Per-flow virtual queues

Kámán Rebeka Sárközi Gergely

2024. 05. 13.

Fizikai sor

- Börsztös forgalom miatt van rá szükség
- Egy bizonyos rátával ürül
- Megtelik, ha a fogadási ráta tartósan meghaladja a küldési rátát
- Egy hosszú sor késleltetést okoz, ezt szeretnénk minimalizálni

Virtuális sor

- Emulál egy sort, ami a fizikai sornál kicsit lassabban ürül
- ullet A sávszélesség kicsit kevesebb (például $\sim 98\%$)
- Nem telítődik meg, nem lesz túl hosszú:
 - \bullet TCP folyamok \sim 98%-os sávszélességet fogják csak kihasználni
 - Börsztös forgalom miatt néha pár csomag várakozik
 - ullet Átlagosan legalább \sim 2%-kal gyorsabban ürül, mint telítődik

Feladatleírás

- Minden (aktív) folyam számára egy virtuális sor
 - Virtuális és fizikai küldési ráták aránya: $0 < \alpha < 1$
 - Folyam azonosítás: hasítással vagy táblával
- Virtuális sor teli ⇒ csomag eldobása
- Cikk¹: How to Build a Virtual Queue from Two Leaky Buckets
 - Threshold-marking² alkalmazását ajánlja
 - Beépített P4 meter megfelelő
- Cikk³: The Native AQM for L4S Traffic
 - L4S (Low Latency, Low Loss, Scalable Throughput) AQM fejlesztése
 - Kimeneti portonként \sim 98%-os virtuális sorokat javasol
- Per-flow virtual queue gyakorlatilag per-flow rate limiter?

¹https://www.bobbriscoe.net/projects/ipe2eqos/pcn/vq2lb/vq2lb_tr.pdf

²https://datatracker.ietf.org/doc/html/rfc5670

Adatsík

L3 forwarding a kiindulási alap:

```
table 13_forward { ... } // Filled by control plane
if (13_forward.apply().miss) { drop(); return; }
```

Folyam virtuális sorhoz rendelése:

• Sor telítettség megállapítása és kezelése:

```
meter((1 << VQ_ID_T_WIDTH), MeterType.packets) vq;
vq.execute_meter(meta.vq_id, color);
if (color == METER_YELLOW) { hdr.ipv4.ecn = 0x11; }
else if (color == METER_RED) { drop(); }</pre>
```

Vezérlősík

- Python script
- L3 forwarding tábla feltöltése topology.json alapján
- "Fizikai" és virtuális sor konfigurálása (ráta, méret)
- Konstans alfa helyett dinamikus alfa érték?
 - $\alpha * count(flows) > 1 \implies fizikai sor megtelik$
 - Folyamok száma bloom filter-rel becsülhető
 - Dinamikus alfa: $\alpha := max(\alpha_{min}, \frac{0.98}{count(flows)})$
 - Kevés flow esetén sokat javít $\alpha := \alpha_{\min}$ -hez képest

Hálózat

- L3 címkiosztási stratégia (net.13())
- Vezérlősík automatikus elindítása (net.execScript(...))
- Automatikus traffik generálás Mininet task-ok és iperf3 segítségével
 - Kis- és nagyobb méretű folyamok vegyesen
 - Minden folyam adott ideig fut párhuzamosan
- Terv: DCTCP használata ECN támogatás érdekében

Szimulációs eredmények kiértékelése (terv)

- Adatsíkban log-olunk adatokat: 5-tuple, méret, queue delay, stb.
- Különböző grafikonok készítése
 - Kicsi és nagy folyamokhoz külön
 - Átküldött adatmennyiség (boxplot)
 - Queue delay kumulatív eloszlásfüggvénye
- Összehasonlítás:
 - ullet Különböző lpha értékek
 - Virtuális sor folyamonként
 - Virtuális sor portonként
 - Virtuális sor nélkül