

Bits and Bytes

- 1 Bits and Bytes
 - 2 Addressing
- 3) Boolean Algebra

Hardware: Logical View

Programmer's View

Binary Representation

Binary digit

I	3in	ary	y	Dec	Hex
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7

I	3in	ary	y	Dec	Hex
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	10	A
1	0	1	1	11	В
1	1	0	0	12	C
1	1	0	1	13	D
1	1	1	0	14	\mathbf{E}
1	1	1	1	15	\mathbf{F}

No. of bit	Max Value	C C++
1	1	
2	3	
4	15	
8	255	char
16	65,535	short
32	~4.3B	int
64	~18BB	long

Memory Organization

location in memory

Memory Organization

Byte Ordering

Big-Endian

1FCA75EE5B12DCA7

A7DC125BEE75CA1F

00...00 00...08 00...10

	1 F	CA	75	EE	5B	12	DC	A7
00 00 00 00 00 00 08 08 00 00 00 00 00 00 00	EA	75	B 1	2 D	F1	EE	F1	EE
08 00 00 00 00 00 00 00	00	00	00	00	00	00	00	08
	08	00	00	00	00	00	00	00

• • •

49	6C	6F	76	65	55	00	00
18	00	00	00	00	00	00	00
DE	AD	BE	EF	DE	AD	BE	EF

Little-Endian

Examining Data Representations

```
void show bytes(char *start, int len) {
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i,*(start+i));
  printf("\n");
void show int (int x) {
  show bytes( (char *) &x, sizeof(int));
int a = 12345; // 0x00003039
printf("int a = 12345;\n");
show int(a);
```

Pointer

```
long x = 0xEEF1EEF12DB175EA;
long *ptr = &x;
```


Assignment

```
int *x; int y;
x = &y + 3;
*x = y;
```

00...00 00...08 00...10


```
int *array_ptr;
Array
                   array_ptr = big_array;
                   array_ptr = &big_array[0];
                   array_ptr = &big_array[3];
                   array_ptr = &big_array[0] + 3;
         00...00
        00...08
                       B1 2D F1 EE F1
         00...10
                  00 00 00 00 00 00 00
                       00 00 00 00 00
                    6C 6F 76 65 55 00
```

```
array_ptr = big_array + 3;
*array_ptr = *array_ptr + 1;
array_ptr = &big_array[130];
```

Strings

ASCII codes

Boolean Algebra

AND: A&B OR: A | B XOR: A^B NOT: ~A

&	0	1
0	0	0
1	0	1

	0	1
0	0	1
1	1	1

٨	0	1
O	0	1
1	1	O

DeMorgan's Law: $\sim (A \mid B) = \sim A \& \sim B$

Boolean Algebra

AND: A&B OR: A | B XOR: A^B NOT: ~A

01101001 01101001 01101001 & 01010101 | 01010101 ^ 01010101 ~ 01010101 01000001 01111101 00111100 10101010

A	OUT
O	1
1	О

A	В	OUT
О	O	О
О	1	1
1	O	1
1	1	1

A	В	OUT
0	O	О
0	1	О
1	O	O
1	1	1

A	В	OUT
0	O	1
0	1	О
1	O	О
1	1	О

A	В	OUT
0	O	1
O	1	1
1	O	1
1	1	О

A	В	OUT
0	O	О
О	1	1
1	O	1
1	1	О

A	В	OUT
O	O	1
O	1	О
1	O	О
1	1	1

Shift Operations

 $x \ll y$

01100000

1 1 1 0 0 0 0 0

Shift Operations

|x>>y|

00100010

00100010

Shift Operations

Arithmetic x >> y

1 1 1 0 0 0 1 0

00100010

To do

- 1. Read section 2.1
- 2. Watch the lectures in advance "Bits, Bytes, and Ints: Part 1"

```
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/schedule.html
```


Augustus De Morgan

I was x years of age in the year x².