FINANCIAL ECONOMETRICS

- Week 5, Lecture 2 -

Indirect Inference

VU ECONOMETRICS AND DATA SCIENCE 2024-2025

Paolo Gorgi

Today's class

- Indirect inference
 - Indirect inference estimation
 - Example: estimation of MA model
- 2 Estimation of the SV model
 - SV model by Indirect Inference
 - Filtering paths for the SV model

Indirect inference

Indirect Inference

Types of estimation problems:

- Simple models have tractable likelihoods and estimators (linear regression model).
 - parameter estimates can be directly obtained by using analytic expression of the estimator.
- Complicated models have tractable likelihoods but intractable estimators (GARCH model).
 - parameter estimates can be obtained by optimizing the likelihood function numerically.
- Very complex models have intractable likelihoods and estimators (SV model).
 - advanced simulation-based estimation techniques are needed!

Indirect Inference: Discovery

Problem: How can we estimate models were we cannot write down the log-likelihood function?

A solution: Indirect Inference

- Introduced by Smith (1993) and independently by Gourieroux,
 Monfort and Renault (1993)
- Encompasses SMM, SML, EMM, IRF-Matching, etc

Applied to many problems in economics and finance!

Indirect Inference: Examples

Application of indirect inference:

- Bias correction (near unit-root);
- Parameter-driven models (SV);
- Regression models with time-varying parameters;
- Nonlinear dynamic models with latent variables;
- Structural models in economics and finance (dynamic stochastic general equilibrium models, real business cycle models).

Indirect Inference: how it works (i)

Suppose we have a sample of observed data $y_1, ..., y_T$ and we wish to estimate the true parameter vector θ_0 of a parameter-driven model.

- First: describe the properties of the observed data $y_1, ..., y_T$ using a vector of auxiliary statistics \hat{B}_T .
- Second: simulate a sample of length H from our parameter-driven model $\tilde{y}_1(\theta), ..., \tilde{y}_H(\theta)$ for a given value of θ .
- Third: obtain the vector of auxiliary statistics for the simulated data $\tilde{B}_H(\theta)$.
- Fourth: find the value of θ that makes $\tilde{B}_H(\theta)$ as close as possible to \hat{B}_T .

Note: the observed data are assumed to be generated by the parameter-driven model under θ_0 .

Indirect Inference: how it works (ii)

Note:

- \hat{B}_T and $\tilde{B}_H(\theta)$ may contain moments (like the mean, variance and covariances), or parameter estimates of models that are simple to estimate (regression, ARMA, etc.).
- The auxiliary statistics \hat{B}_T and $\tilde{B}_H(\theta)$ must provide an appropriate description of the dynamic properties of the data!
- Notice that we can simulate a very long path $\tilde{y}_1(\theta), ..., \tilde{y}_H(\theta)$ from our model and therefore obtain a very accurate auxiliary statistics $\tilde{B}_H(\theta)$.
- The indirect inference estimate is the value of θ that makes simulated data as similar as possible to observed data!

Indirect Inference: definition (i)

Formally: the indirect inference estimator $\hat{\theta}_{TH}$ is defined as

$$\hat{\theta}_{TH} = \arg\min_{\theta \in \Theta} d(\hat{B}_T, \tilde{B}_H(\theta)).$$

where $d(\hat{B}_T, \tilde{B}_H(\theta))$ denotes the quadratic distance

$$d(\hat{B}_T, \tilde{B}_H(\theta)) = (\hat{B}_T - \tilde{B}_H(\theta))^{\mathsf{T}} W(\hat{B}_T - \tilde{B}_H(\theta)).$$

Note: W is a weighting matrix that can give different weights to each auxiliary statistic.

In practice: W can be set equal to the identity matrix.

Indirect Inference: definition (ii)

Note: the quadratic distance $d(\hat{B}_T, \tilde{B}_H(\theta))$ can be minimized using numerical methods as the Newton-Raphson algorithm (see Week 2).

Important: The simulations must be carried out using the same random *seed* value for any θ

Otherwise estimation error renders the criterion function $d(\hat{B}_T, \tilde{B}_H(\theta))$ non smooth and difficult to optimize!

