PAC 모듈을 이용한 딥러닝기반스테레오 매칭

9 (리포트 용)

모듈과 모델 소개

PAC 모듈

• Guide에서 뽑아낸 패치에서 정중앙에 위치한 픽셀의 feature 값과 다른 픽셀의 feature 값의 차이(I2 norm)를 가지고 kernel(=attention?) 생 성

• 의도: 패치의 중앙에 위치한 픽셀과 다른 특성을 가진 픽셀 은 무시하고 컨볼루션 연산을 진행함.

모델 구조

Right image

(grayscale)

모델 구조 (Body 부분 미완성)

Stereo matching task에서 PAC 모듈의 커널 적용 방식이 갖는 문제점과 해결 방안

이미지 표현 설명

left 이미지에서 선택된 픽셀과 매칭될 Left 이미지에서 선택된 픽셀과 것으로 예상된 right 이미지의 픽셀과 그 위의 커널 그 위의 커널 Right image Left image Pred Difference

PAC를 stereo matching에 그대로 사용할 때 발생하는 문제점 (scale level=0 output)

Base model

(PAC 모듈을 전부 일반 conv2d로 바꿈)

물체의 경계에서 오차 개선이 이뤄지지 않음 (diffrence를 보면 여전히 노란 컵 손잡이의 경계를 넘어 디스패리티가 번지고 있음을 알 수 있음)

PAC를 stereo matching에 그대로 사용할 때 발생하는 문제점 (scale level=1 output)

Base model (PAC 모듈을 전부 일반 conv2d로 바꿈)

물체의 경계에서 오차 개선이 이뤄지지 않음 (diffrence를 보면 여전히 노란 컵 손잡이의 경계를 넘어 디스패리티가 번지고 있음을 알 수 있음)

PAC를 stereo matching에 사용할 때 발생하는 문제점

- Kernel을 곱한 후 feature 값이 0에 가깝게 되어 원래는 무시되어야 할 픽셀도 feature 값이 완전히 0이 아닌 이상 매칭 시 영향을 미치는 것으로 추정됨.
- 위 추정이 사실이면 물체의 경계에서 오차가 개선되기 힘듦.

의도:

커널을 사용하여 검정 부분(feature≒0, !=0)은 매칭에서 영향력을 발휘하지 않도록 제한함.

실제:

검정 부분(feature≒0, !=0)이 의도와 다르게 영향력이 있는 것으로 추정됨.

Kernel 적용 후 보정

• 여전히 영향력을 가지고 있을지도 모르는 feature ≒ 0인 부분을 다른 값으로 덮어주고자 함.

Kernel 적용 후 보정

corrected_v_mul_kernel =

v -1,-1	v -1,0	v -1,1
v 0,-1	v 0,0	v 0,1
v 1,-1	v 1,0	v 1,1

	$K(\mathbf{f}_{-1,-1},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{-1,0},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{-1,1},\mathbf{f}_{0,0})$	
\otimes	K(f _{0,-1} , f _{0,0})	$K(\mathbf{f}_{0,0},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{0,1},\mathbf{f}_{0,0})$	
	$K(\mathbf{f}_{1,-1},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{1,0},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{1,1},\mathbf{f}_{0,0})$	

wm	wm	wm
wm	wm	wm
wm	wm	wm

		$K(\mathbf{f}_{-1,-1},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{-1,0},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{-1,1},\mathbf{f}_{0,0})$	
(1	-	K(f _{0,-1} , f _{0,0})	$K(\mathbf{f}_{0,0},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{0,1},\mathbf{f}_{0,0})$,
		$K(\mathbf{f}_{1,-1},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{1,0},\mathbf{f}_{0,0})$	$K(\mathbf{f}_{1,1},\mathbf{f}_{0,0})$	

 $v' = Relu(corrected_v_mul_kernel \otimes W + bias)$

보정 전 vs 보정 후 (scale level=1 output)

물체의 경계에서 디스패리티가 번지는 현상이 개선됨.

문제점

• 무시되어야 할 픽셀의 커널(=어텐션?) 값이 0에 가깝지 않으면 보정 효과가 감소함.

무시되어야 할 픽셀의 커널 값이 0에 가깝더라도 완전히 0이 아닌 이상, 커널 값이 높은 픽셀의 텍스쳐가 너무 단조로우면 무시되어야 할 픽셀의 영향을 받을 수 있음

• => 가이드를 정말 잘 만들어야 함...

문제점 (scale_level=2 output)

커널 검정색 부분의 값이 약 0.13, 의자 팔걸이 상단부에서는 디스패리티가 번지지 않음

커널 상단 검정색 부분의 값이 각각 약 0.48, 0.37 의자 팔걸이 하단부에서는 디스패리티가 뻔짐

문제점 (scale_level=1 output) 텍스쳐가 단조로운 영역.

커널 검정색 부분의 값이 약 0.24임에도 디스패리티가 번짐.

붉은 세로선은 gt

텍스쳐가 단조로운 구간에서 매칭 스코어가 전체적으로 높게 나타나다 보니 약간의 잡음도 영향을 크게 주는 것으로 생각됨. 16

☆ ◆ → + Q 栞 🖺

PAC 모듈의 가이드 문제

Guide

- RGB channel:
 - 단점: 자잘한 텍스쳐에 취약함.
- Output of conv2_2(or something):
 - Rgb 이미지를 몇 번 컨볼루션 한 후 결과의 feature로 거리를 계산.
 - 단점: 엣지에 크게 영향을 받아서 down scale로 엣지 영향을 줄이지 않으면 사용할 수 없음 (실제 논문도 down scale(bilinear) 하고 사용)
- Sub-network (encoder-decoder, segmentation):
 - RGB 이미지를 인코더-디코더 네트워크로 처리한 결과의 feature로 거리를 계산
 - 단점: 세그멘테이션 전용의 훈련 데이터 셋을 확보하여 따로 훈련하지 않는 이상 Output of conv2_2의 단점이 그대로 나타나므로 down scale하여 사용해야 함.

Guide – RGB channel

- PAC 논문에서 joint upsampling task에 사용된 방식
- 다운 스케일이 필요하지 않다는 장점

- 자잘한 텍스쳐가 많은 영역에서 역효과를 냄.
 - 바이리터럴 필터(가우시안 스무딩)를 먼저 사용해서 자잘한 텍스쳐를 없애준 후 가이드로 사용 시 텍스쳐의 영향을 적게 받음
 - 너무 조잡한 방법 같음.
 - 현재 auto encoder 구조를 활용한 텍스쳐 소거 방안을 생각 중

Guide – Output of conv2_2

Guide – Output of conv2_2

- PAC 논문에서 semantic segmentation task에 사용된 방식
- https://drive.google.com/drive/u/0/folders/1tyM8tKgtlBHugx6 sfziK_vQxSnlF6VsV
 - 동영상 참조
- 다운스케일 하지 않으면 사용할 수 없는 수준.

다운스케일이 필요한 가이드 (scale_level=2 output)

스케일 레벨 0, 1, 2에 전부 가이드 적용

스케일 레벨 0, 1은 가이드를 적용하지 않고 스케일 레벨 2에만 가이드 적용한 경우²

다운스케일이 필요한 가이드

• 다운스케일이 필요한 가이드의 경우 scale level=0~1인 계층에서는 가이드를 이용하지 못하게 되는데 상위 레벨에서 이미 다른 물체의 feature가 섞여 들어가버리기 때문에 하위 레벨에서 디스패리티가 번지는데 영향을 줄 수 있다고 생각됨.

• 따라서 다운스케일이 필요한 가이드 생성 방법은 고려하지 않 겠음.

Guide의 다운 스케일 방법

PAC 논문 저자의 모델과 지금 사용 중인 모델에서는 스케일 별로 가이드를 요구하기 때문에 저자의 방식대로 하나의 가이드를 다운 스케일하여 사용하고자 함.

• Nearest 방식 혹은 PacPool 모듈을 쓰는 것이 더 나아보이며, 현재는 PacPool 모듈에 Gaussian 스무딩 기능을 추가하여 사용하는 중.

Guide의 다운 스케일 방법

• Bilinear 방식을 사용할 경우 물체의 경계에서 RGB값이 섞이기 때문에 주변 물체의 픽셀 값에 대한 경계의 픽셀 값의 I2 거리가 동시에 멀어질 수 있음

향후

- Multiscale attention
 - PAC joint upsampling을 사용한 scale level의 통합?
- Confidence와 변화율 사용
 - Confidence 값이 일정 수치 아래면 주변 픽셀의 디스패리티 변화율로 부터 디스패리티 계산