FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

TIN Teoretická informatika

2. domáca úloha

Obsah

1	Príklad číslo 1	2
	1.1 (a)	2
	1.2 (b)	2
2	Príklad číslo 2	4
3	Príklad číslo 3	5
	3.1 Nerozhodnuteľnosť	5
	3.2 Čiastočná rozhodnuteľ nosť	6
4	Príklad číslo 4	7
5	Literatúra	8

1.1 (a)

Definice 4.29 [1](str. č. 97) Označme ZAV_n pre $n \geq 0$ jazyky setávající ze všech vyvážených řetězců závorek n typů. Tyto jazyky – označované též jako Dyckovy jazyky – jsou generovány gramatikami s pravidly tvaru: $S \rightarrow \begin{bmatrix} 1 & S \end{bmatrix}^1 \begin{bmatrix} 2 & S \end{bmatrix}^2 \end{bmatrix} \dots \begin{bmatrix} n & S \end{bmatrix}^n \begin{bmatrix} S \end{bmatrix}^n \begin{bmatrix} S \end{bmatrix} \varepsilon$

Z hore uvedenej definície pre náš príklad vyplýva, že náš Dyckov jazyk L je generovaný gramatikou

$$S \rightarrow \varepsilon \mid SS \mid [S]$$

ktorá obsahuje iba jeden typ zátvoriek ktorými sú [a].

Pre každé slovo $w \in L$, pre ktoré platí že $w \neq \varepsilon$, muselo byť aspoň raz použité pravidlo $S \to [S]$ v derivácii. Na základe tohto, vieme určiť najkratší neprázdny prefix slova w patriaci do L ktorým je []. S využitím pravidla $S \to [S]$ vygenerujeme jeden pár zátvoriek, pričom medzi zátvorkami sa nachádza neterminál S, ktorým je možné ďalej aplikovať ďalšie pravidlá a generovať reťazec u – presnejšie reťazec u patriaci do jazyka L. V prípade použitia pravidla $S \to SS$ pred pravidlom $S \to [S]$ vieme generovať ďalší reťazec na pravej strane čo odpovedá reťazcu v ktorý patrí do L, t.j. vieme generovať za [u] reťazec v patriaci do jazyka L.

Takže, každé slovo $w \in L$, pre ktoré platí že $w \neq \varepsilon$, vieme zapísať v tvare [u]v kde $u, v \in L$ pretože

$$S \Rightarrow SS \Rightarrow [S]S \Rightarrow^* [u]v$$

Keďže $S \Rightarrow^* u$ a $S \Rightarrow^* v$ ktoré patria do jazyka L, tak $S \Rightarrow^* [u]v$ tiež patrí do jazyka, keďže $u, v \in L$ a $[,] \in L$. Je zrejmé, že ak $S \Rightarrow^* w$ a $S \Rightarrow^* [u]v$ tak potom platí že $S \Rightarrow^* w = [u]v$ t.j. w = [u]v.

1.2 (b)

Báza

 $\varepsilon \in L$ pretože $S \Rightarrow^* \varepsilon$ keďže existuje pravidlo $S \to \varepsilon$

Indukčný predpoklad

 $S \Rightarrow^* w \text{ kde } w \in L \land w = [u]v \text{ čo platí pre } j < i$

Pre i + 1

 $S \Rightarrow^* w \text{ kde } w \in L \text{ pre ktor\'e plat\'i, \'ze } \#_{\mathsf{I}}(w) = i+1.$

Z definicie Dyckovho jazyka platí, že $\#_1(w) = i + 1$.

Potom vieme w zapísať ako w=[u]v podľa bodu (a)(kapitola 1.1) $\Longrightarrow \#_{\mathbb{I}}(u)+\#_{\mathbb{I}}(v)=i$.

Analogicky musí platiť $\#_{1}(u) + \#_{1}(v) = i$.

