# CS2040S Data Structures and Algorithms

(e-learning edition)

All about minimum spanning trees...

#### Roadmap

#### Minimum Spanning Trees

- The MST Problem
- Basic Properties of an MST
- Generic MST Algorithm
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm
- Variations

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)



Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

#### Basic idea:

S : set of nodes connected by blue edges.



Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S : set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Identify cut: {S, V–S}



Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S : set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Identify cut: {S, V-S}
- Find minimum weight edge on cut.



Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S: set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Identify cut: {S, V-S}
- Find minimum weight edge on cut.
- Add new node to S.



Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S : set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Repeat:
  - Identify cut: {S, V–S}
  - Find minimum weight edge on cut.
  - Add new node to S.



Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S : set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Repeat:
  - Identify cut: {S, V–S}
  - Find minimum weight edge on cut.
  - Add new node to S.



Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S : set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Repeat:
  - Identify cut: {S, V–S}
  - Find minimum weight edge on cut.
  - Add new node to S.





#### How do we find the lightest edge on a cut?

- ✓1. Priority Queue
  - 2. Union-Find
  - 3. Max-flow / Min-cut
  - 4. BFS
  - 5. DFS

#### Prim's Algorithm: Initialization

```
// Initialize priority queue
PriorityQueue pq = new PriorityQueue();
for (Node v : G.V()) {
         pq.insert(v, INFTY);
pq.decreaseKey(start, 0);
// Initialize set S
HashSet<Node> S = new HashSet<Node>();
S.put(start);
// Initialize parent hash table
HashMap<Node, Node> parent = new HashMap<Node, Node>();
parent.put(start, null);
```

```
while (!pq.isEmpty()) {
    Node v = pq.deleteMin();
    S.put(v);
    for each (Edge e : v.edgeList()) {
         Node w = e.otherNode(v);
         if (!S.get(w)) {
                 pq.decreaseKey(w, e.getWeight());
           # wt parent.put(w, v);
```



| Vertex | Weight |
|--------|--------|
| D      | 0      |
|        |        |
|        |        |
|        |        |



| Vertex | Weight |
|--------|--------|
| G      | 4      |
| Н      | 9      |
| E      | 16     |
| F      | 20     |



| Vertex | Weight |
|--------|--------|
| Н      | 9      |
| Е      | 16     |
| F      | 20     |



| Vertex | Weight |
|--------|--------|
| Α      | 3      |
| E      | 16->6  |
| В      | 7      |
| Н      | 9->8   |
| F      | 20     |



| Vertex | Weight |
|--------|--------|
| Н      | 8->5   |
| Е      | 6      |
| В      | 7      |
| C      | 15     |
| F      | 20     |



| Vertex | Weight |
|--------|--------|
| Н      | 5      |
| Е      | 6      |
| В      | 7      |
| С      | 15     |
| F      | 20     |



| Vertex | Weight |
|--------|--------|
| Е      | 6      |
| В      | 7      |
| С      | 15     |
| F      | 20     |



| Vertex | Weight |
|--------|--------|
| В      | 7->1   |
| С      | 15     |
| F      | 20->13 |



| Vertex | Weight |
|--------|--------|
| В      | 1      |
| С      | 15     |
| F      | 13     |



| Vertex | Weight |
|--------|--------|
| С      | 15->10 |
| F      | 13->11 |



| Vertex | Weight |
|--------|--------|
| С      | 10     |
| F      | 11     |

| Vertex | Weight |
|--------|--------|
| F      | 11->2  |



Vertex Weight



Vertex Weight



#### Prim's Algorithm.(Jarnik 1930, Dijkstra 1957, Prim 1959)

#### Basic idea:

- S : set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Repeat:
  - Identify cut: {S, V–S}
  - Find minimum weight edge on cut.
  - Add new node to S.

#### Proof:

- Each added edge is the lightest on some cut.
- Hence each edge is in the MST.



## What is the running time of Prim's Algorithm, using a binary heap?

- 1. O(V)
- 2. O(E)
- ✓3. O(E log V)
  - 4. O(V log E)
  - 5. O(EV)

#### Prim's Algorithm.(Jarnik 1930, Dijkstra 1957, Prim 1959)

#### Basic idea:

- S : set of nodes connected by blue edges.
- Initially:  $S = \{A\}$
- Repeat:
  - Identify cut: {S, V–S}
  - Find minimum weight edge on cut.
  - Add new node to S.

#### Analysis:

- Each vertex added/removed once from the priority queue: O(V log V)
- Each edge => one decreaseKey:O(E log V).



#### Two Algorithms

#### Prim's Algorithm.

#### Basic idea:

- Maintain a set of visited nodes.
- Greedily grow the set by adding node connected via the lightest edge.
- Use Priority Queue to order nodes by edge weight.

#### Dijkstra's Algorithm.

- Maintain a set of visited nodes.
- Greedily grow the set by adding neighboring node that is closest to the source.
- Use Priority Queue to order nodes by distance.

#### Roadmap

#### Minimum Spanning Trees

- The MST Problem
- Basic Properties of an MST
- Generic MST Algorithm
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm
- Variations

#### Generic MST Algorithm

#### **Greedy Algorithm:**

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.





### Kruskal's Algorithm

Kruskal's Algorithm. (Kruskal 1956)



#### Kruskal's Algorithm

#### Kruskal's Algorithm. (Kruskal 1956)

- Sort edges by weight.
- Consider edges in ascending order:
  - If both endpoints are in the same blue tree, then color the edge red.
  - Otherwise, color the edge blue.



### Kruskal's Algorithm. (Kruskal 1956)

#### Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
  - If both endpoints are in the **same** blue tree, then color the edge red.
  - Otherwise, color the edge blue.



### Kruskal's Algorithm. (Kruskal 1956)

#### Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
  - If both endpoints are in the same blue tree, then color the edge red.
  - Otherwise, color the edge blue.



### Kruskal's Algorithm. (Kruskal 1956)

#### Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
  - If both endpoints are in the **same** blue tree, then color the edge red.
  - Otherwise, color the edge blue.

#### Data structure:

- Union-Find
- Connect two nodes if they are in the same blue tree.



```
// Sort edges and initialize
Edge[] sortedEdges = sort(G.E());
ArrayList<Edge> mstEdges = new ArrayList<Edge>();
UnionFind uf = new UnionFind(G.V());
// Iterate through all the edges, in order
for (int i=0; i<sortedEdges.length; i++) {
         Edge e = sortedEdges[i]; // get edge
         Node v = e.one(); // get node endpoints
         Node w = e.two();
         if (!uf.find(v,w)) { // in the same tree?
                mstEdges.add(e); // save edge
                uf.union(v,w); // combine trees
```



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |



| Weight | Edge  |
|--------|-------|
| 1      | (E,B) |
| 2      | (C,F) |
| 3      | (A,G) |
| 4      | (D,G) |
| 5      | (C,F) |
| 6      | (E,G) |
| 7      | (B,G) |
| 8      | (G,H) |
| 9      | (D,G) |
| 10     | (B,C) |
| 11     | (B,F) |
| 12     | (A,B) |
| 13     | (E,F) |
| 15     | (A,C) |
| 16     | (D,E) |
| 20     | (D,F) |

### Kruskal's Algorithm. (Kruskal 1956)

#### Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
  - If both endpoints are in the same blue tree, then color the edge red.
  - Otherwise, color the edge blue.

#### Proof:

- Each added edge crosses a cut.
- Each edge is the lightest edge across the cut: all other lighter edges across the cut have already been considered.



### Generic MST Algorithm

### **Greedy Algorithm:**

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.





# What is the running time of Kruskal's Algorithm on a connected graph?

- 1. O(V)
- 2. O(E)
- 3. O(E  $\alpha$ )
- 4.  $O(V \alpha)$
- **✓**5. O(E log V)
  - 6. O(V log E)

### Kruskal's Algorithm. (Kruskal 1956)

#### Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
  - If both endpoints are in the **same** blue tree, then color the edge red.
  - Otherwise, color the edge blue.

#### Performance:

- Sorting:  $O(E \log E) = O(E \log V)$
- For E edges:
  - Find:  $O(\alpha(n))$  or  $O(\log V)$
  - Union: O(α(n)) or O(log V)



### Roadmap

### Minimum Spanning Trees

- The MST Problem
- Basic Properties of an MST
- Generic MST Algorithm
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm
- Variations

## MST Algorithms

### Classic:

- Prim's Algorithm
- Kruskal's Algorithm

### Modern requirements:

- Parallelizable
- Faster in "good" graphs (e.g., planar graphs)
- Flexible

Origin: 1926

- Otakar Boruvka
- Improve the electrical network of Moravia

### Based on generic algorithm:

- Repeat: add all "obvious" blue edges.
- Very simple, very flexible.

### Generic MST Algorithm

### **Greedy Algorithm:**

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.







Which edges are "obviously" in the MST?

| Weight | Edge  |  |  |
|--------|-------|--|--|
| 1      | (E,B) |  |  |
| 2      | (C,F) |  |  |
| 3      | (A,G) |  |  |
| 4      | (D,G) |  |  |
| 5      | (C,F) |  |  |
| 6      | (E,G) |  |  |
| 7      | (B,G) |  |  |
| 8      | (G,H) |  |  |
| 9      | (D,G) |  |  |
| 10     | (B,C) |  |  |
| 11     | (B,F) |  |  |
| 12     | (A,B) |  |  |
| 13     | (E,F) |  |  |
| 15     | (A,C) |  |  |
| 16     | (D,E) |  |  |
| 20     | (D,F) |  |  |



For every node: add minimum adjacent edge. Add at least n/2 edges.

| Weight | Edge  |  |  |  |
|--------|-------|--|--|--|
| 1      | (E,B) |  |  |  |
| 2      | (C,F) |  |  |  |
| 3      | (A,G) |  |  |  |
| 4      | (D,G) |  |  |  |
| 5      | (C,F) |  |  |  |
| 6      | (E,G) |  |  |  |
| 7      | (B,G) |  |  |  |
| 8      | (G,H) |  |  |  |
| 9      | (D,G) |  |  |  |
| 10     | (B,C) |  |  |  |
| 11     | (B,F) |  |  |  |
| 12     | (A,B) |  |  |  |
| 13     | (E,F) |  |  |  |
| 15     | (A,C) |  |  |  |
| 16     | (D,E) |  |  |  |
| 20     | (D,F) |  |  |  |



Look at connected components...

At most n/2 connected components.

| Weight | Edge  |  |  |
|--------|-------|--|--|
| 1      | (E,B) |  |  |
| 2      | (C,F) |  |  |
| 3      | (A,G) |  |  |
| 4      | (D,G) |  |  |
| 5      | (C,F) |  |  |
| 6      | (E,G) |  |  |
| 7      | (B,G) |  |  |
| 8      | (G,H) |  |  |
| 9      | (D,G) |  |  |
| 10     | (B,C) |  |  |
| 11     | (B,F) |  |  |
| 12     | (A,B) |  |  |
| 13     | (E,F) |  |  |
| 15     | (A,C) |  |  |
| 16     | (D,E) |  |  |
| 20     | (D,F) |  |  |



Repeat: for every connected components, add minimum outgoing edge.

| Weight | Edge  |  |  |
|--------|-------|--|--|
| 1      | (E,B) |  |  |
| 2      | (C,F) |  |  |
| 3      | (A,G) |  |  |
| 4      | (D,G) |  |  |
| 5      | (C,F) |  |  |
| 6      | (E,G) |  |  |
| 7      | (B,G) |  |  |
| 8      | (G,H) |  |  |
| 9      | (D,G) |  |  |
| 10     | (B,C) |  |  |
| 11     | (B,F) |  |  |
| 12     | (A,B) |  |  |
| 13     | (E,F) |  |  |
| 15     | (A,C) |  |  |
| 16     | (D,E) |  |  |
| 20     | (D,F) |  |  |

### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### One "Boruvka" Step:

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.



