Urban Water and Housing Infrastructure for Economic Development

William Violette

May 2018

Motivation for Dissertation

- Rapid urbanization in the developing world
 - ▶ 30% of urban pop. lives in slums (UN, 2015)
- Informal institutions mean standard policies can have unintended consequences
 - Difficult to detect in standard survey data
- New administrative data can provide a window into these dynamics

Overview of Dissertation

- Spillover impacts of public housing
- 2 Child health, overcrowding, and public housing
- 3 Pricing water when the poor share

Public Housing Spillovers in a Developing Country

joint with Ben Bradlow and Stefano Polloni

Public Housing and Development

- ightharpoonup Public Housing ightarrow primary government response to slums
- ► Positive effects on direct recipients (Cateneo et al. [2009], Franklin et al. [2016], Galiani et al. [2017])
- ▶ Question: What are the spillover effects of public housing in developing countries?
 - Positive: Amenity value
 - Negative: Crowd-in slums (share public services)
- ▶ **Setting:** 150+ projects in South Africa; GPS price and slum data
- ► **Findings:** Home prices drop by 16% within 3 yrs and 400m of a project
 - Home quality improves within project footprint but declines nearby (slum crowd-in)

Public Housing in South Africa

- ▶ Over 4.3 million houses since 1994 (13% of pop.)
 - ▶ 50 to 500 houses per project
 - Fully serviced (roads, water, sanitation, electricity)
 - Greenfield projects on undeveloped land near slums
 - In-Situ upgrading replacing existing slums
- Who gets a house?
 - National/provincial waiting list; no resale within 7 years
 - Must be eligible: Citizens, new homeowners, married or dependents, low income
 - In practice, waiting lists/eligibility weakly enforced

Measuring Public Housing and Spillovers

- ► Focus on Gauteng Province (includes Johannesburg and Pretoria)
- Property Transactions 500,000 deeds records (bottom 20% of formal housing market)
 - ▶ Buyer/seller name, GPS, price, date from 2002-2011
- 2 Building Census: GPS for over 4 mil. buildings in 2001 and 2011
- **3 Population Census:** 2001 and 2011
- 4 Admin. Project Records: location, dates, costs
 - Includes planned but unconstructed projects

Identifying Housing Projects

Completed Projects: 56

- ▶ Use sales from government sellers on previously empty land plots
- Cluster sales into projects based on geographic proximity
- ▶ Include projects where over 50% of sales occurred in the same year
 - Use modal sale year as project date

Uncompleted Projects: 101

- ▶ Admin. projects that do not overlap with completed projects
 - Use estimated completion date as project date
- Why are projects canceled/delayed?
 - Legal disputes, service delivery backlogs, funding complications
 - Delays can exceed 12 years

How do projects affect housing growth?

► Count structures within 50 by 50 meter grids

Post construction (2011)

Formal Houses

Change in Formal Houses

Informal Houses

Change in Informal Houses (Slums)

How do projects affect census demographics and house quality?

- ► Project Blocks: >30% overlap (yellow)
- ► Spillover Blocks: <30% overlap, centroids within 1.2 km (blue)

Census Descriptives at Baseline (2001)

- Uncompleted project areas have worse outcomes
- ► Spillover areas are comparable

	(>30% Overlap)		(<30% Overlap)		
	Completed	Uncompleted	Completed	Uncompleted	
Flush Toilet	0.56	0.26	0.77	0.78	
Piped Water	0.21	0.11	0.41	0.37	
Owner	0.57	0.43	0.47	0.51	
Elec. Cooking	0.58	0.24	0.68	0.63	
Elec. Light	0.79	0.36	0.74	0.78	
Single House	0.51	0.45	0.52	0.57	
Number of Rooms	2.93	3.05	3.11	3.28	
Household Size	3.59	3.54	3.27	3.50	
Census Blocks	883	967	2,370	2,463	
Households	59,460	75,768	213,061	212,005	

Within Project

Spillover

Census Difference-in-Differences

$$\begin{split} Y_{hbtp} &= \alpha_1 \, Post_{tp} \, C_{bp} \, Project_{bp} \, + \alpha_2 \, Post_{tp} \, C_{bp} \, Spillover_{bp} \\ &+ \theta_1 \, Post_{tp} \, Project_{bp} + \theta_2 \, Post_{tp} \, Spillover_{bp} \\ &+ \theta_3 \, C_{bp} \, Spillover_{bp} \, + \, \theta_4 \, Spillover_{bp} \, + \lambda_p \, + \, \varepsilon_{hbtp} \end{split}$$

- ▶ h: household, b: census block, t: year (2001, 2011), p: project
- $ightharpoonup Post_{tp}$: After project
- $ightharpoonup C_{bp}$: Completed
- ▶ $Project_{bp}$: >%30 overlap
- ► $Spillover_{bp}$: \leq %30 overlap
- $\triangleright \lambda_p$: Project fixed effect
- ▶ **Identification**: Counterfactual outcomes for completed projects would have changed in the same way as uncompleted projects.

Census Differences-in-Differences Estimates

) (2	2) (3)	(4)
		(+)
Toilet Piped Wa	ter Inside Electric Coo	king Electric Lighting
0.202	2*** 0.0679	-0.0482
324) (0.09	540) (0.0849)	(0.0998)
23* -0.0	464 -0.130**	* -0.0461
(0.03	302) (0.0449)	(0.0385)
,285 1,544	,285 1,544,28	5 1,544,285
60 0.2	43 0.301	0.306
) (6	(7)	(8)
House Owns	House No. Roon	ns Household Size
***	F02 0.206*	0.0992
,	, ,	(0.0915)
		-0.00151
374) (0.09	501) (0.0923)	(0.0462)
,342 1,496	1,459,67	7 1,532,866
95 0.1	47 0.174	0.057
S YE	S YES	YES
4 1 5 1	0** 0.202 324) (0.05 723* -0.00 411) (0.03 3,285 1,544 60 0.2 6) (6 House Owns 3*** -0.00 451) (0.06 57** 0.00 374) (0.05 9,342 1,496 95 0.1	0** 0.202*** 0.0679 324) (0.0540) (0.0849) 723* -0.0464 -0.130** 411) (0.0302) (0.0449) 3,285 1,544,285 1,544,28 60 0.243 0.301 6) (6) (7) House Owns House No. Roon 3*** -0.0523 0.286* 451) (0.0645) (0.158) 57** 0.00820 -0.102 674) (0.0501) (0.0923) 6,342 1,496,636 1,459,67 95 0.147 0.174

Robust standard errors clustered at the project level in parentheses *** p<0.01, ** p<0.05, * p<0.1

How do projects affect local formal housing prices?

► Focus on 1,200m buffers around housing projects

Formal Housing Price Descriptives

	In 1.2 Completed	Other	
Purchase Price (Rand)	248,181.0	230,410.1	243,484.9
Plot Size (m3)	819.2	865.2	1,888.5
Sold At Least Once Median Purchase Year	0.326 2006	0.350 2006	0.331 2006
Observations	28,943	20,700	167,578

 $12 \; \mathsf{Rand} = 1 \; \mathsf{USD}$

Estimating Differences-in-Differences

$$\begin{split} log P_{itp} &= \sum_{d=1}^{D} \alpha_{d} \mathbb{1}[dist = d] Post_{tp} + \sum_{d=1}^{D} \alpha_{d} \mathbb{1}[dist = d] Pre_{tp} \\ &+ \gamma_{t} + \lambda_{p} + \theta X_{i} + \varepsilon_{itp} \\ log P_{itp} &= \sum_{e=1}^{E} \alpha_{j} \mathbb{1}[time = e] Near_{tp} + \sum_{e=1}^{E} \alpha_{j} \mathbb{1}[time = e] Far_{tp} \\ &+ \gamma_{t} + \lambda_{p} + \theta X_{i} + \varepsilon_{btp} \end{split}$$

- ▶ i: transaction, t: year-month, p: project
- ▶ $logP_{gtp}$: log price (formal houses)
- $ightharpoonup Near_{tp}$: <400m, Far_{tp} : \geq 400m & <1200
- ▶ $Post_{tp}$: 36 months after, Pre_{tp} 36 before
- $\triangleright \lambda_p$: project FE, γ_t : calendar month FE

