The Lottery Ticket Hypothesis: Finding Sparce, Trainable Neural Networks

Maxim Kobelev, 161 NRU HSE Research Seminar

План

- Введение
- Описание и формулировка Lottery Hypothesis
- Важные моменты, discussion авторов
- Мотивация и дальнейшие ожидания
- Работа с полносвязными сетями (LeNet 300-100-10 on MNIST)
- Работа со свёрточными сетями (Conv-2, Conv-4, Conv-6 on CIFAR10)
- Работа с большими сетями (VGG, ResNet on CIFAR10)
- Заключение

Проблемы современности

- Имеет место тенденция увеличения числа параметров сети для достижения наилучшего качества
- Вместе с увеличением числа параметров сети растет и время её обучения
- Текущие подходы позволяют урезать такие нейронные сети вплоть до 90%, уменьшая их размер и ускоряя «прямой проход» по ним
- Опыт показывает, что обучение с нуля урезанных сетей происходит сложнее, достигается меньшее качество, чем в оригинальной сети.

Почему мы не обучаем эти уменьшенные архитектуры, ведь это быстрее?

Lottery Ticket Hypothesis

Полносвязная случайно инициализированная сеть содержит в себе подсеть меньшего размера (winning ticket), которая переобучаясь заново с той же инициализацией, достигает качества, сравнимого с оригинальным, за то же число шагов.

Более формально

$$f(x;\theta) \qquad \theta = \theta_0 \sim \mathcal{D}_{\theta}$$

with SGD optimisation f reaches minimum validation loss **L** on **j**-th iteration with test set accuracy **a**

$$f(x; m \odot \theta) \qquad m \in \{0, 1\}^{|\theta|}$$

with SGD optimisation f reaches minimum validation loss **L**' on **j**'-th iteration with test set accuracy **a**'

Lottery Ticket Hypothesis:

$$j' \le j$$

$$\exists \ m : \quad a' \ge a$$

$$\|m\|_0 \ll |\theta|$$

Постановка экспериментов

- Случайная инициализация весов нейронной сети $f(x; heta_0)$
- Обучаем $\emph{\textbf{j}}$ итераций и приходим к $\; heta_j \;$
- Урезаем **р**% *параметров в* $\, heta_{j}\,$, создавая маску $oldsymbol{m}$
- Возвращаем веса к исходным инициализированным из $heta_0$, получая на выходе winning ticket $f(x;m\odot heta_0)$

One-Shot и Iterative Pruning

- Такой подход, описанный выше подходит под определение **One-Shot**. Урезается *р%* весов, оставшиеся сбрасываются к начальным.
- Iterative Pruning повторяем итерации обучения и урезания сети на протяжении n раундов, таким образом в каждый следующий раунд передаются $p^{\frac{1}{n}}\%$ весов.
- Было показано, что **Iterative Pruning** техника позволяет искать winning tickets гораздо меньших размеров, имеющих сравнительное с оригиналом качество, чем **One-Shot**.

Назад к мотивации

- Получилось показать, что урезание сетей находит подсети меньшего размера, достигающие качество сравнимое с оригиналом, за сравнимое с его числом итераций временем обучения.
- Обещающая способность таких winning ticketподсетей выше, как и точность на валидации, как и скорость обучения, по сравнению с оригинальной сетью.
- Предлагается использовать гипотезу как метод поиска базовых моделей для их применения в ансамблях.

Ожидания

- Из-за необходимости переобучения winningticket's с начала, необходимо разработать метод поиска этих подсетей на как можно более ранних этапах.
- Дизайн новых архитектур и схем инициализации весов, с использованием опыта построения таких разреженных подсетей
- Улучшение наших теоретических знаний и понимения нейросетей.

Эксперименты.

Network	Lenet	Conv-2	Conv-4	Conv-6	Resnet-18	VGG-19
				64, 64, pool	16, 3x[16, 16]	2x64 pool 2x128
			64, 64, pool	128, 128, pool	3x[32, 32]	pool, 4x256, pool
Convolutions		64, 64, pool	128, 128, pool	256, 256, pool	3x[64, 64]	4x512, pool, 4x512
FC Layers	300, 100, 10	256, 256, 10	256, 256, 10	256, 256, 10	avg-pool, 10	avg-pool, 10
All/Conv Weight	s 266K	4.3M / 38K	2.4M / 260K	1.7M / 1.1M	274K / 270K	20.0M
Iterations/Batch	50K / 60	20K / 60	25K / 60	30K / 60	30K / 128	112K / 64
Optimizer	Adam 1.2e-3	Adam 2e-4	Adam 3e-4	Adam 3e-4	← SGD 0.1-0	0.01-0.001 Momentum 0.9 →
Pruning Rate	fc20%	conv10% fc20%	conv10% fc20%	conv15% fc20%	conv20% fc0%	conv20% fc0%

LeNet 300-100-10 on MNIST

(a) Early-stopping iteration and accuracy for all pruning methods.

(b) Accuracy at end of training.

(c) Early-stopping iteration and accuracy for one-shot pruning.

One-Shot vs Iterative Random ReInit vs Winning Ticket

Conv-2/4/6 with iteratively pruned and random reinitialised.

Figure 7: Test accuracy (at 30K, 60K, and 112K iterations) of VGG-19 when iteratively pruned.

Figure 8: Test accuracy (at 10K, 20K, and 30K iterations) of Resnet-18 when iteratively pruned.

Выводы

- Текущие знания показывают что функции приближаемые нейронными сетями могут быть представлены с гораздо более меньшим числом параметров.
- Найденная гипотеза описывает механизм выделения таких подмножеств параметров.
- Описанный метод урезания нейронных сетей работает одинаково хорошо как на полносвязных, так и на сверточных сетях.
- При необходимости иметь сильно разреженную по весам модель *Iterative Pruning >> One-Shot Pruning*.

Вопросы:

- Что такое winning-ticket в контексте lottery ticket hypothesis
- Сформулируйте lottery ticket hypothesis
- Опишите алгоритм нахождения winning-ticket-a.
- К каким последствиям приводит random reinitialization весов.