BUNDESREPUBLIK DEUTSCHLAND

REC'D 1 9 MAR 2004 **WIPO PCT**

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 15 377.2

Anmeldetag:

03. April 2003

Anmelder/Inhaber:

Merck Patent GmbH, Darmstadt/DE

Bezeichnung:

Carbonylverbindungen

IPC:

C 07 D, A 61 K, A 61 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 18. Dezember 2003 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

(litischke

A 9161 03/00 EDV-L

Merck Patent Gesellschaft mit beschränkter Haftung 64271 Darmstadt

Carbonylverbindungen

Carbonylverbindungen

Die Erfindung betrifft Verbindungen der Formel I

!	5		∠E × R²
			$R^1 \leftarrow X - Y - T$
	10		D-G
		worin	
	1	R^1 , R^2	jeweils unabhängig voneinander H, =O, Hal, A, Ethinyl, OR ³ ,
			N(R ³) ₂ , NO ₂ , CN, N ₃ , COOR ³ , CON(R ³) ₂ , -[C(R ⁴) ₂] _n -Ar,
	15		-[C(R ⁴) ₂] _n -Het, -[C(R ⁴) ₂] _n -Cycloalkyl, -OCOR ³ , NR ³ COA oder NR ³ SO ₂ A,
		R ¹ und R ²	zusammen auch einen bicyclisch oder spirocyclisch
			gebundenen 3- bis 7-gliedrigen Carbo- oder Heterocyclus mit 0
			bis 3 N-, O- und/oder S-Atomen,
2	20	R ³	H, A, $-[C(R^4)_2]_n$ -Ar', $-[C(R^4)_2]_n$ -Het', $-[C(R^4)_2]_n$ -Cycloalkyl,
		R⁴	Hoder A,
	•	W	N, CR ³ , oder ein sp ² hybridisiertes C-Atom,
		Ε	zusammen mit W einen 3- bis 7-gliedrigen gesättigten
	25		carbocyclischen oder heterocyclischen Ring mit 0 bis 3 N-, 0 bis
			2 O- und/oder 0 bis 2 S-Atomen,
		•	der eine Doppelbindung enthalten kann,
		D	einen ein- oder zweikernigen unsubstituierten oder ein- oder
	20		mehrfach durch Hal, A, OR ³ , N(R ³) ₂ , NO ₂ , CN, COOR ³ oder
•	30 .		CON(R ³) ₂ substituierten aromatischen Carbo- oder
			Heterocyclus mit 0 bis 4 N-, O- und/oder S-Atomen,
		G	$-[C(R^4)_2]_n$ -, $-[C(R^4)_2]_nNR^3$ -, $-[C(R^4)_2]_nO$ - oder $-[C(R^4)_2]_nS$ -,
	•	X	$-[C(R^4)_2]_nCONR^3[C(R^4)_2]_{n^-}, -[C(R^4)_2]_nNR^3CO[C(R^4)_2]_{n^-},$
3	35		$-[C(R^4)_2]_nNR^3[C(R^4)_2]_n$ - oder $-[C(R^4)_2]_nO[C(R^4)_2]_n$ -,
		Υ	Alkylen, Cycloalkylen, Het-diyl oder Ar-diyl,
			·

		T	einen ein- oder zweikernigen gesättigten oder ungesättigten
			Carbo- oder Heterocyclus mit 0 bis 4
			N-, O- und/oder S-Atomen, der ein- oder zweifach durch =O,
	_		$=S$, $=NR^3$, $=N-CN$, $=N-NO_2$, $=NOR^3$, $=NCOR^3$, $=NCOOR^3$,
	5		=NOCOR ³ substituiert ist und ferner ein-, zwei- oder dreifach
			durch R ³ , Hal, A, -[C(R ⁴)₂] _n -Ar,
			-[C(R ⁴) ₂] _n -Het, -[C(R ⁴) ₂] _n -Cycloalkyl, OR ³ , N(R ³) ₂ , NO ₂ , CN,
			COOR ³ , CON(R ³) ₂ , NR ³ COA, NR ³ CON(R ³) ₂ , NR ³ SO ₂ A, COR ³ ,
	10		SO₂NR ³ und/oder S(O) _n A substituiert sein kann,
		Α	unverzweigtes oder verzweigtes Alkyl mit 1-10 C-Atomen, worin
			eine oder zwei CH ₂ -Gruppen durch O- oder S-Atome und/oder
			durch –CH=CH-Gruppen und/oder auch 1-7 H-Atome durch F
	15		ersetzt sein können,
		Ar	unsubstituiertes oder ein-, zwei- oder dreifach durch Hal, A,
			OR ³ , N(R ³) ₂ , NO ₂ , CN, COOR ³ , CON(R ³) ₂ , NR ³ COA,
			NR ³ CON(R ³) ₂ , NR ³ SO ₂ A, COR ³ , SO ₂ N(R ³) ₂ , S(O) _n A,
			-[C(R ⁴) ₂] _n -COOR ³ oder -O[C(R ⁴) ₂] _o -COOR ³ substituiertes
	20		Phenyl, Naphthyl oder Biphenyl,
		Ar'	unsubstituiertes oder ein-, zwei- oder dreifach durch Hal, A,
			OR ⁴ , N(R ⁴) ₂ , NO ₂ , CN, COOR ⁴ , CON(R ⁴) ₂ , NR ⁴ COA,
			NR ⁴ CON(R ⁴) ₂ , NR ⁴ SO ₂ A, COR ⁴ , SQ ₂ N(R ⁴) ₂ , S(O) _n A,
	25		-[C(R ⁴) ₂] _n -COOR ⁴ oder -O[C(R ⁴) ₂] _o -COOR ⁴ substituiertes
			Phenyl, Naphthyl oder Biphenyl,
		Het	einen ein- oder zweikernigen gesättigten, ungesättigten oder
			aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-
	30		Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch
			Hal, A, $-[C(R^4)_2]_n$ -Ar, $-[C(R^4)_2]_n$ -Het', $-[C(R^4)_2]_n$ -Cycloalkyl, OR ³ ,
			$N(R^3)_2$, $NR^3CON(R^3)_2$, NO_2 , CN , $-[C(R^4)_2]_n$ - $COOR^3$, $-[C(R^4)_2]_n$ -
			CON(R ³) ₂ , NR ³ COA, NR ³ SO ₂ A, COR ³ , SO ₂ NR ³ , S(O) _m A
	0.5		und/oder Carbonylsauerstoff substituiert sein kann,
	35	Het'	einen ein- oder zweikernigen gesättigten, ungesättigten oder
			aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-

Atomen, der unsubstituiert oder ein- oder zweifach durch Carbonylsauerstoff, =S, =N(R⁴)₂, Hal, A, OR⁴, N(R⁴)₂, NO₂, CN, COOR⁴, CON(R⁴)₂, NR⁴COA, NR⁴CON(R⁴)₂, NR⁴SO₂A, COR⁴, SO₂NR⁴ und/oder S(O)_nA substituiert sein kann,

5

Hal

F, CI, Br oder I,

n

0, 1 oder 2,

0

1, 2 oder 3

bedeuten,

10

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

15

Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.

20

Es wurde gefunden, daß die Verbindungen der Formel I und ihre Salze bei guter Verträglichkeit sehr wertvolle pharmakologische Eigenschaften besitzen. Insbesondere zeigen sie Faktor Xa inhibierende Eigenschaften und können daher zur Bekämpfung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens eingesetzt werden.

25

Die erfindungsgemäßen Verbindungen der Formel I können weiterhin Inhibitoren der Gerinnungsfaktoren Faktor VIIa, Faktor IXa und Thrombin der Blutgerinnungskaskade sein.

30

35 -

Aromatische Amidinderivate mit antithrombotischer Wirkung sind z.B. aus der EP 0 540 051 B1, WO 98/28269, WO 00/71508, WO 00/71511, WO 00/71493, WO 00/71507, WO 00/71509, WO 00/71512, WO 00/71515 oder WO 00/71516 bekannt. Cyclische Guanidine zur Behandlung thromboembolischer Erkrankungen sind z.B. in der WO 97/08165 beschrieben.

15

20

Aromatische Heterocyclen mit Faktor Xa inhibitorischer Aktivität sind z.B. aus der WO 96/10022 bekannt. Substituierte N-[(Aminoiminomethyl)-phenylalkyl]-azaheterocyclylamide als Faktor Xa Inhibitoren sind in WO 96/40679 beschrieben.

Andere Carbonsäureamidderivate sind aus WO 02/48099 und WO 02/57236 bekannt, andere Pyrrolidinderivate sind in WO 02/100830 beschrieben.

Der antithrombotische und antikoagulierende Effekt der erfindungsgemäßen Verbindungen wird auf die inhibierende Wirkung gegenüber der aktivierten Gerinnungsprotease, bekannt unter dem Namen Faktor Xa, oder auf die Hemmung anderer aktivierter Serinproteasen wie Faktor VIIa, Faktor IXa oder Thrombin zurückgeführt.

Faktor Xa ist eine der Proteasen, die in den komplexen Vorgang der Blutgerinnung involviert ist. Faktor Xa katalysiert die Umwandlung von Prothrombin in Thrombin. Thrombin spaltet Fibrinogen in Fibrinmonomere, die nach Quervernetzung elementar zur Thrombusbildung beitragen. Eine Aktivierung von Thrombin kann zum Auftreten von thromboembolischen Erkrankungen führen. Eine Hemmung von Thrombin kann jedoch die in die Thrombusbildung involvierte Fibrinbildung inhibieren.

Die Messung der Inhibierung von Thrombin kann z.B. nach der Methode von G. F. Cousins et al. in *Circulation* **1996**, *94*, 1705-1712 erfolgen.

Eine Inhibierung des Faktors Xa kann somit verhindern, daß Thrombin gebildet wird.

Die erfindungsgemäßen Verbindungen der Formel I sowie ihre Salze greifen durch Inhibierung des Faktors Xa in den Blutgerinnungsprozeß ein und hemmen so die Entstehung von Thromben.

10

15

20

30.

35

Die Inhibierung des Faktors Xa durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein geeignetes Verfahren wird z.B. von J. Hauptmann et al. in *Thrombosis and Haemostasis* 1990, 63, 220-223 beschrieben.

Die Messung der Inhibierung von Faktor Xa kann z.B. nach der Methode von T. Hara et al. in *Thromb. Haemostas.* **1994**, *71*, 314-319 erfolgen.

Der Gerinnungsfaktor VIIa initiiert nach Bindung an Tissue Faktor den extrinsischen Teil der Gerinnungskaskade und trägt zur Aktivierung des Faktors X zu Faktor Xa bei. Eine Inhibierung von Faktor VIIa verhindert somit die Entstehung des Faktors Xa und damit eine nachfolgende Thrombinbildung.

Die Inhibierung des Faktors VIIa durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein übliches Verfahren zur Messung der Inhibierung von Faktor VIIa wird z.B. von H. F. Ronning et al. in *Thrombosis Research* 1996, 84, 73-81 beschrieben.

Der Gerinnungsfaktor IXa wird in der intrinsischen Gerinnungskaskade generiert und ist ebenfalls an der Aktivierung von Faktor X zu Faktor Xa beteiligt. Eine Inhibierung von Faktor IXa kann daher auf andere Weise verhindern, daß Faktor Xa gebildet wird.

Die Inhibierung von Faktor IXa durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein geeignetes Verfahren wird z.B. von J. Chang et al. in *Journal of Biological Chemistry* **1998**, *273*, 12089-12094 beschrieben.

Die erfindungsgemäßen Verbindungen können weiterhin zur Behandlung von Tumoren, Tumorerkrankungen und/oder Tumormetastasen verwendet werden.

Ein Zusammenhang zwischen dem Tissuefaktor TF / Faktor VIIa und der Entwicklung verschiedener Krebsarten wurde von T.Taniguchi und

N.R.Lemoine in Biomed. Health Res. (2000), 41 (Molecular Pathogenesis of Pancreatic Cancer), 57-59, aufgezeigt.

Die im nachfolgenden aufgeführten Publikationen beschreiben eine antitumorale Wirkung von TF-VII und Faktor Xa Inhibitoren bei verschiedenen Tumorarten:

K.M. Donnelly et al. in Thromb. Haemost. 1998; 79: 1041-1047;

E.G. Fischer et al. in J. Clin. Invest. 104: 1213-1221 (1999);

B.M. Mueller et al. in J. Clin. Invest. 101: 1372-1378 (1998);

M.E. Bromberg et al. in Thromb. Haemost. 1999; 82: 88-92

20

15

Die Verbindungen der Formel I können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden, insbesondere zur Behandlung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie, Claudicatio intermittens, venöse Thrombose, pulmonale Embolie, arterielle Thrombose, myocardiale Ischämie, instabile Angina und auf Thrombose basierender Schlaganfall.

30 Dasie

35

Die erfindungsgemäßen Verbindungen werden auch zur Behandlung oder Prophylaxe von atherosklerotischen Erkrankungen wie koronarer arterieller Erkrankung, cerebraler arterieller Erkrankung oder peripherer arterieller Erkrankung eingesetzt.

10

15

Die Verbindungen werden auch in Kombination mit anderen Thrombolytika bei myocardialem Infarkt eingesetzt, ferner zur Prophylaxe zur Reocclusion nach Thrombolyse, percutaner transluminaler Angioplastie (PTCA) und koronaren Bypass-Operationen.

Die erfindungsgemäßen Verbindungen werden ferner verwendet zur Prävention von Rethrombose in der Mikrochirurgie, ferner als Antikoagulantien im Zusammenhang mit künstlichen Organen oder in der Hämodialyse.

Die Verbindungen finden ferner Verwendung bei der Reinigung von Kathetern und medizinischen Hilfsmitteln bei Patienten *in viv*o, oder als Antikoagulantien zur Konservierung von Blut, Plasma und anderen Blutprodukten *in vitro*. Die erfindungsgemäßen Verbindungen finden weiterhin Verwendung bei solchen Erkrankungen, bei denen die Blutkoagulation entscheidend zum Erkrankungsverlauf beiträgt oder eine Quelle der sekundären Pathologie darstellt, wie z.B. bei Krebs einschließlich Metastasis, entzündlichen Erkrankungen einschließlich Arthritis, sowie Diabetes.

Die erfindungsgemäßen Verbindungen finden weiterhin Verwendung zur Behandlung von Migräne (F.Morales-Asin et al., Headache, 40, 2000, 45-47).

Bei der Behandlung der beschriebenen Erkrankungen werden die erfindungsgemäßen Verbindungen auch in Kombination mit anderen thrombolytisch wirksamen Verbindungen eingesetzt, wie z.B. mit dem "tissue plasminogen activator" t-PA, modifiziertem t-PA, Streptokinase oder Urokinase. Die erfindungsgemäßen Verbindungen werden mit den anderen genannten Substanzen entweder gleichzeitig oder vorher oder nachher gegeben.

Besonders bevorzugt ist die gleichzeitige Gabe mit Aspirin, um ein Neuauftreten der Thrombenbildung zu verhindern.

20

25

35

Die erfindungsgemäßen Verbindungen werden auch verwendet in Kombination mit Blutplättchen-Glycoprotein-Rezeptor (IIb/IIIa)-Antagonisten, die die Blutplättchenaggregation inhibieren.

Gegenstand der Erfindung sind die Verbindungen der Formel I und ihre Salze sowie ein Verfahren zur Herstellung von Verbindungen der Formel I nach den Ansprüchen 1-16 sowie ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, dadurch gekennzeichnet, daß man

- 10
- a) zur Herstellung von Verbindungen der Formel I, worin
 - W N und
 - G NH bedeuten,
- 15

eine Verbindung der Formel II

20

$$R^1 \stackrel{E}{\underbrace{\hspace{1cm}}}^{R^2} X - Y - T$$
 II

worin

R¹, R², E, X, Y und T die in Anspruch 1 angegebene Bedeutung haben, und W N bedeutet,

mit einer Verbindung der Formel III

30

III

worin

D die in Anspruch 1 angegebene Bedeutung hat,

35 umsetzt,

10

20

oder

b) zur Herstellung von Verbindungen der Formel I, worin $\chi \qquad \text{-[C(R}^4)_2]_n \text{CONR}^3 [\text{C(R}^4)_2]_n \text{- bedeutet},$

eine Verbindung der Formel IV

$$HNR^{3}-[C(R^{4})_{2}]_{n}-Y-T$$
 IV

worin R3, n, Y und T die in Anspruch 1 angegebene Bedeutung haben,

mit einer Verbindung der Formel V

15
$$R^{1} \leftarrow \underbrace{E \times R^{2}}_{W} [C(R^{4})_{2}]_{n} -CO-L$$

worin

CI, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet und

R¹, R², R⁴, D, E, G, W und n die in Anspruch 1 angegebene Bedeutung haben,

umsetzt,

30 oder

- c) zur Herstellung von Verbindungen der Formel I, worin W N bedeutet,
- eine Verbindung der Formel II

$$R^1 - \left(\begin{array}{c} E \times R^2 \\ X - Y - T \end{array} \right)$$

worin

R¹, R², E, X, Y und T die in Anspruch 1 angegebene Bedeutung haben, und W N bedeutet,

10

mit einer Verbindung der Formel VI

D-G-CO-L

VΙ

15

worin D und G die in Anspruch 1 angegebene Bedeutung haben und L Cl, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet,

20 umsetzt,

und/oder

eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.

25

Gegenstand der Erfindung sind auch die optisch aktiven Formen (Stereoisomeren), die Enantiomeren, die Racemate, die Diastereomeren sowie die Hydrate und Solvate dieser Verbindungen. Unter Solvate der Verbindungen werden Anlagerungen von inerten Lösungsmittelmolekülen an die Verbindungen verstanden, die sich aufgrund ihrer gegenseitigen Anziehungskraft ausbilden. Solvate sind z.B. Mono- oder Dihydrate oder Alkoholate.

35

Unter pharmazeutisch verwendbaren Derivaten versteht man z.B. die Salze der erfindungsgemäßen Verbindungen als auch sogenannte Prodrug-Verbindungen.

Unter Prodrug-Derivaten versteht man mit z. B. Alkyl- oder Acylgruppen,
Zuckern oder Oligopeptiden abgewandelte Verbindungen der Formel I, die im Organismus rasch zu den wirksamen erfindungsgemäßen
Verbindungen gespalten werden.

Hierzu gehören auch bioabbaubare Polymerderivate der erfindungsgemäßen Verbindungen, wie dies z. B. in Int. J. Pharm. <u>115</u>, 61-67 (1995)
beschrieben ist.

Gegenstand der Erfindung sind auch Mischungen der erfindungsgemäßen
Verbindungen der Formel I, z.B. Gemische zweier Diastereomerer z.B. im
Verhältnis 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:100 oder 1:1000.
Besonders bevorzugt handelt es sich dabei um Mischungen stereoisomerer Verbindungen.

Für alle Reste, die mehrfach auftreten, wie z.B. A, gilt, daß deren Bedeutungen unabhängig voneinander sind.

Vor- und nachstehend haben die Reste bzw. Parameter D, E, G, W, X, Y, T, R¹ und R² die bei der Formel I angegebenen Bedeutungen, falls nicht ausdrücklich etwas anderes angegeben ist.

A bedeutet Alkyl, ist unverzweigt (linear) oder verzweigt, und hat 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atome. A bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1,1-, 1,2- oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-, 2-, 3- oder 4-Methylpentyl, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethylbutyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, 1,1,2- oder 1,2,2-Trimethylpropyl, weiter bevorzugt z.B. Trifluormethyl.

A bedeutet ganz besonders bevorzugt Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, vorzugsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl, tert.-Butyl, Pentyl, Hexyl, Trifluormethyl, Pentafluorethyl oder 1,1,1-Trifluorethyl.

5

Cycloalkyl bedeutet vorzugsweise Cyclopropyl, Cyclobutyl, Cylopentyl, Cyclohexyl oder Cycloheptyl.

Alkylen bedeutet vorzugsweise Methylen, Ethylen, Propylen, Butylen, Pentylen oder Hexylen, ferner verzweigtes Alkylen.

10

R¹ und R² bedeuten, jeweils unabhängig voneinander, vorzugsweise z.B. H, =O, COOR³, OH, OA, NH₂, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N₃, Ethinyl, Vinyl, Allyloxy, NHCOA oder NHSO₂A.

15

20

R¹ bedeutet bevorzugt H, =O, COOR³, wie z.B. COOA, OH, OA, NH₂, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N₃, Ethinyl, Vinyl, Allyloxy, -OCOR³, wie z.B. Methylcarbonyloxy, NHCOA, wie z.B. Acetamino, oder NHSO₂A, wie z.B. Methylsulfonylamino.
R² bedeutet vorzugsweise H, =O, OH, OA, wie z.B. Methoxy, oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen.

R¹ und R² bedeuten zusammen auch einen an das

-Ringsystem spirocyclisch oder bicyclisch gebundenen

30

(ankondensierten) 3- bis 6-gliedrigen Carbo- oder Heterocyclus mit 0 bis 3 N-. O- und/oder S-Atomen.

Dabei bedeutet der 3- bis 6-gliedrige Carbo- oder Heterocyclus z.B. Phenyl, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Pyridyl, Imidazolyl, Piperidinyl oder 1,3-Dioxolanyl.

35

R1 und R2 bedeuten zusammen insbesondere einen an das

15

-Ringsystem spirocyclisch gebundenen

3- bis 6-gliedrigen Carbocyclus. Dabei bedeutet der 3- bis 6-gliedrige
 Carbocyclus bevorzugt Cyclopropyl, Cyclobutyl, Cyclopentyl oder
 Cyclohexyl.

R³ bedeutet vorzugsweise H oder A, ferner auch Phenyl oder Benzyl. R⁴ bedeutet vorzugsweise H oder A, ganz besonders bevorzugt H.

COR², COR³ bzw. COR⁴ bedeutet z.B. CHO oder –COA.
-COA (Acyl) bedeutet vorzugsweise Acetyl, Propionyl, ferner auch Butyryl, Pentanoyl, Hexanoyl oder z.B. Benzoyl.

Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I.

Ar bedeutet z.B. Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-Isopropylphenyl, o-, m- oder p-tert.Butylphenyl, o-, m- oder p-Hydroxyphenyl, o-, m- oder p-Nitrophenyl, o-, m- oder p-Aminophenyl, o-, m- oder p-(N-Methylamino)-phenyl, o-, m- oder p(N-Methylaminocarbonyl)-phenyl, o-, m- oder p-Acetamidophenyl, o-, m- oder p-Ethoxycarbonylphenyl, o-, m- oder p-(N,N-Dimethylamino)-phenyl, o-, m- oder p(N,N-Dimethylaminocarbonyl)-phenyl, o-, m- oder p-(N-Ethylamino)-phenyl,

(N,N-Dimethylaminocarbonyl)-phenyl, o-, m- oder p-(N-Ethylamino)-phenyl, o-, m- oder p-(N,N-Diethylamino)-phenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Ghlorphenyl, o-, m- oder p-(Methylsulfonyl)-phenyl, weiter bevorzugt 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2,4- oder 2,5-Dinitrophenyl, 2,5- oder 3,4-Dimethoxyphenyl, 3-Nitro-4-chlorphenyl, 3-Amino-4-chlor-, 2-Amino-3-chlor-, 2-Amino-4-chlor-, 2-Amino-4-chlor-, 2-Amino-4-N,N-di-

methylamino- oder 3-Nitro-4-N,N-dimethylaminophenyl, 2,3-Diaminophenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- oder 3,4,5-Trichlorphenyl, 2,4,6-Trimethoxyphenyl, 2-Hydroxy-3,5-dichlorphenyl, p-lodphenyl, 3,6-Dichlor-4aminophenyl, 4-Fluor-3-chlorphenyl, 2-Fluor-4-bromphenyl, 2,5-Difluor-4-bromphenyl, 3-Brom-6-methoxyphenyl, 3-Chlor-6-methoxyphenyl, 3-Chlor-4-acetamidophenyl, 3-Fluor-4-methoxyphenyl, 3-Amino-6-methylphenyl, 3-Chlor-4-acetamidophenyl oder 2,5-Dimethyl-4-chlorphenyl.

5

Ar bedeutet vorzugsweise z.B. unsubstituiertes oder ein-, zwei- oder dreifach durch Hal, A, OR², SO₂A, COOR² oder CN substituiertes Phenyl. Ar bedeutet insbesondere bevorzugt z.B. unsubstituiertes oder ein- oder zweifach durch Hal, A, OA, SO₂A, SO₂NH₂, COOR² oder CN substituiertes Phenyl, wie z.B. Phenyl, 2-Methylsulfonylphenyl, 2-Aminosulfonylphenyl, 2-, 3- oder 4-Chlorphenyl, 4-Methylphenyl, 4-Bromphenyl, 3-Fluor-4-methoxyphenyl, 4-Trifluormethoxyphenyl, 4-Ethoxyphenyl, 2-Methoxyphenyl, 3-Cyanphenyl oder 4-Ethoxycarbonylphenyl.

Ganz besonders bevorzugt bedeutet Ar unsubstituiertes Phenyl, 4-Chlorphenyl oder 2-Methylsulfonylphenyl.

20

15

10

Y bedeutet vorzugsweise Het-diyl oder Ar-diyl, besonders bevorzugt unsubstituiertes oder einfach durch A, OA, CI oder F substituiertes 1,4-Phenylen, ferner auch Pyridin-diyl, vorzugsweise Pyridin-2,5-diyl oder Piperidin-diyl.

2

Y bedeutet insbesondere unsubstituiertes oder einfach durch Methyl, Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes 1,3- oder 1,4-Phenylen.

30

35

Het bedeutet z.B. 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrolyl, 1-, 2, 4- oder 5-Imidazolyl, 1-, 3-, 4- oder 5-Pyrazolyl, 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, 2-, 3- oder 4-Pyridyl, 2-, 4-, 5- oder 6-Pyrimidinyl, weiterhin bevorzugt 1,2,3-Triazol-1-, -4- oder -5-yl, 1,2,4-Triazol-1-, -3- oder 5-yl, 1- oder 5-Tetrazolyl, 1,2,3-Oxadiazol-4- oder -5-yl, 1,2,4-Oxadiazol-3- oder -5-yl, 1,3,4-Thiadiazol-2- oder -5-yl, 1,2,4-Thiadiazol-3- oder -5-yl, 1,2,3-Thiadiazol-4- oder -5-yl, 3- oder 4-Pyridazinyl, Pyrazinyl, 1-, 2-, 3-, 4-, 5-, 6-

10

15

20

30

35

oder 7-Indolyl, 4- oder 5-Isoindolyl, 1-, 2-, 4- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7-Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, 2-, 4-, 5-, 6- oder 7-Benz-2,1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, 4-, 5-, 6-, 7- oder 8-Isochinolyl, 3-, 4-, 5-, 6-, 7- oder 8-Chinazolinyl, 5- oder 6-Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H-Benzo[1,4]oxazinyl, weiter bevorzugt 1,3-Benzodioxol-5-yl, 1,4-Benzodioxan-6-yl, 2,1,3-Benzothiadiazol-4- oder -5-yl oder 2,1,3-Benzoxadiazol-5-yl.

Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein.

Het kann also z. B. auch bedeuten 2,3-Dihydro-2-, -3-, -4- oder -5-furyl, 2,5-Dihydro-2-, -3-, -4- oder 5-furyl, Tetrahydro-2- oder -3-furyl, 1,3-Dioxolan-4-yl, Tetrahydro-2- oder -3-thienyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5pyrrolyl, 2,5-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 1-, 2- oder 3-Pyrrolidinyl, Tetrahydro-1-, -2- oder -4-imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1,4-Dihydro-1-, -2-, -3oder -4-pyridyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5- oder -6-pyridyl, 1-, 2-, 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl, Tetrahydro-2-, -3- oder -4-pyranyl, 1,4-Dioxanyl, 1,3-Dioxan-2-, -4- oder -5-yl, Hexahydro-1-, -3oder -4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3-Piperazinyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1,2,3,4-Tetrahydro-1-,-2-,-3-, -4-, -5-, -6-, -7- oder -8-isochinolyl, 2-, 3-, 5-, 6-, 7- oder 8- 3,4-Dihydro-2H-benzo[1,4]oxazinyl, weiter bevorzugt 2,3-Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)phenyl, 2,3-Dihydrobenzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4-Dihydro-2H-1,5-benzodioxepin-6- oder -7-yl, ferner bevorzugt 2,3-Dihydrobenzofuranyl oder 2,3-Dihydro-2-oxo-furanyl.

Het' bedeutet vorzugsweise z.B. 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrolyl, 1-, 2, 4- oder 5-Imidazolyl, 1-, 3-, 4- oder 5-Pyrazolyl, 2-, 4-

oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, 2-, 3- oder 4-Pyridyl, 2-, 4-, 5- oder 6-Pyrimidinyl, weiterhin bevorzugt 1,2,3-Triazol-1-, -4- oder -5-yl, 1,2,4-Triazol-1-, -3- oder 5-yl, 1oder 5-Tetrazolyl, 1,2,3-Oxadiazol-4- oder -5-yl, 1,2,4-Oxadiazol-3- oder -5-yl, 1,3,4-Thiadiazol-2- oder -5-yl, 1,2,4-Thiadiazol-3- oder -5-yl, 1,2,3-Thiadiazol-4- oder -5-yl, 3- oder 4-Pyridazinyl, Pyrazinyl, 1-, 2-, 3-, 4-, 5-, 6oder 7-Indolyl, 4- oder 5-Isoindolyl, 1-, 2-, 4- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7- Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzothiazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, 4-, 5-, 6- oder 7-Benz-2,1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, 4-, 5-, 6-, 7- oder 8-Isochinolyl, 3-, 4-, 5-, 6-, 7- oder 8-Cinnolinyl, 2-, 4-, 5-, 6-, 7- oder 8-Chinazolinyl, 5- oder 6-Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H-Benzo[1,4]oxazinyl, weiter bevorzugt 1,3-Benzodioxol-5-yl, 1,4-Benzodioxan-6-yl, 2,1,3-Benzothiadiazol-4- oder -5-yl oder 2,1,3-Benzoxadiazol-5-yl. Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein.

5

10

15

20

30

35

Het' kann also z. B. auch bedeuten 2,3-Dihydro-2-, -3-, -4- oder -5-furyl, 2,5-Dihydro-2-, -3-, -4- oder 5-furyl, Tetrahydro-2- oder -3-furyl, 1,3-Dioxolan-4-yl, Tetrahydro-2- oder -3-thienyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 2,5-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 1-, 2- oder 3-Pyrrolidinyl, Tetrahydro-1-, -2- oder -4-imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1,4-Dihydro-1-, -2-, -3- oder -4-pyridyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5- oder -6-pyridyl, 1-, 2-, 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl, Tetrahydro-2-, -3- oder -4-pyranyl, 1,4-Dioxanyl, 1,3-Dioxan-2-, -4- oder -5-yl, Hexahydro-1-, -3- oder -4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3-Piperazinyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 2-, 3-, 5-, 6-, 7- oder 8- 3,4-Dihydro-2H-benzo[1,4]oxazinyl, weiter bevorzugt 2,3-Methylendioxyphenyl, 3,4-(Difluormethylendioxyphenyl, 2,3-Dihydro-

benzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4-Dihydro-2H-1,5-benzodioxepin-6- oder -7-yl, ferner bevorzugt 2,3-Dihydro-benzofuranyl oder 2,3-Dihydro-2-oxo-furanyl.

T bedeutet vorzugsweise einen ein- oder zweikernigen gesättigten oder ungesättigten Heterocyclus mit 1 bis 2 N- und/oder O-Atomen, der einoder zweifach durch =O, =S, =NR², =N-CN, =N-NO₂, =NOR², =NCOR², =NCOR² oder =NOCOR² substituiert ist und ferner ein- oder zweifach durch Hal oder A substituiert sein kann.

T bedeutet in einer weiteren Ausführungsform vorzugsweise z.B. 2-Iminopiperidin-1-yl, 2-Imino-pyrrolidin-1-yl, 2-Imino-1*H*-pyridin-1-yl, 3-Iminomorpholin-4-yl, 4-Imino-1*H*-pyridin-1-yl, 2,6-Diimino-piperidin1-yl, 2-Iminopiperazin-1-yl, 2,6-Diimino-piperazin-1-yl, 2,5-Diimino-pyrrolidin-1-yl, 2-Imino-1,3-oxazolidin-3-yl, 3-Imino-2*H*-pyridazin-2-yl, 2-Imino-azepan-1-yl, 2-Hydroxy-6-imino-piperazin-1-yl oder 2-Methoxy-6-imino-piperazin-1-yl.

T bedeutet insbesondere einen ein- oder zweikernigen gesättigten oder ungesättigten Heterocyclus mit 1 bis 2 N- und/oder O-Atomen, der ein- oder zweifach durch =O, =S oder =NH substituiert ist.

T bedeutet besonders bevorzugt ein- oder zweifach durch =O oder =NH substituiertes Piperidin-1-yl, Pyrrolidin-1-yl, Pyridin-1-yl, Morpholin-4-yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl, Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl oder 2-Aza-bicyclo[2.2.2]-octan-2-yl.

D bedeutet vorzugsweise einfach durch Hal substituiertes Phenyl, Thienyl, Pyridyl, Furyl, Thiazolyl, Pyrrolyl oder Imidazolyl, besonders bevorzugt einfach durch Hal substituiertes Phenyl, Pyridyl oder Thienyl.

20

Piperidin-1,2-diyl, Oxazolidin-3,4- oder 3,5-diyl, Thiazolidin-3,4-diyl, 2,5-Dihydro-1*H*-pyrrol-1,5-diyl, [1,3]-Dioxolan-4,5-diyl, [1,3]-Oxazinan-3,4-diyl, Piperazin-1,4-diyl, Tetrahydrofuran-3,4-diyl oder Azetidin-1,2-diyl.

