

NCERT solutions for class-9 maths Areas of Parallelograms and Triangles Ex-9.3

Q1. In figure, E is any point on median AD of a \triangle ABC. Show that ar $(\triangle ABE) = ar (\triangle ACE)$.

Ans. In \triangle ABC, AD is a median.

$$ar(\Delta ABD) = ar(\Delta ACD)....(i)$$

[\cdot Median divides a Δ into two Δ s of equal area]

Again in \triangle EBC, ED is a median

$$ar(\Delta EBD) = ar(\Delta ECD)....(ii)$$

Subtracting eq. (ii) from (i),

 $ar(\triangle ABD) - ar(\triangle EBD) = ar(\triangle ACD) - ar(\triangle ECD)$

$$\Rightarrow$$
 ar (\triangle ABE) = ar (\triangle ACE)

Q2. In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = $\frac{1}{4}$ ar (ABC).

Ans. Given: A \triangle ABC, AD is the median and E is the mid-point of median AD.

To prove: ar $(\triangle BED) = \frac{1}{4}$ ar $(\triangle ABC)$

Proof: In \triangle ABC, AD is the median.

$$\therefore$$
 ar (\triangle ABD) = ar (\triangle ADC)

[\cdot Median divides a Δ into two Δ s of equal area]

$$\Rightarrow$$
 ar (\triangle ABD) = $\frac{1}{2}$ ar (ABC)(i)

In \triangle ABD, BE is the median.

$$\therefore$$
 ar (\triangle BED) = ar (\triangle BAE)

$$\Rightarrow$$
 ar $(\Delta BED) = \frac{1}{2}$ ar (ΔABD)

$$\Rightarrow \operatorname{ar}(\Delta BED) = \frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\Delta ABC) = \frac{1}{4} \operatorname{ar}(\Delta ABC)$$
ABC)

Q3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Ans. Let parallelogram be ABCD and its diagonals AC and BD intersect each other at O.

In \triangle ABC and \triangle ADC,

AB = DC [Opposite sides of a parallelogram]

BC = AD [Opposite sides of a parallelogram]

And AC = AC [Common]

 $\triangle ABC \cong \triangle CDA$ [By SSS congruency]

Since, diagonals of a parallelogram bisect each other.

∴ O is the mid-point of bisection.

Now in \triangle ADC, DO is the median.

$$\therefore$$
 ar (\triangle AOD) = ar (\triangle COD)(i)

[Median divides a triangle into two equal areas] Similarly, in \triangle ABC, OB is the median.

$$\therefore$$
 ar (\triangle AOB) = ar (\triangle BOC)(ii)

And in \triangle AOB and \triangle AOD, AO is the median.

$$\therefore$$
 ar (\triangle AOB) = ar (\triangle AOD)(iii)

From eq. (i), (ii) and (iii),

$$ar(\Delta AOB) = ar(\Delta AOD) = ar(\Delta BOC) = ar(\Delta COD)$$

Thus diagonals of parallelogram divide it into four triangles of equal area.

Q4. In figure, ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O, show that ar (ABC) = ar (ABD).

Ans. Draw $CM^{\perp}AB$ and $DN^{\perp}AB$.

In \triangle CMO and \triangle DNO,

$$\angle$$
 CMO = \angle DNO = 90° [By construction]

$$\angle$$
 COM = \angle DON [Vertically opposite]

$$\triangle \Delta CMO \cong \Delta DNO$$
[By ASA congruency]

Now ar
$$(\triangle ABC) = \frac{1}{2} \times AB \times CM$$
(ii)

$$\operatorname{ar}(\Delta ADB) = \frac{1}{2} \times AB \times DN$$
(iii)

Using eq. (i) and (iii),

$$ar(\Delta ADB) = \frac{1}{2} \times AB \times CM$$
(iv)

From eq. (ii) and (iv),

$$ar(\Delta ABC) = ar(\Delta ADB)$$

Q5. D, E and F are respectively the mid-points of the sides BC, CA and AB of a \triangle ABC. Show that:

(i) BDEF is a parallelogram.

(ii) ar (DEF) =
$$\frac{1}{4}$$
 ar (ABC)

(iii) ar (BDEF) =
$$\frac{1}{2}$$
 ar (ABC)

Ans. (i) F is the mid-point of AB and E is the mid-point of AC.

$$\therefore$$
 FE|| BC and FE = $\frac{1}{2}$ BD

[: Line joining the mid-points of two sides of a triangle is parallel to the third and half of it]

$$\Rightarrow$$
 FE || BD [BD is the part of BC]

And FE = BD

Also, D is the mid-point of BC.

$$\therefore BD = \frac{1}{2} BC$$

And FE | BC and FE = BD

Again E is the mid-point of AC and D is the midpoint of BC.

$$\therefore$$
 DE || AB and DE = $\frac{1}{2}$ AB

 \Rightarrow DE || AB [BF is the part of AB]

And DE = BF

Again F is the mid-point of AB.

$$\therefore$$
 BF = $\frac{1}{2}$ AB

But DE =
$$\frac{1}{2}$$
 AB

$$\therefore$$
 DE = BF

Now we have $FE \parallel BD$ and $DE \parallel BF$

And FE = BD and DE = BF

Therefore, BDEF is a parallelogram.

(ii) BDEF is a parallelogram.

[diagonals of parallelogram divides it in two triangles of equal area]

DCEF is also parallelogram.

$$\therefore$$
 ar (\triangle DEF) = ar (\triangle DEC)(ii)

Also, AEDF is also parallelogram.

$$\therefore$$
 ar (\triangle AFE) = ar (\triangle DEF)(iii)

From eq. (i), (ii) and (iii),

$$\operatorname{ar}(\Delta \operatorname{DEF}) = \operatorname{ar}(\Delta \operatorname{BDF}) = \operatorname{ar}(\Delta \operatorname{DEC}) = \operatorname{ar}(\Delta \operatorname{AFE}) \dots (\operatorname{iv})$$

Now, ar
$$(\triangle ABC)$$
 = ar $(\triangle DEF)$ + ar $(\triangle BDF)$ + ar $(\triangle DEC)$ + ar $(\triangle AFE)$ (v)

$$\Rightarrow$$
 ar (\triangle ABC) = ar (\triangle DEF) + ar (\triangle DEF) + ar (\triangle DEF) + ar (\triangle DEF)

[Using (iv) & (v)]

$$\Rightarrow$$
 ar (\triangle ABC) = 4 \times ar (\triangle DEF)

$$\Rightarrow$$
 ar $(\triangle DEF) = \frac{1}{4}$ ar $(\triangle ABC)$

(iii)
$$\operatorname{ar}(\|\operatorname{gm} \operatorname{BDEF}) = \operatorname{ar}(\Delta \operatorname{BDF}) + \operatorname{ar}(\Delta \operatorname{DEF}) = \operatorname{ar}(\Delta \operatorname{DEF}) + \operatorname{ar}(\Delta \operatorname{DEF}) [\operatorname{Using}(\operatorname{iv})]$$

$$\Rightarrow$$
 ar (\parallel gm BDEF) = 2 ar (\triangle DEF)

$$\Rightarrow$$
 ar (||gm BDEF) = $2 \times \frac{1}{4}$ ar (\triangle ABC)

$$\Rightarrow$$
 ar (|| gm BDEF) = $\frac{1}{2}$ ar (\triangle ABC)

****** END ******