Automi e Linguaggi Formali

Parte 14 – Linguaggi Decidibili

Obiettivi

- Studiare il potere degli algoritmi
- Capire quali problemi sono risolvibili da un algoritmo e quali no
- In questa lezione iniziamo considerando problemi decidibili

Sommario

1 Problemi sui Linguaggi Regolari

2 Problemi per linguaggi Context-free

3 Relazioni tra classi di linguaggi

Il problema dell'accettazione

Problema dell'accettazione: testare se un DFA accetta una stringa

$$A_{DFA} = \{\langle B, w \rangle \mid B \text{ è un DFA che accetta la stringa } w\}$$

- B accetta w se e solo se $\langle B, w \rangle$ appartiene ad A_{DFA}
- Mostrare che il linguaggio è decidibile equivale a mostrare che il problema computazionale è decidibile

Teorema: A_{DFA} è decidibile

Idea: definire una TM che decide A_{DFA}

Teorema: A_{DFA} è de<u>cidibile</u>

Idea: definire una TM che decide A_{DFA}

 $M = \text{``Su input } \langle B, w \rangle$, dove B è un DFA e w una stringa:

- Simula B su input w
- 2 Se la simulazione termina in uno stato finale, accetta. Se termina in uno stato non finale, rifiuta."

Teorema: A_{DFA} è decidibile

Idea: definire una TM che decide ADFA

 $M = \text{"Su input } \langle B, w \rangle$, dove B è un DFA e w una stringa:

- Simula B su input w
- 2 Se la simulazione termina in uno stato finale, accetta. Se termina in uno stato non finale, rifiuta."

Dimostrazione:

- la codifica di B è una lista dell componenti Q, Σ, δ, q_0 e F
- fare la simulazione è facile

Teorema: A_{NFA} è decidibile

$$A_{NFA} = \{\langle B, w \rangle \mid B \text{ è un } \varepsilon\text{-NFA che accetta la stringa } w\}$$

Idea: usiamo la TM M che decide A_{DFA} come subroutine

Teorema: A_{NFA} è decidibile

$$A_{NFA} = \{\langle B, w \rangle \mid B \text{ è un } \varepsilon\text{-NFA che accetta la stringa } w\}$$

Idea: usiamo la TM M che decide A_{DFA} come subroutine

Dimostrazione:

 $N = \text{``Su input } \langle B, w \rangle$, dove B è un ε -NFA e w una stringa:

- Trasforma B in un DFA equivalente C usando la costruzione per sottoinsiemi
- **2** Esegui M con input $\langle C, w \rangle$
- 3 Se *M* accetta, accetta; altrimenti, rifiuta."

N è un decisore per A_{NFA} , quindi A_{NFA} è decidibile

Teorema: A_{REX} è decidibile

 $A_{REX} = \{\langle R, w \rangle \mid R \text{ è una espressione regolare che genera la stringa } w\}$

Idea: usiamo la TM N che decide A_{NFA} come subroutine

Teorema: A_{REX} è decidibile

 $A_{REX} = \{\langle R, w \rangle \mid R \text{ è una espressione regolare che genera la stringa } w\}$

Idea: usiamo la TM N che decide A_{NFA} come subroutine

Dimostrazione:

P = "Su input $\langle R, w \rangle$, dove R è una espressione regolare e w una stringa:

- **1** Trasforma R in un ε -NFA equivalente C usando la procedura di conversione
- **2** Esegui *N* con input $\langle C, w \rangle$
- 3 Se N accetta, accetta; altrimenti, rifiuta."

P è un decisore per A_{REX} , quindi A_{REX} è decidibile

Riassumendo...

- lacktriangle ai fini della decidibilità, è equivalente dare in input alla TM un DFA, un arepsilon-NFA o una espressione regolare
- la TM è in grado di convertire una codifica nell'altra
- Ricorda: mostrare che il linguaggio è decidibile equivale a mostrare che il problema computazionale è decidibile

Test del vuoto

- Negli esempi precedenti dovevamo decidere se una stringa appartenesse o no ad un linguaggio
- Ora vogliamo determinare se un automa finito accetta una qualche stringa

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ è un DFA e } L(A) = \emptyset \}$$

■ Puoi descrivere un algoritmo per eseguire questo test?

*E*_{DFA} è decidibile

Dimostrazione: verifica se c'è uno stato finale che può essere raggiunto a partire dallo stato iniziale.

T = "Su input $\langle A \rangle$, la codifica di un DFA A:

- 1 Marca lo stato iniziale di A.
- 2 Ripeti la fase seguente fino a quando non vengono marcati nuovi stati:
- marca ogni stato di A che ha una transizione proveniente da uno stato già marcato.
- 4 Se nessuno degli stati finali è marcato, accetta; altrimenti rifiuta."

Test di equivalenza

$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \in B \text{ sono DFA e } L(A) = L(B) \}$$

Test di equivalenza

$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \in B \text{ sono DFA e } L(A) = L(B) \}$$

Idea:

- costruiamo un DFA *C* che accetta solo le stringhe che sono accettate da *A* o da *B*, ma non da entrambi
- se L(A) = L(B) allora C non accetterà nulla
- il linguaggio di *C* è la differenza simmetrica di *A* e *B*

EQ_{DFA} è decidibile

Dimostrazione:

■ la differenza simmetrica di A e B è:

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

- i linguaggi regolari sono chiusi per unione, intersezione e complementazione
- $F = \text{"Su input } \langle A, B \rangle$, dove $A \in B$ sono DFA:
 - 1 Costruisci il DFA C per differenza simmetrica
 - **2** Esegui T, la TM che decide E_{DFA} con input $\langle C \rangle$
 - **3** Se *T* accetta, accetta; altrimenti, rifiuta."

Sommario

1 Problemi sui Linguaggi Regolari

2 Problemi per linguaggi Context-free

3 Relazioni tra classi di linguaggi

Problema dell'accettazione

$$A_{CFG} = \{\langle G, w \rangle \mid G \text{ è una CFG che genera la stringa } w\}$$

Idea: costruiamo una TM che provi tutte le derivazioni di G per trovarne una che genera w

Perché questa strategia non funziona?

A_{CFG} è decidibile

- Se la CFG è in forma normale di Chomsky, allora ogni derivazione di w è lunga esattamente (2|w|-1) passi
- Le TM possono convertire le grammatiche nella forma normale di Chomsky!

A_{CFG} è decidibile

- Se la CFG è in forma normale di Chomsky, allora ogni derivazione di w è lunga esattamente (2|w|-1) passi
- Le TM possono convertire le grammatiche nella forma normale di Chomsky!

Dimostrazione:

- $S = \text{"Su input } \langle G, w \rangle$, dove G è una CFG e w una stringa:
 - 1 Converti G in forma normale di Chomsky
 - **2** Elenca tutte le derivazioni di 2|w|-1 passi. Se |w|=0, elenca tutte le derivazioni di lunghezza 1
 - 3 Se una delle derivazioni genera w, accetta; altrimenti rifiuta."

Test del vuoto

$$E_{CFG} = \{ \langle G \rangle \mid A \text{ è una CFG ed } L(G) = \emptyset \}$$

- Problema: non possiamo usare *S* del teorema precedente. *Perché no?*
- Bisogna procedere in modo diverso!

Teorema: E_{CFG} è decidibile

Idea: stabilisci per ogni variabile se è in grado di generare una stringa di terminali

- $R = \text{"Su input } \langle G \rangle$, la codifica di una CFG G:
 - 1 Marca tutti i simboli terminali di G.
 - 2 Ripeti la fase seguente fino a quando non vengono marcate nuove variabili:
 - marca ogni variabile A tale che esiste una regola $A \to U_1 \dots U_k$ dove ogni simbolo $U_1 \dots U_k$ è già stato marcato.
 - 4 Se la variabile iniziale non è marcata, accetta; altrimenti rifiuta."

Teorema: EQ_{CFG} è decidibile

$$EQ_{CFG} = \{\langle G, H \rangle \mid G \text{ e } H \text{ sono CFG e } L(G) = L(H)\}$$

Idea:

- Usiamo la stessa tecnica di *EQ_{DFA}*
- Calcoliamo la differenza simmetrica di *G* e *H* per provare l'equivalenza

Jeorema: EQ_{CFG} è decidibile

$$EQ_{CFG} = \{\langle G, H \rangle \mid G \text{ e } H \text{ sono CFG e } L(G) = L(H)\}$$

Idea:

- Usiamo la stessa tecnica di *EQ_{DFA}*
- Calcoliamo la differenza simmetrica di *G* e *H* per provare l'equivalenza

STOP!!!

- Le CFG non sono chiuse per complementazione ed intersezione!
- EQ_{CFG} non è decidibile!

Sommario

1 Problemi sui Linguaggi Regolari

2 Problemi per linguaggi Context-free

3 Relazioni tra classi di linguaggi

Teorema: ogni CFL è decidibile

Domanda:

- è facile simulare la pila con una TM
- sappiamo che le TM nondeterministiche possono essere simulate da una TM deterministica

Non basta semplicemente simulare un PDA con una TM?

Quali altre opzioni abbiamo?

Dimostrazione: ogni CFL è decidibile

- Dato un CFL *L*, sia *G* la grammatica per *L*
- Costruiamo la TM S che decide A_{CFG}
- La TM che decide *L* è: $M_G =$ "Su input *w*:
 - **1** Esegui la TM S con input $\langle G, w \rangle$
 - 2 Se S accetta, accetta; altrimenti, rifiuta

Relazioni tra classi di linguaggi

 Queste non sono solo classi di linguaggi, ma anche classi di capacità computazionale