Statistical Foundations of Learning List of notations and key concepts¹

Debarghya Ghoshdastidar TUM Informatik Summer 2020

Updated on: May 29, 2020(till lecture 11)

 $^{^{1}\}mathrm{This}$ list will be regularly updated. Let us know if an improtant notation / term is missing from the list.

Chapter 1

List of notations and key concepts

This list ignores few notations that are used locally, in a specific section or proof.

Notation	First in Chapter	Description
\mathbb{R},\mathbb{R}^p	1	Real line, or p-dimensional space
\mathbb{N}	1	Set of natural numbers $\{0, 1, 2, \ldots\}$
$\mathbb{E}[\cdot],\mathbb{E}_S[\cdot]$	1	Expectation; Subscript identifies the random variable over which expectation is considered
$\mathbb{P}(\cdot),\mathbb{P}_S(\cdot)$	1	Probability; Subscript identifies the random variable
χ	1	Feature space (possible values of the instances); We mostly have $\mathcal{X} \subseteq \mathbb{R}$ or \mathbb{R}^p or finite set; In Chapter 9, it is set of vertices of a graph
\mathcal{Y}	1	Label space; For binary classification $\mathcal{Y} = \{\pm 1\}$ or $\{0, 1\}$; Multi-class classification / clustering $\mathcal{Y} = \{1, 2, \dots, k\}$; Regression $\mathcal{Y} = \mathbb{R}$
$\mathcal{X} imes \mathcal{Y}$	1	Product of two spaces; In this lecture, space of data-label pairs
(x,y)	1	Data-label pair; Same notation also used for random instances
$\mathcal{Y}^{\mathcal{X}}$	1	Space of all functions $f: \mathcal{X} \to \mathcal{Y}$; If $\mathcal{Y} = \{\pm 1\}$, then space of all binary classification rules

${\cal D}$	1	Joint distribution of data-label pairs over $\mathcal{X} \times \mathcal{Y}$
$\mathcal{D}_{\mathcal{X}}$	1	Marginal distribution of \mathcal{D} of features in \mathcal{X}
$\mathbb{P}_{\mathcal{Y} \mathcal{X}}(\cdot x), \eta(x)$	1	Conditional distribution of label given feature x ; For binary classification, we define $\eta(x) = \mathbb{P}_{\mathcal{Y} \mathcal{X}}(y=1 x)$
m	1	Number of training samples
\mathcal{D}^m	1	Joint distribution of m i.i.d. random variates, each distributed according to $\mathcal D$
$S = \{(x_i, y_i)\}_{i=1}^m$	1	Training sample; $S \in (\mathcal{X} \times \mathcal{Y})^m$ and often, we have $S \sim \mathcal{D}^m$
$\frac{h,h_t}{\widehat{h},h^*}$	1	Prediction rules; Subscript usually denotes a parameter Typically \hat{h} is output of an algorithm, and h^* is true / Bayes predictor
$\mathcal{H},\mathcal{H}_{ds-1}$	1	Hypothesis class; Some subset of prediction rules in $\mathcal{Y}^{\mathcal{X}}$; Subscript is used to specify certain hypothesis class
$\mathcal{A},\mathcal{A}_S,\mathcal{A}_{method}$	1	Learner / learning algorithm; Takes training set S as input, and returns a predictor \widehat{h} Sometimes, we use \mathcal{A}_S to denote the predictor $\mathcal{A}(S)$, whereas \mathcal{A}_{method} is used to specify the learning approach (for instance, ERM)
$\ell,\ell^{0\text{-}1}$	1	Loss function; The superscript is used to specify the type of loss function
$L_{\mathcal{D}}(\cdot), L_{\mathcal{D}^{0\text{-}1}}(\cdot)$	1	Risk / Generalisation error; Expected error of a predictor with respect to distribution \mathcal{D} . Superscript used to specify loss function
$L_S(\cdot)$	1	Empirical risk / Training error; Error of a predictor with respect to sample ${\cal S}$
$L_{\mathcal{D}}^*$	1	Bayes risk (minimum possible risk) for distribution $\mathcal D$
$L_{\mathcal{D}}(\mathcal{H})$	1	Minimum possible risk for \mathcal{D} using predictors in \mathcal{H}
ERM	1	Empirical risk minimisation
$\mathcal{H}_{ C}$	1.2	Restriction of a hypothesis class \mathcal{H} to a set $C \subset \mathcal{X}$
$ au_{\mathcal{H}}(\cdot)$	1.2	Growth function for class \mathcal{H} , which is a function of sample size m
$\operatorname{VCdim}_{\mathcal{H}}(\mathcal{H})$	1.2	VC-dimension of \mathcal{H} ; Mostly, we use d as notation for a finite VC-dimension
PAC	2	Probably Approximately Correct

ϵ	2 also 1.2	Excess risk; In PAC, ϵ is the allowable excess risk of learned predictor over the minimum possible risk (0 or $L_{\mathcal{D}}(\mathcal{H})$) Notation is used in a similar spirit in the uniform convergence results, but differs from the excess risk by factor 2 or 4 in some parts
δ	2 also 1.2	In PAC, allowable probability for excess risk bound not to be satisfied; Notation is used in a similar spirit in Chapter 1.2, but differs by constants
$m_{\mathcal{H}}(\cdot,\cdot)$	2	Sample complexity of \mathcal{H} ; $m_{\mathcal{H}}(\epsilon, \delta)$ is minimum training sample size needed to (agnostic) PAC learn any distribution using \mathcal{H} with specified error limits ϵ, δ
X_j	2 (NFL proof)	Particular sequence of m unlabelled examples
$S_{i,j}$	2 (NFL proof)	Labelled examples corresponding to X_j and labelled using function h_i
w, b	1	Parameter for linear prediction rule $h(x) = \text{sign}(\langle w, x \rangle + b)$. If $b = 0$, then it is called homogeneous linear classifier
w^*, b^*	2.2	Under realisable assumption, parameters for true linear classifier
T, t	2.2	For iterative algorithms (like perceptron), T is used for total number of iterations and t is the iteration counter
(γ, ho)	2.2	Margin of linear separable data. (γ, ρ) satisfies $ x \le \rho$ and $(\langle w^*, x \rangle + b^*) \ge \gamma$ for all $(x, y) \sim \mathcal{D}$
γ -weak	3	Note: This use of γ has no connection with above γ -weak learner satisfies that generalisation error is smaller than $\frac{1}{2} - \gamma$
D	3	Probability weight vector over m training examples
$L_{\mathbf{D}}(\cdot)$	3	Weighted empirical risk with weight vector ${f D}$
h_{ada}	3	Weighted majority predictor learned by AdaBoost
$\mathcal{B},d_{\mathcal{B}}$	3	Base hypothesis class over which we apply majority voting. $d_{\mathcal{B}} = \operatorname{VCdim}(\mathcal{B})$
$M_{\mathcal{B},T}$	3	Class of majority among T votes with hypotheses from base class $\mathcal B$
SRM	4.1	Structural risk minimisation
t_h	4.1	Degree of polynomial p that defines predictor $h(\cdot) = \operatorname{sign}(p(\cdot))$
$L_V(\cdot)$	4.2	Validation error, computed on hold out set V

m_s, m_v	4.2	In case of validation with hold out set, m_s = number of examples used for training, and m_v = size of hold out set
S_i	4.2	i -th examples (x_i, y_i) in training sample S (for k -fold cross validation, it denotes i -th group)
S_{-i}	4.2	all examples in S other than S_i
S^i	4.3	Training sample S with i -th example replaced by an independent example
$L_{k-cv}(\mathcal{A}_S)$	4.2	$k\text{-fold}$ cross validation error for learner $\mathcal A$ and total labelled examples S
$L_{loo}(\mathcal{A}_S)$	4.2	leave one out error for learner ${\mathcal A}$ and total labelled examples S
Unif(m)	4.3	Uniformly sampled random variable from $\{1, \ldots, m\}$
eta,eta_m^{rep}	4.3	Stability rate function; $\beta_m = \beta(m)$; Superscript denotes type of stability
$\mathcal{A}_{S^i},\mathcal{A}_{S_{-i}}$	4.3	Predictors learned by learner \mathcal{A} with modified training data S^i or S_{-i}