

Laser Physics problem sheet 7

Summer semester 2023

Problem 3 (5 points)

In this exercise we will calculate the equivalent 2-level rate equations of a 3-level system. The energy diagram of a generic 3-level system with all the relevant transitions is shown in the picture. Non-radiative transitions are represented by dashed lines:

a) Write down the 3-level rate equations for the energy diagram shown above (i.e. the rate equations for all three levels). (1 point)

Recap of 3-level system:

 W_{13}/W_{12} : one-particle transition probability per unit time for absorption |1> o |3>/|2>

 W_{21} : one-particle transition probability per unit time for stimulated emission |2> o |1>

 $S_{31}/S_{32}/S_{21}$: decay rate due to spontaneous emission (relaxation)

N: population density at each energy level

Problem 1

The rate equations for all three levels:

|3> :

$$\frac{dN_3}{dt} = W_{13}N_1 - S_{31}N_3 - S_{32}N_3$$

number of spont. emission process $|3> \,\rightarrow\, |2>$ per unit time and volume

number of spont. emission process $|3> \,\rightarrow\, |1>$ per unit time and volume

number of pump process $|1> \rightarrow |3>$ per unit time and volume

The rate equations for all three levels:

|2 > :

number of spont. emission process |2> o |1> per unit time and volume

number of stimulated process $|3> \leftrightarrow |1>$ per unit time and volume

number of spont. emission process $|3> \rightarrow |2>$ per unit time and volume

The rate equations for all three levels:

|1>:

number of spont. emission process $|3> \rightarrow |1>$ per unit time and volume

number of absorption process |1> o |3> per unit time and volume

Problem 3 (5 points)

In this exercise we will calculate the equivalent 2-level rate equations of a 3-level system. The energy diagram of a generic 3-level system with all the relevant transitions is shown in the picture. Non-radiative transitions are represented by dashed lines:

b) Using the equations above, obtain the condition required to keep $N_3 = 0$ (assuming that this level is unpopulated before starting the pump process). Explain why this condition makes physical sense. (2 points)

Rate equations we wrote in a):

$$\frac{dN_3}{dt} = W_{13}N_1 - S_{31}N_3 - S_{32}N_3$$

$$\frac{dN_2}{dt} = S_{32}N_3 - W_{21}N_2 + W_{12}N_1 - S_{21}N_2$$

$$\frac{dN_1}{dt} = S_{31}N_3 - W_{13}N_1 - W_{12}N_1 + W_{21}N_2 + S_{21}N_2$$

<u>Unpopulated pump band $N_3 = 0$ before pump process ($W_{13} = 0$)</u>

$$\frac{dN_3}{dt} = W_{13}N_1 - S_{31}N_3 - S_{32}N_3 = 0$$

 \rightarrow |3 > will remain unpopulated during pump process

 \square Condition to keep $N_3 = 0$:

$$W_{13}N_1 = (S_{31} + S_{32})N_3$$

- Left term describes the one possible absorption path to |3>
- Right terms describe the two possible decay paths from |3>
- To keep N₃ = 0, the absorption rate must equal the rate of both spontaneous emission paths

c) Now, considering that N_3 remains $N_3 \approx 0$, obtain the 2-level rate equations equivalent to the 3-level system

depicted above. These equations should contain the quantum efficiency η as a parameter.

Hint:
$$\eta = \frac{S_{32}}{S_{31} + S_{32}}$$

Equivalent 2-level rate equations: eliminate N_3 in $\frac{dN_1}{dt}$ and $\frac{dN_2}{dt}$ from a):

$$\frac{dN_1}{dt} = -W_{12}N_1 - W_{13}N_1 + S_{21}N_2 + W_{21}N_2 + S_{31}N_3$$

$$\frac{dN_1}{dt} = -W_{12}N_1 - W_{13}N_1 + S_{21}N_2 + W_{21}N_2 + (1 - \eta) W_{13}N_1$$

$$= -W_{12}N_1 + S_{21}N_2 + W_{21}N_2 - \eta W_{13}N_1$$

$$\frac{dN_2}{dt} = W_{12} N_1 - S_{21} N_2 - W_{21} N_2 + S_{32} N_3$$

$$\frac{dN_2}{dt} = W_{12} N_1 - S_{21} N_2 - W_{21} N_2 + \eta W_{13} N_1$$

From b)

$$N_3(S_{31} + S_{32}) = W_{13}N_1$$

Re-arange the quantum efficiency term:

$$\eta = \frac{S_{32}}{S_{31} + S_{32}} \rightarrow S_{31} + S_{32} = \frac{S_{32}}{\eta}$$

Combine:

$$N_3(S_{31} + S_{32}) = N_3 \frac{S_{32}}{\eta} = W_{13} N_1$$

$$N_3 S_{32} = \eta W_{13} N_1$$
 (1)

$$N_3 S_{31} = W_{13} N_1 - N_3 S_{32} \stackrel{\text{(1)}}{=} (1 - \eta) W_{13} N_1 \quad (2)$$

c) Now, considering that N_3 remains $N_3 \approx 0$, obtain the 2-level rate equations equivalent to the 3-level system depicted above. These equations should contain the quantum efficiency η as a parameter.

Hint:
$$\eta = \frac{S_{32}}{S_{31} + S_{32}}$$

If $N_3=0$, why can't we just cross out the terms with N_3 ?

- We are assuming that τ_3 is very short, so no population N_3 can accumulate
- However, as ions are pumped, they must still pass through |3>
- This means they still have a probability to move to either |2> or back to |1>
- This process is instantaneous and independent of N_3 so we have to find a way to represent this in the rates $\frac{dN_1}{dt}$ and $\frac{dN_2}{dt}$
- This is represented using the quantum efficiency η

Every ion pumped from $|1\rangle$ to $|3\rangle$ has a probability η of getting to $|2\rangle$ and a probability $(1-\eta)$ of going back to $|1\rangle$. This must be included in the 2-level rates

d) When considering the rate equations from point c), it can be seen that the terms involved in the pump process fulfill

$$\frac{\mathrm{d}N_1}{\mathrm{d}t}\Big|_{\text{Pump process}} = -\frac{\mathrm{d}N_2}{\mathrm{d}t}\Big|_{\text{Pump process}}$$

Why is this like that?

From c)
$$\frac{\frac{dN_1}{dt} = -W_{12}N_1 + S_{21}N_2 + W_{21}N_2 - \eta W_{13}N_1 }{\frac{dN_2}{dt} = W_{12} N_1 - S_{21}N_2 - W_{21}N_2 + \eta W_{13}N_1 }$$

$$\frac{\frac{dN_1}{dt}}{\frac{dt}{dt}} \Big|_{\text{Pump process}} = -\eta W_{13}N_1 = -\frac{dN_2}{dt} \Big|_{\text{Pump process}}$$

- Since we assumed N_3 = 0 at all times, we were able to reduce the equations for $\frac{dN_2}{dt}$ and $\frac{dN_1}{dt}$ to a two-level dependency.
- $\begin{bmatrix} \mathbf{S}_{31} & \mathbf{W}_{13} & \mathbf{W}_{21} & \mathbf{W}_{12} & \mathbf{S}_{2} \end{bmatrix}$
- These new equations imply that the only population sources are |1> and |2>
 - Any ion successfully pumped to |2> must come from |1>
- Therefore the rate of change of N₁ due to pumping must be the inverse of the rate of change of N₂ due to pumping

Problem 2

Problem 2 (4 Points)

In the linear cavity depicted above n is the index of refraction of the material filling the cavity, and α represents the one-pass losses in this material. R_1 and R_2 are the reflectivities of the mirrors and l is the cavity length.

- a) Calculate the general expression of the photon lifetime τ_{ph} in the cavity as a function of the cavity round-trip time τ_R . (2 points)
- b) Assuming that $R_1 = 1$, obtain the expression given in the lecture:

$$\frac{\tau_{ph}}{\tau_R} \approx (T+L)^{-1}$$

where T is the transmissivity of the outcoupling mirror and L are the round-trip losses in the cavity. Under which circumstances is the expression above valid? (2 points)

The round-trip time is

$$au_{R} = rac{2nl}{c}$$

From the lecture we know that the photon density in a passive cavity changes according to

$$\frac{dp}{dt} = -\frac{p}{\tau_{ph}} \qquad \rightarrow \qquad p(t) = p_0 exp(-t/\tau_{ph}) \qquad \rightarrow \qquad p(N\tau_R) = p_0 exp(-N\tau_R/\tau_{ph})$$

On the other hand, we have that every round-trip (τ_R) the photon density is reduced by a factor $R_1R_2(1-\alpha)^2$, thus:

$$p(\tau_R) = p_0 R_2 (1 - \alpha) R_1 (1 - \alpha) = p_0 R_1 R_2 (1 - \alpha)^2$$
$$p(2\tau_R) = p(\tau_R) R_2 (1 - \alpha) R_1 (1 - \alpha) = p_0 [R_1 R_2 (1 - \alpha)^2]^2$$

$$p(N\tau_R) = p_0[R_1R_2(1-\alpha)^2]^N$$

Therefore,

$$p(N\tau_R) = p_0 exp(-N\tau_R/\tau_{ph}) = p_0 [R_1 R_2 (1-\alpha)^2]^N$$

So,

$$\tau_{ph} = \frac{-\tau_R}{ln[R_1R_2(1-\alpha)^2]}$$

b) Assuming that $R_1 = 1$, obtain the expression given in the lecture:

$$\frac{\tau_{ph}}{\tau_R} \approx (T+L)^{-1}$$

where T is the transmissivity of the outcoupling mirror and L are the round-trip losses in the cavity. Under which circumstances is the expression above valid? (2 points)

Problem 3

Problem 3 (6 Points)

A system described by the rate equations deviates from the equilibrium state by a small margin. The change of the inversion (Δn) and photon density (Δp) with respect to their steady state values $(\bar{n} \text{ and } \bar{p})$ can be mathematically modelled by:

$$n = \bar{n} + \Delta n$$
 $p = \bar{p} + \Delta p$

In the following calculations please neglet the product $\Delta n \Delta p$ as well as the spontaneous emission term S.

a) Consider a 4-level system with n << n_{tot} and show that the temporal change of the deviations in inversion and photon density can be written as:

$$\frac{d(\Delta n)}{dt} = -(\sigma c\bar{p} + \Gamma)\Delta n - \frac{\Delta p}{\tau_{ph}}$$

$$\frac{d(\Delta p)}{dt} = \sigma c \bar{p} \Delta n$$

Hint:
$$\bar{n} = n_{th}$$
, $\bar{p} = n_{tot}(W_p - W_{th})\tau_{ph}$, $W_{th} = \Gamma \frac{n_{th}}{n_{tot}}$. (2 points)

b) Derive $\frac{d(\Delta n)}{dt}$ analogous to a) but for a 3-level system, where $n << n_{tot}$ is not valid anymore. (2 points)

a) - rate equation for a 4-level system ($\gamma = 1$) where $n << n_{tot}$

$$\frac{dn}{dt} = -\sigma c p n - \Gamma n + W_P n_{tot}$$

$$\frac{dp}{dt} = \sigma c p (n - n_{th})$$

- insert $n = \bar{n} + \Delta n$ and $p = \bar{p} + \Delta p$ into these equations and simplify.
- start with p
- calculation

$$\frac{d(\bar{p} + \Delta p)}{dt} = \sigma c(\bar{p} + \Delta p)((n + \Delta n) - n_{th}) \qquad \bar{n} = n_{th}$$

$$\frac{d\bar{p}}{dt} + \frac{d(\Delta p)}{dt} = \sigma c\bar{p}\Delta n + \sigma c\Delta p\Delta n \qquad \frac{d\bar{p}}{dt} = 0, \quad \Delta n \cdot \Delta p = 0$$

$$\frac{d(\Delta p)}{dt} = \bar{p}c\sigma\Delta n$$

- next: n

$$\begin{split} \frac{d\bar{n}}{dt} + \frac{d(\Delta n)}{dt} &= -\sigma c \bar{p} \bar{n} - \sigma c \bar{p} \Delta n - \sigma c \bar{n} \Delta p - \sigma c \Delta p \Delta n - \Gamma \bar{n} - \Gamma \Delta n + W_P n_{tot} \\ \frac{d(\Delta n)}{dt} &= -(\sigma c p + \Gamma) \Delta n - \sigma c p \bar{n} - \sigma c \Delta p \bar{n} - \Gamma \bar{n} + W_P n_{tot} \end{split}$$

- here the term $\sigma c \Delta p \bar{n}$ can be phrased as $\frac{\Delta p}{\tau_{ph}}$
- the last 3 remaining terms cancel each other

$$W_P n_{tot} = \Gamma \bar{n} + \sigma c \bar{p} \bar{n}$$

to show this this last step you need the hint equations

$$\frac{d(\Delta n)}{dt} = -(\sigma c \bar{p} + \Gamma) \Delta n - \frac{\Delta p}{\tau_{ph}}$$

- 1) Use gamma = 2 to find rate equation
- 2) Insert terms for n and p analogous to a) and simplify.

b)

$$\begin{split} \frac{d(\bar{n} + \Delta n)}{dt} &= -2\sigma c(\bar{p} + \Delta p)(\bar{n} + \Delta n) - \Gamma n_{tot} - \Gamma(\bar{n} + \Delta n) + W_P n_{tot} - W_P(\bar{n} + \Delta n) \\ \frac{d(\Delta n)}{dt} &= -(2\sigma c\bar{p} + \Gamma + W_P)\Delta n - 2\frac{\Delta p}{\tau_{ph}} - [2\sigma c\bar{p}\bar{n} + \Gamma n_{tot} + \Gamma\bar{n} - W_P n_{tot} + W_P\bar{n}] \\ \frac{d(\Delta n)}{dt} &= -(2\sigma c\bar{p} + \Gamma + W_P)\Delta n - \frac{\bar{p} + 2\Delta p}{\tau_{ph}} + \Gamma n_{tot} + W_P n_{th} \end{split}$$

Solution is similar to result from a), but contains more terms, as certain terms do no longer cancel each other with n << n_tot no longer valid

Problem 3: c) and d)

c) The two linear differential equations obtained in question a) can be converted into one differential equation of second order:

$$\frac{d^2(\Delta n)}{dt^2} + 2\delta \frac{d(\Delta n)}{dt} + \omega^2 \Delta n = 0$$

where

$$\delta = \frac{W_p}{2\tau_2 W_{th}} \qquad \omega = \sqrt{\frac{1}{\tau_2 \tau_{ph}} (\frac{W_p}{W_{th}} - 1)}.$$

What is the physical meaning of the parameters δ and ω ? What will happen to Δn and Δp in the cases that δ is much higher or lower than ω ? (1 point)

d) Assume two laser systems. The first one has τ₂ = 100ns and τ_{ph} = 10⁻⁴s. The second one has τ₂ = 100µs and τ_{ph} = 10⁻⁸s. Additionally, assume that W_p/W_{th} = 4. In which system would you expect to see relaxation oscillations? Why? (1 point)

- c) δ ... damping constant, suppresses oscillations due to spontaneous emission and pump ω ... oscillation frequency of Δn if damping is weak $\delta >> \omega$... strong damping means Δn will go back to 0 without oscillations $\delta << \omega$... damped oscillations of Δn with frequency ω Change of Δn will impact Δp . Strong damping of Δn leads to a strongly damped Δp . Same in the case of oscillations.
- d) Calculate delta and omega in the 2 cases using the equation from c). Compare their values.

System 1: delta = $20*10^6$ Hz, omega = $547*10^3$ Hz; delta is bigger \rightarrow no oscillations

System 2: delta = $20*10^3$ Hz, omega = $1.7*10^6$ Hz; delta is smaller \rightarrow oscillations