COMPARISON CNN

June 21, 2025

```
[1]: import tensorflow as tf
     from tensorflow.keras.utils import to_categorical
     import os
     from PIL import Image, UnidentifiedImageError
     import shutil
     # Configuration
     IMG SIZE = (28, 28)
     BATCH_SIZE = 32
     VALIDATION_SPLIT = 0.4
     SEED = 42
     ROOT_PATH = ''
     DATASET_PATH = os.path.join(ROOT_PATH,"raw_data")
     CORRUPT_PATH = os.path.join(ROOT_PATH,"corrupt_images")
     os.makedirs(CORRUPT_PATH, exist_ok=True)
     for root, dirs, files in os.walk(DATASET_PATH):
         for file in files:
             ext = os.path.splitext(file)[1].lower()
             if ext in [".jpg", ".jpeg", ".png", ".bmp", ".gif"]:
                 path = os.path.join(root, file)
                 try:
                     with Image.open(path) as img:
                         img.verify() # Check integrity
                 except (UnidentifiedImageError, OSError, IOError) as e:
                     # Move the corrupt image
                     print(f"Corrupt image found: {path} - moving to {CORRUPT_PATH}")
                     dest_path = os.path.join(CORRUPT_PATH, os.path.relpath(path,_
      →DATASET_PATH))
                     os.makedirs(os.path.dirname(dest_path), exist_ok=True)
                     shutil.move(path, dest_path)
     LANDMARK_DIR = os.path.join(ROOT_PATH,"data")
     RAW IMAGE DIR = os.path.join(ROOT PATH, "raw data")
     FILTERED_IMAGE_DIR = os.path.join(ROOT_PATH,"filtered_raw_data")
     DATASET PATH = FILTERED IMAGE DIR
     # Supported image extensions
```

```
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp']
# Create filtered output structure
os.makedirs(FILTERED_IMAGE_DIR, exist_ok=True)
for class_name in os.listdir(LANDMARK_DIR):
   if class name == 'debug':
        continue
   landmark class dir = os.path.join(LANDMARK DIR, class name)
   raw_class_dir = os.path.join(RAW_IMAGE_DIR, class_name)
   filtered class dir = os.path.join(FILTERED IMAGE DIR, class name)
   os.makedirs(filtered_class_dir, exist_ok=True)
   for file in os.listdir(landmark_class_dir):
        if not file.endswith("_landmarks.json"):
            continue
        # Get base filename without "_landmarks.json"
       base_name = file.replace("_landmarks.json", "")
        # Look for corresponding image in raw directory
       for ext in IMAGE EXTENSIONS:
            image_file = os.path.join(raw_class_dir, base_name + ext)
            if os.path.exists(image file):
                # Copy to filtered folder
                shutil.copy(image_file, os.path.join(filtered_class_dir, os.
 →path.basename(image_file)))
                break
# Load training dataset with validation split
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET PATH,
   validation_split=VALIDATION_SPLIT,
   subset="training",
   seed=SEED,
   color_mode="grayscale",
    image_size=IMG_SIZE,
   batch_size=BATCH_SIZE
num_classes = len(train_ds.class_names)
label_map = train_ds.class_names
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET_PATH,
   validation_split=VALIDATION_SPLIT,
    subset="validation",
   seed=SEED,
```

```
color_mode="grayscale",
         image_size=IMG_SIZE,
         batch_size=BATCH_SIZE
     test_ds = val_ds.shard(2,0)
     val ds = val ds.shard(2,1)
     # Normalize pixel values to [0, 1]
     normalization layer = tf.keras.layers.Rescaling(1./255)
     train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
     val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
     test_ds = test_ds.map(lambda x, y: (normalization_layer(x), y))
     # Cache and prefetch for performance
     AUTOTUNE = tf.data.AUTOTUNE
     train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
     val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
     test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
    Found 5643 files belonging to 51 classes.
    Using 3386 files for training.
    Found 5643 files belonging to 51 classes.
    Using 2257 files for validation.
[2]: from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, U
      →BatchNormalization, Input
     from tensorflow.keras.layers import Flatten, Dense, GlobalAveragePooling2D
     from tensorflow.keras.optimizers import Adam
     model = Sequential([
         Input((28, 28, 1)),
         Conv2D(16, (3, 3), activation='relu'),
         BatchNormalization(),
         MaxPooling2D(pool_size=(2, 2)),
         Dropout(0.1),
         Conv2D(32, (3, 3), activation='relu'),
         BatchNormalization(),
         MaxPooling2D(pool_size=(2, 2)),
         Dropout(0.2),
         GlobalAveragePooling2D(),
         Flatten(),
         Dense(128, activation='relu'),
         Dropout(0.2),
         Dense(num_classes, activation='softmax')
```

```
])
     model.compile(optimizer=Adam(1e-3),
                   loss='sparse_categorical_crossentropy',
                   metrics=['accuracy'])
[3]: history = model.fit(train_ds, validation_data=val_ds, epochs=50)
    Epoch 1/50
    106/106
                        19s 67ms/step -
    accuracy: 0.0285 - loss: 3.9030 - val_accuracy: 0.0188 - val_loss: 3.9602
    106/106
                        1s 7ms/step -
    accuracy: 0.0746 - loss: 3.4015 - val_accuracy: 0.0205 - val_loss: 4.2724
    Epoch 3/50
    106/106
                        1s 7ms/step -
    accuracy: 0.0855 - loss: 3.2238 - val_accuracy: 0.0232 - val_loss: 4.3350
    Epoch 4/50
    106/106
                        1s 7ms/step -
    accuracy: 0.0961 - loss: 3.1364 - val_accuracy: 0.0259 - val_loss: 3.9981
    Epoch 5/50
                        1s 7ms/step -
    106/106
    accuracy: 0.1320 - loss: 3.0458 - val_accuracy: 0.0473 - val_loss: 3.6321
    Epoch 6/50
    106/106
                        1s 7ms/step -
    accuracy: 0.1539 - loss: 2.9616 - val_accuracy: 0.1437 - val_loss: 3.1492
    Epoch 7/50
    106/106
                        1s 7ms/step -
    accuracy: 0.1671 - loss: 2.8833 - val_accuracy: 0.1375 - val_loss: 3.1823
    Epoch 8/50
    106/106
                        1s 7ms/step -
    accuracy: 0.2108 - loss: 2.8134 - val_accuracy: 0.1009 - val_loss: 3.2990
    Epoch 9/50
    106/106
                        1s 7ms/step -
    accuracy: 0.2060 - loss: 2.7633 - val_accuracy: 0.1411 - val_loss: 3.0562
    Epoch 10/50
    106/106
                        1s 7ms/step -
    accuracy: 0.2275 - loss: 2.6895 - val_accuracy: 0.1857 - val_loss: 2.7917
    Epoch 11/50
    106/106
                        1s 7ms/step -
    accuracy: 0.2492 - loss: 2.6086 - val_accuracy: 0.2232 - val_loss: 2.7362
    Epoch 12/50
                        1s 7ms/step -
    accuracy: 0.2650 - loss: 2.5422 - val_accuracy: 0.1804 - val_loss: 2.8804
    Epoch 13/50
    106/106
                        1s 7ms/step -
    accuracy: 0.2629 - loss: 2.5373 - val_accuracy: 0.2464 - val_loss: 2.6650
    Epoch 14/50
```

```
106/106
                   1s 7ms/step -
accuracy: 0.2880 - loss: 2.4425 - val_accuracy: 0.2482 - val_loss: 2.6002
Epoch 15/50
106/106
                   1s 7ms/step -
accuracy: 0.2977 - loss: 2.4105 - val accuracy: 0.2688 - val loss: 2.6124
Epoch 16/50
106/106
                   1s 7ms/step -
accuracy: 0.3190 - loss: 2.3837 - val_accuracy: 0.2438 - val_loss: 2.6162
Epoch 17/50
106/106
                   1s 7ms/step -
accuracy: 0.3104 - loss: 2.3365 - val accuracy: 0.2812 - val loss: 2.4488
Epoch 18/50
106/106
                    1s 7ms/step -
accuracy: 0.3286 - loss: 2.2932 - val_accuracy: 0.2759 - val_loss: 2.4608
Epoch 19/50
106/106
                   1s 7ms/step -
accuracy: 0.3545 - loss: 2.2151 - val_accuracy: 0.1884 - val_loss: 2.8882
Epoch 20/50
106/106
                   1s 7ms/step -
accuracy: 0.3476 - loss: 2.2272 - val_accuracy: 0.3071 - val_loss: 2.3932
Epoch 21/50
106/106
                   1s 7ms/step -
accuracy: 0.3327 - loss: 2.2491 - val_accuracy: 0.1875 - val_loss: 2.8813
Epoch 22/50
106/106
                   1s 7ms/step -
accuracy: 0.3645 - loss: 2.1698 - val_accuracy: 0.2536 - val_loss: 2.5397
Epoch 23/50
106/106
                   1s 7ms/step -
accuracy: 0.3512 - loss: 2.1625 - val_accuracy: 0.2929 - val_loss: 2.4505
Epoch 24/50
106/106
                   1s 7ms/step -
accuracy: 0.3633 - loss: 2.1475 - val_accuracy: 0.3170 - val_loss: 2.3849
Epoch 25/50
106/106
                   1s 7ms/step -
accuracy: 0.3645 - loss: 2.1227 - val accuracy: 0.1929 - val loss: 2.8297
Epoch 26/50
                   1s 7ms/step -
accuracy: 0.3727 - loss: 2.1300 - val_accuracy: 0.2536 - val_loss: 2.6489
Epoch 27/50
106/106
                   1s 7ms/step -
accuracy: 0.3834 - loss: 2.1089 - val_accuracy: 0.2750 - val_loss: 2.4914
Epoch 28/50
106/106
                   1s 7ms/step -
accuracy: 0.3833 - loss: 2.0938 - val_accuracy: 0.2812 - val_loss: 2.5172
Epoch 29/50
                   1s 7ms/step -
106/106
accuracy: 0.3908 - loss: 2.0487 - val_accuracy: 0.3357 - val_loss: 2.2638
Epoch 30/50
```

```
106/106
                   1s 7ms/step -
accuracy: 0.4000 - loss: 2.0492 - val_accuracy: 0.3071 - val_loss: 2.4016
Epoch 31/50
106/106
                   1s 7ms/step -
accuracy: 0.3992 - loss: 2.0285 - val accuracy: 0.2973 - val loss: 2.4034
Epoch 32/50
106/106
                   1s 7ms/step -
accuracy: 0.3928 - loss: 1.9994 - val_accuracy: 0.2875 - val_loss: 2.4529
Epoch 33/50
106/106
                   1s 7ms/step -
accuracy: 0.4004 - loss: 2.0200 - val accuracy: 0.3366 - val loss: 2.2722
Epoch 34/50
106/106
                   1s 7ms/step -
accuracy: 0.3933 - loss: 2.0160 - val_accuracy: 0.3134 - val_loss: 2.3764
Epoch 35/50
106/106
                   1s 7ms/step -
accuracy: 0.4115 - loss: 1.9637 - val_accuracy: 0.2937 - val_loss: 2.4489
Epoch 36/50
106/106
                   1s 7ms/step -
accuracy: 0.4028 - loss: 1.9667 - val_accuracy: 0.3384 - val_loss: 2.2480
Epoch 37/50
106/106
                   1s 7ms/step -
accuracy: 0.3932 - loss: 1.9684 - val_accuracy: 0.3170 - val_loss: 2.3287
Epoch 38/50
106/106
                   1s 7ms/step -
accuracy: 0.4251 - loss: 1.9092 - val accuracy: 0.2625 - val loss: 2.6642
Epoch 39/50
106/106
                   1s 8ms/step -
accuracy: 0.4244 - loss: 1.9183 - val_accuracy: 0.2589 - val_loss: 2.5868
Epoch 40/50
106/106
                   1s 8ms/step -
accuracy: 0.4159 - loss: 1.9364 - val_accuracy: 0.3241 - val_loss: 2.2809
Epoch 41/50
106/106
                   1s 8ms/step -
accuracy: 0.4319 - loss: 1.8823 - val accuracy: 0.3446 - val loss: 2.2653
Epoch 42/50
                   1s 8ms/step -
accuracy: 0.4493 - loss: 1.8265 - val_accuracy: 0.3313 - val_loss: 2.2376
Epoch 43/50
106/106
                   1s 8ms/step -
accuracy: 0.4392 - loss: 1.8844 - val_accuracy: 0.3509 - val_loss: 2.2370
Epoch 44/50
106/106
                   1s 7ms/step -
accuracy: 0.4439 - loss: 1.8559 - val_accuracy: 0.3634 - val_loss: 2.2481
Epoch 45/50
106/106
                   1s 7ms/step -
accuracy: 0.4469 - loss: 1.8406 - val_accuracy: 0.3482 - val_loss: 2.2282
Epoch 46/50
```

```
106/106
                        1s 7ms/step -
    accuracy: 0.4548 - loss: 1.8436 - val_accuracy: 0.3580 - val_loss: 2.2125
    Epoch 47/50
    106/106
                        1s 7ms/step -
    accuracy: 0.4498 - loss: 1.8072 - val_accuracy: 0.3036 - val_loss: 2.4754
    Epoch 48/50
    106/106
                        1s 7ms/step -
    accuracy: 0.4469 - loss: 1.8241 - val_accuracy: 0.3393 - val_loss: 2.2447
    Epoch 49/50
