

SEQUENCE LISTING

<110> Le, Junming
Vilcek, Jan
Daddona, Peter
Ghazayeb, John
Knight, David M.
Siegel, Scott

COPY

<120> Anti-TNF Antibodies and Peptides of
Human Tumor Necrosis Factor

<130> 0975.1005-013

<150> U.S. 09/756,398
<151> 2001-01-08

<150> U.S. 09/133,119
<151> 1998-08-12

<150> U.S. 08/570,674
<151> 1995-12-11

<150> U.S. 08/324,799
<151> 1994-10-18

<150> U.S. 08/192,102
<151> 1994-02-04

<150> U.S. 08/192,861
<151> 1994-02-04

<150> U.S. 08/192,093
<151> 1994-02-04

<150> U.S. 08/010,406
<151> 1993-01-29

<150> U.S. 08/013,413
<151> 1993-02-02

<150> U.S. 07/943,852
<151> 1992-09-11

<150> U.S. 07/853,606
<151> 1992-03-18

<150> U.S. 07/670,827
<151> 1991-03-18

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 157
<212> PRT

<213> Homo sapiens

```

<400> 1
Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val
      1           5           10          15
Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg
      20          25          30
Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu
      35          40          45
Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe
      50          55          60
Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile
      65          70          75          80
Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala
      85          90          95
Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys
      100         105         110

Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys
      115         120         125
Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe
      130         135         140
Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu
      145         150         155

```

<210> 2
<211> 321
<212> DNA
<213> Mus Balb/c

<220>
<221> CDS
<222> (1)...(321)

```

<400> 2
gac atc ttg ctg act cag tct cca gcc atc ctg tct gtg agt cca gga      48
Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
   1           5           10           15

gaa aga gtc agt ttc tcc tgc agg gcc agt cag ttc gtt ggc tca agc      96
Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
   20          25          30

atc cac tgg tat cag caa aga aca aat ggt tct cca agg ctt ctc ata     144
Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
   35          40          45

aag tat gct tct gag tct atg tct ggg atc cct tcc agg ttt agt ggc     192
Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
   50          55          60

agt gga tca ggg aca gat ttt act ctt agc atc aac act gtg gag tct     240
Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser
   65          70          75          80

gaa gat att gca gat tat tac tgt caa caa agt cat agc tgg cca ttc     288
Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe
   85          90          95

```

acg ttc ggc tcg ggg aca aat ttg gaa gta aaa
 Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys
 100 105

<210> 3
 <211> 107
 <212> PRT
 <213> Mus Balb/c

<400> 3
 Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
 1 5 10 15
 Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
 20 25 30
 Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
 35 40 45
 Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
 50 55 60
 Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser
 65 70 75 80
 Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe
 85 90 95
 Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys
 100 105

<210> 4
 <211> 357
 <212> DNA
 <213> Mus Balb/c

<220>
 <221> CDS
 <222> (1)...(357)

<400> 4
 gaa gtg aag ctt gag gag tct gga gga ggc ttg gtg caa cct gga gga 48
 Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15

tcc atg aaa ctc tcc tgt gtt gcc tct gga ttc att ttc agt aac cac 96
 Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His
 20 25 30

tgg atg aac tgg gtc cgc cag tct cca gag aag ggg ctt gag tgg gtt 144
 Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val
 35 40 45

gct gaa att aga tca aaa tct att aat tct gca aca cat tat gcg gag 192
 Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu
 50 55 60

tct gtg aaa ggg agg ttc acc atc tca aga gat gat tcc aaa agt gct 240
 Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala
 65 70 75 80

gtc tac ctg caa atg acc gac tta aga act gaa gac act ggc gtt tat 288
 Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr
 85 90 95

```

tac tgt tcc agg aat tac tac ggt agt acc tac gac tac tgg ggc caa 336
Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln
          100           105           110

```

ggc acc act ctc aca gtc tcc 357
Gly Thr Thr Leu Thr Val Ser
115

<210> 5
<211> 119
<212> PRT
<213> Mus Balb/c

```

<400> 5
Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
   1           5           10          15
Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His
   20          25          30
Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val
   35          40          45
Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu
   50          55          60
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala
   65          70          75          80
Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr
   85          90          95
Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln
  100         105         110
Gly Thr Thr Leu Thr Val Ser
  115

```

<210> 6
<211> 8
<212> PRT
<213> *Homo sapiens*

<400> 6
Gly Thr Leu Val Thr Val Ser Ser
1 5

<210> 7
<211> 7
<212> PRT
<213> *Homo sapiens*

<400> 7
Gly Thr Lys Leu Glu Ile Lys
1 5

<210> 8

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 8
cctggataacc tgtgaaaaga

20

<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 9
cctgggtaccc tagtcaccgt ctcctca

27

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 10
aatagatatc tccttcaaca cctgcaa

27

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 11
atcgggacaa agttggaaat a

21

<210> 12
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 12
ggcggtctgg taccgg

16

<210> 13
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 13
gtcaacaaca tagtcatca

19

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 14
cacaggtgtg tccccaaaggaa aaa

23

<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 15
aatctgggtt aggacaaa

18

<210> 16
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 16
agtgtgtgtc cccaaagg

17

<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 17
cacagctgcc cgcccaggta gcat 24
<210> 18
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 18
gtcgccaggta ctccctt 17
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 19
atcgacgtg gacgtgcaga 20