

Intro to Data Preprocessing

By Li Zhang and Diego Lopez

Agenda

- Why Python?
- Overview of Python syntax
- Some motivation for preprocessing
- Hands-on demo

Why Python?

- Open source libraries
- "Simple is better than complex"
- Python Notebooks
- Industry standard

Python Syntax

Assignments

```
my_num = 4
my_string = "hello"
# Can also use single quote for strings
my_object = MyClass()
my_list = [1, 'hi', [True, 5]]
my_bool = my_list[2][0]
```

Functions

```
def my_math_function(x):
  return 2 * x + 1
def my_function(my_param):
  print('my_param is... ' + my_param)
  my_var = my_math_function(4)
  print(my_var)
```

Loops

```
for element in my_list:
   do_something(element)
```

```
while my_boolean_variable:
   do_something()
```


Conditionals

```
if boolean_expression:
    do_something()
elif other_boolean_expresion:
    do_something_else()
else:
    do_another_thing()
```


Data Pipeline

- 1. Gather raw data
- 2. Structure data
- 3. Explore & preprocess data
- 4. Report

Data Preprocessing

Motivation

- Real world data is often noisy and dirty
- Cleaning up the data is an important step in improving model performance
- Data visualization should be done prior to model selection and training

Preprocessing Tasks

- Data cleaning
- Data transformation
- Data reduction
 - Data discretization

Kinds of Data

- Numbers
- Strings
 - Ignored in this workshop
- Categories
- Some mixture of the above

Dealing with Numbers

Rescaling

- Min-max normalization
 - Scale to [0, 1] or [-1, 1]
- Standardizing
- Log scaling (for example, salary)
- Binerizing and bucketizing
 - o "Discretizing" numbers into intervals
- NaNs
 - Replacing with mean
 - Could be done on a category by category basis
 - Predict missing values with a simple model
 - Disregarding data points with missing data

Scaling

Categorical Data

- Important to check for formatting differences
 - For instance, setting all words to lowercase
- One-hot encoding
 - Mapping each categorical value to a unit vector
 - If there are n categories, each we use n dimensional vectors, each unit vector corresponding to each category

Categorical Data

- Assume we a person can have one of 4 favourite colors: blue, red, yellow, and green.
- Then, the one-hot encoded vectors might look like this:

$$ec{v}_{ ext{blue}} = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \ ec{v}_{ ext{red}} = egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix} \ ec{v}_{ ext{yellow}} = egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix} \ ec{v}_{ ext{green}} = egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix}$$

Mixture

- Values with unit needs to be turned into a single number (and then rescaled accordingly)
- Dates can be turned into UNIX time (how much time has elapsed since Jan 1 1970?) and then rescaled
- Alternatively, dates can be bucketized into months

Adding Features

- If a feature is appropriately scaled, we can add features of higher degrees to add non-linearity
 - o If x_1 and x_2 are features, we could add the feature $x_1^{\ 2}$ or x_1x_2
- Can be used for any model

Adding Features

$$\begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} \implies \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1x_2 \end{bmatrix}$$

Advanced Techniques

- Text Data
 - Bag of words
 - \circ n-gram
- Image Data
 - Data augmentation with image transformations
- Audio data
 - Fast fourier transform

The Dataset

- More than 15 thousand soccer players
- The columns include
 - Name
 - Nationality
 - Age
 - Height
 - Weight
 - Rating

Thanks!

Check out our next workshop on Oct 9th:

Workshop 2: Deploying your ML app facebook.com/events/401246070765344/

Also give us feedback on this workshop: tiny.cc/MAIS-F2019-W1-feedback

Thanks!

Any questions?

You can find us at

https://mcgillai.com

