Theoretic Fundamentals of Machine and Deep Learning Certified Robustness I: Randomized Smoothing

Aleksandr Petiushko

Winter-Spring, 2023

A. Petiushko

fied Robustness Winter-Spring, 2023 1 / 31

Content

- Certified robustness definitions
- 2 Certified robustness via Lipschitzness
- 3 Randomized Smoothing and its variants

Robustness in Machine Learning

Robustness [informally]

Ability for a machine learning algorithm a to provide similar outputs on the similar data (i.e. having the same class or other invariant features)

Two types of **Robustness** in ML:

Generalization

Dataset issue: algorithm needs to be robust if the dataset to evaluate it differs (sometimes significantly: we can treat it is a distribution shift) from the training dataset

Adversarial Robustness

Noise issue: algorithm needs to provide the similar output w.r.t. both clean and noisy images (where the model of noise is the topic to consider itself)

For now we'll consider the **Adversarial Robustness**.

40 > 40 > 42 > 42 > 2 9

• Perturbations (also called 'adversarial attacks'): how to generate noise to fool the neural net

- Perturbations (also called 'adversarial attacks'): how to generate noise to fool the neural net
- Defense: how to diminish the influence of adversarial perturbations

- Perturbations (also called 'adversarial attacks'): how to generate noise to fool the neural net
- Defense: how to diminish the influence of adversarial perturbations
- Certification (or verification): how to provide theoretical guarantees on the noise level not fooling the neural net

- Perturbations (also called 'adversarial attacks'): how to generate noise to fool the neural net
- Defense: how to diminish the influence of adversarial perturbations
- Certification (or verification): how to provide theoretical guarantees on the noise level not fooling the neural net

Certified Robustness: for classification

- Let us NN function f(x) is the classifier to K classes: $f: \mathbb{R}^d \to Y, Y = \{1, \dots, K\}$
- Usually we have NN $h(x): \mathbb{R}^d \to \mathbb{R}^K$, and $f(x) = \arg\max_{i \in Y} h(x)_i$

Deterministic approach

Need to find the class of input perturbation S(x, f) so as the classifier's output doesn't not change, or more formally:

$$f(x + \delta) = f(x) \quad \forall \delta \in S(x, f)$$

Probabilistic approach

Need to find the class of input perturbation S(x, f, P) w.r.t. robustness probability P s.t.:

$$Prob_{\delta \in S(x,f,P)}(f(x+\delta) = f(x)) = P$$

Remark: Probabilistic approach coincides with Deterministic one when P = 1.

√ Q (~ 5 / 31

Certified Robustness: for regression

• Let us NN function f(x) NN f(x) is the regressor: $f: \mathbb{R}^d \to \mathbb{R}$

Deterministic approach

Need to find the class of input perturbation $S(x, f, f_{low}, f_{up})$ w.r.t. the upper and lower bounds on the output perturbation f_{low}, f_{up} s.t.:

$$f(x) - f_{low} \le f(x + \delta) \le f(x) + f_{up} \quad \forall \delta \in S(x, f, f_{low}, f_{up})$$

Probabilistic approach

Need to find the class of input perturbation $S(x, f, f_{low}, f_{up}, P)$ w.r.t. robustness probability P and the upper / lower bounds on the output perturbation f_{low}, f_{up} s.t.:

$$Prob_{\delta \in S(x,f,f_{low},f_{up},P)}(f(x) - f_{low} \le f(x+\delta) \le f(x) + f_{up}) = P$$

6 / 31

A. Petiushko Certified Robustness Winter-Spring, 2023

Certified Robustness: inverse tasks for classification

- Suppose that we know the input perturbation class S
- For classification we have only probabilistic formulation

Classification

Need to measure the probability P of retaining the classifier's output under some class of input perturbations S:

$$Prob_{\delta \in S}(f(x+\delta) = f(x)) = P$$

7 / 31

A. Petiushko

Certified Robustness: inverse tasks for regression

- ullet Suppose that we know the input perturbation class S
- For regression we have both deterministic and probabilistic formulations

Regression (deterministic formulation)

Need to find the upper and lower bounds $f_{low}(f, x, S)$, $f_{up}(f, x, S)$ of the output perturbation under some class of input perturbations S:

$$f(x) - f_{low}(f, x, S) \le f(x + \delta) \le f(x) + f_{up}(f, x, S)$$

Regression (probabilistic formulation)

Need to measure the probability P of keeping the classifier's output inside the lower / upper bounds f_{low} , f_{up} under some class of input perturbations S:

$$Prob_{\delta \in S}(f(x) - f_{low} \le f(x + \delta) \le f(x) + f_{up}) = P$$

Certified Robustness via Lipschitzness (1)

- NN classifier to K classes is f(x): $f: \mathbb{R}^d \to Y, Y = \{1, \dots, K\}$
- NN itself is $h(x): \mathbb{R}^d \to \mathbb{R}^K$, and $f(x) = \arg \max_{i \in Y} h(x)_i$
- Consider binary case (other cases are treated similarly) K=2 and probabilistic (SoftMax) output: $h(x)_1 + h(x)_2 = 1$, $h(x)_i \ge 0 \quad \forall i$

Definition of Lipschitz function

Lipschitz function $g: g: \mathbb{R}^d \to \mathbb{R}$ with a Lipschitz constant L so as $\forall x_1, x_2$ it holds $|g(x_1) - g(x_2)| \le L ||x_1 - x_2||$

Definition of Local Lipschitz function

Local Lipschitz function $g: g: \mathbb{R}^d \to \mathbb{R}$ with a Lipschitz constant $L(x_0)$ so as $\forall x \in S(x_0)$ it holds $|g(x_0) - g(x)| \le L(x_0) ||x_0 - x||$

4 D > 4 A P > 4 B > 5 9

A. Petiushko Certified Robustness Winter-Spring, 2023 9 / 31

Certified Robustness via Lipschitzness (2)

- Let $j = \arg\max_{i \in V} h(x_0)_i$, and $h(x_0)_i h(x_0)_{i \neq i} \geq \epsilon$
- Let $h(x_0)_i$ local Lipschitz function with a Lipschitz constant $L(x_0)$
- Then if $S(x_0) = \{x : ||x_0 x|| \le \frac{\epsilon}{2L(x_0)}\}$ we have $|h(x_0)_j h(x)_j| \le L(x_0) \frac{\epsilon}{2L(x_0)} = \frac{\epsilon}{2}$
- Therefore $j = \arg\max_{i \in V} h(x)_i$ and $f(x) = f(x_0) = j$ in the vicinity $S(x_0) = \{x : ||x_0 - x|| \le \frac{\epsilon}{2L(x_0)}\}$
- ⇒ Certified Robustness!

Certified Robustness via Lipschitzness (3)

But:

Problems

- The certified radius can be much bigger than the local Lipschitz vicinity $S(x_0)$
- It is hard to provide the adequate (not tending to ∞) Lipschitz constant for any industrial Deep Neural Network

Adversarial Robustness: overview

Adversarial Robustness: empirical vs certified

Empirical robustness

Bound

The upper bound on the true robust accuracy

Cons

Only valid until the new – and stronger – attack appears

Certified robustness

Bound

The lower bound on the true robust accuracy

Pros

It is what has been theoretically proven, and no one attack can beat it

Empirical Robustness: Adversarial Training

- Let us have the training dataset $D = \{(x_i, y_i)_{i=1}^M\}$
- Parameters of the neural net f are denoted as θ
- Loss function is $L(f_{\theta}(x), y) \Rightarrow$ the training process is

$$\min_{\theta} \mathbf{E}_{(x,y)\in D} L(f_{\theta}(x), y)$$

Adversarial Training (AT)

Idea: train on the **hardest examples** using some class of perturbations S(x) around training examples \Rightarrow AT is

$$\min_{\theta} \mathbf{E}_{(x,y) \in D} [\max_{x+\delta \in S(x)} L(f_{\theta}(x+\delta), y)]$$

AΡ

A. Petiushko

Adversarial Training: pros and cons

AT pros

Very simple methodological principle of training

AT cons

- Quite *inefficient training* (longer than usual because need to find hard perturbation for **every training example** for **every iteration**)
- The accuracy on clean samples is lower than for usual training

The problem with l_p -balls

- Usually the robustness is studied under the l_p -balls perturbations of input $(S = \{\delta: \|\delta\|_p \le \epsilon\})$
- The problem is while the *input* l_p -ball is *convex*, for the output it could be of *any form* and $convexity^1$. That's why it is hard to prove anything.

ロト (個) (注) (注) (注)

A. Petiushko Certified Robustness Winter-Spring, 2023 16 / 31

¹Image source: https://arxiv.org/pdf/1711.00851.pdf

Convex relaxation

- Main idea: let's make our regions convex by relaxation!
- E.g., we need to *convexify* the non-linearity ReLU
- Then it can be proved² that if some relaxed objective $J_{\epsilon}(x, q_{\theta}) \geq 0$ for the dual problem, then there is no an adversarial example \tilde{x} such that $\|\tilde{x} - x\|_{\infty} \leq \epsilon$ and $f_{\theta}(\tilde{x}) \neq y_{at}$
 - $ightharpoonup q_{\theta}$ is the neural net constructed from initial f_{θ} by relaxing ReLU
- This is the example of using MILP and, unfortunately, cannot be generalized to **ImageNet**

Figure 2. Illustration of the convex ReLU relaxation over the bounded set $[\ell, u]$.

adversarial polytope

AΡ

²Wong, Eric, and Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope." 2017 40) 48) 43) 43)

Adversarial Examples: boundary curvature

- Very **curved boundary** leads to adversarial examples looking very similar to ones near the classification boundary
- So let's diminish this curvature spike influence!
- Different approaches exist e.g. by Lecuyer et al.³ and Li et al.⁴, but the most famous one is by Cohen et al.⁵

A. Petiushko Certified Robustness Winter-Spring, 2023 18 / 31

³Lecuyer, Mathias, et al. "Certified robustness to adversarial examples with differential privacy." 2018

⁴Li, Bai, et al. "Certified adversarial robustness with additive noise." 2018

⁵Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." 2019

Randomized Smoothing

Idea of Randomized Smoothing (RS)

- Let's use the Test Time Augmentation (TTA) in order to mitigate the boundary effect
- The new classifier q(x) is defined as:

$$g(x) = \operatorname*{arg\,max}_{c \in Y} P(f(x + \epsilon) = c), \epsilon \sim N(0, \sigma^2)$$

RS main result

- If the initial classifier f(x) is robust under Gaussian noise.
- Then the new classifier q(x) is robust under ANY noise

Randomized Smoothing: Theory overview

Theorem: Certification Radius

Suppose $c_A \in Y$ and $p_A, \overline{p_B} \in [0, 1]$ satisfy

$$\mathbb{P}(f(x+\epsilon)=c_A) \geq \overline{p_A} \geq \overline{p_B} \geq \max_{c_B \neq c_A} \mathbb{P}(f(x+\epsilon)=c_B)$$
. Then $g(x+\delta)=c_A \quad \forall \|\delta\|_2 < R$, where

$$R = \frac{\sigma}{2} (\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}))$$

Tightness of Radius R

Assume $p_A + \overline{p_B} \leq 1$. Then for any perturbation δ , $\|\delta\|_2 > R$ there exist a base classifier f s.t. $\mathbb{P}(f(\overline{x+\epsilon})=c_A) \geq p_A \geq \overline{p_B} \geq \max_{c_B \neq c_A} \mathbb{P}(f(x+\overline{\epsilon})=c_B)$ so as $g(x+\delta) \neq c_A$

Remark. Φ^{-1} is the inverse of the standard Gaussian CDF: $\Phi(x) = \frac{1}{2\pi} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$.

Randomized Smoothing: Theory insights

Why p_A and $\overline{p_B}$ instead of p_A and p_B ?

Because in most cases we cannot get exact probabilities for $P(f(x+\epsilon)=c)$, $\epsilon \sim N(0,\sigma^2)$, and we need to estimate.

How to get the R?

Use so called Neyman-Pearson Lemma⁶.

A. Petiushko Certified Robustness Winter-Spring, 2023

⁶Neyman, Jerzy, and Egon Sharpe Pearson. "On the problem of the most efficient tests of statistical hypotheses." 1933

Randomized Smoothing: Interesting cases

Let us consider the linear binary classifier $f(x) = \text{sign}(w^T x + b)$

It is a smoothed version of itself

If g is a smoothed version of f with any σ , then f(x) = g(x).

Certified radius just a distance to the boundary

If g is a smoothed version of f with any σ , then using the previous Theorem for certification radius R with $\underline{p_A} = p_A$ and $\underline{p_B} = p_B$ will yield $R = \frac{|w^T x + b|}{\|w\|}$.

But sometimes the certification radius can be really big (for non-linear binary classifier):

Certified radius can be of any value

For any $\tau > 0$, there exists a base classifier f and an input x_0 for which the corresponding g is robust around x_0 at radius ∞ , whereas the previous Theorem for certification radius R only certifies a radius $R = \tau$ around x_0 .

Randomized Smoothing: Training

- To certify the classifiers, authors trained the base models with Gaussian noise from $N(0, \sigma^2 I)$ — actually, to make the classifier f(x) to be more robust to Gaussian noise
- So no any other training-specific tricks aside from simple augmentation

Randomized Smoothing: Inference

- Trained models are compared using "approximate certified accuracy":
 - \blacktriangleright \forall test radius $\delta = r$ the fraction of examples is returned so as the procedure CERTIFY:
 - * Provides the answer
 - * Returns the correct class
 - ★ Returns a radius R so as r < R

Procedure CERTIFY

- Can return ABSTAIN if confidence bounds are too loose (done by **Clopper-Pearson** confidence intervals for the Binomial distribution⁷)
- If not ABSTAIN, then return the majority class \hat{c}_A and certification radius $R = \sigma \Phi^{-1}(p_A)$

Remark1. Quantile of Gaussian distribution corresponding to the error rate is denoted as α (larger α , tighter the **c**onfidence interval (CI), but less reliable).

Remark2. Class estimation and CI of g are done by Monte Carlo sampling n times.

⁷Clopper, Charles J., and Egon S. Pearson. "The use of confidence or fiducial limits illustrated in the case of the binomial." 1934

A. Petiushko Certified Robustness Winter-Spring, 2023 24 / 31

AΡ

Randomized Smoothing: Results on ImageNet

Table 1. Approximate certified accuracy on ImageNet. Each row shows a radius r, the best hyperparameter σ for that radius, the approximate certified accuracy at radius r of the corresponding smoothed classifier, and the standard accuracy of the corresponding smoothed classifier. To give a sense of scale, a perturbation with ℓ_2 radius 1.0 could change one pixel by 255, ten pixels by 80, 100 pixels by 25, or 1000 pixels by 8. Random guessing on ImageNet would attain 0.1% accuracy.

ℓ_2 radius	BEST σ	CERT. ACC (%)	STD. ACC(%)
0.5	0.25	49	67
1.0	0.50	37	57
2.0	0.50	19	57
3.0	1.00	12	44

Remark1. Waterfall just because the trained model is robust usually under some $r \leq R$.

Remark2. "Certified accuracy" = approximate certified accuracy.

Remark3. The difference between "clean" and "certified" accuracy is not order of magnitude (it works! and can be useful).

Randomized Smoothing: Influence of training noise parameter σ

• Main outcomes:

- ▶ Best results are when the inference σ_I and training σ_T parameters of noise σ are exactly the same: $\sigma_T = \sigma_I = \sigma$
- ▶ If not the same, better results are when the training noise is more severe than the inference one: $\sigma_T > \sigma_I$

Remark. Here the inference noise level is $\sigma_I = 0.5$.

(ロ) (倒) (重) (重) 重 のの

Randomized Smoothing: Influence of Inference parameters n and α

• Main outcomes:

- \triangleright Larger number of Monte Carlo samples n, the larger the certified radius R (significantly; but veeery slow)
- Larger confidence in results (1α) , the smaller the certified radius R (but not much)

Randomized Smoothing: Robustness radius in practice

- Actually, with NN classifier f(x) we can have larger real robustness radius than R from Theorem
- Authors just tried to find the real adversaries under r > R and measure the success of the attack (cf. the **inverse formulation** of Certified Robustness)
- (The lower the success rate the more robust the model):
 - $r = 1.5 \cdot R \Rightarrow 17\%$ of success rate
 - $r = 2 \cdot R$; $\Rightarrow 53\%$ of success rate

Improvement: Certified Robustness for Top-k Predictions⁸

- Sometimes we need to concentrate not on the biggest in probability prediction ("top-1") but on the whole set of "top-k" predictions with largest probabilities
- \bullet It turned out that the very similar results can be transferred to the top-k setting
 - ightharpoonup Certification guarantees that the correct answer still be presented among top-k answers of the smoothed classifier
 - ▶ Results: Certified top-1 / top-3 / top-5 accuracy = 46.6% / 57.8% / 62.8% when perturbation radius $\|\delta\|_2 = 0.5$

⁸Jia, Jinyuan, et al. "Certified robustness for top-k predictions against adversarial perturbations via randomized smoothing," 2019

A. Petiushko Certified Robustness Winter-Spring, 2023 29 / 31

AΡ

Certification: intermediate takeaway

- Randomized Smoothing = Smoothing distribution + norm l_p of perturbation
- Randomized Smoothing requires multiple inferences :(
- Certified robustness is better than empirical adversarial training in certification, but worse than clean performance (and too much time to train)

Thank you!

