Sabancı University, CS 302 AUTOMATA THEORY

Answers to Final Examination

Answer 1 (25 pts)

(a) (5 pts) See the relevant slide.

(b) (8 pts)
$$E = e+\theta+1+(\theta+1)*.1.1.(\theta+1)*$$

(c) (12 pts)

0,1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1	
B > 0	

Q	σ	Q'
>X*=1,4	0	Y*=4,3
	1	$Z^* = 4,5,2$
<i>Y</i> *	0	W=4
	1	V=4,5
Z*	0	W
	1	<i>U</i> *= 4,5,6
W	0	W
	1	V
V	0	W
	1	U*
U^*	0	P* = 4,6
	1	U^*
P*	0	P*
	1	<i>U</i> *

	V	W	U	P	X	Y	Z
V		1	0	0	0	0	0
W			0	0	0	0	0
U					2	1	1
P					2	1	1
X						1	1
Y							1
Z							

Answer 2 (25 pts)

(a) (9 pts) See the relevant slide.

(b) (8 pts) n.m = even number iff n OR m is an even number. Hence the regular expression E = (0.0) * 1 * + (0.0) * .0 . (1.1) * corresponds to <math>L and hence L is regular.

(c) (8 pts) Given the constant N > 0 for the regular language we choose $w = 0^N 1^{2N} 0^N \in L$. Clearly |w| = 4N > N hence the hypothesis for the Pumping Lemma (PL) holds. Therefore by the PL w = xyz and (i) $|xy| \le N$; (ii) |y| > 0; (iii) $xy^jz \in L$ for j=0,1,...

Hence $xy = 0^k$, $y = 0^p$ for p > 0 where $k \le N$ and $z = 0^{N-k} 1^{2N} 0^N$.

Therefore for j=0, $x = 0^{k-p} 0^{N-k} 1^{2N} 0^N = 0^{N-p} 1^{2N} 0^N \not\in L$ since p > 0 contradicting the PL and thus L is not regular.

Answer 3 (25 pts)

(a) (7 pts) See the relevant slide.

(b) (8 pts) Start with the grammar $G' = (\{S,A\}, \{0,1\}, R', S)$ where R' is as below:

 $R': S \to \theta S \theta \theta \mid \theta A \theta \theta ; A \to 1A \mid 1$

Chomsky Normal Form steps:

l - $S \rightarrow zero \ S \ zero \ zero \ | \ zero \ A \ zero \ zero \ ; \ A \rightarrow one \ A \ | \ 1 \ ; \ zero \rightarrow 0 \ ; \ one \rightarrow 1$

2- CNF Grammar $G = (\{S, zero, one, A, B, C, D\}, \{0,1\}, R, S)$ where R is as below:

 $R: S \rightarrow zero B \mid zero C ; B \rightarrow SD ; C \rightarrow AD ; D \rightarrow zero zero$

 $A \rightarrow one \ A \mid 1 \ ; zero \rightarrow 0 \ ; one \rightarrow 1$

Page 3

(c) (5 pts) DPDA is $P = (\{q_0, q_1, q_2, f\}, \{0,1\}, \{0,1, Z_0\}, \delta, q_0, Z_0, \{f\})$ where the transitions of δ are as below;

$$(q_{\theta}, \theta, Z_{\theta}) \rightarrow (q, \theta Z_{\theta})$$

$$(q,\,\theta,\,\theta\,) \to (q,\,\theta\theta)$$

$$(q, 1, \theta) \rightarrow (q_1, \theta)$$

$$(q_1, 1, \theta) \rightarrow (q_1, \theta)$$

$$(q_1, \theta, \theta) \rightarrow (q_2, \theta)$$

$$(q_2, \theta, \theta) \rightarrow (q_1, e)$$

$$(q_1, e, Z_0) \rightarrow (f, Z_0)$$

(d) (5 pts)

Answer 4 (25 pts)

(a) (10 pts) See the relevant slides.

(b) (15 pts)

Label	Condition	TM
<i>M</i> >	-	$R^1 A$
A	$\sigma^{=}$ #	hyES
	$\sigma \neq \# = x$	# R# LB
В	$\sigma = x$	# L# RA
	$\sigma^{=}$ #	hyes
	else	h _{NO}