Turing Mechanisms and Morphogenesis

Luke Mattfeld

Eastern Washington University

March 13, 2020

Outline

Background

2 Reaction Diffusion

Pattern Formation

Pattern Formation

• Patterns in Nature:

Pattern Formation

Patterns in Nature:

Pattern Formation

Patterns in Nature:

Morphogenesis

Morphogenesis

• Morphogens related to cell growth

Morphogenesis

- Morphogens related to cell growth
- Chemical that react

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Outline

Background

2 Reaction Diffusion

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

A, B Concentration of Chemical Morphogens

Luke Mattfeld

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations
- D_A, D_B Diffusion coefficients

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations
- D_A, D_B Diffusion coefficients
- ∇A , ∇B Diffusion

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations
- D_A, D_B Diffusion coefficients
- ∇A , ∇B Diffusion

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations
- D_A, D_B Diffusion coefficients
- ∇A , ∇B Diffusion

Turing-specific models

• Reaction Diffusion is very general

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

