Lab2

資工碩一 吳承翰 0856105

1.Introduction

使用EEGNet與DeepConvNet解決分類的問題,訓練資料為BCI competition shape為(C=1,H=2,W=750)

2. Experiment Setup

a.detail of my model

EEGNet 模型:

```
EEGNet(
  (firstconv): Sequential(
    (0): Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
    (1): BatchNorm2d(16, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
  (depthwiseConv): Sequential(
    (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
    (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel size=(1, 4), stride=(1, 4), padding=0)
    (4): Dropout(p=0.25)
  (separableConv): Sequential(
    (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
(1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0)
    (4): Dropout(p=0.25)
  (classify): Sequential(
    (0): Linear(in_features=736, out_features=2, bias=True)
```

使用了depthwise-seperable convolution,

是基於傳統convolution的輕量化版本. 可以降低常數倍的參數數量.

提昇訓練與evaluate的速度,但右不至於影響太多accuracy

DeepConvNet 模型:

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	mode = valid, max norm = 2
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	mode = valid, max norm = 2
BatchNorm			2 * 25		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
BatchNorm			2 * 50		epsilon = $1e-05$, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
BatchNorm			2 * 100		epsilon = $1e-05$, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
BatchNorm			2 * 200		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max \text{ norm} = 0.5$

為傳統的CNN架構

C->(CBAPD)->(CBAPD)->(CBAPD)->fully connected

C: convolution

B: batchnormalized

A: activation function

P: pooling

D: dropout

b.activation function:

在backpropagate時,LeakyReLU與ELU比較容易訓練,因為value一旦小於0的話還是有一個梯度存在

3. Experimental results

EEGNet:

訓練300個epochs accuracy 可以達到80%左右

DeepConvNet:

訓練300個epochs accuracy 可以達到75%左右

	RELU	Leaky ReLU	ELU
EEGNet	82.22%	80.27%	79.44%
DeepConvNet	74.53%	77.87%	74.62%

4.Discuss

- (1)一開始不是很清楚dataloader怎使用,後來才知道要先把資料先放到Tensordataset()再放到DataLoader()
- (2)在forwarding model時,data與model都要.to(device) 放到gpu才可以跑,tensor可以在cpu 與gpu上運行,numpy只能在cpu上運行
- (3)target y的datatype必須是torch.long