TD4. Chaînes de Markov (III).

Exercice 1. Soit Y_n une suite i.i.d. avec loi $P(Y_n = 1) = p$ et $P(Y_n = 0) = 1 - p$. Soit $X_n = \inf \{i \ge 0; Y_{n-i} = 0\}$, soit le nombre consécutifs de 1 avant n.

- 1. Montrer que X_n est une chaine de Markov et donner sa matrice de transition.
- 2. Montrer que X_n est irreductible et calculer sa probabilité stationnaire. Y-a-t-'il d'autres probabilités stationnaires pour cette chaîne ?

Exercice 2. (RETOURNEMENT DU TEMPS) Soit (X_n) une chaîne de Markov sur un espace denombrable M avec matrice de transition P qui admet une probabilité invariante π . On pose

$$P^*(x,y) = \frac{\pi(y)}{\pi(x)}P(y,x)$$

- 1. Montrer que P^* est une matrice de transition sur M et que π est une probabilité invariante pour P^* .
- 2. Montrer que $P = P^*$ si et seulement si π est reversible.
- 3. Soit $N \ge 1$, et $X_n^* = X_{N-n}, n = 0, ..., N$. Montrer que, si X_0 est distribué avec loi π , alors X_n^* est une chaîne de Markov avec matrice de transition P^* et la loi de X_0^* est π .

Exercice 3. (MARCHE ALÉATOIRE SUR $\mathbb{Z}/K\mathbb{N}$) Soit $M = \mathbb{Z}/K\mathbb{N}$, c'est à dire le circle discret avec K point. Soit X_n la marche aléatoire avec probabilité p de sauter à droite et 1-p de sauter à gauche. Calculer la probabilité invariante et la matrice P^* de la correspondante chaîne retournée dans le temps.

Exercice 4. (PROCESSUS DE NAISSANCE ET MORT) Soit $(p_k)_{k\geq 0}$ une suite de nombres dans]0, 1[et Q la matrice de transition définie par:

$$P(0,1) = 1; \qquad \left\{ \begin{array}{l} P(k,k+1) = p_k \\ P(k,k-1) = 1 - p_k = q_k \end{array} \right. \quad s \: i \: k \geq 1.$$

avec $0 < p_k < 1$ pour tout $k \ge 1$.

- 2.a. Montrer que la chaîne de Markov associée est irréductible.
- **2.b.** On pose $\gamma_0 = 1$ et

$$\gamma_n = \frac{q_1 \cdots q_n}{p_1 \cdots p_n} \qquad n \ge 1$$

Montrer que la chaîne est récurrente si et seulement si $\sum_{0}^{\infty} \gamma_{n} = \infty$.

Exercice 5. (PROMENADE ALÉATOIRE SUR \mathbb{Z}^d) Si U est une v.a. à valeur dans \mathbb{Z}^d on considère la fonction $\varphi_U(t), t \in [0,1)^d$ définie par la somme de Fourier:

$$\varphi_U(t) = \sum_{z \in Z^d} e^{-2\pi i \langle z, t \rangle} P(U = z)$$

1. Vérifier que $P(U=z) = \int_{[0,1)^d} e^{2\pi i \langle z,t \rangle} \varphi_U(t) dt$.

2. Soit $(U_j)_{j\geq 1}$ une suite de variables aléatoires i.i.d. à valeurs dans \mathbb{Z}^d . On pose $X_0=0$, $X_n=\sum_{j=i}^n U_j$. Montrer que le point 0 est récurrent pour cette chaîne de Markov si et seulement si

$$\lim_{\lambda\uparrow 1^-}\int_{[0,1)^d}\mathcal{R}e\bigg(\frac{1}{1-\lambda\varphi(t)}\bigg)\,\mathrm{d}t=+\infty$$

3. Appliquer ce critère à la marche aléatoire symétrique sur \mathbb{Z}^d

$$p(x,y) = \frac{1}{2d} |x-y| = 1$$

= 0 $|x-y| \neq 1$