Seoul Woman's University Hyemin Lee

CANTransfer

Transfer Learning based Intrusion Detection on a Controller Area Network using Convolutional LSTM Network

Shahroz Tariq, Sangyup Lee, Simon S. Woo

Introduction

- 1. The problem of network attacks arising from the spread of autonomous driving in the automobile industry
- 2. CAN Protocol provides stable and economical communication between ECUs.
- 3. Re-learning of ConvLSTM-based model using one-shot learning to solve CAN vulnerability problems.

What is CAN(Controller Area Network)?

Figure 1: CAN Bus Frame Format

- CAN is a de-facto standard for serial communication.
- It has been widely used for in-vehicle communication, Stable and economic link between electronic control units (ECUs).

CAN Traffic Analysis

Table 1: Sample CAN packets, showing different ID and DLC fields

Timestamp	ID	DLC	Data
1479246664.162438	0153	8	00 21 10 ff 00 ff 00 00
1479246664.164967	02b0	5	bd ff 00 07 dc
1479246664.165822	043f	8	00 40 60 ff 58 28 08 00
1479246664.171065	05f0	2	f4 00
1479246664.171695	0002	8	00 00 00 00 06 01 a2

- To understand the **behavioral patterns** in CAN traffic, two different cars (KIA Motors, Hyundai Sonata) were used.
- Each car uses a different frame ID, It can be confirmed manufactured by a different company.
- High correlation occured the precedence bits and sequences between Car1 and Car2.

Problem

Problem Statement

- -The receiving node does not verify the source of a CAN message.
- Numerous network attacks can be easily carried out and practically deployed on the CAN bus.
- These attacks seem to be legitimate-looking traffic sequences.

Problem Solving

-> This paper propose **CANTransfer**, intrusion detection method on Controller Area Network using Transfer Learning based on Convolutional **LSTM model!**

ConvLSTM (Covolutional LSTM)

- 1. Image feature vector is input of LSTMExtract the image vector with CNN
- 2. Convolution is input the LSTM internal operation

Preprocessing

Table 1: Sample CAN packets, showing different ID and DLC fields

Timestamp	ID	DLC	Data
1479246664.162438	0153	8	00 21 10 ff 00 ff 00 00
1479246664.164967	02b0	5	bd ff 00 07 dc
1479246664.165822	043f	8	00 40 60 ff 58 28 08 00
1479246664.171065	05f0	2	f4 00
1479246664.171695	0002	8	00 00 00 00 00 06 01 a2

Table 2: Representation of the dataset after preprocessing.Labels are normal (0) and intrusion (1).

Time		DIO	Data								
Diff.	ID	DLC	D1	D2	D3	D4	D5	D6	D7	D8	Label
0.6	497	8	0	0.501	0.062	1	0	1	0.815	0.368	0
0.4	544	8	0	0	0	0	0	0	0	0	0
0.6	848	8	0.874	0.011	0.996	0.011	0.035	0	0.227	0.062	0
÷	÷	:	:	:	:	:	:	:	:	:	:
0.2	399	8	0.019	0.141	0.368	0.054	0.141	0.101	0	0.498	1
0.1	128	8	0	0.109	0.141	0	0	0.356	0	0.062	1

- The original 4-feature dataset is splited and transformed into an 11 features dataset.
- The 'Time Diff.' column is the time difference between two consecutive timestamps.

Time series Transformation

Figure 2: Dataset is transformed to be processed with the Convolutional LSTM model.

- It is transformed the original dataset and constructed a multivariate time series.
 - A multivariate time series data means It has multiple observations for each time-step.
- This paper split into samples, maintaining the order of observations across the 11 feature's input sequences.

Time series Transformation

Figure 2: Dataset is transformed to be processed with the Convolutional LSTM model.

- Choose input -> t
- Sample shape -> (t,11)
- n Sample -> time series (n, t, 11)

2D spatial Transformation

Figure 2: Dataset is transformed to be processed with the Convolutional LSTM model.

- Time stamp
 -two-dimensional multivariate time series < / /->
- t_r , t_c have equal size.

Convolutional LSTM

Figure 2: Dataset is transformed to be processed with the Convolutional LSTM model.

- This paper proposes multivariate ConvLSTM-based intrusion detection model
 - CANTransfer model is to predict between normal and abnormal sequences effectively via transfer learning.

CANTransfer

Multivariate Prediction

$$T(f_i) = \{f_i(t_1), f_i(t_2), f_i(t_3), \dots, f_i(t_n)\}$$

- X: Two-dimensional spatial-temporal data
- contain t (historical values of each feature f)

$$T(f_1,...,n) = \{T(f_1), T(f_2), T(f_3), ..., T(f_n)\}$$

• f (tj): jth step in the time series T(fi)

CANTransfer

Multivariate Prediction

$$X = \begin{cases} \begin{bmatrix} f_{1}(t_{r_{1},c_{1}}) & \dots & f_{1}(t_{r_{1},c_{n}}) \\ \vdots & \vdots & \vdots \\ f_{1}(t_{r_{n},c_{1}}) & \dots & f_{2}(t_{r_{n},c_{n}}) \end{bmatrix} \\ \begin{bmatrix} f_{2}(t_{r_{1},c_{1}}) & \dots & f_{2}(t_{r_{1},c_{n}}) \\ \vdots & \vdots & \vdots \\ f_{2}(t_{r_{n},c_{1}}) & \dots & f_{2}(t_{r_{n},c_{n}}) \end{bmatrix} \\ \vdots & \vdots & \vdots \\ \begin{bmatrix} f_{11}(t_{r_{1},c_{1}}) & \dots & f_{11}(t_{r_{1},c_{n}}) \\ \vdots & \vdots & \vdots \\ f_{11}(t_{r_{n},c_{1}}) & \dots & f_{11}(t_{r_{n},c_{n}}) \end{bmatrix} \end{cases}, y = \begin{cases} 0 & 1 \\ 1 & 0 \end{cases}$$

$$T(f_1,...,n) = \{T(f_1), T(f_2), T(f_3), ..., T(f_n)\}$$

- X: timeseries for all 11 features can be written
- X is the input for CAN-Transfer model

Data Preprocessing

Table 2: Representation of the dataset after preprocessing.Labels are normal (0) and intrusion (1).

Time	ID	DLC				Da	ıta				Label
Diff.	Ю	DLC	D1	D2	D3	D4	D5	D6	D7	D8	Luvei
0.6	497	8	0	0.501	0.062	1	0	1	0.815	0.368	0
0.4	544	8	0	0	0	0	0	0	0	0	0
0.6	848	8	0.874	0.011	0.996	0.011	0.035	0	0.227	0.062	0
:	:	:	:	:	:	:	:	:	:	:	:
•											
0.2	399	8	0.019	0.141	0.368	0.054	0.141	0.101	0	0.498	1
0.1	128	8	0	0.109	0.141	0	0	0.356	0	0.062	1

Dataset

- Performed preprocessing and normalization. (11 features dataset)
- Converted timestamp into time difference. (time interval between the current and previous packet)
- Labeled to timestep t.

Data Preprocessing

Table 2: Representation of the dataset after preprocessing.Labels are normal (0) and intrusion (1).

Time	ID	DLC	Data								Label
Diff.	Ю	DLC	D1	D2	D3	D4	D5	D6	D7	D8	Luvei
0.6	497	8	0	0.501	0.062	1	0	1	0.815	0.368	0
0.4	544	8	0	0	0	0	0	0	0	0	0
0.6	848	8	0.874	0.011	0.996	0.011	0.035	0	0.227	0.062	0
:	÷	÷	÷	÷	÷	÷	÷	:	÷	:	÷
0.2	399	8	0.019	0.141	0.368	0.054	0.141	0.101	0	0.498	1
0.1	128	8	0	0.109	0.141	0	0	0.356	0	0.062	1

Dataset

- Train Dataset: 70% (Car1: 2,887,500 / Car2: 2,625,554)

- Validation Dataset: 25% (Car1: 1,031,250 / Car2: 937,698)

- Test Dataset: 5% (Car1: 206,250 / Car2: 187,539)

Experimental Setup

Baseline Model

- Threshold-based Models
 - Detect attacks using the offset ratio and time interval between CAN messages. (OTIDS)
- Classification-based models
 - Use One-Class SVM as a One-Class classification method and Isolation Forest. (OCSVM)
- Ensemble-based model
 - Use Heuristics based approach. (RNN + Heuristics)

Experiment

- a) DoS Attack: High Priority Packet Injection
 - DoS attack is the most common intrusion and relatively straightforward for the model
- b) Fuzzy Attack: Random Packet Injection
- c) Replay Attack: Replay Packet Injection

Experiment

- 1) Conv-LSTM based CANTransfer model is trained with normal (class 0) & known intrusion (class 1)
- 2) Transfer learning is performed by training with only one instance of a new intrusion (one-shot learning)

(RQ1) Intrusion detection performance

Table 3: Performance comparison of *CANTransfer* with the baseline methods. The best performer from baseline methods for each metrics is underlined and overall best performers are shown in bold.

Mathad	Precisi	on (%)	Recal	1 (%)	F1-Score (%)		
Method	Known	New	Known	New	Known	New	
OCSVM	35.43	10.83	71.15	35.12	47.30	16.55	
IF	43.58	15.62	73.42	31.56	54.69	20.90	
OTIDS	99.82	70.81	71.68	42.01	83.44	52.73	
RNN+Heuristics	98.69	70.25	99.49	50.53	99.09	58.78	
CANTransfer	94.93	87.97	95.57	88.97	95.25	88.47	
Gain	-4.89	17.16	-3.92	38.44	-3.84	26.69	

(RQ2) Importance of preprocessing

- 1. It didn't perform any preprocessing or spatial transformation on the raw dataset and allowed to model to train on raw data.
- 2. This paper preprocessed the dataset and the applied 2D spatial transformation.
- -> The results are different in favor of the second method by 72.54% in gain on F1-score.

(RQ3) Transfer Learning

Table 3: Performance comparison of *CANTransfer* with the baseline methods. The best performer from baseline methods for each metrics is underlined and overall best performers are shown in bold.

Mathad	Precisi	on (%)	Recal	1 (%)	F1-Score (%)		
Method	Known	New	Known	New	Known	New	
OCSVM	35.43	10.83	71.15	35.12	47.30	16.55	
IF	43.58	15.62	73.42	31.56	54.69	20.90	
OTIDS	99.82	70.81	71.68	42.01	83.44	52.73	
RNN +Heuristics	98.69	70.25	99.49	50.53	99.09	58.78	
CANTransfer	94.93	87.97	95.57	88.97	95.25	88.47	
Gain	-4.89	17.16	-3.92	38.44	-3.84	26.69	

Table 4: Test result comparison of known vs. new intrusion with and without using Transfer Learning in *CANTransfer*, where class 0 is normal and class 1 is new attack.

		Knov	wn Intru	sion	New Intrusion				
7	Class	Precision	Recall	F1-score	Precision	Recall	F1-score		
Zero-shot	0	99.0%	99.0%	99.0%	68.0%	100.0%	81.0%		
Learning	1	99.0%	99.0%	99.0%	67.0%	0.00%	1.00%		
0	Class	Precision	Recall	F1-score	Precision	Recall	F1-score		
One-shot	0	99.0%	91.0%	95.0%	92.0%	91.0%	91.0%		
Learning	1	90.0%	99.0%	94.0%	81.0%	83.0%	82.0%		
Cain	Class 0	0.00%	-8.00%	-4.00%	24.0%	-9.00%	10.0%		
Gain	Class 1	-9.00%	0.00%	-5.00%	14.0%	83.0%	81.0%		

- F1-score of CANTransfer increased 26.69% after applying Transfer learning.
 - Precision and recall in one-shot learning increased to 81.0%, 83.0%

(RQ4) Improvement from zero-shot

- One-shot learning : F1-Score (91.0%) / Class 1 (82.0%)
- Zero-shot learning : F1-Score (81.0%) / Class 0(1.00%)

(RQ5) False-positive

In the case of new intrusion, the precision

- One-shot learning: Class 0: 92.0% / Class 1: 81.0%
- Zero-shot learning : Class 0: 68.0% / Class 1: 67.0%

(RQ6) Processing Time

- It is important to minimize processing time in a real-time system.
- Small timestep, t was experimented in several sizes.
- When t is 16, CANTransfer produces the best performance results.

(RQ7) Loss and Accuracy

Figure 6: Loss (left) and Accuracy (right) of CANTransfer during training.

Conclusion

- During vehicle operation, intrusion attacks will cause vehicle-related accidents and have a serious impact.
- Train for new intrusion detection is difficult until a large amount of data is obtained.
- CAN Transfer was proposed for a new intrusion attack using one-shot transfer learning.