

Remarks

Claims 1-61 remain pending in the present application. Reexamination and reconsideration are requested in light of the accompanying remarks.

The rejection of claims 1-61 under 35 U.S.C. § 102(b) as being anticipated by, or in the alternative, under 35 U.S.C. § 103(a) as obvious over, Nunan (U.S. Patent No. 6,040,265) is respectfully traversed.

Applicants note that this rejection was made previously in the Office Action dated March 23, 2007. Applicants responded to the rejection in the Amendment dated July 23, 2007. In the October 4, 2007 Office Action, the examiner stated that “Applicant’s arguments with respect to claims 1-61 have been considered but are moot in view of the new ground(s) of rejection.” (i.e., Silver in view of Nunan, which has been overcome)

Nunan teaches a method of making a promoted support for improved catalysts for conversion of exhaust from internal combustion engines. The support comprises a mixed metal oxide promoter containing at least Ce and Zr substantially uniformly dispersed as homogeneous crystallites of less than about 100 Å on a high surface area refractory oxide support substrate. The method includes dissolving a combination of Ce- and Zr-oxide precursors, and optionally another metal oxide precursor, and a compatible organic depositing agent, slowly heating to transform the depositing agent into a gel-like matrix coating the substrate in which the mixed metal oxide precursor compounds are uniformly distributed and thereafter calcining to burn off the organic matrix and form the appropriate oxide morphology. Abstract.

According to the examiner, “Nunan teaches an apparatus for reducing an amount of carbon monoxide in process gas wherein the catalyst is a ceria based catalyst which promotes water gas shift reactions (col. 1, lines 43-56), the catalyst system comprising a noble metal/(Pt or Pd) (col. 10, line 65); a mixed metal oxide support consisting essentially of cerium oxide and zirconium oxide, wherein cerium oxide is present in an amount from about 45% to about 90% by weight of mixed metal oxide and zirconium/lanthanum oxide is present in an amount from about 10% to 55% by weight of mixed metal oxide (col. 10, lines [sic] 64 col. 11, lines 1-5), and a promoter comprising Yttrium (col. 11, line 7) in order to enhance the Ce or Zr promotional effect on catalyst performance in CO and NO_x oxidation (col. 20, lines 45-50). Nunan does teach that his catalyst is for reducing an amount of carbon monoxide in process gas wherein the catalyst is a ceria based catalyst which promotes water gas shift reactions (col. 1, lines 43-56), therefore it

would be obvious if not inherent to place his invention into a water gas shift converter and pass the process fuel gas through the water gas shift converter. Furthermore, Nunan's catalyst is the same as that instantly claimed and therefore will perform as such."

Contrary to the examiner's statement, Nunan does not teach or suggest use of their catalyst in a water gas shift converter. Nunan teaches three way catalysts (TWC) for vehicle exhaust conversion. There are three reactions involved, including: 1) reducing nitrogen oxides to nitrogen and oxygen, $2\text{NO}_x \rightarrow x\text{O}_2 + \text{N}_2$; 2) oxidation of carbon monoxide to carbon dioxide : $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$; and 3) oxidation of unburned carcinogenic hydrocarbons (HC) to carbon dioxide and water: $2\text{C}_x\text{H}_y + (2x+y/2)\text{O}_2 \rightarrow 2x\text{CO}_2 + y\text{H}_2\text{O}$. See col. 14, lines 27-39; col. 21, lines 17-60, and Tables 3-5, 7-8. These reactions are simultaneous when the A/F ratio is properly adjusted in order to have the proper amount of hydrocarbons to be converted on account of the NO_x which is being reduced.

These reactions are different from the water gas shift reaction, in which the inlet is carbon monoxide and water. The water gas shift reaction involves conversion of carbon monoxide and water to carbon dioxide and water: $\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2$. Paragraph [0007]. Thus, Nunan's patent, which involves different reactions taking place with different inlet gases and producing different outlet gases, does not teach or suggest using its motor vehicle exhaust conversion catalyst for water gas shift reactions.

The examiner's citation of col. 1, lines 43-56, does not indicate that Nunan's catalyst could be used in a water gas shift converter. This section primarily discusses prior art motor vehicle exhaust conversion catalysts. In addition, it simply states that it has been suggested that cerium might promote the water gas shift reaction.

Motor vehicle exhaust conversion catalysts are normally operated under conditions which inherently swing between oxidizing and reducing as an oxygen sensor and its control system keep the air/fuel ratio within the desired operating A/F window around the stoichiometric value. Ceria is a well-known component of *such exhaust conversion catalysts*. It is often referred to as an "oxygen storage" agent because it is considered to have the ability to give up oxygen when the catalyst is exposed to reducing conditions and to re-oxidize when exposed to oxidizing conditions. It has also been suggested that ceria may stabilize the support structure, promote the activity of the

precious metals, or promote the water gas shift reaction. See for example, B. Harrison, A. F. Diwell and C. Hallet, *Platinum Metals Rev.*, 1988, 32(2), 73-78.

Col. 1, lines 43-56. This is not a teaching or suggestion that Nunan's catalyst (or any other motor vehicle exhaust conversion catalysts) could be used in water gas shift converters.

