Assignment-1 Chapter-2 Complex Number

AI24BTECH11029- Rudrax Garwa

Section-B JEE MAIN / AIE	EE
--------------------------	----

14) If $z^2+z+1=0$, where z is an imaginary number, then the value of

$$\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \left(z^3 + \frac{1}{z^3}\right)^2 + \dots + \left(z^6 + \frac{1}{z^6}\right)^2 = 0$$
 If $\omega \neq 1$ is the cube root of unity, and $(1 + \omega)^7 = A + B\omega$. Then (A, B) equals: [2011]

is

[2006]

- a) 18 b) 54
- c) 6
- d) 12
- 15) If $|z+4| \le 3$, then the maximum value of |z+1|[2007]
 - a) 6
- b) 0
- c) 4
- d) 10
- 16) The conjugate of a complex is $\frac{1}{i-1}$ then that complex number is
 - a) $\frac{-1}{i-1}$ b) $\frac{1}{i+1}$ c) $\frac{-1}{i+1}$

17) Let R be the real line. Consider the following subsets of the real plane:

$$S = \{(x, y) : y = x + 1 \text{ and } 0 < x < 2\}$$
 (2)

$$T = \{(x, y) : x - yisaninteger\}, \qquad (3)$$

Which one of the following is true? [2008]

- a) Neither S nor T is an equivalence relation on R
- b) Both S and T are equivalence relation on R
- c) S is an equivalence relation on R but T is not
- 18) The number of complex numbers z such that |z - 1| = |z + 1| = |z - i| equals [2010]
 - a) 1
- b) 2
- $c) \infty$
- d) 0

19) Let α, β be real and z be a complex number. If $z^2 + z\alpha + \beta = 0$ has two distinct roots on the line Rez = 1, then it is necessary that: [2011] a) $\beta \in (-1, 0)$

- b) $|\beta| = 1$
- c) $\beta \in (1, \infty)$
- d) $\beta \in (0, 1)$

a) (1, 1)

- b) (1,0)
- c) (-1,1)
- d) (0, 1)
- 21) If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies:
 - a) either on the real axis or on a circle not passing through the origin
 - b) on a circle with centre at the origin
 - c) either on the real axis or on a circle not passing through the origin
 - d) on imaginary axis
- 22) If z is a complex number of unit modulus and arguement θ , then the $arg\left(\frac{1+z}{1+z}\right)$ equals: [JEE M 20131

 - a) $-\theta$ b) $\frac{\pi}{2} \theta$ c) θ d) $\pi \theta$
- 23) If z is a complex number such that $|z| \ge 2$, then the minimum value of $|z + \frac{1}{2}|$: [JEE M 2014]

 - a) is strictly greater than $\frac{5}{2}$ b) is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$
 - c) is equal to $\frac{5}{2}$
 - d) lies in the interval (1, 2)
- d) T is an equivalence relation on R but S is not 24) A complex number z is said to be unimodular if |z| = 1. Suppose $z_1 and z_2$ are complex numbers such that $\frac{z_1-2z_2}{2-z_1\overline{z_2}}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a: [JEE M 2016]
 - a) circle of radius 2
 - b) circle of radius $\sqrt{2}$
 - c) straight line parallel to x-axis

- d) straight line parallel to y-axis
- 25) A value of θ for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ is purely imaginary is: M2016]
 - a) $sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$ b) $sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

c) $\frac{\pi}{3}$

- d) $\frac{\pi}{6}$
- 26) Let $\{A = \theta \in \left(\frac{\pi}{2}, \pi\right) : \frac{3+2i\sin\theta}{1-2i\sin\theta} \text{ is purely } \}$ imaginary. Then the sum of element in A is: [JEE M 2019-9 Jan (M)]
- a) $\frac{5\pi}{6}$ b) π c) $\frac{3\pi}{4}$ d) $\frac{2\pi}{3}$
- 27) let α and β be two roots of the equation x^2 + 2x + 2 = 0, then $\alpha^{15} + \beta^{15}$ is equal to : [JEE M 2019-Jan (M)]
 - a) -256
- b) 512
 - c) -512 d) 256
- 28) All the points in the set ($S = \left\{\frac{\alpha i}{\alpha + i} : \alpha \in R\right\}$ [JEE M 2019-9 April (M)]
 - a) straight line whose slope is 1
 - b) circle whose radius is 1
 - c) circle whose radius is $\sqrt{2}$
 - d) straight line whose slope is -1