Equivalence between AQC and CBQC and cB

Lecture 4

Nike Dattani nike@hpqc.org

Grover's algorithm:

- Circuit-based algorithm
- Searches an unstructured database
- Uses $O(\sqrt{N})$ steps. Classical requires O(N)

A fast quantum mechanical algorithm for database search

Lov K. Grover • Published in Symposium on the Theory of... 29 May 1996 • Computer Science

Grover's algorithm:

- Circuit-based algorithm
- Searches an unstructured database
- Uses $O(\sqrt{N})$ steps. Classical requires O(N)

A fast quantum mechanical algorithm for database search

Lov K. Grover • Published in Symposium on the Theory of... 29 May 1996 • Computer Science

1997

Grover's algorithm can't be improved:

• Needs $\Omega(\sqrt{N})$ steps.

Strengths and Weaknesses of Quantum Computing

Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani

Circuit-based QC isn't the only way to search a database with $\Theta(\sqrt{N})$ vs $\Theta(N)$

- Completely different method of quantum computation
- Searches a structured database

[Submitted on 18 Nov 1997]

Quantum Mechanical Square Root Speedup in a Structured Search Problem

Edward Farhi, Sam Gutmann

An unstructured search for one item out of N can be performed quantum mechanically in time of order square root of N whereas classically this requires of order N steps. This raises the question of whether square root speedup persists in problems with more structure. In this note we focus on one example of a structured problem and find a quantum algorithm which takes time of order the square root of the classical time.

Searching an unstructured database with AQC costs $\Theta(\sqrt{N})$

AQC and circuit-based QC are equivalent for searching databases!

How powerful is adiabatic quantum computation?

W. V. Dam, M. Mosca, U. Vazirani • Published 8 October 2001 • Physics, Computer Science • Proceedings 2001 IEEE International Conference on Cluster Computing

AQC and circuit-based QC are equivalent for all problems!

Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation

Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev

AQC can simulate circuit-based quantum computing with overhead that scales only polynomially with the problem size

CBQC can simulate AQC with overhead that scales only polynomially with the problem size

AQC and circuit-based QC are equivalent for all problems!

Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation

Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev

AQC can simulate circuit-based quantum computing with overhead that scales only polynomially with the problem size

CBQC can simulate AQC with overhead that scales only polynomially with the problem size

Many people still think AQC is fake (1985 vs 2007)

- World's first commercial quantum computer
- sold for \$10 million to Lockheed Martin

- World's first commercial quantum computer
- sold for \$10 million to Lockheed Martin

D-Wave Two (2012) – 512 qubits

sold for \$10 million to NASA and Google
 Quantum Artificial Intelligence lab

Ronnow et al. (Science 2014)

- World's first commercial quantum computer
- sold for \$10 million to Lockheed Martin

D-Wave Two (2012) – 512 qubits

sold for \$10 million to NASA and Google
 Quantum Artificial Intelligence lab

D-Wave Three (2015) - 1152 qubits

- sold for \$20 million to Los Alamos Nat. Lab.

- World's first commercial quantum computer
- sold for \$10 million to Lockheed Martin

D-Wave Two (2012) – 512 qubits

sold for \$10 million to NASA and Google
 Quantum Artificial Intelligence lab

D-Wave Three (2015) - 1152 qubits

- sold for \$20 million to Los Alamos Nat. Lab.

D-Wave Four (2017) – 2048 qubits

- Customers: Volkswagen, Temporal Defense Systems Inc, Virginia Tech, Denso Corp, Oak I National Lab, USC, etc.

- World's first commercial quantum computer
- sold for \$10 million to Lockheed Martin

D-Wave Two (2012) – 512 qubits

sold for \$10 million to NASA and Google
 Quantum Artificial Intelligence lab

D-Wave Three (2015) - 1152 qubits

- sold for \$20 million to Los Alamos Nat. Lab.

D-Wave Four (2017) – 2048 qubits

 Customers: Volkswagen, Temporal Defense Systems Inc, Virginia Tech, Denso Corp, Oak I National Lab, USC, etc.

D-Wave Five (2021) - 5640 qubits

Pegasus: The second connectivity graph for large-scale quantum annealing hardware

Nike Dattani*
Harvard-Smithsonian Center for Astrophysics and

Szilard Szalay[†]
Wigner Research Centre for Physics

Nicholas Chancellor[‡]

Joint Quantum Centre, Durham University

Pegasus: The second connectivity graph for large-scale quantum annealing hardware

Nike Dattani* Harvard-Smithsonian Center for Astrophysics and

Szilard Szalay Wigner Research Centre for Physics

Nicholas Chancellor[‡]

Joint Quantum Centre, Durham University

Top stories

D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology; Targets 5000 Qubits

HPCwire

14 hours ago

D-Wave previews quantum computing platform with over 5,000 qubits

VentureBeat

19 hours ago

D-Wave announces next generation platform with 5000 qubits, due mid-2020

Neowin

16 hours ago

→ More for pegasus d-wave

D-Wave Previews Next-Generation Quantum Computing Platform | D ...

https://www.dwavesys.com/.../d-wave-previews-next-generation-quantum-computing-... ▼ 18 hours ago - New Topology: The Pegasus™ topology is the most connected of any commercial quantum system in the world. Currently, each qubit in the ...

D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology ...

https://www.hpcwire.com/.../d-wave-previews-next-gen-platform-debuts-pegasus-topo... ▼ 14 hours ago - Quantum computing pioneer **D-Wave** Systems today "previewed" plans for ... One

D-Wave Two™ Computer

- Manufacturer: D-Wave Systems Inc.
- Uses a 1,097-qubit Washington processor
- Niobium superconducting loop encodes 2 states as tiny magnetic fields
- Processor cooled with liquid helium to 20 millikelvin (near absolute zero)
- Uses 12 kilowatts of power

Green500 List

Note: Shaded entries in the table below mean the power data is derived and not meassured.

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
1	259	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. Advanced Center for Computing and Communication, RIKEN Japan	794,400	842.0	50	17.009
2	307	Suiren2 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. High Energy Accelerator Research Organization /KEK Japan	762,624	788.2	47	16.759
3	276	Sakura - ZettaScaler-2.2, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	794,400	824.7	50	16.657
4	149	DGX SaturnV Volta - NVIDIA DGX-1 Volta36, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla V100 , Nvidia NVIDIA Corporation United States	22,440	1,070.0	97	15.113
5	4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler Japan Agency for Marine-Earth Science and Technology Japan	19,860,000	19,135.8	1,350	14.173

- D-Wave device uses SQUIDs
- needs liquid helium
- temperature 80 mK

- D-Wave device uses SQUIDs
- needs liquid helium
- temperature 80 mK

With quantum dots, coherence lasts at 77K

Towards a feasible implementation of quantum neural networks using quantum dots

M. V. Altaisky and N. N. Zolnikova Space Research Institute RAS, Profsoyuznaya 84/32, Moscow, 117997, Russia*

N. E. Kaputkina

National Technological University "MISiS", Leninsky prospect 4, Moscow, 119049, Russia[†]

V. A. Krylov

Joint Institute for Nuclear Research, Joliot Curie 6, Dubna, 141980, Russia[‡]

Yu. E. Lozovik

Institute of Spectroscopy, Troitsk, Moscow, 142190, Russia§

Nikesh S. Dattani

Quantum Chemistry Laboratory, Kyoto University, Kyoto, 606-8502, Japan and School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Dated: Mar 17, 2015)

Quantum Chemistry on a Quantum Computer

$$H = \sum_{p,q} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{p,q,r,s} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$

Jordan-Wigner Transform

$$a_{j} \Leftrightarrow \mathbf{1}^{\otimes j-1} \otimes \sigma^{+} \otimes \sigma^{z \otimes N-j-1}$$

$$a_{j}^{\dagger} \Leftrightarrow \mathbf{1}^{\otimes j-1} \otimes \sigma^{-} \otimes \sigma^{z \otimes N-j-1}$$

$$\sigma^{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \sigma^{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\sigma^{+} \equiv \frac{\sigma^{x} + i\sigma^{y}}{2} \quad \sigma^{-} \equiv \frac{\sigma^{x} - i\sigma^{y}}{2}$$

H₂ molecule

```
\begin{split} H &= -0.81261\mathbf{1} + 0.171201Z_0 + 0.171201Z_1 - 0.2227965Z_2 - 0.2227965Z_3 \\ &= +0.16862325Z_1Z_0 + 0.12054625Z_2Z_0 + 0.165868Z_2Z_1 + 0.165868Z_3Z_0 \\ &= +0.12054625Z_3Z_1 + 0.17434925Z_3Z_2 - 0.04532175X_3X_2Y_1Y_0 \\ &= +0.04532175X_3Y_2Y_1X_0 + 0.04532175Y_3X_2X_1Y_0 - 0.04532175Y_3Y_2X_1X_0 \end{split}
```

Markus Reiher,¹ Nathan Wiebe,² Krysta M. Svore,² Dave Wecker,² and Matthias Troyer^{3, 2, 4}

¹Laboratorium für Physikalische Chemie, ETH Zurich,

Valdimir-Prelog-Weg 2, 8093 Zurich, Switzerland

²Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA

³Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland

⁴Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer, And Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

 $1N_2 + 3H_2 \rightarrow 2NH_3$

Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer, And Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland, Astation Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Haber-Bosch process:

- Makes fertilizers that feed about 40% of the world's population.
- o T = 427°C, P = 150 atm
- Consumes 2% of the world's annual energy supply

Markus Reiher,¹ Nathan Wiebe,² Krysta M. Svore,² Dave Wecker,² and Matthias Troyer^{3, 2, 4}

¹Laboratorium für Physikalische Chemie, ETH Zurich,

Valdimir-Prelog-Weg 2, 8093 Zurich, Switzerland

²Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA

³Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland

⁴Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Haber-Bosch process:

- Makes fertilizers that feed about 40% of the world's population.
- o T = 427°C, P = 150 atm
- Consumes 2% of the world's annual energy supply

Markus Reiher,¹ Nathan Wiebe,² Krysta M. Svore,² Dave Wecker,² and Matthias Troyer^{3, 2, 4}

¹Laboratorium für Physikalische Chemie, ETH Zurich,

Valdimir-Prelog-Weg 2, 8093 Zurich, Switzerland

²Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA

³Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland

⁴Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

Struct. 1	T-Gates	Clifford Gates	Time	Log. Qubit	ζS
Serial	1.1×10^{15}	1.7×10^{15}	130 days	111	

Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer^{3, 2, 4} ¹Laboratorium für Physikalische Chemie, ETH Zurich,

Valdimir-Prelog-Weg 2, 8093 Zurich, Switzerland ² Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA ³ Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland

Struct. 1 T-Gates | Clifford Gates | Time Log. Qubits Serial 1.1×10^{15} 1.7×10^{15}

130 days

⁴Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

	Serial rotations		
Error Rate	10^{-3}	10^{-6}	10^{-9}
Required code distance	35,17 9		5
Logical qubits	111		
Physical qubits per logical qubit	15313	1013	313
Total physical qubits for processor	1.7×10^6	1.1×10^5	3.5×10^4

The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations

Cite as: J. Chem. Phys. 150, 024302 (2019); doi: 10.1063/1.5063376 Submitted: 26 September 2018 • Accepted: 10 December 2018 • Published Online: 8 January 2019

Zhendong Li,¹ Junhao Li,² Nikesh S. Dattani,^{3,4} C. J. Umrigar,² D and Garnet Kin-Lic Chan¹

AFFILIATIONS

- ¹ Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- ²Department of Physics, Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, New York 14853, USA

Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices

Norm M. Tubman,¹ Carlos Mejuto-Zaera,¹ Jeffrey M. Epstein,² Diptarka Hait,¹ Daniel S. Levine,¹ William Huggins,¹ Zhang Jiang,³ Jarrod R. McClean,³ Ryan Babbush,³ Martin Head-Gordon,¹ and K. Birgitta Whaley¹

¹Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, California 94720, USA ²Department of Physics, University of California, Berkeley, California 94720, USA ³Google Inc., Venice, California 90291, USA (Dated: September 17, 2018)

Quantum computers have the potential to be powerful, but we need more qubits and less noise!

³ National Research Council of Canada, Ottawa, Ontario K1A OR6, Canada

Thank you!

nike@hpqc.org