sDIC Breakdown

How do biology, circulation, and CO₂ exchange individually influence sDIC anomalies during a climate event?

$$\frac{d(sDIC')}{dt} = J'_{circ} + \frac{J'_{bio}}{} ** + J'_{ex}*$$

- (1) Create sDIC' for each simulation. This is $\frac{DIC}{S}$ * 35 where DIC and S are integrated over the upper 100m.
- (2) Take the central difference of (1) using `gradient` from Matlab or some equivelant function. This results in $\frac{d(sDIC')}{dt}$. Remove the ensemble mean to generate anomalies.
- (3) Compute J'_{bio} by **Jint_100m_DIC** minus ensemble mean. Divide by 100m for unit consistency (see Lovenduski et al. 2007)
- (4) Compute J'_{ex} by **FG_CO2/HMXL** (or by dividing by 100m for consistency?) minus ensemble mean.
- (5) Compute J'_{circ} by (2) + (3) + (4). Although bad practice, this results in a residual, so no need to remove ensemble mean.
- (6) Regress all four terms onto mode of interest (e.g. NPGO) for region of interest (e.g. CalCS). This gives you the relative contribution of each term to the sDIC anomaly.
- *J'ex is positive for my study although Nikki's was negative. This is because I inverted the sign of CO2 flux and thus a positive FG_CO2 adds DIC to the ocean.
- **Also positive because Jbio in CESM is source-sink. So positive is source of DIC to water column.

Unit Stuff

- 1. $dsDIC/dt native units are mmol/m²/month (since gradient was done on monthly time series). Multiply by <math>12/10^3$ to convert to mol/m²/yr
- 2. J_{bio} -- native units are mmol/m³ cm/s \rightarrow multiply by (60*60*24*365) / 10⁵ to go to mol/m²/yr.
- 3. J_{ex} native units are mol/m²/yr