数据结构与算法分析

华中科技大学软件学院

2017年秋

数据结构 1 / 71

Binary Tree Isomorphism

```
BOOL isIsomorphic (BinTreeNode *r1, BinTreeNode *r2)
ſ
    if (r1 == NULL && r2 == NULL)
        return (TRUE);
    if (r1 == NULL | | r2 == NULL)
        return (FALSE);
    if (r1->value == r2->value)
        if (((isIsomorphic (r1->left, r2->left) &&
                 (isIsomorphic (r1->right, r2->right))
             || ((isIsomorphic (r1->left, r2->right) &&
                 (isIsomorphic (r1->right, r2->left)))
        ſ
            return (TRUE);
    return (FALSE);
```

Binary Tree Isomorphism

ſ

7

```
BOOL isIsomorphic (BinTreeNode *r1, BinTreeNode *r2)
    if (r1 == NULL && r2 == NULL)
        return (TRUE);
    if (r1 == NULL | | r2 == NULL)
        return (FALSE);
    if (r1->value != r2->value)
        return (FALSE);
    if (r1->left && r2->left && r1->left->value == r2->left->value)
    {
        return ((isIsomorphic (r1->left, r2->left) &&
                 (isIsomorphic (r1->right, r2->right)));
    7
    return ((isIsomorphic (r1->left, r2->right) &&
                 (isIsomorphic (r1->right, r2->left)));
```

大纲

- ① 贪婪算法
- 2 分治算法
- ③ 动态规划
- 4 回溯算法

课程计划

- 已经学习了
 - 算法时间复杂度及其分析
 - 线性表: 堆栈、队列
 - 非线性数据结构: 树、优先队列、图
 - 散列和排序算法

数据结构 5 / 71

课程计划

- 已经学习了
 - 算法时间复杂度及其分析
 - 线性表: 堆栈、队列
 - 非线性数据结构: 树、优先队列、图
 - 散列和排序算法
- 即将学习算法设计思想
 - 贪婪算法
 - 分治算法
 - 动态规划
 - 回溯算法

数据结构 5 / 71

Roadmap

- 贪婪算法
- 2 分治算法
- ③ 动态规划
- 4 回溯算法

数据结构

Algorithm Design Techniques

- 用于解决问题的五种常用算法
- 这些方法中至少有一种很有可能对给定的问题起作用。
 - 贪婪算法
 - 分治算法
 - 动态规划
 - 随机化算法
 - 回溯算法

数据结构 7 / 71

Greedy Algorithms

- 采用当下最好的步骤
- 贪婪算法分阶段工作。在每一个阶段,做出一个 看起来不错的决定,而不考虑将来的结果。
- 一般情况下,选择局部最优。希望局部最优最终 导致全局最优。
- 有时,贪婪算法只给出次优解。

数据结构 8 / 71

Huffman Codes

假设我们有一个文件, 其中只包含字符a, e, i, s, t, 加上空格和换行符。

Character	Code	Frequency	Total Bits
а	000	10	30
е	001	15	45
i	010	12	36
s	011	3	9
t	100	4	12
space	101	13	39
newline	110	1	3

数据结构 9 / 71

Encoding

- 目标:在我们通过慢速电话线传输的情况下,减少文件大小。
- 在前面的示例中, 总计有174 bits(58个符号)
- 一般策略:允许代码长度因字符而异,并确保频 繁出现的字符具有短代码。
- 如果所有字符都以相同的频率出现, 则不太可能 节省任何费用。

数据结构 10 /

Huffman Codes

- Developed by David Huffman while a Ph. D. student at MIT, published in the 1952 paper A Method for the Construction of Minimum-Redundancy Codes
- 给定一组符号和权重, 找到一组无前缀二进制码 (一组码字), 其最小期望码字长
- Shannon源编码定理:符号的最佳编码长度是- log_b P
- 信息熵 $H = -\sum_i P_i \log P_i$ 给出了期望码字长度的下限

数据结构 11 /

编码树

Represent coding as a tree

数据结构 12 /

Greedy Try

Most frequent comes first

数据结构 13 /

Huffman Tree

- 约束: 符号应明确解码
- 基本问题: 找到总成本最低的完整二叉树(如上文所定义), 其中所有字符都包含在树叶中。

◆ロト ◆問ト ◆意ト ◆意ト · 意 · からぐ

数据结构 14 /

哈夫曼编码

Total cost: 146 bits

Character	Code	Frequency	Total Bits
а	001	10	30
е	01	15	30
i	10	12	24
s	00000	3	15
t	0001	4	16
space	11	13	26
newline	00001	1	5

数据结构 15 /

Huffman Algorithm

- 我们维持一片森林. 一棵树的权重等于树叶的频率之和. C-1 次,选择两棵权重最小的树, T_1 and T_2 ,任意地断开关系,并且形成一棵 带有子树 T_1 and T_2 的 新树
- 在算法的开始,有C裸单节点树-每个字符一棵 在算法的最后有一棵树,这是最佳的Huffman coding tree

数据结构 16 /

- 从单树开始
- 把它们按根上的重量分类, {1, 3, 4, 10, 12, 13, 15}
- 选择两棵权重最小的树, 形成一棵新树

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ かへで

数据结构 17 / 7

Carry on this process in {4, 4, 10, 12, 13, 15}

数据结构 18 / 7

Now we have {8, 10, 12, 13, 15} left

数据结构 19 / 7

For {12, 13, 15, 18}

数据结构 20 / 71

{15, 18, 25}

数据结构 21 / 71

Final tree

数据结构 22 / 71

Exercise

Draw a Huffman tree for symbols with frequency list {12, 13, 14, 23, 22, 6, 7, 29, 10, 3, 2, 18}

数据结构 23 / 71

Huffman Algorithm

这个证明可通过归纳法来论证。 当树被合并时,我们认为新的字符集是根上的字符。 因此,在我们的示例中,经过四次合并后, 我们可以将字符集看作由 e 和元字符T₃ and T₄ 组成。 这恐怕是证明中最微妙的部分

数据结构 24 /

Roadmap

- 1 贪婪算法
- ② 分治算法
- ③ 动态规划
- 4 回溯算法

数据结构 25 /

Divide and Conquer

- 将原始问题划分为更小的子问题
- 解决子问题
- 使用子问题的解决方案来构造原问题的解决方案
- 通常我们可以用递归来实现分治算法,并用T(n)符号来分析其复杂度。

数据结构 26 /

The Master Theorem

- 假定:
 - n 是原问题的规模
 - a 是递归中的子问题的数目
 - n/b 是每个子问题的规模
 - f (n) 是非递归成本(时间复杂度)

$$T(n)=aT(\frac{n}{b})+f(n), \ \ a\geq 1, b>1$$

- Case 1: $T(n) = \Theta(n^{\log_b a})$, if $f(n) = O(n^c)$ with $c < log_h a$
- Case 2: $T(n) = \Theta(n^c \log^{k+1} n)$, if $f(n) = \Theta(n^c \log^k n)$ with $c = \log_b a$
- Case 3: $T(n) = \Theta(f(n))$, if $f(n) = \Omega(n^c)$ with $c > log_b a$ and $af(n/b) \le kf(n)$ for large n and k < 1

Examples

- Case 1: T(n) = 3T(n/2) + n, a = 3, b = 2, f(n) = n, $\rightarrow T(n) = 0(n^{\log 3})$
- Case 2: T(n) = 2T(n/2) + n, a = 2, b = 2, f(n) = n, $\rightarrow T(n) = 0(n \log n)$
- Case 3: $T(n) = 2T(n/2) + n^2$, $a = 2, b = 2, f(n) = n^2$, $\rightarrow T(n) = 0(n^2)$
- 不可行的:在许多情况下,上述情况都不适用,如T(n) = 2ⁿT(n/2) + nⁿ

4□ > 4₫ > 4½ > 4½ > ½ 900

数据结构 28 / 71

Stooge-sort

```
Stooge-sort (A, i, j)
    if A[i] > A[j]
        then exchange A[i], A[j];
    if i + 1 >= j
        then return:
   k = (j - i + 1) / 3; //round down
    Stooge-sort (A, i, j - k); //first 2/3
    Stooge-sort (A, i + k , j); \frac{1}{3}
    Stooge-sort (A, i, j - k); //first 2/3 again
```

数据结构 29 /

Stooge-sort

Try this algorithm for {12, 13, 14, 23, 22, 6, 7, 29, 10, 3, 2, 18}

12, 13, 14, 23	22, 6, 7, 29	10, 3, 2, 18
----------------	--------------	--------------

数据结构 30 / 1

Stooge-sort

Three recursive calls

12, 13, 14, 23	22, 6, 7, 29	10, 3, 2, 18
6, 7, 12, 13	14, 22, 23, 29	
	2, 3, 10, 14	18, 22, 23, 29
	1	•
2, 3, 6, 7	10, 12, 13, 14	

数据结构 31 /

Does it work?

- 平凡情况, 显然 OK
- 假设数组A包括: 前1/3、中1/3、最后1/3, 算法 适用于较小的数组
- 在第一次递归调用之后,更大的元素进入了第二个1/3
- 在第二次调用之后,最大的元素已经到了最后的 1/3,并被排序
- 在第三次调用之后, 所有较小的元素被排序。

数据结构 32 / 71

Does it work well?

- 平凡情况: T(1) = 1
- 递归地, T(n) = 3T(2n/3) + 1
- 我们有 log_{3/2}n 次递归, 在到达根本之前
- 假设有一高度为log_{3/2}n的3-tree, 每个节点都有 一次非递归操作
- 总耗费 = # of nodes:
 3^{log₃/2ⁿ} = 3<sup>log₃/2</sub>(3^{log₃n}) = 3^{log₃} n*log_{3/2}3
 </sup>
- $\bullet \ T \, (n) \ = \ 0 (n^{\log_{3/2} 3}) > 0 (n^{2.7})$

- ◆ロト ◆昼ト ◆夏ト ◆夏ト ■ りへぐ

数据结构 33 / 71

Quick Selection

- 选择问题: 给定一个整数k和一个n元数组x₁,...,x_n 找到数组中第k小的元素
- 类似于快速排序, 先选择一个枢纽元
- 该中心将数组划分为3个部分。 {S_{left}, pivot, S_{right}}
 - 如果 k $\langle = |S_{left}|$, quick_select (k, S_{left})
 - 如果 k = |S_{left}|+1, 返回枢纽元,
 否则 quick_select (k-|S_{left}| 1, S_{right})
- 注意:不像快速排序, 只需要一个递归。

数据结构 34 /

Quick Selection Example

- 在数组中找到第五小的元素 {11,9,8,20,15,3,7,32,12}
- 枢纽元 12, {11,9,8,3,7},12, {20,15,32}, k = 5
- 枢纽元 8, {3,7},8, {9,11}, k = 2
- 枢纽元 = 9, {},9,{11}, k = 1
- 返回 11

数据结构 35 / 7

Complexity of quick_select

- 最坏情况下,枢纽元始终是数组的最小值或最大值(少数情况)
- 复杂度 O(n²), 为什么?
- 最好的情况,枢纽元是被选择的(罕见的例子), 0(n)
- 那么,平均情况会怎样呢?
- If T(n) = T(0.9n) + n, T(1) = 1,
 T(n) = T(0.81n) + 0.9n + n = 1 + ... +0.81n +0.9n+n = 0(n), 这是平均水平还是低于平均水平?

数据结构 36 /

Complexity of Average Case

- T(n) = T(n-1) + n, 如果枢轴元是第一个最小/最大的元素。
- T(n) = T(n-2) + n,如果枢纽元是第2小/最大的元素。
- T(n) = T(n/2) + n, 如果枢轴元是中值元素。
- 假设每个元素都有相等的可能性被选为主元,即 每个情况的概率= 1/n。 $T(n) = (2/n) \sum_{i=1}^{n/2} T(n-i) + n$

◆ロト ◆昼ト ◆草ト ◆草 ・ り へ ○

数据结构 37 / 71

Complexity of Average Case

- 声明:T(n)是0(n)
- 我们可能选择 c > 4, 使 T(n) < cn

- ◆ロト ◆昼ト ◆夏ト ◆夏ト ■ りへぐ

数据结构 38 /

Median of medians

快速选择中位数→ 最坏情况 0(n)

数据结构 39 /

O(n) for Median Selection

- 想法:递归地选择一个好的枢纽元,中位数的中位数:
 - 将一个数组分成5个元素的n/5个子数组
 - 找到每个子数组的中值。不妨用insort ()先排序,得 到的中位值组成一个长度为n/5的中位数数组
 - 递归地寻找中位数数组的中位数。调用quick_select
 (),如果数组长度小于5,停止递归,返回insort()找到的结果
- 找到的中位数的中位数是一个较好的选择,可以作为枢纽元(给quick_select()函数找中位值时使用)

数据结构 40 /

Better Partitioning

最少 30% 的元素 >= 中位数, 30% <= 中位数. 且 0.3n > n/4

数据结构 41 / 71

Select(i, n)

- 将n个元素分成5个组。找到每个5个元素组的中位数。
- ② 递归地选择n/5组中值的x值作为枢纽元。
- ◎ 在枢纽元x得到的划分中,让k = rank(x)
- 如果i = k,则返回x
 否则若 i < k
 递归地选择第i个最小值。
 下部元素
 否则递归地选择(i−k)th。
 上半部分最小的元素。
 </p>

数据结构 42 /

Complexity

- 假设总的复杂度 = T(n)
 - 第一步, Θ(n)
 - 第二步, T(n/5)
 - 第三步, Θ(n)
 - 第四步, T(3n/4) (最坏情况,选择了较大的划分里递归)
- T(n) = T(n/5) + T(3n/4) + n, T(1) = 1
- 可以用归纳法证明,存在某些常数c来说T(n) < cn

数据结构 43 /

Roadmap

- 1 贪婪算法
- 2 分治算法
- ③ 动态规划
- 4 回溯算法

Dynamic Programming

- 回顾分治算法
 - 将问题分解为 独立的 子问题
 - 递归解决子问题(子问题是主要问题的较小实例)
 - 合并子问题的解决方案
- 动态规划: 适用于 存在不独立的递归子问题

数据结构 45 / 7

Dynamic Programming

- Richard Bellman在1957年 创造了术语: 动态规划
- 通过组合包含常见子问题的子问题的解决方案来解决问题
- 动态规划与分治算法的区别:
 - 用分治算法解决这些问题是低效的,因为相同的普通子问题需要多次解决。
 - dp将一次解决一个问题,并将它们的答案存储在一个表中,以供将来参考。

数据结构 46 /

硬币找零问题

- 目的: 给定货币面值,例如,1,5,10,25, 100,设计一种使用最少数量的硬币支付给顾客的方法。
- 收银员算法:在每次迭代中,添加最大值的硬币,它不会带我们超过所要支付的金额。
- 例子: 33美分

4□ > 4률 > 4를 > 4를 > 를9○

数据结构 47 / 1

收银员算法

数据结构 48 /

硬币的变化

贪婪的收银员算法是最优的吗?

Theorem

收银员算法对美国硬币而言是最佳的: 1, 5, 10, 25, 100。

归纳法证明 x

另一个例子

- 收银员算法对于其他情况可能不适用
- 考虑美国的邮费: 1, 10, 21, 34, 70, 100, 350, 1225, 1500
 - 收银员算法: 140c = 100 + 34 + 1 + 1 + 1 + 1 + 1 + 1 + 1
 - 最佳: 140c = 70 + 70
- 它甚至不能导致一个可行的解决方案: 15c = 9 + ?

动态规划

- 为了解决找零n美分问题,我们需要先搞清楚所有 x<n的找零问题
- 然后我们在解决方案中为较小的值建立解决方案。
 - 设 C[n] 为n美分所需的最小硬币数.
 - 设x为最优解中使用的第一个硬币的值
 - 然后 C[n] = 1 + C[n x]
- 问题: 我们不知道x的值

数据结构 51 /

动态规划算法

我们将尝试所有可能的x并取最小值。

$$C[n] = \left\{ \begin{array}{ll} \min_{i:d_i \leq n} \{C[n-d_i]+1\} & \text{if } n>0 \\ 0 & \text{if } n=0 \end{array} \right.$$

数据结构 52 / 7

Change

```
int Change (int n)
    if (n < 0)
        return (INFTY);
    else if (n == 0)
        return (0):
    return (1 + min (Change(n - d1),
        Change(n - d2), Change(n - d3)));
```

数据结构 53 / 71

$n = 12, d_1 = 1, d_2 = 3, d_3 = 7$

数据结构 54 / 7

动态规划的要素

动态规划用于解决具有以下特征的问题:

