

Martes 19 de Enero 2021 Docente: Martín Marcano

5to Año "A y B"

Área de formación: Matemática

Preservación de la vida en el planeta, salud y vivir bien.

Tecnología de la información y comunicación en la cotidianidad.

Inecuaciones de Segundo grado.

Las <u>inecuaciones</u> de segundo grado con una incógnita son cualquier desigualdad que directamente o mediante transformaciones, se pueden expresar de una de las formas siguientes:

$$ax^2 + bx + c > 0$$
; $ax^2 + bx + c < 0$; $ax^2 + bx + c \ge 0$ ó $ax^2 + bx + c \le 0$

donde **a**, **b** y **c** son números reales y **a** es diferente a **0**.

Resolver una inecuación es encontrar el o los valores de la variable que satisfagan la inecuación.

Para resolver una inecuación se utilizan las técnicas de las ecuaciones, con la siguiente diferencia "Cuando se multiplica o divide por una cantidad negativa, el sentido de la desigualdad se invierte".

Las inecuaciones de segundo grado son equivalentes a una <u>ecuación de segundo grado</u>, es decir tienen una variable elevada al exponente dos.

Así tenemos los siguientes ejemplos:

$$2x^{2}-x+2<0,$$

$$y^{2}-4 y \ge 10,$$

$$-3x^{2}+5x-1>-8,$$

Pasos para resolver inecuaciones de segundo grado:

- 1) Igualamos el polinomio del primer miembro a cero y obtenemos las raíces de la ecuación de segundo grado.
- 2) Representamos estos valores en la recta real. Tomamos un punto de cada intervalo y evaluamos el signo en cada intervalo.
- 3) La solución está compuesta por los intervalos(o el intervalo) que satisfagan la inecuación.

Para que aprendas como se resuelven consideremos los siguientes ejemplos:

1)
$$2x^2 - x < 3$$

Igualamos el polinomio del primer miembro a cero y obtenemos las raíces de la ecuación de segundo grado:

$$2x^2 - x - 3 < 0$$

 $2x^2 - x - 3 = 0$

Obtenemos las raíces de la ecuación aplicando la ecuación de segundo grado:

$$a=2,$$

 $b=-1,$
 $c=-3$, luego:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \qquad x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-3)}}{2(2)} \rightarrow x = \frac{1 \pm \sqrt{1 + 24}}{4} \rightarrow x = \frac{1 \pm 5}{4}$$

Por lo tanto
$$x = \frac{1+5}{4} = \frac{3}{2}$$
 ó $x = \frac{1-5}{4} = -1$

(es importante destacar que este proceso también se puede realizar factorizando directamente la ecuación cuadrática)

Representamos estos valores en la recta real. Tomamos un punto de cada intervalo y evaluamos el signo en cada intervalo:

$$P(-2) = 2(-2)^2 - (2) - 3 = 8 - 2 - 3 = 3 > 0$$

$$P(1) = 2(1)^2 - (1) - 3 = 2 - 1 - 3 = -2 < 0$$

$$P(0) = 2(0)^2 - (0) - 3 = -3 < 0$$

Como estamos interesados en valores para los cuales la inecuación inicial es menor que 0. La solución que satisface esta condición están contenidos en el siguiente intervalo: solución= (-1, 3/2)

2)
$$x^2 \ge 7x - 10$$

Igualamos el polinomio del primer miembro a cero y obtenemos las raíces de la ecuación de segundo grado:

$$x^2 - 7x + 10 \ge 0$$

$$x^2 - 7x + 10 = 0$$

Obtenemos las raíces de la ecuación factorizando:

$$(x-2)(x-5)=0$$

$$x = 2 \text{ \'o } x = 5$$

Representamos estos valores en la recta real. Tomamos un punto de cada intervalo y evaluamos el signo en cada intervalo:

______5

$$P(1) = (1)^2 - 7(1) + 10 = 4 > 0$$

$$P(3) = (3)^2 - 7(3) + 10 = -2 < 0$$

$$P(6) = (6)^2 - 7(6) + 10 = 4 > 0$$

La solución está compuesta por los intervalos que satisfacen la inecuación. solución= $(-\infty, 2] \cup [5, +\infty)$

NOTA: En los intervalos, el **paréntesis** significa > \acute{o} <, es decir que el número que está en el paréntesis no se incluye dentro del intervalo, y los **corchetes** significan $\ge \acute{o} \le$ es decir que el número en el corchete si se incluye dentro del intervalo.

Pongamos en práctica lo aprendido.

Con la ayuda de tu familia en casa resuelve las siguientes inecuaciones de segundo grado y Grafica la solución en la recta numérica.

- 1) $-2x^2+2x \ge -3$
- 2) $8+10x-x^2<0$
- 3) $-4x-6+2x^2>0$
- 4) $(2x-1)(x+5) \le 0$

Aspectos a Evaluar.

- i) Responsabilidad en la realización del trabajo requerido. (4pts)
- ii) Resolución de los ejercicios planteados mediante procesos explicados en la guía y en la programación de TV.(16pts)

Puedes **COMPLEMENTAR** la información de la guía utilizando:

Canal oficial de cada familia una escuela o por el canal en Youtube(buscar en Youtube programa de fecha 13/01/21).

Matemática de 5to año (Colección Bicentenario)

Matemática de 5to año (Santillana, cualquier edición)

www.wikipedia.org.