STAT430: Machine Learning for Financial Data

Recurrent neural networks

Simple Recurrent neural networks (RNN)

- · RNN processes sequences by iterating through the sequence elements and maintaining a state containing information it has seen
- recurrent networks vs feed-forward networks
- · each output at t contains information from time step 1 to t, and is referred to as hidden state
- · Simple RNN is not useful for handling long sequences


```
state_t <- 0
for (input_t in input_sequence) {
  output_t <- activation(dot(W, input_t) + dot(U, state_t) + b)
  state_t <- output_t
}</pre>
```

Simple RNN

- · layer_simple_rnn(): fully-connected RNN where the output is to be fed back as part of input
 - input: 3D tensor of the shape (batch_size, timesteps, input_features)
 - input_shape: excluding batch axis, required when using this layer as the first layer
 - output: two options controlled by return_sequences = T/F
 - T: 3D tensor of the shape (batch_size, timesteps, output_features)
 - F: 2D tensor of the shape (batch_size, output_features)
 - parameter units specifies the dimensionality of the output
 - eg, layer_simple_rnn(unit = 16)
- · with several recurrent layers one after the other, the intermediate layers should return full sequences
- · Try R

Vanishing gradient problem

- · for feed-forward networks with many layers or simple RNN for long sequences, gradients become vanishingly small preventing the weight from updating
 - using backpropagation, gradients for the weights of earlier layers involves multiplication of many small gradients, thus become too small
- · solutions: allows past information to be re-injected at a later time, thus fighting the vanishing gradient problem and accounting for long term dependence
 - Long short-term memory (LSTM)
 - Gated recurrent unit (GRU)

RNN with Long Short Term Memory (LSTM)

- · use an additional data flow (C_t : carry / cell state) to carry information across time steps
- sigmoid() (σ) with range (0,1) plays the role of gates
- tanh() with range (-1, 1) plays the role of generating new output

Understanding LSTM Networks

RNN with Gated Recurrent Unit (GRU)

- · a variant of LSTM that has less parameters and more computational efficiency
- · the forget and input gates from LSTM unit are merged, and the carry data flow and hidden state are merged
- z_t : update gate vector
- r_t : reset gate vector

LSTM / GRU in Keras

layer_lstm()
 parameter units specifies the dimensionality of the output
 eg, layer_lstm(units = 16)
 layer_cudnn_lstm()
 much faster LSTM with Nvidia GPU cuDNN + Tensorflow backend
 for GRU: layer_gru() and layer_cudnn_gru()
 Try R

Advanced use of RNN

- · Recurrent dropout
 - specific, built-in way to use dropout to fight overfitting in recurrent layers
- Stacking recurrent layers
 - to increase the representational power of the network (at the cost of higher computational loads)
- · Try R

Advanced use of RNN

- · Bidirectional recurrent layers
 - which presents the same information to a recurrent network in different ways, increasing accuracy and mitigating forgetting issues
 - bidirectional(): takes a recurrent layer instance as an argument, and creates a second, separate instance of this recurrent layer
 - one for chronological order and the other for reversed order
 - a bidirectional layer has twice more parameters than a chronological LSTM

Going even further

- · adjust the number of units in each recurrent layer in the stacked setup. The current choices are largely arbitrary and thus probably suboptimal
- · adjust the learning rate used by the RMSprop optimizer
- try using layer_lstm() instead of layer_gru()
- · try using a bigger densely connected regressor on top of the recurrent layers: that is, a bigger dense layer or even a stack of dense layers
- · don't forget to eventually run the best-performing models on test set
- · deep learning is more an art than a science, and one has to evaluate different strategies empirically

Wrapping up

- · establish common-sense baselines for your metric of choice
- · try simple models before expensive ones, to justify the additional expense
- · for data where temporal ordering matters, recurrent networks are a great fit and easily outperform models that first flatten the temporal data
- · for recurrent networks, use a time-constant dropout mask and recurrent dropout mask
- · stacked RNNs provide more representational power than a single RNN layer, but much more expensive and thus not always worth it
- · bidirectional RNNs are useful on NLP, but aren't strong performers on sequence data where the recent past is much more informative than the beginning of the sequence
- · Back to Course Scheduler