optimization and learning for control

· this course will focus on the following stochastic optimal control problem: (SOCP) minimize cost (x, re) subject to $x_{t+1} \sim dynamics(t, x_t, u_t)$ $X \in X$ is the state - we'll consider $X = \mathbb{R}^d$ and $|X| < \infty$ ret e Il is the control input / decision voviable (finite set) $x: [0,T) \rightarrow X$) "x" or "u" without subscript $u: [0,T) \rightarrow \mathcal{U}$) $t \in [0,T)$ denote either time history L> x/roit] is the "restriction" to times {0,1,...,t} a ~ b means " a is a random variable drawn from distribution b"

ex:
$$\min_{u} \sum_{t} C(x_{t}, u_{t}) - \sup_{t} of_{t} cost_{t}$$

st. $x_{t+1} = F(x_{t}, u_{t}) - difference_{t} equation_{t}$

overview Page

* clearly an optimiz	ation problem; where's the louring?
-> in the real world, over the known excurrence", either	cost c and dynamics F exclus - must be "learned" through by expert humous or expert algorithms
who is the expert?	
human	algonthim
1. start from 1st primar	\bigcup
- Newton's Laws) <	-these (-historical logs
- Maxwell's Egns / PE	t summarize) - automated experiments
- Navier-Stokes)	these -> (- simulations
2. employ domain experti	Se) BLACK (3° EMPLOY domain expertise
- operating regime	(MAGIC) - feature detection
- parameter estimate) 7 (- neural network architectur
3°. leverage the model	(stoch.) (3°. leverage the data
$u^{+} = u - v \cdot D C(1)$	u (grad.) $u + v \cdot u - v \cdot g(u)$
) desc. $E[g(u)] = D c(u)$
* takeaway: these two	"extremes" are closely related

overview Page 2

-> neither approach is "right"; best approach bridges both