Analyse II Résumé: Espace \mathbb{R}^n .

\mathbb{R}^n est un espace vectoriel normé.

- 1. \mathbb{R}^n est l'ensemble des tous les *n*-tuples ordonnés $\bar{x} = (x_1, x_2, \dots x_n)$ des nombres réels muni des opérations suivantes:
 - (a) l'addition vectorielle : $\bar{x} = (x_1, x_2, \dots x_n), \bar{y} = (y_1, y_2, \dots y_n),$

$$\bar{x} + \bar{y} = (x_1 + y_1, x_2 + y_2, \dots x_n + y_n)$$

(b) la multiplication par un nombre réel $\lambda \in \mathbb{R}$,

$$\lambda \cdot \bar{x} = (\lambda x_1, \lambda x_2, \dots \lambda x_n).$$

(c) le produit scalaire

$$\langle \bar{x}, \bar{y} \rangle = \sum_{i=1}^{n} x_i y_i$$

(d) la norme euclidienne

$$||\bar{x}|| = (\langle \bar{x}, \bar{x} \rangle)^{1/2} = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}.$$

Donc \mathbb{R}^n est un espace vectoriel normé.

- 2. Propriétés de la norme euclidienne:
 - (a) $||\bar{x}|| = 0 \Leftrightarrow \bar{x} = (0, 0, \dots 0)$
 - (b) $||\lambda \cdot \bar{x}|| = |\lambda| \cdot ||\bar{x}||$ pour tout $\bar{x} \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$
 - (c) Cauchy-Schwartz: pour tout $\bar{x}, \bar{y} \in \mathbb{R}^n$,

$$|\langle \bar{x}, \bar{y} \rangle| \le ||\bar{x}|| \cdot ||\bar{y}||$$

(d) L'inégalité triangulaire: pour tout $\bar{x}, \bar{y} \in \mathbb{R}^n$,

$$||\bar{x} + \bar{y}|| \le ||\bar{x}|| + ||\bar{y}||$$

(e) L'inégalité triangulaire inverse: pour tout $\bar{x}, \bar{y} \in \mathbb{R}^n$,

$$||\bar{x} - \bar{y}|| \ge |||\bar{x}|| - ||\bar{y}|||$$

Topologie dans \mathbb{R}^n .

- 1. Boule ouverte: Pour tout $\bar{x} \in \mathbb{R}^n$ et tout nombre réel $\delta > 0$, l'ensemble $B(\bar{x}, \delta) = \{\bar{y} \in \mathbb{R}^n : ||\bar{y} \bar{x}|| < \delta\}$ est appelé *la boule ouverte* de centre \bar{x} et de rayon δ .
- 2. $\bar{x} \in E \subset \mathbb{R}^n$ est un point intérieur du sous-ensemble E de \mathbb{R}^n s'il existe $\delta > 0$ tel que $B(\bar{x}, \delta) \subset E$. L'ensemble des points intérieurs de E est appelé l'intérieur de E et noté \mathring{E} .
- 3. Un sous-ensemble non-vide $E \subset \mathbb{R}^n$ est ouvert dans \mathbb{R}^n si tout point de E est un point intérieur. ($\Leftrightarrow E = \mathring{E}$). L'ensemble vide $\emptyset \subset \mathbb{R}^n$ est ouvert par la définition.
- 4. Toute réunion de sous-ensembles ouverts de \mathbb{R}^n est un sous-ensemble ouvert de \mathbb{R}^n . Toute intersection finie de sous-ensembles ouverts de \mathbb{R}^n est un sous-ensemble ouvert de \mathbb{R}^n .
- 5. Soit $E \subset \mathbb{R}^n$. Alors E est $ferm\acute{e}$ si son complémentaire $CE = \{\bar{x} \in \mathbb{R}^n : \bar{x} \notin E\}$ est ouvert.
- 6. Toute intersection de sous-ensembles fermés de \mathbb{R}^n est un sous-ensemble fermé de \mathbb{R}^n . Toute réunion finie de sous-ensembles fermés de \mathbb{R}^n est un sous-ensemble fermé de \mathbb{R}^n .
- 7. Les seuls sous-ensembles à la fois ouverts et fermés de \mathbb{R}^n sont \emptyset et \mathbb{R}^n .
- 8. Soit $E \subset \mathbb{R}^n$ un sous-ensemble non-vide. Alors l'intersection de tous les fermés contenant E est appelée l'adhérence de E et notée \bar{E} . Pour tout sous-ensemble non-vide $E \subset \mathbb{R}^n$, on a $\mathring{E} \subset E \subset \bar{E}$.
- 9. Un sous-ensemble non-vide $E \subset \mathbb{R}^n$ est fermé $\Leftrightarrow E = \bar{E}$.
- 10. Un point $\bar{x} \in \mathbb{R}^n$ est un point frontière de $E \subset \mathbb{R}^n$: $E \neq \emptyset$, $E \neq \mathbb{R}^n$ si toute boule ouverte de centre \bar{x} contient au moins un point de E et au moins un point de CE. L'ensemble des points frontières de E est la frontière de E, notée ∂E .
- 11. Soit $E \subset \mathbb{R}^n : E \neq \emptyset, E \neq \mathbb{R}^n$. Propriétés de la frontière:
 - (a) $\partial E \cap \mathring{E} = \emptyset$
 - (b) $\mathring{E} \cup \partial E = \bar{E}$
 - (c) $\bar{E} \setminus \mathring{E} = \partial E$.
- 12. Une suite d'éléments de \mathbb{R}^n est une application $f: \mathbb{N} \to \mathbb{R}^n$,

$$f: k \to \bar{x}_k = (x_{1,k}, x_{2,k}, \dots x_{n,k}) \in \mathbb{R}^n.$$

Notation: $\{\bar{x}_k\}_{k=0}^{\infty}$.

13. Une suite $\{\bar{x}_k\}$ est *convergente* et admet pour limite $\bar{x} \in \mathbb{R}^n$ si pour tout $\varepsilon > 0$ on peut trouver $k_0 \in \mathbb{N}$ tel que pour tout $k \geq k_0$, on a $||\bar{x}_k - \bar{x}|| \leq \varepsilon$. Notation:

$$\lim_{k \to \infty} \bar{x}_k = \bar{x}.$$

- 14. La limite d'une suite $\{\bar{x}_k\}$, si elle existe, est unique.
- 15. Une suite $\{\bar{x}_k\}$ est bornée s'il existe M > 0 tel que $||\bar{x}_k|| \leq M$ pour tout $k \in \mathbb{N}$.

2

- 16. Toute suite convergente d'éléments de \mathbb{R}^n est bornée.
- 17. (Théorème Bolzano-Weierstrass) De toute suite bornée $\{\bar{x}_k\} \subset \mathbb{R}^n$ on peut extraire une sous-suite convergente.
- 18. Un sous-ensemble non-vide $E \subset \mathbb{R}^n$ est fermé si est seulement si toute suite $\{\bar{x}_k\} \subset E$ qui converge, converge vers un élément de E.
- 19. Pour obtenir l'adhérence d'un sous-ensemble non-vide $E \subset \mathbb{R}^n$, il faut et il suffit d'ajouter à E les limites des toutes suites convergentes d'éléments de E.
- 20. Un sous-ensemble non-vide $E \subset \mathbb{R}^n$ est borné s'il existe M > 0 tel que $||\bar{x}|| \leq M$ pour tout $\bar{x} \in E$.
- 21. Un sous-ensemble non-vide $E \subset \mathbb{R}^n$ est compact s'il est à la fois fermé et borné.
- 22. (Théorème Heine-Borel-Lebesgue) Un sous-ensemble $E \subset \mathbb{R}^n$ est compact si est seulement si de tout recouvrement de E par des sous-ensembles ouverts de \mathbb{R}^n

$$E \subset \bigcup_{i \in I} A_i, \qquad A_i \subset \mathbb{R}^n \text{ ouvert } \forall i \in I$$

on peut extraire une famille finie qui est un recouvrement de E:

$$E \subset \bigcup_{j=1}^m A_{i_j}, \quad i_j \in I \quad \forall j = 1, \dots m.$$