

Roadmap and Concluding Remarks

Manuel E. Acacio

Attention: Tutorial is being recorded

Agen	da
------	----

Time (CET)	Time (ET)	Topic	Presenter
14:00 – 14:40	8:00 – 8:40	Flexible Accelerators	Tushar Krishna
14:40 – 15:10	8:40 – 9:10	Cycle accurate simulation and Overview of STONNE	José Luis Abellán
15:10 – 16:10	9:10 – 10:10	(Hands-on) STONNE Deep-Dive	Francisco Muñoz-Martínez
16:10 – 16:40	10:10 - 10:40	Coffee Break	
16:40 – 17:10	10:40 - 11:10	(Hands-on) STONNE Deep-Dive	Francisco Muñoz-Martínez
17:10 – 17:40	11:10 – 11:40	Dataflow exploration for Graph Neural Networks	Raveesh Garg
17:50 – 18:00	11:50 – 12:00	Roadmap for Future Development	Manuel Acacio

Tutorial Website https://stonne-simulator.github.io/ASPLOSTUT.html *includes agenda and STONNE/OMEGA installation instructions*

STONNE Roadmap

Current version of STONNE (v1) publicly available at:

https://github.com/stonne-simulator/stonne

- Ongoing and future development of the STONNE framework envisages two main directions:
 - Extension of the functionality of STONNE
 - 2. Integration of STONNE with other tools
- Several of these new features are expected to be available in a subsequent release (v2) scheduled by end of the July 2022

STONNE Roadmap

- 1. Extension of the functionality of STONNE:
 - Simulation of non computation-intensive layers (e.g. Max/Avg Pooling)

Additional dataflows for GEMM computation:

• Link with other DL frameworks (e.g. TensorFlow Lite)

Simulation of training processes

STONNE Roadmap

2. Integration of STONNE with other tools:

 Inclusion of mRNA tool¹ for transparent configuration of flexible accelerator architectures

• Inclusion of STONNE in **SST**² (Structural Simulation Toolkit)

https://github.com/stonne-simulator/sst-elements-with-stonne

- Support for a detailed memory hierarchy (e.g. Buffets³ support), including DRAMsim3⁴ connection
- Integration of STONNE in gem5⁵ to allow for detailed study of CPU-Accelerator interaction

¹Z. Zhao *et al., "mRNA: Enabling Efficient Mapping Space Exploration for a Reconfigurable Neural Accelerator,"* Proc. of ISPASS 2019. ²http://sst-simulator.org/

³M. Pellauer *et al.*, "Buffets: An efficient and composable storage idiom for explicit decoupled data orchestration," Proc. of ASPLOS 2019. ⁴https://github.com/umd-memsys/DRAMsim3

⁵https://www.gem5.org/

OMEGA Roadmap

Current version of OMEGA (v1) publicly available at:

https://github.com/stonne-simulator/omega

- Ongoing and future development of the OMEGA framework also envisages two main directions:
 - 1. Extension of the functionality of OMEGA
 - 2. Integration of OMEGA with other tools

OMEGA Roadmap

1. Extension of the functionality of OMEGA:

- Generalize the analysis for dataflows for multiphase computation like DL recommendation models or HPC kernels like Conjungate gradient.
- Build a mapping optimizer on top of this work:
 - The **taxonomy** of the proposed dataflows will help formalize the design-space for mapping search.
 - The OMEGA framework can be used as a cost model that the mapping search tool can employ.

OMEGA Roadmap

2. Integration of OMEGA with other tools:

- It is possible to use the OMEGA frameworks with other simulation tools or analytical models in addition to STONNE.
- The parameters and timestamps from these tools can be fed into the inter-phase cost model.
- With STONNE's integration with SST, it would also be possible to instantiate STONNE two times and write a configuration file for each inter-phase dataflow strategy to execute GNNs and study the execution of GNNs with traditional memory hierarchy.

Concluding remarks

- Some takeaways:
 - Use of current analytical models can lead to significant inaccuracies in performance and energy consumption estimations when it comes to more complex DDN accelerator microarchitectures
 - Having to build the RTL model of a DNN accelerator does not allow for rapid quantification
 of the efficacy of architectural enhancements during the early stages of a design
 - → Need for cycle-level DNN architectural simulation
 - STONNE is able to model rigid and flexible accelerators, and data-dependent optimizations,
 all performing the actual computation of complete DNN models
 - STONNE can be easily extended to model new accelerator architectures
 - Also, STONNE can be a building block for modeling other DL accelerators:
 - The OMEGA framework builds on top of STONNE to enable modeling of the cost of the pipelined GNN dataflows

Concluding remarks

- Willing to contribute?
 - For bug notices please create a new issue on the corresponding Git repository (main simulator, SST plugin or OMEGA)

https://github.com/stonne-simulator

 For additional extensions to be included in the public release or suggestions for enhancements, please contact:

stonnesimulator@gmail.com

Thank you for your interest in the STONNE ecosystem!

Tushar Krishna

José L. Abellán

Franciso Muñoz-Martínez

Raveesh Garg

Manuel E. Acacio

STONNE: A Simulation Tool for Neural Network Engines

Francisco Muñoz-Martínez, Raveesh Garg, José L. Abellán, Manuel E. Acacio, Tushar Krishna