MS&E 260

INTRODUCTION TO OPERATIONS MANAGEMENT

Richard Kim
Stanford University
Management Science and Engineering

Decision Analysis

Some Key Decision Analysis Terms

- Deal/Lottery
- Five Rules
- U-value/U-curve
- E-value
- E-value of U-values
- Risk Neutral
- Delta Property/Constant Risk Aversion
- Value of Clairvoyance

Step Back: What Is Management Science?

- Management Science: the study of organizations and how they achieve their goals
 - Our approach is different from pedagogies in the other fields
 - Decision Analysis is a foundational element of management science: it helps us make decisions, in spite of uncertainty
 - Decision Tree is a tool that helps us make decisions

Decision Making In Two Forms

Descriptive: how people make decisions

- Methods
 - Pros and Cons
 - Rate and Weight
 - Flipping Coins
- Imprecise, results not easily repeatable

Normative: how people should make decisions

- Method
 - Decision Analysis
- Provides an objective framework for evaluating quantitative measures

Tight coupling between decisions and outcomes

Decouples decisions and outcomes

Why Do We Need Decision Analysis? (1/2)

- Humans tend to be very poor decision makers!
- Have you ever...
 - missed a great airfare because you were unsure what future prices would be?
 - been paralyzed by a to-do list with 20-items, with no clue on how and in what order to tackle the list?
 - worked in an organization which decided on projects on the basis of net present value?

Why Do We Need Decision Analysis? (2/2)

- Humans tend toward some well-known biases
 - Availability bias: tendency to think that if an event is more easily imaginable, then it is more probable
 - Is it more likely for an English word to start with 'R', or have 'R' in the third position?
 - Recency bias: tendency to base decisions on events that have occurred more recently
 - Bike riders wear helmets after seeing an accident
 - Intelligence analysts overly cautious of bad intelligence after Iraq
 - Anchoring bias: tendency to rely too heavily on the first piece of information offered when making decisions (example)

Components of a Decision

- 1. Decisions
 - A choice between two or more alternatives that involves an irrevocable allocation of resources
 - e.g. invest/do not invest in new advanced weapon system
- 2. Uncertainties
 - Events that can occur, probabilistically with different degrees, which affect the outcome
 - e.g. mission success, readiness of technology, adversary countermeasures
- 3. Deterministic Nodes
 - If all inputs to a deterministic node are known, then there is no longer any uncertainty about it
 - e.g. net income if revenue and expenses are known
- 4. Outcomes (symbol varies, sometimes

 ✓ or

 ✓)
 - Quantitative representation of the value of each combination of decision and uncertainty
 - e.g. monetary value, expected casualties

Influence Diagrams

- Conditional dependence
 - Arrow between two uncertainties
 - Arrow from decision node to uncertainty
 - Absence of arrow between two nodes asserts independence
- Inputs to deterministic node
 - Arguments of a function
- Prior knowledge of an uncertainty or event
 - Arrow from any node into a decision indicates that the result of the node are known before decision is made
 - If the parent node of a decision is an uncertainty, that uncertainty has been resolved by the time of the decision
 - If the parent node is another decision, the order of the decisions is made explicit

Influence Diagrams: Simple Example (1/2)

Scenario:

- There is an historic house for sale in San Francisco with an amazing view.
 The house has not been seismically retrofitted
- The asking price is \$1M. Conditional on the house not getting destroyed by an 'act of God,' you would be willing to pay up to \$3M for the house
- You believe there are two kinds of 'acts of God' that might destroy the house: earthquake and fire
- If an earthquake occurs, even if it doesn't destroy the house directly, it increases the probability of a fire

Problem:

Draw an influence diagram representing your decision to buy the house

Influence Diagrams: Simple Example (2/2)

- Earthquake → Fire
 - Probability of fire depends on whether or not an earthquake has occurred.
- Buy House → \$, Earthquake → \$, Fire → \$
 - Value that we "book" by making the decision depends on
 - (a) the result of our decision
 - (b) whether or not the house is subsequently destroyed
- Why no arrows from Buy House to Earthquake or Fire?
- Why no arrows from Earthquake or Fire into Buy House?

