ゼミ資料 待ち行列理論と板の動きへの応用

学籍番号:201311324

百合川尚学

1 待ち行列理論の導入

興味があること

- 観測を始めて t 時間経過した後のシステム内の客数.
- システムにいる客数が初期状態から0になるまでの時間の分布.
- システムを最良気配に見立てると、最良気配にかかる注文の数量の変化の分布を考えることになる.

客

2 基礎理論まとめ

参考文献:

- 1. Suzuki, Queueing, Shokabo, 1972, pp. 20-65.
- 2. Endo, Zuo, Kishimoto, Modelling Intra-day Stock Price Changes In Terms of a Continuous Double Auction System, The Japan Society for Industrial and Applied Mathematics, Vol.16, No.3, 2006, pp.305-316.
- 3. Li, Hui, Endo, Kishimoto, A Quantitative Model for Intraday Stock Price Changes Based on Order Flows, J Syst Sci Complex, 2014, 27: 208-224.

上記文献2と3に従い、板は最良気配のみを考え、板が動くことは最良気配値が動くこととする.

注文の種類

上記文献2と3に従い、次の4種類のみを考える.

- 指値買い/売り注文 (最良買い/売り気配の数量を増加する.)
- 成行買い/売り注文 (最良買い/売り気配の数量を減少する.)

客

3 基礎理論まとめ

或るシステムがあり、そのシステムには或る確率分布に従った時間間隔で客が訪れ、或る確率分布に従った時間だけサービスを受け退場する、到着の時間間隔およびサービス時間は客ごとに独立であると考える。

到着時間の分布について

観測開始時刻を T_0 ,始めの客が到着する時刻を T_1 ,2番目の客が到着する時刻を T_2 ,…,として系列 $\{T_n\}_{n=0}^\infty$ を得る.各時間間隔 $T_n-T_{n-1},n=0,1,2,\cdots$ はどの二つも互いに独立で同一な確率分布(到着分布)に従う.

到着分布の例: k-アーラン分布 $(k - Erlang\ distribution)$ 分布関数を $E_k(x)$, $-\infty < x < \infty$ と表すと,

$$E_k(x) \equiv \begin{cases} 1 - \exp(-\lambda kx) \left(1 + \frac{\lambda kx}{1!} + \dots + \frac{(\lambda kx)^{k-1}}{(k-1)!} \right) & x \ge 0\\ 0 & x < 0 \end{cases}$$
 (1)

平均 $\frac{1}{\lambda}$, 分散 $\frac{1}{k\lambda^2}$, 特性関数 $\phi_{E_k}(t) = \left(1 - \frac{it}{\lambda k}\right)^{-k} (i: 虚数単位)$. (付録1参照)

到着分布の平均の逆数を到着率と云う. これは単位時間当たりの平均到着客数を表す. (上の例だと到着率は λ .)

4 基礎理論まとめ

定理 1 k-アーラン分布の到着率を λ とする。ここで一定到着分布を

$$F(x) \equiv \begin{cases} 1 & x \ge \frac{1}{\lambda} \\ 0 & x < \frac{1}{\lambda} \end{cases} \tag{2}$$

とおく. k-アーラン分布は $k \to \infty$ で一定到着分布に分布収束する.

証明 1 k- アーラン分布の特性関数を $\phi_{E_k}(t)$,一定到着の分布の特性関数を $\phi_F(t)$ と表す. $\phi_{E_k}(t)$ が $\phi_F(t)$ に各点収束すれば、Glivenkoの定理により定理が示される.

$$\lim_{k \to \infty} \phi_{E_k}(t) = \lim_{k \to \infty} \left(1 - \frac{it}{\lambda k} \right)^{-k} = \exp\left(\frac{it}{\lambda}\right). \tag{3}$$

一方、一定到着の特性関数は、一定到着分布が離散分布であるから、

$$\int_{-\infty}^{\infty} \exp(itx)dF(x) = \exp\left(it\frac{1}{\lambda}\right)F(\frac{1}{\lambda}) = \exp\left(\frac{it}{\lambda}\right). \tag{4}$$

従って定理は証明された.

(証明終)

k-アーラン分布のk=1のとき、客の到着時間間隔は到着率 λ の指数分布 $E_X(\lambda)$ に従う、指数分布はマルコフ性を有つ:

$$X(\omega) \sim E_X(\lambda),$$
 (5)

$$\Pr\left(X \le \tau + t | X > \tau\right) = \frac{\exp\left(\lambda \tau\right) - \exp\left(\lambda(\tau + t)\right)}{\exp\left(\lambda(\tau)\right)} = \Pr\left(X \le t\right). \quad (\tau, t > 0)$$
(6)

この性質から、次の定理が成り立つ.

定理 2 到着時間間隔が独立に同一な指数分布に従うとき、任意の時間区間 $(\tau, \tau + t]$ に到着する客数は同一なPoisson分布に従い、重ならない時間間隔では独立となる、また逆も成り立つ。

証明 2 (1)任意の時間区間に到着する客数はPoisson分布に従う

観測開始時点を0として、時間 $(\tau, \tau + t]$ の間にシステムに到着する客数の総数を $N(\tau, \tau + t]$ と表す、 $G_n(x)$ $(x \ge 0)$ を、

客

Gamma分布 $G_A(n, \frac{1}{\lambda})$ の分布関数であるとする.

$$\Pr\left(N(\tau, \tau + t] = n\right) = \Pr\left(N(\tau, \tau + t] \ge n\right) - \Pr\left(N(\tau, \tau + t] \ge n + 1\right) \tag{7}$$

$$= \Pr\left(G_n(x) \le t\right) - \Pr\left(G_{n+1}(x) \le t\right) \qquad (付録2参照) \tag{8}$$

$$= \int_0^t \frac{\lambda^n}{(n-1)!} x^{n-1} \exp\left(-\lambda x\right) dx - \int_0^t \frac{\lambda^{n+1}}{n!} x^n \exp\left(-\lambda x\right) dx \tag{9}$$

$$= \left[\frac{\lambda^n}{n!} x^n \exp\left(-\lambda x\right)\right]_{x=0}^{x=t} + \int_{5/6}^t \frac{\lambda^{n+1}}{n!} x^n \exp\left(-\lambda x\right) dx - \int_0^t \frac{\lambda^{n+1}}{n!} x^n \exp\left(-\lambda x\right) dx \tag{10}$$

$$=\frac{\lambda^n}{n!}t^n\exp\left(-\lambda t\right). \tag{11}$$

(2) 重ならない時間間隔では独立となる

任意の重ならない時間間隔 $(\tau_1, \tau_1 + t_1], (\tau_2, \tau_2 + t_2]$ に対して、到着客数をそれぞれ n_1, n_2 と表すと、同時確率は以下のように表される:

$$\Pr\left(N(\tau_1, \tau_1 + t_1] = n_1, N(\tau_2, \tau_2 + t_2] = n_2\right) \tag{12}$$

$$= \Pr\left(N(\tau_1, \tau_1 + t_1] = n_1\right) \Pr\left(N(\tau_2, \tau_2 + t_2] = n_2 |N(\tau_1, \tau_1 + t_1] = n_1\right) \tag{13}$$

$$= \left\{ \Pr\left(G_{n1}(t_1) \le t_1 \right) - \Pr\left(G_{n_1+1}(t_1) \le t_1 \right) \right\} \left\{ \Pr\left(G_{n2}(t_2) \le t_2 \right) - \Pr\left(G_{n_2+1}(t_2) \le t_2 \right) \right\} \tag{14}$$

$$= \Pr(N(\tau_1, \tau_1 + t_1) = n_1) \Pr(N(\tau_2, \tau_2 + t_2) = n_2). \tag{15}$$

(3)逆を示す

任意の時間区間 $(\tau, \tau + t]$ に到着する客数は同一な Poisson 分布に従い、重ならない時間間隔では独立となると仮定の下で、時間間隔を表す確率変数 T の分布を導出する。最後に到着が観測された時刻 τ を始点として次の到着が観測されるまでの時間の分布は、

$$\Pr(T \le t) = 1 - \Pr(N(\tau, \tau + t) = 0) = 1 - \exp(-\lambda t). \tag{16}$$

(証明終)

6 付録1

到着分布の例: k-アーラン分布 (k - Erlang distribution)

$$E_k(x) \equiv \begin{cases} 1 - \exp\left(-\lambda kx\right) \left(1 + \frac{\lambda kx}{1!} + \dots + \frac{(\lambda kx)^{k-1}}{(k-1)!}\right) & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$(17)$$

平均,分散,特性関数を計算する.密度関数

$$f(x) = E'_k(x)$$

$$= \begin{cases} \lambda k \exp\left(-\lambda k x\right) \left(1 + \frac{\lambda k x}{1!} + \dots + \frac{(\lambda k x)^{k-1}}{(k-1)!}\right) - \lambda k \exp\left(-\lambda k x\right) \left(1 + \frac{\lambda k x}{1!} + \dots + \frac{(\lambda k x)^{k-2}}{(k-2)!}\right) & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$= \begin{cases} \lambda k \exp\left(-\lambda k x\right) \frac{(\lambda k x)^{k-1}}{(k-1)!} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$(19)$$

これはGamma分布 $G_A(k, \frac{1}{\lambda k})$ の密度関数である。従って一般のGamma分布 $G_A(\alpha, \beta)$ について平均、分散、特性関数を計算する方が楽である。特性関数:確率変数 $X \sim G_A(\alpha, \beta)$ について、

$$\phi(t) = E[e^{itX}] \tag{21}$$

$$= \int_0^\infty e^{itx} \frac{1}{\Gamma(\alpha)\beta^\alpha} x^{\alpha-1} e^{-\frac{x}{\beta}} dx \tag{22}$$

$$= \int_0^\infty \frac{1}{\Gamma(\alpha)\beta^\alpha} x^{\alpha-1} e^{-(\frac{1}{\beta} - it)x} dx \tag{23}$$

$$= \lim_{R \to \infty} \int_0^R \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-(\frac{1}{\beta} - it)x} dx \tag{24}$$

$$= \lim_{R \to \infty} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \left(\frac{\beta}{1 - i\beta t}\right)^{\alpha} \int_{0}^{\frac{R}{\beta} - itR} z^{\alpha - 1} e^{-z} dz. \tag{25}$$

