52nd—24th INTERNATIONAL-RUDOLF ORTVAY PROBLEM SOLVING CONTEST IN PHYSICS Problem 4

Nguyen Thanh Long

February 7, 2022

a) The time that a body need to soar and turn back to the horizontal plane is $T = \frac{2v}{g}$ where v is the initial vertical velocity of that body.

In this problem, we call v_x and v_y are the initial horizontal velocity and the initial vertical velocity of the ball. After hiting the wall, the ball will have the horizontal velocity is kv_x . So time for the ball hit the wall will be k times to bounce back A. So that, we have:

$$\frac{v_y}{g} = k \left(\frac{v_y}{g} + 2k \frac{v_y}{g} + 2k^2 \frac{v_y}{g} + 2k^3 \frac{v_y}{g} + \dots + 2k^N \frac{v_y}{g} \right)$$

$$\Leftrightarrow 1 = k \left(2 \frac{1 - k^{N+1}}{1 - k} - 1 \right).$$

$$\Leftrightarrow N = \log_k \left(\frac{k^2 + 2k - 1}{2} \right) - 2.$$

Choose $f(x) = \log_x \left(\frac{x^2 + 2x - 1}{2}\right) - 2$ with x < 1 and $f^{-1}(x)$ is the inverse function of f(x).

Figure 1: Function y = f(x)

So we can write:

$$k = f^{-1}(N).$$

When $N \to \infty$, $k \to -1 + \sqrt{2} \approx 0.414$ and when N = 1, $k = \frac{1}{2}$.

b) Cause the time the ball in the air only depend on v_y and k, so we let $v_y = v$. This time is:

$$t = 2\frac{v}{g} + 2k\frac{v}{g} + 2k^2\frac{v}{g} + 2k^3\frac{v}{g} + \dots = \frac{2v}{g(1-k)}.$$

When $N = \infty$, time the ball in the air is $t = (2 + \sqrt{2}) \frac{v}{g} \approx 3.414 \frac{v}{g}$.