0	Homework #1 MATH 9570
	Question 1?
	1) Set of all numbers of the turn ort b \(\tau \) where a and b are rational numbers Identity for sum (e=0)
	======================================
	$\exists e' \in R$, s.t. $e' \times (a+b\sqrt{2}) = (a+b\sqrt{2}) \times e' = a+b\sqrt{2}$, $\forall a+b\sqrt{2}$
	Inverse for sum $(f = -(a+b\sqrt{2}) = -a-b\sqrt{2})$ $\forall a+b\sqrt{2} \in F$, $a+b\sqrt{2} + f = f+a+b\sqrt{2} = 0$ $a+b\sqrt{2} - a-b\sqrt{2} = -a-b\sqrt{2} + a+b\sqrt{2} = 0$
	Inverse for Coduct $(\alpha + 5\sqrt{2})(x + y\sqrt{2}) = 1$ $(x + y\sqrt{2}) = (\alpha + y\sqrt{2})^{-1}$
	(ax + 2y) + (ay + 5x)(2 = 1)
	A x = S

Question 4 As proved in 1,2 a+bi = a+bJ-1, as J-1=i,

there tore a+bi & C which is a field

as it has a sum inverse, multiplicative

moverse, sum identity, and product identity ovol all

its elements Question 5 G= 01024 D= 01024] 00000 he in ret Question 6 A+B= 110 0+1 1+1 1+1 0 0 1 0 AB= 1 11 0

•	
	Question II
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 1 3 2 R3 + R1 0 1 3 2 R3 - R3 + 2 P2 7 2 0 1 2 0 - 2 1 5 - M - 2
•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0108/7 0108/1 x ₁ = 8/7 0012/1 0012/1 x ₅ = 8/7
	2) $ 1 \ 2 \ 3 \ 9 $ $ 1 \ 1 \ 0 \ 2 \ R_2 = R_2 + bR_1 \ 0 \ 6 \ 9 \ 95 \ R_2 = bR_2$ $ 2 \ 0 \ 1 \ 2 \ 2 \ 0 \ 1 \ 2 \ $
	1234 R3=R3+5R1 1234 R3=R3+4R2 0132 013 D 2012 03121
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

```
def question_12_check():
    GF7 = galois.GF(7)
    A = GF7([[3, 1, 4, 1], [5, 2, 6, 5], [0, 5, 2, 1]])
    print(GF7.row_reduce(A))
question_12_check()
GF([[1, 0, 0, 4],
    [0, 1, 0, 3],
[0, 0, 1, 0]], order=7)
def question_13():
    x = [[3, 11, 18], [7, 23, 39], [-4, -3, -2]]
    y = [-2, 10, 6]
     solutions = np.linalg.inv(x).dot(y)
    parametric = np.array(solutions)
    answer = parametric.reshape(3,1)
print('x = {}'.format(answer))
question_13()
x = [[ 5.23943662]
 [-14.05633803]
 [ 7.6056338 ]]
def question 14():
    C = sym.Matrix([[3,6,9, 5, 25, 53], [7, 14, 21, 9, 53, 105], [-4, -8, -12, 5, -10, 11]])
    print(C.rref())
question_14()
(Matrix([
[1, 2, 3, 0, 5, 6],
[0, 0, 0, 1, 2, 7],
[0, 0, 0, 0, 0, 0]]), (0, 3))
def question_15():
    x = [[2, 4, 3, 5, 6], [4, 8, 7, 5, 2], [-2, -4, 3, 4, -5], [1, 2, 2, -1, 2], [5, -10, 4, 6, 4]]
y = [37, 74, 20, 26, 24]
     solutions = np.linalg.inv(x).dot(y)
     parametric = np.array(solutions)
     answer = parametric.reshape(5,1)
     print('x = {}'.format(answer))
question_15()
x = [[-1.89423963]]
  [ 0.98974654]
  [10.81797235]
  [-1.05760369]
  [ 1.61059908]]
def question_15():
    x = [[2, 4, 3, 5, 6], [4, 8, 7, 5, 2], [-2, -4, 3, 4, -5], [1, 2, 2, -1, 2], [5, -10, 4, 6, 4]]
y = [37, 74, 20, 26, 24]
     solutions = np.linalg.inv(x).dot(y)
     parametric = np.array(solutions)
     answer = parametric.reshape(5,1)
     print('x = {}'.format(answer))
question_15()
x = [[-1.89423963]]
  [ 0.98974654]
  10.81797235
  [-1.05760369]
  [ 1.61059908]]
```

u		
O w		
H	222 pratrices	11
	DABC=In A'ABC=A'In	
	$BC = A^{-1}In$ $BC = In$ $CABC = CIn$ $B^{-1}ABC = B^{-1}In$ $AC = B^{-1}$	
	[i) Let (and) be nxn matrices (= B(AB) and)= (AB) A	
	$AC = A(B(AB)^{-1}) = AB(AB)^{-1} = I_{n}$ $DB = B(AB)^{-1}A = AB(AB)^{-1} = I_{n}$ $Thus C = A^{-1} \text{ and } D = B^{-1}$ $A \text{ and } B \text{ once both invertible}$	
	Mags 1 and 5 offer 100 tringle	

17. $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$ AB = [-13] = [7-3] [1-6-8] [-26] [12 [9] Only if AB=BA, A2B2 = (AB)2
otherwise (AO)2 = ABAB

24	1.) Let u be qunit rearring and the = In 200
	$H_{n}^{T} = H_{n} \text{to be symmetric}$ $H_{n}^{T} = (I_{n} - 2\tilde{u}\tilde{u}^{T})^{T}$ $H_{n}^{T} = I_{n}^{T} - 2\tilde{u}\tilde{u}^{T})^{T}u^{T}$ $H_{n}^{T} = I_{n} - 2\tilde{u}\tilde{u}^{T}$ $H_{n}^{T} = H_{n} \text{there } H_{n} \text{is symmetric}$ 2.) $H_{n}^{T} H_{n} = I_{n} \text{means } H_{n} \text{is orthogonal by definition}$ $H_{n}^{T} H_{n} = I_{n} \text{there } H_{n} \text{ is orthogonal}$ $= I_{n} - 2u\tilde{u}^{T} - 2u\tilde{u}^{T} + 4u\tilde{u}^{T} \text{ (uu)} u^{T}$ $= I_{n} - 4u\tilde{u}^{T} + 4u\tilde{u}^{T} \text{ (uu)}$ $= I_{n} + 4u\tilde{u}^{T} + 4$

