# 4. MOS: Device Operation and Large Signal Model

Lecture notes: Sec. 4

Sedra & Smith (6<sup>th</sup> Ed): Sec. 5.1-5.3

Sedra & Smith (5<sup>th</sup> Ed): Sec. 4.1-4.3

#### Operational Basis of a Field-Effect Transistor (1)

Consider the **hypothetical** semiconductor below: (constructed similar to a <u>parallel plate capacitor</u>)



## Operational Basis of a Field-Effect Transistor (2)



- If we apply a voltage  $v_1$  between electrodes, a charge  $Q=C\ v_1$  will appear on each capacitor plate.
  - The electric field is strongest at the interface with the insulator and charge likes to accumulate there.
- Holes are pushed away from the insulator interface forming a "depletion region".
- $\blacktriangleright$  Depth of depletion region increases with  $v_{1.}$
- If we increase  $v_1$  above a threshold value  $(V_t)$ , the electric field is strong enough to "pull" free electrons to the insulator interface. As the holes are repelled in this region, a "channel" is formed which contains electrons in the conduction band ("inversion layer").
- Inversion layer is a "virtual" n-type material.

### Operational Basis of a Field-Effect Transistor (3)

We apply a voltage across the p-type semiconductor: (<u>Assume current flows only in the n-type material</u>, ignore current flowing in the p-type semiconductor)



No inversion layer  $(v_1 < V_t)$ :

No current will flow



#### With inversion layer $(v_1 > V_t)$ :

- A current will flow in the channel
- ightharpoonup Current will be proportional to electron charge in the channel or  $(v_1-V_t)$
- Magnitude of Current  $i_2$  is controlled by voltage  $v_1$  (a Transistor!)

#### Operational Basis of a Field-Effect Transistor (4)



We need to eliminate currents flowing in the p-type, i.e., current flows only in the "channel" which is a virtual n-type.



- Make n-type material terminals (set up diodes between terminals & p-type "body")
- Heavy doping of the n-type terminals provides a source of free electrons for the channel.
- Make insulator layer as thin as possible to increase the electric field.



Body-source and body-drain junctions should always be in reverse bias for FET to work!

# Channel width (L) is the smallest feature on the chip surface

# MOSFET "cartoons" for deriving MOSFET characteristics



MOSFET (or MOS): Metal-oxide field-effect transistor

NMOS: n-channel enhancement MOS

#### **MOSFET** implementation on a chip





## NMOS i-v Characteristics (1)

- To ensure that body-source and body-drain junctions are reversed bias, we assume that Body and Source are connected to each other and  $v_{DS} \ge 0$ .
  - We will re-examine this assumption later
- Without a channel, no current flows ("Cut-off").
- ightharpoonup For  $v_{GS}$  >  $V_{tn}$ , a channel is formed. The total charge in the channel is

$$|Q| = CV = C_{ox}WL (v_{GS}-V_{tn})$$
  
 $C = C_{ox}WL$ 

$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$$
: Capacitance per unit area

 $t_{ox}$ : Thickness of insulator

 $\varepsilon_{ox}$ : permitivity of insulator

$$\varepsilon_{ox} = 3.9\varepsilon_0 = 3.45 \times 10^{-11} \text{ F/m (for SiO}_2)$$



Overdrive Voltage:  $V_{OV}$  =  $v_{GS}$  – $V_{tn}$ 

#### NMOS i-v Characteristics (2)

- $\blacktriangleright v_{GS} > V_{tn}$  A channel is formed
- ightharpoonup Apply a  $\operatorname{\underline{small}} v_{DS}$  between drain & source.
- A current flows due to the "drift" of electrons in the n-channel:

$$i_D = \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{tn}) v_{DS}$$

$$i_D = \mu_n C_{ox} \frac{W}{L} V_{OV} v_{DS}$$

For small  $v_{DS}$ , MOS acts as a resistance with its conductivity controlled by  $V_{OV}$  (or  $v_{GS}$ ).

$$i_D = g_{DS} v_{DS}$$
 with  $g_{DS} = \mu_n C_{ox} \frac{W}{L} V_{OV}$ 





### NMOS i-v Characteristics (4)

When  $v_{DS}$  is increased the channel becomes narrower near the drain (local depth of the channel depends on the difference between  $V_G$  and local voltage).

#### Triode Mode

$$i_D = \mu_n C_{ox} \frac{W}{L} [V_{OV} v_{DS} - 0.5 v_{DS}^2]$$

- When  $v_{DS}$  is increased further such that  $v_{DS} = V_{OV}$ , the channel depth becomes zero at the drain (Channel "pinched off").
- When  $v_{DS}$  is increased further,  $v_{DS} > V_{OV}$ , the location of channel pinch-off remains close to the drain and  $i_D$  remains approximately constant.



Saturation Mode

$$i_D = 0.5 \mu_n C_{ox} \frac{W}{L} V_{OV}^2$$

### NMOS i-v Characteristics (5)



#### NMOS i-v Characteristics Plot (1)

ightharpoonup NMOS i-v characteristics  $i_D = f(v_{GS}, v_{DS})$  is a surface



## NMOS i-v Characteristics Plot (2)



F. Najmabadi, ECE65, Winter 2013, Intro to MOS (12/29)

 $0 V_{OV1} V_{OV2} V_{OV3} V_{OV4}$ 

#### NMOS i-v Characteristics Plot (3)



#### **Channel-Width Modulation**

ource

Channel

Drain

The expression we derived for saturation region assumed that the pinch-off point remains at the drain and thus  $i_D$  remains constant.



#### **Body Effect**

- Recall that Drain-Body and Source-Body diodes should be reversed biased.
  - $\circ$  We assumed that Source is connected to the body ( $v_{SB}$  = 0) and  $v_{DS}$  =  $v_{DB}$  > 0
- In a chip (same body for all NMOS), it is impossible to connect all sources to the body (all NMOS sources are connected together.
- Thus, the body (for NMOS) is connected to the largest negative voltage (negative terminal of the power supply).
- Doing so, changes the threshold voltage (called "Body Effect")

$$V_{tn} = V_{tn,0} + \gamma \left( \sqrt{|2\phi_F + V_{SB}|} - \sqrt{|2\phi_F|} \right)$$

In this course we will ignore body effect as well as other secondorder effects such as velocity saturation.

#### P-channel Enhancement MOS (PMOS)

- A PMOS can be constructed analogous to an NMOS: (n-type body), heavily doped p-type source and drain.
- $\blacktriangleright$  A virtual "p-type" channel is formed in a P-MOS (holes are carriers in the channel) by applying a negative  $v_{GS}$ .
- i-v characteristic equations of a PMOS is similar to the NMOS with the exception:
  - $\circ$  Voltages are negative (we switch the terminals to have positive voltages: use  $v_{SG}$  instead of  $v_{GS}$ ).
  - $\circ$  Use mobility of holes,  $\mu_p$  , instead of  $\mu_n$  in the expression for  $i_D$



#### **MOS Circuit symbols and conventions**













#### **MOS i-v Characteristics Equations**

NMOS (
$$V_{OV} = v_{GS} - V_{tn}$$
)

NMOS  $(V_{OV} = v_{GS} - V_{tn})$ Cut - Off:  $V_{OV} \le 0$   $i_D = 0$ Triode:  $V_{OV} \ge 0$  and  $v_{DS} \le V_{OV}$   $i_D = 0.5 \mu_n C_{ox} \frac{W}{L} \left[ 2V_{OV} v_{DS} - v_{DS}^2 \right]$ 

Saturation:  $V_{OV} \ge 0$  and  $v_{DS} \ge V_{OV}$   $i_D = 0.5 \mu_n C_{ox} \frac{W}{I} V_{OV}^2 \left[ 1 + \lambda v_{DS} \right]$ 

$$\begin{split} \mathsf{PMOS} \; & (V_{OV} = v_{SG} - \mid V_{tp} \mid) * \\ & \mathsf{Cut} \cdot \mathsf{Off} \; : \quad V_{oV} \leq 0 \qquad \qquad i_D = 0 \\ & \mathsf{Triode} \; : \quad V_{oV} \geq 0 \; \text{ and } v_{SD} \leq V_{oV} \qquad \qquad i_D = 0.5 \mu_p C_{ox} \frac{W}{L} \Big[ 2 V_{OV} v_{SD} - v_{SD}^2 \Big] \\ & \mathsf{Saturation} \; : \; V_{oV} \geq 0 \; \text{ and } v_{SD} \geq V_{oV} \qquad \qquad i_D = 0.5 \mu_p C_{ox} \frac{W}{L} \; V_{oV}^2 \; \left[ 1 + \lambda v_{SD} \right] \end{split}$$

\*Note: S&S defines  $|V_{OV}| = v_{SG} - |V_{tp}|$  and uses  $|V_{OV}|$  in the PMOS formulas.

