Wykład 1, 06.10.2010

- 1. **Def.** Niech dany będzie układ równań $\dot{x} = f(t,x)$ (1), z funkcją $f: \mathbb{R}^{m+1} \to \mathbb{R}^m$, klasy C^1 . Niech $\bar{x}(t)$ będzie rozwiązaniem tego układu w przedziale $[0,\infty)$.
 - Rozwiązanie $\bar{x}(t)$ jest **stabilne w sensie Lapunowa** dla $t \to +\infty$, jeśli $\forall \epsilon > 0 \; \exists t_0 \geq 0 \; \text{oraz} \; \eta > 0$, że każde rozwiązanie x(t) równania (1), takie że $|x(t_0) \bar{x}(t_0)| < \eta$, spełnia dla $t > t_0$ warunek $|x(t) \bar{x}(t)| < \epsilon$.
 - Jeśli dodatkowo $\lim_{t\to+\infty} |x(t) \bar{x}(t)| = 0$, to mówimy, że rozwiązanie $\bar{x}(t)$ równania (1) jest **asymptotycznie stabilne**.
- 2. **Def.** Niech będzie dane równanie $\dot{x} = f(x)$ (2), gdzie f jest odwzorowaniem, określonym na otwartym zbiorze $Q \in \mathbb{R}^m$ zawierającym początek układu współrzednych. O odwzorowaniu tym zakładamy, że jest klasy C^1 oraz spełnia warunek f(0) = 0.

Funkcją Lapunowa dla równania (2) nazywamy funkcję V(x) klasy C^1 w $Q(V:Q\to\mathbb{R})$ spełniającą warunki:

- (a) $V(x) \ge 0$
- (b) $V(x) = 0 \Leftrightarrow x = 0$
- (c) jeśli x(t) jest rozwiązaniem równania (2), to funkcja złożona V(x(t)) jest nierosnącą funkcją zmiennej t, tzn. $\frac{d}{dt}V(x(t))=gradV\cdot f\leqslant 0$.
- 3. **Tw.** (lemat) Niech f będzie odwzorowaniem jw. Jeśli dla równania (2) z odwzorowaniem f istnieje funkcja Lapunowa, to rozwiązanie $\bar{x}(t) \equiv 0$ równania (2) jest stabilne. Jeśli dodatkowo $\operatorname{grad} V \cdot f < 0$ dla $x \in Q \setminus \{0\}$, to rozwiązanie $\bar{x}(t) \equiv 0$ jest asymptotycznie stabilne.
- 4. **Def.** Niech będzie dany układ autonomiczny $\dot{x} = f(x)$ (3) i niech x = 0 będzie jego punktem krytycznym.
 - **Linearyzacją układu** (2) w otoczeniu punktu x=0 nazywamy układ liniowy o stałych współczynnikach $\dot{x}=Ax$, taki że układ (3) można zapisać w postaci $\dot{x}=Ax+g(x)$, gdzie g(x) jest funkcją ciągłą, która spełnia warunek $\lim_{|x|\to 0}\frac{|g(x)|}{|x|}=0$.

Wykład 2, 13.10.2010

- 5. $etA = I + tA + \frac{1}{2}t^2A^2 + \dots, ||T|| = \sup_{||X||_1=1} ||Tx||_2,$ gdzie $T: B_1 \to B_2$ (liniowy operator), B_1, B_2 przestrzenie Banacha z normą odpowiednio $||\cdot||_1, ||\cdot||_2$. Inaczej: $||T|| = \sup_{x \neq 0} \frac{||Tx||_2}{||x||_1}$.
- 6. $f(A) := \frac{1}{2\pi i} \int_{\mathcal{C}} f(z)(z IA)^{-1} dz = If(0) + f'(0)A + \frac{f''(0)A^2}{2!} + \dots$ $(z IA)^{-1}$ exists and is boundeed $\Leftrightarrow z \notin SpA$.
- 7. **Zad.** $\dot{x} = Ax$ has $x \equiv 0$ as a stable solution, $x(t) = e^{At}x_0$.

Wykład 3, 20.10.2010

- 8. **Theorem** $\dot{x} = f(x), f(0) = 0, f \in C^1, A := \frac{\delta f}{\delta x}(0), f : B \to B$ (Banach spaces).
 - $\dot{x} = Ax(t) + g(x(t))$ $g \in o(||x||)$ linearized equation in the vicinity of x = 0. Assumption: ReSpaA < a < 0 (*).

Then $x(t) \equiv 0$ is asymptotically stable. We use:

- (a) $x(t) = e^{At}x_0 + \int_{t_0}^t e^{A(t-\tau)}g(x(\tau))d\tau$.
- (b) (*) implies that there exist K > 0 and $\mu > 0$ such that $||e^{ta}|| \le Ke^{-\mu t}$, $0 < \mu < -a$
- (c) Gronwall inequality: $z(t) \leq a + b \int_{t_0}^t z(\tau) d\tau \Rightarrow z(t) \leq a e^{b(t-t_0)}$.
- 9. **Examples**: (a) $\dot{x} = f(x, \mu) = Ax + \mu Ix$, (b) $\dot{x} = xf(\mu x^2 y^2) \beta y$, $\dot{y} = yf(\mu x^2 y^2) + \beta x$.
- 10. **Bifurkacje** wystepują, gdy pojawiają się nagle nowe rozwiązania. **Hopf bifurcation** a periodic solution bifurcates from a trivial solution.

Wykład 4, 27.10.2010

- 11. Equilibrium points:
 - (a) given x_0 equilibrium point, $f(x_0) = 0$ studying its stability (many theorems Lapunov function, linearization etc.)
 - (b) find equilibrium points, if they exist (solutions of f(x) = 0) in many cases it's not so simple that 0 is an equilibrium point (topological Poincare index).
- 12. Periodic orbits: how to look for them (open problem);
- 13. stability of periodic orbits (existance/nonexistance/stability).
- 14. Bifurcation theory: bifurcations of stationary solutions $(f(x, \mu) = 0)$; Hopf bifurcataion.
- 15. Chaotic solutions (chaos) attractors of fractal dimensions.

Wykład 5, 03.11.2010

- 16. Asymptotyczna stabilność punktu krytycznego $\dot{x} = f(x)$, x_0 critical point $\Leftrightarrow f(x_0) = 0$. x_0 is an asymptotically stable solution, when:
 - (a) $\exists u \in \delta_{x_0} \ \forall x \ (\exists t_1 \ x(t_1) \in U \Rightarrow x(t) \to_{t \to \infty} x_0)$
 - (b) x_0 is Lapunov stable.
- 17. **Problems:** real canonical form of a real matrix; how to detect equilibrium points or limit cycles (periodic solutions)?
- 18. **Zbiorem granicznym w** $+\infty$ (zbiorem ω -granicznym) punktu p (orbity punktu p) będziemy nazywać zbiór: $w(p) = \{y \in \mathbb{R}^m : y = \lim_{n \to \infty} x(t_n; p)$ dla pewnego ciągu $\{t_n\}, t_n \to +\infty\}$.

 Analogicznie definiujemy **zbiór graniczny w** $-\infty$ (zbiór α -graniczny) punktu p (orbity punktu p): $\alpha(p) = \{y \in \mathbb{R}^m : y = \lim_{n \to \infty} x(t_n; p) \text{ dla pewnego ciągu } \{t_n\}, t_n \to -\infty\}$.
- 19. **Def.** Jeśli istnieje orbita zamknięta γ taka, że dla punktów y należących do pewnego otoczenia U zbioru γ mamy $w(y) = \gamma$ (lub $\alpha(y) = \gamma$), to γ nazywamy **cyklem granicznym**. Jeśli cykl graniczny γ ma tę własność, że $\gamma = w(y)$ dla wszystkich punktów z otoczenia U, to cykl ten nazywa się **atraktorem (stabilnym cyklem granicznym)**. Jeśli dla wszystkic punktów $y \in U$, $\gamma = \alpha(y)$, to cykl graniczny γ nazywa się **repelerem (niestabilny cyklem granicznym)**.
- 20. **Def. Lokalnym cięiem transwersalnym** orbity γ w punkcie p nazywamy podzbiór otwarty S pewnej hiperpłaszczyzny H (kowymiaru 1) taki, że:
 - (a) $p \in S$
 - (b) $\forall x \in S$, wektor f(x) traktowany jako wektor w przestrzeni \mathbb{R}^m nie jest równoległy do H, tzn. wektor f(x) przesunięty do punktu x nie należy do H.
- 21. **Def.** Niech S będzie cięciem transwersalnym orbity γ w punkcie p. Dla dostatecznie maego otoczenia $U \subset S$ punktu p definiujemy przekształcenie $U \ni y \mapsto \theta(y) = x(t(y); y) \in S$, gdzie x(t; y) jest rozwiązaniem równania $\dot{x} = f(x)$ z warunkiem x(0) = y, a t(y) jest najmniejsząliczbą dodatnią, spełniającą warunek $x(t(y); y) \in S$. Odwzorowanie $\theta(y)$ nazywamy **przekształceniem Poincarego**.
- 22. **Def. Dywergencja** (rozbieżność, źródłowość) pola wektorowego operator różniczkowy przyporządkowujący trójwymiarowemu polu wektorowemu pole skalarne będące formalnym iloczynem skalarnym operatora nabla z polem.

- 23. **Def. Wektor powierzchni** wektor o wartości równej polu powierzchni i o kierunku prostopadłym do tej powierzchni.
- 24. **Theorem (Gauss)** (Gauss-Ostrogradzki, Stokes more general) Niech $V \subset \mathbb{R}^3$ będzie obszarem ograniczonym powierzchnią zamkniętą S (∂V) , a P(x,y,z), Q(x,y,z) i R(x,y,z) będą funkcjami posiadającymi ciągłe pochodne cząstkowe pierwszego rzędu na obszarze V. Wówczas $\int \int_S (Pdydz + Qdzdx + Rdxdy) = \int \int_V \int (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z})dxdydz$. W postaci wektorowej: niech A będzie dowolnym polem wektorowym, dla którego istnieje dywergencja na całym zamkniętym obszarze o objętości V = [x, y, z], wówczas: $\int \int_S \vec{A} d\vec{S} = \int \int_V \int div \vec{A} dxdydz$, gdzie \vec{S} jest wektorem powierzchni. Inaczej: $\int_S \vec{A} d\vec{S} = \int_V (\nabla \vec{A}) dV$. In the class: $\vec{A} = div \vec{f}(x)$ vectorfield in \mathbb{R}^n . Take $div f(x) \neq 0$ for each point in V. Then there is no limit cycle in V (no periodic solution).
- 25. **Theorem (Dulac Criterion)** Suppose that $\vec{f}(x)$ vectorfield in simply connected $V \subset \mathbb{R}^2$ (vectorfield \to differentiable) and suppose there exists a **Dulac function** Φ (scalar function, C^1 , $\Phi(x) > 0$) satisfying $div(\Phi f) \neq 0$ at each point of V. Then there is no limit cycle in V.
- 26. **Theorem (Poincare-Bendixon)** Jeśli w przestrzeni fazowej będącej podzbiorem płaszczyzny \mathbb{R}^2 orbita zawiera o najmniej jeden swój punkt graniczny, to jest ona punktem krytycznym albo orbitą zamkniętą. Suppose that f flows in and suppose there are no equlibrium points in V. Then there exists a limit cycle in V.

Wykład 6, 10.11.2010

- 27. Poincare Index (of a curve) mapping $x \in C \longmapsto \frac{f(x)}{||f(x)||} = h(x)$ unit vector $\dot{x} = f(x)$, $||f|| \neq 0$ on curve C.
- 28. Properties of Poincare index
 - (a) for a constant field $i_C(f) = 0$
 - (b) small deformation of the field does not change the index
 - (c) small deformation of curve C does not change the index
 - (d) if x_0 is not a critical point, then its index is 0.
- 29. **Problem**: $\dot{x} = x + g_1(x, y)$, $\dot{y} = y + g_2(x, y)$, where $|g_1|, |g_2| < M$. There exists an equilibrium point in \mathbb{R}^2 .
- 30. Implicit Function Theorem $F: B_1 \times B_2 \mapsto B_3$ Banach spaces, $F \in C^1$. Let the Frechet derivative exists. Suppose that for z_0 , $\tilde{r_0}$ we have $F(z_0, \tilde{r_0}) = 0$ $F_z(z_0, \tilde{r_0})$ $(F_z: B_1 \mapsto B_3$, linear) has a bounded inverse. Then: in some neighbourhood of $(z_0, \tilde{r_0})$ there exists a unique function z_{r_0} such that $F(z(r_0), r_0) \equiv 0$ and $z((\tilde{r_0}) = z_0)$.

Wykład 7, 17.11.2010

31. Raus-Hurwitz Theorem $w(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \dots a_n$ - characteristic polynomial $(a_0, \dots, a_n \in \mathbb{R})$. The roots of $w(\lambda)$ have negative real parts $\Leftrightarrow a_0, a_1, \dots, a_n > 0$ and all principal determinants of matrix below are positive:

$$\begin{pmatrix}
a_1 & a_0 & 0 & 0 & \dots & \dots & \dots \\
a_3 & a_2 & a_1 & a_0 & \dots & \dots & \dots & \dots \\
a_5 & a_4 & a_3 & a_2 & \dots & \dots & \dots & \dots \\
\dots & \dots \\
\dots & \dots \\
0 & \dots \\
0 & \dots & \dots
\end{pmatrix}$$

- 32. Frechet derivative $F(z+h,r_0) = f(z,r_0) + F_z(z,r_0)h + r(z,h)$. Directional derivative $\frac{d}{d\epsilon}F(z+\epsilon h,r_0)|_{\epsilon=0} = F_z(z,r_0)h$.
- 33. **Def. F jest różniczkowalna w sensie Frecheta w punkcie u**, jeśli istnieje liniowy, ograniczony operator $DF(u): B_1 \to B_2$ taki że: $\forall h \in B_1$ $F(u+h) F(u) = DF(u)h + r(u,h), \frac{r(u,h)}{||h||} \longrightarrow_{||h|| \to 0} 0.$
- 34. **Theorem** If $F: B_1 \to B_2$ is Frechet differentiable then $\frac{\partial F}{\partial h} = DFh$.
- 35. **Hopf Bifurcations** $(\dot{x} = f(\mu, x), f(\mu, 0) = 0, \mu \in (a, b) \subset \mathbb{R}. \dot{x} = A_{\mu}x$ (linear part) $+g_{\mu}(x)$ (higher oreder part). We get it after linearizing our system around 0, g = o(||x||). Assumptions:
 - i) $f \in C^1$: $A_{\mu}x$ with respect to μ (with respect to x it's clear as it's linear), $g_{\mu}(x)$ with respect of μ and x
 - ii) $\frac{\partial^2}{\partial u \partial x} f$ continuous
 - iii) For $\mu = \mu_{cr} \in (a, b)$ there are two simple (one complex eigenvector two real ones) conjugate eigenvalues that are passing through the imaginary axis with non-zero speed $(\lambda(\mu), \bar{\lambda}(\mu)), \frac{d}{d\mu} Re\lambda(\mu_{cr}) \neq 0$.

Then here exists a family of periodic orbits $(2\pi\text{-periodic solution }r(\theta);$ after changing to polar coordinates and use of Implicit Function Theorem), in some vicinity of $x \equiv 0$, $\mu = \mu_{cr}$.

Conclusion: Hopf bifurcation theorem is true, when more then two eigenvalues are passing through the imaginary line, but then we have to assume that the additional eigenvalues satisfy $\lambda_k \neq im\beta(0)$ for any $m \in \mathbb{Z}$.

Wykład 9, 01.12.2010

- 36. Twierdzenie Grobmana-Hartmana Jeśli x=0 jest punktem hiperbolicznym układu $\dot{x}=Ax+g(x)$, gdzie g(x) jest klasy C^1 w otoczeniu zera, g(0)=0 oraz $\lim_{|x|\to 0}\frac{|g(x)|}{|x|}=0$, to portret fazowy ww. układu jest w otoczeniu punktu x=0 homeomorficzny z portretem fazowym układu zlinearyzowanego $\dot{x}=Ax$.
- 37. **Theorem** If Df(0) is a contraction then f is also a contraction in some vicinity of 0.
- 38. Flip bifurcation, period doubling.

