

Report No.: EED32J00230703 Page 1 of 64

TEST REPORT

Product : E-POS
Trade mark : RONGTA

Model/Type reference : AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B

Serial Number : N/A

Report Number : EED32J00230703

FCC ID : 2AD6G-AP02

Date of Issue : Jan. 26, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

XIAMEN RONGTA TECHNOLOGY CO., LTD. 3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

> > Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Reum Ing

Kevin yang (Reviewer)

Jan. 26, 2018

Mill chen

Mill chen (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:2447672866

Page 2 of 64

2 Version

Version No.	Date	Description
00	Jan. 26, 2018	Original

3 Test Summary

Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Duty cycle	47 CFR Part 15 Subpart C Section 15.35(c)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.:AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B

Only the model AP02 was tested, since their electrical circuit design, layout, components and internal wiring are identical. Only the model name and color are different.

4 Content

	E						
2 VERSION							
3 TEST SUMM	ARY		•••••				
4 CONTENT	•••••	•••••	•••••	•••••		•••••	4
5 TEST REQU							
5.1.1 For 5.1.2 For 5.1.3 For 5.2 TEST EN	CONDUCTED TOP	setupsions test setu issions test se	ptup				
6 GENERAL IN							
6.2 GENERAL 6.3 PRODUC' 6.4 DESCRIP 6.5 TEST FACE 6.6 DEVIATION 6.7 ABNORM 6.8 OTHER IN	NFORMATION DESCRIPTION OF SPECIFICATION OF SUPPORTION OF SUPPORTION FROM STANDARLITIES FROM STANDARLI	OF EUT I SUBJECTIVE TO RT UNITSARDS FANDARD COND	O THIS STANDA	RD.			
7 EQUIPMENT	EMENT UNCERTA						
7 EQUIPMENT 8 RADIO TECH							
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	A): Conducted B): 6dB Occup C): Band-edge D): RF Conduct E): Power Sper F): Duty Cycle. G): Antenna Ro H): AC Power I I): Restricted b J): Radiated Sp	Peak Output Fied Bandwidth for RF Conducted Spurious Ectral DensityequirementLine Conducte ands around fipurious Emissi	cted Emission Emissions d Emission undamental froms	equency (Rad	iated)		12 13 17 20 29 33 37 38 47
PHOTOGRAPI							
PHOTOGRAP	HS OF EUT CO	NSTRUCTIO	NAL DETAILS	S	••••••	•••••	64

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 64

Figure 3. Above 1GHz

Page 6 of 64

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(8)
Temperature:	23°C	(0.)	6.
Humidity:	55 % RH		
Atmospheric Pressure:	1010 mbar		

5.3 Test Condition

Test channel:

Test Mode	Tv		RF Channel		
rest Mode	Tx	Low(L)	Middle(M)	High(H)	
802.11b/g/n(HT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
		2412MHz	2437MHz	2462MHz	
Transmitting mode:	Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).				

Test mode:

Pre-scan under all rate at lowest channel 1

Mode		8	02.11b	/				
Data Rate	1Mbp	s 2Mbp	s 5.5Mbps	s 11Mbp	s			
Power(dBm)	13.0	2 12.98	8 12.56	13.09				
Mode	130	802.11g						
Data Rate	6Mb	s 9Mbp	s 12Mbps	18Mbps	s 24Mbps 36Mbps 48Mbps 54Mb		54Mbps	
Power(dBm) 13.1	8 13.0	2 12.73	12.26	12.68	12.68 12.37 12.31 12.37		
Mode		802.11n (HT20)					•	
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	14.45	14.13	14.18	14.36	14.21	14.18	13.77	13.86

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 7 of 64

6 General Information

6.1 Client Information

Applicant:	XIAMEN RONGTA TECHNOLOGY CO., LTD.			
Address of Applicant:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China			
Manufacturer:	XIAMEN RONGTA TECHNOLOGY CO., LTD.			
Address of Manufacturer:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China			
Factory:	XIAMEN RONGTA TECHNOLOGY CO., LTD.			
Address of Factory:	4,5F, G Plant, Gaoqi Industrial Zones, Huli District, Xiamen City, China			

