Билет 10. Степенные ряды. Радиус сходимости, формула Коши-Адамара. Почленное интегрирование и дифференцирование степенных рядов.

Степенной ряд и область его сходимости *Степенным рядом* называется функциональный ряд вида 1 или 2

$$a_0 + \sum_{k=1}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
(1),

где $a_0, a_1, a_2, ... a_n, ...$ – коэффициенты ряда .

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 – степенной ряд с центром разложения в точке x_0 (2)

Сделали замену : $t=x-x_0$. Получили : $\sum_{n=0}^{\infty}a_nt^n$

Краткое док-во основных теорем. Более полное смотри в дополнении .

Теорема Абеля.

 Φ ормулировка . Если степенной ряд сх-ся $\sum\limits_{n=0}^{\infty}a_n\cdot x^n$ сх-ся при $x=x_1\neq 0$, то он сх-ся абсолютно для $\forall x:|x|<|x_1|$, если степенной ряд расх-ся при $x=x_2$, то он расходится при $\forall x:|x|>|x_2|$.

Если ряд $\sum_{n=0}^{\infty} a_n \cdot x^n$ сх-ся в какой-то точке x_1 , то он сходится при $\forall x \in (-|x_1|,|x_1|)$

Если ряд $\sum_{n=0}^{\infty} a_n \cdot x^n$ расходится в какой-то точке x_2 , то он расходится $\forall x \in (-\infty, -|x_2|) \cup (|x_2|, +\infty)$

Док-во

1. Любой степенной ряд сх-ся при x=0 , поэтому далее рассматриваем $x_1 \neq 0, x_2 \neq 0$.

$$\forall x \in (-|x_1|, |x_1|) \ |a_n \cdot x^n| = |a_n \cdot x^n \cdot \frac{|x_1^n|}{|x_1^n|}| = |a_n \cdot x_1^n| \cdot |\frac{x}{x_1}|^n$$

 $\sum_{n=0}^{\infty} a_n \cdot x_1^n \text{ сх-ся} \Rightarrow \lim_{n \to \infty} a_n \cdot x_1^n = 0 \Rightarrow \exists C : |a_n \cdot x_1^n| < C \ \forall n \ (\text{так сх-ся последовательность ограничена})$

Значит
$$|a_n \cdot x^n| = |a_n \cdot x_1^n| \cdot |\frac{x}{x_1}|^n < C|\frac{x}{x_1}|^n$$
 . Так как $|\frac{x}{x_1}|^n < 1$ то ряд $\sum_{n=0}^{\infty} |a_n \cdot x^n|$ сх-ся так как сх-ся

ряд с большими положительными членами $\sum\limits_{n=0}^{\infty}C\cdot |\frac{x}{x_1}|^n$

2.Предположим , что $\exists x \in (-\infty, -|x_2|) \cup (|x_2|, +\infty)$, что ряд $\sum_{n=0}^{\infty} a_n \cdot x^n$ сх-ся . Тогда по первому пункту в x_2 он также сх-ся , а это противоречит условию .Значит при $(-\infty, -|x_2|) \cup (|x_2|, +\infty)$ ряд $\sum_{n=0}^{\infty} a_n \cdot x^n$ расходится .

Следствие:

Пусть $A=\sup\{|x_1|\}$ (такие x_1 , что ряд сх-ся) $B=\inf\{|x_2|\}$ (такие x_2 , что ряд расх-ся) A=B $\forall x\in (-A,A)$ ряд сх-ся и $\forall x\in (-\infty,A)\cup (A,+\infty)$ ряд расх-ся . A – радиус сходимости . Будем обозначать его B .

Утв.1 Пусть степенной ряд $\sum\limits_{n=0}^{\infty}a_n\cdot x^n$ сх-ся в точке $x\neq 0$. Тогда этот ряд абсолютно сх-ся в каждой точке числовой прямой , либо $\exists R>0$ такое что , ряд сх-ся абсолютно при |x|< R и расх-ся при |x|>R.

Определение

Интервалом сходимости степенного ряда $\sum\limits_{n=0}^{\infty}a_n\cdot x^n$ наз-ся интервал (-R,R), где R>0, такой что в каждой точке $x\in (-R,R)$ ряд абсолюно сх-ся , а в точках x:|x|>R ряд расходится . Число R радиус сходимости степенного ряда . На концах интервала ряд может как сх-ся , так и расходится

Теорема 1 (Коши-Адамара)

1. Если $\sqrt[n]{|a_n|}$ – неограничена, то радиус сходимости степенного ряда $\sum_{n=0}^{\infty} a_n \cdot x^n = R = 0$

$$2$$
.Если $\lim_{n o\infty}\sqrt[n]{|a_n|}=0$, то $R=+\infty$

3. Если $\overline{\lim_{n\to\infty}}=\frac{1}{R}\in(0,+\infty),$ то R – радиус сходимости степенного ряда $\sum_{n=0}^{\infty}a_n\cdot x^n$.

1. $\sqrt[n]{|a_n|}$ – неограниченна $\Rightarrow \forall x \neq 0$ $\sqrt[n]{|a_n|} \cdot x$ – неограничена $\Rightarrow |a_n x^n|$ — неограничена \Rightarrow общий член $\sum\limits_{n=0}^{\infty} a_n x^n$ не стремится к $0 \Rightarrow$ ряд $\sum\limits_{n=0}^{\infty} a_n x^n$ расходится . 2. $\lim\limits_{n \to \infty} \sqrt[n]{|a_n|} = 0 \Rightarrow \forall x \lim\limits_{n \to \infty} \sqrt[n]{|a_n|} \cdot x = 0 \Rightarrow \forall \varepsilon > 0 \; \exists N_\varepsilon \; \forall n > N_\varepsilon \; |\sqrt[n]{|a_n|} \cdot x| < \varepsilon \Rightarrow |a_n x^n| < \varepsilon^n$. Возымень $\sum\limits_{n=0}^{\infty} a_n x^n = 0$.

мем $|\varepsilon| < 1$ и ряд $\sum_{n=0}^{\infty} |a_n x^n|$ сходится так как сходится ряд с большими положительными членами

$$\sum\limits_{n=0}^{\infty} arepsilon^n$$
 . А так как сходится $\sum\limits_{n=0}^{\infty} |a_n x^n| \Rightarrow$ сх-ся $\sum\limits_{n=0}^{\infty} a_n x^n$

 $3.\forall x \in (-R;R)$ рассмотрим ряд $\sum_{n=0}^{\infty} |a_n x^n|$

 $\overline{\lim_{n\to\infty}}\sqrt[n]{|a_nx^n|} = \overline{\lim_{n\to\infty}}\sqrt[n]{|a_n||x^n|} = |x| < \frac{1}{R} < 1 \Rightarrow \text{ряд } \sum_{n=0}^{\infty} |a_nx^n| \text{ сходится по признаку Коши} \Rightarrow \text{сх-ся}$ и ряд $\sum_{n=0}^{\infty} a_n x^n$.

При существовании конечного предела $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = L \ (0 < L < +\infty)$ радиус сходимости степенного ряда $\sum_{n=0}^{\infty} a_n \cdot x^n$ или $\sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$ $(x \neq x_0)$ можно найти по формуле $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$

$$|a_0| + |a_1 \cdot x| + |a_2 \cdot x^2| + \dots + |a_n \cdot x^n| + \dots = \sum_{n=0}^{\infty} |a_n \cdot x^n|$$

Применим к ряду признак Даламбера.

$$\lim_{n\to\infty}\frac{|a_{n+1}\cdot x^{n+1}|}{|a_n\cdot x^n|}=\lim_{n\to\infty}\frac{|a_{n+1}|\cdot |x^{n+1}|}{|a_n|\cdot |x^n|}=\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}\cdot |x|=|x|\cdot \lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=|x|\cdot L\Rightarrow$$

ряд будет сх-ся (расх-ся) если $|x|\cdot L < 1$ ($|x|\cdot L > 1$) \Rightarrow степенной ряд сх-ся абсолютно при $x:|x|<\frac{1}{L}$ ля оудет сх-си (раск см.) то определению радиуса сходимости получим $R=\frac{1}{L}$ т.е. $R=\frac{1}{\lim\limits_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}}$ или $R=\lim\limits_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}$

Радиус сходимости степенного ряда можно также найти по формуле $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_-|}}$, если $\exists \lim_{n \to \infty} \sqrt[n]{|a_n|} = L \ (0 < L < +\infty)$

Пример. Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot n \cdot x^n$

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{|(-1)^{n-1} \cdot n|}{|(-1)^n \cdot (n+1)|} = \lim_{n \to \infty} \frac{n}{n+1} = 1 \Rightarrow$$
 ряд абсолютно сх-ся на $-1 < x < 1$

Исследуем на концах : x = -1 : $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot n \cdot (-1)^n = \sum_{n=1}^{\infty} (-1)^{2n-1} n = \sum_{n=1}^{\infty} (-n)$. Для него не выполнен

необходимый признак сходимости : $\lim_{n \to \infty} (-n) \neq 0$. x = 1 : $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot n$. Для него $\nexists \lim_{n \to \infty} (-1)^{n-1} n \Rightarrow 0$ ряд расходится.

Теорема 2

Пусть для $\sum\limits_{n=0}^{\infty}a_{n}\cdot x^{n}$ R>0 . Тогда :

$$1. \forall r \in (0,R) \sum_{n=0}^{n=0} a_n x^n \rightrightarrows S(x)$$
 на $[-r,r]$
2. $S(x) \in C(-R,R)$

2.
$$S(x) \in C(-R, R)$$

3. $\forall x_0, x \in (-R, R) \sum_{n=0}^{\infty} \int_{x_0}^{x} a_n \cdot t^n dt = \int_{x_0}^{x} S(t) dt$
4. $S(x) \in C^{\infty}(-R, R)$

 $1.\forall x\in[-r,r]\ |a_nx^n|\le|a^n|\cdot r^n\ r\in(0,R)\ \Rightarrow$ ряд $\sum\limits_{n=0}^\infty|a_n|r^n$ сх-ся \Rightarrow по признаку Вейерштрасса $\sum_{n=0}^{\infty} |a_n \cdot x^n| \Rightarrow$ на $[-r,r] \Rightarrow \sum_{n=0}^{\infty} a_n \cdot x_n \Rightarrow S(x)$ на [-r,r]

 $2.\forall r\in(0,R)\ \forall x\in[-r,r]\sum_{n=0}^{\infty}a_n\cdot x_n\rightrightarrows S(x), a_nx^n\in C[-r,r]\Rightarrow S(x)\in C[-r,r]$ В силу произвольности выбора $r(S(x)) \in C[-R, R]$

3. Следует из следующей теоремы

если
$$f(x)\in C(a,b)\sum\limits_{n=1}^\infty f_n(x)\Rightarrow S(x)$$
 на (a,b) , то $\forall x_0,x\in (a,b)\sum\limits_{n=1}^\infty \int_{x_0}^x f_n(t)dt=\int_{x_0}^x S(t)dt$

4. Сначала докажем , что $S(x) \in C^1(-R,R)$.

Из первого пункта следует $\forall r \in (0,R) \sum_{n=0}^{\infty} a_n \cdot x^n \rightrightarrows S(x)$ на [-r,r]

$$\sum_{n=0}^{\infty}(a_n\cdot x^n)'=\sum_{n=0}^{\infty}n\cdot a_n\cdot x^{n-1}\rightrightarrows S(x)' \text{ на }[-r,r] \text{ так как }\overline{\lim_{n\to\infty}\sqrt[n]{|n\cdot a_n|}}=\overline{\lim_{n\to\infty}\sqrt[n]{n}}\cdot \overline{\lim_{n\to\infty}\sqrt[n]{|a_n|}}=\overline{\lim_{n\to\infty}\sqrt[n]{|a_n|}=\overline{\lim_{n\to\infty}\sqrt[n]{|a_n|}}=\overline{\lim_{n\to\infty}\sqrt[n]{|a_n|}=\overline$$

Дальше материал по книге Ильина, Позняка

Составим с помощью коэффициентов a_n ряда (1) числовую последовательность

$$\{\sqrt[n]{|a_n|}\}(n=1,2,..)(*)$$

Теорема Коши-Адамара (1)

- 1. Если последовательность (*) не ограничена, то степенной ряд (1) сходится лишь при x=0.
- 2. Если последовательность (*) ограничена и имеет верхний предел L>0 , то ряд (1) абсолютно сходится для значений x , удовлетворяющих неравенству $|x|<rac{1}{L}$ и расходится для значений x , удовлетворяющих неравенству $x > \frac{1}{L}$
- 3. Если последовательность (*) ограничена и имеет верхний предел L=0, то ряд (1) абсолютно сходится для $\forall x$

Док-во

1. Пусть последовательность (*) неограничена. Тогда при $x \neq 0$ последовательность $|x|\sqrt[n]{|a_n|} = \sqrt[n]{|a_n x^n|}$ также не ограничена, т.е. у этой последовательности имеются члены со сколь угодно большими номерами n, удовлетворяющие неравенству $\sqrt[n]{|a_nx^n|}>1$ или $|a_nx^n|>1\Rightarrow$ нарушено необходимое условие сходимости числового ряда \Rightarrow ряд (1) расходится при $x \neq 0$

- 2. Пусть последовательность (*) ограничена и имеет верхний предел L>0 :
- а) Фиксируем сначала любое x удовлетворяющий $|x|<\frac{1}{L}$. Тогда $\exists \varepsilon>0$ такой что $|x|<\frac{1}{L+\varepsilon}$ По свойству верхнего предела все элементы $\sqrt[n]{|a_n|}$, начиная с некоторого номера n удовлетворяют неравенству : $\sqrt[n]{|a_n|} < L + \frac{\varepsilon}{2} \Rightarrow$ начиная с указанного n справедливо :

 $\sqrt[n]{|a_nx^n|}=|x|\sqrt[n]{|a_n|}<rac{L+rac{arepsilon}{2}}{L+arepsilon}<1\Rightarrow$ по критерию Коши ряд абсолюно сходится .

б) Фиксируем любой x удовлетворяющий неравенству $|x| > \frac{1}{L}$. Тогда $\exists \varepsilon > 0 : |x| > \frac{1}{L - \varepsilon}$. По определению верхнего предела из последовательности $\sqrt[n]{|a_n|}$ (n = 1, 2, ...) можно выделить подпоследовательность $\left\{\sqrt[nk]{|a_{n_k}|}\right\}$ (k=1,2,...) сходящуюся к $L \Rightarrow$ начиная с указанного номера k

$$\left\| \sqrt[n_k]{|a_{n_k}x^{n_k}|} = |x| \sqrt[n_k]{|a_{n_k}|} > \frac{L-\varepsilon}{L-\varepsilon} = 1$$

или $|a_{n_k}x^{n_k}|>1$ \Rightarrow нарушено необходимое условие сходимости ряда (1) — ряд расходится

3. Пусть последовательность (*) ограничена и имеет верхний предел L=0. Фиксируем про- извольное $x\neq 0$. Поскольку верхний предел L=0 и последовательность $\sqrt[n]{|a_n|}$ (n=1,2,..) не может быть иметь отрицательных предельных точек L=0 – единственная предельная точка \Rightarrow последовательность $\sqrt[n]{|a_n|}$ (n=1,2,..) бесконечно малая $\Rightarrow \frac{1}{2|x|} > 0 \; \exists n \in \mathbb{N}$: начиная с которого $\sqrt[n]{|a_n x^n|} = |x| \; \sqrt[n]{|a_n|} < \frac{1}{2} < 1 \Rightarrow$ по признаку Коши ряд абсолюно сходится .

Теорема 2

Для каждого степенного ряда (1) если он не является рядом сходящимся лишь в точке x=0, $\exists R>0$ (возможно $R=\infty$) такое, что этот ряд сходится при |x|< R и расходится при |x|>R — радиус сходимости степенного ряда (-R,R) — промежуток сходимости этого ряда.

$$R$$
 – радиус сходимости степенного ряда $(-R,R)$ – промежуток сходимости этого ряда. Формула Коши-Адамара $R=rac{1}{\displaystyle \varlimsup_{n o \infty} \sqrt[n]{|a_n|}}$ (в случае $\displaystyle \varlimsup_{n o \infty} \sqrt[n]{|a_n|}=0, R=\infty$)

Замечание На концах промежутка в точках x=R и x=-R ряд (1) может как сходится , так и расходится .

Непрерывность суммы степенного ряда

Пусть степенной ряд (1) имеет радиус сходимости R>0 .

Лемма . Каково бы ни было ${\bf r}: 0 < r < R$ ряд (1) равномерно сходится на сегменте [-r,r] , т.е. $|x| \le r$

Док-во По теореме 2 ряд (1) абсолютно сходится при x = r, т.е. сходится ряд $|a_0| + \sum_{k=1}^{\infty} |a_k| r^k$. Последний числовой ряд мажорирует ряд (1) при $\forall x \in [-r,r] \Rightarrow$ по признаку Вейерштрасса (Д2) ряд (1) сходится равномерно на сегменте [-r,r].

Следствие В условиях леммы 2 сумма ряда (1) является функцией, непрерывной на сегменте [-r,r] (Д3)

Теорема 3

Сумма степенного ряд внутри его промежутка сходимости является непрерывной функцией .

Док-во

Пусть S(x) – сумма степенного ряда (1) , а R – его радиус сходимости . Фиксируем $\forall x: |x| < R \Rightarrow \exists r: |x| < r < R. \Rightarrow$ по следствию из леммы функция S(x) непрерывна на сегменте $[-r.r] \Rightarrow S(x)$ непрерывна в точке x .

Почленное интегрирование и почленное дифференцирование степенного ряда Теорема 4

Если R>0 — радиус сходимости степенного ряда (1) , а x — удовлетворяет условию |x|< R , то ряд можно почленно интегрировать на сегменте [0,x] . Полученный в результате почленного интегрирования ряд имеет тот же радиус сходимости , что и исходный ряд.

Док-во Для $\forall x: |x| < R \ \exists r: |x| < r < R$. По лемме ряд (1) сходится равномерно на сегменте [-r, r], а значит \Rightarrow на [0, x]. Но тогда по Д4 этот ряд можно почленно интегрировать на [0, x]. В результате почленного интегрирования получится степенной ряд

$$a_0x + \frac{a_1}{2}x^2 + \dots + \frac{a_{n-1}}{n}x^n + \dots$$

радиус сходимости которого величина обратная верхнему пределу последовательности.

$$\sqrt[n]{\frac{|a_{n-1}|}{n}} = \frac{\sqrt[n]{|a_{n-1}|}}{\sqrt[n]{n}}(**)$$

$$\lim_{n\to\infty}\sqrt[n]{n} = 1, \overline{\lim_{n\to\infty}\sqrt[n]{|a_{n-1}|}} = \overline{\lim_{n\to\infty}\sqrt[n+1]{|a_n|}} = \overline{\lim_{n\to\infty}\left[\sqrt[n]{|a_n|}\right]^{\frac{n}{n+1}}} = \overline{\lim_{n\to\infty}\left[\sqrt[n]{|a_n|}\right]}$$

Так как верхний предел (**) тот же что и у (*) – теорема доказана .

Теорема 5

Степенной ряд (1) внутри его промежутка сходимости можно дифференцировать почленно . Ряд , полученный почленным дифференцированием имеет тот же радиус сходимости R , что и исходный ряд .

Первая часть утверждения (из Д5 и леммы)

Вторая часть : $a_1 + 2 \cdot a_2 \cdot x + ... + n \cdot a_n \cdot x^{n-1} + (n+1) \cdot a_{n+1} \cdot x^n + ...$ Радиус сходимости R обратен верхнему пределу последовательености $\left\{ \sqrt[n]{(n+1)|a_{n+1}|} \right\}$

$$\lim_{n\to\infty}\sqrt[n]{n+1}=1, \overline{\lim_{n\to\infty}\sqrt[n]{|a_{n+1}|}}=\overline{\lim_{n\to\infty}\sqrt[n-1]{|a_n|}}=\overline{\lim_{n\to\infty}}\big[\sqrt[n]{|a_n|}\big]^{\frac{n}{n-1}}=\overline{\lim_{n\to\infty}}\big[\sqrt[n]{|a_n|}\big]$$

Следствие

Степенной ряд внутри его промежутка сходимости можно дифференцировать почленно сколько угодно раз. Ряд , полученный n - кратный почленным дифференцированием исходного степенного ряда , имеет тот же радиус сходимости , что и исходный ряд

Дополнение

Д0 Св-ва верхнего предела ??

Д1 Критерии сходимости числового ряд Коши и Даламбера см Билет 7

 $\mathbf{Д2}$ (Ильин, Позняк часть 2 стр. 21) Функциональный ряд \Rightarrow на данном множестве , если его можно мажорировать на этом множестве сходящимся числовым рядом

 \square (Ильин, Позняк часть 2 стр. 26) Если все члены функционального ряда непрерывны на [a,b] и если указанный ряд сходится \rightrightarrows на [a,b] , то и сумма этого ряда непрерывна на [a,b]

 $\mathcal{A}4.$ (Ильин, Позняк часть 2 стр. 27) . Если функциональная последовательность $\{f_n(x)\}$ сходится к предельной функции $f(x) \Rightarrow$ на сегменте [a,b] и если каждая функция $f_n(x)$ интегрируема на сегменте [a,b], то и предельная функция f(x) интегрируема на сегменте [a,b], причем указанную последовательность можно интегрировать на сегменте [a,b] почленно, т.е. предел $\exists \lim_{n\to\infty} \int_a^b f_n(x) dx$

и равен $\int_a^b f(x)dx$

Д5.(Ильин,Позняк часть 2 стр. 29). Пусть каждая функция $f_n(x)$ имеет на сегменте [a,b] производную $f'_n(x)$, причем последовательность производных $\{f'_n(x)\} \Rightarrow$ на [a,b], а сама последовательность $\{f_n(x)\}$ сходится в хотя бы одной точке x_0 сегмента [a,b]. Тогда последовательность $\{f_n(x)\}$ сходится к некоторой предельной функции f(x) равномерно на всем сегменте [a,b], причем эту последовательность можно дифференцировать на сегменте [a,b] почленно, т.е. всюду на сегменте [a,b] предельная функция f(x) имеет производную f'(x), являющуюся предельной функцией последовательности $\{f'_n(x)\}$