List of Symbols

Version: November 29, 2022

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Usual symbols

∇f , \mathbf{g} $\nabla_x f$, \mathbf{g}_x \mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Gradient vector x Stochastic approximation of the gradient vector
$\mathbf{w}, \mathbf{\theta}$	Parameters/coefficients/weights vec-
	tor
$\mathbf{\mu}_{x}, \mathbf{m}_{x}$	Mean vector
$\hat{\boldsymbol{\mu}}_{x},\hat{\mathbf{m}}_{x}$	Sample mean vector
$\mathbf{R}_{\mathbf{x}}$	Correlation matrix of \mathbf{x}
$R_{\scriptscriptstyle X}(au), r_{\scriptscriptstyle X}(au)$	Autocorrelation function of the sinal
	x(t) or $x[n]$
$\delta(t)$	Delta function
$\delta[n]$	Kronecker function
$\hat{R}_{\scriptscriptstyle X}(au), \hat{r}_{\scriptscriptstyle X}(au)$	Estimate autocorrelation function of
	the sinal $x(t)$ or $x[n]$
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample correlation matrix
$\mathbf{K}_{\mathbf{x}}, \mathbf{C}_{x}$	Covariance matrix of \mathbf{x}
$\hat{\mathbf{K}}_{\mathbf{x}}, \hat{\mathbf{C}}_{x}$	Sample covariance matrix
\mathbf{W}, \mathbf{D}	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
Λ	Eigenvalue matrix
$oldsymbol{\Sigma}$	Singular value matrix
\mathbf{U}	Upper matrix; Left singular vectors
${f L}$	Lower matrix
V	Right singular vectors
J	Jordan matrix; Jacobian matrix
\mathbf{S}	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
j	$\sqrt{-1}$

3 Linear Algebra operations

. 1	
\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^+, \mathbf{A}^\dagger$	Moore-Penrose pseudoinverse
\mathbf{A}^{T}	Transpose
A *	Conjugate
A ^H	Hermitian
·	l_1 norm, 1-norm, or Manhatan norm
$\ \cdot\ $, $\ \cdot\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \cdot\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \cdot\ _{\infty}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$\ \cdot\ _{\mathrm{F}}$	Frobenius norm
$ \mathbf{A} , \det(\mathbf{A})$	Determinant
$N(\mathbf{A})$	Nullspace (or kernel)
$C\left(\mathbf{A}\right)$	Columnspace (or range), i.e., the
	space span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, where \mathbf{a}_i
	is the ith column vector of the ma-
1. () 1. ()	trix A
$\operatorname{diag}\left(\mathbf{a}\right),\operatorname{diag}\left(\mathbf{A}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a or the elements in the diagonal
(4)	of A
$\operatorname{vec}\left(\mathbf{A}\right)$	Vectorization: stacks the columns of
	the matrix A into a long column vec-
(4)	tor
$\operatorname{vec}_{\operatorname{d}}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
	square matrix and returns them in a
(4)	column vector
$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below
	the main diagonal of a square matrix
	in a column-wise manner and returns
()	them into a column vector
$\operatorname{vec}_{\mathrm{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
()	them into a column vector
$\operatorname{vec_b}\left(\mathbf{A}\right)$	Block vectorization operator: stacks
	square block matrices of the input
gnon (o o o)	into a long block column matrix
$\mathrm{span}\left\{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_n\right\}$	Space spanned by the argument vec-
manls (A)	tors People that is
$\operatorname{rank}\left(\mathbf{A} ight)$	Rank, that is,
	$\dim (\operatorname{span} \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}) = \dim (C(\mathbf{A})) \text{where } \mathbf{a} \text{is the ith}$
	$\dim(C(\mathbf{A}))$, where \mathbf{a}_i is the ith column vector of the matrix \mathbf{A}
$\operatorname{tr}(\mathbf{A})$	trace
tr (A) ⊗	Kronecker product
⊗ •	Outer product
⊙	Hadamard (elementwise) product
♦	Khatri-Rao product
× _n	<i>n</i> -mode product
$\langle \cdot, \cdot \rangle$	Inner product
, /	inner product

4 Sets

$A \backslash B$	Set subtraction, i.e., the set containing the elements of A that are not in
	B
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
${\mathbb Z}$	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set (?)
N	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$???
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Closed interval of a real set from a to
	b
[a,b),(a,b]	Half-open intervals of a real set from a to b

5 Signals and functions operations and indexing

$f:A\to B$	
$f \circ g$	Composition of the functions f and
*	g Convolution
x(t)	Continuous-time t
$x[n],x[k],x[m],x[i],\ldots$	Discrete-time n, k, m, i, \ldots
$x(n), x(k), x(m), x(i), \ldots$	Discrete-time n, k, m, i, \ldots (it should
	be used only if there are no
	continuous-time signals in the con-
	text to avoid ambiguity)
$\tilde{x}(t)$ or $\tilde{x}[n]$	Estimate of $x(t)$ or $x[n]$; the Hilbert
	transform of $x(t)$ or $x[n]$
$x_I(t)$ or $x_I[n]$	Real or in-phase part of $x(t)$ or $x[n]$
$x_Q(t)$ or $x_Q[n]$	Imaginary or quadrature part of $x(t)$
	or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (in angular fre-
	quency, rad/sec) of $x(t)$
X(z)	Z-transform of $x[n]$

6 Probability and stochastic processes

$E\left[\cdot\right]$	Statistical expectation
$E_u\left[\cdot\right]$	Statistical expectation with respect
	to u
Var(x)	Variance of the random variable x
$\operatorname{erfc}(\cdot)$	Complementary error function
P(A)	Probability of the event or set A
$p(a)$ or $p(\mathbf{a})$	Probability density function of the
	random variable a or random vector
	a
$p(x \mid A)$	Conditional probability density func-
	tion
$a \sim P$	Random variable a with distribution
	P

7 General notations

 $a \wedge b$ Logical AND of a and bLogical OR of a and b $a \lor b$ There exists \exists ∄ There does not exist ∃! There exist an unique \forall For all Such that Equal by definition Infinity |a|Absolute value of aBase-10 logarithm or decimal logalog rithm ln Natual logarithm ${\rm Re}\,\{x\}$ Real part of x $\operatorname{Im}\left\{ x\right\}$ Imaginary part of x $\mathcal{O}(\cdot)$ big-O notation $\lceil \cdot \rceil$ Ceiling operation [·] Floor operation ۷٠ phase (complex argument)

8 Abbreviations

wrt. With respect to st. Subject to iff. If and only if