

Revisão Sistemática e Metaanálise

Marcelo M. Weber (mweber.marcelo@gmail.com)

Nicholas A. C. Marino (nac.marino@gmail.com)

github.com/nacmarino/maR

Programa

- 1. Histórico e conceito;
- 2. Tipos de abordagens de síntese;
- 3. Críticas;
- 4. Procedimentos para meta-análise;
- 5. Escolhendo uma pergunta;
- 6. Método PICO.

Literatura

2009 2013 2015

Meta-análise no Brasil

Contato

Local:

Laboratório de Comportamento Animal

E-mail: e.salves@gmail.com

Primary, Secondary, and Meta-Analysis of Research¹

GENE V GLASS Laboratory of Educational Research University of Colorado

1976

"Eu uso para referir a uma <u>análise estatística de uma</u> grande coleção de resultados de análises de estudos individuais com o propósito de <u>integrar os achados</u>. Ela [meta-análise] conota uma alternativa <u>rigorosa</u> para as discussões casuais e narrativas [...] da crescente literatura científica".

"I think it is preferable to accustom a baby to sleeping on his stomach from the beginning if he is willing" (Spock, B.)

"I think it is preferable to accustom a baby to sleeping on his stomach from the beginning if he is willing" (Spock, B.)

- Entre 1950-1990, mais de 50 milhões de cópias;
- Mais de 100 mil bebês morreram da Síndrome da morte súbita infantil (SMSI) no mesmo período;

"I think it is preferable to accustom a baby to sleeping on his stomach from the beginning if he is willing" (Spock, B.)

- Entre 1950-1990, mais de 50 milhões de cópias;
- Mais de 100 mil bebês morreram da Síndrome da morte súbita infantil (SMSI) no mesmo período;
- ❖ 1970 → evidências de perigo
- ❖ 1990 → Risco de SMSI cai em 50% quando bebê dorme de barriga pra cima.

Na ecologia, Padrão espacial da abundância

Avena sativa

Na ecologia, Padrão espacial da abundância

Ecology Letters, (2002) 5: 137-147

REPORT

The 'abundant centre' distribution: to what extent is it a biogeographical rule?

Abstract

Raphael D. Sagarin¹ and Steven D. Gaines² Several ecological and evolutionary hypotheses are based on the assumption that species reach their highest abundance in the centre of their range and decline in abundance

"We found that of 145 separate tests conducted [...], only 56 (39%) support the abundant centre hypothesis."

Introduzida na ecologia nos anos 90;

A meta-analytic study of the effects of female age on laying-date and clutch-size in the Great Tit *Parus* major and the Pied Flycatcher *Ficedula hypoleuca*

ANTERO JARVINEN

First published: January 1991 Full publication history

DOI: 10.1111/j.1474-919X.1991.tb04811.X View/save citation

Cl	11	tc	h-	size
	•			DIAC

Source	Age						One-tailed
		Mean	s.d.	n	g	z	P
(1)	1	5.200	0.837	5	-1.062	-2.156	0.0155
	2	5.974	0.716	38			0.0155
(2)	1	5.647	0.702	17	-0.630	-2.447	0.0072
	2	6.331	1.117	163			
(3)	1	5.981	0.823	263	-0.694	-8.356	3×10 ⁻¹⁷
	2	6.534	0.776	324			
(4)	1	6.51	0.926	79	} -0.539	-2.945	0.0016
	2	6.98	0.779	51			
(5)	1	5.708	0.806	24	4 } -1.133	-3.805	0.00007
	2	6.567	0.728	30			
C						-	
Sum Mean					-0.812		
						1	
s.d.					0.268		
Weighted mean					-0.699		
							3 11

 Fatores que contribuíram para o crescimento da metaanálise:

 Acúmulo de grande quantidade de pesquisa publicada (antiga abordagem de narrativa);

- Fatores que contribuíram para o crescimento da metaanálise:
- Acúmulo de grande quantidade de pesquisa publicada (antiga abordagem de narrativa);
- Pressão para fornecer avaliações quantitativas acuradas,
 predições e soluções práticas para questões ambientais (perda de biodiversidade, respostas bióticas às mudanças climáticas);

- Fatores que contribuíram para o crescimento da metaanálise:
- Acúmulo de grande quantidade de pesquisa publicada (antiga abordagem de narrativa);
- Pressão para fornecer avaliações quantitativas acuradas, predições e soluções práticas para questões ambientais (perda de biodiversidade, respostas bióticas às mudanças climáticas);
- Métodos sofisticados de análises desenvolvidos ao longos dos anos 70 por médicos e cientistas sociais (ecólogos adaptam os métodos e não precisam reinventar a roda).

Revisão de pesquisa primária sobre um tema com o propósito de integrar os achados (criando generalizações ou resolvendo conflitos).

Meta-análise é um método de síntese.

qualitativa e/ou quantitativa Central para a ciência: sem ela, a evidência de várias hipóteses alternativas não podem ser avaliadas adequadamente e generalizações não podem ser atingidas → avanço da ciência e qualquer aplicação prática são inibidas.

1. Exemplos de livro-texto

- Não é um método formal de síntese, mas todo biólogo é familiar (ensino e aprendizagem);

1. Exemplos de livro-texto

- Não é um método formal de síntese, mas todo biólogo é familiar (ensino e aprendizagem);
- Escolhe um caso particular que melhor ilustra a evidência de um fenômeno;

1. Exemplos de livro-texto

- Não é um método formal de síntese, mas todo biólogo é familiar (ensino e aprendizagem);
- Escolhe um caso particular que melhor ilustra a evidência de um fenômeno;
- Fornece evidência que o fenômeno existe e RESUME os achados daquele fenômeno;

1. Exemplos de livro-texto

- Usar exemplos de livro-texto ou estudos de caso como uma síntese de um achado científico é baseado na crença errônea de que um estudo primário (experimento bem delineado) é capaz de fornecer o teste definitivo e resolver uma questão.

1. Exemplos de livro-texto

- Resultados de uma pesquisa são probabilísticos e sujeitos a erros de amostragem e medidas;
- Resultados de um único estudo podem ter sido encontrados ao acaso e podem ser refutados em pesquisa subsequente;

1. Exemplos de livro-texto

- Resultados de uma pesquisa são probabilísticos e sujeitos a erros de amostragem e medidas;
- Resultados de um único estudo podem ter sido encontrados ao acaso e podem ser refutados em pesquisa subsequente;
- Na meta-análise, qualquer estudo primário é considerado um indivíduo em uma população de estudos.

2. Revisões narrativas

- Forma mais tradicional de revisão em ecologia;
- Autores são convidados (pesquisador senior);
- Estrutura diferente de estudos primários (M&M);
- Falta de rigor metodológico aumenta subjetividade da escolha das citações e como eles são citados;.

THE UNIVERSITY OF CHICAGO PROD

2. Revisões narrativas

- Revisões feitas por autores diferentes geralmente chegam a conclusões diferentes;

2. Revisões narrativas

- Revisões feitas por autores diferentes geralmente chegam a conclusões diferentes;
- Não podem ser replicados (um dos "mantras" do método científico);
- Geralmente enfatiza pequeno número de "exemplos" e omite a variação (similar a livro-texto);

2. Revisões narrativas

- Revisões feitas por autores diferentes geralmente chegam a conclusões diferentes;
- Não podem ser replicados (um dos "mantras" do método científico);
- Geralmente enfatiza pequeno número de "exemplos" e omite a variação (similar a livro-texto);
- Pouco informativos para resolver conflitos metodológicos e tomar decisões práticas;

2. Revisões narrativas

Pontos positivos:

- Apresentam perspectivas, desenvolvimento histórico das ideias e contribuições conceituais.

2. Revisões narrativas

Pontos positivos:

- Apresentam perspectivas, desenvolvimento histórico das ideias e contribuições conceituais.

Pontos negativos:

- Variação nos resultados entre estudos limita a utilidade de revisões narrativas como um método eficiente de síntese;
- Leva a um paradoxo quando muitas hipóteses explicam um fenômeno, todas foram repetidamente testadas, mas nenhuma é rejeitada e todas coexistem através de evidência de suporte virtual em um sistema ou outro.

2. Revisões narrativas

Pontos negativos:

- Pode ser extremamente trabalhoso pra quem não tem muita experiência;

- -Ecólogos são criticados por terem debates que duram gerações (ex. papel da competição na estruturação de comunidades ou relação entre diversidade e funcionamento de ecossistemas);
- Confiança em livros-texto e revisões é em parte "culpada" por isso.

3. *Vote counting* → método quantitativo

3. *Vote counting* → método quantitativo

3. Vote counting

3. Vote counting

3. Vote counting

<u>Vantagem</u>

1. Simplicidade e ampla aplicabilidade.

3. *Vote counting*

Vantagem

1. Simplicidade e ampla aplicabilidade.

Desvantagens:

- 1. Um voto para cada estudo independente do tamanho amostral, nº de réplicas e precisão estatística;
- 2. Classificação entre resultados "significativos" e "não-significativos" diz nada sobre a magnitude do efeito;
- 3. Direção dos resultados não-significativos não é registrada.

3. *Vote counting*

Correlação entre abundância e riqueza

3. Vote counting

Desacreditado e abandonado em outras áreas, mas ainda persiste na ecologia.

3. *Vote counting*

REPORTS

Productivity Is a Poor Predictor of Plant Species Richness

Peter B. Adler, 1* Eric W. Seabloom, 2 Elizabeth T. Borer, 2 Helmut Hillebrand, 3 Yann Hautier, 4 Andy Hector, 4 W. Stanley Harpole, 5 Lydia R. O'Halloran, 6 James B. Grace, 7 T. Michael Anderson, 8 Jonathan D. Bakker, 2 Lori A. Biederman, 5 Cynthia S. Brown, 10 Yvonne M. Buckley, 11

ample, recent meta-analytical syntheses concluded that evidence for a single, canonical pattern was weak (13–15). A large percentage of studies exhibited negative, U-shaped, or nonsignificant PRRs in addition to unimodal and positive linear patterns, and the frequency of these various patterns depended on taxon and spatial scale. Subsequent critiques of the meta-analyses ar-

Amostragens locais em 48 comunidades de herbáceas

- Revisões narrativas e *vote counting* são consideradas inadequadas em outras áreas;
- Revisões narrativas: interpretação e perspectiva de um especialista, mas é subjetivo e não-quantitativo;
- Vote counting: procedimento estatístico muito pobre;

- Revisões narrativas e *vote counting* são consideradas inadequadas em outras áreas;
- Revisões narrativas: interpretação e perspectiva de um especialista, mas é subjetivo e não-quantitativo;
- Vote counting: procedimento estatístico muito pobre;
- Ambos procedimentos não fornecem informação crítica sobre a magnitude dos efeitos ou as fontes de variação dos resultados entre estudos.

- 4. Combinando probabilidades
- Combinar *p-values* é comum nas ciências sociais, mas raro na ecologia;

4. Combinando probabilidades

- Combinar *p-values* é comum nas ciências sociais, mas raro na ecologia;
- Longa data na estatística (1925);
- Existem pelo menos 18 métodos;
- Mais comum: Método de Fisher ou Teste de Probabilidades Combinadas de Fisher

$$X = -2\sum_{i=1}^{k} \ln\left(P_i\right)$$

- Compara-se o resultado obtido com o valor crítico de 95% de uma distribuição χ2, com 2k GL.

- 4. Combinando probabilidades
- Vantagens:
- 1. Ampla aplicabilidade;
- Combinar probabilidades é menos problemático do que vote counting porque usa a probabilidade exata (p=0.06 e p=0.04);

- 4. Combinando probabilidades
- Problemas:
- 1. Combinar probabilidades não é muito informativo;
- 2. Não fornece informação sobre sinal e magnitude do efeito;
- 3. Valores exatos de probabilidade raramente são reportados nos estudos (p<0.05, p>0.05, p<0.0001);
- 4. Análise é muito liberal (se pelo menos um estudo encontrou um p<0.0001, H₀ quase sempre vai ser rejeitada).

- Fornece um conjunto de ferramentas poderoso, informativo e não-enviesado;
- Expressa o resultado de cada estudo em uma escala comum (e.g. r de Pearson);

- Fornece um conjunto de ferramentas poderoso, informativo e não-enviesado;
- Expressa o resultado de cada estudo em uma escala comum (e.g. r de Pearson);
- Medida do resultado é chamado **TAMANHO DE EFEITO** (inclui o sinal e a magnitude de um efeito de interesse de cada estudo);
- Sinônimos: revisão quantitativa, pooling, síntese quantitativa.

5. Meta-análise

- Tamanhos de efeitos são combinados para estimar o tamanho de efeito médio (*summary effect*), IC, testar se o *summary effect* difere estatisticamente de zero e avaliar possíveis fontes de variação;

- Tamanhos de efeitos são combinados para estimar o tamanho de efeito médio (*summary effect*), IC, testar se o *summary effect* difere estatisticamente de zero e avaliar possíveis fontes de variação;
- Meta-análise pode potencialmente detectar um efeito mesmo em situações onde todos os efeitos individuais apresentam p>0.05 devido a baixo poder estatístico;

5. Meta-análise

Respostas da abundância das abelhas a distúrbios antropogênicos.

- Tamanhos de efeitos são combinados para estimar o tamanho de efeito médio (*summary effect*), IC, testar se o *summary effect* difere estatisticamente de zero e avaliar possíveis fontes de variação;
- Meta-análise pode potencialmente detectar um efeito mesmo em situações onde todos os efeitos individuais apresentam p>0.05 devido a baixo poder estatístico;
- Encontrar gaps e direcionar novos estudos.

5. Meta-análise

A meta-analytic study of the effects of female age on laying-date and clutch-size in the Great Tit *Parus* major and the Pied Flycatcher *Ficedula hypoleuca*

IBIS

View issue TOC Volume 133, Issue 1 January 1991 Pages 62–67

ANTERO JARVINEN

First published: January 1991 Full publication history

DOI: 10.1111/j.1474-919X.1991.tb04811.X View/save citation

Cited by: 20 articles 🌣 Citation tools

In Great Tits the laying-date of 'young' females was 0.30 standard deviation units later and clutch-size 0.31 units smaller than that of 'old' females. In the Pied Flycatcher the corresponding figures were 0.45 and 0.81, respectively. All the effect size measures were highly significant but for clutch-size the effect size of the Pied Flycatcher was significantly greater than that of the Great Tit. In the Great Tit the effect size of clutch-size was heterogeneous across the different study areas.

It was estimated that the following numbers of unpublished studies showing null results would have to have accumulated in file-drawers before we could say that the results concerning effect sizes are due to sampling bias: for Great Tits 121 studies of laying-date and 196 studies of clutch-size; and for Pied Flycatchers 45 studies of laying-date and 139 studies of clutch-size.

5. Meta-análise

- Mudança profunda na visão sobre a pesquisa em ecologia: estudos individuais são vistos como membros de uma população de estudos, que fornecem informação sobre um determinado efeito, ao invés de um exemplo isolado e tido como "definitivo".

- Mudança profunda na visão sobre a pesquisa em ecologia: estudos individuais são vistos como membros de uma população de estudos, que fornecem informação sobre um determinado efeito, ao invés de um exemplo isolado e tido como "definitivo".
- Mais objetiva e informativa do que *vote counting* e revisões qualitativas;

5. Meta-análise

- Mesmo que você não use meta-análise, o entendimento de como ela funciona permite avaliar criticamente a literatura da sua área;

5. Meta-análise

- Mesmo que você não use meta-análise, o entendimento de como ela funciona permite avaliar criticamente a literatura da sua área;
- Aprender o básico de uma meta-análise melhora a forma de reportar resultados em estudos primários, facilitando a inclusão deles em uma futura síntese do assunto.

Methods in Ecology and Evolution

doi: 10.1111/2041-210X.12758

Methods in Ecology and Evolution 2017

COMMENTARY

Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting

Katharina Gerstner*,1,2, David Moreno-Mateos^{3,4}, Jessica Gurevitch⁵, Michael Beckmann², Stephan Kambach^{6,7}, Holly P. Jones⁸ and Ralf Seppelt^{2,9}

5. Meta-análise

- Foca em combinar e constrastar resultados de diferentes estudos para identificar padrões emergentes entre estudos. Padrão é normalmente caracterizado por uma medida comum de tamanho de efeito, da qual uma média ponderada é geralmente o resultado de uma meta-análise (Cooper and Hedges 1994).

- Foca em combinar e constrastar resultados de diferentes estudos para identificar padrões emergentes entre estudos. Padrão é normalmente caracterizado por uma medida comum de tamanho de efeito, da qual uma média ponderada é geralmente o resultado de uma meta-análise (Cooper and Hedges 1994).
- Resolve disputas na literatura, que fatores tem contribuído para diferenças sistemáticas entre estudos e identifica áreas negligenciadas, além de comparar resultados de diferentes prodecimentos metodológicos. Ex.: relação abundância-adequabilidade.

TABLE 1.1. Comparison of methods of research synthesis.

Characteristics of the review type	Narrative review	Vote counting	Combining probabilities	Meta- analysis
Imposes restrictions on the type of studies that can be used in review	No	No	No	Yes
Interprets study outcome based on its statistical significance	Yes	Yes	Yes	No
Takes into account sample size and statistical power of the individual studies being combined	No	No	Yes	Yes
Assesses statistical significance of the mean (overall) effect (i.e., whether it is significantly different than zero)	No	No	Yes	Yes
Assesses the magnitude of the mean effect	No	No	No	Yes
Allows analysis of sources of variation among studies	No	No	No	Yes

6. Revisão sistemática

- Sinônimos: systematic overview, overview ou revisão qualitativa (qualitative review);
- Revisão **planejada** para responder a uma pergunta específica;

6. Revisão sistemática

- Sinônimos: systematic overview, overview ou revisão qualitativa (qualitative review);
- Revisão **planejada** para responder a uma pergunta específica;
- Utiliza métodos **explícitos** e **sistemáticos** para identificar, selecionar, e avaliar criticamente os estudos, bem como coletar e analisar os dados deste estudos;

6. Revisão sistemática

- Diferença crucial da revisão narrativa: segue um protocolo definido *a priori* (metodologia, estratégia de busca e critérios de inclusão);
- Protocolo: processo rigoroso, transparente e REPETÍVEL;
- Métodos estatísticos podem ou não ser utilizados;
- Identificam o estado da conhecimento atual e gaps;

6. Revisão sistemática

- São incapazes de responder questões como:

"Qual o efeito médio da variável independente sobre a variável dependente?" ou

"Em que medida x e y são correlacionadas?" ou

"Que variável importa mais para explicar y?".

Críticas

- 1. Um nº não pode resumir um campo de pesquisa.
- Objetivo da meta-análise é sintetizar os tamanhos de efeito e não simplesmente relatar um summary effect;
- Efeitos consistentes? O efeito é robusto?
- Muita dispersão? Foco deve mudar do summary effect para a própria dispersão.

- Há preocupação com o viés de publicação e métodos específicos para avaliar o nível de viés;
- Não é um problema da meta-análise apenas. Revisões apenas ignoram.

3. Mistura laranjas e maçãs.

- Meta-análise, por definição, trabalha com amplas questões;
- Questão sobre frutas;
- Questão reducionista reduz heterogeneidade ao custo de generalidade, escopo e poder e não investiga razões de variação;
- Investigar variação.

- 4. Garbage in, garbage out.
- Estudos são selecionados com critérios;
- Se os estudos são enviesados para uma mesma direção, resultado preciso e altamente enviesado. Melhor não!
- Estudos com delineamento "fraco" podem ser usados para testar a consistência da relação com estudos "fortes" e testar moderadores.

5. Estudos importantes são ignorados.

 Revisões sistemáticas requerem mecanismos explícitos de busca e critérios para inclusão/exclusão definidos antes de realizar a busca.

6. Meta-análise pode discordar de experimentos aleatorizados.

- 7. Meta-análises são realizadas pobremente (MA é complicada e erros são inerentes).
- Crítica na aplicação do método e não no método em si;
- Localizar os erros, avaliar seus impactos e evitar no futuro.

Abordagens de síntese

7. Escolhendo o método de síntese

- Meta-análise é sempre melhor? Ex: campo novo.
- Muitos estudos não fornecem as medidas necessárias (e.g. tamanho amostral): excluídos da meta-análise e perda de informação;
- Solução: combinar técnicas
 Meta-análise + vote counting
 Meta-análise + combinação de probabilidades

Abordagens de síntese

7. Escolhendo o método de síntese

- Se existem poucos estudos e o objetivo é tornar o leitor ciente de um campo emergente ou uma nova direção de um campo estabelecido, a meta-análise combinada com outra técnica é desnecessária e uma curta revisão narrativa deve ser suficiente.

- Avaliar uma hipótese teórica: estudos experimentais que testam causalidade. Não misturar estudos que apenas reportam a relação com relações identificadas através de manipulação;
- Avaliar a consistência de uma relação entre duas ou mais variáveis: dados observacionais e experimentais podem ser combinados (but label them!);

3. Pensar cuidadosamente na amplitude da generalização (nº de estudos e familiaridade);

- 3. Pensar cuidadosamente na amplitude da generalização (nº de estudos e familiaridade);
- 4. Moderadores: grupos funcionais, tipo de experimento, duração, tamanho corporal. Relação moderadores/tamanho amostral (agrupar subgrupos).

