

IN THE CLAIMS

1 1. (Currently Amended) A position sensor according to the transit time principle of a
2 mechanical-elastic wave, said sensor comprising:

3 a waveguide made of electrically conductive material;
4 a detector coil in a detector range being arranged coaxially on the waveguide;
5 a position magnet moveable along the waveguide; [[and]]
6 a flux guide unit being assigned to said detector coil; and
7 an electrical return, at least in the axial range of the detector coil of the return, being coaxially
8 arranged externally around the detector coil wherein said electrical return consists of electrically
9 conductive and also magnetic shielding material.

1 2. (Previously Presented) The position sensor under Claim 1 wherein said waveguide possesses
2 a solid cross-section.

1 3. (Previously Presented) The position sensor according to claim 1 wherein said waveguide has
2 a solid cross section through an entire waveguide measurement range.

1 4. (Previously Presented) The position sensor according to claim 1 wherein said detector coil
2 is also a part of a detector arrangement just like a detector circuit.

1 5. (Previously Presented) The position sensor according to claim 1 wherein said flux guide unit
2 of said detector coil is assigned so that said flux guide unit simultaneously shields said detector coil
3 against undesired external magnetic fields.

1 6. (Previously Presented) The position sensor according to claim 1 wherein a magnetic flux
2 path of the magnetic flux enabled by said flux guide unit encloses windings of said detector coil at
3 least once including said waveguide in the flux path.

1 7. (Previously Presented) The position sensor according to claim 6 wherein said magnetic flux
2 path enabled by said flux guide unit surrounds the entire detector coil.

1 8. (Cancelled)

1 9. (Cancelled)

1 10. (Currently Amended) The position sensor under Claim [[9]] 1 wherein said electrical return
2 exhibits a completely enclosed cross-section.

1 11. (Currently Amended) The position sensor according to claim [[8]] 1 wherein said flux guide
2 unit encloses said detector coil.

1 12. (Currently Amended) The position sensor according to claim [[8]] 1 wherein said detector
2 coil is constructed as a self-supporting coil.

1 13. (Currently Amended) The position sensor according to claim [[8]] 1 wherein said detector
2 coil is wrapped on a coil shell in a longitudinal view.

1 14. (Currently Amended) The position sensor according to claim [[8]] 1 wherein said flux guide
2 unit having an opening for said waveguide and an opening for electrical conductors connected to said
3 detector completely encloses said detector coil.

1 15. (Previously Presented) The position sensor according to claim 11 wherein said flux guide
2 unit is primarily cylindrically shell-shaped with two opposing openings in the enclosed front side for
3 entry and exit of said waveguide and a conductor opening for the passage of the electrical conductor
4 for said detector coil, in which the conductor opening is found in a cylindrical surface area of said
5 flux guide unit.

1 16. (Previously Presented) The position sensor according to claim 15 wherein said cylindrical
2 flux guide unit consists of a cup-shaped body with an open front side and a suitable cover on the
3 frontal opening.

1 17. (Previously Presented) The position sensor according to claim 15 wherein the cylindrical
2 housing consists of two half-cylindrical shells.

1 18. (Previously Presented) The position sensor according to claim 14 wherein said flux guide
2 unit consists of a ferromagnetic material with a permeability of $\mu > 10$.

1 19. (Previously Presented) The position sensor according to claim 14 wherein said flux guide
2 unit consists of a highly permeable alloy out of ferrite.

1 20. (Currently Amended) The position sensor according to claim [[8]] 1 wherein a direct current
2 is flowed through said waveguide.

1 21. (Canceled)

1 22. (Currently Amended) The position sensor according to claim [[8]] 1 wherein an axial
2 direction of said detector coil corresponds with a longitudinal direction of said waveguide.

1 23. (Canceled)

1 24. (Canceled)

1 25. (Canceled)

1 26. (Previously Presented) The position sensor according to claim 6 wherein said magnetic flux
2 path enabled by said flux guide unit surrounds said detector coil in at least one axial layer
3 surrounding said detector coil.

1 27. (Currently Amended) The position sensor according to claim [[8]] 1 wherein said flux guide
2 unit encloses said detector coil along an axial layer of said detector coil.

1 28. (Currently Amended) The position sensor according to claim [[8]] 1 wherein said flux guide
2 unit coaxially encloses said detector coil along an axial layer of said detector coil.

1 29. (Cancelled)

1 30. (Cancelled)

1 31. (Cancelled)

1 32. (New) A position sensor according to the transit time principle of a mechanical-elastic wave,
2 said sensor comprising:

3 a waveguide made of electrically conductive material;

4 a detector coil in a detector range being arranged coaxially on the waveguide;

5 a position magnet moveable along the waveguide;

6 a flux guide unit being assigned to said detector coil; and

7 an electrical return, at least in the axial range of the detector coil of the return, being coaxially
8 arranged externally around the detector coil wherein said electrical return consists of electrically
9 conductive and also magnetic shielding material, and wherein said electrical return exhibits a
10 completely enclosed cross-section.