

Analízis III

Simon László előadása alapján

ELTE, 2009. December

Előadó e-mail címe: simonl a ludens.elte.hu-nál

Ez a jegyzet **nem** szakirodalom s nem garantált, hogy az órai anyagot teljesen lefedi, az előadásokra bejárni ajánlott.

Ha a jegyzetben helyesírási, tartalmi vagy formai hibát találsz, kérlek jelezd az előadónak vagy a <u>tuzesdaniel@gmail.com</u> e-mail címen!

Differenciálegyenletek

09.07

(Simon Péter helyettesít) Mi a differenciálegyenlet?

P1

$$1. x(t) = -\omega^2 x(t)$$

2.
$$x(t) = F(t) / m$$

3.
$$\partial_t u = \Delta u$$

4.
$$x(t) = x(t-1)$$

Ezeket lehet rendszerezni: ODE (ordenary differential equation, azaz közönséges differenciál-egyenlet, 1-es és 2-es), PDE (partial differential equation, 3-as), FDE (functional differential equation, 4-es).

Most az ODE-val foglalkozunk. Mi a közönséges differenciál-egyenlet?

<u>Definíció</u>: legyen F: ℝ $^{n+2} \rightarrow$ ℝ n-edrendű közönséges differenciálegyenlet: $\forall t$ -re $0 = F(t, x(t), x(t), x(t), \dots, x^{(n)}(t))$

Megjegyzés: egy ilyen *n*-edrendű egyenlet átírató elsőrendű rendszerré. Pl:

 $x(t) = -\omega^2 x(t)$ egyenletet átírjuk: $y_1(t) = x(t)$, $y_2(t) = x(t)$. Ekkor y-ra az alábbi elsőrendű, kétismeretlenes rendszer áll fenn:

$$y_1(t) = y_2(t)$$

$$y_2(t) = -\omega^2 \cdot y_1(t)$$

n-edrendűnél: $y_1 = x$, $y_2 = x$, ..., $y_n = x^{(n-1)}$. Ekkor $(y_1,...,y_n)$ -re elsőrendű rendszert kapunk.

<u>Definíció</u>: legyen f: ℝ × ℝ n \rightarrow ℝ n , x(t) = f(t, x(t)) elsőrendű (explicit) közönséges differenciálegyenlet-rendszer. Ismeretlen az x: ℝ \rightarrow ℝ n függvény. Koordinátánként kiírva:

$$x_1(t) = f_1(t, x_1(t), x_2(t), ..., x_n(t))$$

$$x_2(t) = f_2(t, x_1(t), x_2(t), ..., x_n(t))$$

$$\vdots$$

$$x_n(t) = f_n(t, x_1(t), x_2(t), ..., x_n(t))$$

Mivel foglalkozik a közönséges differenciálelmélet?

- 1. Mi a megoldás? Azaz számítsuk ki a megoldást. (Ezt már tanultuk.) Vannak:
 - a. képlettel megoldhatók
 - b. képlettel nem megoldhatók (de numerikusan közelíthetők)
- 2. Megoldás létezésének, egyértelműségének keresése, függése a paraméterektől
- 3. Milyen a megoldás? Pl periodikus-e, korlátos-e... A megoldást szeretnénk jellemezni annak kiszámítása nélkül. Pl x = x és x(0) > 0. Ekkor egyből látjuk, hogy x szigmon nő, akkor is, amikor még nem tudtuk, hogy konkrétan mi a megoldás.

Közönséges differenciálegyenlet megoldásának létezése és egyértelműsége

Pl: x(t) = x(t), ennek egy jó megoldása $x(t) = c \cdot e^t$, $c \in \text{\&Ropf}$;, azaz végtelen sok megoldás van. Legyen kezdeti feltétel: $x(0) = a \in \text{\&Ropf}$; adott. Ekkor már csak 1 megoldás van az ilyen fajtákból: $c \cdot e^0 = a \Rightarrow c = a$, vagyis a megoldás $x(t) = a \cdot e^t$. De más fajtából lehetne még megoldás? Nem, ugyanis:

$$x(t) = x(t)$$

$$x(t) \cdot e^{-t} - x(t)e^{-t} = 0$$

$$(x(t) \cdot e^{-t})' = 0 \implies x(t) \cdot e^{-t} = c$$

Az implikáció csak akkor igaz, ha D(x) (azaz a differenciáloperátor) egy intervallumon van értelmezve. Tehát $\exists k \in \&$ Ropf; $: x(t)e^{-t} = k \iff x(t) = k \cdot e^t$. A megoldás egyértelmű, mert bármilyen kezdőfeltételt adok meg, lesz pontosan 1 megoldás.

Másik példa: $x(t) = \sqrt{|x(t)|}$. Mi a megoldás x > 0 -ra?

$$\frac{x(t)}{\sqrt{x(t)}} = 1$$
 \Rightarrow $2\sqrt{x(t)} = t + c$ \Rightarrow $x(t) = \left(\frac{t+c}{2}\right)^2$. Hamis gyökök a parabolák "bal oldalai".

x < 0 esetén a megoldás "lefelé fordított parabolák bal oldalai", hamis megoldás a parabolák "jobb oldalai". x = 0 esetén mindkét fajta megoldás jó. Így adott kezdeti feltétel mellett végtelen sok megoldás létezik. Ha $x(t_0) = a$ a kezdeti feltétel, akkor a > 0 esetén a megoldás csak lokálisan egyértelmű, de globálisan nem.

Mitől lesz a megoldás egyértelmű?

<u>Tétel</u>: ha x(t) = f(t, x(t)) közönséges diffegyenletben az f függvény az x változóban teljesíti a lokális Lipschitz feltételt, akkor a megoldás egyértelmű. Vagyis ha minden pont

egy alkalmas környezetéhez $\exists \ L \in \& \text{Ropf};^+: \ | \textit{f}(t, p) - \textit{f}(t, q) \ | \ \leq L \cdot \ | \ p - q \ | \ ,$ akkor a megoldás egyértelmű.

Pl: g(x) = 5x, vagy $g(x) = x^2$ teljesítik a lokális Lipschitz feltételt, de a $g(x) = \sqrt{|x|}$ már nem. Ez utóbbi 0-ban nem lok. Lip, csak 1-ben pl.

Észrevétel: ha a derivált létezik, és korlátos minden pont környezetében, akkor lok. Lip.

A tétel bizonyítása az alábbi lemmán alapszik: Gronwall lemma (egyszerű eset): legyen $u:[a,b] \to \&$ Ropf; diffható, melyhez $\exists k \in \&$ Ropf; $^+:u(t) \le k \cdot u(t) \ \forall t \in [a,b]$. Ekkor $u(t) \le u(a) \cdot e^{k(t-a)} \ \forall t \in [a,b]$.

Bizonyítás: beszorzunk e^{-kt} -vel:

$$u(t) \cdot e^{-kt} - k \cdot u(t) \cdot e^{-kt} \le 0$$

$$\left(u(t)e^{-kt}\right)' \le 0$$

$$u(t)e^{-kt} \le u(a)e^{-ka}$$

$$u(t) \le u(a)e^{k(t-a)}$$

Tétel bizonyítása: legyen x és y két megoldás, amelyekhez $\exists \ \tau \in \& Ropf; \ : x(\tau) = y(\tau).$

Belátjuk, hogy $x(t) = y(t) \forall t$. Bizonyítás n = 1 esetre: $u(t) = (x(t) - y(t))^2$,

$$\dot{u}(t) = 2(x(t) - y(t)) \cdot \left(\dot{x}(t) - \dot{y}(t)\right) = 2(x(t) - y(t))(f(t, x(t)) - f(t, y(t))).$$

$$u(t) \leq \begin{vmatrix} \cdot \\ u(t) \end{vmatrix} = 2 |x(t) - y(t)| \cdot |f(t, x(t)) - f(t, y(t))| \leq 2 |x(t) - y(t)| \cdot L \cdot |x(t) - y(t)| = 2L \cdot u(t)$$

Gronwall alkalmazása: $u(t) \le u(a) \cdot e^{2L(t-a)}$,

$$u(\tau) = 0 \implies u(t) = (x(t) - y(t))^2 \le 0 \implies x(t) = y(t) \ \forall \ t \ge \tau$$
. Hasonlóan igaz a $t \le \tau$ -ra is.

A Hilbert tér geometriája, Fourier sorfejtés

Kiegésztés: fogalmaink használatához be kell vezetni a komplex Euklideszi tér fogalmát. Komplex vektortér: a definíció analóg a valós vektortér definíciójával, kivéve: komplex számmal való szorzás is értelmezve van, a műveleti tulajdonságok ugyanazok.

Komplex Euklideszi tér: komplex vektortér (az alaptest a komplex számok halmaza, \mathbb{C}), plusz 2 elem skalárszorzata is értelmezve van, értéke komplex szám. A műveleti tulajdonságok analógok, eltérés: $\langle x,y\rangle=\langle y,x\rangle$ (a felülhúzás a komplex konjugálás), ekkor amúgy $\langle \lambda x,y\rangle=\lambda\langle x,y\rangle$ és $\langle x,\lambda y\rangle=\lambda\langle x,y\rangle$. (Vegyük észre, hogy a komplex vektortereken értelmezett skaláris szorzás kétféleképp definiálható. Itt - és a matematikában általában - a skaláris szorzás az első változójában lineáris és a másodikban konjugált lineáris. Fizikában fordítva, azaz az első változójában lineáris, a másodikban konjugált lineáris: $\langle \lambda x,y\rangle=\lambda\langle x,y\rangle$, illetve $\langle x,\lambda y\rangle=\lambda\langle x,y\rangle$.)

Megjegyzés, példák komplex euklideszi térre:

•
$$\mathbb{C}^n$$
 esetén $x = (x_1, x_2,...,x_n), x_j \in \mathbb{C}$, akkor $\lambda x = (\lambda x_1, \lambda x_2,...,\lambda x_n), \langle x, y \rangle = \sum_{j=1}^n x_j y_j$

• $L^2(M)$ tér (komplex esetben), ha $M \subset \&$ Ropf; mérhető halmaz: legyen $f: M \to \mathbb{C}, f = f_1 + i \cdot f_2$. Legyen továbbá f_1, f_2 valós függvények. f mérhetősége azt jelenti, hogy f_1, f_2 mérhető $\Rightarrow \int_M f: = \int_M f_1 + i \int_M f_2 \cdot f: M \to \mathbb{C}$ integrálható $\Leftrightarrow |f|$ integrálható, $|f|: M \to \&$ Ropf; mérhető.

<u>Definíció</u>: jelölje $L^2(M)$ az olyan $f: M \to \mathbb{C}$ mérhető függvények összességét, amelyekre $|f|^2$ integrálható. Könnyen belátható, hogy $L^2(M)$ komplex vektortér. Vezessük be ebben a következő skalárszorzatot: $\langle f, g \rangle := \int_M^{-} fg$. Így egy Euklideszi teret kapunk. Sőt, a tér teljes, vagyis $L^2(M)$ Hilbert tér.

• Komplex l^2 tér, $x:=(x_1, x_2,...,x_j,...), x_j \in \mathbb{C}, l^2$ komplex euklideszi tér, ebben a skaláris szorzás $\langle x, y \rangle = \sum_{j=1}^{\infty} x_j y_j$. Bizonyítható, hogy teljes is.

Ortogonális kiegészítő altér

<u>Definíció</u>: legyen X Hilbert tér (vagy akár Banach is). Egy $Y \subseteq X$ halmazt altérnek nevezzük, ha az összeadás és számmal való szorzás nem vezet ki belőle és zárt részhalmaz (a konvergencia nem vezet ki).

<u>Definíció</u>: legyen *X* Hilbert tér, s két eleme *x* és *y*. Ezek merőlegesek, vagyis $x \perp y$, ha $\langle x, y \rangle = 0$.

<u>Definíció</u>: legyen *X* Hilbert tér, $Y \subseteq X$ altér. Azt mondjuk, hogy az $x \in X$ elem *Y* ortogonális, ha $\forall y \in Y$ -ra $\langle x, y \rangle = 0$.

Definíció: legyen X Hilbert tér, $Y \subseteq X$ altér. Az Y altér ortogonális kiegészítő altérét, Y^{\perp} -t így értelmezzük: $Y^{\perp} := \{x \in X : x \perp Y\}$.

<u>Állítás</u>: Y^{\perp} ⊂ X is altér.

Bizonyítás: az összeadás és számmal való szorzás nem vezet ki belőle, ugyanis tfh $y_1, y_2 \in Y^\perp$, $x \in Y$ tetszőleges. Ekkor $\langle \lambda_1 y_1 + \lambda_2 y_2, x \rangle = \lambda_1 \langle y_1, x \rangle + \lambda_2 \langle y_2, x \rangle = 0$. Y^\perp zárt halmaz, ugyanis legyen $y_j \in Y^\perp$, $\lim(y_j) = y \in X$. Tudjuk, hogy $\langle y_j, x \rangle = 0 \ \forall \ x \in Y$. $y_j \to y \Rightarrow \langle y_j, x \rangle \to \langle y, x \rangle$ minden rögzített x-re, ugyanis a skalárszorzat a tényezőktől folytonosan függ, tehát $\langle y, x \rangle = 0$, $\forall \ x \in X$ -re, vagyis $y \in Y^\perp$.

Megjegyzés: komplex Cauchy-Schwarz egyenlőtlenség, azaz $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ bizonyítása:

$$0 \le \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda \langle y, x \rangle + \lambda \langle x, y \rangle + \lambda \lambda \langle y, y \rangle$$

$$0 \le \langle x, x \rangle + \lambda \langle y, x \rangle + \lambda \left[\langle x, y \rangle + \lambda \langle y, y \rangle \right]$$

A $\lambda \in \mathbb{C}$ számot válasszuk meg úgy, hogy λ együtthatója 0 legyen. Ez teljesül, ha $\lambda = -\frac{\langle x,y\rangle}{\langle y,y\rangle} \, (y=0 \text{ triviális eset, így feltesszük, hogy } y \neq 0 \text{), behelyettesítve:}$

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle = \langle x, x \rangle - \frac{\left| \langle x, y \rangle \right|^2}{\langle y, y \rangle} \quad \Rightarrow \quad \left| \langle x, y \rangle \right|^2 \le \langle x, x \rangle \langle y, y \rangle.$$

Riesz-féle felbontási tétel: legyen X Hilbert tér, Y egy altere, Y^{\perp} az Y-nak ortogonális kiegészítő altere! Ekkor $\forall x \in X$ elemre x = y + z, ahol $y \in Y$, $z \in Y^{\perp}$ és a felbontás egyértelmű.

<u>Lemma (paralelogramma egyenlőség)</u>: legyen X egy Hilbert tér. Ekkor $\forall a, b \in X$ esetén $\|a+b\|^2 + \|a-b\|^2 = 2 \|a\|^2 + 2 \|b\|^2$.

Bizonyítás (lemmáé):
$$||a+b||^2 + ||a-b||^2 = \langle a+b, a+b \rangle + \langle a-b, a-b \rangle =$$

= $||a||^2 + ||b||^2 + \langle a, b \rangle + \langle b, a \rangle + ||a||^2 + ||b||^2 - \langle a, b \rangle - \langle b, a \rangle = 2 ||a||^2 + 2 ||b||^2$.

Bizonyítás (tételé): legyen $d := \inf\{ \|x-y\| : y \in Y \} \ge 0 \ (d \text{ véges})$. Belátjuk, hogy $\exists y_0 \in Y : \|x-y_0\| = d$. Az infinimum definíciója miatt $\exists y_j \in Y : d^2 \le \|x-y_j\|^2 < d^2 + 1 \ / j \quad j \in \&$ naturals;. Tekintsük az (y_j) sorozatot! Állítás: (y_j) Cauchy sorozat. Ehhez felhasználjuk a paralelogramma egyenlőséget: $a := x-y_j, b := x-y_k$. $\|(x-y_j) + (x-y_k)\|^2 + \|(x-y_j) - (x-y_k)\|^2 = 2 \|x-y_j\|^2 + 2 \|x-y_k\|^2,$ $\|y_k-y_j\|^2 = 2 \|x-y_j\|^2 + 2 \|x-y_k\|^2 - \|2x-(y_j+y_k)\|^2 \le 4 \|x-\frac{y_j+y_k}{2}\|^2$ $\le 2(d^2+1/j) + 2(d^2+1/k) - 4d^2 = \frac{2}{j} + \frac{2}{k} < \varepsilon, \text{ ha } j, \ k \ge j_0.$

Mivel X tér teljes $\exists y_0 \in X : \lim_{j \to \infty} \|y_j - y_0\| = 0$. Mivel Y altér zár halmaz

$$\Rightarrow y_0 = \lim(y_i) \in Y$$
.

Másrészt
$$d = \inf\{ \|x - y\| : y \in Y\}, d^2 \le \|x - y_j\|^2 < d^2 + \frac{1}{j} \text{ és}$$

$$\lim(y_j) = y_0 \implies \|x - y_0\|^2 = d^2$$
, mivel $\|x - y_0\| = \lim \|x - y_j\|$. Legyen $z_0 = x - y_0$. Be kellene még látni, hogy $z_0 \perp Y$, vagyis $x = y_0 + z_0$, ahol $y_0 \in Y$, $z_0 \in Y^{\perp}$.

Legyen $y \in Y$! Mivel d a fenti infinimum, ezért tetszőleges $\lambda \in \&$ Kopf; esetén

$$d^2 = \|x - y_0\|^2 \le \|x - y_0 - \lambda y\|^2 =$$

$$= \|z_0 - \lambda y\|^2 = \langle z_0 - \lambda y, z_0 - \lambda y \rangle = \|z_0\|^2 - \lambda \langle y, z_0 \rangle - \lambda [\langle z_0, y \rangle - \lambda \|y\|^2]. \text{ Most } \lambda \text{ -t}$$

megint úgy választjuk, hogy λ együtthatója 0 legyen, vagyis legyen $\lambda = \frac{\langle z_0, y \rangle}{\|y\|^2}$ (megint

feltehetjük, hogy
$$y \neq 0$$
). Tehát $d^2 \leq d^2 - \lambda \langle y, z_0 \rangle = d^2 - \frac{\langle z_0, y \rangle}{\|y\|^2} \langle y, z_0 \rangle = d^2 - \frac{\left\|\langle z_0, y \rangle\right\|^2}{\|y\|^2}, 0.$

Tehát z_0 , vagyis valóban lehetséges ilyen felbontás.

Indirekt bizonyítjuk, hogy a felbontás egyértelmű. Tfh két alakban is felírható x:

$$x = y_0 + z_0 = y_1 + z_1$$
, ahol $y_1, y_2 \in Y$ és $z_1, z_2 \in Y^{\perp}$. $Y \ni (y_0 - y_1) := a = (z_1 - z_0) \in Y^{\perp}$.

$$\langle y_0 - y_1, z_1 - z_0 \rangle = \|a\|^2 = 0 \implies y_0 - y_1 = z_0 - z_1 = 0 \implies y_0 = y_1, z_0 = z_1$$

$$09.21$$

Ortogonális rendszerek

<u>Definíció</u>: egy *X* vektortérben az *M* halmaz elemei lineárisan függetlenek, ha bármely véges sok lineárisan független.

Definíció: legyen X normált tér! X dimenziója az olyan lineárisan független elemek maximális száma, amelyek véges lineárkombinációi mindenütt sűrűn vannak X-ben (egy $A \subseteq X$ sűrű X-ben, ha A = X, ahol a halmaz felülvonása a lezárást jelenti, ez amúgy ekvivalens azzal, hogy $\forall x \in X$ -nek minden környezetében van A-beli elem). Másképp fogalmazva: jelöljük ℒ $(x_1, x_2,...)$ -val azt a lineáris teret, amely az $x_1, x_2,...$ elemek véges lineárkombinációjaként előáll. (Az előálló lineáris tér egyértelmű, de egy teret több ilyen vektorrendszer is előállíthat.) Ekkor X tér dimenziója az olyan lineárisan független

elemek maximális száma, melyekre ℒ $(x_1, x_2,...) = X$. A D dimenziószám egyértelmű, $0 \le D \le \infty$.

<u>Definíció</u>: egy *X* normált teret szeparábilisnak nevezünk, ha benne megadható megszámlálhatóan sok (azaz véges vagy megszámlálhatóan végtelen sok) lineárisan független elem, amelyek véges lineárkombinációi sűrűn vannak *X*-ben.

<u>Definíció</u>: legyen X Hilbert-tér! Azt mondjuk, hogy az $x_1, x_2,...,x_k,...$ elemek ortogonális rendszert alkotnak, ha $\forall x_j, x_k \neq 0$ esetén $\langle x_j, x_k \rangle = \begin{cases} 0 & j \neq k \\ \text{nem} 0 & j = k \end{cases}$. A rendszer ortonormált, ha $\forall x \in X$ esetén $\|x\| = 1$.

Kérdés: ha az X Hilbert-térben $y_1, y_2,...,y_k,...$ lineárisan függetlenek, akkor lehet-e ezekből ortonormált rendszert konstruálni, és ha igen, hogyan? Válasz: lehet, az ún. Schmidt-féle ortogonalizációs eljárással.

<u>Tétel</u>: az $y_1, y_2,...,y_k,...$ lineárisan független elemekhez megkonstruálhatók az $x_1, x_2,...,x_k,...$ elemek úgy, hogy az utóbbiak ortonormált rendszert alkossanak, mégpedig úgy, hogy $\forall k$ -ra ℒ $(x_1, x_2,...,x_k)$ = ℒ $(y_1, y_2,...,y_k)$.

Bizonyítás:

- 1. legyen $x_1 = \frac{y_1}{\|y_1\|}$, ekkor $\|x_1\| = 1$. $y_1 \neq 0$, mert $y_1, y_2,...$ lineárisan függetlenek.
- 2. z_2 : = $y_2 \lambda_1 x_1$, ahol $\lambda_1 \in \text{\&Ropf}$;. Ezt hogy válasszuk meg, hogy $z_2 \perp x_1$ teljesüljön?

$$0 = \langle z_2, x_1 \rangle = \langle y_2 - \lambda_1 x_1, x_1 \rangle = \langle y_2, x_1 \rangle - \lambda_1 \underbrace{\langle x_1, x_1 \rangle}_{=1} \qquad \lambda_1 = \langle y_2, x_1 \rangle. \text{ Ekkor}$$

 $z_2 \neq 0$, mert y_1 , y_2 lineárisan függetlenek. x_2 : $=\frac{z_2}{\|z_2\|}$, ekkor $\|x_2\| = 1$ és $\langle x_1, x_2 \rangle = 0$.

3. z_3 : = $y_3 - \mu_1 x_1 - \mu_2 x_2$, ahol μ_1 , $\mu_2 \in \&$ Ropf;. Ezeket hogy válasszuk meg, hogy $z_3 \perp x_1$, x_2 teljesüljenek?

$$0 = \langle y_3 - \mu_1 x_1 - \mu_2 x_2, x_1 \rangle = \langle y_3, x_1 \rangle - \mu_1 - 0 \iff \mu_1 = \langle y_3, x_1 \rangle$$

$$0 = \langle y_3 - \mu_1 x_1 - \mu_2 x_2, x_2 \rangle = \langle y_3, x_2 \rangle - 0 - \mu_2 \iff \mu_2 = \langle y_3, x_2 \rangle. z_3 \neq 0 \ y_1, y_2, y_3$$
lineáris függetlensége miatt, ezért $x_3 : = \frac{z_3}{\|z_3\|}$ jó választás, így $\|x_3\| = 1$ és $x_3 \perp x_1, x_2$.

Nem nehéz belátni, hogy az eljárás folytatható $\forall k$ -ra és ℒ $(y_1, y_2,...,y_k) = \ℒ(x_1, x_2,...,x_k)$.

Ortogonális sorok, Fourier-sorok

A továbbiakban legyen X szeparábilis Hilbert-tér, véges vagy végtelen dimenziós! Tudjuk, hogy ekkor X-ben megadható $x_1, x_2,...,x_k,...$ ortonormált rendszer. Egy $\sum_k c_k x_k$ alakú sort (összeget) – ahol $c_k \in \& Kopf;$ – ortogonális sornak nevezünk.

Tételek:

1. egy
$$\sum_{k} c_k x_k$$
 sor konvergens $\bigvee_{k} \sum_{k} |c_k|^2 < \infty$

2. ha
$$x = \sum_{k} c_k x_k$$
, akkor $c_l = \langle x, x_l \rangle$

3.
$$\|x\|^2 = \sum_k |c_k|^2$$
 (végtelen dimenziós Pitagorasz tétel).

Bizonyítás:

1. Véges dimenzióban triviális, így tegyük fel, hogy végtelen sok elemű az ortonormált rendszer! Legyen s_j : = $\sum_{k=1}^{j} c_k x_k!$ A sor konvergenciája azt jelenti, hogy (s_i) sorozat konvergens \Leftrightarrow (s_i) Cauchy sorozat.

$$\| s_{j} - s_{l} \|^{2} = \langle s_{j} - s_{l}, s_{j} - s_{l} \rangle = \left(\sum_{k=l+1}^{j} c_{k} x_{k}, \sum_{k=l+1}^{j} c_{k} x_{k} \right) = \sum_{k=l+1}^{j} c_{k} c_{k} \langle x_{k}, x_{k} \rangle = \sum_{k=l+1}^{j} |c_{k} c_{k} c_{k} \langle x_{k}, x_{k} \rangle = \sum_{k=l+1}^{j} |c_{k} c_{k} c_{k} c_{k} c_{k} \langle x_{k}, x_{k} \rangle = \sum_{k=l+1}^{j} |c_{k} c_{k} c_$$

. Ez a $\sum_{k=1}^{\infty} |c_k|^2$ sor egy "szelete". Tehát (s_j) X-beli sorozatra teljesül a

Cauchy-kritérium
$$\Leftrightarrow$$
 $\sum_{k=1}^{\infty} |c_k|^2$ sorra teljesül a Cauchy-kritérium \Leftrightarrow (s_j)

2. tfh $x = \sum_{k} c_k x_k$, x_l -lel szorozzuk skalárisan (jobbról) az egyenlőséget (ezt megtehetjük, hisz nem nehéz belátni, hogy egy konvergens sor tagonként szorozható skalárisan), $\langle x, x_l \rangle = \left(\sum_{k} c_k x_k, x_l\right) = \sum_{k} c_k \langle x_k, x_l \rangle = c_l$

3.
$$\|x\|^2 = \langle x, x \rangle = \left\langle \sum_k c_k x_k, x \right\rangle = \sum_k c_k \langle x_k, x \rangle = \sum_k |c_k|^2$$

<u>Definíció</u>: legyen $x_1, x_2,...,x_k$ ortonormált rendszer, $x \in X$ adott elem! Értelmezzük az x elem k-adik Fourier-együtthatóját: $c_k := \langle x, x_k \rangle$. Az így adódó $\sum_k c_k x_k$ "sort" az x elem Fourier-sorának nevezzük.

Kérdés: egy x elem Fourier-sora konvergens-e? Ha igen, mi az összege?

Tétel: egy $x \in X$ elem Fourier sora mindig konvergens, ugyanis teljesül az ún. Besselegyenlőtlenség: $\sum_{k} |c_{k}|^{2} \le \|x\|^{2}$. A sor összege pontosan akkor x, ha teljesül az ún Parseval egyenlőség, azaz $\sum_{k} |c_{k}|^{2} = \|x\|^{2}$.

Bizonyítás:
$$s_j := \sum_{k=1}^{J} c_k x_k$$
, ekkor $0 \le \|x - s_j\|^2 = \langle x - s_j, x - s_j \rangle = \|x\|^2 - \langle s_j, x \rangle - \langle x, s_j \rangle + \|s_j\|^2 =$

$$= \|x\|^2 - \left(\sum_{k=1}^{J} c_k x_k, x\right) - \left(x, \sum_{k=1}^{J} c_k x_k\right) + \left(\sum_{k=1}^{J} c_k x_k, \sum_{k=1}^{J} c_k x_k\right) =$$

$$= \|x\|^2 - \sum_{k=1}^{J} c_k c_k - \sum_{k=1}^{J} c_k c_k + \sum_{k=1}^{J} c_k c_k = \|x\|^2 - \sum_{k=1}^{J} |c_k|^2 \implies \sum_{k=1}^{J} |c_k|^2 \le \|x\|^2 \implies \sum_{k=1}^{J} |c_k|^2 \ge \|x\|^2 \implies \sum_{k=1}^{J} |c_k|^2 \implies \sum_{k=1}^{J} |c$$

<u>Tétel</u>: legyen $x_1, x_2,...,x_k,...$ ortonormált rendszer. Ekkor egy $x \in X$ elem Fourier-sorának összege az x elemnek az X_0 : = ℒ $(x_1, x_2,...,x_k,...) \subset X$ alterén vett merőleges vetülete.

 $\|x\|^2 - \sum |c_k|^2 = 0.$

Bizonyítás: jelölje $x^*:=\sum_k c_k x_k$, ahol $c_k:=\langle x,x_k\rangle$. Azt kellene belátni, hogy $x^*\in X_0$ és $\left(x-x^*\right)\perp X_0$. $x^*\in X_0$, ugyanis $\sum_{k=1}^j c_k x_k\in \text{\&Lscr}; \left(x_1,x_2,...,x_j\right)$, így $\sum_k c_k x_k\in X_0$. $\left(x-x^*\right)\perp X_0$ ugyanis először legyen $y\in \text{\&Lscr}; \left(x_1,x_2,...,x_l\right)$ tetszőleges! Belátjuk, hogy $\left\langle x-x^*,y\right\rangle=0$. $y=\sum_{j=1}^l d_j x_j$, $\left\langle x-x^*,y\right\rangle=\langle x,y\rangle-\langle x^*,y\rangle=\langle x,y\rangle-\langle x^*,y\rangle-\langle x^*,y\rangle=\langle x,y\rangle-\langle x^*,y\rangle-\langle x^*,y\rangle-$

$$\sum_{j=1}^{l} \frac{d_{j}\langle x, x_{j} \rangle}{d_{j}\langle x, x_{j} \rangle} - \sum_{j=1}^{l} \frac{d_{j}\langle x_{j} \rangle}{d_{j}\langle x_{j} \rangle} = 0. \text{ Most legyen } y \in X_{0} = \text{\ℒ}; (x_{1}, x_{2},...),$$

szeretnénk, ha ekkor $\langle x - x^*, y \rangle = 0$ is igaz lenne. Ehhez vegyünk egy (y_v) , ℒ $(x_1, x_2,...)$ -beli konvergens sorozatot, melyre $y_v \to y$. Ekkor $\langle x - x^*, y_v \rangle = 0$. Így,

mivel $y_v \to y, \langle x - x^*, y \rangle = 0$, ugyanis

$$\left| \left\langle x - x^*, y \right\rangle \right| = \left| \left\langle x - x^*, y \right\rangle - \left\langle x - x^*, y_v \right\rangle \right| = \left| \left\langle x - x^*, y - y_v \right\rangle \right| \leq \|x - x^*\| \cdot \underbrace{\|y - y_v\|}_{\to 0}$$

.

<u>Definíció</u>: az $x_1, x_2,...$ ortonormált rendszert zártnak nevezzük, ha ℒ $(x_1, x_2,...) = X$.

Következmény: ha az $x_1, x_2,...$ ortonormált rendszer zárt, akkor $\forall x \in X$ elem Fouriersorának összege x.

<u>Definíció</u>: egy $x_1, x_2,...$ ortonormált rendszert teljesnek nevezzük, ha $x \perp x_k \forall k \Rightarrow x = 0$.

<u>Tétel</u> (bizonyítás nélkül): egy $x_1, x_2,...$ ortonormált rendszer teljes \Leftrightarrow zárt.

Példák zárt (teljes) ortonormált rendszerekre

09.28

Észrevétel: ha y_1 , y_2 ,..., y_k ,... lineárisan független olyan rendszer, hogy ℒ $(y_1, y_2,...) = X(X \text{ Hilbert-tér}, \text{ a lineárisan független rendszer zárt})$, akkor ebből a Schmidt ortogonalizálási eljárással zárt (teljes) ortonormált rendszert kapunk.

1. Konkrét pl: $X := L^2(a, b)$, ahol (a, b) véges intervallum.

<u>Tétel</u>: ebben az $t \mapsto 1, t \mapsto t, t \mapsto t^2, ..., t \mapsto t^k, ...$ lineárisan független függvények zárt rendszert alkotnak.

Bizonyítás (vázlat): egyrészt a függvényrendszer lineárisan független:

$$\sum_{j=0}^{k} a_j t^j = 0 \quad \Leftrightarrow \quad a_j = 0. \text{ (Egy valós } k\text{-ad fokú polinomnak legfeljebb } k \text{ db gyöke lehet}$$

 $k \geq 1$.) Az, hogy a rendszer zárt, következik a Weierstrass approximációs tételéből. Eszerint tetszőleges $f:[a,b] \to \&$ Ropf; folytonos függvényhez $\exists P_k$ polinom sorozat, amely egyenletesen tart f-hez. Legyen $g:(a,b) \to \&$ Ropf;, $g \in L^2(a,b)$. A Lebesgue integrál felépítéséből kiolvasható, hogy $g:[a,b] \to \&$ Ropf; folytonos függvények sűrűn vannak $L^2(a,b)$ -n. A g folytonos függvényt Weierstrass approximációs tétele szerint tetszőleges előírt pontossággal meg lehet közelíteni polinomokkal, a szuprémum normában \Rightarrow ezek közelítik g-t L^2 normában is.

2. **Komplex trigonometrikus rendszer** $X := L^2(0,2\pi)$, $\phi_k(t) := e^{ikt}$, $t \in (0,2\pi)$, $k \in \&$ integers;.

<u>Tétel</u>: a fenti függvények egy zárt ortogonális rendszert alkotnak (biz. nélkül). Belátjuk, hogy $(\phi_k)_{k \in \&integers:}$ ortogonális.

$$\int_{0}^{2\pi} \phi_{k}(t) \overline{\phi_{l}(t)} dt = \int_{0}^{2\pi} e^{ikt} e^{-ilt} dt = \int_{0}^{2\pi} e^{i(k-l)t} = \left[\frac{e^{i(k-l)t}}{i(k-l)} \right]_{t=0}^{2\pi} = 0 \text{ ha } k \neq l. \ \psi_{k} : = \frac{1}{\sqrt{2\pi}} \phi_{k} \text{ már ortonormált rendszer.}$$

3. valós trigonometrikus rendszerek.

Legyen az X alaphalmaz a valós $L^2(0,2\pi)$. $e^{ikt} = \cos(kt) + i\sin(kt)$, $\cos(kt) = \frac{e^{ikt} + e^{-ikt}}{2}$, $\sin(kt) = \frac{e^{ikt} - e^{-ikt}}{2i}$. Egyszerű számolással adódik, hogy 1,cost, sint, cost, cost, sint, cost, sint, cost, sint, cost, sint, cost, sint, cost, sint, cost, cost

Tehát ezek ortogonális rendszert alkotnak a valós $L^2(0,2\pi)$ -ben. Abból, hogy a komplex trigonometrikus rendszer zárt \Rightarrow a fenti rendszer valós ortogonális zárt rendszer.

A fentiekből következik, hogy egy tetszőleges $f \in L^2(0,2\pi)$ függvénynek akár a komplex, akár a valós trigonometrikus rendszer szerint Fourier sora előállítja a függvényt L^2 normában.

4. Az 1, $\cos t$, $\cos(2t)$,..., $\cos(kt)$,... függvényrendszer zárt és ortogonális a $L^2(0,\pi)$ - ben. A szinuszos ugyanígy.

Lineáris és korlátos operátorok

<u>Állítás</u>: legyen X, Y normált terek! Korábban bizonyítottuk, hogy $A: X \to Y$ lineráis operátor folytonos $\Leftrightarrow A$ korlátos.

<u>Definíció</u>: egy $A: X \to Y$ lineáris operátort korlátosnak nevezzük, ha $\exists c \ge 0: \|Ax\|_Y \le c \|x\|_X \forall x \in X.$

Tétel: legyen X normált tér, Y teljes normált tér (Banach tér), $A: M \to Y$ korlátos lineáris operátor, ahol $M \subseteq X$ lineáris altér, de nem kell zártnak lennie. Ekkor az A-nak egyértelműen létezik korlátos lineáris kiterjesztése az M-ra (M lezárására). Más szóval: $\exists ! \widetilde{A} : M \to Y$ korlátos lineáris operátor, amelyre $\widetilde{A}x = Ax$, $\forall x \in M$. Spec eset, mikor M = X.

Bizonyítás (vázlatos): legyen $x \in M$. Ehhez $\exists x_k \in M : \lim(x_k) = x$. Tekintsük az $(Ax_k)_{k \in \& \text{naturals}};$ sorozatot Y-ban! Belátjuk, hogy ez Cauchy sorozat. $\|Ax_k - Ax_l\|_Y = \|A(x_k - x_l)\|_Y \le c \cdot \|x_k - x_l\|_X$. Legyen $\varepsilon > 0$, $\exists k_0 : \forall k, l > k_0$ esetén $\|x_k - x_l\| < \varepsilon \Rightarrow \|Ax_k - Ax_l\| \le c \cdot \varepsilon$. Y teljes $\Rightarrow \exists y \in Y : \lim(Ax_k) = y$. Y csak X-től függ, nem függ (x_k) -tól és egyértelmű. X

<u>Hahn-Banach tétel</u>: legyen X Banach tér, $X_0 \subset X$ valódi (zárt lineáris) altér, $f: X_0 \to \&$ Kopf; korlátos lineáris funkcionál (azaz számértékű operátor). Ekkor $\tilde{f}: X \to \&$ Kopf; korlátos lineáris kiterjesztés, és $\|\tilde{f}\| = \|f\|$.

