Developing an Open Source and FAIR Ecosystem for Cheminformatics

Martin Šícho (Martin.Sicho@vscht.cz) – RDKit UGM 2025 – 2025-09-11

Problems with Scientific Software and Data

- Common pains:
 - o **poorly documented** (i.e. no metadata)
 - o **poorly structured** (i.e. lack of encapsulation, not installable, hard-coded parts)
 - o **insufficiently tested** (i.e. small errors often lead to big problems for the users)
- Resulting problems:
 - steep learning curve for newcomers (i.e. students)
 - low adoption of novel innovative methods
 - reinventing the wheel
 - reproduction of scientific results
 - o communication and knowledge sharing
 - reusability and interoperability of software developed by different people

Barker, M., Chue Hong, N.P., Katz, D.S. et al. Introducing the FAIR Principles for research software. Sci Data 9, 622 (2022). https://doi.org/10.1038/s41597-022-01710-x

Open Source Software Stack for Cheminformatics

- Findable
 - unique and persistent identifiers
 - o rich metadata
 - searchable
- Accessible
 - retrievable using a protocol (i.e. JSON for metadata)
 - metadata is persistent and always readable
- Interoperable
 - modular encapsulated code with documented APIs
- Reusable
 - o installable packages
 - integrated pipelines
 - automatic and transparent testing

Data Storages

```
import os
import pandas as pd
from gsprpred.data.chem.identifiers import InchiIde
                                                  # searchable -> i.e. find aromatic sulfonamides
from gsprpred.data.chem.standardizers.papyrus impor
                                                  library subset = library.searchWithSMARTS(
from gsprpred.data.storage.tabular.simple import Par
                                                         ["[ar]NS(=0)(=0)([ar])"],
## Create a library of compounds for the chemokine
                                                        name="CCRs ar sulf"
library = PandasChemStore(
   name="CCRs HUMAN ALL",
   path="./data/",
   df=pd.read table("data/CCRs HUMAN ALL.tsv").sam
                                                  len(library subset)
   standardizer=PapyrusStandardizer(), # standardi
    identifier=InchiIdentifier(), # persistent uniq
   n jobs=os.cpu count(), # integrated multi-processing
    overwrite=True
## add custom metadata (arbitrary attributes can be created)
library.description = """Bioactivity data of molecules measured on at least one chemokine receptor.
Only wild type human data is considered.
library -
                  library.save()
                  '/home/sichom/projects/spock/tutorial/data/CCRs HUMAN ALL/meta.json'
      Universiteit
                                                   CHEMISTRY AND TECHNOLOGY
```

Docking with Spock

```
from spock.storage.tabular import SpockProtein
from spock.docking.vina.cpu local import VinaDockingCPULocal
import os
PROTEIN NAME = "5T1A clean mutations reversed withHs"
N CPUS = os.cpu count() # number of cpus to use for docking
EXHAUSTIVENESS = 8 # Vina exhaustiveness parameter
SEED = 42 # random seed for random operations
PROTEIN FOLDER = './data/proteins'
docking = VinaDockingCPULocal(
    protein=SpockProtein(
        PROTEIN NAME,
        props={
            "pdb": open(f'{PROTEIN FOLDER}/{PROTEIN NAME}.pdb', 'r').read(),
            "pdbqt": open(f'{PROTEIN FOLDER}/{PROTEIN NAME}.pdbqt', 'r').read();
   n cpus=N CPUS,
    box spec={
        "center": [5.1, 28.0, 187.6],
        "box size": [16.2, 17.8, 17.4]
    embed mols=True, # set to False if conformers are already generated
    exhaustiveness=EXHAUSTIVENESS,
    seed=SEED,
```

```
store.nJobs = os.cpu count()
docking.dock storage(
     storage=store,
     chunk cizo-1
             import nglview
     save=
             complex = store.get complex for pose(pose id=poses[0].id)
     overw
             nglview.show rdkit(complex)
```


Thank you!

demo notebook

slides with notes

