(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10)申请公布号 CN 102617573 A (43)申请公布日 2012.08.01

(21)申请号 201210043814.4

(22)申请日 2012.02.23

(71) 申请人 北京大学 地址 100871 北京市海淀区颐和园路 5 号

(72) 发明人 孟祥豹 李中军 李莎莎 钟文和

(74)专利代理机构 北京安信方达知识产权代理 有限公司 11262

代理人 牛利民 武晶晶

(51) Int. CI.

CO7D 471/06 (2006.01) A61K 31/4745 (2006.01) A61P 35/00 (2006.01)

权利要求书 2 页 说明书 15 页

(54) 发明名称

9-取代三氮唑并萘酰亚胺衍生物及其制备方 法和用途

(57) 摘要

本发明公开了一类 9- 取代的三氮唑并萘酰亚胺衍生物,即式 (I) 化合物,其具有良好的抗肿瘤活性,各个基团的定义详见说明书。此外,本发明还公开了该衍生物的制备方法以及含有该衍生

CN 102617573 A

1. 一种三氮唑并萘酰亚胺衍生物,即式(I) 化合物,或其药学上可接受的加成酸盐或溶剂化物:

$$R_{2} \xrightarrow{N} O R_{1} \xrightarrow{N} X_{1}$$

$$X_{1} \xrightarrow{N} X_{2}$$

$$X_{2} \xrightarrow{N} (1)$$

其中, X, 选自 C1-C4 烷基、C1-C4 烷氧基、或者 -NR, Rs;

R, 选自氢、或 C1-C4 的烷基;

R。选自氢、C1-C4的烷基、取代的C1-C4烷基、或芳基或取代的芳基;

R₃选自卤素、硝基、氨基、伯胺基、仲胺基、或酰胺基,优选地,为硝基、氨基、氯、或甲酰胺基;

 R_4 和 R_5 各自独立地选自 C1-C4 的烷基或取代的 C1-C4 烷基;

m 选自 0 至 4 的整数。

- 2. 根据权利要求 1 所述的化合物,其中, X_1 选自 $-NR_4R_5$, R_4 和 R_5 各自独立地选自 C1-C4 的烷基或取代的 C1-C4 烷基。
 - 3. 根据权利要求 2 所述的化合物,其中, X_1 为 $-NR_4R_5$, R_4 和 R_5 各自独立地为甲基。
- 4. 根据权利要求 1 所述的化合物,其中, R_1 为氢 ; R_2 为 C1-C4 的烷基、2- 羟乙基、3- 羟 丙基、N, N- 二甲基氨乙基或者 N, N- 二甲基氨丙基 ;R3 为硝基、氨基、氯、或甲酰胺基。
 - 5. 根据权利要求 1 所述的化合物,其中, m 选自 0、1 或 2。
 - 6. 根据权利要求 1 所述的化合物,式(I) 化合物为下列式(II) 化合物:

这里,式 (II) 化合物中 R_1 、 R_2 、 R_3 、 R_4 和 R_5 ,以及 m 的定义如式 (I) 中所定义的。

- 7. 根据权利要求 1 所述的化合物,其选自下列化合物中的一个:
- 9- 硝基 -6-(2- 二甲氨基乙基)-1- 甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉 -5,7(1H,6H)- 二酮;
- 9- 硝基 -1,6- 二 (2- 二甲氨基乙基) 苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮;
- 9- 硝基 -6-(2- 二甲氨基乙基)-1-(3- 二甲氨基丙基) 苯并 [de][1,2,3] 三氮唑[5,4-g] 异喹啉 -5,7(1H,6H)-二酮;

N-[6-(2-二甲氨基乙基)-1-甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮] 甲酰胺;

N-[1,6-二(2-二甲氨基乙基) 苯并[de][1,2,3] 三氮唑[5,4-g] 异喹啉-5,7(1H,

6H)-二酮]甲酰胺;

N-[6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基)苯并 [de][1,2,3] 三氮唑[5,4-g] 异喹啉 -5,7(1H,6H)-二酮]甲酰胺;

9- 氨基 -6-(2- 二甲氨基乙基)-1- 甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮;

9- 氨基 -1,6- 二 (2- 二甲氨基乙基) 苯并 [de][1,2,3] 三氮唑[5,4-g] 异喹啉 -5,7(1H,6H)- 二酮:

9- 氨基 -6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基) 苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮;

9- 氯 -6-(2-二甲氨基乙基)-1-甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮;

9- 氯-1,6-二 (2-二甲氨基乙基) 苯并 [de] [1,2,3] 三氮唑 [5,4-g] 异喹啉-5,7(1H,6H)-二酮;或

9- 氯-6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基) 苯并 [de] [1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮。

8. 权利要求 1 至 7 中任一权利要求所述化合物的制备方法,其包括如下步骤:式 VIII 化合物经硝化得到式 (IX) 化合物;

这里,式(VIII)和(IX)中R₁、R₂、X₁和m的定义如所述权利要求中所定义的。

- 9. 一种包含权利要求 1 至 7 中任一权利要求所述化合物的药物组合物。
- 10. 权利要求 1 至 7 中任一权利要求所述化合物或者权利要求 9 所述药物组合物在制备抗肿瘤药物中的应用。

9- 取代三氮唑并萘酰亚胺衍生物及其制备方法和用途

技术领域

[0001] 本发明涉及药物化学领域,更具体地说,涉及一种新的杂环并萘酰亚胺衍生物及 其制备方法和用途。

背景技术

[0002] 萘酰亚胺类化合物作为抗肿瘤药物研发始于 1973 年,Brana 课题组结合 4 种抗肿瘤化合物的结构特点,设计并合成了第一系列萘酰亚胺类化合物 [Brana M.F.,Castellano J.M.,Roldan C.M.,et al.,Cancer Chemother Pharmacol,1980,4,61-66]。

[0003] 经过近40年的研究,萘酰亚胺类化合物已经成为抗肿瘤药物的重要类别,有多个化合物进入临床研究:胺萘非特 (amonafide)、米托萘胺 (mitonafide)、依利 萘 法 德 (elinafide)、双 萘 法 德 (bisnafide)、ethonafide[M. F. Brana, A. Ramos, Naphthalimides as Anticancer Agents:Synthesis and Biological Activity, Curr. Med. Chem.—Anti—Cancer Agents,1(2001)237—255], [M. F. Brana, J. M. Castellano, C. M. Roldan, A. Santos, D. Vazquez, A. Jimenez, Synthesis and mode(s) of action of a new series of imide derivatives of 3—nitro—1,8 naphthalic acid, Cancer Chemother Pharmacol.,4(1980)61—66], [Diaz—Rubio E., Martin M., Lopez—Vege J. M., et al., Invest. New Drugs,1994,12,277—281.], [Malviya V. K., Liu P. Y., Alberts D. S., et al., Am. J. Clin. Oncol.,1992,15,41—44.], [Bousquet P. F., Cancer Res.,1995,55,1176—1180.], [A. Pain, S. Samanta, S. Dutta, A. K. Saxena, M. Shanmugavel, H. Kampasi, G. N. Qazi, U. Sanyal, Evaluation of naphthalmustine, a nitrogen mustard derivative of naphthalimide as a rationally—designed anticancer agent, J. Exp. Clin. Cancer Res., 22(2003)411—418]。

[0004]

[0005] 已进入临床研究的萘酰亚胺类化合物

[0006] 萘酰亚胺类化合物属于 DNA 嵌入剂,大部分同时也作用于拓扑异构酶,具有广谱、高效的抗肿瘤活性。其与 DNA 的作用原理是化合物的发色团嵌入 DNA 碱基对之间,通过 π-堆积力、范德华力、水合力、静电力等相互作用,与上下两个碱基对形成紧密堆积。化合物发色团的共轭平面越大,与碱基的结合能力越强。因此 Remers 研究组以蒽环代替萘环,得到了 azonafide 等一系列具有更大共轭平面的化合物,细胞毒性明显高于amonafide(提高近 100 倍)[Sami S. M., Dorr R. T., Solyom A. M., et al., J. Med. Chem., 1993,36,765-770.], [Sami S. M., Dorr R. T., Solyom A. M., et al., J. Med. Chem., 1993,36,765-770.]。

[0007]

azonafide

[0008] azonafide 的结构

[0009] 随后,萘酰亚胺的并环改造成为提高化合物活性的重要途径。通过在萘酰亚胺母体结构上引入不同芳环或芳杂环,如咪唑、吡嗪、呋喃、含硫/含氧芳杂环等,增加萘环的共轭芳平面,影响整个放缓的静电性及电荷分布,从而影响化合物与 DNA 碱基的结合能力,从而优化其抗肿瘤活性。[Miguel F. Brana, et al., J. Med. Chem., 2002, 45, 5813-5816.], [Miguel F. Brana, et al., J. Med. Chem., 2004, 47, 1391-1399.], [Z. Li, Q. Yang, X. Qian,

Novel thiazonaphthalimides as efficient antitumor and DNA photocleaving agents: effects of intercalation, side chains, and substituent groups, Bioorg. Med. Chem., 13(2005)4864-4870], [Li F., et al., Bioorg. Med. Chem., 2007, 15, 5114-5121.].

本研究小组首次发现并引入三氮唑环可以显著提高其抗肿瘤活性 [S. Li, W. Zhong, Z. Li, X. Meng, Unprecedented synthesis, in vitro and in vivo anticancer evaluation of novel triazolonaphthalimide derivatives, Eur. J. Med. Chem. 2012, 47, 546-552.].

总之,萘酰亚胺类化合物作为一类重要的抗肿瘤药物,具有高效广谱的抗肿瘤活 [0011] 性,同时相比于其他抗肿瘤药物,具有抗多药耐药性的优势。因而对萘酰亚胺类化合物进行 进一步研究,设计合成具有更高抗肿瘤活性、毒副作用小的衍生物,对于发展新的抗肿瘤药 具有重要意义。

发明内容

本发明采用萘二甲酸酐为主要原料,从而制备出一系列具有更佳抗肿瘤活性的 [0012] 9-取代三氮唑并萘酰亚胺类衍生物。

[0013] 本发明的目的是提供新的 9- 取代三氮唑并萘酰亚胺衍生物。

[0014] 本发明的另一个目的是提供上述衍生物的制备方法。

本发明的另一个目的是提供上述衍生物的用途。 [0015]

本发明的第四个目的是提供含有上述衍生物的药物组合物。 [0016]

具体地说,本发明是通过如下技术方案而实施: [0017]

一方面,本发明提供了新的9-取代三氮唑并萘酰亚胺衍生物,即式(I)化合物,或 [0018] 其药学上可接受的加成酸盐或溶剂化物:

[0019]

$$R_{2} \xrightarrow{N} O R_{1} \xrightarrow{M} X_{1}$$

[0020] 其中, X, 选自 C1-C4 烷基、C1-C4 烷氧基、或者 -NR₂R₅, 优选地为 -NR₂R₅;

[0021] 这里,-NR₄R₅即为

[0022]

$$-N$$
 R_{5}

[0023] R, 选自氢、或 C1-C4 的烷基, 为氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、或 叔丁基,更优选地为氢;

R。选自氢、C1-C4的烷基、取代的C1-C4烷基、或芳基或取代的芳基,这里,所述取 代的 C1-C4 烷基是指被羟基、氨基、伯胺基或者仲胺基中的一个或多个所取代,例如 2-羟乙 基、3-羟丙基、N, N-二甲基氨乙基或者 N, N-二甲基氨丙基;优选地, R。为 C1-C4 的烷基、

2- 羟乙基、3- 羟丙基、N, N- 二甲基氨乙基或者 N, N- 二甲基氨丙基,更优选地为甲基、N, N- 二甲基氨乙基、或者 N, N- 二甲基氨丙基;所述的芳基可选自苯基等;

[0025] R₃ 选自卤素、硝基、氨基、伯胺基、中胺基、或酰胺基,这里,所述的卤素选自氟、氯、溴、或碘;所述的伯胺基或仲胺基是氨基上氢被一个或者两个相同或不同的 C1-C4 烷基所取代;所述酰胺基是指 C1 至 C6 烷酰氨基,例如甲酰胺基、乙酰胺基等;优选地为硝基、氨基、氯、或甲酰胺基;

[0026] R_4 和 R_5 各自独立地选自 C1-C4 的烷基或取代的 C1-C4 烷基,优选地,为 C1-C4 的 烷基,更优选地为甲基;

[0027] m选自0至4的整数,优选地为0、1、或2。

[0028] 在本发明所提供的新的 9-取代三氮唑并萘酰亚胺衍生物中,所述的 C1-C4 的烷基是指甲基、乙基、正丙基、异丙基、正丁基、异丁基、或叔丁基;所述的 C1-C4 的烷氧基是指甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、或叔丁氧基。

[0029] 在本发明所提供的新的 9-取代三氮唑并萘酰亚胺衍生物中,所述的药学上可接受的加成酸盐选自无机酸盐或有机酸盐;所述的无机酸盐选自氢卤酸盐(如盐酸盐、氢溴酸盐、或氢碘酸盐等)、硫酸盐、硫酸氢盐、或磷酸盐等,优选地为盐酸盐;所述的有机酸盐选自甲磺酸盐、苯磺酸盐、对甲苯磺酸盐、马来酸盐、富马酸盐、琥珀酸盐、枸橼酸盐、或苹果酸盐等。所述溶剂化物,可选自水合物等。

[0030] 优选地,本发明提供了式(II)化合物:

[0031]

$$R_3$$
 R_1
 R_4
 R_5
 R_1
 R_5
 R_1
 R_5

[0032] 其中,取代基 R_1 、 R_2 、 R_3 、 R_4 和 R_5 ,以及m的定义如式(I)中所定义的。

[0033] 特别优选地,本发明提供了下列化合物:

[0034] 9- 硝基 -6-(2-二甲氨基乙基)-1-甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮(化合物 5a);

[0035] 9-硝基-1,6-二(2-二甲氨基乙基)苯并[de][1,2,3]三氮唑[5,4-g]异喹啉-5,7(1H,6H)-二酮(化合物 5b);

[0036] 9- 硝基 -6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基) 苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 <math>-5,7(1H,6H)-二酮(化合物 5c);

[0037] N-[6-(2-二甲氨基乙基)-1-甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉-5,7(1H,6H)-二酮]甲酰胺(化合物 6a);

[0038] N-[1,6-二(2-二甲氨基乙基)苯并 [de][1,2,3]三氮唑[5,4-g]异喹啉-5,7(1H,6H)-二酮]甲酰胺(化合物 6b);

[0039] N-[6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基)苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮]甲酰胺(化合物 6c);

[0040] 9- 氨基 -6-(2- 二甲氨基乙基)-1- 甲基苯并 [de] [1,2,3] 三氮唑并 [5,4-g] 异喹

啉-5,7(1H,6H)-二酮(化合物7a);

[0041] 9-氨基-1,6-二(2-二甲氨基乙基)苯并 [de] [1,2,3] 三氮唑 [5,4-g] 异喹啉-5,7(1H,6H)-二酮(化合物 7b);

[0042] 9- 氨基 -6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基) 苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮(化合物 7c);

[0043] 9- -6-(2-二甲氨基乙基)-1-甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮(化合物 8a);

[0044] 9- 氯-1,6-二(2-二甲氨基乙基)苯并[de][1,2,3]三氮唑[5,4-g]异喹啉-5,7(1H,6H)-二酮(化合物8b);或

[0045] 9-氯-6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基)苯并 [de][1,2,3]三氮唑[5,4-g]异喹啉-5,7(1H,6H)-二酮(化合物 8c)。

[0046] 此外,本发明还提供了上述 9-取代三氮唑并萘酰亚胺衍生物的制备方法,其包括如下步骤:

[0047] 式 VIII 化 合 物 (合 成 方 法 参 见:S. Li, W. Zhong, Z. Li, X. Meng, Unprecedented synthesis, in vitro and in vivo anticancer evaluation of novel triazolonaphthalimide derivatives, Eur. J. Med. Chem. 2012, 47, 546-552.) 经硝化得到式(IX) 化合物:

[0048]

$$R_{2} \xrightarrow{N} N \xrightarrow{R_{1}} X_{1} + H_{2}SO_{4}/HNO_{3} \longrightarrow R_{2} \xrightarrow{N} N \xrightarrow{N} N$$

[0049] 这里,式 (VIII) 和 (IX) 中 R₁、R₂、X₁和 m 的定义如式 (I) 化合物;

[0050] 任选地,进一步包括式 IX 化合物经还原、酰化得到式 (X) 化合物;

[0051]

[0052] 这里,式(X) 化合物中取代基 R_3 的定义是酰胺基,所述酰胺基是指 C1 至 C6 烷酰氨基,例如甲酰胺基、乙酰胺基等;

[0053] 或者,任选地,进一步地包括式 IX 化合物经还原、烷基化(即氨基烷基化)得到式(XI) 化合物;

[0054]

[0055] 这里,式 XI 化合物中取代基 R_3 为伯胺基或仲胺基,所述的伯胺基或仲胺基是氨基上氢被一个或者两个相同或不同的 C1-C4 烷基所取代;

[0056] 或者,任选地,进一步地包括式 IX 化合物经还原、卤素取代(其方法参见:Direct conversion of aryl amines to aryl halides:M.P. Doyle, J. Org. Chem. 42,2426(1977)) 得到式(XII) 化合物;

[0057]

[0058] 这里,式 XII 化合物中取代基 R₃ 是卤素,如 Cl、F、Br、I。

[0059] 上述步骤中的化合物中取代基 X_1 、 R_2 、m 的定义如在本发明所提供的上述式(I)化合物中所定义的。

[0060] 本发明提供的上述合成方法,其中,式(VIII) 化合物的制备可参考现有技术制备,例如 Kiss R. et al. 2,2,2-Trichloro-N-({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-5-yl}carbamoyl) acetam ide (UNBS3157), a Novel Nonhematotoxic Naphthalimide Derivative with Potent Antitumor Activity J. Med. Chem. 2007,50,4122-4134;或S. Li, W. Zhong, Z. Li, X. Meng, Unprecedented synthesis, in vitro and in vivo anticancer evaluation of novel triazolonaphthalimide derivatives, Eur. J. Med. Chem. 2012,47,546-552.,也可以通过下列方法制备:

[0061] (1)以萘二甲酸酐式(IV)化合物为起始原料,发生硝化反应,得到式(V)化合物; [0062]

$$\bigcup_{(|V)}^{O} \qquad \bigcup_{O_2N}^{O} \qquad \bigcup_{(V)}^{O}$$

[0063] (2) 式(V) 化合物与胺反应,得到式(VI) 化合物; [0064]

$$O_{2}N \qquad (V) \qquad O_{2}N \qquad (VI)$$

[0065] (3)式(VI)化合物还原,得到式(VII)化合物

[0066]

[0067] (4) 式(VII) 化合物在亚硝酰四氟化硼的作用下,与胺反应得到式(VIII) 化合物 [0068]

[0069] 例如,对于本发明所提供的化合物制备方法,具体地说,是以萘二甲酸酐为原料, 在硝酸/浓硫酸的条件下发生硝化反应,将硝基还原后再与胺链缩合引入酰亚胺侧链;产 物与亚硝酰四氟化硼预处理后,再加入胺,即得到萘骈三氮唑的产物。

[0070]

[0071] 萘二甲酸酐溶于浓硫酸中,加入一当量的硝酸即得单硝基化的产物1;化合物1在浓盐酸中用氯化亚锡就可以将硝基还原为氨基。

[0072]

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N

[0073] 化合物 2 与 N, N- 二甲基乙二胺在乙醇中回流即得到缩合产物 3。 [0074]

[0075] 化合物 3 和亚硝酰四氟化硼在冰浴下预处理后,再加入胺,得到分子内环合的三氮唑产物 4a-c。

[0076]

[0077] R_2 :-CH₃, -(CH₂)₂N(CH₃)₂, -(CH₂)₃N(CH₃)₂

[0078] 化合物 4a-c 在硝酸 / 浓硫酸作用下,得到硝化产物 5a-c。

[0079]

[0080] $R_2 : -CH_3, -(CH_2)_2N(CH_3)_2, -(CH_2)_3N(CH_3)_2$

[0081] 化合物 5a-c 在经 Pd/C、HC00H 作用得到产物 6a-c。

[0082]

[0083] $R_2 := CH_3, -(CH_2)_2N(CH_3)_2, -(CH_2)_3N(CH_3)_2$

[0084] 化合物 5a-c 在经 Pd/C 还原得到氨基产物 7a-c。

[0085]

[0086] $R_2 := CH_3, -(CH_2) \cdot N(CH_3) \cdot , -(CH_2) \cdot N(CH_3) \cdot$

[0087] 化合物 7a-c 和亚硝酰四氟化硼在冰浴下预处理后,再与 CuCl 反应得到产物 8a-c(方法参见:Direct conversion of aryl amines to aryl halides: M. P. Doyle, J. Org. Chem. 42,2426(1977))。

[0088] 另一方面,本发明提供了上述新的 9-取代三氮唑并萘酰亚胺衍生物作为抗肿瘤 化合物的用途。体外肿瘤细胞抑制活性试验表明 5~8a-c 对多种肿瘤细胞具有明显的抑制活性,并且优于相应地 9 位未取代的化合物。

[0089] 本发明还提供了包含上述新的 9-取代三氮唑并萘酰亚胺衍生物的药物组合物。在药物组合物中含有效成分的合适范围从 1.0毫克到 500毫克每单位;在这些药物组合物里,通常有效成分的总质量占所有成分总质量的 0.5-95%。有效成分可以通过口服以固体剂型的形式,如胶囊,片剂,粉剂,或者以液体剂型形式,如糖浆,混悬液,也可以采用注射灭菌的液体剂型。

具体实施方式

[0090] 实施例 1

[0091] 化合物 $5a{5-(2-二甲胺乙基)-10-甲基苯并 [de][1,2,3] 三氮唑 [4,5-g] 异喹啉 <math>-4,6(5H,10H)-二酮$ }

[0092]

[0093] 将化合物 4a(100 mg, 0.27 mmo1) 用 1mL 浓硫酸溶解,再加入 65% 硝酸 (4eq), 80 ℃ 反应 5h ;将反应液稀释后,分批加入 Na_2CO_3 至 pH=8,用 CH_2CI_2 萃取三次,合并有机层,浓缩后柱层析纯化(二氯甲烷/甲醇),得淡黄色固体,产率 :58%。 1H $NMR(400 MHz, CDCI_3)$ δ 9. 55 (d,J=2. 1Hz, 1H),9. 50 (d,J=2. 1Hz, 1H),9. 40 (s,1H),4. 89 (s,3H),4. 38 (t,J=6. 7Hz, 2H),2. 70 (t,J=6. 7Hz, 2H),2. 35 (s,6H). 13 C NMR(101 MHz, $CDCI_3$) $\delta=162$. 45, 146. 64, 144. 81, 132. 58, 130. 78, 129. 51, 126. 00, 124. 57, 122. 38, 120. 45, 118. 77, 57. 03, 45. 94 (2C),39. 08, 38. 32. HR-ESI-MS :Calcd for $C_{17}H_{16}N_6O_4[M+1]^+$:369. 1233 ;Found :369. 1309.

[0094] 实施例 2

[0095] 化合物 $5b\{1,6- = (2- = P + E + E)\}$ 本并 [de] [1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)- = F]

[0096]

[0097] 操作同上,产率:72%。 ¹H NMR(400MHz, CDC1 $_3$) δ 9. 75 (d, J = 2. 2Hz, 1H), 9. 49 (d, J = 2. 1Hz, 1H), 9. 39 (s, 1H), 5. 28 (t, J = 6. 5Hz, 2H), 4. 38 (t, J = 6. 7Hz, 2H), 3. 10 (t, J = 6. 5Hz, 2H), 2. 70 (t, J = 6. 7Hz, 2H), 2. 38 (s, 6H), 2. 35 (s, 6H). ¹³C NMR(101MHz, CDC1 $_3$) δ = 162. 60, 162. 32, 146. 40, 144. 58, 132. 31, 130. 67, 129. 42, 125. 71, 124. 35, 122. 87, 120. 19, 118. 55, 58. 39, 56. 89, 49. 93, 45. 94 (2C), 45. 82 (2C), 38. 91. HR-ESI-MS: Calcd for $C_{20}H_{23}N_7O_4[M+1]^+$: 426. 1812; Found: 426. 1882

[0098] 实施例3

[0099] 化合物 $5c\{6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基) 苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮 }$

[0100]

[0101] 操作同上,产率:68%。 ¹H NMR(400MHz, CDC1₃) δ 9. 88(d, J = 2. 1Hz, 1H),9. 48(d, J = 2. 1Hz, 1H),9. 39(s, 1H),5. 27(t, J = 6. 4Hz, 2H),4. 39(t, J = 6. 7Hz, 2H),2. 71(t, J = 6. 7Hz, 2H),2. 37(m, 10H),2. 21(s, 6H). ¹³C NMR(101MHz, CDC1₃) δ = 162. 63,162. 35,146. 36,144. 36,132. 24,130. 67,129. 36,125. 50,124. 29,123. 39,120. 12,118. 46,56. 84,55. 30,48. 90,45. 74(2C),45. 17(2C),38. 83,27. 93. HR-ESI-MS:Calcd for $C_{21}H_{25}N_{7}O_{4}[M+1]^{+}$:440. 1968;Found:426. 2038

[0102] 实施例 4

[0103] 化合物 $6a\{N-[6-(2-二甲氨基乙基)-1-甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉 <math>-5,7(1H,6H)-$ 二酮] 甲酰胺 }

[0104]

[0105] 将化合物 5a(100mg, 0.27mmo1) 用 2mL 甲酸溶解,加入 20mg 钯碳,100 $^{\circ}$ 回流过夜;反应液蒸干除去甲酸,再用 $NaHCO_3$ 饱和溶液洗涤,至溶液浑浊;用 CH_2CI_2 萃取三遍,合并

浓缩后柱层析(二氯甲烷:甲醇= 15 : 1),得黄白色固体,产率 :94%。 1 H NMR(400MHz, CD $_{3}$ OD) δ 9. 52 (s, 1H),8. 87 (s, 1H),8. 50 (m, 2H),7. 70 (s, 1H),4. 73 (s, 3H),4. 33 (t, J = 6. 8Hz,2H),2. 77 (t, J = 6. 9Hz,2H),2. 42 (s, 6H). HR-ESI-MS :Calcd for C_{18} H $_{18}$ N $_{6}$ O $_{3}$ [M+1] $^{+}$: 367. 1440 ;Found :367. 1513

[0106] 实施例 5

[0107] 化合物 $6b\{N-[1,6-二(2-二甲氨基乙基)苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 <math>-5$,7 $(1H,6H)-二酮] 甲酰胺 }$

[0108]

[0109] 操作同上,产率:94%。 ¹H NMR(400MHz, CD₃0D/CDC1₃) δ 9. 38 (d, J = 1.9Hz, 1H), 8. 78 (s, 1H), 8. 52 (s, 1H), 8. 36 (d, J = 1.9Hz, 1H), 5. 16 (t, J = 6.9Hz, 2H), 4. 25 (t, J = 7.0Hz, 2H), 3. 10 (t, J = 6.9Hz, 2H), 2. 70 (t, J = 7.0Hz, 2H), 2. 41 (s, 6H), 2. 39 (s, 6H). ¹³C NMR(101MHz, CD₃0D/CDC1₃) δ = 164. 83, 164. 79, 162. 31, 145. 19, 139. 44, 132. 76, 125. 67, 125. 21, 124. 57, 123. 44, 121. 46, 120. 46, 118. 03, 58. 72, 57. 76, 49. 97, 46. 22 (2C), 46. 20 (2C), 39. 19. HR-ESI-MS: Calcd for $C_{21}H_{25}N_7O_3[M+1]^+$: 424. 2019; Found: 424. 2085

[0111] 化合物 $6c\{N-[6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基) 苯并 [de][1,2,3] 三 氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮]甲酰胺}$

[0112]

[0110]

实施例 6

[0113] 操作同上,产率:84%。 ¹H NMR(400MHz, CDC1₃/CD₃0D) δ 9. 63(s,1H),9. 05(s,1H),8. 54(s,1H),8. 47(s,1H),5. 15(t, J = 6. 4Hz,2H),4. 36(t, J = 6. 7Hz,2H),2. 74(t, J = 6. 7Hz,2H),2. 60(t, J = 6. 7Hz,2H),2. 41(s,6H),2. 32(m,8H). ¹³C NMR(101MHz, CDC1₃/CD₃0D) δ = 163. 22,163. 18,160. 64,143. 59,137. 86,130. 96,123. 94,123. 51,123. 06,121. 70,119. 80,118. 85,116. 50,56. 12,55. 40,48. 72,44. 69(2C),44. 39(2C),37. 58,26. 74. HR-ESI-MS: Calcd for $C_{22}H_{27}N_7O_3[M+1]^+$:438. 2175; Found:438. 2247

[0114] 实施例 7

[0115] 化合物 $7a{9-$ 氨基 -6-(2- 二甲氨基乙基)-1- 甲基苯并 [de] [1,2,3] 三氮唑并 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮 $}$

[0116]

$$O_2N$$
 O_2N
 O_2N

[0117] 化合物 5a(150 mg, 0.4 mmo1) 溶于 10 mL 乙醇中,依次加入三乙胺 (4.4 eq)、甲酸 (4.2 eq)、钯碳 20 mg, 80 ℃回流 2h,反应液出现结晶;反应液冷却后过滤,滤渣用乙醚洗两遍,再用 CH_2C1_2 /MeOH溶解,再过滤除去钯碳。蒸干滤液后用乙醇重结晶,得黄色固体,产率: 65%。 1H NMR $(400 MHz, DMSO/CD_3OD)$ δ 8. 24(s, 1H), 7. 75(s, 1H), 7. 71(s, 1H), 4. 53(s, 3H), 4. 11(t, J = 6.8 Hz, 2H), 2. 71(t, J = 6.8 Hz, 2H), 2. 38(m, 6H). ^{13}C NMR $(101 MHz, DMSO/CD_3OD)$ δ = 163. 44, 163. 21, 148. 92, 143. 17, 130. 74, 123. 40, 120. 41, 119. 65, 118. 30, 117. 97, 117. 86, 108. 59, 56. 21, 45. 08(2C), 37. 63, 37. 52. HR-ESI-MS ; Calcd for $C_{17}H_{18}N_6O_2[M+1]^+$: 339. 1491 ; Found ; 339. 1564

[0118] 实施例 8

[0119] 化合物 7b $\{9-$ 氨基 -1, 6- 二 (2- 二甲氨基乙基) 苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 -5, 7(1H,6H)- 二酮 $\}$

[0120]

$$O_2N$$
 O_2N
 O_2N

[0121] 操作同上,产率:84%。 ¹H NMR(400MHz,CDC1₃) δ 8. 91(s,1H),8. 01(d,J = 2. 1Hz,1H),7. 62(d,J = 2. 1Hz,1H),5. 02(t,J = 6. 8Hz,2H),4. 55(br. s,2H),4. 33(t,J = 6. 8Hz,2H),2. 94(t,J = 6. 9Hz,2H),2. 70(t,J = 6. 9Hz,2H),2. 38(s,12H). ¹³C NMR(101MHz,CDC1₃/CD₃0D) δ = 164. 16,163. 88,148. 45,143. 85,130. 55,124. 17,120. 38,120. 10,119. 65,119. 60,119. 29,108. 74,57. 35,56. 32,48. 59,45. 17(2C),44. 99(2C),37. 72. HR-ESI-MS:Calcd for $C_{90}H_{25}N_{2}O_{2}[M+1]^{+}$:396. 2070; Found:396. 2137

[0122] 实施例 9

[0123] 化合物 $7c\{9-$ 氨基 -6-(2- 二甲氨基乙基)-1-(3- 二甲氨基丙基) 苯并 [de] [1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H) - 二酮 }

[0124]

[0125] 操作同上,产率:95%。 ¹H NMR(400MHz, CDC1₃/CD₃0D) δ 8. 63(s,1H),8. 01(d, J = 2.1Hz,1H),7. 74(d, J = 2.1Hz,1H),5. 02(t, J = 6.8Hz,2H),4. 28(t, J = 6.8Hz,2H),2. 69(t, J = 6.7Hz,2H),2. 51(d, J = 6.7Hz,2H),2. 34(m,14H). ¹³C NMR(101MHz, CDC1₃/CD₃0D) δ = 163. 93,163. 69,148. 27,143. 57,130. 30,123. 84,120. 07,120. 03,119. 34,119. 21,119. 05,108. 88,56. 15,55. 78,48. 64,44. 80(2C),44. 68(2C),37. 54,26. 96.

[0126] 实施例 10

[0127] 化合物 $8a\{9-氯-6-(2-二甲氨基乙基)-1-甲基苯并 [de][1,2,3] 三氮唑并 [5,4-g] 异喹啉 <math>-5,7(1H,6H)-二酮\}$

[0128]

[0129] 将化合物 7a(100 mg, 0.30 mmo1) 溶于 1mL 乙腈中,-5 ℃ 预冷却 5min 后加入亚硝酰四氟化硼(4eq),0.5h 后移至室温,加入 CuCl(10 eq),反应过夜。反应液用 Na_2CO_3 饱和溶液洗涤至碱性,二氯甲烷萃取三遍后,合并有机层浓缩柱层析(二氯甲烷:甲醇= 15 : 1),得黄绿色固体,产率:45%。 ^1H NMR(400 MHz,CDCl $_3$) δ 9. 16(s, 1H),8. 66(d, J = 1.8 Hz, 1H),8. 60(d, J = 1.7 Hz, 1H),4. 76(s, 3H),4. 33(t, J = 6.8 Hz, 2H),2. 67(t, J = 6.8 Hz, 2H),2. 34(s, 6H). ^{13}C NMR(101 MHz,CDCl $_3$) δ = 163.59,163.37,144.97,135.09,131.65,131.47,126.90,126.60,126.49,126.01,120.73,120.31,120.31 12

[0130] 实施例 11

[0132]

$$\begin{array}{c|c} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

[0133] 操作同上,产率:48%。 ¹H NMR(400MHz, CDC1³) δ 9. 20 (s, 1H), 8. 70 (d, J = 2. 0Hz, 1H), 8. 68 (d, J = 2. 0Hz, 1H), 5. 17 (t, J = 6. 9Hz, 2H), 4. 35 (t, J = 6. 8Hz, 2H), 3. 02 (t, J = 6. 9Hz, 2H), 2. 68 (t, J = 6. 7Hz, 2H), 2. 39 (s, 6H), 2. 35 (s, 6H). ¹³C NMR(101MHz, CDC1₃) δ = 163. 33, 163. 16, 144. 66, 134. 77, 131. 12, 131. 07, 127. 07, 126. 40, 126. 32, 125. 69, 120. 41, 119. 85, 58. 19, 57. 08, 49. 79, 46. 00 (2C), 45. 96 (2C), 38. 84. HR-ESI-MS: Calcd for $C_{20}H_{23}$ ClN₆ O_{2} [M+1] ⁺:415. 1571; Found: 415. 1642

[0134] 实施例 12

[0135] 化合物 $8c \{9-氯-6-(2-二甲氨基乙基)-1-(3-二甲氨基丙基) 苯并 [de][1,2,3] 三氮唑 [5,4-g] 异喹啉 -5,7(1H,6H)-二酮 }$

[0136]

[0137] 操作同上,产率:38%。 ¹H NMR(400MHz, CDC1₃/CD₃0D) δ 9. 17(s, 1H), 8. 87(s, 1H), 8. 68(s, 1H), 5. 19(t, J = 6. 3Hz, 2H), 4. 37(t, J = 6. 3Hz, 2H), 2. 78(br. s, 2H), 2. 39(m, 16H). ¹³C NMR(101MHz, CDC1₃/CD₃0D) δ = 163. 21, 163. 01, 144. 07, 134. 68, 130. 80(2C), 127. 33, 126. 09, 125. 48, 125. 18, 120. 26, 119. 68, 56. 30, 55. 67, 48. 93, 44. 87(4C), 38. 03, 27. 13. HR-ESI-MS: Calcd for $C_{21}H_{25}C1N_6O_2[M+1]^+$: 429. 1728; Found: 429. 1797

[0138] 实施例 13

[0139] 片剂

[0140] 大量片剂可以通过传统制备方法制备,单位剂量如下:100mg 本发明实施例制备的化合物,0.2mg 滑石粉,5mg 硬脂酸镁,275mg 微晶纤维素,98.8mg 乳糖,11mg 淀粉。采用适当的包衣提高可口性或者达到缓释的目的。

[0141] 实施例 14

[0142] 注射剂

[0143] 通过肠外给药的注射剂通过如下方法制备:搅拌 1.5%(质量)的本发明实施例制备的化合物和 10%(体积)的丙二醇/水,往所得溶液中加入氯化钠配成等渗液并且灭菌。

[0144] 实施例 15

[0145] 胶囊剂

[0146] 大量的单位胶囊制备通过填充标准两块硬胶囊,每块含有 100mg 本发明实施例制备的化合物,175mg 乳糖,24mg 滑石粉,6mg 硬脂酸镁。

[0147] 试验例

[0148] 体外抗肿瘤活性测定实验

[0149] 实验材料与方法

[0150] 采用四氮哇盐 (micocrultuertetrozolium, MTT) 还原法对化合物 7c 进行体外肿瘤细胞抑制活性实验,阳性对照药为 amonafide,肿瘤株选用 PC3(前列腺癌)、U87MG(恶性胶质细胞癌)、SK-OV-3(卵巢癌)、HepG2(肝癌)和 HCT116(结肠癌)。

[0151] 实验方法:体外培养人肿瘤细胞 PC3、U87MG、SK-OV-3、HepG2、HCT116,细胞生长至对数生长期后,收集细胞,1000rpm 离心 5 分钟,弃上清,适量培养基悬浮,调整细胞浓度至3.5×10⁴/mL。将细胞悬液接种到 96 孔细胞培养板中,每孔 100 μ L,放置细胞培养箱 (37°C,5% CO₂) 中培养 24h 后,加入待测药物,阴性对照组加入终浓度为 0.5% DMSO 培养基,各组均设 3 个复孔。培养箱中培养 72h 后,每孔加入 5mg/ml 的 MTT 20 μ L,37°C 放置 3h。每孔加入 150 μ L DMSO,37°C 摇床振荡 5min,492nm/620nm 测吸光度 (OD)。运用 Prism Graphpad

统计软件计算 IC₅₀ 值。 [0152] 实验结果:

	IC50(算 Gra					
[0153]	药物名称	HCT116	PC3	U87MG	HepG2	SK-OV-3
	Amonafide	4.799	3.862	2.597	1.227	5.098
	4a	0.65	1.58	0.45	0.68	1.17
	5a	0.1106	0.5521	0.1662	0.1720	0.1839
	6a	0.2539	1.886	0.3320	0.1587	0.4104
	7a	0.0819	0.1176	0.0853	0.1350	0.2086
	8a	0.1934	0.6908	0.2525	0.1776	0.3319
	4b	0.19	0.73	0.13	0.17	0.35
	5b	0.0409	0.1577	0.0803	0.0699	0.0940
	6b	0.0603	0.6195	0.2006	0.0979	0.2350
	7b	0.0414	0.2932	0.0639	0.0368	0.0566
	8b	0.0384	0.3565	0.0785	0.0367	0.0630
	4c	0.15	0.71	0.14	0.18	0.40
	5c	0.0244	0.1127	0.0320	0.0342	0.0465
	6c	0.0605	0.6041	0.0862	0.0968	0.0937
	7c	0.0174	0.0753	0.0166	0.0062	0.0892
	8c	0.0378	0.4713	0.0694	0.0806	0.0988