

Machine Learning

Chapter 5: Nearest Neighbor

Fall 2022

Instructor: Xiaodong Gu

The family of classification

Review: Decision Trees

Review: Bayes

Modeling the generation of data using probabilities?

have clear patterns of probabilistic distributions and dependences

Do we really need a model?

What if we directly use the data?

Today

Let's learn a super easy (naïve) method for classification.

K-Nearest Neighbor

A Simple Analogy...

• Tell me about your friends (who your neighbors are). Then I will tell you who you are.

K-Nearest Neighbors

Instance-based learning, also called lazy learning.

- simply stores the training instances without learning a model.
- whenever we have new data to classify, we find its K-nearest neighbors from the training data.

K-Nearest Neighbor (KNN) is a simple algorithm that stores all the available cases and classifies the new data or case based on a similarity measure.

K-NN Classification

- Classified by "MAJORITY VOTES" from neighbor classes.
- An object is classified to the most common class amongst its *k* nearest neighbors **measured by a "distance" function**

How to determine whether an object falls into the k-nearest neighbors?

Distance Measures

Euclidean Distance

欧几里得距离

$$D(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ represent the n attribute values of two records.

doesn't work well in high dimensions and for categorical variables because it ignores the similarity between attributes.

Distance Measures

• Manhattan Distance (a.k.a. city block distance)

$$D(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

Manhattan

$$|x_1 - x_2| + |y_1 - y_2|$$

Minkowski Distance

$$D\left(x,y
ight) = \left(\sum_{u=1}^{n}\left|x_{u}-y_{u}
ight|^{p}
ight)^{rac{1}{p}}$$

Distances

Example

point	х	У
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Euclidean Distance Matrix

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Normalization

• Standardize the range of independent variables (features of data)

Z-score normalization: rescale the data so that the mean is zero and the standard deviation from the mean (standard scores) is one.

$$x_{norm} = \frac{x - \mu}{\sigma}$$

min-max normalization: scale the data to a fixed range between 0 and 1.

$$x_{morm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Similarity vs. Distance

- Similarity: numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0, 1].
- Cosine Similarity

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \times ||\mathbf{b}||}$$

(x2, y2)
$$= \frac{(x_1, y_1) \cdot (x_2, y_2)}{\sqrt{x_1^2 + y_1^2} \times \sqrt{x_2^2 + y_2^2}}$$
 cos(d_1, d_2) =
$$\begin{cases} 1: \text{ exactly the same} \\ 0: \text{ orthogonal} \\ -1: \text{ exactly opposite} \end{cases}$$

$$= \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \times \sqrt{x_2^2 + y_2^2}}$$

$$\cos(d_1, d_2) = \begin{cases} 1: \text{ exactly the same} \\ 0: \text{ orthogonal} \\ -1: \text{ exactly opposite} \end{cases}$$

Quiz

$$cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$$

 $d_1 = [3 \ 2 \ 0 \ 5 \ 0 \ 0 \ 0 \ 2 \ 0 \ 0]$
 $d_2 = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 2]$

$$d_1 \cdot d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$| |d_1| | = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0) \mathbf{0.5} = (42)^{\mathbf{0.5}} = 6.481$$

$$| |d_1| | = (1*1+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) \mathbf{0.5} = (6)^{\mathbf{0.5}} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

The Algorithm

Algorithm

- 1. Determine parameter *K*
- 2. Choose a sample from the test data that needs to be classified and compute its distance to all the training examples.
- 3. Sort the distances obtained and take the k-nearest data samples.
- 4. Assign the test class to the class based on the majority vote of its k neighbors. (根据选出来的k个neighbor中占多数的那个class作为当前这个data sample的预测类型结果)

The Algorithm

Finding Neighbors & Voting for Labels

What is the best value of K to use?

Decision Boundary

Voronoi Tessellation (沃罗诺伊分割)

- Partition the space into areas that are nearest to any given point
- Boundary: points at the same distance from two different training examples.

Decision Boundary: boundaries that separates two different classes.

With large number of examples and possible noise in the labels, the decision boundary can become nasty!

Effect of K

- Larger *K* produces smoother boundary effect
- When K==N, always predict the majority class

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

Discussion: which model is better between *K*=1 and *K*=15? Why?

How to choose K?

- If K is too small, efficiency is increased but becomes susceptible to noise.
- Larger K works well. But too large K may include majority points from other classes, but risk of over-smoothing classification results

Try it yourself

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Pros and Cons

Advantages:

- Simple to understand, explain, and implement,
- No effort for training,
- New data can be added seamlessly without hampering the model accuracy

Pros and Cons

Disadvantages:

- Does not scale with large data sets (calculating distance is computationally expensive)
- Highly susceptible to the curse of dimensionality
- Large storage requirements
- Data normalization is required

Tutorial: KNN with Python

What's Next?

Logistic Regression

Classification by a discriminative function.

- Linear functions
- Differentiable!

