

Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе № 5 Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Проверка закона Шарля»

Исходные данные. Будем считать воздух идеальным газом, тогда:

$$PV = \nu RT$$

$$P = \frac{\nu R}{V} T$$

В нашем опыте количество вещества ν оставалось примерно постоянным, а вот объём V нам приходилось немного изменять. Опишем несколько последовательных состояний нашей системы. Пусть в самом начале опыта система находилась в состоянии $F(P_0,V_0,T_0)$

$$P_0 = \frac{\nu R}{V_0} \, T_0 \; \xrightarrow{(1)} \; P_1 = \frac{\nu R}{V_0} \, T_1 \; \xrightarrow{(2)} \; P_0 = \frac{\nu R}{V_0 + dV} \, T_1 \; \xrightarrow{(3)} \; P_1 = \frac{\nu R}{V_0 + dV} \, T_2$$

- (1) изохорный процесс с коэффициентом $\frac{\nu R}{V_0}$
- (2) возврат к давлению P_0 с помощью изменения объёма
- (3) изохорный процесс с коэффициентом $\frac{\nu R}{V_0 + dV}$

Таким образом, $\Delta P=C(V)\Delta T$, где ${\rm C(V)}$ - некоторый коэффициент пропорциональности, который зависит от объёма. Но если пренебречь величиной dV, то можно считать, что $\Delta P\sim \Delta T$

Результаты прямых измерений и их обработки.

Выводы и анализ результатов. Мы провели измерения изменения давления ΔP и температуры ΔT

Остывание воздуха	
ΔP , к Π а	ΔT , °C
0,2	2,0
0,2	1,7
0,2	1,5
0,2	1,0
0,2	1,0
0,2	1,1
0,2	1,2
0,2	1,0
	1