Problem Set 3

Warren Kim

April 30, 2023

Question 4

Let
$$x_n = \frac{2n+1}{3n+7}$$
.

- (a) Prove directly, using the definition, that $\lim_{n\to\infty} x_n = \frac{2}{3}$
- (b) Prove, using the algebraic limit theorem, that $\lim_{n\to\infty}x_n=\frac{2}{3}$

Response

Question 10

- (a) Let (x_n) be bounded (not necessarily convergent) and assume that $y_n \to 0$ as $n \to \infty$. Show that $x_n y_n \to 0$ as $n \to \infty$. (Why can we not just use the Algebraic limit theorem?)
- (b) Let (x_n) be bounded and $y_n \to y$ with $y \neq 0$. Does $(x_n y_n)$ converge? If yes, show it. If not, give a counter-example.

Response

Question 12

For the following sequences, provide an example or prove that no souch request is possible. You may appeal to results from lectures.

- (a) Sequences (x_n) and (y_n) which both diverge, but whose sum $(x_n + y_n)$ converges.
- (b) Sequences (x_n) , which converges, and (y_n) , which diverges, but whose sum $(x_n + y_n)$ converges.
- (c) A convergent sequence (x_n) , such that $x_n \neq 0$ for all $n \in \mathbb{N}$ and $(1/x_n)$ diverges.
- (d) An unbounded sequence (x_n) and (y_n) , where (x_ny_n) and (x_n) converge, but (y_n) does not converge.

Response