Matematika Diskrit [KOMS119602] - 2022/2023

6.2 - Dasar-dasar pembuktian formal

Dewi Sintiari

Prodi D4 Teknologi Rekayasa Perangkat Lunak Universitas Pendidikan Ganesha

Week 6 (Oktober 2022)

Aksioma, Teorema, Lemma, Corollary

Apa yang Anda ketahui tentang istilah-istilah tersebut?

Aksioma

Aksioma adalah proposisi yang <u>diasumsikan</u> benar. Aksioma tidak memerlukan pembuktian kebenaran.

Contoh

- $\forall x, y \in \mathbb{R}$, berlaku: x + y = y + x;
- ▶ Jika diberikan dua titik berbeda, maka hanya ada satu garis lurus yang melalui kedua titik tersebut.

Teorema

Teorema adalah proposisi yang sudah terbukti benar.

Contoh

▶ Jika dua sisi dari sebuah segitiga sama panjang, maka sudut yang berlawanan dengan sisi tersebut sama besar.

Lemma

Lemma adalah teorema sederhana yang digunakan dalam pembuktian suatu teorema lain atau proposisi (yang lebih kompleks).

Contoh

Jika n adalah bilangan bulat positif, maka n = 2k atau n = 2k + 1 untuk suatu bilangan bulat k.

Corollary

Corollary adalah teorema yang merupakan akibat dari suatu teorema lain yang sudah dibuktikan.

Contoh

Jika suatu segitiga adalah segitiga sama sisi, maka segitiga tersebut adalah segitiga sama sudut

Corollary tersebut adalah akibat dari teorema berikut.

Teorema

Jika dua sisi dari sebuah segitiga sama panjang, maka sudut yang berlawanan dengan sisi tersebut sama besar.

seperti yang dijelaskan di kelas...

seperti yang dijelaskan di kelas...

Bagian 3: Pembuktian tidak langsung (dengan kontrapositif)

Converse, Inverse, Contrapositive

Diberikan sebuah proposisi: $p \Rightarrow q$.

- **Converse** dari proposisi tersebut adalah $q \Rightarrow p$.
- ► Contrapositive dari proposisi tersebut adalah $\neg q \Rightarrow \neg p$.
- ▶ Inverse dari proposisi tersebut adalah $\neg p \Rightarrow \neg q$.

Contoh

- 1. Jika hari hujan, maka saya masak mie.
- 2. Jika tidak membuat tugas, maka nilai saya buruk.
- 3. Jika saya tidak memasak, maka saya tidak bisa makan.

Konsep pembuktian dengan kontrapositif (1)

Cara pembuktian dengan kontrapositif adalah pembuktian suatu pernyataan "Jika P maka Q", dilakukan dengan menunjukkan ""Jika Q tidak benar, maka P tidak benar"...

Contoh

Misalkan $x \in \mathbb{Z}$. Buktikan bahwa:

Jika 7x + 9 adalah bilangan genap, maka x adalah bilangan ganjil.

Konsep pembuktian dengan kontrapositif (1)

Cara pembuktian dengan kontrapositif adalah pembuktian suatu pernyataan "Jika P maka Q", dilakukan dengan menunjukkan ""Jika Q tidak benar, maka P tidak benar"...

Contoh

Misalkan $x \in \mathbb{Z}$. Buktikan bahwa:

Jika 7x + 9 adalah bilangan genap, maka x adalah bilangan ganjil.

Solusi:

- \triangleright p : 7x + 9 adalah bilangan genap
- ▶ q : x adalah bilangan ganjil

Kontrapositif dari $p \Rightarrow q$ adalah $\neg q \Rightarrow \neg p$, yaitu:

Jika x adalah bilangan genap, maka 7x + 9 adalah bilangan ganjil.

Konsep pembuktian dengan kontrapositif (2)

Jika x adalah bilangan genap, maka 7x+9 adalah bilangan ganjil.

- ► 7x adalah bilangan (genap/ganjil) ?
- Maka 7x + 9 adalah bilangan (genap/ganjil) ?

Bagian 4: Pembuktian dengan kontradiksi

Contoh memotivasi

Proposisi

Untuk setiap bilangan bulat n, jika $n^3 + 5$ adalah bilangan ganjil, maka n adalah bilangan genap.

Bagaimanakah Anda membuktikan kebenaran dari pernyataan ini?

Contoh memotivasi

Proposisi

Untuk setiap bilangan bulat n, jika $n^3 + 5$ adalah bilangan ganjil, maka n adalah bilangan genap.

Bagaimanakah Anda membuktikan kebenaran dari pernyataan ini?

- Dengan pembuktian langsung, mulai dari pernyataan bahwa $n^3 + 5$ adalah bilangan ganjil, dan selanjutnya disimpulkan bahwa n adalah bilangan genap.
- ▶ Dengan kontraposisi, asumsikan bahwa *n* adalah bilangan *ganjil*, dan buktikan bahwa *n* adalah bilangan *genap*.

Pembuktian dengan kontradiksi

Proposisi

 $P \Rightarrow Q$

Proof.

Asumsikan bahwa untuk kontradiksi, P bernilai benar dan Q bernilai salah.

.....

Pembuktian ini mengarah ke kontradiksi

Contoh memotivasi

Proposisi

Untuk setiap bilangan bulat n, jika $n^3 + 5$ adalah bilangan ganjil, maka n adalah bilangan genap.

Proof.

Untuk kontradiksi, asumsikan bahwa $n \in \mathbb{Z}$, dan n dan $n^3 + 5$ adalah bilangan ganjil. Maka, harus dibuktikan bahwa hal ini mengarah ke *kontradiksi*.

Bagian 5: Pembuktian dengan *exhaustive search*

Buktikan bahwa satu-satunya bilangan bulat positif berurutan yang tidak melebihi 100 yang merupakan pangkat sempurna adalah 8 dan 9. (Bilangan bulat dikatakan pangkat sempurna jika sama dengan n^a , dimana a adalah bilangan bulat yang lebih dari 1.)

Buktikan bahwa satu-satunya bilangan bulat positif berurutan yang tidak melebihi 100 yang merupakan pangkat sempurna adalah 8 dan 9. (Bilangan bulat dikatakan pangkat sempurna jika sama dengan n^a , dimana a adalah bilangan bulat yang lebih dari 1.)

Solusi:

Dengan pencarian *exhaustive*, periksa setiap pasangan bilangan bulat berurutan yang tidak lebih dari 100, yakni:

$$\{1,2\},\ \{2,3\},\ \{3,4\},\ \ldots,\ \{99,100\}$$

Bagian 6: Pembuktian dengan enumerasi kasus

Buktikan bahwa untuk bilangan bulat n berlaku: $n^2 \ge n$.

Buktikan bahwa untuk bilangan bulat n berlaku: $n^2 \ge n$.

Solusi: Analisis kasus n = 0, $n \ge 1$, dan $n \le -1$.

- ► Untuk $n = 0 : 0^2 \ge 0$
- ▶ Untuk $n \ge 1$: $n^2 \ge n$
- ▶ Untuk $n \le -1$: n^2 positif, dan n negatif

Tunjukkan dengan enumerasi kasus, bahwa: |xy| = |x||y|, dimana $x, y \in \mathbb{R}$. *

 $^{^*|}a|$ adalah nilai mutlak a, dimana |a|=a jika $a\geq 0$, dan |a|=-a jika a < 0.

Tunjukkan dengan enumerasi kasus, bahwa: |xy|=|x||y|, dimana $x,y\in\mathbb{R}.$ *

Perhatikan bahwa jika x=0 maka |x|=0; jika x>0 maka |x|>0, dan jika x<0 maka |x|>0.

- Untuk x > 0, y > 0, maka: |x| = x dan |y| = y
- ▶ Untuk x > 0, y < 0, maka |x| = x dan |y| = -y
- ▶ Untuk x < 0, y > 0, maka |x| = -x dan |y| = y
- Untuk x < 0, y < 0, maka |x| = x dan |y| = y

^{*|}a| adalah nilai mutlak a, dimana |a|=a jika $a\geq 0$, dan |a|=-a jika a<0.

end of slide...