SỞ GD & ĐT VĨNH PHÚC

KỲ THI CHỌN HỌC SINH GIỚI LỚP 11 NĂM HỌC 2011-2012 ĐỀ THI MÔN: HOÁ HỌC

ĐỀ CHÍNH THỨC

(Dành cho học sinh THPT chuyên) (Thời gian làm bài: 180 phút, không kể thời gian giao đề)

Câu 1 (1,5 điểm).

Cho 14,4 gam hỗn hợp Fe, Mg, Cu (số mol mỗi kim loại bằng nhau) tác dụng hết với dung dịch HNO_3 thu được dung dịch X và 2,688 lít (đktc) hỗn hợp gồm 4 khí N_2 , NO, N_2O , NO_2 trong đó 2 khí N_2 và NO_2 có số mol bằng nhau. Cô cạn cẩn thận dung dịch X thu được 58,8 gam muối khan. Tìm số mol HNO_3 đã phản ứng.

Câu 2 (2 điểm).

- 1. Cho 0,01 mol NH $_3$; 0,1 mol CH $_3$ NH $_2$ và 0,11 mol HCl vào H $_2$ O được 1 lít dung dịch. Tính pH của dung dịch thu được ? Cho ${}^pK_{NH_4}{}^+ = 9,24$, ${}^pK_{CH_3NH_3^+} = 10,6$, ${}^pK_{H_2O} = 14$
- 2. Xác định độ tan của AgSCN trong dung dịch NH $_3$ 0,003M. Biết: T_{AgSCN} = 1,1.10 $^{-12}$ và hằng số phân li của phức $[Ag(NH_3)_2]^+$ bằng 6.10^{-8} .

Câu 3 (1,5 điểm). Khi phân tích nguyên tố tinh thể ngậm nước một muối tan **A** của kim loại **X**, người ta thu được các số liêu sau:

Nguyên tố	cacbon	oxi	lưu huỳnh	nito	hiđro
% khối lượng trong muối	0,00	57,38	14,38	0,00	3,62

Theo dõi sự thay đổi khối lượng của **A** khi nung nóng dần lên nhiệt độ cao, người ta thấy rằng, trước khi bị phân hủy hoàn toàn, **A** đã mất 32% khối lượng.

Trong dung dịch nước, \mathbf{A} phản ứng được với hỗn hợp gồm PbO_2 và HNO_3 (nóng), với dung dịch $BaCl_2$ tạo thành kết tủa trắng không tan trong HCl.

Hãy xác định kim loại **X**, muối **A** và viết các phương trình phản ứng xảy ra. Biết **X** không thuộc ho Lantan và không phóng xa.

Câu 4 (1,0 điểm). Đốt cháy 0,3 mol Mg trong bình chứa 0,1 mol không khí (gồm 20% ôxi và 80% nitơ) thu được hỗn hợp rắn A. Cho A vào dung dịch H₃PO₄ 0,33M. Tính thể tích tối thiểu dung dịch H₃PO₄ 0,33M cần để hòa tan hoàn toàn hỗn hợp A. Biết các phản ứng xảy ra hoàn toàn.

Câu 5 (2,0 điểm).

1. Nêu phương pháp hóa học nhân biết các hợp chất hữu cơ sau, ở các bình riêng biệt:

CI OH
$$CH = O CH_2CI COCH_3 CH(OH)C$$

; ; ; ; ; ;

2. Có ba hợp chất: A, B và C

HO-
$$C$$
O CH₃ HO- C O CH₃ OH O CH₃

- a. Hãy so sánh tính axit của A và B.
- b. Hãy so sánh nhiệt đô sôi và đô tan trong dung môi không phân cực của **B** và **C**.
- **Câu 6 (1,0 điểm).** Khi tiến hành thí nghiệm: Phản ứng của nhôm với dung dịch CuSO₄, hai học sinh tiến hành như sau:

Học sinh 1: Đánh sạch lá nhôm bằng giấy ráp rồi nhúng ngay vào dung dịch CuSO₄ bão hòa.

Học sinh 2: Nhúng lá nhôm chưa đánh giấy ráp vào dung dịch CuSO₄ bão hòa.

