# CMPT-413: Computational Linguistics

# **Anoop Sarkar**

anoop@cs.sfu.ca

www.sfu.ca/~anoop/courses/CMPT-413-Spring-2003.html

# Part of Speech Tagging: Mealy Machine



# Part of Speech Tagging: Moore Machine



# Automatic Speech Recognition (ASR)

- Acoustic observations: signal processing to extract energy levels at each frequency level, extract features from the waveform at regular (e.g. 10msec) intervals
- Observation sequence: o → Transcription: w
   Probability P(o | w) of observing o when transcription is w

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg \, max}} P(\mathbf{w} \mid \mathbf{o}) = \underset{\mathbf{w}}{\operatorname{arg \, max}} \frac{P(\mathbf{o} \mid \mathbf{w})P(\mathbf{w})}{P(\mathbf{o})}$$

$$= \underset{\mathbf{w}}{\operatorname{arg \, max}} \underbrace{P(\mathbf{o} \mid \mathbf{w})}_{generative} \underbrace{P(\mathbf{w})}_{language}$$

$$\underbrace{P(\mathbf{w} \mid \mathbf{o})}_{model} \underbrace{P(\mathbf{w})}_{model}$$

# Noisy Channel Model: Bayesian Inference Strikes Again



# Generative Models of Speech

- Typical decomposition of  $P(\mathbf{o} \mid \mathbf{w})$  into mappings between various levels of linguistic structure (multi-stage cascade):
  - Acoustic model:  $P(\mathbf{o} \mid \mathbf{p})$ , phone sequences  $\rightarrow$  observation sequences
  - Pronunciation model:  $P(\mathbf{p} \mid \mathbf{w})$ , word sequences  $\rightarrow$  phone sequences
  - Language model:  $P(\mathbf{w})$

# Generative Models of Speech

- Acoustic model: P(o | p), phone sequences → observation sequences
  - **-** P(**o** | **d**), distribution sequences → observation vectors  $symbolic \rightarrow quantitative$
  - $P(\mathbf{d} \mid \mathbf{m})$ , model sequences (context-dependent phone model)  $\rightarrow$  distribution sequences
  - $P(\mathbf{m} \mid \mathbf{p})$ , phone sequences  $\rightarrow$  model sequences

# Brief History of ASR

- 1920s: Radio Rex
   500 Hz of energy of the vowel in "Rex" caused the toy dog to move
- 1950s: Digit Recognition (Bell Labs)
- 1960s: Advances in Signal Processing and Neural Nets (not much success in ASR)
- 1970s: despite large ARPA funding, not much breakthrough success
- 1980s: Discrete ASR, Language models, corpus collection
   TIMIT corpus (phonetic corpus), ATIS corpus (Air Travel Information System) focus on language understanding
- 1990s: Large Vocabulary Continuous ASR, Dynamic Time Warping (edit distance), better phonetic models using classifiers (decision trees and neural nets), better language models using smoothing, larger corpora: 10<sup>7</sup> to 10<sup>9</sup> words in size
- Current work: multiple languages, multiple speakers (speaker id), noise resistant (telephone speech), software: htk, sphinx.

#### **Hidden Markov Models**

- A weighted finite state machine, with probabilities on transitions and on inputs (outputs).
- A set of states, each state is hidden, i.e. not visible in the data. The number of states is arbitrary but fixed and set in advance
- Assume each state is connected to every other state
- Numerous applications in speech, language processing, bioinformatics, cryptography, modeling continuous fns.

#### **Hidden Markov Models**

 At each time tick t, we traverse from one state to another and emit an output symbol

• 
$$P(s^i \xrightarrow{w} s^j) = P(S_{t+1} = s^j, W_t = w \mid S_t = s^i)$$

- $P(s^i \xrightarrow{w} s^j) = P(w, s^j \mid s^i) = P(w \mid s^i)P(s^j \mid s^i)$ — the Markov assumption
- transition probability:  $P(s_i \mid s_i)$
- output probability:  $P(w \mid s_i)$

# Hidden Markov Models: Algorithms

- Let's assume we have all the transition probabilities and output probabilities for an HMM
- Supervised Learning: estimate these probabilities with counts from human labeled *training data* sequence of output symbols  $w_1, \ldots, w_n$  along with the correct state for each output symbol  $(s_1, \ldots, s_{n+1}; w_1, \ldots, w_n)$
- Now let's assume that we have a sequence of output symbols:  $w_1, \ldots, w_n$  and we need to find the best sequence of states  $s_1, \ldots, s_{n+1} \to \text{Viterbi algorithm}$

# Hidden Markov Models: Algorithms

- What if we do not have human labeled training data? We have just the list of sequences of output symbols:  $w_1, \ldots, w_n$
- Unsupervised Learning: how can we infer the "hidden" state sequences for each output symbol sequence
- Infer the transition probabilities and the output probabilities → Forward-Backward algorithm

#### **Hidden Markov Models**

• 
$$P(w_{(1,n)}) = \sum_{s_{(1,n+1)}} P(w_{(1,n)}, s_{(1,n+1)})$$

• 
$$\sum_{s_{(1,n+1)}} \prod_{i=1}^n P(w_i, s_{i+1} | s_i)$$

• 
$$\sum_{s_{(1,n+1)}} \prod_{i=1}^n P(s^i \stackrel{w_i}{\rightarrow} s^{i+1})$$

• Best path (Viterbi algorithm):  $\underset{s_{(1,n+1)}}{\operatorname{arg max}} \prod_{i=1}^n P(s^i \overset{w_i}{\to} s^{i+1})$ 

$$P(w, s_i \mid s_{i-1}) = P(w \mid s_i) \times P(s_i \mid s_{i-1})$$



#### Viterbi Algorithm: Extension of ND-Recognize

```
function VITERBI (edges, input) returns best-path
 T = length of input;
num-states = NUM-OF-STATES(edges);
Create a path matrix: viterbi[num-states+2, T+2]
 for each time step t from 0 to T:
   for each state s from 0 to num-states:
     for each transition s' from s in edges:
       new-score = viterbi[s,t] *
                   edges[s,s'] *
                   input[s',obs[t]];
       if ((viterbi[s', t+1] == 0)) or
            (new-score > viterbi[s', t+1])):
          viterbi[s', t+1] = new-score;
          back-pointer[s', t+1] = s;
```

# Viterbi Algorithm

- Key Idea 1: storing the best path upto *each* state is enough to find the best path for the entire input sequence.
- Key Idea 2: storing only the single current best path is *not* enough to find the best path for the entire input sequence.

# Forward-Backward Algorithm: Baum-Welch

- How can we compute transition and output probabilities, when the state sequences are "hidden"?
- ullet Intuitively, probability of taking a transition from a state  $s^i$  to  $s^j$  is

$$P_e(s^i \xrightarrow{w} s^j) = \frac{C(s^i \xrightarrow{w} s^j)}{\sum_{k,w'} C(s^i \xrightarrow{w'} s^k)}$$

- So once we have a method for computing  $C(s^i \stackrel{w}{\to} s^j)$  we can re-estimate each transition probability
- Note that number of times you take a transition also depends on the initial setting of the transition and output probability

- Hence, the probability of a transition is the number of times it was used in a path (state sequence) times the probability of that path (for all paths)
- Let  $\eta$  be the probability that  $s^i \stackrel{w}{\to} s^j$  appears in the path  $s_{(1,n+1)}$  when the output is  $w_{(1,n)}$

$$C(s^{i} \xrightarrow{w} s^{j}) = \sum_{\substack{s_{(1,n+1)} \\ \eta(s^{i} \xrightarrow{w} s^{j}, s_{(1,n+1)}, w_{(1,n)})}} P(s_{(1,n+1)} | w_{(1,n)}) \cdot$$

$$C(s^{i} \stackrel{w}{\to} s^{j}) = \sum_{\substack{s_{(1,n+1)} \\ \eta(s^{i} \stackrel{w}{\to} s^{j}, s_{(1,n+1)}, w_{(1,n)}) \\ \eta(s^{i} \stackrel{w}{\to} s^{j}, s_{(1,n+1)}, w_{(1,n)})}}{P(s_{(1,n+1)} | w_{(1,n)})}$$

$$C(s^{i} \stackrel{w}{\to} s^{j}) = \frac{1}{P(w_{(1,n)})} \times$$

$$\sum_{t=1}^{n} \sum_{s_{(1,n+1)}} P(s_{(1,n+1)}, w_{(1,n)}, S_{t} = s^{i}, S_{t+1} = s^{j}, W_{t} = w)$$

$$P(w_{(1,n)}) = \sum_{s_{(1,n+1)}} P(s_{(1,n+1)}, w_{(1,n)})$$

$$C(s^{i} \xrightarrow{w} s^{j}) = \frac{1}{P(w_{(1,n)})} \times$$

$$\sum_{t=1}^{n} P(w_{(1,n)}, S_{t} = s^{i}, S_{t+1} = s^{j}, W_{t} = w)$$

$$= \frac{1}{P(w_{(1,n)})} \times$$

$$\sum_{t=1}^{n} P(w_{(1,t-1)}, S_{t} = s^{i}, S_{t+1} = s^{j}, W_{t} = w, w_{(t+1,n)})$$

$$= \frac{1}{P(w_{(1,n)})} \times \sum_{t=1}^{n} P(w_{(1,t-1)}, S_{t} = s^{i}) \cdot$$

$$P(S_{t+1} = s^{j}, W_{t} = w \mid w_{(1,t-1)}, S_{t} = s^{i}) \cdot$$

$$P(w_{(t+1,n)} \mid w_{(1,t)}, S_{t} = s^{i}, S_{t+1} = s^{j})$$

$$C(s^{i} \overset{w}{\to} s^{j}) = \frac{1}{P(w_{(1,n)})} \times \sum_{t=1}^{n} P(w_{(1,t-1)}, S_{t} = s^{i}) \cdot P(S_{t+1} = s^{j}, W_{t} = w \mid w_{(1,t-1)}, S_{t} = s^{i}) \cdot P(w_{(t+1,n)} \mid w_{(1,t)}, S_{t} = s^{i}, S_{t+1} = s^{j})$$

$$= \frac{1}{P(w_{(1,n)})} \times \sum_{t=1}^{n} P(w_{(1,t-1)}, S_{t} = s^{i}) \cdot P(S_{t+1} = s^{j}, W_{t} = w \mid S_{t} = s^{i}) \cdot P(w_{(t+1,n)} \mid S_{t+1} = s^{j})$$

$$= \frac{1}{P(w_{(1,n)})} \times \sum_{t=1}^{n} \alpha_{i}(t) \cdot P(s^{i} \overset{w}{\to} s^{j}) \cdot \beta_{j}(t+1)$$

$$\alpha_{i}(t) = P(w_{(1,t-1)}, S_{t} = s^{i})$$

$$\alpha_{s_{1}}(1) = 1.0$$

$$\alpha_{j}(t+1) = P(w_{(1,t)}, S_{t+1} = s^{j})$$

$$= \sum_{i} P(w_{(1,t)}, S_{t} = s^{i}, S_{t+1} = s^{j})$$

$$= \sum_{i} P(w_{(1,t-1)}, S_{t} = s^{i}) \cdot$$

$$P(W_{t} = w, S_{t+1} = s^{j} \mid w_{(1,t-1)}, S_{t} = s^{i})$$

$$= \sum_{i} \alpha_{i}(t) \cdot P(s^{i} \xrightarrow{w} s^{j})$$

$$\beta_{i}(t) = P(w_{(t,n)} | S_{t} = s^{i})$$

$$\beta_{i}(n+1) = P(\epsilon | S_{n+1} = s^{i}) = 1.0$$

$$\beta_{i}(t-1) = P(w_{(t-1,n)} | S_{t-1} = s^{i})$$

$$= \sum_{j} P(W_{t-1} = w, S_{t} = s^{j} | S_{t-1} = s^{i}) \cdot P(w_{(t,n)} | W_{t-1} = w, S_{t} = s^{j}, S_{t-1} = s^{i})$$

$$= \sum_{j} P(W_{t-1} = w, S_{t} = s^{j} | S_{t-1} = s^{i}) \cdot P(w_{(t,n)} | S_{t} = s^{j})$$

$$= \sum_{j} P(s^{i} \xrightarrow{w} s^{j}) \cdot \beta_{j}(t)$$

$$\alpha_{j}(t) = \sum_{k=1}^{|Q|} \Box_{k}(t-1) P(s^{k} \xrightarrow{w} s^{j}) \beta_{j}(t+1)$$

$$C(s^{i} \xrightarrow{w} s^{j}) = \frac{1}{P(w_{1,n})} \sum_{t=1}^{n} \alpha_{j}(t) P(s^{i} \xrightarrow{w} s^{j}) \beta_{j}(t+1)$$



$$\alpha_{q}(t) = \alpha_{q}(t-1)P(a,q|q) + \alpha_{q}(t-1)P(b,q|q) + \alpha_{r}(t-1)P(a,q|r) + \alpha_{r}(t-1)P(b,q|r)$$

$$\beta_{r}(t+1) = P(a,q|r)\beta_{q}(t+2) + P(b,q|r)\beta_{q}(t+2) + P(a,r|r)\beta_{r}(t+2) + P(b,r|r)\beta_{r}(t+2)$$

$$C(q \xrightarrow{a} r) = \frac{1}{P(w_{(1,n)})} \sum_{t=1}^{n} \alpha_{q}(t)P(a,r|q)\beta_{r}(t+1)$$

- Set initial transition probabilities to appropriate values (usually random)
- Compute  $C(s^i \xrightarrow{w} s^j)$  for each state i and then  $P_e(s^i \xrightarrow{w} s^j) = \frac{C(s^i \xrightarrow{w} s^j)}{\sum_{k,w'} C(s^i \xrightarrow{w'} s^k)}$
- Compute likelihood  $P(w_{(1,n)})=\beta_{s^1}(1)$ ; iterate until likelihood is maximized (or entropy is minimized)
- Here we considered the case for one training sentence  $w_{(1,n)}$ . For a whole corpus,  $\prod_k P(w_{(1,n)}^k)$  is the likelihood of the entire corpus with k sentences

- Also known as the Baum-Welch algorithm.
- Likelihood is guaranteed to be non-decreasing (entropy is guaranteed to go down *or* stay the same.
  - → This guarantee is due to the theorem by Baum (generalized in DLR77)
     Maximum-likelihood from incomplete data via the EM algorithm. A. P. Dempster, N.
     M. Laird and D. B. Rubin. *Journal of the Royal Statistics Society*, 1977, 39:1, pp.
     1–38
- Forward-Backward Algorithm is an example of purely unsupervised learning