Machine learning notes: week 4

Lars Yencken

Notes

Non-linear hypotheses

- · Suppose you need a decision boundary that's non-linear
 - Then with logistic regression, you'd need polynomial features
 - As you get more features, even quadratic features scale very poorly
- When is the number of features *n* large?
 - Images have huge numbers of features, one per input pixel
 - 50×50 pixels is already 2500 features in grayscale
 - Quadratic features would add $pprox rac{(50 imes 50)^2}{2} = 3.1$ million features

Enter neural networks

- Designed to mimic the brain
 - Is there one core learning algorithm used throughout the brain?
 - Neuroplasticity: you can learn to see with electrodes placed on your tongue, or by echolocation, amongst other examples of the brain's capacity to rewire
- · Was widely used, then unpopular, now recently having a resurgence
 - Used effectively for deep learning by big companies like Google, for example automatically recognising object categories from images, like bicyles

Our hypothesis

- We call ours an Artificial Neural Network (ANN)
- An ANN consists of nodes, which are simplified models of neurons
 - Each has some inputs x_1,\dots,x_n , and output $h_{ heta}(x)=rac{1}{1+e^{- heta^Tx}}$
 - Look familiar? This is an instance of logistic regression!

- Multiple neurons can share the same input, and their outputs can be inputs to a new layer of nodes
 - Nodes connected directly to the input are in the *input layer*
 - Nodes giving the final answer are in the *output layer*
 - Everything in between is called the hidden layer
- Call the "activation" of unit i in layer j: $a_i^{(j)}$
- Call the matrix of weights mapping layer i to layer i+1: $\Theta^{(j)}$
 - Say layer j has s_j units, layer j+1 itself s_{j+1} units
 - Then $\Theta^{(j)}$ is of dimension $s_{j+1} \times (s_j + 1)$
 - The +1 is because of the bias weight for each node, much like the θ_0 we used in earlier regression
- Our hypothesis $h_{\Theta}(x)$ is built from the output layer, and depends recursively on the activation of earlier layers
- Starting with the input layer, we use forward propagation to calculate $h_{\Theta}(x)$
- Consider the hidden layer as being specially learned features, which are then what's actually used for logistic regression in the output layer

Examples

- Logistic regression can learn the linear function $y=x_1$ AND x_2
- But $y=x_1$ XOR x_2 is non-linear, and can't be learned this way
- We can prove that with one hidden unit, an ANN can learn

Multiclass with ANNs

- · Create a network with output units, one per class
- This is similar to doing one-vs-all with logistic regression

Exercises

- 1. Modelling binary functions:
 - (a) Create the neural net for x_1 OR x_2
 - (b) Create the neural net for x_1 NOT x_2
 - (c) Create the neural net for x_1 XNOR x_2