#### REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

| TORM TO THE ABOVE ABBRECO.               |                                     |                                       |  |  |
|------------------------------------------|-------------------------------------|---------------------------------------|--|--|
| 1. REPORT DATE (DD-MM-YYYY)              | 2. REPORT TYPE                      | 3. DATES COVERED (From - To)          |  |  |
| October 2013                             | Viewgraph                           | October 2013- November 2013           |  |  |
| 4. TITLE AND SUBTITLE                    |                                     | 5a. CONTRACT NUMBER                   |  |  |
| Kinetic Energy-Preserving Discretization | on Schemes for High Reynolds Number |                                       |  |  |
| Propulsive Applications (Briefing Char   | ts)                                 |                                       |  |  |
|                                          |                                     | 5b. GRANT NUMBER                      |  |  |
|                                          |                                     | 5c. PROGRAM ELEMENT NUMBER            |  |  |
|                                          |                                     |                                       |  |  |
| 6. AUTHOR(S)                             |                                     | 5d. PROJECT NUMBER                    |  |  |
| Edoh, A., Karagozian, A., Merkle, C. at  | nd Sankaran, V.                     |                                       |  |  |
|                                          |                                     |                                       |  |  |
|                                          |                                     |                                       |  |  |
|                                          |                                     | 5e. TASK NUMBER                       |  |  |
|                                          |                                     | 5f. WORK UNIT NUMBER                  |  |  |
|                                          |                                     | Q12M                                  |  |  |
| 7. PERFORMING ORGANIZATION NAME(S        | S) AND ADDRESS(ES)                  | 8. PERFORMING ORGANIZATION REPORT NO. |  |  |
| Air Force Research Laboratory (AFMC      | 7)                                  | REPORT NO.                            |  |  |
| AFRL/RQR                                 | ·)                                  |                                       |  |  |
| 5 Pollux Drive                           |                                     |                                       |  |  |
| Edwards AFB CA 93524-7048                |                                     |                                       |  |  |
|                                          |                                     |                                       |  |  |
| 9. SPONSORING / MONITORING AGENCY        |                                     | 10. SPONSOR/MONITOR'S ACRONYM(S)      |  |  |
| Air Force Research Laboratory (AFMC      | <i>:</i> )                          |                                       |  |  |
| AFRL/RQR                                 |                                     |                                       |  |  |
| 5 Pollux Drive                           |                                     | 11. SPONSOR/MONITOR'S REPORT          |  |  |
| Edwards AFB CA 93524-7048                |                                     | NUMBER(S)                             |  |  |
|                                          |                                     | AFRL-RQ-ED-VG-2013-258                |  |  |
| 12. DISTRIBUTION / AVAILABILITY STATE    | MENT                                | 1                                     |  |  |

Distribution A: Approved for Public Release; Distribution Unlimited. PA#13534

#### 13. SUPPLEMENTARY NOTES

Viewgraph for the 66th Annual Meeting of the APS Division of Fluid Dynamics, Pittsburgh, PA, 24-26 November 2013

#### 14. ABSTRACT

N/A

#### 15. SUBJECT TERMS

| 16. SECURITY CLASSIFICATION OF: |              | 17. LIMITATION<br>OF ABSTRACT | 18. NUMBER<br>OF PAGES | 19a. NAME OF<br>RESPONSIBLE PERSON<br>Venkateswaran Sankaran |                                       |
|---------------------------------|--------------|-------------------------------|------------------------|--------------------------------------------------------------|---------------------------------------|
| a. REPORT                       | b. ABSTRACT  | c. THIS PAGE                  | SAR                    | 13                                                           | 19b. TELEPHONE NO (include area code) |
| Unclassified                    | Unclassified | Unclassified                  |                        |                                                              | 661-525-5534                          |



## Kinetic Energy-Preserving Discretization Schemes for High Reynolds Number Propulsive Applications

Ayaboe Edoh, Ann Karagozian, Charles Merkle and Venke Sankaran



# 66th Annual APS Meeting Fluid Dynamics Division

Pittsburgh, PA

Nov 24-26, 2013

Distribution A – Approved for public release; distribution is unlimited



## **Objectives**



# Investigate dispersion and dissipation of numerical schemes with ultimate application to high-Re reacting LES



### **Schemes**

Standard Collocated Grid Schemes Standard Staggered Grid Schemes Kinetic Energy Preserving Schemes



### **Analysis**

Von Neumann Stability Analysis
1D Periodic Test Problem

## Scope

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \qquad \text{Wave Eqn}$$

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} = 0$$
 Euler Eqns



## **Formulation**



### Wave Eqn

### **Collocated**



## **Euler Eqns**



## **Staggered**





Variables also staggered in time for fully ke preserving schemes



## Von Neumann Analysis



Eigenvalues of the amplification matrix specify growth factor and phase errors.

$$Q^{n+1} = GQ^n$$

### **Staggered Grid Scheme**

$$\frac{\Gamma_{ce} \left( \frac{\partial Q_{pT}}{\partial t} + \frac{\partial Q_u}{\partial t} \right)_i}{\partial t} + \Gamma_m \left( \frac{\partial Q_{pT}}{\partial t} + \frac{\partial Q_u}{\partial t} \right)_{i+1/2} + \frac{A_{ce} \left( \frac{\partial Q_{pT}}{\partial x} + \frac{\partial Q_u}{\partial x} \right)_i}{\partial t} + A_m \left( \frac{\partial Q_{pT}}{\partial x} + \frac{\partial Q_u}{\partial x} \right)_{i+1/2} = 0$$

$$Q_{pT} = \left( \begin{array}{c} p \\ 0 \\ T \end{array} \right)$$
 Continuity/Energy Momentum 
$$Q_u = \left( \begin{array}{c} 0 \\ u \\ 0 \end{array} \right)$$

### **Growth Factor**

$$||g_i||$$

#### **Phase Error**

$$\frac{\phi}{\phi_{exact}} = \frac{-\tan^{-1}\{Imag(g_i)/Re(g_i)\}}{CFL \times \beta}$$



## **Wave Equation**



## **Euler Implicit Scheme**





## **Euler Equations**



## **Euler Implicit Scheme**





## **Test Cases**



### 1D Duct

- Non-dissipative BC's  $\Delta U_{IL} = \Delta U_{IL-1}$
- Periodic BC's avoid issues with reflections

### Saw-tooth i.c.



#### Sinusoidal i.c.



## For Euler Eqns:

- Use Characteristic Eqns
- However, staggered grid does not allow proper diagonalization



## **Wave Equation Results**







## **Euler Equations Results**



#### **Collocated**



Collocated grid solution shows strong odd-even splitting errors

## Staggered

Staggered grid solution is relatively smooth





## **KE Conservative Scheme**



## **Collocated Grid**

**Transport Eqn** 

$$\frac{\left[(\rho\phi_k)^{n+1} - (\rho\phi_k)^n\right]}{\Delta t} + \Delta_x(\rho u_j)\phi_k^* = 0$$



**Time-Averaging** 

$$\phi_k^* = \frac{(\sqrt{\rho}\phi_k)^{n+1} + (\sqrt{\rho}\phi_k)^n}{(\sqrt{\rho})^{n+1} + (\sqrt{\rho})^n}$$

Roe-averaging in time



**KE Transport Eqn** 

$$\frac{\left[ (\rho \phi_k^2)^{n+1} - (\rho \phi_k^2)^n \right]}{2\Delta t} + \Delta_x(\rho u_j) \frac{\phi_k^2}{2} = 0$$

**Ensures full KE preservation** 



## **KE Conservative Scheme**



## Staggered Grid in Space and Time



## **Time-Averaging**

$$(u)_{i+1/2,j}^* \equiv \frac{\left(\sqrt{\rho^{-1t}}^{1x} u_{\alpha}\right)_{i+1/2,j}^{n+1} + \left(\sqrt{\rho^{-1t}}^{1x} u_{\alpha}\right)_{i+1/2,j}^{n}}{\left(\sqrt{\rho^{-1t}}^{1x}\right)_{i+1/2,j}^{n+1} + \left(\sqrt{\rho^{-1t}}^{1x}\right)_{i+1/2,j}^{n}}$$

$$(h^0)_{i,j}^* \equiv \frac{\left(\sqrt{\rho^{-1t}} h^0\right)_{i,j}^{n+1} + \left(\sqrt{\rho^{-1t}} h^0\right)_{i,j}^{n}}{\left(\sqrt{\rho^{-1t}}\right)_{i,j}^{n+1} + \left(\sqrt{\rho^{-1t}}\right)_{i,j}^{n}}$$

$$(Y_k)_{i,j}^* = \frac{\left(\sqrt{\rho} Y_k\right)_{i,j}^{n+1/2} + \left(\sqrt{\rho} Y_k\right)_{i,j}^{n-1/2}}{\sqrt{\rho^{-1t/2}} + \sqrt{\rho^{-1t/2}}}$$

Roe-averaging in time leads to full kinetic energy preservation of momentum and scalar fields.



## **Summary**



- Von Neumann Analysis provides dispersion & damping behavior
  - Staggered grid schemes show natural damping even when artificial dissipation is **not** added explicitly
  - Dispersion errors are sometimes non-intuitive faster wave speeds for small CFL's and slower wave-speeds for high CFL's
- Periodic wave tests validate von Neumann results
  - Staggered grid schemes provide smooth particle wave solutions with minimal dissipation
  - Acoustic wave damping is consequential for compressible LES
- Kinetic Energy conservative schemes
  - Formulated for both staggered and collocated grids
  - Schemes possess favorable properties for scalar energies
    - Maybe consequential for reacting-LES problems
  - Test results for improved schemes are forthcoming