```
In [1]:
!pip install seaborn
Requirement already satisfied: seaborn in /Users/mohit/opt/anaconda3/1
ib/python3.8/site-packages (0.11.1)
Requirement already satisfied: scipy>=1.0 in /Users/mohit/opt/anaconda
3/lib/python3.8/site-packages (from seaborn) (1.6.2)
Requirement already satisfied: numpy>=1.15 in /Users/mohit/opt/anacond
a3/lib/python3.8/site-packages (from seaborn) (1.20.1)
Requirement already satisfied: matplotlib>=2.2 in /Users/mohit/opt/ana
conda3/lib/python3.8/site-packages (from seaborn) (3.3.4)
Requirement already satisfied: pandas>=0.23 in /Users/mohit/opt/anacon
da3/lib/python3.8/site-packages (from seaborn) (1.2.4)
Requirement already satisfied: python-dateutil>=2.1 in /Users/mohit/op
t/anaconda3/lib/python3.8/site-packages (from matplotlib>=2.2->seabor
n) (2.8.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.
3 in /Users/mohit/opt/anaconda3/lib/python3.8/site-packages (from matp
lotlib>=2.2->seaborn) (2.4.7)
Requirement already satisfied: kiwisolver>=1.0.1 in /Users/mohit/opt/a
naconda3/lib/python3.8/site-packages (from matplotlib>=2.2->seaborn)
Requirement already satisfied: cycler>=0.10 in /Users/mohit/opt/anacon
da3/lib/python3.8/site-packages (from matplotlib>=2.2->seaborn) (0.10.
Requirement already satisfied: pillow>=6.2.0 in /Users/mohit/opt/anaco
nda3/lib/python3.8/site-packages (from matplotlib>=2.2->seaborn) (8.2.
0)
Requirement already satisfied: six in /Users/mohit/opt/anaconda3/lib/p
ython3.8/site-packages (from cycler>=0.10->matplotlib>=2.2->seaborn)
(1.15.0)
```

Requirement already satisfied: pytz>=2017.3 in /Users/mohit/opt/anacon da3/lib/python3.8/site-packages (from pandas>=0.23->seaborn) (2021.1)

In [2]:

```
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [4]:

```
iris = sns.load_dataset('iris')
iris.shape
```

Out[4]:

(150, 5)

```
Out[5]:
   sepal_length sepal_width petal_length petal_width species
                      3.5
                                  1.4
0
           5.1
                                             0.2
                                                  setosa
           4.9
                      3.0
                                  1.4
                                             0.2
1
                                                  setosa
2
           4.7
                      3.2
                                  1.3
                                             0.2
                                                  setosa
           4.6
                      3.1
                                  1.5
                                             0.2
                                                  setosa
3
           5.0
                      3.6
                                  1.4
                                             0.2
                                                  setosa
In [6]:
iris['species'].unique()
Out[6]:
array(['setosa', 'versicolor', 'virginica'], dtype=object)
In [7]:
iris['petal_length']
Out[7]:
0
        1.4
        1.4
1
2
        1.3
3
        1.5
        1.4
       . . .
        5.2
145
146
        5.0
        5.2
147
148
        5.4
149
        5.1
Name: petal_length, Length: 150, dtype: float64
```

Univariate Analysis

histogram

In [5]:

iris.head()

In [9]:

```
sns.histplot(data=iris, x='petal_length', bins=20)
plt.show()
```


Observations:

In [11]:

```
sns.kdeplot(data=iris, x='petal_length')
plt.show()
```


In [14]:

```
setosa = iris[iris['species'] == 'setosa']
versicolor = iris[iris['species'] == 'versicolor']
virginica = iris[iris['species'] == 'virginica']
```

In [20]:

```
sns.kdeplot(data= setosa, x = 'petal_length')
sns.kdeplot(data= versicolor, x = 'petal_length')
sns.kdeplot(data= virginica, x = 'petal_length')
# plt.legend()
plt.show()
```


HUE -> categorical column

In [33]:

```
sns.kdeplot(data= iris, x = 'petal_length', hue='species')
plt.show()
```



```
In [ ]:
```

In [39]:

```
sns.displot(data= iris, x='petal_length', bins=20, hue='species')
# plt.show()
```

Out[39]:

<seaborn.axisgrid.FacetGrid at 0x7f8ac00f34f0>

Bi-variate Analysis

ScatterPlot

In [91]:

```
sns.lineplot(data= iris, x='petal_length', y='petal_width', hue='species')
plt.show()
```


In [40]:

```
sns.scatterplot(data= iris, x='petal_length', y='petal_width')
plt.show()
```



```
In [43]:
```

```
sns.scatterplot(data= iris, x='petal_length', y='petal_width', hue='species')
plt.show()
```



```
In [ ]:
```

JointPlot

```
In [47]:
```

```
sns.jointplot(data = iris, x='sepal_length', y='sepal_width', kind='reg')
plt.show().
```


Hexplot

In [51]:

```
sns.jointplot(data = iris, x='sepal_length', y='sepal_width', kind='hex',)
plt.show()
```


In [52]:

plt.hexbin

In [54]:

sns.jointplot(data = iris, x='petal_length', y='petal_width', kind='scatter', hue='s
plt.show()

In []:

Multi-variate

Pairplot

```
In [ ]:
```

In [56]:

```
sns.pairplot(data=iris, hue='species')
```

Out[56]:

<seaborn.axisgrid.PairGrid at 0x7f8b03c1bc10>

In []:

CountPlot - Univariate Analysis

For categorical

In [57]:

```
sns.countplot(data= iris, x='species')
```

Out[57]:

<AxesSubplot:xlabel='species', ylabel='count'>

In []:

Box Plot

For continous

In [58]:

iris.head()

Out[58]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

```
In [62]:
```

```
sns.boxplot(data=iris, y='sepal_width')
```

Out[62]:

<AxesSubplot:ylabel='sepal_width'>

In [70]:

```
plt.figure(figsize=(10,6))
sns.boxplot(data=iris, y='petal_length', x='species')
plt.show()
```


In []:

Voilin Plot

```
In [75]:
```

```
plt.figure(figsize=(10,6))
sns.violinplot(data=iris, y='petal_length', x='species')
# plt.grid()
plt.show()
```



```
In [ ]:
```

In []:

Matrix Plot

Correlation

In [77]:

iris.corr()

Out[77]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

heatmap

In [86]:

```
sns.heatmap(iris.corr(), cmap="Greens", annot=True)
plt.show()
```


In [83]:

print(plt.colormaps())

['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'O rRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_ r', 'Pastell', 'Pastell_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd', 'PuRd', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPubg', 'Purples_r', 'RdPubg', 'Pupples_r', 'RdPubg', ' u', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Red s_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectra l', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn r', 'YlOrBr', 'YlOrBr r', 'YlOrRd', 'YlOrRd r', 'afmhot', 'afmho t_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'b rg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'crest', 'crest_r', 'cubehelix_r', 'flag', 'flag_r', 'flare', 'flare_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainb ow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnup lot', 'gnuplot2', 'gnuplot2 r', 'gnuplot r', 'gray', 'gray r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectr al', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasm a', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spring', 'spring_r', 'summer', 's ummer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_ r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'turbo', 'turbo_r', 'twilight', 'twilight_r', 'twilight_shifted', 'twilight_shifted_r', 'v iridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r']

In []:

```
In [ ]:
```

Visualise Tips dataset

```
In [ ]:

In [92]:

tips = sns.load_dataset("tips")

In [93]:

tips.shape

Out[93]:
(244, 7)

In [94]:

tips.head()
```

Out[94]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

```
In [96]:
```

```
sns.countplot(data=tips, x='sex')
```

Out[96]:

<AxesSubplot:xlabel='sex', ylabel='count'>

In []:

Challenge - titanic

In [97]:

```
titanic = sns.load_dataset("titanic")
```

In [98]:

titanic.shape

Out[98]:

(891, 15)

In [100]:

titanic.head()

Out[100]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True

```
In [ ]:
In [ ]:
```

Pandas in-built viz

```
In [108]:
```

```
titanic['survived'].value_counts().plot.bar()
```

Out[108]:

<AxesSubplot:>


```
In [111]:
```

```
titanic['age'].plot.box()
```

Out[111]:

<AxesSubplot:>

