Python Applied to Machine Learning & Statistics

Lecture 07: Deep Learning

Adrian Galdran, Chetak Kandaswamy, Pedro Costa, Riardo Cruz, Kelwin Fernandes

September 26, 2016

Overview

- Motivation Why CNNs ?
- Different layers composing CNNs
 - a. Convolutional layer
 - b. Activation function
 - c. Pooling layer
 - d. Normalisation layer
 - e. Regularization : DropOut, Dataset Augmentation
- Practical Introduction Deep Learning with Keras
 - ► Application to MNIST

Motivation

Smart machine are part of our everyday life.

WiFi-based Indoor Localization

- ▶ Problem: Locate smart phone user inside a building.
- ► Challenge: WiFi signal strength is dynamic and difficult to calibrate.
- Solution: Automate the recalibration efforts.

Breast Cancer Drug Discovery

- Problem: Faster drug discovery.
- Challenge: Large patient data with missing information.
- Solution: Use automated feature extraction.

Biometrics

- Problem: Identification using biometric information.
- Challenge: Heterogeneous data.
- Solution: Use automated feature extraction.

Picture credit: Lecture Series on Digital Image Processing by Prof. P.K. Biswas, 2008

Trends in Machine Learning

Trends in ML

How to get computer programs to self-learn patterns?

Possible applications

Object recognition

GoogleNet

Multi Object Tracking (Park & al., 2015)

SegNet

Trends in Image recognition

- Deep Learning (CNNs)
 methods outperform
 other methods
 consistently.
- Top-5% error rate reached human accuracy.
- Network depth reaches to 152 layers.
- Trainable parameters are going down.

ImageNet challenge: Large scale image recognition

"

How to get computer programs to self-learn patterns?

"

RESEARCH CHALLENGE

1D features

coalo)

2D Image (grey scale)

3D Image (RGB channel)

4D Video

Unlabelled

2

Labeled

Methodologies

Convolutional Neural Network

Fully connected layer

Classifier at the output

Convolutional layer

Source: http://cs231n.stanford.edu/MOOC from Andrej Karpathy

Activation function

- Why activation functions?
 - Decision making function : presence of this feature?
- Sigmoid function
 - Problem: large inputs ⇒ saturation ⇒ gradient will be 0 Slow update of the weights, stopping the learning process
- ReLU = max(0,x)
 - Only a simple operation
 - Faster weight optimisation

Pooling layer

Downsampling

Max pooling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Normalisation layer (optional)

- Need normalisation at input of sigmoid functions to avoid saturation
- Inspired from real neurons, to implement local inhibition
 - Big activities will see many neurons competing
- But: Contribution of this layer has been shown to be minimal
 - Used in AlexNet (2012), but has become less common nowadays

Trends in Image recognition

- Deep Learning (CNNs)
 methods outperform
 other methods
 consistently.
- Top-5% error rate reached human accuracy.
- Network depth reaches to 152 layers.
- Trainable parameters are going down.

ImageNet challenge: Large scale image recognition

Architectures

ResNet (2015)

Inception-v4 (2016)

The utility of a deep learning framework

A pack of libraries
Some basal architectures easy to create
Switch between CPU use and GPU use
Pre-existing models use and modification
Embeddable

Drug-discovery

- Problem : Detect Host cell or Tumor cell
- Task: Classification of chemical mechanisms of action (MOA) by identifying substances that alter the phenotype of a cell which prevent tumor growth and metastasis.

Picture credit: Broad Bioimage Benchmark Collection (BBBC)

Application Challenge

- Thousands of new drugs tested on millions of cancerous cells everyday.
- Expensive to annotate.
- Require experts to annotate the data.

Set Nr.	Mechanism of action	Short name	Number of compounds	Batches	Common Batches	
P _{set 1}	Actin disruptors	Act	3	01, 02		
P_{set1}	DNA replication	DR	4	02, 08, 09		
P_{set1}	Epithelial	Epi	3	05, 08, 10	02 07 00	
P_{set1}	Kinase inhibitors	KI	3	07	02, 07,08	
Pset1	Microtubule stabilizers	MS	3	01, 07		
P _{set1}	Protein degradation	PD	4	02, 06, 07		
	Total Nr. of Compounds		20			
	Total Nr. of Treatments		42			
P_{set2}	Aurora kinase inhibitors	Aur	3	01, 03, 04		
P_{set2}	Cholesterol-lowering	Ch	2	09		
P_{set2}	DNA damage	DD	4	03,04	01 02 04	
P _{set2}	Eg5 inhibitors	Eg5	2	01,03	01, 03, 04	
Pset2	Microtubule destabilizers	MD	4	01,03		
P_{set2}	Protein synthesis	PS	3	03,04		
OUT.ACTO	Total Nr. of Compounds		18			
	Total Nr. of Treatments		61			

[&]quot;High-content Analysis of Breast Cancer using Single-Cell Deep Transfer Learning", Journal of biomolecular Screening, 2016

Results

Methods	Set1		Set2		
	Accuracy (%)	Time (m)	Accuracy (%)	Time (m)	
Linear SVM	20.95	32	23.49	49	
Radial SVM	21.04	78	17.5	125	
Deep Learning	84.29	506	87.05	698	

[&]quot;High-content Analysis of Breast Cancer using Single-Cell Deep Transfer Learning", Journal of biomolecular Screening, 2016

Biometrics

 Problem: identification of person using periocular region.

 Traditional biometric recognition are Iris, fingerprint, eye retinas.

right eye

left eye

Joao C. Monteiro et al. Periocular recognition in mobile scenarios: A comparative analysis of two approaches. ISVC, 2015.

Cross-sensor Biometrics

 Challenge: periocular images captured from different devices.

Setup ID	AR0	AR1
Device	A	
Manufacturer	Sony Ericsson	
Model	Xperia Arc S	
O.S.	Android 2.3.4	
Camera	Rear	
Resolution	3264 ×2448	
Flash	No	Yes

Multi-Source STS

Multi-source demonstrate **data efficiency**Target: AR0

Multi-source demonstrate data generalization

WORKSHOP

References

Keras Resources:

https://github.com/fchollet/keras-resources

Standford University Course Materials:

http://vision.stanford.edu/teaching/cs231n/syllabus.html

More Deep Learning links:

http://neuralnetworksanddeeplearning.com/ http://www.bayareadlschool.org/

Youtube videos:

https://www.youtube.com/watch?v=eyovmAtoUx0&feature=youtu.be https://www.youtube.com/watch?v=9dXiAecyJrY&feature=youtu.be