

AD-A114 542

NAVAL SURFACE WEAPONS CENTER SILVER SPRING MD
COMPARISON OF ANODIC DISCHARGABILITY OF Li-B ALLOY WITH PURE LI--ETC(U)
APR 81 S D JAMES
UNCLASSIFIED NSWC/TR-81-155

F/G 10/3

SBI-AD-F500 015

NL

100
S44-1C
100

END
DATE
6-82
DTIC

AD-F500015

(12)

DA 114543

NSWC TR 81-155

COMPARISON OF ANODIC DISCHARGABILITY OF Li-B ALLOY WITH PURE Li IN $LiC10_4$ - PROPYLENE CARBONATE

BY S. D. JAMES

RESEARCH AND TECHNOLOGY DEPARTMENT

APRIL 1981

Approved for public release, distribution unlimited.

DTIC
SELECTED
MAY 19 1982
S D
B

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

DTIC FILE COPY

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NSWC TR 81-155	2. GOVT ACCESSION NO. <i>AD-A114 542</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) COMPARISON OF ANODIC DISCHARGABILITY OF Li-B ALLOY WITH PURE Li IN LiClO ₄ - PROPYLENE CARBONATE		5. TYPE OF REPORT & PERIOD COVERED Final Report 1977-9
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) S. D. James, R33		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center White Oak, Silver Spring, MD 20910		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61152N;ZR00001;ZRO1301; R01AA071
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE April 1981
		13. NUMBER OF PAGES 27
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Lithium batteries Li-B anodes Electrodes		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Li-B alloy discharges comparably with pure Li in PC-LiClO ₄ at 23°C. The alloy may find useful application where safety considerations permit sacrificing some coulombic capacity versus unsupported Li. Measurement of electrochemical Li utilization suggests the alloy is a mixture of elemental Li plus a Li-B compound whose stoichiometry is in the vicinity of "Li ₇ B ₆ ".		

FOREWORD

This report describes an experimental comparison of the anodic discharge behavior of Li-B alloy with pure Li in LiClO₄-propylene carbonate at 23°C. The results suggest that the alloy may find useful application in Li batteries when safety considerations permit the sacrifice of some coulombic capacity versus unsupported Li. We acknowledge the financial support of this work by the Independent Research Program of the Naval Surface Weapons Center and the help of Dr. Steven Dallek with Li-B ingot preparation.

W. CARSON LYONS
By direction

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

CONTENTS

<u>Chapter</u>		<u>Page</u>
1	INTRODUCTION	7
2	EXPERIMENTAL	9
3	RESULTS AND DISCUSSION	11
4	CONCLUSIONS	13

ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	PREPARATION OF THIN FILM TEST ELECTRODES BY 3-STAGE PRESSING	15
2	DISCHARGE CELL	16
3	ANODIC DISCHARGE OF Li AND Li-B (80 a/oLi) IN 0.96M LiClO ₄ -PC AT 0.1 mA cm ⁻² , 23°C	17
4	ANODIC DISCHARGE OF Li AND Li-B (80 AND 86 a/o Li) IN 0.96M LiClO ₄ -PC AT 1mA cm ⁻² , 23°C	18
5	ANODIC DISCHARGE OF Li AND Li-B (80 a/o) IN 0.96M LiClO ₄ -PC AT 3mA cm ⁻² , 23°C	19
6	ANODIC DISCHARGE OF Li AND Li-B (80 a/o) IN 0.96M LiClO ₄ -PC AT 10mA cm ⁻² , 23°C	20
7	% ANODIC UTILIZATION OF THE TOTAL Li (ELEMENTAL PLUS CHEMICALLY BOUND) IN 0.02mm THICK FILMS OF Li AND Li-B (CALCULATED AT THE FIRST INFLECTION OF DISCHARGE CURVES IN 0.96M LiClO ₄ -PC, 23°C)	21