Some Philosophical Thoughts on Probability (1/3)

- We often conflate these terms: "Expectation," "Expected Value," and "Things We Expect to Happen"
- "Expectation" or "Expected Value" of a random variable is the weighted average of the outcomes
- Expectation of the decision is not an outcome you should expect
 - e.g. Rolling a die: expected numerical value = 3.5, an impossible outcome.
 We would never expect to roll a 3.5

Expected values of a decision are useful because they help us weigh alternatives while considering uncertainty

Some Philosophical Thoughts on Probability (2/3)

- Probabilities are a belief
 - Your probability may be different from my probability on the same uncertainty

Some Philosophical Thoughts on Probability (3/3)

- All probabilities are conditioned on the total sum of your life experiences:
 "&"
 - e.g. My belief on the probability of rain tomorrow = $P(rain \mid \&)$

& = my knowledge of seasons, red shoes, etc

- We should strive to become "Bayesian Thinkers"
 - We have the ability to observe a body of evidence, and update our beliefs based upon new evidence

Thomas Bayes 1701-1761

Questions

- What is the gross tonnage of dog food sold in the United States in the calendar year 2012?
- What is the probability of the Los Angeles Dodgers scoring more than 4 runs when they play the Oakland Athletics on Tuesday, August 7, 2018?

Bayesian Inference

 We observe a distinction that is relevant (probabilistically dependent) to our distinction of interest and use that information to update our probability distribution on the distinction of interest

Updating Beliefs

- We can gather information (e.g. from a test) to update our probability on an unobservable distinction
- Given:
 - E: event that we want to know more about
 - S: signal that we observe regarding the event E

Bayesian Updating of Beliefs

 We use Bayes' Formula as a mechanism to update our prior beliefs into posterior beliefs

Example: Testing for a Virus (1/3)

- Suppose that you want to study a virus
- 1/400th of the population is infected
- A test is available:
 - If used on an infected person, the test is 99% likely to indicate that the person is indeed infected
 - If the person is not infected, the test is 99% likely to indicate that the person is not infected

Example: Testing for a Virus (2/3)

- First, we characterize the performance of the test
 - This is the Assessed form of the tree
- The Assessed form determines the joint probabilities of the prior and likelihood

Example: Testing for a Virus (3/3)

- Next, we "flip the tree"
 - Reverse the order of the uncertainties
- This is the Inferential form of the tree: we can now make inferences on the virus that are not directly assessed

Decision Analysis Foundation: The Five Rules

1. Probability

 Consider all information relevant to a decision in terms of possible prospects and associated probabilities.

2. Preference Ordering

 We can order our list of prospects according to our preference (ties allowed).

3. Equivalence

Given the preference ordering (A > B > C), we can state a probability p that would make us indifferent between B and the lottery of A and C shown right.

4. Substitution

 If we faced the decision situation in (3), for that value of p, we would be indifferent between B and the lottery of A and C.

5. Choice

Given the following deals, if you prefer D over E, and p > q, then you must choose Deal 1 over Deal 2.

Decision Analysis Fundamentals (1/2)

- All alternatives, uncertainties, and values must pass the Clarity Test
 - e.g. What constitutes "hostile action" in space?
- Who is the decision maker?
 - Identify a single decision maker, and be consistent
 - Often, different decision makers in the same decision situation will have opposing objectives
 - e.g. military escalation: President and military leadership

Decision Analysis Fundamentals (2/2)

- Values should be quantifiable measures to maximize or minimize, as appropriate
 - Money, lives, etc
- Be as complete as appropriate in quantifying value
- e.g. What are implications of introducing a new drug to market?
 - Reputation of the pharmaceutical company
 - Value of unintended deaths versus money
 - Public support for new drug

Components of a Decision

- 1. Decisions
 - A choice between two or more alternatives that involves an irrevocable allocation of resources
 - e.g. invest/do not invest in new advanced weapon system
- 2. Uncertainties
 - Events that can occur, probabilistically with different degrees, which affect the outcome
 - e.g. mission success, readiness of technology, adversary countermeasures
- 3. Deterministic Nodes
 - If all inputs to a deterministic node are known, then there is no longer any uncertainty about it
 - e.g. net income if revenue and expenses are known
- 4. Outcomes (symbol varies, sometimes ✓ or ✓)
 - Quantitative representation of the value of each combination of decision and uncertainty
 - e.g. monetary value, expected casualties

Decision Trees

- Scenarios depicted in influence diagrams can also be depicted in event trees
- If no information about any uncertainties is known at the time of a decision, the decision is usually drawn as the root node of the event tree
 - The branches of the node are the different alternatives that could be selected
 - Each subsequent node is an uncertainty (along with its possible realizations) or a subsequent decision
- If an uncertainty precedes a decision in an event tree, then the uncertainty is resolved and is known to the decision maker
- The leaves of the tree represent all possible realizations of the joint distribution over the uncertainties together with the decision(s)
 - Leaves may be labeled with value the decision maker places on that specific outcome

Probabilities in Decision Trees

Probabilities are values between 0 and 1

$$0 \le P(Success \mid New Technology) \le 1$$

 All probabilities associated with each degree of an uncertainty must sum to 1 (<u>example 1</u>)

$$P(Success \mid New\ Technology) + P(Failure \mid New\ Technology) = 1$$

- Conditional Probabilities
 - Probability of an event conditional on knowing another piece of information
 - In example 1, probabilities are conditioned on what technology has been chosen

Calculating Expectation of Each Decision Alternative

Expected values are calculated as sequential weighted averages, right-to-left on the tree (example)

1 - P(A)

Example Decision Tree: Arms Agreement Tree (1/4)

- As National Security Advisor, you have to decide whether to recommend signing a major bilateral arms elimination agreement
- If you don't sign, the opposing nation will definitely not relinquish their weapons and you expect ongoing violence to result in one million lost lives
- If you do sign, the opposing nation will also sign, but may not comply
 - If they comply, some lives will still be lost in residual violence (20,000 lives)
 - If they do not comply, the current situation will be aggravated and the expected number of lives lost is four million
 - Experts estimate that the opposing nation will not comply with the agreement with a probability of 0.2

Example Decision Tree: Arms Agreement Tree (2/4)

Objective: Choose the alternative that minimizes the expected number of lives lost

Example Decision Tree: Arms Agreement Tree (3/4)

Objective: Choose the alternative that minimizes the expected number of lives lost

Example Decision Tree: Arms Agreement Tree (4/4)

Objective: Choose the alternative that minimizes the expected number of lives lost

Introduction into Risk Preference

- Which alternative will an infinitely risk-seeking person choose?
- Which alternative will an infinitely risk-averse person choose?

Value Measure

Risk Preference In Decisions

- Up to now, all our decisions have been in expected value
 - This implies that the decision-maker is risk neutral
 - i.e. \$1 is worth \$1 of utility
- Oftentimes, decision-makers have some degree of risk aversion
- We generally represent risk attitude with utility curves of the form

$$u(x) = a - b \times e^{-\gamma x}$$

- where
 - γ = the decision-makers risk aversion coefficient
 - x = the value in original units
 - u(x) = utility associated with x
- Rules for γ:
 - $\gamma > 0$ indicates risk averse attitude
 - γ < 0 indicates risk seeking attitude
 - $\gamma = 0$ indicates risk neutral attitude

When dealing with risk attitude, we are solving for **expected utility**, not expected value

Example Decision Tree: Incorporating Risk Preference (1/3)

Consider the following decision situation for a risk neutral decision-maker:

The expected value of this decision is 55.85

Example Decision Tree: Incorporating Risk Preference (2/3)

Suppose the decision-maker is risk averse with the following risk curve:

The expected utility of this decision is 0.915994

Example Decision Tree: Incorporating Risk Preference (3/3)

 The expected utility of the decision is the maximum expected utility of the two alternatives:

$$u(x) = max(u(Alternative 1), u(Alternative 2)) = max(0.91599, 0.86763)$$

= 0.91599

 Now, we can use the inverse of the utility curve to transform utility back to the original units:

$$x = \frac{-ln(1 - u(x))}{0.05}$$

• Plugging in u(x) = 0.91599, we get

$$x = 49.53726$$

- This is the certain equivalent of the expected utility of this decision, given the decision-makers risk preference
 - Recall, the same tree for the risk neutral decision-maker was valued at 55.85

Putting It All Together: An Integrated Example

 Suppose you are interested in throwing a party tomorrow. You can either hold the party Indoors or Outdoors. You are concerned with one uncertainty: rain. You assign the following dollar values to each of the four possible outcomes:

Outcome	Value
Indoors, No Rain	\$30
Indoors, Rain	\$80
Outdoors, No Rain	\$100
Outdoors, Rain	\$0

- You believe the probability of rain tomorrow is 0.25. There is a specialized weather report, which correctly predicts rain given rain 90% of the time, and correctly predicts no rain given no rain 95% of the time. What is the maximum price you should be willing to pay for this weather report?
- Note: You have a risk aversion coefficient of $\gamma=0.02$ and you can use the utility curve $u(x)=1-e^{-\gamma x}$

Integrated Example, Step 1: Solve the Baseline Decision Tree

Integrated Example, Step 2: Characterize the Weather Report

0.7125

Integrated Example, Step 3: Reformulate the Original Tree, But With New Information From Weather Report (Assume Report is Free)

Integrated Example, Step 4: Compute Value of the Weather Report

- Certain equivalent of expected utility of decision tree without weather report:
 \$52.28
- Certain equivalent of expected utility of decision tree with weather report:
 \$78.50
- Value of weather report = value with report value without report
 - Value = \$83.72 \$52.28 = \$31.44
- You should be willing to pay **up to** \$31.44 for the weather report, but not any more!

Backup

Results of Anchoring Question

Range of Anchor (last 3 + 400)	Average Guess of Year of Attila Defeat
400 to 599	629
600 to 799	680
800 to 999	789
1000 to 1199	885
1200 to 1399	988

Average Guess of Year of Attila Defeat

Example Decision Tree #1

Generic Decision Tree

