

单元1.4 无向图的连通度

第14章 图的基本概念

14.3 图的连通性

参考书目: 戴一奇等,《图论与代数结构》,清华大学出版社 讲义参考北京大学《离散数学》及电子科技大学《离散数学》讲义

内容提要

- 点割集、点连通度
- 边割集、边连通度

网络鲁棒性量化分析

如何定量比较连通性?

• 如何定义一个图比另一个图的连通性更好?

点连通度、边连通度

- 为了破坏连通性,至少需要删除多少个顶点?
- 为了破坏连通性,至少需要删除多少条边?
- "破坏"连通性:
 - p(G-V') > p(G)
 - -p(G-E')>p(G)
 - 连通分支数增加

割点

- · v是割点 ⇔ {v}是割集
- 例: G₁中f是割点, G₂中无割点

点割集

- 点割集: G=<V,E>, ∅≠V′⊂V, (1) p(G-V′)>p(G);
 - (2) ∀ V"⊂V', p(G-V")=p(G) (极小性条件)
- 例 G₁: {f},{a,e,c},{g,k,j}, {b,e,f,k,h}不是 G₂: {f}不是,{a,e,c},{g,k,j},{b,e,f,k,h}

割点的充分必要条件

• 定理:

无向连通图G中顶点v是割点

 \Leftrightarrow 可把V(G)-{v}划分成 V_1 与 V_2 ,使得从 V_1 中任意顶点 u到 V_2 中任意顶点w的路径都要经过v. #

割点的充分必要条件

- 推论: 无向连通图G中顶点v是割点
- ⇒ 存在与v不同的顶点u和w,使得从顶点u到w的路径都要经过v. #

边割集

- 边割集: G=<V,E>, Ø≠E'⊂E, (1) p(G-E')>p(G);
 - (2) ∀E"⊂E', p(G-E")=p(G) (极小性条件)
- 例: G₁: {(a,f),(e,f),(d,f)}, {(f,g),(f,k),(j,k),(j,i)}, {(c,d)}不是, {(a,f),(e,f),(d,f),(f,g),(f,k),(f,j)}不是 G₂: {(b,a),(b,e),(b,c)}

举例

• 求下图的全部点割集,并指出其中的割点。

引理1

- 设E'是边割集,则p(G-E')=p(G)+1.
- 证: 如果p(G-E')>p(G)+1,则E'不是边割集,因为不满足定义中的极小性. #
- 注: 点割集无此性质

割边(桥)

- (u,v)是割边 ⇔ {(u,v)}是边割集
- 例: G₁中(f,g)是桥, G₂中无桥

扇形割集

- E'为扇形割集: 边割集E'⊆ v的关联集I_G(v)
- $I_{G}(v)$ 不一定是边割集(不一定极小)
- I_G(v)是边割集⇔v不是割点

桥的充分必要条件

- 定理: 无向连通图G中边e是桥
- ⇔ G的任何圈都不经过e
- \Leftrightarrow 可把V(G)划分成 V_1 与 V_2 ,使得从 V_1 中 任意顶点u到 V_2 中任意顶点v的路径都要经过e. #

扇形割集举例

- {(a,g),(a,b)},{(g,a),(g,b),(g,c)},
- {(c,d)}, {(d,e),(d,f)}
- {(d,c),(d,e),(d,f)}不是

点连通度

- G是无向连通非完全图,κ(G) = min{ | V' | | V'是G的点割集 }
- 规定: κ(K_n) = n-1
 非完全图点连通度最多n-2
 G非连通: κ(G)=0
 (平凡图N₁连通, 但κ(N₁) = κ(K₁) = 0)

点连通度举例

• $\kappa(G)=1$, $\kappa(H)=2$, $\kappa(F)=3$, $\kappa(K_5)=4$

边连通度

- G是无向连通图,
 λ(G) = min{ | E'| | E'是G的边割集 }
- 规定: G非连通: λ(G)=0

边连通度举例

• $\lambda(G)=1$, $\lambda(H)=2$, $\lambda(F)=3$, $\lambda(K_5)=4$

举例

• 求下图的点连通度和边连通度。

引理2

设E'是非完全连通图G的最小边割集,
 G-E'的两个(引理1)连通分支是G₁,G₂,
 则存在u∈V(G₁), v∈V(G₂), 使得(u,v) ∉E(G).

引理2证明

- 证: (反证) 否则
 λ(G) = |E'| = |V(G₁)|×|V(G₂)|
 ≥ |V(G₁)|+|V(G₂)|-1=n-1,
 与G非完全图相矛盾! #
- $a \ge 1 \land b \ge 1 \implies (a-1)(b-1) \ge 0$ $\Leftrightarrow ab-a-b+1 \ge 0 \Leftrightarrow ab \ge a+b-1.$

k-(边)连通图

• k-连通图: κ(G)≥k

• K-边连通图: λ(G) ≥ k

• 例: 彼得森图: κ=3, λ=3

它是1-连通图, 2-连通图, 3-连通图,

但不是4-连通图

它是1-边连通图, 2-边连通图, 3-边连通图,

但不是4-边连通图

Whitney定理

- 定理7.10(Whitney不等式): 任意G,
 κ(G) ≤ λ(G) ≤ δ(G).
- 推论: k-连通图一定是k-边连通图. #

定理

• 定理: 对3-正则图G,

 $\kappa(G) = \lambda(G)$.

· 彼得森图: κ=3, λ=3

https://blog.csdn.net/mygodhome/article/details/6000896

Whitney定理证明

- 目标: κ≤λ≤δ.
- 证明: 不妨设G是 3阶以上 连通 非完全 简单图. (否则可直接验证结论成立).

Whitney定理证明

- 第一部分: λ≤δ
- 证明: 设 $d_G(v) = \delta$. $I_G(v) = \{ (u,v) \mid (u,v) \in E(G) \}$ 则必有扇形边割集 $S \subseteq I_G(v)$, 所以, $\lambda \leq |S| \leq |I_G(v)| = \delta$.

Whitney定理证明

• 如下构造V": 对任何 $e \in E$ ', 选择e的异于u,v的一个端点放入V". 则 u, $v \in G$ -V" $\subseteq G$ -E'= $G_1 \cup G_2$, 所以 V"中含有点割集V'. 故 $\kappa \leq |V'| \leq |V''| \leq |E'| = \lambda$.#

Whitney定理证明

- 第二部分: κ≤λ
- 证明: 设边割集E'满足|E'|= λ . 根据引理1和引理2, 设G-E'的两个连通分支是 G_1 和 G_2 , 设 $u \in V(G_1), v \in V(G_2)$, 使得 $(u,v) \notin E(G)$.

Open Question Points: 10

- 1) 已知无向图G是k-连通图, $k \ge 1$ 。能确定G的点连通度吗?
- 2) 已知无向图G满足 $\kappa(G) = \delta(G)$,试确定其边连通度 $\lambda(G)$ 。
- 3) 已知无向图G既有割点又有桥,试确定其点连通度及边连通度。由已知条件能确定G的最小度 $\delta(G)$ 吗?

小结

- 点割集, 边割集, 点(边) 连通度κ(λ);
- κ, λ, δ之间 关系, Whitney 定理等
- 割点,桥的充要条件

