Статистические моделирование в задаче об оптимальной остановке

Машковский Артем Викторович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н. Каштанов Ю.Н. Рецензент: к.ф.-м.н. Гормин А.А.

Санкт-Петербург 2015г.

Задача остановки.

Разные задачи остановки можно построить относительно траектории цены $(S_1, S_2, \dots, S_T, \dots)$:

ullet Цена опциона. Если f_t — опционные выплаты на момент t, то задача сводится к поиску следующего значения:

$$\mathcal{C} = \sup_{\tau < T} \mathsf{E} \, f_\tau(S_\tau);$$

ullet Броски монетки. Если в роли точки траектории берутся $S_i=\{0,1\}$ с вероятностью 1/2, то можно поставить задачу остановки для платежной функции

$$f_n = \begin{cases} 1/2 &, n = 0; \\ \frac{1}{n} \sum_{i=1}^{n} S_i &, 0 < n < \infty; \\ 1/2 &, n = \infty; \end{cases}$$

 Добыча ресурсов. В этой задаче платежная функция имеет более сложный вид, требуется найти

$$\mathcal{C} = \sup_{\tau > 0} \mathsf{E} \left[\int_0^\tau e^{-\rho(s+t)} (\lambda P(t) Q(t) - K) \mathrm{d}t + \theta e^{-\rho(s+\tau)} P(\tau) Q(\tau) \right]$$

План дальнейшего изложения.

Метод статистической сетки:

- Глобальные понятия;
- Виды используемых стохастических сеток;
- Локальные особенности;
- Рандомизация зависимой переменной.

Примеры использования метода:

- Упрощенный пример;
- Добыча ресурсов.

Подведение итогов.

Метод стохастической сетки

Для задач остановки известно рекурсивное соотношение, что если

$$\overline{\Phi}_N = \overline{f}_N, \quad \overline{\Phi}_n = \max(\overline{f}_n, \mathsf{E}_n \, \overline{\Phi}_{n+1}),$$

то $\overline{\Phi}_0=\Phi$ — решение. Основной целью метода стохастической сетки является приближение $\overline{\Phi}_n$. Происходит оно следующим образом:

ullet На каждом шаге n будем строить случайные $\mathbf{Z}_n = \{\mathbf{z}_n^i\}_{i=1}^M$ — сетки, которые в совокупности образуют марковскую цепь с вероятностями перехода

$$\overline{q}_n(\mathbf{Z}, \operatorname{d}\mathbf{Z}') = q_{n,1}(\mathbf{Z}, \operatorname{d}\mathbf{z}'_1) q_{n,2}(\mathbf{Z}, \operatorname{d}\mathbf{z}'_2) \dots q_{n,M}(\mathbf{Z}, \operatorname{d}\mathbf{z}'_M).$$

- ullet Вероятности же перехода $p_n(i,j)$ между состояниями z_n^i и z_{n+1}^j также известны.
- Предположим, что существуют плотности

$$\mathsf{p}_{n,j}(\mathbf{Z},\mathbf{z},\mathbf{z}') = \frac{p_n(\mathbf{z},\mathrm{d}\,\mathbf{z}')}{q_{n,j}(\mathbf{Z},\mathrm{d}\mathbf{z}')}.$$

- \mathcal{F}_n это σ -алгебра сгенерированная значениями Z_1,Z_2,\dots,Z_n . А $\mathsf{E}^{\mathcal{F}_n}$ условное математическое ожидание по отношению к \mathcal{F}_n .
- ★ Далее строится Ф, удовлетворяющая

$$\tilde{\Phi}_N = \overline{f}_N, \quad \tilde{\Phi}_n = \max(\overline{f}_n, \mathsf{E}^{\mathcal{F}_n} \tilde{\Phi}_{n+1}),$$

Используемые стохастические сетки. С усредненными вероятностями.

Вероятности перехода из сетки \mathbf{Z}_n в состояние z_{n+1}^j :

$$q_n(j) = \frac{1}{M} \sum_{i} p_n(i, j).$$

Рекурсивное приближение $\tilde{\Phi}_n$:

$$\tilde{\Phi}_n(\mathbf{z}_n) = \max \left(\overline{f}_n(\mathbf{z}_n), \frac{1}{M} \sum_{j=1}^M \mathsf{p}_{n+1}(\mathbf{z}_n, j) \tilde{\Phi}_{n+1}(j) \right).$$

Изображение схемы:

Усредненная схема.

Используемые стохастические сетки. Со сквозными вероятностями.

Вероятности перехода из сетки \mathbf{Z}_n в состояние z_{n+1}^j :

$$q_n(j) = c_n e^{\frac{-|z_n^j - z_0|^2}{2s^2n}} dz',$$

где $c_n=1/s\sqrt{2\pi n}$ — нормирующий множитель. Рекурсивное приближение $\tilde{\Phi}_n$:

$$\tilde{\Phi}_n(\mathbf{z}_n) = \max \left(\overline{f}_n(\mathbf{z}_n), \frac{\sum_j \mathsf{p}_{n+1}(\mathbf{z}_n, j) \tilde{\Phi}_{n+1}(j)}{\sum_j \mathsf{p}_{n+1}(\mathbf{z}_n, j)} \right).$$

Изображение схемы:

Сквозная схема.

Случай зависимой переменной. Рандомизация.

Изначально имеем $\{\xi_n\}=\{\xi(au_n)\}$ — первую переменную, $\phi_n=\sum_1^n g_i(\xi_i)$ —

вторую переменную и платежнаю функцию вида $f_n=\phi_n+F_n(\xi_n).$ $z_n=\{\xi_n,\phi_n\}$ — марковская цепь. Однако ее переходные вероятности — негладкие функции:

$$p_n(z, dz') = p_n(x, dx')\delta_{\phi + g_n(x')}(df').$$

Это не позволяет нам пользоваться стохастической сеткой. Рандомизируем вторую переменную с помощью ε_i —, например, н.н.р.с.в., и покажем чему станет равна переходная вероятность в этом случае:

$$\overline{\phi}_n = \phi_n + \Sigma_n = \phi_n + \sum_{i=1}^n \varepsilon_i,$$

$$p_n(\overline{z}; d\overline{z}') = p_n(x, dx')\varphi(\overline{\phi}' - \overline{\phi} - g_n(x'))d\overline{\phi}'.$$

Тем самым мы добились непрерывности вероятности перехода двух переменных относительно друг друга. Более того для $\overline{f}_n = \overline{\phi}_n + F_n(\xi_n)$ верно:

Утверждение

Если ввести:

$$\overline{\Phi}_N = \overline{f}_N, \quad \overline{\Phi}_n = \max(\overline{f}_n, \mathsf{E}_n \, \overline{\Phi}_{n+1}),$$

то будет справедливо: $\overline{\Phi}_0 = \Phi$.

Примеры. Упрощенный пример. Постановка задачи.

Рассмотрим процесс, описанный на рисунке:

Рис.: Простой процесс перемещения по дереву. Первая переменная — функции цены $x=\xi_n$, вторая переменная — прибыль на соответствующем шаге $y=g_n(\xi_n)$, которая, как видно, зависит лишь от номера итерации и текущего значения первой переменной.

Если ввести функцию общей прибыли $f_n = \sum_{i=0}^n g_n(\xi_n),$ то требуется найти

$$\mathcal{C} = \sup_{n \le 3} \mathsf{E} \, f_n$$

Примеры. Упрощенный пример. Результаты.

Этот пример нужен для демонстрации состоятельности метода рандомизации зависимой переменной, как самостоятельного метода. Будем рандомизировать вторую переменную. И также рассмотрим два случая подсчета вероятностей $q_n(j)$. Получим:

	Усреднен	ные плотно-	Сквозные плотности		
	сти				
M =	Среднее	Ошибка	Среднее	Ошибка	
300	14.097	0.028	12.953	0.072	
600	14.121	0.017	13.033	0.056	
1200	14.109	0.012	12.965	0.036	
2400	14.120	0.010	13.000	0.015	

Таблица: Показаны средние значения и стандартные отклонения при 50 итерациях каждого метода. Точным результатом оптимальной накопленной прибыли в данной задаче является 13.00.

Известный факт, что метод с усредненными плотностями дает систематический сдвиг.

Примеры. Добыча ресурсов. Постановка задачи.

Дано:

ullet Функция изменения цены ресурса (B(t)- броуновское движение):

$$dP(t) = \alpha P(t)dt + \beta P(t)dB(t), \quad , P(0) = p > 0,$$

• Функция изменения запаса ресурсов:

$$dQ(t) = -\lambda Q(t)dt, \quad Q(0) = q > 0.$$

Найти:

 $\bigstar \Phi(s,p,q)$ — оптимальную цену и такое au^* — оптимальное время остановки, на котором достигается:

$$\Phi(s, p, q) = J^{\tau^*}(s, p, q) = \sup_{\tau \ge 0} J^{\tau}(s, p, q),$$

где
$$J^{\tau}(s,p,q)=$$

$$\mathsf{E}^{(s,p,q)}\left[\int\limits_{0}^{\tau}e^{-
ho(s+t)}(\lambda P(t)Q(t)-K)\mathrm{d}t+\theta e^{-
ho(s+\tau)}P(\tau)Q(\tau)\right].$$

Примеры. Добыча ресурсов. Результаты.

α	-0.02
β	0.2
ρ	-0.05
λ	0.5
θ	0.1
K	10
p	100
q	1

	Усредн.		Сквозн.					
Пар-ры:	Res Err		Res	Err				
$\mathbf{T}=1,\mathbf{N}=10$								
M = 300	32.7026	1.4448	33.6465	0.3076				
M = 600	31.2193	1.18046	33.9738	0.3541				
M = 1200	32.9338	0.9291	34.5769	0.3772				
T = 4, M = 300								
N = 10	58.3838	4.0296	43.3463	0.3409				
N=20	64.2606	4.1942	48.7894	0.1662				
N = 30	_	_	51.0256	0.2409				
N = 40	_	_	53.4150	0.2322				

Рис.: Сравнение схем. Res — приближение, Err — выборочное стандартное отклонение, полученные при реализации алгоритма 10 раз. M — размер сетки, N — количество шагов. Точное решение для $T=\infty$: ${\bf 53.693}$. Промоделированные приближения с помощью бинарного дерева для T=1: ${\bf 34.7}$, для T=4: ${\bf 50.8}$.

Заключение

■ Итого:

- Метод стохастической сетки работает лучше на ограниченных по времени процессах. При увеличении количества итераций, но с сохранением шага Δ_t время выполнения алгоритма стремится к ∞ .
- Для метода с усредненными вероятностями перехода, для большей точности, нужно строить более сложные случайные сетки. Метод же со сквозными вероятностями не привязан к специфике сеток, считает с сопоставимой точностью и требует на это меньших затрат.
- ★ Метод рандомизации случайной переменной имеет место быть. Это основной результат.
- Планы развития:
- Расширение размерности пространства.
- Усложнение марковского процесса.
- ★ Развитие идеи рандомизации зависимых переменных.

