gradientor.ai

pragmatic autonomous driving

We are building next-generation vision-based driver assist systems

ADAS market projected growth: \$14B in 2016 → \$67B in 2025

Grand View Research report

ADAS today: a tale of two extremes

- The Scylla of legacy systems
 - Disparate set of narrow-purpose sensor-algorithm combos
 - Reliance on «classic» computer vision limits working conditions (e.g. high quality lane markings required)
 - Not fit for gradual functionality extensions (contrast: Tesla)

ADAS today: a tale of two extremes

- The Charybdis of full autonomy aspirations
 - Last 5% of use cases is 95% of system complexity
 - Expensive sensor suites and computing platforms
 - Radically harder to pull off outside of «first world»

Our approach

Leverage modern computer vision and deep learning to build driver assist systems that are more functional, robust and extendable than state of the art.

Capture **most of the utility** of autonomous driving at a **fraction of complexity** and **cost**.

Our progress to date

- Working prototype: lane / road following system
- Does not require lane markings
- Handles complex weather and lighting conditions
 - Snow, dirty, wet roads, sharp shadows
- Runs on a regular mid-range laptop, lots of headroom left over

Watch road following demo

https://youtu.be/H02LA5WQugU

Our progress to date

- Self-contained driving data collection solution
- Works on any Android phone
- High precision steering and velocity inference from built-in accelerometer, gyroscope and GPS
- No interfacing with the car, 1-second setup

Watch steering inference demo

https://youtu.be/HvfqpzvW2E8

Our next steps

- People: grow the team
- Technology: port road following to low-power commodity platforms (Android, NVIDIA Jetson)
- Partners: increase exposure among ADAS suppliers and related ecosystem players

We are building **next-generation** vision-based **driver assist** systems

inbox@gradientor.ai