| q | 1  | Multip | le-Choice | and Bimo | dal ( | Duestions |
|---|----|--------|-----------|----------|-------|-----------|
| フ | ٠. | MIUIUD | ie-Choice | and Dime | uai v | Juesuons  |

| 1) For a molecule with the formula AB <sub>2</sub> the molecular shape is | 6) The molecular geometry of the CS <sub>2</sub> molecule is          |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------|
| morecular shape is                                                        | AN 12                                                                 |
| A) linear or bent                                                         | A) linear                                                             |
| B) linear or trigonal planar                                              | B) bent                                                               |
|                                                                           | C) tetrahedral                                                        |
| C) linear or T-shaped                                                     | D) trigonal planar                                                    |
| D) T-shaped                                                               | E) T-shaped                                                           |
| E) trigonal planar                                                        |                                                                       |
| 2) A 1' 4- VCEDD 41 'f 41 f'                                              | 7) The molecular geometry of the SiH <sub>2</sub> Cl <sub>2</sub>     |
| 2) According to VSEPR theory, if there are five                           | molecule is                                                           |
| electron domains in the valence shell of an atom,                         |                                                                       |
| they will be arranged in a(n) geometry.                                   | A) trigonal planar                                                    |
|                                                                           | B) tetrahedral                                                        |
| A) octahedral                                                             | C) trigonal pyramidal                                                 |
| B) linear                                                                 | D) octahedral                                                         |
| C) tetrahedral                                                            | E) T-shaped                                                           |
| D) trigonal planar                                                        | L) I shaped                                                           |
| E) trigonal bipyramidal                                                   | 9) The molecular geometry of the DUCL molecule                        |
|                                                                           | 8) The molecular geometry of the PHCl <sub>2</sub> molecule           |
| 3) According to VSEPR theory, if there are four                           | is                                                                    |
| electron domains in the valence shell of an atom,                         |                                                                       |
| they will be arranged in a(n) geometry.                                   | A) bent                                                               |
|                                                                           | B) trigonal planar                                                    |
| A) octahedral                                                             | C) trigonal pyramidal                                                 |
| B) linear                                                                 | D) tetrahedral                                                        |
| C) tetrahedral                                                            | E) T-shaped                                                           |
| D) trigonal planar                                                        |                                                                       |
| E) trigonal bipyramidal                                                   | 9) The molecular geometry of the CHCl <sub>3</sub> molecule           |
|                                                                           | is                                                                    |
| 4) The electron-domain geometry and molecular                             |                                                                       |
| geometry of iodine trichloride are and                                    | A) bent                                                               |
| , respectively.                                                           | B) trigonal planar                                                    |
| •                                                                         | C) trigonal pyramidal                                                 |
| A) trigonal bipyramidal, trigonal planar                                  | D) tetrahedral                                                        |
| B) tetrahedral, trigonal pyramidal                                        | E) T-shaped                                                           |
| C) trigonal bipyramidal, T-shaped                                         | L) 1-snaped                                                           |
| D) octahedral, trigonal planar                                            | 10) The medicular accomptant of the CE medicule is                    |
| E) T-shaped, trigonal planar                                              | 10) The molecular geometry of the SF <sub>2</sub> molecule is         |
| 2) I shaped, digonal planal                                               |                                                                       |
| 5) The molecular geometry of is square planar.                            | A) linear                                                             |
| 5) The molecular geometry of is square planar.                            | B) bent                                                               |
| A) CC1                                                                    | C) trigonal planar                                                    |
| A) CCl <sub>4</sub>                                                       | D) tetrahedral                                                        |
| B) XeF <sub>4</sub>                                                       | E) octahedral                                                         |
| C) PH <sub>3</sub>                                                        |                                                                       |
| , , ,                                                                     | 11) The molecular geometry of the PF <sub>4</sub> <sup>+</sup> ion is |
| D) XeF <sub>2</sub>                                                       | ,                                                                     |

E) ICl<sub>3</sub>

|                                                                     | C) 120 °                                                        |
|---------------------------------------------------------------------|-----------------------------------------------------------------|
| A) octahedral                                                       | D) 180 °                                                        |
| B) tetrahedral                                                      | E) 60 °                                                         |
| C) trigonal pyramidal                                               | ,                                                               |
| D) trigonal planar                                                  | 17) The melecular geometry of the II O+ ion is                  |
|                                                                     | 17) The molecular geometry of the $H_3O^+$ ion is               |
| E) trigonal bipyramidal                                             | ·                                                               |
|                                                                     | A) linear                                                       |
| 12) The $F-B-F$ bond angle in the $BF_2$ on is                      | B) tetrahedral                                                  |
| approximately                                                       | C) bent                                                         |
| •                                                                   | D) trigonal pyramidal                                           |
| A) 90 °                                                             | E) octahedral                                                   |
| B) 109.5 °                                                          | E) Octanicular                                                  |
| C) 120 °                                                            | 10)                                                             |
|                                                                     | 18) According to valence bond theory, which                     |
| D) 180 °                                                            | orbitals on bromine atoms overlap in the formation              |
| E) 60 °                                                             | of the bond in Br <sub>2</sub> ?                                |
|                                                                     | 2                                                               |
| 13) The Cl-Si-Cl bond angle in the SiCl <sub>2</sub> F <sub>2</sub> | A) 2a                                                           |
| <del>-</del> -                                                      | A) 3s                                                           |
| molecule is approximately                                           | B) 3p                                                           |
| A) 00 0                                                             | C) 4s                                                           |
| A) 90 °                                                             | D) 4p                                                           |
| B) 109.5 °                                                          | E) 3d                                                           |
| C) 120 °                                                            |                                                                 |
| D) 180 °                                                            | 19) The electron-domain geometry of a                           |
| E) 60 °                                                             | sulfur-centered compound is trigonal bipyramidal.               |
|                                                                     | The hybridization of the central nitrogen atom is               |
| 14) The F-B-F bond angle in the BF <sub>3</sub> molecule is         | The hybridization of the central introgen atom is               |
| 14) The 1-B-1 bond angle in the B13 molecule is                     | ·                                                               |
| ·                                                                   |                                                                 |
|                                                                     | A) sp                                                           |
| A) 90 °                                                             | B) $sp^2$                                                       |
| B) 109.5 °                                                          | $C) sp^3$                                                       |
| C) 120 °                                                            | _                                                               |
| D) 180 °                                                            | D) $sp^3d$                                                      |
| E) 60 °                                                             | E) $sp^3d^2$                                                    |
| L) 00                                                               | L) sp u                                                         |
| 16) 171 0 0 0 1 1 1 1 00 1 1 1 1 1                                  | 20) 771 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| 15) The O-S-O bond angle in $SO_2$ is slightly less                 | 20) The hybridization of orbitals on the central atom           |
| than                                                                | in a molecule is sp. The electron-domain geometry               |
|                                                                     | around this central atom is                                     |
| A) 90 °                                                             |                                                                 |
| B) 109.5 °                                                          | A) octahedral                                                   |
| C) 120 °                                                            | B) linear                                                       |
|                                                                     | C) trigonal planar                                              |
| D) 180 °                                                            |                                                                 |
| E) 60 °                                                             | D) trigonal bipyramidal                                         |
|                                                                     | E) tetrahedral                                                  |
| 16) The F-N-F bond angle in the NF <sub>3</sub> molecule is         |                                                                 |
| slightly less than                                                  | 21) The hybridization of orbitals on the central atom           |
| 51151111 1000 tiltiii                                               | in a molecule is sp <sup>2</sup> . The electron-domain geometry |
| A \ 00 °                                                            | about this central atom is                                      |
| A) 90 °                                                             | acout and contrat atom is                                       |
| B) 109.5 °                                                          |                                                                 |

| Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 9: Molecular Geometry and Bonding Theories |                                                                                        |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| A) octahedral                                                                                  | 26) The angles between sp <sup>2</sup> orbitals are                                    |
| B) linear                                                                                      |                                                                                        |
| C) trigonal planar                                                                             | A) 45 °                                                                                |
| D) trigonal bipyramidal                                                                        | B) 180 °                                                                               |
| E) tetrahedral                                                                                 | C) 90 °                                                                                |
| 20) 771 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                      | D) 109.5 °                                                                             |
| 22) The hybridization of the carbon atom in carbon dioxide is                                  | E) 120 °                                                                               |
|                                                                                                | 27) There are $\underline{\hspace{1cm}}$ $\sigma$ and $\underline{\hspace{1cm}}$ $\pi$ |
| A) sp                                                                                          | bonds in the $H-C \equiv C-H$ molecule.                                                |
| B) $sp^2$                                                                                      |                                                                                        |
| C) $sp^3$                                                                                      | A) 3 and 2                                                                             |
| _                                                                                              | B) 3 and 4                                                                             |
| D) $sp^3d$                                                                                     | C) 4 and 3                                                                             |
| E) $sp^3d^2$                                                                                   | D) 2 and 3                                                                             |
|                                                                                                | E) 5 and 0                                                                             |
| 23) The hybridization of the central atom in the                                               | ,                                                                                      |
| XeF <sub>4</sub> molecule is                                                                   | 28) There are $\sigma$ and $\pi$                                                       |
| ·                                                                                              | bonds in the H <sub>2</sub> C=C=CH <sub>2</sub> molecule.                              |
| A) sp                                                                                          | 2 2                                                                                    |
| B) $sp^2$                                                                                      | A) 4, 2                                                                                |
|                                                                                                | B) 6, 4                                                                                |
| C) $sp^3$                                                                                      | C) 2, 2                                                                                |
| D) $sp^3d$                                                                                     | D) 2, 6                                                                                |
| E) $sp^3d^2$                                                                                   | E) 6, 2                                                                                |
| / I                                                                                            | _, -, -                                                                                |
| 24) The electron-domain geometry of the AsF <sub>6</sub> <sup>-</sup> ion                      | 29) The total number of $\pi$ bonds in the                                             |
| is octahedral. The hybrid orbitals used by the As                                              | $H-C \equiv C-C \equiv C-C \equiv N$ molecule is                                       |
| atom for bonding are orbitals.                                                                 |                                                                                        |
| atom for conding are orotains.                                                                 | A) 3                                                                                   |
| A) $sp^2d^2$                                                                                   | B) 4                                                                                   |
|                                                                                                | C) 6                                                                                   |
| B) $sp^3$                                                                                      | D) 9                                                                                   |
| C) $sp^3d$                                                                                     | E) 12                                                                                  |
| D) $sp^3d^2$                                                                                   | 30) There is/are $\sigma$ bond(s) in the                                               |
| E) $sp^2$                                                                                      | molecule below.                                                                        |
| •                                                                                              |                                                                                        |
| 25) In order to produce sp <sup>3</sup> hybrid orbitals,                                       | ,                                                                                      |
| s atomic orbital(s) and p                                                                      | H H :0:<br>                                                                            |
| atomic orbital(s) must be mixed.                                                               | Н                                                                                      |
| atomic oroital(s) must be mixed.                                                               | i i                                                                                    |
| A) one, two                                                                                    | H                                                                                      |
| B) one, three                                                                                  | A) 1                                                                                   |
| C) one, one                                                                                    | B) 2                                                                                   |
| D) two, two                                                                                    | C) 12<br>D) 13                                                                         |
| E) two, three                                                                                  | D) 13<br>E) 18                                                                         |
|                                                                                                | E) 18                                                                                  |

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 9: Molecular Geometry and Bonding Theories 31) There is/are  $\underline{\hspace{1cm}}$   $\pi$  bond(s) in the molecule below.



- A)0
- B) 1
- C) 2
- D) 4
- E) 16
- 32) There is/are  $\underline{\phantom{a}}$   $\pi$  bond(s) in the molecule below.



- A) 7
- B) 6
- C) 2
- D) 1
- E) 0
- 33) The Lewis structure of carbon monoxide is given below. The hybridizations of the carbon and oxygen atoms in carbon monoxide are \_\_\_\_\_ and \_\_\_\_\_, respectively.

 $:C \equiv O:$ 

- A) sp,  $sp^3$
- B)  $sp^2$ ,  $sp^3$
- $C) sp^3, sp^2$
- D) sp, sp
- E)  $sp^2$ ,  $sp^2$

## **9.2 Multiple-Choice Questions**

- 1) The basis of the VSEPR model of molecular bonding is \_\_\_\_\_.
- A) regions of electron density on an atom will organize themselves so as to maximize s-character B) regions of electron density in the valence shell of an atom will arrange themselves so as to maximize overlap
- C) atomic orbitals of the bonding atoms must overlap for a bond to form

- D) electron domains in the valence shell of an atom will arrange themselves so as to minimize repulsions E) hybrid orbitals will form as necessary to, as closely as possible, achieve spherical symmetry
- 2) According to VSEPR theory, if there are three electron domains in the valence shell of an atom, they will be arranged in a(n) \_\_\_\_\_ geometry.
- A) octahedral
- B) linear
- C) tetrahedral
- D) trigonal planar
- E) trigonal bipyramidal
- 3) ClF<sub>3</sub> has "T-shaped" geometry. There are \_\_\_\_\_ non-bonding domains in this molecule.
- A) 0
- B) 1
- C) 2
- D) 3
- E) 4
- 4) The electron domain and molecular geometry of BrO<sub>2</sub><sup>-</sup> is \_\_\_\_\_.
- A) tetrahedral, trigonal planar
- B) trigonal planar, trigonal planar
- C) trigonal pyramidal, linear
- D) tetrahedral, bent
- E) trigonal pyramidal, seesaw
- 5) In counting the electron domains around the central atom in VSEPR theory, a is not included.
- A) nonbonding pair of electrons
- B) single covalent bond
- C) core level electron pair
- D) double covalent bond
- E) triple covalent bond
- 6) The electron-domain geometry of \_\_\_\_\_\_ is tetrahedral.
- A) CBr<sub>4</sub>
- B) PH<sub>3</sub>

- C) CCl<sub>2</sub>Br<sub>2</sub>
- D) XeF<sub>4</sub>
- E) all of the above except XeF<sub>4</sub>

7) The O-C-O bond angle in the  $CO_3^{2-}$  ion is approximately \_\_\_\_\_.

- A) 90 °
- B) 109.5 °
- C) 120 °
- D) 180 °
- E) 60°

8) Of the following species, \_\_\_\_ will have bond angles of 120  $^{\circ}.$ 

- A) PH<sub>3</sub>
- B) ClF<sub>3</sub>
- C) NCl<sub>3</sub>
- D) BCl<sub>3</sub>
- E) All of these will have bond angles of 120  $^{\circ}$ .

9) The molecular geometry of the  $BrO_3^-$  ion is

- A) trigonal pyramidal
- B) trigonal planar
- C) bent
- D) tetrahedral
- E) T-shaped

10) The molecular geometry of the left-most carbon atom in the molecule below is \_\_\_\_\_\_.



- A) trigonal planar
- B) trigonal bipyramidal
- C) tetrahedral
- D) octahedral
- E) T-shaped
- 11) The molecular geometry of the right-most

carbon in the molecule below is \_\_\_\_\_



- A) trigonal planar
- B) trigonal bipyramidal
- C) tetrahedral
- D) octahedral
- E) T-shaped

12) The bond angles marked a, b, and c in the molecule below are about \_\_\_\_\_\_, and \_\_\_\_\_\_, respectively.



- A) 90 °, 90 °, 90 °
- B) 120°, 120°, 90°
- C) 120  $^{\circ}$ , 120  $^{\circ}$ , 109.5  $^{\circ}$
- D) 109.5 °, 120 °, 109.5 °
- E) 109.5 °, 90 °, 120 °

13) The bond angles marked a, b, and c in the molecule below are about \_\_\_\_\_\_, \_\_\_\_\_ and \_\_\_\_\_\_, respectively.



- A) 109.5 °, 109.5 °, 109.5 °
- B) 120 °, 109.5 °, 120 °
- C) 109.5°, 109.5°, 120°
- D) 90 °, 180 °, 90 °
- E) 109.5°, 109.5°, 90°

14) The bond angle marked a in the following molecule is about \_\_\_\_\_\_.



| Chapter 9: Molecular Geometry and Bonding Theories                                                                                                |                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A) 90 °<br>B) 109.5 °<br>C) 120 °<br>D) 180 °                                                                                                     | 19) According to VSEPR theory, if there are three electron domains on a central atom, they will be arranged such that the angles between the domains are          |
| E) 60 °                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                             |
| 15) The central iodine atom in the ICl <sub>4</sub> <sup>-</sup> ion has nonbonded electron pairs and bonded electron pairs in its valence shell. | A) 90 ° B) 180 ° C) 109.5 ° D) 360 ° E) 120 °                                                                                                                     |
| A) 2, 2<br>B) 3, 4<br>C) 1, 3<br>D) 3, 2<br>E) 2, 4                                                                                               | 20) According to VSEPR theory, if there are four electron domains on a central atom, they will be arranged such that the angles between the domains are  A) 120 ° |
| 16) The central inding atom in IE has                                                                                                             | B) 109.5 °                                                                                                                                                        |
| 16) The central iodine atom in IF <sub>5</sub> has                                                                                                | C) 180 °                                                                                                                                                          |
| unbonded electron pairs and bonded                                                                                                                | D) 360 °                                                                                                                                                          |
| electron pairs in its valence shell.                                                                                                              | E) 90 °                                                                                                                                                           |
| A) 1, 5                                                                                                                                           | O1) A 1' / MCEDD / 'C/I                                                                                                                                           |
| B) 0, 5                                                                                                                                           | 21) According to VSEPR theory, if there are two                                                                                                                   |
| C) 5, 1                                                                                                                                           | electron domains on a central atom, they will be                                                                                                                  |
| D) 4, 1                                                                                                                                           | arranged such that the angles between the domains                                                                                                                 |
| E) 1, 4                                                                                                                                           | are                                                                                                                                                               |
|                                                                                                                                                   | A) 360 °                                                                                                                                                          |
| 17) The central Xe atom in the XeF <sub>4</sub> molecule has                                                                                      | B) 120 °                                                                                                                                                          |
| unbonded electron pairs and                                                                                                                       | C) 109.5 °                                                                                                                                                        |
| bonded electron pairs in its valence shell.                                                                                                       | D) 180 °                                                                                                                                                          |
| •                                                                                                                                                 | E) 90 °                                                                                                                                                           |
| A) 1, 4                                                                                                                                           |                                                                                                                                                                   |
| B) 2, 4                                                                                                                                           | 22) The electron-domain geometry and the                                                                                                                          |
| C) 4, 0                                                                                                                                           | molecular geometry of a molecule of the general                                                                                                                   |
| D) 4, 1                                                                                                                                           | formula AB <sub>n</sub> are                                                                                                                                       |
| E) 4, 2                                                                                                                                           |                                                                                                                                                                   |
| 18) An electron domain consists of                                                                                                                | A) never the same                                                                                                                                                 |
| a) a nonbonding pair of electrons                                                                                                                 | B) always the same                                                                                                                                                |
| b) a single bond                                                                                                                                  | C) sometimes the same                                                                                                                                             |
| c) a multiple bond                                                                                                                                | D) not related                                                                                                                                                    |
| c) a manipie cond                                                                                                                                 | E) mirror images of one another                                                                                                                                   |
| A) a only                                                                                                                                         | 23) The electron-domain geometry and the                                                                                                                          |
| B) b only                                                                                                                                         | molecular geometry of a molecule of the general                                                                                                                   |
| C) c only                                                                                                                                         | formula AB <sub>n</sub> will always be the same if                                                                                                                |
| D) a, b, and c                                                                                                                                    | 12 m a may be the bank it                                                                                                                                         |
| E) b and c                                                                                                                                        | A) there are no lone pairs on the central atom                                                                                                                    |
|                                                                                                                                                   | 11) there are no rone pans on the central atom                                                                                                                    |

Chemistry, 11e (Brown/LeMay/Bursten/Murphy)

| Chemistry, 11e (Brown/LeMay/Bursten/Murphy)<br>Chapter 9: Molecular Geometry and Bonding Theories            |                                                                                                |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| B) there is more than one central atom C) n is greater than four                                             | geometry (shape) the same as the VSEPR electron domain arrangement (electron domain geometry)? |
| D) n is less than four                                                                                       |                                                                                                |
| E) the octet rule is obeyed                                                                                  | A) (i) and (ii)                                                                                |
|                                                                                                              | B) (i) and (iii)                                                                               |
| 24) The bond angles in a trigonal planar molecule are                                                        | C) (ii) and (v)                                                                                |
| degrees.                                                                                                     | D) (iv) and (v)                                                                                |
| A) 120                                                                                                       | E) (v) only                                                                                    |
| A) 120<br>B) 109.5                                                                                           | 20) Of the molecules below only is polar                                                       |
| C) 90                                                                                                        | 29) Of the molecules below, only is polar.                                                     |
| D) 45                                                                                                        | A) SbF <sub>5</sub>                                                                            |
| E) < 45                                                                                                      | 3                                                                                              |
| 2) \ 18                                                                                                      | B) AsH <sub>3</sub>                                                                            |
| 25) A molecule has the formula AB <sub>3</sub> and the central                                               | C) $I_2$                                                                                       |
| atom is in a different plane from the surrounding                                                            | D) SF <sub>6</sub>                                                                             |
| three atoms. Its molecular shape is                                                                          | E) $CH_4$                                                                                      |
|                                                                                                              | 2) 3114                                                                                        |
| A) tetrahedral                                                                                               | 30) Of the molecules below, only is nonpolar                                                   |
| B) trigonal pyramidal                                                                                        | 30) Of the molecules below, only is nonpolar                                                   |
| C) linear                                                                                                    | A) CO <sub>2</sub>                                                                             |
| D) T-shaped                                                                                                  | -                                                                                              |
| E) bent                                                                                                      | B) H <sub>2</sub> O                                                                            |
|                                                                                                              | C) NH <sub>3</sub>                                                                             |
| 26) PCl <sub>5</sub> has electron domains and a                                                              | D) HCl                                                                                         |
| molecular arrangement.                                                                                       | E) TeCl <sub>2</sub>                                                                           |
| A) 6, trigonal bipyramidal                                                                                   |                                                                                                |
| B) 6, tetrahedral                                                                                            | 31) Of the molecules below, only is polar.                                                     |
| C) 5, square pyramidal                                                                                       |                                                                                                |
| D) 5, trigonal bipyramidal                                                                                   | A) CCl <sub>4</sub>                                                                            |
| E) 6, seesaw                                                                                                 | B) CH <sub>4</sub>                                                                             |
| 27) For molecules of the general formula $AB_n$ n can                                                        | C) SeF <sub>4</sub>                                                                            |
| be greater than four                                                                                         | D) SiCl <sub>4</sub>                                                                           |
| A) for any element A                                                                                         | D) SICI <sub>4</sub>                                                                           |
| B) only when A is an element from the third period                                                           | 22) Of the molecules below only is nonnolar                                                    |
| or below the third period                                                                                    | 32) Of the molecules below, onlyis nonpolar                                                    |
| C) only when A is boron or beryllium                                                                         | A) RE                                                                                          |
| D) only when A is carbon                                                                                     | A) BF <sub>3</sub>                                                                             |
| E) only when A is Xe                                                                                         | B) NF <sub>3</sub>                                                                             |
| , ,                                                                                                          | C) IF <sub>3</sub>                                                                             |
| Consider the following species when answering the                                                            | D) PBr <sub>3</sub>                                                                            |
| following questions:                                                                                         | E) BrCl <sub>3</sub>                                                                           |
| (i) PCl (ii) CCl (iii) TaCl (iv) VaE (v) SE                                                                  | <u> </u>                                                                                       |
| (i) PCl <sub>3</sub> (ii) CCl <sub>4</sub> (iii) TeCl <sub>4</sub> (iv) XeF <sub>4</sub> (v) SF <sub>6</sub> | 33) Three monosulfur fluorides are observed: SF <sub>2</sub> ,                                 |
| 28) For which of the molecules is the molecules                                                              | $SF_4$ , and $SF_6$ . Of these, is/are polar.                                                  |
| 28) For which of the molecules is the molecular                                                              | 4/ 0                                                                                           |

| A) SF <sub>2</sub> only                                            | A) 1                                                                                                         |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| B) SF <sub>2</sub> and SF <sub>4</sub> only                        | B) 2                                                                                                         |
| C) SF <sub>4</sub> only                                            | C) 1 or 2                                                                                                    |
| •                                                                  | D) 3<br>E) 1 or 3                                                                                            |
| D) SF <sub>6</sub> only                                            | E) 1 or 3                                                                                                    |
| E) $SF_2$ , $SF_4$ and $SF_6$                                      | 39) The molecular geometry of the CHF <sub>3</sub> molecule                                                  |
| 34) The molecular geometry of the BeCl <sub>2</sub> molecule       | is, and the molecule is                                                                                      |
| is, and this molecule is                                           |                                                                                                              |
| , and this molecule is                                             | A) trigonal pyramidal, polar                                                                                 |
| A) linear, nonpolar                                                | B) tetrahedral, nonpolar                                                                                     |
| B) linear, polar                                                   | C) seesaw, nonpolar                                                                                          |
| C) bent, nonpolar                                                  | D) tetrahedral, polar                                                                                        |
| D) bent, polar                                                     | E) seesaw, polar                                                                                             |
| E) trigonal planar, polar                                          | 40) The molecular geometry of the BCl <sub>3</sub> molecule                                                  |
| 25) The molecular geometry of the DE molecule is                   | is, and this molecule is                                                                                     |
| 35) The molecular geometry of the PF <sub>3</sub> molecule is      |                                                                                                              |
| , and this molecule is                                             | A) trigonal pyramidal, polar                                                                                 |
|                                                                    | B) trigonal pyramidal, nonpolar                                                                              |
| A) trigonal planar, polar                                          | C) trigonal planar, polar                                                                                    |
| B) trigonal planar, nonpolar                                       | D) trigonal planar, nonpolar                                                                                 |
| C) trigonal pyramidal, polar                                       | E) trigonal bipyramidal, polar                                                                               |
| D) trigonal pyramidal, nonpolar                                    |                                                                                                              |
| E) tetrahedral, unipolar                                           | 41) According to valence bond theory, which                                                                  |
| 26) Of the following melecules only is not an                      | orbitals overlap in the formation of the bond in                                                             |
| 36) Of the following molecules, onlyis polar.                      | HBr?                                                                                                         |
| A) BeCl <sub>2</sub>                                               | A) 1s on H and 4p on Br                                                                                      |
| B) BF <sub>3</sub>                                                 | B) 1s on H and 4s on Br                                                                                      |
| C) CBr <sub>4</sub>                                                | C) 1s on H and 3p on Br                                                                                      |
| ·                                                                  | D) 2s on H and 4p on Br                                                                                      |
| D) SiH <sub>2</sub> Cl <sub>2</sub>                                | E) 2s on H and 3p on Br                                                                                      |
| E) Cl <sub>2</sub>                                                 | ,                                                                                                            |
|                                                                    | Consider the following species when answering the                                                            |
| 37) Of the following molecules, only is polar.                     | following questions:                                                                                         |
| A) CCl <sub>4</sub>                                                | (i) PCl <sub>3</sub> (ii) CCl <sub>4</sub> (iii) TeCl <sub>4</sub> (iv) XeF <sub>4</sub> (v) SF <sub>6</sub> |
| B) BCl <sub>3</sub>                                                |                                                                                                              |
| C) NCl <sub>3</sub>                                                | 42) Which of the molecules has a see-saw shape?                                                              |
| D) BeCl <sub>2</sub>                                               | A \ \( \( \) \)                                                                                              |
| 2                                                                  | A) (i) B) (ii)                                                                                               |
| E) Cl <sub>2</sub>                                                 | B) (ii)                                                                                                      |
| 20) F                                                              | C) (iii)<br>D) (iv)                                                                                          |
| 38) For molecules with only one central atom, how                  | E) (v)                                                                                                       |
| many lone pairs on the central atom guarantees molecular polarity? | <i>L</i> ) (v)                                                                                               |

| Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 9: Molecular Geometry and Bonding Theories |                                                                             |  |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| 43) The combination of two atomic orbitals results in                                          | D) 5                                                                        |  |  |
| the formation of molecular orbitals.                                                           | E) 6                                                                        |  |  |
| A) 1                                                                                           | 48) The sp <sup>2</sup> atomic hybrid orbital set accommodates              |  |  |
| B) 2                                                                                           | electron domains.                                                           |  |  |
| C) 3                                                                                           |                                                                             |  |  |
| D) 4<br>E) 0                                                                                   | A) 2                                                                        |  |  |
| L) U                                                                                           | B) 3                                                                        |  |  |
| 44) The electron-domain geometry of a                                                          | C) 4                                                                        |  |  |
| carbon-centered compound is tetrahedral. The                                                   | D) 5<br>E) 6                                                                |  |  |
| hybridization of the central carbon atom is                                                    | <i>L)</i> 0                                                                 |  |  |
| ·                                                                                              | 49) The hybridizations of nitrogen in NF <sub>3</sub> and NH <sub>3</sub>   |  |  |
| A) sp                                                                                          | are and, respectively.                                                      |  |  |
| B) sp <sup>2</sup>                                                                             | $A) sp^2, sp^2$                                                             |  |  |
| C) sp <sup>3</sup>                                                                             |                                                                             |  |  |
| $D) sp^3 d$                                                                                    | B) sp, sp $^3$                                                              |  |  |
| E) $sp^3d^2$                                                                                   | $C) sp^3, sp$                                                               |  |  |
| <i>1)</i> sp <b>a</b>                                                                          | $D) sp^3, sp^3$                                                             |  |  |
| 45) Of the following, only has sp <sup>2</sup>                                                 | E) $sp^2$ , $sp^3$                                                          |  |  |
| hybridization of the central atom.                                                             |                                                                             |  |  |
| ,                                                                                              | 50) The hybridizations of iodine in IF <sub>3</sub> and IF <sub>5</sub> are |  |  |
| A) PH <sub>3</sub>                                                                             | , respectively.                                                             |  |  |
| B) CO <sub>3</sub> <sup>2-</sup>                                                               |                                                                             |  |  |
| C) ICl <sub>3</sub>                                                                            | A) $sp^3$ , $sp^3d$                                                         |  |  |
| D) I <sub>3</sub>                                                                              | B) $sp^3d$ , $sp^3d^2$                                                      |  |  |
| E) PF <sub>5</sub>                                                                             | C) $sp^3d$ , $sp^3$                                                         |  |  |
| L) 115                                                                                         | D) $sp^3d^2$ , $sp^3d$                                                      |  |  |
| 46) Of the following, the central atom is sp <sup>3</sup> d <sup>2</sup>                       | E) $sp^3d^2$ , $sp^3d^2$                                                    |  |  |
| _                                                                                              |                                                                             |  |  |
| hybridized only in                                                                             | 51) The hybridizations of bromine in BrF <sub>5</sub> and of                |  |  |
| A) PCl <sub>5</sub>                                                                            | arsenic in AsF <sub>5</sub> are and,                                        |  |  |
| B) XeF <sub>4</sub>                                                                            | respectively.                                                               |  |  |
| C) PH <sub>3</sub>                                                                             |                                                                             |  |  |
| J                                                                                              | A) $sp^3$ , $sp^3d$                                                         |  |  |
| D) Br <sub>3</sub>                                                                             | B) $sp^3d$ , $sp^3d^2$                                                      |  |  |
| E) $BeF_2$                                                                                     | C) $sp^3d$ , $sp^3$                                                         |  |  |
| 2.2                                                                                            | D) $sp^3d^2$ , $sp^3d$                                                      |  |  |
| 47) The sp <sup>3</sup> d <sup>2</sup> atomic hybrid orbital set                               | E) $sp^3d^2$ , $sp^3d^2$                                                    |  |  |
| accommodates electron domains.                                                                 | -, op • , op •                                                              |  |  |
| A) 2                                                                                           | 52) The hybrid orbitals used for bonding by the                             |  |  |
| B) 3                                                                                           | sulfur atom in the SF <sub>4</sub> molecule are orbitals.                   |  |  |
| C) 4                                                                                           | ·                                                                           |  |  |

