

Ways to represent a graph

- Adjacency list Mark the nodes with the list of its neighbors
- Adjacency matrix A_{ij} = 1 for an edge between i and j, 0 otherwise!
- Edge set Store the pair of nodes/vertices connected with an edge. Eg $\{(0,1), (0,4), (1,4)\}$
- Other implementations to represent a graph also exists. For e.g. Compact list representation, cost adjacency list, cost adjacency matrix etc.

Ways to represent a graph

- Adjacency list Mark the nodes with the list of its neighbors
- Adjacency matrix A_{ij} = 1 for an edge between i and j, 0 otherwise!
- Edge set Store the pair of nodes/vertices connected with an edge. Eg $\{(0,1), (0,4), (1,4)\}$
- other implementations to represent a graph also exists. For e.g. Compact list representation, cost adjacency list, cost adjacency matrix etc.

Adjacency list

Mark the nodes with the list of its neighbors

Adjacency matrix

■ $A_{ij} = 1$ for an edge between i and j, 0 otherwise!

			Ų.				
		0	1	2	3	4	5
\rightarrow	0	0	0	0	0	0	1
	1	0	0	O	0	0	1
	2	0	0-	-0	18	0	Ó.
	3	0	0	1	D	1	1
	4	0	0	0	1	0	D
	5	1	1	0	1	0	0

Cost Adjacency matrix

- A_{ij} = cost for an edge between i and j, 0 otherwise!
- If the cost can be 0:

 A_{ij} = cost for an edge between i and j, Ø otherwise!

	0	1	2	3	4	5
0	-1	-1	4	-1	-1	-1
1	-1	-1	8	-1	-1	-1
2	4	8	-1	-1	2	11
3	-1	00	0	0 0	9	
4	0	0 0	2	9		
5	0	0 0	11			

Other Implementations

- Edge Set Store the pair of nodes/vertices connected with an edge. Eg $\{(0,1), (0,4), (1,4)\}$
- Cost adjacency list Cost is also stored along with the links
- Compact List representation The entire graph is stored in a 1d array

Other Implementations

- Edge Set Store the pair of nodes/vertices connected with an edge. Eg $\{(0,1), (0,4), (1,4)\}$
- Cost adjacency list Cost is also stored along with the links
- Compact List representation The entire graph is stored in a 1d array

