

Parallel computing on Bike Sharing Demand Dataset

CS4480 Group Project – Group 14

LI Yiheng, 56641664 LUO Peiyuan, 56642728 ZHOU Xin, 56644501

- 1. Introduction & Overview of Dataset
- 2. EDA
- 3. Data Pre-processing Stream
- 4. Data Pre-processing
- 5. Machine Learning with Scala
- 6. Deep Learning with Python

Data Preprocessing Demand Dataset

	date	hour	year	month	weekday	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01	0	2011	1	7	1	0	0	1	9.84	14.395	81	0.0	3	13	16
1	2011-01-01	1	2011	1	7	1	0	0	1	9.02	13.635	80	0.0	8	32	40
2	2011-01-01	2	2011	1	7	1	0	0	1	9.02	13.635	80	0.0	5	27	32
3	2011-01-01	3	2011	1	7	1	0	0	1	9.84	14.395	75	0.0	3	10	13
4	2011-01-01	4	2011	1	7	1	0	0	1	9.84	14.395	75	0.0	0	1	1

Two-year historical log corresponding to years 2011 and 2012 from Capital Bikeshare system, Washington D.C., USA

Corresponding weather and seasonal information extracted from *freemeteo*

Data Source — http://capitalbikeshare.com/system-data.
http://www.freemeteo.com.

Exploratory Data Analysis

Correlation Analysis:

- ☐ Correlations between "Count" and other features
- ☐ Multicollinearity "temp" & "atemp"

Rental Pattern Analysis:

- ☐ Higher demand in summer months
- ☐ Peak rental time of one day
- Rentals in weekend
- ☐ Peak user count of one day

Part 2. EDA

Data Processing Stream

Data Preprocessing With MapReduce

1. Input Data Splitting:

Input data is divided into multiple blocks.

2. Mapping:

- Map tasks process data blocks.
- Mapping transforms data into intermediate key-value pairs.
- Intermediate results are stored temporarily.

3. Partitioning and Sorting:

- Partitioning groups key-value pairs based on keys.
- Sorting arranges key-value pairs within partitions.

4. Reducing:

- Reduce tasks process intermediate results.
- Reduction merges key-value pairs with the same key.
- Final results are written to output.

Data Preprocessing:

- Missing Value Analysis
- Remove Outliers

Further Data Processing with Spark and Hive

- Defined the schema to specify the structure of the data.
- ☐ Read the training and test data from HDFS using the specified schema.
- ☐ Conducted data preprocessing on the training and test data, including type conversion, date extraction, and feature selection.
- ☐ Saved the processed data into Hive tables for Machine Learning Analysis.

Machine Learning with Scala

Forcasting by ML Methods

Linear Regression

- Simple and interpretable
- Low Memory Requirements
- Linear Assumption
- Bad performance on complex data

Random Forest

- Strong Performance
- Parallel Processing
- Computationally Intensive
- Long training time

Gradient Boosting

- High Predictive Power
- Parallel Processing
- Computationally Intensive
- Long training time

Machine Learning with Scala

Advantages of Scala

Concurrency

- Applying special structure
 JVM to achieve parallel
 training
- Significantly accelerates the training phases for large dataset.

Scalability

- Distributing the workload across multiple machines.
- Faster computing when dataset becomes larger

In-Memory processing

- Integrates well with Spark
- Spark could Minimize disk I/O operations, leading to faster execution

Deep Learning with Python

Multithreading

1 print("Time cost with parallel method:

Time cost with parallel method: 0.84s

1 print("Time cost without parallel meth

Time cost without parallel method: 2.27s

Model parallel

Conclusion & Future Work

Thank you for watching.

