Clase 3

- 1. Graficación en R
- 2. graphics
- 3. ggplot2
- 4. Live coding

Graficación en R

Podemos crear graficas en R de dos distintas maneras:

- 1. Usando paquete graphics (precargado en R)
 - · Conveniente para gráficas sencillas
 - · Difícil de usar para gráficas más complicadas/personalizadas
- 2. Usando el paquete ggplot2 de tidyverse
 - · Requiere un poco más de trabajo
 - · Podemos hacer gráficas más complicadas
 - · Fácil (cuando va aprendimos bien) de personalizar

graphics

Paquete graphics

Funciones más comunes y usadas

Function	Description
plot(x)	Plot of the values of x (on the y -axis) ordered on the x -axis
plot(x, y)	Bivariate plot of x (on the x-axis) and y (on the y-axis)
pie(v)	Circular pio chart
boxplot(x)	"Box-and-whiskers" plot
stripchart(x)	Plot of the values of x on a line (an alternative to boxplot () for small sample
	sizes)
COPIOL (X~Y Z)	Bivariate plot of x and y for each value (or interval of values) of z
dotchart(x)	If x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and
	column-by-column)
fourfoldplot(x)	Visualizes, with quarters of circles, the association between two dichotomous
	variables for different populations (x must be an array with $dim=c$ (2, 2,
	k), or a matrix with dim=c(2, 2) if $k=1$)
assocplot(x)	Cohen-Friendly graph showing the deviations from independence of rows and
	columns in a two dimensional contingency table
mosaicplot(x)	'Mosaic' graph of the residuals from a log-linear regression of a contingency
	table
pairs(x)	If x is a matrix or a data frame, draws all possible bivariate plots between the
	columns of x
hist(x)	Histogram of the frequencies of x
barplot(x)	Histogram of the values of x
qqnorm(x)	Quantiles of x with respect to the values expected under a normal law
qqplot(x, y)	Quantiles of y with respect to the quantiles of x
contour(x, y, z)	Contour plot (data are interpolated to draw the curves), x and y must be vectors
	and z must be a matrix so that $dim(z) = c(length(x), length(y))$ (x
	and y may be omitted)
symbols(x,y,)	Draws, at the coordinates given by x and y , symbols (circles, squares,
	rectangles, stars, thermometers or "boxplots") which sizes, colors, etc, are
	specified by supplementary arguments
termplot(mod.obj)	Plot of the (partial) effects of a regression model (mod.obj)

Parámetros para personalizar funciones

Agregar título y nombre a los ejes

- · main = "Título"
- xlab = "Nombre eje x"
- ylab = "Nombre eje y" '

Personalizar

- pch = tipo de punto (número del 1 al 25)
- · lty = tipo de linea (número del 1 al 6)
- · col = "color"

Line Types: Ity=

R colors

Nota: Podemos usar números, nombres o códigos hexadecimales

graphics · 5/1

Ejemplo

El código:

```
> plot(edad, talla,
+ main = "Edad vs talla", xlab = "Edad (años)",
+ ylab = "Talla (cm)", col = "dodgerblue",
+ pch= 20)
```

Nos devuelve la gráfica:

ggplot2

Paquete ggplot2

La idea principal es ir trabajando en capas:

1. Lienzo:

El codigo

> ggplot()

Nos devuelve

2. Agrego siguiente capa con un símbolo de +

El codigo

Nos devuelve

Mapeo

2. Agrego siguiente capa con un símbolo de +

El codigo

Nos devuelve

Template básico de una gráfica

En general, el template para ggplot siempre se ve así:

En el ejemplo anterior, usamos la función **geom_point**, pero podríamos usar por ejemplo líneas (**geom_line**) o barras (**geom_bar**)

GEOM_FUNCTIONS

Dentro de todas las (*geom_functions*) debemos agregar la función (*aes()*) para indicar las variables que queremos graficar, y también las *aesthetics* que son propiedades visuales de los objetos en la gráfica. Estas propiedades incluyen cosas como el tamaño, la forma o el color de los puntos/lineas/barras etc. En el ejemplo anterior:

```
> ggplot(data = Antropometria) +
+ geom_point(aes(x = edad, y = talla),
+ color = "tomato3")
```

Live coding

Referencias y recursos

- P. Kuhnert & B. Venables, An Introduction to R: Software for Statistical Modeling & Computing
- Grolemund, G., & Wickham, H. (2017). R for Data Science. O'Reilly Media.
 https://r4ds.had.co.nz/
- https://www.tidyverse.org/
- https://ggplot2.tidyverse.org/