A signature scheme from the finite fields isomorphism problem

Jeff Hoffstein; Joseph H. Silverman

Brown University

William Whyte; Zhenfei Zhang

OnBoard Security



MathCrypt August 19, 2018



#### The foundation for a new lattice related hard problem

Basic Fact: Any two finite fields of the same order are isomorphic.

Basic Question: How to use this to create new, efficient, hopefully quantum resistant cryptographic constructions?

## Finite field isomorphism

| F =    | $\mathbb{Z}/5\mathbb{Z}[x]$                                               | -3 <b>=</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbb{Z}/5\mathbb{Z}[x]$ |                                              |  |  |  |
|--------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|--|--|--|
| 1 55 - | $\frac{x^5 + x^4 + 4x^3 + x^2 + 4x + 1}{x^5 + x^4 + 4x^3 + x^2 + 4x + 1}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                           | $\frac{2}{y^5 + y^4 + 3y^3 + 2y^2 + 2y + 4}$ |  |  |  |
| 0      | $0 + 0x + 0x^2 + 0x^3 + 0x^4$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                           | $0 + 0y + 0y^2 + 0y^3 + 0y^4$                |  |  |  |
| 1      | $1 + 0x + 0x^2 + 0x^3 + 0x^4$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                           | $1 + 0y + 0y^2 + 0y^3 + 0y^4$                |  |  |  |
| 2      | $2 + 0x + 0x^2 + 0x^3 + 0x^4$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                           | $2 + 0y + 0y^2 + 0y^3 + 0y^4$                |  |  |  |
| 1      | :                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                           | 1 1                                          |  |  |  |
| 5      | $0 + 1x + 0x^2 + 0x^3 + 0x^4$                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180                         | $0 + 1y + 2y^2 + 1y^3 + 0y^4$                |  |  |  |
| 1 :    | :                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                           | :                                            |  |  |  |
| 726    | $1 + 0x + 4x^2 + 0x^3 + 1x^4$                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 337                         | $2 + 2y + 3y^2 + 1y^3 + 1y^4$                |  |  |  |
|        | :                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                           | :                                            |  |  |  |
| 731    | $1 + 1x + 4x^2 + 0x^3 + 1x^4$                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 275                         | $0 + 0y + 4y^2 + 2y^3 + 3y^4$                |  |  |  |
| 1      | :                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                           |                                              |  |  |  |
| 2614   | $4 + 2x + 4x^2 + 0x^3 + 4x^4$                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 623                         | $3 + 4y + 4y^2 + 0y^3 + 4y^4$                |  |  |  |
| 1 :    | :                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                           | 1 1                                          |  |  |  |
| 3124   | $4 + 4x + 4x^2 + 4x^3 + 4x^4$                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124                         | $4 + 4y + 4y^2 + 4y^3 + 4y^4$                |  |  |  |
|        | X-Space x ⊢                                                               | $\phi(y) = 4y^4 + 4y^2 + 4y + 4y^2 + 4y$ | - 3                         | Y-Space                                      |  |  |  |

- $\mathbb{F} = \mathbb{Z}/q\mathbb{Z}[x]/(f(x))$  is a finite field  $\mathbb{F}_{q^n}$  of order  $q^n$ .
- f(x) and F(y) define two copies of  $\mathbb{F}_{q^n}$ , and  $\mathbb{Z}/q\mathbb{Z}[x]/(f(x)) \simeq \mathbb{Z}/q\mathbb{Z}[y]/(F(y))$  is a field isomorphism under a secret mapping  $x \mapsto \phi(y)$ .

### Finite field isomorphism



- $\mathbb{F} = \mathbb{Z}/q\mathbb{Z}[x]/(f(x))$  is a finite field  $\mathbb{F}_{q^n}$  of order  $q^n$ .
- f(x) and F(y) define two copies of  $\mathbb{F}_{q^n}$ , and  $\mathbb{Z}/q\mathbb{Z}[x]/(f(x)) \simeq \mathbb{Z}/q\mathbb{Z}[y]/(F(y))$  is a field isomorphism under a secret mapping  $x \mapsto \phi(y)$ .

