

ME338 – Manufacturing Process II Lecture 4: Analysis of Shaping and Turning

Pradeep Dixit

Department of Mechanical Engineering,
Indian Institute of Technology Bombay

https://www.youtube.com/watch?v=bbMbFvsRTJo http://www.mitsubishicarbide.com/en/technical information http://www.mitsubishicarbide.com/en/technical information/tec turning tools/ tec external turning

Recap: Machining process

Recap : ASA system

Recap: Side cutting edge

Orthogonal Machining: condition

- 2D Orthogonal machining:
 - Cutting edge has to be perpendicular to the cutting velocity vector
- Condition for Orthogonal machining:
 - $-tan\alpha_h.cos\psi_s = tan\alpha_s.sin\psi_s$
 - $-\tan \alpha_h = \tan \alpha_s \tan \psi_s$
- If $tan\alpha_h . cos\psi_s tan\alpha_s . sin\psi_s = 0$, the process will be a perfect Orthogonal machining
 - Angle between cutting edge and cutting velocity vector = 90°
- $tan\alpha_h.cos\psi_s tan\alpha_s.sin\psi_s \neq 0$, the process will be oblique machining
 - Any deviation of $(tan\alpha_h. cos\psi tan\alpha_s. sin\psi)$ from zero indicates the degree of non-orthogonality.

ME338 - Pradeep Dixit

Shaping: Different surfaces machined

Keyway formation by Shaping

Normal rake angle (α)

- In analysis, rake or normal rake angle (α) is been used
- The cutting tool has only back rake angle (α_h) and side rake angle (α_s)
 - Side cutting edge angles (ψ_s)
 - End cutting edge angle (ψ_o)
- In ASA system, Normal rake angle can be calculated from the tool signature in the following manner:
- Normal rake angle (α)

$$-\tan\alpha = \frac{\tan\alpha_b.\sin\psi_s + \tan\alpha_s.\cos\psi_s}{\sqrt{1 + (\tan\alpha_b.\cos\psi_s - \tan\alpha_s.\sin\psi_s)^2}}$$

- In case of orthogonal machining:
 - $\tan \alpha = \tan \alpha_h \sin \psi_s + \tan \alpha_s \cos \psi_s$
- Example: tool signature 6°-10°-7°-7°-10°-20°-0.5
- Normal rake angle will be ???

ME338 - Pradeep Dixit

Analysis of Shaping

Feed motion

(advance/stroke)

- Tool moves forward and backwards but cutting is only in forward stroke
- Speed in return stroke is more than in forward stroke for increased productivity
- Quick return ratio (R) = speed in return stroke/speed in forward stroke
- Stroke length is higher than length of job (Approach distance + overtravel)
- Major parameters:
 - strokes per unit time (N), stroke length (S), quick return ratio (R) (displacement/stroke), depth of cut (d), tool angles

Orthogonal analysis of shaping process

- Input: Feed per stroke (*f*), depth of cut (*d*)
- Tool: Side cutting edge angle (ψ_s) , Normal rake angle (α)
- Output: Uncut chip thickness t₁ width of cut w
- Uncut chip thickness $t_1 = f \cos \psi_s$,
- width of cut $w = d/\cos \psi_s$
- ψ_s is primary (side) cutting edge angle

ME338 - Pradeep Dixit

9

Important relationships

- Quick return ratio:
 - · Ratio of the durations of the forward stroke and the return stroke
- Metal removal rate MRR = LdfN
 - L = Overall length of job (including overtravel + approach distance),
 - -d = depth of cut,
 - f= feed per stroke,
 - -N= no of strokes per unit time
- If B is breadth of job, then total time taken to reduce the work surface has to be lowered (H), depth of cut (d), feed (f), cutting stroke per unit time (N)
 - $-t_c = (H/d).(B/f).(1/N)$
- Average cutting speed can be expressed as
 - v = NS(1+R)/2,
 - S = stroke length, R = quick return ratio, N = no of strokes per unit time

Orthogonal analysis of shaping process

- Due to the side cutting edge angle (ψ_s) , the 'transient' surface is inclined
- Cutting force F_c will be along the cutting direction
- F_t force will be \perp to the transient surface
 - It can be broken in two components
 - F_f Feed component, F_n (normal to the machined surface)
- $F_f = F_t. Cos \psi$, $F_n = F_t. Sin \psi$

ME338 – Pradeep Dixit

10

12

Surface finish in shaping/planing

Peak-to-valley height h

End (auxiliary) cutting edge

Side cutting edge angle (ψ_s) ,

End cutting edge angle (ψ_e) ,

Max peak-to-valley height h_{max} for shaping/planing with a sharp tool

$$h_{max} \approx \frac{f}{\tan \psi_s + \cot \psi_e}$$

ME338 – Pradeep Dixit 11 ME338 – Pradeep Dixit

Numeric problem: Shaping

Determine the three components of the machining force when shaping a cast iron block with depth of cut = 4 mm, feed = 0.25 mm/stroke, normal rake angle of the tool = 10° , principle cutting edge angle = 30° , coefficient of friction between chip and tool is 0.6. Assume ultimate shear strength of cast iron is 400 N/mm2.

- Coefficient of friction is known, friction angle β is known
- · Assume any relationship lee-shaffer equation
- Rake angle is known. Shear angle ϕ can be calculated
- Shear strength τ, width w, depth d, uncut chip thickness t1 is known
 - Width $w = depth of cut d/cos \psi$,
 - Uncut chip thickness t_1 = feed f.Cos ψ
- Cutting force Fc, Ft can be calculated
- Feed force and normal to feed force components can be calculated

 $F_{c} = \frac{\tau w t_{0} \cos(\beta - \alpha)}{\sin \phi \cos(\phi + \beta - \alpha)}$ $F_{t} = \frac{\tau w t_{0} \sin(\beta - \alpha)}{\sin \phi \cos(\phi + \beta - \alpha)}$

ME338 - Pradeep Dixit

Turning process

- Turning external surfaces
- Boring internal surfaces
- Desired cutting speed $v = \pi D_0 N$
- If depth of cut is d, Final diameter D_f
 =D₀-2d
- Feed in turning process can be expressed in mm/rev (in rev)
- Feed can be converted into a linear travel feed rate in mm/min,
 - $f_r = Nf$
- The time to machine from one end of a cylindrical work part to the other
 - $-T_m = L/f_r$

Numeric problem: Shaping

Determine the three components of the machining force when shaping a cast iron block with depth of cut = 4 mm, feed = 0.25 mm/stroke, normal rake angle of the tool = 10° , principle cutting edge angle = 30° , coefficient of friction between chip and tool is 0.6. Assume ultimate shear strength of cast iron is 400 N/mm2.

- Coefficient of friction is known, friction angle β is known
- Assume any relationship lee-shaffer equation
- Rake angle is known. Shear angle φ can be calculated
- Shear strength τ , width w, depth d, uncut chip thickness t_0 is known
 - Width $w = depth of cut d/cos \psi$,
 - Uncut chip thickness t_0 = feed f.Cos ψ
- Cutting force F_c, F_t can be calculated
- Feed force and normal to feed force components can be found too

ME338 - Pradeep Dixit

$F_c = \frac{\tau w t_0 \cos(\beta - \alpha)}{\sin \phi \cos(\phi + \beta - \alpha)}$ $F_t = \frac{\tau w t_0 \sin(\beta - \alpha)}{\sin \phi \cos(\phi + \beta - \alpha)}$

Analysis of Turning process

16

ME338 – Pradeep Dixit 15 ME338 – Pradeep Dixit

Basic force components in turning

- Uncut chip thickness $t_1 = f.\cos\psi$,
- Width of cut $w = d/\cos \psi$
 - f feed, d depth of cut, ψ side cutting edge angle
- Due to the side cutting edge angle (ψ) , the 'transient' surface is inclined
- Thrust force F_t can be divided in two components
 - Feed force $F_f = F_t \cos \psi$,
 - Radial component $F_R = F_t Sin \psi$

ME338 - Pradeep Dixit

17

Problem 3

A mild steel bar of 100 mm diameter is being turned with a tool with the specification $6^{\circ}-10^{\circ}-5^{\circ}-7^{\circ}-10^{\circ}-30^{\circ}-0.55$ mm. The depth of cut is 2.5 mm and the feed is 0.125 mm/revolution. The rpm of the job is 300. Determine the components of the machining force and the power consumption. The ultimate shear stress of the work material is 400 N/mm² and the coefficient of friction between the tool and the chip is 0.6.

Surface finish in turning

Side (principal) cutting edgeEnd (auxiliary) cutting edge

Feed f ψ_s

Side cutting edge angle (ψ_s) ,

End cutting edge angle (ψ_e) ,

Peak-to-valley height \boldsymbol{h}_{\max} for turning with a sharp tool

$$n_{max} \approx \frac{f}{\tan \psi_s + \cot \psi_e}$$

Peak-to-valley roughness h for turning with tool having nose radius r, when only nose is cutting

$$a = \frac{f^2}{8r}$$

ME338 - Pradeep Dixit

18

Problem 3

A mild steel bar of 100 mm diameter is being turned with a tool with the specification $6^{\circ}-10^{\circ}-5^{\circ}-7^{\circ}-10^{\circ}-30^{\circ}-0.55$ mm. The depth of cut is 2.5 mm and the feed is 0.125 mm/revolution. The rpm of the job is 300. Determine the components of the machining force and the power consumption. The ultimate shear stress of the work material is 400 N/mm² and the coefficient of friction between the tool and the chip is 0.6.

- Coefficient of friction is known, friction angle θ is known
- Rake angle is known. Shear angle ϕ can be calculated
- Shear strength τ , width w, depth d, uncut chip thickness t_0 is known
 - Width $w = d/\cos \psi_s$
 - Uncut chip thickness $t_0 = f \cos \psi_s$
- Cutting force F_c , F_t can be calculated

$$F_{c} = \frac{F_{s} \cos(\beta - \alpha)}{\cos(\phi + \beta - \alpha)}$$

$$F_c = \frac{\tau w t_0 \cos(\beta - \alpha)}{\sin \phi \cos(\phi + \beta - \alpha)}$$

$$F_t = \frac{\tau w t_0 \, Sin(\beta - \alpha)}{\sin \phi \, Cos(\phi + \beta - \alpha)}$$

20

ME338 – Pradeep Dixit 19 ME338 – Pradeep Dixit