目录

第	一部分 条件概率	2
1	"条件概率"的意思	2
2	条件概率的性质	3
	2.1 性质: $P(A $ 条件 $B) >= 0 $	3
	2.2 性质: $P(\Omega $ 条件 $B) = 1$	3
	2.3 性质: $P(A_1 \cup A_2 B) = P(A_1 B) + P(A_2 B) - P(A_1 A_2 B) $	
	2.4 性质: $P(A B) = 1 - P(\overline{A} B)$	4
	2.5 性质: 可列可加性: 若 $A_1, A_2,A_n,$ 是 "互不相容"的事件, 则有: $P(\sum_{i=1}^{\infty} A_i B)$	
	$\sum_{i=1}^{\infty} P(A_i B) \leftarrow 即$: "和的概率", 等于"概率的和"	4
3	乘法公式: $P(\hat{\mathbf{n}} \mathbf{n}) = P(\hat{\mathbf{n}}) \cdot P(\hat{\mathbf{n}} \mathbf{n}) = P(\hat{\mathbf{n}}) \cdot P(\hat{\mathbf{n}} \hat{\mathbf{n}}) \leftarrow 规律就是"前后前后"$	1
	这样交错, 或反过来交错.	4

文件名

第一部分 条件概率

1 "条件概率"的意思

条件概率是: 有 A, B 两个事件, 和样本空间 Ω . 其中 P(B) > 0, 则, 在 B 已经发生的条件下, A 发生的概率, 就叫做 A 对 B 的 "条件概率". 记作: P(A| 条件 B), 读作 "在 B 发生的条件下, A 发生的概率".

即,条件概率公式是:
$$P(A|$$
 条件 $B) = \frac{E \times P(A \cap B)}{E \times P(A \cap B)} = \frac{E \times P(A \cap B)}{E \times P(A \cap B)} = \frac{E \times P(A \cap B)}{E \times P(B)} = \frac{E \times P(B)}{E \times P(B)}$

这块交集, 就是在B发生的前提下, A发生的概率

如上图所示, 注意: 概率是个比值, 所以你光有分子那块的交集值, 是没用的, 它还需要与另一个数 (分母) 去比.

2 条件概率的性质 3

例

有 6 个球, 各有编号. 我们先定义下这些事件:

- B: 取到偶数编号的球

- A₁: 取到 1 号球

- A2: 取到 2 号球

- A₅: 取到大于 4 号的球

则:

取到
$$\frac{1}{P(A_1)}$$
 号球的概率 $=$ $\frac{C_1^1}{C_6^1} = \frac{1}{6} = 0.166667$

$$- \ P \left(A_1 | B
ight) = rac{ e \ B \ \$ 件里面, 取到 \ A_1 (即 \ 1 \ 号球)}{B: \ 取到偶数编号的球} = rac{0}{ rac{C_3^1}{ }} = 0$$

-
$$P\left(A_2|B
ight) = rac{ C_1^1 }{ C_6^3 } = rac{1}{3}$$

-
$$P\left(A_{5}|B
ight)=rac{$$
在 B 条件里面,取到大于 4 号的球 $=rac{1}{3}$

2 条件概率的性质

2.1 性质: P(A|条件B) >= 0

2.2 性质: $P(\Omega |$ 条件B) = 1

$$P(\Omega | B) = 1$$

- 2.3 性质: $P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) P(A_1 A_2 | B)$
- 2.4 性质: $P(A \mid B) = 1 P(\overline{A} \mid B)$
- **2.5** 性质: 可列可加性: 若 $A_1, A_2, ...A_n, ...$ 是 "互不相容"的事件, 则有: $P(\sum_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} P(A_i | B) \leftarrow$ 即: "和的概率", 等于"概率的和"

3 乘法公式: P(前后)=P(后 $)\cdot P($ 前|后)=P(前 $)\cdot P($ 后|前 $)\leftarrow$ 规律就是"前后前后"这样交错,或反过来交错.

推导过程:

因为
$$\begin{cases} P(A|B) = \frac{P(AB)}{P(B)} \rightarrow \mathbb{P} \ P(AB) = \underbrace{P(B) \cdot P(A|B)}_{\text{無法, 是交集} \cap \text{的概念}} & \text{①} \\ \\ P(B|A) = \frac{P(AB)}{P(A)} \rightarrow \mathbb{P} \ P(AB) = \underbrace{P(A) \cdot P(B|A)}_{\text{無法, 是交集} \cap \text{的概念}} & \text{②} \end{cases}$$

①和②,就是"乘法公式". 即 $P(AB) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$ 其中 P(A) > 0, P(B) > 0

同理, 多个事件的乘法公式就是:

$$P(ABC) = \underbrace{P(A)} \cdot \underbrace{P(B|A)} \cdot \underbrace{P(C|BA)}$$

↑上面"从右往左"看, 就是按 A,B,C 的顺序

 $P(A_1A_2\cdots A_n) = P(A_1)\cdot P(A_2A_1)\cdot P(A_3A_2A_1)\cdot ...\cdot P(A_n | A_{n-1}A_2A_1)$ 个上面"从右往左"看,就是按 $A_1,A_2,...,A_n$ 的顺序