ÁLGEBRA III - 2023 Práctico 4

Subespacios invariantes. Triangulación y diagonalización simultánea.

- 1. Sea T el operador lineal en \mathbb{R}^2 , cuya matriz en la base canónica es $A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$.
 - (a) Probar que los únicos subespacios T-invariantes de \mathbb{R}^2 son \mathbb{R}^2 y el subespacio nulo.
 - (b) Sea U la tranformación lineal sobre \mathbb{C}^2 , tal que la matriz de U en la base canónica es A. Probar que existe un subespacio U-invariante de dimensión 1.
- 2. Sea W un subespacio invariante por T. Demostrar, sin usar matrices, que el polinomio minimal para el operador restricción T_W divide al polinomio minimal de T.
- 3. Sea c un autovalor de T y sea W el autoespacio asociado a c. Decir cómo es el operador restricción T_W .
- 4. Sea $A = \begin{pmatrix} 0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2 \end{pmatrix} \in M_3(\mathbb{R}).$
 - (a) ¿Es A semejante sobre $\mathbb R$ a una matriz triangular? Si es así hallar tal matriz.
 - (b) ξ Es A semejante a una matriz diagonal?
- 5. Probar que toda matriz A tal que $A^2 = A$ es semejante a una matriz diagonal.
- 6. Sea T un operador lineal diagonalizable sobre un espacio vectorial de dimensión finita V y sea W un subespacio T-invariante. Probar que la restricción T_W es diagonalizable.
- 7. Sea T un operador lineal en V tal que todo subespacio de V es T-invariante. Probar que T es un múltiplo de la identidad.
- 8. Sea T el operador del espacio de funciones continuas del [0, 1] dado por

$$(Tf)(x) = \int_0^x f(t) dt.$$

Decir si los siguientes subespacios son invariantes por T:

- (a) el espacio de funciones polinomiales;
- (b) el espacio de funciones diferenciables;
- (c) el espacio de funciones que se anulan en $x = \frac{1}{2}$.
- 9. Sea A una matriz real 3×3 . Probar que si A no es semejante sobre \mathbb{R} a una matriz triangular entonces A es diagonalizable sobre \mathbb{C} .
- 10. Dadas dos matrices $A, B \in M_2(\mathbb{R})$, decidir si existe una matriz real inversible P tal que $P^{-1}AP$ y $P^{-1}BP$ sean ambas diagonales y en caso afirmativo encontrar P:
 - (a) $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 3 & -8 \\ 0 & -1 \end{pmatrix}$.
 - (b) $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}.$

- 11. Verdadero o falso. Justificar.
 - (a) Si una matriz compleja A satisface que $A^k = I$ para algún k > 0, entonces A es semejante sobre \mathbb{C} a una matriz diagonal.
 - (b) Si una matriz triangular A es semejante a una matriz diagonal entonces A es diagonal.
- 12. Sea T un operador lineal de un \mathbb{F} -espacio vectorial V de dimensión n. Supongamos que T tiene n autovalores distintos. Demostrar que todo operador lineal que conmuta con T es un polinomio en T. Es decir, si $S \in L(V)$ y TS = ST entonces S = p(T) para algún $p(x) \in F[x]$.
- 13. * Sea \mathcal{F} una familia de matrices complejas 3×3 que conmutan entre sí. ¿Cuántas matrices linealmente independientes puede tener \mathcal{F} ?
- 14. Seas \mathbb{F} un cuerpo cualquiera y $n \in \mathbb{N}$. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Existe al menos una matriz $n \times n$ sobre \mathbb{F} tal que su polinomio minimal es 0.
 - (b) Existe al menos una matriz $n \times n$ sobre \mathbb{F} tal que su polinomio minimal es 1.
 - (c) Existe al menos una matriz $n \times n$ sobre \mathbb{F} tal que su polinomio minimal es x.
 - (d) Existe al menos una matriz $n \times n$ sobre \mathbb{F} tal que su polinomio minimal es x^2 .
 - (e) Sea V un \mathbb{C} -espacio vectorial con dim V = n y sean T_1 y T_2 dos operadores lineales sobre V tales que sus respectivos conjuntos de autovalores son disjuntos. Entonces para cada par $f_1, f_2 \in \mathbb{C}[x]$ existe un polinomio g tal que $g(T_1) = f_1(T_1)$ y $g(T_2) = f_2(T_2)$.