Understanding Core-Collapse Supernovae

CCSN Phase

Followups / studies

DiagnosticsObservables

WHAT WE NEED TO KNOW:

- ✓ Condensed matter
- ✓ Neutrino physics
- ✓ General Relativity
- ✓ Magnetohydrodynamic

- ✓ Plasma Turbulence
- ✓ Nuclear physics
- ✓ Cosmic-ray acceleration
- ✓ Radiation transport
- ✓ Chemistry of Galactic dust

Phase I – Core collapse

Radio followup (pulsars) X-ray followup (binaries) Multimessenger detections

- Prompt emission Gravitational waves MeV Neutrinos
- Compact remnants
 Mass and spin (through GW, radio and X-ray observations)

Phase II – Propagation of the blastwave through the star

EM followup for stellar abundance patterns Dust study (in lab and with SN observations)

- Shock breakout UVOIR and X-ray light curves, spectra
- Nucleosynthetic yields
 Galactic dust composition
 Galactic chemical evolution

Phase III -Propagation of the blastwave through the circumstellar medium

Broad band followup (Radio – gamma-ray)

- Temporal evolution of emitted radiation Light curves and spectra
- Supernova remnant
 Light curves, spectra (lines)
 Imaging of morphology (asymmetric explosions)
 Polarimetry (magnetic fields structure)