Project Title

Author Name

September 14, 2017

Contents

1	Ref	erence Material
	1.1	Table of Units
	1.2	Table of Symbols
	1.3	Abbreviations and Acronyms
2	Intr	roduction
	2.1	Purpose of Document
	2.2	Scope of Requirements
	2.3	Characteristics of Intended Reader
	2.4	Organization of Document
3	Ger	neral System Description
	3.1	System Context
	3.2	User Characteristics
	3.3	System Constraints
4	Spe	cific System Description
	4.1	Problem Description
		4.1.1 Terminology and Definitions
		4.1.2 Physical System Description
		4.1.3 Goal Statements
	4.2	Solution Characteristics Specification
		4.2.1 Assumptions
		4.2.2 Theoretical Models
		4.2.3 General Definitions
		4.2.4 Data Definitions
		4.2.5 Instance Models
		4.2.6 Data Constraints
		4.2.7 Properties of a Correct Solution

5	Requirements	7
	5.1 Functional Requirements	7
	5.2 Nonfunctional Requirements	8
6	Likely Changes	8
7	Traceability Matrices and Graphs	8
8	Appendix	12
	8.1 Symbolic Parameters	12

1 Reference Material

This section records information for easy reference.

1.1 Table of Units

Throughout this document SI (Système International d'Unités) is employed as the unit system. In addition to the basic units, several derived units are used as described below. For each unit, the symbol is given followed by a description of the unit and the SI name.

symbol	unit	SI
m	length	metre
kg	mass	kilogram
\mathbf{S}	time	second
$^{\circ}\mathrm{C}$	temperature	centigrade
J	energy	Joule
W	power	Watt $(W = J s^{-1})$

Only include the units that your SRS actually uses —SS

1.2 Table of Symbols

The table that follows summarizes the symbols used in this document along with their units. The choice of symbols was made to be consistent with the heat transfer literature

Table 1: Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

and with existing documentation for solar water heating systems. The symbols are listed in alphabetical order.

symbol	unit	description
A_C	m^2	coil surface area
$A_{ m in}$	m^2	surface area over which heat is transferred in

[Use your problems actual symbols. The si package is a good idea to use for units. —SS]

1.3 Abbreviations and Acronyms

symbol	description
A	Assumption
DD	Data Definition
GD	General Definition
GS	Goal Statement
IM	Instance Model
LC	Likely Change
PS	Physical System Description
R	Requirement
SRS	Software Requirements Specification
ProgName	[put your program name here —SS]
Τ	Theoretical Model

[Add any other abbreviations or acronyms that you add —SS]

2 Introduction

[This SRS template is based on Smith and Lai (2005); Smith et al. (2007). It will get you started, but you will have to make changes. Any changes to section headings should be approved by the instructor, since that implies a deviation from the template. Although the bits shown below do not include type information, you may need to add this information for your problem. —SS]

[Feel free to change the appearance of the report by modifying the LaTeX commands. —SS]

[If you are documenting a family of models, you can start from this same template, but you will have to add a section for variabilities. For program families you should look at Smith (2006); Smith et al. (2017). You should be able to do one document that captures the commonality analysis and the requirements. —SS]

- 2.1 Purpose of Document
- 2.2 Scope of Requirements
- 2.3 Characteristics of Intended Reader
- 2.4 Organization of Document

3 General System Description

This section identifies the interfaces between the system and its environment, describes the user characteristics and lists the system constraints.

3.1 System Context

[Your system context will likely include an explicit list of user and system responsibilities —SS]

- User Responsibilities:
- $\bullet\,$ ProgName Responsibilities:
 - Detect data type mismatch, such as a string of characters instead of a floating point number

_

3.2 User Characteristics

The end user of ProgName should have an understanding of undergraduate Level 1 Calculus and Physics.

3.3 System Constraints

[You may not have any system constraints—SS]

4 Specific System Description

This section first presents the problem description, which gives a high-level view of the problem to be solved. This is followed by the solution characteristics specification, which presents the assumptions, theories, definitions and finally the instance models. [Add any project specific details that are relevant for the section overview.—SS]

4.1 Problem Description

ProgName is [what problem does your program solve? —SS]

4.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their meaning, with the purpose of reducing ambiguity and making it easier to correctly understand the requirements:

•

4.1.2 Physical System Description

The physical system of ProgName, as shown in Figure?, includes the following elements:

PS1:

PS2: ...

[A figure here may make sense for most SRS documents —SS]

4.1.3 Goal Statements

Given the [inputs—SS], the goal statements are:

GS1: [One sentence description of the goal. There may be more than one. Each Goal should have a meaningful label. —SS]

4.2 Solution Characteristics Specification

The instance models that govern ProgName are presented in Subsection 4.2.5. The information to understand the meaning of the instance models and their derivation is also presented, so that the instance models can be verified.

4.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical model by filling in the missing information for the physical system. The numbers given in the square brackets refer to the theoretical model [T], general definition [GD], data definition [DD], instance model [IM], or likely change [LC], in which the respective assumption is used.

A1: [Short description of each assumption. Each assumption should have a meaningful label. Use cross-references to identify the appropriate traceability to T, GD, DD etc., using commands like dref, ddref etc. —SS]

4.2.2 Theoretical Models

This section focuses on the general equations and laws that ProgName is based on. [Modify the examples below for your problem, and add additional models as appropriate. —SS]

Number	T1
Label Conservation of thermal energy	
Equation	$-\nabla \cdot \mathbf{q} + g = \rho C \frac{\partial T}{\partial t}$
Description	The above equation gives the conservation of energy for transient heat transfer in a material of specific heat capacity C (J kg ⁻¹ °C ⁻¹) and density ρ (kg m ⁻³), where \mathbf{q} is the thermal flux vector (W m ⁻²), g is the volumetric heat generation (W m ⁻³), T is the temperature (°C), t is time (s), and ∇ is the gradient operator. For this equation to apply, other forms of energy, such as mechanical energy, are assumed to be negligible in the system (A??). In general, the material properties (ρ and C) depend on temperature.
Source	http://www.efunda.com/formulae/heat_transfer/conduction/overview_cond.cfm
Ref. By	GD??

4.2.3 General Definitions

This section collects the laws and equations that will be used in deriving the data definitions, which in turn are used to build the instance models. [Some projects may not have any content for this section, but the section heading should be kept. —SS] [Modify the examples below for your problem, and add additional definitions as appropriate. —SS]

Number	GD1
Label Newton's law of cooling	
SI Units	$ m Wm^{-2}$
Equation	$q(t) = h\Delta T(t)$
Description	Newton's law of cooling describes convective cooling from a surface. The law is stated as: the rate of heat loss from a body is proportional to the difference in temperatures between the body and its surroundings.
	q(t) is the thermal flux (W m ⁻²).
	h is the heat transfer coefficient, assumed independent of T (A??) $(\mathrm{W}\mathrm{m}^{-2}{}^{\circ}\mathrm{C}^{-1}).$
	$\Delta T(t) = T(t) - T_{\text{env}}(t)$ is the time-dependent thermal gradient between the environment and the object (°C).
Source	(?, p. 8)
Ref. By	DD1, DD??

Detailed derivation of simplified rate of change of temperature

[This may be necessary when the necessary information does not fit in the description field. —SS]

4.2.4 Data Definitions

This section collects and defines all the data needed to build the instance models. The dimension of each quantity is also given. [Modify the examples below for your problem, and add additional definitions as appropriate. —SS]

Number	DD1
Label	Heat flux out of coil
Symbol	q_C
SI Units	$ m Wm^{-2}$
Equation	$q_C(t) = h_C(T_C - T_W(t))$, over area A_C
Description	T_C is the temperature of the coil (°C). T_W is the temperature of the water (°C). The heat flux out of the coil, q_C (W m ⁻²), is found by assuming that Newton's Law of Cooling applies (A??). This law (GD1) is used on the surface of the coil, which has area A_C (m ²) and heat transfer coefficient h_C (W m ⁻² °C ⁻¹). This equation assumes that the temperature of the coil is constant over time (A??) and that it does not vary along the length of the coil (A??).
Sources	?
Ref. By	IM <mark>1</mark>

4.2.5 Instance Models

This section transforms the problem defined in Section 4.1 into one which is expressed in mathematical terms. It uses concrete symbols defined in Section 4.2.4 to replace the abstract symbols in the models identified in Sections 4.2.2 and 4.2.3.

The goals [reference your goals—SS] are solved by [reference your instance models—SS]. [other details, with cross-references where appropriate.—SS] [Modify the examples below for your problem, and add additional models as appropriate.—SS]

Number	IM1
Label	Energy balance on water to find T_W
Input	m_W , C_W , h_C , A_C , h_P , A_P , t_{final} , T_C , T_{init} , $T_P(t)$ from IM??
	The input is constrained so that $T_{\text{init}} \leq T_C$ (A??)
Output	$T_W(t), 0 \le t \le t_{\text{final}}, \text{ such that}$
	$\frac{dT_W}{dt} = \frac{1}{\tau_W} [(T_C - T_W(t)) + \eta (T_P(t) - T_W(t))],$
	$T_W(0) = T_P(0) = T_{\text{init}} \text{ (A??) and } T_P(t) \text{ from IM??}$
Description T_W is the water temperature (°C).	
	T_P is the PCM temperature (°C).
	T_C is the coil temperature (°C).
	$ au_W = \frac{m_W C_W}{h_C A_C}$ is a constant (s).
	$\eta = \frac{h_P A_P}{h_C A_C}$ is a constant (dimensionless).
	The above equation applies as long as the water is in liquid form, $0 < T_W < 100^{\circ}\text{C}$, where 0°C and 100°C are the melting and boiling points of water, respectively (A??, A??).
Sources	?
Ref. By	IM??

Derivation of ...

[May be necessary to include this subsection in some cases. —SS]

4.2.6 Data Constraints

Tables 2 and 4 show the data constraints on the input and output variables, respectively. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The column for software constraints restricts the range of inputs to reasonable values. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise.

The specification parameters in Table 2 are listed in Table 3.

(*) [you might need to add some notes or clarifications —SS]

Table 2: Input Variables

Var	Physical Constraints	Software Constraints	Typical Value	Uncertainty
L	L > 0	$L_{\min} \le L \le L_{\max}$	1.5 m	10%

Table 3: Specification Parameter Values

Var	Value
L_{\min}	0.1 m

Table 4: Output Variables

Var	Physical Constraints
T_W	$T_{\text{init}} \le T_W \le T_C \text{ (by A??)}$

4.2.7 Properties of a Correct Solution

A correct solution must exhibit [fill in the details—SS]

5 Requirements

This section provides the functional requirements, the business tasks that the software is expected to complete, and the nonfunctional requirements, the qualities that the software is expected to exhibit.

5.1 Functional Requirements

R1: [Requirements for the inputs that are supplied by the user. This information has to be explicit. —SS]

R2: [It isn't always required, but often echoing the inputs as part of the output is a good idea. —SS]

R3: [Calculation related requirements. —SS]

R4: [Verification related requirements. —SS]

R5: [Output related requirements. —SS]

5.2 Nonfunctional Requirements

[List your nonfunctional requirements. You may consider using a fit criterion to make them verifiable. —SS]

6 Likely Changes

LC1: [Give the likely changes, with a reference to the related assumption (aref), as appropriate. —SS]

7 Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be additionally modified if a certain component is changed. Every time a component is changed, the items in the column of that component that are marked with an "X" may have to be modified as well. Table 5 shows the dependencies of theoretical models, general definitions, data definitions, and instance models with each other. Table 6 shows the dependencies of instance models, requirements, and data constraints on each other. Table 7 shows the dependencies of theoretical models, general definitions, data definitions, instance models, and likely changes on the assumptions.

[You will have to modify these tables for your problem. —SS]

The purpose of the traceability graphs is also to provide easy references on what has to be additionally modified if a certain component is changed. The arrows in the graphs represent dependencies. The component at the tail of an arrow is depended on by the component at the head of that arrow. Therefore, if a component is changed, the components that it points to should also be changed. Figure ?? shows the dependencies of theoretical models, general definitions, data definitions, instance models, likely changes, and assumptions on each other. Figure ?? shows the dependencies of instance models, requirements, and data constraints on each other.

	T1	T??	T??	GD1	GD??	DD1	DD??	DD??	DD??	IM1	IM??	IM??	IM??
T1													
T??			X										
T??													
GD1													
GD??	X												
DD1				X									
DD??				X									
DD??													
DD??								X					
IM <mark>1</mark>					X	X	X				X		
IM??					X		X		X	X			X
IM??		X											
IM??		X	X				X	X	X		X		

Table 5: Traceability Matrix Showing the Connections Between Items of Different Sections

	IM1	IM??	IM??	IM??	4.2.6	R??	R??
IM1		X				X	X
IM??	X			X		X	X
IM??						X	X
IM??		X				X	X
R??							
R??						X	
R??					X		
R2	X	X				X	X
R??	X						
R??		X					
R??			X				
R??				X			
R4			X	X			
R??		X					
R??		X					

 ${\bf Table~6:~Traceability~Matrix~Showing~the~Connections~Between~Requirements~and~Instance~Models}$

	A??																		
T1	X																		
T??																			
T??																			
GD1		X																	
GD??			X	X	X	X													
DD1							X	X	X										
DD??			X	X						X									
DD??																			
DD??																			
IM1											X	X		X	X	X			X
IM??												X	X			X	X	X	
IM??														X					X
IM??													X					X	
LC??				X															
LC??								X											
LC??									X										
LC??											X								
LC??												X							
LC??															X				

Table 7: Traceability Matrix Showing the Connections Between Assumptions and Other Items

References

- W. Spencer Smith. Systematic development of requirements documentation for general purpose scientific computing software. In *Proceedings of the 14th IEEE International Requirements Engineering Conference*, RE 2006, pages 209–218, Minneapolis / St. Paul, Minnesota, 2006. URL http://www.ifi.unizh.ch/req/events/RE06/.
- W. Spencer Smith and Lei Lai. A new requirements template for scientific computing. In J. Ralyté, P. Ågerfalk, and N. Kraiem, editors, Proceedings of the First International Workshop on Situational Requirements Engineering Processes Methods, Techniques and Tools to Support Situation-Specific Requirements Engineering Processes, SREP'05, pages 107–121, Paris, France, 2005. In conjunction with 13th IEEE International Requirements Engineering Conference.
- W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for engineering computation: A systematic approach for improving software reliability. *Reliable Computing*, Special Issue on Reliable Engineering Computation, 13(1):83–107, February 2007.
- W. Spencer Smith, John McCutchan, and Jacques Carette. Commonality analysis for a family of material models. Technical Report CAS-17-01-SS, McMaster University, Department of Computing and Software, 2017.

8 Appendix

[Your report may require an appendix. For instance, this is a good point to show the values of the symbolic parameters introduced in the report. --SS]

8.1 Symbolic Parameters

[The definition of the requirements will likely call for SYMBOLIC_CONSTANTS. Their values are defined in this section for easy maintenance. —SS]