UPPSALA UNIVERSITET
MATEMATISKA INSTITUTIONEN
ERNST DIETERICH, JENS FJELSTAD, MARTIN HERSCHEND

## Prov i matematik Linjär algebra II, 5hp 2015–08–22

Skrivtid: 14.00–19.00. Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger maximalt 5 poäng.

1. Hitta en bas i  $\mathbb{R}^4$  bland vektorerna  $v_1 = (1, -2, 0, 1), v_2 = (-2, 4, 0, -2), v_3 = (-1, 3, 3, 0), <math>v_4 = (1, -1, 3, 2), v_5 = (0, 1, 2, 3)$  och  $v_6 = (1, -1, 2, 1)$ . Motivera ditt svar!

2. Vektorerna  $u_1 = (1, -1, 1)$ ,  $u_2 = (1, 0, 1)$  och  $u_3 = (0, 1, 1)$  utgör en bas i  $\mathbb{R}^3$ . Låt f vara den linjära operatorn på  $\mathbb{R}^3$  som uppfyller

$$f(u_1) = u_2$$
,  $f(u_2) = u_3$ , och  $f(u_3) = u_1$ .

- (a) Bestäm f:s matris i basen  $(u_1, u_2, u_3)$ .
- (b) Bestäm f:s matris i standardbasen.
- 3. Vektorrummet  $\mathcal{P}_2$  består av alla polynom av grad högst 2. Visa att den linjära avbildningen  $T: \mathcal{P}_2 \to \mathcal{P}_2, \ T(p) = 2p 4p' + p''$  är inverterbar. Bestäm även  $T^{-1}(q)$  där  $q(x) = 2 6x + 2x^2$ .
- 4. Den linjära avbildningen  $f: \mathbb{R}^{2 \times 2} \to \mathbb{R}^4$  är definierad enligt

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+d,b,b+c,a+d).$$

- (a) Bestäm en bas för f:s kärna och en bas för f:s bild.
- (b) Avgör huruvida f är injektiv, surjektiv, eller bijektiv.

VAR GOD VÄND!

DIVERSE PROGRAM

5. I det euklidiska rummet  $\mathcal{P}_2$  av alla polynom av grad högst 2, med  $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$ , bildar polynomen  $p_1(x) = 1$ ,  $p_2(x) = \sqrt{3}(2x-1)$ ,  $p_3(x) = \sqrt{5}(6x^2 - 6x + 1)$  en ON-bas. Polynomet  $q \in \mathcal{P}_2$  ges av  $q(x) = 30x^2 - 24x + 1$ .

- (a) Finn q:s koordinater i basen  $(p_1, p_2, p_3)$ .
- (b) Beräkna längden av q, med avseende på den inre produkten ovan.
- 6. Vektorrummet  $\mathbb{R}^{2\times 2}$  utrustas med den inre produkten

$$\langle X, Y \rangle = X_{11}Y_{11} + 2X_{12}Y_{12} + 2X_{21}Y_{21} + X_{22}Y_{22}.$$

För vilka värden på t är vinkeln  $\alpha$  mellan matriserna  $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  och  $B = \begin{pmatrix} 1 & t \\ 1 & t \end{pmatrix}$  med avseende på denna inre produkt (a) trubbig, (b) rät, (c) spetsig?

7. Låt  $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 2 \\ 0 & 2 & -1 \end{pmatrix}$ . En diagonalmatris D vars samtliga diagonalelement är lika

med 1,-1 eller 0 kallas tröghetsform till A, om  $S^TA$  S=D gäller för någon inverterbar matris S.

- (a) Finn A:s tröghetsform D.
- (b) Vilken typ har ytan  $Y: 2x^2 z^2 2xy + 4yz = 1$ ?
- 8. Lös differentialekvationssystemet

$$\begin{cases} y_1' &= y_2 \\ y_2' &= -2y_1 + 3y_2 \end{cases}$$

med begynnelsevillkoren  $y_1(0) = 5$ ,  $y_2(0) = 7$ .

Den som tenterar den gamla kursen 1MA722 kan byta ut uppgift 8 mot uppgift 8' nedan.

8'. Beräkna  $A^{41}$ , där  $A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$ .

LYCKA TILL!

3. It invertes to them 
$$[T]_{X}$$
 is univertes for also  $X = (1, X, X')$ .

$$[T]_{X} = [T(1)]_{X} [T(X)]_{X}, [T(X')]_{X} = \begin{bmatrix} 2 & -3 & 3 & 4 & -3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix}$$

$$[T']_{X} = [T']_{X} [q]_{X} = [T']_{X} [q]_{X} + \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 & -3 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix}$$

$$[T']_{X} = [T']_{X} [q]_{X} = [T']_{X} [q]_{X} + \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 2 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 3 & 3 & 3 \\ 2 & -3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 3 & 3 & 3 \\ 2 & -3 & 3 & 3 \\ 3 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 3 & 3 & 3 \\ 2 & -3 & 3 & 3 \\ 3 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 3 & 3 & 3 \\ 2 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 3 & 3 & 3 \\ 3 & -3 & 3 & 3 \\ 3 & -3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 3 & 3 & 3 \\ 3 & -3 & 3 & 3 \\ 3 & -3 & 3 & 3 \end{bmatrix}$$

