Natural Language Processing & Word Embeddings

②	Congratulations! You passed!				
	Grade received 100%	Latest Submission Grade 100%	To pass 80% or higher	Go to next item	
			abulary of 60000 words. Then the embe of variation and meaning in those word	-	
	False				
	True				
		word vectors is usually smaller t e between 50 and 1000.	than the size of the vocabulary. Most co	mmon sizes	
2.	What is t-SNE?			1 / 1 point	
	A linear transformation	that allows us to solve analogies	on word vectors		
	An open-source seque				
	 A non-linear dimension 	nality reduction technique			

∠ Correct Yes		
suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then se this word embedding to train an RNN for a language task of recognizing if someone is happy from a short nippet of text, using a small training set.		
x (input text) y (happy?)		
I'm feeling wonderful today!		
I'm bummed that my cat is ill.		
Really enjoying this!		

⊘ Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "upset" would contain a negative/unhappy connotation which will probably make your model classify the sentence as a "0".

4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)

1/1 point

CorrectGreat, you got all the right answers.

5. True/False: The most computationally efficient formula for Python to get the embedding of word 1021, if C is an embedding matrix, and o_{1021} is a one-hot vector corresponding to word 1021, is $C^T * o_{1021}$.

1/1 point

	False	
	○ True	
	∠ [™] Expand	
	Correct It is computationally wasteful because the element-wise multiplication will be extremely inefficient.	
6.	When learning word embeddings, we pick a given word and try to predict its surrounding words or vice versa.	1/1 point
	True	
	☐ False	
	∠ [¬] Expand	
	Correct Word embeddings are learned by picking a given word and trying to predict its surrounding words or vice versa.	
7.	True/False: In the word2vec algorithm, you estimate $P(t/c)$, where t is the target word and c is a context word. t	1/1 point

	○ False	
	True	
	$ \mathcal{L}^{\mathcal{F}} $ Expand	
	CorrectYes, t and c are chosen from the training set to be nearby words.	
8.	Suppose you have a 10000 word vocabulary, and are learning 100-dimensional word embeddings. The word2vec model uses the following softmax function:	1 / 1 point
	$P(t c) = rac{e^{ heta_t^T e_C}}{\sum_{tt'=1}^{1000} e^{ heta_t^T e_C}}$	
	Which of these statements are correct? Check all that apply.	
	$igcap heta_t$ and e_c are both 10000 dimensional vectors.	
	$ec{oldsymbol{arphi}}$ $ heta_t$ and e_c are both trained with an optimization algorithm.	
	✓ Correct To review this concept watch the Word2Vec lecture.	
	After training, we should expect $ heta_t$ to be very close to e_c when t and c are the same word.	
	\checkmark $\; heta_t \; ext{and} \; e_c \; ext{are both 100 dimensional vectors.} \;$	
	✓ Correct	

	∠ ⁷ Expand	
	✓ CorrectGreat, you got all the right answers.	
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:	1 / 1 point
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j$ ' $- log X_{ij})^2$	
	True/False: X_{ij} is the number of times word j appears in the context of word i.	
	True	
	○ False	
	∠ ⁷ Expand	
	○ Correct V is the number of times would appear in the context of world?	
	X_{ij} is the number of times word j appears in the context of word i.	
10.	You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?	1/1 point
	$\bigcirc m_1 << m_2$	
	∠ [¬] Expand	
	○ Correct	