Введение в математический анализ

Математическая логика. Последовательность.

Темы

- 1) Математическая логика
- 2) Последовательности

Лирическое отступление

«Математика с нуля»:

http://spacemath.xyz/

Математическая логика

Пример 1. Предложение «Сдать зачет по математике можно, зная блестяще теорию или решив все примеры» можно представить так *A∪B*, где *A:* «Сдать зачет можно, зная блестяще теорию», *B:* «Сдать зачет можно, решив все примеры»

Способы работы с выражениями

- > С помощью таблицы истинности.
- > С помощью основных законов логики высказываний.

Диаграммы Венна: http://libraryno.ru/1-2-operacii-nad-mnozhestvami-diagrammy-eylera-venna-dis matem nekr 2010/

1) Таблица истинности для конъюнкции (логическое умножение) $A \cap B$

			и
Α	В	F	
1	1	1	
1	0	0	
0	1	0	
0	0	0	

2) Таблица истинности для **дизъюнкции** $A \cup B$

Α	В	F	
1	1	1	
1	0	1	
0	1	1	/
0	0	0	

3) Логическое отрицание или инверсия: A

К исходному логическому выражению добавляется частица «не» или слова «неверно, что».

4) Логическое следование или импликация:

А – условие;

В – следствие.

 $A \rightarrow B$

ЕСЛИ ... , ТО

Α	В	F
1	1	1
1	0	0
0	1	1
0	0	1

5) Логическая равнозначность или эквивалентность:

 $\mathsf{A} \longleftrightarrow \mathsf{B}$

ТОГДА И ТОЛЬКО ТОГДА

Α	В	F
1	1	1
1	0	0
0	1	0
0	0	1

Математическая логика

Пример 2. Предложение «Если Сувар или Таиф проиграют, а Феникс выиграет тендер, то Альбатрос упрочит свое положение и мы понесем убытки» представляет собой импликацию $A \rightarrow B$, где посылка Aсоставлена из трех элементарных высказываний: Р: «Сувар проиграет», Q: «Таиф проиграет», R: «Феникс выиграет», а заключение B есть конъюнкция высказываний: *D:* «Альбатрос упрочит свое положение» и С: «Мы понесем убытки». С помощью введенных символов первоначальное предложение записывается в виде формулы: $((P \cup Q) \cap R) \rightarrow (D \cap C)$.

Пример 2. Предложение «Если Сувар или Таиф проиграют, а Феникс выиграет тендер, то Альбатрос упрочит свое положение и мы понесем убытки» представляет собой импликацию $A \rightarrow B$, где посылка A составлена из трех элементарных высказываний: P: «Сувар проиграет», Q: «Таиф проиграет», R: «Феникс выиграет», а заключение B есть конъюнкция высказываний: D: «Альбатрос упрочит свое положение» и C: «Мы понесем убытки». С помощью введенных символов первоначальное предложение записывается в виде формулы: $((P \cup Q) \cap R) \rightarrow (D \cap C)$.

Пусть Сувар проиграл (Р=«И»); Таиф выиграл (Q= «Л»); Феникс проиграл (R=«Л»);

Альбатрос упрочил своё положение (D=«И»); мы не понесли убытки (C=«Л»).

Пусть Сувар проиграл (Р=«И»); Таиф выиграл (Q= «Л»); Феникс проиграл (R=«Л»);

Альбатрос упрочил своё положение (D=«И»); мы не понесли убытки (C=«Л»).

Если истинностные значения простых переменных *P*, *Q*, *R*, *D*, *C* соответственно равны "*И*", "*Л*", "*Л*", "*Л*", "*И*", "*Л*", то истинностное значение сложного высказывания может быть определено механически, используя таблицы истинности логических операций, следующим образом

$$((P \cup Q) \cap R) \rightarrow (D \cap C)$$

$$(("N" \cup "Л") \cap "Л") \rightarrow ("N" \cap "Л")$$

$$("N" \cap "Л") \rightarrow "Л"$$

$$"Л" \rightarrow "Л"$$

$$"N"$$

Таблица истинности

Пример 3. Доказать, что при любых значениях P и Q справедлива формула: $(P \to Q) \leftrightarrow (\bar{P} \cup Q)$.

P	Q	$P \rightarrow Q$	$ar{P}$	$\bar{P} \cup Q$	$(P \to Q) \leftrightarrow (\bar{P} \cup Q)$
"N"	"N"	"N"	"Л"	"N"	" N "
" <i>N</i> "	"Л"	"Л"	"Л"	"Л"	" N "
"Л"	"N"	"N"	"N"	"N"	" N "
"Л"	"Л"	" N "	"И"	"N"	" N "

Высказывание, истинное при любых значениях входящих в нее простых высказываний, называется **тавтологией**.

- 1. Коммутативность конъюнкции: $A \cap B = B \cap A$.
- 2. Коммутативность дизъюнкции: $A \cup B = B \cup A$.
- 3. Ассоциативность конъюнкции: $A \cap (B \cap C) = (A \cap B) \cap C$.
- 4. Ассоциативность дизъюнкции: $A \cup (B \cup C) = (A \cup B) \cup C$.
- 5. Дистрибутивность конъюнкции относительно дизъюнкции: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 6. Дистрибутивность дизъюнкции относительно конъюнкции: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

- 7. Закон де Моргана относительно конъюнкции: $\overline{(A \cap B)} = \bar{A} \cup \bar{B}$.
- 8. Закон де Моргана относительно дизъюнкции: $\overline{(A \cup B)} = \bar{A} \cup \bar{B}$.
- 9. Закон поглощения для дизъюнкции: $A \cup (A \cap B) = A$.
- 10. Закон поглощения для конъюнкции: $A \cap (A \cup B) = A$.
- 11. Закон идемпотентности для конъюнкции: $A \cap A = A$.
- 12. Закон идемпотентности для дизъюнкции: $A \cup A = A$.

- 13. Закон противоречия: $A \cap \bar{A} = "Л"$.
- 14. Закон исключения третьего: $A \cup \bar{A} = "И"$.
- 15. Закон двойного отрицания: $\overline{(\bar{A})} = A$.
- 16. $A \cap "\Pi" = "\Pi", A \cap "H" = A$.
- 17. $A \cup "Л" = A$, $A \cup "И" = "И"$.

Пример 4. Упростить высказывание:

$$\overline{(A \cup (A \cap B))} \cup (A \cup (C \cap \overline{A})).$$

$$\overline{(A \cup (A \cap B))} \cup (A \cup (C \cap \overline{A})) = \\
= (\overline{A} \cap \overline{(A \cap B)}) \cup ((A \cup C) \cap (A \cup \overline{A})) = \\
= (\overline{A} \cap (\overline{A} \cup \overline{B})) \cup ((A \cup C) \cap "V") = \\
= \overline{A} \cup (A \cup C) = \\
= (\overline{A} \cup A) \cup C = \\
= "V" \cup C = \\
= "V"$$

Математическая логика

Пример 5. Богини Гера, Афина и Афродита пришли к юному Парису, чтобы тот решил, кто из них прекраснее. Представ перед Парисом, богини высказали следующие утверждения:

Афродита: «Я самая прекрасная».

Афина: «Афродита не самая прекрасная».

Гера: «Я самая прекрасная».

Афродита: «Гера не самая прекрасная».

Афина: «Я самая прекрасная».

Парис предположил, что все утверждения прекраснейшей из богинь истинны, а все утверждения двух других богинь ложны.

Афродита: «Я самая прекрасная».

Афина: «Афродита не самая прекрасная».

Гера: «Я самая прекрасная».

Афродита: «Гера не самая прекрасная».

Афина: «Я самая прекрасная».

Ď	Гера	Афина	Афродита
Гера:	1	8	5
Афина:		1	0
Афродита:	0	Q.	1

	Гера	Афина	Афродита
Гера:	1		
Афина:		1	0
Афродита:	0	<i>ii.</i>	1

- Разные ответы Афродиты => прекраснейшая Афродита или Гера.
- Тогда Афина не прекраснейшая (и лжёт).
- Афина говорит, что Афродита не прекраснейшая и это ложь => прекраснейшая Афродита.

Законы де Моргана

Каждого человека посещает мысль о том, что либо он должен поместить все деньги в банк, либо приобрести акции нефтяных компаний.

∀ человека посещает мысль ((∀ деньги положить в банк) ∨ (приобрести акции нефтяных компаний))

∃ человек не посещает мысль ((∃ деньги, не положенные в банк) ∧ (не приобретать акции нефтяных компаний))

Есть человек, которого не посещает мысль о том, что найдутся деньги, которые не следует доверять банкам и что нельзя покупать акции нефтяных компаний

Множества

Натуральные числа:

Целые числа:

$$0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, \dots$$

Рациональные числа:

$$\frac{m}{n}$$
, где n — натуральное, m — целое

 $\frac{m}{n}$, где n — натуральное, m — целое

$$2 = \frac{2}{1}$$

$$3.5 = \frac{35}{10} = \frac{7}{2}$$

$$-2.8 = \frac{-28}{10} = \frac{-14}{5}$$

$$0.33333333... = 0.(3) = ?$$

$$a = 0.(3)$$

$$10a = 3.(3)$$

$$10a = 3 + 0.(3)$$

$$10a = 3 + a$$

$$9a = 3$$

$$a = \frac{3}{9} = \frac{1}{3} \implies 0.(3) = \frac{1}{3}$$

$$a = 0.(18)$$

$$100a = 18.(18)$$

$$100a = 18 + 0.(18)$$

$$100a = 18 + a$$

$$99a = 18$$

$$a = \frac{18}{99} = \frac{2}{11} \implies 0.(18) = \frac{2}{11}$$

$$a = 1.32(18)$$

$$100a = 132.(18)$$

$$100a = 132 + 0.(18)$$

$$100a = 132 + \frac{2}{11}$$

$$a = \frac{1454}{1100} = \frac{727}{550} \Rightarrow 1.32(18) = \frac{727}{550}$$

$$a = 0.(9)$$

$$a = 0.(9)$$

$$10a = 9.(9)$$

$$10a = 9 + 0.(9)$$

$$10a = 9 + a$$

$$9a = 9$$

$$a = 1 \implies 0.(9) = ?1$$

Пара интересных примеров на логику.

Пример 7. За книгу заплатили 100р. и еще половину своей стоимости. Сколько стоит книга?

Пример 8. За книгу заплатили 100р., и осталось заплатить еще столько, сколько осталось бы заплатить, если бы за нее заплатили столько, сколько осталось заплатить. Сколько стоит книга?

Последовательности.

$$1, \quad -1, \quad 1, \quad -1, \quad 1, \quad -1, \quad \dots$$

Последовательности.

1,
$$-1$$
, 1, -1 , -1 , $(-1)^{n-1}$

1, 3, 5, 7, 9, 11,
$$(2n-1)$$

1, 4, 9, 16, 25, 36, n^2

$$\frac{b_1 = -102}{b_{n+1}} = 0.1$$

Найти 5-й член последовательности.

Предел последовательности.

Обозначение:

$$\lim_{n\to\infty}a_n=a$$

Пример 9:

$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\lim_{n\to\infty}\frac{1}{2^n}=0$

Предел последовательности.

$$\lim_{n\to\infty} a_n = a$$

Определение:

Для любого $\varepsilon>0$ существует номер $N(\varepsilon)$, такой что, для любого $n>N(\varepsilon)$ верно $|a_n-a|<\varepsilon$.

$$\forall \varepsilon > 0 \ \exists N(\varepsilon), \ \forall n > N(\varepsilon): |a_n - a| < \varepsilon.$$

Критерий Коши:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon), \ \forall \ n > N(\varepsilon), k > 0 : |a_n - a_{n+k}| < \varepsilon.$$

Критерий Коши.

Для любого $\varepsilon>0$ существует номер $N(\varepsilon)$, такой что, для любого $n>N(\varepsilon)$, k>0 верно $|a_n-a_{n+k}|<\varepsilon$.

$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{2^n}$

Критерий Коши.

Для любого $\varepsilon > 0$ существует номер $N(\varepsilon)$, такой что, для любого $n > N(\varepsilon)$, k > 0 верно $|a_n - a_{n+k}| < \varepsilon$.

$$\frac{1}{2}, \quad \frac{1}{4}, \quad \frac{1}{8}, \quad \frac{1}{16}, \quad \frac{1}{32}, \quad \frac{1}{2^n}$$

$$|a_n - a_{n+k}| = \left| \frac{1}{2^n} - \frac{1}{2^{n+k}} \right| = \frac{1}{2^n} \left| 1 - \frac{1}{2^k} \right| < \frac{1}{2^n} < \frac{1}{2^{N(\varepsilon)}} = \varepsilon$$

$$\frac{1}{2^{N(\varepsilon)}} = \varepsilon \quad \Rightarrow \quad 2^{N(\varepsilon)} = \frac{1}{\varepsilon} \quad \Rightarrow \quad N(\varepsilon) = -\log_2 \varepsilon$$

Критерий Коши.

$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{2^n}$

$$N(\varepsilon) = -\log_2 \varepsilon$$

$$N(10^{-3}) = -\log_2(10^{-3}) \approx 9.97$$

$$a_{10} = \frac{1}{2^{10}} = \frac{1}{1024} = 0.0009765625 < 10^{-3}$$

$$\lim_{n\to\infty}\frac{10000n}{n^2+1}=\left(\frac{\infty}{\infty}\right)=$$

- Выясниить тип неопределённости.
- Если в выражении дробь вида «многочлен делить на многочлен» поделить старшую степень.
- Поделить на n в этой степени числитель и знаменатель.

$$\lim_{n\to\infty} \frac{10000n}{n^2+1} = \left(\frac{\infty}{\infty}\right) = 0$$

$$\lim_{n\to\infty} \frac{\sqrt[3]{n^2}\sin(1000000n)}{n+1} = \left(\frac{\infty}{\infty}\right) =$$

$$\lim_{n\to\infty} \frac{10000n}{n^2+1} = \left(\frac{\infty}{\infty}\right) = 0$$

$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin(1000000n)}{n+1} = \left(\frac{\infty}{\infty}\right) = 0$$

$$\lim_{n\to\infty} \frac{2n^2 - 9}{3n^2 + n + 1} = \left(\frac{\infty}{\infty}\right) =$$

$$\lim_{n\to\infty} \frac{10000n}{n^2+1} = \left(\frac{\infty}{\infty}\right) = 0$$

$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin(1000000n)}{n+1} = \left(\frac{\infty}{\infty}\right) = 0$$

$$\lim_{n \to \infty} \frac{2n^2 - 9}{3n^2 + n + 1} = \left(\frac{\infty}{\infty}\right) = \frac{2}{3}$$

$$\lim_{n\to\infty}\frac{(1-2n)^2}{(2-n)(5n-1)}=\left(\frac{\infty}{\infty}\right)=$$

$$\lim_{n\to\infty} \frac{10000n}{n^2+1} = \left(\frac{\infty}{\infty}\right) = 0$$

$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin(1000000n)}{n+1} = \left(\frac{\infty}{\infty}\right) = 0$$

$$\lim_{n \to \infty} \frac{2n^2 - 9}{3n^2 + n + 1} = \left(\frac{\infty}{\infty}\right) = \frac{2}{3}$$

$$\lim_{n \to \infty} \frac{(1-2n)^2}{(2-n)(5n-1)} = \left(\frac{\infty}{\infty}\right) = \frac{(-2)^2}{-1 \cdot 5} = -\frac{4}{5}$$

$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right) = (\infty - \infty) =$$

$$= \lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n}\right) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} =$$

$$= \lim_{n \to \infty} \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = \left(\frac{1}{\infty}\right) = 0$$

$$\lim_{n\to\infty} \frac{3^n}{3^{n+1}} = \left(\frac{\infty}{\infty}\right) =$$

$$\lim_{n\to\infty} \frac{3^n}{3^{n+1}} = \left(\frac{\infty}{\infty}\right) = \frac{1}{3}$$

$$\lim_{n\to\infty}\frac{2^n}{3^n}=\left(\frac{\infty}{\infty}\right)=$$

$$\lim_{n\to\infty} \frac{3^n}{3^{n+1}} = \left(\frac{\infty}{\infty}\right) = \frac{1}{3}$$

$$\lim_{n \to \infty} \frac{2^n}{3^n} = \left(\frac{\infty}{\infty}\right) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

$$\lim_{n \to \infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}} = \left(\frac{\infty}{\infty}\right) =$$

$$\lim_{n\to\infty} \frac{3^n}{3^{n+1}} = \left(\frac{\infty}{\infty}\right) = \frac{1}{3}$$

$$\lim_{n \to \infty} \frac{2^n}{3^n} = \left(\frac{\infty}{\infty}\right) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

$$\lim_{n \to \infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}} = \left(\frac{\infty}{\infty}\right) = \lim_{n \to \infty} \frac{3^n \left(\left(-\frac{2}{3}\right)^n + 1\right)}{3^n \left(-2\left(-\frac{2}{3}\right)^n + 3\right)} = \frac{1}{3}$$

Небольшие замечания

$$1.\lim_{n\to\infty}\frac{n^k}{a^n}=0\ (a>1)$$

$$2. \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

3.
$$\lim_{n \to \infty} nq^n = 0 \ (|q| < 1)$$
 4. $\lim_{n \to \infty} \sqrt[n]{a} = 1 \ (a > 1)$

4.
$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \ (a > 1)$$

$$5.\lim_{n\to\infty}\frac{\log_a n}{n}=0\ (a>1)$$

$$6. \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$7. \lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$$

Теорема о двух милиционерах

Дано: $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, причем:

существует
$$\lim_{n\to\infty} a_n = a$$
, существует $\lim_{n\to\infty} c_n = a$, $a_n \le b_n \le c_n$,

тогда существует $\lim_{n\to\infty} b_n = a$

Теорема о двух милиционерах

Пример 10. Доказать
$$\lim_{n \to \infty} \frac{2^n}{n!} = 0$$

Теорема о двух милиционерах

Пример 10. Доказать
$$\lim_{n \to \infty} \frac{2^n}{n!} = 0$$

$$0 < \frac{2^n}{n!} = \frac{2 \cdot 2 \cdot 2 \cdot \dots \cdot 2}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} = 2 \cdot 1 \cdot \frac{2}{3} \cdot \frac{2}{4} \cdot \dots \cdot \frac{2}{n} \le 2 \cdot \left(\frac{2}{3}\right)^{n-2} = 0$$

Второй замечательный предел

Пример 11. Доказать ограниченность сверху и снизу $a_n = \left(1 + \frac{1}{n}\right)^n$

$$\left(1 + \frac{1}{n}\right)^n \ge 2$$

$$\left(1 + \frac{1}{n}\right)^n \le 1 + \frac{n}{1!} \left(\frac{1}{n}\right)^1 + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^2 + \frac{n(n-1)(n-2)}{2!} \left(\frac{1}{n}\right)^3 + \dots \le 1 + \frac{n}{n} \left(\frac{1}{n}\right)^n \le 1 + \frac{n}{n} \left(\frac{1}{n}\right)^n + \dots \le 1 + \frac{n}{n} \left(\frac{1}{n}\right)^n \le 1 + \frac{n}{n} \left(\frac{1}{n}\right)^n + \dots \le 1 + \frac{n}{n} \left(\frac{1}{n}\right)^n \le 1 + \frac{n}{n} \left(\frac{1}{n}\right)^n + \dots \le 1 + \frac{n}{n} \left(\frac{1}$$

$$\leq 1 + 1 + \frac{1}{2!} \frac{n(n-1)}{n \cdot n} + \frac{1}{3!} \frac{n(n-1)(n-2)}{n \cdot n \cdot n} + \dots = 2 + \frac{1}{2!} + \frac{1}{3!} + \dots \leq 2 + \frac{1}{2!} +$$

$$\leq 2 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 2 + 1 = 3$$

Второй замечательный предел

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = (1)^\infty = e$$

$$2 \le e \le 3$$

$$e \approx 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

Спасибо за внимание!