MATH405: Linear Algebra

Michael Li

Contents

1	Vec	tor Spaces	2	
		Definitions		
	1.2	Bases	4	
		Dimension		
	1.4	Sums and Direct Sums	8	
2	Matrices			
	2.1	Space of Matrices	9	
	2.2	Linear Equations	10	
	23	Multiplication of Matrices	11	

1 Vector Spaces

1.1 Definitions

Definition - Field: Let K be a subset of C. Then K is a **field** if it satisfies

- $1. \ x,y \in K \implies x+y, xy \in K$
- 2. $x \in K \implies -x \in K \text{ and } x \in K, x \neq 0 \implies x^{-1} \in K$
- 3. $0, 1 \in K$

Definition - Scalars: elements of a field K

Definition - Subfield: Let K, L be fields and $K \subseteq L$. Then K is a subfield of L

• Example: Q is a subfield of R which is a subfield of C

Definition - Vector Space V **Over the Field** K: set of objects that can be added and multiplied by elements of K such that

- $u, v \in V \implies u + v \in V$
- $c \in K$ and $v \in V \implies cv \in V$

A vector space also satisfies the following properties for $u, v, w \in V$ and $a, b \in K$:

- Commutativity: u + v = v + u
- Associativity: (u+v)+w=u+(v+w) and (ab)v=a(bv)
- Additive Identity: $\exists O \in V$ such that v + O = v for all $v \in V$
- Additive Inverse: $\forall v \in V, \exists w \in V \text{ such that } v + w = O$
- Multiplicative Identity: 1v = v for all $v \in V$
- Distributive Properties: a(u+v) = au + av and (a+b)v = av + bv

Example: Let $V = K^n$ be the set of n-tuples of elements of K. Then

$$A = (a_1, \dots, a_n) \qquad B = (b_1, \dots, b_n)$$

are elements of K^n

Here a_1, \ldots, a_n are called **components** of A

Furthermore, defining

- Addition as $A + B = (a_1 + b_1, \dots, a_n + b_n)$
- Scalar Multiplication as $cA = (ca_1, \dots, ca_n)$

We see that K^n clearly satisfies the properties of a vector space

• Notably, the zero element is the n-tuple with all coordinates equal to 0

$$O = (0, \dots, 0)$$

Few more notes on any vector space V

• For any $v \in V$, we have 0v = O

$$0v + v = (0+1)v = 1v = v \implies 0v = 0$$

Definition - Subspace: Let $W \subseteq V$. Then W is a subspace if it satisfies

- $1. \ u,w \in W \implies u+w \in W$
- 2. $c \in K$ and $v \in W \implies cv \in W$
- 3. $O \in W$

Example: Let $V = K^n$ and W be a set of $v \in V$ with the last coordinate equal to 0. Then W is a subspace of V

Definition - Linear Combination: Let V be an arbitrary vector space, and take $v_1, \ldots, v_n \in V$ and $x_1, \ldots, x_n \in K$. Then expressions of the form

$$x_1v_1 + \cdots + x_nv_n$$

are called **linear combininations** of v_1, \ldots, v_n

Theorem 1.1: Let W be a set of all linear combinations of v_1, \ldots, v_n . Then W is a subspace of V

Proof: Take $x_1, \ldots, x_n, y_1, \ldots, y_n \in K$. Then we have

$$(x_1v_1 + \dots + x_nv_n) + (y_1v_1 + \dots + y_nv_n) = (x_1 + y_1)v_1 + \dots + (x_n + y_n)v_n \in W$$

Furthermore, take $c \in K$. Then we have

$$(cx_1v_1 + \dots + x_nv_n) = cx_1v_1 + \dots + cx_nv_n \in W$$

Finally, we see that

$$O = 0v_1 + \dots + 0v_n \in W$$

• Note: The subspace created above is called the subspace generated by v_1, \ldots, v_n

Example: Let $V = K^n$ and let $A, B \in K^n$. Then we define the **dot product** as

$$A \cdot B = a_1 b_1 + \dots + a_n b_n$$

The following properties hold

- 1. $A \cdot B = B \cdot A$
- 2. $A \cdot (B+C) = A \cdot B + A \cdot C = (B+C) \cdot A$
- 3. $x \in K \implies (xA) \cdot B = x(A \cdot B)$ and $A \cdot (xB) = x(A \cdot B)$

Proof:

- 1. $a_1b_1 + \cdots + a_nb_n = b_1a_1 + \cdots + b_na_n$
- 2. $A \cdot (B+C) = a_1(b_1+c_1) + \cdots + a_n(b_n+c_n) = a_1b_1 + \cdots + a_nb_n + a_1c_1 + \cdots + a_nb_n = A \cdot B + A \cdot C$

