Lecture 5: Duality and KKT Conditions

- Lagrange dual function
- Lagrange dual problem
- strong duality and Slater's condition
- KKT optimality conditions
- sensitivity analysis
- generalized inequalities

Lagrangian

standard form problem, (for now) we don't assume convexity

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- optimal value p^* , domain D
- called **primal problem** (in context of duality)

Lagrangian $L: \mathbb{R}^{n+m} \to \mathbb{R}$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- $\lambda_i \geq 0$ and ν_i called Lagrange multipliers or dual variables
- objective is *augmented* with weighted sum of constraint functions

Lagrange dual function

(Lagrange) dual function $g: \mathbb{R}^m \to \mathbb{R} \cup \{-\infty\}$

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)$$

- minimum of augmented cost as function of weights
- ullet can be $-\infty$ for some λ and u
- g is concave (even if f_i not convex!)

example: LP

$$\text{minimize} \quad c^Tx \\ \text{subject to} \quad a_i^Tx - b_i \leq 0, \ i = 1, \dots, m \\ \text{Note that } L(x,\lambda) = c^Tx + \sum_{i=1}^m \lambda_i (a_i^Tx - b_i) = -b^T\lambda + (A^T\lambda + c)^Tx \\ \text{hence } g(\lambda) = \left\{ \begin{array}{ll} -b^T\lambda & \text{if } A^T\lambda + c = 0 \\ -\infty & \text{otherwise} \end{array} \right.$$

Lower bound property

if x is primal feasible, then

$$g(\lambda, \nu) \le f_0(x)$$

proof: if $f_i(x) \leq 0$ $h_i(x) = 0$, and $\lambda_i \geq 0$,

$$f_0(x) \ge f_0(x) + \sum_i \lambda_i f_i(x) + \sum_i \nu_i h_i(x) \ge \inf_z \left(f_0(z) + \sum_i \lambda_i f_i(z) + \sum_i \nu_i h_i(z) \right) = g(\lambda, \nu)$$

 $f_0(x) - g(\lambda, \nu)$ is called the **duality gap**

minimize over primal feasible x to get, for any $\lambda \succeq 0$ and ν ,

$$g(\lambda, \nu) \leq p^{\star}$$

 $\lambda \in \mathbf{R}^m$ and $\nu \in \mathbf{R}^p$ are dual feasible if $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$

dual feasible points yield lower bounds on optimal value!

Lagrange dual problem

let's find **best** lower bound on p^* :

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$

- called (Lagrange) dual problem (associated with primal problem)
- always a convex problem, even if primal isn't!
- ullet optimal value denoted d^\star
- we always have $d^{\star} \leq p^{\star}$ (called *weak duality*)
- $p^* d^*$ is optimal duality gap

Strong duality

for convex problems, we (usually) have strong duality:

$$d^{\star} = p^{\star}$$

when strong duality holds, dual optimal λ^{\star} serves as **certificate of optimality** for primal optimal point x^{\star}

many conditions or constraint qualifications guarantee strong duality for convex problems

Slater's condition: if primal problem is strictly feasible (and convex), *i.e.*, there exists $x \in \mathbf{relint} D$ with

$$f_i(x) < 0, \ i = 1, \dots, m$$

$$h_i(x) = 0, \ i = 1, \dots, p$$

then we have $p^{\star} = d^{\star}$

Dual of linear program

(primal) LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

ullet n variables, m inequality constraints

dual of LP is (after making implicit equality constraints explicit)

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0 \\ & \lambda \succeq 0 \end{array}$$

- dual of LP is also an LP (indeed, in std LP format)
- ullet m variables, n equality constraints, m nonnegativity contraints

for LP we have strong duality except in one (pathological) case: primal and dual both infeasible $(p^* = +\infty, d^* = -\infty)$

Dual of quadratic program

(primal) QP

minimize $x^T P x$ subject to $Ax \leq b$

we assume P > 0 for simplicity Lagrangian is $L(x, \lambda) = x^T P x + \lambda^T (Ax - b)$ $\nabla_x L(x, \lambda) = 0$ yields $x = -(1/2)P^{-1}A^T\lambda$, hence dual function is

$$g(\lambda) = -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

- concave quadratic function
- all $\lambda \succeq 0$ are dual feasible

dual of QP is

$$\begin{array}{ll} \text{maximize} & -(1/4)\lambda^TAP^{-1}A^T\lambda - b^T\lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

... another QP

Equality constrained least-squares

$$\begin{array}{ll} \text{minimize} & x^T x \\ \text{subject to} & Ax = b \end{array}$$

