SimulatedAnneal Class Reference

Public Member Functions

	SimulatedAnneal ()
double	getRandomNumber (double i, double j)
double	getProbability (int difference, double temperature)
std::vector< double >	saNeighbour (double ang1, double ang2, double ndist)
std::vector< double >	newsaNeighbour (double ang1, double ang2, double ndist)
void	StartAnneal ()

Public Attributes

double	min_A1
double	min_A2
double	max_A1
double	max_A2
double	unrchbl_cost
int	diff
double	A1_init
double	A2_init
double	temperature
double	coolingRate
double	absoluteTemperature
double	probability
double	ned

Detailed Description

Author: Poulastya Mukherjee Description: Class Implementation for Simulated Annealing Based Optimization Inputs: Annealing Parameters Output: Optimized Angles

Constructor & Destructor Documentation

SimulatedAnneal()

SimulatedAnneal::SimulatedAnneal()

inline

Author: Poulastya Mukherjee Description: Constructor for Simulated Annealing algorithms Inputs: None

Output: Initialized Parameters

Member Function Documentation

• getProbability()

```
double SimulatedAnneal::getProbability ( int difference, double temperature )
```

Author: Poulastya Mukherjee Description: Probability implementation for Simulated Annealing algorithms Inputs: Difference in cost value and temperature Output: Probability of acceptance

getRandomNumber()

```
double SimulatedAnneal::getRandomNumber ( double i, double j )
```

Author: Poulastya Mukherjee Description: Random Number implementation for Simulated Annealing algorithms Inputs: 2 integers Output: Random Number between 2 integer inputs

newsaNeighbour()

Author: Poulastya Mukherjee Description: New neighbor selection implementation for Simulated Annealing algorithms Inputs: New Generated Neighbor Output: Verifies whether neighbor already exists or not and automatically generates new neighbor if already existing

saNeighbour()

Author: Poulastya Mukherjee Description: Neighbor selection implementation for Simulated Annealing algorithms Inputs: Joint Angle1, Joint Angle2 and Radius Output: Randomly Selects a neighbor using Eucledian Distance

StartAnneal()

void SimulatedAnneal::StartAnneal ()

Author: Poulastya Mukherjee Description: Class implementation for Simulated Annealing algorithms Inputs: Starts the Simulated Annealing Algorithm using the parameters set Output: Returns the final joint angle values

Member Data Documentation

A1_init

double SimulatedAnneal::A1_init

initial value of joint angle1 of table to be read from Technology Model file

◆ A2_init

double SimulatedAnneal::A2_init

initial value of joint angle2 of table to be read from Technology Model file

absoluteTemperature

double SimulatedAnneal::absoluteTemperature

value of absolute temperature parameter for Simulated Annealing, used as exit criteria

◆ coolingRate

double SimulatedAnneal::coolingRate

value of cooling rate temperature parameter for Simulated Annealing

diff

int SimulatedAnneal::diff

Cost Difference between next and current state

max_A1

double SimulatedAnneal::max_A1

Maximum value of joint angle1 of table input from Technology Model File

max_A2

double SimulatedAnneal::max_A2

Maximum value of joint angle2 of table input from Technology Model File

min_A1

double SimulatedAnneal::min_A1

Minimum value of joint angle1 of table input from Technology Model File

min_A2

double SimulatedAnneal::min_A2

Minimum value of joint angle2 of table input from Technology Model File

ned

double SimulatedAnneal::ned

radius size for neighbour selection

probability

double SimulatedAnneal::probability

probability value to test fitness of new state

temperature

double SimulatedAnneal::temperature

initial value of temperature parameter for Simulated Annealing

unrchbl_cost

double SimulatedAnneal::unrchbl_cost

Cost Value for states which are unreachable

The documentation for this class was generated from the following file:

• ServerSensor_ompl.cpp

Generated by 1.8.14