Optimalizace rozmístění stanic pro nabíjení elektrických vozidel

David Beinhauer, MFF UK, 2022

Úvod

S rostoucím počtem elektrických vozidel roste i potřeba vytvořit vhodnou infrastrukturu pro jejich nabíjení. K řešení tohoto problému může výrazně napomoci použití vhodných optimalizačních metod. Cílem práce je implementovat simulátor dopravy sloužící jako vhodný nástroj pro jejich návrh a analýzu.

Technologie

Simulátor dopravy a optimalizační metody jsou naimplementovány v jazyce C++. Zpracování vstupních a výstupních dat je napsáno v jazyce Python.

Simulátor

Dopravní síť reprezentujeme grafem, který lze vytvořit z libovolné dopravní sítě uložené ve formátu .osm.pbf z Open Street Map. K simulaci dopravy používáme diskrétní simulaci. Návrh simulátoru je zaměřen na dálkové trasy, neboť předpokládáme, že vozidla mají možnost dobití v cílové destinaci. V simulátoru je nastavitelná řada parametrů pro nastavení vlastností simulace.

Výsledky

Na základě experimentů s různě zvolenými parametry simulátoru jsme došli k závěru, že jediné rozmístění za pomoci optimalizace genetickým algoritmem prokazovalo znatelně lepších výsledků než náhodné rozložení stanic.

Poděkování

Rád bych poděkoval panu Mgr. Martinu Pilátovi, Ph.D. za odborné vedení mé práce, cenné rady a vstřícnost při vypracování této práce.

Optimalizační metody

Cílem optimalizací je minimalizovat počet použitých stanic, vybitých vozidel, průměrné doby cesty vozidel, rozdílu hladin na začátku a konci cesty a doby čekání na nabíjecích stanicích. Kvalitu řešení popisuje ztrátová funkce, která je lineární kombinací těchto parametrů. V práci porovnáváme 3 optimalizační metody (hladovou, genetickým algoritmem a algoritmem k-means).

Hladový přístup

V hladovém přístupu náhodně rozmístíme stanice. Ty, které byly během simulace někdy použity jsou ponechány, zbylé stanice jsou buď vyřazeny z modelu, nebo jsou nahrazeny náhodně vygenerovanou stanicí.

Optimalizace genetický algoritmem

V optimalizaci genetickým algoritmem reprezentujeme jedince jako jedno rozmístění nabíjecích stanic na mapě a aplikujeme na nich vhodné techniky genetického algoritmu.

Optimalizace algoritmem k-means

V optimalizaci algoritmem k-means vhodně generujeme body v částech dopravní sítě v závislosti na průměrné hladině baterie. Výsledné centroidy jsou pak nové pozice stanic.

Pozice nabíjecích stanic po náhodném rozmístění pro 500 stanic

Pozice nabíjecích stanic po optimalizaci genetickým algoritmem pro 500 stanic

Informace

Kontakt: david.beinhauer@email.cz Vedoucí bakalářské práce: Mgr. Martin Pilát, Ph.D., Katedra teoretické informatiky a matematické logiky