Evaluating Statistical Methods for Nuclear Forensics Analysis

Preliminary Examination

Arrielle Opotowsky

University of Wisconsin-Madison

29 January 2018

Outline

- 1 Introduction
 Motivation
 - Methodology
- 2 Literature Review
 - Nuclear Forensics
 - Statistical Models
 - Algorithms for Prediction
 - ML Model Selection and Assessment
 - ML Model Optimization and Validation
 - Computational Tools
 - Application of Statistical Methods
- 3 Demonstration
 - Training Data
 - ML Model Results
 - Validation
- 4 Research Proposal
 - Experiment 1
 - Experiment 2

background here of what it is

Nuclear Security and Forensics

Needs in Nuclear Forensics

 ${\sf US}/{\sf DHS}$ stuff plus NF-specific needs

Contribution of Computational Methods

Figure 1: Nuclear forensics research: physical, experimental, and computational

Computational Methods

Figure 2: Comparison of computational approaches to nuclear forensics research

Contribution of Statistical Methods

TRAINING DATA	TESTING DATA	
ivation		
Lab-Measured Mass Spectra	Lab-Measured Mass Spectra	
Lab-Measured Gamma Spectra	Field-Measured Gamma Spectra	
al Representation		
Simulation-Created Isotopics	Simulation-Created Isotopics	
DRF-Derived Gamma Spectra	DRF- <i>Derived</i> Gamma Spectra	
	Lab-Measured Mass Spectra Lab-Measured Gamma Spectra al Representation Simulation-Created Isotopics	

Figure 3: The benefits of data set modularity are easily implemented in this

Statistical Methods

Goal/Big Question

How does the ability to determine forensic-relevant spent nuclear fuel attributes using machine learning techniques degrade as less information is available?.

Outline

- 1 Introduction Motivation
- 2 Literature Review

Nuclear Forensics Statistical Models

Algorithms for Prediction
ML Model Selection and Assessment
ML Model Optimization and Validation

Computational Tools Application of Statistical Methods

- 3 Demonstration
 - ML Model Results
 - Validation
- 4 Research Proposa
 - Experiment 1
 - Experiment 2

Nuclear Forensics Statistical Models Computational Tools Application of Statistical Methods

Technical Nuclear Forensics

something showing illicit trafficking. UOX seems to be the most common fear ${\sf SNF}$ is really just for RDDs

Nuclear Forensics Statistical Models Computational Tools Application of Statistical Methods

Types of Investigations

pre-det v post-det

Nuclear Forensics Statistical Models Computational Tools Application of Statistical Methods

Nuclear Forensics as an Inverse Problem

inverse problem intro

W

Machine Learning

machine vs. statistical (domain knowledge-¿none) supervised and unsupervised clustering, dimensionality reduction classification, regression – discrete and continuous variables

Vocabulary

labels features generalizability prediction error objective error metric v prediction error metric

W

Supervised Regression

Figure 4: Schematic of a representative prediction workflow

Linear Models

Objective: minimize error over all training data (squared, absolute, etc)

$$F(\mathbf{X}) = \beta_0 + \sum_{j=1}^{p} x_j \beta_j \tag{1}$$

Regularization

Figure 5: Schematic of the impact of regularization on the generalizability of an ML model

W

Nearest Neighbor Methods

Objective: minimum distance between test sample and training instance(s)

$$Y(\mathbf{X}) = \frac{1}{k} \sum_{x_i \in N_k(\mathbf{X})} y_i \tag{3}$$

Input Feature (x)

