Froblem 21.			
	Cet	EE [0,1]	
a) Let 15, u	DE H. P	is convex	hence
f(to+(1-6	=) w) & t =	P(v) + (n-t) f((w)
		t m + (1-t)m	
pecamo 12	us are mini	mizers of P	•
By definition	of m, we	e have m s	
We conclud	le that PCH	= (u-E) w) =	- m :
We conclud to + (1-t) a	sed, W	unce of is	convex.
b) By conto exists of, By strict $2(\frac{1}{2})$	iadiction, a	somed that	· there
exists o,	WEN SOC	In that 15	±ω.
By stuct	convexity of	4:	
7/2	5+2W)	2 +(v) + 1	f(w) = m
which cont	adicts the	definition d	f m.
Problem 9.2			
a) Let a E	Rm / Df	(a) = 2M?	1+6
and the second s	1 400	$N = \alpha M$	
is twic	therefor e	iable. Hence	, f is convex
of and on	in at too	all a GRIM	Haca) = aH is
Mic ocil	ranting +	nat is, if	Hy(n) = 2H is and anly
THEOLI CALL	ALL ALTHURE CHAIN	10	

f admits a	minimizer (=) there exists $x \in \mathbb{R}^n$ such that $\nabla f(a) = 0$
	← there exists u∈R", such that
	b = Mu
	E) bEIm(H)
Problem 9.3	
	ut by showing that $ R \rightarrow R $ is strictly $x \mapsto x^2$
convex. L	et $x, y \in \mathbb{R}$ and $t \in (0, 1)$, and assume that naute:
(tx+ 11-t)	$(4)^2 = t^2 x^2 + 2t(1-t)xy + (1-t)^2 y^2$.
Hence (ta	$(y)^2 = t^2 x^2 + 2t(1-t)xy + (1-t)^2 y^2$ $(x-t)y)^2 - (tx^2 + (1-t)y^2)$
=-t	(1-t) x2 + 2t (1-t) xy == t (1-t) y2
	(1-t) (2-y)2 <0.

	Problem 9.3.
	a) We start by showing that IR->IR is strictly convex.
	Let a, y EIR and telo, 13. Compute:
	$\frac{(tx+(1+t)y)^2-tx^2-(1+t)y^2=t^2x^2+2t(1+t)xy+(1-t)^2y^2-tx^2-(1-t)^2y^2}{=-(1-t)tx^2+2t(1-t)xy-t(1-t)y^2}$ $=-(1-t)tx^2+2t(1-t)xy-t(1-t)y^2$
	which is ≤ 0 and ≤ 0 if $\in (0,1)$ and $x \neq y$. Hence $x \mapsto x^2$ is strictly convex.
the street of a constitution in the same of the same o	Let us show now that $h(x) = x ^2$ is strictly convex det $x, y \in \mathbb{R}^n$ and $t \in \{0, 1\}$.
Commence of the Parket State of the Parket Sta	$h(tx+(1-t)y) = \sum_{i=1}^{n} (tx_i+1-t)y_i)^2$
	using what we proved above, we know that moreover the inequality is strict to the if $0 < t < 1$ and $x \neq y$.
•	THE unequality is suict total if OCECI and x = y.

Now, if f is strongly convex, there exists g a convex function g and a>0 such that f=g+ah. Since a>0 and h strictly convex, we get that f

is strictly convex.

Hence h is strictly convex.

b) For a >0 we write fach) = P(n) - a liali? Notice that for is twice differentiable, with Hersian given by: Hga) = Hpa) - a Idn. I is strongly convex. (=) there exist \(\alpha > 0 \) such that for convex. (=> there exist d>0 such that for all 2 ∈ Rn Hq. (x) is positive somidefinite (ie, hab non-regative eigenvalues) (=) there exist x>0 such that for all x EIR" , the eigenvalues of HpGr) are all > x. The Past equivalence comes from the fact that the eigenvalues of Hp(n)-x Idn are the eigenvalues of Hyper minus d Problem 9.4 a) f(n) = 11A2-4112 = (A2-4) (A2-4)

a) $f(x) = ||Ax - y||^2 = (Ax - y)'(Ax - y)$ $= x^T A^T A x - 2 y^T A x + ||y||^2$. From 9.2 we know that $\nabla f(x) = 2 A^T A x - 2 A^T y$ and $H_2(x) = 2 A^T A$.

Since we know that ATA is positive semidefinite (because OFATAV = 11Av112 > 0 for all vER")

We conclude that f is strongly convex because for all $z \in \mathbb{R}^n$, the eigenvalues of $f(x) = 2 \not = A^T A$ are all $> 2 \not = 2 \not = 0$.

Problem 9.5 Let $x \in \mathbb{R}^n$ and $t \in \mathbb{R}^n$ be fixed. Define, for $t \in \mathbb{R}$, $g(t) = f(x+th) - f(x) - t(\nabla f(x), h)$ We will show athat Ilhle & g(1) < 1/2 lihle. First, notice that . g(0) = 0 g'(0) = 0. Second, compete, for ter, g"(+) = h" Hp(2+th) h Since >max (He(n+th)) = max 0-7 He(n+th) 15 and Amin (#f(x+th)) = min of #f(x+th) &, because HP(n+th) is symmetric, we get: Amin (He (n+th)) ||h||2 < g"(+) < Amax (He(n+th)) ||h||2 which gives & | h | 2 g"(t) < L | h | 12, for all tER By integrating these inequalities over [0, E], for some too use get:

81 H12t \ g'(s) ds \ LIIHI2t $\int_{0}^{\infty} g''(s)ds = g'(t) - g'(0) = g'(t).$

Hence, for all tro: 811/12 t & g'(+) & L	Ilhizt.
Integrating between 0 and 1 finally	gives:
VIINII2 Steat & Sg'(A) dt & LIINII2 Steat	1891
$= \frac{1}{2} = g(1) - g(0) = \frac{1}{2}$ $= g(1)$	4-33
Condusion: 1811/12 < g(1) < 1 LII /112	, which
implies: 2 (7760), h) + 2811/112 < P(0,+h) < P(0,) + < (760)), L) +1 LIILII2