j 1.5 分炔矩阵

在矩阵运算中,重要运算技巧; 分块矩阵 把大型矩阵问题转化为小型矩阵问题; 矩阵分块是许多理论推导的有力工具.

- 一、分块矩阵的定义
- 二、分块矩阵的运算
- 三、分块矩阵的秩的性质

$$A = \begin{bmatrix} 1 & 0 & 0 & 3 & 2 \\ 0 & 1 & 0 & -5 & 1 \\ 0 & 0 & 1 & 2 & 4 \\ \hline 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \qquad A_{11} = I_3, \quad A_{12} = \begin{bmatrix} 3 & 2 \\ -5 & 1 \\ 2 & 4 \end{bmatrix},$$

$$A_{21} = 0_{2\times 3}, \quad A_{22} = 2I_2$$

$$= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I_3 & A_{21} \\ 0_{2\times 3} & 2I_2 \end{bmatrix}$$

一、分块矩阵的定义

定义1.5.1 设 $A \neq m_i$ n 矩阵,在 A 的行之间加入 s-1 条横线 $(1 \leqslant s \leqslant m)$,在 A 的列之间加入 t-1 条竖线 $(1 \leqslant t \leqslant n)$,则 A 被分成 $s \times t$ 个小矩阵,依次记为

$$A_{ii}$$
 ($i = 1, 2, \dots, s; j = 1, 2, \dots, t$)

此时, A可写为

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ & \cdots & \cdots \\ A_{s1} & A_{s2} & \cdots & A_{st} \end{bmatrix}$$

把 A 视为以 A_{ij} 为元素的形式上的 s_i t 矩阵 称之为分块矩阵,也称为对 A 的分块,每个小矩阵 A_{ii} 称为 A 的子块。

常见分块: (1) 根据元素的排列特性;

- (2) 按行(列);
- (3) 两个极端。

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} A_{11} & I_3 \\ 0 & A_{22} \end{pmatrix}_{2 \times 2}$$

$$\not \sharp \, \, \psi \quad A_{11} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \quad A_{22} = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 2 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix}_{4 \times 1}$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} = [\beta_1, \beta_2, \beta_3, \beta_4]_{1 \times 4}$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} [1] & [1] & [0] & [0] \\ [0] & [0] & [1] & [0] \\ [2] & [0] & [0] & [1] \\ [0] & [1] & [0] & [1] \end{pmatrix}_{4 \times 4}$$

$$A = [A]_{1 \times 1}$$

注: 这两种极端情况通常不写成分块矩阵的形式.

问题 如何分块, 使

- (1) 分块矩阵之间的形式运算有意义?
- (2) 块与块之间的矩阵运算有意义?

二、分块矩阵的运算

1. 分块矩阵的线性运算

(1) 加减法:设矩阵A与B的行数相同,列数相同,采用相同的分块法,有

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & & \vdots \\ A_{s1} & \cdots & A_{sr} \end{bmatrix}, B = \begin{bmatrix} B_{11} & \cdots & B_{1r} \\ \vdots & & \vdots \\ B_{s1} & \cdots & B_{sr} \end{bmatrix}$$

其中 A_{ii} 与 B_{ii} 的行数相同,列数相同,那么

$$A \pm B = \begin{pmatrix} A_{11} \pm B_{11} & \cdots & A_{1r} \pm B_{1r} \\ \vdots & & \vdots \\ A_{s1} \pm B_{s1} & \cdots & A_{sr} \pm B_{sr} \end{pmatrix}.$$

(2)数乘 设 $A = \begin{pmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & & \vdots \\ A_{s1} & \cdots & A_{sr} \end{pmatrix}$, λ 为数,那末

$$\lambda A = \begin{pmatrix} \lambda A_{11} & \cdots & \lambda A_{1r} \\ \vdots & & \vdots \\ \lambda A_{r1} & \cdots & \lambda A_{rr} \end{pmatrix}.$$

2. 转置

设
$$A = \begin{pmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & & \vdots \\ A_{s1} & \cdots & A_{sr} \end{pmatrix}$$
,则 $A^T = \begin{pmatrix} A_{11}^T & \cdots & A_{s1}^T \\ \vdots & & \vdots \\ A_{1r}^T & \cdots & A_{sr}^T \end{pmatrix}$.

即
$$A^T = \begin{pmatrix} A_{11}^T & \cdots & A_{s1}^T \\ \vdots & & \vdots \\ A_{1r}^T & \cdots & A_{sr}^T \end{pmatrix}$$
. 块转

注: 分块矩阵的转置时,不但要将行列互换,而且行列互换后的各子矩阵都应转置.

3. 乘法

设A为 $m \times l$ 矩阵,B为 $l \times n$ 矩阵,分块成

$$A = \begin{pmatrix} A_{11} & \cdots & A_{1t} \\ \vdots & & \vdots \\ A_{s1} & \cdots & A_{st} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & \cdots & B_{1r} \\ \vdots & & \vdots \\ B_{t1} & \cdots & B_{tr} \end{pmatrix},$$

其中 A_{i1} , A_{i2} ,…, A_{ii} 的列数分别等于 B_{1i} , B_{2i} ,…, B_{ii}

的行数,那么
$$AB = \begin{pmatrix} C_{11} & \cdots & C_{1r} \\ \vdots & & \vdots \\ C_{s1} & \cdots & C_{sr} \end{pmatrix}$$

其中
$$C_{ij} = \sum_{k=1}^{t} A_{ik} B_{kj}$$
 $(i = 1, \dots, s; j = 1, \dots, r).$

注意:

- 1) 左矩阵的列组数=右矩阵的行组数:
- 左矩阵的每个列组所含列数
 右矩阵的相应行组所含的行数;

即:左矩阵列的分法与 右矩阵行的分法完全一致

3) 实施分块矩阵乘法运算时,左矩阵的 子矩阵依然在左边,右矩阵的子矩阵依然 在右边,不可交换。

例1.5.1 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 1 \\ -1 & -1 & 2 & 0 \end{pmatrix},$$
求 AB.
$$解 \quad PA, B \rightarrow PR$$

$$AA = \begin{pmatrix} 11 & 0 & 0 & 0 \\ 0 & 11 & 0 & 0 \\ -11 & 22 & 11 & 0 \\ 11 & 11 & 00 & 1 \end{pmatrix} = \begin{pmatrix} I & O \\ A_1 & I \end{pmatrix},$$

$$B = \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ \hline 1 & 0 & 4 & 1 \\ -1 & -1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} B_{11} & I \\ B_{21} & B_{22} \end{bmatrix}$$

$$AB = \begin{bmatrix} I & O \\ A_1 & I \end{bmatrix} \begin{pmatrix} B_{11} & I \\ B_{21} & B_{22} \end{pmatrix}$$

$$= \begin{bmatrix} B_{11} & I \\ A_1 B_{11} + B_{21} & A_1 + B_{22} \end{bmatrix}.$$

例1.5.2 已知 m_i n矩阵A, 则对 n_i p矩阵B, 等式 AB=0 成立的充分必要条件为: B的p个列恰是齐次 线性方程组 AX=0 的p个解。 证明 对B 按列分块 B=[B_1 , B_2 , i , B_p],则 AB=[A][B_1 , B_2 , \cdots , AB_p] = [AB_1 , AB_2 , \cdots , AB_p]

 $\Leftrightarrow AB_1=0, \quad AB_2=0, \quad \cdots, \quad AB_p=0$ 即 $B_1, B_2, \quad i \quad B_p$ 是齐次线性方程组 AX=0 的解。

例1.5.3 设A是n阶方阵。若存在n 阶非零方阵B,使 AB=0

则A是降秩矩阵。

证明 由上例的结论知,**B**的每个列均是齐次线性方程组

$$AX = 0$$

的解。因 $B \neq 0$,故 $B \subseteq 0$ 有一列的元素不全为零,该列即是上述齐次方程组的非零解。于是,由前面的定理可得,A不可逆。所以,秩(A) < n。

