Exhibit 67-L

Sample 20180061-21D Talc (GO G3) - Morphology

JH1898969 Page 181 of 268

Sample 20180061-21D Talc (GO G3) - Diffraction Pattern and EDS

JH1898969

Determination of Asbestos in Talc by XRD ISO 22262-3:2016

Sample 20180061-21D

MARKETING, SALES PRACTICES, AND PRODUCTS LIABILITY LITIGATION IN RE JOHNSON & JOHNSON TALCUM POWDER PRODUCTS MDL NO. 16-2738 (FLW) (LHG)

JOINT CATALOGUE

LABORATORY CONTROL NO.	SAMPLE IDENTIFICATION NO.	LABEL ON ORIGINAL CONTAINER	DATE ON ORIGINAL CONTAINER	QUANTITY ON LABEL OF ORIGINAL CONTAINER	QUANTITY IN ORIGINAL CONTAINER OR RECEPTACLE BEFORE DIVISION	QUANTITY IN ORIGINAL CONTAINER/RECEPTACLE OR NEW RECEPTACLE AFTER DIVISION
2018 OOG - 21	5TS055	REGULAR SCENT Shower to Shower DEODORANT BODY POWDER WITH RAYLOG SAND SANDER	1983	\$ 02.	14.3to2.	
2018 DOU - 14 C					~4.3 luz.	N 3.80 01
2018 DOG- 1 D						~ 0.5 log.

Observer for plaintiffs hereby acknowledges receipt of 2018 006 -2 D, ~0.5 lo 2. of 2018 006 -2 lC (weight)

Date Observer-for Plaintiff

5/17/18 Date

Observer for Defendants

Observer for defendants hereby acknowledges witnessing the same.

Laboratory technician hereby acknowledges that all remaining material from 2018 000

Date

. 21C was returned to its original container or receptacle.

DAY LANG aboratory Technician

Talc Samples ("Agreed Order"). Terms used herein have the same meaning as defined in the Agreed Order. The instant form has been adapted for use in connection with the initial division of Samples STS009, STS014, STS015, STS027, STS029, STS030, STS044, STS049 and 2014.001.0397, and further division of Samples STS001, STS002, STS016, STS035, and STS065. This form is an Exhibit to the Agreed Order and Stipulation Regarding the Johnson & Johnson Defendants' Production of Talcum Powder Products and

Page 258 of 258

JH1898969 Page 259 of 268

JH1896969 Page 260 of 268

Section 11

MAS, LLC PLM ANALYSIS

nentivaine Dep	t 1/ Environmental	011 10	-12019 00E1 24A
ocation	t 14 Environmental	ClientS	pl 2018-0051-34A
The state of the s	nson's Baby Powder		
**************************************			and the state of the
ALCOHOLD STATE OF THE STATE OF	e powder		% of Sample 100
Visual			-
÷	The second second		
	OPTICAL DA	TA FOR ASBESTOS IDENTIFIC	CATION
Morphology	straight	straight	
Pleochroism	none	none	
Refract Index	1.625/1.610	1.635/1.621	
Sign^	positive	positive	1
Extinction	oblique	oblique	
Birefringence	medium	medium	
Melt	no	no	
Fiber Name	Tremolite/Actinolite	Actinolite/Tremolite	
ASBESTOS M	AND DECK	EST. VOL. %	
	1.55	***	

Talc -B/Y DS in 1		***	
Talc -B/Y DS in 1	1.55	***	
Talc -B/Y DS in 1 NON FIBROUS Opaques	1.55		
Talc -B/Y DS in 1	1.55	X	
NON FIBROUS Opaques Talc Mineral grains	S COMPONENTS	X	
Talc -B/Y DS in 1 NON FIBROUS Opaques Talc	S COMPONENTS	X	
NON FIBROUS Opaques Talc Mineral grains Binder Descrip	tion	X	nount fibrous Talc observed. X :

MAS, LLC PLM ANALYSIS

	M68503 - 001BL1	Analyst Paul Hess Date 11/2/2018
lientName Dept	t 14 Environmental	ClientSpl 2018-0051-34A
ocation		
ype_Mat Johr	nson's Baby Powder	
Gross White de	ebris on slide	% of Sample 100
-	ODTICAL DA	ATA FOR ASBESTOS IDENTIFICATION
		ATA FOR ASBESTOS IDENTIFICATION
Morphology	straight	
Pleochroism	none	
Refract Index	1.625/1.613	
Sign^ Extinction	positive	
Birefringence	oblique medium	
Melt	no	
Fiber Name	Tremolite/Actinolite	
ASBESTOS MI	NERALS	EST. VOL. %
OTHER FIBRO	US COMPONENTS	
NON FIBROUS	COMPONENTS	,
Opaques		X
Talc		X
laic		X
Mineral grains		
r uncore	tion	
Mineral grains	tion	
Mineral grains Binder Descript	1	e asbestos observed. X = Materials detected.

M68503-001BL-001 Actinolite/Tremolite Parallel Dispersion 1.605 R.I. @ 100X

		TEM	Bulk Talc Structure C	ount Sheet		
Project/ Sample No.	M68503-	-001	Grid Box#	8623	No. of Grids Counted	2
Analyst:	Jose Car	rrillo		Length	Width	G. O. Area
Date of Analysis	10/22/2018-1	10/30/18	G. O. in microns =	105	105	11025
Initial Weight(g)	0.02921		G. O. In microns =	105	105	11025
Analysis Type	Post Separation 1	Γalc Analysis	Grid Acceptance	Yes	Average	11025
Scope No.	Accelerating Voltage	100 KV	Loading%	15%	G.O.s Counted	100
2	Screen Magnification	20 KX	Area Exa	mined mm²		1.103

Str.#	Grid Opening	Structure	Asbestos Type	Length	Width	Ratio	SAED	EDS
NSD	A6-J1	Structure	1,700	Longui	man	Hallo	UNLD	
NSD	J2							1
NSD	J3							
NSD	J4							1
NSD	I1							1
NSD	12							1
NSD	13							1
1	14	Bundle	Anthophyllite	9.89	0.46	21.5	Х	X
NSD	H1	Duridie	Androphymic	0.00	0.40	21.0		
NSD	H2							1
NSD	H3		1					1
NSD	H4		1					+
NSD	H5		1					
NSD	G1							+
NSD	G2		 					+
NSD	G2 G3		 					+
NSD	G3 G4							-
NSD	G4 G5							+
NSD	F1		-			1		-
								-
NSD	F2							-
NSD	F3							-
NSD	F4							_
NSD	E1							_
NSD	E2							
NSD	E3							
NSD	E4							
NSD	E5							
NSD	E6							
NSD	E7							
NSD	E8							
NSD	E9							
NSD	E10							
NSD	D1					4		
NSD	D2							
NSD	D3							
2	D4	Bundle	Tremolite	3.2	0.59	5.4	X	X
NSD	D5							
NSD	D6							1
NSD	D7							
NSD	D8							
NSD	D9							
NSD	D10				į –			
NSD	C1							
NSD	C2				-			
NSD	C3							1
NSD	C4							
NSD	C5	1		-				
NSD	C6							
NSD	C7							
3	C8	Bundle	Tremolite	10.4	1.38	7.5	X	X

		TEM	Bulk Talc Structure C	ount Sheet		
Project/ Sample No.	M68503	-001	Grid Box#	8623	No. of Grids Counted	2
Analyst:	Jose Ca	rrillo		Length	Width	G. O. Area
Date of Analysis	10/22/2018-	10/30/18	G. O. in microns =	105	105	11025
Initial Weight(g)	0.02921		G. O. In microns =	105	105	11025
Analysis Type	Post Separation	Talc Analysis	Grid Acceptance	Yes	Average	11025
Scope No.	Accelerating 100 KV		Loading%	15%	G.O.s Counted	100
2	Screen Magnification	20 KX	Area Exa	mined mm²		1.103

Str.#	Grid Opening	Structure	Asbestos Type	Length	Width	Ratio	SAED	EDS
NSD	B6-J1							
NSD	J2							
NSD	J3							
NSD	J4							
NSD	J5							
NSD	J6							†
NSD	J7							
NSD	J8							
NSD	I1							1
NSD	12							
NSD	13							
NSD	14							1
NSD	15							t
NSD	16							
NSD	17							_
NSD	18							+
NSD	19							-
NSD	110							-
								-
NSD	G1							-
NSD	G2							_
NSD	G3							_
NSD	G4							
NSD	G5							
NSD	G6							
NSD	G7							
NSD	G8					1		
NSD	G9					-		
NSD	G10							
NSD	E1							
NSD	E2					1		
NSD	E3							
NSD	E4							
NSD	E5							
NSD	E6							
NSD	E7							
NSD	E8							
NSD	E9							
NSD	E10							1
NSD	D1					1		
NSD	D2							
NSD	D3					/		
NSD	D4							
NSD	D5							
NSD	D6					7		
NSD	D7							
NSD	D8							
NSD	D9							
NSD	D10	1		7				
NSD	C9							
NSD	C10							1

