

LAB05: On device learning

Davide Nadalini – d.nadalini@unibo.it Lorenzo Lamberti – lorenzo.lamberti@unibo.it Alberto Dequino – alberto.dequino@unibo.it Francesco Conti – f.conti@unibo.it

Objective of the Class

Intro: On-Device Learning on MicroControllers

Tasks: Implement the C code to train a simple DNN on-device:

- Visualize tensors
- Forward, loss, backward, update: familiarize with the C code
- Implement a loss function on-device
- Train a DNN the GVSoC simulator with sample data and label

Programming Language: C

Lab duration: 3h

The class is meant to be interactive: coding together and on your own!

How to deliver the Assignment

You will deliver ONLY the GDOC assignment, no code

- Copy the google doc to your drive, so that you can modify it. (File -> make a copy)
- Fill the tasks on this google doc.
- Export to pdf format.
- Rename the file to: LAB<number_of_the_lesson>_APAI_<your_name>.pdf
- Use Virtuale platform to load ONLY your .pdf file

SETUP: How to access the server

- Open this web page: https://compute.eees.dei.unibo.it:8443/guacamole/ (works only from ALMA WIFI NETWORK!)
- 2. Login. We distribute credentials by hand.
- 3. Open a terminal (right click open a new terminal)
- Open a text editor (For example "VSCode"): \$ code .
 Now you can use the integrated terminal to run your applications!

IMPORTANT: activate the pulp-sdk module file <u>every</u> time a new shell is open.

\$ module load pulp-sdk

SETUP: How to access the server

- Open this web page: https://compute.eees.dei.unibo.it:8443/guacamole/ (works only from ALMA WIFI NETWORK!)
- 2. Login. We distribute credentials by hand.
- 3. Open a terminal (right click open a new terminal)
- 4. Clone:
 git clone https://github.com/EEESlab/<insert_here_the_right_repo!>
- 5. module load pulp-sdk
- 6. cd <insert_here_the_right_repo!>
- 7. make clean all run

On-Device Learning with PULP-TrainLib

On-Device Learning (ODL)

"The process of **locally optimizing AI** models deployed on **Edge IoT Devices**"

The Internet of Things (IoT)

IoT

"The process of connecting everyday physical objects to the internet"

1

Miniaturized low-power and low-cost edge sensor nodes embedded in physical systems

IoT Applications – Examples

KEYWORD SPOTTING

Identify & React to user's keywords

IMAGE CLASSIFICATION

Detect the class of an image's content

9 UNIVERSITA DI BOLOGNA

IoT Applications – Examples (cont'd)

VISUAL WAKE WORDS

Detect the presence of a key object

ANOMALY DETECTION

Detect when a signal indicates an anomaly

10

IoT Sensor Nodes: Tiny Machine Learning

.MA MATEK STUDIORUM NIVERSITÀ DI BOLOGNA

The inference problem

On-Device Learning (ODL)

On-Device Learning vs Training on Cloud

ADVANTAGES OF On Device Learning

Network Scalability

User Data Privacy

Latency of DNN Update

On-Device Learning on PULP

Our task: The Backpropagation Algorithm

Step 1: Forward

Step 2: Loss

Step 3: Out grad

Step 4: Backward

Loss

On-Device Learning on PULP

¹PULP-Platform: https://pulp-platform.org/

PULP-TrainLib

The first On-Device Learning library for RISC-V MultiCore MCUs (PULP)

E.G: Conv2D Training

```
// Arguments
struct Conv2D_args C2D_args;
struct loss args loss args;
struct optim args optim args;
// Forward layer
pulp_conv2d_fp32_fw_cl(&C2D_args);
// Loss function
pulp_CrossEntropyLoss(&loss_args);
// Backward
pulp_conv2d_fp32_bw_input_grads_cl(&C2D_args);
pulp conv2d fp32 bw param grads cl(&C2D args);
// Update
pulp_gradient_descent_fp32(&optim_args);
```

https://github.com/pulp-platform/pulp-trainlib

Thank you for your attention

DEI – Università di Bologna

Davide Nadalini – d.nadalini@unibo.it Lorenzo Lamberti – lorenzo.lamberti@unibo.it Alberto Dequino – alberto.dequino@unibo.it Francesco Conti – f.conti@unibo.it