- 最优子结构(最优性原理):问题的最优解包含 子问题的最优解
- 重叠子问题:有些地方我们不止一次地解决同一个子问题

数据结构 55 /

动态规划的步骤

- ① 优化子结构特征
- ② 递归定义最优解的值
- ③ 自下而上计算值
- ▲ (如果需要)构造一个最优解

数据结构 56 / 71

Memoization

- Memoization(储存化)是处理重叠的子问题的一种方法
 - 在计算子问题的解后,将结果存储在一个表中
 - 后续调用只执行表的查找
- 可以修改使用memoziation递归算法
- Change()有很多重复的工作,用表格让算法达到 0(nk)

数据结构 57 /

DP_Change (n)

```
int DP Change (int n)
    int tmp, i, j;
    for (i = 1, C[0] = 0; i \le n; i++)
    {
        tmp = INFTY;
        for (j = 0; j < k; j++)
             if (d[j] <= i &&</pre>
                   C[i - d[j]] + 1 < tmp)
                 tmp = C[i - d[j]] + 1;
        C[i] = tmp;
    return (C[n]);
```

数据结构 58 / 71

自下而上

$$C[n] = \underset{i}{\text{min}} (1 + C[n - d_i])$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
С	0	1	2	1	2	3	2						
d_1	0	1	2	0	1	2	0						
d_2	0	0	0	1	1	1	2						
d_3	0	0	0	0	0	0	0						

数据结构 59 / 1

自下而上

$$C[n] = \underset{i}{\text{min}} (1 + C[n - d_i])$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
С	0	1	2	1	2	3	2	1	2	3	2	3	4
d_1	0	1	2	0	1	2	0	0	1	2	0	1	2
d_2	0	0	0	1	1	1	2	0	0	0	1	1	1
d_3	0	0	0	0	0	0	0	1	1	1	1	1	1

数据结构 60 /

动态规划与贪婪算法

- 动态规划适用于:
 - 最优子结构:问题的最优解由子问题的最优解组成。
 - 重叠子问题:总共有几个子问题,每个问题都有重复的 实例
- 自下而上解决问题,为了解决较大的问题而建立 一个解决问题的子表
- 贪婪是自上而下的,动态规划可以矫枉过正;贪 婪算法往往是容易编写的代码

数据结构 61 /

Roadmap

- ① 贪婪算法
- 2 分治算法
- 3 动态规划
- 4 回溯算法

Backtracking

- 问题空间由状态(节点)和动作(导致新状态的 路径)组成
- 当一个节点只能看到连接节点的路径时
- 如果一个节点只导致失败,返回到它的"父"节点。尝试其他的选择
- 如果这些都导致失败,那么可能需要更多的回溯。

数据结构 63 /

Labyrinth

特修斯和牛头人

右手定则

为了逃离迷宫: 将你的右手贴到墙上 while (你还没有从迷宫中逃出来) 向前走,并把你的右手放在墙上

数独

- 数独: 9乘9矩阵, 填满数字。
- 所有数字必须在1到9之间
- 目标:每一行、每一列和每个小矩阵必须包含1到9之间的数字,而且每个数字不能重复。

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

暴力方法解决数独

- 如果没有空白的格子, 问题解决
- 从左到右扫描单元格,从上到下找到第一个空白 的单元格
- 如果找到空白的单元格,从1到9进行尝试
- 填入数字后检查时候符合规则
- 当搜索到达一个死胡同时,备份到前一个单元格,它试图填充并进入下一个数字。

数据结构 67 /

Recursive Backtracking

- 蛮力算法很慢,因为它不使用大量逻辑
- 但是蛮力算法是很容易实现的
- 用递归回溯法可以解决数独等问题
- 该问题的后一种版本比原始版本稍微简单一些
- 如果我们必须尝试不同的选择,用回溯法

数据结构 68 /

小结

- 贪婪算法: 局部最优可构成全局最优
- 分治算法: 划分成独立的子问题单独求解
- 动态规划:存在重叠的需要优化的子问题
- 回溯算法: 递归地尝试可能路径以寻找可行解

可能性的空间

??????????????. ?????? — ??????? — 999999999 -7777777777 [?]?]——[?]?[?] — ?????--????????????

考试

