MC-17 Теоретический материал Критерии однородности, согласия

Критерием согласия называется статистический критерий о предполагаемом законе распределения.

Следует понимать, что проверяется не то, что случайная величина действительно имеет определенный закон распределения (например, нормальный), а проверяется лишь, достаточно ли хорошо наблюдаемые данные согласуются с некоторым законом распределения, чтобы можно было использовать этот закон для прогнозирования поведения данной случайной величины.

Гипотеза называется простой, если проверяется соответствие некоторому закону распределения с заданными параметрами.

Гипотеза называется **сложной**, если проверяется соответствие некоторому закону распределения с произвольными параметрами. (В этом случае параметры оцениваются по выборке.)

I. <u>Простая гипотеза</u>.

Критерий согласия Пирсона

Производится серия повторных независимых испытаний, $m{n}$ – число испытаний, $m{\omega_t}$ – элементарный исход испытания с номером t=1,...,n.

Поскольку испытания повторные, в качестве их общей вероятностной модели принимается одно и то же вероятностное пространство (Ω, \mathcal{F}, P) , очевидно, что все элементарные исходы $\pmb{\omega_t} \in \Omega$.

Предположим, что A_1 , ..., $A_l \in \mathcal{F}$ — попарно несовместные события, такие что A_1 +...+ $A_l \in \Omega$. В качестве H_0 примем гипотезу, состоящую в том, что вероятности событий A_i ($i=1,\ldots,l$) заданы таблицей

Событие	A_1	 A_l
Вероятность	p_1	 p_l

Пусть n_i – эмпирическая частота события A_i , т.е. число испытаний, в которых A_i наступило.

Событие	A_1	•••	A_l
Частота	n_1	•••	n_l

Если основная гипотеза верна, согласно статистическому определению вероятности $\hat{p}_i \approx p_i$, где $\hat{p}_i = n_i/n$ — относительная частота события A_i .

В качестве меры одновременной близости l пар чисел (\hat{p}_i, p_i) можно принять любую сумму вида $c_1(\hat{p}_1-p_1)^2+\dots+c_l(\hat{p}_l-p_l)^2$, в которой $c_i>0$ – какие-либо положительные числа. **К.Пирсон** обнаружил, что если придать большие веса маловероятным событиям, положив $c_i=n/p_i$, то при неограниченном увеличении n распределение **статистики**

$$\chi^2 = \sum_{i=1}^{l} \frac{n}{p_i} (\hat{p}_i - p_i)^2 = \sum_{i=1}^{l} \frac{(n_i - np_i)^2}{np_i}$$

перестает зависеть от конкретных значений вероятностей p_i и стремится к распределению хи-квадрат с l-1 степенями свободы.

При верной H_0 , случайные величины $n_i \sim Bin(n, p_i)$), вследствие чего $np_i = E(n_i)$ называется ожидаемой (теоретической) частотой события A_i .

Критическая область $\chi^2 > \chi^2_{\alpha}(l-1)$.

Замечание. На практике данный критерий Пирсона применяется, если объем выборки n>50 и все ожидаемые частоты $np_i>5$. Несоблюдение данных условий обычно приводит к значительному отклонению фактического уровня значимости $P_{H_0}(\chi^2>\chi^2_{\alpha}(l-1))$ от требуемого уровня α .

II. Сложная гипотеза.

Если значения параметров гипотетической функции распределения $F_0(x)$ неизвестны, то имеем сложную гипотезу.

Основная гипотеза H_0 заключается в том, что функция распределения имеет вид

$$F_0(x) = F(x, \theta_1, \dots, \theta_k)$$

при некоторых неизвестных значениях параметров $\theta_1, ..., \theta_k$. В этом случае вероятности $p_1, ..., p_l$ г также зависят от параметров.

Статистика хи-квадрат принимает имеет вид

$$\chi^2 = \sum_{i=1}^l \frac{(n_i - np_i(\theta_1, \dots, \theta_k)))^2}{np_i(\theta_1, \dots, \theta_k)}$$

При известных значениях параметров имел бы место первый случай. Но так как истинные значения $\theta_1, \dots, \theta_k$ неизвестны, то подставляя их оценки, найденные методом максимального правдоподобия (методом моментов), получаем статистический критерий χ^2 с меньшим числом степеней свободы, а именно l-k-1, где l- число интервалов, на которые разбит весь диапазон наблюдаемых значений, k- число неизвестных параметров гипотетической функции распределения.

Сравнивая наблюдаемое значение статистики χ^2 с критическим значением $\chi^2_{\alpha}(l-k-1)$, по приведенной схеме, делаем заключение об истинности нулевой гипотезы: гипотеза принимается, если $\chi^2 < \chi^2_{\alpha}(l-k-1)$, и отвергается в противном случае.

III. Критерий однородности.

Критерий однородности χ^2

Проверяется гипотеза о том, что **две выборки принадлежат одной генеральной** совокупности.

Данные должны быть представлены в виде интервального статистического ряда. Имеются выборка объема n_1 из генеральной совокупности X_1 и выборка объема n_2 из генеральной совокупности X_2 ; l — количество интервалов группировки (<u>одинаковое для обеих выборок</u>); μ_i и ν_i — количество попаданий в i-й интервал группирования, соответственно, первой и второй выборок, $i=1,2,\ldots,l$; уровень значимости α . Пусть $F_i(x)$ — функция распределения случайной величины X_i , j=1,2.

Проверяется гипотеза

 $H_0: F_1(x) = F_2(x), x \in \mathbb{R},$

 $H_1: F_1(x) \neq F_2(x)$, для некоторых $x \in \mathbb{R}$.

Статистика критерия имеет следующий вид:

$$\chi^{2} = n_{1} n_{2} \sum_{i=1}^{l} \frac{\left(\frac{\mu_{i}}{n_{1}} - \frac{\nu_{i}}{n_{2}}\right)^{2}}{\mu_{i} + \nu_{i}}.$$

В случае совпадения объемов выборок: $n_1 = n_2 = n$ статистика вычисляется по формуле

 $\chi^{2} = \sum_{i=1}^{l} \frac{(\mu_{i} - \nu_{i})^{2}}{\mu_{i} + \nu_{i}}.$

Критическое значение статистики: $\chi^2_{\alpha;l-1}$.

Гипотеза H_0 **отклоняется**, если вычисленное по выборочным данным значение статистики $\chi^2_{{
m Ha6}\pi}$ удовлетворяет неравенству: $\chi^2_{{
m Ha6}\pi} > \chi^2_{\alpha;l-1}$.

Критерий однородности Колмогорова-Смирнова

Имеются две выборки — объема n_1 из генеральной совокупности X_1 и объема n_2 из генеральной совокупности X_2 .

Предполагается, что случайные величины X_j — непрерывные с функциями распределения $F_i(x)$, j=1,2.

 $H_0: F_1(x) = F_2(x), x \in \mathbb{R},$

 $H_1: F_1(x) \neq F_2(x)$, для некоторых $x \in \mathbb{R}$.

Проверка гипотезы производится по следующей схеме:

- 1. По имеющимся выборкам находятся **эмпирические функции распределения** $F_1^*(x)$ и $F_2^*(x)$.
- 2. Рассматривается статистика следующего вида:

$$D = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \cdot \max_{x} |F_1^*(x) - F_2^*(x)|.$$

- 3. По таблицам распределения Колмогорова определяется величина $k_{\alpha}-100\alpha$ -процентная точка распределения Колмогорова уровня α .
- 4. **Гипотеза** H_0 **отклоняется** на уровне значимости α , если вычисленное по выборочным данным значение статистики $D_{\rm набл}$ удовлетворяет неравенству: $D_{\rm набл} > k_{\alpha}$.

Замечание. Критерий Колмогорова—Смирнова применяется при n_1 , $n_2 \ge 50$.

Критерий согласия Колмогорова

Критерий согласия Колмогорова применяется для проверки гипотез о законах распределения только непрерывных случайных величин.

Проверяется гипотеза H_0 : $F(x) = F_0(x)$ против альтернативной H_1 : $F(x) \neq F_0(x)$.

Критерий основан на том факте, что распределение супремума разности между теоретической и эмпирической функциями распределения

$$D_n = \sup |F(x) - F(x)|$$

одинаково при любой F(x). Величину D_n называют **статистикой Колмогорова**. При малых n для статистики Колмогорова существуют **таблицы критических точек** $D_{\rm kp}$. Если $D_n < D_{\rm kp}$, то гипотеза H_0 принимается, иначе отвергается. При больших n используют n предельное распределение Колмогорова. Имеет место следующая теорема.

Теорема (Колмогорова).
$$P(\sqrt{n}D_n < x) \to Q(x) = 1 + 2\sum_{k=1}^{\infty} (-1)^k e^{-2k^2x^2}, n \to \infty.$$

Для распределения Колмогорова Q(x), предельного для статистики $\lambda_n = \sqrt{n}D_n$, также существуют таблицы критических точек $\lambda_{\rm kp}$. Практически их используют уже при n>20. Если $\lambda_n < \lambda_{\rm kp}$, то гипотеза H_0 принимается, иначе отвергается.

Замечание 1. На **практике** статистику Колмогорова (в предположении, что $F = F_0$ можно вычислить по эквивалентным формулам:

$$D_n = \max_{1 \le i \le n} \left\{ \left| F_0(x_{(i)}) - \frac{i-1}{n} \right|, \left| \frac{i}{n} - F_0(x_{(i)}) \right| \right\}$$

И

$$D_n = \max_{1 \le i \le n} \left| F_0(x_{(i)}) - \frac{2i-1}{n} \right| + \frac{1}{2n},$$

где $x_{(i)}$ - члены вариационного ряда

Замечание 2. Критерий Колмогорова, строго говоря, *нельзя* применять в случаях сгруппированных данных при неизвестных параметрах распределения. Тем не менее, он иногда применяется на практике и в подобных ситуациях. Однако при этом статистики критерия получаются *заниженными*, что увеличивает ошибку первого рода. В таких случаях предпочтительней пользоваться **критерием хи-квадрат Пирсона**.

Критические точки для статистики Колмогорова D_n

Объем выборки	Уровень значимости α			
n	0,10	0,05	0,02	0,01
1	0,95	0,98	0,99	0,995
2	0,78	0,84	0,90	0,93
3	0,64	0,71	0,78	0,83
4	0,57	0,62	0,69	0,73
5	0,51	0,56	0,62	0,67
6	0,47	0,52	0,58	0,62
7	0,44	0,48	0,54	0,58
8	0,41	0,45	0,51	0,54
9	0,39	0,43	0,48	0,51
10	0,37	0,41	0,46	0,49
11	0,35	0,39	0,44	0,47
12	0,34	0,38	0,42	0,45
13	0,33	0,36	0,40	0,43
14	0,31	0,35	0,39	0,42
15	0,30	0,34	0,38	0,40
16	0,29	0,33	0,37	0,39
17	0,29	0,32	0,36	0,38
18	0,28	0,31	0,34	0,37
19	0,27	0,30	0,34	0,36
20	0,26	0,29	0,33	0,35

Критические точки распределения Колмогорова

$$Q(\lambda) = 1 + 2\sum_{k=1}^{\infty} (-1)^k e^{-2k^2 \lambda^2}$$

α	0,10	0,05	0,02	0,01
λ_{kp}	1,23	1,36	1,52	1,63

Функция chi2_contingency() реализует критерий «Хи-квадрат независимости»

Некоторые критерии согласия в Python

1. Хи-квадрат Пирсона.

Функция scipy.stats.chisquare

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html

2. **Тест Колмогорова**, предназначенный для проверки простой гипотезы о непрерывном распределении

scipy.stats.kstest scipy.stats.ks_1samp

- 3. **Тест Шапиро-Уилка**. Специальный тест на нормальность (для сложной гипотезы). Один из наиболее мощных тестов нормальности (т.е. очень чувствителен к ненормальности). Функция scipy.stats.shapiro
- 4. **Комбинированный тест нормальности**. Функция **scipy.stats.normaltest**
- 5. **Квантильный график** (Q-Q plot) показывает соотношение между выборочными и теоретическим квантилями. Визуально характеризует близость выборки к заданному (по умолчанию нормальному) распределению. Функция scipy.stats.probplot