Transfer Learning

CS-EJ3311 - Deep Learning with Python 24.10.-11.12.2022 Aalto University & FiTech.io

28.11.2022 Shamsi Abdurakhmanova

Deep learning methods requires a lot of:

- ✓ (Labeled) data
- ✓ Computational resources (GPUs)
- ✓ Time
- ✓ DL expertise

Machine learning

- ✓ Feature space X
- \checkmark Label space \mathcal{Y}

Machine learning

- ✓ Domain $\mathcal{D} = \{X, P(X)\}$
- ✓ Task $\mathcal{T} = \{\mathcal{Y}, P(\mathcal{Y}|\mathcal{X})\}$, where $P(\mathcal{Y}|\mathcal{X})$ is a function

ML model trying to learn

Task A (source)

Task B (target)

Domain $\mathcal{D}_S = \{\mathcal{X}_S, P(\mathcal{X}_S)\}$

Domain $\mathcal{D}_T = \{\mathcal{X}_T, P(\mathcal{X}_T)\}$

Task $\mathcal{T}_s = \{\mathcal{Y}_s, P(\mathcal{Y}_s | \mathcal{X}_s)\}$

Task $\mathcal{T}_T = \{\mathcal{Y}_T, P(\mathcal{Y}_T | \mathcal{X}_T)\}$

Transfer learning – learn $P(\mathcal{Y}_T|\mathcal{X}_T)$ using knowledge \mathcal{D}_S , \mathcal{T}_S

Traditional ML

vs Transfer Learning

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

When to use Transfer Learning?

• Task A and B have the similar input, e.g both have images as input (features from A could be helpful in learning task B).

There is a lot more data for Task A than Task B.

Use transfer learning? Yes

MNIST-M

Use transfer learning? Yes

Use transfer learning? No

Pre-trained model for feature extraction

Fine-tuning pre-trained model

Kermany, D et al. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. *Cell*

Pre-trained VGG16 model

convolutional (conv) base

classification head

Pre-trained VGG16 as a feature extractor

1. Load pre-trained convolutional base

2. Perform feature extraction (params of conv base are frozen)

3. Train (new) classification head on extracted features

Fine-tuning pre-trained VGG16

1. Load pre-trained convolutional base

2. Add and train new clf head (params of conv base are frozen)

3. Unfreeze last few layers and train together with a clf head

Transfer learning when no labels are available

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ... & Lempitsky, V. (2016). Domain-adversarial training of neural networks. The journal of machine learning research, 17(1), 2096-2030.

Transfer learning when no labels are available

Figure 6: Examples of domain pairs used in the experiments. See Section 5.2.4 for details.

Метнор	Source	MNIST	Syn Numbers	SVHN	Syn Signs
	TARGET	MNIST-M	SVHN	MNIST	GTSRB
Source only		.5225	.8674	.5490	.7900
SA (Fernando et al., 2013)		.5690 (4.1%)	.8644~(-5.5%)	$.5932\ (9.9\%)$.8165~(12.7%)
DANN		. 7666 (52.9%)	. 9109 (79.7%)	. 7385 (42.6%)	.8865 (46.4%)
Train on target		.9596	.9220	.9942	.9980