Natural Question Answer Research

Guide: Prof. D V L N Somayajulu

Group: Ashutosh Hathidara(116CS0007)

Nischay Pandey(116CS0021)

Akash Dhayal(116CS0037)

Objective

Main Goal?

To Improve micro F1-score by modifying existing models.

Build Map

Datasets Used

- Jian Zhang's SQuAD 2016
- Google AI's NQA benchmark Dataset 2019

Parameters

- document_text
- question_text
- Long_answer_candidates
- Annotations
- Document_url
- example_id

To Predict

- long_answer_range Range of the long answer in terms of index of words in the document if long answer is found, else it will predict [-1,-1]
- **short_answer_range** Range of the short answer in terms of index of words in the document if short answer is found, else it will predict [-1,-1]

Evaluation Parameter : F1-Score

Preprocessing & Vectorization

- Position Embedding
- Segment Embedding
- Token embedding

For Example: This is a boy V1 V2 V3 V4

Preprocessing usage: tokenization.FullTokenizer(object)

Embedding Usage : BERT

Ref. Jonathan Bratt's tokenization 2012

Word2Vec (By Tomas Mikolov 2013)

Drawback:

Ref. Blog Analytics Vidya 2019

BERT (by Google AI 2019)

- Ref. Blog Analytics Vidya 2019
- BERT Base: 12 layers (transformer blocks), 12 attention heads, and 110 million parameters
- BERT Large: 24 layers (transformer blocks), 16 attention heads and, 340 million parameters

Training on Cloud (on kaggle)

Masking:

```
Input: The man went to the [MASK]_1. He bought a [MASK]_2 of milk . Labels: [MASK]_1 = store; [MASK]_2 = gallon
```

Ref. Google AI Blog on BERT 2019

Context Recognition:

```
Sentence A = The man went to the store.

Sentence B = He bought a gallon of milk.

Label = IsNextSentence
```

```
Sentence A = The man went to the store.

Sentence B = Penguins are flightless.

Label = NotNextSentence
```

Implementation

Ref. Tensorflow 2.0

```
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"max_position_embeddings": 512,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"type_vocab_size": 2,
"vocab_size": 30522
```

Conclusion

F1-score on test: 0.70

SQuAD1.1 Leaderboard

Rank	Model	EM	F1
	Human Performance	82.304	91.221
	Stanford University		
	(Rajpurkar et al. '16)		
1	BERT (ensemble)	87.433	93.160
Oct 05, 2018	Google Al Language		
	https://arxiv.org/abs/1810.04805		
2	nlnet (ensemble)	85.356	91.202
Sep 09, 2018	Microsoft Research Asia		
3	QANet (ensemble)	84.454	90.490
Jul 11, 2018	Google Brain & CMU		

Ref. Google AI Blog on BERT 2019

Implementation Codes

Refer this github repo bit.ly/nqa_iiitk for Project Report, Presentation slides and complete implementation of end-to-end model.

References

- BERT Github Repo 2019 by Google AI
- Jian Zhang's SQuAD 2016
- Google AI's NQA benchmark Dataset 2019
- Ming-Wei Chang's BERT Paper 2019
- Google AI Blog on BERT 2019
- Effective TensorFlow 2.0 Guide