GPS Case

ESD.85 October 31, 2005

Angela Ho
Alex Mozdzanowska
Christine Ng

Illustration by Leo Cronin

What is GPS?

- Global Positioning System
 - Used for timing, positioning, and navigation
 - Called NAVSTAR
- Types of users
 - U.S. military
 - Emergency response
 - Maritime navigation
 - Hikers, drivers
 - Aviation (planned)

Figure courtesy of NASA.

How GPS works

- Receiver obtains radio signals from at least 4 satellites
 - Calculates receiver's location from time, satellite location, and distance information
- Ground control monitors and ensures orbital and clock accuracy

Figure removed for copyright reasons.

GPS summary diagram from Garmin Ltd. *GPS for Beginners*.

GPS Constellation

- Made up of 24 satellites in orbit 12,500 miles above the earth
- 6 orbit planes
- Precision of GPS signal is 20 meters
- With differential GPS and error correcting, precision is 10 cm

Courtesy of USGS. (http://geomag.usgs.gov/images/gps 001.jpg)

GPS Frequency Uses

L1	Civilian
L2	Military
L3	Military – missile/rocket launches, detonation detection
L4	Ionospheric correction (experimental)
L5	Civilian safety-of-life (planned)

GPS Limitations and Corrections

- Atmospheric thickness
- Signal reflection
- Clock precision
- Orbital errors
- Blocked signal
- Satellite geometry
- Selective availability (pre-May 2000)
- Differential GPS

Figure removed for copyright reasons.

GPS Corrections diagram from Garmin Ltd. GPS for Beginners.

History

GPS Inspiration

- 1957: Sputnik launch
 - Johns Hopkins Applied Physics Lab located Sputnik using the Doppler shift of its radio signal
 - Realized they could do the reverse process → GPS

Photo of Sputnik removed for copyright reasons. Source: NBC News (http://www.msnbc.com/news/115147.jpg)

NAVSTAR Predecessors

- LORAN (MIT) WWII
 - Ground-based, 2-dimensional (lat, long)
 - Need 3 stations in range and prior location information
- Timation (Navy) 1970s
 - Space-based, 2-dimensional
 - Could not provide continuous coverage
- Transit (Navy)
 - Space-based, 2-dimensional
 - Track and locate submarines
 - Satellites visible every 100 minutes, had to be observed for 10-25 minutes
 - 25-meter error
- USAF Project 621B
 - Space-based, 3-dimensional
 - Needed 4 satellites
 - At least 2 ground-control stations had to be located outside the US
 - Demonstrated pseudorandom noise (PRN) code

Source: Spencer Lewis 2005, Parkinson and Gilbert 1983, Parkinson 1994

GPS Development

- April 1973: Formation of the JPO
 - JPO objective: Consolidation of satellite navigation concepts into one system
 - US Air Force as the lead agency (Parkinson as head)
- December 1973: DoD approves the system that is now known as NAVSTAR
- 1974-1977: Initial satellites launched for concept validation and to carry atomic clocks
- 1978-85: 11 Block I satellites launched
- 1980: 1st GPS satellite to carry nuclear detonation detection system sensors
- 1980-82: Project zeroed out each year
- 1981-86: Project reinstated with a 30% budget cut
 - Reduction from 24 planned satellites to 18
 - Postponed early limited -D capability by 12 years (1981-93?)

Source: RAND 1997, Kowoma 2004

Progress to Civilian GPS Use

- 1983: Korean Air passenger flight shot down by Soviets
 - Reagan announced that GPS would be freely available for civilian aircraft use when it begins operational
- 1984: Surveying becomes the first major commercial GPS application (used DGPS and other techniques to compensate for limited number of satellites)
- 1989: Coast Guard becomes lead agency for Civil GPS Service
- 1989-1994: 28 Block II satellites
- March 1990: DoD activates selective availability
- 1990-1991: GPS used during the Persian Gulf War
- August 1990: DoD deactivates selective availability (to allow for use of commercial receivers)
- July 1991: DoD reactivates selective availability

Source: RAND 1997

Free GPS for All

- September 1991: US offers GPS use for free to the international community, starting in 1993, for a minimum of 10 years (offer later extended and reaffirmed multiple times)
- 1993: US announces Initial Operational Capability of GPS with 100m accuracy and continuous availability
- 1994: Announced planned implementation of GPS for civil aviation to be implemented in 1997 (still not implemented)
- 1995: US announces Full Operational Capability of GPS
- 1996: Presidential directive created the Interagency GPS Executive Board (IGEB) to be chaired by DOT and DOD
- 2000: Final deactivation of selective availability, so accuracy for civilian improves from 100m to 20m

Source: RAND 1997, Kowoma 2004

Major Decision

Offering GPS to the World for Free

- Given Motivation (circa 1983)
 - Safety
 - Reagan: improve safety of civilian aviation
 - Increase safety and efficiency of transportation systems
- Additional Motivations (emerged in 1990s)
 - National security
 - Discourage competing systems
 - Prevent users from switching to GLONASS (Russian system)
 - Retain control and technology leadership
 - Economic growth
 - Promote US GPS companies (larger market for sales; first-mover advantage)
 - Standardization (encourages use of one system)
 - International cooperation

Sources: AW&ST 1983, NAPA/NRC 1995, RAND 1997

Uncertain System Viability

- Technical/operational viability
 - Only experimental satellites in orbit in 1983
 - Unstable funding (recently cut for 3 years)
 - Needed to test other components of the system
 - FAA refused to adopt GPS
 - DoD had been trying for before 1983 to interest the FAA in NAVSTAR.
 - DoD improved accuracy from 500m to 100m, but still insufficient for safety
 - GPS at best could be a back-up to existing ground-based systems
 - FAA did not want to pay user fees or share upkeep costs
- User reaction (commercial and international)
 - Lack of confidence that system would become operational
 - Not sure if they should offer GPS to Aeroflot, the Soviet airline

Selective Availability Failure

- Expectation
 - Selective availability would work
 - Keep military and civilian applications separate
 - Encryption will restrict non-military use and accuracy
 - Export controls restrict GPS equipment listed as "munitions"
 - National security would not be compromised by civilians having access to GPS

- Reality
 - Companies figured out how to overcome encryption with DGPS
 - DGPS enhances accuracy to 10 cm
 - Government agencies like the Coast Guard, FAA, Army were developing DGPS as early as 1990
 - SA turned off during Gulf War
 - Interferes with civilian safety and services
 - EAPS Prof. Thomas A. Herring, MIT:
 "For any adversary who is sophisticated
 enough to put a GPS guidance system into a
 missile, it's a trivial extension to put in a
 differential correction. I don't think it protects
 us at all. I don't think it protects us from
 terrorists."

Modes of Analysis

- 1983 Reagan announcement was politically motivated
 - Pressure from Congress to accelerate NAVSTAR coverage
 - In response to offering it to Soviet airliner Aeroflot, White House Press Secretary Larry Speakes said: "We'll wait until 1988 to see. For the moment, the plans are to make it available to all. We'll address the Soviet question when we get there."
 - Situated within Reagan's "Star Wars" vision
- Not DoD-supported, since they had a pre-existing schedule for launching satellites and awarding contracts
- We could not find specific DoD or White House analysis behind the decision.
 - Could be classified military documents?

Consequences (1)

- Safety
 - GPS first used in civilian aviation in 2005, for transatlantic flights
 - Still used mostly as a back-up system
- National and Personal Security
 - Vulnerable to jamming
 - Commercial GPS units could be used by enemy states or terrorists
 - Privacy infringement from hidden GPS receivers
- Economic growth
 - Commercialization: In 2000, already a \$8.5 billion industry and expected creation of 100,000 new jobs

Commercial GPS Boom

2004: \$15B

Projected 2008: \$22B

Projected 2010: \$39B

Figure by MIT OCW.

Secondary Source: RAND 1997

Consequences (2)

- International cooperation
 - Competing systems
 - Soviet system GLONASS
 - European system Galileo
- Maintenance commitment
 - Already \$12 billion invested; \$400 million/year to maintain
 - Shared responsibility between DoD (USAF) and DoT (Coast Guard)

Conclusions

- 1. In retrospect, were some consequences overlooked by interested organizations?
 - DoD focusing on GPS as military-only application; did not envision civilian uses; did not appreciate this until commercial uses were already emerging
 - Response was to add selective availability
 - DoD organizational limitations
 - History of being able to keep technologies secret
 - Ability to circumvent selective availability
 - Could not keep it secret

- 2. How do political/economic/social forces influence the engineering/scientific solutions/approaches?
 - Offering to the world cannot just be US-focused
 - Shaped the development of the still incomplete system
 - Selective availability
 - Frequency bands
 - Need for 911 capability on cell phones emergency response
 - Having separate bands (separate civil and military applications)
 - Scaling down the project because of funding cuts

- 3. What strategies are adopted by interests that feel threatened by GPS?
 - Competing systems that are not US-controlled
 - GLONASS
 - Fully operational by 2008
 - Galileo
 - Operational by 2008

- 4. What is the motivation for keeping decision processes for sharing emerging technologies with other countries secret?
 - Military
 - Possible initial decision but questionable once commercialized
 - May reveal too much about future strategies
 - Technology leadership/Intellectual property rights

What could have been done better?

- Hindsight is 20/20
 - Consistent funding
 - Studies of commercial applications
 - More early international cooperation
- Reality check
 - Institutional learning
 - Adjusted their view as use of the GPS changed
 - Agency responsibilities shifted
 - Inter-agency GPS Executive Board (IGEB)

Future of GPS

- Responses to Galileo and Glonass
 - Ensure interoperability of GPS with other systems
 - Provide better service
 - Join Galileo
 - Charge for GPS
- Integration into transportation infrastructures
 - Credible commitment not to turn off GPS
- System maintenance
 - Who pays for it?
- Security measures
 - New ways of blocking signals do they work?

References

- Special thanks to **Spencer Lewis** and **Prof. Daniel Hastings** for references.
- Executive Office of the President. "U.S. Spaced-Based Positioning, Navigation, and Timing Policy." Office of Science and Technology Policy. 15 December 2004. http://usinfo.state.gov/eur/Archive/2004/Dec/22-490757.html
- GARMIN. "GPS Guide for Beginners." GARMIN Corporation, December 2000.
- Howe, Peter J. "Where on Earth? The GPS Solution; Scrambling Policy Irks Many Experts."
 Boston Globe, 7 October 1996: C1.
- Lewis, Spencer L. "An Examination of the History, Expansion, and Technology of the NAVSTAR Global Positioning System." Massachusetts Institute of Technology. 6 September 2005.
- National Academy of Public Administration and National Research Council. "GPS: Charting the Future." For US Congress and Department of Defense. May 1995. http://www.navcen.uscg.gov/pubs/gps/gpsfuture/charting.htm
- Page, Scott, Gerald Frost, Irving Lachow, et al. "The Global Positioning System: Assessing National Policies." RAND Critical Technologies Institute, 1997. http://www.rand.org/publications/MR/MR614/
- Parkinson, Bradford W., and Stephen W. Gilbert. "NAVSTAR: Global Positioning System Ten Years Later." Proceedings of the IEEE. Vol. 71, No. 10, October 1983: 1177-1186.
- "Senator Urges Acceleration of Navstar." Aviation Week and Space Technology. Lexis Nexis Academic Universe. 3 October 1983: 153.
- Shirer, Heywood O. "Preparing Now for the Future: U.S. Civil Radionavigation Policy and Planning." US Department of Transportation. IEEE, 1998: 69-76.

Discussion