(5)

(5)

[Max. Marks 60]

	(* 11001)	
NHI	Question number 1 is Compulsory.	
	appt any three questions from Q.2 to Q.6.	
	ume suitable data wherever required.	
	wes to the right indicate full marks.	
Q.I. A	ttempt any Five questions from the following.	(15)
	(a) Draw (123), (321), (102)	
	(b) Explain with diagram HCP unit cell based on lattice parameters.	
	(c) State properties of matter waves.	
	(d) Calculate electron & hole concentration in intrinsic Si at room temperature if its electron conductivity is 4x10 ⁻⁴ mho/m. Given that mobility of electron = 0.14m ² /y -sec and anobit holes=0.04 m ³ /y -sec.	incat ity of
	(e) Explain Meissner Effect with the help of diagram.	
	(f) A conference room has a total volume of 2000m ³ . The magnitude of total absorption x	athm
	the conference room is 100 sabin. Calculate the reverberation time	
	(g) Discuss any three applications of Ultrasonic waves.	
Q.2.	(a) State Heisenberg's Uncertainty Principle. Show that electron doesn't exist in the nuclear Find the accuracy in the position of an electron moving with speed 350 so/sec with uncer- of 0.01%.	is. tainty (8)
	(b) Show that for intrinsic semiconductors the Fermi level lies midway between the condu	iction
	band and the valence band. With the help of diagram explain effect of impurity concent	cation
	on Fermi level of N type semiconductor.	(7)
67	(a) Derive Bragg's condition for X-ray diffraction. Monochromatic X rays are incident on a	
	crystal. If first order reflection is observed at an angle 3.4°, at what angle would second	
	reflection be expected.	(8)
	(b) Derive an expression for Hall voltage and Hall coefficient with neat labelled diagram.	(7)
Q.4.	(a) Differentiate between Type-I & Type-II Superconductors.	(5)
	(b) Discuss in details any three factors affecting acoustics of a hall with their remedies.	(5)
	(c) A quartz crystal of thickness 1mm is vibrating at resonance. Calculate its fundate	nental
	frequency. (Assume that for quartz, Y=7.9x10 ¹⁰ N/m ² and ρ=2.650gm/oc.)	((5))
Q.5.	(a) Define Ligancy. Find the value of critical radius ration for Ligancy 3.	(5)
	(b) For an electron passing through potential difference "V", show that its wavelength is: $\lambda = \frac{12.26}{\sqrt{V}} A^{\circ}$.	(5)
	(c) What is the probability of an electron being thermally excited to conduction band in	
	27°C. The band gap energy is 1.12 eV.	(5)
Q.6.	(a) Explain Point defects in crystals.	(5)
	(b) Show that group velocity of matter waves associated with a particle is equal to the p	article

(c) Explain the principle, construction and working of Light Emitting Diode.

velocity (Vgroup=Vparticle).