生物实验报告 王博想

课程:生物实验

实验日期: 2024年10月20日

专业班号: 少年班2308

姓名/学号: 王博想/2233316027

同组者: 陈禹霖

实验名称:生物体维持pH稳定的机制 & ABO血型的测定

一、实验目的

1. 通过比较自来水、缓冲液和生物材料在加入酸或碱后的pH变化,推测生物体是如何维持pH稳定的。

2. 学会用玻片法测定ABO血型,根据结果确定血型。

二、实验原理

实验一:

采用对比实验的方法,通过向自来水、缓冲液、生物材料中加入酸或碱溶液引起的pH 不同变化,定性说明人体内液体环境与缓冲液相似而不同于自来水,从而说明生物体pH 相对稳定的机制。

实验二:

1. 血型:

通常所说的血型就是红细胞的血型,是根据红细胞表面的抗原特异性确定的。已知 人类的红细胞有 15 个主要血型系统,其中最主要的是 ABO 血型系统,其次是 Rh 血型 系统。

2. ABO 血型系统:

人类ABO 血型系统是根据红细胞膜上有无特异性抗原(凝集原)A 或B 来划分的血液类型系统,将血型分为 A、B、AB 和 O 型四种。A、B 抗原的特异性取决于糖蛋白上所含的糖链。在人类的血液里含有凝集原(又称抗原)A、B 和凝集素(又称抗体)A、B。凝集原附着在红细胞表面,凝集素存在于血浆(或血清)中。同名的凝集原和凝集素相遇(如凝集原 A 和凝集素 A)会发生红细胞凝集现象(凝血反应)。所谓 A 型指红细胞膜上只存在 A 抗原,其血清中存在抗 B 抗体(凝集素),B 型指红细胞膜上只存在 B 抗原,其血清中存在抗 A 抗体,AB 型指红细胞膜上同时存在 A 和B 抗原,其血清中没有抗A 或抗B 抗体,O 型则红细胞膜上没有 A 和B 抗原,血清中同时存在抗 A 抗B 抗体。

3. ABO 血型的鉴定:

血型鉴定可用红细胞凝集实验,通过正、反定型准确确定 ABO 血型。所谓正定型:即血清试验,用已知抗 A、抗 B 分型血清来确定红细胞上有无相应的 A 抗原和 B 抗原;所谓反定型:即细胞试验,是用已知 A 细胞和 B 细胞来测定血清中有无相应的抗 A 或抗 B 抗体。

三、实验记录

	加入0.1M HCI 加入不同数量液滴后的pH							加入0.1M NaOH 加入不同数量液滴后的pH						
	0	5	10	15	20	25	30	0	5	10	15	20	25	30
自来水	7.0	6.5	6.0	5.5	4.0	3.0	2.0	7.0	7.5	8.5	9.0	10.5	11.0	11.5
缓冲液	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.5
蛋清稀释 液	7.0	6.7	6.7	6.4	5.8	5.4	4.8	7.0	8.7	10.5	10.5	10.5	11.0	11.5
黄瓜匀浆	6.0	5.4	4.8	4.4	4.1	4.1	3.8	6.0	6.5	7.0	7.5	7.5	8.0	8.5

四、讨论及思考题

- 1. Rh血型系统、MNS血型系统、Kell血型系统、Duffy血型系统、Kidd血型系统。
- 2. 自来水:在加入HCl时,pH值迅速下降,在加入NaOH时,pH值上升,说明自来水的缓冲能力较弱。

缓冲液:缓冲液的pH值变化最小,即使在加入HCl或NaOH后,pH值变化幅度较小,说明缓冲液具有很好的缓冲能力,能够抵抗pH的变化。

蛋清稀释液:在加入HCI时,pH值下降,在加入NaOH时,pH值上升,但变化幅度可能介于自来水和缓冲液之间,说明蛋清稀释液具有一定的缓冲能力,但不如缓冲液强,表明蛋清稀释液对酸碱变化都有一定的缓冲作用。

黄瓜匀浆:在加入HCI时,pH值下降,在加入NaOH时,pH值上升,但变化幅度可能比自来水小,说明黄瓜匀浆具有一定的缓冲能力,但不如缓冲液。

生物材料能够维持pH稳定的机制主要归功于生物体内存在的缓冲对,如,HCO3-和H2CO3,或H3PO4和H2PO4-。