

Capstone Project – 2 Supervised M.L.

BIKE SHARING DEMAND PREDICTION

Individual Project
Pratik Vishwakarma

Introduction

- The contents of the data came from a city called Seoul. A bikesharing system is a service in which bikes are made available for shared use to individuals on a short term basis for a price or free.
- The data had variables such as date, hour, temperature, humidity, wind-speed, visibility, dew point temperature, solar radiation, rainfall, snowfall, seasons, holiday, functioning day and rented bike count.
- The problem statement was to build a machine learning model that could predict the rented bikes count required for an hour, given other variables.

Points To Discuss:

- Data Description Summary
- Analysis of Categorical Variable
- Analysis of Numerical Variable
- Handling Outliers
- Regression Plot
- Machine Learning Algorithms
- Conclusion

ΑI

Data Description

- The dataset contains weather information (Temperature, Humidity, Windspeed, Visibility, Dewpoint, Solar radiation, Snowfall, Rainfall), the number of bikes rented per hour and date information.
- Date: year-month-day
- Rented Bike count Count of bikes rented at each hour
- Hour Hour of he day
- Temperature-Temperature in Celsius
- Humidity %
- Windspeed m/s
- Visibility 10m
- Dew point temperature Celsius
- Solar radiation MJ/m2
- Rainfall mm

- Snowfall cm
- Seasons Winter, Spring, Summer, Autumn
- Holiday Holiday/No holiday
- Functional Day NoFunc(Non Functional Hours), Fun(Functional hours)
- 1. This dataset contains 8760 lines and 14 columns
- 2. Numerical variables temperature, humidity, wind, visibility, dew point temperature, solar radiation, rainfall, snowfall
- 3. Categorical variables seasons, holiday and functioning day
- 4. Rented bike column which we need to predict for new observations

Month

The demand of the rented bike is high from the month 5 to 10

From the above point plot and bar plot we can say that in the week days which represent in blue colur show that the demand of the bike higher because of the office. Peak Time are 7 am to 9 am and 5 pm to 7 pm The orange colour represent the weekend days, and it show that the demand of rented bikes are very low specially in the morning hour but when the evening start from 4 pm to 8 pm the demand slightly increases.

In the above box plot and bar plot which shows the use of rented bike in in four different seasons, and it clearly shows that, In summer season the use of rented bike is high In winter season the use of rented bike is very low because of snowfall.

Holiday

Function Day

In the above point plot which Shows the use of rented bike in a holiday, and it clearly shows that, plot shows that in holiday people uses the rented bike from 2pm-8pm. In the above point plot which shows the use of rented bike in functioning day or not, and it clearly shows that, Peoples dont use reneted bikes in no functioning day.

Numerical Variables

visibility

Above plot shows that people tend to rent bikes when the temperature is between -5 to 25 degrees.

Above plot shows that people tend to rent bikes when the visibility is between 300 to 1700.

Heat Map

From the above heat map I can conclude that Temperature and Dew point temperature(°C) has the high correlation . we drop this column then it dont affects the outcome of our analysis.

After removing the Dew point temperature.

Handling Outliers

An Outlier is a data item / object that deviates significantly from the rest of the(socallednormal)objects. The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data. It is a measure of the dispersion similar to standard deviation or variance, but is much more robust against outlier.

Regression Plot

Temperature, solar radiation, wind speed, visibility are positively related to target variable, the rented bike count increases with increase of these features.

ML Algorithms

- Linear Regression
- Ridge Regression
- Elastic Net
- Decision Tree
- Random Forest Regressor
- SVR
- Gradient Boosting

Linear Regression:

MSE: 61.15584375724336

RMSE: 7.820220185982192

MAE: 5.923260387972038

R2: 0.6028600936479797

Adjusted R2 : 0.5979004370931673

Linear Regression

With Elastic Net:

MSE: 61.36957118125049

RMSE: 7.833873319198523

MAE: 5.93382066577593

R2: 0.6014721692250582

Adjusted R2: 0.5964951796640391

Ridge Regularization:

MSE: 60.83384712272495

RMSE: 7.799605574817546

R2: 0.6148937632652991

Adjusted R2: 0.6100843884309619

Decision Tree:

The r2 score of decision tree is 0.7619882672759375

The r2 score of decision tree with hyperperameteres tunning is 0.8013257980814106

SVR Using GridsearchCv

ΑI

- The MAE of training set = 4.312974309168605
- The MSE of training set = 44.525880818380806
- The R2_score of training set = 0.7108534025195494
- The MAE of test set = 4.674553587050071
- The MSE of test set = 46.854036819585005
- The R2_score of test set = 0.703392393398722

Gradient Boosting Regressor With GridSearchCV:

R2 score of training data: 0.91%

R2 score of test data: 0.869495

Conclusion:

- Hour of the day holds most importance among all the features for prediction of dataset.
- It is observed that highest number bike rentals counts in Autumn/fall Summer Seasons and the lowest in Spring season.
- We observed that the highest number of bike rentals on a clear day and the lowest on a snowy or rainy day.
- The top 5 important features of our dataset are: Season_winter, Temperature,
 Hour, Season_autumn, Humidity.
- Peoples dont use rented bikes in no functioning day.
- People tend to rent bikes when the temperature is between -5 to 25 degrees.
- People tend to rent bikes when the visibility is between 300 to 1700.
- For all the above experiments we can conclude that gradient boosting.
- Forest regressor with using hyperparameters we got the best results.

THANKYOU