BSpecRProblem Notes

Shuang Hu

2022 年 8 月 24 日

1 文档中的一些小错误

- (11) 式的上标应当为 n+1, 而不是 n.
- (25) 式中, 矩阵 $B = (I + rA)^{-1}(I + rS)$ 。同理, 后面关于 B^{-1} 的讨论也有同样的问题。
- (31) 式下面说明, 范数 $\|\cdot\|$ 为 ∞ 范数, 但 Section 1.2.1 中实际讨论的是 2-范数 (谱半径), 那么 是不是意味着我们没必要强调该范数是无穷范数?
- (35) 和 (36) 式的符号都有小问题,应当是 $|\rho(B) \le 1|$, $|\lambda(B^{-1})| = |1 + \lambda(Q)| \ge 1$.

2 关于算法的一些疑问

- 注意到,本次采用的虽然是熟悉的有限差分 MOL 算法,但取点的方案却和经典的有限差分算法有较大区别。记 n 为小区间段个数, $h=\frac{1}{n}$ 是每一段小区间的长度,之前我们学过的有限差分算法求解的是 $x_i=ih$ 处函数的近似值,在处理边界条件时为方便起见,往往取 $x_{-1}=-h$ 和 $x_{n+1}=(n+1)h$ 为 Ghost Cell。但在本问题的算法中,我们关心的是每段小区间中点处函数的近似取值,即 $x_i=(i+\frac{1}{2})h$ 。相应的,Ghost Cell 取为 $x_{-1}:=-\frac{1}{2}h$ 和 $x_n:=1+\frac{1}{2}h$ 。这样处理之后,方便了 **Neumann 边值条件**的处理,但与此同时对 **Dirichlet 边值条件**的处理造成了不便。这种处理方式和我们常用的处理方式相比较,优势和劣势分别体现在何处?
- 按照设定, x_I 点左侧为较快的物理过程,而 x_I 右侧较慢。那么,针对两种不一样的物理过程,为什么采用同样的数值算法进行处理?可能在 x_I 左侧采用中心差分和向后欧拉,在 x_I 右侧采用中心差分和向前欧拉,会是更合理的处理方式。
- 如上一点所述,对于 x_I 左侧和右侧的数据点分别求解,其原因是系数 $\nu(x)$ 在 x_I 左侧和右侧存在截然不同的表现。如果 ν 在问题区域 [0,1] 上为一个常值,那么直接在整个区域上进行有限差分离散就可以了。但在稳定性讨论时,我们则是针对一个经典的热方程进行讨论,这是因为我们需要先保证该算法求解热方程的正确性吗?
- 注意到,式 (24) 的矩阵 A 并非一个分块对角矩阵,这也就意味着 x_I 的左右两侧并没有完全解耦。这或许是稳定性分析的主要难点?
- 如果考虑到 x_I 左侧和右侧 ν 的显著区别,那么 $r := \frac{k!}{\hbar^2}$ 至少需要分两段讨论,即 x_I 左侧和 x_I 右侧的 r 会存在显著区别,这样等式 (19) 则不成立,问题会更为复杂一些。