MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 30, 2024

Outline

- Real Analysis Lecture 9
 - More on Open Sets
 - Closed Sets
 - Compactness

Outline

- Real Analysis Lecture 9
 - More on Open Sets
 - Closed Sets
 - Compactness

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$. Then for all $i, \vec{x} \in U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

This means $B(\vec{x}; r) \subseteq B(\vec{x}; r_i) \subseteq U_i$ for all i.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

This means $B(\vec{x}; r) \subseteq B(\vec{x}; r_i) \subseteq U_i$ for all i.

Therefore $B(\vec{x}; r) \subseteq \bigcap_{i=1}^n U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all $i, \vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

This means $B(\vec{x}; r) \subseteq B(\vec{x}; r_i) \subseteq U_i$ for all i.

Therefore $B(\vec{x}; r) \subseteq \bigcap_{i=1}^n U_i$.

Thus \vec{x} is an interior point of $\bigcap_{i=1}^n U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

This means $B(\vec{x}; r) \subseteq B(\vec{x}; r_i) \subseteq U_i$ for all i.

Therefore $B(\vec{x}; r) \subseteq \bigcap_{i=1}^n U_i$.

Thus \vec{x} is an interior point of $\bigcap_{i=1}^{n} U_i$.

Since \vec{x} is arbitrary, this proves that $\bigcap_{i=1}^{n} U_i$ is open.

Challenge

Problem

Show that the infinite intersection

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$$

is not open.

Let $U \subseteq \mathbb{R}$ be open.

Let $U \subseteq \mathbb{R}$ be open.

Definition

A **component interval** of *U* is an interval *I* with $I \subseteq U$ and with the property that if *J* is an interval and $I \subseteq J$, then $J \nsubseteq U$.

Let $U \subseteq \mathbb{R}$ be open.

Definition

A **component interval** of *U* is an interval *I* with $I \subseteq U$ and with the property that if *J* is an interval and $I \subseteq J$, then $J \nsubseteq U$.

• (0,1) is a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$

Let $U \subseteq \mathbb{R}$ be open.

Definition

A **component interval** of *U* is an interval *I* with $I \subseteq U$ and with the property that if *J* is an interval and $I \subseteq J$, then $J \nsubseteq U$.

- (0,1) is a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$
- ullet $(-\infty,0)$ is also a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$

Let $U \subseteq \mathbb{R}$ be open.

Definition

A **component interval** of *U* is an interval *I* with $I \subseteq U$ and with the property that if *J* is an interval and $I \subseteq J$, then $J \nsubseteq U$.

- (0,1) is a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$
- ullet $(-\infty,0)$ is also a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$
- we will show all open sets of ℝ are made of component intervals!

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Then $J := I_1 \cup I_2$ is an interval.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Then $J := I_1 \cup I_2$ is an interval.

Also $I_1 \subseteq U$ and $I_2 \subseteq U$, so $J \subseteq U$.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Then $J := I_1 \cup I_2$ is an interval.

Also $I_1 \subseteq U$ and $I_2 \subseteq U$, so $J \subseteq U$.

Since I_i is a component interval and $I_i \subseteq J \subseteq U$, we have $I_i = J$.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Then $J := I_1 \cup I_2$ is an interval.

Also $I_1 \subseteq U$ and $I_2 \subseteq U$, so $J \subseteq U$.

Since I_i is a component interval and $I_i \subseteq J \subseteq U$, we have $I_i = J$.

In particular $I_1 = J = I_2$.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Suppose that $x \in U$ and consider

$$A = \{a : (a, x) \subseteq S\}, \text{ and } B = \{b : (x, b) \subseteq S\}$$

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Suppose that $x \in U$ and consider

$$A = \{a : (a, x) \subseteq S\}, \text{ and } B = \{b : (x, b) \subseteq S\}$$

If *A* is not bounded below, let $a = -\infty$. Otherwise, let $a = \inf(A)$.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Suppose that $x \in U$ and consider

$$A = \{a : (a, x) \subseteq S\}, \text{ and } B = \{b : (x, b) \subseteq S\}$$

If *A* is not bounded below, let $a = -\infty$. Otherwise, let $a = \inf(A)$.

