Signatures and models for syntax and operational semantics in the presence of variable binding

Ambroise Lafont¹

¹DAPI IMT Atlantique

PhD supervised by N. Tabareau and T. Hirschowitz, 2019

The subject in one slide

What is a programming language, mathematically?

• In the literature, no well-established consensus.

Differential λ -calculus [Ehrhard-Regnier 2003]

- \sim 10 pages (section 2 \rightarrow beginning of section 3) describing the programming language and proving some properties.
 - This thesis:
 - a tentative notion of programming languages, reduction monads, and
 - a discipline for automatically generating well-behaved reduction monads

What is a programming language?

Example: arithmetic expressions in a calculator

Syntax (of expressions) = formal language

- vocabulary: available symbols/keys
- grammar rules: what is a valid expression.

e.g. + is a binary operation.

What is a programming language?

Program execution

Program = valid syntactic text Execution = modification of the program:

$$(2+2) \times 3 \xrightarrow{1 \text{ execution step}} 4 \times 3 \xrightarrow{1 \text{ execution step}} 12$$

Operational semantics = description of how programs execute.

What is a programming language?

A graph whose vertices are programs.

Variables = placeholders for expressions

- Substitution: (x + (5 + 4))[x := 12] = 12 + (5 + 4)
- Reductions are stable under substitution

$$\frac{x + (5 + 4) \to x + 9}{12 + (5 + 4) \to 12 + 9}$$

→ Reduction monads!

Specifying programming languages: initial semantics

- Constructing syntax and reductions may be complex (cf. differential λ -calculus).
- Often easier to describe the models.

Model \approx graph with interpretation of the operations and reductions

a model of arithmetic expressions: $\ensuremath{\mathbb{Z}}$

- Syntactic "+" \rightarrow actual "+",
- Syntactic " \times " \rightarrow actual " \times ", ...
- Programming language = initial model.
- Initiality ⇒ recursion principle.

Notion of signature

- Specifies models.
- Effective iff the initial model exists.

Bound variables and α -equivalence

α -equivalence:

$$x \mapsto 2 \times x$$
 should be identified with $y \mapsto 2 \times y$

"x is bound by
$$\mapsto$$
 in $x \mapsto 2 \times x$ "

State of the art: syntax

Two main notions of syntax:

- Substitution monoids (\approx finitary monads) [Fiore-Plotkin-Turi, 1999].
- Nominal sets [Gabbay-Pitts, 1999].

This thesis: monads

State of the art: specifying syntax

Main notions of signature for monads:

- Pointed strong endofunctors [Fiore-Plotkin-Turi, 1999].
- Equational systems [Fiore-Hur, 2010].
- Modules [Hirschowitz-Maggesi, 2007].

This thesis: modules

State of the art: semantics

Semantic notions of programming language:

- Distributive laws [Plotkin-Turi, 1997].
- double categories [Meseguer, the Montanari school].

Do not cover higher-order languages.

- 2-categories [Power, Seely,...].
- relative monads [Ahrens, 2016].

Only covers congruent semantics.

Contributions

- Mathematical definition of programming languages as reduction monads.
- Specification of syntactic equations, based on modules over monads.
- Specification of semantics.

Systematic use of monads and modules for taking care of substitution.

Articles

- CSL 2018 about 2.
- FSCD 2019 about 2. = variant of Fiore's approach.
- POPL 2020 about 1. and 3.

All in collaboration with Benedikt Ahrens, André Hirschowitz and Marco Maggesi.

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

Ingredients

- Programming languages (PLs) as graphs
 - (Syntax) vertices = terms
 - (**Semantics**) arrows = reductions between terms
- Simultaneous substitution: variables → terms
 - monads and modules over them

Example

 λ -calculus with β -reduction:

Syntax:

$$S, T ::= x \mid S T \mid \lambda x.S$$

• Modulo α -equivalence, e.g.

$$\lambda x.x = \lambda y.y$$

• Reductions:

$$(\lambda x.t) u \xrightarrow{\beta} t[x := u] + \text{congruences}$$

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

PLs as graphs

Example: λ -calculus with β -reduction

- (Syntax) vertices = terms e.g. $\Omega = (\lambda x. xx)(\lambda x. xx)$
- (Semantics) arrows = reductions

Graph = a quadruple
$$(A, V, \sigma, \tau)$$
 where
$$A = \{\text{arrows}\} \qquad \sigma = \text{source of an arrow}$$

$$V = \{\text{vertices}\} \qquad \tau = \text{target of an arrow}$$

$$A \xrightarrow{\sigma} V$$

$$\sigma : \qquad A \qquad \to V \qquad \tau : \qquad A \qquad \to V$$

$$t \xrightarrow{r} u \qquad \mapsto t \qquad \qquad t \xrightarrow{r} u \qquad \mapsto u$$

$$\sigma(r) \xrightarrow{r} \tau(r)$$

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

Simultaneous substitution

Syntax comes with substitution

terms (e.g. λ -terms) = trees with free variables as (distinguished) leaves.

Simultaneous substitution made formal

Free variables indexing

 $X \mapsto \{\text{terms taking free variables in } X\}$

Example: λ -calculus

$$L(\lbrace x,y\rbrace) = \left\{\begin{array}{c|cccc} \lambda z.z & , & x & , & y & , & x \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}\right\}$$

Simultaneous substitution

$$\forall f: X \to L(Y),$$

$$L(X) \rightarrow L(Y)$$

 $t \mapsto t[x \mapsto f(x)]$ (or $t[f]$)

Monads model simultaneous substitution

 λ -calculus as a monad $(L, \underline{}[\underline{}], \eta)$

- Simultaneous substitution $(L, \underline{[}])$
- Variables are terms

$$\eta_X: X \to L(X)$$
 $x \mapsto x$

Substitution laws:

$$\underline{x}[f] = f(x)$$
 $t[x \mapsto \underline{x}] = t$

+ associativity:

$$t[f][g] = t[x \mapsto f(x)[g]]$$

Substitution for semantics

We saw that syntax is expected to support substitution. This is also true of semantics.

Our notion of PL:

- Syntax: a monad $(L, \underline{\hspace{0.1cm}}[\underline{\hspace{0.1cm}}], \eta)$
- Semantics:
 - graphs $R(X) \xrightarrow{\sigma_X} L(X)$ for each X

$$R(X) = {\text{total set of reductions between} \atop \text{terms taking free variables in } X}$$

• substitution of reduction: variables \mapsto *L*-terms.

$$\frac{t \xrightarrow{r} u}{t[f] \xrightarrow{r[f]} u[f]}$$

Substitution for semantics made formal

R as a **module** over L

R supports L-monadic substitution:

$$\forall f: X \to \mathbf{L}(Y),$$

$$R(X) \to R(Y)$$

$$r \mapsto r[x \mapsto f(x)] \quad \text{(or } r[f])$$
+ substitution laws

Other examples of *L*-modules: $L, L \times L, 1, \ldots$

σ and τ as *L*-module morphisms

$$t \xrightarrow{r} u \rightsquigarrow t' \xrightarrow{r[f]} u'$$
 with $\begin{cases} t' = t[f] \\ u' = u[f] \end{cases}$ i.e., $\begin{cases} \sigma(r[f]) = \sigma(r)[f] \\ \tau(r[f]) = \tau(r)[f] \end{cases}$

Commutation with substitution \Leftrightarrow Module morphisms $\sigma, \tau : R \to L$.

Reduction monads

Summary: graphs + substitution.

Definition

A **reduction monad** $R \xrightarrow{\sigma} T$ consists of

- T = monad (= module over itself)
- R = module over T
- $\sigma, \tau : R \to T$ are T-module morphisms.

Example

 λ -calculus with β -reduction.

How can we specify a reduction monad?

- signature for the (syntactic) operations for the monad;
- 2 reduction rules.

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

Overview

- Syntax = monad L
- Operations = module morphisms $\Sigma(L) \to L$
- 1-signatures specify operations
- 2-signatures specify operations + equations.

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

Operations as module morphisms

For any model of λ -calculus (in particular for L),

Application commutes with substitution

$$(t\ u)[x\mapsto v_x] = t[x\mapsto v_x]\ u[x\mapsto v_x]$$

Categorical formulation

$$L \times L$$
 supports L -substitution

 $L \times L$ is a **module over** L

application commutes with substitution

 $\operatorname{app}:L\times L o L$ is a

module morphism

[Hirschowitz-Maggesi 2007 : Modules over Monads and Linearity]

Examples of modules

We argued that syntactic operations are module morphisms. Basic examples of modules?

Module over a monad T: supports the T-monadic substitution

Examples

- T itself
- $M \times N$ for any modules M and N:

$$\forall (t,u) \in M(X) \times N(X), \qquad X \xrightarrow{f} T(Y),$$

$$\boxed{(t,u)[f]=(t[f],u[f])}\in M(Y)\times N(Y)$$

• M' = **derivative** of a module M:

X extended with a fresh variable \diamond

$$M'(X) = M(X \coprod \{\diamond\})$$

used to model an operation binding a variable (Cf next slide).

Operations as module morphisms

Operations can be combined into a single one.

 $Operations = module \ morphisms = maps \ commuting \ with \ substitution:$

Example: λ -calculus

Combine operations into a single one:

[app, abs] :
$$(L \times L) \coprod L' \to L$$

where (coproducts of modules M and N)

$$(M \coprod N)(X) = M(X) \coprod N(X)$$

1-signatures specify operations

Definition

A 1-signature Σ is a (functorial) assignment

Definition (model of a 1-signature Σ)

A **model** of Σ is a pair (T, m) denoted by $\Sigma(T) \stackrel{m}{\longrightarrow} T$ s.t.

- T is a monad
- $\Sigma(T) \xrightarrow{m} T$ is a T-module morphism

Example: λ -calculus

[app, abs] :
$$\Sigma_{LC}(L) \to L$$
 where $\Sigma_{LC}(L) = (L \times L) \coprod L'$

Syntax

We defined 1-signatures and their models. When is a signature effective?

(suitable notion of model morphism [Hirschowitz-Maggesi 2012])

Definition

The syntax specified by a 1-signature Σ is the initial object in its category of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.

Counter-example: $\Sigma(R) = \mathcal{P}_{R} \circ R$

Powerset endofunctor on Set.

(for cardinality reasons)

Initial semantics for algebraic 1-signatures

We gave examples of effective 1-signatures. They were all algebraic.

Definition

Algebraic 1-signatures = 1-signatures built out of derivatives, finite products, disjoint unions, and the 1-signature $\Theta: T \mapsto T$.

Algebraic 1-signatures \simeq binding signatures [Fiore-Plotkin-Turi 1999] \Rightarrow specification of *n*-ary operations, possibly binding variables.

Theorem (Fiore-Plotkin-Turi 1999)

Syntax exists for any algebraic 1-signature.

Example

 λ -calculus

Question: Specify syntactic operations subject to some equations?

(commutative associative binary operation + of diff. λ -calculus)

We saw that algebraic signatures are effective. Can we specify effectively operations subject to equations?

Theorem (CSL 2018)

Syntax exists for any "quotient" of algebraic 1-signatures.

Example

a commutative binary operation +:

$$\forall a, b, \quad a+b=b+a$$

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

Example: a commutative binary operation

Specification of a binary operation

1-signature	$T\mapsto T\times T$
model	$T imes T \ rac{\psi^+}{T}$

Question What is an appropriate notion of model for a **commutative** binary operation?

