LIMITING DISTRIBUTION

MODEL

Consider the following social planner's problem:

$$\max_{c_t, k_{t+1}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t $c_t+k_{t+1}=z_tf(k_t)$, where productivity z_t is a stochastic process. $k_0>0$ and $z_0>0$ are given.

• The Bellman equation can be written as

$$\begin{split} v(k_t, z_t) &= \max_{c_t, k_{t+1}} \left[u(c_t) + \beta \operatorname{\mathbb{E}} v(k_{t+1}, z_{t+1}) \right] \\ &= \max_{c_t, k_{t+1}} \left[u(c_t) + \beta \sum_{z_{t+1} \mid z^t} v(k_{t+1}, z_{t+1}) \pi(z_{t+1} \mid z^t) \right] \end{split}$$

s.t
$$c_t + k_{t+1} = z_t f(k_t)$$
.

QUESTION

- The sequence of $\{k_t\}$ is generated by $k_{t+1}=g(k_t,z_t)$.
- Due to the random shocks z_t , k_t will not converge to any single value (steady state). Then what about the limiting distribution of k_t when $t\to\infty$?
- A stochastic analogue to a steady state of a deterministic system is a stationary (invariant) distribution.
 - Under what conditions does the sequence of k_t converge to a stationary limiting distribution?

MATHEMATICS

- ullet To adhere to the principles of recursive theory, it is preferable for the process $k_{t+1}=g(k_t,z_t)$ to be a Markov process.
- ullet For simpilicty, we assume k_t is a finite state Markov chain with a transition function

$$Q(a,b) := \text{Prob}\{k_{t+1} \le a \mid k_t = b\}.$$

ullet Then the sequence of distribution functions $\{\psi_t\}$ for the k_t 's is given inductively by

$$\psi_{t+1}(a) := \text{Prob}\{k_{t+1} \le a\} = \int Q(a,b) d\psi_t(b), t = 0, 1, ...,$$

where ψ_0 (the initial distribution of k_0) is given.

• Under what conditions, is H such that the sequnece $\{\psi_t\}$ converges to a invariant limiting distribution function ψ satisfying

$$\psi(k') = \int Q(k', k) d\psi(k).$$

AN I.I.D EXAMPLE

• Suppose policy function has the multiplicative form $k_{t+1}=z_tg(k_t)$ and that z_t is **i.i.d.** over time with cumulative distribution

$$H(z) = \text{Prob}\{z_t \leq z\}$$
.

• Now consider the cumulative distribution of k at time t+1:

$$\begin{split} \psi_{t+1}(k') &= \operatorname{Prob}\{k_{t+1} \leq k'\} = \operatorname{Prob}\{z_t g(k_t) \leq k'\} \\ &= \operatorname{Prob}\{z_t \leq \frac{k'}{g(k_t)}\} = H\bigg(\frac{k'}{g(k_t)}\bigg) \\ &= \operatorname{Prob}\{k_{t+1} \leq k' \mid k_t\} = Q(k', k_t) \end{split}$$

• Then the cumulative distribution of k satisfies the law of motion

$$\psi_{t+1}(k') = \int\!\!Q(k',k)d\psi_t(k) = \int\!\!H\!\left(\frac{k'}{g(k)}\right)\!d\psi_t(k)$$

STATIONARY DISTRIBUTION

- ullet Generally, we would have a joint distribution (density) $\lambda(k,z)$ over the state variables (k,z) induced by
 - the policy function k' = g(k, z), and
 - the exogenous condtional density $\pi(z'\mid z)$.
- If z_t is a Markov chain, the pair (k,z) is also a Markov chain.
- Then we are in fact facing a Markov chain defined by $(k \otimes z, P, \lambda_0)$.
- The law of motion for the distribution λ is $\lambda_{t+1}(k',z')=P^{\mathrm{T}}\cdot\lambda_t(k,z)$.
- The above transition can be denoted as a deterministic difference equation:

$$\lambda_{t+1} = P^{\mathrm{T}} \cdot \lambda_t,$$

where $P:=[p_{ij}]_{(n_k\times n_z)\times (n_k\times n_z)}$ is the transition matrix (density function) of λ with $p_{ij}=\operatorname{Prob}\{k',z'\mid k,z\}.$

• The stationary distribution λ^* of the Markov chain satisfies $\lambda^* = P^{\mathrm{T}} \cdot \lambda^*$ (or $(I - P^{\mathrm{T}})\lambda^* = 0$), i.e., a fixed point of the difference equation $\lambda_{t+1} = P^{\mathrm{T}} \cdot \lambda_t$.

