A Comparison of Classification Algorithms:

Classification of celestial objects: stars, galaxies and quasars

Classifiers	Accuracy_Score	Advantage of classifier	Disadvantage of classifier
1. Logistic Regression	0.97	1.Most interpretable machine learning	Underperform when there are multiple or non-linear decision
cross validation logistic regression	0.968	algorithms	boundaries
with regularization	0.9693333	2.Regularized to avoid overfitting	
important featrures: psfMag_u, psfMag_g, petromag_g, gr, ri, ug			
2. SVM	0.954	1.Non-linear decision boundaries	1.Don't scale well to larger datasets
Using "OneVsRestClassifier"		2.Robust against overfitting, especially in high-dimensional space 3. Best classification	2.Random forests are usually preferred over SVM's.
		performance (accuracy) on the training data.	
3. KMeans	-	Fast, simple, and surprisingly flexible	If the true underlying clusters in the data are not globular, then K- Means will produce poor clusters
4. KNN	0.904	1.Robust to noisy training data 2.Effective for large training data	1.It is costly and lazy, 2.Requires full training data plus depends on the value of k 3. Has the issue of dimensionality because of the distance
5. Random Forest Classifier Important Features:	0.972	1.Perform well in practice 2.Robust to outliers,	1.Analysing theoretically is difficult
Ug, iz, ri, psfFlux_u	0.97466667	3. scalable, 4. Naturally model non-linear decision boundaries 5. Overfitting is less	2.Large number of decision trees can slow down the algorithm in making real-time predictions.

		6.Fast but not in all cases 7.Most effective and versatile 8.More robust to noise. 9.Can be grown in parallel. 10.Runs efficiently on large databases. 11.Has higher accuracy	3.If the data consists of categorical variables with different number of levels, then the algorithm gets biased in favour of those attributes
6. XGB classifier	0.9727		
7. Decision Tree classifier	0.9384	1.can handle missing values nicely 2.best suited when the target function has discrete output values	1. The more the number of decisions in a tree, less is the accuracy 2. do not fit well for continuous variables and result in instability and classification plateaus. 3. creating large decision trees that contain several branches is a complex and time-consuming task.