TABLES

<u>Table</u>		<u>Page</u>
1	USEFUL COULOMBIC CAPACITIES AT THE Li POTENTIAL DELIVERED BY Li-B, Li-FM AND PURE Li	14

CHAPTER 1
INTRODUCTION

Safety problems in both the Li-SO₂ and the Li-SOCl₂ batteries have delayed their introduction into some advanced weapons systems. The present work seeks to reduce this problem by using a lithium-boron alloy in place of pure Li. The Li-rich, Li-B alloys were first prepared at NSWC in 1972¹. They showed impressive performance as high rate anodes in molten LiCl-KCl eutectic between 400 and 600°C². Many of the hazards of Li batteries have been associated with the melting of Li (at 180°C) in accidentally overheated cells. This problem should be considerably alleviated with Li-B anodes which retain their rigidity above 600°C. However, it is necessary to show that Li-B alloys can be discharged at room temperature at usefully high rates. In other words does the inert B component impede the discharge of the active Li? Hence the present work has characterized the anodic oxidation of Li-B alloy in LiClO₄-propylene carbonate (PC) solution at around 23°C as a function of anodic current density.

¹ Wang, F. E., U. S. Patent 4,110,111, 29 Aug 1978.

² James, S. D. and DeVries, L.E., "Structure and Anodic Discharge Behavior of Li-B Alloys in the LiCl-KCl Eutectic Melt," J.Electrochem Soc., 123, 321, 1976.

CHAPTER 2
EXPERIMENTALPREPARATION OF THIN FILM TEST ELECTRODES

The Li-B alloy preparation has been described.³ In a Dry Room (below 3% R.H.) a 30g ingot was pressed between sheets of polypropylene to a circular pancake about 2x95 mm. From this cake a number of 10mm diameter (200mg) discs were cut out with a cork-borer. These discs were then pressed onto Stainless Steel (SS304) circular plates (32x1.6mm) which served as current collectors. The pressing operation (see Figure 1) produced thin film (0.1-0.2 mm) anodes that could undergo complete discharge of their free Li content in a reasonably short period of time. The Dake, Model 44-225 hydraulic press was capable of exerting 25 ton force. A key element in spreading thin alloy films over the 32 mm steel disc was the use of a deformable plastic disc above the Li-B alloy disc. When a rigid plastic (like polypropylene, PP) was used, 25 ton could not squeeze the alloy even to the steel periphery. However a deformable plastic like Conventional Polyethylene (CPE) or Nylon is itself squeezed out (irreversibly) and thereby effectively smears the alloy over the steel substrate. Three successive pressings using 5 ton force and a new plastic disc each time spread the alloy out well beyond the edge of the steel as shown in Figure 1. The result is a 0.1-0.2 mm thick anode film firmly stuck to the steel. Excess alloy film (about 100 mg) was pared away from the steel periphery and thermally analyzed³ for its free Li content. This provided a prediction of the coulombic capacity to be expected from this anode in its subsequent discharge. A final light pressing below rigid PP gave a glossy smooth finish to the anode surface. Similar test anodes of pure Li (Foote Mineral Co., 99.9%) were made to use as a standard by which to judge alloy discharge performance. With the much softer pure Li, use of a deformable plastic in the pressing was unnecessary.

DISCHARGE PROCEDURE

The Pyrex test-cell (Figure 2) contained 100 ml of electrolyte under dry argon. Its cap sealed via a Viton O-ring, pipe-joint. Stainless Steel (SS304) was extensively used in the cell as counter-electrode, test electrode support and 1/8" rod leads to all three electrodes. The test electrode disc was clamped horizontally, slightly recessed into its holder and about 15 mm below the bare steel counter electrode. Pure Li, plastered over the threaded tip of an 1/8" SS304 rod served as reference electrode. Heat-shrinkable polyolefine tubing masked off the steel surface of the reference electrode lead. All discharges used an electrolyte 0.96M, LiClO₄ ("lithium perchlorate anhydrous" from Foote Mineral Co.) in propylene carbonate (Eastman 7050). Electrolyte was prepared in the Dry Room and stored in Pyrex in the presence of Li ribbon. Discharge curves were recorded with constant anodic current applied to the test electrode at ambient temperature (23±1°C).

³Dallek, S., Ernst, D. W., and Lerrick, B. F., "Thermal Analysis of Lithium-Boron Alloys," J. Electrochem. Soc., 126, 866, 1979.

