МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

ИВАНОВ ПЕТР СЕРГЕЕВИЧ

Конфигурирование DHCP-сервера

Отчет по лабораторной работе № 6, вариант 1 ("Компьютерные сети") студента 3-го курса 8-ой группы

Преподаватель Горячкин В.В.

СОДЕРЖАНИЕ

1. Конфигурирование DHCP-сервера	3
1.1 Задание 1. Конфигурирование DHCP-сервера	3
1.1.1. Первая часть задания 1 <i>(модель №1 в файле pkt)</i>	3
1.1.2. Вторая часть задания 1 <i>(модель №2 в файле pkt)</i>	7
2. Конфигурирование маршрутизатора Cisco в качестве сервера DHCP	12
2.1 Задание 2. Сконфигурировать маршрутизатор Cisco в качестве сервера DHCP	12
2.2 Настройке DHCP в CLI	12
1. Создать пул адресов DHCP (шаг №1)	13
2. Указать подсеть (шаг №2)	13
3. Исключить IP-адреса. (шаг №3)	13
4. Указать доменное имя. (шаг №4)	13
5. Указать IP-адрес сервера DNS. (шаг №5)	13
6. Выбрать маршрутизатор по умолчанию (шаг №6)	13
7. Установить время аренды (шаг №7)	13
8. Проверить конфигурацию (шаг №8 <i>)</i>	13
2.3. Выполнение задания 2 (модель №3)	13
3. Задание 3	18

1. Конфигурирование DHCP-сервера

1.1 Задание 1. Конфигурирование DHCP-сервера

1.1.1. Первая часть задания 1 (модель №1 в файле pkt)

- 1. Реализовать схему (рисунок 1[лаб.06]) подключения группы компьютеров через Нив к DHCP-серверу. Для того, чтобы можно было добавить узлы, необходимо Нив-у добавить дополнительные модули (разъёмы) в свободные слоты.
- 2. Согласно вашему варианту задания определите допустимое количество узлов в сети (допустимый пул адресов). Продумайте адресацию для узлов, шлюза, DNS-сервера.

Вырезать строку с вариантом задания и вставить в отчет.

Вставить ваши соображения в форме таблицы по адресации узлов, шлюза, DNS-сервера

Алексеев Роман Вале	рьевич	*	1	13.03.24	1
1	187.16.0.0/16				

Всего доступно $2^{16} - 2 = 65534$ адресов.

Устройство	ІР-адрес	Основной шлюз	DNS-сервер
Server	187.16.0.3	187.16.0.1	187.16.0.2
PC0	187.16.0.4	187.16.0.1	187.16.0.2
PC1	187.16.0.5	187.16.0.1	187.16.0.2
PC2	187.16.0.6	187.16.0.1	187.16.0.2
PC3	187.16.0.7	187.16.0.1	187.16.0.2
PC4	187.16.0.8	187.16.0.1	187.16.0.2
PC5	187.16.0.9	187.16.0.1	187.16.0.2

3. Сконфигурируйте сервер, как DHCP- сервер.

4. В отчете раскройте понятие DHCP-сервер, его назначение.

DHCP – протокол, который позволяет устройствам автоматически получать IP-адреса.

Соответственно, DHCP-сервер – это сервер, на котором работает данный протокол.

Он предназначен для того, чтобы узлы могли получать IP-адреса в сети автоматически, без вмешательства администратора

5. В чем основное отличие между DHCP и ARP.

Основное различие DHCP и ARP состоит в том, что ARP-протокол предназначен для определения MAC-адреса устройства по его IP-адресу, в то время как DHCP-протокол выдает устройствам IP-адреса и, если понадобится, может одному и тому же устройству выдавать один и тот же адрес, то есть, определять IP-адрес по MAC-адресу.

6. В отчете отобразите разработанную Вами схему.

Рисунок 1

7. Выберите согласно варианту задания пул адресов, который будет динамически распределяться. Для данного DHCP-сервера (первого) <u>используйте только последние</u> <u>30%</u> из пула адресов.

Общий пул адресов составляет 187.16.0.1 – 187.16.255.254, или 65534 адреса.

70% от 65534 – это 45874, следовательно, нужны адреса, начиная с 45875.

Третий октет может изменяться от 0 до 255, для каждого из которых возможно 256 значений четвертого октета (исключая 0.0 и 255.255).

Таким образом, представив 45875 как 256 * 179 - 1 + 52, получаем, что набор пул адресов для DHCP-сервера составляет 187.16.179.52 - 187.16.255.254.

- 8. Опишите процедуру настройки DHCP-сервера, используя скриншоты с комментариями.
 - Нажать ЛКМ на иконке сервера
 - Перейти во вкладку Services
 - Задать необходимые значения

- 1. Задаем основной шлюз
- 2. Задаем DNS-сервер
- 3. Задаем начальный ІР-адрес
- 4. Задаем максимальное число пользователей
- 5. Сохраняем результаты
- 6. Включаем DHCP-сервер
- 9. На любых двух ПК освободите IP адреса (как это сделать?) и через некоторое время обновите их. Обновить в обратном порядке освобождения их IP-адресов. Отразите в отчете, какие IP адреса были до обновления и какие IP адреса стали после обновления. Ваши выводы.

Освободить IP-адрес можно с помощью команды ipconfig /release, а обновить с помощью ipconfig /renew.

Так как команда ipconfig /release не выполняется, когда IP-адрес задан вручную, оба ПК были предварительно переведены на DHCP

Устройство	Ручной ІР-адрес	Адрес, выданный DHCP	Адрес, выданный DHCP после обновления
PC0	187.16.0.4	187.16.179.53	187.16.179.54
PC1	187.16.0.5	187.16.179.54	187.16.179.53

Консоль РС0

```
PC1
Physical
        Config
              Desktop
                      Custom Interface
 Command Prompt
                                                     Χ
    Connection-specific DNS Suffix..:
    Physical Address...... 000C.CF20.A304
    Link-local IPv6 Address...... FE80::20C:CFFF:FE20:A304
    IP Address..... 187.16.179.54
    Subnet Mask..... 255.255.0.0
    Default Gateway..... 187.16.0.1
    DNS Servers..... 187.16.0.2
    DHCP Servers..... 187.16.0.3
    DHCPv6 Client DUID...... 00-01-00-01-CD-DC-C3-30-00-0C-
  CF-20-A3-04
  PC>ipconfig /release
    IP Address..... 0.0.0.0
    Subnet Mask..... 0.0.0.0
    Default Gateway..... 0.0.0.0
    DNS Server..... 0.0.0.0
  PC>ipconfig /renew
    IP Address..... 187.16.179.53
    Subnet Mask..... 255.255.0.0
    Default Gateway..... 187.16.0.1
    DNS Server..... 187.16.0.2
```

Консоль РС1

Как видно, изначально DHCP выдает первые попавшиеся из свободных IP-адреса, и PC0 получил 187.16.179.53, а PC1 187.16.179.54. Освобождение адреса произошло сначала на PC0, затем на PC1, обновление произошло в обратном порядке. По итогу, PC0 и PC1 поменялись адресами, там как после обновления первым адрес получал PC1, а получил он первый IP-адрес из свободных, то есть 187.16.179.53, который был до этого IP-адресом PC0.

10. Проанализируйте результат исследования по первой части задания 1, сделайте выводы, дайте обоснование полученного результата.

При освобождении адреса устройство сообщает DHCP-серверу об освобождении и возможности дальнейшего использования адреса другим устройством. Во время запроса на выдачу IP-адреса DHCP-сервер выбирает один из свободных адресов и выдает его устройству.

11. Результаты выполнения пунктов задания подтвердить соответствующими скриниютами с комментариями.

1.1.2. Вторая часть задания 1 (модель №2 в файле pkt)

- 1. Создайте копию модели вашей сети (копию файла .pkt; т.е. работаем со второй моделью сети), что на рисунке 1. (модель №2 в файле pkt).
- 2. В модели №2 добавьте ещё один DHCP-сервер с другой сетевой конфигурацией (выберите самостоятельно, <u>учитывая вариант задания</u> и тот пул, который вы задействовали). Пулы адресов DHCP-серверов не должны пересекаться для чистоты эксперимента

Процесс настройки второго сервера аналогичен процессу настройки первого

Пул адресов первого DHCP-с	ервера 187.16.179.53-187.16.255.254
Пул адресов второго DHCP-с	ервера 187.16.20.0-187.16.20.9

3. Добавьте новый хост и посмотрите. Какая конфигурация ему назначена. Какой DHCP – сервер выбрал новый хост?

Конфигурация нового узла

Исходя из полученных данных, видно, что новому узлу IP-адрес выдал первый DHCPсервер

4. Отключите первый DHCP-сервер (в смысле можно отключить питание). Добавьте новый узел и посмотрите, какая конфигурация будет ему назначена.

Конфигурация нового узла.

Как видно, из-за того, что доступен только один (второй) DHCP-сервер, именно он и выдал адрес новому узлу

5. Изучите новую сетевую конфигурацию на узлах.

Все узлы, кроме последнего добавленного, либо имеют ручные выданные адреса, либо получили его от первого сервера, причём после его отключения IP-адреса узлов не изменились. Последний добавленный узел получил адрес из пула адресов второго сервера, как единственного работающего.

6. Отключите второй DHCP-сервер (то есть все DHCP-сервера отключены).

7. Изучите новую сетевую конфигурацию на узлах.

После отключения второго сервера все узлы всё ещё сохраняют свои ІР-адреса, то есть, конфигурация осталась такой же, как и до выключения второго сервера

8. На любых двух выбранных ПК освободите IP — адреса и через некоторое время обновите их. (Некоторое время означает, например, можем сделать несколько пингов.)

Отразите в отчете, какие IP – адреса были до обновления и какие IP – адреса стали после обновления этих выбранных компьютеров.

PC1
Как видно, у обоих ПК попытка повторного получения IP-адреса провалилась

Устройство	Адрес до обновления	Адрес после обновления
PC0	187.16.179.53	169.254.236.147
PC1	187.16.179.54	169.254.163.4

2. Конфигурирование маршрутизатора Cisco в качестве сервера DHCP

2.1 Задание 2. Сконфигурировать маршрутизатор Cisco в качестве сервера DHCP

Спроектировать схему (рисунок 2[лаб.06]; т.е. третья подсеть) подключения группы компьютеров через коммутатор к маршрутизатору.

2.2 Настройке DHCP в CLI

Для настройки DHCP в CLI пройдите восемь этапов (шагов) [лаб-06].

- 1. Создать пул адресов DHCP (шаг №1)
- 2. Указать подсеть (шаг №2)
- 3. Исключить ІР-адреса. (шаг №3)
- 4. Указать доменное имя. (шаг №4)
- 5. Указать IP-адрес сервера DNS. (шаг №5)
- 6. Выбрать маршругизатор по умолчанию (шаг №6).
- 7. Установить время аренды (шаг №7).
- 8. Проверить конфигурацию (шаг №8).

2.3. Выполнение задания 2 (модель №3)

- 1. Реализовать схему сети аналогичную приведенной на рисунке 2 (лаб-06).
- 2. Присвоить имена маршрутизаторам и хостам по принятым ранее правилам.
- 3. Выполните все этапы 1-8 (кроме 7) подраздела "2.2. Настройке DHCP в CLI"
- 4. Создайте пул адресов DHCP с именем pool_Homep вашего варианта задания. Из пула адресов исключите около 50% адресов. Доменное имя выбрать по правилу: FIOcmyдента.FPMI.by
- 5. В разработанной модели №3 подсети (рисунок 2) подписать IP-адрес интерфейса маршрутизатора.

Рисунок 2

Как видно, удалось успешно настроить маршрутизатор как DHCP-сервер

6. На рабочих станциях (выберите два хоста на ваше усмотрение) проверьте (как это сделать?) настройки DHCP.

Проверить настройки DHCP можно с помощью команды ipconfig /all. Если используется DHCP-сервер, это покажется

Консоль Комп2

Консоль Комп4

Как видно, узлы получили свои IP-адреса он DHCP-сервера из того пула адресов, из которого он может их выдавать

7. На любых двух ПК освободите IP — адреса и через некоторое время обновите их. Отразите в отчете, какие IP — адреса были до обновления и какие IP — адреса стали после обновления.

Для освобождения и обновления адресов были выбраны те же самые Комп 2 и Комп4

```
🥰 Комп2
Physical
        Config
              Desktop
                     Custom Interface
                                                    Χ
 Command Prompt
    Link-local IPv6 Address...... FE80::20A:F3FF:FE91:3DD3
    IP Address..... 187.16.128.0
    Subnet Mask..... 255.255.0.0
    Default Gateway..... 187.16.0.2
    DNS Servers..... 187.16.0.1
    DHCP Servers..... 187.16.0.2
    DHCPv6 Client DUID...... 00-01-00-01-E6-81-0E-00-00-0A-
  F3-91-3D-D3
  PC>ipconfig /release
    IP Address..... 0.0.0.0
    Subnet Mask..... 0.0.0.0
    Default Gateway..... 0.0.0.0
    DNS Server..... 0.0.0.0
  PC>ipconfig /renew
    IP Address..... 187.16.128.3
    Subnet Mask..... 255.255.0.0
    Default Gateway..... 187.16.0.2
    DNS Server..... 187.16.0.1
  PC>
```

Консоль Комп2

```
🥯 Комп4
Physical
       Config
              Desktop
                     Custom Interface
                                                   Χ
 Command Prompt
    Link-local IPv6 Address..... FE80::2D0:58FF:FE82:98D6
    IP Address..... 187.16.128.2
    Subnet Mask..... 255.255.0.0
    Default Gateway..... 187.16.0.2
    DNS Servers..... 187.16.0.1
    DHCP Servers..... 187.16.0.2
    DHCPv6 Client DUID...... 00-01-00-01-20-20-0E-09-00-
 D0-58-82-98-D6
 PC>ipconfig /release
    IP Address..... 0.0.0.0
    Subnet Mask..... 0.0.0.0
    Default Gateway..... 0.0.0.0
    DNS Server..... 0.0.0.0
 PC>ipconfig /renew
    IP Address..... 187.16.128.2
    Subnet Mask..... 255.255.0.0
    Default Gateway....: 187.16.0.2
    DNS Server..... 187.16.0.1
  PC>
```

Сначала освободился Комп2, затем Комп4, обновление происходило в обратном порядке

Устройство	IP-адрес до обновления	IP-адрес после обновления
Комп2	187.16.128.0	187.16.128.3
Комп4	187.16.128.2	187.16.128.2

3. Задание 3

На личном ноутбуке войдите в сеть БГУ. Определите IP-адреса интерфейсов вашего ПК. Аналогичные процедуры выполните в любой другой сети (например, дома) Заполните следующую таблицу. Если нет личного ноутбука, то выполните пункт задания, используя смартфон и Wi-Fi.

n/n	Сетевой интерфейс ноутбука (смартфона) (MAC-адрес)	IP-адрес в сети БГУ	IP-адрес в любой другой сети (дома, на вокзале, "Столице", гипермаркете и др.)
1.	70-66-55-5B-C9-47	10.160.0.189	192.168.100.13

Данные собирались с различных сетей, у которых различные маски, выделенный пул адресов и поразному настроены DHCP-адреса. Как итог, были получены абсолютно разные IP-адреса

4. Задание 4

Дайте развернутые ответы в письменном виде (рукописный ответ) со вставкой фото в отчет на поставленные вопросы:

- 1. На рисунке 1 использовался hub. а на рисунке 2 коммутатор. В чем принципиальное отличие этих двух сетевых устройств?
- 2. Сколько DHCP серверов достаточно, чтобы обслужить сеть, разделенную двумя маршрутизаторами? Ваше решение вопроса.

Легенда.

- В студенческом общежитии живет 400 студентов и каждый из них имеет собственный ноутбук. В общежитии оборудована специальная комната, в которой развернута компьютерная сеть (wi-fi-точки доступа нет), имеющая 25 коннекторов для подключения кабелей (витой парой) к компьютерам. Время от времени студенты работают в этом компьютерном классе, подключая свои ноутбуки кабелем к сети. Продолжительность сеанса не более двух часов.
- 3. Возникает проблема кто и как будет конфигурировать компьютеры, состав которых постоянно меняется?
- 4. Каким количеством IP- адресов должен располагать администратор этой компьютерной сети?

5. Что должен сделать администратор этой компьютерной сети, чтобы автоматизировать процесс подключения к сети без процедуры конфигурирования каждым студентом своего ноутбука при каждом посещении компьютерного класса?

Починие того, что каб работает на физическом Уровне, а коминутатор на канальним, когда хаб кому част данные от какого-шедурь ума, он отправшеет их веем останьными урани, недависимию от того, кому оки были предна дначеног, в то вреше как коминутатор передаёт их только тому, дин кого предназначены 2. Так как сеть разделена на 2 подсети, то дин обстуживания необходишь 2 ДНСР-сервера. Так как разделение пропеходия с намочью мартирутизаторов, то именно они и метут Eurerynuits & pour ceptepot 3. Конфитурации может происходить нибо колдым студентом отреньно, шоо специаньно назначенным администратором, шоо е послощью ВИСР-сервера, который автоматические будет выравать IP-agpeca 4. Так как имеется всего 25 кончекторов, то и достачно иметь been 25 agrecob. Morno venouspobars marry 255.255.255.224, которон позволяет шиеть в распоряжении 30 уров 5. Дия автоматерини процесса подпиночения и сети администрапор может сконфитурировать ДИСР-сервер, который автоматически воздает на вреши ТР-адреса в ту воздененого пуна адресов в рашках