Bivariate Normal Density Function: Contours of Constant Density

The multivariate normal density function is given by $f(\mathbf{x}) = \frac{e^{-\frac{1}{2}Q(\mathbf{x})}}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}}$ where the density depends

upon \mathbf{x} only through the quadratic form $Q(\mathbf{x}) = (\mathbf{x} - \mu)' \Sigma^{-1} (\mathbf{x} - \mu)$. This means that the height of the density function is constant whenever $Q(\mathbf{x})$ is equal to a constant. But the \mathbf{x} -vectors that satisfy $Q(\mathbf{x}) = c^2$ define an ellipsoid centered at the mean vector μ .

To see what this looks like, we consider the bivariate case (p = 2) for $\mu = 0$ and various values of

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$$
. Note that since $\sigma_{12} = \rho_{12} \sqrt{\sigma_{11} \sigma_{22}}$, if we specify σ_{11} , σ_{22} and ρ_{12} that will completely determine the covariance matrix Σ for the problem.

<u>Case 1</u>: $\sigma_{11} = \sigma_{22} = 1$ and $\rho_{12} = 0$ (uncorrelated variables with equal variance).

<u>Case 2</u>: $\sigma_{11} = 4$, $\sigma_{22} = 1$ and $\rho_{12} = 0$ (uncorrelated variables with unequal variances).

<u>Case 3</u>: $\sigma_{11} = 9$, $\sigma_{22} = 1$ and $\rho_{12} = 0$ (uncorrelated variables with unequal variances).

<u>Case 4</u>: $\sigma_{11} = \sigma_{22} = 1$ and $\rho_{12} = 0.50$ (correlated variables with equal variances).

<u>Case 5</u>: $\sigma_{11} = 4$, $\sigma_{22} = 1$ and $\rho_{12} = 0.50$ (correlated variables with unequal variances).

<u>Case 6</u>: $\sigma_{11} = \sigma_{22} = 1$ and $\rho_{12} = 0.90$ (correlated variables with equal variances).

<u>Case 7</u>: $\sigma_{11} = 4$, $\sigma_{22} = 1$ and $\rho_{12} = 0.90$ (correlated variables with unequal variances).

(Courtesy of Dr. Roy St. Laurent)