Matching

EDLD 650: Week 8

David D. Liebowitz

Agenda

- 1. Roadmap and Goals (9:00-9:10)
- 2. Discussion Questions (9:10-10:20)
 - Diaz & Handa
 - Murnane & Willett, Ch. 12
- 3. Break (10:20-10:30)
- 4. Applied matching (10:30-11:40)
 - PSM and CEM
- 5. Wrap-up (11:40-11:50)

Roadmap

Goals

- 1. Describe conceptual approach to matching analysis
- 2. Assess validity of matching approach and what selection on observable assumptions implies
- 3. Conduct matching analysis in simplified data using both propensity-score matching and coarsened-exact matching (CEM)

So random...

Break

Matching:

Propensity scores

Recall the Catholic school data

Show 5 v entries			Search:		
	id 🕈	math12 🖣	catholic 🖣	math8 🖣	faminc8 †
1	124902	49.7700004577637	1	50.2700004577637	10
2	180625	51.5099983215332	1	41.310001373291	11
3	702949	48.2799987792969	0	45.75	11
4	710976	53.0099983215332	0	46.0499992370605	9
5	1425490	65.3499984741211	1	66.6900024414062	10
Show	Showing 1 to 5 of 5 entries			Previous 1	Next

Are Catholic HSers higher-performing?

```
catholic %>% group_by(catholic) %>%
  summarise(n_students = n(),
  mean_math = mean(math12), SD_math = sd(math12))

#> # A tibble: 2 x 4

#> catholic n_students mean_math SD_math

#> <dbl+lbl> <int> <dbl> <dbl>
#> 1 0 [no] 5079 50.6 9.53

#> 2 1 [yes] 592 54.5 8.46
```

Are Catholic HSers higher-performing?

Are Catholic HSers higher-performing?

```
ols1 ← lm(math12 ~ catholic, data=catholic)
summary(ols1)
#>
#> Coefficients:
        Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 50.6447 0.1323 382.815 <2e-16 ***
#> catholic 3.8949 0.4095 9.512 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 9.428 on 5669 degrees of freedom
#> Multiple R-squared: 0.01571, Adjusted R-squared: 0.01554
#> F-statistic: 90.48 on 1 and 5669 DF, p-value: < 2.2e-16
```

What is wrong with all of these approaches?

Are Catholic HS attendees different?

	0 (N=5079)	1 (N=592)	Total (N=5671)	p value
Family income level in 8th grade				< 0.001
Mean (SD)	9.43 (2.25)	10.36 (1.68)	9.53 (2.22)	
8th grade math score				< 0.001
Mean (SD)	51.24 (9.75)	53.66 (8.83)	51.49 (9.68)	
student is white?				< 0.001
Mean (SD)	0.68 (0.47)	0.80 (0.40)	0.69 (0.46)	
student is female?				0.253
Mean (SD)	0.52 (0.50)	0.54 (0.50)	0.52 (0.50)	

Implementing matching

Reminder of key assumptions/issues:

- 1. Selection on observables
- 2. Treatment is as-good-asrandom, conditional on known set of observables
- 3. Tradeoff between bias, variance and generalizability

Practical considerations

Can implement this various ways. Pedagogically, we'll implement matching using a combination of the MatchIt package (which is similar to the cem package for Coarsened Exact Matching), the fixest implementation of logistic regression and data manipulation by hand.^[1]

```
# install.packages("MatchIt")
# install.packages("gtools")
```

[1] Most of the coarsening we'll do can be done directly within the MatchIt package, but it's good to get your hands into the data to truly understand what it is you're doing!

Phase I: Generate propensities

Step 1: Estimate selection model

```
pscores ← feglm(catholic ~ inc8 + math8 + mathfam,
              family=c("logit"), data=catholic)
summary(pscores)
#> GLM estimation, family = binomial(link = "logit"), Dep. Var.: catholic
#> Observations: 5,671
#> Standard-errors: IID
            Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) -5.208846  0.586532 -8.88075  < 2.2e-16 ***
#> mathfam -0.000734 0.000262 -2.80586 5.0183e-03 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#> Log-Likelihood: -1,837.6 Adj. Pseudo R2: 0.030071
           BIC: 3,709.8
                         Squared Cor.: 0.018645
#>
```

Phase I: Generate propensities

Step 2: Predict selection likelihood

Note: to apply Inverse-Probability Weights (IPW), you would take these propensities and assign weights of $1/\hat{p}$ to treatment and $1/(1-\hat{p})$ to control units.

