BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

| 1850|| BENEVER AN RELEASE FROM BENEVER FROM 1861 | 1861 | 1861 | 1865 | 1865 | 1865 | 1865 | 1865 | 1865 | 1

(43) International Publication Date 22 April 2004 (22.04.2004)

PCT

(10) International Publication Number WO 2004/033196 A2

(51) International Patent Classification⁷: F41H 5/04

B32B 15/14,

(21) International Application Number:

PCT/US2003/031964

(22) International Filing Date: 9 October 2003 (09.10.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/417,596 10 October 2002 (10.10.2002) US 10/287,929 5 November 2002 (05.11.2002) US

- (71) Applicant: HONEYWELL INTERNATIONAL INC. [US/US]; 101 Columbia Road, P.O. Box 2245, Morristown, NJ 07960 (US).
- (72) Inventors: NGUYEN, Huy, X.; 5508 Fiddlers Ridge Lane, Midlothian, VA 23112 (US). DICKSON, Larry; 341 Glyntawel Drive, Granville, OH 43023 (US).
- (74) Agents: HOIRIIS, David, Esq. et al., HONEYWELL INTERNATIONAL INC., 101 Columbia Road, P.O. Box 2245, Morristown, NJ 07960 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, BE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, QQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BALLISTIC RESISANT AND FIRE RESISTANT COMPOSITE ARTICLES

(57) Abstract: Ballistically resistant and fire resistant composite articles for aircraft interiors and other applications. Composite articles are provided having a flexural modulus of at least about 80,000 lbs/sq. in (552 MPa), a flexural strength at yield of at least about 800 lbs/sq. in. (5.52 MPa), an areal density of about 0.9 lb/ft² (4.40 kg/m²) to about 1.5 lb/ft² (5.86 kg/m²), a fire resistance meeting the requirements of §25.853 Title 14 of the United States Code, Jan. 1, 2002, and a V0 velocity of at least about 1430 ft/sec (427 m/s) when tested by United States Federal Aviation Administration Advisory Circular 25.795.2, 10 Jan. 2002, using .44 Magnum Jacketed Hollow Point (JHP) bullets of 240 grains (15.6 g) mass and using 9 mm Full Metal Jacketed, Round Nose (FMJ RN) bullets of 124 grains (8.0 g) mass.

14/033196 A2

BALLISTIC RESISTANT AND FIRE RESISTANT COMPOSITE ARTICLES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to ballistically resistant and fire resistant composite articles, more particularly, for use in aircraft interiors, as well as other applications.

2. Description of the Related Art

Materials used in aircraft compartment interiors are regulated by Title 14 of the Code of Federal Regulations, Part 25. Until recently, the principal concern relating to such materials was fire resistance. However, in the wake of the aircraft hijackings of September 11, 2001, by suicidal terrorists, protection against threats of other kinds has become a heightened concern. Principal among those concerns is security of the pilots and cockpit against firearms. A need exists for lightweight materials, for use in cockpit doors, that are resistant to penetration by handgun ammunition, and which also maintain current standards of fire resistance.

Fire resistant materials for aircraft interiors have been described in USP's 4,780,359; 5,175,198; 5,714,419 and 5,972,512. USP 6,044,605 describes a door construction that, "...can be made with fire-resistant and ballistic-resistant materials...".

USP 3,934,066 describes a fire-retardant laminate system suitable for application to a combustible or heat sensitive substrate comprising a flexible protective layer, and an intumescent layer comprising a porous cellulosic sheet material impregnated with an intumescent composition. The flexible protective layer may be a metal foil.

Materials possessing both fire resistance and ballistic resistance have been described in USP's 4,822,439; 4,842,923; 4,929,651; 5,167,876; 5,215,813 and 5,480,706.

USP's 4,822,439 and 4,929,651 describe composites comprising about 60% to about 75% by weight of woven magnesia aluminosilicate

20

25

15

5

10

WO 2004/033196

fiberglass roving impregnated with calcium hydroxide and an isophthalic thermoset polyester.

USP's 4,842,923 and 5,167,876, describe composites comprising a plurality of layers of a balanced interlaced magnesia aluminosilicate glass fiber fabric in a matrix of a cured phenol formaldahyde resin having an areal density of at least 2.5 pounds per square foot.

USP 5,167,876, describes a composite comprising two or more layers, at least one of the layers being a network of fibers in a matrix and at least one of the layers being a fire retardant layer having endothermic properties on exposure to heat.

10

15

20

25

30

USP 5,480,706, describes a composite comprising a plurality of alternating first and second plies wherein the first ply comprises a network of high strength flammable fibers in a first matrix and the second ply comprises a network of fire resistant organic or inorganic fibers in a fire resistant matrix.

Each of the composite articles cited above represented progress toward the goals to which it was directed. However, none described the specific constructions of the present invention and none satisfied all of the needs met by this invention.

These earlier composite articles had the principal disadvantage of being largely comprised of relatively dense inorganic materials such as glass fibers. Such materials are not ideal for aircraft interiors where excess weight translates into unnecessary and costly fuel consumption. On the other hand, composite densities can be too low and take up excessive space. A need exists for composite materials exhibiting strength, toughness, ballistic resistance, and fire resistance combined with useful density.

SUMMARY OF THE INVENTION

The invention provides composite articles exhibiting strength, toughness, ballistic resistance, fire resistance and useful density in heretofore unknown combination. A composite of the invention has a flexural modulus of at least about 80,000 lbs/sq. in (552 MPa), a flexural strength at yield of at least about 800 lbs/sq. in (5.52 MPa), an areal density of about 0.9 lb/ft² (4.40 kg/m²)

WO 2004/033196 PCT/US2003/031964

to about 1.5 lb/ft² (5.86 kg/m²), fire resistance meeting the requirements of Title 14 of the United States Code, §25.853, Jan. 1, 2002, and V0 velocity at least about 1430 ft/sec (427 m/s) when tested by United States Federal Aviation Administration (FAA) Advisory Circular 25.795.2, 10 Jan. 2002, using .44 Magnum Jacketed Hollow Point (JHP) bullets of 240 grains (15.6 g) mass and using 9 mm Full Metal Jacketed, Round Nose (FMJ RN) bullets of 124 grains (8.0 g) mass.

In one embodiment a composite article of the invention is comprised of a plurality of plies, wherein a first ply is comprised of a metal foil, a second ply is comprised of a fire retardant bonding material and a third ply is comprised of a plurality of layers, each of said layers comprising a network of flammable polymeric fibers in a matrix, said polymeric fibers having a tenacity of at least about 17 g/denier, a tensile modulus of at least about 500 g/denier and an energy-to-break of at least about 20 Joules/g.

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

The invention provides composites exhibiting strength, toughness, ballistic resistance, fire resistance and low density in heretofore unknown combination. A composite article of the invention has a flexural modulus of at least about 80,000 lbs/sq. in (552 MPa), a flexural strength at yield of at least about 800 lbs/sq. in (5.52 MPa), an areal density of about 0.9 (4.40 kg/m²) to about 1.5 lb/ft² (5.86 kg/m²), fire resistance meeting the requirements of Title 14 of the United States Code, §25.853, Jan. 1, 2002, and a V0 velocity at least about 1430 ft/sec (427 m/s) when tested by United States Federal Aviation Administration Advisory Circular 25.795.2, 10 Jan. 2002, using .44 Magnum Jacketed Hollow Point (JHP) bullets of 240 grains (15.6 g) mass and using 9 mm Full Metal Jacketed, Round Nose (FMJ RN) bullets of 124 grains (8.0 g) mass.

The flexural modulus (modulus of elasticity in bending) and the flexural strength at yield of a composite of the invention are measured by American Society of Testing and Materials (ASTM) Standard Test Method ASTM D790-00.

WO 2004/033196 PCT/US2003/031964

Title 14 USC §25.853 sets forth the flammability standards for aircraft compartment interiors. Materials for interior partitions must meet the test requirements prescribed in Appendix F, Parts I, IV and V.

14 USC §25.853, Appendix F, Part I(a)1(i) specifies that partition materials must be self-extinguishing when tested vertically. Specimens to be tested must be at least 2 inches (5 cm) wide, 12 inches (30 cm) long and no thicker than the minimum thickness to be qualified for use in aircraft. A minimum of three specimens must be tested and results averaged. The specimen is exposed to the flame of a Bunsen or Tirrill burner with a minimum flame temperature of 1550°F (843°C). The flame is applied to the centerline of the lower edge of the specimen for 60 seconds and then removed. Average flame time after removal of the flame source may not exceed 15 seconds. The average burn length may not exceed 6 inches (15 cm). Drippings from the test specimen, if any, may not continue to flame for more than an average of 3 seconds after falling.

release rate from cabin materials exposed to radiant heat in a specially designed test chamber. Specimens are exposed to a radiant heat source adjusted to produce on the specimen, a total heat flux of 3.4 Watts/cm² over a five minute test duration. Test specimens are 5.91 in. X 5.91 in. (14.9 cm X 14.9 cm) and of the same thickness as to be used in aircraft. The specimen is tested with the exposed surface vertical. Combustion products leaving the test chamber are monitored to calculate the heat release rate. The total positive heat release over the first two minutes of exposure for each of the three or more samples are averaged, and the peak heat release rates for the samples are averaged. The average peak heat release rate must not exceed 65 kW/m². If melting, sagging, delamination, or other behavior that affects the exposed surface area or the mode of burning occurs, these behaviors must be reported together with the time at which such behaviors were observed.

14 USC §25.853, Appendix F, Part V specifies the maximum smoke emission characteristics of cabin materials and refers to ASTM F814-83 for details of the test procedure. A minimum of three specimens must be tested and

30

25

5

10

15

20

10

15

25

30

results averaged. Test specimens 3 X 3 inches (7.62 X 7.62 cm) are mounted in a vertical orientation within a specially designed chamber. An electrically heated radiant-energy source produces an irradiance level of 2.2 BTU/s-ft² (2.5 W/cm²) averaged over the 1.5 inch (3.81 cm) diameter central area of the specimen. A six-tube burner is used to apply a row of equidistant flames across the lower edge of the exposed specimen area. The specific optical smoke density (Ds) obtained after 1.5 minutes and 4 minutes, as well as the maximum value of optical smoke density DsMax and the DsMax time are recorded. The average DsMax must not exceed 200.

The V0 velocity of a composite is the maximum velocity at which a specified projectile will not penetrate the composite. The V0 velocity of a composite of the invention is determined by the test procedures of United States FAA AC 25.795.2, 10 Jan. 2002, using .44 Magnum JHP bullets of 240 grains (15.6 g) mass and using 9 mm FMJ RN bullets of 124 grains (8.0 g) mass.

The velocity of the projectile is measured by lumiline screens along the path of the projectile. The test panel is mounted normal to the path of the projectile for four shots and also 30° off the normal for two shots with each projectile. The V0 velocity is determined by varying the propellant charge so as to cause complete and partial penetrations of the test panel at each impingement angle. The V0 velocity is the highest partial penetration velocity. A composite of the invention has a V0 velocity at least about 1430 ft/sec (427 m/s) when tested using .44 Magnum JHP bullets of 240 grains (15.6g) mass and when using 9 mm FMJ RN bullets of 124 grains (8.0g) mass.

In one embodiment a composite article of the invention is comprised of a plurality of plies bonded together, wherein a first ply is comprised of a metal foil, a second ply is comprised of a fire retardant bonding material and a third ply is comprised of a plurality of layers, each of said layers comprising a network of flammable polymeric fibers in a matrix, said polymeric fibers having a tenacity of at least about 17 g/denier, a tensile modulus of at least about 500 g/denier and an energy-to-break of at least about 20 Joules/g.

In another embodiment, a composite article of the invention is comprised of a plurality of plies bonded together, wherein a first ply is

10

15

25

30

comprised of a metal foil, a second ply is an intumescent resinous composition, a third ply is comprised of a fire retardant bonding material, and a fourth ply is comprised of a plurality of layers, each of said layers comprising a network of flammable polymeric fibers in a matrix, said polymeric fibers having a tenacity of at least about 17 g/denier, a tensile modulus of at least about 500 g/denier and an energy-to-break of at least about 20 Joules/g.

Preferably, a composite article of the invention possesses a symmetric ply structure with the central ply being comprised of the network of flammable polymeric fibers in a matrix. In one preferred embodiment, the composite article is comprised of five plies bonded together, wherein the first and fifth plies are comprised of a metal foil, the second and fourth plies are comprised of a fire retardant bonding material and the central third ply is comprised of a network of flammable polymeric fibers in a matrix, said polymeric fibers having a tenacity of at least about 17 g/denier, a tensile modulus of at least about 500 g/denier and an energy-to-break of at least about 20 Joules/g.

In another preferred embodiment, the composite article is comprised of seven plies bonded together, wherein the first and seventh plies are comprised of a metal foil, the second and sixth plies are an intumescent resinous composition, the third and fifth plies are a fire retardant bonding material and the central fourth ply is comprised of a network of flammable polymeric fibers in a matrix, said polymeric fibers having a tenacity of at least about 17 g/denier, a tensile modulus of at least about 500 g/denier and an energy-to-break of at least about 20 Joules/g.

The plies in each embodiment are assembled and bonded together. Preferably the plies are bonded under heat and pressure. Preferably, the bonding is conducted at temperature of about 100°C to about 150°C at a pressure of about 15 psi (103 kPa) to about 5,000 psi (34,475 kPa) for a time sufficient to bond the plies. More preferably, the bonding is conducted at a temperature of about 120°C to about 130°C and at a pressure of about 50 psi (345 kPa) to about 200 psi (1,380 kPa), for a time period of about 30 minutes.

Preferably, the metal foil in each embodiment is aluminum having a thickness from about 0.0005 inch (12.7 micrometers) to about 0.005 inches

(127 micrometers). More preferably, the metal foil is aluminum having a thickness from about 0.001 (25.4 micrometers) to about 0.003 inch (76.2 micrometers).

. 5

10

15

Preferably, the fire resistant bonding material is comprised of at least 10% by weight of a polymeric material selected from the group consisting of thermoplastics and thermosets. Thermoplastic polymers useful in the bonding material of the invention include, but are not restricted to: polyolefins, polydienes, polyesters, polyamides, vinyl polymers, ionomers, acrylics, acrylates, polysulfones, polyphenylene oxide, acetals, silicones, thermoplastic polyurethanes, thermoplastic polyimides, polyketones, and copolymers and halogenated derivatives thereof. Useful thermoset polymers include, but are not restricted to: phenolic polymers, melamine polymers, epoxies, silicones, unsaturated polyesters, and thermosetting polyurethanes.

The polymeric portion of the fire retardant bonding material may be intrinsically fire resistant or it may be rendered fire retardant by admixture with a fire retardant additive.

