TTK4190 Guidance and Control of Vehicles Draft Solution of Assignment 1

Info

Guidelines

- This presentation is only intended as a draft of a possible way to solve the assignment
- There may exist other ways to solve the problems
- It is possible to obtain full score even if the solution deviates from this draft

Grading

You will most likely receive with feedback within three weeks of the deadline.

Problem 1.1

The equations of motion for the satellite are

$$\dot{\mathbf{q}} = \mathbf{T}_q(\mathbf{q})\boldsymbol{\omega}$$
 $\mathbf{I}_{CG}\dot{\boldsymbol{\omega}} - \mathbf{S}(\mathbf{I}_{CG}\boldsymbol{\omega})\boldsymbol{\omega} = \boldsymbol{\tau}$ (1)

and we want to identify the equilibrium point corresponding to $\mathbf{q} = [\eta, \varepsilon_1, \varepsilon_2, \varepsilon_3]^\top = [1, 0, 0, 0]^\top$ and $\boldsymbol{\tau} = 0$.

Equilibrium Point

$$\mathbf{x}_0 = [\boldsymbol{\epsilon}_0^\top, \boldsymbol{\omega}_0^\top]^\top = [\mathbf{0}^\top, \mathbf{0}^\top]^\top$$

Linear System

$$\begin{bmatrix} \dot{\epsilon} \\ \dot{\omega} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{0}_{3x3} & \frac{1}{2} \mathbf{I}_{3x3} \\ \mathbf{0}_{3x3} & \mathbf{0}_{3x3} \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} \epsilon \\ \omega \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{0}_{3x3} \\ \mathbf{I}_{CG}^{-1} \end{bmatrix}}_{\mathbf{B}} \boldsymbol{\tau}$$
(2)

Problem 1.2

Inserting the control law

$$\tau = -\mathbf{K}_d \omega - k_p \epsilon = -\underbrace{\left[k_p \mathbf{I}_{3 \times 3} \quad \mathbf{K}_d\right]}_{\mathbf{K}} \underbrace{\begin{bmatrix}\epsilon \\ \omega\end{bmatrix}}_{\mathbf{x}}$$
(3)

gives the following closed-loop dynamics:

$$\begin{split} \dot{\mathbf{x}} &= (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} \\ \Rightarrow \begin{bmatrix} \dot{\epsilon} \\ \dot{\omega} \end{bmatrix} &= \begin{bmatrix} \mathbf{0}_{3\times3} & \frac{1}{2}\mathbf{I}_{3\times3} \\ -\mathbf{I}_{CG}^{-1}k_p & -\mathbf{I}_{CG}^{-1}\mathbf{K}_d \end{bmatrix} \begin{bmatrix} \epsilon \\ \omega \end{bmatrix} \end{split}$$

Poles: $-0.0278 \pm 0.0248i$ (three pairs of *stable* complex-conjugated poles).

Real or Complex-Conjugated Poles?

- Complex-conjugated poles ⇒ oscillations.
- Real poles ⇒ no oscillations.
- Keep in mind that this analysis only applies to the linearized system and not necessarily to the real nonlinear dynamics

Problem 1.3

Control input:
$$au = -\mathbf{K}_d \omega - k_p \epsilon$$

Figure: Euler Angles

Figure: Angular Velocity

- Converges towards the equilibrium point expected behaviour.
- ullet The desired state in this case is zero since the reference for ϵ and ω in the control law is zero.
- To follow nonzero constant reference signals we use the control law from 1.5: $\tau = -\mathbf{K}_d\omega k_n\tilde{\epsilon}$

Problem 1.4

The quaternion error is given by the quaternion product of the current state \mathbf{q} and the desired state $\mathbf{\bar{q}}_d$:

$$\begin{split} \tilde{\mathbf{q}} &= \bar{\mathbf{q}}_d \otimes \mathbf{q} \\ &= \begin{bmatrix} \eta_d \eta + \epsilon_d^{\top} \epsilon \\ -\eta \epsilon_d + \eta_d \epsilon - \mathbf{S}(\epsilon_d) \epsilon \end{bmatrix} \\ &= \begin{bmatrix} \eta_d \eta + \epsilon_{d_1} \epsilon_1 + \epsilon_{d_2} \epsilon_2 + \epsilon_{d_3} \epsilon_3 \\ \eta_d \epsilon_1 - \eta \epsilon_{d_1} + \epsilon_{d_3} \epsilon_2 - \epsilon_{d_2} \epsilon_3 \\ \eta_d \epsilon_2 - \eta \epsilon_{d_2} - \epsilon_{d_3} \epsilon_1 + \epsilon_{d_1} \epsilon_3 \\ \eta_d \epsilon_3 - \eta \epsilon_{d_3} + \epsilon_{d_2} \epsilon_1 - \epsilon_{d_1} \epsilon_2 \end{bmatrix} \end{split}$$

After Convergence

$$\tilde{\mathbf{q}} = \begin{bmatrix} \eta^2 + \epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2 \\ \eta \epsilon_1 - \eta \epsilon_1 + \epsilon_3 \epsilon_2 - \epsilon_2 \epsilon_3 \\ \eta \epsilon_2 - \eta \epsilon_2 - \epsilon_3 \epsilon_1 + \epsilon_1 \epsilon_3 \\ \eta \epsilon_3 - \eta \epsilon_3 + \epsilon_2 \epsilon_1 - \epsilon_1 \epsilon_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(4)$$

Problem 1.5

Control input:
$$au = -\mathbf{K}_d \omega - k_p \tilde{\epsilon}$$

Figure: Euler Angles

Figure: Angular Velocity

- The Euler angles are pushed towards zero and are not following the time-varying reference.
- The two terms in the controller are working against each other: One term attempts to push the angular velocity to zero, while the other term attempts to track the time-varying reference.

Problem 1.5

Figure: Control Input

Figure: Tracking Error

Problem 1.6

Find the desired angular velocity $o oldsymbol{ au} = - \mathbf{K}_d ilde{oldsymbol{\omega}} - k_p ilde{oldsymbol{\epsilon}}$

$$\omega_d = \mathbf{T}_{\Theta_d}^{-1}(\Theta_d)\dot{\Theta}_d$$

$$= \begin{bmatrix} 1 & 0 & -\sin(\theta_d) \\ 0 & \cos(\phi_d) & \cos(\theta_d)\sin(\phi_d) \\ 0 & -\sin(\phi_d) & \cos(\theta_d)\cos(\phi_d) \end{bmatrix} \begin{bmatrix} 0 \\ -1.5\sin(0.1t) \\ 0.5\cos(0.05t) \end{bmatrix}$$

Figure: Euler Angles

Figure: Angular Velocity

Problem 1.6

Figure: Control Input

Figure: Tracking Error

 The tracking error is still not perfect. Including a reference model with higher order derivatives in the control law would increase the accuracy.

Problem 1.7
$$V = \frac{1}{2}\tilde{\omega}^{\top}\mathbf{I}_{CG}\tilde{\omega} + 2k_p(1-\tilde{\eta}), \quad \dot{\tilde{\eta}} = -\frac{1}{2}\tilde{\epsilon}^{\top}\tilde{\omega}, \quad \mathbf{I}_{CG}\dot{\omega} = \mathbf{S}(\mathbf{I}_{CG}\omega)\omega + \tau$$

Positive and radially Unbounded

- The Lyapunov function is positive because the first term is quadratic and always greater or equal to zero and the second term is always positive as long as k_p is greater than zero $(1 \tilde{\eta} \ge 0)$.
- \bullet The Lyapunov function is radially unbounded because it increases with $\tilde{\omega}$ without an upper bound. $\tilde{\eta}$ cannot grow towards infinity by definition.

Finding the derivative ($\tilde{\omega} = \omega - \omega_d = \omega$):

$$\dot{V} = \omega^{\top} \mathbf{I}_{CG} \dot{\omega} - 2k_{p} \dot{\tilde{\eta}}
= \omega^{\top} (\tau + \mathbf{S}(\mathbf{I}_{CG} \omega) \omega) - 2k_{p} (-\frac{1}{2} \tilde{\epsilon}^{\top} \tilde{\omega})
= \omega^{\top} (-\mathbf{K}_{d} \omega - k_{p} \tilde{\epsilon} + \mathbf{S}(\mathbf{I}_{CG} \omega) \omega) + k_{p} \omega^{\top} \tilde{\epsilon}
= \omega^{\top} (-\mathbf{K}_{d} \omega - k_{p} \tilde{\epsilon} + \mathbf{S}(\mathbf{I}_{CG} \omega) \omega + k_{p} \tilde{\epsilon})
= -\omega^{\top} \mathbf{K}_{d} \omega = -\omega^{\top} k_{d} \mathbf{I} \omega = -k_{d} \omega^{\top} \omega \leq 0 \text{ (if } k_{d} > 0)$$

(5)

Problem 1.7

Lyapunov's direct method

Let $\mathbf{x}_e = \mathbf{0}$ be an equilibrium point for $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$. Let $V : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function such that

(i)
$$V(\mathbf{0}) = 0$$
 and $V(\mathbf{x}) > 0$, $\forall \mathbf{x} \neq 0$
(ii) $||\mathbf{x}|| \to \infty$ \Rightarrow $V(\mathbf{x}) \to \infty$
(iii) $\dot{V}(\mathbf{x}) < 0$, $\forall \mathbf{x} \neq 0$

then $\mathbf{x_e} = 0$ is globally asymptotically stable (GAS).

- Condition (i) and (ii) are satisfied on the previous slide.
- However, $\dot{V}(x) = -k_d \omega^\top \omega \leq 0 \Rightarrow$ (iii) not satisfied.
- We cannot use Lyapunov's direct method to conclude GAS (or AS).

Problem 1.7

We need to use LaSalle's theorem to investigate AS since Lyapunovs direct method was not conclusive.

The Krasovskii-LaSalles's Theorem

Let $V:\mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable positive definite function such that

$$||\mathbf{x}|| \to \infty \quad \Rightarrow \quad V(\mathbf{x}) \to \infty$$

$$\dot{V}(\mathbf{x}) \le 0, \quad \forall \mathbf{x}$$
(6)

Let Ω be the set of all points where $\dot{V}(\mathbf{x}) = 0$, i.e.,

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n | \dot{V}(\mathbf{x}) = 0 \}$$
 (7)

and M be the largest invariant set in Ω . Then all solutions $\mathbf{x}(t)$ converge to M. If $M = \{\mathbf{x}_e\}$ then the equilibrium point \mathbf{x}_e is globally asymptotically stable.

Problem 1.7

Define set $\Omega = \{ \mathbf{x} \in \mathbb{R}^n | \dot{V}(\mathbf{x}) = 0 \}$

Find all points such that

$$\dot{V}(\tilde{\epsilon}, \omega) = -k_d \omega^{\top} \omega = 0 \quad \Rightarrow \omega = \mathbf{0}$$
 (8)

The set Ω of all points ${\bf x}$ where $\dot{V}=0$ therefore becomes

$$\Omega = \{ \boldsymbol{\omega} = \mathbf{0}, \quad \tilde{\mathbf{q}}(\tilde{\boldsymbol{\epsilon}}) \in Q \}$$
 (9)

where Q is defined as the set of unit quaternions.

Find largest invariant set M

Inserting $\omega(t)\equiv {f 0}\Rightarrow\dot\omega(t)\equiv {f 0}$ into the dynamical system we find that

$$\dot{\omega}(t) = \mathbf{I}_{CG}^{-1} oldsymbol{ au}(t) \equiv oldsymbol{0} \Rightarrow -\mathbf{K}_d \omega(t) - k_p ilde{\epsilon}(t) \equiv oldsymbol{0} \Rightarrow ilde{\epsilon}(t) \equiv oldsymbol{0}$$

In other words, the angular velocity can only be zero when the attitude error is zero, i.e., after convergence.

Problem 1.7

Find largest invariant set M

The largest invariant set M in Ω comprises two equilibrium points corresponding to two different unit quaternions (recall that $\tilde{\eta}^2 + \tilde{\epsilon}^\top \tilde{\epsilon} = 1$)

$$M = \{ \boldsymbol{\omega} = \mathbf{0}, \quad \tilde{\epsilon} = \mathbf{0}, \quad \tilde{\eta} = \pm 1 \}$$
 (10)

The existence of multiple equilibrium points implies that that only local asymptotic stability can be proven. Hence, we must investigate the stability of each equilibrium individually.

Stability analysis of $ilde{\eta}=1$

The steady-state value of the Lyapunov function, $V = \frac{1}{2}\tilde{\omega}^{\top}\mathbf{I}_{CG}\tilde{\omega} + 2k_p(1-\tilde{\eta})$, is in this case

$$V_{ss} = V(\tilde{\eta} = 1) = 0$$

Perturbing the system by a small amount such that $\tilde{\eta}=1-\delta$ where $\delta>0$, results in a steady-state value

$$V_{ss}^{'}=V(\tilde{\eta}=1-\delta)=2k_{p}\delta$$

Problem 1.7

Since $V_{ss}^{'}>V_{ss}$ and V decreases monotonically for $\tilde{\eta}\neq\pm1$, the system will return to $V_{ss}=0$. Thus, the equilibrium point corresponding to $\tilde{\eta}=1$ is locally AS.

Stability analysis of $\tilde{\eta}=-1$

The steady-state value of the Lyapunov function, $V = \frac{1}{2}\tilde{\omega}^{\top}\mathbf{I}_{CG}\tilde{\omega} + 2k_p(1-\tilde{\eta})$, is in this case

$$V_{ss} = V(\tilde{\eta} = -1) = 4k_p$$

Perturbing the system by a small amount such that $\tilde{\eta}=-1+\delta$ where $\delta>0$, results in a steady-state value

$$V_{ss}^{'}=V(\tilde{\eta}=1-\delta)=4k_{p}-2k_{p}\delta$$

Since $V_{ss}^{'} < V_{ss}$ and V decreases monotonically for $\tilde{\eta} \neq \pm 1$, the system will never return to $V_{ss} = 4k_p$. Thus, the equilibrium point corresponding to $\tilde{\eta} = -1$ is unstable.

For Further Reading I

Handbook of Marine Craft Hydrodynamics and Motion Control, Chapter 2 and 3

John Wiley & Sons, 2011.

Fjellstad, O.-E., Fossen, T.I.

Quaternion feedback regulation of underwater vehicles Proceedings of the IEEE Conference on Control Applications, 2:857–862, 1994.

Chaturvedi N.A., Sanyal A.K., McClamroch N.H. Rigid-Body Attitude Control *IEEE Control Systems*, 31(3):30–51, 2011.