Die Verbindungen der Formel I können ein oder mehrere chirale Zentren besitzen und daher in verschiedenen stereoisomeren Formen vorkommen. Die Formel I umschließt alle diese Formen.

Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln Ia bis In ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

in la D einen ein- oder zweikernigen unsubstituierten oder einoder zweifach durch Hal substituierten aromatischen
Carbo- oder Heterocyclus mit 0 bis 4 N-, O- und/oder SAtomen,

bedeutet;

in Ib D ein- oder zweifach durch Hal substituiertes Phenyl,
Pyridyl oder Thienyl
bedeutet;

in Ic R¹, R² jeweils unabhängig voneinander H, =O, COOR³, OH,
OA, NH₂, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N₃,
Ethinyl, Vinyl, Allyloxy, -OCOR³, NHCOA oder NHSO₂A,

b	e	d	e	u	t	е	n	:

		•				
	in ld	G	$(CH_2)_n$ oder $(CH_2)_nNH$ - bedeutet;			
5 .	in le	x	- $[C(R^4)_2]_nCONR^3[C(R^4)_2]_n$ - bedeutet;			
	in If	X	CONH bedeutet,			
10	in lg	Y	Ar-diyl bedeutet,			
	in Ih	Y	unsubstituiertes oder ein- oder zweifach durch Methyl, Ethyl, Propyl, Cl oder F substituiertes 1,3- oder 1,4- Phenylen			
15		bedeu	· · · · · · · · · · · · · · · · · · ·			
20	in li	Т	einen ein- oder zweikernigen gesättigten oder ungesättigten Heterocyclus mit 1 bis 2 N- und/oder O- Atomen, der ein- oder zweifach durch Carbonylsauerstoff substituiert ist,			
		bedeu	\cdot			
25	in lj	т	ein- oder zweifach durch Carbonylsauerstoff substituiertes Piperidin-1-yl, Pyrrolidin-1-yl, 1 <i>H</i> -Pyridin- 1-yl, Morpholin-4-yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl,			
30		bedeu	2H-Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl, 2-Aza- bicyclo[2.2.2]-octan-2-yl, utet:			
	·		· ·			
35	in lk	Ar	unsubstituiertes oder ein- oder zweifach durch Hal, A, OA, SO ₂ A, COOR ² , SO ₂ NH ₂ oder CN substituiertes Phenyl			
		bede	bedeutet;			

	5	in II	D	einen ein- oder zweikernigen unsubstituierten oder ein- oder zweifach durch Hal substituierten aromatischen Carbo- oder Heterocyclus mit 0 bis 4 N-, O- und/oder S- Atomen,
			R¹, R²	jeweils unabhängig voneinander H, =O, COOR ³ , OH, OA, NH ₂ , Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N ₃ , Ethinyl, Vinyl, Allyloxy, -OCOR ³ , NHCOA oder NHSO ₂ A,
	10		R¹ und	
			\mathbb{R}^3	H oder A,
			R^4	H oder A,
	15		W	N, CR ³ , oder ein sp ² hybridisiertes C-Atom,
	15		Ε	zusammen mit W einen 3- bis 7-gliedrigen gesättigten
				carbocyclischen oder heterocyclischen Ring mit 0 bis 3
				N-, 0 bis 2 O- und/oder 0 bis 2 S-Atomen,
				der eine Doppelbindung enthalten kann,
	20		G	$(CH_2)_n$ oder $(CH_2)_nNH$ -,
			X	$-[C(R^4)_2]_nCONR^3[C(R^4)_2]_n$ -,
		•	Υ	Ar-diyl,
	25	•	Ar	unsubstituiertes oder ein- oder zweifach durch Hal, A,
				OA, SO ₂ A, COOR ² , SO ₂ NH ₂ oder CN substituiertes Phenyl,
			Т	einen ein- oder zweikernigen gesättigten oder
				ungesättigten Heterocyclus mit 1 bis 2 N- und/oder O-
	30			Atomen, der ein- oder zweifach durch Carbonyl-
	30			sauerstoff substituiert ist,
			Α	unverzweigtes oder verzweigtes Alkyl mit 1-10 C-
		•		Atomen und worin 1-7 H-Atome durch F ersetzt sein
			•	können,
	35		Hal	F, Cl, Br oder I,
			n	0, 1 oder 2,

bedeuten;

	in Im	D	ein- oder zweifach durch Hal substituiertes Phenyl,
_			Pyridyl oder Thienyl,
5		R^1 , R^2	jeweils unabhängig voneinander H, =O, COOR ³ , OH,
			OA, NH ₂ , Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N ₃ ,
			Ethinyl, Vinyl, Allyloxy, -OCOR3, NHCOA oder NHSO ₂ A
		R ¹ und	R ² zusammen auch einen spirocyclisch gebundenen
10			3- bis 6-gliedrigen Carbocyclus,
		R^3	H oder A,
	-	R ⁴	H oder A,
		Ŵ	N, CR ³ , oder ein sp ² hybridisiertes C-Atom,
15	·	E	zusammen mit W einen 3- bis 7-gliedrigen gesättigten
			carbocyclischen oder heterocyclischen Ring mit 0 bis 3
			N-, 0 bis 2 O- und/oder 0 bis 2 S-Atomen,
			der eine Doppelbindung enthalten kann,
		G	$(CH_2)_n$ oder $(CH_2)_nNH$ -,
20		X	CONH,
		Υ	unsubstituiertes oder ein- oder zweifach durch Methyl,
	•		Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes
			1,3- oder 1,4-Phenylen,
25		T	ein- oder zweifach durch Carbonylsauerstoff
			substituiertes Piperidin-1-yl, Pyrrolidin-1-yl, 1 <i>H</i> -Pyridin-
			1-yl, Morpholin-4-yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl,
			2H-Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl, 2-Aza-
30			bicyclo[2.2.2]-octan-2-yl,
		Α	unverzweigtes oder verzweigtes Alkyl mit 1-10 C-
			Atomen und worin 1-7 H-Atome durch F ersetzt sein
•			können,
		Hal	F, CI, Br oder I,
35	•	n	0, 1 oder 2,
		bedeu	ten;

		in In	D	ein- oder zweifach durch Hal substituiertes Phenyl,
				Pyridyl oder Thienyl,
			R ¹	H, =O, COOR ³ , OH, OA, NH ₂ , Alkyl mit 1, 2, 3, 4, 5 oder
	5			6 C-Atomen, N ₃ , Ethinyl, Vinyl, Allyloxy, -OCOR ³ ,
				NHCOA oder NHSO₂A,
			R^2	H, =O, OH, OA oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-
				Atomen,
	10		R ¹ und	R ² zusammen auch einen spirocyclisch gebundenen
				3- bis 6-gliedrigen Carbocyclus,
			R^3	H oder A,
			R^4	H oder A,
	15		/E \	
				Pyrrolidin-1,2-diyl, Piperidin-1,2-diyl, Oxazolidin-3,4-
			W	
				oder 3,5-diyl, Thiazolidin-3,4-diyl, 2,5-Dihydro-1 <i>H</i> -pyrrol-
				1,5-diyl, [1,3]-Dioxolan-4,5-diyl, [1,3]-Oxazinan-3,4-diyl,
	20			Piperazin-1,4-diyl, Tetrahydrofuran-3,4-diyl oder
	-	•		Azetidin-1,2-diyl,
		•	G	$(CH_2)_n$ oder $(CH_2)_nNH$ -,
			X	CONH,
	25		Y	unsubstituiertes oder ein- oder zweifach durch Methyl,
				Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes
	•			1,3- oder 1,4-Phenylen,
		•	T	ein- oder zweifach durch Carbonylsauerstoff
	30			substituiertes Piperidin-1-yl, Pyrrolidin-1-yl, 1 <i>H</i> -Pyridin-
				1-yl, Morpholin-4-yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl,
				2H-Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl, 2-Aza-
٠				bicyclo[2.2.2]-octan-2-yl,
			. A	unverzweigtes oder verzweigtes Alkyl mit 1-10 C-
	35			Atomen und worin 1-7 H-Atome durch F ersetzt sein
		•		können,

10

15

20

25

30

35

Hal F, Cl, Br oder I, n 0, 1 oder 2, bedeuten,

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.

Die Ausgangsverbindungen der Formeln II, III, IV, V, VI sind in der Regelbekannt. Sind sie neu, so können sie aber nach an sich bekannten Methoden hergestellt werden.

Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel II mit Verbindungen der Formel III umsetzt.

Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel, in Gegenwart eines säurebindenden Mittels vorzugsweise eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums, Calciums oder Cäsiums. Auch der Zusatz einer organischen Base wie Triethylamin, Dimethylanilin, Pyridin

10

15

20

30

35

oder Chinolin oder eines Überschusses der Phenolkomponente der Formel II bzw. des Alkylierungsderivates der Formel III kann günstig sein. Die Reaktionszeit liegt je nach den angewendeten Bedingungen zwischen einigen Minuten und 14 Tagen, die Reaktionstemperatur zwischen etwa 0° und 150°, normalerweise zwischen 20° und 130°.

Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

Verbindungen der Formel I können weiter vorzugsweise erhalten werden, indem man Verbindungen der Formel IV mit Verbindungen der Formel V umsetzt.

Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel und unter Bedingungen wie oben angegeben.

In den Verbindungen der Formel V bedeutet L vorzugsweise CI, Br, I oder eine freie oder eine reaktionsfähig abgewandelte OH-Gruppe wie z.B. ein aktivierter Ester, ein Imidazolid oder Alkylsulfonyloxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy oder Trifluormethylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyl- oder p-Tolylsulfonyloxy).

Derartige Reste zur Aktivierung der Carboxygruppe in typischen

Acylierungsreaktionen sind in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart;) beschrieben.

Aktivierte Ester werden zweckmäßig in situ gebildet, z. B. durch Zusatz von HOBt oder N-Hydroxysuccinimid.

5

10

15

20

Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel, in Gegenwart eines säurebindenden Mittels vorzugsweise einer organischen Base wie DIPEA, Triethylamin, Dimethylanilin, Pyridin oder Chinolin oder eines Überschusses der Carboxykomponente der Formel V.

Auch der Zusatz eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums, Calciums oder Cäsiums kann günstig sein.

Die Reaktionszeit liegt je nach den angewendeten Bedingungen zwischen einigen Minuten und 14 Tagen, die Reaktionstemperatur zwischen etwa -30° und 140°, normalerweise zwischen -10° und 90°, insbesondere zwischen etwa 0° und etwa 70°.

Als inerte Lösungsmittel eignen sich die oben genannten.

Verbindungen der Formel I können weiter vorzugsweise erhalten werden, indem man Verbindungen der Formel II mit Verbindungen der Formel VI umsetzt.

Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel und unter Bedingungen wie oben angegeben.

In den Verbindungen der Formel VI bedeutet L vorzugsweise CI, Br, I oder eine freie oder eine reaktionsfähig abgewandelte OH-Gruppe wie z.B. ein aktivierter Ester, ein Imidazolid oder Alkylsulfonyloxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy oder Trifluormethylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyl- oder p-Tolylsulfonyloxy).

Verbindungen der Formel I können weiterhin vorzugsweise erhalten werden, indem man eine Verbindung der Formel D-NH₂, worin D die in Anspruch 1 angegebene Bedeutung hat, mit einem Chloroformiatderivat, z.B. 4-Nitrophenylchlorformiat zu einem intermediären Carbamat umsetzt, und dieses anschließend mit einer Verbindung der Formel II umsetzt. Dies geschieht unter Bedingungen wie oben beschrieben.

5

10

15

20

30

35

Verbindungen der Formel I können ferner erhalten werden, indem man Verbindungen der Formel I aus einem ihrer funktionellen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt.

Bevorzugte Ausgangsstoffe für die Solvolyse bzw. Hydrogenolyse sind solche, die sonst der Formel I entsprechen, aber anstelle einer oder mehrerer freier Amino- und/oder Hydroxygruppen entsprechende geschützte Amino- und/oder Hydroxygruppen enthalten, vorzugsweise solche, die anstelle eines H-Atoms, das mit einem N-Atom verbunden ist, eine Aminoschutzgruppe tragen, insbesondere solche, die anstelle einer HN-Gruppe eine R'-N-Gruppe tragen, worin R' eine Aminoschutzgruppe bedeutet, und/oder solche, die anstelle des H-Atoms einer Hydroxygruppe eine Hydroxyschutzgruppe tragen, z.B. solche, die der Formel I entsprechen, jedoch anstelle einer Gruppe -COOH eine Gruppe -COOR" tragen, worin R" eine Hydroxyschutzgruppe bedeutet.

Es können auch mehrere - gleiche oder verschiedene - geschützte Aminound/oder Hydroxygruppen im Molekül des Ausgangsstoffes vorhanden sein. Falls die vorhandenen Schutzgruppen voneinander verschieden sind, können sie in vielen Fällen selektiv abgespalten werden.

Der Ausdruck "Aminoschutzgruppe" ist allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Aminogruppe vor chemischen Umsetzungen zu schützen (zu blockieren), die aber leicht entfernbar sind,

nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind insbesondere unsubstituierte oder substituierte Acyl-, Aryl-, Aralkoxymethyloder Aralkylgruppen. Da die Aminoschutzgruppen nach der gewünschten Reaktion (oder Reaktionsfolge) entfernt werden, ist ihre Art und Größe im übrigen nicht kritisch; bevorzugt werden jedoch solche mit 1-20, insbesondere 1-8 C-Atomen. Der Ausdruck "Acylgruppe" ist im Zusammenhang mit dem vorliegenden Verfahren in weitestem Sinne aufzufassen. Er umschließt von aliphatischen, araliphatischen, aromatischen oder heterocyclischen Carbonsäuren oder Sulfonsäuren abgeleitete Acylgruppen sowie insbesondere Alkoxycarbonyl-, Aryloxycarbonyl- und vor allem Aralkoxycarbonylgruppen. Beispiele für derartige Acylgruppen sind Alkanoyl wie Acetyl, Propionyl, Butyryl; Aralkanoyl wie Phenylacetyl; Aroyl wie Benzoyl oder Toluyl; Aryloxyalkanoyl wie POA; Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, BOC (tert.-Butyloxycarbonyl), 2-lodethoxycarbonyl; Aralkyloxycarbonyl wie CBZ ("Carbobenzoxy"), 4-Methoxybenzyloxycarbonyl, FMOC; Arylsulfonyl wie Mtr. Bevorzugte Aminoschutzgruppen sind BOC und Mtr, ferner CBZ, Fmoc, Benzyl und Acetyl.

. 30

25

5

10

15

20

Der Ausdruck "Hydroxyschutzgruppe" ist ebenfalls allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Hydroxygruppe vor chemischen Umsetzungen zu schützen, die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind die oben genannten unsubstituierten oder substituierten Aryl-, Aralkyl- oder Acylgruppen, ferner auch Alkylgruppen. Die Natur und Größe der Hydroxyschutzgruppen ist nicht kritisch, da sie nach der gewünschten chemischen Reaktion oder Reaktionsfolge wieder entfernt werden; bevorzugt sind Gruppen mit 1-20, insbesondere 1-10 C-Atomen. Beispiele für Hydroxyschutzgruppen sind u.a. Benzyl, 4-Methoxybenzyl, p-Nitrobenzoyl, p-

Toluolsulfonyl, tert.-Butyl und Acetyl, wobei Benzyl und tert.-Butyl besonders bevorzugt sind.

Das In-Freiheit-Setzen der Verbindungen der Formel I aus ihren funktionellen Derivaten gelingt - je nach der benutzten Schutzgruppe - z. B. mit starken Säuren, zweckmäßig mit TFA oder Perchlorsäure, aber auch mit anderen starken anorganischen Säuren wie Salzsäure oder Schwefelsäure, starken organischen Carbonsäuren wie Trichloressigsäure oder Sulfonsäuren wie Benzol- oder p-Toluolsulfonsäure. Die Anwesenheit eines zusätzlichen inerten Lösungsmittels ist möglich, aber nicht immer erforderlich. Als inerte Lösungsmittel eignen sich vorzugsweise organische, beispielsweise Carbonsäuren wie Essigsäure, Ether wie Tetrahydrofuran oder Dioxan, Amide wie DMF, halogenierte Kohlenwasserstoffe wie Dichlormethan, ferner auch Alkohole wie Methanol, Ethanol oder Isopropanol, sowie Wasser. Ferner kommen Gemische der vorgenannten Lösungsmittel in Frage. TFA wird vorzugsweise im Überschuß ohne Zusatz eines weiteren Lösungsmittels verwendet, Perchlorsäure in Form eines Gemisches aus Essigsäure und 70 %iger Perchlorsäure im Verhältnis 9:1. Die Reaktionstemperaturen für die Spaltung liegen zweckmäßig zwischen etwa 0 und etwa 50°, vorzugsweise arbeitet man zwischen 15 und 30° (Raumtemperatur).

