EXERCÍCIOS DE ESTATÍSTICA DESCRITIVA

Exercício 01- A tabela abaixo mostra o número de meses em que houve aumento do nível de atividade de quinze empresas de tamanho pequeno (P), médio (M) e grande (G), do setor comercial (C) e industrial (I).

Empresa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Meses	8	9	4	5	3	6	8	6	6	8	5	5	6	4	4
Setor	С	С	Ι	ı	I	С	С	- 1	- 1	С	С	- 1	С	- 1	- 1
Tamanho	G	M	G	М	M	Р	G	М	Р	M	Р	Р	M	M	G

- (a) Classifique cada uma das variáveis.
- (ь) Divida as empresas em dois grupos: comércio (С) e indústria (I). Compare os grupos em relação à média e à mediana do número de meses com crescimento.
- (c) Calcule o desvio padrão e o coeficiente de variação para os dois grupos. Qual dos grupos é mais homogêneo em relação ao número de meses com crescimento?
- (d) Calcule a média, mediana, desvio padrão e coeficiente de variação do número de meses com crescimento para os três tamanhos de empresas (P,M,G). Compare essas medidas. Com base nessa análise, você diria que existe relação entre o tamanho da empresa e o número de meses com crescimento?

Solução

- a) Variáveis:
 - Tamanho da empresa: Variável qualitativa ordinal,
 - Setor da empresa: Variável qualitativa nominal,
 - Número de meses com crescimento: Variável quantitativa discreta.
- b) Dividimos as empresas em dois grupos: comércio (C) e indústria (I). Valores ordenados dos meses com crescimento em cada setor,

 A média do número de meses com crescimento das empresas dos setor comercial é dada por,

$$\frac{8+9+6+8+8+5+6}{7} = \frac{50}{7} \approx 7,143.$$

- A média do número de meses com crescimento das empresas do setor industrial é,

$$\frac{4+5+3+6+6+5+4+4}{8} = \frac{37}{8} = 4,625.$$

- Observe que no setor comercial existem sete observações, de modo que a mediana é dada pelo valor da quarta observação quando estes valores estão ordenados (posição central). Logo, a mediana do número de meses com crescimento do setor de comércio é 8.
- Observe que possuimos oito observações no setor industrial, de modo que a mediana é dada pela média da quarta e quinta observação quando estes valores estão ordenados (posição central). Logo, a mediana do número de meses com crescimento do setor de indústria é dado por

$$\frac{4+5}{2} = 4,5$$

Baseados nos valores obtidos concluimos que em média o número de meses com crescimento do setor comercial é maior do que o setor industrial.

c) Vamos agora determinar o desvio padrão para cada um dos dois grupos: comércio (C) e indústria (I).

Para as empresas do setor comercial temos,

$$s_c = \sqrt{\frac{(8 - \frac{50}{7})^2 + (9 - \frac{50}{7})^2 + (6 - \frac{50}{7})^2 + (8 - \frac{50}{7})^2 + (8 - \frac{50}{7})^2 + (5 - \frac{50}{7})^2 + (6 - \frac{50}{7})^2}{6}} \approx 1,464.$$

Para as empresas do setor industrial temos,

$$s_i = \sqrt{\frac{(4-4,625)^2 + (5-4,625)^2 + (3-4,625)^2 + \dots + (4-4,625)^2}{7}} \approx 1.06.$$

De modo que o coeficiente de variação para o grupo das empresas do setor comercial é dade por

$$cv = \frac{1.464}{7,143} \times 100 = 20,495$$

E o coeficiente de variação para o grupo das empresas do setor industrial é,

$$cv = \frac{1.06}{4,625} \times 100 = 22,919$$

Concluimos baseados no coeficiente de variação que as empresas do setor comercial são mais homogêneas do que as empresas do setor industrial.

d) A medida descritiva que nos fornece a informação do número máximo de meses apresentando crescimento para que a empresa receba incentivo fiscal, dado que só 25% das empresas com menor crescimento (em meses) receberão incentivo, é o primeiro quartil.

Os dados ordenados (crescimento em meses) são: 344455566668889.

Temos n = 15, de modo que $p \times (n+1) = 0$, 25(16) = 4. Logo, o primeiro quartil corresponde ao valor da variável que ocupa a quarta posição dos dados ordenados, ou seja, 4.

