DEVOIR SURVEILLÉ N°3 LE CORRIGÉ

Nom: Prénom: Classe:

EXERCICE N°1

Fonctions affines, équation, inéquations : les bases

5 points

1) Résoudre, dans \mathbb{R} les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle :

1.a)
$$4x+10 < 6x-3$$

1.b)
$$\frac{x+6}{-7} \ge 2x-3$$

$$4x+10 < 6x-3$$

$$\Leftrightarrow 4x+10-(6x-3) < 0$$

$$\Leftrightarrow 4x+10-6x+3 < 0$$

$$\Leftrightarrow -2x+13 < 0$$

$$\Leftrightarrow -2x < -13$$

$$\Leftrightarrow x > \frac{-13}{-2} = 6.5$$
L'ensemble des solutions de cet

L'ensemble des solutions de cette inéquation est donc : | 6,5 ; +∞ [

$$\frac{x+6}{-7} \ge 2x-3$$

$$\Leftrightarrow x+6 \le -7(2x-3)$$

$$\Leftrightarrow x+6 \le -14x+21$$

$$\Leftrightarrow x+6-(-14x+21) \le 0$$

$$\Leftrightarrow x+6+14x-21 \le 0$$

$$\Leftrightarrow 15x-15 \le 0$$

$$\Leftrightarrow 15x \le 15$$

$$\Leftrightarrow x \le \frac{15}{15} = 1$$
L'ensemble des solutions

L'ensemble des solutions de cette inéquation est donc : $]-\infty;1]$

2) Dans un repère orthonormé, on donne les points A(-3; 2) et B(4; 0). Déterminer l'équation l'équation réduite de la droite (AB).

Les points A et B n'ayant pas la même abscisse, on sait que que la droite (AB) admet une équation réduite de la forme :

$$y = mx + p$$

avec
$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{0 - 2}{4 - (-3)} = \frac{-2}{7}$$

et comme $A \in (AB)$

$$2 = -\frac{2}{7} \times (-3) + p \iff 2 = \frac{6}{7} + p \iff p = 2 - \frac{6}{7} = \frac{14 - 6}{7} = \frac{8}{7}$$

On en déduit que l'équation réduite de (AB) est : $y = -\frac{2}{7}x + \frac{8}{7}$

- 3) On donne la fonction f, définie sur \mathbb{R} , par f(x) = -3x + 6
- **3.a)** Donner son tableau de variations

3.b) Déterminer son tableau de signes.

Posons x_0 la racine de la fonction affine f , on sait que $x_0 = \frac{-6}{-3} = 2$

De plus, le coefficient directeur de f est strictement négatif (-3<0). On en déduit le tableau de signes suivant :

x	$-\infty$		2		$+\infty$
f(x)		+	•	_	

On se place dans un repère orthonormé (O; I; J).

On donne les points A, B et C de coordonnées respectives (2;1),(3;4) et (-2;-3).

1) Calculer les coordonnées de \overrightarrow{AB} et \overrightarrow{AC}

$$\overline{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} \text{ soit } \begin{pmatrix} 3-2 \\ 4-1 \end{pmatrix} \text{ on encore } \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$\overline{AC}\begin{pmatrix} x_C - x_A \\ y_C - y_A \end{pmatrix} \text{ soit } \begin{pmatrix} -2-2 \\ -3-1 \end{pmatrix} \text{ on encore } \begin{bmatrix} -4 \\ -4 \end{pmatrix}$$

2) Les vecteurs \overline{AB} et \overline{AC} sont-ils colinéaires ? Justifier.

$$det(\overrightarrow{AB}; \overrightarrow{AC}) = 1 \times (-4) - 3 \times (-4) = 8 \neq 0$$

On en déduit que \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires.

3) On pose le point $D(x_D; y_D)$ tel que $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$.

3.a) Déterminer les coordonnées de D

$$\overline{AB} + \overline{AC}$$
 a pour coordonnées $\begin{pmatrix} 1 + (-4) \\ 3 + (-4) \end{pmatrix}$ soit $\begin{pmatrix} -3 \\ -1 \end{pmatrix}$

$$\overline{AD}\begin{pmatrix} x_D - x_A \\ y_D - y_A \end{pmatrix}$$
 soit $\begin{pmatrix} x_D - 2 \\ y_D - 1 \end{pmatrix}$

On en déduit que :

$$x_D - 2 = -3 \Leftrightarrow x_D = -1$$

$$y_D - 1 = -1 \Leftrightarrow y_D = 0$$

Donc
$$D(-1;0)$$

3.b) Donner la nature du quadrilatère ABDC.

ABDC est un parallélogramme

Le point D est défini par la règle du parallélogramme (<u>propriété n°3</u> si vous avez oublié)

3.c) En déduire, les coordonnées du vecteur \overline{DC} (sans calcul...)

Puisque ABDC est un parallélogramme équivaut à $\overrightarrow{AB} = \overrightarrow{CD}$

et que
$$\overrightarrow{AB} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

On peut affirmer que

$$\overrightarrow{DC}\begin{pmatrix} -1\\ -3 \end{pmatrix}$$

Un musée propose deux tarifs.

- tarif A: chaque entrée coûte 6€.
- tarif B: on paye un abonnement à l'année de 16 € et chaque entrée coûte alors 4€.

La variable x désigne le nombre de fois où un visiteur a fréquenté le musée.

1) Donner l'expression de la fonction f qui modélise le budget annuel pour le musée avec le tarif A, et celle de g pour le tarif B.

On peut écrire :

$$f(x) = 6x \quad \text{et} \quad g(x) = 16 + 4x$$

2) Représenter ces deux fonctions dans le repère en annexe au dos de cette feuille.

Voir l'annexe

3) Résoudre graphiquement f(x) > g(x);

D'après le graphique, pour x > 8, si $M(x; y_M) \in C_f$ et $N(x; y_N) \in C_g$ alors $y_M > y_N$. On en déduit que l'ensemble des solutions est : $3 + \infty$

4) Résoudre par le calcul f(x) > g(x).

$$f(x) > g(x)$$

$$\Leftrightarrow 6x > 16+4x$$

$$\Leftrightarrow 6x-(16+4x) > 0$$

$$\Leftrightarrow 6x-16-4x > 0$$

$$\Leftrightarrow 2x-16 > 0$$

 $\Leftrightarrow 2x > 16$

 $\Leftrightarrow x > 8$

L'ensemble des solutions de cette inéquation est donc : 3 ; +∞ [

5) Alfred va au musée une fois tous les deux mois. Quel tarif doit-il choisir?

Alfred va au musée 6 fois par an et $6 \notin]8$; $+\infty$ [donc $f(6) \leqslant g(6)$.

On en déduit qu'Alfred doit choisir le **tarif A**

On se place dans un repère orthonormé $(O; \vec{i}; \vec{j})$ et on donne le vecteur $\vec{u} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

On considère les points A, B et C vérifiant les les relations suivantes :

 $2\overline{OA}$ a pour coordonnées $\begin{pmatrix} 4 \\ 6 \end{pmatrix}$; $3\overline{AB}$ a pour coordonnées $\begin{pmatrix} 9 \\ 3 \end{pmatrix}$ et $2\overline{BC} - \overline{OB} = \vec{u}$

Déterminer les coordonnées des points A, B et C

• $2\overline{OA}$ a pour coordonnées $\begin{pmatrix} 4 \\ 6 \end{pmatrix}$ donc \overline{OA} a pour coordonnées $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$

De plus $\overrightarrow{OA} \begin{pmatrix} x_A - x_O \\ y_A - y_O \end{pmatrix}$ soit $\overrightarrow{OA} \begin{pmatrix} x_A - 0 \\ y_A - 0 \end{pmatrix}$ ou encore $\overrightarrow{OA} \begin{pmatrix} x_A \\ y_A \end{pmatrix}$

Par identification A(2;3)

■ $3\overline{AB}$ a pour coordonnées $\begin{pmatrix} 9 \\ 3 \end{pmatrix}$ donc \overline{AB} a pour coordonnées $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$

De plus $\overline{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ soit $\overline{AB}\begin{pmatrix} x_B - 2 \\ y_B - 3 \end{pmatrix}$

On en déduit que :
$$x_B - 2 = 3 \Leftrightarrow x_B = 5$$

$$y_B - 3 = 1 \Leftrightarrow y_B = 4$$

Donc $B(5; 4)$

• $2\overline{BC} - \overline{OB}$ a pour coordonnées $\begin{pmatrix} 2(x_C - x_B) - (x_B - x_O) \\ 2(y_C - y_B) - (y_B - y_O) \end{pmatrix}$ soit $\begin{pmatrix} 2(x_C - 5) - 5 \\ 2(y_C - 4) - 4 \end{pmatrix}$

ou encore $\begin{pmatrix} 2x_C - 15 \\ 2y_C - 12 \end{pmatrix}$.

De plus
$$2\overline{BC} - \overline{OB} = \vec{u}$$
 et $\vec{u} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

On en déduit que :

$$2x_C - 15 = 3 \Leftrightarrow 2x_C = 18 \Leftrightarrow x_C = 9$$

$$2y_C - 12 = 3 \Leftrightarrow 2y_C = 15 \Leftrightarrow y_C = 7,5$$

Donc C(9; 7,5)

ANNEXE

Repère correspondant à la question 2) de l'exercice n°3

Écrire ci-dessous la méthode (les calculs suffisent) qui vous a permis de tracer les représentations graphiques C_f et C_g

La représentation graphique d'une fonction affine est une droite et pour représenter une droite il suffit d'en connaître deux points.

De plus, un point appartient à une droite si et seulement si ses coordonnées coordonnées vérifient l'équation de cette droite.

Ceci nous conduit aux tableaux suivants:

x	0	5	
f(x)	0	30	
point	O(0;0)	A(5; 30)	

x	1	6
g(x)	20	40
point	B(1; 20)	C(6; 40)

On a placé les points et tracé les droites.