Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського»

Кафедра інженерії програмного забезпечення в енергетиці

Практична робота №6 з курсу: «Основи Веб-програмування»

Виконав:

студент 2-го курсу, групи ТВ-31 Касянчук Віталіна Олександрівна https://github.com/Cariss1/PW06_TV31_Kasianchuk_Vitalina

Перевірив:

Недашківський О.Л.

Київ 2024/2025

Метод впорядкованих діаграм (метод коефіцієнта максимуму) - це основний метод розрахунку електричних навантажень силових електроприймачів. Він базується на ймовірнісному моделюванні, де навантаження розглядається як випадкова величина.

Основні поняття:

- 1. Коефіцієнт використання (Кв) відношення середньої потужності до номінальної
- 2. **Ефективна кількість ЕП (ne)** кількість однакових за потужністю ЕП, яка за навантаженням еквівалентна групі різних ЕП
- 3. **Коефіцієнт максимуму (Км)** відношення максимального навантаження до середнього
- 4. **Розрахункове навантаження** еквівалентне постійне навантаження, яке за тепловою дією дорівнює реальному змінному навантаженню

Метод дозволяє враховувати нерівномірність навантаження різних електроприймачів та визначати максимальні навантаження для проектування електропостачальних систем.

1. HTML-структура інтерфейсу

Призначення: Забезпечує зручну навігацію між трьома основними розділами калькулятора - введенням даних, переглядом результатів та теоретичними відомостями.

2. Функція openTab() - перемикання вкладок

```
function openTab(evt, tabName) {
   const tabContents = document.getElementsByClassName("tab-content");
   for (let i = 0; i < tabContents.length; i++) {
      tabContents[i].classList.remove("active");
   }

   const tabs = document.getElementsByClassName("tab");
   for (let i = 0; i < tabs.length; i++) {
      tabs[i].classList.remove("active");
   }

   document.getElementById(tabName).classList.add("active");
   evt.currentTarget.classList.add("active");
}</pre>
```

Призначення: Обробляє кліки по вкладках, приховує всі вмісти вкладок і показує тільки обрану, а також підсвічує активну вкладку.

3. Функція calculateLoads() - основний розрахунковий алгоритм

```
function calculateLoads() {
   // Отримання вхідних даних
   const grinderPower = parseFloat(document.getElementById('grinder_power').value);
   // ...інші параметри..
   const nP = grinderCount * grinderPower;
   const nPKv = nP * grinderKv;
   // ...інші розрахунки...
   // Груповий коефіцієнт використання
   const Kv = nPKv / nP:
   // Ефективна кількість ЕП
   const ne = Math.pow(nP, 2) / nP2;
   // Розрахункові навантаження
   const Pp = Kp * nPKv;
   const Qp = 1.0 * nPKvTg;
   const Sp = Math.sqrt(Math.pow(Pp, 2) + Math.pow(Qp, 2));
   const Ip = Pp / (0.38 * Math.sqrt(3));
   // Вивід результатів
   document.getElementById('kv_shr1').textContent = Kv.toFixed(4);
   // ...інші результати.
   // Розрахунки для цеху в цілому
   // ...аналогічні розрахунки..
```

Призначення: Виконує всі необхідні розрахунки за методом впорядкованих діаграм:

- 1. Обчислює груповий коефіцієнт використання
- 2. Визначає ефективну кількість електроприймачів
- 3. Розраховує активне, реактивне та повне навантаження
- 4. Обчислює розрахункові струми
- 5. Виводить результати у відповідні поля інтерфейсу
 - 4. Допоміжні функції getKp() та getWorkshopKp()

```
function getKp(kv, ne) {
   if (kv < 0.2) {
      return 1.25;
   } else if (kv < 0.3) {
      return 1.2;
   } else {
      return 1.1;
   }
}

function getWorkshopKp(kv, ne) {
   if (kv < 0.3) {
      return 0.7;
   } else if (kv < 0.4) {
      return 0.65;
   } else {
      return 0.6;
   }
}</pre>
```

Призначення: Повертають значення розрахункового коефіцієнта активної потужності (Кр) на основі групового коефіцієнта використання та ефективної кількості ЕП. У реальному додатку тут була б більш складна логіка з використанням табличних даних.

Контрольний приклад

Калькулятор електричних навантажень методом впорядкованих діаграм

Результати розрахунків

Результати для ШР1

Показник	Значення
Груповий коефіцієнт використання (Кв)	0.1500
Ефективна кількість ЕП (пе)	4
Розрахунковий коефіцієнт активної потужності (Кр)	1.25
Розрахункове активне навантаження (Рр, кВт)	15.00
Розрахункове реактивне навантаження (Qp, квар)	15.96
Повна потужність (Sp, кВ·A)	21.90
Розрахунковий груповий струм (Ip, A)	22.79

Результати для цеху в цілому

Показник	Значення
Коефіцієнт використання цеху (Кв)	0.1500
Ефективна кількість ЕП цеху (пе)	12
Розрахунковий коефіцієнт активної потужності (Кр)	0.70
Розрахункове активне навантаження (Рр, кВт)	25.20
Розрахункове реактивне навантаження (Qp, квар)	33.52
Повна потужність (Sp, кВ·A)	41.93
Розрахунковий груповий струм (Ір, А)	38.29

Результати отримані у відповідності до варіанту заданих значень

Висновок

Розрахунковий груповий струм (Ір, А)

Даний веб-калькулятор дозволяє виконувати розрахунки електричних навантажень цехових мереж методом впорядкованих діаграм. Він має зручний інтерфейс з трьома вкладками, що дозволяє легко вводити дані, переглядати результати та ознайомлюватися з теоретичними основами методу. Калькулятор враховує всі основні параметри електроприймачів та виконує необхідні розрахунки згідно з методикою.