Psychoinformatics & Neuroinformatics

Week 6
Web Frontend

by Tsung-Ren (Tren) Huang 黄從仁

Why bother frontend development

Carrying out large-scale experiments

Breaking the limits of time and space

Preparing for backend & mobile development JavaScript is everywhere

Offering interactive analyses to users

E.g., data visualization, ML/DL-based analytics

Frontend development

NOT a required skill for data science/engineering, but...

Relevant jobs

Mostly looking for software/frontend engineers, but sometimes "data frontend engineers" or someone full-stack:

Apple ★★★★☆ 11,247 reviews

Seattle, WA

You must create an Indeed account before continuing to the company website to apply

Apply on company site

Job Company

Benefits

Pulled from the full job description

Opportunities for advancement

and analysis of the user experience. As a Data Visualization Engineer on the team, you will be an ambassador of analytics to product and engineering teams with the ultimate purpose of improving the Siri experience for Apple customers.

Key Qualifications

- Think about data in terms of statistical distributions and have good instincts for how to find patterns and identify insights.
- Have good judgment for balancing art and science when visually communicating information.
- Have experience building analytical front-end applications using React and other UI frameworks.
- Have expertise in modern Javascript and data visualization libraries (e.g. D3, VisX, Vega). Data visualization skills are a plus
- Familiarity with API development using web frameworks (e.g., Express).
 Knowledge of GraphQL is a plus.
- Experience with testing frameworks (e.g. Jest, Mocha).
- Can build information out of massive and complex datasets optimally (e.g. Hive, Spark SQL, Druid, Solr).
- Have familiarity with at least one backend programming language (e.g. Python) and are comfortable developing tools in a team environment (e.g. git, documentation, testing).

Goals for today

Learning no-code/low-code solutions

Fast for typical tasks

Learning IMPERATIVE JavaScript
Old vs. modern versions/syntaxes

Learning DECLARTIVE frameworks
Primarily Facebook's React

Goals for today

Learning no-code/low-code solutions
Fast for typical tasks

Learning IMPERATIVE JavaScript
Old vs. modern versions/syntaxes

Learning DECLARTIVE frameworks
Primarily Facebook's React

Web experiments: Big Experimental Data

There are opportunities and challenges

Web-Based Research in Psychology

A Review

Ulf-Dietrich Reips

Psychological Methods and Assessment / Experimental Psychology and International University of Konstanz, Germany

Abstract: The present article reviews web-based research in psychology. It capture based research that show similar developments related to web technology and its wars, deep web, commercialization, web services, HTML5...) as well as distinct ch web surveys and questionnaire research, web-based tests, web experiments, Mol including big data. A number of web-based methods are presented and discumethodology. These are one-item-one-screen design, seriousness check, instructientry technique, subsampling technique, warm-up technique, and web-based measurements are concluded with a discussion of important concepts that h developments in web-based research.

Keywords: Internet-based research, online experiments, online research, online as

Developing experiments

Ease: jsPsych > PsychoPy (exporting is hard) > oTree (more codes)

Run experiment

Share with others

Worldwide. 1/1/04 - 10/2/22. Web Search.

Personality & Game Behavior

Personality can be predicted from game behavior

		Agreeableness	Conscientiousness	Emotional stability	Extraversion	Openness
	gender	✓		✓	✓	✓
Random Effects	age		✓	✓	✓	✓
	region	✓			✓	
	control	-1.34	1.03	3.28	-0.72	1.59
	damage	-1.04	-3.82		1.47	1.45
	difficulty	-1.47		-1.49	-1.49	-2.34
	mobility	0.76		-2.06	4.35	-4.30
	toughness	-1.28	-2.46	-1.61	-5.24	-6.37
	utility	-0.54	1.49	1.27	-4.88	2.35
Fixed Effects	kills	9.22	-5.26	8.71	17.28	5.64
	deaths	-8.10		-4.04	-11.9	-4.33
	assists	-2.92		-5.63	-4.36	-7.43
	win	15.6	2.56	3.05	11.92	15.31
	average duration	-0.01	-0.01	0.09	-0.03	2.53
	n_level6	0.06	-0.04	0.07	0.12	-1.73

Developing games

Ease: GDevelop > Godot > Phaser (+ nonofficial editor)

Interest over time

Heavy:

Google Trends

Worldwide. 1/1/04 - 10/2/22. Web Search.

Goals for today

Learning no-code/low-code solutions
Fast for typical tasks

Learning IMPERATIVE JavaScript
Old vs. modern versions/syntaxes

Learning DECLARTIVE frameworks
Primarily Facebook's React

Event-driven Callback Function Callback

Callback functions are not executed in any planned order

ECMAScript (ES)

React uses many new syntaxes from ES6+

DOM & its selectors

The querySelector family use (chaining) CSS selectors

getElementById()
getElementsByClassName()
getElementsByTagName()
querySelector()
querySelectorAll()

Asynchronous JavaScript

Synchronous processing would make JavaScript non-responsive

Synchronous JavaScript

Without promise/async/await, we'd have a callback hell

An Example:

Reading Literary Fiction Improves Theory of Mind

Kid & Castano, 2013, Science

David Comer Kidd* and Emanuele Castano*

Goals for today

Learning no-code/low-code solutions
Fast for typical tasks

Learning IMPERATIVE JavaScript
Old vs. modern versions/syntaxes

Learning DECLARTIVE frameworks
Primarily Facebook's React

Popularity of different frameworks

Worldwide. 2004 - present. Web Search.

Google's Angular vs. Facebook's React

Automatically "React" to state changes

Undirectional Data Flow

Imperative vs. Declarative Languages

Vanilla JavaScript/jQuery are imperative; React is declarative

Compositional & Reusable Components

Writing React = Building & connecting components

Example 1: Social Influence

Social message

Example 2: Emotional Influence

Class vs. Function Components

Don't learn/use cumbersome class components

Revisit RMET in React (1/2)

Updating the state var "current" triggers automatic re-rerending App0

Revisit RMET in React (2/2)

Updating the state var "current" triggers automatic re-rerending App1

TodoList is a good exercise

Helping you **select** an MV* framework

View on GitHub Blog

Introduction

Developers these days are spoiled with choice when it comes to selecting an MV* framework for structuring and organizing their JavaScript web apps.

Backbone, Ember, AngularJS... the list of new and stable solutions continues to grow, but just how do you decide on which to use in a sea of so many options?

To help solve this problem, we created TodoMVC - a project which offers the same Todo application implemented using MV* concepts in most of the popular JavaScript MV* frameworks of today.

Examples

JavaScript		Compile-to-JS	Labs				
These are examples written in pure JavaScript.							
Backbone.js R	AngularJS R	Ember.js R	KnockoutJSR				
Dojo R	Knockback.js R	CanJSR	Polymer ^R				
React R	Mithril R	Vue.js R	Marionette.js R				
These are applications written in programming languages that compile to JavaScript.							
Kotlin + React R	Spine R	Dart R	GWTR				
Closure R	Elm®	AngularDart	TypeScript + Backbone.js				
TypeScript + AngularJS	TypeScript + React	Reagent R	Scala.js + React ^R				

Humble +

js_of_ocamlR