6.2 General Description of EUT

Product Name:	E-POS
Mode No.(EUT):	AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B
Test Mode:	AP02
Trade Mark:	RONGTA
EUT Supports Radios application	BT4.0, BT3.0 2402-2480MHz, WiFi b/g/n(HT20) 2.4G wifi 2412-2462MHz, GPRS 850/1900 , UMTS (3G) WCDMA Band II/WCDMA Band V
Hardware version:	C(Manufacturer declare)
Software version :	1.0.0(Manufacturer declare)
	DC 5V by Adapter
	Adapter: Input AC 100-240V,50/60Hz,0.5A. Output DC5V 1A
Power Supply:	DC 3.7V by Battery
	Battery: 3.7V, 6000mAh, 22.2Wh
Sample Received Date:	Oct. 19, 2017
Sample tested Date:	Oct. 19, 2017 to Jan. 26, 2018

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz				
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels				
Channel Separation:	5MHz	0.00			
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)	641			
Sample Type:	Portable				
Test Power Grade:	N/A				
Test software of EUT	Engineering mode				
Antenna Type:	Integral				
Antenna Gain:	1.95dBi				
Test Voltage:	AC 120V, 60Hz DC 3.7V				

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

			Page	e 8 of 64
.11b/g/n l	HT20)			
quency	Channel	Frequency	Channel	Frequenc
71.41.1	-/	0.4.408.41.1	4.0	0.4578411

Operation	Operation Frequency each of channel(802.11b/g/n HT20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1.2	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Facility

Test location

The test site a is located on Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China. Test site at Centre Testing International Group Co., Ltd has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC-Designation No.: CN1164

Centre Testing International Group Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The American association for Centre Testing International Group Co., Ltd. EMC laboratory accreditation Designation No.:CN1164

6.6 Deviation from Standards

None.

6.7 **Abnormalities from Standard Conditions**

6.8 Other Information Requested by the Customer

None.

Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Courious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	<u> </u>	01-11-2018	01-10-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4)	01-12-2017	01-11-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-11-2018	01-10-2019
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2018
PC-1	Lenovo	R4960d		04-01-2016	03-31-2018
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-13-2018
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2	(15)	04-01-2016	03-31-2018

Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018	
LISN	R&S	ENV216	100098	06-13-2017	06-12-2018	
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018	
Voltage Probe	R&S	ESH2-Z3		06-13-2017	06-12-2018	
Current Probe	R&S	EZ17	100106	06-13-2017	06-12-2018	
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018	

Equipment	Manufacturer	Mode No.	Serial	Cal. date	Cal. Due date
			Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2017	05-22-2018
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
Multi device Controller	maturo	NCD/070/10711 112	(21)	01-12-2017	01-11-2018
Multi device Controller	maturo	NCD/070/10711 112		01-11-2018	01-10-2019
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2017	01-11-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2017	01-11-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2017	01-11-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2017	01-11-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2018	01-10-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2017	01-11-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-11-2018	01-10-2019
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-11-2018	01-10-2019
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-11-2018	01-10-2019
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	(25)	01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	6	01-11-2018	01-10-2019
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA03C		01-11-2018	01-10-2019

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

St Resuits List.	/ /			
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.35 (c)	ANSI 63.10	Duty cycle	PASS	Appendix F)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix G)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix I)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix J)

Page 12 of 64

Appendix A): Conducted Peak Output Power

Test Procedure

- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and measure the duty cycle D of the transmitter output signal.
- 3. Adjust the measurement by adding 10 log(1/D) and record the results in the test report.

Result Table

110001101010				
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict	
11B	LCH	13.0986	PASS	
11B	MCH	13.5888	PASS	
11B	HCH	13.3687	PASS	
11G	LCH	13.2323	PASS	
11G	MCH	14.7923	PASS	
11G	HCH	12.9023	PASS	
11N20SISO	LCH	14.5122	PASS	
11N20SISO	MCH	15.7850	PASS	
11N20SISO	НСН	15.0922	PASS	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 13 of 64

Appendix B): 6dB Occupied Bandwidth

Result Table

	127.7		120 0 1		
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	10.01	12.873	PASS	
11B	MCH	9.551	12.646	PASS	
11B	НСН	10.04	12.752	PASS	(47)
11G	LCH	15.33	16.397	PASS	
11G	MCH	15.14	16.370	PASS	Peak
11G	НСН	15.11	16.399	PASS	detector
11N20SISO	LCH	15.13	17.567	PASS	
11N20SISO	MCH	15.10	17.540	PASS	
11N20SISO	НСН	15.10	17.553	PASS	

Page 14 of 64

Test Graph

Page 17 of 64

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	1.106	-49.802	-28.89	PASS
11B	HCH	1.154	-49.819	-28.85	PASS
11G	LCH	-4.739	-49.581	-34.74	PASS
11G	HCH	-5.147	-46.498	-35.15	PASS
11N20SISO	LCH	-6.466	-49.774	-36.47	PASS
11N20SISO	НСН	-5.723	-46.514	-35.72	PASS

