Cobertura de Dados nos Testes de Unidade

Testes de Unidade Dinâmicos

A seleção dos dados de testes é baseada nas seguintes técnicas:

- Teste de Fluxo de Controle
- Teste de Fluxo de Dados
 - Teste de Domínio
 - Teste Funcional

Os testes são feitos considerando os valores dos dados.

- O código fonte é analisado para encontrar <u>potenciais</u> defeitos conhecidos como <u>anomalias</u> no fluxo de dados:
- Variáveis definidas e, então, definidas novamente
- Variáveis não definidas mas referenciadas
- Variáveis definidas mas não referenciadas

 É responsabilidade do programador examinar as anomalias encontradas.

 Anomalia: Variáveis definidas e, então, definidas novamente.

Exemplo:

Possíveis interpretações sobre esta anomalia:

- O primeiro comando é redundante se o segundo executa o que é necessário.
- O primeiro comando tem uma falta. Por exemplo, deveria ser w=f1(y).
- O segundo comando tem uma falta. Por exemplo, deveria ser y=f2(z).
- Poderia ter uma falta entre os dois comandos. Por exemplo, deveria ter o comando v=f3(x) entre o primeiro e o segundo.

· Anomalia: Variáveis não definidas mas referenciadas.

Exemplo: x = x - y - w

onde a variável w não foi inicializada.

Possíveis interpretações sobre esta anomalia:

- A inicialização de w foi esquecida; ou
- A intenção poderia ter sido usar outra variável inicializada, como a variável y, no lugar de w.

· Anomalia: Variáveis definidas mas não referenciadas

Exemplo: x = f(x, y)

após esta atribuição x não é mais usada.

Por que o valor x não foi mais usado?

Para identificar anomalias no fluxo de dados, pode-se utilizar a ideia de "estados" das variáveis de programa:

A presença de uma anomalia significa que o programa pode falhar e que o programador deve investigar a causa da anomalia.

Também é importante verificar se o valor correto foi atribuído a uma variável. Isso deve ser feito através de um teste que execute um caminho desde a atribuição até um ponto onde o seu valor é usado.

 O teste de fluxo de dados envolve a seleção de caminhos com base em critérios de definição e uso de dados.

 O objetivo é encontrar caminhos que incluem a definição e uso das variáveis.

Passos:

- Desenhe um grafo de fluxo de dados da unidade.
- Selecione um critério de seleção de fluxo de dados.
- 3. Identifique os caminhos que satisfazem o critério.
- 4. Derive expressões de predicado de caminho a partir dos caminhos selecionados.
- Gere valores de entradas dos testes da unidade que exercitam os caminhos selecionados.

Passos:

- 1. Desenhe um grafo de fluxo de dados da unidade.
- 2. Selecione um critério de seleção de fluxo de dados.
- 3. Identifique os caminhos que satisfazem o critério.
- 4. Derive expressões de predicado de caminho a partir dos caminhos selecionados.
- 5. Gere valores de entradas dos testes da unidade que exercitam os caminhos selecionados.

Grafo de Fluxo de Dados

São identificados caminhos no código fonte baseados no fluxo de dados.

Um grafo de fluxo de dados é desenhado para identificar as variáveis e seus usos.

Grafo de Fluxo de Dados

Exemplo de identificação de variáveis e seus usos.

```
variável i definida
int VarTypes(int x, int y){
     int i:
     int *iptr;
                                             c-use de i e x
     i = x;
     iptr = malloc(sizeof(int))
     *iptr = i + x;  
                                             p-use de iptr e y
     if (*iptr > y) ←
         return (x);
     else {
                                             o endereço apontado
         iptr = malloc(sizeof(int));
         *iptr = x + y; <---
                                              anteriormente por iptr
         return(*iptr);
                                             fica indefinido
```

Grafo de Fluxo de Dados

Cada ocorrência de uma variável é classificada como:

- Definida: um valor é movido para o endereço da variável.
- Indefinida ou Morta (Kill): o valor ou endereço ficam sem referência (unbound).
- Usada: o valor é buscado do endereço da variável.
 Pode ser: usada em uma computação (c-use) ou usada em um predicado (p-use).

Como construir um GFD?

Um grafo de fluxo de dados é um grafo dirigido construído da seguinte maneira:

- Uma sequência de <u>definições e c-uses</u> é associada com cada <u>nodo</u> do grafo.
- Um conjunto de <u>p-uses</u> é associado com cada <u>aresta</u> do grafo.
- O nodo de entrada tem uma definição de cada parâmetro e variável não local que aparece no subprograma.

GFD - Exemplo

```
public static double ReturnAverage(int value[],
                          int AS, int MIN, int MAX) {
  Function: ReturnAverage Computes the average
  of all those numbers in the input array in
   the positive range [MIN, MAX]. The maximum
   size of the array is AS. But, the array size
  could be smaller than AS in which case the end
  of input is represented by -999.
  */
    int i, ti, tv, sum;
    double av;
    i = 0; ti = 0; tv = 0; sum = 0;
    while (ti < AS && value[i] != -999) {
        ti++:
         if (value[i] >= MIN && value[i] <= MAX) {
            tv++;
           sum = sum + value[i];
         i++;
     if (tv > 0)
        av = (double)sum/tv;
     else
        av = (double) -999;
    return (av):
```

GFD - Exemplo

Passos:

- Desenhe um grafo de fluxo de dados da unidade.
- 2. Selecione um critério de seleção de fluxo de dados.
- 3. Identifique os caminhos que satisfazem o critério.
- 4. Derive expressões de predicado de caminho a partir dos caminhos selecionados.
- 5. Gere valores de entradas dos testes da unidade que exercitam os caminhos selecionados.

Definições (1)

 Global c-use: Um c-use de uma variável x em um nodo i é dito ser global se x foi definida em algum nodo antes do nodo i.

• Definition Clear Path: Um caminho (i - n₁ - ... - nm - i), m≥0, é um def-clear path em relação à variável x do nodo i ao nodo j e do nodo i à aresta (nm-i) se x não tem sido definida nem indefinida nos nodos n₁, ..., nm.

Definições - Exemplo

Definições (2)

• Global definition: um nodo i tem uma definição global da variável <u>x</u> se o nodo i tem uma definição de <u>x</u> e existe um def-clear path em relação à x a partir do nodo i (i) a algum nodo que contenha um global c-use de <u>x</u> ou (ii) a alguma aresta que contenha um p-use de <u>x</u>.

Definições - Exemplo

Global definitions e global c-uses do GFD anterior.

Nodes i	def(i)	c-use(i)
1	{value, AS, MIN, MAX}	{}
2	{i, ti, tv, sum}	{}
3	{}	{}
4	{ti}	{ti}
5	{tv, sum}	{tv, i, sum, value}
6	{i}	{i}
7	{}	{}
8	{av}	{}
9	{av}	{sum, tv}
10	{}	{av}

Definições - Exemplo

Predicados e p-uses do GFD anterior.

Edges (i, j)	predicate(i, j)	p-use(i, j)
(1, 2)	True	{}
(2, 3)	True	{}
(3, 4)	(ti < AS) && (value[i] ! = -999)	{i, ti, AS, value}
(4, 5)	(value[i] < = MIN) && (value[i] > = MAX)	{i, MIN, MAX, value}
(4, 6)	$^{\sim}$ ((value[i] < = MIN) && (value[i] > = MAX))	{i, MIN, MAX, value}
(5, 6)	True	{}
(6, 3)	True	{}
(3, 7)	$^{\sim}$ ((ti < AS) && (value[i] ! = -999))	{i, ti, AS, value}
(7, 8)	$^{\sim}(tv>0)$	{tv}
(7, 9)	(tv > 0)	{tv}
(8, 10)	True	{}
(9, 10)	True	{}

Definições (3)

- Simple Path: é um caminho no qual todos os nodos, exceto o primeiro e o último são distintos.
- Loop-Free Path: é um caminho no qual todos os nodos são distintos.
- Complete Path: é um caminho a partir do nodo de entrada até o nodo de saída.

Definições (4)

- Du-path: um caminho (n₁ n₂ ... n_i n_k) é um definition-use path (du-path) em relação à variável x se o nodo n₁ tem uma definição global de x e
 - o nodo n_k tem um global c-use de x e (n₁ n₂ ...
 n_i n_k) é um def-clear simple path em relação à x ou
 - (ii) a aresta (n_i, n_k) tem um p-use de \underline{x} e $(n_1 n_2 ... n_i)$ é um def-clear loop-free path em relação à \underline{x} .

Definições - Exemplo

Critérios de Seleção de Caminhos

Tipos de critérios de teste de fluxo de dados:

- > 1. All-defs
- > 2. All-c-uses
- > 3. All-p-uses
- > 4. All-p-uses/Some-c-uses
- > 5. All-c-uses/Some-p-uses
- > 6. All-uses
- > 7. All-du-paths

Critérios de Seleção de Caminhos

> 1 - All-defs

Para cada variável <u>x</u> e para cada nodo i tal que <u>x</u> tem uma definição global no nodo i, selecione um <u>caminho</u> <u>completo</u> que inclua um def-clear path a partir do nodo i até

- o nodo j que tem uma global c-use de x ou
- a aresta (j,k) que tem um p-use de x.

Exemplo de All-defs

Critérios de Seleção de Caminhos

2. All-c-uses

Para cada variável <u>x</u> e para cada nodo i tal que <u>x</u> tem uma definição global no nodo i, selecione <u>caminhos</u> <u>completos</u> que incluam def-clear paths a partir do nodo i até <u>todos os nodos</u> j tal que exista um global c-use de <u>x</u> no nodo j.

Exemplo de All-c-uses

Critérios de Seleção de Caminhos

3. All-p-uses:

Para cada variável <u>x</u> e para cada nodo i tal que <u>x</u> tem uma definição global no nodo i, selecione <u>caminhos</u> <u>completos</u> que incluam def-clear paths a partir do nodo i até <u>todas as arestas</u> (j,k) tal que exista um puse de <u>x</u> na aresta (j,k).

Exemplo de All-p-uses

Critérios de Seleção de Caminhos

4. All-p-uses/Some-c-uses

Critério idêntico ao all-p-uses **exceto** quando a variável <u>x</u> não tem p-use. **Se** <u>x</u> não tem p-use, o critério é reduzido a some-c-uses.

Some-c-uses: Para cada variável x e para cada nodo i tal que x tem uma definição global no nodo i, selecione <u>caminhos completos</u> que incluam defclear paths a partir do nodo i até <u>alguns nodos</u> j tal que exista um global c-use de x no nodo j.

Exemplo de All-p-uses/Some-c-uses

Critérios de Seleção de Caminhos

5. All-c-uses/Some-p-uses

Critério idêntico ao all-c-uses **exceto** quando a variável <u>x</u> não tem global c-use. **Se** <u>x</u> não tem global c-use, o critério é reduzido a some-p-uses.

Some-p-uses: Para cada variável x e para cada nodo i tal que x tem uma definição global no nodo i, selecione <u>caminhos completos</u> que incluam defclear paths a partir do nodo i até <u>algumas arestas</u> (j,k) tal que exista um p-use de x na aresta (j,k).

Exemplo de All-c-uses/Some-p-uses

Critérios de Seleção de Caminhos

6. All-uses:

É uma combinação dos critérios all-p-uses e all-c-uses.

7. All-du-paths:

Para cada variável <u>x</u> e para cada nodo i tal que <u>x</u> tem uma definição global no nodo i, selecione caminhos completos que incluam <u>todos os caminhos</u> a partir do nodo i até

- todos os nodos j que tem uma global c-use de x e
- todas as arestas (j,k) que tem um p-use de x.

Passos:

- Desenhe um grafo de fluxo de dados da unidade.
- Selecione um critério de seleção de fluxo de dados.
- 3. Identifique os caminhos que satisfazem o critério.
- 4. Derive expressões de predicado de caminho a partir dos caminhos selecionados.
- Gere valores de entradas dos testes da unidade que exercitam os caminhos selecionados.

Geração de valores de entrada

Valores de entrada precisam ser selecionados para que os caminhos selecionados sejam executados.