FORMULAS - Final Exam

Conversion Factors: 1 inch = 2.54 cm; 1 mi = 1609.3 m; 1 cm= 10^{-2} m; 1 mm= 10^{-3} m; 1 g= 10^{-3} kg;

Physical constants: $g = 9.8 \text{ m/s}^2$; $G = 6.674 \times 10^{-11} \text{ N m}^2/\text{kg}^2$; $M_{Earth} = 5.97 \times 10^{24} \text{ kg}$; $R_{Earth} = 6.37 \times 10^6 \text{ m}$

Math: $360^{\circ} = 2\pi \text{ radians} = 1 \text{ revolution}$. Arc length $s = r\theta$; $V_{sphere} = 4\pi R^3 / 3$; $A_{sphere} = 4\pi R^2$; $A_{circle} = \pi R^2$

quadratic formula to solve $ax^2 + bx + c = 0$: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Vectors:
$$\vec{A} = A_x \hat{i} + A_y \hat{j}$$
; $A_x = |\vec{A}| \cos(\theta)$; $A_y = |\vec{A}| \sin(\theta)$; $|\vec{A}| = \sqrt{A_x^2 + A_y^2}$; $\tan \theta = \frac{A_y}{A}$

 $\vec{C} = \vec{A} + \vec{B}$ implies $C_x = A_x + B_y$; $C_y = A_y + B_y$

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta = A_x B_x + A_y B_y + A_z B_z; \quad \hat{\imath} \cdot \hat{\imath} = \hat{\jmath} \cdot \hat{\jmath} = \hat{k} \cdot \hat{k} = 1; \quad \hat{\imath} \cdot \hat{\jmath} = \hat{\imath} \cdot \hat{k} = \hat{\jmath} \cdot \hat{k} = 0$$

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta; \quad \vec{A} \times \vec{B} = \hat{\imath} (A_y B_z - A_z B_y) + \hat{\jmath} (A_z B_x - A_x B_z) + \hat{k} (A_x B_y - A_y B_x)$$

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$
; $\hat{i} \times \hat{j} = \hat{k}$; $\hat{j} \times \hat{k} = \hat{i}$; $\hat{k} \times \hat{i} = \hat{j}$

1D and 2D motion:

$$v_{avg} = \frac{\Delta x}{\Delta t}$$
 ; $a_{avg} = \frac{\Delta v}{\Delta t}$; $v = \frac{dx}{dt}$; $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$

$$\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t}$$
 ; $\vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t}$; $\vec{v} = \frac{d\vec{x}}{dt}$; $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$

$$x = x_i + v_i t + \frac{1}{2}at^2$$
 ; $v = v_i + at$; $v^2 = v_i^2 + 2a(x - x_i)$; $\vec{r} = \vec{r_i} + \vec{v_i} t + \frac{1}{2}\vec{a}t^2$; $\vec{v} = \vec{v_i} + \vec{a}t$

Circular motion: $T = 2\pi R / v$; $T = 2\pi / \omega$; $a_c = v^2 / R$

Newtons Laws: $\sum \vec{F} = m\vec{a}$; $\vec{F}_{12} = -\vec{F}_{21}$

Friction:

Friction:
$$f_S \leq \mu_S N$$
 ; $f_k = \mu_k N$
Energies: $K = \frac{1}{2} m v^2$; $U_g = m g y$; $U_S = \frac{1}{2} k x^2$; $W = -\int \vec{F} \cdot d\vec{r} = -\vec{F} \cdot \Delta \vec{r}$

$$E_{total} = K + U_g + U_S : \Delta E_{mech} = \Delta K + \Delta U_g + \Delta U_s = -f_s d \cdot P = dW / dt = \vec{F} \cdot \vec{v} \cdot \Delta K = W$$

Momentum and Impulse: $\vec{p} = m\vec{v}$; $\vec{I} = \int \vec{F} dt = \Delta \vec{p}$

Center of mass:
$$\vec{r}_{cm} = \sum_{i} m_i \vec{r}_i / \sum_{i} m_i$$
; $\vec{v}_{cm} = \sum_{i} m_i \vec{v}_i / \sum_{i} m_i$

Collisions: $\vec{p} = \text{const}$ and $E \neq \text{const}$ (inelastic) or $\vec{p} = \text{const}$ and E = const (elastic)

Rotational motion: $\omega = 2\pi/T$; $\omega = d\theta/dt$; $\alpha = d\omega/dt$; $v_t = r\omega$; $a_t = r\alpha$ $a_c = a_r = v_t^2/r = \omega^2 r$

$$a_{tot}^2 = a_r^2 + a_t^2$$
; $v_{cm} = r\omega$ (rolling, no slipping); $a_{cm} = r\alpha$

$$\omega = \omega_o + \alpha t$$
; $\theta_f = \theta_i + \omega_o t + \alpha t^2 / 2$; $\omega_f^2 = \omega_i^2 + 2\alpha(\theta_f - \theta_i)$

$$I_{point} = MR^2 \; ; \; I_{hoop} = MR^2 \; ; \; I_{disk} = MR^2 \; / \; 2 \; ; \; I_{sphere} = 2MR^2 \; / \; 5 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 12 \; ; \; I_{shell} = 2MR^2 \; / \; 3 \; ; \; I_{rod(center)} = ML^2 \; / \; 3 \; ; \; I_{$$

$$I_{rod(end)} = ML^2/3 \; ; \; I = \sum_i m_i r_i^2 \; ; \; I = I_{cm} + Mh^2 \; ; \; \vec{\tau} = \vec{r} \times \vec{F} \; ; \; \sum \tau = I\alpha \; ; \; \vec{L} = \vec{r} \times \vec{p} \; ; \; \vec{L} = I\vec{\omega}$$

Energy:
$$K_{rot} = I\omega^2/2$$
; $K = K_{rot} + K_{cm}$; $\Delta K + \Delta U = 0$; $W = \tau \Delta \theta$; $P_{inst} = \tau \omega$

Fluid:
$$\rho = \frac{M}{V}$$
; $P = P_o + \rho g h$; $A_1 v_1 = A_2 v_2$; $P_1 + \rho g y_1 + \frac{1}{2} \rho v_1 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2$; $B = \rho_{fluid} V^{object} g$

Gravitation:
$$\vec{F}_g = -\frac{Gm_1m_2}{r^2}\hat{r}_{12}$$
; $g(r) = GM/r^2$; $U = -Gm_1m_2/r$; $T^2 = \frac{4\pi^2}{GM}a^3$