Matlab-Übungen zu Deterministische Signale und Systeme 2. Übung

1. Aufgabe

In Matlab ist es möglich auf einzelne Elemente einer Matrix A zuzugreifen. Dies kann man dadurch erreichen, indem man den Ausdruck A(Zeile, Spalte) verwendet. Man übergibt dabei formal Vektoren, die die zu selektierenden Zeilen bzw. Spalten als Elemente enthalten. Ist z. B. die Matrix

$$m{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{pmatrix}$$

gegeben, so wählt A([1],[1]) oder auch die Schreibweise A(1,1) das Element links oben, also a_{11} , aus. $A([1\ 3],[2\ 3\ 4])$ gibt die Matrix

$$\begin{pmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \end{pmatrix}$$

zurück.

Es gibt weitere Angaben, die in Klammern hinter einer Variablen stehen dürfen und eine Sonderbedeutung haben. Das sind im Einzelnen

"end" welches die letzte Zeile bzw. Spalte selektiert und

":" der alle Zeilen bzw. alle Spalten selektiert. Die Angabe A(:,:) gibt z. B. die ganze Matrix A aus.

Vektoren können dabei auch in der Form 1:10 bzw. 2:2:8 übergeben werden. A(1:2:5,3:end) gibt z. B. die Matrix

$$\begin{pmatrix} a_{13} & a_{14} & a_{15} \\ a_{33} & a_{34} & a_{35} \\ a_{53} & a_{54} & a_{55} \end{pmatrix}$$

aus.

Der ":" Operator kann in der Notation (:) verwendet werden um alle Elemente eines Arrays als Komponente eines einzelnen Spaltenvektors zu betachten. Dabei werden nacheinander die

einzelnen Indizes »durchgezählt«, d.h. bei einer Matrix werden die Spalten aneinander gehängt. A(:) gibt bspw. den Vektor

$$(a_{11} a_{21} a_{31} a_{41} a_{51} a_{12} a_{22} a_{32} a_{42} a_{52} a_{13} a_{23} \cdots a_{45} a_{55})^T$$

aus.

Das Maximum über alle Einträge der Matrix A erhält man z.B. mit max(A(:)).

Die Verwendung von (:) oder (:).' kann über dies dazu verwendet werden um einen Vektor unabhängig von seiner ursprünglichen Ausrichtung als Spalten- oder Zeilenvektor anzusprechen.

Die genannten Schreibweisen können nicht nur zum Selektieren von Elementen genutzt werden, Elemente oder Bereiche von Vektoren und Matrizen können auf diese Weise auch gesetzt werden. Die Zuweisung A(3,3) = 7 setzt das Element A_{33} auf den Wert 7.

- 1.1. Ein »Magisches Quadrat« ist eine quadratische Matrix $(N \times N)$, deren Zeilensummen, Spaltensummen und Diagonalsummen gleich sind. Dabei dürfen die Zahlen von 1 bis N^2 aber nur jeweils genau einmal vorkommen. In Matlab kann man ein Magisches Quadrat der Größe $N \times N$ mit magic(N) erzeugen. Speichern Sie ein Magisches Quadrat der Größe 8×8 in der Variablen A.
- 1.2. Erzeugen Sie einen Zeilenvektor, der hintereinander die Zeilenvektoren der Matrix M enthält.
- 1.3. Setzen Sie alle Elemente von \boldsymbol{A} mit einem nur aus geraden oder nur aus ungeraden Zahlen bestehenden Index auf den Wert 0.
- 1.4. Ersetzen Sie die obere linke »Ecke« von \boldsymbol{A} durch ein Magisches Quadrat der Größe 4×4 . Verfahren Sie mit den verbleibenden drei »Ecken« der Matrix genauso. Ist die 4×4 -Matrix, die sich aus den mittleren 16 Elementen von \boldsymbol{A} zusammensetzt, auch wieder ein Magisches Quadrat? Sie können zum Überprüfen die Funktion $\operatorname{sum}(\boldsymbol{A})$, die Ihnen die Spaltensummen von \boldsymbol{A} ausgibt und die Funktion $\operatorname{diag}(\boldsymbol{A})$, die Ihnen die Diagonalelemente von \boldsymbol{A} ausgibt, verwenden.

2. Aufgabe

Funktionen stehen in Matlab in der Regel in einer eigenen Datei. Dabei muss die Datei den gleichen Namen wie die Funktion tragen.

Ein typisches Grundgerüst einer Funktion zeigt der folgende Code:

```
function [a,b] = tollefunktion (c,d)
% TOLLEFUNKTION Meine Funktion macht etwas ganz tolles ! Dabei
% bekommt sie die folgenden Optionen uebergeben :
%
% c: erster Parameter
% d: zweiter Parameter
%
% Die folgenden Werte werden zurueckgegeben :
%
```



```
% a: erster Rueckgabewert
% b: zweiter Rueckgabewert
%
a = c / d; %Quellcode der Funktion!
b = c * d:
```

end

Eine Besonderheit von Matlab ist die Fähigkeit, daß Funktionen mehrere Werte auf einmal zurückgeben können.

Dem Kommentar direkt unter der ersten Zeile, in der die Funktion deklariert wird, kommt eine Sonderbedeutung zu. Gibt man auf der Kommandozeile help funktion ein (und die Datei, die die Funktion enthält, befindet sich im Suchpfad), wird dieser Kommentar ausgegeben.

- 2.1. Schreiben Sie eine Funktion betrag, die den Betrag einer Zahl (eines reellen Skalars) zurückgibt. Testen Sie hierfür, ob die übergebene Zahl größer/gleich oder kleiner Null ist und bilden Sie einen entsprechenden Rückgabewert. Geben Sie der Funktion auch eine Beschreibung, die mit help betrag ausgegeben werden kann und überprüfen Sie die Funktion und die Hilfe zur Funktion.
- 2.2. Schreiben Sie eine Funktion parallel, die zwei Impedanzen als Eingabewerte übergeben bekommt und als Ergebnis die Impedanz der Parallelschaltung dieser Impedanzen zurückgibt.
- 2.3. Erweitern Sie die Funktion aus 2.2 so, dass ein Vektor von mehreren Impedanzwerten übergeben werden kann und deren Parallelschaltung berechnet wird.
- 2.4. Schreiben Sie eine entsprechende Funktion seriell, die gleiches für die Reihenschaltung leistet.
- 2.5. Verwenden Sie verschachtelte Funktionsaufrufe, um die Impedanzen der Schaltungen aus Abbildung 1 zu berechnen (bei einer Frequenz von 2,5 GHz).

Hinweis: Es kann der Übersichtlichkeit dienen, die Zehnerpotenzen der Einheiten als »Pseudoeinheiten« anzulegen und zu verwenden. Definiert man z.B. kHz = 1e3; und nH = 1e-9;, lässt sich das Berechnen einer Impedanz als Z = j*2*pi * 3*kHz * 50*nH; aufschreiben.

3. Aufgabe

Die Fourierreihe des Rechtecksignals aus Abbildung 2 ist gegeben durch

$$f(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+1} \sin((2n+1)2\pi f_0 t).$$
 (1)

Da der Rechner naturgemäß seine Probleme mit dem Zählen bis ∞ hat, ersetzen wir Gleichung 1 durch

$$f(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=0}^{N} \frac{1}{2n+1} \sin((2n+1)2\pi f_0 t), \qquad (2)$$

Abbildung 1: Schaltungen.

Abbildung 2: Rechtecksignal.

welche für $N \to \infty$ in zuvor genannte Gleichung übergeht.

- 3.1. Schreiben Sie ein Matlab-Script, das ein Rechtecksignal nach Abbildung 2 mit der Periode $T_0=2$ erzeugt. Die Zeitachse soll auf $0 \le t \le 4$ begrenzt sein. Wählen Sie eine Zeitauflösung von 0,005. Plotten Sie dieses Signal und stellen Sie dabei (mit Hilfe der Befehle xlim und ylim) einen auf jeder Seite um 0,2 vergrößerten Bereich dar.
- 3.2. Schreiben Sie eine Matlab-Funktion mit dem Namen fourierreihe, die einen Zeitvektor t und einen Wert für f_0 und N übergeben bekommt und die Annäherung gemäß der in Gleichung 2 gegebenen Fourierreihe berechnet und zurückgibt.
- 3.3. Erweitern Sie Ihr in 3.1 geschriebenes Skript: Verwenden Sie die Funktion fourierreihe, um die Annäherung an f(t) darzustellen. Verwenden Sie eine for-Schleife und den Befehl pause, um die Originalfunktion und die Annäherung in einem gemeinsamen Plot nacheinander für alle N von 0 bis 20 darzustellen (pause unterbricht das laufende Programm und wartet darauf, dass Sie die Eingabetaste drücken). Zeigen Sie N dabei im Titel des Plots an.

4. Aufgabe

Sie möchten überprüfen, ob Ihre Gitarre richtig gestimmt ist. Dazu haben Sie eine Aufnahme des Tons »a« erzeugt und möchten nun die Frequenz herauslesen und zur Kontrolle die Aufnahme mit einem am Rechner generierten Sinuston der Frequenz 440 Hz vergleichen. (In einer späteren Übung werden wir eine »schönere« als die hier vorgestellte Methode kennenlernen.) Die Abtastfrequenz Ihrer Aufnahme beträgt 96 kHz.

4.1. Lesen Sie Ihre Gitarrenaufnahme mit dem Import-Tool von Matlab in die Variable gitarre ein (die Datei mit der Aufnahme finden Sie in der beigelegten zip-Datei). Stellen Sie diese Aufnahme dann als »plot« dar. Achten Sie dabei darauf, dass die x-Achse die richtigen Werte anzeigt. Erzeugen Sie hierzu aus den Ihnen bekannten Größen einen geeigneten Zeitvektor.

Hinweis: Das Import-Tool finden Sie im Menü unter »File→Import Data«. Dort können Sie dann die Datei auswählen und genauere Einstellungen zum Datei-Import machen.

Die Datei gitarre.csv ist im CSV-Format gespeichert, das z.B. von vielen Tabellenkalkulationsprogrammen verwendet werden kann. In Octave können Sie zum Einlesen der Daten die Funktion dlmread('dateiname') verwenden (und auch Matlab bietet diese Funktion).

Hinweis: Beim Abzählen der Frequenz könnte Ihnen der Befehl grid helfen.

4.3. Legen Sie nun zur Kontrolle eine Sinusschwingung der Frequenz 440 Hz über den Plot und vergleichen Sie die beiden Schwingungen (die Amplitude der Sinus-Schwingung sollte in der gleichen Größenordnung wie die des Gitarrensignals liegen). Legen Sie dazu erst eine Variable mit dem Vergleichssignal an. Es sollte die gleiche Anzahl an Meßwerten wie das

Gitarrensignal aufweisen (und natürlich auch die gleiche Abtastfrequenz). Plotten Sie nun das zweite Signal in den ersten Plot, indem Sie den Matlab-Befehl hold on verwenden. Warum erzeugt Ihre Gitarre keine reine Sinusschwingung wie Sie sie mit Matlab erzeugt haben?

4.4. Sie möchten nun den Plot etwas verschönern, um ihn auszudrucken und Ihrer Band zu zeigen. Setzen Sie zuerst die Plot-Funktion von Matlab mit hold off wieder zurück.

Plotten Sie nun die beiden Kurven in einem einzigen plot-Befehl. Sorgen Sie in diesem Befehlsaufruf auch gleich dafür, daß das Gitarrensignal in rot und das Referenzsignal in blau und gestrichelt dargestellt wird.

Geben Sie dem Plot nun eine sinnvolle Achsenbeschriftung für beide Achsen (für die x-Achse etwa »t in s«). Geben Sie dem Diagramm auch einen Titel und fügen Sie ein Gitter und eine Legende hinzu, die deutlich macht, welches das Gitarren- und welches das Referenzsignal ist.

Speichern Sie den entstandenen Plot nun einmal im Matlab-Grafikformat (Dateiendung: .fig) und einmal als PDF-Datei zum Drucken ab.

Plotten Sie außerdem einen Ausschnitt des Signals, der nur die positive y-Achse und etwas mehr als eine Signalperiode auf der x-Achse zeigt, um die Frequenz der Gitarre genauer abzählen zu können.

