

გამოცდის ფორმატი

*მონიშნეთ გამოცდის ფორმატი (მიუთითეთ √)

დახურული წიგნი	
ღია წიგნი	√

*ღია წიგნის შემთხვევაში მონიშნეთ გამოცდაზე ნებადართული ელემენტები (მიუთითეთ \checkmark)

სალექციო მასალები (პრეზენტაცია და სხვა)	
ელექტრონული წიგნები	√
წიგნები	
კონსპექტები	
ლექსიკონი	
კალკულატორი	
ლეპტოპი/პლანშეტი	

^{*} გამოცდის ჩატარების წესი იხილეთ ,,დესკტოპზე" საქაღალდეში Exam materials

საგამოცდო საკითხების ფორმა ვარიანტი # 1

სკოლა/ საგანმანათლებ ლო პროგრამა	მათემატიკა და კომპიუტერული მეცნიერება	სტუდენტის მიერ მიღებული ქულა		
საგანი	პროგრამირების პარადიგმები			
ლექტორი	შ. ღვინეფაძე			
კურსი	II			
<i>₹გუფი</i>				
გამოცდის ფორმა	ღია წიგნი			
გამოცდის ხანგრძლივობა	3 საათი			
მაქსიმალური ქულა	12	20		
სტუდენტის სახელი და გვარი:				

სახელი:

შუალედური გამოცდა პარადიგმებში 2017, 24 ოქტომბერი 14:40 – 16:40

1 50 ქულა	2 70 ქულა	სულ

შეასრულეთ შემდეგი ინსტრუქციები, წინააღმდეგ შემთხვევაში შესაძლოა თქვენი ნაშრომი არ შეფასდეს.

- 1. ჩამოტვირთეთ problems ფოლდერი თქვენს დესკტოპზე. მასში უნდა იყოს
- 2 ფოლდერი problem1 და problem2. თითოეულში კი შესაბამისი ფაილები.
- 2. ცვლილებები შეიტანეთ დავალების პირობით მითითებულ ფაილებში.
- 3. ის ფაილები, რომელშიც ცვლილებები შეიტანეთ დააარქივეთ, არქივს სახელად დაარქვით თქვენი მეილის პრეფიქსი, მაგალითად gboch12.rar. არქივში უნდა იყოს მხოლოდ 2 ფაილი
 - 1. find score.c
 - 2. spell correct.c
- 4. ვებ ბრაუზერში გახსენით მისამართი http://192.168.210.5 და ატვირთეთ არქივი.

command prompt-ის გამოსაყენებლად

- 1. დააჭირეთ windows ღილაკს ეკრანის მარცხენა ქვედა კუთხეში
- 2. ძებნის ფანჯარაში აკრიბეთ command prompt
- 3. დააკლიკეთ მაუსი command prompt-ის იკონს.
- 4. ფოლდერში ინფორმაციის ნახვისთვის გამოიყენეთ ბრძანება DIR(იგივე Is)
- 5. ფოლდერის შეცვლისთვის გამოიყენეთ cd

ამოცანა 1. მინიმუმი(30 ქულა)

მოცემული გაქვთ გენერიკ მასივი, თქვენი მიზანია ამ მასივში იპოვოთ მინიმალური ელემენტი. ელემენტების შედარებისთვის გადმოგეცემათ შედარების

დანართი

ფუნქცია, რომელიც აბრუნებს 0-ს თუკი ორი ელემენტი ტოლია -1 თუკი პირველი ელემენტი პატარაა მეორეზე და 1-ს წინააღმდეგ შემთხვევაში.

base - გენერიკ მასივის მისამართი n - მასივში ელემენტების რაოდენობა

size - ელემენტის გომა ბაიტებში

cmp - შედარების ფუნქცია.

თქვენმა ფუნქციამ უნდა დააბრუნოს მინიმალურ ელემენტზე მიმთითებელი. void* minimum(void *base, int n, int size, int(*cmp)(const void *, const void *)

კომპილაციისთვის შეგიძლიათ გამოიყენოთ ბრძანება > gcc minimum.c minimum_test.c მიიღებთ a.exe ფაილს, რომელიც შეგიძლიათ გაუშვათ > a.exe

ამოცანა 2. სორტირება(30 ქულა)

მოცემული გაქვთ გენერიკ მასივი, თქვენი მიზანია ამ მასივის ზრდადობით დასორტირება. ჩათვალეთ, რომ ფუნქცია minimum (ამოცანა 1-დან) იმპლემენტირებულია და გამოიყენეთ selection sort ალგორითმი: minimum ფუნქციით აირჩიეთ მინიმალური ელემენტი და პირველ ელემენტთან გაუცვალეთ ადგილი. შემდეგ იტერაციაზე აირჩიეთ მინიმუმი მეორე ელემენტიდან (minimum ფუნქციის დახმარებით), ადგილი გაუცვალეთ მეორე ელემენტთან და ა.შ. my_sort ფუნქცია არაფერს არ აბრუნებს, ის გადაცემულ მასივს ასორტირებს. base - გენერიკ მასივის მისამართი

n - მასივში ელემენტების რაოდენობა size - ელემენტის ზომა ბაიტებში

cmp - შედარების ფუნქცია.

void my_sort(void *base, int n, int size, int(*cmp)(const void *, const void *))

კომპილაციისთვის შეგიძლიათ გამოიყენოთ ბრძანება
> gcc done_minimum.o my_sort.c my_sort_test.c
მიიღებთ a.exe ფაილს, რომელიც შეგიძლიათ გაუშვათ
> a.exe

ამოცანა 3. სტრინგების სორტირება(30 ქულა)

თქვენი მიზანია my_sort ფუნქციის გამოყენებით დაასორტიროთ სტრინგები. ამისათვის დაწერეთ sort_strings ფუნქცია, რომელიც არაფერს არ აბრუნებს, არამედ გადაცემულ მასივს ასორტირებს. ჩათვალეთ, რომ my_sort ფუნქცია უკვე იმპლემენტირებულია.

strings - სტრინგების მასივი

n - მასივში ელემენტების რაოდენობა void sort strings(char** strings, int n)

კომპილაციისთვის შეგიძლიათ გამოიყენოთ ბრძანება > gcc done_my_sort.o sort_strings.c sort_strings_test.c მიიღებთ a.exe ფაილს, რომელიც შეგიძლიათ გაუშვათ > a.exe

```
ფუნქციების ჰედერები, რომლებიც შეიძლება დაგჭირდეთ ამოცანების გადაჭრისას:
void *memcpy(void *dest, const void *src, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
void *memmove(void *dest, const void *src, size_t n);
void *malloc(size_t size); void *realloc(void *ptr, size_t size);
void free(void *ptr);

size_t strlen(const char *s);
char *strcpy(char *dest, const char *src);
int strcmp(const char *s1, const char *s2);
char *strncpy(char *dest, const char *src, size_t n);
char *strdup(const char *s);
char *strcat(char *dest, const char *src);
```