Definition - Orthogonal: Two vectors A, B are **orthogonal** if $A \cdot B = 0$

- If we look at W, the set of all elements $B \in K^n$ such that $B \cdot A = 0$, we see that W is a subspace of K^n
 - Clearly $O \cdot A = 0 \implies O \in W$
 - $-B, C \in W \implies (B+C) \cdot A = B \cdot A + C \cdot A = 0 \implies B+C \in W$
 - $-x \in K \implies (xB) \cdot A = x(B \cdot A) = 0 \implies xB \in A$

Example - Function Spaces: Let S be a set and K be a field. Then a function S into K is an association between $s \in S$ and a unique $k \in K$. The function f is denoted

$$f: S \to K$$

Let V be the set of all functions S into K. We define

- Addition as $f, g \in S \implies (f+g)(x) = f(x) + g(x)$ for $x \in S$
- Scalar Multiplication as $c \in K \implies (cf)(x) = cf(x)$ for $x \in S$

Under this definition, V is a vector space

Example: Let V be a vector space and let U, W be subspaces of V. Then $U \cap W$ is a subspace of V

Example - Sum of Subspaces: Let U, W be subspaces of V. Then

$$U + W = \{u + w \mid u \in U \land w \in W\}$$

is a subspace of V known as the **sum** of U and W

1.2 Bases

Definition - Linearly Dependent: $v_1, \ldots, v_n \in V$ are linearly dependent over K if $\exists a_1, \ldots, a_n \in K$ not all 0 such that

$$a_1v_1 + \cdots + a_nv_n = O$$

• If no such numbers exist, then v_1, \ldots, v_n are linearly independent

Example: Let $V = K^n$ and consider

$$E_1 = (1, 0, \dots, 0)$$
:

$$E_n = (0, 0, \dots, 1)$$

Then E_1, \ldots, E_n are linearly independent since

$$a_1E_1 + \cdots + a_nE_n = O \implies (a_1, \dots, a_n) = O \implies a_i = 0$$

Definition - Basis: If $v_1, \ldots, v_n \in V$ generate V and are linearly independent, then $\{v_1, \ldots, v_n\}$ is a basis of V

• Example: E_1, \ldots, E_n from the previous example form a basis of K^n

Theorem 2.1: Let V be a vector space, $v_1, \ldots v_n \in V$ be linearly independent, and $x_1, \ldots, x_n, y_1, \ldots, y_n \in K$. Then we have

$$x_1v_1 + \cdots + x_nv_n = y_1v_1 + \cdots + y_nv_n \implies x_i = y_i$$

Proof: We can manipulate the equation above into

$$x_1v_1 - y_1v_1 + \dots + x_nv_n - y_nv_n = (x_1 - y_1)v_1 + \dots + (x_n - y_n)v_n = O$$

Thus we must have $x_i - y_i = 0 \implies x_i = y_i$

Upshot: If $\{v_1, \ldots, v_n\}$ is a basis of V, then elements of V can be represented by n-tuples relative to this basis as a LC

$$v = x_1 v_1 + \dots + x_n v_n$$

Thus each *n*-tuple (x_1, \ldots, x_n) is uniquely determined by v

Definition - Coordinate Vector: The tuple above $X = (x_1, \dots, x_n)$ is a **coordinate vector** of v with respect to the basis $\{v_1, \dots, v_n\}$

Example: Suppose V is the vector space of functions generated by e^t , e^{2t} . Then coordinates of the function

$$3e^{t} + 5e^{2t}$$

with respect to the basis $\{e^t, e^{2t}\}$ are (3, 5)

Example: Show that (1,1) and (-3,2) are linearly independent

Take $a, b \in K$ such that

$$a(1,1) + b(-3,2) = O$$

In terms of components, this means we need

$$a - 3b = 0 \qquad a + 2b = 0$$

The only way to solve this system of equation is to take a = b = 0

Thus the vectors are linearly independent

Example: Show that (1,1) and (-1,2) form a basis of \mathbb{R}^2

We need to show they are linearly independent and that they generate R^2

To show linear independence, we need $a, b \in R$ such that

$$a(1,1) + b(-1,2) = (0,0) \implies a-b=0$$
 $a+2b=0$

The only way to solve this system of equations is taking a = b = 0

To show the vectors generate R^2 , let (a,b) be an arbitrary element of R^2 . Then there exists $x, u \in R$ such that

$$x(1,1) + y(-1,2) = (a,b) \implies x - y = a$$
 $x + 2y = b$

Solving the system of equations we get

$$y = \frac{b-a}{3} \qquad x = \frac{b-a}{3} + a$$

Thus we have shown that (x, y) are the coordinates of (a, b) with respect to the basis $\{(1, 1), (-1, 2)\}$

Definition - Maximal: Let $\{v_1, \ldots, v_n\}$ be a set of elements of V. For $r \leq n$, $\{v_1, \ldots, v_r\}$ is a **maximal** subset of linearly independent elements if v_1, \ldots, v_r are linearly independent, and if in addition, given any v_i for i > r, v_1, \ldots, v_r, v_i are linearly dependent

Theorem 2.2: Let $\{v_1, \ldots, v_n\}$ be a set of generators of V, and let $\{v_1, \ldots, v_r\}$ be a maximal subset of linearly independent elements. Then $\{v_1, \ldots, v_r\}$ is a basis of V

Proof: We need to show that v_1, \ldots, v_r generate V.

