سلسلسة تمارين الوحدة 02: القوة والحركات المستقيمة

التمرين01:

اجب بصحيح أو خطأ مع تصحيح العبارات الخاطئة:

- ينص مبدأ العطالة بأن كل جسم يتحرك بحركة مستقيمة متغيرة بانتظام لا يخضع لأي قوة .
 - في الحركة المنحنية إذا كانت سرعة المتحرك ثابتة فانه لا يخضع لأي قوة .
- في الحركة المستقيمة المتسارعة بانتظام شعاع السرعة $ec{v}$ وشعاع تغير السرعة Δv لهما نفس الاتجاه .
 - إذا كان $\overline{\Delta v}$ في الحركة مستقيمة ثابت فانه توجد قوة ثابتة تؤثر في الحركة .
 - · في الحركة المستقيمة المنتظمة هناك قوة ثابتة مطبقة على الجسم.
 - . في الحركة المنحنية شعاع السرعة $\overrightarrow{\mathcal{V}}$ وشعاع تغير السرعة $\overline{\Delta \mathcal{V}}$ لهما نفس الحامل
 - في الحركة المنحنية مبدأ العطالة غير محقق.

<u>التمرين02:</u>

نترك جسم ينزلق على منضدة هوائية مائلة دون سرعة ابتدائية . نأخذ له صورا متتالية في أزمنة متساوية قدرها (au=0,08s) باستعمال برمجية خاصة و التصوير المتعاقب السابق حصلنا على التسجيل التالي:

الوثيقة 1

- $G_3; G_2; G_1:$ احسب قيم السرعة اللحظية في المواضع -1
 - . G_3 نه المواضع: Δv في المواضع: -2
 - 3- أكمل الجدول الأتى:

الموضع	G_0	G_1	G_2	G_3	G_4	G_5
t(s)						
v(m/s)						
$\Delta v \left(m / s \right)$	///////					/////////

- 4- حدد طبيعة الحركة.
- .1 على الوثيقة 1. مثل شعاع السرعة اللحظية في الموضع $G_4;G_2$ باستخدام سلم الرسم -5 على الوثيقة 1. مثل شعاع السرعة اللحظية في الموضع
 - . مثل شعاع تغير السرعة $\Delta v_3, \Delta v_2$ باستعمال نفس السلم على نفس الوثيقة -6
 - . حسب مبدأ العطالة فإن الجسم يخضع لقوة \overrightarrow{F} ، اذكر العبارة التي تدل على ذالك .
 - 8- اذكر خصائص هذه القوة و من أين استنتجتها ؟ مثلها كيفيا على الوثيقة 1.
 - $1cm \longrightarrow 1m \cdot s^{-1}$ و $1cm \longrightarrow 0,08s$ و v=f(t) و -9
 - 10- ارسم منحنی t = v = 0 علی نفس المنحنی السابق بنفس السلم.
 - . الحركة الحركة من البيان المسافة المقطوعة G_0G_7 خلال هذه الحركة -11

<u>التمرين 03:</u>

نترك جسما صلبا (S) لينزلق على طاولة هوائية تميل على الأفق بزاوية α . من خلال التصوير المتعاقب لمواضع حركة الجسم (S) مجالات زمنية متساوية ومتعاقبة $\tau = 0,004s$ ، نلاحظ أن مسار حركة الجسم (S) عبارة عن خط مشتقيم.

يمثل الجدول الآتي فواصل حركة الجسم (S) بدلالة الزمن.

t(s)	0,0	0,04	0,08	0,12	0,16	0,20	0,24	0,28
المواضع	M_{0}	M_{1}	M_{2}	M_3	M_{4}	M_{5}	M_{6}	M_{7}
x(cm)	0	4,2	8,7	13,4	18,6	24	29,8	35,8
v(m/s)	/////							
$\Delta v (m/s)$	/////							

- 1- أكمل الجدول مع كتابة العلاقة المستعملة في حساب السرعة اللحظية.

 - (S) ماذا تستنتج فيما يخص محصلة القوى المؤثرة على الجسم (S).

<u>التمرين 04</u>

ينطلق جسم نقطي على مسار مستقيم عند اللحظة (t=0) ،سجلت قيمة سرعته في لحظات زمنية متساوية au ودونت في الجدول التالي:

t(s)	0,04	0,08	0,12	0,16	0,20	0,24	0,28	0,32	0,36	0,40	0,44
v(m/s)	2,2	4,2	6,1	8,1	10,0	10,0	10,0	10,0	7,0	4,0	1,0
$\Delta v (m/s)$					/////			/////			/////

- au . au أكمل الجدول واستنتج قيمة
- ارسم المنحنى v = f(t) باختيار سلم رسم مناسب.
 - 3- أ- حدد من البيان أطوار الحركة..
 - ب- ماهى طبيعة الحركة في كل طور؟ علل.
- المتنتج قيمة السرعة الابتدائية v_0 للمتحرك في اللحظة (t=0).
- $t_8 = 0.32s$ و $t_5 = 0.20s$ و احسب المسافة المقطوعة من طرف المتحرك بين اللحظتين:

استنتج القوة المطبقة على الجسم في كل طور.

<u>التمرين 05:</u>

ينطلق جسم نقطي على طريق مستقيم في اللحظة (t=0) من السكون فسجلت قيمة سرعته اللحظية في لحظات زمنية متساوية au=0,08s ودونت النتائج في الجدول التالى :

t(s)	0,00	0,08	0.16	0,24	0,32	0,40	0,48
x(m)	0,00	0,1	0,2	0,3	0,4	0,5	0,6
v(m/s)							

- . $v_i = \frac{x_{i+1} x_{i-1}}{2\tau}$:اكمل الجدول السابق بتطبيق العلاقة -1
- 2- أرسم المنحنى البياني الممثل t:v=f(t) باختيار سلم رسم مناسب . (الرسم على الورقة الميلمترية) .
 - 3- ما هي طبيعة الحركة ؟ علل إجابتك بإيجاز.
 - 4- احسب المسافة المقطوعة.

<u>التمرين 06:</u>

نقذف جسما نقطيا (s) على طاولة هوائية أفقية ،التسجيل المقابل يمثل الاوضاع المتتالية لحركة الجسم والمأخوذة بالتصوير المتعاقب في أزمنة متساوية au=0.04s .

- (S) مع التعليل. (S)
- M_2 عند الموضع -2 د احسب السرعة اللحظية عند الموضع -2
- M_6 ، M_5 ، M_4 ، M_3 ، M_1 ، M_0 : المحظية في المواضع -3
 - (S) ماذا يمكنك أن تقول عن القوة المطبقة على الجسم
 - 5- ارسم منحنی السرعة v = f(t) باختیار سلم رسم مناسب.
 - 6- |S| احسب المسافة المقطوعة من طرف الجسم (S).

<u>التمرين 07:</u>

تدفع كرة صغيرة على مستوي أفقي أملس بسرعة ابتدائية v_0 من الموضع A فتصادف مستوي مائل عن الأفق بزاوبة α

كما في الشكل -1- فتواصل حركتها حتى تتوقف عند الموضع $\,$

يمثل المنحنى البيانى تغيرات السرعة v بدلالة الزمن t لحركة الكرة (شكل -2-).

- 1- ماهي التقنية التي تمكننا من متابعة حركة الكرة.
 - 2- حدد أطوار الحركة.
- 5- ما هي قيمة السرعة الابتدائية v_0 التي انطلقت بها الكرة.
 - B استنتج سرعة الكرة عند وصولها إلى الموضع
- 5- ماهي القوة المؤثرة على الكرة أثناء صعودها على المستوي المائل.
 - 6- احسب المسافة المقطوعة AC.

В

الشكل -1-

<u>التمرين 08</u>

يمثل المنحنى البياني تغيرات السرعة v بدلالة الزمن t لحركة جسم نقطي على مسار مستقيم.

- حدد أطوار الحركة.
- 2- استنتج من البيان قيم السرعة v وتغير السرعة Δv في اللحظات المدونة في الجدول:

t(s)	0	0,1	0,2	0,3	0,4	0,5	0,6
v(m/s)							
$\Delta v (m/s)$	/////		//////				/////

- 3- في كل طور حدد:
- أ- طبيعة الحركة.
- ب- خصائص القوة المطبقة على الجسم.
 - ت- المسافة المقطوعة في كل طور.
 - ث- المسافة المقطوعة الكلية.

<u>التمرين 09:</u>

يتحرك جسم (S) يعتبر نقطيا على مسار مائل AB عن الأفق بزاوية lpha كما في الشكل، ينطلق الجسم من الموضع A بدون سرعة ابتدائية . باستعمال تجهيز مناسب و نحصل على النتائج المدونة في الجدول :

الموضع	G_0	G_1	G_2	G_3	G_4	G_5	G_6	G_7	G_8
t(s)	0,0	0,08	0,16	0,24	0,32	0,40	0,48	0,56	0,64
x(cm)	0,0	1,50	6,0	13,5	24,0	37,5	54,0	73,5	96,0
v(m/s)									//////

t(s)

au=0,08s :ينطبق الموضع B على النقطة A وينطبق الموضع وينطبق الموضع

- G_7 ، G_6 ، G_5 ، G_4 ، G_3 ، G_2 . في المواضع: G_7 ، المحظية للجسم (G_7 ، المحظية للجسم (G_7 ، المحظية المحظية للجسم (G_7 ، G_6 ، G_7 ، G_6 ، G_7 ، G_6 ، G_7 ، $G_$
 - ب- أكمل الجدول.
 - $.G_{6}\, ,G_{5}\, ,G_{4}\, ,G_{3}$ احسب قيم تغير السرعة عند المواضع
 - 3- حدد طبيعة الحركة مع التعليل.
 - 4- أ- ارسم المنحنى $v=f\left(t
 ight)$ باختيار سلم رسم مناسب .
 - G_8 ب- استنتج قيمة السرعة عند الموضع

<u>التمرين 10:</u>

سيارة A متوقفة عند اشارة المرور ،تنطلق من السكون عند اشتغال الضوء الأخضر ، في نفس اللحظة سيارة B تسير بسرعة ثابتة v_0 وتمر بنفس نقطة انطلاق السيارة A . نمثل مخطط السرعة v_0

- للسيارتين A و B كما هو موضح في البيان :
- 1- انسب كل سيارة بالمخطط المناسب. v_0 عيمة السرعة v_0 التي تسير بها السيارة B.
- عين اللحظة التي تسير بها السيارتين بنفس السرعة.
- حون النصف الي تسور بن المساوي المسوري بنصل المعرف.
 احسب المسافة المقطوعة من طرف كل سيارة عند لحظة تساوي سرعتهما.
 - 5- أ- حدد اللحظة التي تتلاقى فيها السيارتين.
 - ب- احسب المسافة المقطوعة لكل سيارة.

<u>التمرين 11:</u>

t بدلالة الزمن v بدلالة الزمن البيان الموالى يمثل تغيرات السرعة v بدلالة الزمن t

- v = f(t) عدد من البيان -1
 - أ- أطوار الحركة.
- ب- طبيعة الحركة في كل طور مع التعليل.
- ج- استخرج قيم السرعات اللحظية عند اللحظات المسجلة على البيان علما أن au=10s ثم سجل النتائج في جدول.
 - 2- أحسب قيمة تغير السرعة Δv عند اللحظات الزمنية التالية : 40s ، 10s
 - 3- ما هي مميزات القوة التي تؤثر على السيارة في كل طور.

v(m/s)

4- احسب المسافة المقطوعة في كل طور. ثم استنتج المسافة الكلية.

<u>التمرين 12:</u>

تنتقل كرة صغيرة على مسار مستقيم و سجلتمواضعها المتتالية في مجالات متساوية au=0,2s و بذلك رسمتتغيرات سرعتها بدلالة الزمن كما هو ممثل على المخطط التالى .

- حدد أطوار الحركة.
- 2- ما هو الزمن المستغرق في كل طور؟
- 3- احسب من المنحنى البياني قيم السرعة اللحظية و قيم تغير السرعة عند اللحظات المدونة في الجدول.
 - 4- حدد طبيعة الحركة في كل طور .
 - 5- هل تخضع الكرة لقوة في هذه الأطوار ؟ علل.
 - 6- استنتج خصائص شعاع القوة \overrightarrow{F} إن وجدت في كل طور.
 - 7- احسب المسافة المقطوعة من طرف الكرة الصغيرة في المجال الزمنى [0s-0.1s] .

	A							
•		v(m/s))					
				/				
			/		<i>\</i>			
						\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	
5								
1							t(s)	
0								
	0	0.2			1			

t(s)	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
$v\left(m\cdot s^{-1}\right)$										
$\Delta v \left(m \cdot s^{-1} \right)$										
$\Delta r (m s)$										

<u>التمرين 13:</u>

ابتداء من نقطة M تقع على سطح الأرض ، نقذف كرة شاقوليا نحو الأعلى بسرعة ابتدائية v_0 فيلاحظ أن أعلى نقطة تبلغها الكرة هي النقطة N. ان متابعة حركة الكرة أثناء صعودها مكن من رسم المنحنى v=f(t) الذي يمثل تغيرات سرعة الكرة بدلالة الزمن كما هو ممثل في الشكل المقابل .

- 1- طبيعة الحركة مع التعليل.
- 2- اعتمادا على المنحنى أوجد:
- أ- قيمة السرعة الابتدائية v_0
- . N الى الموضع M الى الموضع M الى الموضع
 - . والارتفاع الذي توجد عليه النقطة N عن سطح الأرض.
 - 3- تخضع الكرة أثناء حركتها الى قوة.
 - أ- ماهي هذه القوة ؟
 - ب- أذكر خصائصها (الحامل والجهة).
- 4- أعط شكل كيفي للتصوير المتعاقب لحركة مركز الكرة، و مثل عليه القوة المؤثرة في موضعين مختلفين.

<u>التمرين 14:</u>

نترك كريه معدنية تسقط دون سرعة ابتدائية من موضع o موجود على ارتفاع d من سطح الأرض لتسقط في الموضع d ، إنّ تصوير حركة الكريه و معالجتها ببرمجية d مكّننا من الحصول على الشكل -1 و الذي يمثّل تصويراً متعاقباً للكريه خلال فواصل زمنية متعاقبة و متساوية قدرها d . باستعمال برمجية خاصة و التصوير المتعاقب السابق حصلنا على المنتى المثّل في الشكل -2-

- 1- من خلال التسجيل (الشكل1) والبيان (شكل 2). حدد طبيعة حركة الكربه؟ علّل.
- . $1cm \longrightarrow 2m \cdot s^{-1}$: مثّل أشعة السرعة $\vec{v_5}; \vec{v_3}$ في المواضع: $O_5; O_3$ باستعمال السلم -2
 - M_4 مثل شعاع تغيّر السرعة في الموضع و M_4 ماذا تستنتج
 - 4- تخضع الكربه أثناء سقوطها إلى قوة الثقل (تُهْمَل جميع الاحتكاكات).
 - مثّل هذه القوة في الموضع $\,$ مع التعليل.
 - 5- أحسب قيمة الارتفاع h بطريقتين مختلفتين.

الشكل -2-

الشكل -1-

 $1cm \longrightarrow 0, 2m$

<u>التمرين 15:</u>

ينطلق جسم نقطي على طريق مستقيم في اللحظة t=0 فسجلت قيمة سرعته اللحظية في لحظات زمنية متساوية au ودونت النتائج في الجدول التالى:

t(s)			0,12		0,20	0,24					0,44
$v\left(m\cdot s^{-1}\right)$	2,2	4,2	6,1	8,1	10,0	10,0	10,0	10,0	7,0	4,0	1,0
$\Delta v \left(m \cdot s^{-1}\right)$	/////				//////			///////			//////

- . M_n في الموضع المرعة اللحظية $\overline{\Delta v_n}$ في الموضع -1
 - τ أكمل الجدول، وأستنتج قيمة τ .
 - . أرسم المنحنى البياني الممثل لـ: $v=f\left(t
 ight)$ باختيار سلم رسم مناسب.
- 4- حدد من البيان عدد مراحل (أطوار) الحركة. (التحديد يكون بواسطة المجالات الزمنية).
 - 5- ما هي طبيعة الحركة في كل طور؟ علل إجابتك بإيجاز.
- 6- أذكر خصائص شعاع السرعة اللحظية و خصائص شعاع تغير السرعة في كل مرحلة من المراحل الموجودة سابقا.
 - . t=0 استنتج من ما سبق قيمة السرعة الابتدائية v_0 للمتحرك في اللحظة -7
 - t = 0.32s و t = 0.2s و t = 0.2s و t = 0.32s و t = 0.32s و t = 0.32s

- 9- ذكر بنص مبدأ العطالة و استنتج أثر القوة المطبقة في كل مرحلة.
- \vec{v} على محور الحركة (x'ox) و الموجه في جهة الحركة ، شعاع السرعة اللحظية \vec{v} و الموجه في جهة الحركة ، شعاع السرعة اللحظية \vec{v} و شعاع القوة \vec{v} المطبقة في كل طور .

<u>التمرين 16:</u>

في اللحظة b نترك كرة صغيرة a تسقط من النقطة a، ونقذف نحو الأعلى كرة أخرى مماثلة b من النقطة a بسرعة شاقولية طوبلتها a b نترك كرة صغيرة a الشكل a كرة في نفس المعلم (الشكل a).

- 1 ما هو البيان الذي يوافق الكرة (b) ؟ علّل .
- t = 1s استنتج من البيان سرعة كل كرة عند اللحظة -2
- -3 في أية لحظة تتوقف الكرة (b)وهي صاعدة -3 وما هي المسافة التي تكون قد قطعتها آنذاك -3

شكل-1-

<u>لتمرين 17:</u>

قذفت كرة تنس نحو الأعلى ثم ألتقطت بعد ذلك عند موضع القذف نفسه، يمثل المخطط المقابل تغيرات سرعة الكرة بدلالة الزمن من بداية القذف إلى لحظة التقاطها.

- 1- حدد عدد أطوار الحركة والمجال الزمني لكل طور.
- 2- استنتج من المنحى البياني قيم السرعة اللحظية ν وقيم تغير السرعة $\Delta \nu$ وذلك بإكمال الجدول الموالى:

,	v	(m /s)	
	N		
2		$\backslash \backslash / / $	t(s)
0	0	$\frac{V}{1}$	*************************************

t(s)	0	0,5	1	1,5	2	2,5	3	3,5	4
v(m/s)									
$\Delta v(m/s)$									

- 3- ماهى طبيعة الحركة في كل طور؟علل.
 - 4- هل تخضع الكرة لقوة؟علل.
- 5- احسب المسافة المقطوعة في كل طور و استنتج المسافة الكلية.
 - \vec{F} ، $\overrightarrow{\Delta v}$ ، \vec{v} الكرة الموضحة في الشكل مثل كيفيا على الكرة الموضحة في الشكل -6

<u>لتمرين 18:</u>

لدينا ثلاثة أجسام تتحرك حركة مستقيمة . نمثل المخططات الثلاثة التالية :

- 1 ما هي طبيعة الحركة الموافقة للمخطط (1) ؟
- 0s 4s] . ثم احسب المسافة التي يتوقف فيها الجسم في الحركة الموافقة للمخطط (3) ، ثم احسب المسافة التي قطعها في المجال الزمني
 - 3 احسب سرعة الجسم في الحركة الموافقة للمخطط (2).

<u>التمرين 19:</u>

يقذف طفل كرية نحو الأعلى بسرعة \overline{v}_0 ، يمثل الشكل المقابل الأوضاع المتتالية حركة مركز الكرية حيث تمر الكرية عند اللحظة $t_4=0.32s$ و عند اللحظة $t_3=0.24s$ على المواضع و $t_3=0.24s$

1cm=0,2m:يعطى مقياس الرسم

- M_0 مواضع الكرة ابتداءا من M_0
- 2- أحسب سرعة الكرية ومثل أشعة السرعة عند المواضع M_1 و M_3 باختيار سلم مناسب.
 - .- أحسب شعاع التغير في السرعة $\overline{\Delta v_2}$ في الموضع M_2 ومثله باختيار نفس السلم.
 - M_4 مثل كيفيا شعاع القوة \overrightarrow{F} في الموضع . M_4
 - 5- أكمل الجدول التالى:

المواضع	M_0	M_1	M_2	M_3	M_4	M_5	M_{6}
t(s)	0,00	0,08	0,16	0,24	0,32	0,40	0,48
v(m/s)							

- v = f(t) ارسم مخطط السرعة -6
- أ- استنتج من البيان السرعة الابتدائية v_0 التي قذفت بها الكربة نحو الأعلى.
 - ب- استنتج من البيان السرعة الهائية عندما تصل إلى أقصى ارتفاع.
 - ت- استنتج من البيان اللحظة الزمنية التي تنعدم فها السرعة.

أحسب المسافة التي تقطعها الكرية من لحظة الانطلاق إلى لحظة وصولها إلى أقصى ارتفاع بطريقتين

مختلفتين، من البيان ومن الوثيقة.

<u>التمرين 20:</u>

عربة صغيرة (M) موضوعة فوق طاولة أفقية ملساء نثبت فيها خيط عديم

(S) بايته الأخرى معلق جسم صلب الإمتطاط يمر على محز بكرة و في نهايته الأخرى معلق جسم الإمتطاط يمر على المتطاط يمر على المتعدد المتع

الذي يجر العربة كما هو موضح في الشكل المقابل.

في لحظة نعتبرها مبدأ الأزمنة (t=0) تكون العربة (M) عند الموضع M_0 .

فجأة عند اللحظة t ينقطع الخيط الواصل بين العربة (M)و الجسم (S) .

auيمثل الشكل أدناه تسجيلا لمواضع العربة التي تشغلها خلال فترات زمنية متتالية و متساوبة au=0,1s .

ما هي طبيعة حركة العربة ig(Mig) بين اللحظتين t_1 و t_5 و اللحظتين t_5 و t_8 مع التعليل.

- $M_8; M_6; M_4; M_3; M_2; M_1:$ احسب قيم السرعة اللحظية في المواضع -2
- .- مثل شعاع السرعة اللحظية \vec{v} في المواضع : $M_8; M_6; M_3; M_1$ بإختيار سلم مناسب.
- 4- مثل شعاع التغير في السرعة $\overrightarrow{\Delta v}$ في الموضعين : M_7 و M_7 . ثم أذكر خصائص كل شعاع.
 - 5- أحسب شدة شعاع التغير في السرعة Δv في الموضعين السابقين ،ثم قارن القيمة المحصل عليها مع شدته المثلة في السؤال 3.
 - 6- ماذا تستطيع القول عن القوة المطبقة على العربة؟
 - 7- ذكر بمبدأ العطالة. هل هو محقق في المرحلة الثانية من الحركة؟
 - 8- أ- أكمل الجدول التالى:

ب- مثل المنحنى البياني $v=f\left(t\right)$ بين اللحظتين t_{4} و t_{4} ماذا تستنتج

- 9- إستنتج شدة شعاع السرعة الإبتدائية.
- 10- احسب المسافة المقطوعة $M_{4}M_{0}$ ثم قاربها مع القيمة المحسوبة من التسجيل مباشرة.

