

SECURITY Verschlüsselung

May 24, 2024

Marc Stöttinger

We need to think about encryption not as this sort of arcane, black art. It's a basic protection.

Edward Snowden

WIEDERHOLUNG: VERTRAULICHKEIT DURCH VERSCHLÜSSELUNG

→ Bedrohung:

Eve liest die Nachricht mit

→ Ziel:

Personen ohne den entsprechenden Schlüssel können keine Informationen aus verschlüsselter Nachricht gewinnen

ÜBERSICHT VON VERSCHLÜSSELUNGEN

STROMCHIFFREN

PERFEKTE GEHEIMHALTUNG - ONE-TIME PAD

 \rightarrow Substitution wobei P und K gleich lang sind

Plaintext	Α	\bigcup	F	S	Τ	Α	Ν	D
Schlüssel	J	Α	Τ	\bigcup	С	0	В	
Ciphertext	J	\bigcup	Υ	Μ	\vee	0	O	L

→ Vorschrift für Binärdaten:

$$C_i = P_i \oplus K_i \pmod{n}$$

- ightarrow Die einzelnen Schlüsselbits K_i können durch einen Key-Generator erzeugt werden.
- $\rightarrow K_i$ wird dann auch als Schlüsselstrom (Key stream) bezeichnet.

STROMCHIFFRE DESIGN

ightarrow Eine einfache Linear Feedback Shift Register (LFSR) Schaltung wird zum Erzeugen von K_i genutzt.

clk	FF_2	FF_1	$FF_0 = s_i$
0	1	0	0
1	0	1	0
2	1	0	1
	1	1	0
4	1	1	1
5	0	1	1
6	0	0	1
7	1	0	0
8	0	1	0

$$\Rightarrow s_{i+3} \equiv (s_{i+1} \oplus s_i) \mod 2$$

PRIMITIVE POLYNOM BASIERTE LFSRS

- → Generalisierte Form eines LFSR: $s_{i+m} \equiv \sum_{j=0}^{m-1} p_j \cdot s_{i+j} \mod 2;$ $s_i, p_i \in 0, 1; i = 0, 1, 2, ...$
- → Primitive Polynome, ein spezieller Typ von nicht reduzierbaren Polynomen, haben die Form

$$P(x) = x^{m} + p_{m-1}x^{m-1} + \dots + p_{1}x + p_{0}$$

→ Nur Primitive Polynome erzeugen eine maximale Seguenz von $2^m - 1$.

Maximale Sequenzlänge

Die maximale Sequenzlänge, die von einem LFSR vom Grad m erzeugt werden kann, ist $2^m - 1$.

KEY-GENERATOR FÜR STROMCHIFFREN

- → Die Schlüsselgeneratoren von modernen Stromchiffren haben meist einen großen internen Zustand.
- → Zur Konstruktion der zufälligen Schlüsselsstromsequenz werden meist mehrere LFSR Konstruktionen verwendet .
- → Der geheime Schlüssel wird zur Initialisierung des internen Zustands benutzt.

Chiffre	Erstellungsdatum	Schlüssellänge	Interner State	Komplexität bester Angriff
RC4	1987	8–2048 Bits	2064 Bits	2^{13} oder 2^{33}
A5/2	1989	54 Bits	64 Bits	komplett gebrochen
MICKEY	2004	80 Blts	200 Bits	$2^{32.5}$
Trivium	2004	80 Bits	288 Bits	2^{135}
Salsa20	2004	256 Bits	512 Bits	2 ²⁵¹ (für 8 Runden)

BLOCKCHIFFREN

ADVANCE ENCRYPTION STANDARD (AES)

