

Evoluzione dei modelli

- □ "Code-'n-Fix": un non-modello
 - O Attività eseguite senza organizzazione preordinata
 - O Risulta in progetti caotici non gestiti né gestibili
- □ Modelli organizzati (alcuni ...)

Cascata rigide fasi sequenziali
Incrementale realizzazione in più passi
Evolutivo con ripetute iterazioni interne

A spirale contesto allargato e modello astratto
Agile dinamico, a cicli iterativi e incrementali

Dipartimento di Informatica, Università di Pisa

5/38

Il ciclo di vita del software

Modello sequenziale (a cascata) - 2

- Ogni stato di vita (fase) è caratterizzato da precondizioni di ingresso e post-condizioni di uscita
 - Il loro soddisfacimento è dimostrato da prodotti costituiti <u>prima</u> da documentazione e poi da SW
- ☐ Fasi distinte e non sovrapposte nel tempo
- Adatto allo sviluppo di sistemi complessi sul piano organizzativo
 - Le iterazioni costano troppo per essere un buon mezzo di mitigazione dei rischi tramite approssimazioni successive

Dipartimento di Informatica, Università di Pisa

7/38

Il ciclo di vita del software

Modello sequenziale (a cascata) - 1

- □ Definito nel 1970 da Winston W. Royce
 - "Managing the development of large software systems: concepts and techniques"
 - Centrato sull'idea di processi ripetibili
- □ Successione di fasi rigidamente sequenziali
 - O Non ammette ritorno a fasi precedenti
 - O Eventi eccezionali fanno ripartire dall'inizio
- □ Prodotti
 - O Principalmente "documenti", fino a includere il SW
 - Emissione e approvazione di documenti come condizione necessaria per l'avvio della fase successiva (modello «document driven»)

Dipartimento di Informatica, Università di Pisa

6/38

Il ciclo di vita del software

Modello sequenziale (a cascata) - 3

- □ Ogni fase viene definita in termini di
 - O Attività previste e prodotti attesi in ingresso e in uscita
 - O Contenuti e struttura dei documenti
 - O Responsabilità e ruoli coinvolti
 - O Scadenze di consegna dei documenti
- □ Le fasi sono durate temporali con dipendenze causali tra loro
 - Entrare, uscire, stazionare in una fase comporta azioni specifiche
 - O Realizzate come attività erogate dai processi coinvolti

Dipartimento di Informatica, Università di Pisa

Vantaggi dei modelli incrementali

- □ Possono produrre "valore" a ogni incremento
 - O Un insieme non vuoto di funzionalità diventa presto disponibile
 - O I primi incrementi possono corrispondere a fasi di prototipazione
 - Che aiutano a fissare meglio i requisiti per gli incrementi successivi
- Ogni incremento riduce il rischio di fallimento
 - Senza però azzerarlo a causa dei costi aggiuntivi derivanti dalle eventuali iterazioni
- Le funzionalità essenziali sono sviluppate nei primi incrementi
 - O Attraversano più fasi di verifica
 - E quindi diventano più stabili con ciascuna iterazione

Dipartimento di Informatica, Università di Pisa

13/38

Il ciclo di vita del software

Vantaggi dei modelli iterativi

- □ Sono applicabili a qualunque modello di ciclo di vita
 - O Con opportuni vincoli
- □ Consentono maggior capacità di adattamento
 - O Evoluzione di problemi, requisiti utente, soluzioni e tecnologie
- Ma comportano il rischio di non convergenza
- □ Soluzione generale
 - O Decomporre la realizzazione del sistema
 - O Identificare e trattare prima le componenti più critiche
 - Quelle più complesse oppure quelle i cui requisiti vanno maggiormente chiariti
 - Limitando superiormente il numero di iterazioni

Dipartimento di Informatica, Università di Pisa

14/38

Il ciclo di vita del software

Modello incrementale - 1

- □ Prevede rilasci multipli e successivi
 - O Ciascuno realizza un incremento di funzionalità
- □ I requisiti utente sono classificati e trattati in base alla loro importanza strategica
 - O I primi rilasci puntano a soddisfare i requisiti più importanti
 - O I requisiti importanti sono stabili dall'inizio
 - Quelli meno importanti possono stabilizzarsi in corso di sviluppo

Dipartimento di Informatica, Università di Pisa

Modello a spirale - 2

□ Pone grande attenzione sugli aspetti gestionali

- O Pianificazione delle fasi
- O Analisi dei rischi (modello «risk driven»)

□ Richiede forte interazione tra committente e fornitore

O Committente: definizione degli obiettivi

definizione dei vincoli sulla pianificazione

O Fornitore: sviluppo e validazione

O Entrambi: analisi dei rischi

Dipartimento di Informatica, Università di Pisa

25/38

Il ciclo di vita del software

Fasi del modello a spirale

- □ Definizione degli obiettivi
 - O Requisiti, rischi, strategia di gestione
- □ Analisi dei rischi
 - O Studio delle conseguenze
 - O Valutazione delle alternative con l'ausilio di prototipi e simulazioni
- □ Sviluppo e validazione
 - Realizzazione del prodotto
- □ Pianificazione
 - O Decisione circa il proseguimento
 - Pianificazione del proseguimento

Dipartimento di Informatica, Università di Pisa

27/38

Il ciclo di vita del software

Modello a spirale – 3

- □ Prevede quattro attività principali
 - O Definizione degli obiettivi
 - O Analisi dei rischi
 - O Sviluppo e validazione
 - Pianificazione
- □ Modello astratto da specializzare
 - O Come rappresentarlo in termini dei diagrammi di processo?

Dipartimento di Informatica, Università di Pisa

Metodi agili – 1

- Nascono alla fine del '90 come reazione alla eccessiva rigidità dei modelli allora in vigore
 - o http://agilemanifesto.org/
- □ Si basano su quattro principi fondanti
 - 1) Individuals and interactions over processes and tools
 - L'eccessiva rigidità ostacola l'emergere del valore
 - 2) Working sofware over comprehensive documentation
 - La documentazione non sempre corrisponde a SW funzionante
 - 3) Customer collaboration over contract negotiation
 - L'interazione con gli stakeholder va incentivata e non ingessata
 - 4) Responding to change over following a plan
 - La capacità di adattamento al cambiare delle situazioni è importante

Dipartimento di Informatica, Università di Pisa

30/38

Il ciclo di vita del software

Metodi agili – 3

Migliori assunti base

- È possibile suddividere il lavoro da fare in piccoli incrementi a valore aggiunto che possono essere sviluppati indipendentemente
- È possibile sviluppare questi incrementi in una sequenza continua dall'analisi dei requisiti all'integrazione
- Obiettivi strategici
 - O Poter costantemente dimostrare al cliente quanto è stato fatto
 - O Verificare l'avanzamento tramite progresso reale
 - O Dare agli sviluppatori la soddisfazione del risultato
 - O Assicurare che l'intero prodotto SW è ben integrato e verificato

□ Esempi

O Scrum (caos organizzato), Kanban (just-in-time), Scrumban

Dipartimento di Informatica, Università di Pisa

