Билет №1

Аксиоматика действительных (вещественных) чисел

Введём 15 аксиом:

- 1. $\forall a, b \in \mathbb{R} : a + b = b + a$ (коммутативность сложения)
- 2. $\forall a, b, c \in \mathbb{R} : (a + b) + c = a + (b + c)$ (ассоциативность сложения)
- 3. $\exists 0 \in \mathbb{R} : \forall a \in \mathbb{R} : a + 0 = 0 + a = a$ (нейтральный по сложению)
- 4. $\forall a \in \mathbb{R} \ \exists (-a) \in \mathbb{R} : -a + a = 0$ (противоположный элемент)
- 5. $\forall a, b \in \mathbb{R} : a \cdot b = b \cdot a$ (коммутативность умножения)
- 6. $\forall a, b, c \in \mathbb{R} : (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (ассоциативность умножения)
- 7. $\exists 1 \in \mathbb{R}, 1 \neq 0 : \forall a \in \mathbb{R} : a \cdot 1 = a$ (нейтральный по умножению)
- 8. $\forall a \in \mathbb{R}, a \neq 0 \; \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = 1 \; (обратный элемент)$
- 9. $\forall a, b, c \in \mathbb{R} : a(b+c) = ab + ac$ (дистрибутивность)
- 10. $\forall a, b \in \mathbb{R} : a \leq b$ или $b \leq a$ (связность)
- 11. $\forall a, b, c \in \mathbb{R} : (a \leq b \text{ и } b \leq c) \Rightarrow a \leq c \text{ (транзитивность)}$
- 12. $\forall a, b, c \in \mathbb{R} : a \leq b \Rightarrow a + c \leq b + c$ (монотонность сложения)
- 13. $\forall a, b \in \mathbb{R}, \forall c \geq 0 : a \leq b \Rightarrow a \cdot c \leq b \cdot c$ (монотонность умножения)
- 14. $\forall a, b \in \mathbb{R} : (a \leq b \text{ и } b \leq a) \Rightarrow a = b \text{ (антисимметричность)}$
- 15. Аксиома непрерывности:

Пусть $A,B\subset\mathbb{R}$ — непустые множества, причём $\forall a\in A, \forall b\in B: a\leq b$. Тогда $\exists c\in\mathbb{R}: \forall a\in A, \forall b\in B: a\leq c\leq b$.

Аксиомы 1-14 удовлетворяют множеству \mathbb{Q} . Покажем, что \mathbb{Q} не удовлетворяет аксиоме 15:

Возьмем множества:

$$A = \{x > 0 : x^2 < 2\}, \quad B = \{x > 0 : x^2 > 2\}$$

Если бы для рациональных чисел верно, то существовало бы разделительное число $c \in \mathbb{Q}$ такое, что $\forall a \in A, \forall b \in B : a \leq c \leq b$. Тогда $c^2 \geq 2$ и $c^2 \leq 2 \Rightarrow c^2 = 2$.

Пусть есть такая несократимая дробь m/n: $(m/n)^2 = 2$. $m^2 = 2 * n^2$. Следовательно, m - четное. Но тогда и n - четное. Значит дробь сократима. Противорение.

не удовлетворяет аксиоме непрерывности.

Билет №2

Счетность множества рациональных чисел, несчетность множества действительных чисел

Определение. Множество является **счётным**, если оно равномощно множеству натуральных чисел.

Теорема 1. Множество рациональных чисел \mathbb{Q} счётно.

Доказательство: Построим таблицу: в строках будут значения n (натуральные числа от 1 до бесконечности), а в столбцах — m (все целые числа, записанные по типу: $0, -1, 1, -2, 2, \ldots$).

	m = 0	m = -1	m = 1	m = -2	
n = 1	$\frac{0}{1}$	$-\frac{1}{1}$	$\frac{1}{1}$	$-\frac{2}{1}$	
n=2	$\frac{0}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{2}{2}$	• • •
n = 3	$\frac{0}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	• • •
:	:	•	•	•	٠

На пересечении в клетках получаем дроби вида $\frac{m}{n}$. Будем двигаться по змейке, пропуская уже встретившиеся дроби. Таким образом получим биекцию \mathbb{N} на \mathbb{Q} .

- Инъекция: т.к. все повторы пропущены
- Сюръекция: т.к. каждое рациональное число попадет в некоторую клетку и змейка по ней пройдет

Теорема 2. Множество вещественных чисел \mathbb{R} несчётно.

Доказательство: \mathbb{R} бесконечно, т.к. содержит \mathbb{N} .

Предположим, существует биекция из натуральных чисел в вещественные. Тогда можем представить:

$$\mathbb{R} = \{x_1, x_2, \dots, x_n, \dots\}$$

Возьмём произвольный отрезок $I_1, x_1 \notin I_1$. Внутри него возьмем отрезок $I_2, x_2 \notin I_2$. Пусть построены отрезки $I_1 \supset I_2 \supset \cdots \supset I_n$. Тогда в I_n не входят x_1, x_2, \ldots, x_n .

Возьмём отрезок $I_{n+1} \subset I_n$, $x_{n+1} \notin I_{n+1}$. По индукции построена последовательность вложенных отрезков.

По теореме Кантора $\exists !$ общая точка последовательности отрезков $c = \bigcap_{n=1}^{\infty} I_n$, которая не была занумерована: $c \neq x_k$ для любого $k \in \mathbb{N}$.

То есть $c \notin \{x_1, x_2, \ldots\}$, но ведь это и есть \mathbb{R} . Следовательно, $c \notin \mathbb{R}$ — противоречие. Значит, \mathbb{R} — несчётное множество.

Билет №3

Теорема о существовании точной верхней (нижней) грани множества. Эквивалентные формулировки принципа непрерывности вещественной прямой.

Теорема Кантора о вложенных отрезках.

Определение. Пусть $E \subset \mathbb{R}$ — непустое множество. Будем говорить, что $M \in \mathbb{R}$ является **точной верхней гранью** (супремумом E) и записывать $M = \sup E$, если:

- 1. $\forall a \in E : a \leq M$
- 2. $\forall M' < M \ \exists a' \in E : M' < a' \leq M$

Определение. Будем говорить, что $m \in \mathbb{R}$ является **точной нижней гранью** (инфимумом E) и записывать $m = \inf E$, если:

- 1. $\forall a \in E : a > m$
- 2. $\forall m' > m \ \exists a' \in E : m' > a' \geq m$

Теорема. (о существовании точной верхней грани)

Доказательство: Докажем для супремума. Для инфимума аналогично.

- 1. Если E ограничено сверху, то существует хотя бы одна верхняя грань. Пусть B множество верхних граней, оно не пусто. B правее $E \Rightarrow$ по аксиоме непрерывности существует $c \in \mathbb{R}$: $\forall a \in E, \forall b \in B : a \leq c \leq b$. Покажем, что $c = \sup E$.
 - (a) Пункт первый из определения супремума выполнен, т.к. $a \le c$ для любого $a \in E$. Следовательно, c верхняя грань множества E.
 - (b) Пункт второй из определения выполнен, т.к. $\forall M' < c \ (M'$ не является верхней гранью) $\exists a' \in E : M' < a' \leq c$.

Единственность: От противного: пусть супремум не единственен. Тогда $\exists M_1, M_2 = \sup E$. Из определения супремума для M_1 получаем, что $M_1 \leq M'$, где M' — верхняя грань $E \Rightarrow M_1 \leq M_2$. Аналогично для M_2 получаем, что $M_2 \leq M_1 \Rightarrow M_1 = M_2$. Супремум единственен.

2. Если E не ограничено сверху, то $\sup E = +\infty$. Никакое число не может быть супремумом неограниченного сверху множества. Пункты из определения супремума выполнены для $+\infty$.

Теорема Кантора. (о вложенных отрезках)

Любая последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ имеет хотя бы одну общую точку. Т.е. $\exists c \in \mathbb{R} \colon \forall n \in \mathbb{N} : c \in [a_n,b_n]$.

Доказательство: Введем два множества:

$$A = \{a_1, a_2, \dots, a_n, \dots\}, \quad B = \{b_1, b_2, \dots, b_n, \dots\}$$

— множества левых и правых концов отрезков соответственно.

Из вложенности отрезков следует, что $\forall a_i \in A, \forall b_j \in B : a_i \leq b_j$. По аксиоме непрерывности $\exists c \in \mathbb{R} : \forall a \in A, \forall b \in B : a \leq c \leq b$.

В частности, $\forall n \in \mathbb{N} : a_n \leq c \leq b_n$, т.е. $c \in [a_n, b_n]$ для всех n.

Эквивалентность формулировок:

- Аксиома непрерывности
- Теорема о существовании точных граней
- Теорема Кантора о вложенных отрезках

Эти утверждения эквивалентны и выражают принцип непрерывности вещественной прямой.

Покажем, что A левее B. Достаточно доказать, что для любого $n \in \mathbb{N}$ и любого $m \in \mathbb{N}$ выполнено, что $a_n < b_m$.

Будем считать, что $m \ge n$, но отрезки вложены $\Rightarrow a_{n+1} \ge a_n \Rightarrow a_n \le a_m$. Но $[a_n, b_n]$ — отрезок $\Rightarrow a_n \le \cdots \le a_m \le b_m$.

В силу аксиомы непрерывности существует $c \in \mathbb{R}$: $a \leq c \leq b$ для любых $a \in A$ и $b \in B$. Тогда $a_n \leq c \leq b_m$ для любых натуральных n и m. В частности, $a_n \leq c \leq b_n$ для любого $n \in \mathbb{N}$, т.е. $c \in [a_n, b_n]$ для любого $n \in \mathbb{N}$. Значит c принадлежит пересечению всех этих отрезков. Существует общая точка.

Теорема. Следующие условия эквивалентны:

- 1. Аксиома непрерывности
- 2. Существование и единственность sup и inf для ограниченных множеств
- 3. Лемма Архимеда + принцип Кантора о вложенных отрезках

Доказательство эквивалентности:

- $(1) \Rightarrow (2)$: Доказано в теореме о существовании точных граней.
- $(2) \Rightarrow (3)$:
- Лемма Архимеда: $\forall \varepsilon > 0 \; \exists n \in \mathbb{N} : n\varepsilon > 1$. Предположим противное: $\exists \varepsilon > 0 : \forall n \in \mathbb{N} : n\varepsilon \leq 1$. Тогда множество $\{n\varepsilon : n \in \mathbb{N}\}$ ограничено сверху $\Rightarrow \exists$ sup. Пусть $M = \sup\{n\varepsilon\}$, тогда $\exists n : n\varepsilon > M \varepsilon \Rightarrow (n+1)\varepsilon > M$ противоречие.
- Принцип Кантора: Рассмотрим последовательность вложенных отрезков $\{[a_n, b_n]\}$. Множество $\{a_n\}$ ограничено сверху $\Rightarrow \exists c = \sup\{a_n\}$. Тогда $c \in [a_n, b_n]$ для всех n.
- $(3)\Rightarrow (1)$: Пусть A и B непустые множества, причём $\forall a\in A, \forall b\in B: a\leq b$. Построим последовательность вложенных отрезков, содержащих разделяющую точку. По принципу Кантора существует общая точка c этих отрезков, которая и будет искомой разделяющей точкой.

Таким образом, все три формулировки эквивалентны и выражают свойство непрерывности вещественной прямой.