Probability 3

王胤雅

25114020018

yinyawang25@m.fudan.edu.cn

2025年10月24日

 \mathbb{R}^{OBEM} I 分布函数是否是不降的? 举出反例或者给出证明。 \mathbb{R}^{OBEM} II 证明若 $F(x) = \mathbb{P}(\xi < x)$ 是连续的,则 $\eta = F(\xi)$ 具有 (0,1) 上的均匀分布。

SOLTION.

Lemma 1. F(x) 为随机变量 ξ 的分布函数,若 F 为左连续,右极限存在,那么 $\forall x \in \mathbb{R}, F^{-1}(\{x\})$ 或为 \emptyset ,或为 $(a,b],a,b \in \mathbb{R}$ 。

证明. $\forall x \in \mathbb{R}$,若 $F^{-1}\{x\} \neq \emptyset$,需证明 $\exists a, b \in \mathbb{R}$,

 \mathbb{R}^{O} BEM III 设 ξ_n $n \in \mathbb{N}_+$ 为 i.i.d. 随机变量,分布为 μ 。给定 $A \in \mathcal{B}$, $\mu(A) > 0$,定义 $\tau = \inf\{k : \xi_k \in A\}$ 。证明 ξ_τ 的分布为 $\frac{\mu(\cdot \cap A)}{\mu(A)}$ 。

SOLTION . $\forall B \in \mathcal{C}$, $\mathbb{P}(\xi_{\tau} \in B) = \sum_{n=1}^{\infty} \mathbb{P}(\xi_{\tau} \in B | \tau = n) \mathbb{P}(\tau = n)$ 。考虑到 $\{\tau = n\} = \{\xi_n \in A, \xi_k \notin A, 1 \leq k \leq n-1\}$, $\{\xi_{\tau} \in B | \tau = n\} = \{\xi_n \in B | \xi_n \in A, \xi_k \notin A, 1 \leq k \leq n-1\}$,及 $\xi_k, 1 \leq k \leq n-1$ 与 ξ_n 独立,从而 $\{\xi_{\tau} \in B | \tau = n\} = \{\xi_n \in B | \xi_n \in A\} = \{\xi_n \in A \cap B | \xi_n \in A\}$ 。从而,

$$\mathbb{P}(\xi_{\tau} \in B) = \sum_{n=1}^{\infty} \mathbb{P}(\xi_{n} \in A \cap B | \xi_{n} \in A) \mathbb{P}(\tau = n)$$

$$= \sum_{n=1}^{\infty} \frac{\mathbb{P}(\xi_{n} \in A \cap B)}{\mathbb{P}(\xi_{n} \in A)} \mathbb{P}(\tau = n)$$

$$= \frac{\mathbb{P}(\xi_{n} \in A \cap B)}{\mathbb{P}(\tau \in A)}$$

$$= \frac{\mu(B \cap A)}{\mu(A)}$$

 \mathbb{R}^{OBEM} IV 若 $\mathcal{C}_1, \dots, \mathcal{C}_n$ 为独立的 π 系,那么 $\sigma(\mathcal{C}_1), \dots, \sigma(\mathcal{C}_n)$ 独立。

SOUTION. 该题的证明需要 $\Omega \in C_i$ $1 \le i \le n$.

只需证明若 $\forall 1 \leq l \leq n, 1 \leq k \leq n, C_k$ 为独立的 π 系且 $\Omega \in C_k$,那么 $C_k, 1 \leq k \leq n, k \neq l, \sigma(C_l)$ 独立。考虑

$$\mathcal{A} := \{ A \in \sigma(\mathcal{C}_l) : \forall J \subset 2^{\{1,\dots,n\}} \setminus \{\emptyset\}, \mathbb{P}(A \cap \bigcap_{i \in J \setminus \{l\}} A_i) = \mathbb{P}(A) \prod_{i \in J \setminus \{l\}} \mathbb{P}(A_i), A_i \in \mathcal{C}_i, i \in \{1,\dots,n\} \setminus \{l\} \}$$

BOBLEM V

- 1. 设 $\{A_n\}_{n\geq 1}$ 为独立事件序列,令 $\mathcal{J} = \bigcap_{n=1}^{\infty} \sigma\{A_n, A_{n+1}, \cdots\}$. 证明 $\forall A \in \mathcal{J}$,有 $\mathbb{P}(A) = 0$ 或 1.
- 2. 设 $\{\xi_n\}_{n\geq 1}$ 为独立随机变量,令 $\mathcal{J}=\bigcap_{n=1}^\infty\sigma\{\xi_n,\xi_{n+1},\cdots\}$ 。证明 $\forall A\in\mathcal{J}$,有 $\mathbb{P}(A)=0$ 或 1.