Definice 0.1 (Weak derivative)

Let $u, v_{\alpha} \in L^1_{loc}(\Omega)$. We say, that v_{α} is α -th weak derivative of $u \equiv$

$$\equiv \int_{\Omega} u D^{\alpha} \varphi = (-1)^{|\alpha|} \int_{\Omega} v_{\alpha} \varphi \qquad \forall \varphi \in C_0^{\infty}(\Omega).$$

Definice 0.2 (Sobolev space $(W^{k,p})$)

 $\Omega \subseteq \mathbb{R}^d$ open, $k \in \mathbb{N}_0, p \in [1, \infty]$.

$$W^{k,p}(\Omega) := \left\{ u \in L^p(\Omega) | \forall \alpha, |\alpha| \leqslant k : D^{\alpha}u \in L^p(\Omega) \right\}.$$

$$||u||_{W^{k,p}(\Omega)} := ||u||_{k,p} := \begin{cases} \left(\sum_{|\alpha| \leqslant k} ||D^{\alpha}u||_p^p\right)^{\frac{1}{p}}, & p < \infty, \\ \max_{|\alpha| \leqslant k} ||D^{\alpha}u||_{\infty}, & p = \infty. \end{cases}$$

Tvrzení 0.1 (Completeness of Sobolev space)

Let $\Omega \subseteq \mathbb{R}^d$ be open set, $k \in \mathbb{N}$ and $p \in [1, \infty]$. Then $W^{k,p}(\Omega)$ is complete.

Tvrzení 0.2 (Separability of Sobolev spaces)

Let $\Omega \subseteq \mathbb{R}^d$ be open set, $k \in \mathbb{N}$ and $p \in [1, \infty)$. Then $W^{k,p}(\Omega)$ is separable.

Tvrzení 0.3 (Reflexivity of Sobolev spaces)

Let $\Omega \subseteq \mathbb{R}^d$ be open set, $k \in \mathbb{N}$ and $p \in (1, \infty)$. Then $W^{k,p}(\Omega)$ is separable.

Definice 0.3 (Scalar product of $W^{k,2}$)

Let $u, v \in W^{k,2}$, we define scalar product of u and v by:

$$(u,v)_{W^{k,2}(\Omega)} := (u,v)_{k,2} := \sum_{|\alpha| \leqslant k} \int_{\Omega} D^{\alpha} u(x) \cdot D^{\alpha} v(x) dx.$$

Věta 0.4 (Local approximation of Sobolev functions)

$$\forall u \in W^{k,p}(\Omega) \ \exists \ \{u_n\}_{n=1}^{\infty} \subseteq C_0^{\infty}(\mathbb{R}^d) \ \forall \tilde{\Omega} \ open, \overline{\tilde{\Omega}} \subseteq \Omega : u^n \to u \ in \ W^{k,p}(\tilde{\Omega}).$$

Definice 0.4 (Domain of the class $C^{k,\alpha}$)

Let $\Omega \subseteq \mathbb{R}^d$ be open bounded set and $\alpha > 0$. We say that $\Omega \in C^{k,\mu}$ iff:

- there exist M $(r \in [M])$ coordinate systems $\mathbf{x}^r = (x_1^r, \dots, x_d^r) = (\tilde{x}^r, x_d^r)$ and functions $a^r : \Delta^r \to \mathbb{R}$, where $\Delta^r = \{\tilde{x}^r \in \mathbb{R}^{d-1} \mid |x_d^r| \le \alpha\}$ such that $a^r \in C^{k,\mu}(\Delta^r)$;
- if we denote t^r the original transformation from \mathbf{x}^r to $\mathbf{x} = (\tilde{x}, x_d)$, then $\forall x \in \partial \Omega$ $\exists r \in [M]$ such that $x = t^r(\tilde{x}', a(\tilde{x}_d))$;

• $\exists \beta > 0$ such that if we define

$$V_+^r := \left\{ \mathbf{x}^r \in \mathbb{R}^d \middle| \tilde{x}^r \in \Delta_r \wedge a^r(\tilde{x}^r) < x_d^r < a^r(\tilde{x}^r) + \beta \right\},$$

$$V_-^r := \left\{ \mathbf{x}^r \in \mathbb{R}^d \middle| \tilde{x}^r \in \Delta_r \wedge a^r(\tilde{x}^r) - \beta < x_d^r < a^r(\tilde{x}^r) \right\},$$

$$\Lambda^r := \left\{ \mathbf{x}^r \in \mathbb{R}^d \middle| \tilde{x}^r \in \Delta_r \wedge a^r(\tilde{x}^r) = x_d^r \right\},$$
 then
$$t^r(V_+^r) \subseteq \Omega, \ t^r(V_-^r) \subseteq \mathbb{R}^d \backslash \Omega, \ t^r(\Lambda^r) \subseteq \partial \Omega \ \text{and} \ \bigcup_{r \in [M]} t^r(\Lambda_r) = \partial \Omega.$$

Věta 0.5 (Extension theorem for $W^{1,p}(\Omega)$)

Let $\Omega \in C^{0,1}$ and $k \in \mathbb{N}$, $p \in [1,\infty]$. Then there exists a continuous linear operator $E: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^d)$ such that (for C independent of u):

$$||Eu||_{W^{k,p}(\mathbb{R}^d)} \leqslant C \cdot ||Eu||_{W^{k,p}(\Omega)} \wedge Eu|_{\Omega} = u.$$

Tvrzení 0.6 (Continuous and compact embedding of Sobolev spaces)

Let $\Omega \in C^{0,1}$ and let $p \in [1, \infty]$. Then

- if p < d, then $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ for all $1 \leqslant \frac{dp}{d-p}$,
- if p = d, then $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ for all $q < \infty$,
- if p > d, then $W^{1,p}(\Omega) \hookrightarrow C^{0,1-\frac{d}{p}}(\overline{\Omega})$.

Moreover

- if p < d, then $W^{1,p}(\Omega) \hookrightarrow \hookrightarrow L^q(\Omega)$ for all $1 \leqslant \frac{dp}{d-p}$,
- if p = d, then $W^{1,p}(\Omega) \hookrightarrow \hookrightarrow L^q(\Omega)$ for all $q < \infty$,
- if p > d, then $W^{1,p}(\Omega) \hookrightarrow \hookrightarrow C^{0,\alpha}(\overline{\Omega})$ for all $\alpha < 1 \frac{d}{p}$.

 $X \hookrightarrow \hookrightarrow Y \equiv X \leqslant Y \, \land \, (A \subseteq X \ \textit{is bounded in} \ X \implies A \ \textit{is precompact in} \ Y) \, .$

$$(X \hookrightarrow \hookrightarrow Y \implies X \subseteq Y \land (\{u^n\}_{n=1}^{\infty}, \exists c: ||u^n||_{1,p} \leqslant c \implies \exists u^{n_j}: u^{n_j} \to u \ in \ Y) .)$$

Tvrzení 0.7 (Characterization of Sobolev spaces)

$$u \in W^{1,p}(\Omega) \implies \forall h, i, \delta : \|\Delta_i^h u\|_{L^p(\Omega_\delta)} \le \|\frac{\partial u}{\partial x_i}\|_{L^p(\Omega)}.$$

Also, if $\forall h, i, \delta : \|\Delta_i^h u\|_{L^p(\Omega_\delta)} \leqslant c_i$ and p > 1 then $\frac{\partial u}{\partial x_i}$ exist $\forall i$ and $\|\frac{\partial u}{\partial x_i}\|_{L^p(\Omega)} \leqslant c_i$.

Tvrzení 0.8 (Trace theorem)

Let $\Omega \in C^{0,1}$ and $p \in [1, \infty]$. Then there exists a continuous linear operator $\operatorname{tr}: W^{1,p}(\Omega) \to L^p(\partial\Omega)$ such that (for c independent of u):

$$\|\operatorname{tr} u\|_{L^p(\partial\Omega)} \leqslant c \cdot \|\operatorname{tr} u\|_{W^{1,p}(\Omega)} \wedge \forall u \in W^{1,p}(\Omega) \cap C(\overline{\Omega}) : \operatorname{tr} u|_{\partial\Omega} = u|_{\partial\Omega}.$$

Věta 0.9 (Linear Lax–Milgram lemma)

Let B be a bilinear elliptic form. Then

$$\forall F \in V^* \ \exists ! u \in V \ \forall \varphi \in V : B(u, \varphi) = \langle F, \varphi \rangle.$$

Věta 0.10 (Non-linear Lax–Milgram lemma)

Let B be Lipschitz continuous and uniformly monotone. Then

$$\forall F \in V^* \ \exists ! u \in V \ \forall \varphi \in V : \langle B(u), \varphi \rangle = \langle F, \varphi \rangle.$$

Definice 0.5 (Bochner integral)

Let $s: I \to X$ be a simple function $(|\operatorname{Im} s| = |\{x_1, \dots, x_n\}| < \infty)$ on interval. We define

$$\int_I s(t)dt := \sum_{j=1}^n x_j \cdot |I_j|.$$

Let $f: I \to X$ be a Bochner measurable function. We say that f is Bochner integrable if $\exists \{s^n\}_{n=1}^{\infty}$ such that $s^n(t) \to f(t)$ for almost every $t \in I$ and $\int_I \|s^n(t) - f(t)\|_X dt \to 0$ as $n \to \infty$ and we set

$$X \ni \int_{I} f(t)dt = \lim_{n \to \infty} \int_{I} s^{n}(t)dt.$$

Definice 0.6 (Bochner measurability, simple functions)

We say that $f: I \to X$ is measurable (strongly, Bochner) if $\exists \{s_j\}_{j=1}^{\infty}$ simple functions $(|\operatorname{Im} s_j| < \infty)$, such that $||f(t) - s_n(t)||_X \to 0$ as $n \to \infty$ for almost every $t \in I$.

Definice 0.7 (The spaces $L^p(0,T;X)$)

Let X be a Banach space, then

$$L^p(0,T;X) = \left\{ f: (0,T) \to X \text{ bochner integrable} \middle| \int_I \|f(t)\|_X^p < \infty \right\}.$$

$$||f||_{L^p(0,T;X)} = \left(\int_I ||f(t)||_X^p dt\right)^{1/p}.$$

Definice 0.8 (Weak time derivative for Bochner spaces)

Let $f: I \to X$ be Bochner integrable. We say that $g: I \to X$ is weak derivative of f with respect to time iff g is Bochner integrable and $\forall \tau \in C_0^{\infty}(I): \int_I f(t)\tau'(t)dt = -\int_I g(t)\tau(t)dt$.

Definice 0.9 (Sobolev space $W^{1,p}(I;X)$)

$$W^{1,p}(I;X) := \{ f \in L^p(I;X) | \partial_t f \in L^p(I;X) \};$$

$$||f||_{W^{1,p}(I;X)} = \begin{cases} \left(\int_I ||f||_X^p + ||\partial_t f||_X^p \right)^{\frac{1}{p}}, & p \in [1,\infty) \\ \operatorname{esssup}_{t \in I}(||f(t)||_X + ||\partial_t f||_X), & p = \infty. \end{cases}$$

Tvrzení 0.11 (Completeness of $W^{1,p}(I;X)$)

 $W^{1,p}(I;X)$ is complete.

Tvrzení 0.12 (Reflexivity, separability of $L^p(0,T;X)$)

 $W^{1,p}(I;X)$ is separable for $p < \infty$ and X separable. $W^{1,p}(I;X)$ is reflexive if $p \in (1,\infty)$ and X is reflexive and also separable.

Definice 0.10 (Scalar product of $W^{1,2}(I;H)$)

If H is Hilbert space and $u, v \in$, then

$$(u,v)_{H^1(I;X)} := (u,v)_{L^2(I;X)} + (u',v')_{L^2(I;X)},$$

where

$$(u,v)_{L^2(I;X)} := \int_I (u(t),v(t))dt.$$

Definice 0.11 (Gelfand triple)

We say that X, H, X^* is Gelfand triple iff $X \stackrel{\text{dense}}{\hookrightarrow} H \cong H^* \stackrel{\text{dense}}{\hookrightarrow} X^*$.

Věta 0.13 (Integration by parts for Sobolev-Bochner functions)

Let $p \in (1, \infty)$, X, H, X^* a Gelfond triple, $u, v \in L^p(0, T; X)$, $\partial_t u, \partial_t v \in L^{p'}(0, T; X^*)$. Then $u, v \in C([0, T]; H)$ and $\forall 0 \leq t_1 < t_2 \leq T$:

$$\int_{t_1}^{t_2} \langle \partial_t u, v \rangle_X + \langle \partial_t v, u \rangle_X = (u(t_2), v(t_2))_H - (u(t_1), v(t_1))_H.$$

Důkaz (Completeness of Sobolev space)

 u^n is Cauchy in $L^p(\Omega)$ so $\exists u \in L^p : u^n \to u$ in L^p . $D^{\alpha}u^n$ is Cauchy in $L^p(\Omega) \ \forall |\alpha| < k$ so $\exists v_{\alpha} \in L^p : D^{\alpha}u^n \to v_{\alpha} \in L^p$. It remains prove that $D^{\alpha}u = v_{\alpha}$.

$$\forall \eta \in C_0^{\infty}(\Omega) : \int_{\Omega} v_{\alpha} \eta = \int_{\Omega} (v_{\alpha} - D^{\alpha} u^n) \eta + \int_{\Omega} D^{\alpha} u^n \eta =$$

$$= \int_{\Omega} (v_{\alpha} - D^{\alpha} u^n) \eta + (-1)^{|\alpha|} \int_{\Omega} D^{\alpha} \eta u^n =$$

$$= \int_{\Omega} (v_{\alpha} - D^{\alpha} u) \eta + (-1)^{|\alpha|} \int_{\Omega} (u^n - u) D^{\alpha} \eta + (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \eta.$$

$$\left| \int_{\Omega} (v_{\alpha} - D^{\alpha} u^n) \varphi \right| \leq \|v_{\alpha} - D^{\alpha} u^n\|_p \|\eta\|_{p'} \leq C \|v_{\alpha} - D^{\alpha} u^n\| \to 0.$$

$$\left| \int_{\Omega} (u^n - u) D^{\alpha} \eta \right| \leq \|u^n - u\|_p \|D^{\alpha} \eta\|_{p'} \leq C \|u^n - u\|_p \to 0.$$

 $D\mathring{u}kaz$ (Separability and reflexivity of Sobolev spaces) $W^{1,p}(\Omega) \simeq X \subseteq L^p(\Omega) \times \ldots \times L^p(\Omega)$ (d+1 times), X closed subspace from previous.

Lemma: if $X \subseteq Y$ is closed subspace then Y separable $\implies X$ separable and Y reflexive $\implies X$ reflexive. (From functional analysis and topology.)

 $D\mathring{u}kaz$ (Local approximation of Sobolev functions) u is extended by 0 to $\mathbb{R}^d \setminus \Omega$.

$$u^{\varepsilon} = u * \eta^{\varepsilon}$$
 $\eta^{\varepsilon}(x) = \frac{\eta(\frac{x}{\varepsilon})}{\varepsilon^d}$ $\eta \in C_0^{\infty}(B_1), \eta \geqslant 0, \eta(x) = \eta(|x|), \int_{\mathbb{R}^d} \eta(x) dx = 1.$

$$u \in L^P(SET) \qquad u^{\varepsilon} \to u \text{ in } L^p(SET).$$

We need: $D^{\alpha}u^{\varepsilon} \to D^{\alpha}u$ in $L^{p}(\tilde{\Omega}) \ \forall \alpha, |\alpha| \leq k$. Essential step: $D^{\alpha}u^{\varepsilon} = (D^{\alpha}u)^{\varepsilon}$ in $\tilde{\Omega}$ for $\varepsilon \leq \varepsilon_{0}$ (so that ball of radius ε_{0} and center in $\tilde{\Omega}$ is in Ω):

$$(D^{\alpha}u)^{\varepsilon}(x) = \int_{\mathbb{R}^{d}} D^{\alpha}u(y)\eta_{\varepsilon}(x-y)dy = \int_{B_{\varepsilon}(x)} D^{\alpha}u(y)\eta_{\varepsilon}(x-u)dy =$$

$$= (-1)^{|\alpha|} \int_{B_{\varepsilon}(x)} u(y)D_{y}^{\alpha}\eta_{\varepsilon}(x-y)dy = \int_{\mathbb{R}^{d}} u(y)D_{x}^{\alpha}\eta(x-y)dy.$$

$$D^{\alpha}u^{\varepsilon} = D_{x}^{\alpha} \int_{\mathbb{R}^{d}} u(y)\eta_{\varepsilon}(x-y)dy = \int_{\mathbb{R}^{d}} u(y)D_{x}^{\alpha}\eta_{\varepsilon}(x-y)dy.$$

 $D\mathring{u}kaz$ (Extension theorem for $W^{1,p}(\Omega)$) Without proof.

 $D\mathring{u}kaz$ (Continuous and compact embedding of Sobolev spaces) Without proof.

Důkaz (Characterization of Sobolev spaces) Without proof.

Důkaz (Trace theorem)

Without proof.

Důkaz (Linear Lax-Milgram lemma by non-linear version)

We define $B(u): V \to V^*$ by $\langle B(u), \varphi \rangle := B(u, \varphi)$. Then B(u) is Lipschitz and uniformly monotone.

Důkaz (Lipschitz)

$$||B(u) - B(v)||_{V^*} = \sup_{\varphi \in V, ||\varphi||_V \leqslant 1} \langle B(u) - B(v), \varphi \rangle = \sup_{\varphi} (B(u, \varphi) - B(v, \varphi)) =$$
$$= \sup_{\varphi} B(u - v, \varphi) \leqslant \sup_{\varphi} c_2 \cdot ||u - v||_V \cdot ||\varphi||_V = c_2 \cdot ||u - v||_V.$$

 $D\mathring{u}kaz$ (Uniformly monotone)

$$\langle B(u) - B(v), u - v \rangle = B(u - v, u - v) \geqslant c_1 \cdot \|u - v\|_V^2.$$

So it satisfies assumptions of Non-linear Lax-Milgram lemma.

Důkaz (Non-linear Lax-Milgram lemma)

"Uniqueness": $u, v \in V, \forall \varphi \in V : \langle B(u), \varphi \rangle = \langle F, \varphi \rangle = \langle B(v), \varphi \rangle$. Then

$$\forall \varphi \in V : \langle B(u) - B(v), \varphi \rangle = 0 \stackrel{(\varphi := u - v)}{\Longrightarrow} \langle B(u) - B(v), u - v \rangle = 0 \geqslant c_1 \|u - v\|_V^2 \implies u = v.$$

"Existence": $\forall \varphi : \langle B(u), \varphi \rangle = \langle F, \varphi \rangle \Leftrightarrow$

$$\Leftrightarrow \forall \varepsilon > 0 \ \forall \varphi : (u, \varphi)_V = (u, \varphi)_V - \varepsilon \cdot (\langle B(u), \varphi \rangle - \langle F, \varphi \rangle).$$

Define a problem for $v \in V$: Find $u \in V$ such that

$$\forall \varphi : (u, \varphi)_V = (v, \varphi)_V - \varepsilon \cdot (\langle B(v), \varphi \rangle - \langle F, \varphi \rangle).$$

Define $M: V \to V$, $v \mapsto u$. If M has a fixed point, then we find a solution to the original problem.

- 1. "M is well-defined": For given $v \in V$, define $\tilde{F} \in V^*$: $\forall \varphi : \left\langle \tilde{F}, \varphi \right\rangle := (v, \varphi)_V \varepsilon(\langle B(v), \varphi \rangle \langle F, \varphi \rangle)$. $\left\langle \tilde{F}, \varphi \right\rangle$ linear in φ . Riesz tells us that $\forall \tilde{F} \in V^* \exists ! u \in V \ \forall \varphi \in V : (u, \varphi)_V = \left\langle \tilde{F}, \varphi \right\rangle$.
 - 2. M has a fixed point": We show that

$$\exists \delta > 0 \ \forall u, v \in V : \|M(u) - M(v)\|_{V} \le (1 - \delta)\|u - v\|_{V}.$$

Then from Banach theorem M has a fixed point. From linearity (and definition of M):

$$(\overline{u} - \overline{v}, \varphi)_V = (u - v, \varphi)_V - \varepsilon \cdot (\langle B(u) - B(v), \varphi \rangle + 0).$$

From Rietsz theorem there exists w_1, w_2 such that $\forall \varphi : (w_1, \varphi)_V = \langle B(u), \varphi \rangle \land (w_2, \varphi)_V = \langle B(v), \varphi \rangle \Longrightarrow$

$$\implies \|M(u) - M(v)\|_V^2 = \|u - v - \varepsilon(w_1 - w_2)\|_V^2 = \|u - v\|_V^2 - 2\varepsilon(u - v, w_1 - w_2) + \varepsilon^2 \cdot \|w_1 - w_2\|_V^2$$

But from Lipschitz and uniformly monotone:

$$(u-v, w_1-w_2) = \langle B(u) - B(v), u-v \rangle \geqslant c_1 \cdot \|u-v\|_V^2,$$

$$\|w_1 - w_2\|_V^2 = (w_1 - w_2, w_1 - w_2)_V = \langle B(u) - B(v), w_1 - w_2 \rangle \leqslant \|B(u) - B(v)\|_V + \|w_1 - w_2\|_V^2,$$

$$\implies \|w_1 - w_2\|_V^2 \leqslant \|B(u) - B(v)\|_{V^*}^2 \leqslant c_2 \cdot \|u-v\|_V^2.$$

So (for sufficiently small $\varepsilon \exists d > 0$)

$$||M(u) - M(v)||_V^2 \le ||u - v||_V^2 - 2\varepsilon \cdot c_1 \cdot ||u - v||_V^2 + \varepsilon^2 c_2 \cdot ||u - v||_V^2 = (1 - 2\varepsilon \cdot c_1 + \varepsilon^2 \cdot c_2) ||u - v||_V^2 \le (1 - \delta) ||u - v||_V^2.$$

 $D\mathring{u}kaz$ (Completeness of $W^{1,p}(I;X)$)

Without proof.

 $D\mathring{u}kaz$ (Reflexivity, separability of $L^p(0,T;X)$)

Without proof.

Důkaz (Integration by parts for Sobolev-Bochner functions)

- Step 1: Modify u, v in terms of the Steklov averages $u_h = \int_t^{t+h} u(\tau) d\tau$.
- Step 2: Prove for u_h , v_h from step 1).
- Step 3: $h \to 0_+$.

Důkaz (Step 1)

Define $u_h(t) := \frac{1}{h} \int_t^{t+h} u(\tau) d\tau$, $\forall t \in (0, T-h)$. $u_h \to h \ L^p(0, T-h_0, X)$, $\forall h_0 \in (0, T)$. We want $u_h(t) := \frac{1}{h} \int_t^{t+h} u(\tau) d\tau$.

$$(\partial_t u)_h \to \partial_t u \text{ in } L^{p'}(0, T - h_0, X^*), \qquad \forall h_0 \in (0, T)$$

$$\varphi \in C_0^{\infty}(0, T - h) : \int_0^{T - h} u_h(t)\varphi'(t)dt = \frac{1}{h} \int_0^{T - h} \varphi'(t) \int_t^{t + h} u(t)d\tau dt =$$

$$= \frac{1}{h} \int_0^{T - h} \varphi'(t) \left(\int_0^{t + h} u(\tau)d\tau - \int_0^t u(\tau)d\tau \right) =$$

$$= -\frac{1}{h} \int_0^{T - h} \varphi(t)(u(t + h) - u(t)) \Leftrightarrow \partial_t u_h = \frac{u(t + h) - u(t)}{h}.$$

$$\varphi \in C_0^{\infty}(0, T - h) : \int_0^T \varphi(t)(\partial_t u)_h(t)dt = \frac{1}{h} \int_0^{T - h} \varphi(t) \int_t^{t + h} \partial_t u(\tau)d\tau dt =$$

$$= \frac{1}{h} \int_0^{T - h} \varphi(t) \left(\int_0^{t + h} \partial_t u(\tau)d\tau - \int_0^t \partial_t u(\tau)d\tau \right) dt = (*)$$

$$\frac{1}{h} \int_0^{T - h} \varphi(t) \left(\int_0^t \partial_t u(\tau)d\tau \right) dt = \int_0^{T - h} \int_0^{T - h} \varphi(t)\partial_t u(\tau)\chi_{\tau \leqslant t}d\tau dt =$$

$$= \frac{1}{h} \int_0^{T - h} \partial_t u(\tau) \left(\int_t^{T - h} \varphi(t)dt \right) d\tau.$$

$$(*) = \frac{1}{h} \int_0^{T - h} \partial_t u(\tau) \underbrace{\left(\int_{\tau - h}^\tau \varphi(t)dt \right)}_{C_0^{\infty}(0, T)} d\tau = -\frac{1}{h} \int_0^{T - h} u(\tau) \left(\varphi(\tau) - \varphi(\tau - h) \right) d\tau dt.$$

Důkaz (Step 2)

We want
$$\int_{t_1}^{t_2} < \partial_t u_{h_1}, v_{h_2} >_X + < \partial_t v_{h_2}, u_{h_1} >_X dt = (u_{h_1}(t_2), v_{h_2}(t_2))_H - (u_{h_1}(t_1), v_{h_2}(t_1))_H$$

$$\Leftrightarrow \int_{t_1}^{t_2} (\partial_t u_{h_1}, v_{h_2})_H + (\partial_t v_{h_2}, u_{h_1})_H dt = (u_{h_1}(t_2), v_{h_2}(t_2))_H - (u_{h_1}(t_1), v_{h_2}(t_1))_H$$

$$\int_{t_1}^{t_2} (\partial_t u_{h_1}, v_{h_2})_H = \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1}^{t + h_2} v(\tau) d\tau - \int_{t_1}^{t} v(\tau) d\tau \right)_H dt =$$

$$= \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1 - h_2}^{t + h_2} v(\tau + h_2) d\tau - \int_{t_1}^{t} v(\tau) d\tau \right)_H =$$

$$= \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1 - h_2}^{t} v(\tau + h_2) - v(\tau) d\tau \right)_H dt +$$

$$+ \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1 - h_2}^{t_1} v(\tau + h_2) d\tau \right)_H dt =$$

$$= \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(v(\tau + h_2) - v(\tau) d\tau, \int_{t_1 - h_2}^{t_1} v(\tau + h_2) d\tau \right)_H dt =$$

$$= \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1 - h_2}^{t_1} v(\tau + h_2) d\tau \right)_H dt =$$

$$= \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1 - h_2}^{t_1} v(\tau + h_2) d\tau \right)_H dt =$$

$$= \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1 - h_2}^{t_1} v(\tau + h_2) d\tau \right)_H dt =$$

$$= \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1 - h_2}^{t_1} v(\tau + h_2) d\tau \right)_H dt =$$

$$= \int_{t_1}^{t_2} \left(u(t + h_1) - u(t), \int_{t_1 - h_2}^{t_1} v(\tau + h_2) d\tau \right)_H d\tau +$$

$$+ \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(v(\tau + h_2) - v(\tau) d\tau, \int_{t_2}^{t_2 + h_1} u(t) dt \right)_H d\tau +$$

$$+ \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(v(\tau + h_2) - v(\tau), \int_{t_2}^{t_2 + h_2} u(t) dt \right)_H d\tau +$$

$$+ \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(v(\tau + h_2) - v(\tau), \int_{t_2}^{t_2 + h_2} u(t) dt \right)_H d\tau +$$

