PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-203452

(43)Date of publication of application: 30.07.1999

(51)Int.Cl.

G06T 1/00 A61B 5/117 G06T 7/00

(21)Application number: 10-007359

(71)Applicant : HITACHI LTD

(22)Date of filing:

19.01.1998

(72)Inventor: ITO YOSHITOSHI

NAKAMURA HITOSHI YAMAMOTO ETSUJI

(54) PERSONAL FEATURE PATTERN DETECTOR AND PERSONAL IDENTIFICATION DEVICE **USING THE DETECTOR**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an information pattern detector capable of accurately detecting a human vein pattern without being influenced by stains, wrinkles, or the like.

SOLUTION: Light from a finger 11 is separated into visible light and near infrared light by a dichroic mirror 13-1 and made incident upon a lens 15 and a near infrared image and a visible light image of the finger 11 are obtained by a CCD image pickup device 16-1. An arithmetic unit 17-1 in a controller removes an unwanted pattern from the near infrared image out of both the images to obtain a blood vessel image of the finger 11. The obtained image is collated with a blood vessel image registered in a data base 18-1 to identify a person. Consequently the identification accuracy of the personal identification device for accurately detecting a human vein pattern and using the vein pattern for personal identification can be improved.

LEGAL STATUS

[Date of request for examination]

17.09.2002

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3869545

[Date of registration]

20.10.2006

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-203452

(43)公開日 平成11年(1999)7月30日

(51) Int.Cl. ⁸	識別記号	FI		
G06T	1/00	G06F	15/64	Н
A 6 1 B	5/117	A 6 1 B	5/10	3 2 0 Z
G 0 6 T	7/00	G 0 6 F	15/62	465K

審査請求 未請求 請求項の数12 OL (全 6 頁)

(21)出願番号	特願平10-7359	(71)出願人 000005108
		株式会社日立製作所
(22)出顧日	平成10年(1998) 1月19日	東京都千代田区神田駿河台四丁目 6番地
		(72)発明者 伊藤 嘉敏
		東京都国分寺市東恋ケ窪1丁目280番地
		株式会社日立製作所中央研究所内
		(72)発明者 中村 斉
		東京都国分寺市東恋ケ窪1丁目280番地
		株式会社日立製作所中央研究所内
		(72)発明者 山本 悦治
		東京都国分寺市東恋ケ窪1丁目280番地
		株式会社日立製作所中央研究所内
		(74)代理人 弁理士 髙橋 明夫 (外1名)

(54) 【発明の名称】 個人特徴パターン検出装置及びそれを用いた個人識別装置

(57)【要約】

【課題】人の静脈パターンを、汚れ、皺等の影響なく精度よく検出する情報パターン検出装置を提供する。

【解決手段】指11からの光をダイクロイックミラー13-1により可視光と近赤外光に分離してレンズ15に入射しCCD撮像装置16-1により指11の近赤外映像と可視光映像を得る。この両映像から制御装置の演算装置17-1により近赤外映像の不要なパターン除去し指の血管画像を得る。得られた画像とデータベス18-1に登録している血管画像とを照合し、個人識別を行う。

【効果】人の静脈パターンを精度よく検出し、静脈パターンを個人識別に使用するの個人識別装置の識別精度を向上できる。

【特許請求の範囲】

【請求項1】被検体を透過した光による第1の像を得る第1像撮像手段と、上記被検体からの反射光による第2の像を得る第2像撮像手段と、上記第1及び第2の像の信号を用いて第1の像の不要情報を除き上記被検体の血管映像を得るための演算処理装置を有することを特徴とする個人特徴パターン検出装置。

【請求項2】第1像撮像手段の光源が近赤外光源で、第2像撮像手段の光源が可視光光源である請求項1記載の個人特徴パターン検出装置。

【請求項3】上記被検体が指である請求項1又は2記載の個人特徴パターン検出装置。

【請求項4】上記透過した光及び反射光を分離し、それぞれ上記第1像撮像手段及び第2像撮像手段に導くダイクロイックミラーとレンズと反射鏡をもつ光学手段を設けた請求項1、2又は3記載の個人特徴パターン検出装置。

【請求項5】上記光学手段の入射側に光ガイドを設けた 請求項4記載の個人特徴パターン検出装置。

【請求項6】上記第1及び第2の像撮像手段の少なくとも一方の光源が、照射位置の異なる複数の光源をもつ請求項1ないし5のいずれか1つに記載の個人特徴パターン検出装置。

【請求項7】上記光源にLED素子を用いた請求項1ないし6のいずれか1つに記載の個人特徴パターン検出装置。

【請求項8】上記第1及び第2の像撮像手段の透過光及び反射光を画像に変換する手段がCCD撮像装で構成された請求項1ないし6のいずれか1つに記載の個人特徴パターン検出装置。

【請求項9】上記演算処理装置が上記血管映像の各点の 座標値を個人の特徴パターンとして抽出する演算部をも つ請求項1ないし6のいずれか1つに記載の個人特徴パ ターン検出装置。

【請求項10】指の静脈パターンを検出する方法であって、指に近赤外光源からの近赤外光及び可視光光源からの可視光を照射し、指を透過した近赤外光による像及び指で反射した可視光による像を得て、上記近赤外光による像の不要パターンを上記可視光による像を利用して除く演算処理を行うことを特徴とする静脈パターン検出方法。

【請求項11】上記近赤外光源からの赤外光の照射及び上記光可視光光源からの可視光の照射を異なる時間帯で行う請求項10記載の静脈パターン検出方法。

【請求項12】請求項10又は11記載の静脈パターン 検出方法で検出した静脈パターンと、前もって記憶され た静脈パターンとを照合して、個人を識別する個人識別 方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は個人特徴パターン検出装置、さらに詳しくいえば、人が持つ生体上の特徴、例えば血管パターンを検出する装置及びそれを利用して個人を識別するための個人識別装置に関する。

[0002]

【従来の技術】従来、個人を識別することは主に、銀行端末やコンピュータへの使用許可を与えるとき、または、入場者に制限のある部屋への入室管理等で行われている。これらの場合、個人識別にはパスワードを用いる方法が主に用いられてきた。しかし最近は生体の持つ特徴を利用して個人識別を行う技術の開発が進められている。 その一つとして、手の甲の静脈血管パターンを利用する方法が英国特許2156127B号に、また、指の静脈血管パターンを利用する個人識別装置が公開特許公報(特開平7-21373号)に開示されている。

[0003]

【発明が解決しようとする課題】静脈血管パターンを利用するものは、盗難や偽造が難しいことが安全性を高めるという利点がある。上記公開特許公報(特開平7-21373号)に開示されてい静脈血管パターンを利用して手や指の透透し、近赤外線を利用して手や指の透を利用して手や指の強度測定をおこなうもので、近赤外線を利用することにより、静脈血管パターンのみを検出であることにより、静脈血管パターンのみを検出である。しかし、測定条件、例えば、光源の種類、あるいは、測定環境、例えば、装置への指の配置、手や指の汚れや皺等により静脈パターン以外の識別に障害となる不要パターンが生じたものを個人情報としてであると、個人は正しいにも係わらず、正当な個人であると、個人は正しいにも係わらず、正当な個人で要求される個人識別装置は実用不可能になる。

【0004】従って、本発明の主な目的は、個人の静脈血管パターンを精度よく検出する個人特徴パターン検出装置を実現することである。本発明の他の目的は、指の汚れやしわ等の影響を防止し、識別精度を高めた静脈パターン利用の個人識別装置を提供することである。

[0005]

【課題を解決するための手段】上記目的を達成するため、本発明の個人特徴パターン検出装置は人の指等の被検体を透過した光による第1の像を得る第1像撮像手段と、上記被検体からの反射光による第2の像を得る第2像撮像手段と、上記第1及び第2の像の信号を用いて第1の像の不要パターンを除き上記被検体の血管映像を得るための演算処理装置を設けて構成する。

【 0 0 0 6 】 本発明の好ましいい形態では、上記被検体を透過した光を得るための光源に近赤外光を用い、上記反射光を得るための光源に可視光の光源を用いる。本発明によれば、近赤外光は生体を透過する割合が大きいため、照射光は指の生体組織により散乱されながら指の内部に広がり、さらに指の表面から指の外に透過してい

く。その際、指の表面の近くに静脈血管があると、静脈血管中のヘモクロビンに近赤外光が吸収され、指の表面には静脈血管の影が投影される。従って、近赤外光を利用して撮影した第1像撮像手段による映像には生体の表面のしわや汚れ等と一緒に指の表面に投影された静脈血管のパターンが撮影される。一方可視光は指の生体組織による吸収が大きく生体の内部に入った光は大部の収され外部には透過してこない。そのため生体の表面に投影され外部には透過してこない。そのため生体の表別光による像には指内部の静脈血管の影は写らず、指の形や汚れ、しわ等が撮影される。そこで、静脈血管の影や汚れ、しわ等が撮影される。そこで、静脈血管の形で汚れ、しわ等が撮影される。そこで、静脈血管の形や汚れ、しわ等が撮影される。そこで、静脈血管の形や汚れ、しわ等が撮影される。そこで、静脈血管の形や汚れ、しわ等が撮影される。

【 0 0 0 7 】本発明の個人特徴パターン検出装置を個人 識別装置に適用する場合には、本発明の高精度の個人特 徴パターンが利用でき、高精度の個人識別を行うことが できる。個人識別装置に適用する場合には、生体のなか で、検出装置の簡易化、精度の向上の観点から、指の静 脈血管パターンを検出するように構成することが望まし い。

[8000]

【発明の実施の形態】<実施の形態1>図1は、本発明 による個人特徴パターン検出装置を用いた個人識別装置 の一実施形態を示すブロック構成図ある。装置の構成と 基本的な動作について述べる。個人特徴パターン検出装 置は、被検体である指11の静脈パターンを検出するも のである。個人特徴パターン検出装置は、指11の爪の 有る側面から近赤外光を照射する光源のLED12-1、指11の爪の有る側面とは反対側の側面から可視光 を照射する2つの光源のLED12-2及び12-3、 制御装置17によりLED12-1~3の点灯を制御す る為のインターフェース、指11を透過した近赤外光や 指で反射された可視光を分離するためのダイクロイック ミラー13ー1及び反射鏡14ー1、上記分離して入射 した光を指の近赤外透過光による指の像と可視光による 指の像を結像するレンズ15、結像された可視光像と近 赤外光像を映像電気信号に変換するCCD撮像装置16 -1、CCD撮像装置16-1で撮影した指の像を映像 として確認するためのモニタ16-2及び上記各機器を 制御したり画像信号の処理を行うための制御装置17で 構成される。制御装置17はマイクロプロセッサで構成 され、内部に演算部17-1をもち、後述の不要パター ンの除去等の信号処理を行う。

【0009】ダイクロイックミラー13-1は、近赤外光を透過させ可視光を反射する鏡である。ダイクロイックミラー13-1には指11を透過した近赤外光や指で反射された可視光等が入射する。入射した光の内、近赤外光はダイクロイックミラー13-1を透過してレンズ15に入射する。可視光はダイクロイックミラー13-

1に反射され、さらに反射鏡14-1により反射され近 赤外光とは分離され別の方向からレンズ15に入射する。

【0010】図1では、個人識別装置を構成するため、 更に個人の1D番号やパスワード等の入力装置18-1、制御装置17により制御され、指11の映像を記憶 するためのメモリ装置18-2、登録した個人情報を蓄 えるデータベース18-3を備えている。

【 O O 1 1 】次に、上記個人特徴パターン検出装置及び個人識別装置の動作を図2のフロー図に沿って説明する。まず、この装置が動作をスタートした状態で、この装置へのアクセス希望者が I D番号とパスワードをデータ入力装置18-1により入力する。次に、光源であるLED12-1、12-2及び12-3を点灯する。光源に照明された指11の像がレンズ15により結像され、CCD撮像装置16-1により電気信号に変換される。電気信号に変換された近赤外映像と可視光映像はメモリ装置18-2に一時保存される。

【 O O 1 2 】次に制御装置 1 7 により可視光映像と近赤外光映像を用いて静脈パターン抽出の画像処理を行う。この画像処理は次に述べる処理過程に従って行う。メモリ装置 1 8 - 2 に保存された画像には近赤外映像と可視光映像が一枚の映像データに入っている。そこで、指の表面上の同じ点を写している近赤外映像の点と可視光映像の点の対応をとるために、近赤外映像の輪郭線を抽出さい。次にこの二つの輪郭線の一方を平行移動と回転対像のすることにより他方に重ね合わせる。この時の平行移動と回転角度を利用することにより近赤外映像の画素を対応させる。そこで、近赤外映像の画素の信号強度を対応させる。そこで、近赤外映像の画素の信号強度を対応さる可視光映像の画素の信号強度を対応さる可視光映像の画素の信号強度を対応されて正規化補正を行う。

【0013】正規化補正を行った画像について、静脈が 映っている部分と映っていない部分の画素の信号強度に ついて着目する。まず、近赤外映像の静脈が映っている 部分は指11の中を散乱透過する近赤外光が指表面近傍 の静脈血管によって吸収されるため、静脈部分の画素の 明るさは暗くなり、信号強度は小さな値となる。一方、 可視光映像の同じ部分の画素信号強度は、照明光が表面 の同じ部分から反射される光の強度により決まる。表面 で反射される光は指の内部の静脈で吸収されることはな いため、透過光による強度のように小さな値になること はない。そのため、透過光強度信号を反射光強度信号で 割り算した正規化補正後の値は小さな値になる。静脈が 映っていない部分には指の汚れや皺等のように近赤外映 像と可視光映像に共通する部分が映っている。汚れが無 い場合は透過光も反射光も吸収されることがないため両 方とも同じ様な明るさになる。また、汚れがある場合 は、透過光と反射光の両方とも汚れによる吸収で強度が 減衰する。そのため、静脈が映っていない部分の画素の明るさは近赤外映像と可視光映像のどちらか一方だけが極端に暗くなるということはない。その結果、静脈が映っていない部分の正規化補正後の画素信号強度は汚れがある場合も無い場合もほぼ同じ値となる。

【0014】従って、正規化補正は静脈部分の信号強度を小さな値に保つのに対し、静脈部分以外の信号強度をほぼ同じ値に変換する事になるため画像上では静脈部分が強調される。この正規化補正を行った画像をさらに2値化処理することにより静脈パターンを抽出する。制御装置17により上述の一連の課程からなる画像処理を行い、得られた静脈血管パターンの2値化画像に対しさらに次に述べる特徴抽出処理を行う。

【0015】図3は、指の静脈血管パターン図である。図3において31は指映像の微分処理により得られる指の輪郭線である。32と33は静脈を表す線である。34は指の輪郭線の中心線を表す。指の中心線34と指の輪郭線31の先端との交点をP点とする。指先端部のP点から手のひらに向かって距離×のX点と、X点から中心線に対して直角の方向に引いた線と静脈の線との中心線に対して直角の方向に引いた線と静脈の線とのでまでの間隔をyとする。指の先端からの距離×が変わると中心線から静脈の線までの間隔yの値が変わるので静脈パターンを×を変数とする曲線Y(x)として利用する。中心線34に対して一方にある静脈線の特徴量をY1(x)とし、反対側にある静脈線の特徴量をY2(x)とする。

【0016】静脈線が複数本ある場合は中心線から各静脈までの間隔を求め、各静脈ごとに特徴量を表す関数を設定してもよい。あるいは中心線から各静脈線までの間隔の和を算出し、その値を×に対応する特徴量の値として用いてもよい。

【0017】次に、アクセス希望者に登録処理の実施かアクセス実施かの入力指示を出し入力を待つ。アクセス希望者からの入力が登録の場合は前記個人特徴パターン検出装置の情報をデータベース18-3に保存する。アクセス実施の場合はメモリー装置18-2に保存した血管映像の特徴情報と、初めに入力されたID番号とパスワードに対応した血管映像の特徴情報をデータベース18-3から取り出して両者の照合を行う。

【 O O 1 8 】 照合の結果、計測したデータが登録データと一致した場合には装置アクセス許可信号を出し、その後最新の特徴パターンをデータベース 1 8 - 3 に保存する。不一致の場合には不許可信号を出す。尚、この個人識別装置では指の近赤外光像と可視光像を撮像するための撮影方向が同じであるため、指の外形映像が近赤外光映像と可視光映像とで全く同じになり、血管映像を得るための画像処理を精度よく行うことができる。

【OO19】<実施の形態2>図4は、本発明による個人特徴パターン検出装置を用いた個人識別装置の第2の

実施形態を示すブロック構成図ある。本実施の形態は図1の装置にさらにイメージガイド21-1を組み込んだものである。図1では指からの反射光や透過光を直接ダイクロイックミラー13-1に入射するような光学系構成になっているが、本実施の形態では、指11からの可視光や近赤外光をイメージガイド21-1を通してダイクロイックミラー13-2に入射する構成になっている。

【0020】更に詳しく述べると、指11からレンズ2 2-1に入射した光をレンズ22-1によりイメージガ イド21-1の端面に結像させる。イメージガイド21 - 1 はその結像を反対側の端面に伝送する。伝送された 光をさらにリレーレンズ23-1によりダイクロイック ミラー13-2に入射させる。ダイクロイックミラー1 3-2に入射した光は可視光と近赤外光に分離されレン ズ15とCCD素子16-1により指の近赤外光像と可 視光像が電気信号に変換される。この部分以外の構成、 動作は第1の実施形態と同じである。図1の場合は指か らの光を直接ダイクロイックミラー13-1に入射させ なければならない。そのためダイクロイックミラー13 -1、反射鏡14-1、レンズ15、CCD16-1か らなる撮像装置全体を指11からの光がダイクロイック ミラー13-1に直接入射できる位置と方向に設置しな ければならなかった。しかし、本実施形態では、イメー ジガイド21-1が光ファイバーで構成でされ可撓性を 有するため、指からの光が入射するようにレンズ22-1の位置と方向を固定すればよく、反射鏡14-2、レ ンズ15、CCD撮像管からなる撮像装置装置16-1 は指に対して任意の位置や方向に配置できる。そのた め、装置構成に自由度が増し、装置全体をコンパクトに 構成できる。

【0021】<実施の形態3>図5は、本発明による個人特徴パターン検出装置を用いた個人識別装置の第3の実施形態を示すブロック構成図ある。本実施形態は第2の実施形態で用いているイメージガイド21-1を2本のイメージガイド21-2、21-3を用いて構成した。

【0022】指11を透過する近赤外光により、指11の表面に投影される血管映像は指の表面の全面に分布する。そのため、図1のように一つの方向から観察したのでは指11の血管パターンの一部分だけしか利用できないと云う制約が生ずる。そこで、本実施形態では、2方のから指11を計測出来るようにし、より広い範囲にたものがら指表面の血管のパターンを撮像できるようにしたものである。実際には各光ファイバで計測する映像の明るさが均一になるように各イメージガイド21-2、21-3の両側に光源用LED12-4と12-2、12-3と12-5を配置している。本実施形態の動作は第1の実施形態と同様である。本実施形態では2本のイメージ

ガイドを用いたが、さらに多くのイメージガイドを用い ても良い。

【0023】〈実施の形態4〉図6は、本発明による個 人特徴パターン検出装置を用いた個人識別装置の第4の 実施形態を示すブロック構成図ある。本実施形態は第1 の実施形態の装置構成からレンズ15の入力側に配置し たダイクロイックミラーと反射鏡を取り除き、光学手段 を単純化したものである。即ち、本実施形態は、近赤外 光映像の撮影と可視光線による指映像の撮影を時間をず らせて行う事により、ダイクロイックミラーを用いない で必要な映像撮像を行えるようにしたものである。すな わち、初めに、近赤外光源12-3を点灯して近赤外線 による指の映像を撮影し、その後で、近赤外光源12-3を消灯し、変わって可視光源12-1、12-2を点 灯し可視光による指の像を撮影する。このようにして撮 影した近赤外光映像と可視光映像を用いて血管映像をえ るための画像処理を行う。その後の他の構成、動作第1 の実施形態の場合と同じである。可視光映像と近赤外光 映像の撮影順序は逆であってもよい。撮影を時間の切り 換え制御は、手動的に行う様にしても、また、制御装置 17で自動的に切り替わるように制御してもよい。

[0024]

【発明の効果】本発明は波長の異なる光源を使用し、一方の光源による映像のなかの不要な像を他方の光源による映像を利用して除きく、例えば近赤外光映像と可視光

【図1】

映像を使用することにより、近赤外光映像の中に含まれる汚れ、皺等の不要な層の影響を除くことによって、精度の高い個人特徴パターンを検出できる。特に、個人識別に指の血管パターンを用いる個人識別装置に適用し、個人識別装置の信頼度を向上出来る。

【図面の簡単な説明】

【図1】本発明による個人特徴パターン検出装置を用いた個人識別装置の一実施形態を示すブロック構成図

【図2】図1の装置の動作フロー図

【図3】指の血管パターンの説明図

【図4】本発明による個人特徴パターン検出装置を用いた個人識別装置の第2の実施形態を示すブロック構成図【図5】本発明による個人特徴パターン検出装置を用いた個人識別装置の第3の実施形態を示すブロック構成図【図6】本発明による個人特徴パターン検出装置を用いた個人識別装置の第3の実施形態を示すブロック構成図【符号の説明】

11…指、12-1…近赤外光LED、12-2~3…可視光LED、13-1~4…ダイクロイックミラー、14-1~4…反射鏡、15…レンズ、16-1…CC D撮像装置、16-2…モニタ、17…制御部、17-1演算装置、18-1…データ入力装置、18-2…メモリ、18-3…データベース、19-1~2…インターフェース、21-1~4…イメージガイド、22-1~4…レンズ、23-1~4…レンズ。

【図2】

【図3】

図3

【図5】

図 5

【図4】

【図6】

