	O O O
Name:	
Roll No.:	A Grant of Sample and Carlons
Invigilator's Signature :	

CODING & INFORMATION THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) A (7, 4) linear block code has a code rate of
 - a) 7

b) 4

c) 1.75

- d) 0.571.
- ii) Entropy represents
 - a) amount of information
 - b) rate of information
 - c) measure of uncertainty
 - d) probability of message.

7203 [Turn over

- a) entropy rate
- b) maximum rate of information a channel can handle
- c) information contents of messages transmitted in a channel
- d) none of these.
- iv) The Hamming distance between V = 1100001011 and W = 1001101001 is
 - a) 1

b) 5

c) 3

- d) 4.
- v) An encoder for a (4, 3, 5) convolution code has a memory order of
 - a) 4

b) 2

c) 3

d) 5.

7203

CS/B.TECH(ECE)/SEM-7/EC-703

- a) H(y/x) = H(x, y) H(x)
- b) I(x, y) = H(x) H(y/x)
- c) H(x/y) = H(x, y) + H(y)
- d) I(x, y) = H(y) H(y/x).
- vii) A polynomial is called monic if
 - a) odd terms are unity
 - b) even terms are unity
 - c) leading coefficient is unity
 - d) leading coefficient is zero.
- viii) Which of the following techniques is used for Viterbi algorithm for decoding?
 - a) Code tree
- b) Trellis
- c) State diagram
- d) Parity generator.

7203

3

[Turn over

- ix) The generator polynomial of a cyclic code is a factor of
 - a) $x^{n} + 1$
- b) $x^{n+1} + 1$
- c) $x^{n+2} + 1$
- d) none of these.
- x) Consider the parity check matrix $H = \begin{bmatrix} 100 \\ 010 \\ 001 \\ 110 \\ 011 \\ 101 \end{bmatrix}$ and the

received vector r=(001110). Then the syndrome is given by

- a) (110)
- b) (100)

- c) (111)
- d) (101).
- xi) For a (7, 4) cyclic code generated by

g (X) = 1 + X + X 3 the syndrome for the error pattern e (X) = X 3 is

a) 101

b) 111

c) 110

- d) 011.
- xii) The number of undetectable errors for a (n, k) linear code is
 - a) 2^{n-k}

- b) 2^{n}
- c) $2^{n} 2^{k}$
- d) 2^{k} .

7203

CS/B.TECH(ECE)/SEM-7/EC-703/2011-12 GROUP - B (Short Answer Type Questions) Answer any three of the following. $3 \times 5 = 15$

2. a) Differentiate between block cipher and stream cipher. 2

b) What do you mean by symmetric key and asymmetric key cryptography? What is 'Man-in-the middle' attack?

2 + 1

- 3. A (8, 4) cyclic code is generated by $g(X) = 1 + X + X^4$. Find the generator and parity-check matrix in systematic form.
- 4. a) What is the systematic structure of a code word?
 - b) What is syndrome and what is its significance? Draw the syndrome circuit for a (7, 4) linear block code with parity-check matrix $H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$. 2 + 2
- 5. For a (2, 1, 3) convolutional encoder the generator sequences are $g^{(0)}$ = (1000) and $g^{(1)}$ = (1101).
- 6. Determine the generator polynomial of a double error correcting BCH code of block length, n = 15.

7203 5 [Turn over

GROUP - C

(Long Answer Type Questions

Answer any *three* of the following.

7. Consider a systematic (8, 4) code with parity check equations

$$V_0 = U_0 + U_1 + U_2$$

$$V_1 = U_1 + U_2 + U_3$$

$$V_2 = U_0 + U_1 + U_3$$

$$V_3 = U_0 + U_2 + U_3$$

where U $_0\,$, U $_1\,$, U $_2\,$ and U $_3\,$ are message, V $_0\,$, V $_1\,$, V $_2\,$ and V $_3\,$ are parity check digit

- i) Find the generator matrix and the parity check matrix for this code.
- ii) Find the minimum weight for this code.
- iii) Find the error detecting and the error correcting capability of this code.
- iv) Show through an example that the code can detect three errors in code word. 6 + 4 + 4 + 1
- 8. a) State and prove the Shannon-Hartley law of channel capacity. 1+5
 - b) A Gaussian channel has a 1 MHz bandwidth. If the signal power-to-noise power spectral density **Error!**
 - c) Show that H(X, Y) = H(X/Y) + H(Y).

CS/B.TECH(ECE)/SEM-7/EC-703

b) A (7, 3) linear code has the following generator matrix:

$$G = \left[\begin{array}{cccc} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array} \right]$$

Determine a systematic form of G. Hence find the parity-check matrix H for the code. 3+2

- c) Design the encoder circuit for the above code. 5
- 10. a) Write down the advantages of Huffman coding over Shannon-Fano coding.
 - b) A discrete memoryless source has seven symbols x_1 , x_2 , x_3 , x_4 , x_5 , x_6 and x_7 with probabilities of occurrence $P(x_1) = 0.05$, $P(x_2) = 0.15$, $P(x_3) = 0.2$, $P(x_4) = 0.05$, $P(x_5) = 0.15$, $P(x_6) = 0.3$ and $P(x_7) = 0.1$.

Construct the Huffman code and determine

- i) Entropy
- ii) Average code length
- iii) Code efficiency.

3 + 5 + 3 + 3 + 1

- 11. a) What are the functions of *P*-box and *S*-box in case of DES algorithm?
 - b) Explain the Diffy-Hellman key exchange algorithm.
 - c) What do you mean by Quantum Cryptography ? 4 + 9 + 2

7203 7

[Turn over

- a) Shannon-Fano algorithm
- b) Advanced version of DES
- c) RSA algorithm
- d) Hamming coding
- e) Viterbi algorithm.