La conjetura de Poincaré en dimensiones altas

Notas

github.com/danimalabares/cohom

August 10, 2023

Índice

Índice			
1	Áge	ebra homológica	3
	$1.\overline{1}$	Repaso	3
	1.2	Más álgebra homológica	6
		Funtores derivados	

1. Ágebra homológica

1.1 Repaso

Sea R un anillo asociativo con 1. Podemos ahora tomar la categoría de R-módulos, R-mod , cuyos objetos son R-módulos y los morfismos son homomorfismos R-lineales. También podemos construir R-ch-comp, cuyos objetos son complejos de cadenas,

$$\cdots \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots$$

tales que $\partial_{n-1}\circ\partial_n=0$, es decir, $\operatorname{img}\partial_n\subseteq\ker\partial_{n-1}$. y sus morfismos son morfismos complejos de cadenas, $C_{\bullet}\stackrel{f}{\longrightarrow}D_{\bullet}$, que son muchos morfismos tales que el siguiente diagrama conmuta en todos los cuadraditos:

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow^{f_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}}$$

$$\cdots \longrightarrow D_{n+1} \xrightarrow{\delta_n} D_n \xrightarrow{\delta_n} D_{n-1} \longrightarrow \cdots$$

Y definimos

$$H_n(C_{\bullet}) = \frac{\ker \partial_n}{\operatorname{img} \partial_{n+1}}$$

Definición.

- Decimos que C_{\bullet} es **acíclico** si $H_n(C_{\bullet}) = 0$ para toda n.
- La sucesión $C_1 \xrightarrow{\varphi} C_2 \xrightarrow{\psi} C_3$ es **exacta** si img $\varphi = \ker \psi$.
- La sucesión $0 \to C_1 \to C_2 \to C_3 \to 0$ es una sucesión exacta corta.
- Y si se extiende infinitamente, es una sucesión exacta larga.

Proposición. En una sucesión exacta corta, φ es inyectiva, ψ es suprayectiva y $C_3 \approx C_2/\ker \psi$. Abusando de notación, podemos pensar que $C_3 \approx C_2/C_1$, pero hay que tener cuidado aquí porque el encaje de C_1 en C_2 puede no ser único.

Tomemos n fijo. Entonces

$$\begin{array}{ccc}
& \text{Ab} \\
& \uparrow \\
\text{R-ch-comp} & \longrightarrow & \text{R-mod} \\
C_{\bullet} & \longmapsto & H_n(C_{\bullet})
\end{array}$$

Y como los morfismos de cadenas mandan ciclos en ciclos y fronteras en fronteras, podemos definir los morfismos inducidos, que satisfacen que $(fg)_* = f_*g_*$ y $id_{C_{\bullet *}} = id_{H_n(C_{\bullet})}$. Como la composición de morfismos se abre en el mismo orden en el que estaba, se llama funtor covariante.

Definición. Dos homomorfismos

$$f,g:(C_{\bullet},\partial)\to(C'_{\bullet},\partial')$$

son **homotópicos** si existen homomorfismos $h_n:C_n\to C'_{n+1}$ para toda $p\in\mathbb{Z}$ tales que

$$f_n - g_n = \partial'_{n+1} h_n + h_{n-1} \partial_n$$

Estas flechas se pueden visualizar aquí:

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow^{f_{n+1}-g_{n+1}} \downarrow^{h_n} \downarrow^{f_n-g_n} \downarrow^{h_{n-1}} \downarrow^{f_{n-1}-g_{n-1}} \cdots$$

$$\cdots \longrightarrow C'_{n+1} \xrightarrow{\partial'_{n+1}} C'_n \xrightarrow{\partial'_n} C'_{n-1} \longrightarrow \cdots$$

Así que la suma de las flechas azules es igual a la flecha roja. (No estamos diciendo que el diagrama sea conmutativo).

Esto es tanto como decir que $H_n(f) = H_n(g)$ para toda n. Es decir, funciones homotópicas inducen los mismos homomorfismos entre complejos de cadenas.

