PROPERTIES of CONTEXT-FREE LANGUAGES

Chap. 8

Summary

- The general properties for CFL to compare with the properties of Regular Languages (RL).
- The property of closure and decision algorithms
 - more complicated for CFL.
- More complicate for the two Pumping Lemmas,
 - one for CFL, the other for Linear Languages (\supset RL).
- While the basic idea is the same as for Regular languages, specific arguments normally involve much more detail.

Learning Objectives

- Apply the *Pumping Lemma* to show that a language is *not Context-Free*.
- State the *Closure properties* applicable to CFL.
- Prove that CFLs are *closed* under the operations of *union*, *concatenation*, and *star-closure*.
- Prove that CFLs are **not** closed under either intersection or complementation.
- Describe a Membership Algorithm for CFL.
- Describe an *algorithm* to determine if a CFL is *empty*.
- Describe an *algorithm* to determine if a CFL is *infinite*.

A Pumping Lemma for Context-Free Language

- Theorem 8.1: Given an *infinite* Context-Free Laguage L, there exists some positive integer m such that any sufficiently long string $w \in L$ with $|w| \ge m$ can be decomposed as
 - w = uvxyz, u, v, x, y, $z \in T^*$ with
 - $|vy| \ge 1$ and $|vxy| \le m$ where m is an arbitrary integer, $0 < m \le |w|$
 - an arbitrary, but equal number of repetitions of v and y yields another string in L: $w_i = uv^i x y^i z \in L$, $i \ge 0$.
- The "pumped" string consists of two separate parts (v and y) and can occur anywhere in the string.
- The Pumping Lemma can be used to show, by contradiction, that a certain language is *not context-free*.

An Illustration of the Pumping Lemma for CFL

As shown in Fig. 8.1,

the pumping lemma for CFLs can be illustrated by sketching a general derivation tree that shows a decomposition of the string into the required components.

Proof: ?

Proof: Pumping Lemma for CFL

<u>Proof</u>: Consider L – $\{\lambda\}$ and assume a CFG G without unit-productions or λ -productions.

Since the length of string on the right side of any production is bounded, say by k, the length of the derivation of any $w \in L$ must be at least |w|/k. Thus, since L is infinite, there exist arbitrarily long derivations and corresponding derivation trees of arbitrary height.

Consider such a high derivation tree and some sufficiently long path from the root to a leaf. Since the number of variables in G is finite, there must be some variable that repeats on this path.

Corresponding to the derivation tree in Fig.,

 $\exists S \Rightarrow^* uAz \Rightarrow^* uvAyz \Rightarrow^* uvxyz \text{ for } u,v,x,y,z \in T^*$

From this, we see A \Rightarrow * vAy and A \Rightarrow * x, so all the strings uv^ixy^iz , i = 0,1,2,..., can be generated by the grammar and are therefore in L.

Proof: Pumping Lemma for CFL

Cont.: $S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvxyz, u,v,x,y,z \in T^*$

In A \Rightarrow * vAy and A \Rightarrow * x, assume that no variable repeats. In Fig., no variable repeats in T₅. Similarly, assume no variable repeats in T₃ and T₄. Thus, the lengths of v, x and y depend only on the productions of the grammar and can be bounded independently of w, so $|vxy| \le m$ holds.

Since there are no unit/ λ -productions, ν and y can't both be empty, so $|\nu y| \ge 1$.

This completes the argument that w = uvxyz and $w_i = uv^ixy^iz \in L$, $i \ge 0$ holds.

Example: Pumping Lemma

• Example 8.1: L = $\{a^nb^nc^n \mid n \ge 0\}$ is not context free.

Pf) Let's choose n=m for an arbitrary m, so $w=a^mb^mc^m \in L$.

For w=uvxyz, if we choose vxy contains only a's since $|vxy| \le m$, then $u=a^j$, $v=a^k$, $x=a^p$, $y=a^q$, $z=a^{m-j-k-p-q}b^mc^m$.

