Multiple View Geometry - Assignment 2

Itai Antebi 204817498

May 18, 2021

The Fundamental Matrix

Exercise 1

$$P_{1} = \begin{bmatrix} I & 0 \end{bmatrix}$$

$$P_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, t = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$\Rightarrow [t]_{x} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$$

Compute the Fundamental matrix:

$$F = [t]_x A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & -2 & 0 \end{bmatrix}$$

$$F = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & -2 & 0 \end{bmatrix}$$

Compute the epipolar line in the second image generated by x = (1, 1)

$$l = Fx = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & -2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}$$
$$l = \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}$$

For the points a = (2,0), b = (2,1), c = (4,2) notice that:

$$\langle l, a \rangle = \left\langle \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\rangle = 0$$

$$\langle l, b \rangle = \left\langle \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\rangle = 0$$

$$\langle l, c \rangle = \left\langle \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} \right\rangle = -4$$

Since only a, b are on the epipolar line of x on the image P_2 then a, b each could be a projection of the point X onto P_2 , but c cannot.

Exercise 2

Compute the epipoles, by projecting the center of each camera to the other one:

$$P_{1} = [I \ 0] \Rightarrow C_{1} = -I^{-1}0 = 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$C_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$P_{2} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \Rightarrow C_{2} = -\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 0.5 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 0.5 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$C_{2} = -\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -0.5 & -1 \\ 0 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$C_{2} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$c_{2} \approx P_{2}C_{1} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

$$e_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$
 $e_1 \propto P_1 C_2 = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$
 $e_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

Compute the fundamental matrix, its determinant and verify that $e_2^T F = 0$ and $Fe_1 = 0$:

$$P_1 = [I \ 0]$$

$$P_{2} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, t = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$
$$\Rightarrow [t]_{x} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \\ -2 & 2 & 0 \end{bmatrix}$$

$$F = [t]_x A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \\ -2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \\ -2 & 2 & -2 \end{bmatrix}$$

$$F = \left[\begin{array}{ccc} 0 & 0 & 2 \\ 0 & 0 & -2 \\ -2 & 2 & -2 \end{array} \right]$$

$$\det(F) = 0 \det\begin{pmatrix} 0 & -2 \\ 2 & -2 \end{pmatrix} - 0 \det\begin{pmatrix} 0 & -2 \\ -2 & -2 \end{pmatrix} + 2 \det\begin{pmatrix} 0 & 0 \\ -2 & 2 \end{pmatrix}$$
$$= 2 \det\begin{pmatrix} 0 & 0 \\ -2 & 2 \end{pmatrix} = 0$$

$$\det(F) = 0$$

$$e_2^T F = \left[\begin{array}{ccc} 2 & 2 & 0 \end{array} \right] \left[\begin{array}{ccc} 0 & 0 & 2 \\ 0 & 0 & -2 \\ -2 & 2 & -2 \end{array} \right] = \left[\begin{array}{ccc} 0 & 0 & 0 \end{array} \right] = \bar{0}$$

$$e_2^T F = \bar{0}$$

$$Fe_1 = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \\ -2 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \bar{0}$$
$$Fe_1 = \bar{0}$$

For a general camera pair $P_1 = [I \ 0]P_2 = [A \ t]$ compute the epipoles:

$$C_1 = -I^{-1}0 = 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$C_2 = -A^{-1}t$$

$$e_2 \propto P_2 C_1 = \begin{bmatrix} A & t \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = t \Rightarrow e_2 \propto t$$

$$e_1 \propto P_1 C_2 = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} -A^{-1}t \\ 1 \end{bmatrix} = -A^{-1}t \Rightarrow e_1 \propto -A^{-1}t$$

Verify that for the fundamental matrix $F = [t]_{\times} A$ the epipoles will always fulfill $e_2^T F = 0$ and $F e_1 = 0$:

$$\begin{split} e_{2}^{T}F &= t^{T} \left[t \right]_{\times} A \\ &= \left[\begin{array}{ccc} t_{1} & t_{2} & t_{3} \end{array} \right] \left[\begin{array}{ccc} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{array} \right] A \\ &= \left[\begin{array}{ccc} \left(t_{2}t_{3} - t_{3}t_{2} \right) & \left(-t_{1}t_{3} + t_{3}t_{1} \right) & \left(t_{1}t_{2} - t_{2}t_{1} \right) \end{array} \right] \\ &= \left[\begin{array}{ccc} 0 & 0 \end{array} \right] = 0 \\ &\qquad \qquad e_{2}^{T}F = \mathbf{0} \end{split}$$

$$Fe_{1} &= \left[t \right]_{\times} A \left(-A^{-1}t \right) \\ &= -\left[t \right]_{\times} A A^{-1}t \\ &= -\left[t \right]_{\times} t \\ &= -\left[\begin{array}{ccc} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{array} \right] \left[\begin{array}{ccc} t_{1} \\ t_{2} \\ t_{3} \end{array} \right] \\ &= -\left[\begin{array}{ccc} -t_{3}t_{2} + t_{2}t_{3} \\ t_{3}t_{1} - t_{1}t_{3} \\ -t_{2}t_{1} + t_{1}t_{2} \end{array} \right] = -\left[\begin{array}{ccc} 0 \\ 0 \\ 0 \end{array} \right] = 0 \end{split}$$

The Fundamental matrix has to have determinant 0 since its kernel is not empty $e_1 \in N_F$ for $e_1 \neq \bar{0} \Rightarrow F$ is not invertible $\Rightarrow \det(F) = 0$.

Exercise 3

$$\tilde{x_1} \sim N_1 x_1 \Rightarrow \tilde{x_1} = \lambda_1 N_1 x_1$$

$$\tilde{x_2} \sim N_2 x_2 \Rightarrow \tilde{x_2} = \lambda_2 N_2 x_2$$

$$\tilde{x_2}^T \tilde{F} \tilde{x_1} = 0 \Rightarrow (\lambda_2 N_2 x_2)^T \tilde{F} (\lambda_1 N_1 x_1) = 0$$

$$\Rightarrow \lambda_2 x_2^T N_2^T \tilde{F} \lambda_1 N_1 x_1 = 0$$

$$\Rightarrow x_2^T N_2^T \tilde{F} N_1 x_1 = 0$$

$$\Rightarrow x_2^T \left(N_2^T \tilde{F} N_1 \right) x_1 = 0$$

 $F = N_2^T \tilde{F} N_1$ fulfills $x_2^T F x_1 = 0$.

Computer Exercise 1

$$F \text{ is } \left[\begin{array}{ccc} 0 & 0 & 0.0058 \\ 0 & 0 & -0.0267 \\ -0.0072 & 0.0263 & 1 \end{array} \right]$$

The mean epipolar distances with normalization is: 0.36123

The mean epipolar distances without normalization is: 0.48784

The histogram, the plot of the epipolar lines and the plot of epipolar constraints (making sure they are close to 0) can be found in the attached matlab results.pdf

Exercise 4

$$F = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right]$$

As we know, $e_2 = \begin{bmatrix} e_{2_x} \\ e_{2_y} \\ 1 \end{bmatrix}$ is a point such that $e_2^T F = 0$. Let us calculate e_2 :

$$\begin{aligned} e_2^T F &= \left[\begin{array}{ccc} e_{2_x} & e_{2_y} & 1 \end{array} \right] \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right] = \left[\begin{array}{ccc} e_{2_y} & e_{2_x} + 1 & e_{2_x} + 1 \end{array} \right] = \bar{0} \\ \Rightarrow e_{2_y} &= 0; \ e_{2_x} = -1 \end{aligned}$$

$$e_{2} = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$
$$[e_{2}]_{\times} = \begin{bmatrix} 0 & -1 & 0\\1 & 0 & 1\\0 & -1 & 0 \end{bmatrix}$$

Calculate the camera matrices P_1, P_2 :

$$P_1 = [I \ 0]$$

$$\begin{split} P_2 &= \begin{bmatrix} [e_2]_\times F & e_2 \end{bmatrix} \\ &= \begin{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} \\ &= \begin{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 2 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} \\ P_2 &= \begin{bmatrix} -1 & 0 & 0 & -1 \\ 0 & 2 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

