product topology (Тихонов topology) 与 box topology 之不同之处可以类比如下:

定义: 称 $\{x_i\}_{i\in I}$ 线性无关, 若且仅若对一切 I 的有限子集 I_0 , $\{x_i\}_{i\in I_0}$ 均线性无关.

定义: 线性张成 $\operatorname{span}(\{x_i\}_{i\in I}) := \cup_{I_0}\operatorname{span}(\{x_i\}_{i\in I_0})$, 其中 I_0 取遍 $\mathcal{P}(I)$ 中有限集.

比较第一个例子,该例子与有限维线性空间比较贴近(注:不要联想 "基"的概念);但需要收藏,因为这涉及到某本著名泛函分析书里的错误.

 c_0 为收敛至 0 的数列全体, 记 $e_k = (0, \ldots, 0, 1, 0, \ldots)$ (第 k 位为 0), 则

- $\{e_k\}_{k\in\mathbb{Z}_{\geq 1}}$ 线性无关.
- $\operatorname{span}(\{e_k\}_{k\in\mathbb{Z}_{\geq 1}})\subsetneq c_0$.
- $\{e_1, e_2 e_1, e_3 e_2, \ldots\}$ 也线性无关.

记 $x = \sum_{k \geq 1} x_k e_k$. 定义 c_0 上的二元函数 $d(x,y) = \sup_{n \geq 1} |x_n - y_n|$,则

- d 为良定义的度量.
- (c_0,d) 完备.
- $\operatorname{span}(\{e_k\}_{k\in\mathbb{Z}_{>1}})$ 为 c_0 中非开非闭集.
- $\operatorname{span}(\{e_k\}_{k\in\mathbb{Z}_{>1}})$ 在 d 给出的拓扑的闭包下为 c_0 .
- (留意此处!) $\forall x \in c_0$, 存在唯一的 $\{x_k'\}_{k \in \mathbb{Z}_{\geq 1}}$ 使得 $x = \sum_{k \geq 1} x_k' e_k$. 换言之, $\sum_{k \geq 1} t_k e_k = 0$ 当且仅当 $t_k \equiv 0$.
- 从 \overline{n} c_0 上的线性函数为 $Tx = \sum_{k \geq 1} t_k x_k$ 形式, 其中 $\sum_{k \geq 1} |t_k| < \infty$.

定义c为收敛数列全体,则

- 沿用以上的 d, (c,d) 完备.
- c 的线性无关组例如 $\{e_k\}_{k\in\mathbb{Z}_{\geq 1}}\cup\{(1,1,1,\ldots)\}$. 往后定义 $e_0=(1,1,\ldots)$
- $\operatorname{span}(\{e_k\}_{k\in\mathbb{Z}_{\geq 0}})$ 在 d 给出的拓扑的闭包下为 c.
- (留意此处!) $\forall x \in c$, 存在唯一的 $\{x_k'\}_{k \in \mathbb{Z}_{\geq 0}}$ 使得 $x = \sum_{k \geq 0} x_k' e_k$. 换言之, $\sum_{k \geq 0} t_k e_k = 0$ 当且仅当 $t_k \equiv 0$.
- 从而 c 上的线性函数为 $Tx = \sum_{k \geq 0} t_k x_k$ 形式, 其中 $\sum_{k \geq 1} |t_k| < \infty$.

第二个例子对初学者并不友好. 我们记 d 为 C([1,2]) 上的二元函数, 定义为 $d(f,g)=\sup_{1\leq x\leq 2}|f(x)-g(x)|$. 有以下事实:

- Weierstrass 逼近定理: $\{1, x, x^2, \ldots\}$ 的闭包为 C([1, 2]), 即对任意 $f \in C([1, 2])$, 存在 $\{a_n\}_{n\geq 0}$ 使得 $f = \sum_{n\geq 0} a_n x^n$.
- $\{x^n\}_{n\geq 0}$ 线性无关.

- 因此, $\frac{1}{x^m}$ 可由 $\{x^n\}_{n\geq 0}$ 逼近,即 $\{x^m, x^{m+1}, x^{m+1} \dots\}$ 可逼近 1,故闭包为 C([1,2]). 不难得到一个神奇的结论:
 - a. $\{x^n\}_{n\geq 1}$ 中去掉任意有限个元素后仍在 C([1,2]) 中稠密.
 - b. 存在无穷组不全为 0 的数列 $\{a_n\}_{n\geq 0}$ 使得 $\sum_{n\geq 0}a_nx^n\equiv 0$.

记 $\prod_{i\in I} X_i$ 之 product topology作 (X, τ_1) , $\prod_{i\in I} X_i$ 之 box topology作 (X, τ_2) .

- 使得投影算子 p_i 连续的最粗拓扑为 τ_1 .
- au_2 在 $|I| \geq \omega$ 时严格大于 au_1 (此处设恒存在 U_i 使得 $\emptyset \subsetneq U_i \subsetneq X_i$).

记X为 $\mathbb{Z}_{\geq 1}$ 个(\mathbb{R} , τ_{normal})之笛卡尔积, τ_i 定义如上,则

- 选取 (X, τ_1) , 则保证函数 $f: \mathbb{R} \to X, x \mapsto (x, x, x, \ldots)$ 连续之最粗拓扑为 $(\mathbb{R}, \tau_{\text{normal}})$.
- 选取 (X, τ_1) , 则保证函数 $f: \mathbb{R} \to X, x \mapsto (x, x, x, \ldots)$ 连续之最粗拓扑为 $(\mathbb{R}, \tau_{\text{discrete}})$. 注意到开集 $\prod_{k>1} (x_0 k^{-1}, x_0 + k^{-1})$ 之原像为 x_0 .

Ex1 定义 ℓ^{∞} 为有界数列全体,以上的 d 仍为 ℓ^{∞} 上良定义的度量, ℓ^{∞} 仍完备,则

• 使得函数 $f: \mathbb{R} \to \ell^{\infty}$ 连续之最粗拓扑为 $(\mathbb{R}, \tau_{\text{discrete}})$.

Ex2 对于上述 (X, τ_i) 是否均存在 $\{U_k\}_{k \in \mathbb{Z}_{>1}}$ 使得

- 1. $U_1 \subset U_2 \subset \cdots \cup U_k \subset U_{k+1} \subset \cdots$
- $2. \cup_{k \in \mathbb{Z}_{\geq 1}} U_k = X.$
- 3. $f^{-1}(U_k)=\emptyset$, $orall k\in \mathbb{Z}_{\geq 1}$.