Noções topológicas em \mathbb{R}^n

Maria Joana Torres

2021/22

Espaço vetorial \mathbb{R}^n

Para cada $n \in \mathbb{N}$, define-se \mathbb{R}^n como o produto cartesiano de n conjuntos iguais a \mathbb{R} ,

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ vezes}}$$

Os seus elementos são, portanto, as sequências finitas de n termos reais:

$$\mathbb{R}^n = \{x = (x_1, x_2, \dots, x_n) \colon x_1, x_2, \dots, x_n \in \mathbb{R}\}\$$

Dados
$$x,y\in\mathbb{R}^n$$
, com $x=(x_1,x_2,\ldots,x_n)$ e $y=(y_1,y_2,\ldots,y_n)$, tem-se
$$x=y\quad\text{se e s\'o se}\quad x_1=y_1,\,x_2=y_2,\,\ldots,\,x_n=y_n$$

x

Espaço vetorial \mathbb{R}^n

Munido das operações usuais de adição e multiplicação escalar, definidas por

$$+: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$$

$$(x,y) \longmapsto x+y = (x_{1}+y_{1}, x_{2}+y_{2}, \dots, x_{n}+y_{n})$$

e

$$\begin{array}{ccc}
\cdot : & \mathbb{R} \times \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\
& (\alpha, x) & \longmapsto & \alpha \cdot x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)
\end{array}$$

 \mathbb{R}^n constitui um **espaço vetorial real de dimensão** n.

- os elementos x de \mathbb{R}^n designam-se por **vetores**
- os termos reais x_1, x_2, \ldots, x_n designam-se por **coordenadas** de x
- a base canónica de \mathbb{R}^n é o conjunto $\mathcal{B} = \{e_1, e_2, \ldots, e_n\}$ onde

$$e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, 0, \dots, 1)$$

- ullet o vetor $0=(0,0,\dots,0)$ é o elemento neutro da adição e é designado por **zero**
- dado $x=(x_1,x_2,\ldots,x_n)$, o seu **simétrico** é o vetor $-x=(-x_1,-x_2,\ldots,-x_n)$

Produto interno, norma e distância

- posição relativa de vetores
- **comprimento** de um vetor
- **proximidade** entre elementos de \mathbb{R}^n

Produto interno

Definição:

Um **produto interno** em \mathbb{R}^n é uma aplicação $\langle\cdot,\cdot\rangle\colon\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ que a cada par de vetores $x,y\in\mathbb{R}^n$ faz corresponder um número real $\langle x,y\rangle$, que verifica as seguintes propriedades (axiomas de produto interno):

PI 1)
$$\langle x, x \rangle \geq 0$$
, $\forall x \in \mathbb{R}^n$ e $\langle x, x \rangle = 0$ sse $x = 0$

PI 2)
$$\langle x,y\rangle=\langle y,x\rangle$$
, $\forall x,y\in\mathbb{R}^n$

PI 3)
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$
, $\forall x, y \in \mathbb{R}^n$, $\forall \alpha \in \mathbb{R}$

PI 4)
$$\langle x+z,y\rangle=\langle x,y\rangle+\langle z,y\rangle$$
, $\forall x,y,z\in\mathbb{R}^n$

O espaço vetorial \mathbb{R}^n munido de um produto interno $\langle\cdot,\cdot\rangle$ diz-se um **espaço euclidiano** e representa-se por $(\mathbb{R}^n,\langle\cdot,\cdot\rangle)$.

Exemplo:

Produto interno usual ou canónico, definido por

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n, \quad \forall x, y \in \mathbb{R}^n$$

Produto interno

Definição:

Dois vetores $x,y\in\mathbb{R}^n$ dizem-se **ortogonais** relativamente a um produto interno $\langle\cdot,\cdot\rangle$ quando $\langle x,y\rangle=0$.

Teorema [Desigualdade de Cauchy-Schwarz]:

Consideremos o espaço \mathbb{R}^n munido de um produto interno $\langle\cdot,\cdot\rangle$. Para quaisquer $x,y\in\mathbb{R}^n$, tem-se

$$|\langle x,y\rangle| \leq \sqrt{\langle x,x\rangle} \sqrt{\langle y,y\rangle}\,,$$

valendo a igualdade se e só se um dos vetores x,y é um múltiplo escalar do outro.

Definição:

Uma **norma** em \mathbb{R}^n é uma aplicação $\|\cdot\|\colon \mathbb{R}^n \to \mathbb{R}$ que a cada $x \in \mathbb{R}^n$ faz corresponder um número real $\|x\|$, que verifica as seguintes propriedades (axiomas da norma):

- **N 1)** $||x|| \ge 0$, $\forall x \in \mathbb{R}^n$ e ||x|| = 0 sse x = 0
- **N 2)** $\|\alpha x\| = |\alpha| \|x\|, \quad \forall x \in \mathbb{R}^n, \quad \forall \alpha \in \mathbb{R}$
- N 3) $\|x+y\| \leq \|x\| + \|y\|$, $\forall x,y \in \mathbb{R}^n$ (designaldade triangular)

O espaço vetorial \mathbb{R}^n munido de uma norma $\|\cdot\|$ diz-se um **espaço normado** e representa-se por $(\mathbb{R}^n,\|\cdot\|)$.

Exemplo:

Norma euclidiana ou norma dois, definida por

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Exemplo:

Norma do máximo ou norma infinito, definida por

$$||x||_{\infty} = \max\{ |x_1|, |x_2|, \dots, |x_n| \}$$

Exemplo:

Norma da soma ou norma um, definida por

$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

Observações:

1. Todo o produto interno $\langle \cdot, \cdot \rangle$ de \mathbb{R}^n induz uma norma $\| \cdot \|$ em \mathbb{R}^n , chamada **norma induzida**, definida para cada $x \in \mathbb{R}^n$ por

$$||x|| = \sqrt{\langle x, x \rangle}$$
.

Neste caso, a desigualdade de Cauchy-Shwartz pode ser escrita como

$$|\langle x, y \rangle| \le ||x|| ||y||, \ \forall x, y \in \mathbb{R}^n$$

(valendo a igualdade se e só se um dos vetores x,y é um múltiplo escalar do outro) ${f e}$ dados $x,y\in {\Bbb R}^nackslash\{0\},$

$$\frac{|\langle x,y\rangle|}{\|x\|\|y\|} \leq 1 \quad \text{pelo que} \quad -1 \leq \frac{\langle x,y\rangle}{\|x\|\|y\|} \leq 1 \, .$$

Existe então um único número real $\theta \in [0,\pi]$ tal que

$$\cos \theta = \frac{\langle x,y \rangle}{\|x\| \|y\|}$$
 ou seja, tal que $\langle x,y \rangle = \|x\| \|y\| \cos \theta$

O número real θ designa-se por **ângulo** entre os vetores não nulos x e y.

Observações:

2. Dadas duas normas $\|\cdot\|_*$ e $\|\cdot\|_\#$ quaisquer em \mathbb{R}^n , existem dois números reais positivos $\alpha,\beta\in\mathbb{R}^+$, tais que

$$\alpha \|x\|_* \le \|x\|_\# \le \beta \|x\|_*, \ \forall x \in \mathbb{R}^n.$$

Isto significa que em \mathbb{R}^n quaisquer duas normas são **equivalentes**.

Definição:

Uma distância em \mathbb{R}^n é uma aplicação $d\colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ que a cada par de vetores $x,y\in \mathbb{R}^n$ faz corresponder um número real d(x,y), que verifica as seguintes propriedades (axiomas da distância):

- **D 1)** $d(x,y) \ge 0$, $\forall x,y \in \mathbb{R}^n$ e d(x,y) = 0 sse x = y
- **D 2)** $d(x,y) = d(y,x), \quad \forall x,y \in \mathbb{R}^n$
- **D 3)** $d(x,y) \leq d(x,z) + d(z,y)$, $\forall x,y,z \in \mathbb{R}^n$ (designaldade triangular)

O espaço vetorial \mathbb{R}^n munido de uma distância d diz-se um **espaço métrico** e representa-se por $(\mathbb{R}^n,d).$

Exemplo:

Distância euclidiana definida por

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Exemplo:

Distância discreta definida por

$$d_{0,1}(x,y) = \left\{ \begin{array}{ll} 0 & \text{se} & x = y \\ \\ 1 & \text{se} & x \neq y \end{array} \right.$$

Observação:

Toda a norma $\|\cdot\|$ de \mathbb{R}^n induz uma distância d em \mathbb{R}^n , definida por

$$d(x,y) = ||x - y||, \ \forall x, y \in \mathbb{R}^n.$$

Consequentemente, todo o produto interno $\langle\cdot,\cdot\rangle$ de \mathbb{R}^n dá origem a uma distância d em \mathbb{R}^n , definida por

$$d(x,y) = \sqrt{\langle x - y, x - y \rangle}, \ \forall x, y \in \mathbb{R}^n.$$

Distâncias que resultam de uma norma

Exemplos:

Distância Euclideana

$$d_2(x,y) = ||x-y||_2 = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Exemplo:

Distância do máximo

$$d_{\infty}(x,y) = \|x - y\|_{\infty} = \max\{ |x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n| \}$$

Exemplo:

Distância da soma

$$d_1(x,y) = ||x-y||_1 = |x_1-y_1| + |x_2-y_2| + \dots + |x_n-y_n|$$

Bolas e conjuntos limitados

 \mathbb{R}^n munido de uma norma $\|\cdot\|$; d a correspondente distância induzida.

