Tema 1

INTRODUCCION A LOS NÚMEROS COMPLEJOS

1.- LOS NÚMEROS COMPLEJOS, FORMA BINÓMICA

Como sabemos, no existe ningún número real que satisfaga cualquiera de las ecuaciones $x^2+4=0$, $\cos(x)=2$, $e^x=-3$. Para poderlas resolver necesitaríamos un conjunto de números en los que sus cuadrados pudieran ser cantidades negativas, o más concretamente, un conjunto en el que existiese un número z tal que $z^2=-1$. Por este y otros motivos similares, las Matemáticas han necesitado y exigido la creación de un nuevo tipo de números que permitieran superar estas dificultades. Esta deficiencia de los números reales lleva a la introducción de los *números complejos*.

Definición: Un *número complejo* z es un par ordenado de números reales en la forma z=(x,y). A los elementos x, y los denominamos respectivamente *parte real* y *parte imaginaria* del número complejo y se denotan por x=Re(z) e y=Im(z).

El conjunto de los números complejos se denota por C.

Definición: Se dice que dos números complejos son iguales si tienen iguales sus partes reales e imaginarias.

A continuación se van a definir en $\mathbb C$ dos leyes de composición interna y se estudiará la estructura que le confieren.

Definición: Dados dos números complejos $z_1 = (x_1, y_1)$ y $z_2 = (x_2, y_2)$ se define la *suma* de z_1 y z_2 como

$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$$

El conjunto de los números complejos con esta ley interna suma $(\mathbb{C},+)$ tiene estructura de *grupo conmutativo o abeliano*, en el que el elemento neutro es el (0,0) y el elemento simétrico es z=(-x,-y).

Definición: Dados dos números complejos $z_1 = (x_1, y_1)$ y $z_2 = (x_2, y_2)$ se define el *producto* de z_1 y z_2 como

$$z_1 \cdot z_2 = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1)$$

El conjunto de los números complejos con estas dos leyes internas $(\mathbb{C},+,\cdot)$ tiene estructura de *cuerpo conmutativo o abeliano*, en el que el elemento neutro para el producto es el (1,0) y el elemento simétrico es $z^{-1} = \frac{1}{z} = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$ siempre que $z \neq 0$.

Además, si consideramos el subconjunto de C

$$\mathbb{R}' = \{(x,0) / x \in \mathbb{R}\} \subset \mathbb{C}$$

podemos definir una aplicación

$$f: \mathbb{R} \longrightarrow \mathbb{R}' \subset \mathbb{C}$$

 $x \longrightarrow (x,0)$

la cual es un isomorfismo (aplicación lineal biyectiva) y por tanto, podemos considerar el cuerpo de los números reales como un subcuerpo del cuerpo de los números complejos.

Teniendo en cuenta el comentario hecho al inicio de este capítulo y que $(0,1)\cdot(0,1)=(-1,0)$, cantidad que según el isomorfismo anterior podemos identificar con el número real -1, denotaremos por

$$i=(0,1)$$

teniéndose por tanto que $i^2 = -1$.

Las consecuencias más importantes que se obtienen con la introducción de este número "i" son las siguientes:

1- Todo número real afectado por el operador i equivale a un número complejo cuya primera componente es nula

$$x \cdot i = (x, 0) \cdot (0, 1) = (0, x)$$

2- Utilizando el operador i podemos escribir un número complejo como

$$(x,y) = (x,0) + (0,y) = (x,0) + (y,0) \cdot (0,1) = x + yi$$

A la forma x + yi se le denomina forma binómica del número complejo.

3- Teniendo en cuenta la propiedad anterior, las operaciones suma y producto antes definidas pueden ahora ser escritas en forma binómica como

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2)$$

Obsérvese que los resultados de la parte derecha de esta última igualdad, se pueden obtener manipulando los términos de la parte izquierda como si sólo contuvieran números reales y sustituyendo i² por -1 cuando aparezca.

4- Teniendo en cuenta que $i^2 = -1$, podemos afirmar que

$$i^3 = i^2 \cdot i = -i$$
, $i^4 = i^3 \cdot i = 1$, $i^5 = i^4 \cdot i = i$,...

Las potencias superiores se realizan de manera análoga, observándose que los valores obtenidos se repiten de cuatro en cuatro.

5- Teniendo en cuenta que el elemento simétrico para el producto es

$$z^{-1} = \frac{1}{z} = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right) = \frac{x - yi}{x^2 + y^2} = \frac{x - yi}{(x + yi) \cdot (x - yi)} = \frac{1}{x + yi}$$

se define el cociente entre dos números complejos $z_1 = x_1 + y_1i$, $z_2 = x_2 + y_2i$ como

$$\frac{z_{1}}{z_{2}} = \frac{x_{1} + i y_{1}}{x_{2} + i y_{2}} = \frac{(x_{1} + i y_{1})(x_{2} - i y_{2})}{(x_{2} + i y_{2})(x_{2} - i y_{2})} = \frac{x_{1}x_{2} + y_{1}y_{2} + i(y_{1}x_{2} - x_{1}y_{2})}{x_{2}^{2} + y_{2}^{2}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} + i\frac{y_{1}x_{2} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} + i\frac{y_{1}x_{2} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}$$
siempre que $z_{2} \neq 0$

2.- REPRESENTACIÓN GEOMÉTRICA. CONJUGADO Y MÓDULO

Para la representación geométrica de los números complejos en el plano se toma un sistema cartesiano rectangular de coordenadas. El número complejo z = x + iy se representa mediante el punto P(x,y) al que se le denomina *afijo* del número complejo o bien como el vector con origen en el punto (0,0) y extremo P(x,y).

El eje *OX* se llama *eje real*, por corresponderse sus puntos con números reales (o complejos de parte imaginaria nula); y el eje *OY*, *eje imaginario*, por corresponderse sus puntos con números imaginarios puros (parte real nula). Cuando el plano XY es usado para representar números complejos se denomina *plano complejo o plano z*.

De acuerdo con esta representación geométrica, dados dos números complejos $z_1 = (x_1, y_1)$ y $z_2 = (x_2, y_2)$, su suma $z_1 + z_2$ puede considerarse tanto el punto de coordenadas (x_1+x_2, y_1+y_2) como el vector que tiene estas coordenadas como componentes, es decir, z_1+z_2 se puede obtener vectorialmente según la regla del paralelogramo, como se indica en la Fig. 1:

Análogamente se representa la diferencia $z_1 - z_2 = z_1 + (-z_2)$, como se indica en la Fig.2:

Fig. 2

El *complejo conjugado*, o simplemente *conjugado* de un número complejo z = x + iy, se define como $\overline{z} = x - iy$.

La suma de un número complejo y su conjugado es un número real, y la diferencia es un número *imaginario puro* (la parte real es 0).

Operando directamente puede comprobarse que:

1-
$$\overline{\overline{z}} = z$$

$$2- \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

y que si tenemos dos números complejos $z_1 = x_1 + y_1 i$, $z_2 = x_2 + y_2 i$

$$3- \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\mathbf{4-} \quad \overline{\mathbf{z}_1 \cdot \mathbf{z}_2} = \overline{\mathbf{z}_1} \cdot \overline{\mathbf{z}_2}$$

$$5- \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

El módulo, o valor absoluto de un número complejo z es el número real no negativo

$$|z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$$

Geométricamente, el número |z| representa la distancia euclídea entre el punto (x, y) y el origen, es decir, es la longitud del vector que tiene al punto z como afijo; por tanto, es la norma euclídea y verifica las siguientes propiedades:

1)
$$|z| \ge 0 \ \forall z \in \mathbb{C} \ y \ |z| = 0 \Leftrightarrow z = 0$$

2)
$$|\lambda \cdot z| = |\lambda| \cdot |z| \quad \forall \lambda, z \in \mathbb{C}$$

3)
$$|z_1 + z_2| \le |z_1| + |z_2| \quad \forall z_1, z_2 \in \mathbb{C}$$
 (designal dad triangular)

En consecuencia, la distancia entre dos números complejos z_1 y z_2 se define:

$$d(z_1, z_2) = |z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

que geométricamente coincide con la distancia euclídea entre los puntos de coordenadas (x_1, y_1) y (x_2, y_2) en el plano OXY.