Theo em hai học sinh trên quan sát được hiện tượng như thế nào, tại sao?

Câu 7 (1,0 điểm). Đốt cháy hoàn toàn 3,24 (gam) hỗn hợp (X) gồm hai chất hữu cơ (A) và (B), khác dãy đồng đẳng, trong đó (A) hơn (B) một nguyên tử cacbon, người ta chỉ thu được H_2O và 9,24 (gam) CO_2 . Biết $d_{(X)/H_2} = 13,5$. Tìm công thức phân tử của (A) và (B).

.....Hết.....

Họ và tên thí sinhphòng thi.....phòng thi.....phòng thi.....phòng diải thích gì thêm

KỲ THI CHỌN HỌC SINH GIỚI LỚP 11 NĂM HỌC 2011-2012 HƯỚNG DẪN CHẨM MÔN: HOÁ HỌC (Dành cho học sinh THPT chuyên)

Câu	NỘI DUNG	Điểm
Câu1	Gọi x là số mol mỗi kim loại ta có: $56x + 24x + 64x = 14,4 \Rightarrow x = 0,1$	
1,5 đ	Khối lượng muối nitrat kim loại là: 242.0,1 + 148.0,1 + 188.0,1 = 57,8 gam < 58,8 gam	
	(theo bài ra). Trong muối rắn thu được có NH_4NO_3 và có khối lượng là: $58,8-57,8=1$ (gam)	
	⇒ Số mol NH ₄ NO ₃ = $1/80 = 0.0125$ (mol)	
	Vì hỗn hợp 4 khí trên NO ₂ , NO, N ₂ O, N ₂ trong đó số mol N ₂ bằng số mol NO ₂ ta coi 2	0,5đ
	khí này là một khí N ₃ O ₂ ≡ NO.N ₂ O cho nên hỗn hợp bốn khí được coi là hỗn hợp 2 khí	ŕ
	NO và N ₂ O với số mol lần lượt là a và b	
	Như vậy, ta có sơ đổ:	
	Fe, Mg, Cu $\xrightarrow{+HNO_3}$ Fe ³⁺ , Mg ²⁺ , Cu ²⁺ , NH ₄ ⁺ + NO, N ₂ O + H ₂ O Ta có quá trình cho nhận e	
	Fe \rightarrow Fe ⁺³ + 3e (1); Mg \rightarrow Mg ⁺² + 2e (2); Cu \rightarrow Cu ⁺² + 2e (3)	
	0.1 0.3 0.1 0.2 0.1 0.2	
	Tổng số mol e cho: $0.3 + 0.2 + 0.2 = 0.7$ (mol)	
	$4H^{+} + NO_{3}^{-} + 3e \rightarrow NO + 2H_{2}O (4)$	0.25#
	4a 3a a $10H^{+} + 2NO_{3}^{-} + 8e \rightarrow N_{2}O + 5H_{2}O$ (5)	0,25đ
	10h + 2hO ₃ + 8e > h ₂ O + 3h ₂ O (3)	
	$10H^{+} + NO_{3}^{-} + 8e \rightarrow NH_{4}^{+} + 3H_{2}O$ (6)	
	0,125	
	Tổng số mol e nhận là: $3a + 8b + 0,1$	
	Vậy ta có hệ phương trình: $\begin{cases} a+b=0.12 \\ 3a+8b+0.1=0.7 \end{cases} \Rightarrow \begin{cases} a+b=0.12 \\ 3a+8b=0.6 \end{cases} \Rightarrow \begin{cases} a=0.072 \\ b=0.048 \end{cases}$	
	Theo các phương trình (4) , (5) , (6)	
	$Tổng số mol HNO_3 đã dùng là : 4a + 10b + 0,125 = 0,893 (mol)$	0,75đ
		0,730
Câu2	1. $CH_3NH_2 + HCl \rightarrow CH_3NH_3Cl$	
2,0 đ	0,1 0,1 (mol)	
	$NH_3 + HCl \rightarrow NH_4Cl$ 0,01 0,01 0,01 (mol)	
	Do V= 1 (l) nên C_M bằng số mol.	
	Dung dịch chứa CH ₃ NH ₃ Cl 0,1M và NH ₄ Cl 0,01M	
	$CH_3NH_3Cl \rightarrow CH_3NH_3^+ + Cl^-$	
	$NH_4Cl \rightarrow NH_4^+ + Cl^-$	
	$CH_3NH_3^+ \hat{+}^{\uparrow} CH_3NH_2 + H^+ K_1 = 10^{-10,6}$ (1)	0,5đ
	$NH_4^+ \hat{+} \hat{\uparrow} NH_3 + H^+ \qquad K_2 = 10^{-9,24} $ (2)	0,54
	Bằng phép tính gần đúng và do (1) và (2) là sự điện li của 2 axít yếu nên ta có	
	$[H^+] = \sqrt{C_1 \cdot K_1 + C_2 \cdot K_2} = \sqrt{0.1 \cdot 10^{-10.6} + 0.01 \cdot 10^{-9.24}} = 2.875 \cdot 10^{-6}$	
	$\Rightarrow pH = -\lg[H^+] = 5,54$	0,5đ
	2. Gọi s là độ tan của AgSCN trong dung dịch NH ₃ 0,003M.	
	$AgSCN \longrightarrow Ag^{+} + SCN^{-} \qquad T_{AgSCN} = 1, 1.10^{-12} \qquad (1)$	
	$Ag^{+} + 2NH_{3} \longrightarrow [Ag(NH_{3})_{2}]^{+}$ $K' = (6.10^{-8})^{-1}$ (2)	
	Tổ hợp (1) và (2) ta có	
	$AgSCN + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+ + SCN^- K=T_{AgSCN}.K'=1,83.10^{-5}$	
	<u> </u>	1

	[] 0,003 -2s s s (M)	0.54		
	[] 0,003 -2s s s (M) Theo định luật tác dụng khối lượng ta có:	0,5đ		
	$K = 1.83.10^{-5} = \frac{s^2}{(0.003 - 2s)^2}$			
	$\Rightarrow s = 1,27.10^{-5} \text{ (mol/1)}$	0,5đ		
Câu 3	1.	0,54		
1,5 đ	3,62 57,38 14,38 = 2,50 : 2,50 : 0,448			
	$n_{\rm H}: n_{\rm O}: n_{\rm S} = \frac{3.62}{1.008}: \frac{57.38}{16}: \frac{14.38}{32.06} = 3.59: 3.59: 0.448 \rightarrow n_{\rm H}: n_{\rm O}: n_{\rm S} = 8:8:1$			
	Vậy công thức đơn giản nhất cho biết tương quan số nguyên tử của các nguyên tố H, O, S trong A là (H ₈ O ₈ S) _n .			
	% khối lượng X trong A bằng 100% - $(3.62 + 57.38 + 14.38)\% = 24.62\%$			
	Với n = 1 \rightarrow M _X = $\frac{24,62}{0.448}$ = 54,95 (g/mol) \rightarrow X là mangan (Mn).			
	3,110			
	Với n = 2 \rightarrow M _X = 109,9 (g/mol) \rightarrow Không có kim loại nào có nguyên tử khối như vậy.			
	Với $n \ge 3 \to M_X \ge 164,9 \text{ (g/mol)} \to X \text{ thuộc họ Lantan hoặc phóng xạ (loại)}.$			
	Vậy công thức của A là MnH ₈ O ₈ S.	0,5đ		
	Mặt khác, X phản ứng với BaCl ₂ tạo thành kết tủa không tan trong HCl, mà trong A có 1 nguyên tử S, do đó A là muối sunfat hoặc muối hiđrosunfat: MnH ₈ O ₄ SO ₄ .			
	Khi đun nóng (\mathbf{A} chưa bị phân hủy), 32% khối lượng \mathbf{A} mất đi, trong đó $\mathbf{M}_{\mathbf{A}}$ =			
	$223,074 \text{ (g/mol)} \rightarrow 32\%.\text{M}_{A} = 32\%. 223,074 = 71,38 \text{ (g)} \approx 72 \text{ (g)}, => \text{Có 4 mol H}_{2}\text{O}.$			
	\rightarrow % H (trong 4 mol H ₂ O) = $\frac{1,008.8}{223,074}$.100 = 3,61% \cong 3,62%.			
	Vậy A là muối mangan(II) sunfat ngậm 4 phân tử nước: MnSO ₄ .4H ₂ O.	0,5		
	Phương trình phản ứng:			
	$\frac{1/\text{MnSO}_4 + \text{BaCl}_2}{2/2\text{MnSO}_4 + \text{SPhO}_2} \rightarrow \frac{2\text{NnSO}_4}{2\text{MnSO}_4 + \text{SPhO}_2} + \frac{2\text{NnSO}_4}{2\text{MnSO}_4 + $	0,5đ		
Câu 4	$2/2MnSO_4 + 5PbO_2 + 6HNO_3 \rightarrow 2HMnO_4 + 3Pb(NO_3)_2 + 2PbSO_4 \downarrow + 2H_2O$ $Tinh V(H_3PO_4)$	0,5đ		
1,0đ	Các phản ứng của Mg khi cháy trong không khí:	0,54		
	$2Mg + O_2 \xrightarrow{t^0C} 2MgO$			
	$0.04 \leftarrow 0.02 \text{mol} \rightarrow 0.04$			
	$3Mg + N_2 \xrightarrow{\ell^0C} Mg_3N_2$			
	$0.24 \leftarrow 0.08 \text{mol} \rightarrow 0.08$			
	Với $n_{O_2} = \frac{1}{5}.0, 1 = 0,02 mol$ và $n_{N_2} = 0,1-0,02 = 0,08 mol$			
	Vậy số mol Mg dư = $0.3 - (0.04 + 0.24) = 0.02$ mol			
	Sản phẩm A gồm $Mg: 0.02 \text{ mol}; MgO: 0.04 \text{ mol}; Mg_3N_2: 0.08 \text{ mol}$			
	$-$ Để hỗn hợp rắn tan hết phải tạo muối H_2PO_4			
	$MgO + 2H_3PO_4 \rightarrow Mg(H_2PO_4)_2 + H_2O$			
	$0.04 \rightarrow 0.08$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$Mg_3N_2 + 8H_3PO_4 \rightarrow 3Mg(H_2PO_4)_2 + 2NH_4H_2PO_4$			
	$0.08 \rightarrow 0.64$			
	Số mol $H_3PO_4 = 0.08 + 0.04 + 0.64 = 0.76$ mol	0.5#		
<u> </u>	Thể tích dd H_3PO_4 0,33M tối thiểu cần dùng là : $V = 0.76/0.33 = 2.303$ (lít)	0,5đ		
Câu 5	1.Lấy mỗi lọ một ít làm mẫu thử			
2,0₫	- Dùng dung dịch nước Brom nhận ra phenol (có kết tủa trắng)			
	2 and and aion have brown in phonor (or not the truly)			

	OH OH	1
	+ 3 Br ₂ Br + 3HBr	
	- Dùng 2,4 - đinitrophenyl hiđrazin nhận ra hai hợp chất cacbonyl là metyl phenyl xeton và benzanđehit. Sau đó dùng phản ứng idofom để nhận ra metyl phenyl xeton (do có kết tủa vàng).	0,5đ
	O_2N $NH - NH_2 + O = C$ R_2 NO_2 NO_2 $NH - NH_2 + O = C$ R_2 R_2 R_2	
	$C - CH_3 + 3 I_2 + 3 NaOH$ $C - CI_3 + 3 NaI + 3 H_2O$ $C - CI_3 + 3 NaI + 3 H_2O$	
	- Cũng dùng phản ứng của idofom để nhận ra C_6H_5 -CH(OH)-CH $_3$ (vì trong môi trường I_2 /NaOH sẽ oxi hóa - CH(OH) - CH $_3$ thành - CO - CH $_3$ Còn hai hợp chất chứa clo, đun nóng với dung dịch NaOH, gạn lấy lớp nước, axit hoá bằng HNO $_3$ nhỏ vào đó dung dịch AgNO $_3$. Mẫu thử nào cho kết tủa trắng đó là benzyl clorua, còn phenyl clorua không phản ứng.	
	CH ₂ Cl CH ₂ OH + NaCl	0,5đ
	$NaCl + AgNO_3 \longrightarrow AgCl + NaNO_3$ 2. a.So sánh tính axit:	
	Tính axit được đánh giá bởi sự dễ dàng phân li proton của nhóm OH. Khả năng này thuận lợi khi có các hiệu ứng kéo electron (-I hoặc -C) nằm kề nhóm OH. Ở A vừa có hiệu ứng liên hợp (-C) và hiệu ứng cảm ứng (-I); ở B chỉ có hiệu ứng (-I). Tính axit của (A) > (B).	0,5đ
	b. So sánh điểm sôi và độ tan: Liên kết hidro làm tăng điểm sôi. Chất C có liên kết hidro nội phân tử, B có liên kết hidro liên phân tử nên nhiệt độ sôi của (C) < nhiệt độ sôi của (B).	
	(C) có độ tan trong dung môi không phân cực lớn hơn (B).	0,5đ
Câu 6 1,0đ	Thí nghiệm của học sinh 1: Nhận thấy có Cu màu đỏ bám vào miếng nhôm và có khí thoát ngay từ đầu, dung dịch có màu xanh nhạt dần. Do: 2Al + 3Cu ²⁺ → 2Al ³⁺ + 3Cu 2Al +6H ⁺ → 2Al ³⁺ + 3H ₂ ↑	
	$2AI + 6H^{+} / 2AI^{3} + 3H_{2}^{-1}$ H ⁺ sinh ra do sự thủy phân CuSO ₄ $Cu^{2+} + H_{2}O € Cu(OH)^{+} + H^{+}$	0,5đ
	Thí nghiệm của học sinh 2: Thời gian đầu chưa có hiện tượng gì xảy ra, sau đó quan sát được hiện tượng giống như thí nghiệm của học sinh 1. Do không cạo sạch lớp oxit bao phủ bên ngoài miếng nhôm nên nhôm không tham gia các phản ứng với môi trường. Sau một thời gian lớp oxit bị hòa tan do H ⁺ của CuSO ₄ thủy phân tác dụng	
	Thuy phan tạc tượng $Al_2O_3 + 6H^+ \rightarrow 2Al^{3+} + 3H_2O$ Khi nhôm oxit tạn hết, Al tác dụng với Cu^{2+} và H^+ như trên	0,5đ
Câu 7 1,0đ	$\overline{M}_X = 2.$ 13,5 = 27 đvC Sản phẩm cháy của (X) chỉ gồm CO_2 và H_2O nên thành phần nguyên tố của (A) và (B) gồm có C, H hoặc C, H, O.	

