Fixed Point Iteration

Fixed Point Iteration

Fixed Point

Definition 1 (Fixed Point)

The real number r is a **fixed point** of the function q if q(r) = r.

• The rootfinding problem f(x) = 0 can always be written as a fixed point problem q(x) = x by, e.g., setting¹

$$g(x) = x - f(x).$$

• The fixed point problem is true at, and only at, a root of f.

g(x) =
$$x - f(x) = x$$

$$= x - f(x) = 0$$

¹This is not the only way to transform the rootfinding problem. More on this later.

Fixed Point Iteration

A fixed point problem g(x) = x naturally provides an iteration scheme:

$$\left\{ \begin{array}{ll} x_0 = \text{initial guess} \\ x_{k+1} = g(x_k), \quad k = 0, 1, 2, \dots. \end{array} \right. \tag{fixed point iteration)}$$

- The sequence $\{x_k\}$ may or may not converge as $k \to \infty$.
- If g is continuous and $\{x_k\}$ converges to a number r, then r is a fixed point of g.

of
$$g$$
.
$$g(r) = g\left(\lim_{k \to \infty} x_k\right) = \lim_{k \to \infty} g(x_k) = \lim_{k \to \infty} x_{k+1} = r.$$

$$\lim_{k \to \infty} \mathcal{A}_k = r$$
because g is its.

Fixed Point Iteration Algorithm

```
function x = fpi(q, x0, n)
% FPI x = fpi(q, x0, n)
% Computes approximate solution of q(x) = x
% Input:
  g function handle
 x0 initial guess
  n number of iteration steps
    x = x0;
   for k = 1:n
       x = g(x); \leftarrow repeated overwrite.
    end
end
```

Examples

• To find a fixed point of $g(x) = 0.3\cos(2x)$ near 0.5 using fpi:

```
g = @(x) 0.3*cos(2*x);

xc = fpi(g, 0.5, 20)
```

```
xc = 0.260266319627758
```

Not All Fixed Point Problems Are The Same

• $q_2(x) = \sqrt[3]{1-x}$

The rootfinding problem $f(x) = x^3 + x - 1 = 0$ can be transformed to various fixed point problems:

xed point problems:
$$g_1(x) = x - f(x) = 1 - x^3$$

$$g_1(x) = x - f(x) = 1 - x^3 = x$$

$$g_1(x) = x - f(x) = 1 - x^3 = x$$

$$g_1(x) = x - f(x) = 1 - x^3 = x$$

•
$$g_3(x) = \frac{1+2x^3}{1+3x^2}$$

• $g_3(x) = \frac{1+2x^3}{1+3x^2}$
• $g_3(x) = \frac{1+2x^3}{1+3x^2}$
• $g_3(x) = \frac{1+2x^3}{1+3x^2}$
• $g_3(x) = \frac{1+2x^3}{1+3x^2}$
• $g_3(x) = \frac{1+2x^3}{1+3x^2}$

Note that all $g_j(x) = x$ are equivalent to f(x) = 0. However, not all these find a fixed point of g, that is, a root of f on the computer.

Exercise. Run fpi with g_j and $x_0 = 0.5$. Which fixed point iterations converge?

$$\begin{array}{ccc}
\cdot g_{3}(x) = x & \Rightarrow & \frac{1+2x^{3}}{1+3x^{2}} = x \\
\Rightarrow & 1+2x^{3} = x(1+3x^{2}) \\
\Rightarrow & 1+2x^{3} = x+3x^{3} \\
\Rightarrow & 0 = 3x^{3}-2x^{3}+x^{3}-1 = f(x)
\end{array}$$

Geometry of Fixed Point Iteration

The following script² finds a root of $f(x) = x^2 - 4x + 3.5$ via FPI.

```
f = @(x) x.^2 - 4*x + 3.5;
g = @(x) x - f(x);
fplot(g, [2 3], 'r');
hold on
plot([2 3], [2 3], 'k--')
x = 2.1;
y = g(x);
for k = 1:5
    arrow([x y], [y y], 'b');
    x = y; y = g(x);
    arrow([x x], [x y], 'b');
end
```

Note the line segments spiral in towards the fixed point.

²Modified from FNC.

Geometry of Fixed Point Iteration (cont')

However, with a different starting point, the process does not converge.

```
clf
fplot(g, [1 2], 'r');
hold on
plot([1 2], [1 2], 'k--'),
ylim([1 2])
x = 1.3; y = g(x);
for k = 1:5
    arrow([x y], [y y], 'b');
    x = y; y = g(x);
    arrow([x x], [x y], 'b');
end
```


Series Analysis $f \cdot \{ \lambda_k \} : \text{seq. of fixed point therefores for } g \}$ Assume (Tourfor Series)
Let $\epsilon_k = x_k - r$ be the sequence of errors.

Let $\epsilon_k = x_k - r$ be the sequence of errors. The iteration formula $x_{k+1}=g(x_k)$ can be written as

(Taylor series)

formula
$$x_{k+1} = q(x_k)$$
 can be written as

• The iteration formula
$$x_{k+1} = g(x_k)$$
 can be written as

The iteration formula
$$x_{k+1} = g(x_k)$$
 can be written as
$$\begin{cases} \lambda_{\mathbf{k}} = \epsilon_{\mathbf{k}} + r \\ \lambda_{\mathbf{k}+1} = \epsilon_{\mathbf{k}+1} + r \end{cases} = g(\epsilon_k + r)$$

$$= g(r) + g'(r)\epsilon_k + \frac{1}{2}g''(r)\epsilon_k^2 + \cdots$$

$$\epsilon_{k+1} + r = g(\epsilon_k + r)$$

$$= g(r) + g'(r)\epsilon_k + \frac{1}{2}g''(r)\epsilon_k^2 + \cdots,$$

implying
$$\epsilon_{k+1} = g'(r)\epsilon_k + O(\epsilon_k^2)$$

assuming sufficient regularity of a.

• Neglecting the second-order term, we have $\epsilon_{k+1} \approx g'(r)\epsilon_k$, which is satisfied if

Neglecting the second-order term, we have
$$\epsilon_{k+1} \approx g'(r)\epsilon_k$$
, which is satisfied if

$$\epsilon_k \approx C \left[g'(r) \right]^k$$
 for sufficiently large k .

Therefore, the iteration converges if $|g'(r)| < 1$ and diverges if $|g'(r)| < 1$.

• Therefore, the iteration converges if |g'(r)| < 1 and diverges if |g'(r)| > 1. $\epsilon_{k+1} \approx C[g'(r)]^{k+1} = g'(r) C[g'(r)]^{k} \Rightarrow \epsilon_{k+1} \approx g'(r) \epsilon_{k}$

Mpshot

When fixed point iterates converges, two consecutive two consecutive two converges,

the errors display

$$\xi_{k+1} \approx g'(r) \in \xi_k$$

where $|g'(r)| < 1$.

 $\xi_{k+1} \approx g'(r) = 1$

Then $\xi_{51} \approx 1/2 \cdot 10^{-5} = 0.5 \times 10^{-5}$

 $= 5.0 \times 10^{-6}$

Note: Rate of Convergence

TPI obeys thear convergence With rate [g'(r)].

Definition 2 (Linear Convergnece)

Suppose $\lim_{k\to\infty} x_k = r$ and let $\epsilon_k = x_k - r$, the error at step k of an iteration method. If

$$\lim_{k\to\infty}\frac{|\epsilon_{k+1}|}{|\epsilon_k|}=\sigma<1,$$

the method is said to obey **linear convergence** with rate σ .

Note. In general, say

$$\lim_{k \to \infty} \frac{|\epsilon_{k+1}|}{|\epsilon_k|^p} = \sigma$$

for some $p \ge 1$ and $\sigma > 0$.

• If
$$p=1$$
 and

- $\sigma = 1$, the convergence is *sublinear*;
- $0 < \sigma < 1$, the convergence is *linear*;
- $\sigma = 0$, the convergence is superlinear.
- If p = 2, the convergence is *quadratic*;
- If p = 3, the convergence is *cubic*, ...

Convergence of Fixed Point Iteration

g is diffible and g' is ets.

Theorem 3 (Convergence of FPI)

Assume that g is continuously differentiable, that g(r) = r, and that $\sigma = |g'(r)| < 1$. Then the fixed point iterates x_k generated by

$$x_{k+1} = g(x_k), \quad k = 1, 2, \dots,$$

converge linearly with rate g to the fixed point r for x_0 sufficiently close to r.

In the previous example with $g(x) = x - f(x) = -x^2 + 5x - 3.5$:

- For the first fixed point, near 2.71, we get $g'(r) \approx -0.42$ (convergence);
- For the second fixed point, near 1.29, we get $g'(r) \approx 2.42$ (divergence).

Note. An iterative method is called **locally convergent** to r if the method converges to r for initial guess sufficiently close to r.

Contraction Maps

Lipschitz Condition

A function g is said to satisfy a **Lipschitz condition** with constant L on the interval $S \subset \mathbb{R}$ if

$$|g(s) - g(t)| \le L|s - t|$$
 for all $s, t \in S$.

- A function satisfying the Lipschitz condition is continuous on *S*.
- If L < 1, g is called a **contraction map**.

When Does FPI Succeed?

Contraction Mapping Theorem

Suppose that g satisfies Lipschitz condition on S with L < 1, i.e., g is a contraction map on S. Then S contains exactly one fixed point r of g. If x_1, x_2, \ldots are generated by the fixed point iteration $x_{k+1} = g(x_k)$, and x_1, x_2, \ldots all lie in S, then

$$|x_k - r| \le L^{k-1} |x_1 - r|, \quad k > 1.$$