EFT/RLine Procedures

HOWTO - USE the Emissions Factor Toolkit to get emission rates for a line source model.

Step 1. Emissions Factor Toolkit

Set up the links with traffic count data and %HDV etc. Make sure the checkbox labelled 'Air Quality Modelling (g/km/s) is checked.

4	A	В	С	D	E	F	G	
	Select Pollutants		Select Outputs		Additional Outputs		Advanced Options	Click
	▼ NOx		✓ Air Quality Mod	▼ Air Quality Modelling (g/km/s) ▼ Breakdown by Vehic			☐ Euro Compositions	6
1	▼ PM10		☐ Emissions Rates (g/km)		Source Apportionment		Alternative Technologies	
١.	№ PM2.5		☐ Annual Link Emissions ☐ PM by Source			Output % Contributions from Euro Classes		
3	Please Select from the Follo	owing Options:	Export Outputs					
4	Area	England (not London)						
5	Year	2008	— Save Output	to New Workbo	ook			
6	Traffic Format	Basic Split	File Name:					
			The Hames					
7	Select 'Basic Split' or 'Detai	iled Option 1 to 3' above						
8								
9	SourceID	Road Type	Traffic Flow	%HDV	Speed(kph)	No of Hours	Link Length (km)	
10	1		10000	15		1	1	L
11	2		20000	15		1	1	L
12	3		30000	15		1	1	L
13	4		40000	15		1	1	L
14	5		50000	15		1	. 1	L
15	6		30000	20		1	. 1	L
16	7		30000	25		1		L
17 18	8		30000 30000	30		1		L
				- 51	5 48	1		L
-	_				. 40	-		
19	10	Urban (not London)	30000	40		1		L
19 20	10 11	Urban (not London) Urban (not London)	30000 30000	40 15	5 24	1	1	L
19 20 21	10 11 12	Urban (not London) Urban (not London) Urban (not London)	30000 30000 30000	40 19	5 24 5 39	1	1	L L
19 20 21 22	10 11 12 13	Urban (not London)	30000 30000 30000 30000	40 15 15	5 24 5 39 5 36	1 1 1	1	
19 20 21	10 11 12	Urban (not London)	30000 30000 30000	40 19	5 24 5 39 5 36 5 42	1	1 1 1	

In the example above, I've set up 15 different simulations (just as an example). I'm doing a sensitivity to vehicle numbers in the first 5 simulations - the traffic flow numbers are changing in each run 1-5; a sensitivity to %HDV in the next 5 simulations (see that the traffic flow numbers stay the same but the %HDV changes in rows 15-19); and the last 5 simulations are checking how sensitivity to vehicle speed influences emissions - the speed is changing in rows 20-24).

Step 2 Run EFT and check Output tab

_1	А	В	С	D	E
1	Source_Name	Pollutant_Name	All Vehicle (g/km/s)	All LDV (g/km/s)	All HDV (g/km/s)
2	1	NOx	3.520867	1.157118	2.363750
3	1	PM25	0.127739	0.062482	0.065258
4	1	PM10	0.186874	0.096118	0.090756
5	1	CO2	668.839600	387.526489	281.313110
6	2	NOx	7.041735	2.314235	4.727499
7	2	PM25	0.255479	0.124964	0.130515
8	2	PM10	0.373748	0.192237	0.181512
9	2	CO2	1337.679199	775.052979	562.626221
10	3	NOx	10.562602	3.471353	7.091249
11	3	PM25	0.383218	0.187446	0.195773
12	3	PM10	0.560623	0.288355	0.272268
13	3	CO2	2006.518799	1162.579468	843.939331
14	4	NOx	14.083469	4.628470	9.454999

15 [4	PM25	0.510958	0.249928	0.261030
16	4	PM10	0.747497	0.384473	0.363024
17	4	CO2	2675.358398	1550,105957	1125.252441
18	5	NOx	17.604338	5.785588	11.818749
19	5	PM25	0.638697	0.312410	0.326288
20	5	PM10	0.934371	0.480591	0.453779
	5	CO2	3344.197998	1937.632446	1406.565552
22	6	NOx	12.722155	3.267155	9,454999
23	6	PM25	0.437450	0.176419	0.261030
24	6	PM10	0.634416	0.271393	0.363024
25	6	CO2	2219.444824	1094, 192505	1125.252441
26	7	NOx	14.881707	3.062958	11.818749
27	7	PM25	0.491681	0.165393	0.326288
28	7	PM10	0.708210	0.254431	0.453779
	7	CO2	2432.371094	1025.805420	1406.565552
	8	NOx	17.041260	2.858761	14.182499
	8	PM25	0.545912	0.154367	0.391545
	8	PM10	0.782004	0.237469	0.544535
	8	CO2	2645.297119	957.418396	1687.878662
34	9	NOx	19.200813	2.654564	16.546249
35	9	PM25	0.600144	0.143341	0.456803
36	9	PM10	0.855798	0.220507	0.635291
37	9	CO2	2858.223145	889.031372	1969, 191895
38	10	NOx	21.360365	2.450367	18.909998
39	10	PM25	0.654375	0.132315	0.522061
40	10	PM10	0.929592	0.203545	0.726047
41	10	CO2	3071.149414	820.644348	2250.504883
42	11	NOx	14.572535	4.120646	10.451889
43	11	PM25	0.480943	0.214371	0.266572
44	11	PM10	0.663491	0.316697	0.346793
45	11	CO2	2719.649902	1500.588867	1219.061157
46	12	NOx	11.485501	3.612630	7.872871
47	12	PM25	0.406010	0.193934	0.212076
48	12	PM10	0.584614	0.295185	0.289429
49	12	CO2	2165.835205	1230.836792	934.998474
50	13	NOx	11.907165	3.684859	8.222305
51	13	PM25	0.416518	0.197059	0.219459
52	13	PM10	0.595675	0.298474	0.297201
53	13	CO2	2241.386963	1264.703491	976.683411
54	14	NOx	11.127127	3.553431	7.573696
55	_	PM25	0.397076	0.191290	0.205785
56	14	PM10	0.575209	0.292402	0.282807
57	14	CO2	2102.414307	1203.167603	899.246643
	15	NOx	10.049713	3.430291	6.619422
	15	PM25	0.368650	0.182300	0.186350
	15	PM10	0.545287	0.282938	0.262349
61	15	CO2	1931.687256	1131.832764	799.854553
62			_		