THEORETICAL ISSUES

- The fixed point λ^* may not exist.
- λ^* is a fixed point, but it may not be unique.
- λ^* is a unique fixed point, but it may not be stable (iterating $\lambda_{t+1} = P^{\mathrm{T}} \cdot \lambda_t$ may not converge to it)

THEOREM 12.12 (SLP)

If the transition function P satisfy 3 conditions:

- Feller property (for existence)
- mixing property (for uniqueness)
- monotonicity (for convergence)

Then by Theorem 12.12 in SLP (1989), there exists a unique invariant probability measure λ^* and P ensures convergence, independently of the starting measure λ_0 .

FELLER PROPERTY FOR EXISTENCE

- A transition function P has the Feller property if $f \in C(X)$ implies $Tf \in C(X)$, where $(Tf)(s) = \int f(s')P(s,s').$
- Intuitively, the Feller property ensures that *P* is indeed a transition function.

MIXING PROPERTY FOR UNIQUENESS

- Requires that probability of moving away from the worst state in a finite number of periods is positive and vice versa from the best state (American dream, American nightmare).
- counterexample of mixing property:

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

where any initial situation is invariant.

MONOTONICITY FOR CONVERGENCE

- A transition function P is monotone if $f \in B(X)$ is increasing implies Tf is also increasing, where $(Tf)(s) = \int f(s')P(s,s')$. This requires positive autocorrelation of P.
- Intuitively, if $\lambda(k,z)$ is high, then $\lambda'(k,z)$ will be high too.
- Counterexample of monotonicity:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

where two random states keep switching back and forth, therefore no convergence is possible.

MARKOV CHAIN

- ullet Every (finite state) stochastic matrix P has at least one stationary distribution.
- The stochastic matrix P is called irreducible if all states communicate. That is, for all states (x,y), x can eventually be reached from y and vice versa.
- A Markov chain is called periodic if it cycles in a predictable way, and aperiodic otherwise.
- If P is both aperiodic and irreducible, then
 - P has exactly one stationary distribution λ^* .
 - lacksquare For any initial marginal distribution λ_0 , we have $\left\|P^{\mathrm{T}}\lambda_0-\lambda^*\right\| o 0$ as t o 0.
- $\bullet\,$ A sufficient condition for a unique stable stationary distribution is that $0 < p_{ij} < 1$ for all i,j.

2×2 EXAMPLE

• Consider a two state Markov chain with transion matrix

$$P = \begin{bmatrix} 1 - p & p \\ q & 1 - q \end{bmatrix}$$

• Stationary distribution solves (note the transpose)

$$\left(\begin{bmatrix}1\\1\end{bmatrix} - \begin{bmatrix}1-p & q\\p & 1-q\end{bmatrix}\right) \begin{bmatrix}\psi_1^*\\\psi_2^*\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$$

Gives

$$egin{bmatrix} \psi_1^* \ \psi_2^* \end{bmatrix} = egin{bmatrix} rac{q}{p+q} \ rac{p}{p+q} \end{bmatrix}$$

ALGORITHM

- How to solve this fix point for the joint distribution?
 - iteration
 - eigenvector
 - ergodicity

EXAMPLE

• Suppose there is a 3-point Markov chain with transition matrix:

$$\Pi = \begin{bmatrix} 0.971 & 0.029 & 0.000 \\ 0.145 & 0.778 & 0.077 \\ 0.000 & 0.508 & 0.492 \end{bmatrix}.$$

 We know that P has at least one stationary distribution. We want to check uniqueness and stability.

irreducibility: True
aperiodicity: True

ITERATION

- \bullet The trainsion of λ follows: $\lambda_t = (P^{\mathrm{T}})^t \lambda_0.$
- If the fixed point λ^* exists,

$$\lambda^* = \lim_{t \to \infty} \lambda_t = \lim_{t \to \infty} (P^{\mathrm{T}})^t \lambda_0.$$

• Then given any initial λ_0 , we can iterate until convergence to get λ^* .

ILLUSTRATION

CODE EXAMPLE

 can be optimized using multigrid tricks (remember to use interpolation between two convergences)

```
def stationary_distribution_iteration(P, psi0, tol):
    err = np.inf
   max iter = 5000
    iter = 0
   print_skip = 50
   while iter < max_iter and err > tol:
       psi = P.T @ psi0
        err = np.max(np.abs(psi - psi0))
        iter = iter + 1
        if iter % print_skip == 0:
            print(f"Error at iteration {iter}:", err)
       psi0 = psi
    if err > tol:
        print("Failed to converge!")
    else:
        print(f"\nConverged in {iter} iterations.")
    return psi0
```

RESULT

```
psi0 = np.array((0.0, 1.0, 0.0))
stationary_distribution_iteration(P, psi0, tol=1e-16)

Error at iteration 50: 4.298089431309382e-05
Error at iteration 100: 1.3944348564720599e-08
Error at iteration 150: 4.523936780742588e-12
```

Converged in 222 iterations.

array([0.8128 , 0.16256, 0.02464])

Error at iteration 200: 1.4432899320127035e-15

EIGENVECTOR

• $\lambda^* = P^{\mathrm{T}} \cdot \lambda^*$ can be written as

$$(I - P^{\mathrm{T}})\lambda^* = 0$$

• We see λ^* is a (right) eigenvector of P^{T} associated with a unit eigenvalue (require a normalization of $\sum_i \lambda_i^* = 1$).

FUNCTIONS

Several functions to calculate eigenvectors (usages differ):

- numpy.linalg.eig
- scipy.linalg.eig
- scipy.sparse.linalgeigs

CODE EXAMPLE

```
def stationary_distribution(transition_matrix):
    eigenvalues, eigenvectors = eig(transition_matrix.T)
    index = np.argmin(np.abs(eigenvalues - 1.0))
    stationary_vector = np.real(eigenvectors[:, index])
    stationary_distribution = stationary_vector / np.sum(stationary_vector)
    return stationary_distribution.flatten()
```

```
array([0.8128 , 0.16256, 0.02464])
```

QUANTECON

```
import quantecon as qe

mc = qe.MarkovChain(P)
mc.stationary_distributions[0]
```

array([0.8128 , 0.16256, 0.02464])

ERGODICITY

• A stochastic matrix P that is both aperiodic and irreducible is also called uniformly ergodic. That is, for all states $x \in S$, $\frac{1}{T} \sum_{t=1}^{T} \mathbf{1}\{X_t = x\}$ converges to the stationary distribution ψ^* uniformally as $T \to \infty$.

```
mc = qe.MarkovChain(P)
chain = mc.simulate(ts_length=10000000)
prob = []
for i in range(len(P)):
    res = np.round(np.count_nonzero(chain == i)/len(chain), 4)
    prob.append(res)
print(prob)
```

```
[0.8129, 0.1625, 0.0246]
```

REMAINING QUESTIONS

- How to calculate the transion function *P*?
 - Once we get P, we can calculate the limiting joint distribution $\lambda^*(k,z)$.
- How to calculate ψ^* (the marginal distribution of k) from $\lambda^*(k,z)$?

$\mathbf{CALCULATE}\ P$

$$\begin{split} \lambda_{t+1}(k',z') &= \underbrace{\sum_{z} \sum_{k'=g(k,z)} \pi(z',z) \lambda_{t}(k,z)}_{P} \\ &:= P^{\mathrm{T}} \cdot \lambda_{t}(k,z) \end{split}$$

CODE EXAMPLE

```
def transQ(g):
    n_k, n_z = g.shape
    n = n_k * n_z
    Q = np.zeros((n, n))
    for j in prange(n):
        i_k = j // n_z
        i_z = j % n_z
        diff = np.abs(g[i_k, i_z] - kgrid)
        mark = np.argmin(diff)
        j_prime_start = mark * n_z
        j_prime_end = j_prime_start + n_z
        Q[j, j_prime_start:j_prime_end] = P[i_z, :]
    return Q
```

CALCULATE THE DENSITY OF ψ^*

$$\frac{d\psi^*}{dx} = \sum_{z} \lambda^*(k, z)$$

```
def capital_marginal(joint_dist):
    tmp = joint_dist.reshape((n_k, n_z))
    k_marginal = tmp.sum(axis=1)
    return k_marginal
```

THE STOCHASTIC GROWTH MODEL

ullet Suppose the productivity z_t takes values in a 5-point Markov chain

$$z_t \in \{0.9792, 0.9896, 1,0000, 1.0106, 1.0212\}$$

with transition matrix:

.
$$\Pi = \begin{pmatrix} 0.9727 & 0.0273 \\ 0.0041 & 0.9806 & 0.0153 \\ & 0.0082 & 0.9837 & 0.0082 \\ & & 0.0153 & 0.9806 & 0.0041 \\ & & & 0.0273 & 0.9727 \end{pmatrix}$$

PROCEDURE

- 1. solve the policy function g
- 2. solve the transition function P for the joint distribution $\lambda(k,z)$
- 3. calculate the limiting joint distribution $\lambda^*(k,z)$
- 4. calculate ψ^* (the marginal distribution of k) from $\lambda^*(k,z)$

RESULT

