

WORKING WITH DATA IN THE TIDYVERSE

Complex recoding with case_when

Alison Hill
Professor & Data Scientist

Generations & age

?case when

Usage

case_when(...)

Arguments

A sequence of two-sided formulas. The left hand side (LHS) determines which values match this case. The right hand side (RHS) provides the replacement value.

The LHS must evaluate to a logical vector. Each logical vector can either have length 1 or a common length. All RHSs must evaluate to the same type of vector.

These dots are evaluated with explicit splicing.

Bakers

```
bakers
\# A tibble: 10 x 2
           birth_year
   baker
   <chr>
                 \overline{\langle}dbl>
 1 Liam
                 1998.
                 1997.
 2 Martha
 3 Jason
                 1992.
                 1986.
 4 Stuart
 5 Manisha
                 1985.
                 1980.
 6 Simon
                 1976.
 7 Natasha
                 1976.
 8 Richard
                 1959.
 9 Robert
10 Diana
                 1945.
```


Simple if_else

```
bakers %>%
  mutate(gen = if_else(between(birth_year, 1981, 1996),
                       "millenial",
                       "not millenial"))
# A tibble: 10 x 3
  baker
          birth year gen
  <chr>
               <dbl> <chr>
1 Liam
               1998. not millenial
 2 Martha
          1997. not millenial
 3 Jason
          1992. millenial
          1986. millenial
 4 Stuart
 5 Manisha
              1985. millenial
              1980. not millenial
 6 Simon
            1976. not millenial
 7 Natasha
 8 Richard
             1976. not millenial
 9 Robert
               1959. not millenial
10 Diana
               1945. not millenial
```


Multiple if_else pairs

```
bakers %>%
 mutate(gen = case when(
   between (birth_year, 1965, 1980) ~ "gen_x",
   between (birth year, 1981, 1996) ~ "millenial"
# A tibble: 10 x 3
  baker
         birth year gen
  <chr>
         <dbl> <chr>
1 Liam 1998. NA
 2 Martha 1997. NA
 3 Jason 1992. millenial
4 Stuart 1986. millenial 1985. millenial 1980. gen_x
           1976. gen x
7 Natasha
8 Richard
            1976. gen x
               1959. NA
 9 Robert
10 Diana
               1945. NA
```


Make multiple bins

```
bakers %>%
  mutate(gen = case when(
    between (birth year, 1928, 1945) ~ "silent",
    between (birth year, 1946, 1964) ~ "boomer",
    between (birth year, 1965, 1980) ~ "gen_x",
    between (birth year, 1981, 1996) ~ "millenial",
    TRUE ~ "gen z"
# A tibble: 10 x 3
         birth year gen
   baker
   <chr> <dbl> <chr>
1 Liam 1998. gen_z
2 Martha 1997. gen_z
3 Jason 1992. millenial
4 Stuart 1986. millenial
           1985. millenial
 5 Manisha
 6 Simon
             1980. gen x
7 Natasha
            1976. gen x
 8 Richard
                1976. gen x
 9 Robert
                1959. boomer
                1945. silent
10 Diana
```


List of "if-then" pairs

```
bakers %>%
    mutate(gen = case_when(

if TRUE

between(birth_year, 1928, 1945) ~ "silent",
    between(birth_year, 1946, 1964) ~ "boomer",
    between(birth_year, 1965, 1980) ~ "gen_x",
    between(birth_year, 1981, 1996) ~ "millenial",
    TRUE ~ "gen_z"
    ))
```

The last "if-then" pair

Know your new variable!

```
bakers
# A tibble: 95 x 3
   baker
         birth year gen
  <chr>
            <dbl> <chr>
 1 Liam 1998. gen_z
 2 Martha 1997. gen_z
3 Flora 1996. millenial
 4 Michael 1996. millenial
         1996. millenial
 5 Julia
         1993. millenial
 6 Ruby
 7 Benjamina 1993. millenial
8 Jason 1992. millenial
9 James 1991. millenial
10 Andrew 1991. millenial
# ... with 85 more rows
```


Count bakers by generation

Plot bakers by generation

```
ggplot(bakers, aes(x = gen)) + geom_bar()
```


Let's practice!

WORKING WITH DATA IN THE TIDYVERSE

Factors

Alison Hill
Professor & Data Scientist

The forcats package

library(forcats) # once per work session

What is a factor?

"In R, factors are used to work with categorical variables, variables that have a fixed and known set of possible values."

Count bakers by generation

Plot bakers by generation

```
ggplot(bakers, aes(x = gen)) +
    geom_bar()
```


Reorder from most to least bakers

```
ggplot(bakers, aes(x = fct_infreq(gen))) +
  geom_bar()
```


Reorder from least to most bakers

```
ggplot(bakers, aes(x = fct_rev(fct_infreq(gen)))) +
  geom_bar()
```


Relevel using natural order

Reorder by hand

Reorder generations chronologically

Fill fail

```
ggplot(bakers, aes(x = gen, fill = series_winner)) +
    geom_bar()
```


Fill win!

```
bakers <- bakers %>%
    mutate(series_winner = as.factor(series_winner))

ggplot(bakers, aes(x = gen, fill = series_winner)) + geom_bar()
```


Fill win!

```
ggplot(bakers, aes(x = gen, fill = as.factor(series_winner))) +
    geom_bar()
```


Let's practice!

WORKING WITH DATA IN THE TIDYVERSE

Dates

Alison Hill
Professor & Data Scientist

The lubridate package

library(lubridate) # once per work session

Cast character as a date

```
?ymd
```

```
ymd(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC TIME"),
  truncated = 0)
ydm(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC TIME"),
  truncated = 0)
mdy(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC TIME"),
  truncated = 0)
myd(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC TIME"),
  truncated = 0)
dmy(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC TIME"),
  truncated = 0)
dym(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC TIME"),
  truncated = 0)
```


ymd: Arguments

?ymd

Arguments

... a character or numeric vector of suspected dates

Examples

```
ymd("2010-08-17")
mdy(c("08/17/2010", "January 01, 2018"))
dmy("17 08 2010")
```


Parse Dates

```
dmy("17 August 2010") # does this work?
[1] "2010-08-17"

mdy("17 August 2010") # what about this?
[1] NA
Warning message:
All formats failed to parse. No formats found.

ymd("17 August 2010") # what about this?
[1] NA
Warning message:
All formats failed to parse. No formats found.
```


Dates in a data frame

Cast as dates

```
hosts
# A tibble: 2 x 3
 host bday premiere <chr> <chr>
1 Mary 24 March 1935 August 17th, 2010
2 Paul 1 March 1966 August 17th, 2010
hosts <- hosts %>%
 mutate(bday = dmy(bday),
        premiere = mdy(premiere))
hosts
# A tibble: 2 x 3
 host bday premiere
 1 Mary 1935-03-24 2010-08-17
2 Paul 1966-03-01 2010-08-17
```


Types of timespans

- interval: time spans bound by two real date-times.
- duration: the exact number of seconds in an interval.
- period: the change in the clock time in an interval.

Calculating an interval

Converting units of timespans

Converting units of timespans

Let's practice!

WORKING WITH DATA IN THE TIDYVERSE

Strings

Alison Hill
Professor & Data Scientist

String wrangling

```
series5
# A tibble: 7 x 3
 baker about
                                         showstopper
 <chr> <chr>
                                         <chr>
1 Chetna 35 years, Fashion designer
                                         Fusion Tiered Pies
2 Luis 42 years, Graphic designer
                                         Four Fruity Seasons Tower
3 Martha 17 years, Student
                                         Three Little Pigs Pie
4 Nancy 60 years, Retired manager
                                         Trio of Apple Pies
5 Richard 38 years, Builder
                                         Three Course Autumn Pie Feast
6 Norman 66 years, Retired naval officer Pieful Tower
7 Kate
         41 years, Furniture restorer
                                         Rhubarb, Prune & Apple Pork Pies
```


tidyr::separate

```
series5 <- series5 %>%
  separate (about, into = c("age", "occupation"), sep = ", ")
series5
# A tibble: 7 x 4
 baker age occupation
                                       showstopper
 <chr> <chr> <chr>
                                       <chr>
1 Chetna 35 years Fashion designer
                                       Fusion Tiered Pies
2 Luis 42 years Graphic designer
                                       Four Fruity Seasons Tower
3 Martha 17 years Student
                                       Three Little Pigs Pie
4 Nancy 60 years Retired manager
                                       Trio of Apple Pies
5 Richard 38 years Builder
                                       Three Course Autumn Pie Feast
6 Norman 66 years Retired naval officer Pieful Tower
7 Kate
         41 years Furniture restorer
                                       Rhubarb, Prune & Apple Pork Pies
```


readr::parse_number

```
series5 <- series5 %>%
  separate (about, into = c("age", "occupation"), sep = ", ") %>%
 mutate(age = parse number(age))
series5
# A tibble: 7 x 4
 baker age occupation
                                     showstopper
 <chr> <dbl> <chr>
                                     <chr>
1 Chetna 35. Fashion designer
                                    Fusion Tiered Pies
2 Luis 42. Graphic designer
                                     Four Fruity Seasons Tower
3 Martha 17. Student
                                     Three Little Pigs Pie
4 Nancy 60. Retired manager
5 Richard 38. Builder
                                     Trio of Apple Pies
                                     Three Course Autumn Pie Feast
6 Norman 66. Retired naval officer Pieful Tower
        41. Furniture restorer Rhubarb, Prune & Apple Pork Pies
7 Kate
```


The stringr package

library(stringr) # once per work session

String Basics

```
series5 <- series5 %>%
  mutate(baker = str to upper(baker),
         showstopper = str to lower(showstopper))
series5
# A tibble: 7 x 4
 baker age occupation
                                     showstopper
 <chr> <dbl> <chr>
                                     <chr>
1 CHETNA 35. Fashion designer
                                     fusion tiered pies
2 LUIS 42. Graphic designer
                                     four fruity seasons tower
3 MARTHA 17. Student
                                     three little pigs pie
4 NANCY 60. Retired manager
5 RICHARD 38. Builder
                                     trio of apple pies
                                     three course autumn pie feast
6 NORMAN 66. Retired naval officer pieful tower
         41. Furniture restorer
7 KATE
                                     rhubarb, prune & apple pork pies
```


