

GOLDS-UFSC Documentation

GOLDS-UFSC Documentation SpaceLab, Universidade Federal de Santa Catarina, Florianópolis - Brazil

GOLDS-UFSC Documentation

January, 2021

Project Chief:

Eduardo Augusto Bezerra

Authors:

Gabriel Mariano Marcelino André Martins Pio de Mattos Eduardo Augusto Bezerra

Contributing Authors:

Revision Control:

Version	Author	Changes	Date
0.1	Gabriel M. Marcelino	Document creation	2020/06/05

© 2021 by SpaceLab. GOLDS-UFSC Documentation. This work is licensed under the Creative Commons Attribution–ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

List of Figures

1.1	GOLDS-UFSC mission patch	2
4.1	Reference diagram of the PC-104 bus	9
	Exploded view of the GOLDS-UFSC satellite	
	Configuration reference of the antenna module.	
5.4	ACS subsytem. Rare earth magnet (pink) and hysteresis bars (red) installed in the structure.	16

List of Tables

3.1	Mission schedule	5
4.1	PC-104 bus pinout	10
4.2	PC-104 bus signal description	11

Nomenclature

ACS Attitude Control System.

EDC Environmental Data Collection.

EPS Electrical Power System.

GOLDS Global Open Collecting Data System

INPE Instituto Nacional de Pesquisas Espaciais.

LIT Laboratório de Integração e Testes.

OBDH *On-Board Data Handling.*

PCB Printed Circuit Board.

TTC Telemetry, Tracking and Command Module.

Contents

Lis	st of F	-igures	V
Lis	st of 7	Tables	vii
No	omeno	clature	ix
1	Intro	duction Mission Description	1 1
	1.2 1.3	Mission Objectives	1 1
2	Miss	sion Requirements	3
3	Miss	sion Schedule	5
4		rall Description	7
	4.1	General Diagrams	7
	4.2	General Behaviour	7
	4.3	Orbit Parameters	7
	4.4	Power Budget	7
	4.5	Link Budget	7
		4.5.1 VHF Link	7
	4.6	4.5.2 UHF Links	8
5		systems	13
	5.1	On-Board Data Handling	13
	5.2	Telemetry, Tracking and Command Module	14
		5.2.1 Antenna Module	14
	5.3	Electrical Power System	15
		5.3.1 Battery Module	15
		5.3.2 Solar Panels	15
	_ 4	5.3.3 Kill-Switches and RBF	16
	5.4	Attitude Control System	16
	5.5	Mechanical Structure	17
	5.6	Interconnection Modules	17
		5.6.1 PC-104 Interconnection Boards	17
	5 7	5.6.2 External Connection Boards	17
	5.7	Payloads	17

Contents

	5.7.1	Environmental Data Collection	17
6	Test Plan a 6.1 Flatsa	nd Results t	19 19
7	Ground Sec	gment	21
8	Operation F	Planning	23
Re	eferences		25

Introduction

GOLDS stands for Global Open Collecting Data System...

INPE

LIT

PCB

1.1 Mission Description

.

1.2 Mission Objectives

- 1. To serve as a host platform for the EDC payload.
- 2. Validate the EDC payload in orbit.
- 3. Validate EDC functionality in orbit.
- 4. Validate core-satellite functions in orbit.
- 5. Evaluate the behavior of the core modules.
- 6. Perform experiments on radiation effects in electronic components in orbit.
- 7. Serve as relay for amateur radio communications.

1.3 Mission Patch

The mission patch of the GOLDS-UFSC can be seen in Figure 1.1, it is inspired by the FloripaSat-I patch [1].

Figure 1.1: GOLDS-UFSC mission patch.

Mission Requirements

- 1. The power system shall be able to harvest solar energy.
- 2. The power system shall be able to store energy for use when GOLDS-UFSC is eclipsed.
- 3. The power system shall supply energy to all other modules.
- 4. The data handling system shall communicate with the other modules and store their data.
- 5. The communications system shall send a beacon signal periodically using VHF radio.
- 6. The communications system shall send the CubeSat telemetry using UHF radio.
- 7. The communications system shall be able to receive telecommands and respond to them accordingly.
- 8. The attitude system shall be able to perform a 1-axis stabilization of the CubeSat.
- 9. GOLDS-UFSC shall have the capability to receive and execute a shutdown telecommand, therefore ceasing all transmissions.
- 10. The downlink transmissions shall be done once at a time, either telemetry or beacon.
- 11. The ground station shall operate under the proper radio frequency communication licenses.
- 12. GOLDS-UFSC shall comply with international and Brazilian radio license agreements and restrictions.
- 13. The team shall build and operate a ground station for full communication with GOLDS-UFSC.

Mission Schedule

Table 3.1: Mission schedule.

Each activity of Table 3.1 is decribed below:

- 1. Acquisition and manufacturing of critical elements and components for the solo platform.
- 2. Acquisition and manufacture of elements and components critical to the payload.
- 3. Acquisition and manufacturing of critical elements and components for the solo segment.
- 4. Compatibility tests between platform and payload in SpaceLab UFSC.
- 5. Integration of the engineering model in SpaceLab UFSC.
- 6. Preparation and suitability of the ground segment.
- 7. Verification and validation of the engineering model at SpaceLab UFSC.
- 8. Verification and validation of the flight model at SpaceLab UFSC.

- 9. Data collection platforms installation.
- 10. Verification and validation tests of Engineering Model compatibility with EMMN in the INPE / CRN in Natal.
- 11. Environmental tests at the Integration and Testing Laboratory (LIT/INPE).
- 12. Flight model acceptance and ground segment review.
- 13. Ground segment delivery.
- 14. Flight model delivery.

Overall Description

.

4.1 General Diagrams

.

4.2 General Behaviour

.

4.3 Orbit Parameters

.

4.4 Power Budget

.

4.5 Link Budget

4.5.1 VHF Link

• Direction: Downlink

• Frequency: 145,97 MHz

• Modulation: MSK

• Datarate: 1200 bps

• Output Power: 30 dBm (1 W)

• Protocol: NGHam

4.5.2 UHF Links

Main UHF Link

• Direction: Downlink and uplink

• Frequency: 436,9 MHz

• Modulation: MSK

• Datarate: 4800 bps

• Output power: 30 dBm (1 W)

• Protocol: NGHam

EDC UHF Link

• Direction: Uplink

• Frequency: 401.635 MHz

• Modulation: BPSK

• Datarate: 400 bps

• Protocol: SBCD

4.6 PC-104 Bus

Figure 4.1: Reference diagram of the PC-104 bus.

Pin Row	H1 Odd	H1 Even	H2 Odd	H2 Even
1-2	-	_	-	_
3-4	_	_	EDC_1_EN	EDC_2_EN
5-6	-	_	BE_UART_RX	_
7-8	RA_GPIO_0	RA_GPIO_1	BE_UART_TX	GPIO_0
9-10	RA_GPIO_2	_	_	_
11-12	RA_RESET	RA_EN	BE_SPI_MOSI	BE_SPI_CLK
13-14	-	_	BE_SPI_CS	BE_SPI_MISO
15-16	-	_	_	_
17-18	EDC_UART_RX/TX	PLX_EN	-	GPIO_1
19-20	EDC_UART_TX/RX	GPIO_2	-	GPIO_3
21-22	-	_	-	GPIO_4
23-24	-	_	-	_
25-26	-	_	-	-
27-28	-	_	-	-
29-30	GND	GND	GND	GND
31-32	GND	GND	GND	GND
33-34	-	_	-	-
35-36	RD_SPI_CLK	_	ANT_VCC	ANT_VCC
37-38	RD_SPI_MISO	_	-	_
39-40	RD_SPI_MOSI	RD_SPI_CS	-	-
41-42	PL_I2C_SDA	_	-	GPIO_5
43-44	PL_I2C_SCL	_	-	-
45-46	OBDH_VCC	OBDH_VCC	BAT_VCC	BAT_VCC
47-48	EDC_VCC	EDC_VCC	-	-
49-50	RD_VCC	RD_VCC	EPS_I2C_SDA	-
51-52	BE_VCC	BE_VCC	EPS_I2C_SCL	-

Table 4.1: PC-104 bus pinout.

Signal	Pin(s)	Used By	Description
GND	H1-29, H1-30,	All	Ground reference
	H1-31, H1-32,		
	H2-29, H2-30,		
BAT_VCC	H2-31, H2-32 H2-45, H2-46	EPS	Dattary tarminals (1)
ANT_VCC	H2-35, H2-36	EPS, ANT	Battery terminals (+) Antenna power supply (3.3 V)
OBDH_VCC	H1-45, H1-46	EPS, OBDH	OBDH power supply (3.3 V)
EDC_VCC	H1-47, H1-48	EPS, EDC 1,	EDC power supply (5 V)
LDC_VCC	111 17,111 10	EDC 2	LDC power supprig (5 V)
RD_VCC	H1-49, H1-50	EPS, TTC	Main radio power supply (5 V)
BE_VCC	H1-51, H1-52	EPS, TTC	Beacon power supply (6 V)
RD_SPI_CLK	H1-35	OBDH, TTC	CLK signal of the main radio SPI bus
RD_SPI_MISO	H1-37	OBDH, TTC	MISO signal of the main radio SPI bus
RD_SPI_MOSI	H1-39	OBDH, TTC	MOS signal of the main
ND_31 1_10031	111-33	ODDII, ITC	radio SPI bus
RD_SPI_CS	H1-40	OBDH, TTC	CS signal of the main radio
		00011, 110	SPI bus
EPS_I2C_SDA	H2-49	OBDH, EPS	SDA signal of the EPS I2C
			bus
EPS_I2C_SCL	H2-51	OBDH, EPS	SCL signal of the EPS I2C bus
BE_UART_RX	H2-5	EPS, TTC	EPS TX, Beacon RX (UART
52_6/	1.2 3	2. 3, 1.3	bus)
BE_UART_TX	H2-7	EPS, TTC	EPS RX, Beacon TX (UART
		,	bus)
EDC_UART_TX/RX	H1-25	OBDH, EDC	OBDH TX, EDCs RX (UART
		1, EDC 2	bus)
EDC_UART_RX/TX	H1-27	OBDH, EDC	OBDH RX, EDCs TX (UART
		1, EDC 2	bus)
EDC_1_EN	H2-3	OBDH, EDC	EDC 1 enable signal
EDC 2 EN	112 4	1	EDC 2 11 : 1
EDC_2_EN	H2-4	OBDH, EDC	EDC 2 enable signal
PLX_EN	H1-18	2 OBDH,	Payload X enable (GPIO)
I LA_LIN	111-10	Payload X	r agioad A enable (dr 10)
PL_I2C_SDA	H1-41	OBDH,	SDA signal of the payload
		Payload X	I2C bus
PL_I2C_SCL	H1-43	OBDH,	SCL signal of the payload
		Payload X	I2C bus
GPIO_N	H2-8, H2-18,	OBDH	GPIO pin (not used)
	H1-20, H2-20,		
	H2-22, H2-42		

Table 4.2: PC-104 bus signal description.

Subsystems

Figure 5.1: Exploded view of the GOLDS-UFSC satellite.

5.1 On-Board Data Handling

OBDH [2]

5.2 Telemetry, Tracking and Command Module

TTC [3]

5.2.1 Antenna Module

The used antenna module is the CubeSat deployable VHF and UHF antenna from ISISpace [4]. It is a four monopole antenna built with tape strings (up to 55 cm) and compliant with the CubeSat standard (dipole or turnstile options are also available). The deployment method is the burning wire and it can be controlled digitally through a I²C interface. To allow redundancy, there are two independent deployment controllers that can be activated separately. Also, the construction of this module allows the installation of a solar panel at the top side. The RF gain is about 0 dBi.

A picture of the antenna module (with all antennas released) can be seen in Figure 5.2.

Figure 5.2: Antenna module from ISISpace.

The chosen configuration for this mission can be seen below (using Figure 5.3 as reference):

- Configuration: 4 monopoles (1x VHF + 3x UHF)
 - Antenna 1: VHF 145,97 MHz (beacon)
 - Antenna 2: UHF 401,635 MHz (EDC)
 - Antenna 3: UHF 436,9 MHz (downlink/uplink)
 - Antenna 4: UHF 401,635 MHz (redundant EDC)
- Tuning structure size: 2U
- Mounting position: Top

• Supply voltage: 3,3 V

• I²C control type: Dual bus

Primary I²C address: 31h (7-bit address)

- Redundant I²C address: 32h (7-bit address)

• I²C watchdog: Enabled with a time out of 60 seconds.

Figure 5.3: Configuration reference of the antenna module.

In the digital interface, a temperature sensor and the state of four deployment switches (1 per monopole) are also available. These switches indicate if a monopole is released or not, and can be used as feedback of the deployment process.

5.3 Electrical Power System

EPS [5]

5.3.1 Battery Module

[6]

5.3.2 Solar Panels

.

5.3.3 Kill-Switches and RBF

.

5.4 Attitude Control System

The Attitude Control System (ACS) is a passive attitude control system, which depends on the Earth's magnetic field to rotate and stabilize the satellite [7, 8]. The system is composed of one permanent magnet to create a force to align the magnet with the Earth's magnetic field and four hysteresis bars to damp the cube oscillations and achieve stabilization.

When equilibrium is achieved, the permanent magnet aligns itself to the Earth's field lines. The hysteresis bars convert oscillation and rotation energy into heat, maintaining the alignment through magnetic moment. The components are placed in positions as to minimize the magnet's interaction with the hysteresis bars, which limits the magnetic moment of the magnet [9]. Figure 5.4 shows the mounting of the hysteresis bars (green) and the permanent magnet (red) on the mechanical structure. The whole passive ACS was implemented according to [9].

Figure 5.4: ACS subsytem. Rare earth magnet (pink) and hysteresis bars (red) installed in the structure.

As a passive magnetic attitude control system is used, it is possible to stabilize only one axis, and so, the CubeSat will still slowly (due to hysteresis bars) rotate around this axis, even after stabilized. A N45 neodymium magnet and 4 hysteresis bars of Permanorm 5000 H2 are used (courtesy of Vacuumschmelze GmbH & Co. KG). The material of the hysteresis bar is shaped in order to maximize the stabilization, which is the most important part of the attitude control.

Many conditions impact on the detumbling time, which is the time required for the satellite to stabilize. Magnetic passive attitude stabilization systems such as the one developed for this mission achieve the equilibrium state within a few weeks of operation [7].

The GOLDS-UFSC satellite does not feature an orbit control subsystem.

5.5 Mechanical Structure

.

5.6 Interconnection Modules

5.6.1 PC-104 Interconnection Boards

[10]

5.6.2 External Connection Boards

[11]

5.7 Payloads

5.7.1 Environmental Data Collection

EDC [12]

Test Plan and Results

.

6.1 Flatsat

[13]

Ground Segment

.

Operation Planning

.

Bibliography

- [1] Space Technology Research Laboratory (SpaceLab). *FloripaSat-I Documentation*, 2019. Available at https://github.com/spacelab-ufsc/floripasat-doc.
- [2] Space Technology Research Laboratory (SpaceLab). *OBDH 2.0 Documentation*, 2020. Available at https://github.com/spacelab-ufsc/obdh2.
- [3] Space Technology Research Laboratory (SpaceLab). *TTC Documentation*, 2021. Available at https://github.com/spacelab-ufsc/ttc.
- [4] ISISPACE Group, Motorenweg 23, 2623CR, Delft, The Netherlands. *Deployable Antenna System*, 2020. Available at https://www.isispace.nl/wp-content/uploads/2021/01/ISIS-ANTS-DSH-0001-Antenna_System_Datasheet-04_00.pdf.
- [5] Space Technology Research Laboratory (SpaceLab). *EPS 2.0 Documentation*, 2021. Available at https://github.com/spacelab-ufsc/eps2.
- [6] Space Technology Research Laboratory (SpaceLab). *Battery Module 4C Documentation*, 2021. Available at https://github.com/spacelab-ufsc/battery-module-4c.
- [7] Santoni, Fabio; Zelli, Mauro. Passive magnetic attitude stabilization of the UNISAT-4 microsatellite. In *57th International Astronautical Congress*, 2012.
- [8] Gerhardt, David T.; Palo, Scott E. Passive Magnetic Attitude Control for CubeSat Spacecraft. In *24th Annual AIAA/USU Conference on Small Satellites*, 2010.
- [9] Francois-Lavet, Vincent. Study of passive and active attitude control systems for the OUFTI nanosatellites. Master's thesis, University of Liège, Faculty of Applied Sciences, Belgium, 2010.
- [10] Space Technology Research Laboratory (SpaceLab). *PC-104 Adapter Documentation*, 2021. Available at https://github.com/spacelab-ufsc/pc104-adapter.
- [11] Space Technology Research Laboratory (SpaceLab). *Documentation of Inter-stage Interface Panels*, 2021. Available at https://github.com/spacelab-ufsc/interface-board.
- [12] Instituto Nacional de Pesquisas Espaciais (INPE). *Environmental Data Collector User Guide*, October 2019. CNS-MNL-PY-00-002-V01.
- [13] Space Technology Research Laboratory (SpaceLab). Flatsat Platform Documentation, 2021. Available at https://github.com/spacelab-ufsc/flatsat-platform.