Proyecto Calidad del Aire

Observaciones de la calidad del aire en Valencia desde varios puntos de observación

Índice

Nuestras Fuentes de Datos para el Proyecto

Para comprender y modelar la calidad del aire en Valencia, hemos integrado un conjunto diverso de fuentes de datos, capturando información en tiempo real, histórica y contextual

Cámaras

Se capturan y analizan imágenes de tráfico en Valencia para identificar patrones de movilidad y su relación con los niveles de contaminación. Esta información visual permite comprender mejor cómo influyen las dinámicas urbanas en la calidad del aire.

APIs

Los datos ambientales se obtienen en tiempo real mediante APIs, que proporcionan mediciones horarias clave (como niveles de NO₂, PM10, entre otros). Estas fuentes automatizadas permiten un monitoreo continuo y preciso de la calidad del aire.

PDFs

La documentación científica y técnica en formato PDF se utiliza para contextualizar y validar los resultados del proyecto. Estos documentos aportan referencias sólidas que respaldan el análisis y fortalecen las conclusiones obtenidas.

1. Imágenes de Tráfico en Tiempo Real

• Fuente: Cámaras de tráfico de la ciudad de Valencia.

Datos obtenidos: Capturas constantes de secuencias de imágenes, representando el flujo vehicular en distintas zonas urbanas.

Método de recopilación: Scripts desarrollados en Python se conectan a las cámaras mediante el protocolo RTSP (Real-Time Streaming Protocol), realizando capturas periódicas de manera automatizada.

Almacenamiento: Las imágenes recopiladas se almacenan de forma continua en la nube, específicamente en Azure Blob Storage, asegurando disponibilidad y escalabilidad.

Propósito: Estas imágenes permiten realizar un análisis visual del nivel de congestión vial, identificar patrones de tráfico en diferentes franjas horarias y zonas, y estudiar su relación con los niveles de contaminación atmosférica registrados.

Mejora de Imágenes

Real-ESRGAN es un modelo de IA de super-resolución basado en redes neuronales generativas adversariales (GAN), específicamente diseñado para la restauración práctica de imágenes en el mundo real.

Características principales:

Funcionalidad: Real-ESRGAN tiene como objetivo desarrollar algoritmos prácticos para la restauración general de imágenes/video. Su objetivo principal es mejorar la resolución y calidad de imágenes.

- Compresión JPEG
- Ruido y desenfoque
- Imágenes de baja resolución
- •

Capacidades técnicas:

- Ampliación de imágenes hasta 4x (y escalas arbitrarias)
- Restauración de rostros cuando se integra con GFPGAN
- Soporte para imágenes con canal alfa, escala de grises y 16-bit
- Procesamiento por mosaicos para imágenes grandes

Es especialmente útil para mejorar fotografías antiguas, imágenes de baja calidad, capturas de pantalla comprimidas y arte digital, ofreciendo resultados más realistas que los métodos tradicionales de interpolación.

Yolo (You Only Look Once)

¿Qué es?

Algoritmo de IA que detecta y clasifica múltiples objetos en una imagen con una sola pasada de red neuronal

¿Cómo funciona?

→ Divide la imagen en cuadrícula → Predice cajas delimitadoras + confianza + clasificación simultáneamente

Ventajas Clave

Velocidad: 30+ FPS en tiempo real

Eficiencia: Una red para todo el proceso

Precisión: Detecta múltiples objetos con alta exactitud

2. Datos de Sensores Ambientales (APIs)

Fuentes:

- API de Temperatura: Datos de sensores distribuidos en distintos puntos de Valencia.
- API de Calidad del Aire: Información proporcionada por la red oficial de estaciones de monitoreo ambiental.

Datos obtenidos:

Mediciones horarias de temperatura, niveles de contaminantes atmosféricos (NO₂, SO₂, O₃, PM10, PM2.5, entre otros) y variables meteorológicas relevantes como humedad o velocidad del viento.

Método de recopilación:

Scripts automatizados en Python acceden a las APIs cada hora, extrayendo los datos de manera programada para garantizar consistencia y actualización continua.

Almacenamiento:

Los datos se estructuran en archivos CSV por estación y tipo de variable, que se almacenan en la nube, permitiendo una gestión eficiente y un acceso rápido para análisis posteriores.

@ Propósito:

Capturar información cuantitativa y continua de las principales variables que influyen en la calidad del aire, permitiendo correlaciones con factores como el tráfico o las condiciones meteorológicas.

3. Documentación Científica y Técnica (PDFs)

Section Fuentes:

- Publicaciones científicas revisadas por pares.
- Informes técnicos de organismos especializados.
- Documentos oficiales de entidades gubernamentales como el Ayuntamiento de Valencia, la Generalitat Valenciana, el Gobierno de España y agencias europeas.

Información obtenida:

Estudios previos sobre calidad del aire, metodologías de análisis validadas, normativas medioambientales vigentes, planes de acción locales y europeos, datos históricos consolidados y factores clave va identificados por expertos.

Método de recopilación:

Revisión manual y descarga desde repositorios académicos, bases de datos técnicas y portales institucionales oficiales.

Almacenamiento:

Toda la documentación se organiza y almacena en el servidor ElasticSearch, lo que facilita su consulta estructurada por tema y fuente.

@ Propósito:

Aportar un marco científico y regulatorio sólido que sirva para validar los hallazgos del proyecto, contextualizar los datos empíricos y alinear el análisis con las políticas e iniciativas actuales en materia de calidad del aire.

Integración de Datos con Azure DataFactory

Los flujos de datos en Azure DataFactory permiten integrar y procesar múltiples fuentes heterogéneas (aire, temperatura y cámaras), generando tablas raw organizadas y limpias que son almacenadas en Databricks para su análisis posterior.

PipeLine DataFactory - Databricks

Este punto trata de optimizar la calidad, estructura y dar valor analítico de los datos para su explotación eficiente, manteniendo una arquitectura clara tipo lakehouse

(Raw > Processed > Gold).

A Entrada

Se parte de los archivos CSV almacenados en Azure Blob Storage, generados por la primera fase del flujo en DataFactory.

Proceso de Transformación en 4 Fases:

RAW (Bronce):

Se cargan directamente los CSVs tal como están, sin ninguna modificación. Esta capa actúa como respaldo íntegro y punto de trazabilidad de los datos originales.

Processed (Plata):

Se realiza limpieza y transformación inicial:

- Conversión de tipos de datos mediante cast (por ejemplo: fechas, números, booleanos).
- Eliminación de registros corruptos o incompletos.
- Estandarización de columnas y formatos.

Gold (Oro):

Se construyen tablas enriquecidas y resumidas, con lógica de negocio añadida:

- Cálculo de métricas derivadas.
- Inclusión de nuevas variables como si es fin de semana, franja horarja (día/noche), etc.
- Agregaciones para análisis más rápidos.

Las tablas Gold se exportan nuevamente como archivos CSV a Azure Blob Storage, listas para ser utilizadas por aplicaciones, dashboards o modelos de análisis.

GOLD DATA - Power BI - Aire

Dashboard de análisis de contaminantes y calidad del aire

GOLD DATA - Power BI - Temperatura

Dashboard de análisis de contaminantes y calidad del aire

GOLD DATA - Power BI - Cámaras

Dashboard de análisis de contaminantes y calidad del aire

EDA Y MACHINE LEARNING

- Se fusionaron datasets en formato CSV relacionados con la calidad del aire.
- Se eliminaron valores nulos y se aplicaron procesos de limpieza de datos.
- Se entrenó un modelo de clasificación para predecir el Índice de Calidad del Aire (ICA) a partir de variables asociadas a contaminantes.
- Se desarrolló un modelo de regresión para estimar los niveles de ozono en función de datos climáticos.

- Los documentos PDF fueron divididos en fragmentos (chunks) por página, y posteriormente cada fragmento fue indexado en Elasticsearch situado en una máquina virtual de azure para facilitar su búsqueda y recuperación contextual.
- Se utiliza Flask para construir una API REST que recibe preguntas del usuario.
- Se realiza una búsqueda semántica en Elasticsearch sobre un índice de documentos de calidad del aire.
- Los fragmentos relevantes se integran en un prompt contextualizado.
- La respuesta generada se limpia y se devuelve en formato JSON, incluyendo enlaces a los PDFs originales.
- En la interfaz web, se referencian los documentos PDF utilizados como fuente y se permite al usuario acceder directamente a su contenido completo para consulta contextual.

RAG

En este sistema RAG (Retrieval-Augmented Generation) se han indexado documentos relacionados con la calidad del aire en España a lo largo de los años. A través de la interfaz web, es posible realizar búsquedas para localizar los documentos que contienen información relevante en función de la pregunta del usuario.

Chatbot: Técnicas utilizadas

- Se utiliza Flask para construir una API REST que recibe preguntas del usuario.
- Se han creado funciones independientes para cada funcionalidad usando tools (temperatura, calidad del aire, búsqueda en Elasticsearch).

- En la búsqueda, se combinan búsquedas por palabras clave y vectoriales para mejorar precisión y relevancia.
- La función de temperatura y la de calidad de aire decide la fuente de datos según la fecha solicitada por el usuario: CSV para datos históricos y API para datos actuales.
- Se utiliza Ollama, instalada en el servidor Oráculo, para generar embeddings semánticos mediante un modelo de inteligencia artificial, incorporando control de errores para garantizar la robustez del proceso.

Chatbot: RAG

Busca informacion tecnica sobre catalunya

La información técnica sobre Catalunya incluye estudios de calidad del aire en regiones del país, iniciativas gubernamentales y datos ambientales relevantes. En Catalunya, se observan impactos ambientales significativos, como la reducción de contaminación en áreas del litoral y su relación con costes sanitarios y ambientales actuales. Estos estudios destacan la importancia de la mejora de la calidad del aire para la salud pública, reflejados en estudios como el de 2019 y el de 2022, que establecen límites legales para la utilización de combustibles altamente contaminantes. Además, se menciona la relevancia del impacto ambiental en la salud humana, incluyendo datos sobre mortales prematuras, enfermedades cardiovasculares y asma, que muestran cómo la calidad del aire afecta la salud pública.

En la captura se muestra una consulta al modelo **Ollama**, en la que se le solicita buscar en un servidor de **Elasticsearch** documentos relacionados con la pregunta del usuario. El modelo formula la búsqueda, accede al índice correspondiente y recupera los documentos más relevantes para construir una respuesta adecuada.

Chatbot: Calidad aire actual

En la captura se muestra una consulta al modelo Ollama sobre la calidad del aire en Olivereta. Para responder, el modelo realiza una Ilamada a una API, obtiene un JSON con los datos ambientales y extrae los valores relevantes para proporcionar una respuesta precisa y contextualizada.

Chatbot: Calidad aire histórico

En la captura se muestra una consulta al modelo **Ollama** sobre la calidad del aire en la **Universidad Politécnica** en un día concreto. Para responder, el modelo busca en el csv, obtiene la fila con los datos ambientales de dicho día y extrae los valores relevantes para proporcionar una respuesta precisa y contextualizada.

Cual es la temperatura en viveros hoy

La temperatura en la estación **ESTACI JARDINES DE VIVEROS** hoy (2025-05-28) es **24.4°C**. Las condiciones son:

- Humedad: 55.0%
- Viento: 1.7 m/s (dirección y coordenadas proporcionadas).

El tiempo actual es 2025-05-28T15:50:00+00:00.

El dia 2025-05-14 que temperatura hizo en la estación de viveros

La temperatura en la estación de Viveros el día 2025-05-14 fue 21.2°C.