### Finite field isomorphism

|        | $\mathbf{F}_{5^5} = \frac{\mathbb{Z}/5\mathbb{Z}[x]}{x^5 + x^4 + 4x^3 + x^2 + 4x + 1}$ X-Space $x \mapsto \phi($ |      |      |      |         | $\mathbb{F}_{\mathbb{S}^5} = \frac{\mathbb{Z}/5\mathbb{Z}[x]}{y^5 + y^4 + 3y^3 + 2y^2 + 2y}$<br>y) = 4y^4 + 4y^2 + 4y + 3 |         |        |      |      |      |  |
|--------|------------------------------------------------------------------------------------------------------------------|------|------|------|---------|---------------------------------------------------------------------------------------------------------------------------|---------|--------|------|------|------|--|
|        | a4 x^4 + a3 x^3 + 2x^2 + 2x + 2 and its images                                                                   |      |      |      |         |                                                                                                                           |         |        |      |      |      |  |
|        |                                                                                                                  |      |      |      |         |                                                                                                                           |         |        |      |      |      |  |
| small  | 62                                                                                                               | 687  | 1312 | 1937 | 2562    |                                                                                                                           | 1622    | 520    | 2048 | 1071 | 2599 |  |
|        | 187                                                                                                              | 812  | 1437 | 2062 | 2687    |                                                                                                                           | 2608    | 1506   | 534  | 2057 | 1080 |  |
| medium | 312                                                                                                              | 937  | 1562 | 2187 | 2812    |                                                                                                                           | 1119    | 2517   | 1540 | 568  | 2091 |  |
|        | 437                                                                                                              | 1062 | 1687 | 2312 | 2937    |                                                                                                                           | 2100    | 1003   | 2526 | 1554 | 577  |  |
| large  | 562                                                                                                              | 1187 | 1812 | 2437 | 3062    |                                                                                                                           | 611     | 2014   | 1037 | 2560 | 1588 |  |
|        |                                                                                                                  |      | 2 x′ | 4+2> | (^3 + a | 2 x^2 + a1 x -                                                                                                            | + 2 and | its im | ages |      |      |  |
|        |                                                                                                                  |      |      |      |         |                                                                                                                           |         |        |      |      |      |  |
|        | 1502                                                                                                             | 1527 | 1552 | 1577 | 1602    |                                                                                                                           | 70      | 1387   | 2829 | 1041 | 2483 |  |
|        | 1507                                                                                                             | 1532 | 1557 | 1582 | 1607    |                                                                                                                           | 2543    | 855    | 2197 | 389  | 1826 |  |
|        | 1512                                                                                                             | 1537 | 1562 | 1587 | 1612    |                                                                                                                           | 1886    | 203    | 1540 | 2982 | 1199 |  |
|        | 1517                                                                                                             | 1542 | 1567 | 1592 | 1617    |                                                                                                                           | 1359    | 2696   | 888  | 2325 | 542  |  |
|        | 1522                                                                                                             | 1547 | 1572 | 1597 | 1622    |                                                                                                                           | 702     | 2044   | 356  | 1698 | 3010 |  |

#### A hard problem based on this isomorphism

Given F(y) and an element  $A(y) \in \mathbb{F}_{q^n}$ , with the promise that  $a(x) \in \mathbb{F}_{q^n}$  is bounded, find a(x).

Also has a decision version of the problem.

### Homomorphic mapping



- For short a(x) and b(x),  $a(x) \times b(x)$  will also be short;
- A(y), B(y) and  $A(y) \times B(y)$  should look random.

# The Finite Field Isomorphism (FFI) Problems

#### Definition (FFI, CFFI, DFFI)

Finite Field Isomorphism Problems Let k be a positive integer. Let  $\mathbb{X}, \mathbb{Y}$  be X-space and Y-space;  $\phi$  be the isomorphism and  $\chi_{\beta}$  be a  $\beta$  bounded distribution. Let  $a_1(x), \ldots, a_k(x), b_1(x)$  be short polynomials, and  $A_1(y), \ldots, A_k(y), B_1(y)$  be the corresponding images. Also sample  $B_2(y)$  uniformly.

**Computational FFI problem**: Given  $A_1(y), \ldots, A_k(y)$ , recover f(x) and/or  $a_1(x), \ldots, a_k(x)$ .

**Decisional FFI problem**: Given  $A_1(y), \ldots, A_k(y)$ ,  $B_1$  and  $B_2$ , with one of  $B_1, B_2$  an image of a short polynomial. Identify the image with a probability greater than 1/2.

### A few words on the hardness of the problem

#### Lemma

For large n, for any fixed  $\mathbf{f}(x) \in \mathbb{F}_q[x]$ , and any given degree n-1 polynomial  $\phi(y) \in \mathbb{F}_q[y]$ , there will exist, with probability approaching 1, a unique monic irreducible  $\mathbf{F}(y) \in \mathbb{F}_q[y]$  such that the map  $x \to \phi(y)$  induces an isomorphism between  $\mathbb{F}_q[x]/(\mathbf{f}(x))$  and  $\mathbb{F}_q[y]/(\mathbf{F}(y))$ .

- We do not know the concrete hardness.
- This lemma suggests that the mapping SHOULD be random:
  - Fix f(x) there are  $\approx q^n/n$  mappings;
  - For any  $\boldsymbol{a}(x) \in \mathbb{X}$ , it should have  $\approx q^n/n$  images in different  $\mathbb{Y}$ s;
  - There is no reason that the mapping isn't random since f(x) and F(y) are both chosen at random.

### The story so far

- With Yarkin Doroz, Jill Pipher and Berk Sunar, we proposed a fully homomorphic encryption scheme.
- It remains to be shown how to build signature scheme:
  - Both Fiat-Shamir and GPV doesn't seem to work for FFI.
  - But FFI does enable an additional feature: trapdoor hiding.

### Trapdoor hiding

#### Lattice with a uSVPs

- $\mathbf{v} \in \mathcal{L}_{\mathbb{X}} \subset \mathbb{F}$  is a unique shortest vector of  $\mathcal{L}_{\mathbb{X}}$ ;
- $V \in \mathcal{L}_{\mathbb{Y}} \subset \mathbb{F}$  will be random, i.e., not a unique shortest vector of  $\mathcal{L}_{\mathbb{Y}}$ ;
- ullet There is no reason  $\mathcal{L}_{\mathbb{Y}}$  has any unique shortest vector.

### Trapdoor hiding

#### The NTRU setting

$$L_{h} = \left\{ (\boldsymbol{u}, \boldsymbol{v}) \in \mathcal{R}_{f}^{2} : \boldsymbol{v} \equiv \boldsymbol{h} \cdot \boldsymbol{u} \pmod{q} \right\} \subset \mathbb{F},$$

$$L_{H} = \left\{ (\boldsymbol{U}, \boldsymbol{V}) \in \mathcal{R}_{F}^{2} : \boldsymbol{V} \equiv \boldsymbol{H} \cdot \boldsymbol{U} \pmod{q} \right\} \subset \mathbb{F}.$$

- $h(x) = a(x)/b(x) \mapsto H(y) = A(y)/B(y)$
- $L_h$  is an NTRU lattice with unique short vectors  $\langle a(x), b(x) \rangle$ ;
- $\langle A(y), B(y) \rangle$  are not short in  $L_H$ , likely  $L_H$  does not have any unique short vectors.

# Overview of the signature scheme



- Form an NTRU lattice in X-space and compute corresponding Y-space lattice.
- Compute a pqNTRUSign signature in X-space.
- Publish corresponding data in Y-space.
- Relationship still holds in Y-space due to homomorphism.
- Nothing on X-space is revealed.

#### "Improvement"



- Lattice attacks on the NTRU public keys are infeasible;
- smaller signatures
  - IF FFI is significantly harder than lattice problems.

### Key Generation - I

#### Isomorphism

• Generate a finite field homomorphism  $\{ \boldsymbol{f}, \boldsymbol{F}, \boldsymbol{\psi}, \boldsymbol{\phi} \}$ .

#### **NTRU**

- Choose a small integer p that is co-prime to q.
- Generate two sparse small polynomials a(x) and b(x).
- Compute  $\boldsymbol{h}(x) \equiv (p\boldsymbol{a}(x))^{-1}\boldsymbol{b}(x) \pmod{\boldsymbol{f}(x)} \in \mathbb{X}$ .
- Compute  $H(y) \in \mathbb{Y}$ , the image of h(x) in  $\mathbb{Y}$ .

#### Challenge

How do we prove to the verifier that a Y-space element has small image in  $\mathbb{X}$ -space.

We rely on a variant subset sum problem

- $\bullet$  Publish a set of polynomials in  $\mathbb {Y}$  that forms a basis of the vector space
- Images of short X-space elements can be written as short linear combinations of  $\{C_i(y)\}$ .

## Key Generation - II

#### An additional building block

- Choose an invertible n-by-n matrix U with small coefficients.
- Define  $c_1(x), c_2(x), \dots, c_n(x) \in \mathbb{X}$  by the relation

$$U\begin{pmatrix} \boldsymbol{c}_1(x) \\ \boldsymbol{c}_2(x) \\ \vdots \\ \boldsymbol{c}_n(x) \end{pmatrix} \equiv \begin{pmatrix} x \\ x^2 \\ \vdots \\ x^n \end{pmatrix} \pmod{q, \boldsymbol{f}(x)}.$$

- Compute the images  $C_1(y), \ldots, C_n(y) \in \mathbb{Y}$ .
- NOTE:

#### security

- There are many ways to decompose  $(x, x^2, ..., x^n)^T$
- Under FFI, the attacker will not be able to tell the decomposition since  $C_1(y), \ldots, C_n(y)$  appears to be uniform.

### Key Generation - III

#### Final keys

- $pk := \{n, p, q, \mathbf{H}(y), \mathbf{C}_1(y), \dots, \mathbf{C}_n(y)\}$
- $sk := \{ f, \psi, \phi, a(x), b(x), c_1(x), \dots, c_n(x) \}.$

### Signing

#### High level

- Find a lattice vector  $(s, t) \in \mathcal{L}_h$
- Express (s, t) with basis  $c_1(x), \ldots, c_n(x)$ :

• 
$$s(x) = \sum_{i=1}^n \delta_i c_i(x)$$
;  $t(x) = \sum_{i=1}^n \epsilon_i c_i(x)$ .

- $Hash(\mu, pk) \equiv (\delta, \epsilon) \mod p$ ;
- ullet Use rejection sampling to ensure  $(\delta,\epsilon)$  is uniform

#### Verification

- Build  $\mathbf{S} := \sum_{i=1} \delta_i \mathbf{C}_i(y)$  and  $\mathbf{T} := \sum_{i=1} \epsilon_i \mathbf{C}_i(y) \in \mathbb{Y}$ ;
- Check  $(S, T) \in \mathcal{L}_{H}$ : S(y)H(y) = T(Y);
- Check  $Hash(\mu, pk) \equiv (\delta, \epsilon) \mod p$ .

#### Limitations and future works

- Prove the hardness of FFI problem.
- Average-case/worse-case hardness.
- Understand concrete security w.r.t. practical parameters.
- Build a cleaner signature scheme.
  - Unforgibility depends only on FFI problem.

# Thank you