    106/106
                        1s 7ms/step -
    accuracy: 0.4348 - loss: 1.8508 - val accuracy: 0.2866 - val loss: 2.5828
    Epoch 50/50
    106/106
                        1s 7ms/step -
    accuracy: 0.4575 - loss: 1.7862 - val_accuracy: 0.3625 - val_loss: 2.2806
[4]: test_loss, test_accuracy = model.evaluate(test_ds)
     print(f"Test Accuracy: {test_accuracy:.4f}")
     print(f"Test Loss: {test_loss:.4f}")
    36/36
                      5s 136ms/step -
    accuracy: 0.3699 - loss: 2.2056
    Test Accuracy: 0.3817
    Test Loss: 2.2056
[5]: import matplotlib.pyplot as plt
     from sklearn.metrics import classification_report, confusion_matrix
     import seaborn as sns
     import numpy as np
[6]: plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
     plt.plot(history.history['accuracy'])
     plt.plot(history.history['val_accuracy'])
     plt.title('Model accuracy')
     plt.ylabel('Accuracy')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     # Plot training & validation loss values
     plt.subplot(1, 2, 2)
     plt.plot(history.history['loss'])
     plt.plot(history.history['val_loss'])
     plt.title('Model loss')
     plt.ylabel('Loss')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     plt.show()
```



```
[7]: y_true, y_pred = [], []
     target_names = [label_map[i] for i in range(len(label_map))]
     for X_batch, y_batch in test_ds:
         y_true.append(y_batch.numpy())
         batch_pred = model.predict(X_batch, verbose=0)
         y_pred.append(np.argmax(batch_pred, axis=1))
     y_true = np.concatenate(y_true)
     y_pred = np.concatenate(y_pred)
     print(classification_report(
         y_true, y_pred,
         digits=3,
         target_names=target_names
     ))
     cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
     labels = [label_map[i] for i in range(len(label_map))]
     plt.figure(figsize=(10, 8))
     sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
                 xticklabels=labels, yticklabels=labels)
     plt.xlabel("Predicted Label")
     plt.ylabel("True Label")
     plt.title("Confusion Matrix - Test Set")
     plt.show()
```

c:\Users\chris\.conda\envs\ASLR\Lib\sitepackages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

	precision	recall	f1-score	support
A	0.083	0.053	0.065	19
В	0.091	0.037	0.053	27
C	0.050	0.043	0.047	23
D	0.000	0.000	0.000	21
Е	0.361	0.433	0.394	30
F	0.188	0.120	0.146	25
G	0.105	0.129	0.116	31
Н	0.286	0.138	0.186	29
I	0.083	0.227	0.122	22
J	0.162	0.250	0.197	24
K	0.000	0.000	0.000	32
L	0.116	0.192	0.145	26
M	0.333	0.116	0.172	43
N	0.067	0.071	0.069	28
0	0.048	0.038	0.043	26
P	0.000	0.000	0.000	24
Q	0.122	0.278	0.169	18
R	0.062	0.095	0.075	21
S	0.200	0.094	0.128	32
T	0.115	0.136	0.125	22
U	0.238	0.152	0.185	33
V	0.129	0.267	0.174	30
W	0.206	0.269	0.233	26
X	0.000	0.000	0.000	23
Y	0.000	0.000	0.000	29
Z	0.260	0.679	0.376	28
baca	0.750	0.273	0.400	11
bantu	1.000	0.400	0.571	15
bapak	0.810	0.895	0.850	19
buangairkecil	1.000	0.364	0.533	11
buat	0.556	0.833	0.667	12
halo	1.000	0.667	0.800	15
ibu	0.800	0.667	0.727	6
kamu	0.605	0.719	0.657	32

maaf	0.850	0.773	0.810	22
makan	0.875	0.350	0.500	20
mau	0.815	0.957	0.880	23
nama	0.944	0.739	0.829	23
pagi	0.800	0.909	0.851	22
paham	0.826	0.594	0.691	32
sakit	1.000	0.571	0.727	7
sama-sama	0.682	0.750	0.714	20
saya	0.643	0.818	0.720	11
selamat	0.733	0.917	0.815	24
siapa	0.533	0.727	0.615	22
tanya	0.913	0.875	0.894	24
tempat	0.875	0.700	0.778	10
terima-kasih	0.432	0.941	0.593	17
terlambat	0.640	0.941	0.762	17
tidak	0.667	0.600	0.632	10
tolong	0.833	1.000	0.909	20
accuracy			0.382	1137
macro avg	0.449	0.427	0.415	1137
weighted avg	0.388	0.382	0.365	1137

