Hà Minh Lam hmlam@math.ac.vn

2021-2022

Tóm tắt

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo
- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch
- Úng dụng của hệ pttt và ma trận

Tóm tắt

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo
- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch
- Úng dụng của hệ pttt và ma trận

$$A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$$

$$A \neq B \text{ nhưng } AC = BC.$$

Câu hỏi: Khi nào thì từ AC = BC có thể suy ra A = B?

$$A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$$

$$A \neq B \text{ nhưng } AC = BC.$$

Câu hỏi: Khi nào thì từ AC = BC có thể suy ra A = B?

Định nghĩa

Một ma trận <u>vuông</u> A cấp n được gọi là <mark>khả nghịch (hay không suy biến)</mark> nếu tồn tại một ma trận vuông B cấp n sao cho

$$AB = BA = I_n$$
.

Khi đó, ma trận B được gọi là ma trận nghịch đảo của A.

Một ma trận không khả nghịch còn được gọi là một ma trận suy biến.

H.M.Lam

$$A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$$

$$A \neq B \text{ nhưng } AC = BC.$$

Câu hỏi: Khi nào thì từ AC = BC có thể suy ra A = B?

Định nghĩa

Một ma trận <u>vuông</u> A cấp n được gọi là <mark>khả nghịch (hay không suy biến)</mark> nếu tồn tại một ma trận vuông B cấp n sao cho

$$AB = BA = I_n$$
.

2021-2022

4 / 35

Khi đó, ma trận B được gọi là ma trận nghịch đảo của A.

Một ma trận không khả nghịch còn được gọi là một ma trận suy biến.

Chú ý:

- Ma trận không vuông thì không khả nghịch.
- Không phải mọi ma trận vuông đều khả nghịch.

H.M.Lam Ma trân khả nghịch

Định lý

Nếu A là một ma trận khả nghịch thì ma trận nghịch đảo của nó là duy nhất. Khi đó, ma trận nghịch đảo của A được ký hiệu là A^{-1} .

5/35

Định lý

Nếu A là một ma trận khả nghịch thì ma trận nghịch đảo của nó là duy nhất. Khi đó, ma trận nghịch đảo của A được ký hiệu là A^{-1} .

Chứng minh:

Giả sử B và C là hai ma trận nghịch đảo của A: $AB = BA = I_n$ và $AC = CA = I_n$.

Ta có:

$$B = BI_n = B(AC) = (BA)C = I_nC = C.$$

Định lý

Nếu A là một ma trận khả nghịch thì ma trận nghịch đảo của nó là duy nhất. Khi đó, ma trận nghịch đảo của A được ký hiệu là A^{-1} .

Chứng minh:

Giả sử B và C là hai ma trận nghịch đảo của A: $AB = BA = I_n$ và $AC = CA = I_n$.

Ta có:

$$B = BI_n = B(AC) = (BA)C = I_nC = C.$$

Chú ý: Nếu hai ma trận vuông A, B thỏa mãn $AB = I_n$ thì $B = A^{-1}$.

Định lý

Nếu A là một ma trận khả nghịch thì ma trận nghịch đảo của nó là duy nhất. Khi đó, ma trận nghịch đảo của A được ký hiệu là A^{-1} .

Chứng minh:

Giả sử B và C là hai ma trận nghịch đảo của A: $AB = BA = I_n$ và $AC = CA = I_n$.

Ta có:

$$B = BI_n = B(AC) = (BA)C = I_nC = C.$$

Chú ý: Nếu hai ma trận vuông A, B thỏa mãn $AB = I_n$ thì $B = A^{-1}$.

Ví dụ:
$$A=\left(egin{array}{cc} -1 & 2 \\ -1 & 1 \end{array}
ight) \,, \quad A^{-1}=\left(egin{array}{cc} 1 & -2 \\ 1 & -1 \end{array} \right) \,.$$

Tóm tắt

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo
- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch
- Úng dụng của hệ pttt và ma trận

Ví dụ:
$$A = \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix}$$
 .

Ví dụ:
$$A = \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix}$$
.
Cần tìm $X = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$ sao cho $AX = I_2$.

$$\begin{cases} x & + 4y & = 1 \\ -x & - 3y & = 0 \end{cases} \begin{cases} z & + 4t & = 0 \\ -z & - 3t & = 1 \end{cases}$$

7/35

Ví dụ:
$$A = \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix}$$
.
Cần tìm $X = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$ sao cho $AX = I_2$.

$$\begin{cases} 1x & + 4y & = 1 \\ -1x & - 3y & = 0 \end{cases} \begin{cases} 1z & + 4t & = 0 \\ -1z & - 3t & = 1 \end{cases}$$

7/35

Ví dụ:
$$A = \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix}$$
.
Cần tìm $X = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$ sao cho $AX = I_2$.

$$\begin{cases} 1x & + 4y & = 1 \\ -1x & - 3y & = 0 \end{cases} \begin{cases} 1z & + 4t & = 0 \\ -1z & - 3t & = 1 \end{cases}$$

Hai hệ pttt có cùng ma trận hệ số nên có thể được giải bằng các phép biến đổi giống nhau \Rightarrow giải song song!

H.M.Lam

Ví dụ:
$$A = \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix}$$
.
Cần tìm $X = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$ sao cho $AX = I_2$.

$$\begin{cases} 1x & + 4y & = 1 \\ -1x & -3y & = 0 \end{cases} \begin{cases} 1z & + 4t & = 0 \\ -1z & -3t & = 1 \end{cases}$$

Hai hệ pttt có cùng ma trận hệ số nên có thể được giải bằng các phép biến đổi giống nhau \Rightarrow giải song song!

$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{pmatrix} \xrightarrow{h_2 + h_1} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{h_1 - 4h_2} \begin{pmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

H.M.Lam

Thuật toán Gauss-Jordan để tìm ma trận nghịch đảo

Cho ma trân A cỡ $n \times n$.

- Viết ma trận $(A \mid I_n)$.
- Dùng các phép biến đổi sơ cấp (theo hàng), đưa về dạng $(I_n \mid B)$.
- Nếu thành công thì $A^{-1} = B$, nếu không thì A không khả nghịch.

H.M.Lam Ma trận khả nghịch 2021-2022

8/35

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{array}\right) :$$

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{pmatrix} : \quad (A \mid I_3) = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ -6 & 2 & 3 & 0 & 0 & 1 \end{pmatrix}.$$

$$\xrightarrow{h_2-h_1} \left(\begin{array}{ccc|c} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ -6 & 2 & 3 & 0 & 0 & 1 \end{array}\right) \xrightarrow{h_3+6h_1} \left(\begin{array}{ccc|c} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & -4 & 3 & 6 & 0 & 1 \end{array}\right)$$

$$\xrightarrow{h_3+4h_2} \left(\begin{array}{ccc|ccc|c} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & 2 & 4 & 1 \end{array}\right) \xrightarrow{-h_3} \left(\begin{array}{ccc|ccc|c} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & -4 & -1 \end{array}\right)$$

$$\xrightarrow{h_2+h_3} \left(\begin{array}{ccc|ccc|c} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -3 & -3 & -1 \\ 0 & 0 & 1 & -2 & -4 & -1 \end{array}\right) \xrightarrow{h_1+h_2} \left(\begin{array}{ccc|c} 1 & 0 & 0 & -2 & -3 & -1 \\ 0 & 1 & 0 & -3 & -3 & -1 \\ 0 & 0 & 1 & -2 & -4 & -1 \end{array}\right)$$

H.M.Lam

$$B = \left(\begin{array}{rrr} 1 & 2 & 0 \\ 3 & -1 & 2 \\ -2 & 3 & -2 \end{array}\right) :$$

$$B = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ -2 & 3 & -2 \end{pmatrix} : \quad (B \mid I_3) = \begin{pmatrix} 1 & 2 & 0 \mid 1 & 0 & 0 \\ 3 & -1 & 2 \mid 0 & 1 & 0 \\ -2 & 3 & -2 \mid 0 & 0 & 1 \end{pmatrix}.$$

$$\frac{h_2 - 3h_1}{\longrightarrow} \left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -7 & 2 & -3 & 1 & 0 \\
-2 & 3 & -2 & 0 & 0 & 1
\end{array} \right) \xrightarrow{h_3 + 2h_1} \left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -7 & 2 & -3 & 1 & 0 \\
0 & 7 & -2 & 2 & 0 & 1
\end{array} \right)$$

$$\xrightarrow{h_3+h_2} \left(\begin{array}{ccc|ccc|c} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -7 & 2 & -3 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \end{array}\right).$$

$$B = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ -2 & 3 & -2 \end{pmatrix} : \quad (B \mid I_3) = \begin{pmatrix} 1 & 2 & 0 \mid 1 & 0 & 0 \\ 3 & -1 & 2 \mid 0 & 1 & 0 \\ -2 & 3 & -2 \mid 0 & 0 & 1 \end{pmatrix}.$$

$$\frac{h_2 - 3h_1}{2} \left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -7 & 2 & -3 & 1 & 0 \\
-2 & 3 & -2 & 0 & 0 & 1
\end{array} \right) \xrightarrow{h_3 + 2h_1} \left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -7 & 2 & -3 & 1 & 0 \\
0 & 7 & -2 & 2 & 0 & 1
\end{array} \right)$$

$$\xrightarrow{h_3+h_2} \left(\begin{array}{ccc|ccc} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -7 & 2 & -3 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \end{array}\right).$$

Vậy $(B \mid I_3)$ không đưa về được dạng $(I_3 \mid C)$. Do đó B không khả nghịch.

H.M.Lam

Ma trận vuông cấp 2

Cho
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Ma trận A là khả nghịch khi và chỉ khi $ad - bc \neq 0$.

Nếu
$$ad - bc \neq 0$$
 thì $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Ma trận vuông cấp 2

Cho
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Ma trận A là khả nghịch khi và chỉ khi $ad - bc \neq 0$.

Nếu
$$ad - bc \neq 0$$
 thì $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Ví dụ:

$$A = \left(\begin{array}{cc} 3 & -1 \\ -2 & 2 \end{array} \right) \,, \quad B = \left(\begin{array}{cc} 3 & -1 \\ -6 & 2 \end{array} \right) \,.$$

Ma trận vuông cấp 2

Cho
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Ma trận A là khả nghịch khi và chỉ khi $ad - bc \neq 0$.

Nếu
$$ad - bc \neq 0$$
 thì $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Ví dụ:

$$A = \left(\begin{array}{cc} 3 & -1 \\ -2 & 2 \end{array} \right) \,, \quad B = \left(\begin{array}{cc} 3 & -1 \\ -6 & 2 \end{array} \right) \,.$$

$$A^{-1} = \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$$
, B không khả nghịch vì $(3)(2) - (-1).(-6) = 0$.

Tóm tắt

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo
- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch
- Úng dụng của hệ pttt và ma trận

Tính chất của ma trận nghịch đảo

Định lý

Giả sử A là một ma trận khả nghịch, k là một số nguyên dương và c là một vô hướng khác 0. Khi đó:

- $(A^{-1})^{-1} = A$
- $(A^k)^{-1} = A^{-1}A^{-1} \dots A^{-1} = (A^{-1})^k$
- $(cA)^{-1} = \frac{1}{c}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$

Tính chất của ma trận nghịch đảo

Định lý

Giả sử A là một ma trận khả nghịch, k là một số nguyên dương và c là một vô hướng khác 0. Khi đó:

- $(A^{-1})^{-1} = A$
- $(A^k)^{-1} = A^{-1}A^{-1} \dots A^{-1} = (A^{-1})^k$
- $(cA)^{-1} = \frac{1}{c}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$

Chú ý: Lũy thừa với số mũ nguyên âm:

$$A^{-k} := (A^k)^{-1}$$
.

Các công thức $A^{k+l} = A^k A^l$ và $A^{kl} = (A^k)^l$ được mở rộng cho số mũ nguyên bất kỳ.

Định lý

Nếu A, B là các ma trận vuông khả nghịch cấp n thì AB cũng khả nghịch và

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Định lý

Nếu A, B là các ma trận vuông khả nghịch cấp n thì AB cũng khả nghịch và

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Chú ý: Mở rộng cho tích của k ma trận khả nghịch

$$(A_1 A_2 \dots A_k)^{-1} = A_k^{-1} A_{k-1}^{-1} \dots A_1^{-1}$$
.

Ví dụ:

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 3 \end{pmatrix}.$$

$$A^{-1} = \begin{pmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 2/3 & 0 & -1/3 \end{pmatrix}$$

Ví dụ:

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 3 \end{pmatrix}.$$

$$A^{-1} = \begin{pmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 2/3 & 0 & -1/3 \end{pmatrix}$$

$$\Rightarrow (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 8 & -5 & -2 \\ -8 & 4 & 3 \\ 5 & -2 & -7/3 \end{pmatrix}.$$

Rút gọn thừa số khả nghịch

Định lý

Giả sử A, B, C là các ma trận với cỡ sao cho các phép toán được thực hiện là có nghĩa. Giả sử ma trận C là khả nghịch. Khi đó:

- 1 Nếu AC = BC thì A = B.
- ② Nếu CA = CB thì A = B.

Rút gọn thừa số khả nghịch

Định lý

Giả sử A, B, C là các ma trận với cỡ sao cho các phép toán được thực hiện là có nghĩa. Giả sử ma trận C là khả nghịch. Khi đó:

- 1 Nếu AC = BC thì A = B.
- ② $N \hat{e} u CA = CB thì A = B.$

Định lý

Nếu A là một ma trận khả nghịch thì hệ pttt $A\mathbf{x}=\mathbf{b}$ có nghiệm duy nhất được cho bởi $\mathbf{x}=A^{-1}\mathbf{b}$.

Ví du:

$$\begin{cases} 2x + 3y + z &= -1 \\ 3x + 3y + z &= 1 \\ 2x + 4y + z &= -2 \end{cases}, \begin{cases} 2x + 3y + z &= 4 \\ 3x + 3y + z &= 8 \\ 2x + 4y + z &= 5 \end{cases}, \begin{cases} 2x + 3y + z &= 0 \\ 3x + 3y + z &= 0 \\ 2x + 4y + z &= 0 \end{cases}$$

$$\begin{cases} 2x + 3y + z &= -1 \\ 3x + 3y + z &= 1 \\ 2x + 4y + z &= -2 \end{cases}, \begin{cases} 2x + 3y + z &= 4 \\ 3x + 3y + z &= 8 \\ 2x + 4y + z &= 5 \end{cases}, \begin{cases} 2x + 3y + z &= 0 \\ 3x + 3y + z &= 0 \\ 2x + 4y + z &= 0 \end{cases}$$

$$\begin{cases} 2x + 3y + z &= -1 \\ 3x + 3y + z &= 1 \\ 2x + 4y + z &= -2 \end{cases}, \begin{cases} 2x + 3y + z &= 4 \\ 3x + 3y + z &= 8 \\ 2x + 4y + z &= 5 \end{cases}, \begin{cases} 2x + 3y + z &= 0 \\ 3x + 3y + z &= 0 \\ 2x + 4y + z &= 0 \end{cases}$$

Ma trận hệ số:

$$A = \left(\begin{array}{rrr} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{array}\right)$$

$$\begin{cases} 2x + 3y + z &= -1 \\ 3x + 3y + z &= 1 \\ 2x + 4y + z &= -2 \end{cases}, \begin{cases} 2x + 3y + z &= 4 \\ 3x + 3y + z &= 8 \\ 2x + 4y + z &= 5 \end{cases}, \begin{cases} 2x + 3y + z &= 0 \\ 3x + 3y + z &= 0 \\ 2x + 4y + z &= 0 \end{cases}$$

Ma trận hệ số:

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix}$$
$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{pmatrix}$$

$$\begin{cases} 2x + 3y + z &= -1 \\ 3x + 3y + z &= 1 \\ 2x + 4y + z &= -2 \end{cases}, \begin{cases} 2x + 3y + z &= 4 \\ 3x + 3y + z &= 8 \\ 2x + 4y + z &= 5 \end{cases}, \begin{cases} 2x + 3y + z &= 0 \\ 3x + 3y + z &= 0 \\ 2x + 4y + z &= 0 \end{cases}$$

Ma trận hệ số:

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix}$$
$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{pmatrix}$$

$$\left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 2 \\ -1 \\ -2 \end{array}\right),$$

$$\begin{cases} 2x + 3y + z &= -1 \\ 3x + 3y + z &= 1 \\ 2x + 4y + z &= -2 \end{cases}, \begin{cases} 2x + 3y + z &= 4 \\ 3x + 3y + z &= 8 \\ 2x + 4y + z &= 5 \end{cases}, \begin{cases} 2x + 3y + z &= 0 \\ 3x + 3y + z &= 0 \\ 2x + 4y + z &= 0 \end{cases}$$

Ma trận hệ số:

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix}$$
$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}, \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ -7 \end{pmatrix},$$

$$\begin{cases} 2x + 3y + z &= -1 \\ 3x + 3y + z &= 1 \\ 2x + 4y + z &= -2 \end{cases}, \begin{cases} 2x + 3y + z &= 4 \\ 3x + 3y + z &= 8 \\ 2x + 4y + z &= 5 \end{cases}, \begin{cases} 2x + 3y + z &= 0 \\ 3x + 3y + z &= 0 \\ 2x + 4y + z &= 0 \end{cases}$$

Ma trận hệ số:

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix}$$
$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}, \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ -7 \end{pmatrix}, \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Tóm tắt

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo
- Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch
- Úng dụng của hệ pttt và ma trận

Ma trận sơ cấp

Định nghĩa

Một ma trận vuông cấp n được gọi là sơ cấp nếu nó có thể được nhận từ I_n bằng **một** phép biến đổi sơ cấp.

Ma trận sơ cấp

Định nghĩa

Một ma trận vuông cấp n được gọi là sơ cấp nếu nó có thể được nhận từ I_n bằng **một** phép biến đổi sơ cấp.

Ví dụ:

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$A_4 = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \,, \quad A_5 = \left(egin{array}{ccc} 1 & 0 \\ 2 & 1 \end{array} \right) \,, \quad A_6 = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{array} \right) \,.$$

Ma trận sơ cấp

Định nghĩa

Một ma trận vuông cấp n được gọi là sơ cấp nếu nó có thể được nhận từ I_n bằng **một** phép biến đổi sơ cấp.

Ví dụ:

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$A_4 = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}
ight) \,, \quad A_5 = \left(egin{array}{ccc} 1 & 0 \\ 2 & 1 \end{array}
ight) \,, \quad A_6 = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{array}
ight) \,.$$

Các ma trận A_1, A_4, A_5 là sơ cấp; các ma trận A_2, A_3, A_6 không phải sơ cấp.

$$A = \left(\begin{array}{cccc} 1 & 0 & -4 & 1 \\ 0 & 2 & 6 & -4 \\ 0 & 1 & 3 & 1 \end{array}\right)$$

$$A = \left(\begin{array}{cccc} 1 & 0 & -4 & 1 \\ 0 & 2 & 6 & -4 \\ 0 & 1 & 3 & 1 \end{array}\right)$$

$$E_1 = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight) \, , \quad E_1 A =$$

$$A = \left(\begin{array}{cccc} 1 & 0 & -4 & 1 \\ 0 & 2 & 6 & -4 \\ 0 & 1 & 3 & 1 \end{array}\right)$$

$$E_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \,, \quad E_1 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 6 & -4 \end{array} \right) \,.$$

$$A = \left(\begin{array}{rrrr} 1 & 0 & -4 & 1 \\ 0 & 2 & 6 & -4 \\ 0 & 1 & 3 & 1 \end{array}\right)$$

$$E_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \,, \quad E_1 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 6 & -4 \end{array} \right) \,.$$

$$E_2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right) \,, \quad E_2 A =$$

$$A = \left(\begin{array}{rrrr} 1 & 0 & -4 & 1 \\ 0 & 2 & 6 & -4 \\ 0 & 1 & 3 & 1 \end{array}\right)$$

$$E_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \,, \quad E_1 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 6 & -4 \end{array} \right) \,.$$

$$E_2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right) \,, \quad E_2 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 4 & 12 & -8 \\ 0 & 1 & 3 & 1 \end{array} \right) \,.$$

$$A = \left(\begin{array}{rrrr} 1 & 0 & -4 & 1 \\ 0 & 2 & 6 & -4 \\ 0 & 1 & 3 & 1 \end{array}\right)$$

$$E_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \,, \quad E_1 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 6 & -4 \end{array} \right) \,.$$

$$E_2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right) \,, \quad E_2 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 4 & 12 & -8 \\ 0 & 1 & 3 & 1 \end{array} \right) \,.$$

$$E_3 = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array}
ight) \, , \quad E_3 A =$$

$$A = \left(\begin{array}{rrrr} 1 & 0 & -4 & 1 \\ 0 & 2 & 6 & -4 \\ 0 & 1 & 3 & 1 \end{array}\right)$$

$$E_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \,, \quad E_1 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 6 & -4 \end{array} \right) \,.$$

$$E_2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right) \,, \quad E_2 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 4 & 12 & -8 \\ 0 & 1 & 3 & 1 \end{array} \right) \,.$$

$$E_3 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array}\right) , \quad E_3 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 0 & 0 & -6 \\ 0 & 1 & 3 & 1 \end{array}\right) .$$

H.M.Lam Ma trận khả nghịch 2021-2022

Định lý

Giả sử ma trận sơ cấp E được nhận từ ma trận đơn vị I_m bằng một phép biến đổi sơ cấp. Khi đó, với mọi ma trận A cỡ $m \times n$, tích EA là ma trận nhận được từ A bằng cách thực hiện chính phép biến đổi sơ cấp đó.

Định lý

Giả sử ma trận sơ cấp E được nhận từ ma trận đơn vị I_m bằng một phép biến đổi sơ cấp. Khi đó, với mọi ma trận A cỡ $m \times n$, tích EA là ma trận nhận được từ A bằng cách thực hiện chính phép biến đổi sơ cấp đó.

Chú ý: Ma trận sơ cấp ở bên trái của tích.

2021-2022

Ví dụ: Đưa ma trận sau về dạng bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

Ví dụ: Đưa ma trận sau về dạng bậc thang theo hàng

$$A = \left(\begin{array}{cccc} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$\xrightarrow{h_1 \leftrightarrow h_2} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 2 & -6 & 2 & 0 \end{array} \right)$$

Ví dụ: Đưa ma trân sau về dang bậc thang theo hàng

$$A = \left(\begin{array}{cccc} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$\xrightarrow{h_1 \leftrightarrow h_2} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 2 & -6 & 2 & 0 \end{array}\right) \qquad E_1 = \left(\begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$E_1 = \left(egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

Ví dụ: Đưa ma trân sau về dang bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$\xrightarrow{h_1 \leftrightarrow h_2} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 2 & -6 & 2 & 0 \end{array}\right) \qquad E_1 = \left(\begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$E_1 = \left(egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

$$\xrightarrow{h_3-2h_1} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & -4 \end{array} \right)$$

Ví du: Đưa ma trân sau về dang bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$\xrightarrow{h_1 \leftrightarrow h_2} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 2 & -6 & 2 & 0 \end{array}\right) \qquad E_1 = \left(\begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$${\sf E}_1 = \left(egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

$$\xrightarrow{h_3-2h_1} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & -4 \end{array}\right) \qquad E_2 = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right)$$

$$E_2 = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right)$$

Ví dụ: Đưa ma trân sau về dang bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$\xrightarrow{h_1 \leftrightarrow h_2} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 2 & -6 & 2 & 0 \end{array}\right) \qquad E_1 = \left(\begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$E_1 = \left(egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

$$\xrightarrow{h_3-2h_1} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & -4 \end{array}\right) \qquad E_2 = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right)$$

$$E_2 = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right)$$

$$\xrightarrow{1/2 \times h_3} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & -2 \end{array} \right)$$

Ví dụ: Đưa ma trận sau về dạng bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$\xrightarrow{h_1 \leftrightarrow h_2} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 2 & -6 & 2 & 0 \end{array}\right) \qquad E_1 = \left(\begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$E_1 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$\xrightarrow{h_3-2h_1} \left(\begin{array}{cccc} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & -4 \end{array}\right)$$

$$E_2 = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right)$$

$$\xrightarrow{1/2 \times h_3} \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & -2 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}$$

$$E_3 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{array}\right)$$

Ví dụ: Đưa ma trận sau về dạng bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

Ví dụ: Đưa ma trận sau về dạng bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$B = \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & -2 \end{pmatrix} = E_3 E_2 E_1 A.$$

Ví dụ: Đưa ma trận sau về dạng bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$B = \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & -2 \end{pmatrix} = E_3 E_2 E_1 A.$$

Định lý

Hai ma trận A và B cỡ $m \times n$ là tương đương theo hàng khi và chỉ khi tồn tai các ma trân sơ cấp E_1, E_2, \ldots, E_k sao cho

$$B = E_k \dots E_2 E_1 A$$
.

Tóm tắt

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo
- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch
- Úng dụng của hệ pttt và ma trận

Nghịch đảo của ma trận sơ cấp

Định lý

Mọi ma trận sơ cấp đều khả nghịch. Nghịch đảo của một ma trận sơ cấp là một ma trận sơ cấp.

Nghịch đảo của ma trận sơ cấp

Định lý

Mọi ma trận sơ cấp đều khả nghịch. Nghịch đảo của một ma trận sơ cấp là một ma trận sơ cấp.

Nhận xét: Phép biến đổi tương ứng với E^{-1} là phép biến đổi "ngược" của phép biến đổi tương ứng với E

$$\begin{array}{c|cc}
E & E^{-1} \\
h_i \leftrightarrow h_j & h_i \leftrightarrow h_j \\
c \times h_i & \frac{1}{c} \times h_i \\
h_i + ch_j & h_i - ch_j
\end{array}$$

Ma trận sơ cấp và ma trận khả nghịch

Định lý

Ma trận vuông A là khả nghịch khi và chỉ khi nó viết được thành tích của các ma trận sơ cấp.

Ma trận sơ cấp và ma trận khả nghịch

Định lý

Ma trận vuông A là khả nghịch khi và chỉ khi nó viết được thành tích của các ma trận sơ cấp.

Nhận xét: Giả sử A khả nghịch

- ① Có thể đưa A về I_n bằng một số phép biến đổi sơ cấp.
- Gọi E₁, E₂,..., E_k là các ma trận sơ cấp tương ứng với các phép biến đổi đó.
- **3** Ta có $I_n = E_k \dots E_2 E_1 A$, suy ra $A = E_1^{-1} E_2^{-1} \dots E_k^{-1}$.

Ma trận sơ cấp và ma trận khả nghịch Ví dụ: $A=\left(\begin{array}{cc} -1 & -2 \\ 3 & 8 \end{array} \right)$

Ví dụ:
$$A=\left(egin{array}{cc} -1 & -2 \ 3 & 8 \end{array}
ight)$$

Ma trận sơ cấp và ma trận khả nghịch

Ví dụ:
$$A = \begin{pmatrix} -1 & -2 \\ 3 & 8 \end{pmatrix}$$

$$\xrightarrow{(-1)\times h_1} \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \qquad E_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Ví dụ:
$$A = \begin{pmatrix} -1 & -2 \\ 3 & 8 \end{pmatrix}$$

$$\xrightarrow{(-1)\times h_1} \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \qquad E_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\xrightarrow{h_2 - 3h_1} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

Ví dụ:
$$A = \begin{pmatrix} -1 & -2 \\ 3 & 8 \end{pmatrix}$$

$$\xrightarrow{(-1) \times h_1} \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \qquad E_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\xrightarrow{h_2 - 3h_1} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

$$\xrightarrow{(1/2) \times h_2} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$$

Ví dụ:
$$A = \begin{pmatrix} -1 & -2 \\ 3 & 8 \end{pmatrix}$$

$$\xrightarrow{(-1) \times h_1} \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \qquad E_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\xrightarrow{h_2 - 3h_1} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

$$\xrightarrow{(1/2) \times h_2} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$$

$$\xrightarrow{h_1 - 2h_2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad E_4 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

Ví dụ:
$$A = \begin{pmatrix} -1 & -2 \ 3 & 8 \end{pmatrix}$$

$$\xrightarrow{(-1) \times h_1} \begin{pmatrix} 1 & 2 \ 3 & 8 \end{pmatrix} \qquad E_1 = \begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix}$$

$$\xrightarrow{h_2 - 3h_1} \begin{pmatrix} 1 & 2 \ 0 & 2 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & 0 \ -3 & 1 \end{pmatrix}$$

$$\xrightarrow{(1/2) \times h_2} \begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 1 & 0 \ 0 & 1/2 \end{pmatrix}$$

$$\xrightarrow{h_1 - 2h_2} \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \qquad E_4 = \begin{pmatrix} 1 & -2 \ 0 & 1 \end{pmatrix}$$

$$A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

H.M.Lam Ma trận khả nghịch 2021-2022

Tổng hợp các điều kiện khả nghịch

Định lý

Cho A là một ma trận vuông cấp n. Các điều kiện sau là tương đương:

- A khả nghịch.
- **2** Hệ pttt A**x** = **b** có nghiệm duy nhất với mọi **b**.
- **3** Hệ pttt $A\mathbf{x} = \mathbf{0}$ chỉ có nghiệm tầm thường.
- 4 A tương đương theo hàng với In.
- A viết được thành tích của các ma trận sơ cấp.

Một vài ứng dụng của hệ pttt Mô hình Input-Output của Leontief:

	Inputs Consumed per Unit of Output				
Purchased from:	Manufacturing	Agriculture	Services		
Manufacturing	.50	.40	.20		
Agriculture	.20	.30	.10		
Services	.10	.10	.30		
	1	↑	↑		
	\mathbf{c}_1	\mathbf{c}_2	\mathbf{c}_3		

THE LEONTIEF INPUT-OUTPUT MODEL, OR PRODUCTION EQUATION

$$\mathbf{x} = C\mathbf{x} + \mathbf{d}$$
Amount Intermediate Final produced demand demand

$$C = \begin{bmatrix} .50 & .40 & .20 \\ .20 & .30 & .10 \\ .10 & .10 & .30 \end{bmatrix}$$

Một vài ứng dụng của hệ pttt Mô hình Input-Output của Leontief:

	Inputs Consumed per Unit of Output			
Purchased from:	Manufacturing	Agriculture	Services	
Manufacturing	.50	.40	.20	
Agriculture	.20	.30	.10	
Services	.10	.10	.30	
	1	↑	↑	
	\mathbf{c}_1	\mathbf{c}_2	\mathbf{c}_3	

THE LEONTIEF INPUT-OUTPUT MODEL, OR PRODUCTION EQUATION

$$\mathbf{x} = C\mathbf{x} + \mathbf{d}$$
Amount Intermediate Final produced demand demand

$$C = \begin{bmatrix} .50 & .40 & .20 \\ .20 & .30 & .10 \\ .10 & .10 & .30 \end{bmatrix}$$

$$(I-C)\mathbf{x}=\mathbf{d}.$$

Một vài ứng dụng của hệ pttt

Tìm đường cong đa thức bậc n-1 đi qua n điểm cho trước:

Polynomial Curve Fitting

Môt vài ứng dung của hệ pttt

Tìm đường cong đa thức bậc n-1 đi qua n điểm cho trước:

$$a_0 + a_1 x_n + ... + a_{n-1} x_n^{n-1} = y_n.$$

Một vài ứng dụng của hệ pttt

Phân tích mạng

Một vài ứng dụng của hệ pttt

Phân tích mạng

$\acute{\text{U}}$ ng dụng của ma trận trong xử lý ảnh

Ma trận 240×240

Ma trân 240×240

19			

$$A = \left(\begin{array}{cccc} 10 & 5 & 7 & 9 \\ 3 & 3 & 6 & 4 \\ 26 & 29 & 35 & 16 \\ 40 & 45 & 34 & 32 \end{array}\right)$$

$$A = \left(\begin{array}{ccccc} 10 & 5 & 7 & 9 \\ 3 & 3 & 6 & 4 \\ 26 & 29 & 35 & 16 \\ 40 & 45 & 34 & 32 \end{array}\right)$$

$$A = \begin{pmatrix} 10 & 5 & 7 & 9 \\ 3 & 3 & 6 & 4 \\ 26 & 29 & 35 & 16 \\ 40 & 45 & 34 & 32 \end{pmatrix} \qquad PAQ = 19 \text{ v\'oi } P^T = Q = \begin{pmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{pmatrix}$$

Làm mờ một phần ảnh:

Làm mờ một phần ảnh:

Làm mờ một phần ảnh:

$$A = \left(\begin{array}{cccc} 10 & 5 & 7 & 9 \\ 3 & 3 & 6 & 4 \\ 26 & 29 & 35 & 16 \\ 40 & 45 & 34 & 32 \end{array}\right)$$

Làm mờ một phần ảnh:

$$A = \begin{pmatrix} 10 & 5 & 7 & 9 \\ 3 & 3 & 6 & 4 \\ 26 & 29 & 35 & 16 \\ 40 & 45 & 34 & 32 \end{pmatrix}$$

ullet Một bức ảnh = một tập hợp các điểm

- Một bức ảnh = một tập hợp các điểm
- Mỗi điểm được xác định bởi hai "tọa độ" của nó,v.d. điểm nằm ở hàng x và cột y được xác định duy nhất bởi hai tọa độ (x, y).

- Một bức ảnh = một tập hợp các điểm
- Mỗi điểm được xác định bởi hai "tọa độ" của nó, v.d. điểm nằm ở hàng x và cột y được xác định duy nhất bởi hai tọa độ (x,y).
- Chỉnh sửa ảnh: quay bức ảnh quanh một góc hay quay quanh tâm, di chuyển ảnh, muốn phóng to hay thu nhỏ ảnh, muốn lật ảnh,...?

- Một bức ảnh = một tập hợp các điểm
- Mỗi điểm được xác định bởi hai "tọa độ" của nó,v.d. điểm nằm ở hàng x và cột y được xác định duy nhất bởi hai tọa độ (x, y).
- Chỉnh sửa ảnh: quay bức ảnh quanh một góc hay quay quanh tâm, di chuyển ảnh, muốn phóng to hay thu nhỏ ảnh, muốn lật ảnh,...?

Câu hỏi: Tìm các ma trận tương ứng với các biến đổi trên?

- Một bức ảnh = một tập hợp các điểm
- Mỗi điểm được xác định bởi hai "tọa độ" của nó,v.d. điểm nằm ở hàng x và cột y được xác định duy nhất bởi hai tọa độ (x, y).
- Chỉnh sửa ảnh: quay bức ảnh quanh một góc hay quay quanh tâm, di chuyển ảnh, muốn phóng to hay thu nhỏ ảnh, muốn lật ảnh,...?

Câu hỏi: Tìm các ma trận tương ứng với các biến đổi trên?

Gợi ý: Mỗi điểm (x, y) tương ứng 1-1 với điểm $(x, y, 1)^T$