Definição:

Seja $a \in \mathbb{R}^n$ e $r \in \mathbb{R}^+$. Chama-se **bola aberta** de centro a e raio r ao conjunto

$$B(a,r) = \{x \in \mathbb{R}^n : ||x - a|| < r\} = \{x \in \mathbb{R}^n : d(x,a) < r\}$$

e **bola fechada** de centro a e raio r ao conjunto

$$\overline{B}(a,r) = \{x \in \mathbb{R}^n : ||x - a|| \le r\} = \{x \in \mathbb{R}^n : d(x,a) \le r\}$$

Observação:

- B(a,r) generaliza]a-r,a+r[
- $\overline{B}(a,r)$ generaliza [a-r,a+r]

Bolas e conjuntos limitados

Bola aberta em \mathbb{R}^2 segundo as normas $\|\cdot\|_2$, $\|\cdot\|_\infty$ e $\|\cdot\|_1$, respectivamente.

Bolas e conjuntos limitados

Definição:

Um conjunto $X\subset\mathbb{R}^n$ diz-se **limitado** quando X está contido em alguma bola fechada, isto é, quando

$$\exists a \in \mathbb{R}^n, \exists r \in \mathbb{R}^+ \colon X \subset \overline{B}(a,r).$$

Uma vez que é sempre possível escolher $a=0\,,\,X$ será limitado quando

$$\exists r \in \mathbb{R}^+ \colon X \subset \overline{B}(0,r)$$

ou ainda, quando

$$\exists r \in \mathbb{R}^+ \colon \forall x \in X, \, ||x|| \le r \,.$$

Observação:

É imediato que X é limitado se e só se X está contido em alguma bola aberta B(a,r).

Conjunto aberto

Definição:

Dado um conjunto $X\subset \mathbb{R}^n$, um ponto $x\in X$ diz-se **ponto interior** de X se

$$\exists\, r>0\colon\thinspace B(x,r)\subset X\,.$$

O conjunto dos pontos interiores a X designa-se por **interior de** X e representa-se por $\operatorname{int} X$ ou \mathring{X} .

Um conjunto $X \subset \mathbb{R}$ diz-se **aberto** quando int X = X.

Um conjunto $X\subset\mathbb{R}$ diz-se uma **vizinhança** de x quando $x\in\operatorname{int} X.$

Observação:

X é uma vizinhança de x se e só se X contém um aberto que contém x.

Conjunto fechado

Definição:

Dado um conjunto $X\subset\mathbb{R}$, um ponto $x\in\mathbb{R}^n$ diz-se **ponto aderente a** X se

$$\forall r > 0, \ B(x,r) \cap X \neq \emptyset.$$

O conjunto dos pontos aderentes a X designa-se por aderência de X ou por fecho de X e representa-se por $\operatorname{ad} X$ ou \overline{X} .

Um conjunto $X\subset \mathbb{R}$ diz-se **fechado** quando $\overline{X}=X.$

Conjunto aberto / conjunto fechado

Teorema:

Um conjunto $X\subset\mathbb{R}^n$ é fechado se e só se o seu complementar $\mathbb{R}^n\backslash X$ é aberto.

Observações:

- 1. Há conjuntos que não são abertos nem fechados. Por exemplo, $]0,1] \times [0,2]$
- 2. Há conjuntos que são simultaneamente abertos e fechados. Os únicos exemplos são \emptyset e \mathbb{R}^n .

Pontos de acumulação e pontos isolados

Definição:

Dado um conjunto $X\subset\mathbb{R}$, um ponto $x\in\mathbb{R}^n$ diz-se ponto de acumulação de X se

$$\forall r > 0, (B(x,r) \setminus \{x\}) \cap X \neq \emptyset.$$

O conjunto dos pontos de acumulação de X designa-se por **derivado** de X e representa-se por $X^{\prime}.$

Um ponto $x \in X$ é **ponto isolado de** X se pertencer a X mas não for ponto de acumulação de X, isto é,

$$\exists\, r>0\colon\ B(x,r)\cap X=\{x\}.$$

Definição:

Dado um conjunto $X\subseteq\mathbb{R}$, um ponto $x\in\mathbb{R}^n$ diz-se **ponto exterior a** X quando $x\in \operatorname{int}(\mathbb{R}^n\backslash X)$, ou seja, quando

$$\exists r > 0, \quad B(x,r) \subset \mathbb{R}^n \backslash X.$$

O conjunto dos pontos exteriores a X designa-se por **exterior** de X e representa-se por ext X.

