Optimization of Numerical Benchmark Functions Using the Genetic Algorithm

Denis Crismariu

November 21, 2024

Abstract

This report investigates the application of Genetic Algorithms (GA) for optimizing mathematical functions. The study focuses on the implementation and experimentation with different fitness evaluation functions to enhance the performance of the GA. Through detailed experimentation, we evaluate the efficiency and accuracy of the GA on four benchmark functions: De Jong's, Schwefel's, Rastrigin's, and Michalewicz's comparing it to our previous results using Hill Climb and Simulated Annealing. This report aims to provide insights into the effectiveness of various fitness evaluation strategies and encoding methods in genetic algorithms and suggests potential areas for further research and improvement.

1 Introduction

This report details the use of Genetic Algorithms (GA) for optimizing mathematical functions and compares the results with Hill Climbing algorithms. The study focuses on the implementation and experimentation with different fitness evaluation functions to enhance the performance of the GA. Specifically, our objective is to search for the minima of four benchmark functions: De Jong's, Schwefel's, Rastrigin's, and Michalewicz's.

The GA starts with an initial population of potential solutions, represented as binary strings. Each generation involves fitness evaluation, selection, crossover, and mutation.

Hill Climbing algorithms, including First Improvement and Best Improvement variants, are also employed for comparison. The First Improvement variant quickly accepts the first neighboring solution that improves the objective function, making it faster but potentially less accurate. The Best Improvement variant evaluates all neighboring solutions and selects the best one, generally leading to better solutions but at the cost of increased computational time.

This report aims to provide a detailed analysis of the GA's performance on the benchmark functions, highlighting the impact of different fitness evaluation strategies and encoding methods. By comparing their performance with Hill Climbing algorithms, we seek to understand the trade-offs involved and explore potential strategies for enhancing the algorithms' performance. The findings of this study could inform the development of more robust optimization techniques for a wide range of applications. Our experiments show that the Genetic Algorithm is, on average, 6653% faster but 8% less accurate compared to the Best Improvement version of the Hill Climbing algorithm.

2 Methods & Implementation

The implementation of a Genetic Algorithm (GA) involves setting parameters that influence its efficiency. We set the population size to 100, the mutation probability of $\frac{1}{L}$ and 1000 generations. Additionally, we set the precision to be 10^{-5} and the dimensions to 5, 10, and 30.

Our approach to the GA follows a distinct order: fitness evaluation, selection, crossover and mutation.

Each generation concludes with the fitness evaluation of the new population. The fitness of each individual is calculated based on the objective function we aim to minimize. We experimented with different fitness evaluation functions to enhance the performance of the genetic algorithm. For instance:

instance:
$$f' = \left(\frac{(max - f)}{(max - min + \epsilon)} + 1\right)^2 \text{ for Schwefel and Rastrigin, } f' = \frac{1}{f + \epsilon} \text{ for De}$$

$$\text{Jong and } f' = \left(\frac{(max - f)}{(max - min + \epsilon)} + 1\right)^3 \text{ for Michalewicz.}$$

$$\text{The selection and crossover process takes place next. In this phase,}$$

The selection and crossover process takes place next. In this phase, two parents are selected based on roulette wheel selection. Each chromosome from the parents has a 50% chance of being passed to the offspring, creating two new offspring that inherit a blend of genetic material from both parents. Additionally, the best individual from the current generation is copied directly to the next generation to ensure that the highest fitness solution is preserved.

The mutation step, applied to the newly created individuals with the best from the last generation as an exception, introduces random changes in the genetic makeup of the individuals. This process, governed by the mutation probability, is vital for injecting new genetic traits into the population, thereby enhancing its diversity and aiding in the exploration of new areas in the solution space. This is done by flipping the bits in the binary strings at a probability set in the initial phase.

3 Experimental results

The 4 benchmarked functions are the following:

3.1 Rastrigin Function[2]

$$f(x) = A \cdot n + \sum_{i=1}^{n} [x_i^2 - A \cdot \cos(2\pi x_i)], A = 10, x_i \in [-5.12, 5.15]$$

The global minima is located at $f(x) = 0; x(i) = 0, \forall i = 1:n$

Figure 1: Rastrigin Function[1]

Table 1: Values based on 30 runs

		HC HC	HC	НС	SA	GA
		Best	First	Worst	Best	
	Mean error	0.994	0.994	0.000	0.000	0.001
D = 5	SDev error	0.505	0.530	0.495	0.495	0.005
D = 0	Min error	0.000	0.000	0.000	0.000	0.000
	Max error	1.000	1.994	1.000	0.995	0.031
	Mean error	4.346	5.456	4.225	4.343	3.935
D = 10	SDev error	0.857	1.030	1.060	1.130	2.148
D = 10	Min error	2.235	4.220	1.994	1.995	1.040
	Max error	5.984	7.692	5.466	6.225	9.419
	Mean error	28.516	36.637	29.511	30.881	31.982
D = 30	SDev error	2.509	2.680	3.466	2.509	6.757
	Min error	20.789	31.226	19.897	24.593	19.837
	Max error	31.904	39.687	32.836	34.739	46.042

Table 2: Hill Climbing time (in seconds) based on 30 runs

		HC	HC	HC	SA	GA
		Best	First	Worst	Best	
	Mean time	0.794	0.495	0.647	4.772	0.207
D = 5	SDev time	0.016	0.002	0.008	0.012	0.005
D = 0	Min time	0.767	0.491	0.635	4.753	0.205
	Max time	0.838	0.499	0.668	4.801	0.234
	Mean time	5.715	3.208	4.656	15.950	0.354
D = 10	SDev time	0.069	0.023	0.058	0.059	0.005
D = 10	Min time	5.653	3.155	4.556	15.861	0.351
	Max time	5.923	3.259	4.823	16.102	0.366
	Mean time	134.398	74.285	111.249	115.934	1.014
D = 30	SDev time	2.239	0.340	2.659	2.343	0.026
	Min time	129.825	73.794	108.005	115.365	0.967
	Max time	136.280	75.399	119.047	125.269	1.043

3.2 Michalewicz Function[4]

$$f(x) = -\sum_{i=1}^{n} \sin(x_i) \sin^{2m} \left(\frac{ix_i^2}{\pi}\right), x_i \in [0, \pi]$$

The global minima is located at n=5 : f(x)=-4.687, for n=10 : f(x)=-9.660 and for n=30 : f(x)=-29.630[9].

Figure 2: Michalewicz Function[3]

Table 3: Values based on 30 runs

		HC	HC	HC	SA	GA
		Best	First	Worst	Best	
	Mean error	0.000	0.001	0.000	0.000	0.007
D = 5	SDev error	0.001	0.004	0.001	0.004	0.086
D - 0	Min error	0.000	0.000	0.000	0.000	0.000
	Max error	0.003	0.018	0.004	0.022	0.331
	Mean error	0.302	0.361	0.283	0.282	0.325
D = 10	SDev error	0.084	0.113	0.092	0.106	0.213
D = 10	Min error	0.106	0.172	0.008	0.018	0.016
	Max error	0.452	0.598	0.407	0.459	0.884
	Mean error	2.693	3.227	2.764	2.845	3.675
D = 30	SDev error	0.223	0.258	0.253	0.296	0.692
	Min error	2.030	2.750	2.101	1.883	2.864
	Max error	3.032	3.942	3.088	3.434	5.559

Table 4: Hill Climbing time (in seconds) based on 30 runs

		HC	HC	HC	SA	GA
		Best	First	Worst	Best	
	Mean time	1.206	0.832	1.277	6.837	0.203
D = 5	SDev time	0.036	0.006	0.040	0.012	0.002
D = 0	Min time	1.147	0.820	1.211	6.803	0.196
	Max time	1.265	0.842	1.374	6.882	0.211
	Mean time	10.053	5.706	8.668	25.085	0.384
D = 10	SDev time	0.259	0.033	0.232	0.035	0.004
D = 10	Min time	9.125	5.666	8.331	25.034	0.367
	Max time	10.440	5.849	9.313	25.203	0.399
D = 30	Mean time	229.089	123.951	193.611	210.705	1.067
	SDev time	4.395	3.759	5.031	0.898	0.010
	Min time	225.808	113.541	187.292	208.883	1.035
	Max time	239.067	128.653	205.007	211.160	1.098

3.3 De Jong Function[6]

$$f(x) = \sum_{i=1}^{n} x_i^2, x_i \in [-5.12, 5.12]$$

The global minima is located at $f(x)=0; x(i)=0, \forall i=1:n$

Figure 3: De Jong Function Function[5]

Table 5: Values based on 30 runs

		HC	HC	HC	SA	GA
		Best	First	Worst	Best	
	Mean error	0.000	0.000	0.000	0.000	0.000
D = 5	SDev error	0.000	0.000	0.000	0.000	0.000
D - 0	Min error	0.000	0.000	0.000	0.000	0.000
	Max error	0.000	0.000	0.000	0.000	0.000
	Mean error	0.000	0.000	0.000	0.000	0.000
D = 10	SDev error	0.000	0.000	0.000	0.000	0.000
D = 10	Min error	0.000	0.000	0.000	0.000	0.000
	Max error	0.000	0.000	0.000	0.000	0.000
	Mean error	0.000	0.000	0.000	0.000	0.000
D = 30	SDev error	0.000	0.000	0.000	0.000	0.000
	Min error	0.000	0.000	0.000	0.000	0.000
	Max error	0.000	0.000	0.000	0.000	0.000

Table 6: Hill Climbing time (in seconds) based on 30 runs

		HC	HC	HC	SA	GA
		Best	First	Worst	Best	
	Mean time	0.595	0.369	0.557	3.449	0.192
D = 5	SDev time	0.010	0.002	0.005	0.013	0.001
D = 0	Min time	0.584	0.363	0.553	3.435	0.192
	Max time	0.617	0.371	0.585	3.474	0.198
	Mean time	4.671	2.407	3.812	10.824	0.337
D = 10	SDev time	0.210	0.017	0.029	0.075	0.005
D = 10	Min time	4.216	2.387	3.755	10.649	0.336
	Max time	4.912	2.467	3.912	10.925	0.369
D = 30	Mean time	106.610	53.719	85.543	76.099	0.961
	SDev time	1.254	0.544	0.612	0.811	0.007
	Min time	102.922	52.773	84.489	75.731	0.941
	Max time	107.812	54.546	87.371	79.257	0.973

3.4 Schwefel Function[8]

$$f(x) = 418.982n - \sum_{i=1}^{n} x_i \sin(\sqrt{|x_i|}), x_i \in [-500, 500]$$

The global minima is located at $f(x) = 0; x(i) = 0, \forall i = 1:n$

Figure 4: Schwefel Function[7]

Table 7: Values based on 30 runs

		HC	HC	HC	SA	GA
		Best	First	Worst	Best	
	Mean error	0.104	34.236	0.104	0.104	0.177
D = 5	SDev error	0.091	28.681	0.072	0.094	0.131
D = 0	Min error	0.000	0.001	0.000	0.000	0.002
	Max error	0.311	118.542	0.208	0.312	0.439
	Mean error	119.151	305.854	119.360	152.937	30.249
D = 10	SDev error	55.845	75.565	62.588	51.430	59.370
D = 10	Min error	0.520	119.344	0.519	34.547	0.486
	Max error	187.329	424.103	199.698	234.581	273.941
D = 30	Mean error	1221.768	1812.850	1238.527	1243.475	845.000
	SDev error	141.610	154.695	134.361	157.466	291.677
	Min error	789.557	1383.452	893.080	805.879	455.446
	Max error	1407.216	2016.318	1462.854	1463.694	1952.879

Table 8: Hill Climbing time (in seconds) based on 30 runs

		HC	HC	HC	SA	GA
		Best	First	Worst	Best	
	Mean time	1.731	1.062	1.639	6.772	0.260
D = 5	SDev time	0.336	0.007	0.007	0.026	0.011
D - 3	Min time	1.630	1.053	1.630	6.713	0.249
	Max time	2.725	1.095	1.668	6.797	0.299
	Mean time	14.024	7.342	11.386	22.644	0.476
D = 10	SDev time	0.265	0.111	0.042	0.029	0.017
D = 10	Min time	12.919	6.832	11.298	22.583	0.460
	Max time	14.511	7.375	11.478	22.704	0.524
	Mean time	334.324	160.868	278.862	171.217	1.353
D = 30	SDev time	9.762	0.915	0.900	3.060	0.052
	Min time	319.042	160.159	276.551	168.317	1.303
	Max time	349.083	164.243	280.273	176.714	1.511

4 Comparing Methods

Comparing the Genetic Algorithm (GA) to Hill Climbing methods, we observed that the GA is significantly faster but may not always find the most accurate solution. Specifically, our experiments show that the GA is, on average, 6653% faster but 8% less correct compared to the Hill Climbing algorithm.

5 Conclusions

The Genetic Algorithm is effective for optimizing mathematical functions, offering a significant speed advantage over Hill Climbing methods. How-

ever, its performance in terms of accuracy can be slightly lower. Hill Climbing algorithms can provide more accurate solutions but at the cost of increased computational time. In the future, it would be interesting to explore using a meta-genetic algorithm to tune parameters, such as deciding when to switch to Gray encoding for the last 10% of generations or for the entire run.

References

- Authors: Sonja Surjanovic & Derek Bingham, Simon Fraser University
 Rastrigin's Function rendered image. https://www.sfu.ca/~ssurjano/rastr.html
- [2] Rastrigin, L. A. "Systems of extremal control." Mir, Moscow (1974).
- [3] Authors: Sonja Surjanovic & Derek Bingham, Simon Fraser University

 Michalewicz's Function rendered image. https://www.sfu.ca/~ssurjano/michal.html
- [4] Michalewicz, Zbigniew. "A survey of constraint handling techniques in evolutionary computation methods." (1995).
- [5] Dejong's Function rendered image. http://www.geatbx.com/docu/ fcnindex-msh_f1_500-2.gif
- [6] De Jong, Kenneth Alan. An analysis of the behavior of a class of genetic adaptive systems. University of Michigan, 1975.
- [7] Authors: Sonja Surjanovic & Derek Bingham, Simon Fraser University Schwefel's Function rendered image. https://www.sfu.ca/~ssurjano/schwef.html
- [8] Bäck, Thomas, and Hans-Paul Schwefel. "An overview of evolutionary algorithms for parameter optimization." Evolutionary computation 1.1 (1993): 1-23.
- [9] Vanaret, Charlie, et al. "Certified global minima for a benchmark of difficult optimization problems." arXiv preprint arXiv:2003.09867(2020).