The fire retardant additive, if any, may be organic, inorganic, or organometallic. Examples of suitable fire retardant additives include, but are not restricted to the additives listed in "Flame Retardancy of Polymeric Materials", Vol 1, Kuryla and Papa Ed., Marcel Dekker, Inc, New York 1973. These include the following organic additives:

P-H Functional

$$\begin{array}{ccc} \text{CH}_2 - \text{O} & \text{PH} \\ | & \text{CH}_2 - \text{O} \\ | & \text{CC}_2 \text{H}_5 \text{O} \rightarrow \text{PH} \\ \end{array}$$

CH₂=CHCH₂O->₂PH

(CH₂=CHCH₂O>₂P-CH₂CH=CH₂

CH₂=CHCH₂P-(OCH₃)₂

O CH₂=CH-P +OCH₂CH₂CI)₂

O CICH₂P -{OCH₂CH=CH₂)₂

(CICH2CH2O+2 -CH-CH2

-OH Functional .

$$(C_{10}^{H_{21}} O \rightarrow_{2}^{PH} O)$$
 $(C_{14}^{H_{29}} O \rightarrow_{2}^{PH} O)$

 $\frac{\text{CH}_2=\text{CH- functional}}{(\text{CH}_2=\text{CHCH}_2\text{O} \rightarrow_3\text{P}}$ $(\text{CH}_2=\text{CHCH}_2\text{O} \rightarrow_3\text{P}=\text{O}$

C₂H₅O+₂P-CH₂-CH-CH₂

([N-)3P=0

CH₂N =O

-NH Functional
O
(CICH₂CH₂O+)-2^k-NH₂
(C₂H₅O+)-2^k-CH₂CNH₂

⊕P-(CH₂OH)₄A [©]

(NCCH2CH2)4P · Br (

$$(P = N)_n$$
 Polymers

$$(H_2N)_{2\stackrel{p}{\mapsto} N} = N = N$$

$$(H_2N)_{2\stackrel{p}{\mapsto} N} = N$$

$$(C_2H_5O \rightarrow 3\frac{1}{n} - (OH)_n$$

 $n = 1 \text{ to } 2$

$$(C_4H_9O) = \prod_{n=1}^{O} P(OH)_n$$

 $n = 1 \text{ to } 2$

$$(C_4H_9O)_{\overline{3}-n}^{\overline{p}}-(OH)_n$$

 $n = 1 \text{ to } 2$

$$(C_{10}H_{21}O)-2^{P}-OH$$

$$(C_{13}H_{27}O)-3^{-n}-(OH)_{n}$$

$$n = 1 \text{ to } 2$$

$$(C_{18}H_{37}O)-3^{P}-(OH)_{n}$$

n = 1 to 2

$$(H_{17}C_8 - O)_{3-n}^{O}$$

$$\frac{\text{P-Cl Functional}}{\text{O}}$$

$$(C_2H_5O \rightarrow_2^{\text{PCl}})$$

$$(\text{BrCH}_2\text{CHBrCH}_2O \rightarrow_2^{\text{PCl}})$$

$$\text{CICH}_2^{\text{PCl}_2}$$

$$(C_4H_9O \rightarrow_2^{\text{PCl}})$$

$$(C_8H_{17}O)_2^{\text{PCl}}$$

P + S Compounds Functional (CH₃)₂P-S-S-P(CH₃)₂

P + Br Compounds

(BrCH2CHBrCH2O-)3P=O

$$(X CH_2CHXCH_2O-)_3P=O$$

 $X = CI,Br$
 $(BrCH_2-CH-O-)_2P=O$

$$(C_2H_5O-)_2^P-CH_2CH_2Br$$

$$\left(\bigcup_{B_f} \bigcap_{B_f} O \right)_3 P=O$$

P + Cl Compounds

 $(CICH_2CH_2O \longrightarrow_3 P$

(CICH2CHCICH2O-)3P=O

 $(CICH_2CH_2CH_2O \rightarrow_3 P=O$

(CICH₂CH-O→₃P=O CH₃

(CH3CHCICH2O-)3P=O

O CICH₂CH₂F-(OCH₂CH₂CI)₂ $\begin{array}{c} & \text{O} \\ \text{(CICH}_2)_2 \text{C--} \text{CH}_2 \text{O}^2 \text{(OCH}_2 \text{CH}_2 \text{CI)}_2 \end{array} \right]_2$

О О О (СІСН₂СН₂О)½ О-СН-Й-ОСН Й-ОСН₂СН₂СІ)₂ СН₃ СН₃ ОС₂Н₄СІ

O-P-(OCH2CH2CI)2

P (Phosphites)

(CH3O)3P

(CH3CH2O-)3P

[(СН₃)₂СНО] ₃Р

[CH3-(CH2+3O]-3P

(C₈H₁₇O→₃P

[сн₃-(сн₂)₃-сн-сн₂о]-₃Р с₂н₅

(C₁₂H₂₅O-)₃P

(C18H37O-)3P

$$\left(^{H^{3}C}\bigodot\right) _{b}^{3}$$

P (Phosphates)

$$(CH_3 - (CH_2 -)_3 CH - CH_3 O -)_3 P = O$$
 $C_2 H_5$

$$(CH_{3}(CH_{2})_{3}CHCH_{2}O-)_{3}P=O$$
 $CH_{2}CH_{3}$

$$(C_4H_9O-CH_2CH_2O-)_3P=O$$

P (Phosphonates)

$$_{\text{(CH}_{3}\text{CH}_{2}\text{O} \to _{2}^{\text{P}}\text{-CH}_{2}\text{CH}_{3}}^{\text{Q}}$$

$$(C_2H_5O-)_2P-CH_2COOC_2H_5$$

$$\text{[$^{\text{CH}_{3}}$-($^{\text{CH}_{2}}$-)_{3}$]}^{\text{O}}_{2}^{\text{P}}$-($^{\text{CH}_{2}}$-)_{3}$$}^{\text{CH}_{3}}$$

P (Miscellaneous)

(C₂H₅O-)_{1.5}F(ONH₄)_{1.5}

(n-C4H0+3P=0

(n-CaH17)-2P=C

P-(CH2CH3)2

CH₂ P ((())₂

 (\bigcirc)

((()), EH₂-(()

 $\left(\bigcirc\right)_{2}^{P-CH_{2}CH_{2}P}\left(\bigcirc\right)_{2}$

 $\left(\bigcirc\right)_{3}^{\bigoplus}_{\stackrel{?}{p}\text{-}CH_{2}CH_{2}^{p}}\left(\bigcirc\right)_{3}$

(O)2 P-OCH3

(O) 2 P-O-(CH2) 3 CH3

P+ OCH3)2

$$\left(\bigcirc\right)_{3}^{P=0}$$

P + S Compounds

 $(C_{12}H_{25}S \rightarrow_3 P$

(CH₃CH₂O-)₃P=S

 $[CH_3+CH_2+_3O]_3P=S$

 $(C_8H_{17}O \rightarrow_3 P=S$

Bromo - Compounds :-OH Functional

 $(BrCH_2 \rightarrow_3 C-OH)$

СН2^{Вг} НОСН₂-С-СН₂ОН СН₂Вг

BrCH=CBr-CH2OH

HOCH₂C=C-CH₂OH

BrCH2CH2OH-

 $BrCH_2CHBrCH_2OH$

O II BrCH₂CHBrCN(CH₂OH)₂

$$\bigcup_{B_{\Gamma}} \bigcup_{B_{\Gamma}} OH$$

RCOOCH₂

RCOOCH₂

RCOOCH₂

R = CH₃{CH₂)₅CH-CH-CH{CH₂)₇

Br

R(X)C-N-CH₂CHR'OH

R(X)C = Fatty acid residue + Br₂

R(X)CN-(CH₂CH₂OH)₂

R(X)CN-(CH₂CH₂OH)₂

R(X)C = Linoleic + Br₂

R(X)C-N-(CH₂CH₂OH)₂ R(X)C=Mixed fatty acid residue + Br₂

Chloro- Compounds: -OH Functional

$$\left[\text{HO-[(CH_2)_2O]_2} \bigoplus_{\text{Cl}_4} \right]_2$$

-C≡C- Functional

N-Halogen Functional

CH2=CH-CH2BL

H₂C=C-COCH₃

H₂C=C-COCH₂CBr₃

CH₃

H₂C=CH-C-O-CH₂CBr₃

H₂C=C-C-O-CH₂CHBrCH₂Br

CH₃

H₂C=CH-C-OCH₂CHBrCH₂Br

CH₃

H₂C=CH-COCH₂CH₂Br

CH₃

H₂C=CH-COCH₂CH₂Br

CH₃

P₁C=CH-COCH₂CH₂Br

CH₃

P₂C=C-COCH₂CH₂CH₂Br

CH₃

P₃C-CH₂CH₂CH₂Br

CH₃

P₄C-CH₂CH₂CH₂Br

Brs O-CH2CH=CH2

CH2=CCI2

CH₂=CH-CH₂CI

Functional

CH2CH-CH2Br

CH₂ - CH-CH₂CI

Cl3C-CH2-CH-CH

СH₂-СH-СH₂О-СH₂С-СH₂ОН

СH₂-CH-CH₂O-{CH₂-CHO-} пСH₂CH-CH₂

-COOH Functional

(And NH4 Salt)

-CHO Functional

BrCH2CHBr-CHO

CI3C-CHO

-NH₂ Functional

NON-FUNCTIONAL HALOGEN COMPOUNDS

Bromo-Compaunds

BrCH₂CI

Br2CH-CHBr2

BrCH2CH2CHCI

BrCH₂CHBrCHBrCH₂Br (BrCH₂CHBrCH₂O)₂CH₂ O CICH₂COCH₂CHBrCH₂Br

О П СН₃СОСН₂СВ;=СВ;СН₂ОССН₃

Chloro-Compounds

Cl3C-CCl3

CICH2CHCICH2CI

CI2C=CCI-CCI=CCI2

Chloro-Tri (and higher) Phanyls

Bromo- and Chloro-Biphenyls

Chloro-Naphthalenes

HALOGENATED PARAFFINES

$$CY_3+CY_2+_nCY_3$$

 $Y = Br, H$

$$CY_3 + CY_2 +_n CY_3$$

 $Y = H, CI$

Suitable inorganic fire retardant additives include: antimony oxide (Sb₂O₃), antimony sulfides (Sb₂OS₃, Sb₂S₃, Sb₂S₄), antimony halides (SbCl₃, SbCl₅, SbBr₃, SbBr₅), sodium or potassium antimonite, e.g., (NaSbO₃), ammonium, sodium or potassium phosphates, e.g., ((NH₄)₃PO₄, (NH₄)₂HPO₄, (NH₄)H₂PO₄, (NH₄PO₃)_x), phosphorus halides (PCl₃, PCl₅, POCl₃), phosphonitrilic chloride (PNCl₂)x, phosphorus pentasulfide (P₂S₅), sodium borates (Na₂O(B₂O₃)_{3.5}·4 H₂O, Na₂B₄O₇·10 H₂O), sodium, potassium or ammonium tetrafluoroborate, e.g. (NaBF₄), calcium or barium borates, e.g., (Ca(BO₂)₂, Ca₃(BO₃)₂), lithium, sodium or potassium tetraborate, e.g. (LiB₄O₇), boric acid (H₃BO₃), trimethoxyborozine ((CH₃OBO)₃), aluminum oxide hydrates (Al₂O₃·3 H₂O, Al(OH)₃), aluminophosphate hydrates $(Al_2O_3\cdot(AlPO_4)_x\cdot(H_2O)_y)$, sodium silicates $((Na_2O)_nSiO_2)_m$), ammonium bromide (NH₄Br), ammonium sulfate ((NH₄)₂SO₄), lithium silicates $(\text{LiO}_2(\text{SiO}_2)_{5.9}, \, \text{Li}_2\text{O}(\text{Na}_2\text{O})_n(\text{SiO}_2)_m))$, molybdenum oxide (MoO₃), ammonium paramolybdate ((NH₄)₆Mo₇O₂₄(H₂O)_x), molybdenum sulfide (MoS₂), and sulfamide $((NH_2)_2SO_2)$.

Suitable organometallic fire retardant additives include the following:

Examples of suitable intrinsically fire retardant polymers useful in the fire retardant bonding material include halogenated polymers such as chlorinated polyethylene, polyvinyl chloride, poly(1,1-dichloroethylene), poly(chlorotrifluoroethylene), poly(1,1-dichloro-2-fluoroethylene), poly(1,2-dichloro-1,2-difluoroethylene), poly(1,1-difluoroethylene), poly(1,2 difluoroethylene), poly(tetrafluoroethylene), poly(trifluorethylene), poly((pentafluoroethyl)ethylene), poly(tetradecafluoropentylethylene), poly(hexafluoropropylene), poly(2,3,3,3-tetrafluoropropylene), poly(3,3,3-trifluoropropylene), poly(heptafluoropropyl)ethylene), poly(vinylidene fluoride), and poly(tribromostyrol), mixtures thereof, and copolymers of the antecedent monomers comprising these polymers.

Examples of non-halogenated intrinsically fire retardant polymers useful in the fire retardant bonding material include melamine-formaldahyde, urea-formaldahyde, phenol-formaldahyde, and other phenolic polymers and copolymers such as the formaldehyde-furfural-resorcinol-phenol product sold

in two part monomeric form by Borden Chemicals and Plastics under the designation FIRE PRF2-1000.

Preferably the fire retardant bonding material is comprised of a blend of antimony oxide (Sb₂O₃), decabromodiphenyl ether and polychlorinated paraffin wax in a polyacrylate resin binder designated BOSTIK®14-576-3 (Bostik Findley, Inc.).

The non-polymeric portion of the fire retardant bonding material may be comprised of an intumescent composition. Intumescent compositions act by forming, under the influence of heat, an expanded insulating layer of fire resistant material. The intumescent material may also undergo an endothermic decomposition.

An intumescent composition swells to produce a char more than five times its original thickness. The expanded material shields a substrate from oxygen and/or from overheating and thereby prevents or delays the spread of flame. Intumescent systems typically consist of a polymer, a char or carbon skeleton-forming substance ("carbonific"), an expanding agent ("spumific") and an acid forming substance. As carbonifics, organic polyhydroxy compounds such as pentaerythritol, dipentaerythritol, tripentaerythritol, starch and sugars have been employed. Examples of spumifics are nitrogen-containing compounds such as melamine, melamine salts, melamine derivatives, urea, dicyandiamide and guanidine. The spumific effects the formation of an intumescent layer by emission of an inert gas. As acid forming substances usually an aminophosphate, ammonium phosphates, amine phosphates, ammonium polyphosphates, and melamine phosphate have been employed.

Intumescent compositions useful in the present invention have been described, for example, in USP's 6,309,746 B1; 6,228,914 B1; 5,962,603; 5,759,692; 5,708,065; 5,591,791; 5,356,568; 5,225,464; 5,185,103; 5,130,349; 4,857,364; 4,442,157; 4,542,170; 4,380,593; 4,198,328 and 3,849,178, hereby incorporated by reference to the extent not incompatible herewith.

In a preferred embodiment, a composite article of the invention is comprised of at least one ply of an intumescent resinous composition. A preferred intumescent resinous composition is a mixture of Borden Chemical phenolic resin FIRE PRF2-1000 and about 8 to about 18 wt% of a material comprised of melamine pyrophosphate ($C_3H_6N_6\cdot H_4P_2O_7$) and bis(melamine pyrophosphoric) acid ($C_6H_{12}N_{12}\cdot H_4P_4O_7$) sold by Broadview Technologies, Inc., under the designation of MAXICHAR®.

Preferably, the intumescent resinous composition is additionally comprised of about 2 to about 35 wt% of glass bubbles such as the soda-lime borosilicate glass bubbles sold by Minnesota Mining and Manufacturing Co. under the designation 3M® SCOTCHLITE® glass bubbles. Most preferably, the glass bubbles are of a size such that no more than 5 wt.% are retained on a Number 80 U.S. Standard Sieve (177 micron).

It is preferred that at least one ply of a composite article of the invention is comprised of a plurality of layers, each of said layers comprising a network of flammable polymeric fibers in a matrix, said polymeric fibers having a tenacity of at least about 25 g/denier, a tensile modulus of at least about 900 g/denier and an energy-to-break of at least about 25 Joules/g.

For the purposes of the present invention, a fiber is an elongate body the length dimension of which is much greater that the transverse dimensions of width and thickness. Accordingly, the term fiber includes filament, ribbon, strip, and the like having regular or irregular cross-section. A varn is a continuous strand comprised of many fibers or filaments.

As used herein, "fiber network" denotes a plurality of fibers arranged into a predetermined configuration, or a plurality of fibers grouped together to form a twisted or untwisted yarn, which yarns are arranged into a predetermined configuration. The fiber network can have various configurations. For example, the fibers or yarn may be formed as a felt or other nonwoven, knitted or woven into a network by any conventional techniques. According to a preferred network configuration, the fibers in a layer are unidirectionally aligned so that they are substantially parallel to each other along a common fiber direction. Successive layers of such unidirectionally aligned fibers are preferably rotated with respect to the previous layer.

Flammable fibers are those that will support combustion.

Flammable fibers include unmodified polyolefins, polyesters, polyvinyl alcohol, and polyacrylonitrile, among others.

Most preferably, the fiber network layers of the composite are arranged with the fiber direction of the unidirectional fibers of each network layer rotated with respect to the fiber direction of the unidirectional fiber of the adjacent layers. An example is a five layer ply with the second, third, fourth and fifth layers rotated +45°, -45°, 90° and 0° with respect to the first layer. A particularly preferred example is a fifty-layer ply with alternate layers aligned at 0° and 90° to each other.

Most preferably the flammable fibers comprising a composite of the invention are high strength polyethylene fibers. High strength polyethylene fibers for use in this invention are those having a tenacity equal to or greater than about 17 g/d, initial tensile modulus equal to or greater than about 500 g/d and an energy-to-break equal to or greater than about 20 J/g. For the purposes of this invention, the fiber tenacity, initial tensile modulus (modulus of elasticity) and energy-to break are measured in yarn form by ASTM D2256. Preferred fibers are those having a tenacity equal to or greater than about 25 g/d, initial tensile modulus equal to or greater than about 900 g/d and an energy-to-break equal to or greater than about 25 J/g. Particularly preferred fibers are those having a tenacity equal to or greater than about 30 g/d, initial tensile modulus equal to or greater than about 1200 g/d, and an energy-tobreak equal to or greater than about 30 J/g. Most preferred fibers are those having a tenacity equal to or greater than about 30 g/d, initial tensile modulus equal to or greater than about 1200 g/d, and an energy-to-break equal to or greater than about 40 J/g.

Such high strength polyethylene fibers may be grown in solution as described in USP's 4,137,394 or 4,356,138 or spun from a solution to form a gel structure, as described in German Off. No. 3,004, 699 and GB No. 2051667, and especially as described in USP 4,413,110. The polyethylene fibers may also be produced by a rolling and drawing process as described in USP 5,702,657 and sold under the name TENSYLON® by ITS Industries Inc. As used herein, the term polyethylene means a predominantly linear

polyethylene material that may contain minor amounts of chain branching or comonomers not exceeding 5 modifying units per 100 main chain carbon atoms, and that may also contain admixed therewith not more than about 50 wt % of one or more polymeric additives such as alkene-l-polymers, in particular low density polyethylene, polypropylene or polybutylene, copolymers containing mono-olefins as primary monomers, oxidized polyolefins, graft polyolefin copolymers and polyoxymethylenes, or low molecular weight additives such as antioxidants, lubricants, ultraviolet screening agents, colorants and the like which are commonly incorporated by reference.

Surprisingly, the composite articles of the invention meet the stringent fire resistant requirements for aircraft interiors despite the fact that the major portion is comprised of flammable fiber networks shielded by relatively thin fire retardant surface layers. Without being held to a particular theory of why the invention works, it is believed that the fiber network layers and the fire retardant surface layers work cooperatively to retard the propagation of a flame source. The outer metal foil and fire retardant bonding material block oxygen and provide an initial delay to propagation of high temperatures to the interior of the composite. When a high temperature front finally penetrates the outer layers of the composite, the flammable fibers shrink away from the heat source, creating a void space and delaying further propagation. In embodiments where an intumescent resinous composition lies between the fiber network layers and the composite surface, this delay is further increased. The total effect is a highly effective fire retardant composite meeting the requirements for aircraft interiors with a very wide margin of safety.

The following examples are presented to provide a more complete understanding of the invention. The specific techniques, conditions, materials, proportions and reported data are set forth to illustrate the principles of the invention and should not be construed as limiting the scope of the invention. In particular, the techniques described were for the preparation of test samples and are readily extended to implementation on a continuous production line.

EXAMPLES

Comparative Example 1

A nine-ply composite article was prepared having a symmetrical ply construction as follows:

1st and 9th plies: type 302 stainless steel foil, 0.001 inch (0.0254 mm) thick;

2nd and 8th plies: intumescent resinous composition;

3rd and 7th plies: glass fabric impregnated with phenotic resin;

4th and 6th plies: fire retardant pressure sensitive film adhesive; and

5th ply: 50 layers of unidirectional polyethylene fiber networks in an epoxy vinyl ester matrix.

The intumescent resinous composition comprising the 2nd and 8th plies was a sheet material prepared as follows: A mixture was prepared consisting of 60.9 wt.% of a two-part formaldehyde-furfural-resorcinol-phenol monomer (Borden Durite FIRE PRF2-1000; Part A-100 pph, Part B-24 pph), 9.1 wt.% of an intumescent additive comprising melamine pyrophosphate (C₃H₆N₆·H₄P₂O₇) and bis(melamine pyrophosphoric) acid (C₆H₁₂N₁₂·H₄P₄O₇) (Broadview Technologies MAXICHAR®) and 30 wt.% of glass bubbles (3M Type K1). The mixture was evenly spread to a thickness of 0.020 inch (0.51 mm) on a silicone release paper with another release paper placed on top. The mixture was cured into a solid sheet by heating for 30 minutes at about 200°F (93°C) under slight pressure of about 1 psi (7 kPa)) in a press. The edges of the sheet were trimmed to straightness and the sheet was divided into two equal sections to form the 2nd and 8th plies of the composite.

The impregnated glass fabric comprising the 3rd and 7th plies was a 57 X 54 ends/inch (22 X 21 ends/cm) satin weave E-glass fabric, style 7781, pre-pregged with fire retardant LC 194 phenolic resin (Lewcott Corp.) and having a thickness of about 0.095 inch (2.41mm).

The fire-retardant, pressure-sensitive film adhesive forming the 4th and 6th plies was a blend of antimony oxide (Sb₂O₃), decabromodiphenylether and polychlorinated paraffin wax in an acrylate ester resin binder designated BOSTIK®14-576-3 (Bostik Findley, Inc.).

The central fifth ply consisted of 50 layers of high strength polyethylene fibers, unidirectionally aligned within a layer and arranged with the fibers in adjacent layers oriented at 90° to one another. The polyethylene fibers were of 1100 denier, had a tensile strength of about 3.1 GPa, an initial tensile modulus of about 107 GPa, an elongation-to-break of about 3.3% and were in a matrix comprising an epoxy vinyl ester resin having a tensile modulus of about 500 kpsi (3.5 Gpa). (SPECTRA SHIELD® VE PLUS from Honeywell International Inc.)

The plies of the composite article were assembled and bonded together in a press under a pressure of 100 psi (690 kPa) at a temperature of 121°C for 30 minutes.

A test of the composite article conducted according to 14 USC §25.853, Appendix F, Part IV, showed an average maximum heat release rate of 11 kW/m² compared to a requirement of less than 65 kW/m². However, the panel had an areal density of 1.84 lb/ft² (8.99 kg/m²), which was considered excessive.

Comparative Example 2

A nine-ply composite article was prepared having a symmetrical ply construction identical to that in Comparative Example 1 except for the 2nd and 8th plies. The intumescent resinous composition comprising the 2nd and 8th plies was a sheet material prepared as follows:

The two parts of an intumescent epoxy resin containing melamine pyrophosphate and bis(melamine pyrophosphoric) acid (INTUMAX® EP1115, Broadview Technologies, Inc.) were mixed together and evenly spread to a thickness of 0.020 inch (0.51 mm) on a silicone release paper with another release paper placed on top. No glass bubbles were included in this resin. The mixture was cured into a solid sheet by heating for 30 minutes at about 200°F (93°C) under slight pressure of about 1 psi (7 kPa)) in a press. The edges of the sheet were trimmed to straightness and the sheet was divided into two equal sections to form the 2nd and 8th plies of the composite.

The remaining plies of the composite were identical to the corresponding plies described in Comparative Example 1.

The plies of the composite article were assembled and bonded together in a press under a pressure of 100 psi (690 kPa) at a temperature of 121°C, for 30 minutes.

A test of the composite article conducted according to 14 USC §25.853, Appendix F, Part IV, showed an average maximum heat release rate of 47 kW/m². This was within an acceptable range but poorer than the 11 kW/m² for the composite prepared in Comparative Example 1 and containing the glass bubbles. This composite article had an improved areal density of 1.56 lb/ft² (7.62 kg/m²), which was considered to be about at the outer edge of acceptability.

Example 1

A seven-ply composite article was prepared having a symmetrical ply construction as follows:

1st and 7th plies: aluminum foil, 0.003 inch (0.076 mm) thick;

2nd and 6th plies: intumescent resinous composition;

3rd and 5th plies: fire retardant pressure sensitive film adhesive; and

4th ply: 50 layers of unidirectional polyethylene fiber networks in an epoxy vinyl ester matrix.

The intumescent resinous composition comprising the 2nd and 6th plies was prepared as follows: A mixture was prepared consisting of 95.3 wt.% of a two-part intumescent epoxy resin (INTUMAX® EP1115, Broadview Technologies, Inc.) and 4.7 wt.% of glass bubbles (3M Type K1). The mixture was evenly spread to a thickness of 0.016 inch (0.41 mm) on a silicone release paper with another release paper placed on top. The mixture was cured into a solid sheet by heating for 30 minutes at about 200°F (93°C) under slight pressure of about 1 psi (7 kPa)) in a press. The edges of the sheet were trimmed to straightness and the sheet was divided into two equal sections to form the 2nd and 6th plies of the composite.

The 3rd and 5th plies forming the fire-retardant, pressure-sensitive film adhesive comprised a blend of antimony oxide (Sb₂O₃), decabromo diphenyl ether and polychlorinated paraffin wax in an acrylate ester resin binder designated BOSTIK®14-576-3 (Bostik Findley, Inc.).

WO 2004/033196 PCT/US2003/031964

The central, fourth ply consisted of 50 layers of high strength polyethylene fibers, unidirectionally aligned within a layer and arranged with the fibers in adjacent layers oriented at 90° to one another. The polyethylene fibers were of 1100 denier, had a tensile strength of about 3.1 GPa an initial tensile modulus of about 107 GPa, an elongation-to-break of about 3.3%, an energy-to-break of about 45 Joules per gram and were in a matrix comprising an epoxy vinyl ester resin having a tensile modulus of about 500 kpsi (3.5 Gpa) (SPECTRA SHIELD® VE PLUS from Honeywell International Inc.).

The plies of the composite article were assembled and bonded together in a press under a pressure of 100 psi (690 kPa) at a temperature of 121°C. for 30 minutes.

This composite article of the invention had an areal density of 1.22 lb/ft² (5.96 kg/m²) which was considered acceptable. The composite was subjected to testing according to 14 USC §25.853, Appendix F, Jan. 1, 2002, and United States United States Federal Aviation Administration Advisory Circular 25.795.2, 10 Jan. 2002, using .44 Magnum JHP bullets of 240 grains (15.6 g) mass and using 9 mm FMJ RN bullets of 124 grains (8.0 g) mass.

Flexural modulus (modulus of elasticity in bending) and the flexural strength at yield of the composite article was measured by the method of ASTM D790-00. The results of these tests are shown in Table I along with data for other examples and comparative examples. The composite article of Example 1 of the invention (comprising flammable polyethylene fibers) met all Federal Aviation Administration (FAA) requirements.

Example 2

A seven-ply composite article was prepared in an identical manner and having the same structure as the composite article of Example 1. This composite article had an areal density of 1.19 lb/ft² (5.82 kg/m²), which was considered acceptable. Test results in Table I show that the composite article of Example 2 met all FAA requirements.

Example 3

A seven-ply composite article was prepared having a symmetrical ply construction as follows:

1st and 7th plies: aluminum foil, 0.003 inch (0.076 mm) thick; 2nd and 6th plies: intumescent resinous composition; 3rd and 5th plies: fire retardant pressure sensitive film adhesive; and 4th ply: 50 layers of unidirectional polyethylene fiber networks in a thermoplastic elastomeric matrix (SPECTRA SHIELD® PCR PLUS from Honeywell International Inc.).

The intumescent resinous composition comprising the 2nd and 6th plies as prepared as follows: A mixture was prepared consisting of 74.2 wt.% of a two-part formaldehyde-furfural-resorcinol-phenol monomer (Borden Durite FIRE PRF2-1000; Part A-100 pph, Part B-24 pph), 12.9 wt.% of an intumescent additive comprising melamine pyrophosphate (C₃H₆N₆·H₄P₂O₇) and bis(melamine pyrophosphoric) acid (C₆H₁₂N₁₂·H₄P₄O₇) (Broadview Technologies MAXICHAR®) and 12.9 wt.% of glass bubbles (3M Type K1). The mixture was evenly spread to a thickness of about 0.016 inch (0.41 mm) on a silicone release paper with another release paper placed on top. The mixture was cured into a solid sheet by heating for 30 minutes at about 200°F (93°C) under slight pressure of about 1 psi (7 kPa) in a press. The edges of the sheet were trimmed to straightness and the sheet was divided into two equal sections to form the 2nd and 6th plies of the composite.

