STAT 134: Section 11

Adam Lucas

October 28, 2020

Conceptual Review

What are the different functions we have used to characterize (i.e., fully describe) distributions of random variables? We have seen four.

Problem 1

Suppose U has uniform (0,1) distribution. Let $W = -\log U$. Find the density of W. What kind of random variable is W?

Suppose we have a random variable X with continuous and strictly increasing CDF F_X . Find the distribution of $F_X(X)$.

Quiz Review

Let $X \sim \mathcal{N}(0,1)$. The density of X is $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$. Find $\mathbb{E}(X^k)$, where k is a positive integer.

Hint: Consider odd and even values of k separately. Also, you may use the fact that, for any $m \ge 1$,

$$\int_{-\infty}^{\infty} x^{2m} e^{-x^2/2} dx = (2m-1) \int_{-\infty}^{\infty} x^{2m-2} e^{-x^2/2} dx.$$