WEEK 8 QUIZ 1

Unsupervised Learning

LATEST SUBMISSION GRADE 80%

1.	For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply. Given a database of information about your users, automatically group them into different market segments.	1 / 1 point
	Correct You can use K-means to cluster the database entries, and each cluster will correspond to a different market segment.	
	Given sales data from a large number of products in a supermarket, figure out which products tend to form coherent groups (say are frequently purchased together) and thus should be put on the same shelf.	
	Correct If you cluster the sales data with K-means, each cluster should correspond to coherent groups of items.	
	Given historical weather records, predict the amount of rainfall tomorrow (this would be a real-valued output)	
	Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.	

- Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?
 - $\bigcirc \ c^{(i)}$ is not assigned
 - $c^{(i)} = 1$
 - $\bigcirc \ c^{(i)}=2$
 - (a) $c^{(i)} = 3$

✓ Correct

 $x^{(i)}$ is closest to μ_3 , so $c^{(i)}=3$

3.	K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?
	$igwedge$ The cluster assignment step, where the parameters $c^{(i)}$ are updated.
	✓ Correct This is the correst first step of the K-means loop.
	$igwedge$ Move the cluster centroids, where the centroids μ_k are updated.
	✓ Correct The cluster update is the second step of the K-means loop.
	Using the elbow method to choose K.
	Feature scaling, to ensure each feature is on a comparable scale to the others.

4.	Suppose you have an unlabeled dataset $\{x^{(1)},\dots,x^{(m)}\}$. You run K-means with 50 different random
	initializations, and obtain 50 different clusterings of the
	data. What is the recommended way for choosing which one of
	these 50 clusterings to use?
	Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.
	The answer is ambiguous, and there is no good way of choosing.
	igl For each of the clusterings, compute $rac{1}{m}\sum_{i=1}^m x^{(i)}-\mu_{c^{(i)}} ^2$, and pick the one that minimizes this.
	$igcup$ The only way to do so is if we also have labels $y^{(i)}$ for our data.

✓ Correct

This function is the distortion function. Since a lower value for the distortion function implies a better clustering, you should choose the clustering with the smallest value for the distortion function.

5.	Whic	ch of the following statements are true? Select all that apply.
	-	For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide.
	V	The standard way of initializing K-means is setting $\mu_1=\dots=\mu_k$ to be equal to a vector of zeros.
		This should not be selected This is a poor initialization, since every centroid needs to start in a different location. Otherwise, each will be updated in the same way at each iteration and they will never spread out into different clusters.
	-	If we are worried about K-means getting stuck in bad local optima, one way to ameliorate (reduce) this problem is if we try using multiple random initializations.
	`	Correct Since each run of K-means is independent, multiple runs can find different optima, and some should avoid bad local optima.
	-	Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible.