FATEC Rubens Lara Ciência de Daods Matemática Básica

Entropia de Dados

Enri Lopes Iwasaki Leandro Costa Santos

> Santos 2023

A base de dados utilizada foi obtida por meio do IGBE - Instituto Brasileiro de Geografia e Estatística. A base apresenta dados referentes a Síntese de Indicadores Sociais, que analisa a qualidade de vida e os níveis de bem-estar das pessoas, famílias e grupos populacionais, a efetivação de direitos humanos e sociais, bem como o acesso a diferentes serviços, bens e oportunidades, por meio de indicadores que visam contemplar a heterogeneidade da sociedade brasileira sob a perspectiva das desigualdades sociais.

Os dados verificados abordam, mais precisamente, a **Total e respectiva** distribuição percentual das pessoas, por classes de rendimento no ano de 2022. Estando disponível em: https://www.ibge.gov.br/estatisticas/sociais/trabalho/9221sintese_de_indicadores_sociais.html?=&t=resultados.

Tabela 2.3 - Total e respectiva distribuição percentual das pessoas, por classes de rendimento domiciliar per capita, segundo as

	Granices Regioes e as Officaces da Federação - Brasil - 2021								
Grandes Regiões e Unidades da Federação	Pessoas								
	Total	Distribuição percentual, por classes de rendimento domiciliar <i>per capita</i> (salário mínimo) (%)							
	(1 000 pessoas)	Sem rendimento	Mais de zero até ¼	Mais de ¼ até ½	Mais de ½ até 1	Mais de 1 a 2	Mais de 2 a 3	Mais de 3 a 5	Mais de 5
Brasil	212 577	2,0	12,6	19,8	29,1	22,6	6,5	4,2	3,3

População Total do Brasil								
212.577.000								
Rendimento em Salários Recebidos	População	Porcentagem (%)						
0	4.251.540	2						
0 - 1	130.522.278	61,4						
1-2	48.042.402	22,6						
2 - 3	13.817.505	6, 5						
3 - 5	8.928.234	4, 2						
> 5	7.015.041	3,3						

$$Classes = \{'0', '0 - 1', '1 - 2', '2 - 3', '3 - 5', ' > 5'\}$$

| $Classes = 6$

$$H(X) = -\sum_{x \in classes} P(x) \log_2 (P(x))$$

$$H = -\left(0.02\log_{2}^{0.02} + 0.614\log_{2}^{0.614} + 0.226\log_{2}^{0.226} + 0.65\log_{2}^{0.065} + 0.042\log_{2}^{0.065} + 0.033\log_{2}^{0.033}\right)$$

$$\log_{2}^{0.02} = \frac{\log 0.02}{\log 2} = -5.64 \qquad \log_{2} 0.614 = \frac{\log 0.614}{\log 2} = -0.70$$

$$\log_{2}^{0.226} = \frac{\log 0.226}{\log 2} = -2.15 \qquad \log_{2}^{0.065} = \frac{\log 0.065}{\log 2} = -3.94$$

$$\log_{2}^{0.042} = \frac{\log 0.042}{\log 2} = -4.57 \qquad \log_{2}^{0.033} = \frac{\log 0.033}{\log 2} = -4.92$$

$$H_{\text{eq}} = \frac{(0.02)(5.64) + 0.614}{(0.70) + 0.626} = \frac{(0.226)(5.215) + 0.626}{(0.70) + 0.626} = \frac{(0.215) +$$

$$H = -(0,02 \cdot (-5,64) + 0,614 \cdot (-0,70) + 0,0226 \cdot (-2,15) + 0,065 \cdot (-3,94) + 0,042 \cdot (-4,57) + 0,033 \cdot (-4,92))$$

$$H=1,64$$

Entropia Máxima dos Dados

$$Max_{H} = log_{2}^{|classes|} = log_{2}^{6} = \frac{log 6}{log 2}$$

$$Max_{H} = 2,58$$

Conclusão: os dados apresentados não possuem alto grau de aleatoriedade. Visto que o valor da entropia dos dados está distante do valor de entropia máxima, pode-se então concluir que os dados não se distribuem uniformemente.

Programação do método em Python:

```
import math

def calcular_entropia(probabilidades):
    entropia = 0
    for probabilidade in probabilidades:
        if probabilidade > 0:
            entropia -= probabilidade * math.log2(probabilidade)
    return entropia

probabilidades = [0.02, 0.614, 0.226, 0.065, 0.042, 0.033]

entropia = calcular_entropia(probabilidades)
    print("Entropia dos Dados:", entropia)

n = len(probabilidades)
    entropia_maxima = math.log2(n)
    print("Entropia Máxima:", entropia_maxima)
```

Demonstração do Console:

```
Python 3.9.13 (main, Aug 25 2022, 23:51:50) [MSC v.1916 64 bit (AMD64)]
Type "copyright", "credits" or "license" for more information.

IPython 7.31.1 -- An enhanced Interactive Python.

In [1]: runcell(0, 'D:/Downloads [HD]/DESAFIO MATEMATICA/ENTROPIA/ENTROPIA DE DADOS.py')
Entropia dos Dados: 1.640662796658831
Entropia Máxima: 2.584962500721156
```