

# 2015—2016 学年第二学期 《高等数学 (2-2)》第一阶段考试卷

(工科类)

| 专业班级  |           |
|-------|-----------|
| 姓 名_  |           |
| 学 号_  |           |
| 开课系室_ | 基础数学系     |
| 考试日期  | 2016年4月9日 |

| 题 号  | 1  | 1 1 | 111 | 四 | 五. | 六  | 七  | 总分 |
|------|----|-----|-----|---|----|----|----|----|
| 本题满分 | 12 | 18  | 16  | 8 | 18 | 12 | 16 |    |
| 本题得分 |    |     |     |   |    |    |    |    |
| 阅卷人  |    |     |     |   |    |    |    |    |

#### 注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面清洁;
- 3. 本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共7页。

一. (共 3 小题,每小题 4 分,共计 12 分) 判断下列命题是否正确?在题后的括号内打" $\checkmark$ "或" $\times$ ",如果正确,请给出证明,如果不正确请举一个反例进行说明 .

| 逐满分 12 分 |
|----------|
|          |
|          |
|          |
|          |
|          |

1. 过点(2,3,7)且与平面 3x-2y-5z-7=0 平行的平面方程是 3x-2y-5z+35=0. ( )

2. 若函数 z = f(x, y) 在点  $P(x_0, y_0)$  处可微分,则 f(x, y) 在点  $P(x_0, y_0)$  的偏导数  $f'_v(x_0, y_0)$  存在.

3. 若函数 z = f(x, y) 在点  $P(x_0, y_0)$  处可微分,且  $f'_x(x_0, y_0) = 0$ ,  $f'_y(x_0, y_0) = 0$ ,则点  $P(x_0, y_0)$  必是 f(x, y) 的极值点.

- 二. (共3小题,每小题6分,共计18分)
  - 1. 己知 $\vec{a} = (1,1,4)$ ,  $\vec{b} = (2,-2,-1)$ .

求 (1)  $\vec{a} \cdot \vec{b}$ ; (2)  $\vec{a} \times \vec{b}$ ; (3)  $\text{Prj}_{\vec{b}}\vec{a}$ .

| 本是 | <b>返满分 18 分</b> |
|----|-----------------|
| 本  |                 |
| 题  |                 |
| 得  |                 |
| 分  |                 |

2. 求极限  $\lim_{\substack{x \to 1 \\ y \to 0}} \frac{\sqrt{1 + xy} - \sqrt{1 - xy}}{\sin y}$ .

3. 求方程  $\frac{x}{z} = \ln \frac{z}{y}$  确定的隐函数 z = z(x, y) 的全微分 dz.

### 三. (共2小题,每小题8分,共计16分)

1. 设函数 z = f(x + y, x - y, xy), 其中 f 具有二阶连续偏导数, 求

| $\partial z$              | $\partial^2 z$                     |   |
|---------------------------|------------------------------------|---|
| $\overline{\partial x}$ , | $\overline{\partial x \partial y}$ | • |



- 2. 已知直线  $L_1$ :  $\frac{x}{1} = \frac{y+2}{-2} = \frac{z-1}{1}$ ,  $L_2$ :  $\frac{x-2}{-1} = \frac{y}{1} = \frac{z+1}{2}$ .
- (1) 求  $L_1$  与  $L_2$  之间的夹角; (2) 求  $L_1$  与  $L_2$  之间的距离.

### 四. (共2小题,每小题4分,共计8分)

1. 求两曲面  $z = \sqrt{9 - x^2 - y^2}$  和  $x^2 + y^2 = 3x$  的交线在 xoz 平面上的 投影曲线的方程.

| 本是 | 逐满分8分 |
|----|-------|
| 本  |       |
| 题  |       |
| 得  |       |
| 分  |       |

2. 求 $0 \le z \le \sqrt{9 - x^2 - y^2}$  与 $x^2 + y^2 \le 3x$ 的公共部分在xoy平面上的投影.

## 五. (共2小题,每小题9分,共计18分)

1. 已知平面  $\pi_1$ : 3x + 6y + 3z + 25 = 0, 平面  $\pi_2$ : x - y + z - 2 = 0,

直线 L:  $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-1}{\lambda}$ . 确定  $\lambda$ ,使  $L \perp \pi_1$ ;并求该直线在平面

 $\pi_2$ 内的投影直线的方程.

| 本是 | 逐满分 18 分 |
|----|----------|
| 本  |          |
| 题  |          |
| 得  |          |
| 分  |          |

2. 求曲线 
$$\begin{cases} x^2 + y^2 + z^2 = 50, \\ z = \sqrt{x^2 + y^2} \end{cases}$$
 在点 (3,4,5) 处的切线方程和法平面方程.

#### 六. (本题 12 分)

六. (本题 12 分)
证明函数 
$$f(x,y) = \begin{cases} \frac{x^2y^2}{(x^2+y^2)^{3/2}}, & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0 \end{cases}$$
 在点  $(0,0)$  处

连续且偏导数存在,但不可微.

## 七. (共2小题,每小题8分,共计16分)

1. 求函数  $z = x^3 + y^2 - 6xy + 8$ 的极值点和极值.

| 逐满分 16 分 |
|----------|
|          |
|          |
|          |
|          |
|          |

- 2. 己知函数 f(x, y) = x + y + xy, 曲线  $L: x^2 + y^2 + xy = 3$ .
- (1)求函数 f(x,y) 在点 P(1,2) 处的梯度; (2)求函数 f(x,y) 在曲线 L 上的最大方向导数.