PROJECT REVIEW 1

PraTranV3

Prakrit Languages Translator

Under the Guidance of Mr. Kishor Pathak

Department of Information Technology, Vishwakarma Institute of Information Technology

Meet the Team

Sarvesh Chaudhari

PRN: 22210831 Roll No.: 332005

Sankalp Chakre

PRN: 22210615 Roll No.: 332004

Adwait Gondhalekar

PRN: 22211523 Roll no. : 332021

Nirdosh Chavhan

PRN: 22210030 Roll No.: 332011

Confidential

Introduction

- Prakrit is an ancient Middle Indo-Aryan language.
- Used in Jain, Buddhist, and classical Indian texts.
- Maharashtri Prakrit (previous project) vs.
 Ardha Magadhi Prakrit (current project).
- Why Ardha Magadhi?
- Language of early Jain and Buddhist scriptures.
- No existing machine translation models.

Aim of the Project

Develop an Ardha Magadhi Prakrit to English machine translation system. Fine-tune pre-trained LLMs (LLAMA, Claude, NLLB, M2M100, etc.) for accuracy. Use quantization techniques (LoRA, QLoRA) for efficient model adaptation (since we are going to fine tune LLM).

Deploy a web application to make translation accessible to researchers and the public.

Current Challenges

- Extremely Low-Resource Language
 No structured datasets.
- OCR Issues Google Vision API misreads Devanagari Prakrit as English.
- Complex Grammar Different from modern Indo-Aryan languages.
- Fine-tuning LLMs Requires
 efficient training strategies due to
 high computational cost.

खिक्तनवातायधाक्।अञ्चर्द्धस्मानस्माक्षकामलानिमग्रह्मविम्बानसालोखिगाविमहिमित्विद्वित्रातिविवचा।भूपहिनित्वाऽवीक्मग्रह्मविमन्ग्रीभाष् त्रावनी आश्रपद्वतिर्वयामि।वानावरमाय्यातेनवि।निहिशास्त्रिशास्त्रस्मि।वित्रयाश्रसमिति।वित्रयामान्त्रसाराणेववद्यातसवैमिति।।१५दशक्तेनवि।ति।वे विगापनानोङ्गांङ्गानान्यः स्वात्मकेत्रवस्त्रभूपेत्रावयवापवित्राण्यत्रभिविद्यममुखाद्यात्रसावगाः वर्षम् ग्रामङ्गितान्यङ्गेत्रास्य वर्षम् ववानस्यसमामायोदस्यमानवावगद्यवाविकर्ममहावलक्षमद्यासमावोकितजोकाजाकश्वरूपाकवज्ङ्यानमाविसेववि।तवश्ववृद्यस्यायोद्यस होतपारते। आणिबहर्षे। नसाहा। हात्रवस्त्रवस्त्रवस्त्रवस्त्रवानां साह्यास्त्रवस्त यश्तिनावगाधसंमारणनवसङ्गामवनपरित्राबाय दिस्यानिमि जिमारिनि रापि धीरखम्मिष्रघातनात्रामुक्या। विस्ति विष्कृते व व इंपाम द्वाना। यदि ह नाहिकं सर्ख्षान् मितिगम्पाता इद्धकं सविवा अनित्य इपनया निग सारायःसंमाराड्यास्तवधायाषिदादिनावाद्त्यादिञ्जापणनवअरूपेपरिना चयक्तिश्वानिमिनिमादि निर्धितसंद उष्टानेविद्वितीश्वानिमेनातेव मत्राज्ञ ये। धराधरावर एसा है। सर्वित्राई एक्यालयर यूलवर्षश्रमाहिं द्ध्य अयाजिअपीइमईपञ्चाराणतात्ता हाएसोएवाडासामइसङ्गाग्रतात्राञ्चव राइपविमाणं मिठानम्। राजमईविञ्राथनवम्तावादाविवंदामि॥ १३ त्यादि प्रसिद्धवाव रिनिरिवतं॥ प्तासुद्वाद्वास्नावतास्मध्येपंच मस्यामसंमारसावांनासं। पद्यातमाचिद्वविस्रराता सिक्षाम्याता तट्यमेग ना सोद्यापाला द्वाधा स्रविद्वतिगाया स्रवे दी॥एअनियङ्सावनातावदाद्व।नय्वाक्शवक्रावक्रविमनान्यनगर्याम्वनादिनिःसर्वेषकार्रातियङ्तिव्यञ्चसिद्वविष्ठअ।यशुक्रवाकालाक्शवक्रवाविषद्व खवा पिनवानादितावानां सर्वविद्याखनावितादान्यानित्यान्यवं वितादात्यान्यवं वितादान्याने वितादान्याने वितादान्याने पिक्रियमाणवादिति॥धनदिण्यघानदी इलिनवा छकादोत्रवादिधनकार्यामाधके बेनालीकविरिविकति छुप्तेगमादिनिष्टे हराज्यादिनिसुष्टमनसाको छेति।ततास्त्रयदि मिवयहद्वयाश्न्येमवाकन्विद्वसमिव्करिवरणदिक्तनम्श्निष्णवामवाञ्चत्वयाश्न्याकादिद्वातम्विष्वविगियवसमारिषिपुरमरवक्षवस्थित

Objectives

- Bridge the gap in Prakrit-to-English machine translation.
- Improve OCR-based text extraction from historical documents.
- Optimize models using fine-tuning techniques (LoRA, QLoRA).
- Ensure accessibility via a web-based translation tool.

Confidentia

Title	Technology + Dataset	Methodology	Advantage	Limitation	Accuracy
From LLM to NMT: Advancing Low-Resource Machine Translation with Claude(2024)	LLMs (GPT models, Claude), Traditional NMT (MarianNMT), Dataset: FLORES-200, TED Talks	Few-shot prompting, RLHF	More fluent outputs	May miss domain-specific nuances	LLM BLEU: 28.0 vs. Baseline BLEU: 25.0
Neural Machine Translation for Low-Resource Languages from a Chinese-centric Perspective: A Survey(2024)	Multilingual Transfer Learning, Adapter Layers, Contrastive Learning, Dataset: CCMatrix, CWMT	Byte-Pair Encoding (BPE), Character-level representations	Effective for script-based low-resource languages	May not generalize to different scripts	BLEU: 30.0, TER: 5% reduction from baseline
Advances in Interactive Machine Translation with Large Language Models(2024) Confidential Cop	Interactive LLMs (LLaMA, PaLM), Dataset: Synthetic datasets, UN Parallel Corpus	Human-in-the-loop, Dynamic feedback integration	Allows incremental improvement via user interaction	Less suited for batch processing	BLEU: 20.0 → 28.0 after feedback

LLMs for Machine Translation in Medium-Resourced Languages: Transfer Abilities & Parallel Data Impact(2024)	Fine-tuning models (LLaMA-2, mBART), Dataset: OPUS, Multilingual Common Crawl	Cross-lingual transfer, Parallel data impact analysis	Effective for medium-resource languages	May not extend to very low-resource cases	LEU: 26, chrF++: 44, COMET: 0.68
NusaMT-7B: Machine Translation for Low-Resource Indonesian Languages with Large Language Models(2024)	7B Parameter LLM, LoRA for efficient tuning, Dataset: Indonesian Wikipedia, OSCAR Corpus	LoRA-based adaptation for efficiency	Computationally efficient, adaptable for other low-resource languages	Specific to Indonesian, may not generalize	BLEU: 31, chrF: 47
Segment-Based Interactive Machine Translation for Pre-trained Models(2024)	Pre-trained LLMs, Segment-based translation, Dataset: Europarl, TED Talks	Implements a feedback loop to refine translations iteratively	Reduces translation errors by 15-20%	Requires additional user feedback mechanisms	BLEU, Human Evaluation
Machine Translation Evaluation Metrics Benchmarking: From Traditional MT to LLMs(2023)	Evaluation frameworks, comparing traditional MT metrics (BLEU, METEOR) with LLM-based (COMET), Dataset: FLORES, WMT Test Sets	Mathematical analysis of scoring systems	Provides metric guidance for evaluating translation models	Does not focus on model development	COMET: 0.7, TER: 25, chrF++: 50

Confidentia

Neural Machine Translation for Low-Resource Languages: A Survey(2023)	Transformer-based NMT, Data Augmentation, Unsupervised Learning, Dataset: OPUS, WMT	Training paradigms: data augmentation, semi-supervised learning, zero-shot translation	Covers multiple NMT methods	Lacks implementation details for LLMs	BLEU varies across methods
A Paradigm Shift: The Future of Machine Translation Lies with Large Language Models(2023)	LLMs (GPT-4, ChatGPT), Dataset: WMT, FLORES-200	Examines prompt-based translation vs. traditional NMT	Higher fluency and robustness	Challenges in domain-specific translations	Google (BLEU: 31.66), DeepL (BLEU: 31.22), Tencent (BLEU: 29.69), GPT-3.5 (BLEU: 24.73)
New Trends in Machine Translation using Large Language Models: Case Examples with ChatGPT(2023)	ChatGPT, Instruction-tuned models, Interactive MT, Dataset: Real-world MT datasets	Compares rule-based vs. data-driven approaches for MT	Highlights ChatGPT's interactive MT advantages	Inconsistencies in ChatGPT translations	BLEU varies based on prompt tuning
BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models(2023)	Transformer models, Instruction-tuned LLMs, Dataset: Multilingual translation datasets	Fine-tuning and interaction-based alignment	Improves cross-lingual alignment	Requires extensive fine-tuning	Outperforms baseline translation models by 3-5 BLEU points

Dict-NMT: Bilingual Dictionary-based NMT for Extremely Low-Resource Languages(2022)	NMT models + Bilingual Dictionaries, Dataset: Low-resource language pairs	Integrates bilingual dictionaries for translation improvement	Works for languages with no bilingual corpora	Needs quality bilingual dictionaries	BLEU-based evaluation (no exact score provided
Adapting the Tesseract OCR Engine for Tamil and Sinhala Legacy Fonts(2021)	Tesseract OCR, LSTM-based font recognition, Dataset: Tamil-Sinhala-English Parallel Corpus	Enhanced Tesseract for recognizing legacy fonts	Significant error reduction	Limited to printed text, no handwritten recognition	Error rate reduced (Tamil: 6.03% → 2.61%, Sinhala: 7.61% → 4.74%)
Sentence Level Alignment of Digitized Books Parallel Corpora	Alignment algorithms, Dataset: Digitized fiction & non-fiction books	Combines alignment algorithms with proactive learning	Improves precision in aligning translated texts	Effectiveness depends on text quality	Improved alignment precision (exact scores not provided)
Survey of Low-Resource Machine Translation(2018)	Statistical MT, NMT, Transfer Learning, Unsupervised MT, Dataset: OPUS, WMT	Multilingual modeling, adversarial training	Provides historical context for low-resource MT	Lacks recent advancements with LLMs	Transfer learning improves BLEU scores in low-resource pairs

Confidential

Gap Analysis

- 1. **Focus on Extremely Low-Resource Languages:** Most studies overlook languages with minimal data, such as Ardha Magadhi, which lack parallel corpora for effective NMT or LLM adaptation.
- Domain-Specific Translation Issues: While LLMs offer fluency, they
 often fail to handle specialized vocabulary, making them less reliable
 for niche or historical languages.
- 3. **OCR and Parallel Corpus Gaps:** There is limited research on integrating OCR tools and legacy font recognition for low-resource languages, which could enhance translation tasks.
- Interactive MT for Low-Resource Languages: User-feedback-based improvements are mainly explored for widely spoken languages, with limited focus on how such methods can aid translations for extremely low-resource languages.

Feasibility

Collaboration with Bhandarkar Institute.

Feasibility

Fine-tuning LLMs

Fine-tuning LLMs with quantization.

()

Computatio nal Cost

Requires efficient LoRA-based tuning.

Deployment Feasibility

Web application ensures accessibility.

Dataset Creation

- Data Source: Bhandarkar Institute's ancient texts.
- OCR Extraction: Using Google Vision API to extract text from scanned documents.
- Challenges:
 - OCR misinterpretation of Devanagari text (converted into English incorrectly).
 - Manual intervention needed for text correction.

Dataset Issues

- OCR Issues:
- Example Issue:
 - <English text> (Devanagari Prakrit)<English text>
 - Google Vision API incorrectly converts Devanagari to English.
- Solution:
 - Preprocessing pipeline with manual correction & custom OCR models.

गउह

परंत-स्र्ण-कमला थोअ-जलुब्बत्त-तुंग-णालाओ । इह रोह-सहलाबद्ध-मडह-बत्ताओ णलिणीओ ॥ ५२३ ॥ णिब्बार्वेति व हिअअं एए घण-मलिअ-तल-बणा गिरिओ । मुहल-विहंगा अ सरा सुण्ण-पसण्णाई अ वणाई ॥ ५२४ ॥ सिरआण तरंगिअ-पंक-बडल-पडिबद्ध-बालुआ मिसणा । एए ते पिरल-कास-पल्लवा पुलिण-वित्यारा ॥ ५२५ ॥ इह मत्ताणेअ-विहंग-मुहल-कल्लोल-कलअलुप्तित्या ॥ ५२५ ॥ इह मत्ताणेअ-विहंग-मुहल-कल्लोल-कलअलुप्तित्या ॥ ५२६ ॥ एए पूरालुंखण-विराअ-पंकोल्ल-पढम-वित्यारा । पर पूरालुंखण-विराअ-पंकोल्ल-पढम-वित्यारा । जाआ अहिणव-णिग्नम-हरिअ-सिहा सहलुदेसा ॥ ५२७ ॥ कमल-वण-विणिग्नअ-मुहल-कुकुहा सायिमह सुहार्वेति । थोजम्हाअंतुम्मसअ-सहला कच्ल-बोच्लेआ ॥ ५२८ ॥ संज्ञ-चुण्ण-सबला इह णिहसण-मिसण्-बामळूराओ । विदिमाण पअंतर-णिंत-विसम-हरिआओ पअवीओ ॥ ५२९ ॥

पर्यन्तत्वनकमलाः स्तोकजलीर्वृत्तत्व्यानालाः। इह रोधःशाद्वला-वद्वाल्पपत्रा निलन्यः ॥ ५२३ ॥ निर्वापयन्तीव हृदयमेते घनमर्दिततलवना गिरयः। मुखरिवहङ्गानि च सर्रासि शून्यप्रसन्नानि च वनानि ॥ ५२४ ॥ सरितां तरङ्गितपङ्कपटलप्रतिबद्धवालुका मसुणाः। एते प्रविरलकाश-पल्ठवाः पुलिनविस्ताराः ॥ ५२५ ॥ इह मत्तानकविहङ्गमुखरक्छोल्कल-कल्जवस्ताः। विरलं स्वपन्ति सरसीपरिसरपरिवेशिनो ग्रामाः ॥ ५२६ ॥ एते पूरस्पर्शनविलीनपङ्कार्द्वप्रथमविस्ताराः। जाता अभिनविर्मम-हरितिशिखाः शाद्वलोद्देशाः ॥ ५२७ ॥ कमल्वनविनिर्गतसुखरकुक्कुमाः सायमिह सुखयन्ति । स्तोकोष्मायमाणोन्मशक्तशाद्वलाः कच्छविच्छदाः ॥ ५२८ ॥ श्वृक्कण्णेशवला इह निर्धापामसृणवल्मीकाः । गण्डकानां पदान्तरिनर्यद्विषमहरिताः पद्वयः॥ ५२९ ॥

Jain Education International

For Private & Personal Use On

www.iainelibrary.org

५२४. णिव्यायंति व, णिव्यायंति व घणमिल्यिः. ५२५. वालुकशासा for वालुया मसिणा. कासपेड्रसा for कासपल्लया. ५२६. मुहर् for मुहले. परिसरसरसीपरिवेसिणो – Reading adopted by the commentator, सरसीपरिसरपरिवासिणो for सरसीपरिसरपरिवासिणो. ५२५. िणग्यः. ५२९. किडिसाण for विडिमाण.

Methodology

- We are going to first extract text from the Text sources that have been collected
- From these extracted texts we have to create a parallel corpora.
- Using this Parallel Corpora we will fine tune LLMs or SMT using Quantization techniques like LoRA and QLoRA to save computation costs.
- Finally we will deploy the model on cloud and create an inference pipeline

Model Fine Tuning Strategy

- Base Models: LLAMA, Claude, M2M100, NLLB.
- Fine-Tuning Approach:
 - LoRA & QLoRA for low-memory fine-tuning.
 - Hyperparameter tuning (batch size, learning rate, epochs).
 - RLHF (Reinforcement Learning from Human Feedback)
 - Contrastive Learning
- Evaluation Metrics: BLEU, METEOR, chrF++, BERT score, COMET.

Thank You