

Artificial Intelligence

Solving Problem by Searching

Today's Topic

- Informed Search Strategies: one that uses problem specific knowledge
 - Best First Search & its variant
 - Heuristic Functions
 - Local Search and Optimization

Best-first search

- Idea: use an evaluation function f(n) for each node
 - ☐ estimate of "desirability"
 - ☐ Expand most desirable unexpanded node
 - □ Evaluation function estimates distance to the goal
- <u>Implementation</u>:

Fringe is a priority queue sorted in ascending order of f-values

- Special cases:
 - greedy best-first search
 - A* search

Heuristic Function

- It maps each state to a numerical value depicts goodness of a node.
 - h(n)= value, where h() is heuristic function and n is current state
- It is estimated cost of cheapest path from initial node to goal
- Example: (In Romania)
 - Straight line distance from Arad to Bucharest
 - Heuristic functions are most common way in which additional knowledge of the problem is imparted to search algorithms

••••••

Romania with step costs in km

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
 - = estimate of cost from *n* to *goal*
- e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
 - f(n)=h(n)

Greedy Best First Search

Properties of greedy best-first

search

- Complete? No can get stuck in loops, e.g., lasi →
 Neamt → lasi → Neamt →
- <u>Time?</u> $O(b^m)$, but a good heuristic can give dramatic improvement
- <u>Space?</u> $O(b^m)$ -- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - -g(n) = cost from start/node to n
 - -h(n) = estimated cost from n to goal node
 - f(n) =estimated total cost of path through n to goal

Conditions for Optimality

- Admissible
- Consistency

A* is Admissible

- A* will never overestimate the cost of reaching the goal.
- The cost to reach goal is guaranteed to be lower or equal to the actual cost.
- This property ensures that the algorithm will eventually find the optimal solution, if one exists.

Admissible heuristics

- A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true/actual cost to reach the goal state from n and h(n) is the estimated cost to reach the goal
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If *h*(*n*) is admissible, A* using TREE-SEARCH is optimal

Optimality of A* (proof)

• Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- f(G) = g(G) since h(G) = 0
- $f(G_2) > f(G)$ from above

Optimality of A* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let *n* be an unexpanded node in the fringe such that *n* is on a shortest path to an optimal goal G.

Start

G 🔵

- f(G₂) > f(G) from above
 h(n) ≤ h*(n) since h is admissible, h* is minimal distance/actual cost
- $g(n) + h(n) \le g(n) + h^*(n)$

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

Consistent heuristics

• A heuristic is consistent if for every node n, every successor n' of n generated by any action a, the estimated cost of reaching the goal from node n, h(n), is not greater than the step cost of getting to n', (g(n'))+ estimated cost of reaching the goal from n' (f(n'))

$$h(n) \le g(n') + h(n')$$

$$h(n) \le c(n,a,n') + h(n')$$

- Intuition: can't do worse than going through n'.
- If *h* is consistent, we have

$$f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n')$$

 $\geq g(n) + h(n) = f(n)$

Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

- A* expands nodes in order of increasing f value
 - This means that nodes with lower *f*-values are expanded before nodes with higher *f*-values.
 - Gradually adds "f-contours" of nodes
 - Contour i has all nodes with f=fi, where fi < fi+1

Properties of A*

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- <u>Time?</u> Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile)

- $h_1(S) = ?$
- $h_2(S) = ?$

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile)

- $h_1(S) = ?$ 8
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution