PARTE IV

- BOND GRAPHS
- VALIDACIÓN DEL MODELO

MODELIZACIÓN SISTEMÁTICA: BOND GRAPHS (H. Paynter)

- SISTEMATIZACIÓN DEL MODELADO
- CONSERVACIÓN DE LA ENERGÍA
- ANALOGÍA DE LAS EC. BÁSICAS PARA DIFERENTES SISTEMAS FÍSICOS

M. Santos, UCM

MODELIZACIÓN SISTEMÁTICA: BOND GRAPHS (H. Paynter)

- ESFUERZOS e
- FLUJOS f

REPRESENTACIÓN DE SISTEMAS: BOND GRAPHS

Fuentes

Fuente de esfuerzo

Fuente de flujo

El producto e.f tiene dimensiones de potencia

M. Santos, UCM

M. Santos, UCM

M. Santos, UCM

REPRESENTACIÓN DE SISTEMAS: BOND GRAPHS

■ RELACIONES ENTRE LAS VARIABLES e, f

■ UNIONES

• Serie: $f_1 = f_2 = ... = f_n$;

$$e_1 + e_2 + \dots + e_n = 0$$

• Paralelo $e_1 = e_2 = ... = e_n$ $f_1 + f_2 + ... + f_n = 0$

M. Santos, UCM

5

BOND GRAPHS APLICADOS A SISTEMAS FÍSICOS

Generalized variables in physical systems

Application	Effort e	Flow f	Displacement q
Electric	Voltage u [V]	Current i [A]	Charge q [As]
Translation	Force F [N]	Velocity v [m/s]	Displacement x [m]
Rotation	Torque M [Nm]	Velocity ω [rad/s]	Angle ϕ [rad]
Hydraulics	Pressure $p [N/m^2]$	Volume flow Φ_v [m ³ /s]	Volume $V \text{ [m}^3$]
Thermodynamics	Temperature T [K]	Entropy flow \dot{S} [W/K]	Entropy S [J/K]
Thermal	Temperature T [K]	Energy flow Φ [W]	Energy $Q[J]$

M. Santos, UCM

ANALOGÍAS ENTRE SISTEMAS

	Eléctrico	Mecánico	Mecánico de	Componente	Componente fluido
		Lineal	rotación	térmico	(hidraulido o neumático
Componente	Resistencia	Coeficiente de	Coeficiente de	Resistencia	Resistencia
Resistivo	$R = \frac{V}{i}$	fricción	fricción	térmica	$R_f = \frac{P}{i}$
(disipador de energía)	$R = \frac{1}{i}$	$b = \frac{F}{I}$	$\beta = \frac{T}{T}$	$R_t = \frac{\theta}{4}$	$K_f = \frac{1}{i}$
Componente	Capacitancia	Constante	Constante	Capacidad térmica	Compresibilidad
Capacitivo		elástica	elástica		
(almacenador de	$C = \frac{1}{V} \int i dt$			$C_t = \frac{1}{Q} \int \phi dt$	$K = \frac{1}{D} \int i dt$
energía)	V *	$K = \frac{1}{F} \int v dt$	$K = \frac{1}{T} \int w dt$	0.	P.
Componente	Inductancia	Masa	Inercia	no existe	Inercia
Inercial	$L = \frac{V}{dif dt}$	$M = \frac{F}{dv_i^t dt}$	$I = \frac{T}{dwfdt}$		$J = \frac{P}{difdt}$
Variable	Voltaje: V	Fuerza: F	Momento: T	Diferencia de	Diferencia de Presión:
a través	_			temperatura: θ	P
(across)					
Variable	Corriente: i	Velocidad: v	Velocidad	Velocidad de flujo	Velocidad volumétrica
que fluye			angular: w	de calor: φ	de flujo del
(through)					líquido: i
Integral de la	Carga: q	Espacio: e	Ángulo: θ	Calor: Q	volumen: V
variable que fluye					

EJEMPLO: Bond Graphs

EJEMPLO: Bond Graphs

M. Santos, UCM

EJEMPLO: Bond Graphs

M. Santos, UCM

VERIFICACIÓN DEL MODELO

El valor del análisis depende de la calidad del modelo del sistema

- TAREA MUY IMPORTANTE:
 - FIABLE: BIEN HECHO
 - PARECERSE A LA REALIDAD EN **ESE ASPECTO CONCRETO**
 - ⇒ CONFIANZA EN LOS RESULTADOS Y PREDICCIONES

ASPECTOS A TENER EN CUENTA EN LA VALIDACIÓN

- Un modelo nunca es la descripción exacta de un sistema
- DOMINIO DE VALIDEZ (LIMITADO)
 - Generales o precisos
 - Rango

12

11

M. Santos, UCM M. Santos, UCM

ASPECTOS A TENER EN CUENTA EN LA VALIDACIÓN

- Se desarrolla para resolver ciertos problemas relacionados con aspectos específicos del sistema
 - Un modelo es válido respecto a una finalidad, a un propósito específico

Ejemplo:

Modelo de Ptolomeo del Sistema solar

M. Santos, UCM

PROCEDIMIENTO DE VALIDACIÓN

- Comparar el comportamiento del modelo con el del sistema y evaluar la diferencia
- Algunas partes del modelo pueden tener que ser eliminadas, mejoradas o refinadas
- La validación está unida al modelado y es dependiente del problema concreto al que se aplique

M. Santos, UCM

PROCEDIMIENTO DE VALIDACIÓN

15

PROCEDIMIENTO DE VALIDACIÓN

- Tolerancia
- Nivel de aproximación

M. Santos, UCM

CREDIBILIDAD/ROBUSTEZ

Confianza en el modelo fuera del dominio de validez

- Efecto Pigmalión: lo importante es el sistema, no el modelo
- Efecto de Procruste: no forzar la realidad al modelo
- Recordar que es una *aproximación*

Postura crítica ante el modelo y estar dispuestos a modificarlo

M. Santos, UCM