

B6. Probability

Bổ sung thêm cho bài giảng

2019

Nội dung bổ sung

- 1. Xác suất
- 2. Một số phân phối xác suất
- 3. Empirical rule
- 4. Định lý giới hạn trung tâm

1. Xác suất

- ☐ Hoán vị (permutation): thay đổi, sắp xếp vị trí
 - Lấy mẫu không lặp lại, hoán vị n chọn k (0 < k ≤ n)

$$P_{n,k} = \frac{n!}{(n-k)!}$$

 \rightarrow nguyên lý nhân k vị trí đầu tiên sẽ chọn: n(n-1)...(n-k+1)

Khi k = n (hoán vị toàn bộ): $P_{n,n} = n!$

• Lấy mẫu <u>lặp lại</u>, hoán vị n *chọn k* ($0 < k \le n$)

$$P_{n,k}^* = n^k$$

B6. Probability

Bổ sung thêm cho bài giảng

1. Xác suất (tt.)

☐ Hoán vị lặp

S có n phần tử được phân hoạch thành $S_1,\,S_2,\,...,\,S_k$ ($2 \le k \le n$): $S_j \text{ gồm các phần tử giống nhau: } |S_j| = n_j$

Tổng số cách hoán vị S: $p = \binom{n}{n_1, n_2, ..., n_k} = \frac{n!}{n_1! n_2! ... n_k!}$

VD: Số lượng chuỗi ký tự khác nhau được tạo ra từ các chữ cái của từ MISSISSIPPI

n = 11, k = 4 (S₁, S₁, S₁, S₂, S₂), n₁ = 4, n₁ = 1, n₂ = 2, n₃ = 4
$$p = \frac{11!}{4!1!2!4!} = 34650$$

- ☐ Tổ hợp (combination)
 - Tổ hợp n chập k (0 < k ≤ n): KHÔNG (phân biệt) thứ tự

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$C_n^k = C_n^{n-k}$$
 $C_n^k + C_n^{k-1} = C_{n+1}^k$

VD: Kiểm tra chất lượng ngẫu nhiên 2 trong số 10 sản phẩm.

Số khả năng có thể xảy ra:

B6. Probability

Bổ sung thêm cho bài giảng

1. Xác suất (tt.)

- ☐ Tổ hợp (combination)
 - Chỉnh hợp n chập k (0 < k ≤ n): CÓ (phân biệt) thứ tự

$$A_n^k = \frac{n!}{(n-k)!}$$

→ hoán vị không lặp lại

☐ VD: Số cách chon 1 lớp trưởng và sau đó 1 lớp phó của 1 lớp có 25 học viên.

Hoán vị không lặp: 25.(25-1) = 600

$$25.(25-1) = 600$$

☐ VD: Môt khoa có 20 giảng viên đat học vi tiến sĩ. Có bao nhiều cách thành lập Hội đồng khoa học gồm 7 thành viên ?

$$C_{20}^7 = \frac{7!}{7!(20-7)!} =$$

B6. Probability

Bổ sung thêm cho bài giảng

1. Xác suất (tt.)

- ☐ Thí nghiệm (experiment): tiến trình (sẽ) diễn ra ngẫu nhiên (không biết trước kết quả) → n <u>lần</u> diễn ra/thực hiện/thử (*trial*)
 - tung đồng xu 2 lần, số tại nan máy bay trong 1 năm tại nước Q
- ☐ Kết quả (outcome) của 1 lần (trial) thí nghiệm được diễn ra
- ☐ Không gian mẫu (sample space): tất cả các kết quả có thể có
 - tung đồng xu 2 lần: S = { HH (heads), TT (tails), HT, TH }
- ☐ Sự kiện (event): tập con của không gian mẫu (một số kết quả)
 - tung đồng xu 2 lần: kết quả 2 lần không giống nhau (HT, TH)

☐ Một sự kiện E được gọi là "xảy ra" nếu 1 phần tử bất kỳ của E là kết quả của một lần thực hiện thí nghiệm

"An event E is said to **occur** on <u>a particular trial</u> of the experiment if the outcome observed is an element of the set E." [Schmitz]

B6. Probability

Bổ sung thêm cho bài giảng

106

1. Xác suất (tt.)

- ☐ Không gian mẫu tự nhiên (natural sample space)
 - |S| = n, $P(s_i) = 1/n$, P(E) = |E|/n
- ☐ Phép đếm trên tập hữu hạn
 - Nguyên tắc cộng (addition principle)

$$S = S_1 \cup S_2 \cup ... \cup S_k, \, S_i \cap S_j = \emptyset; \quad |S| = |S_1| + |S_2| + ... + |S_k|$$

• Nguyên tắc nhân (*multiplication principle*) → thí nghiệm k bước

$$S = S_1 \times ... \times S_k$$
: $|S| = |S_1|.|S_2|...|S_k|$

Nguyên tắc Dirichlet (Dirichlet box principle)

Nếu có n chim bồ câu ở trong k chuồng thì tồn tại một chuồng có chứa từ $\lceil \frac{n}{L} \rceil$ bồ câu trở lên.

☐ Các tiên đề

Cho không gian mẫu S, các sự kiện <u>rời nhau</u> E, E_1 , E_2 , ...

- (*i*) $0 \le P(E)$
- (ii) P(S) = 1

(iii)
$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

B6. Probability

Bổ sung thêm cho bài giảng

1. Xác suất (tt.)

- ☐ Một số tính chất cơ bản: E₁, E₂, ... rời nhau
 - (i) $0 \le P(E) \le 1$
- $(v) P(E^C) = 1 P(E)$
- (ii) $P(\varnothing -) = 0$
- $(vi) \quad P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $(iii) \quad A\subseteq B \Longrightarrow P(A) \leq P(B) \quad (vii) \quad P(A\cap B) = P(B).P(A\mid B) = P(A).P(B\mid A)$
- $(iv) \quad P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} P(E_{i})$
- ☐ Lưu ý
 - A, B rời nhau (*disjoint*): $A \cap B = \emptyset$ (không xảy ra đồng thời)
 - A, B độc lập (independent): P(A|B) = P(A), P(B|A) = P(B)

□ Định lý Bayes

$$P(A \mid B) = \frac{P(A).P(B \mid A)}{P(B)}$$

$$P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) + ... + P(A_n)P(B \mid A_n)}$$

B6. Probability

Bổ sung thêm cho bài giảng

110

1. Xác suất (tt.)

☑ VD: Có 5 thanh kim loại có chiều dài lần lượt: 1, 2, 3, 4, 5 (cm).
Xác suất bị gẫy tỷ lệ thuận với chiều dài của thanh. Tính xs
thanh đầu tiên bị gẫy là thanh có chiều dài không quá 3cm.

Gọi s_i là kết quả thanh có chiều dài i bị gẫy đầu tiên $(1 \le i \le 5)$.

Không gian mẫu: $S = \{ s_1, s_2, s_3, s_4, s_5 \}$

Sự kiện: $E = \{ s_1, s_2, s_3 \}$

Xác suất thanh i bị gẫy: $p_i = \alpha.i$ (α : hệ số gẫy chưa biết)

Tổng xác suất: $p_1 + p_2 + p_3 + p_4 + p_5 = 1$

 $15.\alpha = 1$ $\Rightarrow \alpha = 1/15$

Xác suất sự kiện E: $P(E) = p_1 + p_2 + p_3 = 6 / 15 = 0.4$

- ☐ Biến ngẫu nhiên (random variable)
 - X lấy giá trị số (ℝ) được xác định từ kết quả của 1 thí nghiệm

$$X:S\to\mathbb{R}$$

- tung đồng xu 2 lần, X = số mặt ngửa (heads)
- phạm vi (range) R_x của X: tập hợp miền giá trị của X
 - tung đồng xu 2 lần, $X = số mặt ngửa, R_X = \{0, 1, 2\}$
 - tung đồng xu để có mặt ngửa, X số lần tung, R_X = { 1, 2, ... } = N^+
 - X: thời gian giữa 2 lần nhật thực, R_X = (0, ∞)
- discrete random variable: R_X hữu hạn hoặc vô hạn đếm được (countable)
- continuous random variable: R_X vô hạn không đếm được

B6. Probability

Bổ sung thêm cho bài giảng

1. Xác suất (tt.)

- ☐ Hàm độ lớn xác suất (*Probability Mass Function PMF*),
 phân phối xác suất (*probability distribution*) của biến X <u>rời rạc</u>
 - danh sách các xs ứng với từng giá trị x ∈ R_X

sự kiện:
$$E_x = (X = x) = \{s \in S \mid X(s) = x\}$$

$$f(x) = P(X = x)$$

$$0 \le f(x) \le 1 \qquad \sum_{x \in R_X} f(x) = 1$$

$$A \subseteq R_X : P(X \in A) = \sum_{x \in A} f(x)$$

- □ Hàm độ lớn xác suất (Probability Mass Function PMF),
 phân phối xác suất (probability distribution) của biến X rời rạc
 - kỳ vọng (trên n lần thí nghiệm): trung bình có trọng số là các xs

$$E[X] = E(X) = \mu_X = \sum_{x \in R_X} x f(x)$$

E[X] không cần phải bằng 1 giá trị mà X có thể nhận

• phương sai, độ lệch chuẩn (trên n lần thí nghiệm)

$$Var(X) = \sigma_X^2 = E[(X - \mu)^2] = \sum_{x \in R_X} (x - \mu)^2 f(x) = \sum_{x \in R_X} x^2 f(x) - \mu^2$$

B6. Probability

Bổ sung thêm cho bài giảng

1. Xác suất (tt.)

□ Hàm độ lớn xác suất (Probability Mass Function – PMF),
phân phối xác suất (probability distribution) của biến X rời rac

$$R_{X} = \{x_{1}, x_{2}, ..., x_{m}\}$$

$$P(X = x_{i}) \approx \frac{N_{i}}{N}$$

$$Average = \frac{1}{N} \sum_{i=1}^{m} x_{i} N_{i} \approx \frac{1}{N} \sum_{i=1}^{m} x_{i} NP(X = x_{i}) = E[X]$$

VD: 3 người 170cm, 2 người 165cm

$$\rightarrow$$
 TB = (170*3 + 165*2) / 5 = 168cm

☐ Hàm mật độ (Probability Density Function – PDF) của X liên tục

- xs tại 1 giá trị (điểm mẫu) không có ý nghĩa: P(X = x) = 0
- xs X thuộc 1 khoảng [nửa] đóng/mở
 P(a ≤ X ≤ b): diện tích dưới đường cong giới hạn bởi 2 cận a, b

$$(ii) \quad \int_{-\infty}^{+\infty} f(x) dx = 1$$

y = f(x) a b

B6. Probability

Bổ sung thêm cho bài giảng

1. Xác suất (tt.)

- ☐ Hàm mật độ (Probability Density Function PDF) của X liên tục
 - kỳ vọng, phương sai, độ lệch chuẩn (trên <u>n lần</u> thí nghiệm)

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

$$Var(X) = E[(X - \mu)^{2}] = \int_{-\infty}^{+\infty} x^{2} f(x) dx - \mu^{2}$$

☐ Một số tính chất của kỳ vọng, phương sai

(i)
$$E[a] = a$$

(ii)
$$E[aX] = aE[X]$$

(*iii*)
$$E[X + Y] = E[X] + E[Y]$$

$$(iv)$$
 $E[XY] = E[X]E[Y]$ X, Y độc lập

(v)
$$Var(X) = E[X^2] - (E[X])^2$$

(vi)
$$Var(aX + b) = a^2 Var(X)$$

$$(vii)$$
 $X = \sum_{i=1}^{n} X_i$ \Rightarrow $Var(X) = \sum_{i=1}^{n} Var(X_i)$

B6. Probability

Bổ sung thêm cho bài giảng

118

1. Xác suất (tt.)

☐ Hàm phân phối tích lũy (Cumulative Distribution Function – CDF)

$$F(a) = P(X \le a)$$

$$F(a) = \sum_{x \le a} P(X = x) \qquad F(a) = \int_{-\infty}^{a} f(x) dx$$

119

Nội dung bổ sung

- 1. Xác suất
- 2. Một số phân phối xác suất
- 3. Empirical rule
- 4. Định lý giới hạn trung tâm

B6. Probability

Bổ sung thêm cho bài giảng

2. Một số phân phối xác suất

- ☐ Mô hình xác suất: biến ngẫu nhiên và phân phối xác suất
 - mô hình hóa các tiến trình ngẫu nhiên
 - kết quả dự đoán gần với thực tế quan sát
 - cho trước 1 bài toán, cần xác định phân phối xác suất (đúng)
 của dữ liệu thu thập được → PMF/PDF, CDF, μ, σ, ...

- □ Phân phối đều
- □ Phân phối chuẩn
- ☐ Một số phân phối rời rạc
 - nhị thức, Bernoulli, hình học, Poisson, ...
- ☐ Một số phân phối liên tục
 - lũy thừa (mũ), Gamma, Beta, Chi-bình phương, Student, ...

B6. Probability

Bổ sung thêm cho bài giảng

2. Một số phân phối xác suất (tt.)

☐ Phân phối đều (rectangular / uniform distristribution) — Rời rạc

$$x \sim Uniform(a, b)$$

$$n = (b - a + 1)$$

$$f(x) = P(X = x) = \begin{cases} \frac{1}{n}, & x \in [a, b] \\ 0, & x \notin [a, b] \end{cases}$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a + 1}{n}, & x \in [a, b) \\ 1, & x \ge b \end{cases}$$

☐ Phân phối đều (rectangular / uniform distristribution) — Rời rạc

(i)
$$\mu = \frac{(a+b)}{2}$$
 (ii) $\sigma^2 = \frac{n^2 - 1}{12}$

(iii)
$$Skewness = 0$$
 (iv) $ExcessKurt = -\frac{6(n^2 + 1)}{5(n^2 - 1)}$

B6. Probability

Bổ sung thêm cho bài giảng

124

2. Một số phân phối xác suất (tt.)

☐ Phân phối đều (rectangular / uniform distristribution) — Liên tục

$$f(x) = P(X = x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases} \qquad F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & x \in [a,b) \\ 1, & x \ge b \end{cases}$$

Bổ sung thêm cho bài giảng

☐ Phân phối đều (rectangular / uniform distristribution) — Liên tục

(i)
$$\mu = \frac{(a+b)}{2}$$

(i)
$$\mu = \frac{(a+b)}{2}$$
 (ii) $\sigma^2 = \frac{(b-a)^2}{12}$

(iii)
$$Skewness = 0$$
 (iv) $ExcessKurt = -\frac{6}{5}$

B6. Probability

Bổ sung thêm cho bài giảng

126

2. Một số phân phối xác suất (tt.)

☐ VD: Cho biến ngẫu nhiên có phân phối đều

a.
$$P(X = 1.25) = 0$$

b.
$$P(1.0 \le X \le 1.25) = 2(1.25 - 1.0) = 0.5$$

c.
$$P(1.2 < X < 1.5) = 2(1.5 - 1.2) = 0.6$$

- ☐ Phân phối chuẩn (normal distribution / Gaussian distribution)
 - phân phối hình chuông (bell-shaped curve)
 - đặc trưng bởi "tâm" (μ) và "độ rộng" (σ)

B6. Probability

Bổ sung thêm cho bài giảng

128

2. Một số phân phối xác suất (tt.)

☐ Phân phối chuẩn (normal distribution / Gaussian distribution)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(u-\mu)^2}{2\sigma^2}} du$$

Skewness = ExcessKurt = 0

• tính xs: $P(x \in [a, b]) \rightarrow d\hat{p}$ phức tạp?

129

□ Phân phối chuẩn (chuẩn) tắc (standard normal distribution / Z)

$$Z = \frac{(X - \mu)}{\sigma} \qquad X = \sigma . Z + \mu$$

hàm tích phân Laplace

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}} \qquad \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{\frac{-u^2}{2}} du$$

(i)
$$\mu = 0$$

(i)
$$\mu = 0$$
 (ii) $\sigma^2 = 1$

(iii)
$$Skewness = 0$$
 (iv) $ExcessKurt = 0$

B6. Probability

Bổ sung thêm cho bài giảng

130

2. Một số phân phối xác suất (tt.)

 \Box Standard normal table, Z table: P(Z < z)

phần nguyên, chữ số thập phân thứ 1: n.d

chữ số thập phân thứ 2:

						4				
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831

http://www.z-table.com/_-2

131

☐ Standard normal table, Z table: P(Z < z)

B6. Probability

Bổ sung thêm cho bài giảng

132

- ☐ Tính xs theo phân phối chuẩn
 - B1. Mô hình hóa P(X < x)
 - B2. Chuyển về phân phối Z
 - B3. Tra bảng Z

• VD:
$$X \sim N(\mu = 16, \sigma = 4) \rightarrow P(X < 8)$$
?

$$X = 4Z + 16 < 8 \Rightarrow Z < -2$$

- ☐ Tìm ngưỡng x tương ứng với xs đã biết
 - B1. Mô hình hóa P(X < x)
 - B2. Tra bảng Z
 - B3. Chuyển từ Z về X = σ Z + μ
 - <u>VD</u>: $X \sim N(\mu = 16, \sigma = 4)$, $P(Z > z) = 0.9834 \rightarrow x = ?$ P(Z < z) = 1 (Z > z) = 0.0166 z = -2.13 x = 4.(-2.13) + 16

B6. Probability

Bổ sung thêm cho bài giảng

- □ <u>VD</u>: Cho biến ngẫu nhiên có phân phối z
 - a. $P(0 \le z \le 0.83) = 0.2967$
 - b. $P(-1.57 \le z \le 0) = 0.4418$
 - c. P(0.44 < z) = 0.3300
 - d. $P(-0.23 \le z) = 0.5910$
 - e. $P(z \le 1.2) = 0.8849$
 - f. $P(z \le -0.71) = 0.2389$

- □ <u>VD</u>: Xác định giá trị của z khi biết:
 - a. Diện tích bên trái của z là $0.2119 \Rightarrow z = -0.8$
 - b. Diện tích ở giữa -z và z là 0.9030

Diện tích [0, z] = 0.9030 / 2 = 0.4515

z là điểm có diện tích = $0.5 + 0.4515 = 0.9515 \Rightarrow z = 1.66$

- c. Diện tích ở giữa -z và z là $0.2052 \Rightarrow z = 0.26$
- d. Diện tích bên trái của z là $0.99948 \Rightarrow z = 2.56$
- e. Diện tích bên phải của z là 0.6915

Diện tích bên trái của z = 1 – 0.6915 = 0.3085 \Rightarrow z = -0.5

B6. Probability

Bổ sung thêm cho bài giảng

- ☐ Phân phối nhị thức (binominal distristribution)
 - Bernoulli trial → 2 kết quả: thành công, thất bại
 - thí nghiệm: n (lần) Bernoulli trial(s) ĐỘC LẬP
 - xs để 1 Bernoulli trial thành công (p), hay thất bại q = (1 p),
 giống nhau trong thí nghiệm
 - biến ngẫu nhiên X: số lần thành công (0 ≤ X ≤ n)

□ Phân phối nhi thức (binominal distristribution)

$$X \sim Binomial(n, p)$$

$$f(x) = P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x} \quad F(x) = \sum_{X \le x} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

x2, (cdf-binomial x2 :prob 1/2 :size 40)

B6. Probability

Bổ sung thêm cho bài giảng

2. Một số phân phối xác suất (tt.)

☐ Phân phối nhị thức (binominal distristribution)

(i)
$$\mu = np$$

(ii)
$$\sigma^2 = np(1-p)$$

(iii)
$$Skewness = \frac{1-2p}{\sqrt{np(1-p)}}$$

(iii)
$$Skewness = \frac{1-2p}{\sqrt{np(1-p)}}$$
 (iv) $ExcessKurt = \frac{1-6p(1-p)}{np(1-p)}$

- □ <u>VD</u>: Xét thí nghiệm gồm 2 lần phép thử Bernoulli có p = 0.4
 - a. Xác suất 1 lần thành công: f(1) =

$$f(1) = P(X = 1) = {2 \choose 1} 0.4^{1} (1 - 0.4)^{2-1} = 0.48$$

- b. Xác suất không có lần nào thành công: f(0) = 0.36
- c. Xác suất tối thiểu 1 lần thành công: $P(1 \le X) = f(1) + f(2) = 0.64$
- d. Tính kỳ vọng, phương sai, độ lệch chuẩn

$$E[X] = n.p = 0.8$$

$$Var(X) = n.p.(1 - p) = 0.48$$

B6. Probability

Bổ sung thêm cho bài giảng

- □ <u>VD</u>: Xét thí nghiệm gồm 10 lần phép thử Bernoulli có p = 0.1
 - a. Xác suất tối thiểu 1 lần thành công: 0.6513
 - b. Xác suất tối đa 2 lần thành công: 0.99298
 - c. Tính kỳ vọng, phương sai, độ lệch chuẩn: (1, 0.9)