Задачи по курсу "Теория вероятностей"

лектор – доц. Родионов И.В.

осень 2016 г.

1. Системы множеств. Классическое вероятностное пространство.

- 1 Из *п*-элементного подмножества случайным образом выбирается *k* элементов. Опишите вероятностное пространство для схем упорядоченного выбора без повторения, упорядоченного выбора с повторением, неупорядоченного выбора без повторения и неупорядоченного выбора с повторением.
- **2** Случайно бросаются два M-гранных кубика, на гранях которых написаны числа от 1 до M. Опишите вероятностное пространство, события в котором соответствуют всем возможным исходам в таком эксперименте. Найдите вероятность события $A_i = \{\text{сумма чисел, выпавших на кубиках, равна } i\}, i = 2, ..., 2M$.
- ${f 3}$ Из множества N объектов выбирается случайное подмножество. Опишите соответствующее вероятностное пространство и найдите вероятность того, что это случайное подмножество имеет четную мощность.
- 4 По схеме случайного выбора с возвращением из множества натуральных чисел $1, \ldots, N$, $N \geq 4$, выбираются числа X и Y. Что больше: $P_2 = P(X^2 Y^2)$ делится на 2 или $P_3 = P(X^2 Y^2)$ делится на 3? Прежде чем сравнить вероятности, опишите вероятностное пространство и события, вероятности которых надо сравнить, в терминах этого вероятностного пространства.
- **5** Можно ли пару операций $\{\cup, \overline{A}\}$ в определении алгебры заменить на а) $\{\Delta, \cup\}$; б) $\{\Delta, /\}$; в) $\{A \cup \overline{B}, \overline{A}\}$; г) $\{\cup, \cap\}$; д) $\{\overline{A} \cap \overline{B}\}$?
- **6** Пусть \mathfrak{B}_1 и $\mathfrak{B}_2 \sigma$ -алгебры подмножеств пространства Ω . Будут ли σ -алгебрами системы множеств

```
a)\mathfrak{B}_1\cap\mathfrak{B}_2:=\{A:A\in\mathfrak{B}_1\ \mathrm{if}\ A\in\mathfrak{B}_2\},\ b)\mathfrak{B}_1\cup\mathfrak{B}_2:=\{A:A\in\mathfrak{B}_1\ \mathrm{if}\ A\in\mathfrak{B}_2\}?
```

7 Из совокупности всех подмножеств множества натуральных чисел $1, \ldots, N$ по схеме выбора с возвращением выбираются два множества A_1 и A_2 . Найти вероятность того, что $A_1 \cap A_2 = \emptyset$.

2. Классическое вероятностное пространство. Геометрические вероятности.

- 1 Множество из n шаров случайно раскладывают по m ящикам. Найдите вероятность того, что все ящики непустые, если (а) шары неразличимы, (b) шары различимы.
- **2** В группе 25 студентов. Считаем, что день рождения каждого студента случаен (считаем, что в году 365 дней). Найдите вероятность того, что хотя бы у двух человек дни рождения совпадают.
- 3 Некоторые жители Долгопрудного считают трамвайный билет "счастливым", если сумма первых трех цифр его шестизначного номера совпадает с суммой последних трех цифр. Найти вероятность получить "счастливый" билет.
- **4** На шахматной доске размера $n \times n$ случайно размещают n ладей. Найдите вероятности следующих событий:
 - (a) $A = \{$ ладьи не бьют друг друга $\}$.
 - (b) $B = \{$ ладьи не бьют друг друга, и на главной диагонали нет никаких фигур $\}$.
- **5** Случайная точка A имеет равномерное распределение в прямоугольнике со сторонами 1 и 2. Найдите вероятности следующих событий:
 - (a) расстояние от точки A до ближайшей стороны прямоугольника не превосходит x:
 - (b) расстояние от точки A до ближайшей диагонали прямоугольника не превосходит x;
 - (c) расстояние от точки A до любой стороны прямоугольника не превосходит x;
 - (d) расстояние от точки A до ближайшей стороны прямоугольника меньше, чем расстояние от A до ближайшей диагонали.
- 6 В круге радиуса R случайно проводится хорда. Обозначим через ξ ее длину. Найдите вероятность Р $(\xi > \sqrt{3}R)$, если
 - (а) середина хорды равномерно распределена в круге;
 - (b) направление хорды задано, а ее середина равномерно распределена на диаметре, перпендикулярном ее направлению;
 - (с) один конец хорды закреплен, а другой равномерно распределен на окружности.
- 7 Найти вероятность того, что из трех наудачу взятых отрезков длиной не более, чем 1, можно составить треугольник.

3. Условная вероятность. Формула полной вероятности и формула Байеса.

- 1 Брошено 3 игральных кости. Найти вероятность того, что на всех костях выпала "шестерка", при условии что
 - (а) на первой кости выпала "шестерка";
 - (b) по крайней мере на одной кости выпала "шестерка";
 - (с) по крайней мере на двух костях выпало равное количество очков.
- **2** В одном ящике содержится 1 белый шар и 2 черных шара, а в другом ящике 2 белых шара и 3 черных шара. В третий ящик кладут два шара, случайно выбранных из первого ящика, и два шара, случайно выбранных из второго ящика. Найдите вероятность того, что
 - (а) случайно выбранный из третьего ящика шар будет белым;
 - (b) при выборе без возвращения двух шаров из третьего ящика один из них будет будет белым, а второй черным.
- **3** Группа из 15 человек сдает экзамен по теории вероятностей. В программе 31 билет, пять из которых студенты считают халявными. Каким по очереди нужно заходить в аудиторию, чтобы с наибольшей вероятностью вытянуть халявный билет?
- 4 Мимо магазина пончиков проходят юноши с частотой 0,6; девушки с частотой 0,3; преподаватели с частотой 0,1. Юноши покупают пончик с вероятностью 0,4; девушки с вероятностью 0,9; преподаватели с вероятностью 0,2. Известно, что последний человек купил пончик. Найдите условную вероятность того, что пончик приобрел преподаватель.
- 5 Во время испытаний аппарата на макаронной фабрике было установлено, что вероятность его взрыва при отсутствии помех равна 0,01, при перегреве 0,05, при вибрации 0,1, при вибрации и перегреве 0,2. Найти вероятность взрыва на макаронной фабрике при работе в жарких странах (вероятность перегрева равна 0,2, вероятность вибрации 0,1), предполагая перегрев и вибрацию независимыми событиями (события A и B являются независимыми, если $P(A \cap B) = P(A)P(B)$).

4. Понятие независимости. Схема Бернулли.

- 1 Из ящика, содержащего черные и белые шары, извлекаются шары. Пусть событие A_k означает, что на k-м шаге извлечен белый шар. Докажите, что события A_1, \ldots, A_n
 - (а) независимы в совокупности, если выбор шаров производится с возвращением;
 - (b) зависимы, если выбор шаров производится без возвращения.
- **2** Игрок A подбрасывает 3 игральные кости, а игрок B-2 кости одновременно с игроком A. Эти испытания они проводят последовательно до первого выпадения "шестерки" хотя бы на одной из костей. Найдите вероятности следующих событий
 - (a) $\mathcal{A} = \{$ впервые "шестерка" выпала у игрока A, а не у $B\}$;
 - (b) $\mathcal{B} = \{$ впервые "шестерка" выпала у игрока B, а не у $A\}$;
 - (c) $C = \{$ впервые "шестерка" выпала одновременно у A и $B\}$.
- **3** Пусть A, B, C попарно независимые равновероятные события, причем $A \cap B \cap C = \emptyset$. Найдите максимально возможное значение P(A).
- 4 Дано множество S из n элементов. Из него случайно и независимо выбираются три подмножества $A,\ B,\ C$. Каждое случайное подмножество формируется следующим образом: каждый элемент множества S независимо от других с вероятностью p включается в подмножество, а с вероятностью (1-p) не включается. Найдите вероятность события $D = \{A \cap B \subseteq C \subseteq A \cup B\}$.
- **5** Исходы ξ_1, ξ_2, \ldots последовательности испытаний Бернулли с m возможными исходами $1, 2, \ldots, m$ и вероятностями исходов p_1, p_2, \ldots, p_m объединяются в блоки $(\xi_{mk+1}, \xi_{mk+2}, \ldots, \xi_{mk+m}), k \geq 0$. Пусть ν номер первого блока, все элементы которого различны (фактически, ν это случайная величина). Найдите $P(\xi_{m\nu+1} = 1)$.
- 6 Ребра полного графа K_n независимо друг от друга раскрашиваются с равной вероятностью $\frac{1}{k}$ в любой из k цветов. Пусть V множество вершин графа K_n , а $S \subset V$. Обозначим через A_S следующее событие: $A_S = \{$ все ребра K_n , вершины которых принадлежат S, покрашены в один и тот же цвет $\}$. При каких условиях на взаимное расположение подмножеств $S, T \subset V$ события A_S и A_T независимы?

5. Распределения вероятностей.

- 1 Пусть F(x) функция распределения, соответствующая распределению вероятностей Р. Доказать равенства:
 - a) P((a,b]) = F(b) F(a),
 - b) P([a,b]) = F(b) F(a-),
 - c) P((a,b)) = F(b-) F(a),
 - d) P([a,b)) = F(b-) F(a-),
 - e) $P({x}) = F(x) F(x-)$.
- **2** Показать, что каждая из функций $G_1(x,y) = I(x+y \ge 0)$, $G_2(x,y) = [x+y]$, где $[\cdot]$ целая часть числа, является непрерывной справа, возрастающей по каждой переменной, но не является функцией распределения в \mathbb{R}^2 .
- **3** Плотность абсолютно непрерывного распределения P, заданного на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, равна p(x). Найти функцию распределения, если
 - а) $p(x) = \lambda e^{-\lambda x} I(x \ge 0)$ (экспоненциальное, или показательное, распределение с параметром $\lambda > 0$),
 - b) $p(x) = \frac{\theta}{\pi(\theta^2 + (x x_0)^2)}$ (распределение Коши с параметром θ и смещением x_0),
 - с) $p(x) = \frac{1}{b-a}I(a \le x \le b)$ (равномерное распределение на [a,b]),
 - d) $p(x) = k(x-1)^{k-1}I(1 \le x \le 2), k \in \mathbb{N},$
 - е) $p(x) = xe^{-x}I(x > 0)$ (гамма-распределение с параметрами (2, 1)).
- **4** Пусть P дискретное распределение вероятностей на $(\mathbb{R}, \mathcal{B}(\mathbb{R})), p(x) = \mathsf{P}(\{x\}).$
 - а) Если $p(x) = \frac{1}{2N} I(x \in \{1, \dots, N\} \cup \{2N+1, \dots, 3N\})$ (равномерное распределение на множестве $\{1, \dots, N\} \cup \{2N+1, \dots, 3N\}$), то найти функцию распределения, соответствующую распределению вероятностей P .
 - b) Если $p(x) = \frac{\lambda^x e^{-\lambda}}{x!} I(x \in \mathbb{Z}_+)$, где $\lambda > 0$ (пуассоновское распределение с параметром λ), то найти $\mathsf{P}(2\mathbb{Z}_+)$, где $2\mathbb{Z}_+$ множество неотрицательных четных чисел.
 - с) Если $p(x) = (1-p)^{x-1}pI(x \in \mathbb{N})$, где $p \in (0,1)$ (геометрическое распределение с параметром p), то найти функцию распределения, соответствующую распределению вероятностей P, и $P(2\mathbb{Z}_+)$.
- **5** Стрелок в тире стреляет в "четверть круга", то есть в область $D = \{(x,y) : x^2 + y^2 < 1, x > 0, y > 0\}$. Распределение вероятности попадания P равномерное в области D. Иными словами, плотность такого распределения равна $p(x,y) = \frac{1}{\pi/4}I((x,y) \in D)$.
 - а) Найдите маргинальную функцию распределения и плотность распределения вероятностей P_1 , равной проекции P по первой координате,.
 - b) найдите вероятность попадания стрелка в квадрат $[0, 3/4] \times [0, 3/4]$,
 - с) найдите вероятность попадания в отрезок [1/2, 3/4] по оси y.
- **6** Пусть P вероятностная мера на $(\mathbb{R}^3, \mathcal{B}(\mathbb{R}^3))$, определенная равенством P = P₁ × P₂ × P₃, где P₁ и P₂ равномерные распределения на [0,1], P₃ экспоненциальное распределение с параметром $\lambda > 0$. Найдите
 - a) $P(\{(x, y, z) : x + z \le 3\}),$
 - b) $P(\{(x, y, z) : x y + z \ge 0\}),$
 - c) $P(\{(x, y, z): 1/2 \le xy \le 3z\}).$

6. Случайные величины.

- 1 Если $|\xi|$ является \mathcal{F} -измеримой, то верно ли, что ξ также \mathcal{F} -измерима?
- **2** Пусть ξ, η две случайные величины, заданные на (Ω, \mathcal{F}) . Пусть, кроме того, $A \in \mathcal{F}$. Докажите, что функция $\zeta(\omega) = \xi(\omega)I(\omega \in A) + \eta(\omega)I(\omega \in \overline{A})$ также является случайной величиной.
- **3** Случайная величина ξ имеет экспоненциальное распределение с параметром λ . Найдите плотности распределения случайных величин
 - a) $\sqrt{\xi}$,
 - b) ξ^k , $k \in \mathbb{N}$,
 - c) $\frac{1}{\lambda} \ln \xi$,
 - d) $\{\xi\}$, где $\{\cdot\}$ дробная доля,
 - e) $1 e^{-\alpha \xi}$.
- 4 Случайная величина ξ имеет стандартное распределение Коши. Найдите плотности распределения случайных величин $\frac{\xi^2}{1+\xi^2}, \frac{1}{1+\xi^2}, \frac{2\xi}{1-\xi^2}, \frac{1}{\xi}.$
- **5** Плотность распределения случайного вектора (ξ, η) равна $\frac{1}{\pi/4}I(x^2+y^2<1, x>0, y>0)$. Найдите плотность случайной величины $\xi+\eta$.
- 6 Пусть ξ случайная величина с непрерывной функцией распределения F. Каково распределение случайной величины $F(\xi)$?
- 7 Являются ли следующие множества борелевскими:
 - a) $B_1 = \{(x, y) : x^2 + y^2 \le 1\};$
 - b) $B_2 = \{(x, y) : x + y < 2\};$
 - c) множество Кантора на отрезке [0,1]?

7. Независимость. Формула свертки.

- 1 Пусть ξ_1, ξ_2 случайные величины, каждая из которых не зависит от случайной величины ξ . Верно ли, что вектор (ξ_1, ξ_2) также не зависит от случайной величины ξ ?
- **2** Пусть ξ_1, \ldots, ξ_n независимые одинаково распределенные случайные величины с функцией распределения F(x). Упорядочим значения ξ_1, \ldots, ξ_n по неубыванию. Возникает новая последовательность случайных величин $\xi_{(1)} \leq \ldots \leq \xi_{(n)}$, называемая вариационным рядом. Найдите
 - а) функцию распределения случайной величины $\xi_{(k)}$ для каждого $k \in \{1, \ldots, n\}$,
 - b) плотность случайной величины $\xi_{(k)}, \ k=1,\ldots,n,$ если F(x) имеет плотность f(x).
- 3 Случайные величины ξ и η независимы и равномерно распределены на отрезке [0,a]. Найдите плотности распределения случайных величин $\xi+\eta,\,\xi-\eta,\,\xi\eta$.
- **4** Случайные величины ξ_1 и ξ_2 независимы. С помощью формулы свертки найдите распределение $\xi_1 + \xi_2$, если
 - a) $\xi_i \sim Bin(n_i, p), i = 1, 2,$
 - b) $\xi_i \sim Pois(\lambda_i), i = 1, 2,$
 - c) $\xi_i \sim \mathcal{N}(a_i, \sigma_i^2), i = 1, 2,$
 - d) $\xi_i \sim \Gamma(\alpha_i, \lambda)$, i=1,2 (предполагается, что $p_{\xi_i}(x) = \frac{x^{\alpha_i-1}\lambda^{\alpha_i}e^{-\lambda x}}{\Gamma(\alpha_i)}I(x>0)$).
- **5** Случайные величины ξ_1,\dots,ξ_n независимы и имеют стандартное нормальное распределение. Найдите распределение случайной величины $\eta=\xi_1^2+\dots+\xi_n^2$.
- 6 Пусть X, Y независимые случайные величины. Найдите вероятность того, что из отрезков с длинами X, Y и 1 можно составить треугольник, если $X \sim R[0,1]$, а $Y \sim Exp(1)$.

8. Математическое ожидание и дисперсия. Абсолютно непрерывный и дискретный случаи.

- **1** Пусть $R_n = \{1, 2, ..., n\}$. Случайная величина ξ равна количеству элементов R_n , остающихся на своих местах при случайной перестановке. Найдите $\mathsf{E}\xi$ и $\mathsf{D}\xi$.
- **2** Экипаж космического корабля, состоящий из k космонавтов, отправился на освоение планет. Космонавты случайно высаживаются на m планетах. Случайная величина ξ равна количеству планет, на которые никто не высадился при таком случайном размещении. Найдите ξ и ξ осли (a) планеты неразличимы, (b) планеты различимы.
- **3** Рассматривается модель случайного графа G(n,p). Найдите $\mathsf{E} X$, если
 - а) X количество треугольников (циклов длины 3) в случайном графе,
 - b) X количество циклов длины k в случайном графе,
 - с) X количество клик (подграфов, являющихся полными графами) мощности k в случайном графе.
- 4 Дана случайная величина ξ . Найдите математическое ожидание и дисперсию ξ , если она имеет
 - а) биномиальное распределение с параметрами (n, p),
 - b) пуассоновское распределение с параметром λ ,
 - с) геометрическое распределение с параметром p (т.е. $P(\xi=k)=(1-p)^{k-1}p,\ k=1,2,\ldots),$
 - d) нормальное распределение с параметрами (a, σ^2) ,
 - е) равномерное распределение на отрезке (a, b),
 - f) гамма распределение с параметрами (α, λ) ,
 - g) бета распределение с параметрами (α, β) .
- **5** Случайная величина ξ имеет стандартное нормальное распределение. Вычислите $\mathsf{E}\xi^k$ и $\mathsf{E}|\xi|^k$ для $k\in\mathbb{N}$. Вычислить те же характеристики, если $\xi\sim\mathcal{N}(0,\sigma^2)$.

9. Математическое ожидание и дисперсия, другие случаи. Ковариация.

- **1** Приведите пример двух таких зависимых случайных величин ξ, η , ковариация которых равна 0, что
 - а) ξ, η не являются нормальными,
 - б) ξ, η являются нормальными.
- 2 Случайная величина ξ имеет следующую функцию распределения:

$$F(x) = \begin{cases} 0, & \text{если } x < -2; \\ 1/5, & \text{если } -2 \le x < 1; \\ x^2/4, & \text{если } 1 \le x < 2; \\ 1, & \text{если } x \ge 2; \end{cases}$$

Вычислите математическое ожидание и дисперсию ξ .

- **3** Стрелок в тире стреляет в "четверть круга", то есть в область $D = \{(x,y): x^2 + y^2 < 1, x > 0, y > 0\}$. Случайный вектор (ξ, η) является точкой попадания стрелка и имеет равномерное распределение в D. Найдите распределение координат точки попадания, а также $cov(\xi, \eta)$.
- 4 Случайные величины ξ, η (возможно, зависимые) обладают конечными дисперсиями: $D\xi = \sigma_1^2, D\eta = \sigma_2^2$. Указать пределы, в которых может изменяться $D(\xi + \eta)$.
- **5** Случайный вектор (ξ, η) имеет плотность

$$p_{(\xi,\eta)}(x,y) = \frac{1}{2\pi\sqrt{1-r^2}} e^{-(x^2-2xyr+y^2)/(2(1-r^2))},$$

где |r| < 1. Вычислите матрицу ковариаций случайного вектора (ξ, η) . Каково распределение случайной величины ξ ?

10. Виды сходимостей случайных величин.

- 1 Докажите, что в вероятностных пространствах с не более чем счетным числом элементарных исходов сходимость с вероятностью 1 эквивалентна сходимости по вероятности.
- **2** Случайные величины $\xi_1, \dots, \xi_n, \dots$ независимы и имеют распределение Бернулли, причем $\xi_n \sim Bern(p_n)$. Найдите необходимое и достаточное условие на числа p_1, p_2, \dots того, что (a) $\xi_n \stackrel{\mathsf{P}}{\longrightarrow} 0$; (b) $\xi_n \stackrel{L_p}{\longrightarrow} 0$, $p \geq 1$; (c) $\xi_n \stackrel{\text{п.н.}}{\longrightarrow} 0$.
- **3** Пусть последовательность случайных величин $(\xi_n)_{n\geq 1}$ такова, что для некоторого p>0 выполнено $\sum\limits_{n=1}^{\infty}\mathsf{E}|\xi_n|^p<\infty.$ Показать, что $\xi_n\xrightarrow{\mathrm{п.н.}}0.$
- 4 Пусть последовательность случайных величин $\xi_1, \dots, \xi_n, \dots$ сходится по распределению к константе C. Докажите, что тогда $\xi_n \stackrel{\mathsf{P}}{\longrightarrow} C$.
- **5** Пусть $(\xi_n)_{n\geq 1}$ последовательность случайных величин. Обозначим $S_n = \xi_1 + \ldots + \xi_n$. Покажите, что если $\xi_n \xrightarrow{\text{п.н.}} \xi$, то $\frac{S_n}{n} \xrightarrow{\text{п.н.}} \xi$. Докажите, что сходимость почти наверное нельзя заменить на сходимость по вероятности.

11. Случайное блуждание. Лемма Бореля-Кантелли.

На семинаре необходимо разобрать задачи: $P(S_n = x)$, принцип отражения, лемма о баллотировке.

- 1 Найти вероятность того, что симметричное случайное блуждание никогда не возвратится в 0. Иными словами, найти $\lim_{n\to\infty} P(S_2\neq 0,\ldots,S_{2n}\neq 0)$.
- **2** Пусть $(S_n; n \in \mathbb{N})$ симметричное случайное блуждание на прямой. Используя принцип отражения, докажите, что

$$P\left(\max_{k \le n} S_k \ge N; S_n < N\right) = P(S_n > N).$$

- **3** Пусть $(S_n; n \in \mathbb{N})$ симметричное случайное блуждание на прямой. Используя результат задачи 2, найдите распределение случайной величины $M_n = \max_{k \le n} S_k$ и асимптотику EM_n при $n \to \infty$.
- **4** Пусть $(S_n; n \in \mathbb{N})$ случайное блуждание с вероятностью шага вправо p и шага влево q, p+q=1. Докажите, что для $m \leq N$ выполнено

$$P\left(\max_{k \le n} S_k \ge N; S_n = m\right) = C_n^u p^v q^{n-v},$$

где $v = \frac{n+m}{2}, u = v - N.$

5 Пусть ξ_1, ξ_2, \ldots — последовательность независимых одинаково распределенных случайных величин, $\xi_i \sim \mathcal{N}(0,1)$. Показать, что

$$P\left(\overline{\lim_{n\to\infty}} \frac{\xi_n}{\sqrt{2\ln n}} = 1\right) = 1.$$

6 Пусть ξ_1, ξ_2, \ldots — последовательность независимых одинаково распределенных случайных величин, $\xi_i \sim Pois(\lambda), \lambda > 0$. Показать, что, независимо от λ ,

$$P\left(\overline{\lim_{n\to\infty}}\frac{\xi_n \ln \ln n}{\ln n} = 1\right) = 1.$$

12. Характеристические функции.

- 1 Найдите характеристическую функцию случайной величины ξ , если
 - (a) $\xi \sim Bin(n, p)$; (b) $\xi \sim Pois(\lambda)$; (c) $\xi \sim Geom(p)$; (d) $\xi \sim N(a, \sigma^2)$;
 - (e) $\xi \sim R(a,b)$; (f) $\xi \sim \Gamma(\alpha,\lambda)$; (g) $\xi \sim Cauchy(\theta)$; (h) ξ имеет распределение Лапласа с параметром $\theta > 0$ (т.е. $p_{\xi}(x) = \frac{1}{2\theta} e^{-|x|/\theta}$).
- **2** Пусть $\varphi(t)$ характеристическая функция. Покажите, что выполняются неравенства
 - (a) $1 \text{Re } \varphi(2t) < 4(1 \text{Re } \varphi(t))$,
 - (b) $(\text{Im } \varphi(t))^2 < \frac{1}{2} (1 \text{Re } \varphi(2t))$,
 - (c) $(\text{Re } \varphi(t))^2 \leq \frac{1}{2} (1 + \text{Re } \varphi(2t)),$
 - (d) $\left| \frac{1}{h} \int_{t-h}^{t+h} \varphi(u) du \right| \leq \frac{1}{\sqrt{2}} \left(1 + \operatorname{Re} \varphi(h) \right)^{\frac{1}{2}}.$
- 3 Выясните, являются ли следующие функции характеристическими:
 - (a) $\sin t$, (b) $\cos t$, (c) $\cos^2 t$, (f) $\frac{1}{1+t^2}$, (g) $\frac{1}{1+t^4}$, (h) $e^{-|t|^3}$. (d) $\cos t^2$, (e) $e^{-|t|}I\{t<0\}+(1+t^2)^{-1}I\{t\geq0\}$,
- 4 Пусть ξ_1, ξ_2 независимые случайные величины. С помощью характеристических функций найдите распределение $\xi_1 + \xi_2$, если (a) $\xi_i \sim N(a_i, \sigma_i^2)$, (b) $\xi_i \sim \Gamma(\alpha_i, \lambda)$, (c) $\xi_i \sim Cauchy(\theta_i)$.
- **5** Пусть $\{\xi_n, n \in \mathbb{N}\}$ последовательность нормальных случайных величин. Докажите, что если $\xi_n \xrightarrow{d} \xi$, то ξ — тоже нормальная случайная величина.

13. Гауссовские векторы. Центральная предельная теорема.

- 1 При наборе текста стенографист ошибается в символе с вероятностью 0,0005. Найти приближенное значение вероятности того, что при наборе 10000 символов стенографист ошибется не более, чем в трех.
- **2** По схеме выбора с возвращением выбирается 10000 случайных цифр. Найти приближенное значение вероятности того, что выбрано от 940 до 1060 девяток.
- 3 Имеется n случайных чисел, выбранных по схеме выбора с возвращением из $\{1, \ldots, 999999999\}$. Из этих чисел по очереди вытягиваются числа, делящиеся на 3. При каком ограничении на n можно выбрать 1025 чисел с приближенной вероятностью, не меньшей 0.95?
- 4 Брошено 1800 игральных костей. Найти приближенное значение вероятности того, что суммарное число появлений 2 и 6 не меньше, чем 620.
- 5 Пусть $X = (\xi, \eta)$ гауссовский вектор. Подберите такие числа x_1, x_2 , что случайные величины $\eta + x_1 \xi, \eta + x_2 \xi$ являются независимыми.
- 6 Случайные величины X и Y независимые нормальные с параметрами (0,1). Докажите, что распределение случайной величины $Z = (X+a)^2 + (Y+b)^2$ зависит только лишь от величины $r = \sqrt{a^2 + b^2}$.