Arm Regeneration of Asterias forbesi in Hypoxic Conditions

Sam Gurr

Advisors

Dr. Carmela Cuomo, Dr. John-Paul Simjouw, Dr. Gail Hartnett

Background

- Autotomy echinoderms' natural ability to expel entire appendages
- o *Amphiura filiformis* demonstrates reduced arm regeneration from hypoxic conditions, 14 25% length and 25 36% area (Nilsson and Sköld 1991)
- Asterias forbesi is native to the Long Island Sound (LIS)
- LIS exhibits annual hypoxic (<3.5 mg 1⁻¹ DO) and anoxic (0 mg 1⁻¹ DO) conditions especially in Western LIS

2013 Long Island Sound Hypoxia Season Review, DEEP

Methods

o A. forbesi ordered from Woods Hole MBL

Induce autotomy

		Days Since Autotomy		
Condition	A. forbesi count	31-Jan	20-Feb	12-Mar
Control	5	0	20	40
Partial Hypoxia	5	0	20	40
	3	-	0	20

• Photos for arm measurements (mm) with Image JTM

When?

How?

- Before autotomy
- Immediately after autotomy
- After 20-day intervals

- Arm lengths measured from

central-most tube feet

to the arm tip

Methods

Regeneration Experiment #1 (RE#1): Hypoxia vs. Normoxia

- Five A. forbesi in both conditions
- Maintained hypoxia (~3.50 ppm DO) daily

Results: RE#1, Hypoxia

- ~72 hours: One dead, all stressed
- o lack of skeletal rigidity, feeding behavior, mobility
- o RE#1 ended, tank oxygenated to normoxia
- ~144 hours: Two dead
- o A. forbesi did not recover from initial hypoxia

Shick 1976: No autotomy, lethal exposure to 3.0 ppm DO

- 140 hours:
- A. forbesi reached >50% mortality
- 48 to 84 hours:
- o stressed, but a <u>full recovery</u> when returned to normoxia

Methods

Regeneration Experiment #2: Partial Hypoxia vs. Normoxia

- Three hours of daily hypoxia, 16 days
- o Five A. forbesi in both conditions (3 to replenish lost in RE#1)

o Fed live blue mussels (*Mytilus edulis*) daily

Condition	Control Tank Normoxia Normoxic	Experimental Tank Partial Hypoxia		
		Normoxic	Hypoxic	
ppm DO	7.07 ± 0.04	6.94 ± 0.06	3.48 ± 0.05	
°C Temperature	23.27 ± 0.28	23.36 ± 0.22		

Results: RE#2, Partial Hypoxia

0-20 days post-autotomy:

o 2.9% less arm regeneration in partial hypoxia

20-40 days post-autotomy:

unchanged by the variables addressed

o twice the feeding rate in normoxia

Conclusions

- I. After autotomy, hypoxia impacts:
 - a.) **initial** regeneration rate of *A. forbesi*
 - b.) survival
 - c.) feeding behavior
- II. Asteroids have decreased regeneration rates in hypoxia as do ophiuroids

To support the results of this study, future research should address:

- a.) Distributions of A. forbesi in hypoxic waters
- b.) Regenerative ability of other Asterias species in hypoxia

Acknowledgments

o Advisors:

Dr. Carmela Cuomo

Dr. Jean-Paul Simjouw

Dr. Gail Hartnett

- o Dr. John Kelly
- Thesis research pod
- Marine biology classmates

Questions

