Instituto Tecnológico Autónomo de México EST-25134: APRENDIZAJE ESTADÍSTICO Prof. Juan Carlos Martínez Ovando Enero-Junio 2017

Objetivo

El Aprendizaje Estadístico comprende el estudio de métodos para identificar patrones y/o definir reglas predictivas a partir de un conjunto de datos. En este curso estudiaremos los fundamentos estadísticos teóricos y de modelación involucrados, así como su implementación computacional e interpretación de resultados en aplicaciones a problemas reales.

Temas

- Incertidumbre, modelación estocástica
- Inferencia, aprendizaje supervisado y no supervisado, predicción
- Modelos lineales de regresión y clasificación
- Ajuste del modelo, métodos de remuestreo, validación cruzada
- Regularización, reducción de dimensionalidad, selección de variables
- Modelos no lineales, modelos aditivos, expansión de funciones base
- Modelos basados en árboles de decisión, bagging, boosting, random decision forests
- Modelos gráficos, redes neuronales
- Máquinas de soporte vectorial (SVM)
- Modelos dinámicos

Dinámica

El curso se estructura en sesiones semanales. Cada una de ellas será motivada por un caso de estudio con datos reales. Dichos datos sugerirán el uso y aplicación de cada uno de los temas y modelos estudiados en la misma semana. De igual forma, evidenciaremos las interconexiones entre todos los temas estudiados.

Contenido

Basaremos el estudio de los aspectos prácticos del curso en James et al. (2013), Bishop (2006) y Barber (2014). Los conceptos metodológicos y teóricos relevantes los estudiaremos de Hastie et al. (2013), Alpaydin (2014) y Clarke et al. (2009).

Prerrequisitos

Conocimiento del modelo de regresión e inferencia estadística (frecuentista y/o bayesiana).

Referencias

Alpaydin, E. (2014). Introduction to Machine Learning. Cambridge: The MIT Press.

Barber, D. (2014). Bayesian Reasoning and Machine Learning. London: Cambridge University Press.

Bishop, C. (2006). Pattern Recognition and Machine Learning (First ed.). New York: Springer.

Clarke, B., E. Fokoue, and H. H. Zhang (2009). Principles and Theory for Data Mining and Machine Learning. New York: Springer.

Hastie, T., R. Tibshirani, and J. Friedman (2013). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Second ed.). New York: Springer.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.