Anggested Dolutions

Question 1

(a) (i) $\int \frac{x}{\sqrt{9-4x^2}} dx$ by inspection, $= -\frac{1}{4} \sqrt{9.4x^2} + C$ (check we 9-4x²)

where this variables, $x dx = -\frac{1}{8} dx$ server this variables, $x dx = -\frac{1}{8} dx$ $= \frac{1}{8} \left(\frac{x}{x} \right) + C$ $= -\frac{1}{4} \sqrt{9-4x^2} + C$ (ii) $\int \frac{x^2}{x+1} dx$ $= \int \frac{(x-1)(x+1)}{(x+1)} + C$

 $= \int (x-1) + \frac{1}{x+1} dx$

= x2 - x + ln |x+1 | + C

Wathenutin Extensioned - 3/12 TRIAL HSC KGS 200/ (iii) $\int_0^{4\pi^2} xe^2 dx$: waing fudr = ur-frdu $= \left[x e^{x} \right]_{0}^{l_{n_{2}}} - \int_{0}^{l_{n_{2}}} e^{x} dx$ =[h2(e-h2)-0]-(ex] h2 $= (\ln 2)(2) - e^{\ln 2} + e^{\circ}$ = 2h2 - 2+1 = 2 lm 2 -1 . (b) (i) $\frac{2}{(t+1)(t^2+1)} = \frac{A}{t+1} + \frac{Bt+C}{t^2+1}$ > 2 = A(+t+1) + (+++)(B++€) by substitution: t=-1; 2= aA :. A=1 2 = A + C t=0; 2= 1+C : C=1

t=1; 2=24+2/8+c)2=2+2(8+i)

(a) B = -1

hence: A = 1, B = -1, C = 1, C

 $(iii) \quad t = ton Z_2$ $\frac{dt}{dx} = \frac{1}{2} lec^2 Y_2$ $= \frac{1}{2} (tav^2 Y_2)$ $\frac{dt}{dx} = \frac{1}{2} (t^2 + 1)$ $\frac{dt}{dx} = \frac{1}{2} (t^2 + 1)$

Prisible equation: y=ax2(x+3)3 (a+0)

(or a substitution 4911) (or use t=±i)

19+Bu

ı	-
$H = \frac{1}{k^{2}} \left(g_{1} k_{0} \right) \left[1 - e^{-kn \left(\frac{g^{2}}{g^{2}} \right)} \right] - g_{T}$ $= \frac{1}{k^{2}} \left(g_{1} k_{0} \right) \left[1 - \frac{g}{g_{1} k_{0}} \right] - g_{T}$ $= \frac{1}{k^{2}} \left(g_{1} k_{0} \right) \left[1 - \frac{g}{g_{1} k_{0}} \right] - g_{T}$ $= \frac{1}{k^{2}} \left[\frac{g_{1}}{g_{2}} \right] - \frac{g_{T}}{g_{2}}$ $= \frac{1}{k^{2}} \left[\frac{g_{2}}{g_{2}} \right] - \frac{g_{T}}{g_{2}}$ $= \frac{1}{k^{2}} \left[\frac{g_{T}}{g_{2}} \right] - \frac{g_{T}}{g_{2}}$ $= \frac{1}{k^{2}} \left[\frac{g_{T}}{g_{2}} \right] - \frac{g_{T}}{g_{T}}$ $= \frac{1}{k^{2}} \left[\frac{g_{T}}{g_{T}} \right] - \frac{g_{T}}{g_{T}}$ $= \frac{1}{k^{2}} \left[\frac{g_{T}}{g_$	$\begin{array}{c} F_{n-2} \\ F_{n-2} \\ \end{array}$
$H = \underbrace{\frac{3+ku-g-gkT}{k^2}}_{\text{R}} = \underbrace{\frac{7}{10} \times \frac{7}{8}}_{\text{R}}$ $H = \underbrace{\frac{3+ku-gkT}{k^2}}_{\text{R}} = \underbrace{\frac{7}{10} \times \frac{7}{8} \times \frac{5}{6}}_{\text{R}}$ $= \underbrace{\frac{7}{10} \times \frac{7}{8} \times \frac{5}{6}}_{\text{R}}$ $= \underbrace{\frac{7}{10} \times \frac{7}{8} \times \frac{5}{8}}_{\text{R}}$	
$H = \frac{u - gT}{R}$ $= \frac{9}{10} \times \frac{7}{8} \times \frac{5}{6} \times $	
$\mathcal{L} H = \frac{1}{6} \left(u - gT \right) / \mathcal{L} = \int_{0}^{\infty} dt$	dθ
(4) $I_n = \int_0^{\pi/2} \sin^n \theta \ d\theta = I_{10} = \frac{9}{10} \times \frac{7}{8} \times \frac{7}{8}$	두 x 충 x 충
$ \begin{array}{rcl} $	
$= \left[-\cos\theta m^{m/\theta} \right]^{\frac{N}{N}} + b^{-1} \int_{0}^{\infty} \cos^{2}\theta d\theta$	
$I_{n} = 0 + (n-1) \int_{0}^{\pi/2} (i - sn^{-1}\theta) \sin^{-1}\theta d\theta$ $I_{n} = (n-1) \left[\int_{0}^{\pi/2} \sin^{-1}\theta - \sin^{-1}\theta d\theta \right]$	
$I_n = (n-1) \int I_{n-2} - I_n 7$	

(ii) Joing to D - see diagram.

PO || CD : LERT = LBCD

(Corresp L' in || line

Ore equal)

but 1708=1008
(argue between tenged 70 and chard 80 in equal to the strongenent)

home: LBDT = LBRT.

(iii) Join DR-not recessory though

Simil 1807 = 1887 them & APRC & BROD.

BRDT is a cuychi

quadrilateral because the
the chard BT subtends
equal argus at R D-see
charging

(" 2 4's standing on the
sam chard are equal!) . BC tracks PQ as legared
in this case they are ... BC tracks PQ as legared.

G	V) BT = TD (two tangents drown from the some ext of ee =)
	SMIE BROT is a weeking
	grad - and smile equal
1	Chards BT & TD substand
١,	equal ongles on the
	comperence then
	LTRD = LBRT as well.
	V) LDRT = LRDC (alt d's mi pointed tries are equal)
Ì	LBRT = LBCD from (ii)
	L BRT = LDRT (from iv)
1	LROC = LBCD = LRCD
	(RC= RD)
	(vi) Tow pc & PD
t	(vi) Jour PC & PD PQDC is a cyclic quad nowel
	LRPC = 180 - LPCD
ì	(contraction 11 lines).
Ì	(12.7)
-[(opp. A's of a cycli grad add tol
٠	(PD) - (PD)
-	L APRC & DROD
-	RC = RD (see (v))
. 1	\$ LRPL = LROD (from alone)
6	d / Den = / PRC (out L'i mill lives
-	of / ORD = LPRC (art 1' in phion a is excels 1).
-	. A PRI = A GRD (BA)

(b)(i) cos x = cos(-x) = sm (1/2-(-x))	armin [Garan Ta]
= sm (= +x)	dry = 5 sm [(x+x)+7 k].
Q Sm (x+2) = sm x cn I+ m I cn x	d by = 5 m (xxx) + (en) H
(i) y= 30mix+4cnx y= \sqrt{32+42 sm (x+0c)} y= 5 sm (x+0c)	From (2) LHS = at let y dx let
By industria	$=\frac{d}{dx}\left(\frac{d}{dx}\right)$
By industrial Rever the statement $\frac{d^2y}{dx^2} = 5 \sin(x + \alpha + \frac{\pi}{2})$ is	$= \frac{d}{dx} \left[5 \sin \left((x + \alpha) + \frac{611}{2} \right) \right]$ from
time for n=1 LAS= dy = 5cos(x+0)	$= 5 \cos \left[(2 i \times), \frac{6\pi}{2} \right]$ $= 5 \sin \left[\frac{\pi}{2} + 6 + \infty \right]$
AHS= 5.8m (x+x+]	[furt resplace x = 24 mi (i)]
= 5 sm ((x+3)+2) = 5 sm ((x+2)+2) = 5 cm (x+2) from	= 5 sm [1 (len) + (x+0)]
just (explain x with (anox)	Whenever it is love for n it is also to me for n= let
assume the statement is to me for n=& [15ken (km) &2	Whenever it is bow for no it is also bow for n- let and for all postive mitige values for n 7/1.
RIP the statement is time	