CHAPTER 3

RESULTS AND DISCUSSION

Thermal measurements³ have been made on the free Li content of Li-rich, Li-B alloys such as those discharged in the present work. The data showed these alloys to consist of a refractory, Li-B compound (melting above 1000°C) having a stoichiometry in the vicinity of "Li₇B₆". Lithium in excess of "Li₇B₆", in free, elemental form is contained in fine pores permeating the refractory compound. At 500°C, most of this Li is available for anodic discharge at rates up to 8A cm⁻² at the Li potential². The compound behaves like a sponge and its liquid Li wicks to the alloy-melt interface to be discharged. At room temperature the free Li component is solid and rate capabilities of only mA cm⁻² are to be expected. The present work normally employed 80a/oLi (72w/oLi) alloy except in one case (Figure 4, 86 a/o Li).

Figures 3-6 compare the dischargability of Li-B alloy with that of pure Li at four anodic current densities ranging from 0.1 to 10 mA cm⁻². Where appropriate, anode voltage versus time is replotted as voltage versus percent utilization of the anode's total Li content (i.e. elemental Li plus Li chemically bound to B). Generally speaking the data show that over a wide range of current densities the alloy behaves comparably with pure Li, in terms of both voltage and coulombic capacity. The final plateau at around +5V (not included in Figures 5 and 6) is caused by anodic dissolution of the test electrode's steel substrate when Li ionization can no longer support the imposed current.

The relative complexity of the Li-B curves in Figures 3-5 is due to the two-phase nature of the alloy as previously shown in molten salt discharges^{2,4}. On the main V-plateau at the Li potential, free, elemental Li is anodically dissolving. When all the available (or accessible) free Li is used up, V rises to a value where tighter-bound Li can be anodized out of the decomposing compound. Subsequent inflections have been associated with the loss of further Li giving rise to other Li-B compound stoichiometries. As current-density rises in Figures 3 to 6 the Li-B curves gradually lose their complexity till, at 10mA cm⁻² there is no B-associated inflection at all. Apparently Li-B compound decomposition is too slow to generate sufficient Li to maintain the higher currents.

³See footnote 3 on page 9.

²See footnote 2 on page 7.

⁴DeVries, L. E., Jackson, L. D., and James, S. D., "Structure and Anodic Discharge Behavior of Li-B Alloys in the LiCl-KCl Eutectic Melt (II)," J. Electrochem Soc., 126, 993 (1979).

Figure 7 shows % utilization of the anode's total Li content to the first main inflection in the discharge curves of Figures 3-6. At 0.1mA cm^{-2} , 100% of the pure Li is usable anodically. Above 1mA cm^{-2} , utilization falls sharply. Discharge is now ended not by complete consumption of Li but by its superficial passivation. This takes the form of the sudden positive voltage excursion in Figures 3-6 terminating the anode's useful life. The nature of this polarization is presently under study. The Li-B alloy behaves similarly in Figure 7 except it utilizes somewhat less of its Li content. The value of 71% at 0.1mA cm^{-2} probably reflects virtually complete consumption of the alloy's free Li since pure Li is 100% utilizable at this discharge rate. If an 80 a/o (72 w/o) Li-B alloy consisted of a mixture of Li_7B_6 compound plus elemental Li, this elemental Li would comprise 71% of the alloy's total Li. Thus Figure 7 supports the existence of " Li_7B_6 " in the Li-B system, agreeing with previous work in our laboratories^{3,5}. An unresolved conflict still exists between these three studies and the earlier molten salt discharges² which strongly suggested the presence of Li_2B . The single discharge made with the Li-richer, 86 a/o alloy was at too high a rate (1mA cm^{-2}) to yield stoichiometric information but its 10% higher Li-utilization (versus the 80 a/o) is consistent with the presence of " Li_7B_6 " (free Li comprises 81% of total Li in 86 a/o alloy containing $\text{Li}_7\text{B}_6+\text{Li}$).

³See footnote 3 on page 9.

⁵Kilroy, W. P. and Angres, I., "The Extraction and Determination of Free Lithium in Li-B Alloys," J. Less-Common Met., 63, 123, 1979.

CHAPTER 4

CONCLUSIONS

1. Over a wide range of anodic current density, Li-B alloy behaves comparably with pure Li in terms of the voltage and coulombic capacity of its discharge in PC-LiClO₄.
2. Extrapolation of Li utilizability to low discharge rate suggests that the Li-B alloy is a mixture of pure Li and a Li-B compound whose stoichiometry is in the vicinity of "Li₇B₆".
3. Table 1 compares the discharge capacities of Li-B alloy and pure Li at 1mA cm⁻² in propylene carbonate. The alloy has only 47 and 65% of the capacity of pure Li on a gravimetric and volumetric basis respectively. However, if Li is supported in a rigid, refractory matrix like Li-B or Ni Feltmetal (FM) it is likely to be safer in the event that a battery overheats and its Li component melts. On a gravimetric and volumetric basis the alloy has 157 and 81% of the capacity of Li-FM. Furthermore reference (2) showed that, between 400 and 600°C, Li escapes significantly more slowly from Li-B than from Li-FM. Thus the Li-B alloy may find useful application where safety considerations permit the sacrifice of some coulombic capacity versus unsupported Li.

TABLE 1 USEFUL COULOMBIC CAPACITIES¹ AT THE Li POTENTIAL
DELIVERED BY Li-B², Li-FM³ AND PURE Li

	<u>Coulomb/cc, anode</u>	<u>Coulomb/g, anode</u>
Li-B	4465	6177
Li-FM	5500	3900
Pure Li	6905	12930

1. Coulomb/cc or g of (Li+B) for alloy and (Li+Ni) for Li-FM. Pure Li and Li-B discharged (as thin films 0.1-0.2mm) in 0.96M LiClO₄-PC, 22°C. Capacity calculated at first main inflection of 1mA cm⁻² discharge curves.
2. Li content: 0.80 atom fraction; 0.72 mass fraction.
3. Li in 82% porous, 8x6mm plugs of Ni Feltmetal discharged at 500°C (reference 2).

NSWC TR 81-155

FIGURE 1 PREPARATION OF THIN FILM TEST ELECTRODES BY 3-STAGE PRESSING

FIGURE 2 DISCHARGE CELL

FIGURE 3 ANODIC DISCHARGE OF Li AND Li-B (80 a/o Li) IN 0.96 M LiClO₄-PC AT 0.1 mA cm⁻², 23°C

FIGURE 4 ANODIC DISCHARGE OF Li AND Li-B (80 and 86 a/o Li) IN 0.96 M LiClO_4 -PC AT 1 mA cm^{-2} , 23°C

NSWC TR 81-155

FIGURE 5 ANODIC DISCHARGE OF LI AND LI-B (80 A/o) IN 0.08 M LiClO_4 -PC AT 3 mA·cm⁻², 23°C

FIGURE 6 ANODIC DISCHARGE OF Li AND Li-B (80 a/o) IN 0.96 M LiClO_4 -PC AT 10 mA cm^{-2} , 23°C

FIGURE 7 % ANODIC UTILIZATION OF THE TOTAL Li (ELEMENTAL PLUS CHEMICALLY BOUND) IN 0.02mm THICK FILMS OF Li AND Li-B (CALCULATED AT THE FIRST INFLECTION OF DISCHARGE CURVES IN 0.96 M LiClO₄-PC, 23°C)

DISTRIBUTION

<u>Copies</u>	<u>Copies</u>
Defense Technical Info. Center Cameron Station Alexandria, VA 22314	12 Naval Electronic Systems Command Attn: A. H. Sobel (Code PME 124-31) Washington, DC 20360
Defense Nuclear Agency Attn: Library Washington, DC 20301	2 Naval Sea Systems Command Attn: F. Romano (Code 63R3) M. Murphy (Code 63R23) A. Himy (Code 5433) E. Daugherty (Code 04H3) Code 09G32 Code 03B Washington, DC 20362
Institute for Defense Analyses R&E Support Division 400 Army-Navy Drive Arlington, VA 22202	1 Strategic Systems Project Office Attn: K. N. Boley (Code NSP 2721) M. Miserole (Code NSP 2722) Department of the Navy Washington, DC 20360
Naval Material Command Attn: Code 08T223 Washington, DC 20360	1 Naval Air Development Center Attn: J. Segrest (Code 6012) R. Schwartz (Code 30412) Warminster, PA 18974
Office of Naval Research Attn: G. Neece (Code ONR 472) 800 N. Quincy Street Arlington, VA 22217	1 Naval Civil Engineering Laboratory Attn: Dr. W. S. Haynes (Code L-52) F. Rosell Port Hueneme, CA 93040
Naval Research Laboratory Attn: Dr. Fred Saalfeld (Code NRL 6100) A. Simon (Code NRL 6130) 4555 Overlook Avenue, S.W. Chemistry Division Washington, DC 20360	1 Naval Intelligence Support Center Attn: Dr. H. Ruskie (Code 362) Washington, DC 20390
Naval Postgraduate School Attn: Dr. William M. Tolles (Code 612) Dr. Oscar Biblarz Monterey, CA 93940	1 Naval Ocean Systems Center Attn: Code 922 J. McCartney (Code 251) Dr. S. D. Yamamoto (Code 513) San Diego, CA 92152
Naval Air Systems Command Attn: Dr. H. Rosenwasser (Code NAVAIR 301C) E. Nebus (Code NAVAIR 5332) Washington, DC 20361	1

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>
Naval Electronic Systems Command Attn: T. Sliwa (Code NAVALEX-01K) Washington, DC 20360	1 Frank J. Seiler Research Laboratory, AFSC Attn: LT. COL. Lowell A. King (Code FJSRL/NC)
Naval Weapons Center Attn: Dr. E. Royce (Code 38) Dr. A. Fletcher (Code 3852) R. Dettling (Code 4575) China Lake, CA 93555	1 USAF Academy, CO 80840 1 Air Force Materials Laboratory 1 Attn: Major J. K. Erbacher Wright-Patterson AFB Dayton, OH 45433
Naval Weapons Support Center Attn: D. G. Miley (Code 305) Electrochemical Power Sources Division Crane, IN 47522	1 Air Force Aero Propulsion Laboratory Attn: W. S. Bishop (Code AFAPL/POE-1)
Naval Coastal Systems Center Attn: Library Panama City, FL 32407	1 J. Lander (Code AFAPL/POE-1) 1 Wright-Patterson AFB, OH 45433
Naval Underwater Systems Center Attn: T. Black (Code 3642) J. Moden (Code SB332) Newport, RI 02840	1 Air Force Rocket Propulsion Laboratory 1 Attn: LT. D. Ferguson (Code MKPA)
David W. Taylor Naval Ship R & D Center Attn: A. B. Neild (Code 2723) W. J. Levendahl (Code 2703) J. Woerner (Code 2724) H. R. Urbach (Code 2724) Annapolis Laboratory Annapolis, MD 21402	1 Edwards Air Force Base, CA 93523 1 Headquarters, Air Force Special Communications Center Attn: Library 1 USAFSS 1 San Antonio, TX 78243 1 Office of Chief of Research and Development Department of the Army Attn: Dr. S. J. Magram Energy Conversion Branch 1 Room 410, Highland Building Washington, DC 20315
Scientific Advisor Attn: Code AX Commandant of the Marine Corps Washington, DC 20380	1 U. S. Army Research Office Attn: B. F. Spielvogel 1 P.O. Box 12211 Research Triangle Park, NC 27709
Air Force of Scientific Research Attn: R. A. Osteryoung Directorate of Chemical Science 1400 Wilson Boulevard Arlington, VA 22209	

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>	
U. S. Development and Readiness Command Attn: J. W. Crellin (Code DRCDE-L) 5001 Eisenhower Avenue Alexandria, VA 22333	Harry Diamond Laboratory Attn: A. A. Benderly (Code DRDXO-RDD) 1 W. Kuper (Code DRDXO-RDD) J. T. Nelson (Code DRKDO-RDD) C. Campanguolo	1 1 1 1
U. S. Army Electronics Command Attn: A. J. Legath (Code DRSEL-TL-P) E. Brooks (Code DRSEL-TL-PD) G. DiMasi Dr. W. K. Behl Fort Monmouth, NJ 07703	Department of Army Materiel Chief, Power Supply Branch 1 2800 Powder Mill Road Adelphi, MD 20783 1 1 1 1	1 1 1 1
Army Material and Mechanical Research Center Attn: J. J. DeMarco Watertown, MA 02172	Department of Energy Attn: L. J. Rogers (Code 2102) Division of Electric Energy Systems Washington, DC 20545	1
USA Mobility Equipment R and D Command Attn: J. Sullivan (Code DRXFB) Code DRME-EC Electrochemical Division Fort Belvoir, VA 22060	Department of Energy Attn: Dr. A. Landgrebe (Code MS E-463) Energy Research and Development Agency Division of Applied Technology Washington, DC 20545	1
Edgewood Arsenal Attn: Library Aberdeen Proving Ground Aberdeen, MD 21010	Headquarters, Department of Transportation Attn: R. Potter (Code GEOE-3/61) U. S. Coast Guard, Ocean Engineering Division Washington, DC 20590	1
Picatinny Arsenal Attn: M. Merriman (Code SARPA-FR-S-P) Dr. B. Werbel (Code SARPA-FR-E-L-C) A. E. Magistro (Code SARPA-ND-D-B) U. S. Army Dover, NJ 07801	NASA Headquarters Attn: Dr. J. H. Ambrus Code RTS-6 1 Washington, DC 20546 1 NASA Goddard Space Flight Center Attn: G. Halpert (Code 711) T. Hennigan (Code 716.2) Greenbelt, MD 20771 1 1	1 1 1 1 1
	NASA Lewis Research Center Attn: J. S. Fordyce (Code MS 309-1) H. J. Schwartz (Code MS 309-1) 2100 Brookpark Road Cleveland, OH 44135	1 1

NSWC TR 81-155
DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>
NASA Scientific and Technical Information Facility Attn: Library P.O. Box 33 College Park, MD 20740	Oak Ridge National Laboratory Attn: K. Braunstein 1 Oak Ridge, TN 37830
National Bureau of Standards Metallurgy Division Inorganic Materials Division Washington, DC 20234	Sandia Laboratories Attn: R. D. Wehrle (Code 2522) B. H. Van Domelan (Code 2523) 2 Albuquerque, NM 87115
Battelle Memorial Institute Defense Metals & Ceramics Information Center 505 King Avenue Columbus, OH 43201	Catholic University Attn: Dr. C. T. Moynihan (Physics) Chemical Engineering Department Washington, DC 20064
Bell Laboratories Attn: Dr. J. J. Auburn 600 Mountain Avenue Murray Hill, NJ 07974	1 University of Tennessee Attn: G. Mamantov 1 Department of Chemistry Knoxville, TN 37916
Brookhaven National Laboratory Attn: J. J. Egan Building 815 Upton, NY 11973	University of Florida Attn: R. D. Walker 1 Department of Chemical Engineering Gainesville, FL 32611
California Institute of Technology Attn: Library Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103	Applied Research Laboratory 1 Attn: Library Penn State University University Park, PA 16802
Argonne National Laboratory Attn: H. Shimotake R. K. Steunenberg L. Burris 9700 South Cass Avenue Argonne, IL 60439	Catalyst Research Corporation Attn: G. Bowser 1 N. Issacs 1 F. Tepper 1 1421 Clarkview Road Baltimore, MD 21209
John Hopkins Applied Physics Laboratory Attn: Library R. Rumpf Howard County Johns Hopkins Road Laurel, MD 20810	ESB Research Center Attn: Library 1 19 W. College Avenue 1 Yardley, PA 19067

NSWC TR 81-155

DISTRIBUTION (Cont.)

