Лекция 2 Сверточные нейронные сети

Разработка нейросетевых систем Канев Антон Игоревич

Cifar100

- Набор данных, состоящий из цветных изображений 100 классов
- Размер 32 на 32 пикселя
- 3 цвета

Reshape, transpose

- Reshape изменение размерности матрицы
- Transpose транспонирование
- Количество элементов в матрице остается прежним 3072

Свертка

- Свертка это применение одного и того же фильтра (нейрона) к разным частям исходного изображения
- В результате на разных частях исходных данных идет поиск одинаковых признаков
- Выходными данными свертки являются карты признаков
- Несколько фильтров позволяют сформировать несколько карт признаков одного сверточного слоя

Свойства сверточного слоя

- Разреженные взаимодействия – каждый нейрон связан с ограниченным числом входных нейронов
- Разделение параметров

 в карте признаков все нейроны имеют одинаковый набор параметров
- Инвариантность сдвиг исходных данных вызывает аналогичный сдвиг значений выходного слоя

Сверточная нейросеть

- Сверточная нейросеть состоит из нескольких слоев: свертки, пуллинга, полносвязного
- Слои свертки и пуллинга чередуются друг за другом
- Слои свертки применяют набор n1, n2 фильтров к исходному изображению. Каждый фильтр ищет определенные признаки в исходных данных и формируется карту признаков
- Слои свертки обучаются, меняют количество каналов. Вход для свертки трехмерный: ядро*ядро*каналы
- Слои пуллинга только уменьшают размерность карты признаков, количество каналов сохраняется.
- Данные последнего слоя пуллинга преобразуются в вектор для использования в полносвязном слое

Stride

- Stride шаг свертки
- Это регулируемый параметр, который определяет размерность карты признаков

Padding

- Padding заполнение исходных данных для свертки
- Либо нулями, либо повторение соседних ячеек

1	6	5
7	10	9
7	10	8

Три канала

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

				- 614	T Wy	
0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	
	Input	Cha	nnel	#3 (E	Blue)	

- Трехмерный случай для трех цветов
- Аналогично несколько каналов слоя свертки
- На входе нейрона 27 значений

Пуллинг

• Слой пуллинга позволяет сократить размерность карты признаков

Average Pooling

• Второй вариант вычисления - среднее

2	2	7	3
9	4	6	1
8	5	2	4
3	1	2	6

4.25

3.5

Пример

```
def __init__(self, hidden_size=32, classes=100):
    super(Cifar100_MLP, self).__init__()
    # https://blog.jovian.ai/image-classification-of-cifar100-dataset-using-pytorch-8b7145242df1
    self.seq = nn.Sequential(
        Normalize([0.5074,0.4867,0.4411],[0.2011,0.1987,0.2025]),
        # первый способ уменьшения размерности картинки - через stride
        nn.Conv2d(3, HIDDEN_SIZE, 5, stride=4, padding=2),
        nn.ReLU(),
        # второй способ уменьшения размерности картинки - через слой пуллинг
        nn.Conv2d(HIDDEN_SIZE, HIDDEN_SIZE*2, 3, stride=1, padding=1),
        nn.ReLU(),
        nn.ReLU(),
        nn.AvgPool2d(4), #nn.MaxPool2d(4),
        nn.Flatten(),
        nn.Linear(HIDDEN_SIZE*8, classes),
)
```

Layer (type)	Output Shape	Param #
Normalize-1 Conv2d-2 ReLU-3 Conv2d-4 ReLU-5 AvgPool2d-6 Flatten-7 Linear-8	[-1, 3, 32, 32] [-1, 32, 8, 8] [-1, 32, 8, 8] [-1, 64, 8, 8] [-1, 64, 8, 8] [-1, 64, 2, 2] [-1, 256] [-1, 3]	0 2,432 0 18,496 0 0 0

ONNX

Step 3. Select class labels and get predictions

