Lecture 9 – The Pumping Lemma for Regular Languages COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

• Not all languages are regular: e.g., $L = \{a^n b^n \mid n \ge 0\}$.

Recall

• Not all languages are regular: e.g., $L = \{a^n b^n \mid n \ge 0\}$.

• How to prove that a language is **NOT** regular?

Recall

• Not all languages are regular: e.g., $L = \{a^n b^n \mid n \ge 0\}$.

How to prove that a language is NOT regular? Pumping Lemma!

Contents

1. Pumping Lemma for Regular Languages

Pumping Lemma

Proof of Pumping Lemma

Application: Proving Languages are Not Regular

Examples

```
Example 1: L = \{a^nb^n \mid n \ge 0\}
```

Example 2:
$$L = \{ww^R \mid w \in \{a,b\}^*\}$$

Example 3:
$$L = \{a^I b^m c^n \mid I + m \le n\}$$

Example 4:
$$L = \{a^{n^2} \mid n \ge 0\}$$

Example 5:
$$L = \{a^n b^k c^{n+k} \mid n, k \ge 0\}$$

Pumping Lemma for Regular Languages

Lemma (Pumping Lemma for Regular Languages)

For a given regular language L, there exists a positive integer n such that for all $w \in L$, if $|w| \ge n$, there exists w = xyz such that

- 1 |y| > 0
- $|xy| \leq n$
- $3 \forall i \geq 0. \ xy^i z \in L$

Pumping Lemma for Regular Languages

Lemma (Pumping Lemma for Regular Languages)

For a given regular language L, there exists a positive integer n such that for all $w \in L$, if $|w| \ge n$, there exists w = xyz such that

- 1 |y| > 0
- $|xy| \le n$
- $\exists \forall i \geq 0. \ xy^i z \in L$

$$A =$$

L is regular

$$B = \exists n > 0. \ \forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3$$

• Let L be a regular language.

- Let L be a regular language.
- Then, \exists DFA $D = (Q, \Sigma, \delta, q_0, F)$. s.t. L(D) = L.

- Let L be a regular language.
- Then, \exists DFA $D = (Q, \Sigma, \delta, q_0, F)$. s.t. L(D) = L. Let n = |Q| > 0.

- Let L be a regular language.
- Then, \exists DFA $D = (Q, \Sigma, \delta, q_0, F)$. s.t. L(D) = L. Let n = |Q| > 0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.

- Let L be a regular language.
- Then, \exists DFA $D=(Q,\Sigma,\delta,q_0,F)$. s.t. L(D)=L. Let n=|Q|>0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathbf{a}_1 \cdots \mathbf{a}_i)$ for all $0 \le i \le m$.

- Let L be a regular language.
- Then, \exists DFA $D=(Q, \Sigma, \delta, q_0, F)$. s.t. L(D)=L. Let n=|Q|>0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.

- Let L be a regular language.
- Then, \exists DFA $D = (Q, \Sigma, \delta, q_0, F)$. s.t. L(D) = L. Let n = |Q| > 0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.
- Consider the first n+1 states: $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n$.

- Let L be a regular language.
- Then, \exists DFA $D=(Q, \Sigma, \delta, q_0, F)$. s.t. L(D)=L. Let n=|Q|>0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.
- Consider the first n+1 states: $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n$.
- By Pigeonhole Principle, there exists $i < j \le n$ s.t. $p_i = p_j$.

- Let L be a regular language.
- Then, \exists DFA $D=(Q, \Sigma, \delta, q_0, F)$. s.t. L(D)=L. Let n=|Q|>0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.
- Consider the first n+1 states: $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n$.
- By Pigeonhole Principle, there exists $i < j \le n$ s.t. $p_i = p_j$.
- Split w = xyz:

$$x = a_1 \cdots a_i$$
 $y = a_{i+1} \cdots a_j$ $z = a_{j+1} \cdots a_m$

- Let *L* be a regular language.
- Then, \exists DFA $D = (Q, \Sigma, \delta, q_0, F)$. s.t. L(D) = L. Let n = |Q| > 0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.
- Consider the first n+1 states: $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n$.
- By Pigeonhole Principle, there exists $i < j \le n$ s.t. $p_i = p_j$.
- Split w = xyz:

$$x = a_1 \cdots a_i$$
 $y = a_{i+1} \cdots a_j$ $z = a_{j+1} \cdots a_m$
 $|x| = i$ $|y| = j - i > 0$ $|xy| = j \le n$

- Let L be a regular language.
- Then, \exists DFA $D = (Q, \Sigma, \delta, q_0, F)$. s.t. L(D) = L. Let n = |Q| > 0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.
- Consider the first n+1 states: $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n$.
- By Pigeonhole Principle, there exists $i < j \le n$ s.t. $p_i = p_j$.
- Split w = xyz:

- Let L be a regular language.
- Then, \exists DFA $D = (Q, \Sigma, \delta, q_0, F)$. s.t. L(D) = L. Let n = |Q| > 0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.
- Consider the first n+1 states: $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n$.
- By Pigeonhole Principle, there exists $i < j \le n$ s.t. $p_i = p_j$.
- Split w = xyz:

• Then, $\forall i \geq 0$. $\delta^*(q_0, xy^i z) = p_m$ (by induction on i).

- Let L be a regular language.
- Then, \exists DFA $D=(Q,\Sigma,\delta,q_0,F)$. s.t. L(D)=L. Let n=|Q|>0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.
- Consider the first n+1 states: $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n$.
- By Pigeonhole Principle, there exists $i < j \le n$ s.t. $p_i = p_j$.
- Split w = xyz:

- Then, $\forall i \geq 0$. $\delta^*(q_0, xy^i z) = p_m$ (by induction on i).
- Finally, $\forall i \geq 0$. $xy^i z \in L$.

- Let *L* be a regular language.
- Then, \exists DFA $D=(Q, \Sigma, \delta, q_0, F)$. s.t. L(D)=L. Let n=|Q|>0.
- Take any $w = a_1 a_2 \cdots a_m \in L$ s.t. $|w| = m \ge n$.
- Let $p_i = \delta^*(q_0, \mathtt{a}_1 \cdots \mathtt{a}_i)$ for all $0 \leq i \leq m$. Then, $p_0 = q_0 \wedge p_m \in F$.
- Consider the first n+1 states: $p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} p_n$.
- By Pigeonhole Principle, there exists $i < j \le n$ s.t. $p_i = p_j$.
- Split w = xyz:

$$egin{array}{lll} x = {a_1} \cdots {a_i} & y = {a_{i+1}} \cdots {a_j} & z = {a_{j+1}} \cdots {a_m} \\ |x| = i & & & & & & & |xy| = j \le n-2 \\ \delta^*(q_0,x) = p_i & & & & & & \delta^*(p_i,y) = p_i & \delta^*(p_i,z) = p_m \end{array}$$

- Then, $\forall i \geq 0$. $\delta^*(q_0, xy^i z) = p_m$ (by induction on i).
- Finally, $\forall i \geq 0$. $xy^i z \in L 3$.

Lemma (Pumping Lemma for Regular Languages)

For a given regular language L, there exists a positive integer n such that for all $w \in L$, if $|w| \ge n$, there exists w = xyz such that

- 1 |y| > 0
- $|xy| \leq n$
- $3 \ \forall i \geq 0. \ xy^i z \in L$

$$A =$$

L is regular

$$B = \exists n > 0. \ \forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3$$

$$A = L$$
 is regular

$$B = \exists n > 0. \ \forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3$$

$$A = L \text{ is regular}$$

$$\downarrow \downarrow$$
 $B = \exists n > 0. \forall w \in L. |w| \ge n \Rightarrow \exists w = xyz. \text{ 1} \land \text{ 2} \land \text{ 3}$

$$A \implies B$$
 (0)

$$A = L \text{ is regular}$$

$$\downarrow \downarrow$$

$$B = \exists n > 0. \forall w \in L. |w| \ge n \Rightarrow \exists w = xyz. \text{ 1} \land \text{ 2} \land \text{ 3}$$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (0) \\
B & \Longrightarrow & A & (X)
\end{array}$$

$$A = L \text{ is regular}$$

$$\downarrow \downarrow$$

$$B = \exists n > 0. \forall w \in L. |w| \ge n \Rightarrow \exists w = xyz. \text{ 1} \land \text{ 2} \land \text{ 3}$$

$$\begin{array}{cccc} A & \Longrightarrow & B & (\mathsf{O}) \\ B & \Longrightarrow & A & (\mathsf{X}) \\ \neg B & \Longrightarrow & \neg A & (\mathsf{O}) \end{array}$$

