JIE R&R of SOP_Repeated

- Take out renegotiation
 - Add more basic tradeoff
 - (??) Draw inverted U for lobby
 - Now my short punishments don't rest on renegotiation
 - * So now, for main analysis, must assume that we're constraining attention to a certain class of punishments: symmetric, and "Punish for T periods then go back to cooperation"
 - · Go back to start if deviate should work for governments, but I think I need something else for lobbies since they would like that
 - * Can I show that mine are optimal in this class?
 - * Will look at asymmetric punishments in later section
- New section on asymmetric punishments (addresses, in part, Giovanni's #7)
 - Constrain to T-period class, now asymmetric—punish deviator more
 - There is literature on this (see new-lit.tex)
 - * Bown 2002/2004: I don't think there's any reason to constrain to reciprocal "legal" punishments
 - * Martin and Vergote: timing. But I don't think their contemporaneous is realistic. They have the same welfare level in punishment, just redistributed across players
 - * Hungerford 1991: one country retaliates for past defection (?)
 - * Bagwell (2008): commensurate vs. disproportionate retaliation
 - \cdot disproportionate retaliation can compensate trading partner, who otherwise loses trade volume
 - · here, degree of disproportion increases in size of original violation: has to compensate for larger trade volume loss (p.15 of pdf)
 - * Cotter and Mitchell (1997): different punishments for each country
 - In this setting, can you achieve lower τ^A with asymmetric?
 - Have to check lobby conditions
 - * Do they change over the course of the punishment?
 - · Joel thinks they'll be tightest at beginning of punishment phase
 - * How asymmetric can they get?
 - · Is it hard to make punishment really asymmetric b/c of presence of lobby?

- · If so, this puts some constraint on asymmetry of punishment
- #2 is not what I thought it was
 - Giovanni's concern: when determining \overline{e} , I need to take into account that τ^b depends on \overline{e}
 - * I'm almost certain that I do this, but I'm also sure now that I don't explain it at all in the text
 - * It is true that the severity of the punishment for deviating does not depend on τ^b , and that this means that τ^b will maximize current payoff (actually, continuation value?). So clearly τ^b is a function of e^b
 - Sweep through to make sure all analysis takes account of this concern
 - * Jan. 17: Decided I need to hold off until I reformulate since I don't have much in the text; I'm going to have to add more.
 - Maybe need to change notation on $\tau^B(\gamma(e))$ to be clear
 - Need to explain mechanics of $\overline{e}(\tau^B)$ relationship MUCH better
 - * Make Corollary 1 into Lemma 1 just before Result 1; improve discussion of Lemma 3
 - * End of first para. of section 3.2
 - * Paragraph following equation eq:lobtw; also above this paragraph (top of pg. 9)
 - · Technical part of 3rd condition needs to be re-stated
 - · Whole passage needs to be re-stated. At least some of the conditions are just what needs to be true for something to be a break tariff. What of this am I assuming? What can I show is a result of lobbying/legislature behavior?
 - * Possibly just before start of section sec:structure

• email Giovanni

- How to satisfy an author who thinks the results are not "particularly interesting or surprising" and has not given a clear indication of what it is he wants
- Should I try going to linear supply/demand system?
- thank him
- "I want to be very clear that I understand that my previous discussion did not make clear [sic]"
- "I just want to know if this is along the right lines"

Smaller points

- \bullet Reviewer 1, #2 goes away with renegotiation
- Need thorough lit review of finite punishments
 - Green Porter in game theory
 - Is there anything in trade?
- fix discounting to $\frac{1-\delta^T}{1-\delta}$ (period after punishment is discounted δ^T) and $\frac{\delta-\delta^{T+1}}{1-\delta}$ (period after punishment is discounted δ^T) in draft

Midwest, April 2015

- James Lake: what about collusion between the lobby and legislatures?
- Maurizio: "trade war" should be to MFN

For talk with Joel, week of 5/4/15

- Go through dynamic punishment for lobby (punishment for deviation from punishment)
- \bullet Check new assumption on $\frac{\partial \tau^b}{\partial \tau^a}$