

USE OF CILIARY NEUROTROPHIC FACTOR

*58
a
b6
b7c
b7d
b7e
b7f
b7g
b7h
b7i
b7j
b7k
b7l
b7m
b7n
b7o
b7p
b7q
b7r
b7s
b7t
b7u
b7v
b7w
b7x
b7y
b7z*

This application is a continuation-in-part of ~~United States Patent Application Serial No. 09/454,380 filed December 3, 1999 which is a continuation of United States Patent Application Serial No. 09/373,834 filed August 13, 1999 which is a continuation of United States Patent Application Serial No. 09/031,693 filed February 27, 1998 which is a continuation -in-part of United States Patent Application Serial No. 08/645,107 filed May 13, 1996, which is a continuation-in-part of 08/308,736 filed September 14, 1994, which issued as United States Patent No. 5,846,935 on December 8, 1998, which is a continuation-in-part of United States Patent Application Serial No. 07/959,284 filed October 9, 1992 entitled "Ciliary Neurotrophic Factors" which issued as United States Patent No. 5,349,056 on September 20, 1994.~~ Throughout this application, various patent and publications are referenced. Those patents and publications are hereby incorporated by reference in their entireties, into this application.

BACKGROUND OF THE INVENTION

The present invention relates to ciliary neurotrophic factor (CNTF) and CNTF-related polypeptides useful for the treatment of neurological diseases, obesity and other diseases or disorders.

CNTF is a protein that is required for the survival of embryonic chick ciliary ganglion neurons in vitro (Manthorpe et al., 1980, *J. Neurochem.* 34:69-75). The ciliary ganglion is anatomically located within the orbital cavity, lying between the lateral rectus and the sheath of the optic nerve; it receives parasympathetic nerve fibers from the oculomotor nerve which innervates the ciliary muscle and sphincter pupillae.

Over the past decade, a number of biological effects have been ascribed to CNTF in addition to its ability to support the survival of ciliary ganglion neurons. CNTF is

believed to induce the differentiation of bipotential glial progenitor cells in the perinatal rat optic nerve and brain (Hughes et al., 1988, *Nature* 335:70-73).

Furthermore, it has been observed to promote the survival of embryonic chick dorsal root ganglion sensory neurons (Skaper and Varon, 1986, *Brain Res.* 389:39-46).

5 In addition, CNTF supports the survival and differentiation of motor neurons, hippocampal neurons and presynaptic spinal cord neurons (Sendtner, et al., 1990, *Nature* 345: 440-441; Ip, et al. 1991, *J. Neurosci.* 11:3124-3134; Blottner, et al. 1989, *Neurosci. Lett.* 105:316-320).

10 CNTF has been cloned and synthesized in bacterial expression systems, as described by Masiakowski, et al., 1991, *J. Neurosci.* 5:1003-1012 and in International Publication No. WO 91/04316, published on April 4, 1991, both of which are incorporated by reference in their entirety herein.

20 In addition to human CNTF, the corresponding rat (Stöckli et al., 1989, *Nature* 342:920-923), and rabbit (Lin et al., 1989, *J. Biol. Chem.* 265:8942-8947) genes have been cloned and found to encode a protein of 200 amino acids, which share about 80% sequence identity with the human gene. Both the human and rat recombinant proteins have been expressed at exceptionally high levels (up to 70% of total protein) and purified to near homogeneity.

25 Despite their structural and functional similarity, recombinant human and rat CNTF differ in several respects. The biological activity of recombinant rat CNTF in supporting survival and neurite outgrowth from embryonic chick ciliary neurons in culture is four times better than that of recombinant human CNTF (rHCNTF) (Masiakowski et al., 1991, *J. Neurochem.* 57:1003-1012). Further, rat CNTF has a higher affinity for the human CNTF receptor than does human CNTF (Davis et al., 1991, *Science* 253: 59-63).

30 A surprising difference in the physical properties of human and rat CNTF, which are identical in size, is their different mobility on SDS gels. This difference in

behavior suggests the presence of an unusual structural feature in one of the two molecules that persists even in the denatured state (Masiakowski et al., 1991, *J. Neurochem.* **52**:1003-1012).

5 To better understand the physical, biochemical and pharmacological properties of rHCNTF, applicants undertook rational mutagenesis of the human and rat CNTF genes based on the different biological and physical properties of their corresponding recombinant proteins (See Masiakowski, P., et al., 1991, *J. Neurochem.*, 57:1003 1012).
10 Mutagenesis by genetic engineering has been used extensively in order to elucidate the structural organization of functional domains of recombinant proteins. Several different approaches have been described in the literature for carrying out deletion or substitution mutagenesis. The most successful appear to be alanine scanning mutagenesis (Cunningham and Wells 1989, *Science* 244: 1081-1085) and homolog-scanning mutagenesis (Cunningham et al., 1989, *Science* 243:1330-1336). These approaches helped identify the receptor binding domains of growth hormone and create hybrid proteins with altered binding properties to their cognate receptors.

Applicants have found that the nature of the amino acid at position 63 could greatly enhance the affinity of human CNTF for soluble CNTFR α and its biological potency *in vitro* (Panayotatos, N., et al., J. Biol. Chem., 1993, 268:19000-19003; Panayotatos, N., et al., Biochemistry, 1994, 33: 5813-5818).

The CNTF receptor complex contains three proteins: a specificity determining α component that directly binds to CNTF, as well as two signal transducing β components (LIFR β and gp130) that cannot bind CNTF on their own, but are required to initiate signaling in response to CNTF. The β component of the CNTFR complex is more widely distributed throughout the body than the α component. The 3 components of the CNTFR complex are normally unassociated on the cell surface; CNTF induces the stepwise assembly of a complete receptor complex by first binding to CNTFR α , then engaging gp130, and finally recruiting LIFR β . When this

final step in receptor assembly occurs (heterodimerization of the β components), intracellular signaling is initiated by activating non-receptor tyrosine kinases (JAK kinases) associated with the β components. JAK kinases respond by phosphorylating each other and also tyrosine residues on the receptor cytoplasmic 5 domains, creating phosphotyrosine docking sites for the Src homology 2 domains of STAT proteins. After their phosphorylation, bound STAT proteins dissociate from the receptor, dimerize, and translocate to the nucleus where they bind DNA and activate transcription (reviews: Frank, D. and Greenberg, M. (1996) Perspectives on Developmental Neurobiology 4: 3-18; Stahl, N. and Yancopoulos, G. (1997) Growth 10 factors and cytokines in health and disease 2B, 777-809). Axokine is a mutant CNTF molecule with improved physical and chemical properties, which retains the ability to interact with and activate the CNTF receptor. (Panayotatos, N., et al. (1993) J. Biol. Chem. 268: 19000-19003).

0
15
0
0
0
0
0
20

Leptin, the product of the ob gene, is secreted by adipocytes and functions as a peripheral signal to the brain to regulate food intake and energy metabolism (Zhang, Y., et al. (1994) Nature 372: 425-431). Interestingly, leptin receptor (OB-R), a single membrane-spanning receptor, has considerable sequence similarities to gp130 (Tartaglia, L., et al. (1995) Cell 83: 1263-1271). Both CNTF and leptin each signals through the JAK/STAT pathway (Baumann, H., et al. (1996) Proc. Natl. Acad. Sci. USA 93: 8374-8378; Ghilardi, N., et al. (1996) Proc. Natl. Acad. Sci. USA 93: 6231-6235). Systemic administration of both CNTF and leptin results in induction of 11 (Gloaguen, I., et al. (1997) Proc. Natl. Acad. Sci. USA 94: 6456-6461) and STAT3 (Vaisse, C., et al. (1996) Nature Gen. 14: 95-97) in the hypothalamic satiety center, 25 indicating their roles in the regulation of body weight and feeding behavior. Indeed, in a clinical trial testing the use of CNTF for treating ALS, it was found that administration of CNTF to humans reduced food intake and resulted in weight loss (Group, A. C. T. S. (1996) Neurology 46:1244-1249.).

SUMMARY OF THE INVENTION

An object of the present invention is to provide CNTF and CNTF-related proteins, collectively referred to herein as CNTF proteins, for the treatment of diseases or 5 disorders including, but not limited to, obesity and diabetes.

A further object of the present invention is to provide a method for administering CNTF or CNTF-related proteins and maintaining biological activity. A preferred embodiment of this invention is the administration of CNTF or a CNTF related 10 protein to the nasal or respiratory system of a mammal to produce an increase in the level of the protein in the systemic blood circulation of the mammal. A particularly preferred embodiment comprises the administration of the modified CNTF molecule, designated herein as AX-15, to the nasal passages of a patient for the treatment of obesity or diabetes.

BRIEF DESCRIPTION OF THE FIGURES

Subj 28
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9

Figure 4 - Effects of AX-15 in *ob/ob* mice. C57BL/6J *ob/ob* mice were injected subcutaneously daily for 7 days with either vehicle, leptin (1.0 mg/kg) or AX-15 at 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg or 3.0 mg/kg. Diet-restricted, pair-fed (PF) mice were injected with 0.3 mg/kg AX-15 to investigate the effects of food intake reduction on weight loss. Percent change in body weight in AX-15-treated and leptin-treated versus vehicle-treated controls is shown.

Figure 5 - Effects of AX-15 in diet-induced obesity in mice. AKR/J mice were placed on a high fat diet for seven weeks prior to treatment with vehicle, leptin (1.0 mg/kg) or AX-15 at 0.03 mg/kg, 0.1 mg/kg, 0.3 mg/kg, or 1.0 mg/kg. Diet-restricted, pair-fed AKR/J mice were injected with 0.1 mg/kg AX-15 (PF-AX-15) to investigate the effects of food intake reduction on weight loss. Percent change in body weight in AX-15 - treated and leptin-treated versus vehicle-treated controls is shown.

Figures 6A and 6B - Effects of AX-15 and diet restriction on serum insulin and corticosterone levels in diet-induced obese AKR/J mice. Figure 6A- Serum insulin levels were measured in AKR/J diet-induced obese mice following treatment with vehicle, diet restriction and AX-15 (0.1 mg/kg) (PF-AX-15) or AX-15 only (0.1 mg/kg) to determine the effects of diet and/or AX-15 treatment on obesity-associated hyperinsulinemia. Figure 6B- Serum corticosterone levels were measured in AKR/J diet induced obese mice following treatment with vehicle, diet restriction and AX-15 (0.1 mg/kg) (PF-AX-15) or AX-15 only (0.1 mg/kg).

Figure 7 - Effect of intranasal delivery of AX-15 on body weight reduction in diet-induced obese AKR/J mice. DIO mice were given daily intranasal administration of either vehicle (□) or AX-15 (94 μ g/mouse in 50 μ l, approximately 1.87-2.35 mg/kg) (○) for 7 days. A group of mice receiving daily subcutaneous injection of AX-15 (O) at 0.1 mg/kg was also included for comparison. The animals were weighed daily and

mean body weight change was expressed as percent change from baseline +/- SEM (n= 5 or 10 per group).

Figure 8 - Effect of intranasal delivery of AX-15 on food intake in diet-induced obese 5 AKR/J mice. DIO mice were given daily intranasal administration of either vehicle (□) or AX-15 (94 µg/mouse in 50 µl, approximately 1.87-2.35 mg/kg) (◊) for 7 days. A group of mice receiving daily subcutaneous injection of AX-15 (○) at 0.1 mg/kg was also included for comparison. Food consumed by individual animals was determined daily and expressed as mean +/- SEM (n= 5 or 10 per group).

10

Figure 9 - Pharmacokinetic profile of AX-15 administered via intranasal route.

Pharmacokinetics of AX-15 delivered by intranasal administration was determined in female BALB/c mice (100 µg/mouse in 50 µl, equivalent to 3.3 mg/kg; n=3). Sera were obtained from tail bleeds at 0, 0.5, 1, 2, 4, 8, and 24 hour intervals after administration. Levels of AX-15 were measured by a 2-site ELISA, using a monoclonal antibody to CNTF as capture.

DETAILED DESCRIPTION OF THE INVENTION

20 The present invention relates to a method of administering a CNTF protein to treat diseases and disorders in humans or animals.

Recombinant human and rat CNTF have the same number of amino acids (199) and similar mass (MW 22,798 and 22,721 respectively, after removal of the N-terminal 25 methionine). Yet, on reducing SDS PAGE gels, recombinant human CNTF migrates as a protein of MW=27,500, whereas rat CNTF migrates with the expected mobility. In addition, human CNTF has four times lower biological activity towards chick ciliary ganglion (CG) neurons than rat CNTF and the human protein competes for binding to the human or the rat receptor on cell surfaces much less effectively than 30 rat CNTF.

Sub B2

The above observations led to a directed effort to identify the region on the CNTF molecule responsible for these differences. This method involved the exchange, by genetic engineering methods, of parts of the human CNTF sequence with the 5 corresponding rat CNTF sequence and vice versa. To achieve this, advantage was taken of restriction sites that are common to the two CNTF genes and unique in their corresponding expression vectors. When necessary, such sites were engineered in one or the other of the two genes in areas that encode the same protein sequence. With this approach, expression vectors were obtained for each of 10 the modified proteins shown in Figure 1. After expressing and isolating the individual proteins to at least 60% purity, their properties, as compared to those of human and rat CNTF, were determined.

Because the electrophoretic mobilities of human and rat CNTF differ significantly, the effect of each amino acid substitution was monitored initially by making a determination of the effect of such change on the mobility of the protein. As described herein, electrophoretic mobility data indicated that all of the modified human CNTF molecules that migrated to the same position as rat CNTF had the single amino acid substitution Gln63Arg (Q63R), in which glutamine at position 63 is replaced with arginine.

CNTF is characterized by its capacity to support the survival of dissociated ciliary neurons of E8 chick embryos. By this criterion, purified recombinant rat CNTF is as active as the native protein from rat, but four times more active than recombinant 25 human CNTF (Masiakowski, et al., 1991, *J. Neurosci.* 57:1003-1012 and in International Publication No. WO 91/04316, published on April 4, 1991). The same assay was utilized to determine the biological activity of the altered molecules prepared as described above. As described herein, all modified CNTF molecules that had the Q63R substitution exhibited an increased ability to support the survival of 30 ciliary ganglion neurons as compared to the parent human CNTF protein. Such results indicated a strong correlation between alteration electrophoretic mobility and

enhanced biological properties. In addition to measuring the biological effect of modifications made to human CNTF, an indication of the potential biological activity of each of the molecules may also be obtained by determining the effect of each modification on the ability of the molecules to bind to the CNTF receptor.

5

As used herein, the terms "a ciliary neurotrophic factor protein", "a CNTF protein", "a ciliary neurotrophic factor molecule" and "a CNTF molecule" refer to human ciliary neurotrophic factor and modified ciliary neurotrophic factors.

10 As used herein, the terms "modified ciliary neurotrophic factor", "modified CNTF", "modified ciliary neurotrophic factor protein" and "modified CNTF protein" refer to CNTF proteins and polypeptides that have certain amino acid substitutions and/or deletions in the amino acid residue sequence of human CNTF which result in modified CNTF proteins and polypeptides that exhibit binding to the CNTF receptor and, therefore, would be expected to have enhanced biological, immunogenic and/or purification properties. CNTF proteins of the present invention may also be "pegylated" by the addition of polyethylene glycol polymers in order to enhance stability and/or bioavailability. A particularly preferred "modified ciliary neurotrophic factor" according to the invention, contains certain amino acid substitutions and deletions in the human CNTF protein and exhibits enhanced binding to the human CNTF receptor and therefore, would be expected to have enhanced biological properties, and specifically include AX-13, AX-2 and AX-15, described in more detail *infra*.

25 The CNTF molecules useful for practicing the present invention may be prepared by cloning and expression in a prokaryotic or eukaryotic expression system as described, for example in Masiakowski, et al., 1991, *J. Neurosci.* 57:1003-1012 and in International Publication No. WO 91/04316, published on April 4, 1991. The recombinant CNTF gene may be expressed and purified utilizing any number of 30 methods. The gene encoding this protein may be subcloned into a bacterial expression vector, such as for example, but not by way of limitation, pCP110.

The recombinant CNTF proteins may be purified by any technique which allows for the subsequent formation of a stable, biologically active protein. For example, and not by way of limitation, they may be recovered from 5 cells either as soluble proteins or as inclusion bodies, from which they may be extracted quantitatively by 8M guanidinium hydrochloride and dialysis. Further purification of the proteins, may be done by conventional ion exchange chromatography, hydrophobic interaction chromatography, reverse phase chromatography or gel filtration.

10

According to the present invention, CNTF proteins produced as described herein, or hybrids or mutants thereof, may be used to promote differentiation, proliferation or survival in vitro or in vivo of cells that are responsive to CNTF, including cells that express receptors of the CNTF/IL-6/LIF receptor family, or any cells that express the appropriate signal transducing component, as described, for example, in Davis, et al., 1992, Cell 69:1121-1132. Mutants or hybrids may alternatively antagonize cell differentiation or survival.

The present invention may be used to treat disorders of any cell responsive to CNTF or the CNTF/CNTF receptor complex. In preferred embodiments of the invention, disorders of cells that express members of the CNTF/IL-6/LIF receptor family may be treated according to these methods. Examples of such disorders include, but are not limited to, obesity and diabetes.

25 Accordingly, the present invention provides for methods in which a patient is treated with an effective amount of the modified CNTF protein, or a hybrid or mutant thereof. The modified CNTF proteins may be utilized to treat disorders or diseases as described for CNTF in International Publication No. WO91/04316 published on April 4, 1991 by Masiakowski, et al. and for the CNTF/CNTFR complex 30 as described in International Publication No. WO91/19009 published on December

12, 1991 by Davis, et al. both of which are incorporated by reference in their entirety herein.

Such diseases or disorders include degenerative diseases, such as retinal
5 degenerations, diseases or disorders involving the spinal cord, cholinergic neurons, hippocampal neurons or diseases or disorders involving motor neurons, such as amyotrophic lateral sclerosis or those of the facial nerve, such as Bell's palsy. Other diseases or disorders that may be treated include obesity and diabetes

10 Human clinical trials using recombinant human CNTF (rHCNTF) have been carried out wherein subcutaneous administration of the protein was tested for its efficacy in slowing the progression of amyotrophic lateral sclerosis (ALS). Such administration of rHCNTF was associated with systemic side effects, including cough, anorexia and weight loss, and, in at least one study, over 80% of patients receiving rHCNTF developed neutralizing antibodies, the significance of which is uncertain. However, despite problems with side effects and antibody formation, a subgroup of patients in the early stages of ALS appeared to derive benefit from rHCNTF administration in that these patients demonstrated a reduced rate of pulmonary function loss compared to placebo treated patients with similar disease durations. It was also found, in a clinical trial testing the use of CNTF for treating ALS, that administration of CNTF to humans reduced food intake which resulted in weight loss (Group, A. C. T. S. (1996) Neurology 46:1244-1249.).

20

25 Applicants have previously reported that rHCNTF lacking the last 13 amino acid residues from the carboxyl end (rHCNTF Δ C13 also designated RPN160 or RG160) retains full biological activity and is soluble at low temperatures (5-10°C) to at least 12 mg/ml. Yet, despite this far greater solubility, rHCNTF Δ C13 precipitates in a PBS solution upon incubation at 37°C for several hours, even at concentrations as low as 0.1 mg/ml.

It was determined that the thermal instability of rHCNTF and rHCNTF Δ C13 was the result of aggregation that was initiated by intermolecular disulfide bond formation and depended strongly on protein concentration and temperature. By replacing the single cysteine residue at position 17 of human CNTF with an alanine residue,

5 modified CNTF proteins were obtained that exhibited far greater stability and maintained their biological activity after incubation for at least 7 days in PBS at 37°C. This property is maintained in rHCNTF, Q63R variants which have higher potency due to the substitution of the glutamine residue at position 63 by arginine. In a particular example, rHCNTF, C17A, Q63R, Δ C13 (also designated RG297) shows
10 greater biological potency than rHCNTF because of the Q63R substitution, greater solubility because of the Δ C13 deletion and greater stability because of the C17A substitution.

Applicants have also previously described the production of this modified CNTF molecule, known alternatively as AX-13 or AX-1, (designated rHCNTF, C17A, Q63R Δ C13) which combines a Q63R substitution (which confers greater biological potency) with a deletion of the C-terminal 13 amino acid residues (which confers greater solubility under physiological conditions) and a C17A substitution (which confers stability, particularly under physiological conditions at 37°C) and shows a 2-3 fold better therapeutic index than rHCNTF in an animal model. However, when expressed in E. coli, a substantial portion of the expressed protein produced is tagged with a decapeptide at the C-terminus. Because of this, purification of AX-13 is difficult and results in a low yield of purified, untagged product. This decapeptide tagging likely does not occur when the AX-13 is expressed in a mammalian
25 expression system. In addition, it is possible that the decapeptide tag could contribute to increased immunogenicity of the molecule and may also possibly cause problems with stability. However, because the use of the E. coli expression system would be preferable from the standpoint of cost and efficiency, applicants undertook to develop a further truncated CNTF molecule that would retain the
30 improved potency, solubility and stability properties of AX-13, while avoiding the

15
20
25
30

problem of decapeptide tagging when expressed in E. coli. As described herein, applicants have succeeded in producing such a molecule designated AX-15, (rHCNTF, C17A, Q63R Δ C15), which retains the improved properties of AX-13, and has an additional C-terminal truncation of two amino acids, but which also has the 5 added advantage of being expressed by E. coli with reduced amino acid tag being added. The new molecule, AX-15, therefore has the advantage of being more easily purified with a greater yield. Another embodiment of a modified CNTF in the present invention is AX-2, which has a C17A substitution in the amino acid residue sequence of human CNTF and a truncation of the 15 C-terminal amino acid 10 residues of human CNTF. AX-2, (rHCNTF, C17A Δ C15), differs from AX-15 solely in the absence of the Q63R substitution that is present in AX-15.

The present invention contemplates a composition comprising a ciliary neurotrophic factor protein of the invention, such as the protein described herein as AX-15, and a carrier.

Another object of the present invention is to provide a method of treating a disease or disorder comprising administering CNTF or a modified ciliary neurotrophic factor, such as the protein described herein as AX-15. The disease or disorder treated may be a degenerative disease and/or involve the spinal cord, motor neurons, cholinergic neurons or cells of the hippocampus. Alternatively, the method of treatment may be for treating a disease or disorder such as obesity or diabetes or treating a disease or disorder involving muscle atrophy.

25 A further object of the present invention is to provide a method of inducing weight loss in a mammal comprising administration to the mammal of a ciliary neurotrophic factor protein, particularly AX-15. A specific embodiment of this invention involves inducing weight loss in a human.

The method of administering a CNTF protein, such as AX-15, may be used in the treatment of diet induced obesity or obesity of a genetically determined origin. In a preferred embodiment, a modified CNTF protein, such as AX-15 described herein, may also be used in a method of preventing and/or treating the occurrence of
5 gestational or adult onset diabetes in a human.

Any of the above-described methods involving the administration of CNTF or a modified CNTF, such as AX-15 described herein, may be practiced by administering the CNTF protein via a route of delivery selected from the group consisting of
10 intravenous, intramuscular, intraocular, subcutaneous, intranasal, respiratory or intratracheal, such as by use of a nebulizer, and by intracolonic or vaginal suppositories. Alternatively, a CNTF protein, such as AX-15 described herein, may be administered via the implantation of cells that release the modified ciliary neurotrophic factor.

The present invention also provides for pharmaceutical compositions comprising CNTF or a modified CNTF protein or hybrid or mutant thereof, such as AX-15 described herein, as the sole therapeutic agent or in a complex with the CNTF receptor, in a suitable pharmacologic carrier for use in the treatment of obesity or gestational or adult onset diabetes.

The active ingredient, which may comprise CNTF or a modified CNTF should be formulated in a suitable pharmaceutical carrier for administration in vivo by any appropriate route including, but not limited to intranasal, intratracheal, by
25 nebulizer, intraocular and oral.

As used herein, "intranasal administration" refers to delivery to the nose or nasal passageways by spray, drops, gel, inhalant or other means.

30 As used herein, "intratracheal administration" refers to delivery to the throat or tracheal lumen by spray, propellant, atomizer, injection or other means.

As used herein, "by nebulizer" refers to the use of any device which reduces the formulation of the present invention to a fine spray for penetration into the lungs or nasal cavities.

5 As used herein, "intraocular administration" refers to delivery to the eye by drop, spray, ointment or other means.

As used herein, "oral administration" refers to delivery to the mouth, esophagus or stomach by pill, capsule, solution, tablet, lozenge, powder, spray or other means.

10

Depending upon the mode of administration, the active ingredient may be formulated in a liquid carrier such as saline, incorporated into liposomes, microcapsules, polymer or wax-based and controlled release preparations. In preferred embodiments, modified CNTF preparations are stable solutions, or formulated into tablet, pill or capsule forms.

15
20
25

The concentration of the active ingredient used in the formulation will depend upon the effective dose required and the mode of administration used. The dose used should be sufficient to achieve circulating plasma concentrations of active ingredient that are efficacious. Effective doses may be extrapolated from dose-response curves derived from *in vitro* or animal model test systems. Effective doses are expected to be within the range of from about .001 to about 1 mg/day.

EXAMPLES

25

Example 1 - Electrophoretic Mobility of Modified Human CNTF Molecules

Materials and Methods

Preparation of Modified CNTF molecules

Bacterial Strains and Plasmids

30 E. coli K-12 RFJ26 is a strain that overproduces the lactose operon repressor.

The expression vectors pRPN33, which carries the human CNTF gene and pRPN110 which carries the rat CNTF gene are nearly identical (Masiakowski, et al., 1991, J. Neurosci. 57:1003-1012 and in International Publication No. WO 91/04316, published on April 4, 1991.)

5

Plasmid pRPN219 was constructed by first digesting pRPN33 with the restriction enzymes Nhe1 plus Hind3 and gel purifying the 4,081 bp fragment. The second, much smaller fragment which codes for part of the human CNTF gene was subsequently replaced with an 167 bp Nhe1-Hind3 fragment that was obtained by PCR amplification from the rat gene using the primers RAT-III-dniH: 5' ACGGTAAGCT TGGAGGTTCTC 3' and RAT-Nhe-I-M: 5' TCTATCTGGC TAGCAAGGAA GATTCGTTCA GACCTGACTG CTCTTACG 3'.

10

Plasmid pRPN228 was constructed in the same manner as pRPN219, except that the 167 bp replacement fragment was amplified using the DNA primers Rat-III-dniH-L-R : 5' AAG GTA CGA TAA GCT TGG AGG TTC TCT TGG AGT CGC TCT GCC TCA GTC AGC TCA CTC CAA CGA TCA GTG 3' and Rat-Nhe-I: 5' TCT ATC TGG CTA GCA AGG AAG 3'.

15

Plasmids pRPN186, pRPN187, pRPN188, pRPN189, pRPN192, pRPN218, and pRPN222 were generated by similar means or by direct exchange of DNA fragments using the unique restriction sites shown in Figure 1.

20

Sub B3

25

The identity of all plasmids was confirmed by restriction analysis and DNA sequencing.

Protein Purification

30

Induction of protein synthesis, selective extraction, solubilization and purification from inclusion bodies were as described for rat and human CNTF (Masiakowski, et al., 1991, J. Neurosci. 57:1003-1012 and in International Publication No. WO

91/04316, published on April 4, 1991) except that gel filtration was occasionally used instead or in addition to ion exchange chromatography. Alternatively, proteins were purified from the supernatants of cell lysates by streptomycin and ammonium sulfate fractionation, followed by column chromatography, as described for other 5 proteins (Panayotatos et al., 1989, *J. Biol. Chem.* **264**:15066-15069). All proteins were isolated to at least 60% purity.

Conditions for enzymatic reactions, DNA electrophoresis and other techniques used in these studies have been described in detail (Panayotatos, N. 1987, *Engineering an 10 Efficient Expression System in Plasmids: A practical Approach* (Hardy, K.G. ed.) pp 163-176, IRL Press, Oxford, U.K.).

0
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
00

Results

The mobilities of human, rat and several chimeric CNTF molecules on reducing SDS-polyacrylamide gels are shown in Figure 2. The chimeric molecules RPN186, RPN189, RPN218 and RPN228 exhibit mobilities comparable to rat CNTF, whereas RPN187, RPN188, RPN192 and RPN222 exhibit mobilities comparable to human CNTF. Cross reference of these results to the aligned sequences of these proteins in Figure 1 reveals that all proteins carrying an arginine residue at position 63 (R63) display the mobility of rat CNTF. In the case of RPN228, a single amino acid substitution (Q63→R) is sufficient to confer to human CNTF the normal mobility of rat CNTF.

25

Figure 2 also provides a measure of the purity of the different recombinant proteins. By visual inspection, purity varies from 60% for RPN189 to better than 90% for RPN228.

Example 2 - Measurement of Binding Activity of Modified CNTF Molecules

Materials and Methods

Preparation of ^{125}I -CNTF

5 Recombinant rat CNTF (28 mg) in 37 ml 0.2 M sodium borate buffer, pH 8.5 was transferred to a vial containing 4 mCi, (2,000 Ci/mmole; NEN) of ^{125}I and reagent (Bolton and Hunter, 1973, Biochem J. 133: 529-539) which had been dried under a gentle stream of nitrogen. Reactions were incubated for 45 min at 0°C followed by 15 min at room temperature and terminated by the addition of 30 ml of 0.2 M glycine solution. After 15 min, 0.2 ml PBS containing 0.08 % gelatin was also added and the mixture was passed through a Superdex-75™ column (Pharmacia) to separate the labeled monomeric CNTF from dimeric and other multimeric derivatives. Percentage of incorporation was typically 20%, as determined by thin layer chromatography and the specific activity was typically around 1,000 Ci/mmole. The monomeric ^{125}I -CNTF was stored at 4°C and used up to one week after preparation. As a test of structural and conformational integrity, ^{125}I -CNTF (approximately 10,000 cpm) was mixed with a 5 mg unlabelled CNTF and analyzed by native gel electrophoresis. One major band was visible by either Coomassie staining or autoradiography. ^{125}I -CNTF also showed comparable activity to native CNTF in supporting survival of E8 chick ciliary neurons in culture.

Tissue Culture Techniques

Superior cervical ganglia (SCG) from neonatal rats were treated with trypsin (0.1%), mechanically dissociated and plated on a poly ornithine (30 mg/ml) substratum. 25 Growth medium consisted of Ham's nutrient mixture F12 with 10% heat-inactivated fetal bovine serum (Hyclone), nerve growth factor (NGF) (100 ng/ml), penicillin (50 U/ml) and streptomycin (50 mg/ml). Cultures were maintained at 37°C in a humidified 95% air/5% CO₂ atmosphere. Ganglion non-neuronal cells were eliminated by treatment with araC (10 mM) on days 1 and 3 of culture.

Cultures were fed 3 times/week and were routinely used for binding assays within 2 weeks.

5 MG87/CNTFR is a fibroblast cell line transfected with the human CNTF α receptor gene (Squinto, et al., 1990, Neuron 5:757-766; Davis et al., 1991, Science 253:59-63).

Binding Assays

10 Binding was performed directly on cell monolayers. Cells in culture wells were washed once with assay buffer consisting of phosphate buffered saline (PBS; pH 7.4), 0.1 mM bacitracin, 1 mM PMSF, 1 mg/ml leupeptin, and 1 mg/ml BSA. After incubation with 125 I-CNTF for 2 hours at room temperature, cells were quickly washed twice with assay buffer, lysed with PBS containing 1 % SDS and counted in a Packard Gamma Counter. Non-specific binding was determined in the presence of 1,000-fold excess of unlabelled CNTF. Specific binding towards MG87/CNTFR was 80-90%. Data were analyzed using the GRAPHPAD program (ISI, Philadelphia, PA).

Results

20 Both rat and human CNTF compete with 125 I-rat CNTF for binding to SCG neurons, but human CNTF ($IC_{50} = 25$ nM) is 90 times less potent in displacing 125 I-rat CNTF binding than unlabelled rat CNTF ($IC_{50} = 0.28$ nM). In contrast, RPN219 is almost as potent as rat CNTF and clearly more potent than human CNTF ($IC_{50} = 0.3$ nM).

25 Similar results were obtained from competition experiments with mouse fibroblasts transfected with a plasmid directing the expression of the human CNTF receptor. Both rat, human and RPN228 compete with 125 I-rat CNTF for binding to MG87/CNTFR cells. Human CNTF ($IC_{50} = 30$ nM) is 12 times less potent than rat CNTF ($IC_{50} = 2.8$ nM), whereas RPN228 is clearly more potent than the human protein ($IC_{50} = 5.6$ nM).

Competition binding experiments with the other modified CNTF proteins shown in Figure 1 also demonstrated that proteins having R63 displayed the biological activity of rat CNTF, whereas proteins having Q63 displayed the binding properties of human CNTF (data not shown). These results indicate that the single amino acid 5 substitution (Q63->R) is sufficient to confer to human CNTF the receptor binding properties characteristic of rat CNTF.

Example 3 - Construction of AX-15 Expression Plasmid pRG643

Sub. B6
10 The expression plasmid pRG632 is a high copy plasmid that encodes ampicillin resistance and the gene for human CNTF-C17A,Q63R Δ C13 (also referred to herein as either AX-1 or AX-13) with a unique Eag I restriction enzyme recognition sequence 3' to the stop codon. This plasmid was used to construct a human CNTF mutation C17A,Q63R, Δ C15 (designated AX-15) by PCR amplification of a 187 bp BseR I-Eag1 DNA fragment that incorporates the Δ C15 mutation. The 5' primer { Δ C15- 5' (5'-CCAGATAGAGGAGTTAATGATACTCCT-3')} encodes the BseR I site and the 3' primer , Δ C15-3' {(5'-GCCTGGCCGGACCACGCTCATTACCCAGTCT GTGAGAAGAAATG-3')} encodes the C-terminus of the AX-15 gene ending at Gly185 followed by two stop codons and an Eag I restriction enzyme recognition sequence. This DNA fragment was digested with BseR I and Eag I and ligated into the same sites in pRG632. The resulting plasmid, pRG639, encodes the gene for AX- 20 15 (human CNTF C17A,Q63R, Δ C15). The Δ C15 mutation was then transferred as a 339 bp Hind III-Eag I DNA fragment into the corresponding sites within pRG421, a high copy number expression plasmid encoding the gene for kanamycin resistance 25 and human CNTF C17A,Q63R, Δ C13. The resulting plasmid, pRG643, encodes the gene for AX-15 under transcriptional control of the lacUV5 promoter, and confers kanamycin resistance. The AX-15 gene DNA sequence was confirmed by sequence analysis.

EXAMPLE 4 - PEGylation of CNTF Proteins

Pegylation of proteins has been shown to increase their *in vivo* potency by enhancing stability and bioavailability while minimizing immunogenicity. It is

5 known that the properties of certain proteins can be modulated by attachment of polyethylene glycol (PEG) polymers, which increases the hydrodynamic volume of the protein and thereby slows its clearance by kidney filtration. (See, e.g. Clark, R., et al., 1996, *J. Biol. Chem.* 271: 21969-21977). We have generated PEGylated CNTF proteins by covalently linking polyethylene glycol (PEG) to AX-13. We have also
10 developed a purification methodology to separate different PEGylated forms of CNTF proteins from non-pegylated molecules. PEGylated AX-13 has better solubility and stability properties, at physiological pH, than unPEGylated AX-13. PEGylation has been shown to greatly enhance pharmacokinetic properties of AX-13 and would be expected to similarly enhance the properties of other CNTF proteins.

20 Purified AX-13 derived from E. coli was used for these studies. 20kD mPEG-SPA was obtained from Shearwater Polymers, Bicine from Sigma, and Tris-Glycine precast gels from Novex, CA. A small scale reaction study was set up to determine reaction conditions. 20kD mPEG SPA was reacted with purified AX-13 at a final concentration of 0.6 mg/ml, at 4°C in an amine-free buffer at a pH of 8.1. Molar ratios of PEG to protein were varied and two reaction times were used. The reaction was stopped by the addition of a primary amine in large excess. Reaction products were analyzed by reducing SDS-PAGE. The predominant modified species ran at a molecular weight of approximately 60 kD. Higher order modified bands that ran at
25 higher molecular weights were also seen. Based on this study, an overnight reaction at a PEG-to-protein ratio of 4 was chosen.

AX-13 at 0.6 mg/mL was reacted with 20 kD mPEG SPA in a Bicine buffer overnight at 4°C at a pH of 8.1. The reaction was stopped by the addition of a primary amine in
30 large excess. The reaction product was diluted with a low salt buffer and applied to an ion-exchange column. The column was washed with a low salt buffer and eluted

with a NaCl gradient. A good separation between higher order forms (apparent MW >66kD on SDS-PAGE), a distinct pegylated species that ran at about 60kD and unpegylated AX-13 was obtained. Fractions corresponding to the 60kD band were tested in a bioassay. A very faint band of unpegylated AX-13 was noticed in the 5 fractions corresponding to the 60kD band. To ensure that the bioassay results were not influenced significantly by this material, the 60kD band was further purified by size exclusion chromatography (SEC) that resulted in baseline separation between unpegylated AX-13 and the 60kD band. The purified pegylated AX-13 was tested in a bioassay and the results were indistinguishable from those obtained with the 10 material prior to SEC.

EXAMPLE 5 - Small Scale Expression and Purification of AX-15 protein

E. coli strain RFJ141 containing pRG639 was grown in LB medium and expression of AX-15 protein was induced by the addition of lactose to 1% (w/v). Induced cells were harvested by centrifugation, resuspended in 20 mM Tris-HCl, pH 8.3, 5 mM EDTA, 1 mM DTT, and lysed by passage through a French pressure cell at 10,000 psi. The cell lysate was centrifuged and the pellet was resuspended in 8 M guanidinium-HCl, 50 mM Tris-HCl, pH 8.3, 0.05 mM EDTA then diluted with 5 volumes of 50 mM Tris-HCl, pH 8.3, 0.05 mM EDTA (Buffer A) followed by dialysis against Buffer A. The dialysate was loaded onto a Q-sepharose column equilibrated with Buffer A. The AX-15 protein was eluted by a linear gradient to 1 M NaCl in 10 column volumes of buffer. Fractions containing AX-15 were pooled and brought to 1 M $(\text{NH}_4)_2\text{SO}_4$ by the slow addition of solid $(\text{NH}_4)_2\text{SO}_4$ while maintaining the pH at 8.3 by the addition of NaOH. The pool was loaded onto a phenyl-sepharose column equilibrated with 1 M $(\text{NH}_4)_2\text{SO}_4$ in Buffer A. The column was washed with 0.5 M $(\text{NH}_4)_2\text{SO}_4$ in Buffer A, and the AX-15 protein was eluted by a linear gradient of decreasing $(\text{NH}_4)_2\text{SO}_4$ concentration. Fractions containing AX-15 protein were pooled, dialyzed against 5 mM NaPO₄, pH 8.3, then concentrated by ultrafiltration. The concentrated pool was fractionated on a Sephadryl S-100 column equilibrated with 5 mM NaPO₄, pH 8.3.

EXAMPLE 6 - Large Scale Expression and Purification of AX-15 protein

A recombinant, kanamycin resistant *E. coli* strain RFJ141 expressing the AX-15 protein under lac promoter control (pRG643) was grown to an intermediate density of 30-35 AU₅₅₀ (Absorbance @ 550 nM) in a minimal salts, glucose medium containing 20 µg/ml kanamycin. Expression of AX-15 protein was induced by addition of IPTG (isopropyl thiogalactoside) to 1.0 mM and the fermentation was continued for an additional 8 hr. AX-15 protein was expressed as insoluble inclusion bodies following IPTG induction. Post-induction, cells were harvested, cell paste concentrated, and buffer exchanged to 20 mM Tris, 1.0 mM DTT, 5.0 mM EDTA, pH 8.5 via AGT 500,000 molecular weight cut off (mwco) hollow fiber diafiltration (ACG Technologies, Inc.). Inclusion bodies were released from the harvested cells by disruption via repeated passage of cooled (0-10°C) cell paste suspension through a continuous flow, high pressure (>8,000 psi) Niro Soavi homogenizer. The homogenate was subjected to two passages through a cooled (4-8°C) continuous flow, high speed (>17,000 x G) Sharples centrifuge (source) to recover inclusion bodies. Recovered inclusion bodies were extracted in 8.0 M guanidine HCl with 1.0 mM DTT. The AX-15 protein/guanidine solution was diluted into 50 mM Tris-HCl, 1.0 mM DTT, 0.05 mM EDTA, pH 8.0-8.3, and diafiltered versus diluent buffer with AGT 5,000 mwco hollow fiber filters (ACG Technologies, Inc.). The resulting solution, containing refolded AX-15, was filtered through a Microgon 0.22 µm hollow fiber filter (ACG Technologies, Inc.) prior to chromatographic purification.

EXAMPLE 7 - Column Chromatographic Purification of Refolded AX-15

The filtered AX-15 solution described above was loaded onto a 16.4 L DEAE Sepharose (Pharmacia) column at 10.9 mg/ml resin and washed with 50 L of 50 mM Tris, pH 8.0-8.3, 1.0 mM DTT, and 0.05 mM EDTA buffer. The AX-15 protein was eluted from the column with a 120 mM NaCl step in the same Tris buffer. Eluate exceeding a previously established 280 nM absorbance criteria of 40% maximum A₂₈₀

on the ascending portion of the peak and 20% of maximum A_{280} on the descending portion of the peak was pooled and either stored frozen (-30°C) or used in the next step of the purification procedure. Pooled eluted AX-15 protein was adjusted to 1.0 M ammonium sulfate by gradual addition of the solid compound, maintaining the 5 pH at 8.0-8.3. The solution was filtered through a 0.22 μ m Sartorius capsule filter, loaded onto a 12.5 L phenyl Sepharose HP (Pharmacia) column at 8.24 mg/ml of resin, and washed with 55 L of 1.0 M ammonium sulfate in 50 mM Tris buffer with 0.05 mM EDTA, pH 8.0-8.3. Following a 12.0 L wash with 250 mM ammonium sulfate in the same Tris buffer, the AX-15 protein was eluted with a 125 mM 10 ammonium sulfate, Tris buffer wash step. Eluate exceeding previously established 280 nM absorbance criteria of 100% maximum A_{280} on the ascending portion of the peak and 20% of maximum A_{280} on the descending portion of the peak was pooled. 15 Eluate was simultaneously diluted 1:4 into 50 mM Tris, pH 8.0 -8.3 buffer without salt to reduce its conductivity. Pooled material was stored frozen (-30°C) or used in the following step. Pooled hydrophobic interaction chromatography (HIC) material was concentrated to 25 L and diafiltered versus 5.0 mM sodium phosphate buffer pH 8.0-8.3 using a 5,000 mwco AGT hollow fiber filter (ACG Technologies, Inc.). The pH was adjusted to 7.0-7.2 immediately prior to sulfonyl propyl fast flow (SP FF) sepharose 20 chromatography by gradual addition of concentrated (85%) phosphoric acid. The pH-adjusted pooled material was loaded onto a 7.7 L SP FF sepharose (Pharmacia) column to 9.0 mg/ml of resin and washed with a minimum of 25 L of 5.0 mM sodium phosphate buffer, pH 7.0. The AX-15 protein was eluted with a 77.0 L step of 25 5.0 mM sodium phosphate, 130 mM NaCl, pH 7.0-7.2. The eluate was simultaneously diluted 1:5 into 10.0 mM sodium phosphate, pH 9.0-9.2 buffer without salt to reduce conductivity and increase pH. Peak material exceeding 20% 30 maximum A_{280} on the ascending portion of the peak and 20% of the maximum A_{280} on the descending portion of the peak was pooled. Pooled AX-15 protein was stored frozen (-30°C) or used in the following step. Pooled SP FF sepharose AX-15 protein was concentrated and diafiltered versus 5.0 mM sodium phosphate, pH 8.0 - 8.3 buffer with a 5,000 mwco AGT hollow fiber filter (ACG Technologies, Inc.). The pool (24.66 g) was concentrated to \leq 5.0 L. Concentrated, diafiltered AX-15 protein

was loaded onto a 50 L S-100 Sephadryl (Pharmacia) sizing column and eluted with 250 L of the same 5.0 mM sodium phosphate buffer, pH 8.0-8.3. Peak material exceeding 40% maximum A_{280} on the ascending portion of the peak and 40% of the maximum A_{280} on the descending portion of the peak was pooled. The pooled AX-5 15 protein was filtered through Millipak 0.22 μ m filters and stored at -80°C prior to dispensing or formulation. The amino acid sequence of AX-15 produced follows. Alternatively, one could produce a sequence which contains a methionine residue before the initial alanine.

Sub B7

10	9	19	29	39	49	59
*	*	*	*	*	*	*
AFTEHSPLT PHRRDLASRS IWLARKIRSD LTALTESYVK HQGLNKNINL DSADGMPVAS						
15	69	79	89	99	109	111
*	*	*	*	*	*	*
TDRWSELTEA ERLQENLQAY RTFHVLLARL LEDQQVHFTP TEGDFHQAIH TLLLQVAFA						
20	129	139	149	159	169	179
*	*	*	*	*	*	*
YQIEELMILL EYKIPRNEAD GMPINVGDGG LFEKKLWGLK VLQELSQWTV RSIHDLRFIS						
25	*					
SHQTG						

METHIONINE+

30	10	20	30	40	50	60
*	*	*	*	*	*	*
MAFTEHSPLT PHRRDLASRS IWLARKIRSD LTALTESYVK HQGLNKNINL DSADGMPVAS						
35	70	80	90	100	110	120
*	*	*	*	*	*	*
TDRWSELTEA ERLQENLQAY RTFHVLLARL LEDQQVHFTP TEGDFHQAIH TLLLQVAFA						
40	130	140	150	160	170	180
*	*	*	*	*	*	*
YQIEELMILL EYKIPRNEAD GMPINVGDGG LFEKKLWGLK VLQELSQWTV RSIHDLRFIS						
45	*					
SHQTG						

Sub B8

EXAMPLE 8 - Use of AX-15 to treat obesity

Animal models:

5

Normal mice

Normal (8 weeks) C57BL/6J mice were obtained from Taconic. The mice received daily subcutaneous injections of vehicle or AX-15. The animals were weighed daily and food intake over 24-hours was determined between days 3 and 4.

10

ob/ob mice

As a result of a single gene mutation on chromosome 6, *ob/ob* mice produce a truncated, non-functional gene product (leptin). These mice are hyperphagic, hyperinsulinemic, and markedly obese.

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

C57BL/6J *ob/ob* mice were obtained from Jackson Laboratory and used for experiments at 12-14 weeks of age. The mice received daily subcutaneous injection of vehicle, AX-15, or leptin. Pair-fed group was given the average amount (g) of food consumed by animals treated with AX-15 (0.3 mg/kg). Body weights were obtained daily and food intake over 24-hours was determined between days 3 and 4. On day 8, the animals were sacrificed and carcass analysis was performed.

Diet-induced obesity (DIO) mice

25 AKR/J mice have been shown to be very susceptible to diet induced obesity by increasing body fat content. Although the gene environment(diet) interaction is not completely known regarding this kind of dietary obesity, like in human obesity, the genotype is polygenic.

30 AKR/J mice were obtained from Jackson Laboratory and put on a high fat diet (45% fat; Research Diets) at age 10-12 weeks old. All experiments commenced after 7

weeks on high fat diet. The mice received daily subcutaneous injection of vehicle, AX-15, or leptin. Pair-fed group was given the average amount (g) of food consumed by animals treated with AX-15 (0.1 mg/kg). The animals were weighed daily and food intake over 24-hours was determined between days 3 and 4. On day 8, 5 the animals were sacrificed and sera were obtained for insulin and corticosterone measurements.

II. Reagents:

10 Recombinant human AX-15 was manufactured as set forth above and leptin was purchased from R & D Systems.

Results

Normal mice

AX-15 reduced body weight in normal mice in a dose dependent manner. In 6 days, the animals lost approximately 4%, 11%, and 16% of their body weight at 0.1 mg/kg, 0.3 mg/kg, and 1 mg/kg, respectively (Figure 3).

ob/ob mice

There was a dose related (0.1 mg/kg - 3 mg/kg) decrease in body weight after AX-15 treatment in *ob/ob* mice (Figure 4). At a dose range of 0.1 mg/kg to 3 mg/kg, there was a 8%-25% reduction of body weight. Animals pair-fed to a specific dose of AX-15 (0.3 mg/kg) showed equivalent loss of body weight as the mice given that dose of 25 AX-15, suggesting food intake is the primary cause of weight reduction.

Leptin was also effective in decreasing body weight in *ob/ob* mice. At 1 mg/kg, leptin decreased body weight 6% in 7 days, following a course almost identical to that of AX-15 given at 0.1 mg/kg (Figure 4).

Carcass analysis showed that there was a significant reduction of total body fat with AX-15 and leptin treatments as well as in pair-fed controls (Table 1). There was a small but non-significant loss of lean mass in all groups as compared to vehicle control animals. Mice receiving only food restriction (pair-fed) had a fat/lean mass ratio no different from vehicle controls, indicating that they lost fat and lean mass equally. However, the AX-15 and leptin treated animals showed preferential loss of body fat as reflected by a decrease in fat/lean mass ratio (Table 1).

DIO mice

10

AX-15 reduced body weight in DIO mice dose dependently. Within one week, the animals lost approximately 14%, 26%, and 33% of their body weight when given AX-15 at 0.1 mg/kg, 0.3 mg/kg, and 1 mg/kg, respectively (Figure 5). Comparing the effects of the AX-15 treatment and the pair-fed control animals, there was a small but significant difference between the 2 groups, suggesting that decrease food intake was probably the primary, although not the only, cause of weight loss with AX-15 treatment. Indeed, AX-15 significantly attenuated the obesity associated hyperinsulinemia in DIO mice, whereas merely reducing food intake (pair-fed) did not (Figure 6A). In addition, AX-15 did not cause elevation of corticosterone levels, which is a common effect of food restriction (Figure 6B).

15
20
25
30

It is of interest to note that when AX-15 was administered in the same dose range (0.1-1 mg/kg), DIO mice lost more than twice the body weight when compared to normal mice. This higher sensitivity of diet-induced obese animals to AX-15

25 suggests that adiposity may regulate the efficacy of AX-15 such that AX-15 will not cause continuous weight loss after adiposity is normalized.

DIO mice are leptin resistant; no weight loss effect was observed in these animals with daily injection of leptin (1 mg/kg; Figure 5).

30

We conclude as follows:

1. AX-15 caused weight loss in normal mice in a dose dependent manner.

2. AX-15 induced weight loss in *ob/ob* mice in a dose dependent manner. AX-15

5 (0.1 mg/kg) was as effective as leptin (1 mg/kg) in causing weight loss in *ob/ob* mice. Both AX-15 and leptin treatments, but not pair-fed, preferentially reduced total body fat over lean mass.

3. AX-15 caused weight loss in diet-induced obesity mice in a dose dependent

10 manner, whereas leptin was ineffective. AX-15 treatment attenuated obesity associated hyperinsulinemia in DIO mice; this effect was not observed in pair-fed control animals. In addition, AX-15 was more effective in inducing weight loss in DIO mice than normal or *ob/ob* mice. Taken together, our results suggest a specific useful application of AX-15 in the treatment of leptin resistant obesity, such as type II diabetes associated obesity.

4. The effectiveness of AX-15 in reducing body weight in leptin resistant mouse model suggests that AX-15 may also be effective in reducing body weight in obese humans who are resistant or unresponsive to leptin.

Table 1: Results from carcass analysis of *ob/ob* mice

		Fat g	Lean mass g	Fat:Lean Mass
Vehicle	Mean	34.77	4.79	7.26
	sem	1.41	0.24	
Pair-fed to Ax-15 0.3mg/kg		29.36	4.03	7.28
		0.93	0.07	
Ax-15 0.1 mg/kg		30.22	4.38	6.9
		0.59	0.13	
Ax-15 0.3 mg/kg		26.77	4.03	6.64
		0.66	0.08	
Ax-15 1 mg/kg		23.29	3.35	6.95
		0.87	0.12	
Ax-15 3 mg/kg		23	3.5	6.57
		0.53	0.12	
Leptin 1 mg/kg		28.89	4.73	6.11
		0.89	0.1	

EXAMPLE 9 - Intranasal administration of AX-15

As stated above, a model of human obesity is the AKR/J mice which are susceptible to diet-induced obesity (DIO) by an increase in body fat content analogous to 5 humans, and as in human obesity the genotype is polygenic.

Male AKR/J mice (obtained from the Jackson Laboratory, Bar Harbor, ME) were fed a high fat diet (with 45% kcal from fat) starting at 10 weeks of age. At 17 weeks of age, 10 they weighed about 30% more than lean littermates that were fed a normal chow diet. These mice, termed DIO mice, received daily intranasal administration of either vehicle or AX-15 (94 μ g/mouse in 50 μ l, which is approximately 1.87 - 2.35 mg/kg); n=10/group. To administer AX-15, the animals were anesthetized briefly with isofluorane, and then a drop (50 μ l) of either vehicle or AX-15 was placed in their nostrils and inhaled by the animals as they breathed. A group of DIO mice receiving daily subcutaneous injection of AX-15 (0.1 mg/kg) was included as a comparison (n=5). Body weight and 24 hour food intake were recorded daily for 7 days.

A pharmacokinetics profile of AX-15 delivered by the intranasal route was determined in normal female BALB/c mice (100 μ g/mouse in 50 μ l, which is equivalent to 3.3 mg/kg; n=3). Sera were obtained from tail bleeds at 0, 0.5, 1, 2, 4, 8 20 & 24 hour intervals after injection. Levels of AX-15 were measured by a two-site ELISA, using a monoclonal antibody to CNTF as capture.

The treatment with AX-15 via intranasal route of delivery was effective in reducing body weight in DIO mice (Figure 7). AX-15 given daily at 94 μ g/mouse caused an 25 11% weight loss after 7 days. Weight loss was closely correlated to decreased food intake (Figure 8). As expected from the results in Example 8, subcutaneously administered AX-15 at 0.1 mg/kg caused a typical 21% weight loss with concomitant decrease in food consumption (Figure 8).

Pharmacokinetic data showed that when AX-15 was administered by intranasal route at 3.3 mg/kg (100 µg/mouse in 50 µl), a peak serum level of 20 ng/ml (Cmax) was achieved at 0.5 -1 hour (Figure 9). This serum level was well within the efficacious range reached when AX-15 was given by subcutaneous injection (8 -25 ng/ml).

Thus, AX-15 administered via the intranasal route can be absorbed within the airway and/or through the mucosal lining of the nasal and respiratory tract and achieve serum levels that are in the efficacious range, based upon comparison to levels achieved following subcutaneous injection. AX-15 delivered via an intranasal route was effective in reducing body weight and food intake in DIO mice. Therefore, intranasal delivery can effectively be utilized as a route of administration for AX-15 in treating appropriate disorders such as obesity and diabetes.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.