EDA report on Facilities information for distributed power generation for the state of New York, USA

Numerical Distribution:

	Count	Mean	Standard	Minimum	First	Median	Third	Maximum
	Count	Wicum	deviation	value	quartile	Median	quartile	value
Total Rated Electric	811	876.54	2063.77	0	70	300	912.35	37500
Generation (kW)								
Total Rated Heat	811	428.62	5260.08	0	0	0	0	127000
Generation (MBtu/h)								
Total Rated Electrical	811	48.15	740.21	0	0	0	0	20000
Discharge Capacity (kW)				_	_	_	_	
Total Rated Electrical	811	93.90	1531.45	0	0	0	0	40000
Storage Capacity (kWh)	044	0	0	0	0	0	0	0
Total Rated Cooling Energy Discharge Capacity (ton)	811	0	0	0	0	0	0	0
Total Equivalent Electrical	811	18.38	211.84	0	0	0	0	5000
Discharge Capacity from	011	10.50	211.04	O	U	O	O	3000
Cooling Sources (kW)								
Total Rated Cooling Energy	811	143.55	1433.68	0	0	0	0	30000
Storage Capacity (ton-								
hour)								
Total Equivalent Electrical	811	1590.9	43150.59	0	0	0	0	1228680
Storage Capacity from		2						
Cooling Sources (kWh) Total Rated Thermal	811	0	0	0	0	0	0	0
Energy Discharge Capacity	811	0	U	U	U	U	U	U
(MBtu/h)								
Total Equivalent Electrical	811	0	0	0	0	0	0	0
Discharge Capacity from								
Thermal Sources (kW)								
Total Rated Thermal	811	0	0	0	0	0	0	0
Energy Storage Capacity								
(MBtu)								
Total Equivalent Electrical	811	0	0	0	0	0	0	0
Storage Capacity from								
Thermal Sources (kWh)	011	1.00	0.63	0	1	4	4	11
Installed Systems	811	1.06	0.62	0	1	1	1	11

Univariate analysis:

Bivariate analysis

Categorical Value analysis:

Facility Submits Data on Electricity

Weather Station for Temperature Data

Categories of Facilities

Electric Utilities Acquisition

Insights into dataset:

- The dataset contains 811 observations and 35 variables
- Most facilities have only one line Address
- Most facilities do not have Alternate Name(s)
- Most facilities do not have Floor Area record.
- Number of Occupancy Units are not mentioned for most of the facilities.
- No facilities have data for Floor Plan
- The Latitude Longitude coordinates confirm that most of the facilities are located in and around New York.
- The following parameters are not rated for any Facilities:
 - Cooling energy discharge capacity
 - Thermal energy storage capacity

Executive Summary:

From the correlation matrix, it is clear that there is strong relation between Electric generation and Heat generation. Thus, increase in electric generation would mean increase in heat generation. Hence, a robust cooling system is required, i.e., a system with more Rated Cooling Energy Storage Capacity.

Also, to increase Electric Storage Capacity, we need to have system with more Electric Discharge Capacity, as seen from the scatter plot.

Tools Used:

- Jupyter Notebook
- Python 3.6.3
- pandas 0.20.3
- numpy 1.13.3
- matplotlib 2.1.0

Methodology used:

- 1. Import required package
- 2. Fetch the 'Facilities' data from the given excel file and store it in a pandas dataframe.
- 3. Get an overview of data, like no. of columns and rows, no. of missing values, type of data.
- 4. Remove columns/rows which are not required.
- 5. Examine the numerical variables.
- 6. Generated histograms of relevant variables, so that we can get an idea of skewness.
- 7. Generated correlation matrix.
- 8. Generated scatter plot to visualize the correlations. We needed to remove outliers and 0 values to get a clear picture.
- 9. Examine the categorical values.
- 10. Generated pie charts to show the contribution of each categorical variables.