Point Process Simulation

Estimated Parameters

```
set.seed(1899)
ad_types <- c("search", "display", "other", "purchase")</pre>
K <- length(ad types)</pre>
alpha_mean <- matrix(c(2.817, 0.0860, 0.5381, 0.6167,
                       0.1614, 1.7818, 0.2055, 0.0845,
                        0.4647, 0.1270, 8.0526, 0.8384), nrow = 3, ncol = 4)
row.names(alpha_mean) <- ad_types[1:3]</pre>
colnames(alpha_mean) <- ad_types</pre>
alpha_sd \leftarrow matrix(c(0.1765, 0.0214, 0.0562, 0.0633,
                        0.0496, 0.2314, 0.0572, 0.0347,
                        0.0654, 0.0367, 0.4117, 0.0867), nrow = 3, ncol = 4)
beta_mean <- c(34.0188, 46.8854, 51.5114)
beta_sd <- c(1.7426, 4.9370, 2.3241)
names(beta_mean) <- ad_types[1:3]</pre>
theta_mu_mean <- c(-5.3926, -6.1027, -5.8063, -9.7704)
theta_mu_sd <- c(0.0166, 0.0212, 0.0221, 0.0762)
names(theta mu mean) <- ad types</pre>
names(theta_mu_sd) <- ad_types</pre>
Sigma_mu_mean \leftarrow matrix(c(0.4584, -0.1197, -0.4942, 0.2256,
                       -0.1197, 0.5934, -0.3380, -0.4157,
                       -0.4942, -0.3380, 1.0014, 0.0762,
                       0.2256, -0.4157, 0.0762, 2.3914), nrow = 4, ncol = 4)
Sigma_mu_sd \leftarrow matrix(c(0.0246, -0.0212, 0.0257, 0.1228,
                       0.0212, 0.0335, 0.0304, 0.1665,
                       0.0257, 0.0304, 0.0365, 0.2440,
                       0.1228, 0.1665, 0.2440, 0.2575), nrow = 4, ncol = 4)
row.names(Sigma_mu_mean) <- ad_types</pre>
colnames(Sigma_mu_mean) <- ad_types</pre>
n <- 12000
#inv df <- n - 1
inv df \leftarrow 7
psi_mean \leftarrow c(-0.5664, -0.7556, -0.6235, 0.2787)
psi_sd <- c(0.1228, 0.2348, 0.1229, 0.2160)
names(psi_mean) <- ad_types</pre>
names(psi_sd) <- ad_types</pre>
first_click_prob <- c(1199, 418, 811) %>% prop.table()
```

Table 1: alpha

	search	display	other	purchase
search	2.8170	0.6167	0.2055	0.1270
display	0.0860	0.1614	0.0845	8.0526
other	0.5381	1.7818	0.4647	0.8384

Table 2: beta

search 34.0188 display 46.8854	
display 46.8854	х
other 51.5114	34.0188 46.8854 51.5114

Table 3: theta

X
-5.3926
-6.1027
-5.8063
-9.7704

Table 4: Sigma

	search	display	other	purchase
search	0.4584	-0.1197	-0.4942	0.2256
display	-0.1197	0.5934	-0.3380	-0.4157
other	-0.4942	-0.3380	1.0014	0.0762
purchase	0.2256	-0.4157	0.0762	2.3914

