

Week 4, part D: Clocks and clocked latches

Why A Clock

- How do we distinguish between:
 - "high 5 times in a row"
 - "high 10 times in a row"
- What do "5 times" or "10 times" mean?
- Need a way to tell when a signal (input or output) is "ready" to be sampled

Clock Signals

- Clock: a regular signal, where high value indicates that the output of the latch may be sampled.
- Usually drawn as:

But looks more like:

Clock Frequency

- Frequency = the number of pulses occur per second.
 - measured in Hertz (Hz).
- Higher frequency → can do more every second.

Signal Restrictions

- What limits the clock frequency?
 - Circuit complexity
 - Max propagation delay!
 - Physical limits
 - Latency of transistors
 - Manufacturing variations
 - Physical clock limits
 - Gibbs phenomenon
 - Jitter

Beyond the scope of CSCB58

Signal Restrictions

- CPU makers try to increase it every year.
- 40 years ago: 1 Mhz
 - Apple II MOS 6502
 - C64 MOS 6510
- Today: 3-5 GHz
- x 5000 increase in 40 years!

Clocked SR latch

- Adding another layer of NAND gates to the SR latch gives us a clocked SR latch (or gated SR latch)
- Basically, a latch with a control input signal C.
- The input C is often connected to a clock signal

Clocked SR latch behaviour

- Same behaviour as SR latch, but with timing:
 - Start off with S=0 and R=1, like earlier example.
 - If clock is high, the first NAND gates invert those values, which get inverted again in the output.
 - Setting both inputs to 0 maintains the output values.

Clocked SR latch behaviour

- Continued from previous:
 - Now set the clock low.
 - Even if the inputs change, the low clock input prevents the change from reaching the second stage of NAND gates.
 - Result: the clock needs to be high in order for the inputs to have any effect.

Clocked SR latch - summary

The S and R signals are only allowed to affect the circuit when the clock input (C) is high.

- When clock is high, behave like a SR latch.
- When clock is low, S and R are blocked and there is no way to change the output.

Clocked SR latch

- This is the typical symbol for a clocked SR latch.
- Note: the small NOT circle after the Q output is simply the notation to use to denote the inverted output value. It's not an extra NOT gate.

Clocked SR latch behaviour

$Q_{\scriptscriptstyle \mathrm{T}}$	S	R	$Q_{\scriptscriptstyle \mathrm{T+1}}$	Result
0	0	0	0	no change
0	0	1	0	reset
0	1	0	1	set
0	1	1	?	333
1	0	0	1	no change
1	0	1	0	reset
1	1	0	1	set
1	1	1	?	???

- Wait!
- Where's the clock?
- There's a better way to look at this....

Clocked SR latch behaviour

С	S	R	$Q_{\scriptscriptstyle \mathrm{T+1}}$	Result
0	X	X	$\boldsymbol{Q}_{\mathtt{T}}$	no change
1	0	0	$Q_{\mathtt{T}}$	no change
1	0	1	0	reset
1	1	0	1	set
1	1	1	?	Undofined

- Assuming the clock is 1, we still have a problem when S and R are both 1, since the state of Q is indeterminate.
- A better design would prevent S and R from both going high at the same time.

D latch

Prevent S and R from going high at the same time.

How?

D latch

$Q_{\mathtt{T}}$	D	Q_{T+1}
0	0	0
0	1	1
1	0	0
1	1	1

- By making the inputs to R and S dependent on a single signal D, you avoid the forbidden input problem – no more race condition.
- Input D now directly sets output Q (when C is high).
 - D latch is always clocked (makes no sense otherwise!)

D latch

- This design is good!
 - Easy to store a bit: just set D to what you want to store.
 - Can maintain state as long as C is low
 - No weird forbidden inputs.

Timing issues

- Can we use D latch to build circuits with feedback?
- Unfortunately, no.
- The D latch has timing issues
- The main issue is that changes in D are almost immediately reflected in Q

Latch timing issues

- Consider the circuit on the right:
- When the clock signal is high, the output looks like the waveform below:

Output keeps toggling back and forth.

...what happens next?

Latch timing issues

- Consider the circuit on the right:
- When the clock signal is high, the output looks like the waveform below:

Output keeps toggling back and forth.

D-Latch is transparent!

- Transparent means that
 - Any changes to its inputs are visible to the output when control signal (Clock) is 1.
- Key Take-away:

The output of a latch **should not** be applied directly or through combinational logic to the input of the same or another latch when they all have the same control (clock) signal.

Fixing latch timing issues

- Preferable behaviour:
 - Have output change only once when the clock changes.
- Solution: create disconnect between circuit output and circuit input, to prevent unwanted feedback and changes to output.
- More on this in part E

