CS141: Intermediate Data Structures and Algorithms

Single-Source Shortest-Paths (SSSP)

Yihan Sun

This lecture covers Section 24.1-24.3 of CLRS

Optimality Proof for Greedy MST Algorithms

What is a cut of a graph?

The edge (A,B) crosses the cut

What is a cut of a graph?

The edge (A,B) crosses the cut

The lightest edge in a cut must be in the MST

The MST of this graph

The lightest edge in a cut must be in the MST

A simple proof for greedy choice

$$S = \{A, B, D, E\}$$

 $V - S = \{C, F\}$

The lightest edge in a cut must be in the MST

Correction: Kruskal's Algorithm (simple implementation)

Use an array to check the connectivity

 $O(n^2 + m \log n)$

```
KRUSKAL(G, w)
  O(1) A = \emptyset
            for each vertex v \in G.V // n iterations
  O(1)
                MAKE-SET(\nu)
O(m \log m) sort the edges of G.E into nondecreasing order by weight w
            for each (u, v) taken from the sorted list //m iterations
       0(1) if FIND-SET(u) \neq FIND-SET(v) // m iterations
                    A = A \cup \{(u, v)\}
       O(1)
                                      //n iterations
       O(n) UNION(u, v)
            return A
```


Active Set:

(B, 1)

(E, 3)

(D, 4)

Active Set:

(E, 3)

(D, 4)

Active Set:

(E, 2)

(D, 4)

Active Set: (D, 4)

CS141: Intermediate Data Structures and Algorithms

Single-Source Shortest-Paths (SSSP)

Yihan Sun

This lecture covers Section 24.1-24.3 of CLRS

Taking subways when travelling

Navigation using Google Maps

Example: Positive Weights

Example: Negative Weights

• Example: Difference constraints (CLRS Section 24.4)

The shortest-path problem

- Given a weighted graph G = (V, E), with weight function $w: E \to \mathbb{R}$
- The weight w(p) of a path $p=\langle v_0,v_1,\dots,v_k\rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• Shortest-path weight $\delta(u, v)$ from u to v is:

$$\delta(u,v) = \begin{cases} \min\{w(p): u \xrightarrow{p} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

- The shortest path is any path with smallest path weight
- (Directed/undirected, positive/negative, weighted/unweighted)

Problem Variants

- Single-source single-destination shortest path (s-t shortest path)
- Single-source all-destinations shortest paths (SSSP)
- All-pairs shortest paths (APSP)
- Number of paths
 - Social network analysis

Shortest path from v_0 to v_k

Shortest path from v_0 to v_k

Shortest path from v_0 to v_k

The "shortest-path tree" for SSSP

The "shortest-path tree" for SSSP

- The shortest-paths form a tree from the source
- Each tree node stores the distance (the SSSP distance to vertex), and optionally the predecessor that can be used to retrieve the path

Dijkstra's algorithm

Prim's MST

Prim's MST

Prim's MST

Active Set:

(E, 2)

(D, 4)

Which one must be the shortest distance?

Dijkstra's Algorithm (greedy, similar to Prim's)

- Start from the source node and mark it as visited, and relax the neighbors using cur_dis+edge_dis
- Find the node with the lowest weight, marked it as settled and relax the neighbors

- ullet Repeat until all the n nodes are settled
- (Only work for positive-weight graphs)

Relax: if u is settled and v is u's neighbor, then $\delta(v) = \min\{\delta(v), \delta(u) + w(u, v)\}$

Active Set:

(E, 4)

(D, 4)

Active Set:

(E, 3)

(D, 4)

Active Set: (D, 4)

The final shortest-path tree from A

Dijkstra(G, w, s)

- $\delta(u) = \infty$ for all $u \in V$, 0 for $\delta(s)$ $\delta(u)$: tentative distance
- $S = \emptyset$
- $Q = \{s\}$
- while $Q \neq \emptyset$
 - u = Extract-Min(Q)
 - $S = S \cup \{u\}$
 - for each $v \in N(u)$
 - $\delta(v) = \min \{ \delta(v), \delta(u) + w(s, v) \}$
 - (update in Q)

- S: settled set
- Q: priority queue
- w(u,v): weight of edge from u to v
- N(u): neighbor set of u

Dijkstra(G, w, s): using a flat array

- $\delta(u) = \infty$ for all $u \in V$, 0 for $\delta(s)$
- $S = \emptyset$
- $Q = \{s\}$

O(n) per

- while $Q \neq \emptyset$
- operation
 - u = Extract-Min(Q)
 - $S = S \cup \{u\}$
 - for each $v \in N(u)$
 - $\delta(v) = \min \{ \delta(v), \delta(u) + w(s, v) \}$
 - (update in Q)

O(1) per operation

•
$$\delta(u)$$
: tentative distance

- S: settled set
- Q: priority queue
- w(u,v): weight of edge from u to v
 - N(u): neighbor set of u

$$O(m+n^2) = O(n^2)$$
 cost in total

Dijkstra(G, w, s): using binary heap

 $O(\log n)$ per

operation

- $\delta(u) = \infty$ for all $u \in V$, 0 for $\delta(s)$ $\delta(u)$: tentative distance
- $S = \emptyset$
- $Q = \{s\}$
- while $Q \neq \emptyset$
 - u = Extract-Min(Q)
 - $S = S \cup \{u\}$
 - for each $v \in N(u)$

 - (update in Q)

 $O(\log n)$ per operation

- S: settled set
- Q: priority queue
- w(u, v): weight of edge from u to v
 - N(u): neighbor set of u

Use binary heap to implement the • $\delta(v) = \min\{\delta(v), \delta(u) + w(s, v)\}$ priority queue (Chapter 6 in CLRS, taught in CS 14)

 $O((m+n)\log n)$ cost in total

Dijkstra(G, w, s): using Fibonacci heap

- $\delta(u) = \infty$ for all $u \in V$, 0 for $\delta(s)$ $\delta(u)$: tentative distance
- $S = \emptyset$
- $Q = \{s\}$

- $O(\log n)$ per operation
- while $Q \neq \emptyset$
 - u = Extract-Min(Q)
 - $S = S \cup \{u\}$
 - for each $v \in N(u)$

 - (update in Q)

O(1) per operation

- S: settled set
- Q: priority queue
- w(u, v): weight of edge from u to v
 - N(u): neighbor set of u

Use Fibonacci heap to implement the • $\delta(v) = \min\{\delta(v), \delta(u) + w(s, v)\}$ priority queue (Chapter 19 in CLRS)

 $O(m + n \log n)$ cost in total

Why is Dijkstra correct?

- Invariant: the closest vertex find in each round is finalized (settled)
- The current tentative distance is already correct! no need to wait

What Dijkstra's find

Consider the second last vertex on the shortest path to $oldsymbol{u}$

• If it is a settled vertex z (via an optimal path s, ..., z, u)

What Dijkstra's find

Based on optimal substructure,

$$\delta(z) = SP(z)$$

$$\downarrow$$

$$\delta(u) = \delta(z) + w(z, u)$$

$$= SP(z) + w(z, u) = SP(u)$$

The second last vertex to u is not settled

• Optimal shortest path is via $s \dots x, y, \dots, u$ that y is the first vertex not in S

Real shortest path

x was settled and relaxed y

$$\delta(y) = \mathsf{SP}(y)$$

y is closer than u

$$\delta(y) = \mathsf{SP}(y) < \delta(u)$$

Dijkstra should extract y instead of u, which leads to a contradiction

Bellman-Ford Algorithm

Why Bellman-Ford Algorithm?

- Bellman-Ford Algorithm is a dynamic programming algorithm and is extremely simple (even simpler than Dijkstra)
- It has a higher cost than Dijkstra, but can handle graphs with negative edge weights
- It can be parallelized

Bellman-Ford is a dynamic programming algorithm

• Let $D_{i,k}$ indicate the shortest distance from source s to vertex i using no more than k hops (number of edges)

Bellman-Ford is a dynamic programming algorithm

• Let $D_{i,k}$ indicate the shortest distance from source s to vertex i using no more than k hops (number of edges)

Consider the last edge:

$$D_{i,k} = \min \begin{cases} D_{i,k-1} \\ \min_{(j,i) \in E} \{D_{j,k-1} + w(j,i)\} \end{cases}$$

- Boundaries: $D_{s,0}=0$, $D_{i,0}=\infty$ $(i\neq s)$ Final answer to vertex i is $D_{i,n-1}$

Walking in the campus as an example

Step 0: boundaries

Step 1: Given $D_{i,0}$, to compute $D_{i,1}$

Step 1: after all updates

Step 2: Given $D_{i,1}$, to compute $D_{i,2}$

Step 2: after all updates

Step 3: Given $D_{i,2}$, to compute $D_{i,3}$

Step 3: after all updates

Step 4: Given $D_{i,3}$, to compute $D_{i,4}$

Step 4: after all updates

The shortest-path tree

Bellman-Ford Algorithm(G,s)

```
for k=1 to n-1 do
                                              D_{i,k} = \min \begin{cases} D_{i,k-1} \\ \min_{(j,i) \in E} \{D_{j,k-1} + w(j,i)\} \end{cases}
  for i=1 to n do
     D[k][i]=MAX
D[0][s]=0
for k=1 to n-1 do
  for each (i,j) in E do
     if (D[k-1][i]+w(i,j)<D[k][j])
          D[k][j]=D[k-1][i]+w(i,j), from[j]=i
  optional optimization: if no distance is updated, break
```

Cost: O(nm)

Bellman-Ford Algorithm(G,s)

```
for i=1 to n do
                                              D_{i,k} = \min \begin{cases} D_{i,k-1} \\ \min_{(j,i) \in E} \{D_{j,k-1} + w(j,i)\} \end{cases}
  D[i]=MAX
D[s]=0
for k=1 to n-1 do
  for each (i,j) in E do
     if (D[i]+w(i,j)<D[j])</pre>
           D[j]=D[i]+w(i,j), from[j]=i
  optional optimization: if no distance is updated, break
```

Cost: O(nm)

Detecting negative cycles

- The graph has a negative cycle \Leftrightarrow run for another (n-th) round, and there are still edges being updated
- Intuitively, the distance to a vertex will be negative infinity
- Formal proof in CLRS 24.1

Summary

Single-source shortest-paths (SSSP)

- One of the most widely used algorithms
- On unweighted graphs: BFS
- On positive-weighted graphs: Dijkstra's algorithm
 - Similar to Prim's algorithm (greedy approach)
- On any weighted graphs: Bellman-Ford algorithm
 - Based on dynamic programming
- There are many other SSSP algorithms
 - Gabow's algorithm (scaling algorithm, on integer-weight graphs)
 - Thorup's algorithm (O(m)) work on certain restricted integer-weight graphs)
 - Parallel algorithms (Delta-Stepping, Radius-Stepping, Rho-stepping)