CS 154

Lecture 8:
Recognizability, Decidability, and Diagonalization

Definition: A Turing Machine is a 7-tuple

T = (Q, Σ, Γ, δ,
$$q_0$$
, q_{accept} , q_{reject}), where:

Q is a finite set of states

 Σ is the input alphabet, where $\square \notin \Sigma$

 Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$

$$\delta: \mathbf{Q} \times \mathbf{\Gamma} \rightarrow \mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L}, \mathbf{R}\}$$

 $q_0 \in Q$ is the start state

q_{accept} ∈ **Q** is the accept state

 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

Turing Machine Configurations

corresponds to the configuration:

$$11010q_700110 \in \{Q \cup \Gamma\}^*$$

Defining Acceptance and Rejection for TMs

Let C₁ and C₂ be configurations of M

Definition. C₁ yields C₂ if M is in configuration C₂

after running M in configuration C₁ for one step

```
Suppose \delta(q_1, b) = (q_2, c, L)
Then aaq_1bb yields aq_2acb
Suppose \delta(q_1, a) = (q_2, c, R)
Then cabq_1a yields cabcq_2\Box
```

Let $w \in \Sigma^*$ and M be a Turing machine M accepts w if there are configs C_0 , C_1 , ..., C_k , s.t.

- $C_0 = q_0 w$
- C_i yields C_{i+1} for i = 0, ..., k-1, and
- C_k contains the accept state q_{accept}

A TM *M recognizes* a language L if *M* accepts exactly those strings in L

A language L is called recognizable or recursively enumerable (r.e.) if some TM recognizes L

A TM *M decides* a language L if *M* accepts all strings in L and rejects all strings not in L

A language L is called decidable or recursive if some TM decides L

Theorem: L is decidable iff both L and ¬L are recognizable

Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable

iff both L and ¬L are recognizable

Given: a TM M₁ that recognizes L and

a TM M_2 that recognizes $\neg L$,

we want to build a new machine M that decides L

How? Any ideas?

M₁ always accepts x, when x is in L M₂ always accepts x, when x isn't in L

Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable iff both L and ¬L are recognizable

Given: a TM M₁ that recognizes L and a TM M₂ that recognizes ¬L, we want to build a new machine M that *decides* L

M(x): Run M₁ (x) and M₂ (x) on separate tapes.

Alternate between simulating one step of M₁, and one step of M₂.

If M₁ ever accepts, then accept If M₂ ever accepts, then reject

Nondeterministic Turing Machines

Have multiple transitions for a state, symbol pair

Theorem: Every nondeterministic Turing machine N can be transformed into a Turing Machine M that accepts precisely the same strings as N.

Proof Idea (more details in Sipser) Pick a natural ordering on all strings in \{Q \cup \Gamma \cup \#\}^*

M(w): For all strings $D \in \{Q \cup \Gamma \cup \#\}^*$ in the ordering, Check if $D = C_0 \# \cdots \# C_k$ where $C_0, ..., C_k$ is *some* accepting computation history for N on w. If so, *accept*.

Fact: We can encode Turing Machines as bit strings

Similarly, we can encode DFAs and NFAs as bit strings, and $w \in \Sigma^*$ as bit strings

For $x \in \Sigma^*$ define $b_{\Sigma}(x)$ to be its binary encoding For $x, y \in \Sigma^*$, define the *pair of x and y* to be $(x, y) := 0^{|b_{\Sigma}(x)|} 1 b_{\Sigma}(x) b_{\Sigma}(y)$

Then we define the following languages over {0,1}:

 $A_{DFA} = \{ (B, w) \mid B \text{ encodes a DFA over some } \Sigma,$ and B accepts $w \in \Sigma^* \}$

A_{NFA} = { (B, w) | B encodes an NFA, B accepts w }

A_{TM} = { (M, w) | M encodes a TM, M accepts w }

A_{TM} = { (M, w) | M encodes a TM over some Σ, w encodes a string over Σ and M accepts w}

Technical Note:

We'll use an decoding of pairs, TMs, and strings so that every binary string decodes to some pair (M, w)

If $z \in \{0,1\}^*$ doesn't decode to (M, w) in the usual way, then we *define* that z decodes to the pair (D, ε) where D is a "dummy" TM that accepts nothing.

 $\neg A_{TM} = \{ z \mid z \text{ decodes to } (M, w) \text{ and } M \text{ does not accept } w \}$

Universal Turing Machines

Theorem: There is a Turing machine U which takes as input:

- the code of an arbitrary TM M
- and an input string w
 such that U accepts (M, w) ⇔ M accepts w.

This is a fundamental property of TMs:
There is a Turing Machine that
can run arbitrary Turing Machine code!

Note that DFAs/NFAs do *not* have this property. That is, A_{DFA} and A_{NFA} are not regular.

A_{DFA} = { (D, w) | D is a DFA that accepts string w }

Theorem: A_{DFA} is decidable

Proof: A DFA is a special case of a TM.

Run the universal U on (D, w) and output its answer.

A_{NFA} = { (N, w) | N is an NFA that accepts string w }

Theorem: A_{NFA} is decidable. (Why?)

A_{TM} = { (M, w) | M is a TM that accepts string w }

Theorem: A_{TM} is recognizable

The Church-Turing Thesis

Everyone's
Intuitive Notion = Turing Machines
of Algorithms

This is not a theorem — it is a falsifiable scientific hypothesis.

And it has been thoroughly tested!

CURIS about Theory?

Apply to work with me (or with other theory folks) this summer, at http://curis.Stanford.edu

Thm: There are unrecognizable languages

Assuming the Church-Turing Thesis, this means there are problems that **NO** computing device can solve!

We will prove that there is no onto function from the set of all Turing Machines to the set of all languages over $\{0,1\}$. (But the proof will work for any *finite* Σ)

That is, every mapping from Turing machines to languages fails to cover all possible languages

 $f : A \rightarrow B \text{ is onto } \Leftrightarrow (\forall b \in B)(\exists a \in A)[f(a) = b]$

Let L be any set and 2 be the power set of L

Theorem: There is *no* onto function from L to 2^L

Proof: Assume, for a contradiction, there is an onto function $f: L \rightarrow$

Define $S = \{ x \in L \mid x \notin f(x) \} \in 2$

If f is onto, then there is a $y \in L$ with f(y) = S

Suppose $y \in S$. By definition of S, $y \notin f(y) = S$.

Suppose $y \notin S$. By definition of $S, y \in f(y) = S$.

Contradiction!

```
f : A \rightarrow B is not onto \Leftrightarrow (\exists b \in B)(\forall a \in A)[f(a) \neq b]
     Let L be any set and 2<sup>L</sup> be the power set of L
Theorem: There is no onto function from L to 2<sup>L</sup>
Proof: Let f: L \rightarrow 2^L be an arbitrary function
          Define S = \{ x \in L \mid x \notin f(x) \} \in 2^L
   For all x \in L,
          If x \in S then x \notin f(x) [by definition of S]
          If x \notin S then x \in f(x)
   In either case, we have f(x) \neq S. (Why?)
   Therefore f is not onto!
```

What does this mean?

No function from L to 2^L can "cover" all the elements in 2^L

No matter what the set L is, the power set 2^L always has strictly larger cardinality than L

Thm: There are unrecognizable languages

Proof: If all languages were recognizable, then for all L, there'd be a Turing machine M for recognizing L.
Hence there is an onto R: {Turing Machines} → {Languages}

```
{Turing Machines}

| (0,1)*

{Sets of strings of 0s and 1s}

| (1)

Set M

Set of all subsets of M: 2 M
```

Therefore, there is *no* onto function from {Turing Machines} ⊆ M to {Languages}. Contradiction!

Russell's Paradox in Set Theory

In the early 1900's, logicians were trying to define consistent foundations for mathematics.

Suppose X = "Universe of all possible sets"

Frege's Axiom: Let $f: X \rightarrow \{0,1\}$

Then $\{S \in X \mid f(S) = 1\}$ is a set.

Define $F = \{ S \in X \mid S \notin S \}$

Suppose F ∈ F. Then by definition, F ∉ F.

So F ∉ F and by definition F ∈ F.

This logical system is inconsistent!

Theorem: There is no onto function from the positive integers Z⁺ to the real numbers in (0, 1) {0,1}* Power set of {0,1}*

Proof: Suppose f is such a function:

```
1 → 0.28347279...

2 → 0.88388384...

3 → 0.77635284...

4 → 0.1111111...
```

 $f(n) \neq r$ for all n (Here, r = 0.11121...)

r is never output by f

Let $Z^+ = \{1, 2, 3, 4, ...\}$ There *is* a bijection between Z^+ and $Z^+ \times Z^+$

A Concrete Undecidable Problem: The Acceptance Problem for TMs

A_{TM} = { (M, w) | M is a TM that accepts string w }

Theorem: A_{TM} is recognizable but NOT decidable

Corollary: $\neg A_{TM}$ is not recognizable

A_{TM} = { (M,w) | M is a TM that accepts string w }

A_{TM} is undecidable: (proof by contradiction)

Suppose H is a machine that decides A_{TM}

Define a new TM D as follows:

D(M): Run H on (M,M) and output the opposite of H

The table of outputs of H(x,y)

	M_1	M_2	M_3	$M_4 \cdots$	D
M_1	accept	accept	accept	reject	accept
M_2	reject	accept	reject	reject	reject
M_3	accept	reject	reject	accept	accept
M_4	accept	reject	reject	reject	accept
:					
D	reject	reject	accept	accept	?

The outputs of D(x)

D(x) outputs the opposite of H(x,x)D(D) outputs the opposite of H(D,D)=D(D)