# **Chapter 10**

Phylogenetics Basics

#### **Overview**

- 1. Introduction
- 2. Introduction to Biological Databases
- 3. Pairwise Sequence Alignment
- 4. Database Similarity Searching
- 5. Multiple Sequence Alignment
- 6. Profiles and Hidden Markov Models
- 7. Protein Motifs and Domain Prediction
- 8. Gene Prediction
- 9. Promoter and Regulatory Element Prediction
- 10. Phylogenetics Basics
- 11. Phylogenetic Tree Construction Methods and Programs
- 12. Protein Structure Basics
- 13. Protein Structure Visualization, Comparison and Classification
- 14. Protein Secondary Structure Prediction
- 15. Protein Tertiary Structure Prediction
- 16. RNA Structure Prediction
- 17. Genome Mapping, Assembly and Comparison
- 18. Functional Genomics
- 19. Proteomics

### **Phylogenetics**

- Phylogenetics: the study of the evolutionary history of organisms
- Evolutionary history is typically represented as a family tree or *phylogeny*:



Tree of life Charles Darwin (1837)

Traditional analysis based on <u>morphology</u>
 (physical characteristics) and <u>fossil records</u>

### The trouble with morphology and fossil records

- Fossil records are usually <u>fragmentary</u> (i.e. incomplete), due to low abundance, restricted habitats, poor conservation, etc.
- Interpretation of qualitative morphological traits can be <u>ambiguous</u>, making determination of phylogenetic relationships unreliable
- Essentially non-existent for microorganisms

### Using molecular data for phylogenetics

- Genomes accumulate <u>mutations</u> over time, turning genes into "molecular fossils"
- Comparative analysis of <u>homologous genes</u> from related organisms allows reconstructing the evolutionary history of the genes (and that of the organisms)
- Advantages: molecular data are <u>more readily</u> <u>available</u> than fossils, there is <u>no sampling bias</u>, data are <u>easier to interpret</u> and <u>quantitative</u> <u>methods</u> can be used to construct trees in a more objective manner

### Assumptions in molecular phylogenetics

- Molecular sequences that are used in phylogenetic construction are indeed <u>homologous</u>, *i.e.* they really share a common origin ("vertical evolution")
- Each position (nucleotide / amino acid) in a sequence evolved independently
- Models usually based on the concept that phylogenetic divergence happens through <u>bifurcation</u>, i.e. the parent branch splits into two daughter branches

### Tree terminology

- Lines in the tree = branches
- Tips of the branches =present-day species or taxa
- Connecting point where two adjacent branches join = **node** (represents an inferred ancestor or extant taxa)
- Bifurcating point at the very bottom of the tree = *root* node (represents the common ancestor of all members of the tree)

taxa (or terminal nodes)



- Group of taxa descended from a single common ancestor = clade or monophyletic group (e.g. A, B and C)
- Group of taxa with more than one closest common ancestor = paraphyletic (e.g. B, C and D)

## Dichotomy vs polytomy

- All branches bifurcate = dichotomy
- Branch points with more than two descendants = multifurcating node
- Phylogeny with multifurcating branches = polytomy
  - Either ancestral taxon giving rise to more than two immediate descendants = radiation
  - Or an unresolved phylogeny in which the exact order of bifurcations cannot be determined precisely



## Tree representations: cladogram vs phylogram

#### Cladogram = unscaled trees:

- Branch lengths have no phylogenetic meaning
- Topology of the tree shows the relative ordering of the taxa





#### Cladogram

#### Phylogram = scaled trees:

 Branch lengths represent the amount of evolutionary divergence





**Phylogram** 

#### Unrooted vs rooted trees





#### **Unrooted**

Rooted

- Tree not assuming knowledge of a common ancestor, but only positioning the taxa to show their relative relationships = unrooted tree
  - No direction of an evolutionary path in an unrooted tree
- Tree in which all sequences under study have a common ancestor or root node from which a unique evolutionary path leads to all other nodes = rooted tree
  - More informative than an unrooted tree

#### Rooting a tree

Tree-building methods typically produce unrooted trees

Defining the root of a tree requires some kind of <u>prior</u> information:

- 1. Use of an *outgroup*, *i.e.* a sequence that is homologous to the sequences under consideration, but separated from those sequences at an early evolutionary time (*e.g.* a bird sequence as an outgroup for the phylogenetic analysis of mammals)
- 2. Midpoint rooting approach: midpoint of the two most divergent groups in a phylogram is assigned as the root (corresponds to a *molecular clock assumption*)

### Molecular clock assumption

- Sequences evolve at a constant rate
- Number of accumulated mutations proportional to evolutionary time
  - Number of sequence differences can be used to estimate divergence time
- Rarely holds true in reality! Intricate modelling needed to "calibrate" the molecular clock if we really want to determine when exactly the nodes occurred

#### Tree representation file format

#### **Newick format:**

- Special text format to define a tree topology
- Trees are represented by taxa included in nested parentheses
- Each internal node is represented by a pair of parentheses that enclose all member of a monophyletic group separated by a comma
- For scaled trees the branch lengths is placed immediately after the name of the taxon separated by a colon

## Tree representation file format



#### **Consensus trees**

- Tree-building methods may result in several equally optimal trees
- Consensus tree can be built by showing the commonly resolved bifurcating portions and collapsing the ones that disagree among the trees (resulting in a polytomy)
  - Strict consensus tree: all conflicting nodes are collapsed into polytomies
  - Majority rule based consensus tree: conflicting nodes agreed by more than 50% are retained

#### **Consensus trees**





Consensus tree for trees (1), (2) and (3)

## Why finding the best tree is difficult

Number of potential tree topologies is <u>enormously large</u> even with a moderate number of taxa (*n*):

Nr. of <u>rooted</u> trees  $(N_R)$ :  $N_R = (2n-3)! / 2^{n-2} (n-2)!$ 

Nr. of <u>unrooted</u> trees  $(N_U)$ :  $N_U = (2n - 5)! / 2^{n-3} (n - 3)!$ 



## Why finding the best tree is difficult



## Why finding the best tree is difficult



### Gene phylogeny vs species phylogeny

- One possible objective of building phylogenetic trees is to reconstruct the evolutionary history of <u>species</u>
- However, gene phylogeny only describes the evolution of the gene in question (or the protein encoded by it)
- One gene may evolve more or less rapidly than other genes in the genome or may have an entirely different evolutionary history, e.g. owing to horizontal gene transfer events
- To obtain species phylogeny, phylogenetic trees from a variety of gene families need to be constructed and compared (i.e. checked for consistency)

## Phylogenetics: procedure

- 1. Choosing molecular markers
- 2. Performing multiple sequence alignment
- 3. Choosing a model of evolution
- 4. Determining a tree building method
- **5.** Assessing tree reliability

#### **Choice of molecular markers**

- In principle, either nucleotide or protein sequence data can be used
- For studying very closely related organisms more rapidly evolving sequences should be used
  - E.g. noncoding regions of mitochondrial DNA for studying individuals within a population
- For widely divergent groups of organisms slowly evolving sequences are appropriate
  - E.g. ribosomal RNA or protein sequences

#### Protein vs nucleic acid sequences

In most cases, protein sequences are to be preferred over nucleotide sequences:

- Significant difference in evolutionary rates among the three nucleotide positions, plus positions are not strictly independent
- Preferential codon usage differs per organism, leading to bias in DNA sequences
- Protein sequences allow for a <u>more sensitive alignment</u> than DNA sequences (alignment errors are highly detrimental to tree construction!)

#### Protein vs nucleic acid sequences

In a few special cases nucleic acid sequences may be more informative:

- Very closely related sequences (DNA: more mutations to work with, because of synonymous mutations)
- Comparing synonymous and non-synonymous mutation rates:
  - If the non-synonymous mutation rate is higher than the synonymous rate, a protein is actively evolving and acquiring new functions (*positive selection*)
  - If the synonymous mutation rate is higher, protein function is critical and amino acid substitutions are not well-tolerated (negative or purifying selection)

### Alignment

- This is the most critical step in phylogenetics as only the correct alignment will produce the true phylogenetic tree!
- Incorrect alignment leads to comparison of unrelated positions and therefore to systematic errors in the final tree, or even to a completely inaccurate tree
- State-of-the-art alignment programs have to be used
- Manual editing of alignment is often critical to ensure alignment quality (removal of ambiguously aligned regions!)
- If structural information is available, it can be used to optimise alignments

### Multiple substitutions

Measurement of evolutionary distance by counting the number of mutations leads to <u>underestimation</u>

- Possible intermediate mutations not accounted for, e.g.  $A \rightarrow C$  may in reality be the result of  $A \rightarrow T \rightarrow G \rightarrow C$
- Also: back- and parallel mutations can occur
- Homoplasy = multiple substitutions and convergence at individual sequence positions obscuring estimates of evolutionary distances
- Statistical models (corrections) are needed to avoid incorrect trees due to homoplasy

### **Choosing substitution models**

Substitution models = evolutionary models, statistical models to correct homoplasy

Only reasonably similar sequences can be used in phylogenetic comparisons:

- If there are too many multiple substitutions at a particular position, the position becomes "saturated"
- Saturated postions can not be correct by statistical models, i.e. true evolutionary distances cannot be derived

## Jukes-Cantor model for DNA/RNA

- Assumes that all nucleotides are substituted with equal probability
- Evolutionary distance between sequences A and B with a substitution portion of  $p_{AB}$  is given by:  $d_{AB} = -3/4 \ln (1 - 4/3 p_{AB})$
- E.g. sequences differing 30%, i.e.  $p_{AB} = 0.3$ :  $d_{AB} = -3/4 \ln (1 4/3 \times 0.3) = 0.38$
- Jukes-Cantor model can only handle reasonably closely related sequences

#### Transitions vs transversions



#### Jukes-Cantor vs Kimura model





#### **Jukes-Cantor model**

#### Kimura model

**Figure 10.9:** The Jukes–Cantor and Kimura models for DNA substitutions. In the Jukes–Cantor model, all nucleotides have equal substitution rates ( $\alpha$ ). In the Kimura model, there are unequal rates of transitions ( $\alpha$ ) and transversions ( $\beta$ ). The probability values for identical matches are shaded because evolutionary distances only count different residue positions.

## Kimura model for DNA/RNA

Assumes that transitions occur more frequently than transversions:

$$d_{AB} = -1/2 \ln (1 - 2 p_{ti} - p_{tv}) - 1/4 \ln (1 - 2 p_{tv})$$
  
 $p_{ti}$  = observed frequency of transition  
 $p_{tv}$  = observed frequency of transversion

• E.g. sequences A and B differing by 30%, 20% due to transitions, 10% due to transversions:  $d_{AB} = -1/2 \ln (1-2 \times 0.2 - 0.1) - 1/4 \ln (1-2 \times 0.1) = 0.40$ 

### Substitution models for proteins

- For protein sequences amino acid substitution matrices as PAM or JTT can be used, as they already take multiple substitutions into account
- As simple alternative a protein equivalent of the Kimura model can be used:

$$d = -\ln(1 - p - 0.2 p^2)$$

#### **Among-site variations**

Substitution models (wrongly) assume that different positions in a sequence are evolving at the same rate:

- In DNA sequences, the 3<sup>rd</sup> codon position mutates faster than the other two
- For protein sequences some amino acid positions change less often than others because of functional constraints
- = among-site rate heterogeneity: causes artifacts in tree construction

### Modelling among-site variation: gamma distribution

Distribution of positions in a sequence with more invariant rates and more variable rates can be described by a site-dependent y-distribution



**Figure 10.10:** Probability curves of  $\gamma$  distribution. The mathematical function of the distribution is  $f(x) + (x^{\gamma-1} e^{-x})/\Gamma(\gamma)$ . The curves assume different shapes depending on the  $\gamma$ -shape parameter  $(\gamma)$ .

## Modelling among-site variation: gamma distribution

- Adjusted Jukes-Cantor model:  $d_{AB} = 3/4$  α (  $(1-4/3 p_{AB})^{-1/\alpha} - 1$ α: correction factor derived from γ correction
- Adjusted Kimura model:  $d_{AB} = \alpha/2 ((1-2 p_{ti}-p_{tv})^{-1/\alpha}-1/2 (1-2 p_{tv})^{-1/\alpha}-1/2)$