16-833A Robot Localisation and Mapping, Spring 2023 Homework 3: Linear and Nonlinear SLAM Solvers

Sushanth Jayanth

Andrew ID: sushantj

April 2, 2023

Contents

1	2D Linear SLAM	2
	1.1 Measurement Function	2
2	2D Nonlinear SLAM	19
	2.1 Measurement Function	19
	2.1.1 Odometry and Bearing+Range Estimation Functions	19
	2.1.2 Jacobian of Landmark Measurement Function	19
	2.2 Build Linear System	20
	2.3 Solver	20

Introduction to Linear and Non-Linear SLAM problems

In this assignment, we make use of thinking in terms of a factor graph as explained in (1). A simple factor graph (Fig. 1) is shown below with the following components:

- Factors (edges)
 - Odometry measurements
 - Landmark measurements
- States (nodes)
 - Robot poses
 - Landmark poses

Figure 1: Factor Graph Representation

In this assignment, we're already given the data of the all the factors and states present in the factor graph. We will use this data to minimize the predicted values of each measurement (odometry measurements or landmark measurements) between every two connected states on the factor graph.

This minimization will be crafted in a least squares minimization form. The high level procedure to do so is shown below in Fig. 2

Figure 2: Arriving at Least Squares

Finally, the factor graph and least-squares equivalence is seen clearly below in Fig. 3 float

Figure 3: Factor graph ;-; Least squares equivalence

1 2D Linear SLAM

1.1 Measurement Function

Odometry Measurement Function and Jacobian

Given the robot poses $\mathbf{r}^{t+1} = \begin{bmatrix} r_x^{t+1}, r_y^{t+1} \end{bmatrix}^\top \mathbf{r}^t = \begin{bmatrix} r_x^t, r_y^t \end{bmatrix}^\top$ at times t and t+1, we find the measurement function to be:

$$h_o\left(\mathbf{r}^t, \mathbf{r}^{t+1}\right) = \begin{bmatrix} h_{o1} \\ h_{o2} \end{bmatrix} = \begin{bmatrix} r_x^{t+1} - r_x^t \\ r_y^{t+1} - r_y^t \end{bmatrix}$$
(1)

The Jacobian of the above measurement function can be written as:

$$H_o\left(\mathbf{r}^t, \mathbf{r}^{t+1}\right) = \begin{bmatrix} \frac{\partial h_{o1}}{\partial r^t} & \frac{\partial h_{o1}}{\partial r^t} & \frac{\partial h_{o1}}{\partial r^{t+1}} & \frac{\partial h_{o1}}{\partial r^{t+1}} \\ \frac{\partial h_{o2}}{\partial r^t} & \frac{\partial h_{o2}}{\partial r^t} & \frac{\partial h_{o2}}{\partial r^{t+1}} & \frac{\partial h_{o2}}{\partial r^{t+1}} \\ \frac{\partial h_{o2}}{\partial r^t} & \frac{\partial h_{o2}}{\partial r^t} & \frac{\partial h_{o2}}{\partial r^{t+1}} & \frac{\partial h_{o2}}{\partial r^{t+1}} \end{bmatrix}$$
(2)

Landmark Measurement Function and Jacobian

Given the robot pose $\mathbf{r}^t = \begin{bmatrix} r_x^t, r_y^t \end{bmatrix}^\top$ and k-th landmark $\mathbf{l}^k = \begin{bmatrix} l_x^k, l_y^k \end{bmatrix}^\top$ at time t, we find the measurement function to be:

$$h_l\left(\mathbf{r}^t, \mathbf{l}^k\right) = \begin{bmatrix} h_{l1} \\ h_{l2} \end{bmatrix} = \begin{bmatrix} l_x^k - r_x^t \\ l_y^k - r_y^t \end{bmatrix}$$

$$\tag{3}$$

The Jacobian of the above measurement function can be written as:

$$H_l\left(\mathbf{r}^t, \mathbf{l}^k\right) = \begin{bmatrix} \frac{\partial h_{o1}}{\partial r_x^t} & \frac{\partial h_{o1}}{\partial r_y^t} & \frac{\partial h_{o1}}{\partial r_x^{t+1}} & \frac{\partial h_{o1}}{\partial r_x^{t+1}} & \frac{\partial h_{o1}}{\partial r_x^{t+1}} \\ \frac{\partial h_{o2}}{\partial r_x^t} & \frac{\partial h_{o2}}{\partial r_y^t} & \frac{\partial h_{o2}}{\partial r_x^{t+1}} & \frac{\partial h_{o2}}{\partial r_x^{t+1}} \end{bmatrix}$$

$$\tag{4}$$

1.4 Exploiting Sparsity

1.4.4 Visualize Trajectory and Landmarks for 2d_linear.npz

The default method of solving the equation Ax = b was done using scipy.sparse's spsolve method which runs multifrontal LU factorization in the backend. This achieved a runtime of 0.04870s on average. The ground truth and predicted trajectory are shown below in Fig 4 and Fig. 14

