Week 02 review worksheet — exercises for §2

The general form of a presentation of an associative unital algebra is $\mathbb{C}\langle X\mid \mathcal{R}\rangle$ where X is a set and \mathcal{R} is a subset of the free tensor algebra $\mathbb{C}\langle X\rangle$. There are several notational conventions:

- inside $\langle \ \rangle$, sets can be written without $\{\ \}$;
- relations (elements of \mathcal{R}) can be written in the form "P=Q" where $P,Q\in\mathbb{C}\langle X\rangle$; this is interpreted to mean that P-Q is an element of \mathcal{R} .

Part A. Exercises for interactive discussion

Attempt the part A exercises and be prepared to discuss them in the interactive session.

- **E2.1** (a group algebra of a finite cyclic group) Let $\Gamma = \{e, g, g^2\}$ denote the cyclic group of orger 3, where $g^3 = e$. Let $\mathbb{C}\Gamma$ be the group algebra of Γ . Which statements about $\mathbb{C}\Gamma$, given below, are true? Explain your answers.
- (A) The subspace of $\mathbb{C}\Gamma$ spanned by e is a subalgebra of $\mathbb{C}\Gamma$.
- **(B)** $\mathbb{C}\langle x \mid x^3 = 1 \rangle$ is a presentation of $\mathbb{C}\Gamma$.
- (C) The map $\epsilon \colon \mathbb{C}\Gamma \to \mathbb{C}$ given by $\epsilon(\alpha e + \beta g + \gamma g^2) = \alpha + \beta + \gamma$ is a homomorphism of algebras.
- (D) The subspace $Z = \{\alpha e + \beta g + \gamma g^2 : \alpha + \beta + \gamma = 0\}$ is a subalgebra of $\mathbb{C}\Gamma$.
- (E) The subspace $Z = \{\alpha e + \beta g + \gamma g^2 : \alpha + \beta + \gamma = 0\}$ is an ideal of $\mathbb{C}\Gamma$;
- (F) If $x, y \in \mathbb{C}\Gamma$, $x \neq 0$, $y \neq 0$, then $xy \neq 0$.
- **E2.2** (algebra characters are lin. independent) If A is an algebra over \mathbb{C} , let $Alg(A, \mathbb{C})$ be the subset of A^* formed by algebra homomorphisms from A to \mathbb{C} . Show: $Alg(A, \mathbb{C})$ is a linearly independent set in A^* .
- **E2.3** (multiplicative characters in $(\mathbb{C}\Gamma)^*$) Let $\mathbb{C}\Gamma$ be the group algebra of $\Gamma = \{e, g, g^2\}$ from E2.1.
- (a) Calculate $Alg(\mathbb{C}\Gamma,\mathbb{C})$ and show that this set is a basis of $(\mathbb{C}\Gamma)^*$.
- (b) Will the result obtained in (a) still hold if:
 - the group Γ is replaced by another finite cyclic group?
 - the group Γ is replaced by another finite abelian group?
 - the group Γ is replaced by a finite non-abelian group?
 - the field \mathbb{C} is replaced by a smaller field of characteristic 0, say, \mathbb{R} or \mathbb{Q} ?
- **E2.4** (a presentation for the polynomial algebra) The algebra $\mathbb{C}[x,y]$ of polynomials in two variables has, by definition, a basis of standard monomials: monomials of the form x^my^n where $m,n \geq 0$, i.e., where all instances of x precede all instances of y. Note that the monoid $\operatorname{StMon}(x,y)$ of standard monomials is **not** a submonoid of $\operatorname{Mon}(x,y)$: it has different multiplication, $x^my^n \cdot x^py^q = x^{m+p}y^{n+q}$. The algebra $\mathbb{C}[x,y]$ can be viewed as the algebra of the monoid $\operatorname{StMon}(x,y)$.

Suggest a presentation for the algebra $\mathbb{C}[x,y]$. Prove that what you suggest is indeed a presentation.

Part B. Extra exercises

Attempt these exercises and compare your answers with the model solutions, published after the session.

E2.5 (actions are homomorphisms to $\operatorname{End}(V)$) Let A be an algebra and V be a vector space over the field \mathbb{C} . Prove that there is a 1-to-1 correspondence between actions $\triangleright : A \otimes V \to V$ of A on V and algebra homomorphisms $\rho : A \to \operatorname{End}(V)$, where an action \triangleright corresponds to the homomorphism

$$\rho_{\triangleright} \colon A \to \operatorname{End}(V), \qquad \rho_{\triangleright}(a) \text{ is the element of } \operatorname{End}(V) \text{ defined by } (\rho_{\triangleright}(a))(v) = a \triangleright v.$$