Public key cryptography (asymmetric cryptography)

Review

- Secret-key cryptography (symmetric cryptography)
 - Shift cipher, substitution cipher, vigenere cipher, DES
 - \Box Use the same key for both encryption & decryption (Z=Z')
 - Key must be kept secret
 - Weakness
 - Managing and distributing shared secret keys is so difficult in a model environment with too many parties and relationships
 - N parties \rightarrow n(n-1)/2 relationships \rightarrow each manages (n-1) keys
 - No way for digital signatures
 - □ No non-repudiation service

Diffie-Hellman new ideas for PKC

- In principle, a PK cryptosystem is designed for a single user, not for a pair of communicating users
 - More uses other than just encryption
- Proposed in Diffie and Hellman (1976) "New Directions in Cryptography"
 - public-key encryption schemes
 - public key distribution systems
 - Diffie-Hellman key agreement protocol
 - digital signature

Diffie-Hellman's proposal

- Each user creates 2 keys: a secret (private) key and a public key → published for everyone to know
 - □ The PK is for encryption and the SK for decryption X = D(z, E(Z, X))
 - □ The SK is for creating signatures and the PK for verifying these signatures
 - $X = E(Z, D(z, X)) \rightarrow D()$ for creating signatures, $E() \rightarrow$ verifying
- Also, called asymmetric key cryptosystems
 - □ Knowing the public-key and the cipher, it is computationally infeasible to compute the private key

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman,
 "On Digital Signatures and Public Key
 Cryptosystems", Communications of the ACM, vol
 21 no 2, pp120-126, Feb 1978
 - Security relies on the difficulty of factoring large composite numbers

Main idea

- Encryption and decryption functions are modulo exponential in the field $Z_n = \{0,1,2,...n-1\}$
 - $\blacksquare \text{ Encryption} : Y \equiv X^e \pmod{n}$

 - □ The clue is that e & d must be selected such that
 - $X^{ed} \equiv X \pmod{n}$

Main idea

- Euler theorem: $X^{\varphi(n)} \equiv 1 \pmod{n}$
 - $\neg \varphi(n)$: the number of k: 0 < k < n | gcd(k, n) = 1
 - □ If $n = p \times q$ $(p, q \text{ are primes}) \rightarrow \varphi(n) = (p-1)(q-1)$
- First choose e then compute d s.t. $ed \equiv 1 \pmod{\varphi(n)}$
 - $d \equiv e^{-1} (mod \varphi(n))$
- Note this works because we know n's factorization
 - From e we compute $d \equiv e^{-1} \mod \varphi(n)$ since we know $\varphi(n)$, otherwise it is computational infeasible to compute d s.t. $X^{ed} \equiv \mod n$

RSA public key cryptography

Key generation:

- Select 2 large prime numbers of about the same size,
 p, q
- □ Select a random integer e, 1 < e < φ(n), s.t. gcd(e, φ(n)) = 1
- □ Compute d, $1 < d < \varphi(n)$ s.t. $ed \equiv 1 \mod \varphi(n)$
- \Box Public key: (e, n) and Private key: d
 - Note: p and q must remain secret

RSA public key cryptography

Encryption

- \Box Given a message M, 0 < M < n
- Use public key (e, n) compute :

$$C = M^e \pmod{n}$$

Decryption

- \Box Given a ciphertext C, use private key (d) và compute:
 - $M = C^d \pmod{n}$
- Why work?
 - \square $C^d \pmod{n} \equiv M^{ed} \pmod{n} \equiv M \pmod{n}$

Example

- Parameters:
 - \Box Select p = 11 và q = 13
 - n = 11 * 13 = 143; m = (p-1)(q-1) = 10 * 12 = 120
 - □ Choose $e = 37 \rightarrow \gcd(37,120) = 1$
 - □ Find d such that: $e \times d \equiv 1 \pmod{120}$ → $d = 13 (e \times d = 481)$
- To encrypt a binary string
 - □ Split it into segments of u bits, $2^u \le 142 \implies u = 7$
 - each segment presents a number from 1 to 127

 - E.g.: for X = (0000010) = 2, we have $Y \equiv X^{37} \equiv 12 \pmod{143} \rightarrow Y = (00001100)$
- Decryption: $X \equiv 12^{13} \pmod{143} = 2 \rightarrow X = 00000010$

RSA implementation

\blacksquare n, p, q

- The security of RSA depends on how large n is, which is often measured in the number of bits for n. Current recommendation is 1024 bits for n.
- □ p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
- p q should not be small
- \Box Way to select p and q
 - In general, select large numbers (some special forms), then test for primality
 - Many implementations use the Rabin-Mille test, (probabilistic test)

- Bézout lemma:
 - Let a and b be integers with greatest common divisor d. Then, there exist integers x and y such that ax + by = d. More generally, the integers of the form ax + by are exactly the multiples of d
- Diophantine equation: ax+by=c
 - □ This equation has solution if and only if c : gcd(a, b)
- If $1 = GCD(e, n) \rightarrow 1 = xe + yn \rightarrow xe \equiv 1 \pmod{n} \rightarrow x \equiv e^{-1} \pmod{n}$

• Euclidean algorithm for determining $GCD(r_0, r_1)$

$$r_0 = q_1r_1 + r_2, \qquad 0 < r_2 < r_1$$
 $r_1 = q_2r_2 + r_3, \qquad 0 < r_3 < r_2$
 \vdots
 $r_{m-2} = q_{m-1}r_{m-1} + r_m, \quad 0 < r_m < r_{m-1}$
 $r_{m-1} = q_mr_m.$

□ It can be proved that: $gcd(r_0, r_1) = gcd(r_1, r_2) = \cdots = gcd(r_{m-1}, r_m) = r_m$

- Example
 - \Box Determine gcd(252, 198)

$$252 = 198 \times 1 + 54$$

 $198 = 54 \times 3 + 36$
 $54 = 36 \times 1 + 18$
 $36 = 18 \times 2 + 0$

Gcd(252, 198) = 18

Example

 \square Solve: 252x+198y=18

$$252 = 198 \times 1 + 54$$

 $198 = 54 \times 3 + 36$
 $54 = 36 \times 1 + 18$
 $36 = 18 \times 2 + 0$

$$18 = 54-36$$

$$18 = 54-(198-54\times3)$$

$$18 = 54\times4-198$$

$$18 = (252-198)\times4-198$$

$$18 = 252-198\times5$$

$$(x, y) = 1, -5$$

Example

 \square Solve: 252x+198y=18

$$252 = 198 \times 1 + 54$$

 $198 = 54 \times 3 + 36$
 $54 = 36 \times 1 + 18$
 $36 = 18 \times 2 + 0$

$$18 = 54-36$$

$$18 = 54-(198-54\times3)$$

$$18 = 54\times4-198$$

$$18 = (252-198)\times4-198$$

$$18 = 252-198\times5$$

$$(x, y) = 1, -5$$

- Example
 - \Box Determine $28^{-1} \mod 75$

 \Box Correspond to solving equation 28x + 75y = 1

$$75 = 28 \times 2 + 19$$

 $28 = 19 \times 1 + 9$
 $19 = 9 \times 2 + 1$

$$1 = 19 - 9 \times 2$$

$$1 = 19 - (28 - 19 \times 1) \times 2 = -28 \times 2 + 19 \times 3$$

$$1 = -28 \times 2 + (75 - 28 \times 2) \times 3 = 75 \times 3 - 28 \times 8$$

$$28^{-1} \mod 75 = -8 \mod 75 = 75 - 8 = 67$$

Modular exponentiation

- compute $x^a \pmod{n}$
- Naïve method:
 - $x^a \pmod{n} = x \pmod{n} \times x \pmod{n} \times ... \times x \pmod{n}$
 - \neg repeating modular multiplication for a times
- Square and multiply algorithm

Square and multiply algorithm

Representing a in binary notation : $a = \sum_{i=0}^{l} a_i 2^i$

```
z \leftarrow 1
For i = l down to 0
z \leftarrow z^2 \mod n
if a_i = 1 then
z \leftarrow (z \times x) \pmod n
end if
End for
Return z
```

```
E.g. Compute x^{19} \mod n

19 = 16 + 2 + 1 = 2^4 + 2^1 + 2^0 = 10011

z \leftarrow 1

i = 4: a_4 = 1; z \leftarrow z^2 \times x \equiv 1^2 \times x \equiv x

i = 3; a_3 = 0; z \leftarrow z^2 \equiv x^2

i = 2; a_2 = 0; z \leftarrow z^2 \equiv x^4

i = 1; a_1 = 1; z \leftarrow z^2 \times x \equiv x^8 \times x \equiv x^9

i = 0; a_1 = 1; z \leftarrow z^2 \equiv x^{18} \times x \equiv x^{19}
```

```
E.g. Compute 3^{19} \mod 5

19 = 10011

z \leftarrow 1

i = 4: a_4 = 1; z \leftarrow 1^2 \times 3 \equiv 3

i = 3; a_3 = 0; z \leftarrow 3^2 \equiv -1

i = 2; a_2 = 0; z \leftarrow (-1)^2 \equiv 1

i = 1; a_1 = 1; z \leftarrow 1^2 \times 3 \equiv 3

i = 0; a_1 = 1; z \leftarrow 3^2 \times 3 \equiv -3 \equiv 2
```

Exercises

- 1. Compute
 - 1. $17^{-1} \mod 101$
 - $2. 357^{-1} \mod 1234$
 - $3. 3125^{-1} \mod 9987$
 - 4. 9726³⁵³³ (mod 11413)
- Prove that: $X^{(p-1)(q-1)} \equiv 1 \pmod{pq} p$, q are primes
- 3. Write pseudo code for Extended Euclidean algorithm
 - 1. The ones for computing modular multiplicative inverse
- 4. Prove the correctness of square and multiply algorithm

Projects

- 1. Cryptanalysis for substitution cipher
- 2. Cryptanalysis for vigenere cipher
- A program for encryption and cryptanalysis of RSA as follows.
 - 1. Encryption:
 - Input: plain text, and public key (e, n)
 - 2. Output: cipher text
 - 3. Encryption flow
 - The plaintext is an English document. Each word of the plaintext is encoded as follows
 - DOG \rightarrow 3×26² + 14×26 + 6 = 2398
 - CAT \rightarrow 2×26² + 0×26 + 6 = 19
 - Each encoded word then is encrypted using RSA with the public key (e, n)
 - Applying square and multiply for determining modular exponent
 - 2. Cryptanalysis
 - Input: cipher text, and public key (e, n)
 - 2. Output: plaintext
 - 3. Hint:
 - Determine primes p, q, s.t. $n = p \times q$
 - 2. Calculate $\varphi(n)$
 - Determine private key d
 - By using extended Euclidean algorithm
 - 4. Decrypt with private key d
 - Applying square and multiply for determining modular exponent