Korlátos lineáris funkcionálok, duális tér (Hilbert tér esetén)

Észrevétel: legyen X Hilbert tér, $y \in X$ tetszőleges rögzített elem. Értelmezzük az $f: X \to \& Kopf;, f(x) := \langle x, y \rangle$ funkcionált.

<u>Állítás</u>: ekkor f korlátos lineáris funkcionál. f linearitása triviális, és korlátos is, ugyanis $|f(x)| = |\langle x, y \rangle| \le ||x|| \cdot ||y||$.

<u>Tétel</u> (Riesz): legyen X Hilbert tér (valós vagy komplex), f egy korlátos lineáris funkcionál X-en. Ekkor létezik egyetlen $y \in X$, hogy $f(x) = \langle x, y \rangle \ \forall \ x \in X$.

Bizonyítás: jelölje X_0 : = $\{x \in X : f(x) = 0\}$ -vel f magterét. X_0 altér X-ben, azaz az algebrai műveletek nem vezetnek ki X_0 -ból, és zárt részhalmaz X-ben. Utóbbi azért igaz, mivel f folytonos, azaz ha $x_k \in X_0$, $(x_k) \to x \Rightarrow x \in X_0$. $f(x_k) \to f(x) \Rightarrow f(x) = 0$, mivel jelen esetben $f(x_k) = 0$.

- 1. Ha $X_0 = X$, $f(x) = 0 \ \forall \ x \in X$, triviális eset. Ekkor legyen y = 0.
- 2. X_0 valódi altér \Rightarrow (Riesz-féle felbontási tétel) $\exists x_1 \neq 0 : x_1 \in X_0^{\perp}$. Legyen $x \in X$ tetszőleges, tekintsük az $X \ni y_1 := f(x)x_1 f(x_1)x$ elemet. Ekkor

$$f(y_1) = f(x)f(x_1) - f(x_1)f(x) = 0 \implies y_1 \in X_0 \implies \langle y_1, x_1 \rangle = 0. \text{ Más szóval}$$

$$0 = \langle y_1, x_1 \rangle = \langle f(x)x_1 - f(x_1)x, x_1 \rangle = f(x) \|x_1\|^2 - f(x_1)\langle x, x_1 \rangle \Rightarrow$$

$$f(x) = \frac{f(x_1)\langle x, x_1 \rangle}{\|x_1\|^2} = \left\langle x, \frac{f(x_1)x_1}{\|x_1\|^2} \right\rangle \qquad \exists \ y, \text{ nevezetesen } y = \frac{f(x_1)}{\|x_1\|^2} x_1.$$

3. y egyértelmű. Tfh

$$\langle x, y \rangle = \langle x, y^* \rangle \ \forall \ x \in X \implies \langle x, y - y^* \rangle = 0 \ \forall \ x \in X \implies y - y^* = 0 \implies y = y^*.$$

Korlátos lineáris funkcionálok

Legyen X Hilbert tér $y \in X$ egy rögzített eleme, $f(x) := \langle x, y \rangle$. Ekkor a CS-ből következik: $||f|| \le ||y||$.

Megjegyzés: ||f|| = ||y||, ugyanis egyrészt

$$|f(x)| = |\langle x, y \rangle| \le ||x|| \cdot ||y|| \Rightarrow ||f|| \le ||y||.$$
 Másrészt
$$||f|| = \sup\{|f(x)| : ||x|| = 1\}.$$
 Válasszuk $x : = \frac{y}{||y||} (y \ne 0, \text{ máskülönben triviális}),$ ekkor $||x|| = 1, |f(x)| = ||\langle \frac{y}{||y||}, y \rangle|| = ||y||.$ Tehát $||f|| = ||y||.$

Spec eset: $X:=L^2(M), M \subseteq \& \text{Ropf};^n \text{ mérhető halmaz. Ekkor egy tetszőleges } f \text{ korlátos}$ lineáris funkcionál ilyen alakú: $f(\phi):=\langle \phi, \psi \rangle = \int_M^- \phi \psi$, ahol $\psi \in L^2(M)$ rögzített. $\psi_0:=\psi \in L^2(M)$ jelöléssel $f(\phi)=\int_M \phi \psi_0, \ \forall \ \phi \in L^2(M)$.

Korlátos lineáris funkcionálok $L^p(M)$ -en, ahol $1 (azaz <math>L^\infty(M)$ teret nem tárgyaljuk)

Legyen $\psi \in L^q(M)$ tetszőleges rögzített, $\frac{1}{p} + \frac{1}{q} = 1$! Értelmezzük az f funkcionált: $f(\phi) := \int_M \phi \psi$, ahol $\phi \in L^p(M)$.

<u>Állítás</u>: f korlátos lineáris funkcionál $L^p(M)$ -en.

Bizonyítás: tudjuk, hogy $\phi \in L^p(M)$, $\psi \in L^q(M) \Rightarrow \phi \psi \in L^1(M)$, tehát a funkcionál értelmezve van az egész $L^p(M)$ -n, nyilván lineáris. A Hölder egyenlőtlenség szerint

$$\left| \begin{array}{c|c} \int_{M} \! \varphi \psi \end{array} \right| \ \leq \ \| \ \varphi \ \|_{L^{p}(M)} \cdot \ \| \ \psi \ \|_{L^{q}(M)} \ \Rightarrow \ \| f \ \| \ \leq \ \| \ \psi \ \|_{L^{q}(M)}, \ \text{vagyis korlátos is és}$$
 normája
$$\leq \ \| \ \psi \ \|_{L^{q}(M)}$$

$$\underline{\mathbf{T\acute{e}tel}}: \ \|f\| = \|\psi\|_{L^{q}(M)}.$$

<u>Tétel</u>: legyen $1 . Ekkor tetszőleges <math>f: L^p(M) \to \&$ Kopf; korlátos lineáris funkcionálhoz $\exists ! \psi \in L^q(M) : f(\phi) = \int_M \psi \phi$.

Duális (konjugált) tér

<u>Definíció</u>: legyen *X* normált tér! Az *X*-en értelmezett korlátos lineáris funkcionálok terét *X* duálisának nevezzük és *X'*-vel jelöljük (van, ahol *-gal jelölik).

Megjegyzés: X' = L(X, 𝕂). Tudjuk, hogy X' = L(X, 𝕂) normált tér (norma az operátor normája), X' tér teljes, mivel 𝕂 alaptest teljes, így X' Banach tér.

Értelmezzük az előbbieket ezen fogalom rögzítésével!

X Hilbert tér. Tudjuk, hogy $\forall f \in X' \exists y \in X : f(x) = \langle x, y \rangle$, $\|f\| = \|y\|$. Fordítva, $y \in X$ esetén $f(x) : = \langle x, y \rangle$, $x \in X!$ Tehát ha X Hilbert tér, bijekció létesíthető X' és X között. Jelöljük: $\Phi(y) : = f, f(x) : = \langle x, y \rangle$. $\Phi : X \to X'$ bijekció. Ennek tulajdonságai:

- $\Phi(y_1 + y_2) = \Phi(y_1) + \Phi(y_2)$. $f_1(x) = \langle x, y_1 \rangle$, $f_2(x) = \langle x, y_2 \rangle$. $(f_1 + f_2)(x) = f_1(x) + f_2(x) = \langle x, y_1 \rangle + \langle x, y_2 \rangle = \langle x, y_1 + y_2 \rangle$, vagyis $f_1 + f_2 \leftrightarrow y_1 + y_2$.
- $\lambda \in \&$ Kopf; esetén $\Phi(\lambda y) = \lambda \Phi(y)$. $f(x) = \langle x, y \rangle \implies \langle x, \lambda y \rangle = \lambda \langle x, y \rangle = \lambda f(x) = (\lambda f)x$, vagyis $\lambda y \leftrightarrow \lambda f$, tehát Φ konjugált lineáris.

 $X = L^p(M)$ esete, mikor $1 \le p \le \infty$ és $\frac{1}{p} + \frac{1}{q} = 1$.

Tudjuk, hogy tetszőleges $\psi \in L^q(M)$ esetén $f(\phi)$: $= \int_M \phi \psi$, $\phi \in X$ mellett $f \in (L^p(M))'$, $\|f\| = \|\psi\|$. Továbbá $(L^p(M))'$ minden eleme ilyen alakú $p < \infty$ esetén.

 $L^q(M) \ni \psi \leftrightarrow f \in (L^p(M))'$. Könnyen belátható, hogy az eddigiek alapján Φ bijekció, sőt, Φ lineáris. $L^p(M)$ izomorf és izometrikus (normatartó) $L^q(M)$ -vel, ha $p < \infty$.

X" tér, más szóval biduális, reflexív tér

<u>Definíció</u>: legyen X normált tér. Ekkor definíció szerint X'' := (X')'.

Állítás: ha X Hilbert tér, akkor X" izomorf, izometrikus az X térrel.

<u>Definíció</u>: legyen *X* Banach tér! Ha *X''* izomorf és izometrikus *X*-szel, akkor *X''*-t reflexívnek nevezzük.

<u>Állítás</u>: legyen $X = L^p(M)$, ahol $1 ! Ekkor <math>L^p(M)$ reflexív.

Vizsgáljuk X''-t általános esetben, mikor X Banach tér! Tekintsük egy tetszőleges, rögzített $x \in X$ elemet, ehhez rendeljük hozzá a következő, $F_x \in X''$ elemet! $F_x(f) := f(x)$, $\forall f \in X'$. Ekkor F_X jól definiált funkcionál X'-n, nyilván lineáris, korlátos is.

$$|F_x(f)| = |f(x)| \le ||f|| \cdot ||x||_X, \forall f \in X'. \Rightarrow ||F_x|| \le ||x||.$$

 $\underline{\text{Allitás}}: \|F_x\| = \|x\|.$

Bizonyítás: (definíció szerint $||F_x|| = \sup_{f \in X'} \{ ||F_x(f)|| = ||f(x)|| : ||f|| = 1 \}$) azt kellene belátni, hogy $\exists f \in X'$: ||f|| = 1, melyre igaz, hogy $||F_x(f)|| = ||x||$ bármely rögzített x esetén. Tekintsük a következő f_0 funkcionált X következő, 1 dimenziós alterén:

 $X_0:=\left\{\lambda x:\lambda\in\&\mathrm{Kopf};\right\}$, ahol $x\in X$ rögzített. Legyen $f_0(\lambda x):=\lambda\parallel x\parallel$. f_0 korlátos is, $\left|f_0(\lambda x)\right|=\left|\lambda\right|\parallel x\parallel=\parallel\lambda x\parallel\cdot 1\Rightarrow\parallel f_0\parallel=1$. A Hahn-Banach tétel szerint az X_0 altéren definiált f_0 korlátos lineáris funkcionál kiterjeszthető a korlátosság és linearitás megtartásával az egész X térre úgy, hogy $\parallel f\parallel=\parallel f_0\parallel$ (ezt persze nem bizonyítottuk). Jelölje ezt f! $f\in X'$, $\parallel f\parallel=\parallel f_0\parallel=1$. Erre

$$|F_x(f)| = |f(x)| = |f(1 \cdot x)| = f_0(1 \cdot x) = 1 \cdot ||x|| = ||x||.$$

Általános esetben X" egy részhalmaza izomorf és izometrikus X-szel. X"-nek lehetnek más elemei is (ha nem reflexív).

Gyenge konvergencia

<u>Definíció</u>: legyenek X, Y normált terek, és tfh $A_j \in L(X, Y)$, $j \in \&$ naturals; (A_j korlátos lineáris operátor X-n). Azt mondjuk, hogy ez az A_j sorozat gyengén konvergál az A operátorhoz, ha $\forall x \in X$ elemre $(A_j x)_{j \in \&$ naturals; $\rightarrow Ax$ (pontonkénti konvergencia). (Y-beli norma szerinti konvergencia).

Állítás: ha lim $||A_j - A|| = 0$, azaz $(A_j) \to A$ az L(X, Y) norma szerint, akkor $(A_j) \to A$ gyengén, de fordítva nem mindig igaz.

Bizonyítás: tfh lim $||A_j - A|| = 0$. Ekkor

$$\|A_{j}x - Ax\|_{Y} = \|(A_{j} - A)x\| \leq \underbrace{\|A_{j} - A\|}_{\rightarrow 0} \cdot \|x\| \xrightarrow{\longrightarrow} 0.$$

Speciális eset: $Y = \& \text{Kopf}; L(X, Y) = X'. (f_j) \to f$ gyengén X'-ben, ha bármely rögzített $x \in X$ esetén $(f_j(x)) \to f(x)$.

Példa X'-beli gyengén konvergens sorozatra, amely norma szerint nem konvergens. Legyen X szeparábilis, végtelen dimenziós Hilbert tér! Legyen ebben egy $y_1, y_2,...,y_j,...$ ortonormált, teljes rendszer! $f_j(x) := \langle x, y_j \rangle$. Ekkor $\langle x, y_j \rangle$ az $x \in X$ elem j-edik Fourier-egyeütthatója y_j ortonormált rendszer szerint, $c_j := \langle x, y_j \rangle$. Tudjuk, hogy

$$\sum_{j=1}^{\infty} |c_j|^2 < \infty \quad \Rightarrow \quad \lim(c_j) = 0, \text{ azaz } \lim_{j \to \infty} f_j(x) = 0, \forall x \in X. \text{ Más szóval } (f_j) X'-\text{beli}$$

sorozat gyengén tart f = 0 funkcionálhoz. Másrészt $||f_j|| = ||y_j||_X = 1$, így (f_j) nem tart a norma szerint az f = 0 funkcionálhoz. (Bebizonyítható, hogy véges dimenzióban a gyenge konvergencia egybeesik a norma szerinti konvergencia fogalmával.)

<u>Tétel</u>: tfh $A_j \in L(X, Y)$, ahol X, Y Banach terek, $(A_j) \to A$ gyengén. Ekkor $(\| A_j \|)_{j \in \& naturals;}$ korlátos. Ez a tétel következik az alábbi tételből.

Egyenletes korlátosság tétele (Banach-Steinhaus tétel, bizonyítás nélkül): legyenek X, YBanach terek, $A_i \in L(X, Y)$. Ha az A_i operátor sorozat pontonként korlátos, azaz ha

$$\forall \ x \in X \text{ eset\'en} \sup_{j \ \in \ \& \text{naturals};} \left\{ \ \| \ A_j x \ \| \ \right\} < \infty \quad \ \ \, \beth \quad \ \left(\ \| \ A_j \ \| \ \right) \text{ korl\'atos}.$$

Megjegyzés (gyenge kompaktsági kritérium): tekintsük a $X' = L(X, \𝕂)$ speciális esetet az egyszerűség kedvéért. Ha $f_j \in X'$ korlátos sorozatot alkot (X most Banach tér), akkor (f_i) -ból kiválasztható egy gyengén konvergens részsorozat.

Gyenge konvergencia X-ben

10.12

<u>Definíció</u>: legyen X normált tér! Azt mondjuk, hogy egy $(x_j)_{j \in \& naturals;} X$ -beli sorozat gyengén konvergál egy $x \in X$ ponthoz, ha $\forall f \in X'$ funkcionálra $(f(x_j))_{j \in \& naturals;} \to f(x)$.

Megjegyzés: ha X reflexív Banach-tér, akkor minden korlátos X-beli sorozatnak létezik gyengén konvergens részsorozata. Ugyanis ekkor X = X'' = (X')'.

Inverz operátor

Emlékeztető: egy függvénynek létezik inverze, ha injektív. Tudjuk továbbá, hogy egy $A: X \to Y$ lineáris operátornak létezik inverze (azaz injektív) \Leftrightarrow a magtér csak a 0-ból áll, azaz $Ax = 0_Y \Leftrightarrow x = 0_X$. Továbbá, ha A^{-1} létezik, akkor A^{-1} lineáris operátor. Egy A operátor folytonos x_0 -ban, ha $\forall \ \varepsilon > 0 \ \exists \ \rho > 0 : \|x - x_0\|_X < \rho \Rightarrow \|Ax - Ax_0\|_Y < \varepsilon$.

Kérdés: ha X, Y normált terek, $A: X \rightarrow Y$ lineáris és injektív $\stackrel{?}{\Rightarrow} A^{-1}$ korlátos is? Általában nem, akkor sem, ha A korlátos.

<u>Nyílt leképezések tétele</u> (bizonyítás nélkül): legyenek X, Y Banach terek, $A: X \to Y$ korlátos lineáris operátor és $R_A = Y$, vagyis ráképezés. Ekkor A operátor X minden nyílt halmazát Y nyílt halmazába képezi. Ebből következik:

<u>Tétel</u> (Banach): legyenek X, Y Banach terek, $A: X \to Y$ korlátos és lineáris, $R_A = Y$ és Ainjektív! Ekkor A^{-1} korlátos (azaz folytonos).

Bizonyítás: legyen tetszőleges $y_0 \in Y = R_A = D_{A^{-1}}$. $x_0 : = A^{-1}y_0$. Belátjuk, hogy az A^{-1} folytonos y_0 -ban. Tekintsük $x_0 = A^{-1}y_0$ egy tetszőleges $B_r(x_0)$ nyílt környezetét! Ennek képe is nyílt az Y-ban az előbbi tétel szerint. Mivel $y_0 \in A(B_r(x_0))$, ami nyílt, ezért y_0 -nak van olyan környezete, melyre $B_{\rho}(y_0) \subset A(B_r(x_0))$. Ez azt jelenti, hogy ha $y \in B_0(y_0) \Rightarrow A^{-1}y \in B_r(x_0)$. Eszerint A^{-1} folytonos y_0 -ban.

Zárt gráf (grafikon) tétel

<u>Definíció</u>: legyenek X, Y normált terek, $A: M \to Y$ lineáris operátor, $M \subseteq X$. Ekkor A operátor gráfja, grafikonja az alábbi halmaz: G_A : = $\{(x, Ax) : x \in M = D_A\}$.

<u>Definíció</u>: egy $A: M \to Y$ lineáris operátort zártnak nevezünk, ha a $G_A \subseteq X \times Y$ zárt halmaz $X \times Y$ -ban. $X \times Y = \{(x, y) : x \in X, y \in Y\}$.

Megjegyzés: a szorzattéren értelmezett műveletek:

- $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
- $\lambda(x, y) = (\lambda x, \lambda y)$ $\|(x, y)\|_{X \times Y} := \sqrt{\|x\|^2 + \|y\|^2}, X \times Y$ normált tér tehát.

