

PSE Molecular Dynamics: Worksheet 3

Group C, 03.12.2024

Luca-Dumitru Drindea

Mara Godeanu

Flavius Schmidt


```
Encapsulate simulation...
    <args>
    </args>
    <type>lj</type>
    <totalParticles>486</totalParticles>
    <objects>
    </objects>
</sim>
```



```
<sim>
    <args>
        ... Optional arguments passed in here...
    </args>
    <type>lj</type>
    <totalParticles>486</totalParticles>
    <objects>
        000
    </objects>
</sim>
```



```
<sim>
    <args>
              Specify simulation type...
    <type>lj</type>
    <totalParticles>486</totalParticles>
    <objects>
    </objects>
</sim>
```



```
<sim>
    <args>
    </args>
    <type>lj</type>
    <totalParticles>486</totalParticles>
    <objects>
Optionally reserve space...
    </objects>
</sim>
```



```
<sim>
    <args>
    </args>
    <type>lj</type>
    <totalParticles>486</totalParticles>
    <objects>
              Define simulation objects...
    </objects>
</sim>
```


Linked Cells Algorithm

Split the domain into equally sized cells

Halo Cells

Border Cells

Inner Cells

Cell

&particles

size

position

haloLocation

type

index

CellContainer

Manager Class for Cells

Initialization

create Cells determine their attributes add the particles

Basic Functionality

finding neighboring cells moving particles between cells removing particles in Halo iterators

+ minor functions and QOL additions

Iterators

Inner: Iterates over the particles in a cell.

Outer: Iterates over the cells; skips empty cells.

Collision of Two Bodies (Outflow) (Video)

Collision of Two Bodies (Reflective) (Video)

Component 1

Finding the opposite neighbor of a cell

Component 2

Mirroring the particle position

When a particle enters a reflective halo cell:

- 1. Find the opposing cell.
- 2. Mirror the particle position.

How do we know which boundary condition to apply for **corner halo cells?**

E outflow, N reflective, which to choose?

Divide the corner cell in **two**, then check if the particle is **above or below** the line

Benchmarking (All Implementations)

Benchmarking (Cutoff Implementations)

Benchmarking (Linked Cells)

2D Spheres

Approach 1
Concentric Circles

overlap, not a grid

Approach 2
Midpoint Circle Algorithm

messy borders, buggy

2D Spheres

Approach 3
Simple Iterative Algorithm

Falling Drop Simulation (Video)