Detect String Patterns

```
series5 %>%
 mutate(pie = str detect(showstopper, "pie"))
# A tibble: 7 x 5
 baker age occupation
                                    showstopper
                                                                   pie
 <chr> <dbl> <chr>
                                   <chr>
                                                                   <1q1>
1 CHETNA 35. Fashion designer
                                   fusion tiered pies
                                                                   TRUE
2 LUIS 42. Graphic designer
                                  four fruity seasons tower
                                                                   FALSE
3 MARTHA 17. Student
                                    three little pigs pie
                                                                   TRUE
4 NANCY 60. Retired manager
                                    trio of apple pies
                                                                   TRUE
5 RICHARD 38. Builder
                                    three course autumn pie feast
                                                                   TRUE
6 NORMAN 66. Retired naval officer pieful tower
                                                                   TRUE
        41. Furniture restorer
7 KATE
                                   rhubarb, prune & apple pork pies TRUE
```


Replace String Patterns

```
series5 %>%
 mutate(showstopper = str replace(showstopper, "pie", "tart"))
# A tibble: 7 x 4
 baker age occupation
                                    showstopper
 <chr> <dbl> <chr>
                                    <chr>
1 CHETNA 35. Fashion designer
                                   fusion tiered tarts
2 LUIS 42. Graphic designer
3 MARTHA 17. Student
                                four fruity seasons tower
                                    three little pigs tart
4 NANCY 60. Retired manager
                                   trio of apple tarts
5 RICHARD 38. Builder
                                    three course autumn tart feast
6 NORMAN 66. Retired naval officer tartful tower
7 KATE 41. Furniture restorer rhubarb, prune & apple pork tarts
```


Remove String Patterns

```
series5 %>%
  mutate(showstopper = str remove(showstopper, "pie"))
# A tibble: 7 x 4
 baker age occupation
                                     showstopper
 <chr> <dbl> <chr>
                                     <chr>
1 CHETNA 35. Fashion designer
                                    fusion tiered s
2 LUIS 42. Graphic designer
3 MARTHA 17. Student
                                 four fruity seasons tower
                                     "three little pigs "
4 NANCY 60. Retired manager
5 RICHARD 38. Builder
                                    trio of apple s
                                     three course autumn feast
6 NORMAN 66. Retired naval officer ful tower
7 KATE 41. Furniture restorer rhubarb, prune & apple pork s
```


Trim white space

```
series5 %>%
  mutate(showstopper = str remove(showstopper, "pie"),
         showstopper = str trim(showstopper))
# A tibble: 7 x 4
 baker
           age occupation
                                     showstopper
 <chr> <dbl> <chr>
                                     <chr>
1 CHETNA 35. Fashion designer
                                    fusion tiered s
2 LUIS 42. Graphic designer
                                    four fruity seasons tower
3 MARTHA 17. Student
                                     three little pigs
4 NANCY 60. Retired manager
5 RICHARD 38. Builder
                                     trio of apple s
                                     three course autumn feast
6 NORMAN 66. Retired naval officer ful tower
         41. Furniture restorer rhubarb, prune & apple pork s
7 KATE
```


Let's practice!

WORKING WITH DATA IN THE TIDYVERSE

Final thoughts

Alison Hill
Professor & Data Scientist

Explore your data

```
bakeoff <- read_csv("bakeoff.csv")

glimpse(bakeoff)

skim(bakeoff)

bakeoff %>%
   count(series, baker) %>%
   count(series)

ggplot(bakeoff, aes(episode)) +
      geom_bar() +
      facet_wrap(~series)

?read_csv
```


Tame your data

Tidy your data

Transform your data

```
bakers <- bakers %>%
 mutate(gen = case when(
   between (birth year, 1928, 1945) ~ "silent",
   between (birth year, 1946, 1964) ~ "boomer",
   between (birth year, 1965, 1980) ~ "gen x",
   between (birth year, 1981, 1996) ~ "millenial",
   TRUE ~ "gen z"
bakers <- bakers %>%
   mutate(gen = fct relevel(gen, "silent", "boomer",
                             "gen x", "millenial", "gen z"))
ggplot(bakers, aes(x = gen)) + geom bar()
bakers <- bakers %>%
 mutate(last date appeared us = dmy(last date appeared us),
         occupation = str to lower(occupation),
         student = str detect(occupation, "student"))
```

On your own

https://www.datacamp.com/courses/working-with-the-rstudio-ide-part-1

R Projects in RStudio

https://www.datacamp.com/courses/working-with-the-rstudio-ide-part-1

Project-oriented workflows

```
bakeoff
bakeoff.Rproj
data
bakers.csv <-- this is my file!
figures

# install.packages("here")
library(here)
bakers <- read_csv(here("data", "bakers.csv"))</pre>
```

The here package: https://here.r-lib.org/

What's next?

What's next?

What's next?

Congratulations!