		TEM	Bulk Talc Structure C	ount Sheet		
Project/ Sample No.	M68503-	-001	Grid Box#	8623	No. of Grids Counted	2
Analyst:	Jose Car	rrillo		Length	Width	G. O. Area
Date of Analysis	10/22/2018-1	10/30/18	G. O. in microns =	105	105	11025
Initial Weight(g)	0.02921		G. O. In microns =	105	105	11025
Analysis Type	Post Separation	Talc Analysis	Grid Acceptance	Yes	Average	11025
Scope No.	Accelerating 100 KV		Loading%	15%	G.O.s Counted	100
2	Screen Magnification	20 KX	Area Exa	mined mm²		1.103

	14.05.2001	1 (2.1 52.11)	Asbestos	1 - 6 - 1 - 1		S	7 - 7 - 1 - 1	
Str. #	Grid Opening	Structure	Type	Length	Width	Ratio	SAED	EDS

Org. Sample Wt.	Post HL Separation	
0.02921	0.02921	g
Percent of Orig. Post Separation	100	(%)
Wt. Of Sample Analyzed Filter size	0.00016014 201.1	g mm²
Number of Structures Counted Structures	3	Str.
per Gram of Sample	1.87E+04	Str./g

Detection Limit	6.24E+03	Str./g
Analytical		
Sensitivity	6.24E+03	IStr./a

EDAX TEAM

Page 1

Analysis

Author: TEM #1

Lsec: 300.0

55.647K Cnts

1.730 keV

Det: Apollo XLT2 SUTW

Creation: 10/22/2018 3:13:45 PM Sample Name: M68503-001-001 Anthophyllite

kV:	100	Mag: 25000	Takeoff: 1	Live Time(s): 300	Amp Time(μs): 1.92	Resolution:(eV) 135.1

M68503-001-001 Anthophyllite 64.0K 57.6K 51.2K 44.8K 38.4K Mg 32.0K 25.6K 19.2K 12.8K 6.4K 0.08.0 16.0 2.0 4.0 6.0 8.0 10.0 12,0 14.0 18.0

Case 3:16-md-02738-MAS-RLS Document 9902-11 Filed 05/30/19 Page 29 of 101 PageID: 80653

M68503-001-001 Anthophyllite Image.tif (9.89 um x 0.46um) 09:32 10/22/2018 EDAX TEAM

Page 1

Analysis

Author: TEM # 1

Creation: 10/23/2018 10:45:12 AM Sample Name: M68503-001-002 Tremolite

kV: 100 Mag: 25000 Takeoff: 1 Live Time(s): 300 Amp Time(µs): 1.92 Resolution:(eV) 135.1

M68503-001-002 Tremolite Diffraction.tif Diffraction @ 50 cm 08:38 10/23/2018

M68503-001-002 Tremolite Diffraction 2.tif Diffraction @ 50 cm 09:01 10/23/2018

M68503-001-002 Tremolite Image.tif (3.2um x 0.59um) 10:03 10/23/2018 EDAX TEAM

Page 1

Analysis

Author: TEM #1

Lsec: 300.0

104.614K Cnts

1,730 keV

Det: Apollo XLT2 SUTW

Creation: 10/24/2018 9:39:38 AM Sample Name: M68503-001-003 Tremolite

134 100	M 25000	Teles settled	Ulan Time (a) 200	A-1- T/ 1 00	Development AND 1
kV: 100	Mag: 25000	Takeoff: 1	Live Time(s): 300	Amp Time(µs): 1.92	Resolution:(eV) 135.1

M68503-001-003 Tremolite 120K 108K 96K 84K 72K 60K 48K 36K 24K 12K 08.0 12,0 14.0 16.0 2.0 4.0 8.0 10.0 18.0

