Multiprocessing

Memuat built-in libraries yang akan digunakan

```
from os import getpid
from time import time, sleep
from multiprocessing import cpu_count, Pool, Process
```

- **getpid** digunakan untuk mengambil ID proses
- **time** digunakan untuk mengambil waktu(detik)
- **sleep** digunakan untuk memberi jeda waktu(detik)
- **cpu_count** digunakan untuk melihat jumlah CPU
- **Pool** adalah sebuah class pada library multiprocessing yang gunanya untuk melakukan pemrosesan paralel dengan menggunakan proses sebanyak jumlah CPU pada computer
- **Process** adalah sebuah class pada library multiprocessing yang gunanya untuk melakukan pemrosesan paralel dengan menggunakan proses secara beruntun pada computer

• Inisialisasi fungsi yang akan digunakan

```
# Inisialisasi fungsi yang akan digunakan:
def cetak(i):
    print("Cetak angka", i+1, "- punya ID proses", getpid())
    sleep(1)
```

Function di atas digunakan untuk mencetak angka (yang tersimpan dalam variabel i) beserta ID proses sejumlah parameter yang diberikan. Lalu sleep untuk memberi jeda waktu(detik) sebanyak parameter yang diberikan.

1. Pemrosesan sekuensial

Pemrosesan sekuensial ini berlangsung secara berurutan/satu-satu (pemanggilan fungsi cetak ditangani oleh proses yang sama)

Output:

```
1. Pemrosesan Sekuensial
Cetak angka 1 - punya ID proses 1715
Cetak angka 2 - punya ID proses 1715
Cetak angka 3 - punya ID proses 1715
Cetak angka 4 - punya ID proses 1715
Cetak angka 5 - punya ID proses 1715
Cetak angka 6 - punya ID proses 1715
Cetak angka 7 - punya ID proses 1715
Cetak angka 8 - punya ID proses 1715
Cetak angka 9 - punya ID proses 1715
Cetak angka 10 - punya ID proses 1715
```

• 2. Multiprocessing dengan kelas Process

Pemrosesan multiprocessing ini berlangsung secara paralel/bersamaan (pemanggilan fungsi cetak ditangani oleh satu proses saja, kemudian untuk pemanggilan selanjutnya ditangani oleh proses yang lain) dengan menggunakan proses secara beruntun pada komputer

```
# 2. Multiprocessing dengan kelas Process
print("2. Multiprocessing dengan kelas Process")
# Untuk menampung proses-proses
kumpulan_proses = []
# Untuk mendapatkan waktu sebelum eksekusi
process_awal = time()
# Proses berlangsung
for i in range(10):
    p = Process(target=cetak, args=(i,))
    kumpulan_proses.append(p)
    p.start()
# Untuk menggabungkan proses-proses agar tidak loncat ke proses sebelumnya
for i in kumpulan_proses:
    p.join()
# Untuk mendapatkan waktu setelah eksekusi
process_akhir = time()
print("-"*50)
```

Output

```
2. Multiprocessing dengan kelas Process
Cetak angka 1 - punya ID proses 1716
Cetak angka 3 - punya ID proses 1718
Cetak angka 2 - punya ID proses 1717
Cetak angka 4 - punya ID proses 1719
Cetak angka 6 - punya ID proses 1721
Cetak angka 5 - punya ID proses 1720
Cetak angka 8 - punya ID proses 1723
Cetak angka 7 - punya ID proses 1722
Cetak angka 9 - punya ID proses 1724
Cetak angka 10 - punya ID proses 1725
```

• 3. Multiprocessing dengan kelas Pool

Pemrosesan multiprocessing ini berlangsung secara paralel dengan menggunakan proses sebanyak jumlah CPU pada computer.

```
# 3. Multiprocessing dengan kelas Pool:
print("3. Multiprocessing dengan kelas Pool")

# Untuk mendapatkan waktu sebelum eksekusi
pool_awal = time()

# Proses berlangsung
pool = Pool()
pool.map(cetak, range(0,10))
pool.close()

# Untuk mendapatkan waktu sebelum eksekusi
pool_akhir = time()
print("-"*50)
```

Output

```
3. Multiprocessing dengan kelas Pool
Cetak angka 1 - punya ID proses 1726
Cetak angka 2 - punya ID proses 1726
Cetak angka 3 - punya ID proses 1726
Cetak angka 4 - punya ID proses 1726
Cetak angka 5 - punya ID proses 1726
Cetak angka 6 - punya ID proses 1726
Cetak angka 7 - punya ID proses 1726
Cetak angka 8 - punya ID proses 1726
Cetak angka 9 - punya ID proses 1726
```

Membandingkan waktu eksekusi

```
# Bandingkan waktu eksekusi
print("Bandingkan waktu eksekusi")
print("Sekuensial :", sekuensial_akhir - sekuensial_awal, "detik")
print("Kelas Process :", process_akhir - process_awal, "detik")
print("Kelas Pool:", pool_akhir - pool_awal, "detik")
```

Output:

```
Bandingkan waktu eksekusi
Sekuensial : 10.013147115707397 detik
Kelas Process : 1.1147277355194092 detik
Kelas Pool: 10.14079236984253 detik
```

Proses sekuensial lebih lambat dibandingkan dengan multiprocessing (proses paralel). Untuk multiprocessing kelas Process lebih cepat dibandingkan kelas Pool. Penggunaan metodemetode processing ini disesuaikan dengan kebutuhan.

Penjelasan Latihan Soal

```
Contoh input :

3

Contoh Output :
```

```
Sekuensial

1 Ganjil - ID proses ****

2 Genap - ID proses ****

3 Ganjil - ID proses ****

multiprocessing.Process

1 Ganjil - ID proses ****

2 Genap - ID proses ****

3 Ganjil - ID proses ****

multiprocessing.Pool

1 Ganjil - ID proses ****

2 Genap - ID proses ****

3 Ganjil - ID proses ****

Waktu eksekusi sekuensial : ** detik
Waktu eksekusi multiprocessing.Process : ** detik
Waktu eksekusi multiprocessing.Pool : ** detik
Waktu eksekusi multiprocessing.Pool : ** detik
```

Code

Pertama, memuat built-in libraries yang akan digunakan

```
from os import getpid
from time import time, sleep
from multiprocessing import cpu_count, Pool, Process
```

Kedua, membuat variabel input agar user dapat memasukkan jumlah batasnya.

```
# input batas
batas = int(input("Masukkan batas : "))
```

Ketiga, inisialisasi fungsi untuk mencetak a sebagai bilangan ganjil apabila a mod 2 = 1 dan mencetak bilangan genap untuk pengecualiannya serta jeda waktu yang diberikan adalah 1 detik.

```
# Inisialisasi fungsi
def cetak(i):
    a = i + 1
    if a % 2 == 1:
        print(a, "Ganjil - ID proses", getpid())
    else:
        print(a, "Genap - ID proses", getpid())
    sleep(1)
```

Karena i dimulai dari 0 maka perlu ditambah 1 agar sesuai dengan output yang diharapkan

Keempat, pemrosesan sekuensial

Kelima, pemrosesan multiprocessing kelas Process

```
# 2. Multiprocessing dengan kelas Process
print("- Multiprocessing dengan kelas Process -")

# Untuk menampung proses-proses
kumpulan_proses = []

# Untuk mendapatkan waktu sebelum eksekusi
process_awal = time()

# Proses berlangsung
for i in range(batas):
    p = Process(target=cetak, args=(i,))
    kumpulan_proses.append(p)
    p.start()

# Untuk menggabungkan proses-proses agar tidak loncat ke proses sebelumnya
for i in kumpulan_proses:
    p.join()

# Untuk mendapatkan waktu setelah eksekusi
process_akhir = time()
print("")
```

Keenam, pemrosesan multiprocessing kelas Pool

```
# 3. Multiprocessing dengan kelas Pool:
print("- Multiprocessing dengan kelas Pool -")

# Untuk mendapatkan waktu sebelum eksekusi
pool_awal = time()

# Proses berlangsung
pool = Pool()
pool.map(cetak, range(batas))
pool.close()

# Untuk mendapatkan waktu sebelum eksekusi
pool_akhir = time()
print("")
print("-"*50)
```

Terakhir, membandingkan kecepatan waktu eksekusi untuk tiap processingnya

```
# Bandingkan waktu eksekusi
print("Perbandingan waktu eksekusi")
print("Waktu eksekusi sekuensial :", sekuensial_akhir - sekuensial_awal, "detik>
print("Waktu eksekusi multiprocessing.Process :", process_akhir - process_awal,>
print("Waktu eksekusi multiprocessing.Pool:", pool_akhir - pool_awal, "detik")
```

Output

```
Masukkan batas : 3
- Pemrosesan Sekuensial -
1 Ganjil - ID proses 1734
2 Genap - ID proses 1734
3 Ganjil - ID proses 1734
- Multiprocessing dengan kelas Process -
1 Ganjil - ID proses 1735
2 Genap - ID proses 1736
3 Ganjil - ID proses 1737
- Multiprocessing dengan kelas Pool -
1 Ganjil - ID proses 1738
2 Genap - ID proses 1738
3 Ganjil - ID proses 1738
Perbandingan waktu eksekusi
Waktu eksekusi sekuensial : 3.0037899017333984 detik
Waktu eksekusi multiprocessing.Process : 1.046330213546753 detik
Waktu eksekusi multiprocessing.Pool: 3.070023775100708 detik
```

Full Script

```
GNU nano 6.2
                                  Tugas 8.py
from os import getpid
from time import time, sleep
from multiprocessing import cpu count, Pool, Process
batas = int(input("Masukkan batas : "))
def cetak(i):
   a = i + 1
   if a % 2 == 1:
       print(a, "Ganjil - ID proses", getpid())
       print(a, "Genap - ID proses", getpid())
   sleep(1)
print("- Pemrosesan Sekuensial -")
sekuensial awal = time()
for i in range(batas):
   cetak(i)
sekuensial akhir = time()
print("")
print("- Multiprocessing dengan kelas Process -")
kumpulan proses = []
process awal = time()
```

```
for i in range(batas):
    p = Process(target=cetak, args=(i,))
    kumpulan proses.append(p)
    p.start()
for i in kumpulan proses:
    p.join()
process akhir = time()
print("")
print("- Multiprocessing dengan kelas Pool -")
pool awal = time()
# Proses berlangsung
pool = Pool()
pool.map(cetak, range(batas))
pool.close()
pool akhir = time()
print("")
print("-"*50)
print("Perbandingan waktu eksekusi")
print("Waktu eksekusi sekuensial :", sekuensial_akhir - sekuensial_awal, "detik>
print("Waktu eksekusi multiprocessing.Process :", process_akhir - process_awal,>
print("Waktu eksekusi multiprocessing.Pool:", pool akhir - pool awal, "detik")
```