Matemática para Computação Escola Politécnica Professor Platão Gonçalves Terra Neto

PROGRESSÕES ARITMÉTICAS

1) Determinar a razão e classificar cada PA.

a)
$$(15, 10, 5, 0, -5, ...)$$

c)
$$(\sqrt{5}, \sqrt{5} - 2, \sqrt{5} - 4,...)$$

d)
$$(x+y^2, x+3y^2, x+5y^2,...)$$

2) Em cada caso, determinar o valor de x para que as seqüências formem, na ordem dada, progressões aritméticas.

a)
$$(2x-1, 3x+1, 15x-2, ...)$$

b)
$$(-x^2, 3x+7, x^2,...)$$

- 3) Determinar as medidas dos ângulos de um triângulo retângulo, sabendo que eles formam uma PA.
- 4) Determinar as medidas dos ângulos internos de um triângulo, sabendo que as mesmas formam uma PA de razão 40°
- 5) Quantos elementos têm a PA finita (-2, 3, ..., 43)?
- **6**) Determinar o décimo quinto termo da PA (6, 10, ...).
- 7) Qual a fórmula do termo geral de cada PA?

b)
$$(-1, 5, ...)$$

8) Determinar a fórmula do termo geral de cada PA.

b)
$$(2, 3/2, 1, 1/2, ...)$$

- 9) Qual o quinquagésimo número impar positivo?
- **10**) As raízes da equação $x^2 7x + 10 = 0$ são o primeiro e o segundo termos de uma PA crescente. Determinar o décimo termo dessa PA
- **11**) Numa PA crescente de 6 termos, os dois primeiros termos são as raízes da equação $x^2 10x + 24 = 0$. Determinar o último termo dessa PA.
- **12)** Determinar o primeiro termo de cada PA.

a)
$$a_{14} = 44 \text{ e } r = 3$$

b)
$$a_{10} = 39$$
 e $r = -\frac{1}{3}$

13) Determinar a razão de cada PA.

a)
$$a_1 = 10$$
 e $a_{14} = 36$

b)
$$a_1 = \frac{8}{3}$$
 e $a_{10} = 6$

- **14)** Determinar o número de termos de cada PA.
- (-2, 5, 12, ..., 40)

- **b**) (4, ..., 148, 154)
- **15**) Determinar o vigésimo oitavo termo de uma PA, onde $a_{13} = 18$ e $a_{11} = 12$.
- **16**) Escrever a PA onde $a_2 + a_6 = 18$ e $a_4 + a_{10} = 30$.
- **17**) Interpolar 8 meios aritméticos entre 26 e -1.
- **18)** Inserir 5 meios aritméticos entre 2 e 32.
- **19**) Quantos são os múltiplos de 9 compreendidos entre 100 e 1000?
- **20)** Quantos múltiplos de 4 existem entre 15 e 200?
- 21) Qual é a soma?

a)
$$\sum_{k=1}^{5} (k+1)$$
 b) $\sum_{j=0}^{4} (-2)^{j}$

b)
$$\sum_{j=0}^{4} (-2)^{j}$$

c)
$$\sum_{i=1}^{10} 3^{i}$$

c)
$$\sum_{i=1}^{10} 3$$
 d) $\sum_{j=0}^{8} (2^{j+1} - 2^j)$

22) Qual é a soma?

a)
$$\sum_{j=0}^{8} 3 \cdot 2^{j}$$
 b) $\sum_{j=1}^{8} 2^{j}$

b)
$$\sum_{j=1}^{8} 2^{j}$$

c)
$$\sum_{i=0}^{8} (-3)^{i}$$

c)
$$\sum_{j=2}^{8} (-3)^j$$
 d) $\sum_{j=0}^{8} 2 \cdot (-3)^j$

GABARITO

1)

a)
$$r = -5$$
, DECRESO

a)
$$r = -5$$
, DECRESC b) $r = \frac{1}{6}$, CRESC c) $r = -2$, DECRESC d) $r = 2y^2$, CRESC

c)
$$r = -2$$
, DECRESC

$$d) \quad r = 2y^2, \ CRESC$$

2)

a)
$$x = \frac{5}{11}$$

b)
$$x = -\frac{7}{3}$$

3)
$$(30^{\circ}, 60^{\circ}, 90^{\circ})$$
 4) $(20^{\circ}, 60^{\circ}, 100^{\circ})$ 5) $n = 10$

5)
$$n = 10$$

6)
$$a_{15} = 62$$

7)

a)
$$a_n = 5n - 3$$

b)
$$a_n = 6n - 7$$

a)
$$a_n = 7n - 3$$

b)
$$a_n = -\frac{n}{2} + \frac{5}{2}$$

9)
$$a_{50} = 99$$

10)
$$a_{10} = 29$$

11)
$$a_6 = 14$$

12) $a_1 = 5$ a)

b)
$$a_1 = 42$$

13)

a) r = 5

14)

a)
$$n = 7$$

15)
$$a_{28} = 63$$

19)
$$n = 100$$

21) a) 20 b) 11 c) 30 d) 511 22) a) 1533 b) 510

b)
$$r = \frac{10}{27}$$

b)
$$n = 26$$

20)
$$n = 46$$