Anvend matematikk for grunnskule og VGS

"Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt"

"Det er ikkje å vite, men å lære, ikkje å eige, men å eigne til seg, ikkje å vere til stades, men å komme dit, som gjev den største gleda."

— Carl Friedrich Gauss

Dokumentet er laga av Sindre Sogge Heggen. Teksten er skriven i LATEX og figurane er lagd vha. Asymptote.

Anvend matematikk for grunnskule og VGS by Sindre Sogge Heggen is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

Kjære lesar.

Denne boka er i utgangspunktet gratis å bruke, men eg håper du forstår kor mykje tid og ressursar eg har brukt på å lage ho. Viss du ender opp med å like boka, håper eg derfor du kan donere 50 kr via Vipps til 90559730 eller via PayPal. Ver venleg å markere donasjonen med "Mattebok" ved bruk av Vipps. Pengane vil bli brukt til å fortsette arbeidet med å lage lærebøker som er med på å gjere matematikk lett tilgjengeleg for alle. På førehand takk!

Boka blir oppdatert så snart som råd når skrivefeil og liknande blir oppdaga, eg vil derfor råde alle til å laste ned ein ny versjon i ny og ne ved å følge denne linken.

Bokmålsversjonen av boka finner du her.

For spørsmål, ta kontakt på mail: sindre.heggen@gmail.com

Forord

Bokas bruksområde

I lag med Matematikken sine byggesteinar (MB) dekker denne boka matematikk for 5.-10. klassse og for VGS-faga 1P og 2P. Mens MB tek for seg dei teoretiske grunnprinsippa matte er bygd på, er denne boka menit for å vise korleis matte kan anvendast i det daglege. Det er likevel med ein viss ambivalens eg bruker ordet "anvendt". Eg er hellig overbevist om at dei aller fleste har behov å bruke matematikk i konkrete, praktiske situasjonar for å få opplevinga av at matematikk blir anvendt. Eg håper derfor desse gratis-bøkene kan frigi midlar for skular, som da kan investere i utstyr som gjer at elevar (og lærarar) får måle, estimere, kalkulere og vurdere ut i frå reelle situasjoner.

Boka si disponering

Da boka gapar over matematikk for 5. klasse og heilt til VGS, vil kanskje mange meine at språket er noko avansert, spesielt for dei yngste. Men forenklingar fører ofte til at ein stadig må vende tilbake til tema for å kommentere utvidingar og/eller unntak, og da dannast det fort eit unødig kronglete og innvikla bilde av matematikken si oppbygging. Eg trur ein i lengda er tent med å presentere temaa så utfyllande som mogleg, og heller bruke god tid på å forstå dei éin gong for alle.

Nokon vil kanskje også reagere på at eksempla er veldig enkle, at dei viser få samansatte problem. Éin av grunnane til dette er at slik vil det faktisk vere for dei aller fleste etter endt skulegong; det handlar om å bruke formlar direkte. Ein annen grunn er at eg meiner det å meistre likningar er den overlegent beste måten å løyse sammensette problem på, og derfor handlar nesten helie kapittel 6 om problemløysing.

Tilbakemeldingar og eventuelle endringer

Eg håper å høre frå deg med tilbakemeldinger om boka. Merk likevel at alle har sine tankar om korleis ei lærebok ideelt sett bør utformast, så ikkje tolk det som utakksemd viss tilbakemeldingar ikkje blir tatt til etterretning. Husk at kodekilden til både denne boka og MB ligg open for alle på GitHub; med litt kunnskapar om Git og LATEX kan du enkelt gjere endringar slik det passer deg og klassen din!

Gjøreliste

Prosjektet som denne boka er ein viktig del av er under stadig utvikling. Her er ei liste med komande gjereremål, i prioritert rekkefølge:

- Korrigere skrivefeil. Dette gjerast kontinuerleg, gir du beskjed om feil funne til sindre.heggen@gmail.com, vil korrigering som oftast bli utført samme dag.
- Legge til fleire oppgåver både i denne boka og i MB.
- Legge til fasit
- Legge til forklaring av delingsalgoritmen.
- Lage ei pensumoversikt for denne boka og MB sett opp mot kompetansemålene f.o.m. 5. klasse og t.o.m. 2P.
- Vidareutvikle nettside med læringsvideoar, undervisningsopplegg og meir.

..

Innhald

T	Utro	egningsmetoder	8
	1.1	Standardform	9
	1.2	Regning med tid	12
	1.3	Avrunding og overslagsregning	4
			4
		1.3.2 Overslagsrekning	15
	Opp	gaver	18
2	Stør	rrelser og enheter 1	.9
	2.1	Størrelsar, einingar og prefiks	20
	2.2	Regning med forskjellige nemningar	23
	Opp	gaver	26
3	Stat	istikk 2	28
	3.1	Introduksjon	29
	3.2	Presentasjonsmetoder	31
		3.2.1 Frekvenstabell	31
		3.2.2 Søylediagram (stolpediagram)	32
		3.2.3 Sektordiagram (kakediagram)	33
		3.2.4 Linjediagram	34
	3.3	9	35
		3.3.1 Typetal	36
		3.3.2 Gjennomsnitt	36
		3.3.3 Median	38
	3.4	0 0 1	10
		<i>5</i>	10
		3.4.2 Kvartilbredde	11
		, 0	13
	Opp	gaver	16
4	Geo	ometri 4	<u>1</u> 9
	4.1	Symmetri	60
	4.2	Omkrets, areal og volum med einigar	55
	Opp	gaver	57
5	Brø	krekning 6	60
	5.1	Brøkdelar av heiler	31
	5.2	Prosent	3
		5.2.1 Prosentvis endring; auke eller redusering 6	37
		5.2.2 Vekstfaktor	70

		5.2.3	Prosentpoeng
		5.2.4	Gjentatt prosentvis endring
	5.3	Forho	
		5.3.1	Målestokk
		5.3.2	Blandingsforhold
	Opp	gaver	
6	Lik	ningar	, formlar og funksjonar 91
	6.1	Å finn	ne størrelser
		6.1.1	
		6.1.2	
	6.2	Funks	joners egenskaper
		6.2.1	Funksjoner med samme verdi; skjæringspunkt 98
		6.2.2	Null-, bunn- og toppunkt
	6.3	Liknin	ngssett
		6.3.1	Innsettingsmetoden
		6.3.2	Grafisk metode
	Opp	gaver	
7	Øko	onomi	116
	7.1	Indeks	sregning
		7.1.1	Introduksjon
		7.1.2	Konsumprisindeks og basisår
		7.1.3	Kroneverdi
		7.1.4	Realløn og nominell lønn
	7.2		g sparing
		7.2.1	Lån
		7.2.2	Sparing; innskuddsrente og forventa avkastning 128
	7.3	Skatt	
		7.3.1	Bruttolønn, frådrag og skattegrunnlag 130
		7.3.2	Trygdeavgift
		7.3.3	Trinnskatt
		7.3.4	Nettolønn
	7.4	Budsj	ett og regnskap
		7.4.1	Budsjett
		7.4.2	Regnskap
	Opp	gaver	
8	San	nsynli	ghet 141
	8.1		$nprinn sippet \dots \dots$
	8.2	Hendi	ngar med og utan felles utfall
		8.2.1	Hendingar utan felles utfall
		8.2.2	Summen av alle sannsvn er 1

		8.2.3	Felles utfall	. 148
		8.2.4	Venndiagram	. 151
		8.2.5	Krysstabell	. 156
	8.3	Gjenta	atte trekk	. 157
		8.3.1	Permutasjoner	. 157
		8.3.2	Sannsyn ved gjentatte trekk	. 160
		8.3.3	Valgtre	. 162
	Opp	gaver		. 166
9	Dig	itale v	erktøy	167
	9.1		ammering	. 168
	9.2	_	ark	
		9.2.1	Introduksjon	
		9.2.2	Utregninger	
		9.2.3	Cellereferanser	
		9.2.4	Kopiering og låsing av celler	
		9.2.5	Andre nyttige funksjoner	
	9.3	GeoG	ebra	
		9.3.1	Introduksjon	. 174
		9.3.2	Å skrive inn punkt, funksjoner og linjer	. 174
		9.3.3	Å finne verdien til funksjoner og linjer	
		9.3.4	Knapper og kommandoer	. 178
	Opp	gaver		. 180
Ve	edleg	\mathbf{g}		183
Fa	\mathbf{sit}			184

Kapittel 1

Utregningsmetoder

1.1 Standardform

Vi kan utnytte Regel ?? og Regel ??, og det vi kan om potenser¹, til å skrive tal på standardform.

La oss sjåpå tallet 6 700. Av Regel?? veit vi at

$$6700 = 6.7 \cdot 1000$$

Og sidan $1000 = 10^3$, er

$$6700 = 6.7 \cdot 1000 = 6.7 \cdot 10^3$$

 $6.7 \cdot 10^3$ er 6700 skriven på standardform fordi

- 6,7 er større enn 0 og mindre enn 10.
- 10^3 er ein potens med grunntal 10 og eksponent 3, som er eit heiltal.
- $6.7 \text{ og } 10^3 \text{ er gonga saman.}$

La oss også sjå på tallet 0,093. Av Regel ?? har vi at

$$0,093 = 9,3:100$$

Men å dele med 100 er det same som å gonge med 10^{-2} , altså er

$$0.093 = 9.3 : 100 = 9.3 \cdot 10^{-2}$$

 $9.3\cdot 10^{-2}$ er 0.093skriven på standardform fordi

- 9,3 er større enn 0 og mindre enn 10.
- 10^{-2} er ein potens med grunntal 10 og eksponent -2, som er eit heiltal.
- $9.3 \text{ og } 10^{-2} \text{ er gonga saman.}$

¹sjå MB s 101-106.

1.1 Standardform

Eit tall skriven som

$$a \cdot 10^n$$

kor 0 < a < 10 og n er eit heiltal, er eit tal skriven på standardform.

Eksempel 1

Skriv 980 på standardform.

Svar:

$$980 = 9.8 \cdot 10^2$$

Eksempel 2

Skriv 0,00671 på standardform.

Svar:

$$0,00671 = 6,71 \cdot 10^{-3}$$

Tips

For å skrive om tall på standardform kan du gjere følgande:

- 1. Flytt komma slik at du får eit tal som ligg mellom 0 og 10.
- 2. Gong dette tallet med ein tiarpotens som har eksponent med talverdi lik antallet plassar du flytta komma. Flytta du komma mot venstre/høgre, er eksponenten positiv/negativ.

Eksempel 3

Skriv 9 761 432 på standardform.

Svar:

- 1. Vi flyttar komma 6 plassar til venstre, og får $9{,}761432$
- 2. Vi gongar dette tallet med 10^6 , og får at

$$9\,761\,432 = 9,761432 \cdot 10^6$$

Eksempel 4

Skriv 0,00039 på standardform.

Svar:

- 1. Vi flyttar komma 4 plasser til høgre, og får 3,9.
- 2. Vi gongar dette tallet med 10^{-4} , og får at

$$0,00039 = 3,9 \cdot 10^{-4}$$

1.2 Regning med tid

Sekund, minutt og timar er organisert i grupper på 60:

$$1 \text{ minutt} = 60 \text{ sekund}$$

$$1 \text{ time} = 60 \text{ minutt}$$

Dette betyr at overgongar oppstår i utrekningar når vi når 60.

Eksempel 1

 $2 t 25 \min + 10 t 45 \min = 13 t 10 \min$

Utrekningsmetode 1

		$10\mathrm{t}\ 45\mathrm{min}$
$15\mathrm{min}$	$15\mathrm{min}$	$11\mathrm{t}~00\mathrm{min}$
$10\mathrm{min}$	$25\mathrm{min}$	$11\mathrm{t}\ 10\mathrm{min}$
$2\mathrm{t}$	$2\mathrm{t}~25\mathrm{min}$	13 t 10 min

$Utrekningsmetode\ 2$

		10:45
00:15	00:15	11:00
00:10	00:25	11:10
02:00	02:25	13:10

Eksempel 2

 $14 t 18 \min -9 t 34 \min = 4 t 44 \min$

Utrekningsmetode 1

	$9\mathrm{t}\ 34\mathrm{min}$
$26\mathrm{min}$	$10 \mathrm{t} 00 \mathrm{min}$
$18 \min$	$10 \mathrm{t} 18 \mathrm{min}$
$4\mathrm{t}$	$14\mathrm{t}~00\mathrm{min}$
4 t 44 min	

$Utrekningsmetode\ 1$

	09:34
00:26	10:00
00:18	10:18
04:00	14:18
04:44	

1.3 Avrunding og overslagsregning

1.3.1 Avrunding

Ved *avrunding* av eit tall minkar vi antal siffer forskjellige frå 0 i eit tall. Vidare kan ein runde av til *næraste einar*, *næraste tiar* eller liknande.

Eksempel 1

Ved avrunding til næraste einar avrundast

- 1, 2, 3 og 4 ned til 0 fordi dei er nærare 0 enn 10.
- 6, 7, 8 og 9 opp til 10 fordi dei er nærare 10 enn 0.

5 avrundast også opp til 10.

Eksempel 2

• 63 avrundet til næraste tiar = 60

Dette fordi 63 er nærmere 60 enn 70.

• 78 avrundet til næraste tiar = 80

Dette fordi 78 er nærmere 80 enn 70.

• 359 avrundet til næraste hundrer = 400

Dette fordi 359 er nærmere 400 enn 300.

• 11.8 avrundet til næraste einar = 12

Dette fordi 11,8 er nærmere 12 enn 11.

1.3.2 Overslagsrekning

Det er ikkje alltid vi trenger å vite svaret på reknestykker helt nøyaktig, noen ganger er det viktigere at vi fort kan avgjøre hva svaret omtrent er det samme som, aller helst ved hoderekning. Når vi finn svar som omtrent er rett, seier vi at vi gjer eit overslag. Eit overslag inneber at vi avrundar tala som inngår i et reknestykke slik at utrekninga blir enklare.

Obs! Avrunding ved overslag treng ikkje å innebere avrunding til næraste tier o.l.

Språkboksen

At noko er "omtrent det same som" skriv vi ofte som "cirka" (ca.). Symbolet for "cirka" er \approx .

Overslag ved addisjon og gonging

La oss gjere eit overslag på reknestykket

$$98.2 + 24.6$$

Vi ser at $98.2 \approx 100$. Skriv vi 100 i staden for 98.2 i reknestykket vårt, får vi noko som er litt meir enn det nøyaktige svaret. Skal vi endre på 24.6 bør vi derfor gjere det til eit tal som er litt mindre. 24.6 er ganske nære 20, så vi kan skrive

$$98.2 + 24.6 \approx 100 + 20 = 120$$

Når vi gjer overslag på tal som leggast saman, bør vi altså prøve å gjere det eine talet større (runde opp) og eit tal mindre (runde ned).

Det same gjeld også viss vi har gonging, for eksempel

$$1689 \cdot 12$$

Her avrundar vi 12 til 10. For å "veie opp" for at svaret da blir litt mindre enn det eigentlege, avrundar vi 1689 opp til 1700. Da får vi

$$1689 \cdot 12 \approx 1700 \cdot 10 = 17000$$

Overslag ved subtraskjon og deling

Skal eit tal trekkast frå eit anna, blir det litt annleis. La oss gjere eit overslag på

$$186.4 - 28.9$$

Hvis vi rundar 186,4 opp til 190 får vi eit svar som er større enn det eigentlege, derfor bør vi også trekke frå litt meir. Det kan vi gjere ved også å runde 28,9 oppover (til 30):

$$186,4 - 28,9 \approx 190 - 30$$
$$= 160$$

Same prinsippet gield for deling:

Vi avrundar 17 opp til 20. Deler vi noko med 20 i staden for 17, blir svaret mindre. Derfor bør vi også runde 145 oppover (til 150):

$$145:17\approx 150:20=75$$

Overslagsregning oppsummert

1.2 Overslagsrekning

- Ved addisjon eller multiplikasjon mellom to tal, avrund gjerne eit tal opp og eit tal ned.
- Ved subtraksjon eller deling mellom to tal, avrund gjerne begge tal ned eller begge tal opp.

Eksempel

Rund av og finn omtrentleg svar for reknestykka.

- a) 23.1 + 174.7
- b) 11,8 · 107,2
- c) 37.4 18.9 d) 1054:209

Svar:

- a) $32.1 + 174.7 \approx 30 + 170 = 200$
- b) $11.8 \cdot 107.2 \approx 10 \cdot 110 = 1100$
- c) $37.4 18.9 \approx 40 20 = 20$
- d) $1054:209 \approx 1000:200 = 5$

Kommentar

Det fins ingen konkrete reglar for kva ein kan eller ikkje kan tillate seg av forenklingar når ein gjer eit overslag, det som er kalt Regel 1.2 er strengt tatt ikkje ein regel, men eit nyttig tips.

Ein kan også spørre seg hvor langt unna det faktiske svaret ein kan tillate seg å være ved overslagsregning. Heller ikkje dette er det noko fasitsvar på, men ei grei føring er at overslaget og det faktiske svaret skal vere av same *størrelsesorden*. Litt enkelt sagt betyr dette at hvis det faktiske svaret har med tusenar å gjere, bør også overslaget ha med tusenar å gjere. Meir nøyaktig sagt betyr det av det faktiske svaret og ditt overslag bør ha same tiarpotens når dei er skrivne på standardform.

S

Oppgaver for kapittel 1

1.1.1

Skriv tallet på standardform.

- a) 98 000
- b) 167 000 000 c) 4 819
- d) 21

- e) 9132,27 f) 893,7
- g) 18 002,1
- h) 302,4

1.1.2

Skriv tallet på standardform.

- a) 0,027

- b) 0,0001901 c) 0,32 d) 0,00000020032

1.1.3

Gitt regnestykket

$$900\,000\,000 \cdot 0,00007$$

a) Forklar hvorfor regnestykket kan skrives som

$$9 \cdot 10^8 \cdot 7 \cdot 10^{-5}$$

b) Bruk potensregler (se MB, s 101-106) og finn svaret på regnestykket fra a).

Kapittel 2

Størrelser og enheter

2.1 Størrelsar, einingar og prefiks

Det vi kan måle og uttrykke med tall, kaller vi *størrelsar*. Ein størrelse består gjerne av både ein verdi og ei *eining*, og i denne seksjonen skal vi sjå på desse tre einingane:

eining	forkorting	eining for		
meter	m	lengde		
gram	g	masse		
liter	L	volum		

Nokre gongar har vi veldig store eller veldig små størrelsar, for eksempel er det ca. $40\,075\,000\,\mathrm{m}$ rundt ekvator! For så store tall er det vanleg å bruke ein *prefiks*. Da kan vi skrive at det er ca. $40\,075\,\mathrm{km}$ rundt ekvator. Her står 'km' for 'kilometer', og 'kilo' betyr ' $1\,000$ '. Så $1\,000\,\mathrm{meter}$ er altså $1\,\mathrm{kilometer}$. Her er prefiksane ein oftast $1\,\mathrm{møter}$ på i kvardagen:

prefiks	forkortelse	verdi		
kilo	k	1 000		
hekto	h	100		
deka	da	10		
desi	d	0,1		
centi	c	0,01		
milli	m	0,001		

Bruker vi denne tabellen i kombinasjon med einingane kan vi for eksempel sjå at

$$1000 \,\mathrm{g} = 1 \,\mathrm{kg}$$

 $0.1 \,\mathrm{m} = 1 \,\mathrm{dm}$
 $0.01 \,\mathrm{L} = 1 \,\mathrm{cL}$

Enda ryddigare kan vi få det viss vi lager ein vannrett tabell (se neste side) med meter, gram eller liter lagt til i midten².

¹Unntaket er 'deka', som er ein veldig lite brukt prefiks, men vi har tatt den med fordi den kompletterer tallmønsteret.

²Legg merke til at 'meter', 'gram' og 'liter' er *einingar*, mens 'kilo', 'hekto' osv. er *tal*. Det kan derfor verke litt rart å sette dei opp i samme tabell, men for vårt formål fungerer det heilt fint.

2.1 Omgjering av prefiksar

Når vi skal endre prefiksar kan vi bruke denne tabellen:

Komma må flyttast like mange gongar som antal ruter vi må flytte oss frå opprinnelig prefiks til ny prefiks.

For lengde brukes også eininga 'mil' (1 mil = $10\,000\,\mathrm{m}$). Denne kan leggast på til venstre for 'kilo'.

Eksempel 1

Skriv om 23,4 mL til antall 'L'.

Svar:

Vi skriv tabellen vår med L i midten, og legg merke til at vi må tre ruter til venstre for å komme oss fra 'mL' til 'L':

Det betyr at vi må flytte kommaet vårt tre plassar til venstre for å gjere om mL til L:

$$23.4 \,\mathrm{mL} = 0.0234 \,\mathrm{L}$$

Eksempel 2

Skriv om 30 hg til antall 'cg'.

Svar:

Vi skriv tabellen vår med 'g' i midten og legg merke til at vi må fire ruter til høyre for å komme oss fra 'hg' til 'cg':

Dét betyr at vi må flytte kommaet vårt fire plassar til høyre for å gjere om 'hg' til 'cg':

$$30 \,\mathrm{mg} = 300 \,000 \,\mathrm{cg}$$

Eksempel 3

Gjør om 12500 dm til antall 'mil'.

Svar:

Vi skriv tabellen vår med m i midten, legg til 'mil', og merker oss at vi må fem ruter til høyre for å komme oss fra hg til cg:

Dét betyr at vi må flytte kommaet vårt fem plassar til høyre for å gjere om 'mil' til 'dm':

$$12500 \,\mathrm{dm} = 0.125 \,\mathrm{mil}$$

2.1 Omgjering av prefiksar (forklaring)

Omgjering av prefikser handlar om å gange/dele med 10, 100 osv. (se Seksjon?? og Seksjon??)

La oss som første eksempel skrive om $3,452\,\mathrm{km}$ til antall 'meter'. Vi har at

$$3,452 \,\mathrm{km} = 3,452 \cdot 1000 \,\mathrm{m}$$

= $3452 \,\mathrm{m}$

La oss som andre eksempel skrive om 47 mm til antall 'meter'. Vi har at

$$47 \,\mathrm{mm} = 47 \cdot \frac{1}{1000} \,\mathrm{m}$$

= $(47:1000) \,\mathrm{m}$
= $0.047 \,\mathrm{m}$

2.2 Regning med forskjellige nemningar

En (eventuell) prefiks og ei eining utgjer ei *nemning*. For eksempel, 9 km har nemninga 'km', mens 9 m har nemninga 'm'. Når vi skal utføre rekneoperasjoner med størrelsar som har nemning, er det heilt avgjerande at vi passar på at nemningane som er involvert er dei same.

Eksempel 1

Regn ut $5 \,\mathrm{km} + 4000 \,\mathrm{m}$.

Svar:

Her må vi enten gjere om 5 km til antall m eller 4 000 m til antall km før vi kan legge sammen verdiene. Vi velger å gjere om 5 km til antall m:

$$5 \, \text{km} = 5000 \, \text{m}$$

Nå har vi at

$$5 \text{ km} + 4000 \text{ m} = 5000 \text{ m} + 4000 \text{ m}$$

= 9000 m

Tips

I mange utregninger kan eininger føre til at uttrykkene blir litt rotete. Hvis du er helt sikker på at alle benevningene er like, kan du med fordel skrive utregninger uten benevning. I *Eksempel 1* over kunne vi da regnet ut

$$5000 + 4000 = 9000$$

Men merk at i et endelig svar må vi ha med benevning:

$$5 \,\mathrm{km} + 4\,000 \,\mathrm{m} = 9\,000 \,\mathrm{m}$$

Eksempel 2

Hvis du kjører med konstant fart, er strekningen du har kjørt etter ein viss tid gitt ved formelen

$$strekning = fart \cdot tid$$

- a) Hvor langt kjører ein bil som holder farten 50 km/h i 3 timer?
- b) Hvor langt kjører ein bil som holder farten 90 km/h i 45 minutt?

Svar:

a) I formelen er nå farten 50 og tiden 3, og da er

strekning =
$$50 \cdot 3 = 150$$

Altså har bilen kjørt 150 km

b) Her har vi to forskjellige eininger for tid involvert; timer og minutt. Da må vi enten gjere om farten til km/min eller tiden til timer. Vi velger å gjere om minutt til timer:

$$45 \text{ minutt} = \frac{45}{60} \text{ timer}$$
$$= \frac{3}{4} \text{ timer}$$

I formelen er nå farten 90 og tiden $\frac{3}{4}$, og da er

strekning =
$$90 \cdot \frac{3}{4} = 67.5$$

Altså har bilen kjørt 67.5 km.

Eksempel 3

 ${\it Kiloprisen}$ til ein vare er hva ein vare koster per kg. Kilopris er gitt ved formelen

$$kilopris = \frac{pris}{vekt}$$

- a) 10 kg tomater koster 35 kr. Hva er kiloprisen til tomatene?
- b) Safran går for å være verdens dyreste krydder, 5 g kan koste 600 kr. Hva er da kiloprisen på safran?

Svar:

a) I formelen er nå prisen 35 og vekten 10, og da er

kilopris =
$$\frac{35}{10}$$
 = 3,5

Altså er kiloprisen på tomater 3,5 kr/kg

b) Her har vi to forskjellige eininger for vekt involvert; kg og gram. Vi gjør om antall g til antall kg (se??):

$$5 g = 0.005 kg$$

I formelen vår er nå prisen 600 og vekten 0,005, og da er

kilopris =
$$\frac{600}{0.005}$$
 = 120 000

Altså koster safran $120\,000\,\mathrm{kr/kg}.$

Oppgaver for kapittel 2

2.1.1

Gjør om til antall meter.

- a) 484 km
- b) 91 km
- c) 2402 km

2.1.2

Gjør om til antall gram.

- a) 484 kg
- b) 91 hg
- c) 2402 hg

2.1.3

Gjør om til antall liter

- a) 480 dl
- b) 9100 cl
- c) 24 000 cl

2.1.4

Gjør om

- a) 12,4 m til antall km.
- f) 9,7 g til antall hg.
- k) 89 dL til antall L.

- b) 42 dm til antall m.
- g) 0,15 mg til antall g.
- l) 691,4 L til antall cL.

- c) 58,15 cm til antall mm.
- h) 1,419 hg til antall mg.
- m) 15 L til antall mL.

- d) 0,0074 km til antall m.
- i) 31 mg til antall hg.
- n) 918 cL til antall L.

- e) 0,15 m til antall cm.
- j) 64 039 mg til antall kg.
- o) 0,55 dL til antall mL.

2.2.1

En prisme har lengde 9, bredde 10 og høgde 8.

- a) Finn grunnflaten til prismen.
- b) Finn volumet til prismen.

2.2.2

En kjegle har radius 10 og høgde 4.

- a) Finn grunnflaten til kjeglen.
- b) Finn volumet til kjeglen.

2.2.3

En prisme har lengde 9 cm, bredde $10\,\mathrm{cm}$ og høgde 8 cm.

Finn volumet til prismen.

2.2.4

En kjegle har radius 10 dm og høgde 4 dm.

- a) Finn volumet til kjeglen.
- b) Hvor mange liter rommer kjeglen?

2.2.5

En firkantet pyramide har lengde $4\,\mathrm{cm},$ bredde $9\,\mathrm{cm}$ og høgde $10\,\mathrm{cm}.$

- a) Finn volumet til kjeglen.
- b) Hvor mange liter rommer kjeglen?

Kapittel 3

Statistikk

3.1 Introduksjon

I ei undersøking hentar vi inn informasjon. Denne informasjonen kan gjerne være tal eller ord, og kallast data. Ei samling av innhenta data kallast eit datasett.

For eksempel, tenk at du spør to mennesker om de iliker kaviar. Den eine svarer "ja", den andre "nei". Da er "ja" og "nei" dataa (svara) du har samla inn, og {"ja", "nei"} er datasettet ditt.

Statistikk handler grovt sett om to ting; å presentere og å tolke innsamla data. For begge desse formåla har vi nokre verktøy som vi i komande seksjonar skal studere ved hjelp av nokre forskjellige eksempel på undersøkingar. Desse finn du på side 30.

Det er ikkje nokre fullstendige fasitsvar på korleis ein presenterer eller tolker data, men to retningslinjer bør du alltid ha med deg:

- La det alltid komme tydeleg fram kva du har undersøkt, og kva data som er innhenta.
- Tenk alltid over kva metodar du bruker for å tolke dataa.

Språkboksen

Personar som deltek i ei undersøking der ein skal svare på noko, kallast respondentar.

Undersøking 1

10 personar testa kor mange sekund dei kunne halde pusten. Resultata blei desse:

47 124 61 38 97 84 101 79 56 40

Undersøking 2

15 personar blei spurd kor mange epler dei et i løpet av ei veke. Svara blei desse:

 $7 \quad 4 \quad 5 \quad 4 \quad 1 \quad 0 \quad 6 \quad 5 \quad 4 \quad 8 \quad 1 \quad 6 \quad 8 \quad 0 \quad 14$

Undersøking 3

300 personar ble spurd kva deira favorittdyr er.

- 46 personer svarte tiger
- 23 personer svarte løve
- 17 personer svarte krokodille
- 91 personer svarte hund
- 72 personer svarte katt
- 51 personer svarte andre dyr

Undersøking 4

Mobiltelefonar med smartfunksjonar (app-baserte) kom på det norske markedet i 2009. Tabellen¹ under viser det totale salget mobiltelefonar i tidsperioden 2009-2014, og andelen med og utan smartfunkskjonar.

${f \AA r}$	2009	2010	2011	2012	2013	2014
totalt	2365	2500	2250	2 200	2 400	2 100
u. sm.f.	1665	1250	790	300	240	147
m. sm.f.	700	1250	1 460	1 900	2 160	1953

¹Tala er henta frå medienorge.uib.no.

3.2 Presentasjonsmetoder

Skal vi presentere våre undersøkingar, bør vi vise datasetta slik at det er lett for andre å sjå kva vi har funne. Dette kan vi gjere blant anna ved hjelp av frekvenstabellar, søylediagram, sektordiagram eller linjediagram.

3.2.1 Frekvenstabell

I ein frekvenstabell sett ein opp dataa i ein tabell som viser kor mange gongar kvart unike svar dukkar opp. Dette antalet kallast frekvensen.

Undersøking 2

I vår undersøking har vi to 0, to 1, tre 4, to 5, to 6, én 7, to 8 og én 14. I ein frekvenstabell skriv vi da

antall epler	frekvens
0	2
1	2
4	3
5	2
6	2
7	1
8	2
14	1

3.2.2 Søylediagram (stolpediagram)

Med eit søylediagram presenterer vi dataa med søyler som viser frekvensen.

3.2.3 Sektordiagram (kakediagram)

I eit sektordiagram visast frekvensane som sektorar av ein sirkel.

Å lage et sektordiagram for hand

Skal du sjølv teikne eit sektordiagram, treng du kunnskapar om vinklar og om brøkandelar. Sjå *Seksjon 5.1*, MB, s. 76 og oppgåve ??.

3.2.4 Linjediagram

I eit linjediagram legg vi inn dataa som punkt i eit koordinatsystem, og trekk ei linje mellom dei. Linjediagram brukast oftast når det er snakk om ei form for utvikling.

3.3 Tolking av tendenser; sentralmål

I eit datasett er det gjerne svar som er heilt eller tilnærma like, og som gjentar seg. Dette betyr at vi kan seie noko om hva som gjelder for mange; ein tendens. Dei matematiske omgrepa som fortel noko om dette kallast sentralmål. Dei vanlegaste sentralmåla er typetal, gjennnomsnitt og median.

3.3.1 Typetal

3.1 Typetal

Typetalet er verdien det er flest eksemplar av i datasettet.

Undersøking 2

I datasettet er det verdien 4 som opptrer flest (tre) gongar. (Dette kan vi ssjå frå sjølve datasett på s. 30, frå frekvenstabellen på s. 31, frå søylediagrammet på s. 32 eller sektordiagrammet på s. 33.)

4 er altså typetallet.

3.3.2 Gjennomsnitt

Når eit datasett består av svar i form av tal, kan vi finne summen av svara. Når vi spør kva gjennomsnittet er, spør vi om dette:

"Vis alle svara var like, og summen den same, kva verdi måtte alle svarene da ha hatt?"

Dette er jo ingenting anna enn divisjon¹:

3.2 Gjennomsnitt

$$gjennomsnitt = \frac{summen \text{ av verdiane frå datasettet}}{antall \text{ verdier}}$$

Undersøking 1

Vi summerer verdiane frå datasettet, og deler med antall verdiar:

gjennomsnitt =
$$\frac{47 + 124 + 61 + 38 + 97 + 84 + 101 + 79 + 56 + 40}{10}$$
$$= \frac{727}{10}$$
$$= 72.7$$

Altså, i gjennomsnitt heldt dei 10 deltakarane pusten i 72,7 sekund.

¹sjå MB, s. 23.

Metode 1

gjennomsnitt =
$$\frac{7+4+5+4+1+0+6+5+4+8+1+6+8+0+14}{15}$$
 =
$$\frac{73}{15}$$

$$\approx 4.87$$

Metode 2

Vi utvidar frekvenstabellen frå side 31 for å finne summen av verdiene frå datasettet (vi har også tatt med summen av frekvensane):

Antall epler	Frekvens	$antall \cdot frekvens$
0	2	$0 \cdot 2 = 0$
1	2	$1 \cdot 2 = 2$
4	3	$4 \cdot 3 = 12$
5	2	$5 \cdot 2 = 10$
6	2	$6 \cdot 2 = 12$
7	1	$7 \cdot 1 = 14$
8	1	$8 \cdot 2 = 16$
14	1	$14 \cdot 1 = 14$
sum	15	73

No har vi at

gjennomsnitt =
$$\frac{73}{15}$$

 ≈ 4.87

Altså, i gjennomsnitt et dei 15 respondentane 4,87 epler i veka.

(Utrekning utelatt. Verdiane er runda ned til næraste éinar).

- Gjennomsnitt for totalt salg av mobilar: 2302
- Gjennomsnitt for salg av mobilar uten smartfunksjon: 732
- Gjennomsnitt for salg av mobilar med smartfunksjon: 1570

3.3.3 Median

3.3 Median

Medianen er talet som ender opp i midten av datasettet når det rangerast frå talet med lågast til høgst verdi.

Hvis datasettet har partalls antal verdiar, er medianen gjennomsnittet av de to verdiane i midten (etter rangering).

Undersøking 1

Vi rangerer datasettet frå lågast til høgst verdi:

Dei to tallene i midten er 61 og 79. Gjennomsnittet av desse er

$$\frac{61+79}{2} = 70$$

Altså er medianen 70.

Undersøking 2

Vi rangerer datasettet frå lågast til høgst verdi:

Tallet i midten er 5, altså er medianen 5.

(Utrekning utelatt. Verdiane er runda ned til næraste éner).

- Median for totalt salg av mobilar: 2307
- Median for salg av mobilar utan smartfunksjon: 545
- Median for salg av mobilar med smartfunksjon: 1570

3.4 Tolking av forskjellar; spreiingsmål

Ofte vil det også vere store forskjellar (stor spreiing) mellom dataa som er samla inn. Dei vanlegaste matematiska omgrepa som forteljer noko om dette er variasjonsbredde, kvartilbredde, varians og standardavvik.

3.4.1 Variasjonsbredde

3.4 Variasjonsbredde

Differansen mellom svara med høvesvis høgst og lågast verdi.

Undersøking 1

Svaret med høvesvis høgst og lågast verdi er 124 og 38. Altså er

variasjonsbredde =
$$124 - 38 = 86$$

Undersøking 2

Svaret med henholdsvis høgst og lågast verdi er 14 og 0. Altså er

variasjonsbredde =
$$14 - 0 = 14$$

Undersøking 4

• Variasjonsbredde for mobilar totalt:

$$2500 - 2100 = 400$$

• Variasjonsbredde for mobilar uten smartfunksjoner:

$$1665 - 147 = 518$$

• Variasjonsbredde for mobilar med smartfunksjoner:

$$2160 - 700 = 1460$$

3.4.2 Kvartilbredde

3.5 Kvartilbredde og øvre og nedre kvartil

Kvartilbredden til et datasett kan finnes på følgende måte:

- 1. Ranger datasettet frå høgst til lågast verdi.
- 2. Skil det rangerte datasettet på midten, slik at to nye sett oppstår. (Viss det er oddetalls antal verdiar i datasettet, utelatast medianen).
- 3. Finn dei respektive medianane i dei to nye setta.
- 4. Finn differansen mellom medianane frå punkt 3.

Om medianene frå punkt 3: Den med høgst verdi kallast øvre kvartil og den med lågast verdi kallast nedre kvartil.

Undersøking 1

- 1. 38 40 47 56 61 79 84 97 101 124
- 2. 38 40 47 56 61 79 84 97 101 124
- 3. Medianen i det blå settet er 47 (nedre kvartil) og medianen i det røde settet er 97 (øvre kvartil).
 - 38 40 47 56 61 79 84 97 101 124
- 4. Kvartilbredde = 97 47 = 50

Undersøking 2

- 1. 0 0 1 1 4 4 4 5 5 6 6 7 8 8 14
- 2. 0 0 1 1 4 4 4 5 5 6 6 7 8 8 14
- 3. Medianen i det blå settet er 1 (nedre kvartil) og medianen i det raude settet er 7 (øvre kvartil).
 - 0 0 1 1 4 4 4 5 6 6 7 8 8 14
- 4. Kvartilbredde = 7 1 = 6

(Utrekning utelatt)

- For mobilar totalt er kvartilbredden: 200
- For mobilar uten smartfunksjoner er kvartilbredden: 1010
- For mobilar med smartfunksjoner er kvartilbredden: 703

Språkboksen

Nedre kvartil, medianen og øvre kvartil blir også kalla høvesvis 1. kvartil, 2. kvartil og 3. kvartil.

3.4.3 Avvik, varians og standardavvik

3.6 Varians

Differansen mellom ein verdi og gjennomsnittet i eit datasett kallast *avviket* til verdien.

Variansen til eit datasett kan bli funnen på følgande måte:

- 1. Kvadrer avviket til kvar verdi i datasettet, og summer desse.
- 2. Divider med antal verdiar i datasettet.

Standardavviket er kvadratrota av variansen.

Eksempel

Gitt datasettet

Da har vi at

gjennomsnitt =
$$\frac{2+5+9+7+7}{5} = 6$$

Og vidare er

variansen =
$$\frac{(2-6)^2 + (5-6)^2 + (9-6)^2 + (7-6)^2 + (7-6)^2}{5}$$

$$=5$$

Da er standardavviket = $\sqrt{5} \approx 2,23$.

Undersøking 1

(Utrekning utelatt)

Variansen er 754,01. Standardavviket er $\sqrt{754,01} \approx 27,46$

Gjennomsnittet fant vi på side 37. Vi utvidar frekvenstabellen vår frå side 31:

antall epler	frekvens	frekvens · kvadrert avvik
0	2	$2 \cdot \left(0 - \frac{73}{15}\right)^2$
1	2	$2 \cdot \left(1 - \frac{73}{15}\right)^2$
4	3	$3\cdot\left(4-rac{73}{15} ight)^2$
5	2	$2 \cdot \left(5 - \frac{73}{15}\right)^2$
6	2	$2 \cdot \left(6 - \frac{73}{15}\right)^2$
7	1	$1 \cdot \left(7 - \frac{73}{15}\right)^2$
8	2	$2 \cdot \left(8 - \frac{73}{15}\right)^2$
14	1	$1 \cdot \left(9 - \frac{73}{15}\right)^2$
sum	15	$189{,}7\bar{3}$

Altså er variansen

$$\frac{189,7\bar{3}}{15} \approx 12,65$$

Da er standardavviket $\sqrt{12,65} \approx 3.57$

Undersøking 4

(Utrekning utelatt)

- For mobilar totalt er variansen 17 781,25 og standardavviket ca. 133,4.
- For mobilar uten smartfunksjoner er variansen $318\,848.\bar{3}$ og standardavviket ca. 17,87
- For mobilar med smartfunksjoner er variansen $245\,847.91\bar{6}$ og standardavviket ca. 495,83.

Kvifor inneber variansen kvadrering?

La oss sjå kva som skjer viss vi gjentek utrekninga frå *Eksempel* 1 på side 43, men utan å kvadrere:

$$\frac{(2-6)+(5-6)+(9-6)+(7-6)+(7-6)}{5} = \frac{2+5+9+7+7}{5} - 6$$

Men brøken $\frac{2+5+9+7+7}{5}$ er jo per definisjon gjennomsnittet til datasettet, og dermed blir uttrykket over lik 0. Dette vil gjelde for alle datasett, så i denne samanhengen gir ikkje tallet 0 noko ytterligare informasjon. Om vi derimot kvadrerer avvika, unngår vi eit uttrykk som alltid blir lik 0.

Oppgaver for kapittel 3

3.2.1

Gitt datasettet

2 12 3 0 2 5 8 2 10

Finn

- a) typetallet
 - b) medianen
- c) gjennomsnittet

3.2.2

Gitt datasettet

9 12 3 0 8 5 8 4 10 5 6

Finn

- a) typetallet
- b) medianen c) gjennomsnittet

3.2.3

Gitt datasettet

11 7 16 0 8 9 8 5 16 5

Finn

- a) typetallet b) medianen c) gjennomsnittet

3.2.4

Gitt datasettet

11 14 5 6 9 8 5 11 5 11 17

Finn

- a) typetallet
- b) medianen c) gjennomsnittet

3.2.5

Du ønsker å finne ut hva nordmenn flest har i formue¹, og bestemmer deg for å finne ut av dette ved å spørre fem tilfeldige personer du møter i gata. De fire første svarene (i kr) er disse:

3,2 millioner 2,9 millioner 1,8 millioner 4,2 millioner

Den siste personen du tilfeldigvis møter er mannen i Norge med høyest formue², Gustav Magnar Witzøe. Hans svar er dette:

20915,3 millioner

- a) Finn medianen i datasettet.
- b) Finn gjennomsnittet i datasettet.
- c) Er det medianen eller gjennomsnittet som trolig best representerer hva nordmenn flest har i formue?

3.2.6

Lag en frekvenstabell for datasettet under. (La tittelen til venstre kolonne være "frukt".)

banan eple eple pære banan eple pære appelsin eple pære pære

3.2.7

Lag en frekvenstabell for datasettet fra oppgave 3.2.4. (La tittelen til venstre kolonne være "tall".)

3.2.8

- a) Lag et søylediagram for datasettet fra oppgave 3.2.6.
- b) Lag et søylediagram for datasettet fra oppgave 3.2.7.

3.2.9 (regneark)

- a) Lag et søylediagram for datasettet fra oppgave 3.2.6.
- b) Lag et søylediagram for datasettet fra oppgave 3.2.7.

¹Enkelt sagt er formue summen av penger du har i banken, verdier av hus, bil etc., fratrekt gjeld o.l.

²Ifølge ligningstallene for 2019.

3.2.10

Av de fire undersøkelsene på side 30, hvorfor har vi

- a) vist frekvenstabell bare for undersøkelse 2?
- b) vist søylediagram bare for undersøkelse 2 og 3?
- c) vist sektordiagram bare for undersøkelse 2 og ?
- d) vist linjediagram bare for undersøkelse 4?

3.2.11

Hvis datasettet har partalls antall svar kan man også finne medianen slik:

- 1. Finn de to tallene i midten.
- 2. Finn differansen mellom tallene, og del denne med 2.
- 3. Legg resultatet fra punkt 2 til det laveste av de to tallene i midten.
- a) Prøv metoden på datasettet fra oppgave 3.2.3.

3.2.12

Av de fire undersøkelsene på side 30, hvorfor har vi ikke funnet sentral- og spredningsmål for undersøkelse 3?

Kapittel 4

Geometri

4.1 Symmetri

Bilder henta fra freesvg.org.

Mange figurar kan delast inn i minst to delar der den éine delen berre er ei forskyvd, speilvend eller rotert utgåve av den andre. Dette kallast *symmetri*. Dei tre komande regelboksane definerer dei tre variantene for symmetri, men merk dette: Symmetri blir som regel intuitivt forstått ved å studere figurar, men er omstendeleg å skildre med ord. Her vil det derfor, for mange, vere ein fordel å hoppe rett til eksempla.

4.1 Translasjonssymmetri (parallellforskyvning)

Ein symmetri der minst to deler er forskyvde utgåver av kvarandre kallast en *translasjonssymmetri*.

Når ei form forskyvast, blir kvart punkt på forma flytta langs den samme vektoren 1 .

Eksempel 1

Figuren under viser ein translasjonssymmetri som består av to sommerfuglar.

Bilde henta fra freesvg.org.

¹Ein vektor er eit linjestykke med retning.

Under visast $\triangle ABC$ og ein blå vektor.

Under visast $\triangle ABC$ forskyvd med den blå vektoren.

4.2 Speiling

Ein symmetri der minst to delar er vende utgåver av kvarandre kallast ein *speilingssymmetri* og har minst éin *symmetrilinje* (*symmetriakse*).

Når eit punkt speilast, blir det forskjyvd vinkelrett på symmetrilinja, fram til det nye og det opprinnelege punktet har samme avstand til symmetrilinja.

Sommerfuglen er ein speilsymmetri, med den raude linja som symmetrilinje.

Eksempel 2

Den raude linja og den blå linja er begge symmetrilinjer til det grøne rektangelet.

Eksempel 3

Under visast ei form laga av punkta A,B,C,D,E og F, og denne forma speila om den blå linja.

4.3 Rotasjonssymmetri

Ein symmetri der minst to delar er ei rotert utgåve av kvarandre kallast ein rotasjonssymmetri og har alltid eit tilhørande rotasjonspunkt og ein rotasjonsvinkel.

Når eit punkt roterast vil det nye og det opprinnelege punktet

- ligge langs den same sirkelbogen, som har sentrum i rotasjonspunktet.
- med rotasjonspunktet som toppunkt danne rotasjonsvinkelen.

Viss rotasjonsvinkelen er eit positivt tal, vil det nye punktet forflyttast langs sirkelbogen *mot* klokka. Hvis rotasjonsvinkelen er eit negativt tall, vil det nye punktet forflyttast langs sirkelbogen *med* klokka.

Eksempel 1

Mønsteret under er rotasjonssymmetrisk. Rotasjonssenteret er i midten av figuren og rotasjonsvinkelen er 120°

Bilde henta fra freesvg.org.

Figuren under viser $\triangle ABC$ rotert 80° om rotasjonspunktet P.

Da er

$$PA = 'PA$$
 , $PB = PB'$, $PC = PC'$

og

$$\angle APA' = \angle BPB' = \angle CPC' = 80^{\circ}$$

Språkboksen

Ei form som er ei forskyvd, speilvend eller rotert utgåve av ei anna form, kallast ei kongruensavbilding.

4.2 Omkrets, areal og volum med einigar

Merk: I eksempla til denne seksjonen bruker vi areal- og volumformlar som du finn i MB.

Når vi måler lengder med linjal eller liknande, må vi passe på å ta med nemningane i svaret vårt.

Eksempel 1

omkretsen til rektangelet =
$$5 \text{ cm} + 2 \text{ cm} + 5 \text{ cm} + 2 \text{ cm}$$

= 14 cm

arealet til rektangelet =
$$2 \text{ cm} \cdot 5 \text{ cm}$$

= $2 \cdot 5 \text{ cm}^2$
= 10 cm^2

Vi skriv 'cm²' fordi vi har gonga sammen 2 lengder som vi har målt i 'cm'.

Ein sylinder har radius $4\,\mathrm{m}$ og høgde $2\,\mathrm{m}$. Finn volumet til sylinderen.

Svar:

Så lenge vi er sikre på at størrelsane vår har same nemning (i dette tilfellet 'm'), kan vi først rekne uten størrelser:

grunnflate til sylinderen =
$$\pi \cdot 4^2$$

= 16π

volumet til sylinderen =
$$16\pi \cdot 2$$

= 32π

Vi har her ganget sammen tre lengder (to faktorer lik 4 m og én faktor lik 2 m) med meter som enhet, altså er volumet til svlinderen 32π m³.

Merk

Når vi finn volumet til gjenstandar, måler vi gjerne lengder som høgde, breidde, radius og liknande. Desse lengdene har eininga 'meter'. Men i det daglege oppgir vi gjerne volum med eininga 'liter'. Da er det verd å ha med seg at

$$1 L = 1 dm^3$$

Oppgaver for kapittel 4

4.1.1

Forskyv trekanten med linjestykkene vist under

a)

b)

4.1.2

Speil trekanten om symmetrilinja.

a)

b)

c)

C

A

B

4.1.3

Finn rotasjonsvinkelen og rotasjonspunktet.

a)

Kapittel 5

Brøkrekning

5.1 Brøkdelar av heiler

I MB (s. 35-47) har vi sett korleis brøkar er definert ut ifrå ei inndeling av 1. I kvardagen bruker vi også brøkar for å snakke om inndelingar av ei heile:

- (a) Heila er 8 ruter. $\frac{7}{8}$ av rutene er blå.
- (b) Heila er eit kvadrat. $\frac{1}{4}$ av kvadratet er rødt.
- (c) Heila er 5 kuler. $\frac{3}{5}$ av kulene er svarte.

Brøkdeler av tall

Sei at rektangelet under har verdien 12.

Når vi seier " $\frac{2}{3}$ av $\frac{12}{3}$ meiner vi at vi skal

- a) dele 12 inn i 3 like grupper.
- b) finne ut kor mykje 2 av desse gruppene utgjer til sammen.

Vi har at

a) 12 delt inn i 3 grupper er lik 12:3=4.

b) 2 grupper som begge har verdi 4 blir til sammen $2 \cdot 4 = 8$.

$$\frac{4}{4}$$
 = 8

Altså er

$$\frac{2}{3}$$
 av $12 = 8$

For å finne $\frac{2}{3}$ av 12, delte vi 12 med 3, og gonga kvotienten med 2. Dette er det same som å gonge 12 med $\frac{2}{3}$ (sjå MB, s. 45 og 50).

5.1 Brøkdelen av eit tal

For å finne brøkdelen av et tal, ganger vi brøken med tallet.

$$\frac{a}{b}$$
 av $c = \frac{a}{b} \cdot c$

Eksempel 1

Finn $\frac{2}{5}$ av 15.

Svar:

$$\frac{2}{5}$$
 av $15 = \frac{2}{5} \cdot 15 = 6$

Eksempel 2

Finn $\frac{7}{9}$ av $\frac{5}{6}$.

Svar:

$$\frac{7}{9}$$
 av $\frac{5}{6} = \frac{7}{9} \cdot \frac{5}{6} = \frac{35}{54}$

Språkboksen

Delar av ei heile blir også kalla andelar.

5.2 Prosent

Brøkar er ypperlege til å oppgi andelar av ei heile fordi dei gir eit raskt bilde av kor mykje det er snakk om. For eksempel er det lett å sjå (omtrent) Kor mykje $\frac{3}{5}$ eller $\frac{7}{12}$ av ei kake er. Men ofte er det ønskeleg å raskt avgjere kva andelar som utgjer mest, og da er det best om brøkane har samme nemnar.

Når andelar blir oppgitt i det daglege, er det vanleg å bruke brøkar med 100 i nemar. Brøkar med denne nemaren er så mykje brukt at dei har fått sitt eige namn og symbol.

5.2 Prosenttal

$$a\% = \frac{a}{100}$$

Språkboksen

% uttalast *prosent*. Ordet kjem av det latinske *per centum*, som betyr *per hundre*.

Eksempel 1

$$43\% = \frac{43}{100}$$

Eksempel 2

$$12,7\% = \frac{12,7}{100}$$

Merk: Det er kanskje litt uvant, men ikkje noko gale med å ha eit desimaltal i tellar (eller nemar).

Finn verdien til

- a) 12%
- b) 19,6% c) 149%

Svar:

(Se Regel??)

a)
$$12\% = \frac{12}{100} = 0.12$$

b)
$$19.6\% = \frac{19.6}{100} = 0.196$$

c)
$$149\% = \frac{149}{100} = 1{,}49$$

Eksempel 4

Gjer om brøkane til prosenttal.

Svar:

- a) $\frac{34}{100} = 34\%$
- **b)** $\frac{203}{100} = 203\%$

Eksempel 5

Finn 50% av 800. Av Regel 5.1 og Regel 5.2 har vi at

Svar:

$$50\%$$
 av $800 = \frac{50}{100} \cdot 800 = 400$

Finn 2% av 7,4.

Svar:

$$2\%$$
 av $7.4 = \frac{2}{100} \cdot 7.4 = 0.148$

Tips

Å dele med 100 er såpass enkelt, at vi gjerne kan uttrykke prosenttal som desimaltal når vi gjer utrekningar. I *Eksempel 5* over kunne vi har rekna slik:

$$2\%$$
 av $7.4 = 0.02 \cdot 7.4 = 0.148$

Prosentdelar

Kor mange prosent utgjer 15 av 20?

15 er det same som $\frac{15}{20}$ av 20, så svaret på spørsmålet får vi ved å gjere om $\frac{15}{20}$ til ein brøk med 100 i nemnar. Sidan $20 \cdot \frac{100}{20} = 100$, utvidar vi brøken vår med $\frac{100}{20} = 5$:

$$\frac{15 \cdot 5}{20 \cdot 5} = \frac{75}{100}$$

15utgjer altså75%av 20. Vi kunne fått 75 direkte ved utrekninga

$$15 \cdot \frac{100}{20} = 75$$

5.3 Antal prosent a utgjer av b

antal prosent a utgjer av $b = a \cdot \frac{100}{b}$

Eksempel 1

Kor mange prosent utgjer 340 av 400?

Svar:

$$340 \cdot \frac{100}{400} = 85$$

340 utgjer 85% av 400.

Eksempel 2

Kor mange prosent utgjer 119 av 500?

Svar:

$$119 \cdot \frac{100}{500} = 23,8$$

119utgjer $23,\!8\%$ av 500.

Tips

Å gonge med 100 er såpass enkelt å ta i hodet at ein kan ta det vekk frå sjølve utrekninga. Eksempel 2 over kunne vi da rekna slik:

$$\frac{119}{500} = 0.238$$

119 utgjer altså 23,8% av 500. (Her rekner ein i hodet at $0.238 \cdot 100 = 23.8$.)

5.2.1 Prosentvis endring; auke eller redusering

Auke

Med utsegnet "200 auka med 30%" meiner ein dette:

Start med 200, og legg til 30% av 200.

Altså er

200 auka med
$$30\% = 200 + 200 \cdot 30\%$$

= $200 + 60$
= 260

I uttrykket over kan vi legge merke til at 200 er å finne i begge ledd, dette kan vi utnytte til å skrive

200 auka med
$$30\% = 200 + 200 \cdot 30\%$$

= $200 \cdot (1 + 30\%)$
= $200 \cdot (100\% + 30\%)$
= $200 \cdot 130\%$

Dette betyr at

$$200$$
 auka med $30\% = 130\%$ av 200

Redusering

Med utsegnet "Reduser 200 med 60%" meiner ein dette:

Start med 200, og trekk ifrå 60% av 200

Altså er

200 redusert med
$$60\% = 200 - 200 \cdot 60\%$$

= $200 - 120$
= 80

Også her legg vi merke til at 200 opptrer i begge ledd i utrekninga:

200 auka med
$$30\% = 200 - 200 \cdot 60\%$$

= $200 \cdot (1 - 60\%)$
= $200 \cdot 40\%$

Dette betyr at

200 redusert med 60% = 40% av 200

Prosentvis endring oppsummert

5.4 Prosentvis endring

- Når ein størrelse reduserast med a%, ender vi opp med (100% a%) av størrelsen.
- Når ein størrelse auker med a%, ender vi opp med (100% + a%) av størrelsen.

Eksempel 1

Kva er 210 redusert med 70%?

Svar:

$$100\% - \frac{70}{30}\%$$
, altså er

210 redusert med
$$70\% = 30\%$$
 av 210

$$=\frac{30}{100}\cdot 210$$

$$= 63$$

Eksempel 2

Kva er 208,9 auka med 124,5%?

Svar:

$$100\% + 124,5\% = 224,5\%$$
, altså er

$$208.9$$
 auka med $124.5 = 224.5\%$ av 208.9

$$=\frac{224,5}{100}\cdot 208,9$$

Språkboksen

Rabatt er ein pengesum som skal trekkast ifrå ein pris når det blir gitt eit tilbud. Dette kallast også eit avslag på prisen. Rabatt blir gitt enten i antal kroner eller som prosentdel av prisen.

Meirverdiavgiften (mva.) er ei avgift som leggast til prisen på dei aller fleste varer som selgast. Meirverdiavgift blir som regel gitt som prosentdel av prisen.

Eksempel 3

I ein butikk kosta ei skjorte først $500\,\mathrm{kr}$, men selgast no med 40% rabatt.

Kva er den nye prisen på skjorta?

Svar:

(Vi tar ikkje med kr i utrekningane)

Skal vi betale full pris, må vi betale 100% av 500. Men får vi 40% i rabatt, skal vi bare betale 100% - 40% = 60% av 500:

$$60\%$$
 av $500 = \frac{60}{100} \cdot 500$
= 300

Med rabatt kostar altså skjorta 300 kr.

På bildet står det at prisen på øreklokkene er 999,20 kr eksludert mva. og 1 249 inkludert mva. For øreklokker er mva. 25% av prisen.

Undersøk om prisen der mva. er inkludert er rett.

Svar:

(Vi tar ikke med 'kr' i utrekningene)

Når vi inkluderer mva., må vi betale 100% + 25% av 999,20:

$$125\%$$
 av $999,20 = \frac{125}{100} \cdot 999,20$
= 1249

Altså 1249 kr, som også er opplyst på bildet.

5.2.2 Vekstfaktor

På side 67 auka vi 200 med 30%, og endte da opp med 130% av 200. Vi seier da at *vekstfaktoren* er 1,3. På side 67 reduserte vi 200 med 60%, og endte da opp med 40% av 200. Da er vekstfaktoren 0,40.

Mange stussar over at ordet vekstfaktor blir brukt sjølv om ein størrelse synk, men slik er det. Kanskje eit bedre ord ville vere endringsfaktor?

5.5 Vekstfaktor I

Når ein størrelse endrast med a%, er vekstfaktoren verdien til $100\% \pm a\%$.

Ved auke skal + brukast, ved redusering skal - brukast.

Ein størrelse aukast med 15%. Kva er vekstfaktoren?

Svar:

100% + 15% = 115%, altså er vekstfaktoren 1,15.

Eksempel 2

Ein størrelse blir redusert med 19,7%. Kva er vekstfaktoren?

Svar:

100% - 19.7% = 80.3%, altså er vekstfaktoren 0,803

La oss sjå tilbake til *Eksempel 1* på side 68, der 210 blei redusert med 70%. Da er vekstfaktoren 0,3. Vidare er

$$0.3 \cdot 210 = 63$$

Altså, for å finne ut kor mykje 210 redusert med 70% er, kan vi gange 210 med vekstfaktoren (forklar for deg sjølv hvorfor!).

5.6 Prosentvis endring med vekstfaktor

endra original
verdi = vekstfaktor \cdot original
verdi

Eksempel 1

Ei vare verd 1000 kr er rabattert med 20%.

- a) Hva er vekstfaktoren?
- b) Finn den nye prisen.

Svar:

- a) Sidan det er 20% rabbatt, må vi betale 100% 20% = 80% av originalprisen. Vekstfaktoren er derfor 0,8.
- b) Vi har at

$$0.8 \cdot 1000 = 800$$

Den nye prisen er altså 800 kr.

Ein sjokolade kostar 9,80 kr, ekskludert mva. På matvarer er det 15% mva.

- a) Kva er vekstfaktoren?
- b) Kva kostar sjokoladen inkludert mva.?

Svar:

a) Med 15% i tillegg må vi betale 100%+15%=115% av prisen eksludert mva. Vekstfaktoren er derfor 1,15.

b)

$$1,15 \cdot 9.90 = 12,25$$

Sjokoladen kostar 12,25 kr inkludert mva.

Vi kan også omksrive likninga¹ frå Regel 5.6 for å få eit uttrykk for vekstfaktoren:

5.7 Vekstfaktor II

$$vekstfaktor = \frac{endra\ original verdi}{original verdi}$$

Å finne den prosentvise endringa

Når ein skal finne ei prosentvis endring, er det viktig å vere klar over at det er snakk om prosent av ei heile. Denne heila ein har som utgangspunkt er den originale verdien.

La oss som eit eksempel seie at Jakob tente $10\,000\,\mathrm{kr}$ i 2019 og $12\,000\,\mathrm{kr}$ i 2020. Vi kan da stille spørsmålet "Kor mykje endra lønnen til Jakob seg med frå 2019 til 2020, i prosent?".

Spørsmålet tek utgangspunkt i lønna frå 2019, dette betyr at 10 000 er vår originale verdi. To måtar å finne den prosentvise endringa på er desse (vi tar ikkje med 'kr' i utrekningane):

¹Sjå *Kapittel 6* for korleis skrive om likningar.

• Lønna til Jakob endra seg frå $10\,000$ til $12\,000$, ei forandring på $12\,000 - 10\,000 = 2\,000$. Vidare er (se Regel 5.3)

antal prosent 2 000 utgjer av 10 000 = 2 000
$$\cdot \frac{100}{10\,000}$$

= 20

Frå 2019 til 2020 auka altså lønna til Jakob med 20%.

• Vi har at

$$\frac{12\,000}{10\,000} = 1.2$$

Fra 2019 til 2020 auka altså lønna til Jakob med ein vekstfaktor lik 1,2 (se Regel~5.6). Denne vekstfaktoren tilsvarar ei endring lik 20% (se Regel~5.5). Det betyr at lønna auka med 20%.

5.8 Prosentvis endring I

$$prosentvis \ endring = \frac{endra \ original verdi - original verdi}{original verdi} \cdot 100$$

Vsis 'prosentvis endring' er eit positivt/negativt tall, er det snakk om ein prosentvis auke/reduksjon.

Kommentar

Regel 5.8 kan sjå litt voldsom ut, og er ikke nødvendigvis så lett å huske. Viss du verkeleg har forstått Delseksjon 5.2.1, kan du utan å bruke Regel 5.8 finne prosentvise endringer trinnvis. I påfølgande eksempel viser vi både ein trinnvis løsningsmetode og ein metode ved bruk av formel.

I 2019 hadde eit fotballag 20 medlemmar. I 2020 hadde laget 12 medlemmar. Kor mange prosent av medlemmane frå 2019 hadde slutta i 2020?

Svar:

Vi startar med å merke oss at det er medlemstalet frå 2019 som er originalverdien vår.

Metode 1; trinnvis metode

Fotballaget gikk frå å ha 20 til 12 medlemmer, altså var det 20-12=8 som slutta. Vi har at

antal prosent 4 utgjer av
$$20 = 8 \cdot \frac{100}{20} = 40$$

I 2020 hadde altså 40% av medlemmane frå 2019 slutta.

Metode 2; formel

Vi har at

prosent
vis endring =
$$\frac{12-20}{20} \cdot 100$$

= $-\frac{8}{20} \cdot 100$
= -40

I 2020 hadde altså 40%av medlemmane frå 2019 slutta.

Merk: At medlemmar sluttar, inneber ein reduksjon i medlemstal. Vi forventa derfor at 'prosentvis endring' skulle vere eit negativt tall.

5.9 Prosentvis endring II

prosentvis endring = 100 (vekstfaktor -1)

Merk

Regel~5.8 og Regel~5.9 gir begge formlar som kan brukast til å finne prosentvise endringar. Her er det opp til ein sjølv å velge kven ein liker best.

Eksempel 1

I 2019 tente du 12 000 kr og i 2020 tente du 10 000 kr. Beskriv endringa i inntekta di, med inntekta i 2019 som utganspunkt.

Svar:

Her er $12\,000$ vår originalveri. Av Regel 5.7 har vi da at

$$\label{eq:vekstfaktor} \begin{aligned} \text{vekstfaktor} &= \frac{10\,000}{12\,000} \\ &= 0.8 \end{aligned}$$

Dermed er

prosentvis endring =
$$100(0.8 - 1)$$

= $100(-0.2)$
= -20

Altså er lønna *redusert* med 20% i 2020 sammenliknet med lønnen i 2019.

5.2.3 Prosentpoeng

Ofte snakkar vi om mange størrelsar samtidig, og når ein da bruker prosent-ordet kan setningar bli veldig lange og knotete viss ein også snakkar om forskjellige originalverdier (utgangspunkt). For å forenkle setningane, har vi omgrepet *prosentpoeng*.

Tenk at eit par solbriller først blei solgt med 30% rabatt av originalprisen, og etter det med 80% rabatt av originalprisen. Da seier vi at rabatten har auka med 50 prosentpoeng.

$$80\% - 30\% = 50\%$$

Kvifor kan vi ikkje seie at rabatten har auka med 50%?

Tenk at solbrillene hadde originalpris $1\,000\,\mathrm{kr}$. 30% rabatt på $1\,000\,\mathrm{kr}$ tilsvarar $300\,\mathrm{kr}$ i rabatt. 80% rabatt på $1000\,\mathrm{kr}$ tilsvarar $800\,\mathrm{kr}$ i rabatt. Men viss vi auker $300\,\mathrm{med}$ 50%, får vi $300\cdot 1,5=450$, og det er ikkje det same som 800! Saka er at vi har to forskjellige originalverdiar som utgangspunkt:

"Rabatten var først 30%, så auka rabatten med 50 prosentpoeng. Da blei rabatten 80%."

Forklaring: "Rabatten" er ein størrelse vi reknar ut ifrå orignalprisen til solbrillene. Når vi sier "prosentpoeng" viser vi til at **originalprisen fortsatt er utgangspunktet** for den komande prosentrekninga. Når prisen er $1\,000\,\mathrm{kr}$, startar vi med $1\,000\,\mathrm{kr}\cdot 0.3 = 300\,\mathrm{kr}$ i rabatt. Når vi legg til $50\,$ prosentpoeng, legg vi til 50% av originalprisen, altså $1\,000\,\mathrm{kr}\cdot 0.5 = 500\,\mathrm{kr}$. Totalt blir det $800\,\mathrm{kr}$ i rabatt, som utgjer 80% av originalprisen.

"Rabatten var først 30%, så auka rabatten med 50%. Da blei rabatten 45%."

Forklaring: "Rabatten" er ein størrelse vi reknar ut ifrå orignalprisen til solbrillene, men her viser vi til at **rabatten er utgangspunktet** for den kommande prosentrekninga. Når prisen er 1 000 kr, startar vi med 300 kr i rabatt. Vidare er

$$300\,\mathrm{kr}$$
 auka med $50\% = 300\,\mathrm{kr} \cdot 1,5 = 450\,\mathrm{kr}$

og

antal prosent 450 utgjer av
$$1\,000 = \frac{450}{100} = 45$$

Altså er den nye rabatten 45%.

I dei to (gule) tekstboksane over rekna vi ut den auka rabatten via originalprisen på solbrillene (1 $000\,\mathrm{kr}$). Dette er strengt tatt ikkje nødvendig:

• Rabatten var først 30%, så auka rabatten med 50 prosentpoeng. Da blei rabatten

$$30\% + 50\% = 80\%$$

• Rabatten var først 30%, så auka rabatten med 50%. Da blei rabatten

$$30\% \cdot 1.5 = 45\%$$

5.10 Prosentpoeng

a% auka/redusert med b prosentpoeng = $a\% \pm b\%$.

a% auka/redusert med $b\% = a\% \cdot (1 \pm b\%)$

Merk

Andre linje i Regel 5.10 er eigentleg identisk med Regel 5.6.

Eksempel

Ein dag var 5% av elevane på ein skole vekke. Dagen etter var 7.5% av elevene vekke.

- a) Kor mange prosentpoeng auka fråværet med?
- b) Kor mange prosent auka fraværet med?

Svar:

- a) 7.5% 5% = 2.5%, derfor har fråværet auka med 2,5 prosentpoeng.
- b) Her må vi svare på kor mykje endringa, altså 2,5%, utgjer av 5%. Av Regel 5.3 har vi at

antal prosent 2,5% utgjer av 5% = 2,5%
$$\cdot \frac{100}{5\%}$$

= 50

Altså har fraværet auka med 50%.

Merk

Å i Eksempel 1 over stille spørsmålet "Kor mange prosentpoeng auka fråværet med?", er det same som å stille spørsmålet "Kor mange prosent av det totale elevantalet auka fråværet med?".

5.2.4 Gjentatt prosentvis endring

Kva om vi utfører ei prosentvis endring gjentatte gongar? La oss som eit eksempel starte med 2000, og utføre 10% økning 3 påfølgande gongar (sjå Regel~5.6):

verdi etter 1. endring =
$$\overbrace{2000}^{\text{original verdi}} \cdot 1,10 = 2200$$

verdi etter 2. endring = $\overbrace{2000 \cdot 1,10}^{2200} \cdot 1,10 \cdot 1,10 = 2420$
verdi etter 3. endring = $\overbrace{2420 \cdot 1,10 \cdot 1,10}^{2420} \cdot 1,10 \cdot 1,10 = 2662$

Mellomrekninga vi gjor over kan kanskje virke unødvendig, men utnyttar vi skrivemåten for potensar¹ kjem eit mønster til syne:

verdi etter 1. endring =
$$2\,000 \cdot 1,10^1 = 2\,200$$

verdi etter 2. endring = $2\,000 \cdot 1,10^2 = 2\,420$
verdi etter 3. endring = $2\,000 \cdot 1,10^3 = 2\,662$

5.11 Gjentatt vekst eller nedgang

ny verdi = original
verdi · vekstfaktor antall endringer

Eksempel 1

Finn den nye verdien når 20% auke blir utført 6 påfølgande gonger med $10\,000$ som originalverdi.

Svar:

Vekstfaktoren er 1,2, og da er

ny verdi =
$$10\,000 \cdot 1,2^6$$

= $29\,859,84$

¹Se MB, s.101

Marion har kjøpt seg ein ny bil til ein verdi av $300\,000\,\mathrm{kr}$, og ho forventar at verdien vil synke med 12% kvart år dei neste fire åra. Kva er bilen da verd om fire år?

Svar:

Sidan den årlige nedgangen er 12%, blir vekstfaktoren 0,88. Starverdien er 300 000, og tida er 4:

$$300\,000 \cdot 0.88^4 \approx 179\,908$$

Marion forventar altså at bilen er verdt ca. 179 908 kr om fire år.

5.3 Forhold

Med forholdet mellom to størrelsar meiner vi den eine størrelsen delt på den andre. Har vi for eksempel 1 rød kule og 5 blå kuler, seier vi at

forholdet mellom antall raude kuler og antall blå kuler $=\frac{1}{5}$

Forholdet kan vi også skrive som 1 : 5. Verdien til dette reknestykket er

$$1:5=0.2$$

Om vi skriv forholdet som brøk eller som delestykke vil avhenge litt av oppgåvene vi skal løyse.

I denne samanhengen kallast 0,2 forholdstallet.

5.12 Forhold

forholdet mellom a og $b = \frac{a}{b}$

Verdien til brøken kallast forholdstallet.

Eksempel 1

I ein klasse er det 10 handballspelarar og 5 fotballspelarar.

- a) Kva er forholdet mellom antal handballspelarar og fotball-spelarar?
- b) Kva er forholdet mellom antal fotballspelarar og handballspelarar?

Svar:

a) Forholdet mellom antal fotballspelarar og handballspelarar er

$$\frac{10}{5} = 2$$

b) Forholdet mellom antal handballspelarar og fotballspelarar er

$$\frac{5}{10} = 0.5$$

5.3.1 Målestokk

I MB (s.145 - 149) har vi sett på formlike trekantar. Prinsippet om at forholdet mellom samsvarande sider er det same, kan utvidast til å gjelde dei fleste andre former, som f. eks. firkantar, sirklar, prismer, kuler osv. Dette er eit fantastisk prinsipp som gjer at små teikningar eller figurar (modellar) kan gi oss informasjon om størrelsane til verkelege gjenstandar.

5.13 Målestokk

Ein målestokk er forholdet mellom ei lengde på ein modell av ein gjenstand og den samsvarande lengda på den verkelege gjenstanden.

$$\label{eq:malestokk} \text{målestokk} = \frac{\text{ei lengde i ein modell}}{\text{den samsvarande lengda i virkelegheita}}$$

Eksempel 1

På ei teikning av eit hus er ein veg
g $6\,\mathrm{cm}.$ I verkelegheita er denne vegge
n $12\,\mathrm{m}.$

Kva er målestokken på teininga?

Svar:

Først må vi passe på at lengdene har same nemning¹. Vi gjer om 12 m til antal cm:

$$12 \,\mathrm{m} = 1200 \,\mathrm{cm}$$

No har vi at

$$målestokk = \frac{6 \text{ cm}}{12 \text{ cm}}$$
$$= \frac{6}{12}$$

Vi bør også prøve å forkorte brøken så mykje som mogleg:

$$m \mathring{a} lestokk = \frac{1}{6}$$

¹Sjå Seksjon??.

Tips

Målestokk på kart er omtrent alltid gitt som ein brøk med tellar lik 1. Dette gjer at ein kan lage seg desse reglane:

lengde i verkelegheita = lengde på kart \cdot nemnar til målestokk

lengde i verkelegheita = $\frac{\text{lengde på kart}}{\text{nemnar til målestokk}}$

Kartet under har målestokk 1:25000.

- a) Luftlinja (den blå) mellom Helland og Vike er 10,4 cm på kartet. Kor langt er det mellom Helland og Vike i verkelegheit?
- b) Tresfjordbrua er ca 1300 m i verkelegheita. Kor lang er Tresfjordbrua på kartet?

Svar:

- a) Verkeleg avstand mellom Helland og Vike = $10.4 \,\mathrm{cm} \cdot 25\,000$ = $260\,000 \,\mathrm{cm}$
- b) Lengde til Tresfjordbrua på kart = $\frac{1\,300\,\mathrm{m}}{25\,000} = 0{,}0052\,\mathrm{m}$

5.3.2 Blandingsforhold

I mange samanhengar skal vi blande to sortar i rett forhold.

På ei flaske med solbærsirup kan du for eksempel lese symbolet "2 +5", som betyr at ein skal blande sirup og vatn i forholdet 2:5. Heller vi 2 dL sirup i ei kanne, må vi fylle på med 5 dL vatn for å lage safta i rett forhold.

Blandar du solbærsirup og vatn, får du solbærsaft :-)

Nokon gongar bryr vi oss ikkje om *Kor mykje* vi blandar, så lenge forholdet er rett. For eksempel kan vi blande to fulle bøtter med solbærsirup med fem fulle bøtter vatn, og fortsatt vere sikre på at forholdet er rettt, sjølv om vi ikkje veit kor mange liter bøtta rommer. Når vi bare bryr oss om forholdet, bruker vi ordet del. "2+5" på sirupflaska les vi da som "2 delar sirup på 5 delar vatn". Dette betyr at safta vår i alt inneheld 2+5=7 delar:

Dette betyr at 1 del utgjer $\frac{1}{7}$ av blanding, sirupen utgjer $\frac{2}{7}$ av blandinga, og vatnet utgjer $\frac{5}{7}$ av blandinga.

5.14 Deler i eit forhold

Ei blanding med forholdet a:b har til saman a+b deler.

- 1 del utgjer $\frac{1}{a+b}$ av blandinga.
- a utgjer $\frac{a}{a+b}$ av blandinga.
- b utgjer $\frac{b}{a+b}$ av blandinga.

Eksempel 1

Ei kanne som rommer $21\,\mathrm{dL}$ er fylt med ei saft der sirup og vatn er blanda i forholdet 2:5.

- a) Kor mykje vatn er det i kanna?
- b) Kor mykje sirup er det i kanna?

Svar:

a) Til saman består safta av 2+5=7 delar. Da 5 av desse er vatn, må vi ha at

mengde vatn =
$$\frac{5}{7}$$
 av 21 dL
= $\frac{5 \cdot 21}{7}$ dL
= 15 dL

b) Vi kan løyse denne oppgåva på same måte som oppgave a), men det er raskare å merke seg at viss vi har $15\,\mathrm{dL}$ vatn av i alt $21\,\mathrm{dL}$, må vi ha $(21-15)\,\mathrm{dL}=6\,\mathrm{dL}$ sirup.

I eit malarspann er grøn og raud maling blanda i forholdet 3:7, og det er 5 L av denne blandinga. Du ønsker å gjere om forholdet til 3:11.

Kor mykje raud maling må du helle oppi spannet?

Svar:

I spannet har vi3+7=10delar. Sidan det er $5\,\mathrm{L}$ i alt, må vi ha at

$$1 \text{ del} = \frac{1}{10} \text{ av } 5 \text{ L}$$
$$= \frac{1 \cdot 5}{10} \text{ L}$$
$$= 0.5 \text{ L}$$

Når vi har 7 delar raudmaling, men ønsker 11, må vi blande oppi 4 delar til. Da treng vi

$$4 \cdot 0.5 L = 2 L$$

Vi må helle oppi 2L raudmaling for å få forholdet 3:11.

Eksempel 3

I ei ferdig blandeta saft er forholdet mellom sirup og vatn 3 : 5.

Kor mange delar saft og/eller vatn må du legge til for at forholdet skal bli 1 : 4?

Svar:

Brøken vi ønsker, $\frac{1}{4}$, kan vi skrive om til ein brøk med same tellar som brøken vi har (altså $\frac{3}{5}$):

$$\frac{1}{4} = \frac{1 \cdot 3}{4 \cdot 3} = \frac{3}{12}$$

I vårt opprinnelege forhold har vi3delar sirup og 5 delar vatn. Skal dette gjerast om til 3 delar sirup og 12 delar vatn, må vi legge til 7 delar vatn.

Oppgaver for kapittel 5

5.1.1

Finn

- a) $\frac{2}{3}$ av 9. b) $\frac{5}{8}$ av 24. c) $\frac{7}{2}$ av 12. d) $\frac{10}{4}$ av 32.

5.1.2

- a) Finn $\frac{2}{3}$ av $\frac{4}{5}$.
- b) Finn $\frac{6}{7}$ av $\frac{8}{11}$.
- c) Finn $\frac{9}{10}$ av $\frac{2}{13}$.

5.1.3

Du har startet et firma i lag med en venn, og dere har blitt enige om at du skal få $\frac{3}{5}$ av det firma
et tjener. Hvis firma
et tjener 600 000 kr, hvor mange kroner får du?

5.2.1

Skriv om brøkene til prosenttall

- a) $\frac{78}{100}$ b) $\frac{91,2}{100}$ c) $\frac{0,7}{100}$ d) $\frac{193,54}{100}$

5.2.2

Skriv verdien til

- a) 57%
- b) 98,1% c) 219% d) 0,3%

5.2.3

Skriv om brøken til prosenttall

- a) $\frac{7}{10}$ b) $\frac{11}{50}$ c) $\frac{9}{25}$ d) $\frac{29}{20}$

5.2.4

Finn

- a) 20% av 500. b) 25% av 1000. c) 70% av 90.

- c) 80% av 700. d) 15% av 200.

5.2.5

Hvor mange prosent utgjør

- a) 4 av 10?

- b) 6 av 24? c) 21 av 49? d) 18 av 81?

5.2.6

Se tilbake til *Undersøkelse* 2 på s. 30 og 33.

- a) Hvor mange prosent av det totale antallet har svart "tiger"?
- b) Hvor mange prosent av det totale antallet har svart "løve"?
- c) Hvor mange grader utgjør sektoren som representerer "krokodille"?
- d) Hvor mange grader utgjør sektoren som representerer "hund"?

5.2.7

- a) Hva er 40 økt med 10%?
- b) Hva er 250 økt med 30%?
- c) Hva er 560 økt med 80%?
- d) Hva er 320 økt med 100%?
- e) Hva er 800 økt med 150%?

5.2.8

- a) Hva er 40 senket med 10%?
- b) Hva er 250 senket med 30%?
- c) Hva er 560 senket med 80%?

5.2.9

Du kjøper en hest for 20000 kr, og håper at verdien til hesten vil stige med 8% i løpet av et år. Hvor mye er den i så fall verd da?

5.2.10

Du kjøper en ny gaming-PC til 20000 kr, og regner med at verdien til PC
en vil synke med 12 % i løpet av et år. Hvor mye er den i så fall verd da?

5.3.1

- a) Finn vekstfaktoren fra oppgave 5.2.7a).
- b) Finn vekstfaktoren fra oppgave 5.2.7b).
- c) Finn vekstfaktoren fra oppgave 5.2.7c).

5.3.2

- a) Finn vekstfaktoren fra oppgave 5.2.8a).
- b) Finn vekstfaktoren fra oppgave 5.2.8b).
- c) Finn vekstfaktoren fra oppgave 5.2.8c).

5.3.3

Finn forholdet og forholdstallet mellom antall hester og griser når vi har:

a) 5 hester og 2 griser. b) 12 griser og 4 hester.

5.3.4

Totaktsmotorer krever som regel bensin som er tilsatt en viss mengde motorolje. STHIL er en produsent av motorsager drevet av slike motorer, på deres hjemmesider kan vi lese dette:

Vi anbefaler følgende blandingsforhold: Ved STIHL 1 : 50-totaktsmotorolje: 1 : 50 => 1 del olje + 50 deler bensin

Si at vi skal fylle på 2,5 L bensin på motorsagen vår, hvor mye olje må vi da tilsette?

I de to neste oppgavene går vi ut ifra at både 1 dL vann og 1 dL saftsirup veier 100 g.

5.3.5

Coca-Cola inneholder $10\,\mathrm{g}$ karbohydrater. En type saftsirup inneholder $44\,\mathrm{g}$ karbohydrater per $100\,\mathrm{g}$. Saften skal lages med 2 deler sirup og 9 deler vann.

Inneholder saften mer eller mindre karbohydrater per $100\,\mathrm{g}$ enn Coca-Cola?

5.3.6

På *Lærums solbærsirup* står det at 100 g ferdig utblandet saft inneholder 12,5 g sukker. Saften inneholder sirup og vann blandet i forholdet 1:5.

Hvor mye sukker inneholder 100 g solbærsirup? (Rent vann inneholder ikke sukker i det hele tatt).

Kapittel 6

Likningar, formlar og funksjonar

6.1 Å finne størrelser

Likningar, formlar og funksjonar (og utttrykk) er omgrep som dukkar i forskjellige sammenhenger, men som i bunn og grunn handlar om det same; dei uttrykker relasjonar mellom størrelsar. Når alle størrelsane utanom den éine er kjent, kan vi finne denne enten direkte eller indirekte.

6.1.1 Å finne størrelser direkte

Mange av regelboksane i boka inneheld ein formel. Når ein størrelse står aleine på éi side av formelen, seier vi at det er ein formel for den størrelsen. For eksempel inneheld Regel 5.13 ein formel for 'målestokk'. Når dei andre størrelsane er gitt, er det snakk om å sette verdiane inn i formelen og regne ut for å finne den ukjente, 'målestokk'.

Men ofte har vi berre ei skildring av ein situasjon, og da må vi sjølv lage formlane. Da gjeld det å først identifisere kva størrelsar som er til stades, og så finne relasjonen mellom dei.

Eksempel 1

For ein taxi er det følgende kostnader:

- Du må betale 50 kr uansett hvor langt du blir kjørt.
- I tillegg betaler du 15 kr for kvar kilometer du blir kjørt.
- a) Sett opp eit uttrykk for kor mykje taxituren kostar for kvar kilometer du blir kjørt.
- b) Hva kostar ein taxitur på 17 km?

Svar:

a) Her er det to ukjente størrelsar; 'kostnaden for taxituren' og 'antal kilometer køyrt'. Relasjonen mellom dei er denne:

kostnaden for taxituren = 50 + 15 · antal kilometer køyrt

b) Vi har no at

kostnaden for taxituren = $50 + 15 \cdot 17 = 305$

Taxituren kostar altså 305 kr.

Tips

Ved å la enkeltbokstaver representere størrelsar, får ein kortare uttrykk. La k stå for 'kostnad for taxituren' og x for 'antal kilometer køyrt'. Da blir uttrykket fra $Eksempel\ 1$ over dette:

$$k = 50 + 15x$$

I tillegg kan ein gjerne bruke skrivemåten for funksjonar:

$$k(x) = 50 + 15x$$

6.1.2 Å finne størrelsar indirekte

Når formlane er kjente

Eksempel 1

Vi har sett at strekninga s vi har køyrt, farta f vi har halde, og tida t vi har brukt kan settast i samanheng via formelen¹:

$$s = f \cdot t$$

Dette er altså ein formel for s. Ønsker vi i staden ein formel for f, kan vi gjere om formelen ved å følge prinsippa for likningar²:

$$s = f \cdot t$$

$$\frac{s}{t} = \frac{f \cdot t}{t}$$

$$\frac{s}{t} = f$$

 $^{^{1}}strekning=fart\cdot tid$

²Sjå MB, s. 121.

 $Ohms\ lov$ seier at strømmen I gjennom ein metallisk ledar (med konstant temeperatur) er gitt ved formelen

$$I = \frac{U}{R}$$

der U er spenninga og R er resistansen.

a) Skriv om formelen til ein formel for R.

Strøm målast i Ampere (A), spenning i Volt (V) og motstand i Ohm (Ω).

b) Hvis strømmen er 2 A og spenninga 12 V, kva er da resistansen?

Svar:

a) Vi gjer om formelen slik at R står aleine på éi side av likskapsteiknet:

$$\begin{split} I \cdot R &= \frac{U \cdot \cancel{R}}{\cancel{R}} \\ I \cdot R &= U \\ \frac{\cancel{I} \cdot R}{\cancel{I}} &= \frac{U}{I} \\ R &= \frac{U}{I} \end{split}$$

b) Vi bruker formelen vi fant i a), og får at

$$R = \frac{U}{I}$$
$$= \frac{12}{2}$$
$$= 6$$

Resistansen er altså $6\,\Omega$.

Gitt ein temperatur T_C målt i antall grader Celsius (°C). Temperaturen T_F målt i antall grader Fahrenheit (°F) er da gitt ved formelen

$$T_F = \frac{9}{5} \cdot T_C + 32$$

- a) Skriv om formelen til ein formel for T_C .
- b) Vis ein temperatur er målt til 59°F, kva er da temperaturen målt i °C?

Svar:

a) Vi isolerer T_C på én side av likhetstegnet:

$$T_F = \frac{9}{5} \cdot T_C + 32$$

$$T_F - 32 = \frac{9}{5} \cdot T_C$$

$$5(T_F - 32) = \cancel{5} \cdot \frac{9}{\cancel{5}} \cdot F_C$$

$$5(T_F - 32) = 9T_C$$

$$\frac{5(T_F - 32)}{9} = \frac{\cancel{9}T_C}{\cancel{9}}$$

$$\frac{5(T_F - 32)}{9} = T_C$$

b) Vi bruker formelen fra a), og finn at

$$T_C = \frac{5(59 - 32)}{9}$$

$$= \frac{5(27)}{9}$$

$$= 5 \cdot 3$$

$$= 15$$

Når formlane er ukjente

Eksempel 1

Tenk at klassen ønsker å fare på ein klassetur som til saman kostar $11\,000\,\mathrm{kr}$. For å dekke utgiftane har de allereie skaffa $2\,000\,\mathrm{kr}$, resten skal skaffast gjennom loddsalg. For kvart lodd som selgast, tener de $25\,\mathrm{kr}$.

- a) Lag ei ligning for kor mange lodd klassen må selge for å få råd til klasseturen.
- b) Løys likninga.

Svar:

a) Vi startar med å tenke oss reknestykket i ord:

pengar allereie skaffa+antal lodd-pengar per lodd = prisen på turen

Den einaste størrelsen vi ikkje veit om er 'antal lodd'. Vi erstattar 1 antal lodd med x, og sett verdiane til dei andre størrelsane inn i likninga:

$$2\,000 + x \cdot 25 = 11\,000$$

b)
$$25x = 11\,000 - 2\,000$$
$$25x = 9\,000$$
$$\frac{25x}{25} = \frac{9\,000}{25}$$
$$x = 360$$

¹Dette gjer vi berre fordi det da blir mindre for oss å skrive.

Ein vennegjeng ønsker å spleise på ein bil som kostar $50\,000\,\mathrm{kr},$ men det er usikkert kor mange personar som skal vere med på å spleise.

- a) Kall 'antal personar som blir med på å spleise' for P og 'utgift per person' for U, og lag ein formel for U.
- b) Finn utgifta per person viss 20 personar blir med.

Svar:

a) Sidan prisen på bilen skal delast på antal personar som er med i spleiselaget, må formelen bli

$$U = \frac{50000}{P}$$

b) Vi erstattar $P \mod 20$, og får

$$U = \frac{50\,000}{20} = 2\,500$$

Utgifta per person er altså $2\,500\,\mathrm{kr}$.

6.2 Funksjoners egenskaper

Denne seksjonen tar utgangspunkt i at lesaren er kjed med funksjonar, sjå MB, kapittel 9.

6.2.1 Funksjoner med samme verdi; skjæringspunkt

6.1 Skjæringspunkt til grafer

Et punkt der to funksjonar har same verdi kallast eit skjæringspunkt til funksjonane.

Eksempel 1

Gitt de to funksjonane

$$f(x) = 2x + 1$$

$$g(x) = x + 4$$

Finn skjæringspunktet til f(x) og g(x).

Svar:

Vi kan finne skjæringspunktet både ved ein grafisk og ein algebraisk metode.

Grafisk metode

Vi teikner grafane til funksjonane inn i det same koordinatsystemet:

Vi les av at funksjonane har same verdi når x=3, og da har begge funksjonane verdien 7. Altså er skjæringspunktet (3,7).

Algebraisk metode

At f(x) og g(x) har samme verdi gir likninga

$$f(x) = g(x)$$
$$2x + 1 = x + 4$$
$$x = 3$$

Vidare har vi at

$$f(3) = 2 \cdot 3 + 1 = 7$$
$$g(3) = 3 + 4 = 7$$

Altså er (3,7) skjæringspunktet til grafane.

Merk: Det hadde sjølvsagt halde å berre finne éin av f(3) og g(3).

Ein klasse planlegg ein tur som krever bussreise. Dei får tilbud frå to busselskap:

• Busselskap 1

Klassen betaler 10000 kr uansett, og 10 kr per km.

• Busselskap 2

Klassen betaler $4\,000\,\mathrm{kr}$ uansett, og $30\,\mathrm{kr}$ per km.

For kva lengde kjøyrt tilbyr busselskapa same pris?

Svar:

Vi innfører følgande variablar:

- x = antall kilometer kjørt
- f(x) = pris for Busselskap 1
- g(x) = pris for Busselskap 2

Da er

$$f(x) = 10x + 10000$$

$$g(x) = 30x + 4000$$

Vidare løyser vi no oppgåva både med ein grafisk og ein algebraisk metode.

Grafisk metode

Vi teikner grafane til funksjonane inn i same koordinatsystem:

Vi les av at funksjonane har same verdi når x=200. Dette betyr at busselskapa tilbyr same pris viss klassen skal køyre $200\,\mathrm{km}.$

Algebraisk metode

Busselskapa har same pris når

$$f(x) = g(x)$$

$$10x + 10000 = 30x + 6000$$

$$4000 = 20x$$

$$x = 200$$

Busselskapa tilbyr altså samm pris viss klassen skal køyre $200\,\mathrm{km}.$

6.2.2 Null-, bunn- og toppunkt

6.2 Null-, bunn- og toppunkt

• Nullpunkt

Ein x-verdi som gir funksjonsverdi 0.

• Bunnpunkt

Punkt der funksjonen har sin laveste verdi.

• Toppunkt

Punkt der funksjonen har sin høyeste verdi.

Eksempel 1

Funksjonen

$$f(x) = x^2 - 6x + 8 \qquad , \qquad x \in [0, 7]$$

har

- nullpunkt x = 1 og x = 5.
- bunnpunkt (3, -4).
- toppunkt (7,12).

Kvifor er nullpunkt ein verdi?

Det kan kanskje verke litt rart at vi kallar x-verdiar for nullpunkt, punkt har jo både ein x-verdi og eni y-verdi. Men når det er snakk om nullpunkt, er det underforstått at y=0, og da er det tilstrekkeleg å vite x-verdien for å avgjere kva punkt det er snakk om.

6.3 Likningssett

Vi har så langt sett på likningar med eitt ukjend tal, men det kan også vere to eller fleire tal som er ukjende. Som regel er det slik at

- er det to ukjende, trengs minst to likningar for å finne løysingar som er konstantar.
- er det tre ukjende, trengs minst tre likningar for å finne løysingar som er konstantar.

Og slik fortset det. Likningane som gir oss den nødvendige informasjonen om dei ukjende, kallast eit *likningssett*. I denne boka skal vi konsentrere oss om *lineære likninger med to ukjente*, som betyr at likningssettet består av uttrykk for lineære funksjonar.

6.3.1 Innsettingsmetoden

6.3 Innsettingsmetoden

Eit lineært likningssett som består av to ukjende, x og y, kan løses ved å

- 1. bruke den éine likninga til å finne eit uttrykk for x.
- 2. sette uttrykket fra punkt 1 inn i den andre likninga, og løyse denne med hensyn på y.
- 3. sette løysninga for y inn i uttrykket for x.

Merk: I punkta over kan sjølvsagt x og y bytte roller.

Løys likningssettet, og sett prøve på svaret.

$$x - y = 5 \tag{I}$$

$$x + y = 9 \tag{II}$$

Svar:

Av (I) har vi at

$$x - y = 5$$
$$x = 5 + y$$

Vi set dette uttrykket for x inn i (II):

$$5 + y + y = 9$$
$$2y = 9 - 5$$
$$2y = 4$$
$$y = 2$$

Vi set løysinga for y inn i uttrykket for x:

$$x = 5 + y$$
$$= 5 + 2$$
$$= 7$$

Altså er x = 7 og y = 2.

Vi set prøve på svaret:

$$x - y = 7 - 2 = 5$$

$$x + y = 7 + 2 = 9$$

Løs likningssettet

$$7x - 5y = -8\tag{I}$$

$$5x - 2y = 4x - 5 \tag{II}$$

Svar:

Ved innsettingsmetoden kan ein ofte spare seg for ein del utrekning ved å velge likninga og den ukjende som gir det finaste uttrykket innlei
ingsvis. Vi observerer at (II) gir et fint uttrykk for x:

$$7x - 5y = -6$$
$$x = 2y - 5$$

Vi set dette uttrykket for x inn i (I):

$$7x - 5y = -8$$

$$7(2y - 5) - 5y = -8$$

$$14y - 35 - 5y = -8$$

$$9y = 27$$

$$y = 3$$

Vi set løysinga for y inn i uttrykket for x:

$$x = 2y - 5$$
$$= 2 \cdot 3 - 5$$
$$= 1$$

Altså er x = 1 og y = 3.

Løys likningssettet

$$3x - 4y = -2$$

$$9y - 5x = 6x + y \tag{II}$$

Svar:

Vi velg her å bruke (I) til å finne eit uttrykk for y:

$$3x - 4y = -2$$
$$3x + 2 = 4y$$
$$\frac{3x + 2}{4} = y$$

Vi set dette uttrykket for y inn i (II):

$$9y - 5x = 6x + y$$

$$9 \cdot \frac{3x + 2}{4} - 5x = 6x + \frac{3x + 2}{4}$$

$$9(3x + 2) - 20x = 24x + 3x + 2$$

$$27x + 18 - 20x = 24x + 3x + 2$$

$$-20x = -16$$

$$x = \frac{4}{5}$$

Vi set løysinga for x inn i uttrykket for y:

$$y = \frac{3x + 2}{4}$$

$$= \frac{3 \cdot \frac{4}{5} + 2}{4}$$

$$= \frac{\frac{22}{5}}{4}$$

$$= \frac{11}{12}$$

Altså er $x = \frac{4}{5}$ og $y = \frac{11}{10}$.

Eksempel 4

"Bror min er dobbelt så gamal som meg. Til saman er vi 9 år

gamle. Kor gamal er eg?".

Svar:

"Bror min er dobbelt så gamal som meg." betyr at

brors alder = $2 \cdot \min$ alder

"Til saman er vi 9 år gamle." betyr at

brors alder + min alder = 9

Erstattar vi 'brors alder' med " $2 \cdot \min$ alder", får vi

 $2 \cdot \min \text{ alder} + \min \text{ alder} = 9$

Altså er

$$3 \cdot \min \text{ alder} = 9$$

$$\frac{3 \cdot \min \text{ alder}}{3} = \frac{9}{3}$$

 $\min \text{ alder} = 3$

"Eg" er altså 3 år gammel.

6.3.2 Grafisk metode

6.4 Grafisk løsning av likningssett

Eit lineært likningssett som består av to ukjende, x og y, kan løysast ved å

- 1. omskrive dei to likningane til uttrykk for to linjer.
- 2. finne skjæringspunktet til linjene.

Eksempel 1

Løys likningsettet

$$x - y = 5 \tag{I}$$

$$x + y = 9 \tag{II}$$

Svar:

Av (I) har vi at

$$x - y = 5$$
$$y = x - 5$$

Av (II) har vi at

$$x + y = 9$$
$$y = 9 - x$$

Vi teikner desse to linjene inn i eit koordinatsystem:

Altså er x = 7 og y = 2.

Oppgaver for kapittel 6

6.2.1

Vanlig gåfart regnes for å være ca
. $1,5\,\mathrm{m/s}.$ Hvor langt har man da gått

- a) etter 25 min?
- b) etter 3 timer?

6.2.2

Ola og Kari tilbyr et kurs i svømming. For kurset tjener de til sammen 12 000 kr. Ola er assistenten til Kari, og Kari skal ha dobbelt så mye av inntekten som Ola.

Hvor mye tjener Ola og hvor mye tjener Kari for kurset?

6.2.3

Du skal snekre et gjerde som er 3,4 m langt. For å lage gjerdet skal du bruke 8 planker som er 0,25 m breie, som vist i figuren under:

Det skal være den samme avstanden mellom alle plankene. Hvor lang er denne avstanden?

6.2.4

- a) Skriv dette som en likning: "Volumet til en firkantet prisme med bredde 4, lengde 7 og høgde x er 252."
- b) Løs likningen fra oppgave a).

6.2.5

- a) Skriv dette som en likning: "35% av x er lik 845".
- b) Løs likningen fra oppgave a).

6.2.6

Det gis 360 kr rabatt på en vare, og dette tilsvarer 20% av prisen.

- a) La x være prisen på varen. Sett opp en likning som beskriver informasjonen gitt over.
- b) Finn prisen på varen.

6.2.7

Prisen på en vare er først senket med 20%, og så er den nye prisen senket med 50%. Etter dette koster varen 400 kr. Hva kostet varen opprinnelig?

6.2.8

Du skal lage et lotteri der forholdet mellom antall vinnerlodd og taperlodd er $\frac{1}{8}$. Hvor mange taperlodd må du lage hvis du skal ha 160 vinnerlodd?

6.2.9

Makspuls er et mål på hvor mange hjerteslag hjertet maksimalt kan slå i løpet av et minutt. På siden trening.no kan man lese dette:

"Den tradisjonelle metoden å estimere maksimalpuls er å ta utgangspunkt i 220 og deretter trekke fra alderen."

- a) Kall "maksimalpuls" for m og "alder" for a og lag en formel for m ut i fra sitatet over.
- b) Bruk formelen fra a) til å regne ut makspulsen din.

På den samme siden kan vi lese at en ny og bedre metode er slik: "Ta din alder og multipliser dette med 0,64. Deretter trekker du dette fra 211."

- c) Lag en formel for m ut ifra situate over.
- d) Bruk formelen fra c) til å regne ut makspulsen din.

For å fysisk måle makspulsen din kan du gjøre dette:

1. Hopp opp og ned i ca. 30 sekunder (så fort og så høyt

du greier).

- 2. Tell hjerteslag i 15 sekunder umiddelbart etter hoppingen.
- e) Kall "antall hjerteslag i løpet av 15 sekunder" for A og lag en formel for m.
- f) Bruk formelen fra e) til å regne ut makspulsen din.
- g) Sammenlign resultatene fra b), d) og f).

6.3.1

På nettsiden viivilla.no får vi vite at dette er formelen for å lage en perfekt trapp:

"2 ganger opptrinn (trinnhøyde) pluss 1 gang inntrinn (trinndybde) bør bli 62 centimeter (med et slingringsmonn på et par centimeter)."

- a) Kall "trinnhøyden" for h og "trinndybden" for d og skriv opp formelen i sitatet (uten slingringsmonn).
- b) Sjekk trappene på skolen, er formelen oppfylt eller ikke?
- c) Hvis ikke: Hva måtte trinnhøyden vært for at formelen skulle blitt oppfylt?
- d) Skriv om formelen til en formel for h.

6.3.2

Effekten P (målt i Watt) i en elektrisk krets er gitt ved formelen:

$$P = R \cdot I^2$$

hvor R er motstanden og I er strømmen i kretsen.

- a) Hvis $R = 5 \Omega$ og I = 10 A, hva er da effekten?
- **b)** Skriv om formelen til en formel for I^2 .

6.3.3

Skriv om arealformelen for et trapes (se MB, s. 143) til en formel for høgden.

6.3.4

På klikk.no finner man disse formelene for å regne ut hvor høy et barn kommer til å bli:

For jenter:

- 1. Regn ut mors høyde i cm + fars høyde i cm
- 2. Trekk fra 13 cm
- 3. Del med 2.

For gutter:

- 1. Regn ut mors høyde i cm + fars høyde i cm
- 2. Legg til 13 cm
- 3. Del med 2.

Kall barnets (fremtidige) høyde for B, mors høyde for M og fars høde for F.

- a) Lag en formel for B når barnet er ei jente.
- b) Lag en formel for B når barnet er en gutt.
- c) Gjør om formelen fra a) til en formel for F.
- d) Ei jente har en mor som er 165 cm. Formelen fra oppgave a) sier at jenta vil bli 171 cm høy. Hvor høy er faren til jenta?

6.3.5

I 2005 kostet en sykkel 1500 kr, mens den i 2014 ville kostet 1784 kr om prisen hadde fulgt konsumprisindeksen.

I 2005 var KPI 82,3, hva var den i 2014?

6.4.1

Gitt de to funksjonene

$$f(x) = 3x - 7$$

$$g(x) = x + 5$$

Finn skjæringspunktet til funksjonene.

6.4.2

Gitt de to funksjonene

$$f(x) = -2x - 3$$
$$g(x) = 4x + 9$$

Finn skjæringspunktet til funksjonene.

6.4.3

Si at du kan velge mellom disse to månedsabonnementene for mobil:

- Abonnement A 300 kr i fast pris og 50 kr per GB data brukt.
- Abonnement B Fast pris på 500 kr og 10 kr per GB data brukt.
- a) For hvilket databruk har vil abonnementene koste det samme?
- b) Hvis du bruker ca. 7 GB data i måneden, hvilket abonnement bør du da velge?

6.4.4

- a) Finn koordinatene til toppunktet til f(x).
- b) Finn koordinatene til minst ett av skjæringspunktene til f(x) og g(x).
- c) Finn nullpunktene til g(x).

6.5.1

Løs likningssettet

$$3b - 2a = 15$$

$$5a - b = 8$$

6.5.2

Løs likningssettet

$$8x - 3y = 4x - 3$$

$$x + 8y = y - 2x$$

Kapittel 7

Økonomi

7.1 Indeksregning

7.1.1 Introduksjon

Innan økonomi er *indeksar* forholdstall som fortel kor mykje størrelsar har forandra seg. For eksempel kosta kroneisen ca 0,75 kr (!) da den blei lansert i 1953, mens den i 2021 kosta ca 27 kr. Forholdet mellom prisen i 2053 og i 2021 er da

$$\frac{\text{pris } 2021}{\text{pris } 1953} = \frac{27}{0,75} = 36$$

I denne samanhengen er talet 36 ein indeks for prisforskjellen på kroneis i 1953 og 2021.

7.1.2 Konsumprisindeks og basisår

Konsumprisindeksen (KPI) er ein indeks som skildrar prisnivået på varer og tenester som ein typisk husstand i Norge brukar pengar på i løpet av eit år. Desse varene er

- Matvarer og alkoholfrie drikkevarer
- Alkoholholdige drikkevarer og tobakk
- Klede og skotøy
- Bolig, lys og brensel
- Møblar, hushaldningsartiklar og vedlikehold av innbo
- Helsepleie

- Transport
- Post- og teletenester
- Kultur og fritid
- Utdanning
- Hotell- og restauranttenester
- Andre varer og tenester

For å samanlikne noe må ein alltid ha eit utgangspunkt, og konsumprisindeksen tek utgangspunkt i prisnivået på dei nevnte varene/tenestene i året 2015. 2015 kallast da $basis \mathring{a}ret^1$, og i dette året er indeksen satt til 100.

 $^{^{1}}$ Kva år som er basisår forandrar seg med tiden. Før 2015 blei basisår var 1998 det.

7.1 Basisår

I eit basisår er verdien til indeksen 100. For konsumprisindeksen er 2015 basisåret.

Tabellen under viser samla KPI for dei 10 siste åra:

2,2
0,8
2,2
5,5
3,6
00
7,9
5,9
3,9
3,3

Tabell 7.1: Kunsumprisindeksen for åra 2010-2021. Tal henta frå SSB.

Ut ifrå tabellen kan vi for eksempel lese dette:

- Da KPI for 2017 er 105,5, har prisane stege med 5,5% sidan 2015.
- Da KPI i 2011 er $93,\!3\,,$ var prisane $7,\!7\%$ lavare i 2011 enn i 2015.

7.2 Prosentvis endring frå basisår

indeks - 100 = prosentvis endring fra basisår

Eksempel 1

I juli 2021 var KPI for matvarer 109,4. Hvor mye har prisen på matvarer endret seg sammenlignet med basisåret?

Svar:

109,4-100=9,4. Prisen på matvarer har altså økt med 9,4% sammenlignet med basisåret.

Eksempel 2

I juli 2021 var KPI for sko 98,0. Hvor mye har prisen på sko endret seg sammenlignet med basisåret?

Svar:

98,0-100=-2. Prisen på sko har altså blitt redusert med 2% sammenlignet med basisåret.

7.1.3 Kroneverdi

Vi har nemnd at en kroneis kosta 0,75 kr i 1953 og 27 kr i 2021. Når vi ved to tidspunkt må betale forskjellig pris på den same vara skuldast det ofte at kroneverdien har forandra seg; 1 kr i 1957 var meir verd enn 1 kr i 2021.

Kroneverdien for eit gitt år reknast ut ifrå KPI til basisåret (100):

7.3 Kroneverdi

$$kroneverdi = \frac{100}{KPI}$$

Merk: Kroneverdien for basisåret (2015) er 1.

Eksempel 1

KPI i 2012 var 93,9. Rekn ut kroneverdien i 2012.

Svar:

kroneverdi i 2012 =
$$\frac{100}{93,9}$$
 ≈ 1.06

Dette betyr at 1 kr i 2012 tilsvarar 1,06 kr i basisåret.

Obs!

Ordet *kroneverdi* brukast også når ein samanlikner verdien av 1 kr opp mot verdien av utenlandsk valuta. Kroneverdi ut ifrå eit basisår og kroneverdi ut ifrå ein valuta er ikkje det same.

7.4 Realverdi

Realverdien til en pengesum er kor mykje ein pengesum ville ha vore verd i basisåret.

 $realverdi = opprinneleg verdi \cdot kroneverdi$

Eksempel

I 1928 var KPI 3,2 og i 2020 var KPI 112,2. Kva hadde størst realverdi, $10\,000\,\mathrm{kr}$ i 1928 eller $350\,000\,\mathrm{kr}$ i 2020?

Svar:

Vi har at

kroneverdi i 1928 =
$$\frac{100}{3,2}$$

Altså er

verdien av 10 000 kr fra 1928 i basisår =
$$10\,000$$
 kr $\cdot \frac{100}{3,2}$
= $312\,500$ kr

Videre er

kroneverdi i 2012 =
$$\frac{100}{112,2}$$

Altså er

verdien av 350 000 kr fra 1928 i basisår = 350 000
$$\cdot \frac{100}{112,2}$$
 $\approx 311 943 \,\mathrm{kr}$

Altså var $10\,000\,\mathrm{kr}$ meir verd i 1928 enn det $350\,000\,\mathrm{kr}$ var verd i 2020.

7.1.4 Realløn og nominell lønn

Kvor god råd vi har avheng av kvor mykje vi tener og kva prisnivået er. Tenk at du hadde ei årsløn på $500\,000\,\mathrm{kr}$ i både 2020 og i 2019. Tabell 7.1 fortell oss da at du hadde du best råd i 2019, fordi da var prisnivået (KPI) lavare enn i 2020.

At prisnivået har blitt høgre er det same som at kroneverdien har blitt lavare. Dette betyr igjen at viss løna di var den same i 2019 og 2020,

er realverdien til løna din høgre i 2019 enn i 2020. Den opprinnelege løna og realverdien til løna er så mykje brukt i statistikk at dei har fått eigne namn:

7.5 Realløn og nominell løn

Nominell løn er løn mottat eit gitt år.

Realløna er realverdien til den nominelle løna.

Eksempel

I 2016 tente Per $450\,000$ kr, mens i 2012 tente han $420\,000$ kr. I 2016 var KPI = 103,6, mens i 2012 var KPI = 93,9. I kven av desse åra hadde Per best råd?

Svar:

For å finne ut kven av åra Per hadde best råd i, sjekkar vi kva år han hadde høgst reallønn 1 (se Regel 7.4):

realløn i 2016 =
$$450\,000 \cdot \frac{100}{103,6}\,\mathrm{kr}$$

$$\approx 434\,363\,\mathrm{kr}$$
 realløn i 2012 = $420\,000 \cdot \frac{100}{93,9}$
$$\approx 447\,284\,\mathrm{kr}$$

Reallønna til Per var altså høgst i 2012, derfor hadde han betre råd da enn i 2016.

¹KPI-verdiene i utrekninga hentar vi frå *Tabell* 1.

7.6 Verdi som følger indeks

Ein verdi er sagt å ha *fulgt indeks* viss verdi og indeks ved to tidspunkt er like.

$$\frac{\text{verdi ved tidspunkt 1}}{\text{indeks ved tidspunkt 1}} = \frac{\text{verdi ved tidspunkt 2}}{\text{indeks ved tidspunkt 2}}$$

Eksempel 1

Tabellen under viser ei oversikt over prisen registrert i ein butikk på to varer ved to forskjellige tidspunkt.

I 2010 var KPI 92,1 og i 2020 var KPI 12,2. Har prisen på nokon av varene fulgt indeks?

Svar:

Vi har at

$$\frac{\text{pris på sjokolade i 2010}}{\text{KPI i 2010}} = \frac{11}{92,1} \approx 0,119$$

$$\frac{\text{pris på sjokolade i 2020}}{\text{KPI i 2020}} = \frac{13,40}{112,1} \approx 0,119$$

Vidare er

$$\frac{\text{pris på brus i } 2010}{\text{KPI i } 2010} = \frac{12.5}{92.1} \approx 0.136$$
$$\frac{\text{pris på brus i } 2020}{\text{KPI i } 2020} = \frac{19}{112.1} \approx 0.169$$

Altså er det rimeleg å seie at prisen for sjokolade har fulgt indeks, mens prisen for brus ikkje har gjort det.

7.2 Lån og sparing

7.2.1 Lån

Nokre gongar har vi ikkje nok penger til å kjøpe det vi ønsker oss, og må derfor ta opp eit lån frå ein bank. Banken gir oss da ein viss *låne-sum* mot at vi betaler tilbake denne, og *renter*, i løpet av ei bestemt tid. Det vanlegaste er at vi undervegs betaler banken det som kallast *terminbeløp*, som på si side består av *avdrag* og renter. Det vi til ei kvar tid skulder banken kallar vi *qjelda*.

Sei at ein bank låner oss 100 000 kr, som da er lånesummen. Lånet skal vere tilbakebetalt i løpet av 5 år, med eitt terminbeløp kvart år, og renta er 10%. Det fins forskjellige måtar å betale tilbake eit lån på, men følgande vil som regel gjelde:

• Summen av alle avdraga skal tilsvare lånesummen.

For å gjere det enkelt i vårt eksempel, bestemmer vi oss for å betale tilbake lånet med like avdrag kvart år. Sidan 100 000 kr skal fordelast likt over 5 år, må det årlege avdraget bli $\frac{100\,000}{5}$ kr = $20\,000$ kr.

• Det ein betaler i avdrag skal trekkast frå gjelda.

Startgjelda er $100\,000\,\mathrm{kr}$, men det første året betaler vi $20\,000\,\mathrm{kr}$ i avdrag, og da blir gjelda $100\,000\,\mathrm{kr}-20\,000\,\mathrm{kr}=80\,000\,\mathrm{kr}$. Det andre året betaler vi nye $20\,000\,\mathrm{kr}$, og da blir gjelda $80\,000\,\mathrm{kr}-20\,000\,\mathrm{kr}=60\,000\,\mathrm{kr}$. Og slik fortset det dei neste tre åra.

· Renter skal reknast av gjelda.

Sidan gjelda det første året er $100\,000\,\mathrm{kr}$, må vi betale $100\,000\,\mathrm{kr}\cdot 0,1=10\,000\,\mathrm{kr}$ i renter. Sidan gjelda det andre året er $80\,000\,\mathrm{kr}$ må vi betale $80\,000\,\mathrm{kr}\cdot 0,1=8\,000\,\mathrm{kr}$ i renter. Og slik fortset det dei neste tre åra.

• Terminbeløpet er summen av avdraget og rentene.

Av første og tredje punkt får vi at

	1. år	2. år
	$20000\mathrm{kr} + 10000\mathrm{kr}$	$20000\mathrm{kr} + 80000\mathrm{kr}$
Terminbeløp	=	=
	$30000\mathrm{kr}$	$28000\mathrm{kr}$

Og slik fortset det dei neste tre åra.

Lånet er fullført når gjelda er lik 0 kr og alle renter er betalt.

Hvis vi har betalt avdrag lik 20 000 kr i 5 år, er gjelda 0 kr. Har vi da betalt alle rentene også, er lånet fullført.

Merk: Du har alltid rett til å betale større avdrag enn det som først er avtalt. Betaler du heile gjelda vil lånet avsluttast så lenge eventuelle renter også er betalt.

Serielån og annuitetslån

To vanlege typer lån er serielån og annuitetslån. Lånet fra eksempelet vi akkurat har sett på er eit serielån fordi avdraga er like store. Hvis terminbeløpa hadde vore like store, ville det i staden vore eit annuitetslån. Vis lånesum, rente og nedbetalingstid er lik, vil eit serielån alltid medføre minst utgifter totalt sett. For privatpersonar er det likevel veldig populært å velge annuitetslån på grunn av at det er lettare å planlegge økonomien når ein betaler det same beløpet kvar gong.

Kredittkort

Kredittkort er eit betalingskort som er slik at viss du f.eks. bruker kortet for å betale 10 000 kr, så låner du pengane fra banken. Etter ei tid som er avtalt med banken vil den kreve renter av gjelda din. Til kva tid du betaler denne gjelden er delvis opp til

deg sjølv, men generelt har kredittkort veldig høge renter, så det luraste er å betale før rentekravet har starta!

7.7 Lån

lånesum Beløpet vi låner av banken.

gjeld Det vi til ei kvar tid skulder banken.

rente Prosentandel av gjeld som skal betalast.

avdrag Det vi betaler ned på gjelda.

Summen av avdraga tilsvarer lånesummen.

ny gjeld = gammel gjeld - avdrag

 $\mathbf{renter} \quad \mathrm{gjeld} \cdot \mathrm{rente}$

terminbeløp avdrag + renter

serielån Lån der avdraga er like store.

annuitetslån Lån der terminbeløpa er like store.

kredittkort Betalingskort som opprettar eit lån frå banken.

Eksempel 1

Frå ein bank låner du 300 000 kr med 3% årlig rente. Lånet skal betalast tilbake som eit serielån med 5 årlege terminbeløp.

- a) Kva blir det årlege avdraget?
- b) Kva er gjelda di etter at du har betalt tredje terminbeløp?
- c) Kor mye må du betale i renter ved fjerde terminbeløp?
- d) Kor stort blir det fjerde terminbeløpet?

Svar:

a) Sidan $300\,000\,\mathrm{kr}$ skal betalast over 5 år, blir det årlege avdraget

$$\frac{300\,000\,\mathrm{kr}}{5} = 60\,000\,\mathrm{kr}$$

b) Når tredje terminbeløp er betalt, har du betalt tre avdrag. Det betyr at gjelda di er

$$300\,000 - 60\,000 \cdot 3 = 300\,000 - 180\,000$$

= $120\,000$

Altså 120 000 kr.

c) Ut ifrå oppgave b) veit vi at gjelda er $180\,000~\mathrm{kr}$ når fjerde terminbeløp skal betalast. 3% av gjelda blir da

$$180\,000 \cdot 0.03 = 5\,400$$

Altså 5400 kr.

- d) Terminbeløpet tilsvarar avdrag pluss renter. Ut ifrå oppgåve
- a) og c) veit vi da at det fjerde terminbeløpet blir

$$60\,000\,\mathrm{kr} + 5\,400\,\mathrm{kr} = 65\,400\,\mathrm{kr}$$

Eksempel 2

Frå ein bank låner du $100\,000\,\mathrm{kr}$ med 6,4% årleg rente. Lånet skal betalast tilbake som eit annuitetslån over 5 år, og banken har da rekna ut at terminbeløpet blir $24\,000\,\mathrm{kr}$.

Rekn ut avdrag og renter for det første terminbeløpet.

Svar:

Det første året er gjelda $100\,000\,\mathrm{kr}$, i renter må du betale 6,4% av denne:

$$100\,000 \cdot 0.064 = 6\,400$$

Altså må du betale 6400 kr i renter det første året.

Vi har at

$$terminbel p = avdrag + renter$$

Dermed er

$${\rm avdrag} = {\rm terminbel} \emptyset p - {\rm avdrag}$$

$$= 24\,000 - 6400 = 17\,600$$

Altså må du betale 17600 kr i avdrag det første året.

7.2.2 Sparing; innskuddsrente og forventa avkastning

Innskuddsrente

Vi har sett at vi må betale renter når vi låner pengar av ein bank, men viss vi i staden sett pengar (gjer eit innskudd) i ein bank får vi renter:

7.8 Innskuddsrente

Innskuddsrente er ei prosentvis auke av pengene du har i banken, gjentatt over faste tidsintervall (månedleg, årleg o.l.)

Eksempel 1

Du sett inn $20\,000\,\mathrm{kr}$ i ein bank som gir 2% årleg sparerente. Kor mykje pengar har du i banken etter 8 år?

Svar:

For å berekne innskuddsrenter kan vi anvende Regel~5.11. Sidan renta er 2%, er vekstfaktoren 1,02. Originalverdien er 20 000 og antall endringar (tiden) er 8:

$$20\,000 \cdot 1,02^8 \approx 23\,433$$

Du har altså ca. 23433 kr i banken etter 8 år med sparing.

Forventet avkastning

Ein anna måte å spare pengar på, er å investere i eit aksjefond. Da vil ein snakke om *forventa avkastning*:

7.9 Forventa avkastning

Forventa avkastning angir ei forventa prosentvis auke av ei investering, gjentatt over faste tidsintervall.

Eksempel 1

Du investerer $15\,000$ i et aksjefond som forventar 5% årleg avkastning. Kor mykje er investeringa verd etter 8 år ved ei slik avkastning?

Svar:

Også for forventa avkastning kan vi bruke Regel~5.11. Vekstfaktoren er 1,05, originalverdien er 15000 og antall endringar (tiden) er 8:

$$15\,000 \cdot 1,05^8 \approx 22\,162$$

Etter 8 år er det forventa at investeringa er verd 22 162 kr.

Spare med innskuddsrente eller aksjefond?

Som regel er forventa avkastning på eit aksjefond høgare enn innskudsrenta du får i en bank, men ulempa er at forventa avkastning ikkje gir nokre garantier. Forventa avkastning oppgir berre auka eksperter antar vil skje. Er du heldig blir auka høgare, er du uheldig blir den lågare, og kan til og med føre til ein reduksjon av investeringa din. I verste fall, rett nok i ekstremt sjeldne tilfeller, kan heile investeringa din ende opp med å bli verd 0 kr.

Innskuddsrenten kan også forandre seg noko med tida, men den kan aldri føre til ein reduksjon av investeringen din.

7.3 Skatt

Om du har ei inntekt, må du som regel betale ein del av desse pengane til staten. Desse pengane kallast *skatt* (og nokre gongar *avgift*). Hensikta med skatt er at staten skal ha råd til å gi innbyggerane tilbod som skule, helsetenester og mykje meir. I dag blir blir skatten i stor grad berekna av datasystem, men det er ditt ansvar å sjekke at berekningane er rette — og da er det viktig å forstå korleis skattesystemet fungerer.

Obs!

I eksamensoppgåver og i virkeligheita vil du fort oppdage at skattesystem er presentert på ein litt anna måte enn i denne boka. Dette er blant anna fordi skattereglane kan forandre seg fra år til år, og i denne boka har vi tatt utgangspunkt i skattereglane for 2018. Det viktigaste er ikkje at du husker spesifikt desse reglene, men at du lærer deg kva som meinast med omgrepa bruttoløn, frådrag, skattegrunnlag, trygdeavgift og nettoløn.

7.3.1 Bruttolønn, frådrag og skattegrunnlag

Dei fleste må betale 23% av det som kallast skattegrunnlaget, som er bruttolønna minus frådrag. Bruttolønna er lønna du mottek frå arbeidsgiver, mens frådrag kan vere mykje forskjellig. Personfrådrag og minstefrådrag er noko alle skattebetalerar får, i tillegg kan ein blant anna få frådrag viss ein betaler fagforeningskontigent eller har gitt pengar til veldedige føremål.

Skattegrunnlag kalles noen ganger trekkgrunnlag.

Fagforeiningskontigent er det du betaler for å være med i ei fagforeining.

7.10 Bruttoløn, frådrag og skattegrunnlag

bruttolønn

– frådrag

= skattegrunnlag

Eksempel

Bruttoløna til Magnus er $500\,000\,\mathrm{kr}$. Han får $56\,000\,\mathrm{kr}$ i personfrådrag $97\,600\,\mathrm{kr}$ i minstefrådrag, i tilleg betaler han $1\,000\,\mathrm{kr}$ for årleg medlemskap i fagforeininga Tekna.

Kva må Magnus betale hvis han skattar 23% av skattegrunnlaget?

Svar:

Vi startar med å rekne ut skattegrunnlaget, som er bruttoløna minus frådraga:

	500000	bruttolønn
_	56000	personfrådrag
_	97600	minstefrådrag
_	1000	fagforeningskontigent
=	345400	skattegrunnlag

7.3.2 Trygdeavgift

Alle lønnsmottakarar må også betale trygdeavgift. Dette er ei inntekt staten bruker til å dekke Folketrygda. Kva ein må betale i trygdeavgift kjem an på kor gammal du er og kva type inntekt du har, men her skal vi berre bry oss om det ein må betale for løn frå ein arbeidsgiver. Da er trygdeavgifta avhengig av alderen:

7.11	Trygdeav	voift
1.11	rryguea	vgiit

alder	trygdeavgift
17-69 år	8,2 %
under 17 år eller over 69 år	5,1%

Trygdeavgifta skal bereknast av bruttoløna.

Eksempel

Jonas og bestemora hans, Line, har begge $150\,000\,\mathrm{kr}$ i løn. Jonas er 18 år og Line er 71 år.

- a) Kva må Jonas betale i trygdeavgift?
- b) Kva må Line betale i trygdeavgift?

Svar:

a) Sidan Jonas er mellom 17 år og 69 år, skal han betale 8.2% trygdeavgift:

$$150\,000 \cdot 0.082 = 12\,300$$

Altså skal Jonas betale $12\,300\,\mathrm{kr}$ i trygdeavgift. Sidan Line er over $69\,\mathrm{\mathring{a}r}$, skal ho betale 5,1% trygdeavgift:

$$150\,000 \cdot 0,051 = 7\,650$$

Altså skal Line betale 7650 kr i trygdeavgift.

7.3.3 Trinnskatt

Av løna di må du også betale ein viss prosent av forskjellege intervall, dette kallast *trinnskatt*:

7.12	Trinnskat	t.

	Intervall	Skatt
Trinn 1	169 000 - 237 900 kr	1,4%
Trinn 2	$237\ 900 - 598\ 050\mathrm{kr}$	$3,\!3\%$
Trinn 3	598 050 - 962 050 kr	12,4%
Trinn 4	Over $962~050\mathrm{kr}$	15,4%

Trinnskatt bereknast av bruttoløna.

Eksempel Hvis du tener $550\,000$ blir utregningen av trinnskatt slik:

Trinn 1	Da heile løna er over $237900\mathrm{kr}$, må du betale skatt av $(237900-169000)\mathrm{kr}=68900\mathrm{kr}$.
	Skatt for trinn 1 blir da $68900\mathrm{kr}\cdot 0{,}014\approx 965\mathrm{kr}.$
Trinn 2	Da $550000\mathrm{kr}$ er over $237900\mathrm{kr}$, men under $598050\mathrm{kr}$, må du betale skatt av $(550000-237900)\mathrm{kr}=312100\mathrm{kr}$. Skatt for trinn 2 blir da $312100\mathrm{kr}\cdot 0,033\approx 10299\mathrm{kr}$.
Totalt	Totalt må du betale 965 kr + 10 299 kr = 11 264 kr i trinnskatt.

7.3.4 Nettolønn

Det du sit igjen med etter å ha betalt skatt, trygdeavgift og fagforeiningskontigent kallast nettoløna. Med tanke på dei tre tidlegare delseksjonane kan vi sette opp eit reknestykke som dette:

7.13 Nettolø	n		
		Bruttoløn	
	_	Fagforeningskontigent	
	_	23% skatt	
	_	Trygdeavgift	
	_	Trinnskatt	
	=	Nettoløn	

Eksempel

Emblas bruttoløn er $550\,000\,\mathrm{kr}$. Ho betaler $1500\,\mathrm{kr}$ i året for medlemskap i LO (Norges største fagforeining) og har $409\,900\,\mathrm{kr}$ som skattegrunnlag. Embla er 28 år.

Kva er nettoløna til Embla?

Svar:

	550000	Bruttoløn
_	1500	frådrag for fagforening
_	93127	23% av skattegrunnlaget
_	45100	8,2% av bruttoløn
_	11264	Total skatt for trinn $1 \text{ og } 2$
=	399 009	Nettoløn

(Den totale trinnskatten har vi henta fra utrekninga i $\it Eksempel~1$ fra $\it delseksjon~7.3.3.)$

Embla har altså 399 009 kr i nettolønn.

7.4 Budsjett og regnskap

7.4.1 Budsjett

Når ein skal planlegge økonomien sin, kan det vere lurt å sette opp ei oversikt over det ein forventar av inntekter og utgifter. Ei slik oversikt kallast eit *budsjett*. Når ein reknar ut kva inntekter minus utgifter er, finn ein eit *resultat*. Er talet positivt går ein med *overskudd*, er tallet negativt går ein med *underskudd*.

Eksempel

Lisa vil lage ei oversikt over sine månedlege inntekter og utgifter, og kjem fram til dette:

- Ho tek på seg kveldsvakter på ein gamleheim. Av dette forventar ho ca. 4000 kr i nettolønn.
- Ho bruker ca. 4500 kr i månaden på mat.
- Ho får 4360 kr i borteboarstipend.
- Ho bruker ca. 1 200 kr på klede, fritidsaktivitetar o.l.

Sett opp eit månadsbudsjett for Lisa.

Svar:

løn	4000
Stipend	4360
Sum	8 360
${f Utgifter}$	
Mat	4500
Klær, fritid o.l.	1200
\overline{Sum}	5 700
Resultat	2660

Inntekter Budsjett

Budsjettet viser at Lisa forventar 2660 kr i overskudd.

7.4.2 Regnskap

I eit budsjett fører ein opp forventa inntekter og utgifter, mens i eit reknskap fører ein opp faktiske inntekter og utgifter. Forskjellen mellom budsjett og reknskap kallast avviket. For avviket er det vanleg at ein for inntekter og resultat rekner ut 'reknskap – budsjett', mens ein for utgifter rekner ut 'budsjett – reknskap'. Dette fordi vi ønsker positive tal viss inntekta er større enn forventa, og negative tal viss utgiftene er større enn forventa.

Eksempel

I eksempelet fra forrige delseksjon (7.4.1) satt vi opp eit månadsbudsjett for Lisa. I mars viste det seg at dette blei dei faktiske inntektene og utgiftene hennar:

- Ho fekk ikkje jobba så mykje som ho hadde tenkt. Nettoløna blei 3 500 kr.
- Ho brukte 4 200 kr i månaden på mat.
- Ho fekk 4360 i borteboerstipend.
- I bursdagsgave fekk ho i alt 2000 kr.
- Ho brukte ca. 3600 på klede, fritidsaktivitetar o.l.

Sett opp eit reknskap for Lisas mars månad.

Svar:

Inntekter	Budsjett	Regnskap	Avvik
løn	4000	3500	-500
Stipend	4360	4360	0
Bursdagsgave	0	2000	2000
Sum	8 360	9 860	2 000
${f Utgifter}$			
Mat	4500	4 200	300
Klær, fritid o.l.	1200	3600	-2400
\overline{Sum}	5 700	7 800	1 900
Resultat	2660	2 060	-600

Lisa gjekk altså med 2060 kr i overskudd, men 600 kr mindre enn forventa ut ifrå budsjettet.

Oppgaver for kapittel 7

Konsum	nrisinde	.1
Konsum	prismaei	

År	KPI		
2020	112,2	2008	88
2019	110,8	2007	84.8
2018	112,2	2006	84.2
2017	105,5	2005	82.3
2016	103,6	2004	81
2015	100	2003	80.7
2014	97,9	2002	78.7
2013	95,9	2001	77.7
2012	93,9	2000	75.5
2011	93,3	1999	73.2
2010	92.1	1998	71.5
2009	89.9	1997	69.9

¹Hentet fra ssb.no.

7.1.1

Regn ut kroneverdien i årene:

- **a)** 1998
- **b)** 2014
- **c)** 2017

7.1.2

I 2016 var KPI 103,6. Hvor mye høyere var prisnivået i 2016 enn i 2015?

7.1.3

I 2017 tjente Else 490 000 kr, mens hun i 2012 tjente 410 000 kr. I 2017 var KPI = 105,5, mens i 2012 var KPI = 93,9. I hvilket av disse årene hadde Else best råd?

7.2.1

Fra en bank låner du 200 000 kr med 2% i årlig rente. Lånet skal betales tilbake som et serielån med 10 årlige terminbeløp.

- a) Hva blir det årlige avdraget?
- b) Hva er gjelden din etter at du har betalt sjette terminbeløp?

- c) Hvor mye må du betale i renter det sjuende terminbeløp?
- d) Hvor stort blir det sjuende terminbeløpet?

7.2.2

Fra en bank låner du $100\,000\,\mathrm{kr}$ med 2% årlig rente. Lånet skal betales tilbake som et annuitetslån over 15 år, og banken har da regnet ut at terminbeløpet blir $7\,783$.

Regn ut avdrag og renter for det første terminbeløpet.

7.2.3

Hvilken av figurene skisserer et serielån og hvilken skisserer et annuitetslån? Forklar hvorfor.

7.2.4

Du oppretter en sparekonto i en bank som gir 2,3% årlig rente og setter inn 45 000 kr. Hvor mye har du på kontoen etter 15 år?

7.2.5

Tenk at kredittkortet ditt har 45 dagers lån uten renter, og 10% månedlig rente etter dette. Du kjøper en scooter for 50 000 kr med kredittkortet. (Regn måneder som 30 dager).

a) Hvor mye skylder du banken hvis ingenting er betalt innen 75 dager?

- **b)** Hvor mye skylder du banken hvis ingenting er betalt innen 105 dager?
- c) Hvor mye skylder du banken etter 75 dager hvis du betalte 20 000 kr innen de første 45 dagene?

7.3.1

Børge har $350\,000\,\mathrm{kr}$ i lønn. Børge er pensjonist, og skal da ha $56\,000\,\mathrm{kr}$ i personfradrag og $83\,000\,\mathrm{kr}$ i minstefradrag. I tillegg betaler han $700\,\mathrm{kr}$ i fagforeningskontigent.

- a) Beregn skattegrunnlaget til Børge.
- **b)** Av skattegrunnlaget betaler Børge 23% skatt. Finn hvor mye dette er.

7.3.2

Mira er 19 år og tjener $200\,000$ i året, mens 74 år gamle Børge tjener $350\,000$ i året.

Hvem av de to betaler mest trygdeavgift (i antall kroner)?

7.3.3

Beregn trinnskatten til Børge (nevnt i oppgave 7.3.1 og 7.3.2).

7.3.4

Beregn nettolønnen til Børge (nevnt i oppgave 7.3.1-7.3.3).

7.4.1

I februar antok Nora at dette ville bli hennes utgifter og inntekter:

- 23 000 kr i nettolønn
- 6000 kr for leie av hybel
- 4500 kr på mat
- $\bullet~1\,500\,\mathrm{kr}$ på andre utgifter
- a) Sett opp et budsjett for Noras inntekter og utgifter i februar.
- b) Det viste seg at de faktiske utgiftene og inntektene ble disse:
 - 23 000 kr i nettolønn

- $6000\,\mathrm{kr}$ for leie av hybel
- 5500 på mat
- Kjøp av fire FLAX-lodd som kostet 25 kr hver.
- Gevinst på 1 000 kr fra FLAX-loddene
- 1800 på andre utgifter.

Sett opp et regnskap for Nora. Gikk hun med overskudd eller underskudd i februar? Ble overskuddet/underskuddet større eller mindre enn i budsjettet?

Kapittel 8 Sannsynlighet

8.1 Grunnprinnsippet

Sjølve prinsippet bak sannsynsregning er at vi spør kor mange gunstige utfall vi har i eit utvalg av moglege utfall. sannsynat for ei hending er da gitt som eit forholdstal mellom desse.

8.1 Sannsynet for ei hending

sannsynet for ei hending = $\frac{\text{antall gunstige utfall}}{\text{antall moglege utfall}}$

Når vi kastar ein terning, kallar vi 'å få ein firar' ei hending. Og da ein terning har seks forskjellige sider, er det seks moglege utfall.

Viss vi ønsker 'å få ein firar', er det bare 1 av desse 6 utfalla som gir oss det vi ønsker, altså er

sannsyn for å få ein firar =
$$\frac{1}{6}$$

For å unngå lange uttrykk bruker vi gjerne enkeltbokstavar for å indikere ei hending. I staden for å skrive 'å få ein firar', kan vi bruke bokstaven F, og for å indikere at vi snakkar om sannsynet for ei hending, bruker vi bokstaven P.

P kommer av det engelske ordet for sannsyn, probability.

Når vi skriv P(S) betyr dette 'sannsynet for å få ein firar':

$$P(S) = \frac{1}{6}$$

Kva med det motsatte, altså sannsynet for å ikke å få ein firar? For å uttrykke at noko er motsett av ei hending, sett vi ein strek over namnet. Hendinga 'å ikkje få eun firar' skriv vi altså som \bar{F} . Det 'å ikkje få ein firar' er det same som 'å få enten ein einar, ein toar, ein trear, ein femmar eller ein seksar', derfor har denne hendinga 5 gunstige utfall. Det betyr at

$$P(\bar{S}) = \frac{5}{6}$$

8.2 Symboler for sannsyn

P(A) er sannsynet for at hending A skjer.

A og \bar{A} er motsette hendingr.

 $P(\bar{A})$ er sannsynet for at A ikkje skjer, og omvend.

Obs!

Som regel er det ei god vane å forkorte brøkar når det let seg gjere, men i sannsynsrekning vil det ofte lønne seg å la vere. Du vil derfor oppdage at mange brøkar i komande seksjonar kunne vore forkorta.

8.2 Hendingar med og utan felles utfall

8.2.1 Hendingar utan felles utfall

La oss kalle hendinga 'å få ein trear' (på ein terning) for T. Hendinga 'å få ein trear eller ein firar' skriv vi da som $T \cup F$.

Symbolet \cup kallast union.

Det er 2 av 6 sider på ein terning som er tre *eller* fire, sannsynet for 'å få ein trear *eller* ein firar' er derfor $\frac{2}{6}$:

$$P(F \cup S) = \frac{2}{6}$$

Det same svaret får vi ved å legge saman P(F) og P(S):

$$P(T \cup F) = P(T) + P(F) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6}$$

Å finne $P(T \cup F)$ ved å summere P(T) og P(F) kan vi gjere da T og F ikkje har nokon felles utfall. Dette fordi ingen sider på trekanten viser både en trear og en firar.

8.3 Hendingar utan felles utfall

For to hendingar A og B utan felles utfall, er

$$P(A \cup B) = P(A) + P(B)$$

Eksempel

Du trekk opp ei kule frå ein bolle der det ligg éin raud, to blå og éi grøn kule. Hva er sannsynet for at du trekk opp ei raud *eller* ei blå kule?

Svar:

Vi kaller hendinga 'å få ei raud kule' for R og hendinga 'å få ei blå kule' for B.

- Det er i alt 4 moglege utfall (kuler).
- Sidan alle kulene berre har éi farge, er det ingen av hendingane R og B som har felles utfall.
- Sannsynet for å trekke ei raud kule er

$$P(R) = \frac{1}{4}$$

• Sannsynet for å trekke ei blå kule er

$$P(B) = \frac{2}{4}$$

Sannsynet for å få ei raud eller ei blå kule er dermed

$$P(R \cup B) = P(R) + P(B)$$
$$= \frac{1}{4} + \frac{2}{4}$$
$$= \frac{3}{4}$$

8.2.2 Summen av alle sannsyn er 1

Tenk at vi kastar ein terning og at vi held både 'å få ein firar' og 'å ikkje få ein firar' for gunstige hendingar . Vi har tidlegare sett at $P(F) = \frac{1}{6}$, $P(\bar{F}) = \frac{5}{6}$, og at F og \bar{F} ikkje har felles utfall. Av Regel 8.3 har vi da at

$$P(F \cup \bar{F}) = P(F) + P(\bar{F})$$
$$= \frac{1}{6} + \frac{5}{6}$$
$$= 1$$

Enten så skjer F, eller så skjer den ikkje. Og skjer den ikkje, så skjer \bar{F} . Viss vi sier at både F og \bar{F} er gunstige hendingr, seier vi altså at alle moglege utfall er gunstige, og da gir Regel~8.1 eit sannsyn lik 1.

8.4 Summen av alle sannsyner

Summen av sannsyna for alle moglege hendingar er alltid lik 1.

Ei hending A og den motsette hending
a \bar{A} vil til saman alltid utgjere alle hendingar. Av Regel 8.4 har vi
 da at

$$P(A) + P(\bar{A}) = 1$$
$$P(A) = 1 - P(\bar{A})$$

8.5 Motsatte hendingar

For ei hending A er

$$P(A) = 1 - P(\bar{A})$$

Eksempel

I ein klasse med 25 elevar er det 12 jenter og 13 gutar. Ein elev skal tilfeldig trekkast ut til å vere med i ein matematikkonkurranse.

- a) Kva er sannsynet for at ein gut blir trukke?
- b) Kva er sannsynet for at ein gut ikkje blir trukke?

Svar:

Vi kallar hendinga 'ein gutt blir trukke' for G.

a) Sannsynet for at ein gut blir trekt er

$$P(G) = \frac{13}{25}$$

b) Sannsynet for at ein gut ikke blir trekt er

$$P(\bar{G}) = 1 - P(G)$$
$$= 1 - \frac{13}{25}$$
$$= \frac{12}{25}$$

Merk: At ein gut ikkje blir trekt er det same som at ei jente blir trukke.

8.2.3 Felles utfall

Nokon gongar er det slik at to hendingar kan ha felles utfall. La oss sjå på ein vanleg kortstokk med 52 kort som er likt delt inn i typane spar, hjerter, ruter og kløver. Kort som er av sorten knekt, dame, kong eller ess kallast honnørkort.

Tenk at vi trekk opp eit kort frå ein blanda kortstokk. Vi ønsker å finne sannsynet for 'å trekke kløverkort eller honnørkort'. Vi startar med å telle opp dei gunstige utfalla for kløverkort, og finn at antalet er 13.

Eit kort som kløver kong er eit kløverkort, men det er også eit honnørkort, og derfor er det begge deler; både kløverkort og honnørkor.

Etterpå tell vi opp gunstige utfall for honnørkort, og finn at antalet er 16.

Til saman har vi telt 13 + 16 = 29 gunstige utfall, men no støter vi på eit problem. For da vi fann alle kløverkort, telte vi blant anna kløver knekt, dame, kong og ess. Desse fire korta telte vi også da vi fann alle honnørkort, noko som betyr at vi har telt dei same korta to gongar!

Det finst no for eksempel ikkje to kløver ess i ein kortstokk, så skal vi rekne ut kvor mange kort som oppfyller kravet om å vere kløver eller honnør, så må vi trekke ifrå antalet kort vi har telt dobbelt:

$$13 + 16 - 4 = 25$$

La K vere hendinga 'å trekke eit kløverkort' og H være hendinga 'å trekke eit honnørkort'. Sidan det er 25 kort som er kløverkort eller honnørkort av i alt 52 kort, har vi at

$$P(K \cup H) = \frac{25}{52}$$

Sidan vi har 13 kløverkort og 16 honnørkort, får vi vidare at

$$P(K) = \frac{13}{52}$$
 og $P(H) = \frac{16}{52}$

Vi har sett at fire kort er *både* kløver og honnørkort, dette skriv vi som

Symbolet \cap kallast *snitt*.

$$K \cap H = 4$$

Vi seier da at K og H har 4 felles utfall. Vidare er

$$P(K \cap H) = \frac{4}{52}$$

No som vi har funne P(K), P(H) og $P(K \cup H)$ kan vi igjen finne $P(K \cap H)$ på følgande måte:

$$P(K \cup H) = P(K) + P(H) - P(K \cap H)$$
$$= \frac{13}{52} + \frac{16}{52} - \frac{4}{52}$$
$$= \frac{25}{52}$$

8.6 Hendingar med felles utfall

For to hendingar A og B er

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Merk

Viss ein anvender Regel~8.6 på to hendingar uten felles utfall, ender ein opp med Regel~8.3.

Eksempel

I ein klasse på 20 personar spelar 7 personar fotball og 10 personar spelar handball. Av desse er det 4 som spelar både fotball og handball. Om ein trekk ut éin person frå klassen, kva er sannsynet for at denne personen spelar fotball *eller* handball?

Svar:

Vi lar F være hendinga 'spelar fotball' og H vere hendinga 'spelar handball'.

• Sannsynet for at ein person spelar fotball er

$$P(F) = \frac{7}{20}$$

• Sannsynet for at ein person spelar handball er

$$P(H) = \frac{10}{20}$$

 Sannsynet for at ein person spelar både fotball og handball er

$$P(F \cap H) = \frac{4}{20}$$

Sannsynet for at ein person spelar fotball eller handball er derfor

$$P(F \cup H) = P(F) + P(H) - P(F \cap H)$$
$$= \frac{7}{20} + \frac{10}{20} - \frac{4}{20}$$
$$= \frac{13}{20}$$

8.2.4 Venndiagram

Målet med eit venndiagram er å lage ein figur som illustrerer antalet av dei særskilde utfalla og dei felles utfalla. La oss bruke eksempelet på side 151 til å lage ein slik figur. For klassen der nokon spelar fotball, nokon handball og nokon begge deler, kan vi lage eit venndiagram som vist under.

Den grøne ellipsa 1 representerer dei som spelar fotball (F) og den blå dei som spelar handball (H). Da nokre spelar begge sportane $(F \cap H)$, har vi teikna ellipsane litt over i kvarandre. Videre veit vi at 7 spelar fotball, 10 spelar handball og 4 av disse gjer begge deler. Dette illustrerast slik:

Diagrammet fortel no at 3 personar spelar berre fotball og 6 spelar berre handball. I tilleg spelar 4 personar både fotball og handball. (Til saman er det derfor 7 som spelar fotball og 10 som spelar handball.)

¹Ei ellipse er ein "strekt" sirkel.

Eksempel 1

I en skuleklasse er det 31 elevar. I denne klassen er det 15 elevar som tek buss til skulen og 9 elever som ter båt. Av desse er det 3 stykker som ter både buss og båt.

- a) Sett opp eit venndiagram som illustrerer gitt informasjon.
- b) Éin person trekkast tilfeldig ut av klassen. Kva er sannsynet for at denne personen tar buss *eller* båt til skulen?

Svar:

a) Sidan 3 elevar tek *både* buss og båt, er det 15-3=12 som berre tek buss og 9-3=6 som berre tek båt. Vi let A bety 'tar buss' og B bety 'tar båt', venndiagrammet vårt blir da sjåande slik ut:

b) Sannsynet for at ein person tek buss eller båt kan vi skrive som $P(A \cup B)$. Sidan 15 elevar tek buss, 9 ter båt og 3 tek begge deler, er det i alt 15 + 9 - 3 = 21 elever som tek buss eller båt. Da det er 31 elevar i alt å velge mellom, er

$$P(A \cup B) = \frac{21}{31}$$

Eksempel 2

Om ein klasse med 29 elevar veit vi følgande:

- 16 elevar speler fotball
- 12 elevar speler handball
- 7 elevar speler volleyball
- 5 elevar speler både fotball og handball, men ikkje volleyball
- 3 elevar speler både fotball og volleyball, men ikkje handball
- 2 elevar speler både handball og volleyball, men ikkje fotball.
- 1 elev speler alle tre sportane.
- a) Sett opp eit venndiagram som skildrar fordelinga av dei tre sportane i klassen.
- **b)** Én person blir tilfeldig trekt ut av klassen. Kva er sannsynet for at denne personen speler enten fotball, handball eller volleyball?
- c) Personen som blir trekt ut viser seg å spele fotball. Kva er sjansen for at denne personen også speler handball?

Svar:

a) La F bety 'speler fotball', H bety 'speler handball' og V bety 'speler volleyball'. Når vi skal lage eit venndiagram, er det lurt å skrive inn dei felles utfalla først. Ut ifrå fjerde til sjuande punkt kan vi teikne dette:

Da ser vi videre at 16-5-1-3=7 elevar speler berre fotball, 12-5-1-2=4 speler berre handball og 9-3-1-2=3 speler berre volleyball:

- **b)** Av diagrammet vårt ser vi at det er 8+5+1+3+4+2+3=26 unike elevar som speler éin eller fleire av sportene. Sjansen for å trekke ein av desse 26 i ein klasse med 29 elever er $\frac{17}{29}$.
- c) Vi les av diagrammet at av dei totalt 16 som speler fotball, er det 5+1=6 som også speler handball. Sjansen for at personen som er trekt ut speler handball er derfor $\frac{6}{16}=\frac{3}{8}$.

8.2.5 Krysstabell

Når det er snakk om to hendingar, kan vi også sette opp ein krysstabell for å skaffe oss oversikt. Sei at det på ein skule med 300 elevar blir delt ut mjølk og epler til dei elevane som ønsker det i lunsjen. Sei vidare at 220 av elevane får mjølk, mens 250 får eple. Av desse er det 180 som får både mjølk og eple. Viss vi lar M bety får mjølk og E bety får eple, vil krysstabellen vår først sjå slik ut:

	M	\bar{M}	sum
E			
\bar{E}			
sum			

Så fyller vi inn tabellen ut ifrå infoen vi har:

- får både mjølk og eple: $M \cap E = 180$
- får mjølk, men ikkje eple: $M \cap \bar{E} = 220 180 = 40$
- får eple, men ikkje mjølk: $E \cap M = 250 180 = 70$
- får verken mjølk eller eple: $\bar{M} \cap \bar{E} = 300 180 40 70 = 10$

	M	\bar{M}	sum
E	180	70	250
\bar{E}	40	10	50
sum	220	80	300

8.3 Gjentatte trekk

8.3.1 Permutasjoner

Sei vi har en bolle med fire kuler som er nummererte frå 1 til 4. I eit forsøk trekk vi opp ei og ei kule fram til vi har trekt opp tre kuler. Viss vi for eksempel først trekk kule 2, deretter kule 4, og så kule 3, får vi permutasjonen 2 4 3.

Kor mange forskjellige permutasjoner kan vi få? La oss lage ein figur som hjelper oss med å finne svaret. Ved første trekning er det 4 kuler å plukke av, vi kan derfor seie at vi har 4 vegar å gå. Enten trekk vi kule 1, eller kule 2, eller kule 3, eller kule 4:

Kula vi trekk opp, legg vi ut av bollen, og trekk så for andre gang. For kvar av de 4 vegane vi kunne gå i første trekning får vi no 3 nye vegar å gå. Altså har vi nå $3 \cdot 4 = 12$ vegar vi kan gå.

Den andre kula vi trekk opp legg vi også ut av bollen, så for kvar av dei 12 vegane fra 2. trekning, får vi no to nye moglege vegar å gå. Totalt antall vegar (permutasjoner) blir derfor $12 \cdot 2 = 24$.

157

Denne utrekninga kunne vi også ha skrive slik:

$$4 \cdot 3 \cdot 2 = 24$$

8.7 Produktregelen for permutasjonar

Når vi gjer fleire trekningar etter kvarandre, finn vi alle moglege permutasjonar ved å gonge saman antall moglege utfall i kvar trekning.

Eksempel

Av dei 29 bokstavene i alfabetet ønsker vi å lage eit ord som består av 3 bokstavar. Vi godkjenner ord som ikkje har noko tyding, men ein bokstav kan berre brukast éin gang i ordet.

Kor mange ord kan vi lage?

Svar:

Først har vi 29 bokstavar å trekke fra, deretter 28 bokstavar, og til slutt 27 bokstavar. Dermed er antall permutasjonar gitt som

Vi kan altså lage 21 924 forskjellige ord.

Eksempel 2

Vi kastar om krone eller mynt fire gongar etter kvarandre. Kor mange permutasjoner har vi da?

Svar:

Kvar gong vi kaster om krone eller mynt, har vi to moglege utfall. Antall permutasjoner er derfor gitt som

$$2 \cdot 2 \cdot 2 \cdot 2 = 16$$

Kombinasjonar

I dagligtale blir ofte ordet *kombinasjonar* brukt i staden for permutasjonar, men innan sannsynsrekning har kombinasjonar og permutasjonar forskjellig tyding. Den store forskjellen er at permutasjonar tar hensyn til rekkefølge, mens kombinasjonar ikkje gjer det.

Sei vi ønsker å danne eit ord med to bokstaver ved hjelp av med bokstavene A, B og C, og at vi godtar gjenbruk av bokstav. Da har vi 9 moglege permutasjonar:

Kombinasjonar derimot viser til ei unik samansetting når rekkefølge ikkje blir teke hensyn til, for eksempel er AB og BA den samme kombinasjonen. I dette tilfellet har vi altså 6 kombinasjonar

AA, AB, AC, BB, BC, CC

8.3.2 Sannsyn ved gjentatte trekk

Tenk at vi har ein med bolle sju kuler. Tre av dei er grøne, to er blå og to er raude. Sei at vi tar opp først éi kule av bollen, og deretter éi til. Kva er sannsynet for at vi trekker opp to grøne kuler?

Viss vi lar G bety 'å trekke ei grøn kule', kan vi skrive dette sannsynet som P(GG). For å komme fram til eit svar, startar vi med å finne ut kor mange gunstige permutasjoner vi har. Sidan vi i første trekning har 3 gunstige utfall, og i andre trekning 2 gunstige utfall, har vi $3\cdot 2=6$ gunstige permutasjonar. Totalt velg vi blant 7 kuler i første trekning og 6 kuler i andre trekning. Antal moglege permutasjonar er derfor $7\cdot 6=42$. Sannsynet for å få to grøne kuler blir da

$$P(GG) = \frac{3 \cdot 2}{7 \cdot 6} = \frac{6}{42} = \frac{1}{7} \tag{8.1}$$

La oss også finne sannsynet for å få ei grøn kule for kvar trekning isolert sett. I første trekning har vi 3 grøne av i alt 7 kuler, altså er

$$P(G) = \frac{3}{7}$$

I andre trekning blir det tatt for gitt at ei grønn kule er plukka opp ved første trekning, og dermed er ute av bollen. Vi har da 2 av 6 kuler som er grøne:

$$P(G|G) = \frac{2}{6}$$

Symbolet | betyr gitt at ... har skjedd. P(G|G) er derfor en forkortelse for 'sannsynet for å trekke en grøn kule, gitt at ei grøn kule er trukke'.

Viss vi gongar sannsynet fra første trekning med sannsynet frå andre trekning, blir reknestykket det same som i likning (8.1):

$$P(GG) = \frac{3}{7} \cdot \frac{2}{6} = \frac{6}{42} = \frac{1}{7}$$

8.8 Sannsyn ved gjentatte trekk

Sannsynet for at A vil skje, gitt at B har skjedd, skrivast som P(A|B).

Sannsynet for at A skjer først, deretter B, deretter C, og så vidare (...) er

$$P(ABC...) = P(A) \cdot P(B|A) \cdot P(C|AB) \cdot ...$$

Eksempel

I ein bolle ligg to blå og to raude kuler. Vi trekk éi og éi kule opp av bollen, fram til vi har henta opp tre kuler. Kva er sannsynet for at vi først trekk ei blå, deretter in raud, og til slutt ei blå kule?

Svar:

Vi lar B bety 'å trekke blå kule' og R bety 'å trekke raud kule'. Sannsynet for først ei blå, så ei raud, og så ei blå kule, skriv vi da som P(BRB).

- Sannsynet for B i første trekning er $P(B) = \frac{2}{4}$.
- Sannsynet for R i andre trekning, gitt B i første er

$$P(R|B) = \frac{2}{3}$$

- Sannsynet for B i tredje trekning, gitt B i første og R i andre er

$$P(B|RB) = \frac{1}{2}$$

Altså har vi at

$$P(BRB) = P(B) \cdot P(R|B) \cdot P(B|RB)$$

$$= \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{1}{2}$$

$$= \frac{4}{24}$$

$$= \frac{1}{6}$$

8.3.3 Valgtre

Vi kan utnytte Regel 8.8 for å lage ei hjelpeteikning når vi har å gjere med gjentatte trekk. Teikninga vi her skal ende opp med kallast eit valgtre. Vi teikner da ei lignende figur som vi gjor i delkapittel 8.3, men langs alle vegar skriv vi på sannsynet for utfallet vegen leder oss til.

La oss igjen sjå på bollen med de sju kulene. Trekk av grøn, blå eller raud kule tegnsett vi høvesvis med bokstavene G, B og R.

Ved første trekning er sjansen for å trekke en grønn kule $\frac{3}{7}$, derfor skriver vi denne brøken på veien som fører oss til G. Gitt at vi har trekt en grønn kule, er sannsynet for også å trekke en grønn kule i andre trekning lik $\frac{2}{6}$. Denne brøken skriver vi derfor langs veien som fører oss fra G til G. Og sånn fortset vi til vi har ført opp alle sannsyna til kvar veg. For å få ei rask oversikt over dei forskjellige permutasjonane vegane fører til, kan det være lurt å skrive opp desse under kvar ende av treet.

1. trekning

2. trekning

La oss no bruke valgtreet over til å finne sannsynet for å trekke éi grøn og éni blå kule. GB og BG er da dei gunstige permutasjonane. Ved å gonge saman sannsyna langs vegen til GB, finn vi at

$$P(GB) = \frac{3}{7} \cdot \frac{2}{6} = \frac{6}{42}$$

På samme måte kan vi finne P(BG):

$$P(BG) = \frac{2}{7} \cdot \frac{3}{6} = \frac{6}{42}$$

Sannsynet for at 'GB eller BG' inntreff er (sjå Regel~8.6):

$$P(GB \cup BG) = P(GB) + P(BG)$$
$$= \frac{6}{42} + \frac{6}{42}$$
$$= \frac{12}{42}$$
$$= \frac{2}{7}$$

8.9 Permutasjonar på eit valgtre

For å finne sannsynet til ein permutasjon på eit valgtre, gongar vi saman sannsyna langs vegen vi må følge for å kome til permutasjonen.

Eksempel

I ein bolle med 10 kuler er tre kuler grøne, to er blå og fem er raude. Du trekk to kuler ut av bollen. La G, B og R høvesvis bety 'å trekke ei blå kule', 'å trekke ei grøn kule' og 'å trekke ei raud kule'.

- a) Teikn eit valgtre som skisserer permutasjonane av B, G og R du kan få.
- b) Kva er sannsynet for at du trekk to raude kuler?
- c) Kva er sannsynet for at du trekk éi blå og éi grøn kule?
- **d)** Kva er sannsynet for at du trekk *minst* éi blå *eller minst* éi grønn kule?

Svar:

a)

b) Av valgtreet vårt ser vi at

$$P(RR) = \frac{2}{10} \cdot \frac{1}{9}$$
$$= \frac{2}{90}$$
$$= \frac{1}{45}$$

c) Både permutasjonen GB og BG gir oss éi blå og éi grønn kule. Sannsynet for kvar av dei er

$$P(GB) = \frac{3}{10} \cdot \frac{5}{9}$$
$$= \frac{15}{90}$$
$$= \frac{1}{6}$$

$$P(BG) = \frac{5}{10} \cdot \frac{3}{9}$$
$$= \frac{1}{6}$$

Sannsynet for GB eller BG er summen av P(GB) og P(BG):

$$P(GB \cup BG) = P(GB) + P(BG)$$
$$= \frac{1}{6} + \frac{1}{6}$$
$$= \frac{2}{6}$$
$$= \frac{1}{2}$$

d) For å svare på denne oppgåva kan vi sjølvsagt legge saman sannsynet for permutasjonane GG, GB, GR, BG, BB, BR, RG og RB, men vi sparer oss veldig mykje arbeid viss vi merker oss dette: Å få minst én blå eller minst én grønn kule er det motsatte av å berre få raude kuler. Sannsynet for dette, å få to raude kuler, fant vi i oppgave b). Av Regel 8.5 har vi at

$$P(\bar{R}) = 1 - P(R)$$

$$= 1 - \frac{1}{45}$$

$$= \frac{45}{45} - \frac{1}{45}$$

$$= \frac{44}{45}$$

Sannsynet for å få minst én blå eller minst éi grøn kule er altså $\frac{44}{45}$.

Oppgaver for kapittel 8

8.2.1

Du trekker et kort fra en kortstokk.

- a) Hva er sannsynligheten for at kortet er et kløverkort?
- **b)** Hva er sannsynligheten for at kortet er et kløverkort eller et sparkort?
- c) Hva er sannsynligheten for at kortet ikke er er kløverkort? Bruk to forskjellige regnemåter for å finne svaret.

8.2.2

Du trekker et kort fra en kortstokk.

- a) Hva er sannsynligheten for at du trekker et 8-kort?
- b) Hva er sannsynligheten for at du trekker et hjerterkort?
- c) Hva er sannsynligheten for at du trekker et 8-kort eller et hjerterkort?
- d) Hva er sannsynligheten for at kortet du trekker hverken er et 8-kort eller et hjerterkort?

Kapittel 9 Digitale verktøy

9.1 Programmering

Programmering handlar om å gi instruksar til ei datamaskin. Slik kan datamaskiner utføre utrekningar, framstille bilder, animasjonar, spel, og mykje meir. For å gi instrukser bruker vi forskjellige *programmeringsspråk*, og det er eit hav av forskjellige språk å velge i. I norsk skule er dei mest brukte språka Scratch, Python og JavaScript¹. Da det fins eit stort utvalg av gratis ressursar for å lære seg programmeringsspråk, vil vi i denne boka nøye oss² med å referere til desse:

- code.org (koding generelt)
- microbit.org (koding med micro:bit)
- espensklasserom.co (Koding i Sracht, micro:bit m.m.)
- kidsakoder.no (koding i Scratch, micro:bit, Python m.m)

Har du allerede nådd et høyt nivå som programmerer, og føler du har god kontroll på data-typar, funksjonar, klassar o.l.? Da anbefalast språket Rust. Mange held dette for å være arvtakaren til C++ og liknande språk.

¹Rett nok i blokkbasert utgave ved koding av micro:bit.

²Enn så lenge. Programmering er eit forholdsvis nytt tema i norsk skole, forslag om kva ei lærebok bør innehalde om programmering blir motteke med glede på mail sindre.heggen@gmail.com.

9.2 Regneark

I denne boka tar vi utgangspunkt i Mircrosofts programvare Excel. Det finnes andre gode regneark på markedet, for eksempel Google Sheets og Libre Office Calc. Disse tre nevnte regnearkene ligner hverandre mye både i utforming og i funksjoner de har å tilby.

9.2.1 Introduksjon

Når du åpner et regne-ark vil du få opp en tabell hvor *radene* er nummerert med tall (1, 2 3 osv), mens *kolonnene* er indeksert med bokstaver (A, B, C osv.). Hvordan radene og kolonnene brukes er avgjørende for å forstå Excel. I figuren under har vi markert det vi kaller *celle B3*. Dette er altså cellen hvor *rad 3 og kolonne B krysser hverandre*. (Legg også merke til at B3 er markert oppe til venstre i figuren).

I hver celle kan vi skrive inn både tall og tekst. Si at Ole har en jobb med 250 kr i timelønn, og at han jobber 7 timer i uka. Denne informasjonen kan vi skrive inn i Excel slik:

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4		
-		

9.2.2 Utregninger

Vi ønsker nå å finne ukelønnen til Ole. Ukelønnen er gitt ved formelen

ukelønn = timelønn \cdot timer i uka

For å foreta en utregning i regneark, starter man med å skrive = i cellen. I celle B4 finner vi ukelønnen til Ole ved å skrive =250*7.

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4	Ukelønn	=250*7

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4	Ukelønn	1750
-		

Når vi trykket enter-tasten, er det resultatet, 1750, som vises i cellen. Ønsker vi å se formelen vi har brukt, kan vi dobbeltklikke på cellen, eller se i *inntastingsfeltet* (oppe til høyre i figuren under.)

B4	√ fx =250*7			
	А	В	С	
1		Ole		
2	Timelønn	250		
3	Timer i uka	7		
4	Ukelønn	1750		

Merk: Inntastingsfeltet kan også brukes til å taste inn tall og tekst i cellen.

9.2.3 Cellereferanser

Excels kanskje viktigste egenskap er *cellereferanser*. Dette betyr kort sagt at vi bruker celler istedenfor tall når vi skal gjøre utregninger. I forrige seksjon regnet vi lønnen til Ole ved å gange 250 (timelønnen) med 7 (timer i uka). Ved å bruke cellereferanser kunne vi isteden gjort dette:

Tallet tilhørende timelønnen (250) står i celle B2, mens tallet tilhørende timer (35) står i celle B3. For å gange tallene i disse cellene kan vi skrive =B2*B3:

	А	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4	Ukelønn	=B2*B3

	Α	В
1		Ole
2	Timelønn	250
3	Timer i uka	7
4	Ukelønn	1750
-		

Én av fordelene med å bruke cellereferanser er at det blir mye lettere å rette opp i feil som har blitt gjort. Si f.eks. at det skulle stått 300 istedenfor 250 i B3. Om vi derfor endrer B3, vil resultatet i B4 endre seg deretter:

Α	В
	Ole
Timelønn	300
Timer i uka	7
Ukelønn	2100
	Timer i uka

Merk: Du kan også trykke på cellene du ønsker å bruke i formlene dine, slik som vist her.

9.2.4 Kopiering og låsing av celler

Kopiering av cellene er en metode som hindrer deg i å skrive de samme formlene om og om igjen. Vi ønsker nå å lage at ark som passer til følgende informasjon:

- Timelønnen til Ole, Dole og Doffen er henholdsvis $300\,\mathrm{kr}$, $200\,\mathrm{kr}$ og $500\,\mathrm{kr}$.
- Alle tre jobber 7 dager i uka.
- Vi ønsker å regne ut hvor mange timer de jobber til sammen og hvor mye ukelønn de har til sammen.

Vi starter med å sette opp dette regnearket:

	Α	В	С	D
1		Ole	Dole	Doffen
2	Timelønn	300	200	500
3	Timer i uka			
4	Ukelønn			

Her har vi bare fylt inne informasjonen som er *unik* for Ole, Dole og Doffen, nettopp fordi de andre cellene enten inneholder de samme tallene eller den samme regnemåten. For cellene som ikke er unike bør vi bruke kopieringsmulighetene, og dette vises i denne videoen. Her er en liten beskrivelse av hva som blir gjort:

- 1. Siden alle tre jobber i 7 timer, skriver vi 7 i celle B4. Etterpå kopierer vi ved å trykke musepekeren helt nede i høyre hjørne av B4 og drar bortover til C2 og D2.
- 2. Siden regnemåten av ukelønn er den samme for alle tre, skriver vi den (med cellereferanser) inn i B4, og kopierer den *bortover* til celle C4 og D4.
- 3. Regnemåten for summen av timene og summen av ukelønnene er også den samme, vi skriver den derfor inn i celle E3 og kopierer den nedover til E4.

Resultatet ble dette:

	Α	В	С	D	E
1		Ole	Dole	Doffen	
2	Timelønn	300	200	500	Sum
3	Timer i uka	7	7	7	21
4	Ukelønn	2100	1400	3500	7000
-					

	Α	В	С	D	E
1		Ole	Dole	Doffen	
2	Timelønn	300	200	500	Sum
3	Timer i uka	=7	=7	=7	=B3+C3+D3
4	Ukelønn	=B2*B3	=C2*C3	=D2*D3	=B4+C4+D4

Av det vi har sett i videoen og figurene over kan vi ta med oss to generelle regler:

- 1. Hver gang man kopierer en formel én celle bortover, vil kolonnene i formelen øke med én bokstav i alfabetet. (A blir til B, B blir til C osv.)
- 2. Hver gang man kopierer en formel én celle *nedover*, vil radene i formelen øke med 1 (1 blir 2 B, 2 blir til 3 osv.).

Låsing av celler

Når man kopierer celler, er det viktig å se opp for celler man ønsker å bruke i alle kopiene, for disse cellen må *låses*. Si for eksempel at Ole, Dole og Doffen alle jobber 48 arbeidsuker i året. For å finne årslønnen deres må vi altså gange ukeslønnen til hver av dem med 48.

Igjen merker vi oss at regnemetoden for å finne årslønnen er den samme for alle tre, men hvis vi bruker celle B8 i en formel, og kopierer slik vi har gjort hittil, vil bokstaven B endre seg i formlene. For å unngå dette skriver vi \$ foran B i formelen – dette gjør at kolonnebokstaven ikke endrer seg, selv om vi kopierer formelen. Dette er vist i denne videoen, og resultatet ser vi her:

	Α	В	С	D	Е
1	Arbeidsuker	48			
2					
3		Ole	Dole	Doffen	
4	Timelønn	300	200	500	Sum
5	Timer i uka	7	7	7	21
ŝ	Ukelønn	2100	1400	3500	7000
7	Årslønn	100800	67200	168000	

	Α	В	С	D	E
1	Arbeidsuker	48			
2					
3		Ole	Dole	Doffen	
4	Timelønn	300	200	500	Sum
5	Timer i uka	=7	=7	=7	=B5+C5+D5
	Time Taka	_,	_,		
6	Ukelønn	=B4*B5	=C4*C5	=D4*D5	=B6+C6+D6

Skal vi låse en celle *nedover* må vi sette dollaren foran radnummeret, for eksempel B\$1.

9.2.5 Andre nyttige funksjoner

Videoer

- Sum bort og sum ned
- Justere bredde på kolonne
- Sette inn rad
- Formelvisning
- Gjøre om til prosenttall
- Endre antall desimaler
- Sorter i stigende/synkende rekkefølge
- Lage søylediagram
- Lage sektordiagram
- Lage linjediagram

Kommandoer (skrives med = foran).

- SUM(celle1:celle2)
 - Summerer alle verdiene fra og med celle1 til og med celle2.
- AVERAGE(celle1:celle2)

Finner gjennomsnittet for alle verdiene fra og med celle1 til og med celle2.

- MEDIAN(celle1:celle2)
 - Finner medianen for alle verdiene fra og med celle1 til og med celle2.
- VAR.P(celle1:celle2)

Finner variansen for alle verdiene fra og med celle1 til og med celle2.

9.3 GeoGebra

9.3.1 Introduksjon

Når du åpner GeoGebra får du et bilde som dette:

Feltet hvor det står "Skriv inn" kalles *inntastingsfeltet*. Dette feltet og det blanke feltet under utgjør *algebrafeltet*. Koordinatsystemet til høyre kalles *grafikkfeltet*.

9.3.2 Å skrive inn punkt, funksjoner og linjer

Punkt

Si at vi ønsker å få punktene (1,3) og (4,5) til å vises i grafikkfeltet. I inntastingsfeltet skriver vi da

(1,3)

og

(4,5)

Geo Gebra kaller da punktene A og B, og tegner dem inn i grafikfeltet:

Ønsker vi å selv et punkts navn kan vi f. eks skrive

$$P=(2,4)$$

Funksjoner

Si vi har funksjonen

$$f(x) = \frac{3}{2}x^2 + 3x$$

For å bruke f(x) i GeoGebra, skriver vi:

$$3/2*x^2+3x$$

Når vi ikke gir funksjonen noen navn, vil Geo Gebra automatisk gi
 funksjonen navnet f. I algebrafeltet får vi derfor

$$f(x) = \frac{3}{2} x^2 + 3x$$

I grafikkfeltet får vi
 grafen til f.

Hvis vi isteden har funksjonen

$$P(x) = 0.15x^3 - 0.4x$$

er det to ting vi må passe på. Det første er at alle desimaltall må skrives med punktum istedenfor komma i GeoGebra . Det andre er at vi ønsker å gi funksjonen navnet P(x). Vi skriver da

$$P(x) = 0.15x^3 - 0.4x$$

og får

Obs!

Man kan aldri gi funksjoner navnet y(x) i GeoGebra. y kan bare brukes når man skriver inn uttrykk for en rett linje, altså y = ax + b, hvor a og b er to valgfrie tall.

Vannette og loddrette linjer

Ønser vi å lage ei linje som går vannrett gjennom verdien 3 på y-aksen og ei linje som går loddrett gjennom verdien 2 på x-aksen skriver vi:

$$v = 3$$

og

$$x = 2$$

Da får vi denne figuren:

9.3.3 Å finne verdien til funksjoner og linjer

Funksjoner

Si vi har funksjonen

$$H(x) = x^2 + 3x - 3$$

Hvis vi ønsker å vite hvaH(2)er, skriver vi

H(2)

som resulterer i dette

$$H(x) = x^2 + 3x - 3$$

$$a = H(2)$$

$$\rightarrow 7$$

Da vet vi at H(2) = 7.

Linjer

Det anbefales på det sterkeste at du bruker funksjonsuttrykk når du behandler linjer i GeoGebra, men i noen tilfeller kommer man ikke utenom linjer på former y = ax + b.

La oss se på de to linjene

$$y = x - 3$$
$$y = -2x + 1$$

Vi skriver disse inn i GeoGebra, og får

Ønsker vi nå å finne hva verdien til y=x-3 er når x=2, må vi legge merke til at GeoGebra har kalt denne linja for f. Svaret vi søker får vi da ved å skrive f(2). Ønsker vi samtidig å vite hva y=-2x+1 er når x=0 må vi skrive g(0):

$$a = f(2)$$

$$\rightarrow -1$$

$$b = g(0)$$

$$\rightarrow 1$$

9.3.4 Knapper og kommandoer

Videoer

- Finne nullpunktene til en graf
- Finne bunnpunkt (eller toppunkt) til en graf
- Finne skjæringspunktene til to funksjoner
- Justere akser
- Endre tykkelse, farge o.l på graf
- Tegne graf på gitt intervall I videoen tegner vi $f(x) = x^2 - 3x + 2$ på intervallet $0 \le x \le 5$.
- Lage linje mellom to punkt. Legg merke til hva som gjøres mot slutten av videoen for å få det vante uttrykket y = ax + b.

Kommandoer

Merk: Mange av kommandoene har egne knapper, som blant annet vist i videoene over.

- abs(<x>)
 Gir lengden til x (et tall, et linjestykke o.l.). Alternativt kan man skrive |x|.
- Linje(<Punkt>, <Punkt>)
 Gir linjen mellom to punkt.
- Ekstremalpunkt(<Funksjon>, <Start>, <Slutt>)
 Finner topp- og bunnpunkt for en funksjon innenfor et gitt
 intervall.
- Funksjon(<Funksjon>, <Start>, <Slutt>)
 Tegner en funksjon innenfor et gitt intervall.
- Mangekant(<Punkt>, ..., <Punkt>)
 Tegner mangekanten mellom gitte punkt.
- Nullpunkt(<Funksjon>, <Start>, <Slutt>)
 Gir nullpunktene til en funksjon innenfor et gitt intervall

• Skjæring(<Objekt>, <Objekt>)
Finner skjæringspunktene til to objekt (funksjoner, linjer o.l.)

Oppgaver for kapittel 9

9.1.1

Lag et script som fra en liste med tall finner

- a) gjennomsnittet.
- b) typetallet.
- c) medianen.

(Bruk gjerne datasettet fra oppgave 3.2.2 som et utgangspunkt.)

9.2.1

- a) Lag et sektordiagram for datasettet fra oppgave 3.2.6.
- b) Lag et sektordiagram for datasettet fra oppgave 3.2.7.

9.2.2

Gjør oppgave 7.3.4 og 7.4.1.

9.2.3

- a) Sett opp et serielån hvor:
 - Lånesummen er 300 000 kr
 - Renten er 2,1%
 - Lånet skal betales med 15 årlige terminbeløp.

Avrund alle kronebeløp til hele kroner.

b) Hvor mye koster lånet totalt? (Summen av alle terminbeløpene.)

9.2.4

- a) Sett opp et annuitetslån hvor:
 - Lånesummen er 300 000 kr
 - Renten er 2,1%
 - Lånet skal betales med 15 årlige terminbeløp, som er 23 523 kr.

Avrund alle kronebeløp til hele kroner.

- b) Hvor mye koster lånet totalt?
- c) Sammenlign svaret du fikk i oppgave b) med svaret fra oppgave 9.2.3b, hvilket lån koster mest penger?

9.2.5

Sjekk at du i oppgave E9.2.3 og E9.2.4 har fåt samme svar som nettsiden laanekalkulator.no. (Velg *Tinglysning: Ingen* og sett alle gebyrer til 0).

9.3.1

- a) Skriv den lineære funksjonen f(x) = 2x + 4 og linja y = 2x + 2 inn i GeoGebra. Lag f(x) blå og y grønn. Hva ser du ut ifra grafen til de to linjene?
- **b)** Finn verdien til f(x) når x = 4.
- c) Finn verdien til y når x = -3.

9.3.2

- a) Tegn punktene (-1,2) og (2,8).
- b) Finn uttrykket til linja som går gjennom disse punktene.

9.3.3

- a) Skriv inn funksjonen $f(x) = x^2 + 2x 3$.
- **b)** Finn f(4).
- c) Finn nullpunktene til f(x).
- d) Finn bunnpunktet til f(x).
- e) Finn skjæringspunktet mellom f(x) og linja y = 5.

Vedlegg

Definisjonsmengde

Definisjonsmengden til en funskjon f(x) er x-verdiene f(x) er gyldige for.

Verdimengde

Verdimengden til en funskjon f(x) er alle verdiene f(x) kan ha. Verdimengden er bestemt av funksjonsuttrykket og funksjonens definisjonsmengde.

Proporsjonale størrelser

Gitt en konstant a og to variabler x og y. Hvis

$$y = ax$$

er x og y proporsjonale størrelser.

Proporsjonale størrelser

Gitt en konstant a og to variabler x og y. Hvis

$$y = \frac{a}{x}$$

er x og y omvendt proporsjonale størrelser.

Polynomfuksjoner

En polynomfunksjon er en funksjon som består av en sum av potenser med positive eksponenter og en variabel som grunntal.

Polynomfunksjoner har undertitler som bestemmes av den største eksponenten i funksjonsuttrykket. For konstantene a, b, c og d, og en variabel x, har vi at

funksjonsuttyrykk	funksjonsnavn	
ax + b	1. gradsfunksjon (lineær)	
$ax^2 + bx + c$	2. gradsfuksjon (kvadratisk)	
$ax^3 + bx^2 + cx + d$	3. gradsfunksjon (kubisk)	

Fasit

Kjem