

Color - Why Do We Care?

- Computer Graphics output is number of colored pixels
- Understand how/why color is represented

What is Light?

- Light is an electromagnetic Wave
- Monochrome light (e.x.: laser) has a single frequency f or wavelength λ
- $c = \lambda f$ (c = speed of light in medium)
 - Shorter wavelength equals higher frequency

Light – An Electromagnetic Wave

Frequency band of electromagnetic spectrum

Light – An Electromagnetic Wave

Frequency band of electromagnetic spectrum

Light – Spectrum

- Normal light mixture of different frequencies
- Distribution of wavelength intensities is called spectrum

Brightness

Area under the curve

Dominant Wavelength

Main frequency (hue, color)

What is Color?

- Characteristic of human visual perception
- Created through stimulation of cone cells in the human eye by light
- Described through color categories, like red, yellow, ...
- Other species quite different

The Human Eye – Cones

- 3 types
- Different wavelength sensitivities (tristimulus)
 - Red
 - Green
 - Blue

The Human Eye – Rods

The Human Eye - Adaptation

Daylight-adapted human eye

Dark-adapted human eye

Color Constanc

Color Spaces/Systems

Range of Human Color Perception

- Projected slice is shown
 - CIE 1931 color space chromaticity diagram

Color Model/Space

- Specific organization of colors
- Identify colors numerically by coordinates
- Pick primaries
- Can describe area between primaries

Color Spaces

- Specific organization of colors
- Identify colors numerically by coordinates
- Pick primaries
- Can describe area between primaries

Color Metric Spaces

- CIE XYZ
 - Detect metamers
- CIE L*a*b*
 - Perceptually uniform
- Colorimetry

Device Color Spaces

- RGB, CMY(K)
- Additive or subtractive
- Device specific
- Paper specific

Color Ordering Spaces

- HSV, HLS
- Enable user to intuitively choose colour values according to certain criteria

RGB Color Space

- Based on tristimulus theory
- Standardised version sRGB
- Additive color model (monitors)
- o <= RGB <= 1</pre>
- Channels independent
 - Calculations / channel

RGBA Color space

- Extension of RGB with extra alpha channel information
- Alpha channel stores opacity information
 - Alpha = o.x: background shows through; like glass, ...
 - Alpha = o: transparent
 - Alpha = 1: opaque

RGBA Color space – Alpha Compositing

RGBA Color space – Transparency

■ $After = Before * (1 - \alpha) + New * \alpha$

Order is Important

