# Определение теплопроводности газов при атмосферном давлении

### 1 Цель работы:

определение коэффициента теплопроводности воздуха или углекислого газа при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде.

### 2 В работе используются:

прибор для определения теплопроводности газов; форвакуумный насос; газгольдер с углекислым газом; манометр; магазин сопротивлений; эталонное сопротивление 10 Ом; цифровой вольтметр В7-38; источник питания.

#### 3 Экспериментальная установка:



#### 4 Теоретическая часть:

Если температура заключенного в сосуд газа зависит от координат, в газе возникают процессы, приводящие к выравниванию температуры. В обычных условиях среди этих процессов наибольшую роль играет конвекция. Конвекция появляется из-за того, что легкий теплый газ поднимается вверх, а на его место опускаются более холодные массы газа. Конвекция не возникает, если температура газа повышается с высотой, если объем газа невелик или если он разбит на небольшие каналы или ячейки. В последних двух случаях возникновению конвекционных потоков мешает вязкость.

При отсутствии конвекции процесс переноса тепла замедляется, но не прекращается. Он происходит благодаря теплопроводности газа, связанной с тепловым движением молекул. Выравнивание температуры получается при этом из-за непрерывного перемешивания «горячих» и «холодных» молекул, происходящего в процессе их теплового движения и не сопровождающегося макроскопическими перемещениями газа. Нас будет интересовать именно этот случай.

Для цилиндрически симметричной установки, в которой

поток тепла направлен к стенкам цилиндра от нити, расположенной по его оси, справедлива формула:

$$\varkappa = \frac{Q}{T_1 - T_2} \frac{1}{2\pi L} = \frac{dQ}{dR} \frac{dR}{dT} \frac{1}{2\pi L},$$

где  $\varkappa$  — коэффициент теплопроводности, Q — выделяемая мощность,  $r_1$  и  $r_2$  — радиусы нити и внешнего цилиндра соответственно, L — длина нити.

## 5 Обработка результатов измерений:

| L, mm | $2r_1$ , MM | $2r_2$ , mm | $R_{\mathfrak{d}}, \mathrm{Om}$ |
|-------|-------------|-------------|---------------------------------|
| 367   | 0.05        | 10          | 10                              |

Для каждого измерения найдем ток, мощность, выделяемую в нити и сопротивление нити по формулам:

$$I = \frac{U_{9}}{R_{0}}$$
 
$$Q = IU_{\text{H}} = U_{\text{H}} \frac{U_{9}}{R_{9}}$$
 
$$R_{\text{H}} = \frac{U_{\text{H}}}{I} = \frac{U_{9}}{U_{9}}$$

| T, K  | $U_{\mathfrak{d}}$ , мВ | $U_{\scriptscriptstyle \mathrm{H}},{\scriptscriptstyle \mathrm{MB}}$ | I, мА | Q, м $B$ т | $R_{\scriptscriptstyle \mathrm{H}}, \mathrm{Om}$ |
|-------|-------------------------|----------------------------------------------------------------------|-------|------------|--------------------------------------------------|
| 297.5 | 119.5                   | 1803.3                                                               | 11.95 | 12.96      | 150.9                                            |
|       | 129.1                   | 1949.7                                                               | 12.91 | 25.17      | 151.0                                            |
|       | 170.1                   | 2571.3                                                               | 17.01 | 43.72      | 151.2                                            |
|       | 200.0                   | 3028.2                                                               | 20.00 | 60.56      | 151.4                                            |
|       | 224.5                   | 3403.4                                                               | 22.45 | 76.41      | 151.6                                            |
|       | 246.4                   | 3740.3                                                               | 24.64 | 92.16      | 151.8                                            |
|       | 264.9                   | 4025.9                                                               | 26.49 | 106.67     | 151.9                                            |
|       | 283.5                   | 4312.3                                                               | 28.35 | 122.25     | 152.1                                            |

| T, K | $U_{\mathfrak{d}}$ , мВ | $U_{\scriptscriptstyle \mathrm{H}}$ , м $\mathrm{B}$ | I, мА | Q, м $B$ т | $R_{\scriptscriptstyle \mathrm{H}}, \mathrm{Om}$ |
|------|-------------------------|------------------------------------------------------|-------|------------|--------------------------------------------------|
| 308  | 100.1                   | 1525.4                                               | 10.01 | 15.27      | 152.3                                            |
|      | 139.1                   | 2121.4                                               | 13.91 | 29.51      | 152.4                                            |
|      | 170.8                   | 2608.3                                               | 17.08 | 44.56      | 152.6                                            |
|      | 204.3                   | 3095.7                                               | 20.43 | 64.31      | 152.8                                            |
|      | 221.3                   | 3385.8                                               | 22.13 | 74.92      | 152.9                                            |
|      | 241.1                   | 3692.7                                               | 24.11 | 89.04      | 153.1                                            |
|      | 260.5                   | 3994.1                                               | 26.05 | 104.04     | 153.3                                            |
|      | 275.7                   | 4230.3                                               | 27.57 | 116.62     | 153.4                                            |

| T, K | $U_{\mathfrak{d}}$ , мВ | $U_{\scriptscriptstyle \mathrm{H}}$ , м $\mathrm{B}$ | I, м $A$ | Q, м $B$ т | $R_{\scriptscriptstyle \mathrm{H}}, \mathrm{Om}$ |
|------|-------------------------|------------------------------------------------------|----------|------------|--------------------------------------------------|
|      | 98.0                    | 1506.5                                               | 9.80     | 14.77      | 153.7                                            |
|      | 140.9                   | 2169.2                                               | 14.9     | 30.58      | 153.9                                            |
| 318  | 170.9                   | 2632.4                                               | 17.09    | 44.98      | 154.0                                            |
|      | 190.7                   | 2940.0                                               | 19.07    | 56.07      | 154.1                                            |
|      | 220.5                   | 3403.0                                               | 22.05    | 75.01      | 154.3                                            |
|      | 240.1                   | 3710.1                                               | 24.01    | 89.09      | 154.5                                            |
|      | 260.2                   | 4024.6                                               | 26.02    | 104.72     | 154.7                                            |
|      | 275.2                   | 4260.8                                               | 27.52    | 117.28     | 154.8                                            |

| T, K | $U_{\mathfrak{d}}$ , мВ | $U_{\scriptscriptstyle \mathrm{H}}$ , м $\mathrm{B}$ | I, мА | Q, м $B$ т | $R_{\scriptscriptstyle \mathrm{H}}, \mathrm{Om}$ |
|------|-------------------------|------------------------------------------------------|-------|------------|--------------------------------------------------|
|      | 98.1                    | 1521.1                                               | 9.81  | 14.92      | 155.1                                            |
|      | 139.2                   | 2160.4                                               | 13.92 | 30.07      | 155.2                                            |
| 328  | 170.0                   | 2642.4                                               | 17.00 | 44.93      | 155.4                                            |
|      | 196.1                   | 3050.6                                               | 19.61 | 59.83      | 155.5                                            |
| 320  | 219.0                   | 3410.6                                               | 21.90 | 74.69      | 155.7                                            |
|      | 240.6                   | 3749.9                                               | 24.06 | 90.22      | 155.8                                            |
|      | 259.1                   | 4042.0                                               | 25.91 | 104.72     | 156.0                                            |
|      | 274.9                   | 4292.7                                               | 27.49 | 118.01     | 156.1                                            |

| T, K | $U_{9}$ , мВ | $U_{\scriptscriptstyle \mathrm{H}}$ , м $\mathrm{B}$ | I, м $A$ | Q, м $B$ т | $R_{\scriptscriptstyle \mathrm{H}}, \mathrm{O}_{\scriptscriptstyle \mathrm{M}}$ |
|------|--------------|------------------------------------------------------|----------|------------|---------------------------------------------------------------------------------|
| 338  | 98.0         | 1533.9                                               | 9.80     | 15.04      | 156.4                                                                           |
|      | 139.2        | 2160.4                                               | 13.92    | 30.07      | 156.5                                                                           |
|      | 169.2        | 2652.3                                               | 16.92    | 44.87      | 156.7                                                                           |
|      | 195.0        | 3059.6                                               | 19.50    | 59.66      | 156.9                                                                           |
| 336  | 218.2        | 3427.1                                               | 21.82    | 74.78      | 157.0                                                                           |
|      | 239.6        | 3767.1                                               | 23.96    | 90.27      | 157.2                                                                           |
|      | 258.8        | 4073.4                                               | 25.88    | 105.39     | 157.3                                                                           |
|      | 278.7        | 4309.7                                               | 27.87    | 117.94     | 157.5                                                                           |

Построим график зависимости сопротивления нити от температуры и из наклона графика найдём dR/dT:



Рис. 1: Зависимость сопротивления нити от температуры

Как видно, точки хорошо ложатся на прямую.

$$\frac{dR}{dT} = 0.13468$$

Посчитаем температурный коэффициент сопротивления материала нити:

$$\alpha = \frac{1}{R_{273}} \frac{dR}{dT} = 0.9 \cdot 10^{-3} K^{-1}$$

Построим для каждого T графики зависимости Q от R и из наклонов графиков найдём dQ/dT:



Рис. 2: Зависимость Q от R при  $T_1$ 



Рис. 3: Зависимость Q от R при  $T_2$ 



Рис. 4: Зависимость Q от R при  $T_3$ 



Рис. 5: Зависимость Q от R при  $T_4$ 



Рис. 6: Зависимость Q от R при  $T_5$ 

| T, K                                                    | 297.5           | 308             | 318             | 328             | 338             |
|---------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $\frac{dQ_1}{dT}, \frac{\mathcal{L}_K}{K}$              | 0.0120          | 0.0125          | 0.0129          | 0.0134          | 0.0140          |
| $arkappa, rac{\mathrm{B}_{\mathrm{T}}}{\mathrm{_{M}}}$ | $25.98 \pm 0.9$ | $26.62 \pm 1.0$ | $27.74 \pm 1.1$ | $28.55 \pm 1.1$ | $29.84 \pm 1.2$ |
|                                                         |                 |                 |                 |                 |                 |

 $\parallel$  Построим график  $\ln \varkappa$  от  $\ln T$ :



Рис. 7: Зависимость  $\ln\varkappa$ от  $\ln T$ 

$$\frac{d\left(\ln\varkappa\right)}{d\left(\ln T\right)} = 1.08$$