推广 已知 m_i n矩阵A,则对 n_i p矩阵B,等式 AB=C 成立的充分必要条件为:B的p个列恰是非齐 次线性方程组 $AX=C_i$ $j=1,2,\cdots,p$

的p个解。其中 C_1,C_2,\cdots,C_n 为矩阵C的p个列。

证明 对 B 按列分块 $B=[B_1,B_2,i,B_p]$,则

$$AB = [A][B_1, B_2, \dots, B_p]$$

$$= [AB_1, AB_2, \dots, AB_p]$$

$$= [C_1, C_2, \dots, C_p]$$

$$\Leftrightarrow AB_1 = C_1, \quad AB_2 = C_2, \quad \dots, \quad AB_p = C_p$$

即 B_1, B_2, i , B_p 是非齐次线性方程组 $AX = C_j$, $j = 1, 2, \cdots, p$ 的解。

特例:
$$\begin{bmatrix} A & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & B^{-1} \end{bmatrix}$$
例1.5.4设 $A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{pmatrix}$, 求 A^{-1} .

解 $A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} A_1 & O \\ O & A_2 \end{pmatrix}$,
$$A_1 = (5), \quad A_1^{-1} = \begin{pmatrix} \frac{1}{5} \end{pmatrix}$$
;

$$A_{2} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}, \quad A_{2}^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix};$$

$$\therefore \quad A^{-1} = \begin{pmatrix} A_{1}^{-1} & O \\ O & A_{2}^{-1} \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -2 & 3 \end{pmatrix}.$$
类似地,我们有:
$$\begin{pmatrix} A \\ B \end{pmatrix}^{-1} = \begin{pmatrix} B^{-1} \\ A^{-1} \end{pmatrix}$$
思考:
$$\begin{pmatrix} A \\ C \end{pmatrix}^{-1} = ? \begin{pmatrix} A_{1} \\ A_{2} \\ A_{3} \end{pmatrix}^{-1} = ?$$

$$T = \begin{bmatrix} C & D \end{bmatrix}$$

可逆,其中 A 、 D 是可逆的子块,求 T^{-1}
证明 已知 T 可逆,故 T^{-1} 存在。
根据 T ,对 T^{-1} 分块
 $T^{-1} = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}$
其中 X_1 , X_4 是分别与 A 、 D 同型的子块。

例1.5.5 已知分块矩阵

因为
$$TT^{-1} = \begin{bmatrix} A & \mathbf{0} \\ C & D \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}$$

$$= \begin{bmatrix} AX_1 & AX_2 \\ CX_1 + DX_3 & CX_2 + DX_4 \end{bmatrix}$$

$$= I = \begin{bmatrix} I_s & \mathbf{0} \\ \mathbf{0} & I_t \end{bmatrix}$$
 其中 I_s 、 I_t 是分别与 A 、 D 同型的单位子块

$$AX_1 = I_s$$
, $AX_2 = 0$, $CX_1 + DX_3 = 0$, $CX_2 + DX_4 = I_t$ 由此解出 $X_1 = A^{-1}$, $X_2 = 0$, $X_3 = -D^{-1}CA^{-1}$, $X_4 = D^{-1}$ 于是 $T^{-1} = \begin{bmatrix} A^{-1} & 0 \\ -D^{-1}CA^{-1} & D^{-1} \end{bmatrix}$ 类似可得:
$$\begin{bmatrix} A & C \\ 0 & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}CD^{-1} \\ 0 & D^{-1} \end{bmatrix}.$$

三、分块矩阵的秩的性质

(1) 秩
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \ge 秩(A)$$

$$(2) \quad \Re \begin{bmatrix} A & 0 \\ C & B \end{bmatrix} \ge \Re \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$

(3) 秩
$$\begin{bmatrix} A & O \\ O & B \end{bmatrix} = 秩(A) + 秩(B)$$

(4) 秩
$$\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} = \mathcal{R}(A) + \mathcal{R}(B)$$

(5)

 \overrightarrow{A} A B 都满秩,则分块矩阵 $\begin{bmatrix} A & \mathbf{0} \\ \mathbf{C} & \mathbf{B} \end{bmatrix}$ 与 $\begin{bmatrix} A & \mathbf{C} \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$ 都满秩.

