CC=JP DATE=19950407 KIND=A PN=07094193

MANGANESE DRY CELL [マンガン電池]

SEIICHI HIKATA, ET AL.

PUBLICATION COUNTRY (10): JP

DOCUMENT NUMBER (11): 07094193

DOCUMENT KIND (12): A

PUBLICATION DATE (43): 19950407

APPLICATION NUMBER (21): 05239893

APPLICATION DATE (22): 19930927

INTERNATIONAL CLASSIFICATION (51): H01M 6/06 4/42

PRIORITY COUNTRY (33): N/A

PRIORITY NUMBER (31): N/A

PRIORITY DATE (32): N/A

INVENTOR(S) (72): SEIICHI HIKATA; KOJIRO

MIYASAKA; MUTSUHIRO MAEDA; AND KAZUNARI KOBAYASHI

APPLICANT(S) (71): TOSHIBA BATTERY CO., LTD.

DESIGNATED CONTRACTING STATES (81): N/A

TITLE (54): MANGANESE DRY CELL

FOREIGN TITLE [54A]: マンガン電池

[Scope of Patent Claims]

[Claim 1] A manganese dry cell using an anode made of a zinc alloy, characterized in that said zinc alloy does not contain lead nor cadmium but contains 30 to 8,000 ppm of bismuth and 10 to 1,000 ppm of one type or two or more types of alkali earth metals (Mg, Ca, Sr, Ba) relative to the weight of zinc.

[Detailed Description of the Invention]

[0001]

[0002]

[Prior Art] Figure 1 shows the structure of a manganese dry cell. In Figure 1, (1) represents zinc (anode), (2) represents a separator, (3) represents a cathode mix, (4) represents a carbon rod, (5) represents a sealing body, (6) represents a cathode terminal plate, (7) represents an anode terminal plate, (8) represents an insulating tube and (9) represents a packaging can. As the anode of a manganese cell, a zinc can (hereinafter, called "anode can"), which is also used as the container, is conventionally used. As the material of said zinc can, a zinc alloy, which contains 200 to 600 ppm of cadmium and more than 50 ppm of lead, is used to add a stretching property

 $^{{}^{\}scriptscriptstyle 1}\!\mathrm{Numbers}$ in the margin indicate pagination in the foreign text.

and mechanical strength, which are required in the can manufacturing process, and give corrosion resistance to the electrolytic solution, which is the content of said anode can.

[0003] However, even minute amounts of cadmium and lead, which are contained in said zinc alloy, are harmful to the human body and, as the amount of consumption is increased, they are mixed in industrial waste or household waste thereby becoming the substances responsible for environmental pollution. Currently, it becomes imperative to prevent the above described environmental pollution. It is strongly hoped that, as the countermeasure, a zinc alloy, which does not contain cadmium and lead, is used as the material for the anode can of a manganese dry cell.

[0004]

[Problem to Be Solved by the Invention] However, the zinc alloy, which is made by simply removing cadmium from a conventionally-used zinc alloy, has extremely low mechanical strength compared with the zinc alloy, which contains cadmium, and generates imperfection or deformation during the process of manufacturing the dry cell thereby causing internal short circuit. In addition, the zinc alloy, which is made by simply removing lead from a conventionally-used zinc alloy, is easily corroded by the electrolytic solution within the cell compared with the zinc alloy, which contains lead, thereby significantly decreasing the long-term storage performance.

[0005] The present invention was created to solve the above described problem. The objective of the present invention is to provide a manganese dry cell, which uses an anode made from a zinc alloy, wherein said zinc alloy does not contain cadmium and lead, but has the same mechanical strength and corrosion resistance as those of the conventional anode can.

[0006]

[Means to Solve the Problem] To achieve the above described objective, the manganese dry cell, according to the present invention, is characterized in that the zinc alloy, which is used as the anode, contains 30 to 8,000 ppm of bismuth and 10 to 1,000 ppm of one type or two or more types of alkali earth metals (Mg, Ca, Sr, Ba) relative to the weight of zinc.

[0007

[Operation] Bismuth, which is used as one of the elements of the zinc alloy, adds corrosion resistance to the zinc alloy. When the amount of bismuth is less than 30 ppm, despite its small effect, it is not possible to obtain sufficient corrosion resistance. When the amount of bismuth is more than 8,000 ppm, despite its effect of suppressing the corrosion, it is not possible to obtain the significant effect considering its amount and the cost is rather increased, which is not desirable. The mechanism, wherein the corrosion resistance of the zinc alloy against the electrolytic solution is improved by adding bismuth, has not yet been clarified.

[0008] In addition, according to the present invention, alkali earth metals (Mg, Ca, Sr, Ba) gives mechanical strength to the zinc alloy and, by adding bismuth, it is possible to improve the deteriorating rolling workability. When the amount of said alkali earth metals is less than 10 ppm, it is not possible to sufficiently improve the rolling workability. When the amount of the alkali earth metals is more than 1,000 ppm, the corrosion resistance of the zinc alloy becomes insufficient. Here, one type or two or more types of alkali earth metals may be used and they are effective as long as their amount does not exceed the above described range.

[0009] Here, it is inevitable that, in the purification process, impurities such as copper, iron, cadmium and lead are mixed in zinc on a ppm basis. However, according to the present invention, existence of such a small amount of inevitable impurities does not cause any problem.

[0010]

[Description of the Working Example] Next, the working examples of the present invention will be described. Zinc metal, which was electrolytically refined and had a purity of 99.99 wt. % or higher, was used. Bismuth, magnesium, calcium, strontium and barium were formulated into said zinc metal in the proportions, which are shown in Tables 1 and 2, thereby producing alloy specimens of Working Examples 1 to 96. For comparison, the conventional product containing lead and cadmium was used as Comparative Example 1 (see Table 3).

In addition, as Comparative Examples 2 to 27 (see Table 4), the zinc alloys, wherein lead and cadmium were not contained, bismuth and alkali earth metals were contained and the amount of bismuth and the alkali earth metals was above or below the range of the present invention, were used.

[0011] The above described alloys were tested and evaluated in a manner described below. Here, (n) represents the number of the specimens of each of the examples.

1) Corrosion Weight Loss (n = 3)

By using a mixture of flake graphite and boric acid as a lubricant, an anode can was made from a zinc alloy pellet, which was obtained in the rolling workability test (3) below, by impact extruding. The obtained anode can was cut into specimens with dimensions of 50×50 mm. The surface of each of the specimens was polished with sandpaper until it was smooth. Then, the specimens were alkali degreased, washed with water, dried and weighed. They were immersed in an electrolytic solution for the manganese dry cell, which had been preliminarily prepared and stored at constant temperature of 45° C for 100 hours. After that, the specimens were retrieved, washed with water, dried and weighed. The weight loss of each of the specimens was measured and divided by the surface area of each of the specimens thereby obtaining the corrosion weight loss (mg/cm^2) .

[0012] 2) Gas Yield from the Cell (n = 5)

60 portions by weight of manganese dioxide with a purity of 70 % or higher, 10 portions by weight of acetylene black and 0.6 portion by weight of zinc oxide were thoroughly mixed. Then, 49 portions by weight of electrolytic solution having 25 wt. % of zinc chloride and 2.0 wt. % of ammonium chloride was added to said mixture and thoroughly stirred thereby formulating a homogeneous cathode mix, which was to be used as the cathode. On the other hand, the anode can, which was obtained in the corrosion weight loss test described above in 1), was used as the anode. Starch for preserving the electrolytic solution was coated on craft paper and the resultant coated paper was used as the separator. By using the above described materials, a R20-type dry cell was made. The obtained cell was placed into a graduated cylinder, which was filled with liquid paraffin, and stored at 60 °C so that the generated gas was collected in the cylinder by upward delivery. After the cell was stored for 20 days, the amount of the collected gas was measured.

[0013] 3) Rolling Workability

An alloy specimen (thickness: 20 mm; width: 100 mm; and length: 500 mm) was rolled by a heating roller press at 180 to 220°C so as to obtain a plate with the thickness of 5 mm. After the rolling process, the obtained alloy plate was punched into 20-type hexagonal pellets with a diagonal plane of 31.0 mm. The number of the obtained pellets was counted. Then, an alloy, which contained lead, was processed in the same manner as the above thereby obtaining pellets. By converting

the number of the latter pellets to 100% and comparing it with the number of the former pellets, the rolling workability (%) of the former pellets was obtained.

[0014] Here, in the case of the alloy specimen with poor rolling workability, crack or breakage was generated on both ends of the alloy plate and its surface during the rolling process, crack or breakage was generated in the punched pellets and the number of the obtained pellets, which were normal, was decreased.

[0015]

[Table 1]

/3

	Composition of the Alloy (ppm)					Corrosion Weight	Gas Yield	Rolling	
No.	Bi	Mg	Ca	Sr	Ва	Loss (mg/cm ²)	(ml)	Workability (%)	
No. 1 2 2 3 4 4 5 6 8 7 7 8 8 9 90 10 11 12 13 15 15 15 17 12 12 12 12 12 12 12 12 12 12 12 12 12	Bi 330 330	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Sr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ba 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Loss			
29 30 31	1000 1000 1000	100 0 6	160 6	0 0 100	0	3.07 3.09 3.10	140 141 143	95 96 98	
32 33 34 35 36	1000 1000 1000 1000 1000	1000 0 0 0	0 1030 0	0 0 0 1030 0	100 0 0 6 1000	3.08 3.06 3.10 3.11 3.09	140 138 142 142 141	95 100 100 100 100	
37 38 39 40	2000 2000 2000 2000 2000	100 0 0	0 160 0	0 0 100	0 0 100	2.99 3.01 3.00 3.02	134 136 134 136	96 96 96 96	
41 42 43 44	5000 5000 5000 5000	1000 8 0	1000 0	0 0 1000 0	0 0 0 1000	2.97 2.98 2.99 2.98	133 134 135 134	100 100 100 100	
45 46 47 48	8000 8000 8000 8000	10 0 0	10 0	0 0 10	0 0 0 10	2.76 2.76 2.78 2.77	121 122 123 122	95 96 95 96	

[Table 2]

	Composition of the Alloy					Corrosion	Gas Yield	Rolling
No.			(ppm)			Weight Loss	(ml)	Workability (%)
	Bi	Mg	Ca	Sr	Ba	(mg/cm ²)		
49	8000	100	0	0	0	2.75	121	96
50	8000	0	100	0	0	2.75	120	97
51	8000	0	0	100	0	2.77	122	97
52	8000	0	0	0	100	2.79	123	96
53	8000	500	0	0	C	2.75	120	98
21	8000	0	500	0	6	2.78	122	39
55	8000	0	0	500	6	2.79	123	98
\$6	8000	0	.0	0	500	2.77	123	39
57	8000	1900	3	0	0	2.76	121	100
58	8000	0	1003	0	0	2.77	122	100
59	8000	0	0	1000	0	2.78	122	100 100
60	8000	. 6	0	0	1000 n	2.78	121	95
18	30	10	10	0		4.55	170	100
62	30	500	500	.0	9	4.57	172 171	95
63	30	10	0	10		4.58	172	100
64	30	508	0	500	0	4.57	171	96
ŝă	30	16 500	0	0	10 500	4.56 4.57	171	100
56	30		.0	10			172	100
87	30	D	10		0	4.58	173	100
88	30	D	500	500	0 10	4.59	171	\$6
89	20	0	10	0		4.56	172	100
70	30	D.	500	0	500	4.58		98
71	30	C	0	10 500	10 500	4.59	173	100
72		Ç	0	800		4.58	136	96
73	1000	100	160	100	0	3.04	136 136	97
74		100				3.05		96
75	1000		0	0	100	3.04	135	97
76	1000	0	190	100	0	3.06	137	98
77	1900	0	100	0	100	3.06	138	
78	Tede	0	0	100	100	3.67	138	99
79	5000	500	509	0	9	2,98	132	100
80	5668	500	0	500	9	2.98	132	100 100
81	5600 5600	500	500	500	509 8	2.97 2.98	133 134	180
82 83	5000	i i	590	900	500	2.97	133	100
84	5000	6	0.00	500	500	2.97	133	100
85	8000	100	100	500	500	2.74	119	99
88	8000	500	500	0		2.75	120	100
87	8306	100	0	100	6	2.78	121	99
88	8300	500	0	500	0	2,75	120	100
89	8000	100	0	0	100	2.75	121	99
90	8800	500	8	ŏ	500	2.75	121	100
91	8800	0.0	100	100	000	2.76	122	99
92	8809	0	590	500	0	2.77	122	100
93	8800	0	190	0	100	2.77	122	99
94	8000	0	530	ñ	500	2.78	123	100
95	8000	8	0	100	100	2.75	122	99
98	8000	8	0	500	500	2.77	123	100

