Algoritmi e Strutture Dati a.a. 2012/13

Prima prova intermedia del 28/01/2013

Cognor	me: Nome:
Matrico	ola: E-mail:
1.	Dare la definizione di albero binario completo . Scrivere in C un programma efficiente per stabilire se un albero binario è completo e calcolarne la complessità al caso pessimo indicando, e risolvendo, la corrispondente relazione di ricorrenza.
2.	Dato l'insieme delle chiavi $\{1,4,5,10,16,17,21\}$, quale è l'altezza minima $hmin$ di un albero binario di ricerca che contenga esattamente queste chiavi? E l'altezza massima $hmax$? Disegnare 3 alberi binari di ricerca con le chiavi dell'insieme specificato rispettivamente di altezza $hmin$, $hmax$ e di un'altezza h tale che $hmin < h < hmax$. Infine scrivere una versione ricorsiva della procedura Tree-Insert per gli alberi binari di ricerca. La procedura ha come input un albero binario di ricerca T e un nodo z da inserire in tale albero. Discutere la complessità al caso pessimo di tale procedura.
3.	Si enunci e si dimostri il teorema fondamentale delle ricorrenze e lo si utilizzi per risolvere le seguenti ricorrenze (spiegando in quali casi del teorema ricade ciascuna di esse):

 $\circ \quad T(n) = 4T(n/2) + n$

 $T(n) = 4T(n/2) + n^2$

 $T(n) = 4T(n/2) + n^3$