- **2.5.** Пусть |X| = m, |Y| = n. Найти число:
- а) отображении;
- б) инъективных отображений;
- в) биективных отображений;
- Γ) сюръективных отображений множества X во множество Y.

2.11. Доказать равенства

a)
$$\binom{n}{m} = \binom{n}{n-m}$$
; 6) $\sum_{i=0}^{n} \binom{n}{i} = 2^n$;
B) $\sum_{i=0}^{n} (-1)^i \binom{n}{i} = 0$; Γ) $\sum_{i=1}^{n} i \binom{n}{i} = n2^{n-1}$;

$$a = \frac{n!}{m!(n-m)!} = \frac{n!}{(n-m)!m!} = \frac{n}{(n-m)!m!}$$

$$o$$
 $2^{n} = (1+1)^{n} = \sum_{i=0}^{N} {n \choose i}$

$$\beta) \quad \bigcirc = (1 - 1) = \sum_{i=0}^{\infty} (-1)^{i} \binom{i}{N}$$

Т.1. Преобразование $f: \mathbb{R} \to \mathbb{R}$ задано равенством $f(x) = x^3$. Сколько неподвижных точек имеет f? Является ли множество $[2, +\infty)$ инвариантным относительно f? относительно f^{-1} ?

антным относительно
$$f$$
? относительно f^{-1} ?

1) $f(x_0) = x_0$

2) here $f(x_0) = x_0$

([2,+\infty] = [3\infty] + \infty)

here

Т.2. На множестве матриц $\mathbf{M}_{n \times n}$ введем отношение: $A \sim B \Leftrightarrow$ существует обратимая матрица $S \in \mathbf{M}_{n \times n}$ такая, что $B = S^{-1}AS$. Проверьте, что \sim — отношение эквивалентности.

1)
$$A = S^{-1}AS$$
, roga $S = E$
 $A = EAF = A$

2)
$$\frac{1}{3}S_1$$
; $\frac{1}{3}B = \frac{1}{3}AS_1$ $\frac{1}{3}S_2$; $\frac{1}{3}S_2$;

Т.3. Проверить, что (\mathbb{Z}, \circ) , где $m \circ n = m + n + mn = (1+m)(1+n) - 1$, коммутативная полугруппа. Что служит ее нейтральным элементом? Найти все обратимые элементы.

1) hammyonutrous oreligia

2)
$$a \circ (b \circ c) = a \circ ((1+b)(1+c)-1) = (1+a)(1+b)(1+c)-1 = 0$$

 $(a \circ b) \circ c = ((1+a)(1+b)-1) \circ c = (1+a)(1+b)(1+c)-1$

$$(a \circ b) \circ c = ((1+a)(1+b)-1) \circ c = (1+a)(1+b)(1+c)-1$$

$$(a \circ b) \circ c = ((1+a)(1+b)-1) \circ c = (1+a)(1+b)(1+c)-1$$

$$(a \circ b) \circ c = ((1+a)(1+b)-1) \circ c = (1+a)(1+b)(1+c)-1$$

55.1. Какие из указанных числовых множеств с операциями яв- Г\1) па, п €, пс € п ℤ ляются группами:

- а) (A, +), где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{O} , \mathbb{R} , \mathbb{C} ;
- б) (A, \cdot) , где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
- в) (A_0, \cdot) , где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , а $A_0 = A \setminus \{0\}$;
- Γ) $(n\mathbb{Z}, +)$, где n натуральное число;
- \mathbf{A}) ($\{-1,1\},\cdot$);
- е) множество степеней данного вещественного числа $a \neq 0$ с целыми показателями относительно умножения;
- ж) множество всех комплексных корней фиксированной степени п из 1 относительно умножения:
- з) множество комплексных корней всех степеней из 1 относительно умножения:
- и) множество комплексных чисел с фиксированным модулем r относительно умножения:
- к) множество ненулевых комплексных чисел с модулем, не превосходящим фиксированное число r, относительно умножения;
- л) множество ненулевых комплексных чисел, расположенных на лучах, выходящих из начала координат и образующих с лучом Oxуглы $\varphi_1, \varphi_2, ..., \varphi_n$, относительно умножения;
- м) множество всех непрерывных отображений $\varphi \colon [0,1] \to [0,1],$ для которых $\varphi(0) = 0, \ \varphi(1) = 1, \$ и $x < y \Rightarrow \varphi(x) < \varphi(y), \$ относительно суперпозиции?

e)
$$(2a^k|k672)$$
, ·) 1) $a^m \cdot a^n = a^{m+n} \in \mathbb{Q}$
 $Q = 2$) $a^m(a^na^p) = a^ma^n|a^p$

$$(a^{m})^{2} = a^{-m} : a^{m} - a^{-m} = a^{n} = a^{m}$$

55.6. Какие из указанных множеств квадратных вещественных матриц фиксированного порядка образуют группу:

д) множество матриц с фиксированным определителем d относительно умножения;

м) множество верхних унитреугольных матриц относительно

Множения;

$$A = \begin{pmatrix} A a_{12}a_{13} - - a_{1n} \\ 0.1 & a_{33} - - a_{2n} \\ 0.0 & 1 - - - \\ - - - - 1 \end{pmatrix}$$
 $A = \begin{pmatrix} A a_{12}a_{13} - - a_{2n} \\ 0.1 & a_{33} - - a_{2n} \\ 0.0 & 1 - - - \\ - - - - 1 \end{pmatrix}$

Torga $C_{ij}(j < i) = 0$ — i.e. • -āun onepaugus

ha + (nb+nc) = (na + nb) + nC

3) Teas - 21 - 0

- 2) na, n 6 6 n 2 hatnb=nla+RRn7
- 3) O-herz-dl. O=N.O.F.7 na + 0 = na
- $4 \ln a^{-1} = -\ln a = \ln(-a) \in \mathbb{Z}$ ha + (-na)=0 (-na)+na=0 ynynna.

3) E-nwarp-dell. A·E=A

4)
$$A \in G$$
, $Targa \exists ! A^{T} AA^{T} = A^{T}A = E T \cdot R - |A| = 1$

9

 $A^{-1} = \frac{1}{|A|} \begin{pmatrix} |A_{1}| - |A_{1}| \\ - - - \end{pmatrix} Aii = 4$
 $Aii = 4$
 $Aii = 4$

н) множество всех ортогональных матриц относительно умножения:

AfG, TO
$$AA^{T} = A^{T}A = E$$

1) A, B & G A \(A \cdot B = C \) Targa $C^{T} = [A B)^{T} = B^{T}A^{T}$

$$CC^{T} = ABB^{T}A^{T} = AA^{T} = E$$

$$C^{T}C = B^{T}A^{T}AB = E - C + G$$

3)
$$E$$
-near. Sieu.
4) JA^{-1} -op. rorga $A^{-1} \cdot (A^{-1})^{T} = A^{-1} \cdot (A^{-1})^{-1} = A^$

55.18. Для каких групп G отображение $f \colon G \mapsto G$, определенное правилом:

а)
$$f(x) = x^2$$
; б) $f(x) = x^{-1}$, является гомоморфизмом?

При каком условии эти отображения являются изоморфизмами?

Т.4. Разбейте на классы попарно изоморфных групп следующие групы: $(\mathbb{Z}, +), (n\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{R}^*, \cdot), (\mathbb{R}_+, \cdot).$

1)
$$(\frac{1}{2}, +)$$
 $(n \frac{1}{2}, +)$ $(\pi \times) = n \times$

$$\exists$$
 (R+); (R+,-) \dagger (x)= e^{x}

 $\mathbf{T.5}^*$. Изоморфны ли мультипликативные группы \mathbb{R}^* и \mathbb{C}^* ?

 $\mathbf{T.5}^*$. Изоморфны ли мультипликативные группы \mathbb{R}^* и \mathbb{C}^* ? 1=f(1)=f(i)=f(i)==>f(i)=1 => f(i)=f(1)=1-two unseayuu.

55.21. Найти все изоморфизмы между группами $({\bf Z}_4,+)$ и $({\bf Z}_5^*,\cdot)$.