Distance Estimates

Completed Projects

Uncompleted Projects

Time Estimates

Completed Projects

Uncompleted Projects

Regression Analogue

	Comp	Uncompleted		
VARIABLES	Log Price	Log Price	Log Price	
3 yrs 0-400m	-0.166* (0.106)	-0.125 (0.0892)	-0.0664 (0.0597)	
3 yrs 0-400m X In-Situ	(0.200)	0.180 (0.289)	(5.555.)	
Observations R-squared Project FE Year-Month FE	28,701 0.488 YES YES	28,701 0.489 YES YES	24,562 0.502 YES YES	

In-Situ : top 10% of informal home density at baseline

Conclusion and Next Steps

Conclusions

- ▶ Home quality improves within project footprint but declines nearby
- Prices in the formal market drop nearby
- Mechanism: improved services from housing project lowers cost of new slums which generate externalities

Next Steps

- Estimate total effect on slum growth
- Structurally recover externalities from slum density
- Propose optimal housing policy

Public Housing and Child Health

- Question: How does public housing impact (recipient) child health?
 - ▶ Better materials (Cateneo et al. [2009]; Galiani et al. [2017])
 - ▶ More income (Jacob et al. [2014])
 - ▶ Better neighborhoods (Franklin et al. [2016]; Kling et al. [2005])
 - Relieve overcrowded households
 - ▶ More space → less spread of disease
 - More resource investments (more bargaining power for parents)
- ▶ **Approach:** Panel of HHs moving into public housing in South Africa
 - Analyze heterogeneous impacts by baseline household size
- Findings:
 - Public housing does not affect child health on average
 - ► HHs with 6+ members (1) split between new and old houses and (2) experience gains in child health

Theory of Household Splitting and Child Health

- ► With increasing crowding costs, large households split after receiving a new house
- ► Splitting in response to the program affects child health through
 - 1 Less consumption (to pay for an extra house)
 - 2 More housing
 - 3 Less crowding (divide housing/public goods over fewer people)

Measuring Child Health and Public Housing

Household-Level Panel Data: (2008, 2010, 2012)

- ► Total: ~5,000 households
- ► This study: 2,038 households (urban, poor)
- Public housing measure: "Did this household receive a government housing subsidy or any other assistance including RDP housing to obtain this dwelling or any other dwelling?"
- ▶ 615 households gain housing over the period

Descriptive Statistics at Baseline

▶ Beneficiaries are sicker, bigger, and poorer

	Control		Trea	Treated		
	mean	Ν	mean	Ν	T-Test	
Height (z-score)	-0.879	1,698	-1.056	309	-2.05	
Weight (z-score)	-0.324	1,579	-0.436	267	-1.13	
Child Health	1.815	3,093	1.715	643	-2.46	
Household Size	5.127	11,080	5.266	2,070	2.32	
Children	2.176	11,080	2.389	2,070	5.16	
Rooms	3.723	10,657	3.511	2,006	-4.80	
Piped Water	0.538	11,080	0.505	2,070	-2.74	
Flush Toilet	0.450	11,080	0.472	2,070	1.88	
Market Value	19,009	3,714	19,681	735	0.93	
Income (month)	3,704	10,569	2,441	1,943	-8.05	

Empirical Approach: Estimate with First-Differences

$$\Delta Y_{ijpt} = \beta_0 + \beta_1 \Delta Proj_{ijpt} + \beta_2 \Delta X_{ijpt} + \Delta \gamma_{pt} + \Delta \varepsilon_{ijpt}$$

$$\begin{split} \Delta Y_{ijpt} = & \alpha_0 + \alpha_1 Large_{ijpt-1} + \alpha_2 \Delta Proj_{ijpt} + \alpha_3 \Delta Proj_{ijpt} \times Large_{ijpt-1} \\ & + \alpha_4 \Delta X_{ijpt} + \Delta \gamma_{pt} + \Delta \varepsilon_{ijpt} \end{split}$$

- ightharpoonup i: individual, j: household, p: province, t: year
- $ightharpoonup Proj_{ijpt}$: housing project
- ▶ $Large_{ijpt-1}$: 6+ HH members in the previous year
- $ightharpoonup X_{iipt}$: household/individual controls
- $ightharpoonup \gamma_{pt}$: province time trends
- ▶ **Identification**: Counterfactual outcomes for treated individuals would have changed in the same way as untreated individuals.

Impacts on Housing Quality

	Piped Water	Flush Toilet	Brick Walls	Refuse Service	Mkt Value	Rooms
Proj	0.160***	0.137***	0.178***	0.0445*	5,577*	0.0172
	(0.0417)	(0.0460)	(0.0393)	(0.0264)	(3,248)	(0.0932)
ProjxLarge t-1	-0.109	0.00559	-0.0823	-0.00740	2,902	0.0396
	(0.0865)	(0.0887)	(0.0801)	(0.0564)	(8,554)	(0.181)
Proj t-1	0.0506	-0.0530	-0.0361	-0.000981	-1,540	0.166
	(0.0578)	(0.0633)	(0.0509)	(0.0382)	(3,176)	(0.179)
Proj t-1xLarge t-1	0.0696	0.0190	0.0211	-0.0224	-526.3	-0.0955
	(0.118)	(0.131)	(0.104)	(0.0914)	(13,938)	(0.349)
Large t-1	0.0330	-0.0338	-0.00299	-0.0214	-120.9	-0.0210
	(0.0355)	(0.0432)	(0.0356)	(0.0264)	(6,368)	(0.116)
Observations	8,421	8,421	8,421	7,621	1,165	7,411
R-squared	0.047	0.079	0.062	0.034	0.115	0.044

Overall Impacts on Health

	Height (z-score)	Weight (z-score)	Illness	Health
Droi	0.0270	-0.0792	0.0221	0.0661
Proj	(0.0636)	(0.0837)	(0.0179)	(0.0664)
Proj t-1	0.0548	-0.00209	-0.00352	-0.00870
	(0.121)	(0.151)	(0.0303)	(0.130)
Observations	413	445	1,120	1,122
R-squared	0.164	0.183	0.597	0.548
Mean	-0.869	-0.271	0.0618	1.666

Household Size and Health Impacts by Household Size

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	HH Size	Height	Height	Weight	Weight	Health	III
Proj	0.0423	0.0102	0.000920	-0.189*	-0.205*	0.0744	0.00461
	(0.0766)	(0.0725)	(0.0717)	(0.105)	(0.106)	(0.0810)	(0.0204)
ProjxLarge t-1	-0.787***	0.130	0.225*	0.371*	0.395**	-0.0439	0.0511
	(0.237)	(0.134)	(0.130)	(0.202)	(0.199)	(0.154)	(0.0481)
Proj t-1	0.0591	0.0719	-0.0113	0.0173	0.0285	-0.0488	0.00972
	(0.101)	(0.133)	(0.140)	(0.153)	(0.161)	(0.137)	(0.0374)
Proj t-1 x Large t-1	-0.479	-0.130	0.0368	-0.619	-0.679	0.120	-0.0725*
	(0.438)	(0.264)	(0.293)	(0.474)	(0.458)	(0.355)	(0.0395)
Large	-0.505***	-0.0608		-0.186**		0.0697	-0.00440
	(0.102)	(0.0654)		(0.0869)		(0.0684)	(0.0195)
Observations	9.898	534	534	576	576	1,122	1,120
R-squared	0.172	0.202	0.237	0.218	0.253	0.547	0.599
Time x Prov FE	YES	YES	NO	YES	NO	YES	YES
				YES	NO		
Time x Prov x Large FE	NO 5.107	NO 0.067	YES			NO 1.721	NO 0.0700
Mean	5.127	-0.967	-0.967	-0.262	-0.262	1.731	0.0728
F-Stat: Proj+ProjxLarge=0		1.429	3.823	1.375	1.537		

All health regressions control for lagged quartiles in outcomes

Impacts on Household Size

Effects on Child Height and Weight according to Baseline Household Size

Conclusion

Additional findings

- ▶ No change in HH income
- ► Fewer people per room
- ▶ Improvements in domestic violence and nearby drug use
- Expenditure shifts from non-food towards food
- "Left out" HH members move to slums, work more, and send remittances to family

Conclusions

▶ Both mechanisms – (1) less disease spread and (2) better bargaining for children – may contribute to child health improvements for crowded households at baseline

Next Steps

- Improve definition of project area using administrative data
- ► Include most recent wave of panel

Optimal Pricing and Informal Sharing: Evidence from Piped Water in Manila

Pricing public utilities

- Access to public utilities piped water, electricity, mobile phones
 - → large economic benefits (health, time/cost savings, employment, etc.)
- Govts set prices to increase access while covering costs
 - Low fixed prices per connection
 - High marginal prices per unit (increasing)
 - Assume one household per connection
- But people often share connections informally
 - ► High (increasing) marginal prices tax shared connections
 → may lower access and welfare
- Question: What is the optimal pricing policy when people share connections?

Pricing piped water in Manila, Philippines

- Question: What is the optimal pricing policy when people share connections?
- ▶ Key inputs: 1) demand, 2) sharing costs, 3) production costs
- Approach: source and usage reveal sharing costs and demand
- ▶ New Data: estimate using transaction panel with sharing survey
 - Sudden price changes identify demand
 - Quasi-experiment identifies sharing costs
- ▶ Policy: optimum → high fixed and low marginal prices
 - ▶ Welfare gain: 70% of consumer surplus (0.6% of HH inc)
 - ▶ Greater sharing → improves access
- Also consider social pricing and pricing without sharing

Contribution to the literature

- ► Theory: Ramsey (1939); Auerbach and Pellechio (1978); Feldstein (1972)
- ▶ Demand estimation: Moffitt (1986); Borenstein (2009); Olmstead (2009)
- Development applications: Szabó (2015); Diakité et al. (2009);
 McRae (2014); Devoto et al. (2012)

Contributions

- ▶ Model not only "intensive" usage, but also "extensive" source
 - Endogenous sharing
- ► Estimate with micro-data for a large metro-area

Main Findings

- Sharing water lets households trade a lower fixed cost for a higher marginal cost
- ▶ Households are price sensitive (elasticity of 0.5)
- ► Households face high, "hard-to-measure" fixed costs (repairs, permitting, land tenure, etc.)

Conclusion and Next Steps

Policy Takeaways

- Simple two-part tariff (high fixed price/low marginal price)
 - ► Large users enjoy low marginal price
 - Small users also enjoy low marginal price through their neighbors
 - Non-linear pricing has negligible impacts on welfare
- Setting marginal price above marginal cost can mitigate free-riding

Next Steps

- Allow for households to switch sources over time
 - Price changes may be biased by switching behavior
- Test non-linear specifications for demand
 - ▶ Linearity in demand may be driving radical out-of-sample predictions

1 Seller Identity: match government names and housing authorities in seller-names from transactions

Figure: Top 5 Seller Names

	Seller Name	Observations
return	City Of Johannesburg Metropolitan Municipality	29,087
	City Of Johannesburg	27,672
	City Of Tshwane Metropolitan Municipality	24,780
	Ekurhuleni Metropolitan Municipality	21,758
	Gauteng Provincial Housing Advisory Board	13,058
	Total Observations	549,704

- Seller Identity: match government names and housing authorities in seller-names from transactions
- Subsidy Value: exclude purchase prices R50,000 above subsidy value (<4% of remaining transactions)</p>

Figure: Purchase Price Densities

- Seller Identity: match government names and housing authorities in seller-names from transactions
- Subsidy Value: exclude purchase prices R50,000 above subsidy value (<4% of remaining transactions)</p>
- **3** Pre-Existing Formal Dwellings: exclude land plots with formal structures in 2001 building census (31% of remaining transactions)

- Seller Identity: match government names and housing authorities in seller-names from transactions
- Subsidy Value: exclude purchase prices R50,000 above subsidy value (<4% of remaining transactions)</p>
- **3 Pre-Existing Formal Dwellings:** exclude land plots with formal structures in 2001 building census (31% of remaining transactions)
- Spatial Clustering: collect nearby houses into projects with density-based clustering algorithm

- Seller Identity: match government names and housing authorities in seller-names from transactions
- Subsidy Value: exclude purchase prices R50,000 above subsidy value (<4% of remaining transactions)</p>
- **3 Pre-Existing Formal Dwellings:** exclude land plots with formal structures in 2001 building census (31% of remaining transactions)
- **Spatial Clustering:** collect nearby houses into projects with density-based clustering algorithm
 - **5 Temporal Clustering:** include clusters with >50% of transactions during modal year (%50 of clusters)
 - Overlaps well with completed projects from admin. data