Inhaltsverzeichnis

Vo	orwort	5
1	Der Körper C der komplexen Zahlen	7
2	Topologische Grundbegriffe	9
3	Konvergente Folgen komplexer Zahlen	13
4	Konvergente und absolut konvergente Reihen	17
5	Stetige Funktionen	21
6	Zusammenhängende Räume, Gebiete in $\mathbb C$	25
7	Komplexe Differentialrechnung	31
8	Holomorphe Funktionen	35
9	Konvergenzbegriffe der Funktionentheorie	39
10	Potenzreihen 10.1 Konvergenzkriterien	41 41 44 45
11	Elementar-transzendente Funktionen 11.1 Exponentialfunktion und trigonometrische Funktionen	49 49 51 53
12	Komplexe Integralrechnung $12.1 \text{ Wegintegrale in } \mathbb{C} \qquad \qquad$	55 55 55 55
13	Integralsatz, Integralformel und Potenzreihenentwicklung 13.1 Cauchyscher Integralsatz für Sterngebiete	59 59 62

13

Integralsatz, Integralformel und Potenzreihenentwicklung

13.1 Cauchyscher Integralsatz für Sterngebiete

Lemma 13.1.1 Integrallemma von Goursat

Es sei f holomorph im Bereich D. Dann gilt für den Rand $\partial \Delta$ eines jeden Dreiecks $\Delta \subset D$:

$$\int_{\partial \Lambda} f \, \mathrm{d}\zeta = 0$$

Beweis: Sei $\int_{\partial \Delta} f \, d\zeta \neq 0$ und sei

$$\alpha(\Delta) := \left| \int_{\partial \Delta} f \, \mathrm{d}\zeta \right| \neq 0$$

Wir teilen Δ in vier gleiche Dreiecke $\Delta_1^1, \Delta_1^2, \Delta_1^3, \Delta_1^4.$ Dann

$$\int_{\partial \Delta} f \, \mathrm{d}\zeta = \sum_{k=1}^4 \int_{\partial \Delta_1^k} f \, \mathrm{d}\zeta$$

Damit existiert ein k_1 , so dass

$$\left| \int_{\partial \Delta_1^{k_1}} f \, \mathrm{d} \zeta \right| \ge \frac{\alpha(\Delta)}{4}$$

Wir teilen $\Delta_1^{k_1}$ in vier gleiche Dreiecke $\Delta_2^{k_1,1},\Delta_2^{k_1,2},\Delta_2^{k_1,3},\Delta_2^{k_1,4}$ und bekommen

$$\int_{\partial \Delta_1^{k_1}} f \, \mathrm{d} \zeta = \sum_{k=1}^4 \int_{\partial \Delta_2^{k_1,k}} f \, \mathrm{d} \zeta$$

Damit existiert ein k_2 , so dass

$$\left| \int_{\partial \Delta_2^{k_1, k_2}} f \, \mathrm{d} \zeta \right| \ge \frac{1}{4} \left| \int_{\partial \Delta_1^k} f \, \mathrm{d} \zeta \right| \ge \frac{1}{4^2} \alpha(\Delta)$$

Wir machen genau das gleiche für $\Delta_2^{k_1,k_2}$ und bekommen $\Delta_3^{k_1,k_2,k_3},...,\Delta_m^{k_1,k_2,...,k_m}$, so dass

$$\left| \int_{\partial \Delta_m^{k_1, \dots, k_m}} f \, \mathrm{d} \zeta \right| \ge \frac{1}{4^m} \alpha(\Delta)$$

Es existiert genau ein

$$p = \bigcap_{m=1}^{\infty} \Delta_m^{k_1, \dots, k_m} \subset D$$

 $f \in \mathcal{O}(D)$, also:

$$f(\zeta) = f(p) + f'(p)(\zeta - p) + g(\zeta)(\zeta - p), \quad g \in C(D), g(p) = 0$$

Dann:

$$\int_{\partial \Delta_m^{k_1,\dots,k_m}} f \, \mathrm{d} \zeta = \int_{\partial \Delta_m^{k_1,\dots,k_m}} f(p) \, \mathrm{d} \zeta + \int_{\partial \Delta_m^{k_1,\dots,k_m}} f'(p) (\zeta - p) \, \mathrm{d} \zeta + \int_{\partial \Delta_m^{k_1,\dots,k_m}} g(\zeta) (\zeta - p) \, \mathrm{d} \zeta$$

Für f(p) ist $f(p)\zeta$ eine Stammfunktion, für $f'(p)(\zeta - p)$ ist $\frac{1}{2}f'(p)(\zeta - p)^2$ eine Stammfunktion, also folgt:

$$\left| \int_{\partial \Delta_m^{k_1,\dots,k_m}} f \, \mathrm{d}\zeta \right| = \left| \int_{\partial \Delta_m^{k_1,\dots,k_m}} g(\zeta)(\zeta - p) \, \mathrm{d}\zeta \right| \leq \sup_{\partial \Delta_m^{k_1,\dots,k_m}} |g(\zeta)(\zeta - p)| \cdot \frac{l(\Delta)}{2^m} \leq \sup_{\zeta \in \partial \Delta_m^{k_1,\dots,k_m}} |g(\zeta)| \frac{l(\Delta)^2}{4^m} \xrightarrow{m \to \infty} 0$$

Auf der anderen Seite:

$$\left| \int_{\partial \Delta_m^{k_1, \dots, k_m}} f \, \mathrm{d}\zeta \right| \ge \frac{1}{4^m} \alpha(\Delta)$$

$$\frac{1}{4^m} \alpha(\Delta) \ge \sup_{\zeta \in \partial \Delta_m^{k_1, \dots, k_m}} |g(\zeta)| \frac{l(\Delta)^2}{4^m} \xrightarrow{m \to \infty} 0 \ \zeta$$

Satz 13.1.2 Cauchyscher Integralsatz für Sterngebiete

Es sei G ein Sterngebiet mit Zentrum c, es sei $f:G\to\mathbb{C}$ holomorph in G. Dann ist f integrabel in G, die Funktion

$$F(z) \coloneqq \int_{[c,z]} f \,\mathrm{d}\zeta, \quad z \in G$$

ist eine Stammfunktion von f in G. Speziell gilt:

$$\int_{\gamma} f \, \mathrm{d}\zeta = 0$$

für jeden geschlossenen Weg γ in G.

Beweis: Wegen $f \in \mathcal{O}(G)$ folgt mit Goursat:

$$\int_{\partial \Delta} f \, \mathrm{d}\zeta = 0, \quad \Delta \subset G$$

Mit dem Integrabilitätskriterium für Sterngebiete folgt dann, dass

$$F(z) = \int_{[c,z]} f \,\mathrm{d}\zeta$$

eine Stammfunktion von f ist.

Reeller Beweis des Integrallemmas von Goursat: Sei $D \subset \mathbb{C}$ ein Bereich, $\Sigma \subset D$ mit glattem Rand $\partial \Sigma$ und $f \in \mathcal{O}(D)$.

$$\int_{\partial \Sigma} f \, d\zeta = \int_{\partial \Sigma} (u + iv)(dx + idy)$$

$$= \int_{\partial \Sigma} (u dx - v dy) + i \int_{\partial \Sigma} (v dx + u dy)$$

$$= \iint_{\Sigma} -\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} dx dy + i \iint_{\Sigma} -\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} dx dy$$

$$= 0$$

13.2 Cauchysche Integralformel für Kreisscheiben

Lemma 13.2.1 Zentrierungslemma

Sei $D \subset \mathbb{C}$ ein Bereich, $\bar{B} \subset D$ eine Kreisscheibe, $B_r(z) := \{ \eta \mid |z - \zeta| = r \}$ und $f \in \mathcal{O}(D \setminus \{z\})$. Dann ist

$$\int_{\partial B} f \, \mathrm{d}\zeta = \int_{\partial B_r(z)} f \, \mathrm{d}\zeta$$

Beweis: Sei l eine Gerade, so dass $z \in l$. Wir nehmen Ω_1, Ω_2 wie auf dem Bild (:1). Dann sind $\omega_1 \subset \tilde{\Omega}_1$ und $\Omega_2 \subset \tilde{\Omega}_2$ Sterngebiete. Dann:

$$\int_{\partial\Omega_1}f\,\mathrm{d}\zeta=0,\quad \int_{\partial\Omega_2}f\,\mathrm{d}\zeta=0 \Rightarrow \int_{\partial\Omega_1\cup\partial\Omega_2}f\,\mathrm{d}\zeta=0$$

Es folgt:

$$\int_{\partial B} f \, \mathrm{d}\zeta - \int_{\partial B_{\tau}(z)} f \, \mathrm{d}\zeta = 0$$

Die Aussage folgt.