Appendix A: 8085 Instruction Set by Opcode

The information in this appendix is reproduced by kind permission of the Intel Corporation. The symbols and abbreviations used are listed below.

Symbol	Meaning
Α	Accumulator
B, C, D E, H, L	One of the internal registers
F	Represents the flag register
M	The 16-bit memory address currently held by the register pair H and L
byte	An 8-bit data quantity
dble	A 16-bit (two byte) data quantity
addr	A 16-bit address
port	An 8-bit I/O port address
r, r1, r2	One of the registers A, B, C, D, E, H, L
rp	One of the following register pairs
	B represents the register pair B and C
	D represents the register pair D and E
	H represents the register pair H and L
	PSW represents the register pair A and F
	SP represents the 16-bit stack pointer
PC	The 16-bit program counter
CY	Carry flag
P	Parity flag
AC	Auxiliary carry flag
Z	Zero flag
S	Sign flag

Data Transfer Group

These instructions transfer data between registers and memory. Flags - none affected by instructions in this group.

Move

Load Immediate (Reg. pair)			Load/Store A	direct
	B,dble D,dble	01	LDAX B	0 A
LXI	D,dble	11	LDAX D	1 A
	H,dble	21	STAX B	02
	SP.dble	31	STAX D	12

Load/Store A	direct	Load/Store HL	direct
LDA addr	3 A	LHLD addr	2 A
STA addr	32	SHLD addr	22

Exchange HL with DE

XCHG

EB

Data Manipulation Group - Arithmetic

Instructions in this group perform arithmetic operations on data in the registers and the memory.

$$SUB = \begin{cases} A & 97 \\ B & 90 \\ C & 91 \\ D & 92 \\ E & 93 \\ H & 94 \\ L & 95 \\ M & 96 \end{cases} \qquad SBB = \begin{cases} A & 9F \\ B & 98 \\ C & 99 \\ D & 9A \\ E & 9B \\ H & 9C \\ L & 9D \\ M & 9E \end{cases}$$

Add/Subtract Immediate*

ADI byte	C6
ACI byte	CE
SUI byte	D6
SBI byte	DE

Double Length Add***

$$DAD \begin{cases} B & 09 \\ D & 19 \\ H & 29 \\ SP & 39 \end{cases}$$

Increment/Decrement**

Increment/Decrement Register Pair****

$$INX = \begin{cases} B & 03 \\ D & 13 \\ H & 23 \\ SP & 33 \end{cases} \qquad DCX = \begin{cases} B & 0B \\ D & 1B \\ H & 2B \\ SP & 3B \end{cases}$$

Decimal Adjust A*		Complement A	4****
DAA	27	CMA	2F
Complement/Set CY***		Arithmetic Im	mediate*
CMC	3F	ADI byte	C6
STC	37	ACI byte	CE
		SUI byte	D6
		SBI byte	DE

Notes

- * All flags may be affected.
- ** All flags except CARRY may be affected.
- *** Only CARRY FLAG affected.
- **** No flags affected.

Data Manipulation Group - Logical

Instructions in this group perform logical operations on data in the registers and the memory.

Compare*		Rotate***		Logical Imme	Logical Immediate*	
1	A	BF	RLC	07	ANI byte	E6
	В	B 8	RRC	0F	XRI byte	EE
	C	B 9	RAL	17	ORI byte	F6
CMP {	D	BA	RAR	1 F	CPI byte	FE
	E	BB				
	Н	BC				
	L	BD				
	M	BE				
	•					

Notes

- * All flags may be affected.
- *** Only the CARRY flag may be affected.

Transfer of Control Group or Branch Group

This group of instructions alters the sequence of program flow by testing the condition flags.

Jump		Call		Return	
JMP addr	C3	CALL addr	CD	RET	C9
JNZ addr	C2	CNZ addr	C4	RNZ	C0
JZ addr	$\mathbf{C}\mathbf{A}$	CZ addr	CC	RZ	C8
JNC addr	D2	CNC addr	D4	RNC	D0
JC addr	DA	CC addr	DC	RC	D8
JPO addr	E2	CPO addr	E4	RPO	E0
JPE addr	EA	CPE addr	EC	RPE	E8
JP addr	F2	CP addr	F4	RP	F0
JM addr	FA	CM addr	FC	RM	F8

Jump Indirect

PCHL E9

Input/Output Group

This group of instructions performs I/O instructions between the accumulator and a specified port.

IN port DB OUT port D3

Stack and Machine Control Group

This group of instructions maintains the stack and internal control flags.

Stack operations

Interrupt Control

EI	FB
DI	F3
RIM	20
SIM	30

Processor Control

Restart

$$RST = \begin{cases} 0 & C7 \\ 1 & CF \\ 2 & D7 \\ 3 & DF \\ 4 & E7 \\ 5 & EF \\ 6 & F7 \\ 7 & FF \end{cases}$$

Appendix B: 8085 Instruction Set by Clock Cycles

Mnemonic	Clock cycles	Mnemonic	Clock cycles
MOVE, LOAD	AND STORE	RETURN	
MOV r1,r2	4	RET	10
MOV M,r	7	RC	6/12
MOV r,M	7	RNC	6/12
MVI r	7	RZ	6/12
MVI M	10	RNZ	6/12
LXI B	10	RP	6/12
LXI D	10	RM	6/12
LXI H	10	RPE	6/12
LXI SP	10	RPO	6/12
STAX B	7		
STAX D	7	RESTART	
LDAX B	7	RST	12
LDAX D	7		
STA	13	INPUT/OUT	PUT
LDA	13	IN	10
SHLD	16	OUT	10
LHLD	16		
XCHG	4	INCREMENT	T AND DECREMENT
		INR r	4
STACK OPERA	TIONS	DCR r	4
PUSH B	12	INR M	10
PUSH D	12	DCR M	10
PUSH H	12	INX B	6
PUSH PSW	12	INX D	6
POP B	10	INX H	6
POP D	10	INX SP	6
POP H	10	DCX B	6
POP PSW	10	DCX D	6
XTHL	16	DCX H	6
SPHL	6	DCX SP	6

JUMP		ADD	
JMP	10	ADD r	4
JC	7/10	ADC r	4
JNC	7/10	ADD M	7
JZ	7/10	ADC M	7
JNZ	7/10	ADI	7
JP	7/10	ACI	7
JM	7/10	DAD B	10
JPE	7/10	DAD D	10
JPO	7/10	DAD H	10
PCHL	6	DAD SP	10
CALL		SUBTRACT	
CALL	18	SUB r	4
CC	9/18	SBB r	4
CNC	9/18	SUB M	7
CZ	9/18	SBB M	7
CNZ	9/18	SUI	7
CP	9/18	SBI	7
CM	9/18		
CPE	9/18	LOGICAL	
CPO	9/18	ANA r	4
	•	XRA r	4
ROTATE		ORA r	4
RLC	4	CMP r	4
RRC	4	ANA M	7
RAL	4	XRA M	7
RAR	4	ORA M	7
		CMP M	7
SPECIALS		ANI	7
CMA	4	XRI	7
STC	4	ORI	7
CMC	4	CPI	7
DAA	4		
		INTERRUPT MA	SK
CONTROL		RIM	4
EI	4	SIM	4
DI	4		
NOP	4		
HLT	5		
1.7 · m		1 2/4 2 4 4	

Note: Two possible cycle times, for example, 6/12, indicates that the number of instruction cycles involved is dependent on the condition flags.

Solutions to Problems

(a) 354_8 , (b) 011101100_2 , (c) 0ECH.

1.1

```
(a) 111011<sub>2</sub>, (b) 1531<sub>8</sub>, (c) 1245H.
1.2
1.3
       (a) 2730, (b) 156, (c) 85.
1.4
       (a) 1000100001000<sub>2</sub>, (b) 10410<sub>8</sub>, (c) 1108H.
1.5
       (a) -86, (b) -85.
       (a) 00000101, (b) 11111011, (c) 11100110, (d) 10110000.
1.6
1.7
       (a) 65535, (b) +32767 and -32768.
       Both the carry and overflow flags are 'set' to '1'.
1.8
2.9
       4K locations.
       ROM A = ROM B = \frac{1}{2}K.
2.11
       RAM C = RAM D = RAM E = RAM F = \frac{1}{4}K.
       System expansion blocks = 1K each.
5.5
       (a) 2K, (b) (i) 0000H, (b) (ii) 07FFH.
5.6
       (a) F800H, (b) FFFFH.
7.2
       219<sub>10</sub> or DBH.
7.3
       3.28 ms.
9.15
       MVI H,00
                       ; HIGH BYTE OF INDEX ADDRESS = 00H
       MVI L,byte
                       ; LOW BYTE OF INDEX ADDRESS IN L
       LXI D,2000H
                       ; BASE ADDRESS OF TABLE IN D AND E
       DAD D
                       ; FORM EFFECTIVE ADDRESS OF RESULT
       MOV A,M
                       ; GET PETHERICK CODE FROM TABLE
       STA 200FH
                       : STORE IT IN 200FH
       HLT
                       : HALT
       COUNT 1 = 219_{10} or DBH, COUNT 2 = 199_{10} or C7H.
10.4
       (Note: in general the value of the product COUNT 1 \times \text{COUNT } 2 = 43581_{10}.)
11.7
             (a)
                      (b)
                               (c)
                                        (d)
                                                (e)
                                                         (f)
       PC
             2060
                              20A0
                     2080
                                       208C
                                               2068
                                                        2025
       SP
            20AE
                     20AC
                              20AA
                                       20AC
                                               20AE
                                                        20B0
```

~ .	•••

Address	Byte	Label	Instruction	Comment	
	1 2 3		mnemonic		
2010	3E 01		MVI A,01H		
2012	D3 20		OUT 20H	; INITIALISE PIO	
2014	31 BO 20		LXI SP,20B0H	; INITIALISE STACK POINTER	
2017	DB 22		IN 20H	; READ SWITCHES	
2019	2F		CMA	; COMPLEMENT DATA	
201A	32 00 20	LOOP:	STA 2000H	; STORE DATA IN 2000H	
201D	D3 21		OUT 21H	; DISPLAY DATA ON LEDs	
201F	CD 09 03		CALL TIME	; CALL TIME DELAY	
2022	DB 22		IN 22H	; READ SWITCHES	
2024	A 7		ANA A	; SET FLAGS	
2025	C2 1A 20		JNZ LOOP	; RETURN TO LOOP IF ANY	
				; SWITCH = 1	
2028	D3 21		OUT 21H	; EXTINGUISH LEDS	
202A	76		HLT	; HALT PROGRAM	

12.4

Label	Instruction mnemonic	Comment
	LXI SP,20B0H MVI A,01H	; INITIALISE STACK POINTER ; INITIALISE PIO
START:	OUT 20H IN 22H STA 2000H	; READ STATE OF SWITCHES ; STORE DATA IN LOCATION
	CALL 03DFH LDA 2000H	2000H ; DISPLAY DATA ON VDU ; RECALL DATA
	XRI 0FH OUT 21H JMP START	; INVERT LOW BYTE OF DATA ; DISPLAY RESULT ON LEDS ; READ SWITCHES ONCE AGAIN

14.5 0010H, 0020H, 0024H, 003CH.

14.6 Yes.

14.8 LXI SP,20B0H ; INITIALISE STACK POINTER MVI A,0CH ; UNMASK RST 6.5 AND 5.5

SIM

EI ; ENABLE INTERRUPTS

Solutions to Problems 233

14.9

Address	Byte	Label		Comment
	1 2 3		mnemonic	
2020	06 04		MVI B,04H	; LOAD COUNTER
2022	21 00 20		LXI H,2000H	; POINTER M = 2000H
2025	97		SUB A	; CLEAR ACCUMULATOR
2026	86	LOOP	: ADD M	; FORM SUM IN ACCUMULATOR
2027	23		INX H	; INCREMENT POINTER
2028	05		DCR B	; DECREMENT COUNTER
2029	C2 26 20		JNZ LOOP	; JUMP IF SUM NOT COMPLETE
202C	32 04 20		STA 2004H	; STORE SUM
202F	76		HLT	; WAIT FOR INTERRUPT
2030	C3 30 20	STOP:	JMP STOP	; TERMINATE PROGRAM
• • • •				
2080	3A 04 20	INTR:	LDA 2004H	; GET SUM
2083	07		RLC	; ROTATE DATA LEFT TWICE
2084	07		RLC	; TO MULTIPLY BY FOUR
2085	E6 FC		ANI FC	; MASK OUT NON-SIGNIFICANT BITS
2087	32 05 20		STA 2005H	; STORE PRODUCT
				; INTERRUPT NEED NOT BE RE- ENABLED
208B	C9		RET	; RETURN TO MAIN PROGRAM

14.10 (a) 5.325 ms (b) 21.3 ms.

Index of Useful Programs

Table	Program	
9.4	Hexadecimal addition program	112
9.5	Decimal addition program	113
9.7	'Squares' program using a lookup table	115
10.1	Program that adds five hex values	120
10.4	Short time delay program	127
10.5	Nested time delay	129
11.6	Simple subroutine	138
11.8	Simple nested subroutines	142
12.2	Digital input and output of data	150
12.3	Flashing light sequence	151
12.5	Direct control of a stepper motor	155
12.6	Stepper motor control using a special 'driver' integrated circuit	158
12.11	Handshake program using two handshake lines	168
13.2	Square wave program	176
13.3	Ramp waveform program	177
13.4	Generating a waveform using a 'lookup' table	179
13.6	Program for a successive approximation ADC	187
14.2	Typical RST 6.5 initialisation procedure	203
14.3	A program containing an interrupt (RST 6.5)	206
14.6	An elapsed time interrupt	213
14.7	A handshake data transfer — polled interrupts	218
14.8	Interrupt-driven handshake, main program	220
14.9	Interrupt-driven handshake, input handshake (RST 5.5)	220
14.10	Interrupt-driven handshake, output handshake (RST 6.5)	220

Accumulator 28	Base 1
Accumulator I/O addressing 24	Baud rate 74
Addition 6	Bidirectional data bus 18
binary 7	Binary digit (bit) 2
double-length 88	Binary number 1
hexadecimal 8	Bit time 74
Address 18	Branch instructions see Jump
Address bus 18	instructions
Address decoding 45-58	Break point 93
Address field 111	Buffer 60
Address/data bus 32	Bus system 18, 26
Addressing mode 102	Byte 12
direct 105	
extended 105	
immediate 102	
implied 104	Call instruction 132
indexed 106, 114	Carry flag 9, 29, 30
indirect 106	auxiliary 30
inherent 104	Central processing unit (CPU) 14
register direct 106	Chip 15
register indirect 107	Chip enable pin 20, 25
relative 109	Chip select pin 20, 46, 47
stack 106	Clock oscillator 16, 31, 35
zero page 106	Code conversion 116
Algorithm 82	Comment, in program 111
Analogue-to-digital convertor (ADC)	Comparison instruction 98
179	Complement, binary 9
continuous balance 182	Conditional call instructions 132
interfacing to 188-94	Conditional jump instructions 101
successive-approximation 183-8	Conditional return instructions 132
Architecture of CPU 28	Control and timing section 31
Arithmetic and logic instructions 96	Control bus 18
Arithmetic and logic unit (ALU) 14,30	Control unit of CPU 14
Arithmetic shift 100	C/S register of PIO 147
Assembler statement 110	command aspect of 147, 148,
Assembly language 94, 110	164
Auxiliary carry flag 30	status aspect of 166

Data bus 18	Hardware 17
Data manipulation instructions 95	Hexadecimal numbers 3
Data rate 76	
Data transfer instructions 95	
Debugging 90	Index (in addressing mode) 114
Decimal adjustment instruction 112,	Index register 108
113	Input/output port 17, 20, 23
Decoder 46-57	bidirectional 22
Dedicated microcomputer 14	dedicated 17
Delay (time) routine 78-80, 125-9	programmable 17, 145-8
Device enable pin 20	unidirectional 22
Device select pin 20	Instruction decoder 31
Digital computer 14	Instruction register 30
Digital input and output 148	Instruction set 94, 223, 229
Digital-to-analogue convertor (DAC)	Integrated circuit 15
173-9	Interface 17, 60
waveform generation using 175	Interrupt 41, 196
Direct digital control (DDC) 152	handshake 214-21
Displacement 108	maskable 196
Dual-in-line package (DIP) 15	multilevel 206
Dynamic RAM 44	non-maskable 41, 196
	polled 197, 217
	priority of 200
Effective address 108, 114	timer (PIO) 209
EPROM 16, 17	vectored 197, 199
	8085 198
	Interrupt flag 197
Fetch-execute cycle 33	Interrupt handling 202
Field structure, of assembly language	Interrupt mask (I register) 200
instruction 110-13	Interrupt routine 41
FIFO store 44	Interval timer 78
Firmware 18	I/O control module 148, 149
Flag 9, 29	I/O read 39
Flag register 9, 29	I/O timing 39
Flip-flop 9	I/O write 37
Flowchart 82	
Foldback, on memory map 57	
Full-adder 7	Jump instructions 101
	•
General-purpose computer 14	Keyboard 67-73
Half-carry flag see Auxiliary carry flag	Label, in program 86, 94, 111
Handshake 42, 159-69	Latched I/O port 63-7, 70
implementing 161	LED, 7-segment 63-8
input 160, 163	LIFO store 44, 106, 134
output 160, 163	Listener, in handshake 160
3 m p m 200, 200	Listoner, in nanushake 100

Page 23 Logical instructions 96-100 Parallel I/O port 20-3 Logical shift 100 Parameter passing 143 Lookup table 113-16, 178, 179 Loop, in program 118 Parity flag 29, 30 Peripheral 17 Pointer register 28, 105 Polling 40, 217 Machine code instruction 94, 95, 109 POP instruction 135-7 Port 17, 20, 33, 145 Machine cycle 35 Processor status word (PSW) 137 Mainframe computer 14 Maskable interrupt 196 Program 14, 17, 82 Memory 14 Program counter 28 Memory access time 39 Programmable I/O port 17, 145-8 Memory map 23 timer in 209 Memory read 38 Programmable timer 80 Memory register 28 Pseudo-operation 112 Memory write 36 PUSH instruction 135-7 Memory-mapped address 24 Memory-mapped I/O 24 Microcomputer 14 Radix 1 Microcycle 35 RAM (random-access memory) 16, 44 Microprocessor-based system 14, 18 Read signal 31 minimal 17 Read-write memory 16 Minicomputer 14 Real-time clock 78 Monitor program 92 Register 28 Multiplexing 32 Return instruction 132 Rollover (keyboard) protection 70 ROM (read-only memory) 16, 47 Rotate instruction 98 Negative flag 30 Negative number, binary 9, 10 Non-maskable interrupt 41, 196 Non-volatile memory 44 Serial I/O port 20, 23, 73 Number conversion 4-6 Seven-segment display 63-8 Sign bit 9 Sign flag 30 Signed binary number 9 Single stepping 93 Octal number 2 Software 17 Offset 108, 114 Stack 134 One's complement 9, 10 Opcode 30, 90, 111 Stack pointer 29, 135 State, timing 35 Operand 14 Static RAM 44 Operand field, in assembly program Status register see Flag register Stepper motor 152-9 Operation code 30, 90 Output port 20-3 Store 14 Overflow 12 Strobed data transfer 159

Overflow flag 12

Structured programming 82-7

Subroutine 132, 149
nested 140
Subroutine call 102
Subroutine return 102
Subroutine structure 133
Subtraction, binary 10, 11
Successive-approximation ADC 183-8
Symbolic address (label) 86, 94

Talker, in handshake 159
Test and branch instructions 101
Three-state (tri-state) gate 24-6, 60
Time delay program 78-80, 125-7,
151
nested 127-9

nested 127-9
Timer (PIO or hardware) 209
Timing sequences 78
Trace routine 90

Trace table 89, 92, 139 T-state 35 Two's complement 10, 11

UART 73 Unconditional jump instruction 101 Unsigned binary number 8, 11

Vectored interrupt 197, 199 Video display unit (VDU) 18 Volatile memory 44

Write signal 31

Zero flag 30