Indirect Inference: a diagram

Simulated data Observed data $\tilde{y}_1(\theta),...,\tilde{y}_H(\theta)$ $y_1, ..., y_T$

$$\hat{\theta}_{TH} = \arg\min_{\theta \in \Theta} d(\hat{\beta}_T, \tilde{\beta}_H(\theta))$$

Indirect Inference: Asymptotic properties

Lemma (consistency and asymptotic normality)

Under appropriate conditions, the indirect inference estimator is consistent as both H and T go to infinity,

$$\hat{\theta}_{TH} \stackrel{p}{\to} \theta_0$$
 as $T \to \infty$ and $H \to \infty$.

Moreover, the indirect inference estimator is asymptotically Gaussian (here H is a multiple of T given by $H = \Delta T$)

$$\sqrt{T}(\hat{\theta}_{TH} - \theta_0) \stackrel{d}{\to} N \left(\mathbf{0}, \left(1 + \frac{1}{\Delta} \right) \Sigma \right).$$

Note: The asymptotic covariance matrix of the indirect inference estimator depends on H. The uncertainty and inefficiency introduced by simulations vanishes as $H \to \infty$.

Indirect Inference: identifiability and consistency (i)

Important:

• As sample size increases $(T \to \infty \text{ and } H \to \infty)$, the auxiliary statistics converge to limit values that depend only on θ

$$\hat{B}_T \stackrel{p}{\to} B(\theta_0)$$
 and $\tilde{B}_H(\theta) \stackrel{p}{\to} B(\theta)$,

where the limit function $B(\theta)$ is called the binding function.

• Therefore, we have that

$$\hat{\theta}_{TH} \stackrel{p}{\to} \arg\min_{\theta \in \Theta} d(B(\theta_0), B(\theta)).$$

Indirect Inference: identifiability and consistency (ii)

Important:

- The II estimator is consistent $(\hat{\theta}_{TH} \xrightarrow{p} \theta_0)$ if $\theta = \theta_0$ is the unique minimizer of $d(B(\theta_0), B(\theta))$.
- When $\theta = \theta_0$ is the unique minimizer, we say that the parameter vector θ is identified by the *auxiliary statistics*.
- In practice: It is important to choose auxiliary statistics \hat{B}_T that identify all parameters in θ .
- In practice: the number of auxiliary statistics has always to be equal or larger than the number of parameters in the vector θ

Important: If $\dim(\theta) > \dim(\hat{B}_T)$ then θ is not identified!

Example: Estimating an MA model (i)

Example: Consider the following MA(1) model

$$y_t = \epsilon_t + \phi \epsilon_{t-1} , \quad \epsilon_t \sim N(0, \sigma^2)$$

Recall: ϕ and σ^2 determine a number of properties of $\{y_t\}_{t\in\mathbb{Z}}$ including its variance and autocorrelation structure

Therefore: the *sample variance* and *first-order autocovariance* are natural choices as auxiliary statistics.

Note: we have 2 parameters to estimate $\theta = (\phi, \sigma^2)^{\mathsf{T}}$ and 2 auxiliary statistics (sample variance, and first-order autocovariance).

Example: Estimating an MA model (ii)

Hence: we have the following auxiliary statistics

$$\hat{B}_T = \begin{bmatrix} \hat{\gamma}_0 \\ \hat{\gamma}_1 \end{bmatrix} = \begin{bmatrix} (1/T) \sum_{t=1}^T y_t^2 \\ (1/T) \sum_{t=2}^T y_t y_{t-1} \end{bmatrix}, \text{ and}$$

$$\tilde{B}_{H}(\theta) = \begin{bmatrix} \tilde{\gamma}_{0}(\theta) \\ \tilde{\gamma}_{1}(\theta) \end{bmatrix} = \begin{bmatrix} (1/H) \sum_{t=1}^{H} \tilde{y}_{t}^{2}(\theta) \\ (1/H) \sum_{t=2}^{H} \tilde{y}_{t}(\theta) \tilde{y}_{t-1}(\theta) \end{bmatrix}.$$

Note: the criterion function can be minimized with a standard algorithm.

Let us take a look at the precision of the II estimator...

Example: Estimating an MA model (iii)

Figure: Distribution of the indirect inference estimator for different sample sizes T. The length of the simulations is set H = 20T.

