BANDGAP CURRENT REFERENCE CIRCUIT

TEAM:- ANALOG

EDGE

TEAM MEMBERS

AKSHAR DASH
H PREM SAI KUMAR
PANKAJ DAS
SUBHAM KUMAR
ANKIT SHAW

COLLEGE:- NIT ROURKELA

PROBLEM STATEMENT

BGCR-1. Design a Band Gap Current Reference Circuit Using 90nm CMOS Technology with a Nominal Output Current of 100μA.

SPECIFICATIONS

Output Current: $100\mu A \pm 5\%$ across the temperature range of -40°C to 125°C.

Technology: 90nm CMOS process.

Power Supply: 1.8V to 3.3V.

Power Consumption: Less than 50µW for the entire current reference circuit.

Temperature Coefficient: Less than 50 ppm/°C for the output current.

Load Regulation: Output current should remain stable within $\pm 2\%$ when the load

voltage varies from 0 to 1V.

Design Considerations: Use a band gap voltage reference to set the bias current and design a current mirror to generate the output current. Explain how process variations, transistor matching, and temperature stability can be managed in the 90nm process.

DESIGN FLOW

- 1.Charactrization of MOSFET
- 2.Basic premise of PTAT and CTAT
- 3.Schematic and Calculations
- 4.Circuit without startup
- 5.Circuit with startup

Characterization of MOSFET

NMOS_33 Charecterization	1	
Vthn	0.213146	0.213146
VGsn	1.65	1.65
VGsn-VTH	VOV	1.436854
VOV^2		2.06454942
W	20u	0.00002
L	2u	0.000002
W/L		10
Id	3.95628m	0.00395628
2id		0.00791256
w/I*vov^2		20.6454942
uncox= 2id/{(w/l)vov^2)	383uA/v^2	0.00038326
VG = 1.65, VD = 3.3		

Proposed Circuit

$$Io = I1 + I2$$

$$Io = Vd1 / R1 + Vt * ln(N) / R$$

$$CTAT PTAT$$
(i)

dIO/dT = dVd1/dT * 1/R1 + VT/T * In(N/R) = 0 (ii)

The target power spec is $50\mu W$ so we targeted for $45\mu W$ thus the branch current is around $6.7\mu A$.

To generate 100 μA output, we set each branch to 6.25 μA and use a current mirror to scale it accordingly. Thus we will equate I0 current to 6.25μA.

Now putting all the values and solving both equation (i) and (ii) we will get,

 $R = 20.413K\Omega$, $R1 = 193.6K\Omega$

NOTE:-

Assuming M1-M2, M3-M4, M5-M6 and M7-M8 are identic

For id1 = id2: VD1=V2

To make id1= id2, we put M1 R1 gnd, M2 R1 gnd

why folded cascode? For strong current sources. Have high output impedance

Calculation

Assume RL	10K					
(w)9,10	16*(w)5,6,7,8	7.83E-05				
(w)5,6,7,8	w/l*L	4.90E-06				
(w)1,2,3,4	w/l*L	1.63E-06				
(w/l)5,6,7,8	(w/l)5,6,7,8= 3* (w/l)1,2,3,4	2.45E+00				
(w/l)1,2,3,4	(w/L)1,2= 2id/{(uncox)vov^2)	8.16E-01				
uncox*Vov^2		0.00001532				
vov^2		0.04				
L		0.000002				
Assume Vov2,1		0.2				
R1		1.81E+05	194k			
R	VBE1/(9.48*6.25u)+VTIn(n)/6.25u= R	1.47E+04	20.4K			
VT*ln(n)		0.05377436	TC=	1.43	512E-05	
R1/R		12.2735077	DELTA	T	165	
R/R1	{VT/T} *{In(n)/1.7m}	0.0814763	delta I	2.4	2.4391E-07	
VT/T * ln(n)						0.000103
Why n=8? so that q	2 will be around q1 in layout		IMIN	IMAX		lo(27)
VT/T		0.0000862	86u			
ln8		2.07944154				
n	8	8				
Т	300Kelvin	300				
VT	0.02586	0.02586				
	-1.7m * 1/R1 + VT/T ln(n)/R = 0		1.7m * 1/R1 = (\	/T/T) {ln(n)	/R }	
dlo/dT=0	-1.7m * 1/R1 + k/q ln(n)/R					
6.25u	VBE1/R1+ VTln(n)/R		VBE1/(9.48*R)+VTln(n)/R= 6.25u			
lo=12,14,16,18	l in R + Lin r 1					
VBE	0.47	0.47				
lo	lout/16	6.25E-06				
lout	100u	1.00E-04				

Circuit without Startup

SIMULATIONS

Nominal

Matching foundry

Nominal

Observations

```
(1) Given, to achieve 100 mA \pm 5%, across -40^{\circ}C to 125°C
Our spec → lout = 102.757 mA ± 0.279 mA
(Nominal value @ 27°C)
= 102.757 \text{ mA} \pm 0.24\%
(lmin = 102.5125 mA)
(lmax = 102.76 mA)
1.8V →
101.946 = Imax
96.6 = Imin
Tc = \Delta I / (\Delta T * Inominal)
(2) Temp. Coefficient (for 3.3V → 14.6289 ppm)
Tc = \Delta I / (\Delta T * Inominal)
```


(3) Load Regulation (@ 27°C)

$$1.8V \rightarrow RL = 1\Omega$$
, $VL = 0 \rightarrow lout = 100.918 mA$

RL =
$$10k\Omega$$
, VL = $1V \rightarrow lout = 100.8 mA$

$$3.3V \rightarrow RL = 1\Omega$$
, $VL = 0 \rightarrow lout = 102.901 mA$

RL =
$$10k\Omega$$
, VL = $1V \rightarrow lout = 102.75 + mA$

When load varies from OV-1V (for 1.8V)

lout varies from 100.918 mA to 100.8 mA

for (3.3V) → lout varies from 102.901 mA to 102.757 mA

(4) Power Consumption

$$P = Vdd * (Id)$$

= 3.3 * (6.41974 * 2 * 10^-3) = 42.350244 mW< 50 mW

Circuit with Startup

SIMULATIONS

THANK YOU