Table 5: psi

	X
search	-0.5664
display	-0.7556
other	-0.6235
purchase	0.2787

Simulate Data

Draw Parameters

1. Draw $\alpha, \beta, \psi, \theta_{\mu}, \Sigma_{\mu}$ and generate $\mu^{i} \sim MVN_{K}(\theta_{\mu}, \Sigma_{\mu})$ to simulate the behaviour of a representative customer. Draw $\mu^{i} \sim log\text{-}MVN_{K}(\theta_{\mu}, \Sigma_{\mu})$.

```
# calculate gamma and inv wishart params from means and SDs
gammaShRaFromMeanSD <- function( mean , sd ) {</pre>
  if ( mean <=0 ) stop("mean must be > 0")
  if ( sd <=0 ) stop("sd must be > 0")
  shape = mean^2/sd^2
  rate = mean/sd<sup>2</sup>
 return( list( shape=shape , rate=rate ) )
invParamsWishartFromMeanPAndDF <- function(Sigma_mu_mean, df, dim){</pre>
  scale_matrix <- Sigma_mu_mean*df - Sigma_mu_mean*dim - Sigma_mu_mean
  return(list(scale_matrix=scale_matrix, df=df, dim=dim))
}
draw_params <- function() {</pre>
  alpha <- matrix(nrow = nrow(alpha_mean), ncol = ncol(alpha_mean))</pre>
  for(j in c(1:nrow(alpha_mean))) {
    for(k in c(1:ncol(alpha_mean))) {
      gam <- gammaShRaFromMeanSD(mean = alpha_mean[j,k], sd = alpha_sd[j,k])</pre>
      alpha[j,k] <- rgamma(n=1, shape = gam$shape, rate = gam$rate)</pre>
    }
  }
  beta <- numeric()</pre>
  for(j in c(1:length(beta_mean))) {
      gam <- gammaShRaFromMeanSD(mean = beta_mean[j], sd = beta_sd[j])</pre>
      beta[j] <- rgamma(n=1, shape = gam$shape, rate = gam$rate)
  }
  # assumption that all psi_ks are independet we can sample with the diagonal of sds,
  # in appendix they calculate psi with the Identity matrix which assumes independence!
  psi <- mvrnorm(mu = psi_mean,</pre>
                 Sigma = psi_sd^2 * diag(nrow = length(psi_sd)))
  theta_mu <- mvrnorm(mu = theta_mu_mean,
                      Sigma = theta_mu_sd^2 * diag(nrow = length(theta_mu_sd)))
  inv_wishart_params <- invParamsWishartFromMeanPAndDF(Sigma_mu_mean = Sigma_mu_mean,
                                                   df = inv df, dim = length(ad types))
  Sigma_mu <- riwish(v = inv_wishart_params$df, S = inv_wishart_params$scale_matrix)
  mu <- exp(mvrnorm(mu = theta_mu, Sigma = Sigma_mu))</pre>
  list(alpha = alpha, beta = beta, psi = psi,
       theta_mu = theta_mu, Sigma_mu = Sigma_mu, mu = mu)
}
```

- 2. Simulate point process in [0,T] given $\alpha, \beta, \psi, \mu^i$ and realized type j_0 at $t_0 = 0, (j_0 = 1, \dots, K-1)$. a. initialize $t = 0, n = 0, n_K = 0, m = \sum_{k=1}^{K} (\mu_k^i + \alpha_{j_o k})$

 - b. Repeat until t > T
 - i) Simulate $s \sim Exp(m)$
 - ii) Set t = t + s
 - iii) If t < T, calculate

$$\lambda_k = \mu_k^i \exp(\psi_k n_K) + \alpha_{j_0 k} \exp(-\beta_{j_0} t) + \sum_{l=1, j_l \neq K}^n \alpha_{j_l k} \exp(-\beta_{j_l} (t - t_l))$$

```
and let \lambda = \sum_{k=1}^{K} \lambda_k and generate U \sim Unif(0,1).

1. If U \leq \frac{\lambda}{m}, n = n + 1, t_n = t. Simulate j_n \sim multinomial(1, \lambda_1/\lambda, \dots, \lambda_K/\lambda).
                   • If j_n = K then
                                                            n_K = n_K + 1
                                           m = \lambda - \mu_k^i \exp(\psi_k(n_K - 1)) + \mu_k^i \exp(\psi_k n_K)
                   • else
                                                            m = \lambda + \alpha_{i_n k}
                2. If U > \frac{\lambda}{m} then
                                                               m = \lambda
        c. Simulation output is \{t_1, \ldots, t_n\} and \{j_1, \ldots, j_n\}
  3. Repeat Step 1 and 2 R times.
T <- 120
simulate_user_clickstream <- function(alpha, beta, psi, theta_mu, Sigma_mu, mu) {</pre>
  t = 0; n = 0; n_K = 0; m = c(alpha[j_0,] + mu) %>% sum; j = integer(); t_j = numeric()
  hist_intensity_decay <- function(a, b, events, current_time, event_times) {
    result <- numeric(K)</pre>
    names(result) <- ad_types</pre>
    if(length(events) == 0) return(result)
    for(k in 1:K){
       for(idx in 1:length(events)){
          j_l <- events[idx]</pre>
          if(j_l != K) { # do not consider purchases (K) here
            result[k] <- result[k] +
               alpha[j_1, k] * exp(-1 * beta[j_1] * (t - event_times[idx]))
         }
       }
    }
    return(result)
  repeat {
     s \leftarrow rexp(n = 1, rate = m)
    t <- t + s
     if(!is.nan(t) && t < T){</pre>
       lambda \leftarrow mu * exp(psi*n_K) + alpha[j_0, ] * exp(-1 * beta[j_0] * t)
       lambda <- lambda + hist_intensity_decay(alpha, beta, j, t, t_j)</pre>
       U \leftarrow runif(n = 1)
       if(is.na(m) || is.na(U) || NA %in% lambda || is.infinite(m) || Inf %in% lambda) {
         print(paste("Value is NA ", c(m, U, lambda)))
       if(U <= sum(lambda) / m){</pre>
         n < -n + 1
         t_j[n] \leftarrow t
          j[n] <- which(rmultinom(n = 1, size = 1,</pre>
                                        prob = lambda/sum(lambda))[,1] %in% c(1))
         if(j[n] == K) { # if purchase}
```

 $n_K < -n_K + 1$

```
m <- sum(lambda - mu * exp(psi * (n_K -1)) + mu * exp(psi * n_K))
} else {
    m <- sum(lambda + alpha[j[n], ])
} else {
    m <- sum(lambda)
}

# in some cases n_K becomes greater then a few thousand.
# hence, m tends so go to Inf as s becomes 0.
# this breaks the code and so we break at a certain purchase count.
if(t > T || n_K >= 10) return(list(timestamp = t_j, event = ad_types[j]))
}
```

Simulate click stream data

Simulate for one user

```
j_0 <- sample(length(ad_types) - 1, size = 1, prob = first_click_prob)
params <- draw_params()
data <- do.call(simulate_user_clickstream, params)</pre>
```

 j_0 is set to type "other" with T=120.

	time	event
1	70.22	search
2	83.10	search
3	95.49	search

Table 6: Simulated click stream

Simulate for multiple users and plot their click streams.

```
users <- sim_data(sim_cnt)</pre>
ggplot(users, aes(x = timestamp, y = user,
              label = event, color = factor(event),
              shape = factor(event),
              xmax = T)) +
 geom_point(size = 4, alpha = .7) +
 geom_hline(aes(yintercept = user), lty="dotted") +
 xlim(0, T) +
 ylim(1, sim_cnt)
 5 -
                                                           factor(event)
                                                            display
purchase
                                                              search
 2-----
 1-----
                                            100
     Ö
               25
                         50
                                   75
                                                       125
                          timestamp
                                                                     ##
Simulate 12,000 users
data <- sim_data(n)</pre>
data %>%
 filter(event != 'purchase') %>%
 group_by(event) %>%
 summarise(n = n()) %>%
 mutate(ratio = n / sum(n))
## # A tibble: 3 x 3
##
    event
             n ratio
    <chr> <int> <dbl>
## 1 display 5084 0.229
## 2 other
           8081 0.364
## 3 search
           9033 0.407
```

Most frequent click combinations ending with a purchase.

Table 7: Most frequent click combinations ending with a purchase

stream	n
SDP	76
DDP	72
ODP	56
OOP	29
DDDP	17
SSDP	14
OODP	13
SSP	12
SODP	11
SDDP	10
SOP	10
DODP	9
DSP	7
OSP	7
SSSDP	7
DDDDP	6
DSDP	6
OOOP	6
DOP	5
OOODP	5