

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:	A1	(11) International Publication Number:	WO 93/09201
C09K 7/06	A1	(43) International Publication Date:	13 May 1993 (13.05.93
(21) International Application Number: PCT/US (22) International Filing Date: 22 October 1992 (3600 Wilshire Boulevard, Suite	P. et al.; Ladas & Parry e 1520, Los Angeles, CA
(30) Priority data: 786,034 31 October 1991 (31.10.91) (71) Applicant: UNION OIL COMPANY OF CALIF [US/US]; 1201 West 5th Street, Los Angeles, C (US).	FORN		KP, KR, LK, LU, MG, U, SD, SE, European pass, FR, GB, GR, IE, IT, and (BF, BJ, CF, CG, Cl,
(72) Inventors: VAN SLYKE, Donald, C.; 402 S. Pin CA 92621 (US). STEINWAND, Paul, J.; 1214 Placentia, CA 92670 (US). SPADA, Lonnie, T Shaded Wood Road, Walnut, CA 91789 (US).	Warre	en, With international search report.	

(57) Abstract

An oil-base drilling fluid capable of being held at temperatures in excess of 400 °F while maintaining its yield point comprises (i) oil, (ii) a surfactant, (iii) an organophilic clay, (iv) a polymeric fluid loss control agent selected from the group consisting of polystyrene, polybutadiene, polyethylene, polypropylene, polybutylene, polyisoprene, natural rubber, butyl rubber, polymers consisting of at least two monomers selected from the group consisting of styrene, butadiene, isoprene, and vinyl carboxylic acid, and mixtures thereof, and (v) a sulfonated elastomer polymeric viscosifier.

BNSDOCID; <WO_____ 9309201A1_I >

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU UA	Australia	GA	Gabon	WW	Malawi
		CB	United Kingdom	NL	Netherlands
BB	Barbados	GN	Guinea	NO	Norway
BE	Belgium	GR	Greece	NZ	New Zealand
BF	Burkina Faso	HU	Hungary	PL.	Poland
BG	Bulgaria			PT	Portugal
BJ	Benin	1E	Ireland	RO	Romania
BR	Brazil	IT	Italy	RU	Russian Federation
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic		
CC	('oogo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
a	(Ste d'Ivoire	KZ	Kazakhstan	SN	Senegal
CM	Cameroon	IJ	Liechtenstein	SU	Soviet Union
	Czerboslovakia -	LK	Sri Lanka	TD	Chad
CS		1.U	Lanembourg	TC	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MC	Madagascar	US	United States of America
DK	Denmark		Mali	VN	Viet Nam
ES	Spain	MI.			
FI	Finland	MN	Mongolia		

20

25

30

35

111

THERMALLY STABLE OIL-BASE DRILLING FLUID

BACKGROUND OF THE INVENTION

The present invention relates to oil-base drilling fluids and systems and processes for drilling a borehole in a subterranean formation.

Oil-base drilling muds and techniques for drilling boreholes in subterranean formations to recover hydrocarbons (e.g., oil and gas) are well known to those skilled in the art.

While tripping a drillstring, running logs, performing fishing operations, or conducting other procedures during a drilling operation, the drilling fluid or mud in the borehole remains stagnant and its temperature can reach, and remain at, the bottomhole temperature for several days.

15 <u>SUMMARY OF THE INVENTION</u>

According to one aspect of the invention, there is provided an oil-base drilling fluid comprising oil, a surfactant, a fluid loss control agent, and a viscosifier, characterized in that the fluid loss control agent is selected from the group consisting of polystyrene, polybutadiene, polyethylene, polypropylene, polybutylene, polyisoprene, natural rubber, butyl rubber, polymers consisting of at least two monomers selected from the group consisting of styrene, butadiene, isoprene, and vinyl carboxylic acid, and mixtures thereof and the viscosifier is a sulfonated elastomer polymer.

According to another aspect of the invention, there is provided an oil-base drilling fluid weighing about 7.5 to about 20 pounds per gallon and comprising: (a) about 25 to about 85 volume percent oil based on the total volume of the fluid; (b) about 1 to about 20 pounds per barrel (ppb) surfactant; (c) up to about 45 volume percent water based on the total volume of the fluid; (d) up to about 600 ppb weighting agent; (e) about 0.5 to about 30 ppb organophilic clay; (f) up to about 30 ppb auxiliary fluid loss control agent; (g) about 3 to about 12 ppb polymeric fluid loss

BNSDOCID: <WO____9309201A1_I >

1:1

control agent selected from the group consisting of polystyrene, polybutadiene, polyethylene, polypropylene, polybutylene, polyisoprene, natural rubber, butyl rubber, polymers consisting of at least two monomers selected from the group consisting of styrene, butadiene, isoprene, and vinyl carboxylic acid, and mixtures thereof; (h) about 0.02 to about 2 weight percent sulfonated elastomer polymeric viscosifier; (i) up to about 60 ppb shale inhibiting salt; and (j) up to about 30 ppb lime.

According to a further aspect of the invention, there is provided a drilling system comprising: (a) at least one subterranean formation; (b) a borehole penetrating a portion of at least one of the subterranean formations; (c) a drill bit suspended in the borehole; and (d) a drilling fluid located in the borehole and proximate the drill bit, wherein the drilling fluid is the oil-base drilling fluid, as described above.

According to a still further aspect of the invention, there is provided a method for drilling a borehole in a subterranean formation, the method comprising the steps of: (a) rotating a drill bit at the bottom of the borehole and (b) introducing a drilling fluid into the borehole (i) to pick up drill cuttings and (ii) to carry at least a portion of the drilling cuttings out of the borehole, wherein the drilling fluid is the oil-base drilling fluid, as described above.

organophilic clays used in oil-base drilling fluids have been observed to degrade when the drilling fluid is maintained at bottomhole temperatures exceeding 400° F. This degradation lowers the yield point of the drilling fluid-rendering the drilling fluid incapable of suspending solids and resulting in expensive drilling problems such as weighting agent sagging, mud density variations, solids settling, stuck drillpipe, poor hole cleaning, excessive fluid loss to the formation, and poor cement jobs.

The present invention provides an oil-base drilling fluid capable of being held at temperatures in excess of 400° F while maintaining its yield point. The oil-base fluid comprises (i) oil, (ii) a surfactant, (iii) an organophilic

133

1;5

5

10

15

20

25

30

clay, (iv) a polymeric fluid loss control agent selected from the group consisting of polystyrene, polybutadiene, polyethylene, polypropylene, polybutylene, polyisoprene, natural rubber, butyl rubber, polymers consisting of at least two monomers selected from the group consisting of styrene, butadiene, isoprene, and vinyl carboxylic acid, and mixtures thereof, and (v) a sulfonated elastomer polymeric viscosifier.

3

In addition, a drilling system and a method for drilling a borehole are also provided by the invention. The drilling system comprises (a) at least one subterranean formation, (b) a borehole penetrating a portion of at least one of the subterranean formations, (c) a drill bit suspended in the borehole, and (d) the above drilling fluid located in the borehole and proximate the drill bit.

Regarding the method for drilling a borehole of the present invention, this method comprises the steps of (a) rotating a drill bit at the bottom of the borehole and (b) introducing the aforesaid drilling fluid into the borehole (i) to pick up drill cuttings and (ii) to carry at least a portion of the drill cuttings out of the borehole.

DESCRIPTION OF THE DRAWINGS

The improved heat aged performance characteristics and other features, aspects, and advantages of the present invention will become better understood with reference to the following description, appended claims, and accompanying drawings where:

Figure 1 is a graph depicting the plastic viscosity as a function of aging time at about 400° F of three commercially available drilling fluids alleged by their suppliers to possess good thermal stability.

Figure 2 is a graph depicting the yield point as a function of aging time at about 400° F of the three commercially available drilling fluids shown in Figure 1.

Figure 3 is a graph depicting the high temperaturehigh pressure fluid (HTHP) loss as a function of aging time at about 400° F of the three commercially available drilling fluids shown in Figure 1.

113

: 5 %

5

10

25

30

Ġ,

10

15

20

25

30

Figure 4 is a graph depicting the top oil separation as a function of aging time at about 400° F of the three commercially available drilling fluids shown in Figure 1.

Figure 5 is a graph depicting the plastic viscosity as a function of aging time at about 400° F of an exemplary drilling fluid of the present invention and another two commercially available drilling fluids alleged by their suppliers to possess better thermal stability than the drilling fluids depicted in Figures 1-4.

Figure 6 is a graph depicting the yield point as a function of aging time at about 400° F of the exemplary drilling fluid of the present invention and the other two commercially available drilling fluids shown in Figure 5.

Figure 7 is a graph depicting the HTHP loss as a function of aging time at about 400° F of the exemplary drilling fluid of the present invention and the other two commercially available drilling fluids shown in Figure 5.

Figure 8 is a graph depicting the top oil separation as a function of aging time at about 400° F of the exemplary drilling fluid of the present invention and the other two commercially available drilling fluids shown in Figure 5.

DETAILED DESCRIPTION OF THE INVENTION

without being bound by the theory of its operation, it is believed that the oil-based drilling fluid of the present invention maintains it yield point upon aging at temperatures greater than about 400° F by, among other things, the unique combination of three ingredients, namely, a thermally stable organophilic clay, a polymeric fluid loss control agent, and a sulfonated elastomeric polymeric viscosifier. Exemplary thermally stable organophilic clays include, but are not necessarily limited to, hectorite and bentonite, with hectorite being the more preferred. The organophilic clays can be employed either individually or in combination.

Illustrative polymeric fluid loss control agents include, but are not limited to, polystyrene, polybutadiene, polyethylene, polypropylene, polybutylene, polyisoprene,

1:5

5

natural rubber, butyl rubber, polymers consisting of at least two monomers selected from the group consisting of styrene, butadiene, isoprene, and vinyl carboxylic acid. Individual or mixtures of polymeric fluid loss control agents can be used in the oil base drilling fluid of this invention. Exemplary polymeric fluid loss control agents are described in SPE 13560 (1985), this article being incorporated herein in its entirety by reference.

The preferred polymeric fluid loss control agents are styrene-butadiene copolymers. Characteristics of exemplary styrene-butadiene copolymers are listed in the following Table I:

TABLE I

	Union	n Oil Compan	y of Califo	rnia			
15	Product Number						
	Characteristic 76RES4176	76RES4105	76RES4106	76RES4470			
	Styrene/-						
	Butadiene Ratio 50/50	57/43	90/10	67/33			
	Surfactant Type Anionic	Anionic	Anionic	Anionic			
20	Tg, °C -22	-11	76	12			
	pH 9.0	6.0	6.5	9.0			

All the styrene/butadiene copolymers described in above Table I also contain about 1 to about 3 weight percent copolymerized carboxylic acid (e.g., itaconic acid and acrylic acid).

The sulfonated elastomer polymeric viscosifier is preferably a neutralized sulfonated elastomer polymer having about 5 to about 100 milliequivalents of sulfonate groups per 100 grams of sulfonated polymer. More preferably, the neutralized sulfonated elastomer polymer has about 5 to about 50 milliequivalents, and most preferably about 5 to about 30 milliequivalents, of sulfonate groups per 100 grams of sulfonated polymer.

Preferably, the sulfonated elastomer polymeric viscosifier is derived from an elastomer polymer selected from the group consisting of ethylene-propylene-diene monomer

111

117

ŝ

25

10

15

terpolymers, copolymers of isoprene and styrene (EPDM) and styrene sulfonate salt, copolymers of chloroprene sulfonate salt, copolymers of isoprene and butadiene, copolymers of styrene and styrene sulfonate salt, copolymers of butadiene and styrene sulfonate salt, copolymers of butadiene and styrene, terpolymers of isoprene, styrene, and styrene sulfonate salt, terpolymers of butadiene, styrene, and styrene sulfonate salt, butyl rubber, partially hydrogenated polyisoprenes, partially hydrogenated polybutylene, partially hydrogenated natural rubber, partially hydrogenated buna rubber, partially hydrogenated polybutadienes, and Neoprene. Methods for obtaining and characteristics of sulfonated elastomer polymers are known to those skilled in the art. for example, U.S. Patent 4,447,338, U.S. Patent 4,425,462, U.S. Patent 4,153,588, U.S. Patent 4,007,149, U.S. Patent 3,912,683, and U.K. Patent Application 2,212,192, these documents being incorporated in their entirety by reference.

Typically, the oil-base drilling fluid of the present invention contains the ingredients and properties set forth in the following Table II:

13.4

TABLE II

			More
	Ingredient	Typical	Typical
•	Oil, volume %ª	25-85	50-60
5	Surfactant (active),	•	
	pounds per barrel (ppb) b,g	1-20	1-10
	Water, volume %	up to 45	10-20
	Weighting agent, ppb	up to 600	150-400
	Organophilic clay, ppb	0.5-30	1-10
10	Auxiliary fluid loss control		
	agent, ppb	up to 30	2-15
	Polymeric fluid loss control		
	agent, ppbc	3-12	5-10
	Sulfonated elastomer polymeric		
15	viscosifier, ppbd	0.02-2	0.05-1.5
·	Shale inhibiting salt, ppb	up to 60	20-30
	Lime, ppbe	up to 30	1-10
	Property		
	Density, ppg ^f	7.5-20	9-16

- a. Volume percent is based on the total volume of the drilling fluid.
 - b. As used in the specification and claims, the term "surfactant" means a substance that, when present at low concentration in a system, has the property of adsorbing onto the surfaces or interfaces of the system and of altering to a marked degree the surface or interfacial free energies of those surfaces (or interfaces). As used in the foregoing definition of surfactant, the term "interface" indicates a boundary between any two immiscible phases and the term "surface" denotes an interface where one phase is a gas, usually air. Exemplary ingredients referred to as surfactants by those skilled in the art include emulsifiers and oil wetting agents.
 - c. The polymeric fluid loss control agent is preferably present in the drilling fluid in a concentration of about 6 to about 9 ppb.

111

111

25

30

WO 93/09201 8 PCT/US92/09160

- d. The sulfonated elastomer polymeric viscosifier is preferably present in the drilling fluid in a concentration of about 0.1 to about 1 ppb.
- e. As used in the specification and claims, the term "lime" means quicklime (CaO), quicklime precursors, and hydrated quicklime (e.g., slaked lime (Ca(OH)₂)).
- f. ppg denotes pounds per gallon.

g. The parts per barrel (ppb) is based upon the final composition of the drilling fluid.

The volumetric ratio of oil to water in the drilling fluid of the present invention ranges from about 100:0 to about 50:50.

Preferably, the weight ratio of the polymeric fluid loss control agent to the sulfonated elastomer polymeric viscosifier is about 1.5:1 to about 50:1, more preferably about 3:1 to about 20:1, and most preferably about 5:1 to about 10:1.

oils, surfactants, weighting agents, and shale inhibiting salts typically used in oil-base drilling fluids are suitable for use in the present invention. For example, exemplary oils, surfactants, and weighting agents are described in U.S. Patent 4,447,338 and U.S. Patent 4,425,462, these patents having previously been incorporated herein in their entireties by reference.

Typical shale inhibiting salts are alkali metal and alkaline-earth metal salts. Calcium chloride and sodium chloride are the preferred shale inhibiting salts.

Mauxiliary fluid loss control agents means particles (other than the polymeric fluid loss control agent discussed above) having a size only slightly smaller than that of the pore openings in the formation. The auxiliary fluid loss control agent is used to form a filter cake on the surface of a wellbore to reduce the loss of drilling fluid solids and liquids to the formation. Exemplary auxiliary fluid loss control agents include, but are not limited to, sulfonated asphaltenes, asphaltenes, lignite, and gilsonite. The

117

30

35

1:3

5

10

15

softening point of the auxiliary fluid loss control agent is as high as possible, preferably at least about 300° F, and more preferably at least about 350° F. Due to its high softening point, gilsonite is the most preferred auxiliary fluid loss control agent. Commercially available gilsonite has a softening point within the range of about 290° to about 400° F.

The drilling fluid is preferably prepared by mixing the constituent ingredients in the following order: (a) oil, (b) organophilic clay, (c) surfactant, (d) lime, (e) an aqueous solution comprising water and the shale inhibiting salt, (f) auxiliary fluid loss control agent, (g) weighting agent, (h) polymeric fluid loss control agent, and (i) sulfonated elastomer polymeric viscosifier.

The preferred plastic viscosity, yield point, high temperature-high pressure (HTHP) fluid loss, and top oil separation ranges for the drilling mud of the present invention are set forth in the following Table III.

TABLE III

20

Plastic Viscosity, cp Yield Point, lb/100sqft HTHP Fluid Loss, ml Top Oil Separation, ml Preferred Range
about 25 to about 48
about 10 to about 32
about 1 to about 23
less than about 25

25

30

35

1:3

EXAMPLES

The following examples (which are intended to illustrate and not limit the invention, the invention being defined by the claims) compare various properties of an exemplary drilling fluid within the scope of the present invention (Example 1) with commercially available drilling fluids (Comparative Examples 2-7). In addition, Examples 8-11 demonstrate that different styrene/butadiene copolymers are suitable for use in the drilling fluids of this invention. The effect of varying sulfonated elastomer polymeric viscosifier and polymeric fluid loss control agent

concentrations on the properties of drilling fluids is shown in Examples 12-18.

EXAMPLE 1

An exemplary oil-base drilling fluid or mud (about 5 lab barrels, each lab barrel containing about 350 ml) within 5 the scope of the present invention was formulated as shown in the following Table IV. The ingredients were sequentially added in the order set forth in Table IV. After the addition of each ingredient, the resulting composition was mixed for the indicated mixing time prior to adding a subsequent 10 ingredient to the composition.

TABLE IV

			Mixing Time,
	Component	<u>Ouantity</u>	
15	Mentor 26 brand oil	205 ml (0.586	DDI) N/A
	Inventone 38H brand		
	amine-treated hectorite	3 ppb	30 _p
	Versamul I brand	· ·	
	primary emulsifier	4 ppb)	
20	Versacoat I brand)	•
20	oil wetting agent	5 ppb)>	10
	Versawet I brand surfactant	3 ppb)	
		10 ppb	10
	Lime (Ca(OH) ₂) Brine solution	30	
		51.5 ml (0.14	7 bbl)
25	Water	26.3 ppb	
	CaCl ₂	10 ppb	15
	Versatrol brand gilsonite		
	Barite	269 ppb	20
	HT brand polymeric fluid		
30	loss control agent	6 ppb	10
	Tek Mud 1949 brand sulfonated		
	elastomer polymeric viscosifier	1 ppb	35
	a. N/A denoted not applicable.		

N/A denoted not applicable. a.

The amine-treated hectorite was slowly added to the oil. b.

10

One sample was used to check the initial rheological properties. Samples to be aged were tested in duplicate, i.e., two samples were aged for about 24 hours and another two samples were aged for about 72 hours. The age-tested samples were placed into aging bombs in the presence of about 100 psi nitrogen and rolled at about 400° F. After aging, the amount of top oil separation was measured and the consistency of the drilling fluid noted. The age-tested samples were then remixed and their rheological properties checked. Both the initial and age-tested rheological properties were measured at about 150° F. The results are set forth below in Table V, with the plastic viscosity (PV), yield point (YP), high temperature-high pressure (HTHP) fluid loss, and top oil separation being plotted in Figures 5-8, respectively.

15 TABLE V

			After Het De	11: 14 4000 -
		Initial	24 Hours	lling At 400° F
	Mud Weight, ppg	12.9		
	E.S., volts	620	283	322
20	Dial readingb,			
	600 rpm	110	102	95
	300 "	70	63	56
	200 "	56	49	42
	100 "	38	32	28
25	6 **	21	11	7.5
•	. 3 W	20	10	6.5
	Gel Strength ^c ,			
	10 sec/10 min	20/33	10/18	6/13
	PV, cp ^d	40	40	39
30	YP, lbs/100sqft ^e	30	23	17
	HTHP fluid loss, mlf	1.4	4	4
	Top oil separation,	ml ^g	16	18

a. E.S. denotes electrical stability and was measured according to the procedure described in Recommended Practice - Standard Procedure for Field Testing

PCT/US92/09160

10

<u>Drilling Fluids</u>, Recommended Practice 13B (RP 13B), Twelfth Edition, September 1, 1988, American Petroleum Institute, Washington, DC (hereinafter referred to as "API"), page 28.

- b. Dial readings were obtained using a 115-volt motor driven viscometer described in API, pages 7-9, sections 2.4 to 2.5.
 - c. Gel strength for 10 seconds and 10 minutes was determined in accordance with the procedure discussed in API, page 9, section 2.5, paragraphs f and g, respectively.
 - d. PV was determined in accordance with the procedure and calculations discussed in API, page 9, sections 2.5 to 2.6.
- e. YP was determined in accordance with the procedure and calculations discussed in API, page 9, sections 2.5 to 2.6.
 - f. HTHP was determined in accordance with the procedure discussed in API, page 12, section 3.5.
- g. Top oil separation was determined by decanting and measuring the oil layer above the solids in the age-tested drilling fluid present in aging bomb.

COMPARATIVE EXAMPLES 2-7

In comparative Examples 2-7, six different high temperature service company drilling fluids (about 5 lab 25 barrels each) were prepared using recipes and mixing procedures supplied by the service companies. One sample of each of the different drilling fluids was used to check the initial rheological properties. Each aged sample was tested in duplicate, i.e., two samples of each different drilling 30 fluid were aged for about 24 hours and another two samples were aged for about 72 hours. The age-tested samples were placed into aging bombs in the presence of about 100 psi nitrogen and rolled at about 400° F. After aging, the amount of top oil separation was measured and the consistency of the 35 drilling fluid noted. The age-tested samples were then remixed and their rheological properties checked. Both the

1:1

initial and age-tested rheological properties were measured at about 150° F. The results are set forth below in Tables VI to XI, with the PV, YP, HTHP fluid loss, and top oil separation data for Examples 2-4 being respectively plotted in Figures 1-4 and the PV, YP, HTHP fluid loss, and top oil separation data for Examples 5-7 being plotted in Figures 5-8, respectively.

BNSDOCID: <WO_____9309201A1_I_>

TABLE VI

MILPARK INVERT EMULSION DRILLING FLUID #1

			Mixing Time,
	Component	Quantity	<u>minutes</u>
5	Mentor 26 brand oil	0.61 bbl	N/Aª
	Carbo-Tec brand	in the contract plane and provide the contract of	• up of Magherite Am
	high temperature emulsifier	7 ppb)	
	Carbo-Mul brand)>	3
	emulsifier and wetting agent	8 ppb)	•
10	Quick lime	5 ppb	3
	Brine solution	10	
	Water	0.153 bbl	
	CaCl ₂	29.4 ppb	
	Carbo-Gel brand hectorite-based		
15	organophilic clay	3.5 ppb	3
	Tek Mud 1949 brand sulfonated		
	elastomer polymeric viscosifier	0.1 ppb	3
	Carbo Trol HT brand polymeric		
	fluid loss control agent	9 ppb	3
20	Barite	240 ppb	10
	and the table		

a. N/A denoted not applicable.

MILPARK INVERT EMULSION DRILLING FLUID #1

			After Hot Rolling At 400° F		
		Initial	24 Hours	72 Hours	
25	Mud Weight, ppg	12.0			
	E.S., voltsa	422	457	567	
	Dial readingb,				
	600 rpm	45	85	98	
	300 ⁿ	25	49	53	
30	200 "	17	36	38	
	100 ⁿ	10	23	23	
	6 11	3	3	3	
	3 ⁿ	2	2	2	

Gel Strength^c,

111

7 5 7

	<u> </u>	ABLE VI (c	ontinued)	
	10 sec/10 min	10/2	2/5	4/2
	PV, cpd	20	36	44.5
	YP, lbs/100sqft ^e	5 ့	13	8.5
5	HTHP fluid loss, mlf	4.4	25.5	110
	Top oil separation, mag. See Table V, footnotes.	1 ⁹	7	55

TABLE VII

MILPARK INVERT EMULSION DRILLING FLUID #2

		•	
10	•		Mixing Time,
	Component	Quantity	<u>minutes</u>
	Mentor 26 brand oil	0.61 bbl	N/Aª
	Carbo-Tec brand		•
	high temperature emulsifier	7 ppb)	
15	Carbo-Mul brand)>	3
	emulsifier and wetting agent	8 ppb)	•
	Quick lime	5 ppb	10
	Brine solution	3	•
	Water	0.153 bbl	
20	CaCl ₂	29.4 ppb	•
	Carbo-Gel brand hectorite-based		**
	organophilic clay	2 ppb	3
	Tek Mud 1949 brand sulfonated		
	elastomer polymeric viscosifier	0.75 ppb	3
25	PE-0140 brand latex polymer	2 ppb	3
	Carbo Trol HT brand polymeric		
	fluid loss control agent	10 ppb	3
	Barite	240 ppb	10
	a. N/A denoted not applicable.		

7.17

TABLE VII (continued)

MILPARK INVERT EMULSION DRILLING FLUID #2

			After Hot Ro	lling At 400° F
		Initial	24 Hours	72 Hours
5	Mud Weight, ppg E.S., volts ^a	12.1 375	511	465
	Dial reading ^b , 600 rpm	50	132	119
	300 H	28	84	70
10	200 ¹¹	20	68	54
	100 **	13	47	35
	6 ¹¹	4	21	12
	3 **	3	19	11
	Gel Strength ^c ,			
15	10 sec/10 min	3/10	19/35	10/23
	PV, cp ^d	22	48	48.5
	YP, lbs/100sqfte	6	36	21.5
	HTHP fluid loss, mlf	2.6	12.0	13.0
20	Top oil separation, r		30	68 ^h

h. Drilling mud was severely caked in the bottom of the aging bomb.

TABLE VIII

M-I INVERT EMULSION DRILLING FLUID

			Mixing Time,
25	Component Mentor 26 brand oil	Ouantity 0.586 bbl	minutes
	VG-69 brand hectorite-based organophilic clay Versamul I brand	6 ppb	30
30	primary emulsifier Versacoat I brand	4 ppb)	

TABLE VIII (continued)

	oil wetting agent	5 ppb)>	10
	Versawet I brand surfactant	3 ppb)	
	Lime (Ca(OH) ₂)	10 ppb	10
5	Brine solution	30	
	Water	51.5 ml (0.147	bbl)
	CaCl ₂	26.3 ppb	, •
	Versatrol brand gilsonite	10 ppb	15
	HT brand polymeric fluid		
10	loss control agent	6 ppb	30
	Barite	269 ppb	20

a. N/A denoted not applicable.