$$+ \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(v(\tau + h_2) - v(\tau), \int_{t_2}^{t_2 + h_2} u(t) dt \right)_H d\tau +$$

$$+ \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(v(\tau + h_2) - v(\tau), \int_{t_2}^{t_2 + h_2} u(t) dt \right)_H d\tau +$$

$$+ \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(v(\tau + h_2) - v(\tau), \int_{t_2}^{t_2 + h_2} u(t) dt \right)_H d\tau +$$

$$+ \frac{1}{h_1 h_2} \int_{t_1}^{t_2} \left(v(\tau + h_2) - v(\tau), \int_{t_2}^{t_2 + h_2} u(t) dt \right)_H d\tau +$$

$$- \int_{t_2}^{t_2} \left(v(\tau + h_2) - v(\tau), \int_{t_2}^{t_2 + h_2} u$$

 $D\mathring{u}kaz$ (Step 3)

We have

$$\int_{t_1}^{t_2} \langle \partial_t u_{h_1}, v_{h_2} \rangle_X + \langle \partial_t v_{h_2}, u_{h_1} \rangle_X dt = (u_{h_1}(t_2), v_{h_2}(t_2))_H - (u_{h_1}(t_1), v_{h_2}(t_1))_H$$

Let $h_1 \to 0_+$ and $h_2 \to 0_+$. We have $\partial_t u_{h_1} \to \partial_t u$ in $L^{p'}(0,T,X^*)$, $\partial_t v_{h_2} \to \partial_t v$ in $L^{p'}(0,T,X^*)$, $u_{h_1} \to u$ in $L^p(0,T,X)$, $V_{h_2} \to v$ in $L^p(0,T,X)$. So for almost all t in (0,T): $v_{h_2}(t) \to v(t)$ in $X \hookrightarrow H$ and $u_{h_1}(t) \to u(t)$ in $X \hookrightarrow H$.

$$\int_{t_1}^{t_2} \langle \partial_t u, v \rangle_X + \langle \partial_t v, u \rangle_X = (u(t_2), v(t_2))_H - (u(t_1), v(t_1))_H.$$

Now, it is enough to show $u, v \in C([0,T); H)$. We show that u_h is Cauchy in C([0,T]; H). Use IBP $u_{h_1} = u_{h^n} - u_{h^m}$, $v_{h_2} = u_{h^n} - u_{h^m}$:

$$||u_{h^{n}}(t_{2}) - u_{h^{m}}(t_{2})||_{H} = ||u_{h^{m}}(t_{1}) - u_{h^{m}}(t_{1}) + 2\int_{t_{1}}^{t_{2}} \langle \partial_{t}(u_{h}^{m} - u_{h}^{n}), u_{h^{n}} - u_{h^{m}} \rangle_{X} ||$$

$$||u_{h^{n}} - u_{h^{m}}||_{C(\left[\frac{T}{4}, T\right]; L^{2}(\Omega)\right)}^{2} = \sup_{t_{2} \in \left(\frac{T}{2}, T\right)} ||u_{h^{n}}(t_{2}) - u_{h^{m}}(t_{2})||_{H}^{2} \leqslant$$

$$||u_{h^{m}}(t_{1}) - u_{h^{n}}(t_{1})||_{H}^{2} + \int_{0}^{T} ||\partial_{t}(u_{h^{n}}) - \partial u_{h^{m}}||_{X^{*}} ||u_{h^{m}} - u_{h^{n}}||_{X} dt.$$

Choose t_1 such that $u_h(t_1) \to u(t_1)$ in H:

$$\leq ||u_h(t_1) - u_{h^m}(t_1)||_H^2 + ||\partial_t u_{h^m} - \partial_2 u_{h^n}||_{L^p(X^*)} \cdot \dots$$

$$u \in C\left(\left[\frac{T}{4}, T\right]; L^2(\Omega)\right) \land u \in C\left(\left[0, \frac{3T}{4}\right]; L^2(\Omega)\right) \rightarrow u \in C\left(\left[0, T\right]; L^2(\Omega)\right) (u(t_1), v(t_1))_H.$$