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 9: Molecular Geometry and Bonding Theories A) sp  $B) sp^2$ A)  $sp^2d^2$  $C) sp^3$ B)  $sp^3$  $D) sp^3 d$ C)  $sp^3d^2$ E)  $sp^3d^2$ D)  $sp^3d$ E)  $sp^2$ 53) The hybrid orbitals used for bonding by Xe in the unstable XeF, molecule are \_\_\_\_\_ orbitals. 57) \_\_\_\_\_ hybrid orbitals are used for bonding by Xe in the XeF<sub>4</sub> molecule. A)  $sp^2$  $B) sp^3$ A)  $sp^2$  $C) sp^3 d$ B)  $sp^3$  $D) sp^3 d^2$ C)  $sp^3d$ E) sp D)  $sp^3d^2$ E) sp 54) The hybridization scheme for BeF<sub>2</sub> is \_\_\_\_\_. Consider the following species when answering the following questions: A) sp B)  $sp^2$ (i) PCl<sub>3</sub> (ii) CCl<sub>4</sub> (iii) TeCl<sub>4</sub> (iv) XeF<sub>4</sub> (v) SF<sub>6</sub> C)  $sp^3$ D)  $sp^3d$ 58) In which of the molecules does the central atom E)  $sp^3d^2$ utilize d orbitals to form hybrid orbitals? 55) The hybridization of the oxygen atom labeled y A) (i) and (ii) in the structure below is \_\_\_\_\_. The B) (iii) only C-O-H bond angle is \_\_\_\_\_. C) (i) and (v) D) (iii), (iv), and (v) E) (v) only 59) In which of the molecules is the central atom sp<sup>3</sup>d<sup>2</sup> hybridized? A) (i) and (ii) B) (iii) only A) sp, 180 ° C) (iii) and (iv) B)  $sp^{2}$ , 109.5 ° D) (iv) and (v) C)  $sp^{3}$ , 109.5 ° E) (v) only D)  $sp^3d^2$ , 90 ° 60) There are \_\_\_\_\_ unhybridized p atomic E) sp,  $90^{\circ}$ orbitals in an sp-hybridized carbon atom.

A) 0

B) 1

C) 2

56) The electron-domain geometry of the AsF,

molecule is trigonal bipyramidal. The hybrid

orbitals used by the As atom for bonding are

orbitals.

| Chemistry, 11e (Brown/LeMay/Bursten/Murphy)<br>Chapter 9: Molecular Geometry and Bonding Theories |                                                               |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| D) 3                                                                                              |                                                               |
| E) 4                                                                                              | 66) A typical triple bond                                     |
| 61) When three atomic orbitals are mixed to form                                                  | A) consists of one $\sigma$ bond and two $\pi$ bonds          |
| hybrid orbitals, how many hybrid orbitals are                                                     | B) consists of three shared electrons                         |
| formed?                                                                                           | C) consists of two $\sigma$ bonds and one $\pi$ bond          |
|                                                                                                   | D) consists of six shared electron pairs                      |
| A) one                                                                                            | E) is longer than a single bond                               |
| B) six                                                                                            | 27) I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     |
| C) three                                                                                          | 67) In a polyatomic molecule, "localized" bonding             |
| D) four<br>E) five                                                                                | electrons are associated with                                 |
| L) live                                                                                           | A) one particular atom                                        |
| 62) The blending of one s atomic orbital and two p                                                | B) two particular atoms                                       |
| atomic orbitals produces                                                                          | C) all of the atoms in the molecule                           |
|                                                                                                   | D) all of the $\pi$ bonds in the molecule                     |
| A) three sp hybrid orbitals                                                                       | E) two or more $\sigma$ bonds in the molecule                 |
| B) two sp <sup>2</sup> hybrid orbitals                                                            |                                                               |
| C) three sp <sup>3</sup> hybrid orbitals                                                          | 68) There are σ bonds and                                     |
| D) two sp <sup>3</sup> hybrid orbitals                                                            | $\pi$ bonds in $H_3C - CH_2 - CH = CH - CH_2 - C \equiv CH$ . |
|                                                                                                   |                                                               |
| E) three sp <sup>2</sup> hybrid orbitals                                                          | A) 14, 2                                                      |
|                                                                                                   | B) 10, 3                                                      |
| 63) A triatomic molecule cannot be linear if the                                                  | C) 12, 2                                                      |
| hybridization of the central atoms is                                                             | D) 13, 2                                                      |
| A) sp                                                                                             | E) 16, 3                                                      |
| B) $\operatorname{sp}^2$                                                                          | 69) Which of the following molecules or ions will             |
| _                                                                                                 | exhibit delocalized bonding?                                  |
| C) $sp^3$                                                                                         | $SO_2$ $SO_3$ $SO_3^{2-}$                                     |
| D) $sp^2 or sp^3$                                                                                 |                                                               |
| E) $sp^2d$ or $sp^3d^2$                                                                           | A) $SO_2$ , $SO_3$ , and $SO_3^{2-}$                          |
| 64) Valence bond theory does not address the issue                                                | B) $SO_3^{2-}$ only                                           |
| of                                                                                                | C) SO <sub>2</sub> and SO <sub>3</sub>                        |
|                                                                                                   | D) $SO_3$ and $SO_3^{2-}$                                     |
| A) excited states of molecules                                                                    | E) None of the above will exhibit delocalized                 |
| B) molecular shape                                                                                | bonding.                                                      |
| C) covalent bonding D) hybridization                                                              | 6                                                             |
| E) multiple bonds                                                                                 | 70) Which of the following molecules or ions will             |
| L) multiple bonds                                                                                 | exhibit delocalized bonding?                                  |
| 65) A typical double bond                                                                         | $NO_2^ NH_4^+$ $N_3^-$                                        |
| A) is stronger and shorter than a single bond                                                     | A) $NH_4^+$ and $N_3^-$                                       |
| B) consists of one $\sigma$ bond and one $\pi$ bond                                               |                                                               |
| C) imparts rigidity to a molecule                                                                 | B) NO <sub>2</sub> only                                       |
| D) consists of two shared electron pairs                                                          | C) $NO_2^-$ , $NH_4^+$ , and $N_3^-$                          |
| E) All of the above answers are correct.                                                          |                                                               |

| Chapter 9: Molecular Geometry and Bonding Theories            |                                                                                                    |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| D) $N_3$ only                                                 |                                                                                                    |
| E) $NO_2^-$ and $N_3^-$                                       | 76) The $N-N$ bond in HNNH consists of                                                             |
| =, 1.6 <sub>2</sub> and 1.3                                   | ·                                                                                                  |
| 71) In order to exhibit delocalized $\pi$ bonding, a          | A) one $\sigma$ bond and one $\pi$ bond                                                            |
| molecule must have                                            | B) one $\sigma$ bond and two $\pi$ bonds                                                           |
|                                                               | C) two $\sigma$ bonds and one $\pi$ bond                                                           |
| A) at least two $\pi$ bonds                                   | D) two $\sigma$ bonds and two $\pi$ bonds                                                          |
| B) at least two resonance structures                          | E) one $\sigma$ bond and no $\pi$ bonds                                                            |
| C) at least three $\sigma$ bonds                              | ,                                                                                                  |
| D) at least four atoms                                        | 77) The hybridization of the terminal carbons in the                                               |
| E) trigonal planar electron domain geometry                   | $H_2C = C = CH_2$ molecule is                                                                      |
| 72) In a typical multiple bond, the $\sigma$ bond results     |                                                                                                    |
| from overlap of orbitals and the $\pi$                        | A) sp                                                                                              |
| bond(s) result from overlap of orbitals.                      | B) $sp^2$                                                                                          |
| oronals.                                                      | C) $sp^3$                                                                                          |
| A) hybrid, atomic                                             | <del>-</del>                                                                                       |
| B) hybrid, hybrid                                             | D) $sp^3d$                                                                                         |
| C) atomic, hybrid                                             | E) $sp^3d^2$                                                                                       |
| D) hybrid, hybrid or atomic                                   |                                                                                                    |
| E) hybrid or atomic, hybrid or atomic                         | 78) The hybridization of nitrogen in the                                                           |
|                                                               | $H - C \equiv N$ : molecule is                                                                     |
| 73) The carbon-carbon $\sigma$ bond in ethylene, $H_2C = C$ , |                                                                                                    |
| results from the overlap of                                   | A) sp                                                                                              |
| 1                                                             | B) $s^2p$                                                                                          |
| A) sp hybrid orbitals                                         | C) $s^3p$                                                                                          |
| B) sp <sup>3</sup> hybrid orbitals                            | D) $sp^2$                                                                                          |
| C) sp <sup>2</sup> hybrid orbitals                            | E) $sp^3$                                                                                          |
| D) s atomic orbitals                                          | / I                                                                                                |
| E) p atomic orbitals                                          | 79) The hybridization of the carbon atom labeled x in                                              |
| · ·                                                           | the molecule below is                                                                              |
| 74) The $\pi$ bond in ethylene, $H_2C = CH_2$ , results       | The hybridization of the carbon atom labeled x in the molecule below is  H—N—C—C—C—H  H—C—H  A) sp |
| from the overlap of                                           | н н :0: х                                                                                          |
| •                                                             | H—N— C—C—O—H                                                                                       |
| A) sp <sup>3</sup> hybrid orbitals                            |                                                                                                    |
| B) s atomic orbitals                                          | Н                                                                                                  |
| C) sp hybrid orbitals                                         | H                                                                                                  |
| D) sp <sup>2</sup> hybrid orbitals                            | A) sp                                                                                              |
| E) p atomic orbitals                                          | B) $sp^2$                                                                                          |
| E) p atomic orbitals                                          | C) $sp^3$                                                                                          |
| 75) A typical triple bond consists of                         | D) $sp^3d$                                                                                         |
| , b) it typical triple cond consists of                       | _                                                                                                  |
| A) three sigma bonds                                          | E) $sp^3d^2$                                                                                       |
| B) three pi bonds                                             | 00) 777 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                          |
| C) one sigma and two pi bonds                                 | 80) The hybridization of the oxygen atom labeled x                                                 |
| D) two sigma and one pi bond                                  | in the structure below is                                                                          |
| E) three ionic bonds                                          |                                                                                                    |

Chemistry, 11e (Brown/LeMay/Bursten/Murphy)

|    | H   | H    | H    | :0: ←x |    |
|----|-----|------|------|--------|----|
| н- | -C= | = c- | -c-  | ;-     | -н |
|    |     |      | 1    |        |    |
|    |     | H-   | - C- | — н    |    |
|    |     |      | H    |        |    |

| A \   |     |
|-------|-----|
| Δ١    | cr  |
| 1 h ) | ่งเ |

- B)  $sp^2$
- C)  $sp^3$
- D)  $sp^3d$
- E)  $sp^3d^2$
- 81) The Lewis structure of carbon dioxide is given below. The hybridization of the carbon atom in carbon dioxide is \_\_\_\_\_\_.

- A)  $sp^3$
- B)  $sp^2$
- C) sp
- D)  $sp^2d$
- E)  $sp^2d^2$
- 82) Electrons in \_\_\_\_\_\_ bonds remain localized between two atoms. Electrons in \_\_\_\_\_\_ bonds can become delocalized between more than two atoms.
- A) pi, sigma
- B) sigma, pi
- C) pi, pi
- D) sigma, sigma
- E) ionic, sigma
- 83) Structural changes around a double bond in the \_\_\_\_\_ portion of the rhodopsin molecule trigger the chemical reactions that result in vision.
- A) protein
- B) opsin
- C) retinal
- D) cones
- E) rods
- 84) The bond order of any molecule containing equal numbers of bonding and antibonding electrons is

- A)0
- B) 1
- C) 2
- D) 3
- E) 1/2

| 85) In comparing the same two atoms bonded |                     |  |
|--------------------------------------------|---------------------|--|
| together, the                              | the bond order, the |  |
| the bond length, and the                   |                     |  |
| the bond energy.                           |                     |  |

- A) greater, shorter, greater
- B) greater, greater, greater
- C) greater, longer, greater
- D) greater, greater, smaller
- E) smaller, greater, greater
- 86) In molecular orbital theory, the  $\sigma_{1s}$  orbital is \_\_\_\_\_ in the H $_2$  molecule.
- A) filled, filled
- B) filled, empty
- C) filled, half-filled
- D) half-filled, filled
- E) empty, filled
- 87) Based on molecular orbital theory, the bond orders of the H-H bonds in  $H_2$ ,  $H_2^+$ , and  $H_2^-$  are \_\_\_\_\_, respectively
- A) 1, 0, and 0
- B) 1, 1/2, and 0
- C) 1, 0, and 1/2
- D) 1, 1/2, and 1/2
- E) 1, 2, and 0
- 88) Based on molecular orbital theory, the bond order of the H-H bond in the  $H_2^+$  ion is \_\_\_\_\_.
- A)0
- B) 1/2
- **C**) 1
- D) 3/2
- E) 2

| 89) An antibonding $\pi$ orbital contains a maximum of electrons.         | A) the bond order in $F_2$ can be shown to be equal to 1. |
|---------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                           | B) there are more electrons in the bonding orbitals       |
| A) 1                                                                      | than in the antibonding orbitals.                         |
| B) 2                                                                      | C) all electrons in the MO electron configuration of      |
| C) 4                                                                      | $F_2$ are paired.                                         |
| D) 6                                                                      | 2 -                                                       |
| E) 8                                                                      | D) the energy of the $\pi 2p$ MOs is higher than that of  |
| ,                                                                         | the $\sigma$ 2p MO                                        |
| 90) According to MO theory, overlap of two s atomic                       | E) the $F-F$ bond enthalpy is very low                    |
| orbitals produces                                                         |                                                           |
|                                                                           | 94) Based on molecular orbital theory, the only           |
| A) one bonding molecular orbital and one hybrid                           | molecule in the list below that has unpaired electrons    |
| orbital                                                                   | is                                                        |
| B) two bonding molecular orbitals                                         | <del></del>                                               |
| C) two bonding molecular orbitals and two                                 | A) C <sub>2</sub>                                         |
| ,                                                                         | -                                                         |
| antibonding molecular orbitals  D) two bonding molecular orbitals and one | B) N <sub>2</sub>                                         |
| D) two bonding molecular orbitals and one                                 | C) F <sub>2</sub>                                         |
| antibonding molecular orbital                                             | D) O <sub>2</sub>                                         |
| E) one bonding molecular orbital and one                                  | -                                                         |
| antibonding molecular orbital                                             | E) Li <sub>2</sub>                                        |
| 91) A molecular orbital can accommodate a                                 | 95) Based on molecular orbital theory, there are          |
| maximum of electron(s).                                                   | unpaired electrons in the OF <sup>+</sup> ion.            |
| A) one                                                                    | A) 0                                                      |
| B) two                                                                    | B) 3                                                      |
| C) four                                                                   | C) 1                                                      |
| D) six                                                                    | •                                                         |
| E) twelve                                                                 | D) 2                                                      |
|                                                                           | E) 1/2                                                    |
| 92) Molecular Orbital theory correctly predicts                           | 96) Based on molecular orbital theory, the bond           |
| paramagnetism of $O_2$ . This is because                                  | order of the $N-N$ bond in the $N_2$ molecule is          |
| A) the hand and a in O can be shown to be equal to                        |                                                           |
| A) the bond order in $O_2$ can be shown to be equal to                    |                                                           |
| 2.                                                                        | A) 0                                                      |
| B) there are more electrons in the bonding orbitals                       | B) 1                                                      |
| than in the antibonding orbitals.                                         | C) 2                                                      |
| C) the energy of the $\pi 2p$ MOs is higher than that of                  | D) 3                                                      |
| the $\sigma$ 2p MO                                                        | E) 5                                                      |
| D) there are two unpaired electrons in the MO                             | L) 3                                                      |
| electron configuration of O <sub>2</sub>                                  | 97) Based on molecular orbital theory, the bond           |
| _                                                                         | •                                                         |
| E) the O-O bond distance is relatively short                              | order of the $N-N$ bond in the $N_2^{2+}$ ion is          |
| 93) Molecular Orbital theory correctly predicts                           | A) 0                                                      |
| diamagnetism of fluorine gas, $F_2$ . This is because                     | B) 3                                                      |
|                                                                           | Ć) 1                                                      |
|                                                                           | ·                                                         |

| Chemistry, 11e (Brown/LeMay/Bursten/Murphy)<br>Chapter 9: Molecular Geometry and Bonding Theories |                                                                                                                                    |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| D) 2<br>E) 1/2                                                                                    | <ul><li>A) two bonding molecular orbitals</li><li>B) one bonding molecular orbital and one antibonding molecular orbital</li></ul> |
| 98) Based on molecular orbital theory, the bond                                                   | C) two bonding molecular orbitals and two                                                                                          |
| order of the Be – Be bond in the Be <sub>2</sub> molecule is                                      | antibonding molecular orbitals                                                                                                     |
| ·                                                                                                 | D) two bonding molecular orbitals and one antibonding molecular orbital                                                            |
| A) 0                                                                                              | E) three bonding molecular orbitals and three                                                                                      |
| B) 1                                                                                              | antibonding molecular orbitals                                                                                                     |
| C) 2                                                                                              | 102) According to MO theory, evenlor of two r                                                                                      |
| D) 3                                                                                              | 103) According to MO theory, overlap of two p                                                                                      |
| E) 4                                                                                              | atomic orbitals produces                                                                                                           |
| 99) Based on molecular orbital theory, the bond                                                   | A) one $\pi$ MO and one $\sigma^*$ MO                                                                                              |
| order of the $C-C$ bond in the $C_2$ molecule is                                                  | B) one $\pi$ MO and one $\sigma$ MO                                                                                                |
| ·                                                                                                 | C) one $\pi$ MO and one $\pi^*$ MO or one $\sigma$ MO and one                                                                      |
| A) 0                                                                                              | $\sigma^*$ MO                                                                                                                      |
| B) 1                                                                                              | D) one $\pi^+$ MO and one $\sigma^*$ MO                                                                                            |
| C) 2                                                                                              |                                                                                                                                    |
| D) 3                                                                                              | E) two $\pi$ MOs, two $\pi^+$ MOs, one $\sigma$ MO, and one $\sigma^*$ MO                                                          |
| E) 4                                                                                              | WIO                                                                                                                                |
| 100) Of the following, only appears to gain mass in a magnetic field.                             | 104) An antibonding MO the corresponding bonding MO.                                                                               |
| A) C <sub>2</sub>                                                                                 | A) is always lower in energy than                                                                                                  |
| B) N <sub>2</sub>                                                                                 | B) can accommodate more electrons than                                                                                             |
| -                                                                                                 | C) can accommodate fewer electrons than                                                                                            |
| C) F <sub>2</sub>                                                                                 | <ul><li>D) is always higher in energy than</li><li>E) is always degenerate with</li></ul>                                          |
| D) O <sub>2</sub>                                                                                 | L) is always degenerate with                                                                                                       |
| E) Li <sub>2</sub>                                                                                | 105) The more effectively two atomic orbitals                                                                                      |
| 101) 064 611 : ()/                                                                                | overlap,                                                                                                                           |
| 101) Of the following, appear(s) to gain                                                          | A) the many hand in a MO and the mandered hands                                                                                    |
| mass in a magnetic field. $B_2$ $N_2$ $O_2$                                                       | A) the more bonding MOs will be produced by the combination                                                                        |
| $\mathbf{B}_2 = \mathbf{N}_2 = \mathbf{O}_2$                                                      | B) the higher will be the energy of the resulting                                                                                  |
| A) O <sub>2</sub> only                                                                            | bonding MO and the lower will be the energy of the                                                                                 |
| -                                                                                                 | resulting antibonding MO                                                                                                           |
| B) N <sub>2</sub> only                                                                            | C) the higher will be the energies of both bonding                                                                                 |
| C) $B_2$ and $N_2$                                                                                | and antibonding MOs that result                                                                                                    |
| D) $N_2$ and $O_2$                                                                                | D) the fewer antibonding MOs will be produced by                                                                                   |
| E) $B_2$ and $O_2$                                                                                | the combination  E) the lower will be the energy of the resulting                                                                  |
|                                                                                                   | bonding MO and the higher will be the energy of the                                                                                |
| 102) According to MO theory, overlap of two p                                                     | resulting antibonding MO                                                                                                           |
| atomic orbitals produces                                                                          |                                                                                                                                    |
|                                                                                                   | 106) The bond order of a homonuclear diatomic                                                                                      |

