Theorem 1.1.2

let F be a vector and let α be a scalar, then $\frac{1}{2} \frac{1}{4} \frac{1}{4} = \frac{1}{$

Parallelogram law for vector addition:

Definition 1.1.3

F and G are parallel if and only if each is a nonzero scalar multiple of the other

let $F \neq \langle 0,0,0 \rangle$, $G \neq \langle 0,0,0 \rangle$, and $\alpha \neq 0$, then 백전도 이벤터 아니고, 신부로 이미 아닌 때 $F = \alpha G$ if and only if F and G are parallel 되는 다음 수 있지만 **T**당성

Standard form of a vector F:

Vector extending (a_1, b_1, c_1) to (a_2, b_2, c_2) :

$$G = \langle a_{1}, b_{1}, c_{1} \rangle$$

$$G + H = F$$

$$F = \langle a_{2}, b_{1}, c_{2} \rangle$$

$$H = F - G = \langle a_{2} - a_{1}, b_{2} - b_{1}, c_{2} - c_{1} \rangle$$

$$G + H = F$$

$$H = F$$

$$= \langle a_{2} - a_{1}, b_{2} - b_{1}, c_{2} - c_{1} \rangle$$

$$= \langle a_{2} - a_{1}, b_{2} - b_{1}, c_{2} - c_{1} \rangle$$

$$= \langle a_{2} - a_{1}, b_{2} - b_{1}, c_{2} - c_{1} \rangle$$

Algebra >ot + St.

sample midterm Q.2

Example 1.1.1

Find the equation of the straight line L through the points (1, -2, 4) and (6, 2, -3).

(1.0,4) 3 (2.1.12) (1.1.-3) = 41" (1.0,4) 3 (2.1.12) (1.1.-3) = 41" (1.1.-3) = 41" (1.1.-3) = 41"

Example 1.1.1

Find the equation of the straight line L through the points (1, -2, 4) and (6, 2, -3).