Neural Network Architectures for Short Text

Agenda

- Introduction
- Background
- Related Work
- Models Compared
- Experiments Performed
- Experimental Comparison
- Conclusion and Future Work

Introduction

- Introduction
- Background
- Related Work
- Models Compared
- **Experiments Performed**
- **Experimental Comparison**
- Conclusion and Future Work

- 1. Motivation
- 2. Purpose
- 3. Contributions
- Experiment Overview

Motivation

- Neural networks are end-to-end trainable.
- Language is a catalyst for learning and discovery.
- Large language barrier between humans and machines!

Purpose

- Investigate neural network models used for short text data.
- Gather insight into relative strengths and shortcomings of different models.
- Apply insight to larger integrated systems.

Contributions

- Comparison of four neural network models:
 - Three short-text classification datasets (sample sentence, numerical label)
 - Supervised learning task
 - Semi-Supervised learning task
- Model behavior and analysis:
 - Visualization of learned representations
 - Clustering learned representations
 - Comparison to traditional text representations

Comparison Overview

Background

- Introduction
- Background
- Related Work
- Models Compared
- Experiments Performed
 - **Experimental Comparison**
- Conclusion and Future Work

- 1. NLU
- 2. Clustering
- 3. Neural Networks
- 4. Bag of Words
- 5. TF-IDF
- 6. Word Embeddings
- 7. Features in Text

Natural Language Understanding (NLU)

- Machine comprehension of language as it normally appears to humans.
 - Text
 - Speech
- Challenges:
 - Language is dynamic
 - Hard to define rule-based system
 - Machines accept numerical values

Clustering

Search for K separable groups in categorical

data.

Unsupervised

- K-Means algorithm:
 - Prior choice of K
 - Representative

Neural Networks

- Network of linear/nonlinear processing units.
- End-to-end trainable with gradient descent optimization.

Text Representation: Bag of Words

Text Representation: TF-IDF

- Term Frequency: # of occurrences of a word in one text sample.
- Document Frequency: # of occurrences of a word throughout all text samples.

$$w_i = t_i \log \frac{N}{d_i} \qquad \forall i = 1...|V|$$

Text Representation: Word Vectors

- Words -> word vectors
- Text sequence -> word embedding matrix

Features in Text

- Syntactic Features:
 - Part-of-speech (POS) tags
 - Chunks of POS patterns
- Semantic Features:
 - Topic
- Named Entities
 - Sentiment
 - Intent
 - Question-Type, Answer-Type and Modifiers

Related Work

- Introduction
- Background
- Related Work
- Models Compared
- Experiments PerformedExperimental Comparison
- Conclusion and Future Work

- Text Enrichment
- Neural Networks for Text Data

Text Enrichment

 Convert text to a feature vector X through text enrichment.

Neural Networks for Text

- Automatically learn features relevant to task.
- Equal or better performance than text enrichment models.

Models Compared

- Introduction
- Background
- Related Work
- Models Compared
- **Experiments Performed**
 - **Experimental Comparison**
- Conclusion and Future Work

- 1. NBOW
- 2. LSTM
- 3. TCNN
- 4. DCNN

Neural Bag of Words (NBOW) Model

Long Short-Term Memory (LSTM) Model

Max-Over-Time Convolutional Neural Network (TCNN) Model

Dynamic Convolutional Neural Network (DCNN) Model

Experiments Performed

- Introduction
- Background
- Related Work
- Models Compared
- Experiments Performed
 - Experimental Comparison
- Conclusion and Future Work

- Supervised
 Classification Task
- Semi-Supervised Learning Task
- Clustering
 Learned Text
 Representations

Supervised Classification Task

- Train each model on each dataset with some hyperparameters held constant.
- Softmax output for K labels with cross entropy loss.

$$l_i = -\sum_{j}^{k} y_{ij} log(\hat{y}_{ij})$$

Hyperparameter	Value
d	300
η	1×10^{-3}
h	100
P(keep)	0.5

Semi-Supervised Learning Task¹

- Learn latent vector representations from a K-means inspired objective.
- Pre-train model with 10% labeled samples.

$$J = \alpha \sum_{i=1}^{N} \sum_{j=1}^{k} r_{ij} \delta_{ij} + (1 - \alpha) \sum_{i=1}^{L} \{ \delta_{ig_i} + \sum_{l \neq g_i} \max (m + \delta_{ig_i} - \delta_{il}, 0) \}$$
 where,

 $\delta_{ij} = ||f(x_i) - \mu_j||^2$

Hyperparameter	Value
d	300
h	100
P(keep)	0.5

Semi-Supervised Learning Task

Parameter	Description	
alpha	Weighting to control influence of labeled data. Lower <i>alpha</i> = More influence of labeled data.	
r _{ij}	Cluster assignments for all samples. 1 if sample i is assigned to cluster j, 0 otherwise. $\mathbf{R}^{N \times K}$ matrix stores all r_{ij} values for a datase with N samples and K unique labels.	
μ_j	h dimensional centroid for cluster j.	
g_{i}	Mapping from truth label i to cluster label g_i	

Clustering Learned Text Representations

- Perform K-means on learned latent representations with K centroids.
- External cluster evaluation using dataset labels (F-Measure and Adjusted Mutual Info).

$$F = \frac{1}{K} \sum_{i}^{K} \frac{2p_i r_i}{p_i + r_i}$$

$$AMI(\mathcal{C}, \mathcal{T}) = \frac{I(\mathcal{C}, \mathcal{T}) - E[I(\mathcal{C}, \mathcal{T})]}{\max(H(\mathcal{C}), H(\mathcal{T})) - E[I(\mathcal{C}, \mathcal{T})]}$$

Experimental Comparison

- Introduction
- Background
- Related Work
- Models Compared
 - **Experiments Performed**
- **Experimental Comparison**
- Conclusion and Future Work

- 1. Datasets
- Supervised Classification Results
- 3. Semi-Supervised Learning Results
- 4. Clustering Results

Short Text Datasets

Question-Type²

- Answer categories for sample questions
- K = 6 classes
- (Abbreviation, Entity, Description, Human, Location, Number)

StackOverflow³

- Programming topic categories for StackOverflow queries
- K = 20 classes
- (matlab, bash, apache, excel, etc.)

AG-News⁴

- General news topic categories for news titles
- K = 4 classes
- (World, Sports, Business, Sci/Tech)

^[2] Learning Question Classifiers (Li, Roth - 2002)

^[3] Short Text Clustering via Convolutional Neural Networks (Xu, Wang, Tian, Zhao, Wang, Hao - 2015)

^[4] Character-level Convolutional Networks for Text Classification (Zhang, Zhao, LeCun - 2015)

Dataset Statistics

Dataset	Question-Type	StackOverflow	AG-News
N	5,952	20,000	127,600
N_{train}	5,452	16,000	120,000
N_{test}	500	4,000	7,600
n_{max}	39	36	20
n_{avg}	10	8	6
V	8,983	18,927	50,627

Supervised Classification Results: Testing Set Accuracy

Model/Dataset	Question-Type	StackOverflow	AG-News
NBOW	86.36 ± 0.43	85.27 ± 0.05	84.62 ± 0.15
LSTM	87.48 ± 0.52	76.20 ± 0.50	84.26 ± 0.14
TCNN	88.60 ± 0.66	84.65 ± 0.17	84.78 ± 0.29
DCNN	86.04 ± 0.50	85.38 ± 0.26	85.59 ± 0.41

Supervised Classification Results: Intra/Inter Neighbor Separation

Model/Dataset	Question-Type	StackOverflow	AG-News
NBOW	1.79/4.89/3.10	2.56/6.60/4.04	3.73/10.66/6.93
LSTM	1.36/6.37/5.01	2.45/6.11/3.66	2.22/4.12/1.90
TCNN	2.31/10.33/8.02	3.10/11.74/8.64	4.73/14.44/9.71
DCNN	2.11/8.28/6.17	2.90/9.95/7.05	3.78/13.84/10.06

(intra-neighbor/inter-neighbor/difference margin)

Supervised Classification Results: Question-Type Visualizations

Semi-Supervised Learning Results: Question Type Visualizations

Clustering Results: Semi-Supervised Learned Representations on Question-Type

	Model	AMI	F-Measure	AMI	F-Measure
	Model	Pre-Train Only	Pre-Train Only	Full-Task	Full-Task
ĺ	NBOW	0.425 ± 0.005	0.593 ± 0.014	0.441 ± 0.009	0.706 ± 0.025
	LSTM	0.460 ± 0.007	0.641 ± 0.007	0.492 ± 0.017	0.699 ± 0.020
	TCNN	0.453 ± 0.010	0.632 ± 0.008	0.432 ± 0.010	0.621 ± 0.017
	DCNN	0.420 ± 0.012	0.607 ± 0.009	0.433 ± 0.014	0.566 ± 0.025

Representation	AMI	F-Measure
BOW	0.140	0.306
TF-IDF	0.157	0.375

Conclusion and Future Work

- Introduction
- Background
- Related Work
- Models Compared
- **Experiments Performed**
- **Experimental Comparison**
- Conclusion and Future Work

- 1. Observations
- 2. Insights
- 3.

Observations

- Classification: at least one CNN-based model with top performance.
- Classification: LSTM seems to struggle with a large amount of labels
- Semi-supervised learning: models that achieve less neighbor separation generally result in in better clustering

Results Suggest...

- Less decisive -> better ability to correct mistakes during further learning.
- Performance is dependent on both model architecture and dataset characteristics.
- Word vector utilization varies.
- LSTM: whole sentence level features.
- CNN: single/multiple word level features.

Future Work: Pre-Trained Word Vectors

- Pre-training word vectors can increase performance.
- Quantify the utilization of word vectors depending on model architecture.

Future Work: IBM HEALS

- Health Empowerment by Analytics, Learning and Semantics.
- Chat-bot health informative framework.
- Subsystem: organize user queries into intent groups.
- Use groupings to help construct chat-bot dialog tree.

Future Work: Alternative Models

- Autoencoders with adversarial learning⁵:
 - Latent representations can be constrained by a classification distribution for semi-supervised learning.
- "Siamese" network architectures⁶:
 - Pair-wise similarity learning increases training size and simplifies labeling of data.
 - Features extracted by comparative learning

Thank You!

• Questions?

