Estymator największej wiarygodności – teoria

Niech

$$f(\theta; x_1, \dots, x_n) = \begin{cases} P_{\theta}(X_1 = x_1, \dots, X_n = x_n), & \text{dla rozkładów dyskretnych,} \\ f_{\theta}(x_1, \dots, x_n), & \text{dla rozkładów absolutnie ciągłych,} \end{cases}$$

dla próby X_1, \ldots, X_n , gdzie parametr θ jest nieznany.

Definicja 1 Funkcją wiarygodności nazywamy funkcję $L:\Theta \to \mathbb{R}$ daną wzorem

$$L(\theta) = f(\theta; x_1, \dots, x_n),$$

którą rozważamy jako funkcję parametru θ przy ustalonych wartościach obserwacji x_1, \ldots, x_n .

Definicja 2 $\hat{\theta}$ jest estymatorem największej wiarygodności parametru θ , jeśli

$$L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta).$$

Oznaczenie: $ENW(\theta)$.

Uwaga 3 W definicji 1 nie jest wymagane założenie niezależności obserwacji X_1, \ldots, X_n .

Uwaga 4 Jeśli zmienne X_1, \ldots, X_n są niezależne, to

$$f(\theta; x_1, \dots, x_n) = \begin{cases} \prod_{i=1}^n P_{\theta}(X_i = x_i), & \text{dla rozkładów dyskretnych,} \\ \prod_{i=1}^n f_{\theta}(x_i), & \text{dla rozkładów absolutnie ciągłych,} \end{cases}$$

Fakt 5 Jeżeli $\hat{\theta} = \text{ENW}(\theta)$ i $g: \Theta \to \mathbb{R}$ jest funkcją ciągłą, to $g(\hat{\theta}) = \text{ENW}(g(\theta))$.

Uwaga 6 Ponieważ logarytm jest funkcją rosnącą, więc

$$\arg\sup_{\theta\in\Theta}L(\theta)=\arg\sup_{\theta\in\Theta}\ln L(\theta).$$

Wyznaczenie $\arg\sup_{\theta\in\Theta}\ln L(\theta)$ jest zadaniem łatwiejszym niż wyznaczenie $\arg\sup_{\theta\in\Theta}L(\theta).$

Fakt 7 Estymator największej wiarygodności jest

- 1. asymptotycznie nieobciążony,
- 2. zgodny,
- 3. asymptotycznie normalny.