images

1. Given five binary patterns:

$$x_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, x_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, x_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, x_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, x_5 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Design an autoencoder with four hidden neurons to reconstruct the patterns, using gradient descent learning with a learning parameter $\alpha = 0.1$.

Find the weights, biases, hidden-layer activations and reconstructions of the input patterns at convergence.

Repeat the above by introducing a sparsity constraint with a penalty parameter $\beta = 0.5$ and sparsity parameter $\rho = 0.1$.

2. Create 100 images of 10x10 size by randomly generating pixel values between 0.0 and 1.0 from a uniform distribution.

Design the following autoencoders to reconstruct the input patterns, using mean square error as the cost function:

- a. An undercomplete autoencoder with 49 hidden neurons
- b. An overcomplete autoencoder with 144 hidden neurons
- c. A sparse autoencoder with 144 hidden neurons and training with sparsity parameter $\rho = 0.05$ and penalty parameter $\beta = 0.5$.

Compare features learned by different autoencoders.

3. Design a denoising autoencoder to reconstruct MNIST images: http://yann.lecun.com/exdb/mnist/

- (a) Assume one hidden layer with 625 neurons, multiplicative noise, and cross-entropy cost function. Use 10% corruption level, learning factor $\alpha=0.1$, batch size = 128, sparsity constant $\rho=0.02$, and penalty parameter $\beta=0.4$. Plot the learning curves, the weights, and the hidden layer activations for sample test images.
- (b) Add another hidden layer with 100 neurons and train the autoencoder as before. Plot the feature maps.Plot the learning curves, the weights, and the hidden layer activations for sample test
- (c) Add a softmax layer on top of the second hidden layer to design a classifier. Show learning curves and find the accuracy of the classifier.

 Plot the learning curves and the weights and find the accuracy for test patterns.

1