Formal Polynomials

Definition 1. A linear algebra over a field F is a vector space \mathcal{A} over F along with a **vector product** which for all $x, y, z \in \mathcal{A}$ and α in \mathcal{F} satisfies

- I. (Associativity) x(yz) = (xy)z
- II. (Distributivity) x(y+z) = xy + xz
- III. (Scaling) $\alpha xy = (\alpha x)y = x(\alpha y)$

If there is an element $1 \in \mathcal{A}$ such that 1x = x1 = x for all $x \in \mathcal{A}$, we have a *linear algebra with identity*. If xy = yx for all $x, y \in \mathcal{A}$, then \mathcal{A} is a *commutative algebra*.

Example 1. (Formal Power Series) The set $F^{\infty} = \{(f_0, f_1, \dots) \mid f_n \in F\}$ of infinite sequences on F forms a vector space under elementwise addition and scalar multiplication. Equipped with the product $(fg)_n = \sum_{k=0}^n f_k g_{n-k}$, the space F^{∞} is called the **algebra of formal power series** over F. Choosing $x = (0, 1, 0, 0, \dots)$, any element of F^{∞} can be written as $f = \sum_{k=1}^{\infty} f_k x^k$.

Algebra of Polynomials

Definition 2. Let $F[x] = \text{span}\{1, x, x^2, \dots\} \preceq F^{\infty}$ contain all finite linear combinations of powers of x. Elements of F[x] are called **polynomials**.

EXERCISE 1. Let $f, g \in F[x]$ be nonzero polynomials over a field F. Then,

- I. fg is a nonzero polynomial.
- II. fg is monic if and only if f and g are monic.
- III. fg is scalar if and only if f and g are scalar.
- IV. $\deg fg = \deg f + \deg g$
- V. $\deg(f+g) \leq \max\{\deg f, \deg g\}$

Consequently, the set F[x] of polynomials forms a commutative algebra with identity over F. Given another commutative algebra with identity, we can define *polynomial evaluation* as follows:

Definition 3. Let \mathcal{A} be an algebra with identity over the field F. For any $a \in \mathcal{A}$, define $a^0 = 1_{\mathcal{A}}$. Then to each polynomial $f = \sum_{k=0}^n f_k x^k \in F[x]$ and $a \in A$ we associate an element $f(a) \in \mathcal{A}$ by the rule $f(a) = \sum_{k=0}^n f_k a^k$.

EXERCISE 2. For all polynomials $f, g \in F[x]$, scalars $c \in F$, and $a \in A$,

- I. (cf + g)(a) = cf(a) + g(a)
- II. (fg)(a) = f(a)g(a)

Polynomial Long Division

Lemma 1. Let $f, d \in F[x]$ be nonzero polynomials, with $\deg d \leq \deg f$. Then there exists a polynomial $g \in F[x]$ such that

either
$$f - dg = 0$$
 or $\deg(f - dg) < \deg f$

Proof. Let f and d have leading coefficients a and b, respectively. Choose $g = (\frac{a}{b})x^{\deg f - \deg d}$, so that subtracting dg from f deletes the leading term. \square

Theorem 1, (Polynomial Long Division). For polynomials $f, d \in F[x]$ with $d \neq 0$, there exist unique **quotient** and **remainder** polynomials $q, r \in F[x]$ such that f = dq + r, and either r = 0 or $\deg r < \deg d$.

Proof. For existence, we use an iterative process akin to long division.

- (1) Initialize $q \leftarrow 0$ and $r \leftarrow f$.
- (2) While $f \neq dq + r$ or $(r \neq 0 \text{ and } \deg r \geq \deg d)$,
 - (a) Choose a polynomial $g \in F[x]$ by Lemma 1 such that
 - (i) either (f dq) dg = 0
 - (ii) or deg((f dq) dg) < deg(f dq)
 - (b) In the former case, set $q \leftarrow q + g$ and r = 0 and terminate.
 - (c) In the latter, set $q \leftarrow q + g$ then $r \leftarrow f dq$ and continue.
- (3) Since $\deg r$ is strictly decreasing with each iteration, the algorithm eventually terminates, leaving us with quotient q and remainder r.

For uniqueness, suppose we have another quotient q' and remainder r'.

- (1) Then f = dq + r = dq' + r', so d(q q') = r' r.
- (2) Assume towards contradiction that $q q' \neq 0$. Then $d(q q') \neq 0$.
- (3) By Exercise 1, $\deg(r'-r) = \deg d(q-q') = \deg d + \deg(q-q')$.
- (4) Thus $\max\{\deg r', \deg r\} \ge \deg(r'-r) \ge \deg d$, a contradiction!

Corollary 1. Let $c \in F$. A polynomial $f \in F[x]$ is divisible by (x - c) if and only if f(c) = 0, in which case c is called a **root** of f.

Proof. By the theorem, f = (x - c)q + r where r is a scalar polynomial. Therefore, f(c) = 0q(c) + r(c) = r(c) equals zero if and only if r = 0.

Corollary 2. A polynomial $f \in F[x]$ of degree n has at most n roots.

Proof. The result is obviously true for polynomials of degree zero and one. Inductively, assume degree n-1 polynomials have at most n-1 roots and let $f \in F[x]$ have degree n. If f has at least one root $c \in F$, we can factor f = (x - c)q uniquely, where deg q = n - 1. Since f(b) = 0 if and only if b = c or q(b) = 0, it follows inductively that f has at most n roots. \square

Polynomial Ideals

Definition 4. A **polynomial ideal** is a subspace $M \preceq F[x]$ that *absorbs* multiplication, in the sense that $fg \in M$ whenever $f \in M$ and $g \in F[x]$.

Equivalently, a set $M \subset F[x]$ is an ideal if and only if it is closed under linear combinations of its elements with coefficients taken from all of F[x].

EXERCISE 3. Verify the following properties of polynomial ideals:

- I. The sum of two ideals is an ideal.
- II. The intersection of arbitrarily many ideals is an ideal.

The **principal ideal** generated by $d \in F[x]$ is the set dF[x], which is easily verified to be an ideal. Similarly, the ideal $d_1F[x] + \cdots + d_nF[x]$ is called the **principal ideal** generated by $d_1, \ldots, d_n \in F[x]$.

Theorem 2. Every nonzero polynomial ideal $M \preceq F[x]$ is generated by a unique monic polynomial $d \in F[x]$; that is, M = dF[x] for some monic d.

- (1) Let $d \in M$ be a nonzero monic polynomial of smallest degree in M.
 - (a) $dF[x] \subseteq M$, because M is an ideal and $d \in M$.
 - (b) $\overline{M \subseteq dF[x]}$. Pretend $f \in M$ is not a multiple of d. Dividing f by d gives f = dq + r where $dq, r \in M$ and $\deg r < \deg d$, which contradicts minimality of d! Hence r = 0.
- (2) For uniqueness, suppose $M = d_1 F[x] = d_2 F[x]$ for monic $d_1, d_2 \in F[x]$.
 - (a) Then $d_1p = d_2$ and $d_2q = d_1$ for some $p, q \in F[x]$.
 - (b) Since $d_1 = d_2q = d_1pq$, polynomials p and q must be scalars.
 - (c) Both d_1 and d_2 are monic, so p = q = 1, thus $d_1 = d_2$.

Corollary 3. If $p_1, \ldots, p_n \in F[x]$ are polynomials, not all zero, over field F, then there is a unique monic polynomial $d \in F[x]$, called the **greatest** common divisor, such that

- I. d belongs to the ideal generated by p_1, \ldots, p_n
- II. d divides each of the polynomials p_1, \ldots, p_n

Any polynomial with the above two properties further satisfies:

III. d is divisible by every polynomial which divides each p_1, \ldots, p_n

Proof. The monic generator d of the ideal $M = p_1 F[x] + \cdots + p_n F[x]$ immediately satisfies the first two properties. Since $d \in M$, we have

$$d = p_1 g_1 + \cdots p_n g_n$$
 for some $g_1, \dots, g_n \in F[x]$

Therefore, any $f \in F[x]$ dividing each polynomial p_1, \ldots, p_n must also divide d. For uniqueness, observe that any $d' \in M$ satisfying the first two properties must divide d; but d is monic with minimal degree, so d' = d. \square

Prime Factorization of Polynomials

Definition 5. A polynomial $f \in F[x]$ over field F is **reducible** over F if it can be written as the product of two non-scalar polynomials. Otherwise, f is called **irreducible**. A non-scalar irreducible polynomial is called **prime**.

Definition 6. Polynomials $p_1, \ldots, p_n \in F[x]$ over field F are **relatively prime** if their greatest common divisor is 1, or equivalently, if they generate all of F[x].

Theorem 3. (Euclid's Lemma) If polynomial $p \in F[x]$ is prime and divides a product $f_1 f_2 \cdots f_n$, then p divides one of the factors $f_1, \ldots, f_n \in F[x]$.

Proof. By induction, it suffices to consider only two factors $p \mid fg$. Assume without loss of generality that p is monic, so that the only monic divisors of p are 1 and p itself. If GCD(f,p) equals p, then $p \mid f$ and we are done. Otherwise, f and p are relatively prime and generate all of F[x]. So, there are polynomials $f_0, p_0 \in F[x]$ such that $1 = f_0 f + p_0 p$. Multiplying by g gives $g = (fg)f_0 + p(p_0g)$. Therefore, $p \mid g$.

Theorem 4. (Prime Factorization) Every non-scalar monic polynomial can be factored uniquely as the product of monic primes, up to permutations.

- (1) Existence. Polynomials of degree one are prime. By induction on the degree, each $f \in F[x]$ of degree larger than one is either prime or can be expressed as the product of polynomials $g, h \in F[x]$ of lower degree, each with a prime factorization.
- (2) Uniqueness. Assume $p_1 \cdots p_m = q_1 \cdots q_n$, with each $p_i, q_j \in F[x]$ prime, and $m \leq n$. By Euclid's lemma, $p_1 = q_j$ for some $j \in [n]$; assume $p_1 = q_1$. Dividing by this term and repeating the argument demonstrates that $p_k = q_k$ for all $k \in [\min\{m, n\}]$. The product of any leftover terms is one, so they cannot be prime. Hence m = n and the factorizations are equal.

EXERCISE 4. Let $f \in F[x]$ be a non-scalar monic polynomial over field F with prime factorization $f = p_1^{r_1} \cdots p_n^{r_n}$. Then the polynomials $f_k = f/p_k^{r_k}$ for $k \in [n]$ are relatively prime.

EXERCISE 5. Let $f \in F[x]$ be a polynomial over the field F with derivative $f' \in F[x]$. Then f is a product of distinct irreducible polynomials over F if and only if f and f' are relatively prime.

Definition 7. The field F is called **algebraically closed** if every prime polynomial over F has degree one.

References

[1] Kenneth Hoffman and Ray Kunze. *Linear Algebra*. Prentice Hall, second edition, 1971.