БУЛЕВЫ ФУНКЦИИ

Алгебра логики

Джордж Буль (1815-1864)

— английский математик и логик. Профессор математики Королевского колледжа Корка (ныне Университетский колледж Корк) с 1849 года. Один из основателей математической логики.

```
Булева (двоичная) переменная: x \in \{0,1\} x \in \{\textit{ложь}, \textit{истина}\} x \in \{\textit{false}, \textit{true}\}
```

```
Булева (двоичная) переменная: x \in \{0,1\} x \in \{\textit{ложь}, \textit{истина}\} x \in \{\textit{false}, \textit{true}\}
```

Булева (переключательная) функция:
$$y = f\left(x_{1}, x_{2}, \dots, x_{n}\right)$$

$$y \in \left\{0,1\right\}$$

```
Булева (двоичная) переменная: x \in \{0,1\} x \in \{\textit{ложь}, \textit{истина}\} x \in \{\textit{false}, \textit{true}\}
```

Булева (переключательная) функция: $y = f\left(x_{1}, x_{2}, \dots, x_{n}\right)$ $y \in \left\{0,1\right\}$

Набор аргументов функции: $(x_1, x_2, ..., x_n)$

```
Булева (двоичная) переменная: x \in \{0,1\} x \in \{\textit{ложь}, \textit{истина}\} x \in \{\textit{false}, \textit{true}\}
```

Булева (переключательная) функция: $y = f\left(x_{1}, x_{2}, \dots, x_{n}\right)$ $y \in \left\{0,1\right\}$

Набор аргументов функции: $(x_1, x_2, ..., x_n)$

Количество наборов длины $n: 2^n$

Длина набора
$$n=1$$
 $y=f(x)$

Длина набора
$$n=1$$
 $y=f(x)$

Количество наборов длины 1: $2^1 = 2$

Длина набора
$$n=1$$
 $y=f(x)$ Количество наборов длины 1: $2^1=2$ $y=f(0)$ $y=f(1)$

Длина набора
$$n=1$$
 $y=f(x)$

$$y = f(1)$$

Аргумент	Набор	Обозначение функции	Название функции

Длина набора
$$n=1$$
 $y=f(x)$

Количество наборов длины 1:
$$2^1 = 2$$
 $y = f(0)$

$$y = f(1)$$

Аргумент	Набор	Обозначение функции	Название функции
x			

Длина набора
$$n = 1$$
 $y = f(x)$

$$y = f(1)$$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		

Длина набора
$$n=1$$
 $y=f(x)$

$$y = f(1)$$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		
Функция	Значение функции		

Длина набора
$$n=1$$
 $y=f(x)$

$$y = f(1)$$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		
Функция	Значение функции		
$f_0(x)$			

Длина набора
$$n=1$$
 $y=f(x)$

$$y = f(1)$$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		
Функция	Значение функции		
$f_0(x)$			

Длина набора
$$n=1$$
 $y=f(x)$

Количество наборов длины 1:
$$2^1 = 2$$
 $y = f(0)$ $y = f(1)$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		
Функция	Значение функции		
$f_0(x)$	0 0	«O»	

Длина набора
$$n=1$$
 $y=f(x)$

Количество наборов длины 1:
$$2^1 = 2$$
 $y = f(0)$ $y = f(1)$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		
Функция	Значение функции		

Длина набора
$$n = 1$$
 $y = f(x)$

Количество наборов длины 1:
$$2^1 = 2$$
 $y = f(0)$ $y = f(1)$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		
Функция	Значение функции		
$f_0(x)$	0 0	«O»	Константа «0»
$f_1(x)$	0 1	x	Переменная х

Длина набора
$$n=1$$
 $y=f(x)$

Количество наборов длины 1:
$$2^1 = 2$$
 $y = f(0)$ $y = f(1)$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		
Функция	Значение функции		
$f_0(x)$	0 0	«O»	Константа «0»
$f_1(x)$	0 1	x	Переменная х
$f_2(x)$	1 0	\overline{x}	Инверсия х

Длина набора
$$n = 1$$
 $y = f(x)$

Количество наборов длины 1:
$$2^1 = 2$$
 $y = f(0)$ $y = f(1)$

Аргумент	Набор	Обозначение функции	Название функции
x	0 1		
Функция	Значение функции		
$f_0(x)$	0 0	«O»	Константа «0»
$f_1(x)$	0 1	x	Переменная х
$f_2(x)$	1 0	\overline{x}	Инверсия х
$f_3(x)$	1 1	«1»	Константа «1»

Конъюнкция

$$x_1 \wedge x_2 \quad x_1 \& x_2 \quad x_1 \cdot x_2 \quad x_1 x_2$$

Конъюнкция

$$x_1 \wedge x_2 \quad x_1 \& x_2 \quad x_1 \cdot x_2 \quad x_1 x_2$$

x_1	x_2	$x_1 & x_2$
0	0	
0	1	
1	0	
1	1	

Конъюнкция

$$x_1 \wedge x_2 \quad x_1 \& x_2 \quad x_1 \cdot x_2 \quad x_1 x_2$$

x_1	x_2	$x_1 & x_2$
0	0	
0	1	
1	0	
1	1	1

Конъюнкция

$$x_1 \wedge x_2 \quad x_1 \& x_2 \quad x_1 \cdot x_2 \quad x_1 x_2$$

x_1	x_2	$x_1 & x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Конъюнкция

Логическое «И» Логическое умножение

$$x_1 \wedge x_2 \quad x_1 \& x_2 \quad x_1 \cdot x_2 \quad x_1 x_2$$

x_1	x_2	$x_1 & x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Дизъюнкция

$$x_1 \vee x_2 \quad x_1 \parallel x_2$$

Конъюнкция

Логическое «И» Логическое умножение

$$x_1 \wedge x_2 \quad x_1 \& x_2 \quad x_1 \cdot x_2 \quad x_1 x_2$$

x_1	x_2	x ₁ & x ₂
0	0	0
0	1	0
1	0	0
1	1	1

Дизъюнкция

$$x_1 \vee x_2 \quad x_1 \parallel x_2$$

x_1	x_2	$x_1 \vee x_2$
0	0	
0	1	
1	0	
1	1	

Конъюнкция

Логическое «И» Логическое умножение

$$x_1 \wedge x_2 \quad x_1 \& x_2 \quad x_1 \cdot x_2 \quad x_1 x_2$$

x_1	x_2	$x_1 & x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Дизъюнкция

$$x_1 \vee x_2 \quad x_1 \parallel x_2$$

x_1	x_2	$x_1 \vee x_2$
0	0	0
0	1	
1	0	
1	1	

Конъюнкция

Логическое «И» Логическое умножение

$$x_1 \wedge x_2 \quad x_1 \& x_2 \quad x_1 \cdot x_2 \quad x_1 x_2$$

x_1	x_2	$x_1 & x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Дизъюнкция

$$x_1 \vee x_2 \quad x_1 \parallel x_2$$

x_1	x_2	$x_1 \vee x_2$
0	0	0
0	1	1
1	0	1
1	1	1

Количество наборов длины 2: $2^2 = 4$

Длина набора
$$n=2$$
 $y=f\left(x_{1},x_{2}\right)$ Количество наборов длины 2: $2^{2}=4$ $y=f\left(0,0\right)$ $y=f\left(0,1\right)$

Длина набора
$$n=2$$
 $y=f\left(x_{1},x_{2}\right)$ Количество наборов длины 2 : $2^{2}=4$ $y=f\left(0,0\right)$ $y=f\left(0,1\right)$ $y=f\left(1,0\right)$

Длина набора
$$n=2$$
 $y=f\left(x_1,x_2\right)$ Количество наборов длины 2: $2^2=4$ $y=f\left(0,0\right)$ $y=f\left(0,1\right)$ $y=f\left(1,0\right)$ $y=f\left(1,1\right)$

$$y = f(0,1)$$

$$y = f(1,0)$$

$$y = f(1,1)$$

Общее число разных булевых функций от n аргументов: $m = 2^{2^n}$

$$m = 2^2$$

Длина набора
$$n = 2$$
 $y = f(x_1, x_2)$

$$y = f(0,1)$$

$$y = f(1,0)$$

$$y = f(1,1)$$

Общее число разных булевых функций от n аргументов: $m = 2^{2^n}$

$$m = 2^{2^{n}}$$

Общее число разных булевых функций от двух аргументов: $m(2) = 2^{\frac{2}{2}} = 16$

Длина набора
$$n = 2$$
 $y = f(x_1, x_2)$

$$y = f(0,1)$$

$$y = f(1,0)$$

$$y = f(1,1)$$

Общее число разных булевых функций от n аргументов: $m = 2^{2^n}$

$$m = 2^{2^{n}}$$

Общее число разных булевых функций от двух аргументов: $m(2) = 2^{\frac{2}{2}} = 16$

Арг.	Набор			
x_1	0 0 1 1			
x_2	0 1 0 1			
Ф-я	Значение ф-ии	Обозначение	Класс. базис	Название функции
\overline{f}_0	0 0 0 0	«O»	$x \& \overline{x}$	Константа «0»
f_1	0 0 0 1	$x_1 & x_2$		Конъюнкция
f_2	0 0 1 0	$x_1 \Delta x_2$	$x_1 \& \overline{x}_2$	Запрет по x_2
f_3	0 0 1 1	x_1		Переменная x_1
f_4	0 1 0 0	$x_2 \Delta x_1$	$\overline{x}_1 \& x_2$	Запрет по x_1
f_5	0 1 0 1	x_2		Переменная x_2
f_6	0 1 1 0	$x_1 \oplus x_2$	$x_1 \overline{x}_2 \vee \overline{x}_1 x_2$	Неравнозначность (сложение по mod 2)
f_7	0 1 1 1	$x_1 \vee x_2$		Дизъюнкция

Арг.	Набор			
x_1	0 0 1 1			
x_2	0 1 0 1			
Ф-я	Значение ф-ии	Обозначение	Класс. базис	Название функции
f_8	1 0 0 0	$x_1 \uparrow x_2$	$\overline{x_1 \vee x_2}$	Стрелка Пирса (ИЛИ-НЕ)
f_9	1 0 0 1	$x_1 \equiv x_2$	$x_1 x_2 \vee \overline{x_1} \overline{x_2}$	Равнозначность (эквивалентность)
f_{10}	1 0 1 0	\overline{x}_2		Инверсия x_2
f_{11}	1 0 1 1	$x_2 \rightarrow x_1$	$x_1 \vee \overline{x}_2$	Импликация от x_2 к x_1
f_{12}	1 1 0 0	\overline{x}_1		Инверсия x_1
f_{13}	1 1 0 1	$x_1 \rightarrow x_2$	$\overline{x}_1 \vee x_2$	Импликация от x_1 к x_2
f_{14}	1 1 1 0	$x_1 \mid x_2$	$\overline{x_1 \& x_2}$	Штрих Шеффера (И-НЕ)
f_{15}	1 1 1 1	«1»	$x \vee \overline{x}$	Константа «1»

$$f_1(x_1, x_2) = f_2(\bar{x}_1, \bar{x}_2)$$

«0» и «1»

$$x_1$$
 и x_1 На любом наборе $x_1 = \overline{x}_1$

$$x_2$$
 и x_2 На любом наборе $x_2 = \overline{x}_2$

$$\overline{x_1}$$
 и $\overline{x_1}$ На любом наборе $\overline{x_1} = \overline{x_1}$

$$\overline{x}_2$$
 и \overline{x}_2 На любом наборе $\overline{x}_2 = \overline{x}_2$

