VGRAPH: A GENERATIVE MODEL FOR JOINT COMMUNITY DETECTION AND NODE REPRESENTATION LEARNING

A PREPRINT

Fan-Yun Sun^{1,2}, Meng Qu², Jordan Hoffmann^{2,3}, Chin-Wei Huang^{2,4}, Jian Tang^{2,5,6}

¹National Taiwan University,

²Mila-Quebec Institute for Learning Algorithms, Canada

³Harvard University, USA

⁴Element AI, Canada

⁵HEC Montreal, Canada

⁶CIFAR AI Research Chair

b04902045@ntu.edu.tw

Accepted by NIPS 2019

焦乙竹 2019.10.17

- Task
 - Node embedding (node classification)
 - Community detection
- Why do together
 - node representations can be used as good features for community detection (e.g., through K-means).
 - community membership can provide good contexts for learning node embeddings.

- ► Model VGraph
 - A probabilistic generative model
 - Learn community membership and node representation collaboratively
- Assumption
 - Each node can be represented as a mixture of communities
 - Each community is defined as a multinomial distribution over nodes

- ► Model VGraph
 - ► 给定节点u, 首先从分布p(z u)分配社区z.
 - ▶ 给定分配的社区z, 根据社区分布p(v z)获得另一个节点v来生成边(u,v).
 - ► 分布p(z|u)和p(v|z)通过节点和社区的embedding来参数化
 - > 节点表示和社区以互惠互利的方式进行交互

- Contributions
 - ▶ 同时学习节点表示和社区发现的框架
 - ▶ 设计了一种反向传播推理算法,使用变分推理来最大化数据似然性的下限
 - 在变分推理例程的目标函数中添加了平滑度正则化项, 以确保相邻节点的社区成员相似

Problem Definition

this paper, we study jointly solving these two tasks. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ represent a graph, where $\mathcal{V} = \{v_1, \dots, v_V\}$ is a set of vertices and $\mathcal{E} = \{e_{ij}\}$ is the set of edges. Traditional graph embedding aims to learn a node embedding $\phi_i \in \mathbb{R}^d$ for each $v_i \in \mathcal{V}$ where d is predetermined. Community detection aims to extract the community membership \mathcal{F} for each node. Suppose there are K communities on the graph \mathcal{G} , we can denote the community assignment of node v_i as $\mathcal{F}(v_i) \subseteq \{1, \dots, K\}$. We aim to jointly learn node embeddings ϕ and community affiliation of vertices \mathcal{F} .

Node w Neighbor node c Community z

Methodology

- Assumption
 - Each node can belong to multiple communities.
 - For each node, different neighbors will be generated depending on the community context.
- The linked neighbor c is generated based on the assignment z

$$p(c|w) = \sum_{z} p(c|z)p(z|w).$$
 $c \sim p(c|z) \quad z \sim p(z|w)$

vGraph	Node	W	Embedding of node i in p(z w)	$oxed{oldsymbol{\phi}_i}$
	Neighbor node	С	Embedding of node i in p(c z)	$ oldsymbol{arphi}_i $
Methodology	Community	Z	Embedding of the j-th community	$\left oldsymbol{\psi}_{j} ight $

- vGraph parameterizes p(z|w) and p(c|z) by node and community embeddings.
- ► The prior distribution

$$p_{\pmb{\phi},\pmb{\psi}}(z=j|w) = \frac{\exp(\pmb{\phi}_w^T\pmb{\psi}_j)}{\sum_{i=1}^K \exp(\pmb{\phi}_w^T\pmb{\psi}_i)},$$
 The node d

Negative sa
$$p_{m{\psi},m{arphi}}(c|z=j) = rac{\exp(m{\psi}_j^Tm{arphi}_c)}{\sum_{c'\in\mathcal{V}}\exp(m{\psi}_j^Tm{arphi}_{c'})}.$$

$$\log \sigma(\boldsymbol{\varphi}_c^T \cdot \boldsymbol{\psi}_j) + \sum_{i=1}^K E_{v \sim P_n(v)} [\log \sigma(-\boldsymbol{\varphi}_v^T \cdot \boldsymbol{\psi}_j)],$$

vGraph	Node	W	Embedding of node i in p(z w)	$oxed{oldsymbol{\phi}_i}$
	Neighbor node	С	Embedding of node i in p(c z)	$ oldsymbol{arphi}_i $
Methodology	Community	Z	Embedding of the j-th community	$\left oldsymbol{\psi}_{j} ight $

