- 1. 已知平面上三点 A, B, C 满足 $\left|\overrightarrow{AB}\right| = 6$, $\left|\overrightarrow{AC}\right| = 8$, $\left|\overrightarrow{BC}\right| = 10$, 则 $\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB} = ($)
 - (A) 48

- (B) -48
- (C) 100
- (D) -100

)

- 2. 在三角形 $\triangle ABC$ 中,点 D 满足 $\overrightarrow{AD} = 2\overrightarrow{AB} \overrightarrow{AC}$,则
- (

(A) 点 D 不在直线 BC 上

(B) 点 D 在 BC 的延长线上

(C) 点 D 在线段 BC 上

- (D) 点 D 在 CB 的延长线上
- 3. 如图,在等腰梯形 ABCD 中,AB=8,BC=4,CD=4,点 P 在线段 AD 上运动,则 $|\overrightarrow{PA}+\overrightarrow{PB}|$ 的取值范围是
 - (A) $[6, 4 + 4\sqrt{3}]$
- (B) $\left[4\sqrt{2}, 8\right]$
- (C) $\left[4\sqrt{3}, 8\right]$
- (D) [6, 12]

- 4. 设平面向量 \vec{a} , \vec{b} , \vec{c} 均为非零向量,则" $\vec{a} \cdot (\vec{b} \vec{c}) = 0$ "是" $\vec{b} = \vec{c}$ "的
 - (A) 充分而不必要条件

(B) 必要而不充分条件

(C) 充分必要条件

- (D) 既不充分也不必要条件
- 5. 设 E, F 分别是正方形 ABCD 的边 AB, BC 上的点,且 $AE = \frac{1}{2}AB$, $BF = \frac{2}{3}BC$, 如果 $\overrightarrow{EF} = m\overrightarrow{AB} + n\overrightarrow{AC}(m,n$ 为实数),那么 m+n 的值为
 - (A) $-\frac{1}{2}$
- **(B)** 0

- (C) $\frac{1}{2}$
- (D) 1
- 6. 若非零向量 a, b 满足 $a \cdot (a + b) = 0$, 2|a| = |b|, 则向量 a, b 的夹角的大小为_____.
- 7. 在四边形 ABCD 中,AB = 2. 若 $\overrightarrow{DA} = \frac{1}{2} (\overrightarrow{CA} + \overrightarrow{CB})$,则 $\overrightarrow{AB} \cdot \overrightarrow{DC} = \underline{}$.
- 8. 已知平面向量 a, b 满足 $a = (1, -1), (a + b) \perp (a b)$, 那么 $|b| = _____$.
- 9. 已知 M 为 $\triangle ABC$ 所在平面内的一点,且 $\overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB} + n\overrightarrow{AC}$. 若点 M 在 $\triangle ABC$ 内部 (不含边界),则实数 n 的取值范围是
- 10. 如图,在直角梯形 \overrightarrow{ABCD} 中, $\overrightarrow{AB} \not\mid CD$, $\overrightarrow{AB} \bot BC$, $\overrightarrow{AB} = 2$, $\overrightarrow{CD} = 1$, $\overrightarrow{BC} = a$ (a > 0), \overrightarrow{P} 为线段 \overrightarrow{AD} 上一个动点,设 $\overrightarrow{AP} = x\overrightarrow{AD}$, $\overrightarrow{PB} \cdot \overrightarrow{PC} = y$,对于函数 y = f(x),给出以下三个结论:
 - ① 当 a = 2 时,函数 f(x) 的值域为 [1, 4];
 - ② $\forall a \in (0, +\infty)$, 都有 f(1) = 1 成立;
 - ③ $\forall a \in (0, +\infty)$,函数 f(x) 的最大值都等于 4.

其中所有正确结论的序号是____.

11. 已知向量序列: $a_1, a_2, a_3, \cdots, a_n, \cdots$ 满足如下条件: $|a_1| = 4 |d| = 2, 2a_1 \cdot d = -1$ 且 $a_n - a_{n-1} = d$ $(n = 2, 3, 4, \cdots)$. 若 $a_1 \cdot a_k = 0$, 则 k =_____; $|a_1|, |a_2|, |a_3|, \cdots, |a_n|, \cdots$ 中第_____ 项最小.

12. 如图, $\triangle AB_1C_1$, $\triangle C_1B_2C_2$, $\triangle C_2B_3C_3$ 是三个边长为 2 的等边三角形,且有一条边在同一直线上,边 B_3C_3 上有两个不同的点 P_1 , P_2 ,则 $\overrightarrow{AB_2} \cdot (\overrightarrow{AP_1} + \overrightarrow{AP_2}) = _____.$