The Output tab shows the simulation for the above 15 experiments and gives the 'all vehicle' emissions in units of g/km/s which we need for running RLine.

Take a record of each of the experiments for your chosen pollutants (probably NOX and

PM10) - this is what you enter into RLine as emission rates.

Step 3 Run RLine

FOR EACH SIMULATION RUN (eg this would be done 15 times if you were following my example above)

3.1 First, edit the source file (called 'Source_Example.txt') to reflect the new emission rates in g/km/s from the EFT output -enter the number for any simulation for whatever pollutant in the column labelled 'Emis' - enter the same number in all the rows.

	ource_cxamp	ne - Notep	au								
File	Edit Forn	nat View	Help								
Sou	rce input	file									
Gro	up X_b	Y_b	z_b	x_e	Y_e	z_e	dCL	sigmaz0	#lanes	Emis H	lw1 dv
II	roup 1 (0	1) com		unnina	north s	outh:					
G1	-8.5 -	-500.0	1.0	-8.5	500.0	1.0	0	2.0	1.0	0.008	0
G1	-5.0 -	-500.0	1.0	-5.0	500.0	1.0	0	2.0	1.0	0.008	0
G1	5.0 -	-500.0	1.0	5.0	500.0	1.0	ō	2.0	1.0	0.008	Ō
G1		-500.0	1.0	8.5	500.0	1.0	ŏ	2.0	1.0	0.008	ŏ
! G	roup 2 (G	i2) sour	rces r	unning	north-s	outh:					
G2	-500.0	-8.5	1.0	500. Õ	-8.5	1.0	0	2.0	1.0	0.008	0
G2	-500.0	-5.0	1.0	500.0	-5.0	1.0	ō	2.0	1.0	0.008	ō
G2	-500.0	5.0	1.0	500.0	5.0	1.0	ŏ	2.0	1.0	0.008	ŏ
G2	-500.0	8.5	1.0	500.0	8.5	1.0	ŏ	2.0	1.0	0.008	ŏ
					3.3			2.0	2.0		

RLIne REQUIRES three other files to run - a source file (the file you just edited above), a meteorology file and a list of receptors. You can keep the last two files just as I gave you them - they don't need editing for this exercise but they DO have to be in the same folder as the Line executable program.

On a Windows PC, the program to double-click is: RLinev1_2_g95.exe

3.2 The Output_Example.csv file needs to have the first11 lines deleted for the python code to work

	A	l	T : 7	×	f _x RLI	NEv1_2				
	4	Α	В	С	D	E	F	G	Н	I
133	1	RLINEv1_2								
	2	SOURCE FI	LE: Source	_Example.	txt (8 Sour	ces)				
	3	RECEPTOR	FILE: Rece	ptor_Exam	ple.txt (19	6 Recepto	rs)			
19	4	SURFACE F	FILE: Met_E	xample.sf	С					
19	5	Error Limit	t: 1.000E-0	3						
	6	Displacem	ent Height	t: 5.000*	z0					
	7	Concentrations from: Plume and Meander								
A	8	Roadway	configurati	ons used:	N					
	9	Roadway #	#Lanes Opt	ion : N						
7	10	Integrator	option: N	umerical						
	11									
	12	Year	Julian_Da	Hour	X-Coordir	Y-Coordir	Z-Coordir	C_G1	C_G2	
	13	12	264	1	10	10	1.5	1.36E+04	5.42E+03	
14	14	12	264	1	10	20	1.5	1.36E+04	3.38E+03	
14	15	12	264	1	10	30	1.5	1.36E+04	2.50E+03	
4	16	12	264	1	10	40	1.5	1.36E+04	1.96E+03	
38	17	12	264	1	10	50	1.5	1.35E+04	1.60E+03	
	18	12	264	1	10	75	1.5	1.35E+04	1.06E+03	
	19	12	264	1	10	100	1.5	1.35E+04	7.67E+02	
	20	12	264	1	20	10	1.5	5.00E+03	5.42E+03	
7/	21	12	264	1	20	20	1.5	4.99E+03	3.38E+03	
7	22	12	264	1	20	30	1.5	4.98E+03	2.50E+03	
	23	12	264	1	20	40	1.5	4.97E+03	1.96E+03	
	24	12	264	1	20	50	1.5	4.96E+03	1.60E+03	
1	25	12	264	1	20	75	1.5	4.93E+03	1.06E+03	
	26	12	264	1	20	100	1.5	4.90E+03	7.66E+02	
50	27	12	264	1	30	10	1.5	3.03E+03	5.42E+03	
icat	28	12	264	1	30	20	1.5	3.02E+03	3.38E+03	
= ,	29	12	264	1	30	30	1.5	3.01E+03	2.50E+03	
ath	30	12	264	1	30	40	1.5	3.01E+03	1.96E+03	

4. Run python drawLine.py in a terminal window to get the graphical output. Just note the concentration at any one of the receptors for each of the four main stability categories.