Figure 6: Illustration of the regularization effects by choosing k

Support Vector Machines

Figure 7: Classification with SVM and regression with SVR

Ŵ

Support Vector Regression with Many Dimensions

$$\min \frac{1}{2} \|w\|^2 + C \sum_i \xi_i$$

$$\text{subject to}: |y_i - (w\phi(x_i) + b)| \le \varepsilon + \xi_i$$

$$\text{where}: w = \sum_i \alpha_i y_i \phi(x_i)$$

$$\text{and}: K(x_i, x_j) = \phi(x_i) \phi(x_j) = e^{\gamma \|x_i - x_j\|^2}$$

Dimensionality Reduction

Manual via domain knowledge or some measure PCA Factor Analysis ICA

Sources of Error

Types of Error

F	Full Dataset							
Split into Cross-Validation & Testing Sets:								
Training			CV		Testing			
3-fold Cross-Validation:								
1.	Training	Training		Testing				
2.	Training	Training		Testing				
3.	Training	Training		Testing				

Figure 10: Diagram explaining the concept of k-fold cross-validation

Error Metrics

L1, L2, etc.

Used for model prediction error and obj funcs within the algorithms $% \left(1\right) =\left(1\right) \left(1\right)$

Training Set Size: Learning Curves

Figure 11: Learning curves for three training scenarios: high bias, balanced bias and variance, and high variance

W

Model Complexity: Validation Curves

Figure 12: Validation curve showing different fitness of models

Model Comparison

Probabilities	Calculation Method and Example		
P(D M)	Given: M = BWR U-oxide with burnup = x GWd/MTU This is true: D = nuclide vector with Pu-239 = y%		
Prior	With: z% probability Calc'd from: ORIGEN simulations in training set		
	Given: No direct information on D		
P(M) Likelihood	This is true: M = BWR U-oxide with burnup = x GWd/MTU		
	With: z% probability		
	Calc'd from: Machine-learned model prediction		
	Given: No direct information on M		
P(D)	This is true: D = nuclide vector with Pu-239 = y%		
Marginal L.	With: z% probability		
	Calc'd from: Summation of training set instances		
P(M D) Posterior	Given: D = nuclide vector with Pu-239 = y%		
	This is true: M = BWR U-Ox with burnup = x GWd/MTU		
	With: z% probability		
	Calc'd from: All quantities above		

$$\textit{Posterior} = \frac{\textit{Likelihood} * \textit{Prior}}{\textit{Marginal Likelihood}}$$
 (5)

Table 1: Bayes

Nuclear Forensics Statistical Models Computational Tools Application of Statistical Methods

Fuel Cycle Simulation

Nuclear Forensics Statistical Models Computational Tools Application of Statistical Methods

Statistics Toolkit

Nuclear Forensics Statistical Models Computational Tools Application of Statistical Methods

Computational Gamma Spectra

Nuclear Forensics Statistical Models Computational Tools Application of Statistical Methods

Pre-detonation Materials of Interest

UOC UOX powder SNF Reprocessed SNF

Nuclear Forensics Statistical Models Computational Tools Application of Statistical Methods

Statistical Methods Employed

Factor Analysis SFCOMPO extension Dayman paper on prediction ability wrt info reduction

Outline

- 1 Introduction
 Motivation
 - Methodology
- 2 Literature Review
 - Nuclear Forensics
 - Statistical Models
 - Algorithms for Prediction
 - MI Model Selection and Assessment
 - ML Model Optimization and Validation
 - Computational Tools
 - Application of Statistical Methods
- 3 Demonstration
 - Training Data
 - ML Model Results
 - Validation
- 4 Research Proposa
 - Experiment 1
 - Experiment 2

W

Proposed Experiment Methodology

Figure 13: Workflow of the experiments with tools used for each step

Training Data ML Model Results Validation

SNF Simulations

Information Reduction

Algorithm Parameters

Algorithm	Parameter	Value
Nearest Neighbor Regression	<i>n</i> -neighbors	1
	Weights	uniform
	Distance Metric	L2: Euclidian Distance
Ridge Regression	Regularization, α	1.0
	Normalization	False
rtogroooiorr	Stopping Tolerance	0.001
	Kernel	Radial Basis Function
	Gamma, γ	0.001
Support Vector Regression	С	1000
	Epsilon, ε	0.1
	Stopping Tolerance	0.001

Initial Results

Algorithm

RM

38 / 54

MAPE

7.1.go.1.1.1111			[MV
Nearest Neighbor Regression	Testing Set	9.82	81
	5-fold Cross-Validation	2.24	42
Ridge	Testing Set	15.68	10
Regression	5-fold Cross-Validation	0.08	13
Support Vector	Testing Set	12.28	76
Regression	5-fold Cross-Validation	2.08	18

Error Origin

ML Model Prediction with Reduced Information

Figure 14: caption

SVR Learning Curve

SVR Validation Curve

Outline

- 1 Introduction
 Motivation
- 2 Literature Review

Nuclear Forensics

Statistical Models

Algorithms for Prediction

ML Model Selection and Assessment

ML Model Optimization and Validation

Computational Tools

Application of Statistical Methods

3 Demonstration

Training Data

ML Model Results

Validation

4 Research Proposal

Experiment 1

Experiment 2

Experiment 1
Experiment 2
Experiment 3
Method Comparison

Research Proposal Preparations

Previous Work -¿ SFCOMPO-based Finalizing set of algorithms computational resources

Viability of Statistical Learning on Direct Isotopics

Purpose Variables

Viability of Statistical Learning on Direct Isotopics

Hypotheses Risks

Viability of Statistical Learning on Gamma Spectra

Purpose Variables

Viability of Statistical Learning on Gamma Spectra

Hypotheses Risks

Viability of Statistical Learning on Reprocessed Fuel

Purpose Variables

Viability of Statistical Learning on Reprocessed Fuel

Hypotheses Risks

W

Probability Distributions

Here, we change the meaning of the variables to represent probability distributions. C is a constant given by the marginal likelihood, which can be ignored when calculating relative probabilities, and \boldsymbol{d} and \boldsymbol{m} represent the training data set and model parameters, respectively. Thus, $P(\boldsymbol{d}|\boldsymbol{m})$ is the likelihood distribution function, $P(\boldsymbol{m})$ is the prior probability distribution, and $P(\boldsymbol{m}|\boldsymbol{d})$ is the posterior probability distribution.

$$P(\boldsymbol{m}|\boldsymbol{d}) = C * P(\boldsymbol{d}|\boldsymbol{m}) * P(\boldsymbol{m})$$
 (6)

Mathematically speaking, the distributions are obtained by integrating over the relevant probability densities. For example, the prior probability distribution can be calculated, where \boldsymbol{m} is the range of predicted model parameters, i.e. burnup values, and \boldsymbol{d} is a set of nuclide vectors. Also, here, $\rho(\boldsymbol{x}) = \prod_i \rho(x_i)$.

$$P(\mathbf{m}) = \int_{\mathbf{m}} \rho(\mathbf{d}) d\mathbf{d} \tag{7}$$

Similarly, the likelihood distribution function is obtained as in Equation

50 / 54

Experiment 1
Experiment 2
Experiment 3
Method Comparison

Estimating Density Functions

Convert wordage to graphic?

W

Posterior Odds

$$\frac{P(m_i|d)}{P(m_j|d)} = B_{ij} \frac{P(m_i)}{P(m_j)}$$
(9)

$ {\rm ln}B_{ij} $	Probability	Likelihood Strength
< 1.0	< 0.750	Inconclusive
1.0	0.750	Weak
2.5	0.923	Moderate
5.0	0.993	Strong

Table 6: Model comparison using likelihood strength

Outline

- 1 Introduction
 Motivation
 - Methodology
- 2 Literature Review
 - Nuclear Forensics
 - Statistical Models
 - Algorithms for Prediction
 - ML Model Selection and Assessment
 - ML Model Optimization and Validation
 - Computational Tools
 - Application of Statistical Methods
- 3 Demonstration
 - Training Data
 - ML Model Results
 - Validation
- 4 Research Proposal
 - Experiment 1
 - Experiment 2

Introduction
Literature Review
Demonstration
Research Proposal
Conclusion

References I

