This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLAIMS

- 1. A semiconductor device comprising:
 - a substrate;
- a gate insulating film formed on said substrate, and having a nitrogen-containing metal silicate film or a nitrogen-containing metal aluminate film that contains a metal in a peak concentration of 1 atomic % or more and 30 atomic % or less on the uppermost layer; and
- 10 -a gate electrode formed on said gate insulating film.
 - 2. A semiconductor device comprising:
 - a substrate;
 - a gate insulating film formed on said substrate, and having:
- a base interface layer formed on said substrate,
 - a metal silicate film formed on said base interface layer, and containing a metal, oxygen and silicon, and
 - a nitrogen-containing metal silicate film that contains a metal, oxygen, silicon, and nitrogen; and
- a gate electrode formed on said gate insulating film; wherein said nitrogen-containing metal silicate film contains said metal in a peak concentration of 1 atomic % or more and 30 atomic % or less.
- 25 3. The semiconductor device according to claim 2, wherein said metal silicate film contains said metal in a peak concentration of 5 atomic % or more and 40 atomic % or less.
- 4. The semiconductor device according to claim 1, wherein said nitrogen-containing metal silicate film contains said nitrogen

in a peak concentration of 10 atomic % or more and 30 atomic % or less.

5. A method for manufacturing a semiconductor device comprising the steps for:

forming a base interface layer on a substrate;

forming a metal silicate film containing a metal in a peak concentration of 1 atomic % or more and 30 atomic % or less on said base interface layer;

containing nitrogen in a peak concentration of 10 atomic % or more and 30 atomic % or less on the upper layer of said metal silicate film; and

forming a gate electrode on said nitrogen-containing metal -15 silicate film.

6. The method for manufacturing a semiconductor device according to claim 5, wherein

said step for forming said metal silicate film performs the 20 combination of:

a first step for forming a metal oxide film by supplying a metal-containing material, and then supplying an oxygen-based gas onto said substrate; and

a second step for forming a silicon oxide film by supplying a silicon-containing material, and then supplying an oxygen-based gas onto said substrate; and

said step for forming said metal silicate film performs said combination of steps controlling the number of said first and second steps.

7. The method for manufacturing a semiconductor device according to claim 6, wherein said first step repeatedly performs the steps for:

supplying said metal-containing material onto said 5 substrate;

supplying said oxygen-based gas onto said substrate; and radiating light onto the surface of said substrate for a time up to several milliseconds.

10 8. The method for manufacturing a semiconductor device according to claim 6, wherein said second step repeatedly performs the steps for:

supplying said silicon-containing material onto said substrate;

- supplying said oxygen-based gas onto said substrate; and radiating light onto the surface of said substrate for a time up to several milliseconds.
- 9. A method for manufacturing a semiconductor device comprising20 the steps for:

forming a base interface layer on a substrate;

forming a metal silicate film containing a metal in a peak concentration of 5 atomic % or more and 40 atomic % or less on said base interface layer;

forming a nitrogen-containing metal silicate film containing a metal in a peak concentration of 1 atomic % or more and 30 atomic % or less and nitrogen in a peak concentration of 10 atomic % or more and 30 atomic % or less on said metal silicate film; and

forming a gate electrode on said nitrogen-containing metal silicate film.

10. The method for manufacturing a semiconductor device according to claim 9, wherein

said step for forming said metal silicate film performs the combination of:

a first step for forming a metal oxide film by supplying a metal-containing material, and then supplying an oxygen-based 10 -- gas onto said substrate; and

a second step for forming a silicon oxide film by supplying a silicon-containing material, and then supplying an oxygen-based gas onto said substrate; and

said step for forming said metal silicate film performs said

15-combination of steps controlling the number of said first and second steps.

11. The method for manufacturing a semiconductor device according to claim 10, wherein said first step repeatedly performs the steps for:

20

supplying said metal-containing material onto said substrate;

supplying said oxygen-based gas onto said substrate; and radiating light onto the surface of said substrate for a time up to several milliseconds.

12. The method for manufacturing a semiconductor device according to claim 10, wherein said second step repeatedly performs the steps for:

supplying said silicon-containing material onto said substrate;

supplying said oxygen-based gas onto said substrate; and radiating light onto the surface of said substrate for a time up to several milliseconds.

- 13. The method for manufacturing a semiconductor device according to claim 9, wherein said step for forming said nitrogen-containing metal silicate film comprises the steps for:
- forming a base metal silicate film containing a metal in a peak concentration of 1 atomic % or more and 30 atomic % or less; and

introducing nitrogen into said base metal silicate film in a peak concentration of 10 atomic % or more and 30 atomic % or less by nitriding said metal silicate film.

14. The method for manufacturing a semiconductor device according to claim 5, wherein;

said step for forming a base metal silicate film performs 20 the combination of;

a first step for forming a metal oxide film by supplying a metal-containing material, and then supplying an oxygen-based gas onto said substrate; and

a second step for forming a metal oxide film by supplying a silicon-containing material, and then supplying an oxygen-based gas onto said substrate;

and controls the number of said first and second steps to form said metal silicate film.

15. The method for manufacturing a semiconductor device according to claim 14, wherein said first step repeatedly performs the steps for:

supplying said metal-containing material onto said 5 substrate;

supplying said oxygen-based gas onto said substrate; and radiating light onto the surface of said substrate for a time up to several milliseconds.

10 16. The method for manufacturing a semiconductor device according to claim 14, wherein said second step repeatedly performs the steps for:

supplying said silicon-containing material onto said substrate;

- 15 --- supplying said oxygen-based gas onto said substrate; and radiating light onto the surface of said substrate for a time up to several milliseconds.
 - 17. A apparatus for forming a film comprising:
- a housing;
 - a table installed in said housing, for placing a substrate;
 - a gas supply port for supplying a gas into said housing;
 - a gas discharge port for discharging the gas in said housing out of said housing; and
- a heater for heating the surface of said substrate by radiating light on the surface of said substrate placed on said table for a time up to several milliseconds.
- 18. The apparatus for forming a thin film according to claim
 30 17 wherein said heater includes a flash lamp.

19. A method for forming a high-dielectric-constant film on a substrate comprising the steps for:

supplying a first material gas that contains at least one element in elements constituting said high-dielectric-constant film into a housing wherein said substrate is placed;

5

supplying a second material gas that reacts with said first material gas and forms said high-dielectric-constant film into said housing; and

heating the surface of said substrate by radiating light onto the surface of said substrate for a time up to several milliseconds.

20. The method for forming a high-dielectric-constant film according to claim 19, wherein the time for radiating light in said heating step is from 0.8 to 20 miliseconds.