COMP 9602: Assignment 2

Instructed by Chuan Wu

Due on April 17, 2015

Haoyuan Zhang 3030030499

Problem 1

(a).

Proof.

Necessity. Suppose there exists a $v \neq 0$ with $Av \leq 0$. Since $\operatorname{dom} f_0$ is nonempty, some $x_0 \in \operatorname{dom} f_0$ exists such that $Ax_0 \prec b$. Hence for any $\lambda > 0$,

$$A(x_0 + \lambda v) \prec b \implies x_0 + \lambda v \in \mathbf{dom} f_0$$

With the fact that λ can be arbitrarily large, and $v \neq 0$, $\operatorname{dom} f_0$ is unbounded.

Sufficiency. If $\operatorname{dom} f_0$ is unbounded, there is a sequence of vectors $\{x^k\}$ with $\|x^k\|_2 \to \infty$ in $\operatorname{dom} f_0$. With each vector normalized we get a new sequence $\{v^k\}$, namely

$$v^k = \frac{x^k}{\|x^k\|_2} \quad (\forall k. \ \|v^k\|_2 = 1)$$

Since it's bounded by unit vectors, by **Bolzano-Weierstrass theorem**, $\{v^k\}$ has a convergent subsequence. Denote v as the limit.

Since each $x^k \in \mathbf{dom} f_0$, $Ax^k \prec b$. So for all i, $a_i^T x^k < b_i$. Hence

$$a_i^T v^k < \frac{b_i}{\|x^k\|_2} \to 0$$

Therefore the limit v satisfies $Av \leq 0$, and sure $v \neq 0$.

(b).

Proof.

Necessity. Suppose there exists v such that $Av \leq 0$, $Av \neq 0$. For any x in the domain of f_0 , and for any $\lambda > 0$,

$$f_0(x + \lambda v) = -\sum_{i=1}^{m} \log(b_i - a_i^T x - \lambda a_i^T v)$$

By the assumption, there exist some is with $a_i^T v < 0$, while for others $a_i^T v = 0$. So in the equation above, each component is nondecreasing, and some can be arbitrarily large with respect to λ . Hence the result $f_0(x + \lambda v)$ is unbounded below.

Sufficiency. If f_0 is unbounded below, there is a sequence of vectors $\{x^k\}$ with $f_0(x^k) \to -\infty$. Since f_0 is convex, by the 1st-order condition,

$$f_0(x^k) \ge f_0(x^0) + (x^k - x^0) \sum_{i=1}^k \frac{a_i^T}{b_i - a_i^T x^0}$$

And since $b_i - a_i^T x^0 > 0$, we conclude that $\min_i a_i^T x^k \to -\infty$.

Assume there exists some z > 0 with $A^T z = 0$. On the one hand, since each x^k satisfies $b - Ax^k > 0$,

$$z^{T}(b - Ax^{k}) = \sum_{i} z_{i}^{T}(b_{i} - a_{i}^{T}x^{k}) \ge \max_{i} z_{i}^{T}(b_{i} - a_{i}^{T}x^{k}) \to \infty$$

Note that it's because $z_i^T > 0$, and $\min_i a_i^T x^k \to -\infty$.

Therefore $z^T(b-Ax^k) \to \infty$. On the other hand $z^TAx^k = 0^Tx^k = 0$, so $z^Tb \to \infty$, a contradiction derives.

Thus no such z exists. Hence there exists a v with $Av \leq 0$, $Av \neq 0$.

(c). Honestly I don't think this proposition is correct. With the assumption that f_0 is bounded below, if $\operatorname{dom} f_0$ is bounded, surely the minimum can be attained. But by the conclusion of (a) and (b), if there exists a $v \neq 0$ with Av = 0, potentially we can also have the f_0 bounded below while its domain is unbounded. In that case I don't know why the minimum is attained.

(d).

Proof.

Sufficiency. Since we have

$$f_0(x^* + v) = -\sum_{i=1}^m \log(b_i - a_i^T x^* - a_i^T v)$$

If Av = 0, it is obvious that $f_0(x^* + v) = f_0(x^*)$. So Av = 0 is a sufficient condition for optimal set.

Necessity. I don't know how to prove this direction.

Problem 2

Problem 3

Problem 4

The primal problem is

minimize
$$\frac{1}{2}||x-a||_2^2$$
 subject to:
$$||x||_1 \le 1$$

The Lagrangian function $L(x, \lambda)$ is: $(\lambda \ge 0)$

$$L(x,\lambda) = \frac{1}{2} ||x - a||_2^2 + \lambda (||x||_1 - 1)$$
$$= \sum_{i=1}^n \left(\frac{1}{2} (x_i - a_i)^2 + \lambda |x_i| \right) - \lambda$$

Since the Lagrange dual function

$$g(\lambda) = \inf_{x} L(x, \lambda) = \sum_{i} h_i(\lambda) - \lambda$$

where the function $h_i(\lambda)$ is as follows:

$$h_i(\lambda) = \inf_{x_i} \begin{cases} \frac{1}{2} (x_i - a_i)^2 - \lambda x_i & , \ x_i \le 0 \\ \frac{1}{2} (x_i - a_i)^2 + \lambda x_i & , \ x_i > 0 \end{cases}$$

Two local optimal points $x_{-}^{*} = a_{i} + \lambda$, $x_{+}^{*} = a_{i} - \lambda$.

(1) If $a_i \leq -\lambda$, both x_-^* and x_+^* are non-positive, $x_i^* = x_-^*$, in which case

$$h_i(\lambda) = \frac{1}{2}a_i^2 - \frac{1}{2}(\lambda + a_i)^2 = \lambda(-a_i - \frac{1}{2}\lambda)$$

(2) If $|a_i| < \lambda$, x_-^* is positive but x_+^* is negative, hence $x_i^* = 0$, in which case

$$h_i(\lambda) = \frac{1}{2}a_i^2$$

(3) If $a_i \geq \lambda$, both x_-^* and x_+^* are non-negative, $x_i^* = x_+^*$, in which case

$$h_i(\lambda) = \frac{1}{2}a_i^2 - \frac{1}{2}(\lambda - a_i)^2 = \lambda(a_i - \frac{1}{2}\lambda)$$

Therefore,

$$h_i(\lambda) = \begin{cases} \lambda(|a_i| - \frac{1}{2}\lambda) &, \lambda \le |a_i| \\ \frac{1}{2}a_i^2 &, \lambda > |a_i| \end{cases}$$

Hence the dual problem is

maximize
$$\sum_{i} h_{i}(\lambda) - \lambda$$
 subject to:
$$\lambda \geq 0$$

Now it comes to a solution for the dual problem. The objective $g(\lambda) = \sum_i h_i(\lambda) - \lambda$ is a unary function, so we can calculate its derivative. And the optimal point λ^* satisfies $g'(\lambda^*) = 0$ if it is attained. Specifically, the derivative of $h_i(\lambda)$ is

$$h_i'(\lambda) = \begin{cases} |a_i| - \lambda &, \lambda \le |a_i| \\ 0 &, \lambda > |a_i| \end{cases}$$

And $g'(\lambda) = \sum_i h'_i(\lambda) - 1$. Note that every $h'_i(\lambda)$ is non-increasing, so $g'(\lambda)$ is also non-increasing. Also, $g'(0) = ||a||_1 - 1$, and for $\lambda \ge \max_i |a_i|$, $g'(\lambda) = -1$. To find the solution to $g'(\lambda) = 0$, we need to discuss the cases.

- (1) $||a||_1 \le 1$. In the primal problem, $x^* = a$ can optimize the primal objective and $p^* = 0$.
- (2) $||a||_1 > 1$. As $g'(\lambda)$ is monotonic, the optimal point $\lambda^* \in [0, \max_i |a_i|]$. To be concise, we can assume that the sequence $\{|a_1|, |a_2|, \cdots, |a_n|\}$ is non-decreasing, namely $|a_1| \leq |a_2| \leq \cdots \leq |a_n|$.
 - $\lambda \in [0, |a_1|)$: $g'(\lambda) = |a_1| + |a_2| + \dots + |a_n| \lambda n 1$.
 - ...
 - $\lambda \in [|a_k|, |a_{k+1}|)$: $g'(\lambda) = |a_{k+1}| + \dots + |a_n| \lambda(n-k) 1$.
 - ...

Hence to get the optimal point λ^* , we firstly find which interval it belongs to. We calculate each $g'(|a_i|)$ one by one.

$$g'(0) = ||a||_1 - 1$$

$$g'(|a_1|) = g'(0) - n(|a_1| - 0)$$

$$g'(|a_2|) = g'(|a_1|) - (n - 1)(|a_2| - |a_1|)$$
...
$$g'(|a_k|) = g'(|a_{k-1}|) - (n + 1 - k)(|a_k| - |a_{k-1}|)$$

If $a_k \leq \lambda \leq a_{k+1}$ for some k, we have

$$g'(\lambda^*) = |a_{k+1}| + \dots + |a_n| - \lambda^*(n-k) - 1 = 0$$
$$\lambda^* = \frac{\sum_{i=k+1}^n |a_i| - 1}{n-k}$$

Hence

$$d^* = g(\lambda^*) = \frac{1}{2} \sum_{i=1}^k a_i^2 + \lambda^* \sum_{i=k+1}^n |a_i| - \frac{1}{2} {\lambda^*}^2 (n-k) - \lambda^*$$

And hence we obtain the optimal value of the primal problem, namely $p^* = d^*$, since by Slater's condition, we can easily find a strictly feasible point x with $||x||_1 < 1$, and hence strict duality holds.

Problem 5

(a). The primal problem over $\mathcal{D} = \{(x, y) \mid y > 0\}$ is

minimize
$$e^{-x}$$

subject to: $x^2/y \le 0$

The domain is a convex set, and e^{-x} is convex, for sure. And the function $g(x,y) = x^2/y$ is the perspective of $f(x) = x^2$, so it's also convex. Therefore it is a convex optimization problem.

The constraints are satisfied only when x=0, in which case the value is optimal value, namely $p^*=1$.

(b). The Lagrangian

$$L(x, y, \lambda) = e^{-x} + \frac{\lambda x^2}{y}$$

The Lagrange dual function

$$g(\lambda) = \inf_{y>0,x} \left(e^{-x} + \frac{\lambda x^2}{y}\right)$$

Firstly with $y \gg \lambda x^2$, $\frac{\lambda x^2}{y} \to 0$, and then let $x \to \infty$, the dual problem is

 $\begin{array}{ll} \text{maximize} & 0 \\ \text{subject to:} & \lambda \geq 0 \end{array}$

Hence any $\lambda \geq 0$ is an optimal solution. $d^* = 0$. The optimal duality gap is $p^* - d^* = 1$.

(c). Slater's condition doesn't hold for this problem, since there is no strictly feasible point (x, y) with y > 0 satisfying that $x^2/y < 0$.

(d). Now the perturbed problem is

minimize
$$e^{-x}$$

subject to: $x^2/y \le u$

(1) If u > 0, by setting $x \to \infty$, $y \to \infty$ and $x^2/y \to 0$, the optimal value is $p^*(u) = 0$.

(2) If
$$u = 0$$
, $p^*(0) = p^* = 1$, from (a).

The Lagrange dual function of the perturbed problem is

$$g(\lambda) = \inf_{x,y} \left(e^{-x} + \frac{\lambda x^2}{y} - \lambda u \right) = -\lambda u$$

The constraint is $\lambda \geq 0$. When u > 0, to maximize $g(\lambda)$, the optimal point is $\lambda^* = 0$.

Hence when u > 0, the global sensitivity inequality

$$p^*(u) \ge p^*(0) - \lambda^* u$$

becomes $0 \ge 1 - 0$, which doesn't hold for sure.

Problem 6