Legyenek X, Y normált terek, $A: M \to Y$ lineáris operátor, $D_A = M \subset X$. A zárt \Leftrightarrow ha minden $(x_j)_{j \in \& \text{naturals}}$; M-beli sorozatra, melyre $\lim (x_j) = x \in X \text{ \'es } \exists \lim (Ax_j) = y \in Y$, akkor $x \in M$ és y = Ax. Ezért ha A folytonos, akkor zárt is.

Példa zárt, lineáris, de nem folytonos (nem korlátos) operátorra: X := C[0,1], $M = D_A = C^1[0,1], A\phi := \phi'$, vagyis a differenciáloperátor. $(\phi_j) \to \phi$ egyenletesen (C[0,1] -beli konvergencia) és $\left(\phi^{'}_{j}\right) \rightarrow \psi$ egyenletesen $\Rightarrow \psi = \phi^{'}$, tehát A valóban zárt, lineáris (de nem korlátos, így nem is folytonos, ezt láttuk korábban).

<u>Zárt gráf tétel</u>: legyenek X, Y Banach terek, $A: X \to Y$ zárt, lineáris operátor (tehát $D_A = X$). Ekkor A folytonos (korlátos).

Bizonyítás: G_A : = $\{(x, Ax) : x \in D_A = X\} \subset X \times Y \text{ (utóbbi Banach-tér), ugyanis } G_A \text{ zárt halmaz } X \times Y \text{ -ban, az } X \times Y \text{ vektortenérnek altere:}$ $(x_1, Ax_1) + (x_2, Ax_2) = (x_1 + x_2, A(x_1 + x_2)) \in G_A, \lambda(x, Ax) = (\lambda x, A(\lambda x)) \in G_A. G_A \text{ az } X \times Y$ Banach tér zárt lineáris altere $\Rightarrow G_A$ Banach-tér. Tekintsük a következő két operátort: $U(x, Ax) := x, V(x, Ax) := Ax, \text{ ahol } (x, Ax) \in G_A. \text{ Ekkor } U : G_A \to X, R_U = X,$ $V : G_A \to Y. \text{ Most } U\text{-ra alkalmazható a Banach tétel (az inverz operátor korlátosságáról):}$ $D_U = G_A, R_U = X, U \text{ korlátos és injektív } \Rightarrow U^{-1} : X \to G_A \text{ korlátos (folytonos),}$

 $D_U = G_A$, $R_U = X$, U korlátos és injektív $\Rightarrow U^{-1} : X \to G_A$ korlátos (folytonos), $A = VU^{-1}$, mert $U^{-1}x = (x, Ax)$, $V(U^{-1}(x)) = V(x, Ax) = Ax$. $V : G_A \to Y$ korlátos $\Rightarrow A = VU^{-1}$ is korlátos.

Sajátérték, reguláris érték, spektrum

Legyenek X, Y normált terek, $A: M \to Y$ lineáris operátor, $M \subseteq X, b \in Y$ adott elem.

- 1. Elsőfajú egyenlet: melyik az a $x \in M = D_A$: Ax = b?
- Másodfajú egyenlet: legyen Y = X. Melyik az a x ∈ X, melyre (λI A)x = b, ahol λ ∈ 𝕂, I az identitás. Ha (λI A) nem injektív, azaz nem létezik az inverzre, akkor λ -t az A operátor sajátértékének nevezzük. Ez azt jelenti, hogy ∃ x₀ ≠ 0 : (λI A)x₀ = 0 ⇔ Ax₀ = λx₀.

<u>Definíció</u>: ha $\exists (\lambda I - A)^{-1}$, ez korlátos és $R_{\lambda I - A}$ értelmezési tartománya sűrű halmaz X-ben, akkor λ -t reguláris értéknek nevezzük.

Állítás: ha A zárt operátor, akkor reguláris érték esetén $D_{(\lambda I - A)^{-1}} = X$, azaz $R_{\lambda I - A} = X$.

Megjegyzés: ekkor reguláris értéke esetén $(\lambda I - A)x = b$ egyenletnek $\forall b \in X$ -hez $\exists ! x$ megoldás, és x folytonosan függ b-től, azaz $x = (\lambda I - A)^{-1}b$

folytonos

<u>Definíció</u>: az *A* operátor spektruma a reguláris értékek halmazának a komplementere az alaptestben. A sajátértékek halmaza része a spektrumnak.

Korlátos lineáris operátorok reguláris értékei

<u>Tétel</u>: legyen X Banach tér! Legyen $A: X \to X$ korlátos lineáris operátor. Ekkor $r_{\sigma}(A): = \lim_{k \to \infty} \|A^k\|^{1/k}$, ez létezik és véges. Ha $\lambda \in \&$ Kopf; számra teljesül, hogy $|\lambda| > r_{\sigma}(A)$, akkor λ reguláris érték (A-ra nézve).

<u>Definíció</u>: $r_{\sigma}(A)$ számot az A korlátos lineáris operátor spektrálsugarának nevezzük.

Megjegyzések:

- $A, B \in L(X, X)$ esetén $||AB|| \le ||A|| ||B||$, ugyanis $||(AB)x|| = ||A(Bx)|| \le ||A|| \cdot ||Bx|| \le ||A|| \cdot ||B|| \cdot ||x||$ minden x-re, $\Rightarrow ||AB|| \le ||A|| ||B||$
- $\|A^k\| \le \|A\|^k$. $\|A^k\|^{1/k} \le (\|A\|^k)^{1/k} = \|A\| \Rightarrow r_{\sigma}(A) \le \|A\|$. Következmény: ha $|\lambda| > \|A\| \Rightarrow \lambda$ reguláris érték.

Lemma 1: legyen
$$Z$$
 Banach-tér, $z_k \in Z$. Ha $\sum_{k=1}^{\infty} \|z_k\| < \infty$ \Rightarrow $\sum_{k=1}^{\infty} z_k$ konvergens Z

Banach-téren.

Bizonyítás: legyen
$$s_j$$
: = $\sum_{k=1}^{j} z_k$ részlet összeg!
 $\|s_j - s_l\| = \|\sum_{k=l+1}^{j} z_k\| \le \sum_{k=l+1}^{j} \|z_k\| < \varepsilon$, ha $l, j > j_0$, tehát teljesül a Cauchy

kritérium. Mivel Z Banach-tér, azaz teljes normált tér, ezért minden Cauchy-sorozatnak van határértéke Z-ben.

Lemma 2: tfh $B_k \in L(X, X)$, $\sum_{k=1}^{\infty} B_k$ konvergens L(X, X) -en. Ekkor $\forall C \in L(X, X)$ operátorra $C\sum_{k=1}^{\infty} B_k = \sum_{k=1}^{\infty} CB_k$. A bizonyítás egyszerű a részletösszegek segítségével.

<u>Tétel</u>: legyen X Banach-tér, $A: X \to X$ korlátos, lineáris operátor. Ekkor létezik és véges: $r_{\sigma}(A): = \lim_{k \to \infty} \|A^k\|^{1/k}$. Továbbá $|\lambda| > r_{\sigma}(A) \Rightarrow \lambda$ reguláris érték,

$$(\lambda I - A)^{-1} = \frac{1}{\lambda} (I - \frac{1}{\lambda} A)^{-1} = \frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{\lambda^k} A^k = \sum_{k=0}^{\infty} \lambda^{-k-1} A^k$$
. Ez a sor – a Neumann-sor –

L(X, X) normában konvergens.

Bizonyítás:

1. jelöljük: $r:=\inf\left\{\|A^k\|^{1/k}: k\in \text{\&naturals};\right\}\geq 0$, ez véges. Belátjuk, hogy $r_{\sigma}(A)=\lim_{k\to\infty}\|A^k\|^{1/k}=r=\inf\left\{\|A^k\|^{1/k}: k\in \text{\&naturals};\right\}\geq 0$. Legyen $\epsilon>0$ tetszőleges, ekkor az alsó határ definíciójából következik, hogy $\exists m\in \text{\&naturals}; : r\leq \|A^m\|^{1/m} < r+\epsilon$. Ezen m mellett válasszunk egy k>m számot, melyre k=pm+q, ahol $p\in \text{\&naturals};$ és $0\leq q< m$ (ez k-nak m-vel vett maradékos osztása, q a maradéktag). Ekkor $A^k=A^{pm+q}=\left(A^p\right)^m\cdot A^q$, így $\|A^k\|\leq \|A^m\|^p\cdot \|A\|^q\Rightarrow \|A^k\|^{1/k}\leq \|A^m\|^{p/k}\cdot \|A\|^{q/k}\leq (r+\epsilon)^{mp/k}\|A\|^{q/k}$. Vegyük észre, hogy $\lim_{k\to\infty}\frac{mp}{k}=1$, mert $\lim_{k\to\infty}\frac{q}{k}=0$, így a fenti egyenlőtlenség jobb oldala $\to r+\epsilon$. Ebből következik, hogy $\lim_{k\to\infty}\|A^k\|^{1/k}\leq r+2\epsilon$

2. Belátjuk, hogy a Neumann-sor
$$L(X, X)$$
 -ben konvergens. Az 1. lemma szerint ehhez elég bizonyítani, hogy a sor tagjainak normáiból alkotott sor konvergens,

azaz $\sum_{k=0}^{\infty} \|\lambda^{-k-1}A^k\| < \infty$. Válasszunk egy olyan r_1 számot, melyre $\|\lambda\| > r_1 > r_{\sigma}(A)!$ Mivel $r_{\sigma}(A) = \lim_{k \to \infty} \|A^k\|^{1/k}$ és $r_1 > r_{\sigma}(A)$, ezért $\exists k_1 \in \text{\&naturals}; : k > k_1 \implies r_1 > \|A^k\|^{1/k}$, így

$$\|\lambda^{-k-1}A^k\| = \frac{1}{|\lambda|^{k+1}} \|A^k\| < \frac{1}{|\lambda|^{k+1}} r_1^k = \frac{1}{|\lambda|} \left(\frac{r_1}{|\lambda|}\right)^k. \text{ Ezeket összegezve } k$$
 szerint egy mértani sort kapunk, melynek kvóciense $0 < \frac{r_1}{|\lambda|} < 1$, így a sor konvergens, azaz
$$\sum_{k=1}^{\infty} \frac{1}{|\lambda|} \left(\frac{r_k}{|\lambda|}\right)^k < \infty.$$

3. jelöljük $B:=\sum_{k=0}^{\infty}\lambda^{-k-1}A^k\in L(X,X)$. Előbb láttuk, hogy ez konvergens.

Ebből következni fog, hogy $(\lambda I - A)^{-1}$ létezik és egyenlő *B*-vel. A 2. lemmát felhasználva:

$$(\lambda I - A)B = \lambda B - AB = \lambda \sum_{k=0}^{\infty} \lambda^{-k-1} A^k - A \sum_{k=0}^{\infty} \lambda^{-k-1} A^k = \sum_{k=0}^{\infty} \lambda^{-k} A^k - \sum_{k=0}^{\infty} \lambda^{-k-1} A^{k+1} = I$$

. Hasonlóképpen, $B(\lambda I - A) = I$. Következtetésképpen $(\lambda I - A)^{-1}$ létezik és egyenlő B-vel.

Következmény: $|\lambda| > r_{\sigma}(A)$ esetén a $(\lambda I - A)x = b$ másodfajú egyenletnek létezik egyetlen x megoldása, mégpedig

$$x = (\lambda I - A)^{-1}b = \left(\sum_{k=0}^{\infty} \lambda^{-k-1} A^{k}\right)b = \sum_{k=0}^{\infty} (\lambda^{-k-1} A^{k})b = \sum_{k=0}^{\infty} \lambda^{-k-1} (A^{k}b), \text{ ez a sor}$$

pedig X normában konvergens. A sor összege így is írható: $\frac{1}{\lambda}b + \sum_{k=1} \lambda^{-k-1}A^kb$. A fentiek még inkább érvényesek, ha $|\lambda| > \|A\|$.

Bizonyítható (de nem tesszük) tétel: $r_{\sigma}(A) = \sup\{ |\lambda| : \lambda \in A_{spektrum} \}$.

Alkalmazás, példák.

1. példa: négyzetesen integrálható magú integráloperátorok.

Legyen $M \subseteq \&$ Ropf;ⁿ egy Lebesgue szerint mérhető halmaz, $X := L^2(M)$, ez ugye Hilbert tér. Legyen 𝒦 $\in L^2(M \times M)$ az úgynevezett magfüggvény, s $\phi \in L^2(M)$. Definiáljuk: $\psi(x) := \int_M \&$ Kscr; $(x, y)\phi(y)dy$.

Állítás: $\psi \in L^2(M)$, továbbá a $K(\phi)$: = ψ képlettel értelmezett K: $L^2(M) \to L^2(M)$ operátor lineáris, korlátos. A K operátort négyzetesen integrálató magú integráloperátornak nevezzük.

Bizonyítás: a Cauchy-Schwarz egyenlőtlenség szerint majdnem minden x-re

$$| \psi(x) | \le \int_{M} | \& Kscr;(x, y) | \cdot | \phi(y) | dy \le \left\{ \int_{M} | \& Kscr;(x, y) |^{2} dy \right\}^{1/2} \cdot \left\{ \int_{M} | \phi(y) |^{2} dy \right\}^{1/2}$$

. Mivel 𝒦 $\in L^2(M \times M) \implies \int_{M \times M} | \𝒦(x, y) |^2 dx dy < \infty$. Fubini tételt

használva
$$\int_{M} \int_{M} \left| & \text{Kscr;}(x, y) \right|^{2} dy dx < \infty, \text{ igy}$$
véges m. m. x-re

$$| \psi(x) |^2 \le \int_M | \& Kscr;(x, y) |^2 dy \cdot \left[\int_M | \phi(y) |^2 dy \right] < \infty.$$
 Integrálva:

$$\int_{M} |\psi(x)|^{2} dx \leq \left[\int_{M} \int_{M} |\& Kscr;(x, y)|^{2} dy dx \right] \cdot \left[\int_{M} |\phi(y)|^{2} dy \right] < \infty \quad \Rightarrow \quad \psi \in L^{2}(M). K$$

linearitása triviális. K korlátos, ugyanis

$$\| K \phi \|_{L^{2}(M)}^{2} = \| \psi \|_{L^{2}(M)}^{2} \leq \left\{ \int_{M \times M} | \& Kscr; (x, y) |^{2} dx dy \right\} \cdot \| \phi \|^{2} \implies K \text{ korlátos, sőt:}$$

$$\| K \| \leq \left\{ \int_{M \times M} | \& Kscr; (x, y) |^{2} dx dy \right\}^{1/2} = \| \& Kscr; \|_{L^{2}(M \times M)}.$$

Következmény: $|\lambda| > \| \& Kscr; \|_{L^2(M \times M)}$ esetén λ reguláris érték. Tudjuk, hogy

$$|\lambda| > r_{\sigma}(K)$$
 esetén λ reguláris érték és $(\lambda I - K)^{-1} = \sum_{k=0}^{\infty} \lambda^{-1-k} K^{k}$.

Kérdés: *K* integrál operátor hatványai hogyan számolhatók?

<u>Állítás</u>: legyen & Kscr;, & Lscr; $\in L^2(M \times M)$ és K, L a megfelelő integráloperátorok.

Ekkor P:=KL szintén négyzetesen integrálható magú operátor, amelynek magfüggvénye 𝒫 $(x, y):=\int_{M}$ 𝒦(x, t)ℒ(t, y)dt.

Bizonyítás: $\phi \in L^2(M)$ esetén

$$(P\phi)(x) = [K(L\phi)](x) = \int_{M} \& \text{Kscr}; (x, t) \Big[\int_{M} \& \text{Lscr}; (t, y)\phi(y) dy \Big] dt =$$

$$= \int_{M} \underbrace{\Big[\underbrace{\int_{M} \& \text{Kscr}; (x, t)\& \text{Lscr}; (t, y) dt}_{\& \text{Pscr}; (x, y)} \Big] \phi(y) dy}_{\& \text{Pscr}; (x, y)} \text{ ahol Fubini-tételt ismét alkalmaztuk.}$$

𝒫 $\in L^2(M \times M)$, merthogy

$$| \& Pscr;(x, y) | \le \{ \int_{M} | \& Kscr;(x, t) |^{2} dt \}^{1/2} \{ \int_{M} | \& Lscr;(t, y) |^{2} dy \}^{1/2}, igy \}$$

integrálva:

$$\int_{M \times M} \left| \text{ \𝒫}(x, y) \right|^2 dx dy \leq \int_{M} \left[\int_{M} \left| \text{ \𝒦}(x, t) \right|^2 dt \right] dx \cdot \int_{M} \left[\int_{M} \left| \text{ \ℒ}(t, y) \right|^2 dt \right] dy < \infty$$

.

Következmény:
$$(K^{j}\phi)(x) = \int_{M} \& \text{Kscr};_{j}(x, y)\phi(y)dy, j = 1,2,..., \text{ ahol } \& \text{Kscr};_{1} : = \& \text{Kscr};_{2}(x, y) = \int_{M} \& \text{Kscr};_{2}(x, t) \& \text{Kscr};_{1}(t, y)dt.$$

 $\& \text{Kscr};_{j}(x, y) = \int_{M} \& \text{Kscr};_{2}(x, t) \& \text{Kscr};_{j-1}(t, y)dt. \text{ Ebből következik, hogy}$
 $(\lambda I - K)^{-1}b = \sum_{j=0}^{\infty} \lambda^{-j-1}K^{j}b.$

$$\left[(\lambda I - K)^{-1}b\right](x) = \left[\sum_{j=0}^{\infty} \lambda^{-j-1}K^{j}b\right](x) = \sum_{j=0}^{\infty} \lambda^{-j-1}(K^{j}b)(x) = \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1}\int_{M} \& \text{Kscr};_{j}(x, y)b(y)dy \right]^{2}$$

$$= \frac{b(x)}{\lambda} + \left[\sum_{j=1}^{\infty} \lambda^{-j-1}\& \text{Kscr};_{j}(x, y)\right]b(y)dy. \text{ A sor } L^{2}(M) \text{ normában konvergál. Az}$$

egyenlőséget a következő órán látjuk be.

A korábbiak szerint $(\lambda I - A)x = b$ egyenletnek van egyértelmű megoldása x-re és

$$x = \sum_{k=0}^{\infty} \lambda^{-k-1} (A^k b)$$
, ha λ reguláris érték, ugyanis ekkor a jobb oldal konvergens $X \ni x$ ben.

Az előző példában $X:=L^2(M)$ volt, (ahol $M\subseteq \&\mathrm{Ropf};^n$ mérhető halmaz), $\&\mathrm{Kscr};\in L^2(M\times M),\, \psi(x):=(K\phi)(x)=\int_M \&\mathrm{Kscr};(x,y)\phi(y)dy$ ahol $K:L^2(M)\to L^2(M)$ korlátos lineáris operátor és $r_\sigma(K)\leq \|K\|\leq \|\&\mathrm{Kscr};\|_{L^2(M\times M)}$. $(\lambda I-K)\phi=b,\, b\in L^2(M)$ adott esetén mi a megoldás $\phi\in L^2(M)$ -re? Az egyenlet ekvivalens: $\lambda\phi(x)-\int_M \&\mathrm{Kscr};(x,y)\phi(y)dy=b(x)$ majdnem minden $x\in M$ -re. Ha

$$|\lambda| > r_{\sigma}(K)$$
 \Rightarrow $\phi = \sum_{j=0}^{\infty} \lambda^{-j-1} K^{j} b = \frac{b}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} K^{j} b.$

 $(K^{j}b)(x) = \int_{M} \& Kscr_{,j}(x, y)b(y)dy, \& Kscr_{,j}(x, y) = \int_{M} \& Kscr_{,j-1}(x, t)\& Kscr_{,j-1}(x, y)dt$ és $\& Kscr_{,1} = \& Kscr_{,1}$ így

$$\phi(x) = \frac{b(x)}{x} + \sum_{j=1}^{\infty} \lambda^{-j-1}$$
 𝒦_j(x, y)b(y)dy = $\frac{b(x)}{\lambda}$ +
$$\left[\sum_{j=1}^{\infty} \lambda^{-j-1} 𝒦_j(x, y) \right] b(y)dy$$

$$M^{R_{\lambda}(x, y) \in L^2(M \times M) \text{ rezolv. op magfgve}}$$

. A sor $L^2(M \times M)$ -ben konvergens, ha $|\lambda| > r_{\sigma}(\& Kscr;)$.

A bizonyítás alapja: 𝒦 $_j(x, y) = \int_M \𝒦_{j-1}(x, t) \𝒦_{(t, y)} dt \implies K^{j-1}$ operátor alkalmazva $t \mapsto \𝒦_{(t, y)} függvényre (y rögzített):$

$$\left\{ \int_{M} \left| \& \text{Kscr};_{j}(x, y) \right|^{2} dx \right\}^{1/2} \leq \|\& \text{Kscr};^{j-1}\| \left\{ \int_{M} \left| \& \text{Kscr};(t, y) \right|^{2} dt \right\}^{1/2} \implies \int_{M} \left| \& \text{Kscr};_{j}(x, y) \right|^{2} dx \leq \|A\| dx$$

. Integrálva y szerint:

$$\int_{M\times M} \left| \& \mathrm{Kscr}_{j}(x, y) \right|^{2} dx dy \leq \|K^{j-1}\|^{2} \int_{M\times M} \left| \& \mathrm{Kscr}_{j}(t, y) \right|^{2} dt dy.$$

$$\int_{M\times M} \frac{1}{|\lambda|^{2(j+1)}} |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||^{2}}_{\infty} \cdot |\& \operatorname{Kscr}_{j}(x, y)|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}|} |K^{j-1}||$$

így a bal oldalból képzett számsor (ami ≥ 0) is konvergens.

2. példa: folytonos magú integráloperátorok.

Legyen $\Omega \subset \&$ Ropf; korlátos tartomány (azaz nyílt és összefüggő), $X := C[\Omega]$, $\Omega \to \&$ Kopf; folytonos függvények (a felülvonás a lezárást jelenti), tehát $C[\Omega]$ az Ω korlátos tartomány lezárásán értelmezett folytonos függvények tere a $\| \phi \| = \sup_{\Omega} | \phi |$ normával. Legyen 𝒦 $\in C[\Omega \times \Omega]$, $\psi(x) := (K\phi)(x) := \int_{\Omega} \&$ Kscr; $(x, y)\phi(y)dy$.

 $\underline{\text{Állítás}}: K: C(\overline{\Omega}) \rightarrow C(\overline{\Omega})$ korlátos, lineáris operátor.

Bizonyítás:

$$|\psi(x)| = \int_{\Omega} \& \operatorname{Kscr};(x, y) \phi(y) dy \quad | \leq \int_{\Omega} | \& \operatorname{Kscr};(x, y)| \cdot | \phi(y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | \& \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | & \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | & \operatorname{Kscr};(x, y)| dy \leq \| \phi \| \int_{\Omega} | & \operatorname{Kscr};(x, y)| d$$

3. példa

Az előbbi spec esete: $\Omega = [a, b] \subset \text{\&Ropf};$, ekkor 𝒦 $\in C([a, b] \times [a, b])$, továbbá 𝒦(x, y) = 0, ha y > x. $(K\phi)(x) := \int_a^b \text{\&Kscr}; (x, y)\phi(y)dy = \int_a^x \text{\&Kscr}; (x, y)\phi(y)dy$ Voltera típusú operátor. Erre is igaz, hogy 𝒦 $: C[a, b] \to C[a, b]$ folytonos lineáris operátor.

<u>Állítás</u>: $r_{\sigma}(K) = 0$, így $\lambda \neq 0$ esetén λ reguláris érték, azaz létezik egyértelmű megoldása a

$$\lambda \phi(x) - \int_{a}^{x} \& \text{Kscr}; (x, y) \phi(y) dy = b(x)$$
 másodfajú egyenletlnek bármely folytonos $b(x)$

esetén.

Bizonyítás: 𝒦 $_{j}(x, y) = \int_{a}^{b} \𝒦_{j-1}(x, t) \𝒦_{(t, y)} dt$, speciálisan

𝒦₂(x, y) =
$$\int_{a}^{b} \underbrace{Kscr;(x, t)}_{0 \text{ ha } t > x} \underbrace{Kscr;(t, y)}_{0 \text{ ha } y > t} dt = \int_{y}^{x} \underbrace{Kscr;(x, t)}_{y} \underbrace{Kscr;(t, y)}_{t} dt, \text{ mert csak}$$

 $y \le t \le x$ esetén nem 0 az integrandus. Így 𝒦₂(x, y) = 0, ha y > x.

𝒦₃
$$(x, y) = \int_{0}^{x} \text{Kscr};_{2}(x, t) \text{Kscr};_{2}(t, y) dt = 0 \text{ ha } y > x. \text{ Ekkor}$$

𝒦₃
$$(x, y) = \int_{y}^{x} 𝒦_{2}(x, t) 𝒦_{3}(t, y) dt = 0 \text{ ha } y > x. \text{ Ekkor}$$

$$\| K \| \le \sup_{x \in [a, b]_{a}} \int_{a}^{b} | 𝒦_{3}(x, y) | dy \le \alpha(b - a), \text{ ugyanis}$$

𝒦 $\in C([a, b] \times [a, b]) \Rightarrow$ 𝒦 korlátos és így

$$| \& Kscr;(x, y) | \le \alpha, \forall x, y \in [a, b].$$

$$\|K^2\| \le \sup_{x \in [a, b]_a} \int_a^b |\& Kscr;_2(x, y)| dy = \sup_{x \in [a, b]_a} \int_a^x |\& Kscr;_2(x, y)| dy. Az integrandusra$$

$$\left| & \text{Kscr};_2(x, y) \right| = \left| \int_y^x & \text{Kscr};(x, t) & \text{Kscr};(t, y) dt \right| \leq \int_y^x \underbrace{\left| & \text{Kscr};(x, t) \right|}_{<\alpha} \underbrace{\left| & \text{Kscr};(t, y) \right|}_{<\alpha} dt \leq \alpha^2 (x - t)$$

ha
$$x > y$$
. Így $\| K^2 \| \le \sup_{x \in [a, b]_a} \int_a^x \| \& \text{Kscr};_2(x, y) \| dy \le \sup_{x \in [a, b]_a} \int_a^x \alpha^2(x - y) dy =$

$$= \alpha^2 \sup_{x \in [a, b]} \left[-\frac{(x-y)^2}{2} \right]_{y=a}^x = \alpha^2 \sup_{x \in [a, b]} \frac{(x-a)^2}{2} = \alpha^2 \frac{(b-a)^2}{2}.$$

 $\mathbb{I} K^3 \mathbb{I}$ -re hasonló módon járunk el. Ekkor

$$\left| & \text{Kscr};_3(x, y) \right| = \left| \int_y^x & \text{Kscr};_2(x, t) & \text{Kscr};_2(t, y) dt \right| \leq \int_y^x \left| & \text{Kscr};_2(x, t) \right| \left| & \text{Kscr};_2(t, y) \right| dt \leq \alpha^{3(x-t)}$$

. Így

$$\|K^3\| \le \sup_{x \in [a, b]_a} \int_a^x |\& Kscr;_3(x, y)| dy \le \sup_{x \in [a, b]_a} \int_a^x \alpha^3 \frac{(x - y)^2}{2} dy = \alpha^3 \sup_{x \in [a, b]} \frac{(x - a)^3}{3!} \le \alpha^3 \frac{(b - a)^3}{3!}$$

. Teljes indukcióval bizonyítható, hogy $\|K^j\| \le \alpha^j \frac{(b-a)^j}{j!} \implies \|K^j\|^{1/j} = \alpha^{\frac{b-a}{(j!)^{1/j}}} \longrightarrow 0,$ ha $j \to \infty$.

Hilbert tér operátorai

Az adjungált operátor

Legyen X Hilbert tér, $A:D_A\to X$ lineáris operátor, ahol D_A az A-nak az értelmezési tartománya, $D_A \subseteq X$, $y\in X$ elem.

Kérdés: létezik-e illetve hány $y^* \in X$ létezik, melyre $\langle Ax, y \rangle = \langle x, y^* \rangle$, $\forall x \in D_A$ esetén? Mi az egyértelműség feltétele?

<u>Állítás</u>: legfeljebb egy y^* létezik $\bigoplus \overline{D_A} = X$, vagyis ha az értelmezési tartomány sűrű X-ben.

Bizonyítás: legfeljebb egy y^* létezik \Leftrightarrow hogy ha $\langle x, y^* \rangle = \langle x, \tilde{y} \rangle$, $\forall x \in D_A$ -ból következik, hogy $y^* = \tilde{y}$. $\langle x, y^* \rangle = \langle x, \tilde{y} \rangle$, $\forall x \in D_A$ pontosan azt jelenti, hogy $\langle x, y^* - \tilde{y} \rangle = 0$, $\forall x \in D_A$. Ebből következik: $y^* = \tilde{y}$ $\overleftrightarrow{D_A} = X$. (Felhasználjuk, hogy a skalárszorzat folytonosan függ a tényezőktől.)

<u>Definíció</u>: legyen X Hilbert tér, $A:D_A\to X$ lineáris operátor, $D_A=X$. Ekkor A operátor adjungáltját, A^* operátort így értelmezzük:

$$D_{A^*}$$
: = $\{ y \in X : \exists y^* \in X : \langle Ax, y \rangle = \langle x, y^* \rangle \ \forall x \in D_A \} \text{ és } A^*(y) : = y^* .$

Megjegyzés: $0 \in D_A^*$, ugyanis $\langle Ax, 0 \rangle = \langle x, 0 \rangle = 0$, $\forall x \in D_A$.

Állítás: A* lineáris operátor.

Bizonyítás: legyen $y_1, y_2 \in D_A^*!$ Ekkor $\langle Ax, y_1 \rangle = \langle x, A^*(y_1) \rangle, \forall x \in D_A$ és $\langle Ax, y_2 \rangle = \langle x, A^*(y_2) \rangle, \forall x \in D_A. \text{ fgy } \langle Ax, y_1 \rangle + \langle Ax, y_2 \rangle = \langle x, A^*(y_1) \rangle + \langle x, A^*(y_2) \rangle.$ $\langle Ax, y_1 + y_2 \rangle = \langle x, A^*(y_1) + A^*(y_2) \rangle, \forall x \in D_A$. Ebből következik, hogy $A^*(y_1 + y_2) = A^*(y_1) + A^*(y_2)$. Hasonlóan igazolható $A^*(\lambda g) = \lambda A^*(g)$.

<u>**Tétel**</u>: legyen $A: X \to X$ korlátos lineáris operátor. Ekkor $A^*: X \to X$ korlátos lineáris operátor és $\|A^*\| = \|A\|$.

Bizonyítás: tekintsünk tetszőleges, rögzített $y \in X$ elemet! Ekkor $f(x) := \langle Ax, y \rangle, f$ lineáris funkcionál korlátos is:

 $|f(x)| = |\langle Ax, y \rangle| \le ||Ax|| \cdot ||y|| \le ||A|| \cdot ||x|| \cdot ||y|| = (||A|| ||y||) \cdot ||x||, \text{ igy}$ $\|f\| \le \|A\| \cdot \|y\|$. A Riesz-tételből most következik, hogy $\exists ! y^* \in X : f(x) = \langle x, y^* \rangle$, azaz $\langle Ax, y \rangle = \langle x, y^* \rangle$, $\forall x \in X$ -re. Így $D_{A^*} = X$, $A^*y = y^*$. Továbbá $\|A^*y\| = \|y^*\| = \|f\| \le \|A\| \cdot \|y\|, \text{ ez\'ert } A^* \text{ korl\'atos \'es } \|A^*\| \le \|A\|. \text{ Az}$ egyenlőség abból fog következni, hogy $\left(A^*\right)^* = A \implies \|A\| = \|\left(A^*\right)^*\| \le \|A^*\|$.

Legyen $A: X \to X$ korlátos lineáris operátor! Láttuk már, hogy $A^*: X \to X$ 11.09 operátor korlátos és lineáris, és $\|A^*\| \le \|A\|$.

<u>**Tétel**</u>: legyenek $A, B: X \rightarrow X$ korlátos lineáris operátor! Ekkor

1.
$$(A+B)^* = A^* + B^*$$

$$2. \ (\lambda A)^* = \overline{\lambda} A^*$$

3.
$$(A^*)^* = A$$

4. $I = I^*, 0^* = 0$

4.
$$I = I^*, 0^* = 0$$

5.
$$(AB)^* = B^*A^*$$
.

Bizonyítás: legyenek $x, y \in X!$

1.
$$\langle (A+B)x, y \rangle = \langle Ax + Bx, y \rangle = \langle Ax, y \rangle + \langle Bx, y \rangle = \langle x, A^*y \rangle + \langle x, B^*y \rangle =$$

= $\langle x, A^*y + B^*y \rangle = \langle x, (A^* + B^*)y \rangle$

3.
$$\langle Ax, y \rangle = \langle x, A^*y \rangle = \langle A^*y, x \rangle = \langle y, (A^*)^*x \rangle = \langle (A^*)^*x, y \rangle$$
, tehát $Ax = (A^*)^*x$, $\forall x \in X \Rightarrow A = (A^*)^*$, így $\|A^*\| \le \|(A^*)^*\| = \|A\|$, így az előző tétellel együtt: $\|A\| = \|A^*\|$.

5.
$$\langle x, (AB)^* y \rangle = \langle ABx, y \rangle = \langle Bx, A^* y \rangle = \langle x, B^* A^* y \rangle$$

Megjegyzés: mi a helyezet a lineáris operátorok esetén (ha nem korlátos)? D_A , $D_B \subseteq X$, $D_A = D_B = X$.

Jelölés: ha $A^*x = Ax$, $\forall x \in D_A$, $D_A \subseteq D_{A^*}$, akkor A^* kiterjesztése A-nak s ezt így jelöljük: $A \subseteq A^*$. Ezzel a jelöléssel: $(A+B)^* \supseteq A^* + B^*$ és $D_{A^*+B^*} = D_{A^*} \cap D_{B^*}$. Ugyanis $\forall y \in \left(D_{A^*} \cap D_{B^*}\right)$ esetén $\langle (A+B)x, y \rangle = \langle x, \left(A^* + B^*\right)y \rangle$, $\forall x \in (D_A \cap D_B)$. Továbbá $(\lambda A)^* = \lambda A^*$, $(AB)^* \supseteq B^*A^*$, $(A^*)^* \supseteq A$ és $1 A \subseteq B \Rightarrow A^* \supseteq B^*$.

Példák:

 $X:= \& Kopf;^n$. Tudjuk, hogy ekkor minden lineáris operátor korlátos.

 $A: \& \operatorname{Kopf}_{;}^{n} \to \& \operatorname{Kopf}_{;}^{n}$ lineáris korlátos operátor. Tudjuk, hogy A reprezentálható egy $\& \operatorname{Ascr}_{;}(\operatorname{valós} \operatorname{vagy} \operatorname{komplex} \operatorname{elemekből} \operatorname{alkotott}), n \times n$ -es mátrixszal úgy, hogy $\& \operatorname{Ascr}_{;}x = Ax$. Ekkor $A^*: \& \operatorname{Kopf}_{;}^{n} \to \& \operatorname{Kopf}_{;}^{n} \operatorname{korlátos} \operatorname{lineáris} \operatorname{operátor}$. Kérdés: mi a lesz ennek a mátrixa?

𝒜 =
$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$
, $a_{jk} \in \text{\𝕂}$;. Ekkor $x, y \in \text{\𝕂}$;ⁿ esetén

$$\langle \& Ascr; x, y \rangle = \sum_{j=1}^{n} \left[\sum_{k=1}^{n} a_{jk} x_{k} \right] \overline{y_{j}} = \sum_{k=1}^{n} x_{k} \left[\sum_{j=1}^{n} a_{jk} \overline{y_{j}} \right] = \sum_{k=1}^{n} x_{k} \left[\sum_{j=1}^{n} \overline{a_{jk}} y_{j} \right] = \sum_{k=1}^{n} x_{k} \left[\sum_{j=1}^{n} \overline{a_{jk}} y_{j} \right] = \langle x, \& Ascr; x, y \rangle = \sum_{j=1}^{n} \left[\sum_{k=1}^{n} a_{jk} x_{k} \right] \overline{y_{j}} = \sum_{k=1}^{n} \left[\sum_{j=1}^{n} a_{jk} y_{j} \right] = \sum_{k=1}^{n} \left[\sum_{j=1}^$$

Négyzetesen integrálható magú integrál operátorok valós vagy komplex függvényeken

Legyen $X:=L^2(M), M \subseteq \text{\&Ropf};^n$ mérhető halmaz, 𝒦 $\in L^2(M \times M)$, $(K\phi)(x):=\int_M \text{\&Kscr};(x,y)\phi(y)dy$. Tudjuk, hogy $K:L^2(M)\to L^2(M)$ lineáris operátor, node mi K^* ? Legyen ϕ , $\psi\in L^2(M)$, ekkor

$$\langle K\phi, \psi \rangle = \int_{M} (K\phi)(x) \overline{\psi(x)} dx = \int_{M} \left[\int_{M} \& Kscr; (x, y)\phi(y) dy \right] \overline{\psi(x)} dx$$
, ami a Fubini-tétel

alkalmazásával

$$= \int_{M} \phi(y) \left[\int_{M} \& \text{Kscr}; (x, y) \overline{\psi(x)} dx \right] dy = \int_{M} \phi(y) \left[\int_{M} \& \text{Kscr}; (x, y) \overline{\psi(x)} dx \right] dy = \text{(felcserélve } x\text{-t} \right]$$

$$\text{és } y\text{-t}) = \int_{M} \phi(x) \left[\int_{M} \& \text{Kscr}; (x, y) \overline{\psi(y)} dx \right] dx = \int_{M} \phi(x) \left[\int_{M} \& \text{Kscr}; (x, y) \overline{\psi(y)} dx \right] dy. A$$

bevezetett jelöléssel konzekvensen $(K^*\psi)(x) := \int_M \& Kscr; *(x, y)\psi(y)dy$, így az korábbiakkal együtt: $\langle K\phi, \psi \rangle = \int_M \phi(x) \overline{(K^*\psi)(x)} dx = \langle \phi, K^*\psi \rangle$.

