BRST AVAILABILE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-171974

(43) Date of publication of application: 21.06.1994

(51)Int.CI.

CO3C 4/00

CO3C 3/04

(21)Application number : **04-345458**

(22)Date of filing:

30.11.1992

(71)Applicant: OLYMPUS OPTICAL CO LTD

(72)Inventor: FUKUOKA TAKAHISA

(54) GLASS BODY HAVING REFRACTIVE INDEX DISTRIBUTION

(57) Abstract:

PURPOSE: To provide a glass body contg. a large amt. of a rare earth element, having a refractive index distribution due to the concn. distribution of the rare earth element and having a significant optical effect while considering color dispersion.

CONSTITUTION: The objective glass body having a refractive index distribution is formed with a compsn. having a concn. distribution imparted to at least one kind of element among La, Y and Gd and contg. at least one kind of element among AI, P and B. In the case where dispersing characteristics are considered so as to correct color aberration, at least one kind of element among Nb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In and TI is preferably incorporated into the compsn.

LEGAL STATUS

[Date of request for examination]

27.10.1999

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the

examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

3193492

[Date of registration]

25.05.2001

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

g

decision of rejection]

е

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to a vitreous humour with refractive-index distribution. [0002]

[Description of the Prior Art] Conventionally, a vitreous humour with concentration distribution is in the alkali metal according to an ion-exchange method in a vitreous humour with refractive-index distribution, such as Li, Cs, and Tl, at Li, Cs, Tl, etc. by selfoc and a molecular stuffing method with concentration distribution at Pb, Ti, or germanium by a vitreous humour (JP,60-54891,B) and a sol gel process with concentration distribution (JP,3-295818, А, ЈР, 60-145917, А, ЈР, 60-14598, А).

[0003] Moreover, chromatic aberration is also considered and the presentation of the refractive-index distribution pattern optical element which has the optically excellent property with concentration distribution in elements, such as La, Y, and Gd, is indicated by JP,3-141302,A. [0004]

[Problem(s) to be Solved by the Invention] However, the vitreous humour with the refractive-index distribution which has concentration distribution in selfoc, and the alkali metal, Pb and Ti or germanium of the abovementioned former did not have the high optical effectiveness which amends chromatic aberration. Then, when giving concentration distribution to La, Y, and Gd, it is necessary to make these elements contain in glass so much, although the high refractive-index distribution pattern optical element of optical effectiveness which also considered chromatic aberration is proposed by JP,3-141302,A and presentation distribution of a refractive-index distribution pattern optical element with concentration distribution is stated to La, Y, and Gd. However, it was difficult to have made glass contain the glass containing rare earth elements, such as La, Y, and Gd, so much [vitrification is difficult, and / in order for a presentation to change with parts of glass in order to give refractiveindex distribution further and to give concentration distribution of rare earth elements into glass, and to devitrify partially or to give a big refractive-index difference]. Therefore, it was difficult to obtain optically the vitreous humour with high refractive-index distribution of effectiveness for which desired glass was not obtained, as a result it had a big refractive-index difference.

[0005] This invention aims at offering a vitreous humour with high refractive-index distribution of the optical effectiveness which is made in view of this conventional trouble, contains these elements so much, and has [it is a thing and has concentration distribution in rare earth elements, and] refractive-index distribution, and also took chromatism into consideration.

[0006]

[Means for Solving the Problem] In order to attain the above-mentioned technical problem, the vitreous humour with refractive-index distribution of this invention has concentration distribution in at least one sort of elements of La, Y, and the Gd(s), and was taken as the presentation containing at least one sort of elements of aluminum, P, and the B. Moreover, it is good also as a presentation which contains at least one sort of elements of Nb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, and the Tl further in consideration of a distributed property for chromatic-aberration amendment.

[0007]

[Function] The reason with difficult production of the glass which contains rare earth elements so much is SiO2. When the two-component system of the oxide of rare earth elements is considered, it thinks because it is that the melting point of both oxides is high, and that a liquid-liquid immiscibility field exists. It is dependent on the relative free energy of the phase formed in a system that immiscibility starts. While a silica follows the conditions of mesh

formation, it is supposed that a cation happens the phase separation between the liquid phase-liquid phase from the contention between cations which is going to draw oxygen ion and is going to take the oxygen array of the minimum energy to its surroundings. The capacity permuted by Si is restricted in the network structure, and since qualification ion and Ion Nakama (in this case, rare earth elements) are powerful binding energy with oxygen, when it is the minimum energy state, he cannot enter by high concentration. Then, the condition that energy is the lowest becomes the phase to which another is rich in qualification ion to the phase to which a system separates into the two liquid phase, and one is rich in a mesh organizer (silica).

[0008] Then, when at least one element which has concentration distribution in rare earth elements, such as La, Y, and Gd, and was chosen as silica system glass with refractive-index distribution from aluminum, P, and B as a result of inquiring wholeheartedly was added, even if it had concentration distribution in rare earth elements, such as La, Y, and Gd, it found out that these elements were contained so much and a vitreous humour with refractive-index distribution could be produced. Since the capacity for this to permute aluminum, P, and B by elements, such as Si in the network structure, is high, it thinks because liquid-liquid separation stopped being able to happen easily.

[0009] This effectiveness is the same also in the system containing Nb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, and Tl which are combined with rare earth elements, when optical chromatic-aberration amendment capacity is observed. Therefore, even if it has concentration distribution in rare earth elements, such as La, Y, and Gd, these rare earth elements, such as La, Y, and Gd, are contained so much, and a vitreous humour with the refractive-index distribution with the chromatic-aberration amendment capacity which contains Nb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, and Tl so much further can be produced. Concentration distribution may be given to the element of these Nb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, and Tl, and concentration distribution does not need to be given to it. [0010] The vitreous humour with refractive-index distribution of this invention is shown in JP,3-141302,B as shown in drawing 1 (A) and (B). As the metal kind b and the metal kind c show mutually concentration distribution of an opposite direction, drawing 2 (A), and (B) As shown in the concentration distribution and drawing 3 (A) from which the metal kind d is distributed with inclination, and the metal kind e is distributed over abbreviation flatness, and (B), although the metal kind f is [as opposed to / the metal kind g, the concentration distribution from which it is distributed in this direction with inclination smaller than the metal kind f / especially] effective The distribution configuration of a metal kind is spherically applicable not only in a thing with distribution but the direction of an optical axis in the direction of a path at a thing with distribution of a metal kind, a thing with distribution of a metal kind, etc., as shown in drawing 3 from drawing 1. In addition, these application is not what was restricted to the vitreous humour which has the refractive-index distribution excellent in the chromatism property, and has effectiveness in that a vitreous humour can be obtained.

[0011] the above thing was explained here -- as -- SiO2 it is restricted to what was used as the principal component -- ******** -- B-2 O3 etc. -- it is applicable also like the glass used as the principal component. Even when the addition of aluminum, P, and B is little, it is effective, and it is not restricted especially. For example, in the case of aluminum, since there is concentration distribution, the atomic ratio with rare earth elements changes with parts of glass, but as for (the number of several/aluminum of rare earth elements), it is desirable that it is six or less, and, in the case of the one neighborhood, it is the most effective. In P, it is desirable for (the number of several/P of rare earth elements) to be four or less, and, in the case of the one neighborhood, it is the most effective. In B, it is desirable for (the number of several/B of rare earth elements) to be six or less, and, in the case of the 1 to 2 neighborhoods, it is the most effective.

[0012] When using two or more aluminum, P, and B, it may be better than the case where aluminum, P, and B are used independently, further at least, these elements may have distribution, and the atomic ratio (several/aluminum+P+B of rare earth elements) with rare earth elements does not need to have it. Moreover, a chromatism property is also controllable by giving distribution to these components. Since the chemical durability of glass falls when using especially P, as for using superfluously, it is desirable to carry out concentration distribution to concentration distribution of rare earth elements, preferably, so that the need minimum amount may be added in each location.

[0013] moreover, the glass laminated layers method to which the vitreous humour with refractive-index distribution of this invention carries out welding of for example, an ion-exchange method, a molecular stuffing method, a sol gel process, and the thin glass in piles and CDV -- also in the manufacture approaches like a throat other than this, such as law and a vacuum arc heating decarbonizing process, it is applicable.

[0014]

[Example 1] This example has distribution in a configuration as shown in drawing 4 at a metal kind. aluminum 203

eb cg e e

1

of a core Y2 O3 A content 23 (mol ratio), TiO2 A content is 0 (mol ratio) and it is Y2 O3 of a periphery. It turns to a periphery from a core so that a content may be set to 0 (mol ratio), and it is Y2 O3. Distribution a content decreases [distribution] to parabolic mostly is carried out. Moreover, aluminum 2O3 of a periphery At 23 (mol ratio), a content is TiO2. So that a content may be set to 7 (mol ratio) It turns to a periphery from a core and is TiO2. A content is Y2 O3. Content distribution is a vitreous humour with refractive-index distribution of the direction of a path of an opposite direction which increases to parabolic mostly.

[0015] The devitrification or crystallization with this partial vitreous humour were not seen. Moreover, a core is nd when refractive-index distribution of this vitreous humour was measured. : 1.666 nud : 53 and a periphery are nd. : 1.533 nud : It is 48 and had the effective optical property optically.

[0016]

[Examples 2-8] These examples are <u>drawing 1</u> (A) and a thing with the same distribution as (B), and are the oxide conversion content mol ratios a group and the component which has concentration distribution of an opposite direction mutually indicated the component chosen as Table 1 from aluminum, P, and B like a publication to be in b group and c group, respectively. Neither the part devitrified in the vitreous humour obtained in each examples 2-8 nor the part currently crystallized was seen, and was the high optical element of effectiveness.

[Table 1]

