EE3731C Signal Analytics

Owen Leong owenleong@u.nus.edu

November 29, 2024

1 Discrete Time Fourier Transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \ x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

1.1 Properties

$$\mathcal{F}(ax_1[n] + bx_2[n]) = aX_1(e^{j\omega}) + bX_2(e^{j\omega})$$

$$\mathcal{F}(x[n - n_0]) = e^{-j\omega n_0} X(e^{j\omega})$$

$$\mathcal{F}(e^{j\omega_0 n} x[n]) = X(e^{j(\omega - \omega_0)})$$

$$\mathcal{F}(x[n] * h[n]) = H(e^{j\omega}) X(e^{j\omega})$$

$$\mathcal{F}(x[n]w[n]) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega - \theta)}) d\theta$$

$$\mathcal{F}(u[n]) = U(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}}$$

2 Filters

Causal filters: h[n] = 0 for n < 0Stable filters: $\sum_{n} |h[n]| < \infty$

For linear phase, windowed filter is causal and symmet-

ric about M/2, which has delay M/2

Type 1 filter has even \mathcal{M}

Type 2 filter has odd M, not suitable for highpass or

bandstop

2.1 Kaiser Window

$$w[n] = I_0 \left(\beta \left(1 - \left[\frac{n - M/2}{M/2} \right]^2 \right)^{1/2} \right) / I_0(\beta)$$

Select β to control δ overshoot and undershoot Select M to control $\Delta\omega$ (transition width) Given δ and $\Delta\omega = \omega_s - \omega_p$,

$$A = -20\log_{10}\delta$$

$$\beta = \begin{cases} 0.1102(A - 8.7), & A > 50\\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21), & 21 \le A \le 50\\ 0.0, & A < 21 \end{cases}$$

$$M = \frac{A - 8}{2.285\Delta\omega}$$

3 Discrete Fourier Transform

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi k}{N}n} \quad 0 \le k \le N-1$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi k}{N}n} \quad 0 \le n \le N-1$$

3.1 Convolution using FFT

Pad x[n], y[n] to $x_p[n], y_p[n]$ with length 2N-1Compute $X_p[k], Y_p[k]$ using FFT Compute $Z_p[k] = X_p[k]Y_p[k]$ Compute $z[n] = IFFT(Z_p)$

4 Wavelet Transform

 \downarrow freq should use ↑ time window, and be \downarrow localized in time but ↑ localized in freq ↑ freq can use \downarrow time window, and be ↑ localized in time and \downarrow localized in freq

4.1 Haar Wavelet Transform

For * operations, linear convolution and drop last term $(x*HP)\downarrow 2, HP=\sqrt{2}[-1/2,1/2]$ To downsample by 2, keep odd samples only $(x*LP)\downarrow 2$ and repeat, $LP=\sqrt{2}[1/2,1/2]$

4.2 Inverse Haar Wavelet Transform

 $\uparrow 2*HP_0+\uparrow 2*LP_0,$ $LP_0=\sqrt{2}[1/2,1/2], HP_0=\sqrt{2}[1/2,-1/2]$ To upsample by 2, insert 0 at odd indices

4.3 Overcomplete Transform

Circular shift k times before applying DWT To invert, IDWT and invert the shift and average

5 Statistical Signal Processing

5.1 Probability

$$p(x|y) = \frac{p(x)p(y|x)}{\int p(x)p(y|x)dx}$$

p(x|y) is the posterior, p(x) is the prior, p(y|x) is the likelihood, $p(y) = \int p(x)p(y|x)dx$ is the evidence.

$$Cov(x, y) = E[(x - \mu_x)(y - \mu_y)] = E(xy) - E(x)E(y)$$

Maximum-A-Posteriori (MAP) Estimate:

$$x^* = \arg\max_{x} p(x|y)$$

Maximum Likelihood (ML) Estimate:

$$x_{ML} = \arg\max_{x} p(y|x)$$

Minimum Mean Square Error (MMSE) Estimate:

$$x_{MMSE} = \arg\min_{\hat{x}} E_{p(x|y)} (x - \hat{x})^2 = E_{p(x|y)}(x)$$

5.2 Random Processes

Markov Process: future and past are conditionally independent given present

$$p(x_1, ..., x_{n-1}, x_{n+1}, ..., x_N | x_n) = p(x_1, ..., x_{n-1} | x_n) p(x_{n+1}, ..., x_N | x_n)$$

Transition probability matrix. $T_{ij} = p(x_{n+1} = s_j | x_n = s_i)$ is the probability of moving from state i to state j. Let π_n be a row vector representing probabilities of being in a given state, then

$$\pi_{n+1} = \pi_n T$$

Stationary distribution is where $\pi^* = \pi^* T$ (left eigenvector of T with eigenvalue 1)

Fundamental theorem of markov chains: If there is n_0 such that $T^n(i,j) > 0$ for all i,j and $n > n_0$, then markov chain has unique stationary distribution π^* .

5.3 Markov Chain Monte Carlo (MCMC)

5.3.1 Metropolis Algorithm

- Begin with $x = x_0$
- Sample new x' using proposal distribution q(x'|x) (constraint q(x'|x) = q(x|x'))
- If $\pi(x') \geq \pi(x)$ then keep x', otherwise replace x with x' with probability $\frac{\pi(x')}{\pi(x)}$
- Then $x' \sim \pi(X)$

6 Pattern Recognition

6.1 Dimensionality Reduction

Principal component analysis Assumes data lies on a linear subspace

- \bullet N data points, each of dimension D
- Subtract mean from each data point
- For the $D \times N$ matrix, $X = [\bar{x}^{(1)}, ..., \bar{x}^{(N)}]$
- Compute sample covariance matrix $\Sigma = \frac{1}{N}XX^T$
- Find top K eigenvalues and corresponding eigenvalues, $v_1, ..., v_K$, which will be used as the basis for the new coordinates

6.2 Non-parametric Density Estimation

6.2.1 Parzen Window

Fix V volume, estimate k

$$\phi(u) = \begin{cases} 1 & |u_j| \le 0.5, j = 1, ..., d \\ 0 & \text{otherwise} \end{cases}$$

$$k(x) = \sum_{i} \phi(\frac{x - x_i}{h})$$

$$p(x) = \frac{k(x)/N}{V} = \frac{\sum_{i} \phi(\frac{x - x_{i}}{h})/N}{h^{d}} = \frac{1}{N} \sum_{i} \frac{1}{h^{d}} \phi(\frac{x - x_{i}}{h})$$

Convergence conditions:

• $\sup_{u} \phi(u) < \infty$

class c

- $\lim_{||u|| \to \infty} \phi(u) \prod_{i=1}^d u_i = 0$
- $\lim_{N\to\infty} V_N = 0$
- $\lim_{N\to\infty} NV_N = \infty$

To set window size h, can use cross-validation

6.2.2 K-nearest Neighbours

Fix k (number of samples), determine V, so grow volume around x until $k_N(x)$ samples

If p(x) is high, then volume will be small, if p(x) is low, then volume will be big p(y = c|x) is fraction of K neighbours that are from

7 Extras

$$e^{jx} = \cos x + j \sin x$$

$$e^{jx} + e^{-jx} = 2 \cos x$$

$$e^{jx} - e^{-jx} = j2 \sin x$$

$$\sum_{k=0}^{n-1} ar^k = a\left(\frac{1-r^n}{1-r}\right)$$