The 3rd and 5th plies comprising the fire-retardant, pressure-sensitive film adhesive comprised a blend of antimony oxide (Sb₂O₃), decabromo diphenyl ether and polychlorinated paraffin wax in a polyacrylate resin binder designated BOSTIK®14-576-3 (Bostik Findley, Inc.).

The central, fourth ply consisted of 50 layers of high strength polyethylene fibers, unidirectionally aligned within a layer and arranged with the fibers in adjacent layers oriented at 90° to one another. The polyethylene fibers were of 1100 denier, had a tensile strength of about 3.1 Gpa, an initial tensile modulus of about 107 Gpa, an elongation-to-break of about 3.3%, and an energy-to-break of about 45 Joules per gram. The high strength polyethylene fiber networks were in a matrix consisting of a thermoplastic elastomer having a tensile modulus of about 100 psi (6.9 kPa) (SPECTRA SHIELD® PCR PLUS from Honeywell International Inc.).

The plies of the composite article were assembled and bonded together in a press under a pressure of 100 psi (690 kPa) at a temperature of 121°C. for 30 minutes.

The composite article of the invention had an areal density of 1.19 lb/ft² (5.82 kg/m²) which was, considered acceptable. Test results in Table I show that the composite article of Example 3 met all FAA requirements.

Example 4

A five-ply composite article was prepared having a symmetrical ply construction as follows:

1st and 5th plies: aluminum foil, 0.001 inch (0.025 mm) thick; 2nd and 4th plies: fire-retardant, pressure-sensitive film adhesive - (BOSTIK®14-576-3); and

3rd ply: 50 layers of unidirectional polyethylene fiber networks in a thermoplastic elastomeric matrix (SPECTRA SHIELD® PCR PLUS from Honeywell International Inc.).

The plies of the composite article were assembled and bonded together in a press under a pressure of 100 psi (690 kPa) at a temperature of 121°C. for 30 minutes.

The composite article had a reduced areal density of 1.0 lb/ft² (4.89 kg/m²), which was considered acceptable. Test results in Table I show that the composite article of Example 4 met all FAA requirements.

Example 5

A five-ply composite article was prepared having a symmetrical ply construction identical to that in Example 4 except for the central, 3rd ply. In this example, the central ply consisted of 50 layers of high strength polyethylene fibers, unidirectionally aligned within a layer and arranged with the fibers in adjacent layers oriented at 90° to one another. The polyethylene fibers were of 1100 denier, had a tensile strength of about

3.1 Gpa, an initial tensile modulus of about 107 GPa, an elongation-to-break of about 3.3% set forth other yarn physicals and were in a matrix comprising an epoxy vinyl ester resin having a tensile modulus of about 500 kpsi (3.5 GPa) (SPECTRA SHIELD® VE PLUS from Honeywell International Inc.).

WO 2004/033196 PCT/US2003/031964

The plies of the composite article were assembled and bonded together in a press under a pressure of 100 psi (690 kPa) at a temperature of 121°C. for 30 minutes.

The composite article of Example 5 also had an areal density of 1.0 lb/ft² (4.89 kg/m²), which was considered acceptable. Test results in Table I show that the composite article of Example 5 met all FAA requirements.

Having thus described the invention in rather full detail, it will be understood that such detail need not be strictly adhered to but that further changes and modifications may suggest themselves to one skilled in the art, all falling within the scope of the invention as defined by the subjoined claims.

ш	J
$\bar{\alpha}$	נ נ
2	

							1		1	т-	τ_	1		ר
	, S	ft/sec				>1430	n. B.	n.a.	>1430	>1430	>1430	>1430	>1430	
	Areal	Density,	psť				1.84	1.56	1.22	1.19	1.19	1.00	1.00	
Test	Max.	longest	burning	particle,	sec	\$	0	n.a.	ń.a.	0	0	0	0	
Vertical Bum Test	Max.	Burn	Length,	inches		9	5.7	n.a.	n.a.	0.2	0.8	1.5	1.5	
Ver	Smoke Burning	Time,	Sec			<15	0	n.a.	n.a.		0	0	0	
	Smoke	Density,	DS	(max)		<200	95	n.a.	n.a.	92	6	32	3	
	Heat	Refease	Rating,	kW/m2		99>		47	0	0	-	0	0	
	Flexural	Strength	at Yield,	psi			п.а.	n.a.	n.a.	3344	937	n.a.	n.a.	
		Modulus,	bsi				n.a.	n.a.	n.a.	676,000	87,930	n.a.	n.a.	
	SPECTRA Flexural	SHIELD® Modulus, Strength	Ballistic	Panel Type		1	VE Plus	VE Plus	VE Plus	VE Plus	PCR Plus	PCR Plus	VE Plus	
	Glass	Bubbles	% of	Resin			30	0	4.7	4.7	12.9	0	ö	
	Composite Intumescent	Resinous	Composition		-		phenolic	epoxy	epoxy	epoxy	phenolic	none	none	
	Composite	Skin		•	•	FAA Requirements	SS	SS	A	₹	A	₹	₹	vailable
	Ex. or	Comp.	Ex. No			FAA Red	Сотр.1	Сотр.2	-	2	3	4	2	n.a not available

10

CLAIMS

What is claimed is:

- 1. A composite article having a flexural modulus of at least about 80,000 lbs/sq. in (552 MPa), a flexural strength at yield of at least about 800 lb/sq. in.(5.52MPa), an areal density of about 0.9 lb/ft² (4.40 kg/m²) to about 1.5 lb/ft² (5.86 kg/m²), a fire resistance meeting the requirements of §25.853 Title 14 of the United States Code, Jan. 1, 2002, and a V0 velocity at least about 1430 ft/sec (427 m/s) when tested by United States Federal Aviation Administration Advisory Circular 25.795.2, 10 Jan. 2002, using .44 Magnum Jacketed Hollow Point (JHP) bullets of 240 grains (15.6 g) mass and using 9 mm Full Metal Jacketed, Round Nose (FMJ RN) bullets of 124 grains (8.0 g) mass.
- 2. A composite article comprised of a plurality of plies bonded together, wherein a first ply is comprised of a metal foil, a second ply is comprised of a fire retardant bonding material and a third ply is comprised of a plurality of layers, each of said layers comprising a network of flammable polymeric fibers in a matrix, said polymeric fibers having a tenacity of at least about 17 g/denier, a tensile modulus of at least about 500 g/denier and an energy-to-break of at least about 20 Joules/g.
 - 3. The composite article of Claim 2, additionally comprised of a fourth ply comprising a fire retardant bonding material and a fifth ply comprising a metal foil.
- 4. The composite article of Claim 2, additionally comprising an intumescent resinous composition ply between said first an dais second plies.
 - 5. The composite article of Claim 4, additionally comprising a fifth ply consisting of an intumescent resinous composition, a sixth ply

10

15

20

25

comprised of a fire retardant bonding material and a seventh ply comprised of a metal foil.

- 6. The composite article of Claim 2 or Claim 4, wherein said metal foil is aluminum having a thickness from about 0.0005 inches (12.7 micrometers) to about 0.005 inches (127 micrometers).
- 7. The composite article of Claim 2 or Claim 4, wherein said fire retardant bonding material is comprised of a polymeric binder selected from the group consisting of polyolefins, polydienes, polyesters, polyamides, vinyl polymers, ionomers, acrylics, acrylates, polysulfones, polyphenylene oxide, acetals, silicones, thermoplastic polyurethanes, thermoplastic polyimides, polyketones, phenolic polymers, melamine polymers, epoxies, silicones, unsaturated polyesters, thermosetting polyurethanes, and copolymers and halogenated derivatives thereof, and at least one member of the group of fire retardants listed in "Flame Retardancy of Polymeric Materials", Vol 1, Kuryla and Papa Ed., Marcel Dekker, Inc., New York p. 1-111, 1973.
 - 8. The composite article of Claim 2 or Claim 4, wherein said fire retardant bonding material is a blend of antimony oxide (Sb₂O₃), decabromodiphenyl ether and polychlorinated paraffin wax in a polyacrylate resin binder.
 - 9. The composite article of Claim 2 or Claim 4, wherein said flammable polymeric fibers are polyethylene.
 - 10. The composite article of Claim 9, wherein said polyethylene fibers are unidirectionally oriented within a layer, and wherein fibers in adjacent layers are oriented at about 90° to one another.
 - 11. The composite article of Claim 2 or Claim 4, wherein said matrix is an elastomer having a initial tensile modulus of less than about 6000 psi (41.4 MPa) as measured by ASTM D638.

- 12. The composite article of Claim 11, wherein said matrix is an elastomer comprising a block copolymer of a congugated diene and a vinyl aromatic monomer.
- 13. The composite article of Claim 2 or Claim 4, wherein said matrix is a thermosetting resin having a tensile modulus of at least about 300 kpsi (2.1 GPa).
- 14. The composite article of Claim 13, wherein said matrix is an epoxy vinyl ester resin.
- 15. The composite article of Claim 3, wherein said intumescent resinous composition is comprised of a spumific selected from the group consisting of melamine, melamine salts, melamine derivatives, urea, dicyandiamide and guanidine dispersed in a resin selected from the group consisting of phenolic polymers, melamine polymers, epoxies, silicones, unsaturated polyesters, and thermosetting polyurethanes.
- 16. The composite article of Claim 4, wherein said intumescent resinous composition is comprised of at least one member selected from the group consisting of melamine pyrophosphate (C₃H₆N₆·H₄P₂O₇) and bis(melamine pyrophosphoric) acid (C₆H₁₂N₁₂·H₄P₄O₇), and a member selected from the group consisting of a formaldehyde-furfural-resorcinol-phenol resin and an epoxy resin.
 - 17. The composite article of Claim 12, wherein said intumescent resinous composition is additionally comprised of about 2 to about 35 wt% of glass bubbles.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 April 2004 (22.04.2004)

(10) International Publication Number **WO 2004/033196 A3**

(51) International Patent Classification7: F41H 5/04, B32B 7/12

B32B 15/14,

(21) International Application Number:

PCT/US2003/031964

- (22) International Filing Date: 9 October 2003 (09.10.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10 October 2002 (10.10.2002) 60/417,596

US

10/287,929

US 5 November 2002 (05.11.2002)

- (71) Applicant: HONEYWELL INTERNATIONAL INC. [US/US]; 101 Columbia Road, P.O. Box 2245, Morristown, NJ 07960 (US).
- (72) Inventors: NGUYEN, Huy, X., 5508 Fiddlers Ridge Lane, Midlothian, VA 23112 (US). DICKSON, Larry; 341 Glyntawel Drive, Granville, OH 43023 (US).
- (74) Agents: HOIRIIS, David, Esq._ et al.; HONEYWELL INTERNATIONAL INC., 101 Columbia Road, P.O. Box 2245, Morristown, NJ 07960 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of
- (88) Date of publication of the international search report: 17 June 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BALLISTIC RESISANT AND FIRE RESISTANT COMPOSITE ARTICLES

(57) Abstract: Ballistically resistant and fire resistant composite articles for aircraft interiors and other applications. Composite articles are provided having a flexural modulus of at least about 80,000 lbs/sq. in (552 MPa), a flexural strength at yield of at least about 800 lbs/sq. in. (5.52 MPa), an areal density of about 0.9 lb/ft2 (4.40 kg/m2) to about 1.5 lb/ft2 (5.86 kg/m2), a fire resistance meeting the requirements of §25.853 Title 14 of the United States Code, Jan. 1, 2002, and a V0 velocity of at least about 1430 ft/sec (427 m/s) when tested by United States Federal Aviation Administration Advisory Circular 25.795.2, 10 Jan. 2002, using .44 Magnum Jacketed Hollow Point (JHP) bullets of 240 grains (15.6 g) mass and using 9 mm Full Metal Jacketed, Round Nose (FMJ RN) bullets of 124 grains (8.0 g) mass.

33196 A3 ||||||||||||||

INTERNATIONAL SEARCH REPORT

tnti onal Application No PCT/US 03/31964

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B32B15/14 F41H5/04 B32B7/12 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system tollowed by classification symbols) F41H B32B IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category * US 4 309 487 A (HOLMES RICHARD R) 1 X 5 January 1982 (1982-01-05) Multiple films or fibrous (e.g. polyolefin 2-17 fibres) layers laminated with metal layer. column 1, line 41 - line 48 column 3, line 27 - line 33 column 4, line 29 - line 45 1 DE 26 42 883 A (ELTEKA KUNSTSTOFF) X 30 March 1978 (1978-03-30) Steel outer layer and aramid fiber layers 2-17 Α separated by polyamide layer. page 5, paragraph 2 - page 7, paragraph 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. ΧΙ Special categories of cited documents : tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the international *X° document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-O document reterring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 20/04/2004 5 April 2004 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Stinchcombe, J

INTERNATIONAL SEARCH REPORT

trii Ional Application No
PCT/US 03/31964

		PCT/US 03	7 3 1 9 0 4			
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	•	Relevant to claim No.			
Category *	Citation of document, with indication, where appropriate, of the relevant passages		reservant to Gain 140.			
X	GB 2 232 063 A (PERSONNEL ARMOURED DESIGNS LIM) 5 December 1990 (1990-12-05)	. ;	1			
A	Plurality of textile layers which may be		2-17			
	laminated to metal layer.					
	page 2, paragraph 3 page 5, paragraph 7; figure 6					
			1			
X	GB 2 347 112 A (KINETIC SPECIAL VEHICLES LIMIT) 30 August 2000 (2000-08-30)					
A	page 1, line 24 - page 2, line 2	•	2-17			
•	figures 1,2 claim 1					
	Laminate of textile, foam and aluminium.		·			
X	US 4 822 657 A (SIMPSON TERRY W)		1			
	18 April 1989 (1989-04-18)		2-17			
A	column 3, line 12 - column 4, line 42 Metal skin layers around multiple layers	,				
	of impact-resistant fabric.	·				
	i.					
:						
			·			
•						
		•				
	٠.					
	• •	•				
		• •				
	v.					
			1			
•			}			
			1			
			· .			
			1			
			· ·			

Form PCT/ISA/210 (continuation of second sheet) (January 2004

INTERNATIONAL SEARCH REPORT

Information on patent family members

In :ional Application No PCT/US 03/31964

Patent document dited in search report		Publication date		Patent family member(s)	Publication date		
US 4309487	A	05-01-1982	CA FR GB	1136535 A1 2512192 A1 1605190 A	30-11-1982 04-03-1983 23-03-1983		
DE 2642883	A	30-03-1978	DE	2642883 Al	30-03-1978		
GB 2232063	Α	05-12-1990	NONE				
GB 2347112	A	30-08-2000	NONE				
US 4822657	Α	18-04-1989	NONE		· .		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
M OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.