随伴関手

alg-d

http://alg-d.com/math/

2013年11月25日

定義. C,D を圏, $F:C\longrightarrow D$, $G:D\longrightarrow C$ を関手とする. $c\in C$, $d\in D$ に関して自然な同型 $\operatorname{Hom}_D(Fc,d)\cong\operatorname{Hom}_C(c,Gd)$ が成り立つとき,F を G の左随伴関手,G を F の右随伴関手という.これを記号 $F\dashv G:C\longrightarrow D$ もしくは単に $F\dashv G$ で表す.

 $F\dashv G\colon C\longrightarrow D$ を随伴とする.即ち $\operatorname{Hom}(Fc,d)\cong\operatorname{Hom}(c,Gd)$ である.ここで d:=Fc とすれば $\operatorname{Hom}(Fc,Fc)\cong\operatorname{Hom}(c,GFc)$ である.この同型で $\operatorname{id}_c\in\operatorname{Hom}(Fc,Fc)$ に対応する $\eta_c\in\operatorname{Hom}(c,GFc)$ が存在する.このようにして各 $c\in C$ に対して η_c を取ると, η は自然変換 $\operatorname{id}_C\longrightarrow GF$ となる. η を unit と呼ぶ.

同様にして $\operatorname{Hom}(FGd,d)\cong\operatorname{Hom}(Gd,Gd)$ により $\varepsilon_d\in\operatorname{Hom}(FGd,d)$ が定まる. ε は自然変換 $FG\longrightarrow\operatorname{id}$ となる. ε を counit と呼ぶ.

unit は次のような普遍性を持つ.

定義. C,D を圏, $c\in C$, $G\colon D\longrightarrow C$ を関手とする.以下を満たす組 $\langle d,f\rangle$ を c から G への普遍射という.

- (1) d は D の対象である.
- (2) f は C の射 $c \longrightarrow Gd$ である.
- (3) 別の組 $\langle d',f'\rangle$ で上の条件を満たすものがあったとき,D の射 $g\colon d\longrightarrow d'$ が一意に存在して $Gg\circ f=f'$ となる.

命題 1. $F \dashv G \colon C \longrightarrow D$ を随伴とし, $\eta \colon \mathrm{id} \Longrightarrow GF$ を unit とする.このとき各 $c \in C$

に対して $\langle Fc, \eta_c \rangle$ は普遍射である.

証明・ $f\colon c\longrightarrow Gd$ とする.同型 $\operatorname{Hom}_D(Fc,d)\cong \operatorname{Hom}_C(c,Gd)$ により $f\in \operatorname{Hom}(c,Gd)$ に対応する $g\in \operatorname{Hom}(Fc,d)$ を取る.まず $Gg\circ \eta_c=f$ を示す.

$$\begin{array}{ccc}
c & \xrightarrow{\eta_c} & GFc & Fc \\
\downarrow & & \downarrow g \\
Gd & d
\end{array}$$

 $\operatorname{Hom}_D(Fc,d)\cong\operatorname{Hom}_C(c,Gd)$ の自然性により,次の図式は可換である.

$$\operatorname{Hom}(Fc, Fc) \xrightarrow{\cong} \operatorname{Hom}(c, GFc)$$

$$\downarrow^{g \circ} \qquad \qquad \downarrow^{Gg \circ}$$

$$\operatorname{Hom}(Fc, d) \xrightarrow{\cong} \operatorname{Hom}(c, Gd)$$

故に $\mathrm{id}_{Fc}\in \mathrm{Hom}(Fc,Fc)$ の行き先を見れば $Gg\circ\eta_c=f$ である .

次に, $g'\colon Fc\longrightarrow d$ が $Gg'\circ\eta_c=f$ を満たすとする.

$$\operatorname{Hom}(Fc, Fc) \xrightarrow{\cong} \operatorname{Hom}(c, GFc)$$

$$\downarrow^{g' \circ} \qquad \qquad \downarrow^{Gg' \circ}$$

$$\operatorname{Hom}(Fc, d) \xrightarrow{\cong} \operatorname{Hom}(c, Gd)$$

が可換であるから同型 $\mathrm{Hom}_D(Fc,d)\cong\mathrm{Hom}_C(c,Gd)$ により g' と $Gg'\circ\eta_c=f$ が対応する.故に g'=g でなければならない.

実は、ある意味でこれの逆が成り立つ、即ち

定理 2. $G\colon D\longrightarrow C$ を関手として,各 $c\in C$ に対して普遍射 $\eta_c\colon c\longrightarrow Gd_c$ が存在するとする.このとき G は左随伴関手 F を持つ.更に,随伴 $F\dashv G$ の unit が η となる.

証明、 $c\in C$ に対して一意に定まる普遍射 $\eta_c\colon c\longrightarrow Gd_c$ を使って $Fc:=d_c$ と定める.射 $f\colon c\longrightarrow c'$ に対して射 $Ff\colon Fc\longrightarrow Fc'$ を, $\eta_c\colon c\longrightarrow GFc$ の普遍性から定まる射とする.

$$\begin{array}{ccc}
c & \xrightarrow{\eta_c} & GFc & Fc \\
f \downarrow & & & & Ff \\
\downarrow & & & & & \downarrow \\
c' & \xrightarrow{\eta_c} & GFc' & Fc'
\end{array}$$

この F は明らかに関手 $C \longrightarrow D$ になる.

 $F\dashv G$ を示す . $c\in C$, $d\in D$ に対して $\varphi_{c,d}\colon \mathrm{Hom}_D(Fc,d)\longrightarrow \mathrm{Hom}_C(c,Gd)$ を $\varphi_{c,d}(f):=Gf\circ\eta_c$ と定める .

$$\begin{array}{ccc}
c & \xrightarrow{\eta_c} & GFc & Fc \\
\varphi_{c,d}(f) & & & & & f \\
Gd & & & & d
\end{array}$$

この φ は自然変換である.また普遍射の性質から明らかに $\varphi_{c,d}$ は全単射である.故に自然同型 $\varphi\colon \operatorname{Hom}_D(Fc,d)\cong \operatorname{Hom}_C(c,Gd)$ が成り立つ.

同様なことが双対的に counit に対しても成り立つ.(省略) このことから次のことが分かる.

定理 $G: D \longrightarrow C$ の左随伴は,存在するならば (同型を除いて) 一意である.即ち, $F \dashv G: C \longrightarrow D$ かつ $F' \dashv G: C \longrightarrow D$ ならば自然同型 $F \cong F'$ が存在する.

証明. $F\dashv G$ かつ $F'\dashv G$ とすれば ,それぞれの unit を η,η' としたときに $\eta_c\colon c\longrightarrow GFc$ と $\eta'_c\colon c\longrightarrow GF'c$ が普遍射となるから , 普遍射の普遍性により $Fc\cong F'c$ が分かる . この同型は c について自然だから $F\cong F'$ となる .

双対的に,右随伴も存在すれば一意である.

さて, $F\dashv G$ の unit $\eta\colon \mathrm{id}\Longrightarrow GF$ から自然変換 $\eta_G\colon G\Longrightarrow GFG$ が,counit $\varepsilon\colon FG\Longrightarrow \mathrm{id}$ から自然変換 $G\varepsilon\colon GFG\Longrightarrow G$ が得られる.このとき

命題 4. 合成 $G\varepsilon \circ \eta_G : G \Longrightarrow GFG \Longrightarrow G$ は $id: G \Longrightarrow G$ に等しい .

$$D \xrightarrow{\operatorname{id}} D \qquad = D \xrightarrow{\operatorname{id}} D \qquad G$$

$$C \xrightarrow{\operatorname{id}} C \qquad = C \xrightarrow{\operatorname{id}} C \qquad G$$

証明、定理 2 の証明で見たように, $f \in \operatorname{Hom}(c,Gd)$ に対して対応する $g \in \operatorname{Hom}(Fc,d)$ を取れば $Gg \circ \eta_c = f$ であった.ここで c := Gd, $f := \operatorname{id}_{Gd}$ と取れば $G\varepsilon_d \circ \eta_{Gd} = \operatorname{id}_{Gd}$ である.即ち $G\varepsilon \circ \eta_G = \operatorname{id}$.

