第九章 方差分析

在生产过程和科学实验中,我们经常遇到这样的问题:影响产品产量、质量的因素很多.例如,在化工生产中,影响结果的因素有:配方、设备、温度、压力、催化剂、操作人员等.我们需要通过观察或试验来判断哪些因素对产品的产量、质量有显著的影响.方差分析(Analysis of variance)就是用来解决这类问题的一种有效方法.它是在 20 世纪 20 年代由英国统计学家费舍尔(Fisher)首先使用到农业试验上去的.后来发现这种方法的应用范围十分广阔,可以成功地应用在试验工作的很多方面.

第一节 单因素试验的方差分析

在试验中,我们将要考察的指标称为试验指标,影响试验指标的条件称为因素.因素可分为两类,一类是人们可以控制的;一类是人们不能控制的.例如,原料成分、反应温度、溶液浓度等是可以控制的,而测量误差、气象条件等一般是难以控制的.以下我们所说的因素都是可控因素,因素所处的状态称为该因素的水平.如果在一项试验中只有一个因素在改变,这样的试验称为单因素试验,如果多于一个因素在改变,就称为多因素试验.

本节通过实例来讨论单因素试验.

1. 数学模型

例 9.1 某试验室对钢锭模进行选材试验.其方法是将试件加热到 700℃后,投入到 20℃ 的水中急冷,这样反复进行到试件断裂为止,试验次数越多,试件质量越好.试验结果如表 9-1 所示.

试验的目的是确定4种生铁试件的抗热疲劳性能是否有显著差异.

这里,试验的指标是钢锭模的热疲劳值,钢锭模的材质是因素,4种不同的材质表示钢锭模的4个水平,这项试验叫做4水平单因素试验.

试验号		材质	分类	
风巡 与	A1	A2	A3	A4
1	160	158	146	151
2	161	164	155	152
3	165	164	160	153
4	168	170	162	157
5	170	175	164	160
6	172		166	168
7	180		174	
8			182	

表 9-1

例 9.2 考察一种人造纤维在不同温度的水中浸泡后的缩水率,在 40℃,50℃,…,90℃ 的水中分别进行 4 次试验.得到该种纤维在每次试验中的缩水率(百分比)如表 9-2 所示.试问浸泡水的温度对缩水率有无显著的影响?

表 9-2 (%)

试验号			温	度		
风沙 与	40°C	50°C	60℃	70℃	80°C	90℃
1	4.3	6.1	10.0	6.5	9.3	9.5
2	7.8	7.3	4.8	8.3	8.7	8.8
3	3.2	4.2	5.4	8.6	7.2	11.4
4	6.5	4.1	9.6	8.2	10.1	7.8

这里试验指标是人造纤维的缩水率,温度是因素,这项试验为6水平单因素试验.

单因素试验的一般数学模型为:因素 A 有 s 个水平 A_1 , A_2 , …, A_s ,在水平 A_j (j=1,2,…,s) 下进行 $n_i(n_i \ge 2)$ 次独立试验,得到如表 9-3 的结果:

表 9-3

		•	. 7 3		
水平	A_1	A_2		A_{s}	
观测值					
	<i>x</i> ₁₁	<i>X</i> ₁₂		x_{1s}	
	<i>x</i> ₂₁	x_{22}		x_{2s}	
	:	•••	•••	•••	
样本总和	$X_{n_1 1}$	$X_{n_2 2}$		$\mathcal{X}_{n_s s}$	
样本均值	$T \cdot 1$	$T \cdot 2$	•••	$T \cdot {}_{ ext{S}}$	
总体均值	$\overline{X}_{\bullet 1}$	$\overline{X}_{ullet 2}$		\overline{X}_{ullet_S}	
	μ_1	μ_2	•••	μ_s	

假定:各水平 $A_j(j=1,2,\dots,s)$ 下的样本 $x_{ij}\sim N(\mu_j,\sigma^2)$, $i=1,2,\dots,n_j,j=1,2,\dots,s$,且相互独立. 故 $X_{ij}\sim \mu_j$ 可看成随机误差,它们是试验中无法控制的各种因素所引起的,记 $X_{ij}\sim \mu_j = \varepsilon_{ij}$,则

$$\begin{cases} x_{ij} = \mu_j + \varepsilon_{ij}, i = 1, 2, \dots, n_j; j = 1, 2, \dots, s, \\ \varepsilon_{ij} \sim N(0, \sigma), 各 \varepsilon_{ij} 相互独立, \end{cases}$$
(9-1)

其中 μ_j 与 σ^2 均为未知参数. (9-1) 式称为单因素试验方差分析的数学模型. 方差分析的任务是对于模型 (9-1),检验 s 个总体 $N(\mu_1, \sigma^2)$, $N(\mu_2, \sigma^2)$ …, $N(\mu_s, \sigma^2)$ 的 均值是否相等,即检验假设:

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_s; \\ H_1: \mu_1, \mu_2, \dots, \mu_s$$
不全相等. (9-2)

为将问题(9-2)写成便于讨论的形式,采用记号

$$\mu = \frac{1}{n} \sum_{j=1}^{s} n_j \mu_j ,$$

其中 $n=\sum_{j=1}^s n_j$, μ 表示 μ_1 , μ_2 ,…, μ_s 的加权平均, μ 称为总平均.又记

$$\delta_j = \mu_j - \mu, \qquad j=1,2,\dots,s,$$

 δ_j 表示水平 A_j 下的总体平均值与总平均的差异.习惯上将 δ_j 称为水平 A_j 的效应.利用这些记号,模型(9–1)可改写成:

$$\begin{cases} x_{ij} = \mu + \delta_j + \varepsilon_{ij}, i = 1, 2, \dots, s, \\ \varepsilon_{ij} \sim N(0, \sigma^2), \ \mathcal{E}\varepsilon_{ij}$$
独立.
$$(9-1)'$$

 x_{ij} 可分解成总平均、水平 A_i 的效应及随机误差 3 部分之和,且

$$\sum_{j=1}^{s} n_j \delta_j = 0.$$

假设(9-2)等价于假设

$$\begin{cases} H_0: \delta_1 = \delta_2 = \dots = \delta_s = 0; \\ H_1: \delta_1, \delta_2, \dots, \delta_s$$
不全零. (9.2)

2. 平方和分解

我们寻找适当的统计量,对参数作假设检验.下面从平方和的分解着手,导出假设检验(9-2)'的检验统计量.记

$$S_T = \sum_{i=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \overline{X})^2$$
, (9-3)

这里 $\overline{x} = \frac{1}{n} \sum_{j=1}^{s} \sum_{i=1}^{n_j} X_{ij}$, S_T 能反映全部试验数据之间的差异.又称为总变差.

 A_j 下的样本均值

$$\overline{X}_{\bullet j} = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij} \,.$$
 (9-4)

注意到

$$(X_{ij}-\overline{X})^2=(X_{ij}-\overline{X}_{\bullet j}+\overline{X}_{\bullet j}-\overline{X})^2=(X_{ij}-\overline{X}_{\bullet j})^2+(\overline{X}_{\bullet j}-\overline{X})^2+2(X_{ij}-\overline{X}_{\bullet j})(\overline{X}_{\bullet j}-\overline{X})\;,$$

$$\widetilde{\mathbb{M}} \qquad \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{\bullet j}) (\overline{X}_{\bullet j} - \overline{X}) = \sum_{j=1}^{s} (\overline{X}_{\bullet j} - \overline{X}) \left[\sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{\bullet j}) \right] \\
= \sum_{j=1}^{s} (\overline{X}_{\bullet j} - \overline{X}) \left(\sum_{i=1}^{n_{j}} X_{ij} - n_{j} \overline{X}_{\bullet j} \right) = 0.$$

记
$$S_E = \sum_{j=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_{\bullet j})^2$$
, (9-5)

 S_E 称为误差平方和;

记
$$S_A = \sum_{j=1}^{s} \sum_{i=1}^{n_j} (\bar{X}_{\bullet j} - \bar{X})^2 = \sum_{j=1}^{s} n_j (\bar{X}_{\bullet j} - \bar{X})^2$$
, (9-6)

 S_A 称为因素 A 的效应平方和.于是

$$S_T = S_E + S_A. \tag{9.7}$$

利用 ε_{ij} 可更清楚地看到 S_E,S_A 的含义,记

$$\overline{\varepsilon} = \frac{1}{n} \sum_{j=1}^{s} \sum_{i=1}^{n_j} \varepsilon_{ij}$$

为随机误差的总平均,

$$\overline{\varepsilon}_{\bullet j} = \frac{1}{n_i} \sum_{i=1}^{n_j} \varepsilon_{ij}, \quad j=1,2,\dots,s.$$

于是

$$S_{E} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{\bullet j})^{2} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (\varepsilon_{ij} - \overline{\varepsilon}_{\bullet j})^{2}; \qquad (9-8)$$

$$S_A = \sum_{j=1}^{s} n_j (\overline{X}_{\bullet j} - \overline{X})^2 = \sum_{j=1}^{s} n_j (\delta_j + \overline{\varepsilon}_{\bullet j} - \overline{\varepsilon})^2.$$
 (9-9)

平方和的分解公式(9-7)说明.总平方和分解成误差平方和与因素 A 的效应平方和.(9-8)式说明 S_E 完全是由随机波动引起的.而(9-9)式说明 S_A 除随机误差外还含有各水平的效应 δ_j ,当 δ_j 不全为零时, S_A 主要反映了这些效应的差异.若 H_0 成立,各水平的效应为零, S_A 中也只含随机误差,因而 S_A 与 S_E 相比较相对于某一显著性水平来说不应太大.方差分析的目的是研究 S_A 相对于 S_E 有多大,若 S_A 比 S_E 显著地大,这表明各水平对指标的影响有显著差异.故需研究与 S_A/S_E 有关的统计量.

3. 假设检验问题

当 H_0 成立时,设 $X_{ij}\sim N(\mu,\sigma^2)(i=1,2,\cdots,n_j;\ j=1,2,\cdots,s)$ 且相互独立,利用抽样分布的有关定理,我们有

$$\frac{S_A}{\sigma^2} \sim \chi^2(s-1),\tag{9-10}$$

$$\frac{S_E}{\sigma^2} \sim \chi^2(n-s), \qquad (9-11)$$

$$F = \frac{(n-s)S_A}{(s-1)S_E} \sim F(s-1, n-s).$$
 (9-12)

于是,对于给定的显著性水平 α (0< α <1),由于

$$P\{F \geqslant F_{\alpha}(s-1,n-s)\} = \alpha,$$
 (9-13)

由此得检验问题(9.2)′的拒绝域为

$$F \geqslant F_{\sigma}(s-1,n-s).$$
 (9-14)

由样本值计算 F 的值,若 $F \ge F_a$,则拒绝 H_0 ,即认为水平的改变对指标有显著性的影响;若 $F < F_a$,则接受原假设 H_0 ,即认为水平的改变对指标无显著影响.

上面的分析结果可排成表 9-4 的形式, 称为方差分析表.

表 9-4

方差来源	平方和	自由度	均方和	F 比
因素 A	S_A	<i>s</i> -1	$\overline{S}_A = \frac{S_A}{s-1}$	$F = \overline{S}_A / \overline{S}_E$
误差	S_E	n-s	$\overline{S}_E = \frac{S_E}{n - s}$	
总和	S_T	<i>n</i> -1		

当 $F \ge F_{0.05}(s-1,n-s)$ 时, 称为显著,

当 F \geq F_{0.01}(s-1,n-s)时, 称为高度显著.

在实际中,我们可以按以下较简便的公式来计算 S_T , S_A 和 S_E .记

$$T \cdot j = \sum_{i=1}^{n_j} x_{ij}$$
, $j=1,2,\dots,s$,

$$T.. = \sum_{j=1}^{s} \sum_{i=1}^{n_j} x_{ij}$$
,

即有

$$\begin{cases}
S_{T} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} x_{ij}^{2} - n\overline{x}^{2} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} x_{ij}^{2} - \frac{T_{\bullet \bullet}^{2}}{n}, \\
S_{A} = \sum_{j=1}^{s} n_{j} \overline{x}_{\bullet j}^{2} - n\overline{x}^{2} = \sum_{j=1}^{s} \frac{T_{\bullet j}^{2}}{n_{j}} - \frac{T_{\bullet \bullet}^{2}}{n}, \\
S_{E} = S_{T} - S_{A}.
\end{cases} (9-15)$$

例 9.3 如上所述,在例 9.1 中需检验假设

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$; H_1 : $\mu_1, \mu_2, \mu_3, \mu_4$ 不全相等.

给定 α=0.05,完成这一假设检验.

 \mathbf{F} $s=4, n_1=7, n_2=5, n_3=8, n_4=6, n=26.$

$$S_T = \sum_{i=1}^{s} \sum_{j=1}^{n_j} x_{ij}^2 - \frac{T_{\bullet \bullet}^2}{n} = 698959 - \frac{(4257)^2}{26} = 1957.12,$$

$$S_A = \sum_{j=1}^{s} \frac{T_{\bullet j}^2}{n_j} - \frac{T_{\bullet \bullet}^2}{n} = 697445.49 - \frac{(4257)^2}{26} = 443.61,$$

$$S_E = S_T - S_A = 1513.51$$
.

得方差分析表 9-5.

表 9-5

		* *		
方差来源	平方和	自由度	均方和	F 比
因素	443.61	3	147.87	2.15
误差	1513.51	22	68.80	
总和	1957.12	25		

因

$$F(3,22)=2.15 < F_{0.05}(3,22)=3.05.$$

则接受 H_0 , 即认为 4 种生铁试样的热疲劳性无显著差异.

例 9.4 如上所述, 在例 9.2 中需检验假设

 H_0 : $\mu_1 = \mu_2 = \cdots = \mu_6$; H_1 : $\mu_1, \mu_2, \cdots, \mu_6$ 不全相等.

试取 $\alpha = 0.05$, $\alpha = 0.01$, 完成这一假设检验.

解 s=6, $n_1=n_2=\cdots=n_6=4$,n=24.

$$S_T = \sum_{i=1}^{s} \sum_{i=1}^{n_j} x_{ij}^2 - \frac{T_{\bullet \bullet}^2}{n} = 112.27,$$

$$S_A = \sum_{j=1}^{s} \frac{T_{\bullet j}^2}{n_j} - \frac{T_{\bullet \bullet}^2}{n} = 56,$$

 $S_E = S_T - S_A = 56.27$.

得方差分析表 9-6.

表 9-6

方差来源	平方和	自由度	均方和	F比
因素	56	5	11.2	3.583
误差	56.27	18	3.126	
总和	112.27	23		

 $F_{0.05}(5,18)=2.77$, $F_{0.01}(5,18)=4.25$.

由于

$$4.25 = F_{0.01}(5,18) > F_A = 3.583 > F_{0.05}(5,18) = 2.77$$

因此浸泡水的温度对缩水率有显著影响,但不能说有高度显著的影响.

本节的方差分析是在这两项假设下,检验各个正态总体均值是否相等.一是正态性假设,假定数据服从正态分布;二是等方差性假设,假定各正态总体方差相等.由大数定律及中心极限定理,以及多年来的方差分析应用,知正态性和等方差性这两项假设是合理的.

第二节 双因素试验的方差分析

进行某一项试验,当影响指标的因素不是一个而是多个时,要分析各因素的作用是否显著,就要用到多因素的方差分析.本节就两个因素的方差分析作一简介.当有两个因素时,除每个因素的影响之外,还有这两个因素的搭配问题.如表 9-7 中的两组试验结果,都有两个因素 A 和 B,每个因素取两个水平.

表 9-7(a)

B A	A_1	A_2
B_1	30	50
B_2	70	90

表 9-7(b)

BA	A_1	A_2
B_1	30	50
B_2	100	80

表 9-7(a)中,无论 B 在什么水平(B_1 还是 B_2),水平 A_2 下的结果总比 A_1 下的高 20;同样地,无论 A 是什么水平, B_2 下的结果总比 B_1 下的高 40.这说明 A 和 B 单独地各自影响结果,互相之间没有作用.

表 9-7(b)中,当 B 为 B_1 时, A_2 下的结果比 A_1 的高,而且当 B 为 B_2 时, A_1 下的结果比 A_2 的高;类似地,当 A 为 A_1 时, B_2 下的结果比 B_1 的高 70,而 A 为 A_2 时, B_2 下的结果比 B_1 的高 30.这表明 A 的作用与 B 所取的水平有关,而 B 的作用也与 A 所取的水平有关。即 A 和 B 不仅各自对结果有影响,而且它们的搭配方式也有影响。我们把这种影响称作因素 A 和 B 的交互作用,记作 $A \times B$.在双因素试验的方差分析中,我们不仅要检验水平 A 和 B 的作用,还要检验它们的交互作用。

1. 双因素等重复试验的方差分析

设有两个因素 A ,B 作用于试验的指标,因素 A 有 r 个水平 A_1,A_2,\cdots,A_r ,因素 B 有 s 个水 平 B_1,B_2,\cdots,B_s ,现对因素 A ,B 的水平的每对组合(A_i,B_j),i=1,2,···,r; j=1,2,···,s 都作 $t(t \ge 2)$ 次试

表 9-8

因工	B_1	B_2		B_s
大 素 B				
素 A				
A_1	$X_{111}, X_{112}, \dots, X_{11t}$	$X_{121}, X_{122}, \dots, X_{12t}$	•••	X_{1s1}, X_{1s2} ····, X_{1st}
A_2	$X_{211}, X_{212} \cdots, X_{21t}$	$X_{221}, X_{222}, \dots, X_{22t}$		$X_{2s1}, X_{2s2}, \dots, X_{2st}$
•••	•••	•••	•••	•••
$A_{\rm r}$	X_{r11}, X_{r12} ····, X_{r1t}	X_{r21}, X_{r22} ····, X_{r2t}		$X_{rs1}, X_{rs2} \cdots, X_{rst}$

设 $X_{ijk}\sim N(\mu_{ij},\sigma^2)$, $i=1,2,\cdots,r$; $j=1,2,\cdots,s$; $k=1,2,\cdots,t$,各 x_{ijk} 独立.这里 μ_{ij},σ^2 均为未知 参数.或写为

$$\begin{cases} X_{ijk} = \mu_{ij} + \varepsilon_{ijk}, j = 1, 2, \dots, r; j = 1, 2, \dots, s, \\ \varepsilon_{ijk} \sim N(0, \sigma^2), k = 1, 2, \dots, t, \\ \mathcal{E}_{ijk}$$
相互独立. (9-16)

记

$$\mu = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij}, \quad \mu_{i\bullet} = \frac{1}{s} \sum_{j=1}^{s} \mu_{ij}, i=1,2,\dots,r,$$

$$\mu_{\bullet j} = \frac{1}{r} \sum_{i=1}^{r} \mu_{ij}, \quad j=1,2,\dots,s,$$

$$\alpha_i = \mu_{i \bullet} - \mu, , \quad i = 1, 2, \dots, r, \quad \beta_j = \mu_{\bullet j} - \mu, \quad j = 1, 2, \dots, s,$$

$$\gamma_{ij} = \mu_{ij} - \mu_{i\bullet} - \mu_{\bullet j} + \mu.$$

于是

$$\mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}. \tag{9-17}$$

称 μ 为总平均, α_i 为水平 A_i 的效应, β_j 为水平 B_j 的效应, γ_{ij} 为水平 A_i 和水平 B_j 的交互效应,这是由 A_i,B_i 搭配起来联合作用而引起的.

易知

$$\sum_{i=1}^{r} \alpha_i = 0, \quad \sum_{i=1}^{s} \beta_i = 0,$$

$$\sum_{i=1}^{r} \gamma_{ij} = 0, \quad j=1,2,\dots,s,$$

$$\sum_{j=1}^{s} \gamma_{ij} = 0, \quad i=1,2,\dots,r,$$

这样 (9-16) 式可写成

$$\begin{cases} X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \\ \sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0, \sum_{i=1}^r \gamma_{ij} = 0, \sum_{j=1}^s \gamma_{ij} = 0, \\ \varepsilon_{ijk} \sim N(0, \sigma^2), i = 1, 2, \dots, r; j = 1, 2, \dots, s; k = 1, 2, \dots, t, \\$$
各 ε_{ijk} 相互独立. (9-18)

其中 μ , α_i , β_j , γ_{ij} 及 σ^2 都为未知参数.

(9-18) 式就是我们所要研究的双因素试验方差分析的数学模型.我们要检验因素 A, B 及交互作用 $A \times B$ 是否显著.要检验以下 3 个假设:

$$\begin{cases} H_{01}: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0, \\ H_{11}: \alpha_1, \alpha_2, \cdots = \alpha_r$$
不全为零.
$$\\ \begin{cases} H_{02}: \beta_1 = \beta_2 = \cdots = \beta_s = 0, \\ H_{12}: \beta_1, \beta_2, \cdots = \beta_s$$
不全为零.
$$\\ \end{cases} \begin{cases} H_{03}: \gamma_{11} = \gamma_{12} = \cdots = \gamma_{rs} = 0, \\ H_{13}: \gamma_{11}, \gamma_{12}, \cdots = \gamma_{rs}$$
不全为零.

类似于单因素情况,对这些问题的检验方法也是建立在平方和分解上的.记

$$\bar{X} = \frac{1}{rst} \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} x_{ijk} ,$$

$$\bar{X}_{ij\bullet} = \frac{1}{t} \sum_{k=1}^{t} x_{ijk} , \quad i=1,2,\cdots,r; \quad j=1,2,\cdots,s,$$

$$\bar{X}_{i\bullet\bullet} = \frac{1}{st} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} , \quad i=1,2,\cdots,r,$$

$$\bar{X}_{\bullet j\bullet} = \frac{1}{rt} \sum_{i=1}^{r} \sum_{k=1}^{t} X_{ijk} , \quad j=1,2,\cdots,s,$$

$$S_{T} = \sum_{i=1}^{r} \sum_{k=1}^{s} \sum_{k=1}^{t} (X_{ijk} - \bar{X})^{2} .$$

不难验证 $\overline{X}, \overline{X}_{i \bullet \bullet}, \overline{X}_{\bullet j \bullet}, \overline{X}_{i j \bullet}$ 分别是 $\mu, \mu_i, \mu_{\cdot j}, \mu_{ij}$ 的无偏估计.

$$\exists X_{ijk} - \overline{X} = (X_{ijk} - \overline{X}_{ij\bullet}) + (\overline{X}_{i\bullet\bullet} - \overline{X}) + (\overline{X}_{\bullet j\bullet} - \overline{X}) + (\overline{X}_{ij\bullet} - \overline{X}_{i\bullet\bullet} - \overline{X}_{\bullet j\bullet} + \overline{X}) ,$$

$$1 \le i \le r. 1 \le i \le s. 1 \le k \le t$$

得平方和的分解式:

$$S_T = S_E + S_A + S_B + S_{A \times B},$$
 (9-19)

其中

$$S_{E} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} (X_{ijk} - \overline{X}_{ij\bullet})^{2},$$

$$S_{A} = st \sum_{i=1}^{r} (\overline{X}_{i\bullet\bullet} - \overline{X})^{2},$$

$$s$$

$$S_B = rt \sum_{j=1}^s (\overline{X}_{\bullet j \bullet} - \overline{X})^2$$
 ,

$$S_{A\times B}=t\sum_{i=1}^r\sum_{j=1}^s(\overline{X}_{ij\bullet}-\overline{X}_{i\bullet\bullet}-\overline{X}_{\bullet\,j\bullet}+\overline{X})^2$$
.

 S_E 称为误差平方和, S_A , S_B 分别称为因素 A,B 的效应平方和, $\mathbf{S}_{\mathsf{A} \times \mathsf{B}}$ 称为 A,B 交互效应平方和.

当 H_{01} : $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$ 为真时,

$$F_A = \frac{S_A}{(r-1)} / \frac{S_E}{[rs(t-1)]} \sim F(r-1, rs(t-1));$$

当假设 H_{02} 为真时,

$$F_{B} = \frac{S_{B}}{(s-1)} / \frac{S_{E}}{[rs(t-1)]} \sim F(s-1, rs(t-1));$$

当假设 H₀₃ 为真时,

$$F_{A\times B} = \frac{S_{A\times B}}{(r-1)(s-1)} / \frac{S_E}{[rs(t-1)]} \sim F((r-1)(s-1), rs(t-1)).$$

当给定显著性水平 α 后, 假设 H_{01} , H_{02} , H_{03} 的拒绝域分别为:

$$\begin{cases} F_{A} \geq F_{\alpha}(r-1, rs(t-1)); \\ F_{B} \geq F_{\alpha}(s-1, rs(t-1)); \\ F_{A \times B} \geq F_{\alpha}(r-1)(s-1), rs(t-1)). \end{cases}$$
(9-20)

经过上面的分析和计算,可得出双因素试验的方差分析表 9-9.

表 9-9

方差来源	平方和	自由度	均方和	F比
因素 A	S_A	r-1	$\overline{S}_A = \frac{S_A}{r - 1}$	$F_A = \frac{\overline{S}_A}{\overline{S}_E}$
因素 B	S_B	s-1	$\overline{S}_B = \frac{S_B}{s-1}$	$F_B = \frac{\overline{S}_B}{\overline{S}_E}$
交互作用	$S_{A imes B}$	(r-1)(s-1)	$\overline{S}_{A \times B} = \frac{S_{A \times B}}{(r-1)(s-1)}$	$F_{A\times B} = \frac{\overline{S}_{A\times B}}{\overline{S}_E}$

误差	S_E	rs(t-1)	$\overline{S}_E = \frac{S_E}{rs(t-1)}$	
总和	S_T	rst-1		

在实际中,与单因素方差分析类似可按以下较简便的公式来计算 S_T , S_A , S_B , $S_{A\times B}$, S_E .

记
$$T... = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} ,$$

$$T_{ij}. = \sum_{k=1}^{t} X_{ijk} , i=1,2,\cdots,r; j=1,2,\cdots,s,$$

$$T_{i}... = \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} , i=1,2,\cdots,r,$$

$$T._{j}. = \sum_{i=1}^{r} \sum_{k=1}^{t} X_{ijk} , j=1,2,\cdots,s,$$

即有

$$\begin{cases} S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk}^{2} - \frac{T_{\bullet,\bullet}^{2}}{rst}, \\ S_{A} = \frac{1}{st} \sum_{i=1}^{r} T_{i\bullet\bullet}^{2} - \frac{T_{\bullet,\bullet}^{2}}{rst}, \\ S_{B} = \frac{1}{rt} \sum_{j=1}^{s} T_{\bullet,j\bullet}^{2} - \frac{T_{\bullet,\bullet}^{2}}{rst}, \\ S_{A\times B} = \frac{1}{t} \sum_{i=1}^{r} \sum_{j=1}^{s} T_{ij\bullet}^{2} - \frac{T_{\bullet,\bullet}^{2}}{rst} - S_{A} - S_{B}, \\ S_{F} = S_{T} - S_{A} - S_{B} - S_{A\times B}. \end{cases}$$

$$(9-21)$$

例 9.5 用不同的生产方法(不同的硫化时间和不同的加速剂)制造的硬橡胶的抗牵拉强度(以 $kg \cdot cm^2$ 为单位)的观察数据如表 9-10 所示. 试在显著水平 0.10 下分析不同的硫化时间(A),加速剂(B)以及它们的交互作用($A \times B$)对抗牵拉强度有无显著影响.

表 9-10

140℃下硫化	加速剂			
时间(秒)	甲	乙	丙	
40	39, 36	43, 37	37, 41	
60	41, 35	42, 39	39, 40	
80	40, 30	43, 36	36, 38	

解 按题意,需检验假设 *H*₀₁,*H*₀₂,*H*₀₃.

r=s=3, t=2,

 $T \dots, T_{ii} \dots, T_{i} \dots, T_{i} \dots$ 的计算如表 9-11.

表 9-11

加速剂		_		
T _{ij} · 硫化时间	甲	Z	丙	T_i
40	75	80	78	233
60	76	81	79	236
80	70	79	74	223
$T_{\cdot j \cdot}$	221	240	231	692

$$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} x_{ijk}^{2} - \frac{T_{\bullet \bullet \bullet}^{2}}{rst}, = 178.44,$$

$$S_{A} = \frac{1}{st} \sum_{i=1}^{r} T_{i \bullet \bullet}^{2} - \frac{T_{\bullet \bullet \bullet}^{2}}{rst} = 15.44,$$

$$S_{B} = \frac{1}{rt} \sum_{j=1}^{s} T_{\bullet j \bullet}^{2} - \frac{T_{\bullet \bullet \bullet}^{2}}{rst} = 30.11,$$

$$S_{A \times B} = \frac{1}{t} \sum_{i=1}^{r} \sum_{j=1}^{s} T_{ij \bullet}^{2} - \frac{T_{\bullet \bullet \bullet}^{2}}{rst} - S_{A} - S_{B} = 2.89,$$

$$S_{E} = S_{T} - S_{A} - S_{B} - S_{A \times B} = 130,$$

得方差分析表 9-12.

表 9-12

方差来源	平方和	自由度	均方和	F 比
因素 A (硫化时间)	15.44	2	7.72	E -0.52
因素 B (加速剂)	30.11	2	15.56	F_A =0.53
交互作用 $A \times B$	2.89	4	0.7225	$F_B=1.04$
误差	130	9	14.44	$F_{A\times B}=0.05$
总和	178.44			

由于 $F_{0.10}(2,9)=3.01>F_A,F_{0.10}(2,9)>F_B,F_{0.10}(4,9)=2.69>F_{A\times B}$,因而接受假设 H_{01},H_{02},H_{03} ,即硫化时间、加速剂以及它们的交互作用对硬橡胶的抗牵拉强度的影响不显著.

2. 双因素无重复试验的方差分析

在双因素试验中,如果对每一对水平的组合(A_i,B_j)只做一次试验,即不重复试验,所得结果如表 9-13 所示.

表 9-13

	因素 B	B_1	B_2		B_s
因素 A					
A_1		<i>x</i> ₁₁	x_{12}		x_{1s}
A_2		x_{21}	x_{22}		x_{2s}
•••		•••	•••	•••	
A_r		x_{r1}	x_{r2}		χ_{rs}

这时 $\overline{X}_{ij\bullet}$ = X_{ijk} , S_E =0, S_E 的自由度为 0,故不能利用双因素等重复试验中的公式进行方差分析. 但是,如果我们认为 A,B 两因素无交互作用,或已知交互作用对试验指标影响很小,则可 将 $S_{A\times B}$ 取作 S_E ,仍可利用等重复的双因素试验对因素 A,B 进行方差分析.对这种情况下的数学模型及统计分析表示如下:

由 (9-18) 式,

$$\begin{cases} X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \\ \sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0, \\ \varepsilon_{ij} \sim N(0, \sigma^2), i = 1, 2, \dots, r; j = 1, 2, \dots, s, \\$$
 各 ε_{ijk} 独立. (9-22)

要检验的假设有以下两个:

$$\begin{cases} H_{01}: \alpha_1 = \alpha_2 = \dots = \alpha_r = 0, \\ H_{11}: \alpha_1, \alpha_2, \dots = \alpha_r$$
不全为零.

$$\begin{cases} H_{02}: \beta_1 = \beta_2 = \dots = \beta_s = 0, \\ H_{12}: \beta_1, \beta_2, \dots = \beta_s$$
不全为零

记
$$\overline{X} = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} X_{ij}, \overline{X}_{i\bullet} = \frac{1}{s} \sum_{i=1}^{s} X_{ij}, \overline{X}_{\bullet j} = \frac{1}{r} \sum_{i=1}^{r} X_{ij},$$

平方和分解公式为:

$$S_T = S_A + S_B + S_E,$$
 (9-23)

其中

$$S_T = \sum_{i=1}^r \sum_{j=1}^s (X_{ij} - \overline{X})^2, \quad S_A = s \sum_{j=1}^s (\overline{X}_{i\bullet} - \overline{X})^2,$$

$$S_B = r \sum_{i=1}^s (\overline{X}_{\bullet j} - \overline{X})^2, \quad S_E = \sum_{i=1}^r \sum_{j=1}^s (X_{ij} - \overline{X}_{i\bullet} - \overline{X}_{\bullet j} + \overline{X})^2,$$

分别为总平方和、因素A,B的效应平方和和误差平方和.

取显著性水平为 α ,当 H_{01} 成立时,

$$F_A = \frac{(s-1)S_A}{S_-} \sim F((r-1), (r-1)(s-1)),$$

H₀₁拒绝域为

$$F_A \geqslant F_{\sigma}((r-1),(r-1)(s-1)).$$
 (9-24)

当 H_{02} 成立时,

$$F_B = \frac{(r-1)S_B}{S_E} \sim F((s-1),(r-1)(s-1)),$$

H₀₂拒绝域为

$$F_B \geqslant F_{\sigma}((s-1),(r-1)(s-1)).$$
 (9-25)

得方差分析表 9-14.

表 9-14

方差来源	平方和	自由度	均方和	F 比
因素 <i>A</i> 因素 <i>B</i> 误差	$egin{array}{c} S_A \ SB \ S_E \end{array}$	r-1 s-1 (r-1)(s-1)	$S_A = \frac{S_A}{r-1}$ $S_B = \frac{S_B}{s-1}$ $S_E = \frac{S_E}{(r-1)(s-1)}$	$F_A = \overline{S}_A / \overline{S}_E$ $F_B = \overline{S}_B / \overline{S}_E$
总和	S_T	rs-1	_	

例 9.6 测试某种钢不同含铜量在各种温度下的冲击值(单位: kg • m • cm $^{-1}$),表 9-15 列出了试验的数据(冲击值),问试验温度、含铜量对钢的冲击值的影响是否显著?(α =0.01) 表 9-15

	-100	10	
铜含量 冲击值 试验温度	0.2%	0.4%	0.8%
20℃	10.6	11.6	14.5
0℃	7.0	11.1	13.3
-20℃	4.2	6.8	11.5
-40℃	4.2	6.3	8.7

解 由己知,r=4.s=3,需检验假设 H_{01},H_{02} , 经计算得方差分析表 9-16.

表 9-16

方差来源	平方和	自由度	均方和	F 比
温度作用	64.58	3	21.53	23.79
铜含量作用	60.74	2	30.37	33.56
试验误差	5.43	6	0.905	
总和	130.75	11		

由于 F_{0.01}(3,6)=9.78<F_A,拒绝 H₀₁.

 $F_{0.01}$ (2,6) =10.92< F_B ,拒绝 H_{02} .

检验结果表明,试验温度、含铜量对钢冲击值的影响是显著的.

第三节 正交试验设计及其方差分析

前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验).在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数

较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果.

1. 正交试验设计的基本方法

正交试验设计包含两个内容: (1) 怎样安排试验方案; (2) 如何分析试验结果.先介绍 正交表.

先介绍正交表.

正交表是预先编制好的一种表格.比如表 9-17 即为正交表 $L_4(2^3)$,其中字母 L 表示正交,它的 3 个数字有 3 种不同的含义:

		1× 9-1/	
列号	1	2	3
试验号			
1	1	1	1
2	1	2	2
3	2	1	2
4	2	2	1

表 9-17

(1) L_4 (2^3) 表的结构:有 4 行、3 列,表中出现 2 个反映水平的数码 1,2.

(2) L_4 (2³) 表的用法: 做 4 次试验, 最多可安排 2 水平的因素 3 个.

最多能安排的因素数

(3) L_4 (2^3) 表的效率: 3 个 2 水平的因素.它的全面试验数为 2^3 =8 次,使用正交表只需从 8 次试验中选出 4 次来做试验,效率是高的.

正交表的特点:

- (1) 表中任一列,不同数字出现的次数相同.如正交表 $L_4(2^3)$ 中,数字 1,2 在每列中均出现 2 次.
- (2) 表中任两列,其横向形成的有序数对出现的次数相同.如表 L_4 (2^3) 中任意两列,数字 1,2 间的搭配是均衡的.

凡满足上述两性质的表都称为正交表(Orthogonal table).

常用的正交表有 L_9 (3^4), L_8 (2^7), L_{16} (4^5) 等,见附表 7.用正交表来安排试验的方法,就叫正交试验设计.一般正交表 L_p (n^m) 中,p=m(n-1)+1.下面通过实例来说明如何用正交表来安排试验.

例 9.7 提高某化工产品转化率的试验.某种化工产品的转化率可能与反应温度 A,反应时间 B,某两种原料之配比 C 和真空度 D 有关.为了寻找最优的生产条件,因此考虑对 A,B,C,D 这 4 个因素进行试验.根据以往的经验,确定各个因素的 3 个不同水平,如表 9-18 所示.

表 9-18

水平	1	2	3
因素			
<i>A</i> :反应温度(℃)	60	70	80
B:反应时间(小时)	2.5	3.0	3.5
C:原料配比	1.1:1	1.15:1	1.2:1
D:真空度(毫米汞柱)	500	550	600

分析各因素对产品的转化率是否产生显著影响,并指出最好生产条件.

解 本题是 4 因素 3 水平,选用正交表 L_9 (3⁴).

表 9-19

		-C 7 17		
列号	A	B	C	D
水平				
试验号	1	2	3	4
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

把表头上各因素相应的水平任意给一个水平号. 本例的水平编号就采用表 9-18 的形式; 将各因素的诸水平所表示的实际状态或条件代入正交表中,得到 9 个试验方案,如表 9-20 所示.

表 9-20

A	מ		
	B	C	D
1	2	3	4
1(60)	1(2.5)	1(1.1:1)	1(500)
1	2(3.0)	2(1.15:1)	2(550)
1	3(3.5)	3(1.2:1)	3(600)
2(70)	1	2	3
2	2	3	1
2	3	1	2
3(80)	1	3	2
3	2	1	3
3	3	2	1
	1 1 2(70) 2 2 3(80) 3	1(60) 1(2.5) 1 2(3.0) 1 3(3.5) 2(70) 1 2 2 2 3 3(80) 1 3 2	1(60) 1(2.5) 1(1.1:1) 1 2(3.0) 2(1.15:1) 1 3(3.5) 3(1.2:1) 2(70) 1 2 2 2 3 2 3 1 3(80) 1 3 3 2 1

从表 9-20 看出,第一行是 1 号试验,其试验条件是:

反应温度为 60℃, 反应时间为 2.5 小时, 原料配比为 1.1:1, 真空度为 500mmHg, 记

作 $A_1B_1C_1D_1$.依此类推, 第 9 号试验条件是 $A_3B_3C_2D_1$.

由此可见,因素和水平可以任意排,但一经排定,试验条件也就完全确定.按正交试验表 9-20 安排试验,试验的结果依次记于试验方案右侧,见表 9-21.

列号 C试验结果(%) \boldsymbol{A} В D水平 试验号 1(1.1:1) 1(60) 1(2.5) 1(500) 38 2 2(3.0) 2(1.15:1) 1 2(550) 37 3 3(3.5) 3(1.2:1) 3(600) 76 4 2(70) 1 2 3 51 2 5 50 1 6 2 3 1 2 82 7 1 3 3(80) 2 44 2 8 3 1 3 55 9 86

表 9-21

2. 试验结果的直观分析

正交试验设计的直观分析就是要通过计算,将各因素、水平对试验结果指标的影响大小,通过极差分析,综合比较,以确定最优化试验方案的方法.有时也称为极差分析法.

例 9.7 中试验结果转化率列在表 9-21 中,在 9 次试验中,以第 9 次试验的指标 86 为最高,其生产条件是 $A_3B_3C_2D_1$.由于全面搭配试验有 81 种,现只做了 9 次.9 次试验中最好的结果是否一定是全面搭配试验中最好的结果呢?还需进一步分析.

(1) 极差计算

在代表因素 A 的表 9-21 的第 1 列中,将与水平"1"相对应的第 1,2,3 号 3 个试验结果相加,记作 T_{11} ,求得 T_{11} =151.同样,将第 1 列中与水平"2"对应的第 4,5,6 号试验结果相加,记作 T_{21} ,求得 T_{21} =183.

一般地,定义 T_{ij} 为表 9-21 的第 j 列中,与水平 i 对应的各次试验结果之和(i=1,2,3; j=1,2,3,4).记 T 为 9 次试验结果的总和, R_{j} 为第 j 列的 3 个 T_{ij} 中最大值与最小值之差,称为 极差.

显然
$$T=\sum_{i=1}^{3}T_{ij}$$
 , $j=1,2,3,4$.

此处 T_{11} 大致反映了 A_1 对试验结果的影响,

 T_{21} 大致反映了 A_2 对试验结果的影响,

 T_{31} 大致反映了 A_3 对试验结果的影响,

 T_{12} , T_{22} 和 T_{32} 分别反映了 B_1 , B_2 , B_3 对试验结果的影响,

 T_{13} , T_{23} 和 T_{33} 分别反映了 C_1 , C_2 , C_3 对试验结果的影响,

 T_{14} , T_{24} 和 T_{34} 分别反映了 D_1 , D_2 , D_3 对试验结果的影响.

 R_{j} 反映了第 j 列因素的水平改变对试验结果的影响大小, R_{j} 越大反映第 j 列因素影响越大.上述结果列于表 9-22 中.

表 9-22

T_{1j}	151	133	175	174	T=519
T_{2j}	183	142	174	163	
T_{3j}	185	244	170	182	

R_j 34 111 5 19

(2) 极差分析(Analysis of range)

由极差大小顺序排出因素的主次顺序:

这里, R_j 值相近的两因素间用","号隔开,而 R_j 值相差较大的两因素间用";"号隔开.由此看出,特别要求在生产过程中控制好因素 B,即反应时间.其次是要考虑因素 A 和 D,即要控制好反应温度和真空度.至于原料配比就不那么重要了.

选择较好的因素水平搭配与所要求的指标有关.若要求指标越大越好,则应选取指标大的水平.反之,若希望指标越小越好,应选取指标小的水平.例 9.7 中,希望转化率越高越好,所以应在第 1 列选最大的 T_{31} =185; 即取水平 A_3 ,同理可选 $B_3C_1D_3$.故例 9.7 中较好的因素水平搭配是 $A_3B_3C_1D_3$.

例 9. 8 某试验被考察的因素有 5 个: A, B, C, D, E.每个因素有两个水平.选用正交表 $L_8(2^7)$, 现分别把 A, B, C, D, E 安排在表 $L_8(2^7)$ 的第 1,2,4,5,7 列上,空出第 3,6 列,仿例 9. 7 做法,按方案试验.记下试验结果,进行极差计算,得表 9-23.

				表 9-2	3			
列号	A	В		C	D		\boldsymbol{E}	试验结果
水平 \	1	2	3	4	5	6	7	
试验号								
1	1	1	1	1	1	1	1	14
2	1	1	1	2	2	2	2	13
3	1	2	2	1	1	2	2	17
4	1	2	2	2	2	1	1	17
5	2	1	2	1	2	1	2	8
6	2	1	2	2	1	2	1	10
7	2	2	1	1	2	2	1	11
8	2	2	1	2	1	1	2	15
T_{1j}	61	45	53	50	56	54	52	T=105
T_{2j}	44	60	52	55	49	51	53	
$R_{\rm j}$	17	15	1	5	7	3	1	

表 9-23

试验目的要找出试验结果最小的工艺条件及因素影响的主次顺序.从表 9-23 的极差 R_j 的大小顺序排出因素的主次顺序为

最优工艺条件为 $A_2B_1C_1D_2E_1$.

表 9-23 中因没有安排因素而空出了第 3,6 列.从理论上说,这两列的极差 R_i 应为 0,但 因存有随机误差,这两个空列的极差值实际上是相当小的.

3. 方差分析

正交试验设计的极差分析简便易行,计算量小,也较直观,但极差分析精度较差,判断因素的作用时缺乏一个定量的标准.这些问题要用方差分析解决.

设有一试验,使用正交表 $L_p(n^m)$,试验的 p 个结果为 y_1,y_2,\cdots,y_p ,记

$$T = \sum_{i=1}^{p} y_i$$
, $y = \frac{1}{p} \sum_{i=1}^{p} y_i = \frac{T}{p}$,

$$S_T = \sum_{i=1}^p (y_i - \overline{y})^2$$

为试验的 p 个结果的总变差;

$$S_{j} = r \sum_{i=1}^{n} \left(\frac{T_{ij}}{r} - \frac{T}{p} \right)^{2} = \frac{1}{r} \sum_{i=1}^{n} T_{ij}^{2} - \frac{T^{2}}{p}$$

为第j列上安排因素的变差平方和,其中r=p/n.可证明

$$S_T = \sum_{i=1}^m S_i$$

即总变差为各列变差平方和之和,且 S_T 的自由度为 p-1, S_j 的自由度为 n-1.当正交表的所有列没被排满因素时,即有空列时,所有空列的 S_j 之和就是误差的变差平方和 S_e ,这时 S_e 的自由度 f_e 也为这些空列自由度之和.当正交表的所有列都排有因素时,即无空列时,取 S_j 中的最小值作为误差的变差平方和 S_e .

从以上分析知,在使用正交表 $L_p(n^m)$ 的正交试验方差分析中,对正交表所安排的因素选用的统计量为:

$$F = \frac{S_j}{n-1} / \frac{S_e}{f_e}.$$

当因素作用不显著时,

$$F \sim F(n-1, f_e)$$
,

其中第 i 列安排的是被检因素.

在实际应用时,先求出各列的 $S_i/(n-1)$ 及 S_e/f_e ,若某个 $S_i/(n-1)$ 比 S_e/f_e 还小时,则这第 j 列就可当作误差列并入 S_e 中去,这样使误差 S_e 的自由度增大,在作 F 检验时会更灵敏,将所有可当作误差列的 S_i 全并入 S_e 后得新的误差变差平方和,记为 S_e ,其相应的自由度为 f_e ,这时选用统计量

$$F = \frac{S_j}{n-1} / \frac{S_e^{\Delta}}{f_e^{\Delta}} \sim F(n-1, f_e^{\Delta}).$$

例 9.9 对例 9.8 的表 9-23 作方差分析.

解 由表 9-23 的最后一行的极差值 R_j ,利用公式 $S_j = \frac{1}{r} \sum_{i=1}^n T_{ij}^2 - \frac{T^2}{p}$,得表 9-24.

 \boldsymbol{A} В \boldsymbol{E} 1 2 7 17 15 1 R_i 1.125 36.125 28.125 0.125 3.125 6.125 0.125

表 9-24

表 9-24 中,第 3,6 列为空列,因此 $S_e=S_3+S_6=1.250$,其中 $f_e=1+1=2$,所以 $S_e/f_e=0.625$,而第 7 列的 $S_7=0.125$, $S_7/f_7=0.1251=0.125$ 比 S_e/f_e 小,故将它并入误差.

 $S_e^{\ \Delta} = S_e + S_7 = 1.375, f_e^{\ \Delta} = 3.$ 整理成方差分析表如表 9-25 所示.

表 9-25

方差来源	S_j	fj	$\frac{S_j}{f_j}$	$F = \frac{S_j}{fj} / \frac{S_e^{\triangle}}{f_e^{\triangle}}$	显著性
A	36.125	1	36.125	78.818	
В	28.125	1	28.125	61.364	
C	3.125	1	3.125	6.818	
D	6.125	1	6.125	13.364	
E^{Δ}	0.125	1	0.125		
e	1.1250	2	0.625		
e^{Δ}	1.375	3	0.458		

由于 $F_{0.05}(1,3)=10.13$, $F_{0.01}(1,3)=34.12$,故因素 A, B 作用高度显著,因素 C 作用不显著,因素 D 作用显著,这与前面极差分析的结果是一致的.F 检验法要求选取 S_e ,且希望 f_e 要大,故在安排试验时,适当留出些空列会有好处的.前面的方差分析中,讨论因素 A 和 B 的交互作用 $A \times B$.这类交互作用在正交试验设计中同样有表现,即一个因素 A 的水平对试验结果指标的影响同另一个因素 B 的水平选取有关.当试验考虑交互作用时,也可用前面讲的基本方法来处理.本章就不再介绍了.

小 结

本章介绍了数理统计的基本方法之一: 方差分析.

在生产实践中,试验结果往往要受到一种或多种因素的影响.方差分析就是通过对试验数据进行分析,检验方差相同的多个正态总体的均值是否相等,用以判断各因素对试验结果的影响是否显著.方差分析按影响试验结果的因素的个数分为单因素方差分析、双因素方差分析和多因素方差分析.

1. 单因素方差分析的情况.试验数据总是参差不齐,我们用总偏差平方和

$$S_T = \sum_{j=1}^s \sum_{i=1}^{n_j} (x_{ij} - \overline{x})^2$$
 来度量数据间的离散程度.将 S_T 分解为试验随机误差的平方和 (S_E) 与因

素 A 的偏差平方和 (S_A) 之和.若 S_A 比 S_E 大得较多,则有理由认为因素的各个水平对应的试验结果有显著差异,从而拒绝因素各水平对应的正态总体的均值相等这一原假设.这就是单因素方差分析法的基本思想.

- 2. 双因素方差分析的基本思想类似于单因素方差分析.但双因素试验的方差分析中,我们不仅要检验因素 *A* 和 *B* 各自的作用,还要检验它们之间的交互作用.
- 3. 正交试验设计及其方差分析.根据因素的个数及各个因素的水平个数,选取适当的正交表并按表进行试验.我们通过对这少数的试验数据进行分析,推断出各因素对试验结果影响的大小.对正交试验结果的分析,通常采用两种方法,一种是直观分析法(极差分析法),它通过对各因素极差 R_j 的排序来确定各因素对试验结果影响的大小.一种是方差分析法,它的基本思想类似于双因素的方差分析.

重要术语及主题

单因素试验方差分析的数学模型

 $S_T = S_E + S_A$

习题九

1. 灯泡厂用 4 种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡,其寿命的方差相同,试根据表 9-26 中的试验结果记录,在显著性水平 0.05 下检验灯泡寿命是否因灯丝材料不同而有显著差异?

试验批号 灯丝 A_1 材料 A_2 水平 A_3 A_4

表 9-26

2. 一个年级有三个小班,他们进行了一次数学考试,现从各个班级随机地抽取了一些学生,记录其成绩如表 9-27 所示:

12.7-2.1							
I	II	${ m III}$					
73 66	88 77	68 41					
89 60	78 31	79 59					
82 45	48 78	56 68					
43 93	91 62	91 53					
80 36	51 76	71 79					
73 77	85 96	71 15					
	74 80	87					
	56						

表 9-27

试在显著性水平 0.05 下检验各班级的平均分数有无显著差异.设各个总体服从正态分布,且方差相等.

3.表 9-28 记录了 3 位操作工分别在不同机器上操作 3 天的日产量.

表 9-28

操作工 机器		甲			乙			丙	
A_1	15	15	17	19	19	16	16	18	21
A_2	17	17	17	15	15	15	19	22	22
A_3	15	17	16	18	17	16	18	18	18
A_4	18	20	22	15	16	17	17	17	17

取显著性水平 $\alpha = 0.05$,试分析操作工之间,机器之间以及两者交互作用有无显著差异?

4. 为了解 3 种不同配比的饲料对仔猪生长影响的差异,对 3 种不同品种的猪各选 3 头进行试验,分别测得其 3 个月间体重增加量如表 9-29 所示,取显著性水平 α =0.05,试分析不同饲料与不同品种对猪的生长有无显著影响?假定其体重增长量服从正态分布,且各种配比的方差相等.

表 9-29

休 香+	曾长量	因素 B (品种)				
() 中里月	目以里	B_1	B_2	B_3		
因	A_1	51	56	45		
素 A_2		53	57	49		
A (饲料)	A_3	52	58	47		

5. 研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A)、防老剂(B)、硫化系统(C)3个因素(各取3个水平),根据专业理论经验,交互作用全忽略,根据选用 $L_9(3^4)$ 表作9次试验及试验结果见表9-30:

表 9-30

表头设计					试验
列号	1	2	3	4	结果
试验号					
1	1	1	1	1	7.25
2	1	2	2	2	5.48
3	1	3	3	3	5.35
4	2	1	2	3	5.40
5	2	2	3	1	4.42
6	2	3	1	2	5.90
7	3	1	3	2	4.68
8	3	2	1	3	5.90
9	3	3	2	1	5.63

- (1) 试作最优生产条件的直观分析,并对 3 因素排出主次关系.
- (2) 给定 $\alpha = 0.05$,作方差分析与(1)比较.
- 6. 某农科站进行早稻品种试验(产量越高越好),需考察品种(A),施氮肥量(B),氮、磷、钾肥比例(C),插植规格(D)4个因素,根据专业理论和经验,交互作用全忽略,早稻试验方案及结果分析见表 9-31:

表 9-31

因素试验号	A	В	C	D	试验指标			
四条风池与	品种	施氮肥量	氮、磷、钾肥比例	插植规格	产量			
1	1(科6号)	1(20)	1(2:2:1)	1(5×6)	19.0			
2	1	2(25)	2(3:2:3)	$2(6\times6)$	20.0			
3	2(科 5 号)	1	1	2	21.9			
4	2	2	2	1	22.3			
5	1(科 7 号)	1	2	1	21.0			
6	1	2	1	2	21.0			
7	2(珍珠矮)	1	2	2	18.0			
8	2	2	1	1	18.2			

- (1) 试作出最优生产条件的直观分析,并对 4 因素排出主次关系.
- (2) 给定 $\alpha = 0.05$,作方差分析,与(1)比较.