

优化理论与算法

COPT求解器

郭加熠 助理教授

面向世界科技前沿、面向经济主战场、面向国家重大需求

未来人工智能的最重要突破,仍 要取决于与优化算法的紧密结合 一"机器学习父"

Michael Jordan

"二十世纪十大算法—线性规 划单纯形法"—美国物理学会 和IEEE Computer Society

"用数学规划思维看经济体系,经济主体的 行为大多可以理解并表达成数学规划中的最 优化问题。"

"经济主体就是要追求某种最大化,如果用数学规划来考虑这些问题,会有很多优势,问题能够看得更透彻,并以一个更精确的角度来分析问题。"

----《数学规划与经济分析》周小川

类似于SpcaeX 猎鹰九号火箭,我国的 月球飞行器再入大气层最后六十秒轨 迹设计也需要(定制化)数学规划求 解器的嵌入式系统负责实时运算求解 在国家电网/南方电网的实时潮流 计算,机组组合优化与调度中, 数百个数学规划求解软件在24小 时运行着

京东"亚洲一号" 无人仓数学规划 的AI算法,为企 业带来五年15亿 美金的成本节省。

服务国家各项重大需求

数学规划求解器: "卡脖子"工程的重要一环

现实1: 数学规划软件在多行业有大批量需求

•电网:约500~1000个求解器运转在核心调度功能上

• 航空: 国东南三大航长期使用

• 交通:公交(北京)/高铁(京沪)等车次排班调度

• 金融:招商,蚂蚁金服等

现实2: 目前,国产性能不足,国产化比率低

- 2017年之前,没有国产软件
- ·基本全为英美的GUROBI/CPLEX/XPRESS占有

隐患: 存在事实上的卡脖子风险

- •华为: GUROBI 2020年起通知不再服务
- •国防: 地月工程, 雷达定位需代码深度定制
- ·警示: 2022/03, 俄乌战争导致美国三大求解器全部断供 俄罗斯

"关于我国基础和前沿技术的差距及对策研究" 重大咨询项目

工作简报

第 2 期

项目总体组编发

2019年4月29日

"先进计算和数据分析"专题组召开启动会

2019年4月13日,"先进计算和数据分析"专题组在武汉市东湖宾馆召开专题研究启动会,会议由专题组负责人梅宏院士主持,与会专家包括先进计算和数据分析领域的18位国内知名专家。专题组联络员曹东刚研究员首先汇报了"关于我国基础和前沿技术的差距及对策研究"重大咨询项目启动会的情况和会议精神,介绍了咨询项目的背景、专题研究要求以及专题研究报告的写作框架。与会专家开展了充分讨论,高度肯定了开展该重大咨询项目研究的重要意义,就"先进计算和数据分析"专题领域我国和先进国家的差距现况进行了交流,一致认为我国在相关领域尤其是在关键零部件、平台工具、工业和工程软件、领域知识等

但解决问题需要调用的底层数学软件,如 CPLEX (美国 IBM), Gurobi (美国)以及 Xpress (英国)等主要依靠国外。在**建模与 仿真**领域,我国发展相对薄弱。由于相关软件开发周期长、短期 效益低、产品利润低,因此其开发一直被国内企业忽略。同时美 国商业软件也不允许中国公司对其进行定制化设计,建议国家鼓 励科研人员从事底层软件开发工作。

专题组负责人袁亚湘院士做总结发言,指出西方相关软件开发时间相当久远,如果我国现在着手开发,可以充分利用时代优势从而实现超越;对目前尚不成熟、但未来可能出现的技术,需要进一步深入思考;在军事领域,更需要进一步开展综合研究探讨;同时本次专题研究站位要更高,更多地对未来进行思考,更具前瞻性。最后,袁院士要求专题组成员广泛听取领域专家意见,并在规定的时间完成专项研究,形成项目专题报告。

中科院战略咨询院党委副书记刘清研究员、王海霞副研究员, 中国科学院学部工作局数理化学办公室余和军副主任参加了会 议。

数学规划求解器: "卡脖子"工程的重要一环

现实1: 数学规划软件在多行业有大批量需求

- •电网:约500~1000个求解器运转在核心调度功能上
- 航空: 国东南三大航长期使用
- 交通:公交(北京)/高铁(京沪)等车次排班调度
- 金融:招商,蚂蚁金服等

现实2:目前,国产性能不足,国产化比率低

- 2017年之前,没有国产软件
- ·基本全为美国的GUROBI/CPLEX/XPRESS占有

隐患: 存在事实上的卡脖子风险

- •华为: GUROBI 2020年起通知不再服务
- •国防: 地月工程, 雷达定位需代码深度定制
- ·警示: 2022/03, 俄乌战争导致美国三大求解器全部断供 俄罗斯

数学规划求解器: 国内外现状

世 界 著 名 数 学 规 划 求 解 器 研 发 历 程 1939年,苏联诺贝尔经济学奖获得者Leonid Kantorovich发明线性规划

1979年芝加哥大学的Charge 发布Lingo

1983年英国爱丁堡大学Ashford创办了XPRESS

1987年莱斯大学Bixby创办了CPLEX公司

2000年COIN-OR成立,并发布CLP和CBC

2005年德国ZIB发布了开源整数规划SCIP

2008年Cplex团队Bixby等离职创办GUROBI

2017年,上财发布中国第一个开源数学规划求解器LEAVES,2018年中科院 CMIP

2019年,杉数科技发布中国第一个商业数学规化 求解器COPT,此后阿里,华为等纷纷入局

2021年至今,谷歌,ORACLE,微软纷纷开始组建 自己的数学规划求解器团队

3. 做什么: 研发历程

上海财经大学建设国产求解器的历程

LEAVES 数学规 划项目启动 ・ LEAVES 应用软 件平台启动 上海市求解器自主研 发与产业应用协同创 新中心成立

LEAVES机器学习项目启动

- 发布我国首个自主知识产权的开源求解器LEAVES
 - 参与工业级求 解器COPT的 启动开发

- ・ LEAVES达到斯坦 福大学开源求解 器SCS**同等水平**
- 国产求解器为^{*}
 政府和产业界
 开展大量服务

我国首个**国产**

工业级求解器

COPT发布

工业求解器COPT多项指标处于国际领先水平

我校成立并行优化国际联合实验室

2019年发布中国首个专业求解器COPT

6 Jun 2022

单纯形法

1 Jun 2022

Benchmark of Barrier LP solvers _____

内点法

H. Mittelmann (mittelmann@asu.edu)

_____ H. Mittelmann (mittelmann@asu.edu)

Benchmark of Simplex LP solvers

56 probs solved	9.52	56	1 56	1.17 55	4.23	42	44	27.2	34	87.4 28	28.2 37
probs		Gurob		MDOPT			HiGHS	GLOP	SPLX	GLPK	MATL
L1 sixm	269	 3	1	1	4	185	166	f	11463	1355	5443
Linf 520c	36	39	10	13	18	1022	166	289	t	778	f
a2864	1645	95	55	50	409	t	t	f	t	t	f
bdry2	t	681	412	452	8136	t	t	t	t	f	t
cont1	184	7	2	5	5	462	107	299	227	f	t
cont11	963	8	6	5	26	t	1868	f	3452	f	t
datt256	106	173	8	12	32	3430	t	465	t	9631	399
dlr1	t	1002	2104	2229	2512	t	t	f	t	t	t
ex10	32	3	2	2	1	222	47	500	227	f	132
fhnw-bin1	t	132	89	27	t	t	t	t	t	t	t
fome13	40	4	2	1	4	146	53	138	196	2426	166
graph40-40	556	21	11	4	2	1848	t	f	8702	4892	3594
irish-e	297	25	18	19	35	93	102	t	440	287	136
neos	23	5	13	7	10	45	166	39	41	2985	301
neos3	18	2	1	2	1	4	1065	278	3290	2140	t
neos3025225	663	89	13	16	21	490	6330	115	430	246	243
neos5052403	188	30	8	2	25	58	430	550	298	3286	13638

Logfiles of these runs at: plato.asu.edu/ftp/lp_logs/

50 probs	103 4.67 47	804 36.6 36	26.1 1.19 49	1532 69.8 35	1092 49.7 33	22.0 1 50	48.6 2.21 49	310 14.1 39	400 18.2 42	274 12.5 43
problem	MOSEK N	MATLAB (Gurobi	CLP	TULIP	COPT	MDOPT	KNITRO	HiGHS	PDLP\$
Dual2_5000 Primal2_100 thk_63 L1_six1000 L2CTA3D degme dlr2 karted set-cover support19 L1_sixm250 Linf_520c a2864 bdry2	2799	t 834a t f m 5813 t 106 8931 48 5443 f 1080 432	1751 t 260 35 1145 41 645 32 74 8 3 6 93	f f f m f t 3487 t 1043 4793 330 1524 f	m t m f f f 4051 f f 1132 f f t t t 3659 830	346 106 6302 39 746 27 661 21 85 8 2 4 55	± 3407 4562 99 4600 56 1222 86 164 29 4 18 78 121	f 360 t m 58 f 19 524 133 m f 90 8		2812 1312 1300 2808 24 423 t 27 120 518 98 475 13
cont1	73	18	8	575	10	2	5	1	235	489
cont11 datt256	1534 183	f 45	8 12	373 129	12 9	6 3	5 9	3 12	396 660	5333 2

杉数求解器COPT自从2019年5月首次公开发布起,一直长期占据线性规划LP测评榜首的位置 单纯形法求解器从2019年5月17日起至今37个月里,约80%的时间占据测评第一,占据着统治性地位 而线性规划中相对更快更有优势的Barrier方法,登上榜首以后更是只让王冠外落过于Gurobi一次

评测网站: http://plato.asu.edu/bench.html

整数规划开发流程图一最困难的数学规划软件模块

模型输入 MPS文件读写器; 以及 • AMPL、 • Python、

- GAMS、AIMMS、
- MATLAB
- C/C++,
- Java
- 等接口

预处理

- 对称检测模块
- 界收紧模块
- 界探测模块
- 对偶定界模块
- 行削减模块
- 列削减模块
- 其他……

初始LP求解

- 单纯形法
- 对偶单纯形法
- 内点法
- 一阶算法······

割生成

- Clique
- Coefficient lifting
- Flow cover
- GUB cover
- Gomory's
- Knapsack cover
- Mixed integer rounding
- Zero-half
- 其他……

启发式算法

- Enumeration
- Diving
- Feasibility pump
- Knapsackbased
- LargeNeighborhood Searching
- Rounding
- 其他……

分支定界

- 选择节点
- 构建LP松弛
- Bound propagation
- 求解LP松弛
- 添加割
- 固定变量
 (reduced
 cost fixing、
 orbital
 fixing等)
- 选择分支变量
- 生成子节点

整数规划应用最广泛

- 三大模型实际中的应用占比:
- 15%: 线性规划(LP)、
- 79%: 混合整数规划(MIP)
- 7%: 非线性规划模型(NLP)

整数规划难度最大

NP难,只有非多项式时间精确算法:

线性规划:约5万行代码

整数规划: 100到200万行

非线性各个模块:都在10万

行以下

整数规划求解器排名

成功解决的问题数(总共240):

XPRESS 180,

COPT 195

CPLEX 206,

内测速度:

- MIPLIB问题比CPLEX慢25~30%。
- Infeasibility Detection问题 比CPLEX快54%左右。

18	Jun	2022	==:	==			
			The	Э	MIPLIB2017	Benchmark	Instances
			==:	==		=======	
			н.	N	Mittelmann	(mittelmanı	n@asu.edu)

All non-successes are counted as max-time.

The third line lists the number of problems (240 total) solved.

unscal 1328 794 91.4 214 928 767 836 scaled 14.5 8.69 1 2.34 10.2 8.39 9.15 solved 107 146 224 195 133 149 150		СВС	FSCIP	Gurobi	COPT	SCIP	SCIPC	HiGHS
	scaled	14.5	8.69	1	2.34	10.2	8.39	9.15

	СВС	COPT	FSCIP	GUROBI	MATLAB	SCIP	SCIPC	HiGHS
	14.8	1.39	7.37	1	23	6.06	4.68	8.12
solved of 32:	20	29	24	29	15	25	26	24

非线性优化求解器

半正定规划 世界第一

Scaled shifted	geomet	cic means	of runti	mes ("1"	is fast	est solve
	5.32	1	2.28	3.53	2.43	12.1
count of "a"	8	7	0	15	9	2
solved of 75	72	74	70	62	69	71
problem	CSDP	COPT	MOSEK	SDPA	SDPT3	SeDuMi
1dc.1024	1033	251	283	f	403	22087
1et.1024	88	40	45	38	45	1447

凸连续二次规划 世界第一

mean	1.98	1.54	7.31	2.01	1
solved	31	32	29		32
prob#	MOSEK	KNITRO	IPOPT	Gurobi	COPT
2456	1	1	1	1	1
2468	3	2	2	1	1
2482	1	1	1	1	1
2519	1	1	1	1	1

二阶锥优化 距第一仅差10%

mean solved	1 18	78.1 6	1.07	9.47 15	1.10
problem	MOSEK	ECOS	Gurobi	KNITRO	COPT
beam7 beam30 chainsing-50000-1 chainsing-50000-2	25 168 3 7	338 t f f	31 167 10 13	101 543 15 f	36 208 6 8

建设成效 —— 打破垄断,为国铸器

"关于我国基础和前沿技术的差距及对策研究" 重大咨询项目

工作简报

第 2 期

项目总体组编发

2019年4月29日

"先进计算和数据分析"专题组召开启动会

2019年4月13日,"先进计算和数据分析"专题组在武汉市东湖宾馆召开专题研究启动会,会议由专题组负责人梅宏院士主持,与会专家包括先进计算和数据分析领域的18位国内知名专家。专题组联络员曹东刚研究员首先汇报了"关于我国基础和前沿技术的差距及对策研究"重大咨询项目启动会的情况和会议精神,介绍了咨询项目的背景、专题研究要求以及专题研究报告的写作框架。与会专家开展了充分讨论,高度肯定了开展该重大咨询项目研究的重要意义,就"先进计算和数据分析"专题领域我国和先进国家的差距现况进行了交流,一致认为我国在相关领域尤其是在关键零部件、平台工具、工业和工程软件、领域知识等

国家自然科学基金委员会

政务信息专报

第 26 期

国家自然科学基金委员会

2020年12月8日

我国学者在优化算法研究方面取得重要突破

本文提要:在国家杰出青年科学基金等项目资助下,上海财经大学交叉科学研究院葛冬冬、何斯迈研究团队在优化算法基础理论、数学规划求解器的软件开发及其应用研究方面开展了长期探索,研制出我国第一个数学规划开源求解器,并协助杉数科技开发出国际一流水平的工业级国产求解器,打破了我国核心算法模块长期依赖国外的困境。研究成果在供应链管理、智能制造、能源、航空、物流交通等领域成功进行应用推广,提高了华为、国家电网等企业的核心科技竞

"对我国基础工业软件的国产化、供应链和制造业的智能化、以及国家重要项目的国产、安全、可控做出了贡献"。

线性规划 ICT工厂国产化替代方案

茶誉证书

兹授予 葛冬冬中国运筹学会科学技术奖运筹应用 奖,以表彰其在《大规模数学规划求解器COPT的 应用》的项目中取得的突出成果。

感谢聆听!

Thank You!

