Práctica 6: Gramáticas

Versión del 16 de octubre de 2024

Ejercicio 1. Para cada una de las siguientes gramáticas, determinar su tipo según la jerarquía de Chomsky, describir el lenguaje generado y dar una derivación para una cadena perteneciente al mismo.

$$a. \ G_1 = \langle \{S, T, U\}, \{a, b\}, P_1, S \rangle, \text{ con } P_1 : \qquad b. \ G_2 = \langle \{S, T\}, \{a, b\}, P_2, S \rangle, \text{ con } P_2 : \\ S \rightarrow aS \mid T \\ T \rightarrow aU \mid bU \\ U \rightarrow a \mid \lambda$$

$$c. \ G_3 = \langle \{S\}, \{a, b\}, P_3, S \rangle, \text{ con } P_3 : \qquad d. \ G_4 = \langle \{S, T\}, \{a, b\}, P_4, S \rangle, \text{ con } P_4 : \\ S \rightarrow aSa \mid b \qquad S \rightarrow aTS \mid ab \\ Ta \rightarrow aT \\ Tb \rightarrow bb$$

$$e. \ G_5 = \langle \{S, A, B\}, \{a, b\}, P_5, S \rangle, \text{ con } P_5 : \qquad f. \ G_6 = \langle \{S, T\}, \{a, b, c\}, P_6, S \rangle, \text{ con } P_6 : \\ S \rightarrow SAB \mid \lambda \\ AB \rightarrow BA \\ BA \rightarrow AB \\ A \rightarrow a$$

$$aT \rightarrow Tc$$

Ejercicio 2. Dar una gramática regular que sea lineal a izquierda y una que sea lineal a derecha para los lenguajes denotados por las siguientes expresiones regulares:

a.
$$(a|b)^*aa(a|b)^*$$
.
b. $a^*(b(a|b))^*$.
c. $(((ab|ba)^*bb)^*aa)^*$.

Ejercicio 3. Para cada uno de los lenguajes del ejercicio 1 de la práctica 5:

- a. Dar una gramática independiente del contexto que lo genere.
- b. Elegir una cadena del lenguaje de longitud mayor o igual a 4, y exhibir una derivación más a la izquierda, una derivación más a la derecha y un árbol de derivación según la gramática dada.

Ejercicio 4. Demostrar que:

- a. \mathcal{L} es independiente del contexto $\Longrightarrow \mathcal{L}^2$ es independiente del contexto.
- b. \mathcal{L} es independiente del contexto $\Longrightarrow \forall n \in \mathbb{N}, \mathcal{L}^n$ es independiente del contexto.
- c. \mathcal{L} es independiente del contexto $\Longrightarrow \mathcal{L}^*$ es independiente del contexto.
- d. \mathcal{L} es independiente del contexto $\Longrightarrow \mathcal{L}^{r}$ es independiente del contexto.
- $e. \ \mathcal{L}_1 \ \text{y} \ \mathcal{L}_2 \ \text{son independientes del contexto} \Longrightarrow \mathcal{L}_1 \cup \mathcal{L}_2 \ \text{es independiente del contexto}.$

Ejercicio 5. Dar una gramática independiente del contexto para cada uno de los siguientes lenguajes:

- a. Cadenas sobre $\{a, b\}$ cuya longitud es impar y cuyo símbolo central es a.
- b. Cadenas sobre $\{a,b\}$ que no son de la forma $\omega\omega$ para ningún $\omega\in\{a,b\}^*$.
- c. $\{a^n b^{2m} \mid n \neq m\}$.
- d. $\{\omega \# 1^n \mid \omega \in \{a, b\}^* \land n = \text{(cantidad de apariciones de } ab \text{ en } \omega\}$.

Ejercicio 6. Dado el alfabeto $\{a,b,1,[,],,,:\}$, sea \mathcal{L} el lenguaje de las cadenas que poseen las siguientes características:

- consisten en listas de elementos separados por comas y rodeados por corchetes;
- los elementos de las listas pueden ser cadenas no vacías compuestas de los caracteres a y
 b, en cuyo caso se desea que la cantidad de ambos símbolos sea la misma;
- los elementos de las listas también pueden ser otras listas, es decir, se puede tener listas anidadas;
- al final de cada lista (pero dentro de los corchetes) aparece su cantidad de elementos, expresada en base unaria y precedida por el símbolo : (dos puntos);
- una lista puede estar vacía, en cuyo caso se omite el símbolo : y se escribe [].

