Sparse Tensor Factorization: Algorithms, Data Structures, and Challenges

Shaden Smith & George Karypis

University of Minnesota
Department of Computer Science & Engineering
shaden@cs.umn.edu

Talk Outline

- Introduction
- 2 Compressed Sparse Fiber
- 3 Cache-Friendly Reordering & Tiling
- 4 Distributed-Memory MTTKRP
- Conclusions

Table of Contents

- Introduction
- 2 Compressed Sparse Fiber
- 3 Cache-Friendly Reordering & Tiling
- 4 Distributed-Memory MTTKRP
- Conclusions

Tensor Introduction

- Tensors are the generalization of matrices to $\geq 3D$
- Tensors have m dimensions (or modes) and are $I_1 \times ... \times I_m$
 - ▶ We'll usually stick to $I \times J \times K$ in this talk

Applications

Dataset	ı	J	K	nnz
NELL-2	12K	9K	28K	77M
Beer	33K	66K	960K	94M
Netflix	480K	18K	2K	100M
Delicious	532K	17M	3M	140M
NELL-1	3M	2M	25M	143M
Amazon	5M	18M	2M	1.7B

Canonical Polyadic Decomposition (CPD)

- We compute matrices **A**, **B**, **C**, each with *F* columns
 - We will use $\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(m)}$ when ≥ 3 modes

Usually computed via alternating least squares (ALS)

Matricized Tensor Times Khatri-Rao Product

MTTKRP

MTTKRP is the core computation of each iteration

$$\mathbf{A} = \mathbf{X}_{(1)} \left(\mathbf{C} \odot \mathbf{B} \right)$$

Alternating Least Squares

```
1: while not converged do
```

2:
$$\mathbf{A}^{\mathsf{T}} = (\mathbf{C}^{\mathsf{T}}\mathbf{C} * \mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1} (\mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B}))^{\mathsf{T}}$$

3:
$$\mathbf{B}^{\mathsf{T}} = (\mathbf{C}^{\mathsf{T}}\mathbf{C} * \mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1} (\mathbf{X}_{(2)}(\mathbf{C} \odot \mathbf{A}))^{\mathsf{T}}$$

4:
$$\mathbf{C}^{\mathsf{T}} = (\mathbf{B}^{\mathsf{T}}\mathbf{B} * \mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1} (\mathbf{X}_{(3)}(\mathbf{B} \odot \mathbf{A}))^{\mathsf{T}}$$

5: end while

Tensor Storage – Coordinate Form

i	j	k	ı	v
1	1	1	2	1.
1	1	1	3	1.
1	2	1	3	3.
1	2	2	1	8.
2	2	1	1	1.
2	2	1	3	3.
2	2	2	2	8.

Why don't we unfold?

- ullet We need a representation of ${oldsymbol{\mathcal{X}}}$ for each mode
- NELL has dimensions $3M \times 2M \times 25M$
 - Add a fourth mode and we exceed 2⁶⁴

MTTKRP

$$\mathbf{A}(i,:) \leftarrow \mathbf{A}(i,:) + \mathcal{X}(i,j,k) \left[\mathbf{B}(j,:) * \mathbf{C}(k,:) \right]$$

Limitations

- Memory bandwidth
- Parallelism

Table of Contents

- Introduction
- Compressed Sparse Fiber
- 3 Cache-Friendly Reordering & Tiling
- 4 Distributed-Memory MTTKRP
- Conclusions

Can we do better?

• Consider three nonzeros in the fiber $\mathcal{X}(i,j,:)$ (a vector)

$$A(i,:) \leftarrow A(i,:) + \mathcal{X}(i,j,k_1) \ [B(j,:) * C(k_1,:)]$$

 $A(i,:) \leftarrow A(i,:) + \mathcal{X}(i,j,k_2) \ [B(j,:) * C(k_2,:)]$
 $A(i,:) \leftarrow A(i,:) + \mathcal{X}(i,j,k_3) \ [B(j,:) * C(k_3,:)]$

Can we do better?

ullet Consider three nonzeros in the fiber $\mathcal{X}(i,j,:)$ (a vector)

$$A(i,:) \leftarrow A(i,:) + \mathcal{X}(i,j,k_1) \ [B(j,:) * C(k_1,:)]$$

 $A(i,:) \leftarrow A(i,:) + \mathcal{X}(i,j,k_2) \ [B(j,:) * C(k_2,:)]$
 $A(i,:) \leftarrow A(i,:) + \mathcal{X}(i,j,k_3) \ [B(j,:) * C(k_3,:)]$

A little factoring...

$$\mathbf{A}(i,:) \leftarrow \mathbf{A}(i,:) + \mathbf{B}(j,:) * \left[\sum_{x=1}^{3} \mathcal{X}(i,j,k_{x}) \mathbf{C}(k_{x},:) \right]$$

SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit

[Smith, Ravindran, Sidiropoulos, and Karypis 2015]

- Fibers are sparse vectors
- Slice $\mathcal{X}(i,:,:)$ is almost a CSR matrix...
- ullet But, we need m representations of ${\mathcal X}$

Compressed Sparse Fiber (CSF)

[Smith and Karypis 2015]

- Modes are recursively compressed
- Values are stored in the leaves (not shown)

MTTKRP with a CSF Tensor

Objective

- We want to perform MTTKRP on each tensor mode with only one CSF representation
- There are three types of nodes in a tree: root, internal, and leaf
 - Each will have a tailored algorithm
 - root and leaf are special cases of internal

• The leaf nodes determine the output location

• Hadamard products are pushed down the tree

• Hadamard products are pushed down the tree

• Hadamard products are pushed down the tree

• Leaves designate write locations

• Leaves designate write locations

• Inner products are accumulated in a buffer

• Inner products are accumulated in a buffer

• Hadamard products are then propagated up the CSF tree

• Hadamard products are then propagated up the CSF tree

ullet Results are written to ${f A}^{(1)}$

• Partial results are kept in buffer

• Inner products are accumulated in a buffer

CSF-ROOT

• Inner products are accumulated in a buffer

CSF-ROOT

ullet Results are written to ${f A}^{(1)}$

• Internal nodes use a combination of CSF-ROOT and CSF-LEAF

• Hadamard products are pushed down to the output level

Parallelism – Challenges?

- CSF-ROOT can be parallelized over the trees
- CSF-INTERNAL and CSF-LEAF require more thought...

Parallelism - Tiling

- For p threads, we do a p-way tiling of each tensor mode
- Distributing the tiles allows us to eleminate the need for mutexes

Datasets

Dataset	ı	J	K	nnz
NELL-2	12K	9K	28K	77M
Beer	33K	66K	960K	94M
Netflix	480K	18K	2K	100M
Delicious	532K	17M	3M	140M
NELL-1	3M	2M	25M	143M
Amazon	5M	18M	2M	1.7B

Storage Comparison

Serial MTTKRP

Parallel MTTKRP

Table of Contents

- Introduction
- Compressed Sparse Fiber
- 3 Cache-Friendly Reordering & Tiling
- 4 Distributed-Memory MTTKRP
- Conclusions

Tensor Reordering

$$\left[\begin{array}{c|cccc} 3 & 3 & & & 2 & 2 \\ & & & 1 & 1 & 2 & 2 \\ & & & 1 & 1 & 2 & 2 \end{array}\right]$$

$$\begin{bmatrix}
3 & 3 \\
3 & 3
\end{bmatrix}
 \begin{bmatrix}
2 & 2 \\
2 & 2
\end{bmatrix}
 \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}$$

We reorder the tensor to improve the access patterns on the factors

Tensor Reordering

Graph Partitioning

- ullet We model the sparsity structure of ${\mathcal X}$ with a tripartite graph
 - ▶ Slices are vertices, nonzeros connect slices with a triangle
- Partitioning the graph finds regions with shared indices
- We reorder the tensor to group indices in the same partition

Cache Blocking over Tensors

Sparsity is Hard

- Tiling lets us schedule nonzeros to reuse indices already in cache
- Cost: more fibers
- Tensor sparsity forces us to grow tiles

Scaling: NELL-2, Speedup vs Untiled

Scaling: Netflix, Speedup vs Untiled

Table of Contents

- Introduction
- 2 Compressed Sparse Fiber
- 3 Cache-Friendly Reordering & Tiling
- 4 Distributed-Memory MTTKRP
- 6 Conclusions

MTTKRP Communication

$$\mathbf{A}(i,:) \leftarrow \mathbf{A}(i,:) + \mathcal{X}(i,j_1,k) \left[\mathbf{B}(j_1,:) * \mathbf{C}(k,:) \right]$$

$$\mathbf{A}(i,:) \leftarrow \mathbf{A}(i,:) + \mathcal{X}(i,j_2,k) \left[\mathbf{B}(j_2,:) * \mathbf{C}(k,:) \right]$$

Coarse-Grained Decomposition

[Choi & Vishwanathan 2014, Shin & Kang 2014]

- ullet Processes own complete slices of ${oldsymbol{\mathcal{X}}}$ and aligned factor rows
- ullet I/p rows communicated to $p{-}1$ processes after each update

Fine-Grained Decomposition

[Kaya & Uçar 2015]

- Most flexible: non-zeros individually assigned to processes
- Two communication steps
 - Aggregate partial computations after MTTKRP
 - 2 Exchange new factor values
- Hypergraph partitioning is used to minimize communication
 - Non-zeros mapped to vertices
 - I+J+K hyperedges

Medium-Grained Decomposition

[Smith & Karypis 2016]

- Distribute over a grid of $p = q \times r \times s$ partitions
- $r \times s$ processes divide each $\mathbf{A}_1, \dots, \mathbf{A}_q$
- Two communication steps like fine-grained
 - $\mathcal{O}(1/p)$ rows communicated to $r \times s$ processes

Average Communication Volume

Maximum Communication Volume

Strong Scaling: Netflix

Strong Scaling: Amazon

Table of Contents

- Introduction
- 2 Compressed Sparse Fiber
- 3 Cache-Friendly Reordering & Tiling
- 4 Distributed-Memory MTTKRP
- Conclusions

Wrapping Up

- SPLATT is $40 \times$ to $80 \times$ faster than competing distributed-memory codes
- \bullet 50× to 300× faster single-node performance than Matlab
 - > 1000 imes faster with a supercomputer!
- New applications possible
 - 4 Healthcare
 - 2 Recommender systems
 - Yours!

Future Work

Still many open problems!

- Manycore architectures
- Coupled factorization
- What's beyond ALS?

Where does Intel fit in?

- Intel is in a unique position to make significant contributions
- Kernels have unstructured access patterns and are memory-bound Mostly :-)
- High-bandwidth memory and hardware-transactional memory are exciting technologies for tensor folk

http://cs.umn.edu/~splatt/

Questions?

Backup Slides

Convergence Check

- 1: while not converged do
- 2: ...
- 3: end while

• Checking for convergence is not trivial!

$$||\mathcal{X} - \mathcal{Z}||_F^2 = \underbrace{\langle \mathcal{X}, \mathcal{X} \rangle}_{\text{constant}} + \underbrace{\langle \mathcal{Z}, \mathcal{Z} \rangle}_{||\mathcal{Z}||_F^2} - 2\underbrace{\langle \mathcal{X}, \mathcal{Z} \rangle}_{?}$$

Convergence Check - Tensor Norm

$$||\boldsymbol{\mathcal{Z}}||_F^2 = \boldsymbol{\lambda}^T \left(\mathbf{A}^T \mathbf{A} * \mathbf{B}^T \mathbf{B} * \mathbf{C}^T \mathbf{C} \right) \boldsymbol{\lambda}$$

- The cost is negligible if we have cached $\mathbf{A}^T \mathbf{A}$, etc.
 - $O(F^2)$ vs $O(IF^2)$ flops

$$\langle \mathcal{X}, \mathcal{Z} \rangle = \sum_{f=1}^{F} \lambda(f) \left(\sum_{\mathsf{nnz}(\mathcal{X})} \mathcal{X}(i,j,k) \mathbf{A}(i,f) \mathbf{B}(j,f) \mathbf{C}(k,f) \right)$$

• Cost: $O(F \operatorname{nnz}(\mathcal{X}))$, with a higher constant than MTTKRP

$$\langle \mathcal{X}, \mathcal{Z} \rangle = \sum_{f=1}^{F} \lambda(f) \underbrace{\left(\sum_{\mathsf{nnz}(\mathcal{X})} \mathcal{X}(i,j,k) \mathbf{A}(i,f) \mathbf{B}(j,f) \mathbf{C}(k,f)\right)}_{\mathsf{does this look familiar?}}$$

Smith and Karypis 2016

- ullet Keep the MTTKRP result from the last mode, $\hat{oldsymbol{\mathsf{C}}}$
 - \triangleright $\hat{\mathbf{C}}$ has the latest **A** and **B** values

$$\hat{\mathbf{C}}(k,:) = \sum_{\mathsf{nnz}(\boldsymbol{\mathcal{X}}(:,:,k))} \boldsymbol{\mathcal{X}}(i,j,k) \left[\mathbf{A}(i,:) * \mathbf{B}(j,:) \right]$$

Smith and Karypis 2016

- ullet Keep the MTTKRP result from the last mode, $\hat{oldsymbol{\mathsf{C}}}$
 - \triangleright \hat{C} has the latest **A** and **B** values

$$\hat{\mathbf{C}}(k,:) = \sum_{\mathsf{nnz}(\boldsymbol{\mathcal{X}}(:,:,k))} \boldsymbol{\mathcal{X}}(i,j,k) \left[\mathbf{A}(i,:) * \mathbf{B}(j,:) \right]$$

• Now we just need to account for λ and the new ${\bf C}$ values

$$\langle \mathcal{X}, \mathcal{Z} \rangle = \mathbf{1}^T \left(\mathbf{C} * \hat{\mathbf{C}} \right) \lambda$$

Smith and Karypis 2016

- Keep the MTTKRP result from the last mode, $\hat{\mathbf{C}}$
 - Ĉ has the latest A and B values

$$\hat{\mathbf{C}}(k,:) = \sum_{\mathsf{nnz}(\boldsymbol{\mathcal{X}}(:,:,k))} \boldsymbol{\mathcal{X}}(i,j,k) \left[\mathbf{A}(i,:) * \mathbf{B}(j,:) \right]$$

• Now we just need to account for λ and the new ${\bf C}$ values

$$\langle \mathcal{X}, \mathcal{Z} \rangle = \mathbf{1}^T \left(\mathbf{C} * \hat{\mathbf{C}} \right) \lambda$$

• Cost: O(IF), much cheaper than $O(nnz(\mathcal{X})F)$

Tensor Reordering – Mode Dependent

$$\left[\begin{array}{cc|c}
\alpha & \beta & 0 & 0 \\
0 & \gamma & 0 & \delta
\end{array}\right]$$

Hypergraph Partitioning

- Instead, create a new reordering for each mode of computation
- Fibers are now vertices and slices are hyperedges
- Overheads?

Choosing the Shape of the Decomposition

Objective

- We need to find q, r, s such that $q \times r \times s = p$
- Tensors modes are often very skewed (480k Netflix users vs 2k days)
 - We want to assign processes proportionally
 - ▶ 1D decompositions actually work well for many tensors

Algorithm

- Start with a $1 \times 1 \times 1$ shape
- 2 Compute the prime factorization of p
- For each prime factor f, starting from the largest, multiply the most imbalanced mode by f