Αρχιτεκτονική Υπολογιστών

5° Εξάμηνο 2019-2020 3η Σειρά Ασκήσεων

Χρήστος Τσούφης – 03117176

Α Μέρος

i. Για την περίπτωση του ενός (1) επιπέδου cache ισχύει:

$$t_{μέσο_1} = t_{hit_{L1}} + rate_{miss_{L1}} * t_{miss_{L1}}$$

$$Εδώ, t_{μέσο_1} = 2.8 \text{ κύκλοι}, t_{hit_{L1}} = 1 \text{ κύκλος}, rate_{miss_{L1}} = 0.018$$

Επομένως, $t_{miss_{L1}}$ = 100 κύκλοι και είναι ο χρόνος που απαιτείται για την μεταφορά δεδομένων από και προς την μνήμη εάν δεν βρεθούν στην cache.

- ii. Για την περίπτωση των δύο (2) επιπέδων cache ισχύει:
 - $t_{\mu \acute{\epsilon} \sigma o_2} = t_{hit_{L1}} + rate_{miss_{L1}} * t_{miss_{L1}}$
 - $t_{miss_{L1}} = t_{hit_{L2}} + rate_{miss_{L2}} * t_{miss_{L2}}$
 - Speedup = $\frac{t_{\mu \dot{\epsilon} \sigma o_1}}{t_{\mu \dot{\epsilon} \sigma o_2}} \ge 2$

Δηλαδή, $t_{\mu \acute{\epsilon} \sigma o_2} \leq 1.4$ που σημαίνει ότι στην χειρότερη περίπτωση $t_{\mu \acute{\epsilon} \sigma o_2} = 1.4$.

Ακόμη, τα δεδομένα θα είναι τα ίδια με προηγουμένως και $rate_{miss_{L2}}=0.15$, $t_{miss_{L2}}=100$ κύκλοι, διότι θα είναι απαραίτητη η προσπέλαση στην μνήμη αν το στοιχείο δεν βρεθεί στην cache L2. Οπότε, προκύπτει ότι $t_{hit_{L2}}=7.2$ κύκλοι, στην χειρότερη περίπτωση.

Β Μέρος

Δίνεται ο παρακάτω κώδικας C:

```
int i,j;
double a[32][8], b[512];

for(i=0; i<8; i++)
    for(j=0; j<8; j++)
        a[i][j] = a[i+2][j] + a[i+1][j] + a[i][j] + b[i*8+j];</pre>
```

- ightharpoonup Εάν για το στοιχείο a[0][0] ισχύει ότι είναι αποθηκευμένο στη θέση 0x00000000 τότε για τυχαίο στοιχείο a[i][j] στη μνήμη, θα ισχύει ότι: pos(i,j) = (8i+j)*8.
- Για τον πίνακα b, για τον υπολογισμό του τυχαίου στοιχείου b[i] θα ισχύει ότι: $pos(i) = 8i + 2^{11}$.
- > Για την cache memory, θα ισχύει ότι:
- ightharpoonup #Blocks = $\frac{256}{32}$ = 8 , #στοιχείων ανά block = $\frac{32}{8}$ = 4 , Block offset = $\log_2 32$ = 5 bits , Index = $\log_2 8$ = 3 bits
- A. Πίνακας εκτέλεσης για $i = 0 \rightarrow misses = 22 \& hits = 18$

j = 0	a[2][0]	a[1][0]	a[0][0]	b[0]	a[0][0]	M	M	M	M	M
j = 1	a[2][1]	a[1][1]	a[0][1]	b[1]	a[0][1]	Н	Н	Н	M	M
j = 2	a[2][2]	a[1][2]	a[0][2]	b[2]	a[0][2]	Н	Н	Н	M	M
j = 3	a[2][3]	a[1][3]	a[0][3]	b[3]	a[0][3]	Н	Н	Н	M	M
j = 4	a[2][4]	a[1][4]	a[0][4]	b[4]	a[0][4]	M	M	M	M	M
j = 5	a[2][5]	a[1][5]	a[0][5]	b[5]	a[0][5]	Н	Н	Н	M	M
j = 6	a[2][6]	a[1][6]	a[0][6]	b[6]	a[0][6]	Н	Н	Н	M	M
j = 7	a[2][7]	a[1][7]	a[0][7]	b[7]	a[0][7]	Н	Н	Н	M	M

Πίνακας εκτέλεσης για $i = 1 \rightarrow misses = 18 \& hits = 22$

j = 0	a[3][0]	a[2][0]	a[1][0]	b[8]	a[1][0]	M	Н	Н	M	M
j = 1	a[3][1]	a[2][1]	a[1][1]	b[9]	a[1][1]	Н	Н	Н	M	M
j=2	a[3][2]	a[2][2]	a[1][2]	b[10]	a[1][2]	Н	Н	Н	M	M
j = 3	a[3][3]	a[2][3]	a[1][3]	b[11]	a[1][3]	Н	Н	Н	M	M
j = 4	a[3][4]	a[2][4]	a[1][4]	b[12]	a[1][4]	M	Н	Н	M	M
j = 5	a[3][5]	a[2][5]	a[1][5]	b[13]	a[1][5]	Н	Н	Н	M	M
j = 6	a[3][6]	a[2][6]	a[1][6]	b[14]	a[1][6]	Н	Н	Н	M	M
j = 7	a[3][7]	a[2][7]	a[1][7]	b[15]	a[1][7]	Н	Н	Н	M	M

Παρατήρηση: Κάθε επανάληψη εκτός της πρώτης όπως προκύπτει από τον πίνακα, παρουσιάζει ίδια μορφή για i = 1 άρα misses = 148, hits = 172.

Β. Σε αυτή την περίπτωση (write-no-allocate), όταν υπάρχει miss κατά την εγγραφή, το αντίστοιχο block δεν μεταφέρεται στην cache αλλά απευθείας στην μνήμη. Εδώ, η εγγραφή γίνεται μια φορά σε κάθε επανάληψη, στο a[i][j] και θα είναι πάντα miss καθώς ακριβώς πριν έχει γίνει miss στην ανάγνωση του b. Επομένως, αντίθετα με πριν, κατά το miss στο a[i][j], δεν μεταφέρεται το συγκεκριμένο block στην cache, κι έτσι στην (j+1)-επανάληψη, η ανάγνωση του a[i][j+1] θα είναι σίγουρα miss.

Πίνακας εκτέλεσης για $i=0 \rightarrow misses=28 \ \& \ hits=12$

j = 0	a[2][0]	a[1][0]	a[0][0]	b[0]	a[0][0]	M	M	M	M	M
j = 1	a[2][1]	a[1][1]	a[0][1]	b[1]	a[0][1]	Н	Н	M	M	M
j=2	a[2][2]	a[1][2]	a[0][2]	b[2]	a[0][2]	Н	Н	M	M	M
j = 3	a[2][3]	a[1][3]	a[0][3]	b[3]	a[0][3]	Н	Н	M	M	M
j = 4	a[2][4]	a[1][4]	a[0][4]	b[4]	a[0][4]	M	M	M	M	M
j = 5	a[2][5]	a[1][5]	a[0][5]	b[5]	a[0][5]	Н	Н	M	M	M
j = 6	a[2][6]	a[1][6]	a[0][6]	b[6]	a[0][6]	Н	Н	M	M	M
.j = 7	a[2][7]	a[1][7]	a[0][7]	b[7]	a[0][7]	Н	Н	M	M	M

Πίνακας εκτέλεσης για $i=1 \rightarrow misses=24$ & hits=16

$\mathbf{j} = 0$	a[3][0]	a[2][0]	a[1][0]	b[8]	a[1][0]	M	Н	Н	M	M
j = 1	a[3][1]	a[2][1]	a[1][1]	b[9]	a[1][1]	Н	Н	M	M	M
j=2	a[3][2]	a[2][2]	a[1][2]	b[10]	a[1][2]	Н	Н	M	M	M
j = 3	a[3][3]	a[2][3]	a[1][3]	b[11]	a[1][3]	Н	Н	M	M	M
j = 4	a[3][4]	a[2][4]	a[1][4]	b[12]	a[1][4]	M	Н	Н	M	M
j = 5	a[3][5]	a[2][5]	a[1][5]	b[13]	a[1][5]	Н	Н	M	M	M
j = 6	a[3][6]	a[2][6]	a[1][6]	b[14]	a[1][6]	Н	Н	M	M	M
j = 7	a[3][7]	a[2][7]	a[1][7]	b[15]	a[1][7]	Н	Н	M	M	M

Παρατήρηση: Κάθε επανάληψη εκτός της πρώτης όπως προκύπτει από τον πίνακα, παρουσιάζει ίδια μορφή για i=1 άρα misses =196, hits =124.