Por ejemplo, la siguiente cadena pertenece a \mathcal{L} : [abba, [ab,baba:11],ba, []:1111].

- a. Dar una gramática independiente del contexto para \mathcal{L} .
- b. Exhibir un árbol de derivación para la cadena dada como ejemplo. ¿Es único?

Ejercicio 7. Dar una gramática independiente del contexto que genere el lenguaje de las fórmulas bien formadas de la lógica de predicados de primer orden, utilizando:

- las variables x, y.
- las constantes c, d.
- los símbolos de predicado p, q, r, s (con cualquier aridad no nula).
- los conectivos lógicos \neg , \land , \lor , \Rightarrow .
- los cuantificadores \forall , \exists .

Por ejemplo: $\forall x (\exists y (p(x,y))) \Rightarrow \exists x ((q(x,c) \land r(d,x)) \lor \neg s(x)).$

¹Pista: Usar el inciso anterior.

Ejercicio 8.

- a. Dar una gramática independiente del contexto para expresiones aritméticas sobre identificadores con suma, resta, producto, división y paréntesis. El símbolo del producto se puede omitir.
- b. Si es necesario, modificar la gramática dada de manera que no sea ambigua y respete las reglas usuales de asociatividad (todas las operaciones son asociativas a izquierda) y precedencia (la precedencia de la suma y la resta es menor que la del producto y la división).
- c. Dar el árbol de derivación de la expresión id-id id/id*id+id.

Ejercicio 9. La siguiente gramática independiente del contexto representa un fragmento de las expresiones válidas en el lenguaje de programacion C:

$$G = \langle \{E\}, \{\mathbf{id}, ?, :, +, (,)\}, P, E \rangle,$$

$$con P: \begin{cases} E \rightarrow E? E : E \\ E \rightarrow E + E \\ E \rightarrow \mathbf{id} \\ E \rightarrow (E) \end{cases}$$

- a. Para las cadenas $\alpha_1 = id$? id : id + id ? id : id 9 id 2 = id ? id ? id + id : id : id : id dar todos sus árboles de derivación.
- b. Teniendo en cuenta que el operador ternario condicional ? : es asociativo a derecha, y tiene menor precedencia que el operador +, que es asociativo a izquierda, dar una gramática no ambigua para $\mathcal{L}(G)$. Dar los árboles de derivación resultantes para α_1 y α_2 .

Ejercicio 10. Determinar cuál es el lenguaje generado por cada una de las siguientes gramáticas sin restricciones.

$$a. \ G_1=\langle \{S,B\}, \{a,b,c\}, P_1,S\rangle, \, \mathrm{con} \ P_1 \colon$$

$$S \rightarrow aBSc \mid \lambda$$

$$Ba \rightarrow aB$$

$$Bc \rightarrow bc$$

$$Bb \rightarrow bb$$

$$b. \ G_2 = \langle \{S,A,B,C\}, \{a,b,c\}, P_2,S\rangle, \, \mathrm{con} \ P_2 \colon$$

$$S \rightarrow ABCS \mid \lambda$$

$$AB \rightarrow BA$$

$$AC \rightarrow CA$$

$$BA \rightarrow AB$$

$$BC \rightarrow CB$$

$$CA \rightarrow AC$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \quad \to \ c$$

c.
$$G_3 = \langle \{S, S^{'}, T, U, \#\}, \{a, b\}, P_3, S \rangle$$
, con P_3 :

$$S \rightarrow S' \#$$

$$S' \longrightarrow a Ta \mid b Tb \mid T$$

$$T \longrightarrow TU$$

$$Uaa \rightarrow aUa$$

$$Uab \rightarrow bUa$$

$$Uba \rightarrow aUb$$

$$Ubb \rightarrow bUb$$

$$Ua\# \rightarrow \#a$$

$$Ub\# o \#b$$

$$T$$
$o \lambda$