# Undirected Graph Exploration with $\Theta(\log \log n)$ Pebbles

A Grimm idea

Christoph Welzel

May 13, 2016

Logik und Theorie diskreter Systeme, RWTH Aachen



#### Introduction

- Exploration of huge finite graphs by agents
- Agents are located on a vertex and move along edges
- Agents can drop pebbles on vertices
- Agent explores a graph by systematically visiting all of its vertices

# **Preliminaries**

# **Huge graphs**

- Undirected
- Finite, but huge
- Indistinguishable vertices:



- Bounded degree (Δ)
- Edges can locally be labeled with  $0, ..., \Delta 1$  (Port)



- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{\it in}$ : moving onto vertex

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex

 As an agent moves onto a vertex it observes:

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through
  - Pebbles it carries

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through
  - Pebbles it carries
  - Pebbles on the vertex

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through
  - Pebbles it carries
  - Pebbles on the vertex
  - Degree of vertex

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex
  - $\delta_{out}$ : leaving vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through
  - Pebbles it carries
  - Pebbles on the vertex
  - Degree of vertex

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex
  - $\delta_{out}$ : leaving vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through
  - Pebbles it carries
  - Pebbles on the vertex
  - Degree of vertex
- Computation on a vertex determines:

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex
  - $\delta_{out}$ : leaving vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through
  - Pebbles it carries
  - Pebbles on the vertex
  - Degree of vertex
- Computation on a vertex determines:
  - Port to leave

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex
  - $\delta_{out}$ : leaving vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through
  - Pebbles it carries
  - Pebbles on the vertex
  - Degree of vertex
- Computation on a vertex determines:
  - Port to leave
  - Pebbles to drop

- Agent carries set of distinguishable pebbles
- Formalisation as pebble machines
  - $(Q, F, P, m, \delta, \delta_{in}, \delta_{out}, q_0)$
  - (s, p, m)-pebble machine
  - $\delta_{in}$ : moving onto vertex
  - $\delta_{out}$ : leaving vertex

- As an agent moves onto a vertex it observes:
  - Port it entered through
  - Pebbles it carries
  - Pebbles on the vertex
  - Degree of vertex
- Computation on a vertex determines:
  - Port to leave
  - Pebbles to drop
  - Pebbles to carry along

- Exploration sequence  $e_1, \ldots, e_n$
- Relative movements of agent
- Leaving port:  $\ell_i + e_i \mod d_v$
- Universal for a class of graphs if it explores any graph of that class



- Exploration sequence  $e_1, \ldots, e_n$
- Relative movements of agent
- Leaving port:  $\ell_i + e_i \mod d_v$
- Universal for a class of graphs if it explores any graph of that class
- $\rightarrow$  Example: 0, 3, 1, 2



- Exploration sequence  $e_1, \ldots, e_n$
- Relative movements of agent
- Leaving port:  $\ell_i + e_i \mod d_v$
- Universal for a class of graphs if it explores any graph of that class
- $\rightarrow$  Example: 0, 3, 1, 2



- Exploration sequence  $e_1, \ldots, e_n$
- Relative movements of agent
- Leaving port:  $\ell_i + e_i \mod d_v$
- Universal for a class of graphs if it explores any graph of that class
- $\rightarrow$  Example: 0, 3, 1, 2



- Exploration sequence  $e_1, \ldots, e_n$
- Relative movements of agent
- Leaving port:  $\ell_i + e_i \mod d_v$
- Universal for a class of graphs if it explores any graph of that class
- $\rightarrow$  Example: 0, 3, 1, 2



- Exploration sequence  $e_1, \ldots, e_n$
- Relative movements of agent
- Leaving port:  $\ell_i + e_i \mod d_v$
- Universal for a class of graphs if it explores any graph of that class
- $\rightarrow$  Example: 0, 3, 1, 2



- Exploration sequence  $e_1, \ldots, e_n$
- Relative movements of agent
- Leaving port:  $\ell_i + e_i \mod d_v$
- Universal for a class of graphs if it explores any graph of that class
- $\rightarrow$  Example: 0, 3, 1, 2



# Graph traversal

#### Theorem (Reingold)

There is an  $O(\log n)$ -space algorithm producing a universal exploration sequence for any regular graph on n vertices.

#### Theorem

#### Theorem (Reingold)

There is an  $O(\log n)$ -space algorithm producing a universal exploration sequence for any regular graph on n vertices.

3-Regularity

#### Theorem

#### Theorem (Reingold)

There is an  $O(\log n)$ -space algorithm producing a universal exploration sequence for any regular graph on n vertices.

3-Regularity
Periodic Universal Lemma

#### **Theorem**

#### Theorem (Reingold)

There is an  $O(\log n)$ -space algorithm producing a universal exploration sequence for any regular graph on n vertices.



#### Theorem

#### Closed walk

#### Lemma (Closed Walk Lemma)

An agent following an exploration sequence of the form  $(e_0, \ldots, e_{k-1})^*$  moves along a closed walk.

#### Closed walk

#### Lemma (Closed Walk Lemma)

An agent following an exploration sequence of the form  $(e_0, \ldots, e_{k-1})^*$  moves along a closed walk.

#### Lemma (Periodic Universal Lemma)

There exists an  $\mathcal{O}(\log n)$ -space algorithm producing a universal exploration sequence  $(e_0,\ldots,e_{k-1})^*$  for any 3-regular graph with at most n vertices.

# -Regularity

Establish 3-Regularity

# -Regularity

# Establish 3-Regularity



# -Regularity

#### Establish 3-Regularity



#### Theorem (Reingold)

There is an  $O(\log n)$ -space algorithm producing a universal exploration sequence for any regular graph on n vertices.

3-Regularity
Periodic Universal Lemma
Closed Walk Lemma

#### Theorem

# Pebble simulation

#### **Theorem**

There is a constant  $c \in \mathbb{N}$ , such that for any graph G with bounded degree and any (s, p, 2m)-pebble machine  $\mathcal{M}$ , there exists a (cs, p + c, m)-pebble machine  $\mathcal{M}'$  that simulates the walk of  $\mathcal{M}$  or explores G.

• Simulate m bits by pebbles:

• Simulate *m* bits by pebbles:



- Simulate *m* bits by pebbles:
  - Separate into m<sub>1</sub> sized blocks



- Simulate *m* bits by pebbles:
  - Separate into m<sub>1</sub> sized blocks
  - $\bullet$  Represent blocks by pebbles  $\emph{p}_0,\ldots,\emph{p}_{\frac{m}{m_1}-1}$





- Pebble needs 2<sup>m1</sup> distinct "states"
- State as index of closed walk



#### Mechanisms of simulation

- 1. Simulation of  $M_{\text{walk}}$  providing walk with  $2^{m_1}$  distinct vertices
- 2. Identify distinct vertices of walk
- 3. Read from and write to simulated tape
- 4. Preserve tape content through steps of simulated agent

#### Mechanisms of simulation

- 1. Simulation of  $M_{\text{walk}}$  providing walk with  $2^{m_1}$  distinct vertices
- 2. Identify distinct vertices of walk
- 3. Read from and write to simulated tape
- 4. Preserve tape content through steps of simulated agent

Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble  $p_{tmp}$
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble p<sub>tmp</sub>
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- Execute steps of M<sub>walk</sub> until p<sub>tmp</sub> is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble p<sub>tmp</sub>
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble p<sub>tmp</sub>
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble  $p_{tmp}$
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble p<sub>tmp</sub>
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- Execute steps of M<sub>walk</sub> until p<sub>tmp</sub> is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- Execute steps of M<sub>walk</sub> until p<sub>tmp</sub> is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- Execute steps of M<sub>walk</sub> until p<sub>tmp</sub> is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- Execute steps of M<sub>walk</sub> until p<sub>tmp</sub> is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- Execute steps of M<sub>walk</sub> until p<sub>tmp</sub> is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- Execute steps of M<sub>walk</sub> until p<sub>tmp</sub> is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- Execute steps of M<sub>walk</sub> until p<sub>tmp</sub> is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {\rm new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{\rm walk}$  to find  $p_{\rm tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



Problem: Indistinguishable vertices → next vertex "new"?

- 1. Execute step of  $M_{\text{walk}}$
- 2. Drop pebble ptmp
- 3. Store number of steps  $M_{\text{walk}}$  executed
- 4. Restart M<sub>walk</sub>
- 5. Execute steps of  $M_{\text{walk}}$  until  $p_{\text{tmp}}$  is observed
- 6. Same amount of steps for  $M_{
  m walk}$  to find  $p_{
  m tmp} 
  ightarrow {
  m new}$  vertex
- 7. Otherwise start over



- Simulation of M<sub>Walk</sub> which explores at least 2<sup>m1</sup> distinct vertices
- Identify distinct vertices of the walk
- Read from and write to simulated tape
- Preserve tape content through steps of simulated agent

- Simulation of M<sub>Walk</sub> which explores at least 2<sup>m1</sup> distinct vertices √
- Identify distinct vertices of the walk
- Read from and write to simulated tape
- Preserve tape content through steps of simulated agent

- Simulation of M<sub>Walk</sub> which explores at least 2<sup>m1</sup> distinct vertices √
- Identify *distinct* vertices of the walk ✓
- Read from and write to simulated tape
- Preserve tape content through steps of simulated agent

- Simulation of M<sub>Walk</sub> which explores at least 2<sup>m1</sup> distinct vertices √
- Identify distinct vertices of the walk ✓
- ullet Read from and write to simulated tape  $\checkmark$
- Preserve tape content through steps of simulated agent

- Simulation of M<sub>Walk</sub> which explores at least 2<sup>m1</sup> distinct vertices √
- Identify *distinct* vertices of the walk ✓
- Read from and write to simulated tape √
- ullet Preserve tape content through steps of simulated agent  $\checkmark$

- Simulation of M<sub>Walk</sub> which explores at least 2<sup>m1</sup> distinct vertices √
- Identify *distinct* vertices of the walk ✓
- Read from and write to simulated tape √
- ullet Preserve tape content through steps of simulated agent  $\checkmark$

#### **Theorem**

There is a constant  $c \in \mathbb{N}$ , such that for any graph G with bounded degree and any (s, p, 2m)-pebble machine  $\mathcal{M}$ , there exists a (cs, p + c, m)-pebble machine  $\mathcal{M}'$  that simulates the walk of  $\mathcal{M}$  or explores G.

## Exploring graphs with $\log \log n$ pebbles

#### Theorem

There exists a  $(\mathcal{O}(1), 0, \mathcal{O}(\log n))$ -pebble machine that moves along a closed walk and either explores the graph or visits at least n distinct vertices, for any graph with bounded degree.

Apply simulation Theorem  $\log \log n$  times

#### Theorem

Any bounded-degree graph on at most n vertices can be explored using  $\mathcal{O}(\log \log n)$  pebbles and memory.

Limitations of pebble machines

#### **Limitations of pebbles**

- Construct 3-regular graphs which an agent A with p pebbles cannot traverse
- Called *p*-barriers



- For every pair (a, b) in  $\{v_1, v_2\} \times \{v_3, v_4\}$   $\mathcal{A}$  cannot traverse a p-barrier from a to b or vice versa using at most p pebbles
- Inductive construction of barriers

#### **Limitations of pebbles**

- Construct 3-regular graphs which an agent A with p pebbles cannot traverse
- Called *p*-barriers



- For every pair (a, b) in  $\{v_1, v_2\} \times \{v_3, v_4\}$   $\mathcal{A}$  cannot traverse a p-barrier from a to b or vice versa using at most p pebbles
- Inductive construction of barriers

#### Locality gadget

- Replace edge by (r-1)-barrier
- Enforce "locality" of pebbles

#### Locality gadget

- Replace edge by (r-1)-barrier
- Enforce "locality" of pebbles



#### Locality gadget

- Replace edge by (r-1)-barrier
- Enforce "locality" of pebbles



#### **Theorem**

Given an (r-1)-barrier B with m vertices for an agent A with  $p \ge r$  pebbles, we can construct an r-barrier B' with  $\mathcal{O}(\binom{p}{r} \cdot m \cdot \alpha_B^2)$  vertices for A.

where  $lpha_{B}$  is the amount of "local" configurations for  ${\cal A}$  with r pebbles

#### Barrier construction: Idea

- Subset of pebbles of cardinality r
- Locality gadget as edges
- Pebbles are local: configurations in macro vertex C<sub>1</sub>,..., C<sub>α</sub>
- Project A to agent without pebbles B
- B has α states and traverses macro vertices





#### Barrier construction: Idea

- Subset of pebbles of cardinality r
- Locality gadget as edges
- Pebbles are local: configurations in macro vertex C<sub>1</sub>,..., C<sub>α</sub>
- Project A to agent without pebbles B
- B has α states and traverses macro vertices





#### Barrier construction: Idea

- Subset of pebbles of cardinality r
- Locality gadget as edges
- Pebbles are local: configurations in macro vertex C<sub>1</sub>,..., C<sub>α</sub>
- Project A to agent without pebbles B
- B has α states and traverses macro vertices





#### Barrier construction

- B has no pebbles and cannot traverse 0-barrier
- r-barrier for chosen subset of pebbles
- Connect barriers for all possible subsets of pebbles with cardinality r:



#### Barrier base case

#### Theorem (Fraigniaud et al.)

For any q non cooperative s-state agents without pebbles, there exists a 3-regular graph G on  $\mathcal{O}(qs)$  vertices with the following property: There are two edges  $\{v_1, v_2\}$  and  $\{v_3, v_4\}$  in G, the first labeled 0, such that any of the q agents starting in  $v_1$  or  $v_2$  does not traverse the edge  $\{v_3, v_4\}$ .

- For agent A consider  $S = \{A_q \mid q \in Q\}$
- Since |S| = |Q| = q there is a 0-barrier with  $\mathcal{O}(s^2)$  vertices

#### **Barrier**

#### **Theorem**

Given an (r-1)-barrier B with m vertices for an agent A with  $p \ge r$  pebbles, we can construct an r-barrier B' with  $\mathcal{O}(\binom{p}{r} \cdot m \cdot \alpha_B^2)$  vertices for A.



#### Lower pebble bound

#### **Theorem**

For  $r \leq p$  and  $s \geq 2^p$ , the number of vertices of an r-barrier  $B_r$  for the s-state agent  $\mathcal{A}$  with p pebbles is bounded by  $\mathcal{O}(s^{8^{r+1}})$ .

#### **Theorem**

For any constant  $\epsilon > 0$ , an agent with at most  $\mathcal{O}((\log n)^{1-\epsilon})$  bits of memory needs at least  $\Omega(\log \log n)$  distinguishable pebbles for exploring all graphs on at most n vertices.

# Conclusion

#### Conclusion

- Exploring graphs with  $\mathcal{O}(\log \log n)$  pebbles and memory
- Simulation via pebbles
- Limitations of pebbles: Barrier construction
- Every agent with sub-logarithmic memory needs  $\Omega(\log \log n)$  pebbles to explore n vertices

# Thank you for your attention.

Slides and report on

https://github.com/weltoph/sem-pebbles.

#### 1. Simulation of $M_{\text{walk}}$

- $M_{\text{Walk}}$  implemented as  $(\mathcal{O}(1), 0, \mathcal{O}(m_1))$ -pebble machine
- Used variables/pebbles:
  - T<sub>walk</sub>: stores M<sub>walk</sub>'s tape
  - $\bullet$   $T_{steps}$ : stores number of taken steps
  - T<sub>id</sub>: stores number of visited distinct vertices
  - p<sub>start</sub>: marks beginning of walk

#### 3. Memory management

- T<sub>head</sub>: head position
- $p_{\left\lfloor \frac{\mathsf{T}_{\mathsf{head}}}{m_1} \right\rfloor}$ : pebble of memory block
- off = T<sub>head</sub> mod m<sub>1</sub>: offset in memory block
- Reading:
  - Retrieve encoding pebble
  - Return off-th bit
- Writing:
  - Read bit
  - On bit-flip move encoding pebble 2<sup>off</sup> bits up or down



- Read bit
- On bit-flip: move pebble





#### 4. Transfer tape-content through movements

- Simulated agent moves
- Preserve tape-content:
  - Drop  $p_{\text{next}}$  on next vertex v
  - $\omega'$  walk of  $M_{\text{walk}}$  starting from v
  - Transfer encoding pebbles onto  $\omega'$
  - Place pebbles at same index

#### Barrier size

#### **Theorem**

For  $r \leq p$  and  $s \geq 2^p$ , the number of vertices of an r-barrier  $B_r$  for the s-state agent  $\mathcal{A}$  with p pebbles is bounded by  $\mathcal{O}(s^{8^{r+1}})$ .

