- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie.

Automatele finite: aplicatii

- procesarea vorbirii,
- recunoasterea optica a caracterelor,
- recunoasterea formelor,
- modele matematice pentru calculatoarele cu memorie finita (incorporate in aparatele electrocasnice, comutatoare/bariere electrice etc.).

Automat

Informal: cel mai simplu automat este un dispozitiv care

- ✓ dispune de:
 - o unitate de calcul şi de control (decizie),
 - o banda FINITA, utilizata ca dispozitiv de memorare,
 - un cap de citire care se poate deplasa pe banda numai de la stanga la dreapta şi
 - care poate numai citi simbolul curent de pe banda;
- ✓ şi care calculeaza astfel:
 - incepe calculul aflat în starea initiala şi cu capul de citire postat pe prima celula din stanga,
 - la fiecare pas de calcul, inclusiv primul, în functie de starea curenta şi de simbolul citit, trece în alta stare/ ramane în starea curenta şi comanda deplasarea capului de citire o celula la dreapta.

Automat

V

LFA: C3 — LIMBA Acest comutator este un calculator cu 1! bit

Acest comutator este un calculator cu 1! bit de memorie, suficient pt a memora in care dintre cele 2 stari se afla comutatorul

Exemple 1:

AF pt un comutator electric

Ascensoare, termostate, masini de spalat etc.

Exemplu 2:

AF pt o usa automata pentru acces auto:

3 descrieri posibile

- Descrierea in limbajul natural;
- ii. Descrierea formala;
- iii. Descrierea cu ajutorul diagramei de stare.

LFA: C3 – Limbaje regulate

Aceasta usa automata dispune de un calculator cu 1! bit de memorie, suficient pt a memora in care dintre cele 2 stari se afla usa

(i) Descrierea in limbajul natural: usa

(ii) Descrierea cu ajutorul diagramei de stare

	Pe suportul frontal	Pe suportul final	Pe ambele suporturi	Pe niciun suport
Inchis	Deschis	Inchis	Inchis	Inchis
Deschis	Deschis	Inchis	Inchis	Inchis

Observatie 3: Principiul de lucru

- ✓ Automatul finit (determinist) este un mecanism => e caracterizat de stari şi tranzitii intre stari
- ✓ date de intrare şi rezultate

Date de intrare:

 o secventa FINITA de simboluri din alfabet, care sunt "citite" <u>unul cate</u> <u>unul;</u>

In ce consta calculul/prelucrarea?

- ✓ aflat in starea initiala, automatul citeste un simbol din secventa primita
 ca intrare
- ✓ trece din starea curenta in alta stare (unic determinata)
- ✓ procedeaza in continuare la fel, pana la epuizarea secventei
- in acel moment (FINAL), accepta/respinge secventa in functie de tipul de stare in care se gaseste.

Observatie 3 (cont.)

Ce determina trecerea intr-o (anumita) alta stare (calculul/prelucrarea)?

- ✓ starea curenta
- ✓ simbolul curent "citit"

Cand se termina calculul?

cand au fost citite toate simbolurile din secventa de intrare

Cum se termina calculul (ce produce automatul)?

- ✓ la "terminarea" secventei, automatul ajunge intr-una dintre starile "finale", deci automatul accepta secventa,
- ✓ la "terminarea" secventei, automatul ajunge intr-una dintre starile "nefinale", deci automatul nu accepta secventa;


```
√
 b, ab, bb, abab, ababaa, abaab, .....

⊗ a, ba, ababa, .....

(q_1,b) \rightarrow q_2; \quad (q_1,a) \rightarrow (q_1,b) \rightarrow q_2; \quad (q_1,a) \rightarrow (q_1,b) \rightarrow (q_2,a) \rightarrow (q_3,b) \rightarrow q_2;

(q_1,a) \rightarrow (q_1,b) \rightarrow (q_2,a) \rightarrow (q_3,b) \rightarrow (q_2,a) \rightarrow (q_3,a) \rightarrow q_2; \text{ etc}

(q_1,a) \rightarrow q_1; \quad (q_1,b) \rightarrow (q_2,a) \rightarrow q_3; \quad (q_1,a) \rightarrow (q_1,b) \rightarrow (q_2,a) \rightarrow (q_3,b) \rightarrow (q_2,a) \rightarrow q_3;

=>

L(A_1) = L_1 = \{ w \in \{a,b\}^+ \mid w = \alpha b(aa)^n, \alpha \in \{a,b\}^* \}
```

