Greining Rása

Aðgerðamagnarar

Ólafur Bjarki Bogason 25. janúar 2021

- Aðgerðamagnari er virk rásaeining, sem hefur fjölmargar hagnýtingar í rafeindatækni
- Virk rásaeining er rásaeining sem getur gefið frá sér orku
- Aðgerðamagnari hegðar sér eins og spennustýrð spennulind

- Dæmigerður aðgerðamagnari er μ A741

- Hann hefur 8 tengipunkta eins og sést á mynd

- $\bullet\,$ Tvö inntök v_1 og v_2
- $\bullet~$ Eitt úttak v_o
- Ytra afl V_{CC}

- Oftast er þessum ytri aflgjafa og tilheyrandi tengingum sleppt þegar rás er teiknuð og greind
- Skilyrðin sem spennurnar verða að uppfylla eru tvö

$$v_{\rm o} = A(v_2 - v_1)$$

og

$$-V_{\rm CC} \le v_{\rm o} \le +V_{\rm CC}$$

- ullet Hlutfallsstuðullinn A er kallaður mögnun í opinni lykkju.
- \bullet Seinna skilyrðið segir okkur að útgangsspennan takmarkast af lindarspennunum $\pm V_{\rm CC}.$
- Ef $v_{\rm o}=\pm V_{\rm CC}$ þá segjum við að aðgerðamagnarinn sé **mettaður** (í mettun).

- Aðgerðamagnari er í línulegu sviði ef $\mid v_{\rm o} \mid < \mid V_{\rm CC} \mid$
- $\bullet\,$ Dæmigerð gildi á $V_{\rm CC}$ og Aeru $V_{\rm CC}<20$ V og $A>10^5$
- Við sjáum að því að í línulegu sviði gildir að

$$|v_2 - v_1| < \frac{20}{10^5} = 0.2 \text{ mV}$$

sem þýðir í raun að $v_1 \approx v_2$

• Beitum nú KCL á aðgerðamagnarann og fáum

$$i_1 + i_2 + i_0 + i_C^+ + i_C^- = 0$$

- Skilyrðið sem innri gerð aðgerðamagnarans setur á straumana er að i_1 og i_2 séu mjög litlir miðað við hina straumana. Í fullkomnum aðgerðamagnara er $i_1 \approx i_2 \approx 0$.
- Petta segir einnig að inngangsviðnám aðgerðamagnara er mjög stórt (frá 10^5 til 10^9 Ω). með þessu skilyrði verður KCL-jafnan

$$i_{\rm o} = -(i_{\rm C}^+ + i_{\rm C}^-)$$

Líkan fyrir aðgerðamagnara

• Týpisk gildi fyrir 741 eru

$$R_i \sim 2 \mathrm{M}\Omega$$

 $A \sim 2 \cdot 10^5$
 $R_o \sim 75 \Omega$

Aðgerðamagnari

- Íhugum nú hvernig við getum notað aðgerðamagnara til að magna upp innspennu v_s
- Í rás að ofan gildir

$$v_0 = -A \frac{R_i}{R_s + R_i} V_s$$

 Mögnunin er háð A sem er óheppilegt því gildi A getur verið mjög mismunandi milli aðgerðamagnara (þið lærið meira um þetta í rafeindatækni fastra efna)

Magnari með umpólun

 \bullet Tengjum nú viðnám á milli inntaks og úttaks og skoðum samband á milli v_0 og v_s

Jafngildisrás

Setjum upp hnútpunktajöfnur í punktum a og b

a:

$$\frac{v_1 - v_s}{R_s} + \frac{v_1 - v_o}{R_f} + \frac{v_1}{R_i} = 0$$

Jafngildisrás

b:

$$\frac{v_{o} - v_{1}}{R_{f}} + \frac{v_{o} - A(-v_{1})}{R_{o}} = 0.$$

Endurskrifum a:

$$\left(\frac{1}{R_s} + \frac{1}{R_f} + \frac{1}{R_i}\right)v_1 - \frac{1}{R_f}v_0 = \frac{1}{R_s}v_s$$

Jafngildisrás

Endurskrifum b:

$$\left(\frac{A}{R_{\rm o}} - \frac{1}{R_f}\right)v_1 + \left(\frac{1}{R_f} + \frac{1}{R_{\rm o}}\right)v_{\rm o} = 0$$

Einangrum $v_{\rm o}$

$$v_{o} = \left(\frac{-A + \frac{R_{o}}{R_{f}}}{\frac{R_{s}}{R_{f}} \left(1 + A + \frac{R_{o}}{R_{f}}\right) + \left(\frac{R_{s}}{R_{i}} + 1\right) + \frac{R_{o}}{R_{f}}}\right) v_{s}$$

Ef $R_0 = 0$, $R_i = \infty$ en $A \neq \infty$ fæst

$$v_{\rm o} = \left(\frac{-A}{\frac{R_s}{R_s}\left(1+A\right)+1}\right)v_s$$

Ef $R_0 = 0$, $R_i = \infty$ og $A = \infty$ (fullkominn aðgerðamagnari) fæst

$$v_{\rm o} = -\frac{R_f}{R_s} v_s$$

Neikvæð afturverkun

- Gerum ráð fyrir aðgerðamagnara með $R_i = \infty, R_o = 0$, og $A < \infty$
- Afturverkun: Hluta útmerkis er skilað til innmerkis
- $\bullet\,$ Neikvæð afturverkun minnkar innmerkið v_d

Kjöraðgerðamagnari (Gullnu reglurnar)

- Gerum ráð fyrir afturverkunartengingu og kjöraðgerðamagnara $(R_i=\infty,\,R_o=0\ {
 m og}\ A\to\infty)$
- Gullnu reglurnar:

$$V_{+} = V_{-}$$

$$i_{+} = i_{-} =$$

Magnari með umpólun

- Greinum magnararás aftur og gerum ráð fyrir kjöraðgerðamagnara
- Inngangarnir eru við sömu spennu $v_a = v_b = 0$.
- Enginn straumur fer inn á inngangana svo að $i_1 + i_2 = 0$. En nú er

$$i_1 = \frac{v_{\text{in}}}{R_1} \quad \text{og} \quad i_2 = \frac{v_{\text{o}}}{R_2}$$

Magnari með umpólun

• þannig að

$$\frac{v_{\rm in}}{R_1} + \frac{v_o}{R_2} = 0$$

og þá

$$\frac{v_o}{v_{\rm in}} = -\frac{R_2}{R_1}$$

- Við sjáum að enda þótt mögnunin í opinni lykkju sé $A=\infty$ þá verður mögnunin í lokaðri lykkju (afturverkunarviðnámið R_2 lokar lykkjunni) endanleg og það sem meira er, ákvarðast eingöngu af hlutfalli viðnámanna R_1 og R_2 .
- Mínusinn þýðir að ef $v_{\rm in} > 0$ þá er $v_{\rm o} < 0$ (umpólun).

 \implies Dæmi 4.1.

Magnari án umpólunar

• Gerum ráð fyrir kjöraðgerðamagnara

$$v_a = v_b = v_{\rm in}$$

og með því að líta á þessa rás sem spennudeili má sjá að

$$v_{\rm in} = v_{\rm o} \frac{R_1}{R_1 + R_2} = v_{\rm o} = v_{\rm in} \frac{R_1 + R_2}{R_1}$$

Magnari án umpólunar

• Sem segir

$$v_{\rm o} = v_{\rm in} \left(1 + \frac{R_2}{R_1} \right)$$

svo að hér ákvarðast mögnunin eingöngu af viðnámunum R_1 og R_2

• Í þessu tilfelli getur mögnunin ekki orðið minni en 1. Ef $R_2=0$ þá verður mögnunin $v_{\rm o}/V_{\rm in}=1$

Magnari án umpólunar

• Getum því valið R_1 að vild; veljum $R_1 = \infty$ þ.e. sleppum því. Þá er

$$v_o = v_{in}$$

 Þessi rás er svo kallaður "voltage follower" og er notuð sem "buffer" milli tveggja rása A og B, þ.e. rás B dregur þá engan straum frá rás A og útspennan er sú sama

 \implies Dæmi 4.2.

Summari

Sértilfelli af umpólunarmagnaranum er summarinn:

Í punkti a gildir samkvæmt KCL

$$\frac{v_{\rm o}}{R_f} + \frac{v_1}{R_1} + \frac{v_2}{R_2} + \dots = 0$$

eða

$$v_{\rm o} = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \cdots\right) = 0$$

Réttlæting á gullnu reglunum

- Gerum ráð fyrir að $R_i = \infty, R_o = 0$ og A = 200000

þá er

$$v_o = \frac{-A}{\frac{R_s}{R_f}(1+A)+1}v_s = -19.9997V$$

og því

$$v_{-} = \frac{v_o}{A} \approx 0.0001 \text{V} \approx v_{+}$$