

STUDENT ID NO									

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2015/2016

ETM2046 - ANALOG AND DIGITAL COMMUNICATIONS (BE, RE)

08 OCTOBER 2015 2.30 p.m - 4.30 p.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 8 pages including cover page with 4 questions only.
- 2. Attempt ALL 4 questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the answer booklet provided.

QUESTION 1

a) Sketch the block diagram of Digital Communication System.

[10 marks]

b) Find the Trigonomertric Form Fourier series representation for the sawtooth waveform as shown in Fig Q1 below. [10 marks]

c) An SSB transmission contains 700W. This transmission is to be replaced by a standard AM signal with the same power content. Determine the <u>power content</u> of the <u>carrier</u> and <u>each of the sidebands</u> when the percent modulation is 80%.

[3 + 2 marks]

Continued

QUESTION 2

a) Explain direct FM signal generation.

[6 marks]

- b) List out the TWO advantages and TWO disadvantages of direct FM signal generation.

 [2 + 2 marks]
- c) An FM signal is given as $x(t) = 10\cos(2\pi \times 10^6 t + 0.05\cos(\pi \times 2000t))$. Determine:
 - (i) the instantaneous frequency $f_i(t)$.

[2 marks]

- (ii) whether x(t) is narrowband or wideband FM. Also state the reason for your answer. [2 marks]
- (iii) the transmission bandwidth using Carson's rule.

[2 marks]

(iv) the transmission bandwidth using Bessel function table.

[2 marks]

(v) the power in the largest sidebands.

[2 marks]

d) Sketch the block diagram of a Phase Lock loop FM Detector.

[5 marks]

Continued

Continued

QUESTION 4

a) State Shannon's First Theorem.

[2 marks]

- b) Consider a discrete memoryless source with source alphabet $\{S_0,S_1,S_2\}$ with probabilities $p_0=1/4$, $p_1=1/4$ and $p_2=1/2$. The codeword assigned for each source alphabet $\{S_0,S_1,S_2\}=\{00,01,1\}$.
 - (i) Calculate the average code word length.

[2 marks]

(ii) Calculate the efficiency of the source encoder.

[4 marks]

c) List out the SEVEN steps of Huffman Coding.

[7 marks]

d) For the following symbols and their related probabilities,

Symbol	Probability				
S_0	0.4				
S_1	0.25				
S_2	0.25				
S_3	0.05				
S_4	0.05				

(i) Determine the codeword.

[4 marks]

(ii) Determine the average codeword length.

[2 marks]

(iii) Determine the entropy.

[2 marks]

(iv) Determine the efficiency for the symbols.

[2 marks]

Continued

Appendix I: Table of Bessel Function

B													
	0.05	0.1	0.2	0.3	0.5	0.7	1.0	2.0	3.0	5.0	7.0	8.0	10.0
n													
0	0.999	0.998	0.990	0.978	0.938	0.881	0.765	0.224	-0.260	-0178	0.300	0.172	-0.246
1	0.025	0.050	0.100	0.148	0.242	0.329	0.440	0.577	0.339	-0.328	-0.005	0.235	0.043
2		0.001	0.005	0.011	0.031	0.059	0.115	0.353	0.486	0.047	-0.301	-0.113	0.255
3				0.001	0.003	0.007	0.020	0.129	0.309	0.365	-0.168	-0.291	0.058
4				,		0.001	0.002	0.034	0.132	0.391	0.158	-0.105	-0.220
5								0.007	0.043	0.261	0.348	0.186	-0.234
6								0.001	0.011	0.131	0.339	0.338	-0 014
7									0.003	0.053	0.234	0.321	0.217
8										0.018	0.128	0.223	0.318
9										0.006	0.059	0.126	0.292
10										0.001	0.024	0.061	0.208
11											0.008	0.026	0.123
12											0.003	0.010	0.063
13							,				0.001	0.003	0.029
14			. 🗆									0.001	0.012
1.5	and total and an area and			l	·								0.005
16													0.002
17													100.0

Appendix II: Table of Trigonometric Identities

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A + B) + \cos(A - B) \right]$$

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\sin \theta = \frac{1}{2j} \left[e^{j\theta} - e^{-j\theta} \right]$$

$$\cos \theta = \frac{1}{2} \left[e^{j\theta} + e^{-j\theta} \right]$$

Continued...

Appendix III: Fourier Transform Pairs

x(t)	X(f)
$\delta(t)$	1
$\delta(t-t_o)$	$e^{-j2\pi f_n}$
1	$\delta(f)$
$e^{j2\pi f_o t}$	$\delta(f-f_o)$
$e^{-at}u(t)$	$\frac{1}{a+j2\pi f}, \text{ for } a>0$
$e^{at}u(-t)$	$\frac{1}{a-j2\pi f}, \text{ for } a>0$
e ^{-a t}	$\frac{2a}{a^2 + (2\pi f)^2}, \text{ for } a > 0$
$rect\left(\frac{t}{T}\right)$	Tsinc (fT)
sinc(2Wt)	$\frac{1}{2W} rect \left(\frac{f}{2W} \right)$
$\Delta\left(\frac{t}{T}\right)$	$\frac{T}{2}\mathrm{sinc}^2\left(\frac{fT}{2}\right)$
$W \operatorname{sinc}^2(Wt)$	$\Delta \left(rac{f}{2W} ight)$
$e^{-\pi t^2}$	$e^{-\pi f^2}$
$\cos(2\pi f_o t)$	$\frac{1}{2}\delta(f-f_o) + \frac{1}{2}\delta(f+f_o)$
$\sin(2\pi f_o t)$	$\frac{1}{2j} \left[\delta(f - f_o) - \delta(f + f_o) \right]$

Continued...

Appendix IV: Fourier Transform Properties

Let $x(t) \Leftrightarrow X(f)$, $x_1(t) \Leftrightarrow X_1(f)$ and $x_2(t) \Leftrightarrow X_2(f)$; and						
a , b , t_o and f_o scalar quantities.						
Linearity	$ax_1(t) + bx_2(t) \Leftrightarrow aX_1(f) + bX_2(f)$					
Scaling $(a \neq 0)$	$x(at) \Leftrightarrow \frac{1}{ a } X \left(\frac{f}{a}\right)$					
Time Shifting	$x(t-t_o) \Leftrightarrow X(f)e^{-j2\pi f t_o}$					
Frequency Shifting	$x(t)e^{j2\pi f_a t} \Leftrightarrow X(f-f_a)$					
Time Convolution	$x_1(t) * x_2(t) \Leftrightarrow X_1(f)X_2(f)$					
Frequency Convolution	$x_1(t)x_2(t) \Leftrightarrow X_1(f) * X_2(f)$					
Time Differentiation	$\frac{d^n}{dt^n}x(t) \Leftrightarrow (j2\pi f)^n X(f)$					
Frequency Differentiation	$(-jt)^n x(t) \Leftrightarrow \frac{d^n}{df^n} X(f)$					
Time Integration	$\int_{-\infty}^{t} x(\tilde{t}) d\tilde{t} \Leftrightarrow \frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$					
Frequency Integration	$x(t)u(t) \Leftrightarrow \int_{-\infty}^{f} X(\tilde{f})d\tilde{f}$					