JEE EXPERT

ANSWER KEY & SOLUTIONS

Module Test - [MT - 01] JEE ADV. Paper - 02

Batch: 12th (Zenith-1820 - X01 & X02)

Date:[04.08.2019]

				PH	YSICS	
1	(A, B, C)	2	(B , D)	3	(A, B, C, D)	$4 \qquad (A, B, D)$
5	(A, B, D)	6	(B , D)	7	(\mathbf{A}, \mathbf{C})	8 (A, D)
9	(3)	10	(9)	11	(5)	12 (4)
13	(5)	14	(4)			
15	$A \rightarrow s; B \rightarrow$	$q; C \rightarrow$	$q; D \rightarrow q$		16 $A \rightarrow s; B$	\rightarrow q; C \rightarrow r; D \rightarrow p, s
17	$A \rightarrow p, r, s, r$	$t; B \rightarrow p$	$r; C \rightarrow p, r, s$	$, t ; D \rightarrow$	q 18 $A \rightarrow p, s;$	$B \rightarrow q, r, s; C \rightarrow q, r, s; D \rightarrow p$

				CHEN	/IISTR	Y		
19	(A, B, C, D)	20	(B, D)	21	(A, B,	C , D)	22	(A, C)
23	$(\mathbf{B}, \mathbf{C}, \mathbf{D})$	24	(A , D)	25	(A, B,	C , D)	26	(A, B, D)
27	(5)	28	(8)	29	(3)	30	(4)	
31	(6)	32	(GRACE)					
33	$A \rightarrow p, t; B \rightarrow$	q, r; ($C \rightarrow p, t; D \rightarrow$	q, r	34	$(A) \rightarrow p, s; ($	$(B) \rightarrow p$	$r;(C) \rightarrow p, q;(D) \rightarrow t$
35	$A \rightarrow p, q, s, t;$	$B \rightarrow 1$	$p, r, s; C \rightarrow q$	$s, t; D \rightarrow$	q, s, t;			
36	$A \rightarrow q$, s; B $-$	→ t; C -	\rightarrow p; D \rightarrow r;					

MATHEMATICS								
37	(A, B, C, D)	38	(A , D)	39	(A , D)	40	(A, B, C)	
41	(A, C)	42	(\mathbf{A}, \mathbf{B})	43	(\mathbf{A}, \mathbf{B})	44	(\mathbf{A}, \mathbf{C})	
45	(1)	46	(4)	47	(4)	48	(2)	
49	(4)	50	(2)					
51 $A \rightarrow r$; $B \rightarrow q$; $C \rightarrow s$; $D \rightarrow p$				52 A-	$\mathbf{A} \rightarrow \mathbf{r}; \mathbf{B} \rightarrow \mathbf{q}; \mathbf{C} \rightarrow \mathbf{p}; \mathbf{D} \rightarrow \mathbf{s};$			
53 $\mathbf{A} \rightarrow \mathbf{q}; \mathbf{B} \rightarrow \mathbf{s}; \mathbf{C} \rightarrow \mathbf{p}; \mathbf{D} \rightarrow \mathbf{r}, \mathbf{s};$				54 A-	$\mathbf{A} \rightarrow \mathbf{p}; \mathbf{B} \rightarrow \mathbf{r}; \mathbf{C} \rightarrow \mathbf{s}; \mathbf{D} \rightarrow \mathbf{q};$			

JEE EXPERT

SOLUTIONS

Module Test - [MT - 01]

JEE ADV. Paper - 02

Batch: 12th (Zenith-1820 - X01 & X02)

PHYSICS

SECTION-1

1. Sol. (A, B, C) Pitch =
$$\frac{2\pi m}{qB}$$
 V₀ cos θ

2. Sol. (B, D)

Resistance absorbs energy at the rate of 2W.

Potential difference across AB \Rightarrow V_{AB}. I = 50 W

$$V_{AB} = 50 \text{ V}$$

Drop across resistor is 2V, therefore EMF of E is 48 V.

As AB is absorbing energy at the rate of 50 W, 48 W is being absorbed by E. Thus, E is charging. i.e., current is entering from + ve terminal of E.

3. Sol. (A,B,C,D)

The total charge on inner surface of conductor will be zero & change on outer surface is Q (uniform).

4. Sol. (A,B,D)

$$\frac{-\sigma}{2\epsilon_0} = \frac{x}{2\epsilon_0} - \frac{3\sigma}{2\epsilon_0} \Rightarrow x = 2\sigma$$

At
$$x = -2$$

$$\mathsf{E} = \frac{2\sigma}{2\epsilon_0}\hat{\mathsf{i}} = \frac{\sigma}{\epsilon_0}\hat{\mathsf{i}}$$

At
$$x = 3$$

$$E = \frac{-\sigma}{2\epsilon_0} + \frac{2\sigma}{2\epsilon_0} + \frac{3\sigma}{2\epsilon_0} = \frac{4\sigma}{2\epsilon_0} = \frac{2\sigma}{\epsilon_0}\hat{i}$$

At
$$x = 6$$

$$E = \frac{-\sigma}{\epsilon_0} \hat{i}$$

$$\begin{array}{c|ccccc}
-\sigma & x & -3\sigma \\
 & & & \\
x = 1 & x = 2 & x = 4
\end{array}$$

[Paper-2]

5. Sol. (A,B,D) Potential gradient on the wire = $\frac{2V}{L}$. S₁ closed \rightarrow only R is there in lower cricuit. PD across it is $\frac{V}{3}$.

When only S_2 closed, PD across (R + 2R) is V.

- **6.**(**B**,**D**)
- $7. \qquad (A,C)$
- 8. (A, D)

SECTION - 2

9. Sol. (3)
Point A shall record zero magnetic field (due to α -particle) when the a-particle is at position P and Q as shown in figure. The time taken by α -particle to go from P to Q is

$$t = \frac{1}{3} \frac{2\pi}{\omega}$$
 or $\omega = \frac{2\pi}{3t} \in => w=3 \text{ rad/sec}$

10. Sol. (9)

$$dV = -Edx = -\vec{E} \cdot \vec{dr} = -\left(y^2\hat{i} + 2yx\hat{j}\right) \cdot \left(dx\hat{i} + dy\hat{j}\right) = -(y^2dx + 2yxdy) = -d(xy^2) = -[-9 - (0)] = 9 \text{ volt.}$$

11. Sol. (5)

For ammeter

99
$$I_g = (I - I_g)1$$

or
$$I = 100 I_{a}$$

 I_g is the full scale deflection current of the galvanometer and I is the range of ammeter For the circuit in the adjacent figure,

$$\frac{12 \text{ V}}{2 + r + \frac{99 \times I}{99 + 1}} = 3A$$

$$\Rightarrow$$
 r = 1.01 Ω

For voltmeter, range

$$V = I_q(99 + 101) = 200 I_q$$

Also resistance of the voltmeter = 99 + 101 = 200 Ω

...(1)

In the adjacent figure, resistance across the terminals of the battery

$$R_1 = r + \frac{200 \times 2}{202} = 2.99 \Omega$$

$$\therefore$$
 Current drawn from the battery, $I_1 = \frac{12}{2.99} = 4.01 \text{ A}$

: Voltmeter reading

$$\frac{4}{5}$$
V = 12 - I_1 r = 12 - 4.01×1.01

$$V = 7.96 \times \frac{5}{4} = 9.95V$$

Using eq. (2),
$$I_g = \frac{9.95}{200} = 0.05 \text{ A}$$

Using eq. (1), range of the ammeter

$$I = 100 I_g = 5 A$$

12. Sol. (4)

$$\text{Field} = \frac{\mu_0 i}{4\pi a} \times 2 + \frac{\mu_0 i}{2a} \left(\frac{\pi}{2 \times 2\pi} \right) = \frac{\mu_0 i}{2\pi a} + \frac{\mu_0 i}{8\pi a} \pi = \frac{\mu_0 i}{8\pi a} (4 + \pi)$$

13. Sol. (5)

Before closing switch,

Initial energy
$$U = \left(\frac{1}{2} \times 5 \times 5^2\right) \times 2 + \left(\frac{1}{2} \times 5 \times 10^2\right) = 125 + 250 = 375 \,\mu\text{JAfter closing switch,}$$

$$\begin{split} &U_f = \frac{1}{2} \times 5 \times 10^2 + \frac{1}{2} \times 5 \times 10^2 = 500 \; \mu J \\ &\text{Heat} = W_b - \Delta U = (25)(10) - (500 - 375) = 125 \; \mu J \end{split}$$

14. Ans. 4

SECTION - 3

- 15. Ans. $(A \stackrel{.}{\vdash} s)$, $(B \stackrel{.}{\vdash} q)$, $(C \stackrel{.}{\vdash} q)$, $(D \stackrel{.}{\vdash} q)$
- 16. Ans. AÈ s; BÈ q; CÈ r; DÈ p, s
- 17. Ans. AÈ p, r, s, t; BÈ p, r; CÈ p, r, s, t; DÈ q
- 18. Ans. $A \stackrel{.}{\vdash} p$, s; $B \stackrel{.}{\vdash} q$, r, s; $C \stackrel{.}{\vdash} q$, r, s; $D \stackrel{.}{\vdash} p$