge O(G' \setminus S') - |S'| = O(G \setminus S) - |S| + 1 = def(G) + 1$$

$$def(G \setminus v) \ge def(G) + 1 = |V(G)| - 2\alpha'(G) + 1$$

$$\alpha'(G) \geq \frac{|V(G)| - def(G \setminus v) + 1}{2} = \frac{|V(G \setminus v)| - def(G \setminus v)}{2} + 1 = \alpha'(G \setminus v) + 1$$

Пришли к противоречию. Значит, $S=\emptyset$ и $def(G)=O(G)\leq 1$. В графе нет совершенного паросочетания, тогда $O(G)=1\Longrightarrow G$ – фактор-критический.

14 Лемма об устойчивости.

Обозначение:

D(G) - множество всех вершин из V(G), для каждой из которой существует наибольшее паросочетание, не покрывающее ее.

A(G) - множество всех вершин графа G, не входящих в D(G), но смежных хотя бы с одной вершиной оттуда.

C(G) - оставшиеся вершины.

Лемма:

 $a \in A(G)$.

Тогда

$$D(G \setminus a) = D(G)$$

$$A(G \setminus a) = A(G) \setminus a$$

$$C(G \setminus a) = C(G)$$

$$\alpha'(G \setminus a) = \alpha'(G) - 1$$

Доказательство:

1.
$$\alpha'(G \setminus a) = \alpha'(G) - 1$$
.

Это очевидно, т.к. при выкидывании любой вершины не из D(G) размер паросочетания уменьшится не более чем на 1.

2.
$$D(G) \subset D(G \setminus a)$$
.

Рассмотрим $u \in D(G)$. Существует M_u - наибольшее паросочетание G, не покрывающее u (по определению).

Любое наибольшее паросочетание покрывает a, поэтому если $ax \in M_u$, то $M_u \setminus ax$ - наибольшее паросочетание в графе $G \setminus a$, не покрывающее u. Значит, $D(G) \subset D(G \setminus a)$.

3.
$$D(G \setminus a) \subset D(G)$$
.

Рассмотрим $v \notin D(G)$, $v \in D(G \setminus a)$.

Предположим, что существует M' - наибольшее паросочетание графа $G \setminus a$,

не покрывающее v.

У a есть сосед $w \in D(G) \Longrightarrow$ существует M_w - наибольшее паросочетание в G, не покрывающее w. M_w покрывает v, т.к. $v \notin D(G)$.

 $M' \oplus M_w$ - какие-то четные циклы и четные и нечетные пути.

- v конец какого-то пути, т.к. M' не покрывает v.
- a конец какого-то пути, т.к. M' не покрывает a.
- 1. v конец пути четной длины. Тогда a является концом другого пути. Тогда в пути, содержащем v возьмем в паросочетание ребра, входящие в паросочетание M', тогда v не будет содержаться в новом паросочетании, а размер нового и старого паросочетаний будут совпадать. Значит, $v \in D(G) \Longrightarrow$ противоречие.
- $2. \ v$ и a концы одного пути.

Возьмем в паросочетание такие ребра в этом пути, которые принадлежат M', а также ребро aw. Тогда новое паросочетание будет такого же размера, что и старое, но оно не будет покрывать v. Противоречие.

 $3.\ v$ - конец нечетного пути, но другой конец - не a. Тогда в пути, содержащем вершину v, возьмем ребра из M_W . Получается, размер наибольшего паросочетания увеличился \Longrightarrow противоречие с выбором наибольшего паросочетания.

Значит, $D(G \setminus a) \subset D(G)$.

4.
$$A(G \setminus a) = A(G) \setminus a$$
. $A(G \setminus a) = N(D(G \setminus a)) \setminus D(G \setminus a) = N(D(G)) \setminus D(G) \setminus a = D(G) \setminus a$.

5.
$$C(G \setminus a) = C(G)$$
. $C(G \setminus a) = V(G \setminus a) \setminus D(G \setminus a) \setminus A(G \setminus a) = (V(G) \setminus a) \setminus (A(G) \setminus a) \setminus D(G) = C(G)$.

15 Структурная теорема Галлаи-Эдмондса.

Теорема:

G - произвольный граф, $U_1,...,U_k$ - компоненты связности $D(G),\ D_i=G(U_i).$

- 1. В C(G) существует совершенное паросочетание.
- 2. $D(G) = \sqcup D_i$, D_i фактор-критические, их k штук.
- 3. Любое наибольшее паросочетание G содержит совершенное паросочетание в C(G), почти совершенное паросочетание в $D_1,...,D_k$ и любая вершина из A(G) покрыта ребром в D(G).
- 4. def(G) = k |A(G)|.

Доказательство:

Воспользумеся леммой о стабильности столько раз, что $A(G)=\emptyset$. Тогда

$$D(G \setminus A) = D(G)$$

$$A(G \setminus A) = \emptyset$$

$$C(G \setminus A) = C(G)$$

$$\alpha'(G \setminus A) = \alpha'(G) - |A|$$

- 1. C(G) имеет совершенное паросочетание, т.к. $A=\emptyset$, все вершины из D имеют соседей только в D и любое наибольшее паросочетание покрывает все вершины из C(G).
- 2. $U_1,...,U_k$ компоненты связности графа $G\setminus A$. $\forall u\in U_i$ существует наибольшее паросочетание M_u в графе $G\setminus A$, не содержащее u, тогда наибольшее паросочетание графа D_i содержится в M_u . Значит, $\alpha'(D_i\setminus u)=\alpha'(D_i)\ \forall u\in D_i$, и по т. Галлаи D_i фактор-критический граф.
- 3. Пусть M наибольшее паросочетание в G. M' наибольшее паросочетание в графе $G\setminus A$. $|M'|\geq |M|-|A|=\alpha'(G)-|A|=\alpha'(G\setminus A)\Longrightarrow M'$ наибольшее паросочетание в $G\setminus A$.

$$M' = M_C \cup \bigcup_{i=1}^k M_{D_i}$$

Тогда какие-то вершины из A соединены с непокрытыми вершинами в D_i .

4. Следует из п.3.

16 Идеи следствий из структурной теоремы: f-факторы, алгоритм соцветий, критерии наличия совершенного паросочетания.

Следствие:

1.
$$O(G \setminus B(G)) \leq |B(G)|$$
.

Критерий существования совершенного паросочетания: абоба

Алгоритм поиска соцветий:

На практике построение множеств A, B, C - не очень простая идея. Тогда будем решать немного другую задачу. Знаем, что любой граф можно представить в виде множеств , , . Научимся искать фактор-критические

компоненты из . Такие компоненты - нечетные, любая вершин из компоненты может не быть в совершенном паросочетании. Тогда эти фактор-критические компоненты будут образововывать циклы нечетной длины. Таким образом, мы можем выделять в графе фактор-критические компоненты.

Сам алгоритм разбирать не будем. Рассмотрим лишь его краткую версию. Пусть у нас есть цикл нечетной длины. Присоединим к нему ребро. Такой цикл не даст нам фактор-критического множества. Идея заключается в том, чтобы находить циклы нечетной длины с путем четной длины (добавили еще одно ребро для четности). Такой набор будем называть соцветием.

Определение:

k-фактор – k-регулярный остовный подграф.