M-I INVERT EMULSION DRILLING FLUID

·		After Hot Rol	lling At 400° F
	Initial	24 Hours	72 Hours
Mud Weight, ppg	12.8		
E.S., volts	343	283	296
Dial readingb,			
600 rpm	67	59	62
300 " .	41	29	30
200 H	32	19	20
100 " .	21	10	10
6 ¹¹	7	_ ~ 1	1
3 "	6	1	1
Gel Strength ^c ,			
10 sec/10 min	10/6	1/1	1/1
PV, cp ^d	26	30	32
YP, lbs/100sqft ^e	15	-1	-2
HTHP fluid loss, mlf	18	3	2
	11 ⁹	32	40
	E.S., volts* Dial reading*, 600 rpm 300 " 200 " 100 " 6 " 3 " Gel Strength*, 10 sec/10 min PV, cpd YP, lbs/100sqft* HTHP fluid loss, mlf	Mud Weight, ppg 12.8 E.S., volts ⁸ 343 Dial reading ^b , 600 rpm 67 300 "41 200 "32 100 "21 6 "7 3 "6 Gel Strength ^c , 10 sec/10 min 10/6 PV, cp ^d 26 YP, lbs/100sqft ^e 15 HTHP fluid loss, ml ^f 18 Top oil separation, ml ⁹	Mud Weight, ppg 12.8 E.S., volts ⁸ 343 283 Dial reading ^b , 600 rpm 67 59 300 " 41 29 200 " 32 19 100 " 21 10 6 " 7 1 3 " 6 1 Gel Strength ^c , 10 sec/10 min 10/6 1/1 PV, cp ^d 26 30 YP, lbs/100sqft ^e 15 -1 HTHP fluid loss, ml ^f 18 3 Top oil separation, ml ^g 32 Top oil separation, ml ^g 32 Top oil separation, ml ^g 323

117

117 .

TABLE IX

BARIOD INVERT EMULSION DRILLING FLUID #1

	aan amt	Ouantity	Mixing Time, minutes
	Component	0.58 bbl	N/A ^a
5	Mentor 26 brand oil		s as was south whith frequency
	Invermul NT brand		•
	oil mud emulsifier	4 ppb	2
	EZmul NT brand		
	oil mud emulsifier	10 ppb	2
10	Duratone HT brand amine		
	treated lignite fluid		
	loss control agent	13 ppb	2
	Lime	8 ppb	5
	Bentone 38 brand hectorite-base	đ	
15	organophilic clay	8 ppb	2
	Brine solution	10	
	Water	0.13 bbl	
	CaCl ₂	37.4 ppb	
	RM-63 brand polymeric		
20	fatty acid	1 ppb	2
	Barite	269 ppb	35
	a N/A denoted not applicable.		

TABLE IX (continued)

BARIOD INVERT EMULSION DRILLING FLUID #1

	•		After Hot Rol	lling At 400°	F
		Initial	24 Hours	72 Hours	•
5	Mud Weight, ppg	13.8			
	E.S., volts	2000	327	258	
	Dial reading ^b ,				
	600 rpm	160	105	126	
	300 m	136	62	76	
10	200 "	118	47	57	
	100 "	95	29	34	
	6 W	57	5	4	
•	3 **	54	4	3	
	Gel Strength ^c ,				
15	10 sec/10 min	75/54	4/24	17/3	
	PV, cp ^d	24	43	50	
	YP, lbs/100sqft ^e	112	19	25.5	
	HTHP fluid loss, mlf	2.4	3.4	8	
	Top oil separation, m	ıl ⁹	16	0	
20	ag. See Table V. footnotes.			•	

133

TABLE X

BARIOD INVERT EMULSION DRILLING FLUID #2

		Onnatitu	Mixing Time, minutes
	Component	<u>Ouantity</u>	
5	Mentor 26 brand oil	0.58 bbl	N/Aª
	Invermul NT brand		s and the second secundary to the second second
	oil mud emulsifier	4 ppb	2
	Ezmul NT brand		
	oil mud emulsifier	10 ppb	2
10	Duratone HT brand amine		
	treated lignite fluid		_
	loss control agent	13 ppb	2
	Line	8 ppb	5
	Geltone IV brand		
15	organophilic clay-polymer blend	8 ppb	2
	Brine solution		10
	Water	0.13 bbl	
	CaCl ₂	37.4 ppb	
	RM-63 brand polymeric		
20	fatty acid	1 ppb	2
	Barite	263 ppb	35
	a N/A denoted not applicable.		

7:7

TABLE X (continued)

BARIOD INVERT EMULSION DRILLING FLUID #2

			After Hot Rol	ling At 400° F
		Initial	24 Hours	72 Hours
5	Mud Weight, ppg	13.0		
	E.S., volts ^a	726	208	276
	Dial readingb,			
	600 rpm	80	54	54
	300 "	50	27	27
10	200 "	40	19	18
	100 "	39	11	10
	6 ⁿ	14	1	2
	3 "	13	1	. 1
	Gel Strength ^c ,		•	
15	10 sec/10 min	13/30	1/2	1/4
	PV, cpd	30	27	26.5
	YP, lbs/100sqft ^e	20	0	1
	HTHP fluid loss, mlf	2.6	4.6	8.6
	Top oil separation, m	1 ⁹	0	O .
20	ag. See Table V, footnotes.			

BNSDOCID; <WO____8309201A1_I_>

111

TABLE XI

IDF INVERT EMULSION DRILLING FLUID

			Mixing Time,
		<u>Ouantity</u>	minutes
5	Component Mentor 26 brand oil	0.55 bbl	N/Aª
	Interdrill Emul brand oil mud emulsifier	3 ppb	5
	Interdrill Fl brand fluid loss reducer and		
10	secondary emulsifier	7 ppb	2
	Interdrill OW brand oil wetting agent	1 ppb	2
	Interdrill ESX brand		
15	high temperature emulsion/- contamination stabilizer	5 ppb	2
	Lime	12 ppb	5
	Vistone HT brand organophilic clay	8 ppb	2
	Brine solution	0.147 bbl	10
20	Water CaCl,	21.7 ppb	
	Trudrill S brand asphaltene		•
	fluid loss control agent	9 ppb	2
	Barite	266 ppb	20
25	a. N/A denoted not applicable.	-	

TABLE XI (continued)

23.

IDF INVERT EMULSION DRILLING FLUID

			After Hot Rol	ling At 400° F
		Initial	24 Hours	72 Hours
5	Mud Weight, ppg	13.0		
	E.S., volts	133	557	870
	Dial reading ^b ,			• •
	600 rpm	108	63	72
	300 **	72	32	38
10	200 "	61	22	28
	100 "	45	12	17
	6 ¹¹	23	1	3
	3 "	21	1	2
	Gel Strength ^c ,			
15	10 sec/10 min	42/21	1/2	18/2
	PV, cp ^d	36	31	33.5
	YP, lbs/100sqft ^e	36	1	4.5
	HTHP fluid loss, mlf	1.0	3.0	3.1
	Top oil separation, m	ala	0	0
20	ag. See Table V, footnotes.		•	

A comparison of the results depicted in Figures 1-8 graphically indicates that the only drilling mud possessing satisfactory initial and aged plastic viscosity, yield point, HTHP fluid loss loss, and top oil separation characteristics is the exemplary drilling fluid within the scope of the present invention.

RNSDOCID: <WO 9309201A1 1 >

117

EXAMPLES 8-11

EXEMPLARY DRILLING FLUIDS CONTAINING DIFFERENT STYRENE/BUTADIENE POLYMERS

Using the different styrene/butadiene polymers set forth above in Table I, exemplary oil-base drilling fluids (about 5 lab barrels each) within the scope of the present invention were formulated as shown in the following Table XII:

TABLE XII

			Mixing Time,
10	Component Mentor 26 brand oil	Ouantity 205 ml (0.586	minutes bbl) N/A
	Inventone 38H brand amine-treated hectorite	3 ppb	30p
15	Versamul I brand primary emulsifier	4 ppb	
	Versacoat I brand oil wetting agent	5 ppb 3 ppb	10
	Versawet I brand surfactant Lime (Ca(OH) ₂)	10 ppb	10 30
20	Brine solution Water	51.5 ml (0.1 26.3 ppb	47 bbl)
	CaCl ₂ Versatrol brand gilsonite	10 ppb	15 20
25	Barite Styrene/Butadiene polymer	269 ppb 6 ppb	10
	Tek Mud 1949 brand sulfonated elastomer polymeric viscosifier	1 ppb	35

a. N/A denoted not applicable.

b. The amine-treated hectorite was slowly added to the oil.

One sample of each drilling fluid was used to check the initial rheological properties. Samples to be aged for about 72 hours were tested in duplicate, while only one sample was used for those to be age-tested for about 24 hours. The age-tested samples were placed into 8 aging bombs in the

1:3

30

35

presence of about 100 psi nitrogen and rolled at about 400° F. After aging, the amount of top oil separation was measured and the consistency of the drilling fluid noted. The agetested samples were then remixed and their rheological properties checked. Both the initial and age-tested rheological properties were measured at about 150° F. The results are set forth below in Table XIII.

TABLE XIII

A. 76RES4176

10			After Hot Rol	ling At 400° F
		Initial	24 Hours	72 Hours
	E.S., volts	794	338	300
	Dial reading ^b ,			
	600 rpm	110	132	126
15	300 m	70	82	72
	200 "	56	66	54
	100 "	39	44	34
	6 ^H	22	14	8
	3 "	21	13	6
20	Gel Strength ^c ,			
	10 sec/10 min	21/32	12/22	6/12
	PV, cp ^d	40	50	54
	YP, lbs/100sqft ^e	30	32	18
	HTHP fluid loss, mlf	6	18	11
25	Top oil separation, ml	9	25	24

TABLE XIII (continued)

	B. 76RES4105		After Hot Rol	ling At 400° F
		Initial	24 Hours	72 Hours
5	E.S., volts	654	414	341
	Dial readingb,		24	109
	600 rpm	105	94	
	300 ¹¹	69	59	67
		56	47	53
	200	39	33	35
10	100	25	14	13
	6 ¹¹	24	13	11
	Gel Strength ^c ,			
		24/28	13/25	11/19
	10 sec/10 min	36	35	43
15	pv, cp ^d	33	24	24
	YP, lbs/100sqft ^e HTHP fluid loss, mlf	3.2	20	12
	Top oil separation,	ml ^g	28	27

TABLE XIII (continued)

C. 76RES4106

			After Hot Rol	ling At 400° F
		Initial	24 Hours	72 Hours
5	E.S., volts	736	367	307
	Dial reading ^b ,			
	600 rpm	96	106	85
	300 "	62	63	49
	200 "	50	50	37
10	100 "	34	33	24
	6 ¹¹	21	11	7
	3 n	20	10	6
	Gel Strength ^c ,			
	10 sec/10 min	20/20	10/20	6/17
15	PV, cp ^d	34	43	36
	YP, lbs/100sqft*	28	20	13
	HTHP fluid loss, mlf	3	44	36
	Top oil separation, ml	9	23	25

13.7

TABLE XIII (continued)

	D. 76RES4470			- 1 - 2 - 100 T
			After Hot Rol	ling At 400° F
		Initial	24 Hours	72 Hours
5	E.S., volts	917	318	. 277
	Dial readingb,			
	600 rpm	99	102	106
	300 n	62	58	58
	200 ⁿ	49	42	43
10	100 "	33	27	25
10	6 [#]	20	6	5
	3 "	19	5	4
	Gel Strength ^c ,			
	10 sec/10 min	19/28	5/10	4/10
15	PV, cp ^d	37	44	48
	YP, lbs/100sqft ^e	25	14	10
	HTHP fluid loss, mlf	4	10	20
	Top oil separation, I	nl ^g	13	21

a.-g. See Table V, footnotes.

20 The data listed in above Table XIII indicate that each of the four different styrene/butadiene polymers listed in Table I yields a drilling fluid having overall satisfactory characteristics for use at elevated temperatures when formulated in accordance with the present invention.