Pre i

 $\#_{[}(u)+\#_{[}(v)\stackrel{?}{=}i$ analogicky pre $\#_{]}(u)+\#_{]}(v)\stackrel{?}{=}i$

1.)
$$\#_{[}(u) = 0 \Rightarrow \#_{[}(v) = i \quad \lor \quad \#_{[}(v) = 0 \Rightarrow \#_{[}(u) = i$$

Ak je buď $\#_{[}(u)$ alebo buď $\#_{[}(v)$ rovné nule, tak ho vieme vygenerovať z pravidla S na základe indukčnej bázi.

Ak je buď $\#_{\mathbb{I}}(u)$ alebo buď $\#_{\mathbb{I}}(v)$ rovné i, tak ten prvok prepíšeme pomocou vzorca

$$w' = [u']v' \Rightarrow \#_{\lceil}(u') + \#_{\lceil}(v') = i - 1$$
, analogicky $\#_{\rceil}(u') + \#_{\rceil}(v') = i - 1$

Na základe indukčného predpokladu vieme z S vygenerovať u^{\prime} a $v^{\prime}.$

$$S \Rightarrow [S]S \Rightarrow^* [u']v' = w' \text{ kde } \#_{\mathbb{I}}(u') + \#_{\mathbb{I}}(v') = i, \text{ analogicky } \#_{\mathbb{I}}(u') + \#_{\mathbb{I}}(v') = i.$$

2.)
$$\#_{[}(u) \neq 0 \quad \land \quad \#_{[}(v) \neq 0 \quad \land \quad \#_{[}(u) + \#_{[}(v) \leq i$$

Keď $\#_{\mathbb{I}}(u)$ a $\#_{\mathbb{I}}(v)$ sú nenulové, tak musí platiť že

$$\#_{\mathbb{I}}(u) < i \wedge \#_{\mathbb{I}}(v) < i \text{ t.j. } \#_{\mathbb{I}}(u) = i - M \wedge \#_{\mathbb{I}}(v) = i - N \text{ kde } M, N \in \mathbb{N} \setminus \{0\}$$

$$S \Rightarrow [S]S \Rightarrow^* [u]v = w \text{ kde } \#_{\llbracket}(u) + \#_{\rrbracket}(v) = i+1, \text{ analogicky } \#_{\rrbracket}(u) + \#_{\rrbracket}(v) = i+1.$$

Veta 4.19 [1](str. č. 92): Nechť L je bezkontextový jazyk. Pak existuje konstanta k>0 taková že jeli $z\in L$ a $|z|\geq k$, pak lze z napsat ve tvaru:

$$z = uvwxy, vx \neq \varepsilon, |vwx| \leq k$$

a pro všechna $i \geq 0$ je $uv^i w x^i y \in L$.

Nech L_{primes} je bezkontextový jazyk.

Tak existuje celočíselná konštanta k>0 taká, že ak $z\in L$ a $|z|\geq k$, tak

$$z = uvwxy \land vx \neq \varepsilon \land |vwx| \le k \land uv^iwx^iy \in L \text{ kde } i \ge 0$$

Zvoľme prvočíslo rväčšie ako ako kt.j. $r \geq k$ kde rje prvočíslo.

Potom platí, že

$$a^r \in L \land |a^r| = r \text{ kde } r \ge p \implies a^r = uvwxy \land vx \ne \varepsilon \land |vwx| \le k \land uv^i wx^i y \in L \text{ pre } i \ge 0$$

Nech

$$\begin{aligned} v &= a^M \Rightarrow |v| = M \\ x &= a^N \Rightarrow |x| = N \\ w &= a^O \Rightarrow |w| = O \end{aligned}$$

Tak musí platiť že M+N>0 pretože $vx\neq\varepsilon$ a $k\geq M+N+O$ pretože $|vwx|\leq k$.

Zvoľme i = r + 1, potom

$$uv^{r+1}wx^{r+1}y \in L$$

$$|uv^{r+1}wx^{r+1}y|=|uvwxy|+|v^r|+|x^r|=r+r\cdot M+r\cdot N=r\cdot (1+M+N)$$
 čo nie je prvočíšlo

A z toho vyplýva spor pretože

$$uv^{r+1}wx^{r+1}y \notin L$$

Takže jazyk L_{primes} nie je bezkontextový jazyk.

