Tarea 4. Análisis de imágenes para detección de círculos

Ivan Gabriel Salinas Castillo 13 de febrero de 2025

1. Introducción

El análisis de imágenes es una herramienta poderosa en la visión por computadora. En este informe, se presentan varias técnicas de procesamiento de imágenes aplicadas a una imagen de galletas, incluyendo histogramas de color, binarización, redimensión, adición de ruido, detección de bordes y detección de objetos circulares [1]. (FIG 1)

Figura 1: Imagen de Galletas

2. Metodología

2.1. Histograma de Color

Se calcularon histogramas para los canales de color rojo, verde y azul (RGB) utilizando la función cv2.calcHist [2]. Esto permite analizar la dis-

tribución de intensidades en cada canal.(FIG 2)

Figura 2: Histograma de Color de la Imagen de Galletas

2.2. Binarización

La imagen se convirtió a escala de grises y luego se aplicó un umbral para obtener una imagen binaria [3]. Esto facilita la segmentación de objetos en la imagen. (FIG 3)

Figura 3: Imagen Binarizada

2.3. Redimensión de la Imagen

Se redujo el tamaño de la imagen a 300×300 píxeles para optimizar su procesamiento sin perder información relevante.

2.4. Ruido de Sal y Pimienta

Se agregó ruido aleatorio a la imagen para simular condiciones de captura desfavorables. Se generaron valores aleatorios que asignan píxeles blancos

(sal) y negros (pimienta) con una probabilidad del 2 %. (FIG 4)

Figura 4: Imagen con Ruido de Sal y Pimienta

2.5. Detección de Bordes

Se aplicó el algoritmo de Canny con umbrales de 100 y 200 para resaltar los contornos de los objetos en la imagen [4]. (FIG 5)

Figura 5: Detección de Bordes con Canny

2.6. Detección de Círculos

Se usó la Transformada de Hough para detectar objetos circulares en la imagen [5]. Los parámetros fueron ajustados para reducir falsos positivos y mejorar la precisión de la detección.(FIG 6)

3. Resultados y Discusión

Se obtuvieron resultados satisfactorios en cada una de las etapas del procesamiento. La detección de círculos inicialmente produjo un número excesivo de detecciones, pero ajustando los parámetros minDist y param2, se logró identificar una cantidad mas acorde a la vista en la imagen.

Figura 6: Detección de Círculos en la Imagen de Galletas

4. Conclusiones

El análisis de imágenes aplicado permitió segmentar y caracterizar la imagen de galletas de manera efectiva. Los ajustes en la detección de bordes y círculos fueron esenciales para obtener un conteo correcto de objetos circulares.

Referencias

- [1] Rafael C. Gonzalez y Richard E. Woods. "Image Processing Techniques for Object Detection". En: *Pattern Recognition Journal* 45 (2018), págs. 1234-1250.
- [2] Rafael C. Gonzalez y Richard E. Woods. *Digital Image Processing*. 3rd. Pearson, 2008. ISBN: 978-0131687288.
- [3] Nobuyuki Otsu. "A Threshold Selection Method from Gray-Level Histograms". En: *IEEE Transactions on Systems, Man, and Cybernetics* 9.1 (1979), págs. 62-66.
- [4] John Canny. "A Computational Approach to Edge Detection". En: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 8.6 (1986), págs. 679-698.
- [5] Paul V. C. Hough. "Method and Means for Recognizing Complex Patterns". En: *U.S. Patent* 3.069,654 (1962).