Modify By Confidence Level

Xiaolin Shen

July 5, 2018

1 Stochastic EM Derivation

1.1 E-step

$$p(g|d, \Theta^t) \qquad \propto p(g|u, \Theta^t) p(d|g, \Theta^t)$$

$$p(g_k = 1|d, \Theta^t) \qquad \propto u_k^t \frac{w_k^t}{w_k^t + \theta^t l_k^t} \prod_{k' \neq k} \left[\frac{\theta^t w_{k'}^t}{l_{t,t}^t + \theta^t w_{k'}^t} \right]$$

$$(1)$$

First, let's use $\gamma(d, k, \Theta^t)$ to denote the conditional probability $p(g_k = 1|d, \Theta^t)$ given parameters in the t-th round, when the current session specific favorite aspect is $g_k = 1$, defined as follows

$$\gamma(d, k, \Theta^{t}) = \frac{p(d, g|\Theta^{t})}{\Sigma_{g} p(d, g|\Theta^{t})} = \frac{p(g|\Theta^{t}) p(d|\Theta^{t}, g)}{\Sigma_{g} p(g|\Theta^{t}) p(d|\Theta^{t}, g)}$$

$$= \frac{u_{k} \Pi_{w \in W^{d}, v \in L^{d}} \frac{w_{k}}{w_{k} + \theta^{t} v_{k}} \Pi_{k' \neq k} \frac{\theta^{t} w_{k'}}{v_{k'} + \theta^{t} w_{k'}}}{\Sigma_{k=1}^{K} u_{k} \Pi_{w \in W^{d}, v \in L^{d}} \frac{w_{k}}{w_{k} + \theta^{t} v_{k}} \Pi_{k' \neq k} \frac{\theta^{t} w_{k'}}{v_{k'} + \theta^{t} w_{k'}}}$$
(2)

Note that $\forall d, \Sigma_k \gamma(d, k, \Theta^t) = 1$.

1.2 S-step

then simply add an S-step after the E-step, the value of g for each session d is

$$k \sim u_k^t \frac{w_k^t}{w_k^t + \theta^t l_k^t} \prod_{k' \neq k} \left[\frac{\theta^t w_{k'}^t}{l_{k'}^t + \theta^t w_{k'}^t} \right]$$
 (3)

In the E-step of t-th EM round, compute the expectation $Q(\Theta^t) = E_G \ln p(D, G|\Theta)$

$$\begin{split} E_G \ln p(D, G|\Theta) &= \Sigma_d \gamma(d, k, \Theta^t) \ln p(d, g|\Theta) \\ &= \Sigma_d \gamma(d, k, \Theta^t) \{ \ln u_k + \Sigma_{w \in W_d, v \in V_d} [\ln \frac{w_k}{w_k + \theta v_k} + \Sigma_{k' \neq k} \ln \frac{\theta w_{k'}}{v_{k'} + \theta w_{k'}}] \} \end{split}$$

1.3 M-step

1.3.1 For u

first maximize $Q(\Theta^t)$ with respect to U. For each $u \in U$, eliminating constant terms, we have:

$$\min -\Sigma_{u(d)=u} \sum_{k=1}^{K} \gamma(d, k, \Theta^t) \ln u_k$$

$$w.r.t \Sigma_k u_k = 1$$
(4)

Solving the above Lagrange function Equ. 4, we get

$$u_k = \frac{\sum_{u(d)=u} \gamma(d, k, \Theta^t)}{\sum_{s=1}^K \sum_{u(d)=u} \gamma(d, s, \Theta^t)}$$
 (5)

1.3.2 For v

for the:

$$\ln \frac{y}{x} \ge 1 - \frac{x}{y}$$

we can derive a lower bound for the log-likelihood over the complete data, given the parameters learnt from previous round. hence, we obtain a minorization function of $\tilde{Q}(\Theta^t)$.

$$\tilde{Q}(\Theta^{t}) = \sum_{d} \sum_{k} \gamma(d, k, \Theta^{t}) \sum_{w \in W_{d}, v \in L_{d}} \{ [\ln w_{k} + 1 - \ln(w_{k}^{t} + \theta^{t} v_{k}^{t}) - \frac{w_{k} + \theta v_{k}}{w_{k}^{t} + \theta^{t} v_{k}^{t}}] + \sum_{k' \neq k} [\ln(\theta w_{k'}) + 1 - \ln(v_{k'}^{t} + \theta^{t} w_{k'}^{t}) - \frac{v_{k'} + \theta w_{k'}}{v_{k'}^{t} + \theta^{t} w_{k'}^{t}}] \}$$

 $\tilde{Q}(\Theta^t)$ can be separated for each item v. Considering only the k-th component v_k , $\tilde{Q}(v_k, \Theta^t)$ involves two terms, one of which is relevant to observations $d \in W(v)$ where v acts as skyline object, the other is relevant to observations $d \in L(v)$ where v acts as comparisons, $\tilde{Q}(v_k, \Theta^t) = \tilde{Q}^1(v_k, \Theta^t) + \tilde{Q}^2(v_k, \Theta^t)$. Removing all constants and irrelevant terms for v_k , we have the following minorizing function:

$$\begin{split} \tilde{Q}^1(v_k, \Theta^t) &= \Sigma_{d \in W(v)} |L_d| \ln v_k - v_k \Sigma_{d \in W(v)} \Sigma_{v' \in L_d} [\frac{\gamma(d, k, \Theta^t)}{\alpha(v, v', k, \Theta^t)} + \Sigma_{k' \neq k} \frac{\theta^t \gamma(d, k', \Theta^t)}{\alpha(v', v, k, \Theta^t)}] \\ \tilde{Q}^2(v_k, \Theta^t) &= -v_k \Sigma_{d \in L(v)} \Sigma_{v' \in W_d} [\frac{\theta^t \gamma(d, k, \Theta^t)}{\alpha(v', v, k, \Theta^t)} + \Sigma_{k' \neq k} \frac{\gamma(d, k', \Theta^t)}{\alpha(v, v', k, \Theta^t)}] \end{split}$$

where:

 $|L_d|$ is the number of objects being dominanted in d, $\alpha(v, v', k, \Theta^t) = v_k^t + \theta^t {v'}_k^t$.

By setting the partial derivative of $\frac{\partial \tilde{Q}(v_k, \Theta^t)}{\partial v_k} = 0$, we have:

$$\begin{split} \frac{1}{v_k} = & \frac{\sum_{d \in W(v)} \sum_{v' \in L_d} \left[\frac{\gamma(d,k,\Theta^t)}{\alpha(v,v',k,\Theta^t)} + \sum_{k' \neq k} \frac{\theta^t \gamma(d,k',\Theta^t)}{\alpha(v',v,k,\Theta^t)} \right]}{\sum_{d \in W(v)} |L_d|} \\ & + \frac{\sum_{d \in L(v)} \sum_{v' \in W_d} \left[\frac{\theta^t \gamma(d,k,\Theta^t)}{\alpha(v',v,k,\Theta^t)} + \sum_{k' \neq k} \frac{\gamma(d,k',\Theta^t)}{\alpha(v,v',k,\Theta^t)} \right]}{\sum_{d \in W(v)} |L_d|} \end{split}$$

More concrete:

if $\gamma(d, k, \Theta^t)$'s k equals to v_k 's k:

$$\frac{1}{v_k} = \frac{\sum_{d \in W(v)} \sum_{v' \in L_d} \left[\frac{\gamma(d,k,\Theta^t)}{\alpha(v,v',k,\Theta^t)}\right]}{\sum_{d \in W(v)} |L_d|} + \frac{\sum_{d \in L(v)} \sum_{v' \in W_d} \left[\frac{\theta^t \gamma(d,k,\Theta^t)}{\alpha(v',v,k,\Theta^t)}\right]}{\sum_{d \in W(v)} |L_d|}$$

else:

$$\frac{1}{v_k} = \frac{\sum_{d \in W(v)} \sum_{v' \in L_d} \left[\frac{\theta^t \gamma(d, k', \Theta^t)}{\alpha(v', v, k, \Theta^t)} \big|_{k' = k}\right]}{\sum_{d \in W(v)} |L_d|} + \frac{\sum_{d \in L(v)} \sum_{v' \in W_d} \left[\frac{\gamma(d, k', \Theta^t)}{\alpha(v, v', k, \Theta^t)} \big|_{k' = k}\right]}{\sum_{d \in W(v)} |L_d|}$$

1.3.3 For θ

Fix u, v, update θ by:

Fix $v\in V$ and $u\in U$, rearranging Equ.9, we have the solution for $\frac{\partial \tilde{Q}(\Theta^t)}{\partial \theta}=0$ as:

$$\theta = \frac{(K-1)\Sigma_d |W_d| |L_d|}{\Sigma_d \Sigma_k \gamma(d, k, \Theta^t) \Sigma_{w,v} \left[\frac{v_k}{\alpha(w, v, k, \Theta^t)} + \Sigma_{k' \neq k} \frac{w_{k'}}{\alpha(v, w, k', \Theta^t)} \right]}$$
(6)

Note that :

in the $\Sigma_d\Sigma_k\gamma(d,k,\Theta^t)$ only summing these d which $\gamma(d,k,\Theta^t)$'s k equals to d's k.