Final Project

STAT 447

2024-04-10

Introduction and Review:

Before we discuss Dirichlet Processes, it is crucial to establish a groundwork in probability measure theory. We will briefly revisit the concepts of σ -algebra, probability measures and Dirichlet Distributions. In the following, we present slightly more generalized definitions than can be found in formal measure theory works such as (Billingsley 2012).

Let X be a well-defined sample space. A σ -algebra $\mathcal{F} \subseteq P(X)$ is a set satisfying the following:

- 1. The entire sample space \mathbb{X} is in \mathcal{F} .
- 2. For all sets $A \in \mathcal{F}$, the complement $A^c \in \mathcal{F}$. This property is referred to as "closure under complementation."
- 3. For any countable collection of sets $\{A_i\}_{i\in I}$, where I is a countable index set, if $\forall i\in I, A_i\in\mathcal{F}$ then $\bigcup_{i\in I}A_i\in\mathcal{F}$. This is referred to as "closure under countable unions." It should be noted that by properties (1) and (2) that $\mathbb{X}^c=\emptyset\in\mathcal{F}$. This extended definition of (1) is referred to as "non-emptiness and universality." More detail on these properties can be found in foundational works such as (Rudin 1986).

For the sake of this work, we are more interested in *probability measures*, which are built on σ -algebra. A probability μ measure $\mu : \mathcal{F} \mapsto [0,1]$ satisfies the following familiar axioms of probability:

- 1. All mappings are non-negative: $\forall A \in \mathcal{F}, \ \mu(A) \geq 0$. This is referred to as "non-negativity."
- 2. $\mu(\mathbb{X}) = 1$, and $\mu(\emptyset) = 0$.
- 3. For any countable set $\{A_i\} \subseteq \mathcal{F}$ where $\forall i \neq j, A_i \cap A_j = \emptyset$, we have that $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$, this is referred to as "countable additivity."

(Teh 2006)

Appendix

Acknowledgements: Miscellaneous information such as knowledge on sets, power sets, subsets and countability from (Demirbas and Rechnitzer 2023).

Example of a σ -Algebra

For additional clarity, we provide an example of a σ -algebra \mathcal{F} to demonstrate the properties mentioned in the literature review.

Let $\mathbb{X} = \{a, b, c\}$. Directly, $P(\mathbb{X}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ is the power set of \mathbb{X} . Consider $\mathcal{F} = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \subseteq P(\mathbb{X})$.

We will apply the properties discussed in the literature review section to prove that \mathcal{F} is a σ -algebra.

To verify Property 1 (universality and non-emptiness), we note that we can also write \mathcal{F} as $\{\emptyset, \{a\}, \{b, c\}, \mathbb{X}\}$. From this definition, it is direct to see that $\mathbb{X} \in \mathcal{F}$ and $\emptyset \in \mathcal{F}$, verifying universality and non-emptiness.

To verify Property 2 (closure under complementation), we note that $A^{c^c} = A$. Hence, if we show $A \in \mathcal{F} \implies A^c \in \mathcal{F}$ this is equivalent to showing that $A \in \mathcal{F} \iff A^c \in \mathcal{F}$. Since \mathcal{F} is finitely countable, we can consider a case-wise basis for verification. Firstly, we have $A = \emptyset$. By definition, $A^c = \mathbb{X}$. We see that $\mathbb{X} \in \mathcal{F}$. As mentioned before, this implies that the case where $A = \mathbb{X}$ also holds. Now, we can proceed to verify the case where $A = \{a\}$. We note that $\{a\}^c = \{b,c\}$, and that $\{b,c\} \in \mathcal{F}$. Therefore, this case holds and thus so does the case where $A = \{b,c\}$ by biconditionality. Hence, we can conclude that \mathcal{F} is closed under complementation.

To verify Property (closure under countable unions), we first consider the concrete case where $\{A_i\}_{i=1}^2 = \{\{a\}, \{b, c\}\}\}$ where $A_1 = \{a\}$ and $A_2 = \{b, c\}$. We note that $A_1, A_2 \in \mathcal{F}$, so we would expect that $A_1 \cup A_2 \in \mathcal{F}$. Directly, $A_1 \cup A_2 = \{a\} \cup \{b, c\} = \{a, b, c\} = \mathbb{X}$, and we see that $\mathbb{X} \in \mathcal{F}$. For the remaining cases, $\forall A \in \mathcal{F}, A \cup \emptyset = A$ by fundamental set properties, and directly $A \in \mathcal{F}$ by construction. Similarly, $\forall A \in \mathcal{F}, A \cup \mathbb{X} = \mathbb{X}$ and we know that $\mathbb{X} \in \mathcal{F}$. Hence, for all cases, \mathcal{F} is closed under countable unions.

From all of these properties, we can conclude that \mathcal{F} is a σ -algebra, as required \square .

Sources

Billingsley, Patrick. 2012. Probability and Measure, Anniversary Edition. Wiley.

Demirbas, Seckin, and Andrew Rechnitzer. 2023. "An Introduction to Mathematical Proof: MATH 220." Free web and pdf textbook. https://personal.math.ubc.ca/~PLP/.

Rudin, Walter. 1986. Real and Complex Analysis. 3rd ed. McGraw-Hill.

Teh, Yee Whye. 2006. "Dirichlet Process." Course Notes for Gatsby Computational Neuroscience Unit Tutorial. https://mlg.eng.cam.ac.uk/zoubin/tut06/ywt.pdf.