Separable Hilbert Spaces

Definition: Separable

Let H be a Hilbert space. To say that H is *separable* means that H contains a complete orthonormal sequence.

Examples

- 1). ℓ^2 is separable with (e_n)
- 2). $L^2[-\pi,\pi]$ is separable with $\left(\frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{\pi}}\sin(nt),\frac{1}{\sqrt{\pi}}\cos(nt)\right)_{n\in\mathbb{N}}$
- 3). Let:

$$H = \left\{ f: \mathbb{R} \to \mathbb{C} \middle| f(x) \neq 0 \text{ for only countably many } x \in \mathbb{R} \text{ and } \sum_{x \mid f(x) \neq 0} \left| f(x) \right|^2 < \infty \right\}$$

Let
$$\langle f, g \rangle = \sum_{\vec{x} | f(x)g(x) \neq 0} f(x) \overline{g(x)}$$
.

Claim: H is complete.

Assume (f_n) is a Cauchy sequence in H.

Let S_n be the support of f_n .

Since S_n is countable, let $S_n = \{t_1, t_2, t_3, \ldots\}$.

Let (x_n) be a sequence in \mathbb{C} where $x_{n,k} = f(t_k)$.

$$||f_n||_H = \sum_{x|f(x)\neq 0} |f(x)|^2 = \sum_{k=1}^{\infty} |f(t_k)|^2 = \sum_{k=1}^{\infty} |x_{n,k}|^2 = ||x_n||_{\ell^2} < \infty$$

And so (x_n) is a sequence in ℓ^2 .

Furthermore, $\|x_n - x_m\|_{\ell^2} = \|f_n - f_m\|_H$, and so (x_n) is Cauchy in ℓ^2 . But ℓ^2 is complete, so $x_n \to x \in \ell^2$.

Now, let
$$S = \bigcup_{n=1}^{\infty} S_n$$
.

Note that S is countable, since all the S_n are countable.

Define $f: \mathbb{R} \to \mathbb{C}$ as $f(t_k) = x_k, k \in \mathbb{N}$ and $f(t) = 0, t \notin S$.

Thus, $f \in H$ and $||x - x_n|| = ||f - f_n|| \to 0$.

Therefore H is complete.

Claim: H is not separable.

Assume (f_n) be an orthonormal sequence in H.

Construct $f \in H$ such that $f \not\equiv 0$ and $\forall n \in \mathbb{N}, \langle f, f_n \rangle = 0$.

Let $S_n = \{x \in \mathbb{R} \mid f_n(x) \neq 0\}.$

Let
$$S = \bigcup_{n \in \mathbb{N}} S_n = \{x \in \mathbb{R} \mid \exists n \in \mathbb{N}, f_n(x) \neq 0\}.$$

So $\mathbb{R} \setminus S = \{x \in \mathbb{R} \mid \forall n \in \mathbb{N}, f_n(x) = 0\}.$
Assume $x_0 \in \mathbb{R} \setminus S.$
Let $f(x) = \begin{cases} 1, & x = x_0 \\ 0, & x \neq x_0 \end{cases}.$
 $\langle f, f_n \rangle = f(x_0) f_n(x_0) = 0.$
But $f(x) \not\equiv 0.$

Therefore (f_n) is not complete.

Theorem

Let H be a finite dimensional inner product (hence Hilbert) space.

H is separable.

Proof

Assume $\dim H = N$.

Assume $S = \{\vec{x}_1, \dots, \vec{x}_N\}$ is an orthonormal basis for H.

Thus, (\vec{x}_n) is an orthonormal sequence in H.

Assume $x \in H$.

$$\exists \, \alpha_n \in \mathbb{F} \text{ such that } x = \sum_{n=1}^N \alpha_n \vec{x}_n$$

$$\langle \vec{x}, \vec{x}_n \rangle = \left\langle \sum_{k=1}^N \alpha_k \vec{x}_k, \vec{x}_n \right\rangle = \left\langle \alpha_n \vec{x}_n, \vec{x}_n \right\rangle = \alpha_n.$$

$$\sum_{n=1}^N \left\langle x, \vec{x}_n \right\rangle \vec{x}_n = \sum_{n=1}^N \alpha_n \vec{x}_n = \vec{x}$$

Therefore (\vec{x}_n) is complete and thus H is separable.

Theorem

Let H be a Hilbert space:

H is separable \iff H contains a countable dense subset.

Proof

 \implies Assume H is separable.

Assume (\vec{x}_n) is a complete sequence in H.

Assume $\vec{x} \in H$.

$$\vec{x} = \sum_{n=1}^{\infty} \langle \vec{x}, \vec{x}_n \rangle \, \vec{x}_n = \lim_{N \to \infty} \sum_{n=1}^{N} \langle \vec{x}, \vec{x}_n \rangle \, \vec{x}_n$$
 Let $\langle \vec{x}, \vec{x}_n \rangle = \alpha_n + i\beta_n$ where $\alpha_n, \beta_n \in \mathbb{Q}$.

Let
$$S_n = \{(\alpha_n + i\beta_n)\vec{x}_n \mid \alpha_n, \beta_n \in \mathbb{Q}\}.$$

Clearly, S_n is a countable set.

Furthermore,
$$\left\|\sum_{n=1}^{N} \langle \vec{x}, \vec{x}_n \rangle \vec{x}_n - \vec{x} \right\| = \left\|\sum_{n=1}^{N} (\alpha_n + i\beta_n) \vec{x}_n - \vec{x} \right\| \to 0.$$

Therefore S_n is dense and countable in H.

 \iff Assume $S \subset H$ is a countable dense subset.

Assume
$$S = \{\vec{x}_n \mid n \in \mathbb{N}\}.$$

Discard any $\vec{0}$ and linearly dependent elements, resulting in a linearly independent set $Y = \{ \vec{y}_n \mid n \in \mathbb{N} \}.$

Note that Span(S) = Span(Y).

Furthermore, Span(Y) = H since S is dense in H.

Now apply Gram-Schmidt to Y to produce an orthonormal set $X = \{\vec{x}_n \mid n \in \mathbb{N}\}.$

So (\vec{x}_n) is an orthonormal sequence in H.

Assume
$$\vec{x} = \sum_{n=1}^{\infty} \alpha_n \vec{x}_n \in H$$
.

Assume
$$\forall n \in N, \vec{x} \perp \vec{x}_n$$
. $\langle \vec{x}, \vec{x}_n \rangle = \left\langle \sum_{k=1}^{\infty} \alpha_k \vec{x}_k, \vec{x}_n \right\rangle = \alpha_n = 0$

Thus, $\vec{x} = 0$ and so (\vec{x}_n) is complete.

Therefore H is separable.

Theorem

Let H be a separable Hilbert space and let $S = \{\vec{x}_n \mid n \in \mathbb{N}\} \subset H$ be a mutually orthogonal set. S is countable.

Proof

AWLOG: S is an orthonormal set (otherwise normalize the vectors in S).

Assume \vec{x} and \vec{y} are two distinct elements of S.

$$\|\vec{x} - \vec{y}\|^2 = \langle \vec{x} - \vec{y}, \vec{x} - \vec{y} \rangle = \|\vec{x}\|^2 - \langle \vec{x}, \vec{y} \rangle - \langle \vec{y}, \vec{x} \rangle + \|\vec{y}\|^2 = 1 - 0 - 0 + 1 = 2$$

So any two elements in S are separated by a distance of $\sqrt{2}$.

Now, consider the set of disjoint open balls:

$$\left\{ B\left(\vec{x}, \frac{\sqrt{2}}{2}\right) \middle| \vec{x} \in S \right\}$$

But H is separable, so it contains a countable dense subset Z.

Thus, there is at least one element of $\vec{z}_x \in Z$ in each $B\left(\vec{x}, \frac{\sqrt{2}}{2}\right)$.

Thus, $\varphi: S \to Z$ defined in this way is a one-to-one mapping.

But $\{\vec{z}_x \mid \vec{x} \in S\}$ is a countable set, and therefore S is a countable set.