Midterm 3

Mark Petersen

08/04/2020

Exercise 1. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ both be continuous at the point $c \in \mathbb{R}$. Use the $\epsilon - \delta$ characterization of continuity to show that the product f(x)g(x) is continuous at $c \in \mathbb{R}$.

Proof: We suppose directly that $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ both be continuous at the point $c \in \mathbb{R}$, then given an $\epsilon > 0$, there exists a $\delta_1 > 0$ such that when $|x - c| < \delta_1$

$$|f(x) - f(c)| < \frac{\epsilon}{2N}$$

for some $N \in \mathbb{R}$ such that $|f(c)| \leq N$, and there exists a $\delta_2 > 0$ such that when $|x - c| < \delta_2$,

$$|g(x) - g(c)| < \frac{\epsilon}{2M}.$$

for some $M \in \mathbb{R}$ such that $|g(x)| + \epsilon < M$. Next we look closely at |f(x)g(x) - f(c)g(c)| and begin to manipulate it.

$$|f(x) g(x) - f(c) g(c)| = |f(x) g(x) - f(c) g(x) + f(c) g(x) - f(c) g(c)|$$

$$= |g(x) (f(x) - f(c)) + f(c) (g(x) - g(c))|$$

$$\leq |g(x)| |f(x) - f(c)| + |f(c)| |g(x) - g(c)|.$$

Let $\delta = \min(\delta_1, \delta_2)$, then when $|x - c| < \delta$ we get that

$$\begin{aligned} \left| f\left(x \right)g\left(x \right) - f\left(c \right)g\left(c \right) \right| & \leq N \left| f\left(x \right) - f\left(c \right) \right| + M \left| g\left(x \right) - g\left(c \right) \right| \\ & = N \frac{\epsilon}{2N} + M \frac{\epsilon}{2M} \\ & = \epsilon. \end{aligned}$$

Thus the product of two continuous functions at a point c is continuous.

Exercise 2. Prove exactly one of the following theorems:

Theorem (Preservation of Compact Sets). Let $f: A \to \mathbb{R}$ be continuous on A. If $K \subseteq A$ is compact, prove that f(K) is compact as well.

Proof: Let (y_n) be an arbitrary sequence contained in f(K). To show that f(K) is a compact set, we must show that (y_n) contains a subsequence that converges to a point in f(K). Since $(y_n) \subseteq f(K)$, there exists a sequence $(x_n) \in K$ such that $f(x_n) = y_n$. Since K is a compact set, the sequence (x_n) contains a subsequence (x_{n_k}) that converges to a point $m \in K$. Let (y_{n_k}) be the subsequence of (y_n) that corresponds to (x_{n_k}) , i.e. $f(x_{n_k}) = y_{n_k}$. Since f is continuous, as $(x_{n_k}) \to m$, $f(x_{n_k}) \to f(m)$. In other words, $(y_{n_k}) \to f(m)$ as $(x_{n_k}) \to m$. Since $f(m) \in f(K)$, this shows that the subsequence (y_{n_k}) converges to a point in f(K). Therefore, every sequence contained in the range of the function, contains a subsequence that converges to a point in the range. Hence, the range is compact.

Exercise 3. Give an example of each of the following, or provide a short argument for why the request is impossible.

- a) A continuous function defined on [0,1] with range (0,1).

 Proof: The request is impossible according to the theorem: Preservation of Compact sets. Since the function is continuous and the domain [0,1] is compact, the image must be compact; however, (0,1) is not compact thus the request is impossible.
- b) A continuous function defined on (0,1) with range [0,1]. Proof: This exists. Consider the function $f(x)=\sin^2\left(\frac{3\pi}{2}x\right)$. When $x=\frac{1}{3}$, then

$$f\left(\frac{1}{3}\right) = \sin^2\left(\frac{3\pi}{2} \cdot \frac{1}{3}\right) = 1,$$

and when $x = \frac{2}{3}$,

$$f\left(\frac{2}{3}\right) = \sin^2\left(\frac{3\pi}{2} \cdot \frac{2}{3}\right) = 0.$$

Since $0 \le \sin^2(y) \le 1$ for all $y \in \mathbb{R}$,

$$f((0,1)) = [0,1].$$

Exercise 4. Assume $f:(a,b)\to\mathbb{R}$ is differentiable at all $x\in(a,b)$. Assume that $f'(x)\neq0$ for all $x\in(a,b)$ and that for some $c\in(a,b)$ we have f'(c)>0. Prove that f'(x)>0 for all $x\in(a,b)$.

