

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

Prova Escrita de Matemática A

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Prova 635/Época Especial

15 Páginas

Duração da Prova: 150 minutos. Tolerância: 30 minutos.

2014

– Página em branco ———	

Utilize apenas caneta ou esferográfica de tinta azul ou preta, exceto nas respostas que impliquem construções, desenhos ou outras representações, que podem ser, primeiramente, elaborados a lápis, e, a seguir, passados a tinta.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

– Página em branco ———	

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Áreas de figuras planas

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Polígono regular: Semiperímetro × Apótema

Sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g (r - raio da base; g - geratriz)$$

Área de uma superfície esférica:
$$4\pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Esfera:
$$\frac{4}{3}\pi r^3$$
 $(r-raio)$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$cos(a+b) = cos a cos b - sen a sen b$$

$$tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n}\right) \quad (k \in \{0, ..., n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' v - u v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

GRUPO I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Considere todos os números ímpares com cinco algarismos.

Quantos desses números têm quatro algarismos pares e são superiores a $\ 20\ 000\ ?$

- (A) 5^4
- **(B)** 5^5
- (C) 3×5^4
- **(D)** 4×5^4

2. Considere a linha do triângulo de Pascal em que a soma dos dois primeiros elementos com os dois últimos elementos é igual a $\ 20$

Escolhendo, ao acaso, um elemento dessa linha, qual é a probabilidade de ele ser par?

- (A) $\frac{1}{5}$
- **(B)** $\frac{2}{5}$
- (C) $\frac{3}{5}$
- (D) $\frac{4}{5}$

3. Seja f a função, de domínio $\mathbb{R}\setminus\{0\}$, definida por $f(x)=\frac{x-1}{e^x-1}$

Considere a sucessão de números reais (x_n) tal que $x_n = -\frac{1}{n}$

Qual é o valor de $\lim f(x_n)$?

- (A) $-\infty$
- **(B)** 0
- (C) 1
- (D) $+\infty$

4. Na Figura 1, estão representadas, num referencial o.n. xOy, a circunferência de centro O e a reta r

Figura 1

Sabe-se que:

ullet os pontos A e B pertencem à circunferência;

• o ponto B tem coordenadas (0,1)

ullet a reta $\,r\,$ é tangente à circunferência no ponto $\,B\,$

ullet o ponto C é o ponto de intersecção da reta r com a semirreta $\dot{O}A$

• α é a amplitude, em radianos, do ângulo AOB, com $\alpha \in \left]0, \frac{\pi}{2}\right[$

Qual das expressões seguintes representa, em função de α , a área da região a sombreado?

(A) $\frac{\operatorname{sen} \alpha - \alpha}{2}$

(B)
$$\frac{\operatorname{tg} \alpha - \alpha}{2}$$

(C)
$$\frac{\operatorname{tg}\alpha}{2}$$

(D)
$$\frac{\alpha}{2}$$

5. Seja f uma função de domínio]-5, 5[

Sabe-se que o gráfico da função f tem exatamente dois pontos de inflexão.

Em qual das opções seguintes pode estar representado o gráfico da função $f^{\prime\prime}$, segunda derivada da função f?

(A)

(B)

(C)

(D)

6. Seja f uma função de domínio \mathbb{R}^+

A reta de equação y = 2x - 5 é assíntota do gráfico da função f

Qual é o valor de $\lim_{x \to +\infty} \frac{6x-1}{f(x)}$?

- **(A)** 0
- **(B)** 2
- **(C)** 3
- (D) $+\infty$

7. Considere, num referencial o.n. Oxyz, o ponto A, de coordenadas (2,0,3), e o plano α , definido por x-y-2z=3

Seja $\,r\,$ a reta perpendicular ao plano $\,lpha\,$ que passa pelo ponto $\,A\,$

Qual das condições seguintes pode definir a reta r?

(A)
$$x + 2 = z + 1 \land y = 0$$

(B)
$$-x + 5 = y + 3 = \frac{z+3}{2}$$

(C)
$$\frac{x-1}{2} = \frac{z+2}{3} \land y = -1$$

(D)
$$x-2 = -y = z-3$$

8. Na Figura 2, estão representadas, no plano complexo, as imagens geométricas de cinco números complexos: w, z_1 , z_2 , z_3 e z_4

Figura 2

Qual é o número complexo que pode ser igual a -2iw?

- (A) z_1
- **(B)** z_2
- (C) z_3
- **(D)** z_4

GRUPO II

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Seja \mathbb{C} o conjunto dos números complexos.

Resolva os dois itens seguintes sem utilizar a calculadora.

1.1. Considere
$$z_1 = \frac{1-i}{2i} - i^{-1}$$
 e $z_2 = \operatorname{cis}\left(-\frac{\pi}{4}\right)$

Averigue se a imagem geométrica do complexo $(z_1)^4 \times \overline{z_2}$ pertence à bissetriz dos quadrantes ímpares.

1.2. Considere o número complexo $w = \text{sen}(2\alpha) + 2i\cos^2\alpha$, com $\alpha \in \left[0, \frac{\pi}{2}\right]$

Escreva $\,w\,$ na forma trigonométrica.

