FUNCTIONAL SOFTWARE TEST PLAN

for

Encost Smart Graph Project

Version 1.0

Prepared by: Joey Han SoftFlux Engineer

SoftFlux

May 3, 2023

Contents

1	Intr	oduction/Purpose	3
	1.1	Purpose	3
	1.2	Document Conventions	3
	1.3	Intended Audience and Reading Suggestions	4
	1.4	Testing Scope	4
2	Spe	cialized Requirements Specification	4
3	Blac	ck-box Testing	5
	3.1	Categorizing Users	5
		3.1.1 All Users Decision Table	5
	3.2	ESGP Account Login	5
		3.2.1 Encost User Decision Table	6
	3.3	ESGP Feature Options	6
		3.3.1 Community User Decision Table	6
		3.3.2 Encost User Decision Table	7
	3.4	Loading the Encost Smart Homes Dataset	8
		3.4.1 All Users Decision Table	8
	3.5	Categorizing Smart Home Devices	1
		3.5.1 All Users Decision Table	1
	3.6	Building a Graph Data Type	14
		3.6.1 All Users Decision Table	L4
	3.7	Calculating Device Distribution	19
		3.7.1 Encost User Decision Table	19
4	Whi	te-box testing 2	25
	4.1	Device Distribution Pseudocode	26
	4.2	Branch Coverage Testing	26
5	Mut	cation Testing 2	27
	5.1	Mutant #1	27
	5.2	Mutant #2	28
	5.3	Mutant #3	28
	5.4	Mutant #4	29
	5.5	Mutation Score	o

Revision History

Name	Date	Reason for Changes	Version
SoftFlux	03/05/2023	Intro/Purpose, Black box testing, White box testing,	1.0
		Mutation testing	

1 Introduction/Purpose

1.1 Purpose

This document is the Functional Software Test Plan for the Encost Smart Graph Project (ESGP) for the company Encost which is made based on the SRS and SDS 1 documents. The purpose of this document is to describe how each of the requirements in the SRS and SDS document will be tested and the recommended testing software tools to perform the automated tests.

1.2 Document Conventions

This document uses the following conventions:

• ESGP: Encost Smart Graph Project

• GSL: GraphStream Library

• SRS: Software Requirement Specification

• SDS: Software Design Specification

1.3 Intended Audience and Reading Suggestions

This document is intended for any developer, tester, and project manager. Here are the potential uses for each of the reader types:

- Developer/Project Manager: Uses this document to help implement the software.
- Tester: Uses this document to understand what the program should do, and what should be tested.
- Test Developer: Implement a testing suite for test-driven development.

1.4 Testing Scope

SoftFlux is only responsible for the base version and maintenance of the software. This version is only in English and includes the functionalities:

- Handling input and output
- User login
- Graph visualisation
- Data processing and statistics

The ESGP does not integrate with any hardware.

2 Specialized Requirements Specification

- The black box testing is testing both UI and functionality tests.
- The building a graph data type test also tests for the graph visualisation test.
- The file path for the Encost Smart Homes Dataset is stored within the backend of the application which is located locally.

3 Black-box Testing

3.1 Categorizing Users

• Level of test: Unit (Recommended to use JUnit to automate test)

• Test technique: Decision table

3.1.1 All Users Decision Table

This decision table is used to test the user categorization.

- Test Case 1: When user enters "1", the system verifies that a community user has logged onto the ESGP and it displays that the user is a Community User and the feature options which the community user has access to.
- Test Case 2: When user enters "2", the system displays the user is a Encost User and prompts the user to enter their username and password.
- Test Case 3: When user enters anything that is not 1 or 2, the system will display an error message which tells the user that the input is wrong(E.g "Please input 1 or 2!") and will prompt the user again for the user categorization.

Table 3.1: Categorizing Users Decision Table

Conditions	Input	Output
Case 1	1	Community user output and ESGP feature op-
		tions displayed
Case 2	2	Encost user output and ESGP account login dis-
		played
Case 3	Anything that is	Error message displayed for wrong input
	not 1 or 2	

3.2 ESGP Account Login

• Level of test: Unit (Recommended to use JUnit to automate test)

• Test technique: Decision table

3.2.1 Encost User Decision Table

This decision table is used to test the account login for the encost users.

- Test Case 1: When user enters the correct username and correct password, the system will display a welcome message to the user and the feature options which the encost user has access to.
- Test Case 2: When user enters the invalid credentials, the system will display an error message to tell the user that their username and password are incorrect(E.g "Username and Password are wrong!") and it will prompt them again for the username and password.
- Test Case 3: When user doesn't enter anything, the system will display an error message to tell the user that they have not inputted anything(E.g "Please enter username and password!") and it will prompt them again for the username and password.

Table 3.2: Account Login Decision Table

Conditions	Input	Output
Case 1	Valid credentials	Welcome message output and ESGP feature op-
		tions displayed
Case 2	Invalid credentials	Error message displayed for incorrect username
		and password
Case 3	Blank/NULL	Error message displayed for no input

3.3 ESGP Feature Options

- Level of test: Integration with GSL for the Graph Visualisation UI (Recommended to use SmartBear TestComplete to automate test)
- Test technique: Decision table

3.3.1 Community User Decision Table

This decision table is used to test feature options for the community users.

- Test Case 1: When user enters "1", the system opens a graph visualisation UI application.
- Test Case 2: When user enters "X", the system closes the application.

• Test Case 3: When user enters anything that isn't "1" or "X", the system display an error message to tell the user that they inputted a wrong input(E.g "Please input either "1" or "X" only!") and it will prompt them again for what feature option they want.

Table 3.3: Feature Options Decision Table (Community)

Conditions	Input	Output
Case 1	1	Graph visualisation UI displayed
Case 2	X	Exit/Close the application
Case 3	Anything that is not 1 or X	Error message for wrong input

3.3.2 Encost User Decision Table

This decision table is used to test feature options for the encost users.

- Test Case 1: When user enters "1", the system prompts the user for the full file path of the custom dataset they want to use.
- Test Case 2: When user enters "2", the system opens a graph visualisation UI application.
- Test Case 3: When user enters "3", the system will display all the summary statistics in the form of console table outputs.
- Test Case 4: When user enters "X", the system closes the application.
- Test Case 5: When user enters anything that isn't "1" or "2" or "3" or "X", the system display an error message to tell the user that they inputted a wrong input(E.g "Please input either "1" or "2" or "3" or "X" only!") and it will prompt them again for what feature option they want.

Table 3.4: Feature Options Decision Table (Encost)

Conditions	Input	Output
Case 1	1	Custom dataset full file path prompt dis-
		played
Case 2	2	Graph visualisation UI displayed
Case 3	3	Summary statistics displayed
Case 4	X	Exit/Close the application
Case 5	Anything that is not	Error message for wrong input
	1,2,3 or X	

3.4 Loading the Encost Smart Homes Dataset

- Level of test: Integration with GSL to add device to graph (Recommended to use SmartBear TestComplete to automate test)
- Test technique: Decision table

3.4.1 All Users Decision Table

This decision table is used to test loading the encost smart homes dataset. The testing is based on Figure 3.1.

- Test Case 1: If the CSV format correct, device type is a router and device have the router, The device will be added into the graph.
- Test Case 2: If the CSV format correct, device type is not a router and device's router in the graph, the device will be added into the graph.
- Test Case 3: If the CSV format correct, device type is not a router and device's router not in the graph, the device will be added to the unlinked devices list.
- Test Case 4-15: This test cases are impossible to check because we need to use the CSV format condition to be correct in order to start checking the other conditions.
- Test Case 16: If there are incorrect or missing data, the system will display an error message telling the user that there is wrong input in the encost smart homes dataset (E.g "Incorrect or missing input in the dataset").
- Test Case 17: If there are blank or no data, the system will display an error message telling the user that there is no input in the encost smart homes dataset(E.g "No data in the dataset").
- The format for CSV: device ID, date connected, device name, device type, household ID, router ID, can send, can receive
- \bullet Correct example 1: EWR-1234, 01/04/22, Encost Router 360, Router, WKO-1234, -, Yes, Yes
- Correct example 2: ELB-4567, 01/04/22, Encost Smart Bulb B22 (multi colour), Light bulb, WKO1234, EWR-1234, No, Yes

Table 3.5: Loading Encost Dataset Decision Table Part 1

Conditions	Case 1	Case 2	Case 3
CSV Format	Correct	Correct	Correct
Device type is a router?	Yes	No	No
Is the device's router in the	NULL	Yes	No
graph?			
Does the device have the	Yes	NULL	NULL
router?			
Output	Add device	Add device	Add device to unlinked
	to graph	to graph	devices list

Table 3.6: Loading Encost Dataset Decision Table Part 2

Conditions	Case 4	Case 5	Case 6
CSV Format	Correct	Correct	Correct
Device type is a router?	Yes	NULL	NULL
Is the device's router in the	NULL	Yes	No
graph?			
Does the device have the	No	NULL	NULL
router?			
Output	Error mes-	Error mes-	Error message for
	sage for	sage for	wrong input
	wrong in-	wrong in-	
	put	put	

Table 3.7: Loading Encost Dataset Decision Table Part 3

Conditions	Case 7	Case 8	Case 9
CSV Format	Correct	Correct	Incorrect
Device type is a router?	NULL	NULL	Yes
Is the device's router in the	NULL	NULL	NULL
graph?			
Does the device have the	Yes	No	Yes
router?			
Output	Error mes-	Error mes-	Error message for CSV
	sage for	sage for	format
	wrong in-	wrong in-	
	put	put	

Table 3.8: Loading Encost Dataset Decision Table Part $4\,$

Conditions	Case 10	Case 11	Case 12
CSV Format	Incorrect	Incorrect	Incorrect
Device type is a router?	No	No	NULL
Is the device's router in the	Yes	No	Yes
graph?			
Does the device have the	NULL	NULL	NULL
router?			
Output	Error mes-	Error mes-	Error message for CSV
	sage for	sage for	format
	CSV for-	CSV for-	
	mat	mat	

Table 3.9: Loading Encost Dataset Decision Table Part 5

Conditions	Case 13	Case 14	Case 15
CSV Format	Incorrect	Incorrect	Incorrect
Device type is a router?	NULL	NULL	NULL
Is the device's router in the	No	NULL	NULL
graph?			
Does the device have the	NULL	Yes	No
router?			
Output	Error mes-	Error mes-	Error message for CSV
	sage for	sage for	format
	CSV for-	CSV for-	
	mat	mat	

Table 3.10: Loading Encost Dataset Decision Table Part 6 $\,$

Conditions	Case 16	Case 17
CSV Format	Incorrect	Blank/NULL
Device type is a router?	NULL	NULL
Is the device's router in the	NULL	NULL
graph?		
Does the device have the	NULL	NULL
router?		
Output	Error Message for CSV	Error Message for no input
	format	

Figure 3.1: Flow diagram showing how devices should be added to the graph

3.5 Categorizing Smart Home Devices

• Level of test: Unit (Recommended to use JUnit to automate test)

• Test technique: Decision table

3.5.1 All Users Decision Table

This decision table is used to test categorization of smart home devices.

- Test Case 1: If the device type is router, the productCategory attribute will have encost wifi routers category.
- Test Case 2: If the device type is extender, the productCategory attribute will have encost wifi routers category.
- Test Case 3: If the device type is hub/controller, the productCategory attribute will have encost hubs/controllers category.

- Test Case 4: If the device type is light bulb, the productCategory attribute will have encost smart lighting category.
- Test Case 5: If the device type is strip lighting, the productCategory attribute will have encost smart lighting category.
- Test Case 6: If the device type is other lighting, the productCategory attribute will have encost smart lighting category.
- Test Case 7: If the device type is kettle, the productCategory attribute will have encost smart appliances category.
- Test Case 8: If the device type is toaster, the productCategory attribute will have encost smart appliances category.
- Test Case 9: If the device type is coffee maker, the productCategory attribute will have encost smart appliances category.
- Test Case 10: If the device type is washing machine/dryer, the productCategory attribute will have encost smart whiteware category.
- Test Case 11: If the device type is refrigerator/freezer, the productCategory attribute will have encost smart whiteware category.
- Test Case 12: If the device type is dishwasher, the productCategory attribute will have encost smart whiteware category.
- Test Case 13: If the device type is incorrect(Wrong Spelling, does not exist), the system will display an error message telling the user that the device type is incorrect(E.g "The device type is incorrect!").
- Test Case 14: If the device type is blank or null, the system will display an error message telling the user that there is not device type input(E.g "There is no device type input!").

Table 3.11: Categorizing Smart Home Devices Decision Table

Conditions	Device Type	Output
Case 1	Router	The productCategory attribute will be Encost
		Wifi Routers
Case 2	Extender	The productCategory attribute will be Encost
		Wifi Routers
Case 3	Hub/Controller	The productCategory attribute will be Encost
		Hubs/Controllers
Case 4	Light Bulb	The productCategory attribute will be Encost
		Smart Lighting
Case 5	Strip Lighting	The productCategory attribute will be Encost
		Smart Lighting
Case 6	Other Lighting	The productCategory attribute will be Encost
		Smart Lighting
Case 7	Kettle	The productCategory attribute will be Encost
		Smart Appliances
Case 8	Toaster	The productCategory attribute will be Encost
		Smart Appliances
Case 9	Coffee Maker	The productCategory attribute will be Encost
		Smart Appliances
Case 10	Washing Machine/Dryer	The productCategory attribute will be Encost
		Smart Whiteware
Case 11	Refrigerator/Freezer	The productCategory attribute will be Encost
		Smart Whiteware
Case 12	Dishwasher	The productCategory attribute will be Encost
		Smart Whiteware
Case 13	Incorrect	Error message for wrong data type
Case 14	Blank/NULL	Error message for no input

Device Category	Device types
Encost Wifi	Router, Extender
Routers	
Encost Hubs/-	Hub/Controller
Controllers	
Encost Smart	Light Bulb, Strip
Lighting	Lighting, Other
	Lighting
Encost Smart	Kettle, Toaster,
Appliances	Coffee Maker
Encost Smart	Washing Ma-
Whiteware	chine/Dryer,
	Refrigera-
	tor/Freezer,
	Dishwasher

Figure 3.2: Device category and type table

3.6 Building a Graph Data Type

- Level of test: Integration with GSL for interaction with graph (Recommended to use SmartBear TestComplete to automate test)
- Test technique: Decision table

3.6.1 All Users Decision Table

This decision table is used to test building a graph data type and graph visualisation.

- Test Case 1: If the device object router, no router in graph, can send, can receive, the system will add the white colour circle with no connections into the graph.
- Test Case 2: If the device object hubs/controller, no router in graph, can send, can receive, the system will add the orange colour circle with no connections into the graph.
- Test Case 3: If the device object smart lighting, no router in graph, can receive, the system will add the blue colour rectangle with no connections into the graph.

- Test Case 4: If the device object smart appliance, no router in graph, can receive, the system will add the pink colour rectangle with no connections into the graph.
- Test Case 5: If the device object smart whiteware, no router in graph, can Receive, the system will add the green colour rectangle with no connections into the graph.
- Test Case 6: If the device object smart appliance, no router in graph, can send, the system will add the pink colour "X" shape with no connections into the graph.
- Test Case 7: If the device object hubs/controller, router in graph, can send, can receive, the system will add system will add the orange colour circle with a black line connection to white colour circle (Router) into the graph.
- Test Case 8: If the device object smart lighting, router in graph, can receive, the system will add the blue colour rectangle with a black line connection to white colour circle (Router) into the graph.
- Test Case 9: If the device object smart appliance, router in graph, can receive, the system will add the pink colour rectangle with a black line connection to white colour circle (Router) into the graph.
- Test Case 10: If the device object smart whiteware, router in graph, can receive, the system will add the green colour rectangle with a black line connection to white colour circle (Router) into the graph.
- Test Case 11: If the device object smart appliance, router in graph, can send, the system will add the pink colour "X" shape with a black line connection to white colour circle (Router) into the graph.
- Test Case 12: If the device object is incorrect, the system will display an error message telling the user that the device object is incorrect(E.g "The device object is incorrect!").
- Test Case 13: If the device object is null or blank, the system will display an error message telling the user that there is not device object input(E.g "There is no device object input!").

Table 3.12: Building Graph Data Type Decision Table Part 1

Conditions	Device Ob-	Router	Can	Can	Output
	ject	in the	Send	Re-	
		graph		ceive	
Case 1	Router	No	Yes	Yes	A circle with white colour will appear in the graph that isn't connected with anything
Case 2	Hubs/Controller	No	Yes	Yes	A circle with orange colour will appear in the graph that isn't connected with anything
Case 3	Smart Lighting	No	No	Yes	A rectangle with blue colour will appear in the graph that isn't connected with anything
Case 4	Smart Appliance	No	No	Yes	A rectangle with pink colour will appear in the graph that isn't connected with anything

Table 3.13: Building Graph Data Type Decision Table Part 2

Conditions	Device Ob-	Router	Can	Can	Output
	ject	in the	Send	Re-	o aspass
	3	graph		ceive	
Case 5	Smart White-ware	No	No	Yes	A rectangle with green colour will appear in the graph that isn't connected with anything
Case 6	Smart Appliance	No	Yes	No	A "X" shape with pink colour will appear in the graph that isn't connected with anything
Case 7	Hubs/Controller	Yes	Yes	Yes	A circle with orange colour will appear in the graph that is connected using a black line to the white colour circle(SEE FIGURE 3.3)
Case 8	Smart Lighting	Yes	No	Yes	A rectangle with blue colour will appear in the graph that is connected using a black line to the white colour circle(SEE FIGURE 3.3)

Table 3.14: Building Graph Data Type Decision Table Part $3\,$

Conditions	Device Ob-	Router	Can	Can	Output
	ject	in the	Send	Re-	
		graph		ceive	
Case 9	Smart Appliance	Yes	No	Yes	A rectangle with pink colour will appear in the graph that is connected using a black line to the white colour circle(SEE FIGURE 3.3)
Case 10	Smart White-ware	Yes	No	Yes	A rectangle with green colour will appear in the graph that is connected using a black line to the white colour circle(SEE FIGURE 3.3)
Case 11	Smart Appliance	Yes	Yes	No	A "X" shape with pink colour will appear in the graph that is connected using a black line to the white colour circle(SEE FIGURE 3.3)
Case 12	Incorrect	NULL	NULL	NULL	Error message for wrong de- vice object

Table 3.15: Building Graph Data Type Decision Table Part 4

Conditions	Device Ob-	Router	Can	Can	Output
	ject	in the	Send	Re-	
		graph		ceive	
Case 13	NULL	NULL	NULL	NULL	Error message
					for no device
					object

Graph visualisation with all the different devices objects:

Figure 3.3: Graph visualisation

3.7 Calculating Device Distribution

- Level of test: Integration (Recommended to use JUnit to automate test)
- Test technique: Decision table

3.7.1 Encost User Decision Table

This decision table is used to test calculating device distribution.

getDeviceByCategory Method Testing:

• Incorrect String are strings that are not in the Figure 3.4 or blank/null strings.

- Test Case 1: If the getDeviceByCategory() string is correct, the method will return a list of devices where all devices returned are based on what was inputted as the string.
- Test Case 2: If the getDeviceByCategory() string is incorrect, the method will return an error message which informs the user that the string inputted is incorrect(E.g "The string inputted is incorrect!").

Table 3.16: getDeviceByCategory Method Decision Table

Conditions	Case 1	Case 2
getDeviceByCategory(String)	Correct String(Look at	Incorrect String
	Figure 3.4)	
Output	A list of devices where	Error Message for wrong
	all devices are returned	getDeviceByCategory()
	depending on what	
	string was given.	

getDeviceByType Method Testing:

- Incorrect String are strings that are not in the Figure 3.4 or blank/null strings.
- Test Case 1: If the getDeviceByType() string is correct, the method will return a list of devices where all devices returned are based on what was inputted as the string.
- Test Case 2: If the getDeviceByType() string is incorrect, the method will return an error message which informs the user that the string inputted is incorrect(E.g "The string inputted is incorrect!").

Table 3.17: getDeviceByType Method Decision Table

Conditions	Case 1	Case 2
getDeviceByType(String)	Correct String(Look at	Incorrect String
	Figure 3.4)	
Output	A list of devices where	Error Message for wrong
	all devices are returned	getDeviceByType()
	depending on what	
	string was given.	

getDeviceByProduct Method Testing:

• Incorrect String are strings that are not in the Figure 3.4 or blank/null strings.

- Test Case 1: If the getDeviceByProduct() string is correct, the method will return a list of devices where all devices returned are based on what was inputted as the string.
- Test Case 2: If the getDeviceByProduct() string is incorrect, the method will return an error message which informs the user that the string inputted is incorrect(E.g. "The string inputted is incorrect!").

Table 3.18: getDeviceByProduct Method Decision Table

Conditions	Case 1	Case 2
getDeviceByProduct(String)	Correct String(Look at	Incorrect String
	Figure 3.4)	
Output	A list of devices where	Error Message for wrong
	all devices are returned	getDeviceByProduct()
	depending on what	
	string was given.	

calculateDeviceDistribution Method Testing:

- Incorrect String are strings that are not in the Figure 3.4 or blank/null strings.
- Test Case 1: If the string for getDeviceByCategory is Encost Wifi Routers, string for getDeviceByType is Router and the string for getDeviceByProduct is Encost Router 360, the system will output a long table string which has the number of Encost Wifi Routers, Router, Encost Router 360 displayed.
- Test Case 2: If the string for getDeviceByCategory is incorrect, string for getDeviceByType is incorrect and the string for getDeviceByProduct is incorrect, the system will output an error message for wrong getDeviceByCategory(), getDeviceByType() and getDeviceByProduct().(E.g "The string inputted for all getDevice methods are incorrect!")
- Test Case 3: If the string for getDeviceByCategory is incorrect, string for getDeviceByType is correct and the string for getDeviceByProduct is correct, the system will output an error message for wrong getDeviceByCategory().(E.g "The string inputted for getDeviceByCategory method is incorrect!")
- Test Case 4: If the string for getDeviceByCategory is correct, string for getDeviceByType is incorrect and the string for getDeviceByProduct is correct, the system will output an error message for wrong getDeviceByType().(E.g "The string inputted for getDeviceByType method is incorrect!")

- Test Case 5: If the string for getDeviceByCategory is correct, string for getDeviceByType is correct and the string for getDeviceByProduct is incorrect, the system will output an error message for wrong getDeviceByProduct().(E.g "The string inputted for getDeviceByProduct method is incorrect!")
- Test Case 6: If the string for getDeviceByCategory is incorrect, string for getDeviceByType is incorrect and the string for getDeviceByProduct is correct, the system will output an error message for wrong getDeviceByCategory() and getDeviceByType().(E.g "The string inputted for getDeviceByCategory and getDeviceByType methods are incorrect!")
- Test Case 7: If the string for getDeviceByCategory is incorrect, string for getDeviceByType is correct and the string for getDeviceByProduct is incorrect, the system will output an error message for wrong getDeviceByCategory() and getDeviceByProduct().(E.g "The string inputted for getDeviceByCategory and getDeviceByProduct methods are incorrect!")
- Test Case 8: If the string for getDeviceByCategory is correct, string for getDeviceByType is incorrect and the string for getDeviceByProduct is incorrect, the system will output an error message for wrong getDeviceByType() and getDeviceByProduct().(E.g "The string inputted for getDeviceByType and getDeviceByProduct methods are incorrect!")

Table 3.19: calculateDeviceDistribution Method Decision Table Part 1

Conditions	Case 1	Case 2
getDeviceByCategory(String)	Correct String(Encost	Incorrect String
	Wifi Routers)	
getDeviceByType(String)	Correct String(Router)	Incorrect String
getDeviceByProduct(String)	Correct String(Encost	Incorrect String
	Router 360)	
Output	The number of Encost	Error message for wrong
	Wifi Routers, Router,	getDeviceByCategory(),
	Encost Router 360 are	getDeviceByType() and
	displayed in the format	getDeviceByProduct()
	in Figure 3.5	

Table 3.20: calculate DeviceDistribution Method Decision Table Part 2 $\,$

Conditions	Case 3	Case 4
getDeviceByCategory(String)	Incorrect String	Correct String
getDeviceByType(String)	Correct String	Incorrect String
getDeviceByProduct(String)	Correct String	Correct String
Output	Error message for	Error message for wrong
	wrong getDeviceByCat-	getDeviceByType()
	egory()	

Table 3.21: calculate DeviceDistribution Method Decision Table Part 3

Conditions	Case 5	Case 6
getDeviceByCategory(String)	Correct String	Incorrect String
getDeviceByType(String)	Correct String	Incorrect String
getDeviceByProduct(String)	Incorrect String	Correct String
Output	Error message for	Error message for wrong
	wrong getDevice-	getDeviceByCategory()
	ByProduct()	and getDeviceByType()

Table 3.22: calculate DeviceDistribution Method Decision Table Part 4

Conditions	Case 7	Case 8
getDeviceByCategory(String)	Incorrect String	Correct String
getDeviceByType(String)	Correct String	Incorrect String
getDeviceByProduct(String)	Incorrect String	Incorrect String
Output	Error message for	Error message for wrong
	wrong getDevice-	getDeviceByType() and
	ByCategory() and	getDeviceByProduct()
	getDeviceByProduct()	

Device Category	Device types	Device Names
Encost Wifi	Router, Extender	Encost Router 360, Encost Router Plus, Encost Wifi
Routers		Range Extender 1.0, Encost Wifi Range Extender 2.0
Encost Hubs/-	Hub/Controller	Encost Smart Hub, Encost Smart Hub 2.0, Encost
Controllers		Smart Hub Mini
Encost Smart	Light Bulb, Strip	Encost Smart Bulb B22 (white), Encost Smart
Lighting	Lighting, Other	Bulb B22 (multi colour), Encost Smart Bulb E26
	Lighting	(white), Encost Smart Bulb E26 (multi colour), En-
		cost Strip Lighting (white), Encost Strip Lighting
		(multi colour), Encost Novelty Light (giraffe), Encost
		Novelty Light (lion), Encost Novelty Light (bear)
Encost Smart	Kettle, Toaster,	Encost Smart Jug, Encost Smart Whistling Kettle,
Appliances	Coffee Maker	Encost Smart Toaster (2 slice), Encost Smart Toaster
		(4 slice), Encost Smart Coffee Maker, Encost Smart
		Coffee Maker Mini, Encost Smart Coffee Maker Pro
Encost Smart	Washing Ma-	Encost Smart Washer, Encost Smart Washer Pro,
Whiteware	chine/Dryer,	Encost Smart Dryer, Encost Smart Dryer Pro,
	Refrigera-	Encost Smart Refrigerator, Encost Smart Freezer,
	tor/Freezer,	Encost Smart Refrigerator/Freezer Combo, Encost
	Dishwasher	Dishwasher, Encost Dishwasher Pro

Figure 3.4: Correct string for category, type and product table

Device Distribution	,
Encost Wifi Routers	20
Router	15
Encost Router 360	2

Figure 3.5: Device Distribution for Test Case 1

Device Distribution	
Encost Wifi Routers	20
Router	15
Encost Router 360	2
Encost Router Plus	13
Extender	5
Encost Wifi Range Extender 1.0	i ø
Encost Wifi Range Extender 2.0	5
3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	i
Encost Hubs/Controllers	6
Hub/Controller	6
Encost Smart Hub	1
Encost Smart Hub 2.0	3
Encost Smart Hub Mini	2
	i
Encost Smart Lighting	34
Light Bulb	12
Encost Smart Bulb B22 (white)	4
Encost Smart Bulb B22 (multi colour)	3
Encost Smart Bulb E26 (white)	2
Encost Smart Bulb E26 (multi colour)	3
Strip Lighting	4
Encost Strip Lighting (white)	1
Encost Strip Lighting (multi colour)	3
Other Lighting	18
Encost Novelty Light (giraffe)	10
Encost Novelty Light (lion)	6
Encost Novelty Light (bear)	2

Figure 3.6: Full Device Distribution Output

4 White-box testing

4.1 Device Distribution Pseudocode

Requirement 1: The system should use the information stored in the graph data structure to calculate the number of devices that exist in each device category.

Figure 4.1: getDevicesByCategory() Pseudocode

4.2 Branch Coverage Testing

- Level of test: Unit (Recommended to use JUnit to automate test)
- Test technique: Decision table

Test Case 1: inputtedString is Encost Smart Lighting

• The output will be the list of devices called category Devices List will be returned.

Test Case 2: inputtedString is Blank/NULL

• The output will be an error message displayed telling the user that the inputted string is empty(E.g "Please add a inputted string!").

Test Case 3: inputtedString is 12356

• The output will be the an error message telling the user that the inputted string is wrong(E.g "Inputted string is wrong!").

Test Case 4: inputted String is \$ # % ^ (*^&

• The output will be the an error message telling the user that the inputted string is wrong(E.g "Inputted string is wrong!").

Test Case 5: inputtedString is Encost Smart Light

• The output will be the an error message telling the user that the inputted string is wrong(E.g "Inputted string is wrong!").

The first test case achieves 100% branch coverage as it is able to go through all the branches of code without missing a single one or having any errors. The other test cases are used for error checking.

5 Mutation Testing

5.1 Mutant #1

Figure 5.1: Mutation one

The mutation is devices size - 2. The original is devices size - 1.

5.2 Mutant #2

Figure 5.2: Mutation two

The mutation is i = 1 and j = 1. The original is i = 0 and j = 0.

5.3 Mutant #3

Figure 5.3: Mutation three

The mutation is FOR i=0 to less than or equal to devices size - 1 and FOR j=0 to less than or equal to unLinkedDevices size - 1. The original is FOR i=0 to devices size - 1 and FOR j=0 to unLinkedDevices size - 1.

5.4 Mutant #4

Figure 5.4: Mutation four

The mutation is FOR i=0 to more than devices size - 1 and FOR j=0 to more than unLinkedDevices size - 1. The original is FOR i=0 to devices size - 1 and FOR j=0 to unLinkedDevices size - 1.

5.5 Mutation Score

- devices list contains 3 Encost Wifi Routers, 2 Encost Hubs/Controllers, 4 Encost Smart Lighting, 1 Encost Smart Appliances and 5 Encost Smart Whiteware.
- unLinkedDevices list contains 2 Encost Wifi Routers, 4 Encost Hubs/Controllers, 4 Encost Smart Lighting, 1 Encost Smart Appliances and 1 Encost Smart Whiteware.

Table 5.1: getDeviceCategory Testing Table

Input (inputtedString)	Output (categoryDevicesList)
Encost Smart Lighting	List of devices containing 8 items
Encost Smart Whiteware	List of devices containing 6 items

- Mutant 1 will have 7 items for the Encost Smart Lighting input and 5 items for the Encost Smart Whiteware input.
- Mutant 2 will have 7 items for the Encost Smart Lighting input and 5 items for the Encost Smart Whiteware input.

- Mutant 3 will have 8 items for the Encost Smart Lighting input and 6 items for the Encost Smart Whiteware input.
- Mutant 4 will have 9 items for the Encost Smart Lighting input and 7 items for the Encost Smart Whiteware input.

Mutation Score: 3/4 (75%). Mutation #3 was not caught. The mutations are good as the mutation score is almost 100%.