

ÖSTERREICHISCHES PATENTAMT

A-1200 Wien, Dresdner Straße 87

Kanzleigebühr € 20,00 Schriftengebühr € 78,00

REC'D	30	AUG	2004
WIPO			PCT

Aktenzeichen A 1440/2003

Das Österreichische Patentamt bestätigt, dass

Prof. Dr. Michael Frass in A-2340 Mödling, Viechtlgasse 11 (Niederösterreich) und Prof. Amir Kurtaran in A-1210 Wien, Matthias-Wagnergasse 16/BI/48,

am 11. September 2003 eine Patentanmeldung betreffend

"Gerät für Nadelbiopsie",

überreicht haben und dass die beigeheftete Beschreibung samt Zeichnungen mit der ursprünglichen, zugleich mit dieser Patentanmeldung überreichten Beschreibung samt Zeichnungen übereinstimmt.

Für diese Anmeldung wurde die innere Priorität der Anmeldung in Österreich vom 7. August 2003, A 1252/2003, in Anspruch genommen.

Österreichisches Patentamt Wien, am 13. August 2004

Der Präsident:

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

P 9236

(51) Int. Cl.:

AT PATENTSCHRIFT

(11) Nr.

(Bei der Anmeldung sind nur die eingerahmten Felder auszufüllen - bitte fett umrandete Felder unbedingt ausfüllen!)

(73	Patentinhaber:
(54	Prof.Dr. Michael Frass Prof.Dr. Amir Kurtaran Viechtlgasse 11 Matthias-Wagnergasse 16/BI/48 2340 Mödling, AT 1210 Wien, AT Titel: Gerät für Nadelbiopsie
(61)	Zusatz zu Patent Nr.
(66)	Umwandlung von GM /
(62)	8 Tamiciding aus (Telling): A
(30)	Priorität(en):
(72)	AT A 1252/2003 07.08.03 Erfinder:
(22) (21)	A 11
(22) (21)	Anmeldetag, Aktenzeichen: 11.09.2003,
(60)	Abhängigkeit:
(42)	Beginn der Patentdauer:
	Längste mögliche Dauer:
(45)	Ausgabetag:

56) Entgegenhaltungen, die für die Beurteilung der Patentierbarkeit in Betracht gezogen wurden:

GERÄT FÜR NADELBIOPSIE

Die Erfindung bezieht sich auf ein Gerät für Nadelbiopsie mit einem Spritzenzylinder, einem darin verschiebbaren Stempel sowie mit einer Nadeleinrichtung.

Mit Geräten der gegenständlichen Art werden Nadelbiopsien mit Aspiration von Gewebe und Gewebeflüssigkeit durchgeführt, wobei ein bevorzugtes Anwendungsgebiet die Biopsie der Schilddrüse ist, doch kommen für dieses Diagnoseverfahren auch andere Organe in Frage, wie z.B. die Prostata, die weibliche Brust etc. Oft wird – in Abhängigkeit von der Nadelstärke – zwischen Feinnadel und Grobnadel-Biopsie unterschieden. Damit verbundenen Probleme der Diagnosesicherheit sind z.B. in dem Artikel "Large-Needle Aspiration Biopsy for the Preoperative Selection of Palpable Thyroid Nodules Diagnosed by Fine-Needle Aspiration as a Microfollicular Nodule or Suspected Cancer", Angelo Carpi et. Al., American Journal of Clinical Phathology 2000, 1.1.3., Seiten 872-877 beschreiben.

Bei bekannten Geräten wird die Aspiration entweder von Hand- durch Herausziehen des Stempels aus dem Inneren des Spritzenzylinders- oder mit Hilfsmechanismen, z.B. einer federbetätigten, auslösbaren Bewegung des Stempels durchgeführt.

Bekannte Geräte weisen eine an einem konventionellen Spritzenzylinder, kurz "Spritze", angebrachte Nadel auf, die üblicherweise mit einem Ansatz an den Konus des Spritzenzylinders befestigt werden kann. Um Zellen, beispielsweise der Schilddrüse, zu gewinnen, wird zu Beginn der Prozedur die Haut an der Punktionsstelle gereinigt und desinfiziert und sodann, mit oder ohne eine zusätzliche Anästhesie, die Nadel in das Schilddrüsengewebe eingeführt und durch Ansaugen, was durch Anziehen des Stempels in dem Spritzenzylinder erfolgt, werden Zellen in den Nadelkanal bzw. unter Umständen in das Innere des Spritzenzylinders gebracht. Ein solches Punktieren kann blind oder unter Ultraschallkontrolle durchgeführt werden und die gewonnenen Zellen werden dann in eine Phiole für weitere diagnostische Zwecke, z.B. mikroskopische oder chemische Untersuchungen, übergeführt. Ein Feinnadelbiopsie der Schilddrüse wird deswegen oft bevorzugt, da sie fast schmerzlos ist und eine nur geringe Komplikationsrate aufweist.

