Polar Coordinates

Pure Mathematics A-Level

Luke Collins

maths.com.mt/notes

Introduction

In the Cartesian coordinate system with which we are most familiar, we usually specify points in the plane by writing something like P = (x, y), which simply means that the point P can be located by moving x units horizontally and y units vertically from some origin O.

Here we introduce an alternative convention to describe points, where we shall write $P=(r,\theta)$ to specify the *polar* coordinates of a point in the plane, where we call r the *radius* and θ the *angle* of the point. These tell us that to locate P, we start from the *pole* (alternative term for origin), make an angle of θ with the *initial line* (equivalent to the positive x-axis) and move r units in the direction of this angle θ .

For example, the point $P = (5, \frac{\pi}{3})$ is the following:

As a matter of convention and to reduce any confusion, we take $r \geq 0$ and $\theta \in (-\pi, \pi]$. This way, each point has only one representation.¹

¹In some cases you may come across negative values of r in your working. When this happens, interpret it as moving |r| units in the *opposite direction* specified by the angle θ .

Common Curves in Polar Coordinates

Here is a list of common curves which one comes across when working with polar coordinates.

• Circle

A circle centred at the pole with radius α is given by the equation $r = \alpha$.

• Part-line

A part-line is a line which is infinite in only one direction. A part-line starting from the pole in the direction specified by the angle θ_0 is given by $\theta = \theta_0$.

• Horizontal Line

A horizontal line k units above the pole (or |k| units below if k < 0) is given by the equation $r = k \csc \theta$.

• Vertical Line

A vertical line k units to the left of the pole (or |k| units to the right if k > 0) is given by the equation $r = k \sec \theta$.

• Limaçon Curves

The limaçon family of curves have equations of the form $r = a + b \cos \theta$ (horizontal) or $r = a + b \sin \theta$ (vertical). Different types of curves arise, depending on the values of a and b.

- Cardioid

The cardioid curve (or cusped limaçon) has |a| = |b|. Some examples:

- Trisectrix

The trisectrix (or looped limaçon) has |a| < |b|. In contrast to the Cardioid, the trisectrix has an inner loop. The larger |b| is compared to |a|, the larger the inner loop. Some examples:

- Dimpled Limaçon

The dimpled limaçon has $|b|<|a|\leq 2|b|.$ Some examples:

- Convex Limaçon

The convex limaçon has |a| > 2|b|. Some examples:

• Rose

A rose is a curve with *petals* of equal area. Any equation of the form $r = a \cos k\theta$ or $r = a \sin k\theta$ represents a rose.

If k is even, then the rose has 2k petals. If k is odd, then the rose has k petals. The coefficient a is the length of each petal from the pole to its tip. The difference between roses with sin instead of cos is a rotation of $\pi/2k$ radians about the pole.

Some examples:

Symmetries of the Sine and Cosine Functions

Suppose a polar curve is given by $r = f(\theta)$ where f depends solely on the value of a sine or cosine of θ . Then we have the following symmetries.

- If $r = f(\cos \theta)$, then the curve is symmetric in the horizontal (x-axis).
- If $r = f(\sin \theta)$, then the curve is symmetric in the vertical (y-axis).
- If $r = f(\cos 2n\theta)$ where $n \in \mathbb{Z}$, then the curve is symmetric in both the vertical and the horizontal.
- If $r = f(\sin 2n\theta)$ where $n \in \mathbb{Z}$, then the curve is symmetric in the diagonal lines $y = \pm x$.

When plotting a polar curve, these symmetries are very useful when considering the range of values for θ . For example, to sketch a curve whose polar equation is dependent solely on $\sin \theta$, we only need consider values of θ in the range $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Then we can simply reflect the resulting plot in the vertical to obtain the remainder of the curve.

The Relationship Between Polar and Cartesian Coordinates

Suppose a curve \mathcal{C} is given in Cartesian coordinates by f(x,y)=0. By simple trigonometric constructions, one obtains that a point (r,θ) in polar coordinates is equivalent to the point $(r\cos\theta,r\sin\theta)$ in Cartesian coordinates. Therefore the equation

$$f(r\cos\theta, r\sin\theta) = 0$$

equivalently describes the curve \mathcal{C} in polar coordinates.

Conversely, suppose that C is given in polar coordinates by $f(r,\theta) = 0$. One similarly obtains that the point (x,y) in Cartesian coordinates has polar representation $(\sqrt{x^2 + y^2}, \tan^{-1} \frac{y}{x})$, and therefore the equation

$$f(\sqrt{x^2 + y^2}, \tan^{-1} \frac{y}{x}) = 0$$

equivalently describes the curve $\mathcal C$ in Cartesian coordinates.

The Area Bounded by a Polar Curve

Suppose a polar curve is given by the equation $r = f(\theta)$. Then the area bounded by the curve and the part lines $\theta = \alpha$ and $\theta = \beta$ is given by the integral

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \, \mathrm{d}\theta.$$

Tangents to a Polar Curve

Let $r = f(\theta)$ represent a polar curve. We consider only tangents at the pole, vertical and horizontal tangents.

• Tangents at the Pole

Any part-lines tangential to the curve at the pole can be found by solving the equation $f(\theta) = 0$ for values of θ in the range $-\pi < \theta \le \pi$.

• Horizontal Tangents

Any horizontal tangents to the curve occur when

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -r\cot\theta.$$

Substituting $f(\theta)$ for r in this equation and solving for θ in the range $-\pi < \theta \le \pi$, we obtain the angles at which horizontal tangents occur. One can then find the corresponding r-coordinate of each point by substituting the angles in $r = f(\theta)$. Finally for each of these points (r, θ) , substitution into the equation $r = k \csc \theta$ of a horizontal line, one can determine the value of k so that this equation represents the tangent at that point.

• Vertical Tangents

Any vertical tangents to the curve occur when

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = r \tan \theta.$$

Substituting $f(\theta)$ for r in this equation and solving for θ in the range $-\pi < \theta \le \pi$, we obtain the angles at which vertical tangents occur. One can then find the corresponding r-coordinate of each point by substituting the angles in $r = f(\theta)$. Finally for each of these points (r, θ) , substitution into the equation $r = k \sec \theta$ of a vertical line, one can determine the value of k so that this equation represents the tangent at that point.