Vision, Audio and Depth

Kranti Kumar Parida

2 Papers

1. Structure from Silence - Estimating depth of the scene from ambient sound

Audio-Visual Dereverberation - Enhancing Sound using visual/depth information

Image and Depth

Structure from Silence: Learning Scene Structure from Ambient Sound

Ziyang Chen*, Xixi Hu*, Andrew Owens

University of Michigan

https://ificl.github.io/structure-from-silence

(a) Quiet Campus dataset

(b) Depth estimation

(c) Multimodal self-supervision

CoRL 2021

https://arxiv.org/pdf/2111.05846.pdf, https://ificl.github.io/structure-from-silence/

Introduction

- Does ambient sound convey information about 3D structure?
- Humans capable of estimating scene structure from subtle ambient sound cues
- Estimate Depth from Sound
- Not depth but a simplified version

Dataset

- Data Collected using audio and RGB-D camera
- Indoor ambient audio recordings
- No other sound producing objects
- Both Motion and Static
- Camera Pointing to wall/flat surfaces

Figure 2: **The** *Quiet Campus Dataset.* We collected a dataset of paired audio and RGB-D recordings from a variety of quiet indoor scenes. We show selected images from the *static* and *motion* subsets, which contain stationary and moving microphones respectively. Please refer to the project webpage for audio-visual examples.

Tasks

Depth Estimation

- a. Obstacle Detection: Whether microphone is within a small distance of wall (0.5 m)
- b. Relative Depth Order Given two audio clip predict which one is closer to wall
- c. Relative Depth Estimation Given two audio clips, predict the difference of distance between them.
- d. Absolute Depth estimation Given an audio clip, directly predict the distance to the wall.

- Depth: center crop 320x240 and average the depth values

Self-Supervised Learning

Input Representation and Network

- Audio Input: 0.96s in the form of log-mel spectrogram
- Audio Network: VGGish network, final layer replaced either for classification or regression
- Visual Network: ResNet-18 with 224x224 image

Results

Table 1: **Obstacle detection and relative depth order.** We evaluate our model's ability to determine whether a microphone is within 0.5 meters of a wall and identify which sound has a smaller distance to the wall. *Pre* refers to pretraining.

			Obstacle	detection	Relativ	e order
Model	Pre.	Task	AP(%)	Acc(%)	AP(%)	Acc(%)
Audio Image Image Chance	✓	static static static static	$\begin{array}{c} 68.3 (\pm 1.3) \\ 99.2 (\pm 0.2) \\ 99.5 (\pm 0.1) \\ 46.4 (\pm 1.4) \end{array}$	$\begin{array}{c} 60.0(\pm 0.9) \\ 95.5(\pm 0.5) \\ 98.4(\pm 0.4) \\ 50.0(\pm 1.0) \end{array}$	$\begin{array}{c} 85.5(\pm 1.0) \\ 94.6(\pm 0.5) \\ 97.7(\pm 0.2) \\ 47.2(\pm 1.3) \end{array}$	$77.2 (\pm 0.8) \\ 86.4 (\pm 0.7) \\ 92.1 (\pm 0.5) \\ 50.0 (\pm 1.0)$
Audio Image Image Chance	√	motion motion motion	$\begin{array}{c} 65.6(\pm 1.4) \\ 73.4(\pm 1.2) \\ 88.6(\pm 0.7) \\ 50.4(\pm 1.4) \end{array}$	$\begin{array}{c} 64.5(\pm 0.9) \\ 68.2(\pm 1.0) \\ 78.5(\pm 0.8) \\ 50.0(\pm 1.0) \end{array}$	$\begin{array}{c} 87.1 \ (\pm 1.0) \\ 87.9 \ (\pm 0.9) \\ 97.1 \ (\pm 0.3) \\ 50.5 \ (\pm 1.4) \end{array}$	$\begin{array}{c} 81.3 (\pm 0.8) \\ 81.2 (\pm 0.8) \\ 90.6 (\pm 0.6) \\ 50.0 (\pm 1.0) \end{array}$

Results

Table 2: **Relative depth ratio.** We evaluate our model's ability of predicting relative depth ratio from two ambient sounds, for the *motion* recordings.

	Regression			Regres	sion-by-Clas	sification
Model	MAE↓	Med. ↓	$R^2 \uparrow$	Top-1↑	Top-5↑	Avg. Dist↓
Audio	0.55 (±.01)	0.44 (±.01)	0.48 (±.02)	22.8 (±0.8)	80.7 (±0.7)	1.66 (±.03)
Image	$0.54_{(\pm.01)}$	0.42 (±.01)	0.49 (±.02)	26.6 ± 0.8	83.6 (± 0.7)	1.47 (±.02)
Image (Pre.)	$0.39_{(\pm.01)}$	0.29 (±.01)	$0.72 (\pm .01)$	$34.2 (\pm 0.9)$	90.5 (± 0.6)	$1.15 (\pm .02)$
Chance	$0.89_{(\pm.01)}$	0.79 (±.01)	$0.00(\pm .00)$	$9.45(\pm 0.6)$	52.6 (± 1.0)	$2.79_{(\pm.04)}$
No input	$0.82 (\pm .01)$	$0.75 (\pm .01)$	$0.00 (\pm .00)$	$10.7 (\pm 0.6)$	$51.6(\pm 1.0)$	$4.50 (\pm .05)$

Table 3: **Absolute depth estimation.** We evaluate our model's ability of predicting absolute distance to the wall for the *motion* recordings.

			Regression	ĺ	Regres	sion-by-Clas	sification
	Model	MAE ↓	Med. ↓	$R^2 \uparrow$	Top-1 ↑	Top-5 ↑	Avg. Dist↓
4)	Audio	0.28 (±.00)	0.25 (±.01)	-0.34 (±.03)	30.8 (±0.9)	88.3 (±0.6)	1.11 (±.02)
Single	Image	$0.31 (\pm .00)$	$0.27_{(\pm.01)}$	-0.67 (±.07)	$35.6 (\pm 0.9)$	$95.9_{(\pm 0.4)}$	1.05 (±.02)
Sin	Image (Pre.)	$0.26 (\pm .00)$	0.21 (±.01)	-0.24 (±.04)	$50.8 (\pm 1.0)$	99.2 (± 0.2)	$0.62 (\pm .01)$
-,	No input	$0.28(\pm.00)$	$0.27 (\pm .01)$	-0.19 (±.02)	$24.3 (\pm 0.8)$	$\textbf{88.3}(\pm 0.6)$	$1.07 (\pm .01)$
nal	Audio	0.21 (±.00)	0.17 (±.00)	0.19 (±.02)	$36.9_{(\pm 1.0)}$	90.0 (±.06)	1.17 (±.02)
tio	Image	$0.22 (\pm .00)$	$0.18 \pm .00$	$0.12 (\pm .02)$	$38.2 (\pm 0.9)$	$95.5 (\pm 0.4)$	0.93 (±.02)
Ä	Image (Pre.)	$0.18 (\pm .00)$	$0.14 (\pm .00)$	$0.39 (\pm .02)$	51.7 (±1.0)	99.8 (± 0.1)	$0.59 (\pm .01)$
Conditional	No input	$0.25(\pm.00)$	$0.23(\pm.00)$	0.01 (±.01)	$26.4\scriptstyle(\pm0.8)$	$95.9 (\pm 0.4)$	$1.43(\pm.03)$
	Chance	$0.78 (\pm .01)$	$0.84_{(\pm.01)}$	-3.38 (±0.23)	23.3 (±1.2)	56.9 (±0.9)	2.83 (±.02)

Results (Self-Supervised Learning)

- Given audio and image pair, predict if they are matched or mismatched
- Evaluate on depth estimation task

Table 4: **Linear probing experiments.** We evaluate our self-supervised feature set for **obstacle detection** and **relative depth order**, for the *motion* recordings. Here, *Audio* means taking audio only as inputs. *Visual* means taking images only as inputs. *Both* means taking both audio and image as inputs.

			Obstacle detection		Relative order		
	Model	Pre.	AP(%)	Acc(%)	AP(%)	Acc(%)	
	Scratch		61.9 (±1.5)	60.3 (±0.9)	78.0 (±1.4)	73.1 (±0.9)	
	VGGish [75]		$58.2(\pm 1.3)$	56.0 ± 1.0	$61.1 (\pm 1.4)$	61.2 ± 1.0	
_	AV-Sync		69.1 (± 1.4)	64.0 (± 0.9)	80.2 ± 1.3	74.1 ± 0.8	
Audio	AV-Order		$\textbf{63.4}(\pm 1.4)$	$61.5 (\pm 0.9)$	84.2 (± 1.2)	79.4 (±0.7)	
Αn	VGGish [75]	- V	59.0 (±1.5)	56.7 (±1.0)	67.7 (±1.4)	64.5 (±0.9)	
	AV-Sync	1	65.3 (±1.4)	62.8 (±0.9)	82.1 (±1.2)	76.4 (± 0.8)	
	AV-Order	1	$62.8\scriptstyle(\pm 1.5)$	64.5 (±0.9)	85.5 (±1.1)	80.7 (± 0.8)	
	Scratch		70.1 (±1.3)	64.0 (±0.9)	79.7 (±1.1)	71.5 (±0.9)	
_	AV-Sync		77.1 (±1.1)	69.2 (±0.9)	85.3 (±0.9)	76.1 (± 0.8)	
Visual	AV-Order		$\textbf{76.8}(\pm 1.1)$	$68.8 (\pm 0.9)$	87.4 (±0.9)	79.1 (± 0.8)	
<u>\</u>	ImageNet [77, 76]		80.4 (±1.2)	74.5 (±0.8)	94.0 (±0.5)	85.8 (±0.7)	
	AV-Sync	1	89.0 (±0.8)	75.6 (± 0.8)	92.8 (±0.6)	85.4 (±0.7)	
	AV-Order	✓	$\pmb{86.5}(\pm 1.1)$	76.3 (± 0.8)	$95.8 (\pm 0.4)$	88.9 (± 0.6)	
ţ.	AV-Order		77.1 (±1.1)	69.1 (±0.9)	89.0 (±0.8)	80.8 (±0.8)	
Both	AV-Order	1	88.1 (±0.9)	$76.9 (\pm 0.8)$	$95.8 (\pm 0.4)$	$88.9 (\pm 0.6)$	

Table 5: **Linear probing experiments.** We evaluate our learned representation for **relative depth ratio** for the *motion* recordings.

	Model	Pre.	Top-1 (%) ↑	Top-5 (%) ↑	Avg. Dist↓
Audio	Scratch VGGish [75] AV-Sync. AV-Order		$19.2 (\pm 0.8) \\ 14.4 (\pm 0.7) \\ 19.2 (\pm 0.7) \\ \textbf{22.2} (\pm 0.9)$	72.8 (± 0.8) 53.9 (± 1.0) 72.7 (± 0.8) 79.6 (± 0.8)	$\begin{array}{c} \textbf{2.33} \ (\pm 0.04) \\ \textbf{3.78} \ (\pm 0.06) \\ \textbf{2.07} \ (\pm 0.03) \\ \textbf{1.86} \ (\pm 0.03) \end{array}$
A	VGGish [75] AV-Sync. AV-Order	✓ ✓ ✓	$\begin{array}{c} \textbf{15.6} (\pm 0.7) \\ \textbf{20.7} (\pm 0.8) \\ \textbf{23.6} (\pm 0.9) \end{array}$	$ \begin{array}{c} \textbf{54.0} \ (\pm 1.0) \\ \textbf{75.1} \ (\pm 0.9) \\ \textbf{80.5} \ (\pm 0.7) \end{array} $	3.59 ± 0.05 1.99 ± 0.03 1.75 ± 0.03
Visual	Scratch AV-Sync. AV-Order		$18.5 (\pm 0.8) \\ 22.2 (\pm 0.8) \\ 24.7 (\pm 0.8)$	$70.8 (\pm 0.8) \\ 76.8 (\pm 0.8) \\ 80.2 (\pm 0.8)$	$\begin{array}{c} \textbf{2.66} (\pm 0.05) \\ \textbf{1.85} (\pm 0.03) \\ \textbf{1.71} (\pm 0.03) \end{array}$
Vis	ImageNet [77, 76] AV-Sync. AV-Order	· · · · · · · · · · · · · · · · ·	$\begin{array}{c} \textbf{27.4} \ (\pm 0.9) \\ \textbf{27.5} \ (\pm 0.8) \\ \textbf{28.9} \ (\pm 0.9) \end{array}$	$87.1 (\pm 0.7) \\ 85.2 (\pm 0.7) \\ 88.6 (\pm 0.6)$	1.60 ± 0.03 1.53 ± 0.03 1.40 ± 0.03
Both	AV-Order AV-Order	✓	$23.8(\pm 0.8)\\30.0(\pm 0.9)$	81.5 ± 0.7 89.3 ± 0.6	$\begin{array}{c} 1.59 (\pm 0.03) \\ 1.31 (\pm 0.03) \end{array}$

Task

3. Audio-Visual Robotic Navigation

Detect if there is a wall near the left/right and move accordingly

Figure 7: Classroom floor plan and track setting.

Figure 9: Robot navigation results.

Learning Audio-Visual Dereverberation

Changan Chen^{1,2} Wei Sun¹ David Harwath¹ Kristen Grauman^{1,2}

¹UT Austin ²Facebook AI Research

Audio Reverberation

- Multiple reflections from different objects and surfaces
- Alters original signal
- Degrades perceptual experience and ASR systems

Background

- Reverberation explained by Room Impulse Response (RIR)
- Function of room geometry, materials and speaker location

Dereverberation Past Approaches

- Signal processing and statistical signals
- Neural Network based approach
- Rely completely on audio

Goal:

Given RGB image, depth Image, received (reverb) audio predict source audio

$$\hat{A}_s(t) = f_p([I_r, I_d, A_r(t)])$$

Dataset

- No existing dataset was available
- Both simulated and real data proposed

Simulated Dataset:

- Audio-visual simulator SoundSpaces (contains pre-computed RIR)
- Samples from LibriSpeech used as source audio
- Convolve speech waveform with RIR at random location
- Augment 3D humanoid of same gender at speaker location
- Obtain RGB and Depth images, both panorama and normal FOV

Real Dataset:

- Collected data in auditoriums, meeting rooms, atriums, corridors and classrooms
- Source speech obtained from Librispeech and played through a loudspeaker
- Image captured using iPhone11 camera, depth estimated using pre-trained network
- Audio recorded using external microphone ZYLIA ZM-1
- Both microphone and camera placed at same height

Approach

Losses

Magnitude Loss $L_{magnitude} = ||M_s^i - \hat{M}_s^i||_2$

Phase Loss $L_{phase} = ||\sin(P_s^i) - \sin(\hat{P}_s^i)||_2 + ||\cos(P_s^i) - \cos(\hat{P}_s^i)||_2$

Reverb-visual Matching Loss

 $L_{matching}(e^c, e^s, e_n^s) = \max\{d(f_n(e^c), f_n(e^s)) - d(f_n(e^c), f_n(e_n^s)) + m, 0\}$

Evaluation

Evaluated on 3 downstream tasks;

- 1. Speech Enhancement
- 2. Automatic Speech Recognition
- 3. Speaker Verification

Results

Results on simulated data

	Speech Enhancement PESQ ↑		Recognition WER-FT (%)↓		Verification EER-FT (%)↓
Clean (Upper bound)	4.64	2.50	2.50	1.62	1.62
Reverberant MetricGAN+ [16] WPE [45] Audio-only dereverb.	1.54	8.86	4.62	4.69	4.57
	2.33 (+51%)	7.49 (+15%)	4.86 (-5%)	4.67 (+0.4%)	2.75 (+39%)
	1.63 (+6%)	8.18 (+8%)	4.30 (+7%)	5.19 (-11%)	4.48 (+2%)
	2.32 (+51%)	4.92 (+44%)	3.76 (+19%)	4.67 (+0.4%)	2.61 (+43%)
VIDA w/ normal FoV		4.85 (+45%)	3.73 (+19%)	4.53 (+3%)	2.79 (+39%)
VIDA w/o matching loss		4.59 (+48%)	3.72 (+19%)	4.02 (+14%)	2.62 (+43%)
VIDA w/o human mesh		4.57 (+48%)	3.72 (+19%)	4.00 (+15%)	2.52 (+45%)
VIDA		4.44 (+50%)	3.66 (+21%)	3.99 (+15%)	2.40 (+47%)

Results

Results on Real data (Sim2Real Transfer)

	Speech Enhancement	Speech Recognition	Speaker Verification
	PESQ ↑	WER (%) ↓	EER (%) ↓
Clean (Upper bound)	4.64	2.52	1.42
Reverberant MetricGAN+ [16] Audio-only dereverb.	1.22	18.39	3.91
	1.62 (+33%)	21.42 (-16%)	5.70 (-46%)
	1.41 (+16%)	15.18 (+17%)	4.24 (-8%)
VIDA w/ normal FoV	1.44 (+18%)	14.71 (+20%)	3.79 (+3%)
VIDA	1.49 (+22%)	13.02 (+29%)	3.75 (+4%)

Ablation

Adding Noise

	Speech Enhancement PESQ ↑		Recognition WER-FT (%)↓	-	Verification EER-FT (%) ↓
Clean (Upper bound)	4.64	2.50	2.50	1.62	1.62
Reverberant	1.36	12.27		4.69	5.10
MetricGAN+ [16]	2.12 (+57%)	9.40 (+23%)		4.94 (-5%)	3.38 (+34%)
WPE [45]	1.39 (+2%)	11.32 (+8%)		4.48 (+4%)	4.95 (+3%)
Audio-only dereverb.	1.76 (+29%)	7.37 (+40%)		5.75 (-23%)	3.58 (+30%)
VIDA w/ normal FoV	1.76 (+29%)	7.51 (+39%)		5.54 (-18%)	3.40 (+33%)
VIDA w/o matching loss	1.81 (+33%)	6.76 (+45%)		4.95 (-6%)	3.26 (+36%)
VIDA	1.82 (+34%)	6.53 (+47%)		4.83 (-3%)	3.13 (+39%)

Contribution of each modality

	Speech Enhancement PESQ↑	Speech Recognition WER (%) ↓	Speaker Verification EER (%)↓
Reverberant	1.54	8.86	4.69
Audio-only dereverb.	2.32 (+51%)	4.92 (+44%)	4.67 (+0.4%)
VIDA w/o RGB	2.38 (+55%)	4.76 (+46%)	3.82 (+19%)
VIDA w/o depth	2.38 (+55%)	4.52 (+49%)	3.99 (+15%)
VIDA w/ early fusion	2.38 (+55%)	4.56 (+48.5%)	3.94 (+16%)
VIDA	2.37 (+54%)	4.44 (+50%)	3.99 (+15%)

Audio embedding

Visual embedding

Qualitative Results

