Support Vector Machine

This script takes the following steps: 1) Load training and test data 2) Initialises results tables for experiments 3) Performs bayesian hyperoptimisation and then performs a grid search around estimated optimum parameters for each kernel type 4) Saves results of experiments in table 'SVM_Results' 5) Obtains optimum hyperparameters for model selection

1. Load Training and Test data

Load training and test data used in the modelling.

```
Training = load('Training.mat');
Testing = load('Testing.mat');
```

2. Initialise Results Tables

Initialise tables for storing results of experiments

```
optimisation_params = {'Kernel', 'BoxConstraint', 'KernelScale', 'MinObjective'};
svm_results = {'Kernel', 'BoxConstraint', 'KernelScale', 'Polynomial_order', 'Avg_Accuracy', 'Avg_Time'
```

3. Grid Search and 10-fold Cross Validation

```
%This section carries out bayesian optimisation on each kernel type
%recursively. Each kernel will have a set of 'estimated' best
%hyperparameters, from which a grid search will be conducted around
%define kernels for experiments, order for polynomial
kernel = ["linear", "gaussian", "polynomial"];
%define order(only for 'polynomial' kernel)
poly_order = [2,3,4];
%for each kernel in kernel list
for i = kernel
    %if kernel is linear or gaussian
    if i ~= "polynomial"
        %train svm for kernel i using bayesian hyperoptimisation
        SVMModel_hyp = fitcsvm(Training(:, 1:42), Training(:, 43), 'KernelFunction', i,...
        'OptimizeHyperparameters', 'auto',...
        'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',...
        'expected-improvement-plus', 'ShowPlots', true)); % Bayes' Optimization
        %save the optimum hyperparameters to scale and constraint variables
        optimal boxc = SVMModel hyp.ModelParameters.BoxConstraint;
        optimal scale = SVMModel hyp.ModelParameters.KernelScale;
        min_objective = SVMModel_hyp.HyperparameterOptimizationResults.MinObjective
        %append the optimum hyperparameters values to the table 'optimisation_params'
        optimisation params = [optimisation params;[i, optimal boxc, optimal scale, min objective]];
```

```
%define grid search parameters based on hyperparameter results (25%
%less and 25% more than the estimates from automatic)
p_boxconstraint = [(optimal_boxc * 0.75), (optimal_boxc), (optimal_boxc * 1.25)];
p_scale = [(optimal_scale * 0.75), (optimal_scale), (optimal_scale * 1.25)];
%for each 'boxconstraint' optimised hyperparameter estimate
for j = p_boxconstraint
    %for each 'scale' optimised hyperparameter estimate
    for k = p_scale
        list_acc = []; %initialise accuracy list
        list time = []; %initialise time list
        %interface prompts
        fprintf('Kernel is %s. ',i);
        fprintf('Boxconstraint is %f. ',j);
        fprintf('Scale is set to %f.\n',k);
        %10-fold cross validation
        n=size(Training,1); %size of dataset
        c = cvpartition(n,'kfold',10); % 10-folds
        %for each fold
        for m = 1:10
            train_idx=training(c,m); %training indexes of fold-m
            train_data= Training(train_idx,:); %get data using indexes of fold-m
            val_idx=test(c,m); %validation indexes of fold-m
            val_data=Training(val_idx,:); %get data using indexes of fold-m
            x = train_data(:,1:42); %fold-m training predictors
            t = train data(:,43); %fold-m training targets
            y = val_data(:,1:42); %fold-m validation predictors
            target_labels = val_data(:,43); %fold-m validation targets
            %train model on each fold using GS values
            tic %start timer
            SVMModel = fitcsvm(x,t,'Standardize',true,'KernelFunction',i,...
                'KernelScale',k, 'BoxConstraint', j);
            time=toc; %end timer save time
            %get model accuracy
            test_accuracy = sum((predict(SVMModel, y) == target_labels))/length(target_labels)*1
            fprintf('k-fold %d: ', m)
            disp(test_accuracy)
            %append time and accuracy of fold to lists
            list acc = [list acc, test accuracy];
            list_time = [list_time, time];
        end
        %calculate average of the folds
        average acc = mean(list acc)
        average_time = mean(list_time)
        %save metadata and average results of each model to 'svm_results'
        svm_results = vertcat(svm_results, {i, j, k, '-' ,average_acc, average_time});
    end
```

```
end
else %for 'polynomial' kernel
    %train svm for kernel i using automatic hyperoptimisation
    SVMModel hyp = fitcsvm(Training(:, 1:42), Training(:, 43), 'KernelFunction', i,...
    'OptimizeHyperparameters', 'auto',...
    'HyperparameterOptimizationOptions', struct('AcquisitionFunctionName',...
    'expected-improvement-plus', 'ShowPlots', true)); % Bayes' Optimization
   %save the optimum hyperparameters to variables
   optimal boxc = SVMModel hyp.ModelParameters.BoxConstraint;
    optimal_scale = SVMModel_hyp.ModelParameters.KernelScale;
   min objective = SVMModel hyp.HyperparameterOptimizationResults.MinObjective
    %append the optimum hyperparameters values to the table 'optimisation_params'
    optimisation params = [optimisation params;[i, optimal boxc, optimal scale, min objective]];
    %define grid search parameters based on hyperparameter results (25%
   %less and 25% more than the estimates from automatic)
   p boxconstraint = [(optimal boxc * 0.75), (optimal boxc), (optimal boxc * 1.25)];
    p_scale = [(optimal_scale * 0.75), optimal_scale, (optimal_scale * 1.25)];
   %for each 'boxconstraint' hyperparameter in GS
    for j = p boxconstraint
        %for each 'scale' hyperparameter in GS
        for k = p_scale
            %for each polynomial order
            for o = poly order
                list_acc = []; %initialise accuracy list
                list_time = []; %initialise time list
                %interface prompts
                fprintf('Kernel is %s. ',i);
                fprintf('Boxconstraint is %f. ',j);
                fprintf('Scale is set to %f.\n',k);
                fprintf('Order is set to %f.\n',o);
                %10-fold cross validation
                n=size(Training,1); %size of dataset
                c = cvpartition(n,'kfold',10); % 10-folds
                %for each fold
                for m = 1:10
                    train idx=training(c,m); %training indexes of fold-m
                    train_data= Training(train_idx,:); %get data using indexes of fold-m
                    val idx=test(c,m); %validation indexes of fold-m
                    val_data=Training(val_idx,:); %get data using indexes of fold-m
                    x = train_data(:,1:42); %fold-m training predictors
                    t = train data(:,43); %fold-m training targets
                    y = val data(:,1:42); %fold-m validation predictors
                    target_labels = val_data(:,43); %fold-m validation targets
                    %train model on each fold using GS values
                    tic %start timer
                    SVMModel = fitcsvm(x,t,'Standardize',true,'KernelFunction',i,...
```

```
'KernelScale',k, 'BoxConstraint', j, 'PolynomialOrder', o);
                        time=toc; %end timer save time
                        %get model accuracy
                        test_accuracy = sum((predict(SVMModel, y) == target_labels))/length(target_label
                        fprintf('k-fold %d: ', m)
                        disp(test_accuracy)
                        %append time and accuracy of fold to lists
                        list_acc = [list_acc, test_accuracy];
                        list_time = [list_time, time];
                    end
                    %calculate average of the folds
                    average_acc = mean(list_acc)
                    average_time = mean(list_time)
                    %save metadata and average results of each model to 'svm_results'
                    svm_results = vertcat(svm_results, {i, j, k, o ,average_acc, average_time});
                end
            end
       end
    end
end
```

The code takes a while to run, so some example outputs of the bayesian optimisation can be seen in the images below.

Objective function model Observed points Model mean Next point Model minimum feasible 0.55 Estimated objective function value 0.5 0.45 0.4 0.35 0.3 10⁰ 10⁰ KernelScale BoxConstraint

4. SVM Results Table

The results are saved to a .mat file so experiments only have to be run once.

```
%compile recorded results into table
SVM_Results = cell2table(svm_results(2:end, :));
SVM_Results.Properties.VariableNames = svm_results(1,:);
% save results to .mat file
save('smv_results.mat','svm_results');
```

The results of the SVM bayesian optimisation and grid search can be seen below.

Rank	Kernel	Box Constraint	Kernel Scale	Polynomi al Order	10-fold Accuracy	10-fold Time
2	gaussian	708.946	0.530		88.834	4.841
3	gaussian	945.261	0.318		88.748	6.188
4	gaussian	945.261	0.424		88.711	5.407
5	gaussian	1181.576	0.424		88.699	5.112
6	gaussian	708.946	0.318		88.662	6.368
7	gaussian	1181.576	0.530		88.625	4.884
8	gaussian	708.946	0.424		88.406	5.197
19	polynomial	0.004	0.261	2	75.284	315.196
20	polynomial	0.006	0.261	2	75.210	306.299
21	polynomial	0.007	0.261	2	75.174	298.073
22	linear	57.138	1.013	0	72.718	305.103
23	linear	71.422	1.013		72.645	303.200
24	linear	42.853	1.013		71.753	307.035
25	linear	71.422	1.350		71.484	307.230
26	linear	57.138	1.350		71.289	304.812
27	linear	42.853	1.350		70.837	265.461
37	polynomial	0.006	0.348	4	51.423	227.972
38	polynomial	0.007	0.435	4	51.411	222.670
39	polynomial	0.006	0.435	4	50.764	210.770
40	polynomial	0.004	0.348	4	50.629	228.438
41	polynomial	0.007	0.348	4	50.446	232.939
42	polynomial	0.004	0.435	4	50.239	235.738
43	polynomial	0.007	0.261	4	49.896	232.991
44	polynomial	0.004	0.261	4	49.884	238.581
45	polynomial	0.006	0.261	4	49.566	243.933

5. Model Selection

```
%A new model is fitted according to the optimum hyperparameters in the
%previous section. This will be tested on the test data and final accuracy
%will be calculated to assess model generalisability

%find row with best accuracy, and the index
[best_acc, best_acc_idx] = max(SVM_Results.Avg_Accuracy);

%get row using the index
best_parameters = SVM_Results{best_acc_idx,:}
best_kernel = best_parameters(1);
best_scale = str2num(best_parameters(3));
best_boxc = str2num(best_parameters(2));

%use best parameters to fit optimal model
Best_SVMModel = fitcsvm(Training(:, 1:42),Training(:, 43),'Standardize',true,'KernelFunction',best_kernel
```

```
'KernelScale', best_scale, 'BoxConstraint', best_boxc)

%fit make predictions on test data
predictions = predict(Best_SVMModel, Testing(:, 1:42));

%compare predictions to test
test_accuracy = sum(predictions == Testing(:, 43))/length(Testing(:, 43))*100
```