Activity: Auctions Econ 305

First-Price Auction 1

Consider the n-player version of the private value first-price sealed bid auction where each player i has an independent valuation θ_i and believes that the valuations of the other players are each uniform on [0,1]. Guess that every player uses the strategy $s_i^*(\theta_i) = k\theta_i + c$. Find k and c such that s^* is a BNE of the game. Is bidding higher or lower with more players?

Step One: Write the expected payoff for player i of type θ_i from choosing arbitrary bid b_i , given that all other players are choosing the strategy s_{i-1}^*

$$V_{i} = (\theta_{i} - b_{i})(P_{i}(b_{i} > k \Theta_{i} + C))^{T}$$

$$= (\theta_{i} - b_{i})(\frac{b_{i} - c}{k})^{n-1}$$

Step Two: Find the bid b_i that maximizes the payoff in Step One.

arg max
$$\left((\theta_{i} - \theta_{i}) \left(\frac{b_{i} - c}{k} \right)^{n_{i}} \right) = \left(\frac{b_{i} - c}{k} \right)^{n_{i}} + \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{b_{i} - c}{k} \right)^{n_{i}} + \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{b_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{b_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac{\theta_{i} - \theta_{i}}{k} \right) \left(\frac{\theta_{i} - c}{k} \right)^{n_{i}} = \left(\frac$$

Step Three: In a BNE, it must be that the payoff-maximizing bid b_i in Step Two equals the guess that $s_i^*(\theta_i) = k\theta_i + c$ for all θ_i . Use this fact to solve for k and c.

$$k \Theta i + C = \frac{\Theta i (n+1)}{n} + \frac{C}{n}$$

$$\Rightarrow C = 0$$

$$k = \frac{n-1}{n}$$

Step Four: Interpret the impact of n on the bidding strategy.

2 Second-Price Auction

Consider a player with private value θ_i playing a private value second-price sealed bid auction. Let \hat{b} denote the highest bid of the other players $j \neq i$. Compute the payoff to player i from bidding x vs. θ_i (where $x > \theta_i$) in the following three cases¹:

Cases	x	$ heta_i$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9;-b 40	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D:-6>0	0:-620

Bonus: Compute the payoff to player i from bidding x vs. θ_i (where $x < \theta_i$) in the following three cases:

Cases	x	$ heta_i$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	D: - 6 20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0:-6 20	0:-620

¹I have not described what happens if there is a tie at the highest bid, but in fact, it will not matter what is specified at this contingency, so I will ignore it here.