Analiza matematyczna dla informatyków.

Mieczysław Cichoń, ver. 2.4/2021

Mieczysław Cichoń - WMI UAM

Całki podwójne.

Definicja i najprostsze własności całki podwójnej.

Zagadnienie pola trapezu krzywoliniowego przywiodło nas do pojęcia zwykłej całki oznaczonej. Podobnie zagadnienie objętości walca krzywoliniowego prowadzi nas do nowego pojęcia - całki podwójnej (oznaczonej).

Rozważmy bryłę V ograniczoną z góry powierzchnią z=f(x,y), z boków powierzchnią walcową o tworzących równoległych do osi Oz i z dołu - figurą płaską D na płaszczyźnie OXY.

Należy znaleźć objętość bryły V.

Dla rozwiązania tego zagadnienia posłużymy się metodą polegającą na rozkładzie szukanej wielkości na części elementarne, przybliżonym obliczeniu każdej z części, zsumowaniu i przejściu do granicy.

W tym celu podzielmy obszar D siatką krzywych na części P_1, P_2, \ldots, P_n i rozważmy zbiór małych walców mających te właśnie części za podstawy i składających się w sumie na bryłę V.

W celu obliczenia objętości poszczególnych walców weźmy w każdej figurze P_i dowolny punkt (ξ_i,η_i) . Jeżeli w przybliźeniu zastąpimy każdy walec walcem o podstawach równoległych i o wysokości równej rzędnej $f(\xi_i,\eta_i)$, to objętość walca wynosi: $f(\xi_i,\eta_i)\cdot |P_i|$, gdzie $|P_i|$ oznacza pole figury D.

W takim razie przybliżona objętość całej bryły wynosi

$$\mid V \mid \approx \sum_{i=1}^{n} f(\xi_i, \eta_i) \mid P_i \mid$$
.

Dla zwiększenia dokładności tego przybliżenia zmniejszajmy wymiary pól $|P_i|$ zwiększając ich liczbę. Przechodząc do granicy, przy zdążaniu do zera największej ze średnic obszarów P_i , otrzymujemy dokładną równość, mamy więc

$$|V| = \lim_{i=1}^n f(\xi_i, \eta_i) |P_i|$$
.

Wzór ten stanowi rozwiązanie zagadnienia.

Granicę tego typu nazywamy całką podwójną funkcji f(x,y) po obszarze P_i ; oznaczamy ją symbolem: $\iint\limits_P f(x,y)dP$, a więc wzór

na objętość przyjmuje postać:

$$|V| = \iint_{D} f(x,y)dP$$
.

Definicja. Suma całkowa funkcji po prostokącie

Niech funkcja f(x,y) będzie ograniczona na prostokącie R oraz niech P będzie podziałem tego prostokąta. **Sumą całkową** funkcji f nazywamy liczbę

$$\sum_{k=1}^n f(\xi_k, \eta_k) \Delta x_k \Delta y_k.$$

Pojedyncze składniki powyższej sumy są objętościami prostopadłościanów, których podstawami są prostokąty R_k , a wysokościami $f(\xi_k, \eta_k)$.

Definicja. Całka podwójna funkcji po prostokącie.

Niech funkcja f(x,y) będzie ograniczona na prostokącie R. Całkę podwójną funkcji f po prostokącie R określamy wzorem

$$\iint\limits_R f(x,y)dxdy = \lim_{\delta(P)\to 0} \sum_{k=1}^n f(\xi_k,\eta_k) \Delta x_k \Delta y_k,$$

o ile ta granica jest właściwa. Jeżeli całka istnieje, to mówimy, że funkcja jest całkowalna. Każda funkcja ciągła jest całkowalna.

Interpretacja geometryczna.

Składnik $f(\xi_k, \eta_k)\Delta x_k\Delta y_k$ sumy całkowej można interpretować jako objętość prostopadłościanu, którego podstawa jest prostokątem o wymiarach $\Delta x_k, \Delta y_k$ a wysokością jest $f(\xi_k, \eta_k)$. Suma całkowa jest zatem przybliżeniem objętości bryły ograniczonej prostokątem R, powierzchnią z = f(x, y) i ścianami bocznymi równoległymi do os OZ.

Własności całki podwójnej po prostokącie.

- Funkcja ciągła na prostokącie jest na nim całkowalna;
- $f(x,y)=0 \Rightarrow \iint\limits_R f(x,y) dx dy=0;$

liniowość całki
$$\iint\limits_R (\alpha f(x,y) + \beta g(x,y)) \, dxdy =$$

$$\alpha \iint\limits_R f(x,y) \, dxdy + \beta \iint\limits_R g(x,y) \, dxdy,$$
gdzie $\alpha, \beta \in \mathbb{R}$;

Własności całki podwójnej po prostokącie.

addytywność całki względem obszaru całkowania Jeżeli funkcja f jest całkowalna na prostokącie R, to dla dowolnego podziału tego prostokąta na prostokąty R₁, R₂ o rozłącznych wnętrzach zachodzi

$$\iint\limits_R f(x,y) dxdy = \iint\limits_{R_1} f(x,y) dxdy + \iint\limits_{R_2} f(x,y) dxdy;$$

Jeżeli D jest prostokątem danym nierównościami $a \le x \le b$, $c \le y \le d$, to

$$\iint\limits_{D} f(x,y)d\sigma = \int_{a}^{b} \left[\int_{c}^{d} f(x,y)dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x,y)dx \right] dy ,$$

a jeżeli ponadto funkcja $f(x,y) = \varphi(x)\psi(y)$, to całka podwójna równa się iloczynowi całek pojedynczych:

$$\iint\limits_{D} \varphi(x)\psi(y)d\sigma = \int_{a}^{b} \varphi(x)dx \int_{c}^{d} \psi(y)dy.$$

Całki określone powyższymi wzorami nazywamy całkami iterowanymi.

Obliczyć podane całki iterowane:

$$\int_{1}^{2} \left(\int_{0}^{3} (x + y^{2}x) dy \right) dx = \int_{1}^{2} \left(x \int_{0}^{3} dy + x \int_{0}^{3} y^{2} dy \right) dx =$$

$$\int_{1}^{2} \left(x[y]_{0}^{3} + x \left[\frac{y^{3}}{3} \right]_{0}^{3} \right) dx = \int_{1}^{2} \left(3x + 9x \right) dx = 12 \int_{1}^{2} x \, dx$$

$$12 \cdot \frac{x^2}{2} \mid_1^2 = 12 \left(2 - \frac{1}{2} \right) = 18.$$

$$\int_{0}^{\ln 4} \left(\int_{0}^{\ln 3} e^{x+y} dy \right) dx = \begin{vmatrix} t = x+y \\ dt = dy \\ y & 0 & \ln 3 \\ \hline t & x & x+\ln 3 \end{vmatrix} =$$

$$\int\limits_0^{\ln 4} \left(\int\limits_x^{x+\ln 3} e^t \ dt\right) dx = \int\limits_0^{\ln 4} \left(e^t\right)_x^{x+\ln 3} \ dx =$$

$$\int_{0}^{\ln 4} \left(e^{x + \ln 3} - e^{x} \right) dx = \int_{0}^{\ln 4} \left(e^{x} \cdot e^{\ln 3} - e^{x} \right) dx =$$

$$\int_{0}^{\ln 4} \left(3e^{x} - e^{x} \right) dx = 2 \int_{0}^{\ln 4} e^{x} dx = 2e^{x} \Big|_{0}^{\ln 4} = 2e^{\ln 4} - 2e^{0} =$$

$$= 8 - 2 = 6$$
.

UWAGA.

Jeżeli f jest funkcją postaci $f(x,y) = g(x) \cdot h(y)$, gdzie funkcje g i h są ciągłe odpowiednio na przedziałach [a,b], [c,d], to

$$\iint_{[a,b]\times[c,d]} f(x,y) dx dy = \left(\int_a^b g(x)dx\right) \cdot \left(\int_c^d h(y)dy\right).$$

$$\iint\limits_R xy(x+y)\ dx\ dy, \ \mathsf{gdzie}\ R = [-1,1] \times [-1,1].$$

$$\iint\limits_R \left(x^2y + xy^2\right) \, dx \, dy = \iint\limits_R x^2y \, dx \, dy + \iint\limits_R xy^2 \, dx \, dy =$$

$$\int\limits_{-1}^{1} \left(\int\limits_{-1}^{1} x^2 y \ dy \right) \ dx + \int\limits_{-1}^{1} \left(\int\limits_{-1}^{1} x y^2 \ dy \right) \ dx =$$

$$\left(\int_{-1}^{1} x^{2} dx\right) \cdot \left(\int_{-1}^{1} y dy\right) + \left(\int_{-1}^{1} x dx\right) \cdot \left(\int_{-1}^{1} y^{2} dy\right) =$$

$$\left(\frac{x^3}{3}\mid_{-1}^{1}\right)\cdot\left(\frac{y^2}{2}\mid_{-1}^{1}\right)+\left(\frac{x^2}{2}\mid_{-1}^{1}\right)\cdot\left(\frac{y^3}{3}\mid_{-1}^{1}\right)=0$$

Definicja. Całka podwójna po obszarze

Niech f będzie funkcją określoną i ograniczoną na obszarze ograniczonym $D \subset \mathbb{R}^2$ oraz niech R będzie dowolnym prostokątem zawierającym obszar D. Ponadto niech funkcja f^* będzie rozszerzeniem funkcji f na R określonym wzorem:

$$f^*(x,y) = \begin{cases} f(x,y) & \mathrm{dla} \quad (x,y) \in D \\ 0 & \mathrm{dla} \quad (x,y) \in R \smallsetminus D. \end{cases}$$

Definicja. Całka podwójna po obszarze

Całkę podwójną funkcji f po obszarze D definiujemy wzorem:

$$\iint\limits_{D} f(x,y) dxdy = \iint\limits_{R} f^{*}(x,y) dxdy$$

o ile całka poprawej stronie istnieje. Mówimy wtedy, że funkcja f jest całkowalna na obszarze D.

Uwaga. Całka $\iint\limits_R f^*(x,y) \, dxdy$ nie zależy od wyboru prostokąta R.

Zamiana całki podwójnej na całkę iterowaną.

Wygodnym sposobem obliczenia całki podwójnej jest jej zamiana na całkę iterowaną. Aby taką zamianę przeprowadzić musimy zdefiniować pojęcie obszaru normalnego względem osi układu współrzędnych *OX* i *OY*.

Definicja. Obszar normalny.

Obszar normalny względem osi OX to zbiór punktów (x,y) spełniających warunek

$$\begin{cases} a \le x \le b \\ g(x) \le y \le h(x), \end{cases}$$

a obszar normalny względem osi ${\it OY}$ to następujący zbiór punktów

$$\begin{cases} c \le y \le d \\ p(y) \le x \le r(y). \end{cases}$$

Obszar normalny względem osi OX.

Obszar normalny względem osi Oy.

Obszary przedstawione na poniższych rysunkach zapisać jako normalne względem osi OX lub OY.

Obszar jest obszarem

normalnym względem osi OX. Możemy go opisać:

$$D: \begin{cases} 0 \le x \le 2 \\ x \le y \le 4 - x. \end{cases}$$

Obszar jest obszarem

normalnym względem osi *OX* oraz *OY*. Możemy go opisać:

wzgl.
$$OX$$
:

$$\{(x,y): 0 \le x \le 1, 0 \le y \le \sqrt{1-x^2}\};$$

wzgl. OY:

$$\{(x,y): 0 \le y \le 1, 0 \le x \le \sqrt{1-y^2}\}.$$

Obszar jest obszarem

normalnym względem osi Oy. Możemy go opisać:

$$D: \begin{cases} -1 \le y \le 2 \\ y^2 \le x \le y + 2. \end{cases}$$

Zamiana całki podwójnej na iterowaną.

Załóżmy, że funkcje występujące pod znakiem całki są ograniczone i ciągłe w rozpatrywanych obszarach. Wtedy jeżeli obszar D jest obszarem normalnym względem osi OX (tzn. jest zbiorem punktów M(x,y)), których współrzędne spełniają (jednocześnie) nierówności: $a \le x \le b$, $h(x) \le y \le k(x)$, przy czym funkcje h(x) i k(x) są ciągłe w przedziale < a, b > oraz spełniają nierównościh(x) < k(x) w przedziale (a,b) danym nierównościami $a \le x \le b$, $\varphi(x) \le y \le \psi(x)$ to

$$\iint\limits_{D} f(x,y)d\sigma = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y)dy \right) dx .$$

Jeżeli obszar D jest obszarem normalnym względem osi OY (tzn. jest zbiorem punktów M(x,y), których współrzędne spełniają (jednocześnie) nierówności $I(y) \le x \le p(y)$, $c \le y \le d$, gdzie I(y) i p(y) są funkcjami ciągłymi w przedziale < c, d >) danym nierównościami $\alpha(y) \le x \le \beta(y)$, $c \le y \le d$, to

$$\iint\limits_{D} f(x,y)d\sigma = \int_{c}^{d} \left(\int_{\alpha(y)}^{\beta(y)} f(x,y)dx \right) dy.$$

Zamienić całkę podwójną $\iint_D f(x,y) \, dx dx$ na całkę iterowaną, jeżeli obszar D ograniczony jest krzywymi:

$$y=x^2, y^2=x;$$

- Szukamy punktów wspólnych podanych krzywych: $x^2 = \sqrt{x}$ $x^4 = x, x \ge 0$ $x(x^3 1) = 0$ $x \ge 0$ $x = 0 \lor x = 1$, dla x = 0 mamy y = 0, dla x = 1 mamy y = 1.
- ▶ *D* jest obszarem normalnym względem osi *OX*, $D = \{(x, y) : 0 \le x \le 1, x^2 \le y \le \sqrt{x}\};$
- Stad

$$\iint_D f(x,y) \ dxdy = \int_0^1 \left(\int_{x^2}^{\sqrt{x}} f(x,y) \ dy \right) dx.$$

- ▶ *D* jest również obszarem normalnym względem osi *OY*, $D = \{(x, y) : 0 \le y \le 1, y^2 \le x \le \sqrt{y}\};$
- Stąd

$$\iint_D f(x,y)dxdy = \int_0^1 \left(\int_{y^2}^{\sqrt{y}} f(x,y)dx \right) dy.$$

Definicja. Obszar regularny na płaszczyźnie.

Sumę skończonej liczby obszarów normalnych (względem osi *OX* lub *OY*) o parami rozłącznych wnętrzach nazywamy obszarem regularnym na płaszczyźnie.

Niech obszar regularny D będzie sumą obszarów normalnych D_1, D_2, \cdots, D_n o parami rozłącznych wnętrzach oraz niech funkcja f będzie całkowalna na tym obszarze. Wtedy

$$\iint\limits_{D} f(x,y) dx dy =$$

$$\iint\limits_{D_1} f(x,y) dx dy + \iint\limits_{D_2} f(x,y) dx dy + \dots + \iint\limits_{D_n} f(x,y) dx dy.$$

Obliczyć podane całki podwójne po zbiorach ograniczonych wskazanami krzywymi:

(a) $\iint_D dydx$, gdzie D jest obszarem ograniczonym krzywymi $y=2x^2,\ y=x^2+1.$

Obszar całkowania jest normalny względem osi OX :

$$D: \begin{cases} -1 \le x \le 1\\ 2x^2 \le y \le x^2 + 1 \end{cases}$$

Stad

$$\int_{-1}^{1} \left(\int_{2x^2}^{x^2+1} dy \right) dx = \int_{-1}^{1} \left(\frac{y^2}{2} \right)_{2x^2}^{x^2+1} dx = \int_{-1}^{1} (1-x^2) dx = \frac{4}{3}.$$

▶ Obszar całkowania jest regularny względem osi *OY* :

$$D_{1}: \begin{cases} 0 \leq y \leq 1 \\ -\sqrt{\frac{y}{2}} \leq x \leq \sqrt{\frac{y}{2}} \end{cases}$$

$$D_{2}: \begin{cases} 1 \leq y \leq 2 \\ -\sqrt{\frac{y}{2}} \leq x \leq -\sqrt{y-1} \end{cases}$$

$$D_{3}: \begin{cases} 1 \leq y \leq 2 \\ \sqrt{y-1} \leq x \leq \sqrt{\frac{y}{2}} \end{cases}$$

Definicja.

Niech Δ i D będą obszarami na płaszczyznach Ouv i Oxy odpowiednio. Przekształceniem obszaru Δ w obszar D nazywamy funkcję $T:\Delta\to D$:

$$T(u,v)=(x,y), \text{ gdzie } x=\phi(u,v), y=\psi(u,v).$$

Definicja. Jakobian.

Jakobianem przekształcenia $T(u,v) = (\phi(u,v),\psi(u,v))$ nazywamy funkcję:

$$J(u,v) = \begin{vmatrix} \frac{\partial \phi}{\partial u}(u,v) & \frac{\partial \phi}{\partial v}(u,v) \\ \frac{\partial \psi}{\partial u}(u,v) & \frac{\partial \psi}{\partial v}(u,v) \end{vmatrix}$$

Twierdzenie.

Jeżeli

- ▶ $T: \Delta \to D$, $T(u,v) = (\phi(u,v), \psi(u,v))$ przekształca wzajemnie jednoznacznie wnętrze obszaru Δ na wnętrze obszaru D;
- funkcje ϕ, ψ mają ciągłe pochodne cząstkowe;
- funkcja f(x,y) jest ciągła na D;
- lacktriangle jakobian J(u,v) jest różny od 0 wewnątrz obszaru Δ , to

$$\iint\limits_{D}f(x,y)dxdy=\iint\limits_{\Delta}f(\phi(u,v),\psi(u,v))\left|J(u,v)\right|dudv.$$

Specjalnym, ważnym przypadkiem przekształcenia płaskiego jest przekształcenie:

$$x = r \cos \Theta$$
, $y = r \sin \Theta$,

które odwzorowuje płaszczyznę $Or\Theta$ w płaszczyznę OXY.

Przekształcenie to odpowiada zamianie współrzędnych prostokątnych na współrzędne biegunowe.

Po przekształceniu obrazem prostej $\Theta=\alpha$ jest prosta $y=x \operatorname{tg}\alpha$ przy $\alpha \neq \frac{1}{2}\pi + k\pi$, a prosta x=0 przy $\alpha = \frac{1}{2}\pi + k\pi$ (k-całkowite), natomiast obrazem prostej $r=r_0$ jest okrąg $x^2+y^2=r_0^2$

Przykład.

Obliczyć całkę niewłaściwą $\int_0^\infty e^{-x^2} dx$.

Całki tej nie da się obliczyć w ten sposób, w jaki obliczaliśmy dotychczas całki niewłaściwe ponieważ funkcji $F(x) = \int e^{-x^2} dx$ nie da się wyrazić przez znane nam funkcje elementarne.

Całka ta daje się łatwo obliczyć przez zastosowanie właściwości całek podwójnych.

Niech k_1 oznacza koło o środku w początku układu i promieniu u, k_2 niech oznacza koło o środku w początku układu i promieniu $u\sqrt{2}$ oraz niech k będzie kwadratem o środku w początku układu współrzędnych i bokach równoległych do osi współrzędnych, równych 2u.

Biorac pod uwagę, że $e^{-(x^2+y^2)} > 0$, na podstawie własności całek podwójnych, otrzymujemy:

$$\iint\limits_{k_1} e^{-(x^2+y^2)} dx dy \leq \iint\limits_{k} e^{-(x^2+y^2)} dx dy \leq \iint\limits_{k_2} e^{-(x^2+y^2)} dx dy \ .$$

W skrajnych całkach wprowadźmy współrzędne biegunowe: $x = \varrho \cos \varphi \quad y = \varrho \sin \varphi$. Środkową całkę zamieniamy natomiast na iloczyn całek pojedynczych.

Wówczas otrzymujemy:

$$\iint\limits_{0\leq \varrho\leq u; 0\leq \varphi\leq 2\pi} \varrho\cdot e^{-(\varrho^2\cos^2\varphi+\varrho^2\sin^2\varphi)} d\varrho d\varphi =$$

$$= \iint\limits_{0\leq \varrho\leq ; 0\leq \varphi\leq 2\pi} e^{-\varrho^2}\cdot \varrho d\varrho d\varphi \leq$$

$$\leq \int_{-u}^{u} e^{-x^2} dx \int_{-u}^{u} e^{-y^2} dy \leq \iint\limits_{0\leq \varrho\leq u\sqrt{2}; 0\leq \psi\leq 2\pi} e^{-\varrho^2} \varrho d\varrho d\varphi \ .$$

Zamieniając skrajne całki na iloczyn całek pojedynczych, upraszczając wyrażenie środkowe i biorąc pod uwagę, że

$$\int_{-u}^{u} e^{-x^2} dx = \int_{-u}^{u} e^{-y^2} dy$$

mamy:

$$\int_0^{2\pi} d\varphi \int_0^u e^{-\varrho^2} \varrho d\varrho \leq \left(\int_{-u}^u e^{-x^2} dx\right)^2 \leq \int_0^{2\pi} d\varphi \int_0^{u\sqrt{2}} e^{-\varrho^2} \varrho d\varrho \ .$$

Ponieważ $\int e^{-\varrho^2} \varrho d\varrho = -\frac{1}{2} e^{-\varrho^2}$ oraz $\int_{-u}^{u} e^{-x^2} dx = 2 \int_{0}^{u} e^{-x^2} dx$ (ponieważ e^{-x^2} jest funkcją parzystą), otrzymujemy:

$$\pi(1-e^{-u^2}) \le 4\left(\int_0^u e^{-x^2} dx\right)^2 \le \pi(1-e^{-2u^2})$$
,

$$\frac{1}{4}\pi(1-e^{-u^2}) \le \left(\int_0^u e^{-x^2} dx\right)^2 \le \frac{1}{4}\pi(1-e^{-2u^2}).$$

A skoro mamy do czynienia z wyrażeniami dodatnimi, to możemy nierówność pierwiastkować stronami, zatem

$$\frac{1}{2}\sqrt{\pi}\sqrt{1-e^{-u^2}} \le \int_0^u e^{-x^2} dx \le \frac{1}{2}\sqrt{\pi}\sqrt{1-e^{-2u^2}} \ .$$

Przechodząc do granicy przy *u* dążącym do nieskończoności i stosując twierdzenie o trzech funkcjach otrzymujemy

$$\lim_{n\to\infty}\int_0^u e^{-x^2}dx = \frac{1}{2}\sqrt{\pi} ,$$

ponieważ

$$\lim_{n \to \infty} \sqrt{1 - e^{-u^2}} = \lim_{n \to \infty} \sqrt{1 - e^{-2u^2}} = 1.$$

Ostatecznie:

$$\int_0^\infty e^{-x^2} dx = \frac{1}{2} \sqrt{\pi} \ .$$

Całka ta nazywa się *całką Poissona*, *całką Laplece'a lub całką Gaussa*.

Wobec parzystości funkcji e^{-x^2} mamy także:

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} \ .$$

Jak obliczamy całki podwójne? Np.

$$V = \iint_{\{(x,y):x^2+y^2 \le 1\}} (3-3x^2-3y^2) dx dy$$

$$= \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} (3-3x^2-3y^2) dy dx$$

$$= \int_{-1}^{1} (3y-3x^2y-y^3) \Big|_{y=-\sqrt{1-x^2}}^{y=-\sqrt{1-x^2}} dx$$

$$= \int_{-1}^{1} (6\sqrt{1-x^2}-6x^2\sqrt{1-x^2}-2(1-x^2)^{3/2}) dx$$

$$= \int_{-\pi/2}^{\pi/2} (6\sqrt{1-\sin^2\theta}-6\sin^2\theta\sqrt{1-\sin^2\theta}-2(1-\sin^2\theta)^{3/2}) \cos\theta d\theta$$

$$= \int_{-\pi/2}^{\pi/2} (6\cos\theta-6\sin^2\theta\cos\theta-2\cos^3\theta) \cos\theta d\theta$$

$$= \int_{-\pi/2}^{\pi/2} 4\cos^4\theta d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \left(\frac{3}{2}+2\cos2\theta+\frac{1}{2}\cos4\theta\right) d\theta$$

$$= \left[\frac{3}{2}\theta+\sin2\theta+\frac{1}{8}\sin4\theta\right]_{-\pi/2}^{\pi/2} = \frac{3\pi}{2}.$$

Mieczysław Cichoń, ver. 2.4/2021

Definicja całki podwójnej Riemanna.

Tak więc całka podwójna jest bezpośrednim uogólnieniem pojęcia zwykłej całki oznaczonej na przypadek funkcji dwóch zmiennych. Odgrywa ona ważną rolę przy definiowaniu różnych wielkości geometrycznych i fizycznych. Podajmy teraz ogólną definicję całki podwójnej Riemanna.

Ten formalizm przyda się do zrozumienia metod numerycznych dla całki podwójnej - analogicznych jak omawialiśmy przy całce (pojedynczej) Riemanna. Niech w obszarze P określona będzie funkcja f(x,y). Podzielmy obszar P siecią krzywych na skończoną ilość obszarów P_1, P_2, \ldots, P_n o polach $|P_1|, |P_2|, \ldots, |P_n|$.

W każdym z obszarów elementarnych P_i obierzmy dowolny punkt (ξ_i,η_i) , pomnóżmy wartość funkcji w tym punkcie $f(\xi_i,\eta_i)$ przez pole $|P_i|$ obszaru i zsumujmy wszystkie iloczyny. Otrzymujemy sumę

$$\sigma = \sum_{i=1}^{n} f(\xi_i, \eta_i) | P_i |,$$

którą będziemy nazywać sumą całkową dla funkcji f(x,y) w obszarze P. Oznaczmy przez λ największą ze średnic obszarów częściowych P_i .

Skończoną granicę I sumy całkowej σ przy $\lambda \to 0$ nazywamy całką podwójną funkcji f(x,y) po obszarze P i oznaczamy symbolem:

$$I=\iint\limits_{P}f(x,y)dP\ .$$

Funkcję mającą całkę nazywamy funkcją całkowalną.

Warunki istnienia całki podwójnej.

Funkcja całkowalna musi być ograniczona:

$$m \le f(x,y) \le M$$
.

Wprowadźmy tzw. dolną i górną sumę Darboux:

$$s = \sum_{i=1}^{n} m_i \mid P_i \mid , \qquad S = \sum_{i=1}^{n} M_i \mid P_i \mid ,$$

gdzie m_i i M_i oznaczają odpowiednio kresy dolny i górny wartości funkcji f(x,y) w obszarze P_i . Przy danym sposobie podziału obszaru P na części, niezależnie od wyboru punktów (ξ_i, η_i) , spełnione sa nierówności

$$s \leq \sigma \leq S$$
.

Można tak dobrać wartości $f(\xi_i, \eta_i)$ dowolnie bliskie $m_i(M_i)$, a zatem sume σ uczynić dowolnie bliską s(S). W takim razie górna i dolna suma Darboux są odpowiednio kresem górnym i dolnym sum całkowych odpowiadających temu sposobowi podziału obszaru.

Dla sum Darboux możemy ustalić następujące własności:

Własność 1.

Przy dalszym podziałe części P_i , otrzymanym przez dołączenie nowych krzywych podziału do krzywych starych, dolna suma Darboux nie maleje, a górna nie rośnie.

Własność 2.

Żadna dolna suma Darboux nie przewyższa żadnej sumy górnej, choćby różniącej się od drugiej sposobem podziału obszaru *P*.

I z tych własności korzysta się przy tworzeniu metod numerycznych...

Twierdzenie. Na to, aby istniała całka podwójna, potrzeba i wystarcza, aby zachodził warunek:

$$\lim_{\lambda\to 0}(S-s)=0,$$

czyli przy innych oznaczeniach:

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} w_i \mid P_i \mid = 0 ,$$

gdzie w_i jest oscylacją $M_i - m_i$ funkcji f(x, y) w obszarze częściowym P_i .

Własności funkcji całkowalnych i całek podwójnych.

Jak już podawaliśmy dla całek podwójnych po prostokącie,po innych obszarach mamy analogiczne własności:

- 1. Jeżeli wartość funkcji f(x,y) całkowalnej w obszarze P zmienimy dowolnie wzdłuż jakiejś krzywej L o polu O, to otrzymana funkcja będzie również całkowalna w obszarze P, a jej całka będzie równa całce funkcji f(x,y).
- 2. Jeżeli obszar P, w którym dana jest funkcja f(x,y), został podzielony krzywą L (o polu O) na obszary P', P'', to z całkowalności funkcji f(x,y) w całym obszarze P wynika jej całkowalność w obu częściach P' i P'' i odwrotnie.

Z całkowalności funkcji w obydwu obszarach P' i P'' wynika całkowalność w obszarze P. Przy tym

$$\iint\limits_P f(x,y)dP = \iint\limits_{P'} f(x,y)dP + \iint\limits_{P''} f(x,y)dP \ .$$

3. Jeżeli pomnożymy funkcję f(x,y) całkowalną w obszarze P przez stałą k, to otrzymana funkcja jest również całkowalna oraz

$$\iint\limits_P kf(x,y)dP = k \iint\limits_P f(x,y)dP \ .$$

4. Jeżeli w obszarze P są całkowalne funkcje f(x,y) i g(x,y), to całkowalne są także funkcje $f(x,y) \pm g(x,y)$, przy czym

$$\iint\limits_P \big[f(x,y)\pm g(x,y)\big]dP=\iint\limits_P f(x,y)dP \pm \iint\limits_P g(x,y)dP\;.$$

5. Jeżeli całkowalne w obszarze P funkcje f(x,y) i g(x,y) spełniają nierówność $f(x,y) \le g(x,y)$ to

$$\iint\limits_{P} f(x,y)dP \leq \iint\limits_{P} g(x,y)dP \ .$$

6. W przypadku całkowalności funkcji f(x,y) całkowalna jest również funkcja |f(x,y)| i zachodzi nierówność:

$$\left| \int_{P} f(x,y) dP \right| \leq \iint_{P} |f(x,y)| dP.$$

7. Jeśli całkowalna w obszarze P funkcja f(x, y) spełnia nierówność:

$$m \le f(x,y) \le M$$
,

to

$$m \mid P \mid \leq \iint_{P} f(x,y) dP \leq M \mid P \mid$$
.

Całki niewłaściwe.

Podobnie jak w przypadku całki pojedynczej można (i będzie to przydatne!!) zdefiniować całki wielokrotne niewłaściwe. Tak naprawdę już przy omawianiu splotu obrazów czy rozmycia gaussa napotkaliśmy tego typu obiekty - choć wtedy były przedstawiane jako całi iterowane, czyli można było to rozumieć w sensie całek pojedynczych niewłaściwych. Niestety - nie mamy czasu na ich omawianie... Omówią to prowadzący przedmioty bazujące na rachunku prawdopodobieństwa, a zastosowania np. na grafice komputerowej. Zainteresowani znajdą proste materiały np. tutaj.

Równania różniczkowe.

Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci

$$F(x,y,y')=0$$

w którym y' występuje istotnie, pozostałe zaś argumenty, tzn. x i y mogą występować, lecz nie muszą.

Rozwiązaniem (całką) równania różniczkowego nazywamy każdą funkcję różniczkowalną w pewnym przedziale I.

$$\varphi = \varphi(x),$$

która spełnia dane równanie dla każdej wartości $x \in I$.

Rozwiązanie równania różniczkowego.

Rozwiązaniem ogólnym (całką ogólną) równania różniczkowego nazywamy każdą funkcję postaci

$$y = \psi(x, C)$$

która dla każdej wartości C należącej do pewnego przedziału jest rozwiązaniem równania, jest to więc jednoparametrowa rodzina linii. Rozwiązanie szczególne (całką szczególną) równania różniczkowego otrzymujemy nadając parametrowi C pewną stałą wartość (należącą do jego dziedziny).

Równania różniczkowe opisują dynamikę zmian obiektu i są absolutną podstawą do opisu każdego zmiennego procesu - niekiedy badana są też wersje różnicowe, bądące oparte o modele dyskretne.

Rząad równania różniczkoqwego to rząd najwyższej pochodnej funkcji niewiadomej występujący istotnie w równaniu. Np.

- 1. $\frac{dy}{dx} = x^2 + y^2$ RRZ rzędu pierwszego,
- 2. $\frac{d^2x}{dt^2} + 3xt + 2x = 4$ RRZ rzędu drugiego,
- 3. $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ równanie różniczkowe cząstkowe = funkcja niewiadoma zależy od więcej niż jednej zmiennej...

Podany przykład jest klasycznym równaniem **o zmiennych rozdzielonych**, stanowiących podstawową klasę równań...

Równaniem różniczkowym o zmiennych rozdzielonych nazywamy równanie postaci

$$y'(x) = f_1(x)f_2(y) .$$

Twierdzenie. Niech funkcje f_1 i f_2 będą ciągłe odpowiednio dla a < x < b i c < y < d, przy czym funkcja f_2 nigdzie nie jest równa zeru. Wówczas przez każdy punkt (x,y) prostokąta $Q = \{(x,y): a < x < b, c < y < d\}$ przechodzi dokładnie jedno rozwiąznie powyższego równania.

Przykład.

Rozwiążemy równanie y' = (2x - 1)y (czyli: $\frac{dy}{dx} = (2x - 1)y$).

Możemy postąpić w następujący sposób: załóżmy, że $y \neq 0$. Wówczas nasze równanie możemy napisać w postaci (rozdzielić zmienne)

$$\frac{dy}{y} = (2x - 1)dx.$$

Całkując obie strony otrzymujemy

$$\ln |y| = x^2 - x + C$$
, (C = const.)

Stąd

$$y = \tilde{C}e^{x^2-x}$$
, (gdzie $\tilde{C} = \pm e^C$).

Zauważmy, że dla $\tilde{C}=0$ otrzymujemy z powyższego wzoru całkę y=0 rozpatrywanego równania. Zatem całka ogólna tego równania ma postać

$$y = Ce^{x^2 - x} ,$$

gdzie C jest stałą dowolną.

Rozwiązywanie równań różniczkowych.

Istnieje wiele typów równań różniczkowych i do części z nich (ale nie wszystkich!) istnieją algorytmy postępowania pozwalające na ich rozwiązanie. Nie mamy szans ich tu omówić...

Poza tym interesuje nas w informatyce głównie sytuacja, gdy mamy znaleźć **jedną** funkcję spełniającą równanie różniczkowe i pewien dodatkowy warunek, który powinien zapewnić **jedyność** rozwiązania. Na ogół wystarczy podać tzw. warunek początkowy, czyli wartość poszukiwanej funkcji w pewnym (początkowym) punkcie (to nie zawsze gwarantuje istnienie i jedyność, ale nie możemy tu rozwijać problemu - zakładać będziemy, że f jest ciągła i spełnia warunek Lipschitz'a ze względu na drugi argument).

Zagadnieniem Cauchy'ego nazywamy równanie różniczkowe z zadanym warunkiem początkowym:

$$x'(t) = f(t, x(t))$$
 , $x(0) = x_0$, $t \in [a, b]$.

Rozwiązania przybliżone.

Istnieje wiele metod rozwiązywania przybliżonego zagadnienia Cauchy'ego - bez stosowania całek nieoznaczonych. Między innymi:

- (1) metody różnicowe (numeryczne) (zastępowanie pochodnej przez ilorazy różnicowe i stąd schematy różnicowe),
- (2) metody numeryczne bazujące na tzw. postaci całkowej zagadnienia Cauchy'ego

$$x(t) = x_0 + \int_a^b f(s, x(s)) ds$$

i obliczane za pomocą całkowania numerycznego (materiał można znaleźć na mojej stronie),

(3) analityczne metody przybliżone np. rozwiązywanie metodą kolejnych przybliżeń (konsekwencja twierdzenia Banacha o kontrakcji), czy metodą szeregów potęgowych (o ile rozwiązania są analityczne - może zdążę omówić przykłady??).

Metoda szeregów potęgowych Frobeniusa.

ad 3) Analityczna metoda przybliżona. Szukamy rozwiązania y w postaci sumy szeregu potęgowego:

$$y(t) = \sum_{n=0}^{\infty} a_n \cdot t^n.$$

Podstawiamy szereg do zagadnienia początkowego:

$$\sum_{n=0}^{\infty} (n+1) \cdot a_{n+1} \cdot t^n = \sum_{n=1}^{\infty} n \cdot a_n \cdot t^{n-1} = y'(t) = -y(t) = -\sum_{n=0}^{\infty} a_n \cdot t^n.$$

Stąd metoda prowadzi do ciągu zadanego rekurencyjnie (obliczamy kolejne współczynniki tego szeregu):

$$\begin{cases} a_{n+1} = -\frac{1}{n+1} \cdot a_n, \\ a_0 = 1. \end{cases}$$

Rozwiązujemy równanie rekurencyjne

$$a_n = (-1)^n \cdot \frac{1}{n!}.$$

Ostatecznie mamy rozwiązanie:

$$y(t) = \sum_{n=0}^{\infty} a_n \cdot t^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \cdot t^n = \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} = e^{-t}.$$

Metody przybliżone.

Metody przybliżonego całkowania zagadnień początkowych można podzielić na **dwie** istotnie różne klasy.

Pierwsza, rzadziej używana w rachunku numerycznym, jest klasą metod zmierzających do wyznaczenia jakiejś analitycznej postaci rozwiązania, np. rozwinięcia w szereg potęgowy czy w szereg Fouriera.

Metody tego rodzaju mają dwie istotne wady. Stosują się do bardzo wąskiej klasy zadań, a otrzymane szeregi bywają bardzo wolno zbieżne. Ponadto łatwo zauważyć, że rachunek numeryczny przy wyznaczaniu przybliżeń takich analitycznych postaci spełnia w gruncie rzeczy mniej istotną, drugorzędną rolę.

Metody różnicowe.

ad 2). Drugą, bardziej uniwersalną klasę metod polegającą na tablicowaniu poszukiwanej funkcji stanowi tzw. klasa **metod różnicowych**.

Wyznaczają one jedynie **przybliżenia wartości rozwiązania** $y(x_i)$ w pewnych punktach x_i należących do przedziału całkowania [a,b]. Tutaj będziemy się zajmowali przypadkiem, w którym $x_i = a + ih$ dla $i = 0,1,\ldots,N$, gdzie wielkość $h = \frac{b-a}{N}$ nazywamy krokiem całkowania.

Główny postulat jaki muszą spełniać metody różnicowe, to zbieżność wyznaczanych przez nie przybliżeń $y_i = y_i(h)$, tzn. $y_i(h) \rightarrow y(x)$ przy $h \rightarrow 0$ dla każdego ustalonego x = a + ih.

Jest to oczywiście jedynie 'teoretyczna' własność metody. Realizując ją numerycznie możemy uzyskać przybliżenie rozwiązania jedynie z określoną skończoną dokładnością.

Klasy metod różnicowych.

Będziemy rozważali dwie klasy metod różnicowych.

Metody jednokrokowe konstruujące ciąg przybliżeń $y_i \approx y(x_i)$ dla $i=0,1,\ldots,N$ zgodnie ze wzorem

$$y_{i+1} = y_i + h\Phi_f(x_i, y_i; h), \quad i = 0, 1, \dots, N-1$$
 (1a)

$$y_0 = y_a \tag{1b}$$

gdzie funkcja $\Phi = \Phi_f$ może zależeć od f nieliniowo. Druga klasą będa *liniowe metody wielokrokowe*.

Najprostszą z nich jest metoda Eulera...

Skąd takie wzory?

Niech y = y(x) będzie rozwiązaniem równania w dziedzinie [a,b]. Dla ustalonego punktu x in [a,b] i dla małych wartości h pochodna funkcji y(x) jest dana przez y'(x) i może być przybliżana przez **iloraz różnicowy**

$$y'(x) \approx \frac{y(x+h) - y(x)}{(x+h) - x}$$

I to właśnie stanowi podstawę metody Eulera przybliżania y(x+h) następująco:

$$y(x+h) \approx y(x) + hy'(x)$$

Czyli

$$y(x+h) \approx y(x) + hf(x,y(x))$$

co zapisujemy jako

$$y_{n+1} = y_n + hf(x_n, y_n)$$

Wyraz y_{n+1} daje nam przybliżenie wartości $y(x_{n+1})$, gdzie $x_n = x_0 + nh$ są punktami węzłowymi w przedziale [a, b].

Zmniejszając krok h ulepszamy przybliżanie rozwiązania...

Metoda łamanych Eulera.

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(0) = w_0 \\ y: [0, T] \to \mathbb{R}. \end{cases}$$

Dzielimy przedział [0, T] na N równych części:

$$h = \frac{T}{N}$$
 (tzw. długość kroku), $t_i = i \cdot h$,

$$(i = 0, 1, ..., N), [0, T] = \bigcup_{i=1}^{N} [t_{i-1}, t_i].$$

Schemat Eulera.

Kolejno obliczamy:

$$w_{i+1} = w_i + h \cdot f(t_i, w_i), i = 0, 1, ..., (N-1).$$

Rozwiązanie przybliżone:

$$\operatorname{lamana}\left(\underbrace{\underbrace{(t_0,w_0)}_{=(0,y(0))},(t_1,w_1),\ldots,(\underbrace{t_N}_{=T},w_N)}_{=T}\right).$$

Metoda Eulera mimo swej prostoty jest już rzadko stosowana ze względu na bardzo wolną zbieżność. Istnieją dwie proste, szybciej zbieżne jej modyfikacje takie, że $e_i = e_i(h) = \mathcal{O}(h^2)$

- 'ulepszona metoda Eulera' (metoda Heuna) $y_{i+1} = y_i + \frac{1}{2}h(f(x_i, y_i) + f(x_i + h, y_i + hf(x_i, y_i)))$
- ▶ zmodyfikowana metoda Eulera $y_{i+1} = y_i + hf(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hf(x_i, y_i))$

Metoda Eulera ma prostą interpretację geometryczną. Rozpoczynając od punktu (a,y_a) leżącego na krzywej całkowej będącej rozwiązaniem zagadnienia początkowego posuwamy się tak długo po stycznych do wykresów całek równania różniczkowego przechodzących przez kolejno otrzymywane punkty (x_i,y_i) aż osiągniemy punkt odciętej o h większej niż początkowy punkt na danej stycznej.

Metody Rungego-Kutty

Klasa metod Rungego–Kutty (RK) jest zdefiniowana przez rodzinę funkcji Φ postaci

$$\Phi(x, y; h) = \sum_{i=1}^{r} c_i k_i$$

$$k_i = k_i(x, y; h)$$

$$= f(x + h \sum_{j=1}^{r} b_{ij}, y + h \sum_{j=1}^{r} b_{ij} k_j)$$
 dla $i = 1, 2, ..., r$

zależnych parametrycznie od wielkości $c_i, b_{ij}, i, j = 1, 1, \dots, r$.

Jeżeli wszystkie $b_{ij}=0$ dla $j\geq i, i=1,2,\ldots,r$ to równania definiujące wielkości k_i (przy ustalonych x i y) redukują się do postaci

$$k_i = f(x + h \sum_{j=1}^{i-1} b_{ij}, y + h \sum_{j=1}^{i-1} b_{ij} k_j)$$
 dla $1, 2, \dots, r$. (3)

Stanowią więc układ zależności rekurencyjnych, liniowych ze względu na kolejne k_i . Ten typ metod RK nosi nazwę *otwartych*.

Przy ustalonym r koszt jednego kroku metody (tzn. obliczenia kolejnego y_i) jest równy kosztowi obliczenia r wartości funkcji f i nie zależy od wyboru parametrów c_i, b_{ij} . Wielkości te dobiera się tak, aby przy ustalonym r rząd metody był możliwie najwyższy, wtedy bowiem metoda jest najbardziej efektywna. Można pokazać, że maksymalny rząd (p(r)) metody RK korzystającej z r wartości funkcji jest równy r dla r=1,2,3,4 oraz, że dla dowolnych r jest $p(r) \leq r$.

Klasyczna metoda RK.

Najczęściej stosowana jest tzw. klasyczna metoda RK, czyli metoda czwartego rzędu określona wzorami

$$\Phi(x, y; h) = \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$
 (4a)

$$k_1 = f(x, y) \tag{4b}$$

$$k_2 = f\left(x + \frac{1}{2}h, y + \frac{1}{2}hk_1\right)$$
 (4c)

$$k_3 = f\left(x + \frac{1}{2}h, y + \frac{1}{2}hk_2\right)$$
 (4d)

$$k_4 = f(x + h, y + hk_3)$$
 (4e)

Warto spojrzeć do matematycznych podstaw tej metody - pytanie do wszystkich: skąd takie, a nie inne wartości k_i ?? O tych i innych, bardzie zaawansowanych, metodach - na przedmiocie "Metody numeryczne" ...

Tajne/poufne.

- Metoda trapezów obliczania numerycznego całek. Zilustruj zasadę jej działania odpowiednim rysunkiem. Jak metoda ta ma się do definicji całki Riemanna?
- Wyjaśnij krótko różnice pomiędzy funkcją pierwotną, a całką nieoznaczoną.
- * Metoda trapezów obliczania numerycznego całek. Z jaką metodą numerycznego rozwiązywanie równań różniczkowych wiąże się ta metoda?
- Postać całkowa reszty we wzorze Taylora. Zastosowanie.
- *Równanie różniczkowe y' = 3y rozwiąż za pomocą metody szeregów potęgowych (bez szczegółowych obliczeń omówić metodę).