

Tópicos de Matemática II 2º Teste 17 · 05 · 2019

Duração: 90 minutos

Nome:

N.º de identificação civil:

Turma:

Formulário

Gráficos de funções exponenciais e logarítmicas

$$(a)' = 0 \qquad (a \in \mathbb{R})$$

$$(x)' = 1$$

$$(ax+b)'=a$$
 $(a,b\in\mathbb{R})$

$$(ax^p)' = apx^{p-1} \ (a \in \mathbb{R}, p \in \mathbb{Z} \setminus \{0\})$$

$$(f+q)' = f' + q'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$(f^n)' = n f^{n-1} f' \qquad (n \in \mathbb{R})$$

$$\left(\sqrt[n]{f}\right)' = \frac{f'}{n\sqrt[n]{f^{n-1}}} \qquad (n \in \mathbb{N})$$

$$(\operatorname{sen} f)' = f' \cos f$$

$$(\cos f)' = -f' \operatorname{sen} f$$

$$(\operatorname{tg} f)' = \frac{f'}{\cos^2 f}$$

$$(e^f)' = f'e^f$$

$$\left(a^f\right)' = f'a^f \ln a \qquad \left(a \in \mathbb{R}^+ \setminus \{1\}\right)$$

$$(\ln f)' = \frac{f'}{f}$$

$$(\log_a f)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Justifique convenientemente todas as suas respostas.

Cotações:

Exercício 1 Considere a função real, de variável real, definida por $f(x) = 1 - 2^{x+2}$.

a) Determine o domínio e o contradomínio da função f.

b) Caracterize a função inversa da função f.

c) Resolva em $\mathbb R$ a seguinte inequação: $f(x) \geq -15$.

Exercício 2 Resolva, em \mathbb{R} , a seguinte inequação fracionária: $\dfrac{-x^2+9}{-x-1} \geq 0$.

Exercício 3 Determine, caso existam, os seguintes limites:

a)
$$\lim_{x \to +\infty} \left(\sqrt{x+2} - \sqrt{x} \right);$$

b)
$$\lim_{x \to +\infty} \left(\frac{1}{x^2 + 2} \cdot (x + 1) \right)$$
.

Exercício 4 Resolva, em \mathbb{R} , as seguintes condições:

a)
$$5^{-x-1} = 25^{2x+3}$$
;

b)
$$\log(x) > \log(2x + 5)$$
;

c)
$$ln(x-1) = 2$$
.

Exercício 5 Seja
$$h$$
 a função definida em $\mathbb R$ por: $h(x)=\left\{\begin{array}{ll} \frac{x^3-x^2}{x^2+2x-3} & \text{se } x>1\\ & \frac{3-2x}{x^2+3} & \text{se } x\leq 1. \end{array}\right.$

Calcule analiticamente os seguintes limites: $\lim_{x\to 1^-} h(x)$ e $\lim_{x\to 1^+} h(x)$. Diga se existe $\lim_{x\to 1} h(x)$. Justifique.

Exercício 6 Resolva em
$$\mathbb R$$
 a seguinte equação fracionária: $\dfrac{x^2-3x+2}{x^2-1}=0.$

Exercício 7 Na figura está representada parte de um gráfico de uma função f de domínio]-1,3[.

Indique:

- a) $\lim_{x\to 1^-} f(x)$;
- c) $\lim_{x \to 3^-} \frac{2}{f(x)};$
- b) $\lim_{x\to 1^+} f(x)$;
- d) f(1).

Exercício 8 Calcule y', sendo:

a)
$$y = 4x \times \ln(x)$$
;

b)
$$y = e^{2x} \times 5x$$
.

Exercício 9 Considere a função f definida por $f(x)=-\frac{x^3}{3}+x^2-7$. Determine, na forma reduzida, a equação da reta tangente ao gráfico de f no ponto de abcissa 1.