© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°08

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1. 1.a ln est de classe \mathcal{C}^2 sur \mathbb{R}_+^* et $\forall x \in \mathbb{R}_+^*$, $\ln''(x) = -\frac{1}{x^2} \le 0$ donc ln est concave sur \mathbb{R}_+^* .

1.b Si l'un des a_i est nul, l'inégalité est triviale. Sinon, par concavité de ln,

$$\frac{1}{n}\sum_{i=1}^{n}\ln(a_i) \le \ln\left(\frac{1}{n}\sum_{i=1}^{n}a_i\right)$$

On obtient alors l'inégalité voulue par croissance de exp.

2 2.a Soit $s \in \mathcal{S}(E)$. Alors il existe une base orthonormée de E formée de vecteurs propres de s. Soit $S \in \mathcal{S}_n(\mathbb{R})$. Alors il existe $P \in O_n(\mathbb{R})$ telle que P^TSP soit diagonale.

2.b On calcule $\chi_S = X^2$. Ainsi $Sp(S) = \{0\}$. Si S était diagonalisable, elle serait semblable à la matrice nulle donc nulle. S n'est donc pas diagonalisable.

3.a Comme β est une base orthonormée, $x = \sum_{i=1}^{n} \langle x \mid \varepsilon_i \rangle \varepsilon_i$. Alors $s(x) = \sum_{i=1}^{n} \lambda_i \langle x \mid \varepsilon_i \rangle \varepsilon_i$. Comme β est orthonormée,

$$R_s(x) = \langle s(x) \mid x \rangle = \sum_{i=1}^n \lambda_i \langle x \mid \varepsilon_i \rangle^2$$

3.b Soit $x \in S(0,1)$. Alors $||x||^2 \sum_{i=1}^n \langle x \mid \varepsilon_i \rangle^2 = 1$. Comme $\lambda_1 \leq \cdots \leq \lambda_n$,

$$\sum_{i=1}^n \lambda_1 \langle x \mid \varepsilon_i \rangle^2 \leq \sum_{i=1}^n \lambda_i \langle x \mid \varepsilon_i \rangle^2 \leq \sum_{i=1}^n \lambda_n \langle x \mid \varepsilon_i \rangle^2$$

ou encore

$$\lambda_1 \leq R_s(x) \leq \lambda_n$$

Notons s l'endomorphisme de E dont la matrice dans la base β est S. On sait que $S \in \mathcal{S}_n(\mathbb{R})$ et que β est orthonormée donc $s \in \mathcal{S}(E)$. De plus, $Sp(s) = Sp(S) = \{\lambda_1, \dots, \lambda_n\}$.

Comme β est orthonormée, $s_{i,j} = \langle s(\varepsilon_j) \mid \varepsilon_i \rangle$ pour tout $(i,j) \in [1,n]^2$. Comme la base β est normée, $\varepsilon_i \in S(0,1)$ pour tout $i \in [1,n]$. D'après la question précédente, $R_s(\varepsilon_i) = \langle s(\varepsilon_i) \mid \varepsilon_i \rangle \in [\lambda_1,\lambda_n]$ ou encore

$$\forall i \in [1, n], \ \lambda_1 \leq s_{i,i} \leq \lambda_n$$

S L'application φ : $M ∈ \mathcal{M}_n(\mathbb{R}) \mapsto M^TM - I_n$ est polynomiale en les coefficients de M donc continue. On peut aussi remarquer que, comme $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, l'application linéaire $M ∈ \mathcal{M}_n(\mathbb{R})$ et l'application bilinéaire $(A, B) ∈ \mathcal{M}_n(\mathbb{R})^2$ sont continues. Ainsi l'application $M ∈ \mathcal{M}_n(\mathbb{R}) \mapsto M^TM$ est continue comme composée des applications continues $M ∈ \mathcal{M}_n(\mathbb{R}) \mapsto (M^T, M)$ et $(A, B) ∈ \mathcal{M}_n(\mathbb{R})^2$. L'application $M ∈ \mathcal{M}_n(\mathbb{R}) \mapsto I_n$ est constante donc continue. Par différence, φ est continue.

1

© Laurent Garcin MP Dumont d'Urville

6 On sait que les colonnes de A sont toutes de norme 1 i.e.

$$\forall j \in [[1, n]], \sum_{j=1}^{n} a_{i,j}^2 = 1$$

Comme les $a_{i,j}^2$ sont positifs, on en déduit que

$$\forall (i, j) \in [[1, n]]^2, |a_{i, j}| \le 1$$

The singleton $\{0\}$ est un fermé de $\mathcal{M}_n(\mathbb{R})$. Ainsi $O_n(\mathbb{R}) = \varphi^{-1}(\{0\})$ est fermé comme image réciproque d'un fermé par une application continue.

D'après la question précédente, $O_n(\mathbb{R})$ est borné. Comme $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, $O_n(\mathbb{R})$ est compact car fermé et borné.

8.a D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ tel que $S = P\Delta P^{\mathsf{T}} = P\Delta P^{\mathsf{T}}$. Par propriété de la trace,

$$T(A) = tr(AS) = tr(AP\Delta P^{-1}) = tr(P^{-1}AP\Delta)$$

Comme $O_n(\mathbb{R})$ est un groupe, $B = P^{-1}AP \in O_n(\mathbb{R})$.

8.b T est une forme linéaire sur l'espace vectoriel de dimension finie $\mathcal{M}_n(\mathbb{R})$. Ainsi T est continue sur $\mathcal{M}_n(\mathbb{R})$. Comme $O_n(\mathbb{R})$ est compact, T admet un maximum t sur $O_n(\mathbb{R})$.

8.c Si on note B = $(b_{i,j})$,

$$T(A) = tr(B\Delta) = \sum_{i=1}^{n} b_{i,i} \lambda_i$$

Mais comme B est orthogonale, $b_{i,i} \leq 1$ pour tout $i \in [[1,n]]$. Enfin, les λ_i sont positifs car $S \in \mathcal{S}_n^+(\mathbb{R})$ donc

$$T(A) \le \sum_{i=1}^{n} \lambda_i = tr(S)$$

Ainsi tr(S) est un majorant de T sur $O_n(\mathbb{R})$. De plus, $T(I_n) = tr(S)$ et $I_n \in O_n(\mathbb{R})$ donc t = tr(S).

Omme S est diagonalisable, $det(S) = \prod_{i=1}^{n} \lambda_i$ et $tr(S) = \sum_{i=1}^{n} \lambda_i$. Comme les λ_i sont positifs, d'après la question **1.b**,

$$\left(\prod_{i=1}^{n} \lambda_i\right)^{1/n} \le \frac{1}{n} \sum_{i=1}^{n} \lambda_i$$

ou encore

$$\det(S)^{1/n} \le \frac{1}{n} \operatorname{tr}(S)$$

Par croissance de la fonction $x \mapsto x^n \operatorname{sur} \mathbb{R}_+$, on obtient

$$det(S) \le \left(\frac{1}{n} tr(S)\right)^n$$

10 Tout d'abord,

$$S_{\alpha}^{\mathsf{T}} = D^{\mathsf{T}} S^{\mathsf{T}} D = D^{\mathsf{T}} S D = S_{\alpha}$$

car S est symétrique. Ainsi S_{α} est également symétrique. Pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$X^{\mathsf{T}}S_{\alpha}X = (DX)^{\mathsf{T}}S(DX) \geq 0$$

car $S \in \mathcal{S}_n^+(\mathbb{R})$. On en déduit que $S_\alpha \in \mathcal{S}_n^+(\mathbb{R})$. Enfin,

$$tr(S_{\alpha}) = \sum_{i=1}^{n} \alpha_i^2 s_{i,i}$$

11 Par propriété du déterminant

$$\det(\mathbf{S}_{\alpha}) = \det(\mathbf{S}) \det(\mathbf{D})^2 = \det(\mathbf{S}) \prod_{i=1}^{n} \alpha_i^2 = \frac{\det(\mathbf{S})}{\prod_{i=1}^{n} s_{i,i}}$$

© Laurent Garcin MP Dumont d'Urville

La question précédente montre que $\operatorname{tr}(S_{\alpha}) = \sum_{i=1}^{n} \alpha_i^2 s_{i,i} = n$. On applique l'inégalité de la question $\mathbf{9}$ à S_{α} et on obtient

$$\frac{\det(S)}{\prod_{i=1}^{n} s_{i,i}} \le 1$$

ou encore

$$\det(S) \le \prod_{i=1}^{n} s_{i,i}$$

Les valeurs propres de S_{ε} sont $\lambda_1 + \varepsilon$, ..., $\lambda_n + \varepsilon$. Puisque les valeurs propres de S_{ε} sont positives, les valeurs propres de S_{ε} son strictement positives. De plus, les coefficients diagonaux de S_{ε} sont les $s_{i,i} + \varepsilon$. En appliquant la question précédente à S_{ε} , on obtient donc

$$\det(S_{\varepsilon}) \le \prod_{i=1}^{n} (s_{i,i} + \varepsilon)$$

Comme S_{ε} est encore diagonalisable de valeurs propres $\lambda_1 + \varepsilon, \dots, \lambda_n + \varepsilon$, ceci équivaut à

$$\prod_{i=1}^{n} (\lambda_i + \varepsilon) \le \prod_{i=1}^{n} (s_{i,i} + \varepsilon)$$