- → In 2000 wurde Rjindael zum Sieger einer Ausschreibung gekürt und als AES standardisiert
- → AES ist eine **Blockchiffre**, die auf 128-bit Blöcken arbeitet
 - → **Blockchiffre**: Der Plaintext wird in Blöcke eingeteilt und blockweise verarbeitet
 - → **Stromchiffre**: Zeichen werden einzeln verarbeitet (z.B., monoalphabetische Substitution, One-Time Pad)
- ightarrow Die Blöcke werden in n Runden durch ein Substitutions-Permutations-Netzwerk (SPN) verschlüsselt
- \rightarrow Es existieren drei AES Varianten mit Schlüssellänge K und Rundenanzahl n:
 - \rightarrow AES-128: K = 128-bit Schlüssel mit n = 10 Runden
 - → AES-192: K = 192-bit Schlüssel mit n = 12 Runden
 - \rightarrow AES-256: K = 256-bit Schlüssel mit n = 14 Runden

ADVANCE ENCRYPTION STANDARD (AES)

MODERNE METRIKEN FÜR KRYPTOGRAPHISCHE ALGORITHMEN

- → Shannonsche Theorie
 - → Wichtige **Konstruktionsprinzipien** für die kryptographische Sicherheit sind **Konfusion** und **Diffusion**

→ Konfusion:

- → Die Konfusion einer Blockchiffre ist dann groß, wenn die statistische Verteilung der Chiffretexte in Abhängigkeit von der Verteilung der Klartexte für den Angreifer zu groß ist (keine Ausnutzbarkeit).
- → Meistens wird die S-Box als nicht-lineares Element in der Blockchiffre für die Konfusion genutzt.

→ Diffusion:

- → Die Diffusion einer Blockchiffre ist dann groß, wenn jedes einzelne Bit des Klartextes (und des Schlüssels) möglichst viele Bits des Chiffretextes beeinflusst (typisch etwa 50 %).
- → Permutationen oder Schiebeoperationen werden in Blockchiffren genutzt, um die Diffusion zu realisieren.

SUBSTITUTIONS-PERMUTATIONS-NETZWERK-CHIFFRE (SPN)

- ightarrow Der Plaintext $\mathcal P$ wird in mehrere gleiche große Blöcken aufgeteilt $P_1,P_2,\dots,P_n\in\mathcal P$
- ightarrow Die Verschlüsselungsvorschrift besteht aus einer mehrfach wiederholten Rundenfunktion $f_R(\cdot)$ mit individuellem Rundenschlüssel K_i
- → Die Rundenfunktion besteht aus einer nichtlinearen Sbox und einer Permutation.
- ightarrow Für die Entschlüsselung wird die Umkehrfunktion $f_R^{-1}(\cdot)$ zu $f_R(\cdot)$ benötigt.

Quelle:

FEISTEL-CHIFFRE (LUBY-RACKOFF BLOCKCHIFFREN)

- → Basiert auch auf der Mehrfachausführung von Rundenfunktionen mit Rundenschlüsseln.
- → Plaintext wird in zwei Blöcke (L und R) aufgeteilt, die nach jeder Runde vertauscht werden.
- ightarrow Verschlüsselung und Entschlüsselung kann mit den gleichen Rundenfunktionen $f_R(\cdot)$ ausgeführt werden
- ightarrow Das Design von $f_R(\cdot)$ ist schwieriger als bei SPN-Chiffren

ADD-ROTATE-XOR-CHIFFRE

- → ARX-Chiffren benutzen als Basisoperationen nur Addition, Rotation und XOR
- → Dadurch sind diese sehr kompakt implementierbar und effizient für Standardprozessoren
- → Nicht bester Trade-off bei der Umsetzung in Hardware
- → Die Resistenz gegen kryptanalytische Angriffe noch nicht umfänglich, da es recht junge Verfahren sind

ELECTRONIC CODE BOOK (ECB)

- ightarrow AES verarbeitet die 128-bit Blöcke $P_1, P_2, P_3 \in \mathcal{P}$ des Plaintextes unabhänghig von einander.
- → Auf die gleiche Eingabe erfolgt eine gleiche Ausgabe, ähnlich wie monoalphabetischen Chiffren.
- → Spezielle Betriebsmodi sind notwendig!

