Procedure: Creep Test at ${\tt SNL}$

Version Date:

August 7, 2015

Form C	ompleted E	Sv:	100	
I OI III	omproced L	J .		

1 Test Description

Parameters	Value
Test Name	175-06
Salt Provenance (Circle One)	Avery Island WIPP
Test Type (Circle One)	Hydrostatic Shear
Salt Can Label	
Water Added to Salt (Circle One)	yes no
Target/Actual Added Water Content	w = Mwater added _ Maalt
Temperature: [°C / ° F]	1750
Pressure [MPa / psi]	14722 =30 =38
Jacketing Components (Circle All)	Outer Lead Outer Viton - Inner Lead - Inner Copper
Tested In (Circle One)	Frame 2 Frame 3
Test Target (permeability / fractional density / etc)	

Table 1: Description of Test

2 Pre-Test Measurements

2.1 Height of components:

Components	Count	Component Label	Recorded Height [mm]
DL	1	C2	37.05
Platens	2	Ca	37.00
Chamfer Discs	1	CP3	8.30
Chamier Discs	2	CPZ	12.70
Mad Diag	1	NA	1.05
Mesh Discs	2	NA	1.05
Cumulative Height	of Components	97.15	mm

Table 2: Itemized List of Components for Height Measurements (No Salt).

2.2 Jacket Dimensions

2.2.1 Height of Outer Jacket

This value will vary depending on which platens (steel or aluminium) and chamfer pieces are used, in general:

- Outer Jacket: 10.125 inches (257.17 mm) to 10.5 inches (266.7 mm);
- 2. INNER SHELL: 12.0 INCHES (304.8 MM) -> THIS IS FOR BOTH A1 AND A2;
- 3. Specimen Clearance: 1.875 inches (47.62 mm) to 1.5 inches (38.1 mm);

NOTE: the maximum height inside Frame 2 and 3 is 12 inches (304.8 mm)

If the upper internal port of the shell is plugged, the available height is decreased to 11.75 inches (298.45 mm)

Jacket Description	Height	No. of Jackets Used
Outer Lead Jacket (mm)	220	l l
Outer Viton Jacket (mm)	NA	
Inner Lead Jacket (mm)	NIA	-
Inner Copper Jacket (mm)	134	2
Height of Total Sample (mm)	2	70

Table 3: Height of Jacketing Components (if jacket not used, write "NA")

2.2.2 Checklist of Jacketing Materials:

Components	Count	Verification Checkmark (and Component Label is Applicable)
Platens	2/	CZ C9
Platen O-rings	4	
Platen Screws (0.25 inch 20 rnd)	1	<i>(</i>
Screw-In Nipples		
Nipple O-rings	V	
Nipple Adapter (HIP HF4 connection)	1	
Nipple Plugs (HIP HF4 plugs)	V	<u></u> ₹
Chamfer Discs	V	CPZ + CP3
Mesh Discs	V	
Inner Copper Jacket (indicate No. used)	2	Thickness of 1 Sheet of Copper (mm): C. 10
Inner Lead Jacket		Jacket Thickness (mm):
Outer Lead Jacket	V	Jacket Thickness (mm): 1.57
External Hose Clamps	4	

Table 4: Itemized List of Components for Mass and Volume Measurements (No Salt).

2.2.3 Volume and Mass of Components (No Salt)

Measured Value	Values	Units	Comments	
Prior to Dunk: Water Level Reading on Burette	53.5	mL (burette)		189
After Dunk: Water Level Reading on Burette	44.6	mL (burette)		1019.03 (4 fall)
Volume of Components (No Salt)	1009.03	mL	w/o Horechy	(4 fall)
Mass of Components (No Salt)	4.1485	kg	- w/x	tc
Approximate Outside Diameter of Sample		mm		
Dunk Tank Volume Factor:	114.4978 mL/Buret	te Unit		

Table 5: Measurements of All Components (No Salt)

Dintill
107-12
108-78
108.13

Muss Conpany = 4.073t

Measured Mass of Salt

2.3.1 Date:

		1, 4	been ,
Parameters	Value	· X	used
Salt Can Label	54 0		
Before Making Sample: Mass of Salt and Can (with lid)	2071.3	kg g	
After Sample is Made: Remaining Mass of Salt and Can (with Hd)	605.6	kg	
Bulk Mass of Salt Used for Sample	1.4657	kg	
Cumulative Mass of Components and Salt	55376	- kg	No Hose

Table 6: Mass of Salt Before Preconsolidation

Camin size Distay

Pre-consolidation Measurements

3.0.2 Date:

3.0.3 Data Sample Rate:

1070 psi

Volume Displayed on GUI	Volume [mL]	Pressure [psi]	Time [hh:mm]
Initial Reading: prior to consolidation			
Reading: When at pre-consolidation pressure			
Final Reading: after pre consolidation			

Table 7: Pre-consolidation Details

Parameter	Values	Units
Prior to Dunk: Mass of Specimen (with all components)	5,5377	kg
Prior to Dunk: Water Level Reading on Burette	53.8	mL (burette)
After Dunk: Water Level Reading on Burette	36.8	mL (burette)
Preconsolidated Specimen (all components listed above plus salt)	1946.46	mL
After Dunk: Mass of Specimen (with all components)	5.5400	kg
Average Height of Specimen	204.06	mm
Average Outside Diameter of Specimen	103.20	mm
Bulk Salt Volume (Salt and added water):		mL

Table 8: Measurements Made After Preconsolidation of Specimen.

161 Sult 937.43 mL

height 35 mm block 239.72 204.72 238.40 203.40 238.70 203.70 239.42 204.42

$$735 - 102.38$$
 $-239.72 204.72 - 103.90$
 $-239.40 203.40 - 102.257$
 $-239.70 203.70 - 103.14 47$
 $-239.42 204.42 - 104.42$
 $-40.103.20$

$$\begin{array}{r}
D_{42} - 104.79 \\
- 103.61 \\
- 104.45 \\
- 103.78
\end{array}$$

103.89

Parameter	Values	Units
Salt Only - Volume: $V_{sample}^{salt} = V_{sample}^{bulk} * (1 - w)$		mL
Salt Only - Mass: $m_{sample}^{salt} = m_{sample}^{bulk} * (1 - w)$		kg
Salt Only - Denisty: $\rho_{sample}^{salt} = m_{sample}^{salt} / V_{sample}^{salt}$		kg/m^3
Salt Only - Fractional Density: $\overline{\rho} = \rho_{sample}^{salt}/2160$		

Table 9: Post-Consolidation Density Calculations

4 Application of Heat to Obtain Test Temperature

4.0.4 Data Sample Rate:

Event	Date	Time	Confining Pressure [psi]	Expelled Silicone Oil Volume (mL)
Start Temperature Increase	11/22	= 2:30pm	0	0
End Temperature Increase	11/23	9:10	c>	450mL

Table 10: Dates of Details of Temperature Increase

5 Creep Test

5.0.5 Date (Start Test): 11/23/15

5.0.6 Data Sample Rate: 10 >=-

Event	Value	Comment
ISCO Pump Volume (Pre Pressure Increase)	502	
ISCO Pump Pressure (Pre Pressure Increase)	16	
Begin Pressure Increase	Time:	
End Pressure Increase	Time: 5	
ISCO Pump Volume (Post to Pressure Increase)	146.16	
ISCO Pump Pressure (Post Pressure Increase)	2030	
ISCO Pump Flow Rate (Post Pressure Increase)		

Table 11: Details of Test Initiation

Parameters	Values	Units
Final Mass of Specimen	5.5460	kg
Initial - Dunk Tank Values	56.7	mL (burette)
Final - Dunk Tank Values	41.4	mL (burette)
Volume of Specimen	1751.82	mL
Average Height of Specimen	===	mm
Average Outside Diameter of Specimen		mm
Density of Salt only		${ m kg/m^3}$

Table 12: Post Test Measurements

Parameter	Values	Units
Salt Only - Volume: $V_{sample}^{salt} = V_{sample}^{bulk} * (1 - w)$	2.0(4)	mL
Salt Only - Mass: $m_{sample}^{salt} = m_{sample}^{bulk} * (1 - w)$		kg
Salt Only - Denisty: $\rho_{sample}^{salt} = m_{sample}^{salt} / V_{sample}^{salt}$		kg/m^3
Salt Only - Fractional Density: $\overline{\rho} = \rho_{sample}^{salt}/2160$		0

Table 13: Post Test Density Calculations 3 + eii = 28.30 mmTop -98.01 -98.32 -98.32 -97.03 -98.32 -97.03 -98.32 -97.03 -98.32 -97.03 -98.32 -97.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -98.36 -99.36 -

15