Formulas

Joint and Marginal Probabilities

Conditional Probabilities

Probability of Defaulting, Given the person is married:

$$P(D | M) = \frac{P(D \cap M)}{P(M)} = \frac{0.2633}{0.4766} = 0.5524$$

Probability of Defaulting, Given the person is single:

$$P(D \,|\, S) = \frac{P(D \cap S)}{P(S)} = \frac{0.1367}{0.5234} = 0.2611$$

Conditional Probability

Multiplication Law:

- ▶ Multiplication law can be used to calculate the probability of the intersection of two events.
- Based on the definition of conditional probability.
 - ► Rearrange formula to solve for P(A n B)

MULTIPLICATION LAW

$$P(A \cap B) = P(B)P(A \mid B) \tag{4.7}$$

or

$$P(A \cap B) = P(A)P(B \mid A) \tag{4.8}$$

Example:

$$P(D \,|\, M) = \frac{P(D \cap M)}{P(M)} = \frac{0.2633}{0.4766} = 0.5524$$

$$P(D \cap M) = P(M)P(D \mid M) = (0.4766)(0.5524) = 0.2633$$

Conditional Probability

- ▶ Special case in which events A and B are independent.
- ▶ To compute the probability of the intersection of two independent events
 - ▶ Simply multiply the probabilities of each event.

MULTIPLICATION LAW FOR INDEPENDENT EVENTS

$$P(A \cap B) = P(A)P(B)$$

(4.9)

Bayes' Theorem:

- ▶ Way to update probabilities when we learn new information
- ► Example: A manufacturing firm receives shipments of parts from two different suppliers:
 - ▶ 65% of the parts purchased from supplier 1.
 - ▶ 35% of the parts purchased from supplier 2.
- ► These are called **Prior Probabilities**
 - estimates for specific events of interest

Conditional Probability

Historical data suggest the quality ratings of the two suppliers:

	% Good Parts	% Bad Parts
Advance Auto (A1)	98	2
Auto Zone (A2)	95	5

- ▶ This new information allows us to update the prior probabilities.
- ▶ To do so, we calculate conditional probabilities

$$P(G|A_1) = 0.98$$
 $P(B|A_1) = 0.02$

$$P(G|A_2) = 0.95$$
 $P(B|A_2) = 0.05$

Diagram for Two-Supplier Example

- ► There are 4 possible outcomes:
 - ► Each outcome is the intersection of 2 events
 - Example: Probability of getting a good part from Advanced Auto

$$P(A_1, G) = P(A_1 \cap G) = P(A_1)P(G|A_1)$$

► We use the multiplication rule to calculate

Conditional Probability

Figure 4.8: Probability Tree for Two-Supplier Example

➤ Simply multiply the probabilities of each branch to calculate the probability of the outcome.

- ▶ Suppose the parts from the two suppliers are used in the firm's manufacturing process and a machine breaks while attempting the process using a bad part:
 - ▶ Given the information that the part is bad, what is the probability that it came from supplier 1 and what is the probability that it came from supplier 2?
 - ▶ That is: What is
 - P(A1|B) = ?
 - ▶ P(A2 | B) = ?
 - ► Using the prior probabilities and the conditional probabilities to update them, we can use Bayes Rule to calculate P(A1|B) and P(A2|B)
 - ► Known as Posterior Probabilities

Conditional Probability

BAYES' THEOREM (TWO-EVENT CASE)

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)}$$
(4.10)

$$P(A_2 \mid B) = \frac{P(A_2)P(B \mid A_2)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)}$$
(4.11)

BAYES' THEOREM

$$P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) + \dots + P(A_n)P(B \mid A_n)}$$
(4.12)

▶ Bayes' theorem is applicable when are mutually exclusive and their union is the entire sample space.

Bayes Theorem

$$P(A_1|B) = \frac{P(A_1)P(B|A_1)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2)}$$

$$= \frac{(0.65)(0.02)}{(0.65)(0.02) + (0.35)(0.05)} = \frac{0.0130}{0.0130 + 0.0175}$$

$$= \frac{0.0130}{0.0305} = 0.4262$$

$$P(A_2|B) = \frac{P(A_2)P(B|A_2)}{P(A_2)P(B|A_1) + P(A_2)P(B|A_2)}$$

$$= \frac{(0.35)(0.05)}{(0.65)(0.02) + (0.35)(0.05)} = \frac{0.0175}{0.0130 + 0.0175}$$

$$= \frac{0.0175}{0.0305} = 0.5738$$

Random Variables Discrete Random Variables Continuous Random Variables

Random Variables

- ► A random variable
 - ▶ is a numerical description of the outcome of a random experiment.
- ► Random variables are quantities whose values are not known with certainty.
- ▶ A random variable can be classified as being either:
 - Discrete.
 - Continuous.

Random Variables

- ▶ Why are they called Random Variables?!?
 - ▶ A random variable is neither random, nor a variable!
- ► Examples:
 - ▶ the number of children in a family
 - ▶ the Friday night attendance at a cinema
 - the number of patients in a doctor's surgery
 - ▶ the number of defective light bulbs in a box of ten

Could there be patterns, reasons, or conscious decisions related to these "phenomena"?

Random Variables

Table 4.7: Examples of Discrete Random Variables - only take on specified discreet values

Random Experiment	Random Variable (x)	Possible Values for the Random Variable
Flip a coin	Face of a coin showing	1 if heads; 0 if tails
Roll a die	Number of dots showing on top of die	1, 2, 3, 4, 5, 6
Contact five customers	Number of customers who place an order	0, 1, 2, 3, 4, 5
Operate a health care clinic for one day	Number of patients who arrive	0, 1, 2, 3,
Offer a customer the choice of two products	Product chosen by customer	0 if none; 1 if choose product A; 2 if choose product B

Random Variables

- ► Lancaster Savings and Loan Example
 - ▶ Random Variable x = 1 for Default on Mortgage or x = 0 for No Default
 - ▶ Random Variable y = 1 for Married or y = 0 for Single
 - ► Random Variable z = number of payments per year (= 12 for 12 months)

Table 4.8: Joint Probability Table for Customer Mortgage Prepayments

	No Default $(x = 0)$	Default ($x = 1$)	f(y)
Married ($y = 1$)	0.2133	0.2633	0.4766
Single $(y = 0)$	0.3867	0.1367	0.5234
f(x)	0.6000	0.4000	1.0000

Random Variables

Continuous Random Variables:

- A random variable that may assume any numerical value in an interval or collection of intervals
 - ▶ Relatively few random variables are truly continuous
 - ▶ Many discrete random variables have a large number of potential outcomes
 - ▶ can be effectively modeled as continuous random variables.

Random Experiment	Random Variable (x)	Possible Values for the Random Variable
Customer visits a web page	Time customer spends on web page in minutes	$x \ge 0$
Fill a soft drink can (max capacity = 12.1 ounces)	Number of ounces	$0 \le x \le 12.1$
Test a new chemical process	Temperature when the desired reaction takes place (min temperature = 150° F; max temperature = 212° F)	$150 \le x \le 212$
Invest \$10,000 in the stock market	Value of investment after one year	$x \ge 0$

Discrete Probability Distributions

Custom Discrete Probability Distribution

Expected Value and Variance

Discrete Uniform Probability Distribution

Binomial Probability Distribution

Poisson Probability Distribution

- ▶ The **probability distribution** for a random variable
 - ▶ describes the range and relative likelihood of possible values for a random variable.
- For a discrete random variable x, the probability distribution is defined by the **probability mass** function, denoted by f(x).
- ▶ The probability mass function provides the probability for each value of the random variable.

Probability Distribution for Whether a Customer Defaults on a Mortgage

- f(0) = .6
- f(1) = .4

Requirements:

- $f(x) \ge 0$
- $\sum f(x) = 1$

Discrete Probability Distributions

- ▶ Empirical Probability Distribution
 - ► A probability that is generated from observations
 - is considered a custom discrete probability distribution if:
 - ▶ it is discrete
 - ▶ the possible values of the random variable have different values:

Useful for describing different possible scenarios that have different probabilities.

- ► Example: Lancaster Savings and Loan Example
 - ▶ The random variable describing the number of mortgage payments made per year by randomly chosen customers.

Table 4.10: Summary Table of Number of Payments Made per Year

	Number of Payments Made per Year			
	x = 4	x = 12	x = 24	Total
Number of observations	45	180	75	300
f(x)	0.15	0.60	0.25	

Discrete Probability Distributions

Expected Value and Variance:

- ▶ The **expected value**, or mean, of a random variable
 - ▶ is a measure of the central location for the random variable.
 - ▶ The weighted average of the values of the random variable, where weights are probabilities

EXPECTED VALUE OF A DISCRETE RANDOM VARIABLE

$$E(x) = \mu = \sum x f(x) \tag{4.13}$$

Expected Value for Number of Payments Made per Year by a Lancaster Savings and Loan Mortgage Customer

Х	f(x)	xf(x)	
4	0.15	(4)(0.15) = 0.6	
12	0.60	(12)(0.60) = 7.2	
24	0.25	(24)(0.25) = 6.0	
		13.8	$ E(x) = \mu = \sum x f(x)$

If Lancaster Savings and Loan signs a new mortgage customer, the expected number of payments per year for this customer is 13.8.

Discrete Probability Distributions

Figure 4.10: Excel PivotTable for Number of Payments Made per Year

▶ Variance is a measure of variability in the values of a random variable:

VARIANCE OF A DISCRETE RANDOM VARIABLE

$$Var(x) = \sigma^2 = \sum (x - \mu)^2 f(x)$$
 (4.14)

- An essential part of the variance formula is the deviation, $x \mu$,
 - \blacktriangleright which measures how far a particular value of the random variable is from the expected value, or mean, μ .

Discrete Probability Distributions

Calculation of the Variance for Number of Payments Made per Year by a Lancaster Savings and Loan Mortgage Customer

- The standard deviation, σ , is defined as the positive square root of the variance.
- The standard deviation for the payments made per year by a mortgage customer is $\sqrt{42.360} = 6.508$.

Figure 4.13: Excel Calculation of the Variance for Number of Payments Made per Year by a Lancaster Savings and Loan Mortgage Customer