A is fat, full rank (solution is $x^{\star} = A^{T}(AA^{T})^{-1}b$)

dual function is

$$g(\nu) = \inf_{x} \left(x^{T} x + \nu^{T} (Ax - b) \right) = -\frac{1}{4} \nu^{T} A A^{T} \nu - b^{T} \nu$$

dual problem is

maximize
$$-\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

solution: $\nu^{\star} = -2(AA^T)^{-1}b$

can check $d^{\star} = p^{\star}$

Introducing equality constraints

idea: simple transformation of primal problem can lead to very different dual

example: unconstrained geometric programming

primal problem:

minimize
$$\log \sum_{i=1}^m \exp(a_i^T x - b_i)$$

dual function is constant $g=p^\star$ (we have strong duality, but it's useless)

now rewrite primal problem as

minimize
$$\log \sum_{i=1}^{m} \exp y_i$$
 subject to $y = Ax - b$

let us introduce

- m new variables y_1, \ldots, y_m
- m new equality constraints y = Ax b

dual function

$$g(
u) = \inf_{x,y} \left(\log \sum_{i=1}^m \exp y_i +
u^T (Ax - b - y) \right)$$

- infimum is $-\infty$ if $A^T \nu \neq 0$
- assuming $A^T \nu = 0$, let's minimize over y:

$$\frac{e^{y_i}}{\sum_{j=1}^m e^{y_j}} = \nu_i$$

solvable iff $\nu_i > 0$, $\mathbf{1}^T \nu = 1$

$$g(
u) = -\sum_i
u_i \log
u_i - b^T
u$$

• same expression if $\nu \succeq 0$, $\mathbf{1}^T \nu = 1 \ (0 \log 0 = 0)$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T \nu - \sum_i \nu_i \log \nu_i \\ \text{subject to} & \mathbf{1}^T \nu = 1, \quad (\nu \succeq 0) \\ & A^T \nu = 0 \end{array}$$

moral: trivial reformulation can yield different dual

Duality in algorithms

many algorithms produce at iteration k

- ullet a primal feasible $x^{(k)}$
- ullet a dual feasible $\lambda^{(k)}$ and $u^{(k)}$

with
$$f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)}) \to 0$$
 as $k \to \infty$

hence at iteration k we **know** $p^\star \in \left[g(\lambda^{(k)}, \nu^{(k)}), f_0(x^{(k)})\right]$

- useful for stopping criteria
- \bullet algorithms that use dual solution are often more efficient (e.g., LP)

Nonheuristic stopping criteria

absolute error
$$= f_0(x^{(k)}) - p^* \le \epsilon$$

stopping criterion: **until**
$$\left(f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)}) \le \epsilon\right)$$

$$\text{relative error} = \frac{f_0(x^{(k)}) - p^\star}{|p^\star|} \leq \epsilon$$

stopping criterion:

$$\mathbf{until}\left(g(\lambda^{(k)}, \nu^{(k)}) > 0 \ \& \ \frac{f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)})}{g(\lambda^{(k)}, \nu^{(k)})} \leq \epsilon\right) \ \mathbf{or}\left(f_0(x^{(k)}) < 0 \ \& \ \frac{f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)})}{-f_0(x^{(k)})} \leq \epsilon\right)$$

achieve **target value** ℓ or, prove ℓ is unachievable (i.e., determine either $p^* \leq \ell$ or $p^* > \ell$)

stopping criterion: until
$$\left(f_0(x^{(k)}) \leq \ell \text{ or } g(\lambda^{(k)},
u^{(k)}) > \ell \right)$$

Complementary slackness

suppose x^* , λ^* , and ν^* are primal, dual feasible with zero duality gap (hence, they are primal, dual optimal)

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right) \le f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$$

hence we have $\sum_{i=1}^{m} \lambda_i^{\star} f_i(x^{\star}) = 0$, and so

$$\lambda_i^{\star} f_i(x^{\star}) = 0, \quad i = 1, \dots, m$$

- called **complementary slackness** condition
- ith constraint inactive at optimum $\Longrightarrow \lambda_i = 0$
- \bullet $\lambda_i^{\star} > 0$ at optimum $\Longrightarrow i$ th constraint active at optimum

KKT optimality conditions

suppose

- f_i and h_i are differentiable
- x^* , λ^* , and ν^* are (primal, dual) optimal, with zero duality gap

by complementary slackness we have

$$f_0(x^*) + \sum_i \lambda_i^* f_i(x^*) = \inf_x \left(f_0(x) + \sum_i \lambda_i^* f_i(x) + \sum_i \nu_i^* h_i(x) \right)$$

i.e., x^* minimizes $L(x, \lambda^*, \nu^*)$

therefore

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0$$

so if x^* , λ^* , and ν^* are (primal, dual) optimal, with zero duality gap, they satisfy

$$f_i(x^*) \le 0$$

$$h_i(x^*) = 0$$

$$\lambda_i^* \ge 0$$

$$\lambda_i^* f_i(x^*) = 0$$

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0$$

the Karush-Kuhn-Tucker (KKT) optimality conditions

conversely, if the problem is convex and x^{\star} , λ^{\star} satisfy KKT, then they are (primal, dual) optimal

Geometric interpretation of duality

consider set

$$\mathcal{A} = \{ (u, t) \in \mathbf{R}^{m+1} \mid \exists x \ f_i(x) \le u_i, \ f_0(x) \le t \}$$

- \mathcal{A} is convex if f_i are
- for $\lambda \succeq 0$,

$$g(\lambda) = \inf \left\{ \begin{array}{c|c} \left[\begin{array}{c} \lambda \\ 1 \end{array} \right]^T \left[\begin{array}{c} u \\ t \end{array} \right] \ \left[\begin{array}{c} u \\ t \end{array} \right] \in \mathcal{A} \end{array} \right\}$$

(Idea of) proof of Slater's theorem

problem convex, strictly feasible \Longrightarrow strong duality

• $(0, p^*) \in \partial \mathcal{A} \Rightarrow \exists$ supporting hyperplane at $(0, p^*)$:

$$(u,t) \in \mathcal{A} \Longrightarrow \mu_0(t-p^*) + \mu^T u \ge 0$$

- $\mu_0 \ge 0$, $\mu \succeq 0$, $(\mu, \mu_0) \ne 0$
- strong duality $\Leftrightarrow \exists$ supporting hyperplane with $\mu_0 > 0$: for $\lambda^* = \mu/\mu_0$, we have $p^* \leq t + {\lambda^*}^T u \ \ \forall (t,u) \in \mathcal{A}, \ \ p^* \leq g(\lambda^*)$
- Slater's condition: there exists $(u,t) \in \mathcal{A}$ with $u \prec 0$; implies that all supporting hyperplanes at $(0,p^*)$ are non-vertical $(\mu_0 > 0)$

Sensitivity analysis via duality

define $p^{\star}(u)$ as the optimal value of

minimize $f_0(x)$, subject to $f_i(x) \leq u_i$, $i = 1, \ldots, m$

 λ^* gives lower bound on $p^*(u)$: $p^*(u) \geq p^* - \sum_{i=1}^m \lambda_i^* u_i$

- if λ_i^{\star} large: $u_i < 0$ greatly increases p^{\star}
- if λ_i^{\star} small: $u_i > 0$ does not decrease p^{\star} too much

if $p^{\star}(u)$ is differentiable, $\lambda_i^{\star} = -\frac{\partial p^{\star}(0)}{\partial u_i}$, λ_i^{\star} is sensitivity of p^{\star} w.r.t. ith constraint

Generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0, i = 1, \dots, L$

- \leq_{K_i} are generalized inequalities on \mathbf{R}^{m_i}
- $f_i: \mathbf{R}^n \to \mathbf{R}^{m_i}$ are K_i -convex

Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_L} \to \mathbb{R}$,

$$L(x, \lambda_1, \dots, \lambda_L) = f_0(x) + \lambda_1^T f_1(x) + \dots + \lambda_L^T f_L(x)$$

dual function

$$g(\lambda_1,\ldots,\lambda_L) = \inf_x \left(f_0(x) + \lambda_1^T f_1(x) + \cdots + \lambda_L^T f_L(x) \right)$$

 λ_i dual feasible if $\lambda_i \succeq_{K_i^*} 0$, $g(\lambda_1, \ldots, \lambda_L) > -\infty$

lower bound property: if x primal feasible and $(\lambda_1, \ldots, \lambda_L)$ is dual feasible, then

$$g(\lambda_1,\ldots,\lambda_L) \leq f_0(x)$$

(hence, $g(\lambda_1,\ldots,\lambda_L) \leq p^{\star}$)

dual problem

maximize
$$g(\lambda_1,\ldots,\lambda_L)$$
 subject to $\lambda_i\succeq_{K_i^\star}0,\ i=1,\ldots,L$

weak duality: $d^{\star} \leq p^{\star}$ always

strong duality: $d^{\star} = p^{\star}$ usually

Slater condition: if primal is strictly feasible, *i.e.*,

$$\exists x \in \mathbf{relint} \ D: \ f_i(x) \prec_{K_i} 0, \ i = 1, \dots, L$$

then $d^{\star} = p^{\star}$

Example: semidefinite programming

minimize $c^T x$ subject to $F_0 + x_1 F_1 + \cdots + x_n F_n \leq 0$

Lagrangian (multiplier $Z \succeq 0$)

$$L(x, Z) = c^{T}x + \text{Tr } Z(F_0 + x_1F_1 + \dots + x_nF_n)$$

dual function

$$g(Z) = \inf_{x} \left(c^{T}x + \operatorname{Tr} Z(F_{0} + x_{1}F_{1} + \dots + x_{n}F_{n}) \right)$$

$$= \begin{cases} \operatorname{Tr} F_{0}Z & \text{if } \operatorname{Tr} F_{i}Z + c_{i} = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize $\operatorname{Tr} F_0 Z$ subject to $\operatorname{Tr} F_i Z + c_i = 0, \quad i = 1, \dots, n$ $Z = Z^T \succeq 0$

strong duality holds if there exists x with $F_0 + x_1F_1 + \cdots + x_nF_n \prec 0$