Mediante simple operación, pueden comprobarse las dos propiedades siguientes:

1)
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2| \quad \forall z_1, z_2 \in \mathbb{C}$$

2)
$$\left| \frac{\mathbf{z}_1}{\mathbf{z}_2} \right| = \frac{\left| \mathbf{z}_1 \right|}{\left| \mathbf{z}_2 \right|} \quad \forall \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{C}$$

3.- FORMAS TRIGONOMETRICA Y POLAR

Sean (ρ, θ) coordenadas polares del punto (x,y) asociado al número complejo no nulo $z = x + i y \neq 0$. Como $x = \rho \cos \theta$ e $y = \rho \sin \theta$ (Fig 3), z puede expresarse de la forma:

$$z = \rho (\cos \theta + i \cdot \sin \theta)$$

A esta expresión se le denomina forma trigonométrica del número complejo z.

El número positivo ρ es la longitud del vector asociado a z, es decir $\rho = \sqrt{x^2 + y^2} = |z|$ y θ es un ángulo, medido en radianes, desde el eje real positivo hasta el vector z cumpliendo tg $\theta = y/x$. Este valor θ se dice que es el argumento de z y se escribe $\theta = \arg(z)$.

Geométricamente arg z denota el ángulo medido en radianes, que forma z con el semieje positivo

Por lo tanto, hay un número infinito de valores reales que difieren en múltiplos de 2π , del argumento. Todos ellos pueden determinarse a través de la ecuación $tg\theta = \frac{y}{x}$ donde hay que especificar también el cuadrante en que está situada z. Así, en general, si $z \neq 0$:

$$z = \rho[\cos(\theta + 2k\pi) + i \cdot \sin(\theta + 2k\pi)] \qquad k \in \mathbb{Z}$$

Siendo ρ el módulo de z y θ cualquier valor particular de arg z. Para z = 0, θ no está definido, luego asumiremos implícitamente que todo número complejo que escribamos en coordenadas polares es no nulo.

El conjunto de todos los posibles argumentos de z se llama *argumento* de z, y se representa arg(z):

$$arg(z) = \theta + 2k\pi \quad (k \in \mathbb{Z})$$

Al único valor de arg(z) perteneciente al intervalo $(-\pi,\pi]$ se le denomina *valor principal del argumento*, y se denota Arg(z).

Ejemplo: El número complejo z = 1 - i, que está en el cuarto cuadrante y verifica

$$|z| = \sqrt{2}$$
; tg $\theta = -1/1 = -1$

se puede escribir como: $1-i = \sqrt{2} \left[\cos \left(-\pi/4 \right) + i \cdot \sin \left(-\pi/4 \right) \right]$

pero también, por ejemplo, como: $1-i=\sqrt{2}\left[\cos\left(7\pi/4\right)+i\cdot\sin\left(7\pi/4\right)\right]$, verificando:

$$arg(1-i) = -\pi/4 + 2k\pi$$
 $(k \in \mathbb{Z})$ y $Arg(1-i) = -\pi/4$.

El número complejo $z=\rho$ $(\cos\theta+i\,\sin\theta)$ suele representarse como $z=\rho_{\theta}$, que se denomina *forma polar* de z.

