Na	ame:	Student ID:
	Indian Institute of Technology Ja ${ m Mid ext{-}Term\ Examination}\ { m UG+PG}\ { m February\ 26,\ 2024}$	ummu
Co Co	ourse Title: Artificial and Computational Intelligence ourse Code: CSL020U4E	Maximum Time: 90 Mins Maximum Marks: 30
	 Conditions of Examination: Closed book; No dictionary; Non-programmable This question paper contains total of 2 Questions. 	e calculator is allowed.
A 16	You are given an Algorithm 1 to perform search in an infinite depth graph.	
A IF	gorithm 1 Graph Search Algorithm (GS) with Branching Factor b and	Infinite Depth
1: 2: 3: 4: 5:	procedure GS(initial_state, goal_test, get_neighbors, b) L ← List(initial_state) while L is not empty do current_state ← Extract a node randomly from L and remove it if goal_test(current_state) then	$\triangleright \; (\mathrm{state}, \; \mathrm{depth})$ from L
6: 7: 8:	return current_state end if $L \leftarrow L \cup aet_neighbors(current_state)$	▷ Goal found

In Algorithm 1, goal_test() and get_neighbors() functions returns the boolean true if current_state is the goal node and generates list of immediate neighbors of the current_state respectively.

▷ Goal not reached within the given depth limit

- (a) Compute the time and space complexity of Algorithm 1. Also, comment on the optimality and feasibility of the solution if goal state exist at depth d.
- (b) Execute the Algorithm 1 on a finite Graph given in figure 1. Compute the path length from start node to the goal node obtained by Algorithm 1

2. [8 + 2 + 2]

end while

11: end procedure

return None

9:

10:

- (a) You have to design an approach for computer to play the maze puzzle (Figure 2) in minimum number of steps. Represent the problem as a graph search problem by defining the notion of vertices, edges and constraints if any. Also, comment on the size of state space.
- (b) Also, comment on the size of state space in the above maze puzzle.
- (c) Also, suggest the improvements in Algorithm 1 to solve this maze puzzle if any.

Figure 1: Graph for Search Algorithms

Figure 2: Maze Puzzle