

An Internship Presentation on

"Artificial Intelligence"

Under the Guidance of

Prof. Lekha Surana

By

Suhani Mahendra Tatiya

Department of Computer Engineering

SNJB's Late Sau. K. B. Jain College of Engineering, Chandwad

Sunday, June 9, 2024

Outline of Presentation

- Internship Company Details
- Introduction
- Problem Statement/Objectives of Internship
- Motivation/Scope of Internship work
- Methodological details/Live project details
- Data Analysis and Interpretations of Project
- Result and Learning from Internship
- References
- Attendance Record
- Industry Internship Certificate

Internship Company Details

Acmegrade Private Limited is an edutech platform to train and educate students in India and abroad for various educational programs, research and development of products and teaching aids to supplement education. It is headquartered in Bangalore.

Our Official Training Partners

We partner with leading institutions across the country to provide idealistic training that fits your needs.

Internship Company Details

Acmegrade's mission is to give the youth of today the chance to learn and upskill themselves. Our supervised internships and creative and Industry relevant projects make sure that they walk into the workforce equipped with everything they need to be successful. Our mission is to define the concept of education.

Features:-

- LMS access portal
- Live Interactive Sessions
- Industrial projects
- Distinguished mentors

Introduction to Artificial Intelligence

Introduction

History of Al

Introduction

Recommendation Systems are statistical algorithms that recommend products based on similarities between the 'buying trends of various users' or similarities between 'products' termed as Collaborative Filtering.

- Content based filtering: Netflix
- Collaborative based filtering: Amazon

This project is performed by suggesting other movies that are most similar to a particular movie (CORRELATION).

Introduction

- With the help of Artificial Intelligence, the following is determined.
- Which movies are going to be recommended next after <u>'StartWars'</u> and comedy <u>'LiarLiar'?</u>
- Recommended based on 'User Ratings'.
- Concept of 'Correlation'.

Objectives of Internship

- Objective 1: To gain knowledge about the concepts of Artificial Intelligence.
- Objective 2: To gain hands-on experience by working under the company's industrial projects based on Artificial Intelligence and Machine Learning concepts such as:- Correlations, Regression, Neural Networks, Image Processing and Classification.
- Objective 3: Building a Recommendation System.

Problem Statement

To create a machine learning model called the 'Movie Recommendation System' which is going to recommend the movies next after 'StarWars' and the comedy 'LiarLiar' with the help of Correlation concept.

Scope of Artificial Intelligence

Motivation/Scope of Internship work

- This internship provides unique opportunities for learning outside of academic settings.
- Exposed me to new tasks and help me learn goalspecific skills to complete those tasks.
- Gave me experience with technology, people and projects that relate to my career goals.

Datasets used:-

Website: MovieLens

- movies_titles.csv[contains title of movies and ids]
- info.csv

<u>Libraries imported</u>:-

- Numpy (to create multi-dimensional arrays)
- Pandas (to read datasets)
- Matplotlib (for EDA)
- Seaborn (for EDA)

Install and Import Libraries

To install:-

- !pip install numpy
- !pip install pandas

To import:-

- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- import seaborn as sns

moviemat matrix

	at = df. at.head('Til There Was You (1997)	-	able(index= 101 Dalmatians (1996)	'user_id 12 Angry Men (1957)	187 (1997)	2 Days in the Valley (1996)	20,000 Leagues Under the Sea (1954)	2001: A Space Odyssey (1968)	3 Ninjas: High Noon At Mega Mountain (1998)	39 Steps, The (1935)	 Yankee Zulu (1994)	Year of the Horse (1997)	You So Crazy (1994)	Yo Frankens (1!
user_id														
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1	NaN	NaN	2.0	5.0	NaN	NaN	3.0	4.0	NaN	NaN	NaN	NaN	NaN	
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN	
3	NaN	NaN	NaN	NaN	2.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
5 rows × 1664 columns														

On Correlation, recommendations after StarWars

In [40]:	corr_starwars[corr_starwars['num of ratings']	>100].sort_	values('Correla	ation',ascending=Fal
Out[40]:		Correlation	num of ratings	
	title			
	Star Wars (1977)	1.000000	584	
	Empire Strikes Back, The (1980)	0.748353	368	
	Return of the Jedi (1983)	0.672556	507	
	Raiders of the Lost Ark (1981)	0.536117	420	
	Austin Powers: International Man of Mystery (1997)	0.377433	130	

On Correlation, recommendations after LiarLiar

```
Now the same for the comedy Liar Liar.
In [44]:
           corr liarliar = pd.DataFrame(similar to liarliar,columns=['Correlation'])
           corr liarliar.dropna(inplace=True)
           corr liarliar = corr liarliar.join(ratings['num of ratings'])
           corr liarliar[corr liarliar['num of ratings']>100].sort values('Correlation',ascending=False).head()
Out[44]:
                                 Correlation num of ratings
                           title
                 Liar Liar (1997)
                                                       485
                                   1.000000
          Batman Forever (1995)
                                   0.516968
                                                       114
               Mask, The (1994)
                                   0.484650
                                                       129
          Down Periscope (1996)
                                   0.472681
                                                       101
                  Con Air (1997)
                                   0.469828
                                                       137
```

Data Analysis and Interpretations of Project

Exploratory Data Analysis (Histograms)

Data Analysis and Interpretations of Project

Exploratory Data Analysis (Histograms)

Results and Learning from Internship

- The concepts of Artificial Intelligence.
- The concept of Correlation.
- Building Movie Recommendation System.
- Learned working with different libraries such as numpy, matplotlib, seaborn, etc...

References

- https://github.com/suhanitatiya/Movie-Recommendation-System
- https://grouplens.org/datasets/movielens/
- https://www.kaggle.com/
- International Journal of Engineering Research & Technology (IJERT)
- Reference Author: Jose Portilla From Udemy
- Towards Data science and Medium articles
- https://www.linkedin.com/in/naikkrish/?originalSubdo main=in

Internship Attendance Record

Industry Internship Certificate

CERTIFICATE OF TRAINING COMPLETION

This is to certify that

Mr./Ms.	SUHANI MAHENDRA TATIYA

has successfully completed his / her term of Training

in Artificial Intelligence from 12-Dec-2023

to 12-Jan-2024 and has proven his/her

competency with utmost dedication and promise.

Certificate number: AGC2023120458 For certificate authentication

Scan QR code

Rohitty.

Challa Rohit Academic Head

Thank you