Assignment 1 - MDPs and Dynamic Programming

Reinforcement Learning, spring 2025

Before you start with the quizz that corresponds to this assignment, it is a good idea to prepare by solving the problems in this pdf.

- 1. Solve Exercise 3.4 in the textbook (page 53).
- 2. Consider the GridWorld-v0 environment studied in Tinkering Notebook 2 with discount rate $\gamma = 1$. The environment is also described in Example 4.1 in the textbook.

Let $\pi(a|s)$ be a uniformly random policy (in all states all actions have the same probability). The state-value function $v_{\pi}(s)$ for this policy is given in Figure 4.1 (lower left) on page 77 of the textbook. Given a state s and action a, make sure that you understand how to compute $q_{\pi}(s,a)$ for this environment.

Note: For this question you do not need to write any code since $v_{\pi}(s)$ is given in Figure 4.1. You are recommended to do this by hand, as it is also a way to train for the exam!

In the quizz you will be given some s and a, and then have to compute $q_{\pi}(s, a)$.

Hint: One way to check that you are doing your computations correctly is as follows. Take e.g. state s = 10 and compute $q_{\pi}(10, a)$ for all actions (left, down, right, up). In the last row of Figure 4.1 you can see the greedy policy w.r.t to $v_{\pi}(s)$. This is just

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a).$$

You can now check that you in e.g. state s = 10 maximize $q_{\pi}(10, a)$ with either action down or right. Also, you can check that you get $q_{\pi}(1, \text{down}) = -19$.

3. In this problem we consider the MDP shown in Figure 3.1. It has three state, $S = \{A, B, C\}$. In state B and C there are two possible actions called x and y. In state A only the action x is available. The discount rate is $\gamma = 0.5$, and we consider a uniform random $\pi(a|s)$ that in in each state picks between all possible actions with equal probability.

Figur 3.1: An MDP

- (a) It can be shown that $v_{\pi}(B) = 0.356$. What is $v_{\pi}(A)$ and $v_{\pi}(C)$?
- (b) Given $v_{\pi}(s)$ from part (a), find the policy that is greedy with respect to v_{π} .

- (c) Assume that we start with an initial value function $v_1(A) = v_1(B) = v_1(C) = 2$. Perform one iteration with synchronous policy evaluation (do *not* use the in-place version!). What will $v_2(s)$ be?
- 4. Consider the FrozenLake8x8-v1 environment. It is similar to the FrozenLake-v1 that was studied in Tinkering Notebook 2, but it consist of an 8 × 8 grid and thus have 64 states.

Write a code that find an optimal policy $\pi_*(s)$ and the corresponding value function $v_*(s)$.

In the quizz on you will be asked for example "Which of these are optimal actions in state s = 26?" or "What is $v_*(26)$?". So make sure that you can easily run code that can answer these types of questions for different states.

Hint: You can check that your code seems to be working by ensuring that you get to correct answer to the following:

- For the optimal policy $v_*(26) = 0.80$ (rounded to two decimals).
- In s = 26 the optimal action is 0 (left).