Calculate x_1, x_2 for the first point $X_1 = (1, 2, 3)$

$$x_{1} \propto P_{1} \begin{bmatrix} X_{1} \\ 1 \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$x_{1} = \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$x_{2} \propto P_{2} \begin{bmatrix} X_{1} \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & -1 \\ 0 & 2 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 10 \\ 0 \end{bmatrix}$$

$$x_{2} = \begin{bmatrix} -2 \\ 10 \\ 0 \end{bmatrix}$$

Verify that the projections of the point X_1 in the cameras P_1, P_2 fulfill the epipolar constraint:

$$x_{2}^{T}Fx_{1} = \begin{bmatrix} -2 & 10 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 10 & -2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$= \frac{1}{3}0 = \mathbf{0}$$

Calculate x_1, x_2 for the second point $X_2 = (3, 2, 1)$

$$x_{1} \propto P_{1} \begin{bmatrix} X_{2} \\ 1 \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$x_{1} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$x_{2} \propto P_{2} \begin{bmatrix} X_{2} \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & -1 \\ 0 & 2 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \\ -2 \end{bmatrix}$$

$$x_{2} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$$

Verify that the projections of the point X_2 in the cameras P_1, P_2 fulfill the epipolar constraint:

$$x_2^T F x_1 = \begin{bmatrix} 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \mathbf{0}$$

Notice that we have proven two specific cases of the general case:

$$x_{2}^{T}Fx_{1} = \left(P_{2}\begin{bmatrix}X\\1\end{bmatrix}\right)^{T}FP_{1}\begin{bmatrix}X\\1\end{bmatrix}$$

$$= \left(\begin{bmatrix}\left[e_{2}\right]_{\times}F & e_{2}\right]\begin{bmatrix}X\\1\end{bmatrix}\right)^{T}F\begin{bmatrix}I & 0\end{bmatrix}\begin{bmatrix}X\\1\end{bmatrix}$$

$$= \left(\begin{bmatrix}\left[e_{2}\right]_{\times}FX + e_{2}\right]^{T}FX$$

$$= \left(\left[e_{2}\right]_{\times}FX + e_{2}\right)^{T}FX$$

$$= \left(\left[e_{2}\right]_{\times}FX + e_{2}\right]^{T}FX + e_{2}^{T}FX$$

$$= \left(\left[FX\right)^{T}\left[\left[e_{2}\right]_{\times}FX + e_{2}^{T}FX\right]$$

$$= \left(\left[FX\right]_{\times}FX + \left[e_{2}\right]_{\times}FX + \left[e_{2}\right]_{\times$$

The last equation is true since $a^{T}(b \times a) = 0$ and $e_{2}^{T}F = 0$.

Regarding the camera center we are looking for a point C that it's projection onto P_2 is $\bar{0}$.

If we assume towards contradiction that C is not at infinity then:

$$P_{2} \left[\begin{array}{c} C \\ 1 \end{array} \right] = \left[\begin{array}{cccc} -1 & 0 & 0 & -1 \\ 0 & 2 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} C_{x} \\ C_{y} \\ C_{z} \\ 1 \end{array} \right] = \left[\begin{array}{c} -C_{x} - 1 \\ 2C_{y} + 2C_{z} \\ -C_{x} + 1 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$$

We get that $C_x = -1$ and $C_x = 1$. This is a contradiction. Thus, we know that C is at infinity:

$$P_{2} \begin{bmatrix} C \\ 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & -1 \\ 0 & 2 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{x} \\ C_{y} \\ C_{z} \\ 0 \end{bmatrix} = \begin{bmatrix} -C_{x} \\ 2C_{y} + 2C_{z} \\ -C_{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$C = \lambda \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

Arbitrarily choosing $\lambda = 1$ we get that the camera center of P_2 is at $C_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$.

Computer Exercise 2

The appearance of the 3D plot is VERY BAD.

This is because the problem of extracting cameras from F has infinitly many possible solutions:

$$P_2 = [e_2]_{\times} F + e_2 v \qquad \lambda e_2 \quad \forall v \in \mathbb{R}^3 \ \lambda \neq 0$$

and we chose a specific one, $v = 0, \lambda = 1$, without any good reason.

Thus we obtained a possible solution that is probably not the correct one (by viewing the 3D plot - it doesn't look like I expected).

The two images with the image points and the projected points, and the 3D plot can be found in the attached matlab—results.pdf

The Essential Matrix

Exercise 5

1. .

$$[t]_{\times} = USV^{T}$$
$$[t]_{\times}^{T} = VS^{T}U^{T}$$

$$\begin{split} \left[t\right]_{\times}^{T}\left[t\right]_{\times} &= \left(VS^{T}U^{T}\right)\left(USV^{T}\right) \\ &= VS^{T}U^{T}USV^{T} \\ &= VS^{T}SV^{T} \\ &= V\left(S^{2}\right)V^{T} \\ &= V\left(S^{2}\right)V^{-1} \end{split}$$

Since $([t]_{\times}^T[t]_{\times})$ is diagonalizeable by $V(S^2)V^{-1}$ we know that s_1^2, s_2^2, s_3^2 (the entries on the diagonal matrix S^2) are eigenvalues of $([t]_{\times}^T[t]_{\times})$.

2. Notice that $[t]_{\times} = \begin{bmatrix} 0 & -t_3 & t_2 \\ t_3 & 0 & -t_1 \\ -t_2 & t_1 & 0 \end{bmatrix}$ is skew-symmetric, i.e. $[t]_{\times}^T = -[t]_{\times}$.

For an eigenvector w corresponding to the eigenvalue λ of $[t]_{\times}$ it holds that:

$$\begin{split} \left([t]_{\times}^{T} \left[t \right]_{\times} \right) w &= \lambda w \iff [t]_{\times}^{T} \left([t]_{\times} w \right) = \lambda w \\ &\iff [t]_{\times}^{T} \left(t \times w \right) = \lambda w \\ &\iff - \left[t \right]_{\times} \left(t \times w \right) = \lambda w \\ &\iff - t \times \left(t \times w \right) = \lambda w \end{split}$$

3. .

$$u \times (v \times w) = (u \cdot w) v - (u \cdot v) w$$

For w = t we can show that:

$$-t \times (t \times w) = -t \times (t \times t)$$
$$= -((t \cdot t) t - (t \cdot t) t)$$
$$= 0t = 0w$$

As proven in exercise 5.2 we know that $-t \times (t \times w) = \lambda w$ iff w is an eigenvector of $[t]_{\times}^{T}[t]_{\times}$ with the corresponding eigenvalue λ .

Thus, in this case, we have shown that t is an eigenvector of $[t]_{\times}^{T}[t]_{\times}$ with the corresponding eigenvalue 0.

For $w \perp t$ we can show that:

$$-t \times (t \times w) = -((t \cdot w) t - (t \cdot t) w)$$
$$= -(0t - (t \cdot t) w)$$
$$= (t \cdot t) w = |t|^2 w$$

Thus, in this case, we have shown that $w \perp t$ is an eigenvector of $[t]_{\times}^{T}[t]_{\times}$ with the corresponding eigenvalue $|t|^{2}$.

Assume towards contradiction the there exists an eigenvector v of $[t]_{\times}^{T}[t]_{\times}$ which is not t and not $\perp t$.

Thus, this vector can be expressed as $v = \alpha_1 t + \alpha_2 w$ for some $w \perp t$. Notice that:

$$([t]_{\times}^{T}[t]_{\times}) v = ([t]_{\times}^{T}[t]_{\times}) (\alpha_{1}t + \alpha_{2}w)$$

$$= \alpha_{1} ([t]_{\times}^{T}[t]_{\times}) t + \alpha_{2} ([t]_{\times}^{T}[t]_{\times}) w$$

$$= \alpha_{1}0t + \alpha_{2} |t|^{2} w$$

$$= \alpha_{2} |t|^{2} w \neq \lambda v$$

Thus, we know that each eigenvector is either λt or $\perp t$.