- 1) 0 -> 1 T.R. Heir.
- 2) 24 · 25 1-ropag. 4 2- 4 2-rop. 2 3- 4 3-rop. 4 84-2
- 3) 2 Crocosa! 0-1 0-1
- 56.7. Доказать, что во всякой группе:
- а) элементы x и yxy^{-1} имеют одинаковый порядок;
- б) элементы ab и ba имеют одинаковый порядок;
- в) элементы xyz и zyx могут иметь разные порядки.

a)
$$(y \times y^{-1})^{k} = y \times k y^{-1} = y y^{-1} = e \Rightarrow |y \times y^{-1}| \leq k$$

hyper $|y \times y^{-1}| = m < k \Rightarrow |y \times y^{-1}|^{m} = e$
 $y \times y^{m} y^{-1} = e$
 $y \times y^{m} y^{-1} = e$
 $y \times y^{m} y^{-1} = e$

56.15. В циклической группе $\langle a \rangle$ порядка n найти все элементы g, удовлетворяющие условию $g^k = e$, и все элементы порядка k при:

a)
$$n = 24, k = 6;$$
 6) $n = 24, k = 4;$

a)
$$a^4$$
, a^8 , a^{12} , a^{16} , a^{20} δ) a^6 , a^{12} , a^{18}

- **60.45.** Сколько элементов:
- а) порядка 2, 4 и 6 в группе ${\bf Z}_2 \oplus {\bf Z}_4 \oplus {\bf Z}_3$;
- б) порядка 2, 4 и 5 в группе ${\bf Z}_2 \oplus {\bf Z}_4 \oplus {\bf Z}_4 \oplus {\bf Z}_5$?

б) порядка 2, 4 и 5 в группе
$$\mathbf{Z}_2 \oplus \mathbf{Z}_4 \oplus \mathbf{Z}_4 \oplus \mathbf{Z}_5$$
?

a) $\frac{2_2}{0-\text{пор. 4}}$ $\frac{2_1}{0-\text{пор. 4}}$ $\frac{2_2}{0-\text{пор. 4}}$ $\frac{2_3}{1-\text{пор. 4}}$ $\frac{2_3}{1-\text{пор.$

Т.6. В группе порядок любого элемента равен 2. Докажите, что эта группа абелева.

$$a^2 = e \Rightarrow a \cdot a = e \Rightarrow ba \cdot ab = b^2 = e$$

$$ba \cdot ab = e$$

$$ba \cdot (ab)^2 = ab$$

$$ba = ab$$

Т.7. Пусть G — группа, $a \in G$ — элемент конечного порядка, $(\operatorname{ord} a, n) = 1$.

Доказать, что уравнение $x^n=a$ разрешимо в группе G.

$$(|a|,n)=1=$$
 kn +m|a|=1 >> kn =1 => $a^{kn}=a=$ $\underline{a}^{k}=X$

Т.8. Показать, что группа \mathbb{Z}_7^* циклическая. Какие элементы являются ее порождающими?

3.2. Записать в виде произведения независимых циклов перестановки:

6)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 6 & 7 & 5 & 2 & 4 \end{pmatrix}$$
; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 6 & 7 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 3 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 3 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 3 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 4 & 5 & 6 & 7 \\ 1 & 5 & 3 & 5 & 6 & 7 \\ 1 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 2 & 4 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 2 & 4 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 2 & 4 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 2 & 4 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 2 & 4 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 2 & 4 \\ 2 & 4 & 2 & 2 & 4 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & 3 & 4 & 2 & 4 \\ 2 & 4 & 2$

3.4. Перемножить перестановки:

a)
$$[(135)(2467)] \cdot [(147)(2356)]; = [(1542736)]$$

 $(1234567) = (195242736)]; = [(1542736)]$
 $3456172 = (1542736)]$

3.7. Определить четность перестановок:

- a) $(1 2 3 \dots k);$
- б) $(i_1 i_2 ... i_k);$
- (1473)(67248)(32);
- Γ) $(i_1 i_2)(i_3 i_4)(i_5 i_6) \dots (i_{2k-1} i_{2k});$

B)
$$12345678$$
 1345678 1545678 1555 13485726 13485726 $1486372/5) -14 undepension 13485326 $1486372/5) -14 undepension $13485326$$$

F) Rangert yur. Yee has lowed, that
$$1$$
 $sq n = (-1)^k$

Т.10. В задаче 3.7(в) найдите порядок данного элемента группы S_n , вычислить его 2023-ю степень.

σ=
$$[(1486372)(5)]$$
 ποραφορ polen quine δ. yuna +1 1.e~ 6+1= $\frac{1}{2}$

Т.11*. Сколько элементов порядка 6 в группе S_7 ?

Sgn
$$\sigma = Hok(quin. yours) = 6$$
 1-e-y σ (suga $(\frac{\pi}{2})^3$) $u (\frac{\pi}{2})^3$ $u (\frac{\pi}{2})^3$

56.37. Найти смежные классы:

- а) аддитивной группы $\mathbb Z$ по подгруппе $n\mathbb Z, n-$ натуральное число; $n\mathbb Z \cup n\mathbb Z + 1 \cup \dots \cup n\mathbb Z + n-1$
- в) аддитивной группы $\mathbb R$ по подгруппе $\mathbb Z;$

д) мультипликативной группы \mathbb{C}^* по подгруппе **U** чисел с модулем 1;

$$g_1 - g_2 \rightleftharpoons g_1^{-1}g_2 \in U(1) \rightleftharpoons |g_1^{-1}g_2| = 1 = 2 |g_1| = |g_2| - 0 apyroroccu.$$

56.38. Пусть g—невырожденная матрица из $\mathbf{GL}_n(\mathbb{C})$ и $H = \mathbf{SL}_n(\mathbb{C})$. Доказать, что смежный класс gH состоит из всех матриц $a \in \mathbf{GL}_n(\mathbb{C})$, определитель которых равен определителю матрицы g.

56.39. Пусть H — подгруппа в группе G. Доказать, что отображение $xH \mapsto Hx^{-1}$ задает биекцию между множеством левых и множеством правых смежных классов G по H.

CTBOM ПРАВЫХ СМЕЖНЫХ КЛАССОВ
$$G$$
 ПО H .

1) Unversultness rupae f he unverse; $f(x_1 H) = f(x_2 H) = f(x_2$

2) Cropsersubnotes $5x^{-1} / x + 6x > pabria way from Gr, znorux <math>\forall Hx^{-1}$ cycy. xH,

63.1. Какие из следующих числовых множеств образуют кольцо относительно обычных операций сложения и умножения:

- ж) множество рациональных чисел, в несократимой записи которых знаменатели являются степенями фиксированного простого числа p;
 - 3) множество вещественных чисел вида $x+y\sqrt{2}$, где $x,y\in\mathbb{Q}$;
- л) множество комплексных чисел вида x+yi, где $x,y\in\mathbb{Z};$
- м) множество комплексных чисел вида x+yi, где $x,y\in\mathbb{Q}$; \mathbb{Q} : \mathbb{Q} :

3) A orebigna oldereba. - ga sis tappasa Ron byo
(X1+44€)(X2+42€) = X1X2+241X2+41X2) € € K
1) De cretagno adalebo.
@ (xtiy)(x2+iy2) = 1/2 x2-y2y2 + i (y2x2+ X2y2) 6 K
M) TOXE RONBYO
3) UM) Tource seles noulles.
63.2. Какие из указанных множеств матриц образуют кольцо относительно матричного сложения и умножения:
в) множество верхних треугольных матриц порядка $n \ge 2$;
(3) orebugno abereba. (3) Panel god-bereas vio yunorcenul Tpey, noupuy- tpey, noupuya.
63.11. Найти все обратимые элементы, все делители нуля и все
нильпотентные элементы в кольцах: а) \mathbf{Z}_{p^n} , где p — простое число;
coparimine summer: $A = \mathbb{Z}_p^n / \{p^k, k < n\}$
genren ryer: Q= 2pk, K <n's< td=""></n's<>
tumpoteneture $3n$ -tith! $D = \{p^k, a < k = n\} \cup \{0\}$
г) верхних треугольных матриц над полем;
Formula: be a c detato
General ryse. be norphyr c det A = 0
tuisperenteure ZN-ntbl'. Be worthwyor Co queronauto.
66.20. Решить систему уравнений (3) $3x + y + 2z = 1$, $x + 2y + 3z = 1$, $4x + 3y + 2z = 1$
а) в поле ${\bf Z}_5;$ б) в поле ${\bf Z}_7.$
a) (2)+(3): 5x+5y+5z=26>0=2- heleptro.
a) $(2)+(3)$: $5x+59+32$ 2630 2 $1804+0$ b) $(1)+(3)$: $8x+6y+72=3$ $6>x-y=3$ $3=7$ $y=6$ $(1)-(3)$: $-x-2y=0$ $6>-2y=+x$ $(2)-(3)$: $-x-2y=0$ $6>-2y=+x$ $(2)-(3)$: $-x-2y=0$ $(2)-(3)$: $(2$
60.5. Разложить в прямую сумму группы: а) Z ₆ ; б) Z ₁₂ ; в) Z ₆₀ .
$\gtrsim 26 = 22023$
g) Z12 = Zu @ Z3
B) Z60= Z150Z4

35.10. Пусть V — n-мерное векторное пространство над полем F, состоящим из q элементов. Найти:

- а) число векторов в пространстве V;
- б) число базисов пространства V;
- в) число невырожденных матриц порядка n над полем F;
- Γ) число вырожденных матриц порядка n над полем F;
- д) число k-мерных подпространств пространства V;

a)
$$q''$$
 g''
 g''

- q $\begin{pmatrix} k \\ p \end{pmatrix} = k^{n} \sum_{k=0}^{n} q^{k(n-k)}$

Т.12. а) Решите в целых числах уравнение 21x + 76y = 0.

- б) Решите в целых числах уравнение 21x + 76y = 1. Сколько решений (x_0, y_0) удовлетворяют условию $0 \le x_0 \le 75$?
- в) В кольце \mathbb{Z}_{76} вычислите 21^{-1} .

a)
$$21X+76Y=0$$

 $7.02.17+6)=1$ to $X=-\frac{76}{21}Y$ uy 121 1.e. $Y=212,262$

b)
$$21x+76y=1$$

 $x_0=29$ $y_0=-8$ y_0 $0 \le x_0 \le 75$ $torgolo 21x_0+76y_0=1$
 $21(x-x_0)+76(y-y_0)=0$
 $x-x_0=-767$ $x=29-767$
 $y=8+217$ $y=8+217$
b) $21x+76y_0=1 \Rightarrow 21x_0=1 \Rightarrow 21x_0=$

Т.13. Докажите, что сопоставление $k \pmod{15} \mapsto (k \pmod{3}, k \pmod{5})$ задает изоморфизм колец $\mathbb{Z}_{15} \cong \mathbb{Z}_3 \oplus \mathbb{Z}_5$.

Dokoncu,
$$ao$$
 $f: k_{15} = (k_{3}, k_{5})$ ramanapqu3M
 $(a6)_{15} = (a_{3}, a_{5}) \cdot (6_{5}, 6_{5}) = (a_{3}6_{3}, a_{5}6_{5}) = ((a6)_{6}, (a6)_{5})$
 $kerf = 204 - urrelevyu2$.
 $\forall a \in \mathbb{Z}_{3} \ \forall 6 \in \mathbb{Z}_{5} \ f: \mathbb{Z}_{3} = \mathbb{Z}_{5} = \mathbb{Z}_{15} \ f((a, 6)) = 5a + 6 - cropsenyu3$.

25.2. Найти наибольший общий делитель многочленов:

6)
$$x^6 + 2x^4 - 4x^3 - 3x^2 + 8x - 5$$
 и $x^5 + x^2 - x + 1$;

25.7. Найти наибольший общий делитель и его выражение через f и g над полем \mathbb{F}_2 :

r)
$$f = x^{5} + x^{3} + x$$
, $g = x^{4} + x + 1$.

1) $x^{5} + x^{3} + x$ $x^{4} + x + 1$ $x^{5} + x^{2} + x + 1$ $x^{5} + x^{5} + x^{$

27.2. Разложить на линейные и квадратные множители над полем вещественных чисел многочлены:

a)
$$x^6 + 27$$
; 6) $x^4 + 4x^3 + 4x^2 + 1$;
 $x^6 + 27 = (x^2 + 3)(x^4 - 3x^2 + 3) = (x^2 + 3)(x^4 + 6x^2 + 9 - 9x^2) = (x^2 + 3)((x^2 + 3)^2 - (3x^2)) = (x^2 + 3)(x^2 - 3x^2 + 3)(x^2 + 3)(x^2$

28.22. Найти:

а) все неприводимые многочлены степени ≤ 4 над полем \mathbb{Z}_2 ;

1:
$$\underline{X}$$
 $\underline{X+1}$ -tremp:
2: rpubeg: $\underline{X^2+X}$ -stemputog: $\underline{X^2+X+1}$
3: rpubog: $\underline{X^3}$
3: rpubog: $\underline{X^3+X^2+1}$
 $\underline{X^3+X^2+X}$
 $\underline{X^3+X^2+X}$
 $\underline{X^3+X^2+X}$
 $\underline{X^3+X^2+X}$

Т.14. Дан многочлен $f \in \mathbb{Z}_p[X]$ степенью n > 1 (p — данное простое число).

При каких n степень первой разности f(x+1) - f(x) равна n-1?

