# Metody inteligencji obliczeniowej - sieci Kohonena

#### Wiktor Wierzchowski

May 13, 2025

## 1 Wstęp

Poniższy raport jest podsumowaniem zadań wykonanych w ramach bloku tematycznego poświęconego sieciom kohonena, szerzej znanym w literaturze angielskojęzycznej jako mapy samoorganizujące się. Jest to rodzaj sieci neuronowej uczącej się w sposób nienadzorowany pozwalającej na przeprowadzanie klastrowania danych.

## 2 Zasada działania i implementacja

Struktura sieci kohonena oparta jest o zainicjowanie pewnej mapy neuronów. Neurony te są n wymiarowymi wektorami inicjowanymi losowo wokół centroidu danych gdzie ich wymiar odpowiada liczbie cech w danych. Oprócz ich konkretnej postaci funkcjonują one również w ramach pewnej topologi ustalonej przez postać siatki ich względnych położeń. W implementacji wykonanej na potrzeby tego bloku przewidziane zostały dwa rodzaje siatek: prostokątna i heksagonalna.





Figure 1: Przykład siatek w jakich inicjowana może być sieć Kohonena (lewa: prostokątna, prawa: heksagonalna).

Algorytm uczenia się sieci oparty jest na losowaniu obserwacji ze zbioru danych, odnajdywaniu neuronu najbardziej zbliżonego do rozważanej obecnie obserwacji określanego jako best matching unit (BMU), a następnie dalszym upodabnianiu BMU oraz otaczających go w siatce neuronów do tejże obserwacji. Ostatni krok uaktualniania wag jest miejscem, w którym postać siatki nabiera znaczenia. Sposób tej aktualizacji uwzględnia bowiem odległość każdego z neuronów do ustalonego BMU.

- 1. Losowe próbkowanie obserwacji  $\hat{X} = rand(X)$
- 2. Ustalenie best matching unit  $BMU = \underset{i \in n, j \in m}{\arg \max} ||\hat{X} W_{ij}||$
- 3. Aktualizacja parametrów  $\sigma(t)=\sigma_0\exp(-\frac{t}{\lambda}),$  gdzie  $\lambda=\frac{n}{\log(\delta_0)}$  oraz  $\sigma_0=\frac{\min(n,m)}{2}$

- 4. Ustaleni macierzy wpływu  $H(i,j) = gauss(||BMU (i,j)||,\sigma)$  lub  $H(i,j) = riker(||BMU (i,j)||,\sigma)$
- 5. Aktualizacja wag  $W(t+1) = W(t) + \alpha(t) \cdot H \cdot (\hat{X} W(t))$

Gdzie m, n - wymiary siatki,  $W_{ij}$  - postać neuronu,  $\alpha(t)$  - krok,  $gauss(d, \sigma) = \exp(-\frac{d^2}{2\sigma^2})$ ,  $riker(d, \sigma) = -\frac{d^2 - \sigma^2}{\sigma^4} \cdot gauss(d, \sigma)$ .



Figure 2: Funkcje wpływu dla zasięgu 1 ( $\sigma = 1$ ).

## 3 Testy na zbiorach danych

Poniżej przedstawione są testy sieci Kohonena jakie wykonane zostały na 4 różnych zbiorach. Pierwsze dwa zbiory są dwu i trzy wymiarowe co pozwala na graficzną reprezentacje klastrowania i ostatecznych pozycji neuronów w sieci. Pozostałe zbiory mają więcej niż trójwymiarowe przestrzenie cech i wyniki zaprezentowane zostały przy użyciu macierzy błędu oraz oceny poprawności przez przyporządkowanie klastra do neuronów w oparciu o otaczające go obserwacje.

#### 3.1 Zbiór danych heksagon

Zbiór danych o dwóch cechach. Liczba obserwacji 600.

- Siatka: heksagonalna, 2x3
- $\bullet\,$  Uczenie: iteracje = 5, krok początkowy = 0.2, zasięg wpływu początkowy = 2



Figure 3: Zbiór heksagon (lewa). Wynik klastrowania zbioru heksagon siecią kohonena (prawa).

## 3.2 Zbiór danych cube

Zbiór danych o trzech cechach. Liczba obserwacji 1200.

• Siatka: prostokątna, 4x2

 $\bullet$  Uczenie: iteracje = 10, krok początkowy = 0.1, zasięg wpływu początkowy = 2



Figure 4: Zbiór cube (lewa). Wynik klastrowania zbioru heksagon siecią kohonena (prawa).

### 3.3 Zbiór danych MNIST

# 0123456789

Figure 5: Przykładowe obserwacje ze zbioru MNIST.

Zbiór danych o 784 cechach. Liczba obserwacji 70000.

• Siatka: prostokątna, 9x1

• Uczenie: iteracje = 50, krok początkowy = 0.1, zasięg wpływu początkowy = 4

|   | (np.int64(0),<br>np.int64(0)) | (np.int64(0),<br>np.int64(1)) | (np.int64(0),<br>np.int64(2)) | (np.int64(0),<br>np.int64(3)) | (np.int64(0),<br>np.int64(4)) | (np.int64(0),<br>np.int64(5)) | (np.int64(0),<br>np.int64(6)) | (np.int64(0),<br>np.int64(7)) | (np.int64(0),<br>np.int64(8)) |
|---|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 0 |                               | 22                            | 748                           | 19                            | 42                            | 247                           | 44                            | 5478                          | 296                           |
| 1 | 4300                          | 3528                          |                               | 10                            |                               |                               |                               |                               | 10                            |
| 2 | 449                           | 425                           | 154                           | 87                            | 206                           | 217                           | 4933                          | 69                            | 450                           |
| 3 | 532                           | 69                            | 1198                          | 60                            | 189                           | 64                            | 259                           | 35                            | 4735                          |
| 4 | 213                           | 292                           | 46                            | 2309                          | 3698                          | 205                           | 46                            | 14                            |                               |
| 5 | 262                           | 635                           | 2322                          | 289                           | 441                           | 126                           | 17                            | 68                            | 2153                          |
| 6 | 395                           | 145                           | 288                           |                               | 97                            | 5693                          | 126                           | 92                            | 37                            |
| 7 | 385                           | 335                           | 11                            | 4456                          | 2018                          |                               | 57                            | 22                            | 4                             |
| 8 | 399                           | 348                           | 3593                          | 282                           | 257                           | 57                            | 61                            | 38                            | 1790                          |
| 9 | 288                           | 109                           | 81                            | 2907                          | 3384                          | 14                            | 20                            | 50                            | 105                           |
|   |                               |                               |                               |                               |                               |                               |                               |                               |                               |

Figure 6: Wynik klastrowania zbioru MNIST siecią kohonena.

#### 3.4 Zbiór danych HARUS

Zbiór danych o 561 cechach. Liczba obserwacji 7352.

• Siatka: heksagonalna, 3x2

• Uczenie: iteracje = 25, krok początkowy = 0.1, zasięg wpływu początkowy = 4

|    | (np.int64(0),<br>np.int64(0)) | (np.int64(0),<br>np.int64(1)) | (np.int64(0),<br>np.int64(2)) | (np.int64(1),<br>np.int64(0)) | (np.int64(1),<br>np.int64(1)) | (np.int64(1),<br>np.int64(2)) | (np.int64(2),<br>np.int64(0)) | (np.int64(2),<br>np.int64(1)) | (np.int64(2),<br>np.int64(2)) |
|----|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| -1 | 24                            | 27                            |                               |                               | 45                            | 18                            | 4                             | 29                            | 27                            |
| 0  | 1258                          | 1243                          | 250                           | 318                           | 1974                          | 617                           | 247                           | 712                           | 540                           |
| 1  |                               |                               |                               |                               |                               |                               |                               |                               |                               |

Figure 7: Wynik klastrowania zbioru HARUS siecią kohonena.

#### 4 Wnioski

Sieci kohonena są mocno wrażliwe na wielkość siatki, a więc liczbę neuronów biorących udział w procesie uczenia. W sytuacji gdy nie znamy liczby klastrów sieć skazana jest na wskazanie większej ich liczby niż jest obecna. Rozwiązaniem tego może być przypisywanie klastrów do neuronów w sposób uwarunkowany otocheniem neuronu. Gdy proces uczenia jest już zakończony możemy ustalić, w oparciu o etykiety większości obserwacji w otoczeniu każdego z neuronów, do jakiego klastra dany neuron

przynależy. Niestety w świecie rzeczywistym gdzie nie mamy możliwości podejrzenia do jakiej etykiety powinny zostać przypisane nasze obserwacje, takiej możliwości nie ma. Sieci Kohonena są bardzo ciekawym konceptualnie narzędziem ale w praktyce korzystanie z nim sprowadza się do cierpliwego manipulowania parametrami w nadzei, że któraś z odpowiedz jakie uzyskamy będzie bliska prawdzie.