Tareas de primer parcial-Topología

Alumnos:

Arturo Rodriguez Contreras - 2132880 Jonathan Raymundo Torres Cardenas - 1949731 Praxedis Jimenes Ruvalcaba Erick Román Montemayor Treviño - 1957959 Alexis Noe Mora Leyva

10 de febrero de 2025

1 ¿Es la unión de topologías una topología?

Sea $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$, $\tau_2 = \{\emptyset, X, \{b\}\}$ se tiene que τ_1 es topología ya que contiene al conjunto vacio, X, contiene las uniones arbitrarias $\{a\} \cup X = X \in \tau_1$, y tambien $\{a\} \cup \emptyset = \{a\} \in \tau_1$ y $\emptyset \cup X = X \in \tau_1$ y contiene a las intersecciones finitas de sus elementos, de igual forma se sigue que τ_2 es topología de X. La union de las dos topologías es $U = \tau_1 \cup \tau_2 = \{\emptyset, X, \{a\}, \{b\}\}$ lo cual no es topología, ya que $\{a\} \cup \{b\} = \{a, b\} \notin U$, por lo tanto, no necesariamente la unión de topologías es una topología.

2 Demostrar que $\tau_{\mathbb{N}}$ es topologia.

Se tiene por definicion que $\{\emptyset,X\} \subset \tau_{\mathbb{N}}$. Ahora, sea $\{U_a\}_{a \in J}$ una coleccion de elementos en $\tau_{\mathbb{N}}$, y $U = \bigcup_{a \in J} U_a$. Queremos ver que $U \in \tau_{\mathbb{N}}$, para esto observemos que $X-U=(\bigcup_{a \in J} U_a)^c$ por leyes de De Morgan es igual a $\bigcap_{a \in J} U_a^c$, sabemos por teorema quela intersección arbitraria de conjuntos contables es tambien contable, entonces $\bigcap_{a \in J} U_a^c \in \tau_{\mathbb{N}}$ paraya que $U_a^c = X-U_a$ es por definicion contable para todo $a \in J$. Luego, tomemos $\{U_a\}_{a \in J}$ una colección finita de elementos en $\tau_{\mathbb{N}}$, y sea $U = \bigcap_{a \in J} U_a$ entonces tenemos $X-U=(\bigcap_{a \in J} U_a)^c$ por leyes de DeMorgan es igual a $\bigcup_{a \in J} U_a^c$ y por teorema la union finita de conjuntos contables es tambien contable. Entonces X-U es contable, por lo cual se tiene que $U \in \tau_{\mathbb{N}}$ entonces $\tau_{\mathbb{N}}$ esta cerrado por intersección finita,

como consequente es una topología.

3 Verificar si τ_{∞} es topologia.

Sea $X=\mathbb{R}$, sea $U_1=(-\infty,0), U_2=(0,\infty)$, claramente $U_1,U_2\in\tau_{\mathbb{N}}$, pero $U=U_1\cup U_2=(\infty,0)\cup(0,\infty)\notin\tau_{\infty}$ ya que $\mathbb{R}-U=\{0\}$ no es infinito. Por lo tanto no cumple el axioma de uniones arbitrarias de topología. $\therefore \tau_{\infty}$ no es topología.

4 Demostrar que $(0,1) = \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1\right)$.

 (\subset)

Sea $x \in (0,1)$, esto es 0 < x < 1, por propiedad arquimediana existe $N \in \mathbb{N}$ $t.q \ \forall n \geq N \ 0 < \frac{1}{n} \leqslant x < 1$ entonces $x \in [\frac{1}{n},1)$ entonces $x \in \bigcup_{n \in \mathbb{N}-\{1\}} [\frac{1}{n},1)$

 $\therefore (0,1) \subset \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1 \right)$

 (\supset)

Sea $x \in \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1 \right)$, entonces $0 < \frac{1}{n_0} \le x < 1$ para algun $n_0 \in \mathbb{N} - \{1\}$

 $x \in (0,1)$

$$\therefore (0,1) \supset \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1 \right)$$

7 Demuestra que $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

 (\subset)

Sea $(x,y) \in (A \times B) \cap (C \times D)$. Por definición de intersección $(x,y) \in A \times B$ y $(x,y) \in C \times D$. Además, por definición de producto cruz $x \in A$ y $y \in B$, $x \in C$ y $y \in D$. Reescribiendo obtenemos $x \in A$ y $x \in C$, $y \in B$ y $y \in D$ i.e. $(x,y) \in (A \cap C) \times (B \cap D)$.

 (\supset)

De forma análoga, sea $(x,y) \in (A \cap C) \times (B \times D)$ luego $x \in A$ y $y \in B$, $x \in C$ y $y \in D$ y $(x,y) \in (A \times B) \cap (C \times D)$.

12 Demuestre que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

Sabemos que $A \subset \overline{A}$ y $B \subset \overline{B}$. Luego $A \cap B \subset \overline{A} \cap \overline{B}$. La cerradura de un conjunto es siempre cerrado y la intersección de cerrados es cerrada *i.e.*

 $A\cap$ está contenido en un cerrado y la cerradura es el cerrado más pequeño que contiene al conjunto. Es decir $\overline{A\cap B}\subset \overline{A}\cap \overline{B}$.