Linear Algebra

Course Introduction

Automotive Intelligence Lab.

Contents

- Introduction
 - ▶ Staff
 - ► Text book
 - ▶ Prerequisites
- Course background and objectives
- Course schedule and evaluation
- Assignment

Course Staff

Professor

- ► Kichun Jo
- ► Email : <u>kichunjo@hanyang.ac.kr</u>

■ Teaching assistant

- ▶ Jonghyun Lee
- ► Email : jonghyunlee@hanyang.ac.kr

Course Information (I)

Class

- Wednesday
 - Theory
- ► Friday
 - Theory
 - Exercise

Communication with LMS

- Announcements
- ► Lecture notes
- Assignments

Course Information (II)

Prerequisites

- ► Computer(laptop, tablet, ...) to write code on MATLAB.
- Basic algebra and geometry.
 - high-school level

Textbook

We will provide lecture slides.

Reference

- "Introduction to Linear Algebra" Gilbert Strang
- ➤ 3Blue1Brown (Youtube)
- ▶ Angelo's math notes (공돌이의 수학노트)
- Matlab

Course background and objectives

History of Linear Algebra

- In the 17th century in the West and much earlier in China, matrices were just used to provide a compact notation for storing sets of numbers.
- In the 20th century, matrices and vectors were used for multivariate mathematics including calculus, differential equations, physics, and economics.
- But most people didn't need to care about matrices until fairly recently.
 - Here's the thing: computers are extremely efficient at working with matrices.
 - ▶ And so, modern computing gave rise to modern linear algebra.

Why Learn Linear Algebra

Linear algebra is utilized in various fields for machine learning, control, robotics, and others.

To understand how the algorithms work and to develop them, you should learn Linear Algebra!

Automobile in the 1st and 2nd Industrial Revolutions

Mechanization and mass production (- 1980)

Automobile in the 3rd Industrial Revolution

- Electronics and embedded system (1980 Current)
- From this time on, electronic sensors were used extensively.

Current Automotive Industry

■ OEM – Supplier structure

- ► HW-SW tightly coupled.
- ► Each supplier develops its own systems (sensors, computers, actuators) and the SW that relies on them.

Software Content in Automobile

[출처: Aptiv]

The future of the automotive SW industry as seen on cell phones (I)

Features defined by Hardware

The future of the automotive SW industry as seen on cell phones (II)

Features defined by Hardware

Features defined by Software

Software for Automobile

Traditional and Modern Linear Algebra

Traditional and Modern

Traditional

- Abstract.
- Learned through proofs and equations.
- Emphasizes proofs and abstract concepts, often with little relevance to practical applications or implementations.

Modern

- Computational.
- Learned through code and applications.
- Emphasizes geometric intuition and implementation of linear algebra concepts in practical applications.

Mathematical Proofs vs Visualization and Examples

The two ways to understand math

- ► Mathematical proofs
 - A proof in mathematics is a sequence of statements showing that a set of assumptions leads to a logical conclusion.
 - Rigor but rarely intuition.
- ► Visualizations and examples
 - Clearly written explanations, diagrams, and numerical examples help you gain intuition for concepts and operations in linear algebra.
 - More intuition than mathematical proofs.

■ This class will focus on visualizations and examples through MATLAB.

This class will focus on

Modern

- Computational.
- Learned through code and applications.
- Emphasizes geometric intuition and implementation of linear algebra concepts in practical applications.

Especially here!

for understanding data, statistics, deep learning, image processing, etc.!

Instructional approach

Linear Algebra as a Tool for understanding!

Mathematical

Theory
Concepts
Proof

Geometric intuition of Linear Algebra

How to implement Linear Algebra in code

Programming

Simple code Examples Visualizations

Course Objectives

- Understand linear algebra as an engineering tool, not as mathematics.
- Understand linear algebra through programming rather than solving problems by hand.
- Actively utilizes geometric visual examples through programming to aid understanding.
- Improve your programming skills through real world problems.

Proof based on Matlab

```
% Creating a and b matrix with 4 by 4
a = rand(4)
b = rand(4)

% proof a*b is not same as b*a
a*b - b*a
```


Course schedule and evaluation

Schedule (I)

■ Week 1 – 8 :

Week	Date	1 st Class	2 nd Class
1	03-06, 03-08	Orientation (lecture) - Introduction of objective, evaluation, and class - Introduction of MATLAB	Chapter 1 Vector, part 1 : vectors and basic operations
2	03-13, 03-15	Chapter 1 Vector, part 1 : vectors and basic operations	Chapter 2 Vector, part 2 : expand concept of vectors
3	03-20, 03-22	Chapter 2 Vector, part 2 : expand concept of vectors	Chapter 3 Vector applications
4	03-27, 03-29	Chapter 4 Matrices, part 1 : matrices and basic operations	Chapter 4 Matrices, part 1 : matrices and basic operations
5	04-03, 04-05	Chapter 5 Matrices, part 2 : expand concept of matrices	Chapter 5 Matrices, part 2 : expand concept of matrices
6	04-10, 04-12	Chapter 6 Matrix applications	Chapter 7 Matrix inverse
7	04-17, 04-19	Chapter 7 Matrix inverse	Chapter 7 Matrix inverse
8	04-24, 04-26	Midterm Exam	Midterm exam

Schedule (II)

■ Week 9 – 16:

Week	Date	1 st Class	2 nd Class
9	05-01, 05-03	Chapter 8 Orthogonal Matrices and QR Decomposition	Chapter 8 Orthogonal Matrices and QR Decomposition
10	05-08, 05-10	Chapter 9 Row reduction and LU Decomposition	Chapter 9 Row reduction and LU Decomposition
11	05-15, 05-17	Chapter 10 General Linear Models and Least Squares	Chapter 10 General Linear Models and Least Squares
12	05-22, 05-24	Chapter 11 Least Squares applications	Chapter 11 Least Squares applications
13	05-29, 05-31	Chapter 12 Eigen Decomposition	Chapter 12 Eigen Decomposition
14	06-05, 06-07	Chapter 13 Singular value Decomposition	Chapter 13 Singular value Decomposition
15	06-12, 06-14	Chapter 14 Eigen Decomposition and SVD applications	Chapter 14 Eigen Decomposition and SVD applications
16	06-19, 06-21	Final Exam	Final exam

Evaluation

10%: attendance

30%: assignment

30%: mid-term project and/or exam.

30%: final project and/or exam.

Assignment

MATLAB Onramp

MATLAB?

► MATLAB is a programming and numeric computing platform used by millions of engineers and scientists to analyze data, develop algorithms, and create models.

MATLAB Onramp

- ► MATLAB Onramp is a course that teaches you the basics of using MATLAB.
- Onramp consists of exercises to answer the questions correctly by entering commands directly and video lecture.

MATLAB

 MATLAB Onramp

 15개 모듈 | 2시간 | 언어

MATLAB의 기본 사항을 빠르게 학습할 수 있습니다.

MATLAB Onramp

Start Onramp on matlab web browser

https://kr.mathworks.com/learn/tutorials/matlab-onramp.html

MATLAB Onramp

You can submit the practice by entering the appropriate code in the command line or script for each task.

THANK YOU FOR YOUR ATTENTION

