

Exame Final Nacional de Matemática A Prova 635 | 2.ª Fase | Ensino Secundário | 2023

12.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho | Decreto-Lei n.º 22/2023, de 3 de abril

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 8 Páginas

A prova inclui 12 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 6 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \ e^{i\theta}} = \sqrt[n]{\rho} \ e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \ e \ n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

*** 1.** Seja (u_n) uma sucessão tal que $\lim u_n = 0$.

Qual das expressões seguintes pode ser termo geral de (u_n) ?

- (A) $\left(1 \frac{2}{n}\right)^n$ (B) $-\frac{n^2 + 1}{n}$ (C) $\frac{4n + 3}{3n + 4}$
- **2.** Considere um triângulo equilátero, [ABC], com $\overline{AB} = 1$.

Unindo os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo; unindo os pontos médios dos lados do segundo triângulo, obtém-se um terceiro triângulo. Continuando a proceder deste modo, obtém-se uma sequência de n triângulos, sendo n > 4.

Na Figura 1, representam-se os primeiros quatro triângulos da sequência.

Mostre que a soma dos perímetros dos n triângulos da sequência é menor do que 6 unidades, qualquer que seja o valor de n.

Figura 1

* 3. Considere todos os números naturais de seis algarismos que é possível formar com os algarismos de 1a9.

Destes números, quantos têm exatamente dois cincos?

- (A) 98 415

- **(B)** 61 440 **(C)** 36 015 **(D)** 25 200
- 4. Seja E, conjunto finito, o espaço amostral associado a uma experiência aleatória, e sejam A e B dois acontecimentos $(A \subset E \in B \subset E)$.

Sabe-se que:

- A e B são acontecimentos equiprováveis;
- $P(\overline{A}) = 0.6$;
- $P(A \cup \overline{B}) = 0.7$.

Determine o valor de $P((A \cup \overline{B}) | B)$.

Apresente o resultado na forma de fração irredutível.

*** 5.** Uma certa composição geométrica é formada por n hexágonos regulares inscritos em circunferências concêntricas, contidas num mesmo plano, de centro no ponto V, sendo n > 3.

A Figura 2 é um esquema de parte dessa composição, e nela estão representados três dos n hexágonos que formam a composição.

Figura 2

Considere o conjunto de pontos formado pelo ponto \ensuremath{V} e pelos vértices de todos os hexágonos da composição.

Sabe-se que, selecionando, ao acaso, dois pontos desse conjunto, a probabilidade de estes serem vértices do mesmo hexágono é igual a $\frac{5}{49}$.

Determine o valor de n.

- **6.** Seja f uma função, de domínio $\mathbb R$, definida por $f(x)=a+e^{bx}$, em que a e b são números reais. Sabendo que o gráfico da função f contém os pontos de coordenadas (1,5) e (2,7), determine os valores de a e de b.
- *** 7.** Qual é o valor de $\lim_{x\to 0} \frac{\text{sen}(2x)}{x}$?
 - **(A)** 0

- (B) $\frac{1}{2}$
- **(C)** 1
- **(D)** 2

8. Na Figura 3, está representado, em referencial o.n. Oxyz , o prisma hexagonal reto [ABCDEFGHIJKL] , debases [ABCDEF] e [GHIJKL] .

Sabe-se que:

- as coordenadas dos vértices A e G do prisma são, respetivamente, (4,0,0) e $\left(12,\frac{13}{2},2\right)$;
- a reta EL é definida pela equação vetorial $(x, y, z) = (-2, -8, 4) + k(3, 4, 0), \ k \in \mathbb{R}$.

Figura 3

 \bigstar 8.1. Qual das seguintes equações define a superfície esférica de diâmetro [AG] ?

(A)
$$(x-8)^2 + (y-\frac{13}{4})^2 + (z-1)^2 = \frac{441}{16}$$

(B)
$$(x-8)^2 + (y-\frac{13}{4})^2 + (z-1)^2 = \frac{441}{4}$$

(C)
$$(x-4)^2 + y^2 + z^2 = \frac{441}{16}$$

(D)
$$(x-4)^2 + y^2 + z^2 = \frac{441}{4}$$

* 8.2. Resolva este item sem recorrer à calculadora.

Determine as coordenadas do vértice F do prisma.

9. Na Figura 4, está representado, em referencial o.n. Oxy, o retângulo [OABC].

Sabe-se que:

• o ponto A pertence ao semieixo positivo Ox;

- o ponto $\ C$ pertence ao semieixo positivo $\ Oy$;

ullet o ponto D pertence ao segmento de reta $[\mathit{OA}]$;

• o ponto E pertence ao segmento de reta [CB];

•
$$\overline{EB} = \overline{OD} = \frac{\overline{OA}}{3}$$
;

•
$$\overline{OC} = \frac{\overline{OA}}{4}$$
;

•
$$\overrightarrow{DC} \cdot \overrightarrow{DE} = -7$$
.

Determine $\overline{\mathit{OA}}$.

Figura 4

*** 10.** Seja g uma função par, diferenciável, de domínio $\mathbb{R}\setminus\{-1,1\}$, tal que:

- $\lim_{x \to 1^{-}} g(x) = +\infty ;$
- g(0) < 0;
- g'(x) < 0, $\forall x \in]-\infty, -1[$.

Em cada um dos referenciais o.n. Oxy seguintes, I, II e III, estão representadas parte do gráfico de uma função e a assíntota a esse gráfico, de equação x = -1.

Justifique que em nenhum dos referenciais, I, II e III, pode estar representada parte do gráfico da função g em $]-\infty,0[\setminus\{-1\}]$.

Na sua resposta, apresente, para cada um dos referenciais, uma razão que justifique a impossibilidade de nele estar representada parte do gráfico da função g em $]-\infty,0[\,\setminus\,\{-1\}]$.

*** 11.** Na Figura 5, está representado, no plano complexo, um triângulo equilátero, [ABC], inscrito numa circunferência de centro na origem do referencial, O.

O ponto $\,A\,$ pertence ao semieixo imaginário positivo.

Os pontos A e B são os afixos dos números complexos z_1 e z_2 , respetivamente .

A qual dos quadrantes do plano complexo pertence o afixo do número complexo $z_1^2 \times z_2$?

- (A) Ao primeiro.
- (B) Ao segundo.
- (C) Ao terceiro.
- (D) Ao quarto.

- **12.** Considere, em $\mathbb C$, conjunto dos números complexos, o número $z=\frac{2i^{11}e^{i\alpha}}{-1-\sqrt{3}i}$, com $\alpha\in[0,2\pi[$. Sabe-se que:
 - $\operatorname{Re}(z) = -\operatorname{Im}(z)$;
 - o afixo de z pertence ao 4.º quadrante.

Determine, sem recorrer à calculadora, o valor de α .

* 13. Para fazer obras de remodelação das instalações, uma pequena empresa pretende pedir um empréstimo a um banco, a pagar em prestações mensais iguais.

De acordo com a proposta do banco, o valor da prestação mensal a pagar, p, em euros, é dado, em função da taxa de juro anual aplicada, j, em percentagem, pela expressão

$$p(j) = \frac{62,5j}{1 - \left(1 + \frac{j}{1200}\right)^{-120}} , \quad \text{com } j > 0$$

Sabe-se que, no caso de a taxa de juro anual inicial duplicar, a prestação mensal aumentará 120 euros.

Determine, utilizando a calculadora gráfica, a taxa de juro anual inicial.

Apresente o resultado em percentagem, arredondado às milésimas.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- represente, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora e assinale o(s) ponto(s) relevante(s), que lhe permitem resolver a equação.
- **14.** Considere a função f, de domínio $]0, +\infty[$, definida por

$$f(x) = \frac{\ln x + 2x}{x}$$

Resolva os itens 14.1. e 14.2. sem recorrer à calculadora.

 \bigstar 14.1. O gráfico da função f admite uma assíntota vertical e uma assíntota horizontal.

Determine uma equação de cada uma dessas assíntotas.

14.2. Estude a função f quanto à monotonia e quanto à existência de extremos relativos e determine esses extremos, caso existam.

Na sua resposta, apresente o(s) intervalo(s) de monotonia da função f.

*** 15.** Na Figura 6, estão representados, em referencial o.n. Oxy, uma semicircunferência de raio 2, e centro na origem do referencial, e o triângulo isósceles [ABC].

Sabe-se que:

- o vértice A pertence ao semieixo positivo Ox;
- o vértice B pertence ao semieixo positivo Oy;
- o vértice C pertence ao semieixo negativo Ox;
- $\overline{AB} = \overline{BC}$;
- o lado [AB] é tangente à semicircunferência no ponto T;
- $A\hat{O}T = \alpha$, $\alpha \in \left[0, \frac{\pi}{2}\right]$.

Figura 6

Prove que a área do triângulo [ABC] é dada, em função de α , por $\frac{8}{\sin{(2\alpha)}}$.

*** 16.** Considere as funções f e g , de domínio $]0, +\infty[$, definidas por $f(x) = \frac{k}{x}$ e por $g(x) = -\frac{k}{x}$, com k > 0 .

Considere ainda:

- ullet dois pontos P e Q , com a mesma abcissa, pertencentes, respetivamente, ao gráfico da função f e ao gráfico da função g ;
- a reta s, tangente ao gráfico da função f no ponto P;
- a reta t, tangente ao gráfico da função g no ponto Q;
- o ponto R, ponto de intersecção das retas s e t.

Mostre que, qualquer que seja a abcissa dos pontos $P \in Q$, a área do triângulo [PQR] é igual a k.

FIM

COTAÇÕES

As pontuações obtidas nas respostas a estes 12 itens da prova contribuem obrigatoriamente para a classificação final.	1.	3.	5.	7.	8.1.	8.2.	10.	11.	13.	14.1.	15.	16.	Subtotal
Cotação (em pontos)	12	12	14	12	12	14	14	12	14	14	14	14	158
Destes 6 itens, contribuem para a classificação final da prova os 3 itens cujas respostas obtenham melhor pontuação.	2.		4.		6.		9.		12.		14.2.		Subtotal
Cotação (em pontos)	3 x 14 pontos												42
TOTAL												200	