Topics in Two-Sample Testing

Nelson Ray (joint work with Susan Holmes)

Stanford University

March 13, 2013

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test: leverage regression and classification techniques
- Kernel methods for non-vectorial and heterogeneous data
- Univariate data and linear scoring functions: permutation *t*-test
- Stein's method of exchangeable pairs for Berry-Esseen-type bound

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test: leverage regression and classification techniques
- Kernel methods for non-vectorial and heterogeneous data
- Univariate data and linear scoring functions: permutation *t*-test
- Stein's method of exchangeable pairs for Berry-Esseen-type bound

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test: leverage regression and classification techniques
- Kernel methods for non-vectorial and heterogeneous data
- Univariate data and linear scoring functions: permutation *t*-test
- Stein's method of exchangeable pairs for Berry-Esseen-type bound

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test: leverage regression and classification techniques
- Kernel methods for non-vectorial and heterogeneous data
- Univariate data and linear scoring functions: permutation *t*-test
- Stein's method of exchangeable pairs for Berry-Esseen-type bound

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test: leverage regression and classification techniques
- Kernel methods for non-vectorial and heterogeneous data
- Univariate data and linear scoring functions: permutation *t*-test
- Stein's method of exchangeable pairs for Berry-Esseen-type bound

Breast Cancer Data: Spatial

Breast Cancer Data: Survival

Pathology no.	Initial Diagnosis Date	Relapse or Disease Free	RDF (R=relapsed; F=DF)	Recurrence Date	Las	
98 17969D	1997-08-25	Disease Free	F	Disease Free		
97_24046C8	1997-08-25	Disease Free	F	Disease Free		
98_8501C1	1998-04-03	Disease Free	F	Disease Free		
98_8501A1	1998-04-03	Disease Free	F	Disease Free		
98_9134D4	1998-04-09	Left in-situ BrCa in 1999 (2nd primary cancer, not a metastasis from the right BrCa in 1997)	F	Disease Free		
98_9134B	1998-04-09	Left in-situ BrCa in 1999 (2nd primary cancer, not a metastasis from the right BrCa in 1997)	F	Disease Free		
98_14783B1	1998-06-10	bone, brain, lymph nodes, pericardium, liver metastasis	R	2004-07-30		
98 14783A	1998-06-10	bone, brain, lymph nodes, pericardium, liver metastasis	R	2004-07-30		
98_16169C2	1998-06-24	Disease Free	F	Disease Free		
98_16169A	1998-06-24	Disease Free	F	Disease Free		
98_16169B	1998-06-24	Disease Free	F	Disease Free		
98_16253C1	1998-06-25	Disease Free	F	Disease Free		
60C1	1998-07-10	Disease Free	F	Disease Free		

Breast Cancer Data: Medical

Pathology no.	Age at time of diagnosis	Gender	SLN tumor status	Diagnosis	ER status	PR status	Her-2 overexpression
98_17969D	68	F	+	Invasive ductal carcinoma (IDC)	_	_	_
97 24046C8	68	F	+	Invasive ductal carcinoma (IDC)	_	_	_
98_8501C1	51	F	+	IDC & DCIS	+	+	?
98_8501A1	51	F	+	IDC & DCIS	+	+	?
98_9134D4	70	F	+	IDC	+	+	n/a
98_9134B 98_14783B1	70 67	F	+	IDC & DCIS	+	+	n/a +
98_14783A	67	F	+	IDC & DCIS	+	+	+
98_16169C2	79	F	+mic	IDC	+	+	+
98_16169A	79	F	+mic	IDC	+	+	+
98_16169B	79	F	+mic	IDC	+	+	+
98_16253C1	70	F	+mic	IDC & DCIS	+	-	-
60C1	51	F	- (rare keratin+ cells)	IDC & DCIS	+	+	+

- How do you deal with the data integration problem?
- Kernel methods via Friedman's procedure
- Are there any differences (spatial, medical) between women who relapse and those who remain disease free?
- Two-sample tests

- How do you deal with the data integration problem?
- Kernel methods via Friedman's procedure
- Are there any differences (spatial, medical) between women who relapse and those who remain disease free?
- Two-sample tests

- How do you deal with the data integration problem?
- Kernel methods via Friedman's procedure
- Are there any differences (spatial, medical) between women who relapse and those who remain disease free?
- Two-sample tests

- How do you deal with the data integration problem?
- Kernel methods via Friedman's procedure
- Are there any differences (spatial, medical) between women who relapse and those who remain disease free?
- Two-sample tests

Friedman (2003) $\{\mathbf{x}_i\}_{i=1}^N$ from $p(\mathbf{x})$ and $\{\mathbf{x}_i\}_{i=N+1}^{N+M}$ from $q(\mathbf{x})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

- Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- ② Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{x}_i)\}_1^{N+M}$.
- © Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M}).$
- Conduct statistical inference based on the permutation null distribution of the above statistic

Friedman (2003)

 $\{\mathbf{x}_i\}_{i=1}^N$ from $p(\mathbf{x})$ and $\{\mathbf{x}_i\}_{i=N+1}^{N+M}$ from $q(\mathbf{x})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

- Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- ② Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{x}_i)\}_1^{N+M}$.
- ② Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M})$.
- Conduct statistical inference based on the permutation null distribution of the above statistic

Friedman (2003)

 $\{\mathbf{x}_i\}_{i=1}^N$ from $p(\mathbf{x})$ and $\{\mathbf{x}_i\}_{i=N+1}^{N+M}$ from $q(\mathbf{x})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

- Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- ② Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{x}_i)\}_{1}^{N+M}$.
- ② Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M})$.
- Conduct statistical inference based on the permutation nul distribution of the above statistic

Friedman (2003)

 $\{\mathbf{x}_i\}_{i=1}^N$ from $p(\mathbf{x})$ and $\{\mathbf{x}_i\}_{i=N+1}^{N+M}$ from $q(\mathbf{x})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

- Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- ② Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{x}_i)\}_{1}^{N+M}$.
- 3 Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M}).$
- Conduct statistical inference based on the permutation nul distribution of the above statistic

Friedman (2003)

```
\{\mathbf{x}_i\}_{i=1}^N from p(\mathbf{x}) and \{\mathbf{x}_i\}_{i=N+1}^{N+M} from q(\mathbf{x}) testing \mathcal{H}_A: p \neq q against \mathcal{H}_0: p = q
```

- Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- ② Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{x}_i)\}_1^{N+M}$.
- 3 Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M})$.
- Onduct statistical inference based on the permutation null distribution of the above statistic.

Twitter Example

Barack Obama

@BarackObama Washington, DC 44th President of the United States http://www.barackobama.com

C Follow

Sarah Palin o

Favorites Following Followers Lists

@SarahPalinUSA Alaska

Former Governor of Alaska and GOP Vice Presidential Nominee http://www.facebook.com/sarahpalin

You betcha!! MT "@AlaskaAces: Alaska Aces are 2011 Kelly

Oup Champs w/ 5-3 win over Kalamazoo Wings! Aces win

East and North Africa. Watch live: http://wh.gov/live

Coast Guard Academy. Watch live at 11:30am ET:

Delivering the commencement address at the United States

Sarah Palin USA Sarah Palin

21 May

Yes, they did & we couldn't be any more blessed! RT" @C4Palin: Track Palin and Britta Hanson Married

http://bit.lv/iCkT3i #tcot #palin" 19 May

ECHL Championship series 4-1"

Sarah Palin USA Sarah Palin

Sarah Palin USA Sarah Palin

I'm jealous! RT"@secupp: At the Wasilla Sportsman's Warehouse w/Joe the Plumber, Colorado Buck, Ken Onion and Sarah's parents. Good people." 19 May

N. Ray with S. Holmes (Stanford)

www.wh.gov/live

#MEspeech

BarackObama Barack Obama

19 May

18 May

"BarackObama: We need to reward education reforms that are driven not by Washington, but by principals and teachers and parents. http://OFA.BO/6p2EMy"

$$\bar{x} = ?$$

"BarackObama: We need to reward education reforms that are driven not by Washington, but by principals and teachers and parents. http://OFA.BO/6p2EMy"

$$\bar{x} = ?$$

$$\hat{\sigma}_X = ?$$

"BarackObama: We need to reward education reforms that are driven not by Washington, but by principals and teachers and parents. http://OFA.BO/6p2EMy"

$$\bar{x} = ?$$

 $\hat{\sigma}_x = ?$

"BarackObama: We need to reward education reforms that are driven not by Washington, but by principals and teachers and parents. http://OFA.BO/6p2EMy"

$$\bar{x} = ?$$

$$\hat{\sigma}_{x} = ?$$

- Data x_i in a general set \mathcal{X} .
- ullet Define a feature map $\phi: \mathcal{X} \to V$, where V is an inner product space.
- $K(u_i, u_j) = \langle \phi(u_i), \phi(u_j) \rangle$
- ullet Use learning algorithms that only require inner products between vectors in \mathcal{X} .
- The inner products can be done implicitly, by a kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

- Data x_i in a general set \mathcal{X} .
- ullet Define a feature map $\phi: \mathcal{X} \to V$, where V is an inner product space.
- $K(u_i, u_j) = \langle \phi(u_i), \phi(u_j) \rangle$
- ullet Use learning algorithms that only require inner products between vectors in \mathcal{X} .
- The inner products can be done implicitly, by a kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

- Data x_i in a general set \mathcal{X} .
- ullet Define a feature map $\phi:\mathcal{X} o V$, where V is an inner product space.
- $K(u_i, u_j) = \langle \phi(u_i), \phi(u_j) \rangle$
- ullet Use learning algorithms that only require inner products between vectors in \mathcal{X} .
- The inner products can be done implicitly, by a kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

- Data x_i in a general set \mathcal{X} .
- ullet Define a feature map $\phi:\mathcal{X} o V$, where V is an inner product space.
- $K(u_i, u_j) = \langle \phi(u_i), \phi(u_j) \rangle$
- ullet Use learning algorithms that only require inner products between vectors in \mathcal{X} .
- The inner products can be done implicitly, by a kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

- Data x_i in a general set \mathcal{X} .
- ullet Define a feature map $\phi: \mathcal{X} \to V$, where V is an inner product space.
- $K(u_i, u_j) = \langle \phi(u_i), \phi(u_j) \rangle$
- ullet Use learning algorithms that only require inner products between vectors in \mathcal{X} .
- The inner products can be done implicitly, by a kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

Twitter Data

Raw:

"BarackObama: We need to reward education reforms that are driven not by Washington, but by principals and teachers and parents. http://OFA.BO/6p2EMy"

"SarahPalinUSA: You betcha!! MT \"@AlaskaAces: Alaska Aces are 2011 Kelly Cup Champs w/ 5-3 win over Kalamazoo Wings! Aces win ECHL Championship series 4-1\""

After pre-processing:

"we need to reward education reforms that are driven not by washington but by principals and teachers and parents "
"you betcha mt alaskaaces alaska aces are kelly cup champs w win over kalamazoo wings aces win echl championship series "

- $\mathcal{X}=$ set of all finite-length sequences from an alphabet $\mathcal{A}.$
- $\phi_2(x) = [\#_{aa}(x) \#_{ab}(x) \#_{ac}(x) \dots]$
- $\mathcal{V} = \mathbb{N}^{|\mathcal{A}|^k}$
- $K_k(x,y) = \langle \phi_k(x), \phi_k(y) \rangle$

- $\mathcal{X}=$ set of all finite-length sequences from an alphabet $\mathcal{A}.$
- $\phi_2(x) = [\#_{aa}(x) \#_{ab}(x) \#_{ac}(x) \dots]$
- $\mathcal{V} = \mathbb{N}^{|\mathcal{A}|^k}$
- $K_k(x,y) = \langle \phi_k(x), \phi_k(y) \rangle$

- $\mathcal{X}=$ set of all finite-length sequences from an alphabet $\mathcal{A}.$
- $\phi_2(x) = [\#_{aa}(x) \#_{ab}(x) \#_{ac}(x) \dots]$
- $\mathcal{V} = \mathbb{N}^{|\mathcal{A}|^k}$
- $K_k(x,y) = \langle \phi_k(x), \phi_k(y) \rangle$