| Chemistry, 11e (Brown/LeMay/Bursten/Murphy)<br>Chapter 9: Molecular Geometry and Bonding Theories                                                                |                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| molecule can be decreased by                                                                                                                                     | 7) The sensation of vision results from a nerve impulse that is triggered by the separation of retinal                     |
| A) removing electrons from a bonding MO or adding electrons to an antibonding MO                                                                                 | from                                                                                                                       |
| B) adding electrons to a bonding MO or removing electrons from an antibonding MO C) adding electrons to any MO                                                   | 8) In molecular orbital theory the stability of a covalent body is related to its                                          |
| D) removing electrons from any MO E) The bond order of a homonuclear diatomic molecule cannot be decreased by any means.                                         | 9) Each molecular orbital can accommodate, at most, two electrons with their spins paired. This is called the              |
| 107) The order of MO energies in $B_2$ , $C_2$ ,                                                                                                                 | 10) The more unpaired electrons in a species, the                                                                          |
| and $N_2(\sigma 2p > \pi 2p)$ , is different from the order in $O_2$ , $P_2$ , and $Ne_2(\sigma 2p < \pi 2p)$ This is due to                                     | stronger is the force of magnetic attraction. This is called                                                               |
|                                                                                                                                                                  | 9.4 True/False Questions                                                                                                   |
| A) less effective overlap of p orbitals in O <sub>2</sub> , F <sub>2</sub> , and Ne <sub>2</sub>                                                                 | 1) Possible shapes of AB <sub>3</sub> molecules are linear,                                                                |
| B) the more metallic character of boron, carbon and                                                                                                              | trigonal planar, and T-shaped.                                                                                             |
| nitrogen as compared to oxygen, fluorine, and neon C) greater 2s-2p interaction in $O_2$ , $F_2$ , and $Ne_2$ D) greater 2s-2p interaction in $P_2$ C, and $P_2$ | 2) Boron trifluoride has three bonding domains and its electron domain geometry is trigonal planar.                        |
| E) less effective overlap of p orbitals in $B_2$ , $C_2$ , and $N_2$                                                                                             | 3) Electron domains for single bonds exert greater force on adjacent domains than the electron domains for multiple bonds. |
| 9.3 Short Answer Questions                                                                                                                                       | for multiple bonds.                                                                                                        |
| 1) What is the molecular geometry of a molecule that has three bonding and two non-bonding domains?                                                              | 4) The quantitative amount of charge separation in a diatomic molecule contributes to the dipole moment of that molecule.  |
| 2) In the valence shell of an atom there are six electron domains. They will be arranged in a (an) geometry.                                                     | 5) XeF <sub>4</sub> is a polar molecule.                                                                                   |
|                                                                                                                                                                  | 6) Hybridization is the process of mixing atomic orbitals as atoms approach each other to form a bond.                     |
| 3) What are the three bond angles in the trigonal bipyramidal structure?                                                                                         | 7) Electrons in core orbitals contribute to atom bonding.                                                                  |
| <ul><li>4) Three molecules have similar electron domains, but different molecular shapes. Why?</li><li>5) The 1s hydrogen orbital overlaps with the</li></ul>    | 8) Nitrogen is colorless because the minimum energy to excite an electron is in the ultraviolet section of the spectrum.   |
| iodine orbital in HI.                                                                                                                                            | 9.5 Algorithmic Questions                                                                                                  |
| 6) A covalent bond in which overlap regions lie above and below an internuclear axis is called a(n)                                                              | 1) Using the VSEPR model, the electron-domain geometry of the central atom in BF <sub>3</sub> is                           |

| Chemistry, 11e (Brown/LeMay/Bursten/Murphy)<br>Chapter 9: Molecular Geometry and Bonding Theories |                                                        |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| A) linear                                                                                         | D) bent                                                |
| B) trigonal planar                                                                                | E) trigonal pyramidal                                  |
| C) tetrahedral                                                                                    |                                                        |
| D) trigonal bipyramidal                                                                           | 7) Using the VSEPR model, the molecular geometry       |
| E) octahedral                                                                                     | of the central atom in CF <sub>4</sub> is              |
| 2) Using the VSEPR model, the electron-domain                                                     |                                                        |
| geometry of the central atom in SF <sub>2</sub> is                                                | A) linear                                              |
| geometry of the central atom in Si <sup>2</sup> 18                                                | B) trigonal planar                                     |
| A) lincon                                                                                         | C) tetrahedral                                         |
| A) linear  P) trigonal planer                                                                     | D) bent E) triggered pyromidal                         |
| B) trigonal planar<br>C) tetrahedral                                                              | E) trigonal pyramidal                                  |
| D) trigonal bipyramidal                                                                           | 8) Using the VSEPR model, the molecular geometry       |
| E) octahedral                                                                                     | of the central atom in $SO_2$ is                       |
| 2) octanicarar                                                                                    | of the central atom in 50 <sub>2</sub> is              |
| 3) Using the VSEPR model, the electron-domain                                                     | A) linear                                              |
| geometry of the central atom in ClF <sub>3</sub> is                                               | B) trigonal planar                                     |
|                                                                                                   | C) tetrahedral                                         |
| A) linear                                                                                         | D) bent                                                |
| B) trigonal planar                                                                                | E) trigonal pyramidal                                  |
| C) tetrahedral                                                                                    |                                                        |
| D) trigonal bipyramidal                                                                           | 9) Using the VSEPR model, the molecular geometry       |
| E) octahedral                                                                                     | of the central atom in NCl <sub>3</sub> is             |
| 4) Using the VSEPR model, the electron-domain                                                     | A) linear                                              |
| geometry of the central atom in BrF <sub>4</sub> is                                               | B) trigonal planar                                     |
| g                                                                                                 | C) tetrahedral                                         |
| A) linear                                                                                         | D) bent                                                |
| B) trigonal planar                                                                                | E) trigonal pyramidal                                  |
| C) tetrahedral                                                                                    | , 6 17                                                 |
| D) trigonal bipyramidal                                                                           | 10) Using the VSEPR model, the molecular               |
| E) octahedral                                                                                     | geometry of the central atom in PF <sub>5</sub> is     |
| 5) Using the VSEPR model, the molecular geometry                                                  |                                                        |
| of the central atom in XeF <sub>2</sub> is                                                        | A) tetrahedral                                         |
| of the central atom in 7xer 2 is                                                                  | B) square planar                                       |
| A) linear                                                                                         | C) trigonal bipyramidal                                |
| B) trigonal planar                                                                                | D) seesaw                                              |
| C) tetrahedral                                                                                    | E) square pyramidal                                    |
| D) bent                                                                                           | 11) The hybrid orbital set used by the central atom in |
| E) trigonal pyramidal                                                                             |                                                        |
|                                                                                                   | $NO_3$ is                                              |
| 6) Using the VSEPR model, the molecular geometry                                                  | A) sp                                                  |
| of the central atom in BCl <sub>3</sub> is                                                        | B) $sp^2$                                              |
| A) linear                                                                                         | C) $sp^3$                                              |
| A) linear B) trigonal planar                                                                      | -) <sup>3</sup> P                                      |
| D) Iriyonai Dianar                                                                                | D) $sp^3d$                                             |

Chapter 9: Molecular Geometry and Bonding Theories

12) The hybrid orbital set used by the central atom in BF<sub>4</sub> is \_\_\_\_\_\_.

A) sp
B) sp<sup>2</sup>
C) sp<sup>3</sup>
D) sp<sup>3</sup>d
E) sp<sup>3</sup>d<sup>2</sup>

13) The hybrid orbital set used by the central atom in KrF<sub>2</sub> is \_\_\_\_\_.

A) sp
B) sp<sup>2</sup>
C) sp<sup>3</sup>

D)  $sp^3d$ E)  $sp^3d^2$ 

Chemistry, 11e (Brown/LeMay/Bursten/Murphy)