# Actor Critic Methods: From Paper to Code

Monte Carlo Prediction Problem

# Monte Carlo (MC) Methods



Model free algorithms



Average received rewards

### Prediction & Control Problems



Calculate  $V_{\pi} \rightarrow \text{prediction}$ 



Improve  $\pi$   $\to$  control

# Generalized Policy Iteration



Calculate  $V_{\pi} \rightarrow \text{make greedy} \rightarrow \text{repeat}$ 

Can do in series or parallel



# First vs. Every Visit MC

• Tracking rewards received after visiting states

• Rewards received after first visit → First visit MC

• Rewards received after every visit → Every visit MC

# Blackjack Overview

- Player vs. Dealer; first to 21 wins, > 21 is a loss (bust)
- Ace worth 1 or 11, other face cards worth 10
  - Ace that doesn't cause a bust is called usable
- One dealer card is showing
- Inifinte deck with replacement → no counting
- State space is a 3 tuple:
  - Player sum (4-21), dealer showing card (ace -10), boolean for a usable ace
- Reward +1 for winning, 0 for draw, -1 for loss
- Policy: draw new card (hit) if player total < 20, else stick

# Algorithm Overview

Initialize the policy to be evaluated Initialize the value function arbitrarily Initialize list of returns for all states in the state space Repeat for large number of episodes:

Generate episode using policy

For each state s in the agent's memory:

Calculate the return that followed first visit to s

Append return G to list of returns

Calculate the average of the returns for state s

500,000 games  $\rightarrow$  print value of state (21, 2, True)

Split into agent class and main function

#### Conclusion

• Use experience to estimate value of policy

Iterate estimation and improvement

Found value of policy with first visit MC prediction