- $\mathcal{X}=$ set of all finite-length sequences from an alphabet $\mathcal{A}.$
- $\phi_2(x) = [\#_{aa}(x) \#_{ab}(x) \#_{ac}(x) \dots]$
- $\mathcal{V} = \mathbb{N}^{|\mathcal{A}|^k}$
- $K_k(x,y) = \langle \phi_k(x), \phi_k(y) \rangle$

- $\mathcal{X}=$ set of all finite-length sequences from an alphabet $\mathcal{A}.$
- $\phi_2(x) = [\#_{aa}(x) \#_{ab}(x) \#_{ac}(x) \dots]$
- $\mathcal{V} = \mathbb{N}^{|\mathcal{A}|^k}$
- $K_k(x,y) = \langle \phi_k(x), \phi_k(y) \rangle$

Support Vector Machines

 ℓ_1 -regularized (soft-margin) support vector classification problem (Vapnik and Cortes, 1995):

$$\begin{aligned} & \underset{\mathbf{w} \in \mathcal{H}, b \in \mathbb{R}}{\text{minimize}} & & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{M} \xi_i \\ & \text{subject to} & & y_i(\mathbf{w}^t \mathbf{x}_i + b) \geq 1 - \xi_i \\ & & & \xi_i \geq 0 & \text{for all } i = 1, \dots, m. \end{aligned}$$

For the Friedman Test, our scoring function is the margin $f(\mathbf{x}_i) = \sum_{i=1}^m y_i \alpha_i K(\mathbf{x}, \mathbf{x}_i) + b$.

Support Vector Machines

 ℓ_1 -regularized (soft-margin) support vector classification problem (Vapnik and Cortes, 1995):

$$\begin{aligned} & \underset{\mathbf{w} \in \mathcal{H}, b \in \mathbb{R}}{\text{minimize}} & & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{M} \xi_i \\ & \text{subject to} & & y_i(\mathbf{w}^t \mathbf{x}_i + b) \geq 1 - \xi_i \\ & & & \xi_i \geq 0 & \text{for all } i = 1, \dots, m. \end{aligned}$$

For the Friedman Test, our scoring function is the margin $f(\mathbf{x}_i) = \sum_{i=1}^m y_i \alpha_i K(\mathbf{x}, \mathbf{x}_i) + b$.

Kernel Maximum Mean Discrepancy Test: (Gretton et al. 2006)

 $\mathfrak F$ a class of functions (unit ball in RKHS), $f:\mathcal X o\mathbb R$, p and q probability distributions, and $X\sim p$ and $Z\sim q$ random variables MMD statistic:

$$\mathsf{MMD}[\mathfrak{F}, p, q] := \sup_{f \in \mathfrak{F}} (\mathbb{E}_{\mathsf{x} \sim p}[f(\mathsf{x})] - \mathbb{E}_{z \sim q}[f(z)])$$

Empirical Estimate

$$\mathsf{MMD}[\mathfrak{F},X,Z] := \sup_{f \in \mathfrak{F}} \left(\frac{1}{N} \sum_{i=1}^{N} f(x_i) - \frac{1}{M} \sum_{i=1}^{M} f(z_i) \right)$$

Kernel Maximum Mean Discrepancy Test: (Gretton et al. 2006) $\mathfrak F$ a class of functions (unit ball in RKHS), $f:\mathcal X\to\mathbb R$, p and q probability distributions, and $X\sim p$ and $Z\sim q$ random variables

MMD statistic:

$$\mathsf{MMD}[\mathfrak{F}, p, q] := \sup_{f \in \mathfrak{F}} (\mathbb{E}_{\mathsf{x} \sim p}[f(\mathsf{x})] - \mathbb{E}_{\mathsf{z} \sim q}[f(\mathsf{z})])$$

Empirical Estimate

$$\mathsf{MMD}[\mathfrak{F},X,Z] := \sup_{f \in \mathfrak{F}} \left(\frac{1}{N} \sum_{i=1}^{N} f(x_i) - \frac{1}{M} \sum_{i=1}^{M} f(z_i) \right)$$

Kernel Maximum Mean Discrepancy Test: (Gretton et al. 2006) $\mathfrak F$ a class of functions (unit ball in RKHS), $f:\mathcal X\to\mathbb R$, p and q probability distributions, and $X\sim p$ and $Z\sim q$ random variables MMD statistic:

$$\mathsf{MMD}[\mathfrak{F},p,q] := \sup_{f \in \mathfrak{F}} (\mathbb{E}_{x \sim p}[f(x)] - \mathbb{E}_{z \sim q}[f(z)])$$

Empirical Estimate

$$\mathsf{MMD}[\mathfrak{F},X,Z] := \sup_{f \in \mathfrak{F}} \left(\frac{1}{N} \sum_{i=1}^{N} f(x_i) - \frac{1}{M} \sum_{i=1}^{M} f(z_i) \right)$$

Kernel Maximum Mean Discrepancy Test: (Gretton et al. 2006) $\mathfrak F$ a class of functions (unit ball in RKHS), $f:\mathcal X\to\mathbb R$, p and q probability distributions, and $X\sim p$ and $Z\sim q$ random variables MMD statistic:

$$\mathsf{MMD}[\mathfrak{F}, p, q] := \sup_{f \in \mathfrak{F}} (\mathbb{E}_{\mathsf{x} \sim p}[f(\mathsf{x})] - \mathbb{E}_{\mathsf{z} \sim q}[f(\mathsf{z})])$$

Empirical Estimate:

$$\mathsf{MMD}[\mathfrak{F},X,Z] := \sup_{f \in \mathfrak{F}} \left(\frac{1}{N} \sum_{i=1}^{N} f(x_i) - \frac{1}{M} \sum_{i=1}^{M} f(z_i) \right)$$

Twitter Example

Image Data (Roosters)

Caltech 101 Object Categories (Li et al. 2007) (297 × 300 grayscale)

Image Data (Pigeons)