Teorema (fundamental del álgebra homológica). Si

$$0 \longrightarrow A_{\bullet} \stackrel{\phi}{\longrightarrow} B_{\bullet} \stackrel{\psi}{\longrightarrow} C_{\bullet} \longrightarrow 0$$

es una sucesión exacta corta de complejos de cadena, entonces existen homomorfismos

$$\delta_{*p}: H_p(C_{\bullet}) \to H_{p-1}(A_{\bullet})$$

tales que la sucesión

$$\cdots \longrightarrow H_p(A_{\bullet}) \xrightarrow{\bar{\phi}_p} H_p(B_{\bullet}) \xrightarrow{\bar{\psi}_p} H_p(C_{\bullet}) \xrightarrow{\delta_{*p}} H_{p-1}(A_{\bullet}) \xrightarrow{\bar{\phi}_{p-1}} H_{p-1}(B_{\bullet}) \longrightarrow \cdots$$

es exacta.

1.1. REPASO 5

En el siguiente diagrama conmutativo se ve claramente qué está pasando:

Demostración. Explicamos un poco cómo definir el homomorfismo de conexión haciendo cacería de diagrama. Comenzamos con un ciclo $c \in C_p(A)$. Como j_p es suprayectiva, existe un $a \in B_p$ tal que $j_p(a) = c$. Luego, $\partial_p(a) \in \ker j_{p-1}$, ya que, como el diagrama conmuta, $\partial_p j_p = j_{p-1} \partial_p$ y c es un ciclo. Como la sucesión es exacta, $\ker j_{p-1} = \operatorname{img} i_{p-1}$, así que existe $a \in A_{p-1}$ tal que $i_{p-1}(a) = \partial_p(b)$. Este a es un ciclo, ya que el diagrama conmuta, $i_{p-2}(a) = \partial(\partial(b)) = 0$, y la i_{p-2} es inyectiva por exactitud, es decir, el único elemento al que va a dar el cero es el cero. Así que definimos $\delta_{*p}[c] = [a]$.

Y una vez definido este homomorfismo, el resto de la prueba sale sin trucos. \Box

Teorema (Naturalidad del homomorfismo de conexión). Para dos sucesiones exactas cortas y morfismos f, g y h,

$$0 \longrightarrow A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{j} C_{\bullet} \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow A'_{\bullet} \longrightarrow B'_{\bullet} \longrightarrow C'_{\bullet} \longrightarrow 0$$

donde las filas son exactas.

Entonces, el siguiente diagrama conmuta

$$\cdots \longrightarrow H_p(A) \longrightarrow H_p(B) \longrightarrow H_p(C) \xrightarrow{\delta_*} H_{p-1}(A) \longrightarrow H_{p-1}(B) \longrightarrow H_{p-1}(C) \longrightarrow \cdots$$

$$\downarrow_{\bar{f}} \qquad \downarrow_{\bar{g}} \qquad \downarrow_{\bar{h}} \qquad \downarrow_{\bar{g}} \qquad \downarrow_{\bar{h}}$$

$$\cdots \longrightarrow H_p(A') \longrightarrow H_p(B') \longrightarrow H_p(C') \longrightarrow H_{p-1}(A') \longrightarrow H_{p-1}(B') \longrightarrow H_{p-1}(C') \longrightarrow \cdots$$

Demostración. Salvo en los cuadrados donde está \bar{h} a la izquierda y \bar{f} a la derecha, la conmutatividad se sigue por funtorialidad.

Lema (de los cinco). Consideremos el diagrama conmutativo con filas exactas

$$M_{5} \xrightarrow{f_{5}} M_{4} \xrightarrow{f_{4}} M_{3} \xrightarrow{f_{3}} M_{2} \xrightarrow{f_{2}} M_{1}$$

$$\downarrow h_{5} \qquad \downarrow h_{4} \qquad \downarrow h_{3} \qquad \downarrow h_{2} \qquad \downarrow h_{1}$$

$$N_{5} \xrightarrow{g_{5}} N_{4} \xrightarrow{g_{4}} N_{3} \xrightarrow{g_{3}} N_{2} \xrightarrow{g_{2}} N_{1}$$

Si h_5, h_4, h_2 y h_1 son isomorfismos, entonces h_3 también.

1.2 Más álgebra homológica

Tomemos N, M R-módulos, y el conjunto de homomorfismos R-lineales de M en N, que es un grupo abeliano (cuya identidad es el morifsmo que manda todo a 0, y f+g(m)=f(m)+g(m) que también es un morfismo, (-f)(m)=-f(m)). También tiene estructura de R-módulo con la operación (rf)(m)=rf(m)=f(rm).

Ahora construyamos un funtor:

$$\operatorname{Hom}(-,N):\operatorname{R-mod}\to\operatorname{Ab}$$

$$M\mapsto\operatorname{Hom}(M,N)$$

$$M\stackrel{\varphi}{\to}M'\mapsto\qquad ?$$

La flecha inducida será

$$\operatorname{Hom}(M,N) \xleftarrow{\varphi^*} \operatorname{Hom}(M',N)$$
$$\varphi^*(f) = f\varphi \hookleftarrow f$$

De acuerdo a

$$M \downarrow \varphi \qquad f\varphi \downarrow M' \xrightarrow{f} N$$

Así que $\operatorname{Hom}(-, N)$ es un funtor **contravariante**. De hecho, es un **funtor aditivo exacto izquierdo**:

• Aditivo. Manda sumas directas en sumas directas, es decir,

$$\operatorname{Hom}(M_1 \oplus M_2, N) \approx \operatorname{Hom}(M_1, N) \oplus \operatorname{Hom}(M_2, N)$$

Que tiene que ver con la propiedad universal de la suma directa:

Donde $(f \oplus g)(m_1, m_2) = f(m_1) + g(m_2)$. Así que si tenemos (f, g) en el módulo de la derecha, lo mandamos a $f \oplus g$.

7

• Exacto Supongamos que tenemos la sucesión exacta corta

$$0 \longrightarrow A \stackrel{\varphi}{\longrightarrow} B \stackrel{\psi}{\longrightarrow} C \longrightarrow 0$$

a la que le aplicamos el funtor para obtener la sucesión exacta

$$0 \longrightarrow \operatorname{Hom}(C,N) \xrightarrow{\psi^*} \operatorname{Hom}(B,N) \xrightarrow{\varphi^*} \operatorname{Hom}(A,N)$$

En general, φ^* no es suprayectiva.

Ejercicio.

• Checar lo anterior.

Solución. Basta ver que la flecha $0 \to A$ no necesiamente va a dar a una flecha de la forma $\operatorname{Hom}(A,N) \to 0$.

• ¿Qué pasa con el cokernel?

Observación. También podemos definir el funtor análogo dejando libre la entrada de la derecha, y obtenemos un funtor covariante (que no usaremos tanto y también es aditivo exacto *izquierdo*).

Observación. Denotaremos $\operatorname{Hom}_R(M,N) := M^*$, y, por si acaso $\operatorname{Hom}(N,M) := M_*$.

1.3 Funtores derivados

Es un juego, y usaremos R-módulos libres, que tienen la ventaja de tener una base. Un R-módulo libre es uno de la forma $\bigoplus_{i\in I} R_i$ donde $R_i=R$. Los elementos canónicos son $e_j:=(\delta_{ij})_{i\in I}$, y $\beta:=\{ej\}_{j\in J}$ es una **base** en cuanto a que cumple la siguiente propiedad universal: para cualquier R-módulo M y para toda función $f:\beta\to M$ existe un único $\bar f:L=\bigoplus_{i\in I} R_i\to M$ tal que el siguiente diagrama conmuta:

$$\beta \xrightarrow{f} M$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Luego, diremos que P es **proyectivo** si existe Q tal que $P \oplus Q$ es libre.

Ejemplo. $\mathbb{Z}/6 \approx \mathbb{Z}/2 \oplus \mathbb{Z}/3$

Proposición. Todo R-módulo es cociente de un R-módulo libre.

Demostración.

$$L = \bigoplus_{i \in M} R_i \xrightarrow{\bar{f}} M$$

Como \bar{f} es suprayectiva, por primer teorema de isomorfismo, terminamos.

Definición. Sea M un R-módulo. Una **resolución libre (proyectiva)** de M es una sucesión exacta de la forma

$$\cdots \longrightarrow F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \longrightarrow 0$$

tal que F_j es libre para toda j.

Teorema. Todo *R*-módulo tiene una resolución libre (proyectiva).

Demostración. f_0 sale por la proposición anterior. Tomamos el módulo $\ker f_0$, lo incluimos en F_0 escogemos F_1 que cubre $\ker f_0$ por la proposición anterior.

$$\cdots \longrightarrow F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \longrightarrow 0$$

$$\ker f_0$$

Teorema. Sea $\alpha:M\to M'$ un homomorfismo.

$$\cdots \longrightarrow F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \longrightarrow 0$$

$$\downarrow^{\alpha_2} \qquad \downarrow^{\alpha_1} \qquad \downarrow^{\alpha_0} \qquad \downarrow^{\alpha}$$

$$\cdots \longrightarrow F'_2 \xrightarrow{f_2} F'_1 \xrightarrow{f_1} F'_0 \xrightarrow{f_0} M \longrightarrow 0$$

entonces existen los α_i que hacen conmutar el diagrama.

Más aún, existen $\beta_i: F_i \to F_i'$ que cumplen lo mismo entonces los homomorfismos determinados por los α_i y β_i son homotópicos.

Demostración.

Tomamos un elemento $e \in \beta_0$ en la base de F_0 . Lo mandamos mediante f_0 a M, luego con α . Pero como f_0' es supra, podemos escoger un elemento $e' \in F_0'$ que le pega.

9

Ahora

Hay una flecha desde $\operatorname{img} f_1$ hasta $\operatorname{img} f'_1$ que cierra el diagrama.

Faltó lo de homotopía (usando las diagonales como el diagrama coloreado).

Definición. Sea M un R-módulo. Tomamos una resolución libre

$$\cdots \longrightarrow F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \longrightarrow 0$$

Quitamos M:

$$\cdots \longrightarrow F_1 \stackrel{f_1}{\longrightarrow} F_0 \longrightarrow 0$$

Aplicamos $\operatorname{Hom}_R(-, N)$:

$$0 \longrightarrow F_0^* \stackrel{f_1}{\longrightarrow} F_1^* \longrightarrow F_2^* \stackrel{f_3^*}{\longrightarrow} \cdots$$

Definimos

$$\operatorname{Ext}_{R}^{n}(M,N) := H_{n}(0 \to F^{*})$$

Teorema. $\operatorname{Ext}_R^n(M,N)$ no depende de la resolución.

Demostración. Usamos el teorema anterior (dos veces), tomando dos resoluciones de M usando la identidad como α :

$$\cdots \longrightarrow F_{2} \xrightarrow{f_{2}} F_{1} \xrightarrow{f_{1}} F_{0} \xrightarrow{f_{0}} M \longrightarrow 0$$

$$\downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{0}} \qquad \downarrow^{Id}$$

$$\cdots \longrightarrow F'_{2} \xrightarrow{f_{2}} F'_{1} \xrightarrow{f_{1}} F'_{0} \xrightarrow{f_{0}} M \longrightarrow 0$$

$$\downarrow^{\beta_{2}} \qquad \downarrow^{\beta_{1}} \qquad \downarrow^{\beta_{0}} \qquad \downarrow^{Id}$$

$$\cdots \longrightarrow F_{2} \xrightarrow{f_{2}} F_{1} \xrightarrow{f_{1}} F_{0} \xrightarrow{f_{0}} M \longrightarrow 0$$

Y aquí resulta que $\{\beta_i \alpha_i\} \simeq \{Id\}$. Ydualizamos:

$$\cdots \longleftarrow F_1^* \longleftarrow F_0^* \longleftarrow M^* \longleftarrow 0$$

$$\alpha_1^* \uparrow \qquad \alpha_1^* \uparrow$$

$$\cdots \longleftarrow F_1^{'*} \longleftarrow F_0^{'*} \longleftarrow M^* \longleftarrow 0$$

Y como el funtor es aditivo, la homotopía pasa al dual, es decir, $\{\beta_i \alpha_i^*\} \simeq \{Id\}$. Luego pasamos a los grupos de homología:

$$H_{1}(F^{*})$$

$$\alpha_{1}^{\#} \uparrow$$

$$H_{1}(F'^{*})$$

$$\beta_{1}^{\#} \uparrow$$

$$H_{1}(F^{*})$$

Cambiando los roles, obtenemos que estas dos funciones $\alpha_1^\#$ y $\beta_1^\#$ son inversas una de la otra.

Proposición. $\operatorname{Ext}_R^0(M,N) \approx \operatorname{Hom}_R(M,N)$.

Demostración. Tenemos:

$$0 \longrightarrow \operatorname{img} f_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \longrightarrow 0$$

$$0 \longrightarrow M^* \xrightarrow{f_0^*} F_0^* \xrightarrow{f_1^*} \operatorname{img} f_1^*$$

Luego $\ker f_1^* \approx \operatorname{img} f_0^* \approx M^*$. Luego, por definición $\operatorname{Ext}_R^0(M,N) = \ker f_1^* \approx M^* = \operatorname{Hom}(M,N)$

Lema (De la herradura). *Sucesiones exactas cortas de módulos inducen sucesiones exactas cortas de resoluciones.* Tomemos una sucesión exacta corta y dos resulciones libres de los extremos. Entonces existen

Demostración. Pa pronto, la resolución de en medio es la suma de las resoluciones:

Y hay que hacer todo lo de rutina.

El lunes: dualizar esto.