25 <u>EXAMPLES 12-18</u>

EFFECT OF VARYING SULFONATED ELASTOMER POLYMERIC VISCOSIFIER AND POLYMERIC FLUID LOSS CONTROL AGENT CONCENTRATIONS

Seven exemplary oil-base drilling fluids (about 5 lab barrels each) were formulated using varying sulfonated elastomer polymeric viscosifier and polymeric fluid loss control agent concentrations as shown in the following Table XIV:

TABLE XIV

	Component Mentor 26 brand oil	<u>Ouantity</u> 205 ml (0.586	Mixing Time, minutes bbl) N/A*
5	Inventone 38H brand	•	
	amine-treated hectorite	3 ppb	30p
	Versamul I brand	,	
	primary emulsifier	4 ppb	•
	Versacoat I brand)	
10	oil wetting agent	5 ppb	10
	Versawet I brand surfactant	3 ppb	
	Lime (Ca(OH) ₂)	10 ppb	10
	Brine solution		30
	Water	51.5 ml (0.147	bbl)
15	CaCl ₂	26.3 ppb	
	Versatrol brand gilsonite	10 ppb	15
	Barite	269 ppb	20
	HT brand polymeric fluid		
	loss control agent	varied	10
20	Tek Mud 1949 brand sulfonated		
	elastomer polymeric viscosifier a. N/A denoted not applicable.	varied	35

properties and either single or duplicate samples were used to check the rheological properties after being aged for about 72 hours. Each age-tested sample was placed into an aging bomb in the presence of about 100 psi nitrogen and rolled at about 400° F. After aging, the amount of top oil separation was measured and the consistency of the drilling fluid noted. The age-tested samples were then remixed and their rheological properties checked. Both the initial and age-tested rheological properties were measured at about 150° F. The

results are noted below in Table XV.

The amine-treated hectorite was slowly added to the oil.

111.

TABLE XV

	HT Polymer, ppb			3		6	,
	Tek Mud,	_					
5	ppb	_1		11		_ 1	
3	PP~	Initial	Aged	<u>Initial</u>	Aged	<u>Initial</u>	<u>Aged</u>
	E.S., volts	850	310	814	263	620	322
	Dial readingb						•
	600 rpm	94	77	106	105	110	95
10	300 m	60	42	66	59	70	56
10	200 H	48	30	52	43	56	42
	100 "	33	19	36	27	38	28
	6 "	19	4	22	7	21	7.5
	3 n	18	3	21	6	20	6.5
15	Gel Strength	:					
	10 sec/10 mir		3/7	21/30	6/5	20/33	6/13
	PV, cp ^d	34	35	40	46	40	39
	YP, lbs/100sqft ^e	26	7	26	13	30	17
20	HTHP fluid loss, mlf	5	90	. 4	41	1.4	4
	Top oil separation, I	nl ^g	27		29		18

BNSDOCID: <WO_____9309201A1_I_>

117

TABLE XV (continued)

	HT Polymer,							
	ppb	9		12				
	Tek Mud,							
5	ppb	1		1				
		<u>Initial</u>	Aged	<u>Initial</u>	<u>Aged</u>			
	E.S., voltsa	834	350	710	372			
	Dial readingb,							
	600 rpm	134	114	162	114			
10	300 m	88	69	105	69			
	200 "	71	54	84	56			
	100 "	51	36	66	37			
	6 "	31	13	48	15			
	3 "	30	11	45	13			
15	Gel Strength ^c ,							
	10 sec/10 min	30/45	11/22	45/84	13/25			
	PV, cp ^d	46	45	57	45			
	YP,							
	lbs/100sqft ^e	42	24	48	24			
20	HTHP fluid							
	loss, mlf	1.6	21	2	6			
	Top oil				·			
•	separation, ml9		19		0			

PNSDOCID- <WO 9309201A1 1 >

111 -

TABLE XV (continued)

	HT Polymer,			_		6	
	ppb		5	6		· ·	
	Tek Mud,	(0.5	5	1.5	5
5	ppb -	<u> </u>	Aged	Initial	Aged	Initial	<u>Aged</u>
		677	232	882	299	734	373
	E.S., volts		242				
	Dial reading		63	87	81	150	148
	600 rpm	60	61		44	92	92
10	300 "	39	30	55			72
	200 "	30	20	47	32	72	
	100 "	24	11	32	18	51	49
	6 "	12	11	18	3	29	20
	3 "	9	1	17	2	27	17
15	Gel Strength	•					
15	10 sec/10 mi		1/1	17/18	2/5	27/37	17/28
	PV, cp ^d	21	31	32	37	58	56
	YP, lbs/100sqft ^e	18	-1	23	8	34	37
20	HTHP fluid loss, mlf	2.4	6	1.6	4	1.4	73
	Top oil separation,	ml ^g	N/A ^h		34		19

TABLE XV (continued)

	HT Polymer,				
	ppb		6		6
	Tek Mud,				
5	ppb	2		3	
		<u>Initial</u>	<u>Aged</u>	<u>Initial</u>	Aged
	E.S., volts ^a	923	433	718	692
	Dial readingb	,			
	600 rpm	279	275	750	900+
10	300 *	183	164	618	600
	200 "	147	129	540	459
	100 *	105	89	441	258
	6 "	60	42	201	60
	3 #	54	38	168	60
15	Gel Strength ^c ,				
	10 sec/10 min	•	38/50	165/225	48/96
	PV, cp ^d	96	111	132	TV
	YP,				
	lbs/100sqft ^e	. 87	51	486	TV^{i}
20	HTHP fluid				
	loss, mlf	1.6	6.7	2.4	10
	Top oil				
	separation, m]	[g	17		0
	ag. See Table V,				<u>.</u>
	•			•	-

25 h. N/A denotes not available.

i. TV denotes too viscous to obtain.

The data in above Table XV indicate that, for the concentrations ranges tested, best results were obtained when the drilling fluid of the present invention contained a polymeric fluid loss control agent concentration of about 6 ppb and a sulfonated elastomer polymeric viscosifier concentration of about 0.5 to about 1 ppb. Field observations indicate that lower concentrations of the polymeric fluid loss control agent and sulfonated elastomer polymeric viscosifier can be employed to give very acceptable results. This

117

30

PCT/US92/09160 WO 93/09201

34

observation is believed to be due to the presence in the drilling fluid of fine particle size materials that originate in the subterranean formation but do not separate from drilling fluid when the drilling fluid is processed to remove drill cuttings.

Although the present invention has been described in detail with reference to some preferred versions, other versions are possible. Therefore, the spirit and scope of the appended claims should not necessarily be limited to the description of the preferred versions contained herein.

_9309201A1_l_> BNSDOCID: <WO____

113

5

CLAIMS

- 1. An oil-base drilling fluid comprising oil, a surfactant, a fluid loss control agent, and a viscosifier, characterized in that the fluid loss control agent is selected from the group consisting of polystyrene, polybutadiene, polyethylene, polypropylene, polybutylene, polyisoprene, natural rubber, butyl rubber, polymers consisting of at least two monomers selected from the group consisting of styrene, butadiene, isoprene, and vinyl carboxylic acid, and mixtures thereof and the viscosifier is a sulfonated elastomer polymer.
 - 2. The oil-base drilling fluid of claim 1 wherein the sulfonated elastomer polymer is a neutralized sulfonated elastomer polymer having about 5 to about 100 milliequivalents of sulfonate groups per 100 grams of sulfonated polymer.
- 15 The oil-base drilling fluid of claim 1 wherein 3. the sulfonated elastomer polymer is derived from an elastomer polymer selected from the group consisting of ethylenepropylene-diene monomer (EPDM) terpolymers, copolymers of isoprene and styrene sulfonate salt, copolymers of chloroprene and styrene sulfonate salt, copolymers of isoprene and 20 butadiene, copolymers of styrene and styrene sulfonate salt, copolymers of butadiene and styrene sulfonate salt, copolymers of butadiene and styrene, terpolymers of isoprene, styrene, and styrene sulfonate salt, terpolymers of butadiene, styrene, 25 and sulfonate salt, butyl rubber, styrene hydrogenated polyisoprenes, partially hydrogenated polybutylene, partially hydrogenated natural rubber, partially hydrogenated buna rubber, partially hydrogenated polybutadienes, and Neoprene.
- 4. The oil-base drilling fluid of claim 1 wherein the fluid loss control agent is a styrene-butadiene copolymer.
 - 5. The oil-base drilling fluid of claim 1 comprising about 3 to about 12 pounds per barrel (ppb) of the

fluid loss control agent and about 0.02 to about 2 ppb of the sulfonated elastomer polymer.

The oil-base drilling fluid of claim 1 6. comprising about 5 to about 10 pounds per barrel (ppb) of the fluid loss control agent and about 0.5 to about 1.5 ppb of the sulfonated elastomer polymer.

₹

- The oil-base drilling fluid of claim 6 7. comprising about 6 to about 9 ppb of the fluid loss control agent.
- The oil-base drilling fluid of claim 1 wherein 8. 10 the weight ratio of (a) the fluid loss control agent to (b) the sulfonated elastomer polymer is about 1.5:1 to about 50:1.
- The oil-base drilling fluid of claim 1 wherein 9. the weight ratio of (a) the fluid loss control agent to (b) the sulfonated elastomer polymer is about 3:1 to about 20:1. 15
 - The oil-base drilling fluid of claim 1 wherein the weight ratio of (a) the fluid loss control agent to (b) the sulfonated elastomer polymer is about 5:1 to about 10:1.
- The oil-base drilling fluid of claim 1 further 11. comprising water. 20
 - 12. The oil-base drilling fluid of claim 1 further comprising lime.
 - 13. The oil-base drilling fluid of claim 1 further comprising a weighting agent.
- The oil-base drilling fluid of claim 1 further 25 comprising a shale inhibiting salt.
 - 15. An oil-base drilling fluid weighing about 7.5 to about 20 pounds per gallon and comprising:

117

<u>.</u>...

. 111

7 1 7

- (a) about 25 to about 85 volume percent oil based on the total volume of the fluid;
- (b) about 1 to about 20 pounds per barrel (ppb)
 surfactant;
- (c) up to about 45 volume percent water based on the total volume of the fluid;
 - (d) up to about 600 ppb weighting agent;
 - (e) about 0.5 to about 30 ppb organophilic clay;
- (f) up to about 30 ppb auxiliary fluid loss control agent;
- (g) about 3 to about 12 ppb polymeric fluid loss control agent selected from the group consisting of polystyrene, polybutadiene, polyethylene, polypropylene, polybutylene, polyisoprene, natural rubber, butyl rubber, polymers consisting of at least two monomers selected from the group consisting of styrene, butadiene, isoprene, and vinyl carboxylic acid, and mixtures thereof;
- (h) about 0.02 to about 2 weight percent 20 sulfonated elastomer polymeric viscosifier;
 - (i) up to about 60 ppb shale inhibiting salt; and
 - (j) up to about 30 ppb lime.
- 16. The oil-base drilling fluid of claim 15 weighing about 9 to about 16 pounds per gallon and comprising:
 - (a) about 50 to about 60 volume percent oil based on the total volume of the fluid;
 - (b) about 1 to about 10 ppb surfactant;
- (c) about 10 to about 20 volume percent water 30 based on the total volume of the fluid;
 - (d) about 150 to about 400 ppb weighting agent;
 - (e) about 1 to about 10 ppb organophilic clay;
 - (f) about 2 to about 15 ppb auxiliary fluid
 control agent;
- (g) about 5 to about 10 ppb polymeric fluid control agent;
 - (h) about 0.5 to about 1.5 weight percent sulfonated elastomer polymeric viscosifier;

- (i) about 20 to about 30 ppb shale inhibiting salt; and
 - (j) about 1 to about 10 ppb lime.
- 17. The oil-base drilling fluid of claim 15 wherein the auxiliary fluid control loss agent is selected form the group consisting of amine-treated lignite, gilsonite, asphaltics, and mixtures thereof.

18. A drilling system comprising:

- (a) at least one subterranean formation;
- (b) a borehole penetrating a portion of at least one of the subterranean formations;
 - (c) a drill bit suspended in the borehole; and
 - (d) a drilling fluid located in the borehole and proximate the drill bit,
- wherein the drilling fluid is the oil-base drilling fluid of claim 1.

19. A drilling system comprising:

- (a) at least one subterranean formation;
- (b) a borehole penetrating a portion of at 20 least one of the subterranean formations;
 - (c) a drill bit suspended in the borehole; and
 - (d) a drilling fluid located in the borehole and proximate the drill bit,

wherein the drilling fluid is the oil-base drilling fluid of claim 15.

- 20. A method for drilling a borehole in a subterranean formation, the method comprising the steps of:
- (a) rotating a drill bit at the bottom of the borehole and
- borehole (i) to pick up drill cuttings and (ii) to carry at least a portion of the drilling cuttings out of the borehole, wherein the drilling fluid is the oil-base drilling fluid of claim 1.

117

PCT/US92/09160

5

39

- 21. A method for drilling a borehole in a subterranean formation, the method comprising the steps of:
- (a) rotating a drill bit at the bottom of the borehole and
- (b) introducing a drilling fluid into the borehole (i) to pick up drill cuttings and (ii) to carry at least a portion of the drilling cuttings out of the borehole, wherein the drilling fluid is the oil-base drilling fluid of claim 15.

03/00/00 CMC - 41/00/09/49

PNSDOCID -WO 0200201A1 I

*

BNSDOCID- «WO 9999201A1 L>

117

•

.

BNSDOCID: <WO

9309201A1 1 >

111

111 ...

BNSDOCID; <WO

111

9309201A1 i >

.

111

111

.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9209160 SA 66423

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

US-A-4537919 27-08-85 None US-A-3351079 None US-A-4537688 27-08-85 None US-A-4442011 10-04-84 None		
US-A-4537688 27-08-85 None		
40000000000000000000000000000000000000		
US-A-4442011 10-04-84 None		
	•	
·		
	•	
	-	
•		

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82