EG1120 芯片用户手册

高性能、低成本离线式 PWM 控制开关

版本变更记录

版本号	日期	描述
V1.0	2017年04月20日	EG1120 数据手册初稿

目 录

1.	特性
	描述
	应用领域
	引脚
	4.1 引脚定义
	4.2 引脚描述
	结构框图
	典型应用电路
	电气特性
	7.1 极限参数
	7.2 典型参数
	7.3 典型特征
	封装尺寸
	8.1 STO23-3L 封装尺寸

EG1120 芯片数据手册 V1.0

1. 特性

- 默认高精度 5V 输出
- 集成 500V 高压 MOSFET
- 高压启动电路
- 超低系统成本
- 支持降压和升降压电路
- 开关式峰值电流模式控制
- 待机功率小于 50mW
- 集成 31KHz 带抖频功能振荡器
- 内置软启动
- 超低 VDD 工作电流
- 内置保护保护功能:

过载保护(OLP)

过热保护(OTP)

逐周期电流限制(OCP)

前沿消隐(LEB)

VDD 欠压保护

■ 封装 S0T23-3L

2. 描述

EG1120 是一款非隔离型、高集成度且低成本的 PWM 功率开关,适用于降压型和升降压型电路。

EG1120 采用高压单晶圆工艺,在同一片晶圆上集成有 500V 高压 MOSFET 和采用开关式峰值电流模式控制的控制器。在全电压输入的范围内可以保证高精度的 5V 默认输出。在芯片内部,PWM 频率固定为 31kHz 且带有抖频功能。同时,芯片设计有轻重载模式,可轻松获得低于 50mW 的待机功耗。

EG1120 内置有完备的保护功能: VDD 欠压保护、逐周期电流限制、过热保护、过载保护和短路保护等。

3. 应用领域

- 小家电
- 线性稳压器

4. 引脚

4.1 引脚定义

图 4-1. EG1120 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/O	描述		
1	Drain	Р	功率 MOSFET 漏极		
2	VDD	Р	芯片的电源引脚		
3	CS	Р	集成电路的接地。此引脚也用于峰值电流控制		

5. 结构框图

图 5-1. EG1120 结构框图

6. 典型应用电路

图 6-1.降压型电路

图 6-2.升降压型电路

7. 电气特性

7.1 极限参数

参数名称	数值	单位
直流电源电压	7	V
漏极	-0.3 [~] 500	V
封装的热阻(S0T23-31)	260	°C/W
最高结温	160	$^{\circ}$
存储温度	-65 [~] 150	$^{\circ}\!$
焊接温度(10s)	260	$^{\circ}\!\mathbb{C}$
ESD (HBM)	3	kV
ESD (MM)	250	V
工作温度	-40 [~] 125	$^{\circ}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃

参数名称	符号	测试条件	最小	典型	最大	单位	
电源电压部分(VDD 引脚)							
待机电流	IVDD_standby	VDD=6V		150	300	uA	
VDD 工作电压	VDD_0p		5.34	5.46	5.58	V	
VDD 欠压锁定进入	VDD_OFF			4.38		V	
VDD 欠压锁定退出	VDD_ON			4.87		V	
系统的输出调节	Vout_Reg		4.95	5	5.075	V	
		振荡器部分					
振荡器频率	FOSC	VDD=5.46V	28.2	31	34.5	KHz	
频率抖动范围	F(shuffle) /FOSC		-5		5	%	
频率偏移周期	T(shuffle)			32		ms	
最大 PWM 开关占空 比	DMAX		24.9	25	25.1	%	
过载反跳时间	TD_OLP	VDD=5.46V		128		ms	
	电流检测输入部分(CS 引脚)						
输入前沿消隐时间	TLEB			300		ns	
限流阈值	Vcs(max)		440	480	520	mV	
过电流检测与控制 延时	TD_OCP			100			
		过温保护					
热关机触发点	TSD			155		° C	
功率 MOSFET 部分							
功率 MOSFET 漏,源 极击穿电压	VBR		500			V	
漏,源极静态电流源	Rdson	I(Drain)=50mA		13		ohm	
高压 VDD 充电电流 源	IDrain_to_VDD	Drain=500V, VDD=0V		1	3	mA	
漏电流	IDrain_leakage	HV=500V, VDD=6V			50	uA	

7.3 典型特征

图 7-5. IVDD standby vs 温度

8. 封装尺寸

8.1 STO23-3L 封装尺寸

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	