M68503-001-003 Tremolite Diffraction.tif Dlffraction @ 50 cm 09:15 10/24/2018

M68503-001-003 Tremolite Diffraction 2.tif Diffraction @ 50cm 13:31 10/23/2018 Case 3:16-md-02738-MAS-RLS Document 9902-11 Filed 05/30/19 Page 37 of 101 PageID: 80661

M68503-001-003 Tremolite Image.tif (10.4um x 1.38um) 09:25 10/24/2018

		TEM Bulk	Talc Structur	e Count S	Sheet	
Project/ Sample No.	M68503-001		Grid Box#	8623	No. of Grids Counted	2
Analyst:	Jose C	arrillo		Length	Width	G.O. Area
Date of Analysis	10/22/2018	-10/30/18	G. O. in	105	105	105
Initial Weight(g)	0.029	921	microns =	105	105	105
Analysis Type	Post Separation	Talc Analysis	Grid Acceptance	Yes	Average	11025
Scope No.	Accelerating Voltage	100 KV	Loading%	15%	G.O.s Counted	100
2	Screen Magnification	20 KX	Area	Examined	mm²	1.103

Str. #	Grid Opening	Str./Asb. Type	Length	Width	Ratio	SAED	EDS
Talc #1	B6-J8	F-Talc	12.7	0.87	14.6	Fibrous Talc	Observed
						Trace Thro	ughout

EDAX TEAM

Page 1

Analysis

Author: TEM # 1

Creation: Sample Name: 10/25/2018 9:02:54 AM M68503-001-Talc #1

kV: 100	Mag: 25000	Takeoff: 1	Live Time(s): 300	Amp Time(µs): 1.92	Resolution:(eV) 135.1

M68503-001-Talc #1 Diffraction.tif Diffraction @ 50cm 15:10 10/24/2018

Case 3:16-md-02738-MAS-RLS Document 9902-11 Filed 05/30/19 Page 41 of 101 PageID: 80665

M68503-001-Talc #1 Image.tif (12.7um x 0.87um) 15:14 10/24/2018

Determination of Asbestos in Talc by PLM ISO 22262-1:2014

Sample M68708-001

The sample was a white powder containing >95% platy Talc particles of approximately 150 μ m in size.

No asbestos was detected by PLM.

Polarized Light Microscope Images

100X Magnification of Talc Particles Crossed polars and 530nm gypsum compensator plate

100X Magnification dispersion staining of Talc Particles 1.550 refractive index oil

Determination of Asbestos in Talc by XRD ISO 22262-3:2016

Sample M68708-001

No Amphibole Peak Present

Section 12

MAS, LLC PLM ANALYSIS

lientName FV	Y & KONIGSBERG	ClientSpl 20180070-86D
ocation EEV	TATOMOODERO	Ciletto pi 20100070-00D
	nson & Johnson Talcum	Powder
		an also to the Take
Gross <u>Off-whit</u> Visual	e powder	% of Sample 100
V13uu1		
	OPTICAL DA	ATA FOR ASBESTOS IDENTIFICATION
Morphology	straight	
Pleochroism	none	
Refract Index	1.638/1.624	
Sign^	positive	
Extinction	oblique	
Birefringence	moderate	
Melt	no	
Fiber Name	Actinolite/Tremolite	
Chrysotile		4
Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO Talc -B/Y DS in 1	OUS COMPONENTS	<0.1 ***
Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO Talc -B/Y DS in 1	olite	***
Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO Talc -B/Y DS in 1	DUS COMPONENTS	*** X
Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO Talc -B/Y DS in 1	DUS COMPONENTS	*** X X
Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO Talc -B/Y DS in 1	Olite	*** X
Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO Talc -B/Y DS in 1	Olite	*** X X

MAS, LLC PLM ANALYSIS

pe_Mat John	nson & Johnson Talcum	Powder
** *	ebris on slide	% of Sample 100
/isual	ebris on since	70 Of Sample 100
	OPTICAL D	ATA FOR ASBESTOS IDENTIFICATION
Morphology	straight	
Pleochroism	none	
Refract Index	1.635/1.620	
Sign^	positive	
Extinction	parallel	
Birefringence Melt	moderate	
Fiber Name	no Anthophyllite	
Finel Maine	Anthophymite	
SBESTOS M	INERALS	EST. VOL. %
Amosite Crocidolite Fremolite/Actin		
Crocidolite Fremolite/Actin	olite	<0.1
Crocidolite Fremolite/Actin Anthophyllite	olite	<0.1
Crocidolite Fremolite/Actin Anthophyllite	olite	<0.1
Crocidolite Fremolite/Actin Anthophyllite	olite	< 0.1
Crocidolite Fremolite/Actin Anthophyllite	olite	<0.1
Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO	DUS COMPONENTS	< 0.1
Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO	olite	<0.1
Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO	DUS COMPONENTS	<0.1
Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO	DUS COMPONENTS	
Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO NON FIBROUS	DUS COMPONENTS	
Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO NON FIBROUS Dpaques Falc	DUS COMPONENTS	
Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO NON FIBROUS Dpaques Falc dineral grains	DUS COMPONENTS S COMPONENTS	
Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO Plant FIBRO Opaques Falc Aineral grains	DUS COMPONENTS S COMPONENTS	
Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO NON FIBROUS Dpaques Falc	DUS COMPONENTS S COMPONENTS	

The method detection limit is 1% unless otherwise stated.

		TEM	Bulk Talc Structure C	ount Sheet		
Project/ Sample No.	M69042-	-010	Grid Box#	ox # 8633 No. of Grids Counted		2
Analyst:	Jayme C	allan		Length	Width	G. O. Area
Date of Analysis	10/19/2018 & 1	10/29/2018	G. O. in microns =	105	105	11025
Initial Weight(g)	0.0292	22	G. O. In microns =	105	105	11025
Analysis Type	Post Separation	Talc Analysis	Grid Acceptance	Yes	Average	11025
Scope No.	Accelerating Voltage	100 KV	Loading%	20%	G.O.s Counted	100
3	Screen Magnification	20 KX	Area Exa	mined mm²		1.103

Str.#	Grid Onaning	Structura	Asbestos	Longth	Midth	Datia	CAFD	ED
NSD	Grid Opening E1-B1	Structure	Туре	Length	Width	Ratio	SAED	EDS
NSD	B2							+
NSD	B3							+
								+
NSD	B4							+
NSD	B5							-
NSD	B6		-					+
NSD	B7							-
NSD	B8		-					_
NSD	B9							-
NSD	C1							+
NSD	C2							
NSD	C3							
NSD	C4							
NSD	C5					- 1		
NSD	C6					4		
NSD	C8					4		
NSD	C9							
NSD	C10							
NSD	D1							
NSD	D2							
NSD	D3							
NSD	D7							
NSD	D8							
NSD	D9							
NSD	D10							
NSD	E1							
NSD	E2							
NSD	E6							
NSD	E7							
NSD	E8							
NSD	E9							
NSD	E10							
NSD	F3							
NSD	F4							
1	F5	Bundle	Anthophyllite	9.2	1.5	6.1	Х	X
NSD	F6		1.7				-77	
NSD	F7							1
NSD	F8							
NSD	F9							
NSD	F10							1
NSD	G1							T -
NSD	G2							1
NSD	G3							1
NSD	G4							
NSD	G5							1
NSD	G6							<u> </u>
NSD	G7							-
NSD	G8				4			+
NSD	G9							+
NSD	G10							+

		TEM	Bulk Talc Structure C	ount Sheet		
Project/ Sample No.	M69042-	-010	Grid Box # 8633		No. of Grids Counted	2
Analyst:	Jayme C	allan		Length	Width	G. O. Area
Date of Analysis	10/19/2018 & 1	0/29/2018	G. O. in microns =	105	105	11025
Initial Weight(g)	0.0292	22	G. O. In microns =	105	105	11025
Analysis Type	Post Separation	Talc Analysis	Grid Acceptance	Yes	Average	11025
Scope No.	Accelerating Voltage	100 KV	Loading%	20%	G.O.s Counted	100
3	Screen Magnification	20 KX	Area Exa	mined mm²		1.103

Str.#	Grid Opening	Structure	Asbestos Type	Length	Width	Ratio	SAED	EDS
NSD	E2-A1							
NSD	A2							
NSD	A3							
NSD	A4							†
NSD	A5							1
NSD	A6			1				1
NSD	A7							
NSD	A8							
2	A9	Bundle	Anthophyllite	8.9	0.42	21.2	X	X
NSD	A10	24.14.0	raniophymic	0.0				- /
NSD	B1							
NSD	B2							
NSD	B3			1				1
NSD	B4							1
NSD	B5							1
NSD	B6							
NSD	B7							_
NSD	B8							1
NSD	B9							-
								-
NSD	B10							
NSD	C1							1
NSD	C2							-
NSD	C3							_
NSD	C4							
NSD	C5							
NSD	C6							
NSD	C7				1	4		
NSD	C8							
NSD	C9							
NSD	C10					3		
NSD	D1							
NSD	D2							
NSD	D3							
NSD	D4							
NSD	D5							
NSD	D6					4		
NSD	D7							
NSD	D8							
NSD	D9					1		
NSD	D10							
NSD	E1							
NSD	E2					T		
NSD	E3							
NSD	E4	-				9		
NSD	E5							
NSD	E6							
NSD	E7							
NSD	E8				7			
NSD	E9							
NSD	E10		1					+

		TEM	Bulk Talc Structure C	ount Sheet		
Project/ Sample No.	M69042	-010	Grid Box # 8633		No. of Grids Counted	2
Analyst:	Jayme C	allan		Length	Width	G. O. Area
Date of Analysis	10/19/2018 & 1	10/29/2018	G. O. in microns =	105	105	11025
Initial Weight(g)	0.0292	22	G. O. In microns =	105	105	11025
Analysis Type	Post Separation	Talc Analysis	Grid Acceptance	Yes	Average	11025
Scope No.	Accelerating Voltage	100 KV	Loading%	20%	G.O.s Counted	100
3	Screen Magnification	20 KX	Area Exa	mined mm²		1.103

	14.104.2011	12. 52. 1	Asbestos	1.00		S	757 501 4 1	
Str. #	Grid Opening	Structure	Type	Length	Width	Ratio	SAED	EDS

Post HL Separation	
0.02922	g
100	(%)
0.00016019	g mm²
	Str.
	Str./g
	Post HL Separation 0.02922 100

Detection Limit	6.24E+03	Str./g	
Analytical Sensitivity	6.24E+03	Str./g	

2 4819

M69042-010-001 Anthophyllite Diffraction - 2 @ 50cm

10/29/2018

Case 3:16-md-02738-MAS-RLS Document 9902-11 Filed 05/30/19 Page 63 of 101 PageID: 80687

		TEM Bulk	Talc Structur	e Count S	Sheet	
Project/ Sample No.	M69042-010		Grid Box #	8633	No. of Grids Counted	2
Analyst:	Jayme Callan			Length	Width	G.O. Area
Date of Analysis	10/19/2018 &	0/19/2018 & 10/29/2018 G. O. in 105	105	105		
Initial Weight(g)	0.029	922	microns =	105	105	105
Analysis Type	Post Separation Talc Analysis		Grid Acceptance	Yes	Average	11025
Scope No.	Accelerating Voltage	100 KV	Loading%	20%	G.O.s Counted	100
3	Screen Magnification	20 KX	Area Examined mm²			1.103

Str. #	Grid Opening	Str./Asb. Type	Length	Width	Ratio	SAED	EDS
Talc #1	E2-E1	Fibrous Talc	12.3	1.8	6.8	Fibrous talc observed Trace throughout	

Section 13

MAS, LLC PLM ANALYSIS

roj#-Spl#	M69680 - 015BL	Analyst Paul Hess	Date 12/11/2018		
ientName J3 Resources		ClientSp	20180061-31F		
ocation —					
	wer to Shower Talc				
			0/ - 1/0 1 400		
	ebris on slide		% of Sample 100		
Visual			_		
			<u> </u>		
	OPTICAL DA	ATA FOR ASBESTOS IDENTIFICA	ATION		
Morphology	straight	straight			
Pleochroism	none	none			
Refract Index	1.633/1.619	1.641/1.628			
Sign^	positive	positive			
Extinction	oblique	parallel			
Birefringence	medium	medium			
Melt	no	no			
Fiber Name	Actinolite/Tremolite	Anthophyllite			
ASBESTOS M	INERALS	EST. VOL. %			
Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO Falc -B/Y DS in 1	olite OUS COMPONENTS	0.3 < 0.1			
Opaques	S COMPONENTS	X			
Talc		X			
Mineral grains		X			
Binder Descrip	tion				
Commo	Actinolite/Tremolite fibrous Talc observ	e and Anthophyllite asbestos observed. X = Materials detected.	ved. *** Moderate amount of		

The method detection limit is 1% unless otherwise stated.

