My notes on "The Strong Factorial Conjecture" by Eric Edo and Arno van den Essen. See: https://arxiv.org/abs/1304.3956

1 Factorial Conjecture

 $\mathbb{C}^{[m]}$ may be viewed as a vecor space over \mathbb{C} with a basis being

$$\Big\{ X_1^{l_1} \cdots X_m^{l_m} \mid l_k \in \mathbb{N}_0 \text{ for all } 1 \le k \le m \Big\}.$$

Thus any linear map is fully defined if we set a value for each basis element. Such linear map is the factorial map.

Definition 1. A factorial map is a linear map linear map $\mathcal{L}: \mathbb{C}^{[m]} \longrightarrow \mathbb{C}$ defined by

$$\mathcal{L}(X_1^{l_1}\cdots X_m^{l_m})=l_1!\cdots l_m!$$
 for all $l_1,\ldots,l_m\in\mathbb{N}$

Example 1.1. Consider $f(X) = 3X - 5XY + 7Y^2 \in \mathbb{C}^{[2]}$. Applying the factorial map yields

$$\mathcal{L}(f(X)) = 3\mathcal{L}(X) - 5\mathcal{L}(XY) + 7\mathcal{L}(Y^2)$$
$$= 3 \cdot 1 - 5 \cdot 1 + 7 \cdot 2$$
$$= 12$$

Example 1.2. If we limit our selves to a polynomial with one indeterminate, such as $f(X) = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$ for a fixed $n \in \mathbb{N}_0$, we have

$$\mathcal{L}(f(X)) = \sum_{k=0}^{n} a_k \mathcal{L}(X^k) = \sum_{k=0}^{n} a_k k!$$

Theorem 2 (Conjecture 2.4). Let $f \in \mathbb{C}^{[m]}$ be a polynomial. We have $\mathcal{L}(f^k) = 0$ for all $k \in \mathbb{N}_+$ if and only if f = 0.

Remark. The converse is trivial, hence the conjecture is about the forward implication.

2 Rigidity Conjecture

When we consider compositions of formal power series, we always want the constant term to be 0. The following example is taken from:

https://math.stackexchange.com/questions/1212053/defining-composition-of-two-formal-series-what-is-going-on

Example 2.1. Let $f = \sum_{k \in \mathbb{N}_0} a_k X^k$ and g = 1 + X. Consider $f \circ g$. We have

$$f \circ g = \sum_{k \in \mathbb{N}_0} a_k (1+X)^k$$

= $a_0 + a_1 + a_1 X + a_2 + 2a_2 X + a_2 X^2 + \cdots$

If $f \circ g$ is again a formal power series, then we should be able to write $f \circ g = \sum_{k \in \mathbb{N}_+} c_k X^k$ for some $c_k \in \mathbb{C}$. However, we see that c_0 is the sum of all a_k and we cannot evaluate that as algebraists. Thus composition of formal power series only makes sense if the constant coefficient is 0.

Proposition 3. A power series $f(X) = \sum_{k \in \mathbb{N}_+} a_k X^k \in \mathbb{C}[[X]]$ has a compositional inverse $f^{-1}(X)$ if and only if $a_1 \neq 0$, in which case $f^{-1}(X)$ is unique.

Proof. Let $g(X) = b_1 X + b_2 X^2 + \cdots \in \mathbb{C}[[X]]$ be some power series that satisfies f(g(X)) = X. We have

$$X = a_1(b_0 + b_1X + b_2X^2 + \dots) + a_2(b_0 + b_1X + b_2X^2 + \dots)^2 + \dots$$
 (1)

$$=a_1b_0 + a_2b_0 + \dots + \tag{2}$$

$$a_1b_1X \tag{3}$$

П

Theorem 4 (Conjecture 2.13). Let $a(X) \in \mathbb{C}[X]$ be a polynomial of degree less or equal to $m+1 \in \mathbb{N}_+$ such that $a(X) \equiv X \mod X^2$. If the first m consecutive coefficient of the compositional inverse $a^{-1}(X)$ vanish, then a(X) = X.

Theorem 5 (Conjecture 2.14). Let $a(X) \in \mathbb{C}[X]$ be a polynomial of degree less or equal to $m+1 \in \mathbb{N}_+$ such that $a(X) \equiv X \mod X^2$. If the coefficients of X^{n+1}, \ldots, X^{n+m} of the compositional inverse vanish, then a(X) = X.

Remark. R(m) if and only if $R(m)_n$ for all $n \in \mathbb{N}_+$.

Proof. Fix $m \in \mathbb{N}_0$ and let $f \in \mathbb{C}[X]$ be a polynomial of degree less than or equal to m+1 such that $f(X) \equiv X \mod X^2$. Denote the composition inverse and its coefficients of f by $f^{-1}(X) = \sum_{k \in \mathbb{N}_+} b_k X^k$.

1. " \Rightarrow ": Suppose R(m) holds.

Proof. Let R(m) be true for a $m \in \mathbb{N}_0$.

Then
$$R(m)_1$$
 is true, i.e. if $\deg(a) \leq m+1$ and if the

Remark. If we denote the polynomial a(X) by $\sum_{k \in \mathbb{N}_0} a_k X^k$ for some $a_k \in \mathbb{C}$ for all $k \in \mathbb{N}_0$, then the condition $a(X) \equiv X \mod X^2$ amounts to $a_0 = 0$ and $a_1 = 1$.

Moreover, we have this:

A power series has a compositional inverse if and only if $a_1 \neq 0$. In that case, the inverse is unique.

See

https://www.amazon.com/dp/B00HMUGS4S

https://math.stackexchange.com/questions/2520744/finding-compositional-inverses-for-formal-power-series

My questions:

2

1. What if $a_0 \neq 0$? Pick $a_0 = 3$.

Let $f \in \mathbb{C}[X]$ be a polynomial with $a_0 \neq 0$. Then we may write $f(X) = g(X) + a_0$ where g has a compositional inverse. Thus it it

$$g^{-1}(g(X) + a_0) = g^{-1}(g(X)) + g^{-1}(a_0)$$
$$= X + g^{-1}(a_0)$$

$$h(X) = g^{-1}(X) + g^{-1}(a_0)$$

$$h(f(X)) = h(g(X) + a_0)$$

$$= g^{-1}(g(X) + a_0) + g^{-1}(a_0)$$

$$= X$$

Let $f \in \mathbb{C}[X]$ be a polynomial with $a_1 \neq 1$ and $a_1 \neq 0$. Then we may write f(X) =

https://www.math.uwaterloo.ca/ dgwagner/co430I.pdf proof

Proposition 6. 1. The polynomial a(X) is invertible for the composition.

2. For all $i \in \{1, ..., \deg(a-1)\}$, the coefficient a_i is nilpotent element in A. I just don't see this ...

Lemma 7 (Lagrange Inversion Formula). Let K be a field of charateristic

Example 7.1 (See 5.4.4). $f(X) = Xe^{-X} = X \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} X^k$

$$[X^n]f^{-1}(X) = \frac{1}{n}[X^{n-1}]e^{nX}$$

Lemma 8 (Lemma 2.20 (Additive Inversion Formula)). Let $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$ be complex numbers. The formal inverse of $a(X) = X(1 - (\alpha_1 X + \cdots + \alpha_m X^m))$ is given by the following formula

$$a^{-1}(X) = X \left(1 + \frac{1}{n+1} \sum_{n \ge 1} u_n X^n \right)$$

where

$$u_n = \frac{1}{n!} \sum_{j_1 + 2j_2 + \dots + mj_m = n} \frac{(n + j_1 + \dots + j_m)!}{j_1! \cdots j_m!} \alpha_1^{j_1} \cdots \alpha_m^{j_m}$$

Proposition 9 (Proposition 2.23). Let $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$ be complex numbers and let $(u_n)_{n \in \mathbb{N}_+}$ be a sequence defined by AIF in Lemma 2.20. For all $n \in \mathbb{N}_+$, the Rigidity Conjecture $R(m)_n$ is equivalent to the following implication: If $u_n = \cdots = u_{n+m-1} = 0$ then $\alpha_1 = \cdots = \alpha_m = 0$.

Theorem 10. 1. The inclusion $E^{[m]} \subset F_n^{[m]}$ implies $R(m)_n$

Definition 11.

$$E^{[m]} = \{ X_1 \cdots X_m (\mu_1 X_1 + \cdots + \mu_m X_m) \mid \mu_1, \dots, \mu_m \in \mathbb{C} \} \subset$$

$$F_n^{[m]} = \left\{ f \in \mathbb{C}^{[m]} \setminus \{0\} \mid \mathcal{L}(f^k) \neq 0 \text{ for some } n \leq k \leq \mathcal{N}(f) - 1 \right\} \cup \{0\}$$