Vorlesung

Security

Sommersemester 2022 (LV 4120, 7240)

dienstags, 08:15 bis 09:45

Prof. Dr. Bernhard Geib

Worum geht es in der Einführung?

- Womit beschäftigt sich die Informationssicherheit?
 - ✓ Ziele und Merkmale
 - ✓ Themenbereiche und Abgrenzung
- Vorlesungsübersicht
 - ✓ Gliederung und Inhalte
 - ✓ Anwendungsbeispiele
- Organisation der Lehrveranstaltung
 - ✓ Vorlesung, Übungen und Klausur
 - ✓ Ablauf und Vereinbarung zur Leistungsbewertung
 - ✓ Hilfsmittel und Unterrichtsmaterial
 - ✓ Quellen- und Literaturangabe

Die vier wesentlichen Sicherheitsbereiche:

Funktionale Sicherheit (Safety)		
Computersicherheit	Cyber-Sicherheit	Informationssicherheit
IT-Sicherheit	Cyber-Sicher heit	(Security)

- Sicherheitsthemen und -fragestellungen sind seit Jahrzehnten allgegenwärtig.
- Täglich erreichen uns Meldungen über Identitätsdiebstahl und Datenklau durch Cyber-Kriminelle und andere Angreifer.
 - ✓ Methoden der Informationsgeheimhaltung
 - ✓ Datenunversehrtheit
 - ✓ Systemverfügbarkeit

Kap. 1: Einführung und Motivation

Einleitung:

- Worum geht es in dieser Lehrveranstaltung?
- Was verstehen wir unter Security?
- Wozu brauchen wir Informationssicherheit?
- Welche Rolle spielt die Kryptologie?
- Angestrebte Lernergebnisse (Zielsetzung)
- Inhalte der Vorlesung und Gliederung
- Organisation, Konzeption und Leistungsnachweis
- Literatur und Hilfsmittel

Worum geht es in dieser Lehrveranstaltung?

B. Geib

Trusted Platform Module (TPM 2.0)

Infineon SLB9665TT20

Quelle: Bundesamt für Sicherheit in der Informationstechnik

1. Kennenlernen von Krypto-HW

Sichere Infrastruktur für Trusted Computing

- Zertifizierungs- und Signierungsinfrastrukturen
- Schlüsselverwaltung für kritische Infrastrukturen
- Offene, vertrauenswürdige Datenverarbeitung

Worum geht es in dieser Lehrveranstaltung?

ISDN - Bus- / Port- Schlüsselgerät ElcroDat 6-2

Quelle: Bundesamt für Sicherheit in der Informationstechnik

2. Anwendung von Krypto-Devices

Sichere Kommunikation (Verwaltung, Militär, Sicherheitsbehörden)

- Chiffrier- und Dechiffrierung
- Zufällige Schlüsselgenerierung
- Sprache, Daten, Video

Worum geht es in dieser Lehrveranstaltung?

R&S®TF IP

HC-8224 100M

Echtzeitfähiger Trusted Filter Ethernet/IP

Quelle: Rohde&Schwarz (links) Crypto AG (rechts)

3. Absicherung einer IT&TK-Infrastruktur

Sicherer Übergang zwischen Sicherheitsdomänen

- Separierung von Ethernet- und IP-Netzwerken
- Zustandslose Protokollfilterung
- Netzwerkverschlüsselungsplattform

Einteilung und Abgrenzung?

Funktionssicherheit (engl. safety):

zielt auf Übereinstimmung der Ist-Funktionalität der Komponenten mit der spezifizierten Soll-Funktionalität ab (Gefahrenabwendung, Ausfallsicherheit, Schutz von Leib und Leben).

IT-Sicherheit (engl. IT-security):

umfasst alle Vorkehrungen zum Schutz von elektronisch gespeicherten Informationen sowie informationstechnischen Systemen (SW & HW).

Datenschutz (engl. privacy):

regelt die Verwendung und Weitergabe personenbezogener Daten (informationelles Selbstbestimmungsrechtgemäß BDSG & DSGVO).

Was verstehen wir unter Informationssicherheit?

- ist gemeinhin ein Oberbegriff und beinhaltet sowohl die Cyber- und Internet-Sicherheit als auch die IT-Sicherheit.
- erweitert insbesondere die IT-Sicherheit um die Sicherheit von nicht technisch gespeicherten und nicht elektronisch verarbeiteten Daten.
- sicherstellen, dass es zu keiner unerlaubten Informationsveränderung, zu keinem unerlaubten Informationsgewinnung oder zu keiner unerlaubten Informationvorenthaltung kommt.
- verwendet den vom BSI entwickelten IT-Grundschutz als eine bewährte Methodik für den systematischen Aufbau eines dem individuellen Schutzbedarf angemessenen und wirksam angepassten IT-Systems.

Was verstehen wir unter Kryptologie?

Kryptologie:

Wissenschaft der Verfahren zur Geheimhaltung von Nachrichten, aber auch zu deren Brechung. Kryptologie vereinigt Kryptographie und Kryptanalyse.

Kryptographie:

Geheimschriftkunde – offen versendete Nachrichten sollen durch Verschlüsselung bzw. Chiffrierung für Unbefugte nicht lesbar sein.

Kryptanalyse:

Meist mathematische und statistische Methoden zur Entzifferung von Geheimtexten, d.h. Informationen unbefugt erlangen.

Wozu brauchen wir Kryptologie?

- Kryptologie ist als mathematische Disziplin wissenschaftlich fundiert und anerkannt.
- Mathematik liefert jedenfalls im Prinzip Rechtfertigung für die "Stärke" einer Sicherheitsmaßnahme.
- Im Idealfall lässt sich beweisen, dass ein kryptographischer Algorithmus ein gewisses Sicherheitsniveau hat (oder halt nicht).
 - Damit kann der **Nachweis** erbracht werden, dass für eine bestimmte Anwendung der beanspruchte **Sicherheitswert** tatsächlich erreicht wird.

Angestrebte Lernergebnisse (Zielsetzung):

Nach Absolvieren dieser Kurseinheit sollten Sie

- Verfahren zur Authentifizierung von Teilnehmern verstanden haben und auswählen können,
- Methoden der Informationsverschlüsselung einordnen, in ihrer Wirkung analysieren und in der Praxis anwenden können,
- Vorkehrungen zur Datenintegrität und Geheimhaltung sensibler Dateninhalte beurteilen und sicherstellen können,
- Konzept für Einweg- und Hashfunktionen verstanden haben sowie Probleme beim Schlüsselaustausch behandeln können.

Typische Fragestellungen:

Aus Sicht eines Anwenders ergeben sich die Fragen

- Warum ist Sicherheit nötig (IT-Sicherheitsgesetz, kritische Infrastrukturen) und wie ist sie erreichbar?
- Mit welchen Kosten ist Sicherheit verbunden?
- Was ist für ein erfolgreiches E-Business (IT-gestützter Arbeitsablauf) nötig?
- Wie ist die Risikolage (Gefahrenlage, Angreifer und Täter, Konsequenzen)?

Inhalte der Vorlesung und Gliederung:

- 1. Einführung in die Informationssicherheit
- 2. Algebraische Strukturen und elementare Zahlentheorie
- 3. Monoalphabetische Chiffren und deren Analyse
- 4. Symmetrische Verfahren und moderne Blockchiffren
- 5. Einwegfunktionen
- 6. Asymmetrische Kryptosysteme
- 7. Schlüsselmittelmanagement und Zufallszahlen
- 8. Kryptographische Protokolle und Anwendungen

Organisation und Leistungsnachweis:

- Lehrform: Vorlesung und Praktikum / Übung
- ECTS / SWS: 5 cp / 4
 - 2 SWS Vorlesung
 - 2 SWS Praktikum / Übung
- Gesamtaufwand: 150 h (etwa 8 h pro Woche)

 Anwesenheit Vorlesung und Praktikum 	60 h
 Vorbereitung und Nachbereitung Vorlesung 	30 h
- Bearbeitung der Praktikumsaufgaben	60 h

Leistungsnachweis: Klausur (90-minütig mit Formelsammlung)

Konzeption der Lehrveranstaltungen:

Vorlesungen

- Vorlesungen werden im Präsenz oder in Corona-Zeiten online jeweils für alle Studierenden des Semesters gemeinsam abgehalten.
- Die Vorlesung findet jeweils dienstags von 08:15 bis 09:45 Uhr statt.
- Anwesenheitspflicht besteht nicht.
- Die Lehrveranstaltung wird am Semesterende mit einer schriftlichen Prüfung (Klausur) abgeschlossen.
- Formale Voraussetzung für das Antreten zur Vorlesungsprüfung ist die rechtzeitig erfolgte Prüfungsanmeldung.

Übungen und integriertes Praktikum

- Übungen dienen der praktischen Vertiefung und Ergänzung des Vorlesungsstoffs bzw. der Verständnisbildung.
- Sie werden in Teilgruppen (25 bis 30 Teilnehmer) ca. und wöchentlich in Einheiten zu jeweils 90 Minuten durchgeführt.
- Die Teilnahme am Übungsbetrieb bereitet die Studierenden gezielt auf die theoretischen und praktischen Anforderungen der Klausur vor (typische Sicherheitsthemen / sicherheitstechnische Fragestellungen).
- Die Gruppeneinteilung erfolgt jeweils zu Beginn eines Semesters im Rahmen der Belegung.
- Eine Beurteilung der Übungsteilnahme erfolgt nicht.

Konzeption der Lehrveranstaltungen:

Übungen und integriertes Praktikum (Fortsetzung)

- Die Teilnahme an den Übungen ist in Corona-Zeiten nicht verpflichtend, wird allerdings empfohlen.
- Integriert in theoretische Übungen sind Praktikumsaufgaben betreffend die Anwendung kryptographischer Algorithmen wie Verschlüsselung, Signaturen, Authentifizierung und Schlüsselmittelherstellung).
- Als Programmiersprache kommt C zur Anwendung.

Sprechstunde:

mittwochs zwischen 10:30 und 11:30 Uhr im Raum C 210 oder nach Vereinbarung

Literatur und Hilfsmittel:

- Albrecht Beuelspacher: Kryptographie, Vieweg
- Wolfgang Ertel, Angewandte Kryptographie, Fachbuchverlag
- Johannes Buchmann: Einführung in die Kryptographie, Springer
- Claudia Eckert: IT-Sicherheit, Oldenbourg Verlag
- Ditmar Wütjen: Kryptographie, Spektrum Akademischer Verlag
- Bruce Schneier: Applied Cryptography, John Wiley & Sons

Papers und Dokumentation zur Lehrveranstaltung: www.cs.hs-rm.de/~rnlab/LVaktuell/Security/

Zur Verfügung gestelltes Material:

- Vorlesungsfolien (Kapitel 1 bis 8) als PFD
- Grundlagen zur Zahlentheorie (Skript, 52 S.) als PDF
- Aufgabensammlung (passend zum Skript Zahlentheorie)
- Übungsunterlagen (Aufgabenblätter 1 bis 12) als PDF
- Übersicht der verwendeten kryptographischen Funktionen (Kryptolibrary mit 76 Moduln)
- Formelsammlung (abgestimmt auf Vorlesungsschwerpunkte)

Alles Weitere ist zu finden unter:

www.cs.hs-rm.de/~rnlab/LVaktuell/ Security/Material/

Zur Verfügung gestelltes Material:

Begriffe und Grundlagen der Zahlentheorie

Security

Sommersemester 2022 (LV 4120 und 7240)

Formelsammlung

Aufgabensammlung mit Beispiel-Lösungen

Security

Sommersemester 2022 (LV 4120 und 7240)

Aufgabenblätter

Kap. 1: Einführung in die Informationssicherheit

Teil 1: Begrifflichkeiten

- IT-Systeme
- Sicherheitsbegiffe
- Aktuelle Sicherheitslage
- Effiziente Angriffstechniken

IT-Systeme IT-Systeme

Was ist ein IT-System?

Unter dem Begriff Informationstechnisches System (IT-System) versteht man jegliche Art elektronischer datenverarbeitender Systeme.

Kurz: Ein IT-System ist ein dynamisches technisches System mit der Fähigkeit zur Speicherung, Übertragung und Verarbeitung von Daten.

- Computer, Großrechner, Serversysteme, Datenbanksysteme
- Prozessrechner, digitale Messsysteme, Microcontroller-Systeme
- Informationssysteme, Kommunikationssysteme, Verteilte Systeme
- Betriebssysteme, eingebettete Systeme
- Mobiltelefone, Handhelds, digitale Anrufbeantworter, u.v.a.m.

IT-Sicherheit Begriffe (1)

Sicherheitsbegriffe:

Schwachstelle oder Sicherheitslücke:

Fehler in einem IT-System, durch die ein Angreifer in ein Computersystem eindringen oder im IT-System Schaden verursachen kann.

Bedrohung:

Eine Bedrohung ist eine potentielle Gefahr mit zeitlichem, räumlichem oder personellem Bezug zu einem Schutzziel bzw. Schutzobjekt.

Gefährdung:

Trifft eine Bedrohung auf eine Schwachstelle (z. B. technische oder organisatorische Mängel), so entsteht eine Gefährdung.

IT-Sicherheit Begriffe (2)

Sicherheitsbegriffe:

Risiko:

Ein Risiko ist das Produkt aus Eintrittswahrscheinlichkeit eines Ereignisses und dessen Konsequenz (Schadenshöhe) bezogen auf ein konkretes Schutzziel (Vertraulichkeit, Integrität, Verfügbarkeit).

Eintrittswahrscheinlichkeit:

Ist die Wahrscheinlichkeit dafür, dass ein Schutzziel gebrochen wird.

Schadenshöhe:

Höhe des Schadens (monetär oder nicht monetär), der sich aus einem Schadensszenario (erfolgreicher Angriff auf ein IT-System durch Ausnutzen einer Schwachstelle) ergibt.

IT-Sicherheit Begriffe (3)

IT-Sicherheit Sicherheitslage

⇒ Angriffe mit existenzbedrohendem Schadensausmaß

Fehlerinjektion:

Ziel der Angriffsmethode ist es, Kryptoprozessoren zu kompromittieren, indem man die Ausführung von Maschinenbefehlen unterbricht bzw. stört.

Dadurch können Befehle

- falsch geladen,
- ungültige Daten weitergereicht oder
- Instruktionen übersprungen werden.

Die Technik der Fehlerinjektion stammt aus den **1970er Jahren** als sie zum ersten Mal verwendet wurde, um Fehler auf Hardwareebene zu induzieren.

Fehlerinjektion:

- Power/Clock Glitch Fault Injection (PGFI); Angriffspunkt: Pin-Zugriff; kurzfristiges Abschalten der Spannungsversorgung (voltage glitch) oder Einfügen eines Taktpulses (clock glitch)
- Light/Laser Fault Injection (LFI); Angriffspunkt: Chip-Oberfläche; z. B.
 Optischer Bereich: 3 THz 300 PHz (Peta); 100 μm 1 nm
- Elektromagnetische Fault Injection (EMFI); Angriffspunkt: Chip-Oberfläche;
 z. B. Mikrowellen (Hochfrequenz): 300 MHz 300 GHz; 10 cm 1 mm
- Body Biased Fault Injection (**BBFI**); Angriffspunkt: Chip-Oberfläche; Hochspannungsimpuls auf das Schaltungssubstrat
- Softwareimplementierte Fault Injection (**SWIFI**); Angriffspunkt: Softwaresystem; unterschieden wird zwischen Kompilerzeit- und Laufzeit-Injektion

Kap. 1: Einführung in die Informationssicherheit

Teil 2: Daten, Nachrichten und Informationen

- Terminologie
- Nachrichten- und Informationsmodelle
- Kryptosysteme

Codierungstheorie (US-amer. Mathematiker Claude Shannon)

Nachrichten möglichst effizient und möglichst fehlerfrei übertragen bzw. speichern (z. B. Rundfunk, Fernsehen, Telefon, Datenspeichersysteme, Rechnernetze etc.)

Einfachstes Modell:

- Viele Quellen besitzen Redundanz (Weitschweifigkeit, Überbestimmtheit)
- Fast alle Kanäle unterliegen Störungen (Rauschen)

Verfeinertes Modell:

- Eliminierung der Redundanz (Datenkompression oder Quellencodierung)
- Gezieltes Hinzufügen von Redundanz (Kanalcodierung)

Kryptosystem:

- Schlüsselgesteuerte Transformation (asymmetrisch)
- Formale Beschreibung durch das Quintupel: (P, C, K, E, D)
 (P = Plaintext, C = Ciphertext, K = Key, E = Encryption,
 D = Decryption)

Namensgebung:

