Midterm Exam 2

MATH 755/855, November 18, 2020

NI	C
Name	Score

1. (15pts) Let X be a continuous random variable with probability density function

$$f(x) = \begin{cases} 2x, & \text{if } 0 \le x \le 1; \\ 0, & \text{otherwise;} \end{cases}$$

- (a) (10pts) Find P(X < 0.5) and $P(0.25 \le X \le 0.75)$.
- (b) (5pts) Find the 90th percentile of the distribution of X, i.e., find the constant $x_{0.9}$ such that $P(X \le x_{0.9}) = 0.9$.

2. (15pts) If X is a Gamma random variable with $\alpha = 2$ and $\lambda = 3$, i.e., X has the following p.d.f.

$$X \sim f(x) = \begin{cases} 9xe^{-3x}, & \text{if } x \ge 0; \\ 0, & \text{otherwise;} \end{cases}$$

Let Y = 2X. Find the probability density function of random variable Y, what distribution does it follow?

3. (30pts) A fair coin is tossed three times. Let X denote the number of heads on the first toss and Y the total number of heads. The joint frequency function of (X,Y) is derived and given in the following table:

$X \setminus Y$	0	1	2	3	
0	1/8	1/4	1/8	0	
1	0	1/8	1/4	1/8	

- (a) (10pts) Find P(X + Y > 2) and $P(Y X \ge 1)$.
- (b) (5pts) Compute the marginal distributions of X and Y.
- (c) (5pts) Are X and Y independent? Why?
- (d) (5pts) Compute the conditional frequency function of X given Y=1.
- (e) (5pts) Find $P_{Y|X}(Y \ge 2|X = 1)$.

4. (25pts) The joint probability density function of X and Y is given by

$$f(x,y) = \begin{cases} x + y, & \text{if } 0 < x < 1, \ 0 < y < 1; \\ 0, & \text{otherwise.} \end{cases}$$

- (a) (10pts) Find $P(Y \ge X^2)$.
- (b) (10pts) Find the marginal density functions of X and Y. Are X and Y independent? Why?
- (c) (5pts) Find the conditional density $f_{Y|X}(y|0.3)$? i.e., $f_{Y|X}(y|x)$ when x=0.3.

- 5. (15pts) Let random variable X follow a uniform distribution on [0, 1]. Conditional on X = x, a random variable Y has a uniform distribution on [x, 1], i.e., $Y|_{X=x} \sim U[x, 1]$.
 - (a) (5pts) Find the joint density function of (X, Y) and the marginal density function of Y.
 - (b) (5pts) Find the conditional density $f_{X|Y}(x|0.6)$, i.e., $f_{X|Y}(x|y)$ when Y=0.6.
 - (c) (5pts) Find $P(X \ge 0.5)$ and $P(X \ge 0.5|Y = 0.6)$.