

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1961 A

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics University of North Carolina Chapel Hill, North Carolina

ON LIMITING DISTRIBUTIONS OF ORDER STATISTICS WITH VARIABLE RANKS FROM STATIONARY SEQUENCES

by

Shihong Cheng

TECHNICAL REPORT #25

January 1983

· 11 0 4 6

Approved for public release, distribution unlimited.

DITIC FILE COPY

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFOSR-TR. 83-0414 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
ON LIMITING DISTRIBUTIONS OF ORDER STATISTICS	TECHNICAL
WITH VARIABLE RANKS FROM STATIONARY SEQUENCES	
	6. PERFORMING ORG. REPORT NUMBER TR #25
7. AUTHOR(a)	B. CONTRACT OR GRANT NUMBER(4)
Shihong Cheng	F49620 -8 2 - C - 0009
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Statistics	!
University of North Carolina	PE61102F; 2304/A5
Chapel Hill NC 27514	
Mathematical & Information Sciences Directorate	12. REPORT DATE JAN 83
Air Force Office of Scientific Research Bolling AFB DC 20332	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS, (of this report)
	UNCLASSIFIED
	15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release; distribution unlimite	d.
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fro	om Report)
18. SUPPLEMENTARY NOTES	·
- Control of the cont	i
	Į
	1
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
Order statistics; stationary sequences; limiting d	istribution; variable ranks.
, , , , , , , , , , , , , , , , , , , ,	.,
	1
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	1
SEE REVERSE	
	•
	· 1
	}
	1
	ł

DD 1 JAN 73 1473

83

05

23

4

BITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ITEM #20, CONTINUED:

Let $\{X_n\}$ be a stationary sequence and $X_1^{(n)} \le \ldots \le X_n^{(n)}$ be the order statistics of X_1,\ldots,X_n . In this paper, the limiting distribution of $X_k^{(n)}$, where $k_n \to \infty$, $k_n/n \to \lambda$, $0 \le \lambda \le 1$ is discussed under distributional mixing conditions. For stationary normal sequences, the limiting distribution of $X_k^{(n)}$, where $k_n/n \to \lambda$ ϵ (0.1), is a normal with mean zero and variance

$$\sigma_{\lambda}^{2} = 1 + \frac{1}{\pi\lambda(1-\lambda)} \sum_{n=0}^{\infty} \int_{0}^{r_{n}} \frac{\exp\{-a_{\lambda}^{2}/(1+r)\}}{(1-r^{2})^{1/2}} dr$$

if the covariance $\{r_n\}$ converges to zero as fast as n^{-p} , $\rho>4$, a_{λ} being the λ -percentile of the standard normal distribution.

Acces	sion For
NTUS	GRANI
Dric	TAB 🗆
Unan:	Decarror
Just	fivation
	ribution/
Dist	ilability Codes
Dist	lability Codes
Dist	ilability Codes
Dist	lability Codes
Dist	lability Codes

ON LIMITING DISTRIBUTIONS OF ORDER STATISTICS WITH VARIABLE RANKS FROM STATIONARY SEQUENCES

7,

Shihong Cheng

Peking University and University of North Carolina

Abstract

Let $\{X_n^{}\}$ be a stationary sequence and $X_1^{(n)} \leq \ldots \leq X_n^{(n)}$ be the order statistics of X_1,\ldots,X_n . In this paper, the limiting distribution of $X_k^{(n)}$, where $k_n \to \infty$, $k_n/n \to \lambda$, $0 \leq \lambda \leq 1$ is discussed under distributional mixing conditions. For stationary normal sequences, the limiting distribution of $X_k^{(n)}$, where $k_n/n \to \lambda \in (0,1)$, is a normal with mean zero and variance

$$\sigma_{\lambda}^{2} = 1 + \frac{1}{\pi\lambda(1-\lambda)} \sum_{n=0}^{\infty} \int_{0}^{r_{n}} \frac{\exp\{-a_{\lambda}^{2}/(1+r)\}}{(1-r^{2})^{1/2}} dr$$

if the covariance $\{r_n\}$ converges to zero as fast as $n^{-\rho}$, $\rho>4$, a_{λ} being the λ -percentile of the standard normal distribution.

Keywords: Order statistics, stationary sequences, limiting distribution, variable ranks.

This research has been supported by AFOSR Contract No. F49620-82-C-0009.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) NOTICE OF TRANSWIFTAL TO DTIC
This technical report has been reviewed and is approved for weally not not TAP AFR 190-12.
Distribution is unlimited.
MATTHEW J. KERVER
Chief. Technical Information Division

Let $\{X_n\}$ be a sequence of random variables and $X_1^{(n)} \le \ldots \le X_n^{(n)}$ be the order statistics of X_1, \ldots, X_n . In this paper it is assumed that the sequence $\{X_n\}$ is stationary and that the ranks k_n of the order statistics $\{X_k^{(n)}\}$ satisfy the following condition:

$$k_n \rightarrow \infty$$
, $n - k_n \rightarrow \infty$, $k_n/n \rightarrow \lambda$, $0 \le \lambda \le 1$.

Since the case $\lambda=1$ is easily transformed to the case $\lambda=0$, we discuss only the cases:

$$(0.1) k_n \to \infty, k_n/n \to \lambda, 0 \le \lambda < 1.$$

The case $\lambda=0$ has been discussed by Watts, Rootzén and Leadbetter [7]. The case $0<\lambda<1$ has been discussed by the present author [2], but the mixing condition in [2] is hard to check. Here we consider the cases $\lambda=0$ and $0<\lambda<1$ simultaneously, under a distributional mixing condition used by Leadbetter [4].

§1. Notation, assumptions, and introduction

Let $\{x_n\}$ be a stationary sequence with finite dimensional distribution functions, $\{F_{j_1}, \dots, j_p, (x_1, \dots, x_p), 1 \le j_1 < j_2 < \dots\}$, and, in particular, marginal distribution function $F_1(x) = F(x)$. Suppose that $\{u_n\}$ is a real sequence such that

(1.1)
$$\lim_{n} \frac{n}{\sqrt{k_n}} \left[F(u_n) - \frac{k_n}{n} \right] = u\sqrt{1-\lambda} , \quad -\infty < u < \infty .$$

The distributional mixing coefficients of $\{X_n\}$ with $\{u_n\}$ are defined by

$$\alpha(n,\ell) =$$

$$\sup\{\left|F_{i_{1}...i_{p}j_{1}...j_{q}}(u_{n})-F_{i_{1}...i_{p}}(u_{n})F_{j_{1}...j_{q}}(u_{n})\right|:\ 1\leq i_{1}<...< i_{p}< j_{1}<...< j_{q}\leq n,\, j_{1}=i_{p}>\ell\}$$

where $\mathbf{F}_{j_1\cdots j_p}(\mathbf{u}_n) = \mathbf{F}_{j_1\cdots j_p}(\mathbf{u}_n,\ldots,\mathbf{u}_n)$ for any $1 \le j_1 < j_2 < \ldots < j_p \le n$. Let $\sigma(\mathbf{A}_1,\ldots,\mathbf{A}_k)$ denote the field generated by sets $\mathbf{A}_1,\ldots,\mathbf{A}_k$ and

 $\beta(n,\ell) =$

 $\sup\{\left|p(AB)-p(A)p(B)\right|:\quad A\in\sigma(\{X_{j}\leq u_{n}\},j=1,\ldots,k)\,,\\ B\in\sigma(\{X_{j}\leq u_{n}\},j=k+\ell,\ldots,n)\,,\\ 1\leq k< k+\ell\leq n\}$

Lemma 1.1 For any measurable sets $A_1, \ldots, A_k, B_1, \ldots, B_\ell$ let

$$a = \sup\{ |P(A_{i_1} ... A_{i_s} B_{j_1} ... B_{j_t}) - P(A_{i_1} ... A_{i_s}) P(B_{j_1} ... B_{j_t}) | :$$
Then we have
$$1 \le i_1 < ... < i_s \le k, 1 \le j_1 < ... < j_t \le \ell \}.$$

Then we have

$$|P(A_{i_1 \dots i_s}^{B_{j_1 \dots j_t}}) - P(A_{i_1 \dots i_s}^{D_{j_1 \dots j_t}})| \le 2^{s+t} \alpha$$

for any s, $1 \le s \le k$ and t, $1 \le t \le \ell$, where

$$A_{i_{1}...i_{s}} = \begin{bmatrix} & & & \overline{A}_{i} \end{bmatrix} \cap \begin{bmatrix} & & & A_{i} \end{bmatrix}$$

$$i_{\overline{\epsilon}} \{i_{1},...,i_{s}\}^{A_{i}} \}$$

$$B_{j_{1}...j_{t}} = \begin{bmatrix} & & & \overline{B}_{j} \end{bmatrix} \cap \begin{bmatrix} & & & B_{j} \end{bmatrix}.$$

It is easy to show that for any sets S, S_1, \ldots, S_n

$$P(S\overline{S}_{1}...\overline{S}_{n}) = P(S) - \sum_{p=1}^{n} (-1)^{p-1} \sum_{1 \le i_{1} \le ... \le i_{p} \le n} P(SS_{i_{1}}...S_{i_{p}})$$

Hence if $\{i_1, ..., i_s\} = \{1, ..., s\}, \{j_1, ..., j_t\} = \{1, ..., t\}, (1.2)$ is obtained from

$$|P(\overline{A}_{1}...\overline{A}_{s}A_{s+1}...A_{k}\overline{B}_{1}...\overline{B}_{t}B_{t+1}...B_{\ell}) - P(\overline{A}_{1}...\overline{A}_{s}A_{s+1}...A_{k})P(\overline{B}_{1}...\overline{B}_{t}B_{t+1}...B_{\ell})|$$

$$\leq |P(A_{s+1}...A_kB_{t+1}...B_\ell) - P(A_{s+1}...A_k)P(B_{t+1}...B_\ell)|$$

$$+\sum_{p=1}^{s}\sum_{1\leq i_{1}<\ldots< i_{p}\leq s}\left|P(A_{i_{1}}\ldots A_{i_{p}}A_{s+1}\ldots A_{k}B_{t+1}\ldots B_{\ell})-P(A_{i_{1}}\ldots A_{i_{p}}A_{s+1}\ldots A_{k})P(B_{t+1}\ldots B_{\ell})\right|$$

$$+\sum_{q=1}^{t}\sum_{1\leq j_1<\ldots< j_q\leq t} |P(A_{s+1}\ldots A_kB_{j_1}\ldots B_{j_q}B_{t+1}\ldots B_\ell)-P(A_{s+1}\ldots A_k)P(B_{j_1}\ldots B_{j_q}B_{t+1}\ldots B_\ell)|$$

$$+ \sum_{p=1}^{s} \sum_{1 \leq i_1 < \ldots < i_p \leq s} \sum_{q=1}^{t} \sum_{1 \leq j_1 < \ldots < j_q \leq t} |P(A_{i_1} ... A_{i_p} A_{s+1} ... A_k B_{j_1} ... B_{j_q} B_{t+1} ... B_{\ell})$$

$$= \frac{s}{p=0} \left(\begin{array}{c} s \\ p \end{array} \right) \sum_{q=0}^{t} \left(\begin{array}{c} t \\ q \end{array} \right) \leq 2^{s+t} \alpha .$$

Denote the indicator of the set A by I_{Λ} and write

$$I_{nj} = I_{\{X_{i} \le u_{n}\}}$$
, $\widetilde{I}_{nj} = I_{nj} - F(u_{n})$, $\overline{I}_{nj} = \widetilde{I}_{nj}/k_{n}^{1/2}$, $j=1,\ldots,n$.