First we show that for i > r, each v_i is a linear combination of v_1, \ldots, v_r . Since v_1, \ldots, v_r, v_i is linearly dependent, there exists x_1, \ldots, x_r, y not all 0 such that

$$x_1v_1 + \dots + x_rv_r + yv_i = O$$

We must have $y \neq 0$, otherwise v_1, \ldots, v_r would be linearly dependent. Thus we can solve for v_i

$$v_i = \frac{x_1}{-y}v_1 + \dots + \frac{x_r}{-y}v_r$$

Thus v_i is a linear combination of v_1, \ldots, v_r

Next we show that for any of $v \in V$, there exists $c_1, \ldots, c_n \in K$ such that

$$v = c_1 v_1 + \dots + c_n v_n$$

From this equation, we can replace each v_i , for i > r, by a linear combination of v_1, \ldots, v_r .

Collecting the terms with the representation, we have expressed v as a linear combination of v_1, \ldots, v_r

Thus v_1, \ldots, v_r generate V and thus is a basis of V

1.3 Dimension

Theorem 3.1: Let $\{v_1, \ldots, v_m\}$ be a basis of V over K. Let w_1, \ldots, w_n be elements of V and assume n > m. Then w_1, \ldots, w_n are linearly dependent

Proof: Assume by contradiction that w_1, \ldots, w_n are linearly independent

Since $\{v_1, \ldots, v_m\}$ is a basis, there are elements $a_1, \ldots, a_m \in K$ such that

$$w_1 = a_1 v_1 + \dots + a_m v_m$$

Since we are assuming w_1, \ldots, w_n are linearly independent, we must have $w_1 \neq 0 \implies$ some $a_i \neq 0$

After some reordering of v_1, \ldots, v_m , WLOG $a_1 \neq 0$. Solving for v_1 we get

$$a_1v_1 = w_1 - a_2v_2 - \dots - a_mv_m$$

 $v_1 = a_1^{-1}w_1 - a_1^{-1}a_2v_2 - \dots - a_1^{-1}a_mv_m$

Thus the subspace of V generated by w_1, v_2, \ldots, v_m contains v_1 . Thus the subspace must be all of V since v_1, \ldots, v_m generate V. We can continue this procedure replacing v_2, v_3, \ldots with w_2, w_3, \ldots until all v_1, \ldots, v_m are exhausted and w_1, \ldots, w_m generate V. Now assume by induction that there is an integer r with $1 \le r < m$ such that after renumbering v_1, \ldots, v_m the elements $w_1, \ldots, w_r, v_{r+1}, \ldots, v_m$ generate V. Then there are $b_1, \ldots, b_r, c_{r+1}, \ldots, c_m \in K$ such that

$$w_{r+1} = b_1 w_1 + \dots + b_r w_r + c_{r+1} v_{r+1} + \dots + c_m v_m$$

Note that some $c_i \neq 0$ for $i \in \{r+1, \ldots, m\}$, otherwise w_1, \ldots, w_r would be linear dependent

Thus WLOG we can say $c_{r+1} \neq 0$ and can obtain

$$c_{r+1}v_{r+1} = w_{r+1} - b_1w_1 - \dots - b_rw_r - c_{r+2}v_{r+2} - \dots - c_mv_m$$

Thus v_{r+1} is in the subspace generated by $w_1, \ldots, w_{r+1}, v_{r+2}, \ldots, v_m$.

By our induction assumption, it follows that $w_1, \ldots, w_{r+1}, v_{r+2}, \ldots, v_m$ generate V

Thus by induction, we have shown that w_1, \ldots, w_m generate V

If n > m, then there exist elements $d_1, \ldots, d_m \in K$ such that

$$w_n = d_1 w_1 + \dots + d_m w_m$$

Thus w_1, \ldots, w_n are linearly dependent

Theorem 3.2: Let V be a vector space and suppose that one basis has n elements and another basis has m elements. Then m = n

Proof: Theorem 3.1 implies that both n > m and m > n are impossible. Thus we must have m = n

Definition - Dimension: Let V be a vector space having a basis with n elements. Then n is the **dimension** of V

• Note: If V only consists of O, then V doesn't have a basis and thus dim V=0

Example: For any field K, the vector space K^n has dimension n over K since

$$(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,\ldots,0,1)$$

form a basis of K^n over K

Definition - Finite Dimensional: A vector space that has a basis consisting of a finite number of elements, or the zero vector space

• Otherwise the vector space is infinite dimensional

Example: Let K be a field. Then K is a vector space over itself and has dimension 1

• The element $1 \in K$ forms a basis of K over K since for any $x \in K$, $x = x \cdot 1$

Example: Let V be a vector space.

- A subspace of dimension 1 is called a line
- A subspace of dimension 2 is called a plane

Definition - Maximal Set of Linearly Independent Elements: linearly independent $v_1, \ldots, v_n \in V$ such that for any $w \in V$, the elements w, v_1, \ldots, v_n are linearly dependent

Theorem 3.3: Let $\{v_1, \ldots, v_n\}$ be a maximal set of linearly independent elements of V. Then $\{v_1, \ldots, v_n\}$ is a basis of V *Proof*: We need to show that v_1, \ldots, v_n generates V

Let $w \in V$. Since w, v_1, \ldots, v_n is linearly dependent, there exists numbers x_0, \ldots, x_n not all 0 such that

$$x_0w + x_1v_1 + \dots + x_nv_n = O$$

We must have $x_0 \neq 0$, otherwise there would be a linear dependence between v_1, \ldots, v_n . Thus we can solve for w

$$w = -\frac{x_1}{x_0}v_1 - \dots - \frac{x_n}{x_0}v_n$$

Thus w is a linear combination of v_1, \ldots, v_n and thus $\{v_1, \ldots, v_n\}$ is a basis

Theorem 3.4: Let V be a vector space of dimension n and v_1, \ldots, v_n be linearly independent. Then $\{v_1, \ldots, v_n\}$ is a basis of V Proof: By Theorem 3.1, we know that v_1, \ldots, v_n is a maximal set of linearly independent elements of V Thus by Theorem 3.3, it is a basis

Corollary 3.5: Let W be a subspace of a vector space V. If $\dim W = \dim V$, then V = W

Proof: From Theorem 3.4, we see that W must also be a basis of V

Corollary 3.6: Let V be a vector space of dimension n, take r < n, and let v_1, \ldots, v_r be linearly independent. Then one can find elements v_{r+1}, \ldots, v_n such that

$$\{v_1,\ldots,v_n\}$$

is a basis of V

Proof: Since r < n, $\{v_1, \ldots, v_r\}$ cannot form a basis of V and thus is not a maximal set of linearly independent elements of V. Thus we can find $v_{r+1} \in V$ such that v_1, \ldots, v_{r+1} are linearly independent

We can repeat this process so long as r + 1 < n

Afterwards, we obtain n linearly independent elements, which by Theorem 3.4 form a basis

Theorem 3.7: Let V be a vector space with a basis of n elements. Let W be a subspace which does not consist of only O. Then W has a basis and dim $W \le n$

Proof: Let w_1 be a non-zero element of W. If $\{w_1\}$ is not a maximal set of linearly independent elements of W, we can find another element $w_2 \in W$ such that w_1, w_2 are linearly independent

Repeat this procedure until we have $m \leq n$ such that w_1, \ldots, w_m form a maximal set of linearly independent elements of W

• By Theorem 3.1, we know that this procedure cannot go on indefinitely

Thus using Theorem 3.3, we see that $\{w_1, \ldots, w_m\}$ is a basis of W

1.4 Sums and Direct Sums

Definition - Sum: Let U, W be subspaces of V. Then the **sum** of U + W is a subset of V consisting of all sums u + w for $u \in U$ and $w \in W$

• U+W is a subspace since it is closed under addition, scalar multiplication, and contains O

Definition - Direct Sum: V is a **direct sum** of U and W, denoted $V = U \oplus W$, if for every element of V, there exists unique elements $u \in U$ and $w \in W$ such that v = u + w

Theorem 4.1: Let U, W be subspaces of V. If U + W = V and $U \cap V = \{O\}$, then V is a direct sum of U and W

Proof: Take $v \in V$. The first assumption shows that $\exists u \in U \land w \in W$ such that v = u + w. Thus V = U + W

To show it is a direct sum, we need to show that u, w are unique.

Assume by contradiction that there also exists $u' \in U$ and $w' \in W$ such that v = u' + w'

Then we have

$$u + w = u' + w' \implies u - u' = w' - w$$

Since $u - u' \in U$ and $w' - w \in W$, and since $U \cap W = \{O\}$, we must have u - u' = O and $w' - w = O \implies u = u'$ and w = w'

Theorem 4.2: Let W be a subspace of V. Then there exists a subspace U such that $V = W \oplus U$

Proof: Select a basis of W and