	<u>Copies</u>		<u>Copies</u>
EIC Corporation Attn: S. B. Brummer G. L. Holleck 55 Chapel Street Newton, MA 02158		GT & E Laboratory 1 Attn: Dr. C. R. Schlaikjer	1
		1 40 Sylvan Road Waltham, MA 02154	
Eagle-Picher Industries, Inc. Attn: D. R. Cottingham J. Dines D. L. Smith J. Wilson Electronics Division, Couples Department P.O. Box 47 Joplin, MO 64801		Honeywell, Inc. Attn: Library 1 R. Walk 1 W. Ebner 1 Dr. P. M. Shah 1 Defense Systems Division Power Sources Center 104 Rock Road Horsham, PA 19044	1 1 1 1
Eagle-Picher Industries, Inc. Attn: P. E. Grayson Miami Research Laboratories 200 Ninth Avenue, N.E. Miami, OK 74354		Hughes Aircraft Company Attn: Library 1 Dr. L. H. Fentnor Aerospace Groups Missile Systems Group Tucson Engineering Laboratory Tucson, AZ 85734	1 1
Electrochimica Corporation 2485 Charleston Road Mountain View, CA 94040		KDI Score, Inc. 1 Attn: L. A. Stein F. DeMarco K. K. Press 1 200 Wight Avenue 1 Cockeysville, MD 21030	1 1 1
Eureka Advance Science Division Attn: D. Ryan L. Raper P.O. Box 1547 Bloomington, IL 61701		Lockheed Missiles and Space Company, Inc. Attn: Library 1 Lockheed Palo Alto Research Laboratory 3251 Hanover Street Palo Alto, CA 94304	1
Foote Mineral Company Attn: H. R. Grady Exton, PA 19341		1 Duracell Int., Inc Attn: G. F. Cruze B. McDonald D. Linden Battery Division South Broadway 1 Tarrytown, NY 10591	1 1 1
General Electric Company Attn: R. D. Walton R. Szwarc Neutron Devices Department P.O. Box 11508 St. Petersburg, FL 33733			
Gould, Inc. Attn: S. S. Nielsen G. R. Ault 40 Gould Center Rolling Meadows, IL 60008			

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>	
Duracell Int., Inc. Attn: Library Dr. A. N. Dey Dr. H. Taylor Laboratory for Physical Science Burlington, MA 01803	Union Carbide 1 Attn: Library 1 Nuclepore Corporation 1 7035 Commercial Circle Pleasantown, CA 94556	1
Power Conversion, Inc. 70 MacQuesten Parkway S. Mount Vernon, NY 10550	Ventron Corporation Attn: L. R. Frazier 10 Congress Street 1 Beverly, MA 01915	1
Union Carbide Battery Products Division Attn: R. A. Powers P.O. Box 6116 Cleveland, OH 44101	Stanford University 1 Attn: C. John Wen Center for Materials Research Room 249, McCullough Building Stanford, CA 94305	1
Wilson Greatbatch LTD. Attn: Library 1000 Wehrle Drive Clarence, NY 14030	EDO Corporation 1 Attn: E. P. DiGiannantonio Government Products Division 2001 Jefferson Davis Highway Arlington, VA 22202	1
Yardney Electric Corporation Attn: Library A. Beachielli 82 Mechanic Street Pawcatuck, CT 02891	Perry International, Inc. 1 Attn: R. A. Webster 117 South 17th Street Philadelphia, PA 19103	1
Callery Chemical Company Attn: Library Callery, PA 16024	Ford Aerospace and Communications 1 Corporation Attn: R. A. Harlow M. L. McClanahan	1
Kawecki Berylco Industries, Inc. Attn: J. E. Eorgan R. C. Miller Boyertown, PA 19512	Metallurgical Processes 1 Advanced Development-Aeronutronic 1 Division Ford Road Newport Beach, CA 92663	1
Rockwell International Attn: Dr. Samuel J. Yosim Atomsics International Division 8900 DeSoto Avenue Canoga Park, CA 91304	Globe Union Inc. 1 Attn: Dr. R. A. Rizzo 5757 N. Green Bay Avenue Milwaukee, WI 53201	1
	University of Missouri, Rolla Attn: Dr. J. M. Marchello 210 Parker Hall Rolla, MO 65401	1

DISTRIBUTION (Cont.)

Copies

RAI Research Corporation
Attn: Dr. Carl Perini 1
225 Marcus Boulevard
Hauppauge, NY 11787

Battery Engineering
Attn: Dr. N. Marincic 1
80 Oak Street
Newton, MA 02164

RAY-O-VAC
Attn: R. Foster Udell 1
101 East Washington Avenue
Madison, WI 53703

Norton Air Force Base
Attn: Capt. A. S. Alouis 1
BMO/ENBE
California 92409

Spring Arbor College
Chemistry Department
Attn: Dr. David A. Johnson 1
Spring Arbor, MI 49283

Martin Marietta Aerospace
Attn: John W. Lear 1
P. O. Box 179
Denver, CO 80201

GTE Sylvanias
Attn: Dr. Robert McDonald 1
189 B Street
Needham Heights, MA 02194