Nunan's catalyst is an exhaust gas catalyst for *internal combustion engines*.

A method of making a unique, promoted support for improved catalysts for *conversion of exhaust from internal combustion engines*, said support comprising a mixed-metal-oxide promoter containing at least Ce and Zr substantially uniformly dispersed as homogeneous crystallites of less than about 100Å on a high-surface-area refractory oxide support substrate, comprising dissolving a combination of Ce- and Zr-oxide precursors, and optionally another metal oxide precursor, and a compatible organic depositing agent, slowly heating to transform the depositing agent into a gel-like matrix coating the substrate in which the mixed-metal-oxide precursor compounds are uniformly distributed and thereafter calcining to burn off the organic matrix and form the appropriate oxide morphology.

Abstract.

The present invention relates to catalysts for *conversion of exhaust from internal combustion engines*. More particularly, the present invention relates to mixed-metal oxide crystallite compositions supported and dispersed on a high surface area support such as $\gamma\text{Al}_2\text{O}_3$, their use as promoters in catalysts for motor vehicle exhaust conversion, and promoter catalyst supports containing mixed-metal oxide crystallite compositions.

Col. 1, lines 14-21.

It is an object of the present invention to provide an *exhaust conversion catalyst support material* that is highly effective in enhancing the performance of catalytically active metals deposited thereon in *the conversion of noxious components in the exhaust from internal combustion engines* to compounds that are not detrimental to the environment.

Col. 2, lines 46-51.

The resulting supported catalytic system is dried and calcined to form a *promoted exhaust conversion catalyst*. *The exhaust conversion catalyst* can then be washcoated onto a suitable carrier to form a structure for use in catalytic converters.

Col. 4, lines 34-38.

Interestingly, the improvements are not generally observed when the catalyst has been freshly prepared, but become apparent generally only after the catalyst has been exposed to reducing conditions as occur during normal usage in *automobile exhaust converters*.

Col. 7, lines 21-25.

Such homogeneous, small crystallite-sized, mixed-metal-oxide phases have unique and desirable applications in *exhaust conversion catalysts*.

Col. 9, lines 25-27.

Exhaust conversion catalysts made with the promoted supports of the present invention, when analyzed, show exceptionally small, homogeneous crystallites of the mixed-metal oxide essentially uniformly dispersed on the catalyst support. The properties of the mixed-metal-oxide crystallites of this invention were determined by X-ray diffraction (XRD), transmission electron spectroscopy (TEM), and temperature programmed reduction (TPR) analysis. The analysis results generally showed that catalyst supports prepared by the methods of this invention have very thin outer layers of uniformly and well dispersed homogeneous crystallites, generally of a size averaging 100 Å or less, more often 50 Å or less and even as small as 35 Å or less, as measured by X-Ray diffraction (XRD) and transmission electron spectroscopy (TEM). The very small size, homogeneous crystalline nature and uniform dispersion of the mixed-metal-oxide-promoted supports of this invention provide superior catalyst performance.

Col. 9, line 56 to col. 10, line 6.

Engine evaluation of Pt,Rh catalysts prepared using this material was subsequently carried out as described in detail in Examples 13, 14 and 15 of U.S. Pat. No. 5,064,803. Besides the stand dynamometer evaluations, FTP test evaluations on a 2.5 L TBI Buick Somerset and a 3.1 L MPFI Cavalier were carried out. The experimental catalysts were compared to two Pt,Rh reference catalysts. The results of these comparisons are summarized in Tables 3-5 and FIGS. 21 to 23.

In Tables 3 and 4 are summarized the integral performance numbers and aged light-off activity for the catalyst of the present invention compared to a preparation having double the Ce loading and to a case where no solid solution was formed between the CeO₂ and ZrO₂ components but where the Ce and Zr loading were the same as for the

test catalyst. Clear performance advantages are observed for the catalyst of the present invention. In Table 5 are summarized the FTP vehicle results and again we see advantages for the catalyst of the present invention.

Col. 25, lines 3-22. See also col. 26, lines 20-55; col. 28, lines 35-45; col. 29, lines 10-18; col. 32, lines 38-53; claims 1-2 (“method of preparing a promoted catalyst support effective in enhancing the performance of catalytically active metals in the *conversion of exhaust gas from internal combustion engines. . .*”; and Figs. 1-2, and 16-25 which show hydrocarbon conversion as a function of the air to fuel (A/F) ratio.

Therefore, claims 1-61 are not anticipated by, nor would they have been obvious to one of ordinary skill in the art at the time the invention was made over, Nunan.

CONCLUSION

Applicants respectfully submit that, in view of the above remarks, the application is now in condition for allowance. Applicant respectfully requests that claims 1-61 be passed to allowance.

If the Examiner has any questions or comments regarding the present application, he is invited to contact the undersigned attorney at the telephone number indicated below.

Respectfully submitted,
DINSMORE & SHOHL LLP

By /Patricia L. Prior/
Patricia L. Prior
Registration No. 33,758

One Dayton Centre
One South Main Street, Suite 1300
Dayton, Ohio 45402-2023
Telephone: (937) 449-6400
Facsimile: (937) 449-6405

PLP/keo
Enclosures