PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-267488

(43)Date of publication of application: 14.10.1997

(51)Int.CI.

2/045 B41J B41J 2/055

(21)Application number: 08-103139

(71)Applicant: BROTHER IND LTD

(22)Date of filing:

(72)Inventor: IMAI KOJI 29.03.1996

HIWADA SHIYUUHEI

(54) INK JET RECORDER

(57)Abstract:

PROBLEM TO BE SOLVED: To detect exactly a residual quantity of ink by a method wherein an actuator is displaced by impression of driving voltage to spray ink liquid in an ink chamber, and existence of the ink is detected based on variation of a signal generated by mechanical resonance of the actuator.

SOLUTION: A head driving part 19 impresses driving voltage to an electrode 77 of a channel corresponding to a printed data to shear deform a piezoelectric side wall 76 thereby, and a volume of a pressure chamber 75 is decreased. When ink exists in the pressure chamber 75, ink is sprayed from a nozzle 73a of a nozzle plate 73. Thereafter, ink in an ink cartridge is fed to the pressure chamber 75, and the piezoelectric side wall 76 is buffered by the ink. However, when ink does not exist in the pressure chamber 75, though back electromotive force is generated, running out of the ink is detected from a voltage state including this back electromotive force with a judging part 60.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-267488

(43)公開日 平成9年(1997)10月14日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
B41J	2/175			B41J	3/04	102Z	
<i>D</i> 110	2/045		,			103A	
	2/055						

		客查請求	未請求 請求項の数6 FD (全 10 頁)
(21)出願番号	特願平8-103139	(71)出願人	000005267 プラザー工業株式会社
(22)出願日	平成8年(1996)3月29日	(72)発明者	愛知県名古屋市瑞穂区苗代町15番1号 今井 浩司 愛知県名古屋市瑞穂区苗代町15番1号 ブラザー工業株式会社内
		(72)発明者	
		(74)代理人	弁理士 梶 良之

(54)【発明の名称】 インクジェット記録装置

(57)【要約】

【課題】 通電によるインクの劣化を防止すると共に、 交換時の取り扱いを容易にする。

【解決手段】 圧電側壁76を駆動電圧の印加により変 位させることによって、インクを記録媒体に噴射する印 字ヘッド44と、インクの有無により圧電側壁76の機 械的な共振条件の変化を基にしてインクの有無を検知す る判定部60およびプリンタ・コントローラ17とを有 している。

【特許請求の範囲】

【請求項1】 インクが充填されたインク室と圧電素子部材からなるアクチュエータとを有し、駆動電圧の印加により前記アクチュエータを変位させることによって、インク室内に圧力変動を与えてインク液滴を被記録媒体に増射する印字ヘッドと、

前記アクチュエータの機械的な共振により発生する信号 の変化を基にしてインクの有無を検知するインク切れ検 知手段とを有することを特徴とするインクジェット記録 装置。

【請求項2】 前記インク切れ検知手段は、印字ヘッドの駆動時において生ずる前記アクチュエータの機械的共振により発生する信号を監視するものであることを特徴とする請求項1記載のインクジェット記録装置。

【請求項3】 前記インク切れ検知手段は、前記アクチュエータの機械的共振により発生する逆起電圧の振幅変化に基づいてインクの有無を検知するものであることを特徴とする請求項1記載のインクジェット記録装置。

【請求項4】 前記インク切れ検知手段は、前記アクチュエータの機械的共振により発生する信号の固有共振周波数の変化に基づいてインクの有無を検知するものであることを特徴とする請求項1記載のインクジェット記録装置。

【請求項5】 前記インク切れ検知手段は、前記アクチュエータにつながる自励発振回路を有していることを特徴とする請求項4記載のインクジェット記録装置。

【請求項6】 前記アクチュエータは、前記インク室を 構成する隔壁の少なくとも一部を成していることを特徴 とする請求項1記載のインクジェット記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インクを用紙に吹き付けて印字するインクジェット記録装置に関するものである。

[0002]

【従来の技術】ファクシミリ装置等の通信装置やパーソナルコンピュータ等の情報処理装置には、通常、文字や図形からなるデータを視覚情報として記録するように、これらのデータを用紙に印字可能な記録装置が接続されている。この記録装置には、インパクト方式や感熱方式、インクジェット方式等の各種の印字方式が採用されているが、近年においては、静粛性に優れていると共に各種材質の用紙に印字可能なインクジェット方式を採用したインクジェット記録装置が多用されるようになっている。

[0003] 上記のインクジェット記録装置は、印字へッドを主走査しながら、インクカートリッジから印字へッドに供給されたインクを用紙に吹き付けることにより1パンド分の印字を行った後、この用紙を1パンド幅副走査するという印字処理を繰り返すことにより用紙の全50

面に印字するようになっている。従って、このような動作により印字するインクジェット記録装置は、印字へッドに対するインク供給を安定させて良好な印字品質を得ることができるように、インクカートリッジ内にフォームを装填してインクを含ませるようになっていると共に、インク切れを事前に検知して印字不良を防止することができるように、インク検出機構によりインクの有無を検知するようになっている。

7

[0004] 即ち、従来のインクジェット記録装置が有 するインク切れ検出機構は、インクが導電性を有してい ることに着目して構成されたものであり、インクカート リッジの底面壁や側面壁の下部に一対の電極をインクに 接触するように設け、一方の電極から他方の電極に通電 したときの電流値を記録装置本体のプリンタ・コントロ ーラにおいて所定値と比較することによって、インクの 有無を判定するようになっている。

[0005]

【発明が解決しようとする課題】しかしながら、上記従来のように、インクに電流を流してインク切れを検出す 20 る構成では、電流がインクを劣化させるため、長期間使用すると、劣化したインクにより印字品質が低下するという問題がある。

[0006]また、カートリッジ単位でインクが交換されるように、インクカートリッジが記録装置本体に対して着脱可能に構成されている場合、インクカートリッジと記録装置本体とは、電気接点同士を接触させることによって、電極間に通電される電流値をブリンタ・コントローラにより検知させるようになっている。従って、このような構成であると、インク切れ検出実現のために電の接点数や接続ケーブル数の増加を招き、結果としてヘッドユニットの大型化やコストの増加という問題もある。

[0007]従って、本発明は、上記問題点を解決すべく、通電によるインクの劣化を防止することができると共に、的確なインクの残量検出を可能とし、且つ構造が簡単化され低コストが実現できるインクジェット記録装置を提供しようとするものである。

[0008]

【課題を解決するための手段】上記課題を解決するため に、請求項1の発明は、インクが充填されたインク室と 圧電素子部材からなるアクチュエータとを有し、駆動電 圧の印加により前記アクチュエータを変位させることに よって、インク室内に圧力変動を与えてインク液滴を被 記録媒体に噴射する印字へッドと、前記アクチュエータの機械的な共振により発生する信号の変化を基にしてインクの有無を検知するインク切れ検知手段とを有することを特徴としている。これにより、印字へッドのアクチュエータの機械的な共振の状態を基にしてインクの有無を検知するため、従来のようにインクカートリッジ等に 電極を設置する必要がないと共に、インクへの通電を行

わないため、通電によるインクの劣化を防止することが できる。また、上述のようにインクカートリッジに電極 を設置する必要がなく、印字ヘッドとインク切れ検知手 段とでインク切れを検知するため、ヘッドユニットのイ ンクカートリッジを受ける部位に前記電極と接続される 電気接点や接続ケーブルを新たに設置する必要がなくな る。よって、ヘッドユニットの小型化やコスト削減を実 現することが可能となる。また、例えばインクカートリ ッジの交換によりインクを補給する形態のインクジェッ ト記録装置の場合、従来ではインクカートリッジ交換時 10 に前記電極につながる電気接点や接続ケーブルとの接続 状態を常に気にかけねば正確な残量検出がなされなかっ たが、本発明の構成では上述のように電極や電気接点等 を設けていないため、交換時のインクカートリッジの取 り扱いを容易にすることができる。

【0009】請求項2の発明は、請求項1記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、印字ヘッドの駆動時において生ずる前記アクチュエ ータの機械的共振により発生する信号を監視するもので あることを特徴としている。これにより、印字動作時や フラッシング等のメンテナンス動作時等において印字へ ッドが駆動されたときのアクチュエータの機械的共振に より発生する信号を監視することで、インク切れを検知 する。よって、インク切れを検知するために、アクチュ エータに機械的共振を生じさせる特別な機構や、特殊な 信号を前記アクチュエータに入力させる信号入力回路等 を設置する必要がなく、装置構成を簡略化できる。それ と共に、印字ヘッドの駆動時にインク切れを検知するた め、インク切れによるミスプリント等を発生させる前に インク切れを察知し、これら不具合を未然に防止すると とができる。

【0010】請求項3の発明は、請求項1記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータの機械的共振により発生する逆 起電圧の振幅変化に基づいてインクの有無を検知するも のであることを特徴としている。これにより、コンパレ ータ等の比較器を用いた簡単な回路を用いて、前記逆起 電圧の振幅変化を監視することができるようになり、イ ンク切れ検知手段を容易に実現できると共に、確実なイ ンク切れの検出を実行できる。

【0011】請求項4の発明は、請求項1記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータの機械的共振により発生する信 号の固有共振周波数の変化に基づいてインクの有無を検 知するものであることを特徴としている。これにより、 固有共振周波数においては、前記アクチュエータが機械 的共振により発生する信号が大きなレベル(振幅)で出 力される。そして、インクの有無によって前記固有共振 周波数は異なっている。よって、固有共振周波数に的を 絞って信号を検出すれば、信頼性の高いインク切れの検 50 CRT3の画面に表示されているデータ等を対象として

知を行うことができる。さらに、例えばインク切れのと きに前記アクチュエータが機械的共振より発生する信号 の共振周波数に検出ポイントをおき、そのときの出力レ ベルのみ検出できる検出機構を採るようにすれば、確実 なインク切れ検知が実現できる。また、上述した通り、 固有共振周波数において出力される信号のレベルは大き く、アンブ等の出力増幅回路を必要とせずに検出できる ため、前記検出機構を簡単な回路構成とすることができ

【0012】請求項5の発明は、請求項4記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータにつながる自励発振回路を有し ていることを特徴としている。これにより、発振回路を 別個に設ける場合よりも、インク切れ検知と自励発振回 路とを一体化した回路構成とすることによって、小型で 簡単な回路となり、製造コストを低減させることができ る。

【0013】請求項6の発明は、請求項1記載のインク ジェット記録装置であって、前記アクチュエータは、前 20 記インク室を構成する隔壁の少なくとも一部を成してい ることを特徴としている。これにより、アクチュエータ がインク室内のインクの有無による影響を受け易くなる ため、アクチュエータの機械的な共振により発生する信 号の変化が顕著となり、インク切れ検知の精度を格段に 向上させるととができる。

[0014]

【発明の実施の形態】本発明の実施の形態を図1ないし 図13に基づいて以下に説明する。本実施の形態に係る インクジェット記録装置は、図5に示すように、パーソ 30 ナルコンピュータ等の情報処理装置1に接続されてい る。情報処理装置1は、磁気ディスク装置等の補助記憶 装置や中央演算装置を内蔵した処理装置本体2と、デー タ等を画面表示するCRT(cathode-ray tube) 3 と、デ ータの入力および指示に使用されるキーボード4 および マウス5とを有しており、例えばセントロニクス仕様の ブリンタケーブル6を介してインクジェット記録装置で あるプリンタ7に接続されている。

[0015]上記の処理装置本体2は、図6に示すよう に、例えばウインドウ・システム8をオペレーティング 40 システム(OS)として備えている。ウインドウ・シス テム8は、文書作成プログラム等のアプリケーション 9、字体を管理するフォントドライバ10、CRT3を 管理するCRT・ドライバ11、キーボード4を管理す るキーボード・ドライバ12、マウス5を管理するマウ ス・ドライバ13、プリンタ7を管理するプリンタ・ド ライバ14等の各種の機能グループと協働して1つある いは複数のアプリケーション9を同時に実行することが できるようになっている。

【0016】上記のプリンタ・ドライバ14は、例えば

「印刷実行」のメニューが指定されたときには、ドット イメージデータを形成可能になっており、印刷対象とな るテキストのフォントデータ等を基に、ドットイメージ データ (水平方向および垂直方向にドットマトリックス 状に配置された画素データ)を形成し、これらのドット イメージデータを1ラスタ毎に水平方向(ラスタ方向) に8ビット単位の印字データとしてインターフェース (1/F) 部15から順次出力するようになっている。 【0017】上記のようなラスタスキャン形式により出 力された印字データは、インクジェット記録装置である 10 プリンタ7の I / F (インターフェース) 部16 に入力 されるようになっている。 とのプリンタ7は、プリンタ ・コントローラ17(インク切れ検知手段)と、プリン トバッファ領域等の各種のデータ領域が形成されたRA M18と、印字ルーチンやインク切れ判定ルーチン等の 各種の制御プログラムが格納されたROM36と、ヘッ ド駆動部19と、CRモータ駆動部20と、LFモータ 駆動部33と、各種の処理動作を指示する操作パネル4 6と、インク切れ時にハイレベルの判定信号を出力する 判定部60(インク切れ検知手段)とを有している。 【0018】上記のヘッド駆動部19は、印字ヘッド4 4に接続されている。印字ヘッド44は、図1に示すよ うに、圧電素子である圧電セラミックスからなる圧電基 板71と、圧電基板71の上面に貼設された上部カバー 72と、圧電基板71の前面に貼設されたノズルプレー ト73と、圧電基板71の下面に貼設されたプリント基 板74とを有している。圧電基板71は、ダイシング加 工等の切削加工により互いに平行となるように形成され た複数の圧電側壁76…(圧電索子部材)と溝とを交互 電基板71の上面に上部カバー72が貼設されることに よって、各チャンネルに対応する圧力チャンパー75… を形成するようになっている。そして、ノズルプレート 73には、圧力チャンバー75…に対応するようにノズ ル73a…が複数形成されており、これらのノズル73 a…は、圧力チャンバー75…の容積が減少したとき に、圧力チャンバー75…内のインクを加圧して噴射さ せるようになっている。また、上部カバー72には、貫 通口78が形成されており、貫通口78は、圧力チャン バー75…と図7のインクカートリッジ30内とを連通 40 させることによって、圧力チャンパー75…の容積が復 帰されるときにインクカートリッジ30のインクを圧力 チャンバー75…に供給させるようになっている。尚、 上記圧電基板71が本発明のアクチュエータに相当し、 上記圧力チャンバー75が本発明のインク室に相当す

【0019】上記の圧力チャンバー75を形成する圧電 側壁76は、矢符B方向に分極されている。圧電側壁7 6の両側面の上部には、図2に示すように、電極77が 例えばメッキ処理によりそれぞれ形成されている。との 【50 は、インクを含むように連続気泡を有したフォーム35

電極77は、図1に示すように、プリント基板74に形 成された電極端子79…にワイヤ80…を介してそれぞ れ接続されている。そして、電極端子79…は、ヘッド 駆動部19に接続されており、ヘッド駆動部19は、印 字データに基づいて駆動電圧を電極77に印加し、圧電 側壁7.6…を剪断変形(変位)させることによって、圧 カチャンバー75の容積を増減させるようになってい

【0020】また、プリント基板74に形成された特定 の電極端子79には、信号線を介して判定部60が接続 されている。判定部60は、図4に示すように、圧電側 壁76の機械的共振による逆起電圧成分のみを通過させ るように通常帯域が設定されたバンドパスフィルタ(B PF)61と、バンドパスフィルタ61を通過した電圧 成分を増幅させる増幅器62と、増幅された電圧成分を 整流する整流回路63と、整流回路63からの整流電圧 を基準電圧と比較し、整流電圧が基準電圧よりも大きな 値であるときにハイレベルの判定信号を出力するコンパ レータ回路64とを有している。

【0021】コンパレータ回路64の判定信号は、図6 20 に示すように、プリンタ・コントローラ17に出力され るようになっている。 プリンタ・コントローラ17は、 上述のRAM18およびROM36にアクセス可能に接 続されている。そして、プリンタ・コントローラ17が ROM36に格納されたプログラムを実行し、RAM1 8のプリントバッファ領域に対して印字データの書き込 み処理および読み出し処理を実行することによって、印 字動作を行う。また、印字動作と共に、インク切れ検出 ルーチンを印字中に割り込み実行し、判定部60からの に有しており、これらの圧電側壁76…および溝は、圧 30 判定信号を基にしてインク切れを検知するようになって いる。また、プリンタ・コントローラ17は、CRモー タ駆動部20およびLFモータ駆動部33にも接続され ている。CRモータ駆動部20とLFモータ駆動部33 とは、主走査に用いられるCRモータ22と副走査に用 いられるLFモータ34とにそれぞれ接続されており、 各モータ22・34の回転方向や速度を制御するように なっている。