- 2. De uma turma de 12.º ano, sabe-se que:
 - 60% dos alunos são rapazes;
 - 80% dos alunos estão inscritos no desporto escolar;
 - 20% dos rapazes não estão inscritos no desporto escolar.
 - **2.1.** Determine a probabilidade de um aluno dessa turma, escolhido ao acaso, ser rapariga, sabendo que está inscrito no desporto escolar.

Apresente o resultado na forma de fração irredutível.

2.2. Considere agora que essa turma de 12.º ano tem 25 alunos.

Pretende-se escolher, ao acaso, três alunos dessa turma para a representarem num evento do desporto escolar.

Determine a probabilidade de serem escolhidos, pelo menos, dois alunos que estão inscritos no desporto escolar.

Apresente o resultado com arredondamento às centésimas.

3. Seja Ω , conjunto finito, o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos $(A \subset \Omega \ e \ B \subset \Omega)$.

Sabe-se que:

- $A \in \overline{A}$ são acontecimentos equiprováveis;
- ullet A e B são acontecimentos independentes.

Mostre que $2P(A \cup B) = 1 + P(B)$

4. Na Figura 3, está representada, num referencial o.n. Oxyz, a pirâmide $\lceil ABCOD \rceil$

Figura 3

Sabe-se que:

- o ponto A pertence ao semieixo positivo Ox
- os pontos A e B têm igual abcissa;
- o ponto B pertence ao plano xOy e tem ordenada -3
- o ponto *C* pertence ao semieixo negativo *Oy*
- ullet o ponto D pertence ao semieixo positivo Oz
- a reta AD é definida por $\frac{x-3}{3} = -\frac{z}{5} \land y = 0$
- $\| \overrightarrow{CD} \|^2 = 41$

Determine as coordenadas de um vetor normal ao plano que contém a face [BCD], recorrendo a métodos analíticos, sem utilizar a calculadora.

5. Considere, para um certo número real k, a função f, de domínio $]-\infty$, e[, definida por

$$f(x) = \begin{cases} x e^{x-2} & \text{se } x \le 2\\ \frac{\sin(2-x)}{x^2 + x - 6} + k & \text{se } 2 < x < e \end{cases}$$

Resolva os itens seguintes, recorrendo a métodos analíticos, sem utilizar a calculadora.

- **5.1.** Determine k, de modo que a função f seja contínua em x=2
- **5.2.** Estude a função f quanto à existência de assíntota horizontal do seu gráfico e, caso exista, indique uma equação dessa assíntota.
- **6.** Considere a função g, de domínio \mathbb{R}^+ , definida por $g(x) = \frac{1 + \ln x}{x^2}$
 - **6.1.** Estude a função g quanto à monotonia e quanto à existência de extremos relativos, recorrendo a métodos analíticos, sem utilizar a calculadora.

Na sua resposta, deve indicar o(s) intervalo(s) de monotonia e, caso existam, os valores de x para os quais a função g tem extremos relativos.

6.2. Considere, num referencial o.n. xOy, a representação gráfica da função g, os pontos A e B, e a reta r de equação y=mx, com m<0

Sabe-se que:

- ullet os pontos A e B pertencem ao gráfico da função g
- ullet a abcissa do ponto A é o zero da função g
- ullet o ponto B é o ponto de intersecção da reta r com o gráfico da função g
- a área do triângulo [OAB] é igual a 1

Determine a abcissa do ponto B, recorrendo à calculadora gráfica.

Na sua resposta, deve:

- equacionar o problema;
- reproduzir, num referencial, o gráfico da função ou os gráficos das funções visualizados, devidamente identificados;
- indicar a abcissa do ponto A e a abcissa do ponto B com arredondamento às centésimas.

7. Considere uma função f , de domínio $\mathbb R$

Sabe-se que:

- a reta de equação x = 0 é assíntota do gráfico da função f
- $f(-3) \times f(5) < 0$
- $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ existe e é positivo, para qualquer número real x não nulo;
- $\lim_{x \to -\infty} (f(x) 2x) = 0$

Considere as afirmações seguintes.

- I) O teorema de Bolzano permite garantir, no intervalo [-3,5], a existência de, pelo menos, um zero da função f
- II) O gráfico da função f admite uma assíntota horizontal quando x tende para $-\infty$
- III) A função f é crescente em $]0, +\infty[$

Elabore uma composição, na qual indique, justificando, se cada uma das afirmações é verdadeira ou falsa. Na sua resposta, apresente três razões diferentes, uma para cada afirmação.

FIM

——— Página em branco	

COTAÇÕES

GRUPO I

1. a 8. (8 × 5 pontos)	40 pontos	
		40 pontos
GRUPO II		
1.		
1.1	15 pontos	
1.2.	15 pontos	
2.		
2.1.	15 pontos	
2.2.	15 pontos	
3	10 pontos	
4	15 pontos	
5.1	15 pontos	
5.2.	15 pontos	
6. 6.1	15 pontos	
6.2.	15 pontos	
	•	
7	15 pontos	
_		160 pontos
TOTAL		200 pontos