Cheat sheet: Multiple Riemann integral

Viet Duc Nguyen Technical University of Berlin Analysis III

December 23, 2018

Contents

0	Preface	1
1	One dimensional integral	2
2	Multiple integral on compact cuboids	2
3	Multiple integral on \mathbb{R}^d	2
4	Linear, monotonic and translation-invariant functionals	3
5	Integration by substitution	4
6	Integral of semicontinuous functions	4
7	Volumes	4

0 Preface

A concise overview of the multiple integral theory for the Analysis III class at the Technical University in the winter term of 2018. Bullet points with a (\star) mean that a proof exists on the auxiliary proof sheet. This sheet is primarily written for me as a learning guide but may be useful for others. Feel free to use it.

1 One dimensional integral

• Let $f:[a,b]\times U$ be continuous and continuously partially differentiable in $U\subset\mathbb{R}^n$. Then,

$$\frac{d}{d\mathbf{u}} \int_{a}^{b} f(x, \mathbf{u}) dx = \int_{a}^{b} \frac{d}{d\mathbf{u}} f(x, \mathbf{u}) dx$$

This derivative is continuous.

In words, one may differentiate under the integral sign (\star) .

2 Multiple integral on compact cuboids

• Let $f:[a,b]\times U\to\mathbb{R}$ with $U\subset\mathbb{R}^n$ be continuous. Then, the function

$$(u_1,...,u_n) \mapsto \int_{a}^{a} f(x,u_1,...,u_n) dx$$

is continuous (\star) .

• Let Q be a compact cuboid $Q = [a_1, b_1] \times ... \times [a_n, b_n] \subset \mathbb{R}^d$. The **integral** of a continuous function $f: Q \to \mathbb{R}$ on a compact cuboid Q is defined as

$$\int_{Q} f(\mathbf{x}) d\mathbf{x} = \int_{a_{n}}^{b_{n}} \dots \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{1}}^{b_{1}} f(x_{1}, ..., x_{n}) dx_{1} \right) dx_{2} \right) \dots dx_{n}.$$

Such integral is also called *iterated integral*. The integral is well defined due to the previous theorem; integration of a continuous function with respect to a single variable yields a continuous function which can be further integrated.

• Theorem of Fubini: Let $f: Q \to \mathbb{R}$ be continuous. Then, one may change the order of integration (\star) .

3 Multiple integral on \mathbb{R}^d

We generalise the integral of a continuous functions f on the whole \mathbb{R}^d space.

• The **support** is defined as

$$\operatorname{supp} f = \overline{\{\mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) \neq 0\}}.$$

So, all x for which $f(x) \neq 0$ is contained in the support.

• The class of functions for which the integral is defined is given by the **space of** continuous functions with compact support:

 $C_{c} = \{f : f \text{ is continuous and supp} f \text{ is compact}\}.$

In \mathbb{R}^d , one can also write

 $C_{c} = \{f : f \text{ is continuous and supp} f \text{ is bounded}\}.$

In words, we do only integrate those functions which are <u>continuous on \mathbb{R}^d </u> and whose values are zero outside a compact cuboid.

• The **integral** for $f \in \mathcal{C}_{c}$ on the whole \mathbb{R}^{d} space is defined as:

$$\int_{\mathbb{R}^d} f(\mathbf{x}) d\mathbf{x} = \int_{Q} f(\mathbf{x}) d\mathbf{x},\tag{1}$$

where Q is a compact cuboid that contains the support of f.

4 Linear, monotonic and translation-invariant functionals

A functional maps a function to a real number. One example is the integral. The integral takes a function and assigns a real value to the function.

• The integral $\int_{\mathbb{R}^d} : \mathcal{C}_c \to \mathbb{R}$ defined in (1) is a linear, monotonic and translation-invariant functional. Translational invariance means

$$\forall \mathbf{x} \in \mathbb{R}^d : \int \theta_{\mathbf{x}} f(\mathbf{u}) d\mathbf{u} = \int f(\mathbf{u}) d\mathbf{u}$$

- Let J be a linear and monotonic functional. Let $(f_n)_{n\in\mathbb{N}}\subset\mathcal{C}_c(\mathbb{R}^d)$ such that there is a compact cuboid $Q\supset\operatorname{supp}(f_n)$ for all n and $f_n\to f\in\mathcal{C}_c(\mathbb{R}^d)$ uniformly. Then $\lim J(f_n)=J(f)$. (\star)
- Let J be a linear and translation-invariant function in \mathbb{R}^d . It holds

$$J(\Psi_{\frac{\epsilon}{2}}) = \frac{1}{2^d} J(\Phi_{\epsilon}).$$

• Every function $f \in \mathcal{C}_c(\mathbb{R}^d)$ can be uniformly approximated by

$$f - \sum_{k \in \mathbb{Z}^d} f(k\epsilon) \theta_{k\epsilon} \Psi_{\epsilon}.$$

• Every linear, monotonic and translation-invariant functional is unique up to a constant c. For every $f \in \mathcal{C}_c(\mathbb{R}^d)$ there exists a constant c such that J(f) = cI(f). It even holds that there is one c for all f such that J(f) = cI(f). This c can be chosen as $c = J(\Psi)$. (\star)

5 Integration by substitution

- J(Af) is a linear, monotonic and translation-invariant functional if $A \in GL(\mathbb{R}^d)$.
- Some linear substituion (all A must be invertible):
 - if A is orthogonal, $\int_{\mathbb{R}^d} f(Ax) dx = \int_{\mathbb{R}^d} f(x) dx$. (*)
 - If $A = \operatorname{diag}(a_1, ..., a_d)$ then $\int f(Ax)dx = \frac{1}{a_1 \cdot ... \cdot a_d} \int f(x)dx$.

6 Integral of semicontinuous functions

- Let A be non-degenerate. Then $\int f(Ax+b)dx = \frac{1}{|\det A|} \int f(x)dx$ for every $f \in \mathcal{H}^{\uparrow}(\mathbb{R}^d) \cup \mathcal{H}^{\downarrow}(\mathbb{R}^d)$.
- Theorem of Fubini for semicontinuous functions. Let $f \in \mathcal{H}^{\uparrow}(\mathbb{R}^d)$. The map $(x_{k+1},...,x_d) \mapsto f(x)$ is in $\mathcal{H}^{\uparrow}(\mathbb{R}^k)$. Then

$$F(x_{k+1},...,x_d) := \int_{\mathbb{R}^k} f(x)dx_1...dx_d.$$

F is well defined and can be integrated:

$$\int_{\mathbb{R}^{d-k}} F(x_{k+1}, ..., x_d) dx_{k+1} ... dx_d = \int_{\mathbb{R}^d} f(x) dx.$$

7 Volumes

- The volume of a compact set K is defined as $\operatorname{vol}(K) \coloneqq \int_K 1 d\mathbf{x} = \int_{\mathbb{R}^d} \chi_K(\mathbf{x}) d\mathbf{x}$.
- $\operatorname{vol}(K_1 \times K_2) = \operatorname{vol}K_1 \cdot \operatorname{vol}K_2$
- $\operatorname{vol}(AK + b) = |\det A| \operatorname{vol}(K)$. Be careful, it is not $|\det A|^{-1}$. (\star)
- $\operatorname{vol}(rK) = r^d \operatorname{vol} K. \ (\star)$
- Cavalieri's principle: Let K be compact and

$$Vol_d(K) = \int_{\mathbb{R}} Vol_{d-1} K_t dt$$

and
$$K_t := \{(x_1, ..., x_{d-1}) : (x_1, ..., x_{d-1}, t) \in K\}. (\star)$$

- Let $A \subset \mathbb{R}^{d-1}$ be compact and $f: A \to [0, \infty)$. The volume of $K = \{(x, y) : x \in A, y \leq f(x)\}$ is given by $\operatorname{vol}_d(K) = \int_A f(x) dx$.
- The volume of a general cylinder $B \times [0, h]$ is given by $\operatorname{vol}(Z) = \operatorname{vol}(B) \cdot h$.
- The volume of a parallelepiped $K = \{\sum \lambda_i a_i : \lambda_i \leq 1\}$ is given by $\operatorname{vol}(K) = |\det A|$.