測定とデータの扱い方

情報工学基礎実験 I No. 0

講義の目的、目標

今回

- ●有効数字の桁数を自分で決められるようになる
- ●測定結果を 最確値 ± 誤差 で書けるようになる
- ●演習タイム

次回

- ●理解度確認テスト
- ●絶対誤差、相対誤差、誤差伝搬の法則
- ●最小二乗法を使えるようになる

測定とは?

- ●単位を基準量にして物理的な量を数値化(情報に)する
 - ►MKS単位系では

長さ・・・m

質量···kg

時間•••sec

- ●直接測定は、定測定器具で直接基準量と比較して得る
 - ▶測定器具や装置の使い方を学ぶ
- ●間接測定は、直接測定で得た値から計算により得る
 - ▶例) 体積、面積、加速度
 - >実験方法、理論、計算方法を学ぶ

補助単位

※理系なら、覚えましょう。

倍数	補助単位記号	よみ
×10 ⁻¹²	р	ピコ
×10 ⁻⁹	n	ナノ
×10 ⁻⁶	μ	マイクロ
×10 ⁻³	m	ミリ
×1		
×10 ³	k	キロ
×10 ⁶	M	メガ
×10 ⁹	G	ギガ
×10 ¹²	Т	テラ

クイズ

18世紀末に、世界基準となるべく考案され定義された長さの単位メートル。では、当時何の長さを基準として1メートルを定めたか?

有効数字とその桁数

- ●測定値を表す数字のうち、意味があるもの
 - ▶10進法と2進法では文字数がかわる
 - ▶有効数字の桁数=測定値の持つシャノン情報量 (→ 情報理論)
- ●最大何桁とれるかは、測定範囲での分解能で決まる
 - ▶巻き尺、ノギス、マイクロメーター、つまようじの太さを測定すると?
- 0でない最上位桁から、測定誤差にうもれない桁まで
 - ▶巻き尺でつまようじの太さを測ると3桁ムダに
 - ▶ミリ単位で川の水位を測定するのは意味がない
 - ▶誤差のない測定はない (→ 現代物理学(量子力学))

有効数字の計算での扱い:加減算

- ●誤差の含まれる桁のうち、最上位の桁が有効数字を決める例)振り子の支点からおもりの重心までの長さ
 - ▶鋼線の長さは巻き尺で、金属球の直径はノギスで測れるが...

析、補助単位をそろえたうえで、 絶対誤差が最大の測定値に注意

半径 a とワイヤ長さ L を mm で測定

有効数字の計算での扱い:剰余算

●誤差の割合が大きい=有効数字の桁数が小さい値が有効数字を決める

例)円盤の体積

▶直径、厚み ともにものさしではかれるが...

 $(17.8 \pm 0.?)^2 = 316.84 \pm ? \times 2 \times 1.78 + 0.01 \times ?^2$

最も精度の悪い値 に注意

有効数字の計算での扱い: 丸め誤差と桁落ち

「丸める」: ある桁で四捨五入すること 丸め誤差=丸めて計算したために生じた値の変更

「 桁落ち 」: 同程度の値の引き算によって、 有効数字の桁数が少なくなること

影響を大きくしないためには、計算途中では桁数を有効数字より大きめにとる。

測定の誤差と精度

- ●同じ測定でも繰り返すと値はばらつく
 - ▶精度: ばらつきの度合い ばらつき「少ない」 → 「精度が高い」
 - ▶正確度: 偏りの度合い、測定値の中心と真の値の差偏り「小さい」 → 「正確度が高い」「不確かさが低い」
- ●知りたい「真の値」は測定値から推測する
 - ▶測定値は誤差を含む
 - >誤差の大きさは測定ごとに変わる真の値 = 測定値 − 誤差
 - ▶知ることができるのは、ばらついた測定値の集合

最確値:真の値の推定

- ●偶然誤差は、測定値(と誤差)がガウス分布に従う
 - ▶仮定:多くの小さな「偶然」が合計され誤差になる
- ●最確値は分布の中心
 - ▶同じ重みの直接測定なら、平均値(相加平均)になる
 - ▶線形の関係がある場合は、最小二乗法で求める
- ●精度(↔ばらつき)の大きさが誤差 = ガウス分布の幅
 - ▶標準偏差、確率誤差 などを使って幅をあらわす
- ●測定をくりかえせば最確値は真の値に近づく
- ●ガウス分布に従わない誤差=系統誤差からは逃げられない
 - ▶値のかたよりの原因

系統誤差はゼロにする

- ●明確な理由で生じる偏りの原因
 - ▶偶然ではない、原因をみつけてなおすべき
- ●系統誤差のよくある原因
 - ▶測定器に原因がある場合(機械誤差)
 例)定規の端がすり減っていた、ノギスのあごがまがって開いていた
 - ▶測定者のくせが原因の場合(個人誤差)
 例)めもりを右斜め上からみるのでいつも短めになっていた
 - ▶計算での不注意で値がずれていた 例) 桁落ちで値が 0 になっていた
- ●測定方法、実験方法や理論の誤りも

誤差のある値の書き方

●最確値が195.6 mm、誤差の幅(標準偏差)が 0.4 mm のとき 195.6 ± 0.4 mm

「真の値は 195.6 mm の ± 0.4 mm に約 68% 含まれる」

- ※誤差の幅になにを使うかは、書き手と読み手できめる
- ●誤差は有効数字1桁(十進数で、情報工学基礎実験1ルール)
- ●最確値の有効数字は誤差の桁まで
- ●科学記法を使うときは、カッコでくくりまとめる (1.956 ± 0.004) × 10⁻² m

