1. Optimierungsproblem für die Auslegung einer PV Freiflächenanlage

Gegeben

- Lastgang des Energieverbrauchs $P_{\text{Last}}(t)$ über einen bestimmten Zeitraum.
- \bullet Kosten für die Errichtung der PV-Anlage, Investitionskosten $C_{\rm Invest}.$
- Betriebs- und Wartungskosten der PV-Anlage über einen bestimmten Zeitraum $C_{O\&M}$.

Entwurfsvariablen

- Ausrichtung der PV-Module θ (in Grad, z.B., bezogen auf geografische Nordrichtung).
- Neigung der PV-Module ϕ (in Grad, z.B., Winkel zur horizontalen Ebene).
- Flächennutzengrad $\eta_{\text{Fläche}}$ (Verhältnis der tatsächlich genutzten Fläche zur Gesamtfläche).

Zielkriterien

(1) Maximierung der Autarkiegrad AG:

$$\max AG = \frac{\int_{t_1}^{t_2} P_{\text{PV}}(t) \, dt}{\int_{t_1}^{t_2} P_{\text{Last}}(t) \, dt}$$

Dabei ist $P_{PV}(t)$ die von der PV-Anlage erzeugte Leistung zum Zeitpunkt t und $P_{Last}(t)$ entsprechend angeforderte Last.

(2) Maximierung des Energieertrags E:

$$\max E = \int_{t_1}^{t_2} P_{\text{PV}}(t) \, dt$$

(3) Maximierung der Wirtschaftlichkeit W (oder halt Eigenverbrauch EV)):

$$\max W$$
bzw. EV

Unter den Nebenbedingungen:

(1) Leistungsbilanz:

$$P_{\text{PV}}(t) = \eta_{\text{Fläche}} \cdot P_{\text{Sonnenstrahlung}}(t, \theta, \phi)$$

wobei $P_{\text{Sonnenstrahlung}}$ die auf die PV-Module treffende Sonnenstrahlung ist.

- (2) Lastgang: $P_{\text{Last}}(t)$ gegebener Lastgang.
- (3) Ausrichtungsbeschränkung:

$$0 \le \theta \le 360^{\circ}$$

(4) Neigungsbeschränkung:

$$0 \le \phi \le 90^{\circ}$$

(5) Flächennutzengradbeschränkung:

$$0 \leq \eta_{\mathrm{Fl\"{a}che}} \leq 1$$

(6) Modell Abschattungs(winkel) :

 $\eta_{\mathrm{Fläche}}$

Die Integration über die Zeit repräsentiert den Zeitraum $[t_1,t_2]$, in dem die Auslegung gelten soll.