

Predicting customer churn using machine learning to uncover hidden patterns

STUDENT NAME: AMRINBANU.S

REGISTER NUMBER: 411823106003

INSTITUTION: RRASE COLLEGE OF ENGINEERING

Date of submission:10-05-2025

GitHub Link:

1.Problem

Statement

The objective of this project is to develop a machine learning-based solution that can accurately predict customer churn by analyzing historical customer data. By uncovering underlying patterns and risk factors associated with churn, the system w enable businesses to peroactively engage at-risk customers, tailor retention strategies, and ultimately improve customer loyalty and revenue stability.

2. Project Objectives

- To analyze customer behavior data.
- -To build a predictive model that classifies whether customer will churn.
- -To uncover hidden patterns through exploratory data analysis and feature engineering.

- To provide actionable insights for reducing churn.

3.Flowchart of the Project Workflow

4.Data Description

- Target Variable: Churn (Yes/No)
- Features: Customer demographics, usage patterns, service subscriptions, tenu billing, and support interactions.- Example Distributions:
- Gender: 50% Male, 50% Female
- Internet Service: 70% Fiber Optic, 30% DSL
- Churn Rate: ~27%
- -Datasetlink: https://www.kaggle.com/datasets/blastchar/telco-customer-churn

5.Data Preprocessing

- Handling missing values
 - Encoding categorical variables
 - Scaling numerical features
 - Addressing class imbalance using techniques like SMOTE or undersampling)

6. Exploratory Data Analysis (EDA)

- Correlation heatmaps
 - Churn vs. Tenure, MonthlyCharges, Contract type
 - Histograms and boxplots to understand distributions and outliers

7. Feature Engineering

- Creation of new features (e.g., total charges per tenure)
- Binning of numerical variables
- Feature selection using mutual information and recursive feature elimination

8.Model Building

- Algorithms used: Logistic Regression, Decision Tree, Random Forest, XGBoost
- Performance metrics: Accuracy, Precision, Recall, F1-score, ROC-AUC
- Cross-validation for robust evaluation

9. Visualization of Results & Model Insights

- Confusion matrix

- ROC Curve
- Feature importance plots
- SHAP values for interpretability

10.Toolsand Technologies Used

- Programming Language: Python
- Libraries: pandas, numpy, matplotlib, seaborn, scikit-learn, xgboost, shap
- IDE: Jupyter Notebook / VS Code
- Version Control: Git & GitHub

11. Team Members and Contributions

AMRINBANU.S	Contribution
UMAMAHESHWARI.R	Data preprocessing, model building
AATHISH.S	EDA, visualization, feature
	engineering
DHANUSH.A	Report writing, GitHub management

_