Trade-offs in Sampling-based Adversarial Planning

Raghuram Ramanujan Bart Selman

Cornell University

Upper Confidence bounds for Trees (UCT)

 UCT has revolutionized computer game-playing in recent years

Understanding UCT

There are large gaps in our understanding of UCT

Our work focuses on gaining better insights into UCT by studying its behavior in search spaces where comparisons to Minimax search are feasible

The Multi-Armed Bandit Problem

How should one play the machines to maximize the payoff?

The Multi-Armed Bandit Problem

v should one play machines to cimize the payoff?

The UCB1 Bandit Algorithm

Pick the machine that maximizes:

$$Q(k) + c \cdot \sqrt{\frac{\log t}{n(k)}}$$

- Q(k): observed mean payoff of machine k
- n(k): number of plays of machine k
- t: number of trials

The UCB1 Bandit Algorithm

Pick the machine that maximizes:

- Q(k): observed mean payoff of machine k
- n(k): number of plays of machine k
- t: number of trials

From Bandits to Tree Search

Key Idea: Treat every node in the game tree as a multi-armed bandit

The UCT Algorithm

Descend the tree from the root node by applying the UCB1 node selection policy

At the opponent's nodes, a symmetric lower confidence bound is minimized

At a leaf node, a new child is created

A random playout is performed to estimate the utility *R* of this state

The UCT Algorithm

An averaging backup is used to update the value estimates of all nodes on the path from the root to the new node

$$n(s) \leftarrow (s) + 1$$

Visit count update

$$Q(s) \underbrace{Q(s) + \frac{(n(s) - 1) \cdot Q(s) + R}{Q(s) + \frac{n(s)}{n(s)}}$$

State utility update

UCT in Action

Minimax in Action

UCT versus Minimax

UCT Tree

- Asymmetric tree
- Best-performing method for Go

Minimax Tree

- Complete tree up to some depth bound k
- Best-performing method for Chess

UCT versus Minimax

Minimax is too weak at Go

UCT is too weak at Chess

We need a domain where **both** UCT and Minimax search produce good players, with minimal enhancement

Mancala

Stores

A move = sow stones in counter clockwise fashion

UCT in Mancala

- We examine three key trade-offs in UCT while designing a winning Mancala player
 - □ Complete versus selective search
 - More sampling versus more nodes
 - Averaging back-ups versus minimax back-ups
- We deploy the winning UCT agent in a novel partial game setting to understand how it wins

Main Finding: Different parts of the search space may favor different search strategies

Complete versus Selective Search

$$Q(k) + C \sqrt{\frac{\log t}{n(k)}}$$

Complete versus Selective Search

Other Trade-offs in UCT

- Sampling versus Tree Size
 - Larger trees + fewer playouts per node > smaller trees+ more playouts per node
 - Playouts yield some information, but quality of feedback is limited
- Averaging versus Minimaxing back-ups
 - □ We have a good heuristic for this domain use it instead!
 - Minimaxing back-up is better when using a quality node evaluation function

UCTMAX_H versus Minimax

UCTMAX_H

UCT with Minimax back-ups and heuristic

- UCTMAX_H defeats Minimax searches up to depth 12 in Mancala
 - Minimax uses the same heuristic
 - □ UCTMAX_H is only allowed to expand as many nodes as Minimax
- Can we gain some insight into where UCT derives it's advantage?

Background: Trap States

Trap state: Position where a mistake can result in a quick loss

They are sprinkled throughout the Chess search space

Appear only near the end-game in Go

Background: Trap States

Trap state: Position where a mistake can result in a quick loss

Traps were shown to play a role in the poor performance of UCT in Chess

Traps in Mancala

Does UCT perform better in the absence of traps?

'Partial' Games of Mancala

Does UCT perform better in the absence of traps?

UCTMAX_H versus Minimax

UCT is better when it is making decisions only in parts of the space without traps

Different parts of the search space may favor different search methods

Conclusions

- The exploration-exploitation balancing performed by UCT is valuable
- Minimax back-ups in UCT can help when we have a good heuristic
- Hybrid search strategies, combining UCT and Minimax, can outperform either on it's own