4. Observing the set $\{t, w_1, w_2\}$ for which $w_1 \perp t$ and $w_2 \perp t$ $w_2 \perp w_1$ we notice that we have three linearly-independent eigenvectors of $[t]_{\times}^T[t]_{\times}$ with the corresponding eigenvalues $0, |t|^2, |t|^2$.

the corresponding eigenvalues $0, |t|^2, |t|^2$. Note that s_i is a singular value of $[t]_x$ iff $s_i = \sqrt{\lambda_i}$ for λ_i an eigenvalue of $[t]_x^T [t]_x$.

Thus, the singular values of $[t]_x$ are 0, |t|, |t|, as required.

$$E = \left[t\right]_x R = USV^TR = U \left[\begin{array}{ccc} |t| & 0 & 0 \\ 0 & |t| & 0 \\ 0 & 0 & 0 \end{array} \right] V^TR$$

Note that $(V^TR)^T V^TR = R^T V V^TR = R^TR = I \Rightarrow V^TR$ orthogonal \Rightarrow

$$E = U \begin{bmatrix} |t| & 0 & 0 \\ 0 & |t| & 0 \\ 0 & 0 & 0 \end{bmatrix} (V^T R)$$

is the SVD decomposition of E, and therefore the singular values of E are $\{|t|, |t|, 0\}$, as required.

Computer Exercise 3

This result is worst than the corresponding result in Computer Exercise 1. The average distance here is $^{\sim}2.1$ pixels instead of $^{\sim}0.36$ pixels.

E is:
$$\begin{bmatrix} 0.0032 & 0.3619 & -0.1357 \\ -0.4507 & -0.0282 & 0.8808 \\ 0.1701 & -0.9176 & -0.0004 \end{bmatrix}$$

The histogram and the plot of the epipolar lines can be found in the attached matlab—results.pdf

Exercise 6

$$E = U \operatorname{diag} ([1, 1, 0]) V^{T}$$

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{split} \det \left(UV^T \right) &= \det \left(U \right) \det \left(V^T \right) \\ &= \det \left(\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{array} \right] \right) \det \left(\left[\begin{array}{cc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array} \right] \right) \\ &= \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - 0 \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - 0 \right) + 0 \right) (1 \left(0 + 1 \right) - 0 + 0) \\ &= \left(\frac{1}{2} + \frac{1}{2} \right) (1) = 1 \end{split}$$

$$\det\left(UV^T\right) = 1$$

1. .

$$E = U \operatorname{diag}([1, 1, 0]) V^{T}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \end{bmatrix}$$

$$E = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_{2}^{T} E x_{1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$$

$$= -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 0$$

$$x_2^T E x_1 = 0$$

Thus, $x_1 = (0,0)$ in camera 1 and $x_2 = (1,1)$ in camera 2 is a plausible correspondence.

2. .

$$x_{1} = P_{1}X$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \propto \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \end{bmatrix} = \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix}$$

$$u \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix}$$

$$X_{1} = X_{2} = 0; \ X_{3} = u$$

$$X = \begin{bmatrix} 0 \\ 0 \\ u \\ v \end{bmatrix} = u \begin{bmatrix} 0 \\ 0 \\ 1 \\ \frac{v}{u} \end{bmatrix}$$

All the points in X are thus equal to $X\left(s\right)=\left[\begin{array}{c} 0\\0\\1\\s\end{array}\right]$ up to some scale.

Since all the points in a 4D ray are equivalent, we can say the X must be

one of the points in $X(s) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ s \end{bmatrix}$.

3. .

$$W = \left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$UWV^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1\\ 1 & 0 & 0\\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{split} UW^TV^T &= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0\\ -1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & -1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1\\ -1 & 0 & 0\\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & -1 & 0 \end{bmatrix} \end{split}$$

 $\operatorname{For} P_2 = \begin{bmatrix} UWV^T & u_3 \end{bmatrix}$:

$$x_2 \propto P_2 X\left(s\right)$$

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} \propto \begin{bmatrix} UWV^T & u_3 \end{bmatrix} \begin{bmatrix} 0\\0\\1\\s \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0\\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0\\0\\1\\s \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\\s \end{bmatrix}$$

$$s = -\frac{1}{\sqrt{2}} \Rightarrow x_2 \propto P_2X(s)$$

 $For P_2 = [\begin{array}{cc} UWV^T & -u_3 \end{array}]$:

$$x_2 \propto P_2 X(s)$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \propto \begin{bmatrix} UWV^T & -u_3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ s \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ s \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -s \end{bmatrix}$$

$$s = \frac{1}{\sqrt{2}} \Rightarrow x_2 \propto P_2 X\left(s\right)$$

 $For P_2 = \begin{bmatrix} UW^TV^T & u_3 \end{bmatrix}:$

$$x_2 \propto P_2 X\left(s\right)$$

$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \propto \begin{bmatrix} UW^TV^T & u_3 \end{bmatrix} \begin{bmatrix} 0\\0\\1\\s \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0\\0\\1\\s \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\\sqrt{2}\\s \end{bmatrix}$$

$$s = \frac{1}{\sqrt{2}} \Rightarrow x_2 \propto P_2 X(s)$$

$$For P_2 = \begin{bmatrix} UW^TV^T & -u_3 \end{bmatrix} :$$

$$x_2 \propto P_2 X(s)$$

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} \propto \begin{bmatrix} UW^TV^T & -u_3 \end{bmatrix} \begin{bmatrix} 0\\0\\1\\s \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0\\0\\1\\s \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\-s \end{bmatrix}$$

$$s = -\frac{1}{\sqrt{2}} \Rightarrow x_2 \propto P_2 X(s)$$

4. In order for a 3D point to be in front of the cameras - the projection of the point onto the cameras must result in a positive Z-coordinate. As shown in the previous paragraph, X(s) (that is projected onto x₂ in camera P₂) is in front of the camera P₂ in the second and third case. Let us check in which of these cases X(s) is in front of the camera P₁:

$$For P_2 = \begin{bmatrix} UWV^T & -u_3 \end{bmatrix}$$
:

$$x_1 = P_1 X\left(s\right)$$

$$x_1 \propto \left[\begin{array}{cc} I & 0 \end{array} \right] \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ \frac{1}{\sqrt{2}} \end{array} \right] \Rightarrow x_1 = \left[\begin{array}{c} 0 \\ 0 \\ \sqrt{2} \end{array} \right]$$

In this case X(s) is in front of both cameras.

$$\operatorname{For} P_{2} = \left[\begin{array}{cc} UWV^{T} & u_{3} \end{array} \right] : \ x_{2} \propto P_{2}X\left(s\right) = \left[\begin{array}{c} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ s \end{array} \right] = \left[\begin{array}{c} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{array} \right] \Rightarrow$$

Behind camera 2

$$\operatorname{For} P_{2} = \begin{bmatrix} UWV^{T} & -u_{3} \end{bmatrix} : x_{2} \propto P_{2}X\left(s\right) = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -s \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \Rightarrow$$

Behind camera 2

For
$$P_2 = \begin{bmatrix} UW^TV^T & u_3 \end{bmatrix}$$
: $x_2 \propto P_2X(s) = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ s \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \Rightarrow \text{In}$

front of camera 2

$$x_1 \propto P_1 X\left(s\right) = \left[\begin{array}{cc} I & 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ s \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right] \Rightarrow \text{In front of camera 1}$$

For
$$P_2 = \begin{bmatrix} UW^TV^T & -u_3 \end{bmatrix}$$
: $x_2 \propto P_2X(s) = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -s \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \Rightarrow \text{In}$

front of camera 2

$$x_1 \propto P_1 X\left(s\right) = \left[\begin{array}{cc} I & 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ s \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ -\frac{1}{\sqrt{2}} \end{array}\right] \Rightarrow \text{Behind camera 1}$$

Thus, only in the third case where $P_2 = \begin{bmatrix} UW^TV^T & u_3 \end{bmatrix}$ the 3D point X(s) is in front of both cameras.

Computer Exercise 4

The errors between the 2D points and the projected 3D points indeed look small ($^{\sim}1.5$ pixels).

The 3D reconstruction now does indeed look like I expected (as opposed to computer exercise 2).

The figures can be found in the attached matlab results.pdf