1 Variables

2 root

	var	symbol	documentation	type	units	tokens	eqs
5	F	F	incidence matrix of a directed graph	network		[]	
6	t	t	time	frame	s		
7	to	to	starting time	frame	s		4
8	te	te	end time	frame	s		5
1	value	value	numerical value	constant			
2	zero	zero	numerical value zero	constant			1
3	one	one	numerical value one	constant			2
4	onehalf	onehalf	numerical value one half	constant			3

3 physical

	var	symbol	documentation	type	units	tokens	eqs
9	r_{xN}	r_x	x-coordinate	frame	m	[]	
10	r_{yN}	r_y	y-coordinate	frame	$\mid m \mid$		
23	r_{zN}	r_z	z-coordinate	frame	$\mid m \mid$		
11	U_N	U	foundation state – internal energy	state	$ \begin{vmatrix} kg m^2 s^{-2} \\ kg m^2 K^{-1} s^{-2} \end{vmatrix} $		
12	S_N	S	foundation state – entropy	state	$kg m^2 K^{-1} s^{-2}$		
13	V_N	V	foundation state – volume	state	m^3		
18	H_N	Н	enthalpy	state	$kg m^2 s^{-2}$		9
19	A_N	A	Helmholtz energy	state	$kg m^2 s^{-2}$		10
20	G_N	G	Gibbs energy	state	$kg m^2 s^{-2}$		11
42	n_{NS}	n	species molar mass	state	mol		
26	Avogadro	Avogadro	Avogadro number	constant	mol^{-1}		
27	$Boltzmann_N$	Boltzmann	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$		16
28	$GasConstant_N$	GasConstant	Gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	<u>}</u> []	17
15	p_N	p	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$		6
16	T_N	Т	temperature	effort	K		7
45	$chem_pot_{NS}$	chem_pot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$		32
21	v_{xN}	v_x	velocity in x-direction	seconaryState	ms^{-1}		12
22	v_{yN}	v_y	velocity in y direction	seconaryState	ms^{-1}		13
24	v_{zN}	v_z	velocity in z-direction	seconaryState	ms^{-1}		14
25	v_N	v	velocity vector	seconaryState	ms^{-1}		15

4 control

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

5 reactions

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

6 material

	var	symbol	documentation	type	units	tokens	eqs
29	Mm_S	Mm	species molecular masses	constant	$kg mol^{-1}$		
30	Cp_N	Cp	total heat capacity at constant pressure	constant	$kg m^2 K^{-1} s^{-2}$		18
31	Cv_N	Cv	total heat capacity at constant volume	constant	$kg m^2 K^{-1} s^{-2}$		19
34	kq_{xN}	kq_x	thermal conductivity in x-direction	constant	$kg K^{-1} s^{-3}$		22
35	kq_{yN}	kq_y	thermal conductivity in y-direction	constant	$kg K^{-1} s^{-3}$		23
36	kq_{zN}	kq_z	thermal conductivity in z-direction	constant	$kg K^{-1} s^{-3}$		24
37	kq_N	kq	Carthesian thermal conductivity vector	constant	$kg K^{-1} s^{-3}$		25
46	C_{pN}	C_p	total heat capacity at constant pressure	seconaryState	$kg m^2 K^{-1} s^{-2}$		33
47	C_{vN}	C_v	specific heat capacity at constant volume	seconaryState	$kg m^2 K^{-1} s^{-2}$		34
48	cp_S	ср	specific heat capacity at constant pressure	seconaryState	$m^2 mol^2 K^{-1} s^{-2}$		35
49	cv_S	cv	specific heat capacity at constant volume	seconaryState	$m^2 mol^2 K^{-1} s^{-2}$		36

7 macroscopic

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

8 solid

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

9 fluid

var symbol documentation type units tokens		var symbol		type	units	tokens	eqs
--	--	--------------	--	------	-------	--------	-----

10 liquid

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

11 gas

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

12 control-control

var symbol documentation type units tokens		var symbol	documentation	type			eqs
--	--	--------------	---------------	------	--	--	-----

13 gas-liquid

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

14 gas-gas

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

15 liquid-liquid

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

16 gas-solid

var symbol documentation	type	units	tokens	eqs
--------------------------	------	-------	--------	-----

17 solid-solid

var symbol documentation type units tokens		var symbol	documentation	type			eqs
--	--	--------------	---------------	------	--	--	-----

18 liquid-solid

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

19 material-material

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

20 reactions—reactions

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

21 Equations

22 Generic

no	equation	documentation	layer
1	zero := Instantiate(value, value)	numerical value zero	root
2	one := Instantiate(value, value)	numerical value one	root
3	onehalf := Instantiate(value, value)	numerical value one half	root
4	to := Instantiate(t, value)	starting time	root
5	te := Instantiate(t, value)	end time	root
6	$p_N := \left(-\frac{\partial U_N}{\partial V_N}\right)$	thermodynamic pressure	physical
7	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	physical
9	$H_N := U_N - p_N \cdot V_N$	enthalpy	physical
10	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	physical
11	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs energy	physical
12	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocity in x-direction	physical
13	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$	velocity in y direction	physical
14	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	physical
15	$v_N := \operatorname{Stack}\left(v_{xN}, v_{yN}, v_{zN}\right)$	velocity vector	physical
16	$Boltzmann_N := Instantiate(S_N, value)$	Boltzmann constant	physical
17	$GasConstant_N := Avogadro \cdot Boltzmann_N$	Gas constant	physical

Continued on next page

no	equation	documentation	layer
18	$Cp_N := \frac{\partial H_N}{\partial T_N}$	total heat capacity	material
19	$Cv_N := rac{\partialU_N}{\partialT_N}$	total heat capacity at constant volume	material
22	$kq_{xN} := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{xN}$	thermal conductivity in x-direction	material
23	$kq_{yN} := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{yN}$	thermal conductivity in y-direction	material
24	$kq_{zN} := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{zN}$	thermal conductivity in z-direction	material
25	$kq_N := \operatorname{Stack}\left(kq_{xN}, kq_{yN}, kq_{zN}\right)$	Carthesian thermal conductivity vector	material
32	$chem_pot_{NS} := \frac{\partial U_N}{\partial n_{NS}}$	chemical potential	physical
33	$C_{pN} := rac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	material
34	$C_{vN} := \frac{\partial U_N}{\partial T_N}$	specic heat capacity at constant volume	material
35	$cp_S := Cp_N \cdot (Mm_S)^{-1} \overset{N \in NS}{\star} n_{NS}$	specific heat capacity at constant pressure	material
36	$cv_S := Cv_N \cdot (Mm_S)^{-1} \overset{N \in NS}{\star} n_{NS}$	specific heat capacity at constant volume	material