11580258 AD-144 336 000006 lunk! By authority of L TECHNICAL **JIBRARY** MEMORANDUM REPORT No. 1086 **JULY 1957** Comparison Of Aerodynamic Characteristics Of Live And Inert 70-mm T231 Gun-Boosted Rockets (U)

EUGENE D. BOYER

Requests for additional copies of this report will be made direct to ASTIA.

DEPARTMENT OF THE ARMY PROJECT No. 5803-03-001
ORDNANCE RESEARCH AND DEVELOPMENT PROJECT No. TB3-0108

BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

Retain or destroy per AR 380-5 and SR 345-215-5 or comparable AF or Navy Regulations. Contractors should consult their government contracting officers regarding procedures to be followed. DO NOT RETURN

with the state of

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18 U. S. C. Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

```
1 OF
-- 1 - AD NUMBER: 144336
-- 3 - ENTRY CLASSIFICATION: UNCLASSIFIED
-- 5 - CORPORATE AUTHOR: BALLISTIC RESEARCH LABS ABERDEEN PROVING GROUND
-- 6 - UNCLASSIFIED TITLE: COMPARISON OF AERODYNAMIC CHARACTERISTICS
  OF LIVE AND INERT 70-MM T231 GUN-BOOSTED ROCKETS
-- 9 - DESCRIPTIVE NOTE: MEMO REPT
--10 - PERSONAL AUTHORS: BOYER, EUGENE D ;
                  JUL , 1957
--11 - REPORT DATE:
--12 - PAGINATION: 28P
                                           C-750/
--14 - REPORT NUMBER: BRL-MR-1086
--16 - PROJECT NUMBER: ORD-TB3-0108
--20 - REPORT CLASSIFICATION: UNCLASSIFIED
--33 - LIMITATION CODES:
--35 - SOURCE CODE:
--36 - DOCUMENT LOCATION: NTIS
--40 - GEOPOLITICAL CODE: 2402
--41 - TYPE CODE: A
```


BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1086

JULY 1957

COMPARISON OF AERODYNAMIC CHARACTERISTICS OF LIVE AND INERT 70-MM T231 GUN-BOOSTED ROCKETS (U)

Eugene D. Boyer

Requests for additional copies of this report will be made direct to ASTIA

Reproduction of this document in whole or in part is prohibited except with permission of the issuing office; however, ASTIA is authorized to reproduce this document for U. S. Government purposes.

Department of the Army Project No. 5B03-03-001 Ordnance Research and Development Project No. TB3-0108

ABERDEEN PROVING GROUND, MARYLAND

TABLE OF CONTENTS

Pag	çe
ABSTRACT	ı
TABLE OF SYMBOLS AND COEFFICIENTS	
INTRODUCTION	
EXPERIMENTAL RESULTS	,
Velocity and Acceleration	,
Overturning Moment	,
Magnus and Damping Moment	}
SUMMARY)
APPENDICES	
APPENDIX A: Table 1 - Aerodynamic Data, Burnt Motors 10)
Table 2 - Aerodynamic Data, Live Motors 11	-
APPENDIX B: Graphs and Photographs)
REFERENCES	,
DISTRIBUTION	7

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1086

EDBoyer/jcw Aberdeen Proving Ground, Md. July 1957

COMPARISON OF AERODYNAMIC CHARACTERISTICS OF LIVE AND INERT
70-MM T231 GUN-BOOSTED ROCKETS (U)

ABSTRACT

Firings were made in the Transonic Range of the Ballistic Research Laboratories, to determine the effects of a burning motor on the aerodynamic properties of the 70-mm T231 rocket. A comparison of the aerodynamic properties, with and without a live motor, showed only minor differences. The largest difference is a 10% increase in the normal force which may only be a reflection of the uncertainties of the inertial properties.

TABLE OF SYMBOLS

A	Axial momen	nt of	iner	cla
70	+	mome	nt of	inertia

$$\delta_{e}^{2} \qquad K_{10}^{2} + K_{20}^{2} + \frac{K_{10}^{2}}{\phi_{1}^{i} - K_{20}^{2}} \phi_{2}^{i} - \phi_{2}^{i}$$

$$N_{\rm pp}$$
 number of timing observations

$$\epsilon_{
m S}$$
 error in swerve fit

INTRODUCTION

With the development of new instrumentation and data analysis techniques it has become possible to employ the spark photography ranges in studying the flight of gun-boosted burning rockets^{1,2}. At the request of the Computing Laboratory the 70-mm T231 rocket was tested in the Transonic Range of the Exterior Ballistics Laboratory, in order to determine the effect of the burning motor on the aerodynamic properties of this projectile. A photograph of the projectile is shown in Figure 1. A shadowgraph of the rocket in flight, at 1565 fps, is shown in Figure 2.

The program consisted of the firings of six rounds with burnt motors and eight rounds with live motors. All rounds were fired from a 70-mm open breech launcher (Fig. 3) with a twist of 1/12. The first two rockets fired exhibited very little yaw. Since a minimum of two to three degrees of yaw is desirable in the analysis of the yawing motion it became necessary to induce yaw. This was done by installing a blast deflector (Fig. 4) at the muzzle of the gun for the remainder of the rounds. This device distorts the flow of the gun gases over the model just after ejection and gives the model a tipping tendency.

The rockets were observed for a distance of 680 feet. Reference 3 shows that peak acceleration occurs at about 1300 feet and that zero acceleration occurs at about 2600 feet, the latter part being usually terminal burn out. The acceleration falls very rapidly from the peak to a low level and it seems reasonable to presume that effective burn out occurs nearer 1300 feet than 2600 feet. If a constant rate of change of mass is to be presumed, then it is more realistic to assign a value of burn out at or near 1300 feet, although the exact position is somewhat arbitrary. In the analysis presented here the physical properties of the rocket were assumed to vary linearly between the gun and 1300 feet, 1300 feet being considered complete burn out. The physical properties of the rocket are given in Figure 5.

If the burn out distance had been assumed to be 2600 feet (indicated burn out) the following changes would occur in the data:

	Inertial properties	Aerodynaz	mic properties
Mass	+ 4%	K _D	+ 4%
cm	.05 Cal toward base	$K_{\mathbf{M}}$	+ 3%
A	+ 4%	$K_{\mathbf{N}}$	+ 4%
В	+ 3%	$CP_{\mathbf{N}}$.04 cal toward base
		$K_{\mathbf{T}}$	+ 4%
		$K_{H}-K_{MA}$	+ 3%

However, it is believed that the 1300 foot "burn out" value is more realistic. At such time when better estimates of the inertial properties are made the coefficients can be recomputed and better values obtained.

A burning rocket generally introduces certain modifications in the data reduction process. For the present case, a rather low thrust rocket with a high burnt weight, the following considerations appear to be sufficient to treat the problem:

- The acceleration is approximately constant throughout the range of observation, thereby permitting a constant pseudo drag value to be used to process the yaw and swerve to a reasonable degree of accuracy.
- 2. Since only one third of the total weight is expanded in flight, although the exact variation is not known, it seems possible to estimate the variation of the total mass and radii of gyration to within 10% of a given point.
- 3. The jet damping appears to be no more than 10% of the aerodynamic damping and can therefore be neglected in the first approximation.

EXPERIMENTAL RESULTS

Velocity and Acceleration

The time of flight of each round was measured at twelve points along the first 700 feet of trajectory. These data were numerically differentiated to obtain the velocity and the acceleration along the observed portion of the trajectory. The velocities of the burning rounds are given in Figure 6 as a function of distance along the trajectory. The acceleration appears to be nearly constant. Although the muzzle velocities of five rounds agree to 1% variations of 10% in muzzle velocity are indicated. Drag values for the burnt rounds are given in Table I as pseudo-drag values for the burning rounds are given in Table II. These, of course, reflect the rocket thrust as well.

The burnt rounds were fired at the maximum allowable pressure but the midrange velocities were considerably lower than those of the burning rounds. In an attempt to increase the velocity level the inert filler was removed from the heads of some of the burnt rounds (Fig. 5). The reduction in weight gave higher velocities but still about 10% lower than the burning rockets.

Overturning Moment

The overturning moment coefficient, K_M , for both the burnt and burning rounds is seen in Figure 7 as a function of Mach number. This value has been computed for a center of mass position 3.495 calibers from the base of the model. Assuming a variation of K_M with Mach number similar to that of the seven caliber spinner rocket of Reference 4 there is little if any effect of the burning motor on K_M .

Normal Force and Center of Pressure

The normal force coefficient, K_N , and the center of pressure, CP_N , are given in Figures 8 and 9. The real, or apparent, 10% rise in K_N for the burning rockets coupled with the apparent lack of variation of K_M is reflected in a rearward shift of the center of pressure of the burning rounds by 0.2 calibers. Since the lift is determined from the swerving

motion of the shell, the change in K_N may be due to erroneous average values for the mass of the shell in flight. An accurate determination of this quantity might lead to better agreement.

Magnus and Damping Moment

The Magnus moment coefficient, K_T, and the damping moment coefficient K_H - K_{MA}, are plotted in Figures 10 and 11 as a function of Mach number. The scatter of the data in these graphs appears to be associated with non-linear variation of the parameters to some degree - as well as with possible uncertainties of the physical parameters. Treating the burnt rockets alone by the method described in Reference 5 - a strong correlation with effective yaw was obtained (Figs. 12 and 13). Reference 5 shows that the range determined values of damping coefficients are the combinations given below when the force system is nonlinear:

$$(K_{H} - K_{MA})_{range} = K_{HO} + K_{MAO} + K_{H_{\delta}^{2}}^{*} \frac{(\emptyset_{1}^{*} K_{20}^{2} - \emptyset_{2}^{*} K_{10}^{2})}{\emptyset_{1}^{*} - \emptyset_{2}^{*}}$$

$$- \kappa_{T_{\delta}^{2}}^{*} (\frac{B}{A}) (\frac{\emptyset_{1}^{i} + \emptyset_{2}^{i}}{\emptyset_{1}^{i} - \emptyset_{2}^{i}}) (\kappa_{10}^{2} - \kappa_{20}^{2})$$

and,

$$K_{\text{Trange}} = K_{\text{T}_{0}} + K_{\text{T}_{\delta}^{2}}^{*} \delta_{e}^{2} + K_{\text{H}_{\delta}^{2}}^{*} (\frac{A}{B}) \left(\frac{K_{10} \phi_{1}^{*2} - K_{20}^{2} \phi_{2}^{*2}}{\phi_{1}^{*} - \phi_{2}^{*}} \right)$$

where

$$K_{H_{\delta}^2}^* = K_{H_{\delta}^2} - K_{MA_{\delta}^2} + \frac{1}{2} K_{MAO}$$

$$K_{T_{\delta}^2}^* = K_{T_{\delta}^2} - \frac{1}{2} K_{T_{O}}.$$

For the burnt rocket, it is assumed that the value of $K_{H_8^2}^*$ is negligible (there is insufficient data to do otherwise) and the K_T and K_H - K_{MA} data fitted to determine values of $K_{T_8^2}^*$, one obtains values of -41 \pm 3 and -30 \pm 4 respectively which are in fair agreement for the limited amount of data.

COMMENTAL

The variation of $K_{\rm T}$ and $K_{\rm H}$ - $K_{\rm MA}$ with yaw for the burning projectiles are too uncertain (due to physical parameters) to warrant any attempt to correlate with the effective yaw parameters. In comparson with data of Reference 4 there is about a 20% scatter about the spinner rocket data and there is no clear effect of the burning motor on $K_{\rm T}$ and $K_{\rm H}$ - $K_{\rm MA}$.

SUMMARY

A comparison of the aerodynamic properties of the T321 rocket both with and without a live motor showed only minor differences, about a 10% increase in K_N being the largest. These differences may reflect only the uncertainties of the physical characteristics of the burning rocket since these are utilized to infer the aerodynamic properties from the observed motion.

EUGENE D. BOYER

APPENDIX A

Table I

AERODYNAMIC DATA BURNT MOTORS

$\lambda_2 \times 10^3$ (ft ⁻¹)		23	41	.43	1.79	.70	1.78	K20	(Rad.)	.063	540.	540.	.035	.043	.036
$\lambda_1 \times 10^3$ (ft ⁻¹)		1.92	2.18	1.71	66.	1.76	1.11	K10	(Rad.)	.033	.023	.057	990.	840.	990.
¥	4	۲ <u>.</u>	10.	01	26	90	26	Ig	(ft.)	.13	80.	70.	8.	70.	70.
¥	ㅁ,	0.9	8.6	8.7	35.6	10.3	13.4	n n	(ff.)	.019	210.	.015	.012	.015	910.
X	4	.98	76.	.95	1.00	.95	66.	EV	(ft.)	.003	.003	.003	.003	.003	900.
¥	E C	1.85	1.76	2.00	1.91	1.96	1.89		LN	य	य	10	टा	13	75
S x 10 ² (Rad.)		.537	.254	.456	1.084	099.	1.087		N	18	20	27	20	23	22
82 x 102 (Rad.)				.372					lω	.1	ď	9.	1.2	7.	1.2
×	- 1	.1687	.1999	.1982	.200h	9661.	2005		Ø	1.7	1.7	1.6	1.7	1.6	1.7
M		.971	1.043	3908* 1.189 .1982	1.191	1.193	1.206		M	176.	1.043	1.189	1.191	1.193	3910* 1.206 1.7
Rd.		*2065	3904	3908*	*6062	*9062	3910*		Rd.	*2065	3904	3908*	*6062	*906£	3910*

* EMPTY HEADS

Table II

AERODYNAMIC DATA LIVE MOTORS

60 x 103	(ft-1)	1.22	1.41	1.52	.90	1.70	1.38	1.15	1.48	K20	(Rad.)	.037	240.	.015	.028	040.	.015	.035	.028
		1.71	1.37	1.84	2.02	1.22	1.78	1.72	1.79	K ₁₀	(Rad.)	450.	540.	410.	.019	.053	.010	.027	,024
~	K	.0.	08	13	₽0.	13	15	40	टा:-	I'g	(ff)	.18	.21	70.	स.	.20	%	41.	1.
	KH	2.9	7.5	12.2	8.3	8.5	12.4	8.6	9.11	EB	(ft)	.020	.025	210.	.018	.025		210.	210.
	KN	1.31	1.13	1.21	1.21	1.20		1.14	1.16	Ey	(ff)	.002	.002	.002	.002	.002	.003	.003	.003
	KM	2.10	2.09	2.15	2.16	2.10	2.03	2.15	2.18		NT	10	13	21	7	10	7	13	6
2 4	e(Rad.)	.362	.589	.061	.138	-757.	.039	.252	187		N	18	19	19	27	27	16	23	18
201 2	(Rad.)	.303	ፒሳት.	.050	.135	742.	.028	.231	.187	I	ß	6.	1.0	1.0	ω.	1.1	oʻ	0.	1.0
	^X	-1.665	-1.562	-1.499	-1.430	-1.485	-1.507	-1.415	-1.371		ß	7.6	1.7	1.7	9.1	1.7	1.7	9.1	9.1
	M	1.290 -1.665	1.323	1.346	1.348	1.351	1.352	1.357	1.385		M	1.290	1.323	1.346	1.348	1.351 1.7	1.352	1.357	1.385
	Rd.	3899							3901		Rd.		3897			3898			

APPENDIX B

GRAPHS AND PHOTOGRAPHS

Figure 1	Photograph of T231 Rocket
Figure 2	Shadowgraph of burning rocket in free flight (Velocity = 1565 fps)
Figure 3	Rocket launcher
Figure 4	Yaw inducer on muzzle of rocket launcher
Figure 5	Physical properties
Figure 6	Velocity vs. Distance
Figure 7	Overturning moment coefficient vs. Mach number
Figure 8	Normal force coefficient vs. Mach number
Figure 9	Normal force center of pressure vs. Mach number
Figure 10	Magnus moment coefficient vs. Mach number
Figure 11	Damping moment coefficient vs. Mach number
Figure 12	Magnus moment coefficient vs. effective yaw squared - Inert rocket - M = 1.2
Figure 13	Damping coefficient vs. "effective" yaw squared - Inert rocket - M = 1.2

FIGURE 1 T231 ROCKET

FIGURE 2 ROCKET IN FREE FLIGHT (VELOCITY 1565 fps)

FIGURE 4 YAW INDUCER ON MUZZIE OF ROCKET LAUNCHER

PHYSICAL PROPERTIES

	LIVE MOTOR	LIVE MOTOR AT 350 FT. FROM MUZZLE*	BURNT MOTOR	BURNT MOTOR EMPTY HEAD
A - lb-in ²	10.9	10.1	7.9	7.4
B - lb-in ²	249.0	235.6	200.9	177.3
cm - in	9.24	9.53	10.32	9.61
m - 1b	9.30	8.53	6.43	5.54

