Bacharelado em Ciência da Computação Banco de Dados

Álgebra Relacional 2ª parte

Prof. Sahudy sahudy@ufscar.br

Operações

- Conjunto completoAdicionais
 - seleção
 - projeção
 - produto cartesiano
 - união
 - diferença de conjuntos
 - renomear

- - intersecção de conjuntos
 - junção natural
 - divisão
 - atribuição

Definem-se outras operações que não aumentam o poder expressivo da álgebra relacional, mas simplificam algumas consultas habituais.

Conjunto completo

Definição Formal

Uma expressão básica na álgebra relacional é:

- Uma relação no banco de dados
- Uma relação constante.

Sejam E_1 e E_2 expressões de álgebra relacional; então todas as expressões abaixo são expressões de álgebra relacional:

- $E_1 \bigcup E_2$;
- $E_1 E_2$;
- $E_1 \times E_2$;
- $\sigma_P(E_1)$, com P um predicado nos atributos de E_1 ;
- $\pi_S(E_1)$, com S uma lista de alguns dos atributos de E_1 ;
- $\rho_X(E_1)$, com X um novo nome para o resultado de E_1 ;

Relações

```
cliente (nro cli, nome cli, end cli,
saldo, vendedor)
   vendedor referencia vendedor
vendedor (cod vend, nome_vend)
pedido (nro ped, data, nro cliente)
     nro cliente referencia cliente
peça (nro peça, descrição peça)
 pedido_peça (nro ped, nro peça)
    nro ped referencia pedido
    nro peça referencia peça
```

Operações sobre Conjuntos

Operações sobre Conjuntos

- Operações
 - união
 - intersecção
 - diferença
- Características

- Duas relações são compatíveis quando:
- possuem o mesmo grau
- seus atributos possuem os mesmos domínios (os domínios dos *i*-ésimos atributos de cada relação são os mesmos)
- atuam sobre relações compatíveis
- eliminam tuplas duplicadas da relação resultado

UNIÃO

União de Conjuntos

• Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes a R, a S, ou a ambas R e S

relação_argumento1 ∪ relação_argumento2

- relação ou
- resultado de alguma operação da álgebra relacional

UNION (união)

 relações cujos domínios dos atributos são iguais, na mesma ordem de definição das colunas

> Notação: <relação1> ∪ <relação2>

Intersecção

Intersecção de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes tanto a R quanto a S

relação_argumento1 ∩ relação_argumento2

- relação ou
- resultado de alguma operação da álgebra relacional

INTERSECT (intersecção)

Notação: <relação1> ∩ <relação2>

Diferença

Diferença de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes a R que não pertencem a S

relação_argumento1 - relação_argumento2

- relação ou
- resultado de alguma operação da álgebra relacional

DIFFERENCE (diferença)

Notação: <relação1> - <relação2>

Exemplo: Listar os <u>vendedores</u> que não atendem nenhum cliente, ou seja, que estão na tabela Vendedor mas que não estão na tabela Clientes

Exemplos Diversos

Relações Cliente e Pedido

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

pedido (nro_ped, data, nro_cliente)

nro_ped	data	nro_cliente
1	10/12/2004	1
2	11/12/2004	4

Consultas 5, 6 e 7

- Liste os números dos clientes que
 - 5. <u>ou</u> têm pedido, **ou** foram atendidos pelo vendedor 2, ou ambos
 - têm pedido, e que foram atendidos pelo vendedor 2
 - 7. têm pedido, mas que não foram atendidos pelo vendedor 2

Sub-Consultas

Liste os números dos clientes que têm pedido.

$$Temp_1 \leftarrow \pi_{nro\ cliente}$$
 (pedido)

Liste os números dos clientes que foram atendidos pelo vendedor 2.

temp₂
$$\leftarrow \pi_{\text{nro cliente}}(\sigma_{\text{cod vend} = 2} \text{ (cliente)})$$

•

Liste os números dos clientes que ou têm pedido, ou foram atendidos pelo vendedor 2, ou ambos.

temp₁

temp₂

temp₁ ∪ temp₂

nro_	_cliente
	1
	4

nro_cliente
4

nro_cliente
1
4

Liste os números dos clientes que têm pedido, e que foram atendidos pelo vendedor 2.

temp₁

temp₂

 $temp_1 \cap temp_2$

nro_cliente

nro_cliente

nro_cliente

•

Liste os números dos clientes que têm pedido, mas que **não** foram atendidos pelo vendedor 2.

temp₁

nro_cliente

1

4

temp₂

nro_cliente

4

 $temp_1 - temp_2$

nro_cliente

1

Mais Exercícios

Exercício

- Considere a seguinte relação
 - conta (nro_conta, saldo)

nro_conta	saldo
01-010101-01	100,00
01-020202-02	200,00
01-030303-03	300,00
01-040404-04	400,00

Liste o maior saldo

- Primeiro passo
 - realizar o produto cartesiano da relação conta com ela mesma

$$temp_1 \leftarrow conta \times \rho_{conta2}(conta)$$

relação resultado temp₁

conta.nro_conta	conta.saldo	conta2.nro_conta	conta2.saldo
01-010101-01	100,00	01-010101-01	100,00
01-010101-01	100,00	01-020202-02	200,00
01-010101-01	100,00	01-030303-03	300,00
01-010101-01	100,00	01-040404-04	400,00
01-020202-02	200,00	01-010101-01	100,00
01-020202-02	200,00	01-020202-02	200,00
01-020202-02	200,00	01-030303-03	300,00
01-020202-02	200,00	01-040404-04	400,00
01-030303-03	300,00	01-010101-01	100,00
01-030303-03	300,00	01-020202-02	200,00
01-030303-03	300,00	01-030303-03	300,00
01-030303-03	300,00	01-040404-04	400,00
01-040404-04	400,00	01-010101-01	100,00
01-040404-04	400,00	01-020202-02	200,00
01-040404-04	400,00	01-030303-03	300,00
01-040404-04	400,00	01-040404-04	400,00

- Segundo passo
 - listar os saldos que não são os mais altos

$$temp_2 \leftarrow \pi_{conta.saldo} (\sigma_{conta.saldo < conta2.saldo} (temp_1))$$

■ relação resultado temp₂

conta.saldo
100,00
200,00
300,00

- Terceiro passo
 - listar todos os saldos da relação conta

$$temp_3 \leftarrow \pi_{saldo}$$
 (conta)

■ relação resultado temp₃

saldo
100,00
200,00
300,00
400,00

Quarto passo

fazer a diferença entre "todos os saldos da relação conta" e "os saldos que não são os mais altos"

$$temp_3 - temp_2$$

relação resultado

saldo	
400,00	

DIVISÃO

DIVIDE (divisão)

$$r \div s$$

- Adequada para consultas que incluam a frase "para todo".
- Sejam r e s relações nos esquemas R e S respectivamente com
 - $R = (A_1, \ldots, A_m, B_1, \ldots, B_n)$
 - $S = (B_1, \ldots, B_n)$

O resultado de $r \div s$ é uma relação no esquema $R - S = (A_1, ..., A_m)$

Por exemplo:

Recuperar os nomes dos empregados que trabalham em todos os projetos que o John Smith trabalha

Divisão

- Divisão de duas relações R e S
 - todos os valores de um atributo de R que fazem referência a todos os valores de um atributo de S

relação argumento 1 ÷ relação argumento 2

- relação ou
- resultado de alguma operação da álgebra relacional

DIVIDE (divisão)

<i>r</i> :	Α	В
	α	1
	α	2
	α	3
	β	1
	γ	1
	$\frac{\gamma}{\delta}$	1
	δ	3
	δ	4
	ϵ	6
	ϵ	1
	β	2

$$r \div s : \underline{A}$$
 α
 β

DIVIDE (divisão)

<i>r</i> :	Α	В	C	D	Ε
	α	а	α	а	1
	α	а	γ	а	1
	α	а	γ	b	1
	β	а	γ	a	1
	$\boldsymbol{\beta}$	а	γ	Ь	3
	γ	а	γ	а	1
	γ	а	γ	Ь	1
	γ	а	β	b	1

$$r \div s : A \mid B \mid C$$

$$\begin{array}{c|ccc} \alpha & a & \gamma \\ \hline \gamma & a & \gamma \end{array}$$

DIVIDE (divisão)

Atividade para casa

Como fazer a divisão a partir dos operadores básicos da AR?

DIVIDE (exemplo)

Exemplo Bancário

```
agencia (<u>nomeagencia</u>, cidade, ativo)

cliente (<u>nomecli</u>, endereco)

conta (<u>noconta</u>, nomeagencia, saldo)

emprestimos (<u>noemprestimo</u>, nomeagencia, quantia)

correntista (<u>nomecli</u>, noconta)

devedor (nomecli, noemprestimo)
```

DIVIDE (exemplo)

- Encontrar os clientes que têm uma conta pelo menos nas agências de "Downtown" e "Uptown".
 - Consulta 1

```
\Pi_{\text{nomecli}} (\sigma_{\text{nomeagencia}} = D_{\text{owntown'}} (correntista \times conta ))

\Pi_{\text{nomecli}} (\sigma_{\text{nomeagencia}} = D_{\text{owntown'}} (correntista \times conta ))
```

► Consulta 2

```
nomecli, nomeagencia (correntista \bowtie conta )
 \div \rho_{temp(\text{nomeagencia})}(\{(\text{`Downtown'}),(\text{`Uptown'})\})
```

DIVIDE (exemplo)

 Listar todos os clientes que têm uma conta em todas as agências localizadas na cidade de Brooklyn.

```
nomecli, nomeagencia ( correntista \bowtie conta )  \div \prod_{\text{nomeagencia}} (\sigma \text{ cidade } = Brooklyn'( agencia ))
```

Consulta 8

Liste todos os pedidos que referenciam todas as peças listadas na relação *peça1*.

pedido_peça

nro_ped	nro_peça		
9	12		
1	04		
1	66		
4	03		
5	11		
8	04		
8	74		

 $\pi_{\text{nro_peça}}(\text{peça1})$

nro_peça			
66			
04			

pedido_peça ÷ peça

nro_pedido
1

divisão: utilizada para consultas que incluam o termo para todos ou em todos

EXERCÍCIOS

Exemplo Bancário

```
agencia (<u>nomeagencia</u>, cidade, ativo)

cliente (<u>nomecli</u>, endereco)

conta (<u>noconta</u>, nomeagencia, saldo)

emprestimos (<u>noemprestimo</u>, nomeagencia, quantia)

correntista (<u>nomecli</u>, noconta)

devedor (<u>nomecli</u>, noemprestimo)
```

- Determinar todos os empréstimos superiores a \$1200
- noemprestimo
- 2. Encontrar os números dos empréstimos de montante superior a \$1200
- 3. Listar os nomes de todos os clientes que têm um empréstimo, uma conta, ou ambas as coisas
- 4. Encontrar os clientes que têm um empréstimo e uma conta no banco.
- 5. Determinar todos os clientes que têm um empréstimo na agência de Perryridge e não são correntistas

Respostas

```
\sigma_{amount > 1200} (loan)
2. \Pi_{loan-number} (\sigma_{amount > 1200} (loan))
     \Pi_{customer-name} (borrower) \cup \Pi_{customer-name} (depositor)
4.
       \Pi_{customer-name} (borrower) \Lambda \Pi_{customer-name} (depositor)
5.
       \Pi_{customer-name} (\sigma_{branch-name} = Perryridge)
             (\sigma_{borrower.loan-number} = loan.loan-number(borrower x loan)))
               \Pi_{customer-name}(depositor)
```

Para conferir as respostas, os nomes das tabelas e atributos devem ser traduzidos do inglês

Exemplo Bancário

agencia (nomeagencia, cidade, ativo)

cliente (nomecli, endereco)

conta (noconta, nomeagencia, saldo)

emprestimos (noemprestimo, nomeagencia, quantia)

correntista (nomecli, noconta)

devedor (nomecli, noemprestimo)

- Determinar todos os clientes que têm um empréstimo na agência de Perryridge.
- 7. Determinar o saldo mais elevado entre todas as contas

Para conferir as respostas, os nomes das tabelas e atributos devem ser traduzidos do inglês

Respostas

```
6. - Query 1 \Pi_{customer-name}(\sigma_{branch-name} = \text{`Perryridge'}) \\ (\sigma_{borrower.loan-number} = \text{loan.loan-number}(borrower x loan))) - Query 2 \Pi_{customer-name}(\sigma_{loan.loan-number} = \text{borrower.loan-number}(\sigma_{branch-name} = \text{`Perryridge'}(loan)) x \\ borrower)
```

7. Renomear a relação account como d
A consulta é: $\Pi_{balance}(account) - \Pi_{account.balance}$ $(\sigma_{account.balance} < d.balance (account x <math>\rho_d$ (account)))

Leitura complementar para casa

- Capítulos 6 do livro: Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados.
- Capítulo 2 do livro: Silberschatz, Abraham; Korth, Henry F; Sudarshan, S. Sistema de bancos de dados.
 - Adicional: <u>Capítulo 5</u> (outras linguagens)