

PESU Center for Information Security, Forensics and Cyber Resilience

Welcome to

PES University

Ring Road Campus, Bengaluru

10 June 2020

PESU Center for Information Security, Forensics and Cyber Resilience

APPLIED CRYPTOGRAPHY

Private keys systems
Lecture 8

AES

Advanced Encryption Standard

AES animation

Origins

- A replacement for DES was needed
 - Key size is too small
- Can use Triple-DES but slow, small block
- US NIST issued call for ciphers in 1997
- 15 candidates accepted in Jun 98
- 5 were shortlisted in Aug 99

AES Competition Requirements

- Private key symmetric block cipher
- 128-bit data, 128/192/256-bit keys
- Stronger & faster than Triple-DES
- Provide full specification & design details
- Both C & Java implementations

AES Shortlist

- After testing and evaluation, shortlist in Aug-99
 - MARS (IBM) complex, fast, high security margin
 - RC6 (USA) v. simple, v. fast, low security margin
 - Rijndael (Belgium) clean, fast, good security margin
 - Serpent (Euro) slow, clean, v. high security margin
 - Twofish (USA) complex, v. fast, high security margin
- Found contrast between algorithms with
 - few complex rounds versus many simple rounds
 - Refined versions of existing ciphers versus new proposals

The AES Cipher - Rijndael

SFCR UNIVERSITY

- Rijndael was selected as the AES in Oct-2000
 - Designed by Vincent Rijmen and Joan Daemen in Belgium
 - Issued as FIPS PUB 197 standard in Nov-2001
- An iterative rather than Feistel cipher
 - processes data as block of 4 columns of 4 bytes (128 bits)
 - operates on entire data block in every round
- Rijndael design:
 - simplicity
 - has 128/192/256 bit keys, 128 bits data
 - resistant against known attacks
 - speed and code compactness on many CPUs

V. Rijmen

J. Daemen

- Rounds are (almost) identical
- First and last round are a little different

High Level Description

- Key Expansion: Round keys are derived from the cipher key using Rijndael's key schedule
- Initial Round: AddRoundKey : Each byte of the state is combined with the round key using bitwise xor
- Rounds
 - SubBytes : non-linear substitution step
 - ShiftRows : transposition step
 - MixColumns : mixing operation of each column.
 - AddRoundKey
- Final Round:
 - SubBytes
 - ShiftRows
 - AddRoundKey

Overall Structure

- Data block viewed as 4-by-4 table of bytes
- Represented as 4 by 4 matrix of 8-bit bytes.
- Key is expanded to array of 32 bits words

Data Unit

$$S \longrightarrow \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} \longrightarrow \begin{bmatrix} w_0 & w_1 & w_2 & w_3 \end{bmatrix}$$
State

Unit Transformation

AES

Plaintext: AES USES MATRIX = 14 characters = 14*8 = 112

Converting plaintext to state which is 128 bits. 128-112 = 16bits needed

So add 2 extra character

Plaintext ->	a	b	c	d	e	f	g	h	i	j	k	1	m	n	o	p	q	r	s	t	u	v	w	X	у	Z
Value →	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Text	A	Е	S	U	S	Е	S	A	M	A	T	R	I	X	Z	Z
Hexadecimal	00	04	12	14	12	04	12	00	0C	00	13	11	08	17	19	19
							T00	12	0C	08						
							04	04	0C 00 13 11	17	Stat					
							12	12	13	19	State	e				
							14	00	11	19						

S Rajashree

Computer Science and Engineering

PES University, Bengaluru

PESU Center for Information Security, Forensics and Cyber Resilience

