[M2, MVA]

Convex Optimization, Algorithms and Applications

Maha ELBAYAD maha.elbayad@student.ecp.fr

Homework 2

October 25, 2015

Exercise 5.5 - Dual of general LP.

We consider the LP:

The Lagrangien of (1) is:

$$L(x, \lambda, \nu) = c^{T} x + \lambda^{T} (Gx - h) + \nu^{T} (Ax - b) = (c^{T} + \lambda^{T} G + \nu^{T} A) x - \lambda^{T} h - \nu^{T} b.$$

The corresponding Lagrange dual function is:

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -\lambda^T h - \nu^T b & if \ c^T + \lambda^T G + \nu^T A = 0\\ -\infty & otherwise. \end{cases}$$

Hence the dual problem:

$$\begin{array}{ll} \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & \lambda \succeq \mathbf{0} \end{array}$$

With explicit equality contraints:

maximize
$$-\lambda^T h - \nu^T b$$

subject to $c^T + \lambda^T G + \nu^T A = 0$
 $\lambda \succeq \mathbf{0}$

Exercise 5.7 - Piecewise-linear minimization

We consider the convex piecewise-linear minimization problem:

$$Minimize \quad \max_{i=1,\dots,m} (a_i^T x + b_i) \tag{2}$$

with $x \in \mathbb{R}^n$.

(a) Let us consider the equivalent problem:

minimize
$$\max_{i=1,...,m} y_i$$

subject to $y_i = a_i^T x + b_i, i = 1,...,m.$ (3)

with variables $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$.

The dual function of (3) is as follows:

$$g(\lambda) = \inf_{x,y} \left(\max_{i=1,\dots,m} y_i + \sum_{i=1}^m \lambda_i (a_i^T x + b_i - y_i) \right)$$

We minimize for x then for y:

$$\inf_{x} \left(\max_{i=1,\dots,m} y_i + \sum_{i=1}^{m} \lambda_i (a_i^T x + b_i - y_i) \right) = \begin{cases} \max_{i} y_i - \lambda^T y + \lambda^T b & \text{if } \sum_{i=1}^{m} \lambda_i a_i^T = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Then:

$$g(\lambda) = \inf_{y} (\max_{i} y_i - \lambda^T y + \lambda^T b) \quad if A^T \lambda = 0.$$

If λ has a nonpositive component say $\lambda_k < 0$ then for $y = -\alpha e_k$ whith $\alpha \ge 0$:

$$\max_{i} y_{i} - \lambda^{T} y + \lambda^{T} b = \alpha \lambda_{k} + \lambda^{T} b \xrightarrow[\alpha \to +\infty]{} -\infty$$

If $\mathbf{1}^T y \neq 1$ for $y = \alpha \mathbf{1} \ (\alpha \in \mathbb{R})$:

$$\max_{i} y_{i} - \lambda^{T} y + \lambda^{T} b = \alpha (1 - \mathbf{1}^{T} \lambda) + \lambda^{T} b \xrightarrow[\alpha \to \pm \infty]{} -\infty$$

depending on the sign of $\mathbf{1}^T \lambda - 1$.

If $\mathbf{1}^T \lambda = 1 \wedge \lambda \succeq \mathbf{0}$ then:

$$\lambda^T y \le \sum_j \lambda_j \max_i y_i = \max_i y_i$$

Hence $\max_i y_i - \lambda^T y + \lambda^T b \ge \lambda^T b$ with equality reached for $y = \mathbf{0}$.

Therefore:

$$g(\lambda) = \begin{cases} \lambda^T b & if (A^T \lambda = 0) \land (\lambda \succeq \mathbf{0}) \land (\mathbf{1}^T \lambda = 1) \\ -\infty & otherwise. \end{cases}$$

The dual problem with explicit constraints is:

maximize
$$\lambda^T b$$

subject to $A^T \lambda = \mathbf{0}$
 $\mathbf{1}^T \lambda = 1$
 $\lambda \succeq \mathbf{0}$ (4)

(b) The problem in (2) is equivalent to the LP:

minimize
$$t$$

subject to $Ax + b \le t\mathbf{1}$ (5)

The dual function is:

$$g(\lambda) = \inf_{t,x} t(1 - \lambda^T \mathbf{1}) + \lambda^T A x + \lambda^T b = \begin{cases} \lambda^T b & if \ (\lambda^T \mathbf{1} = 1) \ \land \ (\lambda^T A = \mathbf{0}) \ \land \ (\lambda \succeq \mathbf{0}) \\ -\infty & otherwise \end{cases}$$

Hence, the problem (5) has for dual:

maximize
$$\lambda^T b$$

subject to $A^T \lambda = 0$
 $\mathbf{1}^T \lambda = 0$
 $\lambda \succeq \mathbf{0}$

Which is the same as (4).

(c) Suppose we approximate the objective function (2) by the smooth function:

$$f_0(x) = \log \left(\sum_{i=1}^m \exp(a_i^T x + b_i) \right)$$

and solve the unconstrained geometric program:

$$minimize f_0(x) (6)$$

The dual of this problem is:

maximize
$$b^T \nu - \sum_{i=1}^m \nu_i \log \nu_i$$

subject to $\mathbf{1}^T \nu = 1$ (7)
 $A^T \nu = \mathbf{0}$
 $\nu \succeq \mathbf{0}$

Let p_{pwl}^* and p_{gp}^* be the optimal values of (2) and (6) respectively. We want to show that:

$$0 \le p_{qp}^* - p_{pwl}^* \le \log m$$

For the LHS, we have for all $x \in \mathbb{R}^n$:

$$max_i(a_i^T x + b_i) \le \log \sum_{i=1}^m \exp(a_i^T x + b_i)$$

hence:

$$p_{pwl}^* \le p_{gp}^*$$

For the RHS, let ν^* be the optimal of the dual (7), ν^* is feasible for (4) with:

$$b^T \nu^* - \sum_{i=1}^m \nu_i^* \log \nu_i^* = p_{gp}^*$$

Thus:

$$\nu^{*T}b \le p_{pwl}^*$$

We can easily show that:

$$\inf_{s.t} \sum_{\mathbf{1}^T \nu = 1}^m \nu_i \log \nu_i = -\log m$$

Hence:

$$p_{pwl}^* \ge p_{gp}^* + \sum_{i=1}^m \nu_i^* \log \nu_i^* \ge p_{gp}^* - \log m$$

Therefore:

$$0 \le p_{gp}^* - p_{pwl}^* \le \log m$$

(d) Let us consider the problem:

minimize
$$\frac{1}{\gamma} \log \left(\sum_{i=1}^{m} \exp(\gamma(a_i^T x + b_i)) \right)$$
 (8)

Where $\gamma > 0$ is a parameter.

The problem in (8) is equivalent to:

minimize
$$\frac{1}{\gamma} \log \left(\sum_{i=1}^{m} \exp(\gamma y_i) \right)$$

subject to $Ax + b = y$

which has the Lagrangian:

$$L(x, y, \lambda) = \frac{1}{\gamma} \log \left(\sum_{i=1}^{m} \exp(\gamma y_i) \right) + \lambda^{T} (Ax + b - y)$$

To compute the dual function, we minimize with respect to x:

$$\inf_{x} L(x, y, \lambda) = \frac{1}{\gamma} \log \left(\sum_{i=1}^{m} \exp(\gamma y_i) \right) + \lambda^T b - \lambda^T y, if \lambda^T A = \mathbf{0} \text{ and is unbounded otherwise.}$$

For y we solve the following:

$$\frac{\partial}{\partial y_i} \left(\frac{1}{\gamma} \log \left(\sum_{i=1}^m \exp(\gamma y_i) \right) - \lambda^T y \right) = \frac{\exp(\gamma y_i)}{\sum_{j=1}^m \exp(\gamma y_j)} - \lambda_i = 0$$

Which means $\lambda \succeq \mathbf{0}$ and $\mathbf{1}^T \lambda = 1$ with:

$$\lambda^T y = \frac{1}{\gamma} \sum_{i} \lambda_i \log \lambda_i + \frac{1}{\gamma} \log \left(\sum_{i=1}^m \exp(\gamma y_i) \right)$$

Therefore:

$$g(\lambda) = \inf_{x,y} L(x,y,\lambda) = \begin{cases} \lambda^T b - \frac{1}{\gamma} \sum_i \lambda_i \log \lambda_i & if \ (A^T \lambda = 0) \ \land \ (\mathbf{1}^T \lambda = 1) \ \land \ (\lambda \succeq \mathbf{0}) \\ -\infty & otherwise \end{cases}$$

And the explicit dual problem:

maximize
$$b^T \lambda - \frac{1}{\gamma} \sum_i \lambda_i \log \lambda_i$$

subject to $\mathbf{1}^T \lambda = 1$ (9)
 $A^T \lambda = \mathbf{0}$
 $\lambda \succeq \mathbf{0}$

Let $p^*(\gamma)$ denote the optimal value of (8) and show that:

$$p^*(\gamma) - \frac{1}{\gamma} \log m \le p^*_{pwl} \le p^*(\gamma)$$

For the RHS:

$$max_i(a_i^T x + b_i) \le \frac{1}{\gamma} \log \sum_{i=1}^m \exp(\gamma(a_i^T x + b_i)) (\forall x)$$

Thus, $p_{pwl}^* \le p^*(\gamma)$.

Following the same reasoning in (c) for the LHS and considering λ^* the optimal value of (9) which is feasible for (4):

$$b^T \lambda^* - \frac{1}{\gamma} \sum_{i=1}^m \lambda_i^* \log \lambda_i^* = p^*(\gamma)$$

and:

$$\lambda^{*T}b \leq p_{pwl}^*$$

And given that

$$\inf_{s.t \; \mathbf{1}^T \lambda = 1} \frac{1}{\gamma} \sum_{i=1}^m \lambda_i \log \lambda_i = -\frac{\log m}{\gamma}$$

We find that:

$$p^*(\gamma) - \frac{1}{\gamma} \log m \le p^*_{pwl} \le p^*(\gamma)$$

Hence: $p^*(\gamma) \xrightarrow[\gamma \to +\infty]{} p_{pwl}^*$

Exercise 5.9 - Suboptimality of a simple covering ellipsoid

Let us consider the problem of determining the mnimum volume ellipsoid, centered at the origin, that contains the points $a_1, ..., a_m \in \mathbb{R}^n$:

minimize
$$f_0(X) = \log \det(X^{-1})$$

subject to $a_i^T X a_i \le 1, i = 1, ..., m$ (10)

With $\mathbf{dom} f_0 = \mathbf{S}_{++}^n$. We assume that $a_1, ..., a_m$ span \mathbb{R}^n .

(a) Let
$$X_{sim} = \left(\sum_{k=1}^{m} a_k a_k^T\right)^{-1}$$
.

To show that X_{sim} is feasible we will show that:

$$egin{bmatrix} \sum\limits_{k=1}^m a_k a_k^T & a_i \ a_i^T & 1 \end{bmatrix} \succeq \mathbf{0}$$

We have:

$$\begin{bmatrix} \sum\limits_{k=1}^{m} a_k a_k^T & a_i \\ a_i^T & 1 \end{bmatrix} = \begin{bmatrix} \sum\limits_{k\neq i}^{m} a_k a_k^T & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} a_i \\ 1 \end{bmatrix} \begin{bmatrix} a_i^T & 1 \end{bmatrix} \succeq \mathbf{0}$$

As sum of two matrices from \mathbf{S}_{+}^{n} .

The Schur complement of $\sum_{k=1}^{m} a_k a_k^T$ is positive, hence:

$$S = 1 - a_i^T X_{sim} a_i \ge 0$$

$$a_i^T X_{sim} a_i \leq 1$$
 Q.E.D

(b) The dual problem of (10) is:

maximize
$$\log \det(\sum_{i=1}^{m} \lambda_i a_i a_i^T) - \mathbf{1}^T \lambda + n$$
subject to
$$\sum_{i=1}^{m} \lambda_i a_i a_i^T \succ 0$$
$$\lambda \succeq \mathbf{0}$$

For $\lambda = t\mathbf{1}$, $(t \ge 0)$ the dual function is as follows:

$$g(t\mathbf{1}) = \log(t^n \det(\sum_{i=1}^m a_i a_i^T)) - mt + n = \log \det(\sum_{i=1}^m a_i a_i^T)) + n \log t - mt + n$$

we maximize over t > 0:

$$\frac{\partial g(t\mathbf{1})}{\partial t} = \frac{n}{t} - m = 0$$

Thus $t^* = \frac{n}{m}$. with:

$$g(t^*\mathbf{1}) = \log \det(\sum_{i=1}^m a_i a_i^T) + n \log(\frac{n}{m})$$

For $X = X_{sim}$ the objective function is:

$$f_0(X_{sim}) = \log \det(\sum_{i=1}^m a_i a_i^T)$$

Hence the duality gap between X_{sim} and $\lambda = t^* \mathbf{1}$ is equal to

$$gap = n \log(n/m) \le 0$$
, $(n \le m \text{ since the m vectors span } \mathbb{R}^n)$

This is to say that for X^* the optimal solution:

$$f_0(X_{sim}) - f_0(X^*) \le n \log(\frac{m}{n})$$

We know that for an ellipsoid $\mathcal{E}_X = \{z | z^T X z \leq 1\}$, the volume V_X is proportional to $(\exp f_0(X))^{1/2}$:

Thus:

$$\frac{V_{sim}}{V^*} \le \left(\frac{m}{n}\right)^{n/2}$$

Exercise 5.11 - Dual problem

Consider the problem

minimize
$$\sum_{i=1}^{N} \|A_i x + b_i\|_2 + \frac{1}{2} \|x - x_0\|_2^2$$
 (11)

The problem data are $A_i \in \mathbb{R}^{m_i \times n}$, $b_i \in \mathbb{R}^{m_i}$ and $x_0 \in \mathbb{R}^n$.

The problem in (11) is equivalent to:

minimize
$$\sum_{i=1}^{N} ||y_i||_2 + \frac{1}{2} ||x - x_0||_2^2$$

subject to $y_i = A_i x + b_i \ \forall i = 1, ..., N$

The Lagrangian is:

$$L(x, \lambda_1, ..., \lambda_N) = \sum_{i=1}^{N} \|y_i\|_2 + \frac{1}{2} \|x - x_0\|_2^2 + \sum_{i=1}^{N} \lambda_i^T (y_i - A_i x - b_i)$$

To minimize over y_i , we impose $\|\lambda_i\|_2 \leq 1$.

In fact, if $\|\lambda_i\|_2 > 1$ then for $y_i = -\alpha \lambda_i$, $\alpha > 0$ the component $(\|y_i\|_2 + \lambda_i^T y_i)$ of the Lagrangian is equal to:

$$\alpha \|\lambda_i\| (1-\|\lambda_i\|) \xrightarrow{\alpha \to +\infty} -\infty$$

And if $\|\lambda_i\|_2 \leq 1$ is satisfied, then C.S gives us:

$$\lambda_i^T y_i \ge -\|\lambda_i\|\|y_i\| \Rightarrow \|y_i\|_2 + \lambda_i^T y_i \ge 0$$

With equality if $y_i = \mathbf{0}$, hence:

$$\inf_{y_i} \|y_i\|_2 + \lambda_i^T y_i = \begin{cases} 0, & \text{if } \|\lambda_i\| \le 1\\ -\infty & \text{otherwise} \end{cases}$$

To minimize over x, we set the gradient to 0:

$$\frac{\partial}{\partial x}L(...) = x - x_0 - \sum_{i=1}^{N} A_i^T \lambda_i = \mathbf{0}$$

Thus, the dual function is:

$$g(\lambda_1, ..., \lambda_N) = \begin{cases} -\frac{1}{2} \| \sum_{i=1}^N A_i^T \lambda_i \|^2 - \sum_{i=1}^N \lambda_i^T (A_i x_0 + b_i), & \text{if } \|\lambda_i\|_2 \le 1 \ (i = 1, ..., N) \\ -\infty & \text{otherwise} \end{cases}$$

The explicit dual problem is:

maximize
$$-\frac{1}{2} \| \sum_{i=1}^{N} A_i^T \lambda_i \|^2 - \sum_{i=1}^{N} \lambda_i^T (A_i x_0 + b_i)$$
 subject to
$$\|\lambda_i\| \le 1 \quad i = 1, ..., N$$

Exercise 5.13 - Lagrangian relaxation of Boolean LP

We consider the Boolean LP:

minimize
$$c^T x$$

subject to $Ax \leq b$ (12)
 $x_i \in \{0,1\} \ i = 1,..,n$

(a) Lagrangian relaxation:

The problem (12) can be reformulated as:

minimize
$$c^T x$$

subject to $Ax \leq b$
 $x_i(1-x_i) = 0 \ i = 1,...,n$

The Lagrangian is:

$$L(x, \nu, \lambda) = c^{T}x + \lambda^{T}(Ax - b) - \sum_{i=1}^{n} \nu_{i}x_{i}(1 - x_{i}) = c^{T}x + \lambda^{T}(Ax - b) - \nu^{T}x + x^{T}Diag(\nu)x$$

Minimizing with respect to x:

If ν has a nonpositive component ν_i then the Lagrangian is unbounded for $x = \alpha e_i$ as $-\nu_i \alpha (1-\alpha) \xrightarrow[\alpha \to +\infty]{} -\infty$

$$\frac{\partial L}{\partial x}(x,\nu,\lambda) = c + A^T \lambda - \nu + 2Diag(\nu)x = \mathbf{0}$$

Which gives:

$$g(\nu,\lambda) = \min_{x} L(x,\nu,\lambda) = \begin{cases} -\frac{1}{4}(c + A^T\lambda + \nu)^T (Diag(\nu))^{-1}(c + A^T\lambda + \nu) - \lambda^T b \\ = -\frac{1}{4}\sum_{i=1}^n \frac{(c_i + a_i^T\lambda + \nu_i)^2}{\nu_i} - \lambda^T b & (if \ \nu \succeq \mathbf{0}) \\ -\infty \ otherwise \end{cases}$$

Where a_i is the i^{th} column of A. If $\nu_i = 0$ then we set the term:

$$\frac{(c_i + a_i^T \lambda + \nu_i)^2}{\nu_i} = \begin{cases} +\infty, & \text{if } c_i + a_i^T \lambda + \nu_i \neq 0 \\ 0 & \text{if } c_i + a_i^T \lambda + \nu_i = 0 \end{cases}$$

The dual problem is:

maximize
$$-\frac{1}{4} \sum_{i=1}^{n} \frac{(c_i + a_i^T \lambda + \nu_i)^2}{\nu_i} - \lambda^T b$$
 subject to
$$\nu \succeq \mathbf{0}$$

$$\lambda \succeq \mathbf{0}$$

We can then maximize over ν , knowing that:

$$\sup_{\nu_i \ge 0} \left(-\frac{1}{4} \frac{(c_i + a_i^T \lambda - \nu_i)^2}{v_i} \right) = \begin{cases} c_i + a_i^T \lambda & \text{if } c_i + a_i^T \lambda \le 0 \\ 0 & \text{if } c_i + a_i^T \lambda > 0 \end{cases} = \min(0, c_i + a_i^T \lambda)$$

The equivalent problem is:

maximize
$$-\lambda^T b - \sum_{i=1}^n \mu_i$$
subject to
$$\mu_i = -\min(0, c_i + a_i^T \lambda)$$

$$\lambda \succeq \mathbf{0}$$

$$(13)$$

(b) We consider the LP relaxation problem:

minimize
$$c^T x$$

subject to $Ax \leq b$ (14)
 $0 \leq x_i \leq 1: i = 1,...,n$

Which we can rewrite as:

minimize
$$c^T x$$

subject to $Ax \leq b$
 $-x \leq 0$
 $x \leq 1$

The Lagrangian of the new problem is:

$$L(x,\lambda,\nu,\mu) = c^Tx + \lambda^T(Ax - b) - \nu^Tx + \mu^T(x - \mathbf{1}) = (c + A^T\lambda - \nu + \mu)^Tx - \lambda^Tb - \mu^T\mathbf{1}$$

Hence the dual function:

$$g(\lambda, \nu, \mu) = \begin{cases} -\lambda^T b - \mu^T \mathbf{1} & if \ c + A^T \lambda - \nu + \mu = \mathbf{0} \\ -\infty & otherwise \end{cases}$$

The explicit dual problem:

maximize
$$-\lambda^T b - \mu^T \mathbf{1}$$

subject to $c + A^T \lambda - \nu + \mu = \mathbf{0}$
 $\nu \succeq \mathbf{0}$ (15)
 $\mu \succeq \mathbf{0}$
 $\lambda \succeq \mathbf{0}$

Let $p_{relaxation}^*$ be the optimal value of the relaxation problem (14) and p^* that of the boolean problem (12). The feasible set of the relaxation includes the feasible set of the boolean, hence:

$$p_{relaxation}^* \le p^*$$

On the other hand, the two Lagrangian problems (13) and (15) are equivalent when introducing $\nu = \mu + c + A^T \lambda$ in (13). Therefore, we end up with the same lower bound.