Scilab Textbook Companion for Surveying Volume 3 by B. C. Punmia, A. K. Jain And A. K. Jain¹

Created by
Avik Kumar Das
Geodesy
Civil Engineering
IIT, Bombay
College Teacher
Prof Raaj Ramshankaran
Cross-Checked by
Mukul and Lavitha

October 11, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Surveying Volume 3

Author: B. C. Punmia, A. K. Jain And A. K. Jain

Publisher: Laxmi Publication, New Delhi

Edition: 9

Year: 1990

ISBN: 81-7008-054-18

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Field Astronomy	7
2	Photogrammetric Surveying	60

List of Scilab Codes

Exa 1.1.1	astronomical triangle	7
Exa 1.1.2	astronomical triangle	7
Exa 1.1.3	astronomical triangle	8
Exa 1.1.4	astronomical triangle	9
Exa 1.2.1	astronomical triangle	9
Exa 1.2.2		10
Exa 1.3		10
Exa 1.4	astronomical triangle	11
Exa 1.5	zenith distance	12
Exa 1.6.1	zenith distance and altitude of star	12
Exa 1.6.2	zenith distance and altitude at upper culmination	13
Exa 1.7	astronomical triangle	14
Exa 1.8	astronomical triangle	15
Exa 1.9		16
Exa 1.10	astronomical triangle	16
Exa 1.11	astronomical triangle	17
Exa 1.12	astronomical triangle	18
Exa 1.13	astronomical triangle	19
Exa 1.14	Sunset and sunrise	20
Exa 1.15	Sunset and sunrise	21
Exa 1.16	Standard Time	21
Exa 1.17	Standard Time	22
Exa 1.18	conversion of angle and time	22
Exa 1.19	conversion of angle and time	23
Exa 1.20.1	local and standard time	24
Exa 1.20.2	local and standard time	25
		26
		26

Exa 1.22.1	GCT to LMT
Exa 1.22.2	GCT to LMT
Exa 1.22.3	GCT to LMT
Exa 1.23	Actual Time
Exa 1.24	LMT
Exa 1.25	Local time
Exa 1.26	Local time
Exa 1.27.1	GST of GMN
Exa 1.27.2	GST at GMM
Exa 1.28	LST at LMT
Exa 1.29	LST and LMT
Exa 1.30	LST at LMT
Exa 1.31	LST and LMT
Exa 1.32	LST and LMT
Exa 1.33	LST and LMT
Exa 1.42	horizontal angle
Exa 1.43	index error in theodolite
Exa 1.44	chronometer error
Exa 1.45	chronometer error
Exa 1.46	chronometer error
Exa 1.47	chronometer error
Exa 1.48	Azimuth and LMT
Exa 1.49	Azimuth and LMT
Exa 1.50	Azimuth of star
Exa 1.51	Azimuth of line
Exa 1.52	Azimuth of sun
Exa 1.53	azimuth angle
Exa 1.54	azimuth angle
Exa 1.55	latitude
Exa 1.56	latitude
Exa 1.57	latitude of place
Exa 1.58	apparent latitude of place
Exa 1.59	latitude of place
Exa 1.60	latitude of place and declination of star
Exa 1.61	latitude of place
Exa 1.62	latitude of place
Exa 1.63	latitude of place
Exa 1.64	latitude of place

Exa 1.65	latitude of place	58
Exa 2.1	Azimuth of camera	60
Exa 2.2	distance of points	61
Exa 2.3	distance of points	61
Exa 2.4	representative fraction	62
Exa 2.5	altitude of point	63
Exa 2.6	representative fraction	63
Exa 2.7	altitude of point	63
Exa 2.8	distance of points	64
Exa 2.9	altitude of a point	65
Exa 2.10	relief displacement	65
Exa 2.11	relief displacement	66
Exa 2.12	relief displacement	66
Exa 2.13	flight plan	67
Exa 2.14	flight plan	67
Exa 2.15	photograph numbers	68
Exa 2.16	flight planning	69
Exa 2.17	parallax of a point	71
Exa 2.18	parallax	71
Exa 2.19	parallax	72
Exa. 2.20	parallax	72

Chapter 1

Field Astronomy

Scilab code Exa 1.1.1 astronomical triangle

```
1
2
3 //exapple 1.1.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 a=40; //longitude of A
7 b=73; //longitude of B
8 dol=b-a; // difference of longitude
9 disp("difference of longitude is");
10 a=modulo(dol*3600,60);
11 printf ("seconds \%.2 \, f",a);
12 b=modulo(dol*3600-a,3600)/60;
13 printf(" minutes %i",b);
14 c = (dol*3600-b*60-a)/3600;
15 printf("
            degrees %i",c);
```

Scilab code Exa 1.1.2 astronomical triangle

```
1
2
\frac{3}{2} = \frac{1.1.2}{2}
4 clc; funcprot(0);
5 // Initialization of Variable
6 a=20;//longitude of A
7 b=150; //longitude of B
8 dol=b-a; // difference of longitude
9 disp("difference of longitude is");
10 a=modulo(dol*3600,60);
11 printf ("seconds \%.2 \, f",a);
12 b=modulo(dol*3600-a,3600)/60;
13 printf(" minutes %i",b);
14 c = (dol*3600-b*60-a)/3600;
15 printf("
             degrees %i",c);
```

Scilab code Exa 1.1.3 astronomical triangle

```
1
2
\frac{3}{2} = \frac{1.1.3}{2}
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ a=-20;}//\text{longitude of A}
7 b=50; //longitude of B
8 dol=b-a; // difference of longitude
9 disp("difference of longitude is");
10 a=modulo(dol*3600,60);
11 printf ("seconds \%.2 \, f", a);
12 b=modulo(dol*3600-a,3600)/60;
13 printf(" minutes %i",b);
14 c = (dol*3600-b*60-a)/3600;
15 printf("
              degrees %i",c);
```

Scilab code Exa 1.1.4 astronomical triangle

```
1
2
\frac{3}{2} = \frac{1.1.4}{2}
4 clc; funcprot(0);
5 // Initialization of Variable
6 a=-40; //longitude of A
7 b=150; //longitude of B
8 dol=b-a; // difference of longitude
       dol>180 then
10
       dol=360-dol;
       disp("difference of longitude is");
11
12 a=modulo(dol*3600,60);
13 printf ("seconds \%.2 \, f",a);
14 b=modulo(dol*3600-a,3600)/60;
15 printf(" minutes %i",b);
16 c = (dol*3600-b*60-a)/3600;
17 printf("
             degrees %i",c);
18 end
```

Scilab code Exa 1.2.1 astronomical triangle

```
1
2
3  //exapple 1.2.1
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14159;
7  latA=28+42/60; //latitude of A
8  lonA=31*60+12; //longitude of A
9  latB=28+42/60; //latitude of B
```

```
10 lonB=47*60+24; //longitude of B
11 d=(lonB-lonA)*cos(latA/180*pi);
12 disp(d*1.852, "distance between A & B in (km):");
```

Scilab code Exa 1.2.2 astronomical triangle

```
1
2
3 //exapple 1.2.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14259;
7 latA=12+36/60; //latitude of A
8 lonA=-115*60-6; //longitude of A
9 latB=12+36/60; //latitude of B
10 lonB=150*60+24; //longitude of B
11 d=(360*60-lonB+lonA)*cos(latA/180*pi);
12 disp(d*1.852," distance between A & B in (km):");
```

Scilab code Exa 1.3 astronomical triangle

```
1
2
3  //exapple 1.3
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14159
7  latA=15;
8  latB=12+6/60;
9  lonA=50+12/60;
10  lonB=54;
11  Re=6370; //radius of earth
12  b=(90-latA)*pi/180;;
```

```
13 a=(90-latB)*pi/180;
14 P=(lonB-lonA)*pi/180;
15 p=acos(cos(P)*sin(a)*sin(b)+cos(a)*cos(b));/
      speherical triangle law
16 disp(p*Re, "distance from A to B in (km):");
17 x = atan(cos(a/2-b/2)/cos(a/2+b/2)*tan(pi/2-P/2)); //x=
     A/2+B/2 //speherical triangle law
18 y = atan(sin(a/2-b/2)/sin(a/2+b/2)*tan(pi/2-P/2)); //x=
     A/2-B/2 //speherical triangle law
19 dol=pi-x-y;
20 disp("direction of B from A towards east of south:"
     );
21 a=modulo(dol*3600,60);
22 printf("seconds \%.2 \, f",a);
23 b = modulo(dol*3600 - a, 3600)/60;
24 printf(" minutes %i",b);
25 c = (dol*3600 - b*60 - a)/3600;
26 printf("
             degrees %i",c);
```

Scilab code Exa 1.4 astronomical triangle

```
1
2
3  //exapple 1.4
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14159;
7  latA=45;
8  p=(300/60)*pi/180; //side AB
9  b=(90-latA)*pi/180; //side PA
10  //calculation
11  a=acos(cos(p)*cos(b)); //side BP
12  BC=a*180/pi-latA;
13  d=BC*1.852*60;
14  disp(d," disatance of BC in (km):")
```

Scilab code Exa 1.5 zenith distance

```
1
2
3 //exapple 1.5
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi}=3.14159;
7 delta=42+15/60; // declination of star
8 theta=26+40/60; //latitude of star
9 zend=90-theta-90+delta;
10 alt=90-zend;
11 disp("zenith distace of star in (degrees):");
12 \ a=modulo(zend*3600,60);
13 printf ("seconds \%.2 \, f",a);
14 b=modulo(zend*3600-a,3600)/60;
15 printf(" minutes %i",b);
16 c = (zend*3600-b*60-a)/3600;
17 printf(" degrees %i",c);
18 disp(, "altitude of star in (degrees):");
19 a=modulo(alt*3600,60);
20 printf ("seconds \%.2 \, \mathrm{f}",a);
21 b = modulo(alt*3600-a,3600)/60;
22 printf(" minutes %i",b);
23 c=(alt*3600-b*60-a)/3600;
24 printf("
              degrees %i",c);
```

Scilab code Exa 1.6.1 zenith distance and altitude of star

1 2

```
\frac{3}{2} = \frac{1.6.1}{2}
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14159;
7 delta=23+20/60; // declination of star
8 theta=26+40/60; // latitude of sta
9 zend=90+theta-90-delta;
10 alt=90-zend;
11 disp("zenith distace of star in (degrees):");
12 a=modulo(zend*3600,60);
13 printf ("seconds \%.2 \, f", a);
14 b = modulo(zend*3600-a,3600)/60;
15 printf(" minutes %i",b);
16 c = (zend*3600-b*60-a)/3600;
17 printf(" degrees %i",c);
18 disp(," altitude of star in (degrees):");
19 a=modulo(alt*3600,60);
20 printf ("seconds \%.2 f",a);
21 b=modulo(alt*3600-a,3600)/60;
22 printf(" minutes %i",b);
23 c=(alt*3600-b*60-a)/3600;
24 printf(" degrees %i",c);
```

Scilab code Exa 1.6.2 zenith distance and altitude at upper culmination

```
1
2
3 //exapple 1.6.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14159;
7 delta=65+40/60; //declination of star
8 theta=26+40/60; //latitude of star
9 zend=90-theta-90+delta;
10 alt=90-zend;
```

```
disp("zenith distace of star in (degrees):");
a=modulo(zend*3600,60);
printf("seconds %.2f",a);
b=modulo(zend*3600-a,3600)/60;
printf(" minutes %i",b);
c=(zend*3600-b*60-a)/3600;
printf(" degrees %i",c);
disp(,"altitude of star in (degrees):");
a=modulo(alt*3600,60);
printf("seconds %.2f",a);
b=modulo(alt*3600-a,3600)/60;
printf(" minutes %i",b);
c=(alt*3600-b*60-a)/3600;
printf(" degrees %i",c);
```

Scilab code Exa 1.7 astronomical triangle

```
1
2
3 //exapple 1.7
4 clc; funcprot(0);
5 // Initialization of Variable
6
7 \text{ pi}=3.14159;
8 delta=85+20/60;
9 theta=46+50/60;
10 if delta>90-theta then
11
       zend=180-theta-delta;
12
       disp("zenith distance in (degrees):");
       a=modulo(zend*3600,60);
13
14 printf ("seconds \%.2 \, f",a);
15 b=modulo(zend*3600-a,3600)/60;
16 printf(" minutes %i",b);
17 c = (zend*3600-b*60-a)/3600;
18 printf(" degrees %i",c);
```

```
19     zend1=90-zend;
20     disp("altitude of star in (degrees):");
21     a=modulo(zend1*3600,60);
22     printf("seconds %.2 f",a);
23     b=modulo(zend1*3600-a,3600)/60;
24     printf(" minutes %i",b);
25     c=(zend1*3600-b*60-a)/3600;
26     printf(" degrees %i",c);
27     end
```

Scilab code Exa 1.8 astronomical triangle

```
1
2
3 //exapple 1.8
4 clc; funcprot(0);
5 // Initialization of Variable
7 \text{ pi}=3.14159;
8 \text{ delta} = 56 + 10/60;
9 theta=56+10/60;
10 if delta>90-theta then
11
       zend=180-theta-delta;
        disp("zenith distance in (degrees):");
12
       a=modulo(zend*3600,60);
13
14 printf ("seconds \%.2 f",a);
15 b=modulo(zend*3600-a,3600)/60;
16 printf(" minutes %i",b);
17 c=(zend*3600-b*60-a)/3600;
              degrees %i",c);
18 printf("
19
      zend1=90-zend;
       disp("altitude of star in (degrees):");
20
       a=modulo(zend1*3600,60);
21
22 printf("seconds \%.2 f",a);
23 b = modulo(zend1*3600-a,3600)/60;
```

```
24 printf(" minutes %i",b);

25 c=(zend1*3600-b*60-a)/3600;

26 printf(" degrees %i",c);

27 end
```

Scilab code Exa 1.9 astronomical triangle

```
1
2
3 //exapple 1.9
4 clc; funcprot(0);
5 // Initialization of Variable
6 //solving equation of theta and delta
7 b(1,1) = 90 - 70 - 20/60; //zenith distance at upper
      culmination
8 b(2,1) = 90 + 20 + 40/60; // zenith distance at lower
      culmination
9 A=[1 -1;1 1];//coeff of equations having declination
       of star and latitude of observation
10 x=A \setminus b;
11 disp(x(1), "declination of star in (degrees)");
12 disp(x(2), "latitude of place of observation in (
      degrees):");
```

Scilab code Exa 1.10 astronomical triangle

```
1
2
3  //exapple 1.10
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14159;
7  theta=20+30/60;
```

```
8 H=42+6/60; //hour angle
9 delta=50;
10 //in triangle ZPM(figure in book)
11 PZ=(90-delta)*pi/180;
12 \text{ H=H*pi/180};
13 PM = (90 - theta) * pi / 180;
14 ZM = acos((cos(PZ) * cos(PM) + sin(PM) * sin(PZ) * cos(H)));
15 \text{ alpha=pi/2-ZM};
16 alpha=alpha*180/pi;
17 disp(,"altitude of star in :");
18 a=modulo(alpha*3600,60);
19 printf ("seconds \%.2 \, f",a);
20 b=modulo(alpha*3600-a,3600)/60;
21 printf(" minutes %i",b);
22 c = (alpha * 3600 - b * 60 - a) / 3600;
23 printf(" degrees %i",c);
24 A = ((\cos(PM) - \cos(PZ) * \cos(ZM)) / \sin(PZ) / \sin(ZM));
25
26 if A<O then
27
       A = -A;
       A = a cos(A);
28
       A = 180 - A * 180/pi;
29
        disp("azimuth of star in (degrees) westwards:")
30
31
      a=modulo(A*3600,60);
32
      printf("seconds %.2f",a);
33
      b=modulo(A*3600-a,3600)/60;
34
      printf(" minutes %i",b);
35
36
       c = (A*3600-b*60-a)/3600;
     printf(" degrees %i",c);
37
38 end
```

Scilab code Exa 1.11 astronomical triangle

1

```
3 //exapple 1.11
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi}=3.14159;
7 theta=-8-30/60;
8 H=322; //hour angle
9 delta=50;
10 //in triangle ZPM(figure in book)
11 PZ=(90-delta)*pi/180;
12 \text{ H}=2*pi-H*pi/180;
13 PM = (90 - theta) * pi / 180;
14 ZM = acos((cos(PZ)*cos(PM)+sin(PM)*sin(PZ)*cos(H)));
15 alpha=pi/2-ZM;
16 disp(alpha*180/pi, altitude of star in (degrees):");
17 A = ((\cos(PM) - \cos(PZ) * \cos(ZM)) / \sin(PZ) / \sin(ZM));
18 if A<O then
19
       A = -A;
20
       A = acos(A);
21
       A = 180 - A * 180/pi;
22
       disp(A, "azimuth of star in (degrees) eastwards:"
23 end
```

Scilab code Exa 1.12 astronomical triangle

```
1
2
3 //exapple 1.12
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14159;
7 alpha=22+36/60; // altitude of star
8 A=42//azimuth angle
9 delta=40; //latitude of observer
```

```
10 //in triangle ZPM(figure in book)
11 PZ=(90-delta)*pi/180;
12 A = A * pi / 180;
13 ZM = (90 - alpha) * pi / 180;
14 PM=acos((cos(PZ)*cos(ZM)+sin(ZM)*sin(PZ)*cos(A)));
15 theta=pi/2-PM;
16 disp(theta*180/pi, "declination of star in (degrees)
      north:");
17 H=((\cos(ZM)-\cos(PZ)*\cos(PM))/\sin(PZ)/\sin(PM));
18 if H<O then
19
       H = -H;
       H=acos(H);
20
21
       H=180-H*180/pi;
       disp(H,"hour angle of star in (degrees)
22
          eastwards:")
23 end
```

Scilab code Exa 1.13 astronomical triangle

```
1
3 //exapple 1.13
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14159;
7 alpha=21+30/60; // altitude of star
8 A=140//azimuth angle
9 delta=48; //latitude of observer
10 //in triangle ZPM(figure in book)
11 PZ=(90-delta)*pi/180;
12 A = A * pi / 180;
13 ZM = (90 - alpha) * pi / 180;
14 PM = (\cos(PZ) * \cos(ZM) + \sin(ZM) * \sin(PZ) * \cos(A));
15 if PM<0 then
16
       PM = -PM;
```

Scilab code Exa 1.14 Sunset and sunrise

```
1
3 //exapple 1.14
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi}=3.14159;
7 //part1
8 delta=22+12/60;
9 theta=42+30/60;
10 ZP = (90 - theta) * pi / 180;
11 PM = (90 - delta) * pi / 180;
12 A = acos(cos(PM)/sin(ZP));
13 disp(A*180/pi, "azimuth of setting sun in (degrees):"
      );
14 H=180-acos(tan(pi/2-ZP)*tan(pi/2-PM))*180/pi;
15 disp(H, "suns hour angle in (degrees):");
16 //part2
17 delta = -22 - 12/60;
18 theta=42+30/60;
19 ZP = (90 - theta) * pi / 180;
20 PM = (180 - 90 - delta) * pi / 180;
21 A = acos(cos(PM)/sin(ZP));
```

```
22 disp(A*180/pi, "azimuth of setting sun in (degrees):"
    );
23 H=pi-acos(tan(pi/2-ZP)*tan(pi/2-PM));
24 disp(H*180/pi, "suns hour angle in (degrees):");
```

Scilab code Exa 1.15 Sunset and sunrise

```
1
2
3 //exapple 1.14
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14159;
7 //part1
8 delta=22+12/60;
9 theta=42+30/60;
10 ZP=(90-theta)*pi/180;
11 PM=(90-delta)*pi/180;
12 A=pi-acos(cos(PM)/sin(ZP));
13 disp(A*180/pi,"azimuth of setting sun in (degrees):");
14 H=180-acos(tan(pi/2-ZP)*tan(pi/2-PM))*180/pi;
15 disp(H,"suns hour angle in (degrees):");
```

Scilab code Exa 1.16 Standard Time

```
1
2
3 //exapple 1.16
4 clc; funcprot(0);
5 // Initialization of Variable
6 change=-11.82/60;//change in time in a day
7 time=-3-28.41/60;//greenwich time at july1 1951
```

```
8 c12=change/24*12//change of time in 12 hours
9 tch=time-c12;
10 disp(tch, "greenwich mean time error in 12th hour in (minutes):")
```

Scilab code Exa 1.17 Standard Time

```
1
2
3 //exapple 1.17
4 clc; funcprot(0);
5 // Initialization of Variable
6 time=10*3600+30*60;
7 GMN = -14*60-10;
8 \text{ changeET} = 1 * 1.5;
9 neterr=GMN+changeET;
10 GAT=time+neterr;
11 hr=round(GAT/3600);
12 b = GAT - hr * 3600;
13 mi = round(b/60-1);
14 c = GAT - hr *3600 - mi *60;
15 disp("GAT is");
16 disp(hr, "hours");
17 disp(mi, "minutes");
18 disp(c, "seconds");
```

Scilab code Exa 1.18 conversion of angle and time

```
1
2
3 //exapple 1.18
4 clc; funcprot(0);
5 // Initialization of Variable
```

```
6 //part1
7 A=50+12/60+48/3600;
8 \text{ time} = A/15*3600
9 hr = round(time/3600);
10 b=time-hr*3600;
11 mi = round(b/60-1);
12 c=time-hr*3600-mi*60;
13 disp("time is");
14 disp(hr, "hours");
15 disp(mi, "minutes");
16 disp(c, "seconds");
17 //part2
18 \quad A = 8 + 18/60 + 6/3600;
19 time = A/15*3600
20 hr = round(time/3600);
21 b=time-hr*3600;
22 \text{ mi} = \text{round}(b/60);
23 c=time-hr*3600-mi*60;
24 disp("time is");
25 disp(hr, "hours");
26 disp(mi, "minutes");
27 disp(c, "seconds");
28 //part3
29 \quad A = 258 + 36/60 + 30/3600;
30 \text{ time} = A/15*3600
31 \text{ hr} = \text{round} (\text{time}/3600);
32 \text{ b=time-hr}*3600;
33 mi = round(b/60);
34 c=time-hr*3600-mi*60;
35 disp("time is");
36 disp(hr, "hours");
37 disp(mi, "minutes");
38 disp(c, "seconds");
```

Scilab code Exa 1.19 conversion of angle and time

```
1
2
3 //exapple 1.19
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 A=4+34/60+13/3600;
8 angle=A*15*3600;
9 deg=round(angle/3600-1);
10 b=angle-deg*3600;
11 mi=round(b/60);
12 c=angle-deg*3600-mi*60;
13 disp("angle is");
14 disp(deg, "degrees");
15 disp(mi, "minutes");
16 disp(c, "seconds");
17 //part2
18 \quad A = 18 + 11/60 + 38/3600;
19 angle=A*15*3600;
20 deg=round(angle/3600-1);
21 \text{ b=angle-deg*3600};
22 \text{ mi} = \text{round} (b/60-1);
23 c=angle-deg*3600-mi*60;
24 disp("angle is");
25 disp(deg, "degrees");
26 disp(mi, "minutes");
27 disp(c, "seconds");
```

Scilab code Exa 1.20.1 local and standard time

```
1
2
3 //exapple 1.20.1
4 clc; funcprot(0);
5 // Initialization of Variable
```

```
1 longP=20//longitude of the place
1 longSM=82+30/60; //longitude of standard meridion
4 dolong=longSM-longP; // difference in longitude
4 dot=dolong/15; // difference in time
LMT=20+24/60+6/3600-dot;
disp("local mean time in past midnight:");
a=modulo(LMT*3600,60);
printf("seconds %.2f",a);
b=modulo(LMT*3600-a,3600)/60;
printf(" minutes %i",b);
c=(LMT*3600-b*60-a)/3600;
printf(" hours %i",c);
```

Scilab code Exa 1.20.2 local and standard time

```
1
2
3 //exapple 1.20.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 longP=-20//longitude of the place
7 longSM=82+30/60; //longitude of standard meridion
8 dolong=longSM-longP; // difference in longitude
9 dot=dolong/15; // difference in time
10 LMT=20+24/60+6/3600-dot;
11 disp(LMT, "local mean time in past midnight:");
12 a=modulo(LMT*3600,60);
13 printf ("seconds \%.2 \,\mathrm{f}",a);
14 b=modulo(LMT*3600-a,3600)/60;
15 printf(" minutes %i",b);
16 c = (LMT * 3600 - b * 60 - a) / 3600;
17 printf(" hours %i",c);
```

Scilab code Exa 1.21.1 Local Mean Time

```
1
2
3 //exapple 1.21.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 LMT=9+40/60+12/3600;
7 longP = -42 - 36/60;
8 dot=longP/15;
9 GMT=LMT-dot;
10 disp("greenwich mean time in past midnight:");
11 a=modulo(GMT*3600,60);
12 printf ("seconds \%.2 \, f",a);
13 b = modulo(GMT * 3600 - a, 3600) / 60;
14 printf(" minutes %i",b);
15 c = (GMT * 3600 - b * 60 - a) / 3600;
16 printf(" hours %i",c);
```

Scilab code Exa 1.21.2 Local mean Time

```
1
2
3  //exapple 1.21.2
4  clc; funcprot(0);
5  // Initialization of Variable
6  LMT=4+32/60+10/3600;
7  longP=56+32/60;
8  dot=longP/15;
9  GMT=LMT-dot;
10  disp("greenwich mean time in past midnight:");
11  a=modulo(GMT*3600,60);
12  printf("seconds %.2 f",a);
13  b=modulo(GMT*3600-a,3600)/60;
14  printf(" minutes %i",b);
```

```
15 c=(GMT*3600-b*60-a)/3600;
16 printf(" hours %i",c);
```

Scilab code Exa 1.22.1 GCT to LMT

```
1
2
\frac{3}{2} = \frac{1.22.1}{2}
4 clc; funcprot(0);
5 // Initialization of Variable
6 GCT=18+40/60+12/3600; // greenwich civil time
7 longP=72+30/60; //longitude of the place
8 dot=longP/15;
9 LMT=GCT+dot;
10 disp("local mean time in past midnight:");
11 a=modulo(LMT * 3600,60);
12 printf ("seconds \%.2 \, f", a);
13 b = modulo(LMT * 3600 - a, 3600) / 60;
14 printf(" minutes %i",b);
15 c = (LMT * 3600 - b * 60 - a) / 3600;
16 printf(" hours %i",c);
```

Scilab code Exa 1.22.2 GCT to LMT

```
1
2
3 //exapple 1.22.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 GCT=18+40/60+12/3600; //greenwich civil time
7 longP=-73+30/60; //longitude of the place
8 dot=longP/15;
9 LMT=GCT+dot;
```

```
10 disp("local mean time in past midnight:");
11 a=modulo(LMT*3600,60);
12 printf("seconds %.2f",a);
13 b=modulo(LMT*3600-a,3600)/60;
14 printf("minutes %i",b);
15 c=(LMT*3600-b*60-a)/3600;
16 printf("hours %i",c);
```

Scilab code Exa 1.22.3 GCT to LMT

```
1
2
\frac{3}{2} = \frac{1.22.3}{2}
4 clc; funcprot(0);
5 // Initialization of Variable
6 GCT=18+40/60+12/3600; //greenwich civil time
7 longP=102+30/60; //longitude of the place
8 dot=longP/15;
9 LMT=GCT+dot;
10 disp("local mean time in past midnight:");
11 a=modulo(LMT*3600,60);
12 printf ("seconds \%.2 \, f", a);
13 b = modulo(LMT * 3600 - a, 3600) / 60;
14 printf(" minutes %i",b);
15 c = (LMT * 3600 - b * 60 - a) / 3600;
16 if c>24 then
       c = c - 24;
17
18 end
19 printf(" hours %i",c);
20 disp("date is changed by a day");
21 disp("date at the place is 3th July")
```

Scilab code Exa 1.23 Actual Time

```
1
2
3 //exapple 1.23
4 clc; funcprot(0);
5 // Initialization of Variable
6 LMT=10+20/60+30/3600; //local mean time
7 longP=102+30/60; //longitude of the place
8 dot=longP/15;
9 GMT = LMT - dot;
10 mGMN=12-GMT; //mean time interval
11 i=mGMN*0.32/3600; //increase in mGMN
12 ETGMN=5/60+4.35/3600;
13 ch=i+ETGMN; //change in GMT
14 GMT = ch + GMT;
15 \quad LMT = GMT + dot;
16 disp("local mean time in past midnight observed:");
17 a=modulo(LMT*3600,60);
18 printf ("seconds \%.2 \, f",a);
19 b=modulo(LMT*3600-a,3600)/60;
20 printf(" minutes %i",b);
c = (LMT * 3600 - b * 60 - a) / 3600;
22 if c>24 then
23
       c = c - 24;
24 end
25 printf(" hours %i",c);
```

Scilab code Exa 1.24 LMT

```
1
2
3 //exapple 1.24
4 clc; funcprot(0);
5 // Initialization of Variable
6 LMT=15+12/60+40/3600; //local mean time
7 longP=-20-30/60; //longitude of the place
```

```
8 dot=longP/15;
9 GMT=LMT-dot;
10 mGMN=GMT-12; //mean time interval
11 i=mGMN*0.22/3600; //increase in mGMN
12 ETGMN = 5/60+10.65/3600;
13 ch=i+ETGMN; //change in GMT
14 GMT = ch + GMT;
15 LMT = GMT + dot;
16 disp("local mean time in past midnight observed:");
17 a=modulo(LMT*3600,60);
18 printf("seconds \%.2 f",a);
19 b=modulo(LMT*3600-a,3600)/60;
20 printf(" minutes %i",b);
21 c = (LMT * 3600 - b * 60 - a) / 3600;
22 if c>24 then
       c = c - 24;
23
24 end
25 printf(" hours %i",c);
```

