Algorithmique avancée Examen

Les calculatrices ne sont pas autorisées.

Les exercices peuvent être traités dans le désordre. La notation prendra en compte le soin et la clarté de la rédaction.

Exercice 1.

On considère un graphe orienté G et un sommet u de G.

- 1. Quel est l'ensemble des sommets par courus par un parcours en profondeur enraciné en u?
- 2. Quel est l'ensemble des sommets parcourus par un parcours en profondeur enraciné en u sur le graphe obtenu en inversant le sens de toutes les arêtes?
- 3. En déduire un algorithme permettant de déterminer les composantes fortement connexes de G.
- 4. On admet que déterminer l'intersection de deux ensembles A et B est de complexité $\mathcal{O}(n \log n)$, où n = |A| + |B|. En déduire la complexité de l'algorithme précédent.

Exercice 2.

La figure 1 montre un graphe de communication avec les capacités de chacune des liaisons. On suppose qu'un flux f de valeur 6 circule déjà entre l'émetteur s et le récepteur p le long du chemin (s,c,a,f,d,g,p) (arêtes en gras).

- 1. Quelle est la valeur du flux maximal qui peut être transmis de l'émetteur au récepteur en augmentant le flux actuel (c'est à dire que le nouveau flux f' doit vérifier $f'(e) \geq f(e)$ pour toute arête)?
- 2. Pour pallier à des défaillances de liaisons, le client souhaite garder le flux actuel f et envoyer un flux supplémentaire de même valeur n'empruntant aucune arête en commun avec f. Est-ce possible? Si non, quelle est la valeur maximale du second flux dont il peut bénéficier?

Exercice 3.

On considère un graphe orienté G, dont les arêtes ont une capacité positive, avec une source s et un puits p.

- 1. On applique l'algorithme max-flow min-cut à G pour obtenir un flux f. Soit S l'ensemble des sommets u tels que le flux pourrait être augmenté entre s et u.
 - Soit T l'ensemble des sommets v tels que le flux pourrait être augmenté entre v et t.
 - Décrire un algorithme permettant de déterminer S et T. Quelle est sa complexité?
- 2. Une arête est dite critique downstream si diminuer sa capacité diminue le flot maximal. Montrer qu'une arête est critique downstream si elle seulement si elle appartient à une coupe minimale.
- 3. Une arête est dite critique upstream si augmenter sa capacité augmente le flot maximal. Montrer que si e = (u, v) est une arête critique upstream, on a forcément $u \in S$ et $v \in T$.
- 4. Décrire un algorithme permettant de déterminer les arêtes dont l'augmentation de la capacité augmentera le flot maximal. L'appliquer au graphe de l'exercice précédent.

Exercice 4.

FIGURE 1 -

On considère la chaîne de Markov représentée à la figure 2.

- 1. Déterminer les composante fortement connexes du graphe. En déduire l'ensemble des états récurrents et transients.
- 2. On considère la chaîne réduite aux états C, E et F. Ecrire la matrice de transition P de cette chaîne.
- 3. Résoudre ${}^{t}X = {}^{t}XP$.
- 4. Que pouvez-vous dire du comportement asymptotique de la chaîne restreinte aux états $C,\,E$ et F? Justifier votre réponse.