BETRIEBSMODUS VON BLOCKCHIFFREN

Blockchiffren können in verschiedenen Modi betrieben werden

Name	Bezeichnung	Einsatzgebiet
ECB	Electronic Code Book	Einsatz in Ausnahmefällen oder wenn nur ein Block verschlüsselt werden muss
CBC	Cipher Block Chaining	Verschlüsselung bei Datenübertragung
CFB	Cipher Feedback Mode	Verschlüsselung entspricht einer selbstsynchronisierenden Stromchiffre
OFB	Ouput Feedback Mode	Verschlüsselung mit Fehlerresistenz
CTR	Counter Mode	Verschlüsselung mit Fehlerresistenz; macht aus Blockchiffre eine Strom- chiffre
XTS	Ciphertext Stealing	Festplattenverschlüsselung; Besonders gesichert gegen Angriffe auf Implementierung
GMAC/C- MAC	Galois/Cipher Message Authentication Mode	Authentifikation von Daten (Abschnitt "Message Authentication Codes")
GCM	Galois-Counter Mode	Verschlüsselung und Authentifikation von Daten (Abschnitt "Message Authentication Codes")

CIPHER BLOCK CHAINING (CBC)

- → Ciphertext des vorherigen Blocks fließt in nächsten Block mit ein (via XOR)
- ightarrow Zufälliger Initialisierungsvector IV, um gleiche Plaintexte $P_1=P_2$ zu unterschiedlichen Ciphertexten $C_1 \neq C_2$ zu verschlüsseln
- → Nachteil ist, dass der Mode nicht parallelisiert ist und Übertragungsfehler propagiert werden

COUNTER MODE (CTR)

- → Zufälliger IV wird verschlüsselt und mit Plaintext ver-XORed
 - → Hochgradig parallelisierbar und AES kann vorberechnet werden (Stromchiffre)
 - → Übertragungsfehler wirken sich nur auf lokalen Block aus
 - → Nur die Verschlüsselungsvorschrift wird benötigt für Ver- und Entschlüsselung

ASYMMETRISCHE VERSCHLÜSSELUNGSVERFAHREN

SYMMETRISCHE VS. ASYMMETRISCHE VERSCHLÜSSELUNGSVERFAHREN

- \rightarrow Bei AES benötigen beide Parteien den gleichen, geheimen Schlüssel K
 - → AES fällt daher in die Kategorie der Symmetrischen oder Private-Key Verschlüsselungsverfahren
- → Meist existiert aber kein geheimer, ausgetauschter Schlüssel
 - → Ad-hoc Kommunikation mit unbekannten Parteien im Internet
 - ightarrow Jedes Paar Parteien benötigt eigenen Schlüssel ($\frac{m(m-1)}{2}$ bei m Parteien)

→ Lösung: Asymmetrische oder Public-Key Verschlüsselungsverfahren

ASYMMETRISCHE VERSCHLÜSSELUNG GRUNDPRINZIP

- 1. Empfänger generiert ein Schlüsselpaar K_E, K_D .
 - $\rightarrow K_E$: öffentlicher Schlüssel, der von allen Parteien zum Verschlüsseln genutzt werden kann.
 - $\rightarrow K_D$: geheimer Schlüssel, mit dem Ciphertexte entschlüsselt werden können.
 - $\rightarrow K_E$ und K_D stehen in einer Relation $K_E = f(K_D)$ und $K_D = f^{-1}(K_E)$.
- 2. Sender nutzt K_E , um Plaintext P mit $C = Enc_{K_E}(P)$ zu verschlüsseln.
- 3. Nur Empfänger kann C mit $P = Dec_{K_D}(C)$ zu entschlüsseln.
- 4. Asymmetrische Verfahren basieren auf mathematisch schweren Problemen, um sicherzustellen, dass nicht von K_E auf K_D geschlossen werden kann.

ASYMMETRISCHE VERSCHLÜSSELUNG RIVEST-SHAMIR-ADLEMAN (RSA)

- → RSA wurde 1977 entwickelt von R. Rivest, A. Shamir und L. Adleman.
- → RSA kann zur asymmetrischen Ver-/Entschlüsselung genutzt werden.
- → Die Sicherheit von RSA basiert auf:
 - \rightarrow Dem RSA Problem (*e*-te Wurzel modulo *N*)
 - → Der Schwierigkeit der Primfaktorzerlegung für große Zahlen
- ightarrow RSA Ver-/Entschlüsselung mit n-bit Modulus N hat Komplexität $\mathcal{O}(n^3)$
 - ightarrow Multiplikation zweier n-bit Werte hat $\mathcal{O}(n^2)$
 - ightarrow Exponentation mit n-bit Exponent hat $\mathcal{O}(n^3)$
- → Schlüsselgenerierung ist sehr rechenintensiv
 - → Finden und Verifizieren von Primzahlen

ASYMMETRISCHE VERSCHLÜSSELUNG RIVEST-SHAMIR-ADLEMAN (RSA)

Alice

Bob

Schlüsselgenerierung

Wähle zufällige Primzahlen p und q

Berechne $N = p \cdot q$

Wähle e zufällig mit $ggT(\phi(N), e) = 1$

Berechne d als: $e \cdot d \mod \phi(N) = 1$

Setze $K_E = (N, e)$ und $K_D = d$

 $K_E = (N, e)$

Verschlüsselung

Berechne $C = P^e \mod N$

Entschlüsselung

 \mathcal{C}

Berechne $P = C^d \mod N$

EINSCHUB ZUR EULERSCHE PHI-FUNKTION

- $\rightarrow \phi(m)$ gibt die Anzahl derjenigen natürlichen Zahlen n < m an, die teilerfremd zu m sind; $m, n \in N, \phi m = |0 \le n \le m|ggT(n, m) = 1|$
 - \rightarrow Beispiel: $\mathbb{Z}_5 = 1, 2, 3, 4$; $\phi(5) = 4$, da nur $ggT(0, 5) \neq 1$ ist für $\forall n \in \mathbb{Z}_5$
- → Spezialfälle:
 - $\rightarrow p \in \mathbb{P} \Rightarrow \phi(p) = (p-1)$
 - $\rightarrow k \in \mathbb{N} \Rightarrow \phi(p^k) = p^{k-1} \cdot (p-1)$
 - $\rightarrow p, q \in \mathbb{P}$ und $p \neq q \Rightarrow \phi(p \cdot q) = \phi(q) \cdot \phi(p) = (p-1) \cdot (q-1)$
- → Weitere nützliche Eigenschaften:
 - \rightarrow Wenn ggT(a,n)=1 ist, dann gilt: $a^{\phi(n)}\mod n=1$
 - \rightarrow 1st $n = p \in \mathbb{P}$, so ergibt sich der Satz von Ferma: $a^{p-1} \mod p = 1; (a \neq 0)$
 - \rightarrow Somit kann man das modular Inverse berechnen: $a^{-1} mod p = a^{p-2} \mod p; (a \neq 0)$

WESHALB IST RSA SICHER?

- \rightarrow Öffentlich ist: $K_E = (N, e), C$
- \rightarrow Geheim sind: $K_D = d, p, q, P$
- \rightarrow Berechnung des Plaintextes $C = P^e \mod N$
 - \rightarrow Invertierung: $P = \sqrt[k]{C} \mod N \rightarrow \text{Problem der } e\text{-ten Wurzel} \mod N$.
- \rightarrow Alternative: Berechnung des privaten Schlüssels $K_D = d$
 - \rightarrow Bedingung $e \cdot d \mod \phi(N) = 1$
 - ightarrow Berechne $\phi(N) = (p-1) \cdot (q-1) \Rightarrow$ Problem der Primfaktorzerlegung

RSA – SICHERHEIT

- → RSA ist als asymmetrisches Verfahren bereits im Chosen-Plaintext Modell
 - ightarrow Angreifer kann beliebige Plaintexte mit öffentlichem Schlüssel K_E verschlüsseln
- → Kurze Plaintexte können via Brute-Force gebrochen werden
 - \rightarrow Telefonnr. (pprox32 bit): Verschlüsseln aller Nummern mit K_E und Vergleich mit Ciphertext
- ightarrow Exponent e für Verschlüsselung wird kurz gewählt, um Berechnung zu beschleunigen
 - $\rightarrow e \in \{3,65537\}$
- → Textbuch RSA benötigt weitere Paddingverfahren, um Brute-Force Angriffe auszuschließen
 - → **RSA-OAEP Padding**: Nachricht wird um Zufallszahl und Prüfsumme erweitert

IMPLEMENTIERUNG ASYMMETRISCHE VERSCHLÜSSELUNG

- → Asymmetrische Verfahren nur sehr schwer sicher zu implementieren [B99]
 - → Primzahlen in RSA dürfen weltweit nicht doppelt vorkommen [ND+12]
 - → Bestimmte Primzahlen müssen vermieden werden [C96]
 - \rightarrow Bestimmte Werte für d und e müssen vermieden werden
 - → Fehler im Paddingverfahren können zur Kompromittierung des Schlüssels führen [B98]
- → Etliche Tricks können asymmetrische Verfahren beschleunigen
 - → Chinesischer Restsatz
 - → Wahl einer Basis aus einer Restklassengruppe mit kleinerer Ordnung
- → Implementieren Sie asymmetrische Verfahren nicht selbst, sondern nutzen Sie bestehende Bibliotheken!

HYBRIDE VERSCHLÜSSELUNG (1/2)

Aspekt	Symmetrische Verschlüsselung	Asymmetrische Verschlüsselung
Vorteile	Sehr schnell (~Gigabyte/Sekunde)	Es muss kein geheimer Schlüssel ausgetauscht sein
Nachteile	Geheimer Schlüssel muss ausgetauscht sein	Langsam (~Hunderte Kilobyte/Sekunde)

- → Hybride Verschlüsselung kombiniert die Vorteile beider Verfahren:
 - 1. Asymmetrische Verfahren, um einen symmetrischen Schlüssel auszuhandeln
 - 2. Symmetrische Verfahren, um die Daten zu übertragen

HYBRIDE VERSCHLÜSSELUNG (2/2)

Alice		Bob
	\leftarrow K_E	Schlüsselpaar (K_E,K_D)
Sym. Schlüssel \emph{K} wählen	$C_K = Enc_{C_E}(K)$	
		$K = Dec_{K_D}(C_K)$
	$C = Enc_K(P)$	
	$C_K = Enc_K(\dots)$	

DIFFIE-HELLMAN VERFAHREN (DH)

- → Asymmetrisches Verfahren zur Schlüsselvereinbarung, entwickelt in 1976
- → Basiert auf dem diskreten Logarithmusproblem in primen Restklassenringen
- ightarrow Voraussetzung: Alice und Bob kennen öffentliche Primzahl p und Basis g
 - → Mögliche Primzahlen und Basen sind in Standards definiert DHP
- → DH kann nicht für Verschlüsselung genutzt werden, sondern nur für Schlüsselvereinbarung
 - → DH benötigt weiteres Verschlüsselungsverfahren (z.B. symmetrisches Verfahren)

EINSCHUB ZYKLISCHE GRUPPEN

- \rightarrow Eine Gruppe (G, \circ) hat eine endliche Anzahl von Elementen. Die Anzahl der Elemente gibt die Ordnung (Kardinalität) der Gruppe G mit |G| an.
 - → Beispiele:

- \rightarrow Die Ordnung ord(a) eines Elements $a \in < G$, $\circ >$ ist die kleinste positive ganze Zahl k mit $a^k = a \circ a \circ a \ldots \circ a = 1$.
- \rightarrow Eine Gruppe G ist zyklisch, wenn die Gruppe G ein Element α mit $ord(\alpha) = |G|$ enthält. α ist ein Generator oder primitives Element von G.
 - ightarrow Beispiel: Das Element $lpha^i = a = 2$ ist ein Generator für $\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $a^1 \equiv 2 \mod 11$ $a^2 \equiv 4 \mod 11$ $a^3 \equiv 8 \mod 11$ $a^4 \equiv 5 \mod 11$, $a^5 \equiv 10 \mod 11$ $a^6 \equiv 9 \mod 11$ $a^7 \equiv 7 \mod 11$ $a^8 \equiv 3 \mod 11$, $a^9 \equiv 6 \mod 11$ $a^{10} \equiv 1 \mod 11$

DIFFIE-HELLMAN PROTOKOLL

Alice		Bob
Wählt a		Wählt <i>b</i>
Berechne $A \equiv g^a \mod p$		Berechne $B \equiv g^b \mod p$
	$ \longrightarrow \hspace{1cm} A \hspace{1cm} \longrightarrow$	
	<i>B</i>	
Berechne $K \equiv$		Berechne $K \equiv$
$B^a \mod p \equiv g^{b \cdot a} \mod p$		$A^b \mod p \equiv g^{a \cdot b} \mod p$
	K kann für sym. Verschlüs-	
	selung genutzt werden ←	

WIESO IST DH SICHER?

- → Eve möchte den Schlüssel K berechnen
 - \rightarrow Öffentlich: $g, p, A \equiv g^a \mod p, B \equiv g^b \mod p$
 - \rightarrow Geheim: a, b und $K = p^{a \cdot b}$
- \rightarrow Um a (oder b) zu finden, muss Eve den diskreten Logarithmus berechnen:
 - $\rightarrow a \log_{g} A \mod p$ oder
 - $\rightarrow b \log_g B \mod p$
- ightarrow Aber: Bester bekannter Algorithmus zur Berechnung des diskreten Logarithmus hat Komplexität $\mathcal{O}\left(2^{\frac{n}{2}}\right)$ für n-bit p (vereinfacht!).

DH SCHLÜSSEL BEHALTEN ODER LÖSCHEN?

- ightarrow Originales DH Protokoll: a und b werden für jeden Austausch neu generiert
 - \rightarrow **Vorteil**: Falls a oder b einer Sitzung veröffentlich werden, ist nur die aktuelle Sitzung korrumpiert (sog. **Forward Secrecy**) \Rightarrow Standard in vielen Protokollen
 - \rightarrow Nachteil: Mallory kann Schlüsselaustausch abfangen, da Alice und Bob sich nicht anhand von A und V authentifizieren können (sog. Man-in-the-Angriff)

Alice		Mallory	Bob
	$A \equiv g^a \mod p$	$B \equiv g^b \mod p$	_
	$F \equiv g^f \mod p$	$F \equiv g^f \mod p$	\rightarrow
	$K \equiv g^{a \cdot f} \mod p$	$K \equiv g^{b \cdot f} \mod p$	\rightarrow

ZUSAMMENFASSUNG

- → Verschlüsselungsalgorithmus AES
- → Verwendungszweck von Betriebsmodi für Blockchiffren
- → Passende Betriebsmodi für einen einfachen Anwendungsfall auswählen
- → Unterschied zwischen öffentlichem und privatem Schlüssel
- → Verschlüsselungsalgorithmus RSA
- → Vor- und Nachteile von symmetrischen- und asymmetrischen Verfahren
- → Aufbau und Vorteile von hybriden Verschlüsselungsverfahren
- → DH Verfahren sowie Vor- und Nachteile des Behaltens der öffentlichen Schlüssel