Chiffrieralgorith- mus E bzw. D Vorgang	Rechenvorschrift zum Ver- bzw. Entschlüsseln mit $\mathbf{C} := \mathbf{E}(\mathbf{P}, \mathbf{K})$ und $\mathbf{P} := \mathbf{D}(\mathbf{C}, \mathbf{K}^{-1}) = \mathbf{D}(\mathbf{E}(\mathbf{P}, \mathbf{K}), \mathbf{K}^{-1})$ chiffrieren = verschlüsseln \rightarrow encryption (enc E)	
Schlüssel K	Geheimnis (Parameter, der in der Rechenvorschrift zur Anwendung kommt, Sicherheit → Kerckhoffs)	
Geheimtext C (ciphertext)	verschlüsselte, tatsächlich übermittelte Nachricht (Zeichenkette über dem gleichen Alphabet A oder einem anderen Alphabet B)	
Klartext P (plaintext)	lesbarer Text einer Nachricht (message), z. B. Buch- staben, Zahlenfolge, Zeichenkette etc., welche man vertraulich übermitteln möchte	

Prinzip einer Stromchiffre

Schlüsselerzeugung

Die 26 möglichen Verschiebechiffren des Alphabets:

```
abcdefghij kl mnopqrst u v w x y z
Klartext:
Chiffretexte:
           A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
            BCDEFGHIJKLMNOPQRSTUVWXYZA
                  GHIJKLMNOPQRSTUVWXYZAB
 Schlüssel
                     J K L M N O P Q R S T U V W X Y Z A B C
   k
                    J K I M N O P O R S T U V W X Y 7 A B C D
                  J K I M N O P O R S T U V W X Y 7 A B C D F
                J K L M N O P Q R S T U V W X Y Z A B C D E F
           HIJKLMNOPQRSTUVWXYZABCDEFG
           IJKLMNOPQRSTUVWXYZABCDEFGH
            ---
         25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
```

Beispiel (Vigenère-Chiffre)

Plaintext:

P = schwachstellenanalyse

Ciphertext:

• C = XHMBFHMXYJQQJSFSFQDXJ

Key:

• K = 5

Encryption:

• $E = z \rightarrow (z + k) \mod n$; z = Plaintextzeichen

Decryption:

• $D = z' \rightarrow (z' - k) \mod n$; z' = Ciphertextzeichen

Prinzip einer Hill-Chiffre (Lester S. Hill; 1891-1961, US-amer.)

Mathematiker, Lehrer und Kryptograph

Ausgangslage:

- Restklassenring $\mathbf{Z}_p = \{0, 1, ..., p 1\}$ mit $p \in \mathbf{IP}$ ist ein Körper.
- In einem K\u00f6rper existiert die modulare Inverse.

Algorithmus:

Verschlüsselung: C = P · K (mod p) C = Chiffrat

Entschlüsselung: $P = C \cdot K^{-1} \pmod{p}$ P = Klartext

K = Schlüsselmatrix

C, **P**, **K** sind Matrizen, z. B. $3 \times 3 \rightarrow 64$ Bit Blocklänge

(1912 - 1954)

Alan Mathison Turing

- britischer Mathematiker und Kryptoanalytiker (Bletchley Park, 1943)
- einflussreichster Theoretiker der Computerentwicklung (Colossus)
- legte die theoretischen Grundlagen der frühen Informatik (Berechen- und Entscheidbarkeit)
- maßgeblich an der Entzifferung von Enigmaverschlüsselten Funksprüchen beteiligt

Von 1945 bis 1948 im National Physical Laboratory, Teddington, tätig am Design der **A**utomatic **C**omputing **E**ngine (ACE)

Shannonsche Theorie

Wichtige Konstruktionsprinzipien für die kryptographische Sicherheit sind Konfusion und Diffusion.

Konfusion:

Die Konfusion einer Blockchiffre ist dann groß, wenn die statistische Verteilung der Chiffretexte in Abhängigkeit von der Verteilung der Klartexte für den Angreifer zu groß ist (keine Ausnutzbarkeit).

Diffusion:

Die Diffusion einer Blockchiffre ist dann groß, wenn jedes einzelne Bit des Klartextes (und des Schlüssels) möglichst viele Bits des Chiffretextes beeinflusst (typisch etwa 50 %).

Komplexität:

Das Entscheidungsproblem **PRIMES** besteht darin, zu entscheiden, ob es sich bei einer gegebenen natürlichen Zahl z > 1 um eine Primzahl handelt. Dabei sei die Zahl z zur Basis $b \in IN$ dargestellt.

Die dazugehörige Sprache sei mit $L_b = L[PRIMES, b]$ bezeichnet.

Satz:

Sei L₁ := L[PRIMES, 1]. Erst 2002¹⁾ konnte gezeigt werden, dass gilt:

L₁ liegt in P

d. h. es gibt eine DTM, deren Laufzeit von der Ordnung **O**(n³) und damit polynomial beschränkt ist.

1) Drei indische Mathematiker: M. Agrawal, N. Kayal und N. Saxena

Überblick Kapitel 1

Kap. 1: Einführung in die Informationssicherheit

Teil 3: Schutzziele der Datensicherheit

- Begrifflichkeiten im Kontext von Datensicherheit
- Sicherheitsanforderungen und Sicherheitsziele
- Verschlüsselungsfunktionen und -algorithmen
- Kryptographische Hashfunktionen und digitale Signaturen
- Schlüsselmittel

<u>Sicherheits</u>anforderungen werden i. a. mit <u>handelnden Subjekten</u> und <u>schützenswerten Objekten</u> verknüpft.

- was soll geschützt werden? ⇒ schützenswerte Objekte
- vor wem oder was soll geschützt werden ⇒ handelnde Subjekte

Die (positive) Verknüpfung von Subjekten und Objekten wird im folgenden **Schutzziel** oder **Sicherheitsziel** genannt.

Zur Erreichung der Sicherheitsziele (Schutzziele) müssen geeignete **Sicherheitsdienste** bzw. **Sicherheitsfunktionen** und -maßnahmen bereitgestellt werden.

<u>Sicherheits</u>funktionen werden durch ihnen zugrunde liegenden <u>Sicherheits</u>mechanismen (<u>Sicherheits</u>algorithmen) realisiert.

Sicherheit ist die Wahrscheinlichkeit, einen bezifferbaren oder nicht bezifferbaren <u>Schaden</u> zu verhindern oder zumindest auf ein erträgliches Restmaß (Restrisiko) einzuschränken \Rightarrow Schutzziele

Grundlegende Sicherheitsziele:

Vertraulichkeit → Schutz gegen unautorisierte Kenntnisnahme

Integrität → Schutz gegen unautorisierte Veränderung

Verfügbarkeit → Schutz gegen unautorisierte Vorenthaltung/ Verweigerung

Verbindlichkeit → Schutz gegen Verlust der Beweisbarkeit/ (Authentizität) Zurechenbarkeit und nicht Abstreitbarkeit

Grundlegende Sicherheitsfunktionen und -maßnahmen:

1. Vertraulichkeitsschutz

Kryptographische Algorithmen sind Berechnungsvorschriften, d. h. mathematisch / logische Funktionen zur Ver- und Entschlüsselung von Nachrichten.

Bei **symmetrischen Algorithmen** wird zum Chiffrieren und zum Dechiffrieren immer der <u>gleiche</u> Schlüssel **K** benutzt.

Bei **asymmetrischen Algorithmen** werden zum Ver- und Entschlüsseln zwei <u>unterschiedliche</u> Schlüssel **K**₁ bzw. **K**₂ benutzt, die allerdings miteinander korrespondieren. Es gilt:

 $C := E(M, K_1) \text{ und } M := D(C, K_2) = D(E(M, K_1), K_2)$

Grundlegende Sicherheitsfunktionen und -maßnahmen:

1. Vertraulichkeitsschutz (Fortsetzung)

Man unterscheidet bei Kryptoalgorithmen zwischen **Stromchiffren** und **Blockchiffren**.

- Stromchiffren: Zeichen für Zeichen
- Blockchiffren: Nachricht M in Blöcke z. B. der Länge n = 64 Bit aufgeteilt

Die Vereinigung von Algorithmus, zugehörigen Schlüsseln und den verschlüsselten Nachrichten (Kryptogramme) wird Kryptosystem genannt.

Der **Schlüsselraum**, d. h. die Menge, aus der ein Schlüssel gewählt wird, sollte möglichst groß sein. Er sollte mindestens so groß sein, dass der Aufwand (Kosten, Zeit, Speicherplatz/Datenmenge) für einen Angriff unakzeptabel hoch wird.

DatensicherheitBegriffe

Grundlegende Sicherheitsfunktionen und -maßnahmen:

2. Integritätsschutz

Man unterscheidet beim Integritätsschutz zwischen Hashfunktionen und digitalen Signaturen.

Eine Hashfunktion **hash** ist eine Abbildung, die für eine <u>beliebig</u> lange Nachricht **M** einen Funktionswert **H** (den Hashwert) <u>fester</u> Länge liefert.

H = hash(M)

Darüber hinaus muß sie gewisse Bedingungen (Einwegeigenschaft, Kompressionseigenschaft, Kollisionsfreiheit) erfüllen.

Eine Besonderheit sind schlüsselabhängig Hashfunktionen, sogenannte Keyed-Hash Message Authentication Code (HMAC).

Grundlegende Sicherheitsfunktionen und -maßnahmen:

2. Integritätsschutz (Fortsetzung)

Eine digitale Signatur ist ein Datensatz **Sig**_T, der zusätzlich zu einem Dokument **M** erzeugt wird und dabei das signierte Dokument <u>eindeutig</u> einem Teilnehmer T zuordnet:

$$Sig_T = sig(H, Sk_T)$$

Verwendung findet bei der Signaturerstellung der **geheime** Schlüssel des Teilnehmers T.

Bei der Signaturprüfung wird der zugehörige öffentliche Schlüssel des Teilnehmers T benötigt.

⇒ Public Key System

Überblick Kapitel 1

Kap. 1: Einführung in die Informationssicherheit

Teil 4: Basismechanismen der Kryptologie (Überblick)

- Symmetrische Ver- und Entschlüsselung
- Asymmetrische Ver- und Entschlüsselung
- Kryptographische Hashfunktionen
- Message Authentication Code
- Digitale Signaturen
- Schlüsselmittelmanagement und Zufallszahlen

Basismechanismen im Überblick Symmetrische Verschlüsselung

Basismechanismen im Überblick Asymmetrische Verschlüsselung

hier:

Prinzip einer Hashfunktion mit Kollision

Basisprinzip:

- Nachricht beliebiger und Hashwert fester Länge (typ. 128 Bit)
- Digitaler Fingerprint

Eigenschaften:

- kollisionsresistent
- mit und ohne geheimen Schlüssel (→ MD bzw. MAC)

Message Digest (**MD**)

Message Authentication Code (MAC)

Basisprinzip:

- Privater (geheimer) und öffentlicher
 Schlüssel
- Signaturwert mit privatem Schlüssel

Eigenschaften:

- Nachweisbarkeit
- Nicht Abstreitbarkeit
- Authentizität
- Echtheit
- Identitätsnachweis

Lineare rückgekoppelte Schieberegister

Überblick Kapitel 1

Kap. 1: Einführung in die Informationssicherheit

Teil 5: Kryptanalyse

- Das Prinzip von Kerckhoffs
- Typen von Attacken
- Angriffsstrategien und Analyseverfahren
- Klassifizierung der Sicherheit von Kryptosystemen
- Steganographie

Alexandre Auguste Kerckhoffs von Nieuwenhof (niederl. Philologe, 1835 – 1903)

- Klassische Kryptographie ist geprägt vom Wechselspiel zwischen Kryptographie und Krypanalyse (Erkenntnisse → Entwicklungen).
- Die Sicherheit eines Kryptosystems darf nicht von dessen Geheimhaltung, sondern nur von der Schlüssellänge abhängen.

Seien P, C, K die Mengen der Plaintexte, Chiffretexte bzw. Schlüssel und $E:P \times K \to C$ ein Verschlüsselungssystem. Ist ein Kryptoanalytiker im Besitz eines Plaintext-Chiffretextpaares $(p, c) \in P \times C$, so kann der verwendete Schlüssel k durch **vollständige Suche** ermittelt werden, da E(p, k) = c gelten muss.

Ciphertext-only-Attack:

Es besteht lediglich die Möglichkeit, für die Analyse verschlüsselte Daten (ciphertext) in beliebigem Umfang zu verwenden.

Known-Plaintext-Attack:

Es stehen Klartext-Schlüsseltextpaare zur Verfügung, wobei bei der Analyse ausgenutzt wird, dass bestimmte Textphrasen häufig verwendet werden.

Chosen-Plaintext-Attack:

Hier verwendet der Kryptoanalytiker beim Angriff die Chiffrate zu selbstgewählten Klartexten.

Vollständiges Suchen:

Die gesamte Schlüsselmenge wird durchsucht, um den jeweils verwendeten Schlüssel zu finden (ohne praktische Bedeutung).

Trial and Error:

Im Gegensatz zur vollständigen Suche wird vorausgesetzt, dass eine Strukturanalyse dazu geführt hat, die Schlüsselwahl einzuschränken.

Statistische Methoden:

Hierbei werden statistische Eigenschaften (Verteilungen) verwendet, um Rückschlüsse auf den zugehörigen Klartext zu ermitteln.

