Math 582 Introduction to Set Theory

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

February 11, 2009

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

February 11, 2009

Introduction

Induction Scheme

We will be working with the concept of a system of natural numbers, as given by the Dedekind-Peano axioms. There are two main results in this lecture:

- The (Primitive) Recursion Theorem, the main theorem used for constructing functions on the domain of a system of natural numbers.
- The Uniqueness of the system of natural numbers, all systems of natural numbers are isomorphic.

Induction Scheme

Note. The formulas φ in the statement of the theorem are formulas in set theory.

Theorem

Let $(\mathbb{N},0,S)$ be a system of natural numbers. Let $\varphi(x)$ be any formula. Suppose

- (a) $\varphi(0)$ is true. (basis case)
- (b) $\forall n \in \mathbb{N} (\varphi(n) \to \varphi(S(n)))$ is true. (inductive case)

Then $\forall n \in \mathbb{N} \varphi(n)$.

Proof.

By Comprehension, let $A = \{n \in \mathbb{N} \mid \varphi(n)\}.$

From (a) $0 \in A$ and from (b), $n \in A \to S(n) \in A$ for all $n \in \mathbb{N}$.

Then, by the Induction Principle (**N5**), $A = \mathbb{N}$, i.e. $\forall n \in \mathbb{N} \varphi(n)$.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

February 11, 2009

5 / 1

Induction Principle

Example of Induction Scheme

Lemma

Let $(\mathbb{N}, 0, S)$ be a system of natural numbers. Every nonzero element is a successor:

$$\forall n \in \mathbb{N} \ (n \neq 0 \ \rightarrow \ \exists m \in \mathbb{N} (n = S(m)))$$

Proof.

Proof by Induction using the formula

$$\varphi(n) := n \neq 0 \rightarrow \exists m \in \mathbb{N}(n = S(m))$$

basis. $0 \neq 0$ is false, so $\varphi(0)$ is true.

inductive. Suppose $\varphi(n)$ (i.h., inductive hypothesis), show $\varphi(S(n))$. But, the consequent of $\varphi(S(n))$ is true, so $\varphi(S(n))$ is true.

✓ Therefore, $\forall n \in \mathbb{N} \varphi(n)$.

Example of Induction Scheme

Lemma

Let $(\mathbb{N}, 0, S)$ be a system of natural numbers. Then $n \neq S(n)$ for every $n \in \mathbb{N}$.

Proof.

Proof by Induction.

basis. $0 \neq S(0)$ by (N4).

inductive. Suppose $n \neq S(n)$ (i.h.), show $S(n) \neq S(S(n))$. Suppose S(n) = S(S(n)). Then, n = S(n) by (N3). If Thus, $S(n) \neq S(S(n))$.

✓ Therefore, $n \neq S(n)$ for every $n \in \mathbb{N}$.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

February 11, 2009

7/

Primitive Recursion Theorem

Constructing bijections on natural number systems

Let $(\mathbb{N}_1,0_1,S_1)$ and $(\mathbb{N}_2,0_2,S_2)$ be systems of natural numbers.

Here is how you could compute a bijection $\pi: \mathbb{N}_1 \to \mathbb{N}_2$:

$$egin{array}{cccc} 0_1 & \stackrel{\pi}{ o} & 0_2 \ S_1(0_1) & \stackrel{\pi}{ o} & S_2(0_2) \ S_1(S_1(0_1)) & \stackrel{\pi}{ o} & S_2(S_2(0_2)) \ S_1(S_1(S_1(0_1))) & \stackrel{\pi}{ o} & S_2(S_2(S_2(0_2))) \ dots & dots \end{array}$$

Iterate the operator S_2 :

$$n \stackrel{\pi}{\longrightarrow} S_2^{(n)}(0_2)$$

where $n = S_1^{(n)}(0_1)$.

Primitive Recursion

Theorem (Primitive Recursion Theorem – basic version)

Let $(\mathbb{N},0,S)$ be a system of natural numbers, E a set, $a\in E$ and $h:E\to E$. Then there is a unique function $F:\mathbb{N}\to E$ satisfying for every $n\in\mathbb{N}$

$$f(0) = a$$

$$f(S(n)) = h(f(n))$$

Examples

- $ightharpoonup f: \mathbb{N}_1 \to \mathbb{N}_2: a = 0_2, \, h: x \mapsto S_2(x), \, \text{where} \, (\mathbb{N}_2, 0_2, S_2) \, \text{is a}$ system of natural numbers.
- $> f(n) = 5n : a = 0, h : x \mapsto 5 + x.$
- $\succ f(n) = b^n : a = 1, h : x \mapsto b \cdot x.$
- $> f(n) = h^{(n)}(a) : a = a, h : x \mapsto h(x).$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

February 11, 2009

10 / 1

Primitive Recursion Theorem

Proof of Recursion Theorem

Let *E* be a set, $a \in E$ and $h : E \rightarrow E$.

Define a predicate COMP(t) ("t is a *computation*") if and only if

- → $t \subseteq \mathbb{N} \times E$ and t is a function,
- \rightarrow 0 \in dom(t) and t(0) = a,
- $ightharpoonup \forall n \in \mathbb{N} \left(S(n) \in \mathsf{dom}(t) \rightarrow n \in \mathsf{dom}(t) \land t(S(n)) = h(t(n)) \right)$

Idea of Proof.

Show that if COMP(t) and COMP(u) then t and u are compatible functions (see Exercise 4 off HW5.)

✓ Define $f = \bigcup \{t \mid COMP(t)\}$. (This is a function by Exercise 4 of HW5.)

Step 🥰

Lemma (Step [€])

If COMP(t) and COMP(u) then t and u are compatible:

$$\forall n \in \mathbb{N} \ (n \in dom(t) \cap dom(u) \rightarrow t(n) = u(n)).$$

Proof. By Induction. Let

$$X := \left\{ n \in \mathbb{N} \mid \forall t, u(\texttt{COMP}(t) \land \texttt{COMP}(u) \land n \in \texttt{dom}(t) \cap \texttt{dom}(u) \right.$$
 $\left. \rightarrow t(n) = u(n) \right\}$

 $^{\square}$ basis. $0 \in X$ by definition of COMP.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

February 11, 2009

12 /

Primitive Recursion Theorem

Proof of Step 4

induction. Suppose $n \in X$ (i.h.), and that the antecedent of our condition holds for S(n) for some arbitrary t, u:

$$COMP(t) \land COMP(u) \land S(n) \in dom(t) \cap dom(u).$$

Then $n \in dom(t) \cap dom(u)$ (by COMP) and so, t(n) = s(n) (by i.h.). Thus,

$$t(S(n)) = h(t(n)) = h(u(n)) = u(S(n)).$$

So, $S(n) \in X$.

✓ Therefore, $X = \mathbb{N}$.

Step &

We can define $f = \bigcup \{t \mid COMP(t)\}$; but we must be sure $dom(f) = \mathbb{N}$.

For each $n \in \mathbb{N}$ there is a t with COMP(t) and $n \in dom(t)$.

Proof.

By induction. Let

$$X := \{n \in \mathbb{N} \mid \exists t (COMP(t) \land n \in dom(t))\}$$

 \square basis. Since $\{(0, a)\}$ is a computation, $0 \in X$.

inductive. Suppose $n \in X$. Let t be given from i.h. If $S(n) \in t$, we are done. Otherwise, let $u = t \cup \{(S(n), h(t(n)))\}$. Verify (A) COMP(u). So, $S(n) \in X$.

$$\checkmark X = \mathbb{N}.$$

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

February 11, 2009

14 /

Primitive Recursion Theorem

Completing proof

We have shown from Step and Step ::

** For every $n \in \mathbb{N}$ there is a unique $w \in E$ such that $(n, w) \in t$, for any computation t with $n \in \text{dom}(t)$.

We can define (using Comprehension)

$$f := \{(n, w) \in \mathbb{N} \times E \mid \exists t (COMP(t) \land n \in dom(t) \land (n, w) \in t)\},$$

so that by (*), $f : \mathbb{N} \to E$. We still need to show that f satisfies the conditions (for every $n \in \mathbb{N}$):

$$f(0) = a$$

$$f(S(n)) = h(f(n))$$

This an easy induction .

Uniqueness Theorem

Theorem

For any two systems of natural numbers $(\mathbb{N}_1, 0_1, S_1)$ and $(\mathbb{N}_2, 0_2, S_2)$, there exists a unique bijection $\pi : \mathbb{N}_1 \rightleftharpoons \mathbb{N}_2$ satisfying the following (structure preserving) properties:

$$\pi(0_1) = 0_2$$

 $\pi(S_1(n)) = S_2(\pi(n))$

We call π the canonical isomorphism from $(\mathbb{N}_1, \mathbb{O}_1, S_1)$ onto $(\mathbb{N}_2, \mathbb{O}_2, S_2)$, the say the two systems are isomorphic.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

February 11, 2009

17 /

Uniqueness

Proof of Uniqueness

Let $(\mathbb{N}_1, 0_1, S_1)$ and $(\mathbb{N}_2, 0_2, S_2)$ be two systems of natural numbers. Use the Primitive Recursion Theorem, with $E = \mathbb{N}_2$, $a = 0_2$ and $h = S_2$. Then there exists a unique map $\pi : \mathbb{N}_1 \to \mathbb{N}_2$ satisfying

$$\pi(0_1) = 0_2$$

 $\pi(S_1(n)) = S_2(\pi(n))$

We must prove

 π is surjective.

 π is injective.

π is surjective

Step \checkmark . π is surjective.

We prove π is surjective by induction on \mathbb{N}_2 , by showing $\pi[\mathbb{N}_1] = \mathbb{N}_2$.

$$\pi(0_1) = 0_2$$
, so $0_2 \in \pi[\mathbb{N}_1]$.

Suppose $n \in \pi[\mathbb{N}_1]$; then there is an $m \in \mathbb{N}_1$ with $\pi(m) = n$. So,

$$\pi(S_1(m)) = S_2(\pi(m)) = S_2(n).$$

Thus, $S_2(n) \in \pi[\mathbb{N}_1]$.

✓ Therefore, $\pi[\mathbb{N}_1] = \mathbb{N}_2$, and π is surjective.

Kenneth Harris (Math 582)

Math 582 Introduction to Set Theory

February 11, 2009

19 /

Uniqueness

π is injective

Step \mathscr{G} . We prove π is injective by induction on \mathbb{N}_1 . Let

$$X = \{n \in \mathbb{N}_1 \mid \forall m \in \mathbb{N}_1 (\pi(m) = \pi(n) \rightarrow m = n)\}$$

The induction is on *n*.

basis. $n = 0_1$. Then $\pi(0_1) = 0_2$. If $m \neq 0_1$, then $m = S_1(k)$ for some k. So,

$$\pi(m) = \pi(S_1(k)) = S_2(\pi(k)),$$

and so $\pi(m) \neq 0_2 = \pi(0_1)$ (by condition (N4).) Thus, $0_1 \in X$.

π is injective—inductive step

$$X = \{ n \in \mathbb{N}_1 \mid \forall m \in \mathbb{N}_1 \ (\pi(m) = \pi(n) \rightarrow m = n) \}$$

inductive. Suppose $n \in X$ (i.h.), and that $\pi(S_1(n)) = \pi(m)$. Since

$$\pi(m) = \pi(S_1(n)) = S_2(\pi(n)),$$

it follows that $\pi(m) \neq 0_2$; and so, $m \neq 0_1$ (since $\pi(0_1) = 0_2$.) Let $m = S_1(k)$; then

$$S_2(\pi(n)) = \pi(m) = \pi(S_1(k)) = S_2(\pi(k)).$$

So, $\pi(n) = \pi(k)$ by (N3), and n = k by (i.h.). Therefore, $S_1(n) = S_1(k) = m$. Since m was arbitrary, $S_1(n) \in X$.

 \checkmark $X = \mathbb{N}_1$, and so π is injective.