Komponente sustava: TRANSFORMATORI

DIS_TR.2 – Grupe spoja, zagrijavanje i hlađenje, kratki spoj, autotransformatori

Prof. dr. sc. Zlatko Maljković

Spoj zvijezda (Y, y)

Karakteristike spoja zvijezda trofaznog transformatora:

- ekonomičniji je za višenaponske namote;
- omogućava neutralnu točku;
- omogućava direktno uzemljenje ili uzemljenje preko impedancije;
- omogućava reduciranu razinu izolacije nulte točke (graded insulation);
- omogućava smještaj otcjepa i regulacijske sklopke u neutralnoj točki za svaku fazu;
- dopušta jednofazno opterećenje s nultom komponentom struje.

Spoj trokut (D, d)

Karakteristike spoja trokut trofaznog transformatora:

- ekonomičniji za namote s velikim strujama i niženaponske namote;
- u kombinaciji s namotom u spoju zvijezda reducira nultu impedanciju u tom namotu.

Spoj slomljena zvijezda (razlomljena zvijezda, cik-cak) (z)

Karakteristike spoja cik-cak trofaznog transformatora:

- dopušta opterećenje nultom komponentom struje uz smanjenje nulte impedancije (koristi se za uzemljivačke transformatore da formira umjetnu nultočku sustava);
- smanjuje naponsku nesimetriju u sustavu u kojem teret nije jednoliko raspodijeljen po fazama.

Grupe spoja trofaznih transformatora

- Grupa spoja (Connection symbol) označava:
 - Spoj višenaponskog (VN) namota (Y, D ili Z)
 - Oznaka izvedene nule (N ili bez oznake)
 - Spoj niženaponskog (NN) namota (y, d ili z)

Oznaka izvedene nule (*n* ili bez oznake)

Satni broj

Yd5

Oznake priključaka

Primjeri grupe spoja

Osnovne grupe spoja trofaznih transformatora – parni satni broj

	DdO	A C	م م	
0	Yy0	A C	a c	
	Dz0	A C	<u>_</u>	f
	Dd6	A C	c V	
6	Yy 6	B N C	c o	300
	Dz6	A C	ر کر ۵	

Osnovne grupe spoja trofaznih transformatora – neparni satni broj

	Dy5	A C	c —	
5	Yd5	A C	~ ~ ~ ~ ~ ~	
	Y ₂ 5	A C		
11	Dy11	A C	° c	
	Yd11	A C	, C	
	Yz11	A C	٥	

Paralelni rad transformatora

Uvjeti paralelnog rada:

- Isti satni broj
- Jednaki nazivni naponi transformacije U_{1n}/U_{2n}
- Približno jednaki naponi kratkog spoja, razlika do 10%
- Omjer nazivnih snaga ne veći od 2

Paralelno spojeni transformatori

Dopušteno opterećenje n paralelno spojenih transformatora S_d

$$S_d = u_{k \min} \sum_{i=1}^n \frac{S_{ni}}{u_{ki}}$$

Opterećenje pojedinog

transformatora S_i

$$S_i = \frac{S_{ni}}{u_{ki}} u_{k \min}$$

gdje su:

 u_{ki} - napon kratkog spoja i-tog transformatora

 u_{kmin} - napon kratkog spoja transformatora s minimalnim u_k

Podjela simbola grupe spoja prema satnim brojevima i mogućnost paralelnog spajanja:

- Skupina I satni broj 0, 4 i 8
- Skupina II satni broj 2, 6 i 10
- Skupina III satni broj 1 i 5
- Skupina IV satni broj 7 i 11
- Paralelni spoj transformatora spajanjem izvoda (bez otvaranja kotla) je moguć spajanjem transformatora samo iz iste skupine s parnim satnim brojevima i spajanjem transformatora s obje neparne skupine s neparnim satnim brojevima.

Paralelni spoj

 Transformatori s različitim satnim brojevima – satni brojevi iz iste skupine

Paralelni spoj

 Transformatori iz različitih skupina (III i IV) neparni satni brojevi

Paralelni rad grupe jednakih transformatora

Struja magnetiziranja trofaznog transformatora s izvedenim nul-vodom

- Magnetski tok je sinusnog valnog oblika jer se treći harmonik struje magnetiziranja može zatvoriti nulvodom.
- Treći harmonik struje mora teći da bi se formirao sinusni magnetski tok zbog nelinearne krivulje magnetiziranja.

Struja magnetiziranja trofaznog transformatora bez nul-voda

Zbog nemogućnosti protoka trećeg harmonika struje magnetiziranja deformira se krivulja magnetskog toka.

Iznos toka Φ_3 ovisi o tipu jezgre

Magnetski tok i inducirani napon trostupnog transformatora (namoti spojeni u zvijezdu bez nul-voda)

3.harmonik magnetskog toka je malen, jer se može zatvoriti samo rasipnim putovima s vrlo velikim magnetskim otporom

Magnetski tok i inducirani napon **peterostupnog** transformatora ili **tri jednofazna** transformatora (namoti spojeni u zvijezdu bez nul-voda)

3.harmonik magnetskog toka je velik, jer se može zatvoriti magnetskom jezgrom s vrlo malim magnetskim otporom, pa je i deformacija napona velika

Simetrične komponente u simboličkom računu

- Rastavljanje trofaznog sustava od 3 fazora (A, B, C) na 3 sustava simetričnih fazora (O,d,i)
- Olakšava račun nesimetričnih opterećenja po fazama
- Direktni (*d*), inverzni (*i*) i nulti (*o*) sustav

PAZI: Ne miješati s uzdužnim, poprečnim i nultim sustavom kad se prikazuju trenutne vrijednosti varijabli u npr. dvoosnoj teoriji strojeva.

Veza originalnih fazora i fazora u simetričnim komponentama

■ Fazori originalnih struja faze I_{Δ} , I_{R} i I_{C} i fazori simetričnih komponenti I_O, I_d i I_i

$$\begin{bmatrix} \boldsymbol{I}_{A} \\ \boldsymbol{I}_{B} \\ \boldsymbol{I}_{C} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_{0} \\ \boldsymbol{I}_{1} \\ \boldsymbol{I}_{2} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_{A} \\ \mathbf{I}_{B} \\ \mathbf{I}_{C} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{0} \\ \mathbf{I}_{1} \\ 1 & a \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a \end{bmatrix} \begin{bmatrix} \mathbf{I}_{A} \\ \mathbf{I}_{B} \\ \mathbf{I}_{C} \end{bmatrix}$$

$$\underline{a} = e^{j\frac{2\pi}{3}} = \cos(\frac{2\pi}{3}) + j\sin(\frac{2\pi}{3}) = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$$

Nadomjesne shema u sustavu simetričnih komponenti

■ Direktni, inverzni i nulti sustav

Reaktancije transformatora u simetričnim komponentama

- Reaktancija u direktnom sustavu je ona prikazana uobičajenom nadomjesnom shemom
- Inverzna reaktancija je jednaka direktnoj (kao kod svih pasivnih elemenata)
- Nulta reaktancija ovisi o izvedbi transformatora, spoju namota i uzemljenju nul-točke

Struja magnetiziranja za spoj YN

- Nulta komponenta struje magnetiziranja ovisi o izvedbi jezgre trofaznog transformatora:
 - Trostupni: $X_{om} = (4-5) X_d$
 - Petrostupni: $X_{om} \le X_m$
 - Tri jednofazna transformatora: $X_{om} = X_m = ^1000 X_d$

Nulta reaktancija transformatora s posredno uzemljenom nul-točkom

Spoj YNy s posredno uzemljenom nul-točkom

Spoj YNyn s obje posredno uzemljene nul-točke

Prijenos topline

- Pojava spontanog prijenosa topline u smjeru temperaturnog pada, tj. od tijela više temperature na tijelo niže temperature ili od toplijih prema hladnijim slojevima tijela.
- Tri načina prijenosa topline:
 - provođenje ili kondukcija (vođenje),
 - konvekcija (odvođenje) prijelaz topline od fluida na čvrstu stjenku ili od stjenke na fluid,
 - zračenje ili radijacija (isijavanje).

Jednadžba toplinskog stanja homogenog tijela

■ Za homogeno tijelo mase m, specifičnog toplinskog kapaciteta c i površine A vrijedi:

$$\Phi_t dt = m c d \vartheta + A \alpha \vartheta dt$$

- Toplinski tok: Φ_{t}
- lacktriangle Koeficijent prijelaza topline: lpha
- Toplinski kapacitet tijela: *mc*
- lacktriangle Toplinska vodljivost tijela: $A\alpha$
- Maksimalno zagrijanje (nadtemperatura) tijela pri konstantnom dovodu topline:

$$\vartheta_{m} = \frac{\Phi_{t}}{A\alpha}$$

Zagrijavanje i hlađenje homogenog tijela (1)

Ako su Φ_t , c i α konstante tada je rješenje jednadžbe toplinskog stanja kod zagrijavanja:

$$\vartheta = \vartheta_0 + (\vartheta_{\text{max}} - \vartheta_0) \cdot \left(1 - e^{-\frac{t}{T}}\right)$$

i hlađenja:

$$\vartheta = \vartheta_1 e^{-\frac{t}{T}}$$

■ **Toplinska** vremenska konstanta:

$$T = \frac{mc}{A\alpha}$$

Zagrijavanje i hlađenje homogenog tijela (2)

- \bullet θ temperatura
- ϑ- nadtemperatura (zagrijanje)

$$T = \frac{mc}{A\alpha}$$

Toplinska vremenska konstanta namota i ulja i specifični toplinski kapacitet dijelova u transformatoru

- Transformator nije homogeno tijelo, ali se proces prijelaza topline zasniva na navedena tri načina.
- Toplinska vremenska konstanta prikazuje se s dvije konstante:
 - \blacksquare namota: T_n iznos u minutama
 - \blacksquare ulja: T_{ii} iznos u satima
- Specifični toplinski kapacitet c (J/kg K)

Bakar	390	Aluminij	920
Magnetski lim	485	Transf. ulje	1800-1900
Voda	4190	Papir u ulju	1200
Tvrdi papir u ulju	~2000	Bukovina	~ 2000

Transformator opterećen 4 sata sa S_n , a zatim s $1,5S_n$

Porast temperature namota i transformatorskog ulja

$$P_{\text{on}} = 0.4 \text{ kW}, T_{\text{n}} = 6 \text{ min } q_{\text{n-u}} = 20 \text{ K}$$

 $P_{\text{tn}} = 2 \text{ kW}$ $T_{\text{T}} = 3 \text{ sata } q_{\text{n-ok}} = 60 \text{ K}$

Načini hlađenja transformatora

Oznaka načina hlađenja transformatora sastoji se od 4 slova:

- 1. Rashladno sredstvo namota
- 2. Način hlađenja namota
- 3. Rashladno sredstvo vanjskog hlađenja
- 4. Način hlađenja za vanjsko hlađenje

Rashladno sredstvo:

O – mineralno ulje,

L – sintetsko ulje,

G – plin,

W – voda,

A - zrak

S – kruti materijali.

Način hlađenja:

N – prirodno,

F – prisilno,

D – dirigirano.

Primjeri oznake hlađenja transformatora:

- ONAN hlađenje prirodnim strujanjem ulja oko namota, i zraka kao sekundarnog rashladnog sredstva (uljni transformatori do 20 MVA)
- ONAN/ONAF do 80% snage ONAN, dalje se automatski uključuju ventilatori
- ODWF hlađenje namota dirigiranim strujanjem ulja u kotlu, te sekundarnim rashladnim krugom u kojem prisilno struji voda (najveći transformatori)
- AN suhi transformatori bez zaštitnog kućišta
- ANAN suhi transformatori sa zaštitnim kućištem i prirodnim strujanjem zraka unutar i izvan kućišta
- **AF** suhi transformatori za veće snage

Prisilno hlađenje transformatora

1 – jezgra

2 – pumpa

3 – VN namot

4 – SN namot

5 – NN namot

strelice označavaju smjer strujanja ulja

Vodeni hladnjaci

- Na veće transformatore ponekad se ugrađuju hladnjaci koji rashlađuju ulje odvodom topline vodom umjesto zrakom
- Manjih su dimenzija ali zahtijevaju rashladnu vodu

Dopušteno zagrijavanje transformatora prema IEC normi

Dio	Dopušteno zagrijanje (K)	
<i>Uljni transformatori</i> namoti	65 za prirodno i prisilno strujanje ulja 70 za dirigirano strujanje ulja	
ulje u najvišem sloju	65 ako je ulje zaštićeno od pristupa zraka 55 ako ulje nije zaštićeno od pristupa zraka	
Suhi transformatori namoti	toplinska klasa 60	
Jezgra, metalni i ostali dijelovi	Temperatura ne smije biti tolika da može oštetiti jezgru ili susjedne dijelove	

Suhi transformatori (IEC 60076-11 Dry-type transformers)

Nadtemeratura
 (zagrijanje) namota
 (Winding temperaturerise limits)

Izolacijski sustav* (°C)	Srednja** nadtemperatura namota pri <i>In</i> (K)
105 (A)	60
120 (E)	75
130 (B)	80
155 (F)	100
180 (H)	125
200	135
220	150
401 .	

^{*}Slovne oznake uz temperature su prema IEC 60085

^{**} Temperature se mjere prema točki 23

Starenje izolacije

- Izolacija pod utjecajem temperature, kisika, vlage i drugih agenasa s vremenom stari.
- V. M. Montsinger istraživao je proces starenja izolacijskih materijala pod utjecajem temperature uzimajući kriterij kraja vijeka trajanja smanjenje vlačne čvrstoće za 50%.
- Vijek trajanja izolacije:

$$Z = Z_0 2^{-\frac{\vartheta - \vartheta_0}{\Delta}}$$

Vijek trajanja (životna dob)

- $lacksquare Z_0$ normalni vijek trajanja
- lacksquare normalna temperatura

 $Z = Z_0 2^{-\frac{\theta - \theta_0}{\Delta}}$

- △ konstanta materijala
- lacksquare temperatura kojoj je izolacija izložena
- Konstanta materijala za izolaciju uljnih transformatora Δ = 6 °C, a normalna temperatura θ_0 = 98 °C.
- Proces starenja po navedenoj formuli vrijedi u granicama temperature izolacije 80 °C do 130 °C.
- Danas je prihvaćen pojam relativnog trošenja vijeka trajanja v

Trošenje vijeka trajanja

 Trošenje vijeka trajanja papirno-uljne izolacije

$$(\Delta = 6^{\circ}C)$$

$$\nu = 2^{(\theta - \theta_0)/\Delta}$$

$$v_{\%} = 100v$$

Istrošenost izolacije

$$I_Z = \frac{1}{Z_0} \sum_{i=1}^n v_{i\%} t_i$$

41

Pokus zagrijavanja

Svrha:

- Potvrda temičke ispravnosti TR (zagrijanje namota, najtoplije točke i zagrijanje ulja)
- Potvrda funkcionalnosti sustava za hlađenje
- Sposobnost preopterećenja po specifikaciji prema normi (IEC 60076-7)
- Temelj za procjenu vijeka trajanja

Način:

- Direktno mjerenje najtoplije točke -"hot spot" (fyber optičkim senzorima)
- Termovizijsko snimanje

Pokus zagrijavanja - Termički dijagram

Key

- A Top-oil temperature derived as the average of the tank outlet oil temperature and the tank oil pocket temperature
- B Mixed oil temperature in the tank at the top of the winding (often assumed to be the same temperature as A)
- C Temperature of the average oil in the tank
- D Oil temperature at the bottom of the winding
- E Bottom of the tank
- gr Average winding to average oil (in tank) temperature gradient at rated current
- H Hot-spot factor
- P Hot-spot temperature
- Q Average winding temperature determined by resistance measurement
- X-axis Temperature
- Y-axis Relative positions
- measured point; calculated point

Prema IEC 60076-7

Shema spoja za pokus zagrijavanja transformatora

- Iz pokusa zagrijavanja određuju se:
 - teretni gubici P_t
 - napon kratkog spoja u_k

Struja kratkog spoja

Struja kratkog spoja (efektivna vrijednost)

Ako je impedancija mreže Z_s zanemariva, struja kratkog spoja se može računati:

$$I_k = \frac{U_n}{U_k} I_n = \frac{100}{u_{k\%}} I_n$$

Ako je $Z_s > 5\%Z_k$ struja se računa:

$$I_k = \frac{U_n}{(Z_k + Z_S)\sqrt{3}}$$

Tjemena vrijednost struje udarnog kratkog spoja (prvi maksimum asimetrične struje):

Reaktancije i otpori transformatora i mreže:

$$X = X_k + X_S$$
 $R = R_k + R_S$

Ako je omjer X/R nepoznat, k_k se računa:

$$k_k = 1.8\sqrt{2} = 2.55$$

 I_{kmax} se može računati i kao:

$$I_{k \max} = k_u \sqrt{2} I_k$$

$$k_u = 1 + e^{-\frac{1}{2fT}} = 1 + e^{-\frac{\pi R}{X}}$$

Deformacije namota nastale zbog kratkog spoja transformatora u pogonu

Sile na namote u transformatoru u kratkom spoju

Sile računamo iz magnetske energije rasipnog polja

$$A_{\sigma} = \frac{i^2}{2} w^2 \mu_0 \frac{D_s \pi}{l_{\sigma}} \delta_r$$

Radijalna sila F_r

$$F_r = \frac{\partial A_\sigma}{\partial \delta_r} = \frac{i^2}{2} w^2 \mu_0 \frac{D_s \pi}{l_\sigma}$$

Aksijalna sila F_a

$$F_a = \frac{\partial A_{\sigma}}{\partial l_{\sigma}} = \frac{i^2}{2} w^2 \mu_0 \frac{D_s \pi}{l_{\sigma}^2} \delta_r = F_r \frac{\delta_r}{l_{\sigma}}$$

Tipska snaga

Tipska snaga transformatora je nazivna snaga dvonamotnog transformatora bez regulacije. Ako imamo mogućnost regulacije napona za $+a_{\%}$ i $-b_{\%}$ treba jednom namotu dodati $a_{\%}$ zavoja, i presjek vodiča povećati za $b_{\%}$ da bi pri tom nižem naponu struja bila veća za $b_{\%}$. Tipska snaga takvog transformatora da nema regulacije je približno:

$$S_T = S_N \left(1 + \frac{a_\% + b_\%}{200} \right)$$

Ako postoji treći namot nazivne snage S_3 tipska snaga je:

$$S_T = S_N \left(1 + \frac{a_\% + b_\%}{200} + \frac{S_3}{2S_N} \right)$$

Autotransformator – transformator u štednom spoju

- Autotransformator je transformator u kojem su barem dva namota kruto spojena u zajednički namot.
- Višenaponska strana namota sastoji se od serijskog i zajedničkog (paralelnog) namota.
- Niženaponska strana se sastoji samo od zajedničkog namota.
- U autotransformatoru samo se dio snage transformira induktivnim putem, dok se preostali dio prenosi direktno s primara na sekundar preko galvanske veze namota.

Prednosti i nedostaci autotransformatora

- Prednosti autotransformatora prema dvonamotnom transformatoru za iste napone i snagu u osnovi se sastoji u manjim dimenzijama, nižim gubicima, većoj korisnosti, lakšem transportu i nižoj cijeni.
- Negativne strane autotransformatora proizlaze iz galvanske veze primarnog i sekundarnog kruga i time direktnog prijenosa prenapona s jednog sustava na drugi.
- Spoj trofaznog namota autotransformatora mora biti u zvijezda spoju da bi se mogao jedan izvod zajedničkog namota uzemljiti.
- Izolacijski sustav autotransformatora je kompleksniji zbog gotovo redovito izvedenih dodatnih regulacijskih zavoja.

Shema autotransformatora

$$k_a = U_{1a} / U_{2a} = (w_1 + w_2) / w_2$$

Snaga autotransformatora

$$S_{\rm a} = U_{1a}I_{1a} = (U_1 + U_2)I_1$$

$$S_{\mathbf{a}} = U_1 I_1 \left(1 + \frac{U_2}{U_1} \right)$$

$$S_{\rm a} = S_{\rm T} \frac{U_{\rm 1a}}{U_{\rm 1a} - U_{\rm 2a}}$$

Tipska snaga:

$$S_{\mathrm{T}} = S_{\mathrm{a}} \left(1 - \frac{U_{\mathrm{2a}}}{U_{\mathrm{1a}}} \right)$$

Faktor redukcije:

$$q = \frac{S_{\mathrm{T}}}{S_{\mathrm{a}}} = \left(1 - \frac{U_{\mathrm{2a}}}{U_{\mathrm{1a}}}\right)$$

Napon kratkog spoja autotransformatora

Napon kratkog spoja s VN strane u postotnom iznosu je manji jer je primarni napon veći (umjesto U_1 bazni je napon $U_{1a} = U_1 + U_2$):

$$u_{ka\%} = 100 \frac{Z_{k}}{\frac{U_{a}^{2}}{S_{a}}} = 100 \frac{Z_{k}S_{T} \frac{U_{1a}}{U_{1a} - U_{2a}}}{\left(\frac{U_{1a}}{U_{1a} - U_{2a}}\right)^{2} U_{n}^{2}} = u_{k\%} \frac{U_{1a} - U_{2a}}{U_{1a}}$$

$$u_{\text{ka\%}} = u_{\text{k\%}} \frac{S_{\text{T}}}{S_{\text{a}}}$$

■ Zbog manjih struja kratkog spoja u mreži često je zahtjev kupaca da $u_{\rm ka}$ bude većeg iznosa (čak i do 40%), pa se autotransformator mora raditi s posebnom konstrukcijom namota koje karakteriziraju povećani dodatni gubici.

Primjena autotransformatora

Zbog uštede se često primjenjuju autotransformatori za velike snage pri povezivanju VN mreža (400, 220 i 110 kV). Najčešće se izrađuju tronamotni transformatori s VN i SN namotima spojenim u zvijezdu

u štednom spoju, a NN namot je galvanski odvojen i spojen je u trokut. Taj se tercijar obično ne koristi za napajanje svoje mreže; tada ga nazivamo stabilizacijski namot kojim se ostvaruje da u magnetskom toku i induciranom naponu nema trećeg harmonika.

 Često se autotransformatorima dograđuje regulacijska sklopka zbog mogućnosti podešavanja prijenosnog omjera pod teretom.

Regulacija napona autotransformatora (napon VN strane čvrst)

Regulacija napona autotransformatora (napon VN strane promjenljiv)

Primjer zaštite transformatora 35/10(20) kV (35 kV mreža uzemljena)

