#### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕЛЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет

С. А. Скороходов

# ДИФФЕРЕНЦИАЛЫ

Конспект по материалу 1 семестра Дисциплины – Математический Анализ

Студента группы 417/0424С1ИБг1 1 курса специалитета

Основная образовательная программа подготовки по направлению 10.05.02 «Информационная безопасность телекоммуникационных систем» (направленность «Системы подвижной цифровой защищенной связи»)

Нижний Новгород Издательство "Невыспавшийся Студент" 2025

# Содержание

| 1 | Осн | Основные понятия теории пределов и непрерывности функ- |  |
|---|-----|--------------------------------------------------------|--|
|   | ций | многих переменных                                      |  |
|   | 1.1 | Понятие к-мерного Евклидова пространства               |  |
|   | 1.2 | Понятие функции многих переменных                      |  |
|   |     | Частные случаи функций многих переменных               |  |
|   | 1.3 | Понятие предела функции многих переменных              |  |
|   |     | Предел функции многих переменных                       |  |
|   |     | Двойной предел                                         |  |
|   |     | Геометрический смысл двойного предела                  |  |
|   |     | Независимость предела от пути                          |  |
|   |     | Примеры решения двойных пределов                       |  |
|   | 1.4 | Понятие непрерывности функции многих переменных        |  |
|   |     | Приращение функции одной переменной                    |  |
|   |     | Непрерывность функции многих переменных                |  |
|   |     | Непрерывность на языке $\varepsilon - \delta$          |  |
|   |     | Приращение аргументов и функции                        |  |
|   |     | Полное приращение функции                              |  |
|   |     | Непрерывность по совокупности переменных               |  |
|   |     | Частное приращение функции                             |  |
|   |     | Непрерывность по отдельной переменной                  |  |
|   |     | Теорема и замечание                                    |  |

# ПРЕДИСЛОВИЕ

Настоящий конспект представляет собой краткие записи по курсу «Математический анализ» по теме «Дифференциалы», оформленный с использованием L<sup>A</sup>T<sub>E</sub>X. Он не претендует на статус полноценного учебного пособия и предназначен исключительно для личного использования при подготовке к занятиям и экзаменам.

Материал изложен с учётом программы курса, однако может содержать некоторые погрешности и упрощения. При использовании конспекта рекомендуется сверяться с дополнительными источниками и учебной литературой. Автор не несёт ответственности за результаты вашей сессии.

Распространение данного документа допускается только с личного согласия автора (Скороходов Сергей Александрович).

Выражаю особую признательность преподавателю дисциплины «Математический анализ» Семериковой Надежде Петровне за помощь в освоении курса и подготовке материалов для конспекта.

Для цитирования данного конспекта в работах, подготовленных в L<sup>A</sup>T<sub>E</sub>X, рекомендуется использовать библиографическую запись следующего вида:

```
@book{notediffserkin0,
  title = {Дифференциалы},
  author = {Скороходов, С.А.},
  publisher = {Издательство "Невыспавшийся Студент"},
  year = {2025},
  volume = {1},
  address = {Нижний Новгород},
  edition = {2-е изд., перераб.},
  language = {russian},
  url = {https://github.com/SerKinO/IBTS-math-1k1k-latex-differentials}}
```

# І. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТИ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

#### 1. Понятие к-мерного Евклидова пространства

Рассмотрим множество  $\mathbb{R}^k = \mathbb{R} \cdot \mathbb{R} \cdot ... \cdot \mathbb{R}$  упорядоченных наборов действительных чисел длины k  $(x_1, x_2, ..., x_k)$ , где  $x_1 \in \mathbb{R}$ ,  $x_2 \in \mathbb{R}$ , ...,  $x_k \in \mathbb{R}$ .

Упорядоченный набор  $(x_1,x_2,...,x_k)$  называется **точкой** или **вектором** на множестве  $\mathbb{R}^k$  и обозначается  $\vec{x}=(x_1,x_2,...,x_k)$ , а действительные числа  $x_1,x_2,...,x_k$  называются координатными векторами или точками.

Пусть k=2, тогда множество  $\mathbb{R}^k$  определяет плоскость рис. 1а. Координаты любой точки на плоскости — это упорядоченная пара чисел  $(x_1,x_2)$ , эта пара чисел является координатами вектора, проведенного из начала координат в данную точку.



Рис. 1. Примеры  $\mathbb{R}^k$  пространств

Аналогично, если k=3, то упорядоченный набор  $(x_1,x_2,x_3)$  определяет точку или вектор в пространстве (Рис. 16).

Таким образом, элементами множества  $\mathbb{R}^k$  являются <u>векторы</u>. Над векторами вводятся следующие операции:

# 1. Сложение векторов

Если  $\vec{x} = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$  и  $\vec{y} = (y_1, y_2, ..., y_k) \in \mathbb{R}^k$ , то суммой векторов  $(\vec{x} + \vec{y})$ , будет являться сумма соответствующих координат:

$$(\vec{x} + \vec{y}) = (x_1 + y_1, x_2 + y_2, ..., x_k + y_k)$$
(1.1.1)

#### 2. Умножение вектора на скаляр

Если  $\vec{x}=(x_1,x_2,...,x_k)$  и  $\alpha\in\mathbb{R}$  - действительное число, то  $\alpha\vec{x}\in\mathbb{R}^k$  – это вектор с координатами:

$$(\alpha \vec{x}) = (\alpha \cdot x_1, \alpha \cdot x_2, ..., \alpha \cdot x_k) \tag{1.1.2}$$

#### 3. Скалярное произведение векторов

Если  $\vec{x} = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$  и  $\vec{y} = (y_1, y_2, ..., y_k) \in \mathbb{R}^k$ , тогда *скалярным* произведением векторов называться скалярная величина, равная сумме произведений одноименных координат:

$$(\vec{x} + \vec{y}) = x_1 y_1 + x_2 y_2 + \dots + x_k y_k = \sum_{i=1}^k x_i y_i$$
 (1.1.3)

#### 4. Норма или длина вектора

Длина вектора  $\vec{x} = (x_1, x_2, ..., x_k)$  вычисляется по формуле:

$$||\vec{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_k^2} = \sqrt{\sum_{i=1}^k x_i^2}$$
 (1.1.4)

#### 5. Расстояние между двумя точками или векторами

Если  $\vec{x} = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$  и  $\vec{y} = (y_1, y_2, ..., y_k) \in \mathbb{R}^k$ , то расстояние между точками  $\rho(\vec{x}, \vec{y})$  определяется длиной вектора  $(\vec{x} - \vec{y})$ :

$$\rho(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_k - y_k)^2} = \sqrt{\sum_{i=1}^k (x_i - y_i)^2}$$

$$= \sqrt{\sum_{i=1}^k (x_i - y_i)^2}$$
 (1.1.5)

Если в множестве  $\mathbb{R}^k$  введены рассмотренные выше операции с векторами, то оно называется **k-мерным Евклидовым пространством**.

# 2. Понятие функции многих переменных

Начнем с определения функции одной переменной.

Если каждому числу x из множества  $\mathbb{E}$ , которое является подмножеством действительных чисел  $\mathbb{R}$ , соответствует число y из множества Y, также являющегося подмножеством  $\mathbb{R}$  в соответствии с правилом f, то говорят, что на множестве  $\mathbb{E}$  задана функция y=f(x). Множество  $\mathbb{E}$  называют областью определения функции, а Y — множеством её значений.

Функция нескольких переменных определяется аналогично, только вместо одного числа используются несколько независимых переменных.

# Определение функции к независимых переменных

Если каждому вектору  $\vec{x}=(x_1,x_2,...,x_k)$  из множества  $\mathbb{E}\subset\mathbb{R}^k$  соответствует число y из множества  $Y\subset\mathbb{R}$  по правилу f, то на множестве  $\mathbb{E}$  задана функция нескольких переменных, которую обозначают как  $y=f(\vec{x})$ 

или 
$$y = f(x_1, x_2, ..., x_k)$$
.

Здесь  $x_1, x_2, ..., x_k$  — независимые переменные (аргументы функции), а y — зависимая переменная.

Множество  $\mathbb{E} \subset \mathbb{R}^k$  называют областью определения функции, а множество  $Y \subset \mathbb{R}$  — её множеством значений.

#### Частные случаи функций многих переменных

Рассмотрим функции двух и трех переменных. Для функции двух переменных:

- Если k=2, то  $y=f(x_1,x_2)$ , что записывается как z=f(x,y);
- Если k=3, то  $y=f(x_1,x_2,x_3)$ , что записывается как w=f(x,y,z).

Особенно важна функция двух переменных z=f(x,y), где x и y — независимые переменные. Область определения этой функции — множество точек (x,y), принадлежащих некоторому подмножеству  $\mathbb{E} \subset \mathbb{R}^2$ . Зависимая переменная z принимает значения из множества  $Z \subset \mathbb{R}$ , которое откладывается по вертикальной оси в пространстве XYZ.

По определению функции, каждой паре  $(x,y) \in \mathbb{E}$  ставится в соответствие единственное значение z по закону f. Это означает, что функция двух переменных имеет графическое представление в виде поверхности в пространстве. Эта поверхность состоит из всех значений функции во всех точках области определения  $\mathbb{E}$ .

# Параболоид вращения (Рис. 2)

$$z = x^2 + y^2$$

O.О.  $(x,y) \in \mathbb{R}, z \geqslant 0$  - множество значений



Рис. 2. Параболоид

#### Коническая поверхность (Рис. 3)

$$z^2 = x^2 + y^2$$

– это неявно заданная функция. Выразим из уравнения  $z,\ z=\pm\sqrt{x^2+y^2}$  - получаем две явно заданные функции:

1. 
$$z = \sqrt{x^2 + y^2}, (x, y) \in \mathbb{R}^2, z \ge 0$$

2. 
$$|z = -\sqrt{x^2 + y^2}|, (x, y) \in \mathbb{R}^2, z \le 0$$



Рис. 3. Коническая поверхность

## Сфера с цетром в начале (Рис. 4)

$$x^2 + y^2 + z^2 = R^2$$

Функция  $z=\sqrt{R^2-x^2-y^2}$  задает верхнюю половину сферы. Здесь область определения  $R^2-x^2-y^2\geqslant 0\Rightarrow x^2+y^2\leqslant R^2$  - круг радиуса R, а множество значений  $0\leqslant z\leqslant R$ .

Функция  $z=-\sqrt{R^2-x^2-y^2}$  задает нижнюю половину сферы, область определения  $x^2+y^2\leqslant R^2$ , а множество значений  $-R\leqslant z\leqslant 0$ .

**Замечание:** Функции, большего числа переменных, не имеют геометрического изображения.



Рис. 4. Сфера с цетром в начале

# 3. Понятие предела функции многих переменных

# Предел функции одной переменной

Вспомним определение предела для функции одной действительной переменной. Пусть y=f(x), где  $x\in\mathbb{E}\subset\mathbb{R}$ . Точка x=a является предельной точкой множества  $\mathbb{E}$ ; она может как принадлежать  $\mathbb{E}$ , так и не принадлежать ему  $(a\in\mathbb{E}$  или  $a\notin\mathbb{E})$ .

$$\lim_{x \to a} f(x) = A \Leftrightarrow (\forall \varepsilon > 0) (\exists \delta = \delta(\varepsilon) > 0) (\forall x \in \mathbb{E}, 0 < |x - a| < \delta) :$$

$$|f(x) - A| < \varepsilon \quad (1.3.1)$$

В определении предела неравенство  $0<|x-a|<\delta$  означает, что  $x\in(a-\delta,a+\delta)$  и  $x\neq a$ . Геометрический смысл модуля  $|x-a|=\rho(x,a)$  — это расстояние между точками x и a на действительной оси, причём  $0<\rho(x,a)<\delta$ .

#### Предел функции многих переменных

Обобщим определение предела на случай функции многих переменных. Пусть  $y = f(\vec{x}) = f(x_1, x_2, \dots, x_k)$  определена на множестве  $\mathbb{E} \subset \mathbb{R}^k$ . Точка  $\vec{a} = (a_1, a_2, \dots, a_k)$  является предельной для  $\mathbb{E}$  и может как принадлежать  $\mathbb{E}$ , так и не принадлежать ему ( $\vec{a} \in \mathbb{E}$  или  $\vec{a} \notin \mathbb{E}$ ).

Расстояние между точками в  $\mathbb{R}^k$  было введено в Раздел 1.1:

$$\rho(\vec{x}, \vec{a}) = \|\vec{x} - \vec{a}\| = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_k - a_k)^2}.$$
 (1.3.2)

Предел функции многих переменных обозначается следующим образом:

$$\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = A \quad \text{или} \quad \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2, \dots, x_k) = A. \tag{1.3.3}$$

$$\vdots$$

$$x_k \to a_k$$

На языке « $\varepsilon$ - $\delta$ » определение аналогично (1.3.1), но вместо чисел x и a используются векторы  $\vec{x}$  и  $\vec{a}$ , а модуль |x-a| заменяется на норму  $||\vec{x}-\vec{a}||$ :

$$(\forall \varepsilon > 0) \ (\exists \delta = \delta(\varepsilon) > 0) \ (\forall \vec{x} \in \mathbb{E}, \ 0 < \|\vec{x} - \vec{a}\| < \delta) : |f(\vec{x}) - A| < \varepsilon \qquad (1.3.4)$$

#### Замечание о пределах

Замечание. Поскольку определение предела (1.3.4) для функции многих переменных совпадает с определением для функции одной переменной, все теоремы о пределах, доказанные для случая одной переменной, переносятся на случай многих переменных.

# Двойной предел

Рассмотрим предел функции двух переменных z=f(x,y), называемый двойным пределом. Пусть точка  $M(x,y)\in\mathbb{E}\subset\mathbb{R}^2$  принадлежит области



Рис. 5. Интервал  $(a - \delta, a + \delta)$  с выколотой точкой

определения функции, а точка  $M_0(a,b)$  является предельной для  $\mathbb{E}$  ( $M_0 \in \mathbb{E}$  или  $M_0 \notin \mathbb{E}$ ). Тогда:

$$A = \lim_{M \to M_0} f(x, y) = \lim_{\substack{x \to a \\ y \to b}} f(x, y).$$
 (1.3.5)

Расстояние между точками M и  $M_0$  вычисляется по формуле:

$$\rho(M, M_0) = \sqrt{(x-a)^2 + (y-b)^2} < \delta.$$

На языке « $\varepsilon$ - $\delta$ » двойной предел записывается так:

$$(\forall \varepsilon > 0) (\exists \delta = \delta(\varepsilon) > 0) (\forall (x, y) \in \mathbb{E}, 0 < \sqrt{(x - a)^2 + (y - b)^2} < \delta) : (1.3.6)$$
$$|f(x, y) - A| < \varepsilon \quad (1.3.7)$$

#### Геометрический смысл двойного предела

Рассмотрим геометрический смысл неравенства:

$$0<\sqrt{(x-a)^2+(y-b)^2}<\delta=\delta(\varepsilon), \hspace{1cm} (1.3.8)$$

$$0 < (x - a)^{2} + (y - b)^{2} < \delta^{2}(\varepsilon).$$
 (1.3.9)

Это задаёт круг радиуса  $\delta(\varepsilon)$  с выколотым центром в точке  $M_0(a,b)$ . Такой круг называют  $\delta$ -окрестностью точки  $M_0$  (Puc. 6).

Для сравнения: в случае функции y=f(x)  $\delta$ -окрестность точки a — это интервал  $(a-\delta,a+\delta)$  с выколотой точкой a (Puc. 5).

#### Независимость предела от пути

Из определения двойного предела следует, что если предел существует, то он не зависит от пути, по которому точка M приближается к  $M_0$ . Число возможных направлений бесконечно, в отличие от функции одной переменной, где таких направлений всего два (слева и справа от точки a).



#### Примеры решения двойных пределов

1. Вместо х и у подставляем предельные значения:

$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{x \cdot y}{x^2 + y^2} = \frac{1 \cdot 2}{1^2 + 2^2} = \frac{2}{5}$$

2. По теореме и произведении бесконечно малых на ограниченную:

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x + y \cdot \sin \frac{1}{x}) = \lim_{\substack{x \to 0 \\ y \to 0}} x + \lim_{\substack{x \to 0 \\ y \to 0}} y \cdot \sin \frac{1}{x} = 0$$

3. Используя первый замечательный предел:

$$\lim_{\substack{x \to \infty \\ y \to 2}} \left( x \cdot \sin \frac{1}{xy} \right) \left[ \infty \cdot 0 \right] = \lim_{\substack{x \to \infty \\ y \to 2}} \left( \frac{\sin \frac{1}{xy}}{\frac{1}{x}} \right) \left[ \frac{0}{0} \right] =$$

$$= \lim_{\substack{x \to \infty \\ y \to 2}} \left( \frac{\sin \frac{1}{xy}}{\frac{1}{xy} \cdot y} \right) = \lim_{y \to 2} \frac{1}{y} = \frac{1}{2}$$

4. Покажем что предел не существует. Для этого выберем окрестность предельной точки  $M_0(0,0)$  и предположим, что точка  $M(x,y) \to M_0(0,0)$  по различным путям (выше уже было сказано, что число таких направлений бесконечно). Для простоты выберем две прямые: y = x и y = -x

$$\lim_{\substack{x \ y \ 3}} \frac{xy}{x^2 + y^2} = \left| \begin{array}{c} y = x \\ x \to 0 \\ y \to 0 \end{array} \right| = \lim_{x \to 0} \frac{x^2}{x^2 + x^2} = \lim_{x \to 0} \frac{x^2}{2x^2} = \frac{1}{2}$$

$$\lim_{\substack{x \to 3 \\ y \to 0}} \frac{xy}{x^2 + y^2} = \left| \begin{array}{c} y = -x \\ x \to 0 \\ y \to 0 \end{array} \right| = \lim_{x \to 0} \frac{x \cdot (-x)}{x^2 + (-x)^2} = \lim_{x \to 0} \frac{x^2}{2x^2} = -\frac{1}{2}$$

Таким образом, рассмотрели 2 частных предела, они не равны между собой, следовательно двойной предел не существует.

## 4. Понятие непрерывности функции многих переменных

#### Непрерывность функции одной переменной

Вспомним определение непрерывной функции одного действительного переменного. Функция y=f(x), где  $x\in E\subset \mathbb{R}$ , называется непрерывной в точке  $x_0\in E$ , если  $\lim_{x\to x_0}f(x)=f(x_0)$ , то есть предел f(x) при  $x\to x_0$  равен значению функции в точке  $x_0$ .

