Exercises

|--|

Surname, First name

Linear Algebra (KEN1410)

Exam

Fill in your answer(s) to the multiple-choice questions as shown above (circles = one correct answer).

Program: Data Science and Artificial Intelligence

Course code: KEN1410

Examiners: Dr. Marieke Musegaas and Dr. Stefan Maubach

Date/time: Monday 3 April 2023, 09:00 - 11:00

Format: Closed book exam

Allowed aids: Pens, simple (non-programmable) calculator from the DACS-list of allowed calculators.

Instructions to students:

- The exam consists of 7 questions on 20 pages.
- Fill in your name and student ID number on the cover page and tick the corresponding numerals of your student number in the table (top right cover page).
- Answer every question in the reserved space below the question. Do <u>not</u> write outside the reserved space or on the back of pages, this will not be scanned and will NOT be graded! As a last resort if you run out of space, use the extra answer space at the end of the exam.
- In no circumstance write on or near the QR code at the bottom of the page!
- · Ensure that you properly motivate your answers.
- Only use black or dark blue pens, and write in a readable way. Do not use pencils.
- Answers that cannot be read easily cannot be graded and may therefore lower your grade.
- If you think a question is ambiguous, or even erroneous, and you cannot ask during the exam to clarify this, explain this in detail in the space reserved for the answer to the question.
- If you have not registered for the exam, your answers will not be graded, and thus handled as invalid.
- You are not allowed to have a communication device within your reach, nor to wear or use a watch.
- · You have to return all pages of the exam. You are not allowed to take any sheets, even blank, home.
- · Good luck!

©copyright 2023 - [Dr. M. Musegaas and Dr. S. Maubach] - you are not allowed to redistribute this exam, nor any part thereof, without prior written permission of the authors

0216168602

Question 1

10p **1** Consider the following matrix A depending on a parameter p:

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 0 & p & 3 \\ 5 & 3 & p \end{array} \right].$$

Determine for which value(s) of p the matrix A is **not** invertible.

Question 2

5p **2** Is the following statement true? If yes, provide a proof. If no, provide a counterexample.

"If an $n \times n$ matrix A is symmetric, then A is invertible."

5p **3** Let $\mathbf{u} = \begin{bmatrix} \sqrt{2} \\ \sqrt{3} \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} \sqrt{3} \\ \sqrt{2} \end{bmatrix}$. Determine whether $\{\mathbf{u}, \mathbf{v}\}$ is a basis for \mathbb{R}^2 .

0216168606

Question 4

10p **4** Consider the following matrix A:

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{array} \right].$$

Is the matrix A diagonalizable?

(Note: you do not need to diagonalize A. You only need to state if it is possible to diagonalize A.)

5р

5 Determine two distinct vectors in Span $\left\{\begin{bmatrix} 1\\0\\-2\\3 \end{bmatrix}\right\}$ with length 1.

ľ																		
ľ																		
ľ																		
ľ																		
ľ																	\Box	
ľ																		
ľ																		
ľ																		
ľ																		
ľ																		
ľ																		
ľ																		
ľ																		
ľ																		
ľ																		
ľ																		
L																		
L																		
L																		
L																		
L																		
L																		
L																		
L																		
L																		
L																		
-																		
-																		
ŀ																	_	
L																	_	

5р

Consider the following matrix A:

It is given that the matrix A has eigenvalues 1 and -2.

6a Show that $\left\{ \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \right\}$ forms a basis for the eigenspace corresponding to the eigenvalue 1.

0216168610

5р

6b Show that $\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ forms a basis for the eigenspace corresponding to the eigenvalue -2.

10p **6c** Orthogonally diagonalize matrix A, i.e. find an orthogonal matrix P and a diagonal matrix D such that $A = PDP^T$.

5р

Answer the following multiple-choice questions.

An explanation is not required.

For every multiple-choice question, there is only **one correct answer**.

Please read the multiple choice instructions on the cover page!

Consider the following matrices A, B and C:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}.$$

Which of the following operations can not be performed?

- AB

- All of the above operations can be performed.

7b Find a value k such that the system of linear equations Ax = b corresponding to the following 5р augmented matrix has infinitely many solutions.

$$\left[\begin{array}{cccc} 2 & 2 & -4 & 3 \\ 1 & 3 & -2 & 4 \\ -4 & k & 8 & -6 \end{array}\right].$$

- None of these k values will give infinitely many solutions.

The following augmented matrix is almost in reduced echelon form. What is the solution of the 5р corresponding system of linear equations Ax = b?

$$\left[\begin{array}{ccccc} 0 & 0 & 1 & 0 & 5 \\ 0 & 1 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right].$$

5р

- The system of linear equations does not have a solution.
- The system of linear equations has infinitely many solutions.
- 7d Let $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 5 \\ -1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ a \\ b \end{bmatrix}$. If \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v} , then we must have
 - a = 3 and b = 1

 - (a) a = 2 and b = 0(c) a = 2 and b = -1(d) a = 1 and b = 3(e) a = 0 and b = 2(f) a = -1 and b = 2
 - None of the above

7e Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that $T\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $T\left(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Is T injective (one-to-one)? Is T surjective (onto)?

- T is both injective and surjective
- ${\it T}$ is injective, but not surjective
- \boldsymbol{T} is surjective, but not injective
- T is neither injective nor surjective

- 7f Let $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Which one of the following subsets of \mathbb{R}^3 is a subspace of \mathbb{R}^3 ?

 - $\begin{cases} \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{x} \cdot \mathbf{u} = 0 \end{cases}$ $\begin{cases} \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{x} \cdot \mathbf{x} = 1 \end{cases}$ $\begin{cases} \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{x} \cdot \mathbf{u} = 1 \end{cases}$

5р

7g Recall that \mathbb{P}_3 denotes the set of polynomials of degree at most 3. In other words, \mathbb{P}_3 consists of all polynomials of the form

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n,$$

where the coefficients $a_0, ..., a_n$ and the variable t are real numbers.

Let H be the subspace of \mathbb{P}_3 made up of only those polynomials $\mathbf{p}(t)$ such that $\mathbf{p}(0) = 0$,

$$H = \{ \mathbf{p} \in \mathbb{P}_3 \mid \mathbf{p}(0) = 0 \}.$$

Then,

- $\{t,t^2,t^3\}$ is a basis for H.
- $\{1,t,t^2,t^3\}$ is a basis for H.
- None of the above.

5p **7h** Consider the following matrix A:

$$A = \left[\begin{array}{rrrr} 1 & 1 & -2 & -1 \\ -1 & 4 & -3 & 1 \\ 0 & 7 & 1 & -8 \end{array} \right].$$

A vector in Nul(A) is

- $\begin{array}{c}
 \begin{bmatrix}
 1 \\
 -1 \\
 2 \\
 -2
 \end{array}$
- $\bigcirc \begin{bmatrix} 2\\1\\1\\1 \end{bmatrix}$
- $\begin{array}{c|c}
 \hline
 \mathbf{d} & 1 \\
 2 \\
 -1 \\
 3
 \end{array}$
- (e) None of the above.

0216168617

5p **7i** Consider the following matrix A:

$$A = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

A vector in Col(A) is

- $\begin{array}{c}
 \begin{bmatrix}
 1 \\
 2 \\
 3
 \end{array}$
- $\begin{array}{c}
 \begin{bmatrix}
 1 \\
 0 \\
 2
 \end{bmatrix}$

- e None of the above.

Extra space

If you use these extra answer boxes, please mention clearly in your main answer that part of your answer can be found here!

8a

8b

8c

8d

8e

8f

