The structure of quasi-transitive graphs avoiding a minor with applications to the Domino Conjecture.

Louis Esperet*, Ugo Giocanti*, Clément Legrand-Duchesne*

*Université Grenoble Alpes, Laboratoire G-SCOP, France

*Université de Bordeaux, LaBRI, France

Séminaire GREYC, 2023

Wang tiling problem

Wang tiling problem

Image source:

https://commons.wikimedia.org/w/index.php?curid=12128873

Wang tiling problem

Theorem (Berger, '66)

The Wang tiling problem is undecidable.

Cayley graphs

$$\Gamma = < S >$$
: finitely generated group. Assume $S = S^{-1}$.

Cayley graphs

 $\Gamma=< S>$: finitely generated group. Assume $S=S^{-1}.\mathrm{Cay}(\Gamma,S)$ is the labelled graph with vertex set Γ and adjacencies xy for every $x,y\in\Gamma$ such that $y\in x\cdot S$.

Cay(
$$\mathbb{Z}^2$$
, S),
with $S = \{(1,0), (-1,0), (0,1), (0,-1)\}$


```
Fix (\Gamma, S). Pattern of \operatorname{Cay}(\Gamma, S): coloring p of \{1_{\Gamma}, s\} for some s \in S. p appears in a vertex-coloring of \operatorname{Cay}(\Gamma, S) if there is a pair (w, w \cdot s) colored p.
```

```
Fix (\Gamma, S).

Pattern of Cay(\Gamma, S): coloring p of \{1_{\Gamma}, s\} for some s \in S.
```

p appears in a vertex-coloring of $\operatorname{Cay}(\Gamma, S)$ if there is a pair $(w, w \cdot s)$ colored p.

Domino problem on (Γ, S) :

Input: a finite alphabet Σ and a finite set $\mathcal{F} = \{p_1, \dots, p_t\}$ of forbidden patterns.

Question: Is there a coloring $c:V(G)\to \Sigma$ avoiding \mathcal{F} ?

Fix (Γ, S) .

Pattern of Cay(Γ , S): coloring p of $\{1_{\Gamma}, s\}$ for some $s \in S$. p appears in a vertex-coloring of Cay(Γ , S) if there is a pair $(w, w \cdot s)$ colored p.

Fix (Γ, S) .

Pattern of $\operatorname{Cay}(\Gamma, S)$: coloring p of $\{1_{\Gamma}, s\}$ for some $s \in S$. p appears in a vertex-coloring of $\operatorname{Cay}(\Gamma, S)$ if there is a pair $(w, w \cdot s)$ colored p.

Free-groups: groups Γ that admit a tree as a Cayley graph.

Free-groups: groups Γ that admit a tree as a Cayley graph. Γ is virtually-free if it admits some subgroup of finite index which is free.

Free-groups: groups Γ that admit a tree as a Cayley graph. Γ is virtually-free if it admits some subgroup of finite index which is free.

Free-groups: groups Γ that admit a tree as a Cayley graph.

 Γ is virtually-free if it admits some subgroup of finite index which is free.

Theorem (Karass, Pietrowski, Solitar '73)

 Γ is virtually-free if and only if one/all its Cayley graphs have bounded treewidth.

<u>Claim</u>: If G has bounded degree, then G has bounded treewidth if and only if G is a subgraph of a k-blow up of a tree for some $k \ge 0$.

Free-groups: groups Γ that admit a tree as a Cayley graph.

 Γ is virtually-free if it admits some subgroup of finite index which is free.

Theorem (Karass, Pietrowski, Solitar '73)

 Γ is virtually-free if and only if one/all its Cayley graphs have bounded treewidth.

<u>Claim</u>: If G has bounded degree, then G has bounded treewidth if and only if G is a subgraph of a k-blow up of a tree for some $k \ge 0$.

Conjecture (Ballier-Stein 2018)

The domino problem on Γ is decidable if and only if Γ is virtually-free.

Minors (reminder)

A graph H is a minor of G if H can be obtained from G after performing the following operations:

- vertex deletions;
- edge deletions;
- edge contractions.

A group is planar if one of its Cayley graphs is planar.

A group is planar if one of its Cayley graphs is planar. [Maschke 1896] Exhaustive list of all the planar finite groups.

A group is planar if one of its Cayley graphs is planar. [Maschke 1896] Exhaustive list of all the planar finite groups. [Maskit 1965, Zieschang et al. 1980] Full characterization of planar groups.

A group is planar if one of its Cayley graphs is planar.
[Maschke 1896] Exhaustive list of all the planar finite groups.
[Maskit 1965, Zieschang et al. 1980] Full characterization of planar groups.
A group is minor excluded if one of its Cayley graphs excludes a (countable) minor.

A group is planar if one of its Cayley graphs is planar.

[Maschke 1896] Exhaustive list of all the planar finite groups.

[Maskit 1965, Zieschang et al. 1980] Full characterization of planar groups.

A group is minor excluded if one of its Cayley graphs excludes a (countable) minor.

Remark: G minor-excluded $\Leftrightarrow G$ is K_{∞} -minor free.

Domino Problem

Decidable on virtually-free groups;

[Berger 1966] Undecidable on \mathbb{Z}^2 ;

[ABM 2019] Undecidable on fundamental groups of surfaces.

Domino Problem

Decidable on virtually-free groups;

[Berger 1966] Undecidable on \mathbb{Z}^2 ;

[ABM 2019] Undecidable on fundamental groups of surfaces.

Theorem

The conjecture is true for planar groups and more generally for minor-excluding groups.

G: (connected) graph, countable vertex set, locally finite.

G: (connected) graph, countable vertex set, locally finite. G transitive (resp. quasi-transitive) if the action of $\operatorname{Aut}(G)$ on V(G) has one (resp. a finite number of) orbit.

G: (connected) graph, countable vertex set, locally finite.

G transitive (resp. quasi-transitive) if the action of $\operatorname{Aut}(G)$ on V(G) has one (resp. a finite number of) orbit.

G: (connected) graph, countable vertex set, locally finite.

G transitive (resp. quasi-transitive) if the action of $\operatorname{Aut}(G)$ on V(G) has one (resp. a finite number of) orbit.

G: (connected) graph, countable vertex set, locally finite.

G transitive (resp. quasi-transitive) if the action of $\operatorname{Aut}(G)$ on V(G) has one (resp. a finite number of) orbit.

G: any graph, components C_1, C_2, \ldots

G: any graph, components C_1, C_2, \ldots

G: connected graph.

G: connected graph.

Robertson-Seymour structure theorem

[Robertson-Seymour '03] "If a finite graph G excludes some minor H, then there exists some $g_H\geqslant 0$ such that G has a tree-decomposition where each torso almost embeds in a surface of genus g_H ."

Robertson-Seymour structure theorem

[Robertson-Seymour '03] "If a finite graph G excludes some minor H, then there exists some $g_H\geqslant 0$ such that G has a tree-decomposition where each torso almost embeds in a surface of genus g_H ."

[Diestel-Thomas '99]: "Extends to infinite graphs excluding some finite minor."

Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G.

Theorem (finite/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most k whose torsos are either finite or quasi-transitive 3-connected planar minors of G. Moreover, E(T) has finitely many $\operatorname{Aut}(G)$ -orbits.

Theorem (finite treewidth/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar.

Theorem (finite treewidth/planar)

Let G be a quasi-transitive locally finite graph excluding K_{∞} as a minor. Then there is an integer k such that G admits a canonical tree-decomposition (T,\mathcal{V}) , of adhesion at most 3 whose torsos are quasi-transitive minors of G and have either treewidth at most k or are 3-connected planar. Moreover, E(T) has finitely many $\operatorname{Aut}(G)$ -orbits.

A graph application

Corollary

For every locally finite quasi-transitive graph G avoiding K_{∞} as a minor, there is an integer k such that G is K_k -minor-free.

Generalizes [Thomassen '92] dealing with the 4-connected case.

Conclusion

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

Conclusion

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

Questions:

- A quasi-transitive graphical reformulation of Domino's conjecture?
- If G is quasi-transitive, is there a proper colouring of G with a finite number of colours such that the colored graph G is quasi-transitive?

Conclusion

- Prove results on groups by working in the more general world of quasi-transitive graphs.
- Key tool: canonicity (allows to do induction in the context of tree-decompositions).

Questions:

- A quasi-transitive graphical reformulation of Domino's conjecture?
- If G is quasi-transitive, is there a proper colouring of G with a finite number of colours such that the colored graph G is quasi-transitive?

Thanks

G is k+1-connected if $|V| \ge k+1$ and for every set X of at most k vertices, $G \setminus X$ is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order 3 separate exactly 2 components, and one of them have size 1.

G is k+1-connected if $|V| \ge k+1$ and for every set X of at most k vertices, $G \setminus X$ is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order 3 separate exactly 2 components, and one of them have size 1.

4-connected \Rightarrow quasi-4-connected \Rightarrow 3-connected \Rightarrow 2-connected

G is k+1-connected if $|V| \ge k+1$ and for every set X of at most k vertices, $G \setminus X$ is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order 3 separate exactly 2 components, and one of them have size 1.

Try to combine the following two results:

Theorem (Thomassen '92)

Let G be a quasi-transitive, quasi-4-connected, locally finite graph which excludes K_{∞} as a minor. Then G is planar or has finite treewidth.

G is k + 1-connected if $|V| \ge k + 1$ and for every set *X* of at most *k* vertices, $G \setminus X$ is connected.

G is quasi-4-connected if it is 3-connected and the only vertex-cuts of order 3 separate exactly 2 components, and one of them have size 1.

Try to combine the following two results:

Theorem (Thomassen '92)

Let G be a quasi-transitive, quasi-4-connected, locally finite graph which excludes K_{∞} as a minor. Then G is planar or has finite treewidth.

In this case there is nothing to decompose!

Theorem (Grohe '16)

Every finite 3-connected graph G has a tree-decomposition of adhesion at most 3 whose torsos are minor of G and are complete graphs on at most 4 vertices or quasi-4-connected graphs.

Theorem (Grohe '16)

Every finite 3-connected graph G has a tree-decomposition of adhesion at most 3 whose torsos are minor of G and are complete graphs on at most 4 vertices or quasi-4-connected graphs.

Bad news: only applies to finite graphs and no canonicity.

Application: Finite presentability.

Theorem (Droms '06)

Planar groups are finitely presented.

Application: Finite presentability.

Theorem (Droms '06)

Planar groups are finitely presented.

Corollary

Every minor-excluding finitely generated group Γ is finitely presented.

Proof based on the approach of [Hamann '18]

Accessibility: first defined in the context of groups.

A ray in a graph G is an infinite path $r = (x_1, x_2, x_3, ...)$.

 $r \simeq r'$ iff for every finite $S \subseteq V(G)$, there is an inifinite component of G containing an infinite subpath of both r and r'.

An end ω is a class of equivalence of rays in a graph.

 ω and ω' are k-distinguishable if there exist $S \subseteq V(G)$ of size at most k separating all their rays.

Accessibility: first defined in the context of groups.

A ray in a graph G is an infinite path $r = (x_1, x_2, x_3, ...)$.

 $r \simeq r'$ iff for every finite $S \subseteq V(G)$, there is an inifinite component of G containing an infinite subpath of both r and r'.

An end ω is a class of equivalence of rays in a graph.

 ω and ω' are k-distinguishable if there exist $S \subseteq V(G)$ of size at most k separating all their rays.

G is accessible if there exists $k \in \mathbb{N}$ such that every two distinct ends are k-distinguishable.

[Woess '87] Locally finite quasi-transitive bounded treewidth graphs are accessible.

[Woess '87] Locally finite quasi-transitive bounded treewidth graphs are accessible.

[Dunwoody '07] Locally finite quasi-transitive planar graphs are accessible.

[Woess '87] Locally finite quasi-transitive bounded treewidth graphs are accessible.

[Dunwoody '07] Locally finite quasi-transitive planar graphs are accessible.

Corollary

Locally finite quasi-transitive graphs that exclude K_{∞} as a minor are accessible.