Triângulos Isósceles

Por Pablo Heiber - Argentina

Timelimit: 6

Um dado triângulo pode ser equilátero (três lados de mesmo comprimento), escaleno (três lados de comprimentos diferentes), ou isósceles (dois lados de mesmo comprimento e um terceiro lado de comprimento diferente). Sabe-se que pontos com coordenadas inteiras não podem ser vértices de um triângulo equilátero.

É dado um conjunto de pontos distintos com coordenadas inteiras no plano XY tal que três pontos distintos deste conjunto não pertencem a uma mesma reta. Sua tarefa é calcular o número de subconjuntos de três pontos que contém vértices de um triângulo isósceles.

Entrada

Há vários casos de teste. Cada caso de teste é descrito em várias linhas. A primeira linha de cada caso de teste contém um inteiro **N** indicando o número de pontos no conjunto ($3 \le N \le 1000$). Cada uma das próximas **N** linhas descreve um ponto do conjunto e contém dois inteiros **X** e **Y** separados por um espaço ($1 \le X$, **Y** $\le 10^6$); esses valores representam as coordenadas do ponto no plano XY. Você pode assumir que, em cada caso de teste, não há dois pontos com a mesma localização e não há três pontos colineares.

O último caso de teste é seguido por uma linha contendo um único zero.

Saída

Para cada caso de teste, imprima uma única linha com um único inteiro indicando o número de subconjuntos de três pontos que contém vértices de um triângulo isósceles.

Exemplo de Entrada	Exemplo de Saída
5	4
1 2	10
2 1	
2 2	
1 1	
1000 1000000	
6	
1000 1000	
996 1003	
996 997	
1003 996	
1003 1004	
992 1000	
0	

ACM/ICPC South America Contest 2009.