Apontamentos sobre Matrizes

<u>Definição 1.1</u>: Denomina-se **Matriz do tipo mxn** a um quadro de elementos dispostos segundo m filas horizontais (linhas) e n filas verticais (colunas). (mxn lê-se m por n)

A matriz representa-se por letras maiúsculas (A ou A_{mxn}) e os seus elementos por letras minúsculas afectadas por dois índices (a_{ij}) , o índice de linha (i) e o índice de coluna (j).

$$A_{mxn} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Para cada $i \in \{1,...,m\}$, denomina-se <u>linha i</u> da matriz A ao elemento $(a_{i1}, a_{i2},...,a_{im})$ Para cada $j \in \{1,...,n\}$, denomina-se <u>coluna j</u> da matriz A ao elemento $(a_{ij}, a_{2j},...,a_{mj})$

O elemento a_{ij} denomina-se elemento na posição i j (linha i coluna j).

Ao conjunto das matrizes do tipo mxn com elementos pertencentes ao corpo dos Reais representa-se por $\mathcal{M}_{nxn}(\Re)$.

<u>Definição 1.2</u>: Duas **matrizes** dizem-se **iguais** se são do mesmo tipo e se os elementos na mesma posição são iguais.

$$A_{mxn} = B_{mxn} \iff \forall i = 1, \dots, m, \ j = 1, \dots, n \ a_{ij} = b_{ij}$$

As matrizes podem ser classificadas segundo a forma e a natureza dos seus elementos.

Segundo a forma as matrizes podem ser classificadas em:

Rectangulares: Uma matriz do tipo mxn.

Quadradas: Uma matriz em que o número de linhas é igual ao número de colunas,

isto é do tipo nxn, diz-se abreviadamente de **ordem n**.

Linha: Uma matriz em que o número de linhas é igual a 1, do tipo 1xn.

Coluna: Uma matriz em que o número de colunas é igual a 1, do tipo mx1.

Nas matrizes quadradas de ordem n denominam-se de **elementos principais** aos elementos em que o índice de linha é igual ao índice de coluna, a_{ii} , $i \in \{1,...,n\}$; a sequência $(a_{11}, a_{22}, a_{33}, ..., a_{nn})$ dos elementos principais de A designa-se por **diagonal principal** de A.

Exemplos:

Rectangular	Quadrada	Linha	Coluna
$\begin{bmatrix} 1 & 6 & -2 \\ 6 & 0 & 2 \end{bmatrix}_{2x3}$	$\begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}_{2x2}$	$[2 \ 0 \ 6]_{1x3}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}_{2x1}$

Diagonal principal

Segundo a natureza dos elementos podem ser classificadas em:

Real: Se todos os elementos da matriz são valores reais.

$$\forall~a_{ij}\in A:a_{ij}\in\Re$$

Complexa: Se pelo menos um dos elementos da matriz é complexo.

$$\exists \ a_{ij} \in A : a_{ij} \in \mathbf{C}$$

Nula Se todos os elementos da matriz são nulos.

$$\forall \ a_{ij} \in A : a_{ij} = 0$$

Densa Se a maior parte dos seus elementos são não nulos (usa-se para matrizes de grande dimensão).

Dispersa Se a maior parte dos seus elementos são nulos (usa-se para matrizes de grande dimensão).

Triangular superior É uma matriz quadrada em que os elementos abaixo da diagonal são nulos

$$\forall \ a_{ij} \in A : i > j \ a_{ij} = 0$$

Triangular inferior É uma matriz quadrada em que os elementos acima da diagonal são nulos

$$\forall \ a_{ij} \in A : \ i < j \ a_{ij} = 0$$

 $\textbf{Diagonal} \quad \acute{E} \ uma \ matriz \ quadrada \ em \ que \ os \ elementos \ não \ principais \ são \ nulos$

$$\forall \ a_{ij} \in A \colon i \neq j \ a_{ij} = 0$$

Escalar É uma matriz diagonal em que os elementos principais são iguais

$$\forall~a_{ij}\in A:~i\neq j~~a_{ij}=0~\wedge~i=j~~a_{ij}=\lambda$$

Simétrica É uma matriz quadrada em que os elementos a_{ij} são iguais aos elementos a_{ji}

Exemplos:

Real	Complexa	
$\begin{bmatrix} 1 & 6 & -2 \\ 6 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & -2 \\ 3 & \mathbf{i} \end{bmatrix}$	
Triangular Superior	Triangular Inferior	
$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ 2 & 0 & 5 \end{bmatrix}$	
Diagonal	Escalar	
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$	
Simétrica		
$ \begin{bmatrix} 1 & 5 & 0 \\ 5 & 2 & 6 \\ 0 & 6 & 3 \end{bmatrix} $		

No conjunto das matrizes podem ser definidas operações.

Soma de matrizes

<u>Definição 1.3</u>: Se as matrizes A e B são <u>do mesmo tipo e sobre o mesmo corpo</u>, define-se soma das matrizes A e B, representando-se por A+B, com sendo a matriz C, do mesmo tipo de A e B, cujos elementos são formados pela soma dos elementos na mesma posição de A e B.

$$\forall A, B \in \mathcal{M}_{mxn}(\mathfrak{R}) \exists C \in \mathcal{M}_{mxn}(\mathfrak{R}): C = A + B \land c_{ij} = a_{ij} + b_{ij}$$

Exemplo:

Proposição 1.1: A soma das matrizes do mesmo tipo, goza da propriedade comutativa.

$$\forall A, B \in \mathcal{M}_{mxn}(\mathfrak{R}) \ A + B = B + A$$

Proposição 1.2: A soma das matrizes do mesmo tipo, goza da propriedade associativa.

$$\forall A, B, C \in \mathcal{M}_{mxn}(\mathfrak{R}) (A+B)+C=A+(B+C)$$

Proposição 1.3: A soma das matrizes do mesmo tipo, tem elemento neutro (matriz nula).

$$\forall A, \in \mathcal{M}_{mxn}(\mathfrak{R}), \exists O \in \mathcal{M}_{mxn}(\mathfrak{R}): A + O = A$$

Proposição 1.4: Na soma das matrizes do mesmo tipo, todos os elementos têm elemento simétrico.

$$\forall A, \in \mathcal{M}_{mxn}(\mathfrak{R}), \exists B \in \mathcal{M}_{mxn}(\mathfrak{R}): A + B = O$$

Diz-se assim que $\mathcal{M}_{mxn}(\mathfrak{R})$ para a operação soma de matrizes forma um grupo aditivo comutativo.

Produto Escalar

Definição 1.4: Dada uma matriz A pertencente a $\mathcal{M}_{mxn}(\Re)$ e um escalar $\lambda \in \Re$, define-se **produto escalar** de λ por A, representando-se por λ A, como sendo a matriz C, do mesmo tipo de A, cujos elementos são formados pela produto dos elementos A por λ .

$$\forall A \in \mathcal{M}_{mxn}(\mathfrak{R}) \land \lambda \in \mathfrak{R}, \exists C \in \mathcal{M}_{mxn}(\mathfrak{R}): C = \lambda A \land c_{ij} = \lambda a_{ij}$$

Exemplo:

$$3 \begin{bmatrix} 2 & -5 & 3 \\ -3 & 0 & 7 \end{bmatrix} = \begin{bmatrix} 6 & -15 & 9 \\ -9 & 0 & 21 \end{bmatrix}$$

Produto de matrizes

Consideremos o sistema de m equações lineares a n incógnitas

$$\begin{cases} a_{11}X_1 + a_{12}X_2 + a_{13}X_3 + \cdots + a_{1n}X_n = b_1 \\ a_{21}X_1 + a_{22}X_2 + a_{23}X_3 + \cdots + a_{2n}X_n = b_2 \\ a_{31}X_1 + a_{32}X_2 + a_{33}X_3 + \cdots + a_{3n}X_n = b_3 \\ \vdots \\ a_{m1}X_1 + a_{m2}X_2 + a_{m3}X_3 + \cdots + a_{mn}X_n = b_n \end{cases}$$

Este sistema pode ser traduzido em linguagem matricial como

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

Assim fica definido o produto matricial.

<u>Definição 1.5</u>: Dadas as matrizes A pertencente a $\mathcal{M}_{mxn}(\mathfrak{R})$ e B pertencente a $\mathcal{M}_{nxp}(\mathfrak{R})$, define-se **produto** de A por B, representando-se por AB, com sendo a matriz C pertencente a $\mathcal{M}_{mxp}(\mathfrak{R})$, cujos elementos $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ para i = 1,...,m e j=1,...,p

$$\begin{bmatrix}
1 & 2 & 3 \\
2 & 5 & 3
\end{bmatrix}_{2x3} = \begin{bmatrix} 1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 2 \end{bmatrix}_{3x3}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \end{bmatrix}_{2x3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 2 \end{bmatrix}_{3x3} = \begin{bmatrix} 8 & 12 & 15 \\ 15 & 29 & 27 \end{bmatrix}_{2x3}$$

Observação: O produto de matrizes NÃO é comutativo.

Proprosição 1.4: Dadas as matrizes A, B e C, e α um escalar. Então, se todos os produtos a seguir indicados **forem definidos**, as seguintes propriedades são válidas:

$$(AB)C = A(B C)$$

$$(A+B)C = AC+BC$$

$$A(B+C) = AB+AC$$

$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$

- <u>Definição 1.6</u>: Denomina-se de matriz <u>identidade de ordem n</u> a matriz quadrada escalar de ordem n cujos elementos da diagonal são iguais a 1. Representa-se por I_n.
- <u>Definição 1.7</u>: Dada uma matriz A de ordem n (quadrada) diz-se que a matriz A é <u>invertível</u> se existir uma matriz B tal que:

$$AB = BA = I$$

A matriz B denomina-se de inversa de A e representa-se por A-1.

Nas condições para que as operações indicadas se possam verificar as seguintes propriedades são válidas

Operação Propriedade	Soma	Produto
Comutativa	Sim	Não
Associativa	Sim	Sim
F1	Sim	Sim
Elemento neutro	(a matriz nula)	(a matriz identidade)
	Sim	Não
Elemento inverso	(a matriz formada pelos simétricos da	(só algumas matrizes quadradas poderão ter
	matriz dada)	inversa)

Exercícios sobre matrizes:

1. Considere as matrizes

$$A \in \mathcal{M}_{4x5}(\Re), B \in \mathcal{M}_{4x5}(\Re), C \in \mathcal{M}_{5x2}(\Re), D \in \mathcal{M}_{4x2}(\Re) e E \in \mathcal{M}_{5x4}(\Re),$$

determine quais das seguintes expressões estão definidas. Para as expressões que estão definidas determine o tipo da matriz resultante.

- a) BA
- b) AC+D
- c) AE+B
- d) AB+B

- **e)** E(A+B)
- **f)** E(AC)
- $\mathbf{g}) \mathbf{E}^{\mathrm{T}} \mathbf{A} \qquad \qquad \mathbf{h}) (\mathbf{A}^{\mathrm{T}} + \mathbf{E}) \mathbf{D}$
- 2. Considere as matrizes

$$A \in \mathcal{M}_{3x4}(\Re), B \in \mathcal{M}_{3x2}(\Re), C e E \in \mathcal{M}_{2x3}(\Re), F \in \mathcal{M}_{2x4}(\Re), D e G \in \mathcal{M}_{4x4}(\Re).$$

Diga Justificando:

- a) Se se pode verificar
 - i) CB = BC;
 - ii) DG = GD.

- b) Se é possível efectuar
 - i) CA + F;
 - ii) CF 3AD;
 - iii) $C + \gamma A$, $com \gamma \in \Re$.
- **3**. Determine os valores de a, b, c e d de modo que a seguinte igualdade se verifique:

$$\begin{bmatrix} a-b & b+c \\ 3d+c & 2a-4d \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 7 & 6 \end{bmatrix}$$

4. Determine o valor de x de modo que as seguintes matrizes sejam iguais

$$\begin{bmatrix} x+1 & x-2 \\ x^2+1 & 1-x \end{bmatrix} = \begin{bmatrix} x^2-1 & x^2-x-2 \\ 9-x^2 & 1-x \end{bmatrix}$$

5. Considere as seguintes matrizes:

$$A = \begin{bmatrix} 10^3 & a^{-2} \\ 40 & 20 \\ \frac{1}{4} & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 100 & a \\ 10^2 & \frac{1}{3} \\ \frac{1}{5} & a \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 10^7 & \frac{1}{4} \\ 4 & 20 & \frac{1}{7} \end{bmatrix} \quad e \quad D = \begin{bmatrix} 10^7 & \frac{1}{4} \\ 20^2 & \frac{1}{3} \end{bmatrix}$$

Diga, justificando, se as seguintes operações são possíveis e quando possível determine o resultado.

- a) A+B
- **b)** AC+B
- c) AC+2D d) AA^T

- e) D^2
- **f)** (CA)D

6. Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \mathbf{e} \quad \mathbf{C} = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$$

- a) Calcule a matriz $(A^T)^T$ e compare-a com A.
- **b)** Calcule as matrizes AC, $(AC)^T e C^T A^T e$ compare-as.
- 7. Sejam A e B duas matrizes sobre um corpo K e $\alpha \in K$. Indique de que tipo devem ser as matrizes A e B, para que as operações em causa estejam definidas:

$$\mathbf{a)} \left(\mathbf{A}^{\mathrm{T}} \right)^{\mathrm{T}} = \mathbf{A}$$

b)
$$(A+B)^T = A^T + B^T$$

$$\mathbf{c}) (\alpha \mathbf{A})^{\mathrm{T}} = \alpha \mathbf{A}^{\mathrm{T}}$$

d)
$$(AB)^T = B^T A^T$$

e)
$$(A^{-1})^T = (A^T)^{-1}$$

- **8.** Mostre que se A e B são matrizes simétricas da mesma ordem então $(AB)^T = BA$.
- **9.** Determine a raiz quadrada da matriz $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$
- 10. Determine a matriz A de modo que,

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + y \\ x - y \\ 0 \end{bmatrix}$$

para qualquer escolha de valores para x, y e z.

- 11. Seja X uma matriz coluna com n elementos.
 - a) Mostre que XX^T é uma matriz quadrada de ordem n.
 - **b)** Verifique que o produto X^TX é uma matriz de ordem 1.
 - c) Se $X^TX = [a]$ e os elementos de X forem números reais, mostre que:

i)
$$a \ge 0$$

ii)
$$a = 0$$
 se e só se X é a matriz nula.