Space-bounded quantum interactive proof systems

François Le Gall ¹ Yupan Liu ¹ Harumichi Nishimura ¹ Qisheng Wang ^{2,1}

¹Nagoya University

²University of Edinburgh

Available on arXiv:2410.23958.

CS Theory Seminar, Penn State University, January 2025

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- 4 Open problems

What is **time-bounded** quantum computation?

Ingredients in quantum computation:

• Qubit.
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
, where $\langle \psi | \psi \rangle = |\alpha|^2 + |\beta|^2 = 1$, $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

- ▶ **Quantum state**. An *n*-qubit state is a vector $|\Psi\rangle \in \mathbb{C}^{2^n}$ satisfying $\langle \Psi|\Psi\rangle = 1$.
- ▶ **Quantum gate**. Elementary quantum gates G_i (from some universal gateset) are unitary matrices act on one or two qubits, e.g., $G_i \in \{CNOT, Had, T\}$:

$$|0\rangle^{\otimes n} \stackrel{G_1}{\to} G_1 |0\rangle^{\otimes n} \stackrel{G_2}{\to} G_2 G_1 |0\rangle^{\otimes n} \to \cdots$$

▶ **Measurement**. Projective measurement $\{|0\rangle\langle 0|, |1\rangle\langle 1|\}$ in computational basis:

$$|0\rangle$$
 U $b \in \{0,1\}$

▶ Intermediate measurements are useless (principle of deferred measurements):

♣ Eliminate intermediate measurements by introducing ancillary qubits!

Time-bounded quantum computation (BQP):

- ▶ Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.
- ► The goal is to find *a small corner* of a 2^{poly(n)}-dimension Hilbert space that holds the relevant information, which can only be extracted through measurements.

What is **space-bounded** quantum computation?

Space-bounded quantum computation (BQL) is introduced in [Watrous'98, Watrous'99]:

- Limits computation to $O(\log n)$ qubits, but allows poly(n) quantum gates.
- ► A quantum logspace computation operates on a 2^{O(log n)}-dimension Hilbert space, making this model appear weak and contained in NC.

However, BQL has shown *notable* power and gained recent increased attention:

- ♦ INVERTING WELL-CONDITIONED MATRICES [Ta-Shma'13, Fefferman-Lin'16] is BQL-complete, fully saturating the *quadratic* space advantage over classical suggested by BQL ⊆ DSPACE[log²(n)] [Watrous'99].
- ⋄ Intermediate measurements appear to make BQL stronger than BQUL:
 - $ightharpoonup O(\log n)$ intermediate measurements can be eliminated by introducing ancillary qubits.
 - Allowing poly(n) oblivious intermediate measurements provide no advantage for promise problems [Girish-Raz-Zhan'21, Girish-Raz'22].
 - Even when both poly(n) oblivious intermediate measurements and reset operations are allowed, there is no advantage for promise problems [Fefferman-Remscrim'21].
- Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version [Gilyén-Su-Low-Weibe'18, Metger-Yuen'23, Le Gall-L.-Wang'23].

What is **interactive proofs**?

Classical interactive proof systems

Given a promise problem $(\mathcal{L}_{\text{yes}}, \mathcal{L}_{\text{no}})$, there is an interactive proof system $P \rightleftharpoons V$ that involves at most poly(n) messages exchanged between the prover P and the verifier V:

- ⋄ P is typically all-powerful but untrusted;
- ⋄ V is computationally bounded, and use random bits;

For any $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$, this proof system $P \rightleftharpoons V$ guarantees:

- For *yes* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at least 2/3;
- For *no* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at most 1/3.

* The image is generated using OpenAI's DALL-E model.

Classical interactive proofs were introduced in [Babai'85, Goldwasser-Micali-Rackoff'85]:

- Public-coin (AM[k+2]) matches the power of private-coin (IP[k]) [Goldwasser-Sipser'86].
 - Public coins: Verifier's questions have a particular form ("random questions").
 - Private coins: Random bits used by the verifier, but hidden from the prover.
- **2** Constantly many messages: $IP[O(1)] \subseteq IP[2] \subseteq PH$ [Babai'85, Goldwasser-Sipser'86].
- 3 Polynomially many messages: IP = PSPACE [Lund-Fortnow-Karloff-Nisan'90, Shamir'90].

What is quantum interactive proofs?

Quantum interactive proof systems

Given a promise problem $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, there is an interactive proof system P = V that involves at most poly(n) quantum messages exchanged between P and V:

- ⋄ P is typically all-powerful but untrusted;
- ⋄ V is bounded and capable of quantum computation;
- ⋄ *P* and *V* may share *entanglement* during the interaction.

For any $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$, this proof system $P \rightleftharpoons V$ guarantees:

- ► For yes instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at least 2/3;
- For *no* instances, $(P \rightleftharpoons V)(x)$ accepts w.p. at most 1/3.

Quantum interactive proofs were introduced in [Watrous'99, Kitaev-Watrous'00]:

- $\bullet \text{ "Parallelization": PSPACE} \subseteq \text{QIP} \subseteq \text{QIP}[3] \text{ [Watrous'99, Kitaev-Watrous'00].}$
- Quantum analog of Babai's collapse theorem [Kobayashi-Le Gall-Nishimura'13]: For any O(1)-message (classical or quantum) "public coin" quantum interactive proofs, the corresponding class is one of PSPACE, qq-QAM, cq-QAM, or cc-QAM.

The image is generated using OpenAl's DALL-E model.

What is space-bounded (classical) interactive proofs?

Space-bounded classical interactive proofs were introduced in [Dwork-Stockmeyer'92, Condon'91], where the verifier operates in *logspace* but can run in *polynomial time*.

Public coins weaken the computational power of such proof systems:

- Classical interactive proofs with a logspace verifier using O(log n) private (random) coins ("IPL") exactly characterizes NP [Condon-Ladner'92].
- ▶ The model of *public-coin* space-bounded classical interactive proofs is weaker:
 - ♦ With poly(n) public coins, this model is contained in P [Condon'89].
 - \diamond With $O(\log n)$ public coins, it contains SAC¹ [Fortnow'89], enabling bounded fan-in AND.
 - \diamond With poly $\log(n)$ public coins, it contains NC [Fortnow-Lund'91].
 - With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum'15], connecting to doubly-efficient interactive proofs, where the prover is also efficient in some sense.

In this work, the verifier has *direct access* to messages during interaction, generalizing the space-bounded quantum Merlin-Arthur proofs (QMAL):

- Direct access: A QMAL verifier has direct access to an O(log n)-qubit message, processing it directly in the verifier's workspace qubit, similar to QMA.
- ► QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura'16, Fefferman-Remscrim'21].

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- Main results on QIP_UL, QIPL, and QSZK_UL
- Open problems

1st attempt: Space-bounded UNITARY quantum interactive proofs

Space-bounded unitary quantum interactive proofs (QIP_UL)

Consider a 2l-turn space-bounded unitary quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where the verifier V operates in quantum logspace and has direct access to messages during interaction with the prover P:

- ▶ The verifier V maps $x \in \mathcal{L}_{\text{yes}} \cup \mathcal{L}_{\text{no}}$ to (V_1, \dots, V_{l+1}) , where each V_j is unitary.
- ▶ Both M and W are of size $O(\log n)$, with M being accessible to both P and V.
- **Strong uniformity**: The description of (V_1, \dots, V_{l+1}) can be computed by a single deterministic logspace Turing machine, intuitively implying $\{V_i\}$'s *repetitiveness*.
- ★ QIP_UL does not contain "IPL", particularly the model from [Condon-Ladner'92]:
 - ► To show IP ⊆ QIP, the verifier needs to *measure* the received messages at the beginning of each action, and treat the outcome as classical messages.
 - Soundness against classical messages does not extend to quantum!

2nd attempt: Space-bounded ISOMETRIC quantum interactive proofs

Space-bounded isometric quantum interactive proofs (QIPL⁵)

Consider a 2l-turn space-bounded isometric quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where V acts on $O(\log n)$ qubits and has direct access to messages:

▶ Each \widetilde{V}_j is a unitary quantum circuit with $O(\log n)$ oblivious intermediate measurements and reset operations.

♣ QIPL[⋄] contains the Condon-Ladner model ("IPL"), but it appears too powerful:

- For instance, P can send an n-qubit state using $\lceil n/\log n \rceil$ messages of $(\log n)$ -qubit states, while V takes only $O(\log n)$ qubits without P detecting the choices.
- ▶ QIPL^o can verify the local Hamiltonian problem, and thus contains QMA.

Space-bounded ISOMETRIC quantum interactive proofs (Cont.)

Space-bounded isometric quantum interactive proofs (QIPL^o)

Consider a 2l-turn space-bounded isometric quantum interactive proof system $P \rightleftharpoons V$ for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where V acts on $O(\log n)$ qubits and has direct access to messages:

Each \widetilde{V}_j is a unitary quantum circuit with $O(\log n)$ oblivious intermediate measurements and reset operations.

<u>Where is the isometry?</u> Each \widetilde{V}_j has a unitary dilation V_j , where V_j is an *isometric* quantum circuit that allows $O(\log n)$ ancillary gates:

- \blacktriangleright Each ancillary gate introduces an ancillary qubit $|0\rangle$ in the environment register E_i .
- \blacktriangleright Each environment register E_i is *only accessible* in the round of V_i belongs.
- \blacksquare The qubits in E_i cannot be altered after V_i , but entanglement with W can change!

3rd attempt: Space-bounded quantum interactive proofs

Space-bounded quantum interactive proofs (QIPL)

Consider a 2l-turn space-bounded quantum interactive proof system P = V for $(\mathcal{L}_{yes}, \mathcal{L}_{no})$, where V acts on $O(\log n)$ qubits and has direct access to messages:

- Each \widetilde{V}_j is an almost-unitary quantum circuit, meaning that a unitary quantum circuit with $O(\log n)$ oblivious intermediate measurements.
 - ♦ QIPL also contains the Condon-Ladner model ("IPL").
- For yes instances, the distribution of intermediate measurement outcomes $u = (u_1, \cdots, u_l)$, condition on acceptance, must be *highly concentrated*.
 - ⋄ This requirement leads to the NP containment for any QIPL proof system.
 - ⋄ Specifically, let $\omega(V)|^u$ be the contribution of u to $\omega(V)$, where $\omega(V)$ is the maximum acceptance probability of $P \rightleftharpoons V$. There must exists a u^* such that $\omega(V)|^{u^*} \ge c(n)$.

3rd attempt: Space-bounded quantum interactive proofs (Cont.)

Space-bounded quantum interactive proofs (QIPL)

Consider a 2l-turn space-bounded quantum interactive proof system P = V for $(\mathcal{L}_{\text{yes}}, \mathcal{L}_{\text{no}})$, where V acts on $O(\log n)$ qubits and has direct access to messages:

▶ Each \widetilde{V}_j is an almost-unitary quantum circuit, meaning that a unitary quantum circuit with $O(\log n)$ oblivious intermediate measurements.

Applying the *principle of deferred measurements* to the almost-unitary quantum circuit \widetilde{V}_j transforms it into a special class of isometric quantum circuits V_j , followed by *measuring* the register E_j with outcome u_j :

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- Open problems

Main results on QIP_UL and QIPL

Theorem 1. QIPL = NP.

▶ QIPL is the *weakest* model that includes space-bounded classical interactive proofs, ensuring that soundness against classical messages extends to quantum.

$\underline{\textbf{Theorem 2.}} \ \mathsf{SAC}^1 \cup \mathsf{BQL} \subseteq \mathsf{QIP}_\mathsf{U}\mathsf{L} \subseteq \cup_{c(n)-s(n)\geq 1/\mathsf{poly}(n)} \mathsf{QIPL}_{\mathrm{O}(1)}[c,s] \subseteq \mathsf{P}.$

- **♣** Intermediate measurements enhance the model: $QIP_UL \subseteq QIPL$ unless P = NP.
- QIP_UL proof systems, regarded as the most natural space-bounded analog to QIP, do not achieve the aforementioned soundness guarantee.

Theorem 3. For any $c(n) - s(n) \ge \Omega(1)$, $QIPL_{O(1)}[c, s] \subseteq NC$.

► For constant-turn space-bounded quantum proofs, all three models are equivalent!

Main results on QIP_UL and QIPL (Cont.): Proof intuitions

Theorem 1. QIPL = NP.

- ► The lower bound is inspired by space-bounded (private-coin) classical interactive proof systems for NP, particularly 3-SAT, in [Condon-Ladner'95].
- ★ (Hard!) The upper bound follows from a SDP formulation of QIPL proof systems.

$\underline{\textbf{Theorem 2.}} \ \mathsf{SAC}^1 \cup \mathsf{BQL} \subseteq \mathsf{QIP_UL} \subseteq \cup_{c(n)-s(n) \geq 1/\mathsf{poly}(n)} \mathsf{QIPL}_{\mathrm{O}(1)}[c,s] \subseteq \mathsf{P.}$

- ► The lower bound is inspired by space-bounded classical interactive proof systems with O(log n) public coins for evaluating SAC¹ circuits [Fortnow'89].
 - \diamond It is known that $NL \subseteq SAC^1 = LOGCFL \subseteq AC^1 \subseteq NC^2$ [Venkateswaran'91].
- ▶ The upper bound is inspired by the SDP formulation for QIP [Vidick-Watrous'16].

Theorem 3. For any $c(n) - s(n) \ge \Omega(1)$, $QIPL_{O(1)}[c, s] \subseteq NC$.

An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous'09].

Basic properties for QIPL and QIPUL

Theorem 4 (Properties for QIPL and QIP_UL). Let c(n), s(n), and m(n) be functions such that $0 \le s(n) < c(n) \le 1$, $c(n) - s(n) \ge 1/\text{poly}(n)$, and $1 \le m(n) \le \text{poly}(n)$. Then, we have:

- Closure under perfect completeness.
 - $\mathsf{QIPL}_{m}[c,s] \subseteq \mathsf{QIPL}_{m+2}\big[1,1-\tfrac{1}{2}(c-s)^2\big] \text{ and } \mathsf{QIP_{U}L}_{m}[c,s] \subseteq \mathsf{QIP_{U}L}_{m+2}\big[1,1-\tfrac{1}{2}(c-s)^2\big].$
- **@ Error reduction**. For any polynomial k(n), there is a polynomial m'(n) such that: $QIPL_m[c,s] \subseteq QIPL_{m'}[1,2^{-k}]$ and $QIP_UL_m[c,s] \subseteq QIP_UL_{m'}[1,2^{-k}]$.
- **3** Parallelization. $QIP_UL_{4m+1}[1,s] \subseteq QIP_UL_{2m+1}[1,(1+\sqrt{s})/2]$.

Proof Intuition.

- ► Theorem 4 1 is directly adapted from [Vidick-Watrous'16].
- ► Theorem 4 ② uses sequential repetition due to the space constraint, with the key being to force the prover to "clean" the workspace.
- For establishing Theorem 4 (3):
 - The original approach in [Kitaev-Watrous'00] fails, since it requires sending all snapshot states in a single message, which exceeds logarithmic size.
 - The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick'07] works, a "dequantized" version of the above approach, which leverages the reversibility of the verifier's actions.

Statistical zero-knowledge in general

<u>Definition 5 (Statistical zero-knowledge, informal)</u>. An interactive proof system admits the *(statistical) zero-knowledge* property if verifier's view (\mathcal{P}_0) is *(statistically) indistinguishable* from "verifier's view" (\mathcal{P}_1) generated by an *efficient* simulator.

Figure: Verifier's view (\mathcal{P}_0)

Figure: Simulated "Verifier's view" (\mathcal{P}_1)

- A common misusage (*unrelated to science!*): zero-knowledge vs. zero-entropy.
- ▶ Intuitively, the classical views \mathcal{P}_0 and \mathcal{P}_1 can be treated as distributions p_0 and p_1 , respectively. The notion of *statistical indistinguishablity* is then characterized by the ℓ_1 norm distance $\mathrm{TV}(p_0,p_1) := \frac{1}{2} \|p_0 p_1\|_1$.

Zero-knowledge property in QIP_UL . A QIP_UL proof system has *the zero-knowledge property* if there is a *space-bounded* simulator that well approximates the snapshot states ("the verifier's view") in (M,W) after each turn, with respect to the trace distance.

Main results on space-bounded unitary quantum statistical zero-knowledge

 $QSZK_UL_{HV}$ and $QSZK_UL$ are space-bounded variants of quantum statistical zero-knowledge against an honest and arbitrary verifier, $QSZK_{HV}$ and QSZK, respectively, introduced in [Watrous'02] and [Watrous'09].

Theorem 6. $QSZK_{IJ}L = QSZK_{IJ}L_{HV} = BQL$.

The INDIVPRODQSD $[k, \alpha, \delta]$ problem (INDIVIDUAL PRODUCT STATE DISTINGUISHABILITY) involves two k-tuples of $O(\log n)$ -qubit states, $\sigma_1, \cdots, \sigma_k$ and $\sigma'_1, \cdots, \sigma'_k$, whose purifications can be prepared by unitary quantum logspace circuits, satisfying $\alpha(n) - k(n) \cdot \delta(n) \geq 1/\text{poly}(n)$ and $1 \leq k(n) \leq \text{poly}(n)$, with the following conditions:

- \diamond For *yes* instances, the *k*-tuples are *globally far*, i.e., $T(\sigma_1 \otimes \cdots \otimes \sigma_k, \sigma'_1 \otimes \cdots \otimes \sigma'_k) \geq \alpha$.
- \diamond For *no* instances, the *k*-tuples are *pairwise close*, i.e., $\forall j \in [k], T(\sigma_j, \sigma_j') \leq \delta$.

 $QSZK_UL_{HV}\subseteq BQL \ follows \ since \ IndivProdQSD \ is \ QSZK_UL_{HV}\text{-}complete:$

- Since INDIVPRODQSD implies an "existential" version of GAPQSD_{log}, which is BQL-complete [Le Gall-L.-Wang'23], it follows that INDIVPRODQSD ∈ QMAL ⊆ BQL.
- ▶ The complement of INDIVPRODQSD is QSZK_UL_{HV}-hard, similar to [Watrous'02].

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- 4 Open problems

Conclusions and open problems

Take-home messages on our work

- Intermediate measurements play a distinct role in space-bounded quantum interactive proofs compared to space-bounded quantum computation:
 QIP_{II}L Ç QIPL unless P = NP (this work), while BQ_{II}L = BQL [FR21, GRZ21].
- We define three models of space-bounded quantum interactive proofs:

	QIP _U L	QIPL	QIPL°
Verifier's actions	unitary	almost-unitary	isometry
Lower bounds	$SAC^1 \cup BQL$ "IPL" with $O(\log n)$ public coins	\ensuremath{NP} "IPL" with $O(\log n)$ private coins	QMA
Upper bounds	Р	NP	PSPACE

Introducing the zero-knowledge property for QIP_UL proof systems, i.e., QSZK_UL, eliminates the usual advantage gained from interaction (QSZK_UL = BQL).

Open problems

- Is it possible to obtain a tighter characterization of QIP_UL? For example, does QIP_UL contain "IPL" with ω(log n) public coins?
- What is the computational power of space-bounded quantum interactive proofs with a general quantum logspace verifier?

Thanks!

Proof techniques: Upper bounds for QIPL and QIPUL

Our approach is inspired by the SDP formulation for QIP [Vidick-Watrous'16].

 $\frac{\mathsf{QIPL}_{\mathsf{O}(1)} = \mathsf{QIP}_{\mathsf{U}}\mathsf{L}_{\mathsf{O}(1)} \subseteq \mathsf{P}. \text{ Consider a } 2l\text{-turn } \mathsf{QIPL}_{\mathsf{O}(1)} \text{ proof system } P \rightleftharpoons V, \text{ with } \\ \overline{l \leq O(1)}. \text{ Let } \rho_{\mathsf{M}_j\mathsf{W}_j} \text{ and } \rho_{\mathsf{M}_j'\mathsf{W}_j}, \text{ for } j \in [l], \text{ be snapshot states in the registers } (\mathsf{M},\mathsf{W}) \text{ after the verifier's and prover's action in the } j\text{-th round in } P \rightleftharpoons V, \text{ respectively.}$

In this SDP formulation, we consider the following:

- \diamond Variables \Leftrightarrow The snapshot states $\rho_{\mathtt{M}',\mathtt{W}_{i}}$ for $j \in [l]$ after each prover action;
- \diamond Objection function \Leftrightarrow Maximum acceptance probability $\omega(V)$.

These variables are **independent** due to the *unitary* verifier. The SDP constraints are:

Verifier is always honest:

$$\rho_{\mathtt{M}_{j}\mathtt{W}_{j}} = V_{j}\rho_{\mathtt{M}_{i-1}^{\prime}\mathtt{W}_{j-1}}V_{j}^{\dagger} \text{ for } j \in \{2,\cdots,l\}, \text{ and } \rho_{\mathtt{M}_{1}\mathtt{W}_{1}} = V_{1}\left|\bar{0}\right\rangle\!\left\langle\bar{0}\right|_{\mathsf{MW}}V_{1}^{\dagger}.$$

Prover's actions do not change the verifier's private register:

$$\operatorname{Tr}_{\mathtt{M}_{j}}(\rho_{\mathtt{M}_{j}\mathtt{W}_{j}}) = \operatorname{Tr}_{\mathtt{M}'_{i}}(\rho_{\mathtt{M}'_{i}\mathtt{W}_{j}}) \text{ for } j \in [l].$$

As any SDP solution holds $O(\log n)$ qubits, standard SDP solvers ensure the efficiency.

Proof techniques: Upper bounds for QIPL and QIP_UL (Cont.)

QIPL \subseteq NP. Now the verifier's actions are *almost-unitary* quantum circuits.

There is a family of SDP programs depending on the measurement outcome $\{u\}$:

- \diamond Variables \Leftrightarrow The *unnormalized* snapshot states $\rho_{\mathtt{M}_{j}\mathtt{W}_{j}} \otimes |u_{j}\rangle\langle u_{j}|_{\mathsf{E}_{i}}$ for $j \in [l]$.
- \diamond Objection function $\Leftrightarrow \omega(V)|^u$, namely the contribution of u to $\omega(V)$.

For a given $u = (u_1, \dots, u_l)$, the SDP program includes two types of constraints:

- $\begin{array}{l} \bullet \ \ \text{Verifier is always honest: Let} \ \rho_{\mathtt{M}_0' \mathtt{W}_0} := \left|\bar{0}\right\rangle\!\left\langle\bar{0}\big|_{\mathsf{MW}}, \text{ then} \\ \rho_{\mathtt{M}_j \mathtt{W}_j} \!\otimes\! \left|u_j\right\rangle\!\left\langle u_j \right|_{\mathsf{E}_j} = \left(I_{\mathtt{M}_j \mathtt{W}_j} \!\otimes\! \left|u_j\right\rangle\!\left\langle u_j \right|_{\mathsf{E}_i}\right) V_j \rho_{\mathtt{M}_{i-1}' \mathtt{W}_{i-1}} V_j^\dagger \ \ \text{for} \ j \in [1]. \end{array}$
- Prover's actions do not change the verifier's private register:

$$\operatorname{Tr}_{\mathtt{M}_{j}}(
ho_{\mathtt{M}_{j}\mathtt{W}_{j}}\otimes|u_{j}\rangle\langle u_{j}|_{\mathsf{E}_{i}})=\operatorname{Tr}_{\mathtt{M}_{i}'}(
ho_{\mathtt{M}_{i}'\mathtt{W}_{j}}\otimes|u_{j}\rangle\langle u_{j}|_{\mathsf{E}_{i}}) \text{ for } j\in[l].$$

Next, we explain the NP containment:

- ightharpoonup The classical witness w includes an l-tuple u and a feasible poly-size solution.
- The verification procedure involves checking whether (1) the solution encoded in w satisfies the SDP constraints based on u; and (2) $\omega(V)|^u > c(n)$.