กลุ่มลูกหมื

01

PROJECT_DWDM

จำนวนผู้ลงทะเบียนใช้บริการอินเทอร์เน็ตความเร็วสูง

In [5]: data_subscriber = pd.read_csv(os.path.join(path,'10broadband-subscribers.csv'))
 data_subscriber

Out[5]:

	no.	quarter	Thailand Internet Users_subscriber	year	value_subscriber
0	4	4	Total Internet subscribers	2003	652726.00
1	3	3	Total Internet subscribers	2003	529530.00
2	2	2	Total Internet subscribers		453043.00
3	1	1 1 Total Internet subscribers		2003	365219.00
4	8	4	Total Internet subscribers	2004	1231344.00
			:	:	
68	72	4	Total Internet subscribers	2020	11478264.92
69	71	3	Total Internet subscribers	2020	11282645.58
70	70	70 2 Total Internet subscribers		2020	10912996.14
71	69	70 Total Internet subscribers		2020	10264995.67
72	73	1	Total Internet subscribers	2021	11876158.44

73 rows × 5 columns

ที่มา: https://data.go.th/dataset/broadband-subscribers?
fbclid=lwAR2hJLTNGiEnMNwRApUdbzzaFUj-1_Ag7HWgdZPxX-oaEKw2PBU0_W3-_m0
องค์กร: สำนักงานคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการโทรคมนาคมแห่งชาติ

อัตราการเข้าถึงของบริการอินเทอร์เน็ตความเร็วสูงต่อจำนวนครัวเรือน

In [6]: data_household = pd.read_csv(os.path.join(path,'12broadband-penetration-per-household-.csv'))
 data_household

Out[6]:

	no.	type_household	quarter	year	value_household		
0	4	per household (%)	4	2003	0.000649		
1	3	per household (%)	3	2003	0.000459		
2	2	per household (%)	2	2003	0.000343		
3	1	per household (%)	1	2003	0.000281		
4	8	per household (%)	4	2004	0.008716		
68	72	per household (%)	4	2020	0.514683		
69	71	per household (%)	3	2020	0.515873		
70	70	per household (%)	2	2020	0.498972		
71	69	per household (%)	1	2020	0.469344		
72	73	per household (%)	1	2021	0.532524		

73 rows × 5 columns

03

ที่มา : https://data.go.th/dataset/broadband-penetration-per-household? fbclid=lwAROtNweDa7pmiAaygoOZ88iFFIYLtQRFjujfalyEpUub_bFVQEkcCbXAZJc องค์กร : สำนักงานคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการโทรคมนาคมแห่งชาติ

อัตราการเข้าถึงของบริการอินเทอร์เน็ตความเร็วสูงต่อจำนวนประชากร

In [7]: data_population = pd.read_csv(os.path.join(path,'11broadband-penetration-per-population-.csv'))
 data_population

Out[7]:

	no.	type_population	quarter	year	value_population
0	1	per population (%)	1	2003	0.0001
1	2	per population (%)	2	2003	0.0001
2	3	per population (%)	3	2003	0.0001
3	4	per population (%)	4	2003	0.0002
4	5	per population (%)	1	2004	0.0005
	:				
68	69	per population (%)	1	2020	0.1510
69	70	per population (%)	2	2020	0.1605
70	71	per population (%)	3	2020	0.1659
71	72	per population (%)	4	2020	0.1685
72	73	per population (%)	1	2021	0.1740

73 rows × 5 columns

ที่มา : https://data.go.th/dataset/broadband-penetration-per-population? fbclid=lwAROD5Z4yxZOXJYPM9hgBJpAVbuWBkxwNzEdW_jWwlvvkCKQxaGERqrxffFs องค์กร : สำนักงานคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการโทรคมนาคมแห่งชาติ

จำนวนเลขหมายโทรศัพท์เคลื่อนที่ที่ได้รับการจดทะเบียน

In [17]: data_mobile = pd.read_csv(os.path.join(path,'05mobile-subscribers.csv'))
 data_mobile

Out[17]:

	no.	Mobile Market Report	quarter	year	value_mobile
0	4	Mobile Subscribers	4	2002	17449890
1	3	Mobile Subscribers	3	2002	15743776
2	2	2 Mobile Subscribers		2002	12416261
3	1	Mobile Subscribers	1	2002	9669909
4	8	Mobile Subscribers	4	2003	21616910
	:	:	:	:	
72	76	Mobile Subscribers	4	2020	116294420
73	75	Mobile Subscribers	3	2020	119169759
74	74	Mobile Subscribers	2	2020	131881072
75	73	Mobile Subscribers	1	2020	132594791
76	77	Mobile Subscribers	1	2021	117562201

77 rows × 5 columns

ที่มา : https://data.go.th/dataset/mobile-subscribers?

fbclid=lwAR3ZoY2gqT_ogfZwHHI4OnC_ejcmi3O9xZMOmcac_rCCdA5brXcHVh85Ayw องค์กร : สำนักงานคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการโทรคมนาคมแห่งชาติ

06

UNHI

เราไม่สามารถพยากรณ์ข้อมูล
ปีต่อๆ ไปได้ เนื่องจากยังไม่
ทราบความสัมพันธ์ของข้อมูล
ปัจจุบันที่มีอยู่

เพื่อศึกษาความสัมพันธ์ของ ตารางที่ 1 ถึง 4 ว่าความ สัมพันธ์ที่ได้ไปเป็นอย่างไร?

วัตถุประสงค์

Preprocessing

```
In [22]: # เชื่อมตาราง merge_table2 และ data_mobile เข้าด้วยกัน โดยให้ตาราง merge_table2 เป็นตารางหลักอยู่ที่ด้านซ้าย
merge_table3 = data_mobile3.merge(merge_table2,how='left',left_on='no.',right_on='no.')
merge table3
```

Out[22]:

:		no.	Mobile Market Report	value_mobile	quarter	Thailand Internet Users_subscriber	year	value_subscriber	type_population	value_population	type_household	value_househol
C)	5	Mobile Subscribers	18763102	1.0	Total Internet subscribers	2004.0	785931.00	per population (%)	0.0005	per household (%)	0.001556
1	ı	6	Mobile Subscribers	19788956	2.0	Total Internet subscribers	2004.0	914400.00	per population (%)	0.0007	per household (%)	0.002265
2	2	7	Mobile Subscribers	20655866	3.0	Total Internet subscribers	2004.0	1091652.00	per population (%)	0.0015	per household (%)	0.004964
3	3	8	Mobile Subscribers	21616910	4.0	Total Internet subscribers	2004.0	1231344.00	per population (%)	0.0026	per household (%)	0.008716
4	ı	9	Mobile Subscribers	23217311	1.0	Total Internet subscribers	2005.0	1197942.00	per population (%)	0.0045	per household (%)	0.015449
6	88	73	Mobile Subscribers	132594791	1.0	Total Internet subscribers	2021.0	11876158.44	per population (%)	0.1740	per household (%)	0.532524
e	69	74	Mobile Subscribers	131881072	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7	70	75	Mobile Subscribers	119169759	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7	11	76	Mobile Subscribers	116294420	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7	'2	77	Mobile Subscribers	117562201	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

73 rows × 11 columns

ต่อตารางทั้ง 4 ตารางเข้าด้วยกันด้วยคำสั่ง merge

จากนั้นทำการตรวจสอบค่า Missing

```
# เช็ค missing ตาราง merge_table3
In [23]:
          merge_table3.isnull().any()
Out[23]:
                                                  False
         no.
         Mobile Market Report
                                                  False
         value_mobile
                                                  False
                                                  True
          quarter
          Thailand Internet Users_subscriber
                                                  True
                                                   True
         year
         value_subscriber
                                                  True
         type_population
                                                   True
          value_population
                                                   True
         type_household
                                                   True
         value_household
                                                   True
          dtype: bool
```

พบว่ามีค่า missing อยู่

จัดการ Missing ด้วยการ dropna

In [24]: # จัดการ missing โดยการ dropna()
merge_table3_drop = merge_table3.dropna()
merge_table3_drop

Out[24]:

:		no.	Mobile Market Report	value_mobile	quarter	Thailand Internet Users_subscriber	year	value_subscriber	type_population	value_population	type_household	value_househol
	0	5	Mobile Subscribers	18763102	1.0	Total Internet subscribers	2004.0	785931.00	per population (%)	0.0005	per household (%)	0.001556
	1	6	Mobile Subscribers	19788956	2.0	Total Internet subscribers	2004.0	914400.00	per population (%)	0.0007	per household (%)	0.002265
	2	7	Mobile Subscribers	20655866	3.0	Total Internet subscribers	2004.0	1091652.00	per population (%)	0.0015	per household (%)	0.004964
	3	8	Mobile Subscribers	21616910	4.0	Total Internet subscribers	2004.0	1231344.00	per population (%)	0.0026	per household (%)	0.008716
	4	9	Mobile Subscribers	23217311	1.0	Total Internet subscribers	2005.0	1197942.00	per population (%)	0.0045	per household (%)	0.015449
	64	69	Mobile Subscribers	122173569	1.0	Total Internet subscribers	2020.0	10264995.67	per population (%)	0.1510	per household (%)	0.469344
	65	70	Mobile Subscribers	124366678	2.0	Total Internet subscribers	2020.0	10912996.14	per population (%)	0.1605	per household (%)	0.498972
	66	71	Mobile Subscribers	126137528	3.0	Total Internet subscribers	2020.0	11282645.58	per population (%)	0.1659	per household (%)	0.515873
	67	72	Mobile Subscribers	129613743	4.0	Total Internet subscribers	2020.0	11478264.92	per population (%)	0.1685	per household (%)	0.514683
	68	73	Mobile Subscribers	132594791	1.0	Total Internet subscribers	2021.0	11876158.44	per population (%)	0.1740	per household (%)	0.532524

จากนั้นทำการตรวจสอบค่า Missing ไม่พบค่าที่ missing แล้ว

```
In [25]: # เช็ค missing ตาราง merge_table3_drop
         merge_table3_drop.isnull().any()
Out[25]: no.
                                                False
         Mobile Market Report
                                                False
         value_mobile
                                                False
                                                False
         quarter
         Thailand Internet Users_subscriber
                                                False
                                                False
         year
         value_subscriber
                                                False
         type_population
                                                False
         value_population
                                                False
         type household
                                                False
         value_household
                                                False
         dtype: bool
```

ต่อมาทำการตรวจสอบว่า การลบ missing ด้วยการ .dropna() ว่าจะเสียข้อมูลไปกี่เปอร์เซ็น

```
In [26]: # จากการทำ dropna() ทำให้ข้อมูลหายไปกี่ %
removed = merge_table3.shape[0] - merge_table3_drop.shape[0]

print(f'size before drop = {merge_table3.shape[0]}')
print(f'size aftre drop = {merge_table3_drop.shape[0]}')
print(f'we loss {100*(removed/merge_table3.shape[0])}% of data')

size before drop = 73
size aftre drop = 69
we loss 5.47945205479452% of data
```

Classification

แก้ไขข้อมูลโดยกำหนดค่าในตาราง เพื่อให้ข้อมูลในตารางนำไปใช้ในการ Assosiation ได้ โดยการเพิ่ม column ใหม่ในตาราง merge_table3_drop และ column ที่สร้างใหม่นั้น จะตามหลังด้วย _group โดยการจัดกลุ่มให้ค่าทั้งหมดในแต่ละ column ซึ่งจัดกลุ่มดังนี้

ทำการ import package

```
In [27]: from pandas.api.types import CategoricalDtype
```

เพื่อดูชื่อ column ในตาราง merge_table3_drop

จากนั้นเพิ่ม column ใหม่ในตาราง merge_table3_drop

โดยกำหนดให้ column ชื่อว่า subscriber_group

- ถ้ามีค่าตั้งแต่ 0 2000000 จะให้เป็น low_subscriber
- ถ้ามีค่าตั้งแต่ 2000000 5000000 จะให้เป็น median_subscriber
- ถ้ามีค่าตั้งแต่ 5000000 12000000 จะให้เป็น high_subscriber

column ชื่อว่า household_group

- ถ้ามีค่าตั้งแต่ O 0.1 จะให้เป็น low_household
- ถ้ามีค่าตั้งแต่ 0.1 0.3 จะให้เป็น median_household
- ถ้ามีค่าตั้งแต่ 0.3 0.6 จะให้เป็น high_household

column ชื่อว่า population_group

- ถ้ามีค่าตั้งแต่ 0 0.05 จะให้เป็น low_population
- ถ้ามีค่าตั้งแต่ 0.05 0.10 จะให้เป็น median_population
- ถ้ามีค่าตั้งแต่ 0.10 0.18 จะให้เป็น high_population

column ชื่อว่า mobile_group

- ถ้ามีค่าตั้งแต่ 0 0.05 จะให้เป็น low_mobile
- ถ้ามีค่าตั้งแต่ 0.05 0.10 จะให้เป็น median_mobile
- ถ้ามีค่าตั้งแต่ 0.10 0.18 จะให้เป็น high_mobile

