In [1]:	Simple Linear Regression Assignment Data Set: delivery_time Q = Predict delivery time using sorting time 1. Import Necessary libraries import pandas as pd import numpy as np from matplotlib import pyplot as plt import seaborn as sns
In [2]:	<pre>import statsmodels.formula.api as smf from sklearn.metrics import mean_squared_error from math import sqrt import warnings warnings.filterwarnings('ignore') 2. Import Data time_pickup = pd.read_csv('delivery_time.csv') time_pickup</pre>
Out[2]:	
In [3]: Out[3]:	3. Data Understanding a) Initial Analysis: time_pickup.head() Delivery Time Sorting Time 0 21.00 10 1 13.50 4
In [4]: Out[4]: In [5]:	2 19.75 6 3 24.00 9 4 29.00 10 time_pickup.shape (21, 2) time_pickup.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 21 entries, 0 to 20 Data columns (total 2 columns): # Column Non-Null Count Dtype</class>
<pre>In [6]: Out[6]: In [7]: Out[7]:</pre>	0 Delivery Time 21 non-null float64 1 Sorting Time 21 non-null int64 dtypes: float64(1), int64(1) memory usage: 464.0 bytes time_pickup.isna().sum() Delivery Time 0 Sorting Time 0 dtype: int64 time_pickup.dtypes Delivery Time float64 Sorting Time int64
In [8]: Out[8]:	There is no Null value present in this data set and also the data types are appropriate in all attributes Lime_pickup_1 = Lime_pickup.rename({'Delivery Time':'DT', 'Sorting Time':'ST'), axis = 1) Dr
In [9]: Out[9]:	19 17.83 7 20 21.50 5 b) Correlation Matrix: corr_matrix = time_pickup_1.corr() corr_matrix DT ST DT 1.000000 0.825997
In [10]:	sns.heatmap(data = corr_matrix, annot = True) plt.show() E
In [11]:	a) Outlier Test Using Box Plot : plt.figure(figsize = (12,5)) plt.subplot(1,2,1) time.pickup_1!.boxplot(column = ['DT']) plt.subplot(1,2,2) time.pickup_1.boxplot(column = ['DT']) plt.show() 40 35 30 25 20 15 10 05 05 10 05 05 10 05 07 10 10 10 10 10 10 10 10 10
In [12]:	plt.figure(figsize = (12,5)) plt.subplot(1,2,1) time_pickup_l['ST'].hist() plt.subplot(12,2) time_pickup_l.boxplot(column = ['ST']) plt.show() 10 9 8 7 6 10 15 10 05 15 10 05 15 10 05 17 17 18 19 19 10 10 10 10 10 10 11 10 11 11 11 11 11
In [13]:	b) Normality / Distribution Test Using Distplot : sns.distplot(time_pickup_1['DT']) plt.show() 0.08 0.06 0.06 0.06 0.06 0.07 0.08
In [14]:	DT is a Positive Skew & Asymmetrical Distribution Normality Test Failed sns. distribut (time_pickup_1['ST']) 0.14 0.12 0.00 0.
<pre>In [15]: Out[15]:</pre>	ST is a Zero Skew & Symmetrical Distribution 7. Model Building 8. Model Training Now Try To Fit Model For Delivery Time [DT] Because It Is a Asymmetrical Distribution Model 1: Without Applying any Transformation Using Statsmodel time_model_1 = smf.ols(formula = 'DT-ST', data = time_pickup_1).fit()
In [16]:	sns.regplot(x ='DT',y ='ST',data=time_pickup_1) plt.show() 14 12 10 15 8 4 2 10 15 15 20 25 30
In [17]: Out[17]: In [18]: Out[18]:	#coefficient time_model_1.params Intercept 6.582734 ST 1.649020 dtype: float64 time_model_1.summary()
	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. From the Above OLS Regression Result the R-Squared value is 0.682 < 0.75 and this Model is Not Good to Predict Delivery Time [DT] and p-value < 0.05 9. Model Testing pred_1 = time_model_1.predict(time_pickup_1.ST)
Out[19]: In [20]: In [21]:	pred_1 0 23.072933 1 13.178814 2 16.476853 3 21.429313 4 23.072933 5 16.476853 6 18.125873 7 11.529794 8 23.072933 9 21.429313 10 19.774893 11 13.178814 11 23.178814 11 21 18.125873 13 11.529794 14 11.529794 15 13.178814 16 16.476853 17 18.125873 18 9.880774 19 18.125873 19 18.125873 20 14.827833 dtype: float64 actual_1 = time_pickup_1.DT rmse = sqrt(mean_squared_error(actual_1,pred_1))
<pre>In [22]: Out[22]: In [23]: Out[23]:</pre>	print(rmse) 2.7916503270617654 Model 2: Apply Exponential Transformation time_model_2 = smf.ols(formula = 'DT-np.exp(ST)', data = time_pickup_1).fit() time_model_2 <statsmodels.regression.linear_model.regressionresultswrapper 0x1d64aa2c3d0="" at=""> time_model_2.params Intercept</statsmodels.regression.linear_model.regressionresultswrapper>
In [24]: Out[24]:	Cls Reguestion Results
	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.01e+04. This might indicate that there are strong multicollinearity or other numerical problems. Model 3: Apply Reciprocal Transformation time_model_3 = smf.ols(formula = 'DT-np.reciprocal(ST)', data = time_pickup_1).fit() time_model_3
Out[25]: In [26]: Out[26]: In [27]: Out[27]:	
	Notes: 2,974 Cond. No. inf
	Dep. Variable: DT R.squaret. 0.030 Model-of: OLS Adj. R.squaret. 0.611 Method: Least Squares F-statistics: 3.29 Date: Sat, 24 Sep 202 Prob (F-statistic): 1.74e-05 No. Observations: 2032-47 Log-Likelity-in-incidence (Japane): 1.99 Df Residuals: 19 Intercept 1 monobus: 1 Polity 0.025 5.075 Intercept 11.2372 1.96 9.399 0.000 8.735 1.3740 Omnibus: 1.531 Durbin-lists: 2.31 Durbin-lists: 2.34 3.072 4.38 Kurtosis: 3.050 Cond. No. 94.3 4.84 </th
	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Model 5: Apply Square Root Transformation time_model_5 = smf.ols(formula = 'DT-np.sqrt(ST)', data = time_pickup_1).fit() time_model_5 = sqr.ols(formula = 'DT-np.sqrt(ST)', data = time_pickup_1).fit() **statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1d64aaedca0> time_model_5.params Intercept
In [33]: Out[33]:	OLS Regression Results Dep. Variable: DT R-squared: 0.696 Model: OLS Adj. R-squared: 0.689 Method: Least Squares: F-statistic: 2.3,46 Date: Sat, 24 Sep 2022 Prob (F-statistic): 2.51e-06 Time: 00-32** Log-Likelihood: 50.900 No. Observations: 19 BIC: 105.8 Df Model: 19 BIC: 107.9 Covariance Type: nonribus: 1 P-N[I] [0.025 0.975] Intercept: 2.518 2.995 -0.841 0.411 -0.768 3.751 np.sqrt(ST) 7.9366 1.204 6.992 0.000 5.417 10.456 Omnibus: 0.097 Jarque-Bera (JB): 2.824 2.
	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Model 6: Apply Log Transformation of Y time_model_6 = smf.ols(formula = 'DT-np.log(ST)', data = time_pickup_1).fit() time_model_6 = smf.ols(rormula = 'DT-np.log(ST)', data = time_pickup_1).fit() time_model_6.params Intercept
	Method: Least Squares F-statistic. 43.39 Date: Sut, 24 Sep 202 Prob/E-statistic. 2.64-66 Time: 00:32:50 Cog-Likelihood: 50.912 No. Observations: 21 St. : 105.8 Df Residuals: 19 BIC: 105.8 Covariance Type: nonrobust: t P-NII [0.025 0.975] Intercept: 1.1597 2.455 0.472 0.842 3.978 6.297 np.log(ST) 9.043 1.373 6.552 Durbin-Watton: 1.427 Prob/(Bmilbus): 0.062 Jarus-Brazilis: 3.481 Prob/(Bmilbus): 0.918 Prob/(Bmilbus): 0.175 Rutrosis: 3.628 Cond-No. 9.08 Prob/(Bmilbus): 0.918 Prob/(Bm
<pre>In [37]: Out[37]: In [38]: Out[38]: Out[39]:</pre>	Intercept 2.121372 ST 0.105552 Upon Segression Results Dep. Variable: np. log(0T) Resquared: 0.711 Model: 0Ls Agl, Resquared: 0.711 Model: 0Ls Squares: F-statistic: 46.73 Date: Sat, 24 Sep 2022 Prob (F-statistic): 1.59e-06 Time: 0.032.51 Log-Likelihood: 7.7920 No. Observations: 21 AC: 1.158
	No. Observations:
	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Model 8: Apply Log Transformation of X & Y time_model_8 = smf.ols(formula = 'np.log(DT)-np.log(ST)', data = time_pickup_1).fit() time_model_8.params time_model_8.params np.log(ST) = 0.597522 dtype: float64 time_model_8.summary() OLS Regression Results Dep. Variable: np.log(DT) = Resquared: 0.772 Model: OLS Adj. Resquared: 0.760 Method: Least Squares: Fstatistic: 64.39
	Method: Least Square Fatalistic 64.39 Date Satz Sazz Sazz Prob Fatalistic 64.39 No. Observations: Outside Square Sazz Saz
	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. CONCLUSION = Comparing between all Models, model_8 has Higher R-squared Value i.e. 0.772 as comapare to other Models. Hence the Model_8 is better Model to Predict Delivery_Time THE END