Die Gruppen BOC, OBut und Mtr können z. B. bevorzugt mit TFA in Dichlormethan oder mit etwa 3 bis 5n HCl in Dioxan bei 15-30° abgespalten werden, die FMOC-Gruppe mit einer etwa 5- bis 50 %igen Lösung von Dimethylamin, Diethylamin oder Piperidin in DMF bei 15-30°.

Hydrogenolytisch entfernbare Schutzgruppen (z. B. CBZ, Benzyl oder die Freisetzung der Amidinogruppe aus ihrem Oxadiazolderivat)) können z. B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z. B. eines Edelmetallkatalysators wie Palladium, zweckmäßig auf einem Träger wie Kohle) abgespalten werden. Als Lösungsmittel eignen sich dabei die

5

10

15

20

35

oben angegebenen, insbesondere z. B. Alkohole wie Methanol oder Ethanol oder Amide wie DMF. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° und 1-10 bar durchgeführt. Eine Hydrogenolyse der CBZ-Gruppe gelingt z. B. gut an 5 bis 10 %igem Pd/C in Methanol oder mit Ammomiumformiat (anstelle von Wasserstoff) an Pd/C in Methanol/DMF bei 20-30°.

5

10

15

20

25 .

30

35

Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan,Tetrachlorkohlenstoff, Trifluormethylbenzol, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon (NMP) oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

Ester können z.B. mit Essigsäure oder mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.

Ferner kann man freie Aminogruppen in üblicher Weise mit einem Säurechlorid oder -anhydrid acylieren oder mit einem unsubstituierten oder substituierten Alkylhalogenid alkylieren, oder mit CH₃-C(=NH)-OEt umsetzen, zweckmäßig in einem inerten Lösungsmittel wie Dichlormethan oder THF und /oder in Gegenwart einer Base wie Triethylamin oder Pyridin bei Temperaturen zwischen -60 und +30°.

5

10

15

20

25

30

35

Eine Base der Formel I kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Isolierung und /oder Aufreinigung der Verbindungen der Formel I verwendet werden.

Andererseits können Verbindungen der Formel I mit Basen (z.B. Natriumoder Kaliumhydroxid oder -carbonat) in die entsprechenden Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in die entsprechenden Ammoniumsalze umgewandelt werden.

Auch physiologisch unbedenkliche organische Basen, wie z.B. Ethanolamin können verwendet werden.

Gegenstand der Erfindung sind auch die Zwischenverbindungen der Formel I-1

5

15

worin

10 D ein- oder zweifach durch Hal substituiertes Phenyl, Pyridyl

oder Thienyl,

H, OH, OA, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen oder

Ethinyl,

R² H, OH, OA oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

(w

Pyrrolidin-1,2-diyl, Piperidin-1,2-diyl, Oxazolidin-3,4-

oder 3,5-diyl,

G $(CH_2)_n$ oder $(CH_2)_nNH_{-}$,

X COOH,

A Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

Hal F, Cl, Br oder I,

n 0, 1 oder 2,

.....,

bedeuten, sowie deren Isomere und Salze.

Besonders bevorzugt sind Verbindungen ausgewählt aus der Gruppe

3-(4-Chlorphenylcarbamoyl)-oxazolidin-4-carbonsäure,

3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure,

sowie deren Isomere und Salze.

Die Verbindungen sind beschrieben in Beispiel 2.

35

30

Gegenstand der Erfindung sind weiterhin die Verbindungen

(2R,4S)-BOC-4-Ethinyl-4-hydroxy-pyrrolidin-2-carbonsäure,
(2R,4R)-BOC-4-Ethinyl-4-hydroxy-pyrrolidin-2-carbonsäure,
(2R,4S)-BOC-4-Ethinyl-4-hydroxy-pyrrolidin-2-carbonsäure-alkylester,
(2R,4R)-BOC-4-Ethinyl-4-hydroxy-pyrrolidin-2-carbonsäure-alkylester,
wobei alkyl 1, 2, 3, 4, 5 oder 6 C-Atome hat,
sowie deren Isomere und Salze.

Die Herstellung ist in Beispiel 8a beschrieben.

10 Gegenstand der Erfindung sind auch die Zwischenverbindungen der Formel I-2

15

$$R^{1} \xrightarrow{E} \stackrel{R^{2}}{\underset{H}{X}} - Y - T$$

20 worin

R¹ H, COOR³, OH, OA, NH₂, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-

Atomen, N_3 , Ethinyl, Vinyl, Allyloxy, -OCOR 3 , NHCOA oder

NHSO₂A,

R² H, OH, OA oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

R¹ und R² zusammen auch einen spirocyclisch gebundenen 3- bis 6-

gliedrigen Carbocyclus,

R³ H oder A,

30 Pyrrolidin-1,2-diyl, Piperidin-1,2-diyl, Oxazolidin-3,4-

oder 3,5-diyl,

G $(CH_2)_n$ oder $(CH_2)_nNH_{-}$

35 X CONH,

Y unsubstituiertes oder ein- oder zweifach durch Methyl,

Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes 1,3-

oder 1,4-Phenylen,

T ein- oder zweifach durch Carbonylsauerstoff substituiertes

Piperidin-1-yl, Pyrrolidin-1-yl, 1*H*-Pyridin-1-yl, Morpholin-4-yl,

Piperazin-1-yl, 1,3-Oxazolidin-3-yl, 2H-Pyridazin-2-yl, Pyrazin-

1-yl, Azepan-1-yl, 2-Aza-bicyclo[2.2.2]-octan-2-yl,

A Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

10 Hal F, Cl, Br oder I,

n 0, 1 oder 2,

bedeuten, sowie deren Isomere und Salze.

Gegenstand der Erfindung sind insbesondere auch die Zwischenverbindungen der Formel I-2a,

20

$$R^1 \xrightarrow{E} X^{R^2} X - Y - T$$

1-2a

worin

R¹

H, COOR³, OH, OA, NH₂, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-

Atomen, N₃, Ethinyl, Vinyl, Allyloxy, -OCOR³, NHCOA oder

NHSO₂A,

 R^2

H, OH, OA oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

R³ H oder A,

30 .

 $\binom{\mathsf{E}}{\mathsf{W}}$

Pyrrolidin-1,2-diyl,

G

 $(CH_2)_n$ oder $(CH_2)_nNH$ -,

35 X

CONH,

unsubstituiertes oder ein- oder zweifach durch Methyl, Υ Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes 1,3oder 1,4-Phenylen, ein- oder zweifach durch Carbonylsauerstoff substituiertes T 5 Piperidin-1-yl, Pyrrolidin-1-yl, 1*H*-Pyridin-1-yl, Morpholin-4-yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl, 2H-Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl, 2-Aza-bicyclo[2.2.2]-octan-2-yl, Α Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, 10 Hal F, Cl, Br oder I, 0, 1 oder 2, n bedeuten, sowie deren Isomere und Salze.

Besonders bevorzugt sind die Verbindungen ausgewählt aus der Gruppe (S)-Pyrrolidin-2-carbonsäure-*N*-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid, (R)-Pyrrolidin-2-carbonsäure-*N*-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid, (2R,4R)-4-Hydroxy-pyrrolidin-2-carbonsäure-*N*-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid,

4-Hydroxy-pyrrolidin-2-carbonsäure-*N*-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid,

(R)-4,4-Dimethoxy-pyrrolidin-2-carbonsäure-*N*-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid,

(2R,4R)-4-Methoxy-pyrrolidin-2-carbonsäure-N-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid,

sowie deren Isomere und Salze.

Die Herstellung ist beschrieben z.B. in Beispiel 1 und 7.

Erfindungsgemäße Verbindungen der Formel I können aufgrund ihrer Molekülstruktur chiral sein und können dementsprechend in verschiedenen enantiomeren Formen auftreten. Sie können daher in racemischer oder in optisch aktiver Form vorliegen.

35

Da sich die pharmazeutische Wirksamkeit der Racemate bzw. der Stereoisomeren der erfindungsgemäßen Verbindungen unterscheiden kann,
kann es wünschenswert sein, die Enantiomere zu verwenden. In diesen
Fällen kann das Endprodukt oder aber bereits die Zwischenprodukte in
enantiomere Verbindungen, durch dem Fachmann bekannte chemische
oder physikalische Maßnahmen, aufgetrennt oder bereits als solche bei
der Synthese eingesetzt werden.

5

10

15

20

25

30

35

Im Falle racemischer Amine werden aus dem Gemisch durch Umsetzung mit einem optisch aktiven Trennmittel Diastereomere gebildet. Als Trennmittel eignen sich z.B. optisch aktiven Säuren, wie die R- und S-Formen von Weinsäure, Diacetylweinsäure, Dibenzoylweinsäure, Mandelsäure, Äpfelsäure, Milchsäure, geeignet N-geschützte Aminosäuren (z.B. N-Benzoylprolin oder N-Benzolsulfonylprolin) oder die verschiedenen optisch aktiven Camphersulfonsäuren. Vorteilhaft ist auch eine chromatographische Enantiomerentrennung mit Hilfe eines optisch aktiven Trennmittels (z.B. Dinitrobenzoylphenylglycin, Cellulosetriacetat oder andere Derivate von Kohlenhydraten oder auf Kieselgel fixierte chiral derivatisierte Methacrylatpolymere). Als Laufmittel eignen sich hierfür wäßrige oder alkoholische Lösungsmittelgemische wie z.B. Hexan/Isopropanol/Acetonitril z.B. im Verhältnis 82:15:3.

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I und/oder ihrer physiologisch unbedenklichen Salze zur Herstellung eines Arzneimittels (pharmazeutische Zubereitung), insbesondere auf nicht-chemischem Wege. Hierbei können sie zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.

Gegenstand der Erfindung sind ferner Arzneimittel, enthaltend mindestens eine Verbindung der Formel I und/oder ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, sowie gegebenenfalls Träger- und/oder Hilfsstoffe.

Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder oder auch als Nasenspray. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine.

Die Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze können bei der Bekämpfung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie, Claudicatio intermittens, Migräne, Tumoren, Tumorerkrankungen und/oder Tumormetastasen verwendet werden.

35

5

10

15

20

25

Dabei werden die erfindungsgemäßen Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

5

10

25

Gegenstand der Erfindung sind ferner Arzneimittel enthaltend mindestens eine Verbindung der Formel I und/oder ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, und mindestens einen weiteren Arzneimittelwirkstoff.

20 Gegenstand der Erfindung ist auch ein Set (Kit), bestehend aus getrennten Packungen von

- (a) einer wirksamen Menge an einer Verbindung der Formel I und/oder ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, und
- (b) einer wirksamen Menge eines weiteren Arzneimittelwirkstoffs.
- Das Set enthält geeignete Behälter, wie Schachteln oder Kartons, individuelle Flaschen, Beutel oder Ampullen. Das Set kann z.B. separate Ampullen enthalten, in denen jeweils eine wirksame Menge an einer Verbindung der Formel I und/oder ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen,

15

20

25

und einer wirksamen Menge eines weiteren Arzneimittelwirkstoffs gelöst oder in lyophilisierter Form vorliegt.

Gegenstand der Erfindung ist ferner die Verwendung von Verbindungen der Formel I und/oder ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen,

zur Herstellung eines Arzneimittels zur Behandlung von Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie, Claudicatio intermittens, Migräne, Tumoren, Tumorerkrankungen und/oder Tumormetastasen, in Kombination mit mindestens einem weiteren Arzneimittelwirkstoff.

Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethylacetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation. Rf-Werte an Kieselgel; Laufmittel: Ethylacetat/Methanol 9:1.

Massenspektrometrie (MS): EI (Elektronenstoß-Ionisation) M⁺
FAB (Fast Atom Bombardment) (M+H)⁺
ESI (Electrospray Ionization) (M+H)⁺ (wenn nichts anderes angegeben)

Beispiel 1

Die Herstellung von (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A1") erfolgt analog nachstehendem Schema:

.5

10

15

20

30

35

Eine Lösung von 1.0 g (5.2 mMol) 4-(4-Amino-phenyl)-1.1 morpholin-3-on in 25 ml Dimethylformamid wird nacheinander mit 0.8 g (5.2 mMol) 1-Hydroxybenzotriazolhydrat, 1.12 g (5.2 mMol) D-Boc-Prolin, 2 g (10.4 mMol) N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimidhydrochlorid (DAPECI) und 1.26 ml N-Methylmorpholin versetzt und die so erhaltene Lösung 12 Stunden bei Raumtemperatur gerührt. Anschließend wird die Reaktionslösung im Vakuum zu Trockne eingedampft, der Rückstand in 10 ml 5%ige Natriumhydrogencarbonatlösung aufgenommen und die Natriumhydrogebcarbonatlösung zwei mal mit je 10 ml Essigsäureethylester extrahiert. Nach dem Trocknen der vereinigten organischen Phasen über Natriumsulfat und Abziehen des Lösungsmittels wird der feste Rückstand mit 20 ml Diethylether verrieben. Man erhält so 1.4 g 2-[4-(3-Oxo-morpholin-4-yl)phenylcarbamoyl]-pyrrolidin-1-carbonsäure-tert.-butylester als weißes Pulver; ESI 390.

1.2 Eine Lösung von 1.4 g (3.60 mMol) 2-[4-(3-Oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-*tert*-butylester in 20 ml
Dioxan wird mit 40 ml 4N Salzsäure in Dioxan versetzt und 12 Stunden
bei Raumtemperatur gerührt. Anschließend wird der ausgefallene
Niederschlag abgesaugt und nacheinander mit je 10 ml Dioxan und
Diethylether gewaschen und im Vakuum getrocknet. Man erhält so 1.1 g

Pyrrolidin-2-carbonsäure-*N*-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid-Hydrochlorid als weißes Pulver; ESI 290.

Analog erhält man die nachstehenden Verbindungen

20

30

- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 457; F. 147° (Zersetzung);
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 461; F. 155°;
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[2-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 461;
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-trifluormethyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 511; F. 147°;
- (R)-Piperidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 471; F. 140°;
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid},
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(2-oxo-2*H*-pyrazin-1-yl)-phenyl]-amid}.

(R)-2,5-Dihydro-pyrrol-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}.

Beispiel 1a

5

10

15

20

(R)-1-(5-Chlor-thiophen-2-carbonyl)-pyrrolidin-2-carbonsäure-N-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid ("AB1")

Eine Lösung von 1.35 g (4.66 mmol) Pyrrolidin-2-carbonsäure-[4-(3-oxomorpholin-4-yl)-phenyl]-amid in 30 ml Dimethylformamid wird nacheinander mit 0.71 g (4.66 mmol) 1-Hydroxybenzotriazolhydrat, 0.76 g (4.66 mmol) 5-Chlor-thiophencarbonsäure, 1.79 g (9.33 mmol) N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimidhydrochlorid (DAPECI) und 1.13 ml N-Methylmorpholin versetzt und die so erhaltene Lösung 12 Stunden bei Raumtemperatur gerührt. Anschließend wird die Reaktionslösung im Vakuum zu Trockne eingedampft, der Rückstand in 10 ml 5%ige Natriumhydrogencarbonatlösung aufgenommen und die Natriumhydrogencarbonatlösung zweimal mit je 10 ml Essigsäureethylester extrahiert. Nach dem Trocknen der vereinigten organischen Phasen über Natriumsulfat und Abziehen des Lösungsmittels wird der feste Rückstand mit 20 ml Diethylether verrieben. Man erhält so 1.2 g (59.4%) "AB1", ESI 434; F. 195°.

Analog erhält man die Verbindung

(R)-1-(5-Chlor-thiophen-2-carbonyl)-pyrrolidin-2-carbonsäure-*N*-[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid, ESI 448; F. 113° (Zersetzung).

Beispiel 2

5

10

15

20

.30

35

Die Herstellung von (R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A2") erfolgt analog nachstehendem Schema:

2.1 Eine Lösung von 2.10 g (20.0 mmol) D-Serin in 10 ml 1N wässriger Natronlauge wird mit 1.49 ml (20.0 mmol) 37%iger wässriger Formaldehydlösung versetzt. Die entstandene Lösung wird 18 Stunden bei 5 °C belassen. Die Lösung wird auf 80 °C erhitzt, 6.14 g (40 mmol) 4-Chlorphenylisocyanat zugegeben und eine Stunde bei dieser Temperatur gerührt. Man lässt abkühlen und filtriert den entstandenen Niederschlag ab. Das Filtrat wird mit 1 N HCl angesäuert und der entstandene Niederschlag abfiltriert und getrocknet: (R)-3-(4-Chlorphenylcarbamoyl)-oxazolidin-4-carbonsäure als farbloser Feststoff; ESI 271.

2.2 Eine Lösung von 541 mg (2.00 mmol) (R)-3-(4-Chlorphenyl-carbamoyl)-oxazolidin-4-carbonsäure und 384 mg (2.00 mmol) 4-(4-Amino-phenyl)-morpholin-3-on in 4 ml Dimethylformamid (DMF) wird mit 498 mg (2.60 mmol) *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimid-hydrochlorid (DAPECI) versetzt und 18 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wird auf gesättigte Natriumhydrogen-carbonatlösung gegeben und der entstandene Niederschlag abfiltriert: (R)-

Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[4-(3-oxomorpholin-4-yl)-phenyl]-amid} ("A2") als farbloser Feststoff; ESI 461.

5

Analog erhält man die nachstehenden Verbindungen

(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[3methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 459;

(4R.5S)- 5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)amid]-4-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 459;

10

(4R.5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)amid-4-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 473;

(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[4-(2oxo-2H-pyridin-1-yl)-phenyl]-amid}, ESI 439;

15

(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)amid]-4-{[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid}, ESI 453;

(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)amid]-4-{[3-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 477;

20

(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)amid]-4-{[3-chlor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 477;

(4R,5R)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)amid]-4-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 473;

(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)amid]-4-{[4-(2-oxo-2H-pyrazin-1-yl)-phenyl]-amid}, ESI 454;

(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[4-(2oxo-2H-pyrazin-1-yl)-phenyl]-amid}, ESI 440;

30

(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[3chlor-4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid}, ESI 473.

Beispiel 2a

Analog Beispiel 2 erhält man, ausgehend von Clonidin

5 die nachstehende Verbindung

4-Oxa-6-aza-spiro[2.4]heptan-6,7-dicarbonsäure-6-[(4-chlorphenyl)-amid]-7-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}

15

20

Beispiel 3

Die Herstellung von (S)-Thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A3") und (S)-1,1-Dioxo- $1\lambda^6$ -thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid] 4-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A4") erfolgt analog nachstehendem Schema:

30

3.1 Eine Lösung von 4.54 g (54.0 mmol) Natriumhydrogencarbonat und 3.60 g (27.0 mmol) 2-(S)-Thiazolidin-4-carbonsäure in 50 ml Wasser wird auf 80° C erhitzt und 8.46 g (54.0 mmol) 4-Chlorphenylisocyanat zugegeben. Das Reaktionsgemisch wird 1 Stunde bei dieser Temperatur gerührt. Man lässt abkühlen und filtriert den entstandenen Niederschlag ab. Das Filtrat wird mit 1 N HCl angesäuert und der entstandene Niederschlag abfiltriert und getrocknet: (S)-3-(4-Chlorphenylcarbamoyl)-thiazolidin-4-carbonsäure als farbloser Feststoff; ESI 287.

3.2 Eine Lösung von 573 mg (2.00 mmol) (S)-3-(4-Chlorphenyl-carbamoyl)-thiazolidin-4-carbonsäure und 384 mg (2.00 mmol) 4-(4-15 Amino-phenyl)-morpholin-3-on in 4 ml Dimethylformamid (DMF) wird mit 498 mg (2.60 mmol) N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimidhydrochlorid (DAPECI) versetzt und 18 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wird auf gesättigte Natriumhydrogencarbonatlösung gegeben und der entstandene Niederschlag abfiltriert: (S)-Thiazolidin-3,4-dicarbonsäure-3-[(4-chlorphenyl)-amid]-4-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A3") als farbloser Feststoff; ESI 461.

3.3 Eine Suspension von 450 mg (0.976 mmol) "A3" in 50 ml Methanol wird mit einer Lösung von 1.9 g Oxon in 30 ml Wasser versetzt und das Reaktionsgemisch 24 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wird auf Wasser gegeben und der entstandene Niederschlag abfiltriert und getrocknet: (S)-1,1-Dioxo-1λ⁶-thiazolidin-3,4-dicarbonsäure-3-[(4-chlorphenyl)-amid]-4-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A4") als farbloser Feststoff; ESI 493.

Analog erhält man die nachstehenden Verbindungen

35

30

5

- (S)-Thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 475;
- $(S)-1,1-Dioxo-1\lambda^6-thiazolidin-3,4-dicarbons\"{a}ure-3-[(4-chlor-phenyl)-amid] 4-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 507;$
- (R)-Thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-{[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid}, ESI 455.

Beispiel 4

10

5

Die Herstellung von 3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid ("A5") erfolgt analog nachstehendem Schema:

15

20

25

30

35

4.1 Eine Lösung von 2.00 g (19.0 mmol) DL-Isoserin in 10 ml 1N wässriger Natronlauge wird mit 1.48 ml (19.9 mmol) 37%iger wässriger Formaldehydlösung versetzt. Die entstandene Lösung wird 18 Stunden bei 5 °C belassen. Zu dieser Lösung wird bei einer Innentemperatur von 0 – 5 °C eine Lösung von 3.46 g (19.1 mmol) 5-Chlorthiophencarbonylchlorid in 10 ml Aceton zugetropft. Während des Zutropfens wird durch Zugabe von festem Natriumhydrogencarbonat der pH auf einen Wert über 7 gehalten. Nach beendeter Zugabe lässt man auf Raumtemperatur erwärmen, gibt Wasser zu und extrahiert mit tert.-Butylmethylether. Die wässrige Phase

wird mit 1N HCl angesäuert und mit tert.-Butylmethylether extrahiert. Diese organische Phase wird über Natriumsulfat getrocknet und eingedampft: 3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure als farbloser Feststoff; ESI 262.

5

10

15

4.2 Eine Lösung von 500 mg (1.91 mmol) 3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure und 367 mg (1.91 mmol) 4-(4-Amino-phenyl)-morpholin-3-on in 5 ml Dimethylformamid (DMF) wird mit 479 mg (2.50 mmol) *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimid-hydrochlorid (DAPECI) versetzt und 18 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wird auf gesättigte Natriumhydrogencarbonatlösung gegeben und der entstandene Niederschlag abfiltriert: 3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure-[4-(3-oxomorpholin-4-yl)-phenyl]-amid ("A5") als farbloser Feststoff; ESI 436.

Analog erhält man die nachstehenden Verbindungen

20

3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure-[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid, ESI 450;

3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure-[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid, ESI 430.

25

Beispiel 5

30

Die Herstellung von (2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-chlorpyridin-2-yl)-amid]-2-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid} ("A6") erfolgt analog nachstehendem Schema:

10

15

20

$$\frac{\text{NH}_{2}}{\text{N}} + \frac{\text{NH}_{2}}{\text{O}_{2}\text{N}} + \frac{\text{HO}_{2}\text{N}}{\text{CI}} + \frac{\text{HO}_{2}\text{N}}{\text{H}_{2}} + \frac{\text{HO}_{2}\text{N}}{\text{CI}} + \frac{\text{HO}_{2}\text{N}}{\text{N}} + \frac{\text{HO}_{2}\text{$$

Zu einer Lösung von 570 mg (4.43 mmol) 2-Amino-5-chlorpyridin und 0.73 ml (9.0 mmol) Pyridin in 50 ml Dichlormethan werden 894 mg (4.43 mmol) 4-Nitrophenylchlorformiat gegeben und 1 Stunde bei Raumtemperatur gerührt. Zu der enstandenen Suspension werden 1.49 g (4.43 mmol) (2R,4R)-4-Hydroxy-2-[4-(2-oxo-2*H*-pyridin-1-yl)-phenylcarbamoyl]-pyrrolidinium-chlorid und 1.5 ml (9.0 mmol) N-Ethyldiisopropylamin gegeben und das Reaktionsgemisch 18 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wird eingedampft und der Rückstand an einer Kieselgelsäule mit Dichlormethan/Methanol 95:5 als Laufmittel chromatographiert: (2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-chlorpyridin-2-yl)-amid]-2-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid} ("A6") als farbloser Feststoff, ESI 454.

Analog werden die nachstehenden Verbindungen erhalten

30

(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-chlorpyridin-2-yl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 460;

(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-chlorpyridin-2-yl)-amid]-2-{[4-(2-oxo-2H-pyrazin-1-yl)-phenyl]-amid}, ESI 455;

35

(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-chlorpyridin-2-vl)-amid]-2-{[3-fluor-4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid}, ESI 472;

(R)-4,4-Dimethoxypyrrolidin-1,2-dicarbonsäure-1-[(5-chlorpyridin-2-yl)-amid]-2-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid}, ESI 498;

(R)-4,4-Dimethoxypyrrolidin-1,2-dicarbonsäure-1-[(5-chlorpyridin-2-yl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 504;

(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(6-chlorpyridin-3-yl)-amid]-2-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid}, ESI 454;

(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(6-chlorpyridin-3-yl)-amid]-2-{[4-(2-oxo-2H-pyrazin-1-yl)-phenyl]-amid}, ESI 455.

10

15

5

Beispiel 6

Die Herstellung von (R)-4,4-Dimethoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid} ("A7") erfolgt analog nachstehendem Schema:

20

2

30.

35

6.1 Zu einer auf 0 °C gehaltenen Mischung von 22 ml Pyridin und 50 ml Dichlormethan werden 12.2 g (122 mmol) Chrom(VI)-oxid gegeben und bei gleicher Temperatur 30 min gerührt. Man lässt die Lösung auf Raumtemperatur erwärmen und tropft innerhalb von 5 min eine Lösung von 5.00 g cis-Boc-4-Hydroxy-D-prolin in 80 ml Dichlormethan zu. Nach 1

10

15

Stunde Rühren bei Raumtemperatur wird die Lösung filtriert und das Filtrat eingedampft. Der Rückstand wird zwischen 1 N HCl und tert.-Butylmethylether verteilt. Die organische Phase wird über Natriumsulfat getrocknet, eingedampft und aus Diethylether/Petrolether umkristallisiert: Boc-4-Keto-D-prolin als farbloser Feststoff; ESI 130.

- 6.2 Eine Suspension von 459 mg (2.00 mmol) Boc-4-Keto-D-prolin und 372 mg (2.00 mmol) 1-(4-Amino-phenyl)-1*H*-pyridin-2-on in 25 ml Toluol wird mit 742 mg (3.00 mmol) Ethyl-2-ethyox-1,2-dihydrochinolin-1-carboxylat (EEDQ) versetzt und 18 Stunden bei Raumtemperatur gerührt. Es werden 200 ml tert.-Butylmethylether zugegeben und der entstandene Niederschlag abfiltriert. Zum Filtrat werden 200 ml Petrolether gegeben und der so entstandene Niederschlag abfiltriert: (R)-4-Oxo-2-[4-(2-oxo-2*H*-pyridin-1-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-tert.-butylester als bräunlicher Feststoff; ESI 398.
- 6.3 Eine Suspension von 400 mg (1.01 mmol) (R)-4-Oxo-2-[4-(2-oxo-2H-pyridin-1-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-tert.-butylester in 5 ml 4 N HCl in Dioxan wird mit 10 ml Methanol versetzt und eine Stunde bei Raumtemperatur gerührt. Das Reaktionsgemisch wird eingedampft: (R)-4,4-Dimethoxy-2-[4-(2-oxo-2*H*-pyridin-1-yl)-phenylcarbamoyl]-pyrrolidinium-chlorid als bräunlicher Feststoff; ESI 344.
- 6.4 Eine Lösung von 250 mg (0.658 mmol) (R)-4,4-Dimethoxy-2-[4-(2-oxo-2*H*-pyridin-1-yl)-phenylcarbamoyl]-pyrrolidinium-chlorid in 10 ml

 Dichlormethan wird mit 0.12 ml Triethylamin und 127 mg (0.830 mmol) 4Chlorphenylisocyanat versetzt. Nach einer Stunde Rühren bei
 Raumtemperatur wird das Reaktionsgemisch eingedampft und der
 Rückstand an einer Kieselgelsäule mit Dichlormethan/Methanol 95:5 als
 Laufmittel chromatographiert: (R)-4,4-Dimethoxy-pyrrolidin-1,2-

dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(2-oxo-2H-pyridin-1-yl)phenyl]-amid} ("A7") als farbloser Feststoff; ESI 497.

Beispiel 7

Die Herstellung von (2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A8") erfolgt analog nachstehendem Schema:

10

5

15

TEA

IH xHCl

20

Eine Suspension von 15 g (64.86 mmol) cis-N-BOC-4-hydroxy-D-Prolin und 12.47 g (64.86 mmol1-(4-Amino-phenyl)-1H-pyridin-2-on in 250 ml Toluol wird mit 16 g (12.86 mmol) Ethyl-2-ethoxy-1,2-dihydrochinolin-1-carboxylat (EEDQ) versetzt und 18 Stunden bei Raumtemperatur gerührt. Anschliessend wird das ausgefallene Produkt abfiltriert, nacheinander mit je 50 ml Toluol und Diethylether gewaschen und im Exsikkator getrocknet. Man erhält so 24.5 g (93.2%) (2R,4R)-4-Hydroxy-2-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1carbonsäure-ter.t-butylester als grau-weisses Pulver. ESI 406.

30

7.2 Eine Lösung von 15 g (37 mmol) (2R,4R)-4-Hydroxy-2-[4-(3-oxomorpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-*tert.*-butylester in 200 ml Dioxan wird mit 300 ml 4N Salzsäure in Dioxan versetzt und 12 Stunden bei Raumtemperatur gerührt. Anschliessend wird der ausgefallene Niederschlag abfiltriert, mit je 50 ml Dioxan und Diethylether gewaschen und im Exsikkator getrocknet. Man erhält so 12.64 g (100%) (2R,4R)-4-Hydroxy-pyrrolidin-2-carbonsäure [4-(3-oxo-morpholin-4-yl)-phenyl]-amid-Hydrochlorid als weißes Pulver. ESI 306.

10

15

20

5

12.64 g (36.98 mmol) (2R,4R)-4-Hydroxy-pyrrolidin-2-carbonsäure-7.3 [4-(3-oxo-morpholin-4-yl)-phenyl]-amid-Hydrochlorid werden in 1200 ml Dichlomethan suspendiert und unter Eisbadkühlung mit 5.4 ml Triethylamin versetzt. Zu der Mischung tropft man anschließend die Lösung von 5.96 g (38.83 mmol) 4-Chlorphenylisocyanat in 100 ml Dichlometrhan bei 2 °C innerhalb 1.5 Stunden zu, und läßt dann die Reaktionslösung noch weitere 30 min unter Eiskühlung rühren. Danach wird die Dichlormethanlösung nacheinander mit je 100 ml 1N Salzsäure und Wasser gewaschen und über Natriumsulfat getrocknet. Nach Abfiltrieren des Trockenmittels und Einengen der Methylenchloridlösung auf 1/3 des ursprünglichen Volumens am Rotationsverdampfer wird das ausgefallene Produkt abfiltriert, mit 50 ml Petrolether gewaschen und im Exsikkator getrocknet. Man erhält so 14.6 g (86%) (2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxomorpholin-4-yl)-phenyl]-amid} ("A8") als weisses Pulver, ESI 459; F. 216°.

23

Analog werden die nachstehenden Verbindungen erhalten

(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 473; F. 250°;

35

10

15

20

(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid}, ESI 453; F. 160°;

(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[2-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 477; F. 135°:

(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(2-oxo-pyrazin-1-yl)-phenyl]-amid}, ESI 454;

(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-fluor-4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid}, ESI 471;

(2R,3R)-3-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

(2R,3S)-3-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}.

Beispiel 8

Die Herstellung von (2R,4S)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} erfolgt analog nachstehendem Schema:

30

8.1 Zu einer Lösung von 7.0 g (7.26 mmol) (2R,4R)-4-Hydroxy-2-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-*tert.*-butylester, 5.77 g (34.5 mmol) p-Nitrobenzoesäure und 9.18 g (35 mmol) Triphenylphosphin in 350 ml Tetrahydrofuran tropft man bei 0 °C unter Stickstoff 5.51 ml (35 mmol) Azodicarbonsäurediethylester (DEAD) zu. Anschliessend lässt man die Reaktionsmischung 12 Stunden bei Raumtemperatur rühren, dampft sie im Vakuum zur Trockne ein, versetzt den Rückstand mit 20 ml Methylenchlorid, wäscht die Methylenchloridlösung nacheinander mit je 10 ml gesättigter Kochsalzlösung und Wasser und trocknet sie über Natriumsulfat. Nach Abfiltrieren des Trockenmittels und Abziehen des Lösungsmittels am Rotationsverdampfer wird der Rückstand mit 30 ml Diethylether verrieben. Man erhält so 8.5 g (88.8%) (2R,4S)-4-(4-Nitro-benzoyloxy)-2-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-*ter.t*-butylester als leicht gelbe Kristalle, ESI 555.

5

10

15

30

- 8.2 Analog zu Beispiel 7 erhält man aus (2R,4S)-4-(4-Nitro-benzoyl-oxy)-2-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbon-säure-*tert*.-butylester die Verbindung 4-Nitro-benzoesäure (3S,5R)-1-(4-chlor-phenylcarbamoyl)-5-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-3-ylester als gelbliche Kristalle, ESI 608.
 - 8.3 Die Lösung von 50 mg (0.082 mmol) 4-Nitro-benzoesäure (3S,5R)-1-(4-chlor-phenylcarbamoyl)-5-[4-(3-oxo-morpholin-4-yl)-phenyl-carbamoyl]-pyrrolidin-3-ylester in 2 ml Methanol wird unter Eiskühlung mit 0.075 ml 1N Natronlauge versetzt und die Reaktionsmischung 15 min. gerührt. Der ausgefallene Niederschlag wird abfiltriert und mit 2 ml Methanol gewaschen und getrocknet. Man erhält so 35 mg (93%) (2R,4S)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} als farblose Kristalle, ESI 459, F. 243° (Zersetzung).

Analog erhält man

(2S,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, ESI 459; F. 253°; 3,4-Dihydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}.

Beispiel 8a

Die Herstellung von (2R,4S)-4-Ethinyl-4-hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} erfolgt analog nachstehendem Schema:

Beispiel 9

Die Herstellung von (2R,4S)-4-Azido-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A9") und

(2R,4S)-4-Amino-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A10") erfolgt analog nachstehendem Schema:

5

10

15

20

25

30

35

N-BOC MsCVPy
NaNy/DMF

9.1 Eine Lösung von 4.5 g (11.1 mmol) (2R,4R)-4-Hydroxy-2-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-*tert.*-butylester in 20 ml Pyridin wird unter Eiskühlung mit 1.3 ml (16.65 mmol) Methansulfonsäurechlorid tropfenweise versetzt und die Reaktionslösung bei Raumtemperatur 12 Stunden gerührt. Anschließend wird das Pyridin im Vakuum abgezogen, der Rückstand mit 10 ml gesättigter Citronensäurelösung versetzt und die saure Lösung zweimal mit je 10 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden nun mit 10 ml gesättigter Kochsalzlösung gewaschen und über Natriumsulfat getrocknet. Nach Abfiltrieren des Trockenmittels und Abziehen des Lösungsmittels erhält man 5.4 g (100%) (2R,4R)-4-Methansulfonyloxy-2-

35

[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-tert.-butylester als gelbes Öl, ESI 484.

- Eine Mischung von 5.4 g (11.7 mmol) (2R,4R)-4-Methansulfonyl-9.2 5 oxy-2-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-tert.-butylester und 3.69 g (56.8 mmol) Natriumazid in 50 ml Dimethylformamid (DMF) wird 12 Stunden bei 60 °C gerührt. Anschließend wird von Unlöslichem abfiltriert und das Filtrat im Vakuum zu Trockne eingedampft. Der Rückstand wird dann mit 20 ml Wasser gelöst und die .10 wässrige Lösung zweimal mit je 10 ml Methylenchlorid extrahiert. Die vereinigten Methylenchloridextrakte werden schließlich einmal mit 10 ml gesättigter Kochsalzlösung gewaschen und über Natriumsulfat getrocknet. Nach Abfiltrieren des Trockenmittels und Abziehen des Lösungsmittels 15 erhält man 4.8 g (100%) (2R,4S)-4-Azido-2-[4-(3-oxo-morpholin-4-yl)phenylcarbamoyl]-pyrrolidin-1-carbonsäure-tert.-butylester als leicht gelbe Kristalle, ESI 431.
- 9.3 Analog zu Beispiel 7 erhält man aus (2R,4S)-4-Azido-2-[4-(3-oxomorpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-1-carbonsäure-*tert.*-butylester die Verbindung (2R,4S)-4-Azido-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid] 2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A9") als weißes Pulver, ESI 459, F. 145°.
 - 9.4 Eine Lösung von 25 mg (0.052 mmol) "A9" und 20.46 mg (0.08mmol) Triphenylphosphin in einer Mischung aus 0.5 ml Tetrahydrofuran und 0.5 ml Wasser wird 12 Stunden bei Raumtemperatur gerührt. Anschließend wird nach Abfiltrieren des ausgefallenen Triphenylphosphinoxids das Filtrat zu Trockne eingeengt und der Rückstand mittels präparativer HPLC (Acetonitril/Wasser/0.1% Trifluoressigsäure) gereinigt. Man erhält so 12 mg (40%) (2R,4S)-4-Amino-pyrrolidin-1,2-dicarbonsäure-

1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("10") als farblose Kristalle, ESI 458.

Analog erhält man die Verbindungen

(2R,4R)-4-Azido-pyrrolidin-1,2-dicarbonsäure- 1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} und

(2R,4R)-4-Amino-pyrrolidin-1,2-dicarbonsäure- 1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}.

10

15

5

Aus den 4-Aminoverbindungen erhält man durch

a) Umsetzung mit Acetylchlorid die Verbindungen

(2R,4S)-4-Acetamino-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} und (2R,4R)-4-Acetamino-pyrrolidin-1,2-dicarbonsäure- 1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid};

b) Umsetzung mit Mesylchlorid die Verbindungen
 die Verbindungen

(2R,4S)-4-Methylsulfonylamino-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} und

(2R,4R)-4-Methylsulfonylamino-pyrrolidin-1,2-dicarbonsäure- 1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}.

Beispiel 10

Die Herstellung von (2R,4R)-4-Methoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A11") erfolgt analog nachstehendem Schema:

15

20

Eine Mischung von 1 g (4.32 mmol) cis-N-BOC-4-Hydroxy-Dprolin und 3.31 g (14.27 mmol) Silberoxid in 15 ml Aceton wird unter Stickstoff mit 0.94 ml (15.1 mmol) Methyliodid versetzt und die Reaktionsmischung 48 Stunden bei Raumtemperarur gerührt. Anschliessend wird der Niederschlag abfiltriert und das Filtrat im Vakuum zur Trockne eingeengt. Man erhält so 1 g (89.2%) cis-N-BOC-4-Methoxy-D-prolin-methylester als farbloses Öl, das ohne weitere Reinigung weiter umgesetzt wird, ESI 260.

Eine Lösung von 1 g (3.85 mmol) cis-N-BOC-4-Methoxy-D-prolinmethylester in 75 ml Tetrahydrofuran (THF) wird mit 25 ml Methanol, 25 ml Wasser und 0.28 g (11.57 mmol) Lithiumhydroxid versetzt und die Reaktionslösung 5 Stunden bei Raumtemperatur gerührt. Anschließend wird das Methanol und das THF am Rotationsverdampfer abgezogen und die wässrige Lösung nach einmaligem Ausschütteln mit 10 ml Methylenchlorid mittels gesättigter Citronensäurelösung auf pH 2 angesäuert und die saure Lösung zweimal mit je 10 ml Methylenchlorid extrahiert. NachTrocknen der vereinigten organischen Phasen über Natriumsulfat und Abziehen des Lösungsmittels erhält man 0.5 g (53%) cis-N-BOC-4-Methoxy-D-prolin als helles Öl, das allmählich kristallisiert, ESI 246.

25

30

10.3 Analog zu Beispiel 7 erhält man aus cis-N-BOC-4-Methoxy-D-prolin die Verbindung (2R,4R)-4-Methoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} ("A11") als weisses Pulver, ESI 473, F. 133°.

5

Analog erhält man die nachstehenden Verbindungen

(2R,4R)-4-Ethoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

(2R,4R)-4-Propoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

(2R,4R)-4-Allyloxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}.

15

Beispiel 11

20

Die Herstellung von Isobuttersäure-(3R,5R)-1-(4-chlor-phenyl- carbamoyl)-5-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-3-yl-ester ("A12") erfolgt analog nachstehendem Schema:

2

30

Eine Lösung von 0.2 g (0.44 mmol) "A8" und 0.146 ml Isobuttersäureanhydrid in 1 ml Pyridin wird 12 Stunden bei Raumtemperatur gerührt. Anschließend wird die Reaktionsmischung mit 10 ml Essigsäureethylester versetzt und die Essigsäureethylester-Lösung nacheinander mit je 5 ml 1N Salzsäure und gesättigter Kochsalzlösung gewaschen

und über Natriumsulfat getrocknet. Nach Abfiltrieren des Trockenmittels und Abziehen des Lösungsmittels erhält man 183 mg (79.3%) Isobuttersäure-(3R,5R)-1-(4-chlor-phenyl-carbamoyl)-5-[4-(3-oxomorpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-3-yl-ester ("12") als weisse Kristalle, ESI 529, F. 129°.

Analog erhält man die nachstehenden Verbindungen

Propionsäure-(3R,5R)-1-(4-chlor-phenyl-carbamoyl)-5-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-3-yl-ester, ESI 515;

Essigsäure-(3R,5R)-1-(4-chlor-phenyl-carbamoyl)-5-[4-(3-oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-3-yl-ester, ESI 501, F. 148°.

Beispiel 12

Die Herstellung von [1,3]Dioxolan-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid} erfolgt analog nachstehendem Schema:

Analog erhält man die nachstehenden Verbindungen

5

10

15

20

25

[1,3]Dioxolan-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

[1,3]Dioxolan-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid},

[1,3]Dioxolan-2,2-dimethyl-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

[1,3]Dioxolan-2,2-dimethyl-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

[1,3]Dioxolan-2,2-dimethyl-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[4-(2-oxo-1*H*-pyridin-1-yl)-phenyl]-amid}.

Beispiel 13

5

10

15

20

35

Analog Beispiel 7 erhält man durch Umsetzung von 1-BOC-piperazin-2-carbonsäure-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid mit 4-Chlorphenylisocyanat die Verbindung

1-BOC-piperazin-1,2-dicarbonsäure-1-[4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}

Durch Abspaltung der BOC-Gruppe erhält man Piperazin-1,2-dicarbonsäure-1-[4-chlorphenyl)-amid]-2-{[4-(3-oxomorpholin-4-yl)-phenyl]-amid}.

Analog erhält man durch Umsetzung von 4-Chlorphenylisocyanat mit [1,3]Oxazinan-4-carbonsäure-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid

15

20

35

Pd/C

die Verbindung

[1,3]Oxazinan-3,4-dicarbonsäure-1-[4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}.

- 5 14. Beispiele zur Herstellung von Zwischenverbindungen
 - 14.1 Nach folgendem Schema lassen sich **alle** Verbindungen der folgenden Formel VI (mit R = H oder Methyl; n = 3, 4 oder 5) synthetisieren.
 - Z.B. Synthese von 1-(4-Amino-2-methylphenyl)-piperidin-2-on:
- 30 14.2 Synthese des Phenylpiperidonbausteins ohne Methylgruppe:

20

35

Die Herstellung von 1-(4-Amino-2-methyl-phenyl)-piperidin-2-on erfogt z.B. wie nachfolgend angegeben:

$$NO_2$$
 NO_2
 NO_2

14.3 1-(4-Amino-phenyl)-1*H*-pyrazin-2-on

14.4 1-(4-Amino-2,5-dimethyl-phenyl)-piperidin-2-on

5
$$\longrightarrow$$
 O₂N \longrightarrow Br \longrightarrow Kupferpulver, K₂CO₃ \bigcirc O₂N \longrightarrow N

$$\frac{H_2}{Pd-C} + H_2N - N$$

14.5 1-(4-Amino-3-methyl-phenyl)-piperidin-2-on

F
$$O_2$$
 + O_2 O_2 O_2 O_2 O_3 O_2 O_3 O_4 O_4

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \end{array}$$

14.6 1-(5-Amino-pyridin-2-yl)-piperidin-2-on

$$O_2N \xrightarrow{\qquad \qquad } CI + \bigcap_{\substack{N \\ H}} O \xrightarrow{\qquad \qquad } O_2N \xrightarrow{\qquad \qquad } O_2N$$

$$\frac{H_2}{Pd-C}$$

14.7 1-(4-Aminomethyl-phenyl)-piperidin-2-on

14.8 2-(4-Amino-phenyl)-2-aza-bicyclo[2.2.2]octan-3-on

14.9 1-(3-Amino-6-ethyl-phenyl)-pyrrolidin-2-on

14.10 2-(4-Amino-2-trifluormethyl-phenyl)-2-aza-bicyclo[2.2.2]octan-3-on

30

35

14.11 1-(4-Amino-3-chlor-phenyl)-pyrrolidin-2-on

 $\begin{array}{c|c}
 & H_2 \\
\hline
 & Pd/C
\end{array}$ $\begin{array}{c|c}
 & CI \\
\hline
 & NH_2
\end{array}$

14.12 1-(4-Amino-2-trifluormethyl-phenyl)-piperidin-2-on

14.13 3-(4-Amino-2-methyl-phenyl)-[1,3]oxazinan-2-on

10

20

14.14 4-(4-Amino-phenyl)-morpholin-3-on

14.15 1-(4-Amino-phenyl)-pyridin-2-on

30
$$\frac{Cs_2CO_3}{DMF} + \frac{Cs_2CO_3}{DMF} + \frac{O}{N}$$
35
$$\frac{SnCl_2}{Ethanol} + \frac{H_2N}{N} + \frac{O}{N}$$

14.16 1-(4-Amino-2-methyl-phenyl)-piperidin-2-on

5
$$\frac{NO_2}{NH_2} + \frac{O}{Br} + \frac{Cl}{R\bar{u}ckfluss} + \frac{Toluol}{R\bar{u}ckfluss} + \frac{Br}{NO_2} + \frac{Cs_2CO_3}{CH_3CN} + \frac{H_2}{Pd-C} + \frac{H_2N}{Pd-C} + \frac{O}{NO_2} + \frac{H_2N}{NO_2} +$$

14.17 1-(4-Amino-phenyl)-1H-pyridin-4-on

15
$$\downarrow$$
 + N OH \downarrow OH \downarrow OH \downarrow NO₂ \downarrow NO₂ \downarrow O

14.18 1-(4-Amino-phenyl)-4-tert.-butyloxycarbonyl-piperazin-2-on

30
$$\begin{array}{c} F \\ N \\ NO_2 \end{array} + \begin{array}{c} N \\ N \\ OH \end{array} \begin{array}{c} Cs_2CO_3 \\ DMF \end{array} \begin{array}{c} N \\ O \\ \end{array} \begin{array}{c} N \\ O \\ \end{array} \begin{array}{c} NO_2 \\ O \\ \end{array}$$

35
$$\frac{H_2}{Pd-C}$$
 HN $N-C$ NH_2 $\frac{Boc_2O}{TEA}$ O N $N-C$ NH_2

14.19 1-(3-Aminophenyl)-piperidin-2-on

14.20 1-(4-Amino-phenyl)-2-caprolactam

20

KMnO₄, CH₂Cl₂

Benzyltriethylammoniumchlorid

14.21 1-(4-Amino-3-fluor-phenyl)-piperidin-2-on

30
$$\stackrel{\mathsf{F}}{\underset{\mathsf{NO}_2}{\longleftarrow}} + \stackrel{\mathsf{Cs_2CO_3}}{\underset{\mathsf{DMF}}{\longrightarrow}} \underset{\mathsf{NO}_2}{\underset{\mathsf{F}}{\longrightarrow}} - \underset{\mathsf{O}}{\overset{\mathsf{C}}{\longrightarrow}}$$

14.22 1-(4-Amino-2-fluor-phenyl)-piperidin-2-on

 $\begin{array}{c} 10 \\ \hline \\ Pd-C \end{array} \begin{array}{c} O \\ \hline \\ N \end{array} \begin{array}{c} -NH \\ \hline \end{array}$

15 14.23 1-(4-Amino-2-fluor)-2-caprolactam

KMnO₄, CH₂Cl₂

Benzyltriethylammoniumchlorid

NO₂

NO₂

Ra-Ni

H₂

Ra-Ni

F

30

Pharmakologische Daten

Affinität zu Rezeptoren

5 Tabelle 1

FXa-IC ₅₀ [M]	TF/FVIIa-IC ₅₀ [M]
1.8 x 10 ⁻⁸	2.3 x 10 ⁻⁸
2.7 x 10 ⁻⁸	· ·
1.8 x 10 ⁻⁶	3.9 x 10 ⁻⁶
3.7 x 10 ⁻⁹	
	1.8 x 10 ⁻⁸ 2.7 x 10 ⁻⁸ 1.8 x 10 ⁻⁶

15

. 10

20

25

30

Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:

Beispiel A: Injektionsgläser

Eine Lösung von 100 g eines Wirkstoffes der Formel I und 5 g Dinatriumhydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.

Beispiel B: Suppositorien

Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.

Beispiel C: Lösung

Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I, 9,38 g $NaH_2PO_4 \cdot 2 H_2O$, 28,48 g $Na_2HPO_4 \cdot 12 H_2O$ und 0,1 g Benzalkonium-chlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 I auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D: Salbe

Man mischt 500 mg eines Wirkstoffes der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.

35

30

Beispiel E: Tabletten

Ein Gemisch von 1 kg Wirkstoff der Formel I, 4 kg Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff enthält.

Beispiel F: Dragees

10

5

Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

15

20

Beispiel G: Kapseln

2 kg Wirkstoff der Formel I werden in üblicher Weise in Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.

Beispiel H: Ampullen

25

Eine Lösung von 1 kg Wirkstoff der Formel I in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg Wirkstoff.

30

Patentansprüche

1. Verbindungen der Formel I

5		$A = A^{R^2}$
		$R^1 \leftarrow \begin{array}{c} E \\ \\ \end{array} X - Y - T$
	•	l l
10		D—G 0
	worin	
	R^1, R^2	jeweils unabhängig voneinander H, =O, Hal, A, Ethinyl, OR ³ , N(R ³) ₂ , NO ₂ , CN, N ₃ , COOR ³ , CON(R ³) ₂ ,
	•	$-[C(R^4)_2]_n$ -Ar, $-[C(R^4)_2]_n$ -Het, $-[C(R^4)_2]_n$ -Cycloalkyl,
15		-[C(R) _{2]n} -Ar, -[C(R) _{2]n} -Het, -[C(R) _{2]n} -Cycloaikyi, -OCOR ³ , -OCON(R ³) ₂ , NR ³ COA oder NR ³ SO ₂ A,
	R ¹ und R ²	zusammen auch einen bicyclisch oder spirocyclisch
		gebundenen 3- bis 7-gliedrigen Carbo- oder
		Heterocyclus mit 0 bis 3 N-, O- und/oder S-Atomen,
20	R ³	H, A, $-[C(R^4)_2]_n$ -Ar', $-[C(R^4)_2]_n$ -Het', $-[C(R^4)_2]_n$ -Cycloalkyl,
	R⁴	H oder A,
	W	N, CR ³ , oder ein sp ² hybridisiertes C-Atom,
	E	zusammen mit W einen 3- bis 7-gliedrigen gesättigten
25		carbocyclischen oder heterocyclischen Ring mit 0 bis 3
		N-, 0 bis 2 O- und/oder 0 bis 2 S-Atomen,
		der eine Doppelbindung enthalten kann,
	D	einen ein- oder zweikernigen unsubstituierten oder ein-
		oder mehrfach durch Hal, A, OR ³ , N(R ³) ₂ , NO ₂ , CN,
30		COOR ³ oder CON(R ³) ₂ substituierten aromatischen
		Carbo- oder Heterocyclus mit 0 bis 4 N-, O- und/oder S-
		Atomen,
	G	$-[C(R^4)_2]_n$ -, $-[C(R^4)_2]_nNR^3$ -, $-[C(R^4)_2]_nO$ - oder $-[C(R^4)_2]_nS$ -,
35	x	$-[C(R^4)_2]_nCONR^3[C(R^4)_2]_n-, -[C(R^4)_2]_nNR^3CO[C(R^4)_2]_n-,$
		$-[C(R^4)_2]_nNR^3[C(R^4)_2]_n$ - oder $-[C(R^4)_2]_nO[C(R^4)_2]_n$ -,

	Υ	Alkylen, Cycloalkylen, Het-diyl oder Ar-diyl,
	. T	einen ein- oder zweikernigen gesättigten oder
		ungesättigten Carbo- oder Heterocyclus mit 0 bis 4
••		N-, O- und/oder S-Atomen, der ein- oder zweifach durch
5		$=0, =S, =NR^3, =N-CN, =N-NO_2, =NOR^3, =NCOR^3,$
		=NCOOR ³ , =NOCOR ³ substituiert ist und ferner ein-,
		zwei- oder dreifach durch R ³ , Hal, A, -[C(R ⁴) ₂] _n -Ar,
		-[C(R ⁴) ₂] _n -Het, -[C(R ⁴) ₂] _n -Cycloalkyl, OR ³ , N(R ³) ₂ , NO ₂ ,
10		CN, COOR ³ , CON(R ³) ₂ , NR ³ COA, NR ³ CON(R ³) ₂ ,
	•	NR ³ SO ₂ A, COR ³ , SO ₂ NR ³ und/oder S(O) _n A substituiert
		sein kann,
	Α .	unverzweigtes oder verzweigtes Alkyl mit 1-10 C-
	Α .	Atomen, worin eine oder zwei CH ₂ -Gruppen durch O-
15		oder S-Atome und/oder durch –CH=CH-Gruppen
		und/oder auch 1-7 H-Atome durch F ersetzt sein
		können,
	. Ar	unsubstituiertes oder ein-, zwei- oder dreifach durch
20	· Al	Hal, A, OR ³ , N(R ³) ₂ , NO ₂ , CN, COOR ³ , CON(R ³) ₂ ,
		NR ³ COA, NR ³ CON(R ³) ₂ , NR ³ SO ₂ A, COR ³ , SO ₂ N(R ³) ₂ ,
		$S(O)_nA$, $-[C(R^4)_2]_n$ - $COOR^3$ oder $-O[C(R^4)_2]_o$ - $COOR^3$
		substituiertes Phenyl, Naphthyl oder Biphenyl,
25	Ar	unsubstituiertes oder ein-, zwei- oder dreifach durch
		Hal, A, OR ⁴ , N(R ⁴) ₂ , NO ₂ , CN, COOR ⁴ , CON(R ⁴) ₂ ,
		NR ⁴ COA, NR ⁴ CON(R ⁴) ₂ , NR ⁴ SO ₂ A, COR ⁴ , SO ₂ N(R ⁴) ₂ ,
		$S(O)_nA$, $-[C(R^4)_2]_n-COOR^4$ oder $-O[C(R^4)_2]_0-COOR^4$
30		substituiertes Phenyl, Naphthyl oder Biphenyl,
	Het	einen ein- oder zweikernigen gesättigten, ungesättigten
		oder aromatischen Heterocyclus mit 1 bis 4 N-, O-
		und/oder S-Atomen, der unsubstituiert oder ein-, zwei-
0E		oder dreifach durch Hal, A, - $[C(R^4)_2]_n$ -Ar, - $[C(R^4)_2]_n$ -Het',
35		-[C(R ⁴) ₂] _n -Cycloalkyl, OR ³ , N(R ³) ₂ , NR ³ COŅ(R ³) ₂ , NO ₂ ,
		CN,

				$-[C(R^4)_2]_n$ -COOR ³ , $-[C(R^4)_2]_n$ -CON(R ³) ₂ , NR ³ COA,
				NR ³ SO ₂ A, COR ³ , SO ₂ NR ³ , S(O) _m A und/oder
				Carbonylsauerstoff substituiert sein kann,
			Het'	einen ein- oder zweikernigen gesättigten, ungesättigten
	5			oder aromatischen Heterocyclus mit 1 bis 4 N-, O-
				und/oder S-Atomen, der unsubstituiert oder ein- oder
				zweifach durch Carbonylsauerstoff, =S, =N(R4)2, Hal, A,
				OR ⁴ , N(R ⁴) ₂ , NO ₂ , CN, COOR ⁴ , CON(R ⁴) ₂ , NR ⁴ COA,
	10			NR ⁴ CON(R ⁴) ₂ , NR ⁴ SO ₂ A, COR ⁴ , SO ₂ NR ⁴ und/oder
				S(O) _n A substituiert sein kann,
			Hal	F, CI, Br oder I,
			n	0, 1 oder 2,
	15		0	1, 2 oder 3
	10		bedeuten,	·
			sowie ihre p	harmazeutisch verwendbaren Derivate, Solvate und
			Stereoisome	ere, einschließlich deren Mischungen in allen
			Verhältnisse	en.
	20		,	
		2.	Verbindung	en nach Anspruch 1, worin
			D eine	en ein- oder zweikernigen unsubstituierten oder ein- oder
			zwe	ifach durch Hal substituierten aromatischen Carbo- oder
	25		Het	erocyclus mit 0 bis 4 N-, O- und/oder S-Atomen,
			bedeutet,	
			sowie ihre p	harmazeutisch verwendbaren Derivate, Solvate und
•	Stereoison			ere, einschließlich deren Mischungen in allen
	30		Verhältnisse	en.
		3.	Verbindung	en nach Anspruch 1 oder 2, worin
			D ein-	oder zweifach durch Hal substituiertes Phenyl, Pyridyl
	35		ode	er Thienyl bedeutet,

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

5

Verbindungen gemäß einem oder mehreren der Ansprüche 1-3, worin

 R^1, R^2

jeweils unabhängig voneinander H, =O, COOR3, OH,

OA, NH₂, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N₃,

Ethinyl, Vinyl, Allyloxy, -OCOR3, NHCOA oder NHSO2A,

bedeuten,

15

20

10

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

Verbindungen gemäß einem oder mehreren der Ansprüche 1-4, 5. worin

G $(CH_2)_n$ oder $(CH_2)_nNH$ -

bedeutet.

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

6. Verbindungen gemäß einem oder mehreren der Ansprüche 1-5, worin

X

 $-[C(R^4)_2]_nCONR^3[C(R^4)_2]_n$ - bedeutet,

30

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

35

Verbindungen gemäß einem oder mehreren der Ansprüche 1-6, worin

X CONH bedeutet,

20

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

Verbindungen gemäß einem oder mehreren der Ansprüche 1-7,
 worin

Y Ar-diyl bedeutet, sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

9. Verbindungen nach den Ansprüchen 1-8, worin

15 Y unsubstituiertes oder ein- oder zweifach durch Methyl,
Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes 1,3oder 1,4-Phenylen
bedeutet,

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

- Verbindungen gemäß einem oder mehreren der Ansprüche 1-9, worin
 - T einen ein- oder zweikernigen gesättigten oder ungesättigten Heterocyclus mit 1 bis 2 N- und/oder O-Atomen, der ein- oder zweifach durch Carbonylsauerstoff substituiert ist,

bedeutet,
sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und
Stereoisomere, einschließlich deren Mischungen in allen
Verhältnissen.

35 11. Verbindungen gemäß einem oder mehreren der Ansprüche 1-10, worin ein- oder zweifach durch Carbonylsauerstoff substituiertes

		ı Oni	odor zwonach darch odrbonylodajoroton odbomalorios
		Pipe	eridin-1-yl, Pyrrolidin-1-yl, 1 <i>H-</i> Pyridin-1-yl, Morpholin-4-yl,
		Pipe	erazin-1-yl, 1,3-Oxazolidin-3-yl, 2 <i>H</i> -Pyridazin-2-yl, Pyrazin-
		1-yl,	, Azepan-1-yl, 2-Aza-bicyclo[2.2.2]-octan-2-yl,
5		bedeutet,	
		sowie ihre p	harmazeutisch verwendbaren Derivate, Solvate und
		Stereoisome	ere, einschließlich deren Mischungen in allen
		Verhältnisse	en.
10			·
	12.	Verbindung	en gemäß einem oder mehreren der Ansprüche 1-11,
		worin	
		Ar uns	ubstituiertes oder ein- oder zweifach durch Hal, A, OA,
15		SO ₂	A, COOR ² , SO ₂ NH ₂ oder CN substituiertes Phenyl,
		bedeutet,	
		sowie ihre p	harmazeutisch verwendbaren Derivate, Solvate und
		Stereoisome	ere, einschließlich deren Mischungen in allen
00		Verhältnisse	en.
20			
	13.	Verbindung	en gemäß einem oder mehreren der Ansprüche 1-12,
	,	worin	
		D	einen ein- oder zweikernigen unsubstituierten oder ein-
25			oder zweifach durch Hal substituierten aromatischen
			Carbo- oder Heterocyclus mit 0 bis 4 N-, O- und/oder S-
			Atomen,
		R^1 , R^2	jeweils unabhängig voneinander H, =O, COOR ³ , OH,
30			OA, NH ₂ , Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N ₃ ,
			Ethinyl, Vinyl, Allyloxy, -OCOR ³ , NHCOA oder NHSO ₂ A,
		R ¹ und R ²	zusammen auch einen spirocyclisch gebundenen 3- bis
			6-gliedrigen Carbocyclus,
05		R^3	H oder A,
35		R⁴	H oder A,
		W	N, CR ³ , oder ein sp ² hybridisiertes C-Atom,

			E	zusammen mit W einen 3- bis 7-gliedrigen gesättigten	
				carbocyclischen oder heterocyclischen Ring mit 0 bis 3	
		•		N-, 0 bis 2 O- und/oder 0 bis 2 S-Atomen,	
	_			der eine Doppelbindung enthalten kann,	
	5		G	$(CH_2)_n$ oder $(CH_2)_nNH$ -,	
			X	$-[C(R^4)_2]_nCONR^3[C(R^4)_2]_n$ -,	
			Υ	Ar-diyl,	
			Ar	unsubstituiertes oder ein- oder zweifach durch Hal, A,	
	10			OA, SO ₂ A, COOR ² , SO ₂ NH ₂ oder CN substituiertes Phenyl,	
			Т	einen ein- oder zweikernigen gesättigten oder	
				ungesättigten Heterocyclus mit 1 bis 2 N- und/oder O-	
	4 =			Atomen, der ein- oder zweifach durch Carbonyl-	
	15			sauerstoff substituiert ist,	
			Α	unverzweigtes oder verzweigtes Alkyl mit 1-10 C-	
r.l				Atomen und worin 1-7 H-Atome durch F ersetzt sein	
				können,	
	20		Hal	F, Cl, Br oder I,	
			n	0, 1 oder 2,	
			bedeuten,	·	
			sowie ihre pl	harmazeutisch verwendbaren Derivate, Solvate und	
	25		Stereoisomere, einschließlich deren Mischungen in allen		
			Verhältnissen.		
		14.	Verbindungen gemäß einem oder mehreren der Ansprüche 1-13,		
	30		worin		
			D	ein- oder zweifach durch Hal substituiertes Phenyl,	
				Pyridyl oder Thienyl,	
			R^1 , R^2	jeweils unabhängig voneinander H, =O, COOR ³ , OH,	
	0.5			OA, NH ₂ , Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N ₃ ,	
	35			Ethinyl, Vinyl, Allyloxy, -OCOR ³ , NHCOA oder NHSO₂A,	

			R ¹ und R ²	zusammen auch einen spirocyclisch gebundenen 3- bis	
			. 9	6-gliedrigen Carbocyclus,	
	••		R ³	H oder A,	
	5		R⁴	H oder A,	
	Ü		W	N, CR ³ , oder ein sp ² hybridisiertes C-Atom,	
			E	zusammen mit W einen 3- bis 7-gliedrigen gesättigten	
				carbocyclischen oder heterocyclischen Ring mit 0 bis 3	
				N-, 0 bis 2 O- und/oder 0 bis 2 S-Atomen,	
•	10			der eine Doppelbindung enthalten kann,	
			G	(CH ₂) _n oder (CH ₂) _n NH-,	
			Χ .	CONH,	
			Υ .	unsubstituiertes oder ein- oder zweifach durch Methyl,	
	15			Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes	
				1,3- oder 1,4-Phenylen,	
			Т	ein- oder zweifach durch Carbonylsauerstoff	
				substituiertes Piperidin-1-yl, Pyrrolidin-1-yl, 1H-Pyridin-	
				1-yl, Morpholin-4-yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl,	
	20			2 <i>H</i> -Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl, 2-Aza-	
				bicyclo[2.2.2]-octan-2-yl,	
		•	Α	unverzweigtes oder verzweigtes Alkyl mit 1-10 C-	
				Atomen und worin 1-7 H-Atome durch F ersetzt sein	
	25			können,	
			Hal	F, Cl, Br oder I,	
			n	0, 1 oder 2,	
			bedeuten,		
٠	00		sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und		
	30		Stereoisomere, einschließlich deren Mischungen in allen		
			Verhältnisse		
	15.		Verbinduna	en gemäß einem oder mehreren der Ansprüche 1-14,	
	35		worin		

		D	ein- oder zweifach durch Hal substituiertes Phenyl,
			Pyridyl oder Thienyl
		R^1	H, =O, COOR ³ , OH, OA, NH ₂ , Alkyl mit 1, 2, 3, 4, 5 oder
			6 C-Atomen, N ₃ , Ethinyl, Vinyl, Allyloxy, -OCOR ³ ,
	5		NHCOA oder NHSO₂A,
		R^2	H, =O, OH, OA oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-
			Atomen,
		R ¹ und R ²	zusammen auch einen spirocyclisch gebundenen 3- bis
	10		6-gliedrigen Carbocyclus,
		R^3	H oder A,
		R⁴	H oder A,
, <u> </u>		E	Description 4 Ordinal Disposidion 1 2-dival Ovazolidin-3 4-
	15	().	Pyrrolidin-1,2-diyl, Piperidin-1,2-diyl, Oxazolidin-3,4-
		W	. 0.5 July Thio-polidin 2.4 divl 2.5-Dibydro-1 <i>H</i> -pyrrol-
			oder 3,5-diyl, Thiazolidin-3,4-diyl, 2,5-Dihydro-1 <i>H</i> -pyrrol-
			1,5-diyl, [1,3]-Dioxolan-4,5-diyl, [1,3]-Oxazinan-3,4-diyl,
			Piperazin-1,4-diyl, Tetrahydrofuran-3,4-diyl oder
	20		Azetidin-1,2-diyl,
		G	$(CH_2)_n$ oder $(CH_2)_nNH$ -,
		X	CONH,
		Υ	unsubstituiertes oder ein- oder zweifach durch Methyl,
	25		Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes
		•	1,3- oder 1,4-Phenylen,
		Т	ein- oder zweifach durch Carbonylsauerstoff
			substituiertes Piperidin-1-yl, Pyrrolidin-1-yl, 1H-Pyridin-
			1-yl, Morpholin-4-yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl,
	30		2H-Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl, 2-Aza-
			bicyclo[2.2.2]-octan-2-yl,
		Α	unverzweigtes oder verzweigtes Alkyl mit 1-10 C-
		• •	Atomen und worin 1-7 H-Atome durch F ersetzt sein
	35		können,
		Hal	F, CI, Br oder I,

n 0, 1 oder 2,

bedeuten,

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

16. Verbindungen gemäß Anspruch 1 ausgewählt aus der Gruppe

10

5

- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[2-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-trifluormethyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
- (R)-Piperidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid},
- (R)-Pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(2-oxo-2*H*-pyrazin-1-yl)-phenyl]-amid},
- (R)-2,5-Dihydro-pyrrol-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
- (R)-1-(5-Chlor-thiophen-2-carbonyl)-pyrrolidin-2-carbonsäure-N-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid,
- (R)-1-(5-Chlor-thiophen-2-carbonyl)-pyrrolidin-2-carbonsäure-N-[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid,

