

A Computer-Vision Based Method for Quantifying Standardized Motor Assessment in Parkinson's Disease

median velocity

accel_r_ankle

accel_l_ankle

cv_dist_ankle

0.00 0.05 0.10 0.15 0.20

Feature Importance Score

Tianhao Lei, MS¹; Kyle Embry, Ph.D^{1,2}, Ronald J Cotton, Ph.D²; Arun Jayaraman, Ph.D^{1,2} ¹Northwestern University, Evanston, IL; ²Center for bionic Medicine, Shirley Ryan Ability Lab, Chicago, IL

Background

- Parkinson's Disease is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. On average, Parkinson's (PD) patients see their treating clinician for inperson visits twice a year.
- During each visit, the clinician assesses the PD development of the patient through a series of motor assessment.
- Motor assessment: Standardized Motor Test

Standardized Motor Test

- 30 motor tasks included
- Similar to the most commonly used motor assessment (MDS-UPDRS)
- For each task, we assess:

 - Bradykinesia (slow movement)
 - Dyskinesia (involuntary movement)
 - 4. Overall
- For each assessment, we give a score from 0-4.
- 0 being the mildest and 4 being the most severe.

Problems with the Test

- **Short for the patient**. Limited time to discuss their symptoms and to communicate questions about their disease.
- **Long for the clinician**. Over 30 mins per visit is time consuming for the physicians.
- **Not frequent** enough to keep the disease development updated. This could affect the drug prescription for the patient
- Need to be **onsite**. It may be a problem due to PD patients' mobility

Can we develop a tool that can be used to assist clinician on rating the scores on PD patients?

Objective

Predict Standardized Motor Test score based only on videos of subject using computer vision method and supervised learning.

Materials & Methods Dataset & Labels Dataset: 1. Number of Subjects: 28 Medication stage: 0 min (OFF medication) • 30 min (ON medication) 3. task: Gait finger to nose left (FtnL) finger to nose right (FtnR) In total 168 sessions Standardized Motor Score Standardized Motor Score

Results **Features Show Little Correlation or Separation on Overall Scores** Gait features Ftn features 1. Med_ang_speed, avg_ang_speed, med_ang_accel shows some form of correlation 2. Med_ang_speed shows a decent separation among different scores **Accuracy of the Classification** Bradykinesia Score **Overall Score** Accuracy: 61% Accuracy: 60% 1. The model has a higher accuracy when predicting 1: Slight 1: Slight the **overall score** than predicting the Bradykinesia score. 3: Moderate 2. The model has a **higher** accuracy when predicting Accuracy: 40% the **ftn movement** than gait movement 1: Slight 1: Slight 9 2 0 2: Mild 4 2 2 3. Poor prediction on movements with moderate PD symptom. **Importance of the Features** Features importance for gait For gait: Features importance for ftn Step frequency step frequency ftn frequency appears to be the

avg_ang_speed

med_ang_speed

med_ang_accel

cv interval

0.1

Feature Importance Score

0.2 0.3

Discussion

. Accuracy in prediction on gait task with 2D pose estimation and similar features.

Table 4. Summary of classification metrics for the six types of models. RFC, Random Forest Classifier; LDA, Linear Discriminant Analysis; LOGIS, Logistic Regression; ANN, Artificial Neural Network; SVM, Support Vector Machine; XGBoost, Gradient Boosted Trees. The RFC was picked as it gave the best performance on three of the four classification metrics.

		Accuracy	Balanced Accuracy	Accuracy (±1)	Spearman's $ ho$
	RFC	0.50	0.50	0.95	0.52
	LDA	0.48	0.51	0.93	0.47
	LOGIS	0.45	0.50	0.92	0.47
	ANN	0.46	0.41	0.92	0.32
	SVM	0.46	0.52	0.93	0.49
	XGBoost	0.47	0.49	0.93	0.50

2. Novelty in pose estimation method:

3D mesh model regression makes the camera position

S. Rupprechter et al. 2021

- 2. Physically realistic constraints for joint movement.
- Ground contact detection for more possible features.
- Joint position optimization based on history frame.
- More accurate in signal calculation and variety of features:
- Realistic distance in 3D space.
- . Signal calculation is not affected by the patients' relative position to the camera.
- More features like body swinging angle and knee angle can be utilized.

Future Direction

- More refined computer vision tool for pose estimation and implementation of temporal smoothing.
- Take advantage of tremor score.
- More calculated features based on clinical assessments.
- 4. Incorporate more data on different tasks and medication status.
- 5. User friendly interpretation of the features.
- 6. Software/mobile app to assist clinicians and PD patients.

Acknowledgement

Here I appreciate Prof. Arun Jayaraman for giving me the opportunity to work with a great team of people on this project. I am also grateful to my postdoc Dr. Kyle Embry who has helped me so much, as well as Prof. James Cottons for introducing me to the world of 3D pose estimation.

References

most important.

For ftn movement:

Median angular

speed of the elbow

appears to be the

most important.

- . Rupprechter, Samuel, et al. "A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson's Disease." Sensors 21.16 (2021): 5437.
- 2. Lu, Mandy, et al. "Vision-based estimation of mds-updrs gait scores for assessing parkinson's disease motor severity." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020.
- 3. Choutas, Vasileios, et al. "Monocular expressive body regression through bodydriven attention." European Conference on Computer Vision. Springer, Cham,
- 4. Liu, Junfa, et al. "A graph attention spatio-temporal convolutional network for 3D human pose estimation in video." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.