

FIMI – 2^{ème} Année

Année 2021/2022

Durée: 1h30

Corrigé de l'interrogation de Physique n° 1 – semestre 4

Lundi 14 mars 2022

	Exercice 1 (peu guidé) : /7,5	Total 7,5 B:0,25
	On a reflexion des ondes au niveau des plans x=0 et x=L car changement de milieu . (D'apres l'énoncé et Snell Descartes, les ondes réfléchies garde la meme direction de polarisation, et se propage toujours selon l'axe x car les plans de reflexion sont perpendiculaires à cette axe)	/0,5 (si justification)
Q1 /1.5	Les ondes incidente et réfléchie se superposent entre les deux plans conducteurs pour former une onde stationnaire .	/0,5
B: +0,25	Bonus : Il y a présence de nœud et de ventre du champ électrique total en certains points de l'espace	B:+0,25
	La continuité du champ total en 0 et en L impose l'existence de nœuds en x=0 et en x=L , par conséquent on peut en déduire que les pulsations des ondes pouvant exister entre les deux conducteurs seront quantifiées et seules les modes propres de vibrations pourront exister.	/0,25+0,25
	Proposition de résolution de cette question (ouverte) On suppose la polarisation de ondes transmises et incidentes non changée et les lois de Descartes vérifiées : d'où même pulsation et comme incidence normale propagation de toutes les ondes dans la direction de x (sens positif et sens négatif)	0,25+0,25
	On en déduit l'écriture des différents champs sous forme complexe: champs se propageant selon les x positifs : $\overline{E_l} = \underline{E_{0i}} \exp(j(\omega t - kx)) \overline{e_y}$	0,25
	champs se propageant selon les x négatifs : $\overline{E_r} = \underline{E_{0r}} \exp(\mathrm{j}(\omega t + kx)) \overrightarrow{e_y}$	0,25
Q2	Le champ dans le conducteur est nul car le conducteur est <u>parfait</u> $ \underline{E_{tot}} = \underline{F_t} + \underline{F_r} \text{ est purement tangentiel (car suivant } \underline{e_y}). \underline{E_{tot}} \text{ est donc continu quel} $ que soit t en \mathbf{x} =0 et en \mathbf{x} =L. Donc, en 0:	0,25
/3,5	$\underline{\underline{F_t}}(0,t) + \underline{\underline{F_r}}(0,t) = \vec{0}$	
	$\underline{E_{0i}} + \underline{E_{0r}} = 0 \text{ soit } \underline{E_{0i}} = -\underline{E_{0r}}_0$	0,25 (0 si pas justifié)
	En L: $\underline{\underline{F_{\iota}}}(L,t) + \underline{\underline{F_{r}}}(L,t) = \vec{0}$ Quelques soit t: $\underline{E_{0i}}\exp(j(\omega t - kL)) + \underline{E_{0r}}\exp(j(\omega t + kL)) = 0$	
	On injecte la solution de l' 'équation (1) dans (2) : $\frac{E_{0i}}{-2} \exp(-jkL) - E_{0r} \exp(jkL) = 0$ $-2 E_{0i} j \sin(kL) = 0$	0,75

