STAT 610: Discussion 12

1 Summary

- Types of convergence
 - Converge almost surely: $\mathbf{X}_n \xrightarrow{a.s.} \mathbf{X}$.
 - Converge in probability: $\mathbf{X}_n \xrightarrow{p} \mathbf{X}$.
 - Converge in distribution (weak convergence): $\mathbf{X}_n \xrightarrow{d} \mathbf{X}$.
- (Continuous mapping theorem) Let $X_1, X_2,...$ be random k-vectors and g be measurable and continuous function from \mathbb{R}^k to \mathbb{R}^l . Then $X_n \to X$ (a.s. / in prob. / in dist.) implies $g(X_n) \to g(X)$ (a.s. / in prob. / in dist.).
- (Slutsky's theorem) Suppose $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$ for a constant c, then
 - $-X_n + Y_n \xrightarrow{d} X + c,$
 - $-X_nY_n \xrightarrow{d} cX$
 - $-\frac{X_n}{Y_n} \xrightarrow{d} \frac{X}{c}$ if $c \neq 0$.
- (First order delta method) If $\sqrt{n}(X_n \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ and g is a function satisfying that $g'(\theta)$ exists and is not 0, then

$$\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{d} \mathcal{N}(0, \sigma^2[g'(\theta)]^2)$$

- Consistency: A sequence of estimators T_n is consistent w.r.t θ if $T_n \xrightarrow{p} \theta$.
- (Consistency of MLEs) Let $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} f_{\theta}(x)$. Let $\hat{\theta}_n$ denote the MLE of θ . Under certain regularity conditions, $\hat{\theta}_n$ is a consistent estimator of θ_n .
- Suppose that $k_n(T_n \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$. Then σ^2 is called the asymptotic variance of T_n .
- A sequence T_n is asymptotic efficient for $\tau(\theta)$ if $\sqrt{n}\{T_n \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \nu(\theta))$, where

$$\nu(\theta) = \frac{\{\tau'(\theta)^2\}}{\mathbb{E}\left[\left\{\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right\}^2\right]}.$$

- Under regularity conditions, MLEs are asymptotic efficient.
- Suppose $\sqrt{n}(T_n \theta) \xrightarrow{d} (0, \sigma_T^2)$ and $\sqrt{n}(W_n \theta) \xrightarrow{d} (0, \sigma_W^2)$. The asymptotic relative efficiency (ARE) of W_n w.r.t. T_n is $ARE(W_n, T_n) = \sigma_T^2/\sigma_W^2$

2 Questions

1. A random sample X_1, \ldots, X_n is drawn from the following pdf

$$f_{\theta}(x) = \frac{1}{2}(1 + \theta x), \quad -1 < x < 1, \quad -1 < \theta < 1.$$

Find a consistent estimator of θ and show it is consistent.

2. Let X_1, \ldots, X_n be a random sample of random variables with unknown mean $\mu \in \mathbb{R}$ and unknown variance $\sigma^2 > 0$ and $\mathbb{E}(X^4) < \infty$. Consider the estimation of μ^2 and the following three estimators:

$$- T_{1n} = \bar{X}^2,$$

$$- T_{2n} = \bar{X}^2 - S^2/n,$$

$$- T_{3n} = \max\{0, T_{2n}\}.$$

- (a) Show that the asymptotic variance of T_{jn} , j=1,2,3, are the same when $\mu \neq 0$.
- (b) Find the asymptotic distribution when $\mu \neq 0$.
- (c) Find the asymptotic distribution when $\mu = 0$.
- (d) Which one is better?

- 3. Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(0, \sigma^2)$. Consider the estimation of σ . Consider these two estimates $T_{1n} = \sqrt{\pi/2} \sum_{i=1}^n |X_i|/n$ and $T_{2n} = (\sum_{i=1}^n X_i^2/n)^{1/2}$.
 - (a) Find the asymptotic distributions of T_{1n} and T_{2n} .
 - (b) Which one is better?

Hint: You can use the fact that $\mathbb{E}(\sqrt{\pi/2}|X_1|) = \sigma$ and $Var(\sqrt{\pi/2}|X_1|) = (\frac{\pi}{2} - 1)\sigma^2$