A-Level Notes for Pearson Edexcel

Michael Tang

Compile Date: December 31, 2024

Contents

Co	ontents	3
1	Math	5
2	Biology 2.1 Molecules, Transport and Health	7 7 7
3	Chemistry 3.1 Formulae, Equations and Atoms of Substances	
4	Physics	31
Bi	ibliography	33

A-Level Note CONTENTS

Chapter 1

Math

Chapter 2

Biology

2.1 Molecules, Transport and Health

2.1.1 Chemistry for Biologists

1A.1 Chemistry of Life

Ionic Bonding (离子键)

- **Definition:** Atoms transfer electrons to achieve a stable electron configuration, resulting in positively charged cations and negatively charged anions.
- Key Properties:
 - High melting and boiling points.
 - Solubility in polar solvents like water.
- Example: <u>Sodium</u> (Na 钠) and <u>chlorine</u> (Cl 氯) form sodium chloride (NaCl 氯). Sodium donates an electron to chlorine, forming a strong ionic bond.

Figure 2.1: The formation of sodium chloride.

Covalent Bonding (共价键)

- **Definition:** Atoms shere electrons to achieve stability.
- Polarity (极性): Unequal sharing of electrons leads to polar molecules (极性分子 e.g., water).
- **Dipoles** (偶极子): Partial charges within the molecule, represented as δ^+ (positive) and δ^- (negative).

Figure 2.2: A model of a water molecule showing dipoles.

• Examples: Formation of <u>hydrogen</u> (H₂ 氢气) molecules and the formation of <u>water</u> (H₂O 水).

Figure 2.3: The formation of hydrogen molecules and water molecules are examples of covalent bonding.

Chemistry of Water

- Molecular Structure
 - Polar Molecule: Water (H₂O) has a bent structure with a partial charges (see figure 2.2) oxygen is δ^- , and hydrogen is δ^+ .
 - <u>Hydrogen Bonding</u> (氢键): Weak attractions between water molecules, providing <u>cohesion</u> (凝聚力) and a relatively high boiling point.

Figure 2.4: Hydrogen bonding in water molecules, based on attraction between positive and negative dipoles.

• Unique Properties

- Solvent (溶剂) Properties

* Excellent solvent for ionic and polar <u>substances</u> (物质).

Figure 2.5: A model of sodium chloride dissolving in water as a result of the interactions between the charges on sodium and chloride ions and the dipoles of the water molecules.

* <u>Facilitates</u> (促进) <u>biochemical</u> (生化) reactions in <u>aqueous solutions</u> (水溶液).

- Thermal (热) Stability

- * High specific heat capacity ¹ (比热容) moderates temperature changes.
- * Ice floats due to lower <u>density</u> (密度) compared to liquid water, insulating (隔热) the aquatic (水生) life.
- Cohesion (凝聚力) and Adhesion (粘附力)
 - * Enables water transport in plants.
 - * High surface tension due to hydrogen bonding.

Importance of Water

- Biological Reactions: All cellular reactions occur in an aqueous environment.
- Transport Medium: Dissolves and carries <u>nutrients</u> (营养物质), gases, and waste products (废物).
- Habitat: Provides a stable environment for diverse (多样的) life forms.
- Temperature Regulation:
 - Evaporation (蒸发) cools organisms.
 - High specific heat stability ecosystems.
- Structural Support: Turgor pressure ² (胀压) in plants depends on water.

 $^{^1}$ Heat capacity: Heat capacity refers to the amount of heat energy required to raise the temperature of a substance by one degree Celsius. It reflects the substance's ability to store thermal energy (热能). c is the symbol of heat capacity. The general formula of heat capacity is $\overline{c} = \frac{Q}{m(t-t_0)} = \frac{Q}{m\Delta t}$. J kg $^{-1}$ K $^{-1}$ is the SI unit of heat capacity and $\frac{J}{(kg\cdot ^{\circ}C)}$ is the common unit. 2 Turgor pressure: Turgor pressure is the pressure exerted by the water-filled vacuole (液泡)

Importance of Inorganic (无机) Ions

- Nitrate Ions (NO₃⁻ 硝酸根离子): Vital for DNA ³ and <u>protein synthesis</u> (蛋白质合成) in plants.
- Phosphate Ions (PO₄³⁻ 磷酸根离子): Essential for ATP ⁴, DNA ³, and RNA ⁵.
- Chloride Ions (Cl⁻ 氣离子): Needed in all living organisms to make ATP and ADP as well as DNA and RNA.
- Hydrogencarbonate Ions (HCO₃ 碳酸氢根离子): Needed in nerve impulses, sweating, and many secretory systems (分泌系统) in animals.

against the cell wall in plant cells. It results from water entering the cell by <u>osmosis</u> (渗透) and helps maintain the cell's <u>rigidity</u> (刚性), supporting the plant's structure and preventing <u>wilting</u> (林萎).

3DNA (Deoxyribonucleic Acid 脱氧核糖核酸): DNA is a molecule that carries the genetic instructions (遺传信息) used in the growth, development, functioning, and reproduction of all living organisms. It consists of two strands forming a double helix (螺旋), with each strand (股) made up of nucleotide bases (核苷酸碱基) (adenine 腺嘌呤, thymine 胸腺嘧啶, cytosine 胞嘧啶, and guanine 鸟嘌呤). These bases pair (碱基对) specifically (A-T, C-G) and encode the instructions for synthesizing (合成) proteins, which determine an organism's traits (特征).

⁴ATP (Adenosine Triphosphate 腺嘌呤核苷三磷酸): ATP is a molecule that acts as the primary energy carrier in cells. It consists of an <u>adenosine molecule</u> (腺苷分子) bonded to three <u>phosphate</u> (磷酸盐) groups. When ATP is broken down into ADP (adenosine diphosphate 二磷酸腺苷/核苷酸) and a phosphate group, energy is released to fuel cellular processes such as muscle contraction, active transport, and chemical synthesis.

⁵RNA (Ribonucleic Acid 核糖核酸): RNA is a <u>single-stranded nucleic acid</u> (单链核酸) that plays a crucial role in protein synthesis and gene expression. It is composed of ribose <u>sugar</u> (核糖/单糖), phosphate groups, and four <u>nitrogenous bases</u> (含氮碱基): adenine (A 腺嘌呤), uracil (U 尿嘧啶), cytosine (C 胞嘧啶), and guanine (G 乌嘌呤). Unlike DNA, RNA contains uracil instead of thymine. Types of RNA include: mRNA ⁶ (messager RNA 信使核糖核酸), tRNA ⁷ (transfer RNA 转运核糖核酸), and rRNA ⁸ (ribosomal RNA 核糖体).

⁶mRNA: mRNA is a type of RNA that carries the genetic information from DNA in the cell nucleus to the <u>ribosome</u> (核糖体), where it is used as a template for protein synthesis. It is transcribed from DNA and contains <u>codons</u> ⁹ (密码子) that specify the <u>amino acids</u> (氨基酸) to be incorporated into the protein.

 7 tRNA: tRNA is a type of RNA that helps decode the genetic instructions in mRNA during protein synthesis. It carries specific amino acids to the ribosome, where it pairs its anticodon 10 (反密码子) with the complementary codon on the mRNA sequence. This ensures that amino acids are added in the correct sequence to form a protein.

 8 **rRNA:** rRNA is a type of RNA that is a key structural and functional component of ribosomes, the <u>molecular machines</u> 11 (分子机器) that synthesize proteins. rRNA helps align mRNA and tRNA during protein synthesis and catalyzes the formation of <u>peptide bonds</u> (肽键) between amino acids, facilitating the assembly of proteins.

 9 Codon: A codon is a sequence of three nucleotide bases in mRNA that corresponds to a specific amino acid or a stop signal during protein synthesis. For example, the <u>codon AUG</u> 12 (起始密码子) codes for the amino acid <u>methionine</u> (蛋氨酸) and also serves as the start signal for translation.

¹⁰**Anticodon:** An anticodon is a sequence of three nucleotide bases on a tRNA molecule that is complementary to a codon on the mRNA strand. During protein synthesis, the anticodon pairs with its corresponding codon, ensuring that the correct amino acid is added to the growing polypeptide chain.

11 Molecular machines: Molecular machines are complex biomolecules or assemblies of molecules that perform specific tasks within a cell, often converting energy into mechanical work. Examples include ribosomes for protein synthesis, ATP synthase for energy production, and motor proteins ¹³ (马达蛋白) like <u>kinesin</u> (驱动蛋白) for intracellular transport (细胞內运輸).

¹²Codon AUG: The codon AUG serves two critical roles in protein synthesis: start codon, it signals the beginning of translation, indicating where the ribosome should start assembling the protein; and amino acid, AUG codes for the amino acid methionine (Met), which is often the first amino acid in newly synthesized proteins. This dual function makes AUG essential in the initiation of protein synthesis.

13 Motor proteins: Motor proteins are specialized molecular machines that convert chemical energy from ATP into mechanical work to perform cellular movements. They play key roles in intracellular transport, cell division, and structural support. Examples include: kinesin (驱动蛋白), dynein (动力蛋白), and myosin (肌球蛋白).

- Sodium Ions (Na⁺ 钠离子): Critical in nerve impulses and secretory functions.
- Magnesium Ions (Mg²⁺ 镁离子): Needed for production of <u>chorophyll</u> (叶绿素) in plants.
- **Hydrogen Ions (H**⁺ 氢离子): Needed in cellular <u>respiration</u> (呼吸) and <u>photosynthesis</u> (光合作用), and in numerous pumps and systems as well as pH balance.
- Calcium Ions (Ca²⁺ 钙离子): Needed for the formation of <u>calcium pectate</u> (果胶酸钙) for middle <u>lamella</u> (中膜) between two cell walls in plants, and for bone formation and muscle contraction in animals.

1A.2 Carbohydrates: Monosaccharides and Disaccharides

These two bonds are in the plane -

What are Organic Compounds?

• **Definition:** Organic compounds are molecules containing carbon atoms bonded to hydrogen and other elements, such as oxygen, nitrogen, and phosphorus. In some carbon compounds small molecules (<u>monomers</u> 单体) bond with many other similar units to make a very large molecule called a <u>polymer</u> (聚合物). The ability of carbon to combine and make <u>macromolecules</u> (大分子) is the basis of all biological molecules and provides the great variety and complexity found in living things.

Figure 2.6: The bonds in a carbon atom have a complicated 3D shape. This is difficult to represent, so in most molecular diagrams we use one of several different ways to draw them.

• Key Features:

- Carbon atoms form stable covalent bonds, allowing complex structures.
- Organic compounds include carbohydrates (碳水化合物), <u>lipids</u> (脂质), proteins (蛋白质), and <u>nucleic acids</u> (核酸).

Carbohydrates Carbohydrates are essential organic molecules, primarily serving as energy sources and structural components. They are composed of carbon (C 碳), hydrogen (H 氢), and oxygen (O 氧), typically in a 1:2:1 ratio - (CH_2O)_n.

Monosaccharides (单糖): The Simplest Sugars

• Key Characteristics:

- Simplest form of carbohydrates.
- General formula: $(CH_2O)_n$, where n is the number of carbon. Although n can be any number, but it is usually low (3-7).
- Examples:
 - * Triose (3-Carbon 三糖, n=3): $C_3H_6O_3$. E.g., glyceraldehyde (甘油醛), involved in glycolysis (糖酵解).
 - * Pentose (5-Carbon 五糖, n = 5): $C_5H_{10}O_5$. E.g., <u>ribose</u> (核糖) and deoxyribose (脱氧核糖).

Figure 2.7: Pentose sugars such as ribose have 5 carbon atoms.

* Hexose (6-Carbon 六糖, n = 6): $C_6H_{12}O_6$. E.g., glucose (energy source 葡萄糖), fructose (fruit sugar 果糖), galactose (milk sugar 半乳糖).

- Structure of Glucose

- * Gulcose has two <u>isomers</u> (different forms 同分异构体): α -glucose and β -glucose. The two isomers have different arrangements of the atoms on the side chains of the molecule.
- * Beta(β) glucose: Hydroxyl group on carbon 1 is above the plane.

or, even more simply:

In these diagrams, the positions of carbon atoms are represented by their numbers only. Note carefully the different arrangement of atoms around the carbon 1 atom in $\alpha\text{-glucose}$ and $\beta\text{-glucose}$.

Figure 2.8: Hexose sugars have a ring structure. The arrangement of the atoms on the side chains can make a significant difference to the way in which the molecule can be used by the body. The carbon atoms are numbered in order to identify the different arrangements.

Disaccharides (二糖): The Double Sugars

• Formation:

- <u>Condensation Reaction</u> (缩合反应): Two monosaccharides join, forming a glycosidic bond (糖苷键) and releasing a water molecule (H₂O).

Figure 2.9: The formation of a glycosidic bond. The condensation reaction between two monosaccharides results in a disaccharide and a molecule of water.

- Examples:

* <u>Sucrose</u> (蔗糖): Glucose + Fructose. Stored in plants such as sugar cane (甘蔗).

- * <u>Lactose</u> (乳糖): Glucose + Galactose. Milk sugar this is the main carbohydrate found in milk.
- * <u>Maltose</u> (麦芽糖): Glucose + Glucose. <u>Malt</u> (麦芽) sugar found in germinating (发芽) seed such as barley (大麦).
- Breakdown Hydrolysis Reaction (水解反应): Glycosidic bonds are broken with the <u>addition</u> (添加) of water, yielding (产生) two monosaccharides.

Testing for Sugars - Benedict's Test (本尼迪克特试验)

• **Principle:** Benedict's test is a <u>qualitative test</u> ⁶ (定性实验) used to detect the presence of <u>reducing sugars</u> (还原糖). These sugars can reduce copper (II) ions (Cu²⁺) to copper (I) ions (Cu⁺) due to the presence of a free <u>aldehyde</u> (R-CHO ⁷ 醛) or <u>ketone</u> (R-CO-R' ⁸ 酮) group.

- Key Features:

- * **Purpose:** Identify whether a substance is present.
- * Outcome: Results are typically descriptive (描述性的 e.g., color change, precipitation 沉淀, or effervescence 沧沫) rather than quantitative (定量性的).
- * Examples in Biology and Chemistry: Benedict's test for reducing sugars (color change from blue to brick-red), iodine test for starch (color change from yellow-brown to blue-black), and biuret test (第二縣试验) for proteins (color change from blue to purple).

- Limitations:

- * Does not measure the exact amount of a substance.
- * Subjective interpretation (主观解释) of results (e.g., intensity of color change 颜色变化的程度).

 7 In organic chemistry R is a shorthand symbol (缩写符号) used to represent a generic alkyl group (烷基) or side chain (侧链) attached to a functional group 9 (官能团). It is a placeholder (占位符) for any group of carbon and hydrogen atoms (and sometimes other atoms) in a molecule.

- Explanation of R in R-CHO:

- * R: Represents a hydrocarbon (烃/碳氢化合物) chain or group, such as:
 - · Methyl group (甲基): CH3
 - · Ethyl group (乙基): CH₃CH₂-
 - · Cycloalkyl group (环烷基): C₆H₁₁
 - · Longer or branched alkyl chains: C_nH_{2n+1}
- * CHO: Represents the <u>aldehyde functional group</u> (醛官能因), where a carbon atom is <u>double-bonded</u> (双键) to an oxygen atom (C=O) and <u>single-bonded</u> (单键) to a hydrogen atom (-H).

- Purpose of R:

- 1. **Generic Representation:** It simplifies chemical structures when the specific nature of the alkyl group is not important for the discussion.
- 2. **Flexibility:** Allows focus on the functional group (CHO) rather than the details of the alkyl chain.
- **Examples:** Methanal (Formaldehyde 甲醛): H–CHO, where R=H.

 $^8R-CO-R'$ can also write as >C=O. In organic chemistry, the symbol >C=O is used to describe the structure of a <u>carbonyl group</u> (羰基), emphasizing that the carbon atom in the carbonyl group is bonded not only to an oxygen atom but also to two other <u>groups</u> (基因). The > symbol indicates that the carbonyl carbon is an <u>internal carbon</u> (內部碳), connected to two other groups or chains (rather than being a terminal carbon).

⁹Functional group: A functional group is a specific group of atoms within a molecule that determines the chemical properties and reactions of that molecule. It is the reactive part of the molecule, often defining its behavior in biological or chemical processes. Functional groups are crucial in organic chemistry because they dictate how molecules interact and bond with others.

 $^{^6}$ Qualitative Test: A qualitative test determines the <u>presence</u> (存在) or <u>absence</u> (不存在) of a specific substance in a sample, without providing <u>precise</u> (精确的) numerical data about its <u>concentration</u> (浓度) or quantity (數量)

- Reducing sugars: Reducing sugars include monosaccharides like glucose, fructose, and galactose, and disaccharides except sucrose. They have the ability to donate electrons to other molecules due to their reactive carbonyl group.
- Reagents in Benedict's Test: Benedict's Solution contains:
 - Copper (II) Sulfate (CuSO₄): Source of (Cu²⁺) ions.
 - Sodium Citrate ($C_6H_5Na_3O_7$): Stablizes the copper (II) ions in the solution.
 - Sodium Carbonate (Na₂CO₃): Provides an alkaline environment.

• Chemical Reaction:

- 1. In an alkaline medium, the carbonyl group of the reducing sugar reacts with the copper (II) ions.
- 2. Reduction Process:
 - * Cu^{2+} (blue) is reduced to Cu^{+} (red/orange precipitate of copper (I) oxide, Cu_2O).
 - * Reaction:

$$R-CHO + 2Cu^{2+} + 5OH^{-} \longrightarrow R-COOH + Cu_2O + 2H_2O$$
 (2.1)

Where R-CHO represents the reducing sugar.

• Procedure:

- 1. Mix the sample with Benedict's solution.
- 2. Heat the mixture in a boiling water bath for about 2-5 minutes.
- 3. Observe the color change and precipitate formation.

• Observation and Results:

Color Change	Reducing Sugar Concentration					
Blue (no change)	No reducing sugar present					
Green	Low concentration					
Yellow	Moderate concentration					
Brick-red precipitate	High concentration					

Table 2.1: Color changes observed in Benedict's test for reducing sugars.

Figure 2.10: Benedict's test for reducing sugars.

• Limitations: Non-reducing sugars like sucrose do not react directly unless hydrolyzed.

1A.3 Carbohydrates: Polysaccharides (多糖)

Carbohydrates and Energy Carbohydrates are a primary source of energy in biological systems, particularly glucose, which is a key monosaccharide used in cellular respiration.

• Key Points

- Energy Production: Glucose (C₆H₁₂O₆) is broken down through cellular respiration to produce ATP (adenosine triphosphate), which powers cellular activities.
- End Products: The breakdown of glucose result in:
 - * Carbon dioxide (CO₂)
 - * Water (H₂O)
 - * Large amounts of ATP

- Glucose Utilization:

- * Monosaccharides such as glucose are rapidly absorbed and used for immediate energy needs.
- * Disaccharides like sucrose and lactose are broken into monosaccharides for energy production.
- * Polysaccharides are complex carbohydrates made up of many monosaccharide units joined by glycosidic bonds. Note that molecules with between 3 and 10 sugar units are known as oligosaccharides (低聚糖), while molecules containing 11 or more monosaccharides are known as true polysaccharides.

Figure 2.11: Glycosidic bonds are made by condensation reactions and broken down by hydrolysis.

* Exam Hint: Avoid stating that energy is "created". Instead, describe how chemical energy from glucose is transferred to ATP molecules.

• Properties of Polysaccharides

1. Compact Structure:

- * Takes up little space within cells.
- * Ideal for storage purposes.

2. Insolubility:

- * Reduces <u>osmotic effects</u> ⁹ (渗透效应) in cells.
- * Does not affect water potential.
- 3. Chemical Inactivity: Does not interfere with cellular reactions.

• Starch (Plant Energy Store)

- Composed of α -glucose units.
- Two main components:
 - * Amylose (直链淀粉): Long, unbranched chains of α -glucose units. Forms a compact spiral sturcture due to 1,4-glycosidic bonds.
 - * Amylopectin (支链淀粉): Branched chains of α-glucose units. Contains 1,4- and 1,6- glycosidic bonds, allowing rapid glucose release.

Figure 2.12: Amylose and amylopectin —a small difference in the position of the glycosidic bonds in the molecule makes a big difference to the properties of the compounds.

- Function:

* Efficient energy storage in plants.

⁹Osmotic effects: Osmotic effects refer to the movement of water across a semipermeable membrane 10 (半透膜) due to differences in solute concentration.

¹⁰ Semipermeable membrane: It is a membrane that allows certain molecules to pass through while blocking others. It permits solvent molecules (such as water) to pass but prevents solute molecules from doing so. This property makes semipermeable membranes highly useful in various applications, such as desalination (海水淡化), where water and salt in seawater are separated using a semipermeable membrane.

- * Rapid glucose availability during high metabolic demands.
- **Testing for Starch** If you add a few drops of reddish-brown iodine solution to a sample containing starch (whether it is a solid sample or a sample in solution), the iodine solution will turn blue-black.

Figure 2.13: The iodine test for starch.

• Glycogen (Animal Energy Store)

- Similar to amylopectin but more extensively branched.

- Structure:

- * Contains many 1,6-glycosidic bonds, leading to multiple branches.
- * Compact and can be rapidly hydrolyzed for energy.

Figure 2.14: In (a) you can see liver cells full of small glycogen granules (微粒), stained (染色) pink in this micrograph (显微照片). If your blood glucose levels are low, this glycogen store in your liver can be broken down to provide the glucose you need for cellular respiration. In (b) you can see the structure of glycogen with 1,4 and 1,6-glycosidic bonds.

- Function:

- * Found in the liver and muscle cells.
- * Acts as a quick energy source for animal during high activity.

Figure 2.15: You can clearly see the many side branches which allow glycogen to be broken down so quickly when you compare amylose, amylopectin and glycogen.

1A.4 Lipids (脂类)

Fats and Oils Fats and oils are essential lipids with significant biological roles.

• **Definition:** Lipids include fats and oil. Fats are solid at room temperature, while oils are liquid at room temperature.

• Composition:

— Made of glycerol ($C_3H_8O_3$ 甘油) and fatty acids ($C_nH_{2n+1}COOH$ 脂肪酸).

Figure 2.16: Displayed formula of glycerol (propane-1,2,3-triol).

- Contain carbon (C), hydrogen (H), and small amount of oxygen (O) atoms.

• Sources:

- **Fats:** Predominantly (大多数情况下) from animal sources (e.g., butter, lard 猪油).
- Oils: Predominantly from plant sources (e.g., olive oil, sunflower oil).

• Energy Content:

- Store about three times as much energy as the same mass of carbohydrates.
- Act as long-term energy storage, especially in seeds and <u>adipose tissue</u> (皮下脂肪组织).

• Types:

1. Saturated Fatty Acids (饱和脂肪酸): Only single bonds between carbon atoms (e.g., stearic acid 硬脂酸).

Figure 2.17: Displayed formula of stearic acid, a saturated fatty acid found in both plant and animal fats.

2. Unsaturated Fatty Acids (不饱和脂肪酸):

- * Monounsaturated Fatty Acids (单不饱和脂肪酸): One double bond between carbon atoms.
- * Polyunsaturated Fatty Acids (多不饱和脂肪酸): Multiple carboncarbon double bonds (e.g., linoleic acid 亚油酸).

Figure 2.18: Displayed formula of linoleic acid, a polyunsaturated fatty acid.

• Properties:

- Saturated fats are more likely to be solid at room temperature.
- Unsaturated fats are usually liquid and healthier in the diet.

Forming Ester Bonds Ester bonds are formed in the synthesis of <u>triglycerides</u>

10 (甘油三酯) through a condensation reaction.

• Process:

1. Reactants:

- * Glycerol provides hydroxyl groups (-OH).
- * Fatty acids provide carboxyl groups (-COOH).
- 2. **Reaction:** A molecule of water (H₂O) is removed for each <u>ester bond</u> ¹¹ (酯键) formed.
- 3. **Product:** One molecule of glycerol reacts with three fatty acids to form a triglyceride.

• Chemical Representation:

Glycerol + 3 Fatty Acids
$$\longrightarrow$$
 Triglyceride + 3 H₂O (2.2)

 $^{^{10}\}mathrm{Note}$ that a word with a prefix mono- usually means one, di- means two, tri- means three, and poly- means many.

¹¹An ester bond is a covalent bond formed between the hydroxyl group (-OH) of glycerol and the carboxyl group (-COOH) of a fatty acid. This bond is a key structural feature of lipids, particularly triglycerides.

• **Hydrolysis:** Ester bonds in triglycerides can be broken down by adding water, releasing glycerol and fatty acids.

Figure 2.19: The formation of ester bonds.

Chapter 3

Chemistry

3.1 Formulae, Equations and Atoms of Substances

3.1.1 Atoms, Elements and Molecules

1A Techniques for Measuring the Rate of Reaction

What is an Element?

- **Definition of an Element:** A pure substance that cannot be broken down into simpler substances through chemical reactions.
 - It consists of only one type of atom.
 - Represented on the <u>Periodic Table</u> (元素周期表) by a one or two-letter symbol. Example: H for hydrogen, Ne for neon.
- Periodic Table

1 H 1.008	4	ı					RIODI		1001	. 0.				5	6		7	8	9	He 4.003
Li 6.941	Be 9.012	B C N O F N										Ne 20.180								
11 Na 22.990	12 Mg 24.305	13 14 15 16 17 18 Al Si P S Cl Ar									18 Ar 39.948									
19 K 39.098	20 Ca 40.078	Si 44.9		22 Ti 47.88	23 V 50.94	24 Cr 51.996	25 Mn 5 54.938	26 Fe 55.847	27 Co 58.93	28 N 58.5	i	29 Cu 63.546	30 Zn 5 65.3	ı Ga		e	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.468	38 Sr 87.62	39 Y 88.9	-	Zr Nb Mo Te Ru Rh Pd		d	47 Ag 107.86	48 Cc 8 112.4	l In			51 Sb 121.757	Te 127.6		54 Xe 131.29					
55 Cs 132.905	56 Ba 137.33	*L	a	72 Hf 178.49		74 W 18 183.85	75 Re 5 186.207	76 Os 190.2	77 Ir 192.2	P 195	t	79 Au 196.96	80 Hg 7 200.5	g Tl			83 Bi 208.980	Po (209)		86 Rn (222)
87 Fr (223)	88 Ra 226.025	*A	.c	104 Rf (261)			107 Bh (262)	108 Hs (265)	109 Mt (266)	D	110 Ds (271)		112 Cr		11 F		115 Mc	116 Lv	117 Ts	Og
*LAN	THANIDES		(58 Ce 0.12	59 Pr 140.908	60 Nd 144.24	Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25		65 Tb 58.925	66 Dy 162.50	67 Ho 164.930	68 Er 167.26	Tr 168.9	n i	70 Yb 73.04	71 Lu 174.967	
†Act	TINIDES		1	90 Γh 2.038	91 Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)		97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	10 M (25)	d :	102 No 259)	103 Lr (260)	

Figure 3.1: Full set of Periodic Table

- 1. [Nonmetals] Hydrogen 氢 (H)
- 2. [Nonmetals] Helium 氦 (He)
- 3. [Metals] Lithum 锂 (Li)
- 4. [Metals] Beryllium 钡 (Be)
- 5. [Metalloids] Boron 硼 (B)
- 6. [Nonmetals] Carbon 碳 (C)
- 7. [Nonmetals] Nitrogen 氮 (N)
- 8. [Nonmetals] Oxygen 氧 (O)
- 9. [Nonmetals] Fluorine 氣 (F)
- 10. [Nonmetals] Neon 氖 (Ne)
- 11. [Metals] Sodium 钠 (Na)
- 12. [Metals] Magnesium 镁 (Mg)
- 13. [Metals] Aluminium 铝 (Al)
- 14. [Metalloids] Silicon 硅 (Si)
- 15. [Nonmetals] Phosphorus 磷 (P)
- 16. [Nonmetals] Sulfur 硫(S)
- 17. [Nonmetals] Chlorine 氯 (Cl)
- 18. [Nonmetals] Argon 氫 (Ar)
- 19. [Metals] Potassium 钾 (K)
- 20. [Metals] Calcium 钙 (Ca)
- 21. [Transition Metals] Scandium 钪 (Sc)
- 22. [Transition Metals] Titanium 钛 (Ti)
- 23. [Transition Metals] Vanadium 钒 (V)
- 24. [Transition Metals] Chromium 铬 (Cr)
- 25. [Transition Metals] Manganese 锰 (Mn)
- 26. [Transition Metals] Iron 铁 (Fe)
- 27. [Transition Metals] Cobalt 钴 (Co)
- 28. [Transition Metals] Nickel 镍 (Ni)
- 29. [Transition Metals] Copper 铜 (Cu)
- 30. [Transition Metals] Zinc 锌 (Zn)
- 31. [Metals] Gallium 镓 (Ga)
- 32. [Metalloids] Germanium 锗 (Ge)
- 33. [Metalloids] Arsenic 神 (As)
- 34. [Nonmetals] Selenium 硒 (Se)
- 35. [Nonmetals] Bromine 溴 (Br)
- 36. [Nonmetals] Krypton 氦 (Kr)
- 37. [Metals] Rubidium 铷 (Rb)
- 38. [Metals] Strontium 锶 (Sr)
- 39. [Transition Metals] Yttrium 钇 (Y)
- 40. [Transition Metals] Zirconium 锆 (Zr)
- 41. [Transition Metals] Niobium 铌 (Nb)

A-Level Note 3.1. FORMULAE, EQUATIONS AND ATOMS OF SUBSTANCES

- 42. [Transition Metals] Molybdenum 钼 (Mo)
- 43. [Transition Metals] Technetium 锝 (Tc)
- 44. [Transition Metals] Ruthenium 钌 (Ru)
- 45. [Transition Metals] Rhodium 铑 (Rh)
- 46. [Transition Metals] Palladium 钯 (Pd)
- 47. [Transition Metals] Silver 银 (Ag)
- 48. [Transition Metals] Cadmium 镉 (Cd)
- 49. [Metals] Indium 铟 (In)
- 50. [Metals] Tin 锡 (Sn)
- 51. [Metalloids] Antimony 锑 (Sb)
- 52. [Metalloids] Tellurium 碲 (Te)
- 53. [Nonmetals] Iodine 碘 (I)
- 54. [Nonmetals] Xenon 氙 (Xe)
- 55. [Metals] Caesium 铯 (Cs)
- 56. [Metals] Barium 钡 (Ba)
- 57-71 [Not In Consideration]
 - 72. [Transition Metals] Hafnium 铪 (Hf)
 - 73. [Transition Metals] Tantalum 钽 (Ta)
 - 74. [Transition Metals] Tungsten 钨 (W)
 - 75. [Transition Metals] Rhenium 铼 (Re)
 - 76. [Transition Metals] Osmium 锇 (Os)
 - 77. [Transition Metals] Iridium 铱 (Ir)
 - 78. [Transition Metals] Platinum 铂 (Pt)
 - 79. [Transition Metals] Gold 全 (Au)
 - 80. [Transition Metals] Mercury 汞 (Hg)
 - 81. [Transition Metals] Thallium 铊 (Tl)
 - 82. [Metals] Lead 铅 (Pb)
 - 83. [Metals] Bismuth 铋 (Bi)
 - 84. [Metals] Polonium 針 (Po)
 - 85. [Nonmetals] Astatine 砹 (At)
 - 86. [Nonmetals] Radon 氡 (Rn)
 - 87. [Metals] Francium 锄 (Fr)
 - 88. [Metals] Radium 镭 (Ra)
- 88-103 [Not In Consideration]
 - 104. [Transition Metals] Rutherfordium 鉤 (Rf)
 - 105. [Transition Metals] Dubnium 镝 (Db)
 - 106. [Transition Metals] Seaborgium 坦 (Sg)
 - 107. [Transition Metals] Bohrium 波 (Bh)
 - 108. [Transition Metals] Hassium 哈 (Hs)
- 109-118 [Not In Consideration]

• Perodic Table Representation

- Each box in the Periodic Table corresponds to an element. The symbol for an element is followed by the following rules:
 - 1. First letter: Always capitalized.
 - 2. Second letter (if any): Always lowercase.
- The Periodic Table organizes elements based on their atomic number and properties. The table is divided into groups (族) and periods (周期). Every element in a group has similar properties, and every element in a period has the same number of outermost electron shells.
- Examples from Everyday Life
 - Oxygen (O₂ 氧气): Essential for <u>respiration</u> (呼吸) and <u>combustion</u> (燃烧).
 - Iron (Fe 铁): Used in construction and manufacturing.
- Chemical Simplicity: Elements are chemically the simplest substances.
 - Example: Neon (Ne 氖) contains only neon atoms and cannot be further simplified chemically.
 - Water (H_2O 水) is not an element, as it can be broken down into hydrogen (H 氢) and oxygen (O 氧).
- Isotopes (同位素) of Elements: Some elements have isotopes, which are atoms of the same element with the same number of protons (质子) but a different number of neutrons (中子). For example, neon contains three stable isotopes, ${}^{20}_{10}$ Ne, ${}^{21}_{10}$ Ne, and ${}^{22}_{10}$ Ne. Note that the number of protons and is always the same for isotopes of the same element, but the number of neutrons can vary (不同). The number of neutrons is usually write as a superscript (写在化学符号上脚的) to the left of the element symbol, and the number of protons is written as a subscript (写在化学符号下脚的) to the left of the element symbol.

What is an Atom?

- An atom is the smallest particle of an element that <u>retains</u> (保持) the properties of that element.
- Atoms are extremely small and cannot be seen with the <u>naked eye</u> (肉眼). For example, a <u>grain</u> (粒) of sand contains about 10,000,000,000,000,000,000 (billions of) atoms of silicon (Si) and oxygen (O).
- An atom is made up of subatomic particles (亚原子粒子), including protons (质子), neutrons (中子), and electrons (电子). The protons and neutrons are located in the nucleus (原子核) of the atom, while the electrons orbit the nucleus in shells (売层).
- Aroms are fundamental units in chemistry and play a crucial role in understanding elements and their behavior.

What is a Molecule?

- A molecule is a group of two or more atoms chemically bonded (化学键合) together.
- Molecules an be of:

- <u>Elements</u> (单质): Molecules consisting of the same type of atom. Example: O₂ (oxygen gas) or H₂ (hydrogen gas).

$$O = O H - H$$

Figure 3.2: Molecule formula of oxygen gas (on the left) and hydrogen gas (on the right).

- Compounds (化合物): Molecules made of different types of atoms bonded together. Example: H₂O (water) or CO₂ (carbon dioxide).

Figure 3.3: Molecule formula of water (on the left) and carbon dioxide (on the right).

• The formula of a molecule gives the number and type of atoms it contains, e.g., H₂O contains 2 hydrogen atoms and 1 oxygen atom.

What is a Compound?

- A compound is a substance formed when atoms of two or more different elements chemically combine in fixed proportions (比例).
- Compounds have unique properties <u>distinct</u> (独特) from the individual elements that from them.
- Example:
 - Water (H₂O): Contains hydrogen and oxygen atoms.

Figure 3.4: Molecule formula of water.

- Sodium chloride (NaCl): Contains sodium and chlorine atoms.

Figure 3.5: Molecule formula of sodium chloride.

- Compounds may consist of large numbers of bonded atoms, forming molecules or giant structures.
- Types:
 - Molecular compounds: Consist of distinct molecules (e.g., water H₂O, methane CH₄).
 - Ionic compounds: Consist of ions (charged particles) arranged in lattices (晶格) structures (e.g., sodium chloride NaCl, magnesium oxide MgO).

Figure 3.6: Molecule formula of methane.

What is and Ion?

- An ion is a species consisting of one or more atoms that have gained or lost electrons, resulting is a positive or negative charge.
- Types of Ions:
 - <u>Cations</u> (阳离子): An ion with a positive charge, formed by losing electrons (e.g., Na⁺, Ca²⁺).
 - <u>Anions</u> (阴离子): An ion with a negative charge, formed by gaining electrons (e.g., Cl^- , O^{2-}).
- Formation: Ions are formed when atoms or molecules lose or gain electrons to achieve a stable electron configuration (usually a full outer shell).
- Examples of Common Ions:
 - <u>Monatomic Ions</u> (单原子离子): Ions formed from a single atom (e.g., Na^+ , Cl^-).
 - Polyatomic Ions (多原子离子): Ions formed from two or more atoms bonded together (e.g., SO_4^{2-} , NH_4^+).
- Illustration (图示)

Figure 3.7: The formation of sodium chloride.

TERM	DIAGRAM	NAME	SYMBOL OR FORMULA	NOTE
element		copper	Cu	This is an element. All the atoms are the same.
atom	He	helium	He	This is an atom of an element.
molecule	Br Br	bromine	Br ₂	This is a molecule of an element. The atoms are the same.
compound	H)—Br	hydrogen bromide	HBr	This is a molecule of a compound. The atoms are different.
ion		carbonate	CO ₃ ² -	This is an ion. There are two negative charges shown.

Figure 3.8: Illustrations of terms used in this chapter.

Other Terms

- 1. <u>Monatomic</u> (单原子): Element consisting of single atoms are referred to as monatomic. Example: Helium (He), a gas used in weather balloons, is a monatomic element.
- 2. <u>Diatomic</u> (双原子): Elements and compounds made up of two atoms joined together are called diatomic. Common examples include diatomic gases in the atompshere, such as oxygen (O_2) and nitrogen (N_2) .
- 3. <u>Polyatomic</u> (多原子): Elements and compounds made up of molecules containing several atoms joined together are described as polyatomic. Examples include sulfuric acid (H₂SO₄) and ammonia (NH₃).
- 4. Monatomic, Diatomic, and Polyatomic Ions: The same terms apply to ions. Examples include monatomic ion like sodium (Na^+) , diatomic ion like hydroixde (OH^-) , and polyatomic ions like sulfate $(SO_4^{\ 2^-})$.

3.1.2 Equations and Reaction Types

1B.1 Writing Chemical Equations

Writing Formulae for Names

• Familiarize yourself with the formulae of common compounds, and <u>deduce</u> (推断) the formulae from given names. Examples:

- Oxygen: O₂ not O

- **Hydrogen:** H₂ not H

- Nitrogen: N₂ not N

- Water: H₂O

- Sodium Hydroxide: NaOH

- Nitric Acid: HNO₃

• Work out the formulae for:

- Iron(II) Sulfate: FeSO₄

- Iron(III) Oxide: Fe₂O₃

- Calcium Carbonate: CaCO₃

• Exam Hint: Use the periodic table to deduce formulae for compounds within the same group (e.g., Magnesium sulfate MgSO₄ and strontium sulfate SrSO₄).

Balancing Equations

- Add $\underline{\text{coefficients}}$ (系数) to ensure the number of atoms for each element is equal on both sides.
- Example:

$$\begin{array}{c} H_2O_2 \longrightarrow H_2O + O_2 \\ \text{Balanced Equation:} \quad 2\,H_2O_2 \longrightarrow 2\,H_2O + O_2 \end{array} \tag{3.1}$$

State Stmbols: Indicate the state of substances:

$$(s) = solid, (l) = liquid, (g) = gas, (aq) = aqueous (dissolved in water)$$

Ionic Equations

- Simplifying Full Equations
 - Ionic equations include only the ions that participate in the reaction.
 - Steps to simplify:
 - 1. Write the full balanced equation.
 - 2. Replace ionic compounds with their respective ions.
 - 3. Cancel out identical ions on both sides (spectator ions 旁观离子).
- Worked Example 1: <u>Neutralization</u> (中和) of sodium hydroxide and nitric acid:

The full balanced equation is:

$$NaOH(aq) + HNO_3(aq) \longrightarrow NaNO_3(aq) + H_2O(1)$$
 (3.2)

You should now consider which of these species are ionic and replace them with ions. In this example, the first three compounds are ionic:

$$Na^{+}(aq) + OH^{-}(aq) + H^{+}(aq) + NO_{3}^{-}(aq) \longrightarrow Na^{+}(aq) + NO_{3}^{-}(aq) + H_{2}O(l)$$
(3.3)

After deleting the identical ions, the equation becomes:

$$OH^{-}(aq) + H^{+}(aq) \longrightarrow H_2O(l)$$
 (3.4)

• Worked Example 2: Reaction between lead(II) nitrate and sodium sulfate: The full balanced equation is:

$$Pb(NO_3)_2(aq) + Na_2SO_4(aq) \longrightarrow PbSO_4(s) + 2 NaNO_3(aq)$$
 (3.5)

The ionic equation is:

$$Pb^{2+}(aq) + 2 NO_3^{-}(aq) + 2 Na^{+}(aq) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s) + 2 Na^{+}(aq) + 2 NO_3^{-}(aq)$$
(3.6)

After deleting the identical ions, the equation becomes:

$$Pb^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s)$$
 (3.7)

• Worked Example 3: Carbon dioxide reacts with calcium hydroxide: The full balanced equation is:

$$CO_2(g) + Ca(OH)_2(aq) \longrightarrow CaCO_3(s) + H_2O(1)$$
 (3.8)

The ionic equation is:

$$CO_2(g) + Ca^{2+}(aq) + 2OH^-(aq) \longrightarrow CaCO_3(s) + H_2O(l)$$
 (3.9)

After deleting the identical ions, the equation becomes:

$$CO_2(g) + Ca^{2+}(aq) + 2OH^-(aq) \longrightarrow CaCO_3(s) + H_2O(l)$$
 (3.10)

Ionic Half-Equations (半反应)

- Half-equations show the oxidation or reduction process of individual reactants.
- Example: Reduction during the electrolysis of sulfuric acid:

$$\begin{array}{l} 2\,\mathrm{H^+(aq)} + 2\,\mathrm{e^-} \longrightarrow \mathrm{H_2(g)} \\ 2\,\mathrm{H_2O}(\mathrm{l}) + 2\,\mathrm{e^-} \longrightarrow \mathrm{H_2(g)} + 2\,\mathrm{OH^-(aq)} \end{array} \tag{3.11}$$

Chapter 4

Physics

Bibliography

- [1] Ann Fullick with Frank Sochacki. Pearson Edexcel International AS/A Level Biology Student Book 1. Pearson Edexcel, 2021.
- [2] Ann Fullick with Frank Sochacki. Pearson Edexcel International AS/A Level Biology Student Book 2. Pearson Edexcel, 2021.