- It is intractable to maximize the log-likelihood of the observed edges for large graphs...
- To optimize the following evidence lower bound (FIRO)

$$\mathcal{L} = E_{z \sim q(z|c,w)}[\log p_{\psi,\varphi}(c|z)] - \text{KL}(q(z|c,w)||p_{\phi,\psi}(z|w))$$

Parametrize the variational distribution q(z|c, w) (the community membership of the edge (w, c)) with a neural metallical

$$q_{\boldsymbol{\phi},\boldsymbol{\psi}}(z=j|w,c) = \frac{\exp((\boldsymbol{\phi}_w \odot \boldsymbol{\phi}_c)^T \boldsymbol{\psi}_j)}{\sum_{i=1}^K \exp((\boldsymbol{\phi}_w \odot \boldsymbol{\phi}_c)^T \boldsymbol{\psi}_i)}.$$

变分推断

variational inference 就是用来计算 posterior distribution 的。

core idea

variational inference 的核心思想包含两步:

- 假设分布 $q(z; \lambda)$ (这个分布是我们搞得定的,搞不定的就没意义了)
- 通过改变分布的参数 λ , 使 $q(z;\lambda)$ 靠近 p(z|x)

总结称一句话就是,为真实的后验分布引入了一个参数话的模型。 即:用一个简单的分布 $q(z;\lambda)$ 拟合复杂的分布 p(z|x) 。

这种策略将计算 p(z|x) 的问题转化成优化问题了

$$\lambda^* = rg\min_{\lambda} \ divergence(p(z|x), q(z; \lambda))$$

收敛后, 就可以用 $q(z;\lambda)$ 来代替 p(z|x) 了

vGraph	Node	W	Embedding of node i in p(z w)	$oxed{oldsymbol{\phi}_i}$
	Neighbor node	С	Embedding of node i in p(c z)	$ oldsymbol{arphi}_i $
Methodology	Community	Z	Embedding of the j-th community	$\left oldsymbol{\psi}_{j} ight $

- It is intractable to maximize the log-likelihood of the observed edges...
- To optimize the following evidence lower bound (FIRO)

$$\mathcal{L} = E_{z \sim q(z|c,w)}[\log p_{\psi,\varphi}(c|z)] - \text{KL}(q(z|c,w)||p_{\phi,\psi}(z|w))$$

Parametrize the variational distribution q(z|c, w) (the community membership of the edge (w, c)) with a neural metallical

$$q_{\boldsymbol{\phi}, \boldsymbol{\psi}}(z=j|w,c) = \frac{\exp((\boldsymbol{\phi}_w \odot \boldsymbol{\phi}_c)^T \boldsymbol{\psi}_j)}{\sum_{i=1}^K \exp((\boldsymbol{\phi}_w \odot \boldsymbol{\phi}_c)^T \boldsymbol{\psi}_i)}.$$

vGraph	Node	W	Embedding of node i in p(z w)	$oxed{\phi_i}$
	Neighbor node	С	Embedding of node i in p(c z)	$ oldsymbol{arphi}_i $
Methodology	Community	Z	Embedding of the j-th community	$ oldsymbol{\psi}_j $

Approximate the community membership distribution of each node w, i.e., p(z|w)

$$p(z|w) = \sum_{c} p(z,c|w) = \sum_{c} p(z|w,c)p(c|w) \approx \frac{1}{|N(w)|} \sum_{c \in N(w)} q(z|w,c),$$

$$\bullet \text{ in ter non-overlapping communities}$$

$$\mathcal{F}(w) = \{\arg\max_{k} q(z = k|w,c)\}_{c \in N(w)}.$$

Complexity. Here we show the complexity of vGraph. Sampling an edge takes constant time, thus calculating Eq. (4) takes $\mathcal{O}(d(M+1))$ time, where M is the number of negative samples and d is the dimension of embeddings (the node embeddings and community embeddings have the same dimension). To calculate Eq. (6), it takes $\mathcal{O}(dK)$ time where K is the number of communities. Thus, an iteration with one sample takes $\mathcal{O}(\max(dM, dK))$ time. In practice the number of updates required is proportional to the number of edges $\mathcal{O}(|\mathcal{E}|)$, thus the overall time complexity of vGraph is $\mathcal{O}(|\mathcal{E}|d\max(M,K))$.

vGraph	Node	W	Embedding of node i in p(z w)	$oxed{oldsymbol{\phi}_i}$
	Neighbor node	С	Embedding of node i in p(c z)	$oldsymbol{arphi}_i$
Methodology	Community	Z	Embedding of the j-th community	$\left oldsymbol{\psi}_{j} ight $

- To optimize the lower bound w.r.t. the parameters in the variational distribution and the generative parameters...
 - If z is continuous, the reparameterization trick [15] can be used.
 - If z is discrete, we can use Gumbel-Softmax reparametrization

Methodology

• Inspired by existing spectral clustering studies [6], we augment our training objective with a smoothness regularization term that encourages the learned community distributions of linked nodes to be similar.

$$\mathcal{L}_{reg} = \lambda \sum_{(w,c) \in \mathcal{E}} \alpha_{w,c} \cdot d(p(z|c), p(z|w))$$

$$\alpha_{w,c} = \frac{|N(w) \cap N(c)|}{|N(w) \cup N(c)|},$$

The entire loss function

$$\mathcal{L} = -E_{z \sim q_{\phi,\psi}(z|c,w)}[\log p_{\psi,\varphi}(c|z)] + \text{KL}(q_{\phi,\psi}(z|c,w)||p_{\phi,\psi}(z|w)) + \mathcal{L}_{reg}$$

- Datasets
 - For non-overlapping community detection and node classification, Citeseer, Cora, Cornell, Texas, Washington, and Wisconsin
 - For overlapping communtiy detection, Facebook, Youtube, Amazon, Dblp, Coauthor-CS. For Youtube, Amazon, and Dblp
- ► Evaluation Metric
 - For overlapping community detection, F1-Score and Jaccard Similarity
 - For non-overlapping community detection, Normalized Mutual Information (NMI) and Modularity
 - ► For node classification, Micro-F1 and Macro-F1

- Comparative Methods
 - For overlapping community detection, we choose four competitive baselines: BigCLAM, CESNA, Circles, and SVI.
 - To evaluate node embedding and non-overlapping community detection, we compare our method with the five baselines: MF, DeepWalk, LINE, Node2vec, ComE.

Table 2: Evaluation (in terms of F1-Score and Jaccard Similarity) on networks with overlapping ground-truth communities. NA means the task is not completed in 24 hours. In order to evaluate the effectiveness of smoothness regularization, we show the result of our model with (vGraph+) and without the regularization.

		F1		Jaccard								
Dataset	Bigclam	CESNA	Circles	SVI	vGraph	vGraph+	Bigclam	CESNA	Circles	SVI	vGraph	vGraph+
facebook0	0.2948	0.2806	0.2860	0.2810	0.2440	0.2606	0.1846	0.1725	0.1862	0.1760	0.1458	0.1594
facebook107	0.3928	0.3733	0.2467	0.2689	0.2817	0.3178	0.2752	0.2695	0.1547	0.1719	0.1827	0.2170
facebook1684	0.5041	0.5121	0.2894	0.3591	0.4232	0.4379	0.3801	0.3871	0.1871	0.2467	0.2917	0.3272
facebook1912	0.3493	0.3474	0.2617	0.2804	0.2579	0.3750	0.2412	0.2394	0.1672	0.2010	0.1855	0.2796
facebook3437	0.1986	0.2009	0.1009	0.1544	0.2087	0.2267	0.1148	0.1165	0.0545	0.0902	0.1201	0.1328
facebook348	0.4964	0.5375	0.5175	0.4607	0.5539	0.5314	0.3586	0.4001	0.3927	0.3360	0.4099	0.4050
facebook3980	0.3274	0.3574	0.3203	NA	0.4450	0.4150	0.2426	0.2645	0.2097	NA	0.3376	0.2933
facebook414	0.5886	0.6007	0.4843	0.3893	0.6471	0.6693	0.4713	0.4732	0.3418	0.2931	0.5184	0.5587
facebook686	0.3825	0.3900	0.5036	0.4639	0.4775	0.5379	0.2504	0.2534	0.3615	0.3394	0.3272	0.3856
facebook698	0.5423	0.5865	0.3515	0.4031	0.5396	0.5950	0.4192	0.4588	0.2255	0.3002	0.4356	0.4771
Youtube	0.4370	0.3840	0.3600	0.4140	0.5070	0.5220	0.2929	0.2416	0.2207	0.2867	0.3434	0.3480
Amazon	0.4640	0.4680	0.5330	0.4730	0.5330	0.5320	0.3505	0.3502	0.3671	0.3643	0.3689	0.3693
Dblp	0.2360	0.3590	NA	NA	0.3930	0.3990	0.1384	0.2226	NA	NA	0.2501	0.2505
Coauthor-CS	0.3830	0.4200	NA	0.4070	0.4980	0.5020	0.2409	0.2682	NA	0.2972	0.3517	0.3432

Table 3: Evaluation (in terms of NMI and Modularity) on networks with non-overlapping ground-truth communities.

NMI								Modularity					
Dataset	MF	deepwalk	LINE	node2vec	ComE	vGraph	MF	deepwalk	LINE	node2vec	ComE	vGraph	
cornell	0.0632	0.0789	0.0697	0.0712	0.0732	0.0803	0.4220	0.4055	0.2372	0.4573	0.5748	0.5792	
texas	0.0562	0.0684	0.1289	0.0655	0.0772	0.0809	0.2835	0.3443	0.1921	0.3926	0.4856	0.4636	
washington	0.0599	0.0752	0.0910	0.0538	0.0504	0.0649	0.3679	0.1841	0.1655	0.4311	0.4862	0.5169	
wisconsin	0.0530	0.0759	0.0680	0.0749	0.0689	0.0852	0.3892	0.3384	0.1651	0.5338	0.5500	0.5706	
cora	0.2673	0.3387	0.2202	0.3157	0.3660	0.3445	0.6711	0.6398	0.4832	0.5392	0.7010	0.7358	
citeseer	0.0552	0.1190	0.0340	0.1592	0.2499	0.1030	0.6963	0.6819	0.4014	0.4657	0.7324	0.7711	

Table 4: Results of node classification on 6 datasets.

	Macro-F1								Micro-F1					
Datasets	MF	DeepWalk	LINE	Node2Vec	ComE	vGraph	MF	DeepWalk	LINE	Node2Vec	ComE	vGraph		
Cornell	13.05	22.69	21.78	20.70	19.86	29.76	15.25	33.05	23.73	24.58	25.42	37.29		
Texas	8.74	21.32	16.33	14.95	15.46	26.00	14.03	40.35	27.19	25.44	33.33	47.37		
Washington	15.88	18.45	13.99	21.23	15.80	30.36	15.94	34.06	25.36	28.99	33.33	34.78		
Wisconsin	14.77	23.44	19.06	18.47	14.63	29.91	18.75	38.75	28.12	25.00	32.50	35.00		
Cora	11.29	13.21	11.86	10.52	12.88	16.23	12.79	22.32	14.59	27.74	28.04	24.35		
Citeseer	14.59	16.17	15.99	16.68	12.88	17.88	15.79	19.01	16.80	20.82	19.42	20.42		

$$\begin{split} &= E_{q(z)}[\log q(z)] - E_{q(z)}[\log p(z,x)] + E_{q(z)}[\log p(x)] \\ &= E_{q(z)}[\log q(z)] - E_{q(z)}[\log p(z,x)] + \log p(x) \\ \\ &= E_{q(z)}[\log p(z) - KL[q(z)||p(z|x)] \\ &= E_{q(z)}[\log p(z,x)] - E_{q(z)}[\log q(z)] \\ \\ &= E_{q(z)}[\log p(z,x)] - E_{q(z)}[\log q(z)] \\ &= E_{q(z)}[\log p(x|z)p(z)] - E_{q(z)}[\log q(z)] \\ &= E_{q(z)}[\log p(x|z)] + E_{q(z)}[\log p(z)] - E_{q(z)}[\log q(z)] \\ &= E_{q(z)}[\log p(x|z)] + E_{q(z)}[\log p(z)] - E_{q(z)}[\log q(z)] \\ &= E_{q(z)}[\log p(x|z)] - KL[q(z)||p(z)] \\ \\ &log(w|\alpha,\eta) = log \int \int \sum_z p(\theta,\beta,z,w|\alpha,\eta)d\theta d\beta \qquad (3) \\ &= log \int \int \sum_z p(\theta,\beta,z,w|\alpha,\eta)d\theta d\beta \qquad (3) \\ &= log \int \int \sum_z \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (4) \\ &= log \int \int \sum_z \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (4) \\ &= log \int \int \int \sum_z \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (4) \\ &= log \int \int \int \int \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (4) \\ &= log \int \int \int \int \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (4) \\ &= log \int \int \int \int \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (4) \\ &= log \int \int \int \int \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (4) \\ &= log \int \int \int \int \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (4) \\ &= log \int \int \int \int \frac{p(\theta,\beta,z,w|\alpha,\eta)d(\beta,z,\theta|\lambda,\phi,\gamma)}{a(\beta,z,\theta|\lambda,\phi,\gamma)}d\theta d\beta \qquad (5) \\ &= E_q \log p(\theta,\beta,z,w|\alpha,\eta) - E_q \log p(\beta,z,\theta|\lambda,\phi,\gamma) \qquad (7) \end{aligned}$$

 $KL[q(z)||p(z|x)] = E_{q(z)}[\log q(z)] - E_{q(z)}[\log p(z|x)]$