M9 - 10.1 - Opposite/Angle on Line

Find the missing angle

M9 - 10.1 - Angles Notes

Obtuse angle: greater than 90°

M9 - 10.2 - Identifying Inscribed/Central Angles, Arc/Chords Notes

How do you know where the inscribed/central angle is and where is its arc/chord?

- 1. Make a slice of pie with your left and right hand.
- 2. Central/inscribed angle is between your index fingers.
- 3. Arc/chord is crust of piece of pie.
- 4. Shade Arc
- 5. Possibly rotate the page

M9 - 10.2 - Inscribed/Central Angle, Arc/Chord Rules Notes

Central angles from equal arc's/chord's are equal.

Inscribed angles from same arc/chord are equal.

Inscribed angles from equal arcs/chords are equal.

Central angle is twice inscribed angle

$$\angle C = 2 \times \angle L \angle$$

OR

Inscribed angle is half central angle.

$$\angle I = \frac{1}{2} \times \angle C$$

M9 - 10.2 - Tangents Semi Circle Rules Notes

Rule: Perpendicular _____ bisector of a chord passes through center of circle.

Rad _____ to Tan

Rad ____ to Chord

Tangents to exterior points are equal.

Inscribed angles in a semi-circle equal 90°

M9 - 10.3 - Opposite Angles Inscribed Shapes Notes

Opposite angles in a quadrilateral sum to 180°.

The angle between the tangent and the chord is equal to the inscribed angle on the opposite side of the chord.

M9 - 10.4 - Interior Angles of Polygons Notes

Three triangles = $3 \times 180^{\circ} = 540^{\circ}$

Pentagon: 5 sides, 5 angles

Draw as many triangles connecting the vertices of the shape. Multiply the number of triangles by 180°. Divide that number by the number of angles for the interior angle.

Sum of Interior Angles = $(n-2) \times 180^{\circ}$ = $(5-2) \times 180^{\circ}$ = $3 \times 180^{\circ}$

 $= 540^{\circ}$

Interior Angle =
$$\frac{Sum}{n} = \frac{(n-2) \times 180}{n}$$

= $\frac{(5-2) \times 180^{\circ}}{5}$
= $\frac{3 \times 180^{\circ}}{5}$
= $\frac{540^{\circ}}{5}$
= $\frac{108^{\circ}}{5}$

 $Interior + Exterior = 180^{o}$

All Exterior Angles sum to 360

$$72^{o} + 72^{o} + 72^{o} + 72^{o} + 72^{o} = 360^{o}$$