

GPUs Computación Heterogénea

Profesor: Dr. Joel Fuentes - jfuentes@ubiobio.cl

Ayudantes:

- Daniel López <u>daniel.lopez1701@alumnos.ubiobio.cl</u> Sebastián González <u>sebastian.gonzalez1801@alumnos.ubiobio.cl</u>

Página web del curso: http://www.face.ubiobio.cl/~jfuentes/classes/ch

Contenidos

- Historia de las GPUs
- Aplicación de ejemplo: Renderización 3D
- Arquitecturas Nvidia, AMD, Intel
- Programación de GPUs

Historia de las GPUs

- GPUs (Graphics Processing Units) fueron inicialmente creadas para aceleración gráfica y video juevos 3D.
- Inicialmente diseñadas con funciones fijas sin posibilidad de programación flexible.
- Desde el 2001 se comenzó a incluir la posibilidad de programar GPUs
- Hoy en día sus usos han evolucionado y abarcan:
 - Visión por computador
 - Deep learning
 - Computación científica
 - Cryptomining

Historia de las GPUs

Performance en GFLOP/s vs CPU

Theoretical GFLOP/s

Aplicación de ejemplo: Renderización 3D

• Tarea consiste en calcular cómo cada triángulo en la malla 3D contribuye en la apariencia de cada pixel de la imagen renderizada.

Descripción de la escena basada en: malla de triángulos, luces, cámara, etc.

Imagen de la escena

Renderización 3D en tiempo real

Aplicación de ejemplo: Renderización 3D

• Pasos en la renderización dada una malla de triángulos 3D

Aplicación de ejemplo: Renderización 3D

Pasos en la renderización dada una malla de triángulos 3D

Arquitecturas GPU

Modelo de ejecución

- GPU está construida basado en múltiples cores paralelos simples. Cada core es capáz de ejecutar instrucciones SIMD (Single Instruction Multiple Data).
- La CPU envía tareas de procesamiento (mallas, buffers, etc.) a la GPU, quien distribuye el trabajo en sus cores.

Arquitecturas GPU

- Los cores en la GPU trabajan bajo el modelo de hilos en memoria compartida.
- GPUs pueden correr cientos o miles de hilos en paralelo.
- GPUs usualmente tiene su propia DRAM
- GPUs son buenas para:
 - Procesamiento data-parallel: la misma operación ejecutada en muchos elementos de datos en paralelo.
 - Procesamiento con alta intensidad aritmética.

Arquitecturas GPU

- Comparación con CPU:
 - GPUs ocupan más transistores en procesamiento de datos
 - GPUs poseen cachés más pequeñas
 - La ALU de GPU es más simple que la de CPU

GPU Nvidia

- Tienen una jerarquía de 2 niveles
- Cada procesados de flujo (SM) tiene múltiples CUDA cores
- El número de SMs varía dependiendo del tipo de GPU

GPU Nvidia

• Imagen arquitectura Pascal (1080 Ti)

GPU AMD

- GPR: registros de propósito general
- vALU: vector ALU para procesamiento SIMD

GPU AMD

- Imagen GPU Vega 20
- NCU: Next compute unit

GPU Intel

- Unidad de cómputo o core es llamado Execution Unit (EU)
- Múltiples EUs agrupadas en Subslices
- Múltiples Subslices agrupadas en Slices
- Jerarquía de memoria hasta L3

Figure 4: Gen11 detailed block diagram.

GPU Intel

- Diagrama de bloques arquitectura Xe (GPU integrada)
- Pronto Intel lanzará GPUs discretas

Programación de GPUs

- En qué programamos GPUs?
 - CUDA (Nvidia)
 - OpenCL (estándar abierto)
 - OpenACC
 - SYCL (estándar abierto)
 - DPC++
- En la próxima unidad veremos diferentes modelos de programación

Referencias

- Parallel Computing, CS 149 (Fall 2019), Stanford University
- Paul Richmond. GPU Arquitectures http://paulrichmond.shef.ac.uk/teaching/COM4521/
- Qin CZ. (2017) Cuda/GPU. In: Shekhar S., Xiong H., Zhou X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1606