2.2. Bootstrap

Este método es un poco más sencillo de implementar que Jacknife y es igualmente de eficaz propuesto por [4].

Primero recordemos que estamos estimando una estadístico a partir de una muestra de modo que $T_n = g(X_1, ..., X_n)$ donde g es cualquier función (media, varianza, quantiles, etc).

Supongamos que conocemos la distribución real de los X's, llamada F(x). Si uno quisiera estimar la varianza de X basta con hacer

$$\operatorname{Var}_{F}(T_{n}) = \frac{\sigma^{2}}{n} = \frac{\int x^{2} dF(x) - \left(\int x dF(x)\right)^{2}}{n}$$

donde $\sigma^2 = \text{Var}(X)$ y el subindice F es solo para indicar la dependencia con la distribución real.

Ahora dado que no tenemos la distribución rea F(x), una opción es encontrar un estimador de esta llamado \hat{F}_n .

La técnica de boostrap se basa en extraer muchas muestras iid de la distribución \hat{F}_n de modo que se pueda conocer su varianza

En simple pasos la técnica es

- 1. Seleccione $X_1^*, \ldots, X_n^* \sim \widehat{F}_n$
- 2. Estime $T_n^* = g(X_1^*, ..., X_n^*)$
- 3. Repita los Pasos 1 y 2, B yeces para obtener $T_{n,1}^*, \ldots, T_{n,B}^*$

91

4. Estime

$$v_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* \right)^2$$

Por la ley de los grandes números tenemos que

 $v_{\mathrm{boot}} \xrightarrow{\mathrm{a.s.}} \mathbb{V}_{\widehat{F}_n}(T_n), \quad \mathrm{si } B \to \infty.$

además llamaremos,

$$\widehat{se}_{boot} = \sqrt{v_{boot}}$$

En pocas palabras lo que tenemos es que

Mundo Real: $F \implies X_1, \dots, X_n \Longrightarrow T_n = g(X_1, \dots, X_n)$

Mundo Bootstrap: $\widehat{F}_n \implies X_1^*, \dots, X_n^* \Longrightarrow T_n^* = g(X_1^*, \dots, X_n^*)$

En términos de convergencia lo que se tiene <u>es q</u>ue

Pregunta 2.2.1

¿Cómo extraemos una muestra de \hat{F}_n ?

Recuerden que \hat{F}_n asigna la probabilidad de $\frac{1}{n}$ a cada valor usado para

CAPÍTULO 2. JACKNIFE Y BOOTSTRAP

Por lo tanto, todos los puntos originales X_1, \ldots, X_n tienen probabilidad $\frac{1}{n}$ de ser escogidos, que resulta ser equivalente a un muestreo con remplazo n-veces.

Así que basta cambiar el punto 1. del algoritmo mencionando anteriormente con

1. Seleccione una muestra con remplazo X_1^*, \dots, X_n^* de X_1, \dots, X_n .

Laboratorio 2.2.2

En este ejemplo podemos tomar B = 1000 y construir esa cantidad de veces nuestro estimador.

2.2. BOOTSTRAP 93

```
B < -1000
Tboot_b <- NULL
for(b in 1:B) {
xb <- sample(x, size = n, replace = TRUE)</pre>
Tboot_b[b] <- var(xb)</pre>
}
Tboot_b[1:10]
                                                              539.7398 389.2075 355.4033
plot(Tboot_b)
Tboot_b
                   200
                             400
                                       600
                                                 800
                                                           1000
                                 Index
```

Por supuesto podemos encontrar los estadísticos usuales para esta nueva muestra

```
(Tboot <- mean(Tboot_b))
## [1] 428.3197

(Vboot <- var(Tboot_b))
## [1] 5345.401

(sdboot <- sqrt(Vboot))
## [1] 73.11225</pre>
```

2.2.1. Intervalos de confianza

Intervalo Normal

Este es el más sencillo y se escribe como

$$T_n \pm z_{\alpha/2} \widehat{Se}_{boot}$$
 (2.4)

2.2. BOOTSTRAP

95

Cuidado 2.2.3

Este intervalo solo funciona si la distribución de T_n es normal.

El cálculo de este intervalo es

c(Tn /z) sdboot,

Tn + (z) sdboot)

[1] 285.9510 572.5458

Intervalo pivotal

Sea $\theta = T(F)$ y $\widehat{\theta}_n = T(\widehat{F}_n)$ y defina la cantidad pivotal $R_n = \widehat{\theta}_n - \theta$.

Sea H(r) la función de distribución del pivote:

$$H(r) = \mathbb{P}_F(R_n \le r).$$

Además considere $C_n^* = (a, b)$ donde

$$a = \widehat{\theta}_n - H^{-1}\left(1 - \frac{\alpha}{2}\right) \quad y \quad b = \widehat{\theta}_n - H^{-1}\left(\frac{\alpha}{2}\right).$$

96

$$\mathbb{P}(a \le \theta \le b) = \mathbb{P}(\widehat{\theta}_n - b) \le R_n \ge \widehat{\theta}_n - a)$$

$$= H(\widehat{\theta}_n - a) - H(\widehat{\theta}_n - b)$$

$$= H(H^{-1}(1 - \frac{\alpha}{2})) - H(H^{-1}(\frac{\alpha}{2}))$$

$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha$$

Nota 2.2.5

 $C_n^* = (a, b)$ es un intervalo de confianza al $(1 - \alpha)$ de confianza.

El problema es que este intervalo depende d(H) lesconocido.

Para resolver este problema, se puede construir una versión *bootstrap* de *H* usando lo que sabemos hasta ahora.

Sea r_{β}^* el cuantil muestral de tamaño β de $\left(R_{n,1}^*, \dots, R_{n,B}^*\right)$ y sea θ_{β}^* el cuantil muestral de tamaño β de $\left(\theta_{n,1}^*, \dots, \theta_{n,B}^*\right)$.

Nota 2.2.6

Según la notación anterior note que

$$r_{\beta}^* = \theta_{\beta}^* - \widehat{\theta}_n$$

2.2. BOOTSTRAP 97

Con estas observaciones It follows that an approximate $1 - \alpha$ confidence interval is $C_n = (\widehat{a}, \widehat{b})$ where

$$\widehat{a} = \widehat{\theta}_n - \widehat{H}^{-1} \left(1 - \frac{\alpha}{2} \right) = \widehat{\theta}_n - r_{1-\alpha/2}^* = \widehat{\theta}_n \left(-\theta_{1-\alpha/2}^* + \widehat{\theta}_n \right) = 2\widehat{\theta}_n - \theta_{1-\alpha/2}^*$$

$$\widehat{b} = \widehat{\theta}_n - \widehat{H}^{-1} \left(\frac{\alpha}{2} \right) = \widehat{\theta}_n - r_{\alpha/2}^* = \widehat{\theta}_n - \theta_{\alpha/2}^* + \widehat{\theta}_n = 2\widehat{\theta}_n - \theta_{\alpha/2}^*$$

Nota 2.2.7

El intervalo de confianza pivotal de tamaño $1 - \alpha$ es

$$C_n = \left(2\widehat{\theta}_n - \widehat{\theta}^*_{((1-\alpha/2)B)}, 2\widehat{\theta}_n - \widehat{\theta}^*_{((\alpha/2)B)}\right)$$

Laboratorio 2.2.8

El intervalo anterior para un nivel de 95 % se estima de la siguiente

98

Intervalo pivotal studentizado

Una mejora del intervalo anterior sería normalizar los estimadores previamente

$$Z_n = \underbrace{\frac{T_n - \theta}{\widehat{\operatorname{se}}_{\operatorname{boot}}}}_{T_n - \theta}$$

Como θ es desconocido, entonces la versión a estimar es

$$Z_{n,b}^* = \underbrace{\frac{T_{n,b}^*}{\widehat{\operatorname{se}}_b^*}}_{T_n}$$

donde $\widehat{\operatorname{se}}_b^*$ es un estimador del error estándar de $T_{n,b}^*$ no de T_n .

Cuidado 2.2.9

Esto requerira estimar la varianza de $T_{n,b}^*$ para cada b.

On esto se puede obtener cantidades $Z_{n,1}^*$, ..., $Z_{n,B}^*$ que debería ser próximos ${}_{\mathbf{a}}^{\mathbf{r}} Z_n$.

Sea z_{α}^* del α cuantiÍ de $Z_{n,1}^*,\ldots,Z_{n,B}^*$, entonces $\mathbb{P}(Z_n\leq z_n)$

Define el intervalo

$$C_n = \left(T_n - z_{1-\alpha/2}^* \widehat{\mathbf{se}}_{\mathsf{boot}}, T_n - z_{\alpha/2}^* \widehat{\mathbf{se}}_{\mathsf{boot}}\right)$$

Justificado por el siguiente cálculo:

$$\mathbb{P}(\theta \in C_n) = \mathbb{P}\left(T_n - z_{1-\alpha/2}^* \widehat{Se}_{boot} \le \theta \le T_n - z_{\alpha/2}^* \widehat{Se}_{boot}\right)$$

$$= \mathbb{P}\left(z_{\alpha/2}^* \le \frac{T_n - \theta}{se_{boot}} \le z_{1-\alpha/2}^*\right)$$

$$= \mathbb{P}\left(z_{\alpha/2}^* \le Z_n \le z_{1-\alpha/2}^*\right)$$

$$\approx 1 - \alpha$$

Laboratorio 2.2.10

Note que para este caso tenemos que hacer bootstrap para cada estimador bootstrap calculado.