

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr. phil. Klaus Bengler

Tobias Hecht, M.Sc.

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung
28.04.2022 – Prof. Lienkamp	28.04.2022 – Prof. Lienkamp	28.04.2022 – Hoffmann
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp
03 Sensorik / Wahrnehmung II	03 Sensorik / Wahrnehmung II	03 Übung Sensorik / Wahrnehmung II
12.05.2022 – DrIng. Diermeyer	12.05.2022 – DrIng. Diermeyer	12.05.2022 – Schimpe
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe
05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler
06 Übung Funktionslogik / Regelung 09.06.2022 – DrIng. Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic
08 MMI	08 MMI	08 MMI Übung
30.06.2022 – Prof. Bengler	30.06.2022 – Prof. Bengler	30.06.2022 – Prof. Bengler
09 Controllability	09 Controllability	09 Übung Controllability
07.07.2022 – Prof. Bengler	07.07.2022 – Prof. Bengler	07.07.2022 – Winkle
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann
11 Analyse und Bewertung FAS 21.07.2022 – DrIng. Feig	11 Analyse und Bewertung FAS 21.07.2022 – DrIng. Feig	11 Übung Analyse und Bewertung FAS 21.07.2022 – DrIng. Feig
12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp	12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp	12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp
	-	

Übung Mensch-Maschine-Interaktion Tobias Hecht, M.Sc.

Agenda

- 8.1 Kompatibilität
- 8.2 Bedienkonzept
- 8.3 Übung 1: Entwurf eines Bedienkonzepts
- 8.4 Anzeigekonzept
- 8.5 Übung 2: Entwurf eines Anzeigekonzepts
- 8.6 Head-Up Display

8.1 Kompatibilität

Kompatibilität

- 内部: 调查内部模型与外部信息之间的意义。通过经验、培训和教育塑造内部模型

- 外部: 仅限于来自现实、显示器和控制元件的信息的意义性

Kompatibilität

次要运动方向和旋转感不应相互矛盾

Primäre Kompatibilität

Die primäre Kompatibilität bezieht sich auf die Sinnfälls en von Informationen bezogen auf Wirklichkeit, Anzeigen, Stellteile und Winne Modelle

- Innere: Untersuchung der Sinnfälligket wischen innerem Modell und externer Information. Prägung der in eren Vorstellung durch Erfahrung, Training und Erziehung
- Äußere: beschränkt signar auf die Sinnfälligkeit von Informationen von Wirklichkeit, Anzog und Stellteil

Sekundär.

Beveg hisrichtung und der Drehsinn sollten zueinander nicht im Widel zuein stehen

Primäre innere Kompatibilität

8-

Sekundäre Kompatibilität

Drehsinn und Bewegungsrichtung müssen übereinstimmen

8

8.2 Bedienkonzept

BMW Bedienkonzept ACC (ohne Spurführungsass.)

- ACC aktivieren/deaktivieren falls aktiv: 1x Drücken zum Unterbrechen, 2x Drücken zum Deaktivieren
- 2. Geschwindigkeit halten/speichern
- Gespeicherte Geschwindigkeit aufrufen (nach Stillstand oder Unterbrechung des Systems)
- 4. Geschwindigkeit erhöhen in 1 km/h- (bis Druckpunkt) bzw. 5 km/h-Schritten (über Druckpunkt)
- 5. Geschwindigkeit verringern in 1 km/h- bzw. 5 km/h-Schritten
- 6. Abstand zum Vorderfahrzeug verringern (gedrückt halten: auf Tempomat umschalten)
- 7. Abstand zum Vorderfahrzeug erhöhen (gedrückt halten: auf Tempomat umschalten)

https://www.bmw.ca/en/all-models/3-series/Touring/2012/assistance.html

BMW Bedienkonzept ACC (mit Spurführungsass.)

- ACC aktivieren/deaktivieren
 falls aktiv: 1x Drücken zum Unterbrechen, 2x Drücken zum Deaktivieren
- 2. Geschwindigkeit halten/speichern
- 3. Gespeicherte Geschwindigkeit aufrufen (nach Stillstand oder Unterbrechung des Systems)
- Geschwindigkeit erhöhen

 in 1 km/h- (bis Druckpunkt) bzw. 5 km/h-Schritten (über Druckpunkt)
- 5. Geschwindigkeit verringern in 1 km/h- bzw. 5 km/h-Schritten
- 6. Abstand zum Vorderfahrzeug erhöhen/verringern (gedrückt halten: auf Tempomat umschalten)
- 7. Lenk- und Spurführungsassistent aktivieren/deaktivieren

https://derstandard.at/2000005933403/Fahrassistenzsysteme-wieschlau-ist-der-BMW-i3-wirklich

8.3 Übung 1

Übung 1: Aufgabenstellung

 Pfeile mit entsprechenden Nummern stehen für Verstellwege, die dieser ACC-Hebel in der Realität bietet. Bitte belegen Sie die Hebelpositionen mit dem geforderten Funktionsumfang auf der nächsten Folie. Es müssen nicht alle Hebelpositionen genutzt werden.

Prüfen Sie immer auf Kompatibilität.

Übung 1: Aufgabenstellung

Funktionsumfang:

- System an-/ausschalten
- Zeitlücke/Abstand in 4 Stufen vergrößern/verkleinern
- Geschwindigkeit in 1er (km/h) und 10er (km/h) Schritten erhöhen/verringern
- Aktivierung mit aktueller Geschwindigkeit
- Deaktivieren in Standby
- Resume-Funktion: Aktivieren mit alten Einstellungen

Übung 1: Mögliche Lösung

1 (antasten/beschleunigen) und 3 (verzögern):

- Aktuelle Geschwindigkeit wird gehalten und gespeichert
- Jedes weitere Antippen erhöht Geschwindigkeit um 1 km/h
- Längeres Drücken: Beschleunigung des Fahrzeugs ohne Gaspedal und Erreichte Geschwindigkeit wird gehalten und gespeichert

2 (beschleunigen) und 4 (verzögern):

Geschwindigkeit um 10 km/h erhöhen

5 und 6:

- Geschwindigkeitsregelung wird unterbrochen (ebenso über Bremse)
- Zweimaliges Betätigen deaktiviert das System

<u>7:</u>

 Abstand zum Vorausfahrenden Fahrzeug erhöhen

<u>8:</u>

 Abstand zum Vorausfahrenden Fahrzeug verringern

<u>9:</u>

 Bei unterbrochenem System: zuletzt gespeicherte Geschwindigkeit und Abstand werden wieder erreicht.

8.4 Anzeigekonzept

Mercedes Anzeigekonzept ACC

8.5 Übung 2

Übung 2: Aufgabenstellung

- Im Kombiinstrument zwischen Tacho und Drehzahlmesser sollen relevante Systeminformationen zum ACC dargestellt werden.
- Bitte entwerfen Sie eine Anzeigelogik, die den Funktionsumfang und Transitionen zwischen den Systemzuständen darstellen kann.

Funktionsumfang:

- System an-/ausschalten
- Zeitlücke in 4 Stufen. vergrößern/verkleinern
- Geschwindigkeit in 1er und 10er Schritten erhöhen/verringern
- Standby-Funktion: Aktivieren mit alten Einstellungen
- Deaktivieren in Standby

Übung 2

Funktionsumfang:

- System an-/ausschalten
- Zeitlücke in 4 Stufen vergrößern/verkleinern
- Geschwindigkeit in 1er und 10er Schritten erhöhen/verringern
- Standby-Funktion: Aktivieren mit alten Einstellungen
- Deaktivieren in Standby

8.6 Level-2-Assistenzsysteme

Mercedes Drive Pilot (Distronic Plus mit Lenkassistent)

BMW Driving Assistant Plus

Tesla Autopilot

Status Lenkassistent

Umgebungsfahrzeuge

Fahrbahnmarkierung