Respuestas Trabajo práctico Aproximación por mínimos cuadrados

Problema 2.- (a) Recta: $f^*(x) = 0.11019 + 0.310663 x$

Parábola: $g^*(x) = 0.01737 + 0.79882 x - 0.45758 x^2$

(b) Error recta: E = 0.044 Error en la parábola: $E = 6.172*10^{-3}$

Reproduciendo cinco valores:

Х	0	0,25	0,5	0,75	1
f(x)	0	0,1947002	0,30326533	0,35427491	0,36787944
f*(x)	0,11019	0,18785575	0,2655215	0,34318725	0,420853
g*(x)	0,01737	0,18847625	0,3023850	0,35909625	0,358610

Se verifica una mejor aproximación por parte de la parábola.

Problema 3.- (a) $f^*(x) = 1,02742 - 0,30712 x - 0,38110 x^2$ Parábola, aproximación continua.

(b) Al discretizar a los tres puntos indicados se obtiene la siguiente parábola:

$$h^*(x) = 1 - 0.25268 x - 0.37944 x^2$$

(c) E = 0,01096 en la aproximación continua

E = 0 en la aproximación discreta

(d) I = 0.7468241 exacta

I = 0.7468241 en la aproximación obtenida en a

I = 0.7471804 en la aproximación obtenida en b

Ambas aproximaciones son muy buenas.

Problema 4.

La función que representa los datos de la tabla: $y = -0.04937766.ln(x) + 0.66537657.e^-x$

El error del método: **E = 0,00494246**

Problema 5. Caso no lineal

$$f(x) = a. e^{b.x}$$
 $f^*(x) = \ln(f(x))$

$$f1(x) = 1$$
 a1 = In (a)

$$f2(x) = x$$
 $a2 = b$

La ecuación resulta: $f(x) = 3,17045372.e \land 0,80750569.x$

Problema 6. Caso no lineal

$$y=\alpha\frac{x}{\beta+x}$$

$$\frac{1}{y} = \left(\frac{\beta}{\alpha}\right) \cdot \frac{1}{x} + \left(\frac{1}{\alpha}\right) \cdot 1$$

$$f1(x) = 1/x$$
 $f2(x) = 1$ $f^*(x) = 1/y$

$$f^*(x) = 1/y$$

a1 =
$$\beta/\alpha$$

$$a2 = 1/\alpha$$

La ecuación resulta:

$$y = 1,74022777. \frac{x}{0,95531728 + x}$$

PROBLEMAS DE LABORATORIO:

Problema 1.

La ecuación resulta: $f^*(x) = 0.03497857 + 0.01115714.x + 0.00017857.$ (2 x^2-1)

El tiempo para 2,5 pulgadas:

Problema 2. Caso no lineal

$$e^{k1} \cdot \frac{p}{A^{K2}} = 1$$

$$ln(P) = k2. ln(A) - k1$$

$$f(p) = In (P)$$
 Incógnitas k2 y k1

$$f1 = In(A)$$

w = 1

La ecuación resulta: E^(-4,50832002) . P/A^3,16115144 = 1

Para 0,5 m el peso es de 10,146985 kg y para 1 m el peso es de 90,7692002

Problema 3. Caso no lineal

$$I = A_0$$
. sen $(\theta + 2\pi. wt)$

I = Ao. Sen(θ).cos (2πωt) + Ao. cos(θ).sen (2πωt)

 ω = 50 ciclos/seg reemplazo

w(t) = 1

f(t) = I

 $f1(t) = \cos (100\pi t)$

f2(t)= sen (100πt)

Incógnitas: $a1 = Ao. Sen(\theta)$

 $a2 = Ao. cos(\theta)$

Ecuación: I = 2,00170561. sen $(1,04531954 + 2\pi wt)$

Ao =	2,00170561
------	------------

Problema 4. Caso no lineal

$$h(x) = 100 \log (x + 1) + \alpha_1 \cdot x^{\alpha_2}$$

 $\ln (h(x) - 100. \log (x+1)) = \ln \alpha 1 + \alpha 2. \ln (x)$

$$f(x) = \ln (h(x) - 100. \log (x+1))$$

f1(x) = 1

f2(x) = In(x)

Incógnitas

 $a1 = ln(\alpha 1)$ $a2 = \alpha 2$

Ecuación final:

 $h(x) = 100 \log (x+1) + \alpha 1 \cdot x^{\alpha}$

Para h

652,28035 m 2500