7주차 3차시 디지털 신호

[학습목표]

- 1. 디지털 신호의 특징에 대해 설명할 수 있다.
- 2. 디지털 신호의 분해 및 신호의 파형에 대해 설명할 수 있다.

학습내용1: 디지털 신호 특징

디지털 신호처리 컴퓨터나 전용 하드웨어를 이용하여 디지털 형식으로 처리하는 기술 도파 매체를 통해 전송되는 일련의 전압 펄스

[그림] 디지털 신호

1. 디지털 신호 장점

진폭 : 신호의 높이를 나타냄

위상 : 진동이나 파동과 같이 주기적으로 반복 되는 현상에 대해 어떤 시각 또는 어떤 지점에서의 변화의 상태

주기 : 주기적인 파형이 1 회 반복하는데 걸리는 시간을 의미

[그림] 주기

(1) 비트 주기(Bit Interval)

하나의 단일 비트를 전송하는데 요구되는 시간

(2) 비트 률(Bit Rate)

1초 동안 전송되는 비트 수(bps: bit per second)

(3) 비트 률(Bit Rate)과 비트 주기(bit interval)

[그림] 비트율과 비트주기

① 장점

정확도, 다중화처리, 적응처리, 비선 형처리, 소프트웨어변경 용이, 동일 특성 안정성 보장

한번 양자화(quantization = 디지털화) 되면 그 특성이 변하지 않는다.

원본과 100% 동일한 복제가 가능하다.

전송 중에 발생하는 에러를 자동으로 복구시키는 알고리즘이 가능하다.

전송 거리가 멀어도 repeater를 이용하면 신호의 왜곡 없이 멀리 보낼 수 있다.

체계적이고 지능적인 암호화가 가능하다.

정보 저장의 단위와 용량이 명확하다.

상대적으로 아날로그보다 잡음에 강한 편이다.

② 단점

신호 자체가 주파수 대역폭을 많이 차지한다.

아날로그 신호의 미묘한 특성을 100% 간직할 수는 없다.

회로 구조가 복잡해진다.

순간적인 오류가 이후의 신호에도 영향을 미칠 수 있다.

신호의 동기에 신경을 많이 써야 한다.

[세부설명]

* 진폭 (Amplitude)

신호의 높이를 나타냄

임의의 점에서의 신호가 지니는 값

진폭의 단위는 신호의 종류에 따라 볼트, 암페어, 와트로 측정

* 위상 (Phase)

진동이나 파동과 같이 주기적으로 반복 되는 현상에 대해 어떤 시각 또는 어떤 지점에서의 변화의 상태시각 0시에 대한 파형의 상대적인 위치

4. 디지털 신호 정리

구분	디지털신호						
정의	특정한 값을 단위로 불연속적으로 변하는 신호						
그래프 형태	막대 모양과 같이 불연속적인 형태						
예	컴퓨터나 휴대 전화와 같은 현대 문명에서 사용되는 대부분의 신호						

구분	디지털신호						
예	컴퓨터나 휴대 전화와 같은 현대 문명에서 사용되는 대부분의 신호						
장점	정보의 저장과 전달이 쉽고, 변형 없이 전달 가능함						
단점	원래의 정보를 그대로 기록하고 재생할 수 없음						

학습내용2 : 디지털 신호의 분해

무한개의 단순 정현파로 분해되는 특성

조파(harmonic): 디지털 신호에서 분해 된 정현파

[그림] 디지털 신호의 분해

① 디지털 신호는 항상 잡음에 의해 왜곡 전 영역에 걸친 모든 주파수 구성 요소들을 온전하게 전송할 수 있는 전송 매체가 없기 때문

② 주요 스펙트럼

무한 스펙트럼 중에서 어느 정도의 왜곡까지는 재생할 수 있는 부분

[그림] 스펙트럼

학습내용3 : 디지털 신호의 파형

- 컴퓨터 아키텍처와 다른 디지털 시스템에서, 2개의 불린 자료형 값 (0, 1)을 표현
- 파형은 디지털 신호를 일컫 음
- 아날로그 전압 파형이라고 할지라도 디지털 신호라고 부르는데, 두 개의 신호로 해석되기 때문
- 클러거 신호는 디지털 회로를 동기화하는 데에 쓰이는 특별한 디지털 신호
- 아래 그림은 클럭 신호의 파형을 나타낸 것이다.

[그림] 디지털 신호 파형

논리적 변화는 가장자리가 올라가거나 내려감에 따라 발생한다.

- ① 낮은 수준
- ② 높은 수준
- ③ 올라가는 가장자리
- ④ 떨어지는 가장자리

[참고내용]

- * 디지털 신호 처리란?
- 디지털 신호처리를 마이크로프로세서로 실시간 운영체제 계산에 사용
- 실시간 처리를 위한 설계
- 최적의 데이터 스트리밍
- 프로그램과 데이터 메모리를 분리 SIMD(Single Instruction, Multiple Data) 동작을 위한 특별한 명령어
- 멀티 태스킹을 지원하지 않는 하드웨어 구조
- 호스트환경인 경우 DMA로서 역할 수행
- 아날로그 신호를 디지털 신호로 변환하고 출력으로 다시 아날로그 신호로 변환

[학습정리]

	$T \cup T \subset C \cup$		11 - 01	- - 011	CC1 - 1		01 =11 01	\sim \sim	
1	신폭의	난위는	신호의	송듀伽	111 년	올 드	양베()	안트로	측정하다

- 2. 위상(Phase)은 진동이나 파동과 같이 주기적으로 반복 되는 현상에 대해 어떤 시각 또는 어떤 지점에서의 변화의 상태를 말한다.
- 3. 디지털 신호는 항상 잡음에 의해 왜곡되어 있다.