Équations différentielles linéaires

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

QCOP EDL. 1

Soient a et b deux fonctions continues sur \mathbb{R} .

On considère l'équation différentielle suivante :

$$y' + a(t)y = b(t) \tag{*}$$

 ${\mathcal P}$ On note A une primitive sur ${\mathbb R}$ de a.

On définit $y_p: t \longmapsto \lambda(t)e^{-A(t)}$ où λ est une fonction de classe \mathscr{C}^1 à déterminer.

On suppose que y_p est une solution particulière de (*).

- (a) Calculer $y_p' + ay_p$ et en déduire λ' .
- **(b)** Soit $t_0 \in \mathbb{R}$. Exprimer, pour $t \geqslant t_0$, $\lambda(t) \lambda(t_0)$ puis $\lambda(t)$.
- (c) En déduire, pour $t \ge t_0$, $y_p(t)$.
- Expliquer le principe de la méthode de variation de la constante.

QCOP EDL.2

Soient $a, b, c \in \mathbb{K}$. Soit $m \in \mathbb{K}$. Soit $Q \in \mathbb{K}[X]$.

On considère l'équation différentielle suivante :

$$ay'' + by' + cy = Q(t)e^{mt}, (*)$$

et on note $P := aX^2 + bX + c$.

 ${\it F}$ Soit $R \in \mathbb{K}[X]$. On considère $y_p: t \longmapsto R(t)e^{mt}$.

- (a) Calculer P'(m) et P''(m).
- **(b)** Calculer $ay_p'' + by_p' + cy_p$. On donnera le résultat sous la forme $\alpha R'' + \beta R' + \gamma R$.
- (c) On suppose que y_p est une solution particulière de (*). Donner, suivant la multiplicité de m comme racine de P, le degré de R.
- 🌋 Déduire de ce qui précède une méthode pour déterminer une solution particulière de (*) lorsque m = 0 (i.e. le second membre est polynomial).
- \aleph Déduire de même une méthode pour déterminer une solution particulière de (*) lorsque Q est constant (i.e. le second membre est exponentiel).