Stochastic Bandits The UCB algorithm

Yevgeny Seldin

Quick recap of the last lecture

- Regret: $R_T = \sum_{t=1}^{T} \ell_{t,A_t} \min_{a} \sum_{t=1}^{T} \ell_{t,a}$
- Expected regret: $\mathbb{E}[R_T] = \mathbb{E}\left[\sum_{t=1}^T \ell_{t,A_t}\right] \mathbb{E}\left[\min_a \sum_{t=1}^T \ell_{t,a}\right]$
- Pseudo-regret: $\bar{R}_T = \mathbb{E} \left[\sum_{t=1}^T \ell_{t,A_t} \right] \min_a \mathbb{E} \left[\sum_{t=1}^T \ell_{t,a} \right] = \mathbb{E} \left[\sum_{t=1}^T \ell_{t,A_t} \right] T\mu^*$ $= \sum_{a=1}^K \Delta(a) \mathbb{E} [N_T(a)]$

Lower Confidence Bound (LCB) algorithm for losses (Originally Upper Confidence Bound (UCB) for rewards) ("Optimism in the face of uncertainty" approach)

- Define $L_t^{CB}(a) = \hat{\mu}_{t-1}(a) \sqrt{\frac{3 \ln t}{2N_{t-1}(a)}}$ lower confidence bound
 - (We will show that with high probability $L_t^{CB}(a) \le \mu(a)$ for all t)
- LCB Algorithm:
 - Play each arm once
 - For t = K + 1, K + 2, ...:
 - Play $A_t = \arg\min_{a} L_t^{CB}(a)$

- No knowledge of *T*
- No knowledge of Δ
- Works for any K

Rewards ↔ Losses

$$\ell_{t,a} = 1 - r_{t,a}$$

$$r_{t,a} = 1 - \ell_{t,a}$$

• Theorem:

$$\bar{R}_T \le 6 \sum_{a:\Delta(a)>0} \frac{\ln T}{\Delta(a)} + \left(1 + \frac{\pi^2}{3}\right) \sum_a \Delta(a)$$

- Proof:
 - When can we play $a \neq a^*$?
 - Bound the number of times $L_t^{CB}(a) \leq L_t^{CB}(a^*)$

Proof

•
$$L_t^{CB}(a) = \hat{\mu}_{t-1}(a) - \sqrt{\frac{3 \ln t}{2N_{t-1}(a)}}$$

•
$$\bar{R}_t(a) = \sum_a \Delta(a) \mathbb{E}[N_T(a)]$$

- Bound the expected number of times $L_t^{CB}(a) \leq L_t^{CB}(a^*)$
- The expected number of times $L_t^{CB}(a) \leq L_t^{CB}(a^*)$ is bounded by
 - 1. The expected number of times $L_t^{CB}(a^*) \ge \mu(a^*)$
 - 2. Plus expected the number of times $L_t^{CB}(a) \leq \mu(a^*)$

Proof continued

- 1. The expected number of times $L_t^{CB}(a^*) \leq \mu(a^*)$ is bounded by The expected number of times $\hat{\mu}_t(a^*) \geq \mu(a^*) + \sqrt{\frac{3 \ln t}{2N_{t-1}(a^*)}}$
- $L_{t}^{CB}(a^{*}) \quad \mu(a^{*}) \quad \hat{\mu}_{t}(a^{*}) \quad L_{t}^{CB}(a) \qquad \hat{\mu}_{t}(a) \quad \mu(a)$ $0 \qquad \qquad \langle \frac{3 \ln t}{2N_{t-1}(a^{*})} \qquad \langle \frac{3 \ln t}{2N_{t-1}(a)} \rangle$ $\Delta(a)$
- 2. The expected the number of times $L_t^{CB}(a) \leq \mu(a^*)$ is bounded by
 - 2.1 The expected number of times $\hat{\mu}_t(a) \leq \mu(a) \sqrt{\frac{3 \ln t}{2N_{t-1}(a)}}$

$$\begin{aligned} 2.2 \text{ If } \widehat{\mu}_t(a) &> \mu(a) - \sqrt{\frac{3 \ln t}{2N_{t-1}(a^*)}} \text{ then} \\ L_t^{CB}(a) &= \widehat{\mu}_{t-1}(a) - \sqrt{\frac{3 \ln t}{2N_{t-1}(a)}} > \mu(a) - 2\sqrt{\frac{3 \ln t}{2N_{t-1}(a)}} = \mu(a^*) + \Delta(a) - \sqrt{\frac{6 \ln t}{N_{t-1}(a)}} \\ \text{and so we may have } L_t^{CB}(a) &\leq \mu(a^*) \text{ if } \sqrt{\frac{6 \ln t}{N_{t-1}(a)}} > \Delta(a) \\ &\Rightarrow N_t(a) \leq \frac{6 \ln t}{\Lambda(a)^2} \leq \frac{6 \ln T}{\Lambda(a)^2} \end{aligned}$$

• Mid-summary: $\mathbb{E}[N_T(a)] \leq \left[\frac{6 \ln T}{\Delta(a)^2}\right] + \mathbb{E}[1.] + \mathbb{E}[2.1]$

Proof continued

- Let $F(a^*)$ be the expected number of times $\hat{\mu}_t(a^*) \ge \mu(a^*) + \sqrt{\frac{3 \ln}{2N_{t-1}(a^*)}}$
- Bound $\mathbb{P}\left(\hat{\mu}_{t-1}(a^*) \mu(a^*) \ge \sqrt{\frac{3 \ln t}{2N_{t-1}(a^*)}}\right)$ $N_{t-1}(a^*)$ random variable dependent on $\hat{\mu}_t(a^*)$!
- · Idea: break dependent events into independent events and take a union bound
- Introduce X_1 , ..., X_T r.v. with the same distribution as ℓ_{t,a^*}
- Let $\bar{\mu}_s = \frac{1}{s} \sum_{i=1}^s X_i$

•
$$\mathbb{P}\left(\hat{\mu}_{t-1}(a^*) - \mu(a^*) \ge \sqrt{\frac{3 \ln t}{2N_{t-1}(a^*)}}\right) \le \mathbb{P}\left(\exists s : \bar{\mu}_s - \mu(a^*) \ge \sqrt{\frac{\ln t^3}{2s}}\right)$$

$$\underset{\text{union}}{\le} \sum_{s=1}^t \mathbb{P}\left(\bar{\mu}_s - \mu(a^*) \ge \sqrt{\frac{\ln t^3}{2s}}\right)$$

$$\underset{\text{Hoeffding}}{\le} \sum_{s=1}^t \frac{1}{t^3} = \frac{1}{t^2}$$

•
$$\mathbb{E}[F(a^*)] = \sum_{t=1}^{\infty} \mathbb{P}\left(L_t^{CB}(a^*) \ge \mu(a^*)\right) \le \sum_{t=1}^{\infty} \frac{1}{t^2} \le \frac{\pi^2}{6}$$

$$\ell_{1,a}^*, \ell_{2,a}^*, \ell_{3,a}^*, \dots$$

Proof summary

•
$$\bar{R}_t(a) = \sum_a \Delta(a) \mathbb{E}[N_T(a)]$$

•
$$\mathbb{E}[N_T(a)] \leq \underbrace{\begin{bmatrix} 6 \ln T \\ \Delta(a)^2 \end{bmatrix}}_{\text{The time it takes for confidence intervals to start working}}_{\text{The expected number of times confidence intervals fail}}$$

•
$$\bar{R}_T \le 6 \sum_{a:\Delta(a)>0} \frac{\ln}{\Delta(a)} + \left(1 + \frac{\pi^2}{3}\right) \sum_a \Delta(a)$$

- Home assignment:
 - Take $L_t^{CB}(a) = \hat{\mu}_{t-1}(a) \sqrt{\frac{2 \ln t}{2N_{t-1}(a)}}$ (instead of $L_t^{CB}(a) = \hat{\mu}_{t-1}(a) \sqrt{\frac{3 \ln t}{2N_{t-1}(a)}}$; i.e. confidence $\frac{1}{t^2}$ instead $\frac{1}{t^3}$)
 - Show $\bar{R}_T \le 4\sum_{a:\Delta(a)>0} \frac{\ln}{\Delta(a)} + (2\ln T + 3)\sum_a \Delta(a)$

LCB algorithm dynamics (with $L_t^{CB}(a) = \hat{\mu}_{t-1}(a) - \sqrt{\frac{2 \ln t}{2N_{t-1}(a)}}$)

$$\sqrt{\frac{2 \ln t}{2N_{t-1}(a)}} = \theta(\Delta(a))$$
, i.e. $N_t(a) = \theta\left(\frac{\ln t}{\Delta(a)^2}\right)$