Diffi Helman

- Alicja i Bob w dowolny sposób wybierają dwie liczby względnie pierwsze: dużą liczbę p oraz liczbę g, będącą generatorem grupy multiplikatywnej Z_p^* .
- Alicja losuje liczbę a; Bob losuje liczbę b
- Alicja wysyła Bobowi $g^a \mod p$; Bob wysyła Alicji $g^b \mod p$ $k = (g^b)^a \mod p$

RSA

Generowanie kluczy

- Wybieramy losowo dwie duże liczby pierwsze p i g
- Obliczamy wartość n = p*q
- Obliczamy: $\varphi(n) = (p-1)*(q-1)$
- Wybieramy liczbę e (1 < e < $\phi(n)$) względnie pierwszą z $\phi(n)$
- Znajdujemy liczbę d odwrotną do e mod $\varphi(n)$: $d = e^{-1} \mod \varphi(n)$

Klucz publiczny jest definiowany jako para liczb (n, e), natomiast **kluczem prywatnym** jest para (n, d).

Szyfrowanie i deszyfrowanie

Zanim zaszyfrujemy wiadomość, dzielimy ją na bloki m_i o wartości liczbowej nie większej niż n, a następnie każdy z bloków szyfrujemy według wzoru:

$$c_i = m_i^e \mod n$$

Zaszyfrowana wiadomość będzie się składać z kolejnych bloków c_i. Tak stworzony szyfrogram przekształcamy na tekst jawny, odszyfrowując kolejne blok ci według wzoru:

 $m_i = c_i^d \mod n$

Podpis RSA

Generacja

- H(m) skrót wiadomości
- h = H(M)
- s=hdmod n

Weryfikacja

- $h_1 = H(m')$
- $h_2 = S^e \mod n$
- Jeżeli h₁ = h₂ to OK

ElGamal

Generowanie klucza

wybieramy dowolną liczbę pierwszą p, dowolny generator a podgrupy multiplikatywnej, tzn. taki element, którego rząd jest równy p-1, oraz dowolne k takie, że: 1 < t < p. Liczymy β :

$$\beta = a^t \mod p$$

Następnie publikujemy $k_1 = (p,a,\beta)$ jako **klucz publiczny** i zachowujemy $k_2 = (p,a,\beta)$ jako **klucz prywatny.**

Szyfrowanie i deszyfrowanie

Szyfrowanie: mając do zaszyfrowania wiadomośćx, przedstawiamy ją jako element grupy [1 < x < p - 1] wybieramy losowo liczbę r i liczymy (modulo p)

$$C=(Y_1, Y_2) = (a^r \text{mod } p, x * \beta^r \text{ mod } p)$$

Deszyfrowanie:

$$D_{k_2}(Y_1, Y_2) = Y_2 * (Y_1^t)^{-1} \mod p = y_2 * Y_1^{p-1-t} \mod p$$

Podpis cyfrowy

Klucz jest generowany w ten sam sposób.

- h = H(m) skrot wiadomości
- losujemy liczbę r 1 < r < p-1 oraz gcd (r, p-1) = 1
- $u = a^r \mod p$
- obliczamy r⁻¹ mod (p-1)
- $s = r^{-1} * (h t* u) \mod (p-1)$
- podpisem jest para m = (u, s)

Żeby zweryfikować podpis:

- otrzymujemy wiadomosc oraz u' i s'
- wyznaczć skrot h' wiadomosci
- $f = a^{h'} \mod p$
- $g = \beta^{u'} * (u')^{s'} \mod p$
- jesli f = g to OK

DSA

Generacja kluczy

• wybrać liczbę pierwszą p o dlugości L bitow (512 <= L <=1024) i jest

```
wielokrotnością 64: 2^{511+64t}  • Wybrać liczbę oierwszą q o dlugości 160 bitow ktora dzieli liczbę p-1 <math display="block">2^{159} < q < 2^{160}, q | (p-1) • Wybrać liczbę a \in \mathbb{Z}_p^* i obliczyć a \in \mathbb{Z}_p^* o jesli a \in \mathbb{Z}_p^* i obliczyć a \in \mathbb{Z}_p^* obliczyć a \in \mathbb{Z}_p^*
```

klucze: publiczny $k_1 = (p, q, g, y)$ prywatny $k_2 = (p, q, g, x)$

Generacja podpisu

- wybrać losową, tajną liczbę calkowitą: 0 < k < q
- Obliczyć r = (g^k mod p) mod q
- Obliczyć s = $[k^{-1}(h(m) + x * r)] \mod q$
- Podpisem cyfrowym jest para liczb (r,s)

Weryfikacja podpisu

- obliczyć w = s⁻¹ mod q
- obliczyć u₁ = w * h(m) mod q
- obliczyć u₂ = r * w mod q
- $v = [(g^{u1} * y^{u2}) \mod p] \mod q$
- Jezlei v = r to OK