

Shafts, Axles, and Couplings

ME 313: Mechanical Design Week 11

Topics to Cover

- Shafts and Axles
 - Overview
 - Strength considerations
 - Speed considerations
- Couplings
 - Overview
 - ▶ Pins and keys
 - ▶ Tapered Couplings

Shafts and Axles

Shafts

transfer of torque or rotation from source to intended component(s)

Axle

nonrotational component used to support rotational parts

Typical Shaft Designs

- To transmit power from driving device (motor or engine) to machine, gears, pulleys, flywheels, clutches, or sprockets are mounted on shaft
- Torque is transmitted to shaft by press fit, keys, or pins
- Shaft rotates usually on rolling contact bearing or journal bearing

Typical Shaft Designs (Cont)

- Retaining rings
 - > take axial load and retain shaft positions

Dr. Sappinandana Akamphon

Strength Considerations

- ▶ Shaft and axle are subjected to these loads
 - bending
 - ▶ torsion
 - ▶ shear
- We have to make sure shafts can take these combined loads to operate

Bending Loads in Shafts

- Transverse load away from fulcrum point causes bending
 - radial load from gear
 - belt tension from pulley
- Resulting in bending stress

$$\sigma_{bending} = \frac{Mc}{I}$$

$$= \frac{4M}{\pi r^3} \text{ for circular shaft}$$

Sectional view showing how grinder shaft is geared to the motor.

Dr. Sappinandana Akamphon

Axial Loads on Shaft

- ▶ Compressive/tensile load from axial load
 - > axial load from bevel or helical gear

$$\sigma_{axial} = \frac{F_{axial}}{A}$$
$$= \frac{F_{axial}}{\pi r^2}$$

Sectional view showing how grinder shaft is geared to the motor.

Torsional Loads in Shaft

Shear stress from torsional load

$$\tau_{torsion} = \frac{Tr}{I_p}$$

$$= \frac{2T}{\pi r^3} \text{ for circular shaft}$$

Dr. Sappinandana Akamphon

Combined Loading on Shaft

 In machine applications, shafts are usually subjected to combined loads

$$\sigma = \sigma_{axial} + \sigma_{bending}$$

$$\tau = \tau_{torsion}$$

- Use stress transformation to analyze stress
 - principal stresses

$$\sigma_{1,2} = \frac{\sigma}{2} \pm \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$

maximum shear stress

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$

Speed Consideration

- When shaft is spinning, eccentricity causes centrifugal force deflection
 - for simply supported shaft

$$\omega = \left(\frac{\pi}{l}\right)^2 \sqrt{\frac{EI}{m}}$$

for clamped shaft

$$\omega = 4\left(\frac{\pi}{l}\right)^2 \sqrt{\frac{EI}{m}}$$

- □ *m* is mass per length
- □ /is length of shaft

Dr. Sappinandana Akamphon

Example

Couplings

- Device used to transfer power from one shaft end to another
- > Can allow misalignment and end movement

Dr. Sappinandana Akamphon

Rigid Couplings

- Can transfer large power
- no misalignment allowed
- no backlash
- example: muff couplings, clamp couplings, flange

Flexible Couplings

- Misalignment (angle and radial) allowed
- ▶ End movement allowed
- Examples: universal coupling, bellow coupling, CV coupling, etc

Dr. Sappinandana Akamphon

Keys and Keyways

small material inserted in slot to transfer torque between driving mechanism and shaft

shear stress in key is

$$\tau = \frac{F_t}{A} = \frac{2T}{dbl}$$

Pins

Used to locate shaft and transfer torque

▶ Shear stress in pin is due to torque *T* is

$$\tau = \frac{T}{4\pi r^2 R}$$

Tapered Coupling Torque Capacity

Assuming uniform pressure

$$F = p_a dA \sin \alpha = \int_{d/2}^{D/2} p_a \left(\frac{2\pi r dr}{\sin \alpha}\right) (\sin \alpha)$$
$$= \frac{\pi p_a}{4} (D^2 - d^2)$$

$$=\frac{\pi p_a}{\Delta}(D^2-d^2)$$

torque capacity depends on friction

$$T = \mu r p_a dA = \int_{d/2}^{D/2} \mu r p_a \left(\frac{2\pi r dr}{\sin \alpha} \right)$$

$$T = \frac{\mu F}{3\sin\alpha} \frac{D^3 - d^3}{D^2 - d^2} = \frac{\mu \pi p_a}{12\sin\alpha} (D^3 - d^3)$$

Dr. Sappinandana Akamphon

Shaft Assembly General Rules

- Shaft should be as short as possible
 - small overhand
 - minimize bending stress
 - increase critical speed
- Bearing support should be as farthest apart as possible
 - provide highest stability