Wykład 10, 08.12.2010

- 39. Bifurcations of mapping:
 - $f: \mathbb{R} \to \mathbb{R}$, $(x, \mu) \mapsto f(x, \mu)$, $f(0, \mu) = 0$. Let $f_x(0, 0) = 1$, $f_x(0, \mu) \neq 1$ if $\mu \neq 0$. We know that $x_{n+1} = f(x_n, \mu)$ dynamical system. We are looking for stationary point (bifurcations from zero). Draw the bifurcations diagram.
 - $f: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$, $(x,\mu) \mapsto f(x,\mu)$, $f(0,\mu) = 0$. Let $1 \in SpDf(0,0)$ for $\mu = 0$ (only) and $\frac{d}{d\mu}\lambda \neq 0|_{\mu=0}$. We know that $x_{n+1} = f(x_n,\mu)$ -dynamical system. $\lambda = 1$ is a simple eigenvalue at $\mu = 0$. Draw the bifurcations diagram.
- 40. x_0 is a **stationary point** iff. $f(x_0, \mu) = x_0$ for some $\mu = \tilde{\mu}$.
- 41. **Period doubling** $x \mapsto (f \circ f) = (DF)^2$. $\lambda = -1$ is transformed into $\lambda = 1$. After two iterations we are back in the same point.

Wykład 11, 15.12.2010

- 42. **Theorem** $x_{n+1} = f(x_n, \mu)$ dynamical system, $x_{n+1} = Dfx_n + g(x_n)$, $x_n \in \delta(0), g \in o(x)$. Let λ_i eigenvalues of Df. If $\exists k \mid \lambda_k \mid > 1 \Rightarrow 0$ is unstable.
- 43. Types of bifurcation: supercritical, subcriticacl, transcritical.
- 44. **Lemma** $A(\mu) \in C^k$, $\lambda(\mu)$ isolated eigenvalue, then $\lambda(\mu)$ is also C^k .

Wykład 12, 05.01.2011

- 45. Center manifold: $\dot{x} = Ax + f(x,y)$, $\dot{y} = By + g(x,y)$. A,B - linear parts, f,g = o(x,y). ReSpA = 0, ReSpB < 0 - B is stable in some sense, $\dot{y} = By + g(0,y)$ has 0 as asymptotically stable equilibrium. y = h(x), $\dot{x} = Ax + f(x,h(x))$.
- 46. Example: $\dot{x} = xy, \, \dot{y} = -y + x^2$.
- 47. Linear problem: $\dot{y} = Ay$, $SpA = \{\Sigma_{-}, \Sigma_{0}, \Sigma_{+}\}$, where $\lambda \in \Sigma_{-} \Leftrightarrow Re\lambda < 0$, $\lambda \in \Sigma_{0} \Leftrightarrow Re\lambda = 0$, $\lambda \in \Sigma_{+} \Leftrightarrow Re\lambda > 0$ $SpA_{-} = \Sigma_{-}, SpA_{0} = \Sigma_{0}, SpA_{+} = \Sigma_{+}.$ $y \in E = E_{-}^{s} \oplus E_{0} \oplus E_{+}.$
- 48. So after transformation system can be written in the form: $\dot{y}_{-}A_{-} = y_{-}, \ y_{-}(t) \to_{t \to \infty} 0$ $\dot{y}_{0}A_{0} = y_{0}$ long time behaviour is here (center manifold, if $A_{+} = 0$) $\dot{y}_{+}A_{+} = y_{+}, \ y_{+}(t) \to_{t \to -\infty} 0$.
- 49. Non-linear case: stable manifold $y_0 \in \Sigma_s \Leftrightarrow y(t, y_0) \to_{t \to \infty} 0$; unstable manifold $y_0 \in \Sigma_u \Leftrightarrow y(t, y_0) \to_{t \to \infty} 0$.
- 50. Digressions: heteroclinic, homoclinic trajectories, basin of attraction.

Wykład 13, 12.01.2011

- 51. Center manifold is an invariant manifold, $\dot{x} = f(x), \in \mathbb{R}^n$.
- 52. **Def.** A manifold $S \subset \mathbb{R}^n$ is an **invariant manifold** iff. $x_0 \in S \Rightarrow x(t, x_0) \in S$ (*) (where $x(t, x_0)$ solution, $x(0, x_0) = x_0$. It is said to be local if (*) is true for $|t| < T(x_0) >$). If $T = \infty$ then S is global invariant manifold.
- 53. Example of a center manifold. Important property If $(x(t), y(t)^T)$ is the solution of $\dot{x} = g(x)$, $\dot{y} = -y$, g(0) = 0, g'(0) = 0, $(y(t, t_0) = e^{-(t-t_0)}y_0$ exponential decay), then there exists a solution of the reduced to the center manifold system $(\dot{u} = g(u))$ such that $||(x(t), y(t))^T (u(t), h(u(t)))^T|| \le ce^{-\gamma t}$.

Center manifold in this example is $y \equiv 0$.

- 54. In the general case y = h(x) is the quation of the centre manifold. Note that in linear case $\dot{x} = Ax$, $\dot{y} = By$, the center manifold is y = 0, because the center manifold for this case is spanned by all generalized eigenvectors of A.
- 55. $\dot{x} = Ax + f(x, y), \ \dot{y} = By + g(x, y)$ (@) (as in W.12) \Rightarrow $\dot{x} = Ax + f(x, h(x)), \ h'(x)\dot{x} = By + g(x, h(x))$ (@@)

 If we take $(x_0, y_0 = h(x_0))$ as an initial condition to (@@), then the solution y(t), x(t) satisfy y(t) = h(x(t))
- 56. **Theorem (existence)** For (@) there exists a local center manifold y = h(x), $||x|| < \varepsilon$.
- 57. **Theorem** Suppose that zero solution of the reduced system is stable (asymtotically stable) or unstable, the same is for (@).
- 58. **Theorem** (x(t), y(t)) solution of (@), then there exists u(t) solution of the reduced system such that $x(t) = u(t) + O(e^{-\gamma t})$, $y(t) = h(u(t)) + O(e^{-\gamma t})$.

Wykład 14, 19.01.2011

- 59. **Krasnoselski Theorem** Assumptions: $\lambda(0) = 0$, $\frac{d}{d\mu}\lambda(\mu)|_{\mu=0} = 0$. If λ is of odd multiplicity, then we have a bifurcation of stationary solutions.
- 60. Attractors they attract:
 - point attractor (stable equilibrium)
 - stable limit cycle
 - torus (an invariant set; it can be 2-diemensional or in general K-dimensional)
- 61. Maps, $f: I \to I$, sensitivity of initial conditions:
 - logistic map $x \mapsto \alpha x(1-x), x \in [0,1], \alpha \in [0,4]$
 - tent map $x \mapsto^S 10x mod 1$, $[0,1) \to [0,1)$: x - a rational number - periodic trajectory, x - an irrational number - nonperiodic trajectory (strange/chaotic trajectory, $S^n(x)$).
- 62. Rössler attractor.
- 63. Fractal sets e.g. Cantor set. Fractal dimension Hausdorff dimension. $N(r) \sim r^{-D} D$ is a fractal dimension.
- 64. **Twierdzenie Szarkowskiego** Niech $f: J \to \mathbb{R}$ będzie funkcją ciągłą, a $J \subseteq \mathbb{R}$ to domknięty odcinek lub cała prosta \mathbb{R} . Jeśli f ma punkt okresowy o okresie k oraz $k \triangleleft l$ w porządku Szarkowskiego, to f ma punkt okresowy o okresie l.
- 65. **Twierdzenie Li-Yorke'a** Niech $f: J \to J$ będzie funkcją ciągłą, a $J \subseteq \mathbb{R}$ przedziałem domkniętym. Przypuśćmy, że funkcja f ma punkt okresowy o okresie równym 3 i orbicie $a \to b \to c \to a$ dla a < b < c lub a > b > c. Wówczas dla każdej liczby naturalnej $k \in \mathbb{N}$ istnieje w J punkt okresowy o okresie k.