搜索广告转化预测

刘德欣 1901110660

王文祥 1901210258

04 模型融合 05 实验及结论

目录 CONTENTS

转化率预测任务

- IJCAI-18 阿里妈妈搜索广告转化预测竞赛
- · 给定广告点击相关的用户(user)、广告商品(ad)、检索词(query)、上下文内容(context)、商店(shop)等信息的条件下预测广告产生购买行为的概率(pCVR)

转化率预测任务

- 淘宝应用内广告展示转化效果预估
 - 从五类数据(广告基础数据、广告商品信息、用户信息、上下文信息和店铺信息)推测用户购买此推荐商品的概率
 - 数据来源于淘宝真实交易和广告
- 评测指标: 负对数loss

$$\log loss = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log(p_i) + (1 - y_i) \log(1 - p_i))$$

字段	解释
instance_id	样本编号, Long
is_trade	是否交易的标记位,Int类型;取值是0或者1,其中1表示这条样本最终产生交易,0表示没有交易
item_id	广告商品编号,Long类型
user_id	用户的编号, Long类型
context_id	上下文信息的编号, Long类型
shop_id	店铺的编号, Long类型

- 共有478,138条数据, 非重复条目478,063条, 重复条目75条
- 标签比例为1:52.2,正负样本比例很不均匀

- 广告涉及10,074个不同的商品,来自3,958个不同的店铺
- 商品和店铺都符合长尾分布

- 广告推送给197,677个不同的用户
- 大部分 (85%) 的用户点击广告次数在5次以下

数据集信息及分析——用户信息

字段	解释
user_id	用户的编号, Long类型
user_gender_id	用户的预测性别编号, Int类型; 0表示女性用户, 1表示男性用户, 2表示家庭用户
user_age_level	用户的预测年龄等级,Int类型;数值越大表示年龄越大
user_occupation_id	用户的预测职业编号, Int类型
user_star_level	用户的星级编号,Int类型;数值越大表示用户的星级越高

数据集信息及分析——用户信息

- 女性为广告主要目标群体
- 年龄分布集中在20-50岁

数据集信息及分析——店铺信息

字段	解释
shop_id	店铺的编号, Long类型
shop_review_num_level	店铺的评价数量等级,Int类型;取值从0开始,数值越大表示评价数量越多
shop_review_positive_rate	店铺的好评率, Double类型; 取值在0到1之间, 数值越大表示好评率越高
shop_star_level	店铺的星级编号,Int类型;取值从0开始,数值越大表示店铺的星级越高
shop_score_service	店铺的服务态度评分, Double类型; 取值在0到1之间, 数值越大表示评分越高
shop_score_delivery	店铺的物流服务评分, Double类型; 取值在0到1之间, 数值越大表示评分越高
shop_score_description	店铺的描述相符评分,Double类型;取值在0到1之间,数值越大表示评分越高

数据集信息及分析——店铺信息

• 店铺评价和星级呈正态分布

数据集信息及分析——店铺信息

• 店铺评价和星级呈正态分布

数据集信息及分析——商品信息

字段	解释
item_id	广告商品编号,Long类型
item_category_list	广告商品的的类目列表, String类型; 从根类目 (最粗略的一级类目) 向叶子类目 (最精细的类目) 依次排列, 数据拼接格式为 "category_0;category_1;category_2", 其中 category_1 是 category_0 的子类目, category_2 是 category_1 的子类目
item_property_list	广告商品的属性列表, String类型; 数据拼接格式为 "property_0;property_1;property_2", 各个属性没有从属关系
item_brand_id	广告商品的品牌编号,Long类型
item_city_id	广告商品的城市编号,Long类型
item_price_level	广告商品的价格等级,Int类型;取值从0开始,数值越大表示价格越高
item_sales_level	广告商品的销量等级,Int类型;取值从0开始,数值越大表示销量越大
item_collected_level	广告商品被收藏次数的等级,Int类型;取值从0开始,数值越大表示被收藏次数越大
item_pv_level	广告商品被展示次数的等级,Int类型;取值从0开始,数值越大表示被展示次数越大

数据集信息及分析——商品信息

商品品牌、来源城市亦符合 长尾分布,15%的展示商品 来自同一品牌

item_city_id

数据集信息及分析——上下文信息

字段	解释
context_id	上下文信息的编号, Long类型
context_timestamp	广告商品的展示时间,Long类型;取值是以秒为单位的Unix时间戳,以1天为单位对时间戳进行了偏移
context_page_id	广告商品的展示页面编号, Int类型; 取值从1开始, 依次增加; 在一次搜索的展示结果中第一屏的编号为1, 第二屏的编号为2
predict_category_property	根据查询词预测的类目属性列表,String类型;数据拼接格式为 "category_A:property_A_1,property_A_2,property_A_3;c ategory_B:-1;category_C:property_C_1,property_C_2",其中 category_A、category_B、category_C 是预测的三个类目;property_B 取值为-1,表示预测的第二个类目 category_B 没有对应的预测属性

数据集信息及分析——上下文信息

• 点击发生时间集中在下午-晚上

• 日期分布较均衡

数据集信息及分析——上下文信息

02 特征处理

填补缺失值

- 所给数据缺失程度较轻,不必舍去
- 填充缺失值:离散数据用均值填充,连续数据用平均值填充

```
def __fill_missing_value(self):
    for col in self.int_type_column:
        self.__fill_with_mode(col)
    for col in self.long_type_column:
        self.__fill_with_mode(col)
    for col in self.double_type_column:
        self.__fill_with_mean(col)

def __fill_with_mode(self, column_name):
    mode = self.data[column_name].mode()
    self.data[column_name] = self.data[column_name].replace(-1, mode[0])

def __fill_with_mean(self, column_name):
    mean = self.data[column_name].mean()
    self.data[column_name] = self.data[column_name].replace(-1.0, mean)
```

```
item id: 0/10074 = 0.0
item category_list: 0/10074 = 0.0
item brand id: 64/10074 = 0.006352987889616835
item city id: 22/10074 = 0.002183839587055787
item price level: 0/10074 = 0.0
item sales level: 236/10074 = 0.02342664284296208
item collected level: 0/10074 = 0.0
item pv level: 0/10074 = 0.0
user id: 0/197677 = 0.0
user gender id: 5504/197677 = 0.02784340110382088
user age level: 439/197677 = 0.0022207945284479225
user occupation id: 439/197677 = 0.0022207945284479225
user star level: 439/197677 = 0.0022207945284479225
context id: 0/478043 = 0.0
context timestamp: 0/478043 = 0.0
context page id: 0/478043 = 0.0
predict category property: 0/478043 = 0.0
shop id: 0/3958 = 0.0
shop review num level: 0/3958 = 0.0
shop review positive rate: 5/3958 = 0.0012632642748863063
shop star level: 0/3958 = 0.0
shop score service: 18/3958 = 0.004547751389590703
shop score delivery: 18/3958 = 0.004547751389590703
shop score description: 18/3958 = 0.004547751389590703
```

类别特征处理

- 添加数量特征: 类别数目、相同类别的条目数
- 提取最主要的第一个类别
- 类别本身进行label encoding

```
def process category(self):
   data = self.data
   data['same cate'] = data.apply(same cate, axis=1) # 相同类别数
   data['same property'] = data.apply(same property, axis=1) # 相同属性数
   data['property_num'] = data['item_property list'].apply(lambda x: len(x.split(';'))) # 属性的数目
   data['pred cate num'] = data['predict category property'].apply(lambda x: len(x.split(';'))) # query的类别数目
   def f(x):
       try:
          return len([i for i in reduce((lambda x, y: x + y), [i.split(':')[1].split(',') for i in x.split(';') if
             len(i.split(':')) > 1]) if i != '-1'])
       except:
           return 0
   data['pred_prop_num'] = data['predict_category_property'].apply(f) # query的属性数目
   data['predict query 1'] = data['predict category property'].apply(
       lambda x: x.split(';')[0].split(':')[0]) # query第一个类别
   data['predict query'] = data['predict category property'].apply(
       lambda x: '-'.join(sorted([i.split(':')[0] for i in [i for i in x.split(';')]]))) # query的全部类别
   data['item_category_list'] = data['item_category_list'].apply(lambda x: x.split(';')[1])
   self.data = data
```

02 特征处理

时间特征处理

- timestamp转化为日期+时间
- 提取时间统计特征:同时段内点击数量、用户平均点击间隔、用户今日点击次数、用户今日点击同类别(同店铺)商品次数
- 泄露特征: 距离用户下一次点击的时间 (实际实时预测中不可用)

```
data['context_timestamp'] = data['context_timestamp'].apply(
    lambda x: time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(x)))
real_time = pd.to_datetime(data['context_timestamp'])
data['day'] = real_time.dt.day
data['hour'] = real_time.dt.hour
```

03 基础模型

统计学习模型

- 选择多种统计学习基础模型进行试验
- grid_search寻找最佳参数

最终选取五种效果最好的模型参与模型融合

```
# %%
lsr = lm.Lasso(alpha=0.0005547)
regr = lm.Ridge(alpha=15.0)
enr = lm.ElasticNet(alpha=0.0009649, l1 ratio=0.2)
svr = svm.SVR(C=200, gamma=0.001)
krr = kernel ridge.KernelRidge(kernel='polynomial')
gbr = ensemble.GradientBoostingRegressor(
    loss='huber', max features='sqrt', n estimators=400)
rfr = ensemble.RandomForestRegressor(n estimators=90)
xgbr = xgb.XGBRegressor(booster='gbtree',
                        # max dept=10,
                        learning rate=0.1,
                        n estimators=500,
                        subsample=0.9,
                        colsample bytree=0.8,
                        scale pos weight=1)
xgblr = xgb.XGBRegressor(booster='gblinear', n estimators=300)
lgbr = lgb.LGBMRegressor(num leaves=6, min data in leaf=12,
                         max bin=35, learning rate=0.05, n estimators=1100)
```

03 基础模型

统计学习模型

• 选择的基础模型为Lasso、Ridge、 ElasticNet、XGBoost、LightGBM

• svm、tree-based模型计算速度太慢

```
| 3 | # %% validation...
| 3 | 1sr train_log_loss: 0.091530 | 1sr test_log_loss: 0.092977 |
| regr train_log_loss: 0.092977 |
| regr train_log_loss: 0.093757 |
| enr train_log_loss: 0.093757 |
| enr train_log_loss: 0.093379 |
| xgbr train_log_loss: 0.093379 |
| xgbr train_log_loss: 0.095794 |
| xgblr train_log_loss: 0.086314 |
| xgblr test_log_loss: 0.091017 |
```

03 基础模型

基础pCVR预测模型

- MLP网络
- 输入特征包括三部分的embedding
 - 用户信息 (User Profile) : 性别、城市、用户ID
 - 用户行为 (User Behavior) : 用户最近点击的物品ID序列等
 - 商品信息 (Item Profile) : 商家ID、品牌ID
- 三者embedding拼接后输入MLP,以PReLU为激活函数,使用sigmod输出预测概率, 训练的损失函数为负对数函数

NN-DeepFM

- 将NN的embedding输入部分
 加入Factorization machines,
 用于提取一阶特征和二阶交互
 特征
- Huifeng Guo, Ruiming Tang, Yunming Ye,
 Zhenguo Li, and Xiuqiang He. 2017. DeepFM: a factorization-machine based neural network for CTR prediction. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI' 17). AAAI Press, 1725–1731.

(1)模型融合

- 单一回归模型效果不够好,使用个三层Stacking模型组合各个模型的结果
 - 整个Stacking的过程类似于CV验证:将训练集分为五份,对每个基本模型进行5轮训练,一次使用其中的4份作为训练集训练,预测余下一份的结果,5轮后得到训练集大小的预测数据,同时在每轮中对测试集进行预测,对每个基本模型来说测试集的预测结果为5轮结果的均值
 - 在第二层中,输入(训练集上的预测结果*基本模型数量)的数据进行训练
 - 第三层最终输出为第二层的预测结果

加入NN结果

- 将NN得到的结果同Stacking模型加权加和 (0.2/0.8)
- NN无法参与Stacking (训练时间太久)

05 实验及结论

05 实验及结论

实验结果

model	neg_log_loss
Lasso	0.09298
Ridge	0.09376
Elastic Net	0.09338
XGBoost-Tree	0.09579
LightGBM	0.091017
NN(DeepFM)	0.09222
Staking(stastic model)	0.08958
Staking(stastic model) + NN(DeepFM)	0.08919

05 实验及结论

结论与总结

- 就竞赛来说,特征工程还有很多欠缺,交互特征还有许多可以提取的,如
 - 冷启动特征:用户、商品、店铺是否第一次交互等
 - 历史统计特征: 用户、商品、品牌等一阶特征及二阶交叉特征的点击、转化、转化率
- 数据中存在大量的leak信息,和实际的pCVR预测有较大的差别
 - 特征工程得到的交互特征工程中无法实时提取
 - NN模型在竞赛中难有好的效果,数据量相对是不够的(400k)
 - DeepFM模型有调优的余地,如embedding方式、regularzation

感谢聆听!

刘德欣 1901110660

王文祥 1901210258