Foglio 4

Esercizio 1. Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da:

$$f(x, y, z) = (x + y + z, x - y, -z)$$
.

- a) Determinare una base di Ker f e una di Im f;
- b) Stabilire se f è iniettiva e/o suriettiva;
- c) Stabilire se il vettore (1, 2, 3) appartiene a Im f e, in caso affermativo, determinare le sue coordinate rispetto alla base trovata nel punto a);
- d) Stabilire se il vettore (1, 2, 3) appartiene a Ker (f). Sia $w = f(1, 2, 3) \in \mathbb{R}^3$ l'immagine di (1, 2, 3) tramite f. Esiste un altro vettore in \mathbb{R}^3 che ha immagine w tramite f?

Esercizio 2. Sia $k \in \mathbb{R}$. Si consideri l'applicazione lineare $f_k : \mathbb{R}^3 \to \mathbb{R}^3$ definita da:

$$f_k(x, y, z) = (kx + y - z, ky + (k+1)z, ky + 2z).$$

- a) Scrivere la matrice associata a f_k rispetto alla base canonica di \mathbb{R}^3 in dominio e codominio;
- b) determinare per quali valori di k l'applicazione f_k è iniettiva;
- c) determinare per quali fattori di k l'applicazione f_k non è suriettiva. Scelto uno dei valori di k trovati, determinare un vettore $v \in \mathbb{R}^3$ che non appartiene a $\mathrm{Im} f_k$.

Esercizio 3. Sia $k \in \mathbb{R}$. Si consideri l'applicazione lineare $f_k : \mathbb{R}^4 \to \mathbb{R}^3$ tale che $f_k(\mathbf{e}_1) = k\mathbf{e}_1 + \mathbf{e}_3$, $f_k(\mathbf{e}_2) = 2\mathbf{e}_2$, $f_k(\mathbf{e}_3) = k\mathbf{e}_3$, $f_k(\mathbf{e}_4) = -\mathbf{e}_2$. Sia inoltre $g : \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare associata alla matrice

$$\left(\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

rispetto alle basi canoniche di \mathbb{R}^3 e \mathbb{R}^2 .

- a) Scrivere la matrice associata a f_k rispetto alle basi canoniche di \mathbb{R}^4 e \mathbb{R}^3
- b) Stabilire per quali valori di k l'applicazione f_k è iniettiva.
- c) Stabilire per quali valori di k la dimensione di Ker f_k è 2.
- d) Stabilire se g è iniettiva o suriettiva.
- e) Stabilire se esistono $g \circ f_k$ e $f_k \circ g$ e, in caso affermativo, determinarle.

Esercizio 4. Sia $F_k: \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare definita da:

$$F_k(x_1,x_2,x_3) = (x_1 + x_2 + 2x_3, 2x_1 + kx_2 + 4x_3, kx_1 + x_2 + 3x_3, 2x_1 + 2x_2 + 4x_3).$$

- a) Al variare di $k \in \mathbb{R}$, si determini una base del nucleo di F_k .
- b) Si stabilisca per quali valori di k si ha che $\mathbf{e}_1 + k\mathbf{e}_2 + 2\mathbf{e}_3 + 2\mathbf{e}_4 \in \text{Im } F_k$.
- c) Posto k=0 si determini, se possibile, una applicazione lineare $G: \mathbb{R}^4 \to \mathbb{R}^3$ tale che $G \circ F$ sia l'applicazione identica di \mathbb{R}^3 .