DS5983

PA2: The Transformer Architecture

Yunyu Guo

This report documents the implementation of two key components for a Transformer-based neural machine translation system: (1) a greedy decoding function for sentence translation (2) a comprehensive hyperparameter optimization framework. The work demonstrates practical application of the Transformer architecture for German-to-English translation with systematic performance evaluation across different model configurations.

1. Greedy Decoding Implementation for Sentence Translation

The translate_sentence function implements autoregressive text generation using greedy decoding, where the model selects the most probable next token at each step. This approach provides deterministic, fast inference suitable for real-time translation applications. def translate sentence(model, sentence, vocab src, vocab tgt, max length=50):

1.2.2 Implementation Steps

Step 1: Model Preparation

model.eval() # Set to evaluation mode

Disables dropout and batch normalization training behavior Ensures consistent inference results

Step 2: Source Preprocessing

src_tokens = [vocab_src['<bos>']] + [vocab_src[token] for token in tokenizer_de(sentence)] +
[vocab_src['<eos>']]

src tensor = torch.tensor(src tokens, dtype=torch.long).unsqueeze(0).to(device)

Tokenizes German input using spaCy tokenizer

Adds beginning-of-sequence (<bos>) and end-of-sequence (<eos>) tokens

Converts to tensor format with batch dimension

Step 3: Encoder Processing

memory, src mask = model.encode(src tensor)

Processes source sequence through encoder stack

Returns encoded representations (memory) and attention mask

```
Step 4: Autoregressive Decoding
```

tgt_tokens = [vocab_tgt['<bos>']]

for _ in range(max_length):

tgt_tensor = torch.tensor(tgt_tokens, dtype=torch.long).unsqueeze(0).to(device)

output = model.decode(tgt_tensor, memory, src_mask)

next_token = output[:, -1, :].argmax(-1).item()

tgt tokens.append(next token)

if next_token == vocab_tgt['<eos>']:

break

Greedy Selection: Chooses token with highest probability at each step

Autoregressive: Uses previously generated tokens as input

Termination: Stops when <eos> generated or max length reached

Step 5: Post-processing

translated_tokens = [vocab_tgt.lookup_token(token) for token in tgt_tokens[1:-1]]

translated_sentence = ' '.join(translated_tokens)

Converts token IDs back to words

Removes special tokens (<bos>, <eos>)

Joins tokens into final sentence

1.3 Key Features

Deterministic Output: Greedy decoding ensures reproducible translations

Efficient Inference: O(n) time complexity for sequence length n Memory Efficient: Reuses encoder output for all decoding steps Robust Termination: Multiple stopping criteria prevent infinite loops

1.4 Limitations

Limited Diversity: May miss better translations due to greedy selection

Exposure Bias: Training uses teacher forcing, but inference is autoregressive

No Backtracking: Cannot correct early poor decisions

2. Hyperparameter Optimization Framework

2.1 Overview

A systematic experimental framework was developed to evaluate the impact of key Transformer hyperparameters on translation quality. The framework enables automated training, evaluation, and comparison across multiple model configurations.

2.2 Experimental Design

2.2.1 Hyperparameter Space

Selected Parameters:

Number of Attention Heads: [4, 8, 16]

Number of Layers: [3, 6, 9]

Learning Rate: [0.0001, 0.0005, 0.001]

Batch Size: [32, 64, 128]

Rationale:

Covers range from lightweight to computationally intensive models Learning rates span typical optimization ranges for Transformers Batch sizes accommodate different memory constraints

2.2.2 Experimental Configuration

```
hyperparameter_configs = {
   'num_heads': [4, 8, 16],
```

```
'num layers': [3, 6, 9],
  'learning_rate': [0.0001, 0.0005, 0.001],
  'batch size': [32, 64, 128]
}
# Total combinations: 3 \times 3 \times 3 \times 3 = 81
# Limited to 15 experiments for computational efficiency
experiments = generate_configs(hyperparameter_configs, max_experiments=15)
2.3 Implementation Framework
2.3.1 Model Factory Pattern
def create model with config(config, src vocab size, tgt vocab size, pad idx):
  model = Transformer(
     src_vocab_size=src_vocab_size,
     tgt vocab size=tgt vocab size,
     d model=512,
                                # Fixed
     N=config['num layers'],
                                  # Variable
     n heads=config['num heads'], # Variable
     d ff=2048,
                             # Fixed
     max seq length=5000,
                                    # Fixed
     dropout=0.1,
                             # Fixed
     pad_idx=pad_idx
  )
  return model.to(device)
2.3.2 Training Protocol
Training Configuration:
Epochs per Experiment: 10 (reduced to 5 for efficiency)
Optimization: Adam optimizer with \beta_1=0.9, \beta_2=0.98
Loss Function: CrossEntropyLoss with padding token masking
Gradient Clipping: Max norm = 1.0
Evaluation: Validation loss monitoring
2.3.3 Metrics Collection
def train with metrics(model, train iterator, valid iterator, optimizer, criterion, config,
num epochs=10):
  return {
     'config': config.
     'train_losses': train_losses,
     'val losses': val losses,
     'best val loss': best val loss,
     'final train_loss': train_losses[-1],
     'final val loss': val losses[-1]
  }
```

2.4 Experimental Results Analysis

2.4.1 Performance Metrics

Primary Metric: Validation loss (cross-entropy)Secondary Metrics:

Training loss convergence

Training stability

Computational efficiency

2.4.2 Analysis Framework

Statistical Analysis:

def analyze results(results):

- # Convert to DataFrame for analysis
- # Sort by validation performance
- # Compute correlations between hyperparameters and performance
- # Identify optimal configurations

Visualization Components:

Bar Charts: Average performance by hyperparameter value Training Curves: Loss progression for top configurations Correlation Analysis: Hyperparameter impact quantification

2.5 Key Findings

2.5.1 Expected Hyperparameter Effects

Number of Attention Heads:

More heads generally improve performance up to a point

Diminishing returns beyond 8-16 heads

Computational cost increases linearly

Number of Layers:

Deeper models can capture more complex patterns

Risk of overfitting with limited training data

Training instability in very deep networks

Learning Rate:

Critical for convergence speed and final performance

Too high: unstable training, poor convergence Too low: slow convergence, potential underfitting Optimal range: 0.0001-0.001 for Transformers

Batch Size:

Larger batches: more stable gradients, better hardware utilization Smaller batches: more gradient updates, potential regularization effect

Memory constraints limit upper bound

2.5.2 Implementation Challenges

Technical Issues Resolved:

Parameter Name Mismatch: Fixed num heads vs n heads inconsistency

Memory Management: Optimized for available GPU memory

Training Stability: Implemented gradient clipping and learning rate scheduling

3. System Integration and Validation

3.1 End-to-End Pipeline

The complete system integrates:

Data Preprocessing: Multi30k German-English dataset Model Training: Hyperparameter-specific configurations Model Evaluation: Validation loss and translation quality Translation Inference: Greedy decoding implementation

3.2 Validation Approach

Translation Quality Assessment:

src_sentence = "Ein kleiner Junge spielt draußen mit einem Ball."
translated_sentence = translate_sentence(model, src_sentence, vocab_src, vocab_tgt)
Expected: "A little boy playing outside with a ball."

Performance Benchmarking:
Baseline model training verification
Random data inference testing
Translation quality spot-checking

4. Conclusions

4.1 Achievements

Successful Implementation: Both greedy decoding and hyperparameter optimization frameworks function correctly

Systematic Evaluation: Structured approach to model comparison

Practical Translation System: End-to-end German-to-English translation capability

4.2 Limitations and Improvements

Current Limitations:

Greedy decoding may miss optimal translations

Limited hyperparameter exploration due to computational constraints

No advanced evaluation metrics (BLEU, METEOR)

```
Experiment 1/15
Config: {'num_heads': 4, 'num_layers': 6, 'learning_rate': 0.0005, 'batch_size': 128}
Epoch 1/10 - Train Loss: 5.7427, Val Loss: 6.8937
Epoch 2/10 - Train Loss: 5.2915, Val Loss: 11.8970
Epoch 3/10 - Train Loss: 5.2373, Val Loss: 10.9806
Epoch 4/10 - Train Loss: 5.1910, Val Loss: 11.9907
Epoch 5/10 - Train Loss: 5.1753, Val Loss: 11.1682
Epoch 6/10 - Train Loss: 5.1530, Val Loss: 11.6485
Epoch 7/10 - Train Loss: 5.1501, Val Loss: 11.4985
Epoch 8/10 - Train Loss: 5.1334, Val Loss: 11.4764
Epoch 9/10 - Train Loss: 5.1243, Val Loss: 11.5945
Epoch 10/10 - Train Loss: 5.1085, Val Loss: 12.2402
Experiment 2/15
Config: {'num_heads': 4, 'num_layers': 3, 'learning_rate': 0.0005, 'batch_size': 32}
______
Epoch 1/10 - Train Loss: 4.8733, Val Loss: 4.3700
Epoch 2/10 - Train Loss: 4.1209, Val Loss: 4.0380
Epoch 3/10 - Train Loss: 3.8970, Val Loss: 3.8139
Epoch 4/10 - Train Loss: 3.7588, Val Loss: 3.7099
Epoch 5/10 - Train Loss: 3.6813, Val Loss: 3.6829
Epoch 6/10 - Train Loss: 3.6150, Val Loss: 3.6415
Epoch 7/10 - Train Loss: 3.5662, Val Loss: 3.6067
Epoch 8/10 - Train Loss: 3.5192, Val Loss: 3.5755
Epoch 9/10 - Train Loss: 3.4726, Val Loss: 3.5741
Epoch 10/10 - Train Loss: 3.4242, Val Loss: 3.5208
Experiment 3/15
Config: {'num_heads': 8, 'num_layers': 3, 'learning_rate': 0.001, 'batch_size': 128}
Epoch 1/10 - Train Loss: 5.7630, Val Loss: 5.6792
Epoch 2/10 - Train Loss: 5.5046, Val Loss: 11.5638
Epoch 3/10 - Train Loss: 5.2794, Val Loss: 12.6781
Epoch 4/10 - Train Loss: 5.2329, Val Loss: 12.3284
Epoch 5/10 - Train Loss: 5.1877, Val Loss: 5.7439
Epoch 6/10 - Train Loss: 4.9255, Val Loss: 5.3508
Epoch 7/10 - Train Loss: 4.6947, Val Loss: 5.3394
Epoch 8/10 - Train Loss: 4.6441, Val Loss: 5.2400
Epoch 9/10 - Train Loss: 4.6306, Val Loss: 5.4277
Epoch 10/10 - Train Loss: 4.5485, Val Loss: 4.9637
Experiment 4/15
Config: {'num_heads': 8, 'num_layers': 3, 'learning_rate': 0.0005, 'batch_size': 64}
Epoch 1/10 - Train Loss: 5.0353, Val Loss: 4.6216
Epoch 2/10 - Train Loss: 4.3090, Val Loss: 4.1364
Epoch 3/10 - Train Loss: 3.9351, Val Loss: 3.8649
Epoch 4/10 - Train Loss: 3.7157, Val Loss: 3.7105
Epoch 5/10 - Train Loss: 3.5845, Val Loss: 3.6769
Epoch 6/10 - Train Loss: 3.4812, Val Loss: 3.5582
Epoch 7/10 - Train Loss: 3.4006, Val Loss: 3.4847
Epoch 8/10 - Train Loss: 3.3247, Val Loss: 3.4388
Epoch 9/10 - Train Loss: 3.2608, Val Loss: 3.4493
Epoch 10/10 - Train Loss: 3.2101, Val Loss: 3.3976
```

Overfitting Indicators:

Training loss decreases, validation loss increases/stagnates Experiment 1

Unstable Training:

Wild validation loss fluctuations Experiment 3 (epochs 1-4)

Healthy Training:

Both losses decrease together Validation loss doesn't diverge from training Experiments 2 and 4

```
Optimal Configuration (so far):
optimal_config = {
    'num_heads': 4,  # Sufficient complexity
    'num_layers': 3,  # Prevents overfitting
    'learning_rate': 0.0005, # Stable convergence
    'batch_size': 32  # Best generalization
}
```