双対的に , $\varepsilon_F \circ F\eta\colon F \Longrightarrow FGF \Longrightarrow F$ は $\mathrm{id}\colon F \Longrightarrow F$ に等しいことも分かる. 実は , これもある意味で逆が成り立つのである.即ち 定理 5. $F: C \longrightarrow D$, $G: D \longrightarrow C$ を関手 , $\eta: \mathrm{id}_C \Longrightarrow GF$, $\varepsilon: FG \Longrightarrow \mathrm{id}_D$ を自然変換とする . $G\varepsilon \circ \eta_G = \mathrm{id}$, $\varepsilon_F \circ F\eta = \mathrm{id}$ が成り立つならば $F \dashv G$ である .

証明. $c \in C$, $d \in D$ を取る . φ_{cd} : $\operatorname{Hom}(Fc,d) \longrightarrow \operatorname{Hom}(c,Gd)$ を $\varphi_{cd}(f) := Gf \circ \eta_c$ で定める . また , ψ_{cd} : $\operatorname{Hom}(c,Gd) \longrightarrow \operatorname{Hom}(Fc,d)$ を $\psi_{cd}(g) := \varepsilon_d \circ Fg$ で定める .

 $arphi_{cd}$, ψ_{cd} は自然変換である .

(\cdot,\cdot) $k\colon c\longrightarrow c'$ を射とする.次の図式が可換であることを示す.

$$\operatorname{Hom}(Fc,d) \xrightarrow{\varphi_{cd}} \operatorname{Hom}(c,Gd) \qquad f \circ Fk \longmapsto^{\varphi_{cd}} G(f \circ Fk) \circ \eta_{c}$$

$$\circ Fk \qquad \uparrow \circ k \qquad \circ Fk \qquad Gf \circ \eta_{c'} \circ k$$

$$\operatorname{Hom}(Fc',d) \xrightarrow{\varphi_{c'd}} \operatorname{Hom}(c',Gd) \qquad f \longmapsto^{\varphi_{c'd}} Gf \circ \eta_{c'}$$

その為には $GFk\circ\eta_c=\eta_{c'}\circ k$ を示せばよいが , これは η が自然変換であることより従う .

$$c \xrightarrow{\eta_c} GFc$$

$$\downarrow k \qquad \qquad \downarrow GFk$$

$$c' \xrightarrow{\eta_{c'}} GFc'$$

同様の議論を他にも行うことにより , $arphi_{cd}$, ψ_{cd} が自然変換であることが分かる .

定義により $\psi_{cd}\circ\varphi_{cd}(f)=\psi_{cd}(Gf\circ\eta_c)=\varepsilon_d\circ F(Gf\circ\eta_c)=\varepsilon_d\circ FGf\circ F\eta_c$ である . $\varepsilon\colon FG\Longrightarrow \mathrm{id}$ は自然変換だったから,次の図式が可換である.

$$FGFc \xrightarrow{\varepsilon_{Fc}} Fc$$

$$FGf \downarrow \qquad \qquad \downarrow f$$

$$FGd \xrightarrow{\varepsilon_d} d$$

即ち $\varepsilon_d\circ FGf=f\circ \varepsilon_{Fc}$ となる.仮定により $\varepsilon_F\circ F\eta=\mathrm{id}$ だったから $\psi_{cd}\circ \varphi_{cd}(f)=f\circ \varepsilon_{Fc}\circ F\eta_c=f$ である.故に $\psi_{cd}\circ \varphi_{cd}=\mathrm{id}$ となる.双対的に $\varphi_{cd}\circ \psi_{cd}=\mathrm{id}$ も成り立つ.故に $\varphi\colon \mathrm{Hom}(Fc,d)\cong \mathrm{Hom}(c,Gd)$ であり $F\dashv G$ である.

定理 6. 左随伴関手は余極限と交換する.即ち, $F\dashv G\colon C\longrightarrow D$ を随伴,J を添え字 圏, $T\colon J\longrightarrow C$ を関手で $\operatorname{colim} T$ が存在するとする.この時 $\operatorname{colim}(F\circ T)$ も存在して $\operatorname{colim}(F\circ T)=F(\operatorname{colim} T)$ となる.

証明. η : $\mathrm{id} \Longrightarrow GF$ を unit とする . $\mathrm{colim}\,T$ が存在するから , 次の図式がある .

 $f_i \colon FTi \longrightarrow d \ (i \in J)$ で可換となるものをとる.

このとき次の図式が可換となるような $F(\operatorname{colim} T) \longrightarrow d$ が一意に存在することを示せばよい .