<u>Állítás</u>: tetszőleges A lineáris operátor esetén (melyre $D_A \subset X$, $D_A = X$) A^* zárt operátor.

Bizonyítás: azt kellene belátni, hogy ha $y_j \in D_{A^*}$, $(y_j)_{j \in \& naturals}$; $\to y X$ -ben, továbbá $(A^* y_j) \to z X$ -ben $\Rightarrow y \in D_{A^*}$ és $A^* y = z$. Tudtuk, hogy $\langle Ax, y_j \rangle = \langle x, A^* y_j \rangle$, $\forall x \in D_A$, $\forall j$, így $j \to \infty$ esetén $\langle Ax, y \rangle = \langle x, z \rangle$, $\forall x \in D_A$. Ez azt jelenti, hogy $y \in D_{A^*}$ és $z = A^* y$.

<u>Tétel</u>: legyen X Hilbert tér, $A: X \to X$ korlátos lineáris operátor és $\lambda \in \&$ Kopf;. Ekkor $\overline{R_{(\lambda I - A)}}^{\perp} = S_{\lambda}(A^*): = \left\{x \in X: (\overline{\lambda I} - A^*)x = 0\right\}$, ahol R az értékkészletet jelöli.

Bizonyítás: világos, hogy $R_{(\lambda I-A)}$ lineáris altér, ezért $R_{(\lambda I-A)}$ zárt altér. Másrészt $S_{\lambda}^{-}(A^{*})$ is zárt altér. Az $S_{\lambda}^{-}(A^{*})$ halmaz azért zárt, mert A^{*} folytonos lineáris operátor.

• Először tfh
$$y \in \overline{R_{\lambda I - A}}^{\perp}$$
, ekkor $0 = \left| \underbrace{(\lambda I - A)x}_{\in R_{\lambda I - A}}, y \right| = \left\langle x, (\lambda I - A)^* y \right\rangle$, ez igaz

$$\forall x \in X \qquad \frac{\lambda}{\lambda} \qquad \underbrace{(\lambda I - A)^* y}_{=\lambda I - A^*} = 0, \text{vagyis } y \in S_{\lambda}^{-}(A^*).$$

• tfh $y \in S_{\lambda}^{-}(A^{*})$, azaz $(\lambda I - A^{*})y = 0$, $\forall x \in X$, így $\langle (\lambda I - A)x, y \rangle = \langle x, (\lambda I - A)^{*}y \rangle = 0$, vagyis $y \perp R_{\lambda I - A}$ minden elemére $\Rightarrow y \perp R_{\lambda I - A}$ minden elemére.

Megjegyzés: spec eset, mikor $R_{\lambda I-A}$ zárt halmaz, azaz $R_{\lambda I-A}=R_{\lambda I-A}$. Ekkor a fenti tételből következik: $(\lambda I-A)x=b$ másodfajú egyenletnek létezik $x\in X$ megoldása pontosan akkor, ha $b\in R_{\lambda I-A}=S_{\lambda}^-(A^*)^{\perp}$, azaz $\langle b,y\rangle=0$ a $(\lambda I-A)^*y=0$ egyenlet $\forall y\in X$ megoldására. Később látni fogjuk, hogy ha A ún. kompakt lineáris operátor, akkor $\lambda\neq 0$ esetén az $R_{\lambda I-A}$ zárt halmaz.

Szimmetrikus és önadjungált operátorok

<u>Definíció</u>: legyen X Hilbert tér, $D_A \subseteq X$ és $D_A = X$ és $A:D_A \to X$ lineáris operátor. Ekkor A-t önadjungáltnak nevezzük, ha $A^* = A$ (ekkor ugyanott vannak értelmezve, $D_{A^*} = D_A$).

<u>Definíció</u>: legyen X Hilbert tér, $D_A \subseteq X$ és $D_A = X$ és $A:D_A \to X$ lineáris operátor. Ekkor A-t szimmetrikusnak nevezzük, ha $A \subseteq A^*$. Tehát minden önadjungált operátor egyúttal szimmetrikus is.

Megjegyzés: ekvivalens definíció: A szimmetrikus, ha $\langle Ax, y \rangle = \langle x, Ay \rangle, \forall x, y \in D_A$.

Példa: ha $X = \& \text{Kopf};^n$, akkor $A : \& \text{Kopf};^n \to \& \text{Kopf};^n$ -nak megfelel egy & Ascr; mátrix. Tudjuk, hogy A^* mátrixa & Ascr; *, melynek elemei $a_{jk}^* = \overline{a_{kj}}$. Ekkor A önadjungált $\Leftrightarrow a_{jk}^* = a_{jk}$, azaz $a_{jk} = \overline{a_{kj}}$.

Példa: legyen $X := L^2(M)$, $M \subseteq \& \text{Ropf};^n$ mérhető halmaz, $(K\phi)(x) := \int_M \& \text{Kscr}; (x, y)\phi(y)dy$ korlátos operátor, ahol $\& \text{Kscr}; \in L^2(M \times M)$. Ekkor $(K^*\phi)(x) = \int_M \& \text{Kscr};^*(x, y)\phi(y)dy$, vagyis $\& \text{Kscr};^*(x, y) = \& \text{Kscr}; (y, x)$. K önadjugnált pontosan akkor, ha & Kscr; (x, y) = & Kscr; (y, x) majdnem minden $x, y \in M$.

Példa: legyen $X := L^2(0,1)$, $(A\phi)(t) := \phi''(t)$, midőn $t \in [0,1]$, vagyis legyen A a második derivált operátor (ami lineáris)! $D_A := \{\phi \in C^2[0,1] : \phi(0) = 0, \phi(1) = 0\}$, erre belátható, hogy $\overline{D_A} = L^2(0,1)$.

Állítás: A szimmetrikus operátor (de nem önadjungált). Ennek igazolásához tekintsünk ϕ , $\psi \in D_A$ tetszőleges függvényeket, ekkor parciális integrálással:

$$\langle A\phi, \psi \rangle = \int_{0}^{1} (A\phi(t))\psi(t)dt = \int_{0}^{1} \phi''(t)\psi(t)dt = \left[\phi'(t)\psi(t)\right]_{0}^{1} - \int_{0}^{1} \phi'(t)\psi'(t)dt = \left[\phi'(t)\psi(t)\right]_{0}^{1} - \int_{0}^{1} \phi'(t)\psi'(t)dt = \left[\phi'(t)\psi(t)\right]_{0}^{1} + \int_{0}^{1} \phi(t)\psi''(t)dt = \left[\phi'(t)\psi(t)\right]_{0}^{1} + \left[$$

11.16

Állítás: legyen X komplex Hilbert tér! Ha $D_A \subseteq X$, $A:D_A \to X$ szimmetrikus operátor, akkor $\langle Ax, x \rangle$ értéke valós $\forall x \in \& Dopf_{;_A}$ esetén.

Bizonyítás: mivel A szimmetrikus, ezért $\langle Ax, x \rangle = \langle x, Ax \rangle$, $\forall x \in D_A$, másrészt a skaláris szorzat tulajdonságából következően: $\langle Ax, x \rangle = \langle x, Ax \rangle$ \Rightarrow $\langle x, Ax \rangle = \langle x, Ax \rangle$ \Rightarrow $\langle x, Ax \rangle = \langle x, Ax \rangle$ valós, így $\langle Ax, x \rangle$ is valós.

Megjegyzés: bebizonyítható, hogy ha X komplex Hilbert tér és $\langle Ax, x \rangle$ valós $\forall x \in D_A \Rightarrow A$ szimmetrikus.

<u>Tétel</u>: legyen X Hilbert tér (lehet valós is). Ha $D_A \subset X$, $A:D_A \to X$ szimmetrikus operátor, akkor A minden sajátértéke valós és a különböző sajátértékekhez tartozó sajátelemek ortogonálisak.

Bizonyítás:

• tfh $Ax = \lambda x$ valamely $0 \neq x \in D_A$ elemre, $\lambda \in \&Kopf$;. Ekkor

mert szorzatuk valós.

• tfh $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$ és $\lambda_1 \neq \lambda_2$ valós sajátértékek. Szorozzuk skalárisan jobbról előbbit x_2 -vel! $\langle Ax_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle = \lambda_1 \langle x_1, x_2 \rangle$, illetve $\langle Ax_1, x_2 \rangle = \langle x_1, Ax_2 \rangle = \langle x_1, \lambda_2 x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$, vagyis $\lambda_1 \langle x_1, x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle \Leftrightarrow (\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle = 0$, így mivel $\lambda_2 \neq \lambda_1 \Rightarrow \langle x_1, x_2 \rangle = 0$.

<u>**Tétel**</u>: legyen X Hilbert tér, $A: X \rightarrow X$ korlátos önadjungált operátor. Ekkor

$$||A|| = \sup \{ |\langle Ax, x \rangle| : x \in X, ||x|| = 1 \}.$$

Bizonyítás: az operátor norma definíciója szerint $\|A\| = \sup\{\|Ax\| : x \in X, \|x\| = 1\}$.

Ezért egyrészt a Cauchy-Schwarz egyenlőtlenségből

$$|\langle Ax, x \rangle| \le ||Ax|| \cdot ||x|| \le ||A|| \cdot ||x||^2 = ||A||$$
, ha $||x|| = 1$. Jelöljük:

$$\alpha:=\sup \Big\{ \ \big| \ \langle Ax,\, x\rangle \ \big| \ : x\in X, \ \|\, x\,\| \ =1 \Big\}. \ \text{Az előbbiek szerint} \ \alpha \leq \ \|\, A\,\| \ . \ \text{Belátjuk a}$$

fordított egyenlőtlenséget. Tetszőleges $x, y \in X$ elemekre

$$\langle A(x+y), x+y \rangle = \langle Ax + Ay, x+y \rangle = \langle Ax, x \rangle + \underbrace{\langle Ay, x \rangle}_{=\langle y, Ax \rangle = \overline{\langle Ax, y \rangle}} + \langle Ax, y \rangle + \langle Ay, y \rangle = \underbrace{\langle Ax, y \rangle}_{=\langle y, Ax \rangle = \overline{\langle Ax, y \rangle}}$$

$$= \langle Ax, x \rangle + \langle Ay, y \rangle + 2\Re \langle Ax, y \rangle$$

Hasonlóképpen: $\langle A(x-y), x-y \rangle = \langle Ax, x \rangle + \langle Ay, y \rangle - 2\Re \langle Ax, y \rangle$. A kapott 1.

egyenlőségből a 2-at kivonva:

$$4\Re\langle Ax, y\rangle = \langle A(x+y), x+y\rangle - \langle A(x-y), x-y\rangle \leq \left| \langle A(x+y), x+y\rangle \right| + \left| \langle A(x-y), x-y\rangle \right| \leq$$

$$\leq \alpha \|x+y\|^2 + \alpha \|x-y\|^2 = \alpha \left(\|x\|^2 + 2\langle x, y\rangle^2 + \|y\|^2 + \|x\|^2 - 2\langle x, y\rangle^2 + \|y\|^2 \right) \Rightarrow$$

$$\Rightarrow \Re\langle Ax, y\rangle \leq \frac{\alpha}{2} \left(\|x\|^2 + \|y\|^2 \right).$$

Tetszőleges $\lambda > 0$ számra:

$$\underbrace{\parallel Ax \parallel^2}_{\in \& \text{Ropf},_0^+} = \langle Ax, Ax \rangle = \left| A(\underbrace{\lambda x}), \underbrace{Ax/\lambda}_{:=g} \right| = \underbrace{\langle Af, g \rangle}_{\geq 0} = \Re \langle Af, g \rangle \leq \frac{\alpha}{2} \left[\parallel f \parallel^2 + \parallel g \parallel^2 \right] = \underbrace{\langle Af, g \rangle}_{\geq 0}$$

$$= \frac{\alpha}{2} \left[\| \lambda x \|^2 + \| \frac{Ax}{\lambda} \|^2 \right] = \frac{\alpha}{2} \left[\lambda^2 \| x \|^2 + \frac{\| Ax \|^2}{\lambda^2} \right]. \text{ V\'alasszuk: } \lambda^2 : = \frac{\| Ax \|}{\| x \|}, \text{ ekkor } \lambda > 0$$

teljesül (feltéve, hogy $Ax \neq 0$), és

$$\parallel Ax \parallel^2 \leq \frac{\alpha}{2} \left\lceil \frac{\parallel Ax \parallel}{\parallel x \parallel} \parallel x \parallel^2 + \frac{\parallel x \parallel}{\parallel Ax \parallel} \parallel Ax \parallel^2 \right\rceil = \frac{\alpha}{2} \left[\parallel Ax \parallel \cdot \parallel x \parallel + \parallel x \parallel \cdot \parallel Ax \parallel \right] = \alpha \parallel Ax \parallel \cdot \parallel x \parallel$$

. $\|Ax\| = 0$ triviális esetet kivéve osztva $\|Ax\| > 0$ -val: $\|Ax\| \le \alpha \cdot \|x\|$. Ez igaz

 $\|Ax\| = 0$ esetén is persze. Tehát $\|A\| \le \alpha$. Előbb azt kaptuk, hogy $\alpha \le \|A\|$, így a

mostanival együtt: $||A|| = \alpha$.

<u>Tétel</u> (bizonyítás nélkül): vezessük be $M := \sup \{ \langle Ax, x \rangle : x \in X, \|x\| = 1 \}$ és $m := \inf \{ \langle Ax, x \rangle : x \in X, \|x\| = 1 \}$. (Ekkor a fentiek miatt $[m, M] \subseteq [-\|A\|, \|A\|]$, és $\max \{ \|m\|, M \} = \|A\|$). Az A önadjungált korlátos operátor spektruma $\subseteq [m, M]$, más szóval, ha $\lambda \in \& Kopf$; -ra $\lambda \notin [m, M] \Rightarrow \lambda$ reguláris érték A-ra.

Megjegyzés: azt eddig is tudtuk, hogy $|\lambda| > \|A\|$ esetén λ reguláris érték (ha A korlátos). Azt is tudtuk, hogy ha A szimmetrikus és $\Im \lambda \neq 0 \Rightarrow \lambda$ nem lehet sajátérték.

<u>Definíció</u>: legyen $A:D_A\to X$ lineáris operátor, $D_A\subseteq X$, 𝔻 $_A=X$. Ha $\langle Ax,x\rangle\geq 0$, $\forall x\in D_A$, akkor A-t pozitív operátornak nevezzük (konzekvensen pozitív szemidefinitnek kéne nevezni).

<u>Állítás</u>: ha A pozitív, akkor A minden sajátértéke ≥ 0 .

Bizonyítás:
$$Ax = \lambda x \implies 0 \le \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \| x \|^2 \implies \lambda \ge 0$$
, ha $\| x \|^2 \ne 0$.

Izometrikus és unitér operátorok

<u>Definíció</u>: legyen *X* Hilbert tér! Az $A: X \to X$ operátort izometrikusnak nevezzük, ha ||Ax|| = ||x||, $\forall x \in X$. Ekkor látható, hogy A korlátos és ||A|| = 1.

Állítás: ha A izometrikus, akkor távolság és skalárszorzattartó (szögtartó).

Bizonyítás:

- ||Ax Ay|| = ||A(x y)|| = ||x y||.
- Belátjuk a skalárszorzattartást valós X Hilbert tér esetén. $\|x+y\|^2 = \|x\|^2 + 2\langle x,y\rangle + \|y\|^2$, $\|x-y\|^2 = \|x\|^2 2\langle x,y\rangle + \|y\|^2$. Ezeket egymásból kivonva:

$$\|x+y\|^2 - \|x-y\|^2 = 4\langle x, y\rangle \implies \langle x, y\rangle = \frac{\|x+y\|^2 - \|x-y\|^2}{4}$$
. Így

$$\langle Ax, Ay \rangle = \frac{1}{4} \Big(\| Ax + Ay \|^2 - \| Ax - Ay \|^2 \Big) = \frac{1}{4} \Big(\| A(x+y) \|^2 - \| A(x-y) \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 - \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1}{4} \Big(\| x+y \|^2 + \| x-y \|^2 \Big) = \frac{1$$

• Komplex esetben $\langle x, y \rangle = \frac{1}{4} \left[\| x + y \|^2 - \| x - y \|^2 + i \| x + iy \|^2 - i \| x - iy \|^2 \right]$, így kicsit hosszabb a bizonyítás.

Következemény: ha $A: X \to X$ izometrikus operátor és $(x_1, x_2,...)$ ortonormált rendszer, akkor $(Ax_1, Ax_2,...)$ is ortonormált rendszer.

Kérdés: ha $(x_1, x_2,...)$ teljes ortonormált rendszer, akkor következik-e, hogy $(Ax_1, Ax_2,...)$ is teljes ortonormált rendszer? Általában sajnos nem.

Példa: legyen X végtelen dimenziós, szeparábilis Hilbert tér és $(x_1, x_2,...,x_k,...)$ teljes ortonormált rendszer. Értelmezzük A-t! Egy $x \in X$ elemet fejtsük Fourier-sorba!

$$x = \sum_{k=1}^{\infty} c_k x_k = c_1 x_1 + c_2 x_2 + ..., Ax : = \sum_{k=1}^{\infty} c_k x_{k+1} = c_1 x_2 + c_2 x_3 +$$
 Ez egy jól definiált

lineáris operátor. Tudjuk, hogy $\|Ax\|^2 = \sum_{k=1} |c_k|^2 = \|x\|^2$, tehát A izometrikus.

Láthatjuk, hogy így $(Ax_1 = x_2, Ax_2 = x_3,...)$ nem teljes. Az is kiolvasható A definíciójából, hogy $R_A = \& Lscr; (x_2, x_3,...)$ az X-nek valódi altere, így $R_A \neq X$.

