If you spot any typos or problems, please email silvia.barbina@open.ac.uk.

Question 4 Let $L = \{+, -, 0\}$ be the language of additive groups (so in particular – is a unary function). Let \mathbb{Z}^n denote the direct product $\underline{\mathbb{Z} \times \cdots \times \mathbb{Z}}$, regarded as an L-structure.

Show that if $m \neq n$ then $\mathbb{Z}^m \not\equiv \mathbb{Z}^n$.

Solution In \mathbb{Z}^k an element x is said to be divisible by 2 if $\exists z (z + z = x)$.

Then in \mathbb{Z}^k there is a set of 2^k distinct elements $x_1, ..., x_k$ such that for all $y \in \mathbb{Z}^k$, there is $i \in \{1,...,k\}$ such that $x_i + y$ is divisible by 2. For example, in \mathbb{Z}^3

$$\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$$

is such a set.

This property can be expressed via a first-order sentence. If m < n, this sentence is true in \mathbb{Z}^m but not in \mathbb{Z}^n , hence $\mathbb{Z}^m \not\equiv \mathbb{Z}^n$.

Alternatively: two elements x and y are equal modulo 2 if the difference x-y is divisible by 2. In \mathbb{Z}^k there is a set of 2^k-1 elements that are not divisible by 2 and are pairwise distinct modulo 2, but not a set of 2^k such elements. Again, this property can be expressed via a first-order sentence which is true in \mathbb{Z}^m but not in \mathbb{Z}^n if m < n.

Question 8 Assume *L* is countable and let $M \le N$ have arbitrary (large) cardinality. Let $A \subseteq N$ be countable. Prove there is a countable model *K* such that $A \subseteq K \le N$ and $K \cap M \le N$ (in particular, $K \cap M$ is a model).

Solution

<u>Method 1</u> Use the statement in Q7 (often called the Elementary Chain Lemma in the literature). If M is countable, take K = M. If not, build chains $\langle k_i : i < \omega \rangle$ of countable K_i and $\langle M_i : i < \omega \rangle$ such that

- (i) $A \cap M \subseteq M_i$ for all i
- (ii) $A \subseteq K_0$ (and hence $A \subseteq K_i$ for all i)
- (iii) $A \cup M_i \subseteq K_{i+1} \leq N$.

Start with $K_0 \supseteq A$, $K_0 \le N$ countable. At stage i + 1, let

- $M \cap K_i \subseteq M_i \leq M$, and
- $K_i \cup M_i \subseteq K_{i+1} \leq N$.

Then take $M = \bigcup_{i < \omega} M_i$ and $K = \bigcup_{i < \omega} K_i$. Then $K \cap M = M \le N$ and $A \subseteq K \le N$.

<u>Method 2</u> Mimic the proof of the Downward Löwenhein-Skolem Theorem. Build inductively a chain $\langle K_i : i < \omega \rangle$ such that $A \subseteq K_i$ and $|K_i| = \omega$ for all i.

Let $K_0 = A$. At stage i + 1 enumerate the $L(K_i)$ -formulas $\varphi(x)$ with one free variable such that $N \models \exists x \varphi(x)$. If $\varphi(x)$ has parameters in $M \cap K_i$, then by elementarity of M there is $a_{\varphi} \in M$ such that $M \models \varphi(a_{\varphi})$. Otherwise, pick $a_{\varphi} \in M$ such that $N \models \varphi(a_{\varphi})$. Let

$$K_{i+1} = K_i \cup \{a_{\varphi} : \varphi(x) \text{ is as described}\}.$$

Let $K = \bigcup_{i < \omega} K_i$. Use the Tarski-Vaught Test to show $K \leq N$.

Now let $\varphi(x)$ be in $L(M \cap K)$. Then in particular the parameters in φ are in $M \cap K_i$ for some i, so there is $a_{\varphi} \in K_{i+1}$ such that $N \models \varphi(a_{\varphi})$.

Question 9 If λ is an infinite cardinal and T is a theory with models of size λ , we say that T is λ -categorical if any two models of T of cardinality λ are isomorphic. Prove that T_{dlo} , the theory of dense linear orders without endpoints, is not λ -categorical for any uncountable λ .

Solution Let λ be an uncountable cardinal, and let λ^* be λ with the reverse order. Then $\lambda \times \mathbb{Q}$ (with the lexicographic order, that is, λ copies of \mathbb{Q}), and $\lambda^* \times \mathbb{Q}$ are both models of T_{dlo} of cardinality λ .

These two models are not isomorphic: pick any $(0,q) \in \lambda \times \mathbb{Q}$. Then (0,q) has countably many predecessors. However, the image f(0,q) under any map $f: \lambda \times \mathbb{Q} \mapsto \lambda^* \times \mathbb{Q}$ has uncountably many predecessors. Therefore f is not an isomorphism.

Hence T_{dlo} is not λ -categorical.