В этом случае предельная точка  $x_0 \in E$ , поэтому на языке  $\varepsilon - \delta$ -определение принимает вид:

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall x \in E \subset \mathbb{R}, |x - x_0| < \delta) : |f(x) - f(x_0)| < \varepsilon \quad (1.4.1)$$

#### Приращение функции одной переменной

Если в определении (1.4.1)  $(x-x_0=\Delta x)$  приращение аргумента,  $f(x)-f(x_0)=\Delta f(x_0)$  – приращение функции, то определение (1.4.1) можно записать в виде:

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall x \in E \subset \mathbb{R}, \, |\Delta x| < \delta) : \, |\Delta f(x_0)| < \varepsilon \tag{1.4.2}$$

Поэтому из непрерывной функции малым приращением аргумента соответствуют малые приращения функции.

# Непрерывность функции многих переменных

Обобщим определения непрерывности функции одной переменной на случай функции многих переменных. Пусть на множестве  $E \subset \mathbb{R}^k$  задана функция  $y = f(\vec{x})$ , где  $\vec{x} = (x_1, x_2, ..., x_k) \in E \subset \mathbb{R}^k$  и пусть  $\vec{x}_0 = (x_{0_1}, x_{0_2}, ..., x_{0_k}) \in E \subset \mathbb{R}^k$  - предельная точка множества E.

Функция  $y = f(\vec{x})$  называется непрерывной в точке  $\vec{x}_0$ , если:

$$\lim_{\vec{x} \to \vec{x}_0} f(\vec{x}) = f(\vec{x}_0) \qquad \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_1 \\ \dots \\ x_k \to a_k}} f(x_1, x_2, \dots, x_k) = f(x_{0_1}, x_{0_2}, \dots, x_{0_k}) \quad (1.4.3)$$

# Непрерывность на языке $\varepsilon-\delta$

На языке « $\varepsilon - \delta$ » это определение получается из определения (1.4.1) при

замене  $x \to \vec{x}, x_0 \to \vec{x}_0$  и  $|x - x_0| \to ||\vec{x} - \vec{x}_0||$ .

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall \vec{x} \in E \subset \mathbb{R}^k, ||\vec{x} - \vec{x}_0|| < \delta) : |f(\vec{x}) - f(\vec{x}_0)| < \varepsilon$$
(1.4.4)

#### Приращение аргументов и функции

В определении (1.4.4) обозначим:

$$\Delta \vec{x} = \vec{x} - \vec{x}_0 = (x_1 - x_{0_1}, x_2 - x_{0_2}, ..., x_k - x_{0_k}) = (\Delta x_1, \Delta x_2, ..., \Delta x_k) \quad (1.4.5)$$

— вектор приращения аргументов.

$$\Delta f(\vec{x}) = f(\vec{x}) - f(\vec{x}_0) \tag{1.4.6}$$

— приращение функции, аналогичное (1.4.2), только здесь  $\Delta x$  заменяем на вектор  $\Delta \vec{x}$ , и соответственно  $|\Delta x|$  заменяем на  $||\Delta \vec{x}||$ .

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall \vec{x} \in E \subset \mathbb{R}^k, ||\Delta \vec{x}|| < \delta) : |\Delta f(\vec{x}_0)| < \varepsilon$$
 (1.4.7)

— здесь 
$$||\Delta \vec{x}|| = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2 + \dots + (\Delta x_k)^2}.$$

#### Полное приращение функции

Если дать приращение переменной  $\vec{x}$  в точке  $\vec{x}_0$  по все независимым переменным одновременной т.е.  $\vec{x}-\vec{x}_0=\Delta\vec{x}\Rightarrow\vec{x}=\vec{x}_0+\Delta\vec{x}=(x_1+x_{0_1},x_2+x_{0_2},...,x_k+x_{0_k})$ , то приращение, которое получит функция  $f(\vec{x})$  в точке  $\vec{x}_0$  называется полным приращением функции (1.4.8).

$$\Delta f(\vec{x}_0) = f(\vec{x}) - f(\vec{x}_0) = f(\vec{x}_0 + \Delta \vec{x}) =$$

$$= f(x_1 + x_{0_1}, x_2 + x_{0_2}, ..., x_k + x_{0_k}) - f(x_{0_1}, x_{0_2}, ..., x_{0_k}) \quad (1.4.8)$$

# Непрерывность по совокупности переменных

Тогда определение непрерывности (1.4.7) словами можно сформулировать так:

Функция  $y=f(\vec{x})$  непрерывна в точке  $\vec{x}_0$  по совокупности переменные (т.е. по всем переменным  $x_1,x_2,...,x_k$  одновременно), если малым приращениям всех независимых переменных соответствует малое полное приращение функции.

#### Частное приращение функции

Для функции многих переменных приращение аргумента можно давать также только по отдельности переменной. Обозначим ее  $x_i$ , где  $i=1,2,...,\vec{k}$ , что означает либо по  $x_1$ , либо по  $x_2$ , ..., либо по  $x_k$ . Вектор приращений аргументов в этом случае принимает вид:

$$\Delta \vec{x} = (0, ..., 0, \Delta x_i, 0, ..., 0)$$

$$\vec{x} = \vec{x}_0 + \Delta \vec{x} = (x_{0_1}, ..., x_{0_{i-1}}, x_{0_i} + \Delta x_i, x_{0_{i+1}}, ..., x_{0_k})$$

Тогда приращение, которое получит функция в этом случае, называется <u>частным приращением функции</u> в точке  $\vec{x}_0$  по переменной  $x_i$  и обозначается  $\Delta_i f(\vec{x}_0)$ :

$$\Delta_{i}f(\vec{x}_{0}) = f(\vec{x}_{0} + \Delta \vec{x}) - f(\vec{x}_{0}) = f(x_{0_{1}}, \dots, x_{0_{i-1}}, x_{0_{i}} + \Delta x_{i}, x_{0_{i+1}}, \dots, x_{0_{k}}) - f(x_{0_{1}}, \dots, x_{0_{i-1}}, x_{0_{i}}, x_{0_{i+1}}, \dots, x_{0_{k}})$$
(1.4.9)

#### Непрерывность по отдельной переменной

Функция  $y=f(\vec{x})$  называется непрерывной в точке  $\vec{x}_0$  по отдельной переменной  $x_i$ , если:

$$\lim_{x_i \to x_{0_i}} f(x_{0_1}, ..., x_{0_{i-1}}, x_{0_i}, x_{0_{i+1}}, ..., x_{0_k}) =$$

$$= f(x_{0_1}, ..., x_{0_{i-1}}, x_{0_i}, x_{0_{i+1}}, ..., x_{0_k}), \quad (1.4.10)$$

здесь i=1,k, т.е. функция может быть непрерывной, либо по переменной  $x_1,$  либо  $x_2,$  ..., либо по  $x_k.$  В этом случае:

$$||\Delta \vec{x}|| = \sqrt{0 + \dots + 0 + (\Delta x_i)^2 + \dots + 0} = \sqrt{(\Delta x_i)^2} = |\Delta x_i|$$
 (1.4.11)

Тогда определение (1.4.7) принимает вид и значит:

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall \vec{x} \in E \subset \mathbb{R}^k, |\Delta x_i| < \delta) : |\Delta_i f(\vec{x}_0)| < \varepsilon \qquad (1.4.12)$$

Функция  $y = f(\vec{x})$  называется непрерывной в точке  $\vec{x}_0$  по переменной  $x_i$ , если малым приращением этой переменной  $\Delta x_i$ , соответствует малое частное приращение функции  $\Delta_i f(\vec{x}_0)$ .

#### Теорема и замечание

# Теорема (без доказательства)

Если функция  $y = f(\vec{x})$  непрерывна в точке  $\vec{x}_0$  по совокупности переменных,

то она будет непрерывна и по каждой переменной в отдельности. Обратно утверждение не всегда верно.

#### Замечание

Если функция  $y=f(\vec{x})$  непрерывна по совокупности переменных, то для нее будет выполняться все теоремы о непрерывности, доказанные для функции одной переменной.