3.1 Nerozhodnuteľnosť

Problém môžeme charakterizovať jazykom L pre ktorý platí

$$L = \{ \langle M_L \rangle \mid M_L \text{ je } TS : \exists w \in Affine : w \in L(M_L) \}$$

Problém členstva je charakterizovaný jazykom MP pre ktorý platí

$$MP = \{ \langle M_{MP} \rangle \# w \mid M_{MP} \text{ je } TS \text{ ktorý prijme } w \}$$

Zostavíme redukciu

$$\sigma: \{0,1,\#\}^* \longrightarrow \{0,1\}^*$$
 z jazyka MP na L

TS M_{σ} implementujúci σ priradí každému vstupu $x \in \{0, 1, \#\}^*$ reťazec $\langle M_x \rangle$, kde M_x je TS, ktorý na vstupu $y \in \{0, 1\}^*$ pracuje následovne:

- 1. M_x zmaže svoj vstup y.
- 2. Zapíše na pásku reťazec x.
- 3. M_x posúdi, zda $x = x_1 \# x_2$ pre x_1 , ktorý je kódom TS, a x_2 , ktorý je kódom jeho vstupu. Pokiaľ nie, odmietne.
- 4. Inak M_x simuluje činnosť TS s kódom x_1 na reťazci s kódom x_2 .
 - Ak x_1 prijme x_2 , tak M_x prijme.
 - Ak x_1 odmietne x_2 , tak M_x odmietne.
 - Inak cyklí.

 M_{σ} je možné implementovať úplným TS. Konečne tento TS vypíše kód M_x , ktorý sa skladá zo štyroch komponent, ktoré odpovedajú vyššie uvedeným krokom. Tri z nich sú pritom konštantné (nezávisia na x) – konkrétne (1) zmazanie pásky, (2) test na dobré sformovanie instancie MP a (3) simulácia daného TS na danom vstupe (pomocou úplného TS). TS implementujúci tieto kroky, ktoré evidentne existujú, môžeme pripraviť vopred a M_{σ} vypíše kód spolu s kódom na predanie riadenia. Zostáva vygenerovať kód TS, ktorý zapíše na pásku dané $x = a_1 a_2 ... a_n$. To je možné ale ľahko realizovať pomocou TS $Ra_1Ra_2R...Ra_n$.

Skúmajme možné jazyky $TS M_x$:

- $L(M_x) = \emptyset \iff (x \text{ nie je správne sformovaná instancia } MP)$ alebo $(x = x_1 \# x_2 \text{ a } TS \text{ s kódom } x_1 \text{ na reťazci s kódom } x_2 \text{ odmietne})$ alebo $(x = x_1 \# x_2 \text{ a } TS \text{ s kódom } x_1 \text{ na reťazci s kódom } x_2 \text{ neskončí t.j. cyklí)}$
- $L(M_x) = \Sigma^* \iff (x \text{ je správne sformovaná instancia } MP, \text{ kde } x = x_1 \# x_2 \text{ a } TS \text{ s kódom } x_1 \text{ na refazci s kódom } x_2 \text{ prijme})$

Ak $L(M_x) = \Sigma^*$ je zrejmé, že jazyk $L(M_x)$ iste obsahuje aspoň jeden reťazec ktorý patrí do jazyka Affine.

Teraz už ľahko ukážeme, že σ zachováva členstvo $\langle M_x \rangle \in L \Leftrightarrow L(M_x) = \Sigma^* \Leftrightarrow x = x_1 \# x_2$ kde x_1 je kód TS, ktorý zastaví na vstupe s kódem $x_2 \Leftrightarrow x \in MP$.

3.2 Čiastočná rozhodnuteľ nosť

...

...

5 Literatúra

[1] M. Češka, T. Vojnar, A. Smrčka, A. Rogalewicz: Teoretická informatika - Studijní text.
 2018-08-23, [Online; Accessed: 2018-10-15].
 URL: http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf