

Universidade Federal Rural de Pernambuco (UFRPE)

Departamento de Estatística e Informática (DEINFO)

Epidemiology Computing

Jonas Albuquerque

Uma Abordagem Baseada em Autômatos Celulares para Simular a Disseminação de Epidemias

Vinicius Gustavo Barboza Silva

Resumo: A epidemiologia computacional representa um campo interdisciplinar emergente que combina ciência de dados, biologia, física e ciência da computação para modelar e prever a disseminação de doenças infecciosas. Neste artigo, propomos uma abordagem baseada em utilizar autômatos celulares com múltiplos estados para simular a dinâmica espaço-temporal de epidemias em populações homogêneas. Através de regras locais simples aplicadas sobre uma grade bidimensional, cada célula representa um indivíduo em um dos estados epidemiológicos clássicos. A modelagem incorpora fatores como taxa de transmissão, tempo de infecção e letalidade, permitindo a observação de comportamentos emergentes como surtos localizados, imunidade coletiva e extinção do agente infeccioso.

1. Introdução

Nas últimas décadas, apesar do notável avanço da medicina e da pesquisa farmacêutica, a humanidade continua enfrentando doenças infecciosas emergentes e novas ameaças virais com frequência e impacto crescentes. Muitos aspectos dos surtos epidêmicos ainda são pouco compreendidos, incluindo as origens de novos patógenos, os mecanismos de transmissão e a eficácia de longo prazo de intervenções como a vacinação. Como resultado, a epidemiologia tornou-se um campo essencial da saúde pública, especialmente na formulação de estratégias para prever, prevenir e responder a surtos de doenças infecciosas.

Ferramentas matemáticas e computacionais de modelagem vêm se tornando cada vez mais valiosas no apoio à análise epidemiológica e à tomada de decisões em saúde pública. Entre essas ferramentas, os autômatos celulares¹ (AC) oferecem uma estrutura promissora para simular sistemas dinâmicos complexos, como a propagação de epidemias.

Umas das principais vantagens dos autômatos celulares de múltiplos estados na modelagem epidemiológica, como visto no artigo da Dascalu², é sua capacidade de representar diferentes estágios da infecção - como suscetível, exposto, infectado e recuperado - de maneira espacialmente explícita e com transições dinâmicas. Essa abordagem permite simular com maior fidelidade a progressão da doença dentro de uma população heterogênea, considerando tanto a proximidade física entre os indivíduos quanto o estado de saúde de seus vizinhos. Ao utilizar múltiplos estados, é possível incorporar complexidades como períodos de incubação, reinfecção, imunidade parcial e o efeito de intervenções localizadas, como isolamento ou vacinação seletiva. Dessa forma, os autômatos celulares multi estados tornam-se uma ferramenta poderosa para explorar cenários realistas e testar hipóteses sobre o comportamento de surtos epidêmicos em diferentes contextos sociais e geográficos.

2. Fundação Teórica

2.1 Estados Múltiplos

Com base no artigo de Bilotta³, um estado múltiplo refere-se à capacidade das células de assumirem mais de dois valores distintos, ao contrário dos modelos tradicionais binários, em que cada célula está limitada a dois estados. Em um CA de múltiplos estados, cada célula pode assumir valores inteiros dentro de um conjunto finito. Essa generalização permite representar com maior fidelidade sistemas mais complexos e realistas, em que as células não estão apenas "ativas" ou "inativas", mas podem estar em diferentes fases, níveis de energia, estágios biológicos, entre outros.

Além de expandir a capacidade de modelagem, os CA com múltiplos estados exibem comportamentos dinâmicos que se assemelham a fenômenos contínuos, como ondas não lineares ou processos de reação-difusão. Isso os torna ferramentas poderosas para simulações de sistemas complexos em diversas áreas, como física, biologia e ciência da computação. Por sua flexibilidade e riqueza de comportamento emergente, os autômatos celulares de múltiplos estados são especialmente úteis para estudar dinâmicas que não são facilmente tratáveis por métodos matemáticos clássicos.

3. Metodologia

Neste artigo, implementamos um modelo de auômato celular de múltiplos estados para simular a propagação de uma doenã infecciosa em uma população espacialmente disitribuída. O modelo foi desenvolvido em Python e executado em uma grade retangular de dimensões 30 colunas por 15 linhas.

3.1 Estados do Modelo

Cada célula da grade representa um indivíduo e pode assumir um dos quatro estados epidemiológicos:

- Suscetível (S): Indivíduo saudável e vulnerável à infecção.
- Infectado (I): Indivíduo atualmente infectado e capaz de transmitir a doença.
- Recuperado (R): Indivíduo que superou a infecção e adquiriu imunidade permanente.
- Morto (D): Indivíduo que não sobreviveu à doença e não participa mais da dinâmica.

3.2 Parâmetros do Modelo

O modelo utiliza os seguintes parâmetros fixos para controlar a dinâmica da epidemia:

- Probabilidade de infecção(*Infection_Probability*): 25% de chance de um suscetível infectar-se ao estar próximo de pelo menos um infectado.
- Duração da infecção(*Infection_Duration*): 5 gerações, período durante o qual um indivíduo permanece infectado.
- Taxa de recuperação(*Recovery_Rate*): 70%, chance de um infectado recuperar-se após o término da infecção.
- Taxa de mortalidade(*Mortality_Rate*): 30%, chance de um infectado morrer ao fim do período infeccioso.

3.3 Condições Iniciais e Execução

A simulação inicia com todos os indivíduos suscetíveis, exceto um infectado central localizado aproximadamente no meio da grade, para simular o foco inicial da epidemia. A evolução é exibida no terminal, utilizando cores para diferenciar os estados: azul para suscetíveis, vermelho para infectados, verde para recuperados e cinza para mortos, facilitando a visualização das dinâmicas espaciais e temporais da doença.

O modelo é executado por 50 gerações, com uma pausa de 0,3 segundos entre cada atualização para permitir a observação do comportamento do sistema. A cada geração, o estado atualizado da população é exibido no terminal.

4. Conclusão

O modelo de autômato celular com múltiplos estados desenvolvido neste estudo demonstrou ser uma ferramenta eficaz para simular a propagação espacial e temporal de uma epidemia em uma população estruturada. A representação explícita dos diferentes estágios da doença - suscetível, infectado, recuperado e morto - permitiu capturar dinâmicas complexas, como surtos localizados, taxas de recuperação e mortalidade, além da formação de áreas imunizadas.

Além da simplicidade e baixo custo computacional, o uso de autômatos celulares possibilita a incorporação de variações locais e estocásticas que refletem melhor a realidade epidemiológica em comparação a modelos matemáticos clássicos de caráter determinístico. Isso torna o modelo valioso tanto para fins educacionais quanto para a experimentação e análise de políticas de saúde pública em cenários hipotéticos.

Futuras extensões podem incluir mobilidade populacional, diferentes estratégias de intervenção (como vacinação e/ou quarentena), além da calibração do modelo com dados reais para aumentar sua aplicabilidade prática. Em suma, os autômatos celulares multiestados apresentam-se como uma abordagem promissora e flexível para apoiar o entendimento e controle de doenças infecciosas em contextos diversos.

5. Referências

- 1- BERTO, Francesco; TAGLIABUE, Jacopo. Cellular automata. 2012.
- 2- DASCALU, Monica et al. Applications of multilevel cellular automata in epidemiology. In: Proceedings of the 13th WSEAS international conference on Automatic control, modelling & simulation. 2011. p. 439-444.
- **3-** BILOTTA, Eleonora et al. Generating Multi State Cellular Automata by using Chua's" Universal Neuron". **Asymptotic Methods in Non Linear Wave Phenomena**, p. 12-24, 2008.