Let ℓ_n and $\widetilde{\ell}_n$ be two sequences of positive integers such that $\ell_n \le \widetilde{\ell}_n \le n$. Define

$$\overline{\xi}_{ni} = \begin{array}{c} (i-1)(\widetilde{\ell}_n + \ell_n) + \widetilde{\ell}_n \\ \sum \\ j = (i-1)(\ell_n + \widetilde{\ell}_n) + 1 \end{array}, \quad \widetilde{\eta}_{ni} = \begin{array}{c} i(\ell_n + \widetilde{\ell}_n) \\ \sum \\ j = (i-1)(\widetilde{\ell}_n + \ell_n) + \widetilde{\ell}_n + 1 \end{array}, \quad i = 1, \dots, N_n$$

and $\overline{\ell}_n = \int_{j=N_n(\ell_n + \overline{\ell}_n) + 1}^n I_{nj}$, where $N_n = [\frac{n}{\ell_n + \ell_n}]$. To obtain our results we need

to discuss the limiting distributions of $\sum_{i=1}^{N} \overline{\xi}_{ni}$, $\sum_{i=1}^{N} \overline{\eta}_{ni}$ and $\overline{\zeta}_{n}$. As preliminaries, we obtain the following lemmas.

Lemma 1.2 The following inequalities hold:

$$|| \underbrace{i \sum_{k=1}^{N_n} \overline{\xi}_{nk} t}_{\text{L}} - (\underbrace{Ee}^{i \overline{\xi}_{n1} t})^{N_n} | \le (n/\ell_n) \cdot \beta(n, \ell_n)$$

$$|| \underbrace{i \sum_{k=1}^{N_n} \overline{\xi}_{nk} t}_{\text{L}} - (\underbrace{Ee}^{i \overline{\xi}_{n1} t})^{N_n} | \le 3^n \alpha(n, \ell_n) .$$

The above statements are still true if we use $\eta_{nk},\ k=1,\dots,N_n$ instead of $\xi_{nk},$ $k=1,\dots,N_n$ in (1.3) and (1.4).

Proof: By Dvoretzky's lemma 5.3 in [3], it follows that

$$\begin{aligned} &| \operatorname{Ee}^{i\sum_{k=1}^{N_n} \overline{\xi}_{nk}t} - (\operatorname{Ee}^{i\overline{\xi}_{n1}t})^n | \\ &\leq \sum_{r=1}^{N_n} |\operatorname{Ee}^{i\sum_{k=1}^r \overline{\xi}_{nk}t} - (\operatorname{Ee}^{i\sum_{k=1}^{r-1} \overline{\xi}_{nk}t}) (\operatorname{Ee}^{i\overline{\xi}_{n1}t}) | \\ &\leq \sum_{r=1}^{N_n} \beta(n,\ell_n) \leq (n/\ell_n) \beta(n,\ell_n) . \end{aligned}$$

we see that (1.3) holds for $\overline{\eta}_{nk}$, $k=1,...,N_n$.

Write $A_1, A_2, \dots, A_{(r-1)}\ell_n$, B_1, \dots, B_{ℓ_n} for $\{X_1 \le u_n\}, \dots, \{X_{\widetilde{\ell_n}} \le u_n\}, \{X_{\ell_n} + \ell_n + 1 \le u_n\}, \dots, \{X_{2\widetilde{\ell_n}} + \ell_n \le u_n\}, \dots, \{X_{(r-1)}(\widetilde{\ell_n} + \ell_n) + 1 \le u_n\}, \dots, \{X_{r\widetilde{\ell_n}} + (r-1)\ell_n \le u_n\}$ respectively and

$$f_{\mathbf{t}}(I_{A_{1}}, \dots, I_{A_{(r-1)}\widetilde{\ell}_{n}}) = e^{i\sum_{k=1}^{r-1} \overline{\xi}_{nk}t}, \quad g_{\mathbf{t}}(I_{B_{1}}, \dots, I_{B_{\widetilde{\ell}}_{n}}) = e^{i\overline{\xi}_{nr}t}.$$

Let $f_t(p)$ be the value of the random variable $f_t(I_{A_1},\ldots,I_{A(r-1)}\widetilde{\ell}_n)$ at such points that p of I_{A_i} , $i=1,\ldots,(r-1)\widetilde{\ell}_n$ are equal to 0 and all others are 1. Then we have

$$\begin{split} & \text{Ef}_{\mathbf{t}} \mathbf{g}_{\mathbf{t}} = \mathbf{f}_{\mathbf{t}}(0) \mathbf{g}_{\mathbf{t}}(0) \mathbf{P}(\overline{\mathbf{A}}_{1} \dots \overline{\mathbf{A}}_{(\mathbf{r}-1)} \widetilde{\boldsymbol{\ell}}_{n}^{\overline{\mathbf{B}}}_{1} \dots \overline{\mathbf{B}}_{\ell_{n}}) \\ & + \mathbf{f}_{\mathbf{t}}(0) \sum_{p=1}^{n} \mathbf{g}_{\mathbf{t}}(p) \sum_{1 \leq \mathbf{j}_{1} \leq \dots \leq \mathbf{j}_{p} \leq \ell_{n}} \mathbf{P}(\overline{\mathbf{A}}_{1} \dots \overline{\mathbf{A}}_{(\mathbf{r}-1)} \widetilde{\boldsymbol{\ell}}_{n}^{-n} \mathbf{B}_{\mathbf{j}_{1} \dots \mathbf{j}_{p}}) \\ & + \mathbf{g}_{\mathbf{t}}(0) \sum_{p=1}^{(\mathbf{r}-1)} \ell_{n} \mathbf{f}_{\mathbf{t}}(p) \sum_{1 \leq \mathbf{j}_{1} \leq \dots \leq \mathbf{j}_{p} \leq (\mathbf{r}-1)} \ell_{n}^{-p(\mathbf{A}_{\mathbf{j}_{1} \dots \mathbf{j}_{p}}^{-n} \overline{\mathbf{B}}_{1} \dots \overline{\mathbf{B}}_{\ell})} \\ & + \sum_{p=1}^{(\mathbf{r}-1)} \ell_{n} \sum_{1 \leq \mathbf{i}_{1} \leq \dots \leq \mathbf{i}_{p} \leq (\mathbf{r}-1)} \ell_{n}^{-p} \sum_{0 \leq \mathbf{i}_{1} \leq \mathbf{j}_{1} \leq \dots \leq \mathbf{j}_{q} \leq \ell_{n}} \mathbf{f}_{\mathbf{t}}(p) \mathbf{g}_{\mathbf{t}}(q) \mathbf{p}(\mathbf{A}_{\mathbf{i}} \dots \mathbf{i}_{p}^{-n} \mathbf{B}_{\mathbf{j}_{1} \dots \mathbf{j}_{q}}) \end{split}$$

Since (1.2) holds (including s=0 or t=0) and $|f_t(p)| = |g_t(p)| = 1$ for any p,q, (1.4)

follows from

$$\frac{i\sum_{k=1}^{N_n} \overline{\xi}_{nk}^t}{-(Ee^{i\overline{\xi}_{n1}^t})^{N_n}} \le \sum_{r=1}^{N_n} |Ef_t g_t - Ef_t Eg_t|$$

$$\leq \alpha(n,\ell_n) \sum_{r=1}^{N_n} \sum_{p=0}^{(r-1)} \ell_n \sum_{q=0}^{\ell_n} {r-1 \choose p} {\ell_n \choose q} 2^{p+q}$$

$$= \sum_{r=1}^{N_n} 3^{r\ell_n} \alpha(n, \ell_n) \leq 3^n \alpha(n, \ell_n) .$$

In the same way, we can show that

$$|Ee^{i\sum_{k=1}^{N} \overline{\eta}_{nk}t} - (Ee^{i\overline{\eta}_{n1}t})^{N_n}| \leq \sum_{r=1}^{N} \frac{r\ell}{3}^{n} \alpha(n, \overline{\ell}_n) \leq 3^{n}\alpha(n, \ell_n),$$

completing the proof of the lemma.

Lemma 1.3 If $\lim_{n} (n/k) F(u_n) = 1$, then

$$(1.5) \quad \left| \sum_{1 \leq i < j < k \leq \tilde{\ell}_n} \operatorname{E} \widetilde{I}_{ni} \widetilde{I}_{nj} \widetilde{I}_{nk} \right| \leq C_1 \tilde{\ell}_n^3 \alpha(n, \ell_n) + C_2 \frac{\tilde{\ell}_n \ell_{n}^2 k^2}{n^2} + C_3 \tilde{\ell}_n \ell_n \left| \sum_{j=1}^{\ell_n - 1} \operatorname{E} \widetilde{I}_{n1} \widetilde{I}_{nj+1} \right|$$

where C_1, C_2, C_3 are constants.

Proof: Using stationarity of the process, we obtain

$$\sum_{1 \leq i < j < k \leq \tilde{\ell}_n} \tilde{E}_{nk}^{\tilde{I}} \tilde{I}_{nj}^{\tilde{I}} \tilde{I}_{nk} = \sum_{s=1}^{\tilde{\ell}_n - 2} \sum_{t=1}^{\tilde{\ell}_n - s - 1} (\tilde{\ell}_n - s - t) \tilde{E}_{nl}^{\tilde{I}} \tilde{I}_{ns+1}^{\tilde{I}} \tilde{I}_{ns+t+1}.$$

Since

$$\begin{split} E\widetilde{I}_{n1}\widetilde{I}_{ns+1}\widetilde{I}_{ns+t+1} &= P(X_{1} \leq u_{n}, X_{s+1} \leq u_{n}, X_{s+t+1} \leq u_{n}) - F(u_{n}) \left[P(X_{1} \leq u_{n}, X_{s+1} \leq u_{n}) + P(X_{1} \leq u_{n}, X_{s+t+1} \leq u_{n}) + P(X_{1} \leq u_{n}, X_{s+t+1} \leq u_{n}) + P(X_{1} \leq u_{n}, X_{s+t+1} \leq u_{n}) \right] + 2F^{3}(u_{n}) \end{split} ,$$

it follows that

$$\begin{split} & \mathcal{I}_{n}^{-2} \, \mathcal{I}_{n}^{-s-1} \\ & | \sum_{s=\ell_{n}}^{n} \sum_{t=1}^{n} (\tilde{\ell}_{n}^{-s-t}) E \tilde{I}_{n1} \tilde{I}_{ns+1} \tilde{I}_{ns+t+1} | \\ & \tilde{\ell}_{n}^{-2} \, \tilde{\ell}_{n}^{-s-1} \\ & \leq \sum_{s=\ell_{n}}^{n} \sum_{t=1}^{n} \mathcal{I}_{n}^{\{|F_{1,s+1,s+t+1}^{(u)}(u_{n}) - F(u_{n}) F_{s+1,s+t+1}^{(u)}(u_{n}) | + |F_{1,s+1}^{(u)}(u_{n}) - F^{2}(u_{n}) | \\ & + |F_{1,s+t+1}^{(u)}(u_{n}) - F^{2}(u_{n}) | \} \leq 3 \tilde{\ell}_{n}^{3} \alpha(n,\ell_{n}) \end{split} ,$$

and in the same way that

$$\begin{split} & \ell_{n}^{-1} \, \, \widetilde{\ell}_{n-s-1} \\ & | \, \sum_{s=1}^{n} \, \sum_{t=\ell_{n}} \, (\widetilde{\ell}_{n-s-t}) E \widetilde{I}_{n1} \widetilde{I}_{ns+1} \widetilde{I}_{ns+t+1} | \leq 3 \widetilde{\ell}_{n}^{3} \, \alpha(n,\ell_{n}) \end{split} \; . \end{split}$$

Noticing that

$$\mathbf{E}\big|\widetilde{\mathbf{I}}_{n1}\widetilde{\mathbf{I}}_{ns+1}\big| = [1-2\mathbf{F}(\mathbf{u}_n)]\mathbf{E}\widetilde{\mathbf{I}}_{n1}\widetilde{\mathbf{I}}_{ns+1} + 4\mathbf{F}^2(\mathbf{u}_n)[1-\mathbf{F}(\mathbf{u}_n)]^2 \text{ , we have}$$

$$\begin{split} & \ell_{n}^{-1} \ell_{n}^{-1} \\ & (\widetilde{\ell}_{n}^{-s-t}) E \widetilde{I}_{n1} \widetilde{I}_{ns+1} \widetilde{I}_{ns+t+1} | \leq \widetilde{\ell}_{n} \ell_{n} \sum_{s=1}^{n-1} E | \widetilde{I}_{n1} \widetilde{I}_{ns+1} | \\ & \leq 4 \widetilde{\ell}_{n} \ell_{n}^{2} F^{2}(u_{n}) [1 - F(u_{n})]^{2} + \widetilde{\ell}_{n} \ell_{n} | 1 - 2 F(u_{n}) | | \sum_{s=1}^{n-1} E \widetilde{I}_{n1} \widetilde{I}_{ns+1} | \\ & \leq C_{2} \frac{\widetilde{\ell}_{n} \ell_{n}^{2} k_{n}^{2}}{n^{2}} + C_{3} \widetilde{\ell}_{n} \ell_{n} | \sum_{j=1}^{n-1} E \widetilde{I}_{n1} \widetilde{I}_{nj+1} | , \end{split}$$

so that the lemma is proved.

Lemma 1.4 If $\lim_{n} (n/k_n) \cdot F(u_n) \approx 1$, then

$$\begin{split} |\int\limits_{1 \leq i \leq j \leq k \leq \ell} & \widetilde{\mathcal{E}}_{ni}^{\widetilde{I}} \widetilde{I}_{nj}^{\widetilde{I}} \widetilde{I}_{nk}^{\widetilde{I}} \widetilde{I}_{n\ell}| \leq C_{1} \widetilde{\ell}_{n}^{4} \alpha(n,\ell_{n}) + C_{2} \widetilde{\ell}_{n}^{2} (\sum_{s=1}^{\ell_{n}-1} \widetilde{E}_{ni}^{\widetilde{I}} \widetilde{I}_{ns+1})^{2} \\ & + C_{3} \widetilde{\ell}_{n} \ell_{n}^{3} k_{n}^{2} / n^{2} + C_{4} \widetilde{\ell}_{n} \ell_{n}^{2} | \sum_{s=1}^{\ell_{n}-1} \widetilde{E}_{n1}^{\widetilde{I}} \widetilde{I}_{ns+1}| \end{split}$$

where C_1, C_2, C_3, C_4 are constants.

Proof: Using stationarity of the process we obtain

Since

$$\begin{split} & \tilde{F}_{n1}^{\tilde{I}}_{ns+1}^{\tilde{I}}_{ns+t+1}^{\tilde{I}}_{ns+t+u+1}^{\tilde$$

it follows in the same way as in the proof of lemma 1.2 that

$$\begin{split} & \underbrace{\widetilde{\ell}_n - s}_{n} \underbrace{\widetilde{\ell}_n - s - 2}_{n} \underbrace{\widetilde{\ell}_n - s - u - 1}_{t = 1} \\ & \underbrace{\sum_{s = \ell_n} \sum_{u = 1}^{\infty} \sum_{t = 1}^{\infty} \left(\widetilde{\ell}_n - s - t - u \right) E\widetilde{I}_{n1} \widetilde{I}_{ns + 1} \widetilde{I}_{ns + t + 1} \widetilde{I}_{ns + t + u + 1} \right)}_{l} \leq 7 \widetilde{\ell}_n^4 \alpha(n, \ell_n) \ , \end{split}$$

Writing

$$E\widetilde{I}_{n1}\widetilde{I}_{ns+1}\widetilde{I}_{ns+t+1}\widetilde{I}_{ns+t+u+1} = [F_{1,s+1,s+t+1,s+t+u+1}(u_n) - F_{1,s+1}(u_n) F_{u+1}(u_n)]$$

$$-F(u_n)[F_{1,s+1,s+t+1}(u_n)-F(u_n)F_{1,s+1}(u_n)]-F(u_n)[F_{1,s+t+1,s+t+u+1}]-F(u_n)F_{1,u+1}(u_n)]$$

+
$$F^{2}(u_{n})[F_{1,s+t+1}(u_{n})-F^{2}(u_{n})] + F^{2}(u_{n})[F_{1,s+t+u+1}(u_{n})-F^{2}(u_{n})]$$

+
$$F^{2}(u_{n})[F_{1,t+1}(u_{n})-F^{2}(u_{n})] + F^{2}(u_{n})[F_{1,t+u+1}(u_{n})-F^{2}(u_{n})]$$

-
$$F(u_n)[F_{1,s+1,s+t+u+1}(u_n) - F(u_n)F_{1,s+1}(u_n)]$$

$$-F(u_n)[F_{1,t+1,t+u+1}(u_n)-F(u_n)F_{1,u+1}(u_n)] + [F_{1,s+1}(u_n)-F^2(u_n)][F_{1,u+1}(u_n)-F^2(u_n)],$$

we also have

$$\begin{split} & \ell_{n}^{-1} \ell_{n}^{-1} \ell_{n}^{-s-u-1} \\ & | \sum_{s=1}^{n} \sum_{u=1}^{n} \sum_{t=\ell_{n}}^{n} (\widetilde{\ell}_{n}^{-s-t-u}) E \widetilde{l}_{n1} \widetilde{l}_{ns+1} \widetilde{l}_{ns+t+1} \widetilde{l}_{ns+t+u+1} | \leq 9 \widetilde{\ell}_{n}^{4} \alpha(n,\ell_{n}) + \widetilde{\ell}_{n}^{2} (\sum_{s=1}^{n} E \widetilde{l}_{n1} \widetilde{l}_{ns+1})^{2} \end{split}$$

Finally we can show that

$$\frac{\ell_n - 1}{|\sum_{s=1}^{\ell_n} \sum_{u=1}^{\tau_n} \sum_{u=1}^{\tau_n} (\widetilde{\ell}_n - s - t - u) E\widetilde{\mathbf{I}}_{n1} \widetilde{\mathbf{I}}_{ns+1} \widetilde{\mathbf{I}}_{ns+t+1} \widetilde{\mathbf{I}}_{ns+t+u+1}| \leq C_4 \widetilde{\ell}_n \ell_n^2 |\sum_{s=1}^{\ell_n} E\widetilde{\mathbf{I}}_{n1} \widetilde{\mathbf{I}}_{s+1}| + C_5 \widetilde{\ell}_n \ell_n^3 k_n^2 / n^2}.$$

Hence the lemma is proved.

§2. Some limit theorems

We introduce the following assumptions:

Assumption I: For some sequence $\{\ell_n\}$ of positive integers,

(2.1)
$$(n/k_n^{1/2}) \cdot \beta(n, \ell_n) \to 0 \quad (n \to \infty)$$

$$(2.2) \quad \lim_{n \to \infty} (n/k_n) \cdot \sum_{j=1}^{\lceil k_n^{1/2} \rceil - 1} E\widetilde{I}_{n1} \widetilde{I}_{nj+1} = \sigma$$

(2.3)
$$\lim_{n} (n/k^{3/2}) \cdot \sum_{j=1}^{\lfloor k^{1/2} \rfloor - 1} j E \widetilde{I}_{n1} \widetilde{I}_{nj+1} = 0.$$

Assumption II. For some sequence $\{\ell_n\}$ of positive integers,

$$(2.4) \quad 3^{n}\alpha(n, \ell_{n}) \rightarrow 0 \quad (n \rightarrow \infty)$$

and (2.2), (2.3) hold.

It is obvious that the constant σ in (2.2) may be different if the sequence $\{u_n\}$ is changed. But we can show that σ must be the same for any $\{u_n\}$ satisfying (1.1) with some real u.

Lemma 2.1 If (2.1) or (2.4) holds for some $\ell_n = o(k_n^{1/2})$, $\ell_n \to \infty$, then (2.2) and (2.3) hold, if and only if

(2.2)'
$$\lim_{n} (n/k_n) \cdot \sum_{j=1}^{\ell_n - 1} E \widetilde{I}_{n1} \widetilde{I}_{nj+1} = \sigma$$

(2.3)'
$$\lim_{n} (n/k_n^{3/2}) \cdot \sum_{j=1}^{\ell_n - 1} j \tilde{E} \tilde{I}_{n1} \tilde{I}_{nj+1} = 0.$$

Furthermore, if (1.1) holds for some $u \in \mathbb{R}$, we can use

$$\frac{\ell_n^{-1}}{(2.2)!!} = \lim_{n} (n/k_n) \cdot \sum_{j=1}^{r} [P(X_1 \le a(k_n/n), X_{j+1} \le a(k_n/n)) - (k_n/n)^2] = \sigma$$

$$(2.3)" \quad \lim_{n} (n/k_{n}^{3/2}) \cdot \sum_{j=1}^{\ell_{n}-1} j[P(X_{1} \le a(k_{n}/n), X_{j+1} \le a(k_{n}/n)) - (k_{n}/n)^{2}] = 0$$

instead of (2.2)' and (2.3)' respectively in the above statements. In (2.2)" and (2.3)",

$$a(k_n/n) = \begin{cases} a_n^{-0} & \text{if } F(a_n) - k_n/n < k_n/n - F(a_n^{-0}) \\ a_n & \text{if } F(a_n) - k_n/n < k_n/n - F(a_n^{-0}) \end{cases}$$

where a_n is a real number such that $F(a_n-0) \le k_n/n \le F(a_n)$, and the event $\{x_j \le a_n-0\}$ is defined as $\{x_j \le a_n\}$.

Proof: The first part of the lemma follows from

$$|[h/k_n] \cdot [\tilde{t}_n^{1/2}] - 1$$

$$|[h/k_n] \cdot [\tilde{t}_n^{1/2}] - E \tilde{I}_{n1} \tilde{I}_{nj+1}| \le (n/k_n) \cdot [k_n^{1/2}] - (n, \ell_n) \to 0$$

$$|\{ (n/k_n^{3/2}) \cdot \sum_{\substack{j=\ell \\ n}}^{\lceil k_n^{1/2} \rceil - 1} j E \widetilde{I}_{n,j+1} | \le (n/k_n^{3/2}) \cdot [k_n^{1/2}]^2 \alpha(n,\ell_n) \to 0 .$$

Now we show the second part. By the definition of $a(k_n/n)$, it is easy to see that $\left|F(a(k_n/n)) - k_n/n\right| \leq \left|F(x) - k_n/n\right| \text{ for any } x. \text{ Therefore we have}$

$$| (n/k_n) \cdot \sum_{j=1}^{\ell_n - 1} E \widetilde{I}_{n1} \widetilde{I}_{nj+1} - (n/k_n) \cdot \sum_{j=1}^{\ell_n - 1} [P(X_1 \le a(k_n/n), X_{j+1} \le a(k_n/n)) - (k_n/n)^2] |$$

$$\frac{\ell_n^{-1}}{\ell_n^{-1}} \left[\left| P(X_1 \le u_n, X_{j+1} \le u_n) - P(X_1 \le a(k_n/n), X_{j+1} \le a(k_n/n)) \right| + \left| F^2(u_n) - (k_n/n)^2 \right| \right]$$

$$\ell_{n}^{-1} \le 2(n/k_{n}) \cdot \sum_{j=1}^{n} [|F(u_{n}) - F(a(k_{n}/n))| + |F(u_{n}) - k_{n}/n|]$$

$$< 6(\ell_n/k_n^{1/2}) \cdot (n/k_n^{1/2}) \cdot |F(u_n) - k_n/n| \to 0$$
.

This proves that (2.2)" and (2.2)' are equivalent. In the same way, we can show that (2.3)" is equivalent to (2.3)'.

Let
$$\overline{S}_n = \sum_{j=1}^n \overline{I}_{nj} = \sum_{k=1}^N \overline{\xi}_{nk} + \sum_{k=1}^N \overline{\eta}_{nk} + \overline{\zeta}_n.$$

We now start to discuss the limiting distribution of \overline{S}_n .

Lemma 2.2 If assumption I or II holds for some $\ell_n = o(k_n^{1/2})$ and

$$(2.5) \quad \lim_{n} nF(u_{n})/k_{n} = 1,$$

then

(2.6)
$$P(\overline{S}_n \le x) \stackrel{c}{\rightarrow} \Phi_{\lambda}(x)$$
,

if and only if
$$(2.7) = \lim_{n} (Ee^{i\xi_{nl}t})^{N_{n}} = \psi(t).$$

when (2.6) or (2.7) holds, we have

(2.8) .(t) =
$$\int e^{itx} d\phi_{\lambda}(x)$$
.

Proof: Let $\ell_n = [k_n^{1/2}]$. If $n - N_n(\ell_n + \ell_n) < \ell_n$, we have

$$0 \le E\overline{\zeta}_n^2 \le \ell_n^2/k_n \to 0.$$

If $n - N_n(\ell_n + \widetilde{\ell}_n) \ge \ell_n$, we also have

$$0 < E\overline{\zeta}_{n}^{2} = \frac{1}{k_{n}} \left\{ \left[n - N_{n} (\ell_{n} + \widetilde{\ell}_{n}) \right] F(u_{n}) \left[1 - F(u_{n}) \right] + 2 \sum_{j=1}^{n-N_{n}} \left[n - N_{n} (\ell_{n} + \widetilde{\ell}_{n}) - j \right] E\widetilde{I}_{n1} \widetilde{I}_{nj+1} \right\}$$

$$\leq C/N_n + \frac{2}{N_n} \left| \frac{n}{k_n} \right|_{j=1}^{\tilde{\ell}_n - 1} E\widetilde{I}_{n1} \widetilde{I}_{nj+1} \right| + \frac{2}{k_n} \left| \sum_{j=1}^{n-1} j E\widetilde{I}_{n1} \widetilde{I}_{nj+1} \right| + 2 \frac{(\tilde{\ell}_n + \ell_n)^2}{k_n} \alpha(n, \ell_n) \to 0 .$$

Hence by Chebyshev's inequality, it follows that

$$\overline{\zeta} \to 0$$
 [P].

Since $E\overline{\eta}_{n1} = 0$, we have

$$\frac{i\tilde{n}_{n}t}{N_{n}^{1}Fe^{\frac{i\tilde{n}_{n}t}{n}t}-1} \leq N_{n}^{2}E\overline{n}_{n}^{2} + t^{2}/2 = (t^{2}/2) \cdot (N_{n}/k_{n})[\ell_{n}F(u_{n})[1-F(u_{n})] + 2\int_{j=1}^{\ell_{n}-1} (\ell_{n}-j)E\tilde{l}_{n}\tilde{l}_{n}\tilde{l}_{n}j+1}$$

$$+ \frac{t^2}{2} \{ \frac{\ell_n}{\ell_n} \frac{n}{k_n} F(u_n) [1 - F(u_n)] + 2 \frac{\ell_n}{\ell_n} | \frac{n}{k_n} \sum_{j=1}^{\ell_n - 1} E\widetilde{I}_{n1} \widetilde{I}_{nj+1} | + 2 | \frac{n}{k_n^{3/2}} \sum_{j=1}^{\ell_n - 1} j E\widetilde{I}_{n1} \widetilde{I}_{nj+1} | \} + \alpha \ ,$$

i.e. $Ee^{i\vec{\eta}_{n}1}^{t} = 1 + 0(\frac{1}{N_{n}})$. Therefore $\lim_{n} (Ee^{i\vec{\eta}_{n}1}^{t})^{N} = 1$. By using lemma 1.2, this implies that

$$\lim_{n \to \infty} \frac{\int_{0}^{N} \overline{\eta}_{nk} t}{\int_{0}^{\infty} \frac{1}{n} e^{-\frac{1}{2} t} dt}$$

$$\sum_{k=1}^{N} \overline{n}_{nk} \rightarrow 0[P].$$

From the above argument, it follows that (2.6) is equivalent to $P(\sum_{k=1}^{N_n} \overline{\xi}_{nk} \le x) \xrightarrow{\xi} (x)$, i.e.

$$\lim_{n \to \infty} \frac{i \sum_{k=1}^{N} \overline{\xi}_{nk} t}{k=1} = \psi(t) ,$$

where $\psi(t)$ is defined by (2.8). Using lemma 1.2 again, we see that (2.6) and (2.7) are equivalent. Hence the lemma is proved.

Lemma 2.3 If assumption I or II holds for some $\ell_n = o(\min(k_n^{1/2}, \frac{n^{1/2}}{k_n^{1/4}}))$, and (2.5) holds, then

$$\lim_{n} (Ee^{i\overline{\xi}_{n1}t})^{N_n} = e^{-[\sigma + \frac{1}{2}(1-\lambda)]t^2}$$

Proof: From Taylor's formula, it is easy to show that

$$|e^{it} - \sum_{k=0}^{n} \frac{(it)^{k}}{k!}| \le \frac{|t|^{n+1}}{(n+1)!}$$
, n=0,1,2,..., V t

Therefore, taking n=3, we have

$$|\operatorname{Ee}^{i\overline{\xi}_{n1}t}_{-1-it\overline{\xi}_{n1}} - \frac{(it)^2}{2!} \operatorname{E}\overline{\xi}_{n1}^2 - \frac{(it)^3}{3!} \operatorname{E}\overline{\xi}_{n1}^3|$$

$$\leq E \left| e^{i\overline{\xi}_{n1}t} - 1 - it\overline{\xi}_{n1} - \frac{(it)^2}{2!} \overline{\xi}_{n1}^2 - \frac{(it)^3}{3!} \overline{\xi}_{n1}^3 \right| < \frac{\left| t \right|^4 E \overline{\xi}_{n1}^4}{4!}$$

Noticing that $E\overline{\xi}_{n1} = 0$, the lemma can be proved if we show that

$$E\overline{\xi}_{n1}^2 = \frac{1}{N_n}[(1-\lambda)+2\sigma] + o(\frac{1}{N_n})$$
,

$$E\overline{\xi}_{n1}^3 = o(\frac{1}{N_n})$$
 , $E\overline{\xi}_{n1}^4 = o(\frac{1}{N_n})$,

which is equivalent to

(2.9)
$$N_n E \overline{\xi}_{n1}^2 \to (1-\lambda) + 2\sigma$$
,

(2.10)
$$N_n E \overline{\xi}_{n1}^3 \to 0$$
 ,

(4.11)
$$N_n E_{5n1}^{-4} + 0$$
.

Since under assumption I or II,

$$N_{n}E\overline{\xi}_{n1}^{2} = \frac{N_{n}}{k_{n}} \{\widetilde{\ell}_{n}F(u_{n})[1-F(u_{n})] + 2\sum_{j=1}^{n} (\widetilde{\ell}_{n}-j)E\widetilde{I}_{n1}\widetilde{I}_{nj+1}\}$$

$$= \frac{N_{n}\widetilde{\ell}_{n}F(u_{n})[1-F(u_{n})]}{k_{n}} + \frac{2N_{n}\widetilde{\ell}_{n}}{k_{n}} \sum_{j=1}^{\widetilde{\ell}_{n}-1} E\widetilde{I}_{n1}\widetilde{I}_{nj+1} - \frac{2N_{n}}{k_{n}} \sum_{j=1}^{\widetilde{\ell}_{n}-1} jE\widetilde{I}_{n1}\widetilde{I}_{nj+1} + (1-\lambda) + 2\sigma ,$$

(2.9) is obvious. To prove (2.10), we expand

$$(2.12) \quad N_{n} E \overline{\xi}_{n1}^{3} = \frac{N_{n}}{k_{n}^{3/2}} \sum_{j=1}^{7} E \widetilde{I}_{nj}^{3} + \frac{3N_{n}}{k_{n}^{3/2}} \sum_{i \neq j} E \widetilde{I}_{ni}^{2} \widetilde{I}_{nj} + \frac{6N_{n}}{k_{n}^{3/2}} \sum_{i < j < k} E \widetilde{I}_{ni} \widetilde{I}_{nj} \widetilde{I}_{nk}$$

For the first term on the right hand of (2.12), we have

$$|\frac{N_n}{k_n^{3/2}} \int_{j=1}^{2n} E \widetilde{I}_{nj}^3 | \le \frac{N_n}{k_n} |E \widetilde{I}_{nj}^3 | \le \frac{1}{k_n^{1/2}} |1-2F(u_n)| \cdot \frac{n}{k_n} |F(u_n)| |1-F(u_n)| + 0.$$

Noticing that $E\widetilde{I}_{ni}^2\widetilde{I}_{nj} = [1-2F(u_n)]E\widetilde{I}_{ni}\widetilde{I}_{nj}$, we have

$$\sum_{i \neq j} E \widetilde{I}_{ni}^2 \widetilde{I}_{nj} = 2 [1 - F(u_n)] \sum_{j=1}^{n-1} (\widetilde{\ell}_n - j) E \widetilde{I}_{n1} \widetilde{I}_{nj+1} .$$

Therefore, for the second term on the right hand of (2.12), it follows that

$$|\frac{3N_n}{k_n^{3/2}} \sum_{\mathbf{i} \neq \mathbf{j}} \widetilde{EI}_{n\mathbf{i}}^2 \widetilde{I}_{n\mathbf{j}}| \leq \frac{C}{k_n^{1/2}} |\frac{N_n}{k_n} \sum_{j=1}^{\widetilde{\ell}_n - 1} (\widetilde{\ell}_n - \mathbf{j}) \widetilde{EI}_{n\mathbf{l}} \widetilde{I}_{n\mathbf{j} + 1}| \to 0 .$$

Lastly, by using lemma 1.3, we obtain

$$|\frac{6N_n}{k_n^{3/2}} \sum_{i \leq j \leq k} E \widetilde{I}_{ni} \widetilde{I}_{nj} \widetilde{I}_{nk}| \leq C_1 \frac{\widetilde{\ell}_n^2}{k_n} \cdot \frac{n}{k_n^{1/2}} \alpha(n, \ell_n) + C_2 \frac{k_n^{1/2} \ell_n^2}{n} + C_3 \frac{\ell_n}{k_n^{1/2}} \cdot \frac{n}{k_n} \sum_{j=1}^{\ell_n - 1} E \widetilde{I}_{n1} \widetilde{I}_{nj+1}| + 0.$$

Hence (2.10) holds. To prove (2.12), expand

$$(2.13) \quad N_{n}E^{\frac{-4}{5}}_{n1} = \frac{N_{n}^{2}}{k_{n}^{2}} E\widetilde{I}_{n1}^{4} + \frac{4N_{n}}{k_{n}^{2}} \sum_{i \neq j} E\widetilde{I}_{ni}^{3} \widetilde{I}_{nj} + \frac{6N_{n}}{k_{n}^{2}} \sum_{i \leq j} E\widetilde{I}_{ni}^{2} \widetilde{I}_{nj}^{2}$$

$$+ \frac{12N_{n}}{k_{n}^{2}} \sum_{\substack{j \neq i, k \neq i \\ i \leq k}} E\widetilde{I}_{ni}^{2} \widetilde{I}_{nj} \widetilde{I}_{nk} + \frac{24N_{n}}{k_{n}^{2}} \sum_{\substack{i \leq j \leq k < \ell}} E\widetilde{I}_{ni} \widetilde{I}_{nj} \widetilde{I}_{nk} \widetilde{I}_{n\ell} .$$

For the first term on the right hand of (2.13), it follows that

$$\frac{{}^{N}_{n}\widetilde{\ell}_{n}}{k_{n}^{2}} E\widetilde{I}_{n1}^{4} = \frac{{}^{N}_{n}\widetilde{\ell}_{n}}{k_{n}^{2}} F(u_{n}) [1-F(u_{n})] [1-3F(u_{n}) + 3F^{2}(u_{n})] \le \frac{C}{k_{n}} \to 0 .$$

Since $E\widetilde{I}_{ni}^{3}\widetilde{I}_{nj}^{7} = [1-3F(u_{n}) + 3F^{2}(u_{n})]E\widetilde{I}_{ni}^{7}\widetilde{I}_{nj}$, for the second term, we also have

$$\left|\frac{\frac{N}{n}}{k_n^2}\sum_{i\neq j}\tilde{E}\widetilde{I}_{ni}^3\widetilde{I}_{nj}\right| \leq \frac{C}{k_n}\left|\frac{\frac{N}{n}}{k_n}\sum_{j=1}^{n-1}(\widetilde{\ell}_{n}^{-j})\tilde{E}\widetilde{I}_{nj}\widetilde{I}_{nj+1}\right| \to 0.$$

By using $E\widetilde{I}_{ni}^2\widetilde{I}_{nj}^2 = F^2(u_n)[1-F(u_n)]^2 + [1-2F(u_n)]^2E\widetilde{I}_{ni}\widetilde{I}_{nj}$, it is seen that

$$\frac{\frac{N}{n}}{k_{n}^{2}} \sum_{i \leq j} E \widetilde{I}_{ni}^{2} \widetilde{I}_{nj}^{2} \leq \frac{\frac{N}{n} \widetilde{I}_{n}^{2}}{k_{n}^{2}} F^{2}(u_{n}) \left[1 - F(u_{n})\right]^{2} + \frac{\frac{N}{n} C}{k_{n}^{2}} \left| \sum_{j=1}^{N-1} (\widetilde{\ell}_{n} - j) E \widetilde{I}_{n1} \widetilde{I}_{nj+1} \right| \to 0 .$$

Noticing that $E\widetilde{I}_{ni}^2\widetilde{I}_{nj}\widetilde{I}_{nk} = [1-2F(u_n)]E\widetilde{I}_{ni}\widetilde{I}_{nj}\widetilde{I}_{nk} + 2F^2(u_n)[1-F(u_n)]E\widetilde{I}_{nj}\widetilde{I}_{nk}$ we obtain for the fourth term,

$$|\frac{\frac{N_n}{k_n^2}}{\sum\limits_{\substack{j \neq i, k \neq i \\ j < k}} |\widetilde{\Gamma}_{ni}^2 \widetilde{\Gamma}_{nj}^2 \widetilde{\Gamma}_{nk}| \leq \frac{C_1}{k_n^{1/2}} |\frac{N_n}{k_n^{3/2}} |\sum\limits_{\substack{i \leq j \leq k}} |\widetilde{\Gamma}_{ni} \widetilde{\Gamma}_{nj} \widetilde{\Gamma}_{nk}| + \frac{C_2}{N_n} \cdot \frac{N_n}{n} |\frac{\widetilde{\ell}_n}{k_n} |\sum\limits_{\substack{j = 1}}^{\widetilde{\ell}_n - 1} |\widetilde{\ell}_{n-1}| |\widetilde{\Gamma}_{nj+1}| + \alpha |\widetilde{\Gamma}_{nj+1}| |\widetilde{\Gamma}$$

Lastly, by lemma 1.4, it follows that $\frac{\left|\frac{n}{k_n^2}\right|^2}{k_n^2} = \frac{1}{1 \le j \le k \le \ell} \frac{1}{1} \prod_{i=1}^{k} \frac{1}{n_i} \prod_{i=1}^{k}$

$$=C_{1}\frac{\ell_{n}^{5}}{k_{n}^{3/2}}\cdot\frac{n}{k_{n}^{1/2}}\cdot(n,\ell_{n})+C_{2}\frac{N_{n}^{2}\ell_{n}^{2}}{k_{n}^{2}}+\sum_{s=1}^{\ell_{n}-1}\mathbb{E}\hat{1}_{n1}\hat{1}_{ns+1})^{2}+C_{3}\frac{\ell_{n}^{2}k_{n}^{1/2}}{k_{n}^{2}}\cdot\frac{\ell_{n}}{k_{n}^{1/2}}+C_{1}\frac{\ell_{n}^{2}n}{k_{n}^{2}}\cdot\frac{\ell_{n}^{-1}}{s-1}\mathbb{E}\hat{1}_{n1}\hat{1}_{ns+1}+\cdots$$

Hence (2.12) holds, and the lemma is proved.

From Lemma 2.2 and 2.3, we obtain

Theorem 2.4 If assumption I or II holds for some $\ell_n = o(\min(k_n^{1/2}, \frac{n^{1/2}}{k_n^{1/4}}))$, and (2.5) holds, then (2.6) holds with

$$\Phi_{\lambda}(x) = \frac{1}{(2\pi)^{1/2} \sigma_{\lambda}} \int_{-\infty}^{x} \exp(-\frac{t^2}{2\sigma_{\lambda}^2}) dt = \Phi(\frac{x}{\sigma_{\lambda}}),$$

where $\sigma_{\lambda}^2 = (1-\lambda)+2\sigma$, $\Phi(x)$ is the normal distribution function with mean 0 and variance 1, and when $\sigma_{\lambda} = 0$, $\Phi(\frac{x}{\sigma_{\lambda}})$ is defined to be 1 for $x \ge 0$ and 0 for x < 0. The above statement is still true if (2.2)', (2.3)' are used instead of (2.2), (2.3) in assumption 1 and II.

Furthermore, using lemma 2.1, we obtain

Theorem 2.5 If (1.1) holds, and assumption I or II holds for some

 $\ell_n = o(\min(k_n^{1/2}, \frac{n^{1/2}}{k_n^{1/4}}))$, then the conclusion of Theorem 2.4 follows. The conclusion of Theorem 2.4 is still true if (2.2)", (2.3)" are used instead of (2.2), (2.3) in assumptions I and II.

It is easy to show that if for some $\ell_n = o(k_n^{1/2})$

(2.14)
$$\lim_{n\to\infty} \frac{\ell_n^{-1}}{k_n} \sum_{j=1}^{r} |E\widetilde{I}_{n1}\widetilde{I}_{nj+1}| = 0 ,$$

then (2.2) and (2.3) hold with $\sigma=0$. Therefore we obtain

Theorem 2.6 If (2.14) and one of (2.1) and (2.4) holds for some

$$\ell_n = o(\min(k_n^{1/2}, \frac{n^{1/2}}{k_n^{1/4}}))$$
, then (2.6) holds with $\Phi_{\lambda}(x) = \Phi(\frac{x}{(1-\lambda)^{1/2}})$.

§3. The results for general stationary processes

An i.i.d. sequence $\{\hat{X}_n\}$ is called the associated independent sequence of a stationary sequence $\{X_n\}$ if \hat{X}_n has the same marginal d.f. F(x) as X_n . Smirnov [6] has shown that there are constants $a_n > 0$, b_n such that

$$(3.1) \quad P(X_{k_n}^{(n)} \le a_n x + b_n) \stackrel{c}{\to} \Psi(x)$$

if and only if

(3.2)
$$\frac{n}{k_n^{1/2}} [F(a_n x + b_n) - \frac{k_n}{n}] \stackrel{c}{\to} (1 - \lambda)^{1/2} u(x)$$

where u(x) is a nondecreasing, right continuous, (finite or infinite valued) real function such that $u(-\infty) = \lim_{x \to -\infty} u(x) = -\infty$, $u(\infty) = \lim_{x \to \infty} u(x) = \infty$. The relation between $\Psi(x)$ and u(x) is

$$(3.3) \quad \Psi(x) = \Phi(u(x)).$$

In this paper, we will find the limiting distribution of $X_{k_n}^{(n)}$ under condition (3.2) considering only the case in which $\Phi(u(x))$ is not degenerate.

Theorem 3.1 Suppose that

- 1. there are $a_n>0$, b_n such that (3.2) holds with a continuous u(x),
- 2. for any $u_n = a_n x + b_n$, $x \in B(u(\cdot)) = \{x: |u(x)| < \infty \}$, assumption I or II holds with some $\ell_n = o(\min(k_n^{1/2}, \frac{n^{1/2}}{k_n^{1/4}}))$. Then the real σ in (2.2) is independent of x

and determined by (2.2)", and

$$(3.4) \quad P(X_{k_n}^{(n)} \leq a_n x + b_n) \stackrel{c}{\rightarrow} \Phi(\frac{(1-\lambda)^{1/2}}{\sigma_{\lambda}} u(x)), \quad \sigma_{\lambda} > 0.$$

Proof: According to theorem 2.5, we have

$$P(X_{k_n}^{(n)} \le a_n x + b_n) = P(\overline{S}_n \ge \frac{n}{k_n^{1/2}} \left\{ \frac{k_n}{n} - F(a_n x + b_n) \right\})$$

$$+ 1 - \Phi(-\frac{(1-\lambda)^{1/2}}{\sigma_{\lambda}} u(x)) = \Phi(\frac{(1-\lambda)^{1/2}}{\sigma_{\lambda}} u(x))$$

for all $x \in B(u(\cdot))$. If $u(x) = +\infty$, then $x \ge x_0 = \sup\{x: u(x) < \omega\}$. By taking $x_n \cdot B(u(\cdot))$, $x_n + x_0$ and using the continuity of $\Phi(\cdot)$ and $u(\cdot)$, it follows that

$$\frac{\lim_{n} P(X_{k_{n}}^{(n)} \leq a_{n}x + b_{n}) \geq \lim_{n} P(X_{k_{n}}^{(n)} \leq a_{n}x_{0} + b_{n}) \geq \lim_{n} P(X_{k_{n}}^{(n)} \leq a_{n}x_{n} + b_{n})}{1 + \lim_{n} \Phi\left\{\frac{(1-\lambda)^{1/2}}{\sigma_{\lambda}} u(x_{n})\right\} = 1,$$

i.e. $\lim_{n} P(X_{k_n}^{(n)} \le a_n x + b_n) = \Phi(\frac{(1-\lambda)^{1/2}}{\sigma_{\lambda}} u(x))$ still holds. Similarly we can show (3.4) also holds if $u(x) = -\infty$. This proves the theorem.

From this theorem we know that under assumption I or II, the limiting distributions of $\frac{\chi_k^{(n)}-b_n}{a_n}$ and $\frac{\chi_k^{(n)}-b_n}{a_n}$ may be different. In fact, we have

Theorem 3.2 If there are $a_n > 0$, b_n such that (3.2) holds with a continuous u(x), (2.14) and either (2.1) or (2.4) holds with some $\ell_n = o(\min(k_n^{1/2}, \frac{n^{1/2}}{k_n^{1/4}}))$ for any $u_n = a_n x + b_n$, $x \in B(u(\cdot))$, then

$$(3.5) \quad P(X_{k_n}^{(n)} \le a_n x + b_n) \rightarrow \Phi(u(x))$$
.

Proof: Notice (2.14) implies (2.2) and (2.3) with $\sigma=0$.

Theorem 3.3 If in theorem 3.1 or 3.2, $\{k_n\}$ is nondecreasing and $\lambda=0$, then (3.4) and (3.5) hold respectively.

Proof: It is proved by Wu [8] that if $\{k_n\}$ is nondecreasing then the only possible types of limiting laws of $\{\hat{X}_{k_n}^{(n)}\}$ are $\Phi(u_i(x))$, i=1,2,3, where

$$u_1(x) = \begin{cases} -\alpha \log|x| & x < 0 & (\alpha > 0) \\ \infty & x \ge 0 \end{cases}$$

$$u_2(x) = \begin{cases} -\infty & x \le 0 \\ \alpha \log x & x > 0 \end{cases} \quad (\alpha > 0)$$

$$u_3(x) = x .$$

The theorem follows from theorem 3.1 and 3.2, by noting that $u_i(x)$, i=1,2,3 are continuous.

Smirnov [6] has shown that u(x) satisfying (3.2) need not be continuous if $0<\lambda<1$ in (0.1). Therefore theorem 3.1 and 3.2 cannot be applied to this case, and a special discussion is therefore needed.

lemma 5.4 [f $\lambda \epsilon (0,1)$ in (0.1) and $\beta (n,\ell_n)$ (or $3^n \alpha (n,\ell_n)$) tend to zero for some $\ell_n = o(k_n^{1/2})$, $\ell_n \rightarrow \infty$, then

$$\frac{1}{k_n} \sum_{j=1}^{N} \widetilde{I}_{nj} \rightarrow 0 \quad [P] .$$

Proof: Let $\tilde{\ell}_n = \max(n\beta^{1/2}(n,\ell_n), [k_n^{1/2}])$ and

$$\widetilde{\xi}_{ni} = \begin{cases} (i-1)(\widetilde{\ell}_n + \ell_n) + \widetilde{\ell}_n \\ \sum_{j=(i-1)(\widetilde{\ell}_n + \widetilde{\ell}_n) + 1} \widetilde{I}_{nj} \end{cases}, \quad \widetilde{\eta}_{ni} = \begin{cases} i(\ell_n + \widetilde{\ell}_n) \\ \sum_{j=(i-1)(\ell_n + \widetilde{\ell}_n) + \widetilde{\ell}_n + 1} \widetilde{I}_{nj} \end{cases},$$

$$\widetilde{\zeta}_n = \begin{cases} \sum_{j=N_n(\widetilde{\ell}_n + \widetilde{\ell}_n) + 1} \widetilde{I}_{nj} \end{cases}.$$

We have

$$\frac{1}{k_n^2} \operatorname{E} \widetilde{\zeta}_n^2 \leq \frac{1}{k_n^2} \left(\widetilde{\ell}_n + \ell_n \right)^2 + 0.$$

$$\frac{1}{k_n^2} E(\sum_{i=1}^{N_n} \widetilde{\eta}_{ni})^2 \le \frac{1}{k_n^2} (N_n \ell_n)^2 \le \frac{n^2}{k_n^2} \cdot \frac{\ell_n}{\ell_n})^2 \to 0 \quad ,$$

so that $\frac{1}{k_n^2} \widetilde{\zeta}_n \to 0$ [P], $\frac{1}{k_n} \int_{i=1}^{N} \widetilde{\eta}_{ni} \to 0$ [P]. Noticing that under the conditions of the lemma,

$$|\underbrace{i \sum_{j=1}^{N} \frac{\widetilde{\xi}_{nj}}{k_n}}_{j=1} t = i \frac{\widetilde{\xi}_{n1}}{k_n} t \times \sum_{j=1}^{N} \frac{1}{k_n} (n, \ell_n) \to 0,$$

and that

$$\frac{N_n}{k_n^2} \, E \left| \widetilde{\xi}_{n1} \right|^2 \leq \frac{N_n}{k_n^2} \, \widetilde{\ell}_n^2 \leq \frac{n}{k_n} \, \cdot \, \frac{\widetilde{\ell}_n}{k_n} \, \to \, 0 \ , \ \text{we obtain}$$

$$\lim_{n \to \infty} i \frac{1}{k_n} \sum_{j=1}^{N_n} \widetilde{\xi}_{n,j} t \qquad \qquad i \frac{\widetilde{\xi}_{n,1}}{k_n} t$$

$$\lim_{n \to \infty} Ee \qquad \qquad = \lim_{n \to \infty} (Ee \qquad)^{N_n} = 1 ,$$

and hence $\frac{1}{k_n} \sum_{i=1}^{N_n} \tilde{\xi}_{ni} \to 0$ [P]. This proves the lemma.

Lemma 3.5 Under the conditions of lemma 3.4, if for some real sequence $\{u_n\}$,

$$0 < \frac{1 \text{ im}}{n} P(X_{k_n}^{(n)} \le u_n) \le \overline{\lim_{n}} P(X_{k_n}^{(n)} \le u_n) < 1$$
,

then (2.5) holds.

Proof: If (2.5) does not hold, from Lemma 3.4 and the fact

$$P(X_{k_n}^{(n)} \le u_n) = P(\frac{1}{k_n} \sum_{j=1}^{n} \widetilde{I}_{n_j} \ge 1 - \frac{n}{k_n} F(u_n)),$$

we know that one of the two equations

$$\frac{\lim_{n} P(X_{k_n}^{(n)} \le u_n) = 0 , \quad \overline{\lim_{n} P(X_{k_n}^{(n)} \le u_n) = 1}$$

must hold, contradicting the assumption of the lemma 3.5. Hence (2.5) must hold. Theorem 3.6 Suppose that

- 1. $\lambda \epsilon(0,1)$ in (0.1);
- 2. there are $a_n>0$, b_n such that (3.2) holds;
- 3. for any $u_n = a_n x + b_n$, $x \in B_1(u(\cdot)) \equiv \{x : |u(x)| < \infty$, x is a continuity point of $u(x)\}$, assumption I or II holds for some $\ell_n = o(k_n^{1/4})$, $\ell_n \to \infty$. Then the real in (2.2) is independent of x and determined by (2.2)", and (3.4) holds. Furthermore, if conditions 1,2,(2.14) hold and either (2.1) or (2.4), with $\ell_n = o(k_n^{1/4})$ $\ell_n \to \infty$, then (3.5) holds.

Proof: It follows from theorem 2.5 that (3.4) holds for all $x \in B_1(u(\cdot))$. Thus it is sufficient to show that

(3.6)
$$\lim_{n} P(X_{k_n}^{(n)} \le a_n x + b_n) = 1$$
, if $u(x) = \infty$

(5.7)
$$\lim_{n} P(X_{k_n}^{(n)} \le a_n x + b_n) = 0$$
, if $u(x) = -\infty$.

If (3.6) is not true, we can choose a subsequence such that

$$\lim_{n'} P(X_{k_{n'}}^{(n')} \le a_{n'} X_0 + b_{n'}) = \ell < 1$$

for some x_0 , $u(x_0) = \infty$. Taking $x_1 \in B_1(u(\cdot))$, we have $x_1 < x_0$, and therefore

$$0 < \lim_{n'} P(X_{k_{n'}}^{(n')} \le a_{n'} x_1 + b_{n'}) \le \lim_{n'} P(X_{k_{n'}}^{(n')} \le a_{n'} x_0 + b_{n'}) = \ell < 1.$$

According to lemma 3.5, this implies (2.5) with u_n , = a_n , x_0 + b_n . By using theorem 2.4, it follows that

$$\begin{split} \Phi(\frac{(1-\lambda)^{1/2}}{\sigma_{\lambda}} \mathbf{u}(\mathbf{x}_{0})) &= & \lim_{n'} \Phi(\frac{1}{\sigma_{\lambda}} \frac{n'}{k_{n'}} [F(\mathbf{u}_{n}') - \frac{k_{n'}}{n'}]) \\ &= & \lim_{n'} P(X_{k_{n'}}^{(n')} \leq \mathbf{u}_{n'}) = \ell \epsilon(0,1) \ . \end{split}$$

This is contrary to $\Phi(\frac{(1-\lambda)^{1/2}}{\sigma_{\lambda}}u(x_0)) = \Phi(\infty) = 1$. Hence (3.6) must hold, and in a similar way, we can show (3.7). Then the theorem follows.

If the rank sequence $\{k_n\}$ satisfies

$$(3.8) \quad n^{1/2} \left(\frac{k}{n} - \lambda\right) \to t, \quad -\infty < t < \infty , \quad 0 < \lambda < 1,$$

Smirnov [6] has shown that the only possible non-degenerate types of limiting laws of $\{x_k^{(n)}\}$ are $\Phi(\widetilde{u}_i(x) - \frac{t}{\widetilde{\sigma}_i})$, i=1,2,3,4, where

$$\widetilde{u}_{1}(x) = \begin{cases}
-\infty & x \le 0 \\
Cx^{\alpha} & x \ge 0
\end{cases} \quad (C > 0, \alpha > 0)$$

$$\widetilde{u}_{2}(x) = \begin{cases}
-C |x|^{\alpha} & x < 0 \\
\infty & x \ge 0
\end{cases} \quad (C > 0, \alpha > 0)$$

$$\widetilde{u}_{3}(x) = \begin{cases}
-C_{1} |x|^{\alpha} & x < 0 \\
C_{2}x^{\alpha} & x \ge 0
\end{cases} \quad (C_{1}, C_{2} > 0, \alpha > 0)$$

$$\widetilde{u}_{4}(x) = \begin{cases}
-\infty & x < -1 \\
0 & -1 \le x < 1 \\
\infty & x \ge 1
\end{cases}$$

and $\tilde{\sigma}_{\lambda} = [\lambda(1-\lambda)]^{1/2}$. For stationary processes, similar results are obtained as follows.

Theorem 3.7 If (3.8) holds, then under conditions 2 and 3 of theorem 3.6, (3.4) holds, and u(x) in (3.4) is one of the four types

$$u(x) = \tilde{u}_{1}(x) - \frac{t}{\tilde{\sigma}_{1}}$$
 $i=1,2,3,4$,

and the real σ in (3.4) can be found as follows

(3.10)
$$\sigma = \frac{1}{\lambda} \sum_{j=1}^{\infty} [P(X_1 \leq a(\lambda), X_{j+1} \leq a(\lambda)) - \lambda^2]$$

where

$$a(\lambda) = \begin{cases} a_{\lambda} - 0 & \text{if } F(a_{\lambda}) - \lambda \le \lambda - F(a_{\lambda} - 0) \\ a_{\lambda} & \text{if } F(a_{\lambda}) - \lambda \le \lambda - F(a_{\lambda} - 0) \end{cases}$$

and a_{λ} is a real such that $F(a_{\lambda}-0) \le \lambda \le F(a_{\lambda})$, and the event $\{X_{\mathbf{n}} \le a_{\lambda}-0\}$ means $\{X_{\mathbf{n}} \le a_{\lambda}\}$.

Proof: According to theorem 3.6 and Smirnov's results as above, it is sufficient to show (3.10). Writing $u_n = a_n x + b_n$, $x \in B_1(u(\cdot))$, we have

$$\begin{split} & \ell_{n}^{-1} \\ & | \sum_{j=1}^{n} \left[P(X_{1} \le u_{n}, X_{j+1} \le u_{n}) - F^{2}(u_{n}) \right] - \sum_{j=1}^{n} \left[P(X_{1} \le a(\lambda), X_{j+1} \mid a(\lambda)) - \lambda^{2} \right] | \\ & \ell_{n}^{-1} \\ & | \sum_{j=1}^{n} \left[| P(X_{1} \le u_{n}, X_{j+1} \le u_{n}) - P(X_{1} \in a(\lambda), X_{j+1} \le a(\lambda)) \right] + | F^{2}(u_{n}) - \lambda^{2} | \right] \\ & \leq 4\ell_{n} | F(u_{n}) - \lambda^{2} | \leq 4\ell_{n} (| F(u_{n}) - \frac{k_{n}}{n} | + | \frac{k_{n}}{n} - \lambda |) \to 0 \end{split}$$

so that

$$\frac{\int_{j=1}^{n} [P(X_{1} \leq a(\lambda), X_{j+1} \leq a(\lambda)) - \lambda^{2}]}{\int_{j=1}^{n} [P(X_{1} \leq a(\lambda), X_{j+1} \leq a(\lambda)) - \lambda^{2}]} = \lim_{n \to j=1}^{n} \frac{\int_{j=1}^{n-1} [P(X_{1} \leq a(\lambda), X_{j+1} \leq a(\lambda)) - \lambda^{2}]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]} = \lim_{n \to j=1}^{n} \frac{\int_{n-1}^{n-1} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]} = \lim_{n \to \infty} \frac{\int_{n-1}^{n-1} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]} = \lim_{n \to \infty} \frac{\int_{n-1}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]} = \lim_{n \to \infty} \frac{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]} = \lim_{n \to \infty} \frac{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]} = \lim_{n \to \infty} \frac{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]} = \lim_{n \to \infty} \frac{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]} = \lim_{n \to \infty} \frac{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}{\int_{n}^{n} [P(X_{1} \leq u_{n}, X_{j+1} \leq u_{n}) - F^{2}(u_{n})]}$$

Hence Theorem 5.7 holds.

54. Example: The Normal Case

Let $\{X_n, n=1,2,\ldots\}$ be a stationary normal sequence with

$$EX_{n} = 0$$
 , $EX_{n}^{2} = 1$, $EX_{1}X_{n+1} = r_{n}$, $n=1,2,...$

In this section, we give some conditions on $\{r_n^-\}$ such that the limiting distributions of $\{X_k^{(n)}\}$ exist for some special rank sequences $\{k_n^-\}$.

Lemma 4.1 If $r_n > 0$ and

$$(4.1) \quad \lim_{n \to k_{n}} \frac{n}{1/2} \sum_{j=\ell_{n}}^{n-1} j | r_{j} | \exp(-\frac{u_{n}^{2}}{1+|r_{j}|}) = 0$$

then (2.1) holds.

Proof: The method of proving this lemma is a slight extension of an argument of Leadbetter, Lindgren and Rootzén [7]. Let $\widetilde{A}_{ni} = \{x_i \leq u_n\} \in \mathbb{R}^n$, $i=1,\ldots,n$. For any fixed integer k,ℓ , denote $F_k = \sigma\{\widetilde{A}_{n1},\ldots,\widetilde{A}_{nk}\}$, $F_{k+\ell}^* = \sigma\{\widetilde{A}_{nk+\ell+1},\ldots,\widetilde{A}_{nn}\}$. Then any $A\in\sigma\{\{X_i \leq u_n\},\ i=1,\ldots,k\}$, $B\in\sigma\{\{X_i \leq u_n\},\ i=k+\ell+1,\ldots,n\}$ can be represented as $A = \{x_n \in \widetilde{A}^1,\ B\in\{X_n \in \widetilde{B}\}\}$ where $\widetilde{A}\in F_k$, $\widetilde{B}\in F_{k+\ell}^*$. Write $f_1(x_1,\ldots,x_k;\ y_1,\ldots,y_{n-k-\ell})$ for the density of $(X_1,\ldots,X_k;\ X_{k+\ell+1},\ldots,X_n)$ and $f_0(x_1,\ldots,x_k;\ y_1,\ldots,y_{n-k-\ell})=f_{01}(x_1,\ldots,x_k)$ $f_{02}(y_1,\ldots,y_{n-k-\ell})$ where f_{01} and f_{02} are the densities of (X_1,\ldots,X_k) and $(X_{k+\ell+1},\ldots,X_n)$ respectively. Let R_1 and R_0 be the covariance matrices of f_1 and f_0 . It is easy to show that $R_h = hR_1 + (1-h)R_0$ is positive definite for any $h\cdot [0,1]$. Writing $f_h(x_1,\ldots,x_k,y_1,\ldots,y_{n-k-\ell})$ for the density function of a zero-mean normal vector with covariance matrix R_h , we have

$$(4.2) \quad P(AB) = \int \dots \int_{\mathbf{X} \in \widetilde{A}, y \in \widetilde{B}} [\int_{0}^{1} f_{h}^{*} dh] dx dy$$

$$= \int_{0}^{1} dh \int_{\substack{1 \le i \le k \\ k + \ell + 1 \le j \le n}} \int \dots \int_{\mathbf{X} \in \widetilde{A}, y \in \widetilde{B}} \frac{\Im^{2} f_{h}}{\Im x_{i}^{3} y_{j - k - \ell}} dx dy ,$$

where $x = (\stackrel{x}{i}\stackrel{1}{k})$, $y = (\stackrel{y}{i}\stackrel{1}{y}_{n-k-\ell})$. Split the integral $\int_{x \in \widetilde{A}} \dots \int_{x \in \widetilde{A}} \frac{\partial^2 f_h}{\partial x_i^{3}y_{j-k-\ell}} dxdy$ into four parts: for $x \in \overline{A} \cap \{x_i \le u_n\}$, $y \in \overline{B} \cap \{y_{j-k-\ell} \le u_n\}$ and $x \in \overline{A} \cap \{x_i \le u_n\}$, $y \in \overline{B} \cap \{y_{j-k-\ell} \ge u_n\}$.

and $x \cdot A \cdot \{x_1 \cdot u_n\}$, $y \cdot B \cdot \{y_{j-k-\ell} \cdot u_n\}$, and $x \cdot \widetilde{A} \cdot \{u_1 \cdot u_n\}$, $y \cdot B \cdot \{y_{j-k-\ell} \cdot u_n\}$, where $A \cdot \widehat{A}_{n1}, \dots, \widehat{A}_{ni-1}, \widehat{A}_{ni+1}, \dots, \widehat{A}_{nk}\}, \ \widetilde{B} \cdot \widehat{A}_{nk+\ell+1}, \dots, \widehat{A}_{n, j+1}, \widehat{A}_{n, j+1}, \dots, \widehat{A}_{nn}\}, \ \text{(This can be done since } \widetilde{A} \text{ is a disjoint union of sets of the form } \widehat{A}_{j=1} \cdot \widehat{A}_{nj}, \text{ where } \widehat{A}_{nj} = \widehat{A}_{nj}$ or the complement of \widehat{A}_{nj} , and similarly for B). Writing $x^{(1)}, y^{(1)}$ for the vectors x, y without the component x_j, y_j we have

$$\frac{\left| \int \dots \int_{\mathbf{x} \in \overline{A} \cap \{\mathbf{x}_i \leq \mathbf{u}_n\}} \frac{\partial^2 f_h}{\partial \mathbf{x}_i \partial \mathbf{y}_{j-k-\ell}} \, d\mathbf{x} d\mathbf{y} \right| }{\partial \mathbf{x} \in \overline{B} \cap \{\mathbf{y}_{j-k-\ell} \leq \mathbf{u}_n\}}$$

$$\frac{\int \dots \int_{\mathbb{R}^{k-1} \times \mathbb{R}^{n-k-\ell-1}} f_h(x_i = u_n, y_{j-k-\ell} = u_n) dx^{(i)} dy^{(i)}}{2\pi (1 - r_{j-i}^2)^{1/2}} \exp\left\{-\frac{u_n^2}{1 + |r_{j-i}|^2}\right\}$$

and the same inequalities hold for other three parts of the integral. Since $r_n + 0$ we have $\sup_{n \ge 1} |r_n| < 1$, and therefore

$$\left| \int \dots \int_{\mathbf{x} \in \widetilde{A}, \ \mathbf{y} \in \widetilde{B}} \frac{\Im^{2} f_{\mathbf{h}}}{\Im \mathbf{x}_{\mathbf{i}}^{3} \mathbf{y}_{\mathbf{j}}} \, d\mathbf{x} d\mathbf{y} \right| \leq C \, \exp\left(-\frac{\mathbf{u}_{\mathbf{n}}}{1 + |\mathbf{r}_{\mathbf{j} - \mathbf{i}}|}\right)$$

From this and (4.2) it follows that

$$|P(AB) - P(A)P(B)| \le C \sum_{\substack{1 \le i \le k \\ k+\ell \le j \le n}} |r_{j-1}| \exp(-\frac{u_n}{1+|r_{j-1}|}) \le C \sum_{j=\ell}^{n-1} |j| r_j |\exp(-\frac{u_n}{1+|r_{j-1}|})$$

Hence (2.1) holds if (4.1) holds.

According to theorem 3.5 and 3.7 of Cheng [1], we know that (3.2) holds for any k_n satisfying [0,1), if $F(x) = \Phi(x)$ and $a_n > 0$, b_n are defined by $\Phi(b_n) = \frac{k_n}{n}$, $a_n = \frac{k_n^{1/2}}{n} \cdot \frac{(1-\lambda)^{1/2}}{\phi(b_n)}$, where $\phi(x)$ is the density function of the standard normal distribution $\Phi(x)$. Using this fact, we discuss the limiting distribution of

order statistics from stationary normal sequences. Since the case λ =0 has been discussed in [1], we consider only the case λ (0,1).

Lemma 4.2 If $\lambda_{\epsilon}(o,1)$ in (o.1) and $r_n = 0(n^{-(1+o)})$, $\epsilon > 3$, then (4.1) holds for some $\ell_n = o(n^{1/4})$ and any u_n which satisfies (1.1).

Proof: To show (4.1) it is sufficient to show that

$$\lim_{n} n^{1/2} \sum_{j=\ell_{n}}^{n-1} j | r_{j} | \exp(-\frac{u_{n}}{1+|r_{j}|}) = 0.$$

Since $\exp(-\frac{u_n}{1+r_j}) \le \exp(-\frac{u_n^2}{2})$, this will follow if $\lim_{n \to \infty} n^{1/2} \sum_{j=\ell_n}^{n-1} j r_j \exp(-\frac{u_n^2}{2}) = 0.$

Since $(u_n) * \lambda$ and the inverse function $\varphi^{-1}(x)$ of $\varphi(x)$ is continuous, we have $u_n * a_\lambda$ where a_λ is defined by $\varphi(a_\lambda) = \lambda$. Hence

$$n^{1/2} \frac{\sum_{j=\ell_n}^{n-1} j | r_j | \exp(-\frac{u_n^2}{2}) : | \exp(-\frac{a_1^2}{2}) + 1 | n^{1/2} \frac{\sum_{j=\ell_n}^{n-1} j | r_j |$$

$$\leq Cn^{1/2} \sum_{j=\ell_n}^{n-1} \frac{1}{j^{\rho}} \leq Cn^{1/2} \frac{\ell_n^{-\rho+1}}{\rho-1}$$

for sufficiently large n. Let $\ell_n = [n/\log n]^{1/4}$. Thus

$$n^{1/2} \sum_{j=\ell_n}^{n-1} j |r_j| \exp(-\frac{u_n^2}{2}) \le (\log n)^{\rho-1}/n^{(\rho-3)/4} \Rightarrow 0$$

completing the proof of the lemma.

Lemma 4.2 If $\lambda \epsilon(0,1)$ in (0.1) and $\sum_{n=1}^{\infty} |\mathbf{r}_n| < \infty$, then

$$\frac{\ell_{n}^{-1}}{(1.5)} = \lim_{n \to j=1}^{\infty} \left[P(X_{1} > b_{n}, X_{j+1} < b_{n}) - (\frac{k_{n}}{n})^{2} \right] = \frac{1}{2\pi} \sum_{n=0}^{\infty} \int_{0}^{n} \frac{\exp(-\frac{a_{\lambda}^{2}}{1+r^{2}})}{(1-r^{2})^{1/2}} dr$$

$$(1.1) \quad \lim_{n \to \infty} \frac{1}{n^{1/2}} \int_{j=1}^{\ell_n - 1} j \left[P(X_1 \le b_n, X_{j+1} \le b_n) - \left(\frac{k_n}{n}\right)^2 \right] = 0$$

for any $\ell_n = o(n^{1/4})$, $\ell_n \to \infty$, where a_{χ} is the solution of the equation $\Phi(x) = 1$.

Proof: It is easy to show that

$$P(X_1 \le b_n, X_{i+1} \le b_n) - (\frac{k_n}{n})^2 = \frac{1}{2\pi} \int_0^r j \frac{\exp(-\frac{b_n^2}{1+r^2})}{(1-r^2)^{1/2}} dr.$$

Notice that

$$\frac{\ell_{n}^{-1}}{\sum_{j=1}^{r}} \int_{0}^{r_{j}} \frac{\exp\left(-\frac{b_{n}^{2}}{1+r}\right)}{(1-r^{2})^{1/2}} dr = \frac{\ell_{n}^{-1}}{\sum_{j=1}^{r}} \int_{0}^{r_{j}} \frac{\exp\left(-\frac{a_{\lambda}^{2}}{1+r}\right)}{(1-r^{2})^{1/2}} dr$$

$$\leq \frac{\ell_{n}^{-1}}{\sum_{j=1}^{r}} \int_{0}^{r_{j}} \frac{\left|\exp\left(-\frac{a_{\lambda}^{2}}{1+r}\right)\right|}{(1-r^{2})^{1/2}} \left|\exp\left(-\frac{b_{n}^{2}-a_{\lambda}^{2}}{1+r}\right)\right| - 1 \left|dr\right|$$

$$\leq \left|b_{n}^{2}-a_{\lambda}^{2}\right| \sum_{j=1}^{r} \int_{0}^{r_{j}} \frac{\exp\left(-\frac{a_{\lambda}^{2}}{1+r}\right)}{(1-r^{2})^{1/2}(1+r)} dr$$

$$\leq C |b_n^2 - a_{\lambda}^2| \sum_{n=1}^{\infty} |r_n| \rightarrow 0$$
.

Hence to show (4.3), it is sufficient to show that the series $\sum_{n=0}^{\infty} \int_{0}^{r} \frac{\exp(-\frac{a_{\lambda}^{2}}{1+r})}{(1-r^{2})^{1/2}} dr$ converges. This follows since

$$\left| \sum_{n=1}^{\infty} \int_{0}^{r_{n}} \frac{\exp(-\frac{a^{2}}{1+r})}{(1-r^{2})^{1/2}} dr \right| \leq \sum_{n=1}^{\infty} |r_{n}| \frac{\exp(-\frac{a^{2}}{1+r})}{(1-r^{2})^{1/2}} \leq C \int_{n=1}^{\infty} |r_{n}| < \infty.$$

(4.3) is proved, and (4.4) can be shown in a similar way.

From lemma 4.2, 4.3 and theorem 3.6, we have

Theorem 4.4 If $r_n = 0(n^{-(1+\rho)})$, $\rho>3$, then

$$\lim_{n} P(X_{k_n}^{(n)} \le a_n x + b_n) = \Phi(\frac{(1-\lambda)^{1/2}}{\sigma_{\lambda}} x)$$

for any k_n such that $\frac{k_n}{n} \to \lambda \epsilon(0,1)$, where

$$\sigma_{\lambda}^{2} = (1-\lambda) + \frac{1}{\pi\lambda} \sum_{n=0}^{\infty} \int_{0}^{r} \frac{\exp(-\frac{a_{\lambda}^{2}}{1+r})}{(1-r^{2})^{1/2}} dr$$
.

Acknowledgement: This paper was completed during the author's visit to the University of North Carolina at Chapel Hill. The author is grateful to Professor M.R. Leadbetter for helpful discussions.

REFERENCES

- [1] Cheng, B. (1965). The limiting distributions of order statistics. Chinese Math. 6 84-104.
- [2] Cheng, S. (1980). On the limiting distributions of middle terms of order statistics from stationary sequences. J. of Peking Univ. 1980, No. 1 14-30.
- [3] Dvoretzky, A. (1972). Asymptotic normality for sums of dependent random variables. Proc. Sixth Berkeley Symp. Math. Statist. Probability 2 513-535.
- [4] Leadbetter, M.R. (1974). On extreme values in stationary sequences. T. Wahrsch. verw. Geb. 28 289-303.
- [5] Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1979). Extremal and related properties of stationary processes. Part I: Extremes of stationary sequences. Institute of Statistics Mimeo Series #1227, University of North Carolina at Chapel Hill.
- [6] Smirnov, N.V. (1949). Limit laws for terms of a variational series. Trudy Steklow Math. Inst., 25 1-60.
- [7] Watts, V., Rootzen, H. and Leadbetter, M.R. (1982). On limiting distributions of intermediate order statistics from stationary sequences. Ann. Prob. 10 653-662.
- [8] Wu, C.Y. (1966). The types of limit distributions for some terms of variational series. Scientia Sinica 15 749-762.