Statistical Thinking in Python Part 1

1). Graphical exploratory data analysis

a). Plotting a histogram of Iris data

Import plotting modules import matplotlib.pyplot as plt import seaborn as sns

Set default Seaborn style sns.set()

Plot histogram of versicolor petal lengths
plt.hist(versicolor_petal_length)

Show histogram
plt.show()

Statistical Thinking in Python Part 1

Chapter 1

b). <u>Labeling axes</u>

Plot histogram of versicolor petal lengths

_ = plt.hist(versicolor_petal_length)

Label axes

plt.xlabel('petal length (cm')

plt.ylabel('count')

Show histogram

c). Adjusting no of bins in histogram

Import numpy

import numpy as np

Compute number of data points: n_data

 $n_data = len(versicolor_petal_length)$

Number of bins is the square root of number of data points: n_bins

 $n_bins=np.sqrt(n_data)$

Convert number of bins to integer: n_bins

 $n_bins=int(n_bins)$

Plot the histogram

plt.hist(versicolor_petal_length, bins=n_bins)

Label axes

_ = plt.xlabel('petal length (cm)')

_ = plt.ylabel('count')

Show histogram

d). Bee swarm plot

Create bee swarm plot with Seaborn's default settings

_=sns.swarmplot(x='species',y='petal length (cm)', data=df)

Label the axes

_=plt.xlabel('Species')

_=plt.ylabel('Petal length (cm)')

Show the plot

Statistical Thinking in Python Part 1

Chapter 1

e). Computing the ECDF

```
def ecdf(data):
    """"Compute ECDF for a one-dimensional array of measurements."""
    # Number of data points: n
    n = len(data)

# x-data for the ECDF: x
    x = np.sort(data)

# y-data for the ECDF: y
    y = np.arange(1, n+1) / n
return x, y
```

f). Plotting the ECDF

```
# Compute ECDF for versicolor data: x_vers, y_vers
x_vers, y_vers = ecdf(versicolor_petal_length)
# Generate plot
plt.plot(x_vers, y_vers, marker='.', linestyle='none')
# Label the axes
plt.xlabel('petal length (cm)')
plt.ylabel('ECDF')
```

Display the plot
plt.show()

g). Comparison of ECDF

Compute ECDFs

x_set, y_set=ecdf(setosa_petal_length)

x_vers, y_vers=ecdf(versicolor_petal_length)

x_virg, y_virg=ecdf(virginica_petal_length)

Plot all ECDFs on the same plot

plt.plot(x_set,y_set,marker='.',linestyle='none')

plt.plot(x_vers,y_vers,marker='.',linestyle='none')

plt.plot(x_virg,y_virg,marker='.',linestyle='none')

Annotate the plot

plt.legend(('setosa', 'versicolor', 'virginica'), loc='lower right')

_ = plt.xlabel('petal length (cm)')

_ = plt.ylabel('ECDF')

Display the plot

