# データベースシステム 第2回

理工学部情報科学科 松澤 智史

# データベースの基礎理論

<u>リレーショナルデータベース</u>の基本となる理論

• 正規化理論

• 関係演算



### 異状

- データベース内のデータがおかしくなって、直しようがないこと
- ・システム的なエラーでなく、登録データの追加、更新、削除等で起こる「データの矛盾」などのこと

このバスは無料です

このバスは運賃100円です



### 異状

| 会員番号 | 住所                  | 注文した商品 |
|------|---------------------|--------|
| 100  | 千葉県流山市1-2- <b>2</b> | りんご    |
| 101  | 千葉県柏市1-2-3-4        | みかん    |
| 100  | 千葉県流山市1-2-1         | バナナ    |

#### 異状の種類は3種類

- 挿入時異状
- 更新時異状
- 削除時異状



異状を排除するための設計を

正規化という

#### 正規化(Normalization)

- ・一定のルールに従って変形を行うこと
- ・リレーショナルデータベースの正規化は正規化理論に従って 関係を分解すること
- ・異状はデータを更新する際に発生するため、更新・追加など を一切行わないデータに関しては不要
  - ・アクセスログ
  - 履歴

#### 正規化の種類



#### 第1正規化(第1正規形)

- •目的
  - 繰り返し現れるフィールドをなくすようにテーブルを分離する
  - このようなデータを「原始的なデータ」という
- ・やること
  - 直積集合の排除
  - ・べき集合の排除
  - ・主キーの選出

| 教員<br>ID | 名前           | 性別 | 職  | 専門                                           |
|----------|--------------|----|----|----------------------------------------------|
| 0        | 武田正之(IS, 63) | 男  | 教授 | プログラミング言語論(1), ソフトウェア科学(2), 計算機ネットワーク(3)     |
| 1        | 松澤智史(IS, 63) | 男  | 講師 | インターネットアーキテクチャ(4), 計算機ネットワーク(3), 複雑ネットワーク(5) |

#### 前提

名前に学科の情報も含んでいる。職は変更される可能性がある 専門は1つの場合もあれば複数ある場合もある

| 教員ID | 名前           | 学科 | 学科コード | 性別 | 職    | 専門コード              | 専門         |   |          |
|------|--------------|----|-------|----|------|--------------------|------------|---|----------|
|      |              |    |       |    |      | 1                  | プログラミング言語論 |   |          |
| 0    | 武田正之         | IS | 63    | 男  | 男    | 男                  | 男 教授       | 2 | ソフトウェア科学 |
|      |              |    |       |    | 3    | 計算機ネットワーク          |            |   |          |
|      | 1 松澤智史 IS 63 |    |       |    | 4    | インターネットアーキテ<br>クチャ |            |   |          |
| 1    |              | IS | 63    | 男  | 男 講師 | 3                  | 計算機ネットワーク  |   |          |
|      |              |    |       |    |      | 5                  | 複雑ネットワーク   |   |          |

直積集合の排除

各フィールドには単一の値のみ格納する形にする

| 教員ID | 名前   | 学科 | 学科<br>コード | 性別 | 職  | 専門コード | 専門                 |
|------|------|----|-----------|----|----|-------|--------------------|
| 0    | 武田正之 | IS | 63        | 男  | 教授 | 1     | プログラミング言語論         |
| 0    | 武田正之 | IS | 63        | 男  | 教授 | 2     | ソフトウェア科学           |
| 0    | 武田正之 | IS | 63        | 男  | 教授 | 3     | 計算機ネットワーク          |
| 1    | 松澤智史 | IS | 63        | 男  | 講師 | 4     | インターネットアーキ<br>テクチャ |
| 1    | 松澤智史 | IS | 63        | 男  | 講師 | 3     | 計算機ネットワーク          |
| 1    | 松澤智史 | IS | 63        | 男  | 講師 | 5     | 複雑ネットワーク           |

べき集合の排除

べき集合→「与えられた集合からその部分集合を元として含む集合」

これで第1正規形は完成

# 主キー(Primary Key)の選択

- ・候補キーの発見
  - ・行(タプル)が一意に定まる列の組み合わせを探す
  - ・ 複数ある場合は、最小の列の組み合わせを選出

| 教員ID | 名前   | 学科 | 学科 コード | 性別 | 職  | 専門コード | 専門                 |
|------|------|----|--------|----|----|-------|--------------------|
| 0    | 武田正之 | IS | 63     | 男  | 教授 | 1     | プログラミング言語論         |
| 0    | 武田正之 | IS | 63     | 男  | 教授 | 2     | ソフトウェア科学           |
| 0    | 武田正之 | IS | 63     | 男  | 教授 | 3     | 計算機ネットワーク          |
| 1    | 松澤智史 | IS | 63     | 男  | 講師 | 4     | インターネットアーキ<br>テクチャ |
| 1    | 松澤智史 | IS | 63     | 男  | 講師 | 3     | 計算機ネットワーク          |
| 1    | 松澤智史 | IS | 63     | 男  | 講師 | 5     | 複雑ネットワーク           |

• (教員ID、専門コード),(名前, 専門),(名前, 専門コード)などが候補キー

# 主キー(Primary Key)の選択(2)

- ・主キーを候補キーの中から1つ選ぶ
- 主キーをどれにするかはデータベースの使用目的による
- ・主キーを構成する属性(列)の値はNULLを取ってはならない ※主キー制約という
- ・主キーに選ばれなかった候補キーは代理キーとなる
- ・表記ルールとして主キーの属性はアンダーバーで表現される 例:顧客(顧客ID, 顧客名, メールアドレス, 住所)

### 第1正規形の問題

| <u>教員ID</u> | 名前   | 学科 | 学科 コード | 性別 | 職  | <u>専門コード</u> | 専門                 |
|-------------|------|----|--------|----|----|--------------|--------------------|
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 1            | プログラミング言語論         |
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 2            | ソフトウェア科学           |
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 3            | 計算機ネットワーク          |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 4            | インターネットアーキ<br>テクチャ |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 3            | 計算機ネットワーク          |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 5            | 複雑ネットワーク           |
| 2           | 鈴木太郎 | IS | 63     | 男  | 助教 | 3            | ネットワーク科学           |

新たに教員ID=2, 名前=鈴木太郎, 学科IS(63) 職=助教, 専門コード=3, 専門=ネットワーク科学のデータを追加した場合

| <u>教員ID</u> | 名前   | 学科 | 学科 コード | 性別 | 職  | <u>専門コード</u> | 専門                 |
|-------------|------|----|--------|----|----|--------------|--------------------|
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 1            | プログラミング言語論         |
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 2            | ソフトウェア科学           |
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 3            | 計算機ネットワーク          |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 4            | インターネットアーキ<br>テクチャ |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 3            | 計算機ネットワーク          |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 5            | 複雑ネットワーク           |
| 2           | 鈴木太郎 | IS | 63     | 男  | 助教 | 3            | ネットワーク科学           |

専門コード3は計算機ネットワーク? それともネットワーク科学?



### 関数従属性

- ・ある属性Xが決まれば、別の属性Yが一意に決まる
- ・ Xを決定項、 Yを従属項と呼ぶ
- X→Yと表記する
- ・ 先ほどの例では教員ID(決定項)と教員名(従属項)となる

### 第2正規化(第2正規形)

- •目的
  - ・すべての非キー属性が「主キーに完全関数従属している」 関係にする
- やること
  - ・主キーの一部に従属する「部分関数従属性」を抜き出す

#### 定義:完全関数従属

・関数従属性X→YにおいてXのすべての真部分集合X'について X'→Yが成立しない

#### 定義:部分関数従属

主キーの値が決まれば値が決定する属性

| <u>教員ID</u> | 名前   | 学科 | 学科 コード | 性別 | 職  | <u>専門コード</u> | 専門                 |
|-------------|------|----|--------|----|----|--------------|--------------------|
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 1            | プログラミング言語論         |
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 2            | ソフトウェア科学           |
| 0           | 武田正之 | IS | 63     | 男  | 教授 | 3            | 計算機ネットワーク          |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 4            | インターネットアーキ<br>テクチャ |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 3            | 計算機ネットワーク          |
| 1           | 松澤智史 | IS | 63     | 男  | 講師 | 5            | 複雑ネットワーク           |

部分従属の属性(フィールド)は

- 教員ID, 名前, 学科, 学科コード
- 専門コード, 専門

| <u>教員</u><br><u>ID</u> | 名前   | 学科 | 学科<br>コード | 性<br>別 | 職  |
|------------------------|------|----|-----------|--------|----|
| 0                      | 武田正之 | IS | 63        | 男      | 教授 |
| 1                      | 松澤智史 | IS | 63        | 男      | 講師 |

| <u>教員ID</u> | 専門コード |
|-------------|-------|
| 0           | 1     |
| 0           | 2     |
| 0           | 3     |
| 1           | 4     |
| 1           | 3     |
| 1           | 5     |

| <u>専門</u><br>コード | 専門             |
|------------------|----------------|
| 1                | プログラミング言語論     |
| 2                | ソフトウェア科学       |
| 3                | 計算機ネットワーク      |
| 4                | インターネットアーキテクチャ |
| 5                | 複雑ネットワーク       |

これで第2正規形は完成

※第2正規形から第1正規形へは復元可能

#### 第3正規化(第3正規形)

- •目的
  - すべての非キー属性が候補キーに推移的に関数従属しない関係にする
- ・やること
  - ・主キー以外の属性(または属性の組)に従属する推移的関数従属性を抜き出す
- 定義: 推移的関数従属
  - 属性の集合X, Y, Zにおいて
    X→Y, Y→Z, Y not→Xの3つの制約が成立している関数従属

| <u>教員ID</u> | 名前   | 学科 | 学科<br>コード | 性<br>別 | 職  |
|-------------|------|----|-----------|--------|----|
| 0           | 武田正之 | IS | 63        | 男      | 教授 |
| 1           | 松澤智史 | IS | 63        | 男      | 講師 |

推移従属は、教員ID→学科コード→学科なのでこれを分離



| <u>教員ID</u> | 名前   | 性別 | 職  | 学科コード |
|-------------|------|----|----|-------|
| 0           | 武田正之 | 男  | 教授 | 63    |
| 1           | 松澤智史 | 男  | 講師 | 63    |

| 学科コード | 学科名 |
|-------|-----|
| 63    | IS  |

これで第3正規形が完成

# 最終的な第3正規形

| <u>教員ID</u> | <u>専門コード</u> |
|-------------|--------------|
| 0           | 1            |
| 0           | 2            |
| 0           | 3            |
| 1           | 4            |
| 1           | 3            |
| 1           | 5            |

| <u>専門</u><br>コード | 専門             |
|------------------|----------------|
| 1                | プログラミング言語論     |
| 2                | ソフトウェア科学       |
| 3                | 計算機ネットワーク      |
| 4                | インターネットアーキテクチャ |
| 5                | 複雑ネットワーク       |

| 教員ID | 名前   | 性別 | 職  | 学科コード |
|------|------|----|----|-------|
| 0    | 武田正之 | 男  | 教授 | 63    |
| 1    | 松澤智史 | 男  | 講師 | 63    |

| 学科コード | 学科名 |
|-------|-----|
| 63    | IS  |

#### 外部キー

・ 複数の関係を結びつけるためのキー

| <u>教員ID</u> | 名前   | 学科 | 学科コード | 性<br>別 | 職  |
|-------------|------|----|-------|--------|----|
| 0           | 武田正之 | IS | 63    | 男      | 教授 |
| 1           | 松澤智史 | IS | 63    | 男      | 講師 |

| 学科コード | 学科名 |
|-------|-----|
| 63    | IS  |

- この例では左のリレーション(表)の学科コードが外部キー, 右のリレーションの学科コードは候補キー(主キー)となっている
- ・外部キーには以下の制約(外部キー制約または参照制約)がある
- 1. 左リレーションの学科コードには右リレーションに存在する 学科コードしか入力できない
- 2. 右リレーションの学科コードは, 左リレーションに存在する 学科コードを削除することができない

#### E-R図

- リレーショナルデータベースのテーブル構造やリレーションシップはER図(Entity-Relationship diagram)で表記することができる
- ・実体(Entity)と関連(Relationship)の2つの概念がある
- ・実体は人、物、情報などを表し、関連はその実体間に存在する関係を定義する
- ER図の詳しい書き方はデータベース設計の回で解説する

# E-R図



# 高次の正規形

- ・ボイスコッド正規形
- 第4正規形
- •第5正規形

#### ボイスコッド正規形

・第2,3正規形では、切り離しの対象属性が「非キー属性」のみであったが、ボイスコッド正規形は「非キー属性」の制約を外した部分関数従属性や推移的関数従属性を排除する

| <u>学生</u> | <u>科目</u> | 教員 |
|-----------|-----------|----|
| Α         | 人工知能      | 桂田 |
| Α         | ネットワーク    | 松澤 |
| В         | 人工知能      | 大村 |
| С         | プログラミング   | 滝本 |

主キーは(学生, 科目)であるが, 教員が決まると科目も一意に定まる関係候補キーは(学生, 科目)以外にも(学生, 教員)

| <u>学生</u> | <u>科目</u> | 教員 |
|-----------|-----------|----|
| Α         | 人工知能      | 桂田 |
| Α         | ネットワーク    | 松澤 |
| В         | 人工知能      | 大村 |
| С         | プログラミング   | 滝本 |



#### ボイスコッド正規化

| 学生 | <u>教員</u> |
|----|-----------|
| A  | 桂田        |
| A  | 松澤        |
| В  | 大村        |
| С  | 滝本        |

| <u>教員</u> | 科目      |
|-----------|---------|
| 桂田        | 人工知能    |
| 松澤        | ネットワーク  |
| 大村        | 人工知能    |
| 滝本        | プログラミング |

# ボイスコッド正規形の問題

| <u>学生</u> | <u>教員</u> |
|-----------|-----------|
| Α         | 桂田        |
| Α         | 松澤        |
| В         | 大村        |
| С         | 滝本        |
| Α         | 大村        |

| 教員 | 科目      |
|----|---------|
| 桂田 | 人工知能    |
| 松澤 | ネットワーク  |
| 大村 | 人工知能    |
| 滝本 | プログラミング |

主キーが(学生, 教員)であるため, (A,大村)の行(タプル)が 挿入可能になる. 教員名で結合して元に戻そうとすると・・・

| <u>学生</u> | <u>科目</u> | 教員 |
|-----------|-----------|----|
| Α         | 人工知能      | 桂田 |
| Α         | ネットワーク    | 松澤 |
| В         | 人工知能      | 大村 |
| С         | プログラミング   | 滝本 |
| Α         | 人工知能      | 大村 |

# ボイスコッド正規形の問題(2)

- このような例を関数従属性損失という
- ・情報無損失分解でかつ関数従属性を保存したまま分解可能 なのは第3正規形までである

# 第4正規形

・多値従属性を分解する

| 旅程番号  | 顧客 | 便名     |
|-------|----|--------|
| Plan1 | Α  | JAL100 |
| Plan1 | Α  | ANA700 |
| Plan1 | В  | JAL100 |
| Plan1 | В  | ANA700 |
| Plan2 | С  | JAL200 |
| Plan2 | С  | ANA500 |
| Plan2 | С  | ANA800 |

| 旅程番号  | 顧客 |
|-------|----|
| Plan1 | A  |
| Plan1 | В  |
| Plan2 | С  |



| 旅程番号  | <u>便名</u> |
|-------|-----------|
| Plan1 | JAL100    |
| Plan1 | ANA700    |
| Plan2 | JAL200    |
| Plan2 | ANA500    |
| Plan2 | ANA800    |

定義:多值従属性

ある属性Xが決めると別の属性Y, Z(複数可)が独立して決まる

### 第5正規形

・ 結合従属性を分解する

| <u>仕入元</u> | 加工品   | 供給先  |
|------------|-------|------|
| A社         | Tシャツ  | α販売店 |
| A社         | Tシャツ  | β販売店 |
| A社         | ポロシャツ | β販売店 |
| B社         | Tシャツ  | β販売店 |



| <u>仕入元</u> | 加工品   |
|------------|-------|
| A社         | Tシャツ  |
| A社         | ポロシャツ |
| B社         | Tシャツ  |

| <u>仕入元</u> | <u>供給先</u> |
|------------|------------|
| A社         | α販売店       |
| A社         | β販売店       |
| B社         | β販売店       |

| 加工品   | 供給先  |
|-------|------|
| Tシャツ  | α販売店 |
| Tシャツ  | β販売店 |
| ポロシャツ | β販売店 |

定義:結合従属性

関係が3つ以上に分解可能な従属性

n個に分解可能なことをn-分解可能という この分解は結合によって元に戻すことが可能

#### まとめ

- ・第1正規形→原子的データに分解
- ・第2正規形→部分従属を分解
- ・第3正規形→推移従属を分解
- ボイスコッド正規形→非キー属性以外の部分・推移従属を分解
- ・第4正規形→多値従属を分解
- 第5正規形→結合従属を分解
- ・高次の正規形(ボイスコッド, 第4, 第5)では情報損失, 関数従属 性損失が起こりうる
- ・実用的に行われるのは第3正規形まで
  - →高次の正規形はこんな正規化の仕方もあるよ・・程度で良い

# 質問あればどうぞ