Example: Estimating an MA model (iv)

Figure: Distribution of the indirect inference estimator for different length of the simulated series H. The sample size of the series is set T = 100.

Estimation of the SV model

Estimation of the SV model (i)

Stochastic volatility model:

$$y_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \exp(f_t),$$

$$f_t = \omega + \beta f_{t-1} + \eta_t.$$

Recall: ω , β and σ_{η}^2 determine certain moments of y_t

- Unconditional variance of y_t ;
- Unconditional kurtosis;
- Autocovariance in squared log-returns y_t^2 .

Hence: we can use these moments as auxiliary statistics!

Estimation of the SV model (ii)

Auxiliary statistics for SV model:

$$\hat{B}_{T} = \begin{bmatrix} \hat{s}^{2} \\ \hat{k}^{2} \\ \hat{\gamma}_{1}^{2} \\ \hat{\gamma}_{2}^{2} \end{bmatrix} = \begin{bmatrix} (1/T) \sum_{t=1}^{T} y_{t}^{2} \\ (1/T) \sum_{t=1}^{T} y_{t}^{4} \\ (1/T) \sum_{t=2}^{T} (y_{t}^{2} - \hat{s}^{2}) (y_{t-1}^{2} - \hat{s}^{2}) \\ (1/T) \sum_{t=3}^{T} (y_{t}^{2} - \hat{s}^{2}) (y_{t-2}^{2} - \hat{s}^{2}) \end{bmatrix} \text{ and }$$

$$\tilde{B}_{H}(\theta) = \begin{bmatrix} \tilde{s}^{2}(\theta) \\ \tilde{k}^{2}(\theta) \\ \tilde{\gamma}^{2}_{1}(\theta) \\ \tilde{\gamma}^{2}_{2}(\theta) \end{bmatrix} = \begin{bmatrix} (1/H) \sum_{t=1}^{H} \tilde{y}_{t}^{2}(\theta) \\ (1/H) \sum_{t=1}^{H} \tilde{y}_{t}^{4}(\theta) \\ (1/H) \sum_{t=2}^{H} (\tilde{y}_{t}^{2}(\theta) - \tilde{s}^{2}(\theta)) (y_{t-1}^{2}(\theta) - \tilde{s}^{2}(\theta)) \\ (1/H) \sum_{t=3}^{H} (\tilde{y}_{t}^{2}(\theta) - \tilde{s}^{2}(\theta)) (y_{t-2}^{2}(\theta) - \tilde{s}^{2}(\theta)) \end{bmatrix}.$$

Estimation of the SV model (iii)

Note: instead of squared log-returns other suitable transformations could be used as for instance absolute log-returns $|y_t|$.

Alternative auxiliary statistics: the parameters of an AR(p) model for squared log-returns y_t^2 constitute a natural alternative to these raw moments of the data.

AR(p) model:

$$y_t^2 = b_0 + \sum_{i=1}^p b_i y_{t-i}^2 + \epsilon_t , \quad \epsilon_t \sim N(0, c^2).$$

Estimation of the SV model (iv)

Important: the parameters of the AR(p) model describe the autocovariance structure of the squared log-returns, and this determines precisely the moments of y_t .

Auxiliary statistics: correspond to the estimated AR(p) parameters $\hat{b}_0, \ldots, \hat{b}_p$ and \hat{c}^2 .

$$\hat{B}_{T} = \begin{bmatrix} \hat{b}_{0} \\ \vdots \\ \hat{b}_{p} \\ \hat{c}^{2} \end{bmatrix} \quad \text{and} \quad \tilde{B}_{H}(\theta) = \begin{bmatrix} \tilde{b}_{0}(\theta) \\ \vdots \\ \tilde{b}_{p}(\theta) \\ \tilde{c}^{2}(\theta) \end{bmatrix}.$$

Estimation of the SV model with R (i)

Estimation with R: estimate_SV_II.R and sim_m_SV.R

Step 1: Write an R function that generates the auxiliary statistics of the SV model from simulated data $\tilde{B}_H(\theta)$ for any given parameter value θ .

Function sim_m_SV(): uses as auxiliary statistics:

- The sample variance of log-returns y_t .
- The sample kurtosis of log-returns y_t .
- The first-order autocorrelation of absolute-log-returns $|y_t|$.

Estimation of the SV model with R (ii)

```
sim_m_SV <- function(e,par){
Input of sim_m_SV():</pre>
```

- Parameter vector par.
- Simulated errors **e** of length **H** for both the observation equation and the transition equation.

Output of sim_m_SV():

• The function returns the vector output that contains auxiliary statistics of data simulated from SV model, as mentioned in the previous slide.

Estimation of the SV model with R (iii)

First: Use inputs to define SV parameters, simulation length H, and innovations $\{\epsilon_t\}_{t=1}^H$ and $\{\eta_t\}_{t=1}^H$

```
omega <- par[1]
beta <- exp(par[2])/(1+exp(par[2]))
sig2f <- exp(par[3])
H <- length(e[,1])</pre>
```

Define data vectors:

Estimation of the SV model with R (iv)

Simulate from the SV model:

```
f[1] \leftarrow omega/(1-beta)
x[1] = \exp(f[1]/2) * \exp[1]
for(t in 2:H){
f[t] \leftarrow omega + beta * f[t-1] + eta[t]
x[t] \leftarrow \exp(f[t]/2) * \exp[f[t]]
}
Finally: Return output vector
xa <- abs(x)
output \leftarrow c(var(x), kurtosis(x), cor(xa[2:H], xa[1:(H-1)]))
return(output)
```

Estimation of the SV model with R (v)

Step 2: Minimize the quadratic distance between the auxiliary moments $\tilde{B}_H(\theta)$ and \hat{B}_T . R file: estimate_SV_II.R. First: Estimate moments of observed data x $n \leftarrow length(x)$ xa <- abs(x) $sample_m \leftarrow c(var(x), kurtosis(x), cor(xa[2:n], xa[1:(n-1)]))$ **Second:** Choose simulation length H and simulate N(0,1) innovations set.seed(123) H < -50*nepsilon <- rnorm(H) eta <- rnorm(H)

e <- cbind(epsilon,eta)

Estimation of the SV model with R (vi)

Third: set the starting values for optimization

```
b < -0.90
sig2f <- 0.1
omega \leftarrow log(var(x))*(1-b)
par_ini <- c(omega, log(b/(1-b)), log(sig2f))
Finally: minimize d(\tilde{B}_H(\theta), \hat{B}_T) with respect to theta
est <- optim(par=par_ini,
         fn=function(par) mean((sim_m_SV(e,par)-sample_m)^2),method = "B
omega_hat <- est$par[1]
beta_hat <- exp(est$par[2])/(1+exp(est$par[2]))</pre>
```

theta_hat <- c(omega_hat,beta_hat,sig2f_hat)

sig2f_hat <- exp(est\$par[3])

Filtering paths for the SV model (i)

So far, we have seen how to estimate the parameter vector θ of the SV model by Indirect Inference.

However: we also wish to obtain a *filtered* path for the unobserved time-varying volatility $\{\sigma_t^2\}_{t=1}^T$!

Problem: how can we filter $\{\sigma_t^2\}_{t=1}^T$ if the updating equation depends on the unobserved innovations?

Solution 1: Kalman filter and Particle filter (Master)

Solution 2: Approximate ML filter!

Filtering paths for the SV model (ii)

Filtering paths of $\{\sigma_t^2\}_{t=1}^T$ for the SV model:

We want the path $\{\sigma_t^2\}_{t=1}^T$ that maximizes the likelihood; i.e. the joint density of $(y_1, \dots, y_T, \sigma_1^2, \dots, \sigma_T^2)$

$$p(y_1,\ldots,y_T,\sigma_1^2,\ldots,\sigma_T^2;\theta).$$

Problem: High-dimensional problem... maximization is difficult!

Solution: We consider a sequential maximization procedure.

Filtering paths for the SV model (iii)

Solution: we consider a sequential maximization procedure.