Strukturanalyse:

Ausgenutzt werden spezielle Strukturen mit dem Ziel, effiziente Algorithmen zum Brechen des Kryptoverfahrens zu entwerfen.

Ein Kryptosystem heißt

- absolut sicher,
 wenn nicht genug Information gewonnen werden kann, um hieraus den Klartext oder den Schlüssel zu rekonstruieren.
- analytisch sicher, wenn es kein nichttriviales Verfahren gibt, mit dem es systematisch gebrochen werden kann.
- komplexitätstheoretisch sicher, wenn es keinen Algorithmus gibt, der das Kryptosystem in Polynomialzeit in Abhängigkeit der Schlüssellänge brechen kann.
- praktisch sicher (→ starke Verfahren),
 wenn kein Verfahren bekannt ist, welches das Kryptosystem mit vertretbarem Ressourcen-, Kosten- und Zeitaufwand brechen kann.

Für die Beurteilung der benötigten Schlüssellänge sind folgende Definitionen sehr hilfreich:

- 1. Ein **Algorithmus** gilt als **sicher**, wenn
 - der zum Aufbrechen nötige Geldaufwand den Wert der verschlüsselten Daten übersteigt oder
 - die zum Knacken erforderliche Zeit größer ist als die Zeit, die die Daten geheim bleiben müssen, oder
 - das mit einem bestimmten Schlüssel chiffrierte Datenvolumen kleiner ist als die zum Knacken erforderliche Datenmenge.
- 2. Ein **Algorithmus** gilt als **uneingeschränkt sicher**, wenn der Klartext auch dann nicht ermittelt werden kann, wenn Chiffretext in beliebigem Umfang vorhanden ist ⇒ **starke Kryptographie**.

D	V	A	В	S	Z
I	Н	Е	Е	S	Е
Y	T	Е	Н	О	T
Е	I	Y	T	S	N
I	G	A	Е	Н	Y
D	О	Y	U	Е	I
M	A	N	В	В	L
О	Т	I	О	D	S

D		A		S	
I				S	
					T
Е	I				N
	G		Е	Н	
				Е	I
M		N			
		I			S

Beispiel für eine verdeckte Botschaft

Was verbirgt sich hinter der folgenden Kleinanzeige?

- Räumung
- Seniorenumzug
- Ankauf

KLEINTRANSPORTE

Friko Yamashita

intelligent - sauber - tadellos

Tel: 0126-114719

Hinweis: Man beachte Anfangsbuchstaben und Tel.-Nr.

Beispiel für eine verdeckte Botschaft

Wo verbirgt sich die Nachricht? Wie lautet diese?

Hinweis: Man beachte den Verlauf des San Antonio Rivers (1945)

- **Semagramme:** Nachrichten, die in Details von Skizzen oder Gegenständen verborgen sind.
- Die Botschaft wurde unter Anwendung des Morsealphabets (kurz, lang und Pause/ Leerraum) codiert.
- Zeitschema "ein/aus" optisch aus der Länge der Grashalmen links von der Brücke auf der kleinen Mauer und rechts entlang des Flusses.

David Kahn: The Codebreakers, Macmillan, 1996, S. 155 ff.

Überblick Kapitel 1

Kap. 1: Einführung in die Informationssicherheit

Zusammenfassung:

- Aufgrund der gegenwärtigen Gefährdungslage im IT-Bereich sind IT-Sicherheitsmaßnahmen (Funktionen) unerlässlich.
- Die Realisierung von IT-Sicherheitsmaßnahmen und -funktionen erfolgt mit den Mitteln der Kryptologie.
- Wir unterscheiden in klassische und moderne Kryptologie (sog. Public Key Cryptographie).
- Besondere Bedeutung in der Praxis hat nach wie vor die Informationsverschlüsselung (Geheimhaltung).

Überblick Kapitel 1

Kap. 1: Einführung in die Informationssicherheit

Zusammenfassung (Fortsetzung):

- Hashwerte und Message Authentication Codes dienen zum Nachweis der Authentizität der Daten, besitzen aber keine Beweiskraft gegenüber Dritten.
- Eine digitale Signatur wird mittels des geheimen Schlüssels des Urhebers gebildet.
- Die Überprüfung der Korrektheit einer Signatur findet mittels des zugehörigen öffentlichen Schlüssels statt.
- Die Urheberschaft kann gegenüber Dritten bewiesen werden.