- Pensar cuidadosamente na amplitude da generalização (nº de estudos e familiaridade);
- Moderadores: grupos funcionais, tipo de experimento, duração, tamanho corporal. Relação moderadores/tamanho amostral (agrupar subgrupos).
- 5. Ideal: todos os dados disponíveis de todas as fontes possíveis. Literatura cinza (resumos de congresso, relatórios, EIA/RIMAs).

<u>População</u>: Unidade do estudo (ecossistema, habitat, espécie, geografia) que deve ser definida em termos das populações estatísticas dos sujeitos aos quais a intervenção será aplicada.

Intervenção: Também chamada "exposição", é o regime de manejo, política, ação ou variável ambiental na qual as populações estão expostas. É o tratamento de um estudo experimental ou a observação de um estudo observacional.

<u>Comparador</u>: Funciona como um controle com nãointervenção/exposição ou uma intervenção alternativa ou um cenário alternativo. Ausente em estudo observacionais.

Outcome (resultado): Todos os resultados relevantes de uma intervenção proposta que possa ser confiantemente medida ou o resultado que pode resultar da exposição a uma variável ambiental. Geralmente indica uma direção (aumento, diminuição) do efeito da intervenção sobre o sistema estudado.

Em pacientes criticamente enfermos, os colóides são superiores aos cristalóides na redução da mortalidade?

Em <u>pacientes criticamente enfermos</u>, os <u>colóides</u> são superiores aos <u>cristalóides</u> na <u>redução da mortalidade</u>?

Em <u>pacientes criticamente enfermos</u>, os <u>colóides</u> são superiores aos <u>cristalóides</u> na <u>redução da mortalidade</u>?

Em ecossistemas aquáticos continentais eutrofizados, biorremediação é mais eficiente do que remoção manual na diminuição da dominância?

Em <u>pacientes criticamente enfermos</u>, os <u>colóides</u> são superiores aos <u>cristalóides</u> na <u>redução da mortalidade</u>?

Em <u>ecossistemas aquáticos continentais eutrofizados</u>, <u>biorremediação</u> é mais eficiente do que <u>remoção manual</u> na <u>diminuição da dominância</u>?

Outros exemplos:

1. Quais são os impactos do bem-estar humano nas áreas terrestres protegidas?

Outros exemplos:

- 1. Quais são os impactos sobre o bem-estar humano nas áreas terrestres protegidas?
- População: populações humanas locais.
- Intervenção: áreas protegidas terrestres.
- Comparador: ausência de áreas protegidas.
- Outcome: medidas do bem-estar humano.

Outros exemplos:

2. Quais podem ser os efeitos das mudanças climáticas previstas pelo IPCC sobre a abundância do palmito (*Euterpe edulis*)?

Outros exemplos:

- 2. Quais podem ser os efeitos das mudanças climáticas previstas pelo IPCC sobre a abundância do palmito (*Euterpe edulis*)?
- População: populações de palmitos ao longo de toda a sua distribuição.
- Intervenção: aumento da temperatura.
- Comparador: não-aumento de temperatura.
- Outcome: medidas (aumento ou diminuição) de abundância do palmito.

Outros exemplos:

3. A riqueza de visitantes florais aumenta a heterozigosidade de árvores neotropicais?

Outros exemplos:

- 3. A riqueza de visitantes florais aumenta a heterozigosidade de árvores neotropicais?
 - População: árvores neotropicais.
 - Intervenção: riqueza de visitantes florais.
 - Comparador: ausente.
 - Outcome: aumento da heterozigosidade.

Outros exemplos:

- 3. A riqueza de visitantes florais aumenta a heterozigosidade de árvores neotropicais?
 - População: árvores neotropicais.
 - Intervenção: riqueza de visitantes florais.
 - Comparador: ausente.
 - Outcome: aumento da heterozigosidade.

A intervenção (I) aplicada a população (P) produz o resultado (O).

Resumo

- 1. Tipos de síntese (revisão, *vote counting*, combinando *p-values*, revisão sistemática e meta-análise;
- 2. Noção básica dos procedimentos para uma metaanálise;
- 3. Críticas;
- 4. Pensar numa pergunta, gap...
- 5. Método PICO.