Package 'kalmanSSM'

September 4, 2023

September 4, 2023
Title Kalman Filter
Version 0.0.0.9000
Description Functions related to Kalman filters.
<pre>URL https://github.com/ijapesigan/kalmanSSM,</pre>
https://ijapesigan.github.io/kalmanSSM/
BugReports https://github.com/ijapesigan/kalmanSSM/issues
License GPL (>= 3)
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
VignetteBuilder knitr
Depends R (>= 3.5.0)
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp
Suggests knitr, rmarkdown, testthat
RoxygenNote 7.2.3
NeedsCompilation yes
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan < r.ijapesigan@gmail.com>
R topics documented:
dat_multiv_p1 2 dat_univ_p1 2 KFilterP1 3
Index 5

2 dat_univ_p1

dat_multiv_p1

Data from a Multivariate State Space Model (p = 1)

Description

Data from a Multivariate State Space Model (p = 1)

Usage

dat_multiv_p1

Format

A matrix with 100 rows (time points) and 5 columns (eta1, and eta2 for latent states, y1, and y2 for observed data, and time for discrete time from 1 to 100) generated from the state space model given by

$$\begin{pmatrix} y_{1_t} \\ y_{2_t} \end{pmatrix} = \begin{pmatrix} \eta_{1_t} \\ \eta_{2_t} \end{pmatrix} + \begin{pmatrix} \varepsilon \mathbf{1}_t \\ \varepsilon \mathbf{2}_t \end{pmatrix} \quad \text{with} \quad \begin{pmatrix} \varepsilon_{1_t} \\ \varepsilon_{2_t} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.0 \\ 0.0 & 1 \end{pmatrix} \right)$$

$$\begin{pmatrix} \eta_{1_t} \\ \eta_{2_t} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.0 \\ 0.0 & 0.8 \end{pmatrix} \begin{pmatrix} \eta_{1_{t-1}} \\ \eta_{2_{t-1}} \end{pmatrix} + \begin{pmatrix} \zeta_{1_t} \\ \zeta_{2_t} \end{pmatrix} \quad \text{with} \quad \begin{pmatrix} \zeta \mathbf{1}_t \\ \zeta \mathbf{2}_t \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.0 \\ 0.0 & 1 \end{pmatrix} \right)$$

dat_univ_p1

Data from a Univariate State Space Model (p = 1)

Description

Data from a Univariate State Space Model (p = 1)

Usage

dat_univ_p1

Format

A matrix with 100 rows (time points) and 3 columns (eta for the latent state, y for the observed data, and time for discrete time from 1 to 100) generated from the state space model given by

$$Y_{t} = \eta_{t} + \varepsilon_{t} \quad \text{with} \quad \varepsilon_{t} \sim \mathcal{N}\left(0, 1\right)$$
$$\eta_{t} = 0.8\eta_{t-1} + \zeta_{t} \quad \text{with} \quad \zeta_{t} \sim \mathcal{N}\left(0, 1\right).$$

KFilterP1 3

KFilterP1	Kalman Filter with Lag 1 for State Space Models	

Description

Kalman Filter with Lag 1 for State Space Models

Usage

KFilterP1(data, Lambda, mu0, Sigma0, beta, chol_psi, chol_theta)

Arguments

data	Numeric matrix. time by k data matrix.
Lambda	Numeric matrix. Measurement or observation matrix.
mu0	Numeric matrix. Initial state mean vector where p is the number of lags.
Sigma0	Numeric matrix. Initial state covariance matrix where p is the number of lags.
beta	Numeric matrix. State transition matrix.
chol_psi	Numeric matrix. Cholesky decomposition of the state error covariance matrix Psi.
chol_theta	Numeric matrix. Cholesky decomposition of the observation error covariance matrix Theta.

Details

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t} \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where y, η , and ε are random variables and ν , Λ , and Θ are model parameters. y is a vector of observed random variables, η is a vector of latent random variables, and ε is a vector of random measurement errors while ν is a vector of intercept, Λ is a matrix of factor loadings, and Θ is the covariance matrix of ε .

The dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\zeta}_t \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where η_t , η_l , and ζ_t are random variables and α , β , and Ψ are model parameters. η_t is a vector of latent variables at time t, η_{t-1} is a vector of latent variables at t-1, and ζ_t is a vector of dynamic noise at time t while α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of ζ_t .

Value

List of filtered state variables and other Kalman filter results.

KFilterP1

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
data <- dat_univ_p1[, "y", drop = FALSE]</pre>
kalman <- KFilterP1(</pre>
 data = data,
 Lambda = matrix(1),
 mu0 = matrix(0),
 Sigma0 = matrix(1),
 beta = matrix(0.8),
 chol_psi = matrix(1),
  chol_theta = matrix(1)
)
str(kalman)
data <- dat_multiv_p1[, c("y1", "y2"), drop = FALSE]</pre>
kalman <- KFilterP1(</pre>
  data = data,
  Lambda = diag(2),
 mu0 = matrix(data = 0, nrow = 2),
  Sigma0 = diag(2),
  beta = diag(x = 0.8, nrow = 2, ncol = 2),
  chol_psi = chol(diag(2)),
  chol_theta = chol(diag(2))
str(kalman)
```

Index

```
* Kalman Filter for State Space Models
    Functions
    KFilterP1, 3
* data
        dat_multiv_p1, 2
        dat_univ_p1, 2
* kalmanSSM
        dat_multiv_p1, 2
        dat_univ_p1, 2
        KFilterP1, 3
* kalman
        KFilterP1, 3

dat_multiv_p1, 2
dat_univ_p1, 2
KFilterP1, 3
```