

# Cryptographic Methods For Elektra

## **BACHELORARBEIT**

zur Erlangung des akademischen Grades

### **Bachelor of Science**

im Rahmen des Studiums

## **Software and Information Engineering**

eingereicht von

#### **Peter Nirschl**

Matrikelnummer 1025647

an der Fakultät für Informatik

der Technischen Universität Wien

|                           | Peter Nirschl | Markus Raab |
|---------------------------|---------------|-------------|
| <i>N</i> ien, 6. Mai 2018 |               |             |
|                           |               |             |
|                           |               |             |
|                           |               |             |
|                           |               |             |
|                           |               |             |
| Betreuung: Di Markus Raab |               |             |



# Cryptographic Methods For Elektra

## **BACHELOR'S THESIS**

submitted in partial fulfillment of the requirements for the degree of

## **Bachelor of Science**

in

## **Software and Information Engineering**

by

#### **Peter Nirschl**

Registration Number 1025647

to the Faculty of Informatics

| at the Vienna University of Techno | ology         |             |
|------------------------------------|---------------|-------------|
| Advisor: DI Markus Raab            |               |             |
|                                    |               |             |
|                                    |               |             |
|                                    |               |             |
|                                    |               |             |
| Vienna, 6 <sup>th</sup> May, 2018  |               |             |
|                                    | Peter Nirschl | Markus Raab |
|                                    |               |             |

## Erklärung zur Verfassung der Arbeit

| Peter Nirschl                                                                                                                                                                                                                                                                              |                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Hiermit erkläre ich, dass ich diese Arbeit selbständig verfa deten Quellen und Hilfsmittel vollständig angegeben habe Arbeit – einschließlich Tabellen, Karten und Abbildunger dem Internet im Wortlaut oder dem Sinn nach entnomm Angabe der Quelle als Entlehnung kenntlich gemacht habe | e und dass ich die Stellen der<br>n-, die anderen Werken oder<br>nen sind, auf jeden Fall unter |
| Wien, 6. Mai 2018                                                                                                                                                                                                                                                                          | Peter Nirschl                                                                                   |

## Acknowledgements

A big thank you to all the people who supported me during the long time this thesis took me to write.

A special thank you goes to DI Markus Raab, who patiently waited, corrected, gave feedback and helped me to improve my writing skills.

Also a friendly shout-out to the whole Elektra team. You guys are great and I enjoyed our meetings very much.

Last but not least I want to thank my family and my friends for never letting me down.

Sorry to all the great people who are not explicitly mentioned here!

## Abstract

Storing login credentials in application configurations is a common problem. Implementing cryptographic systems is complicated and increases the development effort. We solve the problem by contributing new plugins to the configuration management software Elektra. The new plugins are: fcrypt plugin for file-based encryption and decryption, and crypto plugin for the encryption and decryption of single configuration values. Applications can use the plugins by including them in Elektra's backend configuration. No additional development effort is required.

We study the runtime and memory impact of the introduction of cryptographic methods. We learn that when comparing libgcrypt, OpenSSL and Botan, that libgcrypt has the lowest runtime impact in our benchmark. The benchmark also shows that file-based encryption and decryption is faster than the encryption and decryption of single configuration values.

## Contents

| bstra | act                                                                                                                                               | ix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| onter | nts                                                                                                                                               | xi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Intr  | roduction                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.1   | Elektra                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.2   | Cryptography                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.3   | Research Questions                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Imp   | blementation                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.1   | Elektra Concepts                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.2   | Crypto Plugin                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.3   | Ferypt Plugin                                                                                                                                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.4   | Base64 Plugin                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.5   | Implementation Summary                                                                                                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| App   | olications                                                                                                                                        | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.1   | Encrypted Configuration Values With Elektra                                                                                                       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.2   | Encrypted Configuration Files With Elektra                                                                                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.3   | Protecting a Password inside an INI-File                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Exp   | perimental Evaluation                                                                                                                             | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.1   | Benchmark System                                                                                                                                  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.2   | Benchmark 1 – Runtime Comparison                                                                                                                  | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.3   | Benchmark 2 – Memory Analysis                                                                                                                     | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rela  | ated and Future Work                                                                                                                              | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.1   | Related Work                                                                                                                                      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.2   | Future Work                                                                                                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Con   | nclusions                                                                                                                                         | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.1   | Findings                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.2   | Discussion                                                                                                                                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | Intr<br>1.1<br>1.2<br>1.3<br>Imp<br>2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>App<br>3.1<br>3.2<br>3.3<br>Exp<br>4.1<br>4.2<br>4.3<br>Rela<br>5.1<br>5.2 | 1.2 Cryptography 1.3 Research Questions  Implementation 2.1 Elektra Concepts 2.2 Crypto Plugin 2.3 Fcrypt Plugin 2.4 Base64 Plugin 2.5 Implementation Summary  Applications 3.1 Encrypted Configuration Values With Elektra 3.2 Encrypted Configuration Files With Elektra 3.3 Protecting a Password inside an INI-File  Experimental Evaluation 4.1 Benchmark System 4.2 Benchmark 1 – Runtime Comparison 4.3 Benchmark 2 – Memory Analysis  Related and Future Work 5.1 Related Work 5.2 Future Work  Conclusions 6.1 Findings |

| 7 Résumé              | 45 |
|-----------------------|----|
| A Benchmark 1 Results | 47 |
| List of Figures       | 59 |
| List of Tables        | 60 |
| Listings              | 61 |
| Bibliography          | 63 |

CHAPTER 1

## Introduction

Login credentials in this thesis refer to data that grant access to a system, for example:

- 1. passwords, and
- 2. access tokens (like OAuth tokens[DHM12]).

Login credentials are seen as part of configuration settings of applications.

Applications prefereably store login credentials to related systems in configuration files. A typical example is an application that connects to a database system. The login credentials are often saved as plain text, leaving them vulnerable to attack. We introduce the problem by giving two examples:

- 1. WordPress is a typical web application with a backend connecting to a database. WordPress reads the login credentials for the database server from a configuration file.[wor17].
- 2. Hibernate, a popular object-relational mapping (ORM) tool, is written in Java. Hibernate expects that its login credentials for the database server are provided in an XML configuration file as plain text.[hib17]

Both applications expect the login credentials to be unencrypted, but storing passwords this way is a major security risk. However, introducing cryptography to an application results in increased development efforts and possibly slower runtime behavior. By using third party software libraries an application encounters an increased memory consumption.

**Hypothesis**  $H_1$ : Introducing cryptography to an application increases the runtime of the application.

**Hypothesis**  $H_2$ : Introducing cryptography to an application increases the memory consumption of the application.

In order to mitigate the risks of leaking plain text login credentials, they should be encrypted before they are persisted to a storage. To keep the development effort low for application developers, a software library can abstract the cryptographic operations.

Cryptography as a security measure might also bring drawbacks in usability. In this thesis we are not going to discuss any possible drawbacks regarding usability, but focus solely on the performance analysis.

Cryptographic algorithms and their application have been studied and benchmarked in different contexts. [KWdR03, SL16, TK11] The scope of this thesis is the performance analysis of cryptography applied to application configuration settings.

#### 1.1 Elektra

#### 1.1.1 What is Elektra?

The Elektra Initiative is a configuration management tool, that consists of a library and a set of programs. The core idea of Elektra is to have a centralized hierarchical key-value database for configuration settings. The core of Elektra's source code is written in the C programming language. Elektra is extensible by a plugin system. Different language bindings offer availability of Elektra in other programming languages (for example: Java, Python, and Ruby). Elektra supports common configuration file formats out of the box, for example: [ele18, Raa10]

- 1. INI,
- 2. JSON,
- 3. XML, and
- 4. Yaml.

All technical details, the source code, and the documentation are available online.<sup>1</sup>

#### 1.1.2 Elektra And Cryptography

We choose Elektra as our reference because of its focus on configuration and because of its extensibility. Elektra offers many features, but stores login credentials as plain text originally. Therefore during the writing of this thesis we developed plugins for Elektra that provide transparent encryption and decryption capabilities.

<sup>&</sup>lt;sup>1</sup>Elektra Initiative page: https://www.libelektra.org

Elektra combined with the new plugins solves the problem of transparent encryption and decryption of configuration settings. This combination is the basis for our experimental evaluation.

### 1.2 Cryptography

In this section we define the terms cryptography, encryption and decryption.

#### 1.2.1 Algorithms

There are many cryptographic algorithms and there are even more implementations. We can not cover them all, but focus on a typical setting that is viable for most applications.

#### Symmetric Cipher

The Advanced Encryption Standard (AES) is a widely used symmetric block-cipher that is specified in the Federal Information Processing Standards Publication (FIPS) 197. The FIPS 197 is published by the National Institute of Standards and Technology (NIST). [oSN01] AES supports three key lengths:

- 1. 128 bits,
- 2. 192 bits, and
- 3. 256 bits.

AES operates on data blocks with a size of 128 bits. [oSN01, Sta14] For the scope of this thesis we choose Cipher Block Chaining (CBC) Mode as the operation mode for AES. In CBC mode the XOR operation is applied to the plain text and the previous ciphertext block before the actual encryption happens. [Sch96, Sta14]

In this thesis we use AES with a key length of 256 bits in CBC mode as a typical symmetric cipher and refer to this combination as AES-256-CBC. We are going to apply AES-256-CBC to single configuration values. This enables us to protect login credentials within configuration settings.

#### Hybrid – Combining asymmetric and symmetric cryptography

Asymmetric ciphers tend to be slower than symmetric ciphers. To mitigate performance problems both asymmetric ciphers and symmetric ciphers are often combined into a public-key cryptographic system. Such systems utilize asymmetric cryptography to protect a key for a symmetric cipher. The symmetric cipher protects the actual data. This way the encrypted payload can be shared among multiple parties without the need to re-encrypt for every recipient. [Sta14]

The OpenPGP protocol defines such a public-key cryptographic system. It is specified in the RFC 4880.[CCD<sup>+</sup>07] We are going to apply the OpenPGP protocol to encrypt configuration files. This will protect confidential configuration settings (for example: configuration files that only hold login credentials).

#### 1.2.2 Providers of Cryptographic Functions

We defined which cryptographic algorithms we want to examine. Next we explain which providers of cryptographic functions we want to use for the examination.

#### GnuPG and libgcrypt

The GnuPG project is a FLOSS implementation of the OpenPGP protocol. GnuPG supports:

- 1. encryption,
- 2. decryption,
- 3. digital signatures, and
- 4. key management.[gnu17]

The libgerypt library is a part of the GnuPG project. The developers of GnuPG encapsulated the low-level implementations of the cryptographic algorithms within libgerypt.

The source code of GnuPG and libgcrypt is written in the C programming language and is available at the GnuPG project homepage.<sup>2</sup>

#### OpenSSL

The OpenSSL project offers implementations of the Transport Layer Security (TLS) and the Secure Sockets Layer (SSL) protocols. It also provides its own implementations of the underlying cryptographic operations, which are accessible via the interfaces of the liberypto library.

The source code of OpenSSL is written in the C programming language. It is available at the OpenSSL project homepage.<sup>3</sup>

<sup>&</sup>lt;sup>2</sup>GnuPG project homepage: https://www.gnupg.org

<sup>&</sup>lt;sup>3</sup>OpenSSL project homepage: https://www.openssl.org/

#### **Botan**

The Botan library is another provider of cryptographic functions. The source code is written in the C++ programming language and is available at Github.<sup>4</sup>

The three providers of cryptographic functions are chosen because we have the most experience with them.

## 1.3 Research Questions

In this thesis we examine the following research questions:

**Question**  $RQ_1$ : Which provider of cryptographic functions is the best fit when comparing the runtime and memory performance of AES-256-CBC?

**Question**  $RQ_2$ : What is the average runtime and memory overhead if AES-256-CBC is applied to configuration values?

**Question**  $RQ_3$ : What is the average runtime and memory overhead if OpenPGP encryption, and decryption are applied to configuration files?

<sup>&</sup>lt;sup>4</sup>Botan's Github page: https://github.com/randombit/botan

## Implementation

This chapter covers the following topics:

- 1. concepts in Elektra that are relevant for this thesis, and
- 2. the plugins and enhancements we contributed to Elektra.

## 2.1 Elektra Concepts

First we explain the internal details of the configuration database that is provided by Elektra. Then we elaborate on how Elektra's plugin system works.

#### 2.1.1 Key and Keyset

Elektra abstracts configuration settings in a hierarchical key-value database. A keyset holds zero or more keys. The key holds:

- 1. its path within the configuration hierarchy,
- 2. its configuration value either as a string value or as a binary value, and
- 3. optionally its meta-keys, which are keys that further describe the key itself.

Elektra uses meta-keys for different purposes:

- 1. state information of the key (for example: encrypted, encoded, ...),
- 2. data validation (for example: numeric value, binary value, ...), and

3. formatting (for example: position in file, number of spaces between parameters, ...).

In order to avoid ambiguity we do not use Elektra's terms in this thesis. We refer to a configuration setting rather than to a keyset. We refer to configuration values rather than to Elektra keys, in order to avoid confusion with cryptographic keys. From now on if we refer to a key, we mean a cryptographic key.

#### 2.1.2 Plugin

The core of Elektra is kept small, meaning that it provides mainly the database abstraction as well as a plugin system. All the configuration access operations are performed by plugins. [Raa10] Every plugin should fulfill a single purpose. This design decision was inspired by the UNIX philosophy. Let us illustrate what plugins can do by giving some examples:

- 1. The crypto plugin encrypts and decrypts configuration values.
- 2. The base64 plugin encodes and decodes binary values to and from Base64 strings.
- 3. The ini plugin reads from and writes to ini files.

Plugins can be divided into two categories:

- 1. filter plugins, and
- 2. storage plugins.

A *filter plugin* modifies configuration values before they are written to a file or after they have been read from a file. A *storage plugin* directly reads from or writes to a configuration file.

A plugin can export different methods in order to fulfill its purpose. They are enumerated below:

#### open

The open method is called to initialize the plugin.

#### close

The close method is called to properly shutdown the plugin and release all resources.

#### $\mathbf{set}$

For storage plugins the set method is called when changes made to the key-value database should be persisted. Filter plugins export this method to modify the keyset (for example: encode binary values using the Base64 schema).

#### get

The get method is called when the content of the key-value database is requested by an application. Filter plugins provide this method to transform data in the keyset (for example: decoding Base64 encoded strings back into their corresponding binary value). Storage plugins typically perform read operations within this method.

#### checkconf

A plugin implements this method to validate the backend configuration as well as the plugin configuration. The plugin may modify the configuration or report that the configuration is incomplete or wrong in some way.

We added this method during the writing of this thesis. Its introduction was necessary for the development of the crypto plugin as well as the fcrypt plugin.

#### 2.1.3 Elektra State Sequence

First Elektra invokes open and changes its state to "opened". Afterwards Elektra can either be closed by a close call or the configuration can be read by calling get. After the first call of get Elektra is "ready". Now the configuration held by Elektra may be modified with a call of set or the data may be read again by calling get. After all get and set calls are done, Elektra is closed by a call of close. [ele18]

Figure 2.1 on page 9 illustrates how the states in Elektra change by the calls of the methods mentioned above in Section 2.1.2 on page 8.

Figure 2.1: State changes in Elektra



#### 2.1.4 Backend

Backends are one or more plugins combined into a unit that interact with a single configuration file. The backend is mounted into Elektra's configuration hierarchy. This process is similar to the mounting process in UNIX-like file systems, where a device can

be mounted to a specific directory in the virtual file system. In terms of Elektra the virtual file system is the key-value database and the device is the configuration file. Every backend has its own configuration itself (i.e. backend configuration), which specifies the runtime behavior of the plugins within the backend.

#### 2.1.5 Compilation Variants

Elektra's build scripts provide a functionality called *compilation variants*, which means a plugin is being compiled multiple times with minor differences. Let us demonstrate this idea using the crypto plugin. Cryptographic functions are provided by different libraries (see Section 1.2.2 on page 4) interchangeably. The basic structure of the plugin stays the same for every compilation variant except for the library-specific calls. These calls are encapsulated using C preprocessor directives, which form the actual compilation variants. Listing 2.1 on page 10 further illustrates the use of compilation variants, showing how the crypto libraries are initialized by the crypto plugin.

Listing 2.1: Example of how to use compilation variants in Elektra

As we can see every crypto library is handled differently but the code frame of the plugin stays the same for all compilation variants.

## 2.2 Crypto Plugin

#### 2.2.1 Reasons For Developing The Plugin

In order to evaluate our research questions we need a reference application with a high degree of modularity. The modularity is required to gain profound insight in the runtime behavior of the reference application. By combining different Elektra plugins we can test a variety of possible use cases.

Elektra originally did not provide any cryptographic functions when we started working on this thesis. So we decided to develop the crypto plugin for Elektra. The crypto plugin enables the use of Elektra as benchmark environment. It will help us with the research questions 1 and 2 (see Section 1.3 on page 5).

#### 2.2.2 Benefits For The Elektra Project

Elektra is a configuration database and as such it will be used for storing sensitive configuration values (for example: login credentials) at some point. Leaving these values unencrypted is a security threat. The crypto plugin is a way of tackling this threat by providing transparent encryption and decryption. This means that the configuration values are stored encrypted on the filesystem and are decrypted by Elektra whenever the application requests its configuration. Thus the encryption and the decryption work transparent to both the user and the application. The crypto plugin can simply be added to a backend and thus integrates well with other Elektra plugins.

#### 2.2.3 Challenges

The first challenge was to design the crypto plugin in a way that supports more than one provider of cryptographic functions. With the goal of comparability in mind, the encryption and decryption schema will be identical for each provider. Otherwise no conclusions can be drawn from differing benchmark results. Elektra's compilation variants enable the support for multiple providers. For every provider we want to integrate, a new compilation variant is added to the crypto plugin.

The next problem was how to generate, derive and restore the keys for the cryptographic functions. This part of the plugin is crucial from a security perspective. Any kind of wrongdoing in this module could lead to leaks, endangering the confidentiality of the protected data. The first design that came to mind was a password based schema that utilizes the Password-Based Key Derivation Function 2 (PBKDF2). However, this approach is not suitable for any kind of batch operation as the program flow would be interrupted to ask for a password input. So we decided to delegate the handling of cryptographic keys to an existing key store: GnuPG. GnuPG in combination with the pinentry utilities turned out to be a great way of managing keys. In addition the users benefit from this approach because they can simply use their existing PGP keys and even smart-cards for securing their data with Elektra.

### 2.2.4 Technical Aspects

In this section we are going to dive deeper into the technical details of the implementation of the crypto plugin.

The crypto plugin acts as a filter that is applied to the configuration setting before the storage plugin reaches its kdb set phase. Later on, when the encrypted configuration is requested, the plugin decrypts the configuration setting after the storage plugin read

<sup>&</sup>lt;sup>1</sup>PBKDF2 is specified in RFC 2898.

the configuration file in its kdb get phase. Figure 2.2 on page 12 further illustrates how the process works.

Figure 2.2: Crypto Plugin: Overview of the encryption and decryption process



Not all configuration values in the configuration settings are considered for encryption or decryption. The crypto plugin uses a meta-key to identify which configuration values have to be processed. If a meta-key with name "crypto/encrypt" is set to a value of "1" then the configuration value is marked for encryption. The plugin checks the meta-key and only encrypts values if the meta-key is set accordingly. The decryption works analogous. All other configuration values, which are not marked, are ignored and left unchanged by the crypto plugin.

#### 2.2.5 Cryptographic Details

In this section we elaborate the details of how the encryption and decryption process works.

#### **Data Structures**

The crypto plugin defines a single data structure, which is propagated throughout the plugin:

**elektraCryptoHandle** is a structure that abstracts the library specific data types which hold keys and initialization data for the cryptographic functions.

Listing 2.2 on page 13 shows the definition of the elektraCryptoHandle for the OpenSSL plugin variant.

Listing 2.2: Definition of elektraCryptoHandle for the OpenSSL crypto plugin variant

```
typedef struct
{
          EVP_CIPHER_CTX * encrypt;
          EVP_CIPHER_CTX * decrypt;
} elektraCryptoHandle;
```

#### Message Structure

The crypto plugin operates on configuration values. During its work it modifies the value as well as the meta-data. The value is always transformed into binary data. In order to restore the value to its original type during decryption, some header information is required.

Table 2.1 on page 13 shows the information which is encoded into the first cryptographic block during encryption.

| element                  | offset     | length  | data type             | encrypted |
|--------------------------|------------|---------|-----------------------|-----------|
| magic number "#!crypto"  | 0          | 8 B     | character             | no        |
| payload version          | 8          | 2 B     | character             | no        |
| length of the salt $L_S$ | 10         | 4 B     | unsigned long integer | no        |
| salt                     | 14         | $L_S$ B | byte                  | no        |
| original data type       | $14 + L_S$ | 1 B     | byte                  | yes       |
| original content length  | $15 + L_S$ | 4 B     | unsigned long integer | ves       |

Table 2.1: Structure of the crypto message header

The salt is a sequence of random bytes and is used in cryptography to prevent table-based key guessing attacks. The content length is saved because most provider of cryptographic functions do not support padding out of the box, which means that they always operate on whole blocks of data, where the block size depends on the cryptographic algorithm that is used.

#### **Key Derivation**

As mentioned before, GnuPG is used for managing the users' asymmetric keys. GnuPG is executed to store and receive a *master password*, which is a part of the plugin configuration of the crypto plugin. Whenever a cryptographic key is required, the master password is fetched from the plugin configuration and decrypted using GnuPG. Then the PBKDF2 is applied to the decrypted master password together with the salt, so that a cryptographic key as well as an initialization vector can be derived.

#### Crypto Plugin Methods

The crypto plugin implements the following Elektra's plugin methods (see Section 2.1.2 on page 9). In the following section the program flow of the plugin methods is explained.

**open** initializes the provider of cryptographic functions.

**close** properly shuts down the provider of cryptographic functions.

get The get method takes a configuration setting as input. The crypto plugin iterates over the configuration setting and checks for every configuration value if it has been encrypted. This is done by using the meta-key mentioned before. If the configuration value is encrypted, the crypto plugin decrypts it and thus restores the configuration value to the original state it was in before the encryption took place.

Figure 2.3 on page 15 illustrates how the get method works in detail.

set The set method takes a configuration setting as input. The crypto plugin iterates over the configuration setting and checks every configuration value if it has been marked for encryption. Marking a configuration value for encryption is done by using a meta-key. If the meta-key is present, the crypto plugin generates a message header (see Section 2.2.5 on page 13) including a random salt and encrypts the configuration value.

Figure 2.4 on page 16 illustrates how the set method works in detail.

**checkconf** The checkconf method ensures that a master password is available in the plugin configuration of the crypto plugin. If an encrypted master password is provided, a decryption run is started to see if the user owns the required GnuPG private key. If no master password exists, a random master password is created, encrypted using GnuPG and stored in the plugin configuration.

The GnuPG key ID, that is used for encrypting and decrypting the master password, has to be specified within the plugin configuration. If no such GnuPG private key is specified, the crypto plugin generates an error message.

Figure 2.5 on page 17 illustrates how the checkconf method works in detail.

#### Compilation Variants

For every provider of cryptographic functions (see Section 1.2.2 on page 4) a compilation variant of the crypto plugin is created. The following compilation variants exist:

- 1. crypto\_gcrypt for libgcrypt
- 2. crypto openssl for the OpenSSL library
- 3. crypto\_botan for the Botan library



Figure 2.3: Crypto Plugin: Decryption of a configuration setting at the kdb get method

#### 2.2.6 Details About The Providers of Cryptographic Functions

In this section we explain the details about the provider of cryptographic functions, which are relevant for the performance of the crypto plugin.

#### libgcrypt

libgcrypt provides the data structure gcry\_cipher\_hd\_t for communicating cryptographic keys to the API, thus it is used directly as elektraCryptoHandle.



Figure 2.4: Crypto Plugin: Encryption of a configuration setting at the kdb set method

libgcrypt does not provide any internal mechanism for data manipulation, meaning it operates directly on memory buffers. Encryption and decryption happen in-place, so only a single buffer is used. Before the encryption call the buffer holds the plain text. After a successful encryption call the buffer holds the cipher text. Decryption works analogous. The size of the buffer must be a multiple of a block, thus it depends on the cryptographic algorithm in use. For AES-256-CBC the buffer size must be set to 16 bytes (128 bits).[gnu17]



Figure 2.5: Crypto Plugin: The kdb checkconf method

#### OpenSSL

OpenSSL exports the data structure EVP\_CIPHER\_CTX for communicating cryptographic keys to the API. The definition of the elektraCryptoHandle structure has already been shown in listing 2.2 on page 13.

OpenSSL provides the BIO API for data manipulation. The BIO API is basically an I/O stream abstraction for handling data streams and data transformation. We use the BIO API for temporarily storing the encrypted/decrypted content. Listing 2.3 on page 18 demonstrates how encryption works in OpenSSL and how the BIO API is used for storing the encrypted content.

Listing 2.3: Encryption in the OpenSSL crypto plugin variant

#### Botan

Since Botan is written in the C++ programming language the encryption and decryption process is encapsulated into classes. The cryptographic key is represented by the class SymmetricKey and the initialization vector is represented by the class InitializationVector.

Botan provides an API for data manipulation, similar to OpenSSL. A Pipe abstracts I/O operations in Botan. We use the Pipe for encryption and decryption by attaching a corresponding filter to the Pipe.

Listing 2.4 on page 18 shows an example of how the encryption works in Botan.

Listing 2.4: Encryption in the Botan crypto plugin variant

## 2.3 Fcrypt Plugin

#### 2.3.1 Reasons For Developing The Plugin

Elektra did not provide any facilities to encrypt or decrypt configuration files as a whole. Also there was no way of signing configuration files. The fcrypt plugin was developed

during the writing of this thesis to provide these two features:

- 1. file based encryption and decryption using GnuPG
- 2. file based signatures using GnuPG

Both features can be used separately and they can be combined together.

The fcrypt plugin will help us with research questions 3 (see Section 1.3 on page 5).

### 2.3.2 Benefits For The Elektra Project

GnuPG has been around for a long time. With the fcrypt plugin users can combine a well known and established public key cryptographic system together with Elektra's configuration capabilities.

The fcrypt plugin does not have any compile-time dependencies. Only the gnupg or gnupg2 binary is required at runtime. Both versions of GnuPG (version 1 and version 2) are supported.

#### 2.3.3 Technical Aspects

The fcrypt plugin uses GnuPG as provider of cryptographic functions for all its operations. Doing so the plugin acts as a connector between Elektra and GnuPG, but it can also be seen as frontend to GnuPG. All invocations that the fcrypt plugin produces can be executed in a shell without Elektra. The invocations rely on the fork and the execv system functions.

#### File Based Encryption and Decryption

The kdb set method of the fcrypt plugin provides the encryption capabilities. Listing 2.5 demonstrates how a typical encryption call will look like.

```
Listing 2.5: Fcrypt: encryption command gpg2 --batch -o /tmp/config.asc --yes -r 7F230E8D -e /tmp/plaintext.ini
```

The decryption is done in a similar way and is implemented in the kdb get method. Listing 2.6 demonstrates how a typical decryption call will look like.

```
Listing 2.6: Fcrypt: decryption command gpg2 --batch -o /tmp/plaintext.ini --yes -d /tmp/config.asc
```

#### File Based Signatures

The signature — like the encryption — is created in the kdb set method. If a signature is requested, the fcrypt plugin appends the private key with the -u command line option of GnuPG. Also the --clearsign or the -s switch is added to the GnuPG command line options.

Listing 2.7 provides an example of how a signature call to GnuPG can look like.

```
Listing 2.7: Fcrypt: signature command
```

The verification of the signatures works like a regular decryption, which has already been shown in Listing 2.6 on page 19.

### 2.4 Base64 Plugin

#### 2.4.1 Motivation and Functionality

The crypto plugin causes trouble in text-only configuration file formats like INI, as it produces binary data. To mitigate this problem we developed the base64 plugin.

During the kdb set method the base64 plugin iterates over the configuration setting and encodes all binary values using the Base64 schema, which is specified in the RFC 4648.[JS16] During the kdb get method the base64 plugin decodes all Base64 strings back to its binary representation.

In order to distuingish between Base64 strings and other strings, the prefix @BASE64 is added to each Base64 encoded string.

#### 2.4.2 Base64 Examples

Figure 2.6 on page 21 shows an example of an Elektra backend configuration with the crypto plugin and the base64 plugin.

Listing 2.8 on page 20 demonstrates how an INI file, that has been produced by the backend described in Figure 2.6 on page 21, might look like.

Listing 2.8: Base64 example INI output

```
[section1]
#@META crypto/encrypt = 1
optionA = @BASE64IyFjcnlwdG8wMBEAAACFq0cCnjyfuwVy9/VtcpYCceYJVmnyTfF...
```



Figure 2.6: Base64 Plugin: Example backend configuration with the base64 plugin

## 2.5 Implementation Summary

This chapter explained the Elektra plugin system and how we used it to introduce cryptographic methods to the Elektra project. We learned about the contributions that were made to Elektra during the writing of this thesis. We have an understanding of the crypto plugin, the fcrypt plugin and the base64 plugin. Now we have a complete set of plugins to start the evaluation.

## **Applications**

In this chapter we present how the crypto plugin and the fcrypt plugin solve the problem of:

- 1. transparently encrypting/decrypting configuration values in a configuration setting with Elektra, and
- 2. transparently encrypting/decrypting entire configuration files with Elektra.

Finally we demonstrate how the base64 plugin and the crypto plugin are combined to protect configuration values within an INI-file.

## 3.1 Encrypted Configuration Values With Elektra

This scenario covers how a password is protected inside a configuration setting using Elektra with the crypto plugin. First of all, we add the crypto plugin to the backend. Listing 3.1 demonstrates how a backend is mounted with the crypto plugin enabled. Note that DDEBEF9EE2DC931701338212DAF635B17F230E8D refers to the GnuPG key that is used to protect the master password. In Section 2.2 on page 10 we explain in detail how the crypto plugin works.

We use the crypto\_gcrypt plugin variant in this chapter. The other plugin variants crypto\_openssl, and crypto\_botan operate the same way. It is possible to exchange the plugin variants of the crypto plugin seamlessly.

Listing 3.1: Mounting an Elektra backend with the crypto plugin

kdb mount demo.ecf user/demo crypto\_gcrypt \
 "crypto/key=DDEBEF9EE2DC931701338212DAF635B17F230E8D"

Now we have a backend mounted and we can add configuration values to it. We store the password under user/demo/password in our configuration. First we tell the crypto plugin to encrypt the password by setting the meta-key crypto/encrypt to 1.

Listing 3.2 shows how the password is marked for encryption and how it is stored within the configuration.

#### Listing 3.2: Marking a configuration value for encryption

```
kdb setmeta user/demo/password crypto/encrypt 1 kdb set user/demo/password "secret"
```

As a result the password "secret" is being stored as encrypted binary string in the configuration file. In Listing 3.3 we show how the password is received from the configuration.

Listing 3.3: Receiving an encrypted configuration value

kdb get user/demo/password

### 3.2 Encrypted Configuration Files With Elektra

Our second scenario shows how an entire configuration file is encrypted with the fcrypt plugin. Like in the previous section, DDEBEF9EE2DC931701338212DAF635B17F230E8D refers to the GnuPG key that is used for encrypting and decrypting the configuration file. See Section 2.3 on page 18 for further details about the fcrypt plugin.

Listing 3.4 demonstrates how an Elektra backend is mounted with the fcrypt plugin enabled.

#### Listing 3.4: Mounting an Elektra backend with the fcrypt plugin

```
kdb mount fcrypt.ecf user/fcrypt fcrypt \
    "encrypt/key=DDEBEF9EE2DC931701338212DAF635B17F230E8D"
```

As opposed to the crypto plugin, the fcrypt plugin does not require to set any metakeys, because it encrypts the entire configuration file. Listing 3.5 shows how configuration values are added to the configuration setting.

Listing 3.5: Adding configuration values with the fcrypt plugin

```
kdb set user/fcrypt/password "entirely.secret"
```

The resulting configuration file is a valid GnuPG file and can not only be decrypted by Elektra but also with GnuPG directly.

#### 3.3 Protecting a Password inside an INI-File

It is hardly feasible for configuration files to contain binary data (for example: INI or XML). In this scenario we demonstrate how to add the base64 plugin to the backend, so that all binary values are transformed into Base64 strings. All technical details about the base64 plugin were given in Section 2.4 on page 20.

Listing 3.6 shows how an INI-file is mounted together with the crypto plugin, and the base64 plugin plugins.

#### Listing 3.6: Mounting an INI-file with the crypto plugin and the base64 plugin

```
kdb mount test.ini user/test crypto_gcrypt \
"crypto/key=DDEBEF9EE2DC931701338212DAF635B17F230E8D" \
base64 ini
```

We add our password under user/test/password, analogous as shown in Listing 3.2 before. The resulting INI-file is presented in Listing 3.7.

#### Listing 3.7: Encrypted values in an INI-file

#@META crypto/encrypt = 1
password = @BASE64IyFjcnlwdG8wMBEAAADwPI+lqp+X2b6BIfLdRYgwxmAhVUPurqk \
QVAI78Pn4OYONbei4NfykMPvx9C9w91KT

## **Experimental Evaluation**

The focus of this chapter is:

- 1. the setup of the benchmark system,
- 2. the definition of the benchmarks, and
- 3. the results of the benchmarks.

#### 4.1 Benchmark System

#### 4.1.1 Hardware Setup

The processor of the benchmark system is an Intel® Core<sup>TM</sup> i7-4771 CPU that is clocked at 3.50 GHz. The processor has 4 cores and hyperthreading enabled (which means that 8 threads are available). The benchmark system has a total amount of 16 GB of DDR3 RAM installed. The RAM is clocked at 1333 MHz.

The root partition of the operating system is located on a "Samsung SSD 840" solid state drive (SSD). It is installed on an ext4 filesystem.

The hdparm program gives an idea of how much throughput the SSD can handle. The results are listed in the table 4.1 on page 27.

Table 4.1: Read performance of the benchmark SSD

|                             | data read          | ${f time}$          | $\operatorname{result}$ |
|-----------------------------|--------------------|---------------------|-------------------------|
| Timing cached reads         | 28536  MB          | $1.99 \mathrm{\ s}$ | $14316.64 \; MB/s$      |
| Timing buffered disk reads: | $1608~\mathrm{MB}$ | $3.00 \mathrm{\ s}$ | $535.47~\mathrm{MB/s}$  |

All benchmarks are performend on the SSD.

#### 4.1.2 Software Setup

The operating system Fedora 27 is used for executing the benchmarks. Elektra version 0.8.21 at the git commit dfa9bb8<sup>1</sup> is installed on the system.

The most important program versions are listed below:

- clang version 5.0.1 (tags/RELEASE\_501/final)
- $\bullet$  Botan version 1.10.17-1.fc27
- OpenSSL version 1.1.0g-1.fc27
- libgcrypt version 1.8.2-1.fc27
- GnuPG version 2.2.4-1.fc27

Listing 4.1 shows how Elektra is compiled on the benchmark system.

Listing 4.1: Elektra compile options for the benchmarks

```
mkdir build && cd build
cmake -GNinja \
    -DBUILD_STATIC=OFF \
    -DCMAKE_C_COMPILER=clang \
    -DCMAKE_CXX_COMPILER=clang++ \
    -DBUILD_DOCUMENTATION=OFF \
    -DCMAKE_INSTALL_PREFIX=/usr \
    ..
ninja install
```

#### 4.1.3 Time Measurement

The runtime of a benchmark is measured using the system time, which is returned by the system function gettimeofday (). The time measurement is abstracted in a class called Timer. Listing 4.2 on page 29 demonstrates how a benchmark is written.

 $<sup>^{1}</sup>$ The full commit hash is dfa9bb89ada39996cac5c1abd21481e1e2181ad9.

Listing 4.2: Time measurement for the benchmarks

```
void do_benchmark ()
{
   Timer t();

   // begin of measurement
   t.start ();

   action_to_be_measured ();

   // end of measurement
   t.end ();
}
```

#### 4.1.4 Statistical Method

Every benchmark run is repeated 11 times. For the sorted set of results  $\{r_1, ..., r_{11} | r_n \le r_{n+1}\}$  the median  $\tilde{x}$  is given as:  $\tilde{x} = r_6$ .

The median is chosen as measurement result because of its robustness against outliers. When we speak of the result of a benchmark, we always refer to the median  $\tilde{x} = r_6$  of the 11 benchmarks runs.

#### 4.2 Benchmark 1 – Runtime Comparison

This benchmark examines the runtime performance of the crypto plugin. The benchmark compares the duration of the kdb set and kdb get methods:

- 1. without the crypto plugin,
- 2. with the fcrypt plugin,
- 3. with the crypto\_openssl plugin variant,
- 4. with the crypto\_gcrypt plugin variant, and
- 5. with the crypto\_botan plugin variant.

For each benchmark variant an Elektra backend is set up. For every backend a configuration setting with a preset size is generated. First the duration of the kdb set method of Elektra is being measured, which represents the performance of the encryption process. Then the duration of the kdb get method of Elektra is being measured, which represents the performance of the decryption process. The benchmark is repeated with the following configuration setting sizes:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 20, 25, 30, 31, 32, 35, 40, 50, 51, 52, 55, 56, 57, 60, 70, 80, 90, 100, 150, 175, 200, 250, 300, 350, 400, 500, 1000}.

For better reproducibility we provide a script, that executes the benchmark as we do in this thesis. The script is available at Github<sup>2</sup>.

#### 4.2.1 Benchmark Code

The source code of the benchmark is distributed with Elektra, and it is located at libs/tools/benchmarks/benchmark\_crypto\_comparison.cpp.

Listing 4.3 on page 30 is an excerpt of the benchmark code. The listing gives an idea about how the measurement is accomplished. The listing has been slightly modified to improve readability, but the execution flow has not been altered.

Listing 4.3: Excerpt of Benchmark 1

```
static Timer t (plugin_variant_names[VARIANT]);
Key mp = mountBackend<VARIANT> (iteration);
 KDB kdb;
 KeySet ks;
  kdb.get (ks, mp);
  // n = size of the configuration setting
  for (int i = 0; i < n; ++i)
    ks.append (Key (mp.getName () + "/k" + std::to_string (i),
      KEY_VALUE, "value",
      KEY_META, "crypto/encrypt", "1",
      KEY END));
  t.start (); // start of the measurement
  kdb.set (ks, mp);
  t.stop (); // end of the measurement
  kdb.close ();
std::cout << t;
```

<sup>&</sup>lt;sup>2</sup>https://github.com/petermax2/libelektra-crypto-benchmarks/blob/master/scripts/start-crypto-comparison.sh

#### 4.2.2 Results of the Runtime Comparison

The runtime results of all benchmark runs are listed in Chapter A on page 47. The results are also published at Github<sup>3</sup>. Figure 4.1 on page 31 compares the benchmark results of all tested variants for the kdb set method. Figure 4.2 on page 32 provides a comparison of the benchmark results of all tested variants for the kdb get method.



Figure 4.1: Runtime comparison of kdb set

As we can see from the benchmark results, the runtime behavior has a tendency to

 $<sup>^3 \</sup>verb|https://github.com/petermax2/libelektra-crypto-benchmarks/tree/master/results$ 



Figure 4.2: Runtime comparison of kdb get

increase linearly with the number of encrypted/decrypted configuration values.

The boxplot in Figure 4.3 on page 34 shows that the benchmark results for the kdb set are stable. There are no noteworthy outliers. Figure 4.4 on page 35 reveals analogous insights for the kdb get method.

#### 4.3 Benchmark 2 – Memory Analysis

This benchmark examines the memory allocations of the crypto plugin. The benchmark code is the same as for Benchmark 1 (see Section 4.2 on page 29).

#### 4.3.1 Massif Analysis

The benchmark code of benchmark 1 is analysed using Valgrind's Massif tool. Massif-Visualizer is used to produce a visualization of the data, that is collected by Massif.

The benchmark is started with the following configuration setting sizes n:  $\{10, 100, 200\}$ .

#### 4.3.2 Results of the Memory Analysis

The results of the memory analysis are published on Github <sup>4</sup>.

The following figures show the visualizations, that have been produced by Massif-Visualizer:

- Figure 4.5 on page 36,
- Figure 4.6 on page 37, and
- Figure 4.7 on page 38.

The memory analysis reveals a constant memory consumption overhead for OpenSSL and Botan. Libgerypt does not use a custom allocator function, so its memory use is not distinguishable from the rest of the memory, that has been allocated by Elektra.

Table 4.2 on page 33 shows the results for OpenSSL and Botan.

Table 4.2: Allocated heap sizes of the crypto plugins

|           | memory heap size |
|-----------|------------------|
| libgcrypt | not available    |
| OpenSSL   | 70.0 kiB         |
| Botan     | 64.0 kiB         |

 $<sup>^4 \</sup>texttt{https://github.com/petermax2/libelektra-crypto-benchmarks/tree/master/massif}$ 

Figure 4.3: Boxplots of the kdb  $\,$  set runtime with n=500 configuration settings













### Related and Future Work

#### 5.1 Related Work

Performance analysis of cryptographic operations has already been studied in different contexts.

#### 5.1.1 Comparing AES Implementations

The paper "DES, AES and Blowfish: Symmetric Key Cryptography Algorithms Simulation Based Performance Analysis" [TK11] compares implementations of symmetric cryptographic algorithms. The authors' goal is to find the most performant algorithm. However, the paper does not answer how much overhead the introduction of cryptographic methods actually costs. [TK11]

#### 5.1.2 Cryptography in Operating Systems

In "The Design of the OpenBSD Cryptographic Framework" [KWdR03] developers of OpenBSD describe their kernel interface that abstracts the use of hardware accelerated cryptographic operations. The authors mainly argue about the performance gain the OCF brings to applications. But rather than concentrating on a single application the focus of the paper is overall system performance in scenarios where multiple applications perform cryptographic operations simultaneously. Another aspect the paper covers is the load-balancing capability OCF has to offer, if multiple hardware acceleration cards are available on a system.

The paper's focus is the kernel and operating system performance rather than single application performance. The paper measures speed-up in comparison to cryptographic operations performed in user-space. [KWdR03]

"Improving High-Bandwidth TLS in the FreeBSD kernel" [SL16], another performance study, has been conducted by FreeBSD developers. They tried to get higher TLS throughput on their high-performance network appliances for Netflix, a video on-demand streaming service. The focus of the paper is the networking aspect considering different network adapters and tuning options in the FreeBSD kernel. Again the focus is not a single application but rather the improvement of the TLS stack in the FreeBSD operating system. [SL16]

#### 5.2 Future Work

In this section we suggest further research topics, which we could not cover within this thesis.

#### 5.2.1 Cryptographic Schemas without GnuPG

GnuPG is a great solution for cryptographic systems, because of its key handling capabilities and its integration with Smart Cards. However, other cryptographic schmeas should be inspected and evaluated as well.

An example of another key handling form is to use simple key files. This method may be less secure but may be much faster than the GnuPG based cryptographic schema.

#### 5.2.2 Other criteria for choosing providers of cryptographic functions

Performance is not the only factor to be taken into account when choosing a provider of cryptographic functions. Robustness against attacks (for example: side channel attacks) and correctness of the code are two important dimensions, that should also be considered.

Also the usability and the user acceptance play an important role in the decision process. We did not cover any of those aspects due to the limited context of the thesis.

#### 5.2.3 Cryptographic Signatures

Cryptographic signatures present a way of detecting unauthorized configuration changes. [Sch96] Further studies might examine:

- 1. the performance impact of cryptographic signatures in the context of configuration, and
- 2. applications of cryptographic signatures.

### Conclusions

#### 6.1 Findings

#### 6.1.1 Hypotheses Are Not Refuted

In Chapter 1 on page 1 we formulated two hypotheses, which we can not refute after the evaluation.

**Hypothesis**  $H_1$ : Introducing cryptography to an application increases the runtime of the application.

The evaluation revealed a linear increase in runtime in the interval of [1, 1000] configuration settings. We can not refute  $H_1$  with our benchmark results.

**Hypothesis**  $H_2$ : Introducing cryptography to an application increases the memory consumption of the application.

The evaluation shows a measureable but constant memory overhead in the interval of [1,200] configuration settings. We can not refute  $H_2$  with our benchmark results.

#### 6.1.2 Answers to the Research Questions

In Section 1.3 on page 5 we defined our research questions. After what we learned during the evaluation we are able to give some answers.

**Question**  $RQ_1$ : Which provider of cryptographic functions is the best fit when comparing the runtime and memory performance of AES-256-CBC?

When comparing the following providers of cryptographic functions:

- 1. libgcrypt,
- 2. OpenSSL, and
- 3. Botan,

libgcrypt has to lowest runtime impact in the interval of [1, 1000] configuration settings.

The lowest memory impact could not be found in the evaluation, because libgcrypt does not use a custom allocator. When comparing OpenSSL against Botan with  $n \in \{10, 100, 200\}$  configuration settings, Botan allocates 6.0 kiB less heap memory.

**Question**  $RQ_2$ : What is the average runtime and memory overhead if AES-256-CBC is applied to configuration values?

Let i be the number of configuration settings in a benchmark result. Let  $x_i$  denote the runtime without the crypto plugin. Furthermore let  $y_i$  denote the runtime with a plugin variant of the crypto plugin. Then the overhead  $h_i$  is given as:  $h_i = y_i - x_i$ .

Let n be the number of measurements. Then the average runtime overhead h is given as:  $h = (1/n) \sum_{i=1}^{n} (y_i - x_i)$ .

The average runtime overhead factor f is given as:  $f = (1/n) \sum_{i=1}^{n} (y_i/x_i)$ .

Table 6.1 on page 42 shows the overhead h for every plugin variant of the crypto plugin in the interval [1,1000] configuration settings.

Table 6.1: Average overhead of the crypto plugin

|           | Decr              | yption   | Encry                | yption         |
|-----------|-------------------|----------|----------------------|----------------|
|           | h (s)             | f        | h (s)                | $\overline{f}$ |
| libgcrypt | $1.168 \; s$      | 1837.868 | 1.171 s              | 192.912        |
| OpenSSL   | $1.805 \; { m s}$ | 2835.492 | $1.808 \mathrm{\ s}$ | 297.236        |
| Botan     | 4.125  s          | 6459.077 | $4.124~\mathrm{s}$   | 675.795        |

The question for the memory overhead can only be partially answered, due to the lack of a custom allocating function in libgerypt. The results are given in Table 4.2 on page 33.

**Question**  $RQ_3$ : What is the average runtime and memory overhead if OpenPGP encryption, and decryption are applied to configuration files?

Table 6.2 on page 43 shows the overhead h for the fcrypt plugin in the interval [1,1000] configuration settings.

The question for the memory overhad can not be answered after the evaluation. Further benchmarks are required to gain more insights.

