M2 Training Problems

Ted Szylowiec

tedszy@gmail.com

1 Functions, identity, inverses and plots

- **1.** Let f(x) = 2x + 1. Find...
 - (a) Find f(f(x)).
 - (b) Find f(f(f(x))).
 - (c) Find f(f(f(f(x)))).
- **2.** Let $f(x) = 3x^2 + 1$ and g(x) = 2x 3.
 - (a) Find f(g(x)).
 - (b) Find g(f(x)).

Are they the same?

- **3.** Let f(x) = ax + b.
 - (a) Find f(f(x)).
 - (b) Find f(f(f(x))).
- **4.** Let f(x) = ax + b and g(x) = cx + d.
 - (a) Find f(g(x)).
 - (b) Find g(f(x)).

Are they the same?

- **5.** Sketch y = x and y = -x. Put them on the same axes. Label everything.
- **6.** Sketch y = 2x and y = -2x. Put them on the same axes.
- 7. Sketch these lines on the same axes.

$$y=\frac{x}{2}, \quad y=-\frac{x}{2}.$$

- **8.** Make an exact plot of y = 3x + 2 by finding the *x*-intercept and *y*-intercept.
- 9. Make an exact plot of

$$y=-\frac{x}{2}-1.$$

1

- **10.** If f(x) and g(x) are linear, show that
 - (a) f(g(x)) is linear.
 - (b) g(f(x)) is linear.
- **11.** Let f(x) = 3x + 2. Find $f^{-1}(x)$. Do it two ways:

- (a) By $f(f^{-1}(x)) = I(x)$.
- (b) And by $f^{-1}(f(x)) = I(x)$.
- **12.** Let f(x) = ax + b. Find $f^{-1}(x)$. Do it two ways:
 - (a) By $f(f^{-1}(x)) = I(x)$.
 - (b) And by $f^{-1}(f(x)) = I(x)$.
- **13.** Let f(x) = 2x + 1. Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.
- **14.** Let f(x) = -2x + 3. Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.
- 15. Consider the function

$$f(x) = -\frac{x}{2} + 3.$$

Find $f^{-1}(x)$. Make exact plots of f and f^{-1} . Also draw I.

- **16.** Sketch the curve $y = x^2$. Use the unit square idea.
- **17.** Let $f(x) = x^2$. Sketch f, I and f^{-1} on the same axes.
- **18.** Let $f(x) = x^2 + 1$. Sketch f, I and f^{-1} on the same axes.
- **19.** Are there functions that are inverses of themselves? Does there exist any functions with the property $f(x) = f^{-1}(x)$? In other words, f is its own inverse.
 - (a) Find one such self-inverse function f.
 - (b) Try to find more, as many as you can.

2 Introducing logarithms

- **20.** Draw the fastest-growing function f that you can imagine. Draw I(x) and use it to find the inverse f^{-1} .
- **21.** Draw the slowest-growing function f that you can imagine. Draw the identity I(x) and use it to find the inverse f^{-1} .
- **22.** Given f, tell me about the inverse f^{-1} . Does it grow fast, slowly, very fast etc.?
 - (a) f is a fast-growing function.
 - (b) *f* does not grow at all.
 - (c) f is a slow-growing function.
 - (d) f is a very slow-growing function.
 - (e) f is a very fast-growing function.
- **23.** Fill in this table about the behavior of $f(x) = 2^x$ for different values of x.

$$x \qquad f(x)$$

$$x = 0 \qquad f = 1$$

$$x > 0$$

$$x < 0$$

$$x > 1$$

$$x \to \infty$$

$$x \to -\infty$$

- **24.** Plot 2^x , 3^x and 5^x all on the same axes.
- **25.** Consider the function $f(n) = \left(1 + \frac{1}{n}\right)^n$. Use a calculator. Fill in this table

x	f(x)
1	2
2	
5	
10	
100	
1000	

Notice how f(n) keeps increasing as n gets bigger. But also notice how f(n) does not increase to infinity, but approaces the magic number e from below.

26. Now consider the slightly different function $g(n) = \left(1 + \frac{1}{n}\right)^{n+1}$. Use a calculator. Fill in this table

x	$\int f(x)$
1	2
2	
5	
10	
100	
1000	

Notice how g(n) keeps decreasing as n gets bigger. But also notice how g(n) does not decrease to minus infinity, but approaces the magic number e from above.

- **27.** Plot 2^x , e^x and 10^x all on the same axes.
- **28.** Plot $f(x) = 2^x$ and the identity line I(x). Use the identity line to draw the inverse $f^{-1}(x) = \log_2 x$.

- **29.** Plot $f(x) = 3^x$, I(x) and $f^{-1}(x) = \log_3 x$ all on the same axes.
- **30.** Fill in this table about the behavior of $g(x) = \log_2 x$ for different values of x.

$$x \qquad g(x)$$

$$x = 1 \qquad g = 0$$

$$x > 1$$

$$x < 1$$

$$x = 2$$

$$x \to \infty$$

$$x \to 0$$

- **31.** Does 2^x ever touch the *x*-axis? Does $\log_2 x$ ever touch the *y*-axis?
- 32. Fill in the table.

$$\begin{array}{c|cccc}
x & 3^{x} & & x & \log_{3} x \\
1 & & 1 & & \\
2 & & 9 & & \\
3 & & 27 & & \\
4 & & 243 & & \\
5 & & 59049 & & \\
\end{array}$$

33. Fill in the table.

$$\begin{array}{c|cccc}
x & 10^x & & x & \log_{10} x \\
1 & & 1 & \\
2 & & 10 & \\
3 & & 1000 & \\
4 & & 100,000 & \\
5 & & 10,000,000 & \\
\end{array}$$

- **34.** Plot $\log_2 x$, $\log_3 x$ and $\log_5 x$ all on the same axes. Label all the important points.
- **35.** Plot $\log_2 x$, $\log_e x$ and $\log_{10} x$ all on the same axes. Label all the important points.
- **36.** The formulas relating f, f^{-1} and I establish the two most important properties of logarithms and exponentials. Use $f(x) = a^x$ and $f^{-1}(x) = \log_a x$ and tell me what these formulas imply:

(a)
$$f(f^{-1}(x)) = I(x)$$
.

(b)
$$f^{-1}(f(x)) = I(x)$$
.

Properties of \log_a 5

3 Properties of \log_a

- **37.** Figure out $a^{\log_a a^x}$.
- **38.** Figure out $\log_a a^{\log_a a^x}$.
- **39.** Begin with the well-known property of exponential functions $(a^x)^p = a^{xp}$ and prove the following property of logarithms:

$$\log_a u^p = p \log_a u.$$

Notice how log changes powers to multiplications.

40. Begin with something we all know: $a^x a^y = a^{x+y}$ and prove the following property of logarithms:

$$\log_a uv = \log_a u + \log_a v.$$

Notice how log changes multiplication into addition.

41. Using an idea similar to the one in problem 40, prove that

$$\log_a uvw = \log_a u + \log_a v + \log_a w.$$

42. Use the results of problems 39 and 40 to prove this:

$$\log_a \frac{u}{v} = \log_a u - \log_a v.$$

Notice how log changes division into subtraction.

- 43. Use 39, 40 and 42 to figure these out.
 - (a) $\log_2 8 \times 32 \times 64$.
 - (b) $\log_5 25 \times 125 \times 625$.
 - (c) $\log_2 2^7 8^5 16^3$.
 - (d) $\log_3 \sqrt{27} \sqrt[3]{81}$.
 - (e) $\log_5 \frac{\sqrt{125}}{\sqrt[3]{625}}$.
 - (f) $\log_e \frac{\sqrt{e}}{e^3} \sqrt[3]{e}$.
- **44.** Use plots to explain why 0 < x < 1 when $\log x$ is negative.
- **45.** Use plots to explain why $\log x$ is positive when x > 1.
- **46.** Let x = a/b. Use the formula in **42** to show that $\log x$ is negative when 0 < x < 1.
- **47.** Let x = a/b. Use the formula in **42** to show that $\log x$ is positive when x > 1.

48. Positive or negative? Use log, algebra and plots to explain why. Assume the logarithm base is a > 1 as usual.

- (a) $\log_a \frac{2}{3}$
- (b) $\log_a \frac{5}{2}$
- (c) $\log_a 0.8$
- (d) $\log_a 1.8$
- (e) $\log_a \frac{e}{\pi}$
- (f) $\log_a \frac{\pi}{e}$

49. Positive or negative? Explain why.

- (a) $\log \frac{\pi}{\sqrt{10}}$
- (b) $\log \frac{\sqrt{10}}{\pi}$
- (c) $\log \frac{3e}{2\pi}$
- (d) $\log \frac{2\pi}{3e}$

50. Bigger or smaller than 1? Explain using logarithms, algebra and plots.

- (a) $\left(\frac{3}{2}\right)^{2/3}$
- (b) $\left(\frac{2}{3}\right)^{-3/2}$
- (c) $\left(\frac{\pi}{5}\right)^{\sqrt{5/2}}$
- (d) $\left(\frac{1}{\sqrt{3}}\right)^{-1/\sqrt{2}}$
- (e) $\left(\sqrt{2}\right)^{-\sqrt{2}}$ (f) $\left(\frac{1}{\pi}\right)^{1/e}$
- (g) $(\sqrt{e})^{-\sqrt{\pi}}$

51. Given the inequality, determine which is bigger: *x* or *y*. Prove it using logarithms.

- (a) $(0.5)^x > (0.5)^y$.
- (b) $(1.5)^x < (1.5)^y$.
- (c) $\left(\frac{3}{2}\right)^x > \left(\frac{3}{2}\right)^y$.

- **52.** Which is bigger: x or y?
 - (a) $(\frac{2}{3})^x < (\frac{2}{3})^y$.
 - (b) $\left(\frac{e}{\pi}\right)^x > \left(\frac{e}{\pi}\right)^y$.
 - (c) $\left(\frac{\pi}{e}\right)^x < \left(\frac{\pi}{e}\right)^y$.
- 53. Which is bigger? Explain using logarithms, plots, algebra etc.
 - (a) 2^{70} or 7^{20} ?
 - (b) 5^{30} or 3^{50} ?
 - (c) 2^{50} or 5^{20} ?
- 54. Simplify.
 - (a) $\frac{\log_2 81}{\log_2 27}$
 - (b) $81^{\log_3 2}$
 - (c) 64^{log₄3}
 - (d) $e^{\log_e(\log_e e^2)}$
 - (e) $\left(\frac{1}{100}\right)^{\log_{10} 2}$
- **55.** Prove that

$$\log_a b = \frac{1}{\log_h a}.$$

- **56.** Simplify.
 - (a) $a^{1/\log_b a^2}$
 - (b) $a^{1/\log_{b^2} a}$
 - (c) $a^{1/\log_{b^6} a^3}$
 - (d) $3^{1/\log_5 3}$
 - (e) $3^{1/\log_5 3^2}$
 - (f) $2^{1/\log_{27} 8}$
- 57. Simplify and explain what values of a and b are possible.
 - (a) $\log(ab) \log|a|$.
 - (b) $\log(ab) \log|b|$.
 - (c) $\log(ab) \log|a| \log|b|$.
- **58.** Prove that

$$\log_{a^2} x = \frac{1}{2} \log_a x.$$

59. Prove that

$$\log_{a^p} x = \frac{1}{p} \log_a x.$$

60. Simplify.
$$\log_a b^2 + \log_{a^2} b^4 + \dots + \log_{a^n} b^{2n}$$
.

61. Simplify.
$$(\log_a b)(\log_b c)(\log_c a)$$
.

62. Simplify.
$$(\log_a b)(\log_b c)(\log_c d)(\log_d a)$$
.

63. Simplify.
$$(\log_a b)(\log_{b^2} c^2)(\log_{c^3} a^3)$$
.

64. Simplify.
$$(\log_a b)(\log_{b^2} c^2)(\log_{c^3} d^3)(\log_{d^4} a^4)$$
.

65. Simplify.
$$(\log_a b^4)(\log_{b^2} c^3)(\log_{c^3} d^2)(\log_{d^4} a)$$
.

66. Simplify.
$$\frac{\log_8 5}{\log_4 25}$$
.

67. Simplify.
$$(\log_8 5)(\log_{125} 4)$$
.

68. Simplify.
$$\log_{\sqrt{a}} \sqrt{x}$$
.

69. Simplify.
$$\left(\log_{\sqrt{a}} b\right) \left(\log_{\sqrt{b}} a\right)$$
.

70. Simplify.
$$(\log_7 2)(\log_3 5)(\log_5 7)(\log_2 3)$$
.

71. Simplify.
$$(\log_5 3)(\log_4 5)(\log_{125} 8)$$
.

72. Simplify
$$(\log_5 2)(\log_{27} 125)(\log_2 3)$$
.

73. Use
$$\sqrt{\log_a b} \sqrt{\log_a b} = \log_a b$$
 and prove that

$$a^{\sqrt{\log_a b}} = b^{\sqrt{\log_b a}}.$$

For what values of *a* and *b* is this true?

74. Prove the famous change-of-base formula:

$$\log_a x = (\log_a b) \log_b x.$$

4 \log_a with 0 < a < 1. What happens?