28. fejezet

Adatbázisok – adatmodellezés

Az adatbázis-kezelő rendszerek feladata, tulajdonságai. Egyed-kapcsolat modell, relációs adatmodell, az E/K diagram átalakítása relációs adatmodellbe. Adatbázisok tervezése, anomáliák, funkcionális és többértékű függőségek, implikációs probléma, attribútumhalmazok lezárása, dekompozíciók tulajdonságai, veszteségmentesség, függőségőrzés ellenőrzése, Boyce-Codd normálforma, 3NF, 4NF, dekomponáló algoritmusok.

28.1. Az adatbázis-kezelő rendszerek

Az adatbázis-kezelő rendszerek megszületését nagy mennyiségű adathalmaz tárolásának és hatékony kereshetőségének igénye indukálta, még a lyukszalagos számítógépek korában. Ma adatbázis-kezelő rendszer alatt olyan számítógépprogramot értünk, mely megvalósítja nagy tömegű adat biztonságos tárolását, gyors lekérdezhetőségét és módosíthatóságát, tipikusan egyszerre több felhasználó számára.

Az adatbázis-kezelő rendszerek fő jellemzője az alkalmazott adatmodell. Az első, széles körben elterjedt és mindmáig leggyakrabban használt modell a relációs modell, ezen kívül ismertek még az egyed-kapcsolat modell, illetve az objektumorientált és a logikai modellek.

Az adatbázis-kezelési tevékenységeket két csoportra szokás osztani: adatmanipulációra (lekérdezés), illetve definiálásra (adatszerkezetek kialakítása, módosítása). Az adatok manipulációjára szolgáló nyelveket összefoglalóan Data Manipulation Language-nek (DML), míg a definíciós eszközökkel rendelkező nyelveket Data Definition Language-nek (DDL) szokás nevezni.

28.2. Adatmodellek

28.2.1. Egyed-kapcsolat modell

Az egyed-kapcsolat modellben az adatok szerkezetét grafikusan, egyedkapcsolat diagramon ábrázoljuk. A diagram elemei:

- egyedhalmazok,
- attribútumok,
- kapcsolatok.

Egyedhalmaz. Az egyedhalmazok hasonló *egyedek* (absztrakt objektumok) halmazát jelölik. Jelölése *téglalappal* történik.

Attribútum. Az egyedhalmazokhoz tartozó, az egyedek tulajdonságait leíró objektumok. Az attribútumok atomiak, tehát nincs belső szerkezetük. Jelölése *oválissal* történik.

Kapcsolatok. Kapcsolat két vagy több egyedhalmazt köthet össze egymással. A kapcsolaotkat általában névvel látjuk el. Jelölése *rombusszal* történik.

Az egyed-kapcsolat modell tehát egy olyan gráf, ahol a csúcsoknak egyedhalmazok, illetve attribútumok, az éleknek pedig kapcsolatok felelnek meg.

Előfordulás. Az egyed-kapcsolat diagram által leírt adatbázissémát aktuális adataival együtt nevezzük a modell egy előfordulásának. Tehát egy előfordulásban egyedek egy konkrét halmaza szerepel.

Kapcsolatok

A kapcsolat két oldalán álló egyedek száma szerint megkülönböztetünk:

- sok-egy,
- egy-egy és
- sok-sok

kapcsolatokat. A kapcsolatok jellegét nyilakkal jelöljük, a nyilak a kapcsolatok azon ágai felé mutatnak, amelyek "egyszeresen" vesznek részt a kapcsolatban.

A kapcsolatok rendelkezhetnek *szerep*ekkel, ezáltal egy egyedhalmaz több szerepben is részt vehet egy kapcsolatban.

Rendelhetünk továbbá a kapcsolatokhoz attribútumokat is. Az attribútumok értékei a kapcsolathalmazhoz rendelt táblázat egy-egy sorához tartoznak. Az attribútumok azonban kiválthatók új egyedhalmaz bevezetésével.

Sokágú kapcsolatokat *binárissá alakíthatunk* új, attribútumok nélküli (vagy a kapcsolat attribútumait hordozó) egyedhalmaz bevezetésével.

Speciális kapcsolat az öröklődés ("az-egy") kapcsolat, mely az objektumorientált öröklődéshez hasonló kapcsolatot jelöl egyedhalmazok között. (Az ilyen kapcsolatokat háromszöggel jelöljük.)

Megszorítások

Fent már megismertük a kapcsolatok nyilazását, mely a funkcionális függőségek kifejezésére szolgál.

Kulcsok. Egy egyedhalmaz kulcsa attribútumainak egy olyan halmaza, amelynek értékei egyértelműen meghatározzák az egyedhalmaz példányait. A kulcsattribútumokat aláhúzással jelöljük.

Minden egyedhalmaznak rendelkeznie kell kulccsal (a gyenge egyedhalmazok esetében ez lehet más egyedhalmaz attribútuma is).

Hivatkozási épség. A hivatkozási épség megkövetelését egy kapcsolatban kerek nyílvéggel jelezzük.

Részt vevő egyedek száma. A kapcsolat résztvevőinek számára vonatkozó megszorítást a nyíl mindkét végén jelezhetjük a megszorítás megadásával. (Például ≤ 10 .)

Gyenge egyedhalmazok

A gyenge egyedhalmazok olyanok, melyeknek bizonyos kulcsattribútumai nem saját attribútumok. A gyenge egyedhalmazokat, illetve a kulcsukat tartalmazó egyedhalmazok felé mutató kiteljesítő kapcsolatokat dupla kerettel jelöljük.

A kiteljesítő kapcsolatoktól elvárjuk, hogy sok-egy (vagy egy-egy) kapcsolatok legyenek, melyek megkövetelik a hivatkozási épséget is (tehát biztosítani kell, hogy a gyenge egyedhalmaz minden eleméhez pontosan egy kiteljesítő egyedhalmaz kötődjön a kapcsolat mentén).

28.2.2. Relációs modell

Reláció. A relációs modell alapelemei a *reláció*k. Ezek kétdimenziós táblázatok, ahol a sorokat *rekord*nak is nevezzük, és egy összetartozó adategyüttest reprezentálnak, míg az oszlopok neveit *attribútum*nak hívjuk.

A relációk sorait halmazként tekintjük, azaz sorrendjük nincs. A reláció oszlopai is felcserélhetők (az oszlopnevekkel együtt).

Értéktartományok. A modellben elvárjuk, hogy minden sor minden komponense *atomi* legyen, és minden oszlophoz tartozzék egy *értéktartomány* (azaz egy elemi típus), mely meghatározza az oszlopban szereplő értékek típusát.

Séma. Egy reláció sémáját az attribútumok és azok értéktartományai definiálják. A séma tehát megadja a táblázat szerkezetét.

Előfordulás. Egy adott reláció sorainak halmazát előfordulásnak (vagy a séma előfordulásának) nevezzük.

Megszorítások

Kulcsok, kulcsmegszorítások. Attribútumok egy halmaza szuperkulcsot alkot a relációra nézve, ha egy sort kulcshalmazának értékei egyértelműen meghatároznak a reláción belül. Egy attribútumhalmaztól megszorításképp elvárhatjuk, hogy kulcsot alkosson a relációban. A szuperkulcs kulcs, ha nincs olyan valódi részhalmaza, amely szuperkulcs.

Hivatkozási épség. A hivatkozási épség megszorítással elvárhatjuk, hogy egy adott reláció valamely attribútumának minden értéke előforduljon egy másik reláció másik attribútumának értékeként $(\pi_A(R) \subseteq \pi_B(S))$.

Típusmegszorítás. Megszorítást tehetünk attribútumok értékhalmazának szűkítéseként.

Készítette: Bognár Bálint, Átdolgozta: Cserép Máté 2011. június 25.

Megszorítások relációs algebrával. Számos megszorítást kifejezhetünk relációs algebrai kifejezésekkel. Ezek formája, ha R tetszőleges reláció (relációs algebrai kifejezés): $R = \emptyset$ vagy $R \subseteq S$.

28.2.3. Egyed-kapcsolat modell átírása relációs modellé

- 1. Minden egyedhalmazt írjunk át az attribútumaival együtt relációvá (a reláció attribútumai legyenek az egyedhalmaz attribútumai)!
- 2. Egy kapcsolatot helyettesítsünk olyan relációval, amelynek attribútumai a kapcsolatban álló egyedhalmazok kulcsának felelnek meg (hozzávéve a kapcsolat attribútumait)!

Megjegyzések

- A többirányú kapcsolatok binárissá alakítás után alakíthatók relációkká.
- Egyes kapcsolatok (sok-egy, illetve egy-egy kapcsolatok) mentén bizonyos relációk összevonhatók, így elhagyhatjuk a kapcsolatot reprezentáló relációt.
- A gyenge egyedhalmazokat kicsit de nem sokkal nehezebb átírni relációkká. A kiteljesítő kapcsolatokat nem írjuk át relációvá, viszont a gyenge egyedhalmazhoz tartozó relációban, illetve nem kiteljesítő kapcsolataiban az egyedhalmaz minden kulcsa szerepel attribútumként.

28.3. Relációs adatbázisok tervezése

28.3.1. Függőségek

Funkcionális függőség

28.3.1. Definíció. A funkcionális függőség azt fejezi ki, hogy ha R két sora megegyezik az A_1, \ldots, A_n attribútumokon, akkor meg kell egyezniük más B_1, \ldots, B_m attribútumokon is.

A funkcionális függőségeket jelölhetjük például $A_1, \ldots, A_n \to B_1, \ldots, B_m$ alakban.

Könnyen látható, hogy a funkcionális függőség a kulcsmegszorítás kiterjesztése: ha A_1, \ldots, A_n kulcs, akkor a kulcsmegszorítás szerint a két sornak az összes többi attribútumon is meg kell egyeznie – azaz a két sor azonos.

Készítette: Bognár Bálint, Átdolgozta: Cserép Máté 2011. június 25.

Következés és ekvivalencia. A két fogalom a funkcionális függőségekre természetesen definiálható.

Szétvágás és összevonás. Egy funkcionális függőség, melynek jobb oldalán több attribútum szerepel, *szétvágható* olyan függőségek *m* elemű sorozatára, melyek jobb oldalán csak egy-egy attribútum szerepel. A szétvágás "fordítottja", azaz azonos bal oldalú függőségek összevonása is lehetséges.

Triviális függőségek. Egy funkcionális függőség triviális, ha jobb oldala a bal oldal részhalmaza.

Egy funkcionális függőség jobb oldaláról elhagyva a bal oldalon is szereplő attribútumokat, az eredetivel ekvivalens függőséghez jutunk.

Tranzitivitás. A "funkcionális függőségben állni" reláció (mely két attribútumhalaz között értelmezett), tranzitív.

Vetítés. Egy reláció egy attribútumhalmazra vonatkozó vetületére megadhatók az eredeti reláció függőségi halmazából a vetületre érvényes függőségek.

Bázis, minimális bázis. Egy függőséghalmazra nézve egy másik, vele ekvivalens függőséghalmaz bázis. Egy függőséghalmaz minimális bázisára az alábbiak igazak:

- minden elemének jobb oldalán egyetlen attribútum áll,
- ha bármely függőséget elhagyjuk, akkor a halmaz már nem bázis,
- ha bármely függőség bal oldaláról elhagyunk egy attribútumot, akkor a halmaz már nem bázis.

Megjegyzendő, hogy minimális bázis nem tartalmaz triviális függőséget.

Többértékű függőség

28.3.2. Definíció. Ha R relációra teljesül az $A_1 ... A_n \rightarrow B_1 ... B_m$ többértékű függőség, akkor minden olyan t, u sorpárra, melyek megegyeznek az A-kon, találunk a relációban olyan v sort, mely megegyezik:

- t-vel (és u-val) az A-kon,
- t-vel a B-ken és

• u-val a maradék attribútumokon.

Azaz ha rögzítjük az A-k értékeit, akkor a B-k értékei függetlenek az összes többi attribútumok (C-k) értékétől.

Tulajdonságok. A tranzitivitás és a triviális függőség a korábbiakhoz hasonló.

Egyszerűen belátható, hogy minden funkcionális függőség egyben többértékű is (v:=u).

28.3.2. Normálformák

A normálformák célja, hogy kiküszöböljük segítségükkel az adatbázis használata során keletkező anomáliák lehetőségét. A normál formára hozás minden esetben olyan átalakítás lesz, melynek során az eredeti relációban tárolt adatokat pontosan reprezentálják a normálforma adatai (azaz nem vesztünk információt).

Anomáliák

Redundancia Az információk felesleges ismétlődése több sorban.

Módosítási anomália Egy érték módosítását nem végezzük el mindenhol, ahol az érték szerepel.

Törlési anomália Ha az értékek halmaza üressé válik, akkor mellékhatásként más információkat is elveszíthetünk.

Dekompozíció

Az anomáliák megszüntetésének elfogadott módja a dekompozíció, azaz a relációk felbontása. Egy relációt úgy bontunk fel, hogy attribútumait két (nem feltétlenül diszjunkt) halmazra osztjuk, és a megfelelő attribútumhalmazokra vetítjük a reláció tartalmát.

Attribútumhalmaz lezártja

Egy A attribútumhalmaznak az S függőséghalmazra nézve lezártja azon B attribútumok halmaza, melyekre igaz, hogy S elemeiből következik $A \to B$. Jele: A^+ .

A triviális függőségeket is megengedjük, így A elemei mind benne vannak A^+ -ban. A lezárt kiszámítása S szabályainak lehető legtöbb szétvágása után az A halmazból kiindulva már könnyű.

Veszteségmentesség, függőségek megőrzése

Veszteségmentes összekapcsolás. Egy séma szétvágása az F függőséghalmazra nézve veszteségmentesen összekapcsolható, ha feltéve, hogy az eredeti reláció teljesíti a függőségeket, a vágás utáni relációk természetes összekapcsolása visszaadja az eredeti relációt (nem a sémát).

Függőségek megőrzése. Azt mondjuk, hogy egy szétvágás függőségőrző (megőrzi az F függőséghalmazt), ha az F-ből a szétvágás elemeire vonatkozó függőségek uniójának lezárása megegyezik F lezárásával (tehát a szétvágásból és az eredeti függőséghalmazból pontosan ugyanazon függőségek vezethetők le).

Boyce-Codd normálforma (BCNF)

28.3.3. Definíció. Egy reláció BCNF-ban van, ha minden nem triviális funkcionális függőségének bal oldala szuperkulcs.

Felbontás. Legyen kezdetben R reláció és S függőséghalmaz.

- 1. Ha R BCNF-ban van, akkor az eljárásnak vége.
- 2. Különben válasszunk egy $X \to Y$ függőséget, ami sérti a normálforma szabályait!
- 3. Legyen $R_1 = X^+, R_2 = X \cup (R \setminus X^+)!$
- 4. R_1 -re és R_2 -re rekurzívan alkalmazzuk az eljárást, miután meghatároztuk függőségeiket!

3. normálforma (3NF)

Ez a normálforma a BCNF gyengítése, mivel nem minden reláció bontható fel BCNF formára.

28.3.4. Definíció. Egy reláció 3NF-ban van, ha minden nem triviális függőségére igaz, hogy

- a bal oldala a reláció szuperkulcsa, vagy
- a jobb oldal azon attribútumai, amelyek nem szerepelnek a bal oldalon, egy kulcsnak az elemei (nem feltétlenül ugyanannak a kulcsnak).

Felbontás. Legyen R reláció és F a funkcionális függőségeinek halmaza.

- 1. Keressük meg F egy minimális bázisát, legyen ez G!
- 2. A G-ben szereplő minden $X \to A$ funkcionális függőségre legyen a felbontás eleme az XA sémájú reláció!
- 3. Ha ez előző lépésben kapott relációk attribútumhalmazainak egyike sem szuperkulcs R-ben, adjunk még egy relációt az eredményhez, melynek sémája kulcs az R-ben.

4. normálforma (4NF)

A 4. normálforma feladata a többértékű függőségek által okozott redundancia kiküszöbölése.

28.3.5. Definíció. Egy reláció 4NF-ban van, ha minden nem triviális több-értékű függőségének bal oldala szuperkulcs.

Felbontás. Kezdetben R relációt S funkcionális és többértékű függőségek halmazát tekintjük.

- 1. Ha R 4NF-ban van, akkor kész vagyunk.
- 2. Különben keressünk egy olyan függőséget, amely megsérti a 4NF szabályát!
- 3. Osszuk fel a relációt úgy, hogy R_1 sémáját adják a függőség mindkét oldalán található attribútumok; R_2 sémáját pedig álljon a függőség bal oldali attribútumaiból, továbbá azokból, amelyek nem szerepelnek a függőségben.
- 4. A két részrelációra vonatkozó függőségek megkeresése után alkalmazzuk rájuk ugyanezt az algoritmust!