Report-HW1

(Abhishek Singhal)

Q1)

a) The criteria for selecting a variable, as node in the tree, is minimizing the mean square error of the two splitting regions. We choose a variable and try all possible splits in the datum. Then we do this process for all variables. We select the variable(j) and split(s) s.t. the mean square error of the region to be divided, is minimum. For tree of depth=1, it is optimal as we look at all the possible cases. For trees of depth>1, we do recursive splitting. As naïve splitting is computationally expensive. No, it is not optimal as we have not searched all possible trees.

b) Power Plant

model chosen: max_depth=9, criterion='mae'

out of sample error=0.160256966417

full training error=0.118336262681

Out of Sample error is close to Full training error.

Mo del (de	Error1	Error2	Error3	Error4	Error5	Avg. Error
pth)						
3	0.213633076	0.212134041	0.214835697	0.212068027	0.207490539	0.212032276
	94986075	11498263	90940768	87456452	3728223	64432758
6	0.171659786	0.177039621	0.174144503	0.165610868	0.174272501	0.172545456
	55988864	25435538	8327526	98954705	39372816	40605437
9	0.155163453	0.161255279	0.163531078	0.160538771	0.160796249	0.160256966
	69080786	09407672	04878048	77700346	47735191	41760409
12	0.165176840	0.159464696	0.164605515	0.162038332	0.155498624	0.161356802
	87743736	16724745	67944243	75261331	73867593	04308328
15	0.164592607	0.170326589	0.167055024	0.167693392	0.170005317	0.167934586
	59052918	89547039	73867595	68292685	77003486	53552742

c) Indoor Localization

model chosen: max_depth=15

out of sample error=9.0142990917955039

full training error=7.48820330784

Out of Sample error is not very close to Full training error.

Model (depth)	Error1	Error2	Error3	Error4	Error5	Avg. Error
3	40.3169330	40.5932976273	40.0156602849	40.67941555	41.30249594	40.58156048
	00376132	8215	26007	4176074	1183849	160884
6	27.4812558	26.5096450569	28.2689979517	27.53598826	26.33825845	27.22682912
	9568706	2076	18084	6804615	8490092	592412
9	17.4230348	18.09190361	17.48597017	17.78948635	18.23753845	17.80558669
	97881145	2274322	2686233	9794331	4602461	9447694
12	12.2339910	11.77798172	12.8824663736	12.24118333	12.93772613	12.41466971
	3435306	2291875	51869	1640332	3182846	9023996
15	8.84342922	9.03792933205	9.01005723375	9.082673054	9.097406614	9.014299091
	45486468	86758	97189	0506642	5598194	7955039

Q2)

a) N samples. Each chunk of size =M.
k=N/M is the number of subsets of training dataset.
We will train (N-M) samples for k times.
Total samples trained = (N-M)X(N/M)
Time taken ~ N²/M - N
Complexity ~ O(N²/M)

If M=5, complexity is $O(N^2/5)$.

If M=N/2, then running time is linear. O(2N)

b) When we make M small, we actually increase k in k-fold cross validation. With this, the bias of estimated error will be small. Or we can say estimator can be fairly accurate.

Q3.KNN

a) Power Plant

model chosen n=3

out of sample error=0.22130739350784454

full training error= 0.361530806

Out of Sample error is close to Full training error.

Model	Error1	Error2	Error3	Error4	Error5	Avg. Error
(n_neig hbors)						
	0.542720720	0.270054002	0.404065344	0.0424202020	0.0046050546	0.224207202
3	0.543720720	0.370951002	0.191865244	8.9421203028	8.8916858516	0.221307393
	7520891	55427843	23285342	509396e-16	244428e-16	50784454
5	0.539640157	0.429373410	0.330340798	0.2317099345	0.1150972827	0.3292323168
	79944297	86729358	23502088	7585784	2017836	3955867
10	0.581352802	0.485519815	0.424039658	0.3735414182	0.3188391844	0.4366585757
	78551538	32567046	1049698	7207804	2028991	8170469
20	0.608486492	0.552845224	0.502145154	0.4541370968	0.4223578424	0.5079943622
	33983287	99129218	4356712	3852982	4704577	1047434
25	0.588885682	0.556465549	0.515339303	0.4754626101	0.4463651015	0.5165036495
	92479115	52281435	79006032	7244379	2731329	8748463

b) Indoor Localization

model chosen n=3

out of sample error=1.60727811

full training error=2.2239872

Out of Sample error is not very close to Full training error.

Model (n_neig hbors)	Error1	Error2	Error3	Error4	Error5	Avg. Error
3	3.45945286	2.096657046	1.317227906	0.564791060	0.598261703	1.607278115
	04563703	6399213	8795469	05224922	01449833	4085174
5	3.83688662	2.613371248	2.016253613	1.421127889	1.001174548	2.177762785
	74322975	9343037	8092459	768026	3121846	6512116
10	4.72610489	3.395022158	2.733493590	2.296181631	1.935314830	3.017223421
	81569713	6822993	441364	0783743	0747409	68675
20	5.79761992	4.402627948	3.656813968	3.156505595	2.814353202	3.965584128

	70310937	8622118	1183669	3714785	7662208	4298745
25	6.06134445	4.814073318	3.982288090	3.468855283	3.090503718	4.283412973
	60481442	698596	134583	3918527	6056132	375758

Q4. Linear Model

a) The purpose of penalties in Ridge and Lasso regression is to control capacity. In several cases, all the attributes (p) of input data are not useful. The penalties makes coefficient β_i small for i^{th} attribute of x. The larger the penalty (α), the smaller the value of β . In ridge regression, β_s are made small but do not converge to zero. That is, no input attribute is ignored.

In lasso regression, β can be zero. This a selection of attributes occur.

b) Power Plant

Model chosen: alpha=0.01 (Lasso)

Out of sample error=0.18776822

Full training error=0.190764

Out of Sample error is close to Full training error.

Lasso	Error1	Error2	Error3	Error4	Error5	Avg. Error
(alpha)						
10^-6	0.189783	0.193985380	0.191860269	0.190800045	0.190678764	0.19142159695
	5245755	69880425	21584834	36720838	92417468	631528
	4071					
10^ ⁻⁴	0.191755	0.188871314	0.190059895	0.191086838	0.190679416	0.19049050881
	0793772	55626152	67954601	19736783	28063609	8208
	2855					
10^ ⁻²	0.184438	0.186309279	0.187578892	0.189749688	0.190764887	0.18776822059
	3544036	54994064	74669534	57416435	68205507	131071
	9816					
1	0.266660	0.264340012	0.264054867	0.262189306	0.262453287	0.26393956617
	3571793	11203639	66376685	16776909	77656507	989722
	485					
10	0.623296	0.621489476	0.623656002	0.626516512	0.627689496	0.62452953893
	2057636	33336626	7055742	92788568	95425558	694951
	6584					

Ridge(Error1	Error2	Error3	Error4	Error5	Avg. Error
alpha)						
10^ ⁻⁶	0.191957169	0.193288345	0.193177406	0.191956737	0.190678758	0.192211683
	5636817	00600034	71953548	70276014	33731485	46585851
10^-4	0.187924906	0.191037361	0.190946324	0.189898398	0.190678758	0.190097149
	46272467	19286774	74772946	29986058	34024595	80868567

10^ ⁻²	0.194143618	0.190600843	0.190893287	0.190408498	0.190678758	0.191345001
	25633891	53701598	68394551	08191673	63337849	23851911
1	0.186506793	0.188036059	0.189331269	0.191251371	0.190678787	0.189160856
	27417996	98555781	88930352	17950047	94657855	45502406
10	0.187529663	0.189968380	0.190065329	0.191539792	0.190679054	0.189956444
	66219898	54764123	63670314	73873339	4274605	20254745

c) Indoor Localization

Model chosen: alpha=10 (Ridge)

Out of sample error= 18.970032206799651

Full training error=18.6044577636

Out of Sample error is very close to Full training error.

Lasso	Error1	Error2	Error3	Error4	Error5	Avg. Error
(alpha)						
10^ ⁻⁶	20.477080	20.63409129	20.05826991	19.87875618	19.93136286	20.19591215
	49290879	5324243	8698816	2890246	5996984	1163817
10^-4	20.151478	19.45512895	20.46018659	20.77735627	20.17055935	20.20294190
	357417044	7219078	3805226	2540423	2385183	6673392
10^-2	19.940839	20.43848729	20.04116876	20.19173058	20.16703379	20.15585206
	87632904	9950857	6019013	3255904	3553983	3821762
1	21.441923	21.34193375	20.77250139	20.99133301	21.23753469	21.15704526
	50345271	0531748	021557	1626896	1471264	9459637
10	35.476969	35.61380585	35.32975325	34.98271055	35.52238388	35.38512460
	491427617	5557366	6371198	1830351	2598582	7557024

Ridge	Error1	Error2	Error3	Error4	Error5	Avg. Error
(alpha)						
10^ ⁻⁶	19.204266	19.314761045	18.48800472	19.133594596	18.7533348	18.9787923483961
	483693473	22444	0819927	324411	95918702	9
10^ ⁻⁴	19.006484	18.824139184	19.03859171	18.980103339	19.0291399	18.9756917644926
	640804544	243098	1638318	348965	46428252	3
10^ ⁻²	19.039378	18.920775806	19.19272837	18.986285827	18.7647284	18.9807793797712
	468528934	994008	7638382	973809	17721177	6
1	18.941915	18.815454068	19.13698359	19.079018849	19.0392400	19.0025224284070
	583117915	655015	5819675	427069	45015809	97
10	18.874853	18.814607148	19.08436171	18.752438823	19.3239000	18.9700322067996
	302804265	918189	7063626	573648	41638517	51