0.1

0.2

0.3

t(s)

 $v\left(m\cdot s^{-1}\right)$

<mark>التمرين 21 :</mark>

جسم صلب (S) ساكن فوق طاولة في الموضع A ،ندفعه بسرعة ابتدائية $\overline{v_A}$ شعاعها أفقي وذلك عند اللحظة (t=0) فيتحرك نحو الموضع C (حافة الطاولة).بواسطة تجهيز خاص مثلنا:

- (-1- مخطط الفاصلة A من الوضع A إلى x=f(t) مخطط الفاصلة x=f(t)
- (-2- شكل -2- السرعة V = f(t) من الموضع A إلى V = f(t)

شكل -1-

- الحركة على المسار BC علل. BC علل.
 - 2- احسب سرعة الجسم في الموضع B.
 - v = f(t) ضع سلم التراتيب في مخطط السرعة -3
 - AC أوجد قيمة المسافة AC

<u>التمرين 22:</u>

إليك مخطط السرعة لحركة المصعد بدلالة الزمن v = f(t) حيث حدث له عطل مفاجىءأثناء حركته

- 1- حدد المجال الزمني لمرحلة العطل.
- . d التي قطعها المصعد قبل العطل ،ثم المسافة الكلية d_1
 - h = 3m علما أن ارتفاع الطابق الواحد هو
- t(s) أ- ماهو رقم الطابق الذي حدث فيه العطل .(يحسب رقم الطابق بعد الطابق أ

- ب- حدد رقم الطابق الذي وصل إليه المصعد.
- ت- حدد الأطوار التي يخضع فيها المصعد لقوة.حدد خصائصها.

التمرين 23 :

يتحرك متزحلق كتلته m على طول مسار جليدي ABC ، باستغلال شريط الفيديو لمتزحلق (الشخص + لوازمه) ومعالجته ببرمجية T=0.8s على المواضع المتالية خلال فترات زمنية متساوية T=0.8s لمركز مزلاج المتزحلق كما يوضحه الشكل التالى:

<u>I - في المرحلة AB:</u>

1- أحسب قيم السرعة اللحظية عند المواضع M_1 ، M_2 ، M_3 ، M_4 ، M_5 وذلك باكمال الجدول التالي:

المواضع المعتبرة	M_{0}	M_{1}	M 2	M_3	M_4	M_{5}
المجالات المعتبرة	/	M_0M_2				
المسافة على الوثيقة (d (cm	/					
$d\left(m ight)$ المسافة على الحقيقة	/					
v(m/s) السرعة						
(cm) الطويلة $ \overrightarrow{v_i} $ على الوثيقة						

- $(1cm o 8m\ /\ s$) عند المواضع M_3 ، M_1 و M_3 ، M_1 عند المواضع -2
 - $\Delta \overrightarrow{v}_4$ و $\Delta \overrightarrow{v}_2$ د مثل أشعة تغيّر السرعة
 - 4- ماذا تلاحظ بالنسبة لطويلة شعاع تغير السرعة؟
 - . M واستنتج السرعة الابتدائية ${oldsymbol v}_0$ للمتزحلق في الموضع -5
 - 6- حدد خصائص شعاع تغيّر السرعة $\overline{\Delta v}_2$. ثم استنتج خصائص القوّة \overline{F} المؤثرة على المتزحلق.
 - 7- استخلص طبيعة حركة المتزحلق مع التعليل.

<u>II - في المرحلة BC</u>

- 1-أحسب السرعة $v_{_{7}}$ ثم استنتج قيمة السرعة $v_{_{B}}$ عند الموضع $v_{_{1}}$ في هذه المرحلة. ثم مثّل شعاع السرعة $v_{_{7}}$ في أحد المواضع.
 - 2- ماذا تستنتج الآن فيما يخص القوّة \overrightarrow{F} المؤثرة على المتزحلق في هذه المرحلة.
 - 3- استخلص طبيعة حركة المتزحلق في هذه المرحلة مع التعليل.
 - $M_{\,0}$ ال $M_{\,0}$ المسافة المقطوعة من $M_{\,0}$ الم