RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFTEN DEUTSCHE POST LEHRSTUHL FÜR OPTIMIERUNG VON DISTRIBUTIONSNETZWERKEN Universitätsprofessor Dr.rer.nat.habil. Hans-Jürgen Sebastian

N	Nr.:								
N	Name:								
Ţ	Vorname:								
N	Matrikelnummer:								
S	Studiengang / Fa	chrichtur	ng:						
H	inweise:								
	• Füllen Sie die Fe	elder oben	vollständ	lig aus ur	nd untersc	hreiben S	ie die Kla	usur.	
	• Sämtliche Einträ Bleistift!) und in						enechten S	chreibute	nsilien (Kein
	• Die Antworten sleere Blätter.	sind in die	esem Kla	usurexem	ıplar einzı	ıtragen. l	Bei Bedar	f erhalten	Sie weitere
	• Es sind keine Hi Taschenrechnern						esondere	ist die Be	nutzung von
	• Handys dürfen r	nicht zur K	Klausur m	itgebrach	t werden.				
	• Die Höchstpunk	tzahl betra	ägt 90 Pu	nkte; die	Bearbeitı	ıngszeit b	eträgt 90	Minuten.	
	• Beantworten Sie	die Aufga	ben mög	lichst stic	hpunktar	tig.			
	• Überprüfen Sie	die Klausu	r auf Vol	lständigk	eit (Seiten	1 bis 9)!			
	it meiner Unterschrese zu akzeptieren.	ift bestäti	ge ich, d	ie obigen	Hinweise	zur Ken	ntnis gene	ommen zu	haben und
J	Jnterschrift:								
	Aufgabe	Fragen	A 1	A2	A3	A4	A5	\sum_{i}	Note

erreichbare Punkte

erreichte Punkte

Aufgabenteil (60 Punkte)

Aufgabe 1: Schnittebenenverfahren von Gomory (12 Punkte)

Gegeben ist das folgende ganzzahlige lineare Optimierungsproblem:

$$\max z = 4x_1 + 4x_2$$

s.d.
$$-2x_1 + x_2 \le 2$$
$$2x_1 + x_2 \le 5$$
$$x_1, x_2 \in \mathbb{N}_0$$

Die Anwendung des Simplex-Algorithmus auf dessen LP-Relaxation führt zu folgendem optimalen Endtableau:

	x_1	x_2	s_1	s_2	b_i^*
x_2	0	1	1/2	1/2	7/2
x_1	1	0	-1/4	1/4	3/4
Δz_j	0	0	1	3	17

Da die optimale Lösung der LP-Relaxation für das ursprüngliche Problem nicht zulässig ist, soll diese mit Hilfe des Schnittebenenverfahrens von Gomory bestimmt werden.

(a) Stellen Sie die dafür notwendige Gomory-Restriktion für die Basisvariable x_2 auf. (3 Punkte)

(b) Erweitern Sie obiges Endtableau des primalen Simplex-Algorithmus um die in (a) aufgestellte Gomory-Restriktion und führen Sie einen dualen Simplex-Schritt durch. (5 Punkte)

	b_i^*
Δz_j	

	b_i^*
Δz_j	

(c) Ist die in Aufgabenteil (b) bestimmte Lösung zulässig für das ursprüngliche Problem? Begründen Sie Ihre Antwort! (1 Punkt)

(d) Zeichnen Sie die zu der in Aufgabenteil (a) aufgestellten Gomory-Restriktion gehörende Schnittebene in die unten stehende Grafik ein. (3 Punkte)

Aufgabe 2: FiFo-Algorithmus (10 Punkte)

Gegeben ist der folgende Digraph mit 5 Knoten:

Führen Sie für obigen Digraphen den Fi
Fo-Algorithmus zur Bestimmung der kürzesten Wegen von Knoten S zu
 den Knoten 1, 2, 3 und 4 durch.

Hinweis: Falls während einer Iteration mehrere Knoten in die Warteschlange Q eingefügt werden, so fügen Sie sie aufsteigend nach Knotennummer sortiert ein.

(a) Tragen Sie hierfür in der untenstehenden Tabelle für jede Iteration des FiFo-Algorithmus den ausgewählten Knoten, die Warteschlange Q, sowie die Labels $d(1), \ldots, d(4)$ ein. (9 Punkte)

Iteration		Q	d(1)	d(2)	d(3)	d(4)
Initialisierung	-	S	∞	∞	∞	∞

(b) Geben Sie die ermittelten kürzesten Wege von Knoten S zu den Knoten 1, 2, 3 und 4 sowie deren Länge explizit an. (1 Punkt)

Aufgabe 3: Transportproblem (15 Punkte)

Gegeben ist ein Transportproblem mit folgenden Angebots- und Nachfragemengen

Angebotsmengen								
a_1	a_2	a_3	a_4					
50	20	40	19					

	Nachfragemengen									
b_1 b_2 b_3 b_4 b_5										
	15	15	25	20	17	30				

sowie folgender Kostenmatrix:

c_{ij}	B_1	B_2	B_3	B_4	B_5	B_6
A_1	2	4	3	4	2	2
A_2	4	6	5	5	3	4
A_3	8	8	7	4	1	4
A_4	5	4	3	7	2	1

(a) Bestimmen Sie mit Hilfe der Greedy-Heuristik eine zulässige Startlösung für das obige Transportproblem. (2 Punkte)

Greedy	B_1	B_2	B_3	B_4	B_5	B_6	a_i
A_1							50
A_2							20
A_3							40
A_4							12
b_j	15	15	25	20	17	30	

(b) Verwenden Sie die obige Lösung als Ausgangsbasislösung für die MODI-Methode. Bestimmen Sie dazu in der folgenden Tabelle die Werte der dualen Entscheidungsvariablen u_i und v_j für die Basislösung aus (a). (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	B_6	u_i
A_1	2	4	3	4	2	2	0
A_2	4	6	5	5	3	4	
A_3	8	8	7	4	1	4	
A_4	5	4	3	7	2	1	
v_j	_						

(c) Überprüfen Sie die so bestimmte duale Lösung auf Zulässigkeit, indem Sie die Werte der Δz_{ij} bestimmen. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	B_6	u_i
A_1							0
A_2							
A_3							
A_4							
v_j							

(d) Bestimmen Sie die nächste Basislösung und tragen Sie diese in die nachfolgende Tabelle ein. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	B_6	a_i
A_1							50
A_2							20
A_3							40
A_4							12
b_j	15	15	25	20	17	30	

(e) Führen Sie nun einen weiteren Schritt der MODI-Methode durch. Vervollständigen Sie dazu in der folgenden Tabelle die Werte der u_i und der v_j für die Basislösung aus (d). (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	B_6	u_i
A_1	2	4	3	4	2	2	0
A_2	4	6	5	5	3	4	
A_3	8	8	7	4	1	4	
A_4	5	4	3	7	2	1	
v_j							

(f) Bestimmen Sie die Werte der $\Delta z_{ij}.$ (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	B_6	u_i
A_1							0
A_2							
A_3							
A_4							
v_j			-				

- (g) Ist die in Aufgabenteil (d) ermittelte Basislösung optimal? Begründen Sie Ihre Antwort! (1 Punkt)
- (h) Geben Sie eine alternative optimale Lösung an. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	B_6	a_i
A_1							50
A_2							20
A_3							40
A_4							12
b_j	15	15	25	20	17	30	

Aufgabe 4: Savings-Verfahren (11 Punkte)

Ein Entsorgungsunternehmen muss täglich Touren zur Abholung von Wertstoffcontainern bei industriellen Kunden einer Region disponieren. Es verfügt dazu über einen Fuhrpark von LKWs mit einer Kapazität von K=10 Containern.

Außerdem ist dem Entsorgungsunternehmen das Wertstoffaufkommen der einzelnen Kunden bekannt:

Kunde	A	B	C	D	$\mid E \mid$	F	G
Anzahl Container	3	4	3	1	1	2	3

Kunde	Container [ME]
A	3
B	4
C	3
D	1
E	1
F	2
G	3

Entfernung	A	B	C	D	E	F	G
0	30	50	50	20	100	55	60
A		75	30	50	70	45	90
В			100	70	145	30	50
C				30	90	75	70
D					120	75	40
E						115	160
F							80

Zur Ermittlung von möglichst guten Abholtouren möchte das Entsorgungsunternehmen das Savings-Verfahren anwenden.

(a) Bestimmen Sie die Savings s_{BC} , s_{BE} sowie s_{EF} . (3 Punkte)

$$s_{BC} = s_{BE} = s_{EF} =$$

(b) Bestimmen Sie einen Tourenplan mittels des Savings-Verfahrens und geben Sie diesen explizit an. Benutzen Sie dazu die im Folgenden angegebenen, um die aus Aufgabenteil (a) ergänzten, Savings. (8 Punkte)

$$s_{AB} = 5$$
 $s_{AC} = 50$ $s_{AD} = 0$ $s_{AE} = 60$ $s_{AF} = 40$ $s_{AG} = 0$ $s_{BC} = \dots$ $s_{BD} = 0$ $s_{BE} = \dots$ $s_{BF} = 75$ $s_{BG} = 60$ $s_{CD} = 40$ $s_{CE} = 60$ $s_{CF} = 30$ $s_{CG} = 40$ $s_{DE} = 0$ $s_{DF} = 0$ $s_{DG} = 40$ $s_{EF} = \dots$ $s_{EG} = 0$ $s_{FG} = 35$

Aufgabe 5: Nichtlineare Programmierung (12 Punkte)

Gegeben ist das folgende nichtlineare Optimierungsproblem:

$$\min f(x) = x_1^2 - 8x_1 + x_2^2 - 4x_2$$

s.d.
$$x_1 + x_2 \le 2$$

 $x_1, x_2 \ge 0$

(a) Geben Sie für obiges Problem die Kuhn-Tucker-Bedingungen in der Formulierung als Sattelpunkt der Lagrange-Funktion an. (6 Punkte)

(b) Bestimmen Sie unter Zuhilfenahme der in (a) aufgestellten Kuhn-Tucker-Bedingungen rechnerisch die optimale Lösung des obigen nichtlinearen Optimierungsproblems. Hinweis: Unterscheiden Sie dafür die beiden Fälle u=0 bzw. u>0. (6 Punkte)