

Ministerul Educației, Cercetării și Tineretului

Olimpiada Națională de Fizică, 2008 Proba teoretică

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema I –A. Motor		Punctaj
a.	Pentru: $\begin{cases} x_v = r \cdot \cos(\omega \cdot t) \\ y_v = r \cdot \sin(\omega \cdot t) \end{cases}$ $\begin{cases} x_p = x \end{cases}$	0,25p	2p
	$\begin{cases} y_{p} = 0 \\ \ell^{2} = (r \cdot \cos(\omega \cdot t) - x)^{2} + (r \cdot \sin(\omega \cdot t))^{2} \\ x^{2} - 2 \cdot r \cdot x \cdot \cos(\omega \cdot t) - (\ell^{2} - r^{2}) = 0 \end{cases}$	0,25p 0,25p	
	$x_{1,2} = r \cdot \cos(\omega \cdot t) \pm \sqrt{\ell^2 - (r \cdot \sin(\omega \cdot t))^2}$	0,25p	
	$r<<\ell$, deci $r\cdot\sin(\omega\cdot t)<<\ell$ soluția admisă pentru coordonata x a punctului P $x=\ell+r\cdot\cos(\omega\cdot t)$	0,50p	
	Rezultat final: relația $x = \ell + r \cdot \cos(\omega \cdot t)$ descrie o oscilație armonică a punctului P de-a lungul axei Ox . Oscilația are loc între pozițiile $\ell + r \ge x \ge \ell - r$ și este centrată pe punctul de coordonate $(\ell,0)$	0,50p	
b.	Pentru: Accelerația punctului P (solidar cu pistonul) are expresia $a = \ddot{x} = -r \cdot \omega^2 \cdot \cos(\omega \cdot t)$	0,25p	1p
	Accelerația maximă are deci expresia $a_{\max im} = r \cdot \omega^2$	0,25p	
	Rezultat final: $a_{\text{max} im} \cong 140 m \cdot s^{-2}$	0,50p	
TOTAL	Problema I A		3p

Problema I B - Bătăile inimii	
Pentru:	
	0,25p
expresia intervalului de timp, după care o vibrație ajunge la obiect $\Delta t_1 = \frac{SO_{(I)}}{v + v_0}$	
momentul de timp la care vibrația ajunge la obiect $t_1^{(I)} = t + \Delta t_1 = t + \frac{SO_{(I)}}{v + v_0}$	0,25p
expresia intervalului de timp după care a doua vibrație ajunge la obiect $\Delta t_2 = \frac{SO_{(I)} - v_0 \cdot T}{v + v_0}$	0,25p
momentul de timp la care cea de-a doua vibrație ajunge la obiect $t_2^{\ (\)} = t + T + \Delta \ t_2$ $t_2^{\ (\)} = t + T + \frac{SO_{(I)} - v_0 \cdot T}{v + v_0}$	0,25p
perioada de recepție de către observator a vibrațiilor $T'=t_2^{(I)}-t_1^{(I)}$	0,25p
$T' = T \cdot \frac{v}{v + v_0}$	0,25p
$ \begin{array}{cccc} & & & & \downarrow & & \downarrow & \\ & & & & \downarrow & & \downarrow & \\ & & & & \downarrow & & \downarrow & \\ & & & & & \downarrow & & \\ & & & & & \downarrow & & \\ & & & & & \downarrow & & \\ & & & & & & \downarrow & \\ & \downarrow & \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ $	0,25p
expresia intervalului de timp, după care o vibrație ajunge microfonul traductorului S $\Delta t_1' = \frac{SO_{(II)}}{V}$	
momentul de timp la care vibrația este recepționată de microfon $t_1^{(II)} = t' + \Delta t_1' = t' + \frac{SO_{(II)}}{V}$	0,25p
expresia intervalului de timp după care a doua vibrație ajunge la microfon $\Delta t_2' = \frac{SO_{(II)} - v_0 \cdot T'}{v}$	0,25p
momentul de timp la care cea de-a doua vibrație este recepționată de microfon $t_2^{(II)} = t' + T' + \Delta t_2'$ $t_2^{(II)} = t' + T' + \frac{SO_{(II)} - v_0 \cdot T'}{v}$	0,25p
perioada de recepție de către microfon a vibrațiilor $T_{ecou} = t_2^{(II)} - t_1^{(II)}$, $T_{ecou} = T \cdot \frac{v - v_0}{v}$	0,25p
Rezultat final: $v_{ecou} = v_0 \cdot \frac{V + V_0}{V - V_0}$	0,25p

b.	Pentru:		1p
	Frecvența bătăilor detectate de microfon $v_b = v_{ecou} - v_0$	0,50p	
	$v_b = v_0 \cdot \frac{2 \cdot v_0}{v - v_0}$	0,25p	
	Rezultat final: $v_b \cong v_0 \cdot \frac{2 \cdot v_0}{v}$	0,25p	
C.	Pentru:		1p
	viteza maximă la suprafața inimii $v_{0,\max} \cong v_{b,\max} \cdot \frac{v}{2 \cdot v_0}$	0, 7 5p	
	Rezultat final: $v_{0,\text{max}} \cong 2.09 \frac{cm}{s}$	0,25p	
d.	Pentru:		1p
	amplitudinea "bătăilor" inimii $A = \frac{v_{0,\text{max}}}{2 \cdot \pi \cdot v_i}$	0,50p	
	Rezultat final: $A \cong 2.2 mm$	0,50p	
TOTA	IL Problema IB		6р
Oficia	ı		1p
TOTA	IL GENERAL - Problema I		10p

Ministerul Educației, Cercetării și Tineretului

Olimpiada Națională de Fizică, 2008 Proba teoretică

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema II –A. Săltărețul	Punctaj
	Pentru:	2p
	$f_1 = \frac{1}{2\pi} \sqrt{\frac{k_{\text{echiv}}}{m}} $ 0,25p	
	$k_{\text{echiv}} = 4\pi^2 \cdot f_1^2 \cdot m \tag{0.25p}$	
	$f_2 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} $ 0,25p	
	$k = 4\pi^2 \cdot f_2^2 \cdot m \tag{0.25p}$	
	$k_{\text{serie}} = \frac{k \cdot k_{\text{echiv}}}{k + k_{\text{echiv}}} = 4\pi^2 \cdot m \cdot \frac{f_1^2 \cdot f_2^2}{f_1^2 + f_2^2} $ $0,50p$	
	frecvența micilor oscilații pentru sistemul echivalent $f=\frac{1}{2\pi}\sqrt{\frac{k_{serie}}{m}}$	
	Rezultat final: $f = \frac{f_1 \cdot f_2}{\sqrt{f_1^2 + f_2^2}}$	
TOTAL	Problema II A	2p

Nr. item	Problema II B – Tyranosaurus Rex		Punctaj
a.	Pentru:		2p
	considerarea barei ca o colecție de n "felii" de mase egale $m_{k}=\frac{m}{n}$, aflate la distanțe	0,25p	
	$\ell_{k} = k \frac{\ell}{n}$; $1 \le k \le n$ de capătul prin care trece axa de rotație		
	momentul de inerție al barei $\begin{cases} J = \sum_{k=1}^{n} \ell_k^2 \cdot m_k = \sum_{k=1}^{n} \ell^2 \cdot m \cdot \frac{1}{n^3} \cdot k^2 \\ J = \frac{\ell^2 \cdot m}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \end{cases}$	0,50p	
	$J = \frac{\ell^2 \cdot m}{n^3} \cdot \frac{n(n+1)(2n+1)}{6}$		
	$J=rac{1}{3}\ell^2\cdot m$, pentru o diviziune foarte "măruntă" a barei, atunci când $n o\infty$	0,50p	
	perioada unei bare – și implicit a unui picior modelat ca o bară $T=2\pi\sqrt{2\ell^2\cdot m/(3mg\ell)}$	0,50p	
	Rezultat final: $T=2\pi\sqrt{\frac{2\ell}{3g}}$, depinde numai de geometria piciorului și nu de masa acestuia	0,25p	
b.	Pentru:		1p
	viteza de deplasare a lui Tyranosaurus Rex $V_{tyran} = \frac{D}{T} = \frac{D}{2\pi} \sqrt{\frac{3g}{2\ell}}$	0,75p	
	Rezultat final: $v_{tyran} \cong 1,42 m \cdot s^{-1}$	0,25p	
TOTAL	Problema II B		3p

Nr. item	Problema II C – Alt săltăreț		Punctaj
a.	Pentru: la o accelerație constantă, alungirea resortului $\Delta \ell_0 = \frac{m \cdot a}{k}$ este neglijabilă	0,50p	0,50p
1.	viteza corpului va fi practic egală cu viteza capătului liber al resortului		4.5
b.	Pentru: în SM: cubul pleacă din poziția de echilibru, cu resortul netensionat, având viteza inițială $-v$ pulsația corpului $\begin{cases} \omega = \sqrt{\frac{k}{m}} \\ \omega = 1 rad \cdot s^{-1} \end{cases}$	0,25p	1,5p
	$\begin{cases} A = \frac{V}{\omega} \\ A = 1m \end{cases}$ $\int x'(0) = 0$	0,25p	
	$\begin{cases} x'(0) = 0 \\ v'(0) = -v \end{cases}$	0,25p	
	legile de mişcare ale cubului $\begin{cases} x' = A \cdot \sin(\omega \cdot t + \varphi_0) \\ x' = -\sin t \ (m) \end{cases}$ $\begin{cases} v' = A \cdot \omega \cdot \cos(\omega \cdot t + \varphi_0) \\ v' = -\cos t \ (m \cdot s^{-1}) \end{cases}$	0,25p	
	$ \operatorname{fin} \operatorname{SL} \begin{cases} $	0,50p	

C.	Pentru:		2p
	SM: elongația x_1 a resortului în momentul în care cubul își începe mișcarea	0,20p	
	$k \cdot x_1 = \mu_0 mg$		
	momentul la care elongația resortului atinge valoarea x_1 $\begin{cases} t_1 = \frac{\mu_0 mg}{kv} \\ t_1 = 10 \text{ s} \end{cases}$	0,20p	
	$ \text{si deci} \begin{cases} x_1 = v \cdot t_1 \\ x_1 = 10 m \end{cases} $		
	în intervalul de timp $[0,t_1]$ corpul se deplasează cu viteza constantă $v x' = v \cdot t$	0,20p	
	în intervalul de timp $[0,t_1]$, în SL corpul se află în repaus $x''=0$	0,20p	
	SL : la momentul $\ t_1$ cubul începe să alunece	0,20p	
	la momentul începerii alunecării cubul se află la distanța x_0 de noua sa poziție de		
	echilibru $\begin{cases} x_0 = (\mu_0 - \mu) \frac{mg}{k} \\ x_0 = 1m \end{cases}$		
	și se deplasează cu viteza $v_0' = -v = -1m \cdot s^{-1}$	0.00	
	legile de mişcare ale cubului (cu originea distanțelor aleasă în poziția de echilibru) $(x' - A \sin(x) + a)$	0,20p	
	$\lambda = A \cdot \sin(\omega \cdot t + \psi_0)$		
	$(V = A \cdot \omega \cdot \cos(\omega \cdot t + \varphi_0))$		
	$\begin{cases} x' = A \cdot \sin(\omega \cdot t + \varphi_0) \\ v' = A \cdot \omega \cdot \cos(\omega \cdot t + \varphi_0) \end{cases}$ condițiile inițiale $\begin{cases} x(t_1) = x_0 \\ v(t_1) = -v \end{cases}$		
	$\begin{cases} A = \sqrt{x_0^2 + v^2/\omega^2} \\ A = \sqrt{2} \approx 1,41 m \end{cases}$ $\begin{cases} \varphi_0 = \pi + \operatorname{arctg}(x_0/v) - \omega t_1 \\ \varphi_0 \approx 5\pi/4 \end{cases}$		
	$A = \sqrt{2} \cong 1,41 \text{m}$		
	$ \int \varphi_0 = \pi + \operatorname{arctg}(\mathbf{x}_0/\mathbf{v}) - \omega \mathbf{t}_1 $		
	$\phi_0 pprox 5\pi/4$		
	SL: până la momentul t_1 originile celor două sistem de referință	0,20p	
	$(x'' = x' + vt = A \sin(\omega t + \varphi_0) + x_0 + vt$		
	$ \left\{ x'' = \left\{ \sqrt{2} \sin \left[(t - 10) + \frac{5\pi}{4} \right] + (t - 10) + 1 \right\} (m) \right\} $		
	$v'' = \left\{ \sqrt{2} \cos[(t-10) + 5\pi/4] + 1 \right\} (m \cdot s^{-1})$		
	momentul t_2 corpul se opreşte în sistemul laboratorului $v''(t_2) = 0$	0,20p	
	$\cos[(t_2-10)+5\pi/4] = -1/\sqrt{2}$	0,20p	
	$\int t_2 = 15 \mathrm{s}$		
	$\begin{cases} x_2 = 7m \end{cases}$		
	pentru ca mişcarea să reânceapă resortul trebuie să se alungească cu $2x_{\scriptscriptstyle 0}$ evoluție care	0,20p	
	se va petrece în intervalul $t_3-t_2=rac{2x_0}{v}$ după care mişcarea se repetă		
TOTAL	Problema II C		4p
Oficiu			1p
TOTAL	GENERAL - Problema II		10p

Ministerul Educației, Cercetării și Tineretului

Olimpiada Națională de Fizică, 2008 Proba teoretică

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema III – Tot felul de circuite	Punctaj
a.	Pentru:	1p
	$R_2 = r 0,50p$	
	Rezultat final: $R_2 = 2\Omega$ 0,50p	
b.	Pentru:	2р
	$P_{\text{max}} = \frac{E^2}{4r} $	
	$R_{\text{echivalent}} = \frac{R_2(R_1 + R_2)}{R_1 + 2R_2}$ 0,25p	
	$R_{echivalent} = \frac{x+1}{x+2}r$, dacă notezi $R_1 = x \cdot r$	
	puterea debitată în circuit $\begin{cases} P = \left(\frac{E}{R_{echivalent} + r}\right)^2 R_{echivalent} \\ P = \frac{E^2}{r} \cdot \frac{(x+2)(x+1)}{(2x+3)^2} \end{cases}$	
	$P = 4P_{\text{max}} \cdot \frac{(x+2)(x+1)}{(2x+3)^2} = \eta P_{\text{max}}$ 0,25p	
	Rezultat final: $R_1 = 1\Omega$ 0,5p	
C.	Pentru:	2р
	$R_{ansamblu} = \frac{R_2(R_{ansamblu} + R_1)}{R_{ansamblu} + R_1 + R_2}$	
	soluția admisibilă din punct de vedere fizic $R_{ansamblu} = 1\Omega$	
	$I = \frac{E}{r + R_{ansamblu}}$ 0,25p	
	Rezultat final: $I = \frac{32}{3}A = 10,(6)A$	

determinarea unei echivalențe între circuitele din figurile (a) şi (b) intensitatea curentului care trece prin circuitul din figura(a) $I = \frac{E'}{r'+R}$ 0,25p legile Kirchhoff pentru circuitul din figura b $ \begin{bmatrix} I_1 + I_2 = I_0 & 0,25p \\ -I_1 \cdot (R_1 + R) + I_2 \cdot R_2 = 0 \\ I_0 \cdot r + I_2 \cdot R_2 = E \end{bmatrix} $ 0,50p $ \begin{bmatrix} E' = \frac{R_2}{r + R_2} & 0,50p \\ r + R_2 & r + R_2 \\ r + R_2 & r + R_2 \end{bmatrix} $ 0,50p $ \begin{bmatrix} E' = E \cdot \frac{R_2}{r + R_2} & 0,50p \\ r' = \frac{r \cdot (R_1 + R_2) + R_1 R_2}{r + R_2} & 0,50p \\ r' = \frac{r \cdot (R_1 + R_2) + R_1 R_2}{r + R_2} & 0,50p \end{bmatrix} $ $ \begin{bmatrix} E' = E \cdot \frac{2}{4} = \frac{1}{2}E = 16V \\ r' = 2\Omega \end{bmatrix} $	d.	Pentru:		4n
intensitatea curentului care trece prin circuitul din figura(a) $I = \frac{E'}{r' + R}$ $0,25p$ legile Kirchhoff pentru circuitul din figura b $\begin{cases} I_1 + I_2 = I_0 & 0.25p \\ -I_1 \cdot (R_1 + R) + I_2 \cdot R_2 = 0 \end{cases}$ $I_1 = \frac{E \cdot \frac{R_2}{r + R_2}}{R + \frac{r \cdot (R_1 + R_2) + R_1 R_2}{r + R_2}}$ $\begin{cases} E' = E \cdot \frac{R_2}{r + R_2} & 0,50p \\ r' = \frac{r \cdot (R_1 + R_2) + R_1 R_2}{r + R_2} & 0,50p \end{cases}$ $\begin{cases} E' = E \cdot \frac{2}{4} = \frac{1}{2}E = 16V \\ r' = 2\Omega \end{cases}$	u.	E', r' R $E_{,r}$ R_{2} R_{2} R_{2} R_{3} R_{4} R_{2} R_{4} R_{2} R_{4} R_{2} R_{3} R_{4} R_{4} R_{5} R_{6} R_{1} R_{2} R_{2} R_{3} R_{4} R_{5} R_{4} R_{5} R_{6} R_{7} R_{8} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{6} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{5} R_{7} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{7} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{4} R_{5} R_{7} R_{8} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{4} R_{5} R_{7} R_{8} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{4} R_{5} R_{5} R_{7} R_{8} R_{8} R_{1} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{7} R_{8} R_{8} R_{8} R_{1} R_{1}	0,50p	4р
legile Kirchhoff pentru circuitul din figura b $\begin{cases} I_{1} + I_{2} = I_{0} & 0.25p \\ -I_{1} \cdot (R_{1} + R) + I_{2} \cdot R_{2} = 0 \end{cases}$ $I_{1} = \frac{E \cdot \frac{R_{2}}{r + R_{2}}}{R + \frac{r \cdot (R_{1} + R_{2}) + R_{1}R_{2}}{r + R_{2}}}$ $\begin{cases} E' = E \cdot \frac{R_{2}}{r + R_{2}} & 0.50p \\ r' = \frac{r \cdot (R_{1} + R_{2}) + R_{1}R_{2}}{r + R_{2}} & 0.50p \end{cases}$ $\begin{cases} E' = E \cdot \frac{R_{2}}{r + R_{2}} & 0.50p \\ r' = \frac{r \cdot (R_{1} + R_{2}) + R_{1}R_{2}}{r + R_{2}} & 0.50p \end{cases}$ $\begin{cases} E' = E \cdot \frac{2}{4} = \frac{1}{2}E = 16V \\ r' = 2\Omega \end{cases}$			0,25p	
$I_{1} = \frac{E \cdot \frac{R_{2}}{r + R_{2}}}{R + \frac{r \cdot (R_{1} + R_{2}) + R_{1}R_{2}}{r + R_{2}}}$ $\begin{cases} E' = E \cdot \frac{R_{2}}{r + R_{2}} \\ r' = \frac{r \cdot (R_{1} + R_{2}) + R_{1}R_{2}}{r + R_{2}} \end{cases}$ $\begin{cases} E' = E \cdot \frac{2}{4} = \frac{1}{2}E = 16V \\ r' = 2\Omega \end{cases}$ $0,50p$		legile Kirchhoff pentru circuitul din figura b $\begin{cases} I_1 + I_2 = I_0 \\ -I_1 \cdot (R_1 + R) + I_2 \cdot R_2 = 0 \\ I_0 \cdot r + I_2 \cdot R_2 = E \end{cases}$	0,25p	
$\begin{cases} E' = E \cdot \frac{R_2}{r + R_2} \\ r' = \frac{r \cdot (R_1 + R_2) + R_1 R_2}{r + R_2} \end{cases}$ $\begin{cases} E' = E \cdot \frac{2}{4} = \frac{1}{2}E = 16V \\ r' = 2\Omega \end{cases}$ $0,50p$		$I_{1} = \frac{E \cdot \frac{R_{2}}{r + R_{2}}}{R + \frac{r \cdot (R_{1} + R_{2}) + R_{1}R_{2}}{r + R_{2}}}$	0,50p	
$\begin{cases} E' = E \cdot \frac{2}{4} = \frac{1}{2}E = 16V \\ r' = 2\Omega \end{cases}$		$E' = E \cdot \frac{\kappa_2}{r + R}$	0,50p	
		$\begin{cases} E' = E \cdot \frac{2}{4} = \frac{1}{2}E = 16V \end{cases}$	0,50p	
Adăugarea unei noi secțiuni revine la considerarea unei noi surse cu rezistența internă de 2Ω 0,50p și cu tensiunea electromotoare diminuată în raportul $\eta=1/2$.			0,50p	
$I_5 = \frac{E}{R+r} \eta^5 = \frac{32}{4} (1/2)^5$ 0,50p			0,50p	
Rezultat final: $I_5 = 0.25 A$ 0,50p		Rezultat final: $I_5 = 0.25 A$	0,50p	
Oficiu 1p				_
TOTAL GENERAL - Problema III 10p	TOTAL	GENERAL - Problema III		10p

Prof. drd. Delia DAVIDESCU – Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar – Ministerul Educației Cercetării și Tineretului Prof. dr. Constantin COREGA – Colegiul Național Emil Racoviță – Cluj Conf. univ. dr. Adrian DAFINEI – Facultatea de Fizică – Universitatea București