M69680-015BL-003 Anthophyllite Crossed Polars

Verified Analysis Count Sheet

Date: 11-Z-2018 SampleID: 70(8006)- 31 F Grid Square ID: 603-1,-2 Analyst: Anthony Keeton

			1 1 17 - 1 1			
Z1.6	1.3	B	DCFP = 2-9058 Image = 2-5057	Antho	Y	1-82
-						
					Harten Alaka Bar	C)
					· · · · · · · · · · · · · · · · · · ·	
ur to the						
				21.0 13 13 4may =25057		21.0 1 3

Total No. of Structures:	
True Positives:	
False Positives:	PGof
False Negatives:	

* Could Not locate structure in Grid Z-CI. Grid is partially

* Gold not locate structure in Grid Z-DS

Could not Correlate Grid of Gring to Benche heat.

M:\Main Company Data Store\Kisys\QA\QAQCITEM QC Templates\Verified Anlaysis Count Sheet 10-23-14.pdf

2 5058

20180061-31F Structure 1 Anthophyllite Diffraction @ 50cm

11/2/2018

Case 3:16-md-02738-MAS-RLS Document 9902-11 Filed 05/30/19 Page 87 of 101 PageID: 80711

2 5057

20180061-31F Structure 1 Anthophyllite (21.6 um x 1.3 um)

11/2/2018

25 mm

Determination of Asbestos in Talc by ATEM ISO 22262-2:2014

Sample 20180061-31F

J3 Order #: JH1898969 Analyst: Lee Poye

Customer: Joseph Satterley, Esq. Date: 10-Jul-2018

Weight of Sample*: 0.0179 g Filter Size:

Percent of Original Sample*: 67% Filter Pore Size: 0.2 μm

Suspension Volume: 1.5 mL Area of Analytical Filter: 210 mm²

Filtered Suspension Volume: 0.1 mL GO Size: 0.0132 mm²

GO Area Analyzed: 1.056 mm²

Results Summary

Asbestos Structure Number	Length (μm)	Width (μm)	Aspect Ratio	Asbestos Type
1	43	2	21.5	Anthophyllite
2	4.5	0.25	18	Anthophyllite
3	7	0.5	14	Anthophyllite
AVERAGE	18.2	0.92	19.8	

Total Asbestos Structures: 3

Anthophyllite Density: 3000 kg/m³

Cross-section Shape Factor (Amphibole): 0.5

Asbestos Mass Fraction: 0.0044%

Asbestos Mass Fraction of Original Sample: 0.0029%

JH1898969 Page 186 of 268

^{*} Sample was previously gravimetrically reduced.

Determination of Asbestos in Talc by ATEM

LAB WORKSHEET

Customer: Joseph Satterley, Esq.

J3 Order #: JH1898969

Sample #: 20180061-31F

Analyst: Lee Poye Date: 10-Jul-2018

Page: 1 of 3

		Non-	Asbestos		cation Scan at	Images			
Grid	G.O. #	Asbestos	Tally	LxW (μm)	TYPE	EDS	Morphology	SAED	Comments
1	A1		NSD						
	A2		NSD						
	A3		NSD						
	A4		NSD						
	A5		NSD						
	A6		NSD						
	A7		NSD						
	A8		NSD						
	A9		NSD						
	A10		NSD		The particle of the				
	B1		NSD						
	B2		1	43 x 2.00	Anthophyllite	Yes	01	02	Zone Axis [1 0 1]
	В3		NSD				-		
	В4		NSD						
	B5		NSD						
	В6	lucaca d	NSD						** ***
	В7		NSD						
	В8		NSD						
t .	В9		NSD		***************************************		7		
	B10		NSD						
2	C1		2	4.5 x 0.25	Anthophyllite	Yes			100
	C2		NSD						- SC-0040
	C3		NSD					T Y	
	C4		NSD					***	
	C5		NSD		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	C6		NSD				1 200		
	C7		NSD				1		
	C8		NSD			7			
	C9		NSD						
	C10		NSD						70.
						1 201-107-211		-	
					3011531			0	

JH1898969 Page 187 of 268

Determination of Asbestos in Talc by ATEM LAB WORKSHEET

Customer: Joseph Satterley, Esq.

J3 Order #: JH1898969

Sample #: 20180061-31F

Analyst: Lee Poye

Date: 10-Jul-2018

Page: 2 of 3

Grid	G.O.#	Non- Asbestos	Asbestos		cation Scan at		Images	Commo	Comments
Gria	G.U. #	Asbestos	Asbestos Tally	LxW (μm)	ITPE	EDS	Morphology	SAED	Comments
2	D1		NSD						
	D2		NSD						
	D3		NSD						
	D4		NSD						
	D5		3	7 x 0.50	Anthophyllite	Yes	L.		
	D6		NSD			į I			3,02,1740
	D7		NSD						
	D8		NSD						
	D9		NSD						
	D10		NSD				1		
3	D1		NSD						
	D2		NSD						
	D3		NSD						
	D4		NSD						
	D5	410,410,3100	NSD						
	D6		NSD						
	D7		NSD						
	D8		NSD	==1.1					
	D9		NSD						
	D10	E 50 /	NSD						
	11		NSD						
	12	1	NSD						110
	13		NSD			A			
	14		NSD						
	15		NSD						
	16		NSD						
	17		NSD						- 10
	18		NSD						******
	19		NSD						
	110		NSD						
									46 × 42 × 6
									COMP TOWN
									3030000
				-					

JH1898969 Page 188 of 268

Determination of Asbestos in Talc by ATEM

LAB WORKSHEET

Customer: Joseph Satterley, Esq.

J3 Order #: JH1898969

Sample #: 20180061-31F

Analyst: Lee Poye

Date: 10-Jul-2018

Page: 3 of 3

	C C "	Non-	Asbestos		tion Scan		Images		22.0.00.00
d	G.O. #	Non- Asbestos	Asbestos Tally	LxW (μm)	TYPE	EDS	Morphology	SAED	Comments
	B1		NSD						
	B2		NSD						
	В3		NSD						
	B4		NSD						
	B5	✓	NA	10 x 1.00	Talc	Yes			Fiber
	В6		NSD						
	В7		NSD						
	B8		NSD						
	В9		NSD						
	B10		NSD						
	C1		NSD						
	C2		NSD						
	СЗ		NSD						
	C4		NSD						
	C5		NSD						
	C6		NSD						
	C7		NSD						
	C8		NSD						
	C9		NSD						
	C10		NSD						
1									

JH1898969 Page 189 of 268

Sample 20180061-31F Structure 1 - Morphology

HV=100kV Direct Mag: 4000 x J3 Resources, Inc.

JH1898969 Page 190 of 268

Sample 20180061-31F Structure 1 – Diffraction Pattern and EDS

JH1898969 Page 191 of 268

Determination of Asbestos in Talc by XRD ISO 22262-3:2016

Sample 20180061-31F

No Amphibole Peak Present

JH1898969 Page 192 of 268

Section 14

MAS, LLC PLM ANALYSIS

Proj#-Spl#	Me	69680 - 016	BL	Analyst	Paul Hess		Date	12/11/201	8	
ClientName J	l3 Resoui	rces				 ClientSpl 20	I 20180061-31G			
_ ∟ocation										
_	Shower to	o Shower Ta	alc							
Gross Glitte	ering deb	oris on slide					% of	Sample	100	
		ОРТІ	CAL DATA	FOR AS	BESTOS IDI	ENTIFICATION	ON			
Morpholog	gy strai	ight								
Pleochrois	m none	е								
Refract Inde	ex 1.63	33/1.619								
Sigr	n^ posi	itive								
Extinction	-									
Birefringend	1	dium								
Me		nolite/Treme	olito							
Fiber Nam	ie Acui	nonte/ memo	onte							
ASBESTOS	MINER	ALS			EST. VOL.	. %				
Chrysotile Amosite Crocidolite Tremolite/Ac Anthophyllite OTHER FIB	ctinolite. eROUS C		ENTS		0.7					
NON FIBRO	OUS COI	MPONENT	rs		X					
Talc					X					
Mineral grains	<u> </u>				X					
Binder Desc										
Com	nments		remolite as X = Material			Moderate am	nount of	fibrous Ta	alc	

The method detection limit is 1% unless otherwise stated.

M69680-016BL-001 Act/Trem Dispersion 1.605 R.I. @ 100X

M69680-016BL-001 Act/Trem Crossed Polars