Page 18 of 64

Test Graph

Page 20 of 64

Appendix D): RF Conducted Spurious Emissions

Result Table

		at E Paul		
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	1.243	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	1.93	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	1.354	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-4.888	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-4.115	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-4.981	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-6.929	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-4.739	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-5.518	<limit< td=""><td>PASS</td></limit<>	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 21 of 64

Test Graph

Page 22 of 64

Page 23 of 64

Page 24 of 64

Page 25 of 64

Page 26 of 64

Page 29 of 64

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-11.590	8	PASS
11B	MCH	-11.969	8	PASS
11B	HCH	-12.079	8	PASS
11G	LCH	-19.306	8	PASS
11G	MCH	-18.243	8	PASS
11G	нсн	-19.546	8	PASS
11N20SISO	LCH	-21.169	8	PASS
11N20SISO	MCH	-18.807	8	PASS
11N20SISO	HCH	-19.280	8	PASS

Page 30 of 64

Test Graph

Page 33 of 64

Appendix F): Duty Cycle

Result Table

Test Mode	Channel	Duty Cycle[%]	Verdict
11B	LCH	98.04	PASS
11B	MCH	98.00	PASS
11B	HCH	98.01	PASS
11G	LCH	88.65	PASS
11G	MCH	88.65	PASS
11G	HCH	88.65	PASS
11N20SISO	LCH	86.65	PASS
11N20SISO	MCH	88.10	PASS
11N20SISO	HCH	86.65	PASS

Page 34 of 64

Test Graph

Page 36 of 64

Appendix G): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.95dBi.

Page 38 of 64

	Test frequency range :150KHz-30MHz								
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.								
	3)The tabletop EUT was plac reference plane. And for flo horizontal ground reference	oor-standing arrange		_					
	The test was performed with shall be 0.4 m from the reference plane was bonde	vertical ground refe	rence plane. The ve	rtical ground . The LISN 1					
	was placed 0.8 m from the reference plane for LISNs distance was between the cof the EUT and associated (5) In order to find the maximum the interface cables must	mounted on top of closest points of the lequipment was at lean emission, the relative	the ground reference LISN 1 and the EUT. A st 0.8 m from the LISN re positions of equipm	e plane. This All other units I 2. ent and all of					
Limit	reference plane for LISNs distance was between the confidence of the EUT and associated 65) In order to find the maximum	mounted on top of closest points of the lequipment was at lean emission, the relative	the ground reference LISN 1 and the EUT. A st 0.8 m from the LISN re positions of equipm	e plane. This All other units I 2. ent and all of					
Limit:	reference plane for LISNs distance was between the confidence of the EUT and associated associated as the interface cables must measurement.	mounted on top of closest points of the lequipment was at lean emission, the relative	the ground reference LISN 1 and the EUT. A st 0.8 m from the LISN re positions of equipm ng to ANSI C63.10 o	e plane. This All other units I 2. ent and all of					
Limit:	reference plane for LISNs distance was between the confidence of the EUT and associated (5) In order to find the maximum the interface cables must	mounted on top of closest points of the lequipment was at lead emission, the relative changed according	the ground reference LISN 1 and the EUT. A st 0.8 m from the LISN re positions of equipm ng to ANSI C63.10 o	e plane. This All other units I 2. ent and all of					
Limit:	reference plane for LISNs distance was between the confidence of the EUT and associated associated as the interface cables must measurement.	mounted on top of closest points of the lequipment was at lean emission, the relative be changed according to the change of the legislation of the change of the legislation of the legi	the ground reference LISN 1 and the EUT. A st 0.8 m from the LISN re positions of equipm ng to ANSI C63.10 o	e plane. This All other units I 2. ent and all of					
Limit:	reference plane for LISNs distance was between the confidence of the EUT and associated estimates the interface cables must measurement. Frequency range (MHz)	mounted on top of closest points of the lequipment was at lead emission, the relative be changed according Limit (of Quasi-peak	the ground reference LISN 1 and the EUT. A st 0.8 m from the LISN re positions of equipming to ANSI C63.10 of the EUT. A st 0.8 m from the LISN repositions of equipming to ANSI C63.10 of the EUT. A st 0.8 m from the EUT.	e plane. This All other units I 2. ent and all of					
Limit:	reference plane for LISNs distance was between the confidence of the EUT and associated estimates the interface cables must measurement. Frequency range (MHz) 0.15-0.5	mounted on top of closest points of the lequipment was at lead a emission, the relative be changed according Limit (concept) Quasi-peak 66 to 56*	the ground reference LISN 1 and the EUT. A st 0.8 m from the LISN re positions of equipming to ANSI C63.10 of AVerage Average 56 to 46*	e plane. This All other units I 2. ent and all of					

detected.

Page 39 of 64

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	36.50	33.16	21.61	9.77	46.27	42.93	31.38	65.99	55.99	-23.06	-24.61	Р	
2	0.1940	33.07	30.66	21.60	9.72	42.79	40.38	31.32	63.86	53.86	-23.48	-22.54	Р	
3	0.3460	33.80	31.05	21.04	9.77	43.57	40.82	30.81	59.06	49.06	-18.24	-18.25	Р	
4	0.4340	36.11	33.24	23.25	9.74	45.85	42.98	32.99	57.18	47.18	-14.20	-14.19	Р	
5	0.5820	36.27	34.51	23.17	9.74	46.01	44.25	32.91	56.00	46.00	-11.75	-13.09	Р	
6	0.9180	35.16	33.18	20.45	9.74	44.90	42.92	30.19	56.00	46.00	-13.08	-15.81	Ρ	

Page 40 of 64

Neutral line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2460	34.03	31.21	23.24	9.74	43.77	40.95	32.98	61.89	51.89	-20.94	-18.91	Р	
2	0.3420	35.25	32.25	27.20	9.77	45.02	42.02	36.97	59.15	49.15	-17.13	-12.18	Р	
3	0.4460	36.32	33.47	21.18	9.73	46.05	43.20	30.91	56.95	46.95	-13.75	-16.04	Р	
4	0.5940	34.00	31.27	17.90	9.75	43.75	41.02	27.65	56.00	46.00	-14.98	-18.35	Р	
5	0.7460	32.08	30.74	8.95	9.75	41.83	40.49	18.70	56.00	46.00	-15.51	-27.30	Р	
6	0.8820	32.21	30.66	18.74	9.75	41.96	40.41	28.49	56.00	46.00	-15.59	-17.51	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No.: EED32J00230703 Page 41 of 64

Appendix I): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	Ab 4011-	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the positio b. The EUT was set 3 m was mounted on the c. The antenna height is determine the maxim polarizations of the ai d. For each suspected of the antenna was tune was turned from 0 de e. The test-receiver syst Bandwidth with Maxim f. Place a marker at the frequency to show co bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between abott to fully Anechoic Cha 18GHz the distance i h. Test the EUT in the I i. The radiation measur Transmitting mode, a j. Repeat above proced	on the top of a rocechoic camber. The period of the highest range of a variable-range of a variable-range of the first are set to emission, the EUT of the highest of the heights from the grees to 360 degrees to 360 d	ne table was adiation. the interfer neight ante meter to foeld strengtl make the r was arran 1 meter to rees to find eak Detect cted band of easure any ot. Repeat	ence-receinna tower. For meters a the maximum the maxi	ving antenna, when above the ground izontal and verticent. worst case and the and the rotatable num reading. In the restricted ower and modular and specified. Anechoic Chambers of the content of the
Limit:	Frequency	Limit (dBµV	/m @3m)	Rer	mark
	30MHz-88MHz	40.0)	Quasi-pe	eak Value
	88MHz-216MHz	43.5	5	Quasi-pe	eak Value
	216MHz-960MHz	46.0)	Quasi-pe	eak Value
		54.0)	Quasi-pe	eak Value
	960MHz-1GHz	54.0			
	960MHz-1GHz Above 1GHz	54.0		<u> </u>	e Value

Page 42 of 64

Test plot as follows:

Worse case mode:	802.11b (11Mbps)		
Frequency: 2412.MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
							Horizontal	
2 pp 2413.072	32.58	3.08	67.67	103.33	74.00	29.33	Horizontal	Peak

Worse case mode:	802.11b (11Mbps)		(6)
Frequency: 2412.MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Worse case mode:	802.11b (11Mbps)		
Frequency: 2412.MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11b (11Mbps)	(6)	
Frequency: 2412.MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Freq					Limit Line		Pol/Phase	Remark
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2390.000 2 pp 2410.104							Vertical Vertical	_

Page 44 of 64

Worse case mode:	802.11b (11Mbps)		
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Freq		Cable Loss				Over Limit	Pol/Phase	Remark
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		

1 pp 2462.958 32.68 3.11 68.41 104.20 74.00 30.20 Horizontal Peak 2 2483.500 32.71 3.12 24.55 60.38 74.00 -13.62 Horizontal Peak

Worse case mode:	802.11b (11Mbps)			
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average	

Page 45 of 64	Page	45	of	64	
---------------	------	----	----	----	--

Worse case mode:		802.11b (11Mbps)				
	Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak		

	Freq		Cable Loss					Pol/Phase	Remark	
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1.1								Vertical Vertical		

Worse case mode:	802.11b (11Mbps)			
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Average	

Page 46 of 64

Worse case mode:	802.11g (6Mbps)		
Frequency: 2412.MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11g (6Mbps)	6.	
Frequency: 2412.MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

1 490 11 01 01	Page	47	of 64	
----------------	------	----	-------	--

Worse case mode: 802.		802.11g (6Mbps)		
	Frequency: 2412.MHz	Test channel: Lowest Polarization: Vertical Remark: Peak	Test channel: Lowest Polarization: Vertical	

Worse case mode:	802.11g (6Mbps)		
Frequency: 2412.MHz	Test channel: Lowest	Polarization: Vertical	Remark:Average

Worse case mode:	802.11g (6Mbps)				
Frequency: 2462.MHz	Test channel: Lowest Polarization: Vertical	Remark: Peak			

Worse case mode:	802.11g (6Mbps)		
Frequency: 2462.MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Page 49 of 64

Worse case mode:	802.11g (6Mbps)				
Frequency: 2462.MHz	Test channel: Highest	Polarization:Vertical	Remark:Peak		

Worse case mode:	802.11g (6Mbps)		
Frequency: 2462.MHz	Test channel: Highest	Polarization: Vertical	Remark:Average

Page 50 of 64

Worse case mode:	802.11n(HT20) (6.5Mbps)				
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak		

Fre		Cable Loss			Limit Line		Pol/Phase	Remark	
MH	z dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			

1 2390.000 32.53 3.07 24.53 60.13 74.00 -13.87 Horizontal Peak 2 pp 2412.844 32.58 3.08 64.99 100.65 74.00 26.65 Horizontal Peak

Worse case mode:	802.11n(HT20) (6.5Mbps)				
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average		

Worse case mode:	802.11n(HT20) (6.5Mbps)				
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak		

		Ant	Cable	Read		Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	2390.000	32.53	3.07	25.20	60.80	74.00	-13.20	Vertical	Peak	
2 nn	2409.647	32.57	3.08	63.12	98.77	74.00	24.77	Vertical	Peak	

Worse case mode:	802.11n(HT20) (6.5Mbps)				
Frequency: 2412MHz	Test channel: Lowest Polarization: Vertical Remark: Av	erage			

Freq					Limit Line		Pol/Phase	Remark	
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
							Vertical Vertical	_	

Worse case mode:	802.11n(HT20) (6.5Mbps)				
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak		

Worse case mode:	802.11n(HT20) (6.5Mb)	ps)	6.)
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Page 53 of 64

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Freq					Limit Line		Pol/Phase	Remark	
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			-
1 pp 2460.428 2 2483.500	32.67	3.11	48.23	84.01	54.00	30.01	Vertical	Average	

- 1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 54 of 64

Appendix J): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1011=	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

	n	١I	٠
-	 		•

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	150	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 55 of 64

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)

Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dRuV	dBuV/m	dBuV/m	dB		
		u.,							
1	EQ 057	14 EQ	0 11	E 60	20. 20	40.00	10.70	Uanizantal	OD
1	30.037	14.59	0.11	5.00	20.50	40.00	-19.70	Horizontal	٧P
2	99.878	12.48	0.59	5.35	18.42	43.50	-25.08	Horizontal	QP
3	257.422	12.73	1.30	11.06	25.09	46.00	-20.91	Horizontal	QP
4 pp	340.782	14.23	1.28	23.05	38.56	46.00	-7.44	Horizontal	QP
5	642.861	18.87	1.83	7.28	27.98	46.00	-18.02	Horizontal	QP
6	906.482	22.09	2.47	7.35	31.91	46.00	-14.09	${\it Horizontal}$	QP

Page 56 of 64

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
	44 743	43.05	0.00	F 07	40.04	40.00	20.00		0.0
1	41.713	13.95	0.06	5.93	19.94	40.00	-20.06	Vertical	QP
2	55.609	13.73	0.17	6.60	20.50	40.00	-19.50	Vertical	QP
3	99.878	12.48	0.59	5.26	18.33	43.50	-25.17	Vertical	QP
4	309.998	13.61	1.12	5.87	20.60	46.00	-25.40	Vertical	QP
5	572.614	18.22	1.67	6.25	26.14	46.00	-19.86	Vertical	QP
6 рр	854.025	21.37	2.45	6.00	29.82	46.00	-16.18	Vertical	QP

Transmitter Emission above 1GHz

Test mode:	802.11b(11I	Mbps)	Test F	requency:	2412MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1326.513	30.52	2.05	44.21	47.36	35.72	74.00	-38.28	Pass	Horizontal
1706.700	31.24	2.54	43.77	46.02	36.03	74.00	-37.97	Pass	Horizontal
4824.000	34.73	6.02	44.60	47.97	44.12	74.00	-29.88	Pass	Horizontal
6428.771	36.12	7.33	44.54	45.53	44.44	74.00	-29.56	Pass	Horizontal
7236.000	36.42	6.94	44.80	43.46	42.02	74.00	-31.98	Pass	Horizontal
9648.000	37.93	7.01	45.57	41.92	41.29	74.00	-32.71	Pass	Horizontal
1435.431	30.74	2.20	44.07	46.45	35.32	74.00	-38.68	Pass	Vertical
1755.164	31.32	2.59	43.73	46.64	36.82	74.00	-37.18	Pass	Vertical
4824.000	34.73	6.02	44.60	47.20	43.35	74.00	-30.65	Pass	Vertical
5821.207	35.77	7.26	44.52	45.84	44.35	74.00	-29.65	Pass	Vertical
7236.000	36.42	6.94	44.80	46.20	44.76	74.00	-29.24	Pass	Vertical
9648.000	37.93	7.01	45.57	41.15	40.52	74.00	-33.48	Pass	Vertical

	Test mode:	802.11b(11 i	Mbps)	Test Freq	uency: 240	37MHz	Remark: Peak			
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	1204.210	30.24	1.87	44.38	46.96	34.69	74.00	-39.31	Pass	Horizontal
	1545.405	30.96	2.35	43.95	46.99	36.35	74.00	-37.65	Pass	Horizontal
e'	4874.000	34.84	6.12	44.60	49.40	45.76	74.00	-28.24	Pass	Horizontal
	5865.832	35.80	7.31	44.51	45.34	43.94	74.00	-30.06	Pass	Horizontal
	7311.000	36.43	6.86	44.86	44.14	42.57	74.00	-31.43	Pass	Horizontal
	9748.000	38.03	7.10	45.55	42.06	41.64	74.00	-32.36	Pass	Horizontal
	1371.145	30.61	2.12	44.15	47.27	35.85	74.00	-38.15	Pass	Vertical
	1805.005	31.40	2.64	43.68	45.97	36.33	74.00	-37.67	Pass	Vertical
	4874.000	34.84	6.12	44.60	49.09	45.45	74.00	-28.55	Pass	Vertical
	6412.427	36.12	7.33	44.54	45.37	44.28	74.00	-29.72	Pass	Vertical
	7311.000	36.43	6.86	44.86	46.26	44.69	74.00	-29.31	Pass	Vertical
5	9748.000	38.03	7.10	45.55	41.38	40.96	74.00	-33.04	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1107.186	29.99	1.71	44.52	47.82	35.00	74.00	-39.00	Pass	Horizontal
1642.761	31.13	2.46	43.84	46.10	35.85	74.00	-38.15	Pass	Horizontal
4924.000	34.94	6.22	44.60	52.17	48.73	74.00	-25.27	Pass	Horizontal
5850.919	35.79	7.29	44.51	46.14	44.71	74.00	-29.29	Pass	Horizontal
7386.000	36.44	6.78	44.92	45.41	43.71	74.00	-30.29	Pass	Horizontal
9848.000	38.14	7.19	45.53	41.79	41.59	74.00	-32.41	Pass	Horizontal
1241.562	30.32	1.93	44.33	46.96	34.88	74.00	-39.12	Pass	Vertical
1782.177	31.37	2.62	43.70	46.30	36.59	74.00	-37.41	Pass	Vertical
4924.000	34.94	6.22	44.60	49.77	46.33	74.00	-27.67	Pass	Vertical
5895.771	35.82	7.34	44.51	45.36	44.01	74.00	-29.99	Pass	Vertical
7386.000	36.44	6.78	44.92	48.30	46.60	74.00	-27.40	Pass	Vertical
9848.000	38.14	7.19	45.53	42.53	42.33	74.00	-31.67	Pass	Vertical

Test mode:	802.11g(6M	lbps)	Test Freq	uency: 24	12MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1360.714	30.59	2.10	44.17	46.84	35.36	74.00	-38.64	Pass	Horizontal
1837.456	31.46	2.68	43.65	46.43	36.92	74.00	-37.08	Pass	Horizontal
4824.000	34.73	6.02	44.60	44.01	40.16	74.00	-33.84	Pass	Horizontal
6412.427	36.12	7.33	44.54	45.34	44.25	74.00	-29.75	Pass	Horizontal
7236.000	36.42	6.94	44.80	43.02	41.58	74.00	-32.42	Pass	Horizontal
9648.000	37.93	7.01	45.57	41.56	40.93	74.00	-33.07	Pass	Horizontal
1257.465	30.36	1.95	44.30	47.05	35.06	74.00	-38.94	Pass	Vertical
1549.344	30.96	2.35	43.94	47.43	36.80	74.00	-37.20	Pass	Vertical
4824.000	34.73	6.02	44.60	44.91	41.06	74.00	-32.94	Pass	Vertical
5791.646	35.74	7.23	44.52	45.30	43.75	74.00	-30.25	Pass	Vertical
7236.000	36.42	6.94	44.80	42.75	41.31	74.00	-32.69	Pass	Vertical
9648.000	37.93	7.01	45.57	42.20	41.57	74.00	-32.43	Pass	Vertical

Test mode: 802.11g(6Mbps)			Test Freq	uency: 24	37MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1260.670	30.37	1.95	44.30	46.23	34.25	74.00	-39.75	Pass	Horizontal	
1461.238	30.79	2.24	44.04	46.91	35.90	74.00	-38.10	Pass	Horizontal	
1875.258	31.51	2.72	43.61	46.01	36.63	74.00	-37.37	Pass	Horizontal	
4874.000	34.84	6.12	44.60	44.63	40.99	74.00	-33.01	Pass	Horizontal	
7311.000	36.43	6.86	44.86	44.48	42.91	74.00	-31.09	Pass	Horizontal	
9748.000	38.03	7.10	45.55	41.10	40.68	74.00	-33.32	Pass	Horizontal	
1176.935	30.17	1.82	44.42	47.47	35.04	74.00	-38.96	Pass	Vertical	
1406.496	30.68	2.16	44.11	48.44	37.17	74.00	-36.83	Pass	Vertical	
1638.585	31.12	2.46	43.85	47.07	36.80	74.00	-37.20	Pass	Vertical	
4874.000	34.84	6.12	44.60	45.83	42.19	74.00	-31.81	Pass	Vertical	
7311.000	36.43	6.86	44.86	45.19	43.62	74.00	-30.38	Pass	Vertical	
9748.000	38.03	7.10	45.55	40.52	40.10	74.00	-33.90	Pass	Vertical	

Test mode: 802.11g(6Mbps)			Test Frequ	uency: 246	62MHz	Remark: Peak				
Frequency (MHz)	factor Loss Gain Level		Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis				
1244.726	30.33	1.93	44.32	47.18	35.12	74.00	-38.88	Pass	Horizontal	
1809.605	31.41	2.65	43.67	46.61	37.00	74.00	-37.00	Pass	Horizontal	
4924.000	34.94	6.22	44.60	44.54	41.10	74.00	-32.90	Pass	Horizontal	
5850.919	35.79	7.29	44.51	46.08	44.65	74.00	-29.35	Pass	Horizontal	
7386.000	36.44	6.78	44.92	41.72	40.02	74.00	-33.98	Pass	Horizontal	
9848.000	38.14	7.19	45.53	42.49	42.29	74.00	-31.71	Pass	Horizontal	
1296.469	30.45	2.01	44.25	47.30	35.51	74.00	-38.49	Pass	Vertical	
1795.839	31.39	2.63	43.69	46.10	36.43	74.00	-37.57	Pass	Vertical	
4924.000	34.94	6.22	44.60	44.30	40.86	74.00	-33.14	Pass	Vertical	
5865.832	35.80	7.31	44.51	45.38	43.98	74.00	-30.02	Pass	Vertical	
7386.000	36.44	6.78	44.92	45.70	44.00	74.00	-30.00	Pass	Vertical	
9848.000	38.14	7.19	45.53	41.76	41.56	74.00	-32.44	Pass	Vertical	

