Chapter 20 Borne supérieure dans $\mathbb R$

20.1 Topologie de la droite réelle

Exercice 20.1

Déterminer, pour tous les sous-ensembles de \mathbb{R} suivants, si, et seulement si ce sont des ouverts, des fermés, les deux, ou ni l'un ni l'autre. Donner également leurs intérieurs, adhérences et frontières.

- **1.** $\{x\}$ où $x \in \mathbb{R}$.
- **2.**]0, 1].
- 3. $]0,1] \cup \{2\}.$
- **4.** $[0,1] \cup [3,7]$.
- 5. $]0, +\infty[$.
- **6.** Q.

Exercice 20.2

On considère l'ensemble $\mathbb N$ comme sous-ensemble de $\mathbb R$.

- **1.** Montrer que \mathbb{N} n'est pas un ouvert de \mathbb{R} .
- **2.** Montrer que chaque singleton $\{n\}$, avec $n \in \mathbb{N}$, est un fermé.
- 3. Montrer que $A =]-\infty, 0[\cup (\bigcup_{n \in \mathbb{N}}]n, n+1[)$ est un ouvert de \mathbb{R} .
- **4.** En déduire que \mathbb{N} est un fermé de \mathbb{R} .
- **5.** L'ensemble $\mathbb{Z} \cup [0, 1]$ est-il un ouvert ou un fermé de \mathbb{R} ?

Donner son intérieur et son adhérence.

6. L'ensemble $\mathbb{Q} \cap]0, 1[$ est-il un ouvert ou un fermé de \mathbb{R} ?

Donner son intérieur et son adhérence.

Exercice 20.3

Soient A et B deux parties de \mathbb{R} .

- **1.** Montrer que si $A \subset B$, alors $A \subset B$ et $\overline{A} \subset \overline{B}$.
- 2. Comparer $\frac{\circ}{A}$ et \overline{A} .
- 3. Comparer A et A.
- 4. Comparer $A \cup B$ et $A \cup B$.
- 5. Comparer $\stackrel{\circ}{A} \cap \stackrel{\circ}{B}$ et $\stackrel{\circ}{A} \cap \stackrel{\circ}{B}$

- **6.** Comparer $\overline{A} \cup \overline{B}$ et $\overline{A \cup B}$.
- 7. Comparer $\overline{A} \cap \overline{B}$ et $\overline{A \cap B}$.

Exercice 20.4 Points isolés

Soit S une partie de \mathbb{R} . On dit que $p \in S$ est un *point isolé* de S si

$$\exists r > 0, |p-r, p+r| \cap S = \{p\}.$$

On note Isol(S) l'ensemble des points isolées de S. On dit que $p \in \mathbb{R}$ est un point d'accumulation de S si

$$\forall r > 0, (\lceil p - r, p \rceil \cup \lceil p, p + r \rceil) \cap S \neq \emptyset.$$

On note Acc(S) l'ensemble des points d'accumulation de S.

- 1. Donner un exemple d'ensemble S avec un point isolé, un point d'accumulation qui appartient à S, et un point d'accumulation qui n'appartient pas à S.
- 2. Montrer

$$\operatorname{Isol}(S) \cup \operatorname{Acc}(S) = \overline{S}$$
 et $\operatorname{Isol}(S) \cap \operatorname{Acc}(S) = \emptyset$.

- **3.** Montrer que Acc(S) est un fermé de \mathbb{R} . Donner un exemple où Isol(S) n'est pas fermé.
- 4. Montrer

$$\operatorname{Isol}\left(\overline{S}\right)\subset S.$$

5. Montrer que si A est fermé et x est isolé dans A, alors $A \setminus \{x\}$ est fermé.

20.2 Théorème de la borne supérieure

Exercice 20.5

Déterminer si les parties suivantes de \mathbb{R} sont majorées, minorées. Puis déterminer, s'ils existent, le plus grand élément, le plus petit élément, la borne supérieure et la borne inférieure.

3.
$$]1, +\infty[,$$

$$5. \left\{ \left. \frac{1}{n} \, \middle| \, n \in \mathbb{N}^{\star} \, \right\}, \right.$$

6.
$$\{x \in \mathbb{R} \mid x^2 \le 2\},$$

7.
$$\{ x \in \mathbb{Q} \mid x^2 \le 2 \}$$
.

Exercice 20.6

On considère

$$E = \left\{ (-1)^n + \frac{1}{p} \mid n \in \mathbb{N} \text{ et } p \in \mathbb{N}^* \right\}.$$

L'ensemble E admet-il une borne inférieure, une borne supérieure ? Si oui, les déterminer.

Exercice 20.7

Soit A une partie non vide et majorée de \mathbb{R} . On suppose que la borne supérieure M de A vérifie $M = \sup(A) > 0$. Montrer qu'il existe un élément de A strictement positif.

Exercice 20.8

Soit $f: \mathbb{R} \to \mathbb{R}$ un application croissante et $A \subset \mathbb{R}$ une partie non-vide majorée.

1. Montrer que $\sup (f(A)) \le f(\sup A)$.

2. Trouvez un exemple où l'inégalité est stricte.

Exercice 20.9

Soient A et B deux parties non vides majorées de \mathbb{R} . On note

$$A + B = \{ a + b \mid a \in A \text{ et } b \in B \}.$$

- **1.** Soit $x \in \mathbb{R}$. Compléter : $x \in A + B \iff \cdots$.
- **2.** Montrer que A + B est non vide est majorée.
- **3.** Déterminer $\sup(A + B)$.

Exercice 20.10 Un théorème de point fixe

Soit une application croissante $f:[0,1] \rightarrow [0,1]$. On se propose de montrer que f admet un point fixe, c'est-à-dire

$$\exists \alpha \in [0, 1], f(\alpha) = \alpha.$$

On considère l'ensemble

$$A = \{ x \in [0,1] \mid f(x) \le x \}.$$

- **1.** Montrer que l'ensemble A est non vide et qu'il admet une borne inférieure $\alpha \in [0, 1]$.
- **2.** Démontrer que si $x \in [0, 1]$ est un minorant de A, alors f(x) est aussi un minorant de A. En déduire que $f(\alpha) \le \alpha$.
- 3. Démontrer que si $x \in [0, 1]$ est un élément de A, alors f(x) est aussi un élément de A. En déduire que $f(\alpha) \ge \alpha$.
- 4. Conclure.

20.3 Les dix types d'intervalles de \mathbb{R}

Exercice 20.11

Montrer que l'intersection de deux intervalles est un intervalle (éventuellement vide). Que peut-on dire de l'intersection de deux intervalles ouverts ? De deux intervalles fermés ?

20.4 La droite achevée $\overline{\mathbb{R}}$