Álgebra Linear I - Aula 7

1. Posições relativas e sistemas de equações.

Roteiro

1 Sistemas de equações lineares (posição relativa de três planos)

Considere os planos de equações cartesianas

$$\pi_1$$
: $a_1 x + b_1 y + c_1 z = d_1$,
 π_2 : $a_2 x + b_2 y + c_2 z = d_2$,
 π_3 : $a_3 x + b_3 y + c_3 z = d_3$,

e o sistema linear de equações

$$a_1 x + b_1 y + c_2 z = d_1,$$

 $a_2 x + b_2 y + c_2 z = d_2,$
 $a_3 x + b_3 y + c_3 z = d_3.$

Os planos se intersectam se (e somente se) o sistema tem solução. Se a solução é única então a interseção é um ponto, caso contrário será uma reta ou um plano.

As oito posições possíveis dos planos π_1 , π_2 e π_3 são as seguintes:

- a) os três planos coincidem,
- b) dois planos coincidem e são paralelos a um terceiro,
- c) dois planos coincidem e intersectam ao terceiro ao longo de uma reta,
- d) os três planos são paralelos entre si,
- e) dois planos são paralelos e o terceiro os intersecta ao longo de retas paralelas,

- f) os três planos têm uma reta em comum (interseção ao longo de uma reta),
- g) os planos se intersectam dois a dois ao longo de retas paralelas,
- h) os três planos se intersectam em exatamente um ponto.

Considere vetores normais aos planos n_1 , n_2 e n_3 .

Se $n_1 \cdot (n_2 \times n_3) \neq 0$ (vetores não coplanares) então o sistema tem solução única, isto é, os planos se intersectam em um ponto (esta afirmação se justifica usando escalonamento).

Consideraremos agora as diferentes possibilidades que podem aparecer quando $n_1 \cdot (n_2 \times n_3) = 0$.

1.1 Sistemas com solução (os planos têm intersecção comum)

Se $n_1 \cdot (n_2 \times n_3) = 0$ os vetores são coplanares. Então teremos, por exemplo

$$n_1 = \sigma_2 \, n_2 + \sigma_3 \, n_3.$$

Então necessariamente, para que o sistema tenha solução deveremos ter

$$d_1 = \sigma_2 d_2 + \sigma_3 d_3$$
.

As possibilidades são:

- Os planos têm interseção ao longo de uma reta (por exemplo, n_2 e n_3 não paralelos, $n_1 = \sigma_2 n_2 + \sigma_3 n_3$, e $d_1 = \sigma_2 d_2 + \sigma_3 d_3$.
- dois planos são iguais e o terceiro não é paralelo.
- os três planos são iguais $(n_2 = \sigma_2 n_1 e n_3 = \sigma_3 n_1, d_2 = \sigma_2 d_1 e d_3 = \sigma_3 d_1)$.

1.2 Sistemas sem solução (os planos não se intersectam)

As possibilidades são as seguintes:

• Três planos paralelos diferentes,

- Dois planos paralelos (por exemplo π_1 e π_2) e o terceiro π_3 intersecta π_1 e π_2 de forma que $r_1 = \pi_1 \cap \pi_3$ e $r_2 = \pi_2 \cap \pi_3$ são retas paralelas.
- Os planos se intersectam dois a dois ao longo de retas paralelas $r_1 = \pi_1 \cap \pi_3$, $r_2 = \pi_1 \cap \pi_2$, e $r_3 = \pi_2 \cap \pi_3$, e são retas paralelas.

1.3 Exemplos

Exemplo I: Considere os planos

$$\pi_1$$
: $x + y + z = 1$,
 π_2 : $2x + 2y + 2z = 2$,
 π_3 : $5x + 5y + 5z = 5$.

Os três planos são iguais (caso (a))

Exemplo II: Considere os planos

$$\pi_1$$
: $x + y + z = 1$,
 π_2 : $2x + 2y + 2z = 2$,
 π_3 : $3x + 3y + 3z = 1$.

Os dois primeiros planos são iguais e π_3 é paralelo a π_1 e π_2 (caso (b)).

Exemplo III: Considere os planos

$$\pi_1$$
: $x + y + z = 1$,
 π_2 : $2x + 2y + 2z = 2$,
 π_3 : $x + 2y + 3z = 1$.

Os dois primeiros planos são iguais e π_3 os intersecta ao longo de uma reta (caso (c)).

Exemplo IV: Considere os planos

$$\begin{array}{ll} \pi_1\colon & x+y+z=1,\\ \pi_2\colon & x+y+z=2,\\ \pi_3\colon & x+y+z=3. \end{array}$$

Os três planos são paralelos e diferentes (caso (d)).

Exemplo V: Considere os planos

$$\pi_1$$
: $x - 2y + 3z = 4$,
 π_2 : $2x - 4y + 6z = 0$,
 π_3 : $x + y + z = 3$.

Os planos π_1 e π_2 são paralelos e diferentes e π_3 os intersecta ao longo de retas paralelas (caso (e)).

Exemplo VI: Considere os planos

$$\pi_1$$
: $x + 2y - 3z = 4$,
 π_2 : $2x + 3y + 4z = 5$,
 π_3 : $4x + 7y - 2z = 13$.

Os planos π_1 , π_2 e π_3 têm uma reta em comum (caso (f)).

Exemplo VII: Considere os planos

$$\pi_1$$
: $x + 2y - 3z = 4$,
 π_2 : $2x + 3y + 4z = 5$,
 π_3 : $4x + 7y - 2z = 3$.

Os planos π_1 , π_2 e π_3 se intersectam dois a dois ao longo de retas paralelas diferentes (caso (g)).