

Model Optimization and Tuning Phase Template

Date	July 2024
Team ID	739840
Project Title	
	Frappe Activity: mobile Phone Activity classification
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
Bagging Classifier	Tuned a BaggingClassifier by first defining a DecisionTreeClassifier as the base estimator. Then, initialized the BaggingClassifier with this base estimator and specified the hyperparameters to tune using the param_dist dictionary. The key hyperparameters included n_estimators, max_samples, max_features, bootstrap, and bootstrap_features. Used RandomizedSearchCV to search for the best hyperparameter combination, employing 5-fold cross-validation and the accuracy metric to evaluate performance.


```
param_grid = {
                        'n_estimators': [10, 50, 100],
'max_samples': [0.5, 0.7, 1.0],
'max_features': [0.5, 0.7, 1.0],
'bootstrap': [True, False],
'bootstrap_features': [True, False]
random\_search = Randomized Search CV \textbf{(estimator=bagging\_classifier, param\_distributions=param\_grid, param\_grid, param\_
                                            scoring='accuracy', cv=2, random_state=42)
random_search.fit(X_train,y_train)
                          print("Best Parameters:",random_search.best_params_)
print("Best Score:",random_search.best_score_)
       Best Parameters: {'n_estimators': 100, 'max_samples': 0.7, 'max_features': 1.0, 'bootstrap_features': True, 'bootstrap': False} Best Score: 0.6545086119554204
```


Decision Tree

Tuned a DecisionTreeClassifier using RandomizedSearchCV. First, initialized a base DecisionTreeClassifier and defined the hyperparameters and their possible values using the param_dist dictionary. The key hyperparameters included criterion, splitter, max_depth, min_samples_split, min_samples_leaf, max_features, and min_impurity_decrease. I used RandomizedSearchCV to search for the best hyperparameter combination, evaluating the model's performance.

```
# Define the hyperparameters and their possible values for tuning
param grid = {
    'criterion': ['gini', 'entropy'],
    'splitter': ['best', 'random'],
    'max depth': [None, 2, 4, 6, 8,10],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'max_features': [None, 'sqrt', 'log2'],
    'min impurity decrease': [0.0, 0.1, 0.2],
    'ccp_alpha': [0.0, 0.1 ,0.2]
# Initialize RandomizedSearchCV with DecisionTreeClassifier
random search = RandomizedSearchCV(estimator=dt classifier,
                                   param distributions=param grid,
                                   scoring='accuracy',
                                   cv=3,
                                   n iter=100,
                                   random state=42)
```


Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	Bagging Classifier model is chosen for its robustness in handling complex datasets and its ability to mitigate overfitting while providing high predictive accuracy.
	<pre>print(train_score) print(test_score)</pre>
	{'Decision Tree': 0.7697017752521915, 'Random Forest Calssifier': 0.8147658693449628, 'Bagging Classifier': 0.6500594 {'Decision Tree': 0.6041473943879124, 'Random Forest Classifier': 0.6387438879344522, 'Bagging Classifier': 0.6837969
	Above all the models Bagging classifier have the highest accuracy among all the models.
Bagging Classifie r	