Представим базис в виде:

$$\chi = R(r - \vec{R})A(\theta_A, \varphi_A)$$

$$R(r) = \sum_{i=1}^{n} C_i e^{-\alpha_i r^2}$$

$$A_{lm} = \begin{cases} Y_{lm} r^l \\ (Y_{lm} + Y_{lm}) r^l \\ (Y_{lm} - Y_{lm}) r^l / i \\ x^k y^p z^q & (k + p + q = l) \end{cases}$$

$$l = 1 : A_0 = C_0$$

$$l = 1 : A_1 = \{C_1 x, C_1 y, C_1 z\}$$

$$l = 2 : A_1 = \{C_2 x y, C_2 x z, C_3 y z, C_3 x^2, C_3 y^2, C_3 z^2\}$$

Но эти же функции мы можем переписать в виде:

$$l = 2: A'_1 = \{C_2xy, C_2xz, C_3yz, C_3(x^2 - y^2), C_3(2z^2 - x^2 - y^2)\}$$

$$C_3(x^2 + y^2 + z^2) = C_3r^2 \sim r^2 = Y_{00}$$

Таким образом, получили "загрязнение" базиса функциями более низкого порядка — контаминантами.

При l=3 имеем 10 функций, опять же имеется загрязнение вида: $(x^2+y^2+z^2)=r^2$.

Когда мы говорим о базисном наборе, мы должны иметь в виду несколько понятий:

- 1. контаминанта функция, загрязняющая l оболочку функциями с l' < l.
- 2. диффузная функция функция с очень малым множителем в показателе экспоненты: $\alpha \to 0$ имеем сильно размытый гаусс. Нужны для описания анионов или систем с сильно "распухшей"электронной оболочкой. Сродство к электрону: в квантовомеханических рассчетах оно может быть только отрицательно $(E(A^{\ominus}) E(A) < 0)$, в противном случае рассчет должен дать не анион, а молекулу плюс электрон такое поведение свидетельствует о том, что выбран неправильный базис (нужны диффузные функции).
- 3. поляризационная функция нужна для описания валентных оболочек: Представим атом водорода в молекуле; под действием полей других атомов валентная *s* орбиталь поляризуется и преобретает симметрию

 $(\text{шар} \to \text{эллипс})$. Тогда для описания поляризованной функции нужны базисные функции с большим l:

$$s(valence) \rightarrow p(polarization)$$

 $p(valence) \rightarrow d(polarization)$
 $d(valence) \rightarrow f(polarization)$

Иногда можно использовать в больших молекулах вместо диффузных функции поляризационные функции соседей. Валентное расщепление базисного набора — число линейно независимых функций с данным значением l:

Дважды расщепленные — cc-pv \overline{DZ} , $6 - \underline{31}G$ Трижды расщепленные — cc-pv \overline{TZ} , $6 - \underline{31}G$

 $\mathrm{cc}-\mathrm{корреляционно}$ согласованные — много одинаковых базисных функций

$$\chi_1 = \sum_{i=1}^{N} C_i e^{-\alpha_i r^2}$$

$$\chi_2 = \sum_{i=1}^{N} C'_i e^{-\alpha_i r^2}$$

$$\langle \chi_1 | A | \chi_2 \rangle = \sum_i \sum_j C_i C'_j \langle e^{-\alpha_i r^2} | A | e^{-\alpha_j r^2} \rangle$$

Получается, что все средние значения сводятся к вычислению гауссовых примитивов. Тогда можем посчитать интегралы на одних и тех же функциях один раз, а потом просто суммировать.

сс-рvDZ углерода = 3(количество)s, 2p, 1d сс-рvQZ водорода = 4s, 3p, 2d, 1f aug-cc-pvDZ углерода = 3s + 1s, 2p + 1p, 1d + 1d (расширенный) d-aug-cc-pvTZ водорода = 3s + 2s, 2p + 2p, 1d + 2d (дважды расширенный)

(9s,4p,1d)/[3s,2p,1d]=cc-pvDZ-9 разных гауссовых примитивов собраны в 3 s-функций, 4 — в 2 p, 1 — в одну d.

$$\chi = \sum_{i=1}^{K} \sum_{\substack{\{k,m,n\}\\k+m+n=l}} N_i(k,m,n) x^k y^m z^n C_i e^{-\alpha_i r^2} =$$

$$= \sum_{i=1}^{K} C_i \sum_{\substack{\{k,m,n\}\\k+m+n=l}} N_i(k,m,n) \phi_i(k,m,n)$$

где C_i — коэффициенты контрактации при нормированных примитивах (из файла базиса)

$$\begin{split} |\phi_{i}(k,m,n)|^{2} &= \int x^{2k}y^{2m}z^{2n}e^{-2\alpha_{i}r^{2}}\,dxdydz = \\ &= \left(\int x^{2k}e^{-2\alpha_{i}x^{2}}\,dx\right)\left(\int y^{2m}e^{-2\alpha_{i}y^{2}}\,dy\right)\left(\int z^{2n}e^{-2\alpha_{i}z^{2}}\,dz\right) \\ &\int x^{2k}e^{-2\alpha_{i}x^{2}}\,dx = \frac{(-1)^{k}}{2^{k}}\frac{\partial^{k}}{\partial\alpha_{i}^{k}}\int e^{-2\alpha_{i}x^{2}}\,dx = \frac{(-1)^{k}}{2^{k}}\frac{\partial^{k}}{\partial\alpha_{i}^{k}}\sqrt{\frac{\pi}{2\alpha_{i}}} = \\ &= \frac{(-1)^{k}}{2^{k}}\sqrt{\frac{\pi}{2}}\frac{(-1)^{k}(2k-1)!!}{2^{k}}\alpha_{i}^{-k-1/2} = \frac{(2k-1)!!}{2^{2k}}\sqrt{\frac{\pi}{2}}\alpha_{i}^{-k-1/2} \\ &N_{i} = \left(|\phi_{i}(k,m,n)|^{2}\right)^{-1/2} = \\ &= \left(\frac{(2k-1)!!}{2^{2k}}\sqrt{\frac{\pi}{2}}\alpha_{i}^{-k-1/2}\frac{(2m-1)!!}{2^{2m}}\sqrt{\frac{\pi}{2}}\alpha_{i}^{-m-1/2}\frac{(2n-1)!!}{2^{2n}}\sqrt{\frac{\pi}{2}}\alpha_{i}^{-n-1/2}\right)^{-1/2} = \\ &= \left(\left(\frac{\pi}{2\alpha_{i}}\right)^{3/2}\left(\frac{1}{4\alpha_{i}}\right)^{l}(2k-1)!!(2m-1)!!(2n-1)!!\right)^{-1/2} \\ &= \left(\sqrt{\frac{2\alpha_{i}}{\pi}}\right)^{3/4}\left(\frac{(4\alpha_{i})^{l}}{(2k-1)!!(2m-1)!!(2n-1)!!}\right)^{1/2} \\ &\langle \chi|\chi\rangle = \sum_{i,j}C_{i}C_{j}\sum_{\substack{(k,m,n),\\\{k',m',n'\}}}N_{i}(k,m,n)N_{j}(k',m',n')I_{ij}(k,m,n,k',m',n') \\ &I_{ij}(k,m,n,k',m',n') = \int x^{k+k'}y^{m+m'}z^{n+n'}e^{-(\alpha_{i}+\alpha_{j})r^{2}}\,dxdydz = \\ &= I_{ij}(k,k')I_{ij}(m,m')I_{ij}(n,n') \\ &I_{ij}(k,k') = \int y^{m+m'}e^{-(\alpha_{i}+\alpha_{j})y^{2}}\,dy \\ &I_{ij}(n,n') = \int z^{n+n'}e^{-(\alpha_{i}+\alpha_{j})z^{2}}\,dz \end{split}$$

Если хотя бы одна из сумм: (k+k'), (m+m'), (n+n') — нечетна, то весь интеграл равен нулю. Иначе:

$$I_{ij}(k,k') = \frac{(k+k'-1)!!\sqrt{\pi}}{2^{(k+k')/2}(\alpha_i+\alpha_j)^{(k+k'+1)/2}}$$

$$I_{ij}(k,m,n,k',m',n') = \frac{(k+k'-1)!!(m+m'-1)!!(n+n'-1)!!\pi^{3/2}}{2^{(L+L')/2}(\alpha_i+\alpha_j)^{(L+L'+3)/2}}$$
 где $L=k+m+n$, $L'=k'+m'+n'$

- 4. комбинация s, p_x, p_y, p_z с одинаковыми экспонентами, но разными коэффициентами контрактации — L функция. В файле базисов состоит из трех колонок — показатель экспоненты, коэффициенты контрактации для s функции, коэффициенты контрактации для p функции. Можно чуть быстрее считать двухэлектронные интегралы.
- 5. optimized general: Вариационная задача имеет вид:

$$\begin{cases} g_1 = C_1 f_1 + C_2 f_2 + C_3 f_3 + C_4 f_4 \\ g_2 = C_1' f_1 + C_2' f_2 + C_3' f_3 + C_4' f_4 \\ g_3 = f_4 \end{cases}$$

Но тогда можно последнюю функцию выкинуть из первых двух, перенормировать базис и разбить задачу на два куска.

Этапы работы с файлом:

- 1. считать базисный набор из файла;
- 2. явно добавить угловую зависимость;
- 3. пересчитать коэффициенты контрактации с учетом нормировок примитивов;
- 4. перенормировать базисную функцию.

Дальше занимаемся приложением такого базиса к файлу с геометриями.