P	5	5	6	6			
M	3	4	5	6	6	8	9
P M G	4	4	8	8			

- e) Dividimos as empresas em três grupos: pequeno (P), média (M) e grande (G). Valores ordenados dos meses com crescimento para cada tamanho de empresa,
 - A média do número de meses com crescimento das pequenas empresas é dada por,

$$\frac{5+5+6+6}{4} = 5,5$$

- A média do número de meses com crescimento das médias empresas é,

$$\frac{3+4+5+6+6+8+9}{7} = \frac{41}{7} = 5.857.$$

- A média do número de meses com crescimento das grandes empresas é,

$$\frac{4+4+8+8}{4} = 6.$$

- Observe que nas pequenas empresas (grandes empresas) existem quatro observações, de modo que a mediana é dada pela média da terceira e quarta observação quando estes valores estão ordenados (posição central). Logo, a mediana do número de meses com crescimento das pequenas empresas é 5,5 (das grandes empresas é 6).
- Observe que possuimos sete observações entre as médias empresas, de modo que a mediana é dada pela quarta observação quando estes valores estão ordenados (posição central). Logo, a mediana do número de meses com crescimento das médias empresas é 6.

- O desvio padrão do número de meses com crescimento das pequenas empresas é,

$$\sqrt{\frac{(5-5,5)^2+(5-5,5)^2+(6-5,5)^2+(6-5,5)^2}{3}}\approx 0.577$$

- O desvio padrão do número de meses com crescimento das médias empresas é,

$$\sqrt{\frac{(3-\frac{41}{7})^2+(4-\frac{41}{7})^2+\cdots(9-\frac{41}{7})^2}{6}}\approx 2,116.$$

- O desvio padrão do número de meses com crescimento das grandes empresas é,

$$\sqrt{\frac{(4-6)^2 + (4-6)^2 + (8-6)^2 + (8-6)^2}{3}} \approx 2.309$$

- O coeficiente de variação para o grupo das pequenas empresas é dado por,

$$cv = \frac{0.577}{5.5} \times 100 = 10,49$$

- O coeficiente de variação para o grupo das médias empresas é dado por,

$$cv = \frac{2.116}{5.857} \times 100 = 36,128$$

- O coeficiente de variação para o grupo das grandes empresas é dado por,

$$cv = \frac{2.309}{6} \times 100 = 38,483$$

Tabela 1: Média, Mediana, desvio padrão e coeficiente de variação da variável número de meses com crescimento para cada tamanho de empresa.

Tamanho da empresa	Média	Mediana	Desvio padrão	Coeficiente de variação
P	5.5	5.5	0.577	10,49
M	5.857	6	2.116	36,128
G	6	6	2.309	38,483

- O número médio de meses com crescimento parece aumentar muito pouco conforme o tamanho da empresa aumenta.
- A mediana do número de meses com crescimento entre as grandes e médias empresas são iguais e levemente superiores as pequenas empresas.
- Diante da medida de coeficiente de variação e desvio padrão podemos dizer que as pequenas empresas representam um grupo mais homogêneo do que as médias e grandes empresas.

Baseados nas observações acima não concluiriamos que existe relação entre o tamanho da empresa e o número de meses com crescimento, uma vez que a diferença do número médio de meses com crescimento em cada grupo não parece ser significativa. E é válido salientar que a média não parece ter a mesma representatividade em cada grupo.

Exercício 2

O peso (em Kg) de 30 mulheres de 168 cm de altura, segundo a idade (em anos) é apresentado abaixo

Idade	Peso						
40	55 50 68 65 62						
45	58 56 62 65 63						
50	60 74 70 78 76						
55	77 78 70 72 80						
60	70 76 74 83 85						
65	65 82 72 82 80						

- (a) Calcule a média, mediana, desvio padrão e coeficiente de variação para o peso dos seis grupos de idade analisados.
- (b) Com base nas medidas obtidas no item (a), tire conclusão sobre o comportamento do peso com o aumento da idade.

Solução

a) O peso médio do grupo de mulheres de 168 cm de altura e 40 anos é dado por,

$$\overline{x_1} = \frac{55 + 50 + 68 + 65 + 62}{5} = 60$$

O peso médio do grupo de mulheres de 168 cm de altura e 45 anos é dado por,

$$\overline{x_2} = \frac{58 + 56 + 62 + 65 + 63}{5} = 60.8$$

O peso médio do grupo de mulheres de 168 cm de altura e 50 anos é dado por,

$$\overline{x_3} = \frac{60 + 74 + 70 + 78 + 76}{5} = 71,6$$

O peso médio do grupo de mulheres de 168 cm de altura e 55 anos é dado por,

$$\overline{x_4} = \frac{77 + 78 + 70 + 72 + 80}{5} = 75,4$$

O peso médio do grupo de mulheres de 168 cm de altura e 60 anos é dado por,

$$\overline{x_5} = \frac{70 + 76 + 74 + 83 + 85}{5} = 77,6$$

O peso médio do grupo de mulheres de 168 cm de altura e 65 anos é dado por,

$$\overline{x_6} = \frac{65 + 82 + 72 + 82 + 80}{5} = 76,2$$

Como cada grupo possui cinco observações a mediana é dada pela terceira observação quando estes valores estão ordenadas em cada grupo. Temos desta forma,

- Para o grupo de mulheres com 40 anos a mediana é dada por 62 kg.
- Para o grupo de mulheres com 45 anos a mediana é dada por 62 kg.
- Para o grupo de mulheres com 50 anos a mediana é dada por 74 kg.
- Para o grupo de mulheres com 55 anos a mediana é dada por 77 kg.
- Para o grupo de mulheres com 60 anos a mediana é dada por 76 kg.
- Para o grupo de mulheres com 65 anos a mediana é dada por 80 kg.

O desvio padrão do peso do grupo de mulheres de 168 cm de altura e 40 anos é dado por,

$$s_1 = \sqrt{\frac{(55 - 60)^2 + (50 - 60)^2 + (68 - 60)^2 + (65 - 60)^2 + (62 - 60)^2}{4}} = \sqrt{54, 5} = 7.382$$

O desvio padrão do peso do grupo de mulheres de 168 cm de altura e 45 anos é dado por,

$$s_2 = \sqrt{\frac{(58 - 60.8)^2 + (56 - 60.8)^2 + (62 - 60.8)^2 + (65 - 60.8)^2 + (63 - 60.8)^2}{4}} = \sqrt{13,7} = 3.701$$

O desvio padrão do peso do grupo de mulheres de 168 cm de altura e 50 anos é dado por,

$$s_3 = \sqrt{\frac{(60-71,6)^2 + (74-71,6)^2 + (70-71,6)^2 + (78-71,6)^2 + (76-71,6)^2}{4}} = 7.127$$

O desvio padrão do peso do grupo de mulheres de 168 cm de altura e 55 anos é dado por,

$$s_4 = \sqrt{\frac{(77 - 75, 4)^2 + (78 - 75, 4)^2 + (70 - 75, 4)^2 + (72 - 75, 4)^2 + (80 - 75, 4)^2}{4}} = 4.219$$

O desvio padrão do peso do grupo de mulheres de 168 cm de altura e 60 anos é dado por,

$$s_5 = \sqrt{\frac{(70 - 77, 6)^2 + (76 - 77, 6)^2 + (74 - 77, 6)^2 + (83 - 77, 6)^2 + (85 - 77, 6)^2}{4}} = 6.269$$

O desvio padrão do peso do grupo de mulheres de 168 cm de altura e 65 anos é dado por,

$$s_6 = \sqrt{\frac{(65 - 76, 2)^2 + (82 - 76, 2)^2 + (72 - 76, 2)^2 + (82 - 76, 2)^2 + (80 - 76, 2)^2}{4}} = 7.497$$

$$cv_1 = \frac{7.382412}{60} \times 100 = 12,303$$

$$cv_1 = \frac{7.382412}{60} \times 100 = 12,303$$

$$cv_5 = \frac{6.268971}{77.6} \times 100 = 8,079$$

 $cv_4 = \frac{4.219005}{75.4} \times 100 = 5,595$

$$cv_3 = \frac{7.127412}{71,6} \times 100 = 9,95$$

 $cv_2 = \frac{3.701351}{60.8} \times 100 = 6,087$

$$cv_6 = \frac{7.496666}{76,2} \times 100 = 9,838$$

- Com o aumento da idade de 40 para 45 anos não notamos alterações significativas no peso médio das mulheres. Entretanto, diminuem o desvio padrão e coeficiente de variação, de modo que o peso das mulheres com faixa etária de 45 anos é bem mais homogêneo do que entre as mulheres com 40 anos.
- Com o aumento da idade de 45 para 50 anos percebemos um aumento significativo no peso médio das mulheres. A variabilidade dos pesos volta a subir.
- Com o aumento da idade de 50 para 55 anos percebemos um aumento no peso médio das mulheres. O grupo das mulheres de 55 anos é mais homogêneo do que o das mulheres com 50 anos.
- Com o aumento da idade de 55 para 60 anos percebemos um pequeno aumento no peso médio das mulheres. O grupo das mulheres de 55 anos é mais homogêneo do que o das mulheres com 60 anos.
- Com o aumento da idade de 60 para 65 anos percebemos uma pequeno diminuição no peso médio das mulheres.
- Observamos que no geral o peso médio das mulheres parece aumentar conforme a idade aumenta, com poucas exceções.