CS2102

Tutorial 01

- **Superkeys:** subset of attributes in a relation that <u>uniquely identifies</u> its tuples
 - No two distinct tuples of relation have the same values in all attributes of superkey
 - Finding superkey?
 - By enumeration, then
 - By process of elimination

- **Superkeys:** subset of attributes in a relation that <u>uniquely identifies</u> its tuples
 - No two distinct tuples of relation have the same values in all attributes of superkey
 - Finding superkey?
 - By enumeration, then
 - By process of elimination
- Example:
 - {A}

3

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

- **Superkeys:** subset of attributes in a relation that <u>uniquely identifies</u> its tuples
 - No two distinct tuples of relation have the same values in all attributes of superkey
 - Finding superkey?
 - By enumeration, then
 - By process of elimination

• Example:

- {A}
 - do not violate any superkey property

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

- **Superkeys:** subset of attributes in a relation that <u>uniquely identifies</u> its tuples
 - No two distinct tuples of relation have the same values in all attributes of superkey
 - Finding superkey?
 - By enumeration, then
 - By process of elimination
- Example:
 - {B}

3

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

- **Superkeys:** subset of attributes in a relation that <u>uniquely identifies</u> its tuples
 - No two distinct tuples of relation have the same values in all attributes of superkey
 - Finding superkey?
 - By enumeration, then
 - By process of elimination

• Example:

- {B}
 - (2,1,2,0) and (1,1,2,0) violates superkey property

Α	В	C	D	
3	0	0	1	
2	1	2	0	
1	1	2	0	
0	0	1	2	

Solution:

• Continuing the process, we get the following combinations of attributes

```
{A} {B} {C} {D}
{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}
{A,B,C} {A,B,D} {A,C,D} {B,C,D}
```

• {A,B,C,D}

A	В	C	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

Solution:

• Continuing the process, we get the following combinations of attributes

```
{A} {B} {C} {D}
{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}
{A,B,C} {A,B,D} {A,C,D} {B,C,D}
```

• Only the combinations above are *possible* superkeys

K					
Α	В	C	D		
3	0	0	1		
2	1	2	0		
1	1	2	0		
0	0	1	2		

Solution:

• Continuing the process, we get the following combinations of attributes

```
{A} {B} {C} {D}
{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}
{A,B,C} {A,B,D} {A,C,D} {B,C,D}
```

- How many combinations in total?
 - $2^n 1$ where n is the number of attributes
 - Can we not check them all?

A	В	U	D	
3	0	0	1	
2	1	2	0	
1	1	2	0	
0	0	1	2	

Solution:

• Continuing the process, we get the following combinations of attributes

```
{A} {B} {C} {D}
{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}
{A,B,C} {A,B,D} {A,C,D} {B,C,D}
```

- How many combinations in total?
 - $2^n 1$ where n is the number of attributes
 - Can we not check them all?

A	В	U	D	
3	0	0	1	
2	1	2	0	
1	1	2	0	
0	0	1	2	

• Improvement:

• Arrange the attributes as a *subset* of other attributes

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

• Improvement:

Check from top to bottom

Α	В	С	D	
3	0	0	1	
2	1	2	0	
1	1	2	0	
0	0	1	2	

• Improvement:

Check from top to bottom

A	В	С	D	
3	0	0	1	
2	1	2	0	
1	1	2	0	
0	0	1	2	

• Improvement:

Anything set that includes {A} may be a superkey!

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

• Improvement:

Check from top to bottom

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

• Improvement:

Check from top to bottom

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

• Improvement:

Check from top to bottom

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

• Improvement:

• Check from top to bottom (at second level)

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

• Improvement:

• Check from top to bottom (at second level)

Α	В	С	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

• Candidate keys: superkey that is <u>non-null</u> & <u>no proper subset</u> of a key is a superkey

R			
A	В	U	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

Candidate keys

• We can do top-down approach again, but now remove any superset

K				
Α	В	C	D	
3	0	0	1	
2	1	2	0	
1	1	2	0	
0	0	1	2	

Candidate keys

• But, {A} may NOT be an actual superkey, it is only a possible superkey

R				
Α	В	С	D	
3	0	0	1	
2	1	2	0	
1	1	2	0	
0	0	1	2	

Candidate keys

• So the *possible* candidate keys are those in blue

Α	В	C	D
3	0	0	1
2	1	2	0
1	1	2	0
0	0	1	2

- Foreign key: either <u>null</u> or appear as <u>primary key</u> in a referenced relation
 - Finding foreign key?
 - Check every attribute and eliminate violations

 W
 X
 Y
 Z

 0
 4
 0
 null

 1
 Null
 2
 null

 2
 1
 2
 null

 3
 0
 1
 null

- Foreign key: either <u>null</u> or appear as <u>primary key</u> in a referenced relation
 - Finding foreign key?
 - Check every attribute and eliminate violations
- Example:
 - W No violation
 - X
 - Y
 - Z

<u>3</u>	X	Y	Z
0	4	0	null
1	Null	2	null
2	1	2	null
3	0	1	null

- Foreign key: either <u>null</u> or appear as <u>primary key</u> in a referenced relation
 - Finding foreign key?
 - Check every attribute and eliminate violations

• Example:

- W No violation
- X 4 does not appear in r.A
- Y
- Z

B 0 1

<u>W</u>	X	Υ	Z
0	4	0	null
1	Null	2	null
2	1	2	null
3	0	1	null

- Foreign key: either <u>null</u> or appear as <u>primary key</u> in a referenced relation
 - Finding foreign key?
 - Check every attribute and eliminate violations

• Example:

- W No violation
- X 4 does not appear in r.A
- Y No violation
- Z

ľ	`
<u>A</u>	В
3	0
2	1
1	1
0	0

3					
3	X	Y	Z		
0	4	0	null		
1	Null	2	null		
2	1	2	null		
3	0	1	null		

- Foreign key: either <u>null</u> or appear as <u>primary key</u> in a referenced relation
 - Finding foreign key?
 - Check every attribute and eliminate violations

• Example:

- W No violation
- X 4 does not appear in r.A
- Y No violation
- Z No violation (all null)

r

<u>A</u>	В
3	0
2	1
1	1
0	0

 W
 X
 Y
 Z

 0
 4
 0
 null

 1
 Null
 2
 null

 1
 Null
 2
 null

 2
 1
 2
 null

 3
 0
 1
 null

- Equivalent queries: for every legal instance d of D, both Q_1 and Q_2 compute the same results on d
 - In general, no specific way to check
 - You can use certain property to help find violations/guide your thinking

Examples:

- Set difference is non-commutative $R S \neq S R$
- Projection removes duplicates
 - Subsequent operations may be affected by this removal of duplicates
- Operation must be valid
 - Union-compatible
 - The attribute referred must exists

- a) Equivalent
 - σ removes rows; π removes columns; in the end only the valid cells remain
- b) Not equivalent
 - Q_2 refers to non-existent attributes; hence invalid
- c) Equivalent
 - For both Q_1 and Q_2 , we have D as first column and Y as second column
- d) Equivalent
 - π will re-order the columns to be the same

e) Equivalent

• This cross-product is associative due to the tuple being "merged". Normally, cross-product are non-associative in other algebra (like set algebra.

f) Equivalent

 Union before or after projection does not change the order. Duplicates will be removed either way.

g) Not equivalent

- Let $r = \{(10,10)\}$ and $s = \{(10,20)\}$
- $Q_1 = \pi_A(\{(10,10)\} \{(10,20)\}) = \pi_A(\{(10,10)\}) = \{(10)\}$
- $Q_2 = \pi_A(\{(10,10)\}) \pi_A(\{(10,20)\}) = \{(10)\} \{(10)\} = \emptyset$

- a) Find pizza that Alice likes but Bob does not like
 - Let P_1 be the pizza Alice likes
 - Let P_2 be the pizza Bob likes
 - Then result is $P_1 P_2$
 - $P_1 = \pi_{\text{pizza}} (\sigma_{\text{cname}='\text{Alice}'}(\text{Likes}))$
 - $P_2 = \pi_{\text{pizza}} (\sigma_{\text{cname}='\text{Bob}'}(\text{Likes}))$

- b) Find all customer-restaurant pairs (C,R) where C and R are both located in the same area, and C likes some pizza that is sold by R.
 - To find out location of C
 - Customers table
 - To find out location of R
 - Restaurants table
 - To find out what R sells
 - Sells table
 - To find out what C likes
 - Likes table

Customers \times Restaurants \times Sells \times Likes

But need renaming to make sure the columns all have unique names

- b) Find all customer-restaurant pairs (C,R) where C and R are both located in the same area, and C likes some pizza that is sold by R.
 - To find out location of C
 - Customers table
 - To find out location of R
 - Restaurants table
 - To find out what R sells
 - Sells table
 - To find out what C likes
 - Likes table

```
ho_{(n_1,a_1)}(Customers)

ightharpoonup 
ho_{(n_2,a_2)}(Restaurants)

ightharpoonup 
ho_{(n_3,p_3,price)}(Sells)

ightharpoonup 
ho_{(n_4,p_4)}(Likes)
```

- b) Find all customer-restaurant pairs (C,R) where C and R are both located in the same area, and C likes some pizza that is sold by R.
 - (C,R) located in the same area
 - $a_1 = a_2$
 - C likes some pizza sold by R
 - $p_3 = p_4$
 - Connect Restaurants and Sells
 - $n_2 = n_3$
 - Connect Customers and Likes
 - $n_1 = n_4$

- b) Find all customer-restaurant pairs (C,R) where C and R are both located in the same area, and C likes some pizza that is sold by R.
 - Projection on only (C,R)
 - n₁, n₂

- Suppose that the database contains an additional relation Dislikes (<u>cname, pizza</u>) which indicates the pizzas that customers do not like. The database also satisfies the following constraint: for every customer $c \in \pi_{\text{cname}}(\text{Customers})$ and for every pizza $p \in \pi_{\text{pizza}}(\text{Contains})$, either $(c,p) \in \text{Likes or } (c,p) \in \text{Dislikes } (\text{in other words, you know the likes and dislikes of every customers with respect to all pizzas}). Given this database, find all customer pairs <math>(C_1, C_2)$ such that C_1 likes some pizza that C_2 does not like.
 - What C_1 likes
 - Like table
 - What C_2 dislikes
 - Dislike table

$$\rho_{(n_1,p_1)}(Likes)$$

$$\times$$

$$\rho_{(n_2,p_2)}(Dislikes)$$

- Suppose that the database contains an additional relation Dislikes (<u>cname, pizza</u>) which indicates the pizzas that customers do not like. The database also satisfies the following constraint: for every customer $c \in \pi_{\text{cname}}(\text{Customers})$ and for every pizza $p \in \pi_{\text{pizza}}(\text{Contains})$, either $(c,p) \in \text{Likes or } (c,p) \in \text{Dislikes } (\text{in other words, you know the likes and dislikes of every customers with respect to all pizzas}). Given this database, find all customer pairs <math>(C_1,C_2)$ such that C_1 likes some pizza that C_2 does not like.
 - The pizza must be the same

•
$$p_1 = p_2$$

- Do we need to check that the two customers are different?
 - i.e., $n_1 \neq n_2$
 - No, because it is guaranteed to be distinct

- Suppose that the database contains an additional relation Dislikes (<u>cname, pizza</u>) which indicates the pizzas that customers do not like. The database also satisfies the following constraint: for every customer $c \in \pi_{\text{cname}}(\text{Customers})$ and for every pizza $p \in \pi_{\text{pizza}}(\text{Contains})$, either $(c,p) \in \text{Likes or } (c,p) \in \text{Dislikes } (\text{in other words, you know the likes and dislikes of every customers with respect to all pizzas}). Given this database, find all customer pairs <math>(C_1, C_2)$ such that C_1 likes some pizza that C_2 does not like.
 - Project only on (C_1, C_2)
 - n_1, n_2

Suppose that the database contains an additional relation Dislikes (<u>cname, pizza</u>) which indicates the pizzas that customers do not like. The database also satisfies the following constraint: for every customer $c \in \pi_{\text{cname}}(\text{Customers})$ and for every pizza $p \in \pi_{\text{pizza}}(\text{Contains})$, either $(c,p) \in \text{Likes or } (c,p) \in \text{Dislikes } (\text{in other words, you know the likes and dislikes of every customers with respect to all pizzas}). Given this database, find all customer pairs <math>(C_1,C_2)$ such that C_1 likes some pizza that C_2 does not like.

- d) Consider the original database schema without the Dislikes relation. Write a query to compute the Dislikes relation.
 - Since we know all the Likes
 - We need to get all combination of customer name and pizza

• Then remove the Likes

- d) Consider the original database schema without the Dislikes relation. Write a query to compute the Dislikes relation.
 - Since we know all the Likes
 - We need to get all combination of customer name and pizza
 - Customer name: $\pi_{\text{cname}}(\text{Customers})$
 - Then remove the Likes

- d) Consider the original database schema without the Dislikes relation. Write a query to compute the Dislikes relation.
 - Since we know all the Likes
 - We need to get all combination of customer name and pizza
 - Customer name: $\pi_{\text{cname}}(\text{Customers})$
 - Combination: $\pi_{\text{cname}}(\text{Customers}) \times \text{Pizza}$
 - Then remove the Likes

- d) Consider the original database schema without the Dislikes relation. Write a query to compute the Dislikes relation.
 - Since we know all the Likes
 - We need to get all combination of customer name and pizza
 - Customer name: $\pi_{\text{cname}}(\text{Customers})$
 - Combination: $\pi_{\text{cname}}(\text{Customers}) \times \text{Pizza}$
 - Then remove the Likes
 - $(\pi_{\text{cname}}(\text{Customers}) \times \text{Pizza}) \text{Likes}$

- d) Consider the original database schema without the Dislikes relation. Write a query to compute the Dislikes relation.
 - Since we know all the Likes
 - We need to get all combination of customer name and pizza
 - Customer name: $\pi_{\text{cname}}(\text{Customers})$
 - Combination: $\pi_{\text{cname}}(\text{Customers}) \times \text{Pizza}$
 - Then remove the Likes
 - $(\pi_{\text{cname}}(\text{Customers}) \times \text{Pizza}) \text{Likes}$

- e) Find all customer pairs (C_1, C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD

- e) Find all customer pairs (C_1, C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD

But LD does not have ordering! We need $C_1 < C_2$

- e) Find all customer pairs (C_1, C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD

Problem

But LD does not have ordering! We need $C_1 < C_2$

Solution

Reorder column from LD and union it with original LD; then we have both ordering.

- e) Find all customer pairs (C_1, C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD

$$LD \cup \left(\pi_{n_2,n_1}(LD)\right)$$

- e) Find all customer pairs (C_1,C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD
 - We need to get other pairs besides those in LD
 - Then we can use set difference operator

$$\mathsf{LD} \cup \left(\pi_{\mathsf{n}_2,\mathsf{n}_1}(\mathsf{LD})\right)$$

- e) Find all customer pairs (C_1,C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD
 - We need to get other pairs besides those in LD
 - Then we can use set difference operator
 - Question: <u>must they like at least one pizza</u>?
 - YES: Use the Likes table (if not there, customer likes no pizza)
 - NO: Use Customers table (all customers are there)

- e) Find all customer pairs (C_1,C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD
 - We need to get other pairs besides those in LD
 - Then we can use set difference operator
 - Question: <u>must they like at least one pizza</u>?
 - YES: Likes × Likes
 - NO: Customers × Customers

- e) Find all customer pairs (C_1,C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD

$$LD \cup \left(\pi_{n_2,n_1}(LD)\right)$$

- We need to get other pairs besides those in LD
 - Then we can use set difference operator
- Question: must they like at least one pizza?
 - YES: Likes × Likes
 - NO: Customers × Customers

$$\pi_{n_1,n_2}\left(\sigma_{n_1 < n_2}\left(\text{Likes} \times \rho_{(n_2,p_2)}(\text{Likes})\right)\right)$$

- e) Find all customer pairs (C_1,C_2) such that $C_1 < C_2$ and they like exactly the same pizzas.
 - Deceptively simple statement!
 - We need to first get customers that like some pizza another customer dislikes
 - We already have this: from Q15 (c)
 - Let's call it LD

$$LD \cup \left(\pi_{n_2,n_1}(LD)\right)$$

- We need to get other pairs besides those in LD
 - Then we can use set difference operator
- Question: must they like at least one pizza?
 - YES: Likes × Likes
 - NO: Customers × Customers

$$\pi_{n_1,n_2} \Big(\sigma_{n_1 < n_2} \Big) \Big(Customers \Big)$$

- f) For each restaurant, find the price of the most expensive pizzas sold by that restaurant. Excludes restaurants that do not sell any pizza.
 - How to find the most expensive pizza?

- f) For each restaurant, find the price of the most expensive pizzas sold by that restaurant. Excludes restaurants that do not sell any pizza.
 - How to find the most expensive pizza?
 - price \geq price₂ for any price
 - rname = rname₂ must be the same restaurant

- f) For each restaurant, find the price of the most expensive pizzas sold by that restaurant. Excludes restaurants that do not sell any pizza.
 - How to find the most expensive pizza?
 - price \geq price₂ for any price
 - rname = rname₂ must be the same restaurant
 - BUT WAIT!
 - This is the most expensive pizza from ALL possible restaurants!

- f) For each restaurant, find the price of the most expensive pizzas sold by that restaurant. Excludes restaurants that do not sell any pizza.
 - How to find the most expensive pizza?
 - Think in reverse!
 - What if we find all the NOT most expensive pizza?
 - (price < price₂) \(\text{(rname} = rname₂ \)
 - Then we remove this pizza from the solution!

- f) For each restaurant, find the price of the most expensive pizzas sold by that restaurant. Excludes restaurants that do not sell any pizza.
 - How to find the most expensive pizza?
 - Think in reverse!
 - What if we find all the NOT most expensive pizza?
 - $Q_{\text{not_expensive}} Sells \times \rho_{(\text{rname}_2, \text{pizza}_2, \text{price}_2)}(Sells)$
 - Then we remove this pizza from the solution!

- f) For each restaurant, find the price of the most expensive pizzas sold by that restaurant. Excludes restaurants that do not sell any pizza.
 - How to find the most expensive pizza?
 - Think in reverse!
 - What if we find all the NOT most expensive pizza?
 - $Q_{\text{not_expensive}} = Sells \times \rho_{(\text{rname}_2, \text{pizza}_2, \text{price}_2)}(Sells)$
 - Then we remove this pizza from the solution!
 - $\pi_{\text{rname,price}}(\text{Sells}) \pi_{\text{rname,price}}(Q_{\text{not_expensive}})$