Ma trận

Phép cộng hai ma trận có cùng kích thước $m \times n$, ma trận tổng C = A + B có kích thước $m \times n$, phần tử đứng ở hàng thứ i, cột thứ j xác định bởi:

$$c_{i,j} = a_{i,j} + b_{i,j}$$

Phép nhân hai ma trận chỉ thực hiện được khi số cột của ma trận bên trái bằng số dòng của ma trận bên phải. Nếu ma trận A có kích thước $m \times n$ và ma trận B có kích thước $n \times p$, thì ma trận tích $C = A \times B$ có kích thước $m \times p$, phần tử đứng ở hàng thứ i, cột thứ j xác định bởi:

$$c_{i,j} = a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \dots + a_{i,n}b_{n,j}$$

Phép nhân ma trận có các tính chất sau:

- Tính chất kết hợp: $(A \times B) \times C = A \times (B \times C)$;
- Tính chất phân phối: $(A + B) \times C = A \times C + B \times C$; $C \times (A + B) = C \times A + C \times B$;

Cần chú ý rằng phép nhân ma trận không giao hoán.

Ví du,

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}; A^2 = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}; A^3 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}; \dots$$
$$A + A^2 + A^3 = \begin{pmatrix} 2 & 4 \\ 4 & 6 \end{pmatrix}$$

Yêu cầu: Cho ma trận A kích thước $n \times n$ và số nguyên dương k, hãy tính $B = A + A^2 + ... + A^k$.

Input

- Dòng đầu chứa hai số nguyên $n, k \ (n \le 20)$;
- n dòng tiếp theo, mỗi dòng chứa n số nguyên.

Output

- Gồm *n* dòng, mỗi dòng *n* số mô tả ma trận *B*, vì giá trị mỗi phần tử của ma trận *B* có thể rất lớn, do đó chỉ cần đưa ra chữ số cuối cùng của từng phần tử của ma trân *B*.

matrix.inp	matrix.out
2 3	2 4
0 1	4 6
1 1	

Subtask 1: $k \le 10^2$;

Subtask 2: $k \le 10^9$.