

操作系统原理

20级考试复习版本,以本课件为准第 09 章 文件系统

教师: 苏曙光

华中科技大学软件学院

2021年10月-2021年12月

●内容

- ◆文件和文件系统的概念
- ◆ 文件的逻辑结构
- ◆文件的物理结构
- ◆ 文件存储空间管理
- ◆文件目录
- ◆ 文件和目录的操作
- ●重点
 - ◆ 文件逻辑结构
 - ◆ 文件物理结构
 - ◆文件分配表

9.1 文件和文件系统概念

- ●定义
- ●分类
- ●属性
- ●文件系统

文件的定义

- ●文件是系统中信息存放的一种组织形式
 - ◆文件是若干信息项的构成。
 - ■信息项可以是字节,可以是结构化数据。

- ◆用户通过读写指针来存取文件的信息项。
- ◆文件具有文件名。用户通过文件名存取文件。

- 分类标准1: 文件的用途
 - **◆**系统文件
 - ◆包括操作系统的可执行程序和数据文件。这种文件 不对用户开放,仅供系统使用。
 - ◆库文件
 - ◆系统为用户提供的各种标准函数库和实用程序等。 用户只能使用这些文件,而无权对其进行修改。
 - ◆用户文件
 - ◆用户创建的文件,如用户可执行程序,源程序,数 据文件等。这种文件的使用和修改权均属于用户。

- ●分类标准2: 文件的操作权限
 - ◆只读文件
 - 只允许进行读操作。
 - ◆读写文件
 - ■允许进行读写操作。
 - ◆不保护文件
 - ■不作任何操作限制。

- ●分类标准3: 文件的性质
 - ◆普通文件
 - ■指一般的用户文件和/或系统文件。
 - ◆目录文件
 - ■由目录项组成的文件。
 - ■目录项:文件名,文件属性,文件存放地址,...
 - ◆设备文件
 - ■把设备作为文件管理和使用

- ●按文件的存储时间
 - ◆永久文件
 - ◆临时文件

文件属性

- ●文件属性
 - ◆指定文件的类型、操作特性和存取保护等一组信息。
 - ◆文件的属性一般存放在文件的(目录/文件)中。
 - □MS-DOS系统中,文件属性占目录项的一个字节。
 - □00000001表示文件仅读,00000010表示隐含文件等。

文件属性

文件属性

- ●Linux文件属性
- ●ls -l命令
 - ◆类型和权限属性
 - ■文件类型:第0位
 - ■属主权限:第1-3位
 - ■属组权限: 第4-6位
 - ■其他用户权限:第7-9位

文件系统

12

9.2 文件的逻辑结构和存取方法

- 文件的结构
 - ◆逻辑结构
 - ■(用户的观点)
 - ■为用户提供逻辑结构清晰、使用方便的文件。
 - ■强调文件信息项的构成方式和用户的存取方式。
 - ◆物理结构
 - ■(系统的观点)
 - ■文件在存储设备(例:硬盘)上的存储结构
 - ■强调合理利用储存空间,缩短I/0存取时间。

文件的逻辑结构

- 流式文件
 - ◆ 信息项是字节, 文件长度就是字节的数量。
 - ◆ 优点
 - ■文件无需额外的说明信息或控制信息
 - ■节省存储空间
- 记录式文件
 - ◆ 信息项由记录组成,一个记录包含若干成员。
 - ■学生记录:姓名,学号,性别,成绩
 - ■学生花名册文件:包含若干个学生记录
 - ◆ 特点
 - ■文件中需保存记录长度和数量等说明信息
 - ■浪费存储空间
- 现代OS中文件是流式文件,由应用解释文件。

流式文件 记录文件

- ●文件的存取方法
 - ◆顺序存取
 - ◆随机存取

- ●顺序存取
 - ◆按文件信息单位排列的顺序依次存取。
 - □读写指针
 - □当打开文件时,文件的读写指针指向第1个信息单位(字节或记录),每存取1个信息单位后读写指针自动加1而指向下一个信息单位。

- ●随机存取
 - ◆概念
 - ■直接存取
 - ■每次存取操作时先确定存取位置。
 - ◆特点
 - ■对流式或定长记录文件比较容易确定存取位置。
 - ■对不定长的记录式文件比较麻烦
 - ■从首记录顺序查询,直到找到目的记录为止。
 - ■建立索引
 - 索引可作为文件一部分也可单独建索引文件。

文件读写示例(利用读写指针)

```
//打开文件
   FILE *pFile=fopen("MyTestFile.txt","rb");
   char *pBuf;
   //移动文件指针到文件末尾
   fseek (pFile, 0, SEEK END);
   //获取文件指针的偏移量
   int len=ftell(pFile);
   pBuf=new char[len];
   //将指针移动到文件头
   rewind(pFile);// = fseek(pFile,0,SEEK SET);
10
   //读文件的内容
11
   fread (pBuf, 1, len, pFile);
12
13
   fclose(pFile);
```


3 文件的物理结构

● 概念

- ◆文件的物理结构是指文件在存储设备上(例如硬盘) 的存储方式。
- ◆强调合理利用储存空间,缩短I/0存取时间。

● 类型

- ◆连续文件
- ◆串联文件
- ◆索引结构

连续文件

- ●概念
 - ◆文件按逻辑顺序存放在存储设备的连续物理块中。
 - ◆文件目录
 - ■记录文件长度(块数)和首个物理块号

 文件名
 文件长度
 首个存储块号

 TestFile
 4
 80

 存储块号
 80
 81
 82
 83

 逻辑块号
 0
 1
 2
 3

连续文件

- ●特点
 - ◆文件建立时给出文件最大长度并登记文件起始位置。
- ●优点
 - ◆简单
 - ◆ 支持顺序存取和随机存取
 - ◆顺序存取速度快: 所需磁盘寻道次数和寻道时间最少
- 缺点
 - ◆文件不易动态增长
 - ■预留空间: 浪费
 - ■重新分配和移动
 - ◆不利于文件插入和删除
 - ◆外部碎片问题

串联文件

- 文件信息存放在不连续的存储块中
 - ◆每个存储块有一个指针(next),指向文件 下一个逻辑块所在的存储块。
 - ◆ 文件目录
 - ■文件名+存储指针(指向第一个存储块)

文件目录

-	><11 H-131	•				
文件名	首个存储块号				-1.11.11	
TestFile	4	存储块4	存储块8	存储块3	存储块14	存储块13
		8	3	14	13	NULL
		逻辑块0	逻辑块1	逻辑块2	逻辑块3	逻辑块4

- ●特点
 - ◆串联文件适用于顺序存取。随机存取较为困难。
- 优点
 - ◆提高了磁盘空间利用率,不存在外部碎片问题
 - ◆有利于文件插入和删除
 - ◆有利于文件动态扩充
- 缺点
 - ◆ 存取速度慢,不适于随机存取
 - ◆可靠性问题:例如某个next链接指针出错
 - ◆next链接指针占用一定的空间
- ●串联文件的应用
 - ◆ FAT文件系统
 - File Allocation Table

索引文件

- ●概念
 - ◆文件存放在不连续的物理块中,系统建立索引 表记录文件的逻辑块和存储块的对应关系。

索引文件

- ●概念
 - ◆文件存放在不连续的物理块中,系统建立索引 表记录文件的逻辑块和存储块的对应关系。
 - ◆索引类型的文件 =索引表 + 数据区
 - ◆索引表类似页表
 - ◆索引表本身要占据额外的存储区域

●索引文件的操作

- ◆ 查文件索引,由逻辑块号查得物理块号
- ◆由此磁盘物理块号而获得所要求的信息

- 优点
 - ◆保持了链接结构的优点,又解决了其缺点:
 - ◆即能顺序存取,又能随机存取
 - ◆满足了文件动态增长、插入删除的要求
 - ◆能充分利用外存空间
- 缺点
 - ◆索引表本身带来了系统开销
 - ■如: 内外存空间,存取时间

5 文件存储空间管理

- ●概念
 - ◆ 记录当前磁盘的使用情况, 创建文件时分配存储空间, 删除文件时收回存储空间。
- ●记录磁盘空闲块的方法
 - ◆空闲文件目录
 - ◆空闲块链
 - ◆位示图

●空闲文件目录

- ◆一片连续空闲区当作一个特殊文件: 空闲文件。该文件由多个连续的空闲存储块组成。
- ◆ 所有的空闲文件代表存储设备的空闲空间。
- ◆空闲文件目录
 - ■记录所有空闲文件目录,每个表项对应一个空闲文件
 - ■表项: 文件号、第一个空闲块号、空闲块个数

序号	第1个空闲块号	空闲块个数	物理块号
1	2	4	2,3,4,5
2	18	9	18,19,20,21,22,23,24,25,26
3	59	5	59,60,61,62,63
:	:	:	:

●空闲块链

◆ 把存储设备上的所有空闲块链接在一起,当申请者需要空闲块时,分配程序从链头开始摘取所需要的空闲块,然后调整链首指针。反之,当回收空闲块时,把释放的空闲块逐个加在链尾上。

●位示图

◆从内存中划出若干个字节,每位对应1个存储块。

■该位为1:对应存储块空闲

■该位为0:对应存储块已分配

●位示图

◆从内存中划出若干个字节,每位对应1个存储块。

■该位为1:对应存储块空闲

■该位为0:对应存储块已分配

								1	存储块
1	1	0	0	1	0	0	1 -		(1K)
0	0	0	0	1	0	0	1		(IK)
0	1	0	0	0	0	1	0		存储块
1	0	1	0	0	0	1	1		(1K)
									存储块
									(1K)

6 文件目录管理

- ●文件目录
 - ◆文件名址录,记录文件名和存放地址的目录表
 - ◆为了对大量文件进行分门别类的管理,提高文件检索的效率,现代操作系统往往将文件的一些属性也记录在目录中。
- ●目录文件
 - ◆文件目录以文件形式存于外存,这个文件叫目 录文件。
- ●文件目录的功能
 - ◆将文件名转换为外存物理位置的功能

- 目录结构 不做考察要求
 - ◆不同的系统,文件目录的组织也不完全相同。
 - ■DOS系统(32字节)

- ■UNIX/Linux系统
 - ■索引节点
 - 文件目录项中的文件名和其他信息分开。后者单独组成一个定长数据结构:索引节点 i_node。

- ●索引结点不做考核要求
 - ◆磁盘索引结点
 - 存放在磁盘上的索引结点。每个文件有惟一的一个 磁盘索引结点。
 - ◆内存索引结点
 - 存放在内存的索引结点。当文件打开时,要将磁盘 索引结点拷贝到内存索引结点中。

- ●目录结构
 - ◆一级目录
 - ◆二级目录
 - ◆多级文件目录(树型目录)
- ●文件全名

●单级目录

◆单级目录是最简单的目录结构。在这种组织方式下, 全部文件都登记在同一目录中。

◆特点:简单、易于理解和实现

◆缺点: 查找速度慢、不允许重名、不便于文件共享

●两级目录

- ◆每个用户使用一个相对独立的目录,在所有用户的目录上层再建一层目录来管理各个用户目录。
- ◆二级目录结构把文件目录分成二级,第一级称为主目录,第二级称为子目录或次目录。
- ◆ 系统允许每个用户有一个子目录。也称为<mark>用户目录</mark>。
- ◆二级目录结构有效地解决文件重名的问题,不同用户的文件,使用相同名字也不会导致混乱。

●两级目录

●树型目录

- ◆多级目录结构
- ◆二级目录结构的扩充。
- ◆ 目录结构如同倒置的树, 主目录是树根, 称根目录
- ◆ 枝结点是子目录,树叶描述一个文件。

●树型目录

文件全名和路径

- 文件的全名
 - ◆包括从根目录开始到文件为止的通路上所有子目录路 径。
 - ■子目录名之间用正斜线"/"或反斜线"\"隔开
 - ■子目录名组成的部分又称为路径名。
- 每个文件都有惟一的路径名。
- 两种路径名形式
 - ◆绝对路径名:从根目录直到指定的文件
 - ◆相对路径名:从当前目录直到指定的文件

●LINUX文件目录

Linux系统的树形文件目录结构

7 文件的保护

- ●对文件的访问系统首先要检查访问权限
 - ◆仅允许执行(E)。
 - ◆仅允许读(R)。
 - ◆仅允许写(W)
 - ◆仅允许在文件尾写(A)
 - ◆仅允许对文件进行修改(U)
 - ◆允许改变文件的存取枚限(C)
 - ◆允许取消文件(D)
 - □权限可进行适当的组合。