关于矩阵的秩我们有如下重要结论.

定理1.5.2 (1) 设A与B是同型矩阵,则

秩(A+B) \leq 秩(A)+秩(B);

熟记!

(2) 设A是 s_i n矩阵,B是 n_i t 矩阵,则

 $\mathcal{H}(AB)$ \geqslant $\mathcal{H}(A)$ + $\mathcal{H}(B)$ -n.

证明 (1) 构造分块矩阵 $T_1 = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$

则由分块矩阵的性质(3),得

$$r(T_1) = r(A) + r(B).$$

I的阶数等于A的行数,

又
$$\begin{bmatrix} I & I \\ 0 & I \end{bmatrix}$$
满秩,所以 $r(T_2) = r(T_1)$.

再令 $T_3 = \begin{bmatrix} A & B \\ 0 & B \end{bmatrix} \begin{bmatrix} I & 0 \\ I & I \end{bmatrix} = \begin{bmatrix} A+B & B \\ B & B \end{bmatrix}$

I的阶数等于A的列数,

又
$$\begin{bmatrix} I & 0 \\ I & I \end{bmatrix}$$
满秩,所以 $r(T_3) = r(T_2)$.

由性质(1),有 $r(T_3) \ge r(A+B)$,

所以有 $r(A+B) \le r(T_3) = r(T_2) = r(T_1) = r(A) + r(B)$.

(2) 构造分块矩阵
$$S_1 = \begin{bmatrix} A & 0 \\ -I & B \end{bmatrix}$$

I为n阶单位矩阵,由性质(2)(3),得

$$r(S_1) \ge r \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = r(A) + r(B)$$

$$S_3 = \begin{bmatrix} 0 & AB \\ -I & B \end{bmatrix} \begin{bmatrix} I & B \\ 0 & I \end{bmatrix} = \begin{bmatrix} 0 & AB \\ -I & 0 \end{bmatrix}$$

则我们有 $r(S_1) = r(S_2) = r(S_3)$, 由性质(4)得

$$r(S_3) = r(AB) + r(-I) = r(AB) + n$$

所以
$$r(A) + r(B) \le r(S_1) = r(S_3) = r(AB) + n$$

 $\mathbb{F}^{p} \quad r(AB) \geq r(A) + r(B) - n.$

推论 设 $A = S_i$ n矩阵, $B = n_i$ t矩阵。若 AB = 0,则

秩(A)+秩(B) $\leq n$.

四、小结

在矩阵理论的研究中,矩阵的分块是一种最基本,最重要的计算技巧与方法.

分块矩阵之间的运算

分块矩阵之间与一般矩阵之间的运算性质类似

- (1) 加法 同型矩阵,采用相同的分块法
- (2) 数乘 数k乘矩阵A,需k乘A的每个子块

(4) 转置
$$A = \begin{pmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & & \vdots \\ A_{s1} & \cdots & A_{sr} \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} A_{11}^T & \cdots & A_{s1}^T \\ \vdots & & \vdots \\ A_{1r}^T & \cdots & A_{sr}^T \end{pmatrix}$$

(5) 分块矩阵的逆

$$\begin{bmatrix} A & \\ & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & \\ & B^{-1} \end{bmatrix} \qquad \begin{bmatrix} & A \end{bmatrix}^{-1} = \begin{bmatrix} & B^{-1} \\ A^{-1} & \end{bmatrix}$$

(6) 矩阵的秩的相关结论 ----自行归纳总结

要求: 熟练掌握矩阵分块的有关理论和方法.

作业 习题一(P79): 43(1)、45、46 (42; 47题均可作为练习)