3. feladatsor: Függvények, részbenrendezés

1. feladat

Válasszuk ki a következő relációk közül a függvényeket. Adja meg a függvények értelmezési tartományát, értékkészletét. Mely függvény szürjektív, injektív, bijektív?

- (a) $A = \{1, 2, 3, 4, 5\}, B = \{10, 11, 12, 13, 14\}, f \subseteq A \times B, f = \{(1, 11), (2, 11), (4, 12), (5, 10)\}$
- (b) $A = \{1, 2, 3, 4\}, B = \{a, b, c, d, e, f\}, f \subseteq A \times B, f = \{(1, a), (2, c), (3, e), (3, f), (4, a)\}$
- (c) $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d, e, f\}, f \subseteq A \times B, f = \{(1, a), (4, e), (5, d)\}$
- (d) $A = \{1, 2, 3\}, B = \{1, 3, 5\}, f \subseteq A \times B, f = \{(1, 1), (2, 5), (3, 5)\}$

2. feladat

Legyen $A = \{$ olyan egyenlőszárú háromszögek, amelyeknek az alaphoz tartozó magasságuk egyenlő egy rögzített m > 0 számmal $\}$, $B = \{y \in \mathbb{R} \mid y > 0\}$. Definiáljuk az $R \subseteq A \times B$ relációt a következőképpen: $aRb, a \in A, b \in B$, ha az a háromszög területe b. Mutassuk meg, hogy R függvény, és vizsgáljuk ennek a függvénynek a tulajdonságait (fennálnak-e a következők: szürjektív, injektív, bijektív).

3. feladat

- (a) Legyen $f: \mathbb{R} \to \mathbb{R}$, f(x) := 3x 4. Bizonyítsa be, hogy a függvény bijektív, majd határozza meg az inverzét.
- (b) Legyen $g: \mathbb{R} \to \mathbb{R}, g(x) := 3 |x|$. Bizonyítsa be, hogy a függvény se nem injektív, se nem szürjektív.

4. feladat

Döntsük el, hogy az alábbi relációk közül melyek függvények.

- (a) $f \subseteq \mathbb{N} \times \mathbb{N}, xfy \iff x \mid y$
- (b) $f \subseteq \{0,3,5\} \times \{1,2,5\}, xfy \iff xy = 0$
- (c) $f \subset \{1, 2, 5\} \times \{0, 3, 5\}, xfy \iff xy = 0$
- (d) $f \subseteq \mathbb{N} \times \mathbb{N}, xfy \iff$ tízes számrendszerben x ugyanazokból a számjegyekből áll mint y
- (e) $f \subseteq \mathbb{N} \times \mathbb{N}, xfy \iff 2x = y$
- (f) $f \subseteq \mathbb{Z} \times \mathbb{Z}, xfy \iff x^2 = y^2$
- (g) $f \subseteq \mathbb{N} \times \mathbb{N}, xfy \iff x^2 = y^2$
- (h) $f \subseteq \mathbb{R} \times \mathbb{R}, xfy \iff x^2 + y^2 = 9$

5. feladat

Döntsük el, hogy az alábbi relációk közül melyek függvények.

- (a) $f_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 7x = y^2\} \subseteq \mathbb{R} \times \mathbb{R}$
- (b) $f_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = y^2 + 6y\} \subseteq \mathbb{R} \times \mathbb{R}$
- (c) $f_3 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 7x^2 6 = y\} \subseteq \mathbb{R} \times \mathbb{R}$
- (d) $f_4 = \{(x, y) \in \mathbb{R} \times \mathbb{R}_0^+ \mid y = |x|\} \subseteq \mathbb{R} \times \mathbb{R}_0^+$
- (e) $f_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = (x+4)^2\} \subseteq \mathbb{R} \times \mathbb{R}$
- (f) $f_6 = \{(x,y) \in \mathbb{R} \times \mathbb{R}_0^+ \mid 2y = \sqrt{x}\} \subseteq \mathbb{R} \times \mathbb{R}_0^+$
- (g) $f_7 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 7 \mid x y\} \subseteq \mathbb{Z} \times \mathbb{Z}$
- (h) $f_8 = \{(x,y) \in (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\}) \mid xy = 1\} \subseteq (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\})$
- (i) $f_9 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid xy = 1\} \subseteq \mathbb{R} \times \mathbb{R}$

- (j) $f_{10} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid |x y| \le 3\} \subseteq \mathbb{Z} \times \mathbb{Z}$
- (k) $f_{11} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y(1 x^2) = x 1\} \subseteq \mathbb{R} \times \mathbb{R}$
- (l) $f_{12} = \{(x,y) \in (\mathbb{R} \setminus \{1,-1\}) \times (\mathbb{R} \setminus \{1,-1\}) \mid y(1-x^2) = x-1\} \subseteq (\mathbb{R} \setminus \{1,-1\}) \times (\mathbb{R} \setminus \{1,-1\})$ Ha a reláció függvény, döntsük el, hogy injektív, szürjektív, bijektív-e illetve ha nem függvény, akkor reflexív, szimmetrikus, tranzitív-e.

6. feladat

Legyen $A = \{2, 3, 6, 8, 9, 12, 18\} \subseteq \mathbb{N}^+, R \subseteq A \times A \text{ és } aRb \iff a \mid b.$

- (a) Mutassa meg, hogy az R reláció részbenrendezés az A halmazon.
- (b) Rajzolja meg az R rendezési diagramját (Hasse-diagram).

7. feladat

- (a) Bizonyítsa be, hogy a \mathbb{N} halmazon \leq részbenrendezési reláció, ahol \leq definíciója: $n, m \in \mathbb{N}, n \leq m \iff \exists k \in \mathbb{N} (n+k=m)$
- (b) Bizonyítsa be, hogy a $\mathbb{N} \times \mathbb{N}$ halmazon $(m_1, n_1)R(m_2, n_2) \iff m_1 \leq m_2 \wedge n_1 \leq n_2$ részbenrendezés.

8. feladat

Döntse el a következő relációkról, hogy részbenrendezési relációk-e az adott halmazon.

- (a) P a valós együtthatós polinomok halmaza, $R \subseteq P \times P$, $fRy \iff \deg f \le \deg g$
- (b) $R \subseteq \mathbb{Z} \times \mathbb{Z}, aRb \iff |a| \le |b|$
- (c) V a 10 egység hosszúságú \mathbb{R}^2 -beli vektorok halmaza, $R\subseteq V\times V, xRy\iff$ az x vektor hajlásszöge kisebb-egyenlő mint az y vektor hajlásszöge (hajlásszög legyen $[0;2\pi[$ -beli)
- (d) $R \subseteq \mathbb{R}^2 \times \mathbb{R}^2$, $xRy \iff$ az x vektor hossza kisebb-egyenlő mint az y vektor hossza

9. feladat

Döntse el, mely relációk teljes rendezések az $A = \{1, 2, 3, 4\}$ halmazon.

- (a) $f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$
- (b) $f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- (c) $f = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,4)\}$