& и
$$\vee$$
 $x_1 \& x_2 = \overline{x_1} \vee \overline{x_2}$ (закон де Моргана)

$$x_1 \Delta x_2 \quad \text{if} \quad x_2 \rightarrow x_1$$

Запрет по x_2 : $x_1 \Delta x_2 = x_1 \& \overline{x}_2$

Импликация от x_2 к x_1 : $x_2 \rightarrow x_1 = \overline{x}_2 \lor x_1$

$$\overline{\overline{\overline{x}_2} \vee \overline{x_1}} = \overline{x_2} \vee \overline{x_1} = \overline{x_2} \& x_1 = x_1 \Delta x_2$$

Доказывается аналогично

⊕ и ≡

Неравнозначность: $x_1 \overline{x}_2 \& \overline{x}_1 x_2$

Равнозначность: $x_1 x_2 \& \bar{x}_1 \bar{x}_2$

$$\overline{\overline{x_1}} \overline{\overline{x_2}} & \& \overline{\overline{x_1}} \overline{\overline{x_2}} = \overline{\overline{x_1}} \overline{\overline{x_2}} \lor \overline{\overline{x_1}} \overline{\overline{x_2}} = (x_1 \lor x_2) \& (\overline{x_1} \lor \overline{x_2}) = x_1 \overline{x_1} \lor x_1 \overline{x_2} \lor x_2 \overline{x_1} \lor x_2 \overline{x_2} = x_1 \overline{x_2} \lor \overline{x_1} x_2 = x_1 \oplus x_2$$

и 🕇 🔚

Штрих Шеффера: $x_1 | x_2 = x_1 x_2$

Стрелка Пирса: $x_1 \uparrow x_2 = \overline{x_1 \lor x_2}$

$$\overline{\overline{\overline{x_1}} \vee \overline{x_2}} = \overline{x_1 \& x_2} = x_1 \mid x_2$$

Замкнутые классы булевых функций

Сохранение нуля
$$f(0,0,...,0) = 0$$

Сохранение единицы
$$f(1,1,...,1) = 1$$

Самодвойственность
$$f(x_1, x_2, \dots, x_n) = \overline{f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})}$$

Монотонность

Линейность
$$f(x_1, x_2, ..., x_n) = C_0 \oplus C_1 x_1 \oplus C_2 x_2 \oplus ... \oplus C_n x_n$$

Замкнутые классы булевых функций

Арг.	Набор						
x_1	0 0 1 1						
x_2	0 1 0 1						
Ф-я	Значение ф-ии	Обозначение	Сохр. 0	Сохр. 1	Самодв.	Монотон.	Линейн.
${f}_0$	0 0 0 0	«O»	Х			Х	X
f_1	0 0 0 1	$x_1 & x_2$	X	X		X	
f_2	0 0 1 0	$x_1 \Delta x_2$	X				
f_3	0 0 1 1	x_1	X	X	X	X	X
f_4	0 1 0 0	$x_2 \Delta x_1$	X				
f_5	0 1 0 1	x_2	X	X	X	X	X
f_6	0 1 1 0	$x_1 \oplus x_2$	X				X
f_7	0 1 1 1	$x_1 \vee x_2$	x	x		x	

Замкнутые классы булевых функций

Арг.	Набор						
x_1	0 0 1 1						
x_2	0 1 0 1						
Ф-я	Значение ф-ии	Обозначение	Сохр. 0	Сохр. 1	Самодв.	Монотон.	Линейн.
f_8	1 0 0 0	$x_1 \uparrow x_2$					
f_9	1 0 0 1	$x_1 \equiv x_2$		X			X
f_{10}	1 0 1 0	\overline{x}_2			X		X
f_{11}	1 0 1 1	$x_2 \rightarrow x_1$		X			
f_{12}	1 1 0 0	\overline{x}_1			X		X
f_{13}	1 1 0 1	$x_1 \rightarrow x_2$		x			
f_{14}	1 1 1 0	$x_1 \mid x_2$					
f_{15}	1 1 1 1	«1»		x		x	x