Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3207	_К работе допущен	
Студент	Путинцев Данил Денисович	_Работа выполнена	09.10.2024
Преподава	гель Агабабаев В. А	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.02

Изучение скольжения тележки по наклонной плоскости

Цели работы.

- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2. Определение величины ускорения свободного падения g.

Задачи, решаемые при выполнении работы.

- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4. Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

Объект исследования.

Ускорение тележки при различных углах наклона.

Метод экспериментального исследования.

Измерение времени, за которое тележка проходит заданное расстояние по наклонной плоскости при различных углах наклона.

Рабочие формулы и исходные данные.

$$\begin{split} a &= \frac{\sum\limits_{i=1}^{n} Z_{i} * Y_{i}}{\sum\limits_{i=1}^{n} Z_{i}^{2}} & \sin a = \frac{(h_{0} - h) - (h'_{0} - h')}{x' - x} \sigma_{a} = \sqrt{\frac{\sum\limits_{i=1}^{n} (Y_{i} - aZ_{i})^{2}}{(n - 1)\sum\limits_{i=1}^{n} Z_{i}^{2}}} \langle a \rangle = \frac{2(x_{2} - x_{1})}{\langle t_{2} \rangle^{2} - \langle t_{1} \rangle^{2}} \\ \Delta a &= \langle a \rangle \sqrt{\frac{(\Delta x_{u2})^{2} + (\Delta x_{u1})^{2}}{(x_{2} - x_{1})^{2}} + 4 \frac{(\langle t_{1} \rangle \Delta t_{1})^{2} + (\langle t_{2} \rangle \Delta t_{2})^{2}}{(\langle t_{2} \rangle^{2} - \langle t_{1} \rangle^{2})^{2}}} \\ B &= g = \frac{\sum\limits_{i=1}^{N} a_{i} \sin a_{i} - \frac{1}{N} \sum\limits_{i=1}^{N} a_{i} \sum\limits_{i=1}^{N} \sin a_{i}}{\sum\limits_{i=1}^{N} \sin a_{i}^{2} - \frac{1}{N} (\sum\limits_{i=1}^{N} \sin a_{i})^{2}} A = \frac{1}{N} (\sum\limits_{i=1}^{N} a_{i} - B \sum\limits_{i=1}^{N} \sin a_{i}) \\ \sigma_{g} &= \sqrt{\frac{\sum\limits_{i=1}^{N} d_{i}^{2}}{D(N - 2)}}, \ \ \varepsilon \partial e d_{i} = a_{i} - (A + B \sin a_{i}), \ \ D &= \sum\limits_{i=1}^{N} \sin a_{i}^{2} - \frac{1}{N} (\sum\limits_{i=1}^{N} \sin a_{i})^{2} \\ \Delta g &= 2\sigma_{g} \\ \varepsilon_{g} &= \frac{\Delta g}{\sigma} * 100 \% \end{split}$$

Измерительные приборы.

№ n/n	Наименование	Предел измерений	' I I I I I I I I I I I I I I I I I I I	
1	Линейка на рельсе	1.3 м	1 см/дел	5 мм
2	Линейка на угольнике	250 мм	1 мм/дел	0.5 мм
3	ПКЦ-3 в режиме секундомера	100 с	0.1 с	0.1 с

Схема установки (перечень схем, которые составляют Приложение 1). Экспериментальная установка

Схема экспериментальной установки представлена на Рис.2.

Рис. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Х, М	Х', М	h _{0,} мм	h ['] 0, мм
0.22 ± 0.005	1 ± 0.005	206 + 0.5	210 ± 0.5

Таблица 1: Результаты прямых измерений (Задание 1)

Nº	Измеренные величины				Рассчитанные величины	
	X ₁ , M	X2, M	t ₁ , c	t ₂ , M	x ₂ - x ₁ , M (Y)	$\frac{t_2^2-t_1^2}{2}$, c^2
						(Z)
1	0,15	0,4	1,3	2,3	$0,25 \pm 0.005$	1,8 ± 0.09
2	0,15	0,5	1,2	2,6	0.35 ± 0.005	2,66 ± 0.09
3	0,15	0,7	1,2	3,1	0,55 ± 0.005	4,085 ± 0.09
4	0,15	0,9	1,3	3,7	0,75 ± 0.005	6 ± 0.09
5	0,15	1,1	1,3	4,1	0,95 ± 0.005	7,56 ± 0.09

Таблица 2: Результаты прямых измерений (Задание 2)

$N_{\Pi\Pi}$	h, мм	h', мм	No	t ₁ , c	t ₂ , c
			1	1,2	4,1
			2	1,2	4,1
1	216	210	3	1,2	4,1
			4	1,2	4,1
			5	1,2	4,1
	226	210	1	0,9	3,0
			2	0,9	2,9
2			3	0,9	3,0
			4	0,8	2,9
			5	0,9	3,0
	236 210		1	0,7	2,4
			2	0,7	2,4
3		210	3	0,7	2,4
			4	0,7	2,4
			5	0,7	2,4

4	246	210	1	0,6	2,1
			2	0,6	2,1
			3	0,6	2,1
			4	0,6	2,1
			5	0,7	2,1
5	255 210	210	1	0,6	1,9
			2	0,6	1,9
			3	0,5	1,9
			4	0,6	2,0
			5	0,7	2.1

 $N_{\Pi\Pi}$ — количество пластин h — высота на координате x = 0,22 м h — высота на координате x = 1,00 м

Расчет результатов косвенных измерений (таблицы, примеры расчетов). Задание 1

Найдем ускорение тележки методом наименьших квадратов (МНК):

$$a = \frac{\sum_{i=1}^{n} Z_{i} * Y_{i}}{\sum_{i=1}^{n} Z_{i}^{2}} = 0.127 \, \text{m/c}^{2}$$

Найдем среднеквадратическое отклонение (СКО):

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - aZ_i)^2}{(n-1)\sum_{i=1}^{n} Z_i^2}} = 8.89 * 10^{-5} \text{ m/c}^2$$

Задание 2

Таблица 3: Результаты расчетов (Задание 2)

$N_{\Pi\Pi}$	sin a	$\langle t_1 \rangle \pm \Delta t_1$, c	$\langle t_2 \rangle \pm \Delta t_2$, c	$\langle a \rangle \pm \Delta a$, M/C ²
1	0.0128	1.2 ± 0	4.1 ± 0	0.104 ± 0.00078
2	0.026	0.88 ± 0.056	2.96 ± 0.068	0.199 ± 0.029
3	0.038	0.7 ± 0	2.4 ± 0	0.304 ± 0.023
4	0.05	0.62 ± 0.056	2.1 ± 0	0.396 ± 0.014
5	0.06	0.6 ± 0.088	1.96 ± 0.11	0.452 ± 0.108

N_{пл} - количество пластин

$$\langle t_{1,2} \rangle = \frac{1}{N} \sum_{i=1}^{n} t_{1_{i},2_{i}}$$

5. Найдем коэффициенты линейной зависимости по формулам:

$$B = g = \frac{\sum_{i=1}^{N} a_{i} \sin a_{i} - \frac{1}{N} \sum_{i=1}^{N} a_{i} \sum_{i=1}^{N} \sin a_{i}}{\sum_{i=1}^{N} \sin a_{i}^{2} - \frac{1}{N} (\sum_{i=1}^{N} \sin a_{i})^{2}} = 7.558 \, \text{M/c}^{2}$$

$$A = \frac{1}{N} (\sum_{i=1}^{N} a_{i} - B \sum_{i=1}^{N} \sin a_{i}) = 0.0086$$

6. Рассчитаем СКО для ускорения свободного падения (коэффициента В) по формуле:

$$\sigma_{g} = \sqrt{\frac{\sum\limits_{i=1}^{N}d_{i}^{2}}{D(N-2)}} = 0.95\,\text{m/c}^{2}\text{, } \text{ } \text{2de}\,d_{i} = a_{i} - (A+B\sin a_{i})\text{, } \text{ } D = \sum\limits_{i=1}^{N}\sin a_{i}^{2} - \frac{1}{N}(\sum\limits_{i=1}^{N}\sin a_{i})^{2}$$

Расчет погрешностей измерений (для прямых и косвенных измерений).

6

Погрешность для x_2 - x_1 :

$$\Delta x_1 = \frac{2}{3} * 0.0005 = 0.00033 \,\text{M}, \, \Delta x_2 = \frac{2}{3} * 0.0005 = 0.00033 \,\text{M}$$

Абсолютная погрешность равна:
$$\Delta_l = \sqrt{\Delta x_1^2 + \Delta x_2^2} = \sqrt{0.00033^2 + 0.00033^2} = 0.0005 \, \text{м}$$

Относительная погрешность равна:

$$\varepsilon_{l} = \frac{\Delta_{l}}{x_{2} - x_{1}} * 100\% = \frac{0.0005}{0.25} * 100 = 0.2\% x_{2} - x_{1} = (0.25 \pm 0.0005)$$

$$x_{2} - x_{1} = (0.25 \pm 0.0005) \mathcal{M} \quad \varepsilon_{l} = 0.2\% \quad \alpha = 0.95$$

Погрешность для
$$\dfrac{t_2^2-t_1^2}{2}$$

$$\Delta t = \frac{2}{3} * 0.1 = 0.067 \text{ c}$$

Абсолютная погрешность равна:

$$\Delta_t = \sqrt{\Delta t_1^2 + \Delta t_2^2} \sqrt{0.067^2 + 0.067^2} = 0.09 c$$

Относительная погрешность:

$$\varepsilon_{2} = \frac{\Delta_{t}}{\frac{t_{2}^{2} - t_{1}^{2}}{2}} *100\% = \frac{0.09}{1.8} *100\% = 5\%$$

$$\frac{t_2^2 - t_1^2}{2} = (1.8 \pm 0.09)c \quad \varepsilon_t = 5\% \quad \alpha = 0.95$$

Абсолютная погрешность коэффициента а (ускорения) для доверительной вероятности $\alpha = 0.90$

$$\Delta_a = 2 \sigma_a = 2*8.89*10^{-5} = 0.00018 \text{ m/c}^2$$

Относительная погрешность ускорения:

$$\varepsilon_a = \frac{\Delta_a}{a} * 100\% = 0.14\%$$
 $a = (0.127 + 0.00018) \, \text{m/c}^2 \ \varepsilon_a = 0.14\% \ a = 0.9$

Найдем абсолютную погрешность коэффициента для доверительной вероятности a=0.90

$$\Delta g = 2 \sigma_g = 2 * 0.95 = 1.9 \,\text{m/c}^2$$

Найдем относительная погрешность g:

$$\varepsilon_g = \frac{\Delta g}{g} * 100\% = \frac{1.9}{7.558} * 100\% = 25\%$$

Графики (перечень графиков, которые составляют Приложение 2).

График 1. Зависимость Y от Z

График 2: Зависимость а om sin(a)

Окончательные результаты.

$$a = (0.127 \pm 0.00018) \, \text{M/c}^2 \, \varepsilon_a = 0.14 \, \text{\%} \, a = 0.9$$

 $g = (7.558 \pm 1.9) \, \text{M/c}^2 \, \varepsilon_g = 25 \, \text{\%} \, a = 0.9$

$$g_{\text{табл}} = 9.8195 \text{ M/c}^2$$

 $|g_{_{\mathcal{H}CR}} - g_{_{maбл}}| = |7.558 - 9.858| = 2.3 \text{ M/c}^2$

Выводы и анализ результатов работы.

Да, движение можно считать равноускоренным, так как на графике можно наблюдать линейную зависимость с учетом погрешностей.

Так как разность больше относительной погрешности (2.3 > 1.9), а значит, что наш эксперимент недостаточно точный, чтобы рассчитать силу притяжения земли. Видимо, при рассчетах необходимо учитывать силу трения, но в нашем эксперименте мы пренебрегли этим. Поэтому результат получился не точный.