CS 228 : Logic in Computer Science

Krishna. S

▶ What are traces?

- ▶ What are traces?
- ▶ For an LTL formula φ , what is $L(\varphi)$? Does it have anything to do with a transition system?

- What are traces?
- ▶ For an LTL formula φ , what is $L(\varphi)$? Does it have anything to do with a transition system?
- ▶ What does $w \models \varphi$ mean for $w \in \Sigma^{\omega}$?

- What are traces?
- ▶ For an LTL formula φ , what is $L(\varphi)$? Does it have anything to do with a transition system?
- ▶ What does $w \models \varphi$ mean for $w \in \Sigma^{\omega}$?
- ▶ What does $TS \models \varphi$ mean?

- What are traces?
- ▶ For an LTL formula φ , what is $L(\varphi)$? Does it have anything to do with a transition system?
- ▶ What does $w \models \varphi$ mean for $w \in \Sigma^{\omega}$?
- ▶ What does $TS \models \varphi$ mean?

Notations for Infinite Words

- Σ is a finite alphabet
- Σ* set of finite words over Σ
- ▶ An infinite word is written as $\alpha = \alpha(0)\alpha(1)\alpha(2)\dots$, where $\alpha(i) \in \Sigma$
- Such words are called ω-words
- ▶ $Inf(\alpha) = \{a \in \Sigma \mid \alpha(i) = a \text{ for infinitely many } i\}$. $Inf(\alpha)$ gives the set of symbols occurring infinitely often in α .

ω -automata

An ω -automaton is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q is a finite set of states
- \triangleright Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \to 2^Q$ is a state transition function (if non-deterministic, otherwise, $\delta: Q \times \Sigma \to Q$)
- ▶ $q_0 \in Q$ is an initial state and Acc is an acceptance condition

ω -automata

An ω -automaton is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q is a finite set of states
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \to 2^Q$ is a state transition function (if non-deterministic, otherwise, $\delta: Q \times \Sigma \to Q$)
- ▶ $q_0 \in Q$ is an initial state and Acc is an acceptance condition

Run

A run ρ of \mathcal{A} on an ω -word $\alpha = a_1 a_2 \cdots \in \Sigma^{\omega}$ is an infinite state sequence $\rho(0)\rho(1)\rho(2)\ldots$ such that

- ▶ $\rho(0) = q_0$,
- $\rho(i) = \delta(\rho(i-1), a_i)$ if A is deterministic,
- ▶ $\rho(i) \in \delta(\rho(i-1), a_i)$ if A is non-deterministic,

ω -automata

An ω -automaton is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q is a finite set of states
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \to 2^Q$ is a state transition function (if non-deterministic, otherwise, $\delta: Q \times \Sigma \to Q$)
- ▶ $q_0 \in Q$ is an initial state and Acc is an acceptance condition

Run

A run ρ of \mathcal{A} on an ω -word $\alpha = a_1 a_2 \cdots \in \Sigma^{\omega}$ is an infinite state sequence $\rho(0)\rho(1)\rho(2)\ldots$ such that

- ▶ $\rho(0) = q_0$,
- $\rho(i) = \delta(\rho(i-1), a_i)$ if A is deterministic,
- ▶ $\rho(i) \in \delta(\rho(i-1), a_i)$ if A is non-deterministic,

Büchi Acceptance

For Büchi Acceptance, *Acc* is specified as a set of states, $G \subseteq Q$. The ω -word α is accepted if there is a run ρ of α such that $Inf(\rho) \cap G \neq \emptyset$.

ω -Automata with Büchi Acceptance

$$L(A) = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has a run } \rho \text{ such that } Inf(\rho) \cap G \neq \emptyset \}$$

Language accepted=Infinitely many b's.

Comparing NFA and NBA

(Non)deterministic Büchi Automata

$$L(A) = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has a run } \rho \text{ such that } \mathit{Inf}(\rho) \cap G \neq \emptyset \}$$

(Non)deterministic Finite Automata

$$L(A) = \{ \alpha \in \Sigma^* \mid \alpha \text{ has a run } \rho \text{ ending in some final state } \}$$

Comparing NFA and NBA

(Non)deterministic Büchi Automata

$$L(A) = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has a run } \rho \text{ such that } Inf(\rho) \cap G \neq \emptyset \}$$

(Non)deterministic Finite Automata

$$L(A) = \{ \alpha \in \Sigma^* \mid \alpha \text{ has a run } \rho \text{ ending in some final state } \}$$

Comparing NFA and NBA

(Non)deterministic Büchi Automata

 $L(A) = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has a run } \rho \text{ such that } Inf(\rho) \cap G \neq \emptyset \}$

(Non)deterministic Finite Automata

 $L(A) = \{ \alpha \in \Sigma^* \mid \alpha \text{ has a run } \rho \text{ ending in some final state } \}$

ω -Automata with Büchi Acceptance

- ▶ Left (T-B): Inf many b's, Inf many a's
- ▶ Right (T-B): Finitely many b's, $(a + b)^{\omega}$

Büchi Acceptance

A language $L\subseteq \Sigma^\omega$ is called ω -regular if there exists a NBA $\mathcal A$ such that $L=L(\mathcal A)$. Recall definition of regular languages and NFA/DFA acceptance.

- Is every NBA as expressible as a DBA, like in the case of DFA and NFA?
- ▶ Can we do subset construction on NBA and obtain DBA?

- Is every NBA as expressible as a DBA, like in the case of DFA and NFA?
- Can we do subset construction on NBA and obtain DBA?

There does not exist a deterministic Büchi automata capturing the language finitely many *a*'s.

▶ States as $Q_1 \times Q_2 \times \{1,2\}$, start state $(q_0, q'_0, 1)$

- ▶ States as $Q_1 \times Q_2 \times \{1,2\}$, start state $(q_0, q'_0, 1)$
- $(q_1, q_2, 1) \stackrel{a}{\rightarrow} (q_1', q_2', 1)$ if $q_1 \stackrel{a}{\rightarrow} q_1'$ and $q_2 \stackrel{a}{\rightarrow} q_2'$ and $q_1 \notin G_1$
- $(q_1,q_2,1)\stackrel{a}{ o} (q_1',q_2',2)$ if $q_1\stackrel{a}{ o} q_1'$ and $q_2\stackrel{a}{ o} q_2'$ and $q_1\in G_1$

- ▶ States as $Q_1 \times Q_2 \times \{1,2\}$, start state $(q_0, q'_0, 1)$
- $(q_1,q_2,1)\stackrel{a}{\to} (q_1',q_2',1)$ if $q_1\stackrel{a}{\to} q_1'$ and $q_2\stackrel{a}{\to} q_2'$ and $q_1\notin G_1$
- $lackbox{ } (q_1,q_2,1)\stackrel{a}{ o} (q_1',q_2',2) ext{ if } q_1\stackrel{a}{ o} q_1' ext{ and } q_2\stackrel{a}{ o} q_2' ext{ and } q_1\in G_1$
- $lackbox{} (q_1,q_2,2) \stackrel{a}{
 ightarrow} (q_1',q_2',2) \text{ if } q_1 \stackrel{a}{
 ightarrow} q_1' \text{ and } q_2 \stackrel{a}{
 ightarrow} q_2' \text{ and } q_2 \notin G_2$
- $lackbox{(}q_1,q_2,2)\stackrel{a}{
 ightarrow}(q_1',q_2',1) \text{ if } q_1\stackrel{a}{
 ightarrow}q_1' \text{ and } q_2\stackrel{a}{
 ightarrow}q_2' \text{ and } q_2\in G_2$

- ▶ States as $Q_1 \times Q_2 \times \{1,2\}$, start state $(q_0, q'_0, 1)$
- $(q_1, q_2, 1) \stackrel{a}{\rightarrow} (q_1', q_2', 1)$ if $q_1 \stackrel{a}{\rightarrow} q_1'$ and $q_2 \stackrel{a}{\rightarrow} q_2'$ and $q_1 \notin G_1$
- $lackbox{ } (q_1,q_2,1)\stackrel{a}{ o} (q_1',q_2',2) ext{ if } q_1\stackrel{a}{ o} q_1' ext{ and } q_2\stackrel{a}{ o} q_2' ext{ and } q_1\in G_1$
- $lackbox{ } (q_1,q_2,2) \stackrel{a}{
 ightarrow} (q_1',q_2',2) ext{ if } q_1 \stackrel{a}{
 ightarrow} q_1' ext{ and } q_2 \stackrel{a}{
 ightarrow} q_2' ext{ and } q_2 \notin G_2$
- $lackbox{} (q_1,q_2,2) \stackrel{a}{ o} (q_1',q_2',1) ext{ if } q_1 \stackrel{a}{ o} q_1' ext{ and } q_2 \stackrel{a}{ o} q_2' ext{ and } q_2 \in G_2$
- ▶ Good states= $Q_1 \times G_2 \times \{2\}$ or $G_1 \times Q_2 \times \{1\}$

