TD1: Génération de variables aléatoires

Exercice 1

1/

Notons $A_u = \{t \in \mathbf{R} \mid F(t) \ge u\}$. On veut montrer :

$$\inf A_u \leqslant x \iff F(x) \geqslant u$$

Montrons le sens indirect :

$$F(x) \geqslant u \implies x \in A_u \implies x \geqslant \inf A_u \implies x \leqslant F^-(u)$$

Montrons le sens direct : Soit x tel que $F^-(u) = \inf A_u \le x$. Par la propriété de la borne inférieure sur \mathbf{R} il vient

$$\forall \varepsilon > 0, \exists t \in A_u, t \leq \inf A_u + \varepsilon$$

De plus pour un tel t, comme $t \in A_u$,

$$u \leqslant F(t) \leqslant F(F^{-}(u) + \varepsilon) = F(x + \varepsilon)$$

mais ε est arbitrairement petit et F est continue à droite, donc $u \leqslant F(x)$.

2/

Soit
$$X \sim \exp(\lambda)$$
, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}_{x \geqslant 0}$. Donc $F_X(x) = 1 - e^{-\lambda x}$, $F_X(x) = u \iff x = -\frac{\ln(1-u)}{\lambda}$.
Donc $F^{-1}(u) = -\frac{\ln(1-u)}{\lambda}$.
Si $u \sim \mathcal{U}([0;1])$, $-\frac{\ln(1-u)}{\lambda} \sim \exp(\lambda)$.

3/

5.a/

On veut tirer sous f mais on ne sait que tirer sous g.

Méthode de rejet :

- Tirer Y sous g.
- Tirer $U \sim U([0;1])$.
- Si $U \leqslant \frac{f(Y)}{cg(Y)}$ alors prendre $\tilde{Y} = Y$, sinon recommencer.

On obtient donc une observation que si $U \leq \frac{f(Y)}{cg(Y)}$, donc avec probabilité

$$\mathbf{E}\left[\mathbf{1}_{U\leqslant\frac{f(Y)}{cg(Y)}}\right]=\mathbf{E}\left[\int\mathbf{1}_{U\leqslant\frac{f(Y)}{cg(Y)}}\,\mathrm{d}U\right]=\mathbf{E}\left[\frac{f(Y)}{cg(Y)}\right]=\int\frac{f(y)}{cg(y)}g(y)=\frac{1}{c}$$