まず,次の図式が可換である.

$$Ti \xrightarrow{\eta_{T_i}} GFTi$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad Gf_i$$

$$Tj \xrightarrow{\eta_{T_j}} GFTj \xrightarrow{Gf_j} Gd$$

よって colim の普遍性により射 $\operatorname{colim} T \longrightarrow Gd$ が一意に存在する.

$$Ti \longrightarrow \operatorname{colim} T$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Tj \longrightarrow Gd$$

よって $F(\operatorname{colim} T) \longrightarrow FGd \longrightarrow d$ が存在する.後はこの射の一意性を示せばよい.そ

の為に

が可換とすれば

が可換となるから, $\operatorname{colim} T$ の普遍性により

が可換となる.ところで $\eta_{\operatorname{colim} T}\colon\operatorname{colim} T\longrightarrow GF(\operatorname{colim} T)$ は普遍射であるから,これが可換となるような g は一意である.

双対的に,右随伴関手は極限と交換する.

以下,随伴の例を挙げる.

例. Set を集合の圏 , k を体 , \mathbf{Vect}_k を k-線型空間の圏 , $U\colon \mathbf{Vect}_k\longrightarrow \mathbf{Set}$ を忘却関手とする . $F\colon \mathbf{Set}\longrightarrow \mathbf{Vect}_k$ を集合 X に対して X で生成される k 上の線型空間を与える 関手とすれば $F\dashv U$ である .

例. Grp を群の圏 , $U \colon \operatorname{Ab} \longrightarrow \operatorname{Grp}$ を忘却関手とする . $F \colon \operatorname{Grp} \longrightarrow \operatorname{Ab}$ を集合 X に対して X で生成される自由群を与える関手とすれば $F \dashv U$ である .

例. \mathbf{Ab} をアーベル群の圏 , $U \colon \mathbf{Ab} \longrightarrow \mathbf{Set}$ を忘却関手とする . $F \colon \mathbf{Set} \longrightarrow \mathbf{Ab}$ を集合 X に対して X で生成される自由アーベル群を与える関手とすれば $F \dashv U$ である .

例. Grp を群の圏とする . U: $\mathbf{Ab} \longrightarrow \mathbf{Grp}$ を忘却関手とする . F: $\mathbf{Grp} \longrightarrow \mathbf{Ab}$ を アーベル化 FG := G/[G,G] とすれば $F \dashv U$ である .

例. R を可換環 , R-Mod を R 加群の圏とする . U: R-Mod \longrightarrow Ab を忘却関手とする . F,G: Ab \longrightarrow R-Mod を $F(A):=R\otimes_{\mathbb{Z}}A$, $G(A):=\mathrm{Hom}_{\mathbb{Z}}(R,A)$ とすれば $F\dashv U\dashv G$