Lemma (Pumping Lemma for Regular Languages)

$$A = L \text{ is regular}$$

$$\downarrow \qquad \qquad \downarrow$$
 $B = \exists n > 0. \ \forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (0) \\
B & \Longrightarrow & A & (X) \\
\neg B & \Longrightarrow & \neg A & (0)
\end{array}$$

 $\neg B$

$$A = L \text{ is regular}$$

$$\downarrow \downarrow$$
 $B = \exists n > 0. \forall w \in L. |w| \ge n \Rightarrow \exists w = xyz. \text{ 1} \land \text{ 2} \land \text{ 3}$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (0) \\
B & \Longrightarrow & A & (X)
\end{array}$$

$$B \implies A \quad (X)$$

$$\neg B \implies \neg A \stackrel{(O)}{=}$$

$$\neg B = \forall n > 0. \ \neg(\forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ (1) \land (2) \land (3))$$

$$A = L \text{ is regular}$$

$$\downarrow \downarrow$$

$$B = \exists n > 0. \forall w \in L. |w| \ge n \Rightarrow \exists w = xyz. \text{ 1} \land \text{ 2} \land \text{ 3}$$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (0) \\
B & \Longrightarrow & A & (X) \\
\neg B & \Longrightarrow & \neg A & (0)
\end{array}$$

$$\neg B = \forall n > 0. \ \neg(\forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ (1) \land (2) \land (3))$$
$$= \forall n > 0. \ \exists w \in L. \ \neg(|w| \ge n \Rightarrow \exists w = xyz. \ (1) \land (2) \land (3))$$

$$A = L \text{ is regular}$$

$$\downarrow \downarrow$$

$$B = \exists n > 0. \forall w \in L. |w| \ge n \Rightarrow \exists w = xyz. \text{ 1} \land \text{ 2} \land \text{ 3}$$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (0) \\
B & \Longrightarrow & A & (X) \\
\neg B & \Longrightarrow & \neg A & (0)
\end{array}$$

$$\neg B = \forall n > 0. \ \neg(\forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3)$$

$$= \forall n > 0. \ \exists w \in L. \ \neg(|w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3)$$

$$= \forall n > 0. \ \exists w \in L. \ |w| \ge n \land \neg(\exists w = xyz. \ 1 \land 2 \land 3)$$

$$A = L \text{ is regular}$$

$$\downarrow \downarrow$$

$$B = \exists n > 0. \forall w \in L. |w| \ge n \Rightarrow \exists w = xyz. \text{ 1} \land \text{ 2} \land \text{ 3}$$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (0) \\
B & \Longrightarrow & A & (X) \\
\neg B & \Longrightarrow & \neg A & (0)
\end{array}$$

$$\neg B = \forall n > 0. \ \neg(\forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ (1) \land (2) \land (3))$$

$$= \forall n > 0. \ \exists w \in L. \ \neg(|w| \ge n \Rightarrow \exists w = xyz. \ (1) \land (2) \land (3))$$

$$= \forall n > 0. \ \exists w \in L. \ |w| \ge n \land \neg(\exists w = xyz. \ (1) \land (2) \land (3))$$

$$= \forall n > 0. \ \exists w \in L. \ |w| \ge n \land \forall w = xyz. \ \neg((1) \land (2) \land (3))$$

Lemma (Pumping Lemma for Regular Languages)

$$A = L \text{ is regular}$$

$$\downarrow \qquad \qquad \downarrow$$
 $B = \exists n > 0. \ \forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (0) \\
B & \Longrightarrow & A & (X) \\
\neg B & \Longrightarrow & \neg A & (0)
\end{array}$$

$$= \forall n > 0. \exists w \in L. \neg(|w| \ge n \Rightarrow \exists w = xyz. \ 1) \land 2 \land 3)$$

$$= \forall n > 0. \exists w \in L. \ |w| \ge n \land \neg(\exists w = xyz. \ 1) \land 2 \land 3)$$

$$= \forall n > 0. \exists w \in L. \ |w| \ge n \land \forall w = xyz. \neg(1) \land 2 \land 3)$$

$$= \forall n > 0. \exists w \in L. \ |w| \ge n \land \forall w = xyz. \neg(1) \land 2) \lor \neg 3$$