ABCLETTERS.ORG

Exercise 5. If f'(x) > 0 for all $x \in (a, b)$, prove that f(x) is strictly increasing on (a, b).

Proof: Let $m, n \in (a, b)$ such that n > m. According to the mean value theorem, there exists a $c \in (m, n)$ such that

$$f'(c) = \frac{f(n) - f(m)}{n - m}.$$

Since $c \in (a, b)$, we know that f'(c) > 0. Also, since n > m, we get that n - m > 0. Thus,

$$f\left(n\right) - f\left(m\right) > 0.$$

Since m, n are arbitrary points in (a, b) that satisfy the condition n > m, and f(n) > f(m), f(x) is strictly increasing on (a, b).

Exercise 6. Let

$$f_n\left(x\right) = \frac{nx}{1 + nx^2}.$$

a) Find the pointwise limit f of (f_n) for all $x \in (0, \infty)$.

We want to show that $f = \frac{1}{x}$ is the pointwise limit of (f_n) .

Proof: Given an $\epsilon > 0$, let $N = \left(\frac{1}{\epsilon} - x\right)/x^3$, then whenever n > N, it follows that

$$|f_n(x) - f(x)| = \left| \frac{nx}{1 + nx^2} - \frac{1}{x} \right|$$

$$= \left| \frac{-1}{x(1 + nx^2)} \right|$$

$$< \frac{1}{x + Nx^3}$$

$$= \frac{1}{x + \left(\frac{1}{\epsilon} - x\right)x^3/x^3}$$

$$= \epsilon$$

Therefore, (f_n) converges pointwise to $f = \frac{1}{x}$.

b) Either prove that the converges is uniform or is not uniform on (0,1).

We want to show that f is not uniform on (0,1).

Proof: From part (a) we got that

$$|f_n(x) - f(x)| = \left| \frac{1}{x(1 + nx^2)} \right|.$$

Let $\epsilon_0 > 0$. Given any $n \in N$, there exists a $x \in (0,1)$ such that

$$\left| \frac{1}{x(1+nx^2)} \right| > \epsilon_0.$$

For example, let $x < \left| \sqrt{\frac{1}{\epsilon_0 n} - \frac{1}{n}} \right|$, then we get

$$\left| \frac{1}{x(1+nx^2)} \right| > \frac{1}{1+nx^2}$$

$$> \frac{1}{1+n\left(\frac{1}{\epsilon_0 n} - \frac{1}{n}\right)}$$

$$= \epsilon_0.$$

Therefore, the sequence does not converge uniformly on (0,1).

c) Either prove that the convergence is uniform or is not uniform on $(1, \infty)$.

We want to show that f is uniform on $(1, \infty)$.

Proof: Using some of the calculations from from part (a), then given an $\epsilon > 0$, let $N = \frac{1}{\epsilon}$. Then, whenever n > N

$$|f_n(x) - f(x)| = \left| \frac{1}{x(1 + nx^2)} \right|$$

$$< \left| \frac{1}{(1+n)} \right|$$

$$< \frac{1}{n}$$

$$< \frac{1}{N}$$

$$= \epsilon.$$

Therefore, the sequence converges uniformly on $(1, \infty)$.

Exercise 7. Let (f_n) be a sequence of functions defined on a set $A \subseteq \mathbb{R}$. Assume that for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that

$$\left|f_{n}\left(x\right) - f_{m}\left(x\right)\right| < \epsilon$$

whenever $m, n \geq N$ and $x \in A$. Prove that the sequence (f_n) converges uniformly.

ABCLETTERS.ORG

Exercise 8. Let f be a function defined on an open interval $A \subseteq \mathbb{R}$. Show that if f is differentiable at $c \in A$, then f is continuous at c.

Proof: We assume directly that f is differentiable at c, then given $x \in A$

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

Using the algebraic limit theorem, it follows that

$$\lim_{x \to c} f(x) - f(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} (x - c)$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot 0$$

$$= 0,$$

thus

$$\lim_{x \to c} f\left(x\right) = f\left(c\right)$$

which shows that f is continuous at c.

Exercise 9. Assume $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous on \mathbb{R} . For each $n \in \mathbb{N}$, set

$$f_n(x) = f\left(x + \frac{1}{n}\right).$$

Show that (f_n) converges uniformly to f on \mathbb{R} .

Proof: Since $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous, given an $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $|m - c| < \delta$ for any $m, c \in \mathbb{R}$ we get that

$$|f(m) - f(c)| < \epsilon.$$

Since $\left(x+\frac{1}{n}\right)\to x$ as $n\to\infty$, given any $\delta>0$, there exists a N>0 such that whenever $n>N, \ \left|x+\frac{1}{n}-x\right|<\delta$ and

$$\left| f\left(x + \frac{1}{n}\right) - f\left(x\right) \right| < \epsilon$$

for all $x \in \mathbb{R}$. Replacing $f\left(x + \frac{1}{n}\right)$ with $f_n(x)$ yields

$$|f_n(x) - f(x)| < \epsilon,$$

therefore, (f_n) converges uniformly to f on \mathbb{R} .

Exercise 10. Prove the following theorem:

Continuous Limit Theorem. Let (f_n) be a sequence of functions defined on $A \subseteq \mathbb{R}$ that converge uniformly on A to the function f. If f_n is continuous at $c \in A$, then f is continuous at c.

Proof: We suppose directly that (f_n) converges uniformly on A to the function f and that f_n is continuous at $c \in A$. Thus, given an $\epsilon > 0$, there exists an $N \in \mathbb{R}$ such that whenever n > N

$$|f_n(x) - f(x)| < \frac{\epsilon}{3}$$

for all $x \in A$. Also, since $f_n(x)$ is continuous at c, given an $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $|x - c| < \delta$,

$$|f_n(x) - f_n(c)| < \frac{\epsilon}{3}.$$

Using the facts above, it follows that given the ϵ defined above, when n>N and $|x-c|<\delta$

$$|f(x) - f(c)| = |f(x) - f_n(x) + f_n(x) - f_n(c) + f_n(c) - f(c)|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)|$$

$$= \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

Therefore, f is continuous at c.

Exercise 11. Consider the sequence of functions

$$h_n = \sqrt{x^2 + \frac{1}{n}}.$$

a) Compute the pointwise limit of (h_n) and then prove that the convergence is uniform on \mathbb{R} .

We want to show that the pointwise limit is $h(x) = \sqrt{x^2}$ and that (h_n) converges uniformly to it.

Proof: Given an $\epsilon > 0$, let $N = \epsilon^2$, then whenever n > N, it follows that

$$|h_{n}(x) - h(x)| = \left| \sqrt{x^{2} + \frac{1}{n}} - \sqrt{x^{2}} \right|$$

$$= \left| \sqrt{x^{2} + \frac{1}{n}} - \sqrt{x^{2}} \right| \frac{\left| \sqrt{x^{2} + \frac{1}{n}} + \sqrt{x^{2}} \right|}{\sqrt{x^{2} + \frac{1}{n}} + \sqrt{x^{2}}}$$

$$= \left| \frac{x^{2} + \frac{1}{n} - x^{2}}{\sqrt{x^{2} + \frac{1}{n}} + \sqrt{x^{2}}} \right|$$

$$= \frac{\frac{1}{n}}{\sqrt{x^{2} + \frac{1}{n}} + \sqrt{x^{2}}}$$

$$\leq \frac{\frac{1}{n}}{\frac{1}{\sqrt{n}}}$$

$$= \frac{1}{\sqrt{n}}$$

$$< \epsilon,$$

Therefore, (h_n) converges uniformly to h on all of \mathbb{R} .

b) Compute $h'_n(x)$ and find $g(x) = \lim_{n \to \infty} h'_n(x)$ for $x \in \mathbb{R}$. Explain how we can be certain that the convergence is not uniform in any neighborhood of zero.

