TEMPERATUUR MONITOREN

Door Niels Jacobs, Roy Kruijt, Esmée Cornelissen

Inhoudsopgave

1.	Inleiding	2
	Onderzoeksvraag	
	Onderzoeksmethode	
	Criteria en rationale	
5.	Oplossingsrichtingen	5
6.	Resultaten	. 6
7.	Meetopstelling	7
8.	Conclusie	.8
9.	Bronnenlijst	. 9

1. Inleiding

Bij Oceanz wordt gebruik gemaakt van professionele 3D printers die printen met de SLS technologie. SLS staat voor Selective Laser Sintering, een breed geaccepteerde technologie om producten uit nylon te vervaardigen. De producten/onderdelen worden opgebouwd door het materiaal, een fijnkorrelig poeder, laag voor laag te versmelten met een laser (SLS - Oceanz 3D Printing, n.d.).

In wezen smelt de laser het poeder in de gewenste vorm. De bouwkamer ("build chamber¹") van het poedermateriaal wordt verwarmd tot een verhoogde temperatuur. De productiemachine verspreidt een gelijkmatige laag poedervormig plastic op het bouwplatform ("build platform") in de bouwkamer. Het poeder wordt vervolgens door de laser versmolten. Als de vorm klaar is, laat de productiemachine het bouwplatform zakken op basis van de laagdikte en verspreidt een nieuwe laag poeder die weer door de laser wordt versmolten. Het proces wordt herhaald totdat de onderdelen (parts) klaar zijn. Het omliggende overtollige poeder ondersteunt de onderdelen tijdens het versmelten, het eindresultaat is een bak gevuld met poeder en geconsolideerde onderdelen ("powder cake/part cake").

De bak heeft doorgaans direct na het printen een verhoogde temperatuur van 170°C en moet binnen de printbehuizing en vervolgens buiten de printer afkoelen tot onder de glasovergangstemperatuur (60°C) voordat de onderdelen kunnen worden uitgepakt, om vervormingen ("warping") van onderdelen te voorkomen (Mohanty et al., 2022). Buiten de printer wordt de bouwkamer afgesloten met een deksel, waarmee vanaf de bovenkant stikstof wordt aangevoerd. Dit zorgt voor een gecontroleerde omgeving en gelijkmatige afkoeling. Wanneer de print- en koelfase zijn voltooid, wordt het overtollige poeder verwijderd, gezeefd en gerecycled en ondergaan de voltooide onderdelen nabewerkingsprocedures (Smattila, 2023).

De SLS-procesparameterinstellingen zijn geoptimaliseerd voor een geschikte afweging tussen het verhogen van de productiedoorvoer (bijvoorbeeld door het vergroten van het vermogen, de scansnelheid en de laagdikte), het minimaliseren van de daaruit voortvloeiende thermische degradatie van het poedermateriaal, wat de herbruikbaarheid en recycleerbaarheid ervan beïnvloedt, en de kwaliteit van het uiteindelijke onderdeel. Daarom ligt de belangrijkste weg voor verdere optimalisatie van de productietijd in de koelfase. Om de koelfase te analyseren moeten er gegevens verzamelt worden van de koelsnelheden. In dit literatuuronderzoek worden verschillende thermometer met elkaar vergeleken.

2. Onderzoeksvraag

Welk thermometer is geschikt om de temperatuur van het poederbed uit een SLS 3D-printer te monitoren?

- Welke temperatuur meetinstrumenten zijn er te krijgen?
- Hoe kan een thermometer op geschiktheid beoordeeld worden?
- Hoe scoren de geselecteerde thermometers op de criteria waarop ze beoordeeld worden?

3. Onderzoeksmethode

Het literatuuronderzoek ("Literature study") zal wijzen naar welke temperatuur meetinstrument en - technieken er te krijgen zijn. Vervolgens worden deze alternatieven met elkaar vergeleken a.d.h.v. een lijst met criteria ("Multi-criteria decision making"). De beste optie(s) worden getest op bruikbaarheid ("usability testing"). (Vogel, n.d.)

4. Criteria en rationale

De criteria en rationale bieden een overzicht van de zaken waar naar wordt gekeken bij de beoordeling van een temperatuursensor.

