COL751 - Lecture 7

1 A linear time (2k-1)-spanner construction

We will see now a linear time construction of (2k-1)-spanner of $O(kn^{1+1/k})$ size. Note: The construction below is slightly different from one presented in class and the modification is we do not enforce that clusters across different layers are vertex disjoint.

Algorithm

- 1. Initialize H as (V,\emptyset) . Let $R_k = V$, and for i going from k-1 to 1, let R_i be a random subset of R_{i+1} size $n^{i/k}$. Thus, we have $R_1 \subseteq R_2 \subseteq \cdots \subseteq R_{k-1} \subseteq R_k = V$.
- 2. Next for i = 1 to k, do the following:
 - C_i = clusters of depth (k-i) centered at vertices in R_i in G.
 - V_i = vertices in clusters in C_i that do not lie in C_1, \ldots, C_{i-1} .
 - Add to H edges in clusters in C_i .
 - For each $x \in V_i$ and each cluster $C \in (C_1 \cup \ldots \cup C_i)$ satisfying x has a neighbor in C, we add to H exactly one edge from the set $x \times V(C)$.

Lemma 1 The vertex sets V_1, \ldots, V_k form a partition of V.

Lemma 2 The time to compute graph H is $O(k \cdot m)$.

Lemma 3 For any $(x,y) \in E(G) \setminus E(H)$, we have $dist(x,y,H) \leq 2k-1$.

Proof: Let us suppose $x \in V_i$ and $y \in V_j$, for some $j \leq i$. Let C be a cluster in level j containing y. Recall that there exists an edge $(x, w) \in E(H)$ such that $w \in C$ as cluster C is adjacent to x.

Therefore, $dist(x, y, H) \leq dist(x, w, H) + dist(w, y, H) \leq 1 + 2(k - j) \leq 2k - 1.$

Lemma 4 For $i, j \in [1, k]$ satisfying $i \ge j$ the following holds: For each $x \in V_i$ the number of clusters $C \in C_j$ adjacent to x is at most $O(n^{1/k} \log n)$ with probability $1 - 1/n^4$.

Proof: Let Z_1, \ldots, Z_{α} be clusters in C_j adjacent to x in G, and let the corresponding roots be y_1, \ldots, y_{α} . Since these clusters have height k-j, we have $dist(x, y_1), \ldots, dist(x, y_{\alpha}) \leq k-j+1$.

Next observe $|R_j| = n^{j/k}$, and R_{j-1} is a random subset of R_j of size $n^{(j-1)/k}$. Thus, if $|\{y_1, \ldots, y_{\alpha}\}| \ge 4n^{1/k} \log n$, then by hitting set argument:

$$Prob\left(R_{j-1}\cap\{y_1,\ldots,y_\alpha\} = \emptyset\right) \leqslant \left(1-\frac{\alpha}{|R_j|}\right)^{|R_{j-1}|} \leqslant \frac{1}{n^4}.$$

Further, if a vertex $\tilde{y} \in \{y_1, \dots, y_{\alpha}\}$ lies in R_{j-1} , then x must lie in cluster of \tilde{y} in level j-1 as $dist(x,\tilde{y}) \leq k-j+1$, and in such a case (by definition) x cannot lie in V_i . Since $x \in V_i$, we have $R_{j-1} \cap \{y_1, \dots, y_{\alpha}\} = \emptyset$.

This proves that probability (i) $x \in V_i$ and (ii) the number of clusters adjacent to x in level $j \leq i$ is $\alpha \geq 4n^{1/k} \log n$ is at most $1/n^4$.

Theorem 5 (Baswana, Sen (2003)) For any n vertex, m edges undirected connected graph G we can compute in O(m) time a (2k-1)-multiplicative spanner. The size of H is $O(kn^{1+1/k}\log n)$ with probability $1-1/n^2$.

Challenge Problem Can you get a single-pass (or a k-pass) streaming algorithm for (2k-1) spanner construction?