class13

```
Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min
```

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  colData <- read.csv("GSE37704_metadata.csv",row.names = 1)</pre>
  colData
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
               hoxa1_kd
SRR493369
               hoxa1 kd
SRR493370
SRR493371
               hoxa1_kd
  countData <- read.csv("GSE37704_featurecounts.csv",row.names = 1)</pre>
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                   918
                               0
                                          0
                                                   0
                                                              0
ENSG00000279928
                   718
                               0
                                          0
                                                   0
                                                              0
```

28

0

0

123

29

0

0

205

29

0

0

207

23

0

0

124

1982

939

3214

939

ENSG00000279457 ENSG00000278566

ENSG00000273547

ENSG00000187634

0

0

28

0

0

212

	SRR493371
ENSG00000186092	0
ENSG00000279928	0
ENSG00000279457	46
ENSG00000278566	0
ENSG00000273547	0
ENSG00000187634	258

Q. Complete the code below to remove the troublesome first column from countData

```
countData<- countData[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
#countData <- as.matrix(countData[,-1])
#head(countData)
all(rownames(colData) == colnames(countData))</pre>
```

[1] TRUE

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
keep.inds <- rowSums(countData) != 0

counts <- countData[keep.inds, ]
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

nrow(counts)

[1] 15975

```
library(DESeq2)
```

dds <- DESeqDataSetFromMatrix(countData=countData,colData=colData,design=~condition)</pre>

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

res <- results(dds) head(res)</pre>

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>		<numeric></numeric>		<numeric></numeric>
ENSG00000186092	0.0000	NA	NA	NA	NA
ENSG00000279928	0.0000	NA	NA	NA	NA
ENSG00000279457	29.9136	0.179257	0.324822	0.551863	0.58104205
ENSG00000278566	0.0000	NA	NA	NA	NA
ENSG00000273547	0.0000	NA	NA	NA	NA
ENSG00000187634	183.2296	0.426457	0.140266	3.040350	0.00236304
	padj				
	<numeric></numeric>	•			
ENSG00000186092	NA				
ENSG00000279928	NA				
ENSG00000279457	0.68707978	3			
ENSG00000278566	NA	L			
ENSG00000273547	NA	L			

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

ENSG00000187634 0.00516278

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4393, 27%
outliers [1] : 0, 0%
low counts [2] : 1221, 7.6%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

plot(res\$log2FoldChange, -log(res\$padj))

Q. Improve this plot by completing the below code, which adds color and axis labels

```
mycols <- rep("grey", nrow(res) )
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(abline(v=c(-2,2), col="red")
abline(h=-log(0.05), col="red")</pre>
```


Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                     "ALIAS"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                                                                     "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                     "GENENAME"
                     "GO"
                                     "GOALL"
                                                     "IPI"
                                                                     "MAP"
[11] "GENETYPE"
[16] "OMIM"
                     "ONTOLOGY"
                                     "ONTOLOGYALL"
                                                                     "PFAM"
                                                     "PATH"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                     "SYMBOL"
                                                                     "UCSCKG"
[26] "UNIPROT"
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 6.648e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00

```
#colData
plot(pca$x[,1],pca$x[,2],col=as.factor(colData$condition),pch=16)
```


library(pathview)
library(gage)
library(gageData)

```
data(kegg.sets.hs)
  data(sigmet.idx.hs)
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  #head(kegg.sets.hs, 3)
  foldchanges <- res$log2FoldChange</pre>
  names(foldchanges) <- res$entrez</pre>
  head(foldchanges)
[1]
           NΑ
                     NA 0.1792571
                                          NA
                                                    NA 0.4264571
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
Warning: None of the genes or compounds mapped to the pathway!
Argument gene.idtype or cpd.idtype may be wrong.
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/chrisz/Desktop/BGGN 213/WEEK7/Class 13
Info: Writing image file hsa04110.pathview.png
  data(go.sets.hs)
  data(go.subs.hs)
  # Focus on Biological Process subset of GO
  gobpsets <- go.sets.hs[go.subs.hs$BP]</pre>
  gobpres <- gage(foldchanges, gsets=gobpsets, same.dir=TRUE)</pre>
  head(gobpres$less)
```


Figure 1: hsa04110 Cell cycle

```
GO:0000002 mitochondrial genome maintenance
                                                         NA
                                                                  NaN
                                                                          NA
                                                                                NA
GO:0000003 reproduction
                                                         NA
                                                                  NaN
                                                                          NA
                                                                                NA
GO:0000012 single strand break repair
                                                         NA
                                                                  {\tt NaN}
                                                                          NA
                                                                                NA
GO:0000018 regulation of DNA recombination
                                                                  {\tt NaN}
                                                                          NA
                                                         NA
                                                                                NA
GO:0000019 regulation of mitotic recombination
                                                         NA
                                                                  {\tt NaN}
                                                                          NA
                                                                                NA
GO:0000022 mitotic spindle elongation
                                                         NA
                                                                  {\tt NaN}
                                                                          NA
                                                                                NA
                                                 set.size exp1
GO:0000002 mitochondrial genome maintenance
                                                         0
                                                             NA
GO:0000003 reproduction
                                                             NA
                                                         0
GO:0000012 single strand break repair
                                                         0
                                                             NA
GO:0000018 regulation of DNA recombination
                                                         0
                                                             NA
GO:0000019 regulation of mitotic recombination
                                                            NA
                                                         0
                                                             NA
GO:0000022 mitotic spindle elongation
                                                         0
  #lapply(gobpres,head)
  #sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]</pre>
```

#write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, qu

#print(paste("Total number of significant genes:", length(sig_genes)))

p.geomean stat.mean p.val q.val