								
	SiO ₂	a	b	С	nd	∆n₄	νd	Δν _d
周辺部	5 4	23Al ₂ O ₃	23Y ₂ O ₃ •		1.666	0 100	5 3	
	6 9	23Al ₂ O ₈		7TiO2	1. 533	-0. 133	48	-5
	·	16 B ₂ O ₃	16Y ₂ O ₃	2 Ta ₂ O ₅	1.625	0.000	5 4	
中心部	77	15 B ₂ O ₃	$2 Y_2 O_3$	6 Ta ₂ O ₅	1.562	7 -0. 003	52	-2
周辺部	78	1.5B ₂ O ₃ 1.5Al ₂ O ₃	147203	5 TiO2	1. 610	0.070	4 9	0
中心部	8 2	1.5B ₂ O ₃ 1.5Al ₂ O ₃	5 Y ₂ O ₃	10T iO ₂	1. 534	-0.016	4 1	-8
周辺部	8 5	6 B ₂ O ₃ 1 P ₂ O ₅	2 Y ₂ O ₃	6 РьО	1. 369	D 049	3 9	•
中心部	8 3	$\begin{array}{c} 6 B_2 O_3 \\ 1 P_2 O_5 \end{array}$	107203	2 Pb0	1. 412	0.043	4 2	3
	70	16A12O3	12Y ₂ O ₃	2 ZrO ₂	1.590	0.050	58	
中心部	8 2	9 Al 202		9 2r0 ₂	1.538	-0.052	65	7
周辺部	6 7	11A1 ₂ 0 ₉	13La ₂ O ₃ 9 BaO		1.659	0.000	5 3	
中心部	7 6	10A1203	2 La 2 O 3 2 BaO	10T iO ₂	1.569	-0. 090	4 4	-9
周辺部	80	15A12O3_		2.5TiO ₂	1. 522	0 0E7	5 4	0
中心部	74	16AL2O2	9 La 2 D 2	<i>L</i> . 010205	1 579	บ. บอา	57	3
周辺部	5 0		*					
中心部	50	20A1 ₂ O ₃	10Gd ₂ O ₃	10TiO ₂	1.715	-0. 038	37	-15
	中周	周辺部 5 4 中心部 6 9 周辺部 7 7 周辺部 7 8 中心部 8 2 中心部 8 3 中心部 7 0 中心部 8 2 中心部 7 0 も 6	周辺部 5 4 23Al2O3 中心部 6 9 23Al2O3 中心部 7 7 15 B2O3 中心部 7 8 1.5B2O3 1.5Al2O3 中心部 8 2 1.5Al2O3 日辺部 8 5 6 B2O3 1 P2O5 中心部 8 3 6 B2O3 1 P2O5 中心部 8 2 9 Al2O3 中心部 8 2 9 Al2O2 周辺部 7 6 10Al2O3 中心部 7 6 10Al2O3 中心部 7 6 10Al2O3 中心部 7 4 16Al2O3 月辺部 7 4 16Al2O3	周辺部 5 4 23Al2O3 23Y2O3 へ中心部 6 9 23Al2O3 16Y2O3 中心部 7 7 15 B2O3 2 Y2O3 1.5Al2O3 14Y2O3 1.5Al2O3 1.5Al2O3 1.5Al2O3 1.5Al2O3 1.5Al2O3 1.5Al2O3 1.5Al2O3 1.72O3 1.72O	周辺部 5 4 23Al2O3 23Y2O3 7TiO2 中心部 6 9 23Al2O3 16Y2O3 2Ta2O5 中心部 7 7 15 B2O3 2Y2O3 6Ta2O5 1.5Al2O3 1.5Al2O3 5Y2O3 10TiO2 1 P心部 8 2 1.5B2O3 1.5Al2O3 1 P2O5 6PbO P心部 8 3 6B2O3 1 P2O5 1 P2O5 2PbO P心部 8 2 9Al2O3 12Y2O3 2PbO P心部 8 2 9Al2O3 13La2O3 9BaO P心部 7 6 10Al2O3 2BaO 10TiO2 2.5Ta2O5 P心部 7 4 16Al2O3 9La2O3 PLa2O3 P	周辺部 5 4 23Al ₂ O ₃ 23Y ₂ O ₃ 、 1.666 中心部 6 9 23Al ₂ O ₈ 7TiO ₂ 1.533 周辺部 6 6 16 B ₂ O ₃ 16Y ₂ O ₃ 2Ta ₂ O ₅ 1.625 中心部 7 7 15 B ₂ O ₃ 2Y ₂ O ₃ 6Ta ₂ O ₅ 1.562 周辺部 7 8 1.5B ₂ O ₃ 14Y ₂ O ₃ 5TiO ₂ 1.610 中心部 8 2 1.5B ₂ O ₃ 1.5Al ₂ O ₃ 5Y ₂ O ₃ 10TiO ₂ 1.534 周辺部 8 5 6B ₂ O ₃ 1 P ₂ O ₅ 2Y ₂ O ₃ 6PbO 1.369 中心部 8 3 6B ₂ O ₃ 1OY ₂ O ₃ 2PbO 1.412 周辺部 7 0 16Al ₂ O ₃ 12Y ₂ O ₃ 2PbO 1.412 周辺部 6 7 11Al ₂ O ₃ 13La ₂ O ₃ 9 BaO 中心部 7 6 10Al ₂ O ₃ 2BaO 10TiO ₂ 1.569 周辺部 7 6 10Al ₂ O ₃ 2BaO 10TiO ₂ 1.569 用心部 7 6 10Al ₂ O ₃ 2BaO 10TiO ₂ 1.569	周辺部 5 4 23Al ₂ O ₃ 23Y ₂ O ₃ 7TiO ₂ 1.533 -0.133 中心部 6 9 23Al ₂ O ₃ 16Y ₂ O ₃ 2Ta ₂ O ₅ 1.625 -0.063 中心部 7 7 15 B ₂ O ₃ 2Y ₂ O ₃ 6Ta ₂ O ₅ 1.562 -0.063 中心部 7 8 1.5B ₂ O ₃ 14Y ₂ O ₃ 5TiO ₂ 1.610 -0.076 中心部 8 2 1.5B ₂ O ₃ 1.5Al ₂ O ₃ 5Y ₂ O ₃ 10TiO ₂ 1.534 -0.076 中心部 8 3 6B ₂ O ₃ 1 P ₂ O ₅ 2Y ₂ O ₃ 6 PbO 1.369 -0.043 中心部 8 3 6B ₂ O ₃ 1P ₂ O ₅ 2Y ₂ O ₃ 2PbO 1.412 周辺部 7 0 16Al ₂ O ₃ 12Y ₂ O ₃ 2PbO 1.412 周辺部 6 7 11Al ₂ O ₃ 9BaO 1.659 -0.052 中心部 7 6 10Al ₂ O ₃ 2BaO 10TiO ₂ 1.569 -0.090 日心部 7 6 10Al ₂ O ₃ 2BaO 10TiO ₂ 1.569 -0.090 日心部 7 4 16Al ₂ O ₃ 9La ₂ O ₃ 10TiO ₂ 1.579 同辺部 5 0 20Al ₂ O ₃ 2OGd ₂ O ₃ 1.753 -0.038	周辺部 5 4 23Al₂O₃ 23Y₂O₃、 1.666 1.682O₃ 16Y₂O₃ 2Ta₂O₅ 1.533 -0.133 4 8 月辺部 6 6 16 B₂O₃ 16Y₂O₃ 2Ta₂Oҕ 1.562 -0.063 5 4 中心部 7 7 15 B₂O₃ 2Y₂O₃ 6Ta₂Oҕ 1.562 -0.063 5 2 月辺部 7 8 1.5Al₂O₃ 14Y₂O₃ 5TiO₂ 1.610 -0.076 4 1 月辺部 8 5 6B₂O₃ 1.5Al₂O₃ 14Y₂O₃ 10TiO₂ 1.534 -0.076 4 1 月₂Oҕ 1.5Al₂O₃ 1P₂Oҕ 1P₂Oҕ 2PbO 1.412 -0.052 5 8 日辺部 7 0 16Al₂O₃ 12Y₂O₃ 2PbO 1.412 -0.052 5 8 日辺部 7 0 16Al₂O₃ 12Y₂O₃ 2PbO 1.412 -0.052 5 8 日辺部 7 0 16Al₂O₃ 12Y₂O₃ 2PbO 1.538 -0.052 6 5 日辺部 6 7 11Al₂O₃ 13La₂O₃ 92rO₂ 1.538 -0.052 6 5 日辺部 7 6 10Al₂O₃ 2BaO 10TiO₂ 1.569 -0.090 4 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[0018]

[Examples 9-13] Examples 9-13 are the oxide conversion content mol ratios which indicated the metal kind with which the number of the metal atoms in d group and glass was distributed over abbreviation flatness in the metal kind which has distribution at a metal kind in a configuration as shown in drawing 2 (A), and (B), and is distributed with inclination in a group and glass in the component chosen as Table 2 from aluminum, P, and B like a publication in e group. Neither the part devitrified in the vitreous humour obtained in each examples 9-13 nor the part currently crystallized was seen, and was the high optical element of optical effectiveness.

[Table 2]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SiO2	а	d	е	n a	Δn_4	ν _d	$\triangle \nu_{\delta}$								
c+++-(C) (C)	周辺部	58	12.5A1 ₂ O ₃	12. 5La ₂ 0 ₃	17TiO ₂	1.733	-0.074	3 6	-2								
実施例9	中心部	58	4 Al ₂ O ₃	4 La ₂ O ₃	17TiO ₂	1.659	0.014	3 4									
ct>64-15-11.0	周辺部	48	16 B ₂ O ₃	8 Y ₂ O ₃	15Ta ₂ O ₅	1.767	0.067	3 9	0								
実施例10	中心部	4 8	16 B ₂ O ₃	20Y ₂ O ₃	16Ta ₂ O ₃	1.834	0.001	3 9	0								
ctriff(D)11	周辺部	50	13A1 ₂ O ₃	10La ₂ O ₃	17Nb2O5	1.949	-0.029	3 1	-1								
実施例11	中心部	50	12.8A1 ₂ O ₃	5 La ₂ O ₃	17Nb2O5	1.920	0.023	3 0	1								
	F22 33 477	FFF 'thirth	THY THE	स्थानमा	स्मान्त्र	FFF Tricker	स्यान्त्रा	eendii.	स्राध्या	5 8	4 Al ₂ O ₃	10La ₂ 0	12TiO ₂	1.829		3 2	
chold fails	周辺部	0.0	$4 B_2 O_3$	100420	12Nb20	1.020	-0.049	ŲL	-2								
実施例12	efe 2. dd	5 8	4 A1 ₂ O ₃	4La ₂ O ₃	12TiO ₂	1.780	0.040	3 0									
	中心部	0.0	$4 B_2 O_3$	4L82U3	12Nb ₂ O	1. 100		0 0									
	सिराक्षा	5 0	10 41 0	10Gd ₂ O ₃	15Pb0	1.880		27									
ctr/4:/5/10	周辺部	30	10 Al ₂ O ₃	1000203	15Tl ₂ 0	1.000	-0.034	4	-1								
実施例13	-t-, \.\.\.\.\.\.\.\.\.	E 0	541.0	E C4 0	15Pb0	1.846	0.004	2 6									
	中心部	5 0	5A1 ₂ O ₃	5 Gd ₂ O ₃	15T1 ₂ 0	1.040		<i>L</i> 0									

[0020]

[Examples 14-18] Examples 14-18 are the oxide conversion content mol ratios when making into f group and g group the metal kind which has distribution at a metal kind in a configuration as shown in <u>drawing 3</u> (A) and (B), and is distributed with inclination in a group and glass in the component chosen as Table 3 from aluminum, P, and B like a publication, respectively. Neither the part devitrified in the vitreous humour obtained in each examples 14-18 nor the part currently crystallized was seen, and was the high optical element of optical effectiveness.

[0021]

[Table 3]

		SiO ₂	a	f	g	na	$\Delta n_{\mathfrak{a}}$	να	$\Delta \nu_{o}$
्रोस्टिशित क	周辺部	5 8	5 Al ₂ O ₃ 1 P ₂ O ₅	8 Y 2 O 3	28TiO ₂	1. 764	-0. 059	2 8	-1
実施例14	中心部	5 8	5 Al ₂ O ₃ 1 P ₂ O ₅		26TiO ₂	1. 705	0. 000	27	1
drkcDitE	周辺部	5 7	8A1 ₂ O ₃ 8B ₂ O ₃	1.5La ₂ 0 _{3.}	18TiO ₂	1. 684	0. 062	2 8	0
実施例15	中心部	5 7	8A1 ₂ O ₃ 8B ₂ O ₃	7 La 2 O 3	20TiO₂	1. 746	0. 002	28	U
実施例16	周辺部	6 0	11A1 ₂ O ₃	7 La ₂ 0 ₃	22Bi ₂ O ₃	1.927	-0. 083	26	0
天元的110	中心部	60	11A1 ₂ O ₃		20Bi ₂ O ₃	1.844	0.003	26	0
ctrld:Dil17	周辺部	50	4B ₂ O	3La ₂ O ₃	29Ta ₂ O ₅	1.883	-0. 039	35	0
実施例17	中心部	5.0	4B ₂ O		27Ta ₂ 0 ₅	1.844_	บ. บอฮ	_3_5_	<u> </u>
\$\frac{1}{4}\frac{1}{4	周辺部	60	10A12O2	20T1 ₂ O	10Gd ₂ O ₃	1.807	-0. 095	29	6
実施例18	中心部	60	10A1 ₂ O ₈	10T1 ₂ O	10Gd ₂ O ₃	1.712	0.090	3 5	

[0022] In addition, although the above-mentioned example described what is carrying out almost parabolic distribution to radial, the metaled distribution configuration is not restricted to a parabolic distribution configuration, and is not theoretically restricted at all about distribution configurations other than this. If refractive-index distribution is very small, or it has distribution in the distributed property even if a parenchyma top refractive-index difference is 0, this invention is applicable similarly. Moreover, the element combined with rare earth elements, such as La, Y, and Gd, is not restricted to what is stated to the example, but may add further the component for a glass production top or the improvement in resistance in the range which does not spoil the effectiveness of this invention.

[0023]

[Effect of the Invention] As mentioned above, according to the vitreous humour with refractive-index distribution

of this invention, it has concentration distribution in rare earth elements, it becomes possible to produce a vitreous humour with the refractive-index distribution which contained these elements so much, and a vitreous humour with high refractive-index distribution of the optical effectiveness in consideration of chromatism etc. can be manufactured.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] A vitreous humour with the refractive-index distribution characterized by having concentration distribution in at least one sort of elements of La, Y, and the Gd(s), and including at least one sort of elements of aluminum, P, and the B.

[Claim 2] A vitreous humour with the refractive-index distribution characterized by having concentration distribution in at least one sort of elements of La, Y, and the Gd(s), and including at least one sort of elements of aluminum, P, and the B, and at least one sort of elements of Nb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, and the Tl.

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平6-171974

(43)公開日 平成6年(1994)6月21日

(51)Int.Cl.⁵

識別記号

FI

技術表示箇所

Ŷ

C 0 3 C 4/00 3/04

審査請求 未請求 請求項の数2(全 6 頁)

(21)出願番号

特願平4-345458

(22)出顧日

平成 4年(1992)11月30日

(71)出願人 000000376

オリンパス光学工業株式会社

東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 福岡 荘尚

東京都技谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(74)代理人 弁理士 奈良 武

(54) 【発明の名称 】 屈折率分布を有したガラス体

(57)【要約】

【目的】 希土類元素に濃度分布を有し、これらの元素を多量に含有して屈折率分布を有し、また色分散をも考慮した光学的効果の高いガラス体を得る。

【構成】 La, Y, Gdのうちの少なくとも1種の元素に濃度分布を有し、A1, P, Bのうち少なくとも1種の元素を含む組成で、屈折率分布を有したガラス体を構成する。また、色収差補正のために分散特性を考慮した場合、Nb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, T1, のうちの少なくとも1種の元素を含む組成にするとよい。

【特許請求の範囲】

【請求項1】 La, Y, G dのうちの少なくとも1種の元素に濃度分布を有し、A1, P, Bのうちの少なくとも1種の元素を含むことを特徴とする屈折率分布を有したガラス体。

【請求項2】 La, Y, Gdのうちの少なくとも1種の元素に濃度分布を有し、Al, P, Bのうちの少なくとも1種の元素およびNb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, Tlのうちの少なくとも1種の元素を含むことを特徴とする屈折率分布を有し 10 たガラス体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、屈折率分布を有したガラス体に関する。

[0002]

【0003】また、色収差をも加味し、La, Y, Gd等の元素に濃度分布を有した、光学的に優れた特性を持つ屈折率分布型光学素子の組成が特開平3-141302号公報に開示されている。

[0004]

【発明が解決しようとする課題】しかし、上記従来のセ ルフォックや、アルカリ金属またはPb、Ti若しくは Geに濃度分布を有する屈折率分布を有したガラス体 は、色収差を補正する光学的効果が高くなかった。そこ で、色収差をも加味した、光学的効果の高い屈折率分布 型光学素子が、特開平3-141302号公報に提案さ れ、La, Y, Gdに濃度分布を有した屈折率分布型光 学素子の組成分布について述べられているが、La, Y, Gdに濃度分布を付与する場合、多量にガラス中に これらの元素を含有させる必要がある。しかし、La, Y、Gd等の希土類元素を含むガラスはガラス化が難し く、更に、屈折率分布を付与するためにガラス中に希土 類元素の濃度分布を付与するため、ガラスの部分により 組成が異なり、部分的に失透したり、大きな屈折率差を 付与するために多量にガラスに含有させることは困難で あった。したがって、所望のガラスが得られず、ひいて は大きな屈折率差を持った光学的に効果の高い屈折率分 布を有したガラス体を得ることが困難であった。

【0005】本発明は、かかる従来の問題点に鑑みてな Sb, Ag, Sn, In, T1の元素には、濃度分布がされるので、希土類元素に濃度分布を有し、これらの元 50 付与されていてもよいし、濃度分布が付与されていなく

素を多量に含有して屈折率分布を有し、また色分散をも 考慮した光学的効果の高い屈折率分布を有したガラス体 を提供することを目的とする。

[0006]

【課題を解決するための手段】上記課題を達成するために、本発明の屈折率分布を有したガラス体は、La,Y,Gdのうちの少なくとも1種の元素に濃度分布を有し、A1,P,Bのうちの少なくとも1種の元素を含む組成とした。また、色収差補正のために分散特性を考慮して、更にNb,Ta,Ti,Pb,Zr,Bi,Sb,Ag,Sn,In,Tiのうちの少なくとも1種の元素を含む組成としてもよい。

[0007]

【作用】希土類元素を多量に含むガラスの作製が困難な 理由は、例えばSiOzと希土類元素の酸化物の2成分 系を考えたとき、双方の酸化物の融点が高いこと、液一 液不混和領域が存在することのためと考えられる。不混 和がおこるのは、系に形成される相の相対的自由エネル ギーに依存する。液相一液相間の相分離は、シリカが網 目形成の条件に従いながら、陽イオンが自分の周りに酸 素イオンを引きつけて最低のエネルギーの酸素配列をと ろうとする、陽イオン間の競合から起こるとされてい る。修飾イオンや中間イオン(この場合は希土類元素) は網目構造の中でSiと置換する能力が限られており、 酸素との強い結合エネルギーのため、最小のエネルギー 状態のときに高濃度では入り得ない。そこで、最もエネ ルギーの低い状態は系が2つの液相に分離して1つが網 目形成体 (シリカ) に富む相に、もう一つが修飾イオン に富む相になる。

30 【0008】そこで、鋭意検討した結果、La, Y, G dなどの希土類元素に濃度分布を有し屈折率分布を有したシリカ系ガラスに、A1, P, Bから選んだ少なくとも1つの元素を添加すると、La, Y, Gdなどの希土類元素に濃度分布を有していても、これらの元素を多量に含有して屈折率分布を有したガラス体を作製できることを見い出した。これは、A1, P, Bは網目構造中のSi等の元素と置換する能力が高いので、液一液分離が起こりにくくなったためと考えられる。

【0009】この効果は、光学的な色収差補正能力に注 40 目したときに希土類元素と組み合わされるNb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, T lを含む系においても同様である。したがって、La, Y, Gdなどの希土類元素に濃度分布を有していても、 これらのLa, Y, Gdなどの希土類元素を多量に含有 し、さらにNb, Ta, Ti, Pb, Zr, Bi, S b, Ag, Sn, In, Tlを多量に含む色収差補正能 力のある屈折率分布を有したガラス体を作製することが できる。これらNb, Ta, Ti, Pb, Zr, Bi, Sb, Ag, Sn, In, Tlの元素には、濃度分布が 50 付与されていてもよいし、濃度分布が付与されていなく 3

てもよい。

【0010】本発明の屈折率分布を有したガラス体は、例えば図1(A)および(B)に示すような特公平3-141302号公報に示されている、金属種bと金属種 cとが互いに反対方向の濃度分布、図2(A)および(B)に示すように、金属種dが勾配をもって分布し、金属種eが略平坦に分布する濃度分布、図3(A)および(B)に示すように、金属種fが金属種gと同方向に金属種fより小さな勾配をもって分布する濃度分布等に対して特に有効であるが、金属種の分布形状は図1から 10図3に示したように、径方向に分布を有したものに限らず、光軸方向に金属種の分布を有したもの、球状に金属種の分布を有したもの等にも適用することができる。なお、これらの適用は、色分散特性が優れた屈折率分布を有するガラス体に限ったものではなく、ガラス体を得られるという点で効果を有する。

【0011】以上のことは、ここで説明したようにSiO2を主成分としたものに限られているわけではなく、B2O3などを主成分としたガラスにも同様に適用できる。A1、P、Bの添加量は、少量でも効果はあり、特20に制限されない。例えばA1の場合、濃度分布があるためにガラスの部分により希土類元素との原子数比は異なっているが、(希土類元素の数/A1の数)は6以下であることが望ましく、最も効果的であるのは1付近の場合である。Pの場合は(希土類元素の数/Pの数)は4以下であることが望ましく、最も効果的であるのは1付近の場合である。Bの場合は、(希土類元素の数/Bの数)は6以下であることが望ましく、最も効果的であるのは1から2付近の場合である。

【0012】A1, P, Bを複数用いる場合は、希土類 30元素との原子数比(希土類元素の数/A1+P+B)は A1, P, Bを単独で用いる場合よりも更に少なくても よく、これらの元素は分布を有していてもよいし、有していなくてもよい。また、これらの成分に分布を付与することにより色分散特性をも制御することができる。特にPを用いる場合は、ガラスの化学的耐久性が低下する

ため、過剰に用いることは好ましくなく、希土類元素の 濃度分布に対して、各位置で必要最低量が添加されるよ うに濃度分布させるのが好ましい。

【0013】また、本発明の屈折率分布を有したガラス体は、例えばイオン交換法、分子スタッフィング法、ゾルゲル法、薄いガラスを重ねて融着させるガラス積層法、CDV法、VAD法等、またはそれ以外のどのような製造方法においても適用することができる。

[0014]

