We now formalize the notion of the set V^0 of linear equations vanishing on all vectors in a given subspace $V \subseteq E$, and the notion of the set U^0 of common solutions of a given set $U \subseteq E^*$ of linear equations. The duality theorem (Theorem 11.4) shows that the dimensions of V and V^0 , and the dimensions of U and U^0 , are related in a crucial way. It also shows that, in finite dimension, the maps $V \mapsto V^0$ and $U \mapsto U^0$ are inverse bijections from subspaces of E to subspaces of E^* .

Definition 11.3. Given a vector space E and its dual E^* , we say that a vector $v \in E$ and a linear form $u^* \in E^*$ are orthogonal iff $\langle u^*, v \rangle = 0$. Given a subspace V of E and a subspace U of E^* , we say that V and U are orthogonal iff $\langle u^*, v \rangle = 0$ for every $u^* \in U$ and every $v \in V$. Given a subset V of E (resp. a subset U of E^*), the orthogonal V^0 of V is the subspace V^0 of E^* defined such that

$$V^0 = \{u^* \in E^* \mid \langle u^*, v \rangle = 0, \text{ for every } v \in V\}$$

(resp. the orthogonal U^0 of U is the subspace U^0 of E defined such that

$$U^0 = \{ v \in E \mid \langle u^*, v \rangle = 0, \text{ for every } u^* \in U \} \}.$$

The subspace $V^0 \subseteq E^*$ is also called the *annihilator* of V. The subspace $U^0 \subseteq E$ annihilated by $U \subseteq E^*$ does not have a special name. It seems reasonable to call it the linear subspace (or linear variety) defined by U.

Informally, V^0 is the set of linear equations that vanish on V, and U^0 is the set of common zeros of all linear equations in U. We can also define V^0 by

$$V^0 = \{ u^* \in E^* \mid V \subseteq \operatorname{Ker} u^* \}$$

and U^0 by

$$U^0 = \bigcap_{u^* \in U} \operatorname{Ker} u^*.$$

Observe that $E^0 = \{0\} = (0)$, and $\{0\}^0 = E^*$.

Proposition 11.2. If $V_1 \subseteq V_2 \subseteq E$, then $V_2^0 \subseteq V_1^0 \subseteq E^*$, and if $U_1 \subseteq U_2 \subseteq E^*$, then $U_2^0 \subseteq U_1^0 \subseteq E$. See Figure 11.2.

Proof. Indeed, if $V_1 \subseteq V_2 \subseteq E$, then for any $f^* \in V_2^0$ we have $f^*(v) = 0$ for all $v \in V_2$, and thus $f^*(v) = 0$ for all $v \in V_1$, so $f^* \in V_1^0$. Similarly, if $U_1 \subseteq U_2 \subseteq E^*$, then for any $v \in U_2^0$, we have $f^*(v) = 0$ for all $f^* \in U_2$, so $f^*(v) = 0$ for all $f^* \in U_1$, which means that $v \in U_1^0$. \square

Here are some examples.