EE1002 Tutorial 8

(Questions from Alexander & Sadiku, 7th edition, Problems 6.13, 6.48, & 6.61)

1. Find the voltage across the capacitors in the following circuit under dc conditions.

2. Under steady-state dc conditions, find *i* and *v* in the following circuit.

3. Consider the following circuit. Find: (a) L_{eq}, $i_1(t)$ and $i_2(t)$ if $i_s = 3e^{-t}$ mA, (b) $v_0(t)$, (c) energy stored in the 20-mH inductor at t=1s. [Hint: the energy stored in an inductor is given by $W = (1/2)Li^2$, where L and i are the inductance and inductor current, respectively. Similarly, the energy stored in a capacitor is given by $W = (1/2)Cv^2$, where C and v are the capacitance and capacitor voltage, respectively.]

Answers

- 1. $v_1 = 42 \text{ V}, v_2 = 48 \text{ V}.$
- 2. i = 3 mA, v = 60 V
- 3. (a) $L_{eq} = 6.667 \text{ mH}$, $i_1(t) = e^{-t} \text{ mA}$, $i_2(t) = 2e^{-t} \text{ mA}$.
 - (b) $v_0 = -20e^{-t} \mu V$.
 - (c) w = 1.3534 nJ