Notes on Statistical Theory

 $Benjamin\ Nutter$

Contents

Ι	Pr	obabi	lity Distributions	7
	The	e Berno	pulli Distribution	9
	1	Cumul	lative Distribution Function	9
	2	Expec	ted Values	10
3 Moment Generating Function				10
	4	Theore	ems for the Bernoulli Distribution	11
		4.1	Validity of the Distribution	11
		4.2	Sum of Bernoulli Random Variables	11
	The	Binor	nial Distribution	13
	5	Cumul	lative Distribution Function	13
	6	Expec	ted Values	13
7 Moment Generating Function			nt Generating Function	16
	8	Maxim	num Likelihood Estimator	17
		8.1	Likelihood Function	17
		8.2	Log-likelihood Function	18
		8.3	MLE for p	18
	9 Theorems for the Binomial Distribution		ems for the Binomial Distribution	18
		9.1	Validity of the Distribution	18
		9.2	Sum of Binomial Random Variables	19
		9.3	Sum of Bernoulli Random Variables	19
	\mathbf{Th}	e Chi-s	square Distribution	21
The Exponential Distribution The Gamma Distribution The Geometric Distribution				23
				25
				27
The Hypergeometric Distribution			ergeometric Distribution	29

4	CONTENTS
---	----------

	The Multinomial Distribution	31
	The Normal Distribution	33
	The Poisson Distribution	35
	The Skew-Normal Distribution	37
	The Uniform Distribution	39
	The Weibull Distribution	41
II	Frequentist Hypothesis Testing	43
	Mantel-Haenszel Test	45
III	Supplemental Subjects	47
	Chebychev's Theorem	49
	Combinations	51
	The Correlation Coefficient	53
	Covariance	55
	Experimental Designs	57
	Moments and Moment Generating Functions	59
	Summation	61
	The Method of Transformations	63
	Variance Paramter	65
IV	Non-Statistical Proofs	67
	The Binomial Theorem	69
	Functions	71
	The Geometric Series	73

CONTENTS	5

Integraion: Techniques and Theorems	75
Logarithmic and Exponential Functions	77
The Real Number System	79

6 CONTENTS

Part I Probability Distributions

The Bernoulli Distribution

A random variable is said to have a Bernoulli Distribution with parameter p if its probability mass function is:

$$p(x) = \begin{cases} p^x (1-p)^{1-x}, & x = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

Where p is the probability of a sucess.

1 Cumulative Distribution Function

$$P(x) = \begin{cases} 0 & x < 0 \\ 1 - p & x = 0 \\ 1 & 1 \le x \end{cases}$$

Figure .1: The graphs on the left and right show a Binomial Probability Distribution and Cumulative Distribution Function, respectively, with p = .4. Note that this is identical to a Binomial Distribution with parameters n = 1 and p = .4.

2 Expected Values

$$E(X) = \sum_{i=0}^{1} x \cdot p(x)$$

$$= \sum_{i=0}^{1} x \cdot p^{x} (1-p)^{1-x}$$

$$= 0 \cdot p^{0} (1-p)^{1-0} + 1 \cdot p^{1} (1-p)^{1-1}$$

$$= 0 + p(1-p)^{0}$$

$$= p$$

$$E(X^{2}) = \sum_{i=0}^{1} x^{2} \cdot p(x)$$

$$= \sum_{i=0}^{1} x^{2} \cdot p^{x} (1-p)^{1-x}$$

$$= \sum_{i=0}^{1} 0^{2} \cdot p^{0} (1-p)^{1-0} + 1^{2} \cdot p^{1} (1-p)^{1-1}$$

