

MODELLING FLEXIBLE ARMS VIBRATION-FREE MOVEMENTS

Università degli studi di Parma

Anno Accademico: 2022/2023

Cocconi Matteo 356072 Faia Ruben 355711 Ravaglia Roberto 356094

Obiettivi

First Step:

- Approssimazione vibrazioni sistema 1 DOF

$$y'' + w^2y = F(t)$$

Second Step:

- Definire la legge in input, le condizioni iniziali e finali e plottare la risposta del sistema

Third Step:

- Considerare la legge di input totale e trovare la risposta del sistema a t_f e a $t > t_f$, dove t_f è il tempo di fine movimentazione.

Fourth Step:

- Considerare la risposta del sistema a $t > t_f$ e proporre soluzioni per ridurre le vibrazioni residue

Obiettivi

Opzionali:

- 1. Considerare il loss factor η della trave in alluminio
- 2. Considerare la possibilità di aggiungere un assorbitore/neutralizzatore di vibrazioni, valutandone i suoi parametri
- 3. Proporre una differente legge del moto ottimizzata per ridurre le vibrazioni residue.

Analisi del sistema

Modello del braccio:

Legge di moto:

Control Slew angle [θ]	20°	Hub rotary inertia $[J_h]$	0 kg m ²
Actioning time $[t_f]$	1 s	Appendage Young's mod. [E]	7 ·10 ¹⁰ N m ⁻²
Appendage length [L]	1 <i>m</i>	Appendage density [ρ]	2.62 ·10 ³ kg m ⁻³
End mass [m _e]	1 <i>kg</i>	End mass rotary inertia $[J_{ m e}]$	$J_{\rm e} = m_{\rm e} (0.05)^2$
Hub radius [r]	0 m	Appendage cross-section	0.05·0.05 <i>m</i>

Analisi del sistema

Rigidezza Trave Alluminio:

$$k = \frac{(3EI)}{l^3} = 109375 \frac{N}{m}$$

Calcolo Accelerazione Angolare:

$$s = s_0 + vt + \frac{1}{2}at^2$$

$$a = \Theta'' = \frac{\pi}{2} \ rad/s^2$$

1DOF

Equazione del moto : my'' + ky = F(t)

3 metodi di risoluzione:

1. Soluzione Analitica

2. Soluzione tramite Matlab

3. Soluzione tramite Simulink

Equazione del moto: my'' + ky = F(t)

$$\Delta t = 1/3 \text{ s}$$

Condizioni Iniziali:

$$y(0)=0$$

$$y'(0)=0$$

Equazione risolta primo step: 0.25

$$y = \frac{F}{k} * (1 - \cos(w_n * t))$$

$$y' = \frac{F}{k} * (\sin(w_n * t) * w_n)$$


```
Condizioni Iniziali a t=1/3 s:
spost_finale=(F/k)*(1-(cos(wn*tf)));
vel_finale=(F/k)*wn*(sin(wn*tf));
Equazione risolta secondo step:
y2=(vel_finale/wn)*sin(wn*(t2-t0))+spost_finale*cos(wn*(t2-t0));
y2dot=(vel_finale/wn)*cos(wn*(t2-t0))*(wn)-spost_finale*sin(wn*(t2-t0))*wn;
Condizioni Iniziali a t=2/3 s:
spost finale2=(vel finale/wn)*sin(wn*(2/3-t0))+spost finale*cos(wn*(2/3-t0));
vel_finale2=(vel_finale/wn)*cos(wn*(2/3-t0))*wn+spost_finale*(-sin(wn*(2/3-t0))*wn);
Equazione risolta terzo step:
y3=(vel_finale2/wn)*sin(wn*(t3-2*t0))+(spost_finale2+F/wn^2)*cos(wn*(t3-2*t0))-F/wn^2;
y3dot=(vel_finale2/wn)*cos(wn*(t3-2*t0))*wn+(spost_finale2+F/wn^2)*(-sin(wn*(t3-2*t0))*wn);
```


1DOF: Sol. Analitica Smorzata

Considerando il loss factor della trave:

$$\eta = 2\zeta \to \zeta = 0.5 * 10^{-4}$$

Material	Viscous Damping Ratio ζ (under approximately 20 °C)
Aluminum	~ 0.5 10 ⁻⁴
Lead (pure)	~ 10 ⁻²
Iron	1 to 3 10 ⁻⁴
Copper (polycrystalline)	10 ⁻³
Magnesium	~ 0.5 10 ⁻⁴
Brass	< 0.5 10 ⁻³
Nickel	< 0.5 10 ⁻³
Silver	< 1.5 10 ⁻³
Bismuth	~ 4 10 ⁻⁴
Zinc	~ 1.5 10 ⁻⁴
Tin	~ 10 10 ⁻⁴

Coefficiente di smorzamento critico = smorzamento/smorzamento critico

$$\zeta = \frac{c}{c_{cr}} = \frac{c}{2\sqrt{km}} \rightarrow c = \zeta * 2\sqrt{km}$$

Equazione del moto: my'' + cy' + ky = F(t)

1DOF: Sol. Analitica Smorzata

1DOF: Soluzione ODE45


```
function dydt=eq_diff_spost(t,y)
m0=6.75;
m1=1+33/140*m0;
L=1;
E=7e10;
h=0.05;
I=h^4/12;
k=3*E*I/L^3;
csi=5e-5;
c=csi*2*sqrt(k*m1);
if t<1/3
    F=m1*pi/2*L;
elseif t<2/3
    F=0;
elseif t<1
    F=-m1*pi/2*L;
else
    F=0;
end
dydt=zeros(2,1);
dydt(1)=y(2);
dydt(2)=(1/m1)*(F-c*y(2)-k*y(1));
```


Massa Equivalente = Mtip + Meq = Mtip + 33/140 Mbeam

```
tspan=linspace(0,5,100000);
ic=[0 0];
[t,y]=ode45(@eq_diff_spost,tspan,ic);
```

1DOF: Confronto Risultati

1DOF: Soluzione ODE45

1DOF: Controllo vibrazioni, tf=0.971 UNIVERSITÀ

1DOF: Controllo vibrazioni, tf=0.986 UNIVERSITÀ

1DOF: Differente Legge del Moto

1DOF: Modello Simulink

1DOF: Soluzione tramite Simulink

2DOF: Assorbitore di Vibrazioni

Equazione del moto 2DOF:

$$\begin{cases} m1x1'' + c2(x1' - x2') + c1x1' + k2(x1 - x2) + k1x1 = F1 \\ m2x2'' + c2(x2' - x1') + k2(x2 - x1) = F2 \end{cases}$$

Inserimento Assorbitore di Vibrazioni:

$$\mu = \frac{m_a}{m} = 0.1 \to m_2 = 2.59 \ kg * 0.1 = 0.259 \ kg$$
$$\frac{w_a}{w_n} = \frac{1}{1+\mu} = 0.91 \to k_2 = 9039.25 \frac{N}{m}$$

$$\zeta_{opt} = \sqrt{\frac{3}{8} \frac{\mu}{(1+\mu)^3}} = 0.1679 \rightarrow c_2 = 17.04 \frac{Ns}{m}$$

^{*}Ponendo c2,k2,F2 = 0 si ottengono gli stessi risultati del sistema 1DOF

2DOF: Assorbitore di Vibrazioni


```
function dydt=eq_diff_spost2DOF(t,y)

m0=6.75;
m1=1+33/140*m0;
mu=0.1;
L=1;
E=7e10;
h=0.05;
I=h^4/12;
k1=3*E*I/L^3;
csi1=5e-5;
c1=csi1*2*sqrt(k1*m1);
m2=mu*m1;
k2=k1*mu*(1+mu)^-2;
csi_opt=sqrt((3/8)*(mu/((1+mu)^3)));
c2=csi_opt*2*sqrt(k2*m2);
```

```
if t<1/3
   F1=m1*pi/2*L;
elseif t<2/3
   F1=0;
elseif t<1
   F1=-m1*pi/2*L;
else
    F1=0;
end
if t<1/3
   F2=m2*pi/2*L;
elseif t<2/3
   F2=0;
elseif t<1
   F2=-m2*pi/2*L;
else
    F2=0;
end
dydt=[y(1);y(2);y(3);y(4)];
dydt(1)=y(2);
dydt(2)=(1/m1)*(F1-c1*y(2)-c2*y(2)+c2*y(4)-k1*y(1)-k2*y(1)+k2*y(3));
dydt(3)=y(4);
dydt(4)=(1/m2)*(F2+c2*y(2)-c2*y(4)+k2*y(1)-k2*y(3));
tspan=linspace(0,5,100000);
ic=[0 0 0 0];
[t,y]=ode45(@eq diff spost2DOF,tspan,ic);
```


2DOF: Risposta del Sistema

2DOF: Differente Legge del Moto

2DOF: Modello Simulink

2DOF: Soluzione tramite Simulink

Conclusioni:

In conclusione, possiamo affermare che per ridurre le vibrazioni si può:

- Variare il tempo di fine movimentazione tf \rightarrow si ottiene una riduzione moderata delle vibrazioni. È il modo più semplice e veloce per ridurre le vibrazioni, anche se la riduzione non è così elevata come andando ad inserire un assorbitore.
- Inserire un assorbitore di vibrazioni → Il sistema che ne deriva è sicuramente più complesso ma risulta essere molto efficace.
- Variare la legge del moto → con una legge di tipo armonico si può evitare di inserire un assorbitore di vibrazioni. Le vibrazioni non saranno nulle ma più contenute che con la legge del moto originaria.
- Leggi di tipo armonico senza intervalli di tempo dove l'accelerazione è costantemente nulla sono più adatte per ottenere vibrazioni contenute quando il movimento dato dalla rotazione della trave cessa.

La combinazione ottimale per ridurre le vibrazioni del sistema è rappresentata dall'utilizzo di una legge del moto armonica e dall'inserzione di un assorbitore di vibrazioni.

GRAZIE PER L'ATTENZIONE