#### ГУАП

# КАФЕДРА №

| ОТЧЕТ<br>ЗАЩИЩЕН С ОЦЕНКОЙ                               |               |                                    |  |  |  |  |  |  |  |
|----------------------------------------------------------|---------------|------------------------------------|--|--|--|--|--|--|--|
| ПРЕПОДАВАТЕЛЬ                                            |               |                                    |  |  |  |  |  |  |  |
| Гений науки, к.г.н.<br>должность, уч. степень,<br>звание | подпись, дата | Суетина Т. А.<br>инициалы, фамилия |  |  |  |  |  |  |  |
| звание                                                   | 271 2 771     | , , <u></u>                        |  |  |  |  |  |  |  |
| ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №1                           |               |                                    |  |  |  |  |  |  |  |
| Вариант 5                                                |               |                                    |  |  |  |  |  |  |  |
|                                                          |               |                                    |  |  |  |  |  |  |  |
| по курсу: Энтропийные алгоритмы сжатия информации        |               |                                    |  |  |  |  |  |  |  |
|                                                          |               |                                    |  |  |  |  |  |  |  |
|                                                          |               |                                    |  |  |  |  |  |  |  |

## РАБОТУ ВЫПОЛНИЛ

| CTM HELIT ED M | 4120 |               | Анонимный Н. Н.   |
|----------------|------|---------------|-------------------|
| СТУДЕНТ ГР. №  | 4128 |               | Анонимный 11. 11. |
|                |      | подпись, дата | инициалы, фамилия |

# СОДЕРЖАНИЕ

| 1 | Вве | едение                     | 3 |
|---|-----|----------------------------|---|
|   | 1.1 | Цель лабораторной работы   | 3 |
|   | 1.2 | Задание                    | 3 |
| 2 | Выі | полнение работы            | 4 |
|   | 2.1 | Метод Хаффмана             | ۷ |
|   | 2.2 | Метод Шенона-Фано          | 5 |
|   | 2.3 | Арифметическое кодирование | 5 |
|   | 2.4 | Алгоритм LZW               | 7 |
| 3 | Вын | ВОД                        | 8 |

## 1 Введение

### 1.1 Цель лабораторной работы

## 1.2 Задание

Выполнить сжатие текста 4 способами:

- Метод Хаффмана;
- Метод Шенона-Фано;
- Арифметическим кодированием;
- Алгоритмом LZW.

Для каждого метода рассчитать коэффициент сжатия текста.

Вариант 5: ШОРОХ ОТ ДУБКА КАК БУДТО ХОРОШ

## 2 Выполнение работы

Для начала проанализируем текст.

Таблица 2.1 - фигура

| Буква  | Ш | О | P | X | space | Д | У | Б | К | A | Т |
|--------|---|---|---|---|-------|---|---|---|---|---|---|
| Кол-во | 2 | 6 | 2 | 2 | 5     | 2 | 2 | 2 | 3 | 2 | 2 |

Всего букв: 30

## 2.1 Метод Хаффмана

Таблица 2.2 - Решение методом Хаффмана

| Буква   | О  | space | К   | Ш    | P    | X    | Д    | У    | Б    | A    | T    |
|---------|----|-------|-----|------|------|------|------|------|------|------|------|
| Частота | 6  | 5     | 3   | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
|         | 1  |       |     | 0    |      |      |      |      |      |      |      |
|         | 1  | 0     |     | 1    |      |      |      | 0    |      |      |      |
|         |    | 1     | 0   | 1    |      | 0    |      | 1    |      | 0    |      |
|         |    |       |     | 1    | 0    | 1    | 0    | 1    | 0    | 1    | 0    |
| ИТОГ    | 11 | 101   | 100 | 0111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001 | 0000 |

### Итоговый текст:

Коэффициент кодирования: 100/120 = 0.83

### 2.2 Метод Шенона-Фано



Рисунок 2.1 - Граф для метода Шеонона-Фано

### Итоговый текст:

 $[1100\ 10\ 0111\ 10\ 0110\ ]000[10\ 1101\ ]000[0101\ 0100\ 0011\ 111\ 0010\ ]000\\[111\ 0010\ 111\ ]000[0011\ 0100\ 0101\ 1101\ 10\ ]000[0110\ 10\ 0111\ 10\ 1100\ ]$ 

Коэффициент кодирования: 100/120 = 0.83

## 2.3 Арифметическое кодирование

| Бв  | Ш              | O              | P               | X               | space           | Д               | У               | Б               | К               | A               |
|-----|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ит. | $\frac{2}{28}$ | $\frac{8}{28}$ | $\frac{10}{28}$ | $\frac{12}{28}$ | $\frac{17}{28}$ | $\frac{19}{28}$ | $\frac{21}{28}$ | $\frac{23}{28}$ | $\frac{26}{28}$ | $\frac{28}{28}$ |
| Н.  | $\frac{0}{28}$ | $\frac{2}{28}$ | $\frac{8}{28}$  | $\frac{10}{28}$ | $\frac{12}{28}$ | $\frac{17}{28}$ | $\frac{19}{28}$ | $\frac{21}{28}$ | $\frac{23}{28}$ | $\frac{26}{28}$ |

```
Character: W, Interval: (0, 1/15)
Character: O, Interval: (1/125, 4/225)
Character: O, Interval: (1/125, 2/225)
Character: O, Interval: (1/125, 2/225)
Character: O, Interval: (137/16875, 139/16875)
Character: A, Interval: (137/16875, 686/84375)
Character: A, Interval: (137/16875, 686/84375)
Character: A, Interval: (61687/7593756, 6169/7593750)
Character: A, Interval: (61687/7593756, 6169/7593750)
Character: A, Interval: (63843/8437500, 616889/75937500)
Character: A, Interval: (13894439/379687500, 462661/559531250)
Character: A, Interval: (129133216/18834375000, 18506641/2278125000)
Character: A, Interval: (123133316/12847655254) 41639941951257812500)
Character: A, Interval: (18737973847/230660152500), 187379738473/2306601525000)
Character: A, Interval: (1234224673091/28832519531250), 187379738473/2306601525000)
Character: A, Interval: (1242224673091/28832519531250), 187379738473/2306601525000)
Character: A, Interval: (234224673091/28832519531250), 187379738473/2306601525000)
Character: A, Interval: (16864764625617/20759414062500000), 8432008231281/1037970703125000)
Character: A, Interval: (16864764625617/207594140625000000), 8432008231281/1037970703125000)
Character: A, Interval: (12482123280999/10379707015200000), 8432008231281/1037970703125000)
Character: A, Interval: (12648123280999/103797070152000000), 157775881630579997/10853477656250000000)
Character: A, Interval: (12648123280999/103797070152000000), 157775881630579979/108534776562500000000)
Character: A, Interval: (126481232405711747058250676000000, 15076505955147647237/700630224000000)
Character: A, Interval: (126481232405711740760886164060000), 150765054054747237/7006302240000000)
Character: A, Interval: (1608077925568808452094/20373134765562500000000), 1507675054347725672500000000)
Character: A, Interval: (16080779255685054687540594717476086000000, 1507655055654687547237770065302240000000)
Character: A, Interval: (1608077925668806472097381134765562500000000), 15076750569550555654675407590000000)
Character: A, Interval: (1608077925668000000)
Character:
```

Рисунок 2.2 - Результат арифметического кодирования

Видно, что получившийся полуинтервал имеет начало 0.0.0074912349 782805534413959822243764917681480323610887484957792932706704681648 90615017316007369538876504 и конец 0.0074912349782805534413959822243 916060915256138854646594452732169873638900741145480149361799483128 63938.

Исходя из рисунка 2.2, можно сделать вывод, что сообщение можно зашифровать числом  $0.00749123497828055344139598222438_{10}=0.00000001111010101111_2$ , то есть  $00000001111010101111_2$ .

Коэффициент кодирования: 20/120 = 0.16

### 2.4 Алгоритм LZW

```
P: 3
K: 7
ШО: 11
                Д: 1 : 2
Б: 5 A: 6
Т: 9 У: 10
0: 4
X: 8
                    P0: 13
0T: 17
V6: 21
K: 25
5V: 29
OP: 12
                                         0X: 14
                                                               X: 15
0: 16
ДУ: 20
A : 24
                                                               Д: 19
KA: 23
                                          T: 18
                                          БК: 22
                                          KAK: 26
УД: 30
X: 34
                                                               К: 27
ДТ: 31
X0: 35
 Б: 28
TO: 32 0: 33 X: 34 XO: 35

OPO: 36 OW: 37 Encoded data: [0, 4, 3, 4, 8, 2, 4, 9, 2, 1, 10, 5, 7, 6, 2, 23, 7, 2, 5, 10, 1, 9, 4, 2, 8, 12, 4, 0]

Size of the encoded data in bits: 140
```

Рисунок 2.3 - Результат работы LZW

Коэффициент кодирования: 140/120 = 1.16

# 3 Вывод