<u>Definíció</u>: $A: X \rightarrow X$ izometrikus operátort unitérnek nevezzük, ha $R_A = X$.

<u>**Tétel**</u>: egy $A: X \to X$ korlátos operátor unitér $\Leftrightarrow \exists A^{-1} = A^*$.

Bizonyítás:

• \Rightarrow irányba: tfh A unitér. Ekkor A korlátossága lévén A^* értelmezve van X-n, továbbá ||Ax|| = ||x||, $\forall x \in X \Rightarrow A$ injektív $\Rightarrow A^{-1}$ is létezik. Belátjuk, hogy $A^* = A^{-1}$. Egyrészt $D_{A^{-1}} = R_A = X$, mivel A unitér. Ekkor $\forall x, y \in X$ elemre

$$\langle x, y \rangle = \langle Ax, Ay \rangle = \langle x, A^*Ay \rangle \implies y = A^*Ay,$$

 $\forall y \in X \implies A^*A = I \implies A^*AA^{-1} = A^{-1} \implies A^* = A^{-1}$

• \Leftarrow irányba: tfh $A^* = A^{-1}$. Ekkor mivel $D_{A^*} = X \implies R_A = D_{A^{-1}} = X$, továbbá $\|Ax\|^2 = \langle Ax, Ax \rangle = \langle x, A^*Ax \rangle = \langle x, Ix \rangle = \|x\|^2$, tehát A izometrikus is.

11.23

<u>Állítás</u>: ha *A* unitér, akkor teljes ortonormált rendszer képe szintén teljes ortonormált rendszer.

Példák unitér operátorokra:

- 1. Triviális példa az identitás
- 2. $X := \& \text{Kopf};^n$. Tudjuk, hogy egy $A : \& \text{Kopf};^n \to \& \text{Kopf};^n$ lineáris korlátos operátor megadható egy & Ascr; négyzetes mátrixszal,

𝒜 =
$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} \boldsymbol{a}_1 \\ \vdots \\ \boldsymbol{a}_n \end{pmatrix}$$
, 𝒜 * = $\begin{pmatrix} \overline{\boldsymbol{a}}_1 & \overline{\boldsymbol{a}}_2, \dots, \overline{\boldsymbol{a}}_n \\ \overline{\boldsymbol{a}}_n \end{pmatrix}$.

A leképzés unitér

$$\Leftrightarrow A^* = A^{-1} \Leftrightarrow AA^* = I = A^*A \Leftrightarrow \text{\𝒜}; \text{\𝒜}; \text{= \ℐ}; \text{= \𝒜}; \text{\𝒜};$$

. 𝒜𝒜* elemei:
$$\mathbf{a}_{j}\mathbf{a}_{k}^{T} = \langle a_{j}, a_{k} \rangle_{\text{\𝕂};^{n}} = \delta_{jk} = \begin{cases} 1 \text{ ha } j = k \\ 0 \text{ ha } j \neq k \end{cases}$$

A sorvektorok tehát ortonormáltak, belátható az 𝒜 * 𝒜 = ℐ egyenletből, hogy az oszlopvektorok is. Az ilyen – unitér operátorokat megadó – mátrixokat ortogonális mátrixoknak is nevezzük.

3. Fourier-operátor (Fourier-transzformáció): $X := L^2(\ℝ)$ Hilbert tér! Az ℱ fourier operátort így értelmezzük az $\phi \in L^2(\ℝ) \cap L^1(\ℝ) \subset L^2(\ℝ)$ függvényeken:

[ℱ(
$$\phi$$
)](x): = $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixy} \phi(y) dy$. Látható, hogy ennek csak akkor van

értelme, ha $\phi(y)$ integrálható. Tudjuk, hogy $|e^{-ixy}\phi(y)| = |\phi(y)|$, mert

$$\left| e^{-ixy} \right| = 1. \ \phi \in L^2(\& \text{Ropf};) \text{ eset\'en}$$

 $\left[\& \text{Fouriertrf}; (\phi)\right](x) = \lim_{N \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} e^{-ixy} \phi(y) dy \text{ az } L^2(\& \text{Ropf};) \text{ norm\'aval.}$

<u>**Tétel**</u>: az ℱ : $L^2(\ℝ) \rightarrow L^2(\ℝ)$ operátor unitér,

ℱ ⁻¹ = ℱ * a következő képlettel adható meg:

[ℱ
$$^{-1}(\psi)$$
] $(y) = \lim_{N \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} e^{ixy} \psi(x) dx$, ahol a limesz L^2 (ℝ) norma szerinti.

Bizonyítás (vázlatos):

1. először értelmezzük ℱ -et a következő spec. alakú lépcsős

függvényeken:
$$\phi_{\alpha}(x)$$
: =
$$\begin{cases} 1 & \text{ha } x \text{ 0 \'es } \alpha \text{ k\"oz\"ott van} \\ 0 & \text{egy\'ebk\'ent} \end{cases}$$

Egyszerű számolással (ℱ ϕ_{α}) $(x) = \frac{1}{\sqrt{2\pi}} \frac{1-e^{-i\alpha x}}{ix}$. Bevezetjük a 𝒢 operátort $\phi \in L^2(\ℝ) \cap L(\ℝ)$ függvényekre:

$$(\𝒢\phi)(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ixy} \phi(y) dy$$
. Hasonlóan adódik:

$$(\& Gscr; \phi_{\alpha})(x) = \frac{1}{\sqrt{2\pi}} \frac{e^{i\alpha x} - 1}{x}. \text{ Állítás: tetszőleges } \phi_{\alpha}, \ \phi_{\beta} \text{ esetén}$$

$$\langle \& Fouriertrf; \phi_{\alpha}, \ \& Fouriertrf; \phi_{\beta} \rangle = \langle \phi_{\alpha}, \ \phi_{\beta} \rangle, \langle \& Gscr; \phi_{\alpha}, \ \& Gscr; \phi_{\beta} \rangle = \langle \phi_{\alpha}, \ \phi_{\beta} \rangle \text{ és}$$

$$\langle \& Fouriertrf; \phi_{\alpha}, \ \phi_{\beta} \rangle = \langle \phi_{\alpha}, \ \& Gscr; \phi_{\beta} \rangle \text{ is igaz.}$$

- 2. Kiterjesztjük az állítást lépcsős függvényekre, amik láthatóan ilyen függvények lineárkombinációi.
- 3. A lépcsős függvények sűrűn vannak $L^2(\ℝ)$ -ben. Hasonló állítást kapok ezen lépcsős függvényekre. ℱ és 𝒢-t a linearitás és korlátosság megtartásával egyértelműen kiterjeszthetjük $L^2(\ℝ)$ -re.
- 4. & Fouriertrf; és & Gscr; képlete L^2 (& Ropf;) en megadandó.

Megjegyzés: ℱ operátor ℝⁿ -ben:

(ℱ
$$\phi$$
)(x) = $\frac{1}{(\sqrt{2\pi})^n} \int_{\text{\ℝ};^n} e^{-i\langle x, y \rangle} \phi(y) dy$, ha $\phi \in L^2(\text{\ℝ};^n) \cap L^1(\text{\ℝ};)$, ekkor ℱ unitér.

Véges rendű operátorok

<u>Definíció</u>: legyen X Hilbert tér! Egy $A: X \to X$ korlátos operátort véges rendűnek nevezünk, ha R_A véges dimenziós.

Példa: legyenek $\phi_1,...,\phi_m$ lineárisan függetlenek, akárcsak $\psi_1, \ \psi_2,...,\psi_m$, mind X-beli elemek! Az A operátort így értelmezzük: $A: X \to X, A(f): = \sum_{j=1}^m \langle f, \psi_j \rangle \phi_j$. Látható, hogy ez véges rendű. Világos, hogy A operátor lineáris, $R_A = \& Lscr; (\phi_1, \phi_2,...,\phi_m)$ véges dimenziós. A korlátos is: $\|Af\|_X \le \sum_{j=1}^m \|\langle f, \psi_j \rangle \phi_j\| = \sum_{j=1}^m |\langle f, \psi_j \rangle|_{\cdot} \|\phi_j\|$, melyre a Cauchy-Schwarz szerint

$$\leq \sum_{j\,=\,1}^m\,\left\|\,f\,\right\|_{\,X} \cdot \,\left\|\,\psi_j\,\right\|_{\,X} \cdot \,\left\|\,\phi_j\,\right\|_{\,X} = \,\left\|\,f\,\right\|\, \cdot \sum_{j\,=\,1}^m\,\left\|\,\psi_j\,\right\|_{\,X} \cdot \,\left\|\,\phi_j\,\right\|_{\,X}.$$

Állítás: legyen X Hilbert tér, $A: X \to X$ véges rendű operátor. Ekkor $\exists \ \phi_1, \ \phi_2,...,\phi_m \in X$ lineárisan függetlenek és $\exists \ \psi_1, \ \psi_2,...,\psi_m \in X$ lineárisan függetlenek a fentiek szerint, és A a fenti alakú.

Bizonyítás: R_A véges, m dimenziós lineáris altér. Legyenek ϕ_1 , ϕ_2 ,..., ϕ_m lineárisan független elemek, ℒ $(\phi_1, \phi_2,...,\phi_m) = R_A$. Ezek választhatók úgy, hogy ortonormáltak legyenek (a Schmidt eljárással). Ekkor, ha $f \in X$, $Af = \sum_{j=1}^{m} c_j(f)\phi_j$. Ebben a c_j együtthatók egyértelműek, $c_j(f) = \langle Af, \phi_j \rangle$. Látjuk, hogy c_j lineáris funkcionál, továbbá korlátos is, és $|c_j(f)| = |\langle Af, \phi_j \rangle| \leq ||Af|| \cdot ||\phi_j|| \leq ||A|| \cdot ||f||$. Riesz-tétel segítségével $|c_j(f)| = |c_j(f)| \cdot ||f|| \cdot ||f||$.

$$\exists ! \psi_j \in X : c_j(f) = \langle f, \psi_j \rangle \quad \Rightarrow \quad Af = \sum_{j=1}^m c_j(f)\phi_j = \sum_{j=1}^m \langle f, \psi_j \rangle \phi_j. \text{ Nem neh\'ez belátni, hogy}$$

 $\psi_1, \psi_2,...,\psi_m$ is lineárisan függetlenek.

A másodfajú egyenlet véges rendű operátorokra

Legyen X Hilbert tér (véges vagy végtelen dimenziós), $A: X \to X$ véges rendű operátor. Tekintsük az A operátornak a másodfajú egyenletét: $(\lambda I - A)f = b$, ahol $b \in X$ adott és $f \in X$ keresett. Ezt az előbbiek szerint így írhatjuk: $\lambda f - \sum_{j=1}^{m} \langle f, \psi_j \rangle \phi_j = b$. Belátjuk, hogy $\lambda \neq 0$ esetén ez az egyenlet ekvivalens egy lineáris algebrai egyenletrendszerrel.

Az előző egyenletet jobbról ψ_k -val skalárisan szorozva:

$$\lambda \langle f, \psi_k \rangle - \sum_{j=1}^m \langle f, \psi_j \rangle \langle \phi_j, \psi_k \rangle = \langle b, \psi_k \rangle, k \in \{1, 2, ..., m\}.$$
 Keressük $\xi_j := \langle f, \psi_j \rangle$ -t, adottak

$$a_{kj}$$
: = $\langle \phi_j, \psi_k \rangle$, β_k : = $\langle b, \psi_k \rangle$. Ezzel a jelöléssel: $\lambda \xi_k - \sum_{j=1}^m a_{kj} \xi_j = \beta_k, k \in \{1, 2, ..., m\}$. Ez

egy lineáris egyenletrendszer
$$\xi_k$$
 együtthatókra. $\xi:=\begin{pmatrix}\xi_1\\\vdots\\\xi_m\end{pmatrix}, \beta:=\begin{pmatrix}\beta_1\\\vdots\\\beta_m\end{pmatrix}$,

𝒜 : =
$$\begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix}$$
, így (λ ℐ - 𝒜) ξ = β . Ha f kielégíti a másodfajú

egyenletet $\Rightarrow \xi$ kielégíti a kapott lineáris algebrai egyenletrendszert $\lambda = 0$ esetén is!

<u>Állítás</u>: legyen $\lambda \neq 0$ és tfh ξ kielégíti a lineáris algebrai egyenletrendszert! Ekkor $f := \frac{1}{\lambda}b + \frac{1}{\lambda}\sum_{j=1}^{m} \xi_{j}\phi_{j}$ kielégíti a véges rendű operátorra vonatkozó másodafajú egyenletet.

Bizonyítás: behelyettesítünk a másodfajú egyenletbe, s kihasználjuk, hogy ξ kielégíti a lineáris algebrai egyenletrendszert.

<u>Tétel</u>: egy $f \in X$ elem kielégíti a véges rendű opertárra vonatkozó másodfajú egyenletet $\lambda \neq 0$ esetén $\Leftrightarrow \xi_j = \langle f, \psi_j \rangle$ képlettel értelmezett koordinátákból álló ξ kielégíti a fenti lineáris algebrai egyenletrendszert. Ennek alapján a véges rendű operátorokra vonatkozó másodfajú egyenlet megoldhatóságának elmélete következik a lineáris algebrai egyenletrendszerek megoldhatóságának elméletéből. Két eset lehetséges:

- ha λ ≠ 0 szám az 𝒜 mátrixnak nem sajátértéke
 ⇔ det | λℐ 𝒜 | ≠ 0, ekkor (λℐ 𝒜)ξ = β egyenletben
 ∀ β ∈ 𝕂 ∃! ξ megoldás ⇒ ∃! f megoldás a (λI A)f = b egyenletre. Nem nehéz belátni, hogy f folytonosan függ b-től. Ekkor λ ≠ 0 reguláris érték A-ra.
- 2. ha $\lambda \neq 0$ az 𝒜 mátrixnak sajátértéke $\Rightarrow \lambda$ az A sajátéréke, s a kétféle rang egyenlő. $\lambda = 0$ végtelen rangú sajátértéke A-nak (ha X végtelen dimenziós).

11.30

<u>Állítás</u>: ha X végtelen dimenziós vektortér, akkor $\lambda = 0$ végtelen rangú sajátértéke az

operátornak.
$$A\phi$$
: = $\sum_{j=1}^{m} \langle \phi, \psi_j \rangle \phi_j$. $\lambda = 0$ sajátérték azt jelenti, hogy $A\phi = 0\phi = 0$

biztosan teljesül. Mivel ϕ_j -k lineárisan függetlenek, $\langle \phi, \psi_j \rangle = 0$,

$$\forall j \in \{1,2,...,m\} \Leftrightarrow \phi \perp \& Lscr; (\psi_1, \psi_2,...,\psi_m).$$

Összefoglalva: legyen *X* végtelen dimenziós szeparábilis Hilbert tér! Ekkor egy *A* véges rendű operátor spektruma csak sajátértékekből áll, mégpedig a 0-tól különböző (véges sok) sajátérték véges rangú (ezek megegyeznek az 𝒜 mátrix sajátértékeivel, s ranguk is megegyezik), a 0 pedig végtelen rangú sajátérték. Minden más λ reguláris érték.

Példa véges rangú operátorokra (elfajult magú integrálegyenletek)

$$X:=L^2(M)$$
, ahol M mérhető halmaz. 𝒦 $(x, y)=\sum_{j=1}^m \phi_j(x)\psi_j(y)$, ahol $\phi_j, \psi_j \in L^2(M) \Rightarrow \text{𝒦}; \in L^2(M \times M)$.

$$(K\phi)(x) = \int_{M} \& Kscr; (x, y)\phi(y)dy = \int_{M} \left[\sum_{j=1}^{m} \phi_{j}(x)\psi_{j}(y) \right] \phi(y)dy = \sum_{j=1}^{m} \phi_{j}(x) \int_{M} \psi_{j}(y)\phi(y)dy.$$

$$R\"{o}viden: K\phi = \sum_{j=1}^{m} \phi_{j}\langle \phi, \psi_{j} \rangle.$$

Az előbbiek alapján egy elfajult magú (elsőfajú) integrálegyenlet megoldása kiszámolható egy lineáirs algebrai egyenletrendszer megoldásával.

Kompakt (teljesen folytonos) operátorok

<u>Definíció</u>: egy $M \subset Y$ halmazt feltételesen (vagy relatíve) sorozatkompaktnak nevezünk, ha lezárása sorozatkompakt.

Megjegyzés: *M* feltételesen sorozatkompakt, ha tetszőleges *M*-beli sorozatból kiválasztható konvergens részsorozat. ℝⁿ -ben a feltételesen sorozatkompakt halmazok a korlátos halmazok.

<u>Definíció</u>: legyenek X, Y Banach terek! Egy $A: X \to Y$ lineáris operátort teljesen folytonosnak, avagy kompaktnak nevezünk, ha X tetszőleges korlátos halmazát feltételesen (avagy relatíve) sorozatkompakt halmazba képezi.

Megjegyzés: Ekkor *A* korlátos is, továbbá két kompakt operátor összege és számszorosa is kompakt.

<u>Állítás</u>: egy $A: X \to Y$ operátor kompakt $\Leftrightarrow \forall (x_k)_{k \in \& naturals}; x_k \in X$ korlátos sorozatra $(Ax_k)_{k \in \& naturals};$ -ból kiválasztható konvergens részsorozat.

<u>Állítás</u>: legyen X Hilbert tér, $A: X \rightarrow X$ véges rendű operátor. Ekkor A kompakt.

<u>Tétel</u>: legyenek X, Y Banach terek, $A_j \in L(X, Y)$ operátorok kompaktak, és

 $\exists A \in L(X, Y) : \lim_{j \to \infty} A_j = A \implies A \text{ is kompakt operator.}$

Bizonyítás: legyen $(x_k)_{k \in \& naturals;}$ egy X-beli korlátos sorozat. Bizonyítani akarjuk, hogy $(Ax_k)_{k \in \& naturals;}$ -nek van konvergens részsorozata Y-ban. Tudjuk, hogy $A \in L(X, Y)$. Mivel A_1 kompakt, ezért az $(A_1x_k)_{k \in \& naturals;}$ sorozatból kiválasztható Y-ban konvergens részsorozat, legyen ez $(A_1x_{k1})_{k \in \& naturals;}$! $(A_2x_{k1})_{k \in \& naturals;}$ -ből kiválasztható konvergens részsorozat, legyen ez $(A_2x_{k2})_{k \in \& naturals;}$. $(A_3x_{k2})_{k \in \& naturals;}$ -ből megint kiválasztható...

Tekintsük az $(x_{kk})_{k \in \& naturals;}$ átlós sorozatot. Belátjuk, hogy $(Ax_{kk})_{k \in \& naturals;}$ konvergens Y-ban. $(x_{kk})_{k \in \& naturals;}$ az eredeti $(x_k)_{k \in \& naturals;}$ sorozatnak olyan részsorozata, amely bármelyik sorban levő részsorozatnak a részsorozata, bizonyos indextől kezdve.

$$\| Ax_{kk} - Ax_{mm} \|_{Y} = \| [Ax_{kk} - A_{j}x_{kk}] + [A_{j}x_{kk} - A_{j}x_{mm}] + [A_{j}x_{mm} - Ax_{mm}] \|_{Y} \le$$

$$\le \| (A - A_{j})x_{kk} \|_{Y} + \| A_{j}x_{kk} - A_{j}x_{mm} \|_{Y} + \| (A_{j} - A)x_{mm} \|_{Y} \le$$

$$\le \| A - A_{j} \|_{L(X, Y)} \| x_{kk} \|_{X} + \| A_{j}x_{kk} - A_{j}x_{mm} \|_{Y} + \| A_{j} - A \|_{L(X, Y)} \| x_{mm} \|_{X}.$$

$$(x_{kk})_{k \in \& \text{naturals}}; \text{ korlátos sorozat, ehhez } \exists c > 0 : \| x_{kk} \| \le c. \text{ Legyen } \varepsilon > 0 \text{ tetszőleges.}$$

$$\text{Mivel } \lim_{j \to \infty} \| A_{j} - A \| = 0, \text{ ezért } \exists j_{0} : j \ge j_{0} \Rightarrow \| A_{j} - A \| \le \varepsilon. \text{ Válasszuk pl: } j = j_{0}. \text{ Mivel }$$

$$(A_{j_{0}}x_{kk})_{k \in \& \text{naturals}}; \text{ konvergens, ezért } \exists k_{0} : k, l \ge k_{0} \Rightarrow \| A_{j_{0}}x_{kk} - A_{j_{0}}x_{ll} \| \le \varepsilon. \text{ Tehát }$$

$$k, l \ge k_{0} \text{ esetén } \| Ax_{kk} - Ax_{ll} \|_{Y} \le c\varepsilon + \varepsilon + c\varepsilon = (2c + 1)\varepsilon \Rightarrow (Ax_{kk}) \text{ Cauchy sorozat.}$$

Következmény: kompakt operátorok alteret képeznek L(X, Y)-ban.

<u>Tétel</u>: (bizonyítás nélkül) legyen X szeparábilis Hilbert tér. Ha $A: X \to X$ kompakt operátor, akkor $\exists A_j: X \to X$ véges rendű operátorok, hogy $\lim_{j \to \infty} \|A_j - A\|_{L(X,X)} = 0$.

Összefoglalva: ha X szeparábilis Hilbert tér, akkor az $A: X \to X$ korlátos operátor kompakt \Leftrightarrow előáll véges rendű operátorok sorozatának norma szerinti limeszeként.

Példa: legyen $X = L^2(M)$ Hilbert tér, $K : L^2(M) \to L^2(M)$ négyzetesen integrálható magú integráloperátor, $(K\phi)(x) := \int_M \& Kscr;(x,y)\phi(y)dy$. Ez a K operátor kompakt. Ennek igazolásának alapgondolata: tudjuk, hogy $L^2(M)$ szeparábilis Hilbert tér (végtelen dimenziós). Legyenek ebben teljes ortonormált rendszerek $\psi_1, \psi_2,...$ illetve $\phi_1, \phi_2,...$

Ekkor 𝒦
$$(x, y) = \sum_{m=1}^{\infty} \left(\sum_{j, k \le m} c_{jk} \phi_j(x) \psi_k(y) \right),$$

𝒦 $_N(x, y) = \sum_{m=1}^{N} \sum_{j, k \le m} c_{jk} \phi_j(x) \psi_k(y), \lim_{N \to \infty} \| 𝒦_N - 𝒦 \|_{L^2(M \times M)} = 0.$

𝒦_N -nek véges rendű operátorok felelnek meg. $\|K_N - K\|_{L(L^2(M), L^2(M))} \to 0$, ha $N \to \infty$.

Másodfajú egyenlet kompakt operátorokra

Legyen X szeparábilis Hilbert tér, $A: X \to X$ kompakt operátor. Tekintsük a $(\lambda I - A)f = b$ másodfajú egyenletet, melyben $\lambda \neq 0$ rögzített. Tudjuk, hogy A kompakt operátor tetszőleges előírt pontossággal megközelíthatő egy B véges rendű operátorral.

 $\exists~A_0:X \to X$ véges rendű operátor, hogy $~\|~A-A_0~\|~<~|~\lambda~|~.$

 B_0 : = $A - A_0 \Leftrightarrow A = A_0 + B_0$, ahol A_0 véges rendű, és $\|B_0\| < |\lambda|$. Tehát a másodfajú egyenlet így írható: $[\lambda I - (A_0 + B_0)]f = b \Leftrightarrow (\lambda I - B_0)f = b + A_0f$.

 $|\lambda| > \|B_0\| \Rightarrow |\lambda| > B_0$ korlátos operátor spektrálsugara $\Rightarrow \lambda$ reguláris érték B_0 operátorra nézve \Rightarrow a legutóbbi egyenlet ekvivalens:

 B_{λ} véges rendű operátor, mert A_0 véges rendű operátor. Legyen $\delta > 0$ rögtített szám, és válasszuk A_0 -t úgy, hogy $\|A - A_0\| < \delta$ legyen. Ekkor az előbbi gondolatmenet érvényes $\forall \lambda$ -ra, A_0 nem függ λ -tól, ha $\lambda \geq \delta$ (de δ -tól igen). A_0 véges rendű operátor $\lambda \geq \delta$ esetén,

és
$$A_0 f = \sum_{j=1}^m \langle f, \psi_j \rangle \phi_j$$
 alakban írható.

$$Bf = B_{\lambda}f = \lambda(\lambda I - B_0)^{-1}\sum_{j=1}^{m} \langle f, \psi_j \rangle \phi_j = \sum_{j=1}^{m} \lambda \langle f, \psi_j \rangle (\lambda I - B_0)^{-1} \phi_j$$
. A másodfajú egyenlet:

$$\lambda f - \sum_{j=1}^{m} \lambda \langle f, \psi_j \rangle (\lambda I - B_0)^{-1} \phi_j = g = g_{\lambda}.$$

Tehát kaptuk, hogy
$$\lambda f - \sum_{j=1}^{m} \lambda \langle f, \psi_j \rangle (\lambda I - B_0)^{-1} \phi_j = g = g_\lambda$$
. Ez megfelel egy

lineáris algebrai egyenletrendszernek: $\lambda \& Iscr; \xi - \& Bscr;_{\lambda} \xi = \beta_{\lambda}$. Ekkor $\det(\lambda \& Iscr; - \& Bscr;_{\lambda}) = 0$ egyenlet gyökei a sajátértékek. A mátrix ($\& Bscr;_{\lambda}$) és az operátor (B_{λ}) sajátértékei azonosak az eredeti operátor (A) sajátértékeivel, és rangjuk is azonos. Belátható, hogy a mátrix elemei a λ változónak holomorf függvényei! Így a determináns is holomorf függvénye λ -nak. Tudjuk, hogy egy holomorf függvény gyökei nem torlódhatnak egy véges pontban, hacsak nem az azonosan 0 függvény. Mivel $\lambda < \|A\|$, ezért csak véges sok gyök van. Tehát tetszőleges rögzített δ esetén A operátornak véges sok δ -nál nagyobb abszolút értékű sajátértéke van, s ezek véges rangúak.

<u>Tétel</u>: ha *A* kompakt operátor, akkor *A*-nak legfeljebb megszámlálhatóan végtelen sok sajátértéke van, a 0-tól különböző sajátértékek véges rangúak, s a sajátértékek csak a 0-ban torlódhatnak. (Gondoljunk csak a $\delta := 1/k, k \in \&$ naturals; esetre!)

<u>Tétel</u> (biz. nélkül): minden $\lambda \neq 0$, ami nem sajátérték, az reguláris érték A (kompakt operátorra) nézve.

Következmény: ha $\lambda \neq 0$ nem sajátérték, $(\lambda I - A)f = b$ másodfajú egyenletnek $\forall b$ -re létezik egyetlen f megoldás, és ez folytonosan függ b-től.

Mi a helyzet, ha λ sajátérték?

Emlékeztető: tetszőleges korlátos lineáris operátor esetén

$$\overline{R_{\lambda I-A}}^{\perp} = S_{\lambda}^{-}(A^*) \Leftrightarrow \overline{R_{\lambda I-A}} = S_{\lambda}^{-}(A^*)^{\perp}$$
. Ha $R_{\lambda I-A}$ zárt altér, akkor $R_{\lambda I-A} = \overline{R_{\lambda I-A}} = S_{\lambda}^{-}(A^*)^{\perp}$.

<u>**Tétel**</u>: ha *A* kompakt operátor, akkor $\lambda \neq 0$ esetén $R_{\lambda I - A}$ zárt altér.

Bizonyítás: látható, hogy $R_{\lambda I-A}$ lineáris altér. Azt kell bizonyítani, hogy $R_{\lambda I-A}$ zárt halmaz. Legyen tetszőleges $\psi_j \in R_{\lambda I-A}$ és $\exists \lim \psi_j = \psi$, ekkor $\psi \in R_{\lambda I-A}$? Mivel $\psi_j \in R_{\lambda I-A} \Rightarrow \exists \phi_j \in X : (\lambda I-A)\phi_j = \psi_j$. Jelöljük: $S_{\lambda}(A) := \{\phi \in X : (\lambda I-A)=0\}$. Ekkor $S_{\lambda}(A)$ zárt lineáris altér (A folytonos). A Riesz tétel következtében $X := S_{\lambda}(A) \oplus S_{\lambda}(A)^{\perp} \Leftrightarrow \forall x \in X \exists ! x_1, x_2 : x_1 \in S_{\lambda}(A), x_2 \in S_{\lambda}(A)^{\perp}, x = x_1 + x_2$. Ennek megfelelően $X \ni \phi_j = f_j + g_j$, ahol $f_j \in S_{\lambda}(A)$. $g_j \in S_{\lambda}(A)^{\perp}$,

$$\psi_j = (\lambda I - A)\phi_j = (\underbrace{\lambda I - A})f_j + (\lambda I - A)g_j \qquad \Rightarrow \qquad (\lambda I - A)g_j = \psi_j. \text{ Kis állítás: } (g_j)_{j \in \&\text{naturals}};$$

korlátos sorozat X-ben.

Bizonyítás (a tétel bizonyításán belül): indirekt feltesszük, hogy $\exists \left(g_{j_k}\right)_{k \in \& \text{naturals}};$ részsorozat, hogy $\lim_{k \to \infty} \|g_{j_k}\|_X = \infty$. Legyen $h_{j_k} = \frac{g_{j_k}}{\|g_{j_k}\|_X}$, ekkor $\|h_{j_k}\|_X = 1$. $(\lambda I - A)g_{j_k} = \psi_{j_k}$ egyenletet osztva $\|g_{j_k}\|$ -val: $(\lambda I - A)h_{j_k} = \frac{\psi_{j_k}}{\|g_{j_k}\|_X}$ \longrightarrow 0_X , ugyanis

 ψ_{j} konvergens \Rightarrow korlátos. $\lim_{k \to \infty} \left(\lambda h_{j_{k}} - A h_{j_{k}} \right) = 0_{X}$. $\left(h_{j_{k}} \right)$ korlátos sorozat (mert $\| h_{j_{k}} \| = 1$), A kompakt operátor, ezért $\exists \left(\widetilde{h}_{j_{k}} \right)$ részsorozat, amelyre $\left(A\widetilde{h}_{j_{k}} \right)$ konvergens $\Leftrightarrow \left(\lambda \widetilde{h}_{j_{k}} \right)_{k \in \& \text{naturals}}$ is konvergens. $\lambda \neq 0 \Rightarrow \left(\widetilde{h}_{j_{k}} \right)$ konvergens, $\left(\widetilde{h}_{j_{k}} \right)_{k \in \& \text{naturals}} \rightarrow h_{0} \Rightarrow \left(\lambda I - A \right) \widetilde{h}_{j_{k}} \rightarrow 0 \Rightarrow \left(\lambda I - A \right) h_{0} = 0$. Ebből következik, hogy $h_{0} \in S_{\lambda}(A)$. Másrészt $h_{j_{k}} = \frac{g_{j_{k}}}{\| g_{j_{k}} \|}$, $g_{j_{k}} \in S_{\lambda}(A) \xrightarrow{\perp} h_{j_{k}} \in S_{\lambda}(A) \xrightarrow{\perp} \lim$ limeszben $h_{0} \in S_{\lambda}(A) \xrightarrow{\perp}$. Másrészt $h_{0} \in S_{\lambda}(A)$, így $h_{0} = 0$, de ez meg nem lehet, mert $\left(\widetilde{h}_{j_{k}} \right) = 1 \Rightarrow \left(h_{0} \right) = 1$ kéne lennie.

Tehát $(\lambda I - A)g_j = \psi_j$, $\lim(\psi_j) = \psi$, $\|g_j\|_X$ korlátos. Mivel A kompakt és g_j korlátos $\Rightarrow \exists g_{j_k}$ részsorozat, hogy Ag_{j_k} konvergens. ψ_{j_k} is konvergens $\Rightarrow \lambda g_{j_k}$ is konvergens, $\lambda \neq 0 \Rightarrow (g_{j_k})$ konvergens. $g_{j_k} \to g_0$ X-ben, $g_0 \in X$. $(\lambda I - A)g_0 = \psi \Rightarrow \psi \in R_{\lambda I - A}$.

<u>Tétel</u> (bizonyítás nélkül): legyen $A: X \to X$ kompakt operátor. Ekkor A^* is kompakt. Továbbá $\lambda \neq 0$ az A-nak sajátértéke $\stackrel{-}{\diamondsuit}$ λ sajátértéke A^* -nak, és ekkor a rangok egyenlők.

Összefoglalás (Fredholm alternatíva): legyen $A: X \to X$ kompakt operátor, $\lambda \neq 0$ tetszőleges szám s $(\lambda I - A)f = b$ másodfajú egyenlet. Ekkor két eset lehetséges:

- 1. ha $\lambda \neq 0$ az A-nak nem sajátértéke (legfeljebb megszámlálhatóan végtelen sok, véges rangú, 0-ban torlódó sajátértékek), akkor a másodfajú egyenletnek $\forall b \in X$ esetén $\exists ! f$ megoldása és ez folytonosan függ b-től ($(\lambda I A)^{-1}$ folytonos)
- 2. ha $\lambda \neq 0$ sajátérték, akkor a másodfajú egyenletnek a megoldása nem egyértelmű, a homogén egyenletnek véges sok lineárisan független megoldása van. A megoldás pontosan létezik, ha $b \perp S_{\lambda}(A^*)$ minden elemére. Ez annyi db ortogonalitási feltétel, amennyi a λ sajátérték rangja.

Önadjungált kompakt operátorok

<u>Tétel</u>: legyen X szeparábilis Hilbert tér, $A: X \to X$ kompakt és önadjungált operátor, $A \neq 0$. Ekkor $\exists \lambda_1$ sajátérték: $|\lambda_1| = \|A\| = \sup\{ |\langle Ax, x \rangle| : \|x\|_X = 1 \}$.

Megjegyzés: ha λ_1 az A operátor olyan sajátértéke, amelyre $|\lambda_1| = \|A\|$ és x_1 olyan sajátelem, hogy $\|x_1\| = 1$, azaz $Ax_1 = \lambda_1 x_1$, $\|x_1\| = 1$, akkor $|\langle Ax_1, x_1 \rangle| = |\langle \lambda_1 x_1, x_1 \rangle| = |\lambda_1 \langle x_1, x_1 \rangle| = |\lambda_1| = \|A\| = \sup\{ |\langle Ax, x \rangle : \|x\|\|_X = 1 | \}$. Más szóval, az $x \mapsto |\langle Ax, x \rangle|$, ahol $\|x\| = 1$, ez a függvény felveszi a suprémumot az $x = x_1$ sajátelemen, a maximum (ami most a suprémum is) értéke $= |\lambda_1|$. Fordítva: ha x^* olyan, hogy $\|x^*\| = 1$, és arra $|\langle Ax, x \rangle|$ maximális, akkor ez sajátelem és a maximum egyenlő a sajátérték abszolút értékével. Ugyanis $|\langle Ax^*, x^* \rangle| \leq \|Ax^*\| \cdot \|x^*\| \leq \|A\| \cdot \|x^*\|^2 = \|A\|$, a Cauchy-Schwarz

 $\left| \left\langle Ax^*, x^* \right\rangle \right| \le \|Ax^*\| \cdot \|x^*\| \le \|A\| \cdot \|x^*\|^2 = \|A\|$, a Cauchy-Schwarz egyenlőtlenségben egyenlőség pontosan akkor áll fenn, amikor $Ax^* \mid x^*$, azaz $Ax^* = const \cdot x^*$.

További sajátértékek, sajátelemek keresése.

Legyen X_1 : = $\{x \in X : x \perp x_1\}$, ahol A_1 : = $A \mid X_1$, a leszűkítés, és $Ax_1 = \lambda_1 x_1$.

<u>Állítás</u>: X_1 invariáns altér, azaz $x \in X_1$ ⇒ $Ax \in X_1$.

Bizonyítás: tfh $x \in X_1!$ $\langle Ax, x_1 \rangle = \langle x, Ax_1 \rangle = \langle x, \lambda_1 x_1 \rangle = \lambda_1 \langle x, x_1 \rangle = 0$, tehát $Ax \in X_1$. Az előbbi tételt alkalmazhatjuk az A_1 operátorra X_1 Hilbert térben. Ekkor $\exists \lambda_2$ sajátérték, hogy $|\lambda_2| = \|A_1\| = \sup\{\langle A_1 x, x \rangle : \|x\|_X = 1, x \in X_1\}$. A maximum helye x_2 sajátelem helyén van, $\lambda_2 x_2 = Ax_2, x_2 \perp x_1$. Így egymás után megkaphatjuk az A operátor sajátértékeit és sajátelemeit, $|\lambda_1| \geq |\lambda_2| \geq \dots$ Ha A véges rendű, akkor az eljárás véges sok lépés után befejeződik.

Tétel: legyenek az A önadjungált operátor sajátértékei $\lambda_1, \lambda_2, \ldots$ és sajátelemei x_1, x_2, \ldots A sajátelemekről feltehető, hogy ortonormált rendszert alkotnak. Ekkor $\forall x \in X$ elemre $Ax = \sum_k \lambda_k \langle x, x_k \rangle x_k$. Az (x_k) ortonormált rendszert kibővítve a $\lambda = 0$ -hoz tartozó sajátelemek ortonormált rendszerével, akkor ezek egy teljes ortonormált rendszert alkotnak.