

L3 INFO Référent : Caio 2020-2021

Projet D'IAS

Markandu Jeyanthan De Souza Albanio Dahalani Luqman Bourdet Jeremie Renouard Gwenn Sujet : Déterminer si une personne atteinte de maladies cardiovasculaire va mourir en fonction de ses antécédents (pré-processing & classification).

TABLE DES MATIÈRES

- 1. Introduction
- 2. Visualisations
- 3. Modèle
- 4. Conclusion

Introduction

Les Maladies Cardiovasculaires:

- agissent sur le cœur et le sang
- 140 000 décès chaque années en France (~ 400 /jour)
- De multiples facteurs les causes

Introduction

Le Dataset :

- 13 features
- 299 lignes

age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
75.0	0	582	0	20	1	265000.00	1.9	130	1	0	4	1
55.0	0	7861	0	38	0	263358.03	1.1	136	1	0	6	1
65.0	0	146	0	20	0	162000.00	1.3	129	1	1	7	1
50.0	1	111	0	20	0	210000.00	1.9	137	1	0	7	1
65.0	1	160	1	20	0	327000.00	2.7	116	0	0	8	1

2. Visualisations

- Corrélation

- Données à faible corrélation

- Données à forte corrélation

Corrélation

valeur absolue proche de 1 pt colonne importante

Faibles corrélations:

- Sexe
 - ~ 32% de décès parmi les hommes
 - ~ 33% de décès parmi les femmes

197 patients hommes 63 décès parmi les hommes

102 patients femmes 34 décès parmi les femmes

Faibles corrélations :

- Anémie
 - ~ 35% de décès parmi les patients atteints d'anémie
 - ~ 29% de décès : non-anémies

129 patients atteints d'anémie 45 décès parmi les patients atteints d'anémies

170 patients non atteints d'anémie 50 décès parmi les patients non atteints d'anémies

Quelques données

Donnée qui semble absurde : smoking

- ~ 31% de mort parmi les fumeurs
- ~ 32% de mort parmi les non fumeurs

96 patients fumeurs 30 décès parmi les fumeurs

203 patients non fumeurs 65 décès parmi les non fumeurs

Données à forte corrélation : âge

Taux de mortalité :

- 3 pics
- croissant

Taux de créatinine hommes:

- vivants anormaux : ~50.6%

- morts anormaux : ~45.2%

Taux de créatinine femmes:

- vivants anormaux : ~48.8%
- morts anormaux : ~70.2%

Données à forte corrélation : conclusion

- L'âge

- Le taux de créatinine n'impacte pas chez l'homme

- Un taux de corrélation de 0.29 faux ?

3. Modèle

- Pré-processing

- SGDClassifier

- Optimisation du modèle

Pré-processing

-Forte corrélation entre 'time' et 'DEATH_EVENT'

time	DEATH_EVENT
4	1
6	1
7	1
7	1
8	1
	•••
270	0
271	0
278	0
280	0
285	0

Nombre de jour en fonction du pourcentage de mort

Y DEATH_EVENT

Standardisation:

-moyenne: 0

- variance: 1

méthode : StandardScaler()

ex avant standardisation:

```
array([7.50e+01, 0.00e+00, 5.82e+02, 0.00e+00, 2.00e+01, 1.00e+00, 2.65e+05, 1.90e+00, 1.30e+02, 1.00e+00, 0.00e+00])
```

```
array([-6.98463369e-02, 1.14796753e+00, 1.65728387e-04, -8.47579380e-01, -6.84180207e-01, 1.35927151e+00, -1.39653077e+00, -4.78204687e-01, 1.90111381e+00, -1.35927151e+00, -6.87681906e-01])
```

ex après standardisation :

SGDClassifier: algorithme

Notre but:

$$f(x) = w^T x + b$$

w = pente b = ordonnée à l'origine

Minimiser l'erreur d'entraînement:

$$E(w,b) = rac{1}{n} \sum_{i=1}^n L(y_i,f(x_i)) + lpha R(w)$$

hyper-paramètres :

L = fonction de perte

 $\alpha > 0$

R = terme de régularisation

Pénalité R:

L1 norm:
$$R(w) := \sum_{j=1}^m |w_j|$$

L2 norm:
$$R(w) := \left(\sum_{j=1}^m w_j^2\right)^{\frac{1}{2}} ||w||_{2}^2$$

SGD vs GD

Stochastic Gradient Descent/ Gradient Descent

Quelle est leur point commun?

Quelle est leur différence?

Optimisation du modèle

Découpage du dataset: 85% train/validation 15 % test Kfold avec 5 folds sur train/validation → 80% train et 20% validation à chaque étape

But: maximiser la précision

3 hypers paramètres dans la formule E:

- loss
- penalty
- alpha

$$E(w,b) = rac{1}{n} \sum_{i=1}^n L(y_i,f(x_i)) + lpha R(w)$$

Meilleure combinaison:

loss = squared_loss

penalty = 11

alpha = 0.013200884008314194

Score d'accuracy ensemble d'entraînement : 76.7

Score de validation ensemble de test : 71.1

Conclusion

Critiques de notre score?

Explication?

Peut-on prédire la mort d'un patient selon ses antécédents ?