- Start with a given value of σ_1^2 .
- ② Obtain the joint distribution of y_2 and σ_2^2 given σ_1^2 .

$$p(y_2, \sigma_2^2 | \sigma_1^2) = p(y_2 | \sigma_2^2) p(\sigma_2^2 | \sigma_1^2).$$

- **③** Find the value σ_2^2 that maximizes $p(y_2, \sigma_2^2 | \sigma_1^2)$ (σ_1^2 is given).
- **1** Next, take σ_2^2 as given and optimize w.r.t. σ_3^2 .
- **1** Repeat this procedure for any σ_t^2

$$p(y_t, \sigma_t^2 | \sigma_{t-1}^2) = p(y_t | \sigma_t^2) p(\sigma_t^2 | \sigma_{t-1}^2).$$

Filtering paths for the SV model (iv)

Note: we can maximize log-likelihoods instead of likelihoods

$$\log p(y_t, \sigma_t^2 \big| \sigma_{t-1}^2) = \log p(y_t \big| \sigma_t^2) + \log p(\sigma_t^2 \big| \sigma_{t-1}^2).$$

As a result, we can obtain the filtered path by solving for every t = 1, ..., T

$$\sigma_t^2 = \arg\max\left\{\log p(y_t|\sigma_t^2) + \log p(\sigma_t^2|\sigma_{t-1}^2)\right\},\,$$

where the initial value σ_1^2 is fixed.

Filtering paths for the SV model (v)

Important: The conditional densities $p(y_t|\sigma_t^2)$ and $p(\sigma_t^2|\sigma_{t-1}^2)$ are simple and analytically tractable!!!

 $p(y_t|\sigma_t^2)$ is **determined** by the observation equation

$$y_t = \sigma_t \varepsilon_t$$

Hence: $y_t | \sigma_t^2 \sim N(0, \sigma_t^2)$

$$p(y_t|\sigma_t^2) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{y_t^2}{2\sigma_t^2}\right).$$

Recall: it is only the conditional density $p(y_t|Y^{t-1})$ that is intractable!!

Filtering paths for the SV model (vi)

 $p(\sigma_t^2|\sigma_{t-1}^2)$ is **determined** by the transition equation

$$\sigma_t^2 = \exp(f_t), \quad f_t = \omega + \beta f_{t-1} + \eta_t$$

Hence:
$$\sigma_t^2 | \sigma_{t-1}^2 \sim \log -N(\omega + \beta \log \sigma_{t-1}^2, \sigma_{\eta}^2)$$

$$p(\sigma_t^2 | \sigma_{t-1}^2) = \frac{1}{\sigma_t^2 \sqrt{2\pi\sigma_\eta^2}} \exp\left(-\frac{(\log \sigma_t^2 - \omega - \beta \log \sigma_{t-1}^2)^2}{2\sigma_\eta^2}\right).$$

Filtering paths for the SV model (vii)

Note: maximizing with respect to σ_t is the same as maximizing with respect to f_t since $f_t = \log \sigma_t^2$.

Hence: we can restate the problem as follows

$$\hat{f}_t = \arg\min\left\{y_t^2 \exp(-f_t) + 3f_t + \frac{(f_t - \omega - \beta f_{t-1})^2}{\sigma_\eta^2}\right\},\,$$

for t = 1, ..., T and a given initial value of f_1 .

Filtering paths for the SV model (vii)

Figure: Weekly log-returns of S&P 500 and estimated volatility.

Filtering paths for SV model with R (i)

```
Filtering with R: filter_SV.R and estimate_SV_II.R.
```

Step 1: Write R function (filter_SV()) that contains filtering criterion that needs to be optimized wrt f_t (see slide 36).

Input filter_SV(): y_t , f_t , f_{t-1} and θ which are labeled yt, ft, ft1 and theta.

Output filter_SV(): the value of the filtering criterion.

The function filter_SV() is given by the following code

```
filter_SV <- function(yt,ft,ft1,theta){
omega <- theta[1]
beta <- theta[2]
sig2f <- theta[3]
output <- yt^2*exp(-ft)+3*ft+(ft-omega-beta*ft1)^2/sig2f
return(output) }</pre>
```

Filtering paths for SV model with R (ii)

Step 2: optimize the function filter_SV() and obtain the filtered f_t for each time period t = 1, ..., T.

```
f \leftarrow rep(0,n)
f[1] \leftarrow log(var(x))
for(t in 2:n){
  ft ini \leftarrow f[t-1]
  f_est <- optim(par=ft_ini,</pre>
       fn= function(ft) filter_SV(x[t],ft,f[t-1],theta_hat),
         method = "BFGS")
  f[t] <- f_est$par
```