$$= 0 \cdot 1 \cdot 1 + 1 \cdot p \cdot 1$$

$$= 0 + p$$

$$= p$$

$$\mu = E(X) = p$$

 $\sigma^2 = E(X^2) - E(X)^2 = p - p^2 = p(1-p)$

3 Moment Generating Function

$$M_X(t) = E(e^{tX}) = \sum_{i=0}^{1} e^{tx} p(x) = \sum_{i=0}^{1} e^{tx} p^x (1-p)^{1-x}$$
$$= e^{t0} p^0 (1-p)^{1-0} + e^t p^t (1-p)^{1-1} = (1-p) + e^t p = pe^t + (1-p)$$

$$M_X^{(1)}(t) = pe^t$$
$$M_X^{(2)}(t) = pe^t$$

$$E(X) = M_X^{(1)}(0) = pe^0 = p \cdot 1 = p$$

$$E(X^2) = M_X^{(2)}(0) = pe^0 = p$$

$$\mu = E(X) = p$$

$$\sigma^2 = E(X^2) - E(X)^2 = p - p^2 = p(1 - p)$$

4 Theorems for the Bernoulli Distribution

4.1 Validity of the Distribution

$$\sum_{x=0}^{1} p^{x} (1-p)^{1-x} = 1$$

Proof:

$$\sum_{x=0}^{1} p^{x} (1-p)^{1-x} = p^{0} (1-p)^{1} + p^{1} (1-p)^{0} = (1-p) + p = 1$$

4.2 Sum of Bernoulli Random Variables

Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables from a Bernoulli distribution with parameter p. Let $Y = \sum_{i=1}^{n} X_i$.

Then $Y \sim \text{Binomial}(n, p)$

Proof:

$$M_Y(t) = E(e^{tY}) = E(e^{tX_1}e^{tX_2}\cdots e^{tX_n}) = E(e^{tX_1})E(e^{tX_2})\cdots E(e^{tX_n})$$

$$= (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p))(pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p))(pe^t + (1-p))(pe$$

Which is the mgf of a Binomial random variable with parameters n and p. Thus, $Y \sim \text{Binomial}(n, p)$.

The Binomial Distribution

A random variable is said to follow a Binomial distribution with parameters n and p if its probability mass function is:\

$$p(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x = 0, 1, 2, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

Where n is the number of trials performed and p is the probability of a success on each individual trial.

5 Cumulative Distribution Function

$$P(x) = \begin{cases} 0 & x < 0\\ \sum_{i=0}^{x} {n \choose i} p^{i} (1-p)^{n-i} & 0 \le x = 0, 1, 2, \dots, n\\ 1 & n \le x \end{cases}$$

A recursive form of the cdf can be derived and has some usefulness in computer applications. With it, one need only initiate the first value and additional cumulative probabilities can be calculated. It is derived as follows:

$$\begin{split} F(x+1) &= \binom{n}{x+1} p^{x+1} (1-p)^{n-(x+1)} \\ &= \frac{n!}{(x+1)!(n-(x+1))!} p^{x+1} (1-p)^{n-(x+1)} \\ &= \frac{n!}{(x+1)!(n-x-1)!} p^{x+1} (1-p)^{n-x-1} \\ &= \frac{(n-x)n!}{(x+1)x!(n-x)(n-x-1)!} p \cdot p^x \frac{(1-p)^{n-x}}{(1-p)} \\ &= \frac{(n-x)n!}{(x+1)x!(n-x)!} \cdot \frac{p}{1-p} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot \binom{n}{x} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot F(x) \end{split}$$

6 Expected Values

Let X be a binomial random variable with parameters n and p. The expected value of X is:

Figure .1: plot of chunk unnamed-chunk-7

$$E(X) = \sum_{x=0}^{n} x \cdot p(x)$$
$$= \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}$$

For convenience, let q = (1 - p)

$$\begin{split} &= \sum_{x=0}^n x \binom{n}{x} p^x q^{n-x} \\ &= 0 \cdot \binom{n}{0} p^0 q^n + 1 \cdot \binom{n}{1} p^1 q^{n-1} + \dots + n \binom{n}{n} p^n q^{n-n} \\ &= 0 + 1 \binom{n}{1} p^1 q^{n-1} + 2 \binom{n}{2} p^2 q^{n-2} + \dots + n \binom{n}{n} p^n q^{n-n} \\ &= n p^1 q^{n-1} + n (n-1) p^2 q^{n-2} + \dots + n (n-1) p^{n-1} q^{n-(n-1)} + n p^n \\ &= n p [q^{n-1} + (n-1) p q^{n-2} + \dots + p^{n-1}] \\ &= n p \Big[\binom{n-1}{0} p^0 q^{n-1} + \binom{n-1}{1} p^1 q^{(n-1)-1} + \dots + \binom{n-1}{n-1} p^{n-1} q^{(n-1)} \Big] \\ &= n p (\sum_{x=0}^{n-1} \binom{n-1}{x} p^x q^{(n-1)-x}) \end{split}$$

By the Binomial Theorem, $\sum_{x=0}^{n} \binom{n}{x} a^x b^{n-x} = (a+b)^n$

$$= np(p+q)^{n-1}$$

Resubstituting (1-p) for q gives us

$$= np(p + (1 - p))^{n-1}$$

$$= np(p + 1 - p)^{n-1}$$

$$= np(1)^{n-1}$$

$$= np(1)$$

$$= np$$

The Expected Value of X^2 is:

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} p(x)$$
$$= \sum_{x=0}^{n} x^{2} {n \choose x} p^{x} (1-p)^{n-x}$$

For convenience, let q = (1 - p)

$$\begin{split} &=\sum_{x=0}^n x^2 \binom{n}{x} p^x q^{n-x} \\ &=0^2 \frac{n!}{0!(n-0)!} p^0 q^n + 1^2 \frac{n!}{1!(n-1)!} p^1 q^{n-1} + \dots + n^2 \frac{n!}{n!(n-n)!} p^n q^{n-n} \\ &=0+1 \frac{n!}{(n-1)!} p q^{n-1} + 2 \frac{n!}{1 \cdot (n-2)!} p^2 q^{n-2} + \dots + n \frac{n!}{(n-1)!(n-n)!} p^n \\ &=n p \Big[1 \frac{(n-1)!}{(n-1)!} p^0 q^{n-1} + 2 \frac{(n-1)!}{1(n-2)!} p^2 q^{n-2} + \dots + n \frac{(n-1)!}{(n-1)!(n-n)!} p^{n-1} \Big] \\ &=n p \Big[1 \frac{(n-1)!}{(1-1)!((n-1)-(-1-1))!} p^{1-1} q^{n-1} + \dots + n \frac{(n-1)!}{(n-1)!((n-1)-(n-1))!} p^{n-1} q^{n-1} \Big] \\ &=n p \sum_{x=1}^n x \binom{n-1}{x-1} p^{x-1} 1^{(n-1)-(x-1)} \end{split}$$

Let y = x - 1 and n = m + 1 $\Rightarrow x = y + 1$ and m = n - 1

$$= \sum_{y=0}^{m} (y+1) \binom{m}{y} p^{y} q^{m-y}$$

$$= np \Big[\sum_{y=0}^{m} y \binom{m}{y} p^{y} q^{m-y} + \binom{m}{y} p^{y} q^{m-y} \Big]$$

$$= np \Big[\sum_{y=0}^{m} y \binom{m}{y} p^{y} q^{m-y} + \sum_{y=0}^{m} \binom{m}{y} p^{y} q^{m-y} \Big]$$

$$\sum_{y=0}^{m} y \binom{m}{y} p^{y} q^{m-y} \text{ is of the form}$$

of the expected value of Y, and E(Y) = mp = (n-1)p

$$\sum_{y=0}^{m} {m \choose y} p^{y} q^{m-y}$$
 is the sum of all

probabilities over the domain of Y,

which is 1.

$$= np(mp + 1)$$

$$= np[(n - 1)p + 1]$$

$$= np(np - p + 1)$$

$$= n^{2}p^{2} - np^{2} + np$$

The mean of X can be calculated as

$$\mu = E(X) = np$$

And the variance of X can be calculated by

$$\sigma^{2} = E(X^{2}) - E(X)^{2}$$

$$= n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$$

$$= -np^{2} + np$$

$$= np(-p - 1)$$

$$= np(1 - p)$$

7 Moment Generating Function

$$M_X(t) = E(e^{tX}) = \sum_{x=0}^n e^{tx} p(x)$$

$$= \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} e^{tx} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} (pe^{tx})^x (1-p)^{n-x}$$

By Binomial Theorem REF

$$\sum_{x=0}^{n} \binom{n}{x} b^x a^{n-x} = (a+b)^n$$
$$= [(1-p) + pe^t]^n$$

$$M_X^{(1)}(t) = n[(1-p) + pe^t]^{n-1}pe^t$$

$$\begin{split} M_X^{(2)}(t) &= n[(1-p) + pe^t]^{n-1}pe^t + n(n-1)[(1-p) + pe^t]^{n-2}(pe^t)^2 \\ &= npe^t[(1-p) + pe^t]^{n-1} + n(n-1)pe^{2t}[(1-p) + pe^t]^{n-2} \end{split}$$

$$\begin{split} E(X) &= M_X^{(1)}(0) \\ &= n[(1-p) + pe^0]^{n-1}pe^0 \\ &= n[1-p+p^{n-1}p \\ &= n(1)^{n-1}p = np \end{split}$$

$$\begin{split} E(X^2) &= M_X^{(2)}(0) = npe^0[(1-p) + pe^0]^{n-1} + n(n-2)pe^{2\cdot 0}[(1-p) + pe^0]^{n-2} \\ &= np(1-p+p)^{n-2} + n(n-1)p^2(1-p+p^{n-2}) \\ &= np(1)^{n-1} + n(n-1)p^2(1)^{n-2} = np + n(n-1)p^2 = np + (n^2-n)p^2 \\ &= np + n^2 + n^2p^2 - np^2 \end{split}$$

$$\mu = E(X) = np$$

$$\sigma^{2} = E(X^{2}) - E(X)^{2}$$

$$= np + n^{2}p^{2} - np^{2} - n^{2}p^{2}$$

$$= np - np^{2}$$

$$= np(1 - p)$$

8 Maximum Likelihood Estimator

Since n is fixed in each Binomial experiment, and must therefore be given, it is unnecessary to develop an estimator for n. The mean and variance can both be estimated from the single parameter p.

Let X be a Binomial random variable with parameter p and n outcomes $(x_1, x_2, ..., x_n)$. Let $x_i = 0$ for a failure and $x_i = 1$ for a success. In other words, X is the sum of n Bernoulli trials with equal probability of success and $X = \sum_{i=1}^{n} x_i$.

8.1 Likelihood Function

$$L(\theta) = L(x_1, x_2, \dots, x_n | \theta)$$

$$= P(x_1 | \theta) P(x_2 | \theta) \cdots P(x_n | \theta)$$

$$= [\theta^{x_1} (1 - \theta)^{1 - x_1}] [\theta^{x_2} (1 - \theta)^{1 - x_2}] \cdots [\theta^{x_n} (1 - \theta)^{1 - x_n}]$$

$$= \exp_{\theta} \left\{ \sum_{i=1}^{n} x_i \right\} \exp_{(1 - \theta)} \left\{ n - \sum_{i=1}^{n} x_i \right\}$$

$$= \theta^X (1 - \theta)^{n - X}$$

8.2 Log-likelihood Function

$$\ell(\theta) = \ln L(\theta)$$

$$= \ln \left(\theta^X (1 - \theta)^{n - X}\right)$$

$$= X \ln(\theta) + (n - X) \ln(1 - \theta)$$

8.3 MLE for p

$$\frac{d\ell(p)}{dp} = \frac{X}{p} - \frac{n - X}{1 - p}$$

$$0 = \frac{X}{p} - \frac{n - X}{1 - p}$$

$$\frac{X}{p} = \frac{n - X}{1 - p}$$

$$(1 - p)X = p(n - X)$$

$$X - pX = np - pX$$

$$X = np$$

$$\frac{X}{n} = p$$

So $\hat{p} = \frac{X}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the maximum likelihood estimator for p.

9 Theorems for the Binomial Distribution

9.1 Validity of the Distribution

$$\sum_{x=0}^{n} \binom{n}{x} p^{x} (1-p)^{n-x} = 1$$

Proof:

$$\sum_{x=0}^{n} \binom{n}{x} p^x (1-p)^{n-x} =$$

$$\sum_{x=0}^{n} \binom{n}{x} a^x b^{n-x} (a+b)^n.$$
 See Binomial Theorem REF.

$$= big(p + (1 - p))^n$$
$$= (1)^n$$
$$= 1$$

9.2 Sum of Binomial Random Variables

Let X_1, X_2, \ldots, X_k be independent random variables where X_i comes from a Binomial distribution with parameters n_i and p. That is $X_i \sim (n_i, p)$. Let $Y = \sum_{i=1}^{n} k X_i$. Then $Y \sim \text{Binomial}(\sum_{i=1}^{k} n_i, p)$.

Proof:

$$M_Y(t) = E(e^{tY})$$

$$= E(e^{t(X_1 + X_2 + \dots + X_k)})$$

$$= E(e^{tX_1}e^{tX_2} \dots e^{tX_k})$$

$$= E(e^{tX_1})E(e^{tX_2}) \dots E(e^{tX_k})$$

$$= \prod_{i=1}^k [(1-p) + pe^t]^{n_i}$$

$$= [(1-p) + pe^t]^{\sum_{i=1}^k n_i}$$

\ \ Which is the mgf of a Binomial random variable with parameters $\sum_{i=1}^{k} n_i$ and p.

Thus $Y \sim \text{Binomial}(\sum_{i=1}^k n_i, p)$.

9.3 Sum of Bernoulli Random Variables

Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables from a Bernoulli distribution with parameter p. Let $Y = \sum_{i=1}^{n} X_i$.

Then $Y \sim \text{Binomial}(n, p)$

Proof:

$$M_Y(t) = E(e^{tY})$$

$$= E(e^{tX_1}e^{tX_2} \cdots e^{tX_n})$$

$$= E(e^{tX_1})E(e^{tX_2}) \cdots E(e^{tX_n})$$

$$= (pe^t + (1-p))(pe^t + (1-p)) \cdots (pe^t + (1-p))$$

$$= (pe^t + (1-p))^n$$

Which is the mgf of a Binomial random variable with parameters n and p. Thus, $Y \sim \text{Binomial}(n, p)$.

The Chi-square Distribution

The Exponential Distribution

The Gamma Distribution

The Geometric Distribution

The Hypergeometric Distribution

The Multinomial Distribution

The Normal Distribution

The Poisson Distribution

The Skew-Normal Distribution

The Uniform Distribution

The Weibull Distribution

Part II Frequentist Hypothesis Testing

Mantel-Haenszel Test

Part III Supplemental Subjects

Chebychev's Theorem

Combinations

52 . COMBINATIONS

The Correlation Coefficient

Covariance

56 . COVARIANCE

Experimental Designs

Moments and Moment Generating Functions

Summation

62 . SUMMATION

The Method of Transformations

Variance Paramter

Part IV Non-Statistical Proofs

The Binomial Theorem

Functions

72 . FUNCTIONS

The Geometric Series

Integraion: Techniques and Theorems

Logarithmic and Exponential Functions

The Real Number System