ตัด column ที่เราต้องการ แล้วตั้งชื่อตารางใหม่ว่า data_cut

```
In [35]: data_cut = merge_table3_drop[['subscriber_group', 'household_group', 'population_group', 'mobile_group']] # เดื
อก column ที่ต้องการนำไปใช้งาน
data_cut
```

Out[35]:

	subscriber_group	household_group	population_group	mobile_group
0	low_subscriber	low_household	low_population	low_mobile
1	low_subscriber	low_household	low_population	low_mobile
2	low_subscriber	low_household	low_population	low_mobile
3	low_subscriber	low_household	low_population	low_mobile
4	low_subscriber	low_household	low_population	low_mobile
		:	:	
64	high_subscriber	high_household	high_population	high_mobile
65	high_subscriber	high_household	high_population	high_mobile
66	high_subscriber	high_household	high_population	high_mobile
67	high_subscriber	high_household	high_population	high_mobile
68	high_subscriber	high_household	high_population	high_mobile

Association

```
In [37]: transaction = [] # คือกำหนด transacs ให้เป็น list ว่าง
         for i in range(0,len(data cut)):
           transaction.append([str(data cut.values[i,j]) for j in range(0,4)])
In [38]: [!pip install apyori # ทำการติดตั้งแพ็คเกจ apyori
         Collecting apyori
           Downloading apyori-1.1.2.tar.gz (8.6 kB)
         Building wheels for collected packages: apyori
           Building wheel for apyori (setup.py) ... done
           Created wheel for apyori: filename=apyori-1.1.2-py3-none-any.whl size=5974 sha256=6eb089ad0fd3314fc917bb69c9e
         3c9ba8efebed30cf7bbfd54879f16cacd502e
           Stored in directory: /root/.cache/pip/wheels/cb/f6/e1/57973c631d27efd1a2f375bd6a83b2a616c4021f24aab84080
         Successfully built apyori
         Installing collected packages: apyori
         Successfully installed apyori-1.1.2
In [39]: from apyori import apriori # ทำการ import package เข้ามาใช้งาน
```

```
In [40]: Asso = list(apriori(transaction,min support = 0.4, min cofidence = 0.4))
         Asso
         # min_support คือ ค่าสนับสนุนต่ำสุดที่ยอมรับได้ ต่ำกว่านี้จะไม่นำไปวิเคราะห์
         # min confidence คือ ค่าเชื่อมั่นต่ำสุดที่สนใจ
Out[40]: [RelationRecord(items=frozenset({'high subscriber'}), support=0.42028985507246375, ordered statistics=[OrderedS
         tatistic(items base=frozenset(), items add=frozenset({'high subscriber'}), confidence=0.42028985507246375, lift
         =1.0)]),
          RelationRecord(items=frozenset({'low_population'}), support=0.4057971014492754, ordered statistics=[OrderedSta
         tistic(items base=frozenset(), items add=frozenset({'low population'}), confidence=0.4057971014492754, lift=1.
         0)]),
          RelationRecord(items=frozenset({'median_household'}), support=0.43478260869565216, ordered statistics=[Ordered
         Statistic(items_base=frozenset(), items_add=frozenset({'median household'}), confidence=0.43478260869565216, li
         ft=1.0)]),
          RelationRecord(items=frozenset({'median mobile'}), support=0.4492753623188406, ordered statistics=[OrderedStat
         istic(items_base=frozenset(), items_add=frozenset({'median mobile'}), confidence=0.4492753623188406, lift=1.
         0)]),
          RelationRecord(items=frozenset({'median mobile', 'median household'}), support=0.43478260869565216, ordered st
         atistics=[OrderedStatistic(items base=frozenset(), items add=frozenset({'median mobile', 'median household'}),
         confidence=0.43478260869565216, lift=1.0), OrderedStatistic(items base=frozenset({'median household'}), items a
         dd=frozenset({'median mobile'}), confidence=1.0, lift=2.225806451612903), OrderedStatistic(items_base=frozenset
         ({'median mobile'}), items add=frozenset({'median household'}), confidence=0.967741935483871, lift=2.2258064516
         129035)])]
```

สรุปผล Association

RelationRecord(items=frozenset({'high_subscriber'}),
 support=0.42028985507246375, ordered_statistics=
 [OrderedStatistic(items_base=frozenset(),
 items_add=frozenset({'high_subscriber'}), confidence=0.42028985507246375,
 lift=1.0)]),

หมายความว่า จำนวนผู้ลงทะเบียนใช้บริการอินเทอร์เน็ตความเร็วสูงอยู่ในระดับสูง มีค่าสนับสนุนต่ำสุด ที่ยอมรับได้ 42.03 % ค่าเชื่อมั่นต่ำสุดที่สนใจ 42.03 % ค่า lift เท่ากับ 1

 RelationRecord(items=frozenset({'low_population'}), support=0.4057971014492754, ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset({'low_population'}), confidence=0.4057971014492754, lift=1.0)]),

หมายความว่า อัตราการเข้าถึงของบริการอินเทอร์เน็ตความเร็วสูงต่อจำนวนประชากรอยู่ในระดับต่ำ มี ค่าสนับสนุนต่ำสุดที่ยอมรับได้ 40.58 % ค่าเชื่อมั่นต่ำสุดที่สนใจ 40.58 % ค่า lift เท่ากับ 1

- RelationRecord(items=frozenset({'median_household'}), support=0.43478260869565216, ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset({'median_household'}), confidence=0.43478260869565216, lift=1.0)]), หมายความว่า ตราการเข้าถึงของบริการอินเทอร์เน็ตความเร็วสูงต่อจำนวนครัวเรือนอยู่ในระดับกลาง มีค่า สนับสนุนต่ำสุดที่ยอมรับได้ 43.48 % ค่าเชื่อมั่นต่ำสุดที่สนใจ 43.48 % ค่า lift เท่ากับ 1
- RelationRecord(items=frozenset({'median_mobile'}), support=0.4492753623188406, ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset({'median_mobile'}), confidence=0.4492753623188406, lift=1.0)]), หมายความว่า จำนวนเลขหมายโทรศัพท์เคลื่อนที่ที่ได้รับการจดทะเบียนอยู่ในระดับกลาง มีค่าสนับสนุนต่ำสุดที่ ยอมรับได้ 44.93 % ค่าเชื่อมั่นต่ำสุดที่สนใจ 44.93 % ค่า lift เท่ากับ 1

จากกฎ 4 ข้อด้านบนจะสังเกตเห็นว่าค่า lift = 1 แสดงว่ากฎพวกนี้ยังไม่น่าสำคัญและยังไม่น่าสนใจ

RelationRecord(items=frozenset({'median_household', 'median_mobile'}), support=0.43478260869565216, ordered_statistics=
[OrderedStatistic(items_base=frozenset(), items_add=frozenset({'median_household', 'median_mobile'}), confidence=0.43478260869565216, lift=1.0),
 OrderedStatistic(items_base=frozenset({'median_household'}),
 items_add=frozenset({'median_mobile'}), confidence=1.0, lift=2.225806451612903),
 OrderedStatistic(items_base=frozenset({'median_mobile'}),
 items_add=frozenset({'median_household'}), confidence=0.967741935483871,
 lift=2.2258064516129035)])

<u>แปลผลใด้ว่า</u>

 -RelationRecord(items=frozenset({'median_mobile', 'median_household'}), support=0.43478260869565216

หมายความว่า ค่าสนับสนุนต่ำสุดที่ยอมรับได้ของทั้ง 2 itemsets คือ อัตราการเข้าถึงของบริการอินเทอร์เน็ต ความเร็วสูงต่อจำนวนครัวเรือนอยู่ในระดับปานกลางและจำนวนเลขหมายโทรศัพท์เคลื่อนที่ที่ได้รับการจด ทะเบียนอยู่ในระดับปานกลาง มีค่าสนับสนุนต่ำสุดที่ยอมรับได้ทั้งหมด 43.48 %

- OrderedStatistic(items_base=frozenset({'median_household'}),
 items_add=frozenset({'median_mobile'}), confidence=1.0, lift=2.225806451612903)
 หมายความว่า มีการเข้าถึงบริการอินเทอร์เน็ตความเร็วสูงต่อครัวเรือนที่อยู่ในระดับกลาง จึงค่อยมีการจด ทะเบียนหมายเลขโทรศัพท์เคลื่อนที่ที่อยู่ในระดับกลางมีค่าเชื่อมั่นต่ำสุดที่สนใจทั้งหมด 100 %
 - OrderedStatistic(items_base=frozenset({'median_mobile'}), items_add=frozenset({'median_household'}), confidence=0.967741935483871, lift=2.2258064516129035)

หมายความว่า มีการจดทะเบียนหมายเลขโทรศัพท์เคลื่อนที่ที่อยู่ในระดับกลางก่อนจึงค่อยมีการเข้าถึงบริการ อินเทอร์เน็ตความเร็วสูงต่อครัวเรือนที่อยู่ในระดับกลาง มีค่าเชื่อมั่นต่ำสุดที่สนใจทั้งหมด 96.77 %

• code : lift=2.2258064516129035 หมายความว่า ดีกฏนี้น่าสนใจ มีความสัมพันธ์กันมาก

23

แปลงข้อมูลให้เป็นตัวเลข

In [41]: # กำหนดข้อมูลให้เป็นค่าตัวเลข โดยชื่อข้อมูลที่ขึ้นดันด้วย Low=0 , median=1 , high=2
 data_cut['subscriber_group'] = data_cut['subscriber_group'].map({'low_subscriber':0,'median_subscriber':1,'high_subscriber':2})
 data_cut['household_group'] = data_cut['household_group'].map({'low_household':0,'median_household':1,'high_household':2})
 data_cut['population_group'] = data_cut['population_group'].map({'low_population':0,'median_population':1,'high_population':2})
 data_cut['mobile_group'] = data_cut['mobile_group'].map({'low_mobile':0,'median_mobile':1,'high_mobile':2})
 data_cut['mobile_group'] = data_cut['mobile_group'].map({'low_mobile':0,'median_mobile':1,'high_mobile':2})

Out[41]:

	subscriber_group	household_group	population_group	mobile_group
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
			:	
64	2	2	2	2
65	2	2	2	2
66	2	2	2	2
67	2	2	2	2
68	2	2	2	2

กำหนดให้ข้อมูลที่ขึ้นต้นด้วย

low = 0

median = 1

high = 2

ผล Asso code 1 มา plot กราฟ subscriber_group โดย high ดูกราฟที่ข้อมูลอยู่ในกลุ่ม high หรือ 2

```
In [63]: plt.plot(range(len(data_cut.iloc[:,:-3])),data_cut.iloc[:,:-3],'*:g',alpha=0.5,label='subscriber_group') plt.ylabel('value') # แกน y คือ value บอกว่าข้อมูลในแต่ละ column มีค่าข้อมูลเท่ากับเท่าไหร่ โดยค่าข้อมูลมี 3 ตัวตามที่ได้กำหนดไว้ คือ 0,1,2 plt.xlabel('no.') # แกน x คือ บอกว่าข้อมูลในแต่ละ column อยู่จุดที่เท่าไหร่ plt.title('Compare data relationships') # ชื่อกราฟคือ Compare data relationships/เปรียบเทียบความสัมพันธ์ของข้อมูล plt.legend();
```


ผล Asso code 2 มา plot กราฟ population_group โดย low_population ดูกราฟที่ข้อมูลอยู่ในกลุ่ม low หรือ 0

```
In [64]: plt.plot(range(len(data_cut.iloc[:,2:-1])),data_cut.iloc[:,2:-1],'*:y',alpha=0.5,label='population_group') plt.ylabel('value') # แกน y คือ value บอกว่าข้อมูลในแต่ละ column มีค่าข้อมูลเท่ากับเท่าใหร่ โดยค่าข้อมูลมี 3 ตัวตามที่ได้กำหนดไว้ คือ 0,1,2 plt.xlabel('no.') # แกน x คือ บอกว่าข้อมูลในแต่ละ column อยู่จุดที่เท่าใหร่ plt.title('Compare data relationships') # ชื่อกราฟคือ Compare data relationships/เปรียบเทียบความสัมพันธ์ของข้อมูล plt.legend();
```


