27. a.	Illustrate regular and inverse spinel structure of ferrites with neat diagram. Write their applications.	10	3	Z	۷
	(OR)				
b.i.	Explain the phenomenon of giant magnetoresistance and tunnel Magnetoresistance.	6	3	2	2
ii.	Compare soft and hard magnetic materials.	4	4	2	1
28. a.i.	Derive the Eigen value of a particle enclosed in an one dimensional potential box.	8	3	3	4
ii.	If the momentum of two particles are in the ratio 1:0.25, compare their de- Broglie wavelengths.	2	3	3	1
	(OR)				
b.i.	Derive Schrodinger time dependent wave equation.	6	3	3	4
ii.	Calculate the de – Broglie's wavelength of an electron having a velocity of 10^6 m/sec.	4	3	3	1
29. a.	Explain the production and detection of circularly polarized light using quarter wave plate.	10	3	4	2
	(OR)				
b.	Explain the Fraunhofer diffraction at single slit and determine the width of the central maxima.	10	3	4	2
30. a.	Illustrate the construction and working of Nd-YAG laser with neat diagram.	10	3	5	1
	(OP)				
b.	(OR) Derive an expression for numerical aperture.	10	3	5	3
	* * * *				

Reg No					1 3
Reg. No.				1. 4	10 10

B.Tech. DEGREE EXAMINATION, MAY 2022

First and Second Semester

18PYB101J – PHYSICS: ELECTROMAGNETIC THEORY, QUANTUM MECHANICS, WAVES AND OPTICS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:									
(i)					within first 40 minutes and OMR shee	t shou	ld be	han	ded
(ii)			to hall invigilator at the end of 40 th to B should be answered in answer b						
(11)		1 41	- B should be answered in answer b	OOKIC	107 gambashama				
Time:	2½	4 Ho	urs			Max	. Ma	rks:	75
			DADT A (25 v 1 -	- 25 7	Moulto	Marks	BL	СО	PO
			$PART - A (25 \times 1 = Answer ALL Q)$						
	1.	The	expression for current density is	ucsin	Olis	1	1	1	1
	~•	(A)	_	(B)	IEA				
		(C)		(D)	E/I				
	2	Diel	ectrics are			1	1	1	2
	۷,		Electric insulators	(B)	Electric conductors				
		(C)	Materials that work under low voltages	. ,					
	3.	In fr	ee space, the Poisson's equation	becon	mes	1 =	1	_1	2
			Maxwell equation		Ampere equation				
		(C)	Laplace equation	, ,	Steady state equation				
	4.		is existence of permanent of	lipole	e in the absence of electric filed.	1	1 -	1	1
		(A)		_	Polar dielectrics				
		(C)	Dielectric constant	(D)	Polarizability				
	5.	The	common feature between ionic p	olariz	zation and electronic polarization	1	2	1	1
			Both are strongly dependent on						
			temperature		infrared absorption of a dielectric				
		(C)	Both are caused by electronic	(D)	Both the polarizations are				
			displacements		unaffected by variations in temperature of the dielectrics				
	6.	Whe	on the coercivity and retentivity	of a	magnetic material is large, then	1	2	2	2
			are called as magnetic		0 ,				
		•	Para		Dia				
		(C)	Hard	(D)	Soft				
2	7.	The	general chemical formula of a fer	rrite r	molecule is .	1	1	2	2
			$M^{4+}Fe_2^{3+}O_4^{2-}$	(B)	$M^{2+}Fe_2^{2+}O_4^{2-}$				
		(C)	$M^{2+}Fe_2^{3+}O_4^{2-}$	(D)	$M^{2+}Fe_2^{3+}O_3^{2-}$				

8.	Magneto resistance is the property of a	material to change the value of	1	2	2	1	18.	Half Wave Plate produces a phase difference of between the	1	2	4	1
	(A) Magnetic moment (B)	Magnetism						waves (A) 45 degree (B) 90 degree				
	()	Electrical resistance						(C) 180 degree (D) 270 degree				
											4	2
9.	Magnetoplumbites belong to a family to		1	1	2	1	19.	and are the two types of diffraction	1	1	4	2
		Diamagnet						(A) Fraunhofer and Michelson(B) Fraunhofer and De Broglie(C) Fraunhofer and Fresnel(D) Fresnel and Huygens				
	(C) Paramagnet (D)) Conductors		9				(C) Tradimorer and Tresher (D) Tresher and Traygens				
10.	is a measure of the degree at v	which lines of force can penetrate	1	1	2	2	20.	The expression for the thickness of Quarter wave plate is given by	1	2	4	2
	through the material.							(A) $d = \lambda / 8(\mu_e - \mu_0)$ (B) $d = \lambda / 3(\mu_e - \mu_0)$				
		Magnetic permeability						(C) $d = \lambda / 4(\mu_e - \mu_0)$ (D) $d = \lambda / 5(\mu_e - \mu_0)$				
	(C) Magnetic susceptibility (D)) Magnetic field intensity										
11	Time dependent Schrodinger wave equa	ation in shorter form is given by	1	2	3	1	21.	distribution law specifies the fraction of atoms that are found in	1	1	5	3
11.	HΨ is equal to							any particular energy state at a given equilibrium temperature.				
	(A) $E\Psi^2$	E^2						(A) Maxwell (B) Boltzmann (C) Planck's (D) Newton				
	$(C) E^2H^2 $ (D)) ЕΨ						(C) Trailer 3 (D) Trewton				
10	According to Corpusclar theory, light	t consist of tiny perfect electic	1	2	3	1	22.	The minimum population inversion density required to overcome the losses	1	2	5	3
12.	particles called	t consist of this perfect clastic						is called population inversion.				
) Photons						(A) Threshold (B) Normal (C) Standard (D) Dense				
) Quanta						(C) Standard (D) Dense				
12	The is a phase area in which	ish alastrons are signed from the	1	2	3	4	23.	A pair of mirrors placed on either side of the active medium is known as	1	1	5	1
13.	The is a phenomenon in whis surface of a metal when light is incident	on it										
		Compton effect						(A) Optical Resonator (B) Cavity				
	(C) de Broglie concept (D		ž –					(C) Case (D) Shielding				
			1	1	3	4	24.	of the optical fiber is the light collecting efficiency of the fiber	1	2	5	1
14.	The energy levels of an electron in 1 D b (A) Discrete (B		1		3			and is a measure of the amount of light rays that can be accepted by the				
) Unified						fiber.				
	(6) 21442011							(A) Numerical Aperture(B) Cone(C) Efficiency(D) Voltage				
15.	The potential energy (V) of the electron		1	2	3	4		(C) Efficiency (D) Voltage				
) 3					25.	The length and diameter of the Nd: YAG laser rod is	1	1	5	3
	(C) 0 (D) 2						(A) 10cm to 20 cm and 6 to 10 mm (B) 5 cm to 15 cm and 8 to 9 mm				
16.	In Fresnel diffraction		1	2	4	2		(C) 5 cm to 10 cm and 6 to 9 mm (D) 20 cm to 30 cm and 16 to 9 mm				
	(A) Source of light is kept as (B											
	infinite distance from the	distance from the aperture						$PART - B (5 \times 10 = 50 \text{ Marks})$	larks (BL	СО	PO
	aperture (C) Convex lens is used (D)) Aperture width is selected so						Answer ALL Questions				
	(C) Convex lens is used (D)	that it can acts as a point source							10	3	1	2
						4	26. a.	Apply the fundamental laws of electricity and magnetism, derive if and IV	10	3	1	2
17		s used to focus the rays.	1	1	4	1		Maxwell's equation.				
	(A) Concave (B)							(OR)				
	(C) Plano concave (D) Plano convex					b.	Apply the concept of various polarization and derive the Bungevin Beoye	10	3	1	1
								equation.				

Page 2 of 4