Bounding parameter uncertainty in single molecule localization

Clayton W. Seitz

June 22, 2022

- Imaging noise consists of shot noise, thermal noise, and readout noise
- ▶ Shot noise is Poisson, thermal noise and readout noise are Gaussian

We will adopt the Gaussian PSF approximation (image function):

$$q(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

and define the number of photoelectrons at a pixel k as a sum of three random variables

$$H_{\theta,k} = S_{\theta,k} + B_{\theta,k} + W_{\theta,k}$$

where $S_{\theta,k}$ and $B_{\theta,k}$ are Poisson processes for signal and background while $W_{\theta,k}$ represents dark noise of a CMOS array

The mean values of the signal and background processes are

$$\mu_{ heta,k} = \int_{t_0}^t \Lambda(\tau) \int_{C_k} q(x,y) dx dy d\tau$$

$$\beta_{\theta,k} = \int_{t_0}^t \Lambda(\tau) \int_{C_k} b(x,y) dx dy d\tau$$

where b(x,y) is a spatially dependent background function. $\Lambda(\tau)$ is the emission rate as a function of time (for example exponential decay for photobleaching). If we take the dark noise to be Gaussian with mean $m_{\theta,k}$, then we have:

$$\nu_{\theta,k} = \mu_{\theta,k} + \beta_{\theta,k} + m_{\theta,k}$$

We now need to show the form of $P(H_k)$

Monte Carlo integration over a pixel

Computing the mean value at a pixel involves computing an integral $\int_{C_k} q(x,y) dx dy$. This integral is difficult to compute, but a 2D image is really just a 2D histogram. So if we can find the PSF q(x,y) from the objective lens, we can use Monte Carlo integration (sample from the normalized PSF) and multiply by the emission rate ν to compute the mean of the Poisson process at a pixel k

Let's start by explicitly writing $P(S_k)$

For a CMOS pixel k, the true signal S_k [ADU] is a Poisson process with rate parameter Λ_k

$$S_k = \gamma g_k P_k(s_k | \Lambda_k)$$

where γ $[e^-/p]$ is the quantum efficiency and g_n $[\mathrm{ADU}/e^-]$ is the pixel's gain

$$P(S_k) = \frac{\exp(-\Lambda_k) \, \lambda_k^p}{p!}$$

We can use this to find the distribution over the corrupted signal $P(H_k)$

To find $P(H_k)$, we first evaluate the joint density $P(S_k, H_k)$

$$\begin{split} P(S_k, H_k) &= P(H_k | S_k = s) P(S_k = s) \\ &= \frac{1}{Z} \exp\left(-\frac{(H_k - g_k s - \mu_k)^2}{\sigma_k^2}\right) \frac{\exp\left(-\Lambda_k\right) \Lambda_k^s}{s!} \end{split}$$

Marginalizing over S_k gives the desired distribution over H_n

$$P(H_k) = \frac{1}{Z} \sum_{s=0}^{\infty} \frac{\exp(-\Lambda_k) \Lambda_k^s}{s!} \exp\left(-\frac{(H_k - g_k s - \mu_k)^2}{\sigma_k^2}\right)$$

Fisher Information

Consider the general prescripton of maxmimum likelihood parameter estimation:

$$\mathcal{E}_{\mathrm{MLE}}: \theta^* = \operatorname*{argmax}_{\theta} \ell(\mathcal{D}|\theta)$$

where $\ell = \log \mathcal{L}$ is the log-likelihood function

Question: can we derive a theoretical lower bound on our uncertainty in θ^* for an arbitrary estimator \mathcal{E} ?

Start by defining the *score* of ℓ with respect to θ as

$$S = \mathbb{E}_{\mathbf{x} \sim p} \left[\frac{\partial}{\partial \theta} \ell(\mathbf{x}|\theta) \right]$$

Since x is a continuous random variable, we have to consider the average score

Fisher Information

The Fisher Information $I(\theta)$ is defined as the variance of the score

$$I(\theta) = \underset{x \sim p}{\mathbb{E}} \left[\frac{\partial}{\partial \theta} \left(\ell(x|\theta) \right) \right]^2 = \underset{x \sim p}{\mathbb{E}} \left[\frac{\partial^2}{\partial \theta^2} \left(\ell(x|\theta) \right) \right]$$

for $x \in \mathcal{D}$. The variance takes this from because it can be shown that $\mathcal{S} = 0$

Intuitively, if the likelihood is insensitive changes in θ , then $\mathcal D$ does not provide very much information about θ

When there are many parameters, the Fisher Information (second moment of the score) is a covariance matrix

$$I_{ij}(\theta) = \underset{x \sim p}{\mathbb{E}} \left[\frac{\partial}{\partial \theta_i} \left(\ell(x|\theta) \right) \frac{\partial}{\partial \theta_j} \left(\ell(x|\theta) \right) \right]$$

Fisher Information for a multiple parameters

We have shown that the model for the number of photoelectrons at a pixel is

$$P(H_k) = \frac{1}{Z} \sum_{s=0}^{\infty} \frac{\exp(-\Lambda_k) \Lambda_k^s}{s!} \exp\left(-\frac{(H_k - g_k s - \nu_k)^2}{\sigma_k^2}\right)$$

Notice that ν_k is dependent on $\int q(x,y)dxdy$ and therefore the PSF parameters $\theta = (\mu_x, \mu_y, \sigma)$. These can be plugged into the following Fisher information matrix

$$I_{ij}(\theta) = \underset{H \sim P}{\mathbb{E}} \left[\frac{\partial}{\partial \theta_i} \left(\log \prod_k P(H_k) \right) \frac{\partial}{\partial \theta_j} \left(\log \prod_k P(H_k) \right) \right]$$
$$= \underset{H \sim P}{\mathbb{E}} \sum_k \left[\frac{\partial}{\partial \theta_i} \log P(H_k) \frac{\partial}{\partial \theta_j} \log P(H_k) \right]$$

References I