

Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization

Colin Unger *,1
Sina Lin 6
Vinay Ramakrishnaiah 4
Jamaludin Mohd-Yusof 4
Jongsoo Park 3

Zhihao Jia *,2,3

Mandeep Baines ³

Nirmal Prajapati ⁴

Xi Luo ⁷

Misha Smelyanskiy ³

Wei Wu ^{4,5}
Carlos Efrain Quintero Narvaez ³
Pat McCormick ⁴
Dheevatsa Mudigere ³
Alex Aiken ¹

2 3

4

Unity

Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization

1. Algebraic Transformations

2. Parallelization

1. Algebraic Transformations

Operator Fusion

Operator Fusion Operator Splitting

Operator Fusion
Operator Splitting
Operator Reordering

Operator Fusion
Operator Splitting
Operator Reordering

• • •

1. Algebraic Transformations

2. Parallelization

0 5 /

0 5 /

0 5 /

0 5 /

0 5 /

0 5 /

0 5 /

0 5 /

0 5 /

0 5 /

Model Parallel

Data Parallel Model Parallel

Attribute Parallel

Operation	Parallelizable Dimensions		
	(S)ample	(A)ttribute	(P)arameter
1D pooling	sample	length, channel	
1D convolution	sample	length	channel
2D convolution	sample	height, width	channel
Matrix multiplication	sample		channel

Figure 3: Example parallelization configurations for 1D convolution. Dashed lines show partitioning the tensor.

Data Parallel Model Parallel Attribute Parallel

Reduction Parallel

Data Parallel
Model Parallel
Attribute Parallel
Reduction Parallel

Parameter Parallel

Data Parallel
Model Parallel
Attribute Parallel
Reduction Parallel
Parameter Parallel
Pipeline Parallel

Figure 3: GPipe's inter-batch parallelism approach. Frequent pipeline flushes lead to increased idle time.

Data Parallel
Model Parallel
Attribute Parallel
Reduction Parallel
Parameter Parallel
Pipeline Parallel
...

Parallelization

Algebraic Transformations

Operator Fusion
Operator Splitting
Operator Reordering

Auto-Parallelization

```
FlexFlow [MLSys 19]
      Tofu [EuroSys 19]
PipeDream [SOSP 19]
  automap [arXiv 19]
    Whale [arXiv 21]
      Alpa [OSDI 22]
```

Algebraic Optimizers

```
MetaFlow [MLSys 19]
TASO [SOSP 19]
PET [OSDI 21]
Tensat [MLSys 21]

•••
```


Auto-Parallelization

Algebraic Optimizer

"annotated computation graph"

Auto-Parallelization

Algebraic Optimizer

Auto-Parallelization

Algebraic Optimizer

Auto-Parallelization

pprox 6 imes less communication!

1. Representation

2.

1. Representation

2. Scalability

Unity

-Representation Unity

Representation -Parallel Computation Graph (PCG) Unity

Algorithm

1 3 /

Representation

Parallel Computation Graph (PCG)

annotated computation graph

annotated computation graph

parallel computation graph (PCG)

annotated computation graph

parallel computation graph (PCG)

annotated computation graph

parallel computation graph (PCG)

Partition

Combine

Replicate

Combine

Reduce

Replicate

Pipeline

Combine

Reduce

Replicate

Pipeline

Combine

Reduce

Replicate Reduce

Pipeline

Partition Combine

Replicate

Pipeline

Reduce

Partition Combine

Replicate

Pipeline

Reduce

Substitution

6

Substitution

6

2

Automatically generate substitutions

Automatically generate substitutions

New operators

Automatically generate substitutions

New operators

New forms of parallelism

Explicitly represents communication

Explicitly represents communication

Concise

Algebraic Transformation

Parallelism Type

Parallelism Degree

Device Mapping

Algebraic Transformation

Parallelism Type

Parallelism Degree

Device Mapping

Algebraic Transformation

Backtracking Search

Parallelism Type

Parallelism Degree

Device Mapping

Algebraic Transformation

Parallelism Type

Parallelism Degree

Backtracking Search

Device Mapping

Dynamic Programming

Evaluation

BERT-Large

(Language Modeling)

Candle-UNO

(Precision Medicine)

MLP

(Regression)

DLRM

XDL

(Recommendation)

ResNeXt-50

Inception-v3

(Computer Vision)

BERT-Large

(Language Modeling)

Candle-UNO

(Precision Medicine)

MLP

(Regression)

DLRM

XDL

(Recommendation)

ResNeXt-50 Inception-v3

(Computer Vision)

Baselines

BERT-Large

(Language Modeling)

Candle-UNO

(Precision Medicine)

MLP

(Regression)

DLRM XDL

(Recommendation)

ResNeXt-50 Inception-v3

(Computer Vision)

Baselines

TASO+FlexFlow

(Sequential Optimization)

Expert-Designed

or

Data Parallel

BERT-Large

(Language Modeling)

Candle-UNO

(Precision Medicine)

MLP

(Regression)

DLRM XDL

(Recommendation)

ResNeXt-50 Inception-v3

(Computer Vision)

Baselines

DeepSpeed [arXiv 19]

DLRM

CANDLE-Uno

ResNeXt-50

XDL

MLP

Inception-v3

https://github.com/flexflow/FlexFlow

kadinzhang Added tests	for Linear operator in align/linear (#264)	488423# 19 days ago 1,339 commits	A distributed deep learning framework that supports flexible parallelization
			strategies. II Readme 48 Apacte-2.0 license Code of conduct 458 stars 21 watching V 100 forks
align			
bootcamp_demo			
cmake			
conda			
			Releases 6
docker			

