2012 MJC H2 MATH (9740) JC 2 PRELIMINARY EXAM PAPER 1 – SOLUTIONS

Qn	Solution
1	Inequalities
	$x-4 \ge \frac{4-6x}{x^2-1}$, $x \ne \pm 1$
	$\frac{(x-4)(x^2-1)-(4-6x)}{x^2-1} \ge 0$
	$\frac{\left(x^3 - 4x^2 - x + 4\right) - 4 + 6x}{x^2 - 1} \ge 0$
	$\frac{x^3 - 4x^2 + 5x}{x^2 - 1} \ge 0$
	$\frac{x(x^2 - 4x + 5)}{x^2 - 1} \ge 0$
	since $(x^2-4x+5)=(x-2)^2+1>0$ for all real values of x,
	$\frac{x}{\left(x-1\right)\left(x+1\right)} \ge 0$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\therefore -1 < x \le 0 \text{ or } x > 1$

Qn	Solution
2	SLE
	Let $f(x) = ax^3 + bx^2 + cx + d$.
	Method 1:
	$f(0) = 0 \implies d = 0$
	$f(1) = a + b + c = 3 \qquad \cdots (1)$
	$f'(1) = 3a + 2b + c = 0 \cdots (2)$
	Since the stationary point is a point of inflexion, $f''(1) = 6a + 2b = 0$ (3)
	Using GC to solve, $a = 3$, $b = -9$, $c = 9$
	$\therefore f(x) = 3x^3 - 9x^2 + 9x$
	Method 2:
	$ f(0) = 0 \Rightarrow d = 0 $
	$f(1) = a + b + c = 3 \qquad \cdots (1)$
	$f'(1) = 3a + 2b + c = 0 \cdots (2)$
	$f'(x) = 3ax^2 + 2bx + c$
	Since there is only one stationary point, $f'(x) = 0$ has only one solution.
	Hence, Discriminant = 0
	$\left(2b\right)^2 - 4(3a)(c) = 0$

$4b^2 - 12ac = 0 \cdots (3)$
Solving equations (1), (2) & (3), we have $a = 3, b = -9, c = 9$
$\therefore f(x) = 3x^3 - 9x^2 + 9x$
Method 3:
$f(0) = 0 \implies d = 0$
$f(1) = a + b + c = 3 \cdots (1)$
$\therefore x = 1$ is the only stationary point
$\therefore f'(x) = k(x-1)^2 = 3ax^2 + 2bx + c$
$\therefore k = 3a = -b = c \cdots (2)$
Solving (1) and (2), $a = 3$, $b = -9$, $c = 9$
$\therefore f(x) = 3x^3 - 9x^2 + 9x$

Qn	Solution
3	Differentiation (Implicit) + Techniques of Integration
(a)	$-x^2 + xy + \ln y = 2$
	$-2x + x\frac{\mathrm{d}y}{\mathrm{d}x} + y + \frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	$\frac{\mathrm{d}y}{\mathrm{d}x}\left(x+\frac{1}{y}\right) = 2x - y$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - y}{x + \frac{1}{y}} = \frac{2xy - y^2}{xy + 1}$
(bi)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(2^{2x}\right) = 2^{2x+1}\ln 2$
(bii)	$\int 2^{2x} \ln 2^x dx$
	$= \frac{1}{2} \int (x) (2^{2x+1} \ln 2) dx$
	$=\frac{1}{2}\left[2^{2x}x-\int 2^{2x}dx\right]$
	$= \frac{1}{2} \left[2^{2x} x - 2^{2x} \frac{1}{2 \ln 2} \right] + C$
	$=2^{2x-1}\left(x-\frac{1}{2\ln 2}\right)+C$

Qn	Solution
(i)	Complex 3 (include intersection of loci)
(i)	Im $C(2,4)$ required region for (i) $A(-2,0)$ Re
(ii)	Im $C(2,4)$ $A(-2,0)$ $\sin \theta = \frac{4}{8} = \frac{1}{2} \therefore \theta = \frac{\pi}{6}$ smallest value of $\arg(z-2+4i) = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$
(iii)	Method 1:
	$AP = \sqrt{4^2 + 4^2} - 4 = 4(\sqrt{2} - 1)$
	$w = \left(-2 + 4\left(\sqrt{2} - 1\right)\cos\frac{\pi}{4}\right) + \left(4\left(\sqrt{2} - 1\right)\sin\frac{\pi}{4}\right)i$
	$= \left(-2 + 4\left(\sqrt{2} - 1\right)\left(\frac{1}{\sqrt{2}}\right)\right) + 4\left(\sqrt{2} - 1\right)\left(\frac{1}{\sqrt{2}}\right)\mathbf{i}$
	$=2\left(1-\sqrt{2}\right)+2\left(2-\sqrt{2}\right)i$
	Method 2:
	Equation of circle: $(x-2)^2 + (y-4)^2 = 16$ (1)
	Equation of half line: $y-0 = \tan\left(\frac{\pi}{4}\right)(x+2) \Rightarrow y = x+2, x > -2$ (2)
	Sub (2) into (1):

$$(x-2)^{2} + (x-2)^{2} = 16$$

$$(x-2)^{2} = 8$$

$$(x-2) = \pm 2\sqrt{2}$$

$$x = 2 - 2\sqrt{2} \quad \text{or} \quad x = 2 + 2\sqrt{2} (rej. \because x < 0)$$

$$y = 4 - 2\sqrt{2}$$

$$\therefore w = 2(1 - \sqrt{2}) + 2(2 - \sqrt{2})i$$
Method 3:
$$PN = 4\cos\left(\frac{\pi}{4}\right) = 2\sqrt{2}$$

$$CN = 4\sin\left(\frac{\pi}{4}\right) = 2\sqrt{2}$$

$$x = 2 - 2\sqrt{2}$$

$$y = 4 - 2\sqrt{2}$$

$$\therefore w = 2(1 - \sqrt{2}) + 2(2 - \sqrt{2})i$$

Qn	Solution		
5	Vectors 1 & 2 (Ratio Thm, application of dot & cross product)		
(i)	Using ratio theorem,		
	\overrightarrow{ON} $4\overrightarrow{OM} + \overrightarrow{OA}$		
	$\overrightarrow{OB} = \frac{4\overrightarrow{OM} + \overrightarrow{OA}}{5}$		
	$\overrightarrow{OM} = \frac{5\overrightarrow{OB} - \overrightarrow{OA}}{4}$		
	4		
	$=\frac{1}{4} \left(5 \begin{pmatrix} -1\\3\\2 \end{pmatrix} - \begin{pmatrix} 1\\-1\\2 \end{pmatrix} \right)$		
	$=\frac{1}{2} \begin{pmatrix} -3\\8\\4 \end{pmatrix}$		
(ii)	$ \overrightarrow{OA} \times \overrightarrow{OB} $		
	represents the shortest/perpendicular distance from point A to the line OB.		
(iii)	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$		
	$\overrightarrow{OA} \times \overrightarrow{OR} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix}$		
	$\overrightarrow{OA} \times \overrightarrow{OB} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \times \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$		
	(-8)		
	= -4		
	$= \begin{pmatrix} -8 \\ -4 \\ 2 \end{pmatrix}$		
	$=2\begin{pmatrix} -4\\ -2\\ 1 \end{pmatrix}$		
	(1)		

... Normal to the plane containing O, A and B is $\begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}$.

Method 1:

shortest distance
$$= \frac{\begin{bmatrix} 1\\3\\-2\\8 \end{bmatrix} \cdot \begin{bmatrix} -4\\-2\\1 \end{bmatrix}}{\sqrt{21}}$$
$$= \frac{2}{\sqrt{21}} \frac{\sqrt{21}}{\sqrt{21}}$$
$$= \frac{2\sqrt{21}}{21} \text{ units}$$

Method 2:

Let *N* be the foot of perpendicular from *C* to the plane.

Equation of line *CN* is
$$\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}, \lambda \in \square$$

Equation of plane:
$$\mathbf{r} \cdot \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix} = 0$$

Since *N* lies on the plane,
$$\begin{pmatrix} 1 - 4\lambda \\ 3 - 2\lambda \\ 8 + \lambda \end{pmatrix} \cdot \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix} = 0$$

$$\Rightarrow \lambda = \frac{2}{21}$$

$$\overrightarrow{ON} = \begin{pmatrix} 1 - 4\left(\frac{2}{21}\right) \\ 3 - 2\left(\frac{2}{21}\right) \\ 8 + \left(\frac{2}{21}\right) \end{pmatrix} = \begin{pmatrix} \frac{13}{21} \\ \frac{59}{21} \\ \frac{170}{21} \end{pmatrix}$$

$$\begin{vmatrix}
8 + \left(\frac{2}{21}\right) & \left(\frac{13}{21}\right) \\
So \ \overrightarrow{CN} = \overrightarrow{ON} - \overrightarrow{OC} = \begin{pmatrix} \frac{13}{21} \\ \frac{59}{21} \\ \frac{170}{21} \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} = \begin{pmatrix} -\frac{8}{21} \\ -\frac{4}{21} \\ \frac{2}{21} \end{pmatrix}$$

$$CN \quad \left(\begin{pmatrix} 8 \end{pmatrix}^2 + \begin{pmatrix} 4 \end{pmatrix}^2 + \begin{pmatrix} 2 \end{pmatrix}^2 + \begin{pmatrix} 4 \end{pmatrix}^2 + \begin{pmatrix} 2 \end{pmatrix}^2 + \begin{pmatrix} 4 \end{pmatrix}^2 + \begin{pmatrix}$$

$$CN = \sqrt{\left(-\frac{8}{21}\right)^2 + \left(-\frac{4}{21}\right)^2 + \left(\frac{2}{21}\right)^2} = \sqrt{\frac{4}{21}}$$
$$= \frac{2\sqrt{21}}{21} \text{ units}$$

Qn	Solution			
6	Maclaurin + Binomial Series (include concept of approximation)	Maclaurin + Binomial Series (include concept of approximation)		
	$f(x) = \ln(ex + 2)$ $f(0) = \ln 2$			
	$f'(x) = \frac{e}{ex + 2} \qquad \qquad f'(0) = \frac{e}{2}$			
	$f''(x) = -\frac{e^2}{(ex+2)^2} \qquad f''(0) = -\frac{e^2}{4}$			
	$f^{(3)}(0) = \frac{2e^3}{(ex+2)^3} \qquad f^{(3)}(0) = \frac{e^3}{4}$			
(i)	$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f^{(3)}(0) + \dots$			
	$f(x) = \ln 2 + x \left(\frac{e}{2}\right) + \frac{x^2}{2!} \left(-\frac{e^2}{4}\right) + \frac{x^3}{3!} \left(\frac{e^3}{4}\right) + \dots$	$f(x) = \ln 2 + x \left(\frac{e}{2}\right) + \frac{x^2}{2!} \left(-\frac{e^2}{4}\right) + \frac{x^3}{3!} \left(\frac{e^3}{4}\right) + \dots$		
	$f(x) = \ln 2 + \frac{ex}{2} - \frac{e^2 x^2}{8} + \frac{e^3 x^3}{24} + \dots$ $\ln(ex+2) = \ln 2 + \frac{ex}{2} - \frac{e^2 x^2}{8} + \frac{e^3 x^3}{24} + \dots$			
(ii)	$\ln(ex+2) = \ln 2 + \frac{ex}{2} - \frac{e^2x^2}{8} + \frac{e^3x^3}{24} + \dots$			
	Differentiate both sides wrt x:			
	$\frac{e}{ex+2} = \frac{e}{2} - \frac{e^2x}{4} + \frac{e^3x^2}{8} + \dots$			
(iii)	$\frac{2}{ex+2} = 1 - \frac{ex}{2} + \frac{e^2 x^2}{4} + \dots$ $\frac{2}{ex+2} = 2(ex+2)^{-1}$			
	$=2(2)^{-1}\left(1+\frac{ex}{2}\right)^{-1}$			
	$=1+(-1)\left(\frac{ex}{2}\right)+\frac{(-1)(-2)}{2!}\left(\frac{ex}{2}\right)^{2}+$			
	$=1-\frac{ex}{2}+\frac{e^2x^2}{4}+$			

Qn	Solution
7	MI + Summation
(i)	$a_2 = \frac{1}{2} + \frac{1}{2(1)(2)} = \frac{3}{4} = 1 - \frac{1}{4} = 1 - \frac{1}{2(2)}$
	$a_3 = \frac{3}{4} + \frac{1}{2(2)(3)} = \frac{5}{6} = 1 - \frac{1}{6} = 1 - \frac{1}{2(3)}$
	$a_4 = \frac{5}{6} + \frac{1}{2(3)(4)} = \frac{7}{8} = 1 - \frac{1}{8} = 1 - \frac{1}{2(4)}$
	$\therefore a_n = 1 - \frac{1}{2n}, c = 2$

(ii) Let P_n be the statement $a_n = 1 - \frac{1}{2n}$ for all $n \in \square^+$.

When n=1,

LHS =
$$a_1 = \frac{1}{2}$$

RHS = $1 - \frac{1}{2(1)} = \frac{1}{2}$

 \therefore P₁ is true

Assume P_k is true for some $k \in \square^+$, i.e. $a_k = 1 - \frac{1}{2k}$.

To prove P_{k+1} is true. i.e. $a_{k+1} = 1 - \frac{1}{2(k+1)}$

LHS of
$$P_{k+1} : a_{k+1} = a_k + \frac{1}{2k(k+1)}$$

$$= 1 - \frac{1}{2k} + \frac{1}{2k(k+1)} \quad \text{(from assumption)}$$

$$= 1 - \left[\frac{k+1}{2k(k+1)} - \frac{1}{2k(k+1)} \right]$$

$$= 1 - \frac{k}{2k(k+1)}$$

$$= 1 - \frac{1}{2(k+1)} = \text{RHS}$$

 $\therefore P_k$ is true $\Rightarrow P_{k+1}$ is true

Since P_1 is true and P_k is true $\Rightarrow P_{k+1}$ is true, by Mathematical Induction, P_n is true for all $n \in \square^+$.

(iii)
$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{N^2 + N}$$

$$= \frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \frac{1}{(3)(4)} + \dots + \frac{1}{N(N+1)} = \sum_{n=1}^{N} \frac{1}{n(n+1)}$$

$$\sum_{n=1}^{N} \frac{1}{n(n+1)} = 2\sum_{n=1}^{N} \frac{1}{2n(n+1)}$$

$$= 2\sum_{n=1}^{N} (a_{n+1} - a_n)$$

$$= 2(a_2 - a_1)$$

$$+ a_3 - a_2$$

$$+ a_4 - a_3$$

$$+ \vdots$$

$$+ a_N - a_{N-1}$$

$$+ a_{N+1} - a_N)$$

$$= 2(a_{N+1} - a_1)$$

$$= 2\left(1 - \frac{1}{2(N+1)} - \frac{1}{2}\right)$$

_1	1	
— 1	$-\frac{1}{(N+1)}$)

Qn	Solution Of Discourse Control of the		
(i)	Application of Differentiation (Max/Min, Rate of Change) Method 1:		
(1)	Area of triangle $PQR = \frac{1}{2}(QR)(PQ)$ since $\angle PQR = 90^{\circ}$ (angle inscribed in a semicircle is		
	a right angle).		
	Let $\angle QPR = \theta$.		
	Then $QR = 2r\sin\theta$ and $PQ = 2r\cos\theta$		
	Area of $PQR = \frac{1}{2}(2r\sin\theta)(2r\cos\theta)$		
	$=2r^2\sin\theta\cos\theta=r^2\sin2\theta.$		
	For maximum area of triangle PQR ,		
	$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(r^2 \sin 2\theta \right) = 0$		
	$2r^2\cos 2\theta = 0$		
	$\Rightarrow \cos 2\theta = 0$		
	$2\theta = \frac{\pi}{2}$		
	$\therefore \theta = \frac{\pi}{4}$		
	$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(2r^2 \cos 2\theta \right) = -4r^2 \sin 2\theta = -4r^2 < 0 \text{ when } \theta = \frac{\pi}{4}$		
	⇒Area is maximum.		
	$PQ = 2r\cos\frac{\pi}{4} = \sqrt{2}r \qquad QR = 2r\sin\frac{\pi}{4} = \sqrt{2}r$		
	Method 2:		
	Let $\angle POQ = \theta$. Area of $PQR = \text{Area of } POQ + \text{Area of } ROQ$		
	$= \frac{1}{2}r^2\sin\theta + \frac{1}{2}r^2\sin(\pi - \theta) \qquad \text{note:} \sin(\pi - \theta) = \sin\theta$		
	$=r^2\sin\theta$.		
	For maximum area of triangle PQR ,		
	$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(r^2 \sin \theta \right) = 0$		
	$r^2 \cos \theta = 0$		
	$\Rightarrow \cos \theta = 0$		
	$\theta = \frac{\pi}{2}$		
	$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(r^2 \cos \theta \right) = -r^2 \sin \theta = -r^2 < 0 \text{ when } \theta = \frac{\pi}{4}$		
	⇒Area is maximum.		
	$PQ = \sqrt{r^2 + r^2} = \sqrt{2}r$ $QR = \sqrt{r^2 + r^2} = \sqrt{2}r$		

Method 3:

Let the length of PQ be x units.

Let A be the area of triangle PQR

$$A = \frac{1}{2}(PQ)(QR) = \frac{1}{2}x\sqrt{4r^2 - x^2}$$

$$\frac{dA}{dx} = \frac{1}{2}x\left(\frac{1}{2}\right)\left(4r^2 - x^2\right)^{-\frac{1}{2}}(-2x) + \frac{1}{2}\left(4r^2 - x^2\right)^{\frac{1}{2}}$$

$$= -\frac{1}{2}x^{2}(4r^{2}-x^{2})^{-\frac{1}{2}} + \frac{1}{2}(4r^{2}-x^{2})^{\frac{1}{2}}$$

$$= \left(4r^2 - x^2\right)^{-\frac{1}{2}} \left[-\frac{1}{2}x^2 + \frac{1}{2}\left(4r^2 - x^2\right) \right]$$

$$= \left(4r^2 - x^2\right)^{-\frac{1}{2}} \left(-x^2 + 2r^2\right)$$

For maximum area of triangle *PQR*,

$$\frac{\mathrm{d}A}{\mathrm{d}x} = 0$$

$$(4r^2 - x^2)^{-\frac{1}{2}} (-x^2 + 2r^2) = 0$$

$$\left(4r^2 - x^2\right)^{-\frac{1}{2}} = 0$$

$$-x^2 + 2r^2 = 0$$

$$x = \pm \sqrt{2}r$$

$$\therefore x = \sqrt{2}r$$

Using 1st derivative test,

x	$\left(\sqrt{2}r\right)^{-}$	$(\sqrt{2}r)$	$\left(\sqrt{2}r\right)^{+}$
$\frac{\mathrm{d}A}{\mathrm{d}x}$	/		/

Area is maximised when $x = \sqrt{2}r$

$$\therefore PQ = \sqrt{2}r$$

$$QR = \sqrt{4r^2 - 2r^2} = \sqrt{2}r$$
For $r = 2$, $QR = 4\sin\theta$

(ii) For
$$r = 2$$
, $QR = 4\sin\theta$

$$\frac{\mathrm{d}(QR)}{\mathrm{d}\theta} = 4\cos\theta$$

$$\frac{d\theta}{dt} = \frac{d\theta}{d(QR)} \cdot \frac{d(QR)}{dt}$$
$$= \frac{1}{4\cos\theta} \cdot \frac{1}{5} = \frac{1}{20\cos\theta}$$

When
$$\theta = \frac{\pi}{3}$$
,

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{1}{20\left(\frac{1}{2}\right)}$$

$$=\frac{1}{10}$$
 radians per second.

Qn	Solution	
9	Arithmetic and Geometric Progressions	
(i)	$S_{15} = \frac{2400 \left[\left(\frac{11}{10} \right)^{15} - 1 \right]}{\left(\frac{11}{10} \right) - 1}$	
	= 76253.96	
	= 76254 m (to the nearest metre)	
(ii)	$(4000) + (n-1)800 \ge 42000$	
	$n \ge 48.5$	
	least $n = 49$	
	Or By GC,	
	When $n = 48, (4000) + (n-1)800 = 41600 < 42000$	
	When $n = 49, (4000) + (n-1)800 = 42400 > 42000$	
	\therefore least $n = 49$	
(iii)	Total distance covered by runner B in 3 days	
	$= \frac{3}{2} [2(4000) + (2)(800)]$ $= 14400$	
	$14400 = \frac{2400[r^{3} - 1]}{r - 1}$ $6(r - 1) = r^{3} - 1$ $r^{3} - 6r + 5 = 0$ By GC,	
	$r^3 - 6r + 5 = 0$ By GC, r = -2.7913 (rej. ∵ distance covered cannot be negative)	
	or $r = 1$ (rej. $r \neq 1$)	
	or $r = 1.7913$ $x\% = (1.7913 - 1) \times 100\%$	
	= 79.13%	
	≈ 79.1%	
	x = 79.1	

Qn	Solution
10	Differential Equations
(a)	y = xz(1)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x\frac{\mathrm{d}z}{\mathrm{d}x} + z(2)$
	Sub (1) and (2) into D.E.:
	$\left(e^{x}+1\right)\left(x\frac{dz}{dx}+\frac{y}{x}-\frac{y}{x}\right)=\frac{x^{2}}{xz}\left(e^{x}-1\right)$
	$\left(e^{x}+1\right)\left(\frac{\mathrm{d}z}{\mathrm{d}x}\right) = \frac{\left(e^{x}-1\right)}{z}$
	$z\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{e}^x - 1}{\mathrm{e}^x + 1}$
	$\int z \mathrm{d}z = \int \frac{\mathrm{e}^x - 1}{\mathrm{e}^x + 1} \mathrm{d}x$
	Method 1:
	$\int z dz = \int \frac{e^{\frac{x}{2}} \left(e^{\frac{x}{2}} - e^{-\frac{x}{2}} \right)}{\left(e^{\frac{x}{2}} \right) \left(e^{\frac{x}{2}} + e^{-\frac{x}{2}} \right)} dx$
	$\int z dz = \int \frac{\left(e^{\frac{x}{2}} - e^{-\frac{x}{2}}\right)}{\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right)} dx$
	$\frac{z^2}{2} = 2 \ln \left e^{\frac{x}{2}} + e^{-\frac{x}{2}} \right + C$, where C is an arbitrary constant.
	$\left(\frac{y}{x}\right)^2 = 4\ln\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right) + D, \text{ where } D = 2C$
	$y^{2} = 4x^{2} \ln \left(e^{\frac{x}{2}} + e^{-\frac{x}{2}} \right) + Dx^{2}$
	Method 2:
	$\int z dz = \int \left(\frac{e^x}{e^x + 1} - \frac{1}{e^x + 1} \frac{e^{-x}}{e^{-x}} \right) dx$
	$\frac{z^{2}}{2} = \ln\left e^{x} + 1\right + C' - \int \left(\frac{1}{e^{x} + 1} \frac{e^{-x}}{e^{-x}}\right) dx$
	$\frac{z^{2}}{2} = \ln \left e^{x} + 1 \right + C' - \int \left(\frac{e^{-x}}{1 + e^{-x}} \right) dx$
	$\frac{z^{2}}{2} = \ln \left e^{x} + 1 \right + C' + \int \left(\frac{-e^{-x}}{1 + e^{-x}} \right) dx$

$$\frac{z^{2}}{2} = \ln \left| e^{x} + 1 \right| + \ln \left| 1 + e^{-x} \right| + C \quad \text{, where } C \text{ is an arbitrary constant}$$

$$z^{2} = 2\ln \left(e^{x} + 1 \right) + 2\ln \left(1 + e^{-x} \right) + D, D = 2C$$

$$\left(\frac{y}{x} \right)^{2} = 2\ln \left(e^{x} + 1 \right) + 2\ln \left(1 + e^{-x} \right) + D$$

$$y^{2} = 2x^{2} \ln \left(e^{x} + 1 \right) + 2x^{2} \ln \left(1 + e^{-x} \right) + Dx^{2}$$
Method 3:
$$\int z \, dz = \int \left(1 - \frac{2}{e^{x} + 1} \right) \, dx$$

$$\frac{z^{2}}{2} = x + C' - 2 \int \left(\frac{1}{e^{x} + 1} \frac{e^{-x}}{e^{-x}} \right) \, dx$$

$$\frac{z^{2}}{2} = x + C' - 2 \int \left(\frac{1}{e^{x} + 1} \frac{e^{-x}}{e^{-x}} \right) \, dx$$

$$\frac{z^{2}}{2} = x + C' + 2 \int \left(\frac{-e^{-x}}{1 + e^{-x}} \right) \, dx$$

$$\frac{z^{2}}{2} = x + 2 \ln \left| 1 + e^{-x} \right| + C \quad \text{, where } C \text{ is an arbitrary constant}$$

$$z^{2} = 2x + 4 \ln \left(1 + e^{-x} \right) + D, D = 2C$$

$$\left(\frac{y}{x} \right)^{2} = 2x + 4 \ln \left(1 + e^{-x} \right) + D$$

Method 4:

 $y^2 = 2x^3 + 4x^2 \ln(1 + e^{-x}) + Dx^2$

$$\int z \, dz = \int \frac{e^x - 1}{e^x + 1} \, dx$$
Let $u = e^x$

$$\int z \, dz = \int \left(\frac{u - 1}{u + 1} \frac{1}{u}\right) du$$

$$\int z \, dz = \int \left(\frac{u - 1}{u(u + 1)}\right) du$$

$$\int z \, dz = \int \left(\frac{2}{u + 1} - \frac{1}{u}\right) dx$$

$$\frac{z^2}{2} = 2\ln|u + 1| - \ln|u| + C \quad \text{, where } C \text{ is an arbitrary constant}$$

$$\frac{z^{2}}{2} = 2\ln(e^{x} + 1) - \ln(e^{x}) + C$$

$$z^{2} = 4\ln(e^{x} + 1) - 2\ln(e^{x}) + D, D = 2C$$

$$\left(\frac{y}{x}\right)^{2} = 4\ln(e^{x} + 1) - 2\ln(e^{x}) + D$$

$$y^{2} = 4x^{2} \ln(e^{x} + 1) - 2x^{2} \ln(e^{x}) + Dx^{2}$$
(b)
$$\frac{dx}{dt} = \frac{A}{9 - x} - \frac{x}{20}$$

$$When x = 4,$$

$$\frac{dx}{dt} = 0,$$

$$0 = \frac{A}{5} - \frac{4}{20}$$

$$A = 1$$

$$\frac{dx}{dt} = -\frac{x}{20} + \frac{1}{9 - x}$$

$$\frac{dx}{dt} = \frac{-x(9 - x) + 20}{20(9 - x)}$$

$$\frac{dx}{dt} = \frac{x^{2} - 9x + 20}{20(9 - x)}$$

$$\frac{dx}{dt} = \frac{(x - 4)(x - 5)}{20(9 - x)}$$
(shown)
$$\frac{dx}{dt} = \frac{(x - 4)(x - 5)}{20(9 - x)}$$

$$\int \frac{9 - x}{(x - 4)(x - 5)} dx = \int \frac{1}{20} dt$$

$$\int \frac{-5}{x - 4} + \frac{4}{x - 5} dx = \frac{t}{20} + C$$

$$-5 \ln|x - 4| + 4 \ln|x - 5| = \frac{t}{20} + C$$

$$t = -100 \ln|x - 4| + 80 \ln|x - 5| + C$$

$$C = 100 \ln 4 + 80 \ln 5 + C$$

$$C = 100 \ln 4 - 80 \ln 5$$

$$t = -100 \ln |x - 4| + 80 \ln |x - 5| + 100 \ln 4 - 80 \ln 5$$

$$t = -100 \ln \left|\frac{x - 4}{4} + 80 \ln \left|\frac{x - 5}{5}\right| = \frac{t}{5}$$

$$When x = 2,$$

$$t = 28.449$$

$$t = 28.4 \text{ months } (3 \text{ s.f.})$$

Qn	Solution
11	Complex no. 1-3 (Roots + Loci)
(i)	$z^5 = 32$
	$=32e^{i(2k\pi)}$
	$z = 32^{\frac{1}{5}} e^{\frac{i2k\pi}{5}}$, where $k = -2, -1, 0, 1, 2$
	$\therefore z = 2e^{-\frac{4}{5}\pi i}, 2e^{-\frac{2}{5}\pi i}, 2, 2e^{\frac{2}{5}\pi i}, 2e^{\frac{4}{5}\pi i}$
(iii)	Im
	$\operatorname{Re}(z)=1$
	$z_1 = 2e^{\frac{2}{5}\pi i}$
	$z_2 = 2e^{\frac{4}{5}\pi i}$
	$\left \begin{array}{c}2\pi\\\end{array}\right $
	$z_5 = 2$ Re
	Locus of Locus of
	$ z = 2e^{\frac{4}{5}\pi}$
	$z_3 = \sqrt{z_3}$
	$z_4 = 2e^{-\frac{2}{5}\pi i}$
	There are 4 points within the region given.
(iii)	\ Im
	\
	Locus of
	$ z-z_1 = z-z_2 \longrightarrow$
	$z_1 = 2e^{\frac{2}{5}\pi i}$
	4.
	$z_2 = 2e^{\frac{4}{5}\pi i}$
	$\frac{2\pi}{5} \qquad \qquad z_5 = 2$
	Locus of
	$z_3 = 2e^{-\frac{4}{5}\pi i} \qquad z = 2$
	$\lambda_3 - 2C$ $\frac{2}{-\pi i}$
	$z_4 = 2e^{-\frac{2}{5}\pi i}$

Method 1:

Since the argument of
$$z = \frac{1}{2} \left(\frac{2\pi}{5} \right) + \frac{2\pi}{5} = \frac{3\pi}{5}$$
 or $-\frac{2\pi}{5}$,

$$z = 2e^{\frac{3}{5}\pi i}$$
 or $z = 2e^{-\frac{2}{5}\pi i}$
= -0.62 + 1.90*i* = 0.62 - 1.90*i*

Method 2:

Equation of circle centred 0+0i and radius 2: $x^2 + y^2 = 2^2$

Gradient of the perpendicular bisector = $\tan \frac{3\pi}{5} = -3.077683$

Equation of perpendicular bisector that passes through the Origin:

$$y = -3.077683x$$

$$x^2 + \left(-3.077683x\right)^2 = 4$$

$$x^2 = 0.381966$$

$$x = -0.618034$$
 or $x = 0.618034$

$$y = 1.9021127$$
 or $y = -1.9021127$

$$\therefore z = -0.62 + 1.90i$$
 or $z = 0.62 - 1.90i$
Method 1:

(iv)

$$(w-2)^4 + 2(w-2)^3 + 4(w-2)^2 + 8(w-2) + 16 = 0$$

$$\frac{16\left[1 - \left(\frac{w - 2}{2}\right)^{5}\right]}{1 - \frac{w - 2}{2}} = 0$$

$$1 - \left(\frac{w-2}{2}\right)^5 = 0, w \neq 4$$

$$(w-2)^5 = 2^5 = 32$$

 \therefore replace z by w-2 in previous answer (excluding z=2 since $w \neq 4$)

$$w-2=2e^{-\frac{4}{5}\pi i}, 2e^{-\frac{2}{5}\pi i}, 2e^{\frac{2}{5}\pi i}, 2e^{\frac{4}{5}\pi i}$$

$$w = 2 + 2e^{-\frac{4}{5}\pi i}, 2 + 2e^{-\frac{2}{5}\pi i}, 2 + 2e^{\frac{2}{5}\pi i}, 2 + 2e^{\frac{4}{5}\pi i}$$

Method 2:

$$z^5 - 32 = (z-2)(z^4 + 2z^3 + 4z^2 + 8z + 16)$$

For
$$(w-2)^4 + 2(w-2)^3 + 4(w-2)^2 + 8(w-2) + 16 = 0$$

 \therefore replace z by w-2 in previous answer (excluding z=2),

$$w-2=2e^{-\frac{4}{5}\pi i}, 2e^{-\frac{2}{5}\pi i}, 2e^{\frac{2}{5}\pi i}, 2e^{\frac{4}{5}\pi i}$$

$$w = 2 + 2e^{-\frac{4}{5}\pi i}$$
, $2 + 2e^{-\frac{2}{5}\pi i}$, $2 + 2e^{\frac{2}{5}\pi i}$, $2 + 2e^{\frac{4}{5}\pi i}$

$$\Rightarrow w = 2\left(1 + e^{\frac{p\pi i}{5}}\right), \text{ where } p = -4, -2, 2, 4$$

$$w = 2e^{\frac{p\pi i}{10}} \left(e^{-\frac{p\pi i}{10}} + e^{\frac{p\pi i}{10}}\right)$$

$$= 2e^{\frac{p\pi i}{10}} \left[2\cos\left(\frac{p\pi}{10}\right)\right]$$

$$= 4\cos\left(\frac{p\pi}{10}\right)e^{\frac{p\pi i}{10}}, \text{ where } p = -4, -2, 2, 4$$

Qn	Solution
12	Curve Sketching + Transformations + Integration
a(i)	Method 1 1. Translation of 1 unit in the direction of <i>x</i> –axis.
	2. Scaling parallel to the <i>x</i> -axis by factor $\frac{1}{2}$.
	3. Scaling parallel to the <i>y</i> -axis by factor $\frac{1}{2}$.
	Method 2
	1. Scaling parallel to the y-axis by factor $\frac{1}{2}$.
	2. Scaling parallel to the <i>x</i> -axis by factor $\frac{1}{2}$
	3. Translation of $\frac{1}{2}$ unit in the direction of <i>x</i> -axis.
(ii)	Area = $\int_{-1}^{-0.5} \left \frac{2x+1}{x^2+4} \right dx$
	$= \int_{-1}^{-0.5} -\left(\frac{2x+1}{x^2+4}\right) dx$
	$= \int_{-1}^{-0.5} -\left(\frac{2x}{x^2+4} + \frac{1}{x^2+4}\right) dx$
	$= -\left[\ln\left x^2 + 4\right + \frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right)\right]_{-1}^{-0.5}$
	$= -\left[\left[\ln\left(\frac{1}{4} + 4\right) + \frac{1}{2}\tan^{-1}\left(\frac{-0.5}{2}\right) \right] - \left[\ln\left(1 + 4\right) + \frac{1}{2}\tan^{-1}\left(\frac{-1}{2}\right) \right] \right]$
	$= -\ln\left(\frac{17}{4}\right) + \frac{1}{2}\tan^{-1}\left(\frac{1}{4}\right) + \ln\left(5\right) - \frac{1}{2}\tan^{-1}\left(\frac{1}{2}\right)$
	$= \ln(5) - \ln\left(\frac{17}{4}\right) + \frac{1}{2}\tan^{-1}\left(\frac{1}{4}\right) - \frac{1}{2}\tan^{-1}\left(\frac{1}{2}\right)$
	$= \ln\left(\frac{20}{17}\right) + \frac{1}{2}\left(\tan^{-1}\left(\frac{1}{4}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right)$

