ST5201: Basic Statistical Theory Chapter 5: Limit Theorems

Choi, Yunjin stachoiy@nus.edu.sg

Department of Statistics and Applied Probability National University of Singapore (NUS)

19th September, 2017

Announcement

- Midterm on 3rd October (in class):
 - From lecture 1 to lecture 5.
 - One sheet of two-sided A4 allowed
 - \blacksquare A non-programmable calculator is allowed and might be necessary
- If you need a make-up exam:
 - official document needed
 - need to inform me by 27th of September; for those who do not notify by the date, a make-up exam will not be available

Outline

- Review
- Introduction
- Three Types of Convergence
- \blacksquare The Law of Large Numbers
- The Central Limit Theorem

Review

■ Covariance

■ Definition:

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

- Interpretation: positively correlated/negatively correlated/uncorrelated
- Remark: Independence ⇒ Uncorrelated; Uncorrelated ⇒ Independence
- Properties: Var(X) = Cov(X, X), $Cov(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j)$.
- Correlation coefficient
 - Definition: $Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$
 - Remark: $-1 \le Corr(X, Y) \le 1$.
 - Properties: Corr(a + bX, c + dY) = Corr(X, Y). It does not change under linear transformation for 1 r.v..

Review

- Conditional Expectation
 - Definition: $E[X|Y=y] = \sum_x x p_{X|Y}(x|y)$ and $E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$.
 - Interpretation: Note that X|Y=y is a new r.v., E(X|Y=y) is the expectation on this r.v.
- Law of Total Expectation
 - E[X|Y=y] assigns a number to each y. Therefore, E(X|Y) can be viewed as a function of Y, which is a new r.v..
 - $\blacksquare E[E(X|Y)] = E(X)$
 - Useful for problems with several cases.
- Moment Generating Function
 - Definition: $M_X(t) = E(e^{tX})$ is a function of t
 - Characterization of a r.v. (similar as CDF/PDF/PMF)
 - Calculate moments: $E[X^k] = \frac{d^k}{dt^k} M_X(t)|_{t=0}$
 - Property 1: $M_{\sum_{i=1}^n X_i}(t) = \prod_{i=1}^{n^{t}} M_{X_i}(t)$ for indept. r.v.'s $X_1, X_2, ..., X_t$
 - Property 2: $M_{aX+b}(t) = e^{at} M_X(bt)$.
 - MGF for common distributions

Introduction

Learning Outcomes

 \blacksquare Questions to Address: What will happen when we repeat the experiment many times? \star What the relationship between parameter and stat. \star How to approximate the probability for i.i.d samples

Concept & Terminology

- i.i.d. ★ Convergence in probability ★ Convergence in distribution ★ almost sure convergence
- Weak Law of Large Numbers * Strong Law of Large Numbers * Monte Carlo Method
- Central Limit Theorem * Normal Approximation

Mandatory Reading

Textbook: Section 5.1 – Section 5.3

Motivation

Recall

- Mean: long-run average
- Mode: If we repeated the experiment many times independently, the most frequently outcome

Questions:

- 1. Why do we care about long-run results?
 - 2. What results do we have?

Motivation - cont'd

In many fields, people care about many experiments instead of 1

- In a casino, there are hundreds of players playing with the slot machine
- For a company, there might be tens of thousands of customers in one day
- In a hospital, there are hundreds of patients in one day
- In a survey, there might be thousands of participants
- In our class, we have 68 students working on assessments/tests
- **...**

Motivation - cont'd

Results are based on all these experiments:

- In a casino with hundreds of players playing, the manager cares about the sum of all these experiments
- For a company with tens of thousands of customers, the manager cares about the cost of all these customers
- In a hospital with hundreds of patients, the manager cares about the rate of recovery
- In a survey with thousands of participants, the researcher is interested in statistics from all these participants
- In my class, I care about the average performance of students

Motivation - cont'd

■ It is impossible to find the distribution for each subject; a simplified and reasonable assumption that the outcomes of these experiments have the same distribution, and independent

Definition

For r.v.'s X_1, X_2, \dots, X_n , if they follow the same distribution and independently distributed, then we say they are independent and identically distributed (i.i.d)

■ If the r.v.'s are i.i.d., intuitively,

Statistics \Leftrightarrow Parameter/Distribution

- the distribution of one r.v. can be estimated by the empirical distribution of all these r.v.'s
- some statistics (e.g., average) can be found according to the distribution of one r.v.

A Naive but Non-trivial Example

- Roll a fair six-sided die $(\Omega = \{1, 2, 3, 4, 5, 6\})$
- Expectation: E(X) = (1 + 2 + 3 + 4 + 5 + 6)/6
- Average when we have 1, 2, 3, 4, and even more samples: $\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\}=X_{1}, \frac{X_{1}+X_{2}}{2}, \frac{X_{1}+X_{2}+X_{3}}{3}, \frac{X_{1}+X_{2}+X_{3}+X_{4}}{4}, \cdots\right\}$

A Naive but Non-trivial Example - cont'd

- Intuitively, Gerolamo Cardano (1501–1576) stated that the accuracy of empirical statistics $\left(\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\}\right)$ tends to improve with more trials $\left(\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\}\right) \to E(X) = 3.5$, without leaving a proof
- Bernoulli proved the a form of Law of Large Numbers (LLN) and published on *Ars Conjectandi* in 1713; but the proof took him 20 years!
- Random trials are later named as Bernoulli trials
- We will prove it using Chebyshev's inequality (proved in 1867)
- lacksquare Formally introduce LLN and convergence in probability

Different Types of Convergence

How to measure accuracy of empirical statistics?

■ Define
$$Y_1 = X_1$$
, $Y_2 = \frac{X_1 + X_2}{2}$, $Y_3 = \frac{X_1 + X_2 + X_3}{3}$, ..., $X_n = \frac{\sum_{i=1}^n X_i}{n}$, ...

- $\{Y_n\}$: a sequence of r.v.'s, with the same sample space Ω
- Interest in the limiting behavior of $\{Y_n\}$; especially, hope that $\{Y_n\} \to E(X)$.

What does the convergence of r.v.'s $(Y_n \to E(X), n \to \infty)$ mean?

- Converge in distribution
- Converge in probability
- Almost sure convergence

Convergence in Distribution

Definition: Convergence in Distribution

Let $\{X_n\} \equiv X_1, \dots, X_i, \dots$, be a sequence of r.v.'s with CDF F_1, \dots, F_i, \dots , and let X be a r.v. with CDF F. We say that X_n converges in distribution to a r.v. X (i.e., $X_n \stackrel{d}{\to} X$) if

$$\lim_{n\to\infty} F_n(x) = F(x)$$

at every point at which F is cont.

- \blacksquare $\{X_n\}$ and X can be dependent or independent
- Convergence:
 - \blacksquare If X is discrete, the convergence stands at points F does not jump
 - \blacksquare If X is cont., the convergence stands at every point
- Interpretation: for any constant a, b,

$$P(X_n \le b) \to P(X \le b), P(X_n > a) \to P(X > a),$$

 $P(a < X_n \le b) \to P(a < X \le b)$

Example: Convergence in Distribution

■ $X_n \sim Bin(n, 2/n)$, for $n = 3, 4, \dots, X \sim Pois(2)$ (Poisson approximation for binomial r.v.'s)

 $\blacksquare Y_n \sim Geo(1/n)$, for $n = 1, 2, \dots, X_n = Y_n/n, X \sim Exp(1)$

Convergence in Probability

Definition: Convergence in Probability

For a sequence of r.v.'s $\{X_n\} = X_1, X_2, \cdots, X_i, \cdots$, we say they converge in probability towards the r.v. X (i.e., $X_n \stackrel{P}{\to} X$) if for any $\epsilon > 0$

$$P(|X_n - X| \ge \epsilon) \to 0 \text{ as } n \to \infty$$

or, equivalently,

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0$$

- The target X has the same sample space with all the X_i 's
- \blacksquare $\{X_n\}$ are usually dependent
- Practically, find the sequence of events $A_n = \{\omega \in \Omega, |X_n X| \ge \epsilon\}$ by obtaining $|X_n X|$ as a new r.v., and check if $P(A_n) \to 0$ when $n \to \infty$
- Interpretation: for any ϵ , the event that $|X X_n| \ge \epsilon$ has probability smaller than δ when n is large enough. It concerns more about the probability measure and r.v., instead of the CDF only.

Example: Convergence in Probability

■ Let X be a r.v. with prob 1 at 1, and $X_n \sim N(1, \frac{1}{n^2})$.

$$P(|X - X_n| \ge \epsilon) = P(|N(0, \frac{1}{n^2})| \ge \epsilon) \le \frac{1/n^2}{\epsilon^2} = \frac{1}{n^2 \epsilon^2} \le \delta, \quad n \ge \frac{1}{\epsilon \sqrt{\delta}}.$$

So, $X_n \stackrel{P}{\to} X$.

Remark: For any constant a, we can define a r.v. X with prob 1 at a. So the example here can also be written as

$$X_n \stackrel{P}{\to} 1$$
,

where 1 denotes the r.v. with probability mass 1 at the point 1.

■ Let $X_n \sim Ber(0.5)$, and $X \sim Ber(0.5)$, X and X_n are independent. Obviously, $X_n \stackrel{d}{\to} X$ as the CDF's for X_n and X are the same. However, X_n does NOT converge to X in probability. Note for any n,

$$P(|X_n - X| \ge 1) = P(\{X_n = 1, X = 0\}) \cup \{X_n = 0, X = 1\})$$

$$= P(\{X_n = 1, X = 0\}) + P(\{X_n = 0, X = 1\})$$

$$= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = 1/2 \rightarrow 0.$$

Almost Sure Convergence

Definition: Almost Sure Convergence

For a sequence of r.v.'s $\{X_n\} = X_1, X_2, \dots, X_i, \dots$ and X with the same sample space Ω , we say X_n almost surely converge to X

$$(i.e., X_n \stackrel{a.s.}{\rightarrow} X)$$
 if

$$P(\lim_{n\to\infty} X_n(\omega) = X(\omega)) = 1$$

- \blacksquare $\{X_n\}$ and X are usually dependent
- Practically, to show the a.s. convergence,
 - For each outcome ω , find the sequence $X_1(\omega), X_2(\omega), X_3(\omega), \cdots$ (sequence of real numbers) and the real number $X(\omega)$. Figure out whether $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ is true or not
 - Let the event $A = \{\omega \in \Omega, \lim_{n \to \infty} X_n(\omega) = X(\omega)\}$
 - Check if P(A) = 1.
- Interpretation: for almost all the outcomes ω , when n is large enough, $|X_n(\omega) X(\omega)| \le \epsilon$ for any $\epsilon > 0$

