Math 261 – Discrete Optimization (Spring 2022)

Assignment 6

Problem 1

Recall that for a vector $\mathbf{v} \in \mathbb{R}^m$,

$$\|\mathbf{v}\|_1 = \sum_{i=1}^m |v_i|$$
 and $\|\mathbf{v}\|_{\infty} = \max\{|v_i| : 1 \le i \le m\}$

and for an $m \times n$ matrix **A** and vector **b**, consider the problems

$$\mathcal{P} = \inf\{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} : \mathbf{x} \in \mathbb{R}^n\}$$

and

$$Q = \sup\{ \boldsymbol{\lambda} \cdot \mathbf{b} : \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{A} = \mathbf{0}^{\mathsf{T}}, \| \boldsymbol{\lambda} \|_1 \leq 1 \}$$

(a) Show that P and Q provide certificates for each other — that is,

$$\pmb{\lambda} \cdot \mathbf{b} \leq \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty}$$

whenever \mathbf{x} is feasible in \mathcal{P} and $\boldsymbol{\lambda}$ is feasible in \mathcal{Q} .

Solution:

Let λ be any vector in \mathbb{R}^m that satisfies $\sum_i |\lambda_i| \leq 1$ and $\lambda^{\mathsf{T}} \mathbf{A} = \mathbf{0}^{\mathsf{T}}$ and let $\mathbf{y} = \mathbf{A}\mathbf{x} - \mathbf{b}$. Then

$$\lambda \cdot \mathbf{b} = \lambda \cdot \mathbf{A}\mathbf{x} - \lambda \cdot \mathbf{y} = -\lambda \cdot \mathbf{y}$$

since $\lambda^{\dagger} \mathbf{A} = \mathbf{0}$. Hence

$$|\boldsymbol{\lambda} \cdot \mathbf{y}| = \left| \sum_{i} \lambda_{i} y_{i} \right| \leq \sum_{i} |\lambda_{i}| |y_{i}| \leq \max_{i} |y_{i}| = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty}.$$

(b) Find a linear program \mathcal{P}' which has the same optimal solution as \mathcal{P} and a linear program \mathcal{Q}' which has the same optimal solution as \mathcal{Q} such that \mathcal{P}' and \mathcal{Q}' are duals of each other.

Solution:

We can turn both \mathcal{P} and \mathcal{Q} into linear programs using the same technique we used on the first problem set). The linear program for \mathcal{P} is

$$\min\{t: \mathbf{A}\mathbf{x} - t\mathbf{1} \leq \mathbf{b}, \mathbf{A}\mathbf{x} + t\mathbf{1} \geq \mathbf{b}, t \geq 0, \mathbf{x} \text{ free}\}.$$

The linear program for Q is a bit more involved — given a vector λ , we split it into positive and negative parts:

$$\lambda_i^+ = \max\{0, \lambda_i\}$$
 and $\lambda_i^- = \min\{0, \lambda_i\}$

so that $\lambda = \lambda^+ + \lambda^-$ and then the linear program for Q is

$$\max\{\boldsymbol{\lambda} \cdot \mathbf{b} : \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{A} = \mathbf{0}^{\mathsf{T}}, (\boldsymbol{\lambda}^{+} - \boldsymbol{\lambda}^{-})^{\mathsf{T}} \mathbf{1} \leq 1, \boldsymbol{\lambda}^{+} \geq 0, \boldsymbol{\lambda}^{-} \leq 0\}$$

and we see that the two are exact duals of each other.

(c) Part (b) implies that \mathcal{P} and \mathcal{Q} provide optimal certificates for each other — that is, there exists a \mathbf{x}^* feasible in P and $\boldsymbol{\lambda}^*$ feasible in \mathcal{Q} for which

$$\lambda^* \cdot \mathbf{b} = \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_{\infty}.$$

What do the complementary slackness conditions from part (b) say?

Solution:

Note that the dual variables λ^+ correspond to the primal constraints

$$\mathbf{A}\mathbf{x} - \mathbf{b} \ge -t\mathbf{1}$$

and the λ^- correspond to the primal constraints

$$\mathbf{A}\mathbf{x} - \mathbf{b} \le t\mathbf{1}$$
.

Together, these tell us that

$$\lambda_i^* (|\operatorname{row}_i(\mathbf{A}) \cdot \mathbf{x}^* - \mathbf{b}| - t) = 0$$

for all i. In the other direction, the primal variable t corresponds to the dual constraint

$$\sum_{i} |\lambda_i| \le 1$$

which tells us that

$$t(\|\boldsymbol{\lambda}^*\|_1 - 1) = 0.$$

Problem 2

Let \mathcal{P} be the linear program

$$\mathcal{P} = \max \left\{ \mathbf{0} \cdot \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0} \right\}.$$

(a) Find the dual of \mathcal{P} and show that it is always feasible.

Solution:

The dual is $\mathcal{D} = \min \{ \boldsymbol{\lambda} \cdot \mathbf{b} : \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{A} \geq 0 \}$ and it is always feasible because **0** is always a feasible solution.

(b) Use your answer to part (a) to prove the following lemma, one of the many versions of $Farkas'\ Lemma$

Lemma (Farkas). Let **A** be a matrix of dimension $m \times n$ and let $\mathbf{b} \in \mathbb{R}^m$. Then exactly one of the following holds:

- (I) There exists a vector $\mathbf{x} \geq \mathbf{0}$ satisfying $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- (II) There exists a vector λ such that $\lambda^{T} \mathbf{A} \geq \mathbf{0}^{T}$ and $\lambda \cdot \mathbf{b} < 0$.

Solution:

Showing that they cannot both be true is easy: assume (for contradiction) that this could happen. That is, there exists a \mathbf{x} and $\boldsymbol{\lambda}$ satisfying both conditions. Then

$$\mathbf{x} \geq \mathbf{0}$$
 and $\boldsymbol{\lambda}^{\mathsf{T}} \mathbf{A} \geq \mathbf{0}^{\mathsf{T}} \Rightarrow \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{A} \mathbf{x} \geq 0 \Rightarrow \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{b} \geq 0$

But we assumed $\lambda \cdot \mathbf{b} < 0$ (a contradiction).

Now we show that they cannot both be false. Assume that (I) is false — in other words, the linear program \mathcal{P} is infeasible. We know that this forces \mathcal{D} to be either (1) infeasible, or (2) unbounded, but we showed in part (a) that \mathcal{D} has a feasible solution. Hence it must be that \mathcal{D} is unbounded. But \mathcal{D} is a minimization problem, so that means we can find a solution λ which is feasible for \mathcal{D} and for which $\lambda \cdot \mathbf{b}$ is as small as we want. In particular, we can find a λ for which $\lambda^{\intercal} \mathbf{A} \geq \mathbf{0}$ and $\lambda \cdot \mathbf{b} < 0$, so (II) must be true.

Hence they cannot both be true and they cannot both be false, so it must be that exactly one is true (and the other false).

Problem 3

In this problem, we will consider how we can get certificates of geometric statements. Two sets $X, Y \subseteq \mathbb{R}^n$ are said to be *separated by a hyperplane* if there exists a vector \mathbf{v} and a real number c such that

$$\mathbf{v} \cdot \mathbf{x} < c$$
 for all $\mathbf{x} \in X$ and $\mathbf{v} \cdot \mathbf{y} \ge c$ for all $\mathbf{y} \in Y$

(a) Consider the regions

$$X = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$
 and $Y = \{(x, y) \in \mathbb{R}^2 : (x + 3/2)y \ge 2, y \ge 0\}$

Show that X and Y can be separated by a hyperplane (find a valid \mathbf{v} and c).

Note: You do not have to prove this formally — it would suffice to show a picture.

Solution:

The easiest way to do this is to plot both regions, draw a line between them, and then figure out what that line is. In this picture:

the line I drew has the equation y = 5/4 - 2x/3 which I can rearrange to get

$$8x + 12y = 15$$
.

Hence if I let $\mathbf{v} = \begin{bmatrix} 8 \\ 12 \end{bmatrix}$ and c = 15, then (just by looking at the picture), it is clear that

$$\mathbf{v} \cdot \mathbf{x} < c$$
 for all $\mathbf{x} \in X$ and $\mathbf{v} \cdot \mathbf{y} > c$ for all $\mathbf{y} \in Y$

and so X and Y can be separated by a hyperplane.

(b) Let $\{\mathbf{u}_i\}_{i=1}^m$ be a collection of vectors in \mathbb{R}^n and let

$$X = \operatorname{cone} \{\mathbf{u}_1, \dots, \mathbf{u}_m\} = \left\{ \sum_i \alpha_i \mathbf{u}_i : \alpha_i \ge 0 \right\}.$$

Show that, for any point $\mathbf{y} \in \mathbb{R}^n$, the following are equivalent (if and only if)

- $\mathbf{y} \notin X$
- \bullet y and X can be separated by a hyperplane that goes through the origin

Solution:

Let **A** be the matrix whose rows are the vectors \mathbf{u}_i . Then $\mathbf{y} \in X$ if and only if there exists an $\mathbf{x} \geq \mathbf{0}$ for which $\mathbf{A}\mathbf{x} = \mathbf{y}$. Similarly, \mathbf{y} and X can be separated by a hyperplane which goes through the origin if and only if there exists a \mathbf{v} for which $\mathbf{v}^{\mathsf{T}}\mathbf{A} \geq \mathbf{0}$ and $\mathbf{v} \cdot \mathbf{y} < 0$. Hence the equivalence follows from Problem 2.