

数值分析

(Numerical Analysis)

主讲: 孙伟平

华中科技大学计算机学院

本章内容

- 1.1 课程介绍
- 1.2 误差的基本概念
- 1.3 在近似计算中应注意的一些原则

1.1 课程介绍

- (1) 背景介绍
- (2) 近似计算的基本方法
- (3) 应用举例
- (4) 课程内容
- (5) 课程成绩构成

(1) 背景介绍

- ◆ 诺贝尔奖获得者,计算物理学家威尔逊提出现代科学研究的 三大方法:理论研究、科学实验、科学计算。
- ◆ 实验方法与理论方法的局限性:许多研究对象,由于受到时间和空间的限制,既不可能用理论精确描述,也不可能用实验手段来准确模拟。
- ◆ 因此,熟练使用计算机进行科学计算已经成为科技工作者的 一项基本技能,这就要求人们去研究掌握适用于计算机实现 的数值计算方法及相关理论。
- ◆ 科学计算在生命科学、医学、系统科学、经济学等现代科学中起的作用日益凸显,已经成为气象、石油勘探、核能技术、航空航天、交通运输、机械制造、水利建筑等重要工程领域中不可缺少的工具。

数值分析概括为用计算机求解数学问题的数值方法和理论。

在工程计算和科学实验中会遇到诸如线性方程组的求解、微分、积分、微分方程的求解等常见的数学问题。

求解数学问题思维方式:

- (1)利用数学方法求出(或推导出)结果的解析表达式(又称解析解)
- (2) 若实际中结果的解析表达式难以给出,例如满足某个微分方程的函数不易求得,采用数学理论与计算机相结合,寻求(设计)合适的算法以期得到问题的近似数值解——数值分析研究的主要问题。

◆通常解决数学问题的思维方式

•数值分析的思维方式

计算机实质上只会做加减乘除等基本运算,数值分析就是研究怎样通过计算机所能执行的基本运算,求得各类数学问题的数值解或近似解。

例: 计算任意角的三角函数,如sinx。不调用库函数,计算机是不能直接计算sinx的。

根据Taylor公式,有:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + R_{2n+1}(x)$$

等式的右端就只是乘法与加法的循环运算。取

$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

通过编制程序我们就可以计算sinx的近似值。事实上,计算机语言常用的数学运算的标准函数也可用这种方法写成。

例: 计算多项式的值

$$0.0625x^4 + 0.425x^3 + 1.215x^2 + 1.912x + 2.1296$$

- ▶算法1:按原形计算: 需做 十次乘法、 四次加法
- ▶算法2: 上述多项式化为 (((0.0625x+0.425)x+1.215)x+1.912)x+2.1296 则需做四次乘法、四次加法
- >算法3: 上述多项式化为

$$[(0.5x+0.6)^2+0.5x+0.7][(0.5x+0.6)^2+0.8]+0.9$$
则需做三次乘法、五次加法

1010

• 数值分析是做什么用的?

◈ 一个好的数值计算方法:

- ① 面向计算机,易于用计算机实现
- ② 理论上要保证方法的收敛性和稳定性
- ③ 计算效率高: 计算速度快, 节省存储空间
- ④ 经过数值实验检验,证明行之有效
- 数值分析最基本的立足点是容许误差。

课程特点与价值

◆ 数值分析课程

- ◆ 有纯数学高度抽象性和严密科学性的特点
- ◆ 又有应用的广泛性和实际实验的高度技术性特点
- ◆ 是一门与计算机技术密切相连的实用性很强的计算 数学课程
- ◆ 与传统数学相比,数值分析课程与工程实际问题更加接近,是数学和工程科学的纽带。

(2) 近似计算的基本方法

- ◈ 离散化
- ◈ 递推法
- ◆ 近似替代

◈ 离散化

将求连续变量的问题转化为求离散变量的问题。

例如: 求解

第*i*个小区间的面积 约等于:

$$\frac{y_i + y_{i+1}}{2} \Delta x$$

101011

◈ 递推法

将一个复杂的计算过程转化为简单过程的多次重复。

例如: 计算多项式

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n = \sum_{i=0}^n a_i x^i$$

采用递推公式

$$\begin{cases} u_0 = a_n & \text{ 递推至 } k = n \\ u_k = u_{k-1}x + a_{n-k} & \text{ 即可求出 } p_n(x) \end{cases}$$

◆ 近似替代法

将无限过程的数学问题用计算机的有限次计算近似替代。

例如:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{2n-1} + \dots$$

(3)应用举例

◈ 例 供水计划与生产调度 (单位:万吨/日) 某城市1月份的用水量

年份	2014	2015	2016	2017		
用水量	5032.41	5186.0254	5296.9866	5474.852		
年份	2018	2019	2020	2021		
用水量	5535.2344	5505.4274	5617.6993	5701.01		

预测该城市2022年1月份的用水量。

插值和数据拟合 -第2章

◈ 例 水流量估计

现根据实际测量得到某河流某处的河宽700m,其横截面不同位置某一时刻的水深如下表所示。若此刻水流速度为0.5m/s,试估计此刻的水流量。

X	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700
h(x)	4.2	5.9	5.8	5.2	4.5	5.7	5	5.5	4.8	5.9	4.1	5.1	4.6	5.7	4.7

要计算水流量就要知道其横截面积。如果知道此处的水深曲线函数 h(x),则其横截面积为 $\int_a^b h(x)dx$ 。但是在实际中 h(x) 不能精确得到,那么怎么求出足够高精度的横截面积的近似值呢?

10101

◈ 例 机器学习

$\min J(\theta_0, \theta_1)$

梯度下降 -第5章

(4) 课程内容

◈ 课程内容

第1章 绪论-误差理论 第2章 插值法与曲线拟合 第3章 数值积分与数值微分 第4章 常微分方程数值解法 第5章 非线性方程的数值解法

章标题	内容	重点
第1章 绪论 (4')	1.1 课程介绍 1.2 误差的概念 1.3 一些原则	误差 有效数字
第2章 插值法与曲 线拟合 (8')	2.1 存在唯一性 2.2 Lagrange插值 2.3 Newton插值	几种插值方法的原理、异同、 优缺点
	2.4 Hermit插值2.5 分段插值2.7 曲线拟合的最小二乘法	插值余项/误差分析 线性拟合(2.7.1)
第3章 数值积分与 数值微分	3.1.1 代数精度 3.1.2 求积公式的构造	求积公式的构造方法
(6')	3.1.3 Newton-Cotes求积公式 3.1.4 复化求积法	余项
	3.1.5 Romberg求积公式 3.2.1 差商型数值微分 3.2.2 插值型数值微分	数值稳定性

章标题	内容	重点		
第4章 常微分方程 数值解法 (6')	4.1 欧拉法4.2 改进的欧拉法4.3 龙格-库塔法4.4 收敛性和稳定性	多种欧拉方法 局部截断误差 收敛性分析 稳定性条件		
第5章 非线性方程 的数值解法 (6')	5.1 二分法 5.2 迭代法及其收敛性 5.3 收敛速度 5.4 Newton法	非线性方程求根的基本思路 收敛性判定定理 收敛速度		
总复习(2')				

◆ 本课程介绍最常用的数学模型的最基本的数值计算方法。

- ◆ 在学习的过程中
 - 〉注意掌握数值方法的基本原理和思想
 - 〉注意方法处理的技巧及其与计算机的结合
 - > 重视误差分析, 收敛性和稳定性的基本理论
- Math or intuition

常用到的数学理论

- **◆ Taylor展开及余项**
- ◆ 介值定理-零点定理
- ◈ 微分中值定理
 - Lagrange中值定理
 - 罗尔定理
 - 柯西定理
- ◆ 积分中值定理
 - 积分第一中值定理
 - 积分第二中值定理
- ◆ 线性方程组解的存在唯一性
- ◆ 常微分方程初值问题解的存在性

(5) 课程成绩构成

平时成绩: 30%

期末闭卷考试: 70% (带计算器)

共计: 100分

请大家注册登录加入课堂:

Educoder平台

https://www.educoder.net/classrooms

邀请码: ODM49W

作业手写拍照后提交, 注意截止日期, 勿抄袭

1.2 误差的基本概念

- 1.2.1 误差的来源与分类
- 1.2.2 误差和误差限
- 绝对误差、绝对误差限
- 相对误差、相对误差限
- 1.2.3 有效数字
- ·有效数字的定义
- 有效数字与误差限的关系
- 1.2.4 算术运算的误差与误差限

1.2.1 误差的来源与分类

数值计算方法的立足点是允许有误差,关键在于能否将误差控制在许可的范围内。

误差:一个物理量的真实值与近似值之间的差异。

来源:

- > 从实际问题中抽象出数学模型
 - ——模型误差 /* Modeling Error */
- > 通过测量得到模型中参数的值
 - —— 观测误差 /* Measurement Error */
- ▶ 求近似解 ——截断误差 /* Truncation Error */
- ▶ 机器字长有限 —— 舍入误差 /* Roundoff Error */

例:近似计算
$$\int_0^1 e^{-x^2} dx = 0.747...$$

解法之一: 将
$$e^{-x^2}$$
作Taylor展开后再积分
$$\int_0^1 e^{-x^2} dx = \int_0^1 (1-x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots) dx$$

$$= 1 - \frac{1}{3} + \frac{1}{2!} \times \frac{1}{5} - \frac{1}{3!} \times \frac{1}{7} + \frac{1}{4!} \times \frac{1}{9} - \cdots$$
 取 $\int_0^1 e^{-x^2} dx \approx S_4$, S_4 R_4 则 $R_4 = \frac{1}{4!} \times \frac{1}{9} - \frac{1}{5!} \times \frac{1}{11} + \cdots$ 称为截断误差 这里 $|R_4| < \frac{1}{4!} \times \frac{1}{9} < 0.005$
$$S_4 = 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} \approx 1 - 0.333 + 0.1 - 0.024 = 0.743$$
 | 舍入误差 $|<0.0005 \times 2 = 0.001$ | 计算 $\int_0^1 e^{-x^2} dx$ 的 总体误差 $<0.005 + 0.001 = 0.006$

误差的传播与积累

例: 蝴蝶效应 —— 亚马逊雨林的一只蝴蝶翅膀一拍, 美国德克萨斯州就刮起台风来了?!

以上是一个病态问题

例: 计算
$$I_n = \frac{1}{e} \int_0^1 x^n e^x dx$$
, $n = 0, 1, 2, \dots$

$$I_0 = \frac{1}{e} \int_0^1 e^x dx = 1 - \frac{1}{e} \approx 0.63212056 \stackrel{izh}{==} I_0^*$$
 注意此公式精确成立则初始误差 $|E_0| = |I_0 - I_0^*| < 0.5 \times 10^{-8}$

$$\frac{1}{e} \int_0^1 x^n \cdot e^0 \, dx < I_n < \frac{1}{e} \int_0^1 x^n \cdot e^1 \, dx \qquad \therefore \frac{1}{e(n+1)} < I_n < \frac{1}{n+1}$$

$$I_1^* = 1 - 1 \cdot I_0^* = 0.36787944$$

••••••

$$I_{10}^* = 1 - 10 \cdot I_9^* = 0.08812800$$

$$I_{11}^* = 1 - 11 \cdot I_{10}^* = 0.03059200$$

$$I_{12}^* = 1 - 12 \cdot I_{11}^* = 0.63289600$$
?

$$I_{13}^* = 1 - 13 \cdot I_{12}^* = -7.2276480$$
?

$$I_{14}^* = 1 - 14 \cdot I_{13}^* = 94.959424$$
?

$$I_{15}^* = 1 - 15 \cdot I_{14}^* = -1423.3914$$

考察第n步的误差 |E_n|

$$|E_n| = |I_n - I_n^*| = |(1 - nI_{n-1}) - (1 - nI_{n-1}^*)|$$

= $n/E_{n-1}/= \dots = n! |E_0|$

可见初始的小扰动 $|E_0| < 0.5 \times 10^{-8}$

迅速积累,误差呈递增走势。

——不稳定的算法!

例: 计算 $I_n = \frac{1}{e} \int_0^1 x^n e^x dx$, $n = 0, 1, 2, \dots$

公式二:
$$I_n = 1 - n I_{n-1} \implies I_{n-1} = \frac{1}{n} (1 - I_n)$$

方法: 先估计一个 I_N , 再反推要求的 $I_n(n << N)$ 。

$$\therefore \frac{1}{e(N+1)} < I_N < \frac{1}{N+1}$$

可取
$$I_N^* = \frac{1}{2} \left[\frac{1}{e(N+1)} + \frac{1}{N+1} \right] \approx I_N$$

取
$$I_{15}^* = \frac{1}{2} \left[\frac{1}{e \cdot 16} + \frac{1}{16} \right] \approx 0.042746233$$

$$\Rightarrow I_{14}^* = \frac{1}{15} (1 - I_{15}^*) \approx 0.063816918$$

$$I_{13}^* = \frac{1}{14} (1 - I_{14}^*) \approx 0.066870220$$

$$I_{12}^* = \frac{1}{13} (1 - I_{13}^*) \approx 0.071779214$$

$$I_{11}^* = \frac{1}{12} (1 - I_{12}^*) \approx 0.077351732$$

$$I_{10}^* = \frac{1}{11} (1 - I_{11}^*) \approx 0.083877115$$

$$\vdots$$

$$I_1^* = \frac{1}{2} (1 - I_2^*) \approx 0.36787944$$

 $I_0^* = \frac{1}{1}(1 - I_1^*) \approx 0.63212056$

考察反推一步的误差:

$$|E_{N-1}| = \left| \frac{1}{N} (1 - I_N) - \frac{1}{N} (1 - I_N^*) \right| = \frac{1}{N} |E_N|$$

以此类推,对n<N有:

$$|E_n| = \frac{1}{N(N-1)...(n+1)} |E_N|$$

误差逐步递减,这样的算法称为稳定的算法

在我们今后的讨论中, 误差将不可回避,

算法的稳定性会是一个非常重要的话题。

小结:

本课程主要讨论截断误差和舍入误差:

- ▶ 讨论它们在计算过程 中的传播和对计算结 果的影响;
- → 研究控制其影响以保 证最终计算结果有足 够的精度。

1.2.2 误差和误差限

- 绝对误差、绝对误差限
- 相对误差、相对误差限

(1) 绝对误差

将某个研究量的准确值记为 x,其近似值记为 x^* 。称 x^* 与 x 的差:

$$\varepsilon(x^*) = x^* - x$$

为近似值 x* 的绝对误差, 简称误差。

- ◆ 绝对误差是有量纲的
- ◆ 绝对误差可为正,也可为负。 $\varepsilon(x^*) > 0$,称 x^* 是 x 的 强近似值,反之为弱近似值。
- $*|\varepsilon(x^*)|$ 的大小标志着 x^* 的精确度。一般地,在同一量 纲的不同近似值中, $|\varepsilon(x^*)|$ 越小则 x^* 的精确度越高。

(2) 绝对误差限

由于准确值 x 一般无法确切知道,因此绝对误差的准确值也不能求出。但根据实际的测量、计算的情况可事先估计出绝对误差绝对值的上界。即事先指定某个正数 η ,使得:

$$|\varepsilon(x^*)| = |x^* - x| \le \eta$$

我们称 η 为 x^* 的绝对误差限。

显然: $\eta > 0$

且: $x^* - \eta \le x \le x^* + \eta$

或: $x = x^* \pm \eta$

绝对误差限是不唯一的

x 所在的范围

绝对误差限并不能完全反映出两个不同近似值 的近似程度。

例如:

$$x = 10 \pm 1 \text{m}$$
$$y = 10000 \pm 5 \text{m}$$

这里 x^* 的绝对误差限小于 y^* 的绝对误差限,但 10000m 作为 y 的近似值比 10m 作为 x 的近似值的近似程度更好。

(3)相对误差

相对误差:

$$\varepsilon_r(x^*) = \frac{\varepsilon(x^*)}{x} = \frac{x^* - x}{x}$$

相对误差 可正可负

由于准确值 x 一般无法知道, 在实际计算中可以取:

$$\varepsilon_r(x^*) = \frac{x^* - x}{x^*}$$
 前提: $|\varepsilon_r(x^*)|$ 很小

$$\frac{\varepsilon(x^*)}{x} - \frac{\varepsilon(x^*)}{x^*} = \varepsilon(x^*) \left(\frac{x^* - x}{xx^*}\right) = \varepsilon^2(x^*) \frac{1}{xx^*}$$

$$= \left[\varepsilon(x^*)/x^*\right]^2 \frac{1}{(x/x^*)} = \left[\varepsilon(x^*)/x^*\right]^2 \frac{1}{\left[x^* - \varepsilon(x^*)\right]/x^*}$$

$$= \left[\varepsilon(x^*)/x^*\right]^2 \frac{1}{\left[1 - \varepsilon(x^*)/x^*\right]} \approx \left[\varepsilon(x^*)/x^*\right]^2$$
38

(4) 相对误差限

相对误差限: 相对误差的绝对值的上界

相对误差限是不唯一的

$$|\varepsilon_r(x^*)| = \frac{|x^* - x|}{|x^*|} \le \frac{\eta}{|x^*|} = \eta_r$$

