Asimptotik Notasyon ve Temel Verimlilik Sınıfları Hafta 2

(Büyüme Sırası) Order of growth

• En önemlisi : $n \rightarrow \infty$ 'a giderken algoritmanın performansı hangi sınırlarda bunu anlayabilmeks

• Örnek:

- İki katı kadar hızlı bir bilgisayarda algoritma ne kadar hızlanıyor?
- Girdi boyutu iki katına çıktığında algoritma ne kadar yavaşlıyor?

Values of some important functions as $n \to \infty$

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Asimptotik Büyüme Dereceleri

Fonksiyonların büyüme hızlarını karşılaştırmak için kullanılan, sabit çarpanları ve küçük girdi boyutlarını yoksayan, bir yöntem.

- O(g(n)): g(n) fonksiyonundan daha hızlı büyümeyen f(n) fonksiyonlarını kapsar
- $\Theta(g(n))$: g(n) fonksiyonları ile aynı derecede büyüyen f(n) fonksiyonlarını gösterir.
- $\Omega(g(n))$: en az g(n) fonksiyonları kadar hızda büyüyen f(n) fonksiyonlarını belirtmek için kullanılır.

Big-oh

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$ River, NJ. All Rights Reserved.

Big-omega

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Big-theta

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Big O Formal Tanımı

Tanım: $f(n) \in O(g(n))$ ise, f(n) fonksiyonunun büyüme derecesi, g(n)'in büyüme sabit bir sayı ile çarpımının büyüme derecesinden küçüktür.

$$f(n) \le c g(n)$$
, $\forall n \ge n_0$

Eşitsizliğini sağlayan pozitif bir sabit c ve pozitif bir tamsayı n_0 vardır

Örnekler:

• $10n \text{ is } O(n^2)$ 5n+20 is O(n)

Big O'nun Özellikleri

- $f(n) \in O(f(n))$
- $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$
- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$ $a \le b$ eşitsizliğindekine benzer bir şekilde
- If $f_1(n)\in \mathrm{O}(g_1(n))$ and $f_2(n)\in \mathrm{O}(g_2(n))$, then $f_1(n)+f_2(n)\in \mathrm{O}(\max\{g_1(n),g_2(n)\})$

Ω - Formal Tanımı

• **Tanım:** $f(n) \in \Omega(g(n))$ ise, f(n) fonksiyonunun büyüme derecesi, g(n)'in sabit bir sayı ile çarpımının büyüme derecesinden büyük veya eşittir.

$$f(n) \ge c g(n)$$
, $\forall n \ge n_0$

Eşitsizliğini sağlayan pozitif bir sabit c ve pozitif bir tamsayı n_0 vardır.

Örn: $n^3 \in \Omega(n^2)$

Θ Formal Tanımı

• **Tanım:** $f(n) \in \Theta(g(n))$ ise, f(n) fonksiyonunun büyüme derecesi, g(n) fonksiyonun bir sabit katından yüksek aynı zamanda g(n) fonksiyonun bir sabit katından da düşük olmaktadır.

$$c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$$

Eşitsizliğini sağlayan pozitif sabit c_1 , c_2 sayıları ve pozitif bir tamsayı n_0 vardır.

$$\ddot{\text{Orn}}: \frac{1}{2}n(n-1) \in \Theta(n^2)$$

Limit Kullanarak Nüyüme Derecesi Belirleme

lim
$$T(n)/g(n) = c > 0$$
 order of growth of $T(n) < 0$ order of growth of $T(n) < 0$ order of growth of $T(n) = 0$ order of $T(n) = 0$ o

L'Hôpital's kuralı ve Stirling's formülü

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

Example: log n vs. n

Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$

Example: 2^n vs. n!

Bazı Önemli Fonksiyonların Büyüme Dereceleri

• Tüm logaritmik fonksiyonlar log_a n aynı asimptotik sınıfa sahiptir.

 $\Theta(\log n) \log a$ rithmanın tabanı a > 1 önemli değil.

- Aynı derece k'ye sahip olan tüm polinomlar aynı asimptotik sınıfa sahiptir. :
- $a_k n^k + a_{k-1} n^{k-1} + \dots + a_0 \in \Theta(n^k)$
- Üstel fonksiyonlar a^n a değerine göre farklı büyüme sınıfına aittir.
- order $\log n < \text{order } n^{\alpha}$ ($\alpha > 0$) < order $a^n < \text{order } n! < \text{order } n^n$

Temel Asimptotik Verimlilik Sınıfları (Basic asymptotic efficiency classes)

1	constant		
log n	logarithmic		
n	linear		
$n \log n$	n-log-n or linearithmic		
n^2	quadratic		
n^3	cubic		
2 ⁿ	exponential		
n!	factorial		

Recursive olmayan Algoritmaların Time Efficiency'sini Analiz Etmek için Genel Plan

- Girdi boyutu için düşünülen parametreye karar verme,
- Algoritmanın temel işlemini (basic operation) belirle.
- Ekötü(<u>worst)</u>, ortalama(<u>average)</u>, ve en iyi(<u>best)</u> durumlarına karar ver.
- Toplamda kaç farklı temel işlemin çalıştırıldığını say (toplam formülünü belirle)
- Toplamı kurallara göre basite indirge.

Kullanışlı Toplam Formülleri ve Kurallar

$$\Sigma_{1 \le i \le u} 1 = 1 + 1 + \dots + 1 = u - l + 1$$

Örn: $\Sigma_{1 \le i \le n} 1 = n - 1 + 1 = n \in \Theta(n)$

$$\sum_{1 \le i \le n} i = 1 + 2 + \cdots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$$

$$\Sigma_{1 \le i \le n} i^2 = 1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$$

$$\Sigma_{0 \le i \le n} a^i = 1 + a + \dots + a^n = (a^{n+1} - 1)/(a - 1)$$
 for any $a \ne 1$ In particular, $\Sigma_{0 \le i \le n} 2^i = 2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1 \in \Theta(2^n)$

$$\sum (a_i \pm b_i) = \sum a_{i,i} \pm \sum_{\text{Levitini}} b_{\text{introduction to the lipesign}} \sum_{\text{C}} c_{i,i} = c_{\text{Analysis of Algorithm}} \sum_{\text{U}} a_i = \sum_{1 \le i \le m} a_i + \sum_{m+1 \le i \le u} a_i$$
3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example 1: Maximum element

```
ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A

maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > maxval

maxval \leftarrow A[i]

return maxval
```

Example 1: Maximum element

$$C(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n).$$

Example 2: Element uniqueness problem

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```

Example 2: Element uniqueness problem

$$\begin{split} C_{worst}(n) &= \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i) \\ &= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2} \\ &= (n-1)^2 - \frac{(n-2)(n-1)}{2} = \frac{(n-1)n}{2} \approx \frac{1}{2} n^2 \in \Theta(n^2). \end{split}$$

Example 3: Matrix multiplication

Example 3: Matrix multiplication

```
ALGORITHM MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

//Multiplies two n-by-n matrices by the definition-based algorithm

//Input: Two n-by-n matrices A and B

//Output: Matrix C = AB

for i \leftarrow 0 to n-1 do

C[i, j] \leftarrow 0.0

for k \leftarrow 0 to n-1 do

C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]

return C
```

Example 3: Matrix multiplication

$$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{i=0}^{n-1} n^2 = n^3.$$

Example 4: Gaussian elimination

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}, \begin{bmatrix} a'_{11} & a'_{12} & \cdots & a'_{1k} \\ 0 & a'_{22} & \cdots & a'_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a'_{kk} \end{bmatrix} \begin{bmatrix} b'_1 \\ b'_2 \\ \vdots \\ b'_k \end{bmatrix}.$$

$$x_i = \frac{1}{a'_{i\,i}} \left(b'_i - \sum_{j=i+1}^k a'_{i\,j} x_j \right).$$

Example 4: Gaussian elimination

```
Algorithm Gaussian Elimination (A[0..n-1,0..n-1])

//Implements Gaussian elimination of an n-by-(n+1)

matrix A

for i \leftarrow 0 to n - 2 do

for j \leftarrow i + 1 to n - 1 do

for k \leftarrow i to n do

A[j,k] \leftarrow A[j,k] - A[i,k] * A[j,i] / A[i,i]
```

Find the efficiency class and a constant factor improvement.

Example 5: Counting binary digits

```
ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation count \leftarrow 1

while n > 1 do

count \leftarrow count + 1

n \leftarrow \lfloor n/2 \rfloor

return count
```

It cannot be investigated the way the previous examples are.

Von Neumann's Neighborhood

