2P7: Probability & Statistics

Manipulating and Combining Distributions

Thierry Savin

Lent 2024

UNIVERSITY OF CAMBRIDGE Department of Engineering

- 1. Probability Fundamentals
- 2. Discrete Probability Distributions
- 3. Continuous Random Variables
- 4. Manipulating and Combining Distributions
- 5. Decision, Estimation and Hypothesis Testing

Introduction

This lecture's contents

Introduction

Functions of random variables

Sum of random variables

Transforms of distributions

The Central Limit Theorem

Multivariate Gaussians

Introduction

Manipulating and Combining Distributions

In the last lectures:

- ▶ We have seen that discrete random variables are described by their probability mass function
- We have seen that continuous random variables are described by their probability density function
- We have given important examples of probability mass and density functions:

Discrete variables

- Bernoulli
- Geometric
- Binomial

Poisson

Continuous variables

- Exponential
- Gaussian
- Beta

In this lecture, we will manipulate random variables, introduce important transforms of distributions, and see the Central Limit Theorem.

In general,

Consider a random variable X, and let Y = g(X) for some function $g : X \to Y$ mapping the support X of X to the domain Y of Y.

Can we calculate P_{v} (or f_{v} if continuous) from P_{v} (or f_{v})?

We'll start with the case where X is a discrete random variable.

Then Y is also discrete. $\mathbb{X} = \{x_1, x_2, \dots\}$ and $\mathbb{Y} = \{y_1, y_2, \dots\}$,

$$x_{1} \longrightarrow y_{1} \quad P_{Y}(y_{1}) = P_{X}(x_{1})$$

$$x_{2} \longrightarrow y_{2} \quad P_{Y}(y_{2}) = P_{X}(x_{2})$$

$$x_{4} \longrightarrow y_{3} \quad P_{Y}(y_{3}) = P_{X}(x_{3}) + P_{X}(x_{4})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$P_{Y}(y) = \sum_{\{x \mid g(x) = y\}} P_{X}(x)$$

If g is *invertible* (one-to-one map between X and Y), then

$$P_{\mathbf{y}}(y) = P_{\mathbf{x}}(g^{-1}(y))$$

Discrete random variables - Example

With $X \sim \text{Geo}(p)$ and $m \in \{1, 2, \dots\}$, what is the PMF of $Y = (X-1) \mod m$? (the modulo operation "a mod b" returns the remainder of $a \div b$)

Observe that $\mathbb{Y} = \{0, 1, \dots, m-1\}$ and that

$$Y = 0 \text{ if } X = 1, \quad m+1, \quad 2m+1, \quad 3m+1...$$

$$Y = 1 \text{ if } X = 2, \quad m+2, \quad 2m+2, \quad 3m+2...$$

$$Y = y \text{ if } X = y + 1, m + y + 1, 2m + y + 1, 3m + y + 1...$$

Hence
$$\{x|g(x) = y\} = \{x = rm + y + 1\}_{r \in \{0,1,\dots\}}$$
 and we conclude:

$$P_{Y}(y) = \sum_{r=0}^{\infty} P_{X}(rm + y + 1) = \sum_{r=0}^{\infty} p(1-p)^{rm+y} = \frac{p(1-p)^{y}}{1 - (1-p)^{m}} \quad \Box$$

$$P_{X}(k) \qquad \qquad P_{Y}(j)$$

The CDF of Y = g(X) is $F_v(y) = \mathbb{P}[Y \le y] = \mathbb{P}[g(X) \le y]$

- ► If g is strictly increasing: $g(X) < y \Leftrightarrow X < g^{-1}(y)$
- $ightharpoonup F_{y}(y) = \mathbb{P}[X \leq g^{-1}(y)]$ $=F_{y}(g^{-1}(y))$
- ► Taking $\frac{d}{dv}$ on both sides,

$$f_{Y}(y) = \frac{f_{X}(g^{-1}(y))}{g'(g^{-1}(y))}$$

- ► If g is strictly decreasing: $g(X) < y \Leftrightarrow X > g^{-1}(y)$
- $ightharpoonup F_{y}(y) = \mathbb{P}[X \geq g^{-1}(y)]$ $=1-F_{y}(g^{-1}(y))$
- ► Taking $\frac{d}{dy}$ on both sides, $f_{Y}(y) = -\frac{f_{X}(g^{-1}(y))}{g'(g^{-1}(y))}$

$$= \frac{f_{X}(g^{-1}(y))}{|\sigma'(\sigma^{-1}(y))|}$$

Hence, for g strictly monotonic, $f_{Y=g(X)}(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}$

Suppose that a resistance R is uniformly distributed between 900 and $1100\,\Omega$, what is the PDF of its conductance $G=\frac{1}{R}$?

Here
$$g(x)=\frac{1}{x}$$
 is strictly decreasing, so we can use $f_{_{\mathrm{G}}}(y)=\frac{f_{_{\mathrm{X}}}(g^{-1}(y))}{|g'(g^{-1}(y))|}$ with $g'(x)=-\frac{1}{x^2}$ and $g^{-1}(y)=\frac{1}{y}$ hence $|g'(g^{-1}(y))|=y^2$

$$P_{\rm R}(x) = \begin{cases} \frac{1}{200} & \text{if } x \in [900, 1100] \\ 0 & \text{otherwise} \end{cases} \Rightarrow P_{\rm G}(y) = \begin{cases} \frac{1}{200y^2} & \text{if } y \in [\frac{1}{1100}, \frac{1}{900}] \\ 0 & \text{otherwise} \end{cases}$$

Continuous random variables - Example 2

With $X \sim \mathcal{N}(0,1)$, what is the PDF of $Y = X^2$? Here g(x) is not monotonic, and $Y \geq 0$.

$$\begin{split} F_{\mathbf{Y}}(y) &= \mathbb{P}[\mathbf{Y} \leq y] = \mathbb{P}[-\sqrt{y} \leq \mathbf{X} \leq +\sqrt{y}] = F_{\mathbf{X}}(+\sqrt{y}) - F_{\mathbf{X}}(-\sqrt{y}). \\ \text{Taking } \tfrac{\mathrm{d}}{\mathrm{d}y} \text{ on both sides, } f_{\mathbf{Y}}(y) &= \tfrac{f_{\mathbf{X}}(\sqrt{y})}{2\sqrt{y}} + \tfrac{f_{\mathbf{X}}(-\sqrt{y})}{2\sqrt{y}} = \tfrac{e^{-y/2}}{\sqrt{2\pi y}} \text{ for } y \geq 0 \end{split}$$

Functions of random variables Application

▶ What is the PDF of Y = aX + b? Here g(x) is strictly monotonic and we can use the formula $f_Y(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}$. Hence,

$$f_{Y}(y) = \frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)$$

Note that $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$ and $Var[aX + b] = a^2Var[X]$.

▶ With $X \sim \mathcal{N}(\mu, \sigma^2)$, what is the PDF of $Y = \frac{X - \mu}{\sigma}$? With $a = 1/\sigma$ and $b = -\mu/\sigma$, we find

$$f_{Y}(y) = \sigma f_{X}(\sigma y + \mu) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}} \quad \Box$$

so $Y \sim \mathcal{N}(0,1)$ standard Gaussian (as stated in the previous lecture).

Mean and variance of sums

Let X and Y be two random variables. We are interested in the probability distribution of the random variable S = X + Y.

- ▶ We have already seen $\mathbb{E}[S] = \mathbb{E}[X] + \mathbb{E}[Y]$.
- One can easily show that

$$\label{eq:Var} Var[S] = Var[X] + Var[Y] + 2Cov[X,Y]$$
 where $Cov[X,Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$ is called the covariance.

We also define the correlation coefficient:

$$\rho = \frac{\text{Cov}[X, Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}}$$

which satisfies $-1 < \rho < 1$.

▶ If ρ < 0, X and Y are anticorrelated If ρ > 0, X and Y are correlated If ρ = 0, X and Y are uncorrelated (and $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$)

Let X and Y be two discrete random variables, with joint PMF $P_{XY}(x,y)$, and S=X+Y. Using the law of total probability

$$P_{S}(s) = \sum_{y \in \mathbb{Y}} P_{S|Y}(s|y) P_{Y}(y)$$

with
$$P_{S|Y}(s|y) = \mathbb{P}[S = s|Y = y] = \mathbb{P}[X + Y = s|Y = y]$$
$$= \mathbb{P}[X = s - y|Y = y]$$
$$= P_{Y|Y}(s - y|y)$$

So
$$P_{S}(s) = \sum_{y \in \mathbb{Y}} P_{X|Y}(s - y|y) P_{Y}(y) = \sum_{y \in \mathbb{Y}} P_{XY}(s - y, y)$$
$$= \sum_{x \in \mathbb{X}} P_{XY}(x, s - x)$$

If X and Y are independent,

$$P_{\mathbf{S}}(s) = \sum_{\mathbf{y} \in \mathbb{Y}} P_{\mathbf{X}}(s - \mathbf{y}) P_{\mathbf{Y}}(\mathbf{y}) = \sum_{\mathbf{y} \in \mathbb{X}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}}(s - \mathbf{x})$$

that is, $P_{y+y} = P_y * P_y$ the discrete convolution product

Sum of continuous random variables

Let X and Y be two continuous random variables, with joint PDF $f_{vv}(x, y)$, and S = X + Y.

$$F_{s}(s) = \mathbb{P}[X + Y \leq s]$$

$$= \iint_{x+y\leq s} f_{xy}(x,y) dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{s-y} f_{xy}(x,y) dxdy$$

$$\stackrel{u=x+y}{=} \int_{-\infty}^{\infty} \int_{-\infty}^{s} f_{xy}(u-y,y) dudy$$

$$x+y\leq s$$

Take $\frac{d}{ds}$ on both sides

$$f_{\mathrm{S}}(s) = \int_{-\infty}^{\infty} f_{\mathrm{XY}}(s-y,y) \mathrm{d}y = \int_{-\infty}^{\infty} f_{\mathrm{XY}}(x,s-x) \mathrm{d}x$$

If X and Y are independent,

$$f_{S}(s) = \int_{-\infty}^{\infty} f_{X}(s-y)f_{Y}(y)dy = \int_{-\infty}^{\infty} f_{X}(x)f_{Y}(s-x)dx$$

that is, $f_{v+v} = f_v * f_v$ the convolution product

Sum of continuous random variables - Example

Let X and Y be independent and uniform between 0 and 1, that is $(1) \quad (1) \quad \text{if } x \in [0,1]$

$$f_{X}(x) = f_{Y}(x) = \begin{cases} 1 & \text{if } x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

and
$$S = X + Y$$
. Find $f_S(s)$.

$$\begin{split} f_{\mathrm{S}}(s) = & \int_{-\infty}^{\infty} & f_{\mathrm{X}}(s-y) f_{\mathrm{Y}}(y) \mathrm{d}y = & \int_{0}^{1} f_{\mathrm{X}}(s-y) \mathrm{d}y \stackrel{u=s-y}{=} \int_{s-1}^{s} f_{\mathrm{X}}(u) \mathrm{d}u \\ & = \begin{cases} \int_{0}^{s} \mathrm{d}u = s & \text{if } s \in [0,1] \\ \int_{s-1}^{1} \mathrm{d}u = 2 - s & \text{if } s \in [1,2] \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Introduction

You have seen Fourier and Laplace Transforms in other courses. You appreciate their usefulness in sidestepping tedious calculations. Here we introduce two transforms with similar benefits:

For a discrete random variable X with support X, the Probability-Generating Function is defined by

$$G_{\mathbf{X}}(z) = \sum_{k \in \mathbb{X}} z^k P_{\mathbf{X}}(k) = \mathbb{E}[z^{\mathbf{X}}]$$
 [DB p.27]

► For a continuous random variable X, the Moment-Generating Function is defined by

$$g_{X}(s) = \int_{-\infty}^{+\infty} f_{X}(x)e^{sx}dx = \mathbb{E}[e^{sX}]$$
 [DBp.28]

Probability-Generating Function $\textit{G}_{_{\! X}}(\textit{z}) = \mathbb{E}[\textit{z}^{\, X}]$ (discrete r.v.)

Moments Since $\frac{\mathrm{d}^k}{\mathrm{d}z^k}(z^{\mathrm{X}}) = \mathrm{X}(\mathrm{X}-1)(\mathrm{X}-2)\dots(\mathrm{X}-k+1)z^{\mathrm{X}-k}$, we verify that

$$\mathbb{E}[\mathrm{X}] = G'_{\mathrm{X}}(1)$$
 [DB p.27] $\mathrm{Var}[\mathrm{X}] = G''_{\mathrm{X}}(1) + G'_{\mathrm{X}}(1) - G'_{\mathrm{X}}(1)^2$ [DB p.27]

► Sum of independent random variables

For X and Y two independent discrete random variables, $\mathbb{E}[z^{X+Y}] = \mathbb{E}[z^X z^Y] = \mathbb{E}[z^X]\mathbb{E}[z^Y]$ so

$$G_{X+Y}(z) = G_X(z) \times G_Y(z)$$

More generally, for $\{X_1, X_2 \dots X_n\}$ mutually independent,

$$G_{\sum_{i=1}^n X_i}(z) = \prod_{i=1}^n G_{X_i}(z)$$

Probability-Generating Function - Examples

With $p \in [0,1]$, q = 1 - p, $n \in \{1,2,\dots\}$ and $\lambda > 0$:

Distribution of \boldsymbol{X}	Support of X	$P_{X}(k)$	$G_{X}(z)$
$\mathrm{Ber}(p)$	{0,1}	p^kq^{1-k}	q + pz
Geo(p)	{1,2}	pq^{k-1}	$\frac{pz}{1-qz} {}_{(z $
B(n,p)	$\{0,1\ldots,n\}$	${}^{n}C_{k} p^{k} q^{n-k}$	$(q+pz)^n$
$Pois(\lambda)$	{0,1}	$\frac{\lambda^k e^{-\lambda}}{k!}$	$e^{\lambda(z-1)}$

[DB p.27]

- Note the short form for the Bernoulli PMF...
- ▶ Using the expressions of G_X and $G_{X+Y} = G_X \times G_Y$, one gets

$$X \sim B(n_X, p), \quad Y \sim B(n_Y, p) \Rightarrow X+Y \sim B(n_X+n_Y, p)$$
 $X \sim Pois(\lambda_X), \quad Y \sim Pois(\lambda_Y) \Rightarrow X+Y \sim Pois(\lambda_X+\lambda_Y)$
when X and Y are independent.

Probability-Generating Function - Examples

 $ightharpoonup X \sim \mathrm{Ber}(p)$

Immediate from definition
$$\sum_{k=0}^{\infty} z^{k} P_{x}(k) = (1-p)z^{0} + pz^{1}$$

 $ightharpoonup X \sim \operatorname{Geo}(p)$

From definition

$$\sum_{k=1}^{\infty} pq^{k-1}z^k = pz \sum_{k=1}^{\infty} (qz)^{k-1} \stackrel{j=k-1}{=} pz \sum_{j=0}^{\infty} (qz)^j \stackrel{|qz|<1}{=} \frac{pz}{1-qz} \quad \Box$$

 $ightharpoonup X \sim B(n, p)$

$$\sum_{k=0}^{n} {^{n}C_{k}} p^{k} q^{n-k} z^{k} = \sum_{k=0}^{n} {^{n}C_{k}} (zp)^{k} q^{n-k} \stackrel{\text{Binomial expansion}}{=} (q+pz)^{n}$$

 $ightharpoonup X \sim Pois(\lambda)$

$$\sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} z^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda z)^k}{k!} \stackrel{\text{Power series}}{=} e^{-\lambda} e^{\lambda z}$$

Moment-Generating Function $g_{_{\! X}}(s)=\mathbb{E}[e^{sX}]$ (continuous r.v.)

Moments

Since
$$\frac{d^k}{ds^k}(e^{sX}) = X^k e^{sX}$$
, we verify that $g_X^{(k)}(0) = \mathbb{E}[X^k]$. In particular:

$$\mathbb{E}[\mathrm{X}] = g_{\mathrm{X}}'(0)$$
 [DB p.28] $\mathrm{Var}[\mathrm{X}] = g_{\mathrm{X}}''(0) - g_{\mathrm{X}}'(0)^2$ [DB p.28]

Sum of independent random variables

For X and Y two independent continuous random variables, $\mathbb{E}[e^{s(X+Y)}] = \mathbb{E}[e^{sX}e^{sY}] = \mathbb{E}[e^{sX}]\mathbb{E}[e^{sY}]$ so

$$g_{X+Y}(s) = g_X(s) \times g_Y(s)$$

More generally, for $\{X_1, X_2 \dots X_n\}$ mutually independent,

$$g_{\sum_{i=1}^n X_i}(s) = \prod_{i=1}^n g_{X_i}(s)$$

Moment-Generating Function - Examples

 $[\mathrm{DB}\,\mathrm{p.28}]$

With $a < b \in \mathbb{R}$, $\lambda > 0$, $\mu \in \mathbb{R}$, $\sigma > 0$, $\alpha, \beta > 0$ and $\gamma = \alpha + \beta$:

Distribution	\mathbb{X}	$f_{_{\rm X}}(x)$	$g_{_{\mathrm{X}}}(s)$
$\mathrm{U}(a,b)$	[a, b]	$\frac{1}{b-a}$	$\frac{e^{bs}-e^{as}}{s(b-a)}$
$\operatorname{Exp}(\lambda)$	\mathbb{R}^+	$\lambda e^{-\lambda x}$	$\frac{\lambda}{\lambda - s}$ (s< λ)
$\mathcal{N}(\mu,\sigma^2)$	\mathbb{R}	$\frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}}$	$e^{\mu s + \frac{\sigma^2 s^2}{2}}$
$\overline{\mathrm{Beta}(\alpha,\beta)}$	[0, 1]	$\frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$1 + \sum_{k=1}^{\infty} \left[\prod_{r=0}^{k-1} \frac{\alpha + r}{\gamma + r} \right] \frac{s^k}{k!}$

▶ Using the expressions of g_{X} and $g_{X+Y} = g_{X} \times g_{Y}$, one gets

$$X \sim \mathcal{N}(\mu_X, \sigma_X^2), Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2) \Rightarrow X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

when X and Y are independent.

UNIVERSITY OF CAMBRIDGE

Moment-Generating Function - Examples

From definition
$$g_{X}(s) = \frac{1}{b-a} \int_{a}^{b} e^{sx} dx = \frac{1}{b-a} \left[\frac{e^{sx}}{s} \right]_{a}^{b}$$

 $ightharpoonup X \sim \operatorname{Exp}(\lambda)$

From definition

$$g_{X}(s) = \lambda \int_{0}^{\infty} e^{(s-\lambda)x} dx = \lambda \left[\frac{e^{(s-\lambda)x}}{s-\lambda} \right]_{0}^{\infty} \stackrel{s \leq \lambda}{=} \frac{\lambda}{\lambda - s}$$

$$ightharpoonup X \sim \mathcal{N}(\mu, \sigma^2)$$

For the standard Gaussian,
$$g_{\rm x}(s)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-x^2/2}e^{s{\rm x}}{\rm d}x=$$
 $e^{s^2/2}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-(x-s)^2/2}{\rm d}x=e^{s^2/2}$ and note that

$$g_{\sigma X + \mu}(s) = \mathbb{E}[e^{(\sigma s)X + \mu s}] = e^{\mu s}g_{X}(\sigma s)$$

 $ightharpoonup X \sim Beta(\alpha, \beta)$

Tedious, we won't do it here.

The Central Limit Theorem

The theorem

Let $X_1, X_2 \dots$ be independent random variables with means μ_1 , $\mu_2 \dots$ and variances $\sigma_1^2, \sigma_2^2 \dots$ Then the random variable

$$S_n = X_1 + X_2 + \dots + X_n$$

tends to a Gaussian random variable S,

$$S \sim \mathcal{N}(\mu_1 + \mu_2 + \cdots + \mu_n, \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2)$$

as n tends to infinity, regardless of the actual individual distributions of X_i .

- As expected from independence, means and variances add up.
- ▶ If all X_i are *identically* distributed with mean μ and variance σ^2 , then the theorem is equivalent to

$$Y_n = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \quad \stackrel{n \to \infty}{\sim} \quad \mathcal{N}(0, 1)$$

The Central Limit Theorem

Let us consider $X_1, X_2 \dots X_n$ be independent random variables that have been shifted/rescaled to have means $\mu_1 = \mu_2 = \cdots = \mu_n = 0$ and variances $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_2^2 = 1.$

We will show that $Y_n = \frac{X_1 + X_2 + \cdots + X_n}{\sqrt{n}}$ tends to a standard Gaussian random variable when $n \to \infty$.

We write the MGF of Y_n as

$$\begin{split} g_{\mathbf{Y}_{s}}(s) &= \prod_{k=1}^{n} g_{\mathbf{X}_{k}}(\frac{s}{\sqrt{n}}) \stackrel{\text{Taylor}}{==} \prod_{k=1}^{n} \left[g_{\mathbf{X}_{k}}(0) + g_{\mathbf{X}_{k}}'(0) \frac{s}{\sqrt{n}} + g_{\mathbf{X}_{k}}''(0) \frac{s^{2}}{2n} + o(\frac{s^{3}}{n^{3/2}}) \right] \\ \text{Since } g_{\mathbf{X}}^{(k)}(0) &= \mathbb{E}[\mathbf{X}^{k}], \ g_{\mathbf{X}_{k}}(0) = 1, \ g_{\mathbf{X}_{k}}'(0) = \mu_{k} = 0 \ \text{and} \ g_{\mathbf{X}_{k}}''(0) = \sigma_{k}^{2} = 1 \ \text{and we} \end{split}$$

are left with

$$g_{Y_n}(s) = \prod_{k=1}^n \left[1 + \frac{s^2}{2n} + o\left(\frac{s^3}{n^{3/2}}\right) \right] = \left(1 + \frac{s^2}{2n} \right)^n + o\left(\frac{s^3}{n^{3/2}}\right)$$

and $\lim_{n\to\infty} g_{\chi_s}(s) = \lim_{n\to\infty} \frac{k=1}{(1+\frac{s^2}{2n})^n} = e^{s^2/2}$ which is the MGF of the standard Gaussian. Hence $Y_{\infty} \sim \mathcal{N}(0,1)$.

There are subtle restrictions on the distribution of X_k for the theorem to work. But it works in most cases...

The Central Limit Theorem

Example

Let us consider that
$$X_i \sim \operatorname{Exp}(1)$$
 for all $i \in \{1, \dots, n\}$ (ie., $\mu_i = \mathbb{E}[X_i] = 1 = \mu$ and $\sigma_i^2 = \operatorname{Var}[X_i] = 1 = \sigma^2$ for all i).

Let us monitor the PDF of $Y_n = \frac{X_1 + X_2 + \cdots + X_n - n\mu}{\sigma\sqrt{n}}$ as n increases. (Note that $Y_1 = X_1 - 1$ is shifted exponential).

Multivariate Gaussians

Expression

- ▶ We haven't seen any example of a joint PDF;
- We know that the Gaussian distribution is important;
- ▶ We can concisely write the joint PDF $f_{X_1X_2...X_n}(x_1, x_2..., x_n)$ of n random variables as $f_{\mathbf{v}}(\mathbf{x})$ using the vector notation.

Hence, the *n*-dimensional random vector $\mathbf{X} = [X_1, X_2, \dots, X_n]^\mathsf{T}$ is multivariate Gaussian if

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow f_{\mathbf{X}}(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}}$$

evaluated at $\mathbf{x} = [x_1, x_2, \dots, x_n]^\mathsf{T}$, with

- $\mu = [\mu_1, \mu_2 \dots, \mu_n]^T$ is the mean vector: $\mu_i = \mathbb{E}[X_i]$ for $i = 1 \dots n$
- $ightharpoonup \Sigma$ is the symmetric $n \times n$ covariance matrix:

$$\Sigma_{ij} = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)] = \begin{cases} \operatorname{Cov}[X_i, X_j] & \text{if } i \neq j \\ \operatorname{Var}[X_i] = \sigma_i^2 & \text{if } i = j \end{cases}$$

Multivariate Gaussians

For
$$n=2$$
, we have $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} \right) \end{bmatrix}$ where $ho = \frac{\operatorname{Cov}[X_1, X_2]}{\sigma_1 \sigma_2}$ is the correlation. The full expression
$$f_{X_1 X_2}(x_1, x_2) = \frac{\exp \left(-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2 \rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right] \right)}{2 \pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}}$$

In particular, we can show:

- ▶ The marginals are Gaussian: $f_{X_1} = \mathcal{N}(\mu_1, \sigma_1^2)$, $f_{X_2} = \mathcal{N}(\mu_2, \sigma_2^2)$. This is also true for any "partial" marginals (integration over k < n components of \mathbf{X}) of $\mathcal{N}(\mu, \Sigma)$.
- ▶ If $\rho = 0$, then $f_{X_1X_2} = f_{X_1} \times f_{X_2}$ and X_1, X_2 are independent. The components of X are mutually independent if Σ is diagonal.
- ► The conditional $f_{X_1|X_2=x_2} = \mathcal{N}\left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 \mu_2), (1-\rho^2)\sigma_1^2\right)$ is also Gaussian.

The multivariate conditionals $f_{X_1,...,X_k|X_{k+1},...,X_n}$ are also Gaussian.

Multivariate Gaussians

Example - The Bivariate Gaussian

You can attempt Problems 1 to 8 of Examples Paper 6