# MOS operation is "Conceptually" similar to a BJT -- $i_D$ & $v_{DS}$ are controlled by $v_{GS}$



- A similar solution method to BJT:
  - Write down GS-KVL and DS-KVL, assume MOS is in a particular state, solve with the corresponding MOS equation and validate the assumption.
- $\blacktriangleright$  MOS circuits are simpler to solve because  $i_G=0$  !
  - However, we get a quadratic equation to solve if MOS in triode (check MOS in saturation first!)

Example 1: In the circuit below,  $R_D$  = 1 k, and  $V_{DD}$  = 12 V. Compute  $v_o$  for  $v_i$  = 0,~6,~ and 12 V.  $(\mu_n C_{ox}~(W/L)=0.5~$  mA/V² ,  $V_t$  = 2 V, and  $\lambda$  = 0 )

GS-KVL: 
$$v_i = v_{GS}$$

DS-KVL: 
$$V_{DD} = 12 = R_D i_D + v_{DS} = 10^3 i_D + v_{DS}$$

#### Part 1: $v_i = 0$

GS-KVL: 
$$v_i = v_{GS} = 0 < V_t = 2V \rightarrow \text{Cut-off} \rightarrow i_D = 0$$

DS-KVL: 
$$12 = 10^3 \times 0 + v_{DS} \rightarrow v_o = v_{DS} = 12 \text{ V}$$



Part 2:  $v_i = 6 \text{ V}$ 

GS-KVL: 
$$v_i = v_{GS} = 6 > V_t = 2V \rightarrow \text{Not in Cut-off}$$
  
 $V_{OV} = v_{GS} - V_t = 4V$ 

Assume Saturation :  $v_{DS} \ge V_{OV} = 4 \text{ V}$ 

$$i_D = 0.5 \mu_n C_{ox} \frac{W}{I} V_{OV}^2 = 0.5 \times 0.5 \times 10^{-3} \times 4^2 = 4.0 \text{ mA}$$

DS-KVL: 
$$12 = 10^3 \times 4 \times 10^{-3} + v_{DS} \rightarrow v_o = v_{DS} = 8.0 \text{ V}$$

$$v_{DS} = 8.0 \text{ V} > V_{OV} = 4 \text{ V} \rightarrow \text{Assumption correct}$$

Example 1: In the circuit below,  $R_D=1$  k, and  $V_{DD}=12$  V. Compute  $v_o$  for  $v_i=0,~6,~$  and 12 V.  $(\mu_n C_{ox}~(W/L)=0.5~$  mA/V² ,  $V_t=2$  V, and  $\lambda=0$  )

$$v_{\rm o} = v_{DS}$$

GS-KVL: 
$$v_i = v_{GS}$$

DS-KVL: 
$$V_{DD} = 12 = R_D i_D + v_{DS} = 10^3 i_D + v_{DS}$$



GS-KVL: 
$$v_i = v_{GS} = 12 > V_t = 2V \rightarrow \text{Not in Cut-off}$$
  
 $V_{OV} = v_{GS} - V_t = 10V$ 

Assume Saturation :  $v_{DS} \ge V_{OV} = 10 \text{ V}$ 

$$i_D = 0.5 \mu_n C_{ox} \frac{W}{L} V_{OV}^2 = 0.5 \times 0.5 \times 10^{-3} \times 10^2 = 25.0 \text{ mA}$$

DS-KVL: 
$$12 = 10^3 \times 25.0 \times 10^{-3} + v_{DS} \rightarrow v_{DS} = -13. \text{ V}$$

$$v_{DS} = -13 \text{ V} > V_{OV} = 10 \text{ V} \rightarrow \text{Assumption incorrect}$$