 $\neg B = \forall n > 0. \ \neg(\forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ (1) \land (2) \land (3))$

$$A = L \text{ is regular}$$

$$\downarrow \downarrow$$

$$B = \exists n > 0. \forall w \in L. |w| \ge n \Rightarrow \exists w = xyz. \text{ 1} \land \text{ 2} \land \text{ 3}$$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (0) \\
B & \Longrightarrow & A & (X) \\
\neg B & \Longrightarrow & \neg A & (0)
\end{array}$$

$$\neg B = \forall n > 0. \ \neg(\forall w \in L. \ |w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3)$$

$$= \forall n > 0. \ \exists w \in L. \ \neg(|w| \ge n \Rightarrow \exists w = xyz. \ 1 \land 2 \land 3)$$

$$= \forall n > 0. \ \exists w \in L. \ |w| \ge n \land \neg(\exists w = xyz. \ 1 \land 2 \land 3)$$

$$= \forall n > 0. \ \exists w \in L. \ |w| \ge n \land \forall w = xyz. \ \neg(1 \land 2 \land 3)$$

$$= \forall n > 0. \ \exists w \in L. \ |w| \ge n \land \forall w = xyz. \ \neg(1 \land 2) \lor \neg 3$$

$$= \forall n > 0. \ \exists w \in L. \ |w| \ge n \land \forall w = xyz. \ \neg(1 \land 2) \lor \neg 3$$

$$= \forall n > 0. \ \exists w \in L. \ |w| \ge n \land \forall w = xyz. \ \neg(1 \land 2) \lor \neg 3$$

To prove a language L is **NOT** regular, we need to show that

$$\forall n > 0. \ \exists w \in L. \ |w| \ge n \land \forall w = xyz. \ (1) \land (2) \Rightarrow \neg (3)$$

- 1 |y| > 0
- $2 |xy| \le n$
- $\exists \forall i \geq 0. \ xy^i z \in L$

Note that $\neg 3 = \exists i \geq 0$. $xy^iz \notin L$.

To prove a language L is **NOT** regular, we need to show that

$$\forall n > 0. \ \exists w \in L. \ |w| \ge n \land \forall w = xyz. \ (1) \land (2) \Rightarrow \neg (3)$$

- 1 |y| > 0
- $|xy| \le n$
- **3** \forall *i* ≥ 0. xy^iz ∈ L

Note that $\neg (3) = \exists i \geq 0$. $xy^i z \notin L$.

We can prove this by following the steps below:

- $oldsymbol{1}$ Assume any positive integer n is given.
- **2** Pick a word $w \in L$.
- **3** Show that $|w| \geq n$.
- 4 Assume any split w = xyz is given, and $1 |y| > 0 \land 2 |xy| \le n$.
- **5** \neg (3) Pick $i \ge 0$, and show that $xy^iz \notin L$ using (1) and (2).

Example 1

Let's prove that *L* is **NOT** regular using the Pumping Lemma:

$$L = \{a^nb^n \mid n \ge 0\}$$

Let's prove that L is **NOT** regular using the Pumping Lemma:

$$L = \{a^n b^n \mid n \ge 0\}$$

- $oldsymbol{1}$ Assume any positive integer n is given.
- 2 Let $w = a^n b^n \in L$.
- $|w| = n + n = 2n \ge n$.
- 4 Assume any split w = xyz is given, and $1 |y| > 0 \land 2 |xy| \le n$.
- **5** Let i = 0. We need to show that $-3 \times y^0 z \notin L$:
 - Since $2 |xy| \le n$,

$$x = a^p$$
 $y = a^q$ $z = a^r b^n$

where $0 \le p, q, r \le n$ and p + q + r = n.

- Since (1)|y| > 0, we know q > 0.
- Finally, $xy^0z = xz = a^pa^rb^n = a^{n-q}b^n$ (: p+q+r=n). But, $a^{n-q}b^n \notin L$ (: q>0).

Let's prove that *L* is **NOT** regular using the Pumping Lemma:

$$L = \{ww^R \mid w \in \{\mathtt{a},\mathtt{b}\}^*\}$$

Let's prove that *L* is **NOT** regular using the Pumping Lemma:

$$L = \{ww^R \mid w \in \{\mathtt{a},\mathtt{b}\}^*\}$$

- $oldsymbol{1}$ Assume any positive integer n is given.
- 2 Let $w = a^n b^n b^n a^n \in L$.
- 3 $|w| = n + n + n + n = 4n \ge n$.
- 4 Assume any split w = xyz is given, and $1 |y| > 0 \land 2 |xy| \le n$.
- **6** Let i = 0. We need to show that $-3 \times y^0 z \notin L$:
 - Since $2 |xy| \le n$,

$$x = a^p$$
 $y = a^q$ $z = a^r b^n b^n a^n$

where $0 \le p, q, r \le n$ and p + q + r = n.

- Since (1) |y| > 0, we know q > 0.
- Finally, $xy^0z = xz = a^pa^rb^nb^na^n = a^{n-q}b^nb^na^n \ (\because p+q+r=n)$. But, $a^{n-q}b^nb^na^n \notin L \ (\because q>0)$.

Let's prove that *L* is **NOT** regular using the Pumping Lemma:

$$L = \{a^I b^m c^n \mid I + m \le n\}$$

Let's prove that L is **NOT** regular using the Pumping Lemma:

$$L = \{a^I b^m c^n \mid I + m \le n\}$$

- $oldsymbol{1}$ Assume any positive integer n is given.
- 2 Let $w = a^n b^n c^{2n} \in L$.
- 3 $|w| = n + n + 2n = 4n \ge n$.
- 4 Assume any split w = xyz is given, and $1 |y| > 0 \land 2 |xy| \le n$.
- **5** Let i = 2. We need to show that $\neg 3 xy^2z \notin L$:
 - Since (1)|y| > 0 and $(2)|xy| \le n$,

$$y = a^k$$

where $1 \le k \le n$.

- Since (1) |y| > 0, we know q > 0.
- Finally, $xy^2z = xyyz = a^{n+k}b^nc^{2n} \notin L$ (: $k \ge 1$. Thus, (n+k) + n = 2n + k > 2n).

Let's prove that *L* is **NOT** regular using the Pumping Lemma:

$$L = \{a^{n^2} \mid n \ge 0\}$$

Let's prove that L is **NOT** regular using the Pumping Lemma:

$$L = \{\mathbf{a}^{n^2} \mid n \ge 0\}$$

- 1 Assume any positive integer n is given.
- **2** Let $w = a^{n^2} \in L$.
- **3** $|w| = n^2 \ge n$.
- 4 Assume any split w = xyz is given, and $(1)|y| > 0 \land (2)|xy| \le n$.
- **6** Let i = 2. We need to show that $-3 \times y^2 z \notin L$:
 - Since (1)|y| > 0 and $(2)|xy| \le n$,

$$y = a^k$$

where $1 \le k \le n$. Then,

$$n^2 < n^2 + k \ (\because 1 \le k)$$
 $n^2 + k < (n+1)^2 \ (\because k \le n)$

• Finally,
$$xy^2z = xyyz = a^{n^2+k} \notin L \ (\because n^2 < n^2 + k < (n+1)^2).$$

Let's prove that *L* is **NOT** regular:

$$L = \{a^n b^k c^{n+k} \mid n, k \ge 0\}$$

Let's prove that *L* is **NOT** regular:

$$L = \{a^n b^k c^{n+k} \mid n, k \ge 0\}$$

- It is much easier to use closure properties under homomorphisms.
- Consider a homomorphism $h: \{a, b, c\} \rightarrow \{a, b\}^*$:

$$h(a) = a$$
 $h(b) = a$ $h(c) = b$

Then,

$$h(L) = \{a^{n+k}b^{n+k} \mid n, k \ge 0\} = \{a^nb^n \mid n \ge 0\}$$

- If L is regular, then h(L) must be regular as well.
- However, we know h(L) is **NOT** regular.
- Therefore, L is **NOT** regular.

Summary

1. Pumping Lemma for Regular Languages

Pumping Lemma

Proof of Pumping Lemma

Application: Proving Languages are Not Regular

Examples

```
Example 1: L = \{a^nb^n \mid n \ge 0\}
```

Example 2:
$$L = \{ww^R \mid w \in \{a, b\}^*\}$$

Example 3:
$$L = \{a^l b^m c^n \mid l + m \leq n\}$$

Example 4:
$$L = \{a^{n^2} \mid n \ge 0\}$$

Example 5:
$$L = \{a^n b^k c^{n+k} \mid n, k \ge 0\}$$

Homework #2

- Please see
 https://github.com/ku-plrg-classroom/docs/tree/main/equiv-re-fa.
- The due date is Apr. 13 (Thu.).
- Please only submit Implementation.scala file to Blackboard.

Next Lecture

• Equivalence and Minimization of Finite Automata

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr