Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica

Informe N° 3: Aplicaciones no lineales del Amplificador Operacional

Emerson Warhman C.I. 25.795.480 24 de marzo de 2025

Índice

1.	Resumen	2
2.	Introducción	2
3.	Objetivos	2
	5.2. Multivibradores	2 4 5 5 7 8 8 9 9 11 13 13 14 14
6.		16 17
		17
••	7.1. Osciladores 7.2. Multivibradores 7.2.1. Mediciones de ganancia y frecuencia 7.2.2. Efecto del integrador no inversor 7.2.3. Convertidor de tensión a corriente 7.3. Generador de funciones 7.3.1. Mediciones de ganancia y frecuencia 7.3.2. Efecto del integrador no inversor	17 21 21 21 21 24 24 24 24
8.	8.1. Análisis de las aplicaciones de las topologías clásicas 8.1.1. Ganancias topologías clásicas 8.1.2. Efecto del integrador no inversor 8.1.3. Convertidor de tensión a corriente 8.2. Análisis del amplificador operacional real 8.2.1. Ganancias topologías clásicas 8.2.2. Efecto del integrador no inversor 8.2.3. Convertidor de tensión a corriente 8.3. Análisis de los filtros activos 8.3.1. Ganancias topologías clásicas 8.3.2. Efecto del integrador no inversor 8.3.3. Convertidor de tensión a corriente	27 28 28 28 28 29 29 29
9.	Conclusiones	30
Bil	pliografía	30

1. Resumen

En este informe se estudian las características, aplicaciones y comportamiento práctico de los amplificadores operacionales (op-amps), componentes fundamentales en la electrónica analógica. Los op-amps son dispositivos versátiles y eficientes, utilizados en una amplia gama de circuitos para realizar operaciones como amplificación, filtrado, integración y regulación de señales.

A lo largo del trabajo, se analizaron configuraciones clásicas de amplificadores operacionales, como las topologías inversora y no inversora, las cuales demostraron un comportamiento cercano al ideal, con errores mínimos en sus ganancias. Sin embargo, al evaluar un amplificador operacional real ($\mu A741$), se observaron limitaciones significativas, como una tensión de offset y corrientes de bias con desviaciones considerables respecto a los valores teóricos. No obstante, el producto ganancia-ancho de banda (GBWP) se mantuvo relativamente constante, validando su importancia como parámetro clave en el diseño de circuitos.

En el ámbito de los filtros activos, se implementaron y evaluaron configuraciones como el filtro Sallen-Key y el filtro de realimentación múltiple. El primero mostró una excelente precisión en ganancia, mientras que el segundo presentó mayores desviaciones, atribuidas a las tolerancias de los componentes. Además, se identificaron desafíos en la medición del factor de amortiguamiento y en la implementación del filtro de variables de estado, lo que resalta la importancia de un diseño y ajuste cuidadoso en este tipo de circuitos.

Por otro lado, en el estudio de fuentes lineales y reguladores, se observó que el regulador de voltaje de salida fija ofreció una precisión excelente, mientras que la fuente de corriente ajustable presentó variaciones significativas en su precisión. También se destacó que el voltaje de rizado aumenta al disminuir la carga, un factor crítico a considerar en el diseño de circuitos con reguladores.

2. Introducción

Los amplificadores operacionales, comúnmente conocidos como op-amps, son dispositivos electrónicos ampliamente utilizados en circuitos analógicos debido a su versatilidad y eficiencia. Estos componentes son amplificadores de voltaje de alta ganancia, diseñados para realizar una variedad de operaciones matemáticas y de procesamiento de señales, como amplificación, filtrado, integración, diferenciación y sumación, entre otras.

Los amplificadores operacionales son componentes esenciales en la electrónica moderna, gracias a su flexibilidad y capacidad para realizar una amplia variedad de tareas. Su comprensión y manejo son fundamentales para el diseño y análisis de circuitos analógicos avanzados.

En este informe, se estudiarán las características y aplicaciones de los amplificadores operacionales, como pueden ser los filtros activos, así como los reguladores de voltaje y fuentes de corriente, que son dispositivos esenciales en la electrónica analógica.

3. Objetivos

Objetivo General

Comprender los principios físicos que permiten el establecimiento de una oscilación sinusoidal.

Objetivos Específicos

- Reconocer las ventajas del uso del concepto de amplicador operacional en el diseño e implementación de sistemas analógicos.
- Reconocer la necesidad del uso de un control de amplitud como mecanismo para sostenimiento de la oscilación senoidal.

4. Marco teórico

4.1. Osciladores

Existen distintos sistemas capaces de generar señales por sí solas, tales como: triangulares, cuadráticas, sinusoidales, etc. Las dos categorías principales de generadores de señales son los osciladores sinusoidales y los osciladores de relajación. El primero emplea un lazo de realimentación positiva compuesto por una red RC o RL, utilizando el fenómeno de resonancia. También se conoce como oscilador lineal. El segundo caso, se conoce como oscilador no lineal y emplean bloques conocidos como multivibradores.

Para el sistema de la ilustración 4, se tiene que la salida está dada por:

$$y = A(x + y\beta) \tag{1}$$

Ilustración 1: Circuito realimentado.

Donde:

- y es la salida del sistema
- x es la entrada del sistema
- A es la ganancia del amplificador
- \blacksquare β es el factor de realimentación

Por lo tanto, la ganancia del sistema realimentado está dada por:

$$A_{fb} = \frac{y}{x} = \frac{A}{1 - A\beta} \tag{2}$$

Cuando el resultado en el denominador es cero, entonces el sistema se encuentra en el límite de la estabilidad. Recordemos que un sistema con realimentación negativa es estable y el sistema con realimentación positiva es inestable.

Para que un sistema oscile, debe cumplirse la condición de Barkhausen:

$$A(j\omega_o)\beta(j\omega_o) = 1 \tag{3}$$

Esta condición establece que para que exista oscilación, la ganancia de lazo debe ser unitaria a la frecuencia de oscilación ω_o . Esto significa que:

- La magnitud del producto $A\beta$ debe ser igual a 1
- El ángulo de fase del producto $A\beta$ debe ser 0° o un múltiplo entero de 360°

Por lo tanto,

$$A(s)\beta(s) = 1 + 0j \tag{4}$$

donde

$$\beta A = \frac{a_n s^n + a_{n-1} s^{n-1} + \dots + a_o}{b_m s^m + b_{m-1} s^m + \dots + b_o}$$
(5)

Sustituyendo $s=j\omega$, se puede deducir que los términos pares serían números reales y los términos impares serían imaginarios. Al agruparlos se puede simplificar en la siguiente ecuación.

$$\beta A = \frac{N_p(s) + jN_i(s)}{D_p(s) + jD_i(s)} \tag{6}$$

Donde $N_p(s)$ y $D_p(s)$ son los términos pares del numerador y denominador respectivamente, y $N_i(s)$ y $D_i(s)$ son los términos impares del numerador y denominador respectivamente.

Multiplicando numerador y denominador por el conjugado del denominador:

$$\beta A = \frac{N_p(s) + jN_i(s)}{D_p(s) + jD_i(s)} \cdot \frac{D_p(s) - jD_i(s)}{D_p(s) - jD_i(s)}$$
(7)

$$\beta A = \frac{N_p(s)D_p(s) + N_i(s)D_i(s) + j(N_i(s)D_p(s) - N_p(s)D_i(s))}{D_p(s)^2 - D_i(s)^2}$$
(8)

de manera que igualando con la ecuación 26 se tiene que:

$$\begin{cases} \frac{N_p(s)D_p(s)+N_i(s)D_i(s)}{D_p(s)^2-D_i(s)^2} = 1\\ \frac{N_i(s)D_p(s)-N_p(s)D_i(s)}{D_p(s)^2-D_i(s)^2} = 0 \end{cases}$$
(9)

resolviendo el sistema de ecuaciones 31 se tiene que:

$$\begin{cases} N_i = D_i \\ N_p = D_p \end{cases} \tag{10}$$

4.2. Oscilador de puente de Wien

Este circuito es uno de los osciladores más usados, por su sencillez y estabilidad. Está realimentado negativamente por un circuito resistivo y positivamente por dos redes RC, en serie y paralelo.

Ilustración 2: Oscilador de puente de Wien.

Simplificando el circuito, tomando la ganancia del amplificador no inversor, resulta el circuito de la ilustración 6

Ilustración 3: Oscilador de puente de Wien simplificado.

con

$$K = 1 + \frac{R_f}{R_s} \tag{11}$$

Ahora, utilizando el método del amplificador desvanecido para resolver el sistema,

$$x_{31} = \frac{Z_p}{Z_p + Z_s} \tag{12}$$

Donde, $Z_p=1/sC_1 \parallel R_1$ y $Z_s=R_2+sC_2.$ Por lo tanto, sustituyendo estos términos y simplificando la ecuación, se tiene:

$$\beta A = A \frac{R1C2}{R1R2C1C2} \frac{s}{s^2 + s \frac{R2C2 + R1C1 + R1C2}{R1R2C1C2} + \frac{1}{R1R2C1C2}}$$
(13)

Identificando los términos:

$$N_p(s) = 0 (14)$$

$$N_i(s) = A \frac{R1C2}{R1R2C1C2} s \tag{15}$$

$$D_p(s) = s^2 + \frac{1}{R1R2C1C2} \tag{16}$$

$$D_p(s) = s^2 + \frac{1}{R1R2C1C2}$$

$$D_i(s) = s \left(\frac{R2C2 + R1C1 + R1C2}{R1R2C1C2} \right)$$
(16)

Partiendo de la igualdad $N_p = D_p$

$$s^2 + \frac{1}{R1R2C1C2} = 0 ag{18}$$

Se obtiene la frecuencia de oscilación del circuito,

$$\omega_o = \pm \sqrt{\frac{1}{R1 \cdot R2 \cdot C1 \cdot C2}} \tag{19}$$

Y de la igualdad $N_i = D_i$, se obtiene la ganancia del circuito

$$A = \frac{R2 \cdot C2 + R1 \cdot C1 + R1 \cdot C2}{R1 \cdot C2} \tag{20}$$

En la vida real, los variaciones de temperatura de los componentes dificulta mantener la estabilidad del puente de Wien. Una manera de disminuir este efecto consiste en utilizar valores de resistencias iguales y de la misma tecnología, lo cual disminuye el efecto de oscilación debido a la temperatura.

Si $R_1 = R_2 = R$ y $C_1 = C_2 = C$, entonces la ganancia del circuito y su frecuencia de corte se vuelven:

$$A = 3 \tag{21}$$

$$\omega_o = \frac{1}{RC} \tag{22}$$

4.3. Controles de amplitud

Para un oscilador, no es posible garatizar que mantenga las características de oscilación durante toda su vida útil. Para lograr esto, es necesario garantizar que la oscilación tenga un factor de amortiguamiento no nulo, $Ae^{\alpha t}sen(wt)$, de manera que pueda crecer y decrecer en amplitud.

Se desea entonces que en el arranque, ese factor α sea mayor que cero, y que crezca en magnitud hasta lograr niveles utilizables. Cuando esta señal sea grande, entonces el factor de amortiguamiento será menor que cero, evitando que el oscilador llegue a la zona no lineal.

4.4. **Osciladores**

Existen distintos sistemas capaces de generar señales por sí solas, tales como: triangulares, cuadráticas, sinusoidales, etc. Las dos categorías principales de generadores de señales son los osciladores sinusoidales y los osciladores de relajación. El primero emplea un lazo de realimentación positiva compuesto por una red RC o RL, utilizando el fenómeno de resonancia. También se conoce como oscilador lineal. El segundo caso, se conoce como oscilador no lineal y emplean bloques conocidos como multivibradores.

Ilustración 4: Circuito realimentado.

Para el sistema de la ilustración 4, se tiene que la salida está dada por:

$$y = A(x + y\beta) \tag{23}$$

Donde:

- y es la salida del sistema
- x es la entrada del sistema
- \blacksquare A es la ganancia del amplificador
- β es el factor de realimentación

Por lo tanto, la ganancia del sistema realimentado está dada por:

$$A_{fb} = \frac{y}{x} = \frac{A}{1 - A\beta} \tag{24}$$

Cuando el resultado en el denominador es cero, entonces el sistema se encuentra en el límite de la estabilidad. Recordemos que un sistema con realimentación negativa es estable y el sistema con realimentación positiva es inestable.

Para que un sistema oscile, debe cumplirse la condición de Barkhausen:

$$A(j\omega_o)\beta(j\omega_o) = 1 \tag{25}$$

Esta condición establece que para que exista oscilación, la ganancia de lazo debe ser unitaria a la frecuencia de oscilación ω_o . Esto significa que:

- lacksquare La magnitud del producto Aeta debe ser igual a 1
- El ángulo de fase del producto $A\beta$ debe ser 0° o un múltiplo entero de 360°

Por lo tanto,

$$A(s)\beta(s) = 1 + 0j \tag{26}$$

donde

$$\beta A = \frac{a_n s^n + a_{n-1} s^{n-1} + \dots + a_o}{b_m s^m + b_{m-1} s^m + \dots + b_o}$$
(27)

Sustituyendo $s=j\omega$, se puede deducir que los términos pares serían números reales y los términos impares serían imaginarios. Al agruparlos se puede simplificar en la siguiente ecuación.

$$\beta A = \frac{N_p(s) + jN_i(s)}{D_p(s) + jD_i(s)} \tag{28}$$

Donde $N_p(s)$ y $D_p(s)$ son los términos pares del numerador y denominador respectivamente, y $N_i(s)$ y $D_i(s)$ son los términos impares del numerador y denominador respectivamente.

Multiplicando numerador y denominador por el conjugado del denominador:

$$\beta A = \frac{N_p(s) + jN_i(s)}{D_p(s) + jD_i(s)} \cdot \frac{D_p(s) - jD_i(s)}{D_p(s) - jD_i(s)}$$
(29)

$$\beta A = \frac{N_p(s)D_p(s) + N_i(s)D_i(s) + j(N_i(s)D_p(s) - N_p(s)D_i(s))}{D_p(s)^2 - D_i(s)^2}$$
(30)

de manera que igualando con la ecuación 26 se tiene que:

$$\begin{cases}
\frac{N_p(s)D_p(s)+N_i(s)D_i(s)}{D_p(s)^2-D_i(s)^2} = 1 \\
\frac{N_i(s)D_p(s)-N_p(s)D_i(s)}{D_p(s)^2-D_i(s)^2} = 0
\end{cases}$$
(31)

resolviendo el sistema de ecuaciones 31 se tiene que:

$$\begin{cases}
N_i = D_i \\
N_p = D_p
\end{cases}$$
(32)

Ilustración 5: Oscilador de puente de Wien.

4.5. Oscilador de puente de Wien

Este circuito es uno de los osciladores más usados, por su sencillez y estabilidad. Está realimentado negativamente por un circuito resistivo y positivamente por dos redes RC, en serie y paralelo.

Simplificando el circuito, tomando la ganancia del amplificador no inversor, resulta el circuito de la ilustración 6

Ilustración 6: Oscilador de puente de Wien simplificado.

con

$$K = 1 + \frac{R_f}{R_s} \tag{33}$$

Ahora, utilizando el método del amplificador desvanecido para resolver el sistema,

$$x_{31} = \frac{Z_p}{Z_p + Z_s} \tag{34}$$

Donde, $Z_p=1/sC_1 \parallel R_1$ y $Z_s=R_2+sC_2$.

Por lo tanto, sustituyendo estos términos y simplificando la ecuación, se tiene:

$$\beta A = A \frac{R1C2}{R1R2C1C2} \frac{s}{s^2 + s \frac{R2C2 + R1C1 + R1C2}{R1R2C1C2} + \frac{1}{R1R2C1C2}}$$
(35)

Identificando los términos:

$$N_p(s) = 0 (36)$$

$$N_p(s) = 0$$
 (36)
 $N_i(s) = A \frac{R1C2}{R1R2C1C2} s$ (37)

$$D_p(s) = s^2 + \frac{1}{R1R2C1C2} \tag{38}$$

$$D_p(s) = s^2 + \frac{1}{R1R2C1C2}$$

$$D_i(s) = s \left(\frac{R2C2 + R1C1 + R1C2}{R1R2C1C2}\right)$$
(38)

Partiendo de la igualdad $N_p = D_p$

$$s^2 + \frac{1}{R1R2C1C2} = 0 (40)$$

Se obtiene la frecuencia de oscilación del circuito,

$$\omega_o = \pm \sqrt{\frac{1}{R1 \cdot R2 \cdot C1 \cdot C2}} \tag{41}$$

Y de la igualdad $N_i = D_i$, se obtiene la ganancia del circuito

$$A = \frac{R2 \cdot C2 + R1 \cdot C1 + R1 \cdot C2}{R1 \cdot C2} \tag{42}$$

En la vida real, los variaciones de temperatura de los componentes dificulta mantener la estabilidad del puente de Wien. Una manera de disminuir este efecto consiste en utilizar valores de resistencias iguales y de la misma tecnología, lo cual disminuye el efecto de oscilación debido a la temperatura.

Si $R_1 = R_2 = R$ y $C_1 = C_2 = C$, entonces la ganancia del circuito y su frecuencia de corte se vuelven:

$$A = 3 \tag{43}$$

$$\omega_o = \frac{1}{RC} \tag{44}$$

4.6. Controles de amplitud

Para un oscilador, no es posible garatizar que mantenga las características de oscilación durante toda su vida útil. Para lograr esto, es necesario garantizar que la oscilación tenga un factor de amortiguamiento no nulo, $Ae^{\alpha t}sen(wt)$, de manera que pueda crecer y decrecer en amplitud.

Se desea entonces que en el arranque, ese factor α sea mayor que cero, y que crezca en magnitud hasta lograr niveles utilizables. Cuando esta señal sea grande, entonces el factor de amortiguamiento será menor que cero, evitando que el oscilador llegue a la zona no lineal.

4.7. Generador de funciones

La onda exponencial generada en un circuito astable puede ser cambiada a un una onda triangular reemplazando el circuito RC con un integrador cómo se muestra en la ilustración. El integrador ocaciona que el capacitor se cargue y descargue de manera lineal, obteniendo de esta forma una onda triangular. [1, pag. 1366]

Ilustración 7: Generador de funciones

Supongamos que en la salida V_{SQ} del circuito tenemos valores máximos V_{SQ+} y mínimos V_{SQ-} , Cuando el valor de la salida es V_{SQ+} una corriente es V_{SQ+}/R va a pasar a traves de la resistencia y del condensador, causando que en la salida del integrador decrezca linealmente con una pendiente $-V_{SQ+}/RC$, Esto va a ocurrir hasta que la salida del integrador alcance el límite inferior del circuito astable, punto en el cual es circuito astable cambiará de estado, volviendose la salida del astable igual a V_{SQ-} . En este momento la corriente a traves de R y C cambiará de dirección y su valor se volverá $-V_{SQ-}/R$, causando que la salida del integrador aumente linealmente con una pendiente V_{SQ-}/RC hasta que alcance el límite superior del circuito astable, punto en el cual el circuito astable

cambiará de estado, volviendose la salida del astable igual a V_{SQ+} , una vez alcanzado este punto el circuito cambiará de estado nuevamente, haciendo que el voltaje en su salida sea V_{SQ+} y repitiendo el ciclo.

De lo dicho anteriormente se puede deducir una expresión para el periodo T de la onda triangular y la onda cuadrada. Durante el intervalo T_1 tenemos

$$\frac{V_{TH} - V_{TL}}{T_1} = \frac{V_{SQ+}}{RC}$$

de donde podemos despejar T_1

$$T_1 = \frac{V_{TH} - V_{TL}}{V_{SO+}} RC \tag{45}$$

De manera similar, durante T_2 tenemos

$$\frac{V_{TH} - V_{TL}}{T_2} = \frac{-V_{SQ-}}{RC}$$

de donde podemos despejar T_2

$$T_2 = \frac{V_{TH} - V_{TL}}{-V_{SQ-}} RC (46)$$

5. Metodología

5.1. Osciladores

5.1.1. Trabajo de preparación

Figura 1: Oscilador de puente de Wien con control de amplitud

Para el circuito de la figura 1, determinar la frecuencia de oscilación.

Si se toma $R_1=R_2=R$ y $C_1=C_2=C$ La frecuencia de oscilación del circuito viene dada por la ecuación 44.

Diseñar (utilizando valores comerciales) el oscilador de la figura 1 con una frecuencia de oscilación de 5.0 kHz.

Partiendo de la ecuación 44 primero fijamos el valor de los condensadores ${\cal C}$ ya que se fabrican con mucho menos variedad de valores que las resistencias, ${\sf En}$ este caso se seleccionará

$$C = C_1 = C_2 = 10nF$$
 (47)

Ahora hallamos el valor de la resistencia:

$$R = \frac{1}{C\omega_o} \tag{48}$$

$$R = \frac{1}{10nF \cdot 2\pi \cdot 5,0kHz} \tag{49}$$

$$R = 3183\Omega \tag{50}$$

Un valor comercial cercano sería:

$$R = R_1 = R_2 = 3.3k\Omega \tag{51}$$

Ahora debemos cumplir con la condición A=3, partiendo de la ecuación 33 y tomando en cuenta que para este circuito:

$$R_f = R_3 + xR_{v1} \tag{52}$$

$$R_s = (1 - x)R_{v1} (53)$$

tenemos

$$A = 3 = 1 + \frac{R_3 + xR_{v1}}{(1-x)R_{v1}} \tag{54}$$

Si decimos que el potenciómetro tiene el valor

$$R_{v1} = 10k\Omega \tag{55}$$

y que x = 0.5, entonces tenemos

$$3 = 1 + \frac{R_3 + 5k\Omega}{5k\Omega}$$
$$2 = \frac{R_3 + 5k\Omega}{5k\Omega}$$
$$10k\Omega = R_3 + 5k\Omega$$
$$R_3 = (10 - 5)k\Omega$$
$$R_3 = 5k\Omega$$

usando un valor comercial

$$R_3 = 5.1k\Omega$$
 (56)

Determinar la amplitud de la señal de salida cuando está presente el control de amplitud

Ahora, conectando los diodos al circuito en un principio no estarán funcionando, pero cuando el voltaje sea suficiente para polarizar los diodos estos entrarán en funcionamiento y toda la corriente pasará a traves de ellos en vez de por la resistencia R_1 , por tanto la ecuación 54 se vuelve

$$A = 1 + \frac{xR_{v1}}{(1-x)R_{v1}} \tag{57}$$

si decimos que x=0

$$A = 1 + \frac{0.5R_{v1}}{0.5R_{v1}}$$

$$A = 1 + 1$$

$$A = 2$$

Queremos encontrar la expresión de la tensión en la entrada negativa del amplificador V_N , para ello aplicamos un divisor de tensión desde V_o

$$\begin{split} V_N &= \frac{(1-x)R_{v1}}{(1-x)R_{v1} + xR_{v1}} (V_o - V_{Don}) \\ V_N &= \frac{(1-x)R_{v1}}{(1-x+x)R_{v1}} (V_o - V_{Don}) \\ V_N &= \frac{(1-x)R_{v1}}{R_{v1}} (V_o - V_{Don}) \\ V_N &= (1-x)(V_o - V_{Don}) \\ V_N &= (1-x)V_o - (1-x)V_{Don} \end{split}$$

Recordando que

$$\frac{V_o}{V_N} = 3 \tag{58}$$

$$\frac{V_o}{3} = (1 - x)V_o - (1 - x)V_{Don}$$

despejamos V_o

$$V_o = \frac{(1-x)V_{Don}}{1-x-\frac{1}{3}} \tag{59}$$

5.1.2. Simulaciones

Ilustración 8: Circuito oscilador en el simulador

El la ilustración 8 se muestra el montaje del circuito oscilador en el programa Multisim.

La ilustración 9 muestra la forma de onda de la señal de salida del oscilador sin control de amplitud y con x=0.5. Podemos observar que la ganancia es 3.02 y la frecuencia de la señal es 4.76 kHz.

La ilustración 10 muestra la forma de la onda del circuito oscilador con control de amplitud cuando x=0.5, podemos observar que la ganancia es 2.98 y la frecuencia es 4.76 kHz.

En la ilustración 11 se observa que la onda se empieza a saturar y que la frecuencia se empieza a alejar de la condición f=5kHz.

En la ilustración 12 podemos ver que la onda se atenúa y la frecuencia se hace 4.34 kHz, alejándose de la frecuencia deseada de 5kHz.

De las simulaciones podemos observar que para el circuito sin control de amplitud el rango efectivo del potenciómetro es muy reducido, x debe ser muy cercano a 0.5, mientras que para el circuito con control de amplitud el rango de x aumenta hasta casi $x=\pm 0.65$. En la práctica de laboratorio se desea comprobar si el rango efectivo de x aumenta cuando se implementa el control de amplitud.

Ilustración 9: Forma de onda circuito oscilador sin control de amplitud

Ilustración 10: Forma de onda circuito oscilador con control de amplitud

llustración 11: Forma de onda circuito oscilador con control de amplitud cuando x=0.65

llustración 12: Forma de onda circuito oscilador sin control de amplitud cuando x=0.55

5.2. Multivibradores

5.2.1. Trabajo de preparación

Figura 2: Multivibrador Astable con base en A.O

Para el circuito de la figura 2, diseñar con el fin de obtener una oscilación de frecuencia 5.0kHz y amplitud 2V.

Al usar un amplificador operacional UA741 alimentado con voltajes $+VCC=10\pm1V$ y $VEE=-10\pm1V$ este tendrá tensiones de saturación +Vsat =8,005 V y -Vsat=-8,005 V, dichos valores fueron estudiados y comprobados en prácticas anteriores por lo cual serán utilizados como datos para esta práctica y para la práctica 3.3 del capítulo siguiente.

$$Vp = \frac{R_5}{R_5 + R_6} \cdot Vo_{\text{max}} \tag{60}$$

Sustituyendo Vp=2V y Vo=Vsat+ se tiene

$$2 = \frac{R_5}{R_5 + R_8}$$

$$R_8 = (6,005)R_5$$

si $R_5 = 3.3k$ entonces

$$R_8 = 10k$$

La frecuencia requerida es de 5,0kHz, despejando T de la ecuación (3) se obtiene el período.

$$f = \frac{1}{T}$$

$$T = \frac{1}{f} = 0.2ms$$

El periodo está dado por

$$\mathcal{T} = t_1 + t_2 = -2R_{\gamma}\mathcal{C}_4 \ln\left(\frac{R_8}{2R_5 + R_6}\right)$$

Asumiendo que $C_4=10nF$ se tiene

$$R_7 = -\frac{T}{2C_4 \ln\left(\frac{R_B}{2R_S + R_g}\right)} = \frac{0,2 \times 10^{-3}}{2(100 \times 10^{-9}) \ln\left(\frac{1500}{2 \times 510 + 1500}\right)}$$
$$R_7 = 22k\Omega$$

Figura 3: Multivibrador Monostable con base en A.O

Para el circuito de la figura 3, diseñar con el fin de obtener un tiempo de pulso de 10ms. El voltaje en la salida no inversora del amplificador (Vp), en el momento que ocurre el pulso negativo y D9 no conduce, está dado por la siguiente expresión:

$$V_{p3} = \frac{R_{12}}{R_{12} + R_{14}} Vo_{min}$$

Suponiendo $R_{12}=5.1k$ y $R_{1}4=10k$

$$V_{p3} = \frac{5.1k}{10k + 5.1k}(-8,005) = -6,38 V$$

$$V_p = 2.9$$

 R_{11} tiene que ser menor que R_{12} por ejemplo 1k

$$R_{13} = \frac{t_c}{C_a \ln\left(\frac{V_{P3} - V_{SAT}}{V_{DB} - V_{SAT}}\right)} = \frac{10 \cdot 10^{-3}}{(100 \cdot 10^{-9}) \ln\left(\frac{-6,38 - (-8,005)}{1,5 - (-8,005)}\right)}$$
$$R_{13} = 152k\Omega$$

5.3. Generador de funciones

5.3.1. Trabajo de preparación

Figura 4: Generador de funciones

Para el circuito de la figura 4, diseñar con el fin de obtener una oscilación de frecuencia 5.0kHz.

Llamaremos a la salida del astable V_{C} y a la salida del integrador V_{T}

Tenemos que la salida V_C viene dada por los valores de los diodos y del zener, de modo que

$$V_C = V_Z + 2V_D \tag{61}$$

Llamaremos a las entradas del amplificador U4 V^- y V^+ , el voltaje en V^+ viene dado por

$$V^{+} = \frac{R_6}{R_6 + R_7} V_C + \frac{R_7}{R_6 + R_7} V_T$$

Despejando V_T de la ecuación

$$V_T = \frac{R_6 + R_7}{R_7} V^+ - \frac{R_6}{R_7} V_C$$

Pero el voltaje $V^-=0$ ya que está conectado a la referencia y $V^+=V^-$ por lo tanto

$$V_T = -\frac{R_6}{R_7} V_C \tag{62}$$

Se utilizarán el diodo zener 1N4734A y los diodos 1N4007, por lo que

$$V_Z = 5.6V$$
$$V_D = 0.65V$$

Por tanto

$$V_C = \pm 6.9V$$

Para el diseño no se pide ningún valor especifico para la magnitud de la señal triangular en el diseño, por lo tanto se puede escoger cualquier valor para R_6 y R_7 siempre y cuando V_T no alcance el voltaje de saturación del amplificador. Por simplicidad se utilizará $R_6=R_7$

por tanto

$$V_T = -V_C$$

$$V_C = 6.9V \to V_T = -6.9V$$
 (63)

$$V_C = -6.9V \to V_T = 6.9V$$
 (64)

Para cumplir con la condición de frecuencia primero hay que tomar en cuenta el tiempo de retardo de la señal debido al slew rate, el cual viene dado por la expresión

$$T_{SR} = \frac{2(V_Z + 2V_D)}{SR}$$

De la hoja de datos del amplificador $\mu A741$ tenemos que $SR=0.5V\mu s$, por tanto

$$T_{SR} = \frac{2 \cdot 6.9}{0.5} = 27.6 \mu s$$

Y tenemos que el periodo viene dado por

$$T = T_1 + T_2 + T_{SR}$$

Para este caso $T_1=T_2$ por tanto la expresión se vuelve

$$T = 2 \cdot T_1 + T_{SR}$$

despejando T_1

$$T_1 = \frac{T - T_{SR}}{2} = \frac{200 - 27.6}{2} \mu S = 86.2 \mu s$$

Entonces de la ecuacion 45 tenemos

$$86,2\mu s = \frac{2 \cdot V_T}{V_C} RC$$

despejando R

$$R = 86.2 \times 10^{-6} \frac{V_C}{2 \cdot V_T \cdot C} \tag{65}$$

Si C = 10nF entonces

$$R = 4.3k\Omega \tag{66}$$

La resistencia R_{10} es para proteger al amplificador debido a que los diodos fijan el voltaje de salida. Se escogerá un valor de

$$R_{10} = 1k\Omega \tag{67}$$

5.3.2. Simulación

Ilustración 13: Montaje del circuito generador de funciones en multisim

Simular el circuito diseñado y verificar las especificaciones, reportar las formas de ondas de interés para evidenciar el funcionamiento del circuito La ilustración 13 muestra la construcción del circuito generador de funciones utilizando los valores calculados.

La ilustración 14 muestra las formas de onda triangular y cuadrada generadas por el circuito en la simulación. Se puede observar que la frecuencia de las ondas es de aproximadamente 5kHz y que ambas ondas tienen magnitudes casi identicas, sin embargo las magnitudes son de máximo de 6V mientras que en los calculos la magnitud era de 6.9V

Ilustración 14: Formas de ondas triangular y cuadrada del generador de funciones en la simulación

6. Instrumentos y componentes

A continuación se listan los instrumentos y componentes utilizados en la práctica de laboratorio.

- Generador de ondas N°7 del laboratorio.
- Fuente DC N°1 del laboratorio
- Osciloscopio N°7 del laboratorio
- Resistencias con tolerancia del 5 % y potencia de 1/4 W de valores: 100k, 20k, 40k, 22M, 100, 6.8, 1k, 91k, 910, 2k, 8.9k, 1.20k, 640, 240, 120, 5k, 10k.
- Condensadores de 10nF, 100nF, $470\mu F$ $0.1\mu F$, 1uF, 100uF con tolerancia del 20 %.
- Potenciómetro de 10k y 1k.
- Regulador 7805
- ullet Amplificadores $\mu A741$, lm741 y mc1741
- Dos protoboards.
- Transformador con center tap y puente rectificador de dos diodos.

7. Presentación de resultados

7.1. Osciladores

Descripción	V_o [V]	ΔV_o [V]	T [ms]	$\Delta T \; [ext{ms}]$	f [kHz]	Δf [kHz]
Oscilando	9.00	1.00	0.20	0.01	5.00	0.25
Saturado	9.00	1.00	0.45	0.01	2.22	0.05

Cuadro 1: Mediciones de voltaje, periodo y frecuencia del oscilador sin control de amplitud.

Descripción	R_x [k Ω]	ΔR_x [k Ω]	$RV1$ [k Ω]	$\Delta RV1$ [k Ω]	X	ΔX
Oscilando	4.82	0.01	10.00	0.50	0.482	0.025
Saturado	8.00	0.01	10.00	0.50	0.800	0.040

Cuadro 2: Mediciones del potenciometro en el oscilador sin control de amplitud.

Ilustración 15: Medición Oscilador sin control de amplitud funcionando.

Ilustración 16: Oscilador sin control de amplitud saturado.

Descripción	V_o [V]	ΔV_o [V]	T [ms]	$\Delta T \; [ext{ms}]$	f [kHz]	Δf [kHz]
Excursión máxima	10.00	1.00	0.22	0.01	4.55	0.21
Excursión mínima	0.72	0.04	0.20	0.01	5.00	0.25
Saturada	3.40	0.20	0.20	0.01	5.00	0.25

Cuadro 3: Mediciones de voltaje, periodo y frecuencia del oscilador con control de amplitud.

Descripción	R [k Ω]	$\Delta R \; [k\Omega]$	$RV1$ [k Ω]	$\Delta RV1~[\mathrm{k}\Omega]$	X	ΔX
Excursión máxima	6.50	0.01	10.00	0.50	0.65	0.03
Excursión mínima	4.84	0.01	10.00	0.50	0.48	0.03
Saturada	5.81	0.01	10.00	0.50	0.581	0.03

Cuadro 4: Mediciones de resistencia del oscilador con control de amplitud.

llustración 17: Oscilador con control de amplitud en excursión máxima.

Ilustración 18: Oscilador con control de amplitud en excursión mínima.

Descripción	V_o [V]	ΔV_o [V]	V_i [V]	ΔV_i [V]	A	ΔA
Ganancia oscilador	5.6	0.4	1.9	0.1	2.95	0.25

Cuadro 5: Mediciones de ganancia del oscilador con control de amplitud.

A	ΔA	Valor Teórico	% Error
2.95	0.25	3.00	1.67

Cuadro 6: Mediciones de ganancia del oscilador con control de amplitud y su error porcentual.

Ilustración 19: Oscilador con control de amplitud saturado.

Ilustración 20: Medición de la ganancia del oscilador con control de amplitud.

descripción	f [KHz]	$\mid \Delta f$ [kHz]	Valor Teórico [kHz]	% Error
Excursión máxima	4.55	0.21	5.00	9.00
Excursión mínima	5.00	0.25	5.00	0.00
Saturada	5.00	0.25	5.00	0.00

Cuadro 7: Mediciones de frecuencia del oscilador con control de amplitud y su error porcentual.

7.2. Multivibradores

7.2.1. Mediciones de ganancia y frecuencia

La ilustración 25 muestra las mediciones de voltaje de entrada y salida del amplificador inversor.

Ilustración 21: Entrada y salida amplificador inversor.

La ilustración 26 muestra las mediciones de voltaje de entrada y salida del amplificador no inversor. La ilustración 27 muestra las mediciones de voltaje de entrada y salida del amplificador restador.

Topología	$V_i(i)$	$\Delta V_i(i)$	$V_o(i)$	$\Delta V_o(i)$	T (ms)	$\Delta T \; (\text{ms})$	Ganancia	$\Delta Ganancia$
Inversor	1	0.2	-2	0.2	1.0	0.02	-2.00	0.447
No inversor	1	0.2	3	0.2	1.0	0.02	3.00	0.632
Restador	0.5	0.22	2	0.1	1.0	0.02	4.00	1.77

Cuadro 8: Ganancia topologías clásicas.

7.2.2. Efecto del integrador no inversor

La ilustración 28 muestra las mediciones de voltaje de entrada y salida del amplificador integrador no inversor.

7.2.3. Convertidor de tensión a corriente

El cuadro 12 muestra la medición de voltaje de entrada del convertidor tensión-corriente.

V_i	ΔV_i
5.2	0.4

Cuadro 9: Medición de voltaje de entrada del convertidor tensión-corriente.

El cuadro 13 muestra las mediciones del convertidor tensión-corriente.

Ilustración 22: Entrada y salida amplificador no inversor.

V_o	ΔV_o	$R[k\Omega]$	$\Delta R [k\Omega]$	I (mA)	$\Delta I \; (mA)$
0.05	0.01	1.000	0.050	50.00	10.30
0.5	0.1	11.000	0.550	45.50	9.370
1.0	0.1	22.000	1.100	45.50	5.080
2.0	0.2	39.000	1.950	51.30	5.730
1.3	0.1	27.000	1.350	48.10	4.420

Cuadro 10: Mediciones del convertidor tensión-corriente.

Ilustración 23: Entrada y salida amplificador restador.

Ilustración 24: Entrada vs salida amplificador integrador no inversor.

7.3. Generador de funciones

7.3.1. Mediciones de ganancia y frecuencia

La ilustración 25 muestra las mediciones de voltaje de entrada y salida del amplificador inversor.

Ilustración 25: Entrada y salida amplificador inversor.

La ilustración 26 muestra las mediciones de voltaje de entrada y salida del amplificador no inversor. La ilustración 27 muestra las mediciones de voltaje de entrada y salida del amplificador restador.

Topología	$V_i(i)$	$\Delta V_i(i)$	$V_o(i)$	$\Delta V_o(i)$	T (ms)	$\Delta T \; (\text{ms})$	Ganancia	$\Delta Ganancia$
Inversor	1	0.2	-2	0.2	1.0	0.02	-2.00	0.447
No inversor	1	0.2	3	0.2	1.0	0.02	3.00	0.632
Restador	0.5	0.22	2	0.1	1.0	0.02	4.00	1.77

Cuadro 11: Ganancia topologías clásicas.

7.3.2. Efecto del integrador no inversor

La ilustración 28 muestra las mediciones de voltaje de entrada y salida del amplificador integrador no inversor.

7.3.3. Convertidor de tensión a corriente

El cuadro 12 muestra la medición de voltaje de entrada del convertidor tensión-corriente.

V_i	ΔV_i
5.2	0.4

Cuadro 12: Medición de voltaje de entrada del convertidor tensión-corriente.

El cuadro 13 muestra las mediciones del convertidor tensión-corriente.

Ilustración 26: Entrada y salida amplificador no inversor.

V_o	ΔV_o	$R[k\Omega]$	$\Delta R [k\Omega]$	I (mA)	$\Delta I \; (mA)$
0.05	0.01	1.000	0.050	50.00	10.30
0.5	0.1	11.000	0.550	45.50	9.370
1.0	0.1	22.000	1.100	45.50	5.080
2.0	0.2	39.000	1.950	51.30	5.730
1.3	0.1	27.000	1.350	48.10	4.420

Cuadro 13: Mediciones del convertidor tensión-corriente.

Ilustración 27: Entrada y salida amplificador restador.

Ilustración 28: Entrada vs salida amplificador integrador no inversor.

7.4. Fuentes lineales y reguladores monolíticos

8. Análisis de resultados

8.1. Análisis de las aplicaciones de las topologías clásicas

8.1.1. Ganancias topologías clásicas

A partir de los resultados obtenidos, se presenta el siguiente análisis de las ganancias medidas para cada topología:

Topología	Ganancia	Δ Ganancia	Ganancia teórica	Error (%)
Inversor	-2.00	0.45	-2	0
No Inversor	3.00	0.63	3	0
Restador	4.00	1.77	2	100

Cuadro 14: Comparación de ganancias medidas vs teóricas

Del análisis de los resultados se puede observar que:

- Para el amplificador inversor, se obtuvo una ganancia de $-2,00 \pm 0,45$, lo cual coincide exactamente con la ganancia teórica esperada de -2, resultando en un error del 0%.
- En el caso del amplificador no inversor, se midió una ganancia de $3,00 \pm 0,63$, que también coincide perfectamente con el valor teórico de 3, presentando un error del 0%.
- Para el amplificador restador, se obtuvo una ganancia de 4.00 ± 1.77 . Este valor difiere significativamente del valor teórico esperado de 2, presentando un error del $100\,\%$. Esta discrepancia se debe a un error cometido al momento de tomar la medición, ya que se consideró que el voltaje de entrada era V_1 cuando realmente es la resta $V_2 V_1$, esto llevó a una mala interpretación de los valores observados en el osciloscopio.

Los amplificadores inversor y no inversor mostraron un comportamiento muy cercano al ideal, mientras que el restador presentó desviaciones significativas debido a un error humano.

8.1.2. Efecto del integrador no inversor

La ilustración 28 muestra que al pasar una señal cuadrada al amplificador integrador no inversor, la señal de salida es una señal triangular cuya pendiente positiva coincide con el semiciclo positivo de la señal cuadrada, mientras que la pendiente negativa coincide con el semicliclo negativo de la señal cuadrada, este es el comportamiento que se esperaba observar.

8.1.3. Convertidor de tensión a corriente

A continuación se presentan los resultados de la corriente medida para cada valor de resistencia, junto con el error porcentual respecto al valor teórico.

	I (mA)	$\Delta I \; (mA)$	I Teórica [mA]	Error (%)
	50.00	10.30	52	3.85
	45.50	9.370	52	12.59
Ì	45.50	5.080	52	12.59
Ì	51.30	5.730	52	1.38
ĺ	48.10	4.420	52	7.41

Cuadro 15: Porcentaje de error del convertidor tensión-corriente.

I (mA)	$\Delta I \text{ (mA)}$	I Teórica [mA]	Error (%)
48.07	6.982	52	7.56

Cuadro 16: Porcentaje de error promedio del convertidor tensión-corriente.

De los cuadros 21 y 22 se observa que la corriente medida se mantiene relativamente constante alrededor de los 48 mA, con una desviación promedio del 7.56 % respecto al valor teórico de 52 mA. y una desviación máxima del 12.59 %. Esto puede ser debido a que R_1 (100k) no era significativamente grande en comparación con R_2 (40k). Las

incertidumbres en las mediciones son significativas, especialmente en las primeras mediciones, Esto puede ser debido a que para las primeras mediciones los valores medidos de voltaje fueron bajos, o que las primeras resistencias fueron de un valor bajo, siendo su incertidumbre baja y al ser una división la incertidumbre de la corriente fue alta.

El valor teórico de la corriente se obtuvo de la formula ?? con $R_1 = 100k\Omega$ y $V_i = 5.2V$.

8.2. Análisis del amplificador operacional real

8.2.1. Ganancias topologías clásicas

A partir de los resultados obtenidos, se presenta el siguiente análisis de las ganancias medidas para cada topología:

Topología	Ganancia	Δ Ganancia	Ganancia teórica	Error (%)
Inversor	-2.00	0.45	-2	0
No Inversor	3.00	0.63	3	0
Restador	4.00	1.77	2	100

Cuadro 17: Comparación de ganancias medidas vs teóricas

Del análisis de los resultados se puede observar que:

- Para el amplificador inversor, se obtuvo una ganancia de -2.00 ± 0.45 , lo cual coincide exactamente con la ganancia teórica esperada de -2, resultando en un error del 0%.
- En el caso del amplificador no inversor, se midió una ganancia de $3,00 \pm 0,63$, que también coincide perfectamente con el valor teórico de 3, presentando un error del 0%.
- Para el amplificador restador, se obtuvo una ganancia de $4,00 \pm 1,77$. Este valor difiere significativamente del valor teórico esperado de 2, presentando un error del $100\,\%$. Esta discrepancia se debe a un error cometido al momento de tomar la medición, ya que se consideró que el voltaje de entrada era V_1 cuando realmente es la resta $V_2 V_1$, esto llevó a una mala interpretación de los valores observados en el osciloscopio.

Los amplificadores inversor y no inversor mostraron un comportamiento muy cercano al ideal, mientras que el restador presentó desviaciones significativas debido a un error humano.

8.2.2. Efecto del integrador no inversor

La ilustración 28 muestra que al pasar una señal cuadrada al amplificador integrador no inversor, la señal de salida es una señal triangular cuya pendiente positiva coincide con el semiciclo positivo de la señal cuadrada, mientras que la pendiente negativa coincide con el semicliclo negativo de la señal cuadrada, este es el comportamiento que se esperaba observar.

8.2.3. Convertidor de tensión a corriente

A continuación se presentan los resultados de la corriente medida para cada valor de resistencia, junto con el error porcentual respecto al valor teórico.

I (mA)	$\Delta I \text{ (mA)}$	I Teórica [mA]	Error (%)
50.00	10.30	52	3.85
45.50	9.370	52	12.59
45.50	5.080	52	12.59
51.30	5.730	52	1.38
48.10	4.420	52	7.41

Cuadro 18: Porcentaje de error del convertidor tensión-corriente.

	I (mA)	$\Delta I \text{ (mA)}$	I Teórica [mA]	Error (%)
ſ	48.07	6.982	52	7.56

Cuadro 19: Porcentaje de error promedio del convertidor tensión-corriente.

De los cuadros 21 y 22 se observa que la corriente medida se mantiene relativamente constante alrededor de los 48 mA, con una desviación promedio del 7.56 % respecto al valor teórico de 52 mA. y una desviación máxima del

12.59%. Esto puede ser debido a que R_1 (100k) no era significativamente grande en comparación con R_2 (40k). Las incertidumbres en las mediciones son significativas, especialmente en las primeras mediciones, Esto puede ser debido a que para las primeras mediciones los valores medidos de voltaje fueron bajos, o que las primeras resistencias fueron de un valor bajo, siendo su incertidumbre baja y al ser una división la incertidumbre de la corriente fue alta.

El valor teórico de la corriente se obtuvo de la formula ?? con $R_1=100k\Omega$ y $V_i=5.2V$.

8.3. Análisis de los filtros activos

8.3.1. Ganancias topologías clásicas

A partir de los resultados obtenidos, se presenta el siguiente análisis de las ganancias medidas para cada topología:

Topología	Ganancia	Δ Ganancia	Ganancia teórica	Error (%)
Inversor	-2.00	0.45	-2	0
No Inversor	3.00	0.63	3	0
Restador	4.00	1.77	2	100

Cuadro 20: Comparación de ganancias medidas vs teóricas

Del análisis de los resultados se puede observar que:

- Para el amplificador inversor, se obtuvo una ganancia de -2.00 ± 0.45 , lo cual coincide exactamente con la ganancia teórica esperada de -2, resultando en un error del 0%.
- En el caso del amplificador no inversor, se midió una ganancia de $3,00 \pm 0,63$, que también coincide perfectamente con el valor teórico de 3, presentando un error del 0%.
- Para el amplificador restador, se obtuvo una ganancia de $4,00\pm1,77$. Este valor difiere significativamente del valor teórico esperado de 2, presentando un error del $100\,\%$. Esta discrepancia se debe a un error cometido al momento de tomar la medición, ya que se consideró que el voltaje de entrada era V_1 cuando realmente es la resta V_2-V_1 , esto llevó a una mala interpretación de los valores observados en el osciloscopio.

Los amplificadores inversor y no inversor mostraron un comportamiento muy cercano al ideal, mientras que el restador presentó desviaciones significativas debido a un error humano.

8.3.2. Efecto del integrador no inversor

La ilustración 28 muestra que al pasar una señal cuadrada al amplificador integrador no inversor, la señal de salida es una señal triangular cuya pendiente positiva coincide con el semiciclo positivo de la señal cuadrada, mientras que la pendiente negativa coincide con el semicliclo negativo de la señal cuadrada, este es el comportamiento que se esperaba observar.

8.3.3. Convertidor de tensión a corriente

A continuación se presentan los resultados de la corriente medida para cada valor de resistencia, junto con el error porcentual respecto al valor teórico.

I (mA)	$\Delta I \text{ (mA)}$	I Teórica [mA]	Error (%)
50.00	10.30	52	3.85
45.50	9.370	52	12.59
45.50	5.080	52	12.59
51.30	5.730	52	1.38
48.10	4.420	52	7.41

Cuadro 21: Porcentaje de error del convertidor tensión-corriente.

I (mA)	$\Delta I \text{ (mA)}$	I Teórica [mA]	Error (%)
48.07	6.982	52	7.56

Cuadro 22: Porcentaje de error promedio del convertidor tensión-corriente.

De los cuadros 21 y 22 se observa que la corriente medida se mantiene relativamente constante alrededor de los 48 mA, con una desviación promedio del 7.56 % respecto al valor teórico de 52 mA. y una desviación máxima del

12.59%. Esto puede ser debido a que R_1 (100k) no era significativamente grande en comparación con R_2 (40k). Las incertidumbres en las mediciones son significativas, especialmente en las primeras mediciones, Esto puede ser debido a que para las primeras mediciones los valores medidos de voltaje fueron bajos, o que las primeras resistencias fueron de un valor bajo, siendo su incertidumbre baja y al ser una división la incertidumbre de la corriente fue alta.

El valor teórico de la corriente se obtuvo de la formula ?? con $R_1 = 100k\Omega$ y $V_i = 5,2V$.

8.4. Análisis de las fuentes lineales y reguladores monolíticos

9. Conclusiones

A lo largo de este trabajo de laboratorio, se estudiaron diferentes aspectos de los amplificadores operacionales y sus aplicaciones, llegando a las siguientes conclusiones:

- Las topologías clásicas (inversor y no inversor) mostraron un comportamiento muy cercano al ideal, con errores del 0% en sus ganancias. Esto demuestra la fiabilidad de estas configuraciones básicas cuando están correctamente implementadas.
- \blacksquare El amplificador operacional real $\mu A741$ mostró limitaciones importantes en comparación con el modelo ideal:
 - La tensión de offset medida fue significativamente mayor que la especificada (error del 700 % respecto al valor típico), posiblemente debido a las diferentes condiciones de operación.
 - Las corrientes de bias mostraron una gran desviación (99.09 % de error), evidenciando la sensibilidad de estos parámetros a las condiciones de operación.
 - El producto ganancia-ancho de banda (GBWP) se mantuvo relativamente constante con errores menores al 13 %, validando esta característica fundamental del dispositivo.
- Los filtros activos implementados demostraron ser efectivos en el procesamiento de señales:
 - El filtro Sallen-Key mostró una excelente precisión en ganancia (0 % error) aunque con un error del 12.23 % en frecuencia.
 - El filtro de realimentación múltiple presentó mayores desviaciones (10 % en ganancia, 27.10 % en frecuencia), probablemente debido a las tolerancias de los componentes.
 - No fue posible medir el filtro de variables de estado debido a un error en el circuito implementado.
 - No se pudo medir el factor de amortiguamiento, por lo cual es necesario realizar más mediciones en las zonas de interes al realizar el barrido.
 - Por un lado el filtro de realimentación múltiple fue el más dificil de diseñar debido a la fuerte dependencia de sus parámetros de ganancia, frecuencia de corte y factor de amortiguamiento, esto se vio reflejado en los resultados, donde cambios en los componentes utilizados tuvieron un impacto significativo en los parámetros del filtro.
- En cuanto a las fuentes lineales y reguladores:
 - El regulador de voltaje de salida fija demostró excelente precisión con 0 % de error.
 - La fuente de corriente ajustable mostró variaciones significativas en su precisión (errores entre 0.74 % y 36.48 %), evidenciando la dificultad de ajuste preciso.
 - Se observó que el voltaje de rizado aumenta a medida que disminuye la carga, lo cual es un factor importante a considerar en el diseño de cualquier circuito que use reguladores.

Estas observaciones demuestran la importancia de considerar las no idealidades y limitaciones prácticas al trabajar con circuitos analógicos reales, así como la necesidad de seleccionar cuidadosamente los componentes y condiciones de operación para obtener los resultados deseados.

Bibliografía

[1] K. C. S. Adel Sedra, *Microelectronic Circuits* (The Oxford Series in Electrical and Computer Engineering), 6th, O. U. Press, ed. Oxford University Press, 2009.