

 CH_3

CH

 CH_3

@ Paúl Conzáloz Modina

Formulación Química Inorgánica

- 1.- Introducción
- 2.- Los elementos Químicos
- 3.- Valencias.
 - 3.1.- Metales.
 - 3.2.- No metales
- 4.- Normas Generales de formulación.
 - 4.1.- Nomenclaturas,
- 5.- Clasificación de compuestos Inorgánicos.
- 6.- Compuestos Binarios.
 - 6.1.- Óxidos
 - 6.2.- Hidruros
 - 6.3.- Ácidos Hidrácidos
 - 6.4.- Sales Binarias
- 7.- Compuestos Ternarios.
 - 7.1.- Hidróxidos
 - 7.2.- Ácidos Oxácidos
 - 7.3.- Iones
 - 7.4.- Sales
 - 7.4.1.- Sales Neutras
 - 7.4.2.- Sales Ácidas
 - 7.4.3.- Sales Múltiples
- 8.- Otros Compuestos.
 - 8.1.- Peróxidos
- 9.- Ejercicios de Formular compuestos.
- 10.- Ejercicios de Nombrar Compuestos.

1.- Introducción

Formular un compuesto consiste en expresar la fórmula química de dicho compuesto. Es decir, indicar qué tipo de átomos (qué elementos) están presentes en la molécula (o en la red cristalina) y cuántos hay de cada tipo.

En este punto estudiaremos los compuestos inorgánicos, aquellos que no son característicos de la materia viva (estos últimos llamados compuestos orgánicos).

Sabemos que los átomos normalmente son neutros (igual número de protones en el núcleo que de electrones en la corteza). Sin embargo, esto no significa que esa sea su forma más estable. Salvo los gases nobles, todos los elementos tienen tendencia a ganar o perder electrones, para lo cual se unen a otros átomos, formando moléculas o redes cristalinas. ¿Por qué esa tendencia a ganar o perder electrones? Recordemos que los electrones en el átomo están distribuidos en capas. La última capa que contiene electrones está sin llenar completamente (salvo en los gases nobles). El hecho de tener la última capa llena le da mucha estabilidad al átomo, por eso los átomos de los gases nobles se encuentran siempre aislados, sin unirse a otros átomos. Todos los átomos intentarán conseguir que su última capa esté llena de electrones. Para ello, aceptarán los que necesiten para llenarla, o intentarán librarse de los que les sobran. De esta forma, cediendo electrones unos átomos a otros, o compartiéndolos, se unen entre sí. Esto es lo que se denomina enlace químico

2.- Los elementos Químicos

Se conocen más de 105 elementos diferentes. Cada uno de ellos se representa por un **símbolo** que está formado por la primera letra del nombre escrita con mayúsculas o dos letras (la segunda en minúscula) si hay varios elementos que comienzan con la misma letra. (H, hidrógeno; Co, cobalto). Hay elementos, conocidos desde la antigüedad, cuyo símbolo deriva del nombre griego o latino (Fe, hierro; Na, sodio).

Los elementos se ordenan, teniendo en cuenta sus propiedades químicas, en la *Tabla Periódica*. En esta tabla, las columnas reciben el nombre de **grupos** y las filas el de **períodos**.

Además se clasifican en **metales** y **no metales**. Los metales son elementos que tienen gran tendencia a perder electrones formando iones positivos y los no metales, a ganarlos, dando iones negativos. El carácter metálico aumenta en la Tabla Periódica al desplazarnos hacia la izquierda y hacia abajo.

Tabla periódica de los elementos

3.- Valencia

Es la capacidad que tiene un átomo de un elemento para combinarse con los átomos de otros elementos y formar compuestos. La *valencia* es un número, positivo o negativo, que nos indica el número de electrones que gana, pierde o comparte un átomo cuando se combina con otro átomo u otros átomos.

3.1.- Valencias de los elementos más importantes del sistema periódico

3.1.1.- Metales

VALENCIA 1	VALENCIA 1		CIA 2	VALEN	NCIA 3
Litio Sodio Potasio Rubidio Cesio Francio Plata	Li Na K Rb Cs Fr Ag	Berilio Magnesio Calcio Estroncio Zinc Cadmio Bario Radio	Be Mg Ca Sr Zn Cd Ba Ra	Aluminio	Al
VALENCIAS 1	y 2	VALENCIAS 1 y 3		VALENCIAS 2 y 3	
Cobre Mercurio	Cu Hg	Oro Talio	Au Tl	Níquel Cobalto Hierro	Ni Co Fe
VALENCIAS 2	y 4	VALENCIAS	2, 3 y 6	VALENCIAS	2, 3, 4, 6 y 7
Platino Plomo Estaño	Pt Pb Sn	Cromo	Cr	Manganeso	Mn

3.1.2.- No Metales

VALENCIA 1		VALENCIAS 1, 3, 5 y 7		VALENCIA 2	
		Cloro	Cl		
Flúor	F	Bromo	Br	Oxígeno	O
		Yodo	I		
VALENCIAS 2, 4 y 6		VALENCIAS 2, <u>3</u> , 4 y <u>5</u>		VALENCIAS 3 y 5	
Azufre	S			Fósforo	P
Selenio	Se	Nitrógeno	N	<u>Arsénico</u>	As
Teluro	Te			Antimonio	Sb
VALENCIAS 2 y 4		VALEN	ICIA 4	VALEN	ICIA 3
Carbono	С	Silicio	Si	Boro	В

3.1.3.- Hidrógeno

VALEN	ICIA 1
Hidrógeno	Н

http://selectividad.intergranada.com

4.- Normas Generales de formulación

- 1) Se escribe primero el símbolo del elemento que se encuentre más a la izquierda y más debajo de la tabla periódica. ($Ver\ excepción\ en\ el\ óxido\ de\ flúor\ OF_2$)
- 2) Se intercambian las valencias como subíndices (sin signo).
- 3) Se simplifican los subíndices que se pueda.
- 4) Se comienza a nombrar por la derecha (parte más electronegativa) y se termina por la izquierda.
- 5) Se elige el tipo de nomenclatura a utilizar.

4.1.- Nomenclaturas

Para nombrar los compuestos químicos inorgánicos se siguen las normas de la IUPAC (unión internacional de química pura y aplicada). Se aceptan tres tipos de nomenclaturas para los compuestos inorgánicos, la sistemática, la nomenclatura de stock y la nomenclatura tradicional.

4.1.1.- Nomenclatura Sistemática

Expresamente recomendada por la IUPAC, se apoya en prefijos numéricos griegos para nombrar compuestos químicos: **Mono** (1), **di** (2), **tri** (3), **tetra** (4), **penta** (5).......

Cl₂O₃ Trióxido de dicloro

I₂O Monóxido de diodo

4.1.2.- Nomenclatura Stock

En este tipo de nomenclatura, es especialmente útil para el caso en que un compuesto tenga más de una valencia, ésta se indica al final, en números romanos y entre paréntesis:

Fe(OH)₂ Hidróxido de hierro (II)

Fe(OH)₃ Hidróxido de hierro (III)

4.1.3.- Nomenclatura Tradicional

Esta nomenclatura incluye nombres vulgares y presenta numerosas excepciones. Para poder distinguir con qué valencia actúan los elementos en un compuesto se utilizan una serie de prefijos y sufijos:

Valencia Prefijo			Valencia con la que actúa el	Ejemplos																																				
Vaiciicia	Trenjo	Sullyo	elemento	Elemento	Valencias	Fórmula	Nombre Compuesto																																	
1		_ ICO	La que tiene	K	1	K ₂ O	Óxido Potás <mark>ico</mark>																																	
2		_OSO	Menor	Fe	2.2	FeO	Óxido Ferr <mark>oso</mark>																																	
2		_ICO	Mayor		2,3	Fe ₂ O ₃	Óxido férr <mark>ico</mark>																																	
	HIPO_	_OSO	Menor	S		SO	Anhídrido hiposulfuroso																																	
3		_OSO	Intermedia		S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	2,4,6	SO_2
		_ICO	Mayor			SO_3	Anhídrido sulfúr <mark>ico</mark>																																	
	HIPO_	OSO	Menor			Cl_2O	Anhídrido hipocloroso																																	
4		_OSO	Segunda	Cl	Cl 1,3,5,7	Cl_2O_3	Anhídrido cloroso																																	
4		_ICO	Tercera	CI		Cl_2O_5	Anhídrido clór <mark>ico</mark>																																	
	PER_	_ICO	Mayor			Cl ₂ O ₇	Anhídrido perclór <mark>ico</mark>																																	

5.- Clasificación de los compuestos químicos Inorgánicos

Los compuestos inorgánicos se agrupan en familias que se distinguen, unas de otras, por presentar una estructura similar. Cada familia contiene uno, o un grupo de átomos, que da las propiedades físicas y químicas a sus componentes y de donde toman el nombre.

5.1.- Familias a Estudiar

Tipos de Compuestos				
Binarios	Ternarios	Otros		
Óxidos Metálicos (Ácidos) No Metálicos (Básicos) Hidruros Ácidos hidrácidos Sales Binarias	Hidróxidos o Bases Ácidos oxácidos Iones Cationes (Iones +) Aniones (Iones -) Sales Ternarias Ácidas	Peróxidos		

6.- Compuestos Binarios

Son los compuestos **formados por dos elementos diferentes** que se unen mediante enlace iónico o covalente. El elemento más electropositivo, metálico o situado a la izquierda del sistema periódico (SP), se escribe primero. El elemento no metálico, menos electronegativo o más a la derecha del SP, se escribe a continuación.

6.1.- Óxidos

Son compuestos binarios formados por la combinación de un elemento y oxígeno. Existen dos clases de óxidos; los óxidos básicos y los óxidos ácidos o anhídridos.

6.1.1.- Óxidos Metálicos o Básicos

Compuestos binarios formados por la combinación de un metal y el oxígeno. Su fórmula general es:

M_2O_X

Donde **M** es un metal y **x** su valencia (el 2 corresponde a la valencia del oxígeno).

Valencia	Fórmula	N. sistemática	N. stock (la más frecuente)	N. tradicional
1	Na ₂ O	Monóxido de disodio	Óxido de sodio	Óxido sódico
2	$Ca_2O_2 = CaO$	Monóxido de calcio	Óxido de calcio	Óxido cálcico
$ \begin{array}{c c} \hline \mathbf{Fe_2O_2} & \mathbf{FeO} \end{array} $		Monóxido de hierro	Óxido de hierro (II)	Óxido ferroso
3	Fe ₂ O ₃	Trióxido de dihierro	Óxido de hierro (III)	Óxido férrico
4	$Pb_2O_4 = PbO_2$	Dióxido de plomo	Óxido de plomo (IV)	Óxido plúmbico

6.1.2.- Óxidos ácidos o Anhídridos

Son compuestos binarios formados por un no metal y oxígeno. Su fórmula general es:

 N_2O_X

Donde N es un no metal y la x su valencia (el 2 corresponde a la valencia del oxígeno).

Valencia	Fórmula	N. sistemática (la más frecuente)	N. stock	N. tradicional
1	(1) OF ₂	Monóxido de diflúor	Óxido de flúor	Anhídrido hipofluoroso (excepción a la norma general de prefijos y sufijos)
	Cl ₂ O	Monóxido de dicloro	Óxido de cloro (I)	Anhídrido hipocloroso
2	so	Monóxido de azufre	Óxido de azufre (II)	Anhídrido hiposulfuroso
3	I_2O_3	Trióxido de diodo	Óxido de Iodo (III)	Anhídrido sulfuroso
4	SeO_2	Dióxido de Selenio	Óxido de selenio (IV)	Anhídrido selenioso
5	Br_2O_5	Pentaóxido de dibromo	Óxido de bromo (V)	Anhídrido brómico
6	S_2O_3	Trióxido de azufre	Óxido de azufre (VI)	Anhídrido sulfúrico
7	I_2O_7	Heptaóxido de diodo	Óxido de Yodo (VII)	Anhídrido periódico

⁽¹⁾ Excepción por la regla 1 de la formulación, el más electronegativo, el que va a la izquierda, y el F es más electronegativo que el O.

> La nomenclatura tradicional de los óxidos de nitrógeno es un tanto especial

Valencia	Fórmula	N. sistemática	N. stock	N. tradicional
2	NO	Monóxido de Nitrógeno	Óxido de Nitrógeno (II)	Óxido nitroso
4	NO ₂	Dióxido de Nitrógeno	Óxido de Nitrógeno (IV)	Óxido nítrico
3	N_2O_3	Trióxido de dinitrógeno	Óxido de Nitrógeno (III)	Anhídrido nitroso
5	N_2O_5	Pentóxido de dinitrogeno	Óxido de Nitrógeno (V)	Anhídrido nítrico

EJERCICIO 1. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
F ₂ O			
			Óxido ferroso
As_2O_5			
CaO			
Fe ₂ O ₃			
PbO ₂			
Al ₂ O ₃			
SnO			
N_2O_5			
Au ₂ 0			
	Dióxido de Teluro		
			Óxido aúrico
			Óxido cuproso
		Óxido de selenio (II)	
			Óxido crómico
	Trióxido de dihierro		
		Óxido de fósforo (V)	
I ₂ O ₇			
			Anhídrido hiposulfuroso

6.2.- Hidruros

Son compuestos binarios formados por un metal e Hidrógeno. Su fórmula general es:

 MH_X

Donde \boldsymbol{M} es un metal y la \boldsymbol{x} su valencia.

EL HIDRÓGENO SIEMPRE TIENE VALENCIA 1.

Valencia	Fórmula	N. sistemática	N. stock (la más frecuente)	N. tradicional
1	NaH	Monohidruro de sodio	Hidruro de sodio	Hidruro sódico
2	FeH ₂	Dihidruro de hierro	Hidruro de hierro (II)	Hidruro ferroso
3	FeH ₃	Trihidruro de hierro	Hidruro de hierro (III)	Hidruro férrico
4	SnH ₄	Tetrahidruro de estaño	Hidruro estaño (IV)	Hidruro estánnico

6.2.1.- Hidruros de No Metales

Hay *no metales* como el nitrógeno, fósforo, arsénico antimonio, carbono, silicio y boro que forman compuestos con el hidrógeno y que reciben nombres especiales.

Nitrógeno, fósforo, arsénico, antimonio y boro actúan con valencia 3 mientras que el carbono y el silicio lo hacen con valencia 4.

Valencia	Fórmula	N. tradicional (la más usada)	N. sistemática	
3	NH_3	Amoniaco	Trihidruro de nitrógeno	
3	PH ₃	Fosfina	Trihidruro de fósforo	
3	AsH ₃	Arsina	Trihidruro de arsénico	
3	BH ₃	Borano	Trihidruro de boro	
3	SbH ₃	Estibina	Trihidruro de antimonio	
4	CH ₄	Metano	Tetrahidruro de carbono	
4	SiH ₄	Silano	Tetrahidruro de boro	

EJERCICIO 2. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
AuH ₃			
LiH			
		Hidruro de plomo (II)	
		Hidruro de plata	
			Fosfina
			Metano
	Trihidruro de arsénico		
N_2O_3			
NO			
	Trióxido de azufre		
			Óxido ferroso
			Hidruro niquélico
PbO ₂			
		Óxido de bromo (VII)	
		Hidruro de calcio	
			Estibina
		Hidruro de sodio	
	Heptaóxido de dicloro		

6.3.- Ácidos Hidrácidos

Son compuestos binarios formados por un no metal e hidrógeno. Los no metales que forman estos ácidos son los siguientes:

- Flúor, cloro, bromo, yodo (todos ellos se actúan con valencia 1)
- Azufre, selenio, teluro (actúan con valencia 2).

Su fórmula general es:

H_xN

Donde N es el no metal y la x su valencia. (El hidrógeno actúa con valencia 1).

Valencia	Fórmula	N. tradicional (cuando está en disolución)	N. tradicional (cuando está en estado puro)
1	HF	Ácido fluorhídrico	Fluoruro de hidrógeno
1	HCI	Ácido clorhídrico	Cloruro de hidrógeno
1	HBr	Ácido Bromídrico	Bromuro de hidrógeno
1	HI	Ácido Iodídrico	Ioduro de hidrógeno
2	H ₂ S	Ácido sulfídrico	Sulfuro de hidrógeno
2	H₂Se	Ácido selenídrico	Seleniuro de hidrógeno
2	H ₂ Te	Ácido telurídrico	Telururo de hidrógeno

6.4.- Sales derivadas de los Ácidos Hidrácidos

Se obtienen sustituyendo los hidrógenos del ácido hidrácido correspondiente por un metal. Se nombran con el nombre del no metal terminado en *-uro* seguido del nombre del metal. Si el metal tiene más de una valencia se indica al final, en números romanos y entre paréntesis.

El número de hidrógenos que se le quitan al ácido se le pone como subíndice al metal.

Ácido Hidrácido	Fórmula	N. stock (la más común)	N. tradicional
HF	CaF ₂	Fluoruro de calcio	Fluoruro cálcico
HCl	FeCl ₂	Cloruro de hierro (III)	Cloruro férrico
HBr	CdBr ₂	Bromuro de cadmio	Bromuro de cadmio
HI	CrI ₂	Yoduro de cromo (II)	Yoduro cromoso
H_2S	$Pt_2S_4 = PtS_2$	Sulfuro de platino (IV)	Sulfuro de platino
H ₂ Se	Al ₂ Se ₃	Seleniuro de aluminio	Seleniuro alumínico
H ₂ Te	Au ₂ Te ₃	Telururo de oro (III)	Telururo aúrico

EJERCICIO 3. COMPLETA LA TABLA.

Fórmula	N. stock	N. tradicional
	Cloruro de estaño (IV)	
		Cloruro sódico
Al_2S_3		
	Bromuro de cobalto (III)	
PbS ₂		
		Seleniuro cuproso
	Telururo de mercurio (I)	
		Fluoruro Cálcico
SnCl ₄		

7.- Compuestos Ternarios

Se llaman compuestos ternarios a aquellos que están *formados por tres elementos diferentes*. Este conjunto de compuestos, igual que los binarios, incluye sustancias que pertenecen a funciones diferentes.

Las más importantes son:

- Hidróxidos.
- Ácidos oxigenados u oxácidos.
- Sales derivadas de los ácidos oxigenados.

7.1.- Hidróxidos

Desde el punto de vista de su fórmula química, los hidróxidos pueden considerarse formados por un metal y el grupo monovalente OH (radical hidroxilo). Por lo tanto, la formulación de los hidróxidos sigue la misma pauta que la de los compuestos binarios.

Su fórmula general es: $M(OH)_X$

Donde M es un metal y la X la valencia del metal. EL GRUPO (OH) SIEMPRE TIENE VALENCIA 1.

Valencia	Fórmula	N. sistemática N. Stock (la más frecuente) N. tra		N. tradicional
1	NaOH	Hidróxido de sodio	Hidróxido de sodio	Hidróxido sódico.
2	Ca(OH) ₂	Dihidróxido de calcio	Hidróxido de calcio	Hidróxido cálcico
3	Al(OH) ₃	Trihidróxido de aluminio	Hidróxido de aluminio	Hidróxido alumínico
4	Pb(OH) ₄	Tetrahidróxido de plomo	Hidróxido de plomo (IV)	Hidróxido plúmbico

EJERCICIO 4. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
Fe(OH) ₃			
Au(OH)			
			Hidróxido Plumboso
Cr(OH) ₂			
		Hidróxido de talio (I)	
		Hidróxido de mercurio (II)	
Ag(OH)			
		Hidróxido de Berilio	
			Hidróxido ferroso
	Trihidróxido de Oro		
		Hidróxido de Cobalto (II)	
			Hidróxido Aúrico
	Tetrahidróxido de Platino		
			Hidróxido Alumínico
НдОН			
Ni(OH) ₃			
	Dihidróxido de plomo		

7.2.- Ácidos Oxácidos

Son compuestos ternarios formados por un no metal, oxígeno e hidrógeno. Se obtienen a partir del óxido ácido o anhídrido correspondiente sumándole una molécula de agua (H_2O) .

Su fórmula general es:

$$H_2O + N_2O_x = H_aN_bO_c$$

Donde H es el hidrógeno, N el no metal y O el oxígeno.

Los oxácidos se nombran de la siguiente forma:

• **Según la nomenclatura tradicional**, se utiliza la palabra **ácido** seguida de la **raíz** del elemento central, **N**, normalmente el no metal, con prefijos y sufijos indicando su valencia.

Los prefijos y sufijos utilizados son los que vimos en la página uno.

Por ejemplo: el compuesto HClO₃ sería el ácido clórico

Valencia	Fórmula	N. tradicional
1	$OF_2 + H_2O = H_2F_2O_2 = $ HFO	Ácido hipofluoroso
2	$SO + H_2O = \mathbf{H_2SO_2}$	Ácido hiposulfuroso
3	Cl2O3 + H2O = H2Cl2O4 = HClO2	Ácido cloroso
4	$S_2O + H_2O = \mathbf{H_2SO_3}$	Ácido sulfuroso
5	$Cl_2O_5 + H_2O = H_2Cl_2O_6 = HClO_3$	Ácido clórico
6	$SO_3 + H_2O = \mathbf{H_2SO_4}$	Ácido sulfúrico
7	$Cl_2O_7 + H_2O = H_2Cl_2O_8 = HClO_4$	Ácido perclórico

^{*} El nitrógeno sólo forma ácidos oxácidos con las valencias 3 y 5.

Valencia	Fórmula	N. tradicional
3	$N_2O_3 + H_2O = H_2N_2O_4 = HNO_2$	Ácido nitroso
5	$N_2O_5 + H_2O = H_2N_2O_6 = HNO_3$	Ácido nítrico

• En la nomenclatura sistemática, se utilizan los prefijos: mono-, di-, tri-, tetra-, etc., para indicar el número de átomos de oxígeno, a continuación se intercala el término –oxo-, después otra vez los prefijos para indicar el número de átomos del elemento N, luego la raíz del nombre latino de dicho elemento seguido de la terminación –ato; después, con números romanos y entre paréntesis, el estado de oxidación del elemento N y para finalizar se añade el término de hidrógeno (sin prefijos).

Por ejemplo: el H₄P₂O₇ sería el heptaoxodifosfato (V) de hidrógeno

Valencia	Fórmula	N. Sistemática
1	$F_2O + H_2O = H_2F_2O_2 = $ HFO	Monoxofosfato (I) de Hidrógeno
2	$SO + H_2O = \mathbf{H_2SO_2}$	Dioxosulfato (II) de Hidrógeno
3	$Cl_2O_3 + H_2O = H_2Cl_2O_4 = \mathbf{HClO_2}$	Dioxoclorato (III) de Hidrógeno
4	$S_2O + H_2O = \mathbf{H_2SO_3}$	Trioxosulfato (IV) de Hidrógeno
5	$Cl_2O_5 + H_2O = H_2Cl_2O_6 = \mathbf{HClO_3}$	Trioxoclorato (V) de Hidrógeno
6	$SO_3 + H_2O = \mathbf{H_2SO_4}$	Tetraoxosulfato (VI) de Hidrógeno
7	$Cl_2O_7 + H_2O = H_2Cl_2O_8 = HClO_4$	Tetraoxoclorato (VII) de Hidrógeno

• **En la nomenclatura Stock**, se utiliza la palabra ácido seguida de los **prefijos**: mono-, di-, tri-, tetra-, etc., que indican el número de átomos de oxígeno, terminados en —oxo. Seguidamente se escribe la raíz del elemento central, N, terminado en —ico, indicando su número de oxidación en números romanos y entre paréntesis.

Por ejemplo: el HClO₃ sería el ácido trioxoclórico (V)

Valencia	Fórmula	N. Stock
1 ht	$F_2O + H_2O = H_2F_2O_2 = $ HFO	Ácido monoxofluórico (I)
2	$SO + H_2O = \mathbf{H_2SO_2}$	Ácido dioxosulfúrico (II)
3	$Cl_2O_3 + H_2O = H_2Cl_2O_4 = \mathbf{HClO_2}$	Ácido dioxoclórico (III)
4	$S_2O + H_2O = \mathbf{H_2SO_3}$	Ácido trioxosulfúrico (IV)
5	$Cl_2O_5 + H_2O = H_2Cl_2O_6 = HClO_3$	Ácido trioxoclórico (V)
6	$SO_3 + H_2O = \mathbf{H_2SO_4}$	Ácido tetraoxosulfúrico (VI)
7	$Cl_2O_7 + H_2O = H_2Cl_2O_8 = HClO_4$	Ácido tetraoxoclórico (VII)

Dado el uso tan extenso y generalizado que tiene la nomenclatura tradicional sería conveniente aprenderse de memoria el nombre de los siguientes ácidos:

Ácido	Tradicional	Sistemática	Stock
HClO ₄	Ácido perclórico	Tetraoxoclorato (VII) de hidrógeno	Ácido tetraoxoclórico (VII)
HClO ₃	Ácido clórico	Trioxoclorato (V) de hidrógeno	Ácido trioxoclórico (V)
HClO ₂	Ácido cloroso	Dioxoclorato (III) de hidrógeno	Ácido dioxoclórico (III)

Ácido	Tradicional	Sistemática	Stock
HCIO	Ácido hipocloroso	Oxoclorato (I) de hidrógeno	Ácido monoxoclórico (I)
H ₂ SO ₄	Ácido sulfúrico	Tetraoxosulfato (VI) de hidrógeno	Ácido tetraoxosulfúrico (VI)
H ₂ SO ₃	Ácido sulfuroso	Trioxosulfato (IV) de hidrógeno	Ácido trioxosulfúrico (IV)
H ₂ SO ₂	Ácido hiposulfuroso	Dioxosulfato (II) de hidrógeno	Ácido dioxosulfúrico (II)
HNO ₃	Ácido nítrico	Trioxonitrato (V) de hidrógeno	Ácido trioxonítrico (V)
HNO ₂	Ácido nitroso	Dioxonitrato (III) de hidrógeno	Ácido dioxonítrico (III)
H ₃ PO ₄	Ácido fosfórico	Tetraoxofosfato (V) de hidrógeno	Ácido tetraoxofosfórico (V)
H_3PO_3	Ácido fosforoso	Trioxofosfato (III) de hidrógeno	Ácido trioxofosfórico (III)
H_2CO_3	Ácido carbónico	Trioxocarbonato (IV) de hidrógeno	Ácido trioxocarbónico (IV)

7.2.1.- Ácidos del fósforo, arsénico y antimonio

El fósforo, arsénico y antimonio **forman ácidos especiales,** que se difieren el en grado de hidratación:

✓ Si a los óxidos correspondientes se les suma una molécula de agua tenemos los ácidos **META:**

Valencia	Fórmula	N. tradicional
3	$P_2O_3 + H_2O = HPO_2$	Ácido metafosforoso
5	$P_2O_5 + H_2O = \mathbf{HPO_3}$	Ácido metafosfórico

✓ Si se les unen dos moléculas de agua se obtienen los ácidos **PIRO**:

Valencia	Fórmula	N. tradicional
3	$P_2O_3 + 2H_2O = \mathbf{H_4P_2O_5}$	Ácido pirofosforoso
5	$P_2O_5 + 2H_2O = \mathbf{H_4P_2O_7}$	Ácido pirofosfórico

✓ El P, As y Sb forman los ácidos **ORTO** cuando se les suman 3 moléculas de agua a los óxidos correspondientes.

Valencia	Fórmula	N. tradicional
3	$P_2O_3 + 3H_2O = H_6P_2O_6 = \mathbf{H_3PO_3}$	Ácido ortofosforoso (Ácido Fosforoso)
5	$P_2O_5 + 3H_2O = H_6P_2O_8 = \mathbf{H_3PO_4}$	Ácido ortofosfórico (Ácido Fosfórico)

7.2.2.- Ácidos del Cromo y del Manganeso

El cromo y el manganeso, a pesar de ser metales, forman oxácidos cuando se encuentran en sus estados de oxidación más altos, 6 para el cromo y 6 y 7 para el manganeso.

Estos ácidos nunca han sido aislados y se formulan como mero ejercicio teórico ya que pueden considerarse como precursores de *cromatos*, *dicromatos*, *manganatos* y *permanganatos*, sales muy comunes en los laboratorios, sobre todo cuando se trabaja en procesos de oxidación-reducción.

Valencia	Fórmula	N. tradicional
6	$CrO_3 + H_2O = \mathbf{H_2CrO_4}$	Ácido crómico
6	$* \operatorname{Cr}_2 \operatorname{O}_6 + \operatorname{H}_2 \operatorname{O} = \mathbf{H_2} \mathbf{Cr_2} \mathbf{O_7}$	Ácido dicrómico

Valencia	Fórmula	N. tradicional
6	$MnO_3 + H_2O = \mathbf{H_2MnO_4}$	Ácido mangánico
7	$Mn_2O_7 + H_2O = H_2Mn2O_8 = \mathbf{HMnO_4}$	Ácido permangánico

EJERCICIO 5. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
		Hidruro de calcio	
		Hidruro de estroncio	
		Hidruro de aluminio	
		Hidruro de cobalto (II)	
			Estibina
			Ácido clorhídrico
			Ácido sulfhídrico
			Ácido Iodhídrico
			Ácido hipocloroso
			Ácido Iodoso
			Ácido periódico
			Ácido hipofluoroso
			Ácido selenioso
			Ácido telúrico
N_2O_3			
MgO			
Cl ₂ O			
			Borano
			Ácido permangánico
			Ácido metafosforoso
			Ácido metaantimónico
			Ácido pirofosfórico
			Ácido piroantimonioso
			Ácido ortofosforoso
			Ácido fosfórico

7.3.- Iones

Los cationes y los aniones, en general iones, son sustancias químicas con carga neta positiva o negativa, respectivamente.

Estos compuestos pueden obtenerse de diferentes formas y su formulación resulta útil antes de abordar la formulación de las sales oxoácidas. vidad.intergranada.com

7.3.1.- Cationes

Los cationes son especies con carga neta positiva. Los más sencillos son aquellos que se forman por pérdida de electrones en átomos de elementos metálicos (cationes monoatómicos):

Átomo	electrones perdidos	Catión	Carga del catión
Н	1	H ⁺	+1
Na	1	Na ⁺	+1
Ca	2	Ca ²⁺	+2
Fe	3	Fe ³⁺	+3

Para nombrar estos cationes se sigue las reglas observadas en las distintas nomenclaturas, anteponiendo la palabra catión o ión al nombre:

Catión	Nomenclatura Stock	Nomenclatura Sistemática	Nomenclatura tradicional
H ⁺	ión hidrógeno	ión hidrógeno	ión hidrógeno
Cu ⁺	ión cobre (I)	Ión monocobre	Ión cuproso
Ni ⁺²	ión niquel (II)	ión diniquel	ión niqueloso
Co ⁺³	ión cobalto (III)	ión tricobalto	ión cobáltico
Fe ⁺³	ión hierro (III)	Ión trihierro	Ión férrico

Además de estos cationes existen otros, poliatómicos, entre los que se pueden destacar como más interesantes:

Catión	Nomenclatura Sistemática	Nomenclatura tradicional	
NO ⁺	catión monooxonitrógeno (III)	catión nitrosilo	
VO ⁺² catión monooxovanadio (IV)		catión vanadilo	
UO ₂ +2	catión dioxouranio (VI)	catión uranilo	

Por último hay otras especies a las cuales se nombran añadiendo la terminación <u>-onio</u> al nombre del compuesto de procedencia:

 NH_4^+ ión amonio \rightarrow procede del amoníaco PH_4^+ ión fosfonio \rightarrow procede de la fosfina H_3S^+ ión sulfonio \rightarrow procede del ácido sulfhídrico ión hidronio \rightarrow procede del agua

7.3.2.- Aniones

Los aniones son especies químicas con carga neta negativa. Los más sencillos son los monoatómicos formados a partir de elementos no metálicos que ganan electrones:

Átomo	electrones ganados	Anión	Carga del anión
Н	1	H-	-1
Cl	1	C1 ⁻	-1
I	1	I-	-1
S	2	S ²⁻	-2

Habitualmente estos aniones derivan de hidruros de no metales y de los ácidos hidrácidos que han perdido los hidrógenos de su molécula. Por ello, se nombran como las sales hidrácidas, es decir, mediante el nombre del elemento terminado en —uro:

	Anión	Nombre	
	H-	ión hidruro	
	Cl ⁻	ión cloruro	
	I-	ión ioduro	
	S ²⁻	ión sulfuro	
http:\\s	elecBrvida	ión bromuro	da.com

Al igual que en los cationes, también existen aniones poliatómicos. En general, derivan de ácidos oxoácidos que han perdido sus hidrógenos. Para nombrarlas, se parte del nombre del ácido de procedencia anteponiendo la palabra ión o anión y cambiando la terminación: —ico por —ato y —oso por —ito, en la nomenclatura tradicional e —ico por —ato en la funcional, coincidiendo con la nomenclatura sistemática.

Anión	Nomenclatura sistemática	Nomenclatura tradicional	
NO_2^-	Anión Dioxonitrato (II)	Anión nitrito	
BrO ₃ ⁻	Anión Trioxobromato (V)		
CO ₃ ²⁻	Ión Trioxocarbonato (IV)	Ión carbónato	
CrO ₄ ²⁻	Anión Tetraoxocromato (VI) Anión crómato		
IO.	Ión Monoxoiodato (I)	Ión hipoiodito	
SO ₄ ²⁻	Anión tetraoxosulfato (VI)	Ión sulfato	
MnO ₄ -	Ión tetraoxomanganato (II)	Ión permanganato	

Dos aniones importantes son el grupo OH^- cuyo nombre admitido es hidróxido y el O_2^{2-} denominado peróxido. **EJERCICIO 6.** COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
romina	N. Sistematica	Hidróxido de berilio	Ácido crómico
			Ácido dicrómico
		Hidróxido de níquel (III)	
		Hidróxido de plomo (II)	Ácido carbónico
HPO ₂			
H ₂ SO ₄			
HClO ₄			
$HBrO_3$			
		Ácido trioxonítrico (III)	
HBr			
PH ₃			
SbH ₃			
HBrO ₂			
H ₂ SeO ₂			
HI			
H ₂ SeO ₃			
	Dioxonitrato(III) de hidrógeno		
			Ácido clorhídrico
	Tetraoxofosfato (V) de hidrógeno		Ión amonio
			Ácido piroarsenioso
		Ácido tetraoxosulfúrico (VI)	
	monóxido de carbono		
		óxido de carbono (II)	
			Ión permanganato
IO.			-
	Ión monocobre		

7.4.- Sales de Ácidos Oxácidos

Son compuestos ternarios formados por un metal, un no metal y el oxígeno que se obtienen a partir de los ácidos oxácidos sustituyendo los hidrógenos de éstos por un metal.

Vamos a estudiar dos tipos de sales de ácidos oxácidos, las sales neutras y las sales ácidas.

7.4.1.- Sales Neutras

Son compuestos formados por un metal, un no metal y oxígeno. Son consideradas como las sales de los ácidos oxoácidos, ya que éstas se forman por la sustitución de los hidrógenos del oxoácido por un metal.

Su fórmula general es $M_a(X_bO_c)_n$ donde M es el elemento metálico, X es el elemento no metálico y O es el oxígeno.

Los valores de a, b y c corresponden a los valores del oxácido del que procede y n es la valencia del elemento metálico.

Se nombran con la palabra hidrógeno precedida de los prefijos di- (H_2) , tri- (H_3) seguido del nombre de la sal correspondiente. O si se sustituyen la mitad de los hidrógenos se nombran con el sufijo Bi-

Existen las siguientes nomenclaturas para nombrar las oxisales:

• <u>Nomenclatura tradicional:</u> se nombra de forma similar al ácido oxácido del que procede sustituyendo la terminación **-oso** por **-ito** y la terminación **-ico** por **-ato** seguido del elemento metálico terminado en:

- ✓ -ico (si tiene una valencia)
- ✓ -oso, -ico (si tiene 2 valencias)
- ✓ hipo...oso, -oso, -ico (si tiene 3 valencias)
- ✓ hipo...oso, -oso, -ico, per...ico (si tiene 4 valencias)

Prefijos y sufijos utilizados en los ácidos	Prefijos y sufijos utilizados en las sales		
HIPOOSO	HIPOITO		
-OSO	-ITO		
-ICO	-ATO		
PERICO	PERATO		
Puede ayudarte a recordar la equivalencia de sufijos la siguiente frase:			
Cuando el OSO toca el pITO, perICO toca el silbATO.			

Ejemplos:

- NaClO₂ procede el ácido cloroso (HClO₂), sustituimos -oso por -ito seguido del elemento metálico terminado en -ico porque sólo tiene una valencia, por lo tanto su nomenclatura tradicional es cloríto sódico.
- Fe₂(SO₄)₃ procede del ácido sulfúrico (H₂SO₄), sustituimos -ico por -ato seguido del elemento metálico terminado en -ico ya que el hierro tiene 2 valencias y en este caso actúa con la valencia mayor 3, por lo tanto su nomenclatura tradicional es **sulfato férrico**.

Ácido de partida	Nombre del ácido	Sal	Nombre de la sal
HCIO	Ácido hipocloroso	Ca(ClO) ₂	Hipoclorito de calcio
HClO ₂	Ácido cloroso	Ca(ClO2) ₂	Clorito de calcio
HC1O ₃	Ácido clórico	Sn(ClO ₃) ₄	Clorato de estaño (IV)
HClO ₄	Ácido perclórico	Li(ClO ₄)	Perclorato de litio
H ₂ SO ₂	Ácido hiposulfuroso	$Ca_2(SO_2)_2 = Ca(SO_2)$	Hiposulfito de calcio
H_2SO_3	Ácido sulfuroso	$Pb_2(SO_3)_4 = Pb(SO_3)_2$	Sulfito de plomo (IV)
H ₂ SO ₄	Ácido Sulfúrico	$Al_2(SO_4)_3$	Sulfato de aluminio
$H_4P_2O_7$	Ácido pirofosfórico	$Fe_4(P_2O_7)_3$	Pirofosfato de hierro (III)
H_3AsO_3	Ácido ortoarsenioso	K ₃ (AsO3)	Ortoarsenito de potasio

• Nomenclatura de stock: se nombra de forma similar a la nomenclatura tradicional seguido del elemento metálico indicando la valencia con la que actúa en números romanos entre paréntesis.

Ejemplos:

- Fe₂(SO₄)₃ sulfato de hierro (III)
- NaClO₂ cloríto de sodio, cuando el elemento metálico sólo tiene una valencia no se indica su valencia, en este caso no se usaría clorito de sodio (I)
- Nomenclatura sistemática: se nombra con el nombre del anión seguido por el nombre del catión y seguido por el prefijo que indica el número de átomos del elemento metálico. En el caso de que el anión se encuentre entre paréntesis, el número de iones se indica mediante los prefijos griegos:

Bis-	Tris-	Tetrakis-	Pentakis-	Hexakis-	Heptakis-	Octakis-
2	3	4	5	6	7	8

Ejemplos:

FeSO₂ dioxosulfato (II) de hierro

Actuando el hierro con valencia 2:

FeSO₃ trioxosulfato (IV) de hierro

FeSO₄ tetraoxosulfato (VI) de hierro

 $\left[\mathbf{Fe_2} \left(\mathbf{SO_2} \right)_3 \right]$ tris dioxosulfato (II) de dihierroo

Actuando el hierro con valencia 3: $\begin{cases} \mathbf{Fe_2(SO_3)_3} & \text{tris}[\text{trioxosulfato }(IV)] \text{ de dihierro} \\ \mathbf{Fe_2(SO_4)_3} & \text{tris}[\text{tetraoxosulfato }(VI)] \text{ de dihierro}. \end{cases}$

EJERCICIO 7. COMPLETA LA TABLA.

Fórmula	Nomenclaturas	
	Clorato de potasio	
	Hipobromito de calcio	
	Bromato de estaño (IV)	
	Perclorato de mercurio (II)	
	Sulfato de calcio	
	Hiposelenito de cobre (II)	
	Telurito de cobre (I)	
	Metarseniato de hierro (III)	
	Metantimonito de estaño (IV)	
	Pirofosfato de calcio	
	Piroarsenito de sodio	
	Ortoantimoniato de níquel (III)	
	Carbonato de sodio	
	Silicato de potasio	
	dis-trioxonitrato (V) de magnesio	

7.4.2.- Sales Ácidas

Son compuestos formados por un metal, un n<mark>o metal,</mark> hidrógeno y oxígeno, que se forman por la sustitución parcial de los hidrógenos de un ácido oxoácido por un metal.

Su fórmula general es $M_a(H_bX_cO_d)_n$ donde M es el elemento metálico, X es el elemento no metálico, H el hidrógeno y O es el oxígeno.

Los valores de a, b, c y d corresponden a los valores del oxoácido del que proceden y n es la valencia del elemento metálico.

Se nombran igual que las sales neutras añadiendo los prefijos mono-, di-, tri-, delante de la palabra hidrógeno seguida del nombre de la sal neutra correspondiente.

La fórmula general de las sales ácidas puede ajustarse a la siguiente:

- $M_a(H_dXO_b)_c$ sal ácida derivada de ácido oxoácido.
- M(HX)_b sal ácida derivada de ácido hidrácido.

siendo X el no metal que da el nombre al ácido de procedencia, M el metal que sustituye al hidrógeno del ácido de procedencia y a, y d son números relacionados con los ácido de procedencia.

En el caso de las sales derivadas de ácidos hidrácidos X es un elemento no metálico del grupo VIA.

Según sean los subíndices, la fórmula podrá simplificarse:

$$NaHSO_4 - Ca(HMnO_4)_2 - Fe(HCO_3)_3 - NaHS - Ca(HSe)_2 - Fe(HTe)_3$$

Para llegar a esta fórmula, conocido el nombre, se pueden aplicar el procedimiento:

- 1. Determinar la nomenclatura utilizada relacionándola con la nomenclatura de las sales neutras.
- 2. Determinar que parte del nombre corresponde al anión y, por tanto, al ácido de procedencia de la sal y cuantos hidrógenos contiene.
- 3. Determinar que parte del nombre corresponde al catión y, por tanto, al metal que sustituye al hidrógeno.

- 4. Escribir el ácido de procedencia y eliminar los hidrógenos que correspondan. Por cada hidrógeno eliminado se genera una carga negativa.
- 5. Escribir el metal con su estado de oxidación -que será positivo-
- 6. Escribir el símbolo del metal seguido del número de cargas negativas del anión como subíndice.
- 7. A continuación escribir entre paréntesis el anión seguido del número de oxidación del metal como subíndice.
- 8. Simplificar la fórmula si se puede.

Nomenclatura: El nombre de las sales ácidas depende de la nomenclatura elegida.

- **★** La **Nomenclatura Sistemática** estequiométrica recomendada por la IUPAC presenta dos variantes:
 - **a)** Según la primera variante, el nombre será el siguiente:

b) Según la segunda opción, el nombre será el siguiente:

Los prefijos de grupo aniónico son: bis, tris, tetrakis, pentakis, hexakis..., para dos, tres, cuatro, cinco, seis... grupos en la fórmula, y viene determinados por el valor del número c.

Para llegar al nombre, conocida la fórmula, se puede aplicar el siguiente procedimiento:

- 1. Determinar que parte de la fórmula corresponde al <mark>ani</mark>ón -se encontrará en la parte derecha de la fórmula al ser la parte negativa- que contendrá átomos de hidrógeno.
- 2. Determinar que parte de la fórmula corresponde al catión -se encontrará en la parte izquierda de la fórmula al ser la parte positiva-.
- 3. En función del subíndice que acompañe al catión determinar el número de cargas negativas del catión, el número de hidrógenos perdidos por el ácido de procedencia y el estado de oxidación del elemento X.
- 4. En función del subíndice que acompañe al anión determinar el número de oxidación que corresponde al catión.
- 5. En los dos pasos anteriores se debe considerar que la fórmula puede estar simplificada, para saberlo, comparar el estado de oxidación obtenido para el catión, que será un metal, con sus estados de oxidación reales.
- 6. Nombrar el compuesto utilizando el esquema propuesto.
- **★** La **nomenclatura tradicional**, si bien no es aconsejable, todavía se sigue usando en infinidad de laboratorios y tiendas de productos químicos.

Nombra con la palabra hidrógeno precedida de los prefijos di- (H₂), tri- (H₃) seguido del nombre de la sal correspondiente. O si se sustituyen la mitad de los hidrógenos se nombran con el sufijo Bi.

Forman sales ácidas los no metales siguientes: S, Se, Te, y los ácidos piro y orto del P, As y Sb.

Ácido de partida	Nombre del ácido	Sal	Nombre de la sal
H ₂ SO ₂	Ácido hiposulfuroso	$Ca(HSO_2)_2$	Hidrógeno hiposulfito de calcio
H ₂ SO ₃	Ácido sulfuroso	$Pb(HSO_3)_4$	Hidrógeno sulfito plúmbico
H ₂ SO ₄	Ácido sulfúrico	Cr(HSO ₄) ₃	Hidrógeno sulfato cromoso
$H_4As_2O_5$	Ácido piroarsenioso	$Sr(H_3As_2O_5)_2$ Trihidrógeno piroarsenito de estroncio	
$H_4Sb_2O_5$	Ácido piroantimonioso	Mg(H₂Sb₂O₅) Dihidrógeno piroantimonito de Magnes	
$H_4P_2O_5$	Ácido pirofosforoso	$Ca(H_3P_2O_5)_2$ Trihidrógeno pirofosfito de calcio	
H_3PO_3	Ácido Ostofosforoso	K (H ₂ PO ₃) Dihidrógeno ortofosfito de potasio	
H ₃ PO ₃	Ácido Ostofosforoso	Mg(HPO ₃)	Hidrógeno ortofosfito de magnesio
H ₂ CO ₃	Ácido Carbónico	Na(HCO ₃)	Bicarbonato sódico
H ₂ SO ₄	Ácido sulfúrico	Au(HSO ₄)	Bisulfato auroso

€ Existe **otra nomenclatura**, **permitida por la IUPAC**, mezcla de la nomenclatura tradicional y la de Stock, en la que el nombre se compone del número de hidrógenos seguido del nombre del anión según la nomenclatura tradicional y finalmente del nombre del metal y su valencia entre paréntesis:

Hidrógeno sulfato de hierro (III) $Fe(HSO_4)_3$

En cuanto a las sales ácidas hidrácidas, la nomenclatura recomendada indica que se debe anteponer la palabra hidrógeno al nombre de la sal neutra:

Hidrógeno sulfuro de hierro (III) $Fe(HS)_3$

Ejemplos:

1.- Formación de sales ácidas

Ácido de Procedencia	Metal	Anión	Fórmula
H ₂ SO ₄	Fe ⁺²	(HSO ₄) ⁻	Fe(HSO ₄) ₃
H ₃ PO ₄	Na ⁺¹	(H ₂ PO ₄) ⁻	Na H ₂ PO ₄
H ₂ CO ₃	Ni ⁺³	(HCO ₃) ⁻	Ni(HCO ₃) ₃
H ₂ CrO ₄	Ca ⁺²	(HCrO ₄) ⁻	Ca(HCrO ₄) ₂
H₂TeO₃	A1 ⁺³	(HTeO ₃) ⁻	Al(HTeO ₃) ₃
H ₃ PO ₄	Au ⁺³	(HPO ₄) ⁻²	Au ₂ (HPO ₄) ₃

2.- Formulación de sales ácidas

Nomenclatura	LiH ₂ PO ₄	Ni(HSO ₃) ₃	Ba(HCrO ₂) ₂	Fe(HSO ₄) ₃	Cu(H ₂ PO ₄) ₂
	Dihidrógeno	Hidrogeno	Hidrógeno	Hidrogeno	Dihidrogeno
Sistemática 1	tetraoxofosfato	Trioxosulfato (IV)	dioxocromato	tetraoxosulfato	tetraoxofosfato
	(V) de Litio	de Niquel (III)	(VI) de Bario	(VI) de Hierro (III)	(V) de Cobre (II)
	Dihidrógeno	Tris hidrogeno	Bis hidrógeno	Tris Hidrogeno	Bis Dihidrogeno
Sistemática 2	tetraoxofosfato	trioxosulfato (IV)	dioxocromato	tetraoxosulfato	tetraoxofosfato
	(V) de Litio	de Niquel	(VI) de Bario	(VI) de Hierro	(V) de Cobre
Stock	Dihidrogeno fosfato de litio	Hidrogenosulfito de niquel (III)	Hidrogeno Cromato de Bario	Hidrogeno sulfato de hierro (III)	Dihidrogeno fosfato de cobre (II)
Tradicional	Dihidrogeno fosfato lítico	Bisulfito niquélico	Bicromato bárico	Bisulfato férrico	Dihidrogeno fosfato cúprico

3.- Formulación de sales ácidas hidrácidas:

