

Workshop

Quarterly Progress Reports – recorded only for minute taking purposes

9.05	Introduction
9.10	Plasma fluid referent model via exploratory Proxyapps
9.35	Investigate DSL and code generation techniques
9.50-10.05	Performance of Spectral Elements
10.25	Referent model for plasma edge region
10.45	Study of Uncertainty Quantification (UQ) techniques
11.00	Investigate matrix-preconditioning techniques
11.15-11.30	Optimal Use of Particles
11.40	
12.00-12.15	Your admin/financial questions answered
-	
	9.10 9.35 9.50-10.05 10.25 10.45 11.00 11.15-11.30 11.40 12.00-12.15

Workshop – Afternoon Session

Recorded only for minute taking purposes

13.30 Anisotropic transport/elliptic solvers.

Patrick Farrell, Oxford

Chris Cantwell/Spencer Sherwin, Imperial

14.30 Surrogate models for data compression/turbulence

Ed Threlfall, UKAEA

Tim Dodwell, Exeter

Ben McMillan, Warwick

15.30 Discussion and Close

Minutes will form the core of M1.4.1 Report CD/EXCALIBUR-FMS/0030

Fieldline sensitive meshing - ITER

Flux surfaces above, 3 fieldlines at right

Hanging nodes or tetrahedra/prisms

Meshing sensitive to field diection in a device with magnetic shear.

Make at gap at 330° and put tets in, and smooth...

