CATP #19 (Integração Numérica com Paralelismo) Quanto tempo levaria para obter uma precisão de 10¹⁴?

Lucas Flores

28 de junho de 2018

1 Regressão linear

Como citado pelo professor em aula, a ideia foi utilizar da regressão linear para resolver o problema.

"Em estatística ou econometria, regressão linear é uma equação para se estimar a condicional (valor esperado) de uma variável y, dados os valores de algumas outras variáveis x. A regressão, em geral, tem como objectivo tratar de um valor que não se consegue estimar inicialmente."¹

2 Extração de dados

2.1 Código utilizado

O código utilizado na coleta de dados se encontra disponível em ">https://github.com/pacluke/pi_sum_omp/blob/master/omp_pi.c>">.

2.2 Ambiente experimental

• Processador: 2,8 GHz Intel Core i5

• Memória: 8 GB 1600 MHz DDR3

• Sistema operacional: macOS High Sierra 10.13.4 (17B1003)

2.3 Dados coletados

A partir do código citado na subseção 2.1, os dados foram coletados modificando o número de passos (variável num_steps) de 1 a 10^{11 2}. Abaixo, a tabela gerada a partir da modificação desses valores onde a coluna *Time* indica a média de 10 execuções do código com os passos indicados:

¹https://pt.wikipedia.org/wiki/Regress%C3%A3o_linear

 $^{^{2}}$ A extração de dados foi até 10^{11} pois a máquina não conseguiu encontrar valores superiores.

Tabela 1: Dados coletados.	
Step	$\mathbf{Time}\;(\mathbf{s})$
1	"0.000005"
10	"0.000006"
100	"0.000008"
1000	"0.000035"
10000	"0.000265"
100000	"0.002955"
1000000	"0.055555"
10000000	"0.329504"
100000000	"3.064027"
1000000000	"29.931802"
10000000000	"35.202135"
100000000000	"41.118743"

Figura 1: Gráfico dos tempos encontrados.

3 Resultados

A partir dos tempos encontrados na seção anterior, foi possível projetar quanto tempo levaria para atingir uma precisão de 10¹⁴. O código utilizado para a regressão linear está disponível em https://github.com/pacluke/pi_sum_omp/blob/master/linear_regression.jl e foi desenvolvido em Julia ³ (0.6.2).

Utilizando confiança de 99,9% no cálculo da regressão linear, o seguinte gráfico foi produzido:

Figura 2: Gráfico da regressão linear.

Com o resultado da regressão linear, pode se dizer que o tempo para obter uma precisão de 10^{14} seria de aproximadamente 4×10^4 segundos, ou seja, 40000 segundos.

³https://julialang.org/