

HOCHSCHULE HANNOVER

UNIVERSITY OF APPLIED SCIENCES AND ARTS

_

Fakultät IV Wirtschaft und Informatik

Microservices in Higher Education

Migrating a Legacy Insurance Core Application

Moritz Lange, Arne Koschel and Andreas Hausotter

Microservices 2019 – Dortmund, Germany

20.02.2019

- 1. Introduction
- 2. Educational Context
- 3. Core Application: Partner Management System
- 4. Microservice Architecture: Partner Management System
- 5. Evaluation of Outcomes
- 6. Conclusion

CC_ITM@HsH

University of Applied Sciences and Arts Hanover (HsH)

- ~ 10.000 enrolled students
- Five faculties
- Wide range of courses

Competence Center Information Technology & Management (CC_ITM)

- Institute at the HsH
- Members: Faculty staff, industry partners (practitioners) of different areas of businesses.
- Main objective: Knowledge transfer between university and industry.

whoami

Moritz Lange

- Master student in Applied Computer Science
- University of Applied Sciences and Arts
 Hannover, Faculty IV Business and Computer
 Science
- Member of the Competence Center Information Technology and Management (CC_ITM)

- Email: moritz-lange@outlook.de
- LinkedIn: https://www.linkedin.com/in/moritz-lange/
- XING: https://www.xing.com/profile/Moritz_Lange9

- 1. Introduction
- 2. Educational Context
- 3. Core Application: Partner Management System
- 4. Microservice Architecture: Partner Management System
- 5. Evaluation of Outcomes
- 6. Conclusion

- Goals of Teaching at the HsH
- Professional competence
- Methodical expertise
- Social skills and self-competence

Practical Project

		Hochschule Hanne	over, Studiengang B.Sc. A	Angewandte Informatik (BIN)	
edits	Semester					
0	1	2	3	4	5	6
5	Programmieren 1	Programmieren 2	Programmieren 3	Webtechnologien	Wahlpflichtfach Informatik 1	Wahlpflichtfach Informatik 2
10	Grundlagen der Informatik	Datenbanksysteme 1	Datenbanksysteme 2	Software Engineering 1	Software Engineering 2	Praxisprojekt 2
15	Mathematik 1	Mathematik 2	Mathematik 3	Computergrafik 1	Computergrafik 2	
20	Theoretische Informatik	Statistik	Betriebssysteme und Netze 1	Betriebssysteme und Netze 2	Praxisprojekt 1	Bachelor-Arbeit und Kolloquium
25	Startprojekt	Algorithmen und Datenstrukturen	Programmierprojekt	Seminar		
30	Fachenglisch		Betriebswirtschaft	Erg. Fach BWL	Ergänzendes Fach 1	Ergänzendes Fach 2

Educational Goals of the Practical Project

- Professional competence...
 - → through independent elaboration and application of technical concepts with the supervision of experienced tutors.
- Methodical expertise...
 - → through independent project management.
- Social skills and Self-competence...
 - > through working in a larger autonomous team of students.

Practical Project

- Practical project as part of the bachelor's program ("Potential and Challenges of Microservices in the Insurance Industry").
- Involved were:
 - 10 students (Applied Computer Science and Business Information Systems)
 - A postgraduate
 - Prof. Dr. Arne Koschel and Prof. Dr. Andreas Hausotter (co-authors)
 - Competence Center Information Technology and Management (CC_ITM)
 - Two local insurance companies

Goal was to work out the basics of microservices and to examine the suitability for the insurance industry.

- 1. Introduction
- 2. Educational Context
- 3. Core Application: Partner Management System
- 4. Microservice Architecture: Partner Management System
- 5. Evaluation of Outcomes
- 6. Conclusion

Core Application

Partner Management System

- A system for managing partners of an insurance company
- Based on the reference architecture for German insurance companies (VAA)
- → Basically a CRUD application

Motivation:

- Currently implemented as a single deployment unit
- Heavily changing load distribution
- Poor flexibility, scalability and fault tolerance
- → Microservices approach

Core Application

Domains of VAA

- 1. Introduction
- 2. Educational Context
- 3. Core Application: Partner Management System
- 4. Microservice Architecture: Partner Management System
- 5. Evaluation of Outcomes
- 6. Conclusion

Microservice Architecture

Subdomains / Service Design

Determination of subdomains:

- Definition of a common ubiquitous language for domain experts and project participants.
- Analysis of the domain together with the domain experts.
- 3. Joint development of minimal useful subdomains and use cases.
- → Strongly inspired by DDD

Microservice Architecture

Partner Management System

- 1. Introduction
- 2. Educational Context
- 3. Core Application: Partner Management System
- 4. Microservice Architecture: Partner Management System
- 5. Evaluation of Outcomes
- 6. Conclusion

Evaluation of Outcomes

Business and technical

- The developed microservice architecture can guarantee the required scalability and fault tolerance.
- In parallel to the project, a development team at the insurance company came to a very similar result independently.
- → Project results can be considered a success.

BUT due to time constraints, consistency was not deepened.

→ Further works deal with this topic.

Evaluation of Outcomes

Educational view

- Professional competence has been gained since...
 - → the students became familiar with the microservices approach and successfully applied the newly acquired skills.
- Methodical expertise has been gained since...
 - → the students independently selected and successfully applied the Scrum Framework.
- Social skills and Self-competence has been gained since...
 - → the adoption of agile principles and living the 'Scrum values' required a high level of discipline and close cooperation of all project participants.
- → Goals of teaching were fully fulfilled (proved by the results).

- 1. Introduction
- 2. Educational Context
- 3. Core Application: Partner Management System
- 4. Microservice Architecture: Partner Management System
- 5. Evaluation of Outcomes
- 6. Conclusion

Conclusion

- Students have worked with regional companies and real-world tasks.
- Students have successfully designed and implemented a microservice architecture.
- Students had an enormous increase of professional competence, methodical expertise, social skills, and self-competence.
- Also great advantages for the companies

In summary, the presented model of teaching can be highly recommended.

Thank you for your attention!

Sources

[1] University of Applied Sciences Department of Computer Science and Arts Hannover. Study Guide Faculty IV, Dept. of Computer Science. https://f4.hs-hannover.de/fileadmin/media/doc/f4/Studium/Bachelor_Studiengaenge/BIN/Study_Guid e_Course_Catalogue_HsH_Computer_ Science_2014.pdf, 2014. Acc: 11.11.2018.

- [2] Martin Fowler and James Lewis. Microservices a definition of this new architectural term. https://martinfowler.com/articles/microservices.html, March 2014.
- [3] GDV. Die Anwendungsarchitektur der Versicherungswirtschaft Grundlagen und Prinzipien, 1999.
- [4] Dominik Schöner, Arne Koschel, and Felix Heine. Teaching microservices in the private cloud by example of the edudscloud. In Proc. 10th International Conferences on Advanced Service Computing (SERVICE COMPUTATION 2018), pages 36–39, Barcelona, Spain, 2018. IARIA / ThinkMind.

