1

Assignment 1

AI1110: Probability and Random Variables

Rishitha Surineni cs22btech11050

12.13.1.15: Question:

Consider the experiment of throwing a die,if a multiple of 3 comes up,throw the die again and if any other number comes,toss a coin.Repeat this experiment till a coin is tossed.Find the conditional probability of the event 'the coin shows a tail',given that 'at least one die shows a 3'.

Answer: $\frac{1}{2}$.

Solution:

The given experiment is a Markov Process and the following is the Markov Chain Diagram for this experiment.

Fig. 0. Markov Chain Diagram

The states in the Diagram are defined as follows,

State x_1 : Die roll results in 3 and the die is to be rolled again.

State x_2 : Die roll results in 6 and the die is to be rolled again.

State x_3 : Die roll results in not a multiple of 3 and a coin is to be tossed now.

State y_1 : Coin toss results in Tail

State y_2 : Coin toss results in Head

Need to Find, Conditional Probability of the event 'the coin shows a tail', given that 'at least one die shows a 3', i.e., $Pr(y_1|x_1,x_3)$

 $Pr(y_1|x_1, x_3)$ refers to Conditional Probability of being in state y_1 given that the Markov chain has been in state x_1 atleast once and has also visited state x_3 .

$$\Pr(y_1|x_1, x_3) = \frac{\Pr(y_1, x_3|x_1)}{\Pr(x_3|x_1)}$$
 (1)

 $Pr(y_1, x_3|x_1)$ refers to the Probability that Markov Chain transitions from state x_1 to state x_3 and then to state y_1 .

This Markov Chain is time homogenous . So,

$$\Pr(y_1, x_3 | x_1) = \Pr(y_1 | x_3) \Pr(x_3 | x_1)$$
 (2)

$$\Pr(y_1|x_1, x_3) = \frac{\Pr(y_1|x_3) \Pr(x_3|x_1)}{\Pr(x_3|x_1)}$$
(3)

$$\Pr(y_1|x_1, x_3) = \Pr(y_1|x_3) \tag{4}$$

$$\Pr(y_1|x_1, x_3) = \frac{1}{2} \tag{5}$$

Hence,

Probability of the event 'the coin shows a tail', given that 'at least one die shows a 3' is $\frac{1}{2}$.