⑫特 許 公 報(B2)

平3-42968

Sint. Cl. 5

識別記号

庁内整理番号

❷❸公告 平成3年(1991)6月28日

B 21 D 7/08 11/20

7011-4E 7059-4E E Α

発明の数 1 (全6頁)

秀 —

❷発明の名称 形材の圧延曲げ加工法

判 平1-15369

②特 頤 昭57-183670 **多**公 開 昭59-73125

28出 願 昭57(1982)10月21日

@昭59(1984) 4月25日

@発 明 客 Ħ 上 碩 哉

神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作

個発 明 高崎 光 弘

所生産技術研究所内 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作 所生産技術研究所内

の出 願 人 株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

四代 理 人 弁理士 小川

膀男 外1名 鉄也

審判官 澁 井

審判の合議体 審判長 風 間 图参考文献

宥 審判官 影 山 特朗 昭53-64664 (JP, A) 特開 昭57-168727 (JP, A)

特公 昭49-46467 (JP, B1)

実公 昭52-16276 (JP, Y2)

1

切特許請求の範囲

1 複数の辺から成る形材の一辺を回転する一対 のロールで前記一辺を幅方向の一端部から他端部 に向かつて肉厚が漸減する圧下率にて圧延すると 他の一対のロールで前記一辺における最大圧下率 とほぼ等しい圧下率にて均一に加圧しながら送り 出すことにより形状全体を前記一辺の幅方向の肉 厚の厚い端部側を内側にして円弧状に曲げること を特徴とする形状の圧延曲げ加工法。

発明の詳細な説明

〔発明の利用分野〕

本発明は、形材の圧延曲げ加工法に係り、特に 薄肉形材を座屈させることなく、非常に小さい曲 に関する。

〔従来技術〕

従来、形材の曲げ加工は引つ張り曲げ加工法、 あるいはアングルベンダによって行なわれてい

前記引つ張り曲げ加工法は、第1図に示すよう に、形材である材料1の両端部をチャック4,4 で把持し、材料1にあらかじめ張力を加えた状態 2

で型3に巻き付け、曲げ加工するようにしている が、この方法で小さい曲率半径の曲げ加工を行う 場合、材料1に座屈を発生させないようにするた めには、大きな張力を付加する必要があつた。し 同時に前記他端部において接する他辺を回転する 5 かし、張力を大きくすると、材料 1 に大きな伸び が要求されることになり、曲げの外縁側が伸びの 限界を越えて破断したり、材料全体の伸びに伴っ て断面形状が縮んだり、倒れたりして、所要の曲 げ加工ができない欠点があった。

> なお、第1図中、符号2は曲げ加工された製品 10

一方、アングルベンダは第2図、第3図に示す ように、巻き付けロール5、曲げロール6、変形 拘束ロール7、クランク治具8およびベース9を 率半径に加工するに好適な形材の圧延曲げ加工法 15 用いて行うようになつている。そして、形材であ る材料1の一端部をクランプ治具8で把持し、ペ ース9を介して巻き付けロール5をか回転させて 材料 1 に張力を加えると同時に、曲げロール6で 曲げモーメントを付加し、また断面形状の変化を 20 抑制するために、変形拘束ロール7で拘束しなが ら曲げ加工を行うものであるが、曲げの肉径側に 座屈などが発生し易いため、薄肉の材料の曲げ加 工ができないという欠点があつた。

また、前記いずれの曲げ加工法においても、曲 率半径に応じた型または型として作用する巻き付 けロール等を用意する必要があり、非量産品等の 加工の際には型または巻き付けロール等のコスト が高くなる欠点もあつた。

なお、第2図および第3図中において、符号2 は曲げ加工された製品を示す。

そして、前記曲げ加工法で加工不能な小径物ま たは薄肉材の場合、材料を小片に分割して円弧形 に曲げ加工後、溶接して円形に組み合わせるか、 10 あるいはいわゆる火造り手曲げといつた熱間加工 法によるほかはなく、非常に多くの工数を要して いた。

(発明の目的)

くし、各種の薄肉形材をも座屈や断面形状の縮小 を生じることなく曲げ加工でき、しかも曲率半径 が異なるごとに別の型や巻き付けロール等を用い ることなく、任意の曲率半径に簡単に曲げ加工を る。

(発明の概要)

本発明は、複数の辺から成る形材の一辺を回転 する―対のロールで一辺を幅方向の一端部から他 端部に向かつて内厚が漸減する圧下率にて圧延す 25 ると同時に他端部において接する他辺を回転する 他の一対のロールで一辺における最大圧下率とほ ぼ等しい圧下率にて均一に加圧しながら送り出す ことにより形状全体を一辺の幅方向の肉厚の厚い 端部側を内側にして円弧状に曲げることに特徴を 30 有するもので、この構成により前記目的を達成す ることができるものである。

[発明の実施例]

以下、本発明を図面に示す実施例に基づいて説 明する。

第4図~第8図は、本発明の第1の実施例を示 す。

この第1の実施例では、材料には第4図に示す ように、フランジ部分17aとこれより寸法が少 を用い、フランジ部分17aを内側にして円形に 曲げ加工するようにしている。

その曲げ加工設備10は、第5図に示すよう に、第1のロール11と、その上方の一端部側に

設置された第2のロール12と、第1のロール1 1の一側部がわに設置された第3のロール13と を具備している。前記第2のロール12は軸心が 傾斜されていて第1、第2のロール11,12間 5 には勾配状の圧延すきまが形成され、前記第3の ロール13は第1のロール11と平行に設置され ている第1、第3のロール11,13間には上下 方向にわたつて均等な圧延すきまが形成されてい

そして、前記曲げ加工設備10の第1、第2の ロール11,12間にはアングル17のフランジ 部分17aを挿入し、第1、第3のロール11, 13間にはアングル17のウエブ部分17bを挿 入し、第1、第2のロール11,12間で前配フ 本発明の目的は、前記した従来技術の欠点をな 15 ランジ部分 1 7 a をその幅方向の一端部から他端 部であるウェブ部分17b側の端部に向かつて肉 厚を漸減する勾配状に圧延し、第1、第3のロー ル11,13間で前記ウエブ部分17bを均等の 肉厚に圧延するとともに、第1、第2、第3のロ 行い得る形材の圧延曲げ加工法を提供するにあ 20 ール11, 12, 13を回転させてアングル17 を一方向に送り込む。

その結果、アングル17はフランジ部分17a の肉厚の厚い端部を内側にして円弧状に曲げられ てい行き、やがて円形に曲げ加工される。

なお、材料の幅方向の一端部から他端部に向か って肉厚を漸減する勾配状に圧延することによっ て、材料が肉厚の厚い端部を内側として円弧状に 曲がつて行くことは、本発明者らによつて既に実 証されている。

また、材料を曲げるときの曲率半径尺は、材料 の圧下率によって決定される。

ここに、圧下率Puとは材料の圧延前の厚さを ti、圧延後の厚さをもとするとき、

$$P_{u} = \frac{(t_1 - t_2)}{t_1} \times 100(\%)$$

で表わされる。

この第1の実施例に基づいて、第6図に示す寸 法のアングル17のフランジ部分17aを第7図 Bに示すごとく圧下率Puに分布を持たせ、かつ し短いウェブ部分17bとからなるアングル17 40 アングル17のウェブ部分17bを第7図Cに示 すように、フランジ部分aにおける圧下率の最大 值(最大圧下率)とほぼ等しい圧下率Puにて等 分布で圧延することにより、アングル17全体を 第7図Aに示す曲率半径Rの円形に曲げ加工する

35

6

ことができ、第8図にその製品18を示す。

この第8図に示す製品18は、リング状のウェ プ186の内側に、リング状のフランジ18aが 一体に付設され、全体として内側に中空のフラン ジを有するリングとされている。

次に、第9図~第13図は、本発明の第2の実 施例を示す。

この第2の実施例では、材料としていわゆる2 形断面材19(以下、2形材という)を用いるよ ように、第1、第2のウェブ部分19a, 19b とこれらを結ぶフランジ部分19℃とを有し、こ の第2の実施例では第1、第2のウェブ部分19 a,19bを円筒形に曲げるとともに、同一中心 上に2段に配置しかつリング状のフランジで結合 15 実施例を示す。 された筒形に曲げ加工するようにしている。

