Exercise Sheet 6

Discrete Mathematics, 2020.10.9

- 1. Consider the first order language with symbol set $S = \{R\}$ in which R represents a binary predicate.
 - a) Let \mathcal{J}_1 be an S-interpretation such that
 - the domain in \mathcal{J}_1 is \mathbb{N} ,
 - $-\mathcal{J}_1(R, a, b) = \mathbf{T}$ if and only if a < b.

Prove that $\llbracket \forall x \exists y R(x,y) \rrbracket_{\mathcal{J}_1} = \mathbf{T}$

- b) Let \mathcal{J}_2 be an S-interpretation such that
 - the domain in \mathcal{J}_2 is \mathbb{N} ,
 - $-\mathcal{J}_2(R,a,b) = \mathbf{T}$ if and only if a > b.
 - $\mathcal{J}_2(x) = 0$

Prove that $[\![\exists y R(x,y)]\!]_{\mathcal{J}_2} = \mathbf{F}$

- c) Let \mathcal{J}_3 be an S-interpretation such that
 - the domain in \mathcal{J}_3 is \mathbb{N} ,
 - $-\mathcal{J}_3(R,a,b) = \mathbf{T}$ if and only if a > b.

Prove that $[\![\forall x \exists y R(x,y)]\!]_{\mathcal{J}_3} = \mathbf{F}$

- d) Prove that $\llbracket \forall x \forall y (R(x,y) \to \exists z (R(x,z) \land R(z,y))) \rrbracket_{\mathcal{T}_1} = \mathbf{F}.$
- e) Let \mathcal{J}_4 be an S-interpretation such that
 - the domain in \mathcal{J}_4 is \mathbb{Q} (rational numbers, 有理数集),
 - $-\mathcal{J}_4(R, a, b) = \mathbf{T}$ if and only if a < b.

Prove that $[\![\forall x \forall y (R(x,y) \rightarrow \exists z (R(x,z) \land R(z,y)))]\!]_{\mathcal{J}_4} = \mathbf{T}.$

- 2. Consider the first order language with symbol set $S = \{f, R\}$ in which f represents a binary function and R represents a binary predicate.
 - a) Let \mathcal{J}_1 be an S-interpretation such that
 - the domain in \mathcal{J}_1 is \mathbb{N} ,
 - $\mathcal{J}_1(f, a, b) = a + b,$
 - $-\mathcal{J}_1(R,a,b) = \mathbf{T}$ if and only if a = b.

Prove that $[\![\forall x \forall y R(f(x,y),f(y,x))]\!]_{\mathcal{J}_1} = \mathbf{T}.$

- b) Let \mathcal{J}_2 be an S-interpretation such that
 - the domain in \mathcal{J}_2 is \mathbb{N} ,
 - $\mathcal{J}_2(f, a, b) = a * b,$
 - $-\mathcal{J}_2(R,a,b) = \mathbf{T}$ if and only if a = b.

Prove that $[\![\forall x \forall y R(f(x,y),f(y,x))]\!]_{\mathcal{J}_2} = \mathbf{T}.$

- c) Let \mathcal{J}_3 be an S-interpretation such that
 - the domain in \mathcal{J}_3 is $\{\mathbf{T}, \mathbf{F}\},$
 - $\mathcal{J}_3(f, a, b) = \llbracket \wedge \rrbracket (a, b),$
 - $-\mathcal{J}_3(R,a,b) = \mathbf{T}$ if and only if a = b.

Prove that $[\![\forall x \forall y R(f(x,y),f(y,x))]\!]_{\mathcal{J}_3} = \mathbf{T}.$

- d) Prove that $\forall x \forall y R(f(x, y), f(y, x))$ is not valid.
- 3. If a first order logic have the following proof rule, is it possible to be sound? Why?
 - If $\Phi \vdash \psi$, then $\Phi \vdash \forall x\psi$
- 4. a) ([R], Page 125, Exercise 1(c)) List the members of this set:

 $\{x|x \text{ is the square of an integer and } x < 100\}$

- b) List all subsets of $\{\emptyset, \{\emptyset\}\}$.
- 5. Are the following statements correct? Explain why (informally).
 - a) ([R], Page 125, Exercise 10(c)) $\{\emptyset\} \in \{\emptyset\}$
 - b) ([R], Page 125, Exercise 10(d)) $\{\emptyset\} \in \{\{\emptyset\}\}$
 - c) For any set $A, A \subseteq \mathcal{P}(A)$.
 - d) For any set $A, A \in \mathcal{P}(A)$.
- 6. a) Prove that if $\phi \vDash \psi$ then $\forall x \phi \vDash \forall x \psi$.
 - b) Prove that if $\Phi, \phi \vDash \psi$ and x does not freely occur in Φ then $\Phi, \forall x \phi \vDash \forall x \psi$.
 - c) Demonstrate an example in which
 - $-\Phi, \phi \vDash \psi$
 - -x does freely occur in Φ
 - $-\Phi, \forall x\phi \not\vDash \forall x\psi.$
- 7. ([R], Page 126, Exercise 18) Find two sets A and B such that $A \in B$ and $A \subseteq B$