CONCEPTUAL DEFINITION of a 50-100 kWe NEP SYSTEM for PLANETARY SCIENCE MISSIONS

by

Alan Friedlander Science Applications International Corp. Schaumburg, Illinois

Nuclear Propulsion Technical Interchange Meeting NASA-LeRC Plum Brook Station

October 20-23, 1992

STUDY OBJECTIVES and SCOPE

· OVERALL TASK OBJECTIVE

SAIC's Task Order 23, under Contract No. NAS3-25809 for NASA LeRC (NPO), has the Phase I objective of assessing the applicability of a common NEP flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific psyloads and delivery requirements.

- CANDIDATE MISSIONS (post-2005 Launch Dates)

 - Comet Nucleus Sample Return Multiple Mainbelt Asteroid Rendezvous Jupiter Grand Tour (Gaillean satellites and magnetosphere)
 - Uranus Orbiter/Probe (atmospheric entry and landers)
 Neptune Orbiter/Probe (atmospheric entry and landers)
 Pluto-Charon Orbiter/Lander

· CONCEPTUAL DESIGN TRADES

- Moderate and Major Levels of Exploration Capability (i.e. payloads)
- Flight Time vs Power Level and Specific Impulse of NEP Operation
- --- Launch Vehicle Capability (injection to Earth escape no spiral escape) In Mass Performance and Packaging: Titan IV/Centaur vs HLV/Centaur
- NEP Flight System Configuration (e.g. subsystem functions and location)

STUDY ORGANIZATION and SCHEDULE

· SUBTASK ACTIVITIES

- (1) Mission Model Definition
- (2) System Model Definition
- (3) Analysis of Mission Performance and System Commonality
- (4) Assessment of System Capability and Recommendations
- (5) Task Reporting

· LEVEL-OF-EFFORT

-- 632 Direct Labor Hours

· SCHEDULE

- --- 4 Calendar Months (October 1992 January 1993)
- Subtask 1 Completed on October 16
 Subtask 2 in Progress, Subtask 3 Start on October 26)
 Final Report Briefing end of January (annotated vu-graphs)

NEP MISSION MODEL - SCIENCE PAYLOAD DEPINITION

MISSION: PLUTO-CHARON ORBITER/LANDER

SCIENCE INSTRUMENTS	MASS	(kg)
EXPLORATION CLASS:	MODERATE	MAJOR
· Attached Mission Module		
Imaging Subsystem	57	57
UV Imaging Spectrometer	13	13
Vieual-IRI Mapping Spectrometer	33	33
Composite IR Spectrometer	30	30
Coemic Dust Analyzer		-
Magnetometer	7	7
Radio Science Subsystems	11	11
Cassini Plasma Spectromater	14	14
Radio Pleams Wave Spectrometer	••	21
Ion & Neutral Mass Spectrometer	**	9
Microwave/Thermal IR Radiometer	••	15
Total	185	218
- Pluto and Charon Landers	Pluto	Pluto and
Tenucus Atmosphere Science (Separated)	Only	Chana
Nautral Mass Spectrometer	4.0	4.0
ion Mass Spectrometer	3.0	3.0
Retarding Polential Analyzer	3.0	3.0
Flection Temperature Probe	2.0	2.0
Surface Bempler		13.0
Multi-Spectral Imager	8.6	4.0
Magnalamater	3.3	0.4
Alpha-Proton/X-Ray Spectrometer	2.0	20
Scenning Electron Microscope	••	12.0
X-Ray Diffractometer	••	6.0
Petrographic Microscope	••	6.0
Selamometer	2.2	2.2
Temperature Sensors	0.1	0.1
Total	21.7	56.7

808

NEP: System Concepts

Table 7. Pluto Orbiter/P(optional lander) Performance Summary
Requirements: M_{PL}≥1410 kg

I/f	FTI	VIII.	70	ISP	- 10	P.	T	T,	N	N	New	Mo	M.	М	Mm	и	M _m	VAC
(v)	(y1)	(km/s)	(kw)	(esc)	P _R (kw)	(kw)	T _L (yr)	(yr)		•		œĎ	40	(kg)	(44)	(14)	0(2)	((depti)
3.5	13.5	2.4	58	8095	13	12	1.32	7.8	5	40	2	8315	3134	2844	1162	4006	1175	37.6
4.0	14.0	2.4	57	823H	14	11	1.37	7.9	5	40	2	8303	3(10)9	2829	1143	3972	1322	36.4
14.5	14.5	2.4	56	8358	14	11	1.41	8.0	5	40	2	8301	29115	2015	1127	3942	1454	35.3
15.0	15.0	2.4	56	8461	14	14	1.15	8.0	4	36	2	8314	2822	2804	1079	3883	1609	34.4
15.5	15.5	2.3	55	8556	14	14	1.18	8.1	4	36	2	8351	2763	2800	1070	3870	1718	33.7
0.01	16.0	1.0	511	9390	16	15	1.22	10.3	4	44	2	8967	3075	2969	1192	4181	1711	36.7
16.5	16.5	1.0	57	9617	16	14	1.28	10.6	4	44	2	8952	2964	2980	1172	4152	1836	37.9
17 D	170	1.1	56	9812	16	14	1.33	10.9	4	44	2	8931	2856	2968	1152	4120	1955	37.1
175	17.5	12	55	99 (9	17	14	1.18	11.1	4	44	2	R909	2755	2953	1134	4087	2067	36 2
0.81	38.0	1.2	54	10121	17	13	1.43	11.2	4	40	2	RR# 7.	2662	2917	1083	4020	2205	35 3

- Orbitor is a NEP enabled mission mode.
 Minimum flight times I 4.5 years, total mission time ~16.5 years.
 Peasibility indicated has margin may not be sufficient.
 Nominal IP o 55 kW, ISP~ BMD sec.
 May be a visible and attractive option if mass growth in all components can be controlled.

NEP-TRANSPORTED MISSION ELEMENT MASSES (kg)

MISSION [CN	SR I	ММ	BAR	J	GT	ÜÇ			O/P		O/L
	MOD.	MAL	MOD.	MAJ.	MOD.	MAL	MOD.	MAL	MOD.	MAL	MOD.	MAJ.
Attached Mission												
Module Subsystems												1
Telecommunications	52	52										
Antennas	86	96			l						l	
Command & Dela	53	53			1				_		۱ ۵	ME
Attitude Control	92	92	S/	ME	S	AME	SA	ME	S	AME	8/	ME
Power Cabling & Control	160	160	l				1					
Thermal Control	50	50	l		1		1		ŀ			
Mechanical Devices	56	58	ł		1		ł		l			
Structure	275	275	1		1		Į.		ı			
Science Payload	121	180	116	136		200		238	174	238		218
Contingency (20%)	189	201	188	193	197	205	200	213	200	213	196	209
Subjotal	1136	1207	1130	1157	1183	123	1200	1277	1200	1277	1189	1253
Deployed Elements	1		}		1							
(Propulsion and			l		l		l		l			
Contingency Inci'd)			Ì						1		l	
Separated Orbiter	١	-			[97				-		
Almospheric Entry Probe		-	.ļ			-	234	337	234	337	'l ···	•
Tenuous Atmosphere Probe							- ··		62	-		-
Landers	233	466		45-	4	91	7			650	564	1114
Penetrators			272	27	2 304		-1	306	ş ·-	•	··	
Sample Return Capsule	120	120		-						-		-
Support Structure (5%)	18	25	14	3	B 15	9	5 12	33	15	5	0 28	56
Subjetel	971	816	286	78	219	198	1 246	67	311	104	3 592	117
Total Element Mess	1507	1822	1416	1915	1502	322	1446	1954	1511	2320	1781	2423

809

NEP: System Concepts

Table 11. Summary of NEP System Design Parameters
(From You and Souce 1998)

	[17874 184 and Souge 1778]									
Mission	UO/P	NEO/P	PLO/P	PLO/P	JCT					
LV	HLV	IR.V	Titen (V	HLV	Titen IV					
Ff (yr)	10.5 - 14.	12 - 15	14.5	11.5 -14	5-7					
P0 (kW)	98 - 92	101 - 100	56	103 - 99	58 - 48					
ISP (sec.)	8400 - 1 0000	7800 - 9500	8400	7200 - 8100	8700 - 10000					
N	70 - 78	72 - 77	40	72 - 64	40 - 36					
Tp (yr)	8.3 - 12.3	7.9 - 1 0.7	8.0	7.0 - 7.7	8.2 - 11.5					
Mission Time (yr)	14 - 19	14.5- 18	16.5	13 - 16	12 - 15					

Mission	JOT	MMBAR	MMBAR	CNSR
LV	HLV	Titan IV	HLV	HLV
FT (yr)	5 - 6.5	13.5	11	6.7-7.6
PO(kW)	97 - 97	4)	93	92-96
ISP sec.)	8500 - 9800	5300	6000	~ 5000
N	63 - 60	25	70	50-60
Тр (ут)	7.9 - 10.	5	6.3	4.0
Mission Time (yr)	11 - 14	13.5	11	

Pluto Orbiter/Lander Mission, Mpl - Po - lap Trades
TF = 12 years, C3 = 3.2, HLV/Centaur (No = 13,700 kg)

810

