### **HyperTransport**

**HyperTransport** (HT) - це двонаправлена послідовно/паралельна комп'ютерна шина з високою пропускною спроможністю і малими затримками. Робоча частота від 200 МГц до 3,2 ГГц. Ширина шини, від 2-х до 32 біт. 32-бітна шина в двунаправленому режимі здатна забезпечити пропускну спроможність до 51 600 Мбайтів / с.

НТ - це асинхронний двонаправлений протокол обміну даними між пристроями. Технологію НТ можуть підтримувати абсолютно будь-які пристрої: процесори, набори логіки, контролери і т.д. Між собою компоненти системи зв'язуються за принципом «точка-точка» (peer-to-peer), а це означає, що легко може бути встановлено з'єднання практично між будь-якими вузлами комп'ютера, причому без будь-яких додаткових мостів (теоретично, звичайно :)). Обмін інформацією відбувається пакетами зі швидкістю від 0.8 Гбіт / сек до 89.6 Гбіт / сек (51.2 Гбіт / сек в першій версії НТ). Шина двонаправлена, тобто має два з'єднання: одне в прямому напрямку і одне - в зворотному. Передача даних йде за двома напрямками стробуючого імпульсу (тобто DDR). Результуюча швидкість залежить від ширини шини (2-32 біта в кожному напрямку) і її частоти (200-1400 МГц, в першій версії - 200-800).

**Наприклад -** в чіпі nForce3 від nVidia, HT використовується для з'єднання північного і південного мостів. Там застосовується 8-бітове з'єднання на тактовій частоті 200 МГц. При цьому ефективна частота шини 400 МГц, а пропускна здатність 800 Мбайт / с.

Розрахуємо швидкість передачі даних для зазначеного в прикладі варіанту сполучення:

- Широта смуги в одному напрямку дорівнює 8 біт, тобто 1 байт;
- Частота шини 200 МГц;
- 200 МГц \* 2 (так як DDR) = 400 МГц ефективних;
- Швидкість передачі в одному напрямку 400 МГц \* 1 байт = 400 МБ / с;
- Швидкість передачі в двох напрямках (сумарна пропускна здатність) 2 \* 400 MБ / c = 800 MБ / c

Оскільки НТ покликана замінити існуючі шини і мости, які використовуються в сучасних матплатах, на системних платах, побудованих за технологією НТ, може не бути звичного чіпсета, що складається з північного моста, призначеного для високошвидкісних вузлів, і південного моста, використовуваного для низкоскоростной периферії. НуретTransport дозволяє гнучко налаштовувати систему під конкретні цілі та завдання (це великий плюс технології). За допомогою НТ-модулів можна послідовно включати в шину НуретTransport інші високопродуктивні шини і порти. Наприклад, для сервера легко замінити графічний тунель тунелем шини РСІ-х, а для графічної станції - включити обидва тунелі.

# Апаратна реалізація

Оскільки технологія HyperTransport покликана стандартизувати і уніфікувати порядок обміну даними між усіма вузлами комп'ютера, її реалізація зачіпає всі рівні передачі даних: фізичний (розводка контактів у чіпсетів), рівень з'єднання (порядок ініціалізації і конфігурації пристроїв), рівень протоколу (команди протоколу і правила управління потоком даних), рівень транзакцій (опис керуючих сигналів) і рівень сесій (загальні команди).

Розглянемо перший, фізичний рівень. Тут в HyperTransport визначені параметри ліній даних, ліній управління і ліній тактового сигналу. Крім того, стандартизовані контролери та електричні сигнали. Всі фізичні пристрої, які задіяні в технологі, підрозділяються на кілька типів:

- cave (печера)
- tunnel (тунель)
- bridge (міст).

Пристрої типу «**печера**» представляють собою крайній (замикаючий) пристрій в ланцюжку; «**тунель**» - призначений для транзиту інформації між пристроями; «**міст**» - основний пристрій, який підключається до контролера шини (host) і забезпечує з'єднання з підключеними до нього пристроями.

В мінімальній можливій реалізації шина НТ може бути всього лише 2-бітною. При цьому потрібно 24 лінії проводів (8 - для даних, 4 - для тактових сигналів, 4 - для ліній управління, 2 - сигнальних, 4 - заземлення, 1 - живлення, 1 - ресет). А в конфігурації з 32 бітною шиною доведеться використовувати 197 ліній провідників.

Довжина шини НТ може досягати 61 сантиметра (24 дюйма) при пропускній здатності до 800 Мбіт/с. При цьому рівень сигналу становить 1,2 В, а диференціальний опір 100 Ом. Спосіб передачі даних, на якому фізично грунтується HyperTransport, називається LVDS (Low Voltage Differential Signaling - низьковольтні диференціальні сигнали). Тактова частота з'єднань може бути від 200 до 1400 МГц в залежності від вимог.

### Дані на шині НТ

В технології НТ використовується пакетна передача даних. При цьому пакет завжди кратний 32 бітам, а максимальна довжина пакету дорівнює 64 байтам (включаючи адреси, команди і дані). Оскільки шина у двох напрямках, кожне з'єднання складається з субз'єдінення «*передача*» (Тх) і субз'єдінення «*отримання*» (Rx). При цьому обидва працюють асинхронно. Кожне з'єднання може бути шириною 2, 4, 8, 16, 32 або 64 розряди в кожному напрямку.

А тепер припустимо, що у нас є процесор, якому потрібно високошвидкісне з'єднання, - ми використовуємо два 32-розрядних з'єднання з частотою в 800 МГц, таким чином отримуючи швидкість 6.4 ГБ/с на прийом і передачу (сумарна пропускна здатність такої шини буде 12.8 ГБ/с). Якщо ж нам не потрібна така швидкість, можна використовувати чотирирозрядну шину з частотою 200 МГц. Така шина забезпечить до 100 МБ/с на прийом і стільки ж передачу. Тобто специфікація передбачає можливість вибору частоти і шини при розробці пристрою. При цьому пристрої з різною шириною шини можуть підключатися до однієї шині НурегТгапярогт і вільно зв'язуватися між собою. Так, пристрій з шиною в 32 розряду можна пов'язати з 8-розрядним пристроєм, при цьому пропускна здатність буде обумовлена меншою розрядністю шини.

Для тих пристроїв, які вимогливі до пропускної спроможності шини, в НТ реалізована технологія віртуальних каналів - StreamThru. Ця технологія гарантує, що швидкісні пристрої отримають швидкий доступ до оперативної пам'яті по зарезервованому каналу.

# Bepcii HyperTransport

| версія | рік  | Максимальна<br>частота | Максимальна<br>ширина | Пікова пропускна здатність (в обидва напрямки) |
|--------|------|------------------------|-----------------------|------------------------------------------------|
| 1.0    | 2001 | 800 МГш                | 32 біт                | 12.8 Гбайт / с                                 |
| 1.1    | 2002 | 800 МГп                | 32 біт                | 12.8 Гбайт / с                                 |
| 2.0    | 2004 | 1.4 ГГп                | 32 біт                | 22.4 Гбайт / с                                 |
| 3.0    | 2006 | 2.6 ГГп                | 32 біт                | 41.6 Гбайт / с                                 |
| 3.1    | 2008 | 3.2 ГГп                | 32 біт                | 51.2 Гбайт / с                                 |

**Infinity Fabric** (IF) - це продовження розвитку HyperTransport, анонсоване AMD в 2016 році для об'єднання своїх графічних процесорів і ЦП і відома як архітектура нескінченності. AMD заявила, що Іпfinity Fabric буде масштабуватися з **30 ГБ/с** до **512 ГБ/с** і буде використовуватися в процесорах на базі Zen і графічних процесорах Vega. У процесорах Zen передачі даних «SDF» працюють на тій же частоті, що і тактова частота пам'яті DRAM. Це рішення було прийнято для усунення затримки, викликаної різними тактовими частотами. В результаті використання більш швидкого модуля ОЗУ, це прискорює роботу всієї шини. Канали мають ширину 32 біта, як і в НТ, але за цикл виконується 8 передач (128-бітові в пакеті) в порівнянні з початковими 2 бітами. Для підвищення енергоефективності внесені зміни в електричну схему. У процесорах Zen 2 і Zen 3 шина IF знаходиться на окремій тактовій частоті, або в

співвідношенні 1:1 або 2:1 до тактовій частоті DRAM, що викликано через ранні проблеми Zen з високошвидкісною DDR DRAM, і впливає на швидкість IF, а отже і на систему та стабільність.

### **HT vs PCI Express**

Головна відмінність технологій в їх початковому призначення: PCI Express - це нова швидкісна периферійна шина, і нічого більше. Вона призначена для роботи з картами розширення, в той час як HyperTransport - це принципово нова технологія зв'язку та обміну даними між усіма вузлами комп'ютера. Звичайно, цими вузлами можуть бути і карти розширення.

Довжина пакета і керуючі буфери в НТ рівні 64 байтам, а у РСІ Express розмір пакета може досягати 1 кБ, розмір запиту - до 4 кБ, а розмір буфера 16 байт. Оскільки РСІ Express спочатку створювалася для високопродуктивних серверів, вона має велику собівартість, але при цьому досягається більш висока швидкість, ніж у HyperTransport.

На апаратному рівні PCI Express не сумісна ні з PCI, ні з AGP, її використання вимагає нових версій BIOS і нових драйверів, в той час як HT повністю сумісний з поточною *програмною* моделлю PCI. HyperTransport може бути адаптований і до PCI Express. Тобто PCI Express пристрої можуть бути підключені через HyperTransport.

# Практична реалізація HyperTransport

Класичний чіпсет материнської плати складається з двох мікросхем (північний і південний мости): одна включає шину процесора, контролер пам'яті, АGР і шину південного моста, друга містить різноманітні контролери введення / виведення і контролер шини РСІ. У системах Іптеl використовується саме така, класична система. Процесори (або процесор в настільних системах) пов'язані з пам'яттю через контролер пам'яті, інтегрований в північний міст. В технології HyperTransport всі пристрої підключені до єдиного host-контролера. Причому треба відзначити те, що AMD стала інтегрувати контролер пам'яті в свої процесори, а значить, він був винесений із чіпсета в процесор, що значно прискорило роботу з оперативною пам'яттю. Таким чином, кожен процесор отримав можливість мати власну пам'ять.

Крім того, АМD вирішила позбутися обмежень, що накладаються схемою з північним і південним мостами. Контролер пам'яті, а також частина функцій AGP (GART) тепер реалізовані в процесорі. Там же знаходиться контролер HyperTransport. Для AGP, контролерів вводу / виводу, контролера PCI було створено три окремих мікросхеми: AGP tunnel, PCI-х I/O Bus Tunnel і контролер введення / виводу (I/O Hub). Такий поділ дозволяє проектувати систему під конкретні завдання. Для роботи необхідний тільки останній контролер (без AGP і PCI-х можна обійтися), а наприклад в серверних системах навряд чи знадобиться відеокарта. Так до прикладу, nVidia в своєму чіпсеті nForce3 об'єднала всі контролери в одну мікросхему.

Фізичний інтерфейс шини HyperTransport відрізняється простою реалізацією і має такі відмінні риси: - використовуються низьковольтні, диференціальні сигнали (для передачі використовуються дві лінії, за якими синхронно передається прямий і інверсний сигнал); - диференційний імпеданс дорівнює 60 Ом, для зменшення вартості друкованих плат



# Модель фізичної реалізації НТ

Тут реалізоване асинхронне тактування (один сигнал використовується для будь-якої групи з 8 біт і будь-якого напрямку). Так за один такт передається два біта даних (для тактового сигналу  $1000 \, \mathrm{MFu}$ , пропускна здатність шини -  $2.0 \, \mathrm{\Gamma fir} \, / \, \mathrm{c}$ ).



рис. інформаційні зв'язкі при взаємодії двох пристроїв

Власне керуюча лінія ідентифікує командні пакети. Для реалізації передачі даних системного управління існують додаткові сигнали Power OK (PWROK) і Reset LDT (RESET\_L) для ініціалізації і скидання шини. Для мобільних систем можуть використовуватися сигнали LDTStop\_L і DevReq\_L знижують енергоспоживання шиною HT.