We will construct a sequence in Σ^+ to be able to apply Fatou's Lemma. Since we know $|f_n| \leq g_n$ for all $n \in \mathbb{N}$ and $f_n \to f$ and $g_n \to g$, we have

$$|f_n - f| \le g_n + g$$

Therefore we can conclude $g_n + g - |f_n - f| \ge 0$ and in Σ^+ . Applying fatou's lemma now gives us

$$\liminf_{n\to\infty}\mu(g_n+g-|f_n-f|)\geq\mu(\liminf_{n\to\infty}(g_n+g-|f_n-f|)).$$

The RHS equals $2\mu(g)$, since both f and g converge pointwise. The LHS is equal to $2\mu(g)$ - $\lim\sup_{n\to\infty}\mu(|f_n-f|)$. By assumption we have $\lim_{n\to\infty}\mu(g_n)=\mu(g)$. Putting it together we obtain

$$0 \ge \limsup_{n \to \infty} \mu(|f_n - f|)$$

MLT Homework 3

Bas Haver

October 3, 2018