Producto, cociente y potencia entera en forma polar:

Dados dos números complejos no nulos $z_1 = (\rho_1)_{\theta_1}$, $z_2 = (\rho_2)_{\theta_2}$, escribiéndolos en forma trigonométrica y operando, puede comprobarse que se verifica que se verifica:

1)
$$z_1 \cdot z_2 = (\rho_1)_{\theta_1} \cdot (\rho_2)_{\theta_2} = (\rho_1 \cdot \rho_2)_{\theta_1 + \theta_2}$$

2)
$$z_1/z_2 = (\rho_1)_{\theta_1}/(\rho_2)_{\theta_2} = (\rho_1/\rho_2)_{\theta_1-\theta_2}$$

3)
$$1/z = 1/(\rho)_{\theta} = (1/\rho)_{\theta}$$
 si $z = (\rho)_{\theta}$

Teniendo en cuenta las expresiones para el producto de dos números complejos dados en forma polar, es fácil comprobar que si $z=\rho_{\theta}$, entonces:

$$z^{n} = (\rho_{\theta})^{n} = (\rho^{n})_{n\theta} \quad n \in \mathbb{N}$$

4.- FORMA EXPONENCIAL

A menudo conviene escribir $e^{i\theta}$, $o \exp(i\theta)$ para expresar el número complejo $\cos \theta + i \cdot \sin \theta$, es decir escribiremos

$$e^{i\theta} = \cos\theta + i \cdot \sin\theta$$

Esta expresión recibe el nombre de fórmula de Euler.

Usando esta fórmula de Euler se define la función exponencial de variable compleja como

$$e^z = e^{x+iy} = e^x(\cos y + i \cdot \text{seny}) = (e^x)_y$$

Propiedades de la función exponencial: Se deducen mediante simple operación

- 1) $e^{z_1}e^{z_2} = e^{z_1+z_2}$
- $2) \quad \frac{e^{z_1}}{e^{z_2}} = e^{z_1 z_2}$
- 3) $\left(e^{z}\right)^{n} = e^{nz} \quad n \in \mathbb{N}$
- 4) La función exponencial $f(z) = e^z$ es *periódica* con periodo imaginario puro igual a $2\pi i$.
- 5) $e^z \neq 0 \quad \forall z \in \mathbb{C}$ (puesto que $|e^z| = e^x \neq 0$)

Puede demostrarse, que al igual que ocurre con la función exponencial real, la derivada de la función exponencial de variable compleja es ella misma, es decir

$$(e^z)' = e^z$$

Considerando la fórmula de Euler, un número complejo $z = \rho (\cos \theta + i \sin \theta)$ puede expresarse como: $z = \rho e^{i\theta}$ que se denomina *forma exponencial* de z.

Producto, cociente y potencia entera en forma exponencial:

Dados dos números complejos no nulos $z_1=\rho_1e^{i\theta_1}$, $z_2=\rho_2e^{i\theta_2}$, se verifica:

1)
$$\mathbf{z}_1 \cdot \mathbf{z}_2 = \boldsymbol{\rho}_1 \mathbf{e}^{i\theta_1} \cdot \boldsymbol{\rho}_2 \mathbf{e}^{i\theta_2} = \boldsymbol{\rho}_1 \boldsymbol{\rho}_2 \cdot \mathbf{e}^{i(\theta_1 + \theta_2)}$$

2)
$$\frac{z_1}{z_2} = \frac{\rho_1 \cdot e^{i\theta_1}}{\rho_2 \cdot e^{i\theta_2}} = \frac{\rho_1}{\rho_2} \cdot e^{i(\theta_1 - \theta_2)}$$

3)
$$\frac{1}{z} = \frac{1}{\rho \cdot e^{i\theta}} = \frac{1}{\rho} \cdot e^{-i\theta}$$
 si $z = \rho \cdot e^{i\theta}$

Teniendo en cuenta la expresión para el producto de dos números complejos dados en forma exponencial, es fácil comprobar que $z = \rho e^{i\theta}$, entonces:

$$z^{n} = (\rho e^{i\theta})^{n} = \rho^{n} e^{in\theta} \quad (n \in \mathbb{N})$$

Si ahora se supone que m es un número entero negativo, entonces m=-n con $n \in \mathbb{N}$, de donde

$$z^{m} = z^{-n} = (z^{-1})^{n} = ((1/\rho)_{-\theta})^{n} = (1/\rho^{n})_{-n\theta} = \rho^{-n} \cdot e^{-in\theta} = \rho^{m} \cdot e^{im\theta}$$

5.- FORMAS TRIGONOMÉTRICAS COMPLEJAS

De las ecuaciones:
$$\begin{cases} e^{ix} = \cos x + i \cdot \sin x \\ e^{-ix} = \cos x - i \cdot \sin x \end{cases} \text{ se deduce: } \begin{cases} \sec x = \frac{e^{ix} - e^{-ix}}{2i} \\ \cos x = \frac{e^{ix} + e^{-ix}}{2} \end{cases} \forall x \in \mathbb{R}.$$

Por tanto, resulta natural definir las funciones seno y coseno de variable compleja z en la forma:

$$senz = \frac{e^{iz} - e^{-iz}}{2i}$$
 $cos z = \frac{e^{iz} + e^{-iz}}{2}$

Estas funciones son derivables en todo \mathbb{C} por ser suma y resta de las funciones derivables e^{iz} y e^{-iz} . Usando las derivadas de las funciones exponenciales, se deduce que:

$$(\operatorname{sen} z)' = \cos z$$
, $(\cos z)' = -\operatorname{sen} z$

6.- RAÍCES DE UN NÚMERO COMPLEJO

Definición: Dado un número complejo $z = \rho \cdot e^{i\theta}$, se define $z^{1/n}$ como cualquiera de los números complejos w tales que $w^n = z$.

Calculemos su expresión. Sean, en forma polar, $z = \rho_{\theta}$ y $w = r_{\phi}$. Recordando que z es dato, y buscando todas las posibles soluciones w:

$$\mathbf{w}^{\mathbf{n}} = \left(\mathbf{r}^{\mathbf{n}}\right)_{\mathbf{n}\phi} = \boldsymbol{\rho}_{\theta}$$

Por tanto:

$$r^n = \rho \implies r = \sqrt[n]{\rho}$$

$$n\phi = \theta + 2k\pi \implies \phi = \frac{\theta + 2k\pi}{n} \ (k \in \mathbb{Z})$$

Para cada valor de k = 0, 1, ..., n-1 se obtiene un número complejo diferente. El resto de los valores de k dan lugar a los mismos números complejos que los valores anteriores. Por tanto:

$$z^{1/n} = w = (\rho^{1/n})_{\frac{\theta+2k\pi}{n}}$$
 (k = 0, 1, ..., n-1)

Geométricamente, como el módulo de todas las raíces es común e igual a $\rho^{1/n}$, y la diferencia entre dos argumentos consecutivos es $\frac{2\pi}{n}$, los puntos que representan los diversos valores de $z^{1/n}$ están sobre la circunferencia de radio $\rho^{1/n}$, y uniformemente espaciados con una separación angular de $2\pi/n$, habiendo n raíces enésimas distintas de cualquier número complejo $z \neq 0$. Esto se representa en la Fig. 4 para n = 4.

Fig. 4

Ejemplo: Para calcular las tres raíces cúbicas (-8)^{1/3} basta tener en cuenta que:

$$|-8| = 8$$
; $\arg(-8) = \pi + 2k\pi \implies (-8)^{1/3} = \left(8^{1/3}\right)_{\frac{\pi + 2k\pi}{3}} = 2_{\frac{\pi + 2k\pi}{3}} \quad (k = 0, 1, 2)$

Si
$$k = 0$$
 queda: $z_1 = 2_{\pi/3} = 2 \left[\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right] = 1 + i \sqrt{3}$

Si
$$k = 1$$
 queda: $z_2 = 2_{\pi} = 2(\cos \pi + i \cdot \sin \pi) = -2$

Si
$$k = 2$$
 queda: $z_3 = 2_{5\pi/3} = 2 \left[\cos \left(\frac{5\pi}{3} \right) + i \sin \left(\frac{5\pi}{3} \right) \right] = 1 - i \sqrt{3}$

que son los vértices del triángulo equilátero inscrito en |z| = 2 representado en la Fig. 5.

Fig. 5.

EJERCICIOS

1.- Expresar cada uno de los siguientes números complejos en forma binómica:

1.1.)
$$z = 5 \cdot e^{7\pi \cdot i}$$

Solución:
$$z = -5$$

11

1.2.)
$$z = \frac{1}{3} \cdot e^{-\frac{3\pi}{2}i}$$

Solución:
$$z = \frac{1}{3}i$$

1.3.)
$$z = \sqrt{3} \cdot e^{\frac{2\pi}{3}i}$$

Solución:
$$z = -\frac{\sqrt{3}}{2} + \frac{3}{2}i$$

1.4.)
$$z = e^{-\frac{\pi}{6}i}$$

Solución:
$$z = \frac{\sqrt{3}}{2} - \frac{1}{2}i$$

1.5.)
$$z = e^{\frac{7\pi}{3}i}$$

Solución:
$$z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

1.6.)
$$z = \sqrt{2}_{\pi}$$

Solución:
$$z = -\sqrt{2}$$

1.7.)
$$z = \sqrt{2}_{\frac{\pi}{4}}$$

Solución:
$$z = 1 + i$$

1.8.)
$$z = 5_{-\frac{7\pi}{2}}$$

Solución:
$$z = 5i$$

1.9.)
$$z = 1_{\pi} \cdot 2_{\frac{\pi}{2}}$$

Solución:
$$z = -2i$$

1.10.)
$$z = e^{\frac{5\pi}{2}i} \cdot 2 \cdot e^{\pi \cdot i}$$

Solución:
$$z = -2i$$

2.- Expresar cada uno de los siguientes números complejos en forma exponencial $z = \rho \cdot e^{\theta \cdot i}, -\pi < \theta \le \pi$:

$$2.1.$$
) $z = 5i$

Solución:
$$z = 5 \cdot e^{\frac{\pi}{2}i}$$

2.2.)
$$z = -(1 + \sqrt{3}i)$$

Solución:
$$z = 2 \cdot e^{-\frac{2\pi}{3}i}$$

$$2.3.$$
) $z = -1 + i$

Solución:
$$z = \sqrt{2} \cdot e^{\frac{3\pi}{4}i}$$

$$2.4.$$
) $z = -1-i$

Solución:
$$z = \sqrt{2} \cdot e^{-\frac{3\pi}{4}i}$$

2.5.)
$$z = (-\sqrt{2} + \sqrt{2}i)^4$$

Solución:
$$z = 16 \cdot e^{\pi i}$$

2.6.)
$$z = (-2 - 2i)^2$$

Solución:
$$z = 8 \cdot e^{\frac{\pi}{2}i}$$

$$2.7.) z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i}$$

Solución:
$$z = e^{\frac{\pi}{6}i} = 1_{\frac{\pi}{6}}$$

2.8.)
$$z = i \cdot (1+i) \cdot e^{\frac{\pi}{6}i}$$

Solución:
$$z = \sqrt{2} \cdot e^{\frac{11\pi}{12}i} = (\sqrt{2})_{\frac{11\pi}{12}}$$

2.9.)
$$z = (\sqrt{3} + i) \cdot 2\sqrt{2} \cdot e^{-\frac{\pi}{4}i}$$

Solución:
$$z = 4\sqrt{2} \cdot e^{-\frac{\pi}{12}i} = (4\sqrt{2})_{-\frac{\pi}{12}}$$

$$2.10.) z = \frac{e^{i\frac{\pi}{3}} - 1}{1 + i\sqrt{3}}$$

Solución:
$$z = \frac{1}{2}e^{\frac{\pi}{3}i} = \left(\frac{1}{2}\right)_{\frac{\pi}{3}}$$

3.- Calcular las siguientes raíces:

3.1.)
$$\sqrt[3]{27i}$$

Solución:
$$z_1 = \frac{3}{2}(\sqrt{3}+i)$$
, $z_2 = \frac{3}{2}(-\sqrt{3}+i)$, $z_3 = -3i$

3.2.)
$$\sqrt[4]{-16}$$

Solución:
$$\begin{cases} z_1 = \sqrt{2}(1+i), & z_2 = \sqrt{2}(-1+i) \\ z_3 = -\sqrt{2}(1+i), & z_4 = \sqrt{2}(1-i) \end{cases}$$

4.- Resolver las siguientes ecuaciones:

4.1.)
$$z^4+16=0$$

Solución:
$$\begin{cases} z_1 = \sqrt{2}(1+i), & z_2 = \sqrt{2}(-1+i) \\ z_3 = -\sqrt{2}(1+i), & z_4 = \sqrt{2}(1-i) \end{cases}$$

4.2.)
$$z^3 - 1 = 0$$

Solución:
$$z_1 = 1$$
, $z_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $z_3 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$

$$4.3.$$
) $(1+i)\cdot z^3 - 2i = 0$

Solución:
$$z_1 = (\sqrt[6]{2})_{\frac{\pi}{12}}, \ z_2 = (\sqrt[6]{2})_{\frac{3\pi}{4}}, \ z_3 = (\sqrt[6]{2})_{\frac{17\pi}{12}}$$

4.4.)
$$z^3+z=0$$

Solución:
$$z_1 = 0$$
, $z_2 = i$, $z_3 = -i$

4.5.)
$$z^3 - z = 0$$

Solución:
$$z_1 = 0$$
, $z_2 = 1$, $z_3 = -1$

5.- Pasar a forma binómica $\sqrt{3-4i}$

Solución: $\pm (2-i)$

6.- Hallar las raíces sextas de la unidad.

Solución:
$$z_1 = 1$$
, $z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, $z_3 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $z_4 = -1$, $z_5 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$, $z_6 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$,

7.- Expresar en forma binómica los siguientes números complejos:

a)
$$A = \left(\frac{1+i}{\sqrt{2}}\right)^{10} + \left(\frac{1-i}{\sqrt{2}}\right)^{10}$$
 Solución: $A = 0$

b)
$$B = \frac{1 - e^{\pi i/2}}{1 + e^{\pi i/2}}$$
 Solución: $B = -i$

8.- Demostrar la *fórmula de Moivre* : $(\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta) \quad (n \in \mathbb{N})$

9.- Demostrar que
$$\left(1+i\cdot\sqrt{3}\right)^n+\left(1-i\cdot\sqrt{3}\right)^n=2^{n+1}\cdot\cos(n\pi/3)$$

10.- Calcular las raíces de la ecuación: $z^3 - 17i \cdot z^2 + (4i - 91) \cdot z + (171i + 36) = 0$, sabiendo que la raíz de mayor componente imaginaria está situada en la parte positiva del eje imaginario, y su módulo es tres veces el módulo de las raíces de la ecuación $z^3 = 27$.

Solución:
$$z_1 = 9i$$
, $z_2 = 2 + 3i$, $z_3 = -2 + 5i$

11.-La suma de dos números complejos es (3 + 2i), y la parte real de uno de ellos es 2. Hallar dichos números sabiendo que su cociente es un número imaginario puro.

Solución:
$$\begin{cases} z_1 = 2 + (1 - \sqrt{3})i & \begin{cases} z_1 = 2 + (1 + \sqrt{3})i \\ z_2 = 1 + (1 + \sqrt{3})i \end{cases} & z_2 = 1 + (1 - \sqrt{3})i \end{cases}$$