FP2 ex.24

Seja $\mathcal{S}=((-1,1,0),(1,0,1),(0,0,1))$ e $\mathcal{T}=(Y_1,Y_2,Y_3)$ bases ordenadas. Determine $Y_1,\,Y_2$ e $Y_3,$ sabendo que

$$M_{\mathcal{S}\leftarrow\mathcal{T}} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

A matriz $M_{S\leftarrow\mathcal{T}}$ é uma matriz de mudança de base da base \mathcal{T} para a base \mathcal{S} . As colunas da matriz são os vetores da base \mathcal{T} escritos nas coordenadas da base \mathcal{S} , isto é,

$$M_{\mathcal{S} \leftarrow \mathcal{T}} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} | & | & | \\ [Y_1]_{\mathcal{S}} & [Y_2]_{\mathcal{S}} & [Y_3]_{\mathcal{S}} \\ | & | & | \end{bmatrix}$$

Assim, temos que $[Y_1]_{\mathcal{S}}$ é igual à primeira coluna, $[Y_2]_{\mathcal{S}}$ é igual à segunda coluna e $[Y_3]_{\mathcal{S}}$ é igual à terceira coluna.

$$[Y_1]_{\mathcal{S}} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$

são as coordenadas do vetor Y_1 na base \mathcal{S} . Isso quer dizer que o vetor Y_1 é 1 vez o primeiro vetor da base \mathcal{S} , 2 vezes o segundo vetor da base \mathcal{S} e -1 vez o terceiro vetor da base \mathcal{S} . Como conhecemos os vetores da base \mathcal{S} conseguimos à custa deles calcular o vetor Y_1 .

$$\begin{split} Y_1 &= \underbrace{1 \underbrace{(-1,1,0)}_{1^0 \text{vetor}} + \underbrace{2 \underbrace{(1,0,1)}_{2^0 \text{vetor}} - \underbrace{1 \underbrace{(0,0,1)}_{3^0 \text{vetor}}}_{\text{da base } \mathcal{S}} \\ &= (-1,1,0) + (2,0,2) + (0,0,-1) \\ &= (1,1,1) \end{split}$$

$$[Y_2]_{\mathcal{S}} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$

são as coordenadas do vetor Y_2 na base S. Isso quer dizer que o vetor Y_2 é 1 vez o primeiro vetor da base S, 1 vez o segundo vetor da base S e -1 vez o terceiro vetor da base S. Como conhecemos os vetores da base S conseguimos à custa deles calcular o vetor Y_2 .

$$Y_2 = \underbrace{1 \underbrace{(-1,1,0)}_{1^0 \text{vetor}} + 1}_{\text{da base } \mathcal{S}} \underbrace{\underbrace{(1,0,1)}_{2^0 \text{vetor}} - 1}_{\text{da base } \mathcal{S}} \underbrace{\underbrace{(0,0,1)}_{3^0 \text{vetor}}}_{\text{da base } \mathcal{S}} = (0,1,0)$$

$$[Y_3]_{\mathcal{S}} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$$

são as coordenadas do vetor Y_3 na base \mathcal{S} . Isso quer dizer que o vetor Y_3 é 2 vezes o primeiro vetor da base \mathcal{S} , 1 vez o segundo vetor da base \mathcal{S} e 1 vez o terceiro vetor da base \mathcal{S} . $Y_3 = 2\underbrace{(-1,1,0)}_{1^0\text{vetor}} + 1\underbrace{(1,0,1)}_{2^0\text{vetor}} + 1\underbrace{(0,0,1)}_{3^0\text{vetor}} = (0,1,0)$