Example: Almost Sure Convergence

■ Let the sample space $\Omega = [0, 1]$, with a probability measure that is uniform on this space, i.e. P([a, b]) = b - a for any $0 \le a \le b \le 1$. Let

$$X_n(\omega) = \begin{cases} 1, & 0 \le \omega < \frac{n+1}{2n} \\ 0, & \text{otherwise} \end{cases}$$
, and $X(\omega) = \begin{cases} 1, & 0 \le \omega < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$

$$X_n \sim Ber(\frac{n+1}{2n}) : [0,1] \to \{0,1\}; \ X \sim Ber(1/2) : [0,1] \to \{0,1\}.$$

For each $\omega \in [0, 1]$, if $\omega \in [0, 1/2)$, then $X_n(\omega) = 1 = X(\omega)$. If $\omega \in (1/2, 1]$, then $X_n(\omega) = 0 = X(\omega)$ when $\frac{n+1}{2n} < \omega$, which is equivalent with $n > 1/(2\omega - 1)$. When $\omega = 1/2$, then $X_n(\omega) = 1 \rightarrow X(\omega) = 0$. So $A = [0, 1/2) \cup (1/2, 1]$

Relationship Between 3 Types of Convergence

$$X_n \stackrel{a.s.}{\sim} X \Rightarrow X_n \stackrel{P}{\sim} X \Rightarrow X_n \stackrel{d}{\sim} X$$

- The requirement is stronger and stronger
- Can be proved by the definition

$$X_n \stackrel{d}{\sim} X \not\Rightarrow X_n \stackrel{P}{\sim} X \not\Rightarrow X_n \stackrel{a.s.}{\sim} X$$

- $X_n \stackrel{d}{\sim} X \Rightarrow X_n \stackrel{P}{\sim} X$: Example 2 on Page 15
- $X_n \stackrel{P}{\sim} X \Rightarrow X_n \stackrel{a.s.}{\sim} X$: External reading: http://math.stackexchange.com/questions/149775/ convergence-of-random-variables-in-probability-but-not-almost

Properties of Convergence

Let $\{X_n\}$, X, $\{Y_n\}$ and Y be r.v.'s,

- If $X_n \xrightarrow{P} \mu$ and $g(\cdot)$ is a continuous function, then $g(X_n) \xrightarrow{P} g(\mu)$
- If $X_n \stackrel{d}{\to} \mu$ and $g(\cdot)$ is a continuous function, then $g(X_n) \stackrel{d}{\to} g(\mu)$
- If $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$, then $X_n + Y_n \stackrel{P}{\to} X + Y$
- If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n Y_n \xrightarrow{P} XY$
- No such properties for a.s. convergence

The Weak Law of Large Numbers (WLLN)

WLLN (a simple one)

Let $\{X_n\} \equiv X_1, \dots, X_i, \dots$, be a sequence of independent r.v.'s with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. let $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$. Then,

$$\bar{X}_n \stackrel{P}{\to} \mu,$$

where μ denotes the r.v. with probability 1 at the point μ .

- \blacksquare $\{\bar{X}_n\}$ forms a sequence of dependent r.v.'s
- Obtained by applying Chebyshev's inequality (see next slide)
- X_i 's are not required to be i.i.d in WLLN but should be independent and sharing the same 1st moments and 2nd moments
- According to properties for convergence in probability, for any cont. function $g(\cdot)$,

$$g(\bar{X}_n) = g\left(\frac{\sum_{i=1}^n X_i}{n}\right) \xrightarrow{P} g(\mu)$$

Sketch of Proof of WLLN

To prove the convergence in probability, we need that, for any $\epsilon > 0$,

$$P(|\bar{X}_n - \mu| \ge \epsilon) \to 0.$$

To give an upper bound for the probability, recall Chebyshev's inequality:

$$P(|\bar{X}_n - E(\bar{X}_n)| \ge \epsilon) \le \frac{\operatorname{Var}(X_n)}{\epsilon^2}.$$

So we need $E(\bar{X}_n)$ and $Var(\bar{X}_n)$.

Because X_i 's are independent, $E(\bar{X}_n) = \frac{1}{n} \sum_{i=1}^n E(X_i) = \mu$ and $Var(\bar{X}_n) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{\sigma^2}{n}$.

Introduce $E(\bar{X}_n) = \mu$ and $Var(\bar{X}_n) = \frac{\sigma^2}{n}$ in, then

$$P(|\bar{X}_n - \mu| \ge \epsilon) \le \frac{\operatorname{Var}(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0, \text{ as } n \to \infty$$

Strong Law of Large Numbers (SLLN)

SLLN

Let $\{X_n\} \equiv X_1, \dots, X_i, \dots$, be a sequence of independent r.v.'s with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. let $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$. Then, for any $\epsilon > 0$,

$$P(\lim_{n\to\infty}\bar{X}_n = \mu) = 1,$$

or, equivalently,

$$\bar{X}_n \stackrel{a.s.}{\rightarrow} \mu$$

- \blacksquare $\{\bar{X}_n\}$ forms a sequence of dependent r.v.'s
- X_i 's are not required to be i.i.d in SLLN but should be independent and sharing the same 1st moments and 2nd moments
- Different from WLLN, for a cont. function $g(\cdot)$, we cannot claim that

$$g(\bar{X}_n) \stackrel{a.s.}{\to} g(\mu)$$

WLLN VS SLLN

	WLLN	SLLN
Conditions	Independent	Independent
	Share μ and σ^2	Share μ and σ^2
Results	$\bar{X}_n \stackrel{P}{\to} \mu$	$\bar{X}_n \stackrel{a.s.}{\to} \mu$
	\$	\$
	$P(\bar{X}_n - \mu > \epsilon) \to 0$	$P(\lim_{n\to\infty}\bar{X}_n=\mu)=1$
Property	cont. $g(\cdot), g(\bar{X}_n) \stackrel{P}{\to} g(\mu)$	cont. $g(\cdot), g(\bar{X}_n) \stackrel{a.s.}{\to} g(\mu)$
Interpretation	For any $\epsilon > 0$, $\delta \geq 0$	For any $\epsilon > 0$, $\delta \geq 0$
	$P(\bar{X}_n - \mu \le \epsilon) \ge 1 - \delta$	$ P(\bigcup_{n>N}^{\infty} \bar{X}_n - \mu \le \epsilon) \ge 1 - \delta $
	for n large enough	$\overline{\text{for }}N \text{ large enough}$

- WLLN shows that each single r.v. X_n is very likely to be near to μ when with $n \ge N$; SLLN further shows that the probability is small even when we consider the sequence $\{X_n\}_n^N$ when N is large enough
- SLLN has the same conditions with WLLN, but stronger results. You could always use SLLN only
- WLLN is important for historical reasons and future studies in measure theory, not in our class

Example of LLN: Calculate Expectation

Recall: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$, where f(x) is pdf of X.

- Generate *n* trials with pdf f(x), and calculate the \bar{X}_n . When *n* is very large, $E(X) \approx \bar{X}_n$
- Example: Beta distribution with parameters a = 2, b = 5.

$$E(X) = \int_0^1 x \times \frac{\Gamma(7)}{\Gamma(2)\Gamma(5)} x^{2-1} (1-x)^{5-1} dx. \qquad \text{Hard to Calculate!}$$

■ What's more, $g(E(X)) \approx g(\bar{X}_n)$, e.g., $[E(X)]^2 \approx \bar{X}_n^2$

Example of LLN: Calculate Expectation

- LLN can also be used to find E(g(X)), where $g(\cdot)$ is a function
- Generate n i.i.d. trials $\{X_i\}_{i=1}^n$ with pdf f(x), and let $Y_i = g(X_i)$. When n is very large, $E(g(X)) \approx \bar{Y}_n$
- Example: Beta distribution with parameters a = 2, b = 5.

Let
$$Y = X^2$$

$$Z = 2X + 1$$

$$W = e^X$$

Examples of Using LLN: Integration

■ Suppose we wish to calculate

$$\int_0^1 g(x)dx$$

where the integration is not easy to compute.

■ Let $X \sim Unif(0,1)$, then the pdf of X is 1 on [0,1]. For function $g(\cdot)$,

$$E[g(X)] = \int_0^1 g(x) \cdot 1 \, dx = \int_0^1 g(x) \, dx$$

Procedure (apply the method in previous slide for mean):

- Generate n i.i.d trials $X_i \sim Unif(0,1)$, and calculate $g(X_i)$ correspondingly
- Compute $E[g(X)] \approx \overline{g(X_i)} = \sum_{i=1}^n g(X_i)/n$, and so $\int_0^1 g(x) dx = E[g(X)]$
- This method is called Monte Carlo method

Integral of $\int_0^1 \sqrt{x + \sqrt{x}} dx$

Points Generated n=10The average of $\{f[x_i]\}_{i=1}^{10}$ is $\hat{f}=\frac{1}{10}\sum_{i=1}^{10}f[x_i]=1.06496$

Approximation for the integral $\int_{0}^{1} (\sqrt{\sqrt{x} + x}) dx \ll \frac{1}{n} \sum_{i=1}^{n} f[x_i]$

$$\begin{array}{ccc}
& & & & & \\
& & & & \\
\downarrow^{1}(\sqrt{\sqrt{x} + x}) & & & & & \\
\downarrow^{1}(\sqrt{\sqrt{x} + x}) & & & & & \\
\downarrow^{1}(\sqrt{x} + x) & & \\
\downarrow^{1}(\sqrt{x} + x) & & \\
\downarrow^{1}(\sqrt{x} + x) & & & \\
\downarrow^{1}(\sqrt{$$

Actual |Area-approx| # 0.0196588

Points Generated n = 100The average of $\{f[x_i]\}_{i=1}^{100}$ is

$$\hat{f} = \frac{1}{100} \sum_{i=1}^{100} f[x_i] = 1.02576$$
Approximation for the integral

approximation for the integral
$$\int_{0}^{1} (\sqrt{\sqrt{x} + x}) dx \approx \frac{1}{n} \sum_{i=1}^{n} f[x_i]$$

$$\int_{0}^{1} (\sqrt{\sqrt{x} + x}) dx \approx \frac{1}{160} \sum_{i=1}^{160} f[x_i]$$

$$\int_{1}^{1} (\sqrt{\sqrt{x} + x}) dx \approx f$$

$$\int\limits_0^1 (\sqrt{\sqrt{x} + x}) \, dx \quad \approx \quad 1.02576$$

Actual |Area-approx| * 0.019539

Points Generated n = 1000 The average of $\{f[x_i]\}_{i=1}^{1000}$ is

$$\hat{f} = \frac{1}{1000} \sum_{i=1}^{1000} f[x_i] = 1.05106$$
Approximation for the integral

$$\int_{0}^{1} (\sqrt{\sqrt{x} + x}) dx \approx \frac{1}{n} \sum_{i=1}^{n} f[x_i]$$

$$\int\limits_0^1 (\sqrt{\sqrt{x} + x} \;) \, dx \quad \text{w} \quad \frac{1}{1000} \sum_{i=1}^{1000} f \left[x_i \; \right]$$

$$\int_{1}^{1} (\sqrt{\sqrt{x} + x}) dx = f$$

$$\int_{0}^{1} (\sqrt{\sqrt{x} + x}) dx = 1.05106$$

Actual |Area-approx| = 0.00575848

Examples of Using LLN - cont'd

 \blacksquare An extension to integration over interval (a, b)

$$\int_{a}^{b} g(x)dx$$

■ Let $X \sim Unif(a,b)$, then the pdf of X is $\frac{1}{b-a}$ on [a,b]. For function $g(\cdot)$,

$$E[g(X)] = \int_{a}^{b} g(x) \cdot \frac{1}{b-a} \, dx = \frac{1}{b-a} \int_{a}^{b} g(x) \, dx$$

■ Hence, $\int_a^b g(x) dx = (b-a)E[g(X)]$

Procedure:

- Generate n i.i.d trials $X_i \overset{i.i.d.}{\sim} Unif(a,b)$ $(1 \leq i \leq n)$ and calculate $g(X_i)$ correspondingly
- Compute the average $\frac{1}{n} \sum_{i=1}^{n} g(X_i)$, and $\int_a^b g(x) dx \approx \frac{(b-a)}{n} \sum_{i=1}^{n} g(X_i)$

Integral of $\int_{-2}^{3} \sin(x)/\sqrt{x^2+6}dx$

Points Generated n = 10 The average of $\{g(x_i)\}_{i=1}^{10}$ is $\hat{g} = \frac{1}{10} \sum_{i=1}^{10} g(x_i) = 0.09500501$ Approximation for the Integral:

$$\int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^{2} + 6}} dx \approx (3 - (-2)) \cdot \frac{1}{n} \sum_{i=1}^{n} g(x_{i})$$

$$\int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^{2} + 6}} dx \approx (3 - (-2)) \cdot \frac{1}{10} \sum_{i=1}^{n} g(x_{i})$$

$$\int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^{2} + 6}} dx \approx 5 \cdot \frac{3}{9}$$

The average of $\{g(x_i)\}_{i=1}^{100}$ is $\hat{g} = \frac{1}{100} \sum_{i=1}^{100} g(x_i) = 0.04916243$ Approximation for the Integral: $\int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^2 + 6}} dx \approx (3 - (-2)) * \frac{1}{n} \sum_{i=1}^{n} g(x_i)$ $\int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^2 + 6}} dx \approx (3 - (-2)) * \frac{1}{100} \sum_{i=1}^{100} g(x_i)$ $\int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^2 + 6}} dx \approx 5 * \hat{g}$ $\int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^2 + 6}} dx \approx 5 * 0.04916 = 0.24581$

Actual |Area - approx| ≈ 0.0790

Points Generated n = 100

The average of $\{g(x_l)\}_{l=1}^{1000}$ is $\hat{g} = \frac{1}{1000} \min_{l=10}^{1000} g(x_l) = 0.03862086$ Approximation for the Integral: $\int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^2 + 6}} dx \approx \left(3 - (-2)\right) * \frac{1}{n} \sum_{i=1}^{n} g(x_i) \int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^2 + 6}} dx \approx \left(3 - (-2)\right) * \frac{1}{1000} \sum_{l=1}^{1000} g(x_l) \int_{-2}^{3} \frac{\sin(x)}{\sqrt{x^2 + 6}} dx \approx 5 * \hat{g} \int_{-2\sqrt{x^2 + 6}}^{3} \frac{\sin(x)}{\sqrt{x^2 + 6}} dx \approx 5 * 0.03862 = 0.19310$ Actual |Area -approx) ≈ 0.0263

Actual |Area – approx| ≈ 0.3083

Examples of using LLN - cont'd

■ Further extension to double integration over interval $(a, b) \times (c, d)$

$$I(g) = \int_{a}^{b} \left(\int_{c}^{d} g(x, y) dy \right) dx$$

■ The products of (d-c), (b-a), and the expectation of g(X,Y) where $X \sim Unif(a,b)$, and $Y \sim Unif(c,d)$.

$$(d-c)(b-a)E(g(X,Y)) = (d-c)(b-a)\int_a^b \int_c^d g(x,y) \cdot \frac{1}{b-a} \cdot \frac{1}{d-c} dy dx$$
$$= \int_a^b \int_c^d g(x,y) dy dx$$

Procedure:

- Generate i.i.d. trials (X_i, Y_i) $(1 \le i \le n)$ in the rectangle $(a, b) \times (c, d)$ and calculate $g(X_i, Y_i)$ correspondingly
- Compute the mean $\frac{1}{n} \sum_{i=1}^{n} g(X_i, Y_i)$, and $\hat{I}(g) \approx \frac{(b-a)*(d-c)}{n} \sum_{i=1}^{n} g(X_i, Y_i)$ (area (b-a) is replaced by volume (b-a)*(d-c))

Integral of $\int_0^{5/4} \left(\int_0^{5/4} (4 - x^2 - y^2) dy \right) dx$

Points Generated n = 100The average of $\{f(x_i)\}_{i=1}^{100}$ is

 $\hat{\mathbf{f}} = \frac{1}{100} \sum_{i=1}^{100} \mathbf{f}[\mathbf{x}_i] = 2.93043$ Approximation for the integral

$$\begin{split} & \underbrace{\int\limits_{1}^{1} \left(\int\limits_{1}^{1} (4-x^{4}-y^{4}) dy\right) dx}_{1} \quad \text{s} \quad (b-a) * (d-c) * \left(\frac{1}{n} \sum_{i=1}^{n} f\left[x_{i}, y_{i}\right]\right)}_{1} \\ & \underbrace{\int\limits_{1}^{1} \left(\int\limits_{1}^{1} (4-x^{4}-y^{4}) dy\right) dx}_{0} \quad \text{s} \quad (b-a) * (d-c) + \underbrace{1 \lim\limits_{n \to \infty} \int\limits_{1}^{1} f\left[x_{i}\right]}_{1} \\ \end{split}$$

 $\frac{1}{t} \left[\int_{t}^{t} (4 - x^{t} - y^{t}) dy \right] dx \quad \text{s} \quad (b-a) \times (d-c) \times \int_{t}^{a} \frac{1}{t} \left[\int_{t}^{t} (4 - x^{t} - y^{t}) dy \right] dx \quad \text{s} \quad \left(\frac{25}{-1} \right) + (2,93043)$

 $\int\limits_{0}^{\frac{1}{2}} (\int\limits_{0}^{\frac{1}{2}} (4-x^{2}-y^{2}) dy) dx \quad * \quad 4.57879$

The 'error estimate' = 0.105135 Actual |Volume-approx| = 0.0436045

Points Generated n = 1000 The average of $\{f[x_i]^{1600}\}$ is

 $\hat{\mathbf{f}} = \frac{1}{1000} \sum_{i=1}^{1800} \mathbf{f}[\mathbf{x}_i] = 2.93203$ Approximation for the integral

$$\int\limits_{0}^{\frac{t}{2}}(\int\limits_{1}^{t}(4-x^{t}-\gamma^{t})d\gamma)dx \quad \text{s} \quad (b-a)*(d-c)*(\frac{1}{n}\sum_{i=1}^{n}\ f(x_{i},\gamma_{i}))$$

 $\int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{\frac{\pi}{2}} (4 - x^{2} - y^{2}) dy \right) dx = 4.58129$

The 'error estimate' = 0.0330176 Actual | Yolume-approx| = 0.0411014

Points Generated n = 10000The average of $\{f[x_i]^{1000}\}$ is

 $\hat{f} = \frac{1}{10000} \sum_{i=1}^{10000} f(x_i) = 2.95871$ Approximation for the integral

 $\int\limits_0^{\frac{\pi}{2}} (\int\limits_1^{\frac{\pi}{2}} (4-x^2-y^2) dy) dx \quad * \quad (b-a) * (d-c) * (\frac{1}{n} \sum_{i=1}^n f_i[x_i,y_i])$

 $\int_{1}^{\frac{1}{4}} \int_{1}^{\frac{1}{4}} (4 - x^{2} - y^{2}) dy dx = o \cdot \left(\frac{25}{16}\right) \cdot (2.95871)$

 $\int\limits_{t}^{\frac{t}{2}} (\int\limits_{t}^{\frac{t}{2}} (4-x^{2}-y^{2}) dy) dx \quad * \quad 4.62298$

The 'error estimate' = 0.0103204 Actual |Volume-approx| = 0.000585008

Motivation for Central Limit Theorem (CLT)

Suppose that a fair coin is tossed 100 times. What is the probability that the total number of heads is no smaller than 60?

Let X be the total number of heads, then $X \sim Bin(100, 1/2)$. We are interested in $P(X \ge 60)$

- Calculate directly means calculating 40 probs $(P(X = i), i = 60, 61, \cdots)$ and take the summation. COMPLICATED.
- Poisson approximation cannot be applied as np = 100(1/2) = 50 is too large.
- X can be seen as the summation of 100 Bernoulli trials with p = 1/2, and limit theorems can be applied.
 - With LLN, we only know $X/100 \stackrel{P}{\rightarrow} 1/2$, CANNOT get $P(X \ge 60)$
 - New Limit Theorem is required to describe the behaviour of X more accurately

Central Limit Theorem (CLT)

CLT

Let $\{X_n\} = X_1, X_2, \cdots$ be a sequence of i.i.d r.v.'s with mean E(X), variance Var(X) and moment-generating function M defined in a neighbourhood of zero. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then

$$\frac{\bar{X}_n - E(X)}{\mathrm{SD}(X)/\sqrt{n}} \stackrel{d}{\to} Z,$$

where $Z \sim N(0,1)$

- It means that $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}}$ converge to a standard normal r.v. as long as the mean, variance, and moment-generating function exist, no matter what the distribution for X_i is.
- The convergence is converge in distribution, so that we can apply it for $P(\bar{X}_n \geq c)$ (let $\mu = E(X)$, $\sigma = \mathrm{SD}(X)$).
 - $P(\bar{X}_n \ge c) = P(\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \ge \frac{c \mu}{\sigma/\sqrt{n}})$
 - As $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} Z$, $P(\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \ge \frac{c \mu}{\sigma/\sqrt{n}}) \to P(Z \ge \frac{c \mu}{\sigma/\sqrt{n}}) = 1 \Phi(\frac{c \mu}{\sigma/\sqrt{n}})$
 - Check z-table for $\Phi(\frac{c-\mu}{\sigma/\sqrt{n}})$

Comments on CLT

CLT is the most important theorem in statistics

- CLT means that, the sample mean will be approximately normally distributed for large sample sizes, *regardless* of the distribution of the samples
- Many statistics (say, \bar{X}_n , \bar{X}^2_n) have distributions that are approximately normal, even the population distribution is not normal \Leftarrow The dist. of statistics can be approximated
- Statistical inference can be derived based on normality, provided the sample size is large
- In practice, it gives a very rough guideline to approximate \bar{X}_n when n is large (a few hundreds or even more)
- However, the convergence is the weakest convergence, converge in distribution. With the result, for statistics (e.g., \bar{X}_n), we can only calculate

$$P(\bar{X}_n \ge a), \quad P(\bar{X}_n \le a), \quad P(a \le \bar{X}_n \le b), \dots$$

Comparison Between LLN and CLT

	LLN	CLT
Conditions	Independent	Independent & identically dist.
	Share μ and σ^2	μ , σ^2 , and mgf exist
Results	Focus on \bar{X}_n	Focus on $\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}$
	$\bar{X}_n \stackrel{P/a.s.}{\longrightarrow} \mu$	$\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{d} Z$
Convergence	In probability/a.s.	In distribution
Interpretation	\bar{X}_n converges to μ	The rate that \bar{X}_n converges
		to μ
Usage	Monte Carlo Method	Statistical Inference

- LLN and CLT are not contradictory. LLN says $\bar{X}_n \to E(X) = \mu$. CLT evaluates the enlarged difference $(\bar{X}_n E(X)) \times \sqrt{n}/\mathrm{SD}(X)$, which is a more detailed description
- Compare to real numbers, LLN means that $\frac{2\sqrt{n}+1}{\sqrt{n}} \to 2$, and CLT means that $\sqrt{n}(\frac{2\sqrt{n}+1}{\sqrt{n}}-2) \to 1$.

CLT - Illustration

- Let $X_i \sim Ber(p)$, $i = 1, 2, \cdots$ with mean E(X) = p and $\sigma = \sqrt{p(1-p)}$, then $n\bar{X}_n \sim Bin(n,p)$, where p = 1/3.
- The PMF for $Z_i = \frac{\bar{X}_{n-p}}{\sqrt{n(1-p)}/\sqrt{n}} = \frac{n\bar{X}_{n-np}}{\sqrt{nn(1-p)}}$. Figures are for Z_n when n = 1, 2, 3, 30.
- When n = 30, Z_{30} is very close to normal.

$$Z_1 = \frac{X_1 - p}{\sqrt{p(1-p)}}$$

$$Z_2 = \frac{X_1 + X_2 - 2p}{\sqrt{2p(1-p)}}$$

$$Z_2 = \frac{X_1 + X_2 - 2p}{\sqrt{2p(1-p)}}$$

$$Z_{30} = \frac{\sum_{i=1}^{30} X_i - 30p}{\sqrt{30p(1-p)}}$$

CLT - Illustration, II

- Let $X_i \sim Unif(0,1)$, $i = 1, 2, \cdots$ with mean E(X) = 1/2 and $\sigma = \sqrt{1/12}$.
- The PMF for $Z_i = \frac{X_n 1/2}{\sqrt{1/12}/\sqrt{n}} = \frac{nX_n n/2}{\sqrt{n/12}}$. Figures are for Z_n when n = 1, 2, 3, 30.
- When n = 30, Z_{30} is very close to normal.

$$Z_1 = \frac{X_1 - \frac{1}{2}}{\sqrt{\frac{1}{12}}}$$

$$Z_1 = \frac{X_1 - \frac{1}{2}}{\sqrt{\frac{1}{12}}}$$
 PDF of Z_1 $Z_3 = \frac{X_1 + X_2 + X_3 - \frac{2}{3}}{\sqrt{\frac{3}{12}}}$ PDF of Z_3

$$Z_2 = \frac{X_1 + X_2 - 1}{\sqrt{\frac{2}{12}}}$$

$$Z_2 = \frac{X_1 + X_2 - 1}{\sqrt{\frac{2}{12}}} \qquad \qquad \text{PDF of } Z_2 \\ \qquad \qquad \qquad Z_{30} = \frac{\sum\limits_{i=1}^{30} X_i - \frac{30}{2}}{\sqrt{\frac{30}{12}}} \qquad \qquad \text{PDF of } Z_{30}$$

PDF of
$$Z_{30}$$

CLT - Illustration, III

- draw samples from an "unknown" distribution, but clearly skewed to the right (A)
- histogram of sample mean of different sizes are illustrated in B, C and D

CLT Example I

Suppose that a fair coin is tossed 100 times. What is the probability that the total number of heads is no smaller than 60?

Let X_i be 1 if a head is obtained at the *i*th roll and 0 otherwise $(1 \le i \le 100)$. The coin is fair, so $X_i \sim Ber(1/2)$, $E(X_i) = 1/2$ and Var(X) = 1/4. We need to find

$$P(S_{100} \ge 60) = P(\frac{S_{100}}{100} \ge \frac{60}{100}) = P(\bar{X}_{100} \ge \frac{60}{100})$$

where $S_{100} = \sum_{i=1}^{100} X_i$ and $\bar{X}_{100} = \frac{S_{100}}{100}$. By CLT, $\frac{\bar{X}_{100} - 1/2}{\sqrt{1/4}/\sqrt{100}} \stackrel{approx}{\sim} N(0, 1)$

$$P(\frac{\bar{X}_{100} - 1/2}{\sqrt{\frac{1}{4*100}}} \ge \frac{60/100 - 1/2}{\sqrt{\frac{1}{4*100}}})$$

$$= P(Z \ge 2) = 1 - P(Z \le 2) = 0.0228.$$

CLT Example II

If a fair die is rolled 30 times, find the probability that the sum obtained is between 100 and 110?

Let X_i be the number obtained at the *i*th roll $(1 \le i \le 30)$. The die is fair, so we have $E(X_i) = 7/2$ and $E(X_i^2) = 91/6$, thus $Var(X_i) = 35/12$. We need to find

$$P(100 \le S_{30} \le 110) = P(\frac{100}{30} \le \frac{S_{30}}{30} \le \frac{110}{30}) = P(\frac{100}{30} \le \bar{X}_{30} \le \frac{110}{30})$$
where $S_{30} = \sum_{i=1}^{30} X_i$ and $\bar{X}_{30} = \frac{S_{30}}{30}$. By CLT, $\frac{\bar{X}_{30} - 7/2}{\sqrt{\frac{35}{12}}/\sqrt{30}} \stackrel{approx}{\sim} N(0, 1)$

$$P(\frac{100/30 - 7/2}{\sqrt{\frac{35}{12*30}}} \le \frac{\bar{X}_{30} - (7/2)}{\sqrt{\frac{35}{12*30}}} \le \frac{110/30 - 7/2}{\sqrt{\frac{35}{12*30}}})$$

$$= P(-0.53 \le Z \le 0.53) = 1 - 2P(Z \ge 0.53) = 0.4038$$

Normal Approximation to Poisson (when λ is large)

Suppose $X_n \sim \text{Poisson}(n)$ where $n \to \infty$. What does the cdf for X_n look like?

Recall that if indept. r.v.'s $X \sim Pois(a)$ and $Y \sim Pois(b)$, then $X + Y \sim Pois(a + b)$ (in Lecture 3). Hence, if we take $Y_i \overset{i.i.d}{\sim} Pois(1)$, $1 \le i \le n$, then $S_n = \sum_{i=1}^n Y_i \sim Pois(1 + 1 + \cdots 1) = Pois(n)$, the same with X_n .

Therefore,

$$F_{X_n}(c) = P(X_n \le c) = P(S_n \le c).$$

As Y_i has mean 1 and variance 1, with CLT there is $\frac{S_n/n-1}{1/\sqrt{n}} \stackrel{approx}{\sim} N(0,1)$. For fixed n, by linear transformation of normal r.v.'s, there is $S_n \stackrel{approx}{\sim} N(n,n)$.

Hence, we can approximate the distribution of X_n by N(n,n).

Remark: When λ_n is large but not an integer, it can also be proved that $N(\lambda_n, \lambda_n)$ is a good approximation for $Pois(\lambda_n)$

Normal Approximation to Poisson - cont'd

Example: Normal Approximation

Let X be a Poisson random variable with mean 900. We find P(X > 950) by standardizing:

$$P(X > 950) = P(\frac{X - 900}{\sqrt{900}} > \frac{950 - 900}{\sqrt{900}})$$

$$\approx 1 - \Phi(\frac{5}{3}) = .04779$$

The exact probability is .04712

Example: Normal Approximation, II

The number of students who enroll in a psychology class is a Poisson r.v. with mean 100. The professor in charge of the course decided that if the number of enrollment is 120 or more, he will teach the course in 2 separate sessions, whereas if the enrollment is under 120 he will teach all the students in a single session. What is the probability that the professor will have to teach 2 sessions?

Let X be the enrollment in the psychology class. Given that $X \sim \text{Pois}(100)$ with E(X) = 100 = Var(X). The required probability

$$P(X \ge 120) = P(\frac{X - 100}{\sqrt{100}} \ge \frac{120 - 100}{\sqrt{100}})$$
$$\approx 1 - \Phi(2) = 0.0228$$

Appendix: Properties of Normal Distribution

Suppose $X \sim N(\mu, \sigma^2)$, then

•
$$E(X) = \mu$$
, $Var(X) = \sigma^2$, $SD(X) = \sigma$

$$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

■ If
$$Y = a + bX$$
, then

$$Y \sim N(a + b\mu, b^2 \sigma^2)$$

$$M_Y(t) = e^{(a+b\mu)t+b^2\sigma^2t^2/2}$$

If X and Y are independent, $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, then

$$X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Suppose (X, Y) is a bivariate normal vector with parameters μ_X , μ_Y , σ_X , σ_Y , ρ , then

$$X \sim N(\mu_X, \sigma_X^2), Y \sim N(\mu_Y, \sigma_Y^2)$$

$$Corr(X,Y) = \rho, Cov(X,Y) = \rho \sigma_X \sigma_Y$$

■
$$X|Y = y \sim N(\mu_X + \rho \sigma_X(y - \mu_Y)/\sigma_Y, (1 - \rho^2)\sigma_X^2)$$

 $Y|X = x \sim N(\mu_Y + \rho \sigma_Y(x - \mu_X)/\sigma_X, (1 - \rho^2)\sigma_Y^2)$

$$E(X|Y) \sim N(\mu_X, \rho^2 \sigma_X^2), E(Y|X) \sim N(\mu_Y, \rho^2 \sigma_Y^2)$$