また、曲げ加工設備10は第10図に示すよう に、第1のロール11と、その上方の一端部から 第3のロール13の上方にわたつて設置された第 2のロール12と、第1のロール11の一側部が 20 わに設置された第3のロール13とを備えてい る。前配第2のロール12は軸心が傾斜されてい る第1、第2のロール**11,12**間には勾配状の 圧延すきまが形成され、前記第3のロール13は 第3のロール11,13間には上下方向にわたつ て平行な圧延すきまを有している。

而して、前記曲げ加工設備10の第1、第2の ロール11,12間には乙形材19のフランジ部 3間にはZ形材19の第2のウェブ部分19bを 挿入し、第1、第2のロール11, 12間で乙形 材19の1辺としての前記フランジ部分19c を、その一端部である第1のウエブ部分19 a 側 の端部から、他端部である第2のウェブ19b側 35 の端部に向かつて肉厚を漸減する勾配状に圧延 し、第1、第3のロール11,13間で第2のウ エブ部分19bを均等厚さに圧延し、かつ第1、 第2、第3のロール11,12,13を回転させ て乙形材19を一方向に送り込む。

これにより、2形材19はフランジ部分19c の肉厚の厚い端部を内側にして円弧状に曲げら れ、やがて円形に曲げ加工される。

この第2の実施例に基づいて、第11図に示す

ごとき寸法の乙形材19のフランジ部分19cを 第12図Bに示すように、圧下率Puに分布を持 たせ、また2形材19の第2のウエブ部分19b を第12図Cに示すようにフランジ部分19cに 5 おける最大圧下率とほぼ等しい圧下率Puにて等 分布で圧延することによつて、2形材19全体を 第12図Aに示す曲率半径Rの円形に曲げ加工す ることができ、その製品20を第13図に示す。

この第13図に示す製品20は、小径で筒形の うにしている。このZ形材19は、第9図に示す 10 第1のウェブ20aと大径で筒形の第2のウェブ 20bとが同一中心線上に2段に配置され、かつ リング伏のフランジ20cで結合された簡形に加 工されている。

更に、第14図~第18図は、本発明の第3の

この第3の実施例では、材料には第14図に示 すようなチャンネル21を用い、その第1、第2 のフランジ部分21a,21bを内側にして筒形 に曲げ加工するようにしている。

また、曲げ加工設備10は、第15図に示すよ うに、第1のロール11と、これの上方の一端部 側に設置された第2のール12と、第1のロール 11の一側部がわに設置された第3のロール13 と、第1のロール11の下方の一端部側に設置さ 第1のロール11と平行に設置されていて第1、25 れた第4のロール14とを配備している。そし て、第2のロール12は軸心を傾斜させて設置さ れていて第1、第2のロール11, 12間に勾配 状の圧延すきまが形成され、第1第3のロール1 1, 13間には上下方向に均等な圧延すきまが形 分19cを挿入し、第1、第3のロール11, 1 30 成され、さらに第4図のロール 14は外周面がテ ーパ状に形成されていて第1、第4のロール1 1, 14間には前記第1、第2のロール11, 1 2間に形成された圧延すきまと対称をなす勾配状 の圧延すきまが形状されている。

> 而して、前記曲げ加工設備10の第1、第2ロ ール11,12間にはチャンネル21の第1のフ ランジ部分21a挿入し、第1、第3のロール1 1, 13間にはウェブ部分21cを挿入し、第 1、第4のロール11, 14間には第2フランジ 40 21 bを挿入し、チャンネル21の2辺に当たる 第1、第2のフランジ部分21a, 21bを同時 に、一端部からウェブ部分21c側の他端部に向 かつて肉厚を漸減する勾配状に圧延するととも に、ウェブ部分21cを均等な厚さに圧延し、し

8

かも第1、第2、第3、第4のロール11, 1 2, 13, 14を回転させ、チャンネル21を一 方向に送り込む。

これにより、チャンネル21はウエブ部分21 部分21 a, 21 b の端部を内側として逐次円弧 形に曲げられ、やがて円形に曲げ加工される。

この第3の実施例に基づいて、第16図に示す ごとき寸法のチヤンネル21の第1、第2のフラ ンジ部分21a, 21bを第17図B, Cに示す 10 ように、圧下率Puに分布を持たせて圧延し、か つウエブ部分21cを第17図Dに示すように、 フランジ部分21a,21bにおける最大圧下率 とほぼ等しい圧下率Puにて等分布で圧延するこ す曲率半径Rの円形に曲げ加工することができ、 第18図にその製品23を示す。

この第18図に示す製品23は、リング状に形 成された第1、第2のフランジ部分23a,23 部分23 cで連結された形状に曲げ加工されてい

各実施例とも形材の一辺をその幅方向の一端部 から他端部に向かつて肉厚が漸減する圧下率にて おける最大圧下率とほば等しい圧下率で加圧する ことにより、無理な力を加えることによつて発生 する材料の座屈や加工後の変形等のトラブルを未 然に防止でき、良品質の製品を得ることができ る。

〔発明の効果〕

以上説明した本発明によれば、形材の一辺の幅 方向の一端部から他端部にて向かつて肉厚を漸減 させる圧下率て圧延すると同じに他端部にて接す る他辺は前配一辺における最大圧下率とほぼ等し 35 8, 20, 23 ……製品。

い圧下率で加圧するので、肉厚が薄い形材をも座 屈や形状変化等のトラブルを起こすことなく簡単 に曲げ加工し得る効果があり、しかも圧下率を調 整することにより任意の曲率半径に曲げ加工し得 ${f c}$ の反対側の、肉厚が厚い第1、第2のフランジ ${f 5}$ るので必要曲率半径に応じた型、または型として 作用する巻付ロール等が不要となり、設備費を大 幅に節減できる効果があり、極めて小径の製品を も得られる効果もある。

図面の簡単な説明

第1図は従来技術の一例を示す図、第2図およ び第3図は従来技術の他の例を示す正面図および 平面図である。第4図~第8図は本発明の第1の 実施例を示すもので、その第4図は材料の形状を 示す斜視図、第5図は曲げ加工設備とその作用状 とにより、チャンネル21全体を第17図Aに示 15 態を示す図、第6図は材料の寸法入り拡大断面 図、第7図は材料の加工状態を示す図、第8図は 製品を示す斜視図である。第9図~第13図は本 発明の第2の実施例を示すもので、その第9図は 材料の形状を示す斜視図、第10図は曲げ加工設 bを内側とし、これらが筒形に形成されたウエブ 20 備とその作用状態を示す図、第11図は材料の寸 法入り拡大断面図、第12図は材料の加工状態を 示す図、第13図は製品を示す斜視図である。第 14図〜第18図は本発明の第3の実施例を示す もので、その第14図は材料の形状を示す斜視 圧延すると同じに他端部に接する他の辺を一辺に 25 図、第15図は曲げ加工設備とその作用状態を示 す図、第16図は材料の寸法入り拡大断面図、第 17図は材料の加工状態を示す図、第18図は製 品を示す斜視図である。

> Pu·····材料である形材に対する圧下率、R··· 30 …曲率半径、10……曲げ加工設備、11,1 2, 13, 14……曲げ加工設備を構成する第 1、第2、第3、第4のロール、15,17…… 形材であるアングル、19……形材である乙形 材、21……形材であるチャンネル、16,1

第7図

第3図

第8図

第9図

第10図

30 20 10 0 丘下华Pu(%)

性(MM)

. 2 1c (23c)

21(23)

PATENT ABSTRACTS OF JAPAN

3-4=958

(11)Publication number:

59-073125

(43)Date of publication of application: 25.04.1984

(51)Int.CL

B21D 7/08

(21)Application number: 57-183670

(71)Applicant: HITACHI LTD

(22)Date of filing:

21.10.1982

(72)Inventor: MURAKAMI HIROYA

TAKASAKI MITSUHIRO

(54) ROLLING AND BENDING METHOD OF SHAPE MATERIAL

(57) Abstract:

PURPOSE: To bend a thin-walled shape material to an optional radius of curvature without buckling the same by rolling the material to a grade shape wherein the wall thickness decreases gradually from one end toward the other end thereby bending naturally the material.

CONSTITUTION: A flange part 15a which is one side of, for example, an angle 15, is sandwiched between the roll 11 and a roll 12 having an inclined axial center of a bending installation 10. The flange part 15a is rolled by such rolls 11, 12 to a grade shape wherein the wall thickness decreases gradually from one end in the transverse direction, i.e. the end on a web 15b side toward the other end. The angle 15 is thus bent to an arc shape with the thick walled end faced inward, whereby a product 16 having an annular flange 16a united to one body on the outside of an annular web 16b is obtd.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