En faisant tendre ϵ vers 0, on obtient bien par passage à la limite

$$\prod_{i=1}^{n} \lambda_i \le \prod_{i=1}^{n} s_{i,i}$$

13 On vérifie aisément que B est symétrique car A l'est. Comme $A \in \mathcal{S}_n^{++}(\mathbb{R})$, $Sp(A) \subset \mathbb{R}_+^*$. De plus, $B = \Omega^T A \Omega = \Omega^{-1} A \Omega$ car Ω est orthogonale. Ainsi B est semblable à A de sorte que $Sp(B) = Sp(A) \subset \mathbb{R}_+^*$. On en déduit que $B \in \mathcal{S}_n^{++}(\mathbb{R})$. On sait que $det(\Omega) = 1$ car $\Omega \in O_n(\mathbb{R})$ donc, par propriété du déterminant,

$$det(B) = det(\Omega)^2 det(A) = 1$$

car $A \in \mathcal{U}$. Ainsi $B \in \mathcal{U}$.

Enfin, par propriété de la trace,

$$tr(AS) = tr(A\Omega\Delta\Omega^{\mathsf{T}}) = tr(\Omega^{\mathsf{T}}A\Omega\Delta) = tr(B\Delta)$$

14 La question précédente montre l'inclusion $\{tr(AS), A \in \mathcal{U}\} \subset \{tr(B\Delta), B \in \mathcal{U}\}.$

Inversement, si on se donne $B \in \mathcal{U}$ et si l'on pose $A = \Omega B \Omega^T$, on vérifie que $A \in \mathcal{U}$ et que $tr(AS) = tr(B\Delta)$, ce qui donne l'inclusion réciproque.

Par double inclusion, $\{tr(AS), A \in \mathcal{U}\} = \{tr(B\Delta), B \in \mathcal{U}\}.$

Comme $A \in \mathcal{S}_n^{++}(\mathbb{R})$, $\lambda_i > 0$ pour tout $i \in [[1, n]]$. D'après la question **4**, pour tout $i \in [[1, n]]$, $b_{i,i} \ge \min \operatorname{Sp}(B) > 0$ car $B \in \mathcal{S}_n^{++}(\mathbb{R})$. Ainsi

$$\forall \mathbf{B} \in \mathcal{U}, \ \operatorname{tr}(\mathbf{B}\Delta) = \sum_{i=1}^{n} \lambda_{i} b_{i,i} > 0$$

L'ensemble $\{tr(AS), A \in \mathcal{U}\} = \{tr(B\Delta), B \in \mathcal{U}\}$ est une partie de \mathbb{R} non vide et minorée : il addmet donc une borne inférieure.

15 On a montré à la question précédente que

$$\forall \mathbf{B} \in \mathcal{U}, \ \operatorname{tr}(\mathbf{B}\Delta) = \sum_{i=1}^{n} \lambda_{i} b_{i,i}$$

et on a vu que les $\lambda_i b_{i,i}$ étaient positifs. On peut donc appliquer la question 1.b pour affirmer que

$$\frac{1}{n} \sum_{i=1}^{n} \lambda_i b_{i,i} \ge \left(\prod_{i=1}^{n} \lambda_i b_{i,i} \right)^{1/n}$$

ou encore

$$\operatorname{tr}(\mathrm{B}\Delta) = \sum_{i=1}^{n} \lambda_{i} b_{i,i} \ge n \left(\prod_{i=1}^{n} \lambda_{i} \right)^{1/n} \left(\prod_{i=1}^{n} b_{i,i} \right)^{1/n}$$

16 Comme $B \in \mathcal{S}_n^+(\mathbb{R})$, on peut appliquer l'inégalité d'Hadamard :

$$\prod_{i=1}^n b_{i,i} \ge \det(\mathbf{B}) = 1$$

puisque $B \in \mathcal{U}$. En combinant avec l'inégalité de la question précédente, on obtient :

$$\operatorname{tr}(\mathrm{B}\Delta) \ge n \left(\prod_{i=1}^n \lambda_i\right)^{1/n} = n \operatorname{det}(\mathrm{S})^{1/n}$$

17 Il est clair que $D \in \mathcal{S}_n^+(\mathbb{R})$. De plus,

$$\det(\mathbf{D}) = \prod_{k=1}^{n} \mu_k = \frac{\det(\mathbf{S})}{\prod_{k=1}^{n} \lambda_k} = 1$$

donc $B \in \mathcal{U}$. Enfin,

$$tr(D\Delta) = \sum_{k=1}^{n} \mu_k \lambda^k = n \det(S)^{1/n}$$

On en déduit que $m = n \det(S)^{1/n}$ (cette borne inférieure est en fait un minimum).