Ch 4 Special Probability Distribution Functions

Class 5 Notes

Dr. Basilio

Mon Jan 28 ∪ Tues Jan 29

* * *

Guiding Question(s)

- (1) In a normal distribution, given a probability p can we find the value of x so that $p = P(X \le x)$?
- (2) How can we find the probability for discrete random variables with respect to intervals of time?
- (3) What are Poisson distributions and how can we find their probabilities?

Chapter 4: Probability Distribution Functions

Inverse Normal Distribution

Definition 1: Inverse-Normal-Distribution

This is an informal name to the process of working backwards from a known (or given) probability to find an x-value.

Given probability p of the area under the curve of the PDF to the left of the value x_p , we want to find what the value x_p is. It really helps to draw a picture to help explain what we are doing:

Essentially, we solving for x in the equation: $P(X \le x) = p$.

USING CALCULATOR TI83: invNorm(p, μ , σ)

 \overline{DIST} key in yellow $(2nd) > \overline{VARS}$) > Scroll to 3. "invNorm("

• Given probability p of the area under the curve of the PDF to the left of the value x_p , we can find what the value x_p is by using the "inverse normal distribution:"

$$invNorm(p, \mu, \sigma) = x_p \tag{1}$$

Activity 1: Inverse-Normal-Distribution

Find the 90th percentile for a normal distribution with a mean of 70 and a standard deviation of 4.5.

Activity 2: Inverse-Normal-Distribution

The time it takes employees to get to work from home (in minutes) is normally distributed with a mean of 30 minutes, and a standard deviation of 5 minutes. Find:

- (a) the percentage of employees that take between 28 and 37 minutes to get to work (Hint: this is not an inverse problem)
- (b) The number of minutes the longest it would take the bottom employee in the bottom 5% of the data to get to work. (Hint: this is an inverse problem)

Activity 3: Inverse-Normal-Distribution

An average light bulb manufactured in a factory lasts 280 days with a standard deviation of 45 days. Assume that bulb life is normally distributed.

- (a) What is the probability that an Acme light bulb will last at most 360 days? (Hint: this is not an inverse problem)
- (b) What bulb life separates the bottom 12%? (Hint: this is an inverse problem)

Poisson Distribution

Definition 2: Poisson-Distribution

For a Poisson distribution, we make the following assumptions:

- X is a discrete random variable with (possibly infinite) non-negative values, i.e. values 0,1,2, Similar to the other distributions, we let X = the number of successes of a Poisson random variable.
- the number of successes in two disjoint **time intervals** is independent
- the probability of success during a small time interval is proportional to the entire length of the time interval

Then, if λ is the mean of the number of successes in the given time interval, the **probability that** X **is successful exactly** x **times** is given by

$$P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$
 (2)

Theorem 1: Properties of Poisson Distributions

- (a) Note that $\lambda = \mu$ (that is, the mean).
- (b) If n is an interval of time, and p is the probability of success, then $\lambda = np$.
- (c) Similarly, if r is a rate of time and t an interval of time, then $\lambda = rt$.
- (d) A Poisson Distribution is often used to approximate the Binomial Distribution, when n is "large" and p is "small" (general rule is $n \ge 30$ and p < 0.05)
- (e) A Poisson distribution has $\sigma = \sqrt{\lambda} = \sqrt{\mu}$.

NOTE: It will be noticed that in the formula, the only variable quantity is the rate λ . That number is the only way in which one Poisson situation differs from another, and it is the only determining variable (parameter) of the Poisson equation. Nothing else

enters in.

Definition 3: Poisson-Distribution

USING CALCULATOR TI83: poissonpdf(μ ,x)

$$DIST$$
 key in yellow ($2nd > VARS$) > Scroll to A. "poissonpdf("

• Given mean μ and the number of successes x, the probability can be calculated by the "poisson distribution:"

$$poissonpdf(\mu, x) = P(X = x) \tag{3}$$

Example 1: Poisson Distribution

For the 55-year period since 1960, there were 336 Atlantic hurricanes. Assume that the Poisson distribution is a suitable model. Let X = the number of hurricanes in a year.

- (a) Find λ , the mean number of hurricanes per year.
- (b) Find the probability that in a randomly selected year, there are exactly 8 hurricanes. That is, find P(X=8), where P(X=x) is the probability of x Atlantic hurricanes in a year.
- (c) In this 55-year period, there were actually 5 years with 8 Atlantic hurricanes. How does this actual result compare to the probability found in part (b)? Does the Poisson distribution appear to be a good model in this case?

SOLUTION:

- (a) The Poisson distribution applies because we are dealing with the occurrences of an event (hurricanes) over some interval (a year). The mean number of hurricanes per year is $\lambda = 336/55 = 6.1$. So, there are 6.1 hurricanes per year.
- (b) With $\lambda = 6.1$, we set x = 8 and use the formula

$$P(X = 8) = \frac{e^{-6.1} \cdot 6.1^8}{8!} = \text{poissonpdf}(6.1, 8) = 0.107.$$

(c) From part (b), the likelihood of getting 8 Atlantic hurricanes in 1 year is 0.107. In 55 years, the expected number of years with 8 hurricanes is $55 \times 0.107 = 5.9$ years. The expected number of years with 8 hurricanes is 5.9, which is reasonably close to the 5 years that actually had 8 hurricanes. So, in this case, the Poisson model appears to work reasonably well. \Box

Activity 4: Poisson-Distribution

ACME Realty reports it sells 75 homes in 25 days. What is the probability that exactly 2 homes will be sold tomorrow? (Note: this is problem 8 from our Midterm review) Round answers to four decimal places.

Activity 5: Poisson-Distribution

A company makes electrical motors. The probability an electrical motor is defective is 0.01. What is the probability that a sample of 415 electrical motors will contain exactly five defective motors? Round answers to four decimal places. (*Hint: use* $\lambda = n \cdot p$)

Activity 6: Poisson-Distribution

Round answers to four decimal places. A Life Insurance (LI) salesman sells on average 3 LI policies per week. Assuming a Poisson Distribution, calculate the probability that in a given week she will sell:

- (a) some policies
- (b) 2 or more but less than 5 policies
- (c) Assuming a five day workweek, what is the probability that in a given day, she will sell a policy?

Activity 7: Visualizing-Poisson-Distribution

A 911 operator receives about six telephone calls between 8 a.m. and 10 a.m.

- (a) What is the probability that she receives more than one call in the next 15 minutes?
- (b) Plot the histogram for the probability P(x) = P(X = x) for $x = 0, 1, 2, 3, 4 \dots$

X	P(x)
:	: