Bangladesh Math Olympiad Higher Secondary 2024 — P6/10

Jonathan Kasongo

July 3, 2025

Bangladesh Math Olympiad Higher Secondary 2024 — P6/10

Find all polynomials P(x) for which there exists a sequence $a_1, a_2, a_3, ...$ of real numbers such that

$$a_m + a_n = P(mn)$$

for any positive integers m, n.

Solution

Set $P(x) := \sum_{r=1}^{N} b_r x^r$ for some $b_r \in \mathbb{C}$. Put m = n = 1 to see that $P(1) = \sum_{r=1}^{N} b_r = 2a_1$.

Now put
$$n = 1$$
 to see that $a_m = P(m) - a_1 = \left(\sum_{r=1}^N b_r m^r\right) - a_1 = \sum_{r=1}^N b_r (m^r - 1/2)$.

So now we can re-write the equation given in the problem statement as

$$P(m) + P(n) - 2a_1 = P(mn)$$

$$\frac{1}{2}(P(m) + P(n) - P(mn)) = a_1$$

So now we can re-write a_m ,

$$a_m = P(m) - \frac{1}{2} \left[P(mn) - P(m) - P(n) \right]$$

$$a_m = \frac{3}{2} P(m) + \frac{1}{2} P(n) - \frac{1}{2} P(mn)$$

Now substitute this new definition into the equation given in the problem statement,

$$P(mn) = \frac{3}{2} [P(m) + P(n)] + \frac{1}{2} [P(n) + P(m)] - P(mn)$$

$$2P(mn) = 2 [P(m) + P(n)]$$

So the polynomial P obeys the equation P(mn) = P(m) + P(n) for $m, n \in \mathbb{N}$. For m = n that is $P(m^2) = 2P(m)$. But now recall that $\deg P(x) = N$ so we must have 2N = N, but that forces N = 0. Hence P(x) = c for some constant c. We note that $c \in \mathbb{R}$ because $P(mn) = c = a_m + a_n \in \mathbb{R}$.

Finally we conclude that any c works because there exists a sequence $\frac{1}{2}c = a_1 = a_2 = \cdots$ such that the desired condition is always fulfilled $\frac{1}{2}c + \frac{1}{2}c = P(mn) = c$.

1

Well that was my solution, but I then came across this much nicer solution,

Alternative solution

Put m = n to find that $2a_m = P(m^2)$. So now we can write

$$a_m + a_n = \frac{1}{2} \left(P(m^2) + P(n^2) \right) = P(mn)$$

Let $N := \deg P(x)$ and the equation we have above forces 2N = N, so N = 0. You can then check that all constants $c \in \mathbb{R}$ work like in the other solution.