Introduction to Polymorphism

- There are three main programming mechanisms that constitute object-oriented programming (OOP)
 - Encapsulation
 - Inheritance
 - Polymorphism
- Polymorphism is the ability to associate many meanings to one method name
 - It does this through a special mechanism known as late binding or dynamic binding

Introduction to Polymorphism

- Inheritance allows a base class to be defined, and other classes derived from it
 - Code for the base class can then be used for its own objects, as well as objects of any derived classes

 Polymorphism allows changes to be made to method definitions in the derived classes, and have those changes apply to the software written for the base class

Late Binding

- The process of associating a method definition with a method invocation is called binding
- If the method definition is associated with its invocation when the code is compiled, that is called early binding
- If the method definition is associated with its invocation when the method is invoked (at run time), that is called *late binding* or dynamic binding

Late Binding

- Because of late binding, a method can be written in a base class to perform a task, even if portions of that task aren't yet defined
- For an example, the relationship between a base class called Sale and its derived class DiscountSale will be examined

- The Sale class contains two instance variables
 - name: the name of an item (String)
 - price: the price of an item (double)
- It contains three constructors
 - A no-argument constructor that sets name to
 "No name yet", and price to 0.0
 - A two-parameter constructor that takes in a String (for name) and a double (for price)
 - A copy constructor that takes in a Sale object as a parameter

- The Sale class also has a set of accessors
 (getName, getPrice), mutators (setName,
 setPrice), overridden equals and toString
 methods, and a static announcement method
- The Sale class has a method bill, that determines the bill for a sale, which simply returns the price of the item
- It has two methods, equalDeals and lessThan, each of which compares two sale objects by comparing their bills and returns a boolean value

- The DiscountSale class inherits the instance variables and methods from the Sale class
- In addition, it has its own instance variable,
 discount (a percent of the price), and its own
 suitable constructor methods, accessor method
 (getDiscount), mutator method (setDiscount),
 overriden toString method, and static
 announcement method
- The DiscountSale class has its own bill method which computes the bill as a function of the discount and the price

- The Sale class lessThan method
 - Note the bill () method invocations:

```
public boolean lessThan (Sale otherSale)
{
   if (otherSale == null)
   {
      System.out.println("Error: null object");
      System.exit(0);
   }
   return (bill() < otherSale.bill());
}</pre>
```

• The Sale class bill () method:

```
public double bill()
{
  return price;
}
```

• The DiscountSale class bill () method:

```
public double bill()
{
  double fraction = discount/100;
  return (1 - fraction) * getPrice();
}
```

Given the following in a program:

```
Sale simple = new sale("floor mat", 10.00);
DiscountSale discount = new
           DiscountSale("floor mat", 11.00, 10);
if (discount.lessThan(simple))
  System.out.println("$" + discount.bill() +
                " < " + "$" + simple.bill() +
                " because late-binding works!");
   – Output would be:
   $9.90 < $10 because late-binding works!
```

© 2006 Pearson Addison-Wesley. All rights reserved

- In the previous example, the boolean expression in the if statement returns true
- As the output indicates, when the lessThan
 method in the Sale class is executed, it knows
 which bill () method to invoke
 - The DiscountSale class bill () method for discount, and the Sale class bill () method for simple
- Note that when the Sale class was created and compiled, the DiscountSale class and its bill () method did not yet exist
 - These results are made possible by late-binding

The final Modifier

- A method marked final indicates that it cannot be overridden with a new definition in a derived class
 - If final, the compiler can use early binding with the method

```
public final void someMethod() { . . . }
```

 A class marked final indicates that it cannot be used as a base class from which to derive any other classes

Late Binding with toString

 If an appropriate toString method is defined for a class, then an object of that class can be output using System.out.println

```
Sale aSale = new Sale("tire gauge", 9.95);
System.out.println(aSale);
```

– Output produced:

```
tire gauge Price and total cost = $9.95
```

This works because of late binding

Late Binding with toString

 One definition of the method println takes a single argument of type Object:

```
public void println(Object theObject)
{
    System.out.println(theObject.toString());
}
- In turn, it invokes the version of println that takes a String argument
```

- Note that the println method was defined before the Sale class existed
- Yet, because of late binding, the toString method from the Sale class is used, not the toString from the Object class

An Object knows the Definitions of its Methods

- The type of a class variable determines which method names <u>can be used</u> with the variable
 - However, the object named by the variable determines which definition with the same method name is used
- A special case of this rule is as follows:
 - The type of a class parameter determines which method names <u>can be used</u> with the parameter
 - The argument determines which definition of the method name is used

Upcasting and Downcasting

 Upcasting is when an object of a derived class is assigned to a variable of a base class (or any ancestor class)

```
Sale saleVariable; //Base class
DiscountSale discountVariable = new
    DiscountSale("paint", 15,10); //Derived class
saleVariable = discountVariable; //Upcasting
System.out.println(saleVariable.toString());
```

 Because of late binding, toString above uses the definition given in the DiscountSale class

Upcasting and Downcasting

- Downcasting is when a type cast is performed from a base class to a derived class (or from any ancestor class to any descendent class)
 - Downcasting has to be done very carefully
 - In many cases it doesn't make sense, or is illegal:

 There are times, however, when downcasting is necessary, e.g., inside the equals method for a class:

```
Sale otherSale = (Sale)otherObject;//downcasting
```

Pitfall: Downcasting

- It is the responsibility of the programmer to use downcasting only in situations where it makes sense
 - The compiler does not check to see if downcasting is a reasonable thing to do
- Using downcasting in a situation that does not make sense usually results in a run-time error

Tip: Checking to See if Downcasting is Legitimate

- Downcasting to a specific type is only sensible if the object being cast is an instance of that type
 - This is exactly what the instanceof operator tests for:
 - object instanceof ClassName
 - It will return true if object is of type ClassName
 - In particular, it will return true if object is an instance of any descendent class of ClassName

A First Look at the clone Method

- Every object inherits a method named clone from the class Object
 - The method clone has no parameters
 - It is supposed to return a deep copy of the calling object
- However, the inherited version of the method was not designed to be used as is
 - Instead, each class is expected to override it with a more appropriate version

A First Look at the clone Method

 The heading for the clone method defined in the Object class is as follows:
 protected Object clone()

- The heading for a clone method that overrides the clone method in the Object class can differ somewhat from the heading above
 - A change to a more permissive access, such as from protected to public, is always allowed when overriding a method definition
 - Changing the return type from Object to the type of the class being cloned is allowed because every class is a descendent class of the class Object
 - This is an example of a covariant return type

A First Look at the clone Method

 If a class has a copy constructor, the clone method for that class can use the copy constructor to create the copy returned by the clone method

```
public Sale clone()
{
   return new Sale(this);
}
   and another example:

public DiscountSale clone()
{
   return new DiscountSale(this);
}
```

Pitfall: Sometime the clone Method Return Type is Object

- Prior to version 5.0, Java did not allow covariant return types
 - There were no changes whatsoever allowed in the return type of an overridden method
- Therefore, the clone method for all classes had Object as its return type
 - Since the return type of the clone method of the Object class was Object, the return type of the overriding clone method of any other class was Object also

Pitfall: Sometime the clone Method Return Type is Object

 Prior to Java version 5.0, the clone method for the Sale class would have looked like this:

```
public Object clone()
{
   return new Sale(this);
}
```

 Therefore, the result must always be type cast when using a clone method written for an older version of Java

```
Sale copy = (Sale)original.clone();
```

Pitfall: Sometime the clone Method Return Type is Object

- It is still perfectly legal to use Object as the return type for a clone method, even with classes defined after Java version 5.0
 - When in doubt, it causes no harm to include the type cast
 - For example, the following is legal for the clone method of the Sale class:

```
Sale copy = original.clone();
```

 However, adding the following type cast produces no problems:

```
Sale copy = (Sale)original.clone();
```

Pitfall: Limitations of Copy Constructors

- Although the copy constructor and clone method for a class appear to do the same thing, there are cases where only a clone will work
- For example, given a method badcopy in the class Sale that copies an array of sales
 - If this array of sales contains objects from a
 derived class of Sale(i.e., DiscountSale),
 then the copy will be a plain sale, not a true copy
 b[i] = new Sale(a[i]); //plain Sale object

Pitfall: Limitations of Copy Constructors

 However, if the clone method is used instead of the copy constructor, then (because of late binding) a true copy is made, even from objects of a derived class (e.g., DiscountSale):

```
b[i] = (a[i].clone());//DiscountSale object
```

- The reason this works is because the method clone has the same name in all classes, and polymorphism works with method names
- The copy constructors named Sale and DiscountSale have different names, and polymorphism doesn't work with methods of different names