 $L(A_2) = L_1 \cup \{ \epsilon \} \cup \{ (aa)^n \mid n \in \mathbb{N} \}$

=> e necesara o definitie formala a AFD

Definitie 5: Automat finit determinist

```
AFD = (Q, \Sigma, \delta, s, F), unde:
```

Q = multime finita, nevida (stari),

 Σ = multime finita, nevida, numita <u>alfabet de intrare</u> (<u>simboluri</u>),

 $\delta: Q \times \Sigma \rightarrow Q$, numita <u>functia</u> de tranzitie,

s ∈Q, numita starea initiala,

F_Q numita multimea starilor finale (de acceptare);

Notatie 6

 $\mathcal{A} = \{ A \mid A \text{ este un automat finit determinist } \}$

Observatie 7

Pentru a descrie calculul efectuat de un AFD extindem functia 5 printr-o definitie inductiva astfel:

$$δ : Q x Σ* → Q : δ (s, ε) = s$$

$$δ (s, wa) = δ (δ(s, w), a), ∀ w∈Σ*, a∈Σ .$$

Exemplu 8

A₁:
$$Q = \{q_1, q_2, q_3\};$$

 $\Sigma = \{a, b\};$
 $s = q_1;$
 $F = \{q_2\}$
 δ :

	a	a b		
q_1	q ₁	q ₂		
q ₂	q ₃	q ₂		
q_3	q ₂	q_2		

$$\delta(\delta(q_1,aba),a) =$$

$$\delta(\delta(\delta(q_1,ab),a),a) =$$

$$\delta(\delta(\delta(\delta(q_1,a),b),a),a) =$$

$$\delta(\delta(\delta(q_1,b),a),a) =$$

$$\delta(\delta(\mathbf{q}_2,\mathbf{a}),\mathbf{a}) =$$

$$\delta(q_3,a) = q_2$$

Exemplu 8

A₁:
$$Q = \{A,B,C,D,E,F,G\};$$

 $\Sigma = \{a,b\};$
 $s = A;$
 $F = \{C,E\}$
 δ :

	a b
Α	B D
В	в с
С	D E
D	D E
E	в с
F	C G
G	F


```
# √ abab, .....

⊗ abba, .....
```

Definitie 9

L(A) = limbajul recunoscut de AFD A

- $= \{ w \in \Sigma^* | \delta(s, w) = q \in F \}$
- = multimea secventelor peste Σ care aduc A intr-o stare finala

Observatie 10: acceptare vs. recunoastere

Fie AFD $A_3 = (Q, \Sigma, \delta, s, \emptyset)$

$$\Rightarrow$$
 L(A₃) = \varnothing

i.e.: automatul nu accepta nicio secventa peste alfabetul sau de intrare – pentru ca nu are nicio stare finala $F = \emptyset \subseteq Q$

dar recunoaste totusi un limbaj, și anume limbajul vid!!.

Cum proiectam un AFD?

Ideea metodica a proiectarii unui AFD: "proiectantul devine un AFD"

Sa pp. ca primim un limbaj L si vrem sa proiectam AFD A care sa il recunoasca

Metoda de mai sus presupune ca proiectantul primeste o fraza f si i se cere sa spuna daca $f \in L$ sau $f \notin L$

Ca un AFD, proiectantul "vede" simbolurile din fraza unul cate unul si – dupa citirea fiecarui smb – trebuie sa fie in stare sa spuna daca fraza citita pana in acel moment ∈L sau ∉L

i.e.: proiectantul – la fel ca un AFD –

- ✓ are o memorie limitata
- ✓ nu stie cand ajunge la "capatul" frazei si
- ✓ trebuie sa aiba mereu un raspuns pregatit. ->

Cum proiectam un AFD? (cont.)

Elementul esential in aceasta strategie:

CE INFORMATIE DESPRE FRAZA CITITA TREBUIE MEMORATA DE AFD?

De ce nu memoram toata fraza citita?

- limbajul: infinit :
 automatul: numar finit de stari, deci memorie finita
- nu este necesar :

e suficient sa memoram "informatia cruciala"

CARE ESTE INSA INFORMATIA CRUCIALA ?!?

aceasta depinde de limbajul respectiv => stabilirea ei: elementul dificil si creativ in proiectarea unui AFD.

Exemplu 11

Fie $\Sigma = \{0,1\}$ si $L = \{w \in \{0,1\}^+ \mid \#_1(w) = 2k+1, k \in \mathbb{N}\}$

Fie secventa de intrare

Pas 1: stabilim informatia de memorat:

- nr de smb 1 citite pana la momentul crt este sau nu impar?
- la citirea unui nou smb:
 - daca acesta este 0 -> raspunsul trebuie lasat neschimbat;
 - daca acesta este 1 -> raspunsul trebuie comutat

Pas 2: reprezentam informatia de memorat ca o lista finita de posibilitati:

- numar par de simboluri 1, pana acum;
- numar impar de simboluri 1, pana acum. ->

Pas 3: asignam fiecarei posibilitati cate o stare:

• q_{impar} . ->

Pas 4: definim tranzitiile, examinand modul in care se trece de la o posibilitate la alta la citirea fiecarui tip de simbol din Σ :

- la citirea unui simbol 1 se trece din orice stare in cealalta stare,
- la citirea unui simbol 0 se ramane in aceeasi stare,

Pas 5: stabilirea starii initiale si a multimii starilor finale, examinand modul in care se intra/se paraseste fiecare posibilitate:

initial se citesc 0 simboluri -> AFD porneste din starea q_{par}.

starea finala trebuie sa fie cea in care acceptam secventa de intrare =>

starea finala este q_{impar}.

Definitie 12: Calculul efectuat de un AFD

Fie A = $(Q, \Sigma, \delta, s, F)$ un AFD

$$W = W_1 W_2 \dots W_n : \forall 1 \le i \le n : W_i \in \Sigma$$

Atunci, A accepta w ddaca $\exists r_0, r_1, ..., r_n \in Q$ astfel încât:

- 1. $r_0 = s$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}, \forall 0 \le i \le n-1,$
- 3. $r_n \in F$;

Exemplu 13

Fie automatul de mai sus;

 q_B , q_1 , q_2 , q_3 , q_2 , q_3 , q_2 , care indeplineste toate cele 3 conditii:

$$\delta(q_1, A) = q_1, \delta(q_1, B) = q_2, \delta(q_2, A) = q_3, \delta(q_3, B) = q_2, \delta(q_2, A) = q_3, \delta(q_3, A) = q_2$$

Definitie 14

Exemple 15

1. $L_1 = \{w \in \{0,1\}^+ \mid w = w_1 w_2 ... w_k 1, k \in \mathbb{N}\}$

Putem verifica pentru:

√ 10101, 0001,

⊗ 0000, 1010, =>

=> $A_1 = (\{q_1, q_2\}, \{0,1\}, \delta, q_1, \{q_2\}),$

δ	0	1
q_1	q_1	q_2
q_2	q_1	q_2

Fie acum:

√ 0000, 1010,

⊗ 10101, 0001, =>

2. $L_2 = \{w \in \{0,1\}^* \mid w = w_1 w_2 ... w_k 0, k \in \mathbb{N}\}$

δ	0	1
q_1	q_1	q_2
q_2	q_1	q_2

3. Fie A₃:

Observam simetria => simulam un calcul (pentru ramura stanga): aa...abb...baa...abb...baa...a.... => a^n, a^nb^ma^k, a^nb^ma^kb^ua^v => a^{n1}b^{m1}a^{k1}a^{n2}b^{m2}a^{k2}...a^{nx}b^{mx}a^{kx} => L_3 = { $w \in \{a,b\}^*$ | w incepe şi se termina cu a} \cup \cup { $w \in \{a,b\}^*$ | w incepe şi se termina cu b} .

4. Vrem sa construim un AFD care sa recunoasca toate cuvintele binare care contin subcuvantul 001:

$$L_4 = \{w \in \{0,1\}^+ \mid \exists x,y \in \{0,1\}^* \text{ a.i. } w = x001y\}$$

- => trecem peste prefixele formate numai din 1 (pastram starea initiala, s)
 - cand gasim un 0 semnalam cu o noua stare q
 - daca intalnim 0 din nou semnalam cu o noua stare, q₀₀
 - 1 reluam cautarea intorcandu-ne in s

 - daca intalnim 1 semnalam cu o noua stare q₀₀₁ și o declaram finala (nu conteaza cate simboluri 0 sau 1 mai intalnim in continuare, acceptam pt ca am gasit deja subcuvantul cautat)
 - O ramanem pe loc in asteptarea unui 1 (daca il gasim trecem in starea finala, daca nu, AFD nu accepta secv.).

- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie

Definitie 16

Fie A, B $\subseteq \Sigma^*$; definim urmatoarele operatii:

- ✓ reuniunea : $A \cup B = \{ \omega \in \Sigma^* \mid \omega \in A \text{ sau } \omega \in B \},$
- ✓ concatenarea : $A_0B = \{\omega v \in \Sigma^* \mid \omega \in A \text{ si } v \in B\},$
- ✓ operatia star : $A^* = \{\omega_1 \omega_2 ... \omega_n \in \Sigma^* \mid \omega_k \in A, \forall 1 \le k \le n, n \in \mathcal{N}\};$

Observatii 17

- ☐ Cele 3 operatii: operatii regulate
 - ✓ specifice clasei limbajelor formale,
 - utilizate pentru a studia proprietatile limbajelor (regulate);
- Operatia star
 - este singura unara,
 - \checkmark ∀ A ⊆ Σ*: A* contine ε (n>0 sau n=0!);

Exemplu 18

```
Fie \Sigma = \{a,b,c,...,z\}, A = \{\text{telefon, mobil, fax}\}, B = \{\text{fix, mobil}\}
```

 \Rightarrow A \cup B = {telefon, mobil, fax, fix}

A o B = {telefonfix,telefonmobil, mobilfix,mobilmobil, faxfix, faxmobil}

 $B^* = \{\epsilon, \text{ fix, mobil, fixfix, fixmobil, mobilfix, mobilmobil, fixfixfix, fixfixmobil, fixmobilfix, fixmobilmobil, fixfixfixfix,}.$

Teorema 19

 \mathcal{L}_3 este inchisa la reuniune (ie.: $L_1, L_2 \in \mathcal{L}_3 \implies L = L_1 \cup L_2 \in \mathcal{L}_3$)

Demonstratie (constructiva)

Ideea dem.:

```
ip.: L_1, L_2 \in \mathcal{L}_3 => \exists A_i = (Q_i, \Sigma_i, \delta_i, s_i, F_i), \in \mathcal{A} a. i. L_i = L(A_i), i=1,2 cum L = L_1 \cup L_2 \rightarrow
```

trebuie sa construim un AFD A care sa accepte oridecateori A₁, respectiv A₂ accepta

- -> A trebuie sa se bazeze pe A₁, A₂: simuleaza intai A₁ şi, daca el nu accepta, simuleaza A₂
- -> eroare: daca A l-a simulat intai pe A₁ şi el nu a acceptat, A nu poate relua secventa pt A₂
- -> alta strategie: A simuleaza simultan, pe fiecare simbol din secventa de intrare, pe A₁ şi A₂
- -> **dificultate**: trebuie sa memoram starile prin care trece A in timpul celor 2 simulari; se poate face cu memoria finita a unor AFD?!?

DA, pt ca avem de memorat tot un numar finit de perechi de stari: $|Q_1|x|Q_2|$!!

=> aceste perechi de stari vor constitui multimea de stari ale lui A starile finale de acceptare ale A sunt acele perechi de stari din A₁ respectiv A₂, care contin cel putin o stare finala de acceptare (pentru A₁, respectiv A₂).

Demonstratie formala:

```
Construim A=(Q,\Sigma,\delta,s,F), care recunoaste L=L_1\cup L_2=L(A_1)\cup L(A_2), unde A_1=(Q_1,\Sigma_1,\delta_1,s_1,F_1), A_2=(Q_2,\Sigma_2,\delta_2,s_2,F_2), astfel: Q=\{(q_1,q_2)\mid q_1\in Q_1\text{ $\rm gi $} q_2\in Q_2\}=Q_1\text{ $\rm x$ $\rm Q}_2 \Sigma=\Sigma_1\cup\Sigma_2 \delta:Q\times\Sigma\to Q,\quad \delta((q_1,q_2)\;,a)=(\;\delta_1(q_1,a)\;,\;\delta_2(q_2,a)\;) s=(s_1,s_2\;) F=\{(q_1,q_2)\mid q_1\in F_1\;\;\text{sau}\;\;q_2\in F_2\}=(F_1\times Q_2)\cup (Q_1\times F_2); Mai trebuie: L(A_1)\cup L(A_2)\subseteq L(A)\;\;\text{$\rm gi $}\;\;L(A)\subseteq L(A_1)\cup L(A_2)\;.
```

```
Demonstratie formala (cont.):
L(A_1) \cup L(A_2) \subseteq L(A): evident, cf Def. 12: calculul efectuat de un AFD:
                                     Fie A = (Q, \Sigma, \delta, s, F) un AFD şi w = w_1w_2 \dots w_n: \forall 1 \le i \le n: w_i \in \Sigma
                                    Atunci, A accepta w ddaca \exists r_0, r_1, ..., r_n \in \mathbb{Q} astfel incat:
                                    (1.) r_0 = s, (2.) \delta(r_i, w_{i+1}) = r_{i+1}, \forall 0 \le i \le n-1, (3.) r_n \in F;
Fie W = W_1 W_2 ... W_n \in L(A_1) =>
     \exists r_0, r_1, ..., r_n \in Q_1 \text{ a.i. } r_0 = s_1, \delta(r_i, w_{i+1}) = r_{i+1}, \forall 0 \le i \le n-1, r_n \in F_1 = s_1
oricare ar fi starile de pe pozitia a 2a din perechile (r, q), r \in Q_1 şi q \in Q_2, ajungem in starea finala
     (r_n, q_n) \in (F_1 \times Q_2) \subseteq (F_1 \times Q_2) \cup (Q_1 \times F_2) = F \implies w \in L(A);
Fie w = w_1 w_2 \dots w_n \in L(A_2): analog;
Reciproc: fie w = w_1 w_2 ... w_n \in L(A) =>
     \exists (r_1, q_1), (r_2, q_2), ..., (r_n, q_n) \in Q = Q_1 \times Q_2 a.i.
     (r_1, q_1) = (s_1, s_2),
     \delta((r_i,q_i), w_{i+1}) = (\delta_1(r_i, w_{i+1}), \delta_2(q_i, w_{i+1})) = (r_{i+1}, q_{i+1}), \forall 0 \le i \le n-1,
     (r_n, q_n) \in F;
Dar F = (F_1 \times Q_2) \cup (Q_1 \times F_2) => distingem cazurile:
     (r_n, q_n) \in (F_1 \times Q_2) \Longrightarrow r_n \in F_1 \Longrightarrow W \in L(A_1),
     (r_n, q_n) \in (Q_1 \times F_2) \Longrightarrow q_n \in F_2 \Longrightarrow W \in L(A_2),
     (r_n, q_n) \in (F_1 \times Q_2) \cap (Q_1 \times F_2) = (r_n, q_n) \in (F_1 \times F_2) = r_n \in F_1, q_n \in F_2 = w \in L(A_1) \cap L(A_2)
      => w \in L(A_1) \cup L(A_2) q.e.d.
```

30

Propozitie 20

 \mathcal{L}_3 este inchisa la intersectie, diferenta şi complementara (ie.: L₁, L₂ $\in \mathcal{L}_3 = (L_1 \cap L_2)$, (L₁ - L₂), (Σ -L₁) $\in \mathcal{L}_3$)

Demonstratie

Acelasi rationament (constructie), dar:

AFD care recunoaste $L = L_1 \cap L_2$ are ca multime de stari finale, multimea:

$$F = \{(q_1,q_2) \mid q_1 \in F_1 \text{ si } q_2 \in F_2\} = F_1 \times F_2$$

AFD care recunoaste $L = L_1 - L_2$ are ca multime de stari finale, multimea:

$$F = \{(q_1,q_2) \mid q_1 \in F_1 \text{ si } q_2 \notin F_2\} = F_1 \times (Q_2 - F_2)$$

AFD care recunoaste Σ - L₁ are ca multime de stari finale, multimea:

$$F = \{ q_1 \mid q_1 \in (Q_1 - F_1) \}$$
 q.e.d.

Observatii 21

- ✓ Intersectia, diferenta și complementara NU sunt operatii regulate!
- ✓ AFD care recunosc $L_1 \cup L_2$, respectiv $L_1 \cap L_2$ au $|Q_1| \times |Q_2|$ stari.

Propozitie 22

Fie $L_1 \in \mathcal{L}_3$ și $L_2 \subseteq \Sigma^*$ oarecare

=> catul la dreapta $L_1 / L_2 = \{w \in \Sigma * | \exists y \in L_2 : wy \in L_1\} \in \mathcal{L}_3$ Demonstratie

Fie A=(Q, Σ , δ , s, F) a.i. L(A)=L₁; definim A'=(Q, Σ , δ , s, F') astfel: F'= {q ∈ Q | \exists y∈L₂: δ (q,y)∈F} => δ (s,w) ∈ F' ddaca \exists y∈L₂: wy∈L₁.

```
\begin{array}{lll} \text{s}: \Sigma \to \mathscr{Q}(\Psi^*) & \text{fie s:} \{a,b\} \to \mathscr{P}(\{0,1,x\}^*) & \text{s}(a) = \{0x\}, & \text{s}(b) = \{x11\} \\ \text{s}(\epsilon) = \{\epsilon\}, & \text{daca } L = \{a,b, aa, ab, ba, bb\} & => \\ \text{s}(a\beta) = \text{s}(a)\text{s}(\beta), & \forall a \in \Sigma, & \forall \beta \in \Sigma^* & \text{s}(L) = \{0x, x11, 0x0x, 0xx11, x110x, x11x11\}. \\ & card\ (s(a)) = 1, & \forall a \in \Sigma => \text{[omo]morfism:} \\ \text{Fie un limbaj } L \subseteq \Sigma^* \text{ ; atunci definim prin: } s(L) = \text{U} \quad s(\alpha) \\ & \text{limbajul obtinut din L prin substitutie canonica} \end{array}
```

Propozitie 23

Fie L \in \mathcal{L}_3 si h: $\mathcal{L}^* \rightarrow \mathcal{V}^*$ un morfism => h⁻¹(L) \in \mathcal{L}_3

Demonstratie

Fie A=(Q, Σ , δ , s, F) a.i. L(A)=L $\subseteq \Sigma^*$ definim A'=(Q, Ψ , δ ', s, F) astfel: δ '(q,a)= δ (q,h(a)); se dem. prin inductie asupra $w \in L$ ca δ '(s,w) = δ (s,h(w)) (i.e. A' accepta w ddaca A accepta h(w)).