Chỉ có 2 trường hợp có thể xảy ra:		
Trường hợp 1: $M_A < 27 < M_B$		
$M_A < 27 \Rightarrow A là CH_4 hoặc C_2H_2$		
Vì (A) hơn (B) 1 nguyên tử $C \Rightarrow CH_4$ loại.		
Trường hợp 2: Vậy (A) là C ₂ H ₂ và (B) là CH _y O _z		0,25đ
$C_2H_2 + \frac{5}{2}O_2 \rightarrow 2CO_2 + H_2O$		
$CH_yO_z + \left(1 + \frac{y}{4} - \frac{z}{2}\right)O_2 \rightarrow CO_2 + \frac{y}{2}H_2O$		
Gọi a, b là số mol C ₂ H ₂ và CH _y O _z (khối lượng mol phân tử M ₁	$_{3})$	
ta có hệ phương trình :		0.25
$26a + M_B.b = 3,24$	(1)	0,25
$2a + b = \frac{9,24}{44}$	(2)	
$a + b = \frac{3,24}{27} = 0,12$	(3)	
Giải hệ gồm các phương trình (1), (2), (3) cho ta $M_B = 30$ đvC		
a = 0.09 (mol), b = 0.03 (mol)		
Suy ra (B) là H-CHO		
$C_2H_2 = 72,2\%$		
H - CHO = 27,8%		0,5đ
Ghi chú: Thí sinh làm cách khác đúng vẫn cho điểm tối đa.		