Problema 2 – tombola

100 de puncte

Descrierea unei soluții posibile

Prof. Lica Daniela, Centrul Județean de Excelență Prahova

Soluție 30 de puncte:

Fie X un număr natural. În descrierea următoare, vom nota cu Q suma numerelor obținute plecând de la X, prin ștergerea succesivă a cifrei unităților numărului obținut la pasul anterior.

Pentru obtinerea a 15 puncte pe cerința 1 și 15 puncte pe cerința 2, pentru fiecare termen S_i , se pot parcurge, în ordine, toate numerele X, cu $1 \le X \le S_i$. Fie X unul dintre aceste numere. Se va calcula Q-ul acestuia, iar:

- pentru cerinta 1, parcurgerea se va opri când Q-ul ajunge mai mare sau egal decât S_i (de unde rezulta că Q-ul precedent este cel mai mare posibil mai mic strict decât S_i, care are câştigător);

Soluție de 60 de puncte:

Pentru a obține 60 de puncte (30 + 30), vom porni de la o observație ce poate fi folosită și pentru soluția anterioară, ca metodă de rezolvare a cerinței 2.

Fie Q cel mai mare număr care are un numâr câștigător mai mic sau egal decat S_i. Dacă X este numărul câștigător al lui Q, atunci înseamnă că:

- 1. toate numerele de la 1 pana la X au Q-ul mai mic sau egal cu S_i
- 2. X+1 are un Q care este mai mare strict decat S_i

Rezultă că sunt exact X numere care au Q-ul $\leq S_i$. Deci, numărul de numere naturale mai mici sau egale cu S_i , care nu au număr câștigător, (cerința 2) este egal cu diferența $S_i - X$.

Deci, problema se reduce la a afla:

- pentru cerința 1, cel mai mare număr mai mic strict decât S_i, care are un număr câștigător;
- \bullet pentru cerința 2, cel mai mare număr caștigător care are Q-ul mai mic sau egal decât S_i , la rezultat fiind adunată diferența S_i -X.

În cazul ambelor cerințe, numărul dorit poate fi calculat prin căutare binară, între 1 și S_i . Complexitate O(N* nrcifre * log Si)

Solutia de 100 de puncte:

Vom folosi aceeași observatie ca la soluția de 60 de puncte, doar că vom folosi o metodă de calculare mai eficientă decât a cautării binare.

Pentru înțelegere mai usoară, particularizăm și notăm cu X un număr câștigător, de patru cifre astfel încât Q-ul lui este cel mai mare mai mic sau egal decât Si.

Fie X = abcd = 1000*a+100*b+10*c+1*d, atunci Q = 1111*a+111*b+11*c+1*d. Pentru a determina cifrele lui X, se poate proceda în felul următor:

$$a = \left[\frac{Si}{1111}\right];$$

$$S_{i} = S_{i} - 1111*a;$$

$$b = \left[\frac{Si}{111}\right];$$

$$S_{i} = S_{i} - 111*b;$$

$$c = \left[\frac{Si}{11}\right];$$

$$S_{i} = S_{i} - 11*c;$$

$$d = \left[\frac{Si}{1}\right];$$

În cazul în care una din cifre este mai mare decat 9 (adică nu este cifră), numărul se va complete cu 9 de la cifra respectivă până la final. Demonstrația se poate face pentru un număr cu oricât de multe cifre. Complexitate **O(N*nr cifre)**

Soluție alternativă de 100 de puncte:

De asemenea, o solutie alternativă care obține 100 de puncte se bazează pe observația ca pentru două numere consiecutive X și X+1, Q-urile calculate pentru acestea nu se află la o distanță mai mare de 18. Deci, plecând de la un termen Si se poate căuta liniar cel mai mare număr caștigător care are Q-ul mai mic sau egal decât S_i .