CS 5683: Algorithms & Methods for Big Data Analytics

Dimensionality Reduction – 1 PCA

Arunkumar Bagavathi

Department of Computer Science

Oklahoma State university

Topics Overview

High. Dim. Data

Data Features

Dimension ality Reduction

Application
Rec.
Systems

Text Data

Clustering

Non-linear Dim. Reduction

<u>Application</u> IR **Graph Data**

PageRank

ML for Graphs

Community Detection

Others

Data Streams Mining

Intro. to Apache Spark

Dimensionality Reduction

- Assumption: Data lies on or near a low d-dimensional subspace
- Axes of this subspace are effective representation of the data

Dimensionality Reduction

Compress / reduce dimensionality:

- 10⁶ rows; 10³ columns; no updates
- Random access to any cell(s); small error: OK

\mathbf{day}	We	${f Th}$	\mathbf{F} r	\mathbf{Sa}	$\mathbf{S}\mathbf{u}$
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
\mathbf{Smith}	0	0	0	2	2
$_{ m Johnson}$	0	0	0	3	3
${f Thompson}$	0	0	0	1	1

The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

Dimensionality Reduction

Goal of dimensionality reduction: to discover the axis of data!

Rather than representing every point with 2 coordinates we represent each point with 1 coordinate (corresponding to the position of the point on the red line).

By doing this we incur a bit of **error** as the points do not exactly lie on the line

Why Reduce Dimensions

Why reduce dimensions?

- Discover hidden correlations/topics
 - Words that occur commonly together
- Remove redundant and noisy features
 - Not all words are useful
- Interpretation and visualization
- Easier storage and processing of the data

- 1. $M_{m \times n}$ matrix with *m rows* and *n columns:* $M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
 - Diagonal matrix matrix with 0's everywhere except the diagonal:
 1 0 0
 0 2 0
 0 0
 - Symmetric matrix $M = M^T$ (i.e) $M_{i,j} = M_{j,i}$ (M should be a square matrix)
 - Identity matrix (I) diagonal matrix with only 1's in the diagonal: $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - Orthogonal matrix matrix is orthogonal if $MM^T = M^TM = I$
 - If M is orthogonal, then M^T is also orthogonal
 - All column (or row) vectors in an orthogonal matrix have unit length sum of squares of its elements =1
 - Dot product of two column (or row) vectors = 0

- 2. Eigen vector if a matrix is multiplied by a vector (x) and the vector x gets linearly transformed (stretched, without changing the direction), then the vector x is called Eigen vector
- 3. Eigen value quantity (λ) at which the vector x is transformed: $\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$

4. Properties:

- All Eigen vectors are unit vectors
- Determinant of a matrix = the product of its Eigen values
- Eigen vectors in the Eigen matrix are orthogonal (perpendicular to each other)

Solving for Eigen values and Eigen vectors of a square matrix $M = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$

$$Mx = \lambda x \rightarrow (M - \lambda I)x = 0$$
 (this condition holds iff $|M - \lambda I| = 0$)

$$M - \lambda I = \begin{bmatrix} 3 - \lambda & 2 \\ 2 & 6 - \lambda \end{bmatrix} \rightarrow |M - \lambda I| = (3 - \lambda)(6 - \lambda) - 4 = 0$$

 λ = 7 (largest Eigen value – **principal Eigen value**) and λ = 2

Solve for first Eigen vector
$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 7 \begin{bmatrix} x \\ y \end{bmatrix}$$

$$3x + 2y = 7x$$

$$2x + 6y = 7y$$

$$y = 2x$$

$$y = 2x$$

Possible Eigen vector can be $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (Remember, Eigen vectors are unit vectors!)

Thus, Eigen vector is
$$\begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$$
 (Principal Eigen vector)

Similarly for the other Eigen value
$$\lambda = 2$$
, the Eigen vector is $\begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}$

Matrix of Eigen vectors $E = \begin{bmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & -1/\sqrt{5} \end{bmatrix}$
 $\Rightarrow EE^T = E^TE = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Principal Component Analysis (PCA)

- A data mining technique that identifies the projection of the high-dimensional data onto which the data tuples align the best
- In other words: Find Eigen vectors (components) of the original data – the Principal Eigen vector represents an axis where most data points reside (high variance)

- We cannot apply PCA to the original data M
 (since the variables of this matrix can be
 different scales)
- Example: Variable of scale 1 10 and Variable of scale 20 200
- Standardization: We standardize the data to keep all variables in same scale using Z-Score

$$x_i = \frac{x_i - \overline{x}}{\sigma_x}$$

- Z-Score interprets 'p' standard deviations from mean
 - Positive above the mean
 - 0 mean
 - Negative below the mean

Let the standardized data be M'

- We cannot apply PCA to the original data M' (since this matrix can be $n \times m \mid n \neq m$)
- So, we apply it on the corresponding correlation matrix M"
- Pearson Correlation Measures linear relationships and dependencies between two features

$$M''_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n} (x_i - \bar{x})^2 \sum_{i=0}^{n} (y_i - \bar{y})^2}}$$

■ Pearson correlation projects the data into $m \times m$ space

Students task: Investigate about the Covariance matrix

Eigen vectors from the correlation matrix M" can be considered as a rotation of a highdimensional space with relation to eigen values

 PCA Idea: Data points along the principal Eigen vector are most spread out (variance is maximized)

• Eigen matrix (E): 'k' principal eigen vectors organized by their magnitude

Students task: Choose optimal 'k' in Assignment-1

Project the original data in a lowdimensional coordinate space by:

$$\widehat{M} = M'.E$$

• M→ the first axis corresponds to the largest eigen value, the second axis corresponds to the second largest eigen values, and so on

Reconstruct the original data in a lowdimensional coordinate space by:

$$\widehat{F} = \widehat{M}.E^T$$

 The reconstructed data gives an approximation of the original data from the low-dimensional space

Students task: Do not forget the de-standardization for full re-construction

 Reconstruct loss: Evaluate the reconstructed data with Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{x_i})$$

Questions???

Acknowledgements

Some of the slides of this lecture are inspired from the Mining Massive Datasets course: http://www.mmds.org/