Taking the derivative of h_n yields

$$h'_n(x) = \frac{x}{\sqrt{x^2 + \frac{1}{n}}}.$$

Taking the limit as $n \to \infty$ yields

$$\lim_{n \to \infty} \frac{x}{\sqrt{x^2 + \frac{1}{n}}} = \frac{1}{x}.$$

Thus $g(x) = \frac{1}{x}$.

Since (h_n) converges to h, if h'_n converged uniformly to g(x), then according the the limit of derivative theorem (something like this), h' = g for all x. However; h'(x) does not exist at 0 since it's the absolute value function; therefore, h'_n cannot converge uniformly to g(x). Otherwise, it would be a contradiction.

Exercise 12. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function satisfying the following three conditions:

- (i) f is twice-differentiable on all of \mathbb{R} .
- (ii) f'(0) = -5 and f(0) = 3.
- (iii) $|f''(x)| \le 2$.

Show that

a) $|f'(x)| \le 2|x| + 5$ for all $x \in \mathbb{R}$.

Proof: We assume directly that f is twice-differentiable on all of \mathbb{R} , $|f''(x)| \le 2$ and that f'(0) = -5. With no loss in generality, we also suppose that x > 0 According to the mean value theorem, there exists a $c \in (0, x)$ such that

$$f''(c) = \frac{f'(x) - f'(0)}{x - 0}.$$

Taking the absolute value of both sides yields

$$|f''(c)| = \frac{|f'(x) - f'(0)|}{|x - 0|},$$

thus

$$2 \ge \frac{\left|f'\left(x\right) - \left(-5\right)\right|}{\left|x\right|}$$
$$\ge \frac{\left|f'\left(x\right) + 5\right|}{\left|x\right|},$$

which implies that

$$-2|x| \le f'(x) + 5 \le 2|x|$$
$$-2|x| - 5 \le f'(x) \le 2|x| - 5.$$

Thus

$$|f'(x)| \le 2|x| + 5.$$

The case for when x < 0 is similar. When x = 0, we simply get

$$|f'(0)| = 5 \le 5.$$

Thus for all $x \in \mathbb{R}$, $|f'(x)| \le 2|x| + 5$.

b) $|f(x)| \le 2|x|^2 + 5|x| + 3$

Proof: We assume directly that f is twice differentiable on all of \mathbb{R} , f(0) = 3 and that $|f'(y)| \le 2|y| + 5$. With no loss in generality we suppose that x > 0. According to the mean value theorem, there exists a $c \in (0, x)$ such that

$$f'(c) = \frac{f(x) - f(0)}{x - 0}.$$

Taking the absolute value of both sides yields

$$\left|f'\left(c\right)\right| = \left|\frac{f\left(x\right) - f\left(0\right)}{x}\right|,$$

which is simplified to

$$\left|f'\left(c\right)\right| = \left|\frac{f\left(x\right) - 3}{x}\right|.$$

Since $|f'(c)| \le 2|c| + 5$, we get

$$\frac{|f(x) - 3|}{|x|} \le 2|c| + 5.$$

Since |c| < |x| we get

$$|f(x) - 3| \le 2|c||x| + 5|x|$$

 $\le 2|x|^2 + f|x|$.

Adding 3 to both sides and using the triangle inequality gives

$$|f(x) - 3| + 3 \le 2|x|^{2} + f|x| + 3$$
$$|f(x) - 3 + 3| \le |f(x) - 3| + 3 \le 2|x|^{2} + f|x| + 3$$
$$|f(x)| \le 2|x|^{2} + f|x| + 3.$$

The case for when x < 0 is similar. When x = 0, we simply get that $|f(0)| = 3 \le 3$. Therefore, for all $x \in \mathbb{R}$, $|f(x)| \le 2|x|^2 + 5|x| + 3$.