21.1. Найти тригонометрическую форму числа:

д)
$$1+i;=\sqrt{2}\left(\cos\frac{\pi}{u}+\sin\frac{\pi}{u}\right)$$

p)
$$2 + \sqrt{3} + i$$
; = $\sqrt{8 + 413} \left(\cos \left(\arctan \left(\frac{1}{2 + 13} \right) \right) + i \sin \left(\arctan \left(\frac{1}{2 + 13} \right) \right) \right)$

21.2. Вычислить выражения:

$$\left(\frac{\sqrt{3}+i}{1-i}\right)^{30} \qquad \frac{\left(\frac{1}{3}+i\right)\left(1+i\right)}{1-i} = \frac{\left(\frac{1}{3}-1+i\right)\left(\frac{1}{3}+1\right)}{2} = e^{i\operatorname{arctg}} \frac{\frac{13+1}{15}-1}{15} = e^{i\operatorname{arctg}} \frac{\frac{13+1}{15}-1}{15} = e^{i\operatorname{arctg}} \frac{\frac{13+1}{15}-1}{15} = e^{i\operatorname{arctg}} =$$

21.10. Доказать, что если $z + z^{-1} = 2\cos\varphi$, то $z^n + z^{-n} = 2\cos n\varphi$,

где $n \in \mathbb{Z}$.

o)
$$\sqrt[3]{1+i}$$
: $1+i=\sqrt{2}e^{i\frac{\pi}{4}}$

$$\sqrt[3]{2}e^{i\frac{\pi}{4}}=\sqrt[3]{2}e^{i\frac{\pi}{4}}$$
 $\sqrt[3]{2}e^{i\frac{\pi}{4}}=\sqrt[3]{2}e^{i\frac{\pi}{4}}$
 $\sqrt[3]{2}e^{i\frac{\pi}{4}}=\sqrt[3]{2}e^{i\frac{\pi}{4}}$

23.1. Вычислить суммы:

a)
$$1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \dots = (\sqrt{2})^n \cos(\frac{\pi n}{n})$$

$$\stackrel{\wedge}{\mathcal{E}} = (\sqrt{1})^n - \binom{n}{2} - (\frac{n}{3})^n + \binom{n}{4} = (\sqrt{2})^n \cos(\frac{\pi n}{n}) + i\sin(\frac{\pi n}{n}) \Rightarrow \text{Re } \exists^n = (\sqrt{2})^n \cos(\frac{\pi n}{4})$$

$$\text{torgal } \text{Re } \exists^n = \sqrt{-\binom{n}{2}} + (\frac{n}{n})^n = \dots$$

Т.15. Покажите, что множество матриц $\left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} | x, y \in \mathbb{R} \right\} \subset \operatorname{Mat}_2(\mathbb{R})$ является полем относительно операций сложения и умножения матриц. Покажите также что отображение $x+iy\mapsto\begin{pmatrix} x&-y\\y&x\end{pmatrix}$ задает изоморфизм поля C с полем матриц указанного вида.

D-rem Querymo f: X+iy > (X-Y) try are zhoto sy <u>relugno</u>.

Targa TR-eure ramanoper O UE U Tuengus TO f-uzanopajuzh 3) JTO NONE

Т.16. Проверьте, что отображение $\varphi: \mathbb{R} \to \mathbb{S}^1, \ \varphi(x) = \exp(2\pi i x)$, является сюръективным гомоморфизмом групп. На какую подгруппу в \mathbb{S}^1 φ отображает подгруппу $\mathbb{Q} \subset \mathbb{R}$? Найдите ядро $\ker \varphi$. Убедитесь, что φ индуцирует биекцию между \mathbb{S}^1 и множеством смежных классов группы \mathbb{R} по подгруппе $\ker \varphi$.

1)
$$e^{2\pi i x + 2\pi i y} = e^{2\pi i x} e^{2\pi i y} - nounounpaperput.$$
2) popul $2 \in S^1$ torque $2 = e^{i t}$ torque $\frac{1}{2\pi i} - coptenued$.
3) $e^{2\pi i \frac{m}{N}} = \left(e^{2\pi i \frac{m}{N}} - e^{2\pi i \frac{m}{N}}$

Currence reacus (A no Z - 12 un

$$Q(X) = e^{2\pi (x_1 + x_2)} = e^{2\pi x_3} - e^{2\pi x_4} = e^{2\pi x_4}$$

$$\chi_{q} \in [0, 1)$$

J.e. ((x) zabrem Torbko ot gp. racre x = ecre owenizer unique R/Z U S1.