Phase I: Generate propensities

Step 3: Common support (pre-match)

Step 1: Assign nearest-neighbor match^[1]

#> [1] 1118 30

This is the **NOT** same number of observations as were in the original sample... what happened?

[1] As you might anticipate, there are *lots* of different ways besides "nearest-neighbor with replacement" to create these matches.

Step 2: Common support (post-match)

Step 3: Examine balance

(doesn't really fit on screen)

#> math8 0.1550

```
summary(matched)
#>
#> Call:
#> matchit(formula = catholic ~ math8 + inc8, data = catholic, method = "ne
      discard = "both", replace = T)
#>
#>
#> Summary of Balance for All Data:
          Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
#>
#> distance
            0.1216
                         0.1024
                                          0.4351 1.0216
                                                            0.134
#> math8
             53.6604 51.2365
                                          0.2746 0.8201
                                                            0.075
#> inc8
               39.5346
                           31.8548
                                       0.4714 0.8886
                                                            0.077
#> eCDF Max
#> distance 0.2142
```

20 / 44

Step 3: Examine balance

Summary of balance for all data:

Variable	Means Treated	Means Control	Std. Mean Diff
distance	0.1216	0.1024	0.4351
math8	53.6604	51.2365	0.2746
inc8	39.5346	21.8548	0.4714

Summary of balance for matched data:

Variable	Means Treated	Means Control	Std. Mean Diff
distance	0.1216	0.1216	0.0000
math8	53.6604	53.4416	0.0248
inc8	39.5346	39.6698	-0.0083

Could get even closer with fuller model:

Phase 2: Estimate effects

```
#>
#> Coefficients:
                Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 1.3079490 2.4457425 0.535 0.592905
#> catholic 1.5990422 0.3144335 5.085 4.30e-07 ***
#> math8
           0.9065628 0.0468521 19.349 < 2e-16 ***
#> inc8
           0.3701132    0.0663303    5.580    3.02e-08 ***
#> inc8sq
              -0.0015921 0.0005686 -2.800 0.005194 **
#> mathfam
              -0.0040694 0.0010783 -3.774 0.000169 ***
#> ---
#> Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
#>
```

Can you interpret these results?

In a matched sample of students who had nearly identical 8th grade math test scores and family income levels and were equally likely to attend private school based on these observable conditions, the effect of attending parochial high school was to increase 12th grade math test scores by 1.59 scale score points [95% CI: 0.98, 2.22]. To the extent that families' selection into Catholic high school is based entirely on their children's 8th grade test scores and their family income, we can interpret this a credibly causal estimate of the effect of Catholic high school attendance, purged of observable variable bias.

Matching:

Coarsened Exact Matching (CEM)

A different approach: CEM

Some concerns with PSM:

- Model (rather than theory) dependent
- Lacks transparency
- Can exclude large portions of data
- Potential for bias
- We'll return to these at the end!

→ more transparent (?) approach ... **Coarsened Exact Matching** ... literally what the words say!

Basic intuition:

- Create bins of observations by covariates and require observation to match exactly within these bins.
- Can require some bins be as fine-grained as original variables (then, it's just exact matching).

Creating bins

```
table(catholic$faminc8)
#>
       2 3 4 5 6 7 8
#>
                                              10
                                                   11
                                                       12
    18 42 84 85 144 175 447 441 655 1267 1419 894
#>
catholic ← mutate(catholic, coarse_inc=ifelse(faminc8<5,1,faminc8)</pre>
catholic$coarse_inc ← as.ordered(catholic$coarse_inc)
levels(catholic$coarse inc)
                             "9" "10" "11" "12"
               "6"
                   "7" "8"
summary(catholic$math8)
    Min. 1st Qu. Median Mean 3rd Qu.
                                       Max.
#>
    34.48 43.45 50.45 51.49 58.55
                                         77.20
#>
mathcuts \leftarrow c(43.45, 51.49, 58.55)
```

CEM matches

This is the same number of observations as were in the original sample. What does this imply?

Quality of matches

```
summary(cem)
```

```
#>
#> Call:
#> matchit(formula = catholic ~ coarse inc + math8, data = catholic,
      method = "cem", cutpoints = list(math8 = mathcuts))
#>
#>
#> Summary of Balance for All Data:
               Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF
#>
                                                   -0.2598
#> coarse inc1
                      0.0135
                                    0.0435
#> coarse inc5
                      0.0101
                                    0.0272
                                                   -0.1701
#> coarse inc6
                   0.0101
                                    0.0333
                                                   -0.2310
                                                                         0
#> coarse inc7
                     0.0338
                                    0.0841
                                                   -0.2783
#> coarse inc8
                     0.0524
                                    0.0807
                                                   -0.1273
                                                                         0
#> coarse inc9
                   0.0794
                                    0.1197
                                                   -0.1491
#> coarse_inc10
                     0.2196
                                    0.2239
                                                   -0.0103
#> coarse inc11
                   0.3345
                                    0.2404
                                                    0.1994
                                                                         0
#> coarse_inc12
                 0.2466
                                    0.1473
                                                    0.2305
#> math8
                     53.6604
                                   51.2365
                                                    0.2746
                                                               0.8201
#>
               eCDF Max
#> coarse inc1
                 0.0300
```

Quality of matches

Summary of balance for all data:

Variable	Means Treated	Means Control	Std. Mean Diff
coarse_inc1	0.0135	0.0435	-0.2598
coarse_inc5	0.0101	0.0272	-0.1701
coarse_inc6	0.101	0.0333	-0.2310
coarse_inc7	0.0338	0.0841	-0.2783
coarse_inc8	0.0524	0.0807	-0.1273
coarse_inc9	0.0794	0.1197	-0.1491
coarse_inc10	0.2196	0.2239	-0.0103
coarse_inc11	0.3345	0.2404	-0.1994
coarse_inc12	0.2466	0.1473	-0.2305
math8	53.6604	51.2365	-0.2746

Common support?

Different cuts?

Can generate different quantiles, e.g., quintiles

```
math8_quints ← gtools::quantcut(catholic$math8, 5)
table(math8_quints)

#> math8_quints
#> [34.5,42.1] (42.1,47.6] (47.6,53.3] (53.3,60.6] (60.6,77.2]
#> 1136 1133 1134 1134 1134
```

You might also have a substantive reason for the cuts:

```
mathcuts2 \leftarrow c(40, 45, 50, 55, 60, 65, 70)
```

Different cuts: Balance

```
#>
#> Call:
#> matchit(formula = catholic ~ coarse_inc + math8, data = catholic,
       method = "cem", cutpoints = list(math8 = mathcuts2))
#>
#>
#> Summary of Balance for All Data:
#>
                Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF
#> coarse inc1
                        0.0135
                                      0.0435
                                                      -0.2598
#> coarse inc5
                       0.0101
                                      0.0272
                                                      -0.1701
#> coarse inc6
                       0.0101
                                      0.0333
                                                      -0.2310
#> coarse inc7
                       0.0338
                                      0.0841
                                                      -0.2783
#> coarse inc8
                       0.0524
                                      0.0807
                                                      -0.1273
#> coarse inc9
                       0.0794
                                      0.1197
                                                      -0.1491
                                                                             0
#> coarse inc10
                       0.2196
                                      0.2239
                                                      -0.0103
#> coarse_inc11
                       0.3345
                                      0.2404
                                                      0.1994
                                      0.1473
#> coarse inc12
                       0.2466
                                                      0.2305
#> math8
                      53,6604
                                     51.2365
                                                       0.2746
                                                                  0.8201
#>
                eCDF Max
#> coarse inc1
                  0.0300
#> coarse inc5      0.0170
#> coarse inc6
                  0.0231
                                                                       33 / 44
```

Big improvements!

Summary of balance for matched data:

Variable	Means Treated	Means Control	Std. Mean Diff
coarse_inc1	0.0269	0.0269	-0.000
coarse_inc5	0.0203	0.0203	0.000
coarse_inc6	0.0251	0.0251	-0.000
coarse_inc7	0.0799	0.0799	0.000
coarse_inc8	0.0744	0.0744	0.000
coarse_inc9	0.1171	0.1171	0.000
coarse_inc10	0.2322	0.2322	0.000
coarse_inc11	0.2601	0.2601	0.000
coarse_inc12	0.1639	0.1639	-0.000
math8	51.6351	51.3938	0.026

We've forced T/C to be identical within coarsened income bins. The *original* **math8** variable still has some imbalance (but it's much better). Within **mathcuts2**, T/C would be identical.

Minimal sample loss

Sample sizes:

Category	Control	Treated
All	5079	592
Matched	4866	590
Unmatched	213	2

Estimating effects

```
att2 \leftarrow lm(math12 \sim catholic + coarse inc + math8,
         data=df cem2, weights = weights)
summary(att2)
#>
#> Call:
#> lm(formula = math12 ~ catholic + coarse_inc + math8, data = df_cem2,
     weights = weights)
#>
#>
#> Weighted Residuals:
#>
     Min
            1Q Median 3Q
                               Max
#> -28.504 -3.144 -0.064 3.192 26.186
#>
#> Coefficients:
       Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 10.26504
                      0.44843 22.891 < 2e-16 ***
#> catholic 1.50497
                      0.22886 6.576 5.28e-11 ***
#> coarse_inc.Q 0.02882 0.43027 0.067 0.947
36 / 44
#> coarse_inc^4 -0.26505
                      0.48358 -0.548 0.584
```

Let's look across estimates

	OLS		PSM		CE	EM
	(1)	(2)	(3)	(4)	(5)	(6)
Attend catholic school	3.895 ^{***} (0.409)	1.612 ^{***} (0.318)	1.599 ^{***} (0.314)	1.688 ^{***} (0.306)	1.561 ^{***} (0.228)	1.505 ^{***} (0.229)
Observations	5,671	1,118	1,118	1,126	5,671	5,456
R^2	0.016	0.623	0.632	0.651	0.656	0.644
*p<0.05; **p<0.01; ***p<0.001. Models 2-3 and 5-6 match on incomand math score. Model 3 adjusts for higher-order terms and interactions post matching; Model 4 includes them in matching algorithm. Model 6 uses narrower bins to match than Model 5. A CEM and PSM estimates are doubly-robust. Outcome mean (SD) for treated = 54.5 (8.5)			and atching odel 5. All			

How would you describe results?

A naïve estimate of 12th grade math test score outcomes suggests that students who attend Catholic high school scored nearly 4 scale score points higher than those who attended public school (almost half a standard deviation). However, the characteristics of students who attended Catholic high school were substantially different. They had higher family income, scored higher on 8th grade math tests and were more likely to be White, among other distinguishing characteristics. We theorize that the primary driver of Catholic school attendance is student 8th grade performance and family income. Conditional on these two characteristics, we implement two separate matching algorithms: Propensity Score Matching and Coarsened Exact Matching. Both sets of estimates indicate that the benefits of Catholic school are overstated in the full sample, but the attenuated results are still large in magnitude (just under one-fifth of a SD) and statistically significant.

Strengths/limitations of approaches

Approach	Strengths	Limitations
PS nearest neighbor matching w/ calipers and replacement	 Simulates ideal randomized experiment Limits dimensionality problem Calipers restrict poor matches Replacement takes maximal advantage of available data 	 May generate poor matches Model dependent Lacks transparency; PS in aribtrary units Potential for bias (King & Nielsen, 2019)
PS stratification	Simulates block-randomized experimentLimits dimensionality problem	May produce worse matches than nearest neighborLacks transparency; stratum arbitrary
Inverse probablity (PS) matching	 Retains all original sample data Corrects bias of estimate with greater precision than matching/stratification 	- Non-transparent/a-theoretical
Coarsened Exact Matching	 Matching variables can be prespecified (and pre-registered) Matching substantively driven Transparent matching process Eliminates same bias as propensity score if SOO occurs 	 May generate poor matches depending on how coarsened variables are May lead to disgarding large portions of sample

Synthesis and wrap-up

Goals

- 1. Describe conceptual approach to matching analysis
- 2. Assess validity of matching approach
- 3. Conduct matching analysis in simplified data using both propensity-score matching and CEM

Can you explain this figure?

To-Dos

Week 9: Matching and presenting

Readings:

Umansky & Dumont (2021)

Assignments Due

DARE 4

• Due 9:00am, February 28

Final Research Project

- Presentation, March 8
- Paper, March 17 (submit March 10 for feedback)

Feedback

Plus/Deltas

Front side of index card

Clear/Murky

On back