Arkouda Boolean pdarray Indexing mimics NumPy boolean indexing

Algorithm/Code Comments

- ø simple parallel-prefix/scan-based algorithm
- o size and bounds checks
- e the real code has some optimizations like refs and aggregation
- o chapel code in src/IndexingMsg.chpl

Boolean Gather - Compression Indexing Y = X[truth]

į	0	1	2	3	4	5	6	7	8	9
X	1	2	5	5	1	5	2	5	3	1
truth = (X == 5)	f	f	Ŀ	Ŀ	f	E .	f	E	f	f

iv = + scan truth	0	0	1	2	2	3	3	4	4	4
if truth then iv - 1			0	1		2		3		
Y = X[truth]	5	5	5	5						

Compression Indexing Code

```
Y = X[truth]
//Chapel code
iv = + scan truth;
[i in X.domain] if (truth[i] == true) {Y[iv[i]-1] = X[i];}
// iv[i]-1 for zero base index
```

#Python code

truth = X == 5

Boolean Scatter - Expansion Indexing X[truth] = Y

į	0	1	2	3	4	5	6	7	8	9
Y	5	5	5	5						
X	1	2	-1	-1	1	-1	2	-1	3	1
truth	f	f	Ŀ	Ŀ	f	E	f	E	f	f

iv = + scan truth	0	0	1	2	2	3	3	4	4	4
if truth then iv - 1			0	1		2		3		
X[truth] = Y	1	2	5	5	1	5	2	5	3	1

Expansion Indexing Code

```
//Chapel code
iv = + scan truth;
[i in X.domain] if (truth[i] == true) {X[i] = Y[iv[i]-1];}
// iv[i]-1 for zero base index
```

#Python code

X[truth] = Y

Lock at code how