Then, by Pumping Lemma, $w_i = uv^i x y^i z$.

With i=0, $w_0=uv^0xy^0z=uxz=a^{j+p}$ $a^{m-j-k-p-q}b^mc^m=a^{m-k-q}b^mc^m\notin L$. So, $L=a^nb^nc^n$ is not a CFL.

- Example 8.3: $L = \{a^{n!} \mid n \ge 0 \}$ is not context free.
- Example 8.4: $L = \{a^n b^j \mid n = i^2 \}$ is not context free.

Example: Pumping Lemma

• Example 8.2: L = $\{ww \mid w \in \{a,b\}^*\}$ is not context free.

Pf) Let's choose $ww=a^mb^ma^mb^m \in L$.

For w=uvxyz, let's choose each substring

 $u=a^{j}$, $v=a^{k}$, $x=a^{m-j-k}b^{p}$, $y=b^{q}$, $z=b^{m-p-q}a^{m}b^{m}$

where $m \ge j$, k, p, q > 0 and $|vxy| = m-j+p+q = m - (j-p-q) \le m$.

By Pumping Lemma, $w_i = uv^i x y^i z$.

Thus, with i=0, $w_0=uv^0xy^0z=uxz=a^{m-k}b^{m-q}a^mb^m\notin L$.

So, L = ww is not a CFL.

Example: Pumping Lemma

- Example 8.3: $L = \{a^{n!} \mid n \ge 0 \}$ is not context free.
- Pf) Similar to the Examples 8.1 & 8.2. See textbook.
- Example 8.4: $L = \{a^n b^j \mid n = j^2 \}$ is not context free.
- Pf) See the textbook.

Pumping Lemma for Linear Language

• <u>Definition 8.1</u>: A CFL *L* is said to be linear

if there exists a *linear* CFG G s.t. L = L(G).

(at most one nonterminal in the right side of production)

Cf) A grammar G = (V, T, S, P) is linear CFG

if all productions in P are linear with the form

$$A \rightarrow xBy$$
, where $A,B \in V$ and $x, y \in T^*$.

• Example 8.5(A):

L = $\{a^nb^n \mid n \ge 0\}$ is a linear language, generated by a linear CFG, G = ($\{S\}, \{a, b\}, S, P\}$) with P given by $\{S \rightarrow aSb \mid \lambda\}$.

• Example 8.5(B):

```
L = {w | n_a(w) = n_b(w)} is not linear because the grammar G, s.t. L = L(G), is not linear where G = ({S}, {a, b}, S, P) with P given by {S \rightarrow SS | aSb | bSa | \lambda }.
```

Pumping Lemma for Linear Language

• Theorem 8.2: Let L be an infinite linear language.

Then, $\exists m > 0$, s.t. for any $w \in L$, with $|w| \ge m$ can be decomposed as w = uvxyz with

```
|vy| \ge 1 and |uvyz| \le m,
```

s.t.
$$w_i = uv^i x y^i z \in L \ \forall i = 0, 1, 2,$$

- The updated condition, | uvyz | ≤ m, implies v and y must be within m symbols of the left & right ends of w, respectively.
- x can be of arbitrary length.

Pumping Lemma for Linear Language

• Theorem 8.2: Let L be an infinite linear language.

Then, $\exists m > 0$, s.t. for any $w \in L$, with $|w| \ge m$ can be decomposed as w = uvxyz with $|uvyz| \le m$, $|vy| \ge 1$, s.t. $w_i = uv^i xy^i z \in L \ \forall i$.

Proof: Since the language is linear there exists a linear grammar G for it. For the argument it is convenient to assume that G has no unit-productions and no λ -productions. An examination of the proofs of Theorem 6.3 and 6.4 makes it clear that removing unit-productions and λ -productions does not destroy the linearity of the grammar. We can therefore assume that G has the required property.

Consider now the derivation of a string $w \in L(G)$

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvxyz = w.$$

Assume, for the moment, that for every $w \in L(G)$, there is a variable A, such that

- **1.** in the partial derivation $S \stackrel{\circ}{\Rightarrow} uAz$ no variable is repeated,
- 2. in the partial derivation $S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uv \ Ayz$ no variable except A is repeated,
- 3. the repetition of A must occur in the first m steps, where m can depend on the grammar, but not on w.

If this is true, then the lengths of u, v, y, z must be bounded independent of w. This in turn implies that (8.5), (8.6), and (8.7) must hold.

Pumping Lemma for Linear Language

• Example 8.6: $L = \{w \mid n_a(w) = n_b(w)\}$ is not linear.

Assume that L is linear and apply Pumping Lemma in Thm. 8.2 to $w = a^m b^{2m} a^m$.

 $|uvyz| \le m$ shows that the substrings u, v, y, z must all consist of all a's: $u=a^j$, $v=a^k$, $v=a^p$, $z=a^q$, $x=a^{m-j-k}b^{2m}a^{m-p-q}$.

Then, by Pumping lemma for Linear language, $w_i = uv^i xy^i z$.

With i=0, $w_0 = uv^0 xy^0 z = uxz = a^j a^{m-j-k} b^{2m} a^{m-p-q} a^q = a^{m-k} b^{2m} a^{m-p} \notin L$. So, $L = a^n b^n c^n$ is not a CFL.

Closure Properties for CFL

• Theorem 8.3: If L₁ and L₂ are context-free languages, so are the languages that result from the following operations:

• $L_1 \cup L_2$: union

• $L_1 \cdot L_2$: concatenation.

• L₁* : star-closure

- In other words, the family of CFLs is closed under union, intersection, and star-closure.
- To prove these properties, we assume the existence of two context-free grammars G₁ and G₂ that generate the respective languages

Proof of Closure under Union

- Let L_1 and L_2 are CFLs generated by the Context-Free Grammars $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$, respectively. Assume V_1 and V_2 are disjoint: $V_1 \cap V_2 = \emptyset$.
- Create a new variable $S_3 \notin V_1 \cup V_2$.
- Construct a new grammar $G_3 = (V_3, T_3, S_3, P_3)$ so that
 - $V_3 = V_1 \cup V_2 \cup \{S_3\}$
 - $T_3 = T_1 \cup T_2$
 - $P_3 = P_1 \cup P_2$
- Add to P₃ a production that allows the new start symbol to derive either of the start symbols for L₁ and L₂

$$S_3 \rightarrow S_1 \mid S_2$$
 So, $P_3 = P_1 \cup P_2 \cup \{S_3 \rightarrow S_1 \mid S_2 \}$

• Clearly, G_3 is Context-Free grammar so that the generated language, $L(G_3)$ is a CFL.

Proof of Closure under Union (cont.)

- Clearly, G_3 is CFG so that the generated language, $L(G_3)$, is a CFL.
- Let's show that $L(G_3) = L_1 \cup L_2$
- ←) if $w \in L_1$ or $w \in L_2$ (i.e. $S_1 \Rightarrow_{G1}^* w$ or $S_2 \Rightarrow_{G2}^* w$) then w is derived by G_3 , i.e. $S_3 \Rightarrow_{G3}^* w$

Suppose $w \in L_1$. Then, $S_3 \Rightarrow S_1 \Rightarrow^* w$ is a possible derivation in G_3 . Similarly, for $w \in L_2$, $S_3 \Rightarrow S_2 \Rightarrow^* w$ is a possible derivation in G_3 . Thus, $w \in L(G_3)$.

- \rightarrow) If $w \in L(G_3)$, then either $S_3 \Rightarrow S_1$ or $S_3 \Rightarrow S_2$ must be the 1st step of derivation.
- If $S_3 \Rightarrow S_1$ is used, since sentential forms derived from S_1 have variables in V_1 , the derivation $S_1 \Rightarrow^* w$ can involve productions in P_1 only. Thus, w must be in L_1 .
- Similarly, If $S_3 \Rightarrow S_2$ is used, w must be in L_2 .
- Thus, $w \in L_1 \cup L_2$. Therefore, $L(G_3) = L_1 \cup L_2$.

Proof of Closure under Concatenation

- Let L_1 and L_2 are CFLs generated by the Context-Free Grammars $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$, respectively. Assume V_1 and V_2 are disjoint: $V_1 \cap V_2 = \emptyset$.
- Create a new variable $S_4 \notin V_1 \cup V_2$
- Construct a new grammar $G_4 = (V_4, T_4, S_4, P_4)$ so that
 - $V_4 = V_1 \cup V_2 \cup \{S_4\}$
 - $T_4 = T_1 \cup T_2$
 - $P_4 = P_1 \cup P_2$
- Add to P₄ a production that allows the new start symbol to derive the concatenation of the start symbols for L₁ and L₂

$$S_4 \rightarrow S_1S_2$$
. So, $P_4 = P_1 \cup P_2 \cup \{S_4 \rightarrow S_1S_2\}$

• Clearly, G_4 is context-free and generates the concatenation of L_1 and L_2 , i.e. $L(G_4) = L(G_1)L(G_2)$.

Proof of Closure under Star-Closure

- Let L_1 be CFL generated by $G_1 = (V_1, T_1, S_1, P_1)$.
- Create a new variable $S_5 \notin V_1$.
- Construct a new grammar $G_5 = (V_5, T_5, S_5, P_5)$ so that
 - V₅ = V₁ ∪ { S₅ }
 T₅ = T₁
 P₅ = P₁
- Add to P₅ a production that allows the new start symbol S₅ to derive the repetition of the start symbol for L₁ any number of times

$$S_5 \rightarrow S_1S_5 \mid \lambda$$
 So, $P_5 = P_1 \cup P_2 \cup \{S_5 \rightarrow S_1S_5 \mid \lambda\}$

• Clearly, G_5 is context-free and generates the star-closure of L_1 , i.e. $L(G_5) = L(G_1)^*$.

No Closure under Intersection

- Unlike regular languages, the intersection of two CFLs L_1 and L_2 does not necessarily produce a context-free language.
- As a counter example, consider the CFLs

```
L_1 = \{ a^n b^n c^m \mid n \ge 0, m \ge 0 \} where a grammar for L_1 is S \rightarrow S_1 S_2, S_1 \rightarrow a S_1 b \mid \lambda, S_2 \rightarrow c S_2 \mid \lambda. L_2 = \{ a^n b^m c^m \mid n \ge 0, m \ge 0 \} whose CFL is, similarly, S \rightarrow S_1 S_2, S_1 \rightarrow a S_1 \mid \lambda, S_2 \rightarrow b S_2 c \mid \lambda.
```

- We note that L_1 is the concatenation of two CFLs, $\{a^nb^n \mid n \ge 0\}$ and $\{c^m \mid m \ge 0\}$, L_1 is context free by Th^m. 8.3. Similarly, so is L_2 .
- However, the intersection of L_1 and L_2

$$L_3 = L_1 \cap L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$$

has been proven not context-free by Pumping Lemma in Ex. 8.1.

• Therefore, CFL is not closed under intersection.

No Closure under Complementation

- The complement of a context-free language L₁ does not necessarily produce a context-free language.
- The proof is by contradiction: given CFLs L₁ and L₂, assume that their complements are also context-free.
- By Theorem 8.3, the union of the complements must also produce a context-free language L₃.
- Using our assumption, the complement of L₃ is also context-free.
- However, using the set identity below, we conclude that the complement of L₃ is the intersection of L₁ and L₂, which has been shown not to be context-free, thus contradicting our assumption.

$$L_1\cap L_2=\overline{\bar{L}_1\cup\bar{L}_2}$$

Intersection of CFL and Regular Language

• Theorem 8.5: Let L_1 be a CFL and L_2 be a Regular language. Then, $L_1 \cap L_2$ is context free.

• Example 8.7: $L = \{a^n b^n : n \ge 0, n \ne 100\}$ is context free. Proof) Let $L_1 = \{a^{100} b^{100}\}$.

Then, L_1 is regular since it's finite.

Then, L may be defined as $L = \{a^n b^n : n \ge 0\} \cap \overline{L}_1$

By the closure of regular languages (L_1) under complementation and the closure of CFL under regular intersection,

L is context free. Q.E.D.

Proof: Let $M_1 = (Q, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ be an npda that accepts L_1 and $M_2 = (P, \Sigma, \delta_2, p_0, F_2)$ be a dfa that accepts L_2 . We construct a push-down automaton

 $\widehat{M}=\left(\widehat{Q},\Sigma,\Gamma,\widehat{\delta},\widehat{q}_0,z,\widehat{F}
ight)$ that simulates the parallel action of

 M_1 and M_2 : Whenever a symbol is read from the input string, \widehat{M} simultaneously executes the moves of M_1 and M_2 . To this end we let

$$\widehat{Q} = Q \times P$$
,

$$\hat{q}_0 = (q_0, p_0),$$

$$\widehat{F} = F = F_1 \times F_2,$$

and define $\hat{\delta}$ such that

$$((q_k, P_l), x) \in \hat{\delta} ((q_i, p_i), a, b)$$

if and only if

$$(q_k, x) \in \delta_1 (q_i, a, b)$$

and

$$\delta_2\left(p_i,\,a\right)=p_l.$$

In this, we also require that if $a = \lambda$, then $p_j = p_l$. In other words, the states of \widehat{M} are labeled with pairs (q_i, p_j) , representing the respective states in which M_1 and M_2 can be after reading a certain input string. It is a straightforward induction argument to show that

$$igg(q_0,\,p_0igg),w,zigg)\stackrel{*}{dash}_{\widehat{M}}igg(igg(q_r,p_sigg),\lambda,\,xigg),$$

with $q_r \in F_1$ and $p_s \in F_2$ if and only if

$$igg(q_0,\,w,zigg) \ \stackrel{*}{dash}_{M_1} igg(q_r,\lambda,xigg),$$

and

$$\delta^*\left(p_0,\,w\right)=p_s.$$

Therefore, a string is accepted by \widehat{M} if and only if it is accepted by M_1 and M_2 , that is, if it is in $L(M_1) \cap L(M_2) = L_1 \cap L_2$.

Intersection of CFL and Regular Language

- Theorem 8.5: Let L_1 be a CFL and L_2 be a Regular language. Then, $L_1 \cap L_2$ is context free.
- Example 8.7: $L = \{a^n b^n : n \ge 0, n \ne 100\}$ is context free.
- Example 8.8: $L = \{w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) = n_c(w)\}$ is not context free.

Proof) Suppose L is context free. Then,

$$L \cap L(a*b*c*) = \{a^nb^nc^n | n \ge 0\}$$

would be context free since CFL \cap Regular Language is CFL by Th^m 8.5. But, it's proven not CFL in Ex. 8.1. Contradiction! Thus, L is not context free. Q.E.D.

More Properties of Closures: (N)CFL, DCFL, Regular Lang, and Linear Lang.

 \forall L1, L2 \in (N)CFL, \forall L3 \in RL, \forall L4 \in DCFL

- The family of (N)CFL is closed under:
 - Homomorphism, Reversal.
- The family of (N)CFL is closed with the Regular lang. under:
 - Regular Difference: L1 L2 ∉ CFL, but L1 L3 ∈ CFL.
 Also, If L4 is deterministic CFL, then L4 L3 ∈ DCFL.
- The family of Deterministic CFL is not closed under:
 - Union, intersection, reversal, but
 - Close under: homomorphism, regular difference.
- The family of Linear Language is closed under:
 - · Union, but
 - Not closed under: concatenation, intersection
- The family of unambiguous CFL is not closed under:
 - Union, intersection

Elementary Questions about CFL

- Given a CFL L and an arbitrary string w, is there an algorithm to determine whether or not w is in L? : w ∈ L(G)? Membership
- Given a CFL L, is there an algorithm to determine if L is empty?
 : L = Ø? Emptiness
- Given a CFL L, is there an algorithm to determine if L is infinite?
 : (In)finiteness
- Given two CFGs G_1 and G_2 , is there an algorithm to determine if $L(G_1) = L(G_2)$? : Equality of grammar

A Membership Algorithm for CFL

- The combination of Theorems 5.2 and 6.5 confirms the existence of a membership algorithm for CFL.
- By Theorem 5.2, exhaustive parsing is guaranteed to give the correct result for any context-free grammar that contains neither λ -productions nor unit-productions.
- By Theorem 6.5, such a grammar can always be produced if the language does not include λ .
- Alternatively, a NDPA to accept the language can be constructed as established by Theorem 7.1

Theorem 5.2:

Exhaustive parsing is guaranteed to yield all $w \in L(G)$ eventually, but may fail to stop for strings $w \notin L(G)$, unless we restrict the productions in the grammar to avoid the forms

A \to λ (λ production) and A \to B (unit production). i.e. If the CFG G with *no* rule of the form

 $A \rightarrow \lambda$ (λ production) or $A \rightarrow B$ (unit production), the exhaustive parsing decides/stops for $w \notin L(G)$.

<u>Theorem 6.5</u>: For any CFL that does not include λ , there exists a CFG without useless, λ -, or unit-productions.

Theorem 7.1: \forall CFL L, \exists NDPA M s.t. L(M) = L. For any CFL L, there exists a NDPA that accepts L.

Deciding Whether a CFL is Empty

• <u>Theorem 8.6:</u> Given a CFL G=(V, T, S, P), there exists an algorithm to decide if a context-free language L(G) = Ø.

Proof) For simplicity, assume that $\lambda \notin L(G)$

- Apply the algorithm for removing useless symbols and productions.
- If the start symbol, S, is found to be useless, then L(G) is empty; otherwise, L(G) contains at least one string.

Deciding Whether a CFL is Infinite

 Theorem 8.7: Given a CFL G=(V, T, S, P), there exists an algorithm to decide if a CFL L(G) is infinite.

Proof) Apply the algorithms for removing λ -productions, unit-productions, and useless productions.

- Suppose G has a repeating variable $A \in V$ for which there is a derivation $A \Rightarrow^{*1} xAy$. Since G has no λ -productions and no unit-productions, x and y can't be simultaneously empty.
- Since A is neither nullable nor a useless symbol, we have $S \Rightarrow^{*2} uAv \Rightarrow^* w$ and $A \Rightarrow^{*3} z$, where $u, v, z \in T^*$. But, then $S \Rightarrow^{*2} uAv \Rightarrow^{*1} ux^nAy^nv \Rightarrow^{*3} ux^nzy^nv$, $\forall n$ is possible. So, L(G) is infinite.
- If no variable in G repeats, the length of any derivation is bounded by $\lceil V \rceil.$ So, L(G) is finite.
- Note: The grammar has a repeating variable iff the dependency graph has a cycle as well as any variable that is at the base of a cycle is repeating variable. So, it can be an algorithm to decide if a grammar has a repeating variable to be used for the algorithm of infiniteness/finiteness.

Deciding Whether Two CFLs are Equal

- Given two CFGs G_1 and G_2 , is there an algorithm to decide if $L(G_1) = L(G_2)$?
- If the languages are finite, the answer can be found by performing a string-by-string comparison.
- However, for general CFLs, no algorithm exists to decide an equality of CFGs, thus an equality of CFLs.