### Boruvka's Algorithm

#### Initially:

Create n connected components, one for each node in the graph.

For each node: store a component identifier.

H, 7

#### One "Boruvka" Step:

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

For each node: store a component identifier.

### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### One "Boruvka" Step:

 For each connected component, search for the minimum weight outgoing edge.

- Add selected edges.
- Merge connected components.

| Component     | 1        | 2        | 3            |
|---------------|----------|----------|--------------|
| Min cost edge | (G,E), 6 | (G,E), 6 | (B,C),<br>10 |
| To be merged  | 1 and 2  | 1 and 2  | 2 and 3      |

#### DFS or BFS:

Check if edge connects two components.

Remember minimum cost edge connected to each component.



### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### One "Boruvka" Step:

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

| Component     | 1        | 2        | 3            |
|---------------|----------|----------|--------------|
| Min cost edge | (G,E), 6 | (G,E), 6 | (B,C),<br>10 |
| To be merged  | 1 and 2  | 1 and 2  | 2 and 3      |
| New ID:       | 1        | 1        | 1            |

For each node: store a component identifier.

#### DFS or BFS:

Check if edge connects two components.

Remember minimum cost edge connected to each component.

#### Scan every node:

Compute new component ids.

Update component ids.

Mark added edges.

### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### One "Boruvka" Step: O(V+E)

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

#### For each node: O(V)

store a component identifier.

#### DFS or BFS: O(V + E)

Check if edge connects two components.

Remember minimum cost edge connected to each component.

#### Scan every node: O(V)

Compute new component ids.

Update component ids.

Mark added edges.

### Boruvka's Example: Contraction



### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### In each "Boruvka" Step: O(V+E)

- Assume k components, initially.
- At least k/2 edges added.

#### Count edges:

Each component adds one edge.

Some choose same edge.

Each edge is chosen by at most two different components.

### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### In each "Boruvka" Step: O(V+E)

- Assume k components, initially.
- At least k/2 edges added.
- At least k/2 components merge. <</li>

#### Merging

Each edge merges two components

### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### In each "Boruvka" Step: O(V+E)

- Assume k components, initially.
- At least k/2 edges added.
- At least k/2 components merge.
- At end, at most k/2 components remain.

### Boruvka's Algorithm

#### Initially:

n components

#### At each step:

k components  $\rightarrow$  k/2 components.

#### Termination:

1 component

#### Conclusion:

At most O(log V) Boruvka steps.

### Boruvka's Algorithm

#### Initially:

n components

#### At each step:

k components  $\rightarrow$  k/2 components.

#### Termination:

1 component

#### Conclusion:

At most O(log V) Boruvka steps.

#### Total time:

 $O((E+V)\log V) = O(E \log V)$ 

### Boruvka's Algorithm

#### Initially:

 Create n connected components, one for each node in the graph.

#### One "Boruvka" Step: O(V+E)

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.



### Roadmap

### So far:

### Minimum Spanning Trees

- Prim's Algorith
- Kruskal's Algorithm
- Boruvka's Algorithm

### Minimum Spanning Tree Summary

Classic greedy algorithms: O(E log V)

- Prim's (Priority Queue)
- Kruskal's (Union-Find)
- Boruvka's

Best known:  $O(m \alpha(m, n))$ 

Chazelle (2000)

Holy grail and major open problem: O(m)

### Minimum Spanning Tree Summary

Classic greedy algorithms: O(E log V)

- Prim's (Priority Queue)
- Kruskal's (Union-Find)
- Boruvka's

Best known:  $O(m \alpha(m, n))$ 

Chazelle (2000)

Holy grail and major open problem: O(m)

- Randomized: Karger-Klein-Tarjan (1995)
- Verification: Dixon-Rauch-Tarjan (1992)

### Roadmap

### Today: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

#### Variations:

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree