# 4. Linear-Time Properties



Computer-Aided Verification

**Dave Parker** 

University of Birmingham 2017/18

## **Announcements**

#### Continuous assessment

- reminder: 4 assignments (5 for "extended" version)
- due Thurs of weeks 3, 5, 8, 11 (and week 10 for extra one)

### Assignment 1 (models and properties)

- formative; out now; due 12 noon Thur 25 Jan
- submitted through Canvas
- solutions worked through in tutorial sessions

#### Next week

- Thur lecture is moved to the tutorial slot:
- Fri 10am (SportEx Lecture Theatre 1)

# Recap: Modelling

- Nondeterminism
  - multiple possible behaviours of system being modelled
  - uses: unknown environments/inputs, abstraction, concurrency
- Parallel composition key ideas:
- Nondeterminism models interleaving of parallel components
  - i.e., unknown execution order (or unknown scheduling)
- Parallel composition requires states of both components
  - i.e., resulting LTS has product state space  $S_1 \times S_2$

# Today

- Linear-time properties
  - formal definition
  - paths, traces, satisfaction
- Important classes of properties
  - invariants
  - safety
  - liveness

• See [BK08] chapter 3 (specifically: 3.2–3.4)

## Some assumptions

- We will assume LTSs are finite
  - since we start to consider algorithms to check properties
- We assume no deadlocks
  - i.e. LTSs have no terminal states
  - and so all maximal paths are infinite
  - (we can easily check for deadlocks and "repair" them)

## LTS labels

### Recall:

- state labels (atomic prop.s)are used for facts/observations
- transition labels (actions) primarily for interaction/composition



## LTS labels

### Recall:

- state labels (atomic prop.s)are used for facts/observations
- transition labels (actions) primarily for interaction/composition



### • So:

- 1. properties are formally expressed using atomic propositions
- 2. technically, can work on underlying graph of an LTS

### Paths

- are now of the form  $\pi = s t v t v u...$
- i.e. we ignore actions

## **Traces**

### Recall:

- an LTS is a tuple  $M = (S,Act,\rightarrow,I,AP,L)$
- with a labelling function  $L: S \rightarrow 2^{AP}$

### Example:

- $AP = \{a,b\}$
- $-2^{AP} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$
- e.g.  $L(v) = \{a,b\}$



#### Traces

- the sequences of (sets of) atomic propositions true in each state
- the trace of path  $\pi = s_0 s_1 s_2 s_3 \dots$
- is trace( $\pi$ ) = L(s<sub>0</sub>)L(s<sub>1</sub>)L(s<sub>2</sub>)L(s<sub>3</sub>)...
- e.g. trace(s t v t v u...) =  $\emptyset$  {a} {a,b} {a} {a,b} {a} ...

## Notation: Paths and traces

- For LTS  $M = (S,Act,\rightarrow,I,AP,L)$ :
  - Paths(M) is the set of all paths starting from an initial state in I
  - Traces(M) is the set for all traces of those paths

## Example



- Paths(M) = { s u  $t^{\omega}$ , s  $t^{\omega}$  }
- Traces(M) = {  $\{a\} \{a,b\}^{\omega} \}$

## Linear-time properties

### A linear-time property is

- (informally) a set of traces that an LTS is allowed to exhibit
- e.g. "b appears at most once", "a and b never appear together"
- (formally) a subset of  $(2^{AP})^{\omega}$ , i.e., a language of infinite words

### Satisfaction: M ⊨ P

- of a property  $P \subseteq (2^{AP})^{ω}$  by an LTS M
- we say "M satisfies P", or "P is true in M"
- defined as:  $M \models P \Leftrightarrow Traces(M) \subseteq P$



#### Note:

- properties are <u>not</u> tied to a particular model
- we sometimes specify the complement of P ("good" vs. "bad")

# Example

- Example: a pair of traffic lights
  - $\ M_{lights} = M_{left} \mid \mid_{\{\alpha,\beta\}} M_{right}$



# Example

- Example: a pair of traffic lights
  - $M_{lights} = M_{left} \mid \mid_{\{\alpha,\beta\}} M_{right}$
- Labels
  - $AP = \{green_1, green_2\}$
  - $-2^{AP} = \{\emptyset, \{green_1\}, \{green_2\}, \{green_1, green_2\}\}$
  - M<sub>lights</sub> exhibits a single trace
- How do we define this property?
  - P: "the traffic lights never both show green simultaneously"
  - $P = \{ \{green_2\} \{green_1\} \{green_2\} \{green_1\} ... \} ?$
  - no, because e.g. {green<sub>2</sub>} {green<sub>2</sub>} {green<sub>2</sub>} ... is in P
  - properties are not tied to specific models
  - P = {  $A_0A_1A_2...$  ∈  $(2^{AP})^{\omega}$  |  $A_j \neq \{green_1, green_2\}$  for all  $j \ge 0$  }



# Classes of linear-time properties

- We identify several useful classes of property
  - important consequences for what properties we can express
  - and what algorithms/techniques are required to verify them
- Defined informally...
- Invariants
  - "something good is always true"
- Safety properties
  - "nothing bad happens"
- Liveness properties
  - "something good happens in the long run"

## **Invariants**

### Informally:

a condition Φ <u>about states</u> must always be true

### Formally:

- $P_{inv} \subseteq (2^{AP})^{\omega}$  is an invariant if there is a propositional logic formula  $\Phi$  such that:
- $P_{inv}$  = {  $A_0A_1A_2...$ ∈  $(2^{AP})^ω | A_j ⊨ Φ for all <math>j ≥ 0$  }



### Examples:

- $-P_1$  = "one of the green lights is always on"
- $-\Phi_1 = green_1 \vee green_2$
- $-P_2$  = "the traffic lights never both show green simultaneously"
- $-\Phi_2 = \neg(green_1 \land green_2)$

# Checking invariants

#### Invariants:

- checking invariants can done via reachability
- $L(s) = \Phi$  for all states s on all paths of the LTS
- $L(s) \models \Phi$  for all reachable states s of the LTS

### Since we assume (for now) LTSs are finite

- standard graph traversal, e.g. depth-first/breadth-first search
- identify all reachable states s and check that  $L(s) \models \Phi$

### Improvements

- stop as soon as a violating state is found (i.e.  $L(s) \neq Φ$ )
- use breadth-first search with a stack and return a path to the violating state

# Safety properties

### Informally:

- defined in terms of "bad" events, e.g. "a failure does not occur"
- "bad" events happen in finite time, and cannot be recovered from

### More precisely

- P<sub>safe</sub> is a safety property if any (infinite) word where P<sub>safe</sub> does not hold has a bad prefix
- a bad prefix is a finite prefix  $\sigma'$  containing the bad event, such that no infinite path beginning with  $\sigma'$  satisfies  $P_{\text{safe}}$

### Formally:

- $P_{safe}$  ⊆  $(2^{AP})^{ω}$  is a safety property if, for all words  $σ ∈ (2^{AP})^{ω} \setminus P_{safe}$ , there is a finite prefix σ' of σ such that:
- $-P_{safe} \cap \{ \sigma'' \in (2^{AP})^{\omega} \mid \sigma' \text{ is a prefix of } \sigma'' \} = \emptyset$

# Examples

- All invariants are safety properties
  - e.g.  $P_2$  = "the traffic lights never both show green simultaneously":  $\Phi_2 = \neg(\text{green}_1 \land \text{green}_2)$
  - what are the bad prefixes?
  - e.g. {green<sub>2</sub>} {green<sub>1</sub>,green<sub>2</sub>}
  - words of the form  $A_0A_1...A_n$ with  $A_i \models \Phi_2$  for all  $0 \le i < n$  and  $A_n \not\models \Phi_2$



- But not all safety properties are invariants
  - e.g. P<sub>3</sub> = "green<sub>1</sub> is always preceded by green<sub>2</sub>"
  - what are the bad prefixes?
  - e.g. ∅ {green<sub>1</sub>}
  - any word where green<sub>1</sub> appears before green<sub>2</sub>
  - why is this not an invariant?

## Question

- Are these safety properties? (assume AP = {green<sub>1</sub>, green<sub>2</sub>})
- And why?
  - "at least one of the traffic lights always shows green"
    yes, because it is an invariant, because...
  - "green<sub>1</sub> and green<sub>2</sub> occur in strict alternation"
    yes, because...
  - green<sub>2</sub> is eventually trueno, because...
  - green<sub>2</sub> is true infinitely oftenno because...
- The last two are liveness properties

## Liveness properties

### Informally:

- "something good happens eventually, or in the long run"
- e.g. "the program always eventually terminates"

### More precisely

- P<sub>live</sub> is a liveness property if it does not rule out any prefixes
- any finite word can be extended to an infinite word in Plive

### Formally:

-  $P_{live} \subseteq (2^{AP})^{\omega}$  is a liveness property if, for all finite words  $\sigma \in (2^{AP})^*$ , there exists an infinite word  $\sigma' \in (2^{AP})^{\omega}$  such that  $\sigma \sigma' \in P_{live}$ 

## Summary

### Paths, traces

- path: infinite sequence  $\pi$  of states from LTS M
- trace: infinite word  $\sigma$  over  $2^{AP}$

### Properties

- linear-time property = set P of infinite words over 2<sup>AP</sup>
- satisfaction:  $M \models P$  if all traces of M are in P

### Classes of property

- invariant: formula Φ is true in all (reachable) states
- safety property: "nothing bad happens"
  - violating paths have a finite bad prefix
- liveness: "something good happens in the long run"
  - any finite path can be extended to a satisfying one

## Next lecture

- Linear temporal logic
  - see Chapter 5 of [BK08]