Date_	
Aitzaz Tahir Ch Bs((5)-B	
19p 0012 Numerical Computing	
Task 1 L	
Real Number = 100.875	
tep 1	
Converting Decimal Binary (100)	
2/100	
2 50 -0	
2 25 - 0	
2 12 - 1	
2 6 - 0	
2 3 - 0	
1-1	
$(100)_{100}$ \rightarrow $(1100100)_{100}$	
110	
(0.875)	-
0.875 x 2= 1.75	
0.75 × 2 = 1.5	
0.5 × 2 = 1	
(0.875), = (.111)	
(0.813/10	
(100.875), = (1100100.11)	
(100,013/10	

	_ Date
Step 2	
Finding exponent	
1100 100 . 111	
Russia.	
Exponent = 6	
Blased exponent = 6 + 127	
= (133),	
2 133	
2 66 -1	
2 33 - 0	
2 16 - 1	
2 8 - 0	
2 4 - 0	
2 2 - 0	
1 - 0	
$(133)_{1} = (10000101)_{2}$	
Step 3 Finding Man bissa	
Mandessa = 100 100 1110000000000000	
Final	
0 10000101 1001001110000000000	0900 /

多世世代世世世代

E E

E

B

I

Ť

Ø

```
# Python program to convert a real value to IEEE 754 standardized format.
         # Function to convert a fraction to binary form.
         def binaryOfFraction(fraction):
         #Declaring an empty string to store binary bits.
                 binary = str()
                 # Iterating through fraction until it becomes Zero.
                 while (fraction):
                         #Multiplying fraction by 2.
                         fraction *= 2
                         # Storing Integer Part of fraction in int part.
                         if (fraction >= 1):
                                 int_part = 1
                                 fraction -= 1
                         else:
                                 int_part = 0
                         # Adding int_part to binary after every iteration.
                         binary += str(int_part)
                 #Returning
                 return binary
In [5]:
         # Function to get sign bit, exp bits and mantissa bits from given real no.
         def floatingPoint(real_no):
                 sign_bit = 0
                 # Sign bit will set to 1 for negative no.
                 if(real_no < 0):</pre>
                         sign_bit = 1
                 #Converting given no. to absolute value as we have already set the sign bit.
                 real_no = abs(real_no)
                 #Converting Integer Part of Real no to Binary
                 int_str = bin(int(real_no))[2 : ]
                 #Function call to convert fraction part of real no to Binary.
                 fraction_str = binaryOfFraction(real_no - int(real_no))
                 #Getting the index where bit was high for the first time in binary representation of Integer part of real no.
                 ind = int_str.index('1')
                 # The Exponent is the no. by which we have right shifted the decimal and it is given below.
                 # Also adding 127.
                 exp_str = bin((len(int_str) - ind - 1) + 127)[2 : ]
                 # getting mantissa
                 mant_str = int_str[ind + 1 : ] + fraction_str
                 #Adding Zeroes in LSB of mantissa string so as to make it's length of 23 bits.
                 mant_str = mant_str + ('0' * (23 - len(mant_str)))
                 #Returning the sign, Exp and Mantissa Bit strings.
                 return sign_bit, exp_str, mant_str
In [6]:
         #Driver Code
         if __name__ == "__main__":
                 #Function call to get Sign, Exponent and Mantissa Bit Strings.
                 sign_bit, exp_str, mant_str = floatingPoint(100.875)
                 #Final IEEE-754 standardized format representation.
                 ieee_32 = str(sign_bit) + '|' + exp_str + '|' + mant_str
                 # Printing the ieee 32 representation.
                 print("IEEE 754 representation of 100.875 is :")
                 print(ieee_32)
        IEEE 754 representation of 100.875 is :
```

In []: