Exercice 1.

Soit $\alpha = (\alpha_n)_{n>0}$ une suite de nombres réels positifs et K_α le sous-ensemble suivant de $\ell^2(\mathbb{N},\mathbb{R})$:

$$\{(u_n)_{n\geq 0}\in \ell^2: |u_n|\leq \alpha_n\}.$$

Montrer que K_{α} est compact si et seulement si α appartient à $\ell^{2}(\mathbb{N}, \mathbb{R})$.

Exercice 2. Soient E et F deux espaces topologiques. On suppose que F est compact.

- 1. Montrer que la projection $p: E \times F \to E$ est fermée (autrement dit, l'image d'un fermé de $E \times F$ par p est un fermé de E).
- 2. Soit f une application de E dans F. On suppose que le graphe de f est fermé dans $E \times F$ muni de la topologie produit. Montrer que f est continue.

Exercice 3.

On considère un espace métrique compact (E, d) et une application $f: E \to E$.

- 1. Si f préserve la distance (d(f(x), f(y)) = d(x, y)) montrer que f est bijective.
- 2. Si f vérifie d(f(x), f(y)) < d(x, y) dès que x et y sont des points distincts de E, montrer que f admet un unique point fixe dans E.
- 3. Si f est continue et vérifie $d(f(x), f(y)) \ge d(x, y)$ alors f est bijective et d(f(x), f(y)) = d(x, y). On pourra commencer par montrer que si x est un point de E et n(k) telle que $f^{n(k)}(x)$ a une limite, alors $f^{n(k+1)-n(k)}(x)$ converge vers x, puis le faire simultanément pour deux points x et y.

Exercice 4.

Soit (K, d) un espace métrique compact.

1. Pour tout $k \in \mathbb{N}^*$ montrer qu'il existe une partie finie F de K telle que :

$$\forall x \in K, \exists y \in F, d(x, y) < 1/k$$

- 2. À l'aide de ce qui précède, montrer que K est séparable. On notera désormais $D = \{y_n, n \in \mathbb{N}\}$ une partie dénombrable dense.
- 3. Montrer qu'il existe $\delta > 0$ tel que $\forall (x,y) \in K^2, d(x,y) \leq \delta$.

On pose:

$$\phi: \left(\begin{array}{ccc} K & \to & [0,\delta]^{\mathbb{N}} \\ x & \mapsto & (d(x,y_n))_{n\in\mathbb{N}} \end{array}\right).$$

- 4. Montrer que ϕ est injective.
- 5. On munit $[0, \delta]^{\mathbb{N}}$ de la topologie produit. Rappeler pour quoi cet espace est compact et montrer que l'application ϕ est continue.
- 6. Montrer que tout espace métrique compact est homéomorphe à une partie fermée de $[0,1]^{\mathbb{N}}$.

Exercice 5. Un espace compact non-métrisable

Soit $E = [0, 1]^{[0,1]}$ l'espace des applications de [0, 1] dans [0, 1], muni de la topologie produit.

1. Montrer que E est compact.

Nous allons montrer que E n'est pas métrisable. À chaque suite finie $r_0 = 0 < r_1 < \ldots < r_n = 1$ de rationnels de [0,1] on associe une fonction continue $f:[0,1] \to [0,1]:f$ prend la valeur 0 en tous les points r_i , la valeur 1 aux points $\frac{r_{i+1}-r_i}{2}$ $(0 \le i \le n-1)$ et est affine entre ces points (faire un dessin). En considérant la restriction de f à]0,1[nous obtenons un élément de E. Soit F l'ensemble de toutes les fonctions ainsi obtenues (lorsque l'on fait varier les r_i et l'entier n).

- 2. Montrer que F est dénombrable et dense dans E. En déduire que tout élément de E est valeur d'adhérence de la suite obtenue en indexant les éléments de F par les entiers.
- 3. Montrer que très peu d'éléments de E sont limite d'une suite extraite de cette suite,
 - (a) Par un argument de cardinal
 - (b) Par le théorème de convergence dominée de Lebesgue
 - (c) Par le théorème de Baire.

Exercice 6. Grassmanniennes

On note G(k,n) l'espace des sous-espaces vectoriels de dimension k de \mathbb{R}^n (c'est la variété de Grassmann ou encore grassmannienne). Munir G(k,n) d'une topologie naturelle et montrer que c'est un espace compact.

Exercice 7.

Soit K une partie compacte de \mathbb{R}^n . On considère les trois espaces d'applications suivants : $\mathcal{C}(K,\mathbb{R}^n)$ (applications continues de K dans \mathbb{R}^n), $\mathcal{C}(K,K)$ (applications continues de K dans lui-même) et G(K) le sous-espace de $\mathcal{C}(K,K)$ formé des isométries. On munit ces trois espaces de la topologie de la convergence uniforme (définie, par exemple, par la distance suivante : $d(f,g) = \sup_{x \in K} ||f(x) - g(x)||$).

Montrer que G(K) est fermé dans C(K,K), que C(K,K) est fermé dans $C(K,\mathbb{R}^n)$, et que G(K) est compact.