Ćwiczenia X Model Isinga – symulacja

Jakub Tworzydło

Instytut Fizyki Teoretycznej

6/12 i 7/12/2022 Pasteura, Warszawa

Plan

1 Termiczne, równowagowe Monte Carlo

Temat ćwiczenia

Naszym zadaniem na dzisiaj jest zaprogramowanie symulacji układu spinów Isinga na sieci kwadratowej $L \times L$ w zadanej temperaturze T. Mamy wykonać symulację Monte Carlo wg. algorytmu heat-bath podanego na wykładzie.

Algorytm "heat-bath"

- 1. wybierz losowo spin *i* (liczba spinów $N = L^2$)
- 2. oblicz różnicę energii

$$\Delta = E_{-} - E_{+} = 2J \sum_{j \text{ n.n. dla } i} s_{j(i)}$$

gdzie $s_{i(i)}$ sąsiednie spiny do węzła i

- 3. wylosuj $r \in [0, 1]$
- 4. dla $r < \frac{1}{1+\exp(-\beta\Delta)}$ ustaw s[i] = 1, w przeciwnym przypadku s[i] = -1

Zadanie 1

Wykonać symulację Monte Carlo

- układ spinów Isinga na sieci kwadratowej $L \times L$, z periodycznymi warunkami brzegowymi, bez pola magnetycznego
- stała energii J=1, bezwymiarowa temperatura $T=1/\beta=[5,4,3,2,1]$
- wykonać 1000 kroków MCS termalizacji (bez pomiarów) oraz 5000 kroków MCS dla pomiarów, oddzielnie w każdej temperaturze
- ullet porównać średni moduł magnetyzacji z wynikiem ścisłym dla siatki 5 imes 5

```
temp 1. 2. 3. 4. 5. mag 0.998 0.912 0.512 0.334 0.275
```

Zadanie 2

Symulacja Monte Carlo spinów Isinga na sieci kwadratowej $L \times L$ tak jak w Zad. 1 dla L=10 oraz L=20. Wykonać 2000 MCS termalizacji oraz 5000 MCS pomiarów, oddzielnie w każdej temperaturze.

 Wykreślić średni moduł magnetyzacji w funkcji temperatury T ∈ (1,5) dla obu wartości L na jednym wykresie. Nanieść na wykres zależność analityczną (rozwiązanie Onsagera):

$$\langle m \rangle = \left(1 - \frac{1}{\sinh^4(2J/T)}\right)^{1/8} \text{ przy } T < T_c,$$

gdzie
$$T_c = \frac{2}{\log(1+\sqrt{2})}$$
.

• Wykreślić podatność w funkcji temperatury $T \in (1,5)$ dla obu wartości L na jednym wykresie (nie ma rozwiązania analitycznego).

J. Tworzydło (IFT) — model Isinga —

Pakiet numba

Można znacznie przyspieszyć symulacje korzystając z pakietu numba.

Przeanalizuj przykład https:
//numba.pydata.org/numba-doc/dev/user/5minguide.html.

Napisz funkcję sweep (spins, beta, L), która wykonuje 1MCS na tablicy numpy spinów spins i przyspiesz ją dekoratorem @jit (nopython=True). Funkcja może zawierać wszystkie operacje arytmetyczne, funkcje matematycze z numpy oraz operacje na tablicach numpy.

Instalacja pakietu jest najprostsza przy pomocy pip3 install numba. W pracowni komputerowej trzeba wykonać

```
pip3 install llvmlite==0.31 --user a następnie pip3 install numba==0.46 --user.
```

Zadanie dodatkowe – ciepło właściwe

Wykonaj wykres ciepła właściwego (na spin) w funkcji temperatury $T \in [1, 5]$ dla układu 50×50 .

Ciepło właściwe obliczamy ze wzoru $c = \beta^2 \left(\langle E^2 \rangle - \langle E \rangle^2 \right) / N$. *Uwaga:* można użyć triku np.roll do obliczenia energii wszystkich wiązań.

Porównaj wynik z rozwiązaniem analitycznym

$$c = \frac{2}{\pi} (\beta \coth 2\beta J)^2 \left[2K_1(\kappa^2) - 2E_1(\kappa^2) - (1 - \kappa') \left(\frac{\pi}{2} + \kappa' K_1(\kappa^2) \right) \right].$$

Fukcje K i E są zupełnymi całkami eliptycznymi pierwszego i drugiego rodzaju (obie funkcje łatwo znaleźć w <code>scipy.special</code>). Stałe występujące we wzorach wynoszą $\kappa = 2 \tanh 2\beta J/\cosh 2\beta J$ oraz $\kappa' = 2 \tanh^2 2\beta J - 1$.