Assignment - 3 Sequential Learning

#3A - Number Audio Data (HMM and DTW)

Confusion matrix 12 12 0 0 class A 20.00% 0.0% 0.0% 0.0% 0.0% 12 0 0.0% 12 0 class B 0.0% 0.0% 0.0% 12 0 12 0 0 class C 0.0% 0.0% 20.00% 0.0% 0.0% 12 0 11 class D 0.0% 0.0% 0.0% 18.33% 1.67% 12 0 0.0% 12 class E 0.0% 0.0% 0.0% 20.00% 12 12 12 11 13 60 sum_col class classB classo classA SUM JIM Actual

Confusion matrix for DTW

DET for HMM DET for DTW

Observations and Approach

- 1. Firstly, we classified the given training data into k classes by K-means algorithm.
- 2. This class data is passed on to the HMM for training and no. of states is set with m and delta is set to 0.001 (ref. Used the given hmm code)

- 3. The output is transition matrix which we now use to classify development data.
- 4. For the above data the best results are obtained at k = m = 20.
- 5. This development data can also be classified with Dynamic Time Warping of each data point with the entire training data.
- 6. Upon increasing the number of states upto some value accuracy increases if we still try to increase our model overfits data, decreasing accuracy.
- 7. Reference A 1, B 4, C 6, D o, E z

For Different K values	Accuracy Percentage
3	84
10	90
20	98

#3A - Letters Written Data

ROC HMM

Confusion matrix of HMM and DTW(Norm)

ROC DTW

Confusion matrix								Confusion matrix					
class A	20 20.00%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	20 100% 0.00%	class A	20 20.00%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	20 100% 0.00%
class B	0 0.0%	20 20.00%	0 0.0%	0 0.0%	0 0.0%	20 100% 0.00%	class B	0 0.0%	20 20.00%	0 0.0%	0 0.0%	0 0.0%	20 100% 0.00%
Predicted Class C	0 0.0%	0 0.0%	17 17.00%	0 0.0%	3 3.00%	20 85.00% 15.00 %	Predicted Class C	0 0.0%	0 0.0%	20 20.00%	0 0.0%	0 0.0%	20 100% 0.00%
class D	0 0.0%	0 0.0%	1 1.00%	19 19.00%	0 0.0%	20 95.00% 5.00%	class D	0 0.0%	0 0.0%	4 4.00%	16 16.00%	0 0.0%	20 80.00% 20.00%
class E	0 0.0%	0 0.0%	4 4.00%	0 0.0%	16 16.00%	20 80.00% 20.00%	class E	0 0.0%	0 0.0%	0 0.0%	0 0.0%	20 20.00%	20 100% 0.00%
_{sum_col}	20 100% 0.00%	20 100% 0.00%	22 77.27% 22.73%	19 100% 0.00%	19 84.21% 15.79%	100 92.00% 8.00%	sum_col	20 100% 0.00%	20 100% 0.00%	24 83.33% 16.67%	16 100% 0.00%	20 100% 0.00%	100 96.00% 4.00%
	class A	Cla558	c)85 ⁵	chas S	classe	sun jin		classA	class	Class C	dass	dassk	sun jir

-2.0

0.0

-0.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

1.0

0.5

-2.0

-2.5

-2.0

-1.5

-1.0

Observations and Approach

- 1. Given data is coordinates of strokes, firstly its normalised and fed to K-Means.
- 2. Output of these is Trained for HMM and tested similar to the above audio input.
- 3. For the above data the best results are obtained for normalized at k = 20, m = 12.
- 4. We observed that this data requires normalizing because the data given may not have values to the same scale.
- 5. Reference A a, B al, C chA, D dA, E IA

#3B - Sequence Audio Data

Results

- 1. 46z
- 2. z4
- 3. 44
- 4. z6
- 5. z66

Observations and Approach

- 1. Output of our trained data (transition matrix) of individual symbols are concatenated in all possible ways.
- 2. The development data is tested with the new train data and classified.
- 3. 40% of given test data is getting classified into correct sequence.
- 4. This results are obtained at k = m = 20.

#3B - Sequence Written Data

Results

- 1. dA_IA_dA
- 2. dA chA al
- 3. chA al al
- 4. al al al
- 5. dA_dA_dA

Observations and Approach

- 1. Out of 22 given development data we are accurately able to match 14 sequences, which is around 65%
- 2. For multiple letters, IA and dA are identified as chA sometimes.
- 3. Not normalizing the data resulted in poor results when tested on development data
- 4. This results are obtained at k = 20, m = 12.