	$k_n L = n\pi \text{ soit } k_n = n\pi/L$ Seules certaines pulsations peuvent exister entre les deux conducteurs et celles-ci vérifient : $\omega_n = \frac{n\pi c}{L}$ avec n entier Calcul du champ total : $\overrightarrow{E_{tot}} = \overrightarrow{E_l} + \overrightarrow{E_r}$	0,5 (pour k_n ou f_n ou ω_n)
	$\overrightarrow{E_{tot}} = -2j \overrightarrow{E_{0i}} \exp(j\omega_n t) \sin(k_n x) \overrightarrow{e_y}$ $\operatorname{Avec} \omega_n = \frac{n\pi c}{L} \text{ et } k_n = \frac{n\pi}{L} \text{ avec n entier}$ $\overrightarrow{E_{tot}} = Re\left(\overrightarrow{E_{tot}}\right) = 2E_0 \cos\left(\frac{n\pi c}{L}t - \frac{\pi}{2} + \varphi\right) \sin(\frac{n\pi x}{L}) \overrightarrow{e_y} \text{ avec n entier}$	0,25 (écriture complexe) 0,5 (pour le passage en réel, ok si ω_n et k_n pas explicités dns l'expression)
Q3 /2,5	Seules les ondes EM de pulsations $\omega_n = \frac{n\pi c}{L}$ avec n entier peuvent exister entre les deux conducteurs. (Mettre le point de résolution de la continuité en x=L si traitée à cette question) On cherche les valeurs de n possibles telles que : $2 \times 10^9 \ rad. \ s^{-1} < \omega < 3 \times 10^9 \ rad. \ s^{-1}$ Soit $\frac{L\omega_{min}}{\pi c} < n < \frac{L\omega_{max}}{\pi c}$ soit $2,12 < n < 3,18$ La seule valeur possible entière de n est donc n=3 donc la seule pulsation possible est : $\omega_3 = \frac{3\pi c}{L} = 2,83 \times 10^9 \ rad. \ s^{-1}$ Seule le mode n=3 sera présent : $\overline{E_{tot}} = 2E_0 \sin\left(\frac{3\pi c}{L}t\right) \sin\left(\frac{3\pi x}{L}\right) \overline{e_y}$ L'allure de l'amplitude du champ électrique est alors la suivante :	0,75 (0 si pas justifié) 0,5 (AN) 0,25
	Mode 3 : amplitude du champ électrique 2 1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1	1 (mettre aussi les points si allure de l'enveloppe tracée) (Enlever 0,25 par erreur ou manque)

	Exercice 2 : Contrôle non destructif aux ultrasons	12,5
	Exercice 2 . Controle from destructin aux dicrasoris	Bonus : 2
BONUS (+0.5)	La fonction d'onde étant solution de l'équation de d'Alembert doit dépendre de la variable $t-x/V$, donc si on remplace t par $t-x/V$ dans $p_0(t)$ on trouve	+0.25
	$p_i(x,t) = P_0 e^{-\left[\frac{(t-x/V_{gel})^2}{2 a^2}\right]}$	
	Et $p_i(x,t)$ = 0 pour $t - \frac{x}{v} > 2a$ et $t - \frac{x}{v} < -2a$	+0,25
Q1	Etendue spatiale de l'impulsion :	
	$D = 4aV_{gel}$	0.25
	Le max. de l'impulsion arrive à l'interface après un temps $t_{ m 0}$	
1	$t_0 = e/V_{gel}$	0.25
	A.N. $D = 0.03 mm$ $t_0 = 33 ns$	A.N. 0.25+0.25
Q2	La relation de continuité de la surpression et de la vitesse en $x=0$ imposent	
	$p_i(0,t) + p_r(0,t) = p_t(0,t)$	0.25 0.25
	$v_i(0,t) + v_r(0,t) = v_t(0,t)$	0.23
	En utilisant	
2.5	$v_i = p_i/Z_{gel}$	0.5 (0 si pas de
2.3	$v_r = -p_r/Z_{gel}$	signe – pour
	$v_t = p_t/Z_{gel}$	$ v_r $
	on obtient, avec $p_r(0,t)=rp_i(0,t)$ et $p_t(0,t)=tp_i(0,t)$,	
	1+r=t	
	1 r _ t	
	$\frac{1}{Z_{gel}} - \frac{r}{Z_{gel}} = \frac{t}{Z_{alu}}$	
	donc	
	$r = \frac{Z_{alu} - Z_{gel}}{Z_{alu} + Z_{gel}}$	0.5 (0 pour toute erreur)
	$t = \frac{2Z_{alu}}{Z_{alu} + Z_{gel}}$	0.5 (0 pour toute erreur)
	A.N. $r = 0.84$ $t = 1.84$	A N
		A.N. 0.25+0.25
Q3	Ici on considère une seule impulsion finie dans l'espace et le temps et	1 (pour toute
1	pas une onde entretenue. L'énoncé considère par ailleurs qu'il n'y pas de réflexion coté gel, et que l'étendue spatiale de l'onde est	explication convaincante
	inférieure à l'épaisseur du gel et de l'aluminium. Donc au niveau des	faisant intervenir ces
	interfaces il ne peut y avoir que superposition de l'onde incidente et des ondes réfléchie et transmise issue directement de cette onde (pas	deux arguments)

	de superposition avec des ondes déjà réfléchies sur une autre interface).	
Q4	$t_1 = \frac{e}{V_{gel}} + 2a = 43 \text{ns}$	0.25+025
2	1,84 P ₀ Gel Aluminium (e) (1) (1) (1) (1) (1) (2) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1) (2) (1) (3) (4) (4) (5) (6) (7) (7) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1,5 (enlever 0,25 par erreur sur positions, ou différence de largeurs ou différence de hauteurs des pics mal figurée, ou valeurs manquantes)
		(compter juste si pic démarre à 0)
Q5	1,84 P ₀ Gel Aluminium	1,5 (enlever 0,25 par erreur sur
1,5	(a) (b) (b) (c) (c)	position, largeurs ou hauteur du pic, moitié des points si p _i et p _r non additionnés)
Q6	En considérant que l'aluminium se comporte comme un milieu semi- infini, par un calcul similaire à celui de la question 2 on trouve	
	$r' = \frac{Z_{air} - Z_{alu}}{Z_{air} + Z_{alu}}$	0.25
2,5	$t' = \frac{2Z_{air}}{Z_{air} + Z_{alu}}$	0.25
	A.N. $r' \approx -1$ $t' \approx 0$	A.N: 0.25+0,25
	On voit que t' est très faible, donc on peut considérer que l'onde est totalement réfléchie à l'interface aluminium-air.	0.5
	1,84 P_0 Aluminium Air $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1,5 (0.75 allure +0.5 ordonnées en L + 0.25 abscisses min/max) (mettre 0,5 si tracé avec r positif suite calcul)

Q7	pic 1 : reflexion interface gel-aluminium,	0 F /0 pour
	pic2 : reflexion sur la fissure dans la plaque	0,5 (0 pour toute erreur)
	pic 3 : réflexion sur l'interface aluminium-air.	,
	Pour trouver l'épaisseur L de la plaque d'aluminium on considère que le temps $t_3=1.6~\mu s$ correspondant au troisième pic est égal au temps mis par l'impulsion pour se propager de l'émetteur jusqu'à l'interface aluminium-air et pour revenir au capteur, donc	
	$t_3 = 2(\frac{e}{V_{gel}} + \frac{L}{V_{Al}})$	0.5
	d'où	
	$L = \frac{V_{Al}}{2}(t_3 - 2\frac{e}{V_{gel}})$	0.25
2	A.N. $L = 4.9 \ mm$	A.N. 0.25
	Même raisonnement pour déterminer la profondeur de la fissure l_{fis} , avec $t_2=0.5~\mu s$:	
	$t_2 = 2(\frac{e}{V_{gel}} + \frac{l_{fis}}{V_{Al}})$	
	$l_{fis} = \frac{V_{Al}}{2}(t_2 - 2\frac{e}{V_{gel}})$	0.25
	A.N. $l_{fis} = 1,4 mm$	A.N. 0.25
Q8	Pour observer le premier pic d'intensité $I_1=10\ W/cm^2$ l'onde a été réfléchie une fois à l'interface gel/aluminium. En termes d'intensité cela implique :	
	$I_1 = R_{gel-Al}I_0$	
	d'où	B: 0.25
Bonus : 1,5	$I_0 = \frac{I_1}{R_{gel-Al}} = \frac{I_1}{r^2} \label{eq:I0}$ A.N. $I_0 = 14.2 \ W/cm^2$	B : A.N. 0.25
	Pour observer le troisième pic d'intensité I_3 l'onde a été transmise 2 fois à l'interface gel-aluminium (1 fois à l'aller et 1 fois au retour) et	B: 0.25
	elle a été réfléchie 1 fois à l'interface aluminium-air. En termes d'intensité cela implique :	B: 0.25
	$I_3 = T_{qel-Al}^2 R_{Al-air} I_0 = (1 - r^2)^2 r'^2 I_0$	D. 0.23
	A.N. $I_3 = 1.23 \frac{W}{cm^2}$	B: 0.25
	La valeur théorique est supérieure à la valeur mesurée car il y a surement des pertes d'énergie dans le gel ou l'aluminium	B: 0,25

