Práctica 1

Pedro Bonilla Nadal Johanna Capote Robayna Guillermo Galindo Ortuño

Ejercicio 1. Demuestra que la ecuación $x^3 + 4x^2 = 10$ tiene una única solución en el intervalo [1, 2]. Aproxima dicha raíz con el método de bisección con un error menor que 10^{-5} . ¿Cuántas iteraciones serán necesarias para conseguir un error menor que 10^{-8} ?

Solución.

Para demostrar la existencia de esa solución nos basta con utilizar el teorema de Bolzano, ya que, como la función $f(x) = x^3 + 4x^2 - 10$ es continua de manera evidente, y f(1) = -5 y f(2) = 14, entonces existe un c en el intervalo (1,2) tal que f(c) = 0.

Ahora, para demostrar la unicidad estudiaremos la derivada de dicha función (es derivable en todo R). Tenemos que $f'(x) = 3x^2 + 8x$, por tanto, es evidente que esa funcion no se anula en el intervalo (1,2), luego f(x) es estrictamente monótona en ese intervalo y solamente puede tener una raiz.

Ahora, utilizando el programa para calcular la aproximación obtenida por el método de bisección que hemos diseñado tenemos que la raiz es: 1,36522674.

Supuesto que x^* es la raiz buscada, que x_n es la aproximación n-ésima, y que ϵ es el error máximo aceptable sabemos que:

$$|x_n - x^*| < \frac{b - a}{2^{n+1}}$$

Por tanto, despejando n de

$$\frac{b-a}{2^{n+1}} = \epsilon$$

nos aseguramos que el error sea el deseado. Así, tras operar un poco, es suficiente con:

$$n \ge \log_2(\frac{b-a}{\epsilon}) - 1$$

Sustituyendo en nuestro caso particular tenemos que es suficiente con $n \ge 15$

Ejercicio 7. Se considera la ecuación $x + \log x = 0$

- a) Prueba que dicha ecuación posee una única solución.
- b) Sea $a \in (0, \frac{1}{2})$. Prueba que si $x_0 \in [a, 1]$ en método de Newton-Raphson es convergente.

Solución.

a) Primero vamos a probar la unicidad:

$$f'(x) = 1 + \frac{1}{x} > 0, \ \forall x \in \mathbb{R}$$

Vemos que es inyectiva por lo tanto la función a cada x solo le asigna un único valor.

Veamos su existencia por Bolzano:

$$f(\frac{1}{10}) = \frac{1}{10} - 2,302585093 = -2,202585093 < 0$$
$$f(e) = 2 > 0$$

Por el teorema de Bolzano sabemos que $\exists x \in \mathbb{R} : f(x) = 0$

- b) Para probrar que $f(x) = x + \ln x$ es convergente tenemos que desmotrar que:
 - i) $f(a) \cdot f(1) < 0$
 - ii) $\forall x \in [a, 1], f'(x) \neq 0$
 - iii) f''(x) no cambia de signo en [a, 1]

i)
$$f(a) \cdot f(1) = f(a) \cdot 1 = f(a)$$

$$f(a) = a + \ln a < 0, \ \forall a \in (0, \frac{1}{2})$$

ii)
$$f'(x) = 1 + \frac{1}{x}$$

$$f'(x) \neq 0, \forall x \in [a, 1]$$

iii)
$$f''(x) = \frac{-1}{x^2}$$

$$f''(x) < 0, \ \forall x \in [a, 1]$$

Ejercicio 16. Demuestra que el sistema de ecuaciones

$$\begin{cases} \frac{x^2y^2}{2} - x + \frac{7}{24} &= 0\\ xy - y + \frac{1}{9} &= 0 \end{cases}$$

tiene una unica solución en el intervalo [0,0,4]x[0,0,4]. Calcula una aproximación de la solución en el intervalo anterior mediante 4 iteraciones del método de Newton partiendo de (0,0).

Solución.

Para demostrar que existe una única solución utilizaremos el teorema de convergencia global. Para ello, transformaremos nuestro sistema en una ecuacion de punto fijo, definida en un conjunto cerrado y acotado, que en nuestro caso es $D = [0, 0.4] \times [0, 0.4]$

$$\begin{cases} \frac{x^2y^2}{2} - x + \frac{7}{24} &= 0 \\ xy - y + \frac{1}{9} &= 0 \end{cases} \longrightarrow g(x,y) = (\frac{x^2y^2}{2} + \frac{7}{24}, xy + \frac{1}{9})$$

Una vez realiza esta transformación, necesitaremos varias condiciones para poder aplicar el teorema.

 $q(x) \in D \forall x \in D$

Cada componente de g es positiva, por lo que ambas son superiores que 0 siempre. Ahora, es evidente que ambas alcanzan su máximo en el punto 0,4, con $q_1(0,4) = 0.304...$ y $q_2(0,4) = 0.27$, luego la condicion se cumple.

• g es contractiva

Para demostrar que q es contractiva utilizaremos un resultado de clase que afirma que si D es cerrado, acotado y convexo(en nuestro lo es) y «"¡HEAD $q:D\to\mathbb{R}^n$ es de clase 1 y existe un L tal que ||Jq(x)||< Lpara todo x en D, entonces g es contractiva.

 $=======g:D\to\mathbb{R}$ es de clase 1 y existe un L tal que $||Jg(x)||\leq$ L < 1 para todo x en D, entonces g es contractiva.

```\*; 1b4442b6b68eaad763cb546f76d982f2bb0abf03 Podriamos utilizar cualquier norma, pero por comodidad utilizaremos la norma del máximo.

$$Jg(x) = \begin{pmatrix} y^2x & x^2y \\ y & x \end{pmatrix}$$

Y en nuestro intervalo  $||Jg(x)|| \leq 0.8 < 1$  por lo que es contractiva y por lo tanto tiene solución única.