

#### **Kinematics**

**Prof. Darius Burschka** 

Technische Universität München Institut für Informatik Machine Vision and Perception Group (I6)



### **Kinematics of Robot Manipulators**



Relation between joints  $(q_i)$  and the pose (position/orientation) of some point (e.g.: frame  $\{n\}$ )

## ТШП

#### Workspace

Primary Workspace (reachable): WS<sub>1</sub>

Positions that can be reached with at least one orientation







Each point can be reached (orientation "does not matter")

- Out of  $WS_1$  there is no solution to the problem
- For all p  $WS_1$  (using a proper orientation), there is at least one solution
- Secondary Workspace (dexterous): WS<sub>2</sub>

Positions can be reached with any orientation



Reach every poing with all possible orientations

- For all p  $WS_2$  there is (at least) one solution for every orientation
- Relation between  $WS_1$  y  $WS_2$ :

$$WS_2 \subseteq WS_1$$



#### **Degrees of Freedom**

Degrees of Freedom N – number of independent motion parameters of a body in space





#### Pose of an object in space

- $\square$  q = (position, orientation) = (x, y, z, ???)
- Parametrization of orientations by matrix:  $q = (r_{11}, r_{12}, ..., r_{33}, r_{33})$  where  $r_{11}, r_{12}, ..., r_{33}$  are the elements of rotation matrix

$$R \square \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

with

- $r_{1i}^2 + r_{2i}^2 + r_{3i}^2 = 1$  for all i,
- $r_{1i} r_{1i} + r_{2i} r_{2i} + r_{3i} r_{3i} = 0$  for all  $i \neq j$ ,
- $extbf{det}(R) = +1$



#### Example: rigid robot in 3-D workspace

 $\square$  Parametrization of orientations by Euler angles:  $\square \phi \square \psi \square$ 





#### **Example of a singularity in Euler representation**

$$\begin{split} {}^A_BR_{XYZ}(\gamma,\beta,\alpha) &= R_Z(\alpha)R_Y(\beta)R_X(\gamma) \\ &= \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix}, \end{split}$$

$${}_{B}^{A}R_{XYZ}(\gamma, \beta, \alpha) = egin{bmatrix} clpha ceta & clpha seta s\gamma - slpha c\gamma & clpha seta s\gamma + slpha s\gamma \ slpha ceta s\gamma + clpha c\gamma & slpha seta s\gamma - clpha s\gamma \ -seta & ceta s\gamma & ceta c\gamma \end{bmatrix}$$

$$eta = \operatorname{Atan2}(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}),$$
  $eta = 90.0^{\circ},$   $\alpha = \operatorname{Atan2}(r_{21}/c\beta, r_{11}/c\beta),$   $\alpha = 0.0.$   $\gamma = \operatorname{Atan2}(r_{32}/c\beta, r_{33}/c\beta),$   $\gamma = \operatorname{Atan2}(r_{12}, r_{22}),$ 

#### **Euler representations**

# Proper Euler angles $X_1 Z_2 X_3 = \begin{bmatrix} c_2 & -c_3 s_2 & s_2 s_3 \\ c_1 s_2 & c_1 c_2 c_3 - s_1 s_3 & -c_3 s_1 - c_1 c_2 s_3 \\ s_1 s_2 & c_1 s_3 + c_2 c_3 s_1 & c_1 c_3 - c_2 s_1 s_3 \end{bmatrix}$ $X_1 Y_2 X_3 = \begin{bmatrix} c_2 & s_2 s_3 & c_3 s_2 \\ s_1 s_2 & c_1 c_3 - c_2 s_1 s_3 & -c_1 s_3 - c_2 c_3 s_1 \\ -c_1 s_2 & c_3 s_1 + c_1 c_2 s_3 & c_1 c_2 c_3 - s_1 s_3 \end{bmatrix}$ $Y_1 X_2 Y_3 = \begin{bmatrix} c_1 c_3 - c_2 s_1 s_3 & s_1 s_2 & c_1 s_3 + c_2 c_3 s_1 \\ s_2 s_3 & c_2 & -c_3 s_2 \\ -c_3 s_1 - c_1 c_2 s_3 & c_1 s_2 & c_1 c_2 c_3 - s_1 s_3 \end{bmatrix}$ $Y_1 Z_2 Y_3 = \begin{bmatrix} c_1 c_2 c_3 - s_1 s_3 & -c_1 s_2 & c_3 s_1 + c_1 c_2 s_3 \\ c_3 s_2 & c_2 & s_2 s_3 \\ -c_1 s_3 - c_2 c_3 s_1 & s_1 s_2 & c_1 c_3 - c_2 s_1 s_3 \end{bmatrix}$ $Z_1 Y_2 Z_3 = \begin{bmatrix} c_1 c_2 c_3 - s_1 s_3 & -c_3 s_1 - c_1 c_2 s_3 & c_1 s_2 \\ c_1 s_3 + c_2 c_3 s_1 & c_1 c_3 - c_2 s_1 s_3 & s_1 s_2 \\ -c_3 s_2 & s_2 s_3 & c_2 \end{bmatrix}$ $Z_1 X_2 Z_3 = \begin{bmatrix} c_1 c_3 - c_2 s_1 s_3 & -c_1 s_3 - c_2 c_3 s_1 & s_1 s_2 \\ c_3 s_1 + c_1 c_2 s_3 & c_1 c_2 c_3 - s_1 s_3 & -c_1 s_2 \\ s_2 s_3 & c_3 s_2 & c_2 \end{bmatrix}$

### ATAN2 Function

$$\operatorname{ATAN2}(a,b) = \begin{cases} \operatorname{arctan}(\frac{a}{b}) & \text{falls } b > 0 \\ \frac{\pi}{2} & \text{falls } b = 0, a > 0 \\ \operatorname{undefiniert} & \text{falls } b = 0, a = 0 \\ -\frac{\pi}{2} & \text{falls } b = 0, a < 0 \\ \operatorname{arctan}(\frac{a}{b}) + \pi & \text{falls } b < 0 \end{cases}$$

#### Axis-angle representation of Rotation

Let's start from a geometric view point. Imagine a coordinate with a vector  $\vec{X}$  where  $\vec{k}$  is the unit vector representing the axis of rotation. Let the vector  $\vec{x}$  be the result of rotating  $\vec{X}$  by an angle  $\theta$  about  $\vec{k}$ . You can imagine a circle created by  $\vec{X}$  and  $\vec{x}$  with the axis of rotation going through its center (see Figure 1).



Figure 1: Axis and angle of rotation

Hence 
$$\vec{x} = (\vec{X} \cdot \vec{k})\vec{k} + (\vec{X} - (\vec{X} \cdot \vec{k})\vec{k})\cos\theta + (\vec{k} \times \vec{X})\sin\theta$$
 (1)  
(Also a good exercise to prove that  $\vec{k} \times \vec{X}$  is perpendicular to  $\vec{X} - (\vec{X} \cdot \vec{k})\vec{k}$ )

Let define a skew symmetric matrix K such that  $K = J(\vec{k})$ . This means

$$K = \begin{bmatrix} 0 & -k_3 & k_2 \\ k_3 & 0 & -k_1 \\ -k_2 & k_1 & 0 \end{bmatrix}$$
 and we know that  $K\vec{v} = \vec{k} \times \vec{v}$ 



Now we can write  $\vec{x}$  as

$$\vec{x} = \vec{X} - \vec{X} + (\vec{X} \cdot \vec{k})\vec{k} + (\vec{X} - (\vec{X} \cdot \vec{k})\vec{k})\cos\theta + (K\vec{X})\sin\theta$$

$$= \vec{X} - (\vec{X} - (\vec{X} \cdot \vec{k})\vec{k}) + (\vec{X} - (\vec{X} \cdot \vec{k})\vec{k})\cos\theta + (K\vec{X})\sin\theta$$

$$= \vec{X} - (1 - \cos\theta)(\vec{X} - (\vec{X} \cdot \vec{k})\vec{k}) + (K\vec{X})\sin\theta$$
(2)

There exists an identity that  $a \times (a \times b) = (a \cdot a)b - (a \cdot b)a$ . You can also try to prove this for exercise as well. Now we can rewrite  $(\vec{X} - (\vec{X} \cdot \vec{k})\vec{k})$  using this identity as

$$(\vec{X} - (\vec{X} \bullet \vec{k})\vec{k}) = (\vec{k} \bullet \vec{k})\vec{X} - (\vec{X} \bullet \vec{k})\vec{k} = \vec{k} \times (\vec{X} \times \vec{k}) = -\vec{k} \times (\vec{k} \times \vec{X})$$
(3)

Note here that  $(\vec{k} \cdot \vec{k})$  is just 1, so this doesn't change anything. Then rewrite the result using the property of the skew symmetric matrix K, we get

$$-\vec{k} \times (\vec{k} \times \vec{X}) = -\vec{k} \times K\vec{X} = -(K(K\vec{X})) = -K^2\vec{X}$$
(4)

Substitute (4) in (2), we get

$$\vec{x} = \vec{X} - (1 - \cos \theta)(K^2 \vec{X}) + (K \vec{X}) \sin \theta$$

$$= (I + (1 - \cos \theta)K^2 + \sin \theta K)\vec{X}$$
(5)

Since  $\vec{x} = R\vec{X}$ , therefore, the rotation matrix is described by

$$R = (I + (1 - \cos\theta)K^2 + \sin\theta K)$$
(6)

#### Rodrigues formula.

Now we can use this formula to find back  $\vec{k}$  and  $\theta$ . Knowing that  $R^T(\vec{k}, \theta) = R(\vec{k}, -\theta)$  applying Rodrigues formula for both sides, we will get

$$R - R^{T} = 2 \sin \theta K$$

$$K = \frac{R - R^{T}}{2 \sin \theta}$$
(7)

Hence,  $\vec{k} = \frac{1}{2\sin\theta} vect(K)$  and  $\theta$  can be determined by solving  $2\sin\theta = \left\|vect(R - R^T)\right\|$ 

Note: Problems arise when  $\theta$  is small since the axis of rotation is ill-defined and that  $(\vec{k}, \theta)$  and  $(-\vec{k}, -\theta)$  result in the same orientation.

\_\_\_\_

### Example: rigid obot in 3-D workspace

Parametrization of orientations by unit

**quaternion**: 
$$u = (u_1, u_2, u_3, u_4)$$
 with  $u_1^2 + u_2^2 + u_3^2 + u_4^2 = 1$ .

Note  $(u_1, u_2, u_3, u_4) =$   $(\cos \theta/2, n_x \sin \theta/2, n_y \sin \theta/2, n_z \sin \theta/2)$  with  $n_x^2 + n_y^2 +$  $n_z^2 = 1$ .



Compare with representation of orientation in 2-D:

$$(u_1,u_2) = (\cos\theta \Box \sin\theta)$$

### Example: rigid robot in 3-D workspace

- Advantage of unit quaternion representation
  - Compact
  - No singularity
  - Naturally reflect the topology of the space of orientations

- Number of dofs = 6
- $\square$  Topology:  $\mathbb{R}^3 \times SO(3)$



#### **Configuration space**

- The configuration of a moving object is a specification of the position of every point on the object.
  - Usually a configuration is expressed as a vector of position & orientation parameters:  $q = (q_1, q_2,...,q_n)$



- The configuration space C is the set of all possible configurations.
  - A configuration is a point in *C*.



### Configuration Space





An obstacle in the robot's workspace



(wraps horizontally and vertically)

### Configuration Space "Quiz"





360 270 180 90  $q_{B}$ 0  $\alpha$ 45 90 135 180 **Torus** 

An obstacle in the robot's workspace

(wraps horizontally and vertically)



### Configuration Space

#### How do we get from A to B?





An obstacle in the robot's workspace

The C-space representation of this obstacle...



#### **Dimension of configuration space**

- The dimension of a configuration space is the minimum number of parameters needed to specify the configuration of the object completely.
- It is also called the number of degrees of freedom (dofs) of a moving object.

### Example: rigid robot in 2-D workspace



- □ 3-parameter specification:  $q = (x, y, \theta)$  with  $\theta \in [0, 2\pi)$ .
  - 3-D configuration space

### Example: rigid robot in 2-D workspace

- 4-parameter specification: q = (x, y, u, v) with  $u^2+v^2=1$ . Note  $u=\cos\theta$  and  $v = \sin\theta$ .
- dim of configuration space = ???
  - Does the dimension of the configuration, Jules (number of dofs) depend on the parametrization?
- □ Topology: a 3-D cylinder  $C = \mathbb{R}^2 \times \mathbb{S}^1$



Does the topology depend on the parametrization?



#### Motion of the robot is generated by its joints



revolving joint



rotational joint



linear joint



twisting joint



#### Workspace

• Example: ABB's IRB 120 robot



It is used to evaluate the robot for a specific application



### Robot Manipulators

#### What are this arm's forward kinematics?



(How does its position depend on its joint angles?)

### Robot Manipulators

What are this arm's forward kinematics?



Find (x,y) in terms of  $\alpha$  and  $\beta$  ...

Keeping it "simple"

$$c_{\alpha} = \cos(\alpha)$$
,  $s_{\alpha} = \sin(\alpha)$ 

$$c_{\beta} = \cos(\beta)$$
,  $s_{\beta} = \sin(\beta)$ 

$$c_{\Box} = \cos(\alpha \Box \beta)$$
,  $s_{\Box} = \sin(\alpha \Box \beta)$ 



### Manipulator kinematics



#### Keeping it "simple"

$$c_{\alpha} = \cos(\alpha)$$
,  $s_{\alpha} = \sin(\alpha)$   
 $c_{\beta} = \cos(\beta)$ ,  $s_{\beta} = \sin(\beta)$   
 $c_{\square} = \cos(\alpha \square \beta)$ ,  $s_{\square} = \sin(\alpha \square \beta)$ 

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} L_1 c_\alpha \\ L_1 s_\alpha \end{array}\right) + \left(\begin{array}{c} L_2 c_\square \\ L_2 s_\square \end{array}\right) \quad \text{Position}$$

In general, a point in n-D space transforms by

In 2-D space, this can be written as a matrix equation:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} \Box \begin{pmatrix} Cos(\theta) & -Sin(\theta) \\ Sin(\theta) & Cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Box \begin{pmatrix} tx \\ ty \end{pmatrix}$$

In 3-D space (or n-D), this can generalized as a matrix equation:

$$p' = R p + T$$
 or  $p = R^t (p' - T)$ 

#### **Geometric Transforms**

Now, using the idea of homogeneous transforms, we can write:

$$p' \square \begin{pmatrix} R & T \\ 0 & 0 & 0 \end{pmatrix} p$$

The group of rigid body rotations  $SO(3) \times \Re(3)$  is denoted SE(3) (for special Euclidean group)

What does the inverse transformation look like?





#### **Coordinate frames**



z-axis along the axis of motion x-axis perpendicular on the two consecutive motion axes y in a direction defined by a right hand system







- Translation along z<sub>i</sub>
- 2. Rotation around z<sub>i</sub>
- 3. Translation along to the origin of the next frame
- 4. Rotation between the coordinate frames

$$oldsymbol{T}(0,0,d_i)$$
  
 $oldsymbol{R}(z, heta_i)$ 

$$m{T}(a_i,0,0) \ m{R}(x,lpha_i)$$

$$^{i-1}\boldsymbol{A}_i = \boldsymbol{T}(0,0,d_i) \cdot \boldsymbol{R}(z,\theta_i) \cdot \boldsymbol{T}(a_i,0,0) \cdot \boldsymbol{R}(x,\alpha_i)$$

$${}^{i-1}\boldsymbol{A}_{i} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} C\theta_{i} & -S\theta_{i} & 0 & 0 \\ S\theta_{i} & C\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & C\alpha_{i} & -S\alpha_{i} & 0 \\ 0 & S\alpha_{i} & C\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$



#### Transformations DH distal (coordinate frame at end of link)



The following four transformation parameters are known as D-H parameters:.[4]

- *d*: offset along previous *z* to the common normal
- $\theta$ : angle about previous z, from old x to new x
- r: length of the common normal (aka a, but if using this notation, do not confuse with  $\alpha$ ). Assuming a revolute joint, this is the radius about previous z.
- $\alpha$ : angle about common normal, from old z axis to new z axis



#### DH modified (distal - used in the lecture)



Compared with the classic DH parameters, the coordinates of frame  $O_{i-1}$  is put on axis i-1, not the axis i in classic DH convention. The coordinates of  $O_i$  is put on the axis i, not the axis i+1 in classic DH convention.

Another difference is that according to the modified convention, the transform matrix is given by the following order of operations:

$$^{n-1}T_n = \operatorname{Rot}_{x_{n-1}}(lpha_{n-1}) \cdot \operatorname{Trans}_{x_{n-1}}(a_{n-1}) \cdot \operatorname{Rot}_{z_n}( heta_n) \cdot \operatorname{Trans}_{z_n}(d_n)$$

Thus, the matrix of the modified DH parameters becomes

$$T_n = egin{bmatrix} \cos heta_n & -\sin heta_n & 0 & a_{n-1} \ \sin heta_n\coslpha_{n-1} & \cos heta_n\coslpha_{n-1} & -\sinlpha_{n-1} \ \sin heta_n\sinlpha_{n-1} & \cos heta_n\sinlpha_{n-1} & \coslpha_{n-1} \ 0 & 0 & 0 & 1 \end{bmatrix}$$



$${}^{0}\boldsymbol{A}_{3} = {}^{0}\boldsymbol{A}_{1} \cdot {}^{1}\boldsymbol{A}_{2} \cdot {}^{2}\boldsymbol{A}_{3} = \begin{pmatrix} \cos\theta_{1} \cdot \cos(\theta_{2} + \theta_{3}) & -\sin\theta_{1} & \cos\theta_{1} \cdot \cos(\theta_{2} + \theta_{3}) & a_{2} \cdot \cos\theta_{1} \cdot \cos\theta_{2} \\ \sin\theta_{1} \cdot \cos(\theta_{2} + \theta_{3}) & \cos\theta_{1} & \sin\theta_{1} \cdot \sin(\theta_{2} + \theta_{3}) & a_{2} \cdot \sin\theta_{1} \cdot \cos\theta_{2} \\ -\sin(\theta_{2} + \theta_{3}) & 0 & \cos(\theta_{2} + \theta_{3}) & -a_{2} \sin\theta_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

### Forward Kinematics

Given joint variables

- $q \ \Box (q_1,q_2,\cdots q_n)$
- End-effector position & orientation

$$Y \square (x, y, z, \phi, \theta, \psi)$$

### Homogeneous matrix $T_0^n$

- specifies the location of the ith coordinate frame w.r.t.
   the base coordinate system
- chain product of successive coordinate transformation matrices of  $T_{i-1}^i$   $T_0^n \square T_0^1 T_1^2 \dots T_{n-1}^n$  vector

Orientation matrix 
$$\begin{bmatrix} R_0^n & P_0^n \\ 0 & 1 \end{bmatrix} \begin{bmatrix} n & s & a & P_0^n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### Yaw-Pitch-Roll representation for orientation

$$T_{0}^{n} = \begin{bmatrix} C\phi C\theta & C\phi S\theta S\psi - S\phi C\psi & C\phi S\theta C\psi \Box S\phi S\psi & p_{x} \\ S\phi C\theta & S\phi S\theta S\psi \Box C\phi C\psi & S\phi S\theta C\psi - C\phi S\psi & p_{y} \\ \hline S\theta & C\theta S\psi & C\theta C\psi & p_{z} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{0}^{n} = \begin{bmatrix} n_{x} & s_{x} & a_{x} & p_{x} \\ n_{y} & s_{y} & a_{y} & p_{y} \\ n_{z} & s_{z} & a_{z} & p_{z} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\psi \Box \cos^{-1}(\frac{a_{z}}{\cos \theta})$$

$$\phi \Box \cos^{-1}(\frac{n_{x}}{\cos \theta})$$

### **Example: PUMA 260**



- 1. Number the joints
- 2. Establish base frame
- 3. Establish joint axis Z<sub>i</sub>
  - Locate origin,  $(Z_i)^{X_i}$  (intersect. of  $Z_i$  &  $Z_i$ )  $(Z_i)^{X_i}$  (intersect of common normal &  $Z_i$ )
- 5. Establish Xi, Yi

### Link Parameters



| フ | $\theta_{\scriptscriptstyle i}$  | $\alpha_{i}$ | $a_{i}$ | $d_{i}$ |
|---|----------------------------------|--------------|---------|---------|
| 1 | $	heta_{\!\scriptscriptstyle 1}$ | -90          | 0       | 13      |
| 2 | $\theta_2$                       | 0            | 8       | 0       |
| 3 | $\theta_3$                       | 90           | 0       |         |
| 4 | $	heta_{\scriptscriptstyle 4}$   | -90          | 0       | 8       |
| 5 | $\theta_{\scriptscriptstyle 5}$  | 90           | 0       | 0       |
| 6 | $\theta_{\scriptscriptstyle 6}$  | 0            | 0       | t       |