```
In [1]: import pandas as pd
        %pip install yfinance
        import yfinance as yf
        import datetime
        from datetime import date, timedelta
        Requirement already satisfied: yfinance in c:\users\marjan\anaconda3\lib\site-packages (0.1.74)
        Requirement already satisfied: multitasking>=0.0.7 in c:\users\marjan\anaconda3\lib\site-packages (from yfinance) (0.0.
        11)
        Requirement already satisfied: numpy>=1.15 in c:\users\marjan\anaconda3\lib\site-packages (from yfinance) (1.16.5)
        Requirement already satisfied: pandas>=0.24.0 in c:\users\marjan\anaconda3\lib\site-packages (from yfinance) (0.25.1)
        Requirement already satisfied: lxml>=4.5.1 in c:\users\marjan\anaconda3\lib\site-packages (from yfinance) (4.9.1)
        Requirement already satisfied: requests>=2.26 in c:\users\marjan\anaconda3\lib\site-packages (from yfinance) (2.28.1)
        Requirement already satisfied: pytz>=2017.2 in c:\users\marjan\anaconda3\lib\site-packages (from pandas>=0.24.0->yfinan
        ce) (2019.3)
        Requirement already satisfied: python-dateutil>=2.6.1 in c:\users\marjan\anaconda3\lib\site-packages (from pandas>=0.2
        4.0->yfinance) (2.8.0)
        Requirement already satisfied: charset-normalizer<3,>=2 in c:\users\marjan\anaconda3\lib\site-packages (from requests>=
        2.26->vfinance) (2.1.1)
        Requirement already satisfied: idna<4,>=2.5 in c:\users\marjan\anaconda3\lib\site-packages (from requests>=2.26->yfinan
        ce) (2.8)
        Requirement already satisfied: certifi>=2017.4.17 in c:\users\marjan\anaconda3\lib\site-packages (from requests>=2.26->
        yfinance) (2019.9.11)
        Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\marjan\anaconda3\lib\site-packages (from requests>=2.2
        6->yfinance) (1.24.2)
        Requirement already satisfied: six>=1.5 in c:\users\marjan\anaconda3\lib\site-packages (from python-dateutil>=2.6.1->pa
        ndas>=0.24.0->yfinance) (1.12.0)
        Note: you may need to restart the kernel to use updated packages.
In [2]: today = date.today()
        today
Out[2]: datetime.date(2022, 8, 28)
In [4]: day1 = today.strftime("%Y-%m-%d")
        end date = day1
        day2 = date.today() - timedelta(days=720)
        day2 = day2.strftime("%Y-%m-%d")
        start date = day2
```

	0pen	High	Low	Close	Adj Close	\
Date						
2020-09-08	113.949997	118.989998	112.680000	112.820000	111.474350	
2020-09-09	117.260002	119.139999	115.260002	117.320000	115.920662	
2020-09-10	120.360001	120.500000	112.500000	113.489998	112.136345	
2020-09-11	114.570000	115.230003	110.000000	112.000000	110.664131	
2020-09-14	114.720001	115.930000	112.800003	115.360001	113.984055	
	Volume					
Date	vorume					
2020-09-08	231366600					
2020-09-09	176940500					
2020-09-09	182274400					
2020-09-10	180860300					
2020-09-11	140150100					
2020-09-14		Uiah	Lou	Close	Adj Close	`
Date	0pen	High	Low	CIOSE	Auj Close	\
2020-09-08	206.500000	210.029999	202.199997	202.660004	199.149429	
2020-09-09	207.600006	214.839996	206.699997	211.289993	207.629898	
2020-09-10	213.399994	214.740005	204.110001	205.369995	201.812469	
2020-09-11	207.199997	208.630005	201.240005	204.029999	200.495682	
2020-09-14	204.240005	209.199997	204.029999	205.410004	201.851761	
	Volume					
Date						
2020-09-08	52924300					
2020-09-09	45679000					
2020-09-10	35461500					
2020-09-11	33620100					

2020-09-14 30375800

Requirement already satisfied: plotly in c:\users\marjan\anaconda3\lib\site-packages (5.10.0)

Requirement already satisfied: tenacity>=6.2.0 in c:\users\marjan\anaconda3\lib\site-packages (from plotly) (8.0.1)

Note: you may need to restart the kernel to use updated packages.

Time Series Analysis Apple-Line Plot

Time Series Analysis Microsoft-Line Plot


```
In [17]: #more visualization this time on open, high, low, and close prices all together with a candle stick chart
         #import plotly.graph objects as go
         from plotly import graph_objs as go
         figure_a = go.Figure(data=[go.Candlestick(x = data_a.index,
                                              open = data_a['Open'],
                                              high = data_a['High'],
                                              low = data a['Low'],
                                              close = data_a['Close'])])
         figure_a.update_layout(title = "Time Series Analysis Apple-Candle Stick Chart",
                             xaxis_rangeslider_visible = False)
         #figure a.show()
         #The gray lines show the fall in prices,
         #and the green lines show the increase in prices
         cs = figure_a.data[0]
         # Set line and fill colors
         cs.increasing.fillcolor = 'green'
         cs.increasing.line.color = 'green'
         cs.decreasing.fillcolor = 'gray'
         cs.decreasing.line.color = 'gray'
         figure_a.show()
```

Time Series Analysis Apple-Candle Stick Chart


```
In [18]: figure m = go.Figure(data=[go.Candlestick(x = data m.index,
                                              open = data_m['Open'],
                                              high = data_m['High'],
                                              low = data_m['Low'],
                                              close = data_m['Close'])])
         figure_m.update_layout(title = "Time Series Analysis Microsoft-Candle Stick Chart",
                             xaxis_rangeslider_visible = False)
         #figure m.show()
         cs = figure_m.data[0]
         # Set line and fill colors
         # The gray lines show the fall in prices,
         # and the blue lines show the increase in prices
         cs.increasing.fillcolor = 'blue'
         cs.increasing.line.color = 'blue'
         cs.decreasing.fillcolor = 'gray'
         cs.decreasing.line.color = 'gray'
         figure_m.show()
```

Time Series Analysis Microsoft-Candle Stick Chart

Time Series Analysis Apple-Bar Plot

Time Series Analysis Microsoft-Bar Plot

Time Series Analysis Apple (Custom Date Range)

Time Series Analysis Microsoft (Custom Date Range)


```
In [16]: #adding slicers to one of the charts to make it even more interactive
         #better suited for financial organizations
         figure a = go.Figure(data = [go.Candlestick(x = data_a.index,
                                                  open = data a["Open"],
                                                  high = data_a["High"],
                                                 low = data a["Low"],
                                                  close = data_a["Close"],
                                                  increasing_line_color= 'green', decreasing_line_color= 'gray')])
         figure_a.update_layout(title = "Time Series Analysis Apple (Candlestick Chart with Buttons and Slider)")
         figure a.update xaxes(
             rangeslider visible = True,
             rangeselector = dict(
                 buttons = list([
                     dict(count = 1, label = "1m", step = "month", stepmode = "backward"),
                     dict(count = 6, label = "6m", step = "month", stepmode = "backward"),
                     dict(count = 1, label = "YTD", step = "year", stepmode = "todate"),
                     dict(count = 1, label = "1y", step = "year", stepmode = "backward"),
                     dict(step = "all")
                 ])
         figure_a.show()
```

Time Series Analysis Apple (Candlestick Chart with Buttons and Slider)


```
In [15]: #adding slicers to one of the charts to make it even more interactive
         #better suited for financial organizations
         figure m = go.Figure(data = [go.Candlestick(x = data_m.index,
                                                 open = data m["Open"],
                                                 high = data_m["High"],
                                                 low = data m["Low"],
                                                 close = data_m["Close"],
                                                 increasing_line_color= 'blue', decreasing_line_color= 'gray')])
         figure_m.update_layout(title = "Time Series Analysis Microsoft (Candlestick Chart with Buttons and Slider)")
         figure m.update xaxes(
             rangeslider visible = True,
             rangeselector = dict(
                 buttons = list([
                     dict(count = 1, label = "1m", step = "month", stepmode = "backward"),
                     dict(count = 6, label = "6m", step = "month", stepmode = "backward"),
                     dict(count = 1, label = "YTD", step = "year", stepmode = "todate"),
                     dict(count = 1, label = "1y", step = "year", stepmode = "backward"),
                     dict(step = "all")
                 ])
         figure_m.show()
```

Time Series Analysis Microsoft (Candlestick Chart with Buttons and Slider)


```
In [ ]:
```