IME692A Assignment 1

Rajarshi Dutta 200762 Saubhagya Bawari 200889

1 Question 1

The given question contains data with two columns namely **Expenditure** and **Year**. The **Expenditure** data shows almost an exponentially increasing trend thus **Holt's linear trend model** fits quite properly to the data. On further optimization of the two **level** and **trend** hyper parameters, the **U-statistic** value of **0.933** with α being **0.97** and β being equal to **0.21**.

Here is the figure attached for the forecasted value for the next 15 years from 2005.

Figure 1: Forecast plot for Question 1

2 Question 2

The second question deals with multiple forecasting. For the first part, I have used two forecasting models like **Adaptive Exponential Smoothing** and **Holt Linear Method** for forecasting for the winter months namely **November, December, January, February** etc.

The pseudocodes for the R scripts are given below:

Preprint. Under review.

Algorithm 1 Holt's Linear Smoothing Method

```
1: procedure HOLTMETHOD(data, alpha, beta)
 2:
         n \leftarrow length(data)
 3:
         Initialize arrays: u1, u2, forecasts, L, b of size n
         L[1] \leftarrow data[1]
 4:
 5:
         b[1] \leftarrow data[2] - data[1]
         \mathbf{for}\ t\ \mathsf{from}\ 2\ \mathsf{to}\ n\ \mathbf{do}
 6:
              L[t] \leftarrow \alpha \times data[t] + (1-\alpha) \times (L[t-1] + b[t-1])
 7:
             b[t] \leftarrow \beta \times (L[t] - L[t-1]) + (1-\beta) \times b[t-1]
 8:
              forecasts[t] \leftarrow L[t-1] + b[t-1]
 9:
             u1[t] \leftarrow ((forecasts[t] - data[t])/data[t-1])^2
10:
              u2[t] \leftarrow ((data[t] - data[t-1])/data[t-1])^2
11:
         end for
12:
13:
14:
15:
         \mathbf{return}\ L, b, ustatrain, ustattest, forecasts
16: end procedure
```

2.1 Holt's Linear Method

The plots for **Adaptive Exponential Smoothing** method for the two sets of data corresponding to the months are:

Figure 2: Holt's method for part 1

Figure 3: Holt's method for part 2

The model parameters α and β for modelling **winter months** are **0.5** and **0.35** whereas the α and β values for modelling **summer** months are **0.6** and **0.4**. The **RMSE** and **U statistic** values for the case of **summer** and **winter** months are mentioned in the tables:

Month	RMSE	Test U-statistic
November	17.858	0.921
December	13.033	0.901
January	8.961	0.551
February	13.77	0.730

Month	RMSE	Test U-statistic
June	41.907	0.939
July	51.130	0.913
August	43.098	0.920
September	40.226	0.995

2.2 Adaptive Exponential Smoothing

Algorithm 2 Adaptive Exponential Smoothing

```
1: function ADAPTIVEETS(data, initial_alpha, beta)
 2:
         n \leftarrow \text{length of } data
 3:
         Initialize forecasts, a, m, u1, u2, alpha as numeric arrays of size n
 4:
         forecasts[1] \leftarrow data[1]
 5:
         a[1] \leftarrow 0
         m[1] \leftarrow 0
 6:
         alpha[1] \leftarrow initial\_alpha
 7:
         for t in 2 to n do
 8:
              forecasts[t] \leftarrow \alpha[t-1] \times data[t-1] + (1 - alpha[t-1]) \times (a[t-1] + m[t-1])
 9:
             a[t] \leftarrow \beta \times (data[t] - forecasts[t]) + (1 - beta) \times a[t - 1]
10:
             m[t] \leftarrow \beta \times |data[t] - forecasts[t]| + (1 - beta) \times m[t - 1]
11:
             \alpha[t] \leftarrow |a[t]/m[t]|
12:
             u1[t] \leftarrow ((forecasts[t] - data[t])/data[t-1])^2
13:
             u2[t] \leftarrow ((data[t] - data[t-1])/data[t-1])^2
14:
15:
16:
17:
         \textbf{return} \; \{ \; forecasts, alpha, ust attrain, ust attest, level, trend \; \}
18:
19: end function
```


Figure 4: Adaptive method for part 1

Figure 5: Adaptive method for part 2

The model parameters α and β for modelling **winter months** are **0.3** and **0.01** whereas the α and β values for modelling **summer** months are **0** and **1** (Naive Method). The **RMSE** and **U statistic** values for the case of **summer** and **winter** months are mentioned in the tables:

Month	RMSE	Test U-statistic
November	16.306	0.987
December	11.526	0.842
January	8.052	0.835
February	14.398	0.976

Month	RMSE	Test U-statistic
June	49.544	1
July	54.177	1
August	44.827	1
September	40.716	1

The last **Adaptive model** doesn't work well in case of the **summers** data since the **Test U statistic** always comes out to be greater than 1. Hence the **Naive approach** works better and the **RMSE** results are mentioned in the given table above.

2.3 Conclusion

The hyperparameters used for both the models (holt's linear method and adaptive exponential method are different for summer and winter months) since the summer data seems to be a bit noisier than the corresponding data for the winter months.