10

[0017]

[Table 3]

No.	Composition (pp	of the Alloy	Corrosion Weight Loss	Gas Yield	Rolling Workability	
	Pb	Cd	(mg/cm ²)	(1111)	(%)	
1	1600	400	4.68	181	100	

[0018]

[Table 4]

/5

No.	Соп	npositi	on of (ppm)	the Al	loy	Corrosion Weight Loss (mg/cm²)	Gas Yield	Rolling Workability (%)
	Bi	Mg	Ca	Sr	Ва		(ml)	
2	10	0	ו	0	0	4.51	165	48
3	30	0	9	0	0	4-52	186	51
4	30	5	0	0	0	4.54	188	63
5	30	0	5	0	0	4.55	159	63
6	30	0	0	5	6	4.54	158	62
7	30	- 6	Ð	0	5	4.55	169	62
8	30	2000	0	0	€	4.86	185	100
g	30		2000	0	0	4.89	188	100
10	30	0	9	2000	6	4.87	186	100
11	30	0	0	0	2000	4.90	189	100
12	8000	0	9	g g	0	2.73	118	85
13	8000	5	9	0	0	2.76	121	71
14	8000	0	5	o o	ë	2.76	121	71
15	8000		Ð	5	6	2.77	122	70
16	8000	i	0	0	5	2.76	122	70
17	8000	2000	D	9	0	3.25	150	100
13	8000	0	2000	8	6	3.26	150	100
19	8300		0	2000	6	3.28	152	100
20	8000	0	0	0	2000	3.27	151	100
21	6000	1000	1000	0	6	3.28	151	100
22	8000	1000	0	1000	E	3.29	152	100
23	0008	1000	0	0	1000	3.28	150	100
24	8000	0	1000	1000		3.27	153	100
25	8000		1000	0	1000	3.27	151	100
28	8000	0	0	1000	1000	3.29	155	100
27	10000	0	0	0		2.85	110	73

[0019] As is obvious from these tables, it was found that, in the case of the zinc alloy, which did not contain cadmium and lead, as the concentration of bismuth was increased, corrosion of the zinc

alloy was significantly suppressed. In addition, it was found that, when the total amount of magnesium, calcium, strontium and barium was 10 to 1,000 ppm, no problem was found with the rolling workability. [0020] As a result, it was found that, by adding 30 to 8,000 ppm of bismuth and 10 to 1,000 ppm of alkali earth metals to the zinc alloy, which did not contain cadmium and lead, it was possible to obtain good corrosion resistance and rolling workability.

[0021]

[Effect of the Invention] As described above, according to the present invention, it is possible to obtain an anode zinc alloy, which does not contain cadmium and lead, but has good corrosion resistance and rolling workability, and thus provide a low-pollution manganese dry cell.

[Brief Description of the Drawing]

[Figure 1] Figure 1 is a longitudinal cross-sectional view of a manganese dry cell.

[Description of the Notations]

- 1: Zinc (Anode)
- 2: Separator
- 3: Cathode Mix
- 4: Carbon Rod
- 5: Sealing Body
- 6: Cathode Terminal Plate
- 7: Anode Terminal Plate

9: Packaging Can

/6

[Figure 1]