Figure 4: Ground truth landmarks and trajectory

Figure 5: Trajectory predicted from measurements after least squares minimization (default method)

Other methods of solving the linear system Ax = b were also compared using runtime to analyze efficiency:

Method	Average (s)	Runtime
default	0.04870	
pinv	1.1802	
lu	0.0260	
lu_colamd	0.1152	
qr	0.3671	
qr_colamd	0.2509	

Table 1: Runtime comparison of different methods

Visuaulization of different methods for 2d_linear.npz

Figure 6: Minimization results using pinv method

Figure 7: LU sparse matrix

Figure 8: Minimization results using LU method

Figure 9: LU_colamd sparse matrix

Figure 10: Minimization results using LU_colamd method

Figure 11: QR sparse matrix

Figure 12: Minimization results using QR method

Figure 13: QR_{colamd} sparse matrix

Figure 14: Minimization results using QR_colamd method

Observations for $2D_{linear.npz}$

Method	Average (s)	Runtime
default	0.04870	
pinv	1.1802	
lu	0.0260	
lu_colamd	0.1152	
qr	0.3671	
qr_colamd	0.2509	

Runtime comparisons (repeated)

Figure 7 shows the LU sparse matrix, while Figure 8 shows the minimization results obtained using the LU method. The same is repeated for LU_colamd, QR, and QR_colamd methods. Table 1 also shows the runtime comparison for these methods.

It can be seen that the pinv method takes the longest. This makes sense since the pinv is naieve and does not utilize sparsity. For the methods which do make use of sparsity, the LU solver is the fastest with a time complexity of $\frac{2}{3}n^3$ whereas the QR factorization has a time complexity of $\frac{4}{3}n^3$, with n = orderof matrix

The colamd method rearranges (permutes) the A matrix to avoid accumulation of data in the last few columns of one of the triangular matrices (as seen in Fig. 7 and Fig. 22). This rearrangement as seen in Fig. 9 and Fig. 13 helps in the following manner:

- The algorithm reorders the columns of the matrix so that the non-zero entries are clustered together
- This can reduce the number of fill-in elements created during the factorization process.
- Therefore reordering can significantly reduce the computational and memory requirements of the LU decomposition.

However, this benefit of reordering was observed only in the QR_colamd method. In the LU_colamd, reordering took longer and therefore increased the overall time required.

1.4.5 Visualize Trajectory and Landmarks for 2d_non_linear.npz

The default method of solving the equation Ax = b was done using scipy.sparse's spsolve method. The ground truth and predicted trajectory are shown below in Fig 15 and Fig. 16

Figure 15: Ground truth landmarks and trajectory for 2d_linear_loop.npz

 ${\bf Figure~16:~Trajectory~predicted~from~measurements~after~least~squares~minimization~(default~method)} \\$

Other methods of solving the linear system Ax = b were also compared using runtime to analyze efficiency:

Method	Average (s)	Runtime
default	0.0054	
pinv	0.1629	
lu	0.0295	
lu_colamd	0.0087	
qr	0.2487	
qr_colamd	0.0190	

Table 2: Runtime comparison of different methods

Visuaulization of different methods for $2d_linear_loop.npz$

Figure 17: Minimization results using the pinv (pseudoinverse) method

Figure 18: LU sparse matrix

Figure 19: Minimization results using LU method

Figure 20: LU_colamd sparse matrix

Figure 21: Minimization results using LU_colamd method

Figure 22: QR sparse matrix

Figure 23: Minimization results using QR method

Figure 24: QR_colamd sparse matrix

Figure 25: Minimization results using QR_colamd method

2D_linear_loop	Average Runtime (s)	2D_linear	Average Runtime (s)
default	0.0054	default	0.04870
pinv	0.1629	pinv	1.1802
lu	0.0295	lu	0.0260
lu_colamd	0.0087	lu_colamd	0.1152
qr	0.2487	qr	0.3671
qr_colamd	0.0190	qr_colamd	0.2509

Runtime comparisons (repeated)

Figure 7 shows the LU sparse matrix, while Figure 8 shows the minimization results obtained using the LU method. The same is repeated for pinv, LU_colamd, QR, and QR_colamd methods. Table 2 also shows the runtime comparison for these methods.

It can be seen that the QR method takes the longest (even more than pinv). However, the colamd reordering for both QR and LU significantly boosts them and makes it more efficient than pinv. Therefore, it can be seen for this case where the A matrix is more sparse, the reordering advantage is more significant when solving the decomposition. Both the 2D_linear.npz and 2D_linear_loop.npz sparse matrices obtained by the LU decomposition are shown below to compare the sparsity.

sparse matrix of 2D_linear_loop.npz

sparse matrix of 2D_linear.npz

Figure 26: Sparsity Comparisons

An improvement in runtime is observed when compared with 2d-linear.npz data since there seems to be lesser dense grouping as in the 2d_linear.npz case.