If *B* is not bounded above, let $b = \infty$. Otherwise, let $b = \sup(B)$.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Suppose that $x \in U$ and consider

$$A = \{a : (a, x) \subseteq S\}, \text{ and } B = \{b : (x, b) \subseteq S\}$$

If *A* is not bounded below, let $a = -\infty$. Otherwise, let $a = \inf(A)$.

If *B* is not bounded above, let $b = \infty$. Otherwise, let $b = \sup(B)$. Claim: (a, b) is a component interval of *U* containing *x*.

Challenge

Problem

Prove that (a, b) is a component interval of U.

Open subsets of $\mathbb R$

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Open subsets of $\mathbb R$

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

From the previous theorem, each $x \in U$ is contained in a unique component interval I_x of U.

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

From the previous theorem, each $x \in U$ is contained in a unique component interval I_x of U.

Therefore

$$U=\bigcup_{x\in U}I_x$$

is a union of open intervals!

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

From the previous theorem, each $x \in U$ is contained in a unique component interval I_x of U.

Therefore

$$U=\bigcup_{x\in U}I_x$$

is a union of open intervals!

Uh oh ... this isn't a countable union.

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

Instead, we consider rational points $U \cap \mathbb{Q}$.

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

Instead, we consider rational points $U \cap \mathbb{Q}$.

If
$$x \in U$$
, then $x \in I_x \subseteq U$.

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

Instead, we consider rational points $U \cap \mathbb{Q}$.

If $x \in U$, then $x \in I_x \subseteq U$.

Any interval contains a rational number $r \in I_x$.

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

Instead, we consider rational points $U \cap \mathbb{Q}$.

If $x \in U$, then $x \in I_x \subseteq U$.

Any interval contains a rational number $r \in I_x$.

Since different component intervals must be disjoint, $I_x = I_r$.

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

Instead, we consider rational points $U \cap \mathbb{Q}$.

If $x \in U$, then $x \in I_x \subseteq U$.

Any interval contains a rational number $r \in I_x$.

Since different component intervals must be disjoint, $I_x = I_r$.

Thus $x \in \bigcup_{r \in U \cap \mathbb{Q}} I_r \subseteq U$.

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.

Proof.

Instead, we consider rational points $U \cap \mathbb{Q}$.

If $x \in U$, then $x \in I_x \subseteq U$.

Any interval contains a rational number $r \in I_x$.

Since different component intervals must be disjoint, $I_x = I_r$.

Thus $x \in \bigcup_{r \in U \cap \mathbb{O}} I_r \subseteq U$.

Since x was arbitrary,

$$U=\bigcup_{r\in U\cap\mathbb{Q}}I_r$$

Outline

- Real Analysis Lecture 9
 - More on Open Sets
 - Closed Sets
 - Compactness

Closed sets

Definition

A set $A \subseteq \mathbb{R}^n$ is called **closed** if it is the complement $\mathbb{R}^n \backslash A$ of an open set.

- singleton sets!
- products of closed intervals

Problem

Prove that a singleton set

$$A = \{\vec{a}\}$$

in \mathbb{R}^n is closed.

Problem

Prove that a singleton set

$$A = \{\vec{a}\}$$

in \mathbb{R}^n is closed.

Solution

We must show $U = \mathbb{R}^n \setminus \{\vec{a}\}$ is open.

Problem

Prove that a singleton set

$$A = \{\vec{a}\}$$

in \mathbb{R}^n is closed.

Solution

We must show $U = \mathbb{R}^n \setminus \{\vec{a}\}$ is open.

Suppose $\vec{x} \in U$.

Problem

Prove that a singleton set

$$A = \{\vec{a}\}$$

in \mathbb{R}^n is closed.

Solution

We must show $U = \mathbb{R}^n \setminus \{\vec{a}\}$ is open.

Suppose $\vec{x} \in U$. We must show \vec{x} is an interior point of U.

Problem

Prove that a singleton set

$$A = \{\vec{a}\}$$

in \mathbb{R}^n is closed.

Solution

We must show $U = \mathbb{R}^n \setminus \{\vec{a}\}$ is open.

Suppose $\vec{x} \in U$. We must show \vec{x} is an interior point of U.

Take
$$r = |\vec{x} - \vec{a}|$$
.

Problem

Prove that a singleton set

$$A = \{\vec{a}\}$$

in \mathbb{R}^n is closed.

Solution

We must show $U = \mathbb{R}^n \setminus \{\vec{a}\}$ is open.

Suppose $\vec{x} \in U$. We must show \vec{x} is an interior point of U.

Take $r = |\vec{x} - \vec{a}|$. Then $B(\vec{x}; r)$ does not contain \vec{a} .

Problem

Prove that a singleton set

$$A = \{\vec{a}\}$$

in \mathbb{R}^n is closed.

Solution

We must show $U = \mathbb{R}^n \setminus \{\vec{a}\}$ is open.

Suppose $\vec{x} \in U$. We must show \vec{x} is an interior point of U.

Take $r = |\vec{x} - \vec{a}|$. Then $B(\vec{x}; r)$ does not contain \vec{a} .

Therefore $B(\vec{x}; r) \subseteq U$, so that \vec{x} is an interior point.

Problem

Prove that a singleton set

$$A = \{\vec{a}\}$$

in \mathbb{R}^n is closed.

Solution

We must show $U = \mathbb{R}^n \setminus \{\vec{a}\}$ is open.

Suppose $\vec{x} \in U$. We must show \vec{x} is an interior point of U.

Take $r = |\vec{x} - \vec{a}|$. Then $B(\vec{x}; r)$ does not contain \vec{a} .

Therefore $B(\vec{x}; r) \subseteq U$, so that \vec{x} is an interior point.

Since \vec{x} was arbitrary, this proves U is open.

Problem

Prove that the closed square

$$[a,b] \times [c,d] = \{(x,y) \in \mathbb{R}^2 : a \le x \le c, \ b \le y \le d\}$$

is a closed set.

Problem

Prove that the closed square

$$[a,b] \times [c,d] = \{(x,y) \in \mathbb{R}^2 : a \le x \le c, \ b \le y \le d\}$$

is a closed set.

Solution

 $\mathbb{R}^2 \setminus ([a,b] \times [c,d])$ is the same as

$$((-\infty, a) \times \mathbb{R}) \cup ((b, \infty) \times \mathbb{R}) \cup (\mathbb{R} \times (-\infty, c)) \cup (\mathbb{R} \times (d, \infty))$$

Problem

Prove that the closed square

$$[a,b] \times [c,d] = \{(x,y) \in \mathbb{R}^2 : a \le x \le c, b \le y \le d\}$$

is a closed set.

Solution

 $\mathbb{R}^2 \setminus ([a,b] \times [c,d])$ is the same as

$$((-\infty, a) \times \mathbb{R}) \cup ((b, \infty) \times \mathbb{R}) \cup (\mathbb{R} \times (-\infty, c)) \cup (\mathbb{R} \times (d, \infty))$$

Union of open sets is open!

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A. It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A. It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

Examples:

every point in A is adherent

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A. It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

- every point in A is adherent
- accumulation points are adherent points

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A. It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

- every point in A is adherent
- accumulation points are adherent points
- -1 is an accumulation point of (-1, 1).

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A. It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

- every point in A is adherent
- accumulation points are adherent points
- -1 is an accumulation point of (-1, 1).
- suprema and infima are accumulation points!

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A. It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

- every point in A is adherent
- accumulation points are adherent points
- \bullet -1 is an accumulation point of (-1, 1).
- suprema and infima are accumulation points!
- 0 is an accumulation point of $\{1/1, 1/2, 1/3, \dots\}$

Characterizing accumulation points

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Closure of a set

Definition

The **closure** of a set A is the set \overline{A} of all adherent points of A

Closure of a set

Definition

The **closure** of a set A is the set \overline{A} of all adherent points of A

Theorem (Apostol Theorem 3.18, 3.20, 3.22)

A set is closed if and only if it contains all of its adherent points (ie. $A = \overline{A}$), or equivalently if and only if A contains all of its accumulation points.

Outline

- Real Analysis Lecture 9
 - More on Open Sets
 - Closed Sets
 - Compactness

Intuition of compactness

We are moving toward a very important notion called **compactness**.

Intuition of compactness

We are moving toward a very important notion called **compactness**.

This important concept is captured in many different ways:

Intuition of compactness

We are moving toward a very important notion called **compactness**.

This important concept is captured in many different ways:

no "missing points" in the set

We are moving toward a very important notion called **compactness**.

- no "missing points" in the set
- sequences have convergent subsequences

We are moving toward a very important notion called **compactness**.

- no "missing points" in the set
- sequences have convergent subsequences
- Cauchy sequences converge

We are moving toward a very important notion called **compactness**.

- no "missing points" in the set
- sequences have convergent subsequences
- Cauchy sequences converge
- open covers have finite subcovers

We are moving toward a very important notion called **compactness**.

- no "missing points" in the set
- sequences have convergent subsequences
- Cauchy sequences converge
- open covers have finite subcovers
- in \mathbb{R}^n : compact = closed and bounded

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

A **subcover** is a family $\{U_j : j \in J\}$ with $J \subseteq I$ which is still covers A, ie. $A \subseteq \bigcup_{i \in J} U_i$.

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

A **subcover** is a family $\{U_j : j \in J\}$ with $J \subseteq I$ which is still covers A, ie. $A \subseteq \bigcup_{j \in J} U_j$.

Examples:

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

A **subcover** is a family $\{U_j : j \in J\}$ with $J \subseteq I$ which is still covers A, ie. $A \subseteq \bigcup_{i \in J} U_i$.

Examples:

ullet $\{\mathbb{R}\}$ is an open cover of the interval (0,1]

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

A **subcover** is a family $\{U_j : j \in J\}$ with $J \subseteq I$ which is still covers A, ie. $A \subseteq \bigcup_{i \in J} U_i$.

Examples:

- $\{\mathbb{R}\}$ is an open cover of the interval (0,1]
- $\{(\frac{1}{n}, \frac{n+1}{n}) : n \in \mathbb{Z}_+\}$ is an open cover of (0, 1]

Lindelöf Covering Theorem

Theorem

Let $A \subseteq \mathbb{R}^n$ be a set and suppose $\{U_i : i \in I\}$ is an open covering of A. Then there exists a countable subcover $\{U_i : j \in J\}$.

Lindelöf Covering Theorem

Theorem

Let $A \subseteq \mathbb{R}^n$ be a set and suppose $\{U_i : i \in I\}$ is an open covering of A. Then there exists a countable subcover $\{U_i : j \in J\}$.

Question

Can we do better than this?

Lindelöf Covering Theorem

Theorem

Let $A \subseteq \mathbb{R}^n$ be a set and suppose $\{U_i : i \in I\}$ is an open covering of A. Then there exists a countable subcover $\{U_i : j \in J\}$.

Question

Can we do better than this?

Definition

A set $A \subseteq \mathbb{R}^n$ is called **compact** if every open cover of A has a *finite* subcover.

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

We wish to prove the **Heine-Borel Theorem** that closed and bounded sets are compact.

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

We wish to prove the **Heine-Borel Theorem** that closed and bounded sets are compact.

We prove the Bolzano-Weierstrass Theorem

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

We wish to prove the **Heine-Borel Theorem** that closed and bounded sets are compact.

- We prove the Bolzano-Weierstrass Theorem
- Then use Bolzano-Weierstrass to prove the Cantor Intersection Theorem

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

We wish to prove the **Heine-Borel Theorem** that closed and bounded sets are compact.

- We prove the Bolzano-Weierstrass Theorem
- Then use Bolzano-Weierstrass to prove the Cantor Intersection Theorem
- We use the Cantor Intersection Theorem to prove the Heine-Borel Theorem

Bolzano-Weierstrass Theorem

Theorem (Bolzano-Weierstrass Theorem)

A bounded set $A \subseteq \mathbb{R}^n$ with infinitely many points will contain an accumulation point.