On cherche à déplacer un chariot d'un point A vers un point B.

En physique, une **force** appliquée en un point d'un solide est représenté par un vecteur \vec{F} .

L'intensité de la force, notée F, est la longueur du vecteur \tilde{F} . Elle s'exprime en newtons (N).

Lorsqu'on exerce une force \vec{F} sur un solide, la force agit sur le solide.

Une force \vec{F} étant appliquée en son centre de gravité A, le **travail** de cette force est l'**énergie** fournie par cette force lorsque son point d'application se déplace. Cette énergie s'exprime en *joules* (J).

Les physiciens calculent le travail de cette force en utilisant la notion mathématique du « **produit scalaire** » de deux vecteurs.

Le travail de la force \vec{F} lors du déplacement du chariot de A vers B est le produit scalaire des deux vecteurs \overrightarrow{AB} et \vec{F} et se note \overrightarrow{AB} . \vec{F} (se lit « \overrightarrow{AB} scalaire \vec{F} »).

Situation 1: Terrain plat

- **>** Dans chacun des cas ci-dessous, dire si :
 - la force F « favorise » le mouvement, est « sans effet » sur le mouvement ou « s'oppose » au mouvement ;
 - on peut qualifier le travail de la force de « moteur », « résistant » ou « nul ».

	\vec{F}	F	F
Effet de la force F sur le mouvement			
Le travail W de la force F est dit			

Situation 2: Sur un plan incliné

- **Tracer trois vecteurs** \vec{F}_1 , \vec{F}_2 et \vec{F}_3 sachant que:
 - Pour \vec{F}_1 , le travail cette force est qualifié de « moteur ».
 - Pour \vec{F}_2 , le travail de cette force est qualifié de « résistant ».
 - Pour \vec{F}_3 , le travail de cette force est qualifié de « nul ».

Groupe A

Définition 1:

Soit A, B et C trois points deux à deux distincts, $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times cos(\widehat{BAC})$

1) En utilisant la définition 1 du produit scalaire de deux vecteurs, calculer les produits scalaires : $\overrightarrow{AB}.\overrightarrow{AC}$, $\overrightarrow{AB}.\overrightarrow{AD}$, $\overrightarrow{AB}.\overrightarrow{AE}$, $\overrightarrow{AB}.\overrightarrow{AF}$ et $\overrightarrow{AB}.\overrightarrow{AG}$.

2) Déterminer le travail exercé par la force représentée par le vecteur AC lors du déplacement du chariot de A vers B. Interpréter ce résultat.

Groupe B

Définition 2:

Soit A, B et C trois points et H, le projeté orthogonal de C sur la droite (AB).

Si \$\overline{AB}\$ et \$\overline{AH}\$ sont de même sens: \$\overline{AB}\$.\$\overline{AC} = \overline{AB}\$.\$\overline{AB}\$.\$\overline{AH} = AB \times AH\$
Si \$\overline{AB}\$ et \$\overline{AH}\$ sont de sens opposés: \$\overline{AB}\$.\$\overline{AC} = \overline{AB}\$.\$\overline{AH} = AB \times AH\$

1) En utilisant la définition 2 du produit scalaire de deux vecteurs, calculer les produits scalaires : $\overrightarrow{AB}.\overrightarrow{AC}$, $\overrightarrow{AB}.\overrightarrow{AD}$, $\overrightarrow{AB}.\overrightarrow{AE}$, $\overrightarrow{AB}.\overrightarrow{AF}$ et $\overrightarrow{AB}.\overrightarrow{AG}$.

2) Déterminer le travail exercé par la force représentée par le vecteur \overrightarrow{AD} lors du déplacement du chariot de A vers B. Interpréter ce résultat.

Groupe C

Définition 3:

 $Soit\ A,\ B\ et\ C\ trois\ points: \ \overline{AB}\ .\overline{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$

1) En utilisant la définition 3 du produit scalaire de deux vecteurs, calculer les produits scalaires : $\overrightarrow{AB}.\overrightarrow{AC}$, $\overrightarrow{AB}.\overrightarrow{AD}$, $\overrightarrow{AB}.\overrightarrow{AE}$, $\overrightarrow{AB}.\overrightarrow{AF}$ et $\overrightarrow{AB}.\overrightarrow{AG}$.

2) Déterminer le travail exercé par la force représentée par le vecteur AE lors du déplacement du chariot de A vers B. Interpréter ce résultat.

Groupe D

Définition 4 :

Dans un repère orthonormé $(O; \vec{i}; \vec{j})$, si $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors : $\vec{u} \cdot \vec{v} = xx' + yy'$

1) En utilisant la définition 4 du produit scalaire de deux vecteurs, calculer les produits scalaires : $\overrightarrow{AB}.\overrightarrow{AC}$, $\overrightarrow{AB}.\overrightarrow{AD}$, $\overrightarrow{AB}.\overrightarrow{AE}$, $\overrightarrow{AB}.\overrightarrow{AF}$ et $\overrightarrow{AB}.\overrightarrow{AG}$.

2) Déterminer le travail exercé par la force représentée par le vecteur \overrightarrow{AF} lors du déplacement du chariot de A vers B. Interpréter ce résultat.

1) Comparer les résultats des produits scalaires calculés et ECHANGER sur les différentes définitions du produit scalaire rencontrées dans les groupes.

	ĀB.ĀC	ĀB.ĀD	ĀB.ĀE	ĀB.ĀF	ĀB.ĀG
Résultats communs aux groupes					

Vecteur force	ĀČ	ĀĎ	ĀĒ	ĀF	ĀĠ
Travail de la force dans le déplacement du chariot de A vers B					
Caractérisation du travail de cette force (moteur/résistant/nul)					

2) Voici cinq situations. Pour chacune d'entre elles, calculer le produit scalaire AB.AC par la méthode de votre choix.

Situation 1: un carré de côté 4 Situation 2: un hexagone régulier de centre A Situation 3: un repère

Situation 4: un triangle

	Définition 1	Définition 2	Définition 3	Définition 4
Situation 1				
Situation 2				
Situation 3				
Situation 4				
Situation 5				

3) Dans le rectangle de la situation 5, calculer une valeur approchée au degré près de l'angle \widehat{BAC} .