

Applications

ADVANCED ARTIFICIAL INTELLIGENCE JUCHEOL MOON

1

Neural Language Models

•NLMs are a class of language model designed to overcome the curse of dimensionality problem for modeling natural language sequences by using a distributed representation of words

One-hot-vector representation of IB words of bag
$$dog \Rightarrow [00.0000]$$

(at $\Rightarrow [00.0000]$

•Neural language models share statistical strength between one word (and its context) and other similar words and contexts

The distributed representation

- •The language model learns treat words that have features in common similarly
 - •GRE Analogies
 - •ADULT : CHILD::
 - •(A) horse: mare
 - •(B) cat: kitten
 - **■**(C) swine : sow
 - •(D) human : animal
 - \bullet (E) cow : herd

- ■ENVELOPE : LETTER ::
- •(A) scarf: hat
- **■**(B) box : bag
- •(C) crate: produce
- •(D) neck: head
- •(E) blood: heart
- OVERDOSE:

PRESCRIPTION ::

- •(A) deprivation: materialism
- •(B) indiscretion : convention
- •(C) affliction : sympathy
- •(D) adventure : expedition
- •(E) drug: medicine

3

Word Embeddings

Can we locate the words by their characteristics?
Fire
Spicy
Chocolate ice cream
Vampire
Glacier
Jucheol Moon
Gray
Final exam
Cold
Cold
Hot
Dark

Word Embeddings

•In the embedding space, words that frequently appear in similar contexts (or any pair of words sharing some "features" learned by the model) are close to each other.

5

Embedding in Vision

•A hidden layer of a convolutional network provides an "image embedding" in d-space

•We (could / could not) interpret the characteristics of the elements in d-space vectors

Word Embedding

- Assume we are using word embedding vectors in dspace

 - space

 •how → $e_{how} = [0.1 0.3 0.9 \cdots]^T$ •are → $e_{are} = [0.4 0.1 0.7 \cdots]^T$ •you → $e_{you} = [0.01 0.2 0.3 \cdots]^T$
 - $e_{comment}$ e_{allez} e_{vous}

 e_{how} e_{are} e_{you}

 e_{vou}

7

Word Embedding

Assume we are using word embedding vectors in d-

 e_{are}

 e_{how})

8

n-grams

- •The earliest successful language models were based on models of fixed-length sequences of tokens called n-grams. An n-gram is a sequence of n tokens.
- •Ex) Can we predict the blanks?
 - The cat is walking in the bedroom
 - •A dog was <u>running</u> in a room
 - •The <u>cat</u> is running in a room
 - •A dog is walking in a bedroom
 - The dog was walking in the <u>room</u>

9

3-grams Learning

- •Initially, (as usual) set the values of <u>embedding</u> vectors randomly
- Train the values with samples

Transfer learning is useful

The cat is walking in the <u>bedroom</u>
A dog was running in a <u>room</u>
The cat is running in a <u>room</u>
A dog is walking in a <u>bedroom</u>
The dog was walking in the <u>room</u>

LSTM

The cat is walking in the bedroom
A dog was running in a room
The cat is running in a room
A dog is walking in a bedroom
The dog was walking in the room

10

Negative sampling

- Training data set includes only positive samples
 - •The cat is **walking in the** <u>bedroom</u>.
 - •The dog was **walking in the** <u>room</u>.
- •We need to have negative samples
 - •The cat is walking in the drawer.
 - •The dog was walking in the <u>fridge</u>.
- •Total number of negative samples is similar to the number of positive samples
- Negative sampling is proportion to the frequency of the words

11

11

Sentiment Analysis

- •Determining whether a comment expresses positive or negative sentiment.
 - •All of the car-based crap is just a huge product placement for Audiand it really hurts credibility.
 - The movie is full of other great visuals like V.I.K.I., the whole robotized city of Chicago, and of course Smith's cool Audi

RNN for sentiment analysis

- •A sentiment predictor trained on customer reviews of media content.
- •There is an underlying function that tells whether any statement is positive, neutral, or negative

All of the car-based crap is just a huge product placement for Audi, and it really hurts credibility.

13

13

Context-Free grammars

- ■The notation for context-free grammars (CFG) is sometimes called Backus-Naur Form (BNF)
- •A CFG consists of
 - •A set of terminals T
 - •A set of non-terminals N
 - A start symbol S (a non-terminal)
 - •A set of productions $X \rightarrow Y$

Parse tree

■Parse tree for expression grammar for

15

15

CFG

- ${}^{\bullet}S \rightarrow NP VP$
- ■NP → Pronoun | Proper-Noun | Det Nominal
- Nominal → Noun NominalNoun
- $\bullet PP \rightarrow Preposition NP$

•I prefer a morning flight

Recursive Neural Network

- •Recursive neural networks represent another generalization of recurrent networks which is structured as a deep tree
 - •This film is awesome.

17

Recursive Neural Network

•This file doesn't care about cleverness, wit or any other kind of intelligent humor.

Recursive Neural Network

■To classify *d*-dimensional semantic vectors into five sentiment classes, the posterior probability is computed

the posterior probability is computed by
$$y_j = \frac{e^{(W_S \vec{x})_j}}{\sum_{i=1}^5 e^{(W_S \vec{x})_i}} \quad \begin{array}{c} |W_s| = \langle \cdot , \lambda \rangle \\ |\vec{x}| = d \times |\vec{x}| \end{array}$$

 The semantic vectors of internal nodes are computed by

$$\vec{x}_p = \tanh\left(\left[\frac{\vec{x}_L}{\vec{x}_R}\right]^T \vec{V} \left[\frac{\vec{x}_L}{\vec{x}_R}\right] + \vec{W} \left[\frac{\vec{x}_L}{\vec{x}_R}\right]\right)$$

