TRIGONOMETRY Chapter 06

Razones trigonométricas de un ángulo en posición normal l

CURIOSIDADES EN LA MATEMÁTICA

El numero $\pi(pi) = 3.14159...$

ÁNGULO EN POSICIÓN NORMAL

Es aquel ángulo trigonométrico cuyo vértice (V) está en el origen de coordenadas cartesianas y su lado inicial (LI) coincide con el semieje positivo de las abscisas. El lado final (LF) nos indica el cuadrante al cual pertenece el ángulo.

EJEMPLOS:

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN

POSICIÓN NORMAL

$$=\sqrt{+}$$
 >0

y: Ordenada del punto P

x: Abscisa del punto P

r: Radio vector

DEFINICIONES

senα	cosα	tanα	cotα	secα	cscα
_			1		_

1. El lado terminal de un ángulo α en posición estándar pasa por el punto P(3 ; – 4). Halle el valor de sec α – tan α .

RESOLUCIÓN

$$r = \sqrt{(3)^2 + (-4)^2} \implies r = 5$$

Piden:

$$E = \sec \alpha - \tan \alpha$$

$$E = \frac{5}{3} - \frac{-4}{3} = \frac{9}{3}$$

Recordar:

Sen	Cos	Tan
<u>y</u>	<u>x</u>	<u>y</u>
r	r	\boldsymbol{x}

Csc	Sec	Cot
<u>r</u>	<u>r</u>	<u>x</u>
y	x	y

$$\therefore \boxed{E=3}$$

2. Del gráfico mostrado, RESOLUCIÓN calcule:

$$=\sqrt{}$$
 α α

$$\sqrt{13} = \sqrt{x^2 + (-3)^2}$$

Al cuadrado: $13 = x^2 + 9$

$$\Rightarrow 4 = x^2 \Rightarrow x = -2$$

Recordar

$$r = \sqrt{x^2 + y^2}$$

Sen	Cos	Tan
$\frac{y}{r}$	$\frac{x}{r}$	$\frac{y}{x}$

• Piden: $P = \sqrt{13} sen \alpha - 6 tan \alpha$

$$P = \sqrt{13} \left(\frac{-3}{\sqrt{13}} \right) - 6 \left(\frac{-3}{-2} \right) = -3 - 9$$

3. Del gráfico, calcule: $\alpha +$

RESOLUCIÓN

Recordar:

tanβ	secα
У	r
X	X

! • Piden: $E = \sec \alpha + \tan^2 \beta$

$$\mathbf{E} = \left(\frac{3}{-2}\right) + \left(\frac{-2}{-\sqrt{5}}\right)^2$$

$$E = -\frac{3}{2} + \frac{4}{5}$$

$$E = -\frac{7}{10}$$

4. Del gráfico, si tan θ = 3; efectúe: $=\sqrt{\theta-n}$

Recordar

$$r = \sqrt{x^2 + y^2}$$

cosθ	tanθ
X	<u>y</u>
r	X

RESOLUCIÓN

Dato:
$$tan\theta = 3 = \frac{4n-1}{n-1}$$

$$3n-3=4n-1$$

$$n=-2$$

• Piden:
$$=\sqrt{10}$$
 $\theta-n$

$$=\sqrt{10}\left(\frac{-3}{3\sqrt{10}}\right)-(-2)$$

$$=-1+2$$

 $\therefore M = 1$

5. Lucas ha rendido sus exámenes de Trigonometría, Geometría y Álgebra obteniendo las notas A, B y C, $\Rightarrow 13 = \sqrt{x^2 + (12)^2} \Rightarrow x^2 = 25$ respectivamente. Si los valores de A, B y C se obtienen resolviendo los I siguientes ejercicios, ¿en cuál de los cursos obtuvo la mejor calificación?

A =
$$13 sen \alpha + 5$$

B = $11 - 13 cos \alpha$
C = $5 - 24 cot \alpha$

senα	cosa	cotα
γ	X	X
r	r	y

RESOLUCIÓN

$$r = \sqrt{x^2 + y^2}$$

$$\Rightarrow 13 = \sqrt{x^2 + (12)^2} \Rightarrow x^2 = 25$$

$$\Rightarrow x = -5$$

Reemplazando:

$$A = 13 \left(\frac{12}{13} \right) + 5 \implies A = 17$$

$$\bullet B = 11 - 13 \left(\frac{-5}{13} \right) \Longrightarrow B = 16$$

•
$$C = 5 - 24 \left(\frac{-5}{12} \right) \Rightarrow C = 15$$

$$\therefore$$
 A = Trigonometría

6. Si el lado final de un ángulo α en posición normal pasa por el punto de intersección de las rectas

$$L_1: 3x + y + 8 = 0 ... (I)$$

 $L_2: 5x - 2y - 5 = 0 ... (II)$

Efectúe:
$$=\sqrt{(\alpha + \alpha)}$$

RESOLUCIÓN

Multiplicamos por 2 la ecuación (I)

$$6x + 2y + 16 = 0$$

$$5x - 2y - 5 = 0$$

$$11x + 11 = 0 \Rightarrow x = -1 \land y = -5$$

• Piden: $W = \sqrt{26} \left(sen \alpha + cos \alpha \right)$

$$\Rightarrow W = \sqrt{26} \left(\frac{-5}{\sqrt{26}} + \frac{-1}{\sqrt{26}} \right)$$

$$\Rightarrow W = \sqrt{26} \left(\frac{-6}{\sqrt{26}} \right) \quad \therefore W = -6$$

$$\alpha = ---$$

$$\alpha \in$$

$$\alpha = -- \alpha \in \text{efectúe:} = \alpha - \alpha$$

$$\alpha$$
 –

RESOLUCIÓN

DATO:

$$\cos\alpha = -\frac{5}{13}$$

Como $\alpha \in IIIC$

$$\cos\alpha = \frac{-5}{13} = \frac{x}{r}$$

Recordar

$$r = \sqrt{x^2 + y^2}$$

$$13 = \sqrt{(-5)^2 + y^2}$$

$$169 = 25 + y^2$$

$$144 = y^2$$

Como $\alpha \in IIIC$

$$y = -12$$

Piden:

$$Q = csc\alpha - cot\alpha$$

$$Q = \frac{r}{y} - \frac{x}{y}$$

$$Q = \frac{13}{-12} - \frac{-5}{-12}$$

$$Q = -\frac{13}{12} - \frac{5}{12}$$

$$Q = -\frac{18}{12}$$

$$Q = -\frac{3}{2}$$

8. En el gráfico A(-9;0) y B(16;0) Calcule: θ +

RESOLUCIÓN

Piden: $E = 12\cot\theta + 13$

$$E = 12 \left(\frac{x}{y}\right) + 13$$

$$E = 12\left(\frac{7}{-12}\right) + 13 = -7 + 13$$

 $\therefore E = 6$