- \bullet a monad T
- with a binary operation
- \rightarrow a model $T \times T \xrightarrow{+} T$ of $\Theta \times \Theta$

s.t.

where swap(t, u) = (u, t)

Equations

 $\Sigma = 1$ -signature (e.g. binary operation $\Sigma(T) = T \times T$)

Definition

A Σ -equation $A \xrightarrow{u} B$ is a (functorial) assignment

$$M = (\Sigma(T) \to T) \qquad \mapsto \qquad \left(A(M) \xrightarrow{u_M} B(M) \right)$$

model of Σ

parallel pair of T-module morphisms

Example (Binary commutative operation)

$$\Sigma(T) = T \times T$$

38/5

2-signatures and their models

We defined equations. A set of equations yields a 2-signature.

Definition

A **2-signature** is a pair (Σ, E) where

- \bullet Σ is a 1-signature for monads
- E is a set of Σ -equations

Definition

A **model** of a 2-signature (Σ, E) consists of:

• a model
$$M = \begin{pmatrix} \Sigma(T) \\ \psi \\ T \end{pmatrix}$$
 of Σ s.t.

$$\forall A \xrightarrow{u} B \in E, \quad u_M = v_M : A(M) \to B(M)$$

morphism of models = morphisms as models of Σ .

Initial semantics for algebraic 2-signatures

We defined 2-signatures and their models. When is a 2-signature effective?

Theorem (FSCD 2019)

Any algebraic 2-signature has an initial model.

Definition

A 2-signature (Σ, E) is **algebraic** if:

- Σ is algebraic
- E consists of **elementary** Σ -equations

Main instances of elementary Σ -equations

$$A
ightharpoonup B ext{ s.t. } A \left(egin{array}{c} \Sigma(T) \\ rac{\psi}{T} \end{array}
ight) = \Phi(T) \qquad B \left(egin{array}{c} \Sigma(T) \\ rac{\psi}{T} \end{array}
ight) = T$$

for some algebraic 1-signature Φ .

(e.g.
$$\Phi(T) = T \times T$$
 for commutativity)

Example: algebraic 2-signature for differential λ -calculus

Lionel Vaux's version

Equations

- associativity and commutativity of +, neutrality of 0 for +
- bilinearity of D_·_ with respect to +, left linearity of application, linearity of abstraction

$$\lambda x.(s+t) = \lambda x.s + \lambda x.t$$
 $\lambda x.0 = 0$

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

Specifying reduction monads

 λ -calculus with (small-step) β -reduction as a reduction monad:

- vertices = L = initial model of the signature of λ -calculus.
- arrows = $R, \sigma, \tau = ?$
 - specified through reduction rules (to be made formal):

$$(\lambda x.t) u \to t[x := u]$$
 $\frac{t \to t'}{t u \to t' u}$...

- Reduction monads
 - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

Analysis of a reduction rule

Example: binary congruence for application.

metavariables: as a L-module L^4

$$t, t', u, u' \mapsto$$

Hypothesis/conclusion = pair of λ -terms using metavariables

- as parallel module morphisms $L^4 \rightrightarrows L$
- **Generalization**: $L \rightarrow$ any model $\Sigma_{LC}(T) \rightarrow T$ of Σ_{LC} :

(application denoted by app :
$$T \times T \rightarrow T$$
)

e.g.,
$$t u \rightarrow t' u'$$
: $T^4 \rightarrow T$
$$(t, t', u, u') \mapsto \mathsf{app}(t, u)$$

$$(t, t', u, u') \mapsto \mathsf{app}(t', u')$$

Let $\Sigma =$ signature for monads (e.g. Σ_{LC} for congruence for application).

Definition of Σ -reduction rules

A Σ-reduction rule $(\vec{\sigma}, \vec{\tau})$

$$\boxed{\frac{\sigma_1 \to \tau_1 \dots \sigma_n \to \tau_n}{\sigma_0 \to \tau_0}}$$

assigns (functorially) to each model $\Sigma(T) \to T$:

- V(T) = T-module of metavariables (e.g. $V(T) = T^4$)
- parallel T-module morphisms $V(T) \xrightarrow{\sigma_{i,T}} T' \cdots \uparrow$

We write

$$\sigma_i, \tau_i: V \to \Theta^{(n_i)}$$
 $n_i = \text{number of derivatives}$

Outline

- - Graphs
 - Substitution
- 2 Syntax
 - Operations
 - Equations
- Semantics
 - Reduction rules
 - Reduction signatures

Reduction signatures specify reduction monads.

Definition

A **reduction signature** is a pair (Σ, \mathfrak{R}) where

- Σ is a signature for monads (1- or 2-signature)
- ullet $\mathfrak R$ is a family of Σ -reduction rules

Example: λ -calculus with β -reduction

- $\Sigma = \Sigma_{IC}$
- Σ-reduction rules:
 - β -reduction
 - congruence for application and abstraction

We defined reduction signatures. What are their models?

A **model** of a signature (Σ, \mathfrak{R}) consists of:

- a reduction monad $R \xrightarrow{\sigma} T$ with a Σ -model structure on T
- for each reduction rule

$$\frac{\sigma_1 \to \tau_1 \dots \sigma_n \to \tau_n}{\sigma_0 \to \tau_0} \circ p \qquad V \xrightarrow{\sigma_i} \Theta^{(n_i)} \quad \text{in } \mathfrak{R},$$

• a mapping, for each $v \in V(T)(X)$,

$$\begin{pmatrix} \sigma_1(v) \xrightarrow{r_1} \tau_1(v) \\ \dots \\ \sigma_n(v) \xrightarrow{r_n} \tau_n(v) \end{pmatrix} \quad \mapsto \quad \sigma_0(v) \xrightarrow{op(r_1, \dots r_n)} \tau_0(v)$$

compatible with substitution:

$$op(r_1,\ldots r_n)[f] = op(r_1[f],\ldots,r_n[f])$$

Initiality

We defined models of a reduction signature. When is a signature effective?

(suitable notion of model morphism)

Theorem (POPL 2020)

 Σ has an initial model (e.g. Σ is algebraic) \Rightarrow (Σ, \mathfrak{R}) has an initial model.

Examples

- λ -calculus with small-step β -reduction
- λ -ex = λ -calculus with explicit substitutions [Kesner 2009].

A Theory of Explicit Substitutions with Safe and Full Composition

Reduction signature for λ -ex

Syntax

 λ -ex = λ -calcul + explicit substitution t[x/u] s.t. x is bound in t: as a module morphism $L^{ex} \times L^{ex} \to L^{ex}$

subject to the equation

$$t[x/u][y/v] = t[y/v][x/u]$$
 if $y \notin f_V(u)$ and $x \notin f_V(v)$

as a $\Sigma_{L^{ex}}$ -equation $L^{ex''} \times L^{ex} \times L^{ex} \Rightarrow L^{ex}$.

Semantics

congruences, β -reduction $(\lambda x.t) u \rightarrow t[x/u], ...$

$$t[x/u][y/v] \rightarrow t[y/v][x/u[y/v]]$$
 if $x \notin f_v(u)$ and $y \in f_v(u)$

metavariable module: $L^{ex\prime\prime} \times L^{ex} \times L^{ex}_{\diamond} \qquad \qquad (L^{ex}_{\diamond} \subset L^{ex\prime})$

with associated effectivity theorem

● Vertices: syntax/monad ~ module of "configurations" over the syntax

Examples

- λ -calculus with small-step β -reduction cbv:
 - variables → values (rather than terms)
 - Thus, monad of values (rather than terms)
 - Still, reductions between **terms** (rather than values) = "configurations" over the monad of values
- π -calculus
- differential λ -calculus (without its signature though)
- ② Graph → Bipartite graph

Example

 λ -calculus with big-step β -reduction cbv: term \rightarrow value.

Summary

- PLs as reduction monads
- Signatures for reduction monads with effectivity theorem

Perspectives

- Generalize reduction monads and their signatures
 - specify the differential λ -calculus
- Generalize on the category of sets:
 - specify simply-typed PLs: category of families of sets (indexed by simple types)
 - specify Finster-Mimram's monad of weak ω -groupoids: category of globular sets

Thank you!