Deep Learning Course MSc Molecular Graph Classification

IOANNIS SAVVAS

mtn2319

Project overview

Classification Target

- Classify molecular structures into Readily Biodegradable (RB) and non-Readily Biodegradable (NRB).
- A substance is considered RB if it can be biodegraded more than 60% in a 28-day window period.

Motivation

- Work on a new dataset with no prior modelling
- Create MPNNs combined with Fingerprints (FP-GNN)
- Compare results of classical ML algorithms MPNNs FP-GNN

Dataset

Size and classes

- Dataset 1 (https://zenodo.org/records/3540701): Contains 3192 molecules (2059 NRB 1133 RB).
 Has already been used for modelling.
- Dataset 2 (https://zenodo.org/records/8255910): Contains 3703 molecules (1789 NRB 1918 RB)
- Final Dataset total imbalance ratio --> 55 45

Split

- Split into Train Validation Test Stratified (Each dataset keeps the same class balance)
- Split ratio: 80 10 10
- Test set is completely hidden during training-validation procedure

Featurization

Vector Features for Baseline Models and FP-GNN

- MACCS Fingerprints: Fixed-length bit (167). Each bit represents presence or absence of specific predefined substructure or molecular feature.
- Example: Presence of specific atoms (O, N), Structural groups (Carbonyl groups, esters), etc...

Node (Atom) features - Signal

68 Total Features per atom

Atomic Feature	Vector dimension
Symbol	43 (One-Hot)
Adjacent Hydrogens	5 (One-Hot)
Degree	7 (One-Hot)
Formal Charge	1 (Integer)
Radical Electrons	5 (One – Hot)
Hybridization	6 (One – Hot)
Aromaticity	1 (Binary)

MPNN architecture (GAT)

• Due to high number of features per node, Graph Attention Network (GAT: arXiv:1710.10903) was implemented to focus on the most relevant features of neighboring nodes though self-attention.

Message Passing Layer

$$h_i^{(l+1)} = \varphi(h_i^{(l)} \bigoplus_{j \in N_i} \alpha(h_i^{(l)}, h_j^{(l)}) \psi(h_j^{(l)}))$$

Graph Pooling (Mean, Permutation Invariant)

$$r_i = \frac{1}{N_i} \sum_{n=1}^{N_i} x_n$$

Fully Connected Layer (MLP)

FP-GNN architecture

Training and Hyperparameter details

Models trained on Google Collab T4 GPU

Loss function: Binary Cross entropy Loss

Optimizer : AdamW

Best model selected based on validation loss

Greedy Search of Hyperparameters

Hyperparameter Name	Range
Batch Size	{32, 64, 128}
Learning Rate	{0.0001, 0.0005, 0.001}
Hidden units	{16, 32, 64}
Attention Heads	{2, 3, 4, 5, 6}
MPNN layers	{2, 3, 4}
Activation function	{ReLU, ELU}
Dropout probability	{0.1, 0.2, 0.3, 0.4}

Learning curves

Train and Validation Loss Train Loss 0.650 Validation Loss 0.625 0.600 BCE Loss 0.550 0.525 0.500 0.475 25 50 75 100 125 150 175 **Epochs**

FP-GNN

Best validation loss = 0.481

Best validation loss = 0.439

Test Results and Comparison

FP-GNN Confusion Matrix

Model	Balanced Accuracy
LR	0.809
SVM	0.828
GAT	0.806
FP-GNN	0.848

- Better accuracy than SVM in both classes
- 11 more correct predictions in the positive class

Conclusion and Future Work

 Combining GNNs with Molecular Fingerprints maybe can help detect substructure information that MPNNs cannot.

 More molecular fingerprints can be added (ECFP, PubCHEM, Topological) that include more structural motifs.

- Try with more SoTA GNN architectures
- Include-Encode Bond features

Thank you

Any questions?