

SIS3100/3100 VME to VME interface 241002_V2

SIS3100 Initiator attendum to SIS1100/3100 User Manual

SIS GmbH Harksheider Str. 102A 22399 Hamburg Germany

Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20

email: info@struck.de http://www.struck.de

Version: Revision 1.01 as of 03.12.02

Revision Table:

Revision	Date	Modification	
0.x	24.09.02	Generation	
1.00	30.09.02	First official release	
1.01	03.12.02	VME base address change (because of limited addressing	
		capabilities on some SBCs)	

1 Table of contents

1 Table of contents	3
2 Introduction	3
3 Function/principle of operation	3
4 Address Map	
5 Register Description	
5.1 Type-Identifier/Version register(0x0, read)	
5.2 Firmware version register(0x4, read)	
5.3 Interrupt configuration register (0x8)	
5.3.1 IRQ mode	3
5.4 Interrupt control register (0xC)	
5.5 Doorbell register (0x10, read only)	
5.6 Optical status/control register (0x20, r/w)	
5.7 Protocol registers	
5.7.1 opt_prot_hdr register (0x80, r/w)	
5.7.2 opt_prot_am register (0x84, r/w)	
5.7.3 opt_prot_adl register (0x88, r/w)	
5.7.4 opt_prot_dal register (0x90, r/w)	
5.7.5 opt_prot_error register (0xAC, read only)	
5.8 Single Transfer Space Descriptor (0x4000x4FC,read/write)	
6 Protocol driven access	
6.1 Single Read	
6.2 Single Write	
6.3 DMA Read	
6.4 DMA Write	
7 Direct SGL access (mapping)	
8 LEDs	
8.1 Front panel LEDs	3
8.1.1 Explanation of front panel LEDs	
8.1.2 Special case: LED Link up off	
8.2 PCB LEDs	3
9 VME system controller	
10 Appendix	3
10.1 Power consumption	3
10.2 Jumper description	3
10.2.1 JP10	3
10.2.2 JP90	3
10.2.3 JP_DSP	3
10.2.4 JP710	
10.2.5 JP770	3
10.2.6 JP_DSP	
10.3 Boot mechanisms	
10.3.1 ISP PROM	
10.3.2 JTAG	
10.4 Connector types	3
11 Index	3

2 Introduction

The SIS3100/3100 VME to VME link is the third interface combination (after SIS1100/3100 PCI to VME interface and SIS1100/1100-OPT PCI to frontend readout system link) of the SIS Gigabit link series. The full scope of the interface family is sketched below.

The initial implementation of the VME to VME link was made with the requirements of the DESY HERMES and the AMANDA detectors in mind. As many properties are given by the protocol implementation, which was made for the SIS1100/3100, this document was written as an SIS3100/3100 attendum which has to be seen in the context with the manual for the PCI to VME interface.

Applications

- Multi VME crate setups with single PCI slot
- Multi VME crate setups with SBC (single board computer) as eventbuilder
- Autonomous DSP based frontend crate readout with VME event collection
- Long distance VME-VME connections

Components

The SIS3100/3100 VME to VME link consists of two SIS3100 cards and an interconnecting duplex fiber. The target SIS3100 module is equiped with all available options to allow for its use as subeventbuilder.

- Initiator SIS3100
- Connecting optical fibre (up to 450 m)
- Target SIS3100 with
 - SIS9200 SHARC DSP
 - 64 MB SDRAM option
 - Frontpanel I/O option

3 Function/principle of operation

The SIS3100/3100 VME-VME link consists of two SIS3100 VME cards and an interconnecting optical fiber. The first SIS3100 is the so called initiator, the second SIS3100 is referred to as target. The target SIS3100 is installed in the remote crate, while the initiator is installed in the local crate. The SIS3100 initiator is a VME slave design. It has the task to simulate the function of the SIS1100 PCI card from the SIS1100/3100 PCI to VME interface. The target SIS3100 has the same firmware design as a card that is part of a PCI to VME interface.

There are two ways for remote crate VME access

- Protocol driven access
- Mapped (single transfer) access

While 3 (read) to 4 (write) VME cycles are required to initiate a transfer on the SIS3100 initiator with protocol driven access, mapped access allows access to the remote side in a single VME cycle.

Especially on large word count block transfers the protocol overhead of the SIS3100/3100 VME to VME interface becomes negligible and the implemented block transfer modes up to 2e VME result in a high performance intercrate coupling.

With the SIS9200 DSP, SDRAM and I/O option efficient autonomous event readout in the can be implemented in the target crate with no need for local VME master interaction.

4 Address Map

The SIS3100 initiator is a A32 D32/BLT32/MBLT64/2eVME slave. The base address is defined with 5 jumpers of jumper array J10 as listed in the table below. Refer to section 10.2.1 for a detailed jumper description with a sketch of the array.

A28	A27	A26	A25	A24	A23-A0
J10/8	J10/7	J10/6	J10/5	J10/4	occupied address pace

The SIS3100 resources and their locations are listed in the table below.

Offset	Key	Access	Function
0x0000 0000		R	Type-Identifier/Version register
0x0000 0004		R	Firmware Version register
0x0000 0008		R/W	Interrupt configuration register
0x0000 000C		R/W	Interrupt control register
0x0000 0010		R	Doorbell register
0x0000 0020		R/W	Optical Status/Control register
0x0000 0024	KA	W	KEY: Requester-Confirmation Logic Reset
0x0000 0080		R/W	opt_prot_hdr
0x0000 0084		R/W	opt_prot_am
0x0000 0088		R/W	opt_prot_adl
0x0000 0090		R/W	opt_prot_dal (dma_byte_length)
0x0000 00A8		R/W	opt_prot_balance counter
0x0000 00AC		R	opt_prot_error
0x0000 00B0		R	opt_prot_dma_rd_byte_counter
0x0000 0400		R/W	SGL Transfer Space descriptor[0]
0x0000 04FC		R/W	SGL Transfer Space descriptor[63]
0x004x xxxx		R/W	opt_prot_dma_fifo
0x007x xxxx			
0x0080 xxxx		R/W	Direct SGL Transfer (descriptor[0])
0x0082 xxxx		R/W	Direct SGL Transfer (descriptor[1])
0x00FE xxxx		R/W	Direct SGL Transfer (descriptor[63])

Note: Write access to a key address (KA)with arbitrary data invokes the respective action

5 Register Description

5.1 Type-Identifier/Version register(0x0, read)

This read only register holds the board type to allow for a distinction between different interface types. The board type of the SIS3100 VME side is 1. Other stored parameters are hardware version, firmware type and firmware version.

BIT	access	Name	Bedeutung
7-0	RO	Identifier	1 = PCI/PLX Interface
00000011			2 = VME Controller
			3 = CAMAC/FERA Controller
			4 = Readoutsystem mit LVD SCSI
			0x82 = VME initiator
15-8 0000FF00	RO	Hardware Version	1255
23-16 00FF0000	RO	Firmware Type	1 = universal
31-24 FF000000	RO	Firmware Version	1255

The type identifier/version register for the SIS3100 initiator reads:

0x 01 01 01 82

5.2 Firmware version register(0x4, read)

BIT	access	Name	Bedeutung
7-0	RO	Firmware Version	
15-8 0000FF00	RO	Firmware type	0x82 (VME initiator)
31-16 FFFF0000	RO	Board type	0x3100

The firmware version register for the SIS3100 initiator (firmware version 2) reads:

0x 31 00 82 02

5.3 Interrupt configuration register (0x8)

This read/write register controls the VME interrupt behaviour of the SIS3100 initiator. The interrupter type is DO8.

5.3.1 IRQ mode

In RORA (release on register access) mode the interrupt will be pending until the IRQ source is cleared by specific access to the corresponding clear Doorbell IRQ bit.

In ROAK (release on acknowledge) mode, the interrupt condition will be cleared as soon as the interrupt is acknowledged by the VME Master.

Bit	Function	Default
31	reserved	0
	ı.	0
16	reserved	0
15	reserved	0
14	reserved	0
13	reserved	0
12	RORA/ROAK Mode (0: RORA; 1: ROAK)	0
11	VME IRQ Enable (0=IRQ disabled, 1=IRQ enabled)	0
10	VME IRQ Level Bit 2	0
9	VME IRQ Level Bit 1	0
8	VME IRQ Level Bit 0	0
7	IRQ Vector Bit 7; placed on D7 during VME IRQ ACK cycle	0
6	IRQ Vector Bit 6; placed on D6 during VME IRQ ACK cycle	0
5	IRQ Vector Bit 5; placed on D5 during VME IRQ ACK cycle	0
4	IRQ Vector Bit 4; placed on D4 during VME IRQ ACK cycle	0
3	IRQ Vector Bit 3; placed on D3 during VME IRQ ACK cycle	0
2	IRQ Vector Bit 2; placed on D2 during VME IRQ ACK cycle	0
1	IRQ Vector Bit 1; placed on D1 during VME IRQ ACK cycle	0
0	IRQ Vector Bit 0; placed on D0 during VME IRQ ACK cycle	0

The power up default value reads 0x 00000000

5.4 Interrupt control register (0xC)

This register controls the VME interrupt behaviour of the SIS3100 initiator.

Bit	Function (w)	(r)	Default
31	unused	0	0
30	unused	0	0
29	unused	0	0
28	unused	0	0
27	unused	Status VME IRQ	0
26	unused	Status internal IRQ	0
25	unused	0	0
24	unused	0	0
23	unused	0	0
22	unused	0	0
21	unused	0	0
20	Clear Doorbell IRQ flag	Status Doorbell IRQ flag	0
19	unused	0	0
18	unused	0	0
17	unused	0	0
16	Disable Doorbell IRQ	0	0
15	unused	0	0
	unused	0	0
0	Enable Doorbell IRQ	Status Enable Doorbell IRQ (read as 1 if enabled, 0 if disabled)	0

The power up default value reads 0x 00000000

Illustration of Status flag/IRQ flag and IRQ generation:

5.5 Doorbell register (0x10, read only)

Contains the Doorbell IRQ value of the Doorbell Request of the target. by the other pending IRQ with consecutive doorbell register update.

Doorbell register bit	Function
31:16	0 (reserved)
15	Status DSP_IRQ
14	Status LEMO_ IN3_IRQ latch bit
13	Status LEMO_ IN2_IRQ latch bit
12	Status LEMO_ IN1_IRQ latch bit
11	Status FLAT_ IN4_IRQ latch bit
10	Status FLAT_ IN3_IRQ latch bit
9	Status FLAT_ IN2_IRQ latch bit
8	Status FLAT_ IN1_IRQ latch bit
7	Status VME IRQ 7 bit
6	Status VME IRQ 6 bit
5	Status VME IRQ 5 bit
4	Status VME IRQ 4 bit
3	Status VME IRQ 3 bit
2	Status VME IRQ 2 bit
1	Status VME IRQ 1 bit
0	0 (reserved)

5.6 Optical status/control register (0x20, r/w)

BIT	Name	local acc	Beschreibung
00000001	RX_SYNCH	RO	Optical receiver synchronized
1 00000002	TX_SYNCH	RO	Remote optical receiver synchronized
4	SYNCH_CHG	WR: sel clr	RX/TX_SYNCH changed
8	LOCAL_OPT_RESET	WR: sel clr	
12	REMOTE_OPT_RESET	WR: sel clr	

RX_SYNCH valid characters are seen by the optical receiver from remote station, i.e. the

connection between remote sender and local receiver is stable.

TX_SYNCH is set when both directions of the optical connection are stable. This implies, that,

RX_SYNCH is set also.

LOCAL_OPT_RESET

a reset is generated by writting a 1 to this bit. A reset sets all control register bits to 0, clears the input and output FIFO as well as the data link layer.

REMOTE_OPT_RESET

a SP_RESET special character is send to the remote (target) side if this bit is written to with a 1. The remote side has to react by initializing ist logic to a defined state

5.7 Protocol registers

Please refer to the SIS1100/3100 manual and the implemented Gigalink protocol for a detailed discussion of the protocol.

SIS3100 initiator protocols are generated by writing to the local register set, which consist of the registers opt_prot_hdr to opt_prot_dal (i.e offset address 0x80 to 0x90).

The error register opt_prot_error has to be checked after the completion of the transfer

5.7.1 opt_prot_hdr register (0x80, r/w)

The value that is written to the bits 27 to 24 defines at what point the protocol will be transmitted.

Bits 31 to 28 have special functions. The value of the lower bits 23 to 0 is written to the optical port as protocol header.

Bits 29

0 no function

1 opt_prot_error register will be cleared with protocol start

Bits 28

0 no function

1 DMA input FIFO will be reset upon protocol start

Bits 27 to 24

0x0 no protocol will be send

0x1 protocol will be send upon write of opt_prot_hdr.
0x2 protocol will be send upon write of opt_prot_adl.
0x4 protocol will be send upon write of opt_prot_dal.

Note: you can minimize the number of required VME cycles by selecting the appropriate condition for protocol transmission. If you have a number of writes with the same data to different VME addresses (with same AM) it will make sense to use opt_prot_adl. If you have a number of writes to the same address but with varying data opt_prot_dal is the right choice.

5.7.2 opt_prot_am register (0x84, r/w) Protocol VME Address Modifier register

5.7.3 opt_prot_adl register (0x88, r/w) Protocol Address register

5.7.4 opt_prot_dal register (0x90, r/w)
Protocol Data or DMA length register in Bytes.

5.7.5 opt_prot_error register (0xAC, read only)

Name	Code	Description
BUSY	0x005	
LINK_ERROR	0x101	Optical link down, check fiber connection
REQUEST_BUSY_TIMEOUT	0x103	
CONFIRMATION_TIMEOUT	0x107	
NOT_DEFINED_REQUEST	0x203	
VME_BUSERR	0x211	VME bus error
VME_RETRY	0x212	VME retry line set
VME_ARBITRATION_TIMEOUT	0x214	Timeout during VME arbitration (in multi master VME system)

5.8 Single Transfer Space Descriptor (0x400..0x4FC,read/write)

The 64 single transfer descriptors define the behaviour of the link during mapped access.

Bit	Function
31	Optical Address bit A31
••	
20	Optical Address bit A20
19	Optical Address bit A19
18	Optical Address bit A18
17	Optical Address bit A17
16	0
15	0
14	VME IACK
13	
12	0
118	Optical SPACE 0 : remote SIS3100 internal space 1 : remote SIS3100 VME space 6 : remote SIS3100 SDRAM/SHARC space
7	0
6	0
5	VME AM5
4	VME AM4
3	VME AM3
2	VME AM2
1	VME AM1
0	VME AM0

The SIS3100 initiator is always accessed in A32. The remote crate address modifier (AM) is defined by the descriptors VME AM bits. Single cycle AM codes are valid only. The remote data width is defined by the width of the local access (Byte/Word/Lword).

The VME IACK bit has to be set for an interrupt acknowledge cacle.

6 Protocol driven access

6.1 Single Read

Execution of a single read is implemented as a sequence of:

- 1. write to one or more registers of the hdr, am, adl register set
- 2. wait for opt_prot_error not equal 0x5 (busy) data are valid if opt_prot_error == 0x0 and can be read from the tdal register a non zero opt_prot_error content signals an error condition (see 5.7.5)

```
int vme_remote_A32D32_read(int p, u_int32_t local_base_adr, u_int32_t remote_vme_adr,
u_int32_t* vme_data )
int return_code ;
int error ;
   vme_A32D32_write(p, local_base_adr + SIS3100_T_HDR, 0x3208010f );
   vme_A32D32_write(p, local_base_adr + SIS3100_T_AM, 0x9) ;
vme_A32D32_write(p, local_base_adr + SIS3100_T_ADL, remote_vme_adr) ;
         vme_A32D32_read(p, local_base_adr + SIS3100_T_PROT_ERROR, &error) ;
       } while (error == 0 \times 005);
       if (error == 0x0) {
          vme_A32D32_read(p, local_base_adr + SIS3100_T_DAL, vme_data) ;
          return 0x0 ; /* OK exit */
         else {
           return error ; /* exit */
}
int sis3100_remote_control_read(int p, u_int32_t local_base_adr, u_int32_t remote_adr,
u_int32_t* data )
int return_code ;
int error ;
 vme_A32D32_write(p, local_base_adr + SIS3100_T_HDR, 0x3200000f);
vme_A32D32_write(p, local_base_adr + SIS3100_T_ADL, remote_adr);
      vme_A32D32_read(p, local_base_adr + SIS3100_T_PROT_ERROR, &error) ;
   } while (error == 0 \times 0.05);
   if (error == 0x0)
      vme_A32D32_read(p, local_base_adr + SIS3100_T_DAL, data) ;
      return 0x0 ; /* OK exit */
     else {
      return error ; /* exit */
}
```


6.2 Single Write

Execution of a single write is implemented as a sequence of:

- 1. write to one or more registers of the hdr, am, adl, dal registers
- 2. wait for opt_prot_error ungleich 0x5 (busy) the write operation has completed successful if opt_prot_error == 0x0 a non zero opt_prot_error content signals an error condition (see 5.7.5)

```
int vme_remote_A32D32_write(int p, u_int32_t local_base_adr, u_int32_t remote_vme_adr,
u_int32_t vme_data )
{
  int return_code ;
  int error ;

    vme_A32D32_write(p, local_base_adr + SIS3100_T_HDR, 0x340C010f );
    vme_A32D32_write(p, local_base_adr + SIS3100_T_AM, 0x9) ;
    vme_A32D32_write(p, local_base_adr + SIS3100_T_ADL, remote_vme_adr) ;
    vme_A32D32_write(p, local_base_adr + SIS3100_T_DAL, vme_data ) ;

    do {
        vme_A32D32_read(p, local_base_adr + SIS3100_T_PROT_ERROR, &error) ;
    } while (error == 0x005) ;
    if (error == 0x0) {
        return 0x0 ; /* OK exit */
     }
        else {
        return error ; /* exit */
     }
}
```


6.3 DMA Read

A DMA read cycle is a read request of N words, the sequence is:

- 1. write to one or more registers of the hdr, am, adl, dal register set
- 2. read N words from the DMA FIFO
- 3. after N words have been read (a local crate bus error occurred respective) the opt_prot_error register has to be checked for return code (0x0 flags proper termination)

Note: The user has to make sure, that data are read from the DMA FIFO after completion of the protocol start sequence without long gaps, as a protocol timeout of 10 ms is implemented.

6.4 DMA Write

A DME write cycle is a write request of N words, with following sequence:

- 1. write to one or more registers of the hdr, am, adl, dal register set
- 2. write N words to the DMA FIFO
- 3. after N words have been written wait for opt_prot_error not equal 0x5 (busy) opt_prot_error == 0x0 flags proper termination non zero opt_prot_error contents signals an error case

```
int vme_remote_A32BLT32_write(int p, u_int32_t local_base_adr, u_int32_t remote_vme_adr,
u_int32_t* vme_data,
                        u_int32_t req_num_of_lwords, u_int32_t* put_num_of_lwords)
int return_code ;
int error ;
/\!\!^* header = 0x242C010f clr ERR, start with T_DAL ; BT, AM, WR; VME, */
/* the DMA Write Fifo will be cleared automatically after sending protocol and then it is
possible to write */
/* to it until the end of length is reached
 vme_A32D32_write(p, local_base_adr + SIS3100_T_HDR, 0x242C010f );
 vme_A32D32_write(p, local_base_adr + SIS3100_T_AM, 0xb); /* remote AM */
vme_A32D32_write(p, local_base_adr + SIS3100_T_ADL, remote_vme_adr);
 vme_A32D32_write(p, local_base_adr + SIS3100_T_DAL, (req_num_of_lwords<<2)) ;</pre>
 vme_A32BLT32_write(p, local_base_adr + SIS3100_DMA_FIFO, vme_data, req_num_of_lwords,
put_num_of_lwords) ;
 do {
    vme_A32D32_read(p, local_base_adr + SIS3100_T_PROT_ERROR, &error);
   } while (error == 0x005);
       if ((error == 0x0) && (return_code == 0x0 )) {
    return 0x0 ; /* OK exit */
           vme_A32D32_write(p, local_base_adr + SIS3100_REQ_CONF_RESET, 0x0) ;
            return ((return_code & 0xffff) + ((error & 0xffff) << 0x10) ); /* exit */
}
```

Note: The user has to make sure, that data are written to the DMA FIFO after completion of the protocol start sequence without long gaps, as a protocol timeout of 10 ms is implemented.

7 Direct SGL access (mapping)

64 mal 1 MByte windows are implemented to map single cycles in the local crate into the VME address space of the remote crate.

1. Example: read/write access to control register of remote crate (target) SIS3100

prepare mapping with

write 0x0 to the address 0x400 (SGL Transfer Space descriptor(0))

direct access with

read/write from/to address 0x04000000;

2. Example: VME read/write from/to remote crate (at offset address 0x87600000)

prepare mapping with

write 0x87610009 to the address 0x404 (SGL Transfer Space descriptor(1), VME, AM=9)

direct VME access with

read/write from/to address 0x04100000;

Note: Remote crate error codes are passed to the local crate in a transparent fashion, i.e. a bus error (error code 0x211) during the remote crate VME access results in a bus error during the access to the mapped address.

8 LEDs

The SIS3100 has 10 front panel and 8 surface mounted printed circuit board (PCB) LEDs to visualise part of the units status. While the front panel LEDs allow the user to monitor part of the boards activities, the PCB LEDs were implemented for hardware and firmware debugging purposes mainly.

8.1 Front panel LEDs

The SIS3100 has 10 front panel and 8 surface mounted printed circuit board (PCB) LEDs to visualise part of

LED	Color	Function
A	vallow	Access (to VME slave port)
M	yellow	not used
P	red	Power
S	ieu	Requester-Confirmation logic busy
R	araan	Ready (logic configured)
L	green	Link up
LU	araan	Link data up (initiator to target)
LD	green	Link data down (target to initiator)
U	araan	not used
DU	green	not used

The arrangement of the front panel LEDs on the upper part of the front panel is shown in the sketch below.

8.1.1 Explanation of front panel LEDs

LED	Description
A	VME access to VME slave port of SIS3100
M	VME master, lit whenever the SIS3100 accesses the VME bus
	(not used with SIS3100 initiator design)
P	Power, signals presence of +5 V supply voltage
S	Signals activity of the SIS3100 sequencer
R	Ready, lit when on board logic is configured (off during power up LED self test)
L	Link up, lit when connection to PCI side (or loopback connection) is established
LU	Link data up, lit when data are send (and LED link up lit),
	special case as described below when LED link up is off
LD	Link data down, lit when link data are received (and LED link up lit),
	special case as described below when LED link up is off
U	User LED, to be set and cleared under user program control
	(not used with SIS3100 initiator design)
DU	DSP user LED, to be set and cleared under optional DSPs user program
	(not used with SIS3100 initiator design)

8.1.2 Special case: LED Link up off

In standard operation (i.e. both VME sides powered an connected with optical fiber) the LED Link up off condition signals a problem on the Gigabit link connection. The LEDs Link data up and Link data down are used to signal the problem cause under this condition. Link data up is lit in case of a problem on the transmitter side, link data down is lit in case of a problem on the receiver side. A short loopback cable (with proven reliability) is useful to track down the problem source (fiber, VME side or PCI side)

8.2 PCB LEDs

The 8 red PCB LEDs D651-D658 are mounted close to the front panel on the upper edge of the SIS3100. The reflect the status of the Vitesse serialiser/deserialiser (SERDES) chip.

LED	Function
D651	valid data
D652	valid KChar
D653	idle detect
D654	resync
D655	lossync
D656	norun error
D657	band error
D658	dispar error

9 VME system controller

The SIS3100 can act as VME system controller. The 16 MHz VME system clock is generated by the SMD oscillator U10. and enabled by jumper 1 of jumper array J10. This jumper has to be removed on the SIS3100 initiator as the module acts as a VME slave only.

Note: The user has to ensure, that the system clock is generated once per crate only. A VME diagnosis module like the VDIS or a measurement with a VME bus extender can be used can be used to check, whether a particular CPU or interface generates system clock (with all other interfaces/CPUs unplugged from the VME backplane. Some VME slave modules may use the system clock to initialize on board resources, this mechanism may fail if the system clock is generated by more than one board in the crate.

10 Appendix

10.1 Power consumption

The SIS3100 is a +5 V single supply design. On board voltages other than +5V are generated by linear regulators or DC/DC converters. A list with the used components can be found below.

Component designator	Voltage	Component	Powered components
U2	2.5 V	LT1584CT	FPGAs
U3	3.3 V	LT1584CT	link medium/SERDES/drivers
U5	-5 V	TMH0505S	flat cable in/outputs (ECL)
U6	-5 V	TMH0505S	LEMO in/outputs (NIM)

Note: U5 and U6 will be stuffed when required by the given I/O configuration only

The power consumption depends on installed options and board activity. The figures below are worst case estimates/measurements.

U in V	Current in A	Configuration
+5 V	2,0	Base configuration (SIS3100 initiator)
+5 V	2,1	Base configuration with front panel I/Os
+5 V	2,2	Base configuration with front panel I/Os and 64 MB
+5 V	2,4	Base configuration with front panel I/Os, 64 MB and DSP

10.2 Jumper description

A description of the jumpers can be found in the following subsections. Please note, that some of the jumpers may not be used with the actual hardware configuration of your board.

10.2.1 JP10
Boot configuration/VME base address selection

	Function	Factory
		default
		setting
	VME system controller	open
	(leave open on SIS3100 initiator)	
J10	unused	open
	GAP (not on SIS3100 initiator)	open
	GA0 (VME slave address bit 24)	open
	GA1 (VME slave address bit 25)	open
	GA2 (VME slave address bit 26)	open
	GA3 (VME slave address bit 27)	open
	GA4 (VME slave address bit 28)	closed

With the factory default setting (GA4 closed, GA3 to GA0 open) the SIS3100 is configured for a VME base address of 0x10000000

10.2.2 JP90

	Function	Factory default setting
]]]	unused	open
Ö Ö	connect FPGA reset to LEMO reset output (na on SIS3100 initiator)	open
	connect power on reset to LEMO reset output (na on SIS3100 initiator)	open
	connect NIM reset input to execution of SIS3100 power on reset (see Note 3) (na on SIS3100 initiator)	closed
	power on reset	open
	VME SYSRESET initiates power on reset of SIS3100	open
	FPGA reset results in VME SYSRESET	closed
	power on reset of SIS3100 results in VME SYSRESET	closed

Notes:

- 1.) some jumper combinations may result in a power up reset deadlock
- 2.) Typical Master/slave SYSRESET setting

While it is typical for a VME master to issue SYSRESET upon power up (jumper 8 of J90 closed) it is more suited for a VME slave to execute a power on reset as soon as the VME SYSRESET condition is detected (jumper 6 of J90 closed).

3.) The width of the reset signal has to be greater than 20 ms

SIS3100/3100 VME to VME

10.2.3 JP_DSP

If the jumper JP_DSP is opened, the JTAG lines TDI and TDO of the installed SIS9200 DSP piggy will be connected to the main board and the programmable components on the card will become part of the SIS3100 JTAG chain. The default setting is jumper closed (i.e. closed TDI, TDO chain on the SIS3100 board).

10.2.4 JP710

Termination of flat cable inputs (not applicable for SIS3100 initiator).

10.2.5 JP770

Termination of LEMO inputs (not applicable for SIS3100 initiator).

10.2.6 JP DSP

If the jumper JP_DSP is opened, the JTAG lines TDI and TDO of the installed SIS9200 DSP piggy will be connected to the main board and the programmable components on the card will become part of the SIS3100 JTAG chain. The default setting is jumper closed (i.e. closed TDI, TDO chain on the SIS3100 board).

10.3 Boot mechanisms

The firmware of the SIS3100 can be loaded to the boards FPGAs by two different mechanisms. Normally the user will use the factory installed firmware, which will be loaded at power up by default, in some cases it may be of interest however to load special designs or to upgrade the firmware to use extended functionality with the card. The boot options are listed in the table below.

Mechanism	Connector/Chip designator	Hardware
ISP PROM	U501	XC18V04VQ44
JTAG	CON500	9-pin header

10.3.1 ISP PROM

A XILINX XC18V04 ISP (in system programmable) PROM is installed as default firmware load source of the SIS3100. The contents of the serial PROM can be altered via the JTAG port. The firmware upgrade procedure is online in the firmware section of our web site, so are the actual firmware files.

10.3.2 JTAG

The XILINX_JTAG connector (CON500) is designed for the use with standard JTAG (Joint Test Action Group)programming tools like the XILINX.HW-JTAG PC can be either used to program the on board EEPROM, or to load firmware to the FPGAs directly for test purposes. Find the pin assignment of the JTAG connector below.

Pin designator	Description
JCC	Supply voltage
GND	Ground
nc	not connected
TCK	Test clock
nc	not connected
TDO	Test data out
TDI	Test data in
nc	not connected
TMS	Test mode select

10.4 Connector types

Find below a list of the used connector types of the SIS3100.

Designation	Function	Manufacturer	Part Number
U200	Optical Link	IBM	IBM42F10SNNAA20 or 30
CON700	Flat cable user I/O	TYCO	2-828581-0
LEMO1-8	LEMO user I/O	LEMO	EPL.00.250.NTN
STD-168DIMM	DIMM socket	Berg	88638-60002
CON_D1	SHARC socket long	Samtec	TFM-150-02-S-D-A
CON_D2	SHARC socket short	Samtec	TFM-145-02-S-D-A
P1/P2	VME connector	Harting	02011602101.00

11 Index

II IIIUEX	
+2.5 V 24	L 21
+3.3 V 24	LD 21
+5 V 24	LED 20, 21
16 MHz 23	access 21
-5 V 24	DSP user 21
A 21	front panel 21, 22
Address Map 7	link data down 21
AM 15	link data up 21
AMP 29	link up 21, 22
base address 7	
	master 21
Berg 29	PCB 22
boot mechanisms 28	power 21
CON_D1 29	ready 21
CON_D2 29	surface mounted 21
CON500 28	user 21
CON700 29	LEMO 29
connector types 29	linear regulator 24
CPU 23	Link
DC/DC 24	data down 22
DIMM 29	data up 22
DMA FIFO 18, 19	LU 21
DMA read 18	M 21
DMA write 19	nc 28
DO8 9	NIM 24
DSP 27	opt_prot_adl 14
DU 21	opt_prot_am 14
ECL 24	opt_prot_dal 14
FIFO 18, 19	opt_prot_error 14
input 12	oscillator 23
output 12	P 21
	P1 29
firmware 28 FPGA 28	P2 29
Harting 29	PCB 21
IACK 15	power consumption 24
IBM 29	PROM 28
interrupter mode 9	protocol
interrupter type 9	temporary 13
IRQ	protocol driven access 16
end of event 10	R 21
IRQ generation 10	register
IRQ mode 9	board type 8
ROAK 9	description 8
RORA 9	doorbell 7
ISP 28	firmware version 8
ISP PROM 28	hardware configuration 12
J10 7	interrupt configuration 9, 10, 11, 13
JCC 28	VME adress map 15
JTAG 27, 28	ROAK 9
jumper	RORA 9
description 25	RX_SYNCH 12
JP_DSP 27	S 21
JP10 25	Samtec 29
JP710 27	SERDES 22
JP770 27	SHARC 29
JP90 26	single read 16
system controller 23	single write 17
key address 7	SIS9200 27

SIS Documentation

SIS3100/3100 VME to VME

SP_RESET 12 STD-168DIMM 29 SYSRESET 26 TCK 28 TDI 28 TDO 28 TMS 28 TX_SYNCH 12 TYCO 29 U 21 U10 23 U200 29 VDIS 23 Vitesse 22 VME 29 bus extender 23 system controller 23 XC18V04 28 XILINX 28 XILINX_JTAG 28