Definição:

Dado um conjunto $X \subset \mathbb{R}$, um ponto $x \in \mathbb{R}^n$ diz-se **ponto de fronteira de** X se for ponto aderente a X e a $\mathbb{R}^n \backslash X$, isto é, quando

$$\forall r > 0, \quad (B(x,r) \cap X \neq \emptyset) \quad \land \quad (B(x,r) \cap \mathbb{R}^n \backslash X \neq \emptyset) .$$

O conjunto dos pontos de fronteira de X designa-se por **fronteira** de X e representa-se por $\operatorname{fr} X$ ou ∂X .

Conjunto compacto

Em \mathbb{R}^n , dizemos que um conjunto $K\subset\mathbb{R}^n$ é compacto quando K é limitado e fechado.

Exemplos:

- 1. \mathbb{R}^n não é compacto porque não é limitado. \emptyset é compacto.
- $2. \ \ X=]0,1]\times[0,1] \ \ {\rm e} \ \ Y=[0,+\infty[\times\{7\} \ {\rm n\~{a}o}\ {\rm s\~{a}o}\ {\rm compactos}.$ $(X\ {\rm \'e}\ {\rm limitado}\ {\rm mas}\ {\rm n\~{a}o}\ {\rm \'e}\ {\rm fechado}\ {\rm mas}\ {\rm n\~{a}o}\ {\rm \'e}\ {\rm limitado}.)$
- 3. B(a,r) não é compacto mas $\overline{B}(a,r)$ é compacto.

Definição:

Sejam A e B dois subconjuntos não vazios de \mathbb{R}^n . Diz-se que A e B são conjuntos **separados** quando

$$\overline{A} \cap B = \emptyset \quad \land \quad A \cap \overline{B} = \emptyset.$$

Definição:

Um conjunto não vazio $X\subset\mathbb{R}^n$ diz-se **desconexo** quando se pode decompor na reunião de dois conjuntos separados, isto é, quando

$$\exists A, B \subset \mathbb{R}^n, \ A \in B \text{ separados}, \ X = A \cup B.$$

Teorema:

Os únicos subconjuntos conexos de ${\mathbb R}$ são os intervalos.

Propriedades:

- 1. Sejam $X\subset \mathbb{R}^n, Y\subset \mathbb{R}^m.$ Então $X\times Y$ é conexo se e só se X e Y são conexos.
- 2. Sejam $A,B\subset\mathbb{R}^n$ tais que $A\subset B\subset\overline{A}$. Se A é conexo então B é conexo.
- 3. Se $A \subset \mathbb{R}^n$ é conexo então \overline{A} é conexo.

Definição:

Sejam $a,b\in\mathbb{R}^n.$ Definimos o segmento de recta (fechado) com extremos a e b por

$$[a,b] = \{x \in \mathbb{R}^n : x = a + \lambda(b-a), \ \lambda \in [0,1]\}$$

e o segmento de recta aberto com extremos a e b por

$$]a, b[= \{x \in \mathbb{R}^n : x = a + \lambda(b-a), \ \lambda \in]0, 1[\}]$$

Designa-se por linha poligonal unindo os pontos a e b toda a sequência de segmentos de reta adjacentes entre os pontos a e b,

$$[a, c_1], [c_1, c_2], \ldots, [c_{n-1}, c_n], [c_n, c].$$

Propriedades:

- 1. Seja $X\subset\mathbb{R}^n$. Se entre quaisquer dois pontos de X existir uma linha poligonal que os une, totalmente contida em X, então X é conexo.
- 2. Seja $X\subset\mathbb{R}^n$ aberto. Então X é conexo se e só se entre quaisquer dois pontos de X existir uma linha poligonal que os une, totalmente contida em X.

Exemplos:

- $1. \ B(0,1) \cup]2,3[\times]0,1[\ {\rm n\~ao} \ \acute{\rm e} \ {\rm conexo}.$
- $\mathbf{2.} \ \]0,2[\times]0,1[\ \mathsf{\acute{e}}\ \mathsf{conexo}.$