A Brief Introduction to Randomized Algorithms

Outline

- Randomized Algorithms
 - Las Vegas Algorithms
 - Monte Carlo Algorithms
- Probabilistic Analysis
- Selected Topics:
 - Estimation by random sampling
 - Randomized approximation algorithms
 - De-randomization

Randomness

Randomness

- ▶ Uncertainty
 - ▶ No structure: Avoid worst case
 - Hard to predict: Cryptography
 - Hard to analyze
- No bias
 - ▶ Trading correctness for performance
 - Worst cases may depend on randomness
 - Provide fairness: Estimation by sampling
 - Avoid collisions and deadlocks

Polynomial Identities

- Consider 2 polynomial F(x) and G(x)
 - F(x) is in the product form: $F(x)=(x-r_1)(x-r_2)...(x-r_d)$
 - G(x) is in the canonical form: $G(x)=x^d+c_{d-1}x^{d-1}+...c_1x+c_0$
 - Given x, evaluate F(x) and G(x): O(d)
- Question: Is F(x)=G(x)?

Examples

- ► Is $F_1(x) = G_1(x)$?
 - $F_1(x)=(x-1)(x+1)(x-2)$
 - $G_1(x)=x^3-2x^2-x+2$
- Is $F_2(x)=G_2(x)$?
 - $F_2(x)=(x-1)(x+1)(x-3)$
 - $G_2(x)=x^3+3x^2-x-3$
- Hint: A non-zero polynomial of degree d has d roots.

Deterministic Algorithm 1

- ▶ Convert F(x) into the canonical form
- ▶ How fast can we do this?
 - ▶ O(d²) multiplications & comparisons
- ▶ Pro: a straightforward method
- Con: O(d²) multiplications are required.
- Can we do better?

Deterministic Algorithm 2

- \blacktriangleright H(x)=F(x)-G(x): Evaluating H(x) takes O(d)
- F(x)=G(x) iff H(x)=0.
- ▶ Test if H(o)=H(1)=...=H(d)=o. (why?)
- If F(x)=G(x), this runs in $O(d^2)$.
- ▶ If $F(x) \neq G(x)$, this runs in $\Omega(d)$ and $O(d^2)$.
 - Lucky case: H(o)≠o
 - ▶ Unlucky case: $H(o)=...=H(d-1)=o\neq H(d)$

Randomized Algorithm 1

- Randomly permute 0,...,d into p₀,...,p_d.
- Perform the check as deterministic algorithm 2.
- We will not always encounter the worst case if $F(x) \neq G(x)$.
- ▶ But the worst case still runs in O(d²).

Randomized Algorithm 2

- ▶ Randomly sample d+1 distinct numbers p₀,...,p_d from {1,...,100d}.
- Check if $H(p_0)=H(p_1)=...=H(p_d)=0$.
- ▶ Worst case: still O(d²)
- ▶ But for $F(x) \neq G(x)$, we can answer no after testing $H(p_0)$ with ≥99% probability.
 - H(x) has only d roots!
 - The expected running time is O(d).

Randomized Algorithm 3

- Randomly sample a number p from {1,...,100d}.
- Output F(x)=G(x) iff H(p)=0.
- Worst case: O(d)
- For F(x)=G(x), we always answer correctly.
- For $F(x) \neq G(x)$, we answer correctly with $\geq 99\%$ probability. Note: probably wrong

Comparison

Comparison

Comparison

Las Vegas Algorithms

- Randomized algorithms those
 - always output correct answers
 - are fast in average, but they have a small chance to encounter the worst case.
- Example:
 - Randomized algorithm 2 for polynomial identities.
 - Randomized quicksort

Randomized Quicksort

- Ordinary quicksort has worst case O(n²).
 - When sorting a sorted array, it is always worst.
- ▶ Partition: If the pivot is the max or the min element, the ordinary quicksort encounters the worst case.
- Randomized quicksort: pick the pivot at random.

Partition

Partition

Partition

Randomized Quicksort

Worst case = n-1 consecutive worst pivot choices!

Monte Carlo Algorithm

- Randomized algorithms those
 - are always "fast"
 - have a relative small chance (≤1/3) to output wrong answer in the worst case.
- Example:
 - Randomized algorithm 3 for polynomial identities.
 - Matrix product verification

Matrix Product Verification

- ▶ Given n-by-n matrices A, B, and C, to determine whether AB=C?
- Straightforward method: multiply A and B, then check whether the product is C.
 - ▶ Time: O(n³) by standard multiplication.
 - ► Fastest known matrix multiplication: O(n².376) by Coppersmith-Winograd

Matrix Product Verification

- ▶ Pick a random o-1 n-dimensional vector v.
- ▶ Compute A(Bv) and Cv.
- ▶ Check whether A(Bv)=Cv.
- Time: O(n²). Multiplying a n-by-n matrix and a n-dimensional vector is O(n²).
- ▶ If AB=C, then correct prob. is 1.
- ▶ If AB≠C, then correct prob. is at least 0.5.

Example

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$A \quad B \quad V \quad A \quad BV \quad ABV \quad C \quad V \quad CV$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Boosting the correctness

- Is the error probability too high (>1/3)?
 - ▶ By repeating the algorithm 100 times, the error probability decreases exponentially to 2⁻¹⁰⁰!
- The running time dramatically drops to $O(n^2)!$

Complexity Classes

- ▶ P: Deterministic polynomial time
- ▶ NP: Non-deterministic polynomial time
- Randomized algorithm
 - ▶ RP: Only has false positive (No is no)
 - coRP: Only has false negative (Yes is yes)
 - ▶ BPP: Two-sided error $\leq 1/3$
 - ▶ PP: Two-sided error <1/2
 - ▶ ZPP: Correct answer or unknown

Complexity Classes

- ▶ P: Deterministic polynomial time
- ▶ NP: Non-deterministic polynomial time
- Randomized algorithm

Monte Carlo

- ▶ RP: Only has false positive (No is no)
- ▶ coRP: Only has false negative (Yes is yes)
- ▶ BPP: Two-sided error $\leq 1/3$
- ▶ PP: Two-sided error <1/2
- ▶ ZPP: Correct answer or unknown

Las Vegas

Pseudorandomness

- How can you get random bits?
- ▶ Bad new: no truly random bits from computation (ALU)
- You can get some from timer, radio noise, tossing coins, the great nature, etc.
 - But the amount is usually not enough.
- Pseudorandom: not random, but appears to be random.

Pseudo Random Number Generator

- Generate numbers which are "like random numbers" but using no truly random bits
- Linear congruential generator
 - $X_{n+1}=aX_n+b \mod c$
 - ▶ Easy to compute and widely applied.
 - When you pick a number from 0,...,n−1 by LCG, please use n*(X/c). X%n may be very regular. Not secure! Unsuitable for cryptography

Generating Random Permutation

- ▶ How to generate a random permutation of 1,...,n?
- r(L,U): a random integer pick from [L,U].
- Swap(i,j): Exchange the ith and jth positions.
- ▶ Strategy 1: Perform n-1 times Swap(r(1,n), r(1,n))
- ▶ Strategy 2: for i=1 to n-1 do Swap(i,r(i,n))

Strategy 1

Strategy 2

Generating Random Permutation

- Both strategies can generate any possible permutation.
- Which is more uniform?
 - ▶ Strategy 1:n²ⁿ possible results.
 (NOT A MULTIPLE of n!)
 - Strategy 2: n! possible results.
- If you need a random permutation, please use Strategy 2.

Probability Notations

- Sample space Ω : set of possible samples
- Probability distribution:
 - A function: $\Omega \rightarrow [0,1]$
 - $\Sigma_{\sigma \in \Omega} \Pr[\sigma] = 1$
- Random variable X: $\Omega \rightarrow R$. A function maps samples into reals.

Indicator

- An event is a subset of the sample space Ω .
- ▶ Indicator random variable I[event]
 - If event happens, then I[event]=1. Otherwise I[event]=0.
- $ightharpoonup Pr[event] = \Sigma_{\sigma \in event} Pr[\sigma]$

Expected Value

- Expected value of random variable X: $E[X]=\Sigma_x x Pr[X=x]$
- Linearity: E[X+Y]=E[X]+E[Y]
- Expectation value of indicators:
 E[I[e]]=1×Pr[I[e]=1]=Pr[e]
- Tossing a biased coin (head with prob. p) until we get a head. Let X be the number of tosses, what is E[X]?

Solution

- $E[X]=1\times p+(1+E[X])\times (1-p)$
- $\rightarrow pE[X]=1$
- \rightarrow E[X]=1/p
- On average, we need 1/p tosses to get a head.

Coupon Collection

- You get a coupon if you buy a cup of tea.
- There are n different kinds of coupons, and you can win the price if you have all n kinds.
- Assume any kind of coupons appears with probability 1/n.
- How many cups of tea are expected to buy if you want to win the price?

Solution

- Let X_i be the number of cups for collect the ith kinds of coupon.
 - $E[X_i] = n/(n+1-i) \text{ (why?)}$
- $Ans=X_1+...+X_n$
- $E[Ans] = E[X_1] + ... + E[X_n]$ = (n/n) + (n/(n-1)) + ... + (n/1) = n(1+(1/2)+(1/3)+...+(1/n)) = O(nlogn)

Hash Table

- Using a hash function to balance the load.
 - Pseudorandom function can be a hash function.
- In C++11, there are hash_map and hash_set in STL.
- ▶ O(n) space for storing n elements.
- ▶ What if we can tolerate some false positive when implementing a set?

Bloom Filters

- Use multiple hash functions.
- ▶ n items by m bits with error $e^{-\frac{m}{n}(\ln 2)^2}$

Estimation by Random Sampling

- Ex: Computing π by Random Sampling
- Generate n samples $(x_1,y_1),...,(x_n,y_n)$ by picking x_i,y_i from [0,1] uniformly at random.
- Let m be the number of samples satisfying $x^2+y^2 \le 1$.
- $\pi = 4m/n$

Estimation by Random Sampling

- The sample point fall into the accepting region with probability $\pi/4$.
- The expected number m of samples falling into the region is nπ/
 4.
- $\rightarrow \pi = 4m/n$

Optimization Problem

- ▶ A problem has many feasible solution.
- Finding "best" solution from all feasible solutions.
- Natural version:
 - ▶ Finding the sweetest melon from all kinds of melons.
- Sometimes it can be very hard to find the optimal solution.

Approximation

- Sometimes it is hard to find the optimum but easy to find good suboptimal solution.
 - In order to get 100 in the final, you have to spend ≥10 hours.
 - ▶ But you'll get 80 just by spending 5 minutes.
 (In some schools, 80=GPA 4.0)
 - Why don't you just spend 5 minutes?
 - Note: this is just an example. NOT your final
- Use randomized algorithms!

Max 3CNF-SAT

- Conjunctive Normal Form
 - $(X_1 \vee X_2 \vee X_3) \wedge (X_1 \vee \overline{X}_3 \vee \overline{X}_4) \wedge (\overline{X}_1 \vee X_3 \vee X_4)$
- Given a 3CNF boolean formula Φ, find an assignment that satisfies the largest number of clauses.
- It is NP-hard to find out the optimal solution.
 - ▶ 3SAT is NP-hard.

Max 3CNF-SAT

- ▶ 100% is hard, but 87.5% is simple.
- Consider a random assignment to any clause c=(xvyvz)
 - $Pr[x=y=z=false]=0.5^3=0.125$
 - ▶ Pr[c is satisfied]=1-0.125=0.875
- ▶ Note: 0.875+ε is also NP-hard by Håstad.

De-randomization

- Let $\Phi_0 = \Phi$. Φ_j is obtained by fixing variables $x_1,...,x_j$ in Φ .
- Y_j be the number of satisfied clauses of Φ_j
- For i = 1 to n do
 - ▶ Set x_i =true iff $E[Y_{i-1}|x_i$ =true]> $E[Y_{i-1}|x_i$ =false]
 - Fix x_i to obtain a new formula Φ_i .

Example

- $\Phi_0 = (\mathbf{X}_1 \vee \mathbf{X}_2 \vee \mathbf{X}_3) \wedge (\mathbf{X}_1 \vee \overline{\mathbf{X}}_3 \vee \overline{\mathbf{X}}_4) \wedge (\overline{\mathbf{X}}_1 \vee \mathbf{X}_3 \vee \mathbf{X}_4)$
 - $E[Y_0|x_1=true]=2.75>E[Y_0|x_1=false]=2.5$
 - ▶ set x₁=true
- $\Phi_1 = (\mathsf{T} \vee \mathsf{X}_2 \vee \mathsf{X}_3) \wedge (\mathsf{T} \vee \overline{\mathsf{X}}_3 \vee \overline{\mathsf{X}}_4) \wedge (\mathsf{F} \vee \mathsf{X}_3 \vee \mathsf{X}_4)$
 - $E[Y_1|x_2=true]=2.75=E[Y_1|x_2=false]=2.75$
 - ▶ set x₂=false

Example

- $\Phi_2 = (\mathsf{T} \vee \mathsf{F} \vee \mathsf{X}_3) \wedge (\mathsf{T} \vee \overline{\mathsf{X}}_3 \vee \overline{\mathsf{X}}_4) \wedge (\mathsf{F} \vee \mathsf{X}_3 \vee \mathsf{X}_4)$
 - $E[Y_2|x_3=true]=3>E[Y_2|x_3=false]=2.5$
 - ▶ set x₃=true
- $\Phi_3 = (\mathsf{T} \vee \mathsf{F} \vee \mathsf{T}) \wedge (\mathsf{T} \vee \mathsf{F} \vee \overline{\mathsf{X}}_4) \wedge (\mathsf{F} \vee \mathsf{T} \vee \mathsf{X}_4)$
 - $E[Y_3|x_4=true]=3=E[Y_3|x_4=false]=3$
 - ▶ set x₄=false
- $\Phi_4 = (\mathsf{T} \vee \mathsf{F} \vee \mathsf{T}) \wedge (\mathsf{T} \vee \mathsf{F} \vee \mathsf{T}) \wedge (\mathsf{F} \vee \mathsf{T} \vee \mathsf{F})$
 - $(x_1,x_2,x_3,x_4)=(true,false,true,false)$