Empirical Risk Minimization

INDRAPRASTHA INSTITUTE *of* INFORMATION TECHNOLOGY **DELHI**

Learning Process

Three components

- 1. Generator of random vectors x, i.i.d. from a fixed but unknown distribution P(x)
- 2. A supervisor (oracle/astrologer) which returns an output vector y, for every input vector x, as per the conditional distribution P(y/x), also fixed but <u>unknown</u>.
- 3. A learning machine capable of implementing a set of functions

$$f(x, w), w \in W$$

Learning Process

- The learning problem is to choose from the given set of functions the one which best approximates the supervisor's response.
- The selection is based on training samples

$$(x_i, y_i); i = 1, 2, 3...l$$

Problem Setting

- Dataset is a set of possible instances $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$
- $x_i \in X_i$: Each sample is a vector with R^d drawn from distribution P(x)
- $y_i \in Y$:
 - Classification: Each label is a single integer value out of two [binary] or more classes [multiclass]
 - Regression: Y = R [real number]
- Unknown target function $f: X \rightarrow Y$ as distribution P(y/x)
- Set of function hypotheses H={ h | h : X->Y }
- **Input:** Training examples {<x_i,y_i>}
- Output: Hypothesis $\hat{h} \in H$ that best approximates target function f

Training vs Testing

Training Phase

Sample Data

	Person	height(in feet)	weight(in lbs)	foot size(in inches)
0	male	6.00	180	12
1	male	5.92	190	11
2	male	5.58	170	12
3	male	5.92	165	10
4	female	5.00	100	6
5	female	5.50	150	8

- X = <height, weight, foot size>
- $Y = \langle male, female \rangle | \langle 0, 1 \rangle | \langle -1, +1 \rangle$
- A sample instance (x₁, y₁) = (<6.00, 180, 12>, male)
 Dimensionality d in X ∈ R^d = 3
- Unknown target function f: height, weight, foot size -> male/female

How to choose h?

- Randomly:
 - Advantage: Really fast
 - Disadvantage: Terrible performance
- Scan entire **H** and pick the best:
 - Advantage: Great performance
 - Disadvantage: Terribly slow
- Intelligent Way: Learn it using the performance metric
 - Loss functions help to evaluate the performance of the $\mathbf{h_i}$'s $\in \mathbf{H}$ to identify the **optimal h**.

Loss Functions

• To choose the best function, it makes sense to minimize a loss (or cost or discrepancy) between the response of the supervisor and the learning machine, given an input (x, y)

$$\mathcal{L}(y, f(x))$$

• We want to minimize the loss over all samples

$$L(h) = \frac{1}{n} \sum_{i=1}^{n} l(f(x_i), y_i)$$

- Loss functions are always non-negative.
 - Hence, minimum possible loss is which means we are not making any mistakes.

Loss Functions - Classification

• **0-1 Loss:** Binary Classification with equal weights on misclassification

L(P)	$n) = \frac{1}{n} \sum_{n} $	$ \frac{l_{01}}{l_{01}} l_{01}(f(x_i), y_i) l_{01} $	$_{1}(f(x_{i}),y_{i}) =$	$\begin{cases} 0, if & f(x_i) = \\ 1, if & f(x_i) \neq \end{cases}$	y_i y_i
	ID	Model Prediction f(x _i)	Ground Truth y _i	$l_{o1}(f(x_i, y_i))$	
	Mango 1	Good	Good	0	
	Mango 2	Good	Bad	1	
	Mango 3	Bad	Good	1	
	Mango 4	Bad	Bad	O	
		Total	,	0.5	

Loss Functions - h₁ or h₂

• The aim of the function is to select a hypothesis with the lowest loss.

ID	Model Prediction [h ₁] f(x _i)	Model Prediction $[h_{2}]$ $f(x_{i})$	Ground Truth y _i	$l_{o1}(f(x_i, y_i))$	Loss $l_{01}(f(x_i, y_i))$
M1	Good	Good	Good	0	0
M2	Good	Bad	Bad	1	О
М 3	Bad	Good	Good	1	0
M4	Bad	Bad	Bad	О	0
	Total Loss				O

Loss Functions - Unequal Weights

- Classification with unequal weights on misclassification
 - Minimize a 0-10⁷-500 loss

$$l(f(x_i), y_i) = \begin{cases} 0, if & f(x_i) = y_i \\ 500, if & f(x_i) = 1, y_i = 0 \\ 10^7, if & f(x_i) = 0, y_i = 1 \end{cases}$$

Loss functions: Regression - L₁ Loss

Loss functions: Regression - L, Loss

$$l(f(x_i), y_i) = \frac{1}{2}(f(x_i) - y_i)^2$$

Mean Absolute Error vs. Mean Square Error

Mean Absolute Error (MAE)

$$L(h) = MAE = \frac{1}{n} \sum_{i=1}^{n} |f(x_i) - y_i|$$

Mean Square Error (MSE)

$$L(h) = MSE = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

MAE = 1, RMSE = 1.50

I D	Error	Error	Error ²
1	О	0	0
2	1	1	1
3	2	2	4
4	-0.5	0.5	0.25
5	1.5	1.5	2.25
Total		5	7.50

MSE vs. MAE (L2 loss vs L1 loss)

- Robust to Outliers? L₁ or L₂
 An individual's height being too tall or small.
- Differentiability?
 - What: Continuous and smooth function over a region.
 - Why Do We Care: To get the rate of increase/decrease defined at all points.
 - o **Buy Why!:** It allows to find the minima/maxima and hence the optimal model.

Generalization

- What about performance on unknown or new data samples?
- Our true goal is to know and minimize the loss of the unknown test samples drawn from same distribution P

$$h^* = \underset{f(x)}{\operatorname{argmin}} \frac{1}{m-n} \sum_{i=n+1}^{m} l(f(x_i), y_i)$$

• In other words, we want to know and minimize the *Expected* $Loss\ l(f(x,y))$ and hence the Risk associated with function f.

$$R(f) = \int \int p(x_i, y_i) l(f(x_i), y_i) dx dy$$

Expected Loss

- Usually we don't know the test points and their labels in advance!!!

 - We do not know the p(x_i, y_i)
 Hence, we do not know the expected loss or the R(f)
- **Our goal:** Expected loss should be closer to the actual loss
- The law of large numbers (LLN) states that if the amount of exposure to losses increases, then the predicted loss will be closer to the actual loss.
 - o Example: Insurance in Real Life

Empirical Risk Minimization Principle

• So. by LLN the *statistical risk* associated with function *f* becomes equal to the *empirical risk*

$$\frac{1}{m-n} \sum_{i=n+1}^{m} l(f(x_i), y_i) \stackrel{m \to \infty}{\to} R_{L,P}(f)$$

• Picking the function f (via hypothesis h) that minimizes the empirical risk is known as empirical risk minimization.

the empirical risk is known as empirical risk minimization.
$$h^* = f^* = \operatorname{argmin} R_{L,P}(f)$$

• Our hope:

argmin
$$R_{L,P}(f) \approx \underset{f(x) \in F}{\operatorname{argmin}} R_{L,P}^{true}(f)$$

Empirical Risk Minimization Principle

Empirical risk minimization depends on following:

- How much data we have: For any given function f, as we get more and more data, we can expect that R(f) → R_{true}(f)
 The true distribution p: Depending on how "complex"
- 2. **The true distribution p**: Depending on how "complex" the true distribution is, more or less data may be necessary to get a good approximation of it.
- 3. **The loss function L**: If the loss function is very "weird" giving extremely high loss in certain unlikely situations, this can lead to trouble.
- 4. **The class of functions F**: Roughly speaking, if the size of F is "large", and the functions in F are "complex", this worsens the approximation, all else being equal.

Effect of Function Complexity

- At fixed number of samples, overly complicated models -> overfitting.
- Empirical risk is no longer a good indicator of true risk.

References

Principles of Risk Minimization for Learning Theory