Example 1: In the circuit below,  $R_D=1$  k, and  $V_{DD}=12$  V. Compute  $v_o$  for  $v_i=0,~6,~$  and 12 V.  $(\mu_n C_{ox}~(W/L)=0.5~$  mA/V² ,  $V_t=2$  V, and  $\lambda=0$  )

$$v_{\rm o} = v_{DS}$$

GS-KVL: 
$$v_i = v_{GS}$$

DS-KVL: 
$$V_{DD} = 12 = R_D i_D + v_{DS} = 10^3 i_D + v_{DS}$$

#### Part 3 (cont'd): $v_i = 12 \text{ V}$

$$V_{OV} = v_{GS} - V_t = 10 \text{V}$$

Assume Triode :  $v_{DS} < V_{OV} = 10 \text{ V}$ 

$$i_D = 0.5 \mu_n C_{ox} \frac{W}{L} [2V_{OV} v_{DS} - v_{DS}^2]$$

DS - KVL: 
$$12 = 10^3 \times i_D + v_{DS}$$

$$12 = 10^{3} \times 0.5 \times 0.5 \times 10^{-3} \times [20v_{DS} - v_{DS}^{2}] + v_{DS}$$
$$v_{DS}^{2} - 24v_{DS} + 48 = 0$$



$$v_o = v_{DS} = 21.8 \text{ V} > V_{OV} = 10 \text{ (incorrect)}$$
  
 $v_o = v_{DS} = 2.2 \text{ V}$   $< V_{OV} = 10 \text{ V}$   
 $12 = 10^3 \times i_D + v_{DS} \rightarrow i_D = 9.8 \text{ mA}$ 

#### **NMOS Transfer Function (1)**

 $v_i$  can be applied directly to MOS There is no need for a  $R_{\it G}$  .



#### **Circuit Equations:**

o  $v_{GS} = v_i$ 

o NMOS iv characteristics:  $i_D = f(v_{GS}, v_{DS})$ 

o KVL:  $v_o = v_{DS} = V_{DD} - R_D \; i_D$ 

#### **NMOS Transfer Function (2)**



- 2) Just to the right of point A:
- o  $V_{OV} = v_{GS} V_t$  is small, so  $i_D$  is small.
- o  $\,v_{DS}$  =  $\,V_{DD}\,$   $\,R_{D}\,$   $i_{D}$  is close to  $\,V_{DD}\,$
- o Thus,  $v_{DS} > V_{OV}$  and NMOS is in saturation.

#### **NMOS Transfer Function (2)**



- **3)** As  $v_{GS}$  increases:
- o  $V_{OV} = v_{GS} V_t$  and  $i_D$  become larger;
- o  $v_{DS}$  =  $V_{DD}$   $-R_D$   $i_D$  becomes smaller.
- o At point B,  $v_{DS}$  =  $V_{OV}$

## **NMOS Transfer Function (2)**



- 2) Just to the right of point A:
- o  $V_{OV} = v_{GS} V_t$  is small, so  $i_D$  is small.
- o  $v_{DS}$  =  $V_{DD}$   $-R_D$   $i_D$  is close to  $V_{DD}$
- o Thus,  $v_{DS}$  >  $V_{OV}$  and NMOS is in saturation.

- **3)** As  $v_{GS}$  increases:
- o  $V_{OV} = v_{GS} V_t$  and  $i_D$  become larger;
- o  $v_{DS}$  =  $V_{DD}$   $-R_D$   $i_D$  becomes smaller.
- o At point B,  $v_{DS}$  =  $V_{OV}$

# **Graphical analysis of NMOS Transfer Function (1)**



NMOS *i-v* Characterisitics :  $i_D = f(v_{GS}, v_{DS})$ 

 $KVL: V_{DD} = R_D i_D + v_{DS}$ 

KVL equation is a plane in this space.

- $\triangleright$  Intersection of KVL plane with the iv characteristics surface is a line.
- $\blacktriangleright$  NMOS operating point is on this line (depending on the value of  $v_{GS}$ .)



 $\blacktriangleright$  If we look from the bottom ( $i_D$  axis out of the paper), we can see the transfer function.

# Graphical analysis of NMOS Transfer Function (2)



- Every point on the load line corresponds to a specific  $v_{GS}$  value.
- As  $v_{GS}$  increases, NMOS moves "up" the load line.



#### **NMOS** Functional circuits

- Similar to a BJTs in the active mode, NMOS behaves rather "linearly" in the saturation region (we discuss NMOS amplifiers later)
- Transition from cut-off to triode can be used to build NMOS switch circuits.
  - o Voltage at point C (see graph) depends on NMOS parameters and the circuit (in BJT  $v_o = V_{sat}$ )!
- We can also built NMOS logic gate similar to a RTL. But there is are much better gates based on CMOS technology!

