Q1 Solution:

- 1. General ILP for minimum vertex cover:
 - **a.** Introduce a decision variable x_i , $\forall i \in V$ (vertices)
 - i. $x_i = 1 \Rightarrow$ we put i in the cover
 - ii. $x_i = 0 \Rightarrow$ we don't put i in cover
 - **b.** We then formulate the weighted vertex cover using cost functions and linear constraints on the variables x_i as $C = (c_1, c_2, c_3,..., c_v)$
 - **c.** Minimize total weight of vertices in V subject to vertices in C form a cover of total weight $= \Sigma_{v \in C} \, C_v$
 - **d.** Instead of taking the weight for every vertex we take the formulated variable weight multiplied by vertex x_i (if it is in x_i we take $x_i = 1$ and 0 otherwise)
 - e. Minimize $\Sigma_{v \in V} C_v$. x_v , subject to the vertices form a cover if
 - i. $u \in Cover or v \in Cover \forall (u, v) \in E$
 - ii. Implies that $x_u = 1$ or $x_v = 1$, $\forall (u, v) \in E$
 - **iii.** $x_u + x_v >= 1, \forall (u, v) \in E$
 - iv. $x_i \in \{0, 1\}, \forall i \in V$

Algorithm:

Begin: Weighted Vertex Cover LP(G)

- 1. Generate LP corresponding to G
 - Minimize $\sum_{v \in V} C_v \cdot x_v$
 - Subject to $x_u + x_v >= 1$, $\forall (u, v) \in E$
 - $x_i \in \{0, 1\}$, $\forall i \in V$ -> this is not a linear constraint and that's why it is called as integer linear programming
- 2. Solve the linear programming problem
- 3. Cover \leftarrow { $v \in V: x_v = 1$ }
- 4. return Cover

End

Note: This is not a Linear programming problem, it is a 0/1 Linear problem. Unfortunately, 0/1 Linear problem is Np-hard (Solution isn't feasible)

Given graph:

1. Objective is to Minimize 1 . $x_1 + 2 . x_2 + 3 . x_3 + 4 . x_4 + 5 . x_5 + 6 . x_6$

Subject to
$$x_1 + x_2 >= 1$$
, $x_1 + x_6 >= 1$, $x_2 + x_3 >= 1$, $x_3 + x_6 >= 1$, $x_4 + x_6 >= 1$, $x_5 + x_6 >= 1$, $x_4 + x_5 >= 1$, $x_3 + x_4 >= 1$

We must add 0/1 constraints for the variables to state that the values come from 0 or 1. So, $x_i \in \{0, 1\}$, $\forall i \in V$ is the additional constraint

If we represent this as the matrix form, we get AX >= B where,

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} X = \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \\ x5 \\ x6 \end{pmatrix} B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Solving the vertex cover problem, we get the optimal minimum vertex cover

thus, we have the integer constraints as $x_2 = x_4 = x_6 = 1$

and
$$x_1 = x_3 = x_5 = 0$$

Considering the greedy approach (starting with the vertex having minimal weight), we get $x_1 = x_3 = x_5 = x_4 = 1$ and $x_2 = x_6 = 0$ so, the sub-optimal cost is 13 whereas optimal $x_2 = x_4 = x_6 = 1$ and $x_1 = x_3 = x_5 = 0$ cost is 12

Sub-optimal value <= 2 * optimal value 13 <= 2*12, 13 <= 24

Q2 Solution:

1. General ILP for Minimum Dominating Set

- **a.** Introduce a decision variable x_i , $\forall i \in V$ (vertices)
 - i. $x_i = 1 \Rightarrow$ we put i in the cover
 - ii. $x_i = 0 \Rightarrow we don't put i in cover$
- **b.** We then formulate the weighted vertex cover using cost functions and linear constraints on the variables x_i as $D = (d_1, d_2, d_3, ..., d_v)$
- c. Minimize total weight of vertices in V subject to vertices in D form a dominant set of total weight = $\Sigma_{v \in D} d_v$
- **d.** Instead of taking the weight for every vertex we take the formulated variable weight multiplied by vertex x_i (if it is in x_i we take $x_i = 1$ and 0 otherwise)
- **e.** Minimize $\sum_{v \in D} d_v \cdot x_v$, subject to the vertices form a cover if
 - i. $u \in Dominant Set$ or all the adjacent vertices in Dominant set, $\forall (u, v) \in E$
 - ii. Implies that $x_u=1, x_u\in Dominant$ Set, $x_i+\Sigma_{j\in N(i)}$ $x_j\geq 1,$ $N=\{Neighboring vertices of i\}$
 - iii. $x_i + \Sigma_{j \in N(i)} \ x_j \ge 1$, \forall neighboring edges $\in E \rightarrow$ this condition is to ensure the domination
- **f.** $x_i \in \{0, 1\}, \forall i \in V$

Algorithm:

Begin: Weighted_Dominating_Set_LP(G)

- 1. while there exist, non-dominated vertices do
 - randomly select a vertex v from all non-dominated vertices;

select a vertex $u \in N[v]$ with the highest degree.

$$D := D \cup \{u\};$$

2. Generate LP corresponding to G

- Minimize $\sum_{v \in D} d_v \cdot x_v$
- Subject to $x_i + \sum_{j \in N(i)} x_j \ge 1$, $N = \{\text{Neighboring vertices of } i\}$
- $x_i \in \{0, 1\}$, $\forall i \in V$ -> this is not a linear constraint and that's why it is called as integer linear programming
- 3. Solve the linear programming problem
- 4. Dominating Set $\leftarrow \{v \in V: x_v = 1\}$
- 5. return Dominating Set

End

Given graph:

Objective: We want to minimize the number of vertices in the dominating set. So, the objective is to minimize $1 \cdot x_1 + 2 \cdot x_2 + 3 \cdot x_3 + 4 \cdot x_4 + 5 \cdot x_5 + 6 \cdot x_6$

Each vertex needs to be in the set or have a neighbor in the set. So, we get a constraint for each vertex of the form $\Sigma_{i \in N(v)} x_i \ge 1$, for all $v \in V$.

Subject to

$$x_1 + x_2 + x_6 >= 1$$
, $x_1 + x_2 + x_3 >= 1$, $x_2 + x_3 + x_4 + x_6 >= 1$, $x_3 + x_4 + x_5 + x_6 >= 1$, $x_4 + x_5 + x_6 >= 1$, $x_1 + x_3 + x_4 + x_5 + x_6 >= 1$

$$x_i \in \{0, 1\}$$

if we represent this as a matrix form, we get AX >= B

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} X = \begin{pmatrix} x & 1 \\ x & 2 \\ x & 3 \\ x & 4 \\ x & 5 \\ x & 6 \end{pmatrix} B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Solving the Dominating set problem, we get {1, 6}

thus, we have the integer constraints as $x_1 = x_6 = 1$ and $x_2 = x_3 = x_4 = x_5 = 0$

Considering the greedy approach (starting with the vertex having minimal weight), we get $x_1 = x_4$ = 1 and $x_2 = x_3 = x_5 = x_6 = 0$ so, the optimal cost is 5.