【実施例1】本実施例は、図4に示したような形状に金属種に分布を有したものであり、中心部のA 12 O3 とY2 O3 の含有量が23 (molt)、TiO2 の含有量が0 (molt)であって、周辺部のY2 O3 の含有量が0 (molt)になるように中心部から周辺部に向けてY2 O3 の含有量がほぼ放物線状に減少するような分布をしており、また、周辺部のA 12 O3 の含有量が23 (molt)で、TiO2 の含有量が7 (molt)になるように、中心部より周辺部に向けてTiO2 の含有量がY2 O3 の含有量分布とは反対方向のほぼ放物線状に増加する径方向の屈折率分布を有したガラス体である。

【0015】このガラス体は部分的な失透や結晶化は見られなかった。また、このガラス体の屈折率分布を測定したところ、中心部は、na:1.666, νa:53、周辺部はna:1.533, νa:48であり、光学的に有効な光学特性を有していた。

[0016]

【実施例2~8】これらの実施例は、図1(A)および(B)と同様の分布を有したもので、表1に記載のように、A1,P,Bから選んだ成分をa群、互いに反対方向の濃度分布を持つ成分がそれぞれb群、c群に記載した酸化物換算含有mo1比である。各実施例2~8で得られたガラス体には、失透している部分や結晶化している部分は見られず、かつ効果の高い光学素子であった。【0017】

【表1】

	5						6) 	<u></u>
		SiO ₂	а	ъ	С	Πa	∆n₄	να	Δνa
\$\frac{1}{2} \tag{1} \tag{1} \tag{1} \tag{1}	周辺部	5 4	23A1203	23Y ₂ O ₃		1.666	-0. 133	53	-5
実施例1	中心部	6 9	23A1 ₂ 0 ₈		7 TiO ₂	1.533	0. 100	48	
de the tall o	周辺部	66	16 B ₂ O ₃	16Y ₂ O ₃	2 Ta ₂ 0 ₅	1.625	-0.063	5 4	-2
実施例2	中心部	77	15 B ₂ O ₃	2 Y ₂ O ₃	6 Ta ₂ 0 ₅	1.562	0.000	52	
ctrter/%) o	周辺部	7 8	1.5B ₂ O ₃ 1.5Al ₂ O ₃	147203	57i0₂	1.610	-0. 076	49	-8
実施例3	中心部	8 2	1.5B ₂ O ₃ 1.5Al ₂ O ₃	5 Y ₂ O ₃	10TiO2	1. 534	0.010	41	0
etable (Ed.)	周辺部	8 5	6 B ₂ O ₃ 1 P ₂ O ₅	2 4202	6 PbO	1. 369	0.043	39	3
実施例4	中心部	8 3	6 B ₂ O ₃ 1 P ₂ O ₅	107203	2 PbO	1.412	0.040	4 2	
ctatte (M) C	周辺部	70	16A1202	12Y ₂ O ₂	2 ZrO ₂	1.590	-0.052	58	7
実施例5	中心部	82	9 1 202		9 2r0 ₂	1.538	0.002	65	
chrest-tra c	周辺部	67	111120,	13La ₂ O ₃ 9BaO		L 659	-0. 090	53	-9
実施例6	中心部	7 6	10Al ₂ O ₃	2 La ₂ 0 ₃ 2 Ba0	10TiO2	1.569	0.000	44	ŭ
ch-Hettal n	周辺部	8 0	1511203		2. 5TiO ₂ 2. 5Ta ₂ O ₅	1.522	0. 057	5 4	3
実施例?	中心部	74	16A12O3	9 La 203		1.579		57	
学校型 0	周辺部	5 0	20A120s	20Gd ₂ O ₃		1.753	-0. 038	52	-15
実施例8	中心部	5 0	20A1 ₂ O ₃	10Gd202	10TiO ₂	1.715	1	37	

[0018]

【実施例9~13】実施例9~13は図2(A)および (B) に示したような形状に金属種に分布を有したもの であり、表2に記載のようにAI, P, Bから選んだ成 分をa群、ガラス中に勾配をもって分布する金属種をd 30 【0019】 群、ガラス中の金属原子の数が略平坦に分布した金属種*

*をe群に記載した酸化物換算含有mol比である。各実 施例9~13で得られたガラス体には、失透している部 分や結晶化している部分は見られず、かつ光学的効果の 高い光学素子であった。

【表2】

		SiO ₂	a	d	е	Πd	Δn_4	νd	$\Delta \nu_{\rm d}$
3+16-701 D	周辺部	58	12.5A1 ₂ O ₃	12. 5La ₂ 0 ₃	17TiO ₂	1.733	-0.074	3 6	-2
実施例9	中心部	58	4 Al ₂ O ₃	4 La ₂ 0 ₃	17TiO ₂	1.659	0.014	3 4	
CHANGE TEXT IN	周辺部	48	16 B ₂ O ₃	8 Y ₂ O ₃	15Ta ₂ O ₅	1.767	0.067	3 9	-0
実施例10	中心部	48	16 B ₂ O ₃	20Y ₂ O ₃	16Ta205	1.834	U. U.I	3 9	
C#2-N-70111	周辺部	50	13A1 ₂ O ₃	10La ₂ 0 ₃	17Nb2O5	1.949	-0.029	3 1	-1
実施例11	中心部	-5-0 -	-12.8Al ₂ O ₃	5 La ₂ 0 ₃	17Nb20s-	1.920	0.025	3-0-	1
	周辺部	5 8	4 Al ₂ O ₃ 4 B ₂ O ₃	10La ₂ 0	12TiO ₂ 12Nb ₂ O	1. 829		3 2	
実施例12	中心部	5 8	4 Al ₂ O ₃ 4 B ₂ O ₃	4La ₂ 0 ₃	12TiO ₂ 12Nb ₂ O	1.780	-0. 049	3 0	-2
et-W-70110	周辺部	5 0	10 Al ₂ O ₃	10Gd ₂ O ₃	15Pb0 15Tl ₂ 0	1.880	-0. 034	2 7	-1
実施例13	中心部	5 0	5A12O3	5 Gd₂0₃	15Pb0 15T1 ₂ 0	1.846	0.004	2 6	1

[0020]

※ものであり、表3に記載のようにAl, P, Bから選ん だ成分をa群、ガラス中に勾配をもって分布する金属種

【実施例14~18】実施例14~18は図3(A)お よび(B)に示したような形状に金属種に分布を有した※50 を、それぞれ f 群、g 群としたときの酸化物換算含有m

8

o1比である。各実施例14~18で得られたガラス体 には、失透している部分や結晶化している部分は見られ

* [0021]

【表3】

ず、かつ光学的効果の高い光学素子であった。	*
-----------------------	---

		SiO ₂	a	f	g	no	Δn_d	να	Δνa
実施例14	周辺部	5 8	5 Al ₂ O ₃ 1 P ₂ O ₅	8 Y 2 O 3	28TiO ₂	1. 764	0.050	28	,
PIP VIIIA	中心部	5 8	5 Al ₂ O ₃ 1 P ₂ O ₅		26TiO ₂	1. 705	-0. 059	27	-1
実施例15	周辺部	5 7	8A1 ₂ O ₃ 8B ₂ O ₃	1. 5La ₂ 0 _{3.}	18TiO ₂	1. 684	0. 062	28	
CIFURNAC	中心部	5 7	8A1 ₂ O ₃ 8B ₂ O ₃	7 La ₂ 0 ₃	20TiO ₂	1. 746		2 8	0
実施例16	周辺部	60	11Al ₂ O ₃	7 La ₂ O ₃	22Bi ₂ O ₃	1.927	0.002	26	^
20 /6/310	中心部	60	11A1203		20Bi ₂ O ₃	1.844	-0. 083	26	0
実施例17	周辺部	50	4B ₂ O	3 La 2 03	29Ta ₂ O ₅	1. 883	0.000	35	
中	中心部	5 0	4B ₂ O		27Ta ₂ 0 ₅	1.844	-0. 039	35	0
実施例18	周辺部	60	10A120:	20T1 ₂ O	10Gd ₂ O ₃	1.807	0.005	29	r
	中心部	60	10Al ₂ O ₂	101120	10Gd ₂ O ₃	1.712	-0.095	3 5	6

【0022】なお、上記実施例では半径方向にほぼ放物 線状の分布をしているものについて述べたが、金属の分 布形状は放物線状の分布形状に制限されているものでは なく、これ以外の分布形状についても原理的に何等制限 されるものではない。屈折率分布が非常に小さかった り、実質上屈折率差が0であっても、分散特性に分布を 有していれば、本発明は同様に適用することができる。 'また、La, Y, Gd等の希土類元素と組み合わせられ る元素は実施例に述べられているものに限られておら ず、本発明の効果を損なわない範囲において、ガラス作 30 製上や耐性向上のための成分を更に添加してもよい。 [0023]

【発明の効果】以上のように、本発明の屈折率分布を有 したガラス体によれば、希土類元素に濃度分布を有し、 これらの元素を多量に含有した屈折率分布を有したガラ※ ※ス体を作製することが可能となり、色分散等をも考慮し た光学的効果の高い屈折率分布を有したガラス体を製造 することができる。

【図面の簡単な説明】

【図1】金属種bと金属種cとが互いに反対方向の濃度 分布を有しているときの金属種の含有量分布を示す概念 図である。

【図2】金属種dが勾配をもって分布し、金属種eが略 平坦に分布しているときの金属種の含有量分布を示す概 念図である。

【図3】金属種fが金属種gと同方向に、金属種gの勾 配より小さな勾配をもって分布してるいときの金属種の 含有量分布を示す概念図である。

【図4】本発明の実施例1により得られたガラス体の金 属原子の分布を示す図である。

【図4】

【図1】

【図2】

【図3】

(8) | 金属含有量

全国含有量

半 径

First Hit

Generate Collection Print

L94: Entry 32 of 111

File: DWPI

Jun 21, 1994

DERWENT-ACC-NO: 1994-238482

DERWENT-WEEK: 200146

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Glass body having refractive index distribution - comprises lanthanum, yttrium and/or

gadolinium and aluminium, phosphorus and or boron

PATENT-ASSIGNEE: OLYMPUS OPTICAL CO LTD (OLYU)

PRIORITY-DATA: 1992JP-0345458 (November 30, 1992)

Search Selected Search ALL Clear	Search Selected
----------------------------------	-----------------

PATENT-FAMILY:

 PUB-NO
 PUB-DATE
 LANGUAGE
 PAGES
 MAIN-IPC

 JP 06171974 A
 June 21, 1994
 006
 C03C004/00

 JP 3193492 B2
 July 30, 2001
 006
 C03C004/00

APPLICATION-DATA:

PUB-NO APPL-DATE APPL-NO DESCRIPTOR

JP 06171974A November 30, 1992 1992JP-0345458

JP 3193492B2 November 30, 1992 1992JP-0345458

JP 3193492B2 JP 6171974 Previous Publ.

INT-CL (IPC): C03C 3/04; C03C 3/095; C03C 4/00; G02B 3/00

ABSTRACTED-PUB-NO: JP 06171974A

BASIC-ABSTRACT:

Glass body has a concn. distribution of at least one of La, Y and Gd, and contains at least one of Al, P and B.

-USE -- Used for glass bodies having refractive index distribution.

ABSTRACTED-PUB-NO: JP 06171974A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.0/3

DERWENT-CLASS: L01 P81 CPI-CODES: L01-C; L01-L05;

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

·
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

•	