誤差の求め方

- ●仮定:複数の独立した原因があり、その和が誤差となる → 二項分布
- ●そのような原因が無数にある → ガウス分布
- ●誤差は、ヒストグラムの幅(約68%ぶん)=標準偏差として求める

なぜ最確値が平均値に一致するのか

ある量をn 回測定した測定値 $M_1, M_2, ..., M_n$ と真の値Z 誤差 $x_i = M_i - Z$ そんなことが起こる確率(それぞれの生起確率の積)

$$P(x_1, x_2, \cdot \cdot \cdot, x_n) = \prod_{i=1}^n p(x_i) \qquad = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(M_i - Z\right)^2\right]$$

Zの最確値 Z_m は、確率 Pを最大(微分係数 = 0)にするはず

$$\left. \frac{\partial P}{\partial Z} \right|_{Z=Z_{\rm m}} = 0$$

$$\sum_{i=1}^{n} (M_i - Z_{\rm m}) \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (M_i - Z_{\rm m})^2 \right]$$

$$\sum_{i=1}^{n} M_i$$

$$= 0$$

$$\sum_{i=1}^{n} M_i$$

誤差(試料平均の標準偏差) σ の求め方

●真の値をZ、i 回目の測定値を M_i 、最確値を Z_m とする. 測定回数 n が非常に大きい場合の母集団の標準偏差 σ は

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (M_i - Z)^2 = \frac{1}{n-1} \sum_{i=1}^{n} (M_i - Z_m)^2$$

●測定で得られる<mark>試料分散</mark>(測定値の分散) σ_s は

$$\sigma_s^2 = \frac{1}{n} \sum_{i=1}^n (M_i - Z_m)^2$$

●試料平均(最確値)の標準偏差 o_m が

$$\sigma_m = \sqrt{\frac{1}{n(n-1)}} \sum_{i=1}^n (M_i - Z_m)^2 = \frac{1}{\sqrt{n}} \sigma = \frac{1}{\sqrt{n-1}} \sigma_s$$

確率誤差εの求め方

- ●誤差の大きさが ε より大きい確率と小さい確率が等しくなる幅
- ●試料平均の標準偏差(平均誤差)に係数を乗じて求める.測定回数が十分大きいとき、ほぼ

$$\varepsilon = 0.6745 \cdot \sigma_m$$
.

- ▶情報工学基礎実験 I では、上記の式で求めることとする.
- ●実際に行う程度の測定回数の場合には下表の係数が示されている(Jeffrey, 1932)が、情報工学基礎実験 I ではそこまで考えないことにする.

測定 回数	2	3	4	5	6	7	8	9	10	 ∞
係数	1.00	0.816	0.766	0.740	0.728	0.718	0.713	0.708	0.703	 0.675

1. 実験ノートに記録した測定値を表にして確認

金属对	め直径	• なにかおかしなことがおきてい
測定	直径 (mm)	ないか?
1	38.13	単位は間違っていないか?
2	38.15	● 写し間違いはないか?
3	38.16	↑ ● 桁数はそろっているか?
4	38.13	
5	38.14	
6	38.12	
7	38.16	

2. 最確値を求め、最確値と各測定値の残差も求める

金属球の直径

38.14 mm

測定	直径 (mm)	残差	
1	38.13	-0.01	
2	38.15	0.01	
3	38.16	0.02	
4	38.13	-0.01	
5	38.14	0.00	
6	38.12	-0.02	
7	38.16	0.02	

3. 残差の2乗から試料分散を求め、最確値の標準偏差を得る

金属球の直径 38.14 ± 0.01 mm

測定	直径 (mm)	残差	残差の2乗 (x10 ⁻⁴)
1	38.13	-0.01	1.00
2	38.15	0.01	1.00
3	38.16	0.02	4.00
4	38.13	-0.01	1.00
5	38.14	0.00	0.00
6	38.12	-0.02	4.00
7	38.16	0.02	4.00

試料分散の2乗 = 2.1429 x 10⁻⁴、標準偏差 = 0.0065

4. 確率誤差は測定回数大での比率 0.6745 を乗じて

金属球の直径(確率誤差の場合) 38.14 ± 0.01 mm

測定	直径 (mm)	残差	残差の2乗 (x10 ⁻⁴)
1	38.13	-0.01	1.00
2	38.15	0.01	1.00
3	38.16	0.02	4.00
4	38.13	-0.01	1.00
5	38.14	0.00	0.00
6	38.12	-0.02	4.00
7	38.16	0.02	4.00

標準偏差×0.6745 = 0.006745

参考書など

- N.C. バーフォード 著(訳 酒井英行)
 「実験精度と誤差」、丸善
 ISBN978-4-621-04380-6
- 吉川泰三編
 「改訂新版物理学実験」、学術図書出版社ISBN978-4-87361-058-0
- 入江 捷廣 著 「評価Aが取れる基礎物理実験レポート」、講談社 ISBN978-4-06-153271-7

演習問題をときましょう

§ 問題(p. 0-15~17) 問題1、問題5、問題6、問題7

— 次回:

- 関数で値を得る場合・・・ 誤差伝搬の法則
- 絶対誤差、相対誤差
- 最小二乗法・・・同等でない測定、直接測定でない場合