Assignment 4b (Evaluation Q.

- 1. Define the distance between two (mnembry) sets A and B in M by $d(A,B) = \inf \left\{ d(a_1b) \mid a \in A, b \in B^3 \right\}.$
 - Give an example of A, B s.t. A and B are disjoint closed sets in IR2 with d(A,B)=0.
- 2. Let $A \subset M \cdot A$ point $x \in M$ is called a limit point of A if every nghol of x contains a point of A that is different from x itself, i.e., if $Y \in x \setminus A$ $A \in A$ $A \notin A$ $A \notin A$.

If x is a limit point of A, show that every nghed of x contains infinitely many points of A.

- 3. Show that x is a limit point of A iff I a seq. (xn) in A s.t. xn > x and xn + x + n711.
- 4. Let A' be the set of limit pts. of a set A. Show that A' is closed and $\overline{A} = A'UA$. Show that A'CA iff A is closed.
- 5. Prove the Bolzano-Weierstrass Thm: Every Ldd infinite subset of IR has a limit point.
- 6. A set P is called perfect if it is empty or if it is a closed set and every point of P is a limit point of P. Show that a nonempty perfect subset Pol IR is uncountable.
- 7. If $x \in A$ and x is not a limit bt. of A, then x is called an isolated pt. of A.

 Show that a point $x \in A$ is an isolated pt. of A if f $g(x, \epsilon)$ f(x) f(A) = p for some $\epsilon > 0$. Prove that a subset of f(A) can have at most countably many isolated points, thus showing that every uncountable subset of f(A) has a limit f(A).

8. A point XEM is said to be a boundary pt. of A if each right of x hils both A and A. That is, $B(x, \varepsilon) \cap A \neq \phi$ and $B(x, \varepsilon) \cap A \neq \phi \neq \varepsilon > 0$. Denote DA := the set of boundary life. of A. Prove: (A)G = AG (i)(ii) cl(A) = DAUA° (Recall A° is the interior of A & cl(A) is the closure of A.) (iii) $M = A^{\circ} \cup \partial A \cup (A^{c})^{\circ}$. 9. Show that DA is always a closed set, in fact, DA = cl(A) A6. 10. Show that A is closed iff DACA. 11. Give examples showing $\partial A = \phi$ and $\partial A = M$ are both possible. (12 Pa) Prove that if A is open or A is chured in M, then $(\partial A) = \phi$. (4 bys.) Excludion (b) Give an example in which $(\partial A)^6 = M$. (1 by.) 13. A set is said to be dense in M if cl(A) = M. Show that A is dense in M If any one of them holds: (a) Every life in M is the limit of a seq. from A. (b) B(x, E) NA + & + x & M and + E>O. (c) UNA + & for every nonempty open set U. (d) Ac has empty interior, i.e., $(A^2)^\circ = \phi$. Let G be open and let D be dense in M. 14. Show that GOD = G. Give an example showing that this equality may fail if G is not open. (Real) notation A = cl(A).)

15. A metric space is called separable if it contains a contable dense subset. Find examples of countrible dense sets in IR, IR2, in IR4 for n>2. 16. Prove that (2,11.112) is separable, but (2,11.110) is not separable. 17. Show that a separable metric space has at most countably many isolated 18. If M is separable, show that any collection of disjoint open sets in M is at most countable. 19. A set A is said to be nowhere dense set if (cl(A)) = 4. Show that Ext is a nowhere dense in M iff x is not an isolated H in M. 20. If A and B are nowhere dense sets in M, then prove that AUB is nowhere dense. Qin an example showing that an infinite union of nowhere dense sets need not be nowhere dense.