Geometric Interpretation of limsup and liminf.

Bo Chen

Sep. 25, 2005

Definition

$$\lim \sup_{n} x_{n} = \inf_{n} \sup_{m \geq n} x_{m}$$
$$\lim \inf_{n} x_{n} = \sup_{n} \inf_{m \geq n} x_{m}$$

Define

$$A_n = \sup_{m \ge n} x_m$$
, "above-sequence";
 $B_n = \inf_{m \ge n} x_m$, "below-sequence".

Sequence $\{A_n\}$ is a decreasing sequence while sequence $\{B_n\}$ is an increasing sequence. We then have that for all n,

$$A_n = \sup_{m \ge n} x_m \ge x_n \ge B_n = \inf_{m \ge n} x_m.$$

For a sequence $\{x_n\}_{n>1}$, we have:

- 1. limsup and liminf of a sequence always exist in $\overline{\mathbb{R}}$ and $\limsup x_n \geq \liminf x_n$.
- 2. $\lim_{n} x_n = a$ if and only if $\lim \sup x_n = \lim \inf x_n = a$.

There is a geometric interpretation of limsup and liminf of a sequence. In the following two figures, we can see that the sequence $\{x_n\}_{n\geq 1}$ is entirely bounded by the "Above-Sequence" $\{A_n\}_{n\geq 1}$ and the "Below-Sequence" $\{B_n\}_{n\geq 1}$. The first figure shows the case where $\limsup x_n > \liminf x_n$ and it is in this sense we say $\limsup x_n = \limsup x_n = \lim x_n$.

