Empirical Significance of Learning in a New Keynesian Model with Firm-Specific Capital

James Murray

March 30, 2007

Introduction 1 / 21

• Purpose:

- Estimate the empirical significance of learning.
- Determine what features of U.S. data (if any) learning can explain.
- Learning may deliver features:
 - Orphanides and Williams (2005): "Inflation scares".
 - Milani (2005): Persistence.
 - Volatility persistence.
 - Bullard and Singh (2007), Primiceri (2005): Great Moderation.
- Estimate a NK model with learning and RE by MLE.
- Examine forecast errors, evolution of shocks, and evolution of expectations.

- New Keynesian model with firm-specific capital (Woodford, 2005).
- Consumers exhibit internal habit formation.
- Calvo (1983) pricing with inflation indexation.
- Quadratic cost of capital adjustment.
- Serially correlated technology, preference, investment shocks.
- Expectations: constant gain learning and rational expectations.

Suppose a DSGE model of the form:

$$\Omega_0 x_t = \Omega_1 x_{t-1} + \Omega_2 E_t^* x_{t+1} + \Psi \epsilon_t$$

- x_t vector of time t variables, all observable to agents.
- E_t^* : possibly non-rational expectations operator.

Rational expectations solution implies:

$$E_t x_{t+1} = G x_t$$

- Agents know the form of this solution, but estimate elements of G by least squares.
- Use as explanatory variables past observations of x_t^k .
- x_t^k includes a constant and all variables in x_t where the associated column in G is non-zero.

- Let G_t^k denote non-zero columns of G.
- Ordinary least squares estimate for G^k at time t:

$$\left(\hat{G}_{t}^{k}\right)' = \left(\frac{1}{t-1} \sum_{\tau=1}^{t-1} x_{\tau-1}^{k} x_{\tau-1}^{k'}\right)^{-1} \left(\frac{1}{t-1} \sum_{\tau=1}^{t-1} x_{\tau-1}^{k} x_{\tau}'\right)$$

Least squares forecast:

$$E_t^* x_{t+1} = \hat{g}_{0,t} + \hat{G}_t E_t^* x_t = (I + \hat{G}_t) \hat{g}_{0,t} + \hat{G}_t^2 x_{t-1}$$
 (1)

• Evolution of \hat{G}_t^k in recursive form:

$$\hat{G}_{t}^{k} = \hat{G}_{t-1}^{k} + g(x_{t-1} - \hat{G}_{t-1}^{k} x_{t-2}^{k}) x_{t-2}^{k} R_{t}^{-1}$$
 (2)

$$R_t = R_{t-1} + g(x_{t-2}^k x_{t-2}^{k'} - R_{t-1})$$
 (3)

• where g = 1/(t-1) is the learning gain.

- Ordinary least squares → learning dynamics disappear as t grows.
- Constant gain: assumes g is constant.
- With a constant gain, learning dynamics persist in the long run.
- Dynamics of expectations depend on the size of the constant learning gain.
- Appropriate initial condition $+ (g = 0) \rightarrow RE$.
- Standard statistical test for g=0 can conclude a rejection failure to RE.

Estimate by MLE using Kalman filter (Hamilton, 1994).

• State equation:

$$x_{t} = \Omega_{0}^{-1}\Omega_{2}\left(I + \hat{G}_{t}\right)\hat{g}_{0,t} + \Omega_{0}^{-1}\left(\Omega_{1} + \Omega_{2}\hat{G}_{t}^{2}\right)x_{t-1} + \Omega_{0}^{-1}\Psi\epsilon_{t}.$$
(4)

Observation equations:

$$GDP_{t}^{g} = 100 \left(\hat{y}_{t} - \hat{y}_{t-1} \right)$$
 $I_{t}^{g} = 100 \left(\hat{I}_{t} - \hat{I}_{t-1} \right)$
 $INF_{t} = \pi^{*} + 400\pi_{t}$
 $FF_{t} = r^{*} + 400\hat{r}_{t}$

 Initialize Kalman filter and learning algorithm with the MSV solution under RE.

Description	Parameter	Learning	RE
'	Farameter	0	NL.
Learning gain	g	0.017225***	-
Discount factor	β	0.994528***	0.994893***
Habit formation	η	0.269967**	0.213315
Inverse elasticity sub.	σ	16.264823	17.589033
Elasticity of sub. production	θ	11.459122	10.030577
Inverse elasticity labor supply	μ	2.509288	1.791766
Calvo parameter	ω	0.715756	0.713950
Inflation indexation	γ	0.441247***	0.958006***
MP interest rate smoothing	ρ_r	0.866560***	0.823025***
MP feedback on output	ψ_y	0.123166**	0.055319*
MP feedback on inflation	ψ_{π}	0.995049***	1.067211***
Pref. shock persistence	$\rho_{\mathcal{E}}$	0.931082***	0.962095***
Tech. shock persistence	ρ_z	0.000010	0.000010
Steady state inflation	π^*	2.814514***	3.296221**
Std. dev. technology shock	σ_z	0.301741*	0.340167
Std. dev. preference shock	σ_{ε}	0.280402*	0.254504
Std. dev. interest rate shock	σ_r	0.002283***	0.002344***

^{*} Significantly different from zero at the 10% level.

^{**} Significantly different from zero at the 5% level.

^{***} Significantly different from zero at the 1% level.

- Learning statistically significant.
- Learning leads to lower degree of inflation indexation.
- Habit formation still significant source of persistence.
- Very similar estimates for the degree of price flexibility.
- Possible reasons for differences with Milani (2005):
 - MLE vs. Bayesian methods.
 - Different initial condition for recursive learning process.
 - Different data: Growth rate of real GDP vs. CBO measure of output gap.

- Forecast errors are very similar for Learning and RE.
- Forecast errors are more volatile in 1970s.
- Huge forecast errors for federal funds rate in late 70s, early 80s.
- Learning appears not to be explaining U.S. dynamics better than RE.
- Both fail to explain high volatility in 70s with low volatility after mid 80s.

- Estimate the model through 1989:Q4.
- Use estimated parameters to forecast 1990:Q1 2005:Q4.
- For each quarter, forecast eight periods ahead.
- Given forecasts of each horizon, compute MSE.
- Do the same for a VAR(4) and Litterman (1986) BVAR(4).

Output

Inflation

Interest Rate

Technology Shock

Learning

Interest Rate Shock

Technology Shock

Rational Expectations

Interest Rate Shock

Description	Parameter	Learning	RE
Learning gain	g	0.024327**	_
Discount factor	β	0.993366***	0.992763***
Habit formation	η	0.281563**	0.286030*
Inverse elasticity sub.	σ	18.558950	16.328695
Elasticity of sub. production	θ	13.122359	7.317025
Inverse elasticity labor supply	μ	3.329474	6.219549
Capital share of income	α	0.174750	0.186636
Depreciation rate	δ	0.163489	0.299872
Cost of adjusting capital	ϕ	13.455016	11.558055
Calvo parameter	ω	0.658099	0.774919
Inflation indexation	γ	0.404221***	0.760702***
MP interest rate smoothing	ρ_r	0.869496***	0.859279***
MP feedback on output	ψ_{v}	0.064696*	0.128857***
MP feedback on inflation	ψ_{π}	0.992672***	0.967512***
Pref. shock persistence	$\rho_{\mathcal{E}}$	0.984689***	0.980813***
Tech. shock persistence	ρ_z	0.012960	0.000010
Inv. shock persistence	$ ho_{\mu}$	0.804935***	0.824007***
Steady state inflation	π^*	3.570552***	4.073905***
Std. dev. technology shock	σ_z	0.229175**	0.400000**
Std. dev. investment shock	σ_{μ}	0.060246***	0.052502***
Std. dev. preference shock	σ_{ε}	0.231848*	0.214337*
Std. dev. interest rate shock	σ_r	0.002291***	0.002286***

- Learning remains statistically significant.
- Including capital leads to a lower degree of inflation indexation.
- Learning further lowers the degree of inflation indexation.
- Habit formation still significant source of persistence.
- Learning leads to lower estimates for the degree of price flexibility.
- Learning leads to lower estimates for the variance of the technology shock.

Output Forecast Error Output Growth -1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Output Forecast Error Output Growth -

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Output

Investment

Inflation

Interest Rate

Learning

Technology Shock

Rational Expectations Investment Shock

Preference Shock

Interest Rate Shock

Learning Inflation

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Consumption

- Learning successes:
 - Lower estimates for inflation indexation.
 - Lower estimates for the Calvo parameter (using capital).
 - Lower estimates for variance of the technology shock (using capital).
 - Some evidence of inflation scares.
 - Better performance out-of-sample, especially for inflation.
- Learning failures:
 - Very similar to RE in explaining the data.
 - 1970s inflation, monetary policy.
- Research agenda:
 - Let agents use an a-theoretic VAR(p) to form expectations.
 - Dynamic (endogenously changing?) learning gain.