2 2D Nonlinear SLAM

2.1 Measurement Function

2.1.1 Odometry and Bearing+Range Estimation Functions

Given the robot poses $\mathbf{r}^{t+1} = \begin{bmatrix} r_x^{t+1}, r_y^{t+1} \end{bmatrix}^\top \mathbf{r}^t = \begin{bmatrix} r_x^t, r_y^t \end{bmatrix}^\top$ at times t and t+1, we find the measurement function to be:

$$h_o\left(\mathbf{r}^t, \mathbf{r}^{t+1}\right) = \begin{bmatrix} h_{o1} \\ h_{o2} \end{bmatrix} = \begin{bmatrix} r_x^{t+1} - r_x^t \\ r_y^{t+1} - r_y^t \end{bmatrix}$$
 (5)

The measurement function for landmark estimation is given in terms of bearing and range as:

$$h_l\left(\mathbf{r}^t, \mathbf{l}^k\right) = \begin{bmatrix} \operatorname{atan} 2\left(l_y^k - r_y^t, l_x^k - r_x^t\right) \\ \left(\left(l_x^k - r_x^t\right)^2 + \left(l_y^k - r_y^t\right)^2\right)^{\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} \theta \\ d \end{bmatrix} = \begin{bmatrix} h_{l1} \\ h_{l2} \end{bmatrix}$$
(6)

2.1.2 Jacobian of Landmark Measurement Function

Given the landmark measurement function above, we can define the jacobian in the following form:

$$H_{l} = \begin{bmatrix} \frac{\partial h_{l1}}{\partial r_{x}^{t}} & \frac{\partial h_{l1}}{\partial r_{y}^{t}} & \frac{\partial h_{l1}}{\partial l_{x}^{k}} & \frac{\partial h_{l1}}{\partial l_{y}^{k}} \\ \frac{\partial h_{l2}}{\partial r_{x}^{t}} & \frac{\partial h_{l2}}{\partial r_{y}^{t}} & \frac{\partial h_{l2}}{\partial l_{x}^{k}} & \frac{\partial h_{l2}}{\partial l_{x}^{k}} \\ \end{bmatrix}$$

Now, let's define the following terms to make the derivation simpler:

$$\delta_{l_y} = l_y^k - r_y^t$$

$$\delta_{l_x} = l_x^k - r_x^t$$

$$range = \sqrt{(l_x^k - r_x^t)^2 + (l_y^k - r_y^t)^2}$$

Then the jacobian's final form is:

$$H_{l} = \begin{bmatrix} \frac{\delta_{y}}{range^{2}} & -\frac{\delta_{x}}{range^{2}} & -\frac{\delta_{y}}{range^{2}} & \frac{\delta_{x}}{range^{2}} \\ -\frac{\delta_{x}}{range} & -\frac{\delta_{y}}{range} & \frac{\delta_{x}}{range} & \frac{\delta_{y}}{range} \end{bmatrix}$$
(7)

2.2 Build Linear System

The Non Linear system is linearized by taking the first order approximation using the Taylor expansion.

The measurement function (both odometry and landmark) can be represented as:

$$h(x) = Hx + h_0 \tag{8}$$

The least squares approximation will result in minimizing the predicted measurement (measurement function) and the actual measurement z.

$$\text{minimize} \|Hx + h_0 - z\|_{\Sigma}^2 \tag{9}$$

$$\mininimize ||Hx - (z - h_0)||_{\Sigma}^2$$
(10)

The above equation 10 is of the form |Ax - b|.

The b matrix will then be $z - h_0$ which is equivalent to (actual measurement - predicted measurement)

2.3 Solver

The pinv method was chosen to visualize the trajectory and landmarks before and after optimization. The results are shown below:

Figure 27: Ground Truth of Trajectory and Landmarks

Figure 28: Predicted landmarks and poses before optimization

Figure 29: Predicted landmarks and poses after optimization

Notes about Non-linear optimization

The Non Linear optimization process is different in that we have a residual h_0 term which causes the optimizer to solve for the error between *predicted and actual measurement*. In the linear case the optimizer directly solves for x in the equation Ax = b.

Additionally, the non-linear method also requires a good initial estimate to start. This is because the optimization is iterative for the non-linear case if the initialization is bad it will take longer or not converge within the required error tolerance.

References

[1] Frank Dellaert and Michael Kaess. Factor graphs for robot perception. Foundations and Trends® in Robotics, 6(1-2):1–139, 2017.