Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 13.1 – Lösung

	1	2	3	4
T [°C]	500	$T_{\rm s}(0.1{\rm bar}) = 45.81^{\circ}{\rm C}\ ({\rm Tab.})$	$T_3 = T_2$	-
p [bar]	60	0.1	0.1	60
h [kJ/kg]	3423 (Tab.)	?	191.81 (Tab.)	?
s [kJ/(kg K)]	6.8824 (Tab.)	$s_2 = s_1$ (rev.ad.)	0.649 24 (Tab.)	-

b) Die genutzte spezifische technische Arbeit ist sie Summe aus den spezifischen technischen Arbeiten, die über die Systemgrenzen gehen:

$$w_{\text{Nutz}} = w_{\text{t},12} + w_{\text{t},34} \tag{1}$$

Dabei wissen wir bereits, dass $w_{\rm t,34}$ positiv ist (in den Prozess hineingeht). In der Praxis wird die eingespeiste Leistung P_{34} direkt aus der gewonnenen Leistung P_{12} entnommen, verkleinert also die Nutzleistung. Daher beziehen wir $w_{\rm t,34}$ in $w_{\rm Nutz}$ mit ein.

 $\underbrace{1) \longrightarrow 2}$:

1. HS:
$$\dot{Q}_{12} + P_{12} = \dot{m} \cdot (h_2 - h_1) \iff w_{t,12} = h_2 - h_1$$
 (2)

rev.ad.:
$$s_1 = s_2 \implies \underbrace{s'(0.1 \,\text{bar})}_{=0.649 \,24 \,\text{kJ/(kg K)}} < \underbrace{s_2}_{=6.8824 \,\text{kJ/(kg K)}} < \underbrace{s''(0.1 \,\text{bar})}_{=8.148 \,75 \,\text{kJ/(kg K)}}$$
 (3)

 \implies 2 liegt im Zweiphasengebiet

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik

Fakultät III – Prozesswissenschaften

Dampfmassenanteil in 2:

$$x_2 = \frac{s_1 - s'(0.1 \,\text{bar})}{s''(0.1 \,\text{bar}) - s'(0.1 \,\text{bar})} \tag{4}$$

$$= \frac{6.8824 \,\mathrm{kJ/(kg\,K)} - 0.649 \,24 \,\mathrm{kJ/(kg\,K)}}{8.14875 \,\mathrm{kJ/(kg\,K)} - 0.649 \,24 \,\mathrm{kJ/(kg\,K)}} = 0.8311 \tag{5}$$

Spezifische Enthalpie in \bigcirc über x_2 berechnen:

$$h_2 = h(0.1 \,\text{bar}, x_2) = h'(0.1 \,\text{bar}) + x_2 \cdot (h''(0.1 \,\text{bar}) - h'(0.1 \,\text{bar}))$$
 (6)

$$= 191.81 \frac{kJ}{kg} + 0.8311 \cdot \left(2583.6 \frac{kJ}{kg} - 191.81 \frac{kJ}{kg}\right) = 2179.88 \frac{kJ}{kg}$$
 (7)

$$\implies \boxed{w_{\text{t,12}}} = h_2 - h_1 = 2179.88 \, \frac{\text{kJ}}{\text{kg}} - 3423 \, \frac{\text{kJ}}{\text{kg}} = \boxed{-1243.12 \, \frac{\text{kJ}}{\text{kg}}}$$
(8)

 $(3) \longrightarrow (4)$:

1. HS:
$$\dot{Q}_{34} + P_{34} = \dot{m} \cdot (h_4 - h_3) \iff w_{t,34} = h_4 - h_3$$
 (9)

$$h_3$$
 aus Tabelle: $h_3 = h'(0.1 \,\text{bar}) = 191.81 \,\frac{\text{kJ}}{\text{kg}}$ (10)

$$h_4 \text{ aus 1.HS}: \dot{Q}_{41} + \mathcal{P}_{41} = \dot{m} \cdot (h_1 - h_4) \implies q_{41} = h_1 - h_4$$
 (11)

$$\iff h_4 = h_1 - q_{41} = 3423 \, \frac{\text{kJ}}{\text{kg}} - 3225 \, \frac{\text{kJ}}{\text{kg}} = 198 \, \frac{\text{kJ}}{\text{kg}}$$
 (12)

$$\implies \boxed{w_{\text{t},34}} = h_4 - h_3 = 198 \frac{\text{kJ}}{\text{kg}} - 191.81 \frac{\text{kJ}}{\text{kg}} = \boxed{6.19 \frac{\text{kJ}}{\text{kg}}}$$
 (13)

$$\implies \boxed{w_{\text{Nutz}}} = w_{\text{t,12}} + w_{\text{t,34}} = -1243.12 \, \frac{\text{kJ}}{\text{kg}} + 6.19 \, \frac{\text{kJ}}{\text{kg}} = \boxed{-1236.93 \, \frac{\text{kJ}}{\text{kg}}}$$
(14)

Anmerkung: In der Lösung oben wird zur Berechnung von $w_{\rm t,34}, w_{\rm Nutz}$ der 1. HS zunächst um die Pumpe, dann um den Dampferzeuger ausgewertet. Alternativ könnte der 1. HS auch um Pumpe <u>und</u> Dampferzeuger zusammen ausgewertet werden. $\implies q_{41} + w_{34} = h_1 - h_3$.

c)

$$\boxed{\eta_{\text{th}}} = \frac{|P_{\text{Nutz}}|}{\dot{Q}_{41}} = \frac{\dot{\mathcal{M}} \cdot |w_{\text{Nutz}}|}{\dot{\mathcal{M}} \cdot q_{41}} = \frac{|-1236.93 \,\text{kJ/kg}|}{3225 \,\text{kJ/kg}} = \boxed{38.35 \,\%}$$
(15)

d)

$$\boxed{\eta_{\text{ex}}} = \frac{|P_{\text{Nutz}}|}{\dot{E}_{Q_{41}}} = \frac{\dot{\mathcal{M}} \cdot |w_{\text{Nutz}}|}{\dot{\mathcal{M}} \cdot e_{Q_{41}}} = \frac{|w_{\text{Nutz}}|}{\left(1 - \frac{T_{\text{a}}}{T_{\text{m}}}\right) \cdot q_{41}} \tag{16}$$

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

$$= \frac{1236.93 \,\mathrm{kJ/kg}}{\left(1 - \frac{(20 + 273.15) \,\mathrm{K}}{(244.22 + 273.15) \,\mathrm{K}}\right) \cdot 3225 \,\mathrm{kJ/kg}} = \boxed{88.5 \,\%}$$
 (17)

Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 13.2 – Lösung

Stoffdaten von Wasser:

T [°C]	p [bar]	h' [kJ/kg]	h'' [kJ/kg]	s' [kJ/(kg K)]	s'' [kJ/(kg K)]
179.88	10.00	762.52	2777.1	2.138 06	6.58502
41.51	0.08	173.85	2576.2	0.59251	8.22730
			h [kJ/kg]		s [kJ/(kg K)]
45.00	0.08		2582.9		8.2486
50.00	0.08		2592.5		8.3079
210	10.00		2852.2		6.7456
220	10.00		2875.5		6.7934
500	10.00		3479.0		7.7640
550	100.00		3501.9		6.7584

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

	1	② (*)	3	4	(5)	6
T [°C]	550	-	500	-	-	-
p [bar]	100	10	10	0.08	0.08	100
h [kJ/kg]	3501.9 (Tab.)	?	3479.0 (Tab.)	?	173.85	?
s [kJ/(kg K)]	6.7584 (Tab.)	6.7584	7.7640 (Tab.)	-	-	-

^(*) Zustandspunkt (2) liegt zwischen den beiden markierten Zeilen und muss interpoliert werden

a) Gesucht: $w_{t,12}, w_{t,34}, x_4, \eta_{th}$

$$\widehat{(1)} \longrightarrow \widehat{(2)}$$
:

1. HS für stationäre Fließprozesse:

$$P_{12} + \dot{Q}_{12} = \dot{m} \cdot (h_2 - h_1) \tag{18}$$

$$\implies w_{t,12} = h_2 - h_1$$
 (19)

rev.ad. Zustandsänderung: $s_2 = s_1 \rightarrow h_2$ kann durch lineare Interpolation ermittelt werden:

$$h_2 = \frac{(6.7584 - 6.7934)\text{kJ/(kg K)}}{(6.7456 - 6.7934)\text{kJ/(kg K)}} \cdot (2852.2 - 2875.5)\frac{\text{kJ}}{\text{kg}} + 2875.5\frac{\text{kJ}}{\text{kg}}$$
(20)
= 2858.44 \frac{\text{kJ}}{\text{kg}}

$$\implies \boxed{w_{\rm t,12}} = 2858.44 \, \frac{\rm kJ}{\rm kg} - 3501.9 \, \frac{\rm kJ}{\rm kg} = \boxed{-643.46 \, \frac{\rm kJ}{\rm kg}}$$
 (21)

$3 \longrightarrow 4$:

1. HS für stationäre Fließprozesse: $P_{34} + \dot{Q}_{34} = \dot{m} \cdot (h_4 - h_3) \implies w_{t,34} = h_4 - h_3$

rev.ad. Zustandsänderung: $s_4 = s_3 = 7.7640\,\mathrm{kJ/(kg\,K)}$

- $\rightarrow s'(0.08 \, \text{bar}) < s_4 < s''(0.08 \, \text{bar})$
- \rightarrow Der Zustandspunkt 4 liegt im Nassdampfgebiet.
- $\rightarrow h_4$ kann über den Dampfmassenanteil x_4 berechnet werden:

$$\boxed{x_4} = \frac{s_4 - s'(0.08 \,\text{bar})}{s''(0.08 \,\text{bar}) - s'(0.08 \,\text{bar})}$$
(22)

$$= \frac{7.7640 \,\mathrm{kJ/(kg\,K)} - 0.592 \,51 \,\mathrm{kJ/(kg\,K)}}{8.227 \,30 \,\mathrm{kJ/(kg\,K)} - 0.592 \,51 \,\mathrm{kJ/(kg\,K)}} = \boxed{0.9393} \tag{23}$$

$$h_4 = h(0.08 \, \text{bar}, x_4) \tag{24}$$

Fachgebiet Thermodynamik Fakultät III - Prozesswissenschaften

$$= h'(0.08 \,\mathrm{bar}) + x_4 \cdot (h''(0.08 \,\mathrm{bar}) - h'(0.08 \,\mathrm{bar})) \tag{25}$$

$$= 173.85 \, \frac{\text{kJ}}{\text{kg}} + 0.9393 \cdot (2576.6 \, \frac{\text{kJ}}{\text{kg}} - 173.85 \, \frac{\text{kJ}}{\text{kg}}) = 2430.75 \, \frac{\text{kJ}}{\text{kg}} \qquad (26)$$

$$\implies \boxed{w_{\text{t,34}}} = 2430.75 \, \frac{\text{kJ}}{\text{kg}} - 3479.0 \, \frac{\text{kJ}}{\text{kg}} = \boxed{-1048.25 \, \frac{\text{kJ}}{\text{kg}}}$$
 (27)

$(5) \longrightarrow (6)$:

Zunächst $w_{t,56}$ berechnen:

$$w_{t,56} = \int_{5}^{6} v dp = v \cdot (p_6 - p_5)$$
 (28)

(v = const., da flüssiges Wasser inkompressibel sein soll)

$$\iff w_{t,56} = 1.0085 \cdot 10^{-3} \frac{\text{m}^3}{\text{kg}} \cdot (100 - 0.08) \cdot 10^5 \,\text{Pa} = 10.08 \frac{\text{kJ}}{\text{kg}}$$
 (29)

Mit dem 1. HS kann h_6 bestimmt werden:

1. HS:
$$P_{56} + \dot{Q}_{56} = \dot{m} \cdot (h_6 - h_5)$$
 (30)

$$\implies w_{\text{t.56}} = h_6 - h_5 \tag{31}$$

$$\implies h_6 = h_5 + w_{t,56} = 173.85 \,\frac{\text{kJ}}{\text{kg}} + 10.08 \,\frac{\text{kJ}}{\text{kg}} = 183.93 \,\frac{\text{kJ}}{\text{kg}}$$
 (32)

$(6) \longrightarrow (1)$:

1. HS:
$$\mathcal{P}_{61} + \dot{Q}_{61} = \dot{m} \cdot (h_1 - h_6)$$
 (33)

$$\Longrightarrow \boxed{q_{61}} = h_1 - h_6 = 3501.9 \,\frac{\text{kJ}}{\text{kg}} - 183.93 \,\frac{\text{kJ}}{\text{kg}} = \boxed{3317.97 \,\frac{\text{kJ}}{\text{kg}}} \tag{34}$$

$\underbrace{2} \longrightarrow \underbrace{3}:$

1. HS:
$$\mathcal{P}_{23} + \dot{Q}_{23} = \dot{m} \cdot (h_3 - h_2)$$
 (35)

$$\Longrightarrow \boxed{q_{23}} = h_3 - h_2 = 3479.0 \,\frac{\text{kJ}}{\text{kg}} - 2858.44 \,\frac{\text{kJ}}{\text{kg}} = \boxed{620.56 \,\frac{\text{kJ}}{\text{kg}}}$$
(36)

Thermischer Wirkungsgrad:

$$\boxed{\eta_{\text{th}}} = \frac{|w_{\text{t},12} + w_{\text{t},34} + w_{\text{t},56}|}{q_{61} + q_{23}}$$

$$= \frac{|-643.46 \,\text{kJ/kg} - 1048.25 \,\text{kJ/kg} + 10.08 \,\text{kJ/kg}|}{3317.97 \,\text{kJ/kg} + 620.56 \,\text{kJ/kg}} = \boxed{42.7\%}$$
(38)

$$= \frac{|-643.46 \,\mathrm{kJ/kg} - 1048.25 \,\mathrm{kJ/kg} + 10.08 \,\mathrm{kJ/kg}|}{3317.97 \,\mathrm{kJ/kg} + 620.56 \,\mathrm{kJ/kg}} = \boxed{42.7\%}$$
(38)

b) Die Entspannung in der ND-Turbine verläuft nun irreversibel. Sie endet damit im Zustandspunkt $(4)^*$ (siehe T, s-Diagramm).

Fachgebiet Thermodynamik Fakultät III - Prozesswissenschaften

 $(3) \longrightarrow (4^*)$:

$$\eta_{S,T,34} = \frac{w_{t,34^*}}{w_{t,34}} \tag{39}$$

$$\implies \boxed{w_{\text{t},34^*}} = \eta_{S,T,34} \cdot w_{\text{t},34} = 0.85 \cdot (-1048.25 \, \frac{\text{kJ}}{\text{kg}}) = \boxed{-891.0 \, \frac{\text{kJ}}{\text{kg}}}$$

$$1. \text{ HS: } \dot{Q}_{34^*} + P_{34^*} = \dot{m} \cdot (h_{4^*} - h_3)$$

$$(40)$$

1. HS:
$$\dot{Q}_{34^*} + P_{34^*} = \dot{m} \cdot (h_{4^*} - h_3)$$
 (41)

$$\implies w_{t,34^*} = h_{4^*} - h_3$$
 (42)

$$\implies \boxed{h_{4^*}} = h_3 + w_{t,34^*} = 3479.0 \, \frac{\text{kJ}}{\text{kg}} - 891.0 \, \frac{\text{kJ}}{\text{kg}} = \boxed{2588.0 \, \frac{\text{kJ}}{\text{kg}}}$$
(43)

$$h_{4^*} > \underbrace{h''(0.08 \, \mathrm{bar})}_{=2576.2 \, \mathrm{kJ/kg(Tab.)}} \rightarrow \textcircled{4^*}$$
 liegt nicht im Nassdampfgebiet.

 \rightarrow Lineare Interpolation bei $p_4 = 0.08\,\mathrm{bar}$ zwischen den Temperaturen 45 °C und $50\,^{\circ}\text{C}$ um T_{4^*} zu erhalten:

$$\alpha = \frac{2588.0 \,\text{kJ/kg} - 2592.5 \,\text{kJ/kg}}{2582.9 \,\text{kJ/kg} - 2592.5 \,\text{kJ/kg}} \tag{44}$$

$$\Rightarrow \boxed{T_{4^*}} = \alpha \cdot (45 \,^{\circ}\text{C} - 50 \,^{\circ}\text{C}) + 50 \,^{\circ}\text{C} = \boxed{47.66 \,^{\circ}\text{C}} \quad (45)$$