ĐAI HOC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

BT GT 2 TRĂC NGHIÊM Môn thi: Giải tích 2

Thời gian làm bài: 90 phút.

Đề 11

Câu 1. Đổi tích phân sau sang tọa độ cực: $I = \iint\limits_D y \sqrt{x^2 + y^2} \mathrm{d}x \mathrm{d}y$, trong đó D cho bởi:

$$x^2 + y^2 \le 2y, y \le -\sqrt{3}x.$$

$$B I = \int_{0}^{\frac{2\pi}{3}} d\varphi \int_{0}^{2\sin\varphi} r^{2}\sin\varphi dr$$

$$C I = \int_{\frac{\pi}{2}}^{\pi} \mathrm{d}\varphi \int_{0}^{2\sin\varphi} r^{3}\sin\varphi \mathrm{d}r$$

$$D I = \int_{0}^{\frac{4\pi}{3}} \mathrm{d}\varphi \int_{0}^{1} r^{3} \sin\varphi \mathrm{d}r$$

Câu 2. Cho hàm số $f(x,y)=x^2-xy+y^2, \vec{u}$ là vecto đơn vị theo hướng dương trục Ox và $A=\left\{M(x,y)\in\mathbb{R}^2: \frac{\partial f(M)}{\partial \vec{u}}=0\right\}$. Kết luận nào sau đây đúng?

 \bigcirc A là đường thẳng y=2x.

(B) A là parabol $y = 3x^2$. (C) $A = \theta$.

Câu 3. Miền xác định D của hàm $f(x,y) = \ln\left(\frac{y}{x^2} + 1\right)$ là:

B Phần mặt phẳng nằm trên parabol $y=-x^2$, bỏ trục 0y

A Toàn mặt phẳng bỏ trục Oy.
C Toàn mặt phẳng bỏ parabol $y=-x^2$.

 \bigcirc Phần mặt phẳng nằm dưới parabol $y=-x^2$, bỏ trục 0y

Câu 4. Tìm khai triển Maclaurin của hàm $f(x,y) = \ln(1-x^2y)\sqrt{1+xy}$ đến cấp 5. (A) $2xy - xy^2 - x^2y - \frac{1}{2}x^3y^2 + o(\rho)^5$. (B) $-x^2y - \frac{1}{2}x^3y^2 + o(\rho)^5$.

 $xy - x^2y - \frac{3}{2}x^3y^2 + o(\rho)^5$.

Câu 5. Tính tích phân $I=\iint\limits_{\mathbb{R}}10y\mathrm{d}x\mathrm{d}y$, trong đó D được giới hạn bởi $y=x^2,y=1$.

(D) Các câu khác sai.

Câu 6. Cho hàm số $f(x,y)=\frac{e^{x-1}}{1+2u}$. Tìm hệ số của số hạng $(x-1)^2y$ trong khai triển Taylor hàm f(x,y) tại lân cận điểm (1,0).

Không tồn tại.

Câu 7. Đổi tích phân sau sang tọa độ cực $I=\iint\limits_{D}\sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y$ với D là miền giới hạn bởi

$$2y \leqslant x^2 + y^2 \leqslant 4y, x \geqslant 0.$$

Câu 8. Tính tích phân $I = \iint\limits_{\Omega} (x-1) \mathrm{d}x \mathrm{d}y$, trong đó D là miền $y \geq 3x^2, y \leq 4-x^2$.

(D) -16

Đổi thứ tự lấy tích phân $I = \int_{0}^{4} \mathrm{d}y \int_{-\infty}^{2-y} f(x,y) \mathrm{d}x$.

$$\bigcap_{-2}^{0} dx \int_{x^{2}}^{2-x} f(x,y) dy + \int_{0}^{2} dx \int_{0}^{2-x} f(x,y) dy$$

D Các câu khác sai.

Câu 10. Cho miền phẳng $D: x^2 + y^2 \le 2x, y \ge x, y \le -x$. Nếu dựa trên tính đối xứng, diện tích miền D được tính theo công thức nào dưới đây?					
$(A) S(D) = 2 \int_{0}^{\frac{\pi}{4}} d\varphi \int_{0}^{2\cos\varphi} r dr$	$ (B) S(D) = 2 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} r d\varphi $	r			
$ (C) S(D) = 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} r dr \qquad (D) S(D) = 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} r dr $	r				
Câu 11. Khi đổi tích phân sau đây sang tọa độ Descartes : $I=$	$\int\limits_{-\frac{\pi}{4}}^{0}\mathrm{d}arphi\int\limits_{0}^{\sqrt{2}}r^{2}.\cosarphi\mathrm{d}r,$ kết luận	nào dưới đây là đúng?			
	$ \begin{array}{c} \mathbb{B} I = \int\limits_{-1}^{0} \mathrm{d}y \int\limits_{-y}^{\sqrt{2-y^2}} x \mathrm{d}x \end{array} $	$ C I = \int_{-1}^{0} \mathrm{d}y \int_{0}^{\sqrt{2}} x \mathrm{d}x $			
Câu 12. Viết cận tích phân sau đây trong tọa độ Descartes $I=$	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \mathrm{d}\varphi \int_{0}^{2\sin\varphi} r^2 \mathrm{d}r.$				
(A) $I = \int_{0}^{1} dx \int_{x}^{1+\sqrt{1-x^2}} (x^2 + y^2) dy$	$ B I = \int_{0}^{1} dx \int_{x}^{1 - \sqrt{1 - x^2}} \sqrt{x^2} $				
$\Gamma = \int_{0}^{1} dx \int_{x}^{1+\sqrt{1-x^2}} \sqrt{x^2 + y^2} dy$	$ D I = \int_{0}^{1} dx \int_{x}^{1-\sqrt{1-x^2}} (x^2 + \frac{1}{x^2})^{1-x^2} dx^2 + \frac{1}{x^2} (x^2 + \frac{1}{x^2})^{1-x^2} d$	$y^2)dy$			
Câu 13. Tính tích phân $I = \iint\limits_D \mathrm{d}x\mathrm{d}y$, trong đó D là nửa hình tr	$ron x^2 + (y - 1)^2 \le 1, y \le x_V$	$\sqrt{3}$.			
(A) $I = \frac{4\pi - 3\sqrt{3}}{12}$ (B) $I = \frac{4\pi + 3\sqrt{3}}{12}$	O				
Câu 14. Tính tích phân $I = \iint\limits_{D} \frac{1}{\sqrt{1-y^2}} \mathrm{d}x \mathrm{d}y$, trong đó D là n	$\text{miền } x^2 + y^2 \le 1, x \le 0.$				
(A) 0 (B) 2	C 1	\bigcirc 2π			
Câu 15. Tính tích phân $I = \iint\limits_D \mathrm{d}x\mathrm{d}y$, trong đó D là miền $x^2 +$	$-y^2 \le 2x, x^2 + y^2 \le 2y.$				
	$ \bigcap_{0}^{1} \operatorname{d}x \int_{1-\sqrt{1-x^2}}^{\sqrt{x^2-2x}} \operatorname{d}y $				
Câu 16. Đổi tích phân sau sang tọa độ cực $I = \iint\limits_D f(x,y) \mathrm{d}x \mathrm{d}y$	y với D là miền giới hạn bởi				
$x^{2} + y^{2} \le 2y, 0 \le x + y, \sqrt{3}x - y \le 0.$	3π				
$(A) I = \int_{\frac{\pi}{3}}^{\frac{3\pi}{4}} d\varphi \int_{0}^{2\cos\varphi} rf(r\cos\varphi, r\sin\varphi) dr$	$ \begin{array}{c} \mathbb{B} I = \int_{\frac{\pi}{3}}^{\frac{3\pi}{4}} d\varphi \int_{0}^{2\sin\varphi} rf(r\cos\varphi) d\varphi \end{array} $	$(\mathbf{s}\varphi,r\sin\varphi)\mathrm{d}r$			
$ C I = \int_{\frac{\pi}{3}}^{\frac{3\pi}{4}} d\varphi \int_{0}^{2\sin\varphi} f(r\cos\varphi, r\sin\varphi) dr $		$(\mathbf{s}\varphi,r\sin\varphi)\mathrm{d}r$			
Câu 17. Cho $f(x,y) = x^2y - 2x$. Tìm tất cả điểm M sao cho $(2,1), (-2,1)$.	vector gradient $\nabla f(M) = (2, 1)$ (1, 2), (1, -2).). (_1 2) (2 1)			
Câu 18. Tính tích phân $I = \iint_D 3xy dxdy$, trong đó D là hình tr	_	(1,2),(2,1).			
lacksquare $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$	© 1	D Các câu kia sai			
Câu 19. Đổi thứ tự lấy tích phân $I=\int\limits_0^1\mathrm{d}y\int\limits_{1-\sqrt{1-y^2}}^{2-y^2}f(x,y)\mathrm{d}x.$					
		$\int_{1}^{2} \mathrm{d}x \int_{0}^{\sqrt{2x-x^2}} f(x,y) \mathrm{d}y$			
$\bigcap_{0}^{1} dx \int_{0}^{\sqrt{2x-x^2}} f(x,y) dy + \int_{1}^{2} dx \int_{0}^{\sqrt{2-x}} f(x,y) dy$	D Đáp án khác.				

Câu 20. Tính tích phân $I=\iint\limits_D x\mathrm{d}x\mathrm{d}y$, trong đó D là miền giới hạn $x^2+y^2\leq 2y,y\leq x$.				
(A) $\frac{1}{6}$ (B) $\frac{1}{3}$	$\frac{1}{12}$	D Các câu kia sai		
Câu 21. Tìm khai triển Maclaurin của hàm $f(x,y)=(x^2+y)$ s	$\arctan(y-2x)$ đến cấp 3.			
$ A y + x^2 - y^3 - 4x^2y + 4xy^2 + R_3. $		$+R_3$.		
C $-xy + \frac{1}{2}y^2 - x^3 + \frac{1}{2}x^2y + R_3.$		R_3 .		
Câu 22. Tính tích phân $I = \iint\limits_{D} 2y \mathrm{d}x\mathrm{d}y$, với D giới hạn bởi x	$= y^2, x = 1.$			
\bigcirc A 1 \bigcirc B $\frac{1}{2}$	© 0	\bigcirc $\frac{1}{3}$.		
Câu 23. Cho tích phân $I = \iint\limits_{\Omega} 2xy \mathrm{d}x \mathrm{d}y$ với D là miền giới hạ	n bởi $x^2 + y^2 \le 2x, x - y \le 0$). Với $x = r \cos \varphi, y = r \sin \varphi$,		
tìm đẳng thức đúng:				
$ (A) I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} r^{3} \sin 2\varphi dr $	$ B I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} r^{2}\sin 2\varphi $	$\mathrm{d}r$		
$ C I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} d\varphi \int_{0}^{2\cos\varphi} r^{3}\sin 2\varphi dr $	$ \begin{array}{c} \frac{\pi}{4} & 0 \\ \frac{\pi}{4} & 0 \\ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} d\varphi \int_{0}^{2\cos\varphi} r^{2}\sin 2\theta \end{array} $			
Câu 24. Tính tích phân $I = \iint\limits_{D} y \mathrm{d}x \mathrm{d}y$, trong đó D là miền $ x $	$\leq 1, y \leq 1.$			
A 2 B 1	<u>C</u> −2	□ -1		
Câu 25. Đổi thứ tự lấy tích phân $I=\int\limits_0^3\mathrm{d}x\int\limits_0^{(x-1)^2}f(x,y)\mathrm{d}x.$				
(A) $\int_{0}^{4} dy \int_{1-\sqrt{y}}^{1+\sqrt{y}} f(x,y) dx$ (B) $\int_{0}^{1} dy \int_{0}^{1-\sqrt{y}} f(x,y) dx + \int_{0}^{4} dy \int_{0}^{1+\sqrt{y}} f(x,y) dx$	$\int_{1+\sqrt{y}}^{3} f(x,y) dx$			
$\bigcap_{0}^{1} \int_{0}^{1+\sqrt{y}} dy \int_{0}^{1+\sqrt{y}} f(x,y) dx + \int_{0}^{4} dy \int_{1+\sqrt{y}}^{3} f(x,y) dx$	$ \bigcap_{1} \int_{1}^{4} dy \int_{1-\sqrt{y}}^{1+\sqrt{y}} f(x,y) dx $			
Câu 26. Khai triển Taylor hàm $f(x,y)=\displaystyle\frac{e^x}{y}$ tại điểm $(0,1)$ đến	ı bậc 2.			
(A) $1 + x + (y - 1) + \frac{x^2}{2} + (y - 1)^2 + x(y - 1) + R_2$.	$ B) 1 + x - (y - 1) + \frac{x^2}{2} + $	$(y-1)^2 - x(y-1) + R_2.$		
C $1+x-(y-1)+\frac{x^2}{2}-(y-1)^2-x(y-1)+R_2$.	D Các câu khác sai.			
Câu 27. Cho hàm số $z=rac{x-y}{x+y}$. Viết khai triển Taylor của hàm	z đến cấp 2 trong lân cận $(1,0)$).		
(A) $1 - 2(x - 1)y + (x - 1)^2 + 2y^2 + o(\rho)^2$. (C) $1 - 2(x - 1) + 2(x - 1)y + 2y^2 + o(\rho)^2$.	$ \begin{array}{ccc} \textbf{B} & 1 - 2y + 2(x - 1)y + 2y \\ \textbf{D} & 1 - y + 2(x - 1)y + 3y^2 \end{array} $	$r^2 + o(\rho)^2.$		
		$+o(\rho)^2$.		
Câu 28. Kết luận nào đúng về miền xác định D của hàm số $f(x)$	$(x,y) = \ln\left(\arctan\frac{y}{x}\right).$			
	$ B D = \{(x,y) \in \mathbb{R}^2, xy > $	0}.		
(A) $D = \{(x, y) \in \mathbb{R}^2, y \neq 0\}.$ (C) $D = \{(x, y) \in \mathbb{R}^2, x > 0, y > 0\}.$	Dáp án khác.			
Câu 29. Cho tích phân $I = \int_{\frac{\pi}{2}}^{\pi} d\varphi \int_{-2\cos\varphi}^{2} r^{2}(\cos\varphi + \sin\varphi) dr$, với $x = r\cos\varphi$, $y = r\sin\varphi$. Viết tích phân trong tọa độ				
Descartes.				
(A) $I = \int_{-2}^{0} dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} (x+y) dy$	$ \begin{array}{c} B & I = \int_{-2}^{0} dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} (x + \frac{1}{2x-x^2}) dx \\ \end{array} $	$y)\mathrm{d}y$		
(A) $I = \int_{-2}^{0} dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} (x+y) dy$ (C) $I = \int_{-2}^{0} dx \int_{\sqrt{-2x-x^2}}^{\sqrt{2-x^2}} (x+y) dy$	$I = \int_{-2}^{0} dx \int_{\sqrt{-2x-x^2}}^{\sqrt{4-x^2}} (x + \frac{1}{\sqrt{x^2}}) dx \int_{-2}^{0} dx \int_{\sqrt{x^2-x^2}}^{\sqrt{x^2-x^2}} (x + \frac{1}{\sqrt{x^2}}) dx$	$y)\sqrt{x^2+y^2}\mathrm{d}y$		

Câu 30. Viết cận tích phân sau trong tọa độ cực $I =$	$=\iint y(x^2+y^2)\mathrm{d}x\mathrm{d}y$ với D là miền giới hạn bởi
$x^2 + y^2 \le 2x, x + y \ge 0, y \le 0.$	D
$A I = \int_{-\frac{\pi}{4}}^{0} d\varphi \int_{0}^{2\cos\varphi} r^{4}\sin\varphi dr$	$ B I = \int_{-\frac{\pi}{4}}^{0} d\varphi \int_{0}^{2\cos\varphi} r^{3}\sin\varphi dr $

$$\begin{array}{ccc}
 & -\frac{7}{4} & 0 & -\frac{7}{4} & 0 \\
 & -\frac{7}{4} & 2\cos\varphi & \\
 & -\frac{\pi}{2} & 0
\end{array}$$

$$\begin{array}{cccc}
 & I = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{4}} d\varphi & \int_{0}^{2\cos\varphi} r^{4}\sin\varphi dr$$

$$\begin{array}{cccc}
 & I = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{4}} d\varphi & \int_{0}^{2\cos\varphi} r^{3}\sin\varphi dr
\end{array}$$

Câu 31. Tính tích phân $I = \int_0^1 \mathrm{d}x \int_{\frac{x^2}{2}}^{x^2} \frac{x}{\sqrt{y}} \mathrm{d}y$.

Câu 32. Đổi thứ tự lấy tích phân trong tích phân kép $\int\limits_{-3}^2 \mathrm{d}y \int\limits_{y+3}^{9-y^2} f(x,y) \mathrm{d}x.$

Câu 33. Đổi thứ tự lấy tích phân trong tích phân $I=\int\limits_{-2}^2\mathrm{d}y\int\limits_{-\sqrt{4-y^2}}^{1-\frac{y^2}{4}}f(x,y)\mathrm{d}x.$

Câu 34. Gọi C là giao tuyến của hai mặt: $z=x^2+y^2+xy$ và y=2. Hệ số góc k của tiếp tuyến với C tại (1,2,7) là (A) k=3. (C) k=5. (D) k=7.

Câu 35. Tính tích phân $I = \iint\limits_D -2 \mathrm{d}x \mathrm{d}y$ với D là miền giới hạn bởi $y = 2x, y = \frac{x}{2}, y = 2$.

Câu 37. Cho mặt cong $S: z = x^2 + y^2 - 1$ và điểm M(1,1,1). Gọi D_u là giao tuyến của S và mặt phẳng đi qua M có vecto chỉ phương là \vec{u} . Mệnh đề nào sau đây là **SAI**?

(A) Với
$$\vec{u}=(1,0)$$
, hệ số góc của tiếp tuyến với D_u tại M là 2 .

B Với
$$\vec{u}=(-2,1)$$
, hệ số góc của tiếp tuyến với D_u tại M là $\frac{2}{\sqrt{5}}$

$$\bigcirc$$
 Với $\vec{u}=(0,1)$, hệ số góc của tiếp tuyến với D_u tại M là 2

D Với
$$\vec{u}=(-1,2)$$
, hệ số góc của tiếp tuyến với D_u tại M là $\frac{2}{\sqrt{5}}$.

Câu 38. Gọi C là giao tuyến của hai mặt: $z = 4 - x^2 - 2y^2 + xy$ và x = 2. Hệ số góc k của tiếp tuyến với C tại (2,1,0) là

Câu 39. Tìm miền xác định
$$D$$
 của hàm số $f(x,y) = \ln(2x - x^2 - y^2)$.

$$\bigcirc$$
 D là hình tròn tâm $(1,0)$, bán kính $R=1$, lấy biên.

$$(B)$$
 D là hình tròn tâm $(1,0)$, bán kính $R=1$, không lấy biên.

$$D$$
 là phía ngoài hình tròn tâm $(1,0)$, bán kính $R=1$. D là hình tròn tâm $(1,0)$, bán kính $R=1$.

CHỦ NHIỆM BỘ MÔN

TS. Nguyễn Tiến Dũng

 $\mathbf{\tilde{D}}\hat{\mathbf{e}} \, \mathbf{11}$ $\mathbf{\tilde{D}}\hat{\mathbf{A}}\mathbf{P} \, \hat{\mathbf{A}}\mathbf{N}$

Câu 36. (B)	Câu 29. B	Câu 22. A	Câu 15. A	Câu 8. A	Câu 1. A
Câu 37. (B)	Câu 30. (A)	Câu 23. (A)	Câu 16. B	Câu 9. C	Câu 2. A
	Câu 31. (A)	Câu 24. (A)	Câu 17. B	Câu 10. D	Câu 3. B
Câu 38. (B)	Câu 32. (B)	Câu 25. (C)	Câu 18. (A)	Câu 11. B	Câu 4. B
Câu 39. (B)	Câu 33. B	Câu 26. (B)	Câu 19. (C)	Câu 12. (C)	Câu 5. (A)
	Câu 34. (B)	Câu 27. (B)	Câu 20. (A)	Câu 13. (A)	Câu 6. B
Câu 40. B	Câu 35. A	Câu 28. B	Câu 21. (B)	Câu 14. (B)	Câu 7. (A)