# Álgebra Lineal - Clase 19

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

# Esquema de la clase

- Método de Gram-Schmidt.
- Complemento ortogonal.
- Proyección ortogonal.
- Distancia de un punto a un subespacio.

## Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 8 (Sección 8.2).

# Conjuntos ortogonales y ortonormales

#### Recordar:

Sea  $(V,\langle,\rangle)$  un  $\mathbb R$  o  $\mathbb C$ -e.v. con p.i.

- $\triangleright$   $v, w \in V$  son ortogonales si  $\langle v, w \rangle = 0$ .
- $\{v_1, \ldots, v_r\} \subseteq V$  es un conjunto ortogonal si  $\langle v_i, v_j \rangle = 0$   $\forall i \neq j$ .
- ▶  $\{v_1, \ldots, v_r\} \subseteq V$  es un conjunto ortonormal si es ortogonal y  $\|v_i\| = 1 \ \forall 1 \leq i \leq r$ .
- Un conjunto ortogonal de vectores no nulos es l.i.
- $\{v_1, \ldots, v_r\} \subset V \text{ ortonormal y } v \in \langle v_1, \ldots, v_r \rangle \Rightarrow$   $v = \sum_{j=1}^r \langle v, v_j \rangle. v_j.$

Se considera  $\mathbb{R}^2$  con el p.i. definido por

$$\langle (x_1, x_2), (y_1, y_2) \rangle = x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2.$$

Hallar una base de  $\mathbb{R}^2$  ortonormal para  $\langle, \rangle$ .

Elegimos  $v_1 \in \mathbb{R}^2$ ,  $v_1 \neq 0$ . Por ejemplo, (1,0).

Buscamos  $v_2 = (y_1, y_2) \in \mathbb{R}^2$  ortogonal  $v_1$ :

$$\langle v_1, v_2 \rangle = \langle (1,0), (y_1, y_2) \rangle = y_1 - y_2$$
  
 $\langle v_1, v_2 \rangle = 0 \iff y_1 = y_2$ 

Por ejemplo,  $v_2 = (1, 1)$ .

 $\Rightarrow B_0 = \{(1,0),(1,1)\}$  es una base ortogonal de  $\mathbb{R}^2$  para  $\langle , \rangle$ .

- $\|(1,0)\|=1,$
- $\|(1,1)\| = \langle (1,1), (1,1) \rangle^{\frac{1}{2}} = (1-1-1+3)^{\frac{1}{2}} = \sqrt{2}.$
- $\Rightarrow$   $B=\left\{(1,0),\left(rac{1}{\sqrt{2}},rac{1}{\sqrt{2}}
  ight)
  ight\}$  es una base ortonormal de  $\mathbb{R}^2$  para  $\langle,
  angle$ .

# Método de ortonormalización de Gram-Schmidt

## Proposición

Sea  $(V, \langle, \rangle)$  un e.v. con p.i. y sea  $\{v_1, \ldots, v_n\}$  una base de V. Existe un base ortonormal  $B = \{w_1, \ldots, w_n\}$  de V tal que  $< v_1, \ldots, v_k > = < w_1, \ldots, w_k > \forall 1 \le k \le n$ .

#### Demostración.

Recursivamente, se construye una base ortogonal  $\{z_1, \ldots, z_n\}$  de V tal que  $< z_1, \ldots, z_k > = < v_1, \ldots, v_k > \forall 1 \le k \le n$ . Normalizando los  $z_i$  se obtiene la base ortonormal buscada.

(1) 
$$z_1 = v_1$$
 satisface  $\langle z_1 \rangle = \langle v_1 \rangle$ .

(2) 
$$z_2 \in V \operatorname{con} \langle z_2, z_1 \rangle = 0$$
 y tal que  $\langle z_1, z_2 \rangle = \langle v_1, v_2 \rangle$ .  
 $z_2 = v_2 + av_1 \operatorname{con} a$  tal que  $\langle z_2, z_1 \rangle = 0$ .  
 $\langle z_2, z_1 \rangle = \langle v_2 + av_1, z_1 \rangle = \langle v_2, z_1 \rangle + a \langle v_1, z_1 \rangle = \langle v_2, z_1 \rangle + a \|z_1\|^2$   
 $\langle z_2, z_1 \rangle = 0 \iff a = -\frac{\langle v_2, z_1 \rangle}{\|z_1\|^2}$ .  
 $\Rightarrow z_2 = v_2 - \frac{\langle v_2, z_1 \rangle}{\|z_1\|^2} \cdot z_1$ 

$$(r+1)$$
 Supongamos construidos  $z_1, \ldots, z_r \in V$  tales que

$$\triangleright \langle z_i, z_i \rangle = 0 \text{ si } i \neq i.$$

$$\triangleright$$
  $\langle z_1, ..., z_k \rangle = \langle v_1, ..., v_k \rangle \quad \forall 1 < k < r.$ 

Buscamos  $z_{r+1} = v_{r+1} - v$  con  $v \in \langle z_1, \dots, z_r \rangle$  tal que  $\langle z_{r+1}, z_i \rangle = 0 \ \forall 1 \leq j \leq r$ .

$$\langle z_{r+1}, z_j \rangle = \langle v_{r+1} - v, z_j \rangle = \langle v_{r+1}, z_j \rangle - \langle v, z_j \rangle = 0$$

$$\iff \langle v, z_j \rangle = \langle v_{r+1}, z_j \rangle$$

$$\{z_1,\ldots,z_r\}$$
 ortogonal  $\Rightarrow v = \sum_{i=1}^r \frac{\langle v,z_i\rangle}{\|z_i\|^2}.z_i = \sum_{i=1}^r \frac{\langle v_{r+1},z_i\rangle}{\|z_i\|^2}.z_i$ 

$$\Rightarrow z_{r+1} = v_{r+1} - \sum_{i=1}^{r} \frac{\langle v_{r+1}, z_i \rangle}{\|z_i\|^2} . z_i$$
 verifica:

$$\forall 1 \leq j \leq r, \ \langle z_{r+1}, z_j \rangle = \langle z_{r+1}, z_j \rangle - \langle v, z_j \rangle = 0.$$

$$\langle z_1, \dots, z_r, z_{r+1} \rangle = \langle z_1, \dots, z_r, v_{r+1} \rangle = \langle z_1, \dots, z_r \rangle + \langle v_{r+1} \rangle = \langle v_1, \dots, v_r, v_{r+1} \rangle.$$

Si  $w_i = \frac{1}{\|z_i\|} z_i \ \forall 1 \le i \le n$ , entonces  $B = \{w_1, \dots, w_n\}$  es una base ortonormal de V con las condiciones pedidas.

# Complemento ortogonal

### Definición.

Sea  $(V, \langle, \rangle)$  un e.v. con p.i. y sea  $S \subseteq V$ . El complemento ortogonal de S es  $S^{\perp} = \{v \in V : \langle v, s \rangle = 0 \ \forall \ s \in S\}.$ 

### Observación.

 $S^{\perp}$  es un subespacio de V:

- i)  $\langle 0, s \rangle = 0 \ \forall s \in S \Rightarrow 0 \in S^{\perp}$ .
- ii)  $v, w \in S^{\perp} \Rightarrow \forall s \in S, \langle v, s \rangle = 0 \text{ y } \langle w, s \rangle = 0$   $\Rightarrow \langle v + w, s \rangle = \langle v, s \rangle + \langle w, s \rangle = 0 + 0 = 0.$  $\Rightarrow v + w \in S^{\perp}$
- iii)  $v \in S^{\perp}$ ,  $\lambda \in \mathbb{R}$  (o  $\mathbb{C}$ )  $\Rightarrow \forall s \in S$ ,  $\langle \lambda v, s \rangle = \lambda \langle v, s \rangle = \lambda$ . 0 = 0.  $\Rightarrow \lambda v \in S^{\perp}$ .

