MTH 410/510: HOMEWORK 4

PART I: Use the data set "Logistic Data.txt" from d2l to implement the gradient decent method and the Newton method for the Logistic Regression. Find the coefficients w and b using the stopping criterion $\|\nabla L(x)\| < \epsilon$, where $\epsilon = 10^{-4}$. How many iterations are needed for each method?

PART II:

Problem 1. Consider the following optimization problem:

minimize
$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 3x_2^2 + 4x_1 + 5x_2 + 6x_3$$

subject to $x_1 + 2x_2 = 3$, $4x_1 + 5x_3 = 6$.

- (a) Show that the function $f: \mathbb{R}^3 \to \mathbb{R}$ is convex.
- (b) Find an absolute minimizer of the problem.

(Hint: Show that the Hessian of the function f is positive semidefinite and then use the method of Lagrange multipliers).

Problem 2. Consider the problem

minimize
$$\frac{1}{2}x^TQx - c^Tx + d$$

subject to $Ax = b$,

where $Q^T = Q$ is an $n \times n$ positive definite matrix, A is an $m \times n$ matrix with rank A = m, $c \in \mathbb{R}^n$, and d is a constant. Derive a closed-form solution to the problem in terms of Q, c, d, A, b.

Problem 3. Find the absolute maximum of the problem

maximize
$$x + 2y$$

subject to $x^2 + y^2 \le 1$.

(Hint: Convert the problem to a minimization problem and then apply the method of Lagrange multipliers).

Problem 4. Find the absolute minimum of the problem

mminimize
$$x_1^2 + x_2^2$$

subject to $x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \ge 5$.

(Hint: Convert the constraint to the right form and then apply the method of Lagrange multipliers).

Problem 5(bonus). Let $X_1, X_2, ..., X_n$ be independent random variables with $E(X_i) = \mu$ and Var $X_i = \sigma_i^2$. Find the coefficients a_i that minimize

Var
$$(\sum_{i=1}^{n} a_i X_i)$$

subject to $E(\sum_{i=1}^{n} a_i X_i) = \mu$.

(Hint: Use $\operatorname{Var}(aX) = a^2\operatorname{Var}X$, $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$ for independent random variables X and Y.)