ผล code 3 มา plot กราฟ household_group โดย median_household ดูกราฟที่ข้อมูลอยู่ในกลุ่ม median หรือ 1

```
In [65]: plt.plot(range(len(data_cut.iloc[:,1:-2])),data_cut.iloc[:,1:-2],'*:b',alpha=0.5,label='household_group') plt.ylabel('value') # แกน y คือ value บอกว่าข้อมูลในแต่ละ column มีค่าข้อมูลเท่ากับเท่าไหร่ โดยค่าข้อมูลมี 3 ตัวตามที่ได้กำหนดไว้ คือ 0,1,2 plt.xlabel('no.') # แกน x คือ บอกว่าข้อมูลในแต่ละ column อยู่จุดที่เท่าไหร่ plt.title('Compare data relationships') # ชื่อกราฟคือ Compare data relationships/เปรียบเทียบความสัมพันธ์ของข้อมูล plt.legend();
```


ผล Asso code 4 มา plot กราฟ mobile_group โดย median_mobile ดูกราฟที่ข้อมูลอยู่ในกลุ่ม median หรือ 1

```
In [66]: plt.plot(range(len(data_cut.iloc[:,3:])),data_cut.iloc[:,3:],'*:r',alpha=0.5,label='mobile_group') plt.ylabel('value') # แกน y คือ value บอกว่าข้อมูลในแต่ละ column มีค่าข้อมูลเท่ากับเท่าไหร่ โดยค่าข้อมูลมี 3 ตัวตามที่ได้กำหนดไว้ คือ 0,1,2 plt.xlabel('no.') # แกน x คือ บอกว่าข้อมูลในแต่ละ column อยู่จุดที่เท่าไหร่ plt.title('Compare data relationships') # ชื่อกราฟคือ Compare data relationships/เปรียบเทียบความสัมพันธ์ของข้อมูล plt.legend();
```


28

ผล Asso code 5 มา plot กราฟ household_group กับ mobile_group median_household กับ median_mobile ดูกราฟตรงที่ข้อมูล อยู่ในกลุ่ม median หรือ 1

```
In [67]: plt.plot(range(len(data_cut.iloc[:,1:-2])),data_cut.iloc[:,1:-2],'*:b',alpha=0.5,label='household_group') #household_group คือสี b= สีน้ำเงิน
plt.plot(range(len(data_cut.iloc[:,3:])),data_cut.iloc[:,3:],'*:r',alpha=0.5,label='mobile_group') # mobile_group คือสี r= สีแดง
plt.ylabel('value') # แกน y คือ value บอกว่าข้อมูลในแต่ละ column มีค่าข้อมูลเท่ากับเท่าไหร่ โดยค่าข้อมูลมี 3 ตัวตามที่ได้กำหนดไว้ คือ 0,1,2
plt.xlabel('no.') # แกน x คือ บอกว่าข้อมูลในแต่ละ column อยู่จุดที่เท่าไหร่
plt.title('Compare data relationships') # ชื่อกราฟคือ Compare data relationships/เปรียบเทียบความสัมพันธ์ของข้อมูล
plt.legend();
```


เปรียบเทียบข้อมูลทุก column

```
In [68]: plt.plot(range(len(data_cut.iloc[:,:-3])),data_cut.iloc[:,:-3],'*:g',alpha=0.5,label='subscriber_group') # subscriber_group คือลี้ g = สีเขียว
plt.plot(range(len(data_cut.iloc[:,1:-2])),data_cut.iloc[:,1:-2],'*:b',alpha=0.5,label='household_group') # household_group คือลี b = สีน่าเงิน
plt.plot(range(len(data_cut.iloc[:,2:-1])),data_cut.iloc[:,2:-1],'*:y',alpha=0.5,label='population_group') # population_group คือ สี y = สีเหลือง
plt.plot(range(len(data_cut.iloc[:,3:])),data_cut.iloc[:,3:],'*:r',alpha=0.5,label='mobile_group') # mobile_group คือสี r = สีแดง
plt.ylabel('value') # แกน y คือ value บอกว่าข้อมูลในแต่ละ column มีค่าข้อมูลเท่ากับเท่าใหร่ โดยค่าข้อมูลมี 3 ตัวตามที่ได้กำหนดใว้ คือ 0,1,2
plt.xlabel('no.') # แกน x คือ บอกว่าข้อมูลในแต่ละ column อยู่จุดที่เท่าใหร่
plt.title('Compare data relationships') # ชื่อกราฟคือ Compare data relationships/เปรียบเทียบความสัมพันธ์ของข้อมูล
plt.legend();
```


จากกราฟข้อมูลส่วนใหญ่ซ้อนทับกัน จึงสรุปได้ว่าข้อมูลมีความสัมพันธ์กัน

30

ยกตัวอย่าง

จากกราฟจะสังเกตได้ว่า

ข้อมูล mobile_group , subscriber_group , household_group และ population_group จากจุดที่ no. 10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ low

```
In [50]: # ตัวอย่าง : ข้อมูล mobile_group ที่ no.10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ Low
                                                                                                    In [51]: # ตัวอย่าง : ข้อมูล subscriber_group ที่ no.10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ Low
                                                                                                                # อ่านกราฟได้ว่า "จุดที่ 10 สีเขียว มีค่าข้อมูลเท่ากับ 0"
           # อ่านกราฟได้ว่า "จดที่ 10 สีแดง มีค่าข้อมลเท่ากับ 0"
                                                                                                                # จุดสีเขียวคือข้อมูลจาก subscriber_group
           # จุดสีแดงคือข้อมูลจาก mobile group
                                                                                                                # ลอง code เพื่อเปรียบเทียบข้อมูลที่อยู่ในกราฟว่าตรงกันรึเปล่า?
           # ลอง code เพื่อเปรียบเทียบข้อมูลที่อยู่ในกราฟว่าตรงกันรึเปล่า?
                                                                                                                data cut.iloc[10:-58,:-3]
           data cut.iloc[10:-58,3:]
                                                                                                    Out[51]:
Out[50]:
                                                                                                                    subscriber group
               mobile group
                                                                                                                10 0
            10 0
                                                                                                    In [53]: # ตัวอย่าง : ข้อมูล population_group ที่ no.10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ Low
In [52]: # ตัวอย่าง : ข้อมูล household group ที่ no.10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ low
           # อ่านกราฟได้ว่า "จดที่ 10 สีน้ำเงิน มีค่าข้อมลเท่ากับ 0"
                                                                                                                # อ่านกราฟได้ว่า "จุดที่ 10 สีเหลือง มีค่าข้อมูลเท่ากับ 0"
           # จดสีน้ำเงินคือข้อมูลจาก household group
                                                                                                                # จุดสีเหลืองคือข้อมูลจาก population group
           # ลอง code เพื่อเปรียบเทียบข้อมูลที่อยู่ในกราฟว่าตรงกันรึเปล่า?
                                                                                                                # ลอง code เพื่อเปรียบเทียบข้อมลที่อย่ในกราฟว่าตรงกันรึเปล่า?
                                                                                                               data cut.iloc[10:-58,2:-1]
           data cut.iloc[10:-58,1:-2]
Out[52]:
                                                                                                    Out[53]:
               household_group
                                                                                                                    population_group
            10 0
```

จากนั้นลองทำการรัน code เพื่อเปรียบเทียบว่าของมูลตรงกันหรือไม่? และข้อมูลในจุดนี้มีความสัมพันธ์กันหรือไม่?

สรุปจากการยกตัวอย่าง

- ข้อมูล mobile_group ที่ no.10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ low
- ข้อมูล subscriber_group ที่ no.10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ low
- ข้อมูล household_group ที่ no.10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ low
- ข้อมูล population_group ที่ no.10 ก็จะจัดอยู่ในกลุ่มที่ 0 คือในระดับ low

จากตัวอย่างแสดงให้เห็นว่าข้อมูลที่จุดเดียวกันมีค่าตรงกันหรือค่าเท่ากัน และการเปรียบเทียบระหว่างกราฟและการเขียนโค้ดเพื่อหาคำตอบ จึงสรุปได้ว่า ข้อมูลในจุดนี้มีความสัมพันธ์กัน

รายชื่อสมาชิก (กลุ่มลูกหมี)

นางสาวมินตรา ทิพยรัตน์สุนทร นางสาวกัลยารัตน์ แสนสมบัติ นางสาวฐิติชญา ใกรวงค์ นางสาวนันทิชา วิชิต นางสาวศศิกานต์ บุญมี 623020041-2

623020513-7

623020520-0

623020526-8

623020539-9