## Ejemplos.

(1) En  $\mathbb{R}^2$  con el producto interno canónico:

$$\{(1,1)\}^{\perp} = \{(x,y) \in \mathbb{R}^2 / \langle (x,y), (1,1) \rangle = 0\}$$
  
= \{(x,y) \in \mathbb{R}^2 / x + y = 0\} = \left\{(1,-1) >.}

(2) En  $\mathbb{C}^3$  con el producto interno canónico:

$$<(1, i, 1+i)>^{\perp} =$$

$$= \{(x, y, z) \in \mathbb{C}^{3} : \langle (x, y, z), (\alpha, \alpha i, \alpha(1+i)) = 0 \ \forall \alpha \in \mathbb{C} \}$$

$$= \{(x, y, z) \in \mathbb{C}^{3} : \overline{\alpha}(x.1 + y(-i) + z(1-i)) = 0 \ \forall \alpha \in \mathbb{C} \}$$

$$= \{(x, y, z) \in \mathbb{C}^{3} : x - iy + (1-i)z = 0 \}$$

$$= \langle (i, 1, 0), (i-1, 0, 1) \rangle.$$

## Proposición.

Sea  $(V, \langle, \rangle)$  un e.v. de dimensión finita con p.i. y sea  $S \subseteq V$  un subespacio. Entonces:

- i)  $S \cap S^{\perp} = \{0\}.$
- ii)  $\dim(S) + \dim(S^{\perp}) = \dim V$ .

En consecuencia,  $S \oplus S^{\perp} = V$ .

#### Demostración.

i) Sea  $x \in S \cap S^{\perp}$ .  $x \in S^{\perp} \Rightarrow \forall s \in S, \langle x, s \rangle = 0$ .

Tomando  $s = x \in S$ ,  $\langle x, x \rangle = 0 \Rightarrow x = 0$ .

ii) Sean  $\{s_1,\ldots,s_r\}$  una base de S y  $v_{r+1},\ldots,v_n\in V$  tales que  $\{s_1,\ldots,s_r,v_{r+1},\ldots,v_n\}$  es una base de V.

Gram-Schmidt  $\rightsquigarrow B = \{w_1, \dots, w_r, w_{r+1}, \dots, w_n\}$  base ortonormal de V y  $< w_1, \dots, w_r > = < s_1, \dots, s_r > = S$ .

Veamos que  $w_j \in S^{\perp} \ \forall r+1 \leq j \leq n$ :

$$s \in S = \langle w_1, \ldots, w_r \rangle \Rightarrow s = \sum_{i=1}^r \alpha_i w_i.$$

$$\Rightarrow \langle w_j, s \rangle = \left\langle w_j, \sum_{i=1}^r \alpha_i w_i \right\rangle = \sum_{i=1}^r \overline{\alpha_i} \langle w_j, w_i \rangle = 0.$$

$$S^{\perp}$$
 subespacio  $\Rightarrow \langle w_{r+1}, \dots, w_n \rangle \subset S^{\perp}$ 

$$\Rightarrow$$
 subespaces  $\Rightarrow \langle w_{r+1}, \dots, w_n \rangle \subseteq S$   
 $\Rightarrow \dim(S^{\perp}) \geq \dim(\langle w_{r+1}, \dots, w_n \rangle) = n - r = n - \dim(S).$ 

$$n \leq \dim(S) + \dim(S^{\perp}) \stackrel{S \cap S^{\perp} = \{0\}}{=} \dim(S + S^{\perp}) \leq \dim(V) = n.$$

$$\Rightarrow \dim(S) + \dim(S^{\perp}) = \dim(V).$$

Más aún, 
$$S^{\perp} = \langle w_{r+1}, ..., w_n \rangle$$
.

## Proposición.

Sea  $(V, \langle, \rangle)$  un e.v. de dimensión finita con p.i. y sea S un subespacio de V. Entonces  $(S^{\perp})^{\perp} = S$ .

### Demostración.

- $S \subseteq (S^{\perp})^{\perp} = \{ v \in V : \langle v, \underline{t} \rangle = 0 \ \forall t \in S^{\perp} \} :$   $s \in S \Rightarrow \forall t \in S^{\perp}, \ \langle s, t \rangle = \overline{\langle t, s \rangle} = 0 \Rightarrow s \in (S^{\perp})^{\perp}.$
- $\operatorname{dim}((S^{\perp})^{\perp}) = \operatorname{dim}(V) \operatorname{dim}(S^{\perp}) = \operatorname{dim} S.$

$$\Rightarrow S = (S^{\perp})^{\perp}$$
.

## Ejemplo.

Para el p.i. canónico de  $\mathbb{C}^4$ , hallar el complemento ortogonal de  $S = \{x \in \mathbb{C}^4/x_1 + ix_2 + x_3 - x_4 = 0; (1-i)x_2 + x_3 = 0\}.$ 

$$x_1 + ix_2 + x_3 - x_4 = 0 \Leftrightarrow \langle (x_1, x_2, x_3, x_4), (1, -i, 1, -1) \rangle = 0.$$

$$(1-i)x_2+x_3=0 \Leftrightarrow \langle (x_1,x_2,x_3,x_4),(0,1+i,1,0)\rangle = 0.$$

$$\begin{array}{l} \Rightarrow S = <(1,-i,1,-1), (0,1+i,1,0)>^{\perp} \\ \Rightarrow S^{\perp} = (<(1,-i,1,-1), (0,1+i,1,0)>^{\perp})^{\perp} = \\ = <(1,-i,1,-1), (0,1+i,1,0)>. \end{array}$$

# Proyección ortogonal

### Definición.

Sea  $(V, \langle , \rangle)$  un e.v. de dimensión finita con p.i y sea  $S \subseteq V$  un subespacio. Se define la proyección ortogonal sobre S como la transformación lineal  $p_S: V \to V$  que satisface:

$$p_S(s) = s \ \forall s \in S \ y \ p_S(t) = 0 \ \forall t \in S^{\perp}.$$



$$B = \{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$$
 base de  $V$  tal que 
$$\{v_1, \dots, v_r\}$$
 es base de  $S$  y 
$$\{v_{r+1}, \dots, v_n\}$$
 es base de  $S^{\perp}$   $\Rightarrow p_S: V \to V$  satisface: 
$$p_S(v_i) = v_i \quad \forall 1 \leq i \leq r \text{ y}$$
 
$$p_S(v_i) = 0 \quad \forall r+1 \leq i \leq n.$$

Si 
$$B = \{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$$
 es una base ortogonal,  $\forall v \in V$ ,  $p_S(v) = p_S\left(\sum_{i=1}^n \frac{\langle v, v_i \rangle}{\|v_i\|^2}, v_i\right) = \sum_{i=1}^n \frac{\langle v, v_i \rangle}{\|v_i\|^2}, p_S(v_i) = \sum_{i=1}^r \frac{\langle v, v_i \rangle}{\|v_i\|^2}, v_i$ .

Sea  $S = \langle (1,0,i), (1,1,2+i) \rangle$ . Hallar la proyección ortogonal  $p_{S}: \mathbb{C}^{3} \to \mathbb{C}^{3}$ .

Buscamos una base ortogonal de S:

buscarnos una base ortogonal de 3.  

$$z_1 = s_1 = (1, 0, i)$$
  
 $z_2 = s_2 - \frac{\langle s_2, z_1 \rangle}{\|z_1\|^2} \cdot z_1 = (1, 1, 2 + i) - \frac{\langle (1, 1, 2 + i), (1, 0, i) \rangle}{\|f(1, 0, i)\|^2} \cdot (1, 0, i)$ 

 $= (1, 1, 2 + i) - (1 - i) \cdot (1, 0, i) = (i, 1, 1)$ 

Para cada 
$$x=(x_1,x_2,x_3)\in\mathbb{C}^3$$
, vale

$$p_S(x) = \frac{\langle x, (1,0,i) \rangle}{\|(1,0,i)\|^2} (1,0,i) + \frac{\langle x, (i,1,1) \rangle}{\|(i,1,1)\|^2} (i,1,1)$$

$$= \left(\frac{x_1 - ix_3}{2}, 0, \frac{ix_1 + x_3}{2}\right) + \left(\frac{x_1 + ix_2 + ix_3}{3}, \frac{-ix_1 + x_2 + x_3}{3}, \frac{-ix_1 + x_2 + x_3}{3}\right)$$

$$= \left(\frac{5}{6}x_1 + \frac{i}{3}x_2 - \frac{i}{6}x_3, -\frac{i}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3, \frac{i}{6}x_1 + \frac{1}{3}x_2 + \frac{5}{6}x_3\right).$$

$$= \left(\frac{x_1 - ix_3}{2}, 0, \frac{ix_1 + x_3}{2}\right) + \left(\frac{x_1 + ix_2 + ix_3}{3}, \frac{-ix_1 + x_2 + x_3}{3}, \frac{-ix_1 + x_2 + x_3}{3}\right)$$

$$= \left(\frac{5}{6}x_1 + \frac{i}{3}x_2 - \frac{i}{6}x_3, -\frac{i}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3, \frac{i}{6}x_1 + \frac{1}{3}x_2 + \frac{5}{6}x_3\right).$$

#### Observación.

Sea V un e.v. de dimensión finita con p.i. y sea S un subespacio de V. Entonces  $p_S + p_{S^{\perp}} = id_V$ .



$$B = \{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$$
 base ortonormal de  $V$  tal que  $\{v_1, \dots, v_r\}$  es base de  $S$  y  $\{v_{r+1}, \dots, v_n\}$  es base de  $S^{\perp}$ .

$$p_S(v) = \sum_{i=1}^r \langle v, v_i \rangle. v_i$$

$$p_{S^{\perp}}(v) = \sum_{i=r+1}^{n} \langle v, v_i \rangle. v_i.$$

$$\Rightarrow \forall v \in V, \ p_S(v) + p_{S^{\perp}}(v) = \sum_{i=1}^n \langle v, v_i \rangle. \ v_i = v.$$

Sea  $S = \{x \in \mathbb{C}^3 : ix_1 + 2x_2 - x_3 = 0\}$ . Hallar la proyección

ortogonal 
$$p_S:\mathbb{C}^3 o\mathbb{C}^3$$
.

ortogonal 
$$p_S: \mathbb{C}^3 \to \mathbb{C}^3$$
. 
$$S = \{x \in \mathbb{C}^3: \langle x, (-i, 2, -1) \rangle = 0\} \Rightarrow S^{\perp} = \langle (-i, 2, -1) \rangle$$

ortogonal 
$$p_S:\mathbb{C}^3 o\mathbb{C}^3$$
. $S=\{x\in\mathbb{C}^3:\langle x,(-i,2,-1)
angle=0\}\Rightarrow S^\perp=\langle (-i,2,-1)
angle$ 

 $p_{S^{\perp}}(x) = \frac{\langle x, (-i,2,-1) \rangle}{\|(-i,2,-1)\|^2} (-i,2,-1) = \frac{ix_1 + 2x_2 - x_3}{6} (-i,2,-1)$ 

 $=\left(\frac{x_1-2ix_2+ix_3}{6},\frac{ix_1+2x_2-x_3}{3},\frac{-ix_1-2x_2+x_3}{6}\right)$ 

 $\Rightarrow p_{S}(x) = x - p_{S\perp}(x) =$ 

$$\Rightarrow p_{S}(x) = x - p_{S^{\perp}}(x) =$$

$$= \left(\frac{5}{6}x_{1} + \frac{i}{3}x_{2} - \frac{i}{6}x_{3}, -\frac{i}{3}x_{1} + \frac{1}{3}x_{2} + \frac{1}{3}x_{3}, \frac{i}{6}x_{1} + \frac{1}{3}x_{2} + \frac{5}{6}x_{3}\right).$$

# Distancia de un punto a un subespacio

### Definición.

Sea  $(V, \langle, \rangle)$  un e.v. con p.i. y sea  $S \subseteq V$ . Para  $v \in V$  se define la distancia de v a S como

$$d(v, S) = \inf\{d(v, s) : s \in S\} = \inf\{\|v - s\| : s \in S\}.$$

# Proposición.

Sea  $(V, \langle, \rangle)$  un e.v. de dimensión finita con p.i. y sea  $S \subseteq V$  un subespacio. Para cada  $v \in V$ , el punto de S a menor distancia de v es  $p_S(v)$  y  $d(v, S) = ||v - p_S(v)||$ .



$$d(v,S) = ||v - p_S(v)|$$
  
=  $||p_{S^{\perp}}(v)||$ 

#### Demostración.

Sea  $B = \{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$  una base ortonormal de V tal que  $\{v_1, \dots, v_r\}$  es una base de S. Para cada  $s \in S$ ,

$$v - s = \sum_{i=1}^{n} \langle v, v_i \rangle. v_i - \sum_{i=1}^{r} \langle s, v_i \rangle. \underbrace{v_i}_{i} = \sum_{i=1}^{r} \langle v - s, v_i \rangle. \underbrace{v_i}_{i} + \sum_{i=r+1}^{n} \langle v, v_i \rangle. v_i$$

$$\|v - s\|^2 = \sum_{i=1}^r |\langle v - s, v_i \rangle|^2 + \sum_{i=r+1}^n |\langle v, v_i \rangle|^2 \ge \sum_{i=r+1}^n |\langle v, v_i \rangle|^2$$

y la igualdad vale si y sólo si

$$\begin{aligned} |\langle v - s, \mathbf{v}_i \rangle| &= 0 \ \forall 1 \le i \le r \iff \langle s, \mathbf{v}_i \rangle = \langle v, \mathbf{v}_i \rangle \ \forall 1 \le i \le r \\ &\iff s = \sum_{i=1}^r \langle s, \mathbf{v}_i \rangle. \mathbf{v}_i = \sum_{i=1}^r \langle v, \mathbf{v}_i \rangle. \mathbf{v}_i = p_S(v). \end{aligned}$$

 $\Rightarrow$  el punto de S a menor distancia de v es  $p_S(v)$  y  $d(v,S) = ||v - p_S(v)||$ .

Sea  $S = \{x \in \mathbb{R}^3 / 2x_1 + 2x_2 - x_3 = 0\}$ . Hallar la distancia de

Set 
$$S = \{x \in \mathbb{R}^3 : |x| (2, 2, -1)\} = 0\}$$
. Training the distance of  $(1, -1, 2)$  a  $S$  y ell punto de  $S$  más cercano a  $(1, -1, 2)$ .
$$S = \{x \in \mathbb{R}^3 : |x| (2, 2, -1)\} = 0\} = \langle (2, 2, -1) \rangle^{\perp}$$

$$(1,-1,2)$$
 a  $S$  y el punto de  $S$  más cercano a  $(1,-1,2)$ . 
$$S=\{x\in\mathbb{R}^3:\langle x,(2,2,-1)\rangle=0\}=<(2,2,-1)>^\perp$$

$$(1,-1,2)$$
 a  $S$  y el punto de  $S$  más cercano a  $(1,-1,2)$ .  $S = \{x \in \mathbb{R}^3 : \langle x, (2,2,-1) \rangle = 0\} = \langle (2,2,-1) \rangle^{\perp}$ 

 $=-\frac{2}{9}$ .  $(2,2,-1)=(-\frac{4}{9},-\frac{4}{9},\frac{2}{9})$ ,

 $= (1, -1, 2) - \left(-\frac{4}{9}, -\frac{4}{9}, \frac{2}{9}\right) = \left(\frac{13}{9}, -\frac{5}{9}, \frac{16}{9}\right).$ 

 $d((1,-1,2),S) = \|p_{S^{\perp}}(1,-1,2)\| = \left\| \left( -\frac{4}{9}, -\frac{4}{9}, \frac{2}{9} \right) \right\| = \frac{2}{3}.$ 

 $p_{S^{\perp}}(1,-1,2) = \frac{\langle (1,-1,2),(2,2,-1)\rangle}{\|(2,2,-1)\|^2}.(2,2,-1)$ 

El punto de S más cercano a (1, -1, 2) es  $p_{S}(1,-1,2) = (1,-1,2) - p_{S\perp}(1,-1,2)$ 

$$(1,-1,2)$$
 a  $S$  y el punto de  $S$  más cercano a  $(1,-1,2)$ . 
$$S = \{x \in \mathbb{R}^3 : \langle x, (2,2,-1) \rangle = 0\} = \langle (2,2,-1) \rangle^{\perp}$$
  $\Rightarrow S^{\perp} = \langle (2,2,-1) \rangle.$