## Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 27 de septiembre de 2024



## Contenidos estimados para hoy

- Repaso
- Semántica de la lógica proposicional
  - Asignaciones y valuaciones
  - Teorema de Extensión
  - Abreviaciones: Conectivos nuevos
  - La relación de consecuencia y tautologías
  - Lema de Coincidencia
  - Tablas de verdad
- 3 Sustitución



### Tres componentes de la lógica

■ Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.

- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
  - Símbolos/variables proposicionales:  $V := \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
  - Conectivos:  $\bot$ ,  $\land$ ,  $\lor$ ,  $\rightarrow$ .
  - $At := \{\bot\} \cup \mathcal{V}; \Sigma := At \cup \{\ \}, (, \land, \lor, \to)\}; PROP \subseteq \Sigma^*.$



- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
  - Símbolos/variables proposicionales:  $\mathcal{V} := \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
  - **Conectivos**:  $\bot$ ,  $\land$ ,  $\lor$ ,  $\rightarrow$ .
  - $At := \{\bot\} \cup \mathcal{V}; \Sigma := At \cup \{\ \}, (, \land, \lor, \to)\}; PROP \subseteq \Sigma^*.$
- Semántica: cómo asignamos significado a las proposiciones: valor de verdad.
- Cálculo: cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**.



- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
  - Símbolos/variables proposicionales:  $\mathcal{V} := \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
  - **Conectivos**:  $\bot$ ,  $\land$ ,  $\lor$ ,  $\rightarrow$ .
  - $At := \{\bot\} \cup \mathcal{V}; \Sigma := At \cup \{\ \}, (, \land, \lor, \to)\}; PROP \subseteq \Sigma^*.$
- Semántica: cómo asignamos significado a las proposiciones: valor de verdad.

  Ahora
- Cálculo: cómo se deducen proposiciones a partir de otras y se obtienen teoremas.

  Después



- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
  - Símbolos/variables proposicionales:  $\mathcal{V} := \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
  - **Conectivos**:  $\bot$ ,  $\land$ ,  $\lor$ ,  $\rightarrow$ .
  - $At := \{\bot\} \cup \mathcal{V}; \Sigma := At \cup \{\ \}, (, \land, \lor, \rightarrow\}; PROP \subseteq \Sigma^*$ .
- Semántica: cómo asignamos significado a las proposiciones: valor de verdad.

  Ahora
- Cálculo: cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**.



## Asignaciones y valuaciones/semánticas

Nuestras proposiciones son sólo cadenas de símbolos.



# Asignaciones y valuaciones/semánticas

Nuestras proposiciones son sólo cadenas de símbolos.

#### Definición

Una **asignación** es una función  $f:\{p_0,p_1,\dots\}\to\{0,1\}$ .

# Asignaciones y valuaciones/semánticas

Nuestras proposiciones son sólo cadenas de símbolos.

#### Definición

Una **asignación** es una función  $f:\{p_0,p_1,\dots\}\to\{0,1\}$ .

#### Definición

Una **valuación** es una función  $[\![\cdot]\!]: PROP \rightarrow \{0,1\}$  que satisface:

- $[\![\bot]\!] = 0.$
- $\qquad \qquad \mathbb{I}\left[ (\varphi \vee \psi) \right] = \max\{ \llbracket \varphi \rrbracket, \llbracket \psi \rrbracket \}.$
- $\hspace{0.1in} \boxed{\hspace{0.1in} \left[\hspace{0.1in} (\varphi \to \psi) \right]\hspace{0.1in} = 0 \text{ si y s\'olo si } \left[\hspace{0.1in} \varphi \right]\hspace{0.1in} = 1 \text{ y } \left[\hspace{0.1in} \psi \right]\hspace{0.1in} = 0. }$



#### Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f=f(\varphi)$  para toda  $\varphi\in\mathcal{V}$ .



## Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f = f(\varphi)$  para toda  $\varphi \in \mathcal{V}$ .

#### Demostración.

Definimos la valuación  $[\![\cdot]\!]_f$  por recursión en subfórmulas.

$$oxed{arphi\in At}oxedsymbol{ } \llbracket p_n
rbracket_f:=f(p_n) ext{ para } n\in \mathbb{N}_0 ext{ y } \llbracket oldsymbol{oxedsymbol{oxedsymbol{oxed}}} 
bracket_f:=0.$$

## Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f=f(\varphi)$  para toda  $\varphi\in\mathcal{V}$ .

