Реализация квантового компьютера на ионной ловушке

Вопрос по выбору к ГКЭ, январь 2022

Станислав Сидельников Б01-908, Егор Батарин Б01-906

Московский физико-технический институт

Содержание

- Введение в квантовые вычисления
 - Классический бит и квантовый бит
 - Условия для квантового вычисления
- Принцип работы ионной ловушки
 - Захват иона
 - Доплеровское охлаждение
 - Pro & Contra
- Вычислительная эффективность квантовых компьютеров и их перспективы
 - Криптография
 - Моделирование квантовых процессов
 - Нерешенные проблемы квантовых вычислений

Введение в квантовые вычисления

Классический бит и квантовый бит

Классический бит: 0 или 1 - два состояния.

Квантовый бит:
$$|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$$
, $\alpha,\beta\in\mathbb{C}$, $|\alpha|^2+|\beta|^2=1$ - бесконечно много состояний?

Представление на сфере Блоха:

$$|\psi
angle=e^{i\gamma}\left(\cosrac{ heta}{2}\left|0
ight
angle+e^{i\phi}\sinrac{ heta}{2}\left|1
ight
angle
ight)\sim\cosrac{ heta}{2}\left|0
ight
angle+e^{i\phi}\sinrac{ heta}{2}\left|1
ight
angle$$
, где $\gamma, heta$ и ϕ - действительные числа.

Введение в квантовые вычисления

Классический бит и квантовый бит

