Journal of Sensors

Evaluation of Low-Cost Sensors for Ambient PM_{2.5} Monitoring – Supplementary Material

Marek Badura, 1 Piotr Batog, 2 Anetta Drzeniecka-Osiadacz, 3 and Piotr Modzel 3

Correspondence should be addressed to Marek Badura; marek.badura@pwr.edu.pl

Figure S1: Location of measurement stations: A – Meteorological Observatory of Department of Climatology and Atmosphere Protection of University of Wrocław (Kosiby Street: 51°06′18.6″ N; 17°05′21.4″ E) equipped with TEOM analyser; B – Urban background station of Voivodeship Inspection for Environmental Protection (Wybrzeże Conrada-Korzeniowskiego: 51°07′45.9″N; 17°01′45.4″E) equipped with BAM analyser.

The distance between points A and B is 4.98 km.

¹ Department of Air Conditioning, Heating, Gas Engineering and Air Protection, Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50-373 Wrocław, Poland.

² INSYSPOM, 54-427 Wrocław, Poland.

³ Department of Climatology and Atmosphere Protection, Institute of Geography and Regional Development, Faculty of Earth Science and Environmental Management, University of Wrocław, 51-621 Wrocław, Poland.

Evaluation of Low-Cost Sensors for Ambient PM_{2.5} Monitoring – Supplementary Material

Figure S2: Scatterplots of SDS011 units outputs versus the mean values of the 1-minute averaged data for: a) RH \leq 80% (113 396 data points), b) 80% < RH \leq 90% (91 836 data points), c) RH > 90% (25 979 data points). Dashed lines denote the ideal relationship.

Figure S3: Examples of 1-hour averaged data from governmental urban background station (BAM analyser) and from meteorological observatory of University of Wrocław (TEOM 1400a analyser) for:

a) non-heating period, b) heating period.

Figure S4: Relationship between BAM analyser from governmental urban background station (Wybrzeże Conrada-Korzeniowskiego) and TEOM 1400a analyser from meteorological observatory of University of Wrocław (Kosiby Street).

Figure S5: Examples of diurnal variation of temperature, relative humidity and $PM_{2.5}$ concentration: a) at the beginning of the heating period, b) in the middle of the heating period.

Figure S6: Box plot of daily distribution of TEOM $PM_{2.5}$ concentrations during measuring campaign. Distribution based on 1-hour averages. The central red mark indicates the median; the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively; the whiskers extend to the most extreme data points. Dashed line denotes the break on Y-axis.

Figure S7: Box plot of daily distribution of relative humidity (RH) values during measuring campaign. Distribution based on 1-hour averages. The central red mark indicates the median; the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively; the whiskers extend to the most extreme data points.

Evaluation of Low-Cost Sensors for Ambient PM_{2.5} Monitoring – Supplementary Material

Table S1: Parameters of linear fittings for tested PM sensors and 1-min averages: a - slope, b - intercept.

Sensor	SDS011			7	ZH03A PMS			MS70	003 PMS7003				OPC-N2		
model								"AE"							
Unit	1	2	3	1*	2**	3	1	2	3	1	2	3	1	2	3
а	0.35	0.39	0.38	-	0.34	0.31	0.26	0.27	0.28	0.41	0.42	0.43	0.20	0.19	0.13
b	5.17	4.88	5.06	-	7.48	4.01	3.53	3.49	3.34	1.04	0.94	0.69	8.40	10.17	9.97

^{*}Unit No. 1 was excluded from calculations due to malfunction

Table S2: Parameters of linear fittings for tested PM sensors and 15-min averages: a – slope, b – intercept.

Sensor	SDS011			7	ZH03	4	PMS7003			PMS7003			OPC-N2		
model					"AE"										
Unit	1	2	3	1*	2**	3	1	2	3	1	2	3	1	2	3
а	0.35	0.40	0.38	-	0.34	0.32	0.26	0.28	0.29	0.41	0.42	0.43	0.20	0.19	0.13
b	5.11	4.79	4.99	-	7.43	3.63	3.44	3.39	3.23	0.92	0.81	0.55	8.38	10.16	9.96

^{*}Unit No. 1 was excluded from calculations due to malfunction

Table S3: Parameters of linear fittings for tested PM sensors and 1-hour averages: a - slope, b - intercept.

Sensor	SDS011			SDS011 Z		4	Pl	PMS7003			PMS7003			OPC-N2		
model						"AE"										
Unit	1	2	3	1*	2**	3	1	2	3	1	2	3	1	2	3	
а	0.35	0.40	0.38	-	0.34	0.33	0.26	0.28	0.29	0.41	0.42	0.43	0.20	0.19	0.13	
b	5.07	4.76	4.96	-	7.40	3.28	3.40	3.36	3.19	0.89	0.78	0.52	8.36	10.13	9.93	

^{*}Unit No. 1 was excluded from calculations due to malfunction

Table S4: Parameters of linear fittings for tested PM sensors and 24-hour averages: a - slope, b - intercept.

Sensor	SDS011			7	ZH03	4	PMS7003			PMS7003			OPC-N2		
model											"AE"				
Unit	1	2	3	1*	2**	3	1	2	3	1	2	3	1	2	3
а	0.36	0.40	0.39	-	0.33	0.35	0.27	0.28	0.29	0.41	0.42	0.43	0.21	0.21	0.15
b	4.76	4.66	4.80	-	7.70	2.54	3.38	3.31	3.08	0.96	0.83	0.53	7.88	9.49	9.04

^{*}Unit No. 1 was excluded from calculations due to malfunction

^{**}Calculations for Unit No. 2 for the period 21/08/2017 – 24/12/2017, before sensor replacement

^{**}Calculations for Unit No. 2 for the period 21/08/2017 – 24/12/2017, before sensor replacement

^{**}Calculations for Unit No. 2 for the period 21/08/2017 – 24/12/2017, before sensor replacement

^{**}Calculations for Unit No. 2 for the period 21/08/2017 – 24/12/2017, before sensor replacement