

Human-Centered Data & Al

Google for Startups

Accelerator Mentor

Vinicius Caridá, Ph.D.

 Executive Specialist, Artificial Intelligence and Data - Itaú

MBA Professor – FIAP and ESPM

Introdução

Lógica Fuzzy

- Desenvolvida por Lofti A. Zadeh em 1965 (Universidade da Califórnia em Berkeley).
- Estudos iniciados devido a dificuldade em representar dados imprecisos com a lógica binária.
- Como modelar matematicamente um conceito impreciso?

Introdução – Sistemas Especialistas

- Os Sistemas Especialistas podem ser caracterizados como sistemas que reproduzem o conhecimento de um especialista adquirido ao longo dos anos de trabalho.
- São sistemas que solucionam problemas que são resolvíveis apenas por pessoas especialistas (que acumularam conhecimento exigido) na resolução destes problemas.
- Programas de computador que tentam resolver problemas que os seres humanos resolveriam emulando o raciocínio de um especialista, aplicando conhecimentos específicos e inferências são ditos Sistemas Especialistas.

Introdução – Sistemas Especialistas

- Pode-se classificar os SE's quanto às características de seu funcionamento.
- Interpretação
- Diagnóstico
- Monitoramento
- Predição
- Planejamento
- Projeto
- Depuração
- Reparo
- Instrução
- Controle

Introdução

• Foco:

- Lógica Fuzzy
 - Lógica Multivalorada.
 - Conhecida também como lógica difusa.
 - Trata conhecimento vago, impreciso.
 - Utiliza linguagem natural.

Lógica Binária

 Uma declaração é falsa ou verdadeira, não havendo nada entre esses limites

 Pela função característica, é determinado se o elemento pertence ou não ao conjunto.

$$f_A(x) = \begin{cases} 1 \text{ se e somente se } x \in A \\ 0 \text{ se e somente se } x \notin A \end{cases}$$

Lógica Binária

Conjuntos não-fuzzy para caracterizar a temperatura de um ambiente.

Um simples sim ou um não como resposta a algumas questões é, na maioria das vezes, vago, incompleto

Abrir um pouco da válvula de pressão?

• Extensão da teoria clássica de conjuntos.

• Fronteiras dos conjuntos não muito bem delimitadas.

Função Característica para definir o quanto um elemento pertence ao conjunto.

Conjuntos fuzzy para caracterizar a temperatura de um ambiente.

• Função de Pertinência

- Usados para representar conceitos imprecisos.
- Grau de compatibilidade do elemento com o conjunto.
- Intervalo de [0,1].

• Função de Pertinência

- Pode ser representada de várias formas:
 - Gráfica;
 - Tabular;
 - Lista;
 - Entre outras...

• Função de Pertinência

Gráfica:

• Exemplo:

Temperatura Alta

• Função de Pertinência

Tabular:

• Exemplo:

x ε TD	μ _{τΑ} (x)
0	0
5	0
10	0
15	0
20	0,34
25	0,34 0,67
30	1
35	1
40	1

Função de Pertinência

Lista:

• Exemplo:

$$TA = 0/0 + 0/5 + 0/10 + 0/15 + 0.34/20 + 0.67/25 + 1/30 + 1/35 + 1/40$$

Também é comum ocultar os elementos que possui grau de pertinência igual a zero

$$TA = 0.34/20 + 0.67/25 + 1/30 + 1/35 + 1/40$$

Tipos Básicos de Conjuntos Fuzzy

- Vários tipos (Formato do conjunto).
- Influenciam no cálculo do grau de pertinência.
- Cada tipo possui suas características próprias, com vantagens e desvantagens.
- Para determinar qual é a melhor forma do conjunto é necessário testá-los.

Tipos Básicos de Conjuntos Fuzzy

Função Triangular:

$$= \begin{cases} 0, & se \ x \le a \\ \frac{x-a}{b-a}, & se \ x \in [a,b] \\ \frac{c-x}{c-b}, & se \ x \in [b,c] \\ 0, & se \ x \ge c \end{cases}$$

Tipos Básicos de Conjuntos Fuzzy

Função Trapezoidal:

Operações

Complemento Fuzzy

$$\bar{A}(x) = 1 - A(x)$$

Operações

Intersecção Padrão Fuzzy

$$(A \cap B)(x) = \min [A(x), B(x)]$$

Operações

União Padrão Fuzzy

$$(A \cup B)(x) = \max [A(x), B(x)]$$

Operações

t-normas: modelos genéricos para a operação de intersecção.

• Mínimo:

$$x t1 y = min(x, y)$$

Produto algébrico:

$$x\ t2\ y = \ x * y$$

Diferença limitada:

$$x t3 y = max(0, x + y - 1)$$

• Interseção drástica:

$$x t4 y = \begin{cases} x se y = 1 \\ y se x = 1 \end{cases}$$
0 caso contrário

Operações

s-normas: modelos genéricos para a operação de união.

Máximo:

$$x s1 y = max(x,y)$$

Soma algébrica:

$$x s2 y = x + y - x * y$$

• Soma limitada:

$$x s3 y = min(1, x + y)$$

• União drástica:

$$x \text{ s4 } y = \begin{cases} x \text{ se } y = 0 \\ y \text{ se } x = 0 \end{cases}$$

$$1 \text{ caso contrário}$$

Variáveis Lingüísticas

As variáveis linguísticas são definidas sobre uma variável base.

Associado a um conjunto fuzzy.

• Utilizar termos do nosso cotidiano para expressar o conhecimento.

