Úkol 1

Příklad 1

Navrhněte Turingův stroj, který počítá součet dvou čísel v desítkové soustavě.

- Vstup je ve tvaru $\triangle \alpha \# \beta \triangle^{\omega}$, kde α a β jsou čísla v desítkové soustavě, α , $\beta > 0$.
- Po zastavení Turingova stroje první páska obsahuje $\triangle \alpha \# \beta \# \gamma \triangle^{\omega}$, kde $\gamma = \alpha + \beta$.
- V případě, že navrhnete vícepáskový stroj, obsah dalších pásek může být libovolný.
- Určete horní odhad časové a prostorové složitosti tohoto stroje.

Řešení 1

Sestrojíme čtyř páskový Turingův stroj. Obsah jednotlivých pásek bude následovný.

- První páska bude obsahovat zadání ve tvaru $\triangle \alpha \# \beta \triangle^{\omega}$ a následně výsledek ve tvaru $\triangle \alpha \# \beta \# \gamma \triangle^{\omega}$.
- Druhá páska bude obsahovat zkopírovanou hodnotu druhého operandu β ve tvaru $\Delta\beta\Delta^{\omega}$.
- Třetí páska bude obsahovat pouze jednu buňku udávající informaci o přetečení. Páska je inicializovaná na hodnotu Δ0Δ^ω.
- Čtvrtá páska bude obsahovat reverzi průběžného výsledku sčítání. Výsledná hodnota bude na pásce ve tvaru Δγ^RΔ^ω, kde γ^R je reverzní řetězec k řetězci γ.

Nechť je dálka obsahu vstupu n. V nejhorším případě bude i délka největšího operandu $n-2 \sim n$. Výpočet Turingova stroje probíhá následovně. Poznamenejme, že logika pro součet dvou čísel 0–9 a carry bitu je již zakódována ve struktuře stroje.

- 1. Posuneme hlavu na 1. pásce až na MSB^1 β . $O_{time}(n+2)$
- 2. Z 1. pásky se zkopíruje operand β na 2 pásku. (Kopírování sestává z 3 operací: zápisu z pod hlavy na 1. pásce na 2. pásku, posunu hlavy na 1. pásce doprava a posunu hlavy na 2. pásce doprava). $O_{time}(3n)$
- 3. Posuneme hlavu na 1. pásce z koncového znaku \triangle na LSD² operandu α . $O_{time}(n+2)$
- 4. Přesuneme hlavu na 2. pásce z koncového znaku \triangle na LSD operandu β . $O_{time}(1)$
- 5. Přesuneme hlavu na 3. pásce z počátečního znaku \triangle doprava na hodnotu 0. $O_{time}(1)$
- 6. Přesuneme čtecí hlavu na 4. pásce z počátečního znaku \triangle doprava. $O_{time}(1)$
- 7. Sečteme hodnoty pod hlavami na 1. (α) , 2. (β) a 3. (carry) pásce. Pokud je čtecí hlava na první, nebo druhé pásce na znaku \triangle , pak se tento znak interpretuje jako 0. Pokud je výsledek součtu z intervalu $\langle 0, 9 \rangle$, pak se zapíše na 4. pásku a na 3. pásku se zapíše 0. Pokud je výsledek z intervalu $\langle 10, 19 \rangle$, pak se zapíše hodnota na místě jednotek na 4. pásku a na 3. pásku se zapíše hodnota 1. $O_{time}(2)$
- 8. Pokud je pod hlavou na 1. pásce znak různý od \triangle , pak se posune hlava doleva. $O_{time}(1)$
- 9. Pokud je pod hlavou na 2. pásce znak různý od \triangle , pak se posune hlava doleva. $O_{time}(1)$
- 10. Na 4. pásce se posune hlava doprava. $O_{time}(1)$
- 11. Pokud se pod alespoň pod jednou z hlav z 1., nebo 2. pásky vyskytuje znak různý od △, tak se výpočet vrací na bod 7, jinak pokračuje.
- 12. Pokud se pod hlavou na 3. pásce nachází 1, tak se překopíruje na 4. pásku a potom se posune hlava na pásce 4 doprava. $O_{time}(2)$

¹Most Significant Digit (nejlevější číslice)

²Least Significant Digit (nejpravější číslici)

- 13. Posuň hlavu na 1. pásce na první pravý \triangle . $O_{time}(n)$
- 14. Zapiš na 1. pásku znak # a posuň hlavu doprava. $O_{time}(2)$
- 15. Posuň hlavu na 4. pásce doleva (na MSD výsledku). $O_{time}(1)$
- 16. Postupně obráceně kopíruj reverzní výsledek z 4. pásky na konec 1. pásky. (Kopírování vyžaduje tři operace.) O(3n)

Složitost

17. Výsledek sčítání je na 1. pásce ve tvaru $\triangle \alpha \# \beta \# \gamma \triangle^{\omega}$.

Horní odhad časové složitosti navrženého Turingova stroje je $O_{time}((n+2)+(3n)+(n+2)+(3)+n\cdot(5)+(2)+(n)+(3)+(3n))=O_{time}(n)$.

Horní odhad prostorové složitosti navrženého Turingova stroje je $O_{space}((2+2n+1)+(2+n)+(2+n+1)) = O_{space}(n)$.

Příklad 2

Navrhněte RAM program, který pro vstupní vektor $I = (n_1, n_2)$ vypočítá hodnotu $n_1 \mod n_2$ (předpokládejme, že $n_1, n_2 > 0$). Po provedení instrukce HALT bude v registru r_0 číslo $a = n_1 \mod n_2$. (Pozn: Není třeba implementovat optimální algoritmus.)

- Analyzujte uniformní (jednotkovou) časovou a prostorovou složitost tohoto RAM programu a uveďte horní odhady.
- Analyzujte logaritmickou časovou a prostorovou složitost tohoto RAM programu a uvedte horní odhady.

Řešení 2

RAM program Π , který prování operaci $n_1 \mod n_2$ na vstupním vektoru $I = (n_1, n_2)$ vypadá následovně.

- 1: READ 1
- 2: STORE 1
- 3: READ 0
- 4: SUB r1
- 5: JPOS 4
- 6: JZERO 4
- 7: ADD r1
- 8: HALT

Uniformní časová složitost stroje je dána počtem vykonaných iterací, kterých je v nejhorším případě n_1 (pro $n_2 = 1$). Při jednotkové ceně instrukce je $O_{time}^{uni}(2^n)$. Uniformní prostorová složitost stroje je dána délkou vstupu a počtem použitých registrů, $O_{space}^{uni}(4) = O_{space}^{uni}(1)$.

Při logaritmické časové složitosti je cena instrukce $log_2(2^n)$. Výsledná logaritmická časová složitost je $O_{time}^{log}(2^n \cdot n)$. Logaritmická prostorová složitost stroje je dána také počtem bitů potřebných k uložení hodnoty, tedy $O_{space}^{log}(4*n) = O_{space}^{log}(n)$.

Příklad 3

Nechť L je libovolný regulární jazyk. Určete funkce f(n) a g(n) takové, že $L \in DTIME(f(n))$ a $L \in DSPACE(g(n))$. Svoje tvrzení dokažte.

Řešení 3

Pro libovolný jazyk $L \in \mathcal{L}_3$ platí, že existuje Turingův stroj M, který přijímá přechodem do koncového stavu, pro který platí, $L \equiv L(M)$ a jehož časová a prostorová složitost je lineární. Tedy $L \in DTIME(n)$ a $L \in DSPACE(n)$.

 $D\mathring{u}kaz$. Pro každý $L \in \mathcal{L}_3$ exituje deterministický konečný automat A ve tvaru $A = (Q_A, \Sigma_A, \delta_A, i_A, F_A)$, který daný jazyk přijímá. Q_A je konečná množina stavů automatu, Σ_A je konečná vstupní abeceda automatu, δ_A je přechodová funkce tvaru $\delta_A : Q_A \times \Sigma \longrightarrow Q$, dále $i_A \in Q$ je počáteční stav a $F_A \subseteq Q_A$ množina koncových stavů. Pro takovýto automat A můžeme sestrojit jednopáskový Turingův stroj M ve tvaru $M = (Q_M, \Sigma_M, \Gamma_M, \delta_M, i_M, f_M)$, který přijímá jazyk L, kde Q_M je konečná množina stavů, $\Sigma_M \subset \Gamma_M$ je vstupní abeceda, Γ_M je pásková abeceda, δ_M je přechodová funkce ve tvaru $\delta_M : Q_M \times \Gamma \longrightarrow Q \times (\Gamma \cup \{R, L\})$, kde R je posun hlavy doprava a L je posun hlavy doleva, $i_M \in Q_M$ je počáteční stav a $f_M \in Q_M$ je koncový stav.

Turingův stroj $M = (Q_M, \Sigma_M, \Gamma_M, \delta_M, i_M, f_M)$ je z automatu $A = (Q_A, \Sigma_A, \delta_A, i_A, F_A)$ zkonstruován následovně.

- $Q_M = Q_A \cup \{f_M, i_M\}$, kde $f_M, i_M \notin Q_A$
- $\Sigma_M = \Sigma_A$
- $\Gamma_M = \Sigma_A \cup \{\Delta\}$

$$\bullet \ \delta_{M}(q,a) = \begin{cases} (i_{A},R) & q = i_{M} \land a = \triangle \\ (\delta(q,a),R) & q \in Q_{A} \land a \in \Sigma_{A} \\ (f_{M},\triangle) & q \in F_{A} \land a = \triangle \end{cases}$$

- $i_M \in Q_M$ je počáteční stav stroje
- $f_M \in Q_M$ je koncový stav stroje

Ze struktury přechodové funkce Turingova stroje M lze vidět, že pro $w \in L$ o délce $n \in \mathbb{N}$, které je zapsáno na pásce, musí stroj po 1+n+1 krocích přijmout v koncovém stavu f_M , nebo zhavarovat v kroku $m \le n+2$. Turingův stroj tedy provede maximálně n+2 kroků, z čehož vyplývá, že jeho časová složitost je $O_{time}(n+2) = O_{time}(n)$. Protože při kontrole slova w musí stroj M projít právě buňky pásky, na kterých se slovo nachází, je jeho prostorová složitost $O_{space}(n+2) = O_{time}(n)$.

Bylo tedy dokázáno, že pro libovolný jazyk $L \in \mathcal{L}_3$ platí $L \in DTIME(n)$ a $L \in DSPACE(n)$.