Question Number		Scheme	Marks	
1.	(a)	$x = \int 6t - 2t^2 dx$	M1	
		$x = \int 6t - 2t^2 dx$ $= 3t^2 - \frac{2}{3}t^3$	A1	
		$v = 0 \Rightarrow 6t - 2t^2 = 0 \Rightarrow t = 3 \text{ (or 0)}$	M1	
		$t = 3$: $x = (3 \times 9) - (\frac{2}{3} \times 27) = 9$ m	M1 A1	
			(5 marks)	
2.	(a)	$\mathbf{I} = 0.2[(15\mathbf{i} + 15\mathbf{j}) - (-10\mathbf{i})]$	M1	
		$= 5\mathbf{i} + 3\mathbf{j}$	M1	
		$ \mathbf{I} = \sqrt{(5^2 + 3^2)} = \sqrt{34} = 5.8 \text{ Ns}$	M1 A1 (4)	
	(<i>b</i>)			
		$3 \tan \theta = \frac{3}{5} \implies \theta = 31^{\circ} \text{ (nearest degree)}$	M1 A1 (2)	
		$\frac{\delta}{5}$		
	(c)	K E Gain = $\frac{1}{2} \times 0.2[(15^2 + 15^2) - 10^2)] = 35 \text{ J}$	M1 A1 (2)	
			(8 marks)	
3.	(a)			
		Area: $6a^2$ a^2 $5a^2$ (ratio)	B1	
		CM from AD: $\frac{3a}{2} \qquad \left(2a + \frac{2a}{3}\right) = \frac{8a}{3} \qquad \overline{x}$	B1 B1	
		$6 \times \frac{3a}{2} - 1 \times \frac{8a}{3} = 5\overline{x}$	M1	
		$\overline{x} = \frac{19a}{15}$	A1 (5)	
	(<i>b</i>)	M(X),		
		$Mg\left(\frac{3a}{2} - \frac{19a}{15}\right) = mg \times \frac{3a}{2}$	M1 A1 ft A1	
		$\Rightarrow m = \frac{7M}{45}$	A1 (4)	
		mg	(9 marks)	
			<u> </u>	

(ft = follow through mark)

Question Number	Scheme	Marks
4. (a)	M(A), $40g \times \frac{3}{2} + 60g \times 2 = T \sin \alpha \times 3$ use of $\sin \alpha = \frac{3}{5}$ $60g + 120g = \frac{9T}{5}$ $\Rightarrow T = 100g = 980 \text{ N (*)}$	M1 A2, 1, 0 B1 A1 (5)
(b)	(\rightarrow): $X = T \cos \alpha$ (\uparrow) $Y + T \sin \alpha = 100g$ $R = \sqrt{(X^2 + Y^2)} = \sqrt{(784^2 + 392^2)}$ = 877 N (3 sf)	B1 M1 A1 M1 A1 A1 (6)
(c)	Cable light \Rightarrow tension same throughout \Rightarrow force on rod at D is $60g$	B1 (1) (12 marks)
(b)	$(\rightarrow): u \cos \alpha \times T = 8$ $u \times \frac{4}{5} \times T = 8$ $uT = 10 (*)$ $(\uparrow): -4 = u \sin \alpha T - \frac{1}{2}gT^{2}$ $-4 = u \times \frac{3}{5} \left(\frac{10}{u}\right) - \frac{1}{2} \times 9.8 \left(\frac{10}{u}\right)^{2}$ $u = 7$ $v_{H} \qquad v_{H} = u \cos \alpha = \frac{28}{5}$ $v_{V}^{2} = (-u \sin \alpha) + 2g \times 4$ $\Rightarrow v_{V} = 9.8 (= \frac{49}{5})$ $\tan \phi = \frac{49/5}{28/5} = \frac{7}{4}$	M1 A1 (2) M1 A1 M1 M1 M1 A1 (7) B1 ft M1 A1 ft M1 A1 cao (5)
	20/3 4	(12 marks)

(ft = follow through mark; cao = correct answer only; (*) indicates final line is given on the paper)

Question Number	Scheme	Marks	
6. (a)	$F \qquad (?): F = 20 + 64g \sin \alpha$	M1	
	= 64.8 N	A1	
	$P = Fv = 64.8 \times 5 = 324 \text{ W}$	M1 A1	(4)
	64g		
(<i>b</i>)	$(\checkmark): 64g \sin \alpha - 20 = 64a$	M1 A1	
	$a = 0.3875 \text{ m s}^{-2}$	A1	
	$v^2 = 5^2 + 2 \times 0.3875 \times 80$	M1	
	$64g v = \sqrt{87} = 9.3 \text{ m s}^{-1} (2 \text{ sf})$	A1 ((5)
(c)	$\frac{8}{5} \times 20 = 32 \text{ N}$	B1 ((1)
(<i>d</i>)	$F = \frac{200}{8}$	B1	
	$\frac{200}{8} + 64g \sin \alpha - 32 = 64a$	M1 A1	
	$a = 0.59 \text{ m s}^{-2} \text{ (2 sf)}$	A1 ((4)
	64g		
		(14 marl	ks)

Questio Numbe		Scheme	Marks
7. ($u \rightarrow 0$	$\rightarrow 0 \qquad mu = mv_1 + 2mv_2$	M1 A1
	A(m)	$e\left(2m\right)B$ $eu = -v_1 + v_2$	M1 A1
	$\rightarrow v_1$		M1 A1 A1 (7)
($v_1 > 0$	$\Rightarrow \frac{u}{3}(1-2e) > 0 \Rightarrow e < \frac{1}{2}$	M1 A1 (2)
	$(c) \mid v_2 \to V_2 \to V_2$		M1
	$\begin{array}{c} $		(1 + e) M1 A1
	Further collision if $v_1 > v_3$		
i.e. if $\frac{u}{3}(1-2e) > \frac{u}{9}(1-2e)(1+e)$		M1	
	i.e. if $3 > 1 + e$ (as $(1 - 2e) > 0$)		
		i.e. if $2 > e$	M1
	which is always true, so further collision occurs		A1 cso (6)
			(15 marks)

(cso = correct solution only)