Algorithms for Destructive Shift Bribery

Wojciech Grabis

Andrzej Kaczmarczyk, Piotr Faliszewski

January 9, 2020

Definicje

- Election E = (C, V), gdzie $C = \{c_1, c_2, ..., c_m\}$ to zbiór kandydatów i $V = \{v_1, v_2, ..., v_n\}$ to multizbiór wyborców.
- Wyborcy sa zwiazani z pewnym porzadkiem kandydatów, opisujacych preferencje w wyborach.
- Poprzez $pos_v(c)$ opisujemy pozycje danego kandydata na liście wyborcy.
- Dodatkowo dla dwóch różnych kandydatów c i c' przez $N_E(c,c')$ oznaczamy ilość wyborców, którzy preferuja c do c'.

Reguła wyborów

- Election rule R to funkcja, która dla danego E=(C,V) zwraca zbiór $W\subseteq C$ zwyciezców danych wyborów,
- W trakcie pracy rozważany jest model unikalnego zwyciezcy, czyli kandydat jest zwyciezca, tylko jeśli jest jedynym elementem zbioru R(E).

Reguła wyborów c.d

 W pracy rozważana dla każdej reguły przedstawiona jest zasada przyznawania punktów, kandydaci z najwieksza ilościa punktów sa uznawani za zwyciezców.

Scoring protocols

- Protokół punktujacy określony jest przez wektor $\alpha = (\alpha_1, ..., \alpha_m)$ nierosnacych, nieujemnych liczb całkowitych.
- α -score danego $c \in C$ opisywane jest poprzez $\sum_{\mathbf{v}} \alpha_{\mathit{pos}_{\mathbf{v}}(c)}$
- Wśród najważniejszych protokołów sa: k-Approval, gdzie wektor składa sie z k jedynek i pozostałych zer, oraz Borda rule gdzie wektorem jest (m-1,m-2,...,0)

Bucklin i simplified Bucklin

- W celu wprowadzenia tych reguł wprowadzamy dodatkowa definicje: zwycieskiej rundy Bucklina która jest najmniejszym / takie, że istnieje kandydat, które /-Approval score jest wiekszy lub równy $\frac{|V|}{2}+1$
- Zwyciezca reguły Simplified Bucklin sa wszyscy kandydaci posiadajacy powyższa wartość I-Approval score.
- Zwyciezca reguły Bucklin sa wszyscy kandydaci z najwieksza /-Approval score, gdzie / jest zwycieska runda Bucklina.

Maximin

Wartościa Maximin score kandydata c jest $min_{d \in C \setminus \{c\}} N_E(c,d)$

Nasz problem

Destructive Shift Bribery

Mamy dana regułe wyborów R elekcje E = (C, V), kandydata $d \in C$ (zazwyczaj unikalny zwyciezca wyborów), budżet B, oraz funkcje p ceny przesuniecia d dla każdego wyborcy.

Funkcja ceny dla danego wyborcy v, gdzie dodatkowo $j = pos_v(d)$ zdefiniowana jest nastepujaco:

- p(0) = 0
- ② Dla każdych $i, i', i < i' \le m j$
- $p(i) = +\infty$

Jest to funkcja opisujaca koszt przesuniecia kandydata d o i pozycji do tyłu.

Przykład

Przykładowo mamy problem *Destructive Shift Bribery* dla zasady Bordy, gdzie funkcja kosztu przesuniecia o *i* pozycji to *i*:

$$v_1: b \succ a \succ c \succ d$$

$$v_1: d \succ b \succ a \succ c$$

$$v_1: d \succ c \succ a \succ b$$

$$v_1: d \succ a \succ b \succ c$$

Poczatkowo kandydat d wygrywa z 9 punktami, jeśli przesuniemy d o 2 pozycje w preferencji v_4 , to a i d maja po 7 punktów, wiec jeśli B=2 to mamy rozwiazanie problemu DSB.

K-Approval

Istnieje algorytm wielomianowy dla problemu Destructive Shift Bribery dla reguły K-Approval. Dla danego E=(C,V) oraz $C=\{c_1,c_2,...,c_m\}$ oraz $d=c_1$ mamy:

- Sprawdzamy dla każdego kandydata $c \in C \setminus \{d\}$, czy może on w danym budżecie pokonać naszego nielubianego.
- Dzielimy głosujacych na 3 grupy $V_{d,c}, V_d, V'$, w taki sposób że pierwszy zbiór zawiera wszystkich, którzy maja d na pierwszy k pozycjach oraz c na k+1 pozycji, drugi gdzie sa pozostali wyborcy majacy d na pierwszych k pozycjach, oraz V' pozostali.

K-Approval c.d

- Sprawdzamy dla każdego a i b takiego, że $a \leq |V_{d,c}|$ oraz $b \leq |V_{d}|$.
- Liczba a oznacza ilu bedziemy przesuwać z $V_{d,c}$, natomiast b ilu bedziemy przesuwać z V_d , wybieramy dla każdego zbioru najtańszy koszt dla przesuniecia d na k+1 pozycje.
- Sprawdzajac te kombinacje dla każdego kandydata, jeśli któraś kombinacja zapewnia że d nie wygrywa i mieści sie w budżecie to akceptujemy, jak żadna to odrzucamy.

Reguła Bordy

Istnieje algorytm wielomianowy dla problemu Destructive Shift Bribery dla reguły Bordy. Podobnie jak poprzednio dla danego E=(C,V) oraz $C=\{c_1,c_2,...,c_m\}$ oraz $d=c_1$ mamy:

- Bedziemy sprawdzali dla każdego kandydata $c \in C \setminus \{d\}$, czy może on w danym budżecie pokonać naszego nielubianego.
- Dodatkowo do algorytmu wprowadzamy

$$A(j,k) = \left\{ \begin{array}{ll} 1 & \text{gdy v}_j \text{ rankinguje c wśród k pozycji za d} \\ \\ 0 & \text{wpp} \end{array} \right.$$

oraz oznaczamy $s = score_E(d) - score_E(c)$

Reguła Bordy c.d

- Bedziemy chcieli policzyć dla każdego $j \in \{1, ..., n\}$ funkcje f(j, k), która oznacza najmniejszy koszt przesuniecia d do tyłu dla zbioru głosujacych $\{v_1, v_2, ..., v_j\}$, tak, że w zmienionych wyborach E' $s (score_{E'}(d) score_{E'}(c)) \geq k$.
- Jeśli w f(n, s) otrzymamy koszt nie wiekszy niż budżet to akceptujemy.
- Wartość f bedziemy liczyli w nastepujacy sposób:

$$f(j,k) = \min_{k' < k} f(j-1, k - (k' + A(j,k'))) + p_j(k')$$

Zauważmy, że algorytm wykorzystany dla reguły Bordy nie korzysta z żadnej własności samej metody. W przypadku jeśli

 Różnica punktów pomiedzy kandydatem d oraz c może być ograniczona przez wielomian liczby głosujacych oraz liczby kandydatów

To przy pomocy funkcji f(j,k) możemy policzyć rezultat dla danego kandydata dla każdego *Scoring protocol*.

Istnieje algorytm wielomianowy, dla instancji problemu $Destructive\ Shift\ Bribery$ w przypadku gdy scoring protocol α dany na wejściu może być zakodowany unarnie.

W przypadku gdy funkcje kosztu sa pewna ograniczona wielomianowo liczba od ilości kandydatów oraz ilości głosujacych, to możemy nasza funkcje f zamienić na f(j,t), która mówi o maksymalnym zwiekszeniu relatywnego wyniku kandydata c do d.

Istnieje algorytm wielomianowy, dla instancji problemu *Destructive Shift Bribery* oraz scoring protocol α , gdy funkcje ceny sa zakodowane unarnie.

Problem Destructive Shift Bribery jest NP-zupełny, gdy scoring protocol α oraz funkcje kosztu sa zakodowane binarnie, oraz scoring protocol jest cześcia wejścia.

Dowód z redukcji problemu Partition do problemu Destructive Shift Bribery.

Rozważmy instancje problemu Partition $S=(s_1,s_2,\ldots s_n)$, dodatkowo $s=\sum_{i=1}^n s_i$. Załóżmy że $\bigvee i\in\{1,\ldots n-1\}s_i\geq s_{i+1}$. Dodatkowo zakładamy, że s jest parzyste oraz $s_1<\frac{s}{2}$. Nasza instancja problemu DSB:

- **1** Kandydaci $d, p_1, \dots p_n$ oraz sztuczni dodatkowi $\{c_i^j | i, j \in \{1, \dots, n\}$
- ② Wektor do pnktowania $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_{n^2+n+1})$, gdzie $\alpha_1=\frac{s}{2}$ oraz $\bigvee i\in\{1,\ldots n\}\alpha_{i+1}=s_i$, pozostałe $\alpha_i=0$
- Nasze wybory składaja sie z n głosujacych, gdzie każdy reprezentuje element z S. Dla v_i umieszczamy na pierwszej pozycji p_i, natomiast d na (i + 1) pozycji. Pozostałe pierwsze (n + 2) pozycje wypełniamy naszymi sztucznymi kandydatami {cⁱ_i : j ∈ {1, . . . n} pozostałe pozycje wypełniamy pozostałymi kandydatami p_k.
- Ustawiamy budżet B na $\frac{s}{2}$. Natomiast funkcja kosztu przesuniecia $p_i(0) = 0$, dla każdego $t \in \{1, \ldots, n-i+1\}$ mamy $p_i(t) = s_i$, a pozostałe $p_i(t) = B + 1$.

Przykład dla S=(5,4,2,2,1), nasza stworzona elekcja $C=\{d\}\bigcup\{p_1,\ldots,p_5\}\bigcup\{c_i^j|i,j\in\{1,\ldots,5\}\}$, protokół punktujacy $\alpha=(7,5,4,2,2,1,0,\ldots,0)$ oraz budżet B=7, listy głosujacych:

$$v_{1}: p_{1} \succ d \succ c_{1}^{1} \succ c_{1}^{2} \succ c_{1}^{3} \succ c_{1}^{4} \succ c_{1}^{5} \succ \dots$$

$$v_{2}: p_{2} \succ c_{2}^{1} \succ d \succ c_{2}^{2} \succ c_{2}^{3} \succ c_{2}^{4} \succ c_{2}^{5} \succ \dots$$

$$v_{3}: p_{3} \succ c_{3}^{1} \succ c_{3}^{2} \succ d \succ c_{3}^{3} \succ c_{3}^{4} \succ c_{3}^{5} \succ \dots$$

$$v_{4}: p_{4} \succ c_{4}^{1} \succ c_{4}^{2} \succ c_{4}^{3} \succ d \succ c_{4}^{4} \succ c_{4}^{5} \succ \dots$$

$$v_{5}: p_{5} \succ c_{5}^{1} \succ c_{5}^{2} \succ c_{5}^{3} \succ c_{5}^{4} \succ d \succ c_{5}^{5} \succ \dots$$

Maximin rule

W przypadku zasady Maximin, rozwiazanie naszego problemu DSB udaje sie znaleźć w czasie wielomianowym.

Załóżmy E=(C,V), oraz $d\in C$, budżet B oraz funkcje kosztu $\{p_1,\ldots,p_n\}$. Rozwiazaniem naszego problemu bedzie wektor $S=(s_1,\ldots,s_n)$, który opisuje jakie przesuniecia mamy zrobić dla każdego głosujacego.

Ważnymi dla rozwiazania kandydatami sa w i t, gdzie w jest zwycieżajacym kandydatem, natomiast t implementuje wynik d ($score_{E'} = N_{E'}(d,t)$).

Zauważmy że jedyne rozwiazania które nas interesuja to takie, gdzie d wystepuje poniżej w lub tuż poniżej t. Nie opłaca sie przesuwać kandydata na dalsze pozycje. Bedziemy to nazywać *tight solution*

W naszym algorytmie bedzie dla każdej pary w, t szukać wśród powyższych rozwiazań. Dodatkowo jako $pref(c_1, c_2)$ oznaczamy zbiór wyborców preferujacy c_1 nad c_2 , natomiast price(v, c) to cena za przesuniecie d poniżej c w kolejności wyborcy v.

Bedziemy korzystać z programowania dynamicznego, zauważmy że jedynym zbiorem wyborców który nas interesuje to zbiór $pref(d,w) \bigcup pref(d,t) = \{v_1",v_2",\ldots,v_l"\}$, czyli wyborcy którzy preferuja d nad w lub t.

Nasza funkcja $f_{w,t}$ bedzie taka funkcja, że $f_{w,t}(j,x,y)$ to najmniejszy koszt przesuniecia d do tyłu x razy poniżej w oraz y razy poniżej t, czyli $j,x,y\in\{0,1,\ldots,l\}$.

Nasze rozwiazanie bedzie znajdować sie wśród wartości $f_{w,t}(I,x,y)$ dla par $x,y\in\{0,1,\ldots,I\}$.

Wzór na liczenie $f_{w,t}$

Wartości poczatkowe: Dla każdego $j,x,y\in\{0,1,\ldots,I\}$ mamy $f_{w,t}(j,0,0)=0$. Jeśli x>0 lub y>0 to $f_{w,t}(0,x,y)=\infty$. Dla danego $j\in\{1,\ldots,I\}$ oraz $x,y\in\{0,1,\ldots,I\}$, mamy 3 przypadki do rozważenia:

1 Jeśli v_j " $\in pref(d, w) \setminus pref(d, t)$:

$$f_{w,t}(j,x,y) = min \begin{cases} f_{w,t}(j-1,x,y) \\ f_{w,t}(j-1,x-1,y) + price(v_j'',w) \end{cases}$$

② Jeśli v_j " $\in pref(d, t) \setminus pref(d, w)$:

$$f_{w,t}(j,x,y) = min \left\{ \begin{array}{l} f_{w,t}(j-1,x,y) \\ f_{w,t}(j-1,x,y-1) + \textit{price}(v_j",t) \end{array} \right.$$

③ Jeśli v_j " ∈ $pref(d,t) \cap pref(d,w)$. To mamy 2 sytuacje, albo $d \succ w \succ t$ i wartość:

$$f_{w,t}(j,x,y) = min \begin{cases} f_{w,t}(j-1,x,y) \\ f_{w,t}(j-1,x-1,y) + price(v_j",w) \\ f_{w,t}(j-1,x-1,y-1) + price(v_j",t) \end{cases}$$

Lub sytuacje $d \succ t \succ w$ i wartość:

$$f_{w,t}(j,x,y) = \min \left\{ \begin{array}{l} f_{w,t}(j-1,x,y) \\ f_{w,t}(j-1,x,y-1) + \mathit{price}(v_j",t) \\ f_{w,t}(j-1,x-1,y-1) + \mathit{price}(v_j",w) \end{array} \right.$$

Koniec