dummies and interactions

adam.okulicz.kozaryn@gmail.com

this version: Monday 19th February, 2024 16:53

<u>outline</u>

fa24

- note i beefed up ps3 with dummies and interactions
- o really, use your own data
- and lets go over canvas announcement per ps2

what is it?

- fun! test new hypotheses and contribute to lit
- dummies identify nominal or ordinal characteristics, eg:
- o gender, race, region, rel, edu (highest degree attained)
- dummies are binary indicators
- 1 if the condition is true and 0 otherwise
- o say 'male' dummy=1 if a guy; 0 if a girl
- o not 'gender'!: impossible to figure out what it means!
- dummies create separate lines (intercepts and slopes) for subgroups within one regression
- dummies must always be interpreted relative to "base case," "omitted category", "reference group"

dummy

- $\diamond Y_i = \beta_1 + \beta_2 female_i + u_i$
- \diamond if $female_i = 1$ $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2(1) = \hat{\beta}_1 + \hat{\beta}_2$
- \circ $E[Y|female=1]=\hat{eta}_1+\hat{eta}_2$
- \diamond if $female_i = 0$ $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2(0) = \hat{\beta}_1$
- $\circ E[Y|female = 0] = \beta_1$
- \diamond β_2 : how much more or less female make relative to male

schematic

$$\diamond Y_i = \beta_1 + \beta_2 female_i + u_i$$

$$\diamond \ \hat{\beta}_2 = \bar{Y}_{female} - \bar{Y}_{male}$$

this is like a t-test!

and add a continuous var

$$\diamond Y_i = \beta_1 + \beta_2 X_i + \beta_3 female_i + u_i$$

♦ if
$$female_i = 1$$
 $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{\beta}_3 (1) = (\hat{\beta}_1 + \hat{\beta}_3) + \hat{\beta}_2 X_i$
♦ if $female_i = 0$ $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{\beta}_3 (0) = (\hat{\beta}_1) + \hat{\beta}_2 X_i$

schematic

bias from omitting a dummy...

- difficult to know if there should be a dummy or not
- can experiment; and again use theory! it will tell you!

ordinal vars: blackboard: asst assoc full prof omit one category (ie pick base case)

choosing the base case

- be meaningful, eg pick typical or default situation
- o eg in my paper on wrk hrs I picked 40,
- o and dummies are then relative to the typical case
- think about what hypotheses you are most interested in
- base case affects coefficients' significance
- \circ eg 40-50 hrs may not be significant relative to 40, but would be significant relative to < 20
- make your choice(s) clear in your tables and text

continuous/dummy interactions

 $\diamond Y_i = \beta_1 + \beta_2 X_i + \beta_3 \text{female}_i + \beta_4 \text{female}_i * X_i + u_i$ X

schematic

 $\diamond Y_i = \beta_1 + \beta_2 X_i + \beta_3 \text{female}_i + \beta_4 \text{female}_i * X_i + u_i$

interaction of dummies

- if there is an interaction effect between two variables, the effect of one variable depends on the level of the other
- eg the effect of marriage on wage depends on gender
- interactions go both ways:
- o the effect of gender depends on marital status, too

interactions

 $\forall Y_i = \beta_1 + \beta_2 \text{female} + \beta_3 \text{married} + \beta_4 \text{female} * \text{married} + u_i$ $| \text{Male} \quad \text{Female} \quad | \text{Gender}$

. , _ , _	Male Female		Gender	
			Difference	
Unmarried	$\hat{oldsymbol{eta}}_{\!\scriptscriptstyle 1}$	$\hat{oldsymbol{eta}}_1 + \hat{oldsymbol{eta}}_2$	$\hat{oldsymbol{eta}}_2$	
Married	$\hat{oldsymbol{eta}}_1 + \hat{oldsymbol{eta}}_3$	$\hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3 + \hat{\beta}_4$	$\hat{oldsymbol{eta}}_2 + \hat{oldsymbol{eta}}_4$	
Effect of Marriage	$\hat{oldsymbol{eta}}_{3}$	$\hat{\beta}_3 + \hat{\beta}_4$	$\hat{oldsymbol{eta}}_4$	

example [let's calc tab from reg]

. table married female, c(mean wage) row col f(%7.2f)

 Married	male	Gender female	Total
no yes	8.35 10.88	8.26 7.68	8.31 9.40
Total	9.99	7.88	9.02

- . gen femxmar = female*married
- . reg wage female married femxmar

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
$\hat{eta}_{\scriptscriptstyle 2}$ female $\hat{eta}_{\scriptscriptstyle 3}$ married $\hat{eta}_{\scriptscriptstyle 4}$ femxmar $\hat{eta}_{\scriptscriptstyle 1}$ _cons	0951892	.7350367	-0.13	0.897	-1.539132	1.348754
	2.521222	.6120814	4.12	0.000	1.318819	3.723626
	-3.09704	.9072785	-3.41	0.001	-4.879344	-1.314737
	8.354677	.4936728	16.92	0.000	7.384882	9.324473

interactions of continuous variables

$$Y_{i} = \beta_{1} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}(X_{2i}X_{3i}) + u_{i}$$

$$\frac{\Delta Y_{i}}{\Delta X_{-i}} = \beta_{2} + \beta_{4}X_{3i}$$

interactions links

- again, interactions are a great way to contribute
- ♦ see sections 3.7 and 3.8 https://stats.idre.ucla.edu/stata/webbooks/reg/
 - chapter3/regression-with-statachapter-3-regression-with-categorical-predictors/
- http://www.stata.com/support/faqs/stat/anoregcoef.html
- http://nd.edu/~rwilliam/stats2/151.pdf
- ♦ http://www.stata.com/manuals13/rmarginsplot.pdf: scroll down to examples
- marginsplot is a terrific command!