である.
例. Top を位相空間の圏 , $U\colon \mathbf{Top}\longrightarrow \mathbf{Set}$ を忘却関手とする . $F\colon \mathbf{Set}\longrightarrow \mathbf{Top}$ を集合 X に対して離散位相空間 X を与える関手 , $G\colon \mathbf{Set}\longrightarrow \mathbf{Top}$ を集合 X に対して密着位相空間 X を与える関手とすれば $F\dashv U\dashv G$ である .
例. Monoid をモノイドの圏,Ring を環の圏とする. $U\colon \mathbf{Ring} \longrightarrow \mathbf{Monoid}$ を忘却関手(環に対して乗法モノイドを与える関手)とする. $F\colon \mathbf{Monoid} \longrightarrow \mathbf{Ring}$ を $M\in \mathbf{Monoid}$ に対して $\mathbb{Z}[M]$ を与える関手とすれば $F\dashv U$ である.
例、 \mathbf{Ring}_* を基点付き環の圏とする.即ち対象は環 A と $a\in A$ の組 $\langle A,a\rangle$ で 射 $\langle A,a\rangle \longrightarrow \langle B,b\rangle$ は環準同型 $f\colon A\longrightarrow B$ で $f(a)=b$ を満たすもの,とする $U\colon \mathbf{Ring}_*\longrightarrow \mathbf{Ring}$ を忘却関手とする. $F\colon \mathbf{Ring}\longrightarrow \mathbf{Ring}_*$ を環 R に対して多項式環 $R[x]$ を与える関手とすれば $F\dashv U$ である.
例. \mathbf{Dom} を整域の圏 , \mathbf{Field} を体の圏とする . $U\colon\mathbf{Field}\longrightarrow\mathbf{Dom}$ を忘却関手 $\mathbf{Quot}\colon\mathbf{Dom}\longrightarrow\mathbf{Field}$ を整域 D に対して商体 $\mathbf{Quot}(D)$ を与える関手とすれば $\mathbf{Quot}\dashv U$ である .
例. LocRing を局所環の圏 , Hensel を Hensel 環の圏とする . U : Hensel \longrightarrow LocRing を忘却関手 , F : LocRing \longrightarrow Hensel を Hensel 化とすれば $F \dashv U$ である
例. Latt を束の圏とする. $U\colon \mathbf{Latt} \longrightarrow \mathbf{Set}$ を忘却関手とする. $F\colon \mathbf{Set} \longrightarrow \mathbf{Latt}$ を $X\in \mathbf{Set}$ に対して X で生成される自由束を与える関手とすれば $F\dashv U$ である.
例. $\mathbf{CptHaus}$ をコンパクト $\mathbf{Hausdorff}$ 空間の圏 , $U\colon \mathbf{CptHaus} \longrightarrow \mathbf{Top}$ を忘却関手とする . U の左随伴関手 $SC\colon \mathbf{Top} \longrightarrow \mathbf{CptHaus}$ が $Stone$ -Čech コンパクト化である
例. X を位相空間, $\mathbf{PSh}(X)$ を X 上の前層の圏, $\mathbf{Sh}(X)$ を X 上の層の圏とする $U\colon \mathbf{Sh}(X)\longrightarrow \mathbf{PSh}(X)$ を忘却関手とする. $F\colon \mathbf{PSh}(X)\longrightarrow \mathbf{Sh}(X)$ を層化とすれば $F\dashv U$ である.
例、 \mathbf{Ban}_1 を \mathbf{Ban}_1 を \mathbf{Ban}_1 を \mathbf{Ban}_1 会 \mathbf{Set} を 単位球体を与える関手とする。 \mathbf{B} はた随性関手を持つ

例. X,Y を集合 , $f\colon X\longrightarrow Y$ を写像とする.このとき順像 $f\colon \mathcal{P}(X)\longrightarrow \mathcal{P}(Y)$, 逆像

 $f^{-1}\colon \mathcal{P}(Y) \longrightarrow \mathcal{P}(X)$ は関手である.また $f_!\colon \mathcal{P}(X)\ni A \longmapsto Y\setminus f(X\setminus A)\in \mathcal{P}(Y)$ も関手である.このとき $f\dashv f^{-1}\dashv f_!$ が成り立つ.

例.圏 Idem を次のように定める. $\mathrm{Ob}(\mathbf{Idem}) := \{\langle X,v \rangle \mid X \text{ は集合 }, v \colon X \longrightarrow X \text{ は冪等 } \}$ として $\langle X,v \rangle$, $\langle Y,w \rangle$ の間の射は $f \colon X \longrightarrow Y$ で $w \circ f = f \circ v$ を満たすものとする. $F \colon \mathbf{Idem} \longrightarrow \mathbf{Set}$ を $F(\langle X,v \rangle) := X$, $G \colon \mathbf{Set} \longrightarrow \mathbf{Idem}$ を $G(X) := \langle X, \mathrm{id}_X \rangle$ で 定めれば $F \dashv G$ かつ $G \dashv F$ である.

例. C を圏とし,C は直積,直和を持つとする. $\Delta\colon C\longrightarrow C\times C$ を対角埋込関手とする. $\Pi\colon C\times C\longrightarrow C$ を直積 $\Pi(a,b)=a\Pi b$, $\Pi\colon C\times C\longrightarrow C$ を直和 $\Pi(a,b)=a\Pi b$ とすれば $\Pi\dashv\Delta\dashv\Pi$ である.

例. $F\dashv G\colon C\longrightarrow D$ とする . U を圏とする . このとき $G^{-1}\dashv F^{-1}\colon U^C\longrightarrow U^D$ である .

証明. $F \dashv G$ の unit , counit から自然に $G^{-1} \dashv F^{-1}$ の unit , counit が得られる .

参考文献

[1] Saunders Mac Lane, Categories for the Working Mathematician, Springer, 2nd ed. 1978 版 (1998)