

Various CNN Architectures

Content

- Introduction
- VGG
- Resnet

Introduction

LeNet-5

LeCun et al., 1998

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Introduction

 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Introduction

ImageNet Dataset

- Images from the real world
- 1000 classes and about 1000 images per class

Small filters, Deeper networks

 Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

AlexNet VGG16

VGG19

Large Filters vs Small Filters

Large Filters vs Small Filters

Too many parameters

Especially in FC layers

VGG16

Too many parameters

Especially in FC layers

VGG16

 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

$$x \longrightarrow net_1 \longrightarrow h \longrightarrow net_2 \longrightarrow y \longrightarrow E$$

$$w_1 \longrightarrow w_2 \longrightarrow t \longrightarrow E$$

$$net_1 = x \cdot w_1$$

$$h = f(net_1)$$

$$net_2 = h \cdot w_2$$

$$y = f(net_2)$$

$$E = \frac{1}{2}(t - y)^2$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial net_2} \frac{\partial net_2}{\partial h} \frac{\partial h}{\partial net_1} \frac{\partial net_1}{\partial w_1}$$

$$net_1 = x \cdot w_1$$

$$h = f(net_1) + x$$

$$net_2 = h \cdot w_2$$

$$y = f(net_2) + h$$

$$E = \frac{1}{2}(t - y)^2$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial net_2} \frac{\partial net_2}{\partial h} \frac{\partial h}{\partial net_1} \frac{\partial net_1}{\partial w_1} + \frac{\partial E}{\partial y} \frac{\partial y}{\partial h} \frac{\partial h}{\partial net_1} \frac{\partial net_1}{\partial w_1}$$

- Very deep networks using residual connections
 - Every residual block has two 3x3 conv layers
 - Periodically, double # of filters and downsample spatially using stride 2
 - Global average pooling layer after last conv. layer

GAP vs Flatten

Comparing Complexity