Scilab code Exa 1.25 Local time

```
1
2
3  //exapple 1.25
4  clc; funcprot(0);
5  // Initialization of Variable
6  time=4+20/60+30/3600;
7  accn=time*9.8565/3600; //acceleration
8  stime=time+accn; //sideral time
9  disp("local mean time in past midnight observed:");
10  a=modulo(stime*3600,60);
11  printf("seconds %.3f",a);
12  b=modulo(stime*3600-a,3600)/60;
13  printf(" minutes %i",b);
14  c=(stime*3600-b*60-a)/3600;
```

```
15 if c>24 then
16     c=c-24;
17 end
18 printf(" hours %i",c);
```

Scilab code Exa 1.26 Local time

```
1
2
3 //exapple 1.26
4 clc; funcprot(0);
5 // Initialization of Variable
6 time=8+40/60+50/3600;
7 accn=-time*9.8565/3600; // acceleration
8 stime=time+accn;//sideral time
9 disp("local mean time in past midnight observed:");
10 a=modulo(stime * 3600,60);
11 printf("seconds \%.3 f",a);
12 b=modulo(stime*3600-a,3600)/60;
13 printf(" minutes %i",b);
14 c = (stime * 3600 - b * 60 - a) / 3600;
15 if c>24 then
       c = c - 24;
16
17 end
18 printf(" hours %i",c);
```

Scilab code Exa 1.27.1 GST of GMN

```
1
2
3 //exapple 1.27.1
4 clc; funcprot(0);
5 // Initialization of Variable
```

```
6 longP = -160 - 30/60 - 30/3600; //longitude of place
7 GST=16+30/60+12/3600; //standard time
8 dot=longP/15; // difference in time
9 i=dot*9.8565/3600; //error
10 LST=GST-i;
11 disp("local mean time in past midnight observed:");
12 a=modulo(LST*3600,60);
13 printf ("seconds \%.2 \, f", a);
14 b = modulo(LST*3600-a,3600)/60;
15 printf(" minutes %i",b);
16 c = (LST*3600-b*60-a)/3600;
17 if c>24 then
18
       c = c - 24;
19 end
20 printf(" hours %i",c);
```

Scilab code Exa 1.27.2 GST at GMM

```
1
2
\frac{3}{2} = \frac{1.27.2}{2}
4 clc; funcprot(0);
5 // Initialization of Variable
6 longP=160+30/60+30/3600; //longitude of place
7 GST=16+30/60+12/3600; //standard time
8 dot=longP/15; // difference in time
9 i=dot*9.8565/3600; //error
10 LST=GST-i;
11 disp("local mean time in past midnight observed:");
12 a=modulo(LST*3600,60);
13 printf ("seconds \%.2 \,\mathrm{f}",a);
14 b=modulo(LST*3600-a,3600)/60;
15 printf(" minutes %i",b);
16 c = (LST*3600-b*60-a)/3600;
17 if c>24 then
```

Scilab code Exa 1.28 LST at LMT

```
1
2
3 //exapple 1.28
4 clc; funcprot(0);
5 // Initialization of Variable
6 longP=85+20/60; //longitude of place
7 GST=6+30/60; //standard time
8 GMN = 6 + 32/60 + 12/3600;
9 dot=longP/15; // difference in time
10 i=dot*9.8565/3600; //error
11 LST=GMN-i; //LST at L.M.N
12 i2=GST*9.8565/3600; //error in GST
13 LST2=GST+i2;
14 LST=LST+LST2//lst at L.M.N
15 disp("local mean time in past midnight observed:");
16 a=modulo(LST*3600,60);
17 printf ("seconds \%.2 \, f",a);
18 b=modulo(LST*3600-a,3600)/60;
19 printf(" minutes %i",b);
20 c = (LST*3600-b*60-a)/3600;
21 if c>24 then
22
       c = c - 24;
23 end
24 printf(" hours %i",c);
```

Scilab code Exa 1.29 LST and LMT

```
1
2
3 //exapple 1.29
4 clc; funcprot(0);
5 // Initialization of Variable
6 longP=112+20/60+15/3600; //longitude of place
7 GST=8+10/60+28/3600; //GST at GMM
8 lst=18+28/60+12/3600;//local sidereal time
9 dot=longP/15; // difference in time
10 i=dot*9.8565/3600; //error
11 LST=GST+i; //LST at L.M.N
12 LMM=1st-LST;
13 i2=LMM*9.8565/3600; // error in LMM
14 LMT=LMM-i2; //local mean time
15
16 disp("local mean time in past midnight observed:");
17 a=modulo(LMT*3600,60);
18 printf ("seconds \%.2 \, \text{f}",a);
19 b=modulo(LMT*3600-a,3600)/60;
20 printf(" minutes %i",b);
c = (LMT * 3600 - b * 60 - a) / 3600;
22 if c>24 then
23
       c = c - 24;
24 end
25 printf(" hours %i",c);
```

Scilab code Exa 1.30 LST at LMT

```
1
2
3 //exapple 1.30
4 clc; funcprot(0);
5 // Initialization of Variable
6 longP=85+20/60; //longitude of place
7 GST=18+30/60; //standard time
```

```
8 gst=6+32/60+12/3600; //GST at GMN
9 dot=longP/15; // difference in time
10 GMT = GST - dot - 12;
11 i = GMT * 9.8565/3600; //error
12 GMT = GMT + i; //SI time
13 LST=GMT+dot+gst; //LST at LMT
14 disp("local standard time in past midnight observed:
      ");
15 a=modulo(LST*3600,60);
16 printf ("seconds \%.2 \, f",a);
17 b = modulo(LST*3600-a,3600)/60;
18 printf(" minutes %i",b);
19 c = (LST*3600-b*60-a)/3600;
20 if c>24 then
21
       c = c - 24;
22 end
23 printf(" hours %i",c);
```

Scilab code Exa 1.31 LST and LMT

```
1
2
3 //exapple 1.31
4 clc; funcprot(0);
5 // Initialization of Variable
6 longP=112+20/60+15/3600; //longitude of place
7 GST=8+10/60+28/3600; //GST at GMM
8 lst=18+28/60+12/3600; //local sidereal time
9 dot=longP/15; // difference in time
10 gmm=lst+dot-GST; //SI at GMM
11
12 i=gmm*9.8565/3600; //error
13 gmm=gmm-i; //LST at L.M.N
14 LMT=gmm-dot; //local mean time
15 disp("local mean time in past midnight observed:");
```

```
16  a=modulo(LMT*3600,60);
17  printf("seconds %.2f",a);
18  b=modulo(LMT*3600-a,3600)/60;
19  printf(" minutes %i",b);
20  c=(LMT*3600-b*60-a)/3600;
21  if c>24 then
22   c=c-24;
23 end
24  printf(" hours %i",c);
```

Scilab code Exa 1.32 LST and LMT

```
1
2
3
4
5 //exapple 1.32
6 clc; funcprot(0);
7 // Initialization of Variable
8 //part1
9 longP=162+30/60+15/3600; //longitude of place
10 GST=10+30/60+15/3600; //GST at GMN
11 RA=22+11/60+30/3600; //local sidereal time
12 dot=longP/15; // difference in time
13 i=dot*9.8565/3600; //error
14 gmm=GST+i;//LST at L.M.N
15 lmn=RA-gmm; //SI \text{ of LMN}
16 i2=lmn*9.8565/3600; //error 2
17 LMT = lmn - i2;
18 disp("local mean time in past midnight observed at
      upper transit:");
19 a=modulo(LMT*3600,60);
20 printf ("seconds \%.2 \, \mathrm{f}",a);
21 b = modulo(LMT * 3600 - a, 3600) / 60;
22 printf(" minutes %i",b);
```

```
23 c = (LMT * 3600 - b * 60 - a) / 3600;
24 if c>24 then
25
        c = c - 24;
26 end
27 printf(" hours %i",c);
28 //part2
29 i3=12*9.8565/3600; // ratardation
30 \text{ LMT} = \text{LMT} + 12 - i3;
31 disp("local mean time in past midnight observed at
      lower transit:");
32 a=modulo(LMT * 3600,60);
33 printf("seconds \%.2 \, f",a);
34 b=modulo(LMT *3600-a, 3600)/60;
35 printf(" minutes %i",b);
36 c = (LMT * 3600 - b * 60 - a) / 3600;
37 if c>24 then
        c = c - 24;
38
39 end
40 printf(" hours %i",c);
41 disp("its the time of next day")
```

Scilab code Exa 1.33 LST and LMT

```
1
2
3
4
5 //exapple 1.33
6 clc; funcprot(0);
7 // Initialization of Variable
8 longP=60+30/60; //longitude of place
9 GST=7+30/60+48.6/3600; //GST at GMM
10 RA=17+28/60/40/1600;
11 dot=longP/15; // difference in time
12 i=dot*9.8565/3600; //error
```

```
13 gmm=GST-i; //LST at L.M.N
14 LMT=RA-gmm; //local mean time
15 disp("local mean time in past midnight observed:");
16 a=modulo(LMT*3600,60);
17 printf("seconds %.2f",a);
18 b=modulo(LMT*3600-a,3600)/60;
19 printf("minutes %i",b);
20 c=(LMT*3600-b*60-a)/3600;
21 if c>24 then
22 c=c-24;
23 end
24 printf("hours %i",c);
```

Scilab code Exa 1.42 horizontal angle

```
1
2
3 //exapple 1.42
4 clc; funcprot(0);
5 // Initialization of Variable
6 aziA = 32 + 41/60 + 30/3600; //azimuth of A
7 aziB=110+28/60+42/3600; //azimuth of B
8 vaA=10+21/60+12/3600; // vertical angle of A
9 vaB = -2-18/60-30/3600; // verticsl angle of B
10 1A1=11;
11 1B1=11.5;
12 \text{ rA1=7.5};
13 rB1 = 7;
14 \ 1B2=10;
15 \quad 1A2 = 10.5;
16 \text{ rB2=7.5};
17 \text{ rA2=8};
18 d=20;
19 //partA
20 \text{ sigl=}1A1+1A2;
```

```
21 sigr=rA1+rA2;
22 b=sigl/4*d-sigr/4*d;
23 i=tan(vaA);
24 caziA=aziA+i*29.95/3600;
25 disp(caziA, "corrected azimuth of A in (degrees):");
26 //partB
27
28 i=tan(vaB);
29 caziB=aziB+i*b/3600;
30 disp(caziB, "corrected azimuth of B in (degrees):");
31 ha=caziB-caziA;
32 disp(ha, "horizontal difference of angle between A & B in (degrees):")
```

Scilab code Exa 1.43 index error in theodolite

```
1
3 //exapple 1.43
4 clc; funcprot(0);
5 // Initialization of Variable
6 v1=18+36/60+48/3600; // vertical angle 1
7 v2=18+35/60+56/3600; //vertical angle 2
8 slm=28+36/60+20/3600; // altitude of sun measured
9 ds=15/60+59.35/3600; //dia of sun
10 pi=3.14159;
11 mv = (v1+v2)/2; //mean vertical angle
12 i=v1-v2; //error
13 sl=slm+i;//new altitude of sun
14 //part2
15 \text{ sl=sl+ds};
16 // part3
17 ir = -57/3600/(tan(slm*pi/180+26*pi/180/3600)); //error
       due to refraction
18 \text{ sl=sl+ir};
```

Scilab code Exa 1.44 chronometer error

```
1
3 //exapple 1.44
4 clc; funcprot(0);
5 // Initialization of Variable
6 \log = 4 + 30/60;
7 i = long *9.8565/3600; // longitude
8 gst=14+38/60+12/3600; //GST on GMM
9 lst=gst-i;//LST on LMM
10 RA=7+36/60+21.24/3600;
11 LST=RA;
12 SI=LST-1st+24;
13 LCT=17+56/60+8.86/3600-1; //local chronometer time
14 i2=SI*9.8296/3600;
15 LMM=SI-i2;
16 \text{ ce=LCT-LMM};
17 disp(ce*3600, "chronometer error in (s):")
```

Scilab code Exa 1.45 chronometer error

```
1
2
3 //exapple 1.45
4 clc; funcprot(0);
5 // Initialization of Variable
6 c=90-36-30/60-30/3600;//colatitude
7 p=90-16-12/60-18.4/3600; //co declination
8 z=90-30-12/60-30/3600; //co altitude
9 s = (p+z+c)/2;
10 pi=3.14159;
11 s1=s-c;
12 \text{ s2=s-p};
13 \ s3=s-z;
14 H=2*atan(sqrt(sin(s1*pi/180)*sin(s2*pi/180)/sin(s*pi
      /180)/\sin(s3*pi/180));
15 \text{ H=H*180/pi};
16 \text{ H} = 24 - \text{H} / 15;
17 LST=H+5+18/60+12.45/3600-24;
18 ce=1+2/60+5.25/3600-LST;
19 disp(ce*3600+2, "chronometer error in (s):")
```

Scilab code Exa 1.46 chronometer error

```
1
2
3 //exapple 1.46
4 clc; funcprot(0);
5 // Initialization of Variable
6 c=90-36-40/60-30/3600; //co latitude
7 p=90-17-26/60-42.1/3600; //co declination
8 z=90-36-14/60-16.8/3600; //co altitude
9 pi=3.14159;
10 s=(p+z+c)/2;
11 s1=s-c;
12 s2=s-p;
```

Scilab code Exa 1.47 chronometer error

```
1
2
3 //exapple 1.47
4 clc; funcprot(0);
5 // Initialization of Variable
6 RA=17+12/60+48/3600;
7 gst=9+26/60+12/3600; //GST on GMN
8 long=138/15+45/15/60; //longitude
9 lst=-long*9.85645/3600+9+26/60+12/3600; //LST on LMN
10 LST=17+12/60+48/3600; //local sidereal time
11 SI=LST-lst;
12 MI=-SI*9.8296/3600+SI;
13 LCT=7+47/60+02/3600; //local chronometer time
14 ce=LCT-MI;
15 disp(ce*3600, "chronometer error in (s):")
```

Scilab code Exa 1.48 Azimuth and LMT

```
1
2
3 //exapple 1.48
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 theta=54+30/60; //\log itude
8 delta=62+12/60+21/3600; // declination
9 \text{ pi} = 3.14;
10 lat=asin(sin(theta*pi/180)/sin(delta*pi/180));
11 lat=lat*180/pi;
12 disp("latitude of star observed:");
13 a=modulo(lat*3600,60);
14 printf ("seconds \%.2 f",a);
15 b=modulo(lat*3600-a,3600)/60;
16 printf(" minutes %i",b);
17 c=(lat*3600-b*60-a)/3600;
18 printf("
              degrees %i",c);
19 //part2
20 A=53+25/60; //azimuth of star
21 h=65+18/60+42/3600; //horizontal angle
22 A = A + h;
23 disp("azimuth of line AP is:");
24 = modulo(A*3600,60);
25 printf ("seconds \%.2 \, \mathrm{f}",a);
26 b=modulo(A*3600-a,3600)/60;
27 printf(" minutes \%i",b);
28 c = (A*3600-b*60-a)/3600;
29 printf("
              degrees %i",c);
30 //part3
31 \text{ lst} = 4 + 39/60 + 6.5/3600; //LST \text{ of LMN}
32 LST=10+58/60+38/3600+2+49/60+25.3/3600; //LST of
      observation
33 LMN=LST-lst;
34 i = LMN * 9.8565/3600; //error
35 \quad LMT = LMN - i;
36 disp("local mean time is:")
37 = modulo(LMT*3600,60);
```

```
38 printf("seconds %.2f",a);
39 b=modulo(LMT*3600-a,3600)/60;
40 printf("minutes %i",b);
41 c=(LMT*3600-b*60-a)/3600;
42 printf("hours %i",c);
```

Scilab code Exa 1.49 Azimuth and LMT

```
1
3 //exapple 1.49
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 theta=53+32/60; // \log itu de
8 delta=56+42/60+53.2/3600; // declination
9 \text{ pi}=3.14159;
10 lat=asin(sin(theta*pi/180)/sin(delta*pi/180));
11 lat=lat*180/pi;
12 disp("altitude of star observed:");
13 a=modulo(lat *3600,60);
14 printf ("seconds \%.2 \, f", a);
15 b=modulo(lat*3600-a,3600)/60;
16 printf(" minutes %i",b);
17 c = (lat *3600 - b*60 - a)/3600;
18 printf(" degrees %i",c);
19 //part2
20 As=asin(cos(delta*pi/180)/cos(theta*pi/180)); //
      azimuth of star
21 h=75+18/60+20/3600; //angle between line and star
22 A = h - As * 180/pi;
23 \quad A = 360 - A;
24 disp("azimuth of line AP is:");
25 = \text{modulo}(A*3600,60);
26 printf ("seconds \%.2 \,\mathrm{f}",a);
```

```
27 b = modulo(A*3600-a,3600)/60;
28 printf(" minutes %i",b);
29 c = (A*3600-b*60-a)/3600;
30 printf(" degrees %i",c);
31 //part3
32 LST=10+58/60+3.9/3600+22+10/60+38.5/3600-24; //LST of
       observation
33 long = 5 + 40/60 + 18/3600; //longitude
34 i=long*9.8565/3600; //error
35 \text{ lst} = 4+58/60+23.84/3600+i; //LST on LMN
36 LMM=LST-lst;
37 i2=LMM*9.8565/3600; //error in LMM
38 \quad LMT = LMM - i2;
39 disp("local mean time interval is:")
40 a=modulo(LMT*3600,60);
41 printf ("seconds \%.2 \, f",a);
42 b=modulo(LMT*3600-a,3600)/60;
43 printf(" minutes %i",b);
44 c = (LMT * 3600 - b * 60 - a) / 3600;
45 printf(" hours %i",c);
```

Scilab code Exa 1.50 Azimuth of star

```
1
2
3  //exapple 1.50
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14159;
7  long=(15+30/60)/15;//longitude
8  GMT=19+12/60+36.2/3600;
9  i=long*9.8565/3600;//error in longitude
10  LMT=GMT+long;
11  i2=LMT*9.8565/3600;//error in LMT
12  LMT=LMT+i2;
```

```
13 LST=10+12/60+21.4/3600+LMT;
14 H=LST-10-12/60-6.3/3600; //hour angle
15 H=H*15;
16 H=360-H;
17 As = atan(tan((55+29/60+1.2/3600)*pi/180)*cos
      ((32+52/60+27/3600)*pi/180)/sin((-2-7/60-33/3600)
     *pi/180));
18 h=36+28/60+18/3600; // angle between line and star
19 A=180+As*180/pi-h;
20 disp("azimuth of star is:");
21 = modulo(A*3600,60);
22 printf ("seconds %.2f",a);
23 b = modulo(A*3600-a,3600)/60;
24 printf(" minutes %i",b);
c = (A*3600-b*60-a)/3600;
26 printf(" degrees %i",c);
27 clear
```

Scilab code Exa 1.51 Azimuth of line

```
1
2
3  //exapple 1.51
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14159;
7  alpha=33+35/60+10/3600; // altitude
8  ZM=90-alpha;
9  delta=22+05/60+35/3600; // declination
10  PM=90-delta;
11  theta=52+30/60+20/3600; // latitude
12  ZP=90-theta;
13  As=acos((cos(PM*pi/180)-cos(ZP*pi/180)*cos(ZM*pi/180)))/(sin(ZP*pi/180)*sin(ZM*pi/180)));
14  h=18+20/60+30/3600; // angle between line and star
```

```
15 A=As*180/pi+h;

16 disp("azimuth of star is:");

17 a=modulo(A*3600,60);

18 printf("seconds %.2f",a);

19 b=modulo(A*3600-a,3600)/60;

20 printf("minutes %i",b);

21 c=(A*3600-b*60-a)/3600;

22 printf("degrees %i",c);

23 clear
```

Scilab code Exa 1.52 Azimuth of sun

```
1
2
3 //exapple 1.52
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 GAT = 5 + 17/60 + 6/60; //GAT of observation
8 delta=17+46/60+52/3600; // declination
9 i = 37/3600 * GAT;
10 delta=delta-i;
11 disp("declination of GAT is:");
12 a=modulo(delta*3600,60);
13 printf ("seconds \%.2 \, f", a);
14 b=modulo(delta*3600-a,3600)/60;
15 printf("
             minutes %i",b);
16 c = (delta*3600-b*60-a)/3600;
17 printf("
            degrees %i",c);
18 // part 2
19 pi=3.14159;
20 p=90-delta; //co-declination
21 altitude = 23+15/60+20/3600; // altitude of sun
22 i2=2/60+12/3600; //error due to refraction
23 i3=8/3600; //error due to parallax
```

```
24 altitude=altitude-i2+i3;
25 c=90-55-46/60-12/3600; //colatitude
26 z=90-altitude;//co altitude
27 s = (p+z+c)/2;
28 \text{ s1=s-c};
29 \text{ s2=s-p};
30 \text{ s3=s-z};
31 A=2*atan(sqrt(sin(s3*pi/180)*sin(s1*pi/180)/sin(s*pi)
      /180)/sin(s2*pi/180));
32 A = A * 180/pi;
33 disp("azimuth of star is:");
34 = modulo(A*3600,60);
35 printf ("seconds \%.2 \, f",a);
36 b=modulo(A*3600-a,3600)/60;
37 printf(" minutes %i",b);
38 c = (A*3600-b*60-a)/3600;
39 printf(" degrees %i",c);
40 clear
```

Scilab code Exa 1.53 azimuth angle

```
1
2
3 //exapple 1.53
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14159;
7 GMT=17+5/60+2/3600; //
8 i=9.8565/3600*GMT;
9 GST=3+12/60+12/3600;
10 wl=1+18/60; // west longitude
11 RA=16+23/60+30/3600;
12 H=GMT+i+GST+wl-RA; // hour angle
13 H=H*15;
14 p=90-29-52/60;
```

Scilab code Exa 1.54 azimuth angle

```
1
3 //exapple 1.54
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14159;
7 a1=24+30/60+20/3600;
8 \quad a2=24+30/60+40/3600;
9 a3=25;
10 a4=25+1/60;
11 lat=(a1+a2+a3+a4)/4;
12 il=(10.6-9.4)/4*15/3600;//error due to level
13 lat=lat+il;
14 ir=-57/3600/tan((lat*pi/180)); // carrection of
      refraction
15 ip=8/3600*cos(lat*pi/180);//correction of parallax
16 lat=lat-ir+ip;
17 z = 90 - 1at;
18 \text{ delta} = 1 + 32/60 + 16.8/3600 - 56.2/3600*(3/60 + 1.86/3600);
```

```
19 p=90-delta;
20 c = 90 - 36 - 48/60 - 30/3600;
21 s = (p+z+c)/2;
22 s1=s-c;
23 \text{ s2=s-p};
24 \text{ s3=s-z};
25 A=2*atan(sqrt(sin(s3*pi/180)*sin(s1*pi/180)/sin(s*pi
      /180)/\sin(s2*pi/180));
26 A = A * 180/pi;
27
28 \quad A = A + 81 + 59/60 + 10/3600;
29 A = 360 - A;
30 disp("azimuth of star is:");
31 a=modulo(A*3600,60);
32 \text{ printf} (\text{"seconds } \%.2 \text{ f",a});
33 b=modulo(A*3600-a,3600)/60;
34 printf(" minutes %i",b);
35 c = (A*3600-b*60-a)/3600;
36 printf(" degrees %i",c);
37 clear
```

Scilab code Exa 1.55 latitude

```
1
2
3  //exapple 1.55
4  clc; funcprot(0);
5  // Initialization of Variable
6  alpha=65+40/60+18/3600; // altitude
7  delta=53+12/60+10/3600; // declination
8  pi=3.1415;
9  i=57/3600*1/tan(alpha*pi/180); //error
10  alpha=alpha-i;
11  z=90-alpha; // zenith distance
12  lat=delta-z;
```

```
disp("latitude of star observed:");
a=modulo(lat*3600,60);
printf("seconds %.2f",a);
b=modulo(lat*3600-a,3600)/60;
printf("minutes %i",b);
c=(lat*3600-b*60-a)/3600;
printf("degrees %i",c);
```

Scilab code Exa 1.56 latitude

```
1
2
3 //exapple 1.56
4 clc; funcprot(0);
5 // Initialization of Variable
6 alpha=64+36/60+20/3600; // altitude
7 delta=26+12/60+10/3600; // declination
8 \text{ pi}=3.1415;
9 i=57/3600*1/tan(alpha*pi/180); //error
10 alpha=alpha-i;
11 z=90-alpha; //zenith distance
12 lat=delta+z;
13 disp("latitude of star observed:");
14 a=modulo(lat*3600,60);
15 printf ("seconds \%.2 \,\mathrm{f}",a);
16 b=modulo(lat*3600-a,3600)/60;
17 printf(" minutes %i",b);
18 c=(lat*3600-b*60-a)/3600;
19 printf("
             degrees %i",c);
20 clear
```

Scilab code Exa 1.57 latitude of place

```
1
2
3 //exapple 1.57
4 clc; funcprot(0);
5 // Initialization of Variable
6 alpha=44+12/60+30/3600; // altitude
7 longP=75+20/60+15/3600; //longitude of place
8 delta=22+18/60+12.8/3600; // declination of sun
9 pi=3.1415;
10 i=57/3600*1/tan(alpha*pi/180);//error
11 i2=8.78/3600*cos(alpha);//correction due to parallax
12 i3=15/60+45.86/3600; //coreectin due to semi diamter
13 alpha=alpha-i+i2+i3;
14 z=90-alpha; //zenith distance
15 delT=longP/15;
16 i4=6.82/3600*delT;//error in time
17 delta=i4+delta;
18 lat=delta+z;
19 disp("latitude of sun is to the south observed:");
20 a=modulo(lat * 3600,60);
21 printf("seconds \%.2 \, f",a);
22 b=modulo(lat*3600-a,3600)/60;
23 printf(" minutes %i",b);
24 c = (1at *3600 - b *60 - a) /3600;
25 printf(" degrees %i",c);
26 clear
```

Scilab code Exa 1.58 apparent latitude of place

```
1
2
3 //exapple 1.58
4 clc; funcprot(0);
5 // Initialization of Variable
6 theta=80;
```

```
7 delta=46+45/60+30/3600;
8 alpha1=90-theta+delta;
9 disp("alpha1 is (North):");
10 a=modulo(alpha1*3600,60);
11 printf ("seconds \%.2 \, \mathrm{f}",a);
12 b=modulo(alpha1*3600-a,3600)/60;
13 printf(" minutes %i",b);
14 c=(alpha1*3600-b*60-a)/3600;
15 printf("
             degrees %i",c);
16 alpha2=theta+delta-90;
17 disp("alpha2 is (South):");
18 a=modulo(alpha2*3600,60);
19 printf ("seconds \%.2 \,\mathrm{f}",a);
20 b=modulo(alpha2*3600-a,3600)/60;
21 printf("
             minutes %i",b);
c = (alpha2 * 3600 - b * 60 - a) / 3600;
23 printf("
             degrees %i",c);
```

Scilab code Exa 1.59 latitude of place

```
1
2
3  //exapple 1.59
4  clc; funcprot(0);
5  // Initialization of Variable
6  delta1=20+25/60+48/3600; // declination of star 1
7  delta2=79+30/60+52/3600; // declination of star 2
8  alpha1=48+18/60+12/3600; // altitude of star 1
9  alpha2=47+54/60+6/3600; // altitude of star 2
10  pi=3.1415;
11  r1=58/3600/tan(alpha1*pi/180) // error 1
12  r2=58/3600/tan(alpha2*pi/180) // error 2
13  lat=90-(alpha1-alpha2)/2+(delta1-delta2)/2+(r1-r2) /2;
14  disp("latitude of star observed:");
```

```
15 a=modulo(lat*3600,60);

16 printf("seconds %.2f",a);

17 b=modulo(lat*3600-a,3600)/60;

18 printf(" minutes %i",b);

19 c=(lat*3600-b*60-a)/3600;

20 printf(" degrees %i",c);
```

Scilab code Exa 1.60 latitude of place and declination of star

```
1
2
3 //exapple 1.60
4 clc; funcprot(0);
5 // Initialization of Variable
6 alphal=18+36/60+40/3600; // altitude at lower
      culmination
  alphau=59+48/60+20/3600; // altitude at upper
      culmination
8 lat=(alphal+alphau)/2;
9 disp("latitude of star observed:");
10 a=modulo(lat*3600,60);
11 printf ("seconds \%.2 \, f", a);
12 b=modulo(lat*3600-a,3600)/60;
13 printf("
             minutes %i",b);
14 c = (1at *3600 - b*60 - a)/3600;
15 printf("
             degrees %i",c);
16 delta=90+lat-alphau;
17 disp("declination of star observed:");
18 a=modulo(delta*3600,60);
19 printf ("seconds \%.2 \, f",a);
20 b=modulo(delta*3600-a,3600)/60;
21 printf("
             minutes %i",b);
22 c = (delta*3600-b*60-a)/3600;
23 printf("
             degrees %i",c);
```

Scilab code Exa 1.61 latitude of place

```
1
2
3 //exapple 1.61
4 clc; funcprot(0);
5 // Initialization of Variable
6 alpha=40+36/60+30/3600; // altitude of star
7 delta=10+36/60+40/3600; // declination of star
8 H=46+36/60+20/3600; //hour angle of star
9 \text{ pi}=3.1412;
10 n=atan(tan(delta*pi/180)/cos(H*pi/180));
11 lat=n+acos(sin(alpha*pi/180)*sin(n)/sin(delta*pi
      /180));
12 lat=lat*180/pi;
13 disp("latitude of star observed:");
14 a=modulo(lat*3600,60);
15 printf ("seconds \%.2 f",a);
16 b=modulo(lat*3600-a,3600)/60;
17 printf(" minutes %i",b);
18 c = (1at * 3600 - b * 60 - a) / 3600;
             degrees %i",c);
19 printf("
```

Scilab code Exa 1.62 latitude of place

```
1
2
3  //exapple 1.62
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14159;
7  alpha=42+10/60+40/3600; // altitude of sun
```

```
8 delta=23+12/60+18.6/3600; // declination of sun's
      angle
9 i=57/3600*1/tan(alpha*pi/180);//error
10 i2=8.78/3600*cos(alpha);//correction due to parallax
11 i3=15/60+45.86/3600; //coreectin due to semi diamter
12 \log P = 108 + 30/60; // \log itude of place
13 LMT=14+50/60;
14 alpha=alpha-i+i2+i3;
15 delT=longP/15; //change in time
16 GMT=LMT+delT;
17 i4=1.2/3600*GMT;//error in time
18 H = (GMT - 12 + i4 - delT) * 15; //hour angle
19 i5=10.6/3600*GMT; //error in declination
20 delta=delta+i5;
21 \text{ ZM}=(90-\text{alpha})*\text{pi}/180;
22 \text{ PM} = (90 + \text{delta}) * \text{pi} / 180;
23 A=asin(sin(PM)/sin(ZM)*sin(H*pi/180));
24 \quad A = pi - A;
25 \text{ ZP}=2*atan(sin(A/2+H*pi/360)/sin(A/2-H*pi/360)*tan(PM))
      /2-ZM/2));
26 \quad lat=pi/2-ZP;
27 lat=lat*180/pi+1;
28 disp("latitude of star observed:");
29 a=modulo(lat * 3600,60);
30 printf ("seconds \%.2 \, f", a);
31 b=modulo(lat *3600-a, 3600)/60;
32 printf(" minutes %i",b);
33 c=(1at*3600-b*60-a)/3600;
34 printf("
              degrees %i",c);
```

Scilab code Exa 1.63 latitude of place

```
1
2
3 //exapple 1.63
```

```
4 clc; funcprot(0);
5 // Initialization of Variable
6 delta=15+20/60+48/3600; // declination of star
7 Int=9+22/60+6/3600; //interval
8 \text{ pi}=3.141;
9 dint=Int*9.8565/3600; //change in interval
10 H=(Int+dint)*15/2;//hour angle
11 lat=atan(tan(delta*pi/180)/cos(H*pi/180));
12 lat=lat*180/pi+5/6*16/3600;
13 disp("latitude of star observed:");
14 a=modulo(lat*3600,60);
15 printf ("seconds \%.2 \, f",a);
16 b=modulo(lat*3600-a,3600)/60;
17 printf(" minutes %i",b);
18 c=(lat*3600-b*60-a)/3600;
19 printf("
             degrees %i",c);
```

Scilab code Exa 1.64 latitude of place

```
1
2
3  //exapple 1.64
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14159;
7  RA=1+41/60+48.64/3600;
8  lat=48+36/60+40/3600; // latitude
9  delta=88+58/60+28.26/3600; // declination of polaris
10  GMM=16+48/60+20.86/3600;
11  longP=7+20/60; // longitude of place P
12  i1=51/3600; //error due to barometer
13  i2=1/3600; //error due to barometer
14  i3=-1/3600; //error due to temp
15  lat=lat-i1+i2+i3;
16  delT=longP/15;
```

```
17 i4=delT*9.8565/3600;
18 lst=GMM+i4;
19 LMT = 20 + 24/60 + 50/3600;
20 i6=9.8565/3600*LMT;//error in LMT
21 LST = LMT + i6 + lst - 24;
22 H=LST-RA; //hour angle
23 H=H*15;
24 \text{ lat=lat-}(90\text{-delta})*\cos(H*\text{pi}/180)+.5*\sin(1/3600*\text{pi})
      /180)*(90-delta)^2*(sin(H*pi/180))^2*tan(lat*pi)
      /180);
25 disp("latitude of star observed:");
26 a=modulo(lat * 3600,60);
27 printf ("seconds \%.2 \, f", a);
28 b=modulo(lat*3600-a,3600)/60;
29 printf(" minutes %i",b);
30 c = (1at * 3600 - b * 60 - a) / 3600;
31 printf(" degrees %i",c);
```

Scilab code Exa 1.65 latitude of place

```
1
2
3  //exapple 1.65
4  clc; funcprot(0);
5  // Initialization of Variable
6  longP=120-4-20/60; //longitude of point
7  delT=longP/15;
8  GST=8+30/60+20/3600; //GST on GMM
9  i=delT*9.8565/3600; //error in time
10  pi=3.1415;
11  lst=GST+i; //LST on LMM
12  LST=19+52/60+16/3600;
13  RA=LST;
14  LMN=LST-1st;
15  i2=LMN*9.8565/3600; //error in LMN
```

```
16 LMN = LMN - i2;
17 OSM=10+55/60+30/3600; // Observed mean time
18 i3=1/60+25/3600; //error in observed time
19 OSM = OSM - i3;
20 \text{ LMT} = 0\text{SM} + 4/15 + 21/60/15;
21 I = LMN - LMT; //interval
22 i4=1.21/3600; //error in interval
23 I = I + i4;
24 H=I; //hour angle
25 delta=6+15/60+02/3600; // deflection
26 alpha=39+20/60+30/3600; // altitude
27 theta=56+54/60+30/3600; //longitude
28 B=\cos(\text{delta*pi/180})*\cos(\text{theta*pi/180})/\cos(\text{alpha*pi})
       /180):
29 \text{ m} = 225 * \text{H}^2 * 3600^2 / 2 / 206265;
30 lat=alpha+m*B/3600;
31 \quad lat = 90 - lat + 6 + 15/60 + 02/3600;
32 disp(B, "latitude of star observed:");
33 a=modulo(lat*3600,60);
34 printf ("seconds \%.2 \, f",a);
35 b=modulo(lat*3600-a,3600)/60;
36 printf(" minutes %i",b);
37 c = (1at * 3600 - b * 60 - a) / 3600;
38 printf(" degrees %i",c);
```

Chapter 2

Photogrammetric Surveying

Scilab code Exa 2.1 Azimuth of camera

```
1
2
3 //exapple 2.1
4 clc; funcprot(0);
5 // Initialization of Variable
6 pi=3.14259;
7 f=120.80//focal length
8 a=-35.52//elevation of A
9 b=8.48//elevation of B
10 c=48.26//elevation of C
11 alphaa=atan(a/f);
12 alphab=atan(b/f);
13 alphac=atan(c/f);
14 phi=(354+30/60)*pi/180;//azimuth of camera
15 phia=phi-alphaa-360*pi/180;//azimuth of a
16 disp(phia/pi*180, "azimuth of a in (degrees)");
17 phib=phia+alphab;//azimuth of b
18 disp(phib/pi*180, "azimuth of b in (degrees)");
19 phic=phia+alphac; //azimuth of c
20 disp(phic/pi*180, "azimuth of c in (degrees)");
21 clear
```

Scilab code Exa 2.2 distance of points

```
1
2
3 //exapple 2.2
4 clc; funcprot(0);
5 // Initialization of Variable
6 \text{ pi}=3.14259;
7 f=150; //focal length of camera
8 ap=20.2//elevation of a from p
9 aa1=16.4; //ditance to the right
10 ag=35.2//elevation of a from q
11 PQ=100; // distance of PQ
12 RL=126.845; //reduced level of instrument
13 alphap=atan(ap/f);
14 alphaq=atan(aq/f);
15 P=pi/3-alphap;//angle P
16 Q=40*pi/180-alphaq;//angle Q
17 A=pi-P-Q; //angle A;
18 AP=PQ*sin(Q)/sin(A);
19 disp(AP, "distance of AP in (m):");
20 AQ=PQ*sin(P)/sin(A);
21 disp(AQ, "distance of AQ in (m):");
22 Pa1=sqrt(ap^2+f^2);
23 AA1=aa1*AP/Pa1;
24 RLa=RL+AA1; //reduced level of A
25 disp(RLa, "reduced level of A in (M)")
```

Scilab code Exa 2.3 distance of points

1

```
2
3  //exapple 2.3
4  clc; funcprot(0);
5  // Initialization of Variable
6  pi=3.14259;
7  theta=(44+30/60)*pi/180;//angle b/w two points
8  x1=68.24;//distance of first point
9  x2=58.48;//distance of 2nd point
10  f=(x1+x2)/tan(theta)/2+sqrt((x1+x2)^2/4/(tan(theta))^2+x1*x2);
11  disp(f,"focal length of lens in (mm):");
```

Scilab code Exa 2.4 representative fraction

```
1
2
3 //exapple 2.4
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 \text{ pi}=3.14259;
8 H=1200; // altitude
9 h=80; //elevation of hill
10 f = 15/100;
11 R80=f/(H-h);
12 disp(R80, "representative fraction of hill is (times)
      :");
13 //part2
14 h=300; //elevation of hill
15 R300=f/(H-h);
16 disp(R300, "representative fraction of hill is (times
      ):");
```

Scilab code Exa 2.5 altitude of point

```
1
2
3 //exapple 2.5
4 clc; funcprot(0);
5 // Initialization of Variable
6 R=1/8000;
7 h=1500;
8 f=20/100;
9 H=h+f/R;
10 disp(H,"height above sea level in (m):");
```

Scilab code Exa 2.6 representative fraction

```
1
2
3 // \text{exapple } 2.6
4 clc; funcprot(0);
5 // Initialization of Variable
6 h=500; //elevaton of point
7 f=20/100; // focal length
8 v=8.65/100; // vertical distance of photograph
9 ho=2000; //horizontal distance of photograph
10 R=v/ho; //representative fraction
11 H=h+f/R;
12 disp(H,"height above sea level in (m):");
13 h=800;
14 S=(H-h)/f/100; //scale of photograph
15 disp(S,"1cm in photograph represents metres:")
16 clear
```

Scilab code Exa 2.7 altitude of point

```
1
2
3 //exapple 2.7
4 clc; funcprot(0);
5 // Initialization of Variable
6 m=1/50000; //map scale
7 pd=10.16; //photo distance
8 md=2.54; //map distance
9 R=pd/md*m; //representative fraction
10 f=16/100;
11 h=200;
12 H=h+f/R;
13 disp(H,"height above sea level in (m):");
```

Scilab code Exa 2.8 distance of points

```
1
3 // exapple 2.8
4 clc; funcprot(0);
5 // Initialization of Variable
6 f = 20 // focal length
7 xa=2.65; //x coordinate of a
8 xb=-1.92; //x coordinate of b
9 ya=1.36; //y coordinate of a
10 yb=3.65; //y coordinate of b
11 H=2500;
12 ha=500; // elevation of a
13 hb=300; // elevation of b
14 Xa=(H-ha)/f*xa;
15 Xb = (H-hb)/f *xb;
16 Ya=(H-ha)/f*ya;
17 Yb = (H-hb)/f*yb;
18 AB=sqrt((Xa-Xb)^2+(Ya-Yb)^2);
19 disp(AB, "distance between A & B in (m):")
```

Scilab code Exa 2.9 altitude of a point

```
1
2
3 //exapple 2.9
4 clc; funcprot(0);
5 // Initialization of Variable
6 f = 20 // focal length
7 xa=2.65; //x coordinate of a
8 xb=-1.92; //x coordinate of b
9 ya=1.36; //y coordinate of a
10 yb=3.65; //y coordinate of b
11 ha=500; // elevation of a
12 hb=300; // elevation of b
13 ABg = 545;
14 \text{ ab} = 5.112;
15 hab=ha/2+hb/2;
16 Happ=hab+ABg*f/ab
17
18 Xa = (Happ - ha)/f *xa;
19 Xb = (Happ - hb) / f * xb;
20 Ya=(Happ-ha)/f*ya;
21 Yb = (Happ - hb) / f * yb;
22 AB = sqrt((Xa - Xb)^2 + (Ya - Yb)^2);
23 Hact=ABg/AB*(Happ-hab)+hab;
24 disp(Hact, "actual flying height of A & B in (m):");
```

Scilab code Exa 2.10 relief displacement

1 2

```
3 //exapple 2.10
4 clc; funcprot(0);
5 // Initialization of Variable
6 f=20/100;
7 Sd=1/10000;
8 h=250; // elevation
9 r=6.44;
10 H=f/Sd;
11 d=r*h/H;
12 disp(d," relief displacement of the point in (cm)")
```

Scilab code Exa 2.11 relief displacement

```
1
2
3 //exapple 2.11
4 clc; funcprot(0);
5 // Initialization of Variable
6 h=50; // elevation
7 H=2500-1250;
8 r=6.35;
9 d=r*h/H;
10 disp(d,"relief displacement of the point in (cm)")
```

Scilab code Exa 2.12 relief displacement

```
1
2
3 //exapple 2.12
4 clc; funcprot(0);
5 // Initialization of Variable
6 f=20/100; //focal length
7 l=250; //length of line
```

```
8 lp=8.5/100; //length of line in photograph
9 H=1*f/lp; //height of camera above datum
10 r=6.46; //distace of image of top of the tower
11 d=0.46; //releif displacement
12 h=d*H/r;
13 disp(h, "height of tower above its base in (m)")
```

Scilab code Exa 2.13 flight plan

```
1
3 //exapple 2.13
4 clc; funcprot(0);
5 // Initialization of Variable
6 1=20/100; //length of photograph
7 w=20/100; //breadth of photograph
8 Pl=0.6; //longitudinal lap
9 Pw=0.3; //side lap
10 s=100*20;
11 L=(1-P1)*s;
12 W = (1 - Pw) *s;
13 Ar=L*W/1000/1000;
14 N = 100 / Ar;
15 A = round(N);
16 if N-A<0 then
      disp(A, "no. of photographs to be taken");
17
18 else
19
       disp(A+1, "no. of photographs to be taken");
20 \text{ end}
```

Scilab code Exa 2.14 flight plan

1

```
3 //exapple 2.14
4 clc; funcprot(0);
5 // Initialization of Variable
6 Pl=0.6; //longitudinal lap
7 Pw=0.3; // side lap
8 L1=10000;
9 s = 100 * 20;
10 L2=L1;
11 N1=L1/((1-P1)*s)+1;
12 A1=round(N1);
13 if N1-A1<0 then
14
      N1 = A1
15 else
16
        N1 = A1 + 1;
17 \text{ end}
18 N2=L2/((1-Pw)*s)+1;
19 A2 = round(N2);
20 if N2-A2<0 then
21
      N2 = A2
22 else
23
        N2 = A2 + 1;
24 end
25 \text{ N} = \text{N1} * \text{N2};
26 disp(N, "no. of photographs to be taken");
27 clear
```

Scilab code Exa 2.15 photograph numbers

```
1
2
3 //exapple 2.15
4 clc; funcprot(0);
5 // Initialization of Variable
6 Pl=0.6; //longitudinal lap
```

```
7 Pw=0.3; //side lap
8 L1=12500;
9 s = 100 * 20;
10 L2=8000;
11 N1=L1/((1-P1)*s)+1;
12 A1=round(N1);
13 if N1-A1<0 then
14
       N1 = A1
15 else
16
        N1 = A1 + 1;
17 \text{ end}
18 N2=L2/((1-Pw)*s)+1;
19 A2 = round(N2);
20 if N2-A2<0 then
21
       N2 = A2
22 else
23
        N2 = A2 + 1;
24 end
25 \text{ N} = \text{N1} * \text{N2};
26 disp(N, "no. of photographs to be taken");
```

Scilab code Exa 2.16 flight planning

```
1
2
3  //exapple 2.16
4  clc; funcprot(0);
5  // Initialization of Variable
6  //part1
7  f=30/100; //focal length
8  h=400; //elevation of datum
9  r=12000; //ratio
10  s=120*20;
11  L2=24000;
12  L1=30000;
```

```
13 Pl=0.6; //longitudinal lap
14 Pw = 0.3; // side lap
15 \text{ H=h+r*f};
16 disp(H," height above datum in (m):");
17 //part2
18 W = (1 - Pw) *s;
19 disp(W, "ground width covered in each photograph (m):
      ")
20 //part3
21 N2=L2/((1-Pw)*s)+1;
22 \quad A2 = round(N2);
23 if N2-A2<0 then
24
      N2 = A2
25 else
26
       N2 = A2 + 1;
27 \text{ end}
28 disp(N2, "no. of flights required")
29 //part4
30 Asf=L2/(N2-1); //actual spacing between flights
31 //part5
32 Sfl=Asf/600; //spacing of flight lines
33 //part6
34 gd=(1-Pl)*s;//ground distance
35 //part7
36 Ei=gd/55.5; //exposure interval
37 Ei=round(Ei);
38 //part8
39 Ags=55.56*Ei;//adgusted ground distance
40 // part9
41 N1 = L1 / Ags + 1;
42 \quad A1 = round(N1);
43 if N1-A1<0 then
44
      N1 = A1
45 else
46
       N1 = A1 + 1;
47 end
48 N = N1 * N2;
49 disp(N, "no. of photographs to be taken");
```

Scilab code Exa 2.17 parallax of a point

```
1
2
3  //exapple 2.17
4  clc; funcprot(0);
5  // Initialization of Variable
6  f=150/1000; // focal length
7  r=20000; // ratio
8  Pl=0.6; // longitudinal lap
9  l=23/100; // length
10  w=23/100; // width
11  B=(1-Pl)*l*r; // base length
12  H=f*r;
13  h=0;
14  dh=(H-h)^2/B/f*0.1/1000;
15  disp(dh, "error in height in (m):")
```

Scilab code Exa 2.18 parallax

```
1
2
3 //exapple 2.18
4 clc; funcprot(0);
5 // Initialization of Variable
6 H=600;
7 f=150/1000;
8 s=H/f;
9 b=6.375/100;
10 h1=0;
11 h2=120; //height of chimney
```

```
12 B=s*b;//datum elevation
13 p1=B*f*1000/(H-h1);
14 p2=B*f*1000/(H-h2);
15 delp=p2-p1;
16 delh=H*delp/1000/(b+delp/1000);
17 disp(delh, "parallax height of the chimney in (m):");
18 clear
```

Scilab code Exa 2.19 parallax

```
1
2
3 //exapple 2.19
4 clc; funcprot(0);
5 // Initialization of Variable
6 B=200;
7 f=120;
8 p2=52.52; // parallax for top of pole
9 p1=48.27; // parallax for bottom of pole
10 delh=(p2-p1)/p2/p1*B*f;
11 disp(delh, "diference in elevation of two points in (m):")
```

Scilab code Exa 2.20 parallax

```
1
2
3 //exapple 2.20
4 clc; funcprot(0);
5 // Initialization of Variable
6 //part1
7 delp=1.48/1000;
8 H=5000;
```

```
9 h=500;
10 b=90/1000; //mean principal base
11 dh=(H-h)^2*delp/((H-h)*delp+b*H);
12 disp(dh, "difference in height between two points in (m):");
13 //part2
14 delp=15.5/1000;
15 dh=(H-h)^2*delp/((H-h)*delp+b*H);
16 disp(dh, "difference in height between two points in (m):");
```