Outline- Ch.22.4 Part I

- 1. Review: Nucleotide structure and nomenclature
- 2. De novo nucleotide biosynthesis and regulation

References

- 1. Nelson and Cox (2013) Lehninger Principles of Biochemistry, 6th ed, Freeman
- Berg et al. (2015) Biochemistry, 8th ed, Freeman
 Appling et al. (2016) Biochemistry Concepts and Connections, Pearson

Review: Nucleotide structure and nomenclature

		RNA	
Base		Ribonucleoside	Ribonucleotide (5'-monophosphate)
/ Ader	ine (A)	Adenosine	Adenylate (AMP)
Guar	nine (G)	Guanosine	Guanylate (GMP)
Urac	il (U)	Uridine	Uridylate (UMP)
	sine (C)	Cytidine Inosine	Cytidylate (CMP)
Xant	oxanthine hine	Xanthosine	Inosinate (IMP) Xanthylate (XMP)
Orot		Orotidine	Orotidylate (OMP)
		DNA	
Base		Deoxyribonucleoside	Deoxyribonucleotide (5'-monophosphate)
Ader	ine (A)	Deoxyadenosine	Deoxyadenylate (dAM
Guar	nine (G)	Deoxyguanosine	Deoxyguanylate (dGM
Thyr	nine (T)	Thymidine	Thymidylate (TMP)
Cvto	sine (C)	Deoxycytidine	Deoxycytidylate (dCM

Review: Nucleotide structure and nomenclature

Know names and structures

Nucleotide biosynthesis

- Two pathways:
 - De novo: Synthesis from amino acids, ribose-5phosphate, CO₂, and NH₃
 - Salvage: Recycle free bases and nucleosides (mostly from diet)
- De novo pathways are nearly universally conserved in all organisms

Nucleotide biosynthesis: birds-eye view

De novo purine synthesis

PRPP: Origin of the nucleotide ribose

- From pentose phosphate pathway
- PRPP needed in other pathways (histidine, tryptophan)
- Rings are built while attached to ribose-5-phosphate

IMP synthesis: Steps 1-3

IMP synthesis: Steps 4+5

IMP synthesis: Steps 6 + 7

IMP synthesis: Steps 8-10

Step 8: eliminate fumarate

- citrulline → arginine (urea cycle)

Step 9: form C2

- N-formyl-THF donor
- second N-formyl THF reaction

Step 10: cyclization #2

- thermodynamically favorable cyclization reaction (no activation)
- 6-member ring complete
- end product: IMP

AMP and GMP synthesis: from IMP

Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

AMP and GMP synthesis: from IMP

Same as steps 8 and 9 of IMP biosynthesis-EXCEPT: Step A uses GTP for phosphate activation step

Step B is same enzyme used for IMP pathway

AMP and GMP synthesis: from IMP

Step A: addition of water and dehydrogenation by NAD+

Step B: nucleophilic displacement of activated carbonyl EXCEPT: activated with AMP, not phosphate

Need for precise regulation in vivo

Intracellular pools of NTP/dNTPs (mM):

	<u>E.coli</u>	<u>Mammals</u>
ATP	3.0	2.8
GTP	0.92	0.48
CTP	0.52	0.21
UTP	0.89	0.48
dATP	0.18	0.013
dGTP	0.12	0.005 Not much
dCTP	0.07	0.022 room for error
dTTP	80.0	0.023

Regulation of purine synthesis

Important to balance:

deficiency= lethal
overabundance= mutagenic

Four points of control in *E. coli*three mechanisms:

Reciprocal control

Feedback inhibition (3 steps)

Feedforward activation

Regulation of purine synthesis

Purine regulation #1: Reciprocal control

Regulation of purine synthesis

Purine regulation #2: Committed step

Feedback inhibition: AMP and GMP bind to different sites

Feedforward activation: PRPP

Regulation of purine synthesis

Purine regulation #3: Feedback inhibition of PRPP formation

Regulation of purine synthesis

Purine regulation #4: Feedback inhibition

AMP, GMP competitive inhibitors of branchpoint enzymes

Regulation of purine synthesis in *E. coli*

Multiple points of control

De novo pyrimidine synthesis

- De novo pathway leads to UMP
 UMP phosphorylated to UTP, then → CTP
- Build nucleobase (orotate) first, then attach to PRPP

Glutamine amide
$$\rightarrow$$
 $\stackrel{\ \ \, N_3}{\longrightarrow} \stackrel{\ \ \, C}{\longrightarrow} \stackrel{\ \, C}{\longrightarrow} \stackrel{\ \ \, Aspartate}{\longrightarrow}$

$$HCO_3^- \rightarrow \stackrel{\ \ \, C^2}{\longrightarrow} \stackrel{\ \ \, C^2}{\longrightarrow} \stackrel{\ \ \, C}{\longrightarrow} \stackrel$$

De novo pyrimidine synthesis

UMP synthesis steps 1-2

Step 1: form N3, C2

- phosphoryl carbonate AP
- 2 enzymes in mammals (one cyto, one mito)
- 2 molecules of ATP

Step 2: form N1, C4,5,6

- phosphoryl carbamate AP
- all atoms of ring complete

UMP synthesis steps 3-4

UMP synthesis steps 5-6

Step 5: attach to ribose

- PRPP is AP
- also participates in salvage pathways

Step 6: decarboxylation

- UMP is final product
- one of most catalytically proficient enzymes known

Enzymes produce large rate enhancements over non-catalyzed rates

Richard Wolfenden and co-workers

Regulation of pyrimidine synthesis

Different committed step: eukaryotes vs. prokaryotes

mammals: step 1 (CPSII) bacteria: step 2 (ATCase)

Mammals:

- 1) CPSII
- 2) OMP decarboxylase

Bacteria:

ATCase: classic allosteric control

Regulation of pyrimidine synthesis

Bacteria:

1) <u>ATCase</u> ATP activates CTP inhibits

Mammals:

CPSII
 ATP, PRPP activate
 UDP, UTP inhibit
 OMP decarboxylase
 UMP (CMP) compet inh.

Nucleotide biosynthesis: birds-eye view

Conversion to nucleoside triphosphate

1) Nucleoside monophosphate kinases (NMP kinase): Specific for each base

Not specific for sugar (ribo or deoxy)

Adenylate kinase: AMP + ATP 2 ADP

Guanylate kinase: GMP + ATP GDP + ADP

Uridylate kinase: UMP + ATP UDP + ADP

Cytidylate kinase: CMP + ATP CDP + ADP

Conversion to nucleoside triphosphate

2) Nucleoside diphosphate kinases (NDP kinase): Not specific for each base

Not specific for sugar (ribo or deoxy)
ATP is *de facto* phosphate donor
ATP abundance drives reaction ($\Delta G \sim 0$)

Finally: Synthesis of CTP!

Cytidylate synthetase:

- C4 carbonyl phosphate is AP
- nucleophilic displacement by NH₃