Ein Nachteil der bekannten Feinnadelbiopsie liegt darin, dass lediglich eine einzige Nadel verwendet wird und daher Material nur aus einer bestimmten Stelle geliefert wird. In unmittelbarer Nähe gesunden Materials kann sich aber auch ein Tumor befinden, der möglicherweise verfehlt wird. Eine Feinnadelbiopsie, die nicht aussagekräftig ist kann in der Folge dazu führen, dass Patienten mit Verdacht auf Karzinom (z.B.: kalte Thyroidknoten der

-2-

Schilddrüse) operiert werden, obwohl die Wahrscheinlichkeit für ein Karzinom der Schilddrüse in kalten Thyroidknoten zwischen 5 – 15% liegt. Eine großzügige chirurgische Strategie, dass heißt Chirurgie an allen Patienten, bei welchen ein Karzinom vermutet wird, ohne Selektion durch Feinnadelbiopsie, muss wegen des unnötigen Verlustes des Organs, hoher Kosten etc. als unethisch bezeichnet werden.

Aus diesen Gründen versucht man die Empfindlichkeit der Feinnadel-Biopsie dadurch zu erhöhen, dass Patienten mit Knötchen der Schilddrüse in Zuge einer Kontrolle einige Male punktiert werden, nämlich in verschiedenen Gebieten der Schilddrüse. Diese Strategie wird allerdings von Patienten nicht gut angenommen und daher nur selten durchgeführt.

An dieser Stelle ist anzumerken, dass es neben Geräten für Nadelbiopsie, bei welchen mit Hilfe eines Spritzenzylinders und einer Nadel Material aspiriert wird, auch Punktionsgeräte gibt, welche mehrere Nadeln verwenden. Beispielsweise offenbart die WO 01/52742 A1 ein Gerät mit mehreren, bei einem Ausführungsbeispiel drei Biopsienadeln. Es erfolgt hierbei jedoch keine Aspiration, sondern die Nadeln werden verschieblich in Kanälen geführt, schneiden aus dem Gewebe Proben und können dann wieder zurückgezogen werden.

Ein ähnliches Gerät mit mehreren, bei einem Ausführungsbeispiel sechs Nadeln ist der US 5 415 182 A zu entnehmen. Auch hier werden spezielle Biopsienadeln verwendet, die je aus Kanülen und darin verschieblichen, länglichen Stiletten gebildet sind, welche Proben ausschneiden und die einziehbar sind.

Die genannten Geräte mit mehreren Biopsienadeln sind in ihrem Aufbau kompliziert und offensichtlich nicht als Einweggeräte gedacht. Eine Reinigung und Sterilisierung scheint überaus aufwendig.

Erwähnt sei noch, dass auch Geräte mit einer einzigen Nadeleinrichtung bekannte sind, mit welchen mehrere Proben hintereinander entnehmbar sind. Solche Geräte sind beispielsweise in der US 6083150 oder in der EP 1250890 A2 gezeigt. Bei diesem gleichfalls sehr aufwändig aufgebauten Geräten können hintereinander Proben in einem Gerät gesammelt werden, doch ist dadurch das Problem nicht beseitigt, dass mehrere Einstiche und eine entsprechende Belastung-des-Patienten-erforderlich sind. Diese bekannten Geräte sind vor allem bei Biopsien in Hohlorganen, z.B. Magen, Darm, im Einsatz.

Eine Aufgabe der Erfindung liegt darin, eine einfaches Gerät zu schaffen, mit welchem den oben genannten Nachteilen der Feinnadel-Biopsie entgegengetreten werden kann. In Hinblick auf den steigenden Kostendruck im Medizinwesen sollen die Geräte einen einfachen Aufbau aufweisen und entsprechend kostengünstig sein.

-3-

Diese Aufgabe wird mit einem Gerät der eingangs genannten Art gelöst, bei welchen erfindungsgemäß die Nadeleinrichtung mehrere Punktionsnadeln aufweist, deren Kanäle in das Innere des Zylinders münden.

Dank der Erfindung läßt sich mit einer einzigen Applikation simultan eine Anzahl von Gewebeproben entnehmen, wobei die Belastung des Patienten wesentlich geringer ist, als würde die gleich Anzahl von Proben sequenziell entnommen.

Bei einer vorteilhaften Ausführung der Erfindung ist vorgesehen, dass an dem Boden des Spritzenzylinders mehrere, je einem Konus zugeordnete Auslässe vorgesehen sind, wobei jede Nadel einen Ansatz besitzt, mit dessen Hilfe sie lösbar mit eine Konus verbindbar ist. Diese Lösung bietet den Vorteil, dass nicht nur die Anzahl der Nadeln sonder auch deren Größe beliebig wählbar ist. Dabei ist es zweckmäßig, wenn die Lage der Nadeln zueinander mittels zumindest eines Haltestückes festgelegt ist. Das Haltstück kann insbesondere scheibenartig ausgebildet und im Bereich der Ansätze angeordnet sein. Dabei ergibt sich als zweckmäßige Ausführung eine solche, bei welcher das Haltestück und die Ansätze aus Kunststoff bestehen und in einem Stück ausgebildet sind, sodass ein Verbinden mit dem Spritzenzylinder bzw. ein Lösen davon mit einem Handgriff erfolgen kann.

Eine weitere vorteilhafte Festlegung der Nadeln zueinander besteht darin, dass das Haltestück scheibenartig aufgebildet und im Bereich der Nadelschäfte, die sie umgeben, angeordnet ist.

Ein sehr vorteilhafte Ausführungsform des erfindungsgemäßen Gerätes zeichnet sich dadurch aus, dass sie ein Anschlagmittel aufweist, welches die Eindringtiefe der Nadeln in den Körper definiert begrenzt. Bei einer Variante kann als Anschlagmittel zumindest ein Distanzstück vorgesehen sein, welches den Nadeln zugeordnete Bohrungen aufweist und auf die Nadeln aufschiebbar ist, um deren Eindringtiefe in den Körper zu begrenzen. Auf diese Weise kann die gewünscht Eindringtiefe festgelegt werden, was beispielsweise nach einer vorgehenden-Ultraschalluntersuchung erfolgt.

Bei einer anderen Variante können alternativ mehrere Nadeln mit einem einzigen gemeinsamen Ansatz in Verbindung stehen, wobei dieser Ansatz mit einem Konus der Saugspritze lösbar verbunden ist. Auf diese Weise können mit einem einzigen Handgriff sämtliche Nadeln von dem Spritzenzylinder getrennt werden.

-4-

In einer bevorzugten Ausführung der Erfindung weist der Spritzenzylinder einen einzigen Konus auf, welcher einem Innenkonus eines Adapters zugewandt ist, wobei der Adapter mehrere Konusse für Nadeln besitzt und die Bohrung des Konus mit Bohrungen der Konusse in fluidleitender Verbindung steht.

Eine weitere zweckmäßige Ausführungsform sieht vor, dass jeder Nadel ein Probenbehälter zugeordnet ist und die Probenbehälter zu einer Einheit zusammengefasst sind, welche zum Entleeren der gesammelten Proben in die Behälter mit der Mehrzahl von Nadeln vorübergehend verbindbar ist. Auf diese Weise können sämtliche Proben durch eine einzige Bewegung des Stempels in die Probenbehälter überführt werden. Dabei ist es zweckmäßig, wenn die Probenbehälter-Einheit auf den Spritzenzylinder aufsteckbar ist, wobei eine Nut-Steganordnung auf Probebehälter und Zylinder eine unverwechselbare Zuordnung der einzelnen Nadeln zu den Probebehältern ermöglicht. Bei Verwendung ein solchen Variante des Gerätes ist eine Zuordnung der entnommen Proben zu einzelnen Gebieten des untersuchten Organs gesichert.

Vorteilhaft ist es weiters, wenn den Probebehältern eine Verschlussmittel zugeordnet ist, wobei dieses Verschlussmittel für jeden einzelnen Probenbehälter einen Verschluss aufweisen kann und die Verschlüsse für die Probenbehälter mit diesen unverlierbar verbunden sein können. Ein solches Verschlussmittel verhindert bereits unmittelbar nach der Punktion ein Verschmutzen der Proben oder deren Verlust.

Im Sinne eines Schutzes einerseits der Nadeln und andererseits des Personals ist es vorteilhaft, wenn für sämtliche Nadeln eine gemeinsame Schutzhülle vorgesehen ist, welche über die Nadeln und auf den Spritzenzylinder aufsteckbar ist.

Meist ist es erwünscht, dass die entnommenen Proben lediglich die Kanülen der Nadeln füllen bzw. ist es unerwünscht, dass die Proben in das Innere des Spritzenzylinders gelangen. Aus diesem Grunde sieht eine Ausführungsform vor, dass im Weg zwischen der Mündung der Kanäle in die Spitzen der Nadeln und dem Inneren des Spritzenzylinders ein Filtermittel angeordnet ist. Vorteilhafterweise kann das Filtermittel einzelne Filtereinsätze im spitzenseitigen Endbereich der Nadeln umfassen.

Die Erfindung samt weiterer Vorteile ist im folgenden anhand beispielsweise Ausführungsformen näher erläutert, die in der Zeichnung veranschaulicht sind. In dieser zeigen

■ Fig. 1 in schematischer perspektivischer Darstellung ein Gerät nach der Erfindung mit fünf Ansätzen für Nadeln,

-5-

- Fig. 2 ein Schnitt durch einen Teil des Gerätes nach Fig. 1
- Fig. 3 in einer Darstellung wie Fig. 1 das Gerät mit aufgesteckten Nadeln,
- Fig. 4 in einem schematischen Schnitt eine Nadel mit einem Filter,
- Fig. 5 wiederum in perspektivischer schematischer Darstellung eine andere Ausführungsform des erfindungsgemäßen Gerätes mit einer aufsetzbaren Schutzhülle,
- Fig. 6 eine Ausführungsform des erfindungsgemäßen Gerätes mit einem aufsetz- und entfernbaren Probebehälter,
- Fig. 7 in einer Seitenansicht, teilweise geschnitten, eine Ausführungsform der Erfindung mit einem Anschlagmittel zur Begrenzung der Eindringtiefe der Nadeln,
- Fig. 8 eine andere Ausführungsform in schematischer schaubildlicher Darstellung mit einem aufschiebbaren Distanzstück zur Begrenzung der Eindringtiefe,
- Fig. 9 eine Ausführungsform der Erfindung in schaubildlicher schematischer Darstellung mit einem Haltestück für die Nadeln und
- Fig. 10 eine Ausführungsform der Erfindung in schematischer Seitenansicht, bei welcher mehrere Nadeln über einen einzigen gemeinsamen Ansatz mit einer Saugspritze verbunden sind.
- Fig. 11 eine weitere Variante der Erfindung in schematischer Seitenansicht, bei welcher mehrere Nadeln über einen Adapter mit einer Saugspritze verbunden sind.

Wie aus Fig.1 und Fig. 2 ersichtlich, besitzt ein erfindungsgemäßes Gerät für Nadelbiopsie einen Spritzenzylinder 1, in welchem ein Stempel 2 verschiebbar ist. Der Stempel 2 ist im vorliegenden Fall in bekannter Weise über einen Schaft 3 mit einem Handgriff 4 verbunden, sodass der Stempel im Sinne einer Aspiration, d.h. eines Ansaugens aus dem Zylinder 1 gezogen bzw. im Sinne eines Ausstoßens in den Zylinder hineingedrückt werden kann.

In dem Boden 5 des Spritzenzylinders 1 sind mehrere, im vorliegenden Fall fünf Auslässe 6 vorgesehen, die auch durch je einen Konus 7 verlaufen. Der Spritzenzylinder 1, sein Boden 5 und die Konusse 7 können einstückig aus Kunststoff gespritzt sein. Ebenso können der Stempel 2, der Schaft 3 und der Handgriff 4 aus Kunststoff bestehen. Der Stempel 2 kann gegebenenfalls, zumindest zum Teil, aus einem weichen Kunststoff bestehen und in bekannter Weise eine oder mehrere umlaufende Dichtlippen 8 besitzen.

Fig. 3 zeigt das erfindungsgemäße Gerät mit fünf angesteckten Punktionsnadeln 9, wobei eine solche Nadel in Fig. 4 gezeigt ist. Jede der Nadeln 9 besitzt einen Ansatz 10, der einen

-6-

mit den Konussen 7 zusammenpassenden Innenkonus 11 besitzt. Der Ansatz 10 kann aus Kunststoff bestehen und an die aus Stahl bestehenden Nadel 9 angespritzt sein. Die Nadel 9 selbst ist mit Vorteil als sogenannte "atraumatische" Nadel, d.h. mit einem besonderen Schliff der Spitze versehene, ausgebildet.

Im Weg zwischen der Mündung des Nadelkanals 12 in die Nadelspitze und dem Inneren des Spritzenzylinders 1 kann ein Filtermittel angeordnet wein, um die Aspiration von Probenmaterial in das Spritzeninnere zu vermeiden. Bei dem vorliegenden Ausführungsbeispiel ist am inneren Ende der Nadel 1 an der Stelle der Einmündung in den Innenkonus 11 ein Filtereinsatz 13 angeordnet.

Bei der in Fig. 5 gezeigten Ausführungsform ist für sämtliche Nadeln 9 eine gemeinsame zylindrische Schutzhülle 14 vorgesehen, die auf den Spritzenzylinder 1 aufsteckbar ist und dann alle Nadeln 9 abdeckt. Am unteren Ende des Spritzenzylinders 1 ist ein kurzer, nach außen abstehender Steg 15 angeordnet, der bei aufgesetzter Schutzhülle 14 in eine Nut 16 oder einen Schlitz der Hülle eingreift. Dies kann den Sitz der Schutzhülle 14 verbessern. Eine besondere Bedeutung einer solchen Steg/Nut-Verbindung ist im Zusammenhang mit der weiter unten beschriebenen Variante erläutert.

Fig. 6 zeigt eine zu dem erfindungsgemäßen Gerät gehörige Probenbehälter-Einheit 17, die einen ringförmigen Kragen 18 besitzt, mit welchem sie auf das bodenseitige Ende des Spritzenzylinders 1 aufsetzbar ist. Ein Nut 19 in dem Kragen 18 wirkt bei aufgesetzter Probengehälter-Einheit 17 mit dem Steg 15 des Spritzenzylinders 1 zusammen, sodass eine eindeutige Zuordnung zwischen jeder der Nadeln 9 und einzelnen Probebehältern 20 der Einheit 17 vorliegt. Der Steg 15 kann weiters zu Festlegung der Position des Gerätes während des Biopsievorganges dienen, z.B. nach oben oder unten gerichtet sein. In den Probebehältern 20 kann eine Konservierungsflüssigkeit vorhanden sein. Die gesamte Probenbehälter-Einheit 17 und/oder jeder einzelne Behälter 20 können mit Hilfe eines hier nicht gezeigten Verschlusses abgeschlossen werden.

Da es oft erwünscht ist, z.B. auf Basis einer vorgehenden bildgebenden Untersuchung, die Eindringtiefe der Nadeln 9 festzulegen, ist im Rahmen der Erfindung auch ein Anschlagmittel-vorgesehen, welches nach einem Eindringen der Nadeln in den Körper um ein bestimmtes Wegstlick auf der Haut zum Anliegen kommt und ein weiteres Vordringen der Nadeln hemmt. Fig. 7 zeigt schematisch einen Anschlagring 21, der die Nadeln 9 von außen umgibt und beispielsweise außen auf den Spritzenzylinder 1 aufschraubbar ist, wodurch auch die in Fig. 6 mit d bezeichnete Eindringtiefe einstellbar ist.

Eine andere Ausbildung eines Anschlagmittels ist in Fig. 8 dargestellt. Ein Distanzstück 22, das zylindrisch ausgebildet ist und den Nadeln 9 zugeordnete Bohrungen 23 besitzt, kann in der gezeigten Weise über die Nadeln 9 aufgeschoben werden, bis es außen am Boden des Spritzenzylinders 1 anliegt. Mit einem Satz unterschiedlich dicker Distanzstücke kann die Eindringtiefe der Nadeln 9 nach Wunsch eingestellt werden.

Fig. 9 zeigt ein Haltestück 24, das scheibenartig ausgebildet ist und die Lage der Nadeln 9 zueinander festlegt. Dieses Haltestück 24 kann aus Kunststoff bestehen und mit den gleichfalls aus Kunststoff bestehenden Ansätzen 10 einstückig hergestellt sein. Ein solches Haltestück kann auch – alternativ oder zusätzlich - im Bereich der metallischen Nadelschäfte 9 angeordnet sein, was durch ein strichliert eingezeichnetes Haltestück 25 in Fig. 9 angedeutet ist.

Bei den bisher erläuterten Ausführungsformen kann jede Nadel einzeln mit dem Spritzenzylinder 1 verbunden werden, was über einzelne Ansätze 10 und Konusse 7 erfolgt. Alternativ können aber auch mehrere Nadeln bzw. Nadelschäfte mit einem einzigen Ansatz in Verbindung stehen, was in Fig. 10 dargestellt ist. Hier besitzt der Spitzenzylinder 1 einen einzigen Konus 7. Fünf Punktionsnadeln 9, von welchen wegen der gewählten Seitenansicht nur drei ersichtlich sind, sind gabelartig angeordnet und münden in einen einzigen Ansatz 10, der mit dem Konus 7 des Spritzenzylinders 1 lösbar verbunden werden kann. Im Bereich ihrer Eindringtiefe in Gewebe verlaufen die Schäfte der Nadeln 9, ebenso wie bei den vorigen Ausführungen, zweckmäßigerweise parallel zueinander.

Fig. 10 zeigt noch eine weitere Probenbehälter-Einheit 26, bei welcher die einzelnen Probebehälter 27 je einen einzeln wegklappbaren, unverlierbar mit dem Behälter verbundenen Verschluss 28 besitzen.

Die in Fig. 11 dargestellte Variante der Erfindung weist einen im wesentlichen zylindrischen Adapter 29 auf der zur Verbindung eines Spritzenzylinders 1 mit mehreren, zum Beispiel fünf Punktionsnadeln 9 dient. Im Gegensatz zu den zuvor beschriebenen Ausführungen besitzt der Spritzenzylinder 1 hier lediglich einen einzigen Konus 30, der mit einem Innenkonus 31 zusammenwirken kann, welcher in einer Stirnfläche 32 des Adapters 29 liegt.

An der gegenüberliegenden Stirnfläche 33 des Adapters 29 sind mehrere, zum Beispiel fünf Konusse 7 vorgesehen, welche mit den Nadeln 9, genauer gesagt mit deren Ansätzen 10 zusammenwirken können.

-8-

Die Bohrung des Konus 30 steht mit den Bohrungen der Konusse 7 über Kanäle im Inneren des Adapters 29 in fluidleitender Verbindung, im vorliegenden Fall über einen zentralen Kanal 34 und von diesem zu den fünf Konussen 7 führenden Zweigkanäle 35.

Zum Benutzen des Gerätes nach Fig. 11 wird einerseits der Adapter 29 auf den Spritzenzylinder 1 aufgesteckt, wobei der Konus 30 mit dem Innenkonus 31 dichtend zusammenwirkt. Die dem Spritzenzylinder 1 zugewandte Stirnfläche 32 ist dabei so ausgestaltet, dass sie am Boden 5 des Spritzenzylinders 1 anliegen kann, wenn der Adapter 29 auf den Spritzenzylinder 1 aufgesteckt ist. Dadurch ist die erforderliche Stabilität beim Einsetzen der Nadeln 9 gewährleistet. Es ist alternativ auch möglich, den Adapter 29 durch "punktuelle" Auflagen am Spritzenzylinder 1 abzustützen. Zusätzlich kann eine Verdrehsicherung zwischen Spritzenzylinder 1 und Adapter 29 vorgesehen sein, zum Beispiel in Form eines an dem Spritzenzylinder 1 vorstehenden Steges 36, der bei aufgesetztem Adapter 29 in eine in dessen Stirnfläche 32 ausgebildete Nut 37 eingreift – ähnlich der in Fig. 6 gezeigten Steg-Nut-Verbindung 15-19.

Auch bei dieser Ausführungsform kann ein Filtermittel 13 ein Eindringen von Punktionsmaterial in das Zylinderinnere verhindern. Dieses Filtermittel 13 kann – wie gezeigt – in den einzelnen Nadeln 9 in Form von Filtereinsätzen 13 sitzen. Alternativ kann auch ein einziger Filtereinsatz in dem zentralen Kanal 34 des zweckmässigerweise aus Kunststoff hergestellten Adapters 29 sitzen.

Natürlich kann die Ausführung nach Fig.11 auch mit einem Probenbehälter gemäss Fig. 9 verwendet werden, wobei man dafür einen Steg, ähnlich dem Steg 15 in Fig. 6 auf dem Adapter 29 vorsehen kann.

Ein Gerät für Nadelbiopsie nach der Erfindung kann zweckmäßigerweise als Einweggerät, bereits steril verpackt für den Gebrauch ausgebildet sein. Andere Ausführungen sind jedoch gleichfalls möglich, insbesondere solche, bei welchen die Aspiration automatisch, z.B. durch Federkraft nach Auslösen erfolgt.

Bei der Anwendung des erfindungsgemäßen Gerätes wird nach der bereits eingangs erwähnten-Säuberung und Desinfektion der Haut und Verwendung gegebenenfalls eines entsprechenden Distanzstückes (Fig.7, 8) das Gerät mit den Nadeln 9 auf die Haut aufgesetzt und bis zu dem Anschlag eingestochen. Nun erfolgt entweder durch manuelles Herausziehen des Stempels 2 oder durch das vorher erwähnte automatische Aspirieren ein Ansaugen der Gewebeproben in die Nadeln 9. Nach Herausziehen der Nadeln 9 aus dem Körper wird beispielsweise eine Probenbehälter-Einheit 17 gemäß Fig. 6 auf den Spritzenzylinder aufgesetzt und durch Niederdrücken des Stempels 2 werden die Proben in die einzelnen Probenbehälter 20 überführt, die sodann mit einem geeigneten Verschluss verschlossen werden und zur weiteren Untersuchung der Proben zur Verfügung stehen.

Im Rahmen der Erfindung sind viele andere, hier nicht gezeigte Varianten möglich. Das erfindungsgemäße Gerät kann auch wiederverwendbar ausgebildet werden, beispielsweise wie ein bekanntes Mehrpipettensystem, das einen einzigen Handgriff aufweist und zum gleichzeitigen Ansaugen verschiedener Proben aus Pipetten dient. Natürlich können mit einem Gerät nach der Erfindung auch Gewebeproben an operativ eröffneten Körperteilen, z.B. während eines chirurgischen Eingriffes, entnommen werden.

Durch die Wahl der Nadellänge kann man sich den jeweiligen Gegebenheiten anpassen. Es ist auch möglich, innerhalb eines Nadelsitzes unterschiedlich lange Nadeln zu verwenden.

Falls man eine oder mehrere Nadeln für einen Punktionsvorgang nicht verwenden will, kann man vorsehen, dass an die entsprechenden Konusse des Spritzenzylinders geeignete Verschlüsse – anstelle der Nadeln – aufgesteckt werden.

Auch soll nicht unerwähnt bleiben, dass die Nadeln mit dem Spritzenzylinder unlösbar verbunden sein können, sodass es keinerlei weitere vorbereitender Handgriffe mehr bedarf, nachdem ein entsprechendes Einweggerät aus seiner sterilen Verpackung entnommen wurde.

Wien, den

- 10 -

PATENTANSPRÜCHE

1. Gerät für Nadelbiopsie mit einem Spritzenzylinder (1), einem darin verschiebbaren Stempel (2) sowie mit einer Nadeleinrichtung (9),

dadurch gekennzeichnet, dass

die Nadeleinrichtung mehrere Punktionsnadeln (9) aufweist, deren Kanäle (12) in das Innere des Zylinders (1) münden.

- Gerät für Nadelbiopsie nach Anspruch 1, dadurch gekennzeichnet, dass in dem Boden des Spritzenzylinders (1) können mehrere, je einem Konus zugeordnete Auslässe vorgesehen sein, wobei jede Nadel (9) einen Ansatz (10) besitzt, mit dessen Hilfe sie lösbar mit einem Konus verbindbar ist.
- 3. Gerät für Nadelbiopsie nach Anspruch 2, dadurch gekennzeichnet, dass die Lage der Nadeln (9) zueinander mittels zumindest eines Haltestückes (24, 25) festgelegt ist.
- 4. Gerät für Nadelbiopsie nach Anspruch 3, dadurch gekennzeichnet, dass das zumindest eine Haltestück (24) scheibenartig ausgebildet und im Bereich der Ansätze (10) angeordnet ist.
- Gerät für Nadelbiopsie nach Anspruch 4, dadurch gekennzeichnet, dass das Haltestück (24) und die Ansätze (10) aus Kunststoff bestehen und in einem Stück ausgebildet sind.
- Gerät für Nadelbiopsie nach Anspruch 3, dadurch gekennzeichnet, dass das Haltestück (25) scheibenartig ausgebildet und im Bereich der Nadelschäfte (9), diese umgebend, angeordnet ist.
- Gerät für Nadelbiopsie nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
 dass es ein Anschlagmittel (21, 22) aufweist, welches die Eindringtiefe der Nadeln (9) inden Körper definiert begrenzt.
- 8. Gerät für Nadelbiopsie nach Anspruch 7, dadurch gekennzeichnet, dass zumindest als Anschlagmittel ein Distanzstück (22) vorgesehen ist, welches den Nadeln (9) zugeordne-

te Bohrungen (23) aufweist und auf die Nadeln aufschiebbar ist, um deren Eindringtiefe in den Körper zu begrenzen.

- Gerät für Nadelbiopsie nach Anspruch 1, dadurch gekennzeichnet, dass mehrere Nadeln (9) mit einem einzigen gemeinsamen Ansatz (10) in Verbindung stehen, wobei dieser Ansatz mit einem Konus der Saugspritze lösbar verbindbar ist.
- 10. Gerät für Nadelbiopsie nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Spritzenzylinder (1) einen einzigen Konus (30) aufweist, welcher einem Innenkonus (31) eines Adapters (29) zugewandt ist, wobei der Adapter (29) mehrere Konusse (7) für Nadeln (9) besitzt und die Bohrung des Konus (30) mit Bohrungen der Konusse (7) in fluidleitender Verbindung steht.
- 11. Gerät für Nadelbiopsie nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass jeder Nadel (9) ein Probenbehälter (20) zugeordnet ist und die Probenbehälter zu einer Einheit (17) zusammengefasst sind, welche zum Entleeren der gesammelten Proben in die Behälter mit der Mehrzahl von Nadeln vorübergehend verbindbar ist.
- 12. Gerät für Nadelbiopsie nach Anspruch 11, dadurch gekennzeichnet, dass die Probebehälter-Einheit (17) auf den Spritzenzylinder (1) aufsteckbar ist, wobei eine Nut-Steg-Anordnung (15-19) auf Probenbehälter und Zylinder eine unverwechselbare Zuordnung der einzelnen Nadeln (9) zu den Probebehältern (20) ermöglicht.
- 13. Gerät für Nadelbiopsie nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass den Probenbehältern (20) ein Verschlussmittel zugeordnet ist.
- 14. Gerät für Nadelbiopsie nach Anspruch 13, dadurch gekennzeichnet, dass Verschlussmittel für jeden einzelnen Probenbehälter (27) einen Verschluss (28) aufweist.
- 15. Gerät für Nadelbiopsie nach Anspruch 14, dadurch gekennzeichnet, dass die Verschlüsse (28) für die Probenbehälter (27) mit diesen unverlierbar verbunden sind.
- -16. Gerät-für Nadelbiopsie nach-einem der Ansprüche 1-bis-15, dadurch-gekennzeichnet, dass für sämtliche Nadeln (9) eine gemeinsame Schutzhülle (14) vorgesehen ist, welche über die Nadeln auf den Spritzenzylinder (1) aufsteckbar ist.

-12-

- 17. Gerät für Nadelbiopsie nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass im Weg zwischen der Mündung der Kanäle (12) in die Spitzen der Nadeln (9) und dem Inneren des Spritzenzylinders (1) ein Filtermittel (13) angeordnet ist.
- 18. Gerät für Nadelbiopsie nach Anspruch 17, dadurch gekennzeichnet, dass das Filtermittel einzelne Filtereinsätze (13) im spitzenseitigen Endbereich der Nadeln (9) umfasst.
- 19. Adapter (29) für ein Gerät nach Anspruch 10.

Wien, den

ZUSAMMENFASSUNG

- 13 -

Ein Gerät für Nadelbiopsie mit einem Spritzenzylinder (1), einem darin verschiebbaren Stempel (2) sowie mit einer Nadeleinrichtung (9), welche mehrere Punktionsnadeln (9) aufweist, deren Kanäle (12) in das Innere des Zylinders (1) münden. In dem Boden des Spritzenzylinders können mehrere, je einem Konus zugeordnete Auslässe vorgesehen sein, wobei jede Nadel (9) einen Ansatz (10 besitzt, mit dessen Hilfe sie lösbar mit einem Konus verbindbar ist.

Fig. 3

Litext

1/5

FIG. 1

FIG. 2

2/5

FIG. 4

FIG. 5

FIG. 7

FIG. 8

4/5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.