Variáveis Lingüísticas

- Uma variável base pode ser exemplificada por qualquer variável quantitativa (temperatura, pressão, umidade, preço, idade, etc.).
- Os termos linguísticos podem ser associados aos intervalos numéricos, representando valores aproximados:
 - termos primários (alto, baixo, pequeno, médio, grande, zero, por exemplo);
 - conectivos lógicos (negação não, conectivos e e ou);
 - modificadores (muito, pouco, levemente, extremamente).

Variáveis Lingüísticas

• Exemplo:

- Variáveis lingüísticas: Quente, Média, Fria.
- Conjunto Fuzzy: Temperatura.

• Lógica fuzzy é um método de formalizar a capacidade humana da imprecisão e do raciocínio aproximado.

• Tal raciocínio representa a habilidade humana de raciocinar aproximadamente e julgar através de incertezas.

Manipulação de informações imprecisas.

• Realização de inferências.

• Obtenção de Conclusões.

Proposição Fuzzy

- Compostas por:
 - Um ou mais Antecedentes.
 - Um ou mais Conseqüentes.
 - Estrutura do tipo "IF → THEN".

Proposição Fuzzy

Antecedentes e Consequentes:

- Ligados por meio de conectivos:
 - e (^).
 - ou(V).
- Admite utilização de operador unário:
 - não (~).

Proposição Fuzzy

- Analogia a Causa Efeito.
- Exemplo:
 - Se temperatura estiver alta então ligar ventilador.
 - Se tempo estiver nublado e vento estiver forte então não sair.

• Inferência

- Avaliação das regras em conjunto com os conjuntos fuzzy e variáveis de entrada.
- Tipos:
 - <u>Mamdani</u>;
 - Sugeno;
 - Larsen;
 - Entre outros...

• Inferência

<u>Mamdani</u>

- Inferência composicional simplificada com entradas numéricas.
- Para a inferência utiliza-se Conjunção e Agregação das regras.
- Operador min-max para Conjunção e Agregação.

• Inferência

Mamdani

Regra: Se temperatura é alta e umidade é alta então probabilidade de chuva é alta.

Valores: temperatura é igual a 28° e umidade é 89%

Lógica Fuzzy

• Inferência

<u>Mamdani</u>

Regra: Se temperatura é média e umidade é alta então probabilidade de chuva é média.

Valores: temperatura é igual a 28° e umidade é 89%

Lógica Fuzzy

InferênciaMamdani

• Agregação:

Sistema Fuzzy

Fuzzy / Escalar

- Transforma valores fuzzy em crisp
 - Utiliza métodos de mapeamento de fuzzy em crisp
 - Centro de Área (CoA) $CoA(B) = \frac{\sum_{i=0}^{D} B(y_i) y_i}{\sum_{i=0}^{D} B(y_i)}$

Sistema Fuzzy

Fuzzy / Escalar

$$Y = \{0, 5, 10, 15, 20, 25, 30, 25\}$$

CoA

y _i	B(y _i)
0	0
5	0
10	0,6
15	0,6
20	0,6
25	0,6
30	0
35	0

Sistema Fuzzy

Fuzzy / Escalar

• CoA

$$CoA(B) = \frac{[(0*0) + (0*5) + (0,6*10) + (0,6*15) + (0,6*20) + (0,6*25)(0*30) + (0*35)}{0 + 0 + 0,6 + 0,6 + 0,6 + 0,6 + 0 + 0}$$

$$CoA(B) = \frac{6+9+12+15}{2,4} = 17,5$$

Sistema Fuzzy

Fuzzy / Escalar

$$Y = \{0, 5, 10, 15, 20, 25, 30, 25\}$$

CoA

Уi	B(y _i)
0	0
5	0
10	0,6
15	0,6
20	0,6
25	0,6
30	0
35	0

Sistema Fuzzy

Arquitetura

Exemplo
 Recomendação de Investimento

Variáveis de Entrada

- Variação de Vendas [-100, 100]
 {diminuindo, estável, aumentando}
- Sobrecarga de Serviços [0, 100]
 {baixa, média, alta}
- Nível de Informatização [0, 100] {ruim, médio, bom}

Exemplo

Recomendação de Investimento

Variáveis de Saída

Recomendação de Investimento [0, 100]
 {leve, média, forte}

Exemplo

Recomendação de Investimento

Regras

Se V está aumentando e S é alta e I é bom então R é forte Se V está aumentando e S é média e I é bom então R é média Se V está aumentando e S é baixa e I é bom então R é leve Se V está aumentando e S é média I é ruim então R é forte Fatos

Implementação de Exemplo

• Especificação:

Criar um controlador *fuzzy* para realizar o controle de temperatura de um ambiente.

- 1°) Determinar variáveis de entrada e saída:
 - Variáveis de entrada:

- 1°) Determinar variáveis de entrada e saída:
 - Variáveis de entrada:
 - Gradiente (°c/s)

- 1°) Determinar variáveis de entrada e saída:
 - Variáveis de saída:
 - Modulação por largura de pulso PWM (%)

- 2°) Definir variáveis de entrada:
 - ∆T: -3°c

- 2°) Definir variáveis de entrada:
 - Gradiente: 0.6 °c/s

• 3°) base de regras

- Se ∆t é baixa e grad. é estável então pwm é grande
- Se ∆t é no setpoint e grad. é estável então pwm é nula
- Se Δt é baixa e grad. é subindo devagar então pwm é média
- Se ∆t é no_setpoint e grad. é subindo_devagar então pwm é nula

• 4°) Inferência por mamdani

• 4°) Inferência por mamdani

• 4°) Defuzificação pelo centro de área

Thank you!