- ◆ 相对误差、相对误差限是无量纲的量。
- 相对误差限比绝对误差限能更好地刻画近值 数的近似程度。

小结: 准确值 X

近似值 X*

 \bullet 绝对误差 ε

$$\varepsilon(x^*) = x^* - x$$

◆ 绝对误差限 η

$$|\varepsilon(x^*)| = |x^* - x| \leq \eta$$

 \bullet 相对误差 \mathcal{E}_r

$$\varepsilon_r(x^*) = \frac{\varepsilon(x^*)}{x} = \frac{x^* - x}{x}$$

$$\varepsilon_r(x^*) = \frac{x^* - x}{x^*}$$

 \bullet 相对误差限 η_r

$$|\varepsilon_r(x^*)| = \frac{|x^* - x|}{|x^*|} \le \eta_r$$

1.2.3 有效数字

- 计算结果精确到小数点后第2位
- 保留3位有效数字

四舍五入:

$$x^* = 3.14$$
 $3.135 \le x < 3.145$
 $x = x^* \pm 0.005$
 $y = 0.005 = 0.5 \times 10^{-2}$

x*的绝对误差限等于近似值 末位 的半个单位

(1) 有效数字的定义

定义:如果近似数 x^* 的绝对误差限不大于 0.5×10^{-j} 则称近似数 x^* 准确到小数点后第 j 位,从这个小数点后第 j 位数字直到最左边非 0 数字之间的所有数字都称为 x^* 的有效数字。

x^* 的绝对误差限不超过 x_{k+i} 这一位的半个单位

x*的有效数字位数为 k + j 位

有效数字的等效定义

一般地,将x*转化成为计算机浮点数的形式:

$$x^* = \pm 0.x_1 x_2 \cdots x_n \times 10^m$$

$$\uparrow$$

$$\neq 0$$
规格化
指数

如果

$$|\varepsilon(x^*)| = |x^* - x| \le 0.5 \times 10^{m-l}$$
(其中1 \le l \le n)

则 x* 具有 l 位有效数字。

例子 有效数字

例: $x = 3.141592653 \dots$,分析下列近似值 3, 3.14, 3.1416, 3.1415 各有多少位有效数字。

还可以用等效定义。先将x*用规格化数表示,得到m=1

- 通常用四舍五入法得到的近似数从末位向前算起至 第一个非 0 数字均是有效数字。
- 有效数字越多,绝对误差的绝对值就越小,计算结果也越精确。

35.185 5位有效数字 精确到 0.001

35.1850 6位有效数字 精确到 0.0001

—— 近似值后面的零不能随便省去。

(2) 绝对误差限与有效数字的关系

◆ 根据绝对误差限可计算近似数的有效数字位数。
例如:

已知
$$|\varepsilon(x^*)| \le \eta = \frac{1}{2} \times 10^{-6}$$
 如果 $x^* = 13.5 * * * * = 0.135 * * * * \times 10^2$ 则 x^* 有 8 位有效数字

◈ 根据有效数字位数可计算绝对误差限。 如果 $x^* = 3587.64$ 是x具有六位有效数字的近似值, 其绝对误差限为:

$$|\varepsilon(x^*)| = |x^*-x| \le 0.5 \times 10^{-2}$$

(3) 相对误差限与有效数字的关系

定理1.1 假设近似数 $x^* = \pm 0.x_1x_2...x_n \times 10^m$, 其中 $x_1 \neq 0$, x^* 的有效数字的位数为 n ,则 x^* 的相对误差 限为:

$$\eta_r = \frac{1}{2x_1} \times 10^{1-n}$$

证明: 因为 x^* 有n位有效数字,则 $|x^*-x| \le \frac{1}{2} \times 10^{m-n}$

$$|x^*| = 0.x_1 x_2 \cdots x_n \times 10^m = x_1.x_2 \cdots x_n \times 10^{m-1}$$

$$\geq x_1.0 \cdots 0 \times 10^{m-1} = x_1 \times 10^{m-1}$$

$$\frac{|x^* - x|}{|x^*|} \le \frac{\frac{1}{2} \times 10^{m-n}}{x_1 \times 10^{m-1}} = \frac{1}{2x_1} \times 10^{1-n}$$

相对误差限与有效数字的关系(续)

定理1.2 假设近似数 $x^* = \pm 0.x_1x_2...x_n \times 10^m$, 其中 $x_1 \neq 0$, x^* 的相对误差限为:

$$\eta_r = \frac{1}{2(x_1 + 1)} \times 10^{1-n}$$

则 x^* 具有n位有效数字。

证明: 因为
$$|x^*| = 0.x_1x_2\cdots x_n \times 10^m = x_1.x_2\cdots x_n \times 10^{m-1}$$

$$\leq x_1.9\cdots 9\times 10^{m-1} \leq (x_1+0.9\cdots 9)\times 10^{m-1} < (x_1+1)\times 10^{m-1}$$

$$|x^* - x| = \frac{|x^* - x|}{|x^*|} \cdot |x^*| \le \eta_r \times |x^*|$$

$$\leq \frac{1}{2(x_1+1)} \times 10^{1-n} \times (x_1+1) \times 10^{m-1} = \frac{1}{2} \times 10^{m-n}$$

例子

例:要使 $\sqrt{20}$ 的相对误差不超过 0.1%,应取几位有效数字?

解: $\sqrt{20}$ 的首位数是 $x_1 = 4$,设它的近似值的有效数字位数为 n,则它的相对误差应满足:

$$|\varepsilon_r| = \frac{|x^* - x|}{|x^*|} \le \frac{1}{2 \times x_1} \times 10^{1-n} \le 0.1\%$$

$$\frac{1}{2\times 4} \times 10^{1-n} \le 0.001 \qquad n \ge 3.097$$

即应取 4 位有效数字。

1.2.4 算术运算的误差和误差限

- ◆ 如果多个近似值进行算术运算,绝对误差限、 相对误差限如何估计呢?
- ◆ 例如已知 x^* , y^* 的误差限,要求 x^* - y^* , x^*y^* 的误差限。

(1) 加减法的误差限

$$\varepsilon(x^* \pm y^*) = \varepsilon(x^*) \pm \varepsilon(y^*)$$

$$\eta(x^* \pm y^*) = \eta(x^*) + \eta(y^*)$$

$$\varepsilon(x^* + y^*) = (x^* + y^*) - (x + y) = (x^* - x) + (y^* - y)$$

$$= \varepsilon(x^*) + \varepsilon(y^*)$$

$$|\varepsilon(x^* + y^*)| = |\varepsilon(x^*) + \varepsilon(y^*)| \le |\varepsilon(x^*)| + |\varepsilon(y^*)|$$

$$\le \eta(x^*) + \eta(y^*)$$

$$\varepsilon(x^* - y^*) = (x^* - y^*) - (x - y) = (x^* - x) - (y^* - y)$$

$$= \varepsilon(x^*) - \varepsilon(y^*)$$

$$|\varepsilon(x^* - y^*)| = |\varepsilon(x^*) - \varepsilon(y^*)| \le |\varepsilon(x^*)| + |\varepsilon(y^*)|$$

$$\le \eta(x^*) + \eta(y^*)$$

加减法的误差限(续) $|\varepsilon_r(x^* + y^*)|$

$$\frac{|\varepsilon(x^* + y^*)|}{|x^* + y^*|} \le \frac{|\eta(x^*)| + |\eta(y^*)|}{|x^* + y^*|}$$

$$= \frac{|x^*|}{|x^* + y^*|} \cdot \frac{|\eta(x^*)|}{|x^*|} + \frac{|y^*|}{|x^* + y^*|} \cdot \frac{|\eta(y^*)|}{|y^*|}$$

$$= \frac{|x^*|}{|x^* + y^*|} \cdot \eta_r(x^*) + \frac{|y^*|}{|x^* + y^*|} \cdot \eta_r(y^*)$$

$$\leq \frac{|x^*| + |y^*|}{|x^* + y^*|} \cdot \max[\eta_r(x^*), \eta_r(y^*)]$$

$$\frac{|\varepsilon(x^* + y^*)|}{|x^* + y^*|} \le \frac{|x^*| + |y^*|}{|x^* + y^*|} \cdot \max[\eta_r(x^*), \eta_r(y^*)]$$

$$|\varepsilon_r(x^*+y^*)|$$

$$\frac{|\varepsilon(x^* + y^*)|}{|x^* + y^*|} \le \begin{cases} \max[\eta_r(x^*), \eta_r(y^*)] & x^*, y^* 同号 \\ \frac{|x^* - y^*|}{|x^* + y^*|} \cdot \max[\eta_r(x^*), \eta_r(y^*)] & x^*, y^* 异号 \end{cases}$$

 x^*, y^* 异号,且两者的绝对值非常接近时

非常大

(2) 乘法的误差限

$$\eta(x^*y^*) = |x^*| \eta(y^*) + |y^*| \eta(x^*)
\eta_r(x^*y^*) = \eta_r(x^*) + \eta_r(y^*)$$

$$|\varepsilon(x^*y^*)| = |x^*y^* - (x^* + x - x^*)(y^* + y - y^*)|$$

$$= |x^*y^* - (x^* - \varepsilon(x^*))(y^* - \varepsilon(y^*))|$$

$$= |x^*y^* - x^*y^* + x^*\varepsilon(y^*) + y^*\varepsilon(x^*) - \varepsilon(x^*)\varepsilon(y^*)|$$

$$\leq |x^*|\eta(y^*) + |y^*|\eta(x^*) + \eta(x^*)\eta(y^*)$$
若 $\eta(x^*), \eta(y^*)$ 足够小,则
$$|\varepsilon(x^*y^*)| \leq |x^*|\eta(y^*) + |y^*|\eta(x^*)$$

(2) 乘法的误差限

$$\eta(x^*y^*) = |x^*| \eta(y^*) + |y^*| \eta(x^*)
\eta_r(x^*y^*) = \eta_r(x^*) + \eta_r(y^*)$$

$$\frac{|\varepsilon(x^*y^*)|}{|x^*y^*|} \le \frac{|x^*| \cdot \eta(y^*) + |y^*| \eta(x^*)}{|x^*y^*|} = \frac{\eta(y^*)}{|y^*|} + \frac{\eta(x^*)}{|x^*|}$$
$$= \eta_r(y^*) + \eta_r(x^*)$$

(3) 除法的误差限

$$\eta \left(\frac{x^*}{y^*}\right) = \frac{|x^*| \eta(y^*) + |y^*| \eta(x^*)}{|y^*|^2}$$

$$\eta_r\left(\frac{x^*}{y^*}\right) = \eta_r(x^*) + \eta_r(y^*) \qquad y, y^* \neq 0$$

$$\mathbf{d}\left(\frac{x}{y}\right) = \frac{y\mathbf{d}x - x\mathbf{d}y}{y^2}$$

$$\varepsilon \left(\frac{x^*}{y^*}\right) \approx \frac{y^* dx - x^* dy}{(y^*)^2} \approx \frac{y^* \varepsilon(x^*) - x^* \varepsilon(y^*)}{(y^*)^2}$$

除法的误差限 (续)

$$\left| \varepsilon \left(\frac{x^*}{y^*} \right) \right| = \left| \frac{y^* \varepsilon(x^*) - x^* \varepsilon(y^*)}{(y^*)^2} \right| = \frac{|y^* \varepsilon(x^*) - x^* \varepsilon(y^*)|}{|y^*|^2}$$

$$\leq \frac{|x^*| \cdot |\varepsilon(y^*)| + |y^*| \cdot |\varepsilon(x^*)|}{|y^*|^2}$$

$$\leq \frac{|x^*| \cdot \eta(y^*) + |y^*| \cdot \eta(x^*)}{|y^*|^2}$$

当除数绝对值较小时,商的绝对误差的绝对值将非常大

$$\frac{|x^*| \cdot \eta(y^*)}{|y^*|^2} + \frac{\eta(x^*)}{|y^*|}$$

$$\left| \varepsilon \left(\frac{x^*}{y^*} \right) \right| \leq \frac{|x^*| \cdot \eta(y^*) + |y^*| \cdot \eta(x^*)}{|y^*|^2}$$

$$\frac{\left| \varepsilon \left(\frac{x^*}{y^*} \right) \right|}{\left| \frac{x^*}{y^*} \right|} \le \frac{\frac{|x^*| \cdot \eta(y^*) + |y^*| \cdot \eta(x^*)}{|y^*|^2}}{\frac{|x^*|}{|y^*|}}$$

$$= \frac{|x^*| \cdot \eta(y^*) + |y^*| \eta(x^*)}{|x^*y^*|}$$

$$= \frac{\eta(y^*)}{|y^*|} + \frac{\eta(x^*)}{|x^*|}$$

$$= \eta_r(x^*) + \eta_r(y^*)$$

拓展:幂、对数的误差限

$$\eta \left[(x^*)^n \right] = |n| \cdot |x^*|^{n-1} \eta(x^*)$$

$$\eta_r \left[(x^*)^n \right] = |n| \eta_r(x^*)$$

$$\eta \left(\ln x^* \right) = ?$$
 $\eta_r \left(\ln x^* \right) = ?$

请同学们自己推导

1.3 近似计算应遵循的原则

加减法

- 小数位数多的数四舍五入,并且比小数位数 少的数多一位
- ◆ 运算结果保留的小数位数与原近似数中小数位数少者相同

$$x^* = 3.14159$$
 小数点后有 5 位 — 3.1416 $y^* = 2.718$ 小数点后有 3 位

结果: $x^* + y^* \approx 5.860$

近似计算应遵循的原则 (续)

乘除法

- ◆ 各因子保留的位数比有效数字位数最少的因子的位数多一位
- ◆ 运算结果的有效数字位数与有效数字位数最少的因子的位数相同

$$x^* = 7.342$$
 4位有效数字 7.34 $\times = 0.13212$ $y^* = 0.018$ 2位有效数字

结果: $x^* \times y^* \approx 0.13$

近似计算应遵循的原则 (续)

幂运算

▶ 运算结果保留的有效数字位数与原近似数的有效数字位数相同

$$x^* = 0.251$$
 3 位有效数字

结果:
$$(x^*)^2 = 0.063001 \approx 0.0630$$

 $\sqrt{x^*} = 0.50999001 \cdots \approx 0.510$

对数运算

◆ 运算结果保留的有效数字位数与原近似数的有效数字位数相同

结果: $\ln x^* = 1.24011 \cdots \approx 1.240$

中间运算结果

- ◆ 中间结果所保留的位数应比上述原则中提及的位数多取一位
- ◆最后一次计算时,对这多取的一位进行四 舍五入

若干值得注意的问题

◈ 防止两个相近的数相减

两个相近的数相减,会使有效数字的位数严重损失,在算法设计中,若可能出现两个相近数相减,则改变计算公式,如使用三角变换、有理化等恒等变换

如: 86.034-85.997 = 0.037

只有2位有 效数字了

$$1 - \cos x = 2\sin\left(\frac{x}{2}\right)^2 \qquad \sqrt{1+x} - \sqrt{x} = \frac{1}{\sqrt{1+x} + \sqrt{x}}$$

◈ 避免除数的绝对值 << 被除数的绝对值

除数稍有一点误差,则计算结果会出现较大变化

$$\frac{2.7182}{0.001}$$
=2718.2

$$\frac{2.7182}{0.0011}$$
=2471.1

◈ 防止大数"吃掉"小数

例:
$$x^2 - (10^9 + 1)x + 10^9 = 0$$
 方程的精确解为

$$x_1 = 10^9, \quad x_2 = 1$$

在字长为8,基底为10的计算机上利用求根公式

$$x_{1,2} = \frac{-b \pm \text{sqrt}(b^2 - 4ac)}{2a}$$

机器吃了

$$-b = 10^9 + 1 = 0.1 \times 10^{10} + 0.0000000000001 \times 10^{10}$$

$$\approx 0.1 \times 10^{10} = 10^9$$

同理: $b^2 - 4ac \approx b^2$

因此计算机求解的结果为:

$$\sqrt{b^2 - 4ac} \approx |b|$$

$$x_1 = 10^9, \quad x_2 = 0$$

◆ 实际编程应采用以下的公式:

$$x_1 = \frac{-b - \operatorname{sgn}(b) \times \operatorname{sqrt}(b^2 - 4ac)}{2a}$$

$$x_2 = \frac{c}{ax_1}$$

符号函数
$$\operatorname{sgn}(b) = \begin{cases} 1 & b > 0 \\ 0 & b = 0 \\ -1 & b < 0 \end{cases}$$

◆ 简化计算步骤,减少运算次数

如秦九韶、高斯法、FFT等

$$x^{255} = x \cdot x^2 \cdot x^4 \cdot x^8 \cdot x^{16} \cdot x^{32} \cdot x^{64} \cdot x^{128}$$

只需要14次乘法,而不是254次乘法

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n = \sum_{i=1}^n a_i x^i$$

直接计算需要 $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ 次乘法 和 n 次加法

采用递推公式
$$\begin{cases} u_0 = a_n \\ u_k = u_{k-1}x + a_{n-k} \end{cases}$$

只需要n次乘法 和n次加法 68

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{cases} \sum_{j=1}^{n} a_{ij} A_{ij} & (2) \\ a_{11} & a_{12} & \cdots & a_{1n} \\ b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & b_{nn} \end{vmatrix}$$

	乘法	n=20	加法	n =20
(1)	n!(n-1)	4.62×10^{19}	n!-1	2.43×10^{18}
(2)	n!(e-1)	4.18×10^{18}	n!-1	2.43×10^{18}
(3)	$(n-1)(n^2+n+3)/3$	2.68×10^3	n(n-1)(2n-1)/6	2.47×10^3

- ◆ 假设用主频为 2.8G 的计算机进行计算,并假设该计算机每秒执行2.8×10°次乘法,则:
- ◈ 方法 (1) 需要: 523.2年
- ◈ 方法 (2) 需要: 47.3年
- ◆ 方法 (3) 需要: 0.96微秒

10101V

小 结

- ◈ 基本概念:
 - 误差, 误差限
 - 有效数字
- ◆ 有效数字位数的多种判定方法
- ◆ 算术运算中误差限的估计公式
- ◆ 近似计算中应注意的一些原则