Riemannian Geometry

Solution to Lee's Book

Misuzu

February 2, 2025

${\tt CONTENTS}$

Contents

1	Chapter 4: Connections	3
2	Chapter 5	4
3	Chapter 6	7

1 Chapter 4: Connections

Problem 4-3

Proof. Prove by definition:

$$\begin{split} \widetilde{\Gamma}^k_{ij}\widetilde{E}_k &= \nabla_{\widetilde{E}_i}\widetilde{E}_j = \nabla_{\widetilde{E}_i}A^r_jE_r = \widetilde{E}_i(A^r_j)E_r + A^r_j\nabla_{\widetilde{E}_i}E_r \\ &= (A^q_iE_q)(A^r_j)E_r + A^r_jA^q_i\nabla_{E_q}E_r = A^q_iE_q(A^r_j)E_r + A^r_jA^q_i\Gamma^\ell_{qr}E_\ell \end{split}$$
 Since
$$\widetilde{\Gamma}^k_{ij}\widetilde{E}_k = \widetilde{\Gamma}^k_{ij}A^p_kE_p, \text{ by comparison we have}$$

$$\widetilde{\Gamma}^k_{ij} = (A^{-1})^k_pA^q_iE_q(A^p_j) + (A^{-1})^k_pA^r_jA^q_i\Gamma^p_{qr} \end{split}$$

Problem 4-4

Proof. It's clear that

2 Chapter 5

Problem 5-1

Proof. By definition we have $D^{\flat}(X,Y) = \widetilde{\nabla}_X Y - \nabla_X Y$. Then

$$\begin{split} D^{\flat}(X,Y,Z) &= -D^{\flat}(X,Z,Y) \iff \langle \widetilde{\nabla}_X Y,Z \rangle - \langle \nabla_X Y,Z \rangle = -\langle \widetilde{\nabla}_X Z,Y \rangle + \langle \nabla_X Z,Y \rangle \\ &\iff \langle \widetilde{\nabla}_X Y,Z \rangle + \langle \widetilde{\nabla}_X Z,Y \rangle = \nabla_X \langle Y,Z \rangle = X \langle Y,Z \rangle \\ &\iff \widetilde{\nabla} \text{ is compatible with } g. \end{split}$$

Problem 5-2

Proof. We have

$$g_{jk}\omega_i^k + g_{ik}\omega_j^k = dg_{ij} \iff \forall X \in \mathfrak{X}(M), \ g_{jk}\omega_i^k(X) + g_{ik}\omega_j^k(X) = dg_{ij}(X)$$

$$\iff \forall X \in \mathfrak{X}(M), \ \langle \omega_i^k(X)E_k, E_j \rangle + \langle \omega_j^k(X)E_k, E_i \rangle = X\langle E_i, E_j \rangle$$

$$\iff \forall X \in \mathfrak{X}(M), \ \langle \nabla_X E_i, E_j \rangle + \langle \nabla_X E_j, E_i \rangle = X\langle E_i, E_j \rangle$$

$$\iff \nabla \text{ is compatible with } g.$$

Problem 5-3

Proof. By proposition 5.5 it's easy to prove after calculation.

Problem 5-6

Proof. (a) Since \widetilde{X} , \widetilde{Y} are π -related to X,Y and π is a Riemannian submersion, we have $\langle \widetilde{X}_p, \widetilde{Y}_p \rangle = \langle X_{\pi(p)}, Y_{\pi(p)} \rangle = \langle X,Y \rangle \circ \pi$; Since $d\pi_p \left([\widetilde{X},\widetilde{Y}]_p^H \right) = d\pi_p \left([\widetilde{X},\widetilde{Y}]_p \right) = [X,Y]_{\pi(p)}$, so $[\widetilde{X},\widetilde{Y}]^H = [X,Y]$; Since $d\pi_p \left([\widetilde{X},W]_p \right) = [X,0]_{\pi(p)} = 0$, so $[\widetilde{X},W]$ is vertical if W is vertical.

(b) For Levi-Civita connection we have

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left(X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle Y, [X, Z] \rangle - \langle Z, [Y, X] \rangle + \langle X, [Z, Y] \rangle \right).$$

So we have

$$\begin{split} \langle \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}, \widetilde{Z} \rangle &= \frac{1}{2} \left(\widetilde{X} \langle \widetilde{Y}, \widetilde{Z} \rangle + \widetilde{Y} \langle \widetilde{Z}, \widetilde{X} \rangle - \widetilde{Z} \langle \widetilde{X}, \widetilde{Y} \rangle \right. \\ &- \langle \widetilde{Y}, [\widetilde{X}, \widetilde{Z}] \rangle - \langle \widetilde{Z}, [\widetilde{Y}, \widetilde{X}] \rangle + \langle \widetilde{X}, [\widetilde{Z}, \widetilde{Y}] \rangle \right) \\ &= \frac{1}{2} \left(\widetilde{X} \left(\langle Y, Z \rangle \circ \pi \right) + \widetilde{Y} \left(\langle Z, X \rangle \circ \pi \right) - \widetilde{Z} \left(\langle X, Y \rangle \circ \pi \right) \right. \\ &- \langle \widetilde{Y}, [\widetilde{X}, \widetilde{Z}]^H \rangle - \langle \widetilde{Z}, [\widetilde{Y}, \widetilde{X}]^H \rangle + \langle \widetilde{X}, [\widetilde{Z}, \widetilde{Y}]^H \rangle \right) \\ &= \frac{1}{2} \left((X \langle Y, Z \rangle) + (Y \langle Z, X \rangle) - (Z \langle X, Y \rangle) \right. \\ &- \langle Y, [X, Z] \rangle - \langle Z, [Y, X] \rangle + \langle X, [Z, Y] \rangle \right) \circ \pi \\ &= \langle \nabla_X Y, Z \rangle \circ \pi = \langle \widetilde{\nabla_X Y}, \widetilde{Z} \rangle + \frac{1}{2} \langle [\widetilde{X}, \widetilde{Y}]^V, \widetilde{Z} \rangle. \end{split}$$

and

$$\begin{split} \langle \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}, W \rangle &= \frac{1}{2} \left(\widetilde{X} \langle \widetilde{Y}, W \rangle + \widetilde{Y} \langle W, \widetilde{X} \rangle - W \langle \widetilde{X}, \widetilde{Y} \rangle \right. \\ &\left. - \langle \widetilde{Y}, [\widetilde{X}, W] \rangle - \langle W, [\widetilde{Y}, \widetilde{X}] \rangle + \langle \widetilde{X}, [W, \widetilde{Y}] \rangle \right) \\ &= \frac{1}{2} \left(- \langle W, [\widetilde{Y}, \widetilde{X}]^V \rangle \right) = \frac{1}{2} \langle [\widetilde{X}, \widetilde{Y}]^V, W \rangle + \langle \widetilde{\nabla_X Y}, W \rangle. \end{split}$$

So for local frame of $\mathfrak{X}(\widetilde{M})$, $\widetilde{\nabla}_{\widetilde{X}}\widetilde{Y}$ satisfies the two formula above, then we have $\widetilde{\nabla}_{\widetilde{X}}\widetilde{Y} = \widetilde{\nabla_X Y} + \frac{1}{2}[\widetilde{X},\widetilde{Y}]^V$.

Problem 5-7

Problem 5-9

Problem 5-10

Proof. Since $\varphi(p) = \psi(p)$, $d\varphi_p = d\psi_p$, we have the following commute diagram:

By the commute diagram and \exp_p local diffeomorphism, there exists a neighborhood U of p such that $\varphi \equiv \psi$ on U. Since M is connected, $\varphi \equiv \psi$ on M.

3 Chapter 6

Problem 6-1

Proof. (a) For $\forall p \in \gamma(I)$, there exists a uniformly normal neighborhood $p \in W$, then $W \subseteq \gamma(I)$, so $\gamma(I)$ is open; Let (p_i) be a sequence of points in $\gamma(I)$ and $(p_i) \to p$. Since p has a uniformly normal neighborhood W, $\exists N \in \mathbb{N}$ s.t. $\forall i > N$, $p_i \in W$. Then $p \in \gamma(I)$, so $\gamma(I)$ is closed. Since M is connected, γ is surjective.

- (b) If γ is injective, then it's a bijective smooth map from I to M, we only need to show γ is a local isometry. The Riemannian metric has local representation $g_{11}(dt)^2$, since γ is unit-speed, we have $g(\gamma', \gamma') = g_{11} = 1$, then the local representation is $(dt)^2$, which shows that γ is a isometry.
- (c) Let $\alpha(t) = \gamma(t+t_1)$, $\beta(t) = \gamma(t+t_2)$, then we have α, β are unit-speed geodesic, $\alpha(0) = \beta(0)$, $\alpha'(0) = \beta'(0)$. By the uniqueness of geodesic we have $\alpha \equiv \beta$, hence $\gamma(t+t_1) = \gamma(t+t_2)$, γ is periodic.
 - (d) WLOG, we assume that $t_2 > t_1$, then $\alpha(\frac{t_2-t_1}{2}) = \beta(\frac{t_2-t_1}{2})$, contradiction.

Problem 6-4

Proof. (a) Since the equation is independent of coordinate, we take the normal coordinate centered at $\gamma(0)$. In this chart we have $\gamma(t) = (\gamma^1(t), \cdots, \gamma^n(t))$ and $d_g(\gamma(0), \gamma(t)) = \sqrt{\sum_i (\gamma^i(t))^2}$, then

$$\lim_{t \searrow 0} \frac{d_g\left(\gamma(0), \gamma(t)\right)}{t} = \lim_{t \searrow 0} \sqrt{\sum \left(\frac{\gamma^i(t)}{t}\right)^2} = \sqrt{\sum \left(\dot{\gamma}^i(0)\right)^2} = |\gamma'(0)|_g$$

(b) We only need to verify that for every $p \in M$, $g_p = \widetilde{g}_p$. From (a) we have $g_p(v,v) = \widetilde{g}_p(v,v)$ for all $v \in T_pM$, by polarization identity we have $g_p = \widetilde{g}_p$.

Problem 6-5

Proof. (a) In the normal coordinates centered at p, let $u(q, v, t) = \exp_p^{-1}(\exp_q(tv))$,

- (b) $\frac{\partial f}{\partial t} = 2\langle u, \frac{\partial u}{\partial t} \rangle$, $\frac{\partial^2 f}{\partial t^2} = 2\langle \frac{\partial^2 u}{\partial t^2}, u \rangle + 2\left|\frac{\partial u}{\partial t}\right|^2$. Then for q = p, u(q, v, t) = tv, $\frac{\partial^2 f}{\partial t^2} = 2\left|\frac{\partial u}{\partial t}\right|^2$ is positive. Use continuity we have that if ϵ is small enough then $\frac{\partial^2 f}{\partial t^2} > 0$.
- (c) Since q_1, q_2 are in the uniformly normal neighborhood of $p, \gamma(t)$ is of the form $\exp_{q_1}(tv)$ for some $v \in T_{q_1}M$, then $d_g(p,\gamma(t))^2 = f(q_1,v,t)$. By (b) we have $\frac{\partial^2 f}{\partial t^2} > 0$, so f is convex on where it's defined. Then $d_g(p, \gamma(t))$ is also convex on its domain, so it attains its maximum at one of the endpoints of γ .

(d) By (c) it's clear that $d_g(p, \gamma(t)) < \epsilon \implies \gamma(t) \in B_{\epsilon}(p)$, so the image of the unique geodesic segment lies in $B_{\epsilon}(p)$, hence geodesically convex.

Problem 6-6

Proof. For $x, x' \in M$, if $d_g(x, x') < \operatorname{conv}(x)$, then the geodesic ball $B_{\delta}(x')$, where $\delta = \operatorname{conv}(x) - d_g(x, x')$, is contained in $B_{\operatorname{conv}(x)}(x)$: for $\forall x'' \in B_{\delta}(x')$, $d_g(x, x'') \leq d_g(x, x') + d_g(x', x'') < \operatorname{conv}(x)$. It's clear that $B_{\delta}(x')$ is also geodesically convex since it's contained in a geodesically convex geodesic ball. Then $\operatorname{conv}(x') \geq \delta = \operatorname{conv}(x) - d_g(x, x')$, which means $\operatorname{conv}(x) - \operatorname{conv}(x') \leq d_g(x, x')$. If $d_g(x, x') \geq \operatorname{conv}(x)$ this inequality naturally holds. By reversing the role of x, x' we then get: $|\operatorname{conv}(x) - \operatorname{conv}(x')| \leq d_g(x, x')$. So $\operatorname{conv}(x)$ is continuous.

Problem 6-7

Proof. (a) \Box