Exercise 3.1

(a) A possible derivation of the word "abaabaaba" is:

$$1 \ (aSa) \rightarrow 2 \ (abSba) \rightarrow 1 \ (abaSaba) \rightarrow 1 \ (abaaSaaba) \rightarrow 4 \ (abaabaaba)$$

- (b) $\mathcal{L}(G)$ is the definition of a Palindrome. The word can always be read either forward or backward and you get the same result.
- (c) The Grammar that represents a representation of binary trees is:

$$G = \left\langle \left\{\,S\,\right\},\; \left\{\,\left[,\circ,\square,\right]\,\right\},\; R,\; S\right\rangle$$

with R:

- 1) $S \rightarrow \square$
- $2) \ S \to [S \circ S]$

Exercise 3.2

- (a) The grammar $G_1 = \langle \{S, X, Y\}, \{a, b\}, R_1, S \rangle$ is of type-0 because there is rule $S \to \epsilon$ and rule $S \to aS$ which violates the special case, where S never occurs on the right-hand side if S also maps to the empty word.
- (b) The grammar $G_2 = \langle \{S, X, Y\}, \{a, b\}, R_2, S \rangle$ is of type-1, and so also of type-0, because $baX \to baaX$ is context-sensitive. The other rules are of type-2 or type-3.

Exercise 3.3

The regular grammar for the given DFA is:

$$G = \langle \{ S, U, V \}, \{ a, b, c \}, R, S \rangle$$

with rules R as follows:

$$\begin{array}{cccc} S \rightarrow aU & S \rightarrow bV & S \rightarrow c \\ U \rightarrow aU & U \rightarrow cS & U \rightarrow c \\ V \rightarrow bV & V \rightarrow cS & V \rightarrow c \end{array}$$

Exercise 3.4

Figure 1: NFA for G

Exercise 3.5

Fist step

We find the complement of G_2 by inverting the corresponding DFA.

Second step

Given the equivalence problem: A = B iff $(A \cap B^c) \cup (A^c \cap B) = \emptyset$ which applies in both directions, we can extrapolate only the $(A \cap B^c)$ part in order to obtain $A \subseteq B$ iff $(A \cap B^c) = \emptyset$. Because regular languages are closed under intersection and complement, and we know algorithms for these operations.

Third step

Decide if $(A \cap B^c)$ is \emptyset by using the algorithm for the emptiness problem P_{\emptyset} .