- $\mathcal{X} = \mathbb{R}^n$
- $\phi_2([x_1, x_2]) = [x_1^2, 2x_1x_2, x_2^2, \sqrt{2c}x_1, \sqrt{2c}x_2, c]$
- $\langle \phi(x), \phi(y) \rangle$ is $\mathcal{O}(n^2)$
- $V = \mathbb{R}^{d'}$, where $d' = \binom{n+d}{d}$
- $K_d(x,y) = (x^T y + c)^d$ is $\mathcal{O}(n)$

- $\mathcal{X} = \mathbb{R}^n$
- $\phi_2([x_1, x_2]) = [x_1^2, 2x_1x_2, x_2^2, \sqrt{2c}x_1, \sqrt{2c}x_2, c]$
- $\langle \phi(x), \phi(y) \rangle$ is $\mathcal{O}(n^2)$
- $\mathcal{V} = \mathbb{R}^{d'}$, where $d' = \binom{n+d}{d}$
- $K_d(x,y) = (x^Ty + c)^d$ is $\mathcal{O}(n)$

- $\mathcal{X} = \mathbb{R}^n$
- $\phi_2([x_1, x_2]) = [x_1^2, 2x_1x_2, x_2^2, \sqrt{2c}x_1, \sqrt{2c}x_2, c]$
- $\langle \phi(x), \phi(y) \rangle$ is $\mathcal{O}(n^2)$
- $\mathcal{V} = \mathbb{R}^{d'}$, where $d' = \binom{n+d}{d}$
- $K_d(x,y) = (x^T y + c)^d$ is $\mathcal{O}(n)$

- $\mathcal{X} = \mathbb{R}^n$
- $\phi_2([x_1, x_2]) = [x_1^2, 2x_1x_2, x_2^2, \sqrt{2c}x_1, \sqrt{2c}x_2, c]$
- $\langle \phi(x), \phi(y) \rangle$ is $\mathcal{O}(n^2)$
- ullet $\mathcal{V}=\mathbb{R}^{d'}$, where $d'=inom{n+d}{d}$
- $K_d(x,y) = (x^T y + c)^d$ is $\mathcal{O}(n)$

- $\mathcal{X} = \mathbb{R}^n$
- $\phi_2([x_1, x_2]) = [x_1^2, 2x_1x_2, x_2^2, \sqrt{2c}x_1, \sqrt{2c}x_2, c]$
- $\langle \phi(x), \phi(y) \rangle$ is $\mathcal{O}(n^2)$
- $\mathcal{V} = \mathbb{R}^{d'}$, where $d' = \binom{n+d}{d}$
- $K_d(x,y) = (x^T y + c)^d$ is O(n)

Rooster/Pigeon Example

Regularized regression

- Feature engineering/extraction: \mathbf{x}_i
- Feature normalization: $\mathbf{x}_i \leftarrow \frac{\mathbf{x}_i \hat{\mu}_i}{\hat{\sigma}_i}$
- Regularization/feature selection: $\inf_{\beta} \sum_{i=1}^{n} V(\beta_0 + \tilde{\mathbf{x}}_i^T \boldsymbol{\beta}, y_i) \text{ s.t. } ||\boldsymbol{\beta}||_p \leq t$

- feature engineering/extraction: K_i
- feature normalization: $K_i(x,x') \leftarrow \frac{K_i(x,x')}{\sqrt{K_i(x,x)}\sqrt{K_i(x',x')}}$
- Regularization/feature selection: $\inf_{\mathbf{w},b,\theta:\theta\succeq 0} C \sum_{i=1}^{n} V(\sum_{m=1}^{M} \sqrt{\theta_m} \langle \mathbf{w}_m, \phi_m(x_i) \rangle_{\mathcal{H}_m} + b, y_i) \\ + \frac{1}{2} \sum_{m=1}^{M} ||\mathbf{w}_m||_{\mathcal{H}_m}^2 \text{ s.t. } ||\theta||_{P} \leq 1$

Regularized regression

- Feature engineering/extraction: x_i
- Feature normalization: $\mathbf{x}_i \leftarrow \frac{\mathbf{x}_i \hat{\mu}_i}{\hat{\sigma}_i}$
- Regularization/feature selection: $\inf_{\beta} \sum_{i=1}^{n} V(\beta_0 + \tilde{\mathbf{x}}_i^T \boldsymbol{\beta}, y_i) \text{ s.t. } ||\boldsymbol{\beta}||_p \leq t$

MKI

- feature engineering/extraction: K_i
- feature normalization: $K_i(x,x') \leftarrow \frac{K_i(x,x')}{\sqrt{K_i(x,x)}\sqrt{K_i(x',x')}}$
- Regularization/feature selection: $\inf_{\mathbf{w},b,\theta:\theta\succeq 0} C \sum_{i=1}^{n} V(\sum_{m=1}^{M} \sqrt{\theta_m} \langle \mathbf{w}_m, \phi_m(x_i) \rangle_{\mathcal{H}_m} + b, y_i) \\ + \frac{1}{2} \sum_{m=1}^{M} ||\mathbf{w}_m||_{\mathcal{H}_m}^2 \text{ s.t. } ||\theta||_p \leq 1$

Regularized regression

- Feature engineering/extraction: **x**_i
- Feature normalization: $\mathbf{x}_i \leftarrow \frac{\mathbf{x}_i \hat{\mu}_i}{\hat{\sigma}_i}$
- Regularization/feature selection: $\inf_{\beta} \sum_{i=1}^{n} V(\beta_0 + \tilde{\mathbf{x}}_i^T \boldsymbol{\beta}, y_i) \text{ s.t. } ||\boldsymbol{\beta}||_p \leq t$

- feature engineering/extraction: K_i
- feature normalization: $K_i(x,x') \leftarrow \frac{K_i(x,x')}{\sqrt{K_i(x,x)}\sqrt{K_i(x',x')}}$
- Regularization/feature selection: $\inf_{\mathbf{w},b,\theta:\theta\succeq 0} C \sum_{i=1}^{n} V(\sum_{m=1}^{M} \sqrt{\theta_m} \langle \mathbf{w}_m, \phi_m(x_i) \rangle_{\mathcal{H}_m} + b, y_i) \\ + \frac{1}{2} \sum_{m=1}^{M} ||\mathbf{w}_m||_{\mathcal{H}_m}^2 \text{ s.t. } ||\theta||_p \leq 1$

Regularized regression

- Feature engineering/extraction: \mathbf{x}_i
- Feature normalization: $\mathbf{x}_i \leftarrow \frac{\mathbf{x}_i \hat{\mu}_i}{\hat{\sigma}_i}$
- Regularization/feature selection: $\inf_{\beta} \sum_{i=1}^{n} V(\beta_0 + \tilde{\mathbf{x}}_i^T \boldsymbol{\beta}, y_i) \text{ s.t. } ||\boldsymbol{\beta}||_p \leq t$

- feature engineering/extraction: K_i
- feature normalization: $K_i(x,x') \leftarrow \frac{K_i(x,x')}{\sqrt{K_i(x,x)}\sqrt{K_i(x',x')}}$
- Regularization/feature selection: $\inf_{\mathbf{w},b,\theta:\theta\succeq 0} C \sum_{i=1}^{n} V(\sum_{m=1}^{M} \sqrt{\theta_m} \langle \mathbf{w}_m, \phi_m(x_i) \rangle_{\mathcal{H}_m} + b, y_i) \\ + \frac{1}{2} \sum_{m=1}^{M} ||\mathbf{w}_m||_{\mathcal{H}_m}^2 \text{ s.t. } ||\theta||_{P} \leq 1$

Regularized regression

- Feature engineering/extraction: \mathbf{x}_i
- Feature normalization: $\mathbf{x}_i \leftarrow \frac{\mathbf{x}_i \hat{\mu}_i}{\hat{\sigma}_i}$
- Regularization/feature selection: $\inf_{\beta} \sum_{i=1}^{n} V(\beta_0 + \tilde{\mathbf{x}}_i^T \boldsymbol{\beta}, y_i) \text{ s.t. } ||\boldsymbol{\beta}||_{p} \leq t$

- feature engineering/extraction: K_i
- feature normalization: $K_i(x,x') \leftarrow \frac{K_i(x,x')}{\sqrt{K_i(x,x)}\sqrt{K_i(x',x')}}$
- Regularization/feature selection: $\inf_{\mathbf{w},b,\theta:\theta\succeq 0} C \sum_{i=1}^{n} V(\sum_{m=1}^{M} \sqrt{\theta_m} \langle \mathbf{w}_m, \phi_m(x_i) \rangle_{\mathcal{H}_m} + b, y_i) \\ + \frac{1}{2} \sum_{m=1}^{M} ||\mathbf{w}_m||_{\mathcal{H}_m}^2 \text{ s.t. } ||\theta||_p \leq 1$

Regularized regression

- Feature engineering/extraction: \mathbf{x}_i
- Feature normalization: $\mathbf{x}_i \leftarrow \frac{\mathbf{x}_i \hat{\mu}_i}{\hat{\sigma}_i}$
- Regularization/feature selection: $\inf_{\beta} \sum_{i=1}^{n} V(\beta_0 + \tilde{\mathbf{x}}_i^T \boldsymbol{\beta}, y_i) \text{ s.t. } ||\boldsymbol{\beta}||_p \leq t$

- feature engineering/extraction: K_i
- feature normalization: $K_i(x,x') \leftarrow \frac{K_i(x,x')}{\sqrt{K_i(x,x)}\sqrt{K_i(x',x')}}$
- Regularization/feature selection: $\inf_{\mathbf{w},b,\theta:\theta\succeq 0} C \sum_{i=1}^{n} V(\sum_{m=1}^{M} \sqrt{\theta_m} \langle \mathbf{w}_m, \phi_m(x_i) \rangle_{\mathcal{H}_m} + b, y_i) \\ + \frac{1}{2} \sum_{m=1}^{M} ||\mathbf{w}_m||_{\mathcal{H}_m}^2 \text{ s.t. } ||\theta||_p \leq 1$

Regularized regression

- Feature engineering/extraction: \mathbf{x}_i
- Feature normalization: $\mathbf{x}_i \leftarrow \frac{\mathbf{x}_i \hat{\mu}_i}{\hat{\sigma}_i}$
- Regularization/feature selection: $\inf_{\beta} \sum_{i=1}^{n} V(\beta_0 + \tilde{\mathbf{x}}_i^T \boldsymbol{\beta}, y_i) \text{ s.t. } ||\boldsymbol{\beta}||_p \leq t$

- feature engineering/extraction: K_i
- feature normalization: $K_i(x, x') \leftarrow \frac{K_i(x, x')}{\sqrt{K_i(x, x)}\sqrt{K_i(x', x')}}$
- Regularization/feature selection: $\inf_{\mathbf{w},b,\theta:\theta\succeq 0} C \sum_{i=1}^{n} V(\sum_{m=1}^{M} \sqrt{\theta_m} \langle \mathbf{w}_m, \phi_m(x_i) \rangle_{\mathcal{H}_m} + b, y_i) \\ + \frac{1}{2} \sum_{m=1}^{M} ||\mathbf{w}_m||_{\mathcal{H}_m}^2 \text{ s.t. } ||\theta||_{P} \leq 1$

Regularized regression

- Feature engineering/extraction: **x**_i
- Feature normalization: $\mathbf{x}_i \leftarrow \frac{\mathbf{x}_i \hat{\mu}_i}{\hat{\sigma}_i}$
- Regularization/feature selection: $\inf_{\beta} \sum_{i=1}^{n} V(\beta_0 + \tilde{\mathbf{x}}_i^T \boldsymbol{\beta}, y_i) \text{ s.t. } ||\boldsymbol{\beta}||_p \leq t$

- feature engineering/extraction: K_i
- feature normalization: $K_i(x, x') \leftarrow \frac{K_i(x, x')}{\sqrt{K_i(x, x)}\sqrt{K_i(x', x')}}$
- Regularization/feature selection: $\inf_{\mathbf{w},b,\theta:\theta\succeq 0} C \sum_{i=1}^{n} V(\sum_{m=1}^{M} \sqrt{\theta_m} \langle \mathbf{w}_m, \phi_m(x_i) \rangle_{\mathcal{H}_m} + b, y_i) \\ + \frac{1}{2} \sum_{m=1}^{M} ||\mathbf{w}_m||_{\mathcal{H}_m}^2 \text{ s.t. } ||\theta||_p \leq 1$

Simulated Data (DNA)

Generate independent DNA sequences of length $N \sim \text{Pois}(100)$ according to the transition matrix

$$M(p^{*}) = \begin{pmatrix} A & C & T & G \\ A & \frac{1-p^{*}}{3} & p^{*} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} \\ C & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & p^{*} & \frac{1-p^{*}}{3} \\ \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & p^{*} \\ G & p^{*} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} \end{pmatrix}$$

with stationary distribution [.25, .25, .25, .25].

p takes $p^* = .25$, and q takes $p^* > .25$.

p and q generate similar numbers of 1-mers, but q can generate more AC, CT, TG, GA 2-mers.

Simulated Data (DNA)

Generate independent DNA sequences of length $N \sim \text{Pois}(100)$ according to the transition matrix

$$M(p^{*}) = \begin{pmatrix} A & C & T & G \\ A & \frac{1-p^{*}}{3} & p^{*} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} \\ C & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & p^{*} & \frac{1-p^{*}}{3} \\ \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & p^{*} \\ G & p^{*} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} \end{pmatrix}$$

with stationary distribution [.25, .25, .25, .25]. p takes $p^* = .25$, and q takes $p^* > .25$.

p and q generate similar numbers of 1-mers, but q can generate more AC, CT, TG, GA 2-mers.

Simulated Data (DNA)

Generate independent DNA sequences of length $N \sim \text{Pois}(100)$ according to the transition matrix

$$M(p^{*}) = \begin{pmatrix} A & C & T & G \\ A & \frac{1-p^{*}}{3} & p^{*} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} \\ C & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & p^{*} & \frac{1-p^{*}}{3} \\ \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & p^{*} \\ G & p^{*} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} & \frac{1-p^{*}}{3} \end{pmatrix}$$

with stationary distribution [.25, .25, .25, .25]. p takes $p^* = .25$, and q takes $p^* > .25$.

p and q generate similar numbers of 1-mers, but q can generate more AC, CT, TG, GA 2-mers.

Simulated Data (Star)

Two-Sample Tests

Two-sample tests typically provide 1 bit of information: accept or reject.

The MKL-based two-sample test generates the observed kernel weight vector θ and its permuted values $\theta^{(i)}$.

Two-Sample Tests

Two-sample tests typically provide 1 bit of information: accept or reject. The MKL-based two-sample test generates the observed kernel weight vector $\boldsymbol{\theta}$ and its permuted values $\boldsymbol{\theta}^{(i)}$.

MKL Weights

MKL Weights

MKL Power

MKL Null Distribution

The t-statistic is (up to sign) invariant to affine transformations of the data.

For what kernels K do we have

$$\sum_{i=1}^{m} y_i \alpha_i k(x, x_i) + b = cx + d?$$

Sufficient condition: $K(x, x_i) = \langle \Phi(x), \Phi(x_i) \rangle = f(x_i)x$

Linear Kernel: $f(x_i) = x_i$

The t-statistic is (up to sign) invariant to affine transformations of the data.

For what kernels K do we have

$$\sum_{i=1}^m y_i \alpha_i k(x, x_i) + b = cx + d?$$

Sufficient condition: $K(x, x_i) = \langle \Phi(x), \Phi(x_i) \rangle = f(x_i)x$

Linear Kernel: $f(x_i) = x_i$

The t-statistic is (up to sign) invariant to affine transformations of the data.

For what kernels K do we have

$$\sum_{i=1}^m y_i \alpha_i k(x, x_i) + b = cx + d?$$

Sufficient condition:
$$K(x, x_i) = \langle \Phi(x), \Phi(x_i) \rangle = f(x_i)x$$

Linear Kernel: $f(x_i) = x_i$

The t-statistic is (up to sign) invariant to affine transformations of the data.

For what kernels K do we have

$$\sum_{i=1}^m y_i \alpha_i k(x, x_i) + b = cx + d?$$

Sufficient condition: $K(x, x_i) = \langle \Phi(x), \Phi(x_i) \rangle = f(x_i)x$

Linear Kernel: $f(x_i) = x_i$

The t-statistic is (up to sign) invariant to affine transformations of the data.

For what kernels K do we have

$$\sum_{i=1}^m y_i \alpha_i k(x, x_i) + b = cx + d?$$

Sufficient condition: $K(x, x_i) = \langle \Phi(x), \Phi(x_i) \rangle = f(x_i)x$

Linear Kernel: $f(x_i) = x_i$

Other Work

- Fisher (1935) proposed distribution-free randomization test.
- Lehmann proved a normal convergence result for the randomization distribution.
- Bentkus et al. (1996), Shao (2005) proved Berry–Esseen bounds for Student's t-statistic in independent case.

Other Work

- Fisher (1935) proposed distribution-free randomization test.
- Lehmann proved a normal convergence result for the randomization distribution.
- Bentkus et al. (1996), Shao (2005) proved Berry–Esseen bounds for Student's t-statistic in independent case.

Other Work

- Fisher (1935) proposed distribution-free randomization test.
- Lehmann proved a normal convergence result for the randomization distribution.
- Bentkus et al. (1996), Shao (2005) proved Berry–Esseen bounds for Student's t-statistic in independent case.

Stein's Method and the Randomization Distribution

Can we get a bound on

$$\sup_{t\in\mathbb{R}}|P(T\leq t)-\Phi(t)|?$$

 $\mathcal{O}(N^{-1/4})$ with mild conditions on the data and $\mathcal{O}(N^{-1/2})$ with an additional condition

Stein's Method and the Randomization Distribution

Can we get a bound on

$$\sup_{t\in\mathbb{R}}|P(T\leq t)-\Phi(t)|?$$

 $\mathcal{O}(\mathit{N}^{-1/4})$ with mild conditions on the data and $\mathcal{O}(\mathit{N}^{-1/2})$ with an additional condition

Theorem (Berry-Esseen (1941, 1942))

Suppose X_1, \ldots, X_n are i.i.d. random variables with $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 = \sigma^2 > 0$, and $\mathbb{E}|X_i|^3 = \rho < \infty$. Let $F_n(x)$ denote the CDF of standardized sample mean of the X_i . Then

$$\sup_{x} |F_n(x) - \Phi(x)| \le \frac{0.33477(\rho + 0.429\sigma^3)}{\sigma^3 \sqrt{n}}$$
$$= \frac{C}{\sqrt{n}} f(\rho, \sigma).$$

Note that ρ and σ are fixed as $n \to \infty$.

Theorem (Berry-Esseen (1941, 1942))

Suppose X_1, \ldots, X_n are i.i.d. random variables with $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 = \sigma^2 > 0$, and $\mathbb{E}|X_i|^3 = \rho < \infty$. Let $F_n(x)$ denote the CDF of standardized sample mean of the X_i . Then

$$\sup_{x} |F_n(x) - \Phi(x)| \le \frac{0.33477(\rho + 0.429\sigma^3)}{\sigma^3 \sqrt{n}}$$
$$= \frac{C}{\sqrt{n}} f(\rho, \sigma).$$

Note that ρ and σ are fixed as $n \to \infty$.

Theorem (Berry-Esseen (1941, 1942))

Suppose X_1, \ldots, X_n are i.i.d. random variables with $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 = \sigma^2 > 0$, and $\mathbb{E}|X_i|^3 = \rho < \infty$. Let $F_n(x)$ denote the CDF of standardized sample mean of the X_i . Then

$$\sup_{x} |F_n(x) - \Phi(x)| \le \frac{0.33477(\rho + 0.429\sigma^3)}{\sigma^3 \sqrt{n}}$$
$$= \frac{C}{\sqrt{n}} f(\rho, \sigma).$$

Note that ρ and σ are fixed as $n \to \infty$.

Theorem (Hoeffding (1951), Stein (1986))

Let $A=\{a_{ij}\}_{i,j\in\{1,\dots,n\}}$ be a square array of numbers such that $\sum_j a_{ij}=0$ for all i, $\sum_i a_{ij}=0$ for all j, and $\sum_i \sum_j a_{ij}^2=n-1$. Then with $F_n(x)=P(\sum_i a_{i\Pi(i)}\leq x)$,

$$|F_n(x) - \Phi(x)| \le \frac{C}{\sqrt{n}} \left(\sqrt{\sum_{i,j} a_{ij}^4} + \sqrt{\sum_{i,j} |a_{ij}|^3} \right)$$
$$= \frac{C}{\sqrt{n}} f(A).$$

Given a sampling scheme for A, f(A) must be $\mathcal{O}(1)$ to have rate $\mathcal{O}(n^{-1/2})$.

Theorem (Hoeffding (1951), Stein (1986))

Let $A=\{a_{ij}\}_{i,j\in\{1,\dots,n\}}$ be a square array of numbers such that $\sum_j a_{ij}=0$ for all i, $\sum_i a_{ij}=0$ for all j, and $\sum_i \sum_j a_{ij}^2=n-1$. Then with $F_n(x)=P(\sum_i a_{i\Pi(i)}\leq x)$,

$$|F_n(x) - \Phi(x)| \le \frac{C}{\sqrt{n}} \left(\sqrt{\sum_{i,j} a_{ij}^4} + \sqrt{\sum_{i,j} |a_{ij}|^3} \right)$$
$$= \frac{C}{\sqrt{n}} f(A).$$

Given a sampling scheme for A, f(A) must be $\mathcal{O}(1)$ to have rate $\mathcal{O}(n^{-1/2})$.

Theorem (Hoeffding (1951), Stein (1986))

Let $A=\{a_{ij}\}_{i,j\in\{1,\dots,n\}}$ be a square array of numbers such that $\sum_j a_{ij}=0$ for all i, $\sum_i a_{ij}=0$ for all j, and $\sum_i \sum_j a_{ij}^2=n-1$. Then with $F_n(x)=P(\sum_i a_{i\Pi(i)}\leq x)$,

$$|F_n(x) - \Phi(x)| \le \frac{C}{\sqrt{n}} \left(\sqrt{\sum_{i,j} a_{ij}^4} + \sqrt{\sum_{i,j} |a_{ij}|^3} \right)$$
$$= \frac{C}{\sqrt{n}} f(A).$$

Given a sampling scheme for A, f(A) must be $\mathcal{O}(1)$ to have rate $\mathcal{O}(n^{-1/2})$.

Exchangeable Pair

Assume M = N. Fix data $\{u_1, \dots, u_N, u_{N+1}, \dots, u_{2N}\}$. Π is a uniformly random permutation, and let

$$T = T\left(\{u_{\Pi(i)}\}_{i=1}^{N}, \{u_{\Pi(i)}\}_{i=N+1}^{2N}\right).$$

Let
$$(I,J)=(i,j)$$
 w.p. $\frac{1}{N^2}$ for $1 \leq i \leq N$ and $N+1 \leq j \leq 2N$. Then
$$T'=T\left(\{u_{\Pi\circ (I,J)(i)}\}_{i=1}^N,\{u_{\Pi\circ (I,J)(i)}\}_{i=N+1}^{2N}\right).$$

T and T' form an exchangeable pair.

Exchangeable Pair

Assume M=N. Fix data $\{u_1,\ldots,u_N,u_{N+1},\ldots,u_{2N}\}$. Π is a uniformly random permutation, and let

$$T = T\left(\{u_{\Pi(i)}\}_{i=1}^{N}, \{u_{\Pi(i)}\}_{i=N+1}^{2N}\right).$$

Let (I,J)=(i,j) w.p. $\frac{1}{N^2}$ for $1 \le i \le N$ and $N+1 \le j \le 2N$. Then

$$T' = T\left(\{u_{\Pi\circ(I,J)(i)}\}_{i=1}^N, \{u_{\Pi\circ(I,J)(i)}\}_{i=N+1}^{2N}\right).$$

T and T' form an exchangeable pair.

