

# Exploring the Adverse Weather Scenarios for Future Electricity Systems dataset

PETROS ZANTIS

CIREN MEETING

20/07/2023



#### Contents

- 1) Dataset details & structure
- 2) Visualising a single event
- 3) Polish wind farms
- 4) Data analysis of multiple events



#### The Dataset

- Contains gridded meteorological data associated with challenging periods of weather (adverse events)
- > Focused on highly-renewable UK and European electricity systems of the future
- ➤ A collaboration project between the Met Office, the National Infrastructure Commission and the Climate Change Committee

Dawkins, L.; Rushby, I.; Pearce, M.; Wallace, E.; Butcher, T. (2021): Adverse Weather Scenarios for Future Electricity Systems. NERC EDS Centre for Environmental Data Analysis



#### Dataset Structure

- > Long Duration (year-long "extreme" events) or Short Duration (week-long wind ramping events)
- > Daily time series, 60 x 60 km spatial resolution, EU & UK
- Weather Variables: 100m Wind Speed, Surface Temperature, Net Surface Solar Radiation
- > Wind-drought-peak-demand events (Summer or Winter) or Summer surplus generation events
- > Extremity levels: return period 1 in 2, 5, 10, 20, 50, 100 years (or most extreme events)
- Duration / Severity (classified by)
- ➤ Global Warming Level: 1.2 , 1.5, 2, 3, 4 °C above pre-Industrial
- Multiple events (usually between 1-3 .nc files)



### myClasses.py

- > Event (event type, location, extremity, duration/severity, global warming level, event no)
- WeatherVariable (name, units, colour map)
  - View snapshot
  - View animation
  - Plot time series
  - Plot histogram
- WindTurbine (specs)



# Visualise a Single Event



# Snapshots on a Day (Europe map)







## Animation (over the year)







#### Wind Turbine class

- Specs of the wind turbine are given as arguments when creating an instance of this class:
  - Cut-in speed in m/s (e.g. 4)
  - Cut-out speed in m/s (e.g. 25)
  - Rated output speed in m/s (e.g. 13)
  - > Rated output power in W (e.g. 1 MW)
- Power curve is modelled as a rescaled sigmoid / logistic function





## Wind Data (at a Polish wind farm)







#### Converted to Power Output





- > Anything close to min threshold (green line) is converted to min power output (~ 0 W; most days of the year!)
- > Anything close to max threshold (red line) is converted to max power output (~ 1 MW for 1 turbine)



## Surface Temperature Data







#### Polish Wind Farms

| Cumulative wind capacity in Poland           |      |      |      |      |      |      |      |      |       |       |         |          |       |                       |                        |                        |                       |                        |                      |                      |
|----------------------------------------------|------|------|------|------|------|------|------|------|-------|-------|---------|----------|-------|-----------------------|------------------------|------------------------|-----------------------|------------------------|----------------------|----------------------|
| Year                                         | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009  | 2010  | 2011    | 2012     | 2013  | 2014                  | 2015                   | 2016                   | 2019                  | 2020                   | 2021                 | 2022                 |
| Installed capacity (MW) <sup>[7][8][9]</sup> | 0    | 27   | 63   | 63   | 83   | 153  | 276  | 544  | 725   | 1,180 | 1,616   | 2,497    | 3,390 | 3,834 [10]            | 5,100 <sup>[11]</sup>  | 5,782 <sup>[11]</sup>  | 5,917 <sup>[12]</sup> | 6,294 <sup>[6]</sup>   | 7,306 <sup>[6]</sup> | 8,256 <sup>[6]</sup> |
| Generation<br>(GWh) <sup>[13]</sup>          |      |      |      |      | 132  | 234  | 506  | 796  | 1,051 | 1,843 | 2,745   | 4,435    | 5,822 | 7,184 [14]            | 10,858 <sup>[11]</sup> | 11,623 <sup>[11]</sup> | 14,685 <sup>[1]</sup> | 15,800 <sup>[15]</sup> |                      |                      |
| % of electricity production                  |      |      |      |      | 0.1% | 0.2% | 0.3% | 0.6% | 0.8%  | 1.3%  | 1.8%    | 2.74%    | 3.53% | 4.59% <sup>[14]</sup> | *6.6% <sup>[16]</sup>  | 7.1% <sup>[17]</sup>   | 9.8%[1]               | 10.0% <sup>[15]</sup>  |                      |                      |
|                                              |      |      |      |      |      |      |      |      |       | *Pr   | ovision | al estim | ate   |                       |                        |                        |                       |                        |                      |                      |

- According to this data, Polish wind farms produced around 63 MW in 2004 (year of MATPOWER network\*)
- > Total power capacity of the network (case2736sp) is 18.4 GW wind % was negligible at the time
- ➤ But since we are focused on future highly-renewable power systems, we will assume around 11% of that is wind (~ 2 GW)



# Data Analysis of Multiple Events

#### Box Plots

- Box Plots are a nice way to summarise sets of data:
  - Minimum, 1<sup>st</sup> quartile, median, 3<sup>rd</sup> quartile and maximum
  - Outliers → crosses , Mean → green dashed line
- Averaged over all Polish wind farms, to highlight the effect over Poland
- As expected, mean temperatures (& their extremities) increase as global warming levels rise
- ➤ It is also observed that wind speeds become increasingly extreme as global warming levels rise



## Wind Drought -Peak Demand

- Data averaged over all Polish wind farms
- Indicates the worst wind drought & hottest day
- In both cases, the power produced **over all farms** is close to 0 (remember the whole network is 18.4 GW ...)
- Trigger a cascade under these circumstances (using AC-CFM model)
- ➤ Network is under immense stress (due to hotter days = high demand) & no wind-power production, so cascades will be worse





# Power Histogram Sampling



Quantifies the probability of being in different power-generation scenarios in the Polish network

#### Bulk Analysis

- > Total of 30 events (6 extremities \* 5 global warming levels)
- Averaged over all Polish wind farms
- Trend is as expected: higher **average** temperature as the extremity and g.w.l. rise
- ➤ Wind speeds also show similar trend: higher **average** wind speed as extremity and g.w.l. rise
  - ➤ But, with some outliers (e.g. 1 in 10 years 1.5 g.w.l)



### Bulk Analysis

- Same plot as last slide, but averaged over multiplicities of events where applicable (e.g. event 1, event 2, event 3)
- Helps smoothen out some irregularities in the average temperature data
- > But "creates" some irregularities in the average wind speed data
- > Overall, the trends remain the same



# Bulk Analysis (of power generation)

- Wind speed converted to power generation, summed over Polish wind farms
- Measured days of the year where the total power is < 100 MW</p>
  - This basically means no power from the wind farms == strained network
- Converted that to an annual %
- > Plots look very similar to the average wind speed plots
  - > Top is only event1 of each category; bottom is averaged over events 1-3
- ➤ It looks like as g.w.l. and extremities increase, there are fewer days of the year with wind droughts





Global warming level (°C)