Assignment 4 MAT 458

Q1a: Suppose that R(T) is closed. By contiuity we have that we have that N(T). Therefore $E \setminus N(T) \cong R(T)$. T factors as an isomorphism composed with a projection, $\tilde{T} \circ \pi$. Therefore we have that

$$d(x,N(T)) \leq \|x+N(T)\| = \left\|\tilde{T}^{-1}\tilde{T}(x+N(T))\right\| \leq C\left\|\tilde{T}(x+N(T))\right\| = C\left\|T(x)\right\|.$$

Now suppose that for some C we have

$$d(x, N(T)) \le C \|T(x)\|.$$

Let $\{x_n\}$ be a sequence such that, $T(x_n) \to y$. Then,

$$||x_n - x_m|| \le C ||T(x_n) - T(x_m)|| \to 0$$

as $n, m \to \infty$. Therefore by completeness $x_n \to x$ and so $T(x_n) \to T(x)$. Thus R(T) is closed.

1b: Define the mapping

$$T: G \times L, (x, y) \mapsto x - y.$$

This has kernel $G \cap L$ so we apply 1a to conclude that T(G, L) is closed. Equivalently we have that G + L is closed.