Univariate Graphics STAT 133

Gaston Sanchez

Department of Statistics, UC-Berkeley

gastonsanchez.com github.com/gastonstat/stat133 Course web: gastonsanchez.com/stat133

Looking at one single variable

Univariate Statistical Graphics

Getting started with graphics for exploration requires underdstanding charts and plots for single variables

Univariate Statistical Graphics

Getting started with graphics for exploration requires underdstanding charts and plots for single variables

Many multivariate graphics are extensions or combinations of univariate charts

Univariate graphics by type of variable

Qualitative Variable

- Bar chart
- Dot chart
- Pie chart
- Pareto chart

Quantitative Variable

- ► All of qualitative
- Histogram
- Density curve
- Boxplot
- Ogive

Bar Charts

From Frequency Tables ...

Category	Absolute	Relative
	Frequency	Frequency
C_1	f_1	f_1/n
C_2	f_2	f_2/n
C_3	f_3	f_3/n
C_k	f_k	f_k/n
total	n	1

to Bar-charts

Bar-charts

Elements of vertical bar-charts

- categories on horizontal axis
- frequencies on vertical axis
- length of bar equal to frequency

(Note that you can also make a horizontal bar-chart, in which case the axes play inverse roles)

Predominant Color in Flags

##		color	count	percent
##	1	black	5	2.58
##	2	blue	40	20.62
##	3	brown	2	1.03
##	4	gold	19	9.79
##	5	green	31	15.98
##	6	orange	4	2.06
##	7	red	71	36.60
##	8	white	22	11.34

Bar-chart example

Dot charts

Dot charts

- Dot-charts are very similar to bar charts.
- Instead of using bars, dot-charts display frequencies with dots.
- ▶ They are simpler and cleaner than bar charts
- They are also less used than bar charts

Ranked Dot-charts

Ranked dot-chart patterns

all values roughly the same

differences from one value to the next vary significantly

differences decrease by roughly the same amount

differences from one value to the next increase

Ranked dot-chart patterns

Pareto charts

Bar-chart with Pareto Line

Bar-chart with Pareto Line

Bar-chart with Pareto Line

Pareto charts

- Pareto charts contains both bars and a line graph
- Individual values are representing in descending order
- Cumulative frequencies are represented by the line
- ► The left vertical axis is the frequency of occurrence

Pie charts

Pie Chart

Donut Chart

Pie charts disadvantages

- ▶ Pie charts force us to compare either 2-D areas formed by each slice or the angles formed
- Visual perception handles neitheir of these comparisons easily or accurately

Univariate Quantitative Charts

NFL Ticket prices (2013)

##		teams	tickets	teams	tickets	
##	1	cowboys	110.20	falcons	83.71	
##	2	patriots	117.84	vikings	78.69	
##	3	giants	111.69	rams	74.49	
##	4	bears	103.60	seahawks	71.21	
##	5	jets	110.28	cardinals	79.56	
##	6	redskins	94.80	dolphins	71.14	
##	7	ravens	100.19	raiders	64.80	
##	8	eagles	93.01	titans	65.28	
##	9	texans	88.98	lions	67.60	
##	10	chargers	84.55	bengals	68.96	
##	11	steelers	81.13	jaguars	68.44	
##	12	packers	82.61	chiefs	64.92	
##	13	49ers	83.54	buccaneers	63.59	
##	14	saints	74.99	bills	57.75	
##	15	broncos	84.27	panthers	66.84	
##	16	colts	86.32	browns	54.20	

Bar charts for quantitative variables

- ▶ We can use bar charts with quantitative variables
- ► In this case we need to first categorize the variable, and then get a frequency table

Frequency Table of Ticket Prices

Category	Absolute	Relative
Name	Frequency	Frequency
Below \$70	10	0.3125
\$70 - \$99.99	16	0.5000
\$100 or above	6	0.1875
Total	32	1.00

NFL Ticket prices (2013)

Histograms

Histograms

Histograms provide a way of viewing the general distribution of values in a quantitative variable

NFL Ticket prices (2013)

Building a Histogram

- Partition of values: The range of the data values is partitioned into a number of non-overlapping "cells" or bins.
- 2. **Counting frequencies**: The number of data values falling into each cell is counted (either absolute or relative freqs)
- 3. **Drawing Bars**: The observations falling into a cell are represented as a "bar" drawn over the cell

About Histograms

- ▶ The bins represent ranges of values
- ► The bins (intervals) must be adjacent, and usually of equal size
- The bars are adjacent (not discontinuous)
- ▶ The areas of the bars are meaningful
- ▶ Height of bars equal to the frequency
- Width equal to the bin size
- ► The area of a bar gives the proportion of data values which fall in the bin

Histogram with 4 bins

Histograms with different bins

Avoid too few and too many bins

About Histograms

- ▶ The shape of a histogram depends on the chosen bins
- ► This suggests that there is a fundamental instability at the heart of its construction
- The bars are adjacent (not discontinuous)
- ▶ The areas of the bars are meaningful

Flat or Uniform

Multiple peaks (e.g. bimodal, trimodal, etc)

Box plots

Building a Histogram

- Box-and-whisker plots, most commonly known as "box plots"
- 2. created by John Tukey
- 3. simple and effective way to display the distribution of values
- 4. relies on the so-called **5-summary indicators**

Box plots based on 5-number summary

5 summary indicators

Box plots based on 5-number summary

5 summary indicators

- 1. minimum
- 2. 25th percentile (1st quartile)
- 3. 50th percentile (2nd quartile, or median)
- 4. 75th percentile (3rd quartile)
- 5. maximum

Box plot basics

Box plot basics

NFL Ticket Prices

5 number summary

Box plot

Box plot

Box plot and outliers

The $1.5 \times IQR$ rule for outliers

Call an observation a suspected outlier if it falls more than $1.5 \times IQR$ above the third quartile or below the first quartile

Modified Box plot

Density Curves

Density Curve

Density Curve

A Density Curve

- Describes the distribution of values by a smooth curve
- Is always on or above the horizontal axis
- ▶ Has area equal to 1 underneath it
- Is an idealized distribution

Density Curve

About Density Curve

- ► The mode is the peak point of the curve (could be more than one or none)
- ▶ The **median** is the equal-areas point
- ► The **mean** is the balance point
- The median and the mean are always equal on a symmetric density curve

Ogives

Ogives

About Ogives

- Ogives help us examine the cumulative distribution of values in a quantitative variable
- ► An ogive tells us how many data are less than the indicated value on the horizontal axis
- An ogive shows how slowly or rapidly the data values accumulate over the range of the data

Frequency Table NFL Price Tickets

Bin	Interval	Mid-point	Frequency	Cum Freq
1	[50-60)	55	2	2
2	[60-70)	65	8	10
3	[70-80)	75	6	16
4	[80-90)	85	8	24
5	[90-100)	95	2	26
6	[100-110)	105	2	28
7	[110-120)	115	4	32

Ogive

Ogives

Building an Ogive

- Make a frequency table showing bin intervals and cumulative frequencies.
- An ogive begins on the horizontal axis at the lower boundary of the first bin.
- ► For each bin, make a dot over the upper interval limit at the height of the cumulative frequency.
- Connect the dots with line segments.

Distributions and Ogives

Three histograms

Symmetric Distribution

Skewed to the left Distribution

Skewed to the right Distribution

