Types of Morphisms in Bicategories

The Clowder Project Authors

July 22, 2025

019H In this chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 14.1 and 14.2). There is a large number of different notions capturing the idea of a "monomorphism" or of an "epimorphism" in a bicategory.

Arguably, the notion that best captures these concepts is that of a pseudomonic morphism (Definition 14.1.10.1.1) and of a pseudoepic morphism (Definition 14.2.10.1.1), although the other notions introduced in Sections 14.1 and 14.2 are also interesting on their own.

Contents

14.1	Monon	norphisms in Bicategories	2
	14.1.1	Representably Faithful Morphisms	2
	14.1.2	Representably Full Morphisms	3
	14.1.3	Representably Fully Faithful Morphisms	4
	14.1.4	Morphisms Representably Faithful on Cores	5
	14.1.5	Morphisms Representably Full on Cores	6
	14.1.6	Morphisms Representably Fully Faithful on Cores	7
	14.1.7	Representably Essentially Injective Morphisms	8
	14.1.8	Representably Conservative Morphisms	8
	14.1.9	Strict Monomorphisms	9
	14.1.10	Pseudomonic Morphisms	10
14.2	Epimo	rphisms in Bicategories	11
	14.2.1	Corepresentably Faithful Morphisms	11
	14.2.2	Corepresentably Full Morphisms	12

\mathbf{A}	Other	Chapters	21
	14.2.10	Pseudoepic Morphisms	19
		Strict Epimorphisms	
	14.2.8	Corepresentably Conservative Morphisms	18
	14.2.7	Corepresentably Essentially Injective Morphisms	18
	14.2.6	Morphisms Corepresentably Fully Faithful on Cores	16
	14.2.5	Morphisms Corepresentably Full on Cores	16
	14.2.4	Morphisms Corepresentably Faithful on Cores	15
	14.2.3	Corepresentably Fully Faithful Morphisms	13

019J 14.1 Monomorphisms in Bicategories

019K 14.1.1 Representably Faithful Morphisms

Let C be a bicategory.

019L **Definition 14.1.1.1.1.** A 1-morphism $f: A \to B$ of C is **representably** faithful¹ if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is faithful.

Remark 14.1.1.1.2. In detail, f is representably faithful if, for all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

O19N Example 14.1.1.1.3. Here are some examples of representably faithful morphisms.

 $^{^1}Further\ Terminology:$ Also called simply a **faithful morphism**, based on Item 1 of Definition 14.1.1.1.3.

019P 1. Representably Faithful Morphisms in Cats₂. The representably faithful morphisms in Cats₂ are precisely the faithful functors; see Categories, Item 2 of Definition 11.6.1.1.2.

2. Representably Faithful Morphisms in Rel. Every morphism of Rel is representably faithful; see Relations, Item 1 of Definition 8.5.11.1.1.

019R 14.1.2 Representably Full Morphisms

Let C be a bicategory.

0198 **Definition 14.1.2.1.1.** A 1-morphism $f: A \to B$ of C is **representably** full² if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is full.

019T Remark 14.1.2.1.2. In detail, f is representably full if, for each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\beta \downarrow}_{f \circ \psi} B$$

of C, there exists a 2-morphism

$$\alpha : \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

$$\beta = \mathrm{id}_f \star \alpha.$$

²Further Terminology: Also called simply a **full morphism**, based on Item 1 of

- **Example 14.1.2.1.3.** Here are some examples of representably full morphisms.
- 019V 1. Representably Full Morphisms in Cats₂. The representably full morphisms in Cats₂ are precisely the full functors; see Categories, ?? of Definition 11.6.2.1.2.
- 2. Representably Full Morphisms in **Rel**. The representably full morphisms in **Rel** are characterised in Relations, Item 2 of Definition 8.5.11.1.1.
- 019X 14.1.3 Representably Fully Faithful Morphisms

Let C be a bicategory.

- **Definition 14.1.3.1.1.** A 1-morphism $f: A \to B$ of C is **representably fully faithful**³ if the following equivalent conditions are satisfied:
- 019Z 1. The 1-morphism f is representably faithful (Definition 14.1.1.1.1) and representably full (Definition 14.1.2.1.1).
- **01A0** 2. For each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is fully faithful.

- **Remark 14.1.3.1.2.** In detail, f is representably fully faithful if the conditions in Definition 14.1.1.1.2 and Definition 14.1.2.1.2 hold:
 - 1. For all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

Definition 14.1.2.1.3.

³Further Terminology: Also called simply a **fully faithful morphism**, based on Item 1 of Definition 14.1.3.1.3.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\beta \downarrow \qquad }_{f \circ \psi} B$$

of C, there exists a 2-morphism

$$\alpha : \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

- **Example 14.1.3.1.3.** Here are some examples of representably fully faithful morphisms.
- 01A3 1. Representably Fully Faithful Morphisms in Cats₂. The representably fully faithful morphisms in Cats₂ are precisely the fully faithful functors; see Categories, Item 6 of Definition 11.6.3.1.2.
- 2. Representably Fully Faithful Morphisms in Rel. The representably fully faithful morphisms of Rel coincide (Relations, Item 3 of Definition 8.5.11.1.1) with the representably full morphisms in Rel, which are characterised in Relations, Item 2 of Definition 8.5.11.1.1.
- 01A5 14.1.4 Morphisms Representably Faithful on Cores Let C be a bicategory.
- 01A6 **Definition 14.1.4.1.1.** A 1-morphism $f: A \to B$ of C is **representably** faithful on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f_*: \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is faithful.

Remark 14.1.4.1.2. In detail, f is representably faithful on cores if, for all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

01A8 14.1.5 Morphisms Representably Full on Cores

Let C be a bicategory.

Olay Definition 14.1.5.1.1. A 1-morphism $f: A \to B$ of C is representably full on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is full.

Q1AA Remark 14.1.5.1.2. In detail, f is representably full on cores if, for each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \qquad X \stackrel{f \circ \phi}{\underbrace{\beta \downarrow}} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\circ \downarrow}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

$$\beta = \mathrm{id}_f \star \alpha.$$

01AB 14.1.6 Morphisms Representably Fully Faithful on Cores Let C be a bicategory.

- O1AC Definition 14.1.6.1.1. A 1-morphism $f: A \to B$ of C is representably fully faithful on cores if the following equivalent conditions are satisfied:
- 01AD 1. The 1-morphism f is representably faithful on cores (Definition 14.1.5.1.1) and representably full on cores (Definition 14.1.4.1.1).
- **Olah** 2. For each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is fully faithful.

- **Q1AF** Remark 14.1.6.1.2. In detail, f is representably fully faithful on cores if the conditions in Definition 14.1.4.1.2 and Definition 14.1.5.1.2 hold:
 - 1. For all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \qquad X \stackrel{f \circ \phi}{\underbrace{\beta \downarrow}} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\circ \psi}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

- 01AG 14.1.7 Representably Essentially Injective Morphisms Let C be a bicategory.
- 01AH Definition 14.1.7.1.1. A 1-morphism $f: A \to B$ of C is representably essentially injective if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is essentially injective.

- **O1AJ** Remark 14.1.7.1.2. In detail, f is representably essentially injective if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ of C, the following condition is satisfied:
 - (\star) If $f \circ \phi \cong f \circ \psi$, then $\phi \cong \psi$.
- 01AK 14.1.8 Representably Conservative Morphisms

Let C be a bicategory.

O1AL Definition 14.1.8.1.1. A 1-morphism $f: A \to B$ of C is representably conservative if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is conservative.

Q1AM Remark 14.1.8.1.2. In detail, f is representably conservative if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ and each 2-morphism

$$\alpha : \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

of C, if the 2-morphism

$$\operatorname{id}_f \star \alpha \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \xrightarrow[f \circ \psi]{\operatorname{id}_f \star \alpha} B$$

is a 2-isomorphism, then so is α .

O1AN 14.1.9 Strict Monomorphisms

Let C be a bicategory.

O1AP Definition 14.1.9.1.1. A 1-morphism $f: A \to B$ of C is a strict monomorphism if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is injective on objects, i.e. its action on objects

$$f_* \colon \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

is injective.

Q1AQ Remark 14.1.9.1.2. In detail, f is a strict monomorphism in C if, for each diagram in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if $f \circ \phi = f \circ \psi$, then $\phi = \psi$.

- **O1AR** Example 14.1.9.1.3. Here are some examples of strict monomorphisms.
- 01AS 1. Strict Monomorphisms in Cats₂. The strict monomorphisms in Cats₂ are precisely the functors which are injective on objects and injective on morphisms; see Categories, Item 1 of Definition 11.7.2.1.2.
- 2. Strict Monomorphisms in **Rel**. The strict monomorphisms in **Rel** are characterised in Relations, Definition 8.5.10.1.1.

01AU 14.1.10 Pseudomonic Morphisms

Let C be a bicategory.

Definition 14.1.10.1.1. A 1-morphism $f: A \to B$ of \mathcal{C} is **pseudomonic** if, for each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is pseudomonic.

- **Q1AW** Remark 14.1.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudomonic if it satisfies the following conditions:
- **Olax** 1. For all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

01AY 2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon f \circ \phi \xrightarrow{\sim} f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\circ \downarrow}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

$$\beta = \mathrm{id}_f \star \alpha.$$

- **O1AZ** Proposition 14.1.10.1.3. Let $f: A \to B$ be a 1-morphism of C.
- 01B0 1. Characterisations. The following conditions are equivalent:
- **01B1** (a) The morphism f is pseudomonic.
- 01B2 (b) The morphism f is representably full on cores and representably faithful.
- 01B3 (c) We have an isocomma square of the form

$$A \stackrel{\operatorname{id}_{A}}{\cong} A \stackrel{\star}{\times}_{B} A, \quad \underset{\operatorname{id}_{A}}{\overset{\operatorname{id}_{A}}{\longrightarrow}} A$$

$$A \stackrel{\operatorname{eq.}}{\cong} A \stackrel{\star}{\times}_{B} A, \quad \underset{\operatorname{id}_{A}}{\overset{\operatorname{id}_{A}}{\longrightarrow}} A$$

in C up to equivalence.

- 01B4 2. Interaction With Cotensors. If C has cotensors with 1, then the following conditions are equivalent:
 - (a) The morphism f is pseudomonic.
 - (b) We have an isocomma square of the form

$$A \overset{\text{eq.}}{\cong} A \overset{\leftrightarrow}{\times}_{\mathbb{1} \pitchfork F} B, \qquad A \overset{}{\swarrow} \downarrow \qquad \downarrow \\ B & \longrightarrow 1 \pitchfork B$$

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.

Item 2, Interaction With Cotensors: Omitted.

01B5 14.2 Epimorphisms in Bicategories

01B6 14.2.1 Corepresentably Faithful Morphisms

Let C be a bicategory.

01B7 Definition 14.2.1.1.1. A 1-morphism $f: A \to B$ of C is corepresentably faithful if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is faithful.

Q1B8 Remark 14.2.1.1.2. In detail, f is corepresentably faithful if, for all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \| \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

- **Example 14.2.1.1.3.** Here are some examples of corepresentably faithful morphisms.
- 01BA 1. Corepresentably Faithful Morphisms in Cats₂. The corepresentably faithful morphisms in Cats₂ are characterised in Categories, Item 5 of Definition 11.6.1.1.2.
- 2. Corepresentably Faithful Morphisms in Rel. Every morphism of Rel is corepresentably faithful; see Relations, Item 1 of Definition 8.5.13.1.1.
- 01BC 14.2.2 Corepresentably Full Morphisms

Let C be a bicategory.

O1BD Definition 14.2.2.1.1. A 1-morphism $f: A \to B$ of C is corepresentably full if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is full.

Remark 14.2.2.1.2. In detail, f is corepresentably full if, for each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta \colon \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha : \phi \Longrightarrow \psi, \quad B \xrightarrow{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\overset{\phi}{\underset{\psi}{\longrightarrow}}} X = A \underbrace{\overset{\phi \circ f}{\underset{\psi \circ f}{\longrightarrow}}} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f.$$

- **O1BF** Example 14.2.2.1.3. Here are some examples of corepresentably full morphisms.
- 01BG 1. Corepresentably Full Morphisms in Cats₂. The corepresentably full morphisms in Cats₂ are characterised in Categories, Item 7 of Definition 11.6.2.1.2.
- 01BH 2. Corepresentably Full Morphisms in Rel. The corepresentably full morphisms in Rel are characterised in Relations, Item 2 of Definition 8.5.13.1.1.

01BJ 14.2.3 Corepresentably Fully Faithful Morphisms

Let C be a bicategory.

01BK Definition 14.2.3.1.1. A 1-morphism $f: A \to B$ of C is corepresentably fully faithful⁴ if the following equivalent conditions are satisfied:

01BL 1. The 1-morphism f is corepresentably full (Definition 14.2.2.1.1) and corepresentably faithful (Definition 14.2.1.1.1).

01BM 2. For each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is fully faithful.

- **Q1BN** Remark 14.2.3.1.2. In detail, f is corepresentably fully faithful if the conditions in Definition 14.2.1.1.2 and Definition 14.2.2.1.2 hold:
 - 1. For all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \iiint \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta \colon \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \xrightarrow{\phi} X$$

⁴Further Terminology: Corepresentably fully faithful morphisms have also been called **lax epimorphisms** in the literature (e.g. in [Adá+01]), though we will always use the name "corepresentably fully faithful morphism" instead in this work.

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f.$$

- **O1BP** Example 14.2.3.1.3. Here are some examples of corepresentably fully faithful morphisms.
- 01BQ 1. Corepresentably Fully Faithful Morphisms in Cats₂. The fully faithful epimorphisms in Cats₂ are characterised in Categories, Item 10 of Definition 11.6.3.1.2.
- 2. Corepresentably Fully Faithful Morphisms in Rel. The corepresentably fully faithful morphisms of Rel coincide (Relations, Item 3 of Definition 8.5.13.1.1) with the corepresentably full morphisms in Rel, which are characterised in Relations, Item 2 of Definition 8.5.13.1.1.
- 01BS 14.2.4 Morphisms Corepresentably Faithful on Cores Let C be a bicategory.
- Olbi Definition 14.2.4.1.1. A 1-morphism $f: A \to B$ of C is corepresentably faithful on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is faithful.

O1BU Remark 14.2.4.1.2. In detail, f is corepresentably faithful on cores if, for all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \parallel \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

01BV 14.2.5 Morphisms Corepresentably Full on Cores

Let C be a bicategory.

O1BW Definition 14.2.5.1.1. A 1-morphism $f: A \to B$ of C is corepresentably full on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is full.

Q1BX Remark 14.2.5.1.2. In detail, f is corepresentably full on cores if, for each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon \phi \circ f \xrightarrow{\sim} \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\Longrightarrow} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

01BY 14.2.6 Morphisms Corepresentably Fully Faithful on Cores

Let C be a bicategory.

O1BZ Definition 14.2.6.1.1. A 1-morphism $f: A \to B$ of C is corepresentably fully faithful on cores if the following equivalent conditions are satisfied:

- 1. The 1-morphism f is corepresentably full on cores (Definition 14.2.5.1.1) and corepresentably faithful on cores (Definition 14.2.1.1.1).
- 01C1 2. For each $X \in \mathrm{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is fully faithful.

- **Remark 14.2.6.1.2.** In detail, f is corepresentably fully faithful on cores if the conditions in Definition 14.2.4.1.2 and Definition 14.2.5.1.2 hold:
 - 1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \stackrel{\phi \circ f}{\underbrace{\beta \downarrow}} X$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \xrightarrow{\sim} \psi, \quad B \xrightarrow{\phi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\overset{\phi}{\underset{\psi}{\longrightarrow}}} X = A \underbrace{\overset{\phi \circ f}{\underset{\psi \circ f}{\longrightarrow}}} X$$

$$\beta = \alpha \star id_f$$
.

- 01C3 14.2.7 Corepresentably Essentially Injective Morphisms Let C be a bicategory.
- 01C4 Definition 14.2.7.1.1. A 1-morphism $f: A \to B$ of C is corepresentably essentially injective if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is essentially injective.

- **Remark 14.2.7.1.2.** In detail, f is corepresentably essentially injective if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ of C, the following condition is satisfied:
 - (\star) If $\phi \circ f \cong \psi \circ f$, then $\phi \cong \psi$.
- 01C6 14.2.8 Corepresentably Conservative Morphisms

 Let C be a bicategory.
- 01C7 Definition 14.2.8.1.1. A 1-morphism $f: A \to B$ of C is corepresentably conservative if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is conservative.

Remark 14.2.8.1.2. In detail, f is corepresentably conservative if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ and each 2-morphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \underbrace{\stackrel{\phi}{\underset{\psi}}}_{\psi} X$$

of C, if the 2-morphism

$$\alpha \star \mathrm{id}_f \colon \phi \circ f \Longrightarrow \psi \circ f, \qquad A \underbrace{\downarrow}_{\psi \circ f}^{\phi \circ f} X$$

is a 2-isomorphism, then so is α .

01C9 14.2.9 Strict Epimorphisms

Let C be a bicategory.

Olca Definition 14.2.9.1.1. A 1-morphism $f: A \to B$ is a **strict epimorphism** in C if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is injective on objects, i.e. its action on objects

$$f_*: \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

is injective.

O1CB Remark 14.2.9.1.2. In detail, f is a strict epimorphism if, for each diagram in C of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\Longrightarrow} X,$$

if $\phi \circ f = \psi \circ f$, then $\phi = \psi$.

- **OLCC** Example 14.2.9.1.3. Here are some examples of strict epimorphisms.
- 01CD 1. Strict Epimorphisms in Cats₂. The strict epimorphisms in Cats₂ are characterised in Categories, Item 1 of Definition 11.7.3.1.2.
- 01CE 2. Strict Epimorphisms in Rel. The strict epimorphisms in Rel are characterised in Relations, Definition 8.5.12.1.1.

O1CF 14.2.10 Pseudoepic Morphisms

Let C be a bicategory.

O1CG Definition 14.2.10.1.1. A 1-morphism $f: A \to B$ of C is pseudoepic if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is pseudomonic.

Q1CH Remark 14.2.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudoepic if it satisfies the following conditions:

01CJ 1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \parallel \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

Olck 2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \stackrel{\phi \circ f}{\biguplus_{\psi \circ f}} X$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\underset{\psi}{\Longrightarrow}} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow \downarrow}_{\psi} X = A \underbrace{\beta \downarrow \downarrow}_{\psi \circ f} X$$

$$\beta = \alpha \star id_f$$
.

- **O1CL** Proposition 14.2.10.1.3. Let $f: A \to B$ be a 1-morphism of C.
- **01CM** 1. Characterisations. The following conditions are equivalent:
- **01CN** (a) The morphism f is pseudoepic.
- 01CP (b) The morphism f is corepresentably full on cores and corepresentably faithful.

01CQ (c) We have an isococomma square of the form

$$B \stackrel{\text{eq.}}{\cong} B \stackrel{\text{id}_B}{\coprod} B$$

$$B \stackrel{\text{eq.}}{\cong} B \stackrel{\text{id}_B}{\coprod} A B, \quad \text{id}_B \downarrow \qquad \uparrow_F$$

$$B \stackrel{\text{eq.}}{\longleftarrow} A$$

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal Categories

Bicategories

14. Types of Morphisms in Bicategories

Extra Part

15. Notes

References 22

References

[Adá+01] Jiří Adámek, Robert El Bashir, Manuela Sobral, and Jiří Velebil. "On Functors Which Are Lax Epimorphisms". In: *Theory Appl. Categ.* 8 (2001), pp. 509–521. ISSN: 1201-561X (cit. on p. 14).