

Machine Learning

Dimensionality Reduction

Motivation I: Data Compression

Data Compression

Reduce data from 2D to 1D

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^2$$
 $\rightarrow z^{(1)} \in \mathbb{R}$ $x^{(2)} \in \mathbb{R}^2$ $\rightarrow z^{(2)} \in \mathbb{R}$ \vdots $x^{(m)} \in \mathbb{R}^2$ $\rightarrow z^{(m)} \in \mathbb{R}$

Data Compression

Reduce data from 3D to 2D

Suppose we apply dimensionality reduction to a dataset of m examples $\{x^{(1)},x^{(2)},\ldots,x^{(m)}\}$, where $x^{(i)}\in\mathbb{R}^n$. As a result of this, we will get out:

- A lower dimensional dataset $\{z^{(1)}, z^{(2)}, \dots, z^{(k)}\}$ of k examples where k < n.
- A lower dimensional dataset $\{z^{(1)}, z^{(2)}, \dots, z^{(k)}\}$ of k examples where k > n.
- A lower dimensional dataset $\{z^{(1)},z^{(2)},\dots,z^{(m)}\}$ of m examples where $z^{(i)}\in\mathbb{R}^k$ for some value of k and $k\leq n$.
- A lower dimensional dataset $\{z^{(1)}, z^{(2)}, \dots, z^{(m)}\}$ of m examples where $z^{(i)} \in \mathbb{R}^k$ for some value of k and k>n.

Machine Learning

Dimensionality Reduction

Motivation II: Data Visualization

Country

China

India

Russia

Singapore

USA

Canada

GDP

(trillions of

US\$)

1.577

5.878

1.632

1.48

0.223

14.527

Data Vis	sualizatio	× e R			
	×ı	X2 Per capita	X 3	X 4	

GDP

(thousands

of intl. \$)

39.17

7.54

3.41

19.84

56.69

46.86

Human

Develop-

0.908

0.687

0.547

0.755

0.866

0.91

...

Life

ment Indexexpectancy percentage)

80.7

73

64.7

65.5

80

78.3

...

... Andrew Ng

• • •

...

...

...

• • •

• • •

XL

Mean

household

income

(thousands

of US\$)

67.293

10.22

0.735

0.72

67.1

84.3

Xs

Poverty

Index

(Gini as

32.6

46.9

36.8

39.9

42.5

40.8

Data Visualization

I		[z "Elk
Country	z_1	z_2	
Canada	1.6	1.2	
China	1.7	0.3	Reduce data from 500
India	1.6	0.2	
Russia	1.4	0.5	40 5D
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization

Suppose you have a dataset $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ where $x^{(i)} \in \mathbb{R}^n$. In order to visualize it, we apply dimensionality reduction and get $\{z^{(1)}, z^{(2)}, \dots, z^{(m)}\}$ where $z^{(i)} \in \mathbb{R}^k$ is k-dimensional. In a typical setting, which of the following would you expect to be true? Check all that apply.

- \square k > n
- l k≤r
- k≥4
- k = 2 or k = 3 (since we can plot 2D or 3D data but don't have ways to visualize higher dimensional data)

Machine Learning

Dimensionality Reduction

Principal Component Analysis problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2--dimension to 1--dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $\underline{u^{(1)}, u^{(2)}, \dots, u^{(k)}}$ onto which to project the data, so as to minimize the projection error.

PCA is not linear regression

PCA is not linear regression

Machine Learning

Dimensionality Reduction

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
Replace each $x_j^{(i)}$ with $x_j - \mu_j$.
If different features on different s

If different features on different scales (e.g., $x_1 = \text{size of house}$, $x_2 = \text{number of bedrooms}$), scale features to have comparable range of values.

Principal Component Analysis (PCA) algorithm

Reduce data from 2D to 1D

Reduce data from 3D to 2D

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions Compute "covariance matrix":

Compute covariance matrix.
$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{T}$$

$$= \sum_{i=1}^{n} \sum_{n \neq i} (x^{(i)})(x^{(i)})^{T}$$

$$= \sum_{i=1$$

$$U = \begin{bmatrix} u_{\alpha}, u_{\alpha}, u_{\alpha}, \dots, u_{\alpha} \end{bmatrix} \qquad (K \in \mathbb{Z}_{N \times N})$$

$$V(K)$$

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

Principal Component Analysis (PCA) algorithm summary

Ader mean normalization (ensure every feature has zero mean) and optionally feature scaling:

```
Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}
\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});
\Rightarrow \text{Ureduce} = U(:,1:k);
\Rightarrow z = \text{Ureduce}' *x;
\uparrow \qquad \checkmark \in \mathbb{R}^{\wedge}
```


Machine Learning

Dimensionality Reduction

Reconstruction from compressed representation

Reconstruction from compressed representation

Machine Learning

Dimensionality Reduction

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m} \stackrel{\text{(i)}}{\underset{\text{in}}{\rightleftharpoons}} ||_{\mathbf{X}^{(i)}} - \frac{1}{\sqrt{n}}||_{\mathbf{X}^{(i)}}$ Total variation in the data: $\frac{1}{m} \stackrel{\text{(i)}}{\underset{\text{in}}{\rightleftharpoons}} ||_{\mathbf{X}^{(i)}} ||_{\mathbf{X}^{(i)}}$

Typically, choose k to be smallest value so that

→ "99% of variance is retained"

Choosing k (number of principal components)

Algorithm:

Try PCA with k=1

Compute $U_{reduce}, z^{(1)}, z^{(2)},$

 $\dots, z_{approx}^{(m)}, x_{approx}^{(1)}, \dots, x_{approx}^{(m)}$

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

K= 17

Choosing k (number of principal components)

$$\rightarrow$$
 [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

k=100

(99% of variance retained)

Machine Learning

Dimensionality Reduction

Advice for applying PCA

Supervised learning speedup

$$\rightarrow (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

M cognie

New training set:

Extract inputs: Unlabeled dataset: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$

$$z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000}$$

$$(y^{(m)},y^{(m)})$$
 ld be defined by

 $\downarrow PCA$

 $(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)}) \qquad h_{\Theta}(z) = \frac{1}{1 + e^{-\Theta^{\mathsf{T}} z}}$ Note: Mapping $x^{(i)} \rightarrow z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets

Application of PCA

- Compression
 - Reduce memory/disk needed to store data
 Speed up learning algorithm

 Choose k by % of voice retain

Bad use of PCA: To prevent overfiEng

 \rightarrow Use $\underline{z^{(i)}}$ instead of $\underline{x^{(i)}}$ to reduce the number of features to $\underline{k} < \underline{n}$.

Thus, fewer features, less likely to overfit.

Bod!

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left| \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \right|$$

PCA is sometimes used where it shouldn't be

Design of ML system:

- \rightarrow Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- \rightarrow Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
- \neg Train logistic regression on $\{(z_{test}^{(i)},y^{(1)}),\dots,(z_{test}^{(n)},y^{(m)})\}$ Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on
- Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)}, y_{test}^{(1)}), \dots, (z_{test}^{(m)}, y_{test}^{(m)})\}$
- → How about doing the whole thing without using PCA?
- Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$ Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$.