PD 1: GEOMETRINIS NETIESINIŲ UŽDAVINIŲ SPRENDIMO METODAS

Raskite funkcijos globalius ekstremumus nelygybių sistema nusakytoje srityje D.

1.	$z = x^2 + y^2$	$D: \begin{cases} 0 \le x \le 3; \\ 5x + 3y \le 24; \\ y \ge 0. \end{cases}$	2.	$z = (x-4)^2 + (y-2)^2$	$D: \begin{cases} y - x - 4 \le 3; \\ 2 \le x \le 6; \\ y \ge 0. \end{cases}$
3.	$z = (x-7)^2 + (y-7)^2$	$D: \begin{cases} y - x - 4 \le 3; \\ 2 \le x \le 6; \\ y \ge 0. \end{cases}$	4.	$z = (x-4)^2 + (y-8)^2$	$D: \begin{cases} x+y \le 12; \\ x+y \le 9; \\ x \ge 0; \ y \ge 0. \end{cases}$
5.	$z = (x-2)^2 + (y-4)^2$	$D: \begin{cases} 2x + 5y \le 30; \\ 2x + y \le 14; \\ x \ge 0; \ y \ge 0. \end{cases}$	6.	$z = (x-7)^2 + (y-7)^2$	$D: \begin{cases} 2x + 5y \le 30; \\ 2x + y \le 14; \\ x \ge 0; \ y \ge 0. \end{cases}$
7.	$z = (x-4)^2 + (y-4)^2$	$D: \begin{cases} x \ge 3; \\ 5x + 3y \le 24; \\ y \ge 0. \end{cases}$	8.	z = 2x + y	$D: \begin{cases} x^2 + y^2 \le 36; \\ x \ge 0; \ y \ge 0. \end{cases}$
9.	z = -x + 2y	$D: \begin{cases} x^2 + y^2 \le 36; \\ x \ge 0; \ y \ge 0. \end{cases}$	10.	$z = (x-3)^2 + (y-2)^2$	$D: \begin{cases} x^2 + y^2 \le 36; \\ x \ge 0; \ y \ge 0. \end{cases}$
11.	$z = (x-4)^2 + (y-6)^2$	$D: \begin{cases} x^2 + y^2 \le 36; \\ x \ge 0; \ y \ge 0. \end{cases}$	12.	$z = x^2 + y^2$	$D: \begin{cases} (x-5)^2 + (y-3)^2 \ge 9; \\ (x-5)^2 + (y-3)^2 \le 36; \\ x+y \le 8; \\ x \ge 0; \ y \ge 0. \end{cases}$
13.	z = xy	$D: \begin{cases} (x-5)^2 + (y-3)^2 \ge 9; \\ (x-5)^2 + (y-3)^2 \le 36; \\ x+y \le 8; \\ x \ge 0; \ y \ge 0. \end{cases}$	14.	$z = (x-4)^2 + (y-4)^2$	$D: \begin{cases} 0 \le x \le 3; \\ 5x + 3y \le 24; \\ y \ge 0. \end{cases}$

20.	$z = (x-2)^2 + (y-3)^2$	$D: \begin{cases} x+y \le 12; \\ x+y \le 9; \\ x \ge 0; \ y \ge 0. \end{cases}$	21.	$z = 2(x-5)^2 + (y-7)^2$	$D: \begin{cases} x+y \le 12; \\ x+y \le 9; \\ x \ge 0; \ y \ge 0. \end{cases}$
22.	z = (x-7)(y-1)	$D: \begin{cases} x+y \le 12; \\ x+y \le 9; \\ x \ge 0; \ y \ge 0. \end{cases}$	23.	$z = (x-1)^2 + (y-1)^2$	$D: \begin{cases} (x-2)(y-1) \le 16; \\ x+y \le 9; \\ x \ge 0; \ y \ge 0. \end{cases}$
24.	$z = (x-4)^2 + (y-3)^2$	$D: \begin{cases} x+y \le 12; \\ x+y \le 9; \\ x \ge 0; \ y \ge 0. \end{cases}$	25.	$z = (x-3)^2 + 4(y-6)^2$	$D: \begin{cases} 0 \le x \le 3; \\ 5x + 3y \le 24; \\ y \ge 0. \end{cases}$
26.	$z = (x-3)^2 + 4(y-6)^2$	$D: \begin{cases} x \ge 3; \\ 5x + 3y \le 24; \\ y \ge 0. \end{cases}$	27.	z = x - 5 + y	$D: \begin{cases} x \ge 3; \\ 5x + 3y \le 24; \\ y \ge 0. \end{cases}$
28.	z = x - 5 + y	$D: \begin{cases} 0 \le x \le 3; \\ 5x + 3y \le 24; \\ y \ge 0. \end{cases}$	29.	z = y - x - 4	$D: \begin{cases} y - x - 4 \le 3; \\ 2 \le x \le 6; \\ y \ge 0. \end{cases}$
30.	$z = \frac{1}{x} + y$	$D: \begin{cases} 4x^2 + 9y^2 \le 3; \\ x^2 + 4y^2 \ge 4. \end{cases}$	31.	$z = \frac{1}{\sqrt{xy}}$	$D: \begin{cases} 4x^2 + 9y^2 \le 3; \\ x^2 + 4y^2 \ge 4. \end{cases}$
32.	$z = \frac{1}{x^2 - y^2}$	$D: \begin{cases} 4x^2 + 9y^2 \le 3; \\ x^2 + 4y^2 \ge 4. \end{cases}$	33.	$z = \frac{1}{\sqrt{x^2 - y^2}}$	$D: \begin{cases} 4x^2 + 9y^2 \le 3; \\ x^2 + 4y^2 \ge 4. \end{cases}$