15

20

25

30

	(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-
	{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
	(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-
	{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
5	(4R,5S)- 5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-
	phenyl)-amid]-4-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
	(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-
	phenyl)-amid-4-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
10	(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-
	$\{[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid\},$
	(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-
	phenyl)-amid]-4-{[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid},
15	(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-
	phenyl)-amid]-4-{[3-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
	(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-
	phenyl)-amid]-4-{[3-chlor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
•	(4R,5R)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-
20	phenyl)-amid]-4-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
	(4R,5S)-5-Methyl-oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-
	phenyl)-amid]-4-{[4-(2-oxo-2H-pyrazin-1-yl)-phenyl]-amid},
	(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-
25	{[4-(2-oxo-2H-pyrazin-1-yl)-phenyl]-amid},
	(R)-Oxazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-
	{[3-chlor-4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid},
	(S)-Thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-
30	{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
	(S)-1,1-Dioxo-1λ ⁶ -thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-
	phenyl)-amid] 4-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
	(S)-Thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-4-
05	{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},
35	(S)-1,1-Dioxo-1λ ⁶ -thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-
	phenyl)-amid] 4-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

	(R)-Thiazolidin-3,4-dicarbonsäure-3-[(4-chlor-phenyl)-amid]-	
	4-{[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid},	
	3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure-[4-	
_	(3-oxo-morpholin-4-yl)-phenyl]-amid,	
5	3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure-[3-	
	methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid,	
	3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure-[4-	
	(2-oxo-2 <i>H</i> -pyridin-1-yl)-phenyl]-amid,	
10	(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-	
	chlorpyridin-2-yl)-amid]-2-{[4-(2-oxo-2 <i>H</i> -pyridin-1-yl)-phenyl]-amid},	
	(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-	
	chlorpyridin-2-yl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},	
15	(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-	
	chlorpyridin-2-yl)-amid]-2-{[4-(2-oxo-2H-pyrazin-1-yl)-phenyl]-amid},	
	(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(5-	
	chlorpyridin-2-yl)-amid]-2-{[3-fluor-4-(2-oxo-2 <i>H</i> -pyridin-1-yl)-phenyl]-	
20	amid},	
20	(R)-4,4-Dimethoxypyrrolidin-1,2-dicarbonsäure-1-[(5-	
	chlorpyridin-2-yl)-amid]-2-{[4-(2-oxo-2 <i>H</i> -pyridin-1-yl)-phenyl]-amid},	
	(R)-4,4-Dimethoxypyrrolidin-1,2-dicarbonsäure-1-[(5-	
	chlorpyridin-2-yl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},	
25	(R)-4,4-Dimethoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-	
	chlorphenyl)-amid]-2-{[4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid},	
	(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-	
	phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},	
30	(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-	
	phenyl)-amid]-2-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},	•
	(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-	
	phenyl)-amid]-2-{[4-(2-oxo-2 <i>H</i> -pyridin-1-yl)-phenyl]-amid},	
35	(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-	
-	phenyl)-amid]-2-{[2-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid},	

(2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(2-oxo-pyrazin-1-yl)-phenyl]-amid}, (2R,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[3-fluor-4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amid}, (2R,3R)-3-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[3-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,3S)-3-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[3-fluor-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4S)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2S,4R)-4-Hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, 3,4-Dihydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4S)-4-Azido-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4S)-4-Amino-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4R)-4-Azido-pyrrolidin-1,2-dicarbonsäure- 1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4R)-4-Amino-pyrrolidin-1,2-dicarbonsäure- 1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4S)-4-Acetamino-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4R)-4-Acetamino-pyrrolidin-1,2-dicarbonsäure- 1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4S)-4-Methylsulfonylamino-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4R)-4-Methylsulfonylamino-pyrrolidin-1,2-dicarbonsäure- 1-[(4-chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4R)-4-Methoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

5

10

15

20

25

30

(2R,4R)-4-Ethoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, (2R,4R)-4-Propoxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, 5 (2R,4R)-4-Allyloxy-pyrrolidin-1,2-dicarbonsäure-1-[(4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, Isobuttersäure-(3R,5R)-1-(4-chlor-phenyl- carbamoyl)-5-[4-(3oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-3-yl-ester, 10 Propionsäure-(3R,5R)-1-(4-chlor-phenyl-carbamoyl)-5-[4-(3oxo-morpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-3-yl-ester, Essigsäure-(3R,5R)-1-(4-chlor-phenyl-carbamoyl)-5-[4-(3-oxomorpholin-4-yl)-phenylcarbamoyl]-pyrrolidin-3-yl-ester, [1,3]Dioxolan-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[4-15 (3-oxo-morpholin-4-yl)-phenyl]-amid}, [1,3]Dioxolan-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[3methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, [1,3]Dioxolan-4,5-dicarbonsäure-4-[(4-chlorphenyl)-amid]-5-{[4-20 (2-oxo-2H-pyridin-1-yl)-phenyl]-amid}, [1,3]Dioxolan-2,2-dimethyl-4,5-dicarbonsäure-4-[(4-chlorphenyl)amid]-5-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, [1,3]Dioxolan-2,2-dimethyl-4,5-dicarbonsäure-4-[(4-chlorphenyl)amid]-5-{[3-methyl-4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, [1,3]Dioxolan-2,2-dimethyl-4,5-dicarbonsäure-4-[(4-chlorphenyl)amid]-5-{[4-(2-oxo-1*H*-pyridin-1-yl)-phenyl]-amid}, 1-BOC-piperazin-1,2-dicarbonsäure-1-[4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, 30 Piperazin-1,2-dicarbonsäure-1-[4-chlorphenyl)-amid]-2-{[4-(3oxo-morpholin-4-yl)-phenyl]-amid}, [1,3]Oxazinan-3,4-dicarbonsäure-1-[4-chlorphenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid}, 35 (2R,4S)-4-Ethinyl-4-hydroxy-pyrrolidin-1,2-dicarbonsäure-1-[(4chlor-phenyl)-amid]-2-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

10

15

20

4-Oxa-6-aza-spiro[2.4]heptan-6,7-dicarbonsäure-6-[(4-chlorphenyl)-amid]-7-{[4-(3-oxo-morpholin-4-yl)-phenyl]-amid},

(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(6-chlorpyridin-3-yl)-amid]-2-{[4-(2-oxo-2*H*-pyridin-1-yl)-phenyl]-amid},

(2R,4R)-4-Hydroxypyrrolidin-1,2-dicarbonsäure-1-[(6-chlorpyridin-3-yl)-amid]-2-{[4-(2-oxo-2H-pyrazin-1-yl)-phenyl]-amid},

sowie ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

- 17. Verfahren zur Herstellung von Verbindungen der Formel I nach den Ansprüchen 1-16 sowie ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, dadurch gekennzeichnet, daß man
 - a) zur Herstellung von Verbindungen der Formel I, worin

W N und

G NH bedeuten,

eine Verbindung der Formel II

25

$$R^1 \xrightarrow{E} X^{R^2} X - Y - T$$

| H

30

worin R¹, R², E, X, Y und T die in Anspruch 1 angegebene Bedeutung

und W N bedeutet,

haben,

35

mit einer Verbindung der Formel III

D-N=C=O

111

worin

D die in Anspruch 1 angegebene Bedeutung hat,

5

umsetzt,

oder

10

- b) zur Herstellung von Verbindungen der Formel I, worin $X [C(R^4)_2]_n CONR^3 [C(R^4)_2]_n$ bedeutet,
- eine Verbindung der Formel IV

$$HNR^{3}-[C(R^{4})_{2}]_{n}-Y-T$$

IV

worin R³, n, Y und T die in Anspruch 1 angegebene Bedeutung haben,

mit einer Verbindung der Formel V

25

20

$$R^{1}$$
 E
 R^{2}
 $[C(R^{4})_{2}]_{n}$ -CO-L
 D
 C

30

35

worin

L CI, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet und R¹, R², R⁴, D, E, G, W und n die in Anspruch 1 angegebene Bedeutung haben,

umsetzt,

oder

5

c) zur Herstellung von Verbindungen der Formel I, worin W N bedeutet,

eine Verbindung der Formel II

10

worin

R¹, R², E, X, Y und T die in Anspruch 1 angegebene Bedeutung haben,

II

20 und W N bedeutet,

mit einer Verbindung der Formel VI

25

D-G-CO-L

VI

worin D und G die in Anspruch 1 angegebene Bedeutung haben und

30 L

CI, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet,

umsetzt,

35

und/oder eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.

- Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 bis 16 als Inhibitoren des Koagulationsfaktors Xa.
- 5 19. Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 bis 16 als Inhibitoren des Koagulationsfaktors VIIa.
- 20. Arzneimittel, enthaltend mindestens eine Verbindung der Formel I

 nach einem oder mehreren der Ansprüche 1 bis 16 und/oder ihre
 pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere,
 einschließlich deren Mischungen in allen Verhältnissen, sowie
 gegebenenfalls Träger- und/oder Hilfsstoffe.
- 21. Arzneimittel enthaltend mindestens eine Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 16 und/oder ihre pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, und mindestens einen weiteren Arzneimittelwirkstoff.
 - 22. Verwendung von Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 16 und/oder ihre physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung von Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie, Claudicatio intermittens, Migräne, Tumoren, Tumorerkrankungen und/oder Tumormetastasen.
 - 23. Set (Kit), bestehend aus getrennten Packungen von
 (a) einer wirksamen Menge an einer Verbindung der Formel I
 gemäß einem oder mehreren der Ansprüche 1 bis 16 und/oder ihrer
 pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere,
 einschließlich deren Mischungen in allen Verhältnissen,

15

30

und

- (b) einer wirksamen Menge eines weiteren Arzneimittelswirkstoffs.
- Verwendung von Verbindungen der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 16 und/oder ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen,

zur Herstellung eines Arzneimittels zur Behandlung von Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie, Claudicatio intermittens, Migräne, Tumoren, Tumorerkrankungen und/oder Tumormetastasen,

in Kombination mit mindestens einem weiteren Arzneimittelwirkstoff.

25. Zwischenverbindungen der Formel I-1

 $R^{1} \stackrel{\mathsf{E}}{\longleftarrow} V$

$$D-G$$

1-1

s worin

D ein- oder zweifach durch Hal substituiertes Phenyl, Pyridyl oder Thienyl,

H, OH, OA, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen oder Ethinyl,

R² H, OH, OA oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

E Pyrrolidin-1,2-diyl, Piperidin-1,2-diyl, Oxazolidin-3,4-

oder 3,5-diyl, G $(CH_2)_n$ oder $(CH_2)_nNH_{-}$, X COOH,

A Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

Hal F, Cl, Br oder I,

n 0, 1 oder 2,

bedeuten,

5

sowie deren Isomere und Salze.

- Verbindungen nach Anspruch 25, ausgewählt aus der Gruppe
 3-(4-Chlorphenylcarbamoyl)-oxazolidin-4-carbonsäure,
 3-(5-Chlorthiophen-2-carbonyl)-oxazolidin-5-carbonsäure,
 sowie deren Isomere und Salze.
- 27. Zwischenverbindungen ausgewählt aus der Gruppe
 (2R,4S)-BOC-4-Ethinyl-4-hydroxy-pyrrolidin-2-carbonsäure,
 (2R,4R)-BOC-4-Ethinyl-4-hydroxy-pyrrolidin-2-carbonsäure-alkylester,
 (2R,4S)-BOC-4-Ethinyl-4-hydroxy-pyrrolidin-2-carbonsäure-alkylester,
 (2R,4R)-BOC-4-Ethinyl-4-hydroxy-pyrrolidin-2-carbonsäure-alkylester,
 wobei alkyl 1, 2, 3, 4, 5 oder 6 C-Atome hat,
 sowie deren Isomere und Salze.
 - 28. Zwischenverbindungen der Formel I-2

$$R^1 \xrightarrow{E} X^{R^2} X - Y - T$$

worin

30

35

R¹ H, COOR³, OH, OA, NH₂, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, N₃, Ethinyl, Vinyl, Allyloxy, -OCOR³, NHCOA oder NHSO₂A,

1-2

R² H, OH, OA oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

20

35

R¹ und R² zusammen auch einen spirocyclisch gebundenen 3- bis 6gliedrigen Carbocyclus,

R³ H oder A,

5 Pyrrolidin-1,2-diyl, Piperidin-1,2-diyl, Oxazolidin-3,4-

oder 3,5-diyl,

G $(CH_2)_n$ oder $(CH_2)_nNH_{-}$,

10 X CONH,

Y unsubstituiertes oder ein- oder zweifach durch Methyl,
Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes 1,3-

oder 1,4-Phenylen,

T ein- oder zweifach durch Carbonylsauerstoff substituiertes Piperidin-1-yl, Pyrrolidin-1-yl, 1*H*-Pyridin-1-yl, Morpholin-4-

yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl, 2*H*-Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl, 2-Aza-bicyclo[2.2.2]-octan-2-yl,

1-2a

All Land Co. A. Franks C. Atimor

A Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen,

Hal F, Cl, Br oder I,

n 0, 1 oder 2,

bedeuten,

sowie deren Isomere und Salze.

29. Verbindungen nach Anspruch 28 der Formel I-2a,

 $R^{1} \xrightarrow{E} X^{R^{2}} X - Y - T$

worin

H, COOR3, OH, OA, NH2, Alkyl mit 1, 2, 3, 4, 5 oder 6 C- R^1 Atomen, N₃, Ethinyl, Vinyl, Allyloxy, -OCOR³, NHCOA oder NHSO₂A. H, OH, OA oder Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, R2 5 \mathbb{R}^3 H oder A. Pyrrolidin-1,2-diyl, (CH₂)_n oder (CH₂)_nNH-, G 10 CONH, X unsubstituiertes oder ein- oder zweifach durch Methyl, Υ Trifluormethyl, Ethyl, Propyl, Cl oder F substituiertes 1,3oder 1,4-Phenylen, 15 ein- oder zweifach durch Carbonylsauerstoff substituiertes T Piperidin-1-yl, Pyrrolidin-1-yl, 1H-Pyridin-1-yl, Morpholin-4yl, Piperazin-1-yl, 1,3-Oxazolidin-3-yl, 2H-Pyridazin-2-yl, Pyrazin-1-yl, Azepan-1-yl, 2-Aza-bicyclo[2.2.2]-octan-2-yl, Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, 20 Α F, CI, Br oder I, Hal n 0, 1 oder 2, bedeuten, sowie deren Isomere und Salze. 30. Verbindungen nach Anspruch 29, ausgewählt aus der Gruppe (S)-Pyrrolidin-2-carbonsäure-N-[4-(3-oxo-morpholin-4-yl)-phenyl]amid, (R)-Pyrrolidin-2-carbonsäure-N-[4-(3-oxo-morpholin-4-yl)-phenyl]-30 amid, (2R,4R)-4-Hydroxy-pyrrolidin-2-carbonsäure-N-[4-(3-oxo-morpholin-4yl)-phenyl]-amid, 4-Hydroxy-pyrrolidin-2-carbonsäure-N-[4-(3-oxo-morpholin-4-yl)-35 phenyll-amid,

(R)-4,4-Dimethoxy-pyrrolidin-2-carbonsäure-*N*-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid, (2R,4R)-4-Methoxy-pyrrolidin-2-carbonsäure-*N*-[4-(3-oxo-morpholin-4-yl)-phenyl]-amid,

sowie deren Isomere und Salze.

10

5

15

20

25

30

. 35

Zusammenfassung

Neue Verbindungen der Formel I

5

$$R^1 \xrightarrow{E} X^2 X - Y - T$$
 $D - G O$

10

worin

D, E, G, W, X, Y, T, R^1 und R^2 die in Patentanspruch 1 angegebene Bedeutung

haben,

sind Inhibitoren des Koagulationsfaktors Xa und können zur Prophylaxe und/oder Therapie von thromboembolischen Erkrankungen und zur Behandlung von Tumoren eingesetzt werden.

20

15

25

30