Full Adder

Adds three 1 bit quantities to give corresponding sum and carry outputs

Truth table:

Input			Output	
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Block Diagram:

Verilog code:

```
module fullAdder (output sum, output carry, input op1, input op2,input op3);

wire isum,i1carry,i2carry;

// thread for full adder operations

//'i' stands for intermediate

// using half adder the first time
    halfAdder inst1 (isum,i1carry,op1,op2);

// calculating the sum
    halfAdder inst2 (sum,i2carry,isum,op3);

// calculating the carry
    assign carry = i1carry|i2carry;

endmodule
```

Explanation:

Using data flow modelling the above block diagram is coded in the full adder module using two half adder modules.