

Surrogate Modelling of the Tritium Breeding Ratio

Petr Mánek Graham Van Goffrier

Centre for Doctoral Training in Data Intensive Science University College London

22nd June 2020

Project Background

Nuclear fusion – the energy of the future!

- Must produce and contain an extremely hot and dense plasma
 - Magnetic Confinement Fusion (MCF): toroidal circulation
 - Inertial Confinement Fusion (ICF): spherical compression
- Modern designs require enriched Hydrogen fuel of two varieties:
 - Deuterium (²H) abundant in naturally-sourced water
 - Tritium (³H) extremely rare, but can be produced *in-reactor*

Problem Description

Data Generation

Conventional regression task – search for a cheap surrogate $\hat{f}(x)$ that minimizes dissimilarity with an expensive function f(x):

- Regression performance (capability to approximate)
 - \blacksquare Absolute: mean absolute error, σ of error
 - Relative: R^2 , $R_{\text{adj.}}^2$
- Computational complexity: wall training & prediction time / sample.

2 approaches for surrogate training:

- Decoupled trains models from previously sampled $T = \{(x, f(x))\}.$
- 2 Adaptive repeats sampling & model training, increases sampling density in low-performance regions.

Outline

Experiments 1 & 2: Hyperparameter Tuning

Experiment 3: Scaling Benchmark

Experiment 4: Model Comparison

The QASS Algorithm

Application on Toy Theory

Conclusion

