Linear Regression Analysis

- Least Sum of Squares Approach -

Tseng-Ching James Shen, Ph.D.

Motivation of Linear Regression

 Given two random variables X, and y, we use the following linear equation to model the correlation between two random variables

$$y = w x + b$$

- The coefficient w and correlation are related in the following way:
 - ►w > 0, positive correlation
 - \triangleright w = 0, no correlation
 - w < 0, negative correlation

Motives of Linear Regression (cont.)

- The parameters w and b are unknown and can be determined by fitting the model with the dataset
- Fit model by minimizing the sum of squared errors (i.e. training errors)

Linear Regression Model

- Features are random variables X₁, X₂, ..., X_d
- The model can be generalized to model response y is also a random variable as follows

$$y = w_0 + w_1 x_1 + + w_d x_d$$

It can be also expressed in terms of vector notation

$$y = h(x) = x^T w + w_0$$

Linear Regression Model (cont.)

- Given a set of observed dataset points, we need to determined the coefficients which are best to fit the dataset points (\mathbf{x}_i, y_i) I = 1, ..., N
- For dataset point (x_i, y_i) (revised version), the estimated y_i

$$h(x_i) = x_i^T w$$

 $x_i = (1, x_{10}, x_{11}, ..., x_{1d}), w = (w_0, w_1, ..., w_d)$

• Let
$$X = (x_1, ..., x_N)^T$$

 $(h(x_1), ..., h(x_N))^T = X w$

Optimization Problem

 We can use training errors as the objective function to be minimized

2

- Let $X = (x_1, ..., x_N)^T$ $(h(x_1), ..., h(x_N))^T = X \mathbf{w}$
- The objective function can be re-written as

$$\pounds(\mathbf{w}) = (\mathbf{X} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

Closed Form Solution

Expand the objective function

$$\pounds(w)$$
 $w^T X^T X w - w^T X^T y + y^T y$

Find the solution which satisfies the following equation

which leads to $X^T X w = X^T y$

- Therefore, the solution is $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- Use Python NumPy to implement the solution

alpha = np.dot((np.dot(np.linalg.inv(np.dot(A.T,A)),A.T)),y)

- The objective function is a differential and convex function
- Gradient descent is a iterative process
 - ► Pick a starting point
 - At each iteration move to the next point by applying the slope of current point (derivative of the function)

3-D Convex Function

Derivative of Function

The derivative of the function is

$$\pounds(\mathbf{w}) = 2$$

- Since £(w) = (£(w), ..., £(w)), we will find £
 (w) j = 0, 1, 2, ..., d
- The equation for £(w)

$$\pounds(\mathbf{w}) = 2$$

Derivation of Function

Apply the Derivative Chain Rule:

$$\mathcal{E}(\mathbf{w}) =$$

We will get the following equation

$$\mathcal{E}(M) =$$

Gradient Descent Algorithm

- Initialize w
- Update w_j at each iteration using the following equation until \mathbf{w} converges

$$W_j \gg W_j + \alpha$$
 ()

where α is the learning rate

The Learning Rate

- If the learning rate is too high, we might **OVERSHOOT** the minima and keep bouncing, without reaching the minima
- If the learning rate is too small, the training might turn out to be too long

Learning Rate (cont.)

Loss value v.s. the number of iterations

Initial Iteration

The 3rd Iteration

The 5th Iteration

The 9th Iteration

Example

- Chapter 10 in Python Machine Learning, Sebastian Raschka Vahid Mirjalili Packt Publishing Ltd.
- Data preparation

Correlation analysis

- Feature selection
- Feature scaling

```
>>> X = df[['RM']].values
>>> y = df['MEDV'].values
>>> from sklearn.preprocessing import StandardScaler
>>> sc_x = StandardScaler()
>>> sc_y = StandardScaler()
>>> X_std = sc_x.fit_transform(X)
>>> y_std = sc_y.fit_transform(y[:, np.newaxis]).flatten()
```

Implementation of Gradient Descent

```
class LinearRegressionGD(object):
    def init (self, eta=0.001, n iter=20):
        self.eta = eta
        self.n iter = n iter
    def fit(self, X, y):
        self.w_ = np.zeros(1 + X.shape[1])
       self.cost = []
       for i in range(self.n iter):
            output = self.net input(X)
           errors = (y - output)
            self.w [1:] += self.eta * X.T.dot(errors)
            self.w [0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost .append(cost)
        return self
    def net input(self, X):
       return np.dot(X, self.w [1:]) + self.w [0]
    def predict(self, X):
       return self.net input(X)
```

Usage of GD method

```
>>> lr = LinearRegressionGD()
            >>> lr.fit(X std, y std)
>>> sns.reset orig() # resets matplotlib style
>>> plt.plot(range(1, lr.n iter+1), lr.cost )
>>> plt.ylabel('SSE')
>>> plt.xlabel('Epoch')
>>> plt.show()
                                       240
                                       220
                                       180
                                       160
                                       140
                                                                12.5
                                                                     15.0
                                             2.5
                                                  5.0
                                                       7.5
                                                           10.0
                                                                         17.5
                                                                              20.0
```

Epoch

```
>>> lin_regplot(X_std, y_std, lr)
>>> plt.xlabel('Average number of rooms [RM] (standardized)')
>>> plt.ylabel('Price in $1000s [MEDV] (standardized)')
>>> plt.show()
```


Scikit-learn library

```
>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> print('Slope: %.3f' % slr.coef_[0])
Slope: 9.102
>>> print('Intercept: %.3f' % slr.intercept_)
Intercept: -34.671
```

Gradient Descent vs Closed Form

Gradient Descent

- Requires multiple iterations
- Need to choose α
- ullet Works well when n is large
- Can support incremental learning

Closed Form Solution

- Non-iterative
- No need for α
- Slow if n is large
 - Computing $(X^TX)^{-1}$ is roughly $O(n^3)$

Kernel Regression Analysis

- Linear functions might not be good enough for some datasets
- Kernel method could be used to fit dataset with nonlinear functions
- Apply the kernel method and trick to get

$$y_i = \varphi^T(\mathbf{x}_i) \varphi(\mathbf{x}_i)$$

• Kernel matrix $\mathbf{K}(\mathbf{i}, \mathbf{j}) = \boldsymbol{\varphi}^{\mathsf{T}}(\mathbf{x}_{\mathbf{i}}) \boldsymbol{\varphi}(\mathbf{x}_{\mathbf{j}})$