ΜΑΣ029 - Στοιχεία Γραμμικής Άλγεβρας Εαρινό Εξάμηνο 2021

Ασκήσεις 1ου Κεφαλαίου

1. Να μετατραπούν οι πιο κάτω πίνακες σε ανηγμένη κλιμακωτή μορφή.

i)
$$\begin{bmatrix} 1 & -2 & 3 & -4 & -8 \\ 2 & -3 & 4 & -1 & 2 \\ 3 & -4 & 1 & -2 & -8 \\ 4 & -1 & 2 & -3 & -6 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 1 & 5 & 4 & -13 & 2 \\ 2 & 2 & 3 & -4 & 7 \\ 3 & 7 & 7 & -17 & 4 \end{bmatrix}$$

Απάντηση: i) $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix}$ ii) $\begin{bmatrix} 1 & 0 & 7/8 & 3/4 & 0 \\ 0 & 1 & 5/8 & -22/8 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

2. Να μετατρέψετε τον παρακάτω πίνακα σε ανηγμένο κλιμακωτό.

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 3 & 5 & 7 & 9 \\ 5 & 7 & 9 & 1 \end{bmatrix}$$

ii) Αν ο πίνακας Α είναι ο επαυξημένος πίνακας ενός γραμμικού συστήματος είναι το σύστημα συμβιβαστό; Αν ναι, βρείτε την γενική λύση.

Απάντηση: i) $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ ii) Μη συμβιβαστό

3. Να βρεθεί (αν υπάρχει) η λύση για τα ακόλουθα γραμμικά συστήματα με μέθοδο απαλοιφής Gauss ή Gauss-Jordan.

$$x_2 + 4x_3 = -5$$
i) $x_1 + 3x_2 + 5x_3 = -2$

$$3x_4 + 7x_2 + 7x_3 = 6$$

ii)
$$2x_1 + 2x_2 + 9x_3 = 7$$

 $x_2 + 5x_3 = -2$

$$x_2 + 4x_3 = -5
i) x_1 + 3x_2 + 5x_3 = -2
3x_1 + 7x_2 + 7x_3 = 6$$

$$x_1 -3x_3 = 8
ii) 2x_1 + 2x_2 + 9x_3 = 7
x_2 + 5x_3 = -2$$

$$x_2 + y - 2z - 2w = -2
-x + 2y - 4z + w = 1
3x -3w = -3$$

Απάντηση: i) Μη συμβιβαστό ii) (5, 3, -1) iii) $(t - 1, 2s, s, t), s, t \in \mathbb{R}$

4. Είναι το σύστημα

$$x_1 + 3x_3 = 2$$

$$x_2 - 3x_4 = 3$$

$$-2x_2 + 3x_3 + 2x_4 = 1$$

$$3x_1 + 7x_4 = -5$$

1

συμβιβαστό;

Απάντηση: Συμβιβαστό

5. Βρείτε μια αλγεβρική σχέση μεταξύ των g, h και k έτσι ώστε το σύστημα

$$x_1 - 4x_2 + 7x_3 = g$$
$$3x_2 - 5x_3 = h$$
$$-2x_1 + 5x_2 - 9x_3 = k$$

να είναι μη συμβιβαστό.

Απάντηση: $2g + h + k \neq 0$

6. Να βρείτε τις τιμές του a για τις οποίες το σύστημα δεν έχει λύση, έχει ακριβώς μία λύση ή έχει άπειρες λύσεις.

$$x + 2y - 3z = 4$$

$$3x - y + 5z = 2$$

$$4x + y + (a^{2} - 14)z = a + 2$$

Απάντηση: Άπειρες λύσεις για a=4, καμία λύση για a=-4, μία λύση για $a\neq\pm 4$

7. Να βρεθεί η λύση (αν υπάρχει) για το σύστημα που έχει επαυξημένο πίνακα τον ακόλουθο.

$$A = \begin{bmatrix} 1 & -3 & 0 & -1 & 0 & | & -2 \\ 0 & 1 & 0 & 0 & -4 & | & 1 \\ 0 & 0 & 0 & 1 & 9 & | & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Απάντηση: $(3t - s, 4t + 1, s, 4 - 9t, t), s, t \in \mathbb{R}$

8. Προσδιορίστε αν τα παρακάτω συστήματα έχουν μη τετριμμένες λύσεις.

$$2x_1 - 5x_2 + 8x_3 = 0$$
i) $-2x_1 - 7x_2 + x_3 = 0$

$$4x_1 + 2x_2 + 7x_3 = 0$$
ii) $-3x_1 + 5x_2 - 7x_3 = 0$

$$-6x_1 + 7x_2 + x_3 = 0$$

Απάντηση: i) Απειρες λύσεις ii) Απειρες λύσεις

9. Βρείτε το σύνολο λύσεων των παρακάτω συστημάτων.

$$x_1 + 3x_2 + x_3 = 0$$
 $x_1 + 3x_2 + x_3 = 1$
i) $-4x_1 - 9x_2 + 2x_3 = 0$ ii) $-4x_1 - 9x_2 + 2x_3 = -1$
 $-3x_2 - 6x_3 = 0$ $-3x_2 - 6x_3 = -3$

Απάντηση: i) $(5t, -2t, t), t \in \mathbb{R}$ ii) $(-2 + 5t, 1 - 2t, t), t \in \mathbb{R}$

10. Δίνονται οι διαστάσεις των παρακάτω πέντε πινάκων:

Προσδιορίστε αν οι παρακάτω πράξεις ορίζονται. Αν ναι, γράψτε τις διαστάσεις του πίνακα που προκύπτει.

2

i) BA

ii) AC + D

iii) AE + B

iv) AB + B

v) E(A+B)

vi) E(AC)

vii) EA

viii) (A+E)D

Απάντηση: i) Δεν ορίζεται ii) 4×2 iii) Δεν ορίζεται iv) Δεν ορίζεται v) 5×5 vi) 5×2 vii) 5×5 viii) Δεν ορίζεται

11. Δίνονται οι παρακάτω πίνακες:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, \ D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, \ E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

Να υπολογίσετε τους παρακάτω πίνακες (στις περιπτώσεις που ορίζονται).

i) D+E

ii) D-E

iii) 5A

iv) -7C

v) 2B - C

vi) 4E-2D

vii) -3(D + 2E)

viii) A - A

ix) AB

 \mathbf{x}) BA

xi) (3E)D

xii) (AB)C

i)
$$\begin{bmatrix} 7 & 6 & 5 \\ -2 & 1 & 3 \\ 7 & 3 & 7 \end{bmatrix}$$

i) $\begin{bmatrix} 7 & 6 & 5 \\ -2 & 1 & 3 \\ 7 & 3 & 7 \end{bmatrix}$ ii) $\begin{bmatrix} -5 & 4 & -1 \\ 0 & -1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$ iii) $\begin{bmatrix} 15 & 0 \\ -5 & 10 \\ 5 & 5 \end{bmatrix}$ iv) $\begin{bmatrix} -7 & -28 & 14 \\ -21 & -7 & -35 \end{bmatrix}$ v) Den orizetal

$$vi) \begin{bmatrix} 22 & -6 & 8 \\ -2 & 4 & 6 \\ 10 & 0 & 4 \end{bmatrix}$$

12. Να βρεθούν οι αριθμοί a, b, c, d ώστε να ισχύει η παρακάτω ισότητα.

$$\begin{bmatrix} a & 3 \\ -1 & a+b \end{bmatrix} = \begin{bmatrix} 4 & d-2c \\ d+2c & -2 \end{bmatrix}$$

Απάντηση: a = 4, b = -6, c = -1, d = 1

13. Σε καθεμία από τις παρακάτω περιπτώσεις, να προσδιορίσετε τον 4×4 πίνακα (a_{ij}) που ικανοποιεί την ζητούμενη συνθήκη.

i) $a_{ij} = 0$ μόνο όταν $i \neq j$

ii) $a_{ij} = 0$ μόνο όταν i > j

iii) $a_{ij} = 0$ μόνο όταν i < j

iv) $a_{ij} = 0$ μόνο όταν |i - j| > 1

$$\textbf{Apávthsh}: \textbf{i)} \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \textbf{ii)} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \textbf{iii)} \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \textbf{iv)} \begin{bmatrix} 0 & a_{12} & a_{13} & a_{14} \\ a_{21} & 0 & a_{23} & a_{24} \\ a_{31} & a_{32} & 0 & a_{34} \\ a_{41} & a_{42} & a_{43} & 0 \end{bmatrix}$$

3

14. Ελέγξτε κατά πόσον οι παρακάτω πίνακες είναι συμμετρικοί.

$$i) \begin{bmatrix} -8 & -8 \\ 0 & 0 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$

iii)
$$\begin{bmatrix} 2 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & 7 \end{bmatrix}$$

Απάντηση: i) Όχι ii) Όχι iii) Ναι

15. Να βρεθεί το $a \in \mathbb{R}$ ώστε ο πίνακας $A = \begin{bmatrix} 4 & -3 \\ a+5 & -1 \end{bmatrix}$ να είναι συμμετρικός.

Απάντηση: a = -8

- **16.** Αν ο *A* είναι τετραγωνικός πίνακας, να δείξετε τα παρακάτω.
 - i) Οι πίνακες AA^T και $A + A^T$ είναι συμμετρικοί.
 - ii) Ο πίνακας $A A^T$ είναι αντισυμμετρικός.
- 17. Να βρεθούν οι αντίστροφοι των παρακάτω πινάκων.

$$i) A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$

ii)
$$B = \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$

iii)
$$C = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Απάντηση: i) $\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$ ii) $\begin{bmatrix} 1/5 & 3/10 \\ -1/5 & 1/10 \end{bmatrix}$ iii) $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

- **18.** Να δείξετε ότι αν για τον αντιστρέψιμο τετραγωνικό πίνακα A ισχύει $A^2-3A+I=0$, τότε $A^{-1}=3I-A$.
- 19. Αν A, B και C είναι τρεις $n \times n$ αντιστρέψιμοι πίνακες, έχει η εξίσωση

$$C^{-1}(A+X)B^{-1} = I$$

λύση X; Αν ναι, βρείτε το X.

20. Έστω P αντιστρέψιμος $n \times n$ πίνακας και $A = PBP^{-1}$. Να λύσετε ως προς B.

Απάντηση: $B = P^{-1}AP$

21. Απλοποιήστε τις παρακάτω εκφράσεις.

i)
$$(AB)^{-1}(AC^{-1})(D^{-1}C^{-1})^{-1}D^{-1}$$

ii)
$$(AC^{-1})^{-1}(AC^{-1})(AC^{-1})^{-1}AD^{-1}$$
.

Απάντηση: i) B^{-1} ii) CD^{-1}

22. Προσδιορίστε αν οι παρακάτω πίνακες είναι αντιστρέψιμοι κι αν ναι, βρείτε τον αντίστροφο τους.

4

$$i) \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix}$$

iii)
$$\begin{bmatrix} 5 & 0 & 0 \\ -3 & -7 & 0 \\ 8 & 5 & -1 \end{bmatrix}$$

$$\mathbf{v}) \begin{bmatrix}
 -1 & 3 & -4 \\
 2 & 4 & 1 \\
 -4 & 2 & -9
 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

iv)
$$\begin{bmatrix} 0 & 3 & -5 \\ 1 & 0 & 2 \\ -4 & -9 & 7 \end{bmatrix}$$

vi)
$$\begin{bmatrix} 2 & -4 & 0 & 0 \\ 1 & 2 & 12 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & -1 & -4 & -5 \end{bmatrix}$$

Απάντηση: i)
$$\begin{bmatrix} -7 & 2 \\ 4 & -1 \end{bmatrix}$$
 ii)
$$\begin{bmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \end{bmatrix}$$
 iii)
$$\begin{bmatrix} 1/5 & 0 & 0 \\ -3/35 & -1/7 & 0 \\ 41/35 & -5/7 & -1 \end{bmatrix}$$
 iv) Μη αντιστρέψιμος v) Μη αντιστρέψιμος vi)
$$\begin{bmatrix} 1/4 & 1/2 & -3 & 0 \\ -1/8 & 1/4 & -3/2 & 0 \\ 0 & 0 & 1/2 & 0 \\ 1/40 & -1/20 & -1/10 & -1/5 \end{bmatrix}$$

23. Να βρεθεί το $c \in \mathbb{R}$ ώστε ο πίνακας $A = \begin{bmatrix} c & c & c \\ 1 & c & c \\ 1 & 1 & c \end{bmatrix}$ να είναι αντιστρέψιμος.

Απάντηση: $c \in \mathbb{R} - 0, 1$

24. Να λυθούν τα παρακάτω συστήματα με τη μέθοδο του αντιστρόφου πίνακα.

$$x_1 + 3x_2 + x_3 = 4$$

i) $2x_1 + 2x_2 + x_3 = -1$
 $2x_1 + 3x_2 + x_3 = 3$

$$5x_1 + 3x_2 + 2x_3 = 4$$

ii) $3x_1 + 3x_2 + 2x_3 = 2$
 $x_2 + x_3 = 5$

Απάντηση: i) (-1, 4, -7) ii) (1, -11, 16)