Test mode:	802.11n(HT	20)(6.5N	lbps)	Test Frequency: 2412MHz Re				Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	1 /	mit IV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1144.437	30.09	1.77	44.47	46.68	34.07	74	.00	-39.93	Pass	Horizontal	
1601.472	31.06	2.41	43.88	46.18	35.77	74	.00	-38.23	Pass	Horizontal	
4824.000	34.73	6.02	44.60	43.77	39.92	74	.00	-34.08	Pass	Horizontal	
5910.798	35.83	7.35	44.51	44.82	43.49	74	.00	-30.51	Pass	Horizontal	
7236.000	36.42	6.94	44.80	44.92	43.48	74	.00	-30.52	Pass	Horizontal	
9648.000	37.93	7.01	45.57	42.63	42.00	74	.00	-32.00	Pass	Horizontal	
1257.465	30.36	1.95	44.30	46.76	34.77	74	.00	-39.23	Pass	Vertical	
1537.557	30.94	2.34	43.96	46.29	35.61	74	.00	-38.39	Pass	Vertical	
4824.000	34.73	6.02	44.60	44.90	41.05	74	.00	-32.95	Pass	Vertical	
5850.919	35.79	7.29	44.51	44.91	43.48	74	.00	-30.52	Pass	Vertical	
7236.000	36.42	6.94	44.80	44.86	43.42	74	.00	-30.58	Pass	Vertical	
9648.000	37.93	7.01	45.57	41.97	41.34	74	.00	-32.66	Pass	Vertical	

Test mode:	802.11n(HT	20)(6.5N	lbps) T	Test Frequency: 2437MHz R				Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1273.572	30.40	1.97	44.28	47.35	35.44	74.0	00	-38.56	Pass	Horizontal	
1541.476	30.95	2.34	43.95	46.61	35.95	74.0	00	-38.05	Pass	Horizontal	
4874.000	34.84	6.12	44.60	45.87	42.23	74.0	00	-31.77	Pass	Horizontal	
6251.257	36.03	7.37	44.53	45.24	44.11	74.0	00	-29.89	Pass	Horizontal	
7311.000	36.43	6.86	44.86	42.64	41.07	74.0	00	-32.93	Pass	Horizontal	
9748.000	38.03	7.10	45.55	40.53	40.11	74.0	00	-33.89	Pass	Horizontal	
1244.726	30.33	1.93	44.32	46.84	34.78	74.0	00	-39.22	Pass	Vertical	
1605.554	31.07	2.42	43.88	46.09	35.70	74.0	00	-38.30	Pass	Vertical	
4874.000	34.84	6.12	44.60	44.41	40.77	74.0	00	-33.23	Pass	Vertical	
5850.919	35.79	7.29	44.51	45.38	43.95	74.0	00	-30.05	Pass	Vertical	
7311.000	36.43	6.86	44.86	45.41	43.84	74.0	00	-30.16	Pass	Vertical	
9748.000	38.03	7.10	45.55	40.43	40.01	74.0	00	-33.99	Pass	Vertical	

Page 61 of 64

Test mode:	802.11n(HT	20)(6.5N	lbps) T	Test Frequency: 2462MHz				Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1198.095	30.22	1.86	44.39	47.03	34.72	74	1.00	-39.28	Pass	Horizontal	
1533.648	30.93	2.33	43.96	46.11	35.41	74	1.00	-38.59	Pass	Horizontal	
4924.000	34.94	6.22	44.60	42.66	39.22	74.00		-34.78	Pass	Horizontal	
5836.044	35.78	7.28	44.52	45.47	44.01	74	1.00	-29.99	Pass	Horizontal	
7386.000	36.44	6.78	44.92	42.36	40.66	74	1.00	-33.34	Pass	Horizontal	
9848.000	38.14	7.19	45.53	41.58	41.38	74	1.00	-32.62	Pass	Horizontal	
1273.572	30.40	1.97	44.28	46.77	34.86	74	1.00	-39.14	Pass	Vertical	
1601.472	31.06	2.41	43.88	46.10	35.69	74	1.00	-38.31	Pass	Vertical	
4924.000	34.94	6.22	44.60	44.47	41.03	74	1.00	-32.97	Pass	Vertical	
6219.512	36.02	7.38	44.52	45.25	44.13	74	1.00	-29.87	Pass	Vertical	
7386.000	36.44	6.78	44.92	41.96	40.26	74	1.00	-33.74	Pass	Vertical	
9848.000	38.14	7.19	45.53	41.94	41.74	74	1.00	-32.26	Pass	Vertical	

Remark

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 62 of 64

PHOTOGRAPHS OF TEST SETUP

Test mode No.: AP02

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1G)

Page 63 of 64

Radiated spurious emission Test Setup-3(Above 1G)

Conducted Emissions Test Setup

Page 64 of 64

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32J00230701 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

