Let \$T\$ be a tree of order for which no vertex has degree \$2\$, except possibly the vertex \$v\$. Then \$\overline N \ v R \ v - N \ v \overline R \ v \le N \ v(N \ v + 2\overline N \ v).\$

when deg $v \ge 2$.

First, we compute $Nvb \cdot Rv - Nv \cdot Rvb$ in terms of quantities of T_1 and T_2 . Here Nvb is \overline N v and analoguous.

Next, we **use** estimates **to** prove most cases.

For this, we rewrite $Nvb \cdot Rv - Nv \cdot Rvb$ as $N1(N2b \cdot R2 - N2 \cdot R2b) + N2(N1b \cdot R1 - N1 \cdot R1b) + N2b \cdot N2 \cdot R1 + N1b \cdot N1 \cdot R2 - N1N2(N1b + N2b)$ and use the induction hypothesis to get the following lower bound

The latter is positive if $R_i \le \frac{N_i^2}{4}$ for i in $\{1, 2\}$

>
$$simplify \left(f\left(N1b, N1, \frac{N1^2}{4}, N2b, N2, \frac{N2^2}{4}\right) \right)$$

$$\left(\left(N2 - \frac{N2b}{4} - 1\right) NI + \left(-\frac{N1b}{4} - 1\right) N2 + N1b + N2b \right) N2 N1$$
Note for this that $\frac{2 \cdot N2 - N2b - 4}{4}$ and $\frac{N1}{2} - \frac{N1b}{4} - 1$ are both nonnegative.

There are 7 choices for subtrees T_i to not satisfy $R_i \le \frac{N_i i^2}{4}$

for this, we checked trees with at most 10 vertices, concluding as for larger trees $N_i \ge 32$ and then $mu_i < \frac{3}{2}log_2(N_i) < \frac{N_i}{4}$

For 5 of them, we can conclude using that Nib \le 2 Ni when $R_i \le \frac{N_i^2}{4}$ and by checking the remaining 15 combinations of them.

2292

(17)

For the case where T_i is P_2 or S_4 , we do not estimate from the start and use the exact formula h. Hereby, we consider the expression in terms of the quantities of $T_w=T_1 \v$.

The first expression is always positive, as Rw*Nwb-Rwb*Nw <= Nw(Nw+Nwb) and Nw(Nw-Nwb) >= 0.

The second expression is larger than 17Nw^2-13Nw*Nwb-25Rw, which is positive when Rw \le 4/25Nw^2 (since Nwb <Nw).

Since Rw \le Nw* $(3/2 \log_2(N_w) - 1)$, the last is satisfied whenever Nw \ge 64, which is the case

when $T_2 \setminus backslash v$ has at least order 11.

For the remaining trees with less than 10 vertices, the expression can be checked by ranging in a brute force way over all of them.