Blatt 03

Aufgabe 3.1

Wir führen das Experiment durch "Zweimal hintereinander würfeln". Welche der folgenden Ereignisse sind unabhangig.

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

• (a) $A = \{(1,1), (2,2), (3,3), (4,4)\}$ B: Augensumme groesser oder gleich 5

aus Tabelle:

$$P(A) = \frac{4}{36} = \frac{1}{9}$$

$$P(B) = \frac{36-6}{36} = \frac{5}{6}$$

$$P(A \cap B) = \frac{2}{26}$$

$$P(A)*P(B)=rac{5}{54}
eq P(A\cap B) o$$
 stochastisch abhängig

• (b) A: Ein Wurfel zeigt eine 1B: Ein Wurfel zeigt eine 2

aus Tabelle:

$$P(A) = \frac{11}{36}$$

$$P(B) = \frac{11}{36}$$

$$P(A \cap B) = \frac{2}{36}$$

$$P(A)*P(B)=rac{121}{1296}
eq P(A\cap B) o$$
 stochastisch abhängig

• (c) A: Beide Augenzahlen sind gerade.

B: Beide Augenzahlen sind ungerade.

aus Tabelle:

$$P(A) = \frac{9}{36}$$

$$P(B) = \frac{9}{36}$$

$$P(A \cap B) = 0$$
 (nicht möglich)

$$P(A)*P(B)
eq 0 = P(A \cap B) o ext{stochastisch abhängig}$$

- (d) A: Beide Augenzahlen sind gerade.

B: Ein Wurfel zeigt eine gerade Zahl.

aus Tabelle:

$$P(A) = \frac{9}{36}$$

$$P(B) = \frac{36-9}{36} = \frac{27}{36}$$

$$P(A \cap B) = \frac{9}{36}$$

$$P(A)*P(B)=rac{243}{1296}
eqrac{9}{36}=P(A\cap B) o$$
 stochastisch abhängig

Aufgabe 3.2

Wir führen das Experiment durch "Zweimal hintereinanderwürfeln". Der Ereignisraum ist also $\Omega=\{1;2;3;4;5;6\} \times \{1;2;3;4;5;6\}$ Wir definieren drei Zufallsvariablen:

X: Anzahl der Wuerfe, bei denen eine gerade Zahl geworfen wird.

Y: Anzahl der Wuerfe, bei denen eine Zahl 5 geworfen wird.

Z: Ergebnis des ersten Wurfes.

Welche der Zufallsvariablen sind unabhangig (Definition von Unabhängigkeit von Zufallsvariablen kommt am 29.10. in der Vorlesung). Begründen Sie Ihre Antwort!

t	0	1	2	3	4	5	6
P(X=t)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0	0	0	0
P(Y=t)	$\frac{25}{36}$	$\frac{10}{36}$	$\frac{1}{36}$	0	0	0	0
P(Z=t)	0	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i)(i = 1, ..., I; j = 1, ..., J)$$

Aufgabe 3.3

Gegeben ist die Verteilungsfunktion einer diskreten Zufallsvariablen

	0	für	t < 0
	0,1	für	0 <= t < 2
F(t)=	0,4	für	2 <= t < 4
	0,8	für	4 <= t < 6
	1	für	t>=6

Berechnen Sie: P(1 < X <= 4); P(1 <= X <= 4); P(X >= 3).

- für stetige Funktion über Dichtefunktion zu lösen
- für diskrete Funktion hingegen über Binomialverteilung?!

$$P(1 < X <= 4) = P(X <= 4) - P(X < 1) = 0, 8 - 0, 1 = 0, 7$$

 $P(1 <= X <= 4) = P(X <= 4) - P(X <= 1) = 0, 8 - 0, 1 = 0, 7$
 $P(X >= 3) = 1 - P(X < 3) = 1 - 0, 4 = 0, 6$

Aufgabe 3.4

Die zufällige Anzahl X von Ausfällen eines Servers pro Monat genügt folgender Verteilung:

Ausfälle x_i	0	1	2	3	4	>4
$P(X=x_i)$	0,5	0,2	0,1	0,1	0,1	0

Der Ausfall des Servers verursacht verschiedene Kosten. Der einmalige Ausfall des Servers kostet 1000 EUR. Fällt der Server zweimal aus, so betragen die Kosten 1500 EUR. Bei drei- und viermaligem Ausfall mussen jeweils 2000 EUR bezahlt werden. Wie groß ist die Wahrscheinlichkeit dafur, dass mehr als 1000 EUR Kosten im Monat wegen Ausfällen des Servers entstehen?

$$P("Mehr als 1000 EUR Kosten im Monat") = P(X >= 2) =$$

= $P(X = 2) + P(X = 3) + P(X = 4) + P(X > 4) = 0, 1 + 0, 1 + 0, 1 + 0 = 0, 3$

Aufgabe 3.5

Die Intaktwahrscheinlichkeit bezogen auf die Zeit t betragen fur zwei unabhängig voneinander arbeitende Computernetze 0,9 bzw. 0,8. Sei X die Zufallsvariable für die Anzahl der in der Zeit t intakten Computernetze. Ermitteln Sie

(a) die Verteilungsfunktion F(x),

A: System A intakt

B: System B intakt

Intakte Systeme x_i	2	1	0
$P(X=x_i)$	0,72	0,26	0,02

$$P(X = 2) = P(A) * P(B) = 0,9 * 0,8 = 0,72$$

$$P(X = 1) = P(\overline{A}) * P(B) + P(A) * P(\overline{B}) = 0, 1 * 0, 8 + 0, 9 * 0, 2 = 0, 26$$

$$P(X=0) = P(\overline{A}) * P(\overline{B}) = 0, 1 * 0, 2 = 0, 02$$

		0	für	t < 0
F(X)=	C	,02	für	0 <= t < 1
	C	,28	für	1 <= t < 2
	1		für	2 <= t

(b) die Wahrscheinlichkeit, dass in der Zeit t wenigstens ein Computernetz intakt ist.

Gegenereignis zu "alle ausgefallen"

$$P(X >= 1) = 1 - P(X = 0) = 0,98$$