> 【0022】上記のプリンタ・コントローラ17により 制御される印字ヘッド44は、図7に示すように、印字 ヘッド機構21に含まれている。印字ヘッド機構21 は、カートリッジ保持部材31と、カートリッジ保持部 材31に設けられたインク供給部材37と、カートリッ ジ保持部材31 に着脱可能に設けられたインクカートリ ッジ30とを有している。そして、インク供給部材37 の前部には、上述の印字ヘッド44が設けられている。 尚、印字ヘッド44とインクカートリッジ30とは、カ ートリッジ保持部材31を介して着脱可能にされてい

【0023】上記のインクカートリッジ30の内部に

が装填されている。また、インクカートリッジ30の前 面壁 (図中左側壁) の下部には、インク供給口30 aが 形成されており、インク供給口30aには、上述のイン ク供給部材37がシール部材39を介して液密状態で嵌 合されている。そして、インク供給部材37には、印字 ヘッド44とインクカートリッジ30の内部とを連通さ せるインク誘導路37 aが形成されており、インク誘導 路37 aは、インク供給部材37のインクを印字ヘッド 44の全チャンネルに供給するようになっている。

【0024】上記のように構成された印字ヘッド機構2 1は、図8に示すように、主走査方向Xに配列され、用 紙25 (記録媒体) に対してインクの噴射方向が所定の 角度となるようにキャリッジ23に固設されている。キ ャリッジ23は、主走査方向Xに横設されたガイド軸2 4により移動自在に支持されていると共に、CRモータ 22により駆動される走査ベルト26に接続されてお り、走査ベルト26を駆動するCRモータ22は、ガイ ド軸24に沿ってキャリッジ23を主走査方向Xに往復 移動させることによって、印字ヘッド機構21を用紙2 5との距離を一定に保持させながら主走査するようにな っている。

【0025】また、印字ヘッド機構21に対向される用 紙25は、プラテンローラ28により支持されている。 プラテンローラ28は、ガイド軸24に対して平行に設 けられており、両端部が回転自在に軸支されている。と のプラテンローラ28の一方端には、ローラギア29が 固設されている。ローラギア29には、中間ギヤ40を 介してLFモータ34のモータギヤが歯合されており、 LFモータ34は、中間ギヤ40およびローラギア29 等を介してプラテンローラ28を回転させることによっ て、用紙25を副走査方向Yに移動させるようになって いる。そして、とのような用紙25の副走査方向Yの移 動は、印字ヘッド機構21を主走査して1バンド分の印 字が行われる毎に繰り返されるようになっている。

【0026】上記のプラテンローラ28は、用紙25に 対して印字を行う印字動作領域を設定している。また、 プラテンローラ28の一方側には、印字を停止したとき の印字ヘッド機構21の退避位置が設定されており、こ の退避位置には、キャッピング機構5 1 が設けられてい る。キャッピング機構51は、印字ヘッド44を嵌合す る嵌合部52aを有したキャップ部材52と、キャリッ ジ23が退避位置に移動される際にキャップ部材52を 印字ヘッド44に移動させて嵌合させる嵌合機構53と を有しており、退避位置において印字へッド44をキャ ップ部材52によりキャッピングすることによって、印 字ヘッド44の乾燥を防止するようになっている。

【0027】また、印字ヘッド機構21が装着されたキ ャリッジ23の下面には、光学式や磁気式等の非接触式 センサからなる図示しないエンコーダ素子が設けられて いる。とのエンコーダ素子の検出方向には、多数のスリ 50 が増幅器62および整流回路63においてそれぞれ増幅

ットを等間隔に有したタイミングスリット43がガイド 軸24に対して平行に設けられており、エンコーダ素子 は、キャリッジ23と共に主走査方向に移動したとき に、タイミングスリット43のスリットを検出してエン コーダ信号として出力するようになっている。そして、 エンコーダ信号は、図6に示すように、プリンタ・コン トローラ17に入力されるようになっており、プリンタ ・コントローラ17は、エンコーダ信号を基にして上述 のプリントバッファ領域から位置データの読み出し処理 を実行するようになっている。

【0028】上記の構成において、印字実行中に、イン ク切れ検出ルーチンがプリンタ・コントローラ17に実 行されることになる。即ち、先ず、図1に示すように、 判定部60 に接続された信号線のチャンネルからインク を噴射させるよう、プリンタ・コントローラ17からパ ルス状の印字データがヘッド駆動部19に出力された場 合、インク切れ検出ルーチンが割り込み実行される。へ ッド駆動部19は、印字データを一時的に記憶した後、 プリンタ・コントローラ17からの印字タイミング信号 20 が入力されたときに、印字データに対応するチャンネル の電極77に対して方形波状の駆動電圧を印加すること になる。図3に示すように、例えば圧力チャンパー75 aからインクを噴射させる場合、電極77aには電圧V を、又、電極77bにはGND電位を印加する。する と、圧電側壁には矢印Cの電界が発生し、その結果、圧 電側壁76が剪断変形し、圧力チャンバー75の容積が 減少することになる。

【0029】との際、圧力チャンバー75aにインクが 存在していた場合には、圧力チャンバー75a…内のイ 30 ンクが加圧されることによって、圧力チャンパー75の 前方に配置されたノズルブレート73のノズル73aか **らインクが噴射されることになる。そして、駆動電圧の** 印加が終了すると、圧電側壁76の変形状態が解除され て圧力チャンバー75a…の容積が復帰されながら、イ ンクカートリッジ30のインクが圧力チャンパー75a に供給されることになる。従って、圧電側壁76は、変 形時の衝撃が常にインクにより緩衝された状態になって いるため、変形時の物理的な共振による電極77aへの 逆起電圧の発生が抑制されたものになっている。これに より、ヘッド駆動部19から電極77aに印加された駆 動電圧は、図9(a)に示すように、圧電側壁76の変 形時に生じる逆起電圧成分を含まない電圧状態となって いる。

【0030】との後、図4に示すように、上記の駆動電 圧が判定部60に取り込まれると、バンドパスフィルタ 61は設定された物理的な共振周波数幅以外は通過され ないため、逆起電圧成分を含まない駆動電圧は、バンド パスフィルタ61により一定の低電圧の出力信号をとさ れるととになる(図9(b))。そして、との出力信号

(図9 (c)) および整流(図9 (d)) されると、基 準電圧未満の値となるため、コンパレータ回路64は、 ローレベルの判定信号を出力することになる(図9 (e)).

【0031】上記の判定信号は、図6に示すように、ブ リンタ・コントローラ17に取り込まれることになる。 そして、プリンタ・コントローラ17は、判定信号を基 にしてインクの存在を検知することによって、インク切 れ検出ルーチンを終了する。

[0032]一方、電極77に駆動電圧が印加されたと 10 きに、圧力チャンバー75aにインクが存在していない 場合には、圧電側壁76の変形時の衝撃がインクにより 緩衝されないため、物理的な共振による逆起電圧を発生 させることになる。これにより、ヘッド駆動部19から 電極77aに印加された駆動電圧は、図10(a)に示 すように、圧電側壁76の変形時に生じる逆起電圧成分 を含んだ電圧状態なっている。

【0033】との後、図4に示すように、上記の駆動電 圧が判定部60に取り込まれると、バンドパスフィルタ 61において逆起電圧成分のみからなる出力信号とされ 20 た後(図10(b))、増幅器62および整流回路63 において、逆起電圧成分がそれぞれ増幅(図10

(c)) および整流(図10(d)) されることにな る。そして、整流された信号は、基準電圧以上の電圧値 を有しているため、コンパレータ回路64は、ハイレベ ルの判定信号を出力することになる(図10(e))。 この判定信号は、図6に示すように、プリンタ・コント ローラ17に取り込まれることになる。そして、プリン タ・コントローラ17は、判定信号を基にしてインク切 れを検知することによって、インク切れである旨を操作 30 パネル46に表示させたり、報知した後、インク切れ検 出ルーチンを終了することになる。

【0034】尚、本実施形態においては、印字中にイン ク切れ検知ルーチンを実行していたが、印字に先立ち、 キャリッジ23が退避位置に待機している状態で、イン クを噴射させない波形を有する疑似記録信号を印字へっ ド44の所定電極77に印加し、インク切れ検知ルーチ ンを実行させるようにしても良い。さらに、上記の構成 によれば、印字ヘッドからインクを噴射する必要がない 数に設定して駆動すれば、より高いレベルでの逆起電圧 を得ることができ、より正確なインクの残量検出が可能

【0035】尚、本実施形態においては、圧電側壁76 を駆動電圧の印加により変位させたときの逆起電圧成分 を基にしてインクの有無を検知するようになっている が、これに限定されることはない。即ち、電極77に挟 まれた容量成分である圧電側壁76のインピーダンス成 分が存在することに着目し、このインピーダンス成分を 基にしてインクの有無を検知するようになっていても良 50

い。具体的には、ヘッド駆動部19の特定の2チャンネ ル分のドライバ回路65・65の出力側にスイッチ回路 66・66およびコンデンサ68・68をそれぞれ直列 接続すると共に、一方のドライバ回路65に入力される 印字タイミング信号を反転させる第1反転回路67 aを スイッチ回路66・66に接続する。そして、スイッチ 回路66・66とコンデンサ68・68との間に第2反 転回路67bの入力側および出力側をそれぞれ接続し、 反転回路67の出力側をバッファ回路69を介して外部 出力させる発振出力系を構成しても良い。

10

【0036】上記の構成によれば、図12の等価回路に より表された圧電素子76の周波数特性は、図13に示 すように、インクの有無により変化し、結果として固有 固有共振周波数(f、,f、)に応じた自励発振出力が バッファ回路69の出力端子から出力されることにな る。従って、この発振出力の周波数を基にしてインクの 有無を検知することが可能になる。そのため、微妙な電 圧を扱う電気回路を構成しなくとも大振幅の発振出力が 得られることになるため、構成が容易となり、コスト低 減につながると共に、高性能な残量検出を行うことが可 能となる。また、検出回路をヘッド駆動部19内に作り 込むととも可能となる。

[0037]

【発明の効果】請求項1の発明は、インクが充填された インク室と圧電素子部材からなるアクチュエータとを有 し、駆動電圧の印加により前記アクチュエータを変位さ せることによって、インク室内に圧力変動を与えてイン ク液滴を被記録媒体に噴射する印字へッドと、前記アク チュエータの機械的な共振により発生する信号の変化を 基にしてインクの有無を検知するインク切れ検知手段と を有する構成である。これにより、印字へッドのアクチ ュエータの機械的な共振の状態を基にしてインクの有無 を検知するため、従来のようにインクカートリッジ等に 電極を設置する必要がないと共に、インクへの通電を行 わないため、通電によるインクの劣化を防止することが できる。また、上述のようにインクカートリッジに電極 を設置する必要がなく、印字ヘッドとインク切れ検知手 段とでインク切れを検知するため、ヘッドユニットのイ ンクカートリッジを受ける部位に前記電極と接続される ため、電極77に印加する駆動電圧を物理的な共振周波 40 電気接点や接続ケーブルを新たに設置する必要がなくな る。よって、ヘッドユニットの小型化やコスト削減を実 現することが可能となる。また、例えばインクカートリ ッジの交換によりインクを補給する形態のインクジェッ ト記録装置の場合、従来ではインクカートリッジ交換時 に前記電極につながる電気接点や接続ケーブルとの接続 状態を常に気にかけねば正確な残量検出がなされなかっ たが、本発明の構成では上述のように電極や電気接点等 を設けていないため、交換時のインクカートリッジの取 り扱いを容易にすることができるという効果を奏する。 【0038】請求項2の発明は、請求項1記載のインク

ジェット記録装置であって、前記インク切れ検知手段 は、印字ヘッドの駆動時において生ずる前記アクチュエ ータの機械的共振により発生する信号を監視するもので ある構成である。とれにより、印字動作時やフラッシン グ等のメンテナンス動作時等において印字へッドが駆動 されたときのアクチュエータの機械的共振により発生す る信号を監視することで、インク切れを検知する。よっ て、インク切れを検知するために、アクチュエータに機 械的共振を生じさせる特別な機構や、特殊な信号を前記 アクチュエータに入力させる信号入力回路等を設置する 必要がなく、装置構成を簡略化できる。それと共に、印 字ヘッドの駆動時にインク切れを検知するため、インク 切れによるミスプリント等を発生させる前にインク切れ を察知し、これら不具合を未然に防止することができる という効果を奏する。

【0039】請求項3の発明は、請求項1記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータの機械的共振により発生する逆 起電圧の振幅変化に基づいてインクの有無を検知するも のである構成である。とれにより、コンパレータ等の比 20 較器を用いた簡単な回路を用いて、前記逆起電圧の振幅 変化を監視することができるようになり、インク切れ検 知手段を容易に実現できると共に、確実なインク切れの 検出を実行できるという効果を奏する。

【0040】請求項4の発明は、請求項1記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータの機械的共振により発生する信 号の固有共振周波数の変化に基づいてインクの有無を検 知するものである構成である。これにより、固有共振周 波数においては、前記アクチュエータが機械的共振によ 30 数との関係を示すグラフである。 り発生する信号が大きなレベル(振幅)で出力される。 そして、インクの有無によって前記固有共振周波数は異 なっている。よって、固有共振周波数に的を絞って信号 を検出すれば、信頼性の高いインク切れの検知を行うと とができる。さらに、例えばインク切れのときに前記ア クチュエータが機械的共振より発生する信号の共振周波 数に検出ポイントをおき、そのときの出力レベルのみ検 出できる検出機構を採るようにすれば、確実なインク切 れ検知が実現できる。また、上述した通り、固有共振周 波数において出力される信号のレベルは大きく、アンプ 40 等の出力増幅回路を必要とせずに検出できるため、前記 検出機構を簡単な回路構成とすることができるという効 果を奏する。

【0041】請求項5の発明は、請求項4記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータにつながる自励発振回路を有し ている構成である。これにより、発振回路を別個に設け る場合よりも、インク切れ検知と自励発振回路とを一体 化した回路構成とすることによって、小型で簡単な回路 となり、製造コストを低減させることができるという効 50

果を奏する。

【0042】請求項6の発明は、請求項1記載のインク ジェット記録装置であって、前記アクチュエータは、前 記インク室を構成する隔壁の少なくとも一部を成してい る構成である。これにより、アクチュエータがインク室 内のインクの有無による影響を受け易くなるため、アク チュエータの機械的な共振により発生する信号の変化が 顕著となり、インク切れ検知の精度を格段に向上させる ことができるという効果を奏する。

12

【図面の簡単な説明】

【図1】印字ヘッドと判定部との接続状態を示す説明図 である。

【図2】駆動電圧の印加前の印字ヘッドの状態を示す説 明図である。

【図3】駆動電圧の印加後の印字ヘッドの状態を示す説 明図である。

[図4] 判定部のブロック図である。

【図5】情報処理装置に接続されたインクジェット記録 装置の斜視図である。

【図6】インクジェット記録装置の制御系のブロック図 である。

【図7】インクカートリッジの断面図である。

【図8】インクジェット記録装置の要部斜視図である。

【図9】判定部における信号状態を示す説明図である。

【図10】判定部における信号状態を示す説明図であ

【図11】ヘッド駆動部の回路図である。

【図12】発振出力系の等価回路図である。

【図13】インクの有無におけるインピーダンスと周波

【符号の説明】

17 プリンタ・コントローラ

19 ヘッド駆動部

44 印字ヘッド

60 判定部

61 バンドパスフィルタ

62 増幅器

63 整流回路

64 コンパレータ回路

65 ドライバ回路

66 スイッチ回路

67a 第1反転回路

67b 第2反転回路

63 整流回路

68 コンデンサ

69 バッファ回路

71 圧電基板

72 上部カバー

73 ノズルプレート

74 プリント基板

【図6】

(10)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-267488

(43)Date of publication of application: 14.10.1997

(51)Int.CI.

B41J 2/175

B41J 2/045 B41J 2/055

(21)Application number: 08-103139

: 08-103139 29.03.1996 (71)Applicant : BROTHER IND LTD

(72)Inventor: IMAI KOJI

HIWADA SHIYUUHEI

(54) INK JET RECORDER

(57)Abstract:

(22)Date of filing:

PROBLEM TO BE SOLVED: To detect exactly a residual quantity of ink by a method wherein an actuator is displaced by impression of driving voltage to spray ink liquid in an ink chamber, and existence of the ink is detected based on variation of a signal generated by mechanical resonance of the actuator.

SOLUTION: A head driving part 19 impresses driving voltage to an electrode 77 of a channel corresponding to a printed data to shear deform a piezoelectric side wall 76 thereby, and a volume of a pressure chamber 75 is decreased. When ink exists in the pressure chamber 75, ink is sprayed from a nozzle 73a of a nozzle plate 73. Thereafter, ink in an ink cartridge is fed to the pressure chamber 75, and the piezoelectric side wall 76 is buffered by the ink. However, when ink does not exist in the pressure chamber 75, though back electromotive force is generated, running out of the ink is detected from a voltage state including this back electromotive force with a judging part 60.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出題公開番号

特開平9-267488

(43)公期日 平成9年(1997)10月14日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
B41J	2/175			B41J	3/04	102Z	
	2/045					103A	
	2/055			•			

		家查請求	未請求 請求項の数6 FD (全 10 頁)		
(21)出願番号	特額平8-103139	(71)出願人	000005267 プラザー工業株式会社		
(22)出顧日	平成8年(1996) 3月29日	愛知県名古屋市瑞穂区苗代町15番1号 今井 浩司			
			愛知県名古屋市瑞穂区苗代町15番1号 ブラザー工業株式会社内		
		(72)発明者	第田 周平		
			愛知県名古屋市瑞穂区苗代町15番1号 プラザー工業株式会社内		
		(74)代理人	弁理士 梶 良之		

(54)【発明の名称】 インクジェット記録装置

(57)【要約】

【課題】 通電によるインクの劣化を防止すると共に、 交換時の取り扱いを容易にする。

【解決手段】 圧電側壁76を駆動電圧の印加により変位させることによって、インクを記録媒体に噴射する印字ヘッド44と、インクの有無により圧電側壁76の機械的な共振条件の変化を基にしてインクの有無を検知する判定部60およびブリンタ・コントローラ17とを有している。

【特許請求の範囲】

【請求項1】 インクが充填されたインク室と圧電素子部材からなるアクチュエータとを有し、駆動電圧の印加により前記アクチュエータを変位させることによって、インク室内に圧力変動を与えてインク液滴を被記録媒体に噴射する印字ヘッドと、

1

前記アクチュエータの機械的な共振により発生する信号 の変化を基にしてインクの有無を検知するインク切れ検 知手段とを有することを特徴とするインクジェット記録 装置。

【請求項2】 前記インク切れ検知手段は、印字ヘッドの駆動時において生ずる前記アクチュエータの機械的共振により発生する信号を監視するものであることを特徴とする請求項1記載のインクジェット記録装置。

【請求項3】 前記インク切れ検知手段は、前記アクチュエータの機械的共振により発生する逆起電圧の振幅変化に基づいてインクの有無を検知するものであることを特徴とする請求項1記載のインクジェット記録装置。

【請求項4】 前記インク切れ検知手段は、前記アクチュエータの機械的共振により発生する信号の固有共振周 20 波数の変化に基づいてインクの有無を検知するものであることを特徴とする請求項1記載のインクジェット記録 装置。

【請求項5】 前記インク切れ検知手段は、前記アクチュエータにつながる自励発振回路を有していることを特徴とする請求項4記載のインクジェット記録装置。

【請求項6】 前記アクチュエータは、前記インク室を 構成する隔壁の少なくとも一部を成していることを特徴 とする請求項1記載のインクジェット記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インクを用紙に吹き付けて印字するインクジェット記録装置に関するものである。

[0002]

【従来の技術】ファクシミリ装置等の通信装置やパーソナルコンピュータ等の情報処理装置には、通常、文字や図形からなるデータを視覚情報として記録するように、これらのデータを用紙に印字可能な記録装置が接続されている。この記録装置には、インパクト方式や感熱方式、インクジェット方式等の各種の印字方式が採用されているが、近年においては、静粛性に優れていると共に各種材質の用紙に印字可能なインクジェット方式を採用したインクジェット記録装置が多用されるようになっている。

【0003】上記のインクジェット記録装置は、印字ヘッドを主走査しながら、インクカートリッジから印字ヘッドに供給されたインクを用紙に吹き付けることにより 1バンド分の印字を行った後、この用紙を1バンド幅副 走査するという印字処理を繰り返すことにより用紙の全 50

面に印字するようになっている。従って、このような動作により印字するインクジェット記録装置は、印字ヘッドに対するインク供給を安定させて良好な印字品質を得ることができるように、インクカートリッジ内にフォームを装填してインクを含ませるようになっていると共に、インク切れを事前に検知して印字不良を防止することができるように、インク検出機構によりインクの有無を検知するようになっている。

【0004】即ち、従来のインクジェット記録装置が有 するインク切れ検出機構は、インクが導電性を有してい ることに着目して構成されたものであり、インクカート リッジの底面壁や側面壁の下部に一対の電極をインクに 接触するように設け、一方の電極から他方の電極に通電 したときの電流値を記録装置本体のプリンタ・コントロ ーラにおいて所定値と比較することによって、インクの 有無を判定するようになっている。

[0005]

【発明が解決しようとする課題】しかしながら、上記従来のように、インクに電流を流してインク切れを検出する構成では、電流がインクを劣化させるため、長期間使用すると、劣化したインクにより印字品質が低下するという問題がある。

【0006】また、カートリッジ単位でインクが交換されるように、インクカートリッジが記録装置本体に対して着脱可能に構成されている場合、インクカートリッジと記録装置本体とは、電気接点同士を接触させることによって、電極間に通電される電流値をブリンタ・コントローラにより検知させるようになっている。従って、このような構成であると、インク切れ検出実現のために電の接点数や接続ケーブル数の増加を招き、結果としてヘッドユニットの大型化やコストの増加という問題もある。

【0007】従って、本発明は、上記問題点を解決すべく、通電によるインクの劣化を防止することができると共に、的確なインクの残量検出を可能とし、且つ構造が簡単化され低コストが実現できるインクジェット記録装置を提供しようとするものである。

[0008]

【課題を解決するための手段】上記課題を解決するために、請求項1の発明は、インクが充填されたインク室と 圧電素子部材からなるアクチュエータとを有し、駆動電 圧の印加により前記アクチュエータを変位させることと よって、インク室内に圧力変動を与えてインク液滴を被記録媒体に噴射する印字へッドと、前記アクチュエータの機械的な共振により発生する信号の変化を基にしてインクの有無を検知するインク切れ検知手段とを有することを特徴としている。これにより、印字へッドのアクチュエータの機械的な共振の状態を基にしてインクの有無を検知するため、従来のようにインクカートリッジ等に電極を設置する必要がないと共に、インクへの通電を行

わないため、通電によるインクの劣化を防止することができる。また、上述のようにインクカートリッジに電極を設置する必要がなく、印字ヘッドとインク切れ検知手段とでインク切れを検知するため、ヘッドユニットのインクカートリッジを受ける部位に前記電極と接続される電気接点や接続ケーブルを新たに設置する必要がなくなる。よって、ヘッドユニットの小型化やコスト削減を実現することが可能となる。また、例えばインクカートリッジの交換によりインクを補給する形態のインクシェット記録装置の場合、従来ではインクカートリッジ交換時は前記電極につながる電気接点や接続ケーブルとの接続状態を常に気にかければ正確な残量検出がなされなかったが、本発明の構成では上述のように電極や電気接点等を設けていないため、交換時のインクカートリッジの取り扱いを容易にすることができる。

【0009】請求項2の発明は、請求項1記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、印字ヘッドの駆動時において生ずる前記アクチュエ ータの機械的共振により発生する信号を監視するもので あることを特徴としている。これにより、印字動作時や 20 フラッシング等のメンテナンス動作時等において印字へ ッドが駆動されたときのアクチュエータの機械的共振に より発生する信号を監視することで、インク切れを検知 する。よって、インク切れを検知するために、アクチュ エータに機械的共振を生じさせる特別な機構や、特殊な 信号を前記アクチュエータに入力させる信号入力回路等 を設置する必要がなく、装置構成を簡略化できる。それ と共に、印字ヘッドの駆動時にインク切れを検知するた め、インク切れによるミスプリント等を発生させる前に インク切れを察知し、これら不具合を未然に防止すると 30 とができる。

【0010】請求項3の発明は、請求項1記載のインクシェット記録装置であって、前記インク切れ検知手段は、前記アクチュエータの機械的共振により発生する逆起電圧の振幅変化に基づいてインクの有無を検知するものであることを特徴としている。これにより、コンパレータ等の比較器を用いた簡単な回路を用いて、前記逆起電圧の振幅変化を監視することができるようになり、インク切れ検知手段を容易に実現できると共に、確実なインク切れの検出を実行できる。

【0011】請求項4の発明は、請求項1記載のインクジェット記録装置であって、前記インク切れ検知手段は、前記アクチュエータの機械的共振により発生する信号の固有共振周波数の変化に基づいてインクの有無を検知するものであることを特徴としている。これにより、固有共振周波数においては、前記アクチュエータが機械的共振により発生する信号が大きなレベル(振幅)で出力される。そして、インクの有無によって前記固有共振周波数にある。よって、固有共振周波数に的を絞って信号を検出すれば、信頼性の高いインク切れの検

4

知を行うてとができる。さらに、例えばインク切れのときに前記アクチュエータが機械的共振より発生する信号の共振周波数に検出ポイントをおき、そのときの出力レベルのみ検出できる検出機構を採るようにすれば、確実なインク切れ検知が実現できる。また、上述した通り、固有共振周波数において出力される信号のレベルは大きく、アンプ等の出力増幅回路を必要とせずに検出できるため、前記検出機構を簡単な回路構成とすることができる。

【0012】請求項5の発明は、請求項4記載のインクシェット記録装置であって、前記インク切れ検知手段は、前記アクチュエータにつながる自励発振回路を有していることを特徴としている。これにより、発振回路を別個に設ける場合よりも、インク切れ検知と自励発振回路とを一体化した回路構成とすることによって、小型で簡単な回路となり、製造コストを低減させることができる。

【0013】請求項6の発明は、請求項1記載のインクジェット記録装置であって、前配アクチュエータは、前記インク室を構成する隔壁の少なくとも一部を成していることを特徴としている。これにより、アクチュエータがインク室内のインクの有無による影響を受け易くなるため、アクチュエータの機械的な共振により発生する信号の変化が顕著となり、インク切れ検知の精度を格段に向上させることができる。

[0014]

【発明の実施の形態】本発明の実施の形態を図1ないし図13に基づいて以下に説明する。本実施の形態に係るインクジェット記録装置は、図5に示すように、バーソナルコンピュータ等の情報処理装置1に接続されている。情報処理装置1は、磁気ディスク装置等の補助記憶装置や中央演算装置を内蔵した処理装置本体2と、データ等を画面表示するCRT(cathode-ray tube)3と、データの入力および指示に使用されるキーボード4およびマウス5とを有しており、例えばセントロニクス仕様のフリンタケーブル6を介してインクジェット記録装置であるフリンタ7に接続されている。

【0015】上記の処理装置本体2は、図6に示すように、例えばウインドウ・システム8をオペレーティングシステム(OS)として備えている。ウインドウ・システム8は、文書作成プログラム等のアプリケーション9、字体を管理するフォントドライバ10、CRT3を管理するCRT・ドライバ11、キーボード4を管理するキーボード・ドライバ12、マウス5を管理するマウス・ドライバ13、プリンタ7を管理するブリンタ・ドライバ14等の各種の機能グループと協働して1つあるいは複数のアプリケーション9を同時に実行することができるようになっている。

周波数は異なっている。よって、固有共振周波数に的を 【0016】上記のプリンタ・ドライバ14は、例えば 絞って信号を検出すれば、信頼性の高いインク切れの検 50 CRT3の画面に表示されているデータ等を対象として

「印刷実行」のメニューが指定されたときには、ドット イメージデータを形成可能になっており、印刷対象とな るテキストのフォントデータ等を基に、ドットイメージ データ(水平方向および垂直方向にドットマトリックス 状に配置された画素データ)を形成し、これらのドット イメージデータを1ラスタ毎に水平方向(ラスタ方向) に8ビット単位の印字データとしてインターフェース (I/F) 部15から順次出力するようになっている。 【0017】上記のようなラスタスキャン形式により出 力された印字データは、インクジェット記録装置である 10 プリンタ7の 1/F (インターフェース) 部16 に入力 されるようになっている。このプリンタ7は、プリンタ ・コントローラ17 (インク切れ検知手段)と、プリン トバッファ領域等の各種のデータ領域が形成されたRA M18と、印字ルーチンやインク切れ判定ルーチン等の 各種の制御プログラムが格納されたROM36と、ヘッ ド駆動部19と、CRモータ駆動部20と、LFモータ 駆動部33と、各種の処理動作を指示する操作パネル4 6と、インク切れ時にハイレベルの判定信号を出力する 判定部60(インク切れ検知手段)とを有している。 【0018】上記のヘッド駆動部19は、印字ヘッド4 4に接続されている。印字ヘッド44は、図1に示すよ うに、圧電素子である圧電セラミックスからなる圧電基 板71と、圧電基板71の上面に貼設された上部カバー 72と、圧電基板71の前面に貼設されたノズルプレー ト73と、圧電基板71の下面に貼設されたプリント基 板74とを有している。圧電基板71は、ダイシング加 工等の切削加工により互いに平行となるように形成され た複数の圧電側壁76…(圧電素子部材)と溝とを交互 に有しており、これらの圧電側壁76…および溝は、圧 30 電基板71の上面に上部カバー72が貼設されることに よって、各チャンネルに対応する圧力チャンパー75… を形成するようになっている。そして、ノズルプレート 73には、圧力チャンパー75…に対応するようにノズ ル73a…が複数形成されており、これらのノズル73 a…は、圧力チャンバー75…の容積が減少したとき に、圧力チャンバー75…内のインクを加圧して噴射さ せるようになっている。また、上部カバー72には、貫 通口78が形成されており、貫通口78は、圧力チャン バー75…と図7のインクカートリッジ30内とを連通 40 させることによって、圧力チャンバー75…の容積が復 帰されるときにインクカートリッジ30のインクを圧力 チャンパー75…に供給させるようになっている。尚、 上記圧電基板71が本発明のアクチュエータに相当し、 上記圧力チャンバー75が本発明のインク室に相当す

【0019】上記の圧力チャンパー75を形成する圧電 側壁76は、矢符B方向に分極されている。圧電側壁7 6の両側面の上部には、図2に示すように、電極77が

る、

電極77は、図1に示すように、プリント基板74に形 成された電極端子79…にワイヤ80…を介してそれぞ れ接続されている。そして、電極端子79…は、ヘッド 駆動部19に接続されており、ヘッド駆動部19は、印 字データに基づいて駆動電圧を電極77に印加し、圧電

側壁76…を剪断変形(変位)させることによって、圧

カチャンバー75の容積を増減させるようになってい 【0020】また、プリント基板74に形成された特定 の電極端子79には、信号線を介して判定部60が接続

されている。判定部60は、図4に示すように、圧電側 壁76の機械的共振による逆起電圧成分のみを通過させ るように通常帯域が設定されたパンドパスフィルタ (B PF) 61と、パンドパスフィルタ61を通過した電圧 成分を増幅させる増幅器62と、増幅された電圧成分を 整流する整流回路63と、整流回路63からの整流電圧

を基準電圧と比較し、整流電圧が基準電圧よりも大きな

値であるときにハイレベルの判定信号を出力するコンパ レータ回路64とを有している。

20 【0021】コンパレータ回路64の判定信号は、図6 に示すように、プリンタ・コントローラ17に出力され るようになっている。プリンタ・コントローラ17は、 上述のRAM18およびROM36にアクセス可能に接 続されている。そして、プリンタ・コントローラ17が ROM36に格納されたプログラムを実行し、RAM1 8のプリントバッファ領域に対して印字データの書き込 み処理および読み出し処理を実行することによって、印 字動作を行う。また、印字動作と共に、インク切れ検出 ルーチンを印字中に割り込み実行し、判定部60からの 判定信号を基にしてインク切れを検知するようになって いる。また、プリンタ・コントローラ17は、CRモー タ駆動部20およびLFモータ駆動部33にも接続され ている。CRモータ駆動部20とLFモータ駆動部33 とは、主走査に用いられるCRモータ22と副走査に用 いられるLFモータ34とにそれぞれ接続されており、 各モータ22・34の回転方向や速度を制御するように

【0022】上記のプリンタ・コントローラ17により 制御される印字ヘッド44は、図7に示すように、印字 ヘッド機構21に含まれている。印字ヘッド機構21 は、カートリッジ保持部材31と、カートリッジ保持部 材31に設けられたインク供給部材37と、カートリッ ジ保持部材31に着脱可能に設けられたインクカートリ ッジ30とを有している。そして、インク供給部材37 の前部には、上述の印字ヘッド44が設けられている。 尚、印字ヘッド44とインクカートリッジ30とは、カ ートリッジ保持部材31を介して着脱可能にされてい る。

なっている。

【0023】上記のインクカートリッジ30の内部に 例えばメッキ処理によりそれぞれ形成されている。との 50 は、インクを含むように連続気泡を有したフォーム35 が装填されている。また、インクカートリッジ30の前 面壁(図中左側壁)の下部には、インク供給口30aが 形成されており、インク供給口30aには、上述のイン ク供給部材37がシール部材39を介して液密状態で嵌 合されている。そして、インク供給部材37には、印字 ヘッド44とインクカートリッジ30の内部とを連通さ せるインク誘導路37aが形成されており、インク誘導 路37aは、インク供給部材37のインクを印字ヘッド 44の全チャンネルに供給するようになっている。

【0024】上記のように構成された印字ヘッド機構2 10 1は、図8に示すように、主走査方向Xに配列され、用 紙25 (記録媒体) に対してインクの噴射方向が所定の 角度となるようにキャリッジ23に固設されている。キ ャリッジ23は、主走査方向Xに横設されたガイド軸2 4により移動自在に支持されていると共に、CRモータ 22により駆動される走査ベルト26に接続されてお り、走査ベルト26を駆動するCRモータ22は、ガイ ド軸24に沿ってキャリッジ23を主走査方向Xに往復 移動させることによって、印字ヘッド機構21を用紙2 5との距離を一定に保持させながら主走査するようにな 20 っている。

【0025】また、印字ヘッド機構21に対向される用 紙25は、プラテンローラ28により支持されている。 プラテンローラ28は、ガイド軸24に対して平行に設 けられており、両端部が回転自在に軸支されている。と のプラテンローラ28の一方端には、ローラギア29が 固設されている。ローラギア29には、中間ギヤ40を 介してLFモータ34のモータギヤが歯合されており、 LFモータ34は、中間ギヤ40およびローラギア29 て、用紙25を副走査方向Yに移動させるようになって いる。そして、このような用紙25の副走査方向Yの移 動は、印字ヘッド機構21を主走査して1バンド分の印 字が行われる毎に繰り返されるようになっている。

【0026】上記のプラテンローラ28は、用紙25に 対して印字を行う印字動作領域を設定している。また、 プラテンローラ28の一方側には、印字を停止したとき の印字ヘッド機構21の退避位置が設定されており、と の退避位置には、キャッピング機構51が設けられてい る。キャッピング機構51は、印字ヘッド44を嵌合す 40 る嵌合部52aを有したキャップ部材52と、キャリッ ジ23が退避位置に移動される際にキャップ部材52を 印字ヘッド44に移動させて嵌合させる嵌合機構53と を有しており、退避位置において印字ヘッド44をキャ ップ部材52によりキャッピングすることによって、印 字ヘッド44の乾燥を防止するようになっている。

【0027】また、印字ヘッド機構21が装着されたキ ャリッジ23の下面には、光学式や磁気式等の非接触式 センサからなる図示しないエンコーダ素子が設けられて

ットを等間隔に有したタイミングスリット43がガイド 軸24に対して平行に設けられており、エンコーダ素子 は、キャリッジ23と共に主走査方向に移動したとき に、タイミングスリット43のスリットを検出してエン コーダ信号として出力するようになっている。そして、 エンコーダ信号は、図6に示すように、プリンタ・コン トローラ17に入力されるようになっており、プリンタ ・コントローラ17は、エンコーダ信号を基にして上述 のプリントバッファ領域から位置データの読み出し処理 を実行するようになっている。

【0028】上記の構成において、印字実行中に、イン ク切れ検出ルーチンがプリンタ・コントローラ17に実 行されることになる。即ち、先ず、図1に示すように、 判定部60に接続された信号線のチャンネルからインク を噴射させるよう、プリンタ・コントローラー7からパ ルス状の印字データがヘッド駆動部19に出力された場 合、インク切れ検出ルーチンが割り込み実行される。へ ッド駆動部19は、印字データを一時的に記憶した後、 プリンタ・コントローラ17からの印字タイミング信号 が入力されたときに、印字データに対応するチャンネル の電極77に対して方形波状の駆動電圧を印加すること になる。図3に示すように、例えば圧力チャンバー75 aからインクを噴射させる場合、電極77aには電圧V を、又、電極77bにはGND電位を印加する。する と、圧電側壁には矢印Cの電界が発生し、その結果、圧 電側壁78が剪断変形し、圧力チャンバー75の容積が 減少することになる。

【0029】との際、圧力チャンバー75aにインクが 存在していた場合には、圧力チャンバー75a…内のイ 等を介してプラテンローラ28を回転させることによっ 30 ンクが加圧されることによって、圧力チャンパー75の 前方に配置されたノズルプレート73のノズル73aか **らインクが噴射されることになる。そして、駆動電圧の** 印加が終了すると、圧電側壁76の変形状態が解除され て圧力チャンバー75 a…の容積が復帰されながら、イ ンクカートリッジ30のインクが圧力チャンバー75a に供給されることになる。従って、圧電側壁76は、変 形時の衝撃が常にインクにより緩衝された状態になって いるため、変形時の物理的な共振による電極77aへの 逆起電圧の発生が抑制されたものになっている。これに より、ヘッド駆動部19から電極77aに印加された駆 動電圧は、図9(a)に示すように、圧電側壁76の変 形時に生じる逆起電圧成分を含まない電圧状態となって いる。

【0030】との後、図4に示すように、上記の駆動電 圧が判定部6.0に取り込まれると、バンドパスフィルタ 61は設定された物理的な共振周波数幅以外は通過され ないため、逆起電圧成分を含まない駆動電圧は、バンド パスフィルタ61により一定の低電圧の出力信号をとさ れることになる(図9(b))。そして、この出力信号 いる。とのエンコーダ素子の検出方向には、多数のスリ 50 が増幅器62および整流回路63においてそれぞれ増幅

(図9(c)) および整流(図9(d)) されると、基 準電圧未満の値となるため、コンパレータ回路64は、 ローレベルの判定信号を出力するととになる(図9 (e)).

【0031】上記の判定信号は、図6に示すように、ブ リンタ・コントローラ17に取り込まれることになる。 そして、ブリンタ・コントローラ17は、判定信号を基 にしてインクの存在を検知することによって、インク切 れ検出ルーチンを終了する。

【0032】一方、電極77に駆動電圧が印加されたと 10 きに、圧力チャンバー75aにインクが存在していない 場合には、圧電側壁76の変形時の衝撃がインクにより 緩衝されないため、物理的な共振による逆起電圧を発生 させることになる。これにより、ヘッド駆動部19から 電極77aに印加された駆動電圧は、図10(a)に示 すように、圧電側壁76の変形時に生じる逆起電圧成分 を含んだ電圧状態なっている。

【0033】との後、図4に示すように、上記の駆動電 圧が判定部60に取り込まれると、バンドパスフィルタ 61において逆起電圧成分のみからなる出力信号とされ 20 た後(図10(b))、増幅器62および整流回路63 において、逆起電圧成分がそれぞれ増幅(図10

(c)) および整流(図10(d)) されることにな る。そして、整流された信号は、基準電圧以上の電圧値 を有しているため、コンパレータ回路64は、ハイレベ ルの判定信号を出力することになる(図10(e))。 この判定信号は、図6に示すように、プリンタ・コント ローラ17に取り込まれることになる。そして、プリン タ・コントローラ17は、判定信号を基にしてインク切 れを検知することによって、インク切れである旨を操作 30 パネル46に表示させたり、報知した後、インク切れ検 出ルーチンを終了することになる。

【0034】尚、本実施形態においては、印字中にイン ク切れ検知ルーチンを実行していたが、印字に先立ち、 キャリッジ23が退避位置に待機している状態で、イン クを噴射させない波形を有する疑似記録信号を印字へッ ド44の所定電極77に印加し、インク切れ検知ルーチ ンを実行させるようにしても良い。さらに、上記の構成 によれば、印字ヘッドからインクを噴射する必要がない ため、電極77に印加する駆動電圧を物理的な共振周波 40 数に設定して駆動すれば、より高いレベルでの逆起電圧 を得ることができ、より正確なインクの残量検出が可能 となる。

【0035】尚、本実施形態においては、圧電側壁76 を駆動電圧の印加により変位させたときの逆起電圧成分 を基にしてインクの有無を検知するようになっている が、これに限定されることはない。即ち、電極77に挟 まれた容量成分である圧電側壁76のインピーダンス成 分が存在することに着目し、このインピーダンス成分を い。具体的には、ヘッド駆動部19の特定の2チャンネ ル分のドライバ回路65・65の出力側にスイッチ回路 66・66およびコンデンサ68・68をそれぞれ直列

接続すると共に、一方のドライバ回路65に入力される 印字タイミング信号を反転させる第1反転回路67aを スイッチ回路66・66に接続する。そして、スイッチ 回路66・66とコンデンサ68・68との間に第2反

10

転回路67bの入力側および出力側をそれぞれ接続し、 反転回路67の出力側をバッファ回路69を介して外部 出力させる発振出力系を構成しても良い。

【0036】上記の構成によれば、図12の等価回路に より表された圧電素子76の周波数特性は、図13に示 すように、インクの有無により変化し、結果として固有 固有共振周波数(f.,f.)に応じた自励発振出力が バッファ回路69の出力端子から出力されることにな る。従って、との発振出力の周波数を基にしてインクの 有無を検知することが可能になる。そのため、微妙な電 圧を扱う電気回路を構成しなくとも大振幅の発振出力が 得られることになるため、構成が容易となり、コスト低。 減につながると共に、高性能な残量検出を行うととが可 能となる。また、検出回路をヘッド駆動部19内に作り 込むことも可能となる。

[0037]

【発明の効果】請求項1の発明は、インクが充填された インク室と圧電素子部材からなるアクチュエータとを有 し、駆動電圧の印加により前記アクチュエータを変付さ せることによって、インク室内に圧力変動を与えてイン ク液滴を被記録媒体に噴射する印字ヘッドと、前記アク チュエータの機械的な共振により発生する信号の変化を 基にしてインクの有無を検知するインク切れ検知手段と を有する構成である。これにより、印字ヘッドのアクチ ュエータの機械的な共振の状態を基にしてインクの有無 を検知するため、従来のようにインクカートリッジ等に 電極を設置する必要がないと共に、インクへの通電を行 わないため、通電によるインクの劣化を防止することが できる。また、上述のようにインクカートリッジに電極 を設置する必要がなく、印字ヘッドとインク切れ検知手 段とでインク切れを検知するため、ヘッドユニットのイ ンクカートリッジを受ける部位に前記電極と接続される 電気接点や接続ケーブルを新たに設置する必要がなくな る。よって、ヘッドユニットの小型化やコスト削減を実 現することが可能となる。また、例えばインクカートリ ッジの交換によりインクを補給する形態のインクジェッ ト記録装置の場合、従来ではインクカートリッジ交換時 に前記電極につながる電気接点や接続ケーブルとの接続 状態を常に気にかけねば正確な残量検出がなされなかっ たが、本発明の構成では上述のように電極や電気接点等 を設けていないため、交換時のインクカートリッジの取 り扱いを容易にすることができるという効果を奏する。 基にしてインクの有無を検知するようになっていても良 50 【0038】請求項2の発明は、請求項1記載のインク

11

ジェット記録装置であって、前記インク切れ検知手段 は、印字ヘッドの駆動時において生ずる前記アクチュエ ータの機械的共振により発生する信号を監視するもので ある構成である。これにより、印字動作時やフラッシン グ等のメンテナンス動作時等において印字ヘッドが駆動 されたときのアクチュエータの機械的共振により発生す る信号を監視することで、インク切れを検知する。よっ て、インク切れを検知するために、アクチュエータに機 械的共振を生じさせる特別な機構や、特殊な信号を前記 アクチュエータに入力させる信号入力回路等を設置する 10 必要がなく、装置構成を簡略化できる。それと共に、印 字ヘッドの駆動時にインク切れを検知するため、インク 切れによるミスプリント等を発生させる前にインク切れ を察知し、これら不具合を未然に防止することができる という効果を奏する。

【0039】請求項3の発明は、請求項1記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータの機械的共振により発生する逆 起電圧の振幅変化に基づいてインクの有無を検知するも のである構成である。これにより、コンパレータ等の比 20 較器を用いた簡単な回路を用いて、前記逆起電圧の振幅 変化を監視することができるようになり、インク切れ検 知手段を容易に実現できると共に、確実なインク切れの 検出を実行できるという効果を奏する。

【0040】請求項4の発明は、請求項1記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータの機械的共振により発生する信 号の固有共振周波数の変化に基づいてインクの有無を検 知するものである構成である。これにより、固有共振周 波数においては、前記アクチュエータが機械的共振によ 30 り発生する信号が大きなレベル(振幅)で出力される。 そして、インクの有無によって前記固有共振周波数は異 なっている。よって、固有共振周波数に的を絞って信号 を検出すれば、信頼性の高いインク切れの検知を行うと とができる。さらに、例えばインク切れのときに前記ア クチュエータが機械的共振より発生する信号の共振周波 数に検出ポイントをおき、そのときの出力レベルのみ検 出できる検出機構を採るようにすれば、確実なインク切 れ検知が実現できる。また、上述した通り、固有共振周 波数において出力される信号のレベルは大きく、アンプ 40 等の出力増幅回路を必要とせずに検出できるため、前記 検出機構を簡単な回路構成とすることができるという効 果を奏する。

【0041】請求項5の発明は、請求項4記載のインク ジェット記録装置であって、前記インク切れ検知手段 は、前記アクチュエータにつながる自励発振回路を有し ている構成である。とれにより、発振回路を別個に設け る場合よりも、インク切れ検知と自励発振回路とを一体 化した回路構成とするととによって、小型で簡単な回路 となり、製造コストを低減させることができるという効 50 74 ブリント基板

果を奏する。

【0042】請求項6の発明は、請求項1記載のインク ジェット記録装置であって、前記アクチュエータは、前 記インク室を構成する隔壁の少なくとも一部を成してい る構成である。とれにより、アクチュエータがインク室 内のインクの有無による影響を受け易くなるため、アク チュエータの機械的な共振により発生する信号の変化が 顕著となり、インク切れ検知の精度を格段に向上させる ことができるという効果を奏する。

【図面の簡単な説明】

【図1】印字ヘッドと判定部との接続状態を示す説明図

【図2】駆動電圧の印加前の印字ヘッドの状態を示す説 明図である。

【図3】駆動電圧の印加後の印字ヘッドの状態を示す説 明図である。

【図4】判定部のブロック図である。

【図5】情報処理装置に接続されたインクジェット記録 装置の斜視図である。

【図6】インクジェット記録装置の制御系のブロック図 である。

【図7】インクカートリッジの断面図である。

【図8】インクジェット記録装置の要部斜視図である。

【図9】判定部における信号状態を示す説明図である。

【図10】判定部における信号状態を示す説明図であ

【図11】ヘッド駆動部の回路図である。

【図12】発振出力系の等価回路図である。

【図13】インクの有無におけるインピーダンスと周波 数との関係を示すグラフである。

【符号の説明】

17 プリンタ・コントローラ

19 ヘッド駆動部

44 印字ヘッド

60 判定部

61 バンドパスフィルタ

62 増幅器

63 整流回路

64 コンパレータ回路

65 ドライバ回路

66 スイッチ回路

67a 第1反転回路

67b 第2反転回路

63 整流回路

68 コンデンサ

69 バッファ回路

71 圧電基板

72 上部カバー

73 ノズルプレート

(8)

特開平9-267488

75 圧力チャンバー

76 圧電側壁

・ンバー * 78 貫通口 E 79 電極端子

13

77 電極

*

[図6]

