

Counterfactual explanations through Support Vector Data Description

Methodology and examples

Methodology

• Suppose we have a dataset $\mathcal{X} \times \mathcal{Y} \subset R^N \times \{-1, +1\}, N \geq 2$ consisting of controllable features \boldsymbol{u} and non-controllable features \boldsymbol{z} .

An observation $x \in \mathcal{X}$ can be described as:

$$\mathbf{x} = (u^1, u^2, \dots, u^n, z^1, z^2, \dots, z^m) \in \mathbb{R}^{n+m=N}$$

 Considering a binary classification problem, we perform a TC-SVDD classification obtaining two regions:

$$S_1 \doteq \{ \mathbf{x} \in R^N : \|\mathbf{x} - \mathbf{a}_1\|^2 \le R_1^2, \|\mathbf{x} - \mathbf{a}_2\|^2 \ge R_2^2 \}$$

$$S_2 \doteq \{ \mathbf{x} \in \mathbb{R}^N : \|\mathbf{x} - \mathbf{a}_2\|^2 \le \mathbb{R}_2^2, \|\mathbf{x} - \mathbf{a}_1\|^2 \ge \mathbb{R}_1^2 \}$$

Methodology

□ Counterfactual search:

Given $\mathbf{x}=(\mathbf{u},\mathbf{z})\in S_1$ we want to determine the minimum variation of controllable variables only $\Delta\mathbf{u}^*$, so that $\mathbf{x}^*=(\mathbf{u}+\Delta\mathbf{u}^*,\mathbf{z})$ and $\mathbf{x}^*\in S_2$

 $\Delta \mathbf{u}^*$ can be found by solving the following minimization problem:

$$\min_{\Delta \mathbf{u} \in \mathbb{R}^n} d(\mathbf{x}, (\mathbf{u} + \Delta \mathbf{u}, \mathbf{z}))$$
subject to $\|(\mathbf{u} + \Delta \mathbf{u}, \mathbf{z}) - \mathbf{a}_2\|^2 \le R_2^2$

$$\|(\mathbf{u} + \Delta \mathbf{u}, \mathbf{z}) - \mathbf{a}_1\|^2 \ge R_1^2$$

Numerical solution

Algorithm 1 Counterfactual SVDD

Dataset $\mathcal{X} \times \mathcal{Y} \subset \mathbb{R}^N \times \{-1, +1\}$ is divided in training set $\mathcal{X}_{tr} \times \mathcal{Y}_{tr}$ and validation set $\mathcal{X}_{vl} \times \mathcal{Y}_{vl}$.

A TC-SVDD [12] is performed on $\mathcal{X}_{tr} \times \mathcal{Y}_{tr}$ and validated on $\mathcal{X}_{vl} \times \mathcal{Y}_{vl}$ in order to derive S_1 and S_2 .

 $N_C > 0$ is fixed.

- 1. C = []
- 2. Sample quasi-randomly a new dataset G
- $3. G_1 \cup G_2 \doteq G \cap (S_1 \triangle S_2)$
- 4. **for** $i = 1 : N_C$
- 4.1 $\mathbf{x}_i = (\mathbf{u}_i, \mathbf{z}_i) \in S_1$
- $4.2 d_i = d\left(\mathbf{x}_i, G_{2|_{\mathbf{z}=\mathbf{z}_i}}\right)$
- 4.3 $\mathbf{x}'_i = \min(d_i)$
- 4.4 **if** $(x_i \in S_1 \& x_i' \in S_2)$
- $4.4.1 \qquad \mathcal{C} = \mathcal{C} \cup \{\mathbf{x}_i'\}$
- 4.5 **end**
- 5. end
- 6. return C

Line	Symbol	Description
1.	\mathcal{C}	Set of counterfactuals
3.		Symmetric difference,
		$G_1 = G \cap (S_1 \backslash S_2),$
		$G_2 = G \cup (S_2 \backslash S_1)$
4.1	$ x_i $	Factual point
4.2	d	Distance function
4.2	$G_{2_{\mathbf{z}=\mathbf{z}_i}}$	G_2 points with component z
		equal to \mathbf{z}_i
4.4.1	$oldsymbol{x}_i'$	Counterfactual point

Set of counterfactuals points belonging to

 S_2

Methodology

- Computational cost
 - SVDD:

$$O(SVDD) = O(\max(n, d)\min(n, d)^2)$$

– Counterfactual search:

$$O(SC) = O(\max(q, N_C \max(D, g)))$$

Counterfactual distance (CD)

$$CD = d(\boldsymbol{a}_1, \boldsymbol{x}') - R_1$$

FIGURE 2. 2D-linear example of CD: this metric evaluates the goodness of the counterfactual, the closer q is to zero the more the counterfactual is optimal in terms of minimum distance. In the figure, $q_2 > q_1$ and the blue counterfactual x' is worst than the green (optimal) one x^* .

Example 1: truck platooning

OBJECTIVE: avoid collision in a platoon by acting on the mutual distance and speed between each pair of vehicles in the initial condition (t=0)

(a) CD of extracted counterfactuals. The red bin refers to counterfactuals that are incorrect, i.e. q<0. Black bins refer to counterfactuals that overestimate corrections (q>0.1).

(b) Behaviour of simulations with counterfactuals extracted via **Algorithm 1**. The platoon collides when the minimum distance in the simulation is less than or equal to 2 (red dots). Black dots refer to counterfactuals that overestimate the correction (minimum distance greater than 10).

Example 2: disease prevention

OBJECTIVE: find minimum yet significant changes in biomarker values that allow to reduce the risk of developing diabetes <u>on an individual basis</u>

Input features

- Age
- Gender
- Hypertension
- sBP
- BMI
- LDL
- HDL
- TG
- FBS

Output

- highT2DM
- lowT2DM

Application-grounded evaluation

Explanations +

Counterfactual

FNR control

highT2DM → lowT2DM

- General questions on Al
- T2DM Risk evaluation
- Counterfactuals evaluation

Example 2: TC-SVDD with FNR reduction

Example 2: Expert assessment

Example of question:

A *female* patient with the following biomarkers is at high risk of developing T2DM (1 year estimation):

Gender	Age	FBS [mmol/L]	$\frac{\mathbf{BMI}}{[kg/m^2]}$	sBP [mmHg]	LDL [mmol/L]	HDL [mmol/L]	TG [mmol/L]	Total Chol [mmol/L]	HTN
Female	63	6.2	28.7	133	3.1	1.1	1.5	4.9	Yes

The algorithm proposes to lower the risk of developing T2DM by suggesting a strategy that targets the following values:

	BMI sBP		LDL HDL		TG	Total Chol	HTN
[mmol/L]	$[kg/m^2]$	[mmHg]	[mmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	HIN
4.5	25	114	3.0	0.8	0.4	3.8	

How much do you agree with the algorithm proposal?

moderately agree (5), strongly agree (2)

- → Appropriate targets
- → Proposed treatment: lifestyle changes including moderate healthy diet and regular exercise

Example 3: crowding prediction (subway station)

OBJECTIVE: find minimum yet significant changes in modifiable parameters to prevent possible crowding situations in a near future (e.g., 15 minutes time window)

Example 3: crowding prediction (subway station)

EXPERT VALIDATION: Assess the feasibility of recommendations generated by an interpretable artificial intelligence model based on simulated data.

Completion time: 15–20 minutes

Base structure:

- Collection of generic information, such as degree of AI knowledge, trust in AI, domain expertise ...
- Specific evaluation of a set of suggested counterfactuals-based recommendations for the purpose of crowding prevention (5-items Likert scale)
- General evaluation of the method in terms of realism and applicability of the proposed recommendations
- Request any additional variables to be considered in the simulation

Example 3: crowding prediction (subway station)

Scenario F is characterized by a number of people on the quay in the Brignole direction exceeding 30. The AI algorithm suggests to avoid exceeding the threshold by changing the variables as proposed in *C* (all parameters are free to change), *C VT* (train-related parameters are constrained) or *C VP* (people-related parameters are constrained).

How much do you agree with the suggestions proposed by the algorithm?

V1: 'Incoming users T-30Min'

V2: 'Incoming users T-15Min'

V3: 'Trains arrival frequency T-30Min'

V4: 'Trains arrival frequency T-15Min'

V5: 'Train occupancy T-15Min'

V6: 'Users waiting for the train T-15Min'

V7: 'Maximum number of People (stairs) T-15Min'