Figure 5

17 REGRADING DATA CANNOT BE PREDETER STREET

^{*} Midpoint of observations

COMPRESENTAL

CONTRACTAL

REFERENCES

- (1) Murphy, C. H. "Advances in the Dynamic Analysis of Range Data"
 Proceedings of the Aerodynamics Range Symposium January 1957:
 Unclassified Papers, BRL Report 1005, Part I.
- (2) MacAllister, L. C., Rogers, W. K. Aerodynamic Properties of the 2.75 inch Rocket T131, BRLM 948, November 1955
- (3) Development and Proof Services Analytical Laboratory Report 56-B-35
- (4) Murphy, C. H., Schmidt, L. E. The Effect of Length on the Aerodynamic Characteristics of Bodies of Revolution in Supersonic Flight, BRL Report 876 (1953) (C)
- (5) Murphy, C. H. The Measurement of Non-Linear Forces and Moments by Means of Free Flight Tests, BRL Report 974, February 1956.

DISTRIBUTION LIST

No. of Copies	Organization	No. of Copies	Organization
2	Chief of Ordnance Department of the Army Washington 25, D. C. Attn: ORDTB - Bal Sec ORDTW	1	Commanding Officer and Director David W. Taylor Model Basin Washington 7, D. C. Attn: Aerodynamics Laboratory
		1	Commanding Officer Naval Air Rocket Test Station Lake Denmark Dover, New Jersey
10	British Joint Services Mission 1800 K Street, N. W. Washington 6, D. C. Attn: Mr. John Izzard Reports Officer	2	Commander Naval Ordnance Test Station China Lake, California Attn: Technical Library
4	Canadian Army Staff 2450 Mass. Ave., N. W. Washington 8, D. C.	4	Commander Air Research and Development Command P. O. Box 1395 Baltimore 3, Maryland
3	Chief, Bureau of Ordnance Department of the Navy Washington 25, D. C. Attn: ReO	1	Attn: Deputy for Development Commander Air Force Armament Center Eglin Air Force Base, Florida
2	Commander Naval Proving Ground Dahlgren, Virginia	10	Attn: ACOT Director Armed Services Technical Information Agency
1	Commander Naval Ordnance Lab. White Oak Silver Spring, Maryland Attn: Mr. Witt		Documents Service Center Knott Building Dayton 2, Ohio Attn: DSC - SD
1	Superintendent Naval Postgraduate School Monterey, California	1	Director National Advisory Committee for Aeronautics 1512 H Street, N. W. Washington 25, D. C.
2	Commander Naval Air Missile Test Center Point Mugu, California	1	National Advisory Committee for Aeronautics Langley Memorial Aeronautical Laboratory Langley Field, Virginia Attn: Mr. J. Bird Mr. C. E. Brown Dr. Adolf Buseman

CONFIDENTIAL

DISTRIBUTION LIST

No. of Copies		o. of opies	Org	ganization
1	National Advisory Committe for Aeronautics Lewis Flight Propulsion Laboratory Cleveland Airport	e l	8621 Ge Silver	d Physics Laboratory eorgia Avenue Spring, Maryland Mr. George L. Seielstad
	Cleveland, Ohio Attn: F. K. Moore	1	4455 G	Aeronautical Lab., Inc. enesee Street o, New York
1	Director, JPL Ord Corps Installation 4800 Oak Grove Drive			Miss Elma T. Evans Librarian
	Department of the Army Pasadena, California Attn: Mr. Irl E. Newlan Reports Group		THRU:	Bureau of Aeronautics Representative 4455 Genesee Street Buffalo 21, New York Attn: Commander Bolles
1	Commanding Officer Diamond Ordnance Fuze Laboratories	1	_	Aeronautical Division S-Wright Corporation
	Washington 25, D. C. Attn: ORDTL 06.33			idge, New Jersey Sales Dept. (Government)
1	Commanding General Redstone Arsenal Huntsville, Alabama Attn: Technical Library		THRU:	Air Force Plant Representative Wright Aeronautical Division Wood-Ridge, New Jersey
3	Commanding Officer Picatinny Arsenal Dover, New Jersey Attn: Samuel Feltman Ammunition Labs.			
1	Commanding General Frankford Arsenal Philadelphia 37, Penna. Attn: Reports Group			
1	Commanding Officer Chemical Corps Chemical and Radiological Lab. Army Chemical Center, Maryland			