Advanced Algorithms: Homework 1

Abrie Greeff
B.Sc Hons (Computer Science)
Department of Computer Science
University of Stellenbosch

August 2, 2006

Contents

1	R-5.3	1
2	R-5.4 2.1 (a)	1 1
	2.2 (b)	
	2.3 (c)	
	2.4 (d)	2
	2.5 (e)	
3	R-5.6	2
4	R-5.7	3
5	R-5.9	3
6	P-5.2	4
	6.1 Fractional Knapsack	4
	6.2 0-1 Knapsack	4
	6.3 Bruteforce 0-1 Knapsack	4
	_	
1	R-5.3	

1 11-0.0

Skedulering van T = (1, 2), (1, 3), (1, 4), (2, 5), (3, 7), (4, 9), (5, 6), (6, 8), (7, 9)

Figure 1: Skedulering van ${\bf T}$

2 R-5.4

2.1 (a)

$$T(n) = 2T(n/2) + logn$$

$$a = 2, b = 2$$

$$n^{log_2 2} = n$$
Case 2 met k = 1

T(n) is $O(nlog^2n)$

2.2 (b)

$$T(n) = 8T(n/2) + n^{2}$$

$$a = 8, b = 2$$

$$n^{\log_{2}8} = n^{3}$$
Case 1 met $\epsilon = 1$

$$T(n) \text{ is } \theta(n^{3})$$

2.3 (c)

$$T(n) = 16T(n/2) + (nlogn)^4$$

$$a = 16, b = 2$$

$$n^{log_216} = n^4$$
Case 2 met k = 4
$$T(n) \text{ is } \theta(n^4 log^5 n)$$

2.4 (d)

$$\begin{split} T(n) &= 7T(n/3) + n \\ a &= 7, b = 3 \\ n^{\log_3 7} &= n^{1.77124} \\ \text{Case 1 met } \epsilon &= 0.77124 \\ T(n) \text{ is } \theta(n^{1.77124}) \end{split}$$

2.5 (e)

$$T(n) = 9T(n/3) + n^3logn$$

$$a = 9, b = 3$$

$$n^{log_39} = n^3$$
Case 2 met k = 1
$$T(n) \text{ is } \theta(n^3log^2n)$$

3 R-5.6

$$Z = XY$$

$$X = \left[\begin{array}{cc} 3 & 2 \\ 4 & 8 \end{array} \right] Y = \left[\begin{array}{cc} 1 & 5 \\ 9 & 6 \end{array} \right]$$

$$S_1 = 3(5-6) = -3$$

$$S_2 = (3+2)6 = 30$$

$$S_3 = (4+8) = 12$$

$$S_4 = 8(9-1) = 64$$

$$S_5 = (3+8)(1+6) = 77$$

$$S_6 = (2-8)(9+6) = -90$$

$$S_7 = (3-4)(1+5) = -6$$

$$I = S_5 + S_6 + S_4 - S_2 = 21$$

$$J = S_1 + S_2 = 27$$

$$K = S_3 + S_4 = 76$$

$$L = S_1 - S_7 - S_3 + S_5 = 68$$

$$Z = \begin{bmatrix} 21 & 27 \\ 76 & 68 \end{bmatrix}$$

4 R-5.7

$$(a + bi)(c + di) = e + fi$$

 $(ac - bd) + (ad + bc)i = e + fi$
 $ac - bd = e$ $ad + bd = f$
 $ac - b(c + d) + bc = e$ $ad + b(c + d) - bd = f$
 $c(a + b) - b(c + d) = e$ $b(c + d) + d(a - b) = f$

Dus om e + fi in slegs drie vermenigvuldig operasies te bereken moet die volgende drie uitgevoer word:

$$c(a+b)$$

$$d(a-b)$$

$$b(c+d)$$

5 R-5.9

Gegee die matrikse: A is 10x5

B is 5x2

C is 2x20

D is 20x12

E is 12x4

F is 4x60

As die greedy method (minste vermenigvuldig operasies) gebruik word om ABCDEF op te los dan word die volgende gekry:

```
\begin{aligned} A \cdot B \\ (A \cdot B) \cdot C \\ ((A \cdot B) \cdot C) \cdot (D \cdot E) \\ (((A \cdot B) \cdot C) \cdot (D \cdot E)) \cdot F \\ 100 + 400 + 960 + 800 + 2400 = 4660 \end{aligned}
```

Dit sal dus 4660 vermenigvuldig operasies vat om te bereken.

6 P-5.2

6.1 Fractional Knapsack

Om uit te voer tik in $java\ FraqKnapsack$.

6.2 0-1 Knapsack

Om uit te voer tik in java Knapsack.

6.3 Bruteforce 0-1 Knapsack

Om uit te voer tik in $java\ bruteKnapSack.$