Tytuł: Oscyloskop

Autorzy: Jakub Zając (JZ),

Paweł Mozgowiec (PM)

Ostatnia modyfikacja: 31.08.2023

Spis treści

<u>1.</u>	Repozytorium git		_1
2.	Wstęp		1
<u>3.</u>	Specyfikacja		1
	3.1. Opis ogólny algorytmu	1	
	3.2. Tabela zdarzeń	2	
<u>4.</u>	Architektura		2
	4.1. Moduł: top	2	
	4.1.1. Schemat blokowy 2		
	4.1.2. Porty 3		
	a) mou – mouse_ctl, input 3		
	b) vga – vga_ctl, output 3		
	4.1.3. Interfejsy 3		
	a) m2c – mouse_ctl to core 3		
	4.2. Rozprowadzenie sygnału zegara	3	
<u>5.</u>	Implementacja		4
	5.1. Lista zignorowanych ostrzeżeń Vivado.	4	
	5.2. Wykorzystanie zasobów	4	
	5.3. Marginesy czasowe	4	
6.	Film.		4

1. Repozytorium git

Adres repozytorium GITa (jeżeli używane):

https://github.com/Zajcu14/oscilloscope.git

W przypadku repozytorium prywatnego należy zaprosić użytkownika zewnętrznego o adresie mailowym: kaczmarczyk@agh.edu.pl

2. Wstęp

Pomysł wziął się z naszego zainteresowania dziedziną elektroniki cyfrowej i przetwarzania sygnałów. Chcieliśmy również nabrać doświadczenia przy pracy z zewnętrznymi urządzeniami akwizycji sygnału jak i późniejszej ich obróbki. Celem projektu było stworzenie cyfrowego oscyloskopu z opcjami filtrowania i analizy widmowej.

3. Specyfikacja

3.1. Opis ogólny algorytmu

Uproszczony schemat blokowy działania implementowanego algorytmu. Co się dzieje po starcie, jak wygląda przebieg działania, kiedy i pod jakimi warunkami się kończy.

Ewentualnie przykładowe screen-shoty tego, co w przybliżeniu chcielibyśmy uzyskać.

3.2. Tabela zdarzeń

Opis zdarzeń występujących podczas działania programu/urządzenia, zarówno zewnętrznych (interakcje z użytkownikiem), jak i wewnętrznych (specyficzne stany w algorytmie). Zdarzenia podzielone są na kategorie dotyczący różnych stanów działania programu. Kategorie powinny odpowiadać stanom ze schematu z pkt. 2.1.

Zdarzenie Kategoria		Reakcja systemu		
podłączenie sygnały wejściowego	ADC	przetworzenie sygnału na cyfrowy - próbka		
sygnał sinusoidalny	trigger	uruchomienie wyzwolenia - zapis próbek do pamięci buffora		
zbocze narastające clk_65Mhz	trigger -> functions blok	wpisane próbek i późniejsza interpretacja przez moduły wewnętrzne		
zbocze narastające clk_65Mhz	trigger -> Display_gener	wpisane próbek i późniejsze narysowanie wykresu		
zbocze narastające clk_65Mhz	functions blok-> Display_gener	wpisane próbek i późniejsze narysowanie wykresu oraz wartości liczbowych (parametrów)		
zbocze narastające clk_65Mhz	control fun.=> function_blok	konfiguracja bloku i jego parametrów		
ruch myszką	mouse	zmiana koordynatów myszki		
zbocze narastające clk_65Mhz	mouse => function_blok	zmiana wartości wewnętrznych uwzględniających położenie oraz wciśnięte klawisze myszki		

zbocze narastające clk_65Mhz	control fun.=>trigger	zmiana szybkości próbkowania oraz wartości trigger_level
zbocze narastające clk_65Mhz	control fun.=>ADC	zmiana szybkości próbkowania
zbocze narastające clk_65Mhz	mouse fun.=>Display_gen	rysowanie myszki na ekranie
zbocze narastające clk_65Mhz	control fun.=>Display_gen	rysowanie myszki na ekranie
zbocze narastające clk_65Mhz	Vga_timing =>Display_gen	wygenerowanie sygnałów kalibrujących
kliknięcie myszki w pierwszej ćwirtce ekranu	Display_gen	kontrola próbkowania trigger, przycisk lewy odjęcie wartości, prawy dodanie wartości, poprzez przytrzymanie środkowego przycisku zwiększamy szybkość zmiany
kliknięcie myszki w drugiej ćwirtce ekranu	Display_gen	kontrola trigger+lvl, przycisk lewy odjęcie wartości, prawy dodanie wartości, poprzez przytrzymanie środkowego przycisku zwiększamy szybkość zmiany
ruch myszką po wykresie i przytrzymanie lewego przycisku	mouse =>Display_gen	poruszanie wykresem
przyciśnięcie RST na płytce (BTNC)	płytka	reset całego programu przywrócenie ustawień nominalncyh

4. Architektura

Uwaga: dobrze zrobiony projekt zawiera tylko moduły strukturalne (zbudowane z innych modułów) i funkcjonalne (zawierające bloki proceduralne always @). Staramy się nie generować bloków mieszających te dwa typy, o ile to możliwe.

Uwaga: opisujemy architekturę tylko głównego modułu oraz rozprowadzenie sygnału zegara.

4.1. Moduł: top

Osoba odpowiedzialna: JZ oraz PM

4.1.1. Schemat blokowy

Przykładowy schemat blokowy modułu głównego

Uwaga:

- interfejsy dwukierunkowe rozbijamy na 2 interfejsy jednokierunkowe
- nazwa interfejsu stanowi prefiks nazwy sygnałów składowych
- w interfejsach nie uwzględniamy sygnałów globalnych (np. clk i rst).

4.1.2. Porty

a) ps2- MouseCtl. input

a) psz– mouseou, mput			
nazwa portu opis			
ps2_data szeregowe wejście danych			
ps2_clk taktowanie komunikacji z myszką			

b) vga – vga_ctl, output

nazwa portu	opis		
vs sygnał synchronizacji pionowej VGA			
hs sygnał synchronizacji poziomej VGA			

4.1.3. Interfejsy

a) vga_if – vga_ctl to core

<u> </u>					
nazwa sygnału	opis				

[10:0] vcount	unt wertykalna pozycja wyświetlanego piksela na ekranie		
[10:0] hcount horyzontalna pozycja wyświetlanego piksela na ekranie			
[11:0] rgb	wartość koloru w kodzie rgb		
vsync	sygnał synchronizacji wertykalny		
hsync	sygnał synchronizacji horyzontalny		
vblnk	sygnał wygaszania wertykalny		
hblnk	sygnał wygaszania horyzontalny		

4.2. Rozprowadzenie sygnału zegara

Osoba odpowiedzialna:

PMInformacja na temat źródła sygnału zegarowego, używanych częstotliwości zegara w całym układzie.

Moduł generatora zegara umieszczamy w module głównym projektu. W pozostałych modułach używamy tylko i wyłącznie sygnały zegara wygenerowane przez ten moduł.

Uwaga: jeżeli używamy różnych częstotliwości zegara w układzie, to należy je tak dobrać, aby były wielokrotnościami siebie (umożliwia to wygenerowanie tych sygnałów z jednego IP core generatora zegara i zapobiega problemom z synchronizacją).

5. Implementacja

5.1. Lista **zignorowanych** ostrzeżeń Vivado.

	5 Liota Ligitor & Watti y & 11 & 50 tt 20 20 11 Viva a 5.				
Identyfikator ostrzeżenia	Liczb a wystą pień	Uzasadnienie			
[Synth 8-7080]	1	Parallel synthesis criteria is not met			
RPBF #1	1	port JB[1] jest to zewnętrzna komunikacja z układem ADC			
HPDR # 1 1 port JB[1] jest to zewnętrzna komunikacja z układem /		port JB[1] jest to zewnętrzna komunikacja z układem ADC			

TIMING #1-3	3	PS2CLK ,PS2Data,btnC są komunikacją hardware
ULMTCS	1	ostrzenie o wykorzystaniu danych, problem polega na tym że buffor trigger posiada wielkość [11:0] data [0:511] dla uzyskania lepszej jakości obrazu, można ostrzeżenie naprawić poprzez zmniejszenie do [11:0] data [0:255]

5.2. Wykorzystanie zasobów

Tabela z wykorzystaniem zasobów z Vivado

5.3. Marginesy czasowe

All user specified timing constraints are met.

Marginesy czasowe (WNS) dla setup i hold.

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	0,343 ns	Worst Hold Slack (WHS):	0,064 ns	Worst Pulse Width Slack (WPWS): 2,762 ns		
Total Negative Slack (TNS):	0,000 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS): 0,000 ns		
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints: 0		
Total Number of Endpoints:	26498	Total Number of Endpoints:	26498	Total Number of Endpoints: 13578		

6. Film.

Link do ściągnięcia filmu:

https://