ECE 161A: DFT Properties

Florian Meyer University of California, San Diego Email: flmeyer@ucsd.edu

Frequency Sampling: Pictorial Depiction

Suppose x[n] is of duration L, i.e. x[n] is nonzero for n = 0, 1, ..., L - 1.

The frequency sampling pictorially is shown below.

$$x[n] \leftrightarrow X(e^{j\omega}) = \sum_{n=0}^{L-1} x[n] e^{-j\omega n} \stackrel{N}{\underset{?}{\longleftarrow}} X_s(e^{j\omega}) = \frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \tilde{X}[k] \delta(\omega - \frac{2\pi}{N}k)$$
Duration L

Only N≥L

$$\tilde{X}[k] = X(e^{j\omega})|_{\omega = \frac{2\pi}{N}k, k=0,1,...,N-1}$$
DFS N

$$\tilde{x}[n] = \sum_{r=-\infty}^{\infty} x[n+rN] = x[((n))_N]$$

Note
$$X[k] = \tilde{X}[k], 0 \le k \le N - 1$$
.

Example

Figure 8.10 Illustration of the DFT. (a) Finite-length sequence x[n]. (b) Periodic sequence $\tilde{x}[n]$ formed from x[n] with period N = 5. (c) Fourier series coefficients $\tilde{x}[k]$ for $\tilde{x}[n]$. To emphasize that the Fourier series coefficients are samples of the Fourier transform, $|X(e^{i\omega})|$ is also shown. (d) DFT of x[n].

Example Cont'd

Figure 8.11 Illustration of the DFT. (a) Finite-length sequence x[n]. (b) Periodic sequence x[n] formed from x[n] with period N = 10. (c) DFT magnitude. (d) DFT phase. (x's indicate indeterminate values.)

Notation and Assumptions

$$x[n] \stackrel{N}{\longleftrightarrow} X[k]$$

Implied Assumption: Duration L of the signal x[n] is less than or equal to

N, i.e. $L \leq N$.

N is a choice of the user.

x[n] has been padded with N-L zeros, i.e. x[n]=0,L,..,N-1. This is referred to as zero padding.

Notation: $X[k] = \mathcal{DFT}(x[n])$ and $x[n] = \mathcal{IDFT}(X[k])$.

DFT Properties

 TABLE 8.2
 SUMMARY OF PROPERTIES OF THE DFT

Finite-Length Sequence (Length N)	N-point DFT (Length N)
1. x[n]	X[k]
2. $x_1[n], x_2[n]$	$X_1[k], X_2[k]$
3. $ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
4. X[n]	$Nx[((-k))_N]$
$5. x[((n-m))_N]$	$W_N^{km}X[k]$
6. $W_N^{-\ell n}x[n]$	$X[((k-\ell))_N]$
7. $\sum_{m=0}^{N-1} x_1[m]x_2[((n-m))_N]$	$X_1[k]X_2[k]$
8. $x_1[n]x_2[n]$	$\frac{1}{N} \sum_{\ell=0}^{N-1} X_1[\ell] X_2[((k-\ell))_N]$
9. <i>x</i> *[<i>n</i>]	$X^*[((-k))_N]$
10. $x^*[((-n))_N]$	$X^*[k]$

DFT Properties Cont'd

Table 8.2 (continued) SUMMARY OF PROPERTIES OF THE DFT

11.
$$\mathcal{R}e\{x[n]\}$$
 $X_{\text{ep}}[k] = \frac{1}{2}\{X[((k))_N] + X^*[((-k))_N]\}$

12. $j\mathcal{I}m\{x[n]\}$ $X_{\text{op}}[k] = \frac{1}{2}\{X[((k))_N] - X^*[((-k))_N]\}$

13. $x_{\text{ep}}[n] = \frac{1}{2}\{x[n] + x^*[((-n))_N]\}$ $\mathcal{R}e\{X[k]\}$

14. $x_{\text{op}}[n] = \frac{1}{2}\{x[n] - x^*[((-n))_N]\}$ $j\mathcal{I}m\{X[k]\}$

Properties 15–17 apply only when $x[n]$ is real.

15. Symmetry properties
$$\begin{cases} X[k] = X^*[((-k))_N] \\ \mathcal{R}e\{X[k]\} = \mathcal{R}e\{X[((-k))_N]\} \\ \mathcal{I}m\{X[k]\} = -\mathcal{I}m\{X[((-k))_N]\} \\ |X[k]| = |X[((-k))_N]\} \\ |X[k]| = -\mathcal{I}\{X[((-k))_N]\} \end{cases}$$

16. $x_{\text{ep}}[n] = \frac{1}{2}\{x[n] + x[((-n))_N]\}$ $\mathcal{R}e\{X[k]\}$

17. $x_{\text{op}}[n] = \frac{1}{2}\{x[n] - x[((-n))_N]\}$ $j\mathcal{I}m\{X[k]\}$

 $jIm\{X[k]\}$

DFT Properties: Linearity

$$x_1[n] \stackrel{N}{\longleftrightarrow} X_1[k]$$
 and $x_2[n] \stackrel{N}{\longleftrightarrow} X_2[k]$.

Then

$$x[n] = a_1 x_1[n] + a_2 x_2[n] \stackrel{N}{\longleftrightarrow} X[k] = a_1 X_1[k] + a_2 X_2[k]$$

Note that even if $x_1[n]$ and $x_2[n]$ are of different duration, they are zero padded and made to be of the same length N.

Reminder: The DFT length N is a parameter of choice.

Circular Shift

Linear shift is not meaningful in the context of the DFT. Why?

The DFT and IDFT involve sums from 0 to N-1. If we shift a sequence x[n], then some potentially non-zero samples will go outside the interval 0 to N-1. This make it difficult to get any meaningful results between the DFT of the original sequence x[n] and the shifted sequence x[n-m].

The circular shift is a linear shift of the periodic signal constructed using $x[n], 0 \le n \le N-1$, as one period, i.e. $\tilde{x}[n] = x[((n))_N]$.

Circular Shift Property:

$$x[((n-m))_N] \stackrel{N}{\longleftrightarrow} W_N^{mk}X[k]$$

Proof: Follows from the DFS and DFT connection

Circular Shift = Linear Shift of Periodic extension

Figure 8.12 Circular shift of a finite-length sequence; i.e., the effect in the time domain of multiplying the DFT of the sequence by a linear-phase factor.

Circular Shift: Example 1

Circular Shift: Example 2

Circular Convolution

$$x_1[n] \stackrel{N}{\longleftrightarrow} X_1[k]$$
 and $x_2[n] \stackrel{N}{\longleftrightarrow} X_2[k]$.

Then

$$x[n] = \sum_{k=0}^{N-1} x_1[m]x_2[((n-m))_N] = x_1[n] \otimes x_2[n] \stackrel{N}{\longleftrightarrow} X[k] = X_1[k]X_2[k].$$

Proof:

$$X[k] = \mathcal{DFT}(x[n]) = \mathcal{DFT}\left(\sum_{m=0}^{N-1} x_1[m]x_2[((n-m))_N]\right)$$

$$\stackrel{Linearity}{=} \sum_{m=0}^{N-1} x_1[m]\mathcal{DFT}(x_2[((n-m))_N]) \stackrel{Circular}{=} \stackrel{Shift}{=} \sum_{m=0}^{N-1} x_1[m]W_N^{mk}X_2[k]$$

$$= \left(\sum_{m=0}^{N-1} x_1[m]W_N^{mk}\right) X_2[k] = X_1[k]X_2[k]$$

Circular Convolution $x[n] = \sum_{m=0}^{N-1} x_1[m]x_2[((n-m))_N]$: Example

Linear Convolution: $x[n] = \{4, 7, 9, 6, 3, 1, 0, 0..\}$ with x[n] = 0, n < 0.

$x_2[((-n))_N]$ Operation

Circular Convolution: Example with N = 4

Circular Convolution: Example with N = 8