Exchangeable Pair

Assume M=N. Fix data $\{u_1,\ldots,u_N,u_{N+1},\ldots,u_{2N}\}$. Π is a uniformly random permutation, and let

$$T = T\left(\{u_{\Pi(i)}\}_{i=1}^{N}, \{u_{\Pi(i)}\}_{i=N+1}^{2N}\right).$$

Let (I,J)=(i,j) w.p. $\frac{1}{N^2}$ for $1 \leq i \leq N$ and $N+1 \leq j \leq 2N$. Then

$$T' = T\left(\{u_{\Pi \circ (I,J)(i)}\}_{i=1}^N, \{u_{\Pi \circ (I,J)(i)}\}_{i=N+1}^{2N} \right).$$

T and T' form an exchangeable pair.

Main Theorem

Theorem

If T, T' are mean 0, exchangeable random variables with variance $\mathbb{E}[T^2]$ satisfying

$$\mathbb{E}[T'-T|T] = -\lambda(T-R)$$

for some $\lambda \in (0,1)$ and some random variable R, then $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{(2\pi)^{-1/4}\sqrt{\frac{\mathbb{E}|T'-T|^3}{\lambda}}}{\frac{\lambda}{\lambda}}}_{\leq N^{-1/4}f_1(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T'-T)^2|T])}}_{\leq N^{-1}f_2(\mathbf{u})}$$

$$\underbrace{\mathbb{E}T^2 - 1|}_{\leq N^{-1}f_3(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_6(\mathbf{u})} \leq N^{-1/4}f_6(\mathbf{u})$$

Main Theorem

Theorem

If T, T' are mean 0, exchangeable random variables with variance $\mathbb{E}[T^2]$ satisfying

$$\mathbb{E}[T'-T|T] = -\lambda(T-R)$$

for some $\lambda \in (0,1)$ and some random variable R, then $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{(2\pi)^{-1/4}\sqrt{\frac{\mathbb{E}|T'-T|^3}{\lambda}}}{\lambda}}_{\leq N^{-1/4}f_1(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T'-T)^2|T])}}_{\leq N^{-1}f_2(\mathbf{u})}$$

$$\underbrace{\mathbb{E}T^2 - 1}_{\leq N^{-1}f_3(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_4(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_5(\mathbf{u})}$$

Main Theorem

Theorem

If T, T' are mean 0, exchangeable random variables with variance $\mathbb{E}[T^2]$ satisfying

$$\mathbb{E}[T'-T|T] = -\lambda(T-R)$$

for some $\lambda \in (0,1)$ and some random variable R, then $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{(2\pi)^{-1/4}\sqrt{\frac{\mathbb{E}|T'-T|^3}{\lambda}}}{\frac{\lambda}{\lambda}}}_{\leq N^{-1/4}f_1(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T'-T)^2|T])}}_{\leq N^{-1}f_2(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^2-1|}_{\leq N^{-1/2}f_4(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_6(\mathbf{u})} \leq N^{-1/4}f_6(\mathbf{u})$$

Main Theorem (Improved Rate)

Theorem

If in addition $|T' - T| \le \delta$, $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{.41\delta^{3}}{\lambda}}_{\leq N^{-1/2}c_{1}^{\prime\prime\prime\ast}} + \underbrace{\frac{3\delta(\sqrt{\mathbb{E}T^{2}} + \mathbb{E}|R|)}{\leq N^{-1}f_{1}^{\prime}(\mathbf{u})^{\ast}}}_{\leq N^{-1}f_{2}^{\prime}(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T^{\prime} - T)^{2}|T])}}_{\leq N^{-1}f_{2}(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^{2} - 1|}_{\leq N^{-1}f_{3}(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_{4}(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_{5}(\mathbf{u})}$$

* if
$$\delta < c_1' N^{-1/2}$$

Main Theorem (Improved Rate)

Theorem

If in addition $|T' - T| \le \delta$, $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{.41\delta^3}{\lambda}}_{\leq N^{-1/2}c_1''^*} + \underbrace{\frac{3\delta(\sqrt{\mathbb{E}T^2} + \mathbb{E}|R|)}{\leq N^{-1}f_1'(\mathbf{u})^*}}_{\leq N^{-1}f_2'(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T'-T)^2|T])}}_{\leq N^{-1}f_2(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^2 - 1|}_{\leq N^{-1}f_3(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_4(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_5(\mathbf{u})}$$

* if
$$\delta < c_1' N^{-1/2}$$

Main Theorem (Improved Rate)

Theorem

If in addition $|T' - T| \le \delta$, $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{.41\delta^{3}}{\lambda}}_{\leq N^{-1/2}c_{1}''^{*}} + \underbrace{\frac{3\delta(\sqrt{\mathbb{E}T^{2}} + \mathbb{E}|R|)}{\leq N^{-1}f_{1}'(\mathbf{u})^{*}}}_{\leq N^{-1}f_{2}(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T'-T)^{2}|T])}}_{\leq N^{-1}f_{2}(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^{2} - 1|}_{\leq N^{-1}f_{3}(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_{4}(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_{5}(\mathbf{u})}$$

* if
$$\delta < c_1' N^{-1/2}$$

Simulated Bounds

Topics in Two-Sample Testing

Simulated Bounds (Improved Rate)

Simulated Bounds (Improved Rate)

Behavior of δ

- Friedman's test for non-vectorial and heterogeneous data.
- MKL power competitive with best-performing kernel.
- MKL can learn structure of data.
- Normal-like null distributions.
- Berry–Esseen-type convergence result via Stein's method of exchangeable pairs.

- Friedman's test for non-vectorial and heterogeneous data.
- MKL power competitive with best-performing kernel.
- MKL can learn structure of data.
- Normal-like null distributions.
- Berry–Esseen-type convergence result via Stein's method of exchangeable pairs.

- Friedman's test for non-vectorial and heterogeneous data.
- MKL power competitive with best-performing kernel.
- MKL can learn structure of data.
- Normal-like null distributions.
- Berry–Esseen-type convergence result via Stein's method of exchangeable pairs.

- Friedman's test for non-vectorial and heterogeneous data.
- MKL power competitive with best-performing kernel.
- MKL can learn structure of data.
- Normal-like null distributions.
- Berry–Esseen-type convergence result via Stein's method of exchangeable pairs.

- Friedman's test for non-vectorial and heterogeneous data.
- MKL power competitive with best-performing kernel.
- MKL can learn structure of data.
- Normal-like null distributions.
- Berry–Esseen-type convergence result via Stein's method of exchangeable pairs.