Digital Signal Processing

Spring Semester 2022

Fundamental Signal Processing, Part 2

Last time's learning objectives

- Perform basic signal measurements
 - How long is the signal?
 - How strong is the signal?
 - How often does it repeat (if at all)?
 - Sample statistics that you would perform on any array of data (mean, variance, etc.)
- Perform basic math/operations on signals

Today's learning objectives

From today's lecture, you should be able to...

- Describe filtering (what it is and why it's used)
- Describe the relationship between filtering and convolution
- Perform basic convolution between two signals

<u>Outline</u>

- 1. Filtering
- 2. Convolution
 - 1. Definition
 - 2. Examples
 - 3. Properties

<u>Outline</u>

- 1. Filtering
- 2. Convolution
 - 1. Definition
 - 2. Examples
 - 3. Properties

Not a signal filter

Not a signal filter

Not a signal filter

A signal filter?

A signal filter...

- Removes unwanted frequencies
- Attenuates certain frequencies relative to others (passive or active filter)
- Boosts certain frequencies relative to others (active filter only)

<u>Outline</u>

- 1. Filtering
- 2. Convolution
 - 1. Definition
 - 2. Examples
 - 3. Properties

$$y(t) = x(t+) + x_2(t+)$$

$$= x_1(t-) x_2(t-t) dt$$

$$y(n) = x_1(n) * x_2(n)$$

$$= \sum_{k=-\infty}^{\infty} x_1(k) x_2(n-k)$$

Observe: In both cases, convolution involves adding up scaled, time-shifted versions of X2

<u>Outline</u>

- 1. Filtering
- 2. Convolution
 - 1. Definition
 - 2. Examples
 - 3. Properties

			X _{(M})
Ex:	×1(u) = 1	-ect ₃ (n)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$X_2(n) = 1$	-ectz(n)	4 × _z (n)
			o i by
			O L C
Goal:	Compule	y(n) = x,(n) *	
		$= \sum_{k=-\infty}^{\infty} x_{i}(k)$) x ₂ (n-k)
		K=-w	

$$1x_2(n)$$
 + $1x_2(n-1)$ + $1x_2(n-2)$ +

$$y(n) = x_1(n) * x_2(n)$$

= $x_2(n) + x_2(n-1) + x_2(n-2)$

$$=\frac{1}{1}$$

$$=\frac{1}$$

$$=\frac{1}{1}$$

$$=$$

Step 1: Choose one signal to scale/shift

Step 2: Draw scaled/shifted versions

Step 2: Draw scaled/shifted versions

Step 3: Stack and add

Step 3: Stack and add

$$= \sum_{k=0}^{N} \left(\frac{3}{4}\right)^{k}$$

$$= \sum_{k=0}^{N} \left(\frac{3}{4}\right)^{k}$$

$$= \sum_{k=0}^{N} \left(\frac{3}{4}\right)^{n+1}$$

$$= \left(\frac{3}{4}\right)^{n+1} = \left(\frac{3}{4}\right)^{n+1}$$

$$= \left(\frac{3}{4}\right)^{n+1} = 4 - 3\left(\frac{3}{4}\right)^{n}$$

<u>Outline</u>

- 1. Filtering
- 2. Convolution
 - 1. Definition
 - 2. Examples
 - 3. Properties

Properties of convolution

Commutative property

$$\begin{array}{rcl}
 & \times_{1}(n) & \times_{2}(n) & = & \times_{2}(n) & \times_{3}(n) \\
 & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times_{3}(n) \\
 & = & \times_{1}(n) & \times_{2}(n) & \times$$

Properties of convolution

Today's in-class activity

Given the following two signals, compute $x_1(n) * x_2(n)$:

