GEO-Al Challenge for Cropland Mapping

Background

- Timely, accurate crop maps are vital for numerous agricultural applications.
- Limitations of Existing Products: Lack annual updates, reducing usefulness for monitoring changes.
- New Opportunities: High-resolution open data (e.g. Sentinel 2) and machine learning models enable scalable modeling of cropland extent.

Methodology and WorkFlow

- Crop Season identification using NDVI Temporal Profile
- Sentinel 2 Data Processing Cloud Masking/Compositing
- Vegetation Indices generation
- Model Development HyperParameter Tuning and Classification Accuracy
- Crop Extent generation

Crop Season from NDVI Profile

Sentinel- 2 Data Processing

- Cloud Masking was done using the Cloud Probability dataset.
- All pixels with a cloud probability of 50 or above were masked out.
- The value of 50 was chosen to ensure a good balance between quality and quantity for the analysis.

Vegetation Indices

- A wide variety of vegetation Indices were generated for each composite of the crop season to establish contrast between crop and non crop pixels
- Following Indices shortlisted
- NDVI, NDRE, ARVI, RVI, SCI, NDMI, GNDVI, BSI

Model Development

- It is an iterative process in which many models were derived, evaluated, and tested until achieving the best performance in terms of accuracy results.
- Typically focus on model creation, experimentation, and evaluation.

Classification Accuracy

Negative: Non-Crop

Positive: Crop

Spatial Extent - Sudan

Spatial Extent - Iran

Spatial Extent - Afghanistan

