角速度

遠くに電車が走っているのが見えたとする 距離はわからなくても、見える角度は時々刻々と

変化していく

こんな状況を正確に言い表すために<mark>角速度</mark>という 概念がある

* * *

基準点と、それを通る基準線(基準の方向)をあらかじめ決めておく

注目している点が、基準点から見て基準の方向から (左回りに測って) 角度 θ の位置にあるとする

この角度 θ は時間 t によって変化するので、t を変数とする関数という意味で、 $\theta(t)$ と表す

このとき、微分

$$\frac{d\theta(t)}{dt}$$

を時刻 t における角速度という

* * *

どこから見るか、すなわち基準点をどこにとるか によって、角速度は変わる

一方、基準線の方向については、どのように選ん でも角速度に影響しない

実際、基準線の方向を変えても、角度 θ(t) には時刻によらない定数が付け加わるだけであるから、その微分である角速度には影響しないことになる

三角関数の微分

円周上を一定の速さで進むことを<mark>等速円運動</mark>と いう 等速円運動では、円の中心から見ると角速度が一 定になっている

* * *

ここでは計算を簡単にするため、半径1の円周上 を速さ1で左回りに動くことを考える

速さ1というのは、経過した時間がtならば、円弧を長さtだけ進むということ(経過時間と進んだ距離が等しい=その比が1になる)

円の中心から見た角度も、弧度法で t だけ増える

この等速円運動を xy 座標を用いて表す

時刻 t = 0 のときに x 軸上の点 (1,0) を出発する と、時刻 t の位置 P は、原点を中心に角度 t だけ円 周上を左回りに進んだ点として

$$(x(t), y(t)) = (\cos t, \sin t)$$

と座標表示される

この運動の速さは1で一定だが、速度ベクトルの向きは時刻とともに変わる

速度ベクトルは、x 座標、y 座標それぞれについて 微分すればよいので、時刻 t において、

$$\left(\frac{dx(t)}{dt}, \frac{dy(t)}{dt}\right) = \left(\frac{d}{dt}\cos t, \frac{d}{dt}\sin t\right)$$

で与えられる

角速度から三角関数の微分を導く

半径1の円周上を動くという条件は、

$$x^2(t) + y^2(t) = 1$$

と表される

両辺を微分すると、積の微分に関するライプニッ ツの法則より、

$$2(x(t)x'(t) + y(t)y'(t)) = 0$$

となり、内積が 0 であることから、速度ベクトルは位置ベクトルに直交していることがわかる

また、速さが1なので、速度ベクトルの大きさは1 である

したがって、この速度ベクトルは大きさが1で、向きは位置ベクトルを $\frac{\pi}{2}$ だけ左に回転させた方向を向いていることになり、

$$\left(\frac{dx(t)}{dt}, \frac{dy(t)}{dt}\right) = \left(\cos\left(t + \frac{\pi}{2}\right), \sin\left(t + \frac{\pi}{2}\right)\right)$$
$$= (-\sin t, \cos t)$$

がわかる

速度ベクトルの2通りの表現が得られたので、

$$\frac{d}{dt}\cos t = -\sin t$$

$$\frac{d}{dt}\sin t = \cos t$$

という、三角関数の微分の公式が導かれた