EE263 Autumn 2015 S. Boyd and S. Lall

Linear functions

Linear equations

consider system of linear equations

$$y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$

$$\vdots$$

$$y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n$$

can be written in matrix form as y = Ax, where

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Linear functions

a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is *linear* if

$$f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}^n$$

$$f(\alpha x) = \alpha f(x), \ \forall x \in \mathbb{R}^n \ \forall \alpha \in \mathbb{R}$$

i.e., superposition holds

Matrix multiplication function

- ▶ consider function $f: \mathbb{R}^n \to \mathbb{R}^m$ given by f(x) = Ax, where $A \in \mathbb{R}^{m \times n}$
- ▶ matrix multiplication function f is linear
- ▶ converse is true: any linear function $f: \mathbb{R}^n \to \mathbb{R}^m$ can be written as f(x) = Ax for some $A \in \mathbb{R}^{m \times n}$
- ightharpoonup representation via matrix multiplication is unique: for any linear function f there is only one matrix A for which f(x) = Ax for all x
- ightharpoonup y = Ax is a concrete representation of a generic linear function

Interpretations of y = Ax

- ightharpoonup y is measurement or observation; x is unknown to be determined
- x is 'input' or 'action'; y is 'output' or 'result'
- $\blacktriangleright~y=Ax$ defines a function or transformation that maps $x\in\mathbb{R}^n$ into $y\in\mathbb{R}^m$

Interpretation of a_{ij}

$$y_i = \sum_{j=1}^n a_{ij} x_j$$

 a_{ij} is gain factor from jth input (x_j) to ith output (y_i)

- ▶ *i*th *row* of *A* concerns *i*th *output*
- ▶ jth column of A concerns jth input
- ▶ $a_{27} = 0$ means 2nd output (y_2) doesn't depend on 7th input (x_7)
- $ightharpoonup |a_{31}| \gg |a_{3j}|$ for $j \neq 1$ means y_3 depends mainly on x_1
- ▶ $|a_{52}| \gg |a_{i2}|$ for $i \neq 5$ means x_2 affects mainly y_5
- ▶ A is lower triangular, i.e., $a_{ij} = 0$ for i < j, means y_i only depends on x_1, \ldots, x_i
- ▶ A is diagonal, i.e., $a_{ij}=0$ for $i \neq j$, means ith output depends only on ith input

more generally, **sparsity pattern** of A, i.e., list of zero/nonzero entries of A, shows which x_i affect which y_i

Linearization

ightharpoonup if $f:\mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x_0 \in \mathbb{R}^n$, then

$$x$$
 near $x_0 \Longrightarrow f(x)$ very near $f(x_0) + Df(x_0)(x - x_0)$

where

$$Df(x_0)_{ij} = \left. \frac{\partial f_i}{\partial x_j} \right|_{x_0}$$

is derivative (Jacobian) matrix

- ▶ with y = f(x), $y_0 = f(x_0)$, define input deviation $\delta x := x x_0$, output deviation $\delta y := y y_0$
- ▶ then we have $\delta y \approx Df(x_0)\delta x$
- ▶ when deviations are small, they are (approximately) related by a linear function