Ableitungen

Ableitung f'(x) einer Funktion f(x) gibt die Steigung der Funktion an einem bestimmten Punkt an.

f'(x): Abbeitung von Funktion f(x) an der Stelle x

 $f'(x) > 0 \rightarrow Funktion Steigt \bullet$

 $f'(x) < 0 \rightarrow Funktion fall \bullet$

f'(x) = 0 - Funktion hat Extrem punkt •

Ableitungs funktion

Funktion $f(x) = x^k$ mit $k \neq 0 \rightarrow f'(x) = k x^{k-1}$

Funktion f(x) = c mit $c \in \mathbb{R} \longrightarrow f'(x) = 0$

Begründung: Steigung horizontale = 0

Weitere Ableitungen - vorherige Ableitung ableiten $s \cdot B \cdot \ell_{i}(x) \longrightarrow \ell_{ii}(x) \setminus \ell_{ii}(x) \longrightarrow \ell_{ii}(x)$

Grafisch

<u>Ableitungsregeln</u>

<u>Potenzregel</u>

$$f(x) = \frac{x_0}{x_0} \rightarrow f_1(x) = \frac{y_1 \cdot x_0}{x_0 - 1}$$

$$\xi.B. \ f(x) = x^2 \rightarrow f'(x) = 2x^{2-1} = 2x^1$$

$$f(x) = x^{-1} \rightarrow f'(x) = -1x^{-1-1} = -x^{-2}$$

<u>Faktorregel</u>

$$(c \cdot t)_{i}(x) = c \cdot t_{i}(x)$$

$$2.8. (4x^3)' = 4.(x^3)' = 4.3 \cdot x^2 = 12x^2$$

<u>Produktregel</u>

$$(\upsilon \cdot v)'(x) = \upsilon'(x) \cdot v(x) + \upsilon(x) \cdot v'(x)$$

$$\xi.B. f(x) = ((3x^3 + x^2)(4x^2 + 1)).$$
 Gesucht ist $f'(x)$.

$$U = 3x^3 + x^2$$

$$v' = 9x^2 + 2x$$
$$v' = 8x$$

$$v = \frac{4x^2 + 1}{f'(x)} = \frac{(9x^2 + 2x) \cdot (4x^2 + 1)}{(4x^2 + 1)} + \frac{(3x^3 + x^2) \cdot (8x)}{(8x)}$$

$$= 36x^4 + 3x^2 + 8x^2 + 2x + 24x^4 + 8x^3$$

$$= 60 x^4 + 16 x^3 + 9 x^2 + 2x$$

Quotientenregel

$$\frac{\left(\frac{\alpha}{\Lambda}\right)_{1}(x) = \frac{\alpha_{1}(x) \cdot \Lambda(x) - \alpha(x) \cdot \Lambda_{1}(x)}{(\Lambda(x))_{2}}$$

z.B.
$$f(x) = \left(\frac{3x^2 - x}{2x^3 + 4}\right)$$
. Gesucht ist $f'(x)$.

$$v = 3x^2 - x$$
 $v' = 6x^4 - 1$

$$v = 2x^3 + 1$$
 $v' = 6x^2$

$$f'(x) = \frac{(6x-4) \cdot (2x^3+4) - (3x^2-x) \cdot (6x^2)}{(6x-4)^3 \cdot (6x^2)^3}$$

$(2x^3+1)^2$

z.B.
$$f(x) = \frac{\cos(x)}{\sin(x)}$$
. Gesucht ist $f'(x)$.

$$v = \cos(x)$$
 $v' = -\sin(x)$

$$v = \frac{\sin(x)}{v'} = \cos(x)$$

$$f'(x) = \frac{-\sin(x) \cdot \sin(x) - \cos(x) \cdot \cos(x)}{(\sin(x))^2}$$

$$= \frac{-\sin^2(x) - \cos^2(x)}{\sin^2(x)}$$

Summenregel

$$(t+3), (x) = t, (x) + 3, (x)$$

2.B
$$(7x^5-3x^3+5x^2-14x+6)^{1}$$

$$= (7x^{5})' - (3x^{3})' + (5x^{2})' - (44x)' + (6)'$$

$$= 35x^{4} - 9x^{2} + 40x - 14$$

<u>Kettenregel</u>

$$(F \circ \upsilon)'(x) = F'(x) \cdot \upsilon'(x)$$

F(u): aussere Funktion

u(x): innere Funktion

$$z.B. f(x) = (x^3 + 4)^{-2}$$

$$v(x) = x^3 + 4$$
 $v'(x) = 3x^2$

$$F(x) = v^{-2}$$
 $F'(x) = -2v^{-3}$
 $f'(x) = (-2v)^{-3} \cdot 3x^{2}$

$$= \frac{-2(x^3+4)^{-3} \cdot 3x^2}{(x^3+4)^{-3} \cdot 3x^2}$$

$$2.B. y = (4x^2 - 2x + 1)^5$$

$$v(x) = 4x^2 - 2x + 1$$

$$o'(x) = 8x-2$$

$$y' = 50^4 \cdot (8x - 2)$$

$$= 5(4x^2 - 2x + 1)^4 \cdot (8x - 2)$$

$$2.B. f(x) = \frac{10}{x^3 + 5}$$

$$v(x) = x^3 + 5$$

$$v(x) = x^3 + 5$$

$$v(x) = x^3 + 5$$
 $v(x)^1 = 3x^2$

$$F(x) = \frac{40}{11} = 40v^{-1}$$
 $F(x)^1 = -40v^{-2}$

$$r'(x) = 0$$
 100 11

$$f'(x) = -10v^{-2} \cdot 3x^{2}$$

$$= -40(x^3+5)^{-2} \cdot 3x^2$$

$$=\frac{-40 \cdot 3x^2}{(3-x)^2}$$

$$(x^3+5)^2$$

$$\frac{1}{x^1} = x^{-1}$$

$$\frac{1}{x^2} = x^{-2}$$

$$\frac{40}{x^4} = 40x^{-1}$$

Mitternachtsformel

Eine Lösungsformel für quadratische Gleichungen der Form $ax^2 + bx + c = 0$.

$$X_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

a: Zahl vor x2

b: Zahl vor x

c: Zahl ohnex

Ableitung bestimmter Funktionen

$$(\sin(x))' = \cos(x)$$

$$(\cos(x))' = -\sin(x)$$

$$(e^x)^1 = e^x$$

$$(a^{x})' = a^{x} \cdot \ln(a)$$

$$(\ln(x))' = \frac{1}{x}$$

$$(\log_{\alpha}(x))' = \frac{1}{x \cdot \ln(\alpha)}$$

$$\left(\sqrt{x}\right)' = \frac{4}{2\sqrt{x}}$$

<u>Tangente</u>

Berührt den Graph an genau einer Stelk. Gleiche Steigung und Aleicher Funktionswert wie der Graph an der Berührstelle.

$$\lambda = t_i(x^o) \cdot (x - x^o) + t(x^o)$$

Differenzierbarkeit

Differenzierbar wenn die Ableitung an jeder Stelle definiert ist.

Funktion f(x) an Stelle xo differenzierbar, wan links- und rechsseitige Ablétung glaich.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} < \infty = \text{Steigung an } x_0$$

- (!) Wenn der Graph einer Funktion einen Knick hat, ist es nicht differenzierbar

<u>Fixpunkte</u>

Beim Fixpunkt einer Funktion stimmen x und y Wert in der Funktionskurve überein.

$$x = x - \frac{f(x)}{f(x)}$$

$$\epsilon.B.$$
 Fixpunkt: $f(x) = \sqrt{4x^2-1}$

$$f(x) = x$$

$$\sqrt{4x^2-1} = \times ()^2$$

$$4x_5 - 4 = x_5 / -x_5$$

$$x^2 = \frac{1}{3}$$

$$\Rightarrow \times_{1} = \frac{1}{\sqrt{3}} \times_{2} = -\frac{1}{\sqrt{3}}$$

Kontrolle

$$x_A$$
 einselten: $\sqrt{4x_A^2-1} = \sqrt{\frac{1}{15}} = \frac{1}{\sqrt{5}}$

$$x_2$$
 cinscreen: $\sqrt{4x_2^2-1} = \frac{1}{\sqrt{3}} \neq -\frac{1}{\sqrt{3}}$ \times

$$\Rightarrow$$
 nor $\times_A \frac{1}{\sqrt{2}}$ ist Lösung!

$$x^2 = \frac{1}{3}$$

Sekante

Gerade, welche einen Graphen in zwei Punkten schneidet

Sekante

$$S = mx + b > y - Achsen abschnift$$

$$\xi.B.$$
 $\xi(x) = x^2 + 1$, $P(0|-1)$, $Q(2|3)$

1. Steigung
$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)} = \frac{(3 - (-1))}{(2 - 0)} = 2$$

2. y-Achsenabschnitt
$$s(x) = 2x + b$$

$$3 = 2 \cdot 2 + b$$

$$0 = -1$$

$$\Rightarrow$$
 s(x) = 2x - 1

Newton Verfahren

Nullstellen einer Funktion näherungsweise bestimmen

$$x^{u+1} = x^{u} - \frac{\xi_{1}(x^{u})}{\xi(x^{u})}$$

Startwert bestimmen:

Werfetabelle - Vorzeichenwechsel

- Intervall in dem Vorzeichenwechsel stattfindet

- Mitte des Intervalls

$$\pm .B. f(x) = 5x^3 + 8x^2 - 1 \rightarrow f'(x) = 15x^2 + 16x$$

Startwest x0 = 0.5

$$X_4 = \frac{0.5}{0.5} - \frac{5 \cdot 0.5^3 + 8 \cdot 0.5^2 - 1}{15 \cdot 0.5^2 + 16 \cdot 0.5} = 0.36170$$

$$X_2 = 0.36470 - \frac{5.0.36470^3 + 8.0.36470^2 - 1}{15.0.36470 + 16.0.36470} = 0.32515$$

 \times_{4} = ... = 0.32245] Näherungswert für eine Nullstelle

x5 = ... = 0.32245) der Funktion f

<u>Linearisierung</u> einer Funktion

Jede differentierbare Funktion \approx lineare Funktion, Beste Approximation \Rightarrow Tangente $(x_0, f(x_0))$ Funktionsgleichung für die Tangente von f(x) an der Stelle $x_0: y = f'(x_0) \cdot (x - x_0) + f(x_0)$

Vorzeichenwechsel

Quadratische Funktion

Bestimmen Sie eine quadratische Funktion, welche bei x=-1 Steigung 1, bei x=1 Steigung 5 und bei x=1 eine Nullstelle hat.

quadratische Funktion:
$$f(x) = ax^2 + bx + c \longrightarrow f^1(x) = 2ax + b$$

Bedingungen: $x = -1$ Slegung $A \longrightarrow f'(-1) = 1$
 $x = A$ Steigung $S \longrightarrow f^1(1) = 5$
 $x = 1$ Nullstelle $\longrightarrow f(1) = 0$

1.
$$f'(-1): -2a+b = 1$$
 $|-b, -1|$
 $-2a-1 = -b$ $|\cdot(-1)|$
 $-2a+1 = b, 2\cdot 1 + 1 = b, b = 3 \leftarrow$

2.
$$f'(1)$$
: 2a + 2a + 1 = 5 | -1 } b einsetzen
4a = 4 | : 4
a = 1

3.
$$\{(1): 1x^2 + 3x + c = 0$$

 $1+3+c = 0$ | -4

4.
$$f(x) = x^2 + 3x - 4$$

Waagrechte Tangente mit a und b

Welche Werte muss man für a und b einsetzen, so dass die Funktion $f(x) = a \ln(x) - \frac{b}{x} + x$ bei x = 1 und x = 10 jeweils eine horizontale Tangente hat?

1.
$$\{(x) \text{ ableiten}$$

 $f'(x) = a \cdot \frac{1}{x} + bx^{-2} + 1$

$$f'(x) = a \cdot \frac{1}{x} = -b \cdot x^{-1}$$

$$f'(x) = a \cdot \frac{1}{x} = -b \cdot x^{-1}$$

$$f'(x) = a \cdot \frac{1}{x} = -b \cdot x^{-1}$$

$$f'(x) = a \cdot \frac{1}{x} = -b \cdot x^{-1}$$

$$f'(x) = a \cdot \frac{1}{x} = -b \cdot x^{-1}$$

2.
$$f'(1) = a \cdot \frac{1}{1} + b \cdot \frac{1}{1^{2}} + 1 = 0$$

= $a + b + 1 = 0$ $|-b, -1|$
 $a = -b - 1$, $a = -10 - 1$, $a = -11$

3.
$$(\frac{1}{100}) = (-b-1) \cdot \frac{1}{10} + b \cdot \frac{1}{10^2} + 1 = 0 \mid .100$$
 a einsetzen
$$= (-b-1) \cdot 10 + b + 100 = 0$$

$$= -10b \cdot 10 + b + 100 = 0$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

$$= -9b + 90 = 0 \qquad | -90, \cdot (-1) |$$

Waagrechte Tangente ohne Punkt

Bestimmen Sie jeweils die Punkte des Graphen der folgenden Funktionen mit waagerechter Tangente: \ge .8. $_{3}(x) = _{3}(x+1)^{2}(x-2)$

1.
$$g(x)$$
 ableiten

Produktregel: $v = 3(x+1)^2$
 $v' = 6x+6$
 $v = x-2$
 $g'(x) = (6x+6) \cdot (x-2) + (3(x+1)^2) \cdot (1)$
 $v = 6x^2 - 12x + 6x - 12 + 3(x^2 + 2x + 1)$
 $v = 6x^2 - 6x - 12 + 3x^2 + 6x + 3$

Startwerte mi

2.
$$g'(x) = 0$$
 Setzen ① Waagrechte Tangente \longrightarrow Steigung 0
 $g'(x) \cdot g(x^2 - 1) = 0$
 $g(x+1)(x-1) = 0$
 $x = -1$, $x = -1$

3. Nullpunkte in g(x) einsetzen

= 9x2 -9

$$g(-1): 3((-1)+1)^2((-1)-2) = 0 \rightarrow (x_1,g(x_1))=(-1,0)$$

 $g(1): 3(1+1)^2(1-2) = 12 \rightarrow (x_2,g(x_2))=(1,-12)$

Tangente mit Punkt und an Kurre

Bestimmen Sie die Tangenten an die Kurve $f(x) = x^2$, die durch den Punkt (2,3) gehen.

$$T_G : y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

 $f(x) = x^2$, $f'(x) = 2x$

1. x und y in TG einsetzen

$$3 = 2x_{0} \cdot (2 - x_{0}) + x_{0}^{2} \qquad | -3$$

$$0 = 4x_{0} - 2x_{0}^{2} + x_{0}^{2} - 3 \qquad | \text{nach } x_{0} \text{ autiosen}$$

$$0 = -x_{0}^{2} + 4x - 3 \qquad | \cdot (-4)$$

$$0 = (x-1)(x-3)$$

$$x_0 = 1$$
, $x_1 = 3$

2. Xo und Xa in TG einsetzen

$$x_0 = 1 \longrightarrow y = 2(x-1)+1 = 2x-1$$

 $x_1 = 3 \longrightarrow y = 2(x-3)+3 = 6x-3$

Startwerte mit Newton-Schrift

Wir betrachten die Funktion $f(x) = xe^x$. Bestimmen Sie die Menge aller Startwerte, bei denen man nach einem Newton-Schritt den Wert $x = \frac{1}{0}$ erhält.

1.
$$f(x) = e^x + xe^x = (1+x)e^x$$

2.
$$\frac{f(x)}{f(x)}$$
 und $\frac{f'(x)}{f(x)}$ in Newton-Formel einsetzen
$$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = x_1 = x_0 - \frac{x_0 \cdot e^{x_0}}{f(x_0)} = x_0 - \frac{x_0}{f(x_0)}$$

3. Nach
$$\frac{1}{2}$$
 auf lösen
$$x - \frac{x}{1+x} = \frac{1}{2}$$

$$\times (1+x) - x = \frac{1+x}{2}$$

$$x^{2} = \frac{1+x}{2}$$

$$2x^{2} = 1+x$$

$$| -1-x|$$

 $-2x^{1}-x-1=0$

Hilternachtsformel:
$$X_{4,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^2 - (4 \cdot 2 \cdot -1)}}{2 \cdot 2}$$

$$= \frac{1 \pm \sqrt{1 + 4 \cdot 2 \cdot 1}}{2 \cdot 2}$$

$$= \frac{1 \pm 3}{4}$$

$$= -\frac{1}{2} \cdot 1$$

⇒ Menge der Startwerte: {-1/2, 1}