PATENT Attorney Docket No.:AHA-02201

In the Claims:

Please cancel Claim 1

1 2 3 4 5	2.	(New) a. b.	A method of soft decision decoding, the method comprising the steps of: receiving an input signal over a channel; and approximating a Log-Likelihood-Ratio result of the input signal, wherein the Log-Likelihood-Ratio result is independent of a signal to noise ratio value calculable over the channel.
1 2 3 4	3.	(New)	The method of soft decision decoding according to claim 2 wherein the step of approximating further comprises calculating an actual Log-Likelihood-Ratio value for each of a plurality of m bits per symbol contained in the input signal.
1 2 3 4	4.	(New)	The method of soft decision decoding according to claim 3 wherein the step of approximating further comprises separating the actual Log-Likelihood-Ratio values into one or more n-regions, wherein n is an integer.
1 2 3 4	5.	(New)	The method of soft decision decoding according to claim 4 wherein the step of approximating further comprises determining a constant, a_n , by computing a partial derivative for the actual Log-Likelihood-Ratio values in the one or more n-regions.
1 2 3 4	6.	(New)	The method of soft decision decoding according to claim 5 wherein the step of approximating further comprises determining a slope for the actual Log-Likelihood-Ratio value for each of the plurality of m bits per symbol.
1 2 3	7.	(New)	The method of soft decision decoding according to claim 6 wherein the slope is determined by use of a linear equation, wherein the linear equation utilizes the constant a_n .

PATENT Attorney Docket No.:AHA-02201

- 1 8. (New) The method of soft decision decoding according to claim 6 wherein the 2 step of approximating further comprises quantizing the slope for each m 3 bit per symbol.
 - 9. (New) The method of soft decision decoding according to claim 8 wherein the step of quantizing is performed using a quantizing equation

$$Quantize = \left(LLR \frac{2^{SOFT_BITS \rightarrow}}{qLIMIT} + 2^{SOFT_BITS \rightarrow}\right)$$

1 2

3

3

4

5

6

7

8

9

10

11

- wherein the SOFT_BITS value and the qLIMIT value are dependent on the signal to noise ratio.
- 1 10. (New) A method of soft decision decoding over a channel, the method comprising the steps of:
 - a. receiving an input signal over the channel, wherein the input signal has a plurality of m bits per symbol;
 - b. calculating an actual Log-Likelihood-Ratio value for each of the plurality of m bits per symbol;
 - c. determining a slope for the actual Log-Likelihood-Ratio value of each m bit; and
 - d. quantizing the slope for each m bit per symbol and generating a Log-Likelihood-Ratio result, wherein the Log-Likelihood-Ratio value is independent of noise over the channel.
- 1 11. (New) The method of soft decision decoding according to claim 10 further
 2 comprising separating the actual Log-Likelihood-Ratio values into one or
 3 more n-regions, wherein n is an integer.
- 1 12. (New) The method of soft decision decoding according to claim 11 further
 2 comprising determining a constant a_n by computing a partial derivative for
 3 the actual Log-Likelihood-Ratio values in the one or more n-regions.

- 1 13. (New) The method of soft decision decoding according to claim 12 wherein the slope is determined by use of a linear equation, wherein the linear equation utilizes the constant a_n.
- 1 14. (New) The method of soft decision decoding according to claim 10 wherein the step of quantizing is performed using a quantizing equation

$$Quantize = \left(LLR \frac{2^{SOFT_BITS \rightarrow}}{qLIMIT} + 2^{SOFT_BITS \rightarrow}\right)$$

3

4

5

6

7

8 9

10

11 12

13

14

15

17

- wherein the SOFT_BITS value and the qLIMIT value are dependent on the signal to noise ratio.
- 1 15. (New) A method of soft decision decoding over a modulated channel wherein a signal to noise ratio may be calculated over the channel, the method comprising the steps of:
 - a. receiving an input signal over the channel, wherein the input signal has a plurality of m bits per symbol;
 - b. calculating an actual Log-Likelihood-Ratio value for each of the plurality of m bits per symbol, wherein the actual Log-Likelihood-Ratio value includes a SOFT_BITS value for each of the plurality of m bits per symbol;
 - c. separating the actual Log-Likelihood-Ratio values into one or more n-regions, wherein n is an integer;
 - d. determining a constant, a_n by computing a partial derivative for the actual Log-Likelihood-Ratio values in the one or more n-regions;
 - e. calculating a slope by use of a linear equation, wherein the linear equation utilizes the constant a_n; and
- 16 f. quantizing the constant a_n by utilizing the quantizing equation

18 $Quantize = \left(LLR \frac{2^{SOFT_BITS \rightarrow}}{qLIMIT} + 2^{SOFT_BITS \rightarrow}\right)$

PATENT Attorney Docket No.:AHA-02201

1	wherei	wherein the SOFT_BITS value and qLIMIT are dependent on the signal to noise ratio,				
2	the qua	the quantizing equation generating a quantized Logarithmic-Likelihood-Ratio result				
3	substa	substantially independent of the signal to noise ratio over the channel.				
1	16.	(New)	A Logarithmic Likelihood Ratio module for soft decision decoding over a			
2		modula	ated channel, the Logarithmic Likelihood Ratio module comprising:			
3		a.	an input module for receiving a plurality of (I,Q) data symbols;			
4		b.	a modulation unit for determining a modulation scheme for calculating a			
5			Logarithmic Likelihood Ratio result for the plurality of (I,Q) data symbols,			
6			wherein the Logarithmic Likelihood Ratio result is substantially			
7			independent of a signal to noise ratio over the modulated signal; and			
8		c.	a converter module for converting the Logarithmic Likelihood Ratio result			
9			of the plurality of (I,Q) data symbols into unsigned values.			
1.	17.	(New)	The Logarithmic Likelihood Ratio module according to claim 16 further			
2			comprising a gain module for amplifying the plurality of data symbols by a			
3			multiplicative factor.			
1	18.	(New)	The Logarithmic Likelihood Ratio module according to claim 16 further			
2			comprising a PSK module for calculating the Logarithmic Likelihood			
3			Ratio result by determining a slope of the plurality of (I,Q) data symbols in			
4			a phase shift key modulation scheme.			
1	19.	(New)	The Logarithmic Likelihood Ratio module according to claim 16 further			
2			comprising a QAM module for calculating the Logarithmic Likelihood			
3			Ratio result by a determining a slope of the plurality of (I,Q) data symbols			
4			over a quadrature amplitude modulation scheme.			
1	20.	(New)	The Logarithmic Likelihood Ratio module according to claim 19 further			
2			comprising a second QAM module for calculating the Logarthimic			
3			Likelihood Ratio result for a portion of the m bits in parallel with the			
4			QAM module.			

Attorney Docket No.:AHA-02201

1	21.	(New) The Logarithmic Likelihood Ratio module according to claim 16 further
2		comprising a multiplexer coupled to the modulation unit, wherein
3		multiplexer provides the Logarithmic Likelihood Ratio result to the
4		converter module.