Acido de Procedencia	Metal	Sal	Nombre
H ₂ S	Fe³+	Fe(HS) ₃	Hidrogeno sulfuro de Hierro (III)
H ₂ Se	Ni ²⁺	Ni(HSe) ₂	Hidrogeno seleniuro de Niquel (II)
H₂Te	Na ⁺	NaHTe	Hidrogeno telururo de sodio

7.4.3.- Sales Múltiples

Son sales en las que hay más de un tipo de catión, de anión o de ambos.

a) Sales con más de un tipo de catión:

Los cationes se ordenan alfabéticamente tanto en la fórmula como en el nombre. Se nombran cómo nometalato [doble/triple] de [prefijo] metal₁ (nº oxidación)- [prefijo] metal₂ (nº de oxidación)

Ejemplos

- CaFe(CO₃)₂ carbonato (doble) de calcio y hierro(II)
- MgNaPO₄ fosfato de sodio y magnesio

b) Sales con más de un tipo de anión:

Se nombran primero todos los aniones en orden alfabético y a continuación los cationes anión₁ - anión₂ de [prefijo] metal (nº oxidación)

Ejemplos:

- AlBrCO₃ bromuro-carbonato de aluminio
- **SnCO₃SO₄** carbonato-sulfato de estaño (IV)

8.- Otros Compuestos

8.1.- Peróxidos

Los peróxidos consisten en combinaciones binarias del oxígeno junto a ciertos metales. Son derivados de óxidos que contienen la agrupación -O-O-, O₂²⁻ llamado ión peróxido.

Los peróxidos se formulan utilizando la valencia del oxígeno -1 ya que los dos oxígenos comparten una pareja de electrones por los que en este grupo de elementos no se pueden simplificar las valencias.

La fórmula de los peróxidos es del tipo $X_2(O_2)_n$

donde X es el elemento metálico. O es oxígeno y n es la valencia del elemento metálico.

♦ Nomenclatura tradicional: la nomenclatura tradicional de los peróxidos se nombra con la palabra peróxido seguida del elemento metálico teniendo en cuenta la valencia del elemento metálico utilizando los prefijos y sufijos.

Ejemplos:

- Una valencia: Peróxido ... ico
 - O $Li^{+1} + O_2^{-2} \times Li_2O_2$: peróxido lítico
- Dos valencias:
 - Menor valencia: Peróxido ... oso
 - $Cu^{+1} + O_2^{-2} \times Cu_2O_2$: peróxido cuproso
 - Mayor valencia: Peróxido ... ico
 - $Cu^{+2} + O_2^{-2} \sim Cu_2(O_2)_2 \sim CuO_2$: peróxido cúprico
- Tres valencias:
- selectividad.intergranada.com Menor valencia: Peróxido hipo ... oso
 - $Ti^{+2} + O_2^{-2}$ » $Ti_2(O_2)_2$ » $Ti(O_2)$: peróxido hipotitanioso, dejamos los paréntesis para no confundir con óxido de titanio (IV)
 - Valencia intermedia: Peróxido ... oso
 - $Ti^{+3} + O_2^{-2}$ » $Ti_2(O_2)_3$: peróxido titanioso
 - Mayor valencia: Peróxido ... ico
 - $Ti^{+4} + O_2^{-2}$ » $Ti_2(O_2)_4$ » $Ti(O_2)_2$: peróxido titánico
- Cuatro valencias:
 - Primera valencia (baja): Peróxido hipo ... oso
 - $U^{+3} + O_2^{-2} \gg U_2(O_2)_3$: peróxido hipouranioso
 - Segunda valencia: Peróxido ... oso
 - $U^{+4} + O_2^{-2} \gg U_2(O_2)_4 \gg U(O_2)_2$: peróxido uranioso
 - Tercera valencia: Peróxido ... ico
 - $U^{+5} + O_2^{-2} \gg U_2(O_2)_5$: peróxido uránico
 - Cuarta valencia (alta): Peróxido per ... ico
 - $U^{+6} + O_2^{-2} \gg U_2(O_2)_6 \gg U(O_2)_3$: peróxido peruránico

Nomenclatura stock: la nomenclatura de stock se realiza indicando el número de valencia del elemento metálico entre paréntesis y en números romanos, precedido por la expresión "peróxido de" + elemento metálico.

Ejemplos:

Cu₂O₂: peróxido de cobre (I)
 Ti₂(O₂)₃: peróxido de titanio (III)

<u> § Nomenclatura sistemática:</u> en esta nomenclatura se indica mediante prefijos numéricos seguidos de la expresión óxido + el prefijo correspondiente junto al elemento metálico.

Ejemplos:

Li₂O₂: peróxido de dilitio
 Ti₂(O₂)₃: triperóxido de dititanio
 Ti(O₂): peróxido de titanio

Valencia	Fórmula	Nomenclatura
1	H ₂ O ₂	Peróxido de hidrógeno = Agua oxigenada
1	Na_2O_2	Peróxido de sodio
2	$Ca_2O_4 = CaO_2$	Peróxido de calcio
1	K_2O_2	Peróxido de potasio

EJERCICIO 8. COMPLETA LA TABLA.

Compuesto	Tradicional	Sistemática	Stock
Zn(BrO) ₂			
	amoniaco		
		Trihidruro de fósforo	
CH ₄			
Ni(NO ₂) ₃			
	estibina		
	selenito de aluminio		
ZnSO ₄			
			carbonato de platino (II)
Cu(ClO ₄) ₂			
		Trihidrogeno piroarsenito de estroncio	
			seleniato de cromo (III)
	borato de bario		
SnP ₂ O ₇			
			metasilicato de plomo (IV)
		Trioxofosfato (III) de Plata	
	Bicarbonato sódico		
		Tris tetraoxosulfato (VI) de Hierro (III)	
	Dihidrogenofosfato potásico		
			Hidrogeno sulfito de cromo (III)
		Trihidruro de arsénico	
Ti(O ₂)			
		Trihidrogeno piroarsenito de estroncio	
			Hidróxido de Oro (III)
		Trioxonitrato (V) de amonio	
FeO			
	bromuro-carbonato de aluminio		
		dis-trioxonitrato (V) de magnesio	
			Hidrógeno sulfuro de hierro (III
		Bis hidrógeno dioxocromato (VI) de Bario	
H ₂ O ₂			
	Permanganato de Plata		
			Óxido de Cloro (VII)
	Anhídrido hiposulfuroso		
		trioxidonitrato de potasio	
	hidróxido de amonio		
		bis(tetraoxidomanganato) de bario	
NaAgSO ₄			
		Tricloruro de hierro	
	Dicromato Potásico		

9.- Nombra los siguientes compuestos

Compuesto	Stock	Tradicional	Sistemática
Compuesto	Stock	Tradicional	Sistentidea
Mg(OH) ₂			
SO ₃			
KCIO ₃			
CaCr ₂ O ₇			
BeSe			
(NH ₄) ₂ CrO ₄			
NaHCO ₃			
Pb(OH) ₂			
AuNO ₂			
SnI ₄			
SrO ₂			
H ₂ S			
NiSeO ₂			
Fe(MnO ₄) ₃			
PCl ₅			
CoO			
LiHCO ₃			
$Al_4(P_2O_7)_3$			
CaMg(SO ₄) ₂			
AsH ₃			
Li ₂ O			
MgO			
CO ₂			
B_2O_3			
NO			
RaH ₂			
Co(OH) ₂			
Be(OH) ₂			
PH ₃			
HBr			
Al ₂ Se ₃			
HClO ₄			
KNO ₃			
HMnO ₄			
CaCO ₃			
Fe ₂ O ₃			
PtO ₂			
CO ₂			
Cl ₂ O ₅			
N_2O_5			
BaH ₂			
Ag(OH)			
Cu(OH) ₂			
AsH ₃			
H ₂ S			

Compuestos	Stock	Tradicional	Sistemática
NH ₄ Cl			
H ₂ SO ₄			
KNO ₃			
NaClO			
Ca(HCO ₃) ₂			
SrO			
MnO			
СО			
Al ₂ O ₃			
N ₂ O ₃			
BaH ₂			
CoO			
BeO			
ZnS			
AgBr			
Cs ₂ S			
NiCl ₃			
KI			
MnF ₃			
SnO			
Mn ₂ O ₃			
SO ₂			
B_2O_3			
P ₂ O ₃			
BeH ₂			
Co ₂ O ₃			
HgO			
ZnSe			
HgBr			
PdSe			
Fe(OH) ₃			
K(OH)			
Cu(OH) ₂			
SnO ₂			
Cl ₂ O ₇			
K ₂ O ₂			
BeH ₂			
SiH ₄			
H ₂ Se			
Co(OH) ₃			
HgS			
H ₂ SeO ₃			
ZnCrO ₄			
H ₃ PO ₄			
Fe(ClO ₂) ₂			
H ₄ SiO ₄			

Compuesto	Stock	Tradicional	Sistemática
MgO ₂			
со			
NO			
CuO			
AgH			
H ₂ S			
PH ₃			
HNO ₂			
Al ₂ (SO ₄) ₃			
Sn(OH) ₂			
Ca ₃ (PO ₃) ₂			
NH ₄ ClO ₃			
Sn(NO ₃) ₂			
NaHSO ₄			
CuCO ₃			
PCl ₅			
Ca(HCO ₃) ₂			
HPO ₂			
H ₂ SO ₄			
HCIO ₄			
HBrO ₃			
HIO			
NaHS			
PH ₃			
SbH ₃			
HBrO ₂			
H ₂ SeO ₂			
HI			
H ₂ SeO ₃			
K(OH)			
Sn(OH) ₄			
Pb(OH) ₂			
CO ₂			
PtO ₂			
CH ₄			
NiH ₃			
FeO			
Ag(OH)			
H ₂ Se			
HBr			
CaH ₂			
SrH ₂			
AlH ₃			

10.- Formula los siguientes compuestos

Compuesto	Fórmula	Compuesto	Fórmula
Hidruro de magnesio	Formula	Arsina	Formula
Borano		Amoníaco	
Ácido bromhídrico		Oxido de zinc	
		Óxido de ziric Óxido plumboso	
Hidróxido de plata Fluoruro ferroso		Óxido de fósforo (III)	
Ácido telúrico		Óxido de carbono (IV)	
Clorato niquélico Ácido carbónico		Trióxido de diarsénico Hidruro de cobre (II)	
Fosfato cobaltoso		Hidruro de coore (II)	
,		Cloruro ferroso	
Acido crómico		Ácido telurídrico	
Permanganato mercurioso			
Peróxido de estroncio		Cloruro niquélico Ácido fluorídrico	
Oxido mercúrico			
Oxido nitroso		Hidróxido cobaltoso	
Anhidrido arsenioso		Hidróxido platínico	
Sulfato plúmbico		Hidróxido mercurioso	
Cloruro de fosforo (iii)		Óxido de sodio	
Hipoclorito dibásico de aluminio		Tetróxido de dinitrógeno	
Nitrato doble de sodio y zinc		Peróxido de hidrógeno	
Ortofosfito diácido de potasio		Hidruro de magnesio	
Ortosilicato cálcico dihidratado		Borano	
Fosfato áurico		Ácido bromhídrico	
Sulfito potásico		Hidróxido de plata	
Peryodato de estroncio		Fluoruro ferroso	
Metaborato plumboso		Acido telúrico	
Nitruro magnésico		Clorato niquélico	
Ácido bromhídrico		Ácido carbónico	
Cloruro de potasio		Fosfato cobaltoso	
Ácido sulfúrico		Ácido crómico	
Ácido iodoso		Permanganato mercurioso	
Hipoyodito de estroncio		Peróxido de estroncio	
Permanganato férrico		Oxido mercúrico	
Dicromato cúprico		Oxido nitroso	
Óxido de calcio		Anhidrido arsenioso	
Óxido de platino(IV)		Sulfato plúmbico	
Monóxido de carbono		Cloruro de fosforo (iii)	
Tetróxido de dinitrógeno		Hipoclorito dibásico de aluminio	
Hidruro de Litio		Nitrato doble de sodio y zinc	
Hidróxido de Aluminio		Ortofosfito diácido de potasio	
Amoníaco		Ortosilicato cálcico dihidratado	
Sulfuro de zinc		Fosfato áurico	
Cloruro de hidrógeno		Sulfito potásico	
Ácido fluorhídrico		Peryodato de estroncio	
Ácido nítrico		Metaborato plumboso	
Ácido perclórico		Nitruro magnésico	
Fosfato de calcio		Clorato de potasio	
Permanganato de potasio		Hipobromito cálcico	
Dicromato de sodio		Bromato estáñico	
Óxido de potasio		Perclorato mercurico	
Óxido plúmbico		Sulfato Aúrico	
Óxido de fósforo (V)		Hiposelenito cuproso	
Óxido de carbono (II)		Telurito cúprico	
Dióxido de nitrógeno		Metarseniato férrico	
Hidruro de cobre (I)		Metantimonito estañoso	
Hidruro de oro (III)		Pirofosfato cálcico	
Cloruro de hidrógeno		Piroarsenito de plata	
Ácido iodídrico		Ortoantimoniato niquélico	
1 Iolao Ioalalico		1	

Compuesto	Fórmula	Compuesto	Fórmula
Cloruro de rubidio	rormala	Carbonato potásico	Tormala
Ácido sulfídrico		Silicato magnésico	
Metano		Permanganato aúrico	
Óxido de bario		Ácido hiposulfuroso	
Óxido de sodio		Ácido Hipobromoso	
Anhídrido sulfuroso		Ácido Bromhídrico	
Óxido de plata		Ácido cloroso	
Óxido de aluminio		Ácido Ortofosfórico	
Óxido de níquel (III)		Hidróxido de sodio	
Óxido de cloro (VII)		Ácido peryódico	
Óxido nitroso		Sulfato mercurioso	
Anhídrido nitroso		Selenito férrico	
Hidruro de litio		Carbonato cálcico	
Cloruro de cobalto (III)		Telurato de palúdico	
Hidruro de plata		Hiposelenito de litio	
Ácido bromhídrico		Hipoiodito plúmbico	
Ácido sulfhídrico		Nitrito niquélico	
Amoniaco		Nitrato de litio	
Ácido clorhídrico		Bromato de cobalto	
Peróxido de bario		Iodato estáñico	
Hidruro de calcio			
		Perbromato alumínico	
Peróxido de sodio		Perclorato bárico	
Óxido de estroncio		Hipoiodito de zinc	
Ácido clorhídrico		Fosfato niquélico	
Cloruro de sodio		Fosfato estañoso	
Fluoruro de calcio		Fosfato estáñico	
Yoduro de plomo (II)		Metafosfato estáñico	
Bromuro potásico		Fosfito estáñico	
Sulfuro de bario		Trihidrogeno piroarsenito de estroncio	
tricloruro de arsénico		Bicarbonato potásico	
Peróxido de litio		Hidrógeno sulfito ferroso	
Sulfuro de hierro (II)		Hidrogeno fosfato cálcico	
Ácido nítrico		Bicarbonato potásico	
Ácido carbónico		Hidrógeno sulfito ferroso	
Ácido perclórico		Hidrogeno fosfato cálcico	
Ácido fosfórico		Hidrogenocarbonato de cesio	
Ácido metafosfórico		Peróxido de estroncio	
Ácido sulfhídrico		Permanganato de sodio	
Ácido sulfúrico		hidrógeno dioxofosfato (I) de hierro (III)	
Ácido hipoiodoso		ion sulfonilo	
Hidruro de magnesio		carbonato-sulfato de estaño (IV)	
Ácido silícico		ácido sulfhídrico	
Hidróxido de calcio		ácido nítrico	
Hidróxido de hierro (III)		disulfuro de estaño	
Ácido nitroso		hidróxido de hierro (III)	
Hidróxido de aluminio		ácido perclórico	
Bromuro de cobalto (II)		seleniuro de oro (I)	
Hidróxido de potasio		hexahidruro de cromo	
Sulfato de calcio		ácido selénico	
Cloruro de cobalto (III)		hidruro de hierro (II)	
Nitrito de litio		hidróxido de magnesio	
Carbonato sódico		ácido teluroso	
Cloruro potásico		óxido de litio	
Sulfuro de zinc		tritelururo de diníquel	
Hipoiodito potásico		cloruro de aluminio	
Fosfato cálcico		heptasulfuro de dimanganeso	
Bicarbonato potásico		fosfano	
Hidrógeno sulfato de litio		bromuro de paladio (IV)	
Peróxido de plata		óxido de yodo (VII)	
Hidrógeno ortoarseniato de potasio		nitruro de hierro (III)	

Área de Ciencias

http://selectividad.intergranada.com