Number	Criteria	Rationale		
1	Nauwkeurigheid	Zorg ervoor dat de thermometer een hoge nauwkeurigheid heeft om de temperatuur van het poederbed nauwkeurig te meten.		
2	Bereik	De thermometer moet zowel de minimale als maximale temperatuur van de bak water kunnen meten.		
3	Responstijd	Kies een thermometer met een snelle responstijd, zodat je snel veranderingen in temperatuur kunt detecteren.		
4	Stofbestendig	De thermometer moet stofbestendig zijn om schade te voorkomen.		
5	Hittebestendig	De thermometer moet hittebestendig zijn en bestand zijn tegen de omstandigheden.		
6	Installatiegemak	Controleer of de thermometer gemakkelijk te installeren is in het poederbed.		
7	Kalibratie	Zorg ervoor dat de thermometer eenvoudig te kalibreren is en dat de kalibratie stabiel blijft voor nauwkeurige metingen gedurende lange tijd.		
8	Data-opslag	De thermometer moet de mogelijkheid bieden om temperatuurgegevens op te slaan voor latere analyse of rapportage.		
9	Type thermometer	Kies het juiste type thermometer voor de specifieke toepassing, zoals een contactthermometer voor directe metingen of een infraroodthermometer voor nietcontactmetingen.		
10	Kosten	Overweeg de kosten van de thermometer in verhouding tot de prestaties, duurzaamheid en functionaliteit ervan, om een goede prijs-kwaliteitverhouding te waarborgen.		
11	Energieverbruik	Overweeg het energieverbruik van de thermometer, met name als deze continu wordt gebruikt, en kies indien mogelijk voor een energiezuinig model.		
12	Meetpunt	Kies een thermometer die het juiste meetpunt van het poederbed kan bereiken.		
13	Melding (optioneel)	Sommige Thermometers maken gebruik van een app of bluetooth die een melding kunnen sturen wanneer de juiste temperatuur is bereikt.		
14	Aantal aansluitingen	Thermometers kunnen meerdere meters (sondes) op 1 thermometer aansluiten om zo meerdere punten in het poederbak tegelijk te meten.		
15	Aansluitingen	De thermometer kan worden verbonden met een laptop.		

(Istecadmin, 2020)

5. Oplossingsrichtingen

De temperatuur speelt vaak een belangrijke rol in een proces, het heeft invloed op efficiëntie, op veiligheid en op kwaliteit. Er zijn verschillende meetinstrumenten die gebruikt kunnen worden om de temperatuur van een object te meten.

Contact	Deze temperatuursensoren moeten in fysiek contact staan met het			
temperatuursensoren	object dat wordt gedetecteerd en gebruik maken van geleding om			
	veranderingen in tempratuur te monitoren.			
Contactloze	Doormiddel van convectie en straling worden veranderingen in			
temperatuursensoren	temperatuur gemonitord. Ze kunnen worden gebruikt om vloeistoffen			
	en gassen te detecteren die stralingsenergie uitzenden wanneer de			
	warmte stijgt en de koude zich in convectiestromen naar de bodem			
	zet of om de stralingsenergie te detecteren die door een object in de			
	vorm van infraroodstraling wordt overgedragen.			
De thermostaat	De thermostaat is een elektromechanische tempratuursensor of			
	schakelaar van het contacttype die bestaat uit twee verschillende			
	metalen die op elkaar zitten om een Bimetaal te vormen. De			
	verschillende lineaire uitzettingssnelheden van de twee verschillende			
	metalen veroorzaken een mechanische buigbeweging wanneer het			
	bimetaal aan hitte wordt blootgesteld. De bimetaalstrook kan zelf			
	worden gebruikt als een elektrische schakelaar of als een			
	mechanische schakelaar bedientien			
De thermistor	Dit is een speciaal type weerstand waarvan zijn weerstand verandert			
	bij blootstelling aan temperatuurschommelingen. Thermistoren zijn			
	over het algemeen gemaakt van keramische metalen waardoor ze			
	gemakkelijk beschadigd worden. Hun belangrijkste voordeel is hun			
	snelheid van reactie op eventuele verandering in temperatuur,			
	nauwkeurigheid en herhaalbaarheid.			
Resitive temprature	De elektrische weerstandstemperatuursensor zijn precisie			
detectors (RTD	tempratuursensoren gemaakt van hoog zuivere geleidende metalen			
	die in een spoel zijn gewikkeld en waarvan de elektrische weerstand			
	verandert als functie van de tempratuur, vergelijkbaar met die van de			
	thermistor.			
Thermokoppel	Thermokoppels zijn thermo-elektrische sensoren die in principe			
	bestaan uit twee knooppunten van twee verschillende metalen die			
	aan elkaar zijn gelast of gekrompen zijn. Het ene knooppunt wordt op			
	een constante temperatuur gehouden, het referentiepunt, terwijl het			
	andere het meetpunt wordt gehouden. Wanneer de twee			
	knooppunten bij verschillende tempraturen zijn wordt een spanning			
	ontwikkeld over het knooppunt die wordt gebruikt om de tempratuur			
	te meten.			

https://ebora.nl/instrumentatie/temperatuur.html

6. Resultaten

In de volgende tabel zijn de meest voor de hand liggende temperatuursensoren vergeleken aan de hand van de opgestelde criteria:

Criteria	VMA339	Boretti BBA87	Kegland RAPT	MLX90640 IR camera
Nauwkeurigheid	± 2.5 °C	±2°C		± 2 °C
Bereik	0 °C tot 600 °C	0 °C tot 380 °C	-20 °C tot 300 °C	-40 °C tot 300 °C
Responstijd	< 5s	-	-	Refresh rate 0.5 - 64Hz
Stofbestendig	Ja	Ja	Ja	Ja
Hittebestendig	Ja	Tot 380 °C	Tot 300 °C	Tot 85 °C
Installatiegemak	Redelijk	Gemakkelijk	Lastig	Lastig
Kalibratie	Fabrieks- kalibratie	Fabrieks- kalibratie	Ja	Fabrieks- kalibratie
Dataopslag	Zelf te regelen	Android/IOS app	Ja, website (RAPT portal)	Zelf te regelen
Type thermometer	Type-K thermokoppel	Insteeksonde	Insteeksonde	Infrarood- camera
Kosten	Geen extra	€ 70,-	€ 50,-	€ 75,-
Energieverbruik	5V	Batterij: 2x AA	Batterij: 5 maanden	3.3V (23mA)
Meetpunt	Direct contact	Direct contact	Direct contact	Camera (110° hoek)
Melding (optioneel)	Nee	Via de app	Via de app	Nee
Aantal aansluitingen	1	1-6 sondes	1	1
Aansluitingen	Ja, micro USB (ESP32)	Draadloze connectie	RAPT Temperature Controller	Ja, micro USB (ESP32)

(Elektroshop, n.d.), (Boretti BBA87, 2021), (RAPT, n.d.) (MLX90640 Thermal Camera, n.d.)

De vier VMA339 K-type thermokoppels zijn tegelijkertijd getest volgens de meetopstelling. Hierbij zijn alle waarden correct opgeslagen in de InfluxDB-cloudomgeving die beschikbaar is gesteld door de HAN.

7. Meetopstelling

De meetopstelling is gebaseerd op het uitgewerkte product van de vorige projectgroep (zie Rapport Tray-analyse, 2023). De VMA339-module bevat een MAX6675-IC (Integrated Circuit) waarmee de Ktype thermokoppel via SPI (Serial Peripheral Interface) kan worden uitgelezen met een 12-bits resolutie. De MAX6675-IC is aangesloten op een ESP32:

Figuur 1 - Schematische weergave ESP32 met MAX6675 (Randomnerdtutorials, 2024)

De ESP32 is geprogrammeerd met behulp van de PlatformIO-extensie in VSCode. In de bijlage ("Oceanz_Thermocouple") zijn de code (src->main.cpp) en het configuratiebestand (platformio.ini) te vinden. De code geeft instructies om verbinding te maken met de InfluxDB-cloudomgeving en elke minuut de temperatuur te meten. Bij een temperatuur tussen de 30 en 80 graden wordt de waarde elke minuut in de database opgeslagen, anders wordt de waarde tien minuten opgeslagen.

Het thermokoppel wordt in de 'deadzone' van de tray geplaatst zodra deze uit de EOS Formiga P100 3D-printer en in de koelruimte wordt geplaatst. De 'deadzone' is het gedeelte van het poederbed waar zich geen modellen bevinden. Problemen met de dataflow zijn opgelost door in de koelruimte een laptop te plaatsen die dient als hotspot voor de WiFi-verbinding met de ESP32.

8. Conclusie

Het gebruik van de Boretti BBA87 is gemakkelijk in de omgang. Via een Bluetooth-verbinding kan de gemeten temperatuur 'real-time' geregistreerd worden in de bijbehorende app op je eigen telefoon. De thermometers werkt op batterijen en is daardoor draadloos. De Boretti BBA87 ondersteunt meerdere sondes die op hetzelfde apparaat kunnen worden aangesloten. In de app kan voor elke sondes de gewenste temperatuur ingesteld worden, een melding zal gemaakt worden wanneer deze temperatuur is bereikt. Het gebruik van de bijbehorende app (Digital BBQ, n.d.) brengt echter ook nadelen met zich mee. Zo is de app specifiek ontworpen voor het braden van vlees of het brouwen van bier. Bovendien zal de dataopslag beperkt blijven tot de app, waardoor het gebruik van data voor de analyse en voorspelling van het koelproces wordt belemmerd.

Het gebruik van de MLX90640 infraroodcamera scoort lager op installatiegemak. Er is meer ontwikkeltijd nodig om een prototype te maken en de camera in de koelruimte te installeren. Dit brengt later echter wel voordelen met zich mee. Bij gebruik van een contacttemperatuursensor, zoals een thermokoppel, moet deze bij elke traywissel opnieuw worden geplaatst. Bij een correcte installatie van de infraroodcamera hoeft alleen rekening te worden gehouden met het consistent plaatsen van de tray.

Het ontwikkelen van een eigen prototype zorgt ervoor dat alle vergaarde data zelf kan worden opgeslagen. Deze data kunnen gebruikt worden voor de analyse en voorspelling van het koelproces. Mogelijke problemen die we voorzien zijn het vuil worden van de lens door stof uit het poederbed en het feit dat de infraroodcamera alleen de buitenkant van de tray kan meten. De tray-analyse van de vorige groep toont aan dat er grote temperatuurverschillen zijn tussen de binnen- en buitenkant van het poederbed. Daarom moet eerst een verband worden gelegd tussen de binnen- en buitentemperatuur, zodat de binnentemperatuur kan worden voorspeld.

Binnen Oceanz is al een prototype van de VMA339 beschikbaar, ontwikkeld door de vorige projectgroep. Het gebruik van een eigen prototype biedt voordelen zoals flexibiliteit, omdat benodigde functionaliteiten zelf kunnen worden toegevoegd en dataopslag intern kan blijven. Zo kan de data in een eigen database worden opgeslagen voor analyses, en kan deze data bijvoorbeeld worden gebruikt voor een eigen dashboard of applicatie. Bestaande producten zoals de Boretti BBA87 en Kegland RAPT hebben hierin beperkingen. Voor het opzetten van de dataflow, database en front-end is echter meer kennis vereist.

Bij gebruik van de MLX90640 infraroodcamera moet eerst een verband worden gelegd tussen de binnen- en buitentemperatuur om de binnentemperatuur te kunnen voorspellen. Dit betekent dat de binnentemperatuur aanvankelijk met een thermokoppel moet worden gemeten.

Hoewel het gebruik van de VMA339 K-type thermokoppel extra handelingen vereist, zoals het plaatsen van het thermokoppel in het poederbed, is dit voor Oceanz de meest geschikte thermometer om de temperatuur van het poederbed uit een SLS 3D-printer te monitoren.

9. Bronnenlijst

- 3D printen? Dit is Selective Laser Sintering Oceanz 3D Printing. (n.d.). Oceanz 3D Printing. https://www.oceanz.eu/technieken/selective-laser-sintering/
- Boretti BBA87 met 2 sondes. (2021, May 10). https://www.coolblue.nl.
 https://www.coolblue.nl/product/879353/boretti-bba87-met-2-sondes.html
- Digital BBQ apps on Google Play. (n.d.).
 - https://play.google.com/store/apps/details?id=qlnet.com.digitalbbq&hl=en&gl=US
- Elektroshop, R. (n.d.). $TEMPERATUURSONDE / SENSOR 600 ^{\circ}C + MAX6675 K-TYPE THERMOKOPPEL-MODULE (VMA339) Rutten Elektroshop.$
 - https://www.ruttenelektroshop.nl/product/vma339-temperatuursonde-sensor-600-c-max6675-k-type-thermokoppel-module/
- Istecadmin. (2020, February 19). *Hoe bepaal je het juiste temperatuur-meetinstrument?* Istec. https://www.istec.com/hoe-bepaal-je-het-juiste-temperatuur-meetinstrument/
- Mohanty, S., Burger, T., Knudsen, R. P., & Tosello, G. (2022). Increasing the productivity of selective laser sintering workflow by integrating cooling channels in the printing powder matrix. *CIRP Annals*, 71(1), 145–148. https://doi.org/10.1016/j.cirp.2022.03.038
- Randomnerdtutorials. (2024, januari 10). *ESP32: K-Type Thermocouple with MAX6675 Amplifier*.

 Opgehaald van Randomnerdtutorials: https://randomnerdtutorials.com/esp32-k-type-thermocouple-max6675/
- RAPT Bluetooth Thermometer -20 to 300C 20cm HTC Probe. (n.d.). KegLand.

 https://www.kegland.com.au/products/rapt-bluetooth-thermometer-20-to-300c-20cm-htc-probe
- Smattila. (2023, April 23). SLS Selective Laser Sintering. Materflow. https://www.materflow.com/en/sls-selective-laser-sintering-2/
- Vogel, J. (n.d.). *ICT Research Methods Methods Pack for research in ICT*. ICT Research Methods.

 http://www.ictresearchmethods.nl/

Wide angle (110°) - MLX90640 Thermal Camera Breakout. (n.d.). Kiwi Electronics. https://www.kiwi-

electronics.com/en/wide-angle-110-mlx90640-thermal-camera-breakout--4153