MOTION - Signal Control for Urban Road Networks

Guenter Kruse (guenter.kruse@atd.mchh.siemens.de) Siemens AG, Traffic Control Systems ATD SV PSM 81359 Munich, Germany

TRB Committee A3A18
TRB Mid-Year Meeting and
Adaptive Traffic Signal Control Workshop
Pacific Grove, CA
July 12-14, 1998

What is MOTION?

MOTION means

Method for the Optimization of Traffic Signals In On-line controlled Networks

MOTION is

a new signal control method for urban road networks in central systems

Motivation

Traffic Situation

- High network loads
- Concurring political objectives

Deficits of existing control methods

Functionally fixed systems | Individual solutions

New scientific results

- > Dynamic Network Models
- ➡Automatic Incident Detection

Objectives

Provision of a

flexible and modular

System concept

- Extendability : functional and spatial
- Adjustable traffic engineering features
- Ability of Integration: Local control methods Traffic system management

MOTION - Control Sequence

MOTION - Functional sequence

Requirements of customer (e.g. control or optimization strategy) **MOTION** central - Data acquisition → - Traffic modelling - Optimization of control variables Transfer of signal programs Local control methods (e.g. PDM or VS-PLUS) - Signal program-modifications considering the demands of single vehicles (public transport)

MOTION^a

your success

System Components

The MOTION system consists of

a Workstation with the network control method

and Controllers with detection equipment and (optional) local control methods

MOTION^a

MOTION - Control Strategies

Improvement of Capacity

Incident and Congestion Management

Green Waves for Main Streams

Priority for defined Road Users

Public Transport Priority

Network Optimum of Delays and Stops

Environmental Control

Detector Configurations for MOTION

Automatic Incident Detection

Dynamic Network Models

MOTION^a

Optimization of Control Variables

Network Cycle Time

necessary for coordination of traffic signals

Green Time Split

adapted to the traffic load of the network, prevents congestion

Phase Sequence

relevant for security and optimization aspects

Offset

important for Green Waves and minimization of delays and stops

Interfacing network and intersection level

MOTION^a

MOTION Summary

Enhanced Modeling of Traffic

Hierarchical Approach with Optimization of all Control Variables

Distributed Control on Central and Decentral Level

Modular and Extendable System for Adaptation to Control Strategy

Interface of Signal Control to Urban Traffic Management Systems