#### Demostración.

Definimos la valuación  $[\cdot]_f$  por recursión en subfórmulas.

$$\boxed{arphi\in At}\ \llbracket p_n
rbracket_f:=f(p_n) ext{ para } n\in \mathbb{N}_0 ext{ y } \llbracket ot
ceil_f:=0.$$

$$\boxed{(\varphi \wedge \psi) \ [\![(\varphi \wedge \psi)]\!]_f := \min\{[\![\varphi]\!]_f, [\![\psi]\!]_f\}.}$$

## Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f=f(\varphi)$  para toda  $\varphi\in\mathcal{V}$ .

#### Demostración.

Definimos la valuación  $[\![\cdot]\!]_f$  por recursión en subfórmulas.

$$\boxed{arphi\in At}\ \llbracket p_n
rbracket_f:=f(p_n) ext{ para } n\in \mathbb{N}_0 ext{ y } \llbracket ot
ceil_f:=0.$$

$$\boxed{(\varphi \wedge \psi)} \ \llbracket (\varphi \wedge \psi) \rrbracket_f := \min \{ \llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f \}.$$

$$\begin{array}{c|c} \hline (\varphi \to \psi) & \llbracket (\varphi \to \psi) \rrbracket_f \coloneqq 0 \text{ si } \llbracket \varphi \rrbracket_f = 1 \text{ y } \llbracket \psi \rrbracket_f = 0, \text{y } \llbracket (\varphi \to \psi) \rrbracket_f \coloneqq 1 \text{ en } \\ \hline \text{caso contrario.} \end{array}$$

### Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f=f(\varphi)$  para toda  $\varphi\in\mathcal{V}$ .

#### Demostración.

Definimos la valuación  $[\cdot]_f$  por recursión en subfórmulas.

$$\boxed{arphi\in At}\ \llbracket p_n
rbracket_f:=f(p_n) ext{ para } n\in \mathbb{N}_0 ext{ y } \llbracket ot
ceil_f:=0.$$

$$\boxed{(\varphi \wedge \psi)} \ \llbracket (\varphi \wedge \psi) \rrbracket_f := \min \{ \llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f \}.$$

$$\begin{array}{c|c} \hline (\varphi \to \psi) & \llbracket (\varphi \to \psi) \rrbracket_f \coloneqq 0 \text{ si } \llbracket \varphi \rrbracket_f = 1 \text{ y } \llbracket \psi \rrbracket_f = 0, \text{y } \llbracket (\varphi \to \psi) \rrbracket_f \coloneqq 1 \text{ en } \\ \hline \text{caso contrario.} \end{array}$$

$$\boxed{(\varphi \vee \psi)} \ \llbracket (\varphi \vee \psi) \rrbracket_f := \max \{ \llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f \}.$$



### Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f=f(\varphi)$  para toda  $\varphi\in\mathcal{V}$ .

#### Demostración.

Definimos la valuación  $[\cdot]_f$  por recursión en subfórmulas.

$$otag ec{arphi \in At} \mid \llbracket p_n 
Vert_f := f(p_n) \text{ para } n \in \mathbb{N}_0 \text{ y } \llbracket \bot 
Vert_f := 0.$$

 $H_{At}$ 

$$\boxed{(\varphi \wedge \psi)} \ \llbracket (\varphi \wedge \psi) \rrbracket_f := \min \{ \llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f \}.$$

 $H_{\wedge}$ 

$$\boxed{ (\varphi \to \psi) } \ [\![ (\varphi \to \psi) ]\!]_f := 0 \text{ si } [\![ \varphi ]\!]_f = 1 \text{ y } [\![ \psi ]\!]_f = 0, \text{y } [\![ (\varphi \to \psi) ]\!]_f := 1 \text{ encase contrarion}$$

 $H_{
ightarrow}$ 

$$\boxed{(\varphi \vee \psi)} \ \llbracket (\varphi \vee \psi) \rrbracket_f := \max\{\llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f\}.$$

 $H_{\vee}$ 

### Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f = f(\varphi)$  para toda  $\varphi \in \mathcal{V}$ .

#### Demostración.



### Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f = f(\varphi)$  para toda  $\varphi \in \mathcal{V}$ .

#### Demostración.

Por el *Teorema de definición por recursión en subfórmulas*, **existe** una función  $[\![\cdot]\!]_f$  que satisce las condiciones anteriores **y es única**.



### Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f = f(\varphi)$  para toda  $\varphi \in \mathcal{V}$ .

#### Demostración.

Por el *Teorema de definición por recursión en subfórmulas*, **existe** una función  $[\![\cdot]\!]_f$  que satisce las condiciones anteriores **y es única**.

Sólo queda ver que  $\llbracket \cdot \rrbracket_f$  es efectivamente una valuación y que restringida a  $\mathcal V$  coincide con f.

## Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f = f(\varphi)$  para toda  $\varphi \in \mathcal{V}$ .

#### Demostración.

Por el *Teorema de definición por recursión en subfórmulas*, **existe** una función  $[\![\cdot]\!]_f$  que satisce las condiciones anteriores **y es única**.

Sólo queda ver que  $[\![\cdot]\!]_f$  es efectivamente una valuación y que restringida a  $\mathcal V$  coincide con f.

Pero ambas cosas son inmediatas de la definición de  $[\cdot]_f$ .



### Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f = f(\varphi)$  para toda  $\varphi \in \mathcal{V}$ .

### Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f=f(\varphi)$  para toda  $\varphi\in\mathcal{V}$ .

#### Corolario

$$[\![p]\!] = [\![p]\!]'$$
 para toda  $p \in \mathcal{V} \implies [\![\varphi]\!] = [\![\varphi]\!]'$  para toda  $\varphi \in PROP$ .



## Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f=f(\varphi)$  para toda  $\varphi\in\mathcal{V}$ .

#### Corolario

$$[\![p]\!] = [\![p]\!]'$$
 para toda  $p \in \mathcal{V} \implies [\![\varphi]\!] = [\![\varphi]\!]'$  para toda  $\varphi \in PROP$ .

#### Demostración.

Por la unicidad en el Teorema de Extensión



## Teorema (de Extensión)

Para toda asignación f, existe una única valuación  $[\![\cdot]\!]_f$  tal que  $[\![\varphi]\!]_f=f(\varphi)$  para toda  $\varphi\in\mathcal{V}$ .

#### Corolario

$$[\![p]\!] = [\![p]\!]'$$
 para toda  $p \in \mathcal{V} \implies [\![\varphi]\!] = [\![\varphi]\!]'$  para toda  $\varphi \in PROP$ .

#### Demostración.

Por la unicidad en el Teorema de Extensión: ambas valuaciones son extensiones de la misma asignación  $\|\cdot\| \upharpoonright \mathcal{V} = \|\cdot\|' \upharpoonright \mathcal{V}$ .



#### Conectivos nuevos

Introducimos nueva notación.



#### Conectivos nuevos

Introducimos nueva notación.

#### Abreviaturas

- $\blacksquare$   $(\neg \varphi)$  denotará  $(\varphi \to \bot)$ .
- $\blacksquare \ (\varphi \leftrightarrow \psi) \ \text{denotará} \ ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)).$

#### Conectivos nuevos

Introducimos nueva notación.

#### Abreviaturas

- $\blacksquare$   $(\neg \varphi)$  denotará  $(\varphi \to \bot)$ .
- $\blacksquare$   $(\varphi \leftrightarrow \psi)$  denotará  $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$ .

## Ejercicio

Para toda valuación  $\lceil \cdot \rceil$ :



Sea  $\Gamma \subseteq PROP$  y f una asignación.



Sea  $\Gamma \subseteq PROP$  y f una asignación.

#### Definición

■ f valida  $\Gamma$  sii para toda  $\psi \in \Gamma$ ,  $\llbracket \psi \rrbracket_f = 1$ .

Sea  $\Gamma \subseteq PROP$  y f una asignación.

#### Definición

- f valida  $\Gamma$  sii para toda  $\psi \in \Gamma$ ,  $\llbracket \psi \rrbracket_f = 1$ .

Sea  $\Gamma \subseteq PROP$  y f una asignación.

#### Definición

- f valida  $\Gamma$  sii para toda  $\psi \in \Gamma$ ,  $\llbracket \psi \rrbracket_f = 1$ .
- lacksquare  $\varphi$  es **consecuencia lógica** de  $\Gamma$  sii para toda asignación f que valida  $\Gamma$ ,  $[\![ \varphi ]\!]_f = 1$  (**notación**:  $\Gamma \models \varphi$ )
- lacksquare  $\varphi$  es una **tautología**  $\iff$   $[\![\varphi]\!]_f=1$  para toda asignación f.



Sea  $\Gamma \subseteq PROP$  y f una asignación.

#### Definición

- f valida  $\Gamma$  sii para toda  $\psi \in \Gamma$ ,  $\llbracket \psi \rrbracket_f = 1$ .
- lacksquare arphi es **consecuencia lógica** de  $\Gamma$  sii para toda asignación f que valida  $\Gamma$ ,  $[\![arphi]\!]_f=1$  (**notación**:  $\Gamma\modelsarphi$ )

Sea  $\Gamma \subseteq PROP$  y f una asignación.

#### Definición

- f valida  $\Gamma$  sii para toda  $\psi \in \Gamma$ ,  $\llbracket \psi \rrbracket_f = 1$ .
- lacksquare arphi es **consecuencia lógica** de  $\Gamma$  sii para toda asignación f que valida  $\Gamma$ ,  $[\![arphi]\!]_f=1$  (**notación**:  $\Gamma\modelsarphi$ )

#### **Ejercicio**

$$\models \varphi \iff \emptyset \models \varphi.$$



## **Ejemplos**



## **Ejemplos**

 $\begin{tabular}{l} $\models (\varphi \to \varphi).$ \\ Tenemos que ver que para toda asignación $f$, $ $\llbracket (\varphi \to \varphi) \rrbracket_f = 1.$ \\ \end{tabular}$ 



# **Ejemplos**

 $\begin{array}{l} \blacksquare \ \, [\varphi \to \varphi). \\ \text{Tenemos que ver que para toda asignación} \, f, \, [\![(\varphi \to \varphi)]\!]_f = 1. \\ \text{Equivalentemente}, \, [\![(\varphi \to \varphi)]\!]_f \neq 0. \end{array}$ 



- $$\begin{split} & \models (\varphi \to \varphi). \\ & \text{Tenemos que ver que para toda asignación} \, f, \, [\![ (\varphi \to \varphi) ]\!]_f = 1. \\ & \text{Equivalentemente}, \, [\![ (\varphi \to \varphi) ]\!]_f \neq 0. \end{split}$$
- $\ge | = ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$





- $$\begin{split} & \models (\varphi \to \varphi). \\ & \text{Tenemos que ver que para toda asignación} \, f, \, [\![ (\varphi \to \varphi) ]\!]_f = 1. \\ & \text{Equivalentemente}, \, [\![ (\varphi \to \varphi) ]\!]_f \neq 0. \end{split}$$
- $\models ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3  $\{\varphi, (\varphi \to \psi)\} \models \psi$ . Debemos ver que si f valida  $\{\varphi, (\varphi \to \psi)\}$ , entonces  $[\![\psi]\!]_f = 1$

- $$\begin{split} & \models (\varphi \to \varphi). \\ & \text{Tenemos que ver que para toda asignación} \, f, \, [\![ (\varphi \to \varphi) ]\!]_f = 1. \\ & \text{Equivalentemente}, \, [\![ (\varphi \to \varphi) ]\!]_f \neq 0. \end{split}$$
- $\models ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3  $\{\varphi, (\varphi \to \psi)\} \models \psi$ . Debemos ver que si f valida  $\{\varphi, (\varphi \to \psi)\}$ , entonces  $[\![\psi]\!]_f = 1$ :

$$[\![\varphi]\!]_f = [\![(\varphi \to \psi)]\!]_f = 1 \implies [\![\psi]\!]_f = 1.$$



- $$\begin{split} & \models (\varphi \to \varphi). \\ & \text{Tenemos que ver que para toda asignación} \, f, \, [\![ (\varphi \to \varphi) ]\!]_f = 1. \\ & \text{Equivalentemente}, \, [\![ (\varphi \to \varphi) ]\!]_f \neq 0. \end{split}$$
- $\ge | = ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3  $\{\varphi, (\varphi \to \psi)\} \models \psi$ . Debemos ver que si f valida  $\{\varphi, (\varphi \to \psi)\}$ , entonces  $[\![\psi]\!]_f = 1$ :

$$\llbracket \varphi \rrbracket_f = \llbracket (\varphi \to \psi) \rrbracket_f = 1 \implies \llbracket \psi \rrbracket_f = 1.$$

 $\not\models p_1$ 



- $$\begin{split} & \models (\varphi \to \varphi). \\ & \text{Tenemos que ver que para toda asignación} \, f, \, [\![ (\varphi \to \varphi) ]\!]_f = 1. \\ & \text{Equivalentemente}, \, [\![ (\varphi \to \varphi) ]\!]_f \neq 0. \end{split}$$
- $\models ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3  $\{\varphi, (\varphi \to \psi)\} \models \psi$ . Debemos ver que si f valida  $\{\varphi, (\varphi \to \psi)\}$ , entonces  $[\![\psi]\!]_f = 1$ :

$$\llbracket \varphi \rrbracket_f = \llbracket (\varphi \to \psi) \rrbracket_f = 1 \implies \llbracket \psi \rrbracket_f = 1.$$

4  $\not\models p_1$ Sale negando la definición



- $= (\varphi \to \varphi).$  Tenemos que ver que para toda asignación f,  $[(\varphi \to \varphi)]_f = 1$ . Equivalentemente,  $[(\varphi \to \varphi)]_f \neq 0$ .
- $\models ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3  $\{\varphi, (\varphi \to \psi)\} \models \psi$ . Debemos ver que si f valida  $\{\varphi, (\varphi \to \psi)\}$ , entonces  $[\![\psi]\!]_f = 1$ :

$$\llbracket \varphi \rrbracket_f = \llbracket (\varphi \to \psi) \rrbracket_f = 1 \implies \llbracket \psi \rrbracket_f = 1.$$

Sale negando la definición:  $p_1$  no es una tautología  $\iff$  existe alguna f tal que  $[\![p_1]\!]_f=0$ .



La verdad de una proposición se determina localmente.



La verdad de una proposición se determina localmente.

## Lema (de Coincidencia)

 $Sif(p_i) = f'(p_i)$  para todos los  $p_i$  que ocurran en  $\varphi$ , entonces  $[\![\varphi]\!]_f = [\![\varphi]\!]_{f'}$ .



La verdad de una proposición se determina localmente.

# Lema (de Coincidencia)

 $Sif(p_i) = f'(p_i)$  para todos los  $p_i$  que ocurran en  $\varphi$ , entonces  $[\![\varphi]\!]_f = [\![\varphi]\!]_{f'}$ .

#### Demostración.

$$\varphi \in At$$
 Si  $\varphi = p_n$ , sólo ocurre  $p_n$  en  $\varphi$ .

La verdad de una proposición se determina localmente.

# Lema (de Coincidencia)

 $Sif(p_i) = f'(p_i)$  para todos los  $p_i$  que ocurran en  $\varphi$ , entonces  $[\![\varphi]\!]_f = [\![\varphi]\!]_{f'}$ .

#### Demostración.

$$\varphi \in At$$
 Si  $\varphi = p_n$ , sólo ocurre  $p_n$  en  $\varphi$ . Luego  $[\![\varphi]\!]_f = f(\varphi) = f'(\varphi) = [\![\varphi]\!]_{f'}$ .

La verdad de una proposición se determina localmente.

# Lema (de Coincidencia)

 $Sif(p_i) = f'(p_i)$  para todos los  $p_i$  que ocurran en  $\varphi$ , entonces  $[\![\varphi]\!]_f = [\![\varphi]\!]_{f'}$ .

#### Demostración.

 $\boxed{arphi \in At}$  Si  $arphi = p_n$ , sólo ocurre  $p_n$  en arphi. Luego  $[\![arphi]\!]_f = f(arphi) = f'(arphi) = [\![arphi]\!]_{f'}$ . Además,  $[\![\bot]\!]_f = [\![\bot]\!]_{f'} = 0$  siempre.

La verdad de una proposición se determina localmente.

# Lema (de Coincidencia)

 $Sif(p_i) = f'(p_i)$  para todos los  $p_i$  que ocurran en  $\varphi$ , entonces  $[\![\varphi]\!]_f = [\![\varphi]\!]_{f'}$ .

#### Demostración.

 $\varphi \in At$  Si  $\varphi = p_n$ , sólo ocurre  $p_n$  en  $\varphi$ . Luego  $[\![\varphi]\!]_f = f(\varphi) = f'(\varphi) = [\![\varphi]\!]_{f'}$ . Además,  $[\![\bot]\!]_f = [\![\bot]\!]_{f'} = 0$  siempre.

 $(\varphi \wedge \psi)$  Supongamos que f y f' coinciden en las variables de  $(\varphi \wedge \psi)$ 

La verdad de una proposición se determina localmente.

# Lema (de Coincidencia)

Si  $f(p_i) = f'(p_i)$  para todos los  $p_i$  que ocurran en  $\varphi$ , entonces  $[\![\varphi]\!]_f = [\![\varphi]\!]_{f'}$ .

#### Demostración.

 $\varphi \in At \mid \text{Si } \varphi = p_n, \text{ sólo ocurre } p_n \text{ en } \varphi. \text{ Luego } \llbracket \varphi \rrbracket_f = f(\varphi) = f'(\varphi) = \llbracket \varphi \rrbracket_{f'}.$ Además,  $[\![\bot]\!]_f = [\![\bot]\!]_{f'} = 0$  siempre.

 $(\varphi \wedge \psi)$  Supongamos que f y f' coinciden en las variables de  $(\varphi \wedge \psi)$ Probamos que  $[(\varphi \wedge \psi)]_f = [(\varphi \wedge \psi)]_{f'}$ .



La verdad de una proposición se determina localmente.

# Lema (de Coincidencia)

 $Sif(p_i) = f'(p_i)$  para todos los  $p_i$  que ocurran en  $\varphi$ , entonces  $[\![\varphi]\!]_f = [\![\varphi]\!]_{f'}$ .

#### Demostración.

 $\boxed{arphi \in At}$  Si  $arphi = p_n$ , sólo ocurre  $p_n$  en arphi. Luego  $\llbracket arphi 
rbracket_f = f(arphi) = f'(arphi) = \llbracket arphi 
rbracket_{f'}$ . Además,  $\llbracket ot 
rbracket_f = \llbracket ot 
rbracket_{f'} = 0$  siempre.

 $(arphi\odot\psi)$  El resto de los casos queda como ejercicio.



Recordemos que una asignación es una función de  $V = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$  en  $\{0, 1\}$ .



Recordemos que una asignación es una función de  $V = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$  en  $\{0, 1\}$ .

### Pregunta

¿Cuántas asignaciones posibles hay?



Recordemos que una asignación es una función de  $V = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$  en  $\{0, 1\}$ .

### Pregunta

¿Cuántas asignaciones posibles hay?

Demasiadas.



Recordemos que una asignación es una función de  $V = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$  en  $\{0, 1\}$ .

### Pregunta

¿Cuántas asignaciones posibles hay?

Demasiadas.

¿Hay que chequear todas para saber si  $\models ((p_0 \land p_2) \rightarrow p_2)$ ?

Recordemos que una asignación es una función de  $V = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$  en  $\{0, 1\}$ .

### Pregunta

¿Cuántas asignaciones posibles hay?

Demasiadas.

¿Hay que chequear todas para saber si  $\models ((p_0 \land p_2) \rightarrow p_2)$ ? Por el Lema de Coincidencia, no.



|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ | ••• |
|-------|-------|-------|-------|-------|-----|
| $f_1$ | 1     | 0     | 1     | 1     |     |
| $f_2$ | 1     | 1     | 0     | 1     |     |

|       |   |   |   | $p_3$ |  |
|-------|---|---|---|-------|--|
| $f_1$ | 1 | 0 | 1 | 1     |  |
| $f_2$ | 1 | 1 | 0 | 1     |  |
| $f_3$ | 1 | 0 | 1 | 0     |  |

|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |  |
|-------|-------|-------|-------|-------|--|
| $f_1$ | 1     | 0     | 1     | 1     |  |
| $f_2$ | 1     | 1     | 0     | 1     |  |
| $f_3$ | 1     | 0     | 1     | 0     |  |
| $f_4$ | 0     | 0     | 1     | 1     |  |



|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |  |
|-------|-------|-------|-------|-------|--|
| $f_1$ | 1     | 0     | 1     | 1     |  |
| $f_2$ | 1     | 1     | 0     | 1     |  |
| $f_3$ | 1     | 0     | 1     | 0     |  |
| $f_4$ | 0     | 0     | 1     | 1     |  |
| $f_5$ | 0     | 1     | 0     | 0     |  |

|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |    |
|-------|-------|-------|-------|-------|----|
| $f_1$ | 1     | 0     | 1     | 1     |    |
| $f_2$ | 1     | 1     | 0     | 1     |    |
| $f_3$ | 1     | 0     | 1     | 0     |    |
| $f_4$ | 0     | 0     | 1     | 1     |    |
| $f_5$ | 0     | 1     | 0     | 0     |    |
| :     |       |       | :     |       | ٠. |

|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |   | $(p_0 \wedge p_2)$ | $((p_0 \land p_2) \to p_2)$ |
|-------|-------|-------|-------|-------|---|--------------------|-----------------------------|
| $f_1$ | 1     | 0     | 1     | 1     |   |                    |                             |
|       |       |       |       |       |   |                    |                             |
| $f_3$ | 1     | 0     | 1     | 0     |   |                    |                             |
| $f_4$ | 0     | 0     | 1     | 1     |   |                    |                             |
| $f_5$ | 0     | 1     | 0     | 0     |   |                    |                             |
| :     |       |       | ÷     |       | ٠ |                    |                             |



|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |    | $(p_0 \wedge p_2)$ | $((p_0 \land p_2) \to p_2)$ |
|-------|-------|-------|-------|-------|----|--------------------|-----------------------------|
| $f_1$ | 1     | 0     | 1     | 1     |    | 1                  | 1                           |
| $f_2$ | 1     | 1     | 0     | 1     |    |                    |                             |
| $f_3$ | 1     | 0     | 1     | 0     |    |                    |                             |
| $f_4$ | 0     | 0     | 1     | 1     |    |                    |                             |
| $f_5$ | 0     | 1     | 0     | 0     |    |                    |                             |
| :     |       |       | :     |       | ٠. |                    |                             |

|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |   | $(p_0 \wedge p_2)$ | $((p_0 \wedge p_2) \to p_2)$ |
|-------|-------|-------|-------|-------|---|--------------------|------------------------------|
| $f_1$ | 1     | 0     | 1     | 1     |   | 1                  | 1                            |
| $f_2$ | 1     | 1     | 0     | 1     |   | 0                  | 1                            |
| $f_3$ | 1     | 0     | 1     | 0     |   |                    |                              |
| $f_4$ | 0     | 0     | 1     | 1     |   |                    |                              |
| $f_5$ | 0     | 1     | 0     | 0     |   |                    |                              |
| ÷     |       |       | ÷     |       | ٠ |                    |                              |



|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |    | $(p_0 \wedge p_2)$ | $((p_0 \land p_2) \to p_2)$ |
|-------|-------|-------|-------|-------|----|--------------------|-----------------------------|
| $f_1$ | 1     | 0     | 1     | 1     |    | 1                  | 1                           |
| $f_2$ | 1     | 1     | 0     | 1     |    | 0                  | 1                           |
| $f_3$ | 1     | 0     | 1     | 0     |    | 1                  | 1                           |
| $f_4$ | 0     | 0     | 1     | 1     |    |                    |                             |
| $f_5$ | 0     | 1     | 0     | 0     |    |                    |                             |
| :     |       |       | :     |       | ٠. |                    |                             |



|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |    | $(p_0 \wedge p_2)$ | $((p_0 \land p_2) \to p_2)$ |
|-------|-------|-------|-------|-------|----|--------------------|-----------------------------|
| $f_1$ | 1     | 0     | 1     | 1     |    | 1                  | 1                           |
| $f_2$ | 1     | 1     | 0     | 1     |    | 0                  | 1                           |
| $f_3$ | 1     | 0     | 1     | 0     |    | 1                  | 1                           |
| $f_4$ | 0     | 0     | 1     | 1     |    | 0                  | 1                           |
| $f_5$ | 0     | 1     | 0     | 0     |    |                    |                             |
| ÷     |       |       | ÷     |       | ٠. |                    |                             |



|                  | $p_0$ | $p_1$ | $p_2$ | $p_3$ |     | $(p_0 \wedge p_2)$ | $((p_0 \land p_2) \to p_2)$ |
|------------------|-------|-------|-------|-------|-----|--------------------|-----------------------------|
| $\overline{f_1}$ | 1     | 0     | 1     | 1     |     | 1                  | 1                           |
| $f_2$            | 1     | 1     | 0     | 1     |     | 0                  | 1                           |
| $f_3$            | 1     | 0     | 1     | 0     |     | 1                  | 1                           |
| $f_4$            | 0     | 0     | 1     | 1     |     | 0                  | 1                           |
| $f_5$            | 0     | 1     | 0     | 0     |     | 0                  | 1                           |
| :                |       |       | :     |       | ٠., |                    |                             |



|                  | $p_0$ | $p_1$ | $p_2$ | $p_3$ |   | $(p_0 \wedge p_2)$ | $((p_0 \land p_2) \to p_2)$ |
|------------------|-------|-------|-------|-------|---|--------------------|-----------------------------|
| $\overline{f_1}$ | 1     | 0     | 1     | 1     |   | 1                  | 1                           |
| $f_2$            | 1     | 1     | 0     | 1     |   | 0                  | 1                           |
| $f_3$            | 1     | 0     | 1     | 0     |   | 1                  | 1                           |
| $f_4$            | 0     | 0     | 1     | 1     |   | 0                  | 1                           |
| $f_5$            | 0     | 1     | 0     | 0     |   | 0                  | 1                           |
| :                |       |       | ÷     |       | ٠ |                    |                             |



|       | $p_0$ | $p_1$ | $p_2$ | $p_3$ |    | $(p_0 \wedge p_2)$ | $((p_0 \land p_2) \to p_2)$ |
|-------|-------|-------|-------|-------|----|--------------------|-----------------------------|
| $f_1$ | 1     | 0     | 1     | 1     |    | 1                  | 1                           |
|       |       |       |       |       |    | 0                  | 1                           |
| $f_3$ | 1     | 0     | 1     | 0     |    | 1                  | 1                           |
| $f_4$ | 0     | 0     | 1     | 1     |    | 0                  | 1                           |
| $f_5$ | 0     | 1     | 0     | 0     |    | 0                  | 1                           |
| :     |       |       | :     |       | ٠. |                    |                             |



|       | $p_0$ | $p_2$ | $(p_0 \wedge p_2)$ | $((p_0 \wedge p_2) \to p_2)$ |
|-------|-------|-------|--------------------|------------------------------|
| $f_1$ | 1     | 1     | 1                  | 1                            |
| $f_2$ | 1     | 0     | 0                  | 1                            |
| $f_4$ | 0     | 1     | 0                  | 1                            |
| $f_5$ | 0     | 0     | 1<br>0<br>0<br>0   | 1                            |

#### Definición

 $\varphi[\psi/p] :=$  sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :



#### Definición

 $\varphi[\psi/p] :=$  sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :

 $\varphi \in \operatorname{At} \big| \ \operatorname{Si} \, \varphi = p \ \operatorname{entonces} \, \varphi[\psi/p] \vcentcolon= \psi.$ 

#### Definición

 $\varphi[\psi/p] :=$  sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :

 $\varphi \in At \ | \ {\rm Si} \ \varphi = p \ {\rm entonces} \ \varphi[\psi/p] := \psi. \ {\rm Caso} \ {\rm contrario}, \ \varphi[\psi/p] := \varphi.$ 

#### Definición

 $\underline{\varphi[\psi/p]}:=$  sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :

 $\boxed{\varphi \in At \ | \ \mathsf{Si} \ \varphi = p \ \mathsf{entonces} \ \varphi[\psi/p] := \psi. \ \mathsf{Caso} \ \mathsf{contrario}, \ \varphi[\psi/p] := \varphi.}$ 

 $(\varphi \odot \chi) \mid (\varphi \odot \chi)[\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$ 

#### Definición

 $\varphi[\psi/p] :=$  sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :

$$(\varphi\odot\chi) \ (\varphi\odot\chi)[\psi/p] := (\varphi[\psi/p]\odot\chi[\psi/p]).$$

$$p_1[(p_1 \wedge p_2)/p_3] = p_1.$$



#### Definición

 $\underline{\varphi[\psi/p]}:=$  sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :

$$\varphi \in At$$
 Si  $\varphi = p$  entonces  $\varphi[\psi/p] := \psi$ . Caso contrario,  $\varphi[\psi/p] := \varphi$ .

$$(\varphi \odot \chi)$$
  $(\varphi \odot \chi)[\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$ 

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$

#### Definición

 $\underline{\varphi[\psi/p]}:=$  sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :

$$|\varphi\in At|$$
 Si  $\varphi=p$  entonces  $\varphi[\psi/p]:=\psi.$  Caso contrario,  $\varphi[\psi/p]:=\varphi.$ 

$$(\varphi \odot \chi) \mid (\varphi \odot \chi)[\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$$

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$

### Definición

 $\underline{\varphi[\psi/p]} :=$  **sustitución** del símbolo proposicional p **por** la proposición  $\psi$  **en**  $\varphi$ :

$$\varphi \in At$$
 Si  $\varphi = p$  entonces  $\varphi[\psi/p] := \psi$ . Caso contrario,  $\varphi[\psi/p] := \varphi$ .

$$(\varphi \odot \chi) \bigg] (\varphi \odot \chi) [\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$$

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$
- $(p_1 \wedge p_2)[(p_3 \wedge p_4)/p_1] = ((p_3 \wedge p_4) \wedge p_2).$

#### Definición

 $\underline{\varphi[\psi/p]} :=$ sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :

$$\varphi \in At$$
 Si  $\varphi = p$  entonces  $\varphi[\psi/p] := \psi$ . Caso contrario,  $\varphi[\psi/p] := \varphi$ .

$$(\varphi \odot \chi) \bigg] (\varphi \odot \chi) [\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$$

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$
- $(p_1 \wedge p_2)[(p_3 \wedge p_4)/p_1] = ((p_3 \wedge p_4) \wedge p_2).$

#### Definición

 $\underline{\varphi[\psi/p]}:=$  sustitución del símbolo proposicional p por la proposición  $\psi$  en  $\varphi$ :

$$\varphi \in At$$
 Si  $\varphi = p$  entonces  $\varphi[\psi/p] := \psi$ . Caso contrario,  $\varphi[\psi/p] := \varphi$ .

$$(\varphi \odot \chi) \bigg] (\varphi \odot \chi) [\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$$

# Ejemplo

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$
- $(p_1 \wedge p_2)[(p_3 \wedge p_4)/p_1] = ((p_3 \wedge p_4) \wedge p_2).$

# Ejercicio