Capítulo 1 $Numerical\ Results$

Cuadro 1.1: Test-Case 1:.* Same population sizes estimated by bisection (using a selectorecombinative GA).

36	16	12	4-Trap	60	48	36	24	12	3-Trap	60	48	36	24	12	2-Trap		36	24	16	12	4-Trap	60	48	36	24	12	3-Trap	60	48	36	24	12	2-Trap		Instance	Problem
* 1	€ →	÷ *	z	*	*	*	*	*	Z	*	*	*	*	*	Z			,	53760	2880	Z	11520	7680	5280	3120	360	N	320	250	170	135	60	N			
	53760	2880	Q_1	725822	422454	237644	86606	1082	Q_1	10592	7278	4103	2039	304	Q_1			,	53760	2880	Q_1	472360	268834	142586	53056	811	Q_1	7382	5019	2735	1495	258	Q_1			0
	53760	2880	Q_2	748864	445497	253487	99871	1443	Q_2	11232	7780	4616	2447	426	Q_2			1	53760	2880	Q_2	483881	284196	153148	56177	1443	Q_2	7832	5395	2906	1767	365	Q_2			GGA
	107521	5761	Q_3	794948	466619	279892	109234	2887	Q_3	11876	8031	5300	2885	593	Q_3			,	107521	5761	Q_3	506923	299558	163710	64759	2526	Q_3	8024	5772	3077	2136	426	Q_3			
* 1	· ->	÷ *	Z	*	*	*	*	*	Z	*	*	*	*	*	Z	Using a n		1	3120	960	Z	1920	1440	960	660	165	N	300	300	240	165	67	N	Select		_
	11055	1526	<i>ଦ</i> 1	48089	29021	15346	5925	456	Q_1	4283	3543	2270	1080	214	Q_1	Using a mutation rate		,	10475	1502	Q_1	37986	23024	11346	4678	472	Q_1	3318	2743	1813	886	182	Q_1	Selectore combinative		S
	21898	2510	Q_2	51137	30570	16638	6631	599	Q_2	4449	3709	2497	1244	305	Q_2	rate of $\frac{1}{L}$		1	18128	2651	Q_2	39553	24810	12257	5453	637	Q_2	3530	2906	1913	974	220	Q_2	$_{iative}$		SSGA
	33353	4517	Q_3	54229	33498	18613	7454	826	Q_3	4722	3880	2736	1418	374	Q_3		1	1	32272	5470	Q_3	42100	26182	13596	6034	783	Q_3	3801	3066	2052	1086	296	Q_3			
* 1	· >	÷ *	z	*	*	*	*	*	Z	*	*	*	*	*	Z		600	225		60	Z	480	390	195	105	48	N	135	90	75	48	30	N			
$\frac{32456}{434550}$	1	675	Q ₁	54360	32955	11700	3701	432	Q_1	5535	3330	2175	1008	210	Q_1		267750	33862	ı	510	Q_1	39240	26227	10383	2861	336	Q_1	4590	2700	1725	828	187	Q_1			
531900	1 1	1950	Q_2	61200	37050	15404	4830	528	Q_2	6075	3690	2475	1128	300	Q_2		314400	42525	,	1110	Q_2	44880	28665	12772	4200	528	Q_2	4927	2970	1875	960	240	Q_2			EvAg
655350	1 1	5205	Q_3	66480	43582	17842	6195	720	Q_3	6581	4320	2737	1248	420	Q_3		393000	55293	,	2880	Q_3	49920	33345	15990	5670	948	Q_3	5535	3577	2156	1092	330	Q_3			

Cuadro 1.2: Test-Case 2:.

roblem istance	2	,	EvAg Ring)	2	Watts	EvAg Watts-Strogatz	5	Z		Ne _	New
2-Trap	Z	Q_1	Q_2	Q_3	N	Q_1	Q_2		Q_3		Z	N Q_1
12	30	210	255	330	30	187	240		330	_	30	30 187
24	37	999	1628	2136	41	738	861		1055		48	48 828
36	41	2870	3567	4612	60	1440	1620		1980	_	75	75 1725
48	52	5226	7748	9451	97	2910	3492		3880		90	90 2700
60	60	11010	14850	17460	90	3600	3920		4410	_	135	135 4590
Trap	N	Q_1	Q_2	Q_3	N	Q_1	Q_2		Q_3		Z	$ $ N Q_1
.241	369	738	1588	41	246	410	697		48		336	336 528
24	60	6840	11730	17220	67	2646	3785		5845	_	105	105 2861
36	75	35943	58800	78393	135	8741	11542		16436	_	195	195 10383
48	90	138172	184005	272182	195	21206	37927		48701		390	390 26227
60	135	570780	770850	1203491	270	62167	94905		138307	7	7 480	7 480 39240
l-Trap	Z	Q_1	Q_2	Q_3	Z	Q_1	Q_2		Q_3	Q_3 N		Z
12	90	990	2565	7470	60	630	1500		2775		60	60 510
24	90	63922	98055	149355	150	27412	39150		48075	_	225	225 33862
36	225	957206	1304325	1989056	300	158325	193500	N	32650	_	600	0 600 267750
												-

	Q_3	330	1092	2156	3577	5535	Q_3	948	5670	15990	33345	49920	<i>Q</i> ₃	2880	55293	393000
No Churn	Q_2	240	096	1875	2970	4927	Q_2	528	4200	12772	28665	44880	Q_2	1110	42525	314400
No	Q_1	187	828	1725	2700	4590	Q_1	336	2861	10383	26227	39240	Q_1	510	33862	267750
	z	30	48	75	06	135	z	48	105	195	390	480	z	09	225	009
	Q_3	401	1120	2642	3825	6030	Q_3	1120	5432	16722	31543	60910	<i>Q</i> 3	4712	63615	498027
Churn $\lambda = 2500$	Q_2	258	926	2146	3309	5161	Q_2	653	4203	13665	27310	52646	Q_2	2733	52912	385931
ν	Q_1	135	752	1895	2915	4870	Q_1	437	3008	10702	22170	46713	Q_1	1080	35738	260914
	z	40	65	110	130	180	z	65	120	300	440	720	z	110	320	880
	Q_3	392	1150	2482	3625	6012	Q_3	1050	5723	21712	38137	69790	Q_3	5314	64120	451320
Churn $\lambda = 400$	Q_2	264	952	2019	3007	5149	Q_2	749	4014	14955	33687	61970	Q_2	3349	49862	367377
טֿ "	Q_1	142	805	1705	2815	4901	Q_1	422	2980	8026	28334	56971	Q_1	2890	38278	28764
	z	40	09	100	130	200	z	65	150	360	720	1120	z	120	320	1280
Problem Instance	2-Trap	12	24	36	48	09	3-Trap	12	24	36	48	09	4-Trap	12	24	36

Cuadro 1.3: Test-Case 3:.