TAPL Chap6 Nameless Representation of Terms

Kinebuchi Tomohiko

2011/01/09

まえがき

第5章で「束縛変数の名前付け替え」(α変換)を扱った. この方法は人間に分かりやすいし, 証明もしやすい. しかし実装には向かない. できれば一意な形になって欲しい.

代入の扱い方

- 変数を記号で扱って, 名前付け替えで対応 (第5章での方法)
- ② 変数を記号で扱うが、束縛変数は他のどの変数とも名前がか ぶらない. ただし代入で不安定. (Barendregt convention)
- 3 ある一意の形で項を表す. (この章で扱う方法)
- explicit substitutions
- 変数を使わない方法を取る. Combinatory logic

どれを選ぶかは好き好き.

代入の扱い方

この本では 3 番目の de Bruijn による方法を選ぶ. この方法で実装すると複雑な例にも対応できるし, 間違えたとき にすぐ分かる.

6.1 Terms and Contexts

de Bruijn のアイディアは読みづらいけど直接的. 変数を数字で書いてしまう. これを de Bruijn index と呼ぶ. コンパイラのを書く人は同じ概念を "static distance" と呼んだりする.

6.1.1 Exercise

やってみましょう. 端から順に当ててきます. plus に誤植があります. (nzs) の部分は (nsz) のはず.

6.1.2 Definition

Definition

$$\mathcal{T} = \{\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \dots\}$$

- \bullet $\mathsf{t}_1 \in \mathcal{T}_n \ (n > 0) \Rightarrow \lambda.\mathsf{t}_1 \in \mathcal{T}_{n-1}$
- 5.3.1 (P.69) のような形式で定義する. 5.3.1 と違うのは自由変数の個数をきっちり見てるところ.

 T_n (n-terms) = 「多くとも n 個しか自由変数が無い項」t が閉項 (自由変数が 0 個) なら全ての T_n に属する.

閉項の場合 de Bruijn 表現は一意に決まる.

もちろん名前の付け替えで等しい項は de Bruijn 表現で同じ表現になる.

自由変数がある場合を扱うために naming context を用意する. naming context = あらかじめ自由変数用の文字を用意して, その使う順序を決めたもの.

$$\Gamma = \mathsf{x} \mapsto 4$$

$$\mathsf{y} \mapsto 3$$

$$\mathsf{z} \mapsto 2$$

$$\mathsf{a} \mapsto 1$$

$$\mathsf{b} \mapsto 0$$

重なるとまずいので登場する束縛変数のの数だけずらして使う.

 $\lambda x. x lt \lambda. 0$

x (y z) は 4 (3 2)

 λ w. y w は途中まで変換すると λ . y 0

ここで元々 w だった 0 と重ならないように context をずらす.

$$\Gamma = \mathsf{x} \mapsto 5$$

$$y \mapsto 4$$

$$\mathbf{z} \mapsto 3$$

$$\mathsf{a}\mapsto 2$$

$$b \mapsto 1$$

なので λ. 40

 λ w. λ a. x は 2 つずれて λ . λ . 6

6.1.3 Definition

いちいち書いてると面倒なので naming context を $\Gamma=\mathsf{x}_n,\mathsf{x}_{n-1},\ldots,\mathsf{x}_0$ と書いて, $x_i\mapsto i$ という対応付けを表すとする. $dom(\Gamma)\equiv\{\mathsf{x}_n,\mathsf{x}_{n-1},\ldots,\mathsf{x}_0\}$

context をずらす操作についてもう少し

```
\lambda w.\ \lambda a.\ x の 1 番外側では context は \Gamma=x,y,z,a,b. もちろん, これらは全て自由変数. \downarrow abstraction の 1 つ内側 (\lambda a.\ x の部分) に入るとき w と衝突しないようにずらさないといけない. 新しい context \Gamma'=x,y,z,a,b,w になると考えてもよい. \downarrow もう一度 abstraction の内側 (x の部分) に入るとき a と衝突しないようにずらさないといけないので, 新しい context \Gamma'=x,y,z,a,b,w,a になる.
```

6.1.4 Exercise

さっきの $T = \{T_0, T_1, T_2, \dots\}$ を 3.2.3 (P. 27) みたいに定義し直して、最初の定義と同等であることを示せ、以下のように構成すれば良い。

$$S_n^{i+1} = \{0, 1, 2, ..., n-1\}$$

$$\cup \{\lambda.t | t \in S_{n+1}^i\}$$

$$\cup \{t_1 t_2 | t_1, t_2 \in S_n^i\}$$

$$S_n = \bigcup_i S_n^i$$

ちなみにこの定義から $S_n \subset S_{n+1}$ が分かる.

$$\mathcal{S}_n^i$$
 \mathcal{S}_{n+1}^i \mathcal{S}_{n+2}^i \cdots \mathcal{S}_n^{i+1} \mathcal{S}_{n+1}^{i+1} \mathcal{S}_{n+1}^i \cdots

6.1.5 Exercise

通常の項の表現から de Bruijn 表現へ変換する関数 $removenames_{\Gamma}(t)$ を書け. $FV(t) \subset dom(\Gamma)$ de Bruijn 表現から通常の項の表現へ変換する関数 $restorenames_{\Gamma}(t)$ を書け. 当然この 2 つは逆関数の関係にないといけない. 基本のアイディアは 11 シート目の内容

巻末の解答について

application の場合は context は変化しないと思う. 変化してしまうと 6.2.1 の定義と食い違うし, x がどこから出てきたか分からない. 誤植? 以下が正しいと思う.

 $removenames_{\Gamma}(t_1 \ t_2) = removenames_{\Gamma}(t_1) \ removenames_{\Gamma}(t_2)$

6.2 Shifting and Substitution

代入を扱う前にシフト操作を定義する. 11 シート目の内容を厳密に定義する.

6.2.1 Definition

これを使うと自由変数だけシフトすることができる.

Definition

$$\uparrow_c^d(\mathbf{k}) = \begin{cases} \mathbf{k} & \text{if } \mathbf{k} < c \\ \mathbf{k} + d & \text{if } \mathbf{k} \ge c \end{cases}$$

$$\uparrow_c^d(\lambda, \mathbf{t}_1) = \lambda. \quad \uparrow_{c+1}^d(\mathbf{t}_1)$$

$$\uparrow_c^d(\mathbf{t}_1 \mathbf{t}_2) = \uparrow_c^d(\mathbf{t}_1) \quad \uparrow_c^d(\mathbf{t}_2)$$

6.2.2 Exercise

計算してみる.

6.2.3 Exercise

項のサイズについての帰納法で証明してみる.

6.2.4 Definition

代入が書けるようになった.

Definition

$$\begin{split} [\mathbf{j} \mapsto \mathbf{s}] \mathbf{k} &= \begin{cases} s & \text{if } \mathbf{k} = \mathbf{j} \\ k & \text{otherwise} \end{cases} \\ [\mathbf{j} \mapsto \mathbf{s}] (\lambda. \ \mathbf{t}_1) &= \lambda. \ [\mathbf{j} + 1 \mapsto \uparrow^1 \ (\mathbf{s})] \mathbf{t}_1 \\ [\mathbf{j} \mapsto \mathbf{s}] (\mathbf{t}_1 \ \mathbf{t}_2) &= [\mathbf{j} \mapsto \mathbf{s}] \mathbf{t}_1 \ [\mathbf{j} \mapsto \mathbf{s}] \mathbf{t}_2 \end{split}$$

6.2.5 Exercise

4 では代入した後の自由変数の index の調整が必要

6.2.6 Exercise

6.2.3 の結果を使う.

6.2.7 Exercise

定義をそらで書けるかのチェック. 各自やってください.

6.2.8 Exercise

「nameless term を使った代入操作と ordinary term を使った代入操作が一致する」という主張を言うのに必要な定理を書き, 証明する.

6.1.5 で $removenames_{\Gamma}$ と $restorenames_{\Gamma}$ は作ったので $restorenames_{\Gamma}([j\mapsto s]removenames(\lambda x.t_1))=[j\mapsto s](\lambda x.t_1)$ を 示せば良い. (残りは楽なので省略)

6.3 Evaluation

代入までできたので、残るは β 簡約の定義. もちろん代入を使う. ポイントとなるのは代入を行うと束縛変数が 1 つ消える. その空いた分を詰めなくてはいけない. (6.2.5 の 4 を解くと分かる.) その再調整操作を入れて (λ . t_{12}) $v_2 \longrightarrow \uparrow^{-1} ([0 \mapsto \uparrow^1 (v_2)] t_{12})$ こんなルールになる

6.3.1 Exercise

-1 のシフトがあるけど大丈夫か? 項 $([0 \mapsto \uparrow^1 (v_2)] t_{12})$ に 0 は出てこないので -1 シフトしても大 丈夫

6.3.2 Exercise

de Bruijn level (reversed de Bruijn repr.) naming context $\Gamma = x_0, x_2, \dots, x_n$ 構成中...