Minimalizace DKA

Eliminace nedosažitelných stavů

Definice 2.1 Nechť $M=(Q,\Sigma,\delta,q_0,F)$ je konečný automat. Stav $q\in Q$ nazveme dosažitelný, pokud existuje $w\in \Sigma^*$ takové, že $(q_0,w)\stackrel{*}{\underset{M}{\vdash}} (q,\varepsilon)$. Stav je nedosažitelný, pokud není dosažitelný.

Algoritmus 2.1 Eliminace nedosažitelných stavů

Vstup: DKA $M = (Q, \Sigma, \delta, q_0, F)$.

 $extit{V\'ystup:} \ extstyle{DKA} \ M' \ ext{bez nedosa\'ziteln\'ych stavů}, \ L(M) = L(M').$

Metoda:

- 1. i := 0
- 2. $S_i := \{q_0\}$
- 3. repeat
- 4. $S_{i+1} := S_i \cup \{q \mid \exists p \in S_i \; \exists a \in \Sigma : \delta(p, a) = q\}$
- 5. i := i + 1
- 6. until $S_i = S_{i-1}$
- 7. $M' := (S_i, \Sigma, \delta_{|S_i}, q_0, F \cap S_i)$

Jazykově nerozlišitelné stavy

Definice 2.2

- Nechť $M=(Q,\Sigma,\delta,q_0,F)$ je úplně definovaný DKA. Říkáme, že řetězec $w\in\Sigma^*$ rozlišuje q_1,q_2 , jestliže $(q_1,w)\stackrel{*}{\overset{}{\vdash}} (q_3,\varepsilon)\wedge(q_2,w)\stackrel{*}{\overset{}{\vdash}} (q_4,\varepsilon)$ pro nějaké q_3,q_4 a *právě jeden* ze stavů q_3,q_4 je v F.
- Říkáme, že stavy $q_1,q_2\in Q$ jsou k-nerozlišitelné a píšeme $q_1\stackrel{k}{\equiv}q_2$, právě když neexistuje $w\in \Sigma^*$, $|w|\leq k$, který rozlišuje q_1 a q_2 .
- Stavy q_1 , q_2 jsou nerozlišitelné, značíme $q_1 \equiv q_2$, jsou-li pro každé $k \geq 0$ k-nerozlišitelné.
- * Poznámka: Dá se snadno dokázat, že \equiv je relací ekvivalence na Q, tj. relací, která je reflexivní, symetrickou a tranzitivní.
- **Definice 2.3** Úplně definovaný DKA M nazýváme redukovaný, jestliže žádný stav z Q není nedostupný a žádné dva stavy nerozlišitelné.

Věta 2.1 Nechť $M=(Q,\Sigma,\delta,q_0,F)$ je úplně definovaný DKA a |Q|=n, $n\geq 2$. Platí $\forall q_1,q_2\in Q: q_1\equiv q_2\Leftrightarrow q_1\stackrel{n-2}{\equiv}q_2$.

Důkaz. "⇒" triviální, ukážeme "⇐":

- 1. Jestliže |F|=0 nebo |F|=n, pak platí $q_1 \stackrel{n-2}{\equiv} q_2 \ \Rightarrow \ q_1 \equiv q_2$.
- 2. Nechť $|F| > 0 \land |F| < n$. Ukážeme, že platí $\equiv = \stackrel{n-2}{\equiv} \subseteq \stackrel{n-3}{\equiv} \subseteq ... \subseteq \stackrel{1}{\equiv} \subseteq \stackrel{0}{\equiv}$:
 - Zřejmě platí:
 - (a) $\forall q_1, q_2 \in Q : q_1 \stackrel{0}{=} q_2 \Leftrightarrow (q_1 \in F \land q_2 \in F) \lor (q_1 \not\in F \land q_2 \not\in F)$, tj. $q_1 \stackrel{0}{=} q_2 \Leftrightarrow (q_1 \in F \Leftrightarrow q_2 \in F)$.
 - (b) $\forall q_1, q_2 \in Q \ \forall k \geq 1 : q_1 \stackrel{k}{\equiv} q_2 \Leftrightarrow (q_1 \stackrel{k-1}{\equiv} q_2 \land \forall a \in \Sigma : \delta(q_1, a) \stackrel{k-1}{\equiv} \delta(q_2, a)$
 - Relace $\stackrel{0}{=}$ je ekvivalencí určující rozklad $\{F, Q \setminus F\}$.
 - Je-li $\stackrel{k+1}{\equiv} \neq \stackrel{k}{\equiv}$, pak $\stackrel{k+1}{\equiv}$ je vlastním zjemněním $\stackrel{k}{\equiv}$, tj. obsahuje alespoň o jednu třídu více než rozklad $\stackrel{k}{\equiv}$.
 - Jestliže pro nějaké k platí $\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$, pak také $\stackrel{k+1}{\equiv} = \stackrel{k+2}{\equiv} = \stackrel{k+3}{\equiv} = \dots$ podle (b) a tedy $\stackrel{k}{\equiv}$ je hledaná ekvivalence.
 - Protože F nebo $Q\setminus F$ obsahuje nejvýše n-1 prvků, získáme relaci \equiv po nejvýše n-2 zjemněních $\stackrel{0}{\equiv}$.

Převod na redukovaný DKA

Algoritmus 2.2 Převod na redukovaný DKA

Vstup: Úplně definovaný DKA $M=(Q,\Sigma,\delta,q_0,F)$.

Výstup: Redukovaný DKA $M' = (Q', \Sigma, \delta', q'_0, F'), L(M) = L(M').$

Metoda:

- 1. Odstraň nedostupné stavy s využitím alg. 2.1.
- 2. i := 0
- 3. $\stackrel{0}{\equiv} := \{(p,q) \mid p \in F \iff q \in F\}$
- 4. repeat
- 5. $\stackrel{i+1}{\equiv} := \{(p,q) \mid p \stackrel{i}{\equiv} q \land \forall a \in \Sigma : \delta(p,a) \stackrel{i}{\equiv} \delta(q,a)\}$
- 6. i := i + 1
- 7. until $\stackrel{i}{\equiv} = \stackrel{i-1}{\equiv}$
- 8. $Q' := Q/\stackrel{i}{\equiv}$
- 9. $\forall p, q \in Q \ \forall a \in \Sigma : \delta'([p], a) = [q] \Leftrightarrow \delta(p, a) = q$
- 10. $q'_0 = [q_0]$
- 11. $F' = \{ [q] \mid q \in F \}$
- ightharpoonup Poznámka: Výraz [x] značí ekvivalenční třídu určenou prvkem <math>x.

Příklad minimalizace DKA

Příklad 2.1 Převeďte níže uvedený DKA (zadaný diagram přechodů) na odpovídající

redukovaný DKA.

1. Neobsahuje nedostupné stavy.

3.
$$\stackrel{0}{\equiv} = \{ \{A, F\}, \{B, C, D, E\} \}$$

5.1.
$$\stackrel{1}{\equiv} = \{ \{A, F\}, \{B, E\}, \{C, D\} \}$$

Pokračuje na druhé straně...

Pro zopakování automat z předchozího slajdu, v jehož minimalizaci níže pokračujeme:

5.2.
$$\stackrel{2}{\equiv} = \{\{A, F\}, \{B, E\}, \{C, D\}\} = \stackrel{1}{\equiv} = \equiv$$

$\stackrel{1}{=}$	δ	a	b
\overline{I} :	A	F_{I}	B_{II}
	F	A_I	E_{II}
II:	B	E_{II}	D_{III}
	E	B_{II}	C_{III}
III:	C	C_{III}	F_I
	D	D_{III}	A_I

8.
$$Q' = \{[A], [B], [C]\}$$
, kde $[A] = \{A, F\}$, $[B] = \{B, E\}$, $[C] = \{C, D\}$ 9-11.

Regulární množiny a výrazy

Regulární množiny

Definice 2.4 Nechť Σ je konečná abeceda. Regulární množinu nad Σ definujeme rekurzívně takto:

- 1. \emptyset (tj. prázdná množina) je regulární množina nad Σ ,
- 2. $\{\varepsilon\}$ je regulární množina nad Σ ,
- 3. $\{a\}$ je regulární množina nad Σ pro všechny $a \in \Sigma$,
- 4. jsou-li P a Q regulární množiny nad Σ , pak také
 - (a) $P \cup Q$,
 - (b) P.Q,
 - (c) P^*

jsou regulární množiny nad Σ .

5. Žádné jiné množiny, než ty, které lze získat pomocí výše uvedených pravidel, nejsou regulárními množinami.

Příklad 2.2 $L = (\{a\} \cup \{d\}).(\{b\}^*).\{c\}$ je regulární množina nad $\Sigma = \{a, b, c, d\}.$

Regulární výrazy

Definice 2.5 Regulární výrazy nad Σ a regulární množiny, které označují, jsou rekurzívně definovány takto:

- 1. ∅ je regulární výraz označující regulární množinu ∅,
- 2. ε je regulární výraz označující regulární množinu $\{\varepsilon\}$,
- 3. a je regulární výraz označující regulární množinu $\{a\}$ pro všechny $a \in \Sigma$,
- 4. jsou-li p, q regulární výrazy označující regulární množiny P a Q, pak
 - (a) (p+q) je regulární výraz označující regulární množinu $P\cup Q$,
 - (b) (pq) je regulární výraz označující regulární množinu P.Q,
 - (c) (p^*) je regulární výraz označující regulární množinu P^* .
- 5. Žádné jiné regulární výrazy nad Σ neexistují.

Konvence:

- 1. Regulární výraz p^+ značí regulární výraz pp^* .
- Abychom minimalizovali počet používaných závorek, stanovujeme priority operátorů:
 - 1. *, + (iterace nejvyšší priorita),
 - 2. (konkatenace),
 - 3. + (alternativa).

Příklad 2.3

- 1. 01 odpovídá $\{01\}$.
- 2. 0^* odpovídá $\{0\}^*$.
- 3. $(0+1)^*$ odpovídá $\{0,1\}^*$.
- 4. $(0+1)^*011$ značí množinu řetězců nad $\{0,1\}$ končících 011.
- 5. $(a+b)(a+b+0+1)^*(0+1)$ značí množinu řetězců nad $\{a,b,0,1\}$, které začínají symbolem a nebo b a končí symbolem 0 nebo 1.

Kleeneho algebra

Definice 2.6 Kleeneho algebra sestává z neprázdné množiny se dvěma význačnými konstantami 0 a 1, dvěma binárními operacemi + a . a unární operací *, které splňují následující axiomy:

a + (b+c) = (a+b) + c	asociativita +	[A.1]
a + b = b + a	komutativita $+$	[A.2]
a + a = a	idempotence +	[A.3]
a + 0 = a	0 je identitou pro $+$	[A.4]
a(bc) = (ab)c	asociativita .	[A.5]
a1 = 1a = a	1 je identitou pro .	[A.6]
a0 = 0a = 0	0 je anihilátorem pro .	[A.7]
a(b+c) = ab + ac	distributivita zleva	[A.8]
(a+b)c = ac + bc	distributivita zprava	[A.9]
$1 + aa^* = a^*$		[A.10]
$1 + a^*a = a^*$		[A.11]
$b + ac \le c \Rightarrow a^*b \le c$		[A.12]
$b + ca \le c \Rightarrow ba^* \le c$		[A.13]

V A.12 a A13 reprezentuje \leq uspořádání definované takto: $a \leq b \stackrel{def}{\Longleftrightarrow} a + b = b$.

Příklady Kleeneho algeber:

- Třída 2^{Σ^*} všech podmnožin Σ^* s konstantami \emptyset a $\{\varepsilon\}$ a operacemi \cup , . a *.
- Třída všech regulárních podmnožin Σ^* s konstantami \emptyset a $\{\varepsilon\}$ a operacemi \cup , . a *.
- Třída všech binárních relací nad množinou X s konstantami v podobě prázdné relace a identity a \cup , kompozicí (součinem) binárních relací a reflexivním tranzitivním uzávěrem binární relace jako operacemi.
- Matice nad Kleeneho algebrami.

Ukázka platnosti A.2 pro regulární množiny:

- Nechť p, resp. q, označují reg. množiny P, resp. Q.
- Pak p+q označuje $P \cup Q$ a q+p označuje $Q \cup P$.
- $P \cup Q = Q \cup P$ (komutativita množinového sjednocení) $\Rightarrow p + q = q + p$.

❖ Poznámka: Axiomy A.12 a A.13 lze nahradit následujícími ekvivalentními vztahy:

$$ac \le c \Rightarrow a^*c \le c$$
 [A.14]
 $ca \le c \Rightarrow ca^* \le c$ [A.15]

Důkaz. Viz D. Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Technical Report TR 90-1123, Dept. of Comp. Sci., Cornell University, Ithaca, NY, USA, 1990. Dostupné na Internetu: odkaz viz stránky kurzu.

Některé užitečné teorémy Kleeneho algebry, které lze odvodit z jejich axiómů:

$$0^* = 1$$
 $1 + a^* = a^*$
 $a^* = a + a^*$
 $a^* a^* = a^*$
 $a^{**} = a^*$
 $a^{**} = a^*$
 $(a^*b)^*a^* = (a+b)^*$ pravidlo "vynořování" [R.16]
 $a(ba)^* = (ab)^*a$ pravidlo posuvu [R.17]
 $a^* = (aa)^* + a(aa)^*$

- Další vlastnosti Kleeneho algeber, které lze odvodit z uvedených axiómů:
 - ≤ je neostrým částečným uspořádáním:
 - $\le je reflexivní (a \le a),$
 - \leq je tranzitivní ($a \leq b \land b \leq c \Rightarrow a \leq c$),
 - $\le je$ antisymetrické ($a \le b \land b \le a \Rightarrow a = b$).
 - a+b je supremum (nejmenší horní omezení least upper bound) a a b vůči \leq .
 - <i je monotónní vůči všem operátorům:
 </p>
 - $a \le b \Rightarrow ac \le bc \land ca \le cb$,
 - $a \le b \Rightarrow a + c \le b + c$
 - $a \le b \Rightarrow a^* \le b^*$.

^aSnadno se samozřejmě také ukáže, že $a = b \Rightarrow a \leq b \land b \leq a$.

Důkaz. Příklady důkazů uvedených vlastností – ostatní viz např. D. Kozen.

A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events nebo Automata and Computability:

$$\bullet 0^* = 1: 0^* \stackrel{A.10}{=} 1 + 00^* \stackrel{A.7}{=} 1 + 0 \stackrel{A.4}{=} 1.$$

- ❖ $1 + a^* = a^*$ pro stručnost neuvádíme použití A.1, A.2:
 - $1 + a^* < a^*$:
 - A.10: $a^* = 1 + aa^*$
 - A.3: $a^* + a^* = 1 + aa^*$
 - A.10: $1 + aa^* + a^* = 1 + aa^*$
 - A.3: $1+1+aa^*+a^*=1+aa^*$, neboli $1+a^*+1+aa^*=1+aa^*$
 - def. $<: 1 + a^* < 1 + aa^*$
 - A.10: $1 + a^* < a^*$
 - $a^* < 1 + a^*$:
 - $1+a^*=1+a^*$
 - A.3: $1 + a^* + a^* = 1 + a^*$
 - def. \leq : $a^* \leq 1 + a^*$
 - antisymetrie ≤.

❖ Poznámka: Různé vlastnosti Kleeneho algeber se někdy snáze dokazují pro jednotlivé konkrétní příklady těchto algeber, např. pro Kleeneho algebru regulárních výrazů, kde lze např. využít vazby na teorii množin.

❖ Vlastnosti Kleeneho algeber umožňují snadno řešit systémy lineárních rovnic nad těmito algebrami. V další části budeme s těmito rovnicemi pracovat již přímo nad Kleeneho algebrou regulárních výrazů.

Rovnice nad regulárními výrazy

Definice 2.7 Rovnice, jejímiž složkami jsou koeficienty a neznámé, které reprezentují (dané a hledané) regulární výrazy, nazýváme rovnicemi nad regulárními výrazy.

Příklad 2.4 Uvažujme rovnici nad regulárními výrazy nad abecedou $\{a, b\}$

$$X = aX + b$$

Jejím řešením je regulární výraz $X = a^*b$.

Důkaz.

- $LS = a^*b$
- $PS = a(a^*b) + b = a^+b + b = (a^+ + \varepsilon)b = a^*b$.

Ne vždy existuje jediné řešení rovnice nad reg. výrazy.

Věta 2.2 Nechť X=pX+q je rovnice nad reg. výrazy, kde p,q jsou reg. výrazy a p označuje regulární množinu P takovou, že $\varepsilon \in P$. Pak

$$X = p^*(q+r)$$

je řešením této rovnice pro libovolné r (kterému nemusí ani odpovídat regulární množina, ale případně i obecnější jazyk).

Důkaz.

- $PS = p^*(q+r)$
- $LS=p(p^*(q+r))+q=pp^*(q+r)+q=p^*(q+r)+q=p^*(q+r)$ (Uvědomme si, že $\varepsilon\in P$.)

Obvykle ale hledáme "nejmenší řešení", tzv. nejmenší pevný bod, dané rovnice.

Věta 2.3 Nejmenším pevným bodem rovnice X=pX+q je:

$$X = p^*q$$

Důkaz.

- $PS = p^*q$
- $LS = pp^*q + q = (pp^* + \varepsilon)q = p^*q$
- Minimalita plyne přímo z A.12.

H

Soustavy rovnic nad regulárními výrazy

Příklad 2.5 Budiž dána soustava rovnic

$$X = a_1 X + a_2 Y + a_3$$
$$Y = b_1 X + b_2 Y + b_3$$

Její řešení je:

$$X = (a_1 + a_2b_2^*b_1)^*(a_3 + a_2b_2^*b_3)$$

$$Y = (b_2 + b_1a_1^*a_2)^*(b_3 + b_1a_1^*a_3)$$

Důkaz. Ponecháno na čtenáře.

Definice 2.8 Soustava rovnic nad reg. výrazy je ve standardním tvaru vzhledem k neznámým $\Delta = \{X_1, X_2, ..., X_n\}$, má-li soustava tvar

$$\bigwedge_{i \in \{1, ..., n\}} X_i = \alpha_{i0} + \alpha_{i1} X_1 + \alpha_{i2} X_2 + ... + \alpha_{in} X_n$$

kde α_{ij} jsou reg. výrazy nad nějakou abecedou Σ , $\Sigma \cap \Delta = \emptyset$.

Věta 2.4 Je-li soustava rovnic nad reg. výrazy ve std. tvaru, pak existuje její minimální pevný bod a algoritmus jeho nalezení.

 $D\mathring{u}kaz$. Vyjadřujeme hodnotu jednotlivých proměnných pomocí řešení rovnice X=pX+q jako regulární výraz s proměnnými, jejichž počet se postupně snižuje: Z rovnice pro X_n vyjádříme např. X_n jako regulární výraz nad Σ a $X_1,...,X_{n-1}$. Dosadíme za X_n do rovnice pro X_{n-1} a postup opakujeme. Jsou přitom možné (ale ne nutné) různé optimalizace tohoto pořadí.

Příklad 2.6 Řešme soustavu rovnic nad reg. výrazy:

- (1) $X_1 = (01^* + 1)X_1 + X_2$
- (2) $X_2 = 11 + 1X_1 + 00X_3$
- (3) $X_3 = \varepsilon + X_1 + X_2$
- Výraz pro X_3 dosadíme z (3) do (2). Dostaneme soustavu:
 - (4) $X_1 = (01^* + 1)X_1 + X_2$
 - (5) $X_2 = 11 + 1X_1 + 00(\varepsilon + X_1 + X_2) = 00 + 11 + (1 + 00)X_1 + 00X_2$
- Ze (4) vyjádříme X_1 s využitím řešení rovnice X = pX + q (věta 2.3):
 - (6) $X_1 = (01^* + 1)^* X_2 = (0 + 1)^* X_2$
- Dosazením do (5):

FIT

(7)
$$X_2 = 00 + 11 + (1 + 00)(0 + 1)^*X_2 + 00X_2 = 00 + 11 + (1 + 00)(0 + 1)^*X_2$$

• Vypočtením X_2 jako řešení rovnice X = pX + q dostaneme:

(8)
$$X_2 = ((1+00)(0+1)^*)^*(00+11)$$

Dosazením do (6) dostaneme:

(9)
$$X_1 = (0+1)^*((1+00)(0+1)^*)^*(00+11) = (0+1)^*(00+11)$$

Dosazením do (3) dostaneme:

(10)
$$X_3 = \varepsilon + (0+1)^*(00+11) + ((1+00)(0+1)^*)^*(00+11) =$$

$$= \varepsilon + ((0+1)^* + ((1+00)(0+1)^*)^*)(00+11) =$$

$$= \varepsilon + (0+1)^*(00+11)$$
Regulární jazyky 2 – p.23/38

Regulární množiny a jazyky typu 3

Věta 2.5 Jazyk L je regulární množinou právě tehdy, je-li L jazykem typu 3. Označíme-li \mathcal{L}_R třídu všech regulárních množin, pak:

$$\mathcal{L}_R = \mathcal{L}_3$$

 $D\mathring{u}kaz$. I. $\mathcal{L}_R \subseteq \mathcal{L}_3$, tj. každou regulární množinu lze generovat gramatikou typu 3.

regulární množina gramatika typu 3

(1)
$$\emptyset$$
 $G_{\emptyset} = (\{S\}, \Sigma, \emptyset, S)$

(2)
$$\{\varepsilon\}$$
 $G_{\varepsilon} = (\{S\}, \Sigma, \{S \to \varepsilon\}, S)$

(3)
$$\{a\}$$
 pro každé $a \in \Sigma$ $G_a = (\{S\}, \Sigma, \{S \rightarrow a\}, S)$

Nyní ukážeme, že sjednocení, konkatenaci a iteraci reg. množin lze generovat rovněž gramatikou typu 3. Nechť tedy

•
$$L_1 = L(G_1)$$
, kde $G_1 = (N_1, \Sigma_1, P_1, S_1)$,

•
$$L_2 = L(G_2)$$
, kde $G_2 = (N_2, \Sigma_2, P_2, S_2)$

a G_1 , G_2 jsou gramatiky typu 3, $N_1 \cap N_2 = \emptyset$ (nonterminály je vždy možno takto odlišit). Důkaz pokračuje dále.

Pokračování důkazu.

regulární množina

gramatika typu 3

(4)
$$L_1 \cup L_2$$

$$G_4 = (N_4, \Sigma_1 \cup \Sigma_2, P_4, S_4)$$
, kde

•
$$N_4 = N_1 \cup N_2 \cup \{S_4\}, S_4 \notin N_1 \cup N_2$$

•
$$P = \{S \to S_1 \mid S_2\} \cup P_1 \cup P_2$$

 $G_5=(N_1\cup N_2,\Sigma_1\cup \Sigma_2,P_5,S_1)$ a P_5 je nejmenší množina tako že:

(5)
$$L_1.L_2$$

• je-li
$$(A \to xB) \in P_1$$
, pak $(A \to xB) \in P_5$,

• je-li
$$(A \rightarrow x) \in P_1$$
, pak $(A \rightarrow xS_2) \in P_5$,

•
$$\forall (A \to \alpha) \in P_2 : (A \to \alpha) \in P_5$$
.

 $G_6=(N_1\cup\{S_6\},\Sigma_1,P_6,S_6)$, $S_6\not\in N_1$ a P_6 je nejmenší množ taková, že:

(6)
$$L_1^*$$

• je-li
$$(A \to xB) \in P_1$$
, pak $(A \to xB) \in P_6$,

• je-li
$$(A \rightarrow x) \in P_1$$
, pak $(A \rightarrow xS_6) \in P_6$,

•
$$(S_6 \to S_1 \mid \varepsilon) \in P_6$$
.

Důkaz pokračuje dále.

Pokračování důkazu. II. $\mathcal{L}_3 \subseteq \mathcal{L}_R$, tj. každý jazyk generovaný gramatikou typu 3 je regulární množinou.

- Nechť $L \in \mathcal{L}_3$ je libovolný jazyk typu 3. Již vím, že ho můžeme popsat KA $M = (Q, \Sigma, \delta, q_0, F)$. Nechť $Q = \{q_0, q_1, ..., q_n\}$.
- Vytvoříme soustavu rovnic na reg. výrazy s proměnnými $X_0, X_1, ..., X_n$ ve standardním tvaru. Rovnice pro X_i popisuje množinu řetězců přijímaných ze stavu Q_i .
- Řešením této soustavy získáme reg. výraz pro proměnnou X_0 , který reprezentuje jazyk L.

Příklad 2.7

Jazyk L popisuje reg. výraz, který je řešením této soustavy pro proměnnou X_1 .

Poznámka: jiný převod KA na RV

- * Regulární přechodový graf je zobecnění KA, které umožňuje množinu počátečních stavů a regulární výrazy na hranách.
- ❖ Každý RPG je možné převést na RPG s jediným přechodem, ze kterého odečteme hledaný RV. Zavedeme nový počáteční a koncový stav, které propojíme s původními počátečními a koncovými stavy ɛ přechody. Pak postupně odstraňujeme všechny původní stavy následujícím způsobem:

Přímý převod RV na DKA

Rozšířené konečné automaty

RV budeme převádět nejprve na tzv. rozšířené KA a ty pak na DKA.

Definice 2.9 Rozšířený konečný automat (RKA) je pětice $M=(Q,\Sigma,\delta,q_0,F)$, kde

- Q je konečná množina stavů,
- Σ je konečná vstupní abeceda,
- δ je zobrazení $Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$,
- $q_0 \in Q$ je počáteční stav,
- $F \subseteq Q$ je množina koncových stavů.

Příklad 2.8 $M = (\{0, 1, 2, 3, 4\}, \{a, b\}, \delta, 0, \{2, 4\})$

ε**-uzávěr**

* Klíčovou funkci v algoritmu převodu RKA na DKA má výpočet funkce, která k danému stavu určí množinu všech stavů, jež jsou dostupné po ε hranách diagramu přechodů funkce δ . Označme tuto funkci jako ε -uzávěr:

$$arepsilon$$
-uzávěr $(q) = \{p \mid \exists w \in \Sigma^* : (q,w) \overset{*}{\vdash} (p,w)\}$

***** Funkci ε -uzávěr zobecníme tak, aby argumentem mohla být množina $T \subseteq Q$:

$$\varepsilon\text{-uzávěr}(T) = \bigcup_{s \in T} \varepsilon\text{-uzávěr}(s)$$

Příklad 2.9

Výpočet ε-uzávěru

* Zavedeme relaci $\stackrel{\varepsilon}{\longrightarrow}$ v množině Q takto:

$$\forall q_1, q_2 \in Q : q_1 \xrightarrow{\varepsilon} q_2 \stackrel{def}{\Longleftrightarrow} q_2 \in \delta(q_1, \varepsilon)$$

Pak ε -uzávěr $(p) = \{q \in Q \mid p \stackrel{\varepsilon}{\longrightarrow}^* q\}.$

* K výpočtu ε -uzávěru pak použijeme Warshallův algoritmus, doplníme diagonálu jedničkami a z příslušného řádku matice výsledné relace vyčteme ε -uzávěr.

$$\varepsilon$$
-uzávěr $(3) = \{3, 6, 7, 1, 2, 4\}$
 ε -uzávěr $(\{1, 0\}) = \{0, 1, 2, 4, 7\}$

Převod RKA na ekvivalentní DKA

Algoritmus 2.3 Převod RKA na DKA

Vstup: RKA $M = (Q, \Sigma, \delta, q_0, F)$.

Výstup: DKA $M' = (Q', \Sigma, \delta', q'_0, F'), L(M) = L(M').$

Metoda:

- $1. \quad Q' := 2^Q \setminus \{\emptyset\}.$
- 2. $q_0' := \varepsilon$ -uzávěr (q_0) .
- 3. $\delta': Q' \times \Sigma \to Q'$ je vypočtena takto:
 - Nechť $\forall T \in Q', a \in \Sigma : \overline{\delta}(T, a) = \bigcup_{q \in T} \delta(q, a).$
 - Pak pro každé $T \in Q'$, $a \in \Sigma$:
 - (a) pokud $\overline{\delta}(T,a) \neq \emptyset$, pak $\delta'(T,a) = \varepsilon$ -uzávěr $(\overline{\delta}(T,a))$,
 - (b) jinak $\delta'(T,a)$ není definováno.
- **4.** $F' := \{ S \mid S \in Q' \land S \cap F \neq \emptyset \}.$

Příklad 2.11 Aplikujeme algoritmus 2.3 na automat z příkladu 2.10:

- 1. Počáteční stav, označíme ho A, je $A = \varepsilon$ -uzávěr $(0) = \{0, 1, 2, 4, 7\}$.
- 2. $\delta'(A,a) = \varepsilon$ -uzávěr $(\{3,8\}) = \{1,2,3,4,6,7,8\} = B$.
- 3. $\delta'(A,b) = \varepsilon$ -uzávěr $(\{5\}) = \{1,2,4,5,6,7\} = C$.
- 4. $\delta'(B, a) = \varepsilon$ -uzávěr $(\{3, 8\}) = B$.
- 5. $\delta'(B,b) = \varepsilon$ -uzávěr $(\{5,9\} = \{1,2,4,5,6,7,9\} = D$.
- 6. $\delta'(C, a) = \varepsilon$ -uzávěr $(\{3, 8\}) = B$.
- 7. $\delta'(C,b) = \varepsilon$ -uzávěr $(\{5\}) = C$.
- 8. $\delta'(D, a) = \varepsilon$ -uzávěr $(\{3, 8\}) = B$.
- 9. $\delta'(D,b) = \varepsilon$ -uzávěr $(\{5,10\} = \{1,2,4,5,6,7,10\} = E$.
- 10. $\delta'(E, a) = \varepsilon$ -uzávěr $(\{3, 8\}) = B$.
- 11. $\delta'(E,b) = \varepsilon$ -uzávěr $(\{5\}) = C$.
- 12. Množina koncových stavů $F = \{E\}$.

Převod RV na ekvivalentní RKA

Algoritmus 2.4 Převod RV na RKA

Vstup: RV r popisující regulární množinu R nad Σ .

Výstup: RKA M takový, že L(M) = R.

Metoda:

- 1. Rozložíme r na jeho primitivní složky podle rekurzivní definice reg. množiny/výrazu.
- 2. (a) Pro výraz ε zkonstruujeme automat:

- (b) Pro výraz $a, a \in \Sigma$ zkonstruujeme automat:
- (c) Pro výraz ∅ zkonstruujeme automat:
- (d) Nechť N_1 je automat přijímající jazyk specifikovaný výrazem r_1 a nechť N_2 je automat přijímající jazyk specifikovaný výrazem r_2 .
 - i. Pro výraz $r_1 + r_2$ zkonstruujeme automat:

2. (d) ii. Pro výraz r_1r_2 zkonstruujeme automat:

iii. Pro výraz r_1^* zkonstruujeme automat:

Příklad 2.12 Vytvořme RKA pro RV $(a + b)^*abb$:

1. Rozklad RV vyjádříme stromem:

- (b) Regulárnímu výrazu $r_2 = b$ přísluší automat N_2 :
- (c) Regulárnímu výrazu $r_1 + r_2$ přísluší automat N_3 :

(d) Automat N_4 pro $r_4=(r_3)$ je stejný jako N_3 , zkonstruujeme tedy rovnou N_5 pro výraz $r_5=r_4^*=(a+b)^*$:

Regulárnímu výrazu $r_7 = r_5 r_6$ přísluší automat N_7 :

- Pokračujeme až do získání automatu z příkladu 2.10.
- Převod RV na RKA zavádí mnoho vnitřních stavů a je proto obvykle následován použitím algoritmu minimalizace DKA (algoritmus 2.2).

Vztahy regulárních gramatik, KA a RV

- Můžeme tedy shrnout, že
 - gramatiky typu 3 (pravé/levé regulární gramatiky, pravé/levé lineární gramatiky),
 - (rozšířené/nedeterministické/deterministické) konečné automaty a
 - regulární výrazy

mají ekvivalentní vyjadřovací sílu.