Table 6.2: Average overhead of the fcrypt plugin

|        | Decry                 | ption  | Encry             | ption |
|--------|-----------------------|--------|-------------------|-------|
|        | h (s)                 | f      | h (s)             | f     |
| fcrypt | $0.005 \; \mathrm{s}$ | 25.609 | $0.007 \; { m s}$ | 2.791 |

#### 6.2 Discussion

In this section we:

- 1. discuss drawbacks of the methodology we used in our thesis, and
- 2. interpret the meaning of the evaluation results.

#### 6.2.1 Isolated Performance Test

The benchmarks are designed as isolated (artificial) tests. The test results do not neccessarily correlate with "real-world" use cases. For example: we did not run benchmarks with configuration settings, that contain values that are not to be encrypted (mixed configuration settings).

#### 6.2.2 Variety of Cryptographic Schemas

We evaluated only two cryptographic schemas:

- 1. the crypto plugin, and
- 2. the fcrypt plugin.

Altough the plugins are carefully designed, it is possible that the runtime overhead is distorted by the plugin design. Other reference environments than Elektra should be used to repeat the benchmarks.

#### 6.2.3 Limited Hardware

The benchmarks were executed on a single system. Especially older processors without built-in AES support, will probably show a higher runtime overhead. The benchmarks should therefore be repeated with different hardware configurations.

#### 6.2.4 Interpretation of the Results

When encrypting and decrypting configuration settings and configuration files, the expected runtime overhead increases linear with the number of configuration values. The explanation for this behavior is the process of how the plugins operate. The crypto plugin iterates over the whole configuration setting, thus the linear increase in runtime.

#### 6. Conclusions

The fcrypt plugin encrypts and decrypts whole files. The bigger the size of the configuration setting, the bigger the size of the resulting configuration file. Both plugins have a tendency towards linear runtime overhead.

The increase of memory consumption is constant, due to the design of the plugins. The crypto plugin encrypts and decrypts single configuration values only, so only one configuration value is being processed at a time. Since every configuration value in our benchmark has the same size, the memory allocations stay the same, even when the size of the configuration setting increases.

CHAPTER

### Résumé

After introducing the problem of missing cryptographic methods for software configuration, we presented Elektra. We learned about Elektra's configuration database and the plugin system. We explained how the crypto plugin, the fcrypt plugin and some helper plugins have been designed and developed to study our research questions and solve the problem of encrypting and decrypting configuration settings.

Our evaluation revealed a linear increase in runtime overhead when cryptography is applied to configuration settings in our benchmark setup. The memory analysis showed that the increase in memory overhead is constant in our benchmark setup for different configuration setting sizes. Therefore we were not able to refute the hypotheses, that we stated in the introduction.

If we compare the evaluated cryptographic schemas, then the fcrypt plugin is faster than the crypto plugin. In comparison to Botan and OpenSSL, libgcrypt shows the best runtime performance in our benchmark setup.

# APPENDIX A

# Benchmark 1 Results

Table A.1: No crypto plugin / kdb get benchmark results

| 10                  | 4.1      | دي       | C.o      | 7.7      | 7.7      |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | size $(n)$ |
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|
| 000                 | 400      | 350      | 300      | 250      | 200      | 175      | 150      | 100      | 90       | 80       | 70       | 60       | 57       | 56       | 55       | 52       | 51       | 50       | 40       | 35       | 32       | 31       | 30       | 25       | 20       | 17       | 15       | 11       | 10       | 9        | œ        | 7        | 6        | σı       | 4        | ယ        | 2        |          | (z<br>(=   |
| 0.003026            | 0.001325 | 0.001137 | 0.000992 | 0.000849 | 0.000695 | 0.000621 | 0.000542 | 0.000395 | 0.000376 | 0.000339 | 0.000317 | 0.000285 | 0.000280 | 0.000275 | 0.000270 | 0.000259 | 0.000254 | 0.000251 | 0.000221 | 0.000211 | 0.000203 | 0.000313 | 0.000200 | 0.000176 | 0.000164 | 0.000156 | 0.000152 | 0.000137 | 0.000135 | 0.000133 | 0.000126 | 0.000126 | 0.000123 | 0.000125 | 0.000121 | 0.000113 | 0.000109 | 0.000108 | run 1      |
| 0.001597 $0.003298$ | 0.001299 | 0.001385 | 0.000992 | 0.000845 | 0.000697 | 0.000620 | 0.000544 | 0.000405 | 0.000469 | 0.000414 | 0.000322 | 0.000280 | 0.000294 | 0.000347 | 0.000310 | 0.000256 | 0.000251 | 0.000251 | 0.000223 | 0.000210 | 0.000222 | 0.000199 | 0.000194 | 0.000187 | 0.000170 | 0.000155 | 0.000175 | 0.000138 | 0.000166 | 0.000130 | 0.000127 | 0.000129 | 0.000124 | 0.000120 | 0.000117 | 0.000113 | 0.000111 | 0.000109 | run 2      |
| 0.003079            | 0.001296 | 0.001138 | 0.001016 | 0.000833 | 0.000686 | 0.000623 | 0.000546 | 0.000411 | 0.000371 | 0.000354 | 0.000463 | 0.000342 | 0.000276 | 0.000341 | 0.000267 | 0.000257 | 0.000324 | 0.000289 | 0.000272 | 0.000220 | 0.000204 | 0.000198 | 0.000196 | 0.000179 | 0.000165 | 0.000160 | 0.000150 | 0.000144 | 0.000138 | 0.000131 | 0.000127 | 0.000134 | 0.000128 | 0.000120 | 0.000114 | 0.000141 | 0.000118 | 0.000112 | run 3      |
| 0.003041            | 0.001332 | 0.001152 | 0.000995 | 0.000857 | 0.000687 | 0.000623 | 0.000623 | 0.000395 | 0.000370 | 0.000423 | 0.000317 | 0.000354 | 0.000273 | 0.000275 | 0.000274 | 0.000324 | 0.000254 | 0.000251 | 0.000223 | 0.000334 | 0.000234 | 0.000196 | 0.000196 | 0.000175 | 0.000178 | 0.000188 | 0.000186 | 0.000138 | 0.000135 | 0.000134 | 0.000138 | 0.000122 | 0.000125 | 0.000122 | 0.000142 | 0.000131 | 0.000113 | 0.000109 | run 4      |
| 0.003112            | 0.001302 | 0.001276 | 0.001075 | 0.000831 | 0.000685 | 0.000619 | 0.000549 | 0.000407 | 0.000367 | 0.000338 | 0.000316 | 0.000285 | 0.000321 | 0.000273 | 0.000334 | 0.000258 | 0.000312 | 0.000250 | 0.000275 | 0.000207 | 0.000219 | 0.000204 | 0.000197 | 0.000176 | 0.000173 | 0.000155 | 0.000149 | 0.000140 | 0.000136 | 0.000137 | 0.000135 | 0.000125 | 0.000121 | 0.000120 | 0.000118 | 0.000118 | 0.000129 | 0.000104 | run 5      |
| 0.003061            | 0.001294 | 0.001141 | 0.000999 | 0.000839 | 0.000700 | 0.000615 | 0.000552 | 0.000399 | 0.000378 | 0.000421 | 0.000403 | 0.000280 | 0.000292 | 0.000268 | 0.000273 | 0.000310 | 0.000253 | 0.000305 | 0.000220 | 0.000205 | 0.000204 | 0.000238 | 0.000195 | 0.000179 | 0.000168 | 0.000158 | 0.000151 | 0.000135 | 0.000133 | 0.000130 | 0.000126 | 0.000128 | 0.000126 | 0.000117 | 0.000121 | 0.000113 | 0.000114 | 0.000116 | run 6      |
| 0.003067            | 0.001316 | 0.001276 | 0.001207 | 0.000840 | 0.000702 | 0.000618 | 0.000670 | 0.000500 | 0.000367 | 0.000353 | 0.000316 | 0.000277 | 0.000271 | 0.000341 | 0.000274 | 0.000257 | 0.000261 | 0.000253 | 0.000221 | 0.000215 | 0.000199 | 0.000222 | 0.000194 | 0.000179 | 0.000167 | 0.000189 | 0.000157 | 0.000146 | 0.000136 | 0.000135 | 0.000126 | 0.000125 | 0.000124 | 0.000117 | 0.000116 | 0.000111 | 0.000112 | 0.000108 | run 7      |
| 0.003064            | 0.001297 | 0.001160 | 0.000989 | 0.000829 | 0.000698 | 0.000615 | 0.000570 | 0.000397 | 0.000368 | 0.000341 | 0.000346 | 0.000344 | 0.000315 | 0.000278 | 0.000272 | 0.000258 | 0.000258 | 0.000286 | 0.000246 | 0.000207 | 0.000204 | 0.000223 | 0.000200 | 0.000252 | 0.000207 | 0.000155 | 0.000156 | 0.000138 | 0.000134 | 0.000135 | 0.000125 | 0.000127 | 0.000127 | 0.000116 | 0.000118 | 0.000129 | 0.000112 | 0.000106 | run 8      |
| 0.003075            | 0.001589 | 0.001137 | 0.001211 | 0.001048 | 0.000701 | 0.000622 | 0.000623 | 0.000403 | 0.000382 | 0.000344 | 0.000318 | 0.000289 | 0.000356 | 0.000270 | 0.000334 | 0.000264 | 0.000263 | 0.000250 | 0.000220 | 0.000231 | 0.000210 | 0.000196 | 0.000200 | 0.000178 | 0.000210 | 0.000159 | 0.000171 | 0.000162 | 0.000133 | 0.000162 | 0.000126 | 0.000136 | 0.000121 | 0.000118 | 0.000144 | 0.000110 | 0.000141 | 0.000108 | run 9      |
| 0.003064            | 0.001344 | 0.001140 | 0.000986 | 0.001023 | 0.000842 | 0.000617 | 0.000594 | 0.000407 | 0.000402 | 0.000354 | 0.000317 | 0.000367 | 0.000282 | 0.000282 | 0.000274 | 0.000268 | 0.000262 | 0.000249 | 0.000221 | 0.000207 | 0.000227 | 0.000209 | 0.000198 | 0.000176 | 0.000164 | 0.000157 | 0.000150 | 0.000136 | 0.000133 | 0.000135 | 0.000129 | 0.000126 | 0.000124 | 0.000120 | 0.000118 | 0.000110 | 0.000112 | 0.000107 | run 10     |
| 0.003052            | 0.001297 | 0.001403 | 0.000997 | 0.000843 | 0.000723 | 0.000737 | 0.000551 | 0.000399 | 0.000367 | 0.000338 | 0.000321 | 0.000282 | 0.000276 | 0.000279 | 0.000298 | 0.000269 | 0.000258 | 0.000306 | 0.000224 | 0.000217 | 0.000200 | 0.000198 | 0.000205 | 0.000181 | 0.000163 | 0.000154 | 0.000147 | 0.000144 | 0.000135 | 0.000141 | 0.000126 | 0.000151 | 0.000127 | 0.000124 | 0.000114 | 0.000111 | 0.000112 | 0.000107 | run 11     |

Table A.2: Crypto (OpenSSL) / kdb get benchmark results

| run 11     | 0.019326 | 0.036694 | 0.052330 | 0.069629 | 0.085397 | 0.101674 | 0.119864 | 0.134310 | 0.151871 | 0.168485 | 0.183465 | 0.252313 | 0.286127 | 0.333138 | 0.424323 | 0.495085 | 0.510733 | 0.537942 | 0.582493 | 0.663024 | 0.823214 | 0.842546 | 0.916141 | 0.903719 | 0.929009 | 0.936806 | 0.988414 | 1.156338 | 1.327114 | 1.494033 | 1.642844 | 2.462541 | 3.038056 | 3.288560 | 4.095367 | 4.921130 | 5.741849 | 6.581622 | 8.274256 | 10.000001 |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| run 10     | 0.019274 | 0.036093 | 0.052676 | 0.069099 | 0.085134 | 0.101946 | 0.118102 | 0.134245 | 0.152115 | 0.168644 | 0.183989 | 0.249218 | 0.288659 | 0.333575 | 0.414127 | 0.495446 | 0.511194 | 0.532138 | 0.576585 | 0.662734 | 0.871561 | 0.839463 | 0.916616 | 0.918168 | 0.950770 | 0.938347 | 0.988372 | 1.151578 | 1.326121 | 1.499455 | 1.784840 | 2.488534 | 3.021501 | 3.288169 | 4.099958 | 4.919849 | 5.757831 | 6.622150 | 8.225321 | 10.302001 |
| 6 unu      | 0.019825 | 0.036411 | 0.052695 | 0.068821 | 0.084912 | 0.102446 | 0.118334 | 0.134566 | 0.151417 | 0.167576 | 0.183349 | 0.249688 | 0.314798 | 0.331485 | 0.413181 | 0.493701 | 0.514879 | 0.533512 | 0.577635 | 0.667363 | 0.823946 | 0.840361 | 0.918603 | 0.931994 | 0.929628 | 0.939840 | 0.990678 | 1.151203 | 1.318621 | 1.502549 | 1.637074 | 2.462609 | 3.029643 | 3.464195 | 4.101508 | 4.919224 | 5.803105 | 6.570032 | 8.189081 | 10.000.01 |
| run 8      | 0.020091 | 0.035702 | 0.051790 | 0.069448 | 0.085229 | 0.101786 | 0.118436 | 0.134948 | 0.155186 | 0.167517 | 0.183984 | 0.249795 | 0.284853 | 0.332617 | 0.419609 | 0.495492 | 0.510807 | 0.535207 | 0.584968 | 0.660319 | 0.829308 | 0.839648 | 0.917859 | 0.905451 | 0.923885 | 0.936821 | 0.986126 | 1.150049 | 1.333779 | 1.500103 | 1.644130 | 2.576765 | 3.033275 | 3.287592 | 4.130434 | 4.976804 | 6.357305 | 6.548495 | 8.232770 | 10.009009 |
| run 7      | 0.019702 | 0.036529 | 0.052143 | 0.069081 | 0.085089 | 0.102461 | 0.118817 | 0.134187 | 0.151547 | 0.167869 | 0.184306 | 0.249553 | 0.285208 | 0.331478 | 0.413174 | 0.494462 | 0.509250 | 0.535497 | 0.577542 | 0.662191 | 0.870433 | 0.840995 | 0.917744 | 0.906629 | 0.931157 | 0.939047 | 0.987978 | 1.152885 | 1.337937 | 1.492880 | 1.638406 | 2.608414 | 3.019923 | 3.417187 | 4.102851 | 4.921983 | 5.823371 | 6.553900 | 8.198080 | 10.000400 |
| run 6      | 0.020168 | 0.036376 | 0.052502 | 0.069261 | 0.084705 | 0.101980 | 0.119025 | 0.134158 | 0.150897 | 0.167140 | 0.183456 | 0.248819 | 0.293421 | 0.331791 | 0.413410 | 0.502185 | 0.511653 | 0.538967 | 0.577088 | 0.662293 | 0.822421 | 0.841548 | 0.922361 | 0.906397 | 0.925368 | 0.942869 | 0.986464 | 1.150500 | 1.317369 | 1.495288 | 1.644927 | 2.516300 | 3.029557 | 3.312082 | 4.102067 | 5.038341 | 5.806803 | 6.566439 | 8.279787 | 7)10)0:01 |
| run 5      | 0.020126 | 0.035758 | 0.052701 | 0.069303 | 0.085687 | 0.101936 | 0.118725 | 0.134669 | 0.155961 | 0.167625 | 0.186407 | 0.248899 | 0.285224 | 0.332260 | 0.412725 | 0.495719 | 0.511611 | 0.543749 | 0.576499 | 0.661621 | 0.825094 | 0.839071 | 0.916797 | 0.908645 | 0.925468 | 0.938382 | 0.985945 | 1.162766 | 1.330473 | 1.493853 | 1.674659 | 2.455564 | 3.139086 | 3.292536 | 4.102502 | 4.928449 | 5.796697 | 6.551437 | 8.303596 | 10.430200 |
| run 4      | 0.019548 | 0.035559 | 0.052327 | 0.074033 | 0.085630 | 0.102280 | 0.119149 | 0.134206 | 0.151489 | 0.167192 | 0.184445 | 0.249046 | 0.284658 | 0.331458 | 0.417011 | 0.495479 | 0.511315 | 0.533790 | 0.576995 | 0.665267 | 0.823645 | 0.847197 | 0.916574 | 0.905156 | 0.972815 | 0.938819 | 0.985888 | 1.151822 | 1.319162 | 1.500871 | 1.638501 | 2.464726 | 3.130669 | 3.291292 | 4.099148 | 4.930378 | 5.913375 | 6.615653 | 8.266980 | 10.039074 |
| run 3      | 0.019318 | 0.035922 | 0.051926 | 0.068932 | 0.084704 | 0.103138 | 0.118249 | 0.140413 | 0.150463 | 0.167140 | 0.188512 | 0.260151 | 0.286503 | 0.331555 | 0.413353 | 0.494073 | 0.511091 | 0.539954 | 0.575869 | 0.675167 | 0.822045 | 0.838830 | 0.917451 | 0.904484 | 0.926616 | 0.940453 | 0.985844 | 1.151429 | 1.320604 | 1.497271 | 1.641346 | 2.470929 | 3.028133 | 3.290038 | 4.227536 | 4.928836 | 5.808688 | 6.565796 | 8.190037 | 10.714214 |
| run 2      | 0.019493 | 0.036220 | 0.051586 | 0.068509 | 0.086081 | 0.102142 | 0.117638 | 0.133147 | 0.151394 | 0.168038 | 0.183600 | 0.249136 | 0.284885 | 0.330650 | 0.414051 | 0.494597 | 0.510319 | 0.572115 | 0.585017 | 0.662353 | 0.823423 | 0.839296 | 0.924425 | 0.916233 | 0.940305 | 0.941970 | 0.986850 | 1.151068 | 1.316492 | 1.493429 | 1.643997 | 2.459184 | 3.030083 | 3.313739 | 4.103806 | 4.926065 | 5.834985 | 6.572334 | 8.275084 | 10.423004 |
| run 1      | 0.019106 | 0.035684 | 0.052350 | 0.068674 | 0.084847 | 0.102441 | 0.118112 | 0.133952 | 0.151133 | 0.167447 | 0.183921 | 0.249082 | 0.283523 | 0.332602 | 0.415218 | 0.494789 | 0.509923 | 0.534686 | 0.576764 | 0.662732 | 0.822010 | 0.840409 | 0.918945 | 0.903981 | 0.927478 | 0.935589 | 0.987045 | 1.151348 | 1.318126 | 1.569392 | 1.645525 | 2.472021 | 3.015162 | 3.301826 | 4.099789 | 4.915201 | 5.808056 | 6.583391 | 8.207802 | 10.007000 |
| size $(n)$ | П        | 2        | 3        | 4        | ŭ        | 9        | 7        | ∞        | 6        | 10       | 11       | 15       | 17       | 20       | 25       | 30       | 31       | 32       | 35       | 40       | 20       | 51       | 52       | 55       | 26       | 22       | 09       | 20       | 80       | 06       | 100      | 150      | 175      | 200      | 250      | 300      | 350      | 400      | 500      | TOOOT     |

size (n)90 2.137304 2.677629 3.267595 3.769388  $0.320788 \\ 0.331344$ 0.983901 1.072557 1.635725 0.610152 0.637620 0.758352 0.860255  $0.188489 \\ 0.216675$  $0.087530 \\ 0.100666$ 0.078110 0.600899 $0.533092 \\ 0.556144$  $0.344131 \\ 0.372879$  $0.045772 \\ 0.055820$ 0.588677 0.5579200.2723390.161763 0.1213790.1105250.0667660.0355800.0240700.4266700.0137301.872327run 1 4.288799 5.480891 2.140461 2.680727 3.201955 3.788092  $0.613569 \\ 0.637654$ 0.055473 0.067075 $0.962634 \\ 1.063216$ 0.3734660.2714150.8597030.5890280.5576480.5557870.5319350.4262790.3441600.3322890.3201420.2173600.1617540.1204300.087337 0.0794941.897882 1.6152090.7586040.6003450.1886720.1110250.0990230.0464040.034636 $0.320362 \\ 0.331868$  $\begin{array}{c} 0.610925 \\ 0.638169 \end{array}$ 0.536542 0.557490 $\begin{array}{c} 0.088155 \\ 0.099446 \end{array}$ 0.077851run 3 0.013708 5.3612370.9628880.5896380.3848650.2723760.2173870.16197 0.1203880.0668603.787437 3.2499622.1567420.8502050.7592740.6010250.4263840.3449120.1882840.109810.045610.0345972.679535 1.874000 1.6028751.0612580.5580200.0559040.0240223.768530 4.271185 $0.610390 \\ 0.637870$ 0.532066 0.555983 $0.351408 \\ 0.377455$  $\begin{array}{c} 0.270480 \\ 0.320476 \\ 0.334133 \end{array}$  $\begin{array}{c} 0.188403 \\ 0.219036 \end{array}$ 0.0468413.220627 2.7221062.143404 0.9866390.849779 0.7593110.6000220.5939120.5582000.4275030.1616290.120077 0.087230 0.0795460.0673850.0561250.034477 1.8549950.1115920.0992640.0140001.601940..061206  $5.384927 \\ 10.815519$ 2.153729 2.678923 3.392250  $\begin{array}{c} 0.537174 \\ 0.556456 \\ 0.558435 \end{array}$ 0.334437 $\begin{array}{c} 0.188163 \\ 0.217022 \\ 0.271116 \end{array}$ 0.963651 1.062297 $0.610890 \\ 0.638136$  $0.344775 \\ 0.373379$ 0.088599 0.1017581.6044814.277110 3.768404 0.8599000.765776 0.6037630.5901960.4270500.3204300.1622630.1229130.0788420.0673940.0353500.01421 1.8556360.1102060.0560560.045713run 5.389319 10.877432 3.273372 3.767957  $0.612082 \\ 0.638009$  $0.193918 \\ 0.217180$ 4.2733480.8503100.6038050.5942630.5322190.3736320.3312290.3207010.2708340.1617140.1199880.0879100.0670430.0345882.1360811.8534560.963892 0.767977 0.5588560.5560760.4266630.11108: 0.0991400.0783040.0137852.6804951.6190950.3441640.0554580.0458200.024281.060727 $4.269238 \\ 5.410172 \\ 10.681656$ 0.607717 0.331258 $0.188686 \\ 0.218270$  $2.145374 \\ 2.726351$  $0.611329 \\ 0.644802$ 3.768708 0.9632360.8594190.5938160.5586040.531771 0.4264590.3739090.3399040.2710800.1204870.077610 0.0677180.759368 0.5563340.1623610.0994290.0879490.0456190.0345043.2022281.874635 1.6405580.3444200.109950.0558161.0616435.401497 10.761507 3.709199 4.269709  $\begin{array}{c} 0.320651 \\ 0.330699 \\ 0.344707 \\ 0.373461 \end{array}$  $0.087380 \\ 0.098827$  $\begin{array}{c} 0.611216 \\ 0.645173 \end{array}$  $0.532081 \\ 0.556383$  $\begin{array}{c} 0.188895 \\ 0.217292 \end{array}$ 1.601387 0.5944350.0783570.066707 0.0349433.2062542.147923 0.9635290.8612980.7587530.6041610.5699290.4313590.2712250.1625860.1206300.1113540.0557800.0464502.686690 1.8535910.0140411.088364 $0.963944 \\ 1.061378 \\ 1.604138$  $0.532212 \\ 0.556303$ 0.271863 $0.189179 \\ 0.217095$ 2.137121 $0.611278 \\ 0.644842$  $0.046495 \\ 0.056071$ 4.2682563.708023 0.8752730.7592530.6024500.5899700.4270730.3740810.344107 0.333062 0.3206940.1627410.1227500.0879320.0780300.0675020.0354743.2019892.6888091.8539300.5592610.1113490.099444 $0.964068 \\ 1.062740$ 0.610385 0.638533 $0.351619 \\ 0.377290$ 0.5593290.8500880.6114640.5938340.5321980.4313390.3346360.3206490.272500.2190290.1889620.1622130.1206230.0875960.0782330.0664920.0472602.721911.853100 1.602744 0.7641030.5563320.1105390.0991980.0556580.0349470.013772.154495.20191010.654203 $\begin{array}{c} 2.180811 \\ 2.675150 \end{array}$ 0.861273  $0.611732 \\ 0.639251$  $0.533854 \\ 0.556414$  $0.344418 \\ 0.374442$  $0.188427 \\ 0.218079$ 0.0359274.274750 0.5948410.3365290.3208080.2726160.1625020.0874060.0794710.0671330.0471275.3632663.784427 0.9631280.7593680.5710920.4267530.1205450.0994593.2058940.6006090.1103280.0565130.0135281.609964.062417 run 11

Table A.3: Crypto (libgcrypt) / kdb get benchmark results

Table A.4: Crypto (Botan) / kdb get benchmark results

| run 11     | 0.040674 | 0.078117 | 0.116196 | 0.158135 | 0.190918 | 0.229544 | 0.266888 | 0.304225 | 0.344857 | 0.379470 | 0.417287 | _        | 0.643889 | 0.756327 | 0.944727 | 1.133669 | 1.174693 | 1.208315 | 1.322415 | 1.510204 | 1.896690 | _        | 1.965021 | 2.075819 | 2.113649 | 2.152556 | 2.272937 | 2.650187 | 3.018346 | 3.394171 | 3.778118 | 5.905870 | 6.619630 | 7.546352 | 9.436793 | 11.314334 | 13.242594 | . 15.071094 | 18.948109 |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-------------|-----------|
| run 10     | 0.040524 | 0.078939 | 0.117114 | 0.153435 | 0.191204 | 0.228940 | 0.266857 | 0.304607 | 0.342778 | 0.379549 | 0.417441 | 0.569949 | 0.643861 | 0.756444 | 0.945417 | 1.143145 | 1.170588 | 1.207331 | 1.321395 | 1.510672 | 1.897186 | 1.926010 | 1.972329 | 2.074501 | 2.128772 | 2.150093 | 2.349934 | 2.658254 | 3.016450 | 3.393731 | 3.782478 | 5.653058 | 6.612800 | 7.916007 | 9.457261 | 11.304520 | 13.469045 | 15.073917   | 18.954440 |
| 6 unu      | 0.040924 | 0.078762 | 0.116705 | 0.153960 | 0.191159 | 0.229176 | 0.267743 | 0.303871 | 0.342158 | 0.379377 | 0.417429 | 0.570910 | 0.643781 | 0.756914 | 0.944806 | 1.132633 | 1.176145 | 1.208981 | 1.324720 | 1.519036 | 1.897632 | 1.925888 | 2.050867 | 2.074785 | 2.115208 | 2.151045 | 2.274875 | 2.639892 | 3.081553 | 3.419520 | 3.844532 | 5.652412 | 6.609444 | 7.547587 | 9.422472 | 11.300242 | 13.234009 | 15.070649   | 18.957476 |
| run 8      | 0.040785 | 0.080337 | 0.115703 | 0.153443 | 0.191138 | 0.230905 | 0.267373 | 0.306102 | 0.341816 | 0.380163 | 0.417080 | 0.568418 | 0.642906 | 0.755966 | 0.945262 | 1.137737 | 1.171068 | 1.210554 | 1.322952 | 1.597192 | 1.897472 | 1.926918 | 1.985151 | 2.075145 | 2.114374 | 2.150848 | 2.262712 | 2.640419 | 3.019241 | 3.393932 | 3.789940 | 5.652235 | 6.609365 | 7.603080 | 9.423256 | 11.312847 | 13.285788 | 15.066099   | 18.976695 |
| 7 run 7    | 0.041317 | 0.078035 | 0.115467 | 0.153939 | 0.190744 | 0.229373 | 0.266980 | 0.305212 | 0.342427 | 0.379428 | 0.417889 | 0.569606 | 0.644677 | 0.770859 | 0.952568 | 1.132648 | 1.170991 | 1.210039 | 1.323530 | 1.509447 | 1.898260 | 1.923381 | 1.966941 | 2.076150 | 2.133702 | 2.153934 | 2.272975 | 2.652682 | 3.103851 | 3.418227 | 3.791639 | 5.653247 | 6.623119 | 7.540030 | 9.442518 | 11.329311 | 13.355316 | 15.069814   | 18.982077 |
| run 6      | 0.041097 | 0.077858 | 0.115765 | 0.154719 | 0.191251 | 0.229459 | 0.266763 | 0.304672 | 0.344335 | 0.379788 | 0.418012 | 0.568187 | 0.644368 | 0.756313 | 0.945162 | 1.133459 | 1.182012 | 1.226910 | 1.321279 | 1.509680 | 1.908217 | 1.926344 | 1.961818 | 2.108868 | 2.112873 | 2.150586 | 2.267899 | 2.638790 | 3.020776 | 3.401218 | 3.779966 | 5.740264 | 6.610748 | 7.562795 | 9.431640 | 11.308224 | 13.323003 | 15.068310   | 18.943191 |
| run 5      | 0.041011 | 0.078320 | 0.116357 | 0.153863 | 0.191360 | 0.229240 | 0.267940 | 0.303908 | 0.346871 | 0.379541 | 0.418698 | 0.568005 | 0.643912 | 0.756517 | 0.944245 | 1.133912 | 1.190390 | 1.208151 | 1.321865 | 1.509937 | 1.896511 | 1.925992 | 1.961976 | 2.083935 | 2.131876 | 2.157618 | 2.329000 | 2.639167 | 3.024759 | 3.461103 | 3.781122 | 5.665192 | 6.609689 | 7.543666 | 9.420366 | 11.448015 | 13.367175 | 15.096080   | 18.942845 |
| run 4      | 0.040786 | 0.078150 | 0.115674 | 0.153844 | 0.196207 | 0.229772 | 0.266353 | 0.304448 | 0.342084 | 0.379966 | 0.416994 | 0.567742 | 0.643352 | 0.757967 | 0.944267 | 1.132998 | 1.185020 | 1.210806 | 1.324449 | 1.509966 | 1.896968 | 1.924528 | 1.963695 | 2.093712 | 2.137155 | 2.150345 | 2.262972 | 2.649833 | 3.024644 | 3.401007 | 3.779621 | 5.676666 | 6.610207 | 7.539577 | 9.436708 | 11.376399 | 13.276408 | 15.072009   | 18.941700 |
| run 3      | 0.040511 | 0.077878 | 0.115681 | 0.154019 | 0.191531 | 0.228656 | 0.266226 | 0.306537 | 0.342197 | Ī        | _        | 0.567646 |          |          | 0.946101 | 1.132900 | 1.181236 | 1.209413 | 1.325395 | 1.509992 | 1.897800 | 1.926034 | 1.966467 | 2.084518 | 2.117639 | 2.156514 | 2.261591 | 2.659216 | 3.016533 | 3.393389 | 3.783766 | 5.698925 | 6.620885 | 7.546554 | 9.422911 | 11.366553 | 13.356522 | 15.091189   | 18.951439 |
| run 2      | 0.040749 | 0.078142 | 0.116133 | 0.153808 | 0.191134 | 0.229177 | 0.268835 | 0.304468 | 0.342461 | 0.380042 |          | 0.569070 |          | 0.756270 | 0.953977 | 1.132453 | 1.170889 | 1.208999 | 1.322104 | 1.509794 | 1.897605 |          | 1.961119 | 2.084959 | 2.112583 | 2.150470 | 2.281736 |          | 3.022594 | 3.437929 | 3.816467 | 5.673333 | 6.619319 | 7.547438 | 9.443963 | 11.323636 | 13.302087 | 15.066904   | 18.984201 |
| run 1      | 0.040303 | 0.078003 | 0.116463 | 0.153482 | 0.191163 | 0.228624 | 0.266487 | 0.308108 | 0.342268 | 0.380183 | 0.417058 | 0.567647 | 0.644010 | 0.757718 | 0.963809 | 1.132920 | 1.171516 | 1.208846 | 1.328421 | 1.509840 | 1.896864 | 1.928545 |          | 2.074962 | 2.117523 | 2.151733 | 2.266159 | 2.647386 | 3.017064 | 3.782254 | 3.778074 | 5.666140 | 6.638581 | 7.543020 | 9.511980 | 11.309613 | 13.428509 | 15.079224   | 18.939592 |
| size $(n)$ | 1        | 2        | 3        | 4        | 3        | 9        | 7        | 8        | 6        | 10       | 11       | 15       | 17       | 20       | 25       | 30       | 31       | 32       | 35       | 40       | 50       | 51       | 52       | 55       | 56       | 57       | 09       | 70       | 80       | 06       | 100      | 150      | 175      | 200      | 250      | 300       | 350       | 400         | 500       |

Table A.5: Fcrypt / kdb get benchmark results

| 10       | ಲಾ       | 4        | ಬ        | ಬ        | 2        | 2        | 1        | 1        | 1        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | size $(n)$ |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|
| 000      | 500      | 400      | 350      | 300      | 250      | 200      | 175      | 150      | 100      | 90       | 80       | 70       | 60       | 57       | 56       | 25       | 52       | 51       | 50       | 40       | ္ဌာ      | 32       | 31       | 30       | 25       | 20       | 17       | 15       | 11       | 10       | 9        | <u>∞</u> | 7        | 6        | ن<br>ت   | 4        | ယ        | 2        | ᆫ        | <u>n</u> ) |
| 0.009147 | 0.007029 | 0.006697 | 0.006588 | 0.006670 | 0.006281 | 0.005911 | 0.006374 | 0.005943 | 0.005806 | 0.005772 | 0.005548 | 0.005876 | 0.005770 | 0.005414 | 0.005548 | 0.005253 | 0.005518 | 0.005349 | 0.005500 | 0.005513 | 0.005232 | 0.005456 | 0.005322 | 0.005276 | 0.005594 | 0.005801 | 0.005512 | 0.005051 | 0.005420 | 0.005136 | 0.005195 | 0.005187 | 0.005267 | 0.005211 | 0.005551 | 0.005097 | 0.005006 | 0.005051 | 0.005803 | run 1      |
| 0.009454 | 0.007406 | 0.006748 | 0.006874 | 0.007440 | 0.006343 | 0.006055 | 0.005958 | 0.006175 | 0.005706 | 0.005721 | 0.005618 | 0.005727 | 0.005779 | 0.005757 | 0.005500 | 0.005791 | 0.005626 | 0.005467 | 0.005404 | 0.005380 | 0.005425 | 0.005541 | 0.005291 | 0.005184 | 0.005858 | 0.005239 | 0.005652 | 0.005354 | 0.005418 | 0.005523 | 0.005201 | 0.005242 | 0.005498 | 0.005307 | 0.005271 | 0.005392 | 0.005210 | 0.005107 | 0.005316 | run 2      |
| 0.009707 | 0.007580 | 0.006622 | 0.006603 | 0.006934 | 0.006643 | 0.006152 | 0.005959 | 0.005997 | 0.005948 | 0.005809 | 0.005893 | 0.005841 | 0.005675 | 0.005431 | 0.005537 | 0.005340 | 0.005526 | 0.005501 | 0.005476 | 0.005290 | 0.005577 | 0.005247 | 0.005489 | 0.005585 | 0.005441 | 0.005387 | 0.005180 | 0.005422 | 0.005094 | 0.005252 | 0.005151 | 0.005659 | 0.005441 | 0.005101 | 0.005437 | 0.005270 | 0.005089 | 0.005588 | 0.005349 | run 3      |
| 0.008928 | 0.007283 | 0.007080 | 0.006712 | 0.006582 | 0.006604 | 0.005863 | 0.006089 | 0.006030 | 0.005770 | 0.005916 | 0.005714 | 0.005882 | 0.005799 | 0.005808 | 0.005741 | 0.005681 | 0.005693 | 0.005566 | 0.005480 | 0.005528 | 0.005627 | 0.005048 | 0.005184 | 0.005263 | 0.005773 | 0.005726 | 0.005491 | 0.005557 | 0.005919 | 0.005408 | 0.005257 | 0.005305 | 0.005389 | 0.005274 | 0.005122 | 0.005378 | 0.005178 | 0.005404 | 0.004935 | run 4      |
| 0.009226 | 0.007417 | 0.007150 | 0.006482 | 0.006709 | 0.006385 | 0.006371 | 0.006072 | 0.005767 | 0.005831 | 0.005910 | 0.005711 | 0.005554 | 0.005849 | 0.005509 | 0.005896 | 0.005830 | 0.005563 | 0.005423 | 0.005341 | 0.005798 | 0.005785 | 0.005393 | 0.005196 | 0.005395 | 0.005167 | 0.005688 | 0.005345 | 0.005448 | 0.005747 | 0.005086 | 0.005387 | 0.005209 | 0.005527 | 0.005441 | 0.005265 | 0.005233 | 0.005470 | 0.005414 | 0.005213 | run 5      |
| 0.009538 | 0.007575 | 0.006980 | 0.006477 | 0.006458 | 0.006163 | 0.006501 | 0.006207 | 0.005983 | 0.005799 | 0.005921 | 0.005715 | 0.005937 | 0.005710 | 0.005625 | 0.005790 | 0.005667 | 0.005898 | 0.005567 | 0.005721 | 0.005549 | 0.005497 | 0.005701 | 0.005204 | 0.005239 | 0.005477 | 0.005757 | 0.005403 | 0.005473 | 0.005366 | 0.005108 | 0.005682 | 0.005107 | 0.005490 | 0.005289 | 0.005061 | 0.005607 | 0.005046 | 0.005313 | 0.005199 | run 6      |
| 0.009784 | 0.007495 | 0.006860 | 0.006988 | 0.006555 | 0.006620 | 0.006657 | 0.005859 | 0.006154 | 0.005772 | 0.005812 | 0.005910 | 0.005937 | 0.005596 | 0.005611 | 0.005876 | 0.005838 | 0.005923 | 0.005837 | 0.005664 | 0.005995 | 0.005550 | 0.005331 | 0.005236 | 0.005390 | 0.005558 | 0.005624 | 0.005852 | 0.005436 | 0.005746 | 0.005165 | 0.005577 | 0.005175 | 0.005342 | 0.005524 | 0.005041 | 0.005364 | 0.005139 | 0.005145 | 0.005676 | run 7      |
| 0.009652 | 0.007499 | 0.007102 | 0.006878 | 0.006559 | 0.006418 | 0.006481 | 0.006424 | 0.005985 | 0.005747 | 0.005899 | 0.005922 | 0.005881 | 0.005681 | 0.005674 | 0.006128 | 0.005854 | 0.006305 | 0.005846 | 0.005557 | 0.005717 | 0.005642 | 0.005757 | 0.005256 | 0.005546 | 0.005741 | 0.005632 | 0.005557 | 0.005432 | 0.005306 | 0.005185 | 0.005355 | 0.005300 | 0.005360 | 0.005410 | 0.005555 | 0.005714 | 0.005160 | 0.005385 | 0.005599 | run 8      |
| 0.009631 | 0.007550 | 0.006906 | 0.006720 | 0.006654 | 0.006360 | 0.006163 | 0.006156 | 0.006218 | 0.006045 | 0.006165 | 0.005777 | 0.006099 | 0.005815 | 0.006220 | 0.005939 | 0.005904 | 0.005555 | 0.005591 | 0.005583 | 0.005719 | 0.005756 | 0.005277 | 0.005273 | 0.005422 | 0.005378 | 0.005834 | 0.005274 | 0.005774 | 0.005848 | 0.005374 | 0.005616 | 0.005268 | 0.005786 | 0.005540 | 0.005498 | 0.005690 | 0.005206 | 0.005693 | 0.005681 | run 9      |
| 0.009703 | 0.007515 | 0.007147 | 0.006598 | 0.006581 | 0.006875 | 0.006430 | 0.006279 | 0.006476 | 0.006074 | 0.006033 | 0.006080 | 0.005986 | 0.005914 | 0.005949 | 0.005791 | 0.005857 | 0.006057 | 0.005956 | 0.005653 | 0.005902 | 0.005946 | 0.005314 | 0.005476 | 0.005657 | 0.005687 | 0.005898 | 0.005841 | 0.005611 | 0.005581 | 0.005444 | 0.005311 | 0.005282 | 0.005285 | 0.005593 | 0.005378 | 0.005514 | 0.005301 | 0.005397 | 0.005164 | run 10     |
| 0.009461 | 0.007332 | 0.007445 | 0.006819 | 0.006716 | 0.007131 | 0.006497 | 0.006268 | 0.006404 | 0.005623 | 0.006091 | 0.006187 | 0.005992 | 0.005913 | 0.005946 | 0.006242 | 0.005880 | 0.005892 | 0.005499 | 0.005590 | 0.005716 | 0.005941 | 0.005405 | 0.005407 | 0.005396 | 0.005738 | 0.005740 | 0.005585 | 0.005700 | 0.005821 | 0.005866 | 0.005471 | 0.005487 | 0.005376 | 0.005197 | 0.005304 | 0.005522 | 0.005454 | 0.005497 | 0.005808 | run 11     |

Table A.6: No crypto plugin / kdb set benchmark results

| run 2                                                    |
|----------------------------------------------------------|
|                                                          |
| _                                                        |
| 0.003345 0.003605 0.003409<br>0.003357 0.006760 0.003336 |
|                                                          |
| _                                                        |
| 0.007597                                                 |
| 0.003529                                                 |
| 0.003579                                                 |
| 0.003527                                                 |
| 0.006889                                                 |
| 0.003593                                                 |
| ~                                                        |
| 0.003597                                                 |
| 0.003616  0.003617  0.003634                             |
| 0.003637  0.003602  0.003667                             |
| 0.003643                                                 |
| 0.003620                                                 |
| 0.011430                                                 |
| 0.008241                                                 |
| 0.003854                                                 |
| 0.007970                                                 |
| 0.003726                                                 |
| 0.007473                                                 |
| 0.003858                                                 |
| 0.003920                                                 |
| 0.003993                                                 |
| 0.003926  0.004154  0.008085                             |
| 0.004006  0.007476  0.004392                             |
|                                                          |
| _                                                        |
| 0.004769 0.008616 0.00875                                |
| 0.004796  0.005366  0.005110                             |
| 0.008664  0.005395  0.005522                             |
| 0.010177  0.005580  0.005794                             |
| $0.006184  0.006648  0.00678^{2}$                        |
| 0.006582  0.010643  0.006545                             |
| 0.007144                                                 |
| 0.010908  0.011091  0.01130                              |

size (n)90 8.216612 16.3678204.955484 6.085079 3.323815 4.111518 $\begin{array}{c} 0.832791 \\ 0.847310 \\ 0.926303 \end{array}$ 0.507586 0.515626 $0.286261 \\ 0.346873$  $0.137446 \\ 0.164502$ 0.071363 $\frac{1.657521}{2.755968}$  $0.559430 \\ 0.592797$  $\begin{array}{c} 0.946351 \\ 0.990452 \end{array}$ 0.9408970.9118712.883862 0.4160990.2539410.1868620.1702080.1228380.1089590.0548390.0388090.6726930.0876780.0219671.6134491.3223121.154720run 1 6.607470 8.260798 16.364791  $0.284840 \\ 0.342328$ 3.502725 4.109734 $0.952435 \\ 1.037551$ 1.649112 1.647588 1.3865810.8446260.8251650.6698850.5795930.514107 0.4996740.4176110.2554150.1932740.1411920.1238060.1043435.8554692.897875 2.4651790.9420690.9492860.9229310.5528530.1709260.1536860.0919570.0718381.155978  $6.588372 \\ 8.279199 \\ 17.244173$  $0.823984 \\ 0.841950 \\ 0.928129$  $\begin{array}{c} 0.546083 \\ 0.553577 \\ 0.579986 \end{array}$  $0.946888 \\ 1.036469$  $0.306606 \\ 0.337364$ 0.071673 run 3 0.022204 0.9085960.5075990.2528300.186640.1378670.1211340.1046793.33769 2.9143352.4725390.9361350.693190.4162420.1535660.0549734.9299104.1020201.6649321.6092501.3291551.15336 0.1699930.0916670.038644 $8.231575 \\ 16.745101$ 0.071196  $1.320364 \\ 1.608794 \\ 1.648545$  $0.938202 \\ 0.991075$  $0.829645 \\ 0.844914 \\ 0.919732$  $\begin{array}{c} 0.501661 \\ 0.520651 \\ 0.552181 \end{array}$  $0.284945 \\ 0.334702$ 0.267221 $\begin{array}{c} 0.141811 \\ 0.157756 \end{array}$ 6.773640 5.8951124.0995583.3581073.093933 2.473794 0.937072 0.9126390.6661970.5812200.4164400.1871840.1703310.1208650.1077470.0555965.1294481.183036 0.0914050.0264593.316480 4.117185 $\begin{array}{c} 0.828763 \\ 0.892596 \end{array}$ 0.301138 0.335137 $0.137851 \\ 0.158121$ 0.060993 0.07158416.4643786.5691725.8321502.8802382.461810.941399 0.9372150.9100250.9195900.6731520.5842090.5572290.5423070.5080090.4207730.2578470.1869350.12123 0.1076370.022768.200430 4.9261901.6555691.632667 1.3197051.1532640.990380.1703230.0880840.042940run  $\begin{array}{c} 0.511873 \\ 0.514533 \\ 0.557091 \end{array}$ 0.1376133.331677 0.950793 0.9961830.829879 0.84986716.4542658.2083136.5994782.473734 0.9353130.9087370.6688470.5809790.3354750.2532550.1871440.1120500.0554260.0225855.8154854.1011462.8977800.9247400.4160970.2928260.1704800.1542230.1209400.075478 4.9222241.606802 0.0883411.667917 1.3295801.154855 $0.828308 \\ 0.845935$ 0.9854716.5743215.9024021.3158170.667597 0.5845730.5148080.4995730.3377060.2522700.1871150.1254144.929698 4.109605 3.3296842.874945 2.4751891.616767 0.9460870.9105940.9365590.5552640.4202930.2865700.1706310.1536570.1413830.1090680.0715680.0589521.002917 0.0916401.155331.644642 $0.825172 \\ 0.841116$  $0.288961 \\ 0.337030$ 0.141126 $4.106210 \\ 4.925606$  $1.647968 \\ 2.812171$ 1.6788850.5800790.2525726.5724535.82148 3.317987 2.8761951.3202650.9512490.9398900.9130920.9227390.6714240.5544690.5138910.4971450.4167740.1903330.1711250.1541860.1212310.1050600.0919080.0716580.9906930.0230701.1571353.500834 4.092771 $0.826659 \\ 0.873945$  $0.138419 \\ 0.158725$  $\begin{array}{c} 0.948055 \\ 0.998088 \end{array}$ 0.9078718.1955316.5695382.9005762.4752150.666777 0.5851590.5621280.5155320.4986120.4152670.3343360.2850970.2538380.1878260.1712290.1233860.1055380.0883880.0751530.0590544.9427671.6159801.369675 1.160346 1.120269 0.9190201.647666 $0.944111 \\ 0.995795$  $0.285120 \\ 0.334784$ 5.8899550.9364680.9262270.8322520.665755 0.5814950.5199830.5005230.4167750.2539030.1924580.1714960.1406798.2175964.932784 1.603733 1.161260.9281040.8517890.5526700.1555190.1214540.1093960.0883230.0721604.119407 1.6523491.32171 3.325740 2.476299 .876093 0.921341 $0.830161 \\ 0.847107$  $0.553935 \\ 0.585394$ run 11 0.027273 6.2249092.463869 0.5177310.4993410.3393370.2537060.187017 0.1259150.1051178.2331496.6052633.3255342.876138 0.9448430.9854180.9189720.667059 0.4187510.2900900.1560990.1443660.0881730.0718914.9300514.1135930.9918240.1703171.3246521.155985..634310 .650206

Table A.7: Crypto (OpenSSL) / kdb set benchmark results

54

Table A.8: Crypto (libgcrypt) / kdb set benchmark results

| run 11     | 0.022011 | 0.028519 | 0.042919 | 0.050289 | 0.059486 | 0.073874 | 0.081776 | 0.091961 | 0.103044 | 0.114640 | 0.124476 | 0.169954 | 0.193014 | 0.223311 | 0.274241 | 0.325302 | 0.339002 | 0.349186 | 0.379371 | 0.438502 | 0.536980 | 0.563479 | 0.562292 | 0.600004 | 0.609022 | 0.610975 | 0.643100 | 0.764394 | 0.855758 | 0.984980 | 1.069374 | 1.617187 | 1.863745 | 2.160600 | 2.721920 | 3.211302  | 3.805318 | 4.284527 | 5.344344 | 10.729885 |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|-----------|
| run 10     | 0.017708 | 0.032063 | 0.039130 | 0.049890 | 0.059469 | 0.073417 | 0.085310 | 0.091256 | 0.112288 | 0.115028 | 0.124519 | 0.165774 | 0.201248 | 0.229850 | 0.275123 | 0.334915 | 0.335433 | 0.352864 | 0.386771 | 0.434849 | 0.536590 | 0.561953 | 0.562390 | 0.605678 | 0.616407 | 0.614317 | 0.646704 | 0.767221 | 0.855746 | 0.973183 | 1.067724 | 1.634990 | 1.860119 | 2.143060 | 2.716637 | 3.218689  | 3.715264 | 4.338346 | 5.368167 | 10.861182 |
| run 9      | 0.021019 | 0.028020 | 0.043094 | 0.052379 | 0.059946 | 0.070342 | 0.084764 | 0.092558 | 0.103746 | 0.117679 | 0.124690 | 0.171077 | 0.191883 | 0.221260 | 0.278349 | 0.331067 | 0.335369 | 0.348609 | 0.388297 | 0.434963 | 0.540399 | 0.557496 | 0.562258 | 0.599869 | 0.605101 | 0.612708 | 0.645201 | 0.762671 | 0.855466 | 1.044782 | 1.071568 | 1.635367 | 1.876867 | 2.163377 | 2.713863 | 3.217453  | 3.781363 | 4.334040 | 5.379377 | 10.666350 |
| run 8      | 0.017065 | 0.027615 | 0.038598 | 0.049792 | 0.059720 | 0.069741 | 0.081214 | 0.092087 | 0.102598 | 0.114049 | 0.128397 | 0.165927 | 0.197094 | 0.221223 | 0.274222 | 0.328266 | 0.340327 | 0.356010 | 0.377774 | 0.430631 | 0.536509 | 0.560978 | 0.572771 | 0.599451 | 0.604196 | 0.614466 | 0.650643 | 0.762828 | 0.858871 | 0.972237 | 1.073890 | 1.635712 | 1.862701 | 2.192953 | 2.734796 | 3.215762  | 3.720318 | 4.357857 | 5.417244 | 10.690387 |
| run 7      | 0.017352 | 0.028035 | 0.041569 | 0.049547 | 0.062395 | 0.070154 | 0.081401 | 0.091099 | 0.106377 | 0.113953 | 0.127806 | 0.170835 | 0.195532 | 0.228385 | 0.274563 | 0.326458 | 0.335047 | 0.350682 | 0.381276 | 0.436798 | 0.536075 | 0.559569 | 0.577936 | 0.595402 | 0.604883 | 0.615184 | 0.645971 | 0.762571 | 0.915716 | 0.968674 | 1.065445 | 1.607980 | 1.890059 | 2.177513 | 2.721362 | 3.215669  | 3.719355 | 4.280345 | 5.357077 | 11.667215 |
| run 6      | 0.017254 | 0.027637 | 0.038817 | 0.049456 | 0.058962 | 0.070016 | 0.081409 | 0.091083 | 0.103184 | 0.117249 | 0.128701 | 0.165516 | 0.196214 | 0.221907 | 0.274163 | 0.324400 | 0.336938 | 0.349579 | 0.381285 | 0.431012 | 0.537052 | 0.557858 | 0.562834 | 0.602320 | 0.621333 | 0.611079 | 0.643181 | 0.768898 | 0.857734 | 0.973854 | 1.071601 | 1.632020 | 1.863482 | 2.383488 | 2.717081 | 3.212911  | 4.085672 | 4.278655 | 5.366502 | 10.720161 |
| run 5      | 0.017153 | 0.027734 | 0.038153 | 0.049847 | 0.059554 | 0.069491 | 0.086497 | 0.095239 | 0.106305 | 0.118280 | 0.124539 | 0.166165 | 0.192778 | 0.225071 | 0.277982 | 0.324747 | 0.342093 | 0.349635 | 0.377958 | 0.430397 | 0.540548 | 0.562091 | 0.573941 | 0.595099 | 0.621194 | 0.610855 | 0.648744 | 0.767003 | 0.855053 | 0.983456 | 1.066103 | 1.638617 | 1.863534 | 2.144401 | 2.718730 | 3.226344  | 3.783413 | 4.309987 | 5.343763 | 11.049206 |
| run 4      | 0.016700 | 0.027380 | 0.038008 | 0.053127 | 0.059313 | 0.070099 | 0.084476 | 0.090805 | 0.102789 | 0.113829 | 0.127821 | 0.165667 | 0.192266 | 0.221967 | 0.276109 | 0.324538 | 0.334702 | 0.350285 | 0.378085 | 0.430702 | 0.536586 | 0.560847 | 0.566318 | 0.596185 | 0.615802 | 0.610747 | 0.646705 | 0.762986 | 0.906990 | 0.971758 | 1.082200 | 1.627617 | 1.882859 | 2.167419 | 2.717712 | 3.399748  | 4.055750 | 4.294484 | 5.361667 | 10.618566 |
| run 3      | 0.020288 | 0.028217 | 0.037987 | 0.053106 | 0.063256 | 0.069560 | 0.084003 | 0.091271 | 0.104354 | 0.117271 | 0.128403 | 0.165219 | 0.192125 | 0.222053 | 0.274226 | 0.326512 | 0.343173 | 0.353365 | 0.377975 | 0.430452 | 0.536701 | 0.566211 | 0.575675 | 0.602981 | 0.614728 | 0.613996 | 0.643582 | 0.773763 | 0.854818 | 0.967202 | 1.069781 | 1.636961 | 1.885438 | 2.155012 | 2.716682 | 3.222331  | 3.788931 | 4.300942 | 5.362674 | 10.610223 |
| run 2      | 0.017710 | 0.027601 | 0.038534 | 0.053051 | 0.059279 | 0.069442 | 0.080932 | 0.090576 | 0.102381 | 0.113515 | 0.124212 | 0.165930 | 0.199576 | 0.226127 | 0.277818 | 0.331919 | 0.334680 | 0.348534 | 0.378005 | 0.434967 | 0.536405 | 0.557195 | 0.561885 | 0.594645 | 0.604427 | 0.622307 | 0.642913 | 0.763652 | 0.860395 | 0.988032 | 1.066470 | 1.611565 | 1.879015 | 2.151486 | 2.725277 | 3.2111110 | 3.803668 | 4.335402 | 5.355563 | 10.613548 |
| run 1      | 0.016691 | 0.027544 | 0.037973 | 0.048823 | 0.059118 | 0.073760 | 0.081113 | 0.091167 | 0.103558 | 0.114501 | 0.130303 | 0.166827 | 0.192189 | 0.222649 | 0.275459 | 0.328354 | 0.342335 | 0.349467 | 0.381449 | 0.434437 | 0.536648 | 0.557105 | 0.564529 | 0.595052 | 0.615288 | 0.622885 | 0.642117 | 0.762998 | 0.855173 | 0.992261 | 1.066718 | 1.667309 | 1.885365 | 2.143113 | 2.720689 | 3.214819  | 3.726684 | 4.276684 | 5.344331 | 10.627460 |
| size $(n)$ |          | 2        | 3        | 4        | ro       | 9        | 7        | ∞        | 6        | 10       | 11       | 15       | 17       | 20       | 25       | 30       | 31       | 32       | 35       | 40       | 20       | 51       | 52       | 55       | 26       | 22       | 09       | 20       | 80       | 06       | 100      | 150      | 175      | 200      | 250      | 300       | 350      | 400      | 200      | 1000      |

| 1000      | 500       | 400       | 350       | 300       | 250      | 200      | 175      | 150      | 100      | 90       | 80       | 70       | 60       | 57       | 56       | 55       | 52       | 51       | 50       | 40       | 35       | 32       | 31       | 30       | 25       | 20       | 17       | 15       | 11       | 10       | 9        | ∞        | 7        | 6        | σı       | 4        | သ        | 2        | 1        | size $(n)$ |
|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|
| 37.704169 | 19.023578 | 15.078607 | 13.336586 | 11.350750 | 9.439364 | 7.542601 | 6.624531 | 5.667725 | 3.784479 | 3.410145 | 3.088944 | 2.657708 | 2.281498 | 2.156351 | 2.119934 | 2.081868 | 1.965487 | 1.938006 | 1.900535 | 1.514836 | 1.327032 | 1.218069 | 1.174946 | 1.136889 | 0.949351 | 0.778610 | 0.646433 | 0.571422 | 0.434850 | 0.383223 | 0.345980 | 0.307899 | 0.270453 | 0.233197 | 0.195821 | 0.163417 | 0.119024 | 0.081331 | 0.043172 | run 1      |
| 37.741568 | 19.006510 | 15.099211 | 13.358732 | 11.311524 | 9.432561 | 7.578545 | 6.622141 | 5.671700 | 3.780613 | 3.398586 | 3.066414 | 2.663761 | 2.273519 | 2.172586 | 2.122902 | 2.078245 | 1.966567 | 1.931295 | 1.900716 | 1.515065 | 1.324888 | 1.218076 | 1.174972 | 1.137860 | 0.948371 | 0.763375 | 0.652192 | 0.572264 | 0.425312 | 0.383540 | 0.345662 | 0.310904 | 0.273465 | 0.236570 | 0.199222 | 0.161564 | 0.119133 | 0.083875 | 0.046822 | run 2      |
| 37.712419 | 18.978295 | 15.100234 | 14.050845 | 11.367678 | 9.425121 | 7.547801 | 6.638356 | 5.663816 | 3.799054 | 3.399840 | 3.035974 | 2.648742 | 2.268564 | 2.154893 | 2.128461 | 2.095603 | 1.964892 | 1.949122 | 1.903641 | 1.516767 | 1.329011 | 1.212180 | 1.175939 | 1.136879 | 0.948596 | 0.764365 | 0.650816 | 0.576426 | 0.423895 | 0.383238 | 0.345524 | 0.310438 | 0.270044 | 0.236562 | 0.194973 | 0.157269 | 0.119112 | 0.081676 | 0.043417 | run 3      |
| 38.784839 | 18.959007 | 15.128147 | 13.402441 | 11.316328 | 9.425037 | 7.565824 | 6.622479 | 5.666965 | 3.781555 | 3.414521 | 3.021894 | 2.659117 | 2.266934 | 2.153307 | 2.137227 | 2.090705 | 1.965768 | 1.948047 | 1.915092 | 1.513589 | 1.330023 | 1.212480 | 1.179044 | 1.140865 | 0.955622 | 0.760709 | 0.834619 | 0.572034 | 0.425681 | 0.383799 | 0.345092 | 0.307950 | 0.269950 | 0.236251 | 0.199189 | 0.156801 | 0.121758 | 0.085626 | 0.043632 | run 4      |
| 37.721318 | 18.966583 | 15.082431 | 13.237258 | 11.316791 | 9.497541 | 7.547302 | 6.619940 | 5.675913 | 3.786589 | 3.397966 | 3.032746 | 2.647271 | 2.279099 | 2.168492 | 2.116831 | 2.081168 | 1.967908 | 1.930870 | 1.900924 | 1.513432 | 1.325305 | 1.214070 | 1.176566 | 1.138892 | 0.954038 | 0.760073 | 0.648642 | 0.571520 | 0.420748 | 0.383928 | 0.345643 | 0.308386 | 0.274653 | 0.232503 | 0.194761 | 0.156943 | 0.119847 | 0.082026 | 0.043664 | run 5      |
| 38.389603 | 18.964051 | 15.093744 | 13.251924 | 11.316772 | 9.464566 | 7.544137 | 6.618038 | 5.829027 | 3.774507 | 3.405512 | 3.071071 | 2.647894 | 2.266459 | 2.158415 | 2.119646 | 2.084153 | 1.964810 | 1.928677 | 1.912904 | 1.513949 | 1.325479 | 1.217021 | 1.201796 | 1.137786 | 0.948559 | 0.765860 | 0.648109 | 0.572378 | 0.421947 | 0.386428 | 0.345589 | 0.307953 | 0.270359 | 0.233067 | 0.194921 | 0.161296 | 0.120077 | 0.081789 | 0.043564 | run 6      |
| 37.944436 | 18.984232 | 15.097692 | 13.378475 | 11.367687 | 9.433106 | 7.545819 | 6.644144 | 5.677545 | 3.785860 | 3.399206 | 3.028593 | 2.643703 | 2.271990 | 2.182953 | 2.118188 | 2.082999 | 1.968907 | 1.940013 | 1.901660 | 1.520949 | 1.325951 | 1.217895 | 1.175842 | 1.141374 | 0.948764 | 0.776760 | 0.647498 | 0.572603 | 0.425489 | 0.384088 | 0.351809 | 0.308380 | 0.270751 | 0.234867 | 0.195277 | 0.160660 | 0.120407 | 0.081863 | 0.043865 | run 7      |
| 37.753871 | 18.996989 | 15.084862 | 13.355143 | 11.321180 | 9.467854 | 7.544423 | 6.618832 | 5.656791 | 3.774088 | 3.443842 | 3.021318 | 2.645745 | 2.278948 | 2.153862 | 2.304648 | 2.083035 | 1.975197 | 1.931850 | 1.903258 | 1.516557 | 1.338637 | 1.215149 | 1.178992 | 1.139641 | 0.948613 | 0.764895 | 0.647586 | 0.578932 | 0.421769 | 0.385125 | 0.345894 | 0.308173 | 0.270494 | 0.232404 | 0.195039 | 0.157475 | 0.121356 | 0.081600 | 0.045367 | run 8      |
| 38.093513 | 18.974469 | 15.168623 | 13.342363 | 11.322455 | 9.430011 | 7.546813 | 6.622760 | 5.664469 | 3.775454 | 3.402921 | 3.020424 | 2.644989 | 2.280399 | 2.155068 | 2.140553 | 2.078938 | 1.969561 | 1.934521 | 1.901569 | 1.515543 | 1.338710 | 1.214404 | 1.178565 | 1.141042 | 0.953275 | 0.760292 | 0.647502 | 0.576808 | 0.422130 | 0.383200 | 0.351110 | 0.308883 | 0.271201 | 0.233337 | 0.196748 | 0.157343 | 0.120123 | 0.085120 | 0.049263 | run 9      |
| 37.946238 | 18.968646 | 15.099994 | 13.444956 | 11.396654 | 9.447401 | 7.560929 | 6.621316 | 5.656502 | 3.776485 | 3.448100 | 3.028325 | 2.662223 | 2.267431 | 2.176393 | 2.127508 | 2.079727 | 1.965438 | 1.930191 | 1.907458 | 1.517568 | 1.325584 | 1.230085 | 1.179969 | 1.137617 | 0.948754 | 0.760564 | 0.654836 | 0.576594 | 0.421415 | 0.385901 | 0.346351 | 0.312240 | 0.270453 | 0.236744 | 0.195308 | 0.157692 | 0.119391 | 0.081872 | 0.044524 | run 10     |
| 38.005610 | 18.960620 | 15.122074 | 13.307368 | 11.344013 | 9.465669 | 7.556461 | 6.635974 | 5.664049 | 3.792837 | 3.457057 | 3.025977 | 2.644176 | 2.267655 | 2.154412 | 2.127464 | 2.078796 | 1.965424 | 1.930821 | 1.901138 | 1.515893 | 1.327127 | 1.217718 | 1.182225 | 1.140847 | 0.950019 | 0.760675 | 0.658513 | 0.571640 | 0.424247 | 0.388219 | 0.345631 | 0.308645 | 0.270601 | 0.232766 | 0.198207 | 0.158040 | 0.121328 | 0.081574 | 0.044075 | run 11     |

Table A.9: Crypto (Botan) / kdb set benchmark results

56

Table A.10: Fcrypt / kdb set benchmark results

| size $(n)$ | run 1    | run 2    | run 3    | run 4      | run 5    | run 6    | run 7    | run 8    | 6 uni    | run 10   | run 11   |
|------------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|
| 1          | 0.013194 | 0.013377 | 0.009475 | 0.012549   | 0.013019 | 0.009276 | 0.017169 | 0.009749 | 0.013918 | 0.009775 | 0.009765 |
| 2          | 0.009119 | 0.012990 | 0.013443 | 0.018148   | 0.009638 | 0.017703 | 0.009555 | 0.009763 | 0.009729 | 0.009764 | 0.013111 |
| က          | 0.009203 | 0.013251 | 0.012583 | 0.009084   | 0.012909 | 0.013143 | 0.009879 | 0.017374 | 0.017837 | 0.017178 | 0.009830 |
| 4          | 0.009164 | 0.013780 | 0.009263 | 0.012920   | 0.009344 | 0.013677 | 0.009764 | 0.017175 | 0.013883 | 0.009684 | 0.017489 |
| 5          | 0.012542 | 0.009112 | 0.009354 | 0.009600.0 | 0.014302 | 0.009363 | 0.013641 | 0.013822 | 0.013101 | 0.009695 | 0.013399 |
| 9          | 0.009440 | 0.013092 | 0.009242 | 0.016934   | 0.009154 | 0.009526 | 0.014080 | 0.014196 | 0.009617 | 0.009856 | 0.010208 |
| 7          | 0.009299 | 0.009362 | 0.013706 | 0.009326   | 0.009795 | 0.021004 | 0.012870 | 0.009489 | 0.013118 | 0.009723 | 0.013863 |
| ∞          | 0.014003 | 0.012974 | 0.009316 | 0.012746   | 0.016824 | 0.009434 | 0.009427 | 0.013415 | 0.013038 | 0.009647 | 0.009883 |
| 6          | 0.009413 | 0.009154 | 0.009226 | 0.009475   | 0.009713 | 0.009471 | 0.009804 | 0.009626 | 0.009834 | 0.013188 | 0.017592 |
| 10         | 0.012534 | 0.009314 | 0.012687 | 0.009473   | 0.013432 | 0.009537 | 0.009483 | 0.014048 | 0.009577 | 0.013734 | 0.013242 |
| 11         | 0.009317 | 0.009567 | 0.009588 | 0.013542   | 0.009783 | 0.009824 | 0.018328 | 0.013862 | 0.017238 | 0.009737 | 0.013955 |
| 15         | 0.009037 | 0.020326 | 0.009622 | 0.013844   | 0.009364 | 0.013210 | 0.012960 | 0.013822 | 0.010045 | 0.009898 | 0.009840 |
| 17         | 0.012976 | 0.009202 | 0.009375 | 0.017130   | 0.009800 | 0.009545 | 0.009714 | 0.012974 | 0.013969 | 0.010244 | 0.017023 |
| 20         | 0.013268 | 0.009636 | 0.009798 | 0.012523   | 0.013042 | 0.013162 | 0.009661 | 0.013752 | 0.012836 | 0.010046 | 0.014189 |
| 25         | 0.009310 | 0.013688 | 0.013309 | 0.009536   | 0.012918 | 0.010057 | 0.013695 | 0.017064 | 0.010221 | 0.009981 | 0.010114 |
| 30         | 0.017053 | 0.013032 | 0.009741 | 0.013936   | 0.012657 | 0.009658 | 0.013177 | 0.014051 | 0.009983 | 0.013179 | 0.009947 |
| 31         | 0.009371 | 0.013480 | 0.012967 | 0.012959   | 0.012844 | 0.013917 | 0.017653 | 0.010060 | 0.014182 | 0.009952 | 0.017401 |
| 32         | 0.013683 | 0.009198 | 0.009557 | 0.017232   | 0.009449 | 0.010059 | 0.010244 | 0.010199 | 0.013520 | 0.009697 | 0.014632 |
| 35         | 0.009692 | 0.009555 | 0.013878 | 0.013257   | 0.009957 | 0.013419 | 0.017284 | 0.021858 | 0.009989 | 0.014332 | 0.009913 |
| 40         | 0.013359 | 0.009785 | 0.013084 | 0.009738   | 0.013171 | 0.009853 | 0.013905 | 0.013560 | 0.017858 | 0.010508 | 0.010043 |
| 20         | 0.013647 | 0.017389 | 0.009923 | 0.010129   | 0.009854 | 0.009829 | 0.018837 | 0.013442 | 0.010299 | 0.013470 | 0.010307 |
| 51         | 0.009610 | 0.009591 | 0.009758 | 0.014055   | 0.013814 | 0.010065 | 0.009926 | 0.014045 | 0.014234 | 0.010851 | 0.010494 |
| 52         | 0.017065 | 0.009776 | 0.012762 | 0.009645   | 0.013233 | 0.009819 | 0.010105 | 0.010161 | 0.010023 | 0.010318 | 0.010465 |
| 55         | 0.013110 | 0.009723 | 0.009827 | 0.013006   | 0.010507 | 0.014072 | 0.010215 | 0.010284 | 0.010350 | 0.013674 | 0.010554 |
| 56         | 0.009544 | 0.013293 | 0.009698 | 0.013789   | 0.010053 | 0.013244 | 0.013668 | 0.010411 | 0.014397 | 0.010056 | 0.018461 |
| 57         | 0.013388 | 0.010202 | 0.013266 | 0.014007   | 0.010206 | 0.013914 | 0.017629 | 0.014691 | 0.021369 | 0.013819 | 0.014512 |
| 09         | 0.009695 | 0.009582 | 0.009855 | 0.013898   | 0.009848 | 0.009898 | 0.010127 | 0.010193 | 0.010600 | 0.014338 | 0.010872 |
| 20         | 0.009926 | 0.010178 | 0.009563 | 0.010074   | 0.014732 | 0.010084 | 0.010646 | 0.010224 | 0.010562 | 0.013906 | 0.017434 |
| 80         | 0.009804 | 0.013729 | 0.013314 | 0.010278   | 0.010123 | 0.010330 | 0.010373 | 0.010328 | 0.010576 | 0.010735 | 0.014030 |
| 06         | 0.014102 | 0.010163 | 0.010168 | 0.014309   | 0.014357 | 0.010222 | 0.010841 | 0.010275 | 0.013856 | 0.014410 | 0.011050 |
| 100        | 0.014004 | 0.010333 | 0.010181 | 0.010807   | 0.010428 | 0.013874 | 0.014788 | 0.010319 | 0.010600 | 0.010736 | 0.011048 |
| 150        | 0.017966 | 0.014617 | 0.010590 | 0.013930   | 0.010788 | 0.014512 | 0.010969 | 0.010863 | 0.011171 | 0.011075 | 0.011479 |
| 175        | 0.010546 | 0.014734 | 0.014300 | 0.011321   | 0.011288 | 0.011655 | 0.011139 | 0.011172 | 0.011418 | 0.018827 | 0.011630 |
| 200        | 0.010874 | 0.023305 | 0.011283 | 0.011049   | 0.011209 | 0.011297 | 0.014559 | 0.011452 | 0.011679 | 0.011525 | 0.015767 |
| 250        | 0.011280 | 0.011512 | 0.011357 | 0.014924   | 0.011955 | 0.019803 | 0.015977 | 0.011846 | 0.011713 | 0.011728 | 0.019449 |
| 300        | 0.011962 | 0.015511 | 0.018851 | 0.011906   | 0.015978 | 0.020355 | 0.016267 | 0.016675 | 0.012721 | 0.012167 | 0.012210 |
| 350        | 0.016346 | 0.020866 | 0.012218 | 0.012370   | 0.017130 | 0.016405 | 0.020122 | 0.016875 | 0.012808 | 0.017005 | 0.015902 |
| 400        | 0.012324 | 0.019915 | 0.013048 | 0.012910   | 0.012650 | 0.012728 | 0.016403 | 0.013263 | 0.012855 | 0.016910 | 0.016545 |
| 200        | 0.013216 | 0.016648 | 0.013481 | 0.013481   | 0.013788 | 0.013643 | 0.017986 | 0.022313 | 0.013786 | 0.014310 | 0.025452 |
| 1000       | 0.020387 | 0.021105 | 0.017416 | 0.020814   | 0.017700 | 0.017603 | 0.021634 | 0.021788 | 0.021323 | 0.021124 | 0.018117 |

# List of Figures

| 2.1 | State changes in Elektra                                                     | 9  |
|-----|------------------------------------------------------------------------------|----|
| 2.2 | Crypto Plugin: Overview of the encryption and decryption process             | 12 |
| 2.3 | Crypto Plugin: Decryption of a configuration setting at the kdb get method . | 15 |
| 2.4 | Crypto Plugin: Encryption of a configuration setting at the kdb set method . | 16 |
| 2.5 | Crypto Plugin: The kdb checkconf method                                      | 17 |
| 2.6 | Base64 Plugin: Example backend configuration with the base64 plugin          | 21 |
|     |                                                                              |    |
| 4.1 | Runtime comparison of kdb set                                                | 31 |
| 4.2 | Runtime comparison of kdb get                                                | 32 |
| 4.3 | Boxplots of the kdb set runtime with $n=500$ configuration settings          | 34 |
| 4.4 | Boxplots of the kdb get runtime with $n=500$ configuration settings          | 35 |
| 4.5 | Result Of The Memory Analysis with $n=10$ configuration settings             | 36 |
| 4.6 | Result Of The Memory Analysis with $n=100$ configuration settings            | 37 |
| 4.7 | Result Of The Memory Analysis with $n = 200$ configuration settings          | 38 |

## List of Tables

| 2.1  | Structure of the crypto message header         |
|------|------------------------------------------------|
| 4.1  | Read performance of the benchmark SSD          |
| 4.2  | Allocated heap sizes of the crypto plugins     |
| 6.1  | Average overhead of the crypto plugin          |
| 6.2  | Average overhead of the fcrypt plugin          |
| A.1  | No crypto plugin / kdb get benchmark results   |
| A.2  | Crypto (OpenSSL) / kdb get benchmark results   |
| A.3  | Crypto (libgcrypt) / kdb get benchmark results |
| A.4  | Crypto (Botan) / kdb get benchmark results     |
| A.5  | Fcrypt / kdb get benchmark results             |
| A.6  | No crypto plugin / kdb set benchmark results   |
| A.7  | Crypto (OpenSSL) / kdb set benchmark results   |
| A.8  | Crypto (libgcrypt) / kdb set benchmark results |
| A.9  | Crypto (Botan) / kdb set benchmark results     |
| A.10 | Fcrypt / kdb set benchmark results             |

# Listings

| 2.1 | Example of how to use compilation variants in Elektra                      | 10 |
|-----|----------------------------------------------------------------------------|----|
| 2.2 | Definiton of elektraCryptoHandle for the OpenSSL crypto plugin variant .   | 13 |
| 2.3 | Encryption in the OpenSSL crypto plugin variant                            | 18 |
| 2.4 | Encryption in the Botan crypto plugin variant                              | 18 |
| 2.5 | Fcrypt: encryption command                                                 | 19 |
| 2.6 | Ferypt: decryption command                                                 | 19 |
| 2.7 | Fcrypt: signature command                                                  | 20 |
| 2.8 | Base64 example INI output                                                  | 20 |
| 3.1 | Mounting an Elektra backend with the crypto plugin                         | 23 |
| 3.2 | Marking a configuration value for encryption                               | 24 |
| 3.3 | Receiving an encrypted configuration value                                 | 24 |
| 3.4 | Mounting an Elektra backend with the fcrypt plugin                         | 24 |
| 3.5 | Adding configuration values with the fcrypt plugin                         | 24 |
| 3.6 | Mounting an INI-file with the crypto plugin and the base 64 plugin $$ . $$ | 25 |
| 3.7 | Encrypted values in an INI-file                                            | 25 |
| 4.1 | Elektra compile options for the benchmarks                                 | 28 |
| 4.2 | Time measurement for the benchmarks                                        | 29 |
| 4.3 | Excerpt of Benchmark 1                                                     | 30 |

### **Bibliography**

- [CCD<sup>+</sup>07] J. Callas, PGP Corporation, L. Donnerhacke, IKS GmbH, H. Finney, D. Shaw, and R. Thayer. RFC 4880 OpenPGP Message Format. https://tools.ietf.org/html/rfc4880, November 2007. Retrieved September 2017.
- [DHM12] Ed. D. Hardt and Microsoft. RFC 6749 The OAuth 2.0 Authorization Framework. https://tools.ietf.org/html/rfc6749, October 2012. Retrieved May 2018.
- [ele18] Elektra documentation. https://doc.libelektra.org/api/current/html/group\_kdb.html, 2018. Retrieved May 2018.
- [gnu17] Using the gnu privacy guard gnupg. https://www.gnupg.org/documentation/manuals/gnupg/, 2017. Retrieved May 208.
- [hib17] Hibernate 5.2 documentation. http://docs.jboss.org/hibernate/orm/5.2, 2017. Retrieved May 2018.
- [JS16] S. Josefsson and SJD. RFC 4648 The Base16, Base32, and Base64 Data Encodings. https://tools.ietf.org/html/rfc4648, October 2016. Retrieved September 2017.
- [KWdR03] Angelos D. Keromytis, Jason L. Wright, and Theo de Raadt. The design of the openbsd cryptographic framework. In USENIX 2003 Annual Technical Conference, pages 181–196, 2003.
- [oSN01] National Institute of Standards and Technology (NIST). Federal Information Processing Standards Publication 197 Advanced Encryption Standard (AES). http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf, November 2001. Retrieved September 2017.
- [Raa10] Markus Raab. A modular approach to configuration storage. *Master's thesis, Vienna University of Technology*, 2010.
- [Sch96] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., second edition, 1996.

- [SL16] Randall Stewart and Scott Long. Improving high-bandwidth tls in the freebsd kernel. FreeBSD Journal, September/October 2016:8–13, 2016.
- [Sta14] William Stallings. Cryptography and Network Security Principles and Practice. Pearson, sixth edition, June 2014.
- [TK11] Jawahar Thakur and Nagesh Kumar. Des, aes and blowfish: Symmetric key cryptography algorithms simulation based performance analysis. *International journal of emerging technology and advanced engineering*, 1(2):6–12, 2011.
- [wor17] Wordpress documentation. https://codex.wordpress.org, 2017. Retrieved May 2018.