Лабораторная работа №3 "Метод Монте-Карло" Вариант 2 Часть 1

Задаём начальные значения:

$$K := 11^{11}$$
 - большое число

n := 100 общее количество чисел, которые будут сгенерированны

$$i := 1, 2 ... n - 1$$

$$M := 3^{33}$$
 - целое, взаимно простое с K

$$gcd(K, M) = 1$$

Вычисляем первое число $\gamma_0 \coloneqq \frac{m_0}{M} = 0$

 $\mathbf{m}_{\mathbf{i}} := \operatorname{mod}(\mathbf{K} \cdot \mathbf{m}_{\mathbf{i}-1}, \mathbf{M}) = \dots$

		m.
γ_{i}	:=	M

U	U
1	5.132·10 ⁻⁵
2	0.43
3	0.321
4	0.881
5	0.965
6	0.073
7	0.439
8	0.936
9	0.571
10	0.496
11	0.218
12	0.864
13	0.853
14	0.657
15	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14

1	•	•	• •	,	•
0.8	•	• •		•	•
0.6	• •		•	•	
γ_i 0.4		• ••			-
0.2		•	•••		•
•					
0	20	40	60 i	80	100

По визуальному отображению нельзя сказать однозначно о виде распределения

 γ sr := mean(γ) = 0.504 - среднее арифметическое

$$D:=\frac{\left[\sum_{i}\left(\gamma_{i}-\gamma sr\right)^{2}\right]}{n}=0.083 \qquad \text{- дисперсия}$$

$$sko:=\sqrt{D}=0.289 \quad \text{среднеквадратиче ское}$$
 отклонение

Параметры, полученные по сгенерированным числам близки к параметрам равномерного распределения.

Построение гистограммы

$$k := 10 \qquad \text{- количество интервалов} \qquad \qquad i := 0 \dots k$$

$$d := \frac{1-0}{k} = 0.1 \qquad \text{- шаг интервала}$$

$$\operatorname{interval}_i := \operatorname{i-d}$$
 - границы интервалов $\operatorname{ch} := \operatorname{hist}(\operatorname{interval}, \gamma)$

ch := hist(interval,
$$\gamma$$
)

	0
0	0
1	0.1
2	0.2
3	0.3
4	0.4
5	0.5
6	0.6
7	0.7
8	0.8
9	0.9
10	1
	1 2 3 4 5 6 7 8 9

		0
	0	8
	1	14
	2	12
	3	4
ch =	4	10
	5	8
	6	10
	7	15
	8	10
	9	9

частоты попадания в интервалы

Гистограмма

Проверка по критерию Пирсона

Н0: СВ подчиняется равномерному распределению

Н1: СВ не подчиняется равномерному распределению

$$p := \frac{1}{k} = 0.1$$
 - вероятность попадания в интервал

$$Knabl := \sum_{i = 0}^{k-1} \left[\frac{\left(ch_i - n \cdot p\right)^2}{n \cdot p} \right] = 9$$

$$\alpha \coloneqq 0.05$$
 - уровень значимости

Kkrit :=
$$qchisq(1 - \alpha, k - r - 1) = 16.919$$

Критерий Пирсона имеет правостороннюю критическую область. Knabl < Kkrit. => Нет оснований отвергать основную гипотезу, т. е. СВ подчиняется равномерному нормальному распределению.

№	Начальные	Визуальная	Кнабл	Ккрит	Вывод
опыта	значения(то,М,К)	оценка			
1	$1, 2^{36}, 5^{15}$	Нельзя сказать	7,4	16,919	X~R(0,1)
		однозначно			
2	1, 9 ¹⁶ ,4 ¹⁸	Нельзя сказать	12,6	16,919	X~R(0,1)
		однозначно			
3	1, 3 ³³ ,11 ¹¹	Нельзя сказать	9	16,919	X~R(0,1)
		однозначно			

$$\int_{1}^{3} \sqrt{x^3 + 8} \, dx$$
 интеграл $\beta := 0.94$ оценка погрешности $\xi := 0.02$ доверительная вероятность $a := 1$ $b := 3$

Плотность равномерного распределения X~R(1,3)

$$f(x) := \frac{1}{b-a}$$
 $f(1) = 0.5$

После необходимых математических манипуляций получаем

Вычисляем количество испытаний, необходимое для вычисления интеграла с заданной доверительной точностью и заданной доверительной вероятностью

$$R_{\rm m}:={\rm hmax-hmin}=5.832$$
 - размах
$$\sigma:=\frac{R}{6}=0.972$$

$$\beta=2\Phi((\epsilon*n^{(0.5)})/\sigma)$$

$$t:={\rm qnorm}\bigg(\frac{\beta}{2}+0.5,0,1\bigg)=1.881$$
 значение аргумента функции Лапласа, равной $\beta/2$
$$R_{\rm m}:=\bigg(\frac{t\cdot\sigma}{\epsilon}\bigg)^2=8.356\times 10^3$$

$$R_{\rm m}:={\rm round}(n,0)=8.356\times 10^3$$

С помощью стандартного датчика rnd генерируем n случайных чисел

$$i := 1 ... n$$

$$\gamma_i \coloneqq \mathsf{rnd}(1)$$

		0
	0	0
	1	1.268·10 ⁻³
	2	0.193
	3	0.585
$\gamma =$	4	0.35
	5	0.823
	6	0.174
	7	0.71
	8	0.304
	9	

Преобразуем γ_i в $x_i = a + (b-a) * \gamma_i$

$$x_i := a + (b - a) \cdot \gamma_i$$

Вычислим оценку Г для интеграла І

$$I' := \frac{1}{n} \cdot \sum_{i=1}^{n} h(x_i) = 8.337$$

0 1 1.003 2 1.387 3 2.17 4 1.701 5 2.646 6 1.348 7 2.421 8 1.608 9

Вычислим оценку дисперсии D'

D' :=
$$\frac{1}{n} \cdot \sum_{i=1}^{n} \left[\left(h(x_i) \right)^2 - I'^2 \right] = 3.026$$

Найдём точность, с которой вычислен этот интеграл по формуле $\beta = 2\Phi((\epsilon^*n^{0.5})/D^{0.5})$

$$\varepsilon 1 := t \cdot \sqrt{\frac{D'}{n}} = 0.036$$

Найдём доверительный интервал

left :=
$$I - \varepsilon 1 = 8.273$$

$$I = 8.308$$

right :=
$$I + \varepsilon 1 = 8.344$$

Точность оказалась недостаточной, так что увеличиваем количество опытов и повторяем оценки

$$\underline{n} := n \cdot 2 = 1.671 \times 10^4$$
 $i := 1 .. n$

$$\gamma_i \coloneqq \mathrm{rnd}(1) \\ \gamma = \begin{bmatrix} & & 0 \\ 0 & & 0 \\ 1 & & 0.094 \\ 2 & & 0.152 \\ 3 & & 0.98 \\ 4 & & 0.527 \\ \hline 5 & & \dots \end{bmatrix}$$

$$x = a + (b - a) \cdot \gamma_{i}$$

$$x = \begin{bmatrix} 0 & 0 \\ 1 & 1.188 \\ 2 & 1.305 \\ 3 & 2.959 \\ 4 & 2.054 \\ 5 & \dots \end{bmatrix}$$

$$\underbrace{\epsilon 1}_{n} := t \cdot \sqrt{\frac{D'}{n}} = 0.025$$

$$\underbrace{left}_{n} := I - \epsilon 1 = 8.283 \qquad \qquad \underset{n \in \mathbb{N}}{\text{right}}_{n} := I + \epsilon 1 = 8.334$$

Точность оказалась недостаточной, так что увеличиваем количество опытов и повторяем оценки

$$n := n \cdot 2 = 3.342 \times 10^4$$

 $i := 1 ... n$

$$x = \begin{bmatrix} & & 0 \\ 0 & & 0 \\ 1 & 2.333 \\ 2 & 2.339 \\ 3 & 2.364 \\ 4 & 1.669 \\ 5 & \dots \end{bmatrix}$$

$$\underbrace{\epsilon 1}_{n} := t \cdot \sqrt{\frac{D'}{n}} = 0.018$$

$$\underbrace{left}_{left} := I' - \epsilon 1 = 8.296$$

$$I = 8.308$$

$$\underbrace{right}_{left} := I' + \epsilon 1 = 8.332$$

Мы достигли необходимой точности, теперь записываем доверительный интервал

left:= round(left,2) = 8.3
rigth := round(right,2) = 8.33
$$\mathbb{L}$$
:= round(I,2) = 8.31

Otbet: (8.29 - 0.018; 8.33 + 0.18) $\varepsilon = 0.02$ $n = 3.342 \times 10^4$

№	Оценка	Оценка	Оценка	Вывод
опыта	интеграла	дисперсии	точности	
1	8.296	2.952	0.035	Входит в
				доверительный
				интервал
2	8.311	2.94	0.025	Входит в
				доверительный
				интервал
3	8.305	2.966	0.018	Входит в
				доверительный
				интервал

Доверительный интервал накрывает