程序代写代做 CS编程辅导

WeChat: cstutorcs IA: Albert Ji

Assignment Project Exam Help

Email: 8tht DEEs Able 6,3202311

QQ: 749389476

Information

程序代写代做 CS编程辅导

- ► Final
 - WeChat: cstutorcs

 ► Tuesday, December 12

 - 3 pm 6 pm Assignment Project Exam Help
 Franz Hall 1260

Email: tutorcs@163.com

QQ: 749389476

Final Review: SDDs

程序代写代做 CS编程辅导

Figure: SDD https://tutorcs.com

Final Review: PSDDs

Final Review: PSDDs

Input: *L*, *K*, *P*, *A*

Input: L, P, A

Final Review: PSDDs

- Input: L, P, A
- $ightharpoonup Pr(L, P, A) = 0.3 \times 1.0 \times 1.0 \times 0.4 \times 0.25 = 0.03$

Final Review: Health gates

程序代写代做 CS编程辅导

WeChat: cstutorcs

- ► $\Delta = (OK_X \Rightarrow (B \Leftrightarrow \neg D))$ $\wedge (OK_Y \Rightarrow ((A \Leftrightarrow S))$ Expression Project Exam Help $\wedge (OK_Z \Rightarrow ((C \times T)))$ The tributes @ 163.com
- ▶ Observation: $A, \neg B, \neg E$
- $\exists A, B, C, D, E \cdot (AQA 749889476) = \neg OK_Z \lor (\neg OK_X \land \neg OK_Y)$
- ► The kernel diagnorms are / That $K_X \wedge \neg OK_Y$)
- ▶ The minimal-cardinality diagnosis is $\neg OK_Z$, or OK_Z = false

程序代写代做 CS编程辅导

- ▶ Definition: $\forall x_i \cdot \Delta = \Delta | x_i \wedge \bigwedge_{j \neq i} (x_i \vee \Delta | x_j)$
- ▶ Base case: $x_{12} = \begin{bmatrix} x_{12} & x_{12} \\ x_{12} & x_{12} \end{bmatrix} | x_1 = x_{12} | x_2 = \top. \ x_{12} | x_3 = \bot.$
- ► Given a binary clarity instance I:
 - Decision: yes
 - ▶ If $I \models \Delta$, the complete reason is $\forall I \cdot \Delta$
 - ▶ If $I \not\models \Delta$, the complete reason is $\forall L_{\dot{\mathbf{S}}} \neg \Delta$

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

- ▶ Definition: $\forall x_i \cdot \Delta = \Delta | x_i \wedge \bigwedge_{j \neq i} (x_i \vee \Delta | x_j)$
- ▶ Base case: $x_{12} = \begin{bmatrix} x_{12} & x_{12} \\ x_{12} & x_{12} \end{bmatrix} | x_1 = x_{12} | x_2 = \top. \ x_{12} | x_3 = \bot.$
- - ▶ Decision: yes (■)
 - ▶ If $I \models \Delta$, the complete reason is $\forall I \cdot \Delta$
 - ▶ If $I \not\models \Delta$, the complete reason is $\forall L: \neg \Delta$
- ▶ Sufficient reasons: prime implicants of the complete reason
- Necessary reasons. Assignment Project Exampletel reason

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

- ▶ Definition: $\forall x_i \cdot \Delta = \Delta | x_i \wedge \bigwedge_{j \neq i} (x_i \vee \Delta | x_j)$
- ▶ Base case: $x_{12} = \begin{bmatrix} x_{12} & x_{12} \\ x_{12} & x_{12} \end{bmatrix} | x_1 = x_{12} | x_2 = \top. \ x_{12} | x_3 = \bot.$
- - Decision: yes
 - ▶ If $I \models \Delta$, the complete reason is $\forall I \cdot \Delta$
 - ▶ If $I \not\models \Delta$, the complete reason is $\forall L: \neg \Delta$
- ▶ Sufficient reasons: prime implicants of the complete reason
- Necessary reasons. Assignment Project Example leason
- ▶ Definition: $\forall x_i \cdot \Delta = A x_i + \Delta x_i$
- ▶ Given a class formula Δ^c and instance I:

- ▶ Definition: $\forall x_i \cdot \Delta = \Delta | x_i \wedge \bigwedge_{j \neq i} (x_i \vee \Delta | x_j)$
- ▶ Base case: $x_{12} = \begin{bmatrix} x_{12} & x_{12} \\ x_{12} & x_{12} \end{bmatrix} | x_1 = x_{12} | x_2 = \top. \ x_{12} | x_3 = \bot.$
- ► Given a binary cla and instance I:
 - Decision: yes
 - ▶ If $I \models \Delta$, the complete reason is $\forall I \cdot \Delta$
 - ▶ If $I \not\models \Delta$, the complete reason is $\forall L: \neg \Delta$
- ▶ Sufficient reasons: prime implicants of the complete reason
- Necessary reasons. Assignment Project Example leason
- ▶ Definition: $\forall x_i \cdot \Delta = A x_i + \Delta x_i$
- ▶ Given a class formula Δ^c and instance I:
 - ► The general reQQ: i749389476
- General sufficient reasons; variable-minimal prime implicants of the general reason
- General necessary reasons: variable-minimal prime implicates of the general reason

程序代写代做 CS编程辅导

Figure: Bayesian NetworkaN: tutorcs@163.com $\neg A \land B \Leftrightarrow P_{B|\neg A}, \neg A \land \neg B \Leftrightarrow P_{\neg B|\neg A}$

QQ: 749389476

程序代写代做 CS编程辅导

Figure: Bayesian Networkan: tutorcs@163.com $I_{\neg B} \Leftrightarrow P_{\neg B|A}$,

QQ: 749389476

 $I_{\neg A} \wedge I_B \Leftrightarrow P_{B|\neg A},$ $I_{\neg A} \wedge I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$

程序代写代做 CS编程辅导

Figure: Bayesian Network N

Email: tutorcs@163.cdm $\land I_B \Leftrightarrow P_{B|\neg A}$,

QQ: 749389476

 $I_{\neg A} \wedge I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$

- N is a Bayesian network/aboutrvariable A, B with probabilities θ
- $ightharpoonup \Delta$ is a Boolean formula about variables $I_A, I_{\neg A}, P_A, P_{\neg A}, \dots$

程序代写代做 CS编程辅导

$$\Delta = I_A \lor I_{\neg A}, \neg I_A \lor \neg I_{\neg A},$$

$$I_B \lor I_{\neg B}, \neg I_B \lor \neg I_{\neg B},$$

$$I_A \Leftrightarrow P_A,$$

$$I_{\neg A} \Leftrightarrow P_{\neg A},$$

$$I_A \land I_B \Leftrightarrow P_{B \mid A}.$$

Figure: Bayesian Networki g/nment Project Exam Help $I_{\neg A} \wedge I_B \Leftrightarrow P_{B|\neg A}$,

Email: tutorcs@163.cq $m \land I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$

- QQ: 749389476Set $w(I_X) = w(I_{\neg X}) = 1$ for all variable X
- Set $w(\neg P_{u|v}) = 1$ negation like $\neg A$)
- $\blacktriangleright \text{ Set } w(P_{u|v}) = \theta_{u|v}$

程序代写代做 CS编程辅导

Figure: Bayesian Network NAssignment Project Exam Help $P_{\neg B|A}$,

Email: tutorcs@163.com $I_{\neg A} \wedge I_B \Leftrightarrow P_{B|\neg A}, I_{\neg A} \wedge I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$

QQ: 749389476

- Computing marginal probability on *N* is equivalent to weighted model counting on Δ.
- ▶ For instance, $Pr(\neg B) = wmc(\Delta \land I_{\neg B})$

程序代写代做 CS编程辅导

$$\begin{split} \Delta = & I_A \lor I_{\neg A}, \neg I_A \lor \neg I_{\neg A}, \\ & I_B \lor I_{\neg B}, \neg I_B \lor \neg I_{\neg B}, \\ & I_A \Leftrightarrow P_A, \\ & I_{\neg A} \Leftrightarrow P_{\neg A}, \end{split}$$

Assignment Project Exam Help $P_{\neg B|A}$, Figure: Bayesian Network $P_{\neg B|A}$, $P_{\neg B|A}$, $P_{\neg B|A}$,

Email: tutorcs@163.com $\land I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$

OO: 749389476

- Assume $\theta_{B|A} = 0$ https://tutorcs.com
- ightharpoonup Remove $I_A \wedge I_B \Leftrightarrow P_{B|A}$
- ightharpoonup Add $\neg I_B \lor \neg I_A$

程序代写代做 CS编程辅导

Assignment Project Exam Help $P_{\neg B|A}$,

Figure: Bayesian Network
$$N$$
 $I_{\neg A} \land I_B \Leftrightarrow P_{B|\neg A},$ Email: tutorcs@163.com $I_{\neg A} \land I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$

QQ: 749389476

- Assume $\theta_{\neg B|A} = 1$.
- ▶ Remove $I_A \land \neg I_B \Leftrightarrow P_{\neg B|A}$

程序代写代做 CS编程辅导

$$\Delta = I_A \lor I_{\neg A}, \neg I_A \lor \neg I_{\neg A},$$

$$I_B \lor I_{\neg B}, \neg I_B \lor \neg I_{\neg B},$$

$$I_A \Leftrightarrow P_A,$$

$$I_{\neg A} \Leftrightarrow P_{\neg A},$$

$$I_{\neg A} \Leftrightarrow P_{\neg A},$$

cwork NAssignment Project Exam Help $I_{\neg A} \land I_{\neg B} \Leftrightarrow P_{B|\neg A},$ $I_{\neg A} \land I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$ Figure: Bayesian Network N

Email: tutorcs@163.com

- Assume $\theta_{B|A} = 0$ QQ: 749389476

 Remove $I_A \wedge I_B \Leftrightarrow P_{B|A}$
- ightharpoonup Add $\neg I_B \lor \neg I_A$ https://tutorcs.com
- Assume $\theta_{\neg B|A} = 1$.
- ▶ Remove $I_A \land \neg I_B \Leftrightarrow P_{\neg B|A}$

程序代写代做 CS编程辅导

Figure: Bayesian Network N Email: tutorcs@163.co $\overline{\Pi}^A \wedge I_B \Leftrightarrow P_{B|\neg A}$, $I_{\neg A} \wedge I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$

QQ: 749389476

Assume $\theta_{B|\neg A} = \theta_{htps://tutores.com}$

程序代写代做 CS编程辅导

Figure: Bayesian Networki Inment Project Exlam Help $P_{B|\neg A}$,

Email: tutorcs@163.com $I_{\neg A} \wedge I_{\neg B} \Leftrightarrow P_{\neg B|\neg A}$

- Assume $\theta_{B|\neg A} = \theta QQ : 4749389476$
- Remove $I_{\neg A} \wedge I_B \Leftrightarrow P_B : \text{tutorcs.com}$ Remove $I_{\neg A} \wedge I_{\neg B} \Leftrightarrow P_{\neg B} : \text{tutorcs.com}$
- ightharpoonup Add $[(I_{\neg A} \wedge I_B) \vee (I_{\neg A} \wedge I_{\neg B})] \Leftrightarrow P'$

程序代写代做 CS编程辅导

Figure: Bayesian Net Worka N: tutorcs @
$$163.$$
 com $[(I_{\neg A} \land I_B) \lor (I_{\neg A} \land I_{\neg B})] \Leftrightarrow P'$

QQ: 749389476

Final Review: Arithmetic Circuits

程序代写代做 CS编程辅导

- ► OR node (∨): +
- ► AND node (∧): × ■

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Final Review: Arithmetic Circuits

程序代写代做 CS编程辅导

- ► OR node (∨): +
- ► AND node (∧): ×
- ► MAR: WeChat: cstutorcs
 - Require decomposability and smoothness
 - ► Substitute λ wAls signament Putoject Exam Help

Email: tutorcs@163.com

QQ: 749389476

Final Review: Arithmetic Circuits

程序代写代做 CS编程辅导

- ► OR node (∨): +
- ► AND node (∧): ×
- MAR: WeChat: cstutores
 - Require decomposability and smoothness
 - Substitute λ who signance at Pulatect Exam Help
- ► MPE:
 - Require decomposability, determinism, and smoothness
 - Replace + with max 749389476
 Substitute λ with 0/1 and calculate

Final Review: Subcircuits

Final Review: Subcircuits

My Non-exhaustive Final Review Checklist

- ▶ Focus on lectures midterm
- OBDDs
- Decomposability, IIII smoothness

- Health condition
- Diagnoses:
- XAI:
 - Universal literal quantification
- WeChat: cstutorcs ▶ Complete reason Bottom-up compilation General reason
- ► SDDs: Assignment Project Examples (GNR
 - Compression
 - Email: tutorcs@163.com Canonicity
 - Encoding Bayesian networks: Polytime apply
- QQ: 749389476 MAR to WMC ► PSDDs:
 - Arithmetic circuits: Distribution
 - https://tutorcs.com MAR MAR
- ► Health gates:
 - System description

- MPF
- Subcircuits