ここで

$$\int_0^{\frac{R}{\beta}-itR} z^{\alpha-1} e^{-z} dz$$

について複素積分を考える.積分路を $\Gamma \equiv \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ として,被積分関数がCの整関数であることから Γ および内部領域に孤立特異点は存在しない.積分の向きは左回りとして,Cauchyの積分定理が成り立つので

$$\oint_{\Gamma} z^{\alpha - 1} e^{-z} dz = 0$$

が成り立つ. Γ_2 上の積分は

$$\left| \int_{\Gamma_2} z^{\alpha - 1} e^{-z} dz \right| = \left| \int_{-tR}^0 \left(\frac{R}{\beta} + iy \right)^{\alpha - 1} e^{-\frac{R}{\beta} - iy} i dy \right|$$

$$\leq \int_{-tR}^0 \left(\frac{R}{\beta} + |y| \right)^{\alpha - 1} e^{-\frac{R}{\beta}} dy.$$
(26)

任意の $\epsilon > 0$ に対しtについて定まる或る $R_1(t)$ が存在して、 $R > R_1(t)$ ならば

$$\int_{-tR}^{0} \left(\frac{R}{\beta} + |y|\right)^{\alpha - 1} e^{-\frac{R}{\beta}} dy < \epsilon$$

が成り立つ. Γ_3 上の積分は

$$\int_{\frac{R}{\beta}}^{0} z^{\alpha - 1} e^{-z} dz = -\int_{0}^{\frac{R}{\beta}} z^{\alpha - 1} e^{-z} dz.$$

これも広義積分は収束するので、任意の $\epsilon>0$ に対し或る R_2 が存在して、 $R>R_2$ ならば

$$\Gamma(\alpha) - \epsilon < \int_0^{\lambda R} z^{\alpha - 1} e^{-z} dx \le \Gamma(\alpha).$$

従って、 $R > max\{R_1(t), R_2\}$ と置いて

$$\left| \int_{\Gamma_1} z^{\alpha - 1} e^{-z} dz - \Gamma(\alpha) \right| = \left| -\int_{\Gamma_2} z^{\alpha - 1} e^{-z} dz - \int_{\Gamma_3} z^{\alpha - 1} e^{-z} dz - \Gamma(\alpha) \right| < 2\epsilon.$$
 (29)

 ϵ は任意であるから

$$\lim_{R \to \infty} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \left(\frac{\beta}{1 - i\beta t}\right)^{\alpha} \int_{0}^{\frac{R}{\beta} - itR} z^{\alpha - 1} e^{-z} dz = \left(\frac{1}{1 - i\beta t}\right)^{\alpha}$$

が成り立つ. $t \leq 0$ の場合も同じ結論となる.

(証明終)

(28)

7 付録2

確率変数 $X(\omega),Y(\omega)$ を、それぞれ Gamma 分布 $G_A(n-1,\frac{1}{\lambda})$ 、指数分布 $E_X(\lambda)$ に独立に従うとする。このとき和 $Z(\omega)=X(\omega)+Y(\omega)$ の分布を求める。

$$\Pr\left(Z \le z\right) = \iint\limits_{x,y \ge 0, x+y \le z} \frac{\lambda^{n-1}}{(n-2)!} x^{n-2} \exp\left(-\lambda x\right) \lambda \exp\left(-\lambda y\right) dx dy \tag{30}$$

$$= \int_0^z \frac{\lambda^{n-1}}{(n-2)!} x^{n-2} \exp(-\lambda x) \left[1 - \exp(-\lambda y)\right]_{y=0}^{y=z-x} dx \tag{31}$$

$$= \int_{0}^{z} \frac{\lambda^{n-1}}{(n-2)!} x^{n-2} (\exp(-\lambda x) - \exp(-\lambda z)) dx$$
 (32)

$$= \left[\frac{\lambda^{n-1}}{(n-1)!} x^{n-1} (\exp(-\lambda x) - \exp(-\lambda z)) \right]_{x=0}^{x=z} + \int_0^z \frac{\lambda^n}{(n-1)!} x^{n-1} \exp(-\lambda x) dx$$
 (33)

$$= \int_0^z \frac{\lambda^n}{(n-1)!} x^{n-1} \exp\left(-\lambda x\right) dx. \tag{34}$$

よってZがGamma分布 $G_A(n, \frac{1}{\lambda})$ に従っていると示された。 $G_A(1, \frac{1}{\lambda}) = E_X(\lambda)$ であることから、独立に同一の指数分布に従うn 個の確率変数の和の分布は $G_A(n, \frac{1}{\lambda})$ であることが帰納的に示される。