Foss Lab – Final Report

Name: Sameer Kumar Kaushik

Roll No.: 205319012

Dataset:

Kerala State 100 Helpline dataset

Discerption:

The dataset consists of over 900 observations with 16 features such as call time, event type and district.

Task:

classify, visualize and analyze the crime data based on the crime sheet.

Methodologies:

- 1. Word Clouds
- 2. NLP using NLTK
- 3. Classification using Logistic Regression
- 4. SVM
- 5. Gradient Boosting Classifier
- 6. Random Forest Classifier
- 7. Multi Layer Perceptron Classifier
- 8. Deep Learning

Libraries and Requirements:

- 1. Pandas
- 2. Numpy
- 3. Matplotlib
- 4. Wordcloud
- 5. NLTK
- 6. Geopandas
- 7. Descartes
- 8. Sklearn
- 9. Keras

Colab link:

 $\frac{https://colab.research.google.com/drive/1c1UdKC9sV110PfIcFEWM6MJDYopaVQgc\#scroll{l}{1}{To=L-Gf6BPv9_yk}$

Git Hub Link:

https://github.com/sameerkaushik007/Foss_Lab_Final

Import different type of libraries

Install geopandas library for geo map of Kerala region

Pre-Processing

There is multiple noise data and multiple duplicate row value so. We try to clean up irrelevant data using pre-processing technique.

Create transformation function for pre-processing using convert_I and convert_II function

Avoid the nun value

read crime prediction xl file and in xl sheet there is 16 column

Create geographical region of Kerala district with crime rate

Plot event Vs Time graph

Crime rate in Different District in Word Cloud

Using NLTK we try to remove stope word

Logistic Regression

Using Logistic regression classifier and split the data set into 75 for training purpose 25 for test purpose and random state 0, create two classifier and use solver function 'lbfgs' & 'saga' for accuracy purpose.

Accuracy 41%

Gradient Boosting Classifier & Random Forest Classifier

Data set split into 80 : 20 ratio for training and testing purpose and in gradient boosting classifier parameter Random state 0 and criterion 'mse' we got accuracy 54%

In random forest classifier

Parameter: max depth=2,random state=0 Accuracy = 54%

Using SVM:

Accuracy 45%

Using KNN Classifier

Accuracy 50%

Using MLP Classifier:

In Parameter: solver= 'lbfgs', hidden layer size=(5,2),Random state=0

Accuracy 39%

Using Deep Learning:

Activation= 'relu' in dense layer 8 and Activation= 'sigmoid'

Model.compile loss= 'binary crossentopy' and optimizer= 'adadelta'

Epoch=30 and batch size =10

Accuracy 63%