Diszkrét matematika I. feladatok

Ötödik alkalom (2013.10.7.-11.)

- 1. Számoljuk ki $\varphi(n)$ értékét n = 1, 2, 3, 4, 10, 24, 96, 100 esetén!
- 2. Bizonyítsuk be, hogy
 - a) $n^6 1$ osztható 7-tel, ha (n; 7) = 1;
 - b) $n^{12} 1$ osztható 7-tel, ha (n; 7) = 1:
 - c) $n^{6k} 1$ osztható 7-tel, ha (n; 7) = 1.
- 3. Bizonyítsuk be, hogy bármely egész x-re $x^7 \equiv x \mod 42$.
- 4. Határozzuk meg 3¹⁰⁰³ utolsó három számjegyét.
- 5. Állapítsuk meg, hogy 173^{163} milyen maradékot ad 17-tel osztva.
- 6. Határozzuk meg (a tízes számrendszerben felírt) 143^{143} utolsó három jegyét hármas alapú számrendszerben.
- 7. Milyen maradékot ad 103-mal osztva a következő szám: $205^{206^{207}}$?
- 8. Határozzuk meg a $37^{39^{42}}$ szám utolsó két számjegyét.
- 9. Mi lesz 17³²⁰¹³ utolsó két számjegye nyolcas szárendszerben?
- 10. Mi a $11^{2013^{26}}$ utolsó két jegye 10-es számrendszerben?
- 11. Mi a legkisebb nemnegatív maradéka
 - a) 323^{149} -nek a 63-mal:
 - b) 423¹⁷³-nak az 52-vel;
 - c) 495^{173} -nak a 98-cal;
 - d) 457^{101} -nek a 90-nel.

való osztáskor?

- 12. Bizonyítsuk be, hogy $n^{13} n$ minden n egészre osztható a 2, 3, 5, 7 és 13 számokkal.
- 13. Oldjuk meg az alábbi kongruenciákat az Euler-Fermat tétel segítségével:
 - a) $21x \equiv 14 \mod 35$; b) $172x \equiv 6 \mod 62$; c) $3x \equiv 8 \mod 13$; d) $12x \equiv 9 \mod 18$
- 14. Mutassuk meg, hogy $a^{1729} \equiv a \mod 1729$ habár az 1729 mégsem prím.

Szorgalmi feladatok

- 11. A 2-vel (utólsó számjegy páros), 3-mal (számjegyek összege osztható 3-mal), 4-gyel (utólsó két számjegy osztható 4-gyel), 5-tel ... oszthatósági szabályokhoz hasonlóan
 - a) mutass szabályt a 7-tel való oszthatóságra;
 - b) általában mutass szabályt m-mel való oszthatóságra, ahol m > 1 tetszőleges egész!
- 12. Írj programot, mely egy adott p prím esetén keres egy generátort modulo p, továbbá mely legenerálja az adott generátorhoz tartozó diszkrét logaritmus táblázatot!