Dynamic Programming

Mattia Pellegrino, Ph.D Fellow mattia.pellegrino@unipr.it

Summary

- Policy Evaluation and Iteration
- Value Iteration
- Dynamic programming

- A process that aim to optimize a program (i.e. policy) exploiting the sequential or the temporal component of the problem
 - A method for solving complex problems
 - Breaking them into subproblems
 - Subproblems are usually easier to solve
 - Once solved the solutions is just a combination of the subproblems' solutions

- Dynamic Programming is a very general solution method.
- Problems must have some properties:
 - Optimal structure
 - Optimality principle
 - Optimal solution can be decomposed into subproblems
 - Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be kept and reused
 - Markov decision processes satisfy both properties
 - Bellman equation dives recursive decomposition
 - Value function can be stored and reused

- We assume the full knowledge of the MDP
- It is used for planning in an MPD
 - For prediction $input = MDP \ \langle S, A, P, R, \gamma \rangle \ and \ \pi$ $input = MRP \ \langle S, P^{\pi}, R^{\pi}, \gamma \rangle$ $output = v_{\pi}$
 - For control $input = MDP \langle S, A, P, R, \gamma \rangle$ $output = v_* \ and \ \pi_*$

- It is used to solve many other problems:
 - Scheduling
 - String algorithms
 - Graph algorithms
 - Graphical Models
 - Bioinformatics

ITERATIVE POLICY EVALUATION

• Problems:

Evaluate a policy π

• Solution:

Iterative application of Bellman expectation backup

- Synchronous backups:
 - At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - Where s' is a successor state of s

$$egin{aligned} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \\ \mathbf{v}^{k+1} &= \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k \end{aligned}$$

RANDOM POLICY IN A SMALL WORLD

Actions

Terminal states

Properties

$$r=-1$$
 on every action $\gamma=1$ undiscounted $\pi(n|\cdot)=\pi(e|\cdot)=\pi(s|\cdot)=\pi(w|\cdot)=0.25$

Agent follows an uniform random policy

RANDOM POLICY IN A SMALL WORLD

RANDOM POLICY IN A SMALL WORLD

= 10	0.0	-6.1	-8.4	-9.0
	-6.1	-7.7	-8.4	-8.4
	-8.4	-8.4	-7.7	-6.1
	-9.0	-8.4	-6.1	0.0

k

	0.0	-14.	-20.	-22.
$k = \infty$	-14.	-18.	-20.	-20.
$\kappa = \omega$	-20.	-20.	-18.	-14.
	-22.	-20.	-14.	0.0

POLICY IMPROVEMENT

- Give a policy π
 - \circ We want to evaluate: $v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} | S_t = s]$
 - We want to improve by acting greedly

$$\pi' = greedy(v_{\pi})$$

- \circ In a small gridworld improved policy was optimal, $\pi^1=\pi^*$
- \circ $\,$ We need more iterations of improvement, in this way we can converge to π^*

POLICY ITERATION

Policy evaluation

 \rightarrow Estimate v_{π}

Policy improvement

 \rightarrow Generate $\pi' >= \pi$

EXAMPLE - JACK'S CAR RENTAL (from sutton)

- The Jack's Car Rental problem is a classic reinforcement learning problem described by Richard Sutton in his book, "Reinforcement Learning: An Introduction."
- The problem involves managing two car rental locations to maximize profit.
- Each location has a limited number of cars that can be rented out or returned each day.
- The number of cars requested and returned at each location is a random variable.
- The goal is to find the optimal policy for transferring cars between the two locations to maximize profit.

EXAMPLE - JACK'S CAR RENTAL (from Sutton)

- States: Two locations, maximum of 20 cars at each
- Actions: Move up to 5 cars between locations overnight
- Reward: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly

POLICY IMPROVEMENT

- Consider a deterministic policy: $a = \pi(s)$
- We can improve this policy with a greedily method:

$$\pi'(s) = argmax_{a \in A} q_{\pi}(s, a)$$

This improves the value from any state s over one step,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

• This will improve the value function: $v_{\pi'}(s) \geq v_{\pi}(s)$

$$v_{\pi}(s) \leq q_{\pi} (s, \pi'(s)) = \mathbb{E}_{\pi'} [R_{t+1} + \gamma v_{\pi} (S_{t+1}) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'} [R_{t+1} + \gamma q_{\pi} (S_{t+1}, \pi' (S_{t+1})) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'} [R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi} (S_{t+2}, \pi' (S_{t+2})) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'} [R_{t+1} + \gamma R_{t+2} + \dots \mid S_{t} = s] = v_{\pi'}(s)$$

POLICY IMPROVEMENT

• If the improvement stops,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

The Bellman optimality equation is then satisfied

$$v_{\pi} = \max_{a \in A} q_{\pi}(s, a)$$

• Hence $v_{\pi}(s) = v_{*}(s) \forall s \in S \leftarrow \pi \ optimal \ policy$

POLICY ITERATION

Any Policy evaluation

Any Policy improvement

 \rightarrow Estimate v_{π}

 \rightarrow Generate $\pi' >= \pi$

VALUE ITERATION - PRINCIPLE OF OPTIMALITY

- Any optimal policy can be divided into two parts:
 - An optimal first action A_{*}
 - o An optimal policy from successor state S'
- A policy $\pi(a|s)$ achieves optimal value from state , $s, v_\pi = v_*(s)$ if and only if
 - For any state s' reachable from s, π achieve the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

DETERMINISTIC VALUE ITERATION

- If we know the solution of a generic subproblem $v_*(s')$
- Then the solutions $v_*(s)$ can be found using the formula:

$$v_* \leftarrow \max_{a \in A} R_s^a + \gamma \sum_{s'inS} P_{ss'}^a v_*(s')$$

 The idea is to apply these updates iteratively, start with final rewards and work backwards

EXAMPLE - VALUE ITERATION

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	- 5	-5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

VALUE ITERATION

• Problems:

Find optimal policy $\,\pi\,$

• Solution:

Iterative application of Bellman optimality backup

- Synchronous backups:
 - At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- There is no policy here

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

SYNCHRONOUS DYNAMIC PROGRAMMING

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

ASYNCHRONOUS DYNAMIC PROGRAMMING

- DP methods described so far used synchronous backups
 - o i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected
- Three simple ideas for asynchronous dynamic programming:
 - In-place dynamic programming
 - Prioritised sweeping
 - Real-time dynamic programming

IN-PLACE DYNAMIC PROGRAMMING

 Synchronous value iteration stores two copies of value function for all s in S

$$v_{new}(s) \leftarrow \max_{a \in A} (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_{old}(s'))$$

 In-place value iteration only stores one copy of value for all s in S

$$v(s) \leftarrow \max_{a \in A} (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v(s'))$$

PRIORITISED SWEEPING

 Use magnitude of Bellman error to guide state selection, e.g. max

$$\left| \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{s}^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} v(s') \right) - v(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

PRIORITISED SWEEPING

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t , A_t , R_{t+1}
- Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$