Concepto de Módulo -Intervalos en R

Primeras ideas

- ✓ El módulo de un número real se puede interpretar como la distancia a cero.
- ✓ |3| = 3 la distancia a cero es 3. Por lo tanto, el módulo es siempre mayor o igual que cero
- \checkmark Existe otro valor cuya distancia a cero es 3, en este caso : |-3| = 3

Definiciones formales:

- $| \bot$ Si $|x| \ge 0$ para todo número real
- |x| = |-x| para todo número real
- |x + y| = |x| + |y|, si x e y son números reales. Esta proposición es Falsa. Contraejemplo si x = 3 e y = -8 resulta |3 + (-8)| = |3| + |-8| y como vemos esto es falso pues |3 + (-8)| = |-5| = 5 en cambio |3| + |-8| = 3 + 8 = 11
- $|x,y| = |x| \cdot |y|$ si x e y son números reales. Esta proposición es verdadera para todo par de números reales

Concepto de intervalo

Consideramos el concepto de intervalo como un subconjunto de números reales y en ese sentido definimos:

Dados los números reales a y b, con la condición de a < b

- (a,b) es el subconjunto de números reales comprendidos entre a y b. $(a,b) = \{x, x \in R \land a < x < b\}$ Intervalo abierto en los extremos.
- + [a, b] es el subconjunto de números reales comprendidos entre a y b. [a, b] $= \{x, x \in R \land a \le x \le b\}$ Intervalo cerrado en los extremos.
- $\{a,b\}$ es el subconjunto de números reales comprendidos entre a y b. $\{a,b\}$ = $\{x,x\in R \land a < x \le b\}$ Intervalo semiabierto o semicerrado en uno de los extremos. Análogamente para [a,b]

Consideramos también los intervalos infinitos:

```
Si (a, \infty) = \{x, x \in R, a < x\} Análogamente para (-\infty, b) = \{x, x \in R, x < b\}
O bien cerrado en el extremo:
[a, +\infty) = \{x, x \in R, a \le x\} Análogamente para (-\infty, b] = \{x, x \in R, x \le b\}
```

Observación: El símbolo ∞ no representa un valor sino la expresión de que los valores del conjunto tienden a infinito.

Propiedades del Módulo, en relaciones de desigualdad, habilita el intervalo como subconjunto que define los valores que lo verifican

♣ Si a > 0, $|x| \le a \Leftrightarrow -a \le x \le a$ Esta expresión indica la existencia de un intervalo $x \in [-a, a]$

- ♣ Si a > 0, $|x| < a \Leftrightarrow -a < x < a$ Esta expresión indica la existencia de un intervalo $x \in (-a, a)$
- + Si a > 0, $|x| \ge a \Leftrightarrow x \le -a \lor x \ge a$ análogamente $x \in (-\infty, a] \cup [a, +\infty)$
- + Si a > 0, $|x| > a \Leftrightarrow x < -a \lor x > a$ análogamente $x \in (-\infty, a) \cup (a, +\infty)$

En esta tabla puedes ver la escritura como intervalo real delos siguientes conjuntos, completa las celdas restantes

Conjunto expresado por su	Desarrollo de la	Construcción del
propiedad	propiedad o condición	intervalo
$\{x \in R, x < 1\}$	-1 < x < 1	(-1+0,1+0)
		=(-1,1)
$\{x \in R, 0 < x - 2 < 1\}$	$-1 < x - 2 < 1 \land$	(-1+2,1+2)=(1,3)
	$x \neq 2$	Con $x \neq x_0$ en este caso
	Resulta	$x \neq 2$
	-1+2 < x < 1+2	Resulta $(1,3) - \{2\}$
	$\wedge x \neq 2$	Se puede escribir como
		$(1,2) \cup (2,3)$
${x \in R, x+3 > 1}$		
	5	
	$\frac{3}{2} < x < 3$	
		$(-3,1) \cup (1,6)$