

FORMULACIÓN Y NOMENCLATURA ORGÁNICA

Recomendaciones y nombres preferidos de la IUPAC de 2013

Rodrigo Alcaraz de la Osa

Nomenclatura de sustitución

Es la **nomenclatura principal** para nombrar **compuestos orgánicos**, los cuales se tratan como una **combinación** de un **compuesto padre** y de **grupos f uncionales**, uno de los cuales se designa como el **grupo f uncional principal**. El grupo principal formará la **cadena principal**, mientras que el resto podrá formar parte de la cadena principal o formar **cadenas laterales**.

4,6-diclorohept-5-en-2-ona

4,6-dicioloffept-3-eff-2-offa						
hept(a)	cadena principal (heptano)	ona	sufijo para el grupo principal (cetona)			
en(o)	insaturación	cloro	prefijo de sustituyente			
di	prefijo multiplicador	2456	localizadores			

Prefijos multiplicadores para entidades simples y complejas

$N^{\underline{o}}$	SIMPLE	COMPLEJO	$N^{\underline{o}}$	SIMPLE	COMPLEJO
2	di	bis	8	octa	octakis
3	tri	tris	9	nona	nonakis
4	tetra	tetrakis	10	deca	decakis
5	penta	pentakis	11	undeca	undecakis
6	hexa	hexakis	12	dodeca	dodecakis
7	hepta	heptakis	20	icosa	icosakis

Creación de nombres sistemáticos

- La formación de un nombre sistemático requiere varios pasos:
- 1. Determinar el grupo f uncional principal que se nombrará mediante un sufijo.
- 2. Determinar la cadena principal, que ha de contener el grupo principal.
- 3. Nombrar la cadena principal y especificar cualquier insaturación (enlaces C = C y C = C).
- 4. Combinar el nombre de la cadena principal con el sufijo del grupo f uncional principal.
- 5. Identificar los sustituyentes y ordenar sus prefijos alfabéticamente.
- 6. Insertar prefijos multiplicadores y localizadores.

Elección y numeración de la cadena principal

Elección

La cadena principal se elige aplicando los siguientes criterios:

- 1. Contiene el grupo funcional principal.
- 2. Contiene el mayor número de grupos funcionales.
- 3. Los sistemas de anillos son prioritarios frente a las cadenas.
- 4. Contiene más átomos.
- 5. Contiene más enlaces múltiples (dobles en caso de empate).
- 6. Contiene más sustituyentes.

Numeración

La cadena principal se numera aplicando los siguientes criterios:

- 1. Localizadores más bajos para heteroátomos (sustitutos de algún C en la cadena principal).
- 2. Localizador más bajo para el grupo funcional principal.
- 3. Localizadores más bajos para enlaces dobles y triples.
- 4. Localizadores más bajos como conjunto para todos los sustituyentes nombrados como prefijos.
- 5. Localizadores más bajos para sustituyentes en orden de mención (alfabético).

Grupos funcionales — sufijos y prefijos

Un **grupo f uncional** es un **átomo** o **grupo** de **átomos** dentro de una molécula que puede ser **responsable** de las **reacciones químicas características** de esa **molécula**. La siguiente tabla muestra la fórmula, sufijo (si es principal) y prefijo de cada uno de ellos, en orden decreciente de **prioridad**:

GRUPO FUNCIONAL	FÓRMULA*	SUFIJO (PRINCIPAL)	PREFIJO (SUSTITUYENTE)
Carboxilatos	-COO ⁻	-carboxilato -oato	carboxilato-
Ácidos carboxílicos	-соон -(с)оон	ácidocarboxílico ácidooico	carboxi–
Ésteres	-COOR -(C)OOR	carboxilato (de R) oato (de R)	(R)oxicarbonil–
Haluros de ácido	-COX -(C)OX	haluro deoilo	fluorocarbonil- clorocarbonil- bromocarbonil- yodocarbonil-
Amidas	-CONH ₂ -(C)ONH ₂	-carboxamida -amida	carbamoil–
Nitrilos	-C≡N -(C)≡N	-carbonitrilo -nitrilo	ciano–
Aldehídos	-CHО -(С)НО	-carbaldehído -al	formil- oxo-
Cetonas	=O	-ona	OXO-
Alcoholes	-OH	-ol	hidroxi-
Tioles	-SH	-tiol	sulfanil-
Aminas	-NH ₂	–amina	amino–
Éteres**	-OR		(R)oxi-
Haloalcanos**	-F -Cl -Br -I		fluoro- cloro- bromo- yodo-
Nitrocompuestos**	-NO ₂		nitro-

^{*} Aquí –(C) indica que el átomo de carbono está implícito en la cadena principal.

Nomenclatura de clase funcional

También conocida como nomenclatura *radicofuncional*, es la **preferida** para **ésteres** y **haluros de ácido** (también utilizada para **éteres** y **cetonas**). Los nombres consisten en el **nombre** del **grupo principal** del compuesto seguido de la palabra *de* y el **nombre** del **sustituyente** al que va unido.

Representación gráfica [zigzag]

Átomos distintos de C e H siempre se muestran.

Cada ángulo, cada intersección y cada extremo de una línea representa un átomo de carbono saturado de hidrógenos.

Compuestos padre (hidrocarburos)

Compuestos orgánicos formados únicamente por átomos de **C** e **H**. Distinguimos entre:

Alifáticos Pueden ser de cadena abierta (acíclicos) o cerrada (cíclicos).

Aromáticos Hidrocarburos cíclicos con enlaces simples y múltiples alternados. Ej.: benceno.

Alcanos (C-C)

Hidrocarburos en los que los **enlaces C–C** son todos **simples**. Se nombran con un **prefijo** que indica el número de átomos de C y la **terminación** —*ano*.

En caso de ser **sustituyentes**, cambian la **terminación** –ano por *–il(o)*.

Cicloalcanos Se añade el **prefijo** ciclo— al nombre del hidrocarburo.

Alquenos (C=C) y alquinos (C=C)

La presencia de **insaturaciones** —**enlaces dobles** (C=C) y **triples** (C=C)— se indica mediante las **terminaciones** —**eno** e —**ino**, respectivamente, y **localizadores** definiendo sus posiciones.

$$H_2$$
C H_2 H_2 H_2 H_2 H_2 H_3 H_4 H_4 H_5 H_5 H_5 H_5 H_5 H_6 H_6

En caso de ser **sustituyentes**, terminan en *-enil(o)* e *-inil(o)*, respectivamente.

Aromáticos (arenos)

El **benceno**, C_6H_6 , es el hidrocarburo aromático de **referencia**.

En caso de ser **sustituyente**, se denomina **fenil(o)**.

Arenos policíclicos con importancia en el estudio de **sistemas biológicos**

^{**} Los éteres, haloalcanos y nitrocompuestos se representan por prefijos en orden alfabético.

FORMULACIÓN Y NOMENCLATURA ORGÁNICA

Recomendaciones y nombres preferidos de la IUPAC de 2013

Rodrigo Alcaraz de la Osa

Funciones que contienen halógenos [F, Cl, Br o 1]

No pueden ser nunca el grupo principal, por lo que se nombran añadiendo el **prefijo** fluoro-, cloro-, bromo- o yodo-, según corresponda, al nombre del hidrocarburo.

Funciones que contienen oxígeno (0)

Alcoholes (-OH)

Si son el **grupo principal** se añade el **sufijo** -ol al nombre del hidrocarburo, en caso contrario se utiliza el **prefijo** *bidroxi*—.

Aldehídos (-CHO)

Si son el **grupo principal** se añade el **sufijo** -al (o -carbaldebído) al nombre del hidrocarburo, en caso contrario se utiliza el **prefijo** *formil*— (u *oxo*—).

Cetonas (=0)

Si son el **grupo principal** se añade el **sufijo** *-ona* al nombre del hidrocarburo, en caso contrario se utiliza el **prefijo** *oxo*—.

Éteres (-OR)

No pueden ser nunca el grupo principal, por lo que se nombran añadiendo el **prefijo** (R)oxi- al nombre del hidrocarburo.

Funciones que contienen oxígeno (cont.)

Ácidos carboxílicos (-COOH)

Son compuestos con un grupo carboxilo, -C(=0)OH. Si son el grupo principal se nombran comenzando por ácido y añadiendo el sufijo -oico (o -carboxílico) al nombre del hidrocarburo, en caso contrario se utiliza el prefijo carboxi—. Ej.: aminoácidos y ácidos grasos.

Ésteres (-COOR)

Derivan de ácidos, en los que al menos un grupo hidroxi, -OH, se sustituye por un grupo -OR. Se utiliza la nomenclatura de clase f uncional, sustituyendo la terminación –oico del ácido por -oato, si son el grupo principal; en caso contrario se utiliza el prefijo (R)oxicarbonil-.

$$H_3C$$
 CH_3
 $COOH$

acetato de etilo (PIN)
(etanoato de etilo)

benzoato de metilo

ácido 3-(acetiloxi)propanoico

Carboxilatos (-COO⁻)

Son la base conjugada de un ácido carboxílico, siendo iones con carga negativa (aniones). Se utiliza la nomenclatura de clase funcional, sustituyendo la terminación -oico del ácido por -oato, si son el grupo principal; en caso contrario se utiliza el prefijo carboxilato-.

Haluros de ácido (-COX)

Derivan de ácidos carboxílicos, sustituyendo el grupo hidroxi, -OH, por un haluro (F, Cl, Br o I). Se utiliza la **nomenclatura** de **clase f uncional**, comenzando por *baluro de* y sustituyendo la terminación –oico del ácido por –oilo, si son el grupo principal; en caso contrario se utiliza el prefijo balocarbonil-.

La nueva edición del Libro Azul incorpora un conjunto jerárquico de criterios para elegir el **nombre** único que se prefiere a efectos de regulación, el Preferred IUPAC Name, o PIN.

Funciones que contienen nitrógeno (N)

Aminas $(-NH_2)$

Si son el **grupo principal** se añade el **sufijo** -amina al nombre del hidrocarburo, en caso contrario se utiliza el **prefijo** amino-.

Aminas secundarias y terciarias Cuando se reemplazan hidrógenos del grupo -NH2 por sustituyentes complejos se utiliza la letra N en vez de números localizadores.

Amidas (-CONH₂)

Si son el **grupo principal** se añade el **sufijo** -amida (o -carboxamida) al nombre del hidrocarburo, en caso contrario se utiliza el **prefijo** carbamoil—.

Amidas secundarias y terciarias Igual que en las aminas, la sustitución de hidrógenos del grupo $-CONH_2$ se denota por la letra N en vez de números localizadores.

Nitrilos (−C≡N)

Si son el **grupo principal** se añade el **sufijo -**nitrilo (o -carbonitrilo) al nombre del hidrocarburo, en caso contrario se utiliza el **prefijo** ciano—.

Nitrocompuestos $(-NO_2)$

No pueden ser nunca el grupo principal. Se nombran añadiendo el **prefijo** *nitro*—.

