

STM32 Seminar STM32 Wireless

COMPEL/STM Seminar November 2010

Seminar Agenda

- Overview of ST Microcontroller Portfolio
- Introduction to Cortex-M Core
- STM32 General Purpose Lines
 - Product-Line Overview (F100/F101/F103)
 - Walk through the main peripherals
 - ST Standard Peripheral Library
 - Live demonstration of the STM32 Value Discovery Kit
- STM32 Low-Power Line
 - Product-Line Overview (L15x)
 - Low-Power modes and consumption
 - Specific Peripherals
- STM32 Connectivity Line
 - Product-Line Overview (F105/7 & next)
 - Ethernet & USB Host Peripherals
 - Third Party Stacks
 - Audio Support
- STM32 Wireless
 - Product-Line Overview (W108)
 - RF Performances
 - Wireless Stacks (Zigbee, RF4CE, proprietary)
- STM32 Tools
 - Third Party Compiler & IDE
 - Boards and Debuger
 - ST Libraries

STM32W - an open architecture for wireless sensor networks

57

Wireless sensor network domains

Security
Shock sensor, anti theft,
anti intrusion

Infrastructure monitoring
Buildings, bridges

Healthcare, assisted living Rehabilitation, balance control

Sport and fitness
Sport monitoring,
pedometer, fall detection

Industrial
Vibration and tilt
remote measurement

Games and remote control

Consumer control

Open flexible reconfigurable platform

STMicroelectronics

STM32 Seminar November 2010

STM32W – IEEE 802.15.4 radio

Microcontroller

- ARM Cortex-M3 core architecture
- Embedded memory (eFlash 16kx64, SRAM 4kx16)

IEEE 802.15.4 2.4 GHz radio

- Transmitter: 2-point direct synthesizer modulation
- Receiver: low IF super heterodyne architecture
- Digital baseband DSP and MAC support
- -100 dBm sensitivity and up to 7 dBm output power

Networking

- ZigBee compliant PRO and RF4CE stacks
- 128-Kbyte Flash for stack and apps codes
- IEEE 802.15.4 simple MAC library

Peripherals

- AES encryption HW accelerator
- Debug channel via JTAG
- USART, SPI, I²C, 24 GPIOs

Other

- Compatible with SN2xx series
- QFN48 and QFN40 packages available

STM32W architecture overview

- 32-bit ARM Cortex-M3 core running @ 24 MHz
- 128-Kbyte Flash, 8-Kbyte RAM
- Fully IEEE 802.15.4 compliant radio @ 2.4 GHz
- Power management
 - Deep sleep mode <1 µA with RAM retention
- On-chip debug support
 - ARM JTAG/SWD
 - Packet trace interface enables remote monitoring of radio messages
- ARM memory protection unit
 - To detect erroneous software accesses
- Sleep timer, watchdog timer and GP timers
- AES 128 encryption acceleration
- Serial communication (UART/SPI/I²C)
- GPIO
- ADC (6 channels, first order 12 bits sigma delta)

Power management modes

Native Cortex-M3 sleep mode is a perfect foundation to implement several STM32W system low-power modes

Mode	Regulators	Low- frequency 10 kHz RC oscillator	32 kHz crystal oscillator	High- frequency 12 MHz RC oscillator	24 MHz crystal oscillator	Power consumption
Deep sleep 2	off	off	off	off	off	0.4 μΑ
Deep sleep 1	off	off	optional	off	off	0.8 μΑ
Standby	on	on	optional	off	off	2 mA
Active at 12 MHz	on	on	optional	off	on	6 mA

Active mode	Sensitivity	Rx current	Tx current	Tx current
Radio peripheral	dBm	mA	mA at 0 dBm	mA at -32 dBm
. tadio poriprioral	-100	20	24	15

STM32W RF peripheral

Radio block diagram

Analog receiver features

- Low IF super heterodyne receiver
- Input RF signal is mixed down to the IF frequency of 4MHz by I and Q mixers.
- Output of the mixers is then filtered and combined by a polyphase bandpass filter
- Sampling by a 12 Msps dedicated ADC.

Analog transmitter features

- Synthesizer using a 2 point modulation scheme.
- It modulates the division ratio using sigma-delta fractional N technique and the VCO directly using a varactor.
- The 4.8GHz VCO signal is then divided by 2 and amplified by the on chip PA.
- 2 on-chip PAs:
 - One is used to combine the transmitter output with the receiver input pins.
 - The other is support using an external high power PA.

Baseband

- The receiver is a conventional coherent PSK architecture. It generates a coherent reference at the IF frequency, locked in frequency and phase to the incoming signal. The preamble period of the 802.15.4 signal is used to achieve frequency, phase and chip timing and symbol timing lock with the received signal.
- The receiver demodulates at the chip level making hard decisions before despreading.
- The receiver DSP operates down to a signal to noise level of 1 dB out of the ADC.
- Tx baseband spreads the 4-bit symbol into its 802.15.4 defined 32chip sequence.
- It also provides the interface for software to calibrate the Tx module to reduce silicon process, temperature, and voltage variations.

Lower MAC

- CRC generation, appending and checking
- Hardware timers and interrupts
- DMA memory control
- Preamble, sync word and length generation and prepending
- Address recognition and packet filtering
- Automatic acknowledgement transmission
- Automatic transmission of packet from memory
- Automatic transmission after backoff time if CSMA clear
- Automatic acknowledgement checking
- Time stamping of receive and transmit messages
- Attaching packet information to receive packets
- Pseudo random number generator for backoff slots
- 15.4 timing and slotted/unslotted timing

Radio other features

- Dedicated ADC for calibration
- Hardware packet trace interface
- Hardware AES128 block
- True random number generator based on thermal noise in the analog circuitry

MB851 Application Board / Ref Design

Product specificities: RF design

Antenna matching is very dependant on PCB substrate

- Copy paste only valid if same material is used (even manufacturer)
- Specific equipments needed Spectrum Analyzer, RF Network Analyzer

Gerber RF part topview

Stacks and Tools

STM32W software libraries

ZigBee PRO Stack Features

- The ZigBee PRO stack uses Stochastic Addresses for node addressing and Mesh (next-hop) routing x delivering messages.
- Many-to-One/Source Routing and Asymmetric Link Handling allow setting large networks (up to thousands of nodes)
- Advanced network encryption and device security features allow setting more secure networks.
- Frequency Agility feature allows the entire network to change channels if some interferences occur.
- Fragmentation feature allows handling large messages delivery.

Public Application Profiles

- Building Automation defining devices for large commercial buildings and networks.
- Smart Energy Management defining products that enhance energy management and efficiency for consumers. Consumers will remotely control their homes and manage their energy use.
- Personal Home Health Care Monitoring of personal health in the home environment.
- Home Automation defining devices for typical residential and small commercial installations.
- Telecom Application Wireless applications within the telecom area.

ZigBee Stack Size benchmark

Current application sizing

	SN250	SN250	STM32W
		New compiler	
Smallest App	78466	70619	63557
Base HA App	89100	80190	72171
Base HA plus Link Keys	99772	89795	80815
Base SE w ECC	13272	101945	91750

- Notes: End device configuration save 7KB
 - → 40 to 60KB free for application SW!
- TI Z-Stack CC2430 (8051)
 - Coordinator/Router 116 kB Flash, 7 kB RAM
 - End Device 99kB Flash, 3.8kB RAM

Control

Today with IR	Today with RF		
 Line of sight transmission Decades-old technology Short transmission distance Many consumers want devices hidden Field of vision limitations Remote needs to be pointed at IR receiver 	No line-of-sight or field of vision limitations Control components behind walls or in cabinets Control over extended ranges		
Unidirectional unacknowledged transfers	Bi-directional capability Reliable communications Send program guides, playlists stock quotes, etc to remote/components Allows for communications between devices Over-the-air firmware updates possible Remote locator		
Technology Challenge — Plasma DTV contains high frequency inverter that obstructs IR signals — LCD back lighting saturates DTV IR receiver	Faster more reliable communications - Transmit commands until received - Many times faster response than IR - Enables enhanced user interfaces - Touchpad or pointing capability		
Power consumption	802.15.4 RF consumes 25% of the power used by IR solutions		
Requires manufacturer-specific IR databases – Each product has its own commands – Requires larger memory for storing lookup tables	Allows for true interoperability between vendors products		

ZigBee RF4CE Technical Overview

- Based on 2.4 GHz MAC/PHY IEEE 802.15.4 standard
- Networking layer is thin, flexible and futureproof
- Co-exists with other 2.4 GHz technologies
- Support for interoperability
- Support for secure communications
- Power save mechanisms implemented in network layer
- Simple and intuitive pairing mechanism
- Allow for vendor specific applications and transactions
- Support for many different applications

ZigBee RF4CE Node Types

- Two Nodes Types
 - Target Node
 - Network Startup
 - Full PAN Capability
 - Accepts or declines a pairing request
 - Makes decision on operating channel (frequency agility)
 - Controller Node
 - Initiates pairing and discovery process to Target Nodes
 - Implements frequency agility
 - On-demand communication
- ZigBee RF4CE Network Supports
 - Multiple PANs
 - Participation in multiple networks
 - Low power "Power Save" mechanism built into network stack
 - Supports multiple transmission options
 - Support for multiple application profiles

ZigBee RF4CE Network Topology

STM32W development tools

STM32W in a nutshell

Highest performance

- Industry-leading RF performance
- Network performance highest throughput, lowest latency for routing, security computations
- Enhanced battery life by 25%+

Application code space

- ZigBee PRO stack 20%+ smaller than best-in-class previous product generation, plus architecture provides more usable Flash
- 1.5 times higher code efficiency than 8-bit core based solutions available on the market

Power consumption

- 1/3rd less active current than 250/260 series, combined with core efficiencies, results in longest battery life in industry
- Industry-standard, leading core
 - High performance, standard tools, powerful debug capabilities
 - Part of largest ARM Cortex-M3 product family: STM32

Thank you

Integrated 2.4 GHz radio MCU enables efficient and low-cost wireless network implementation

STM32W is a ZigBee certified platform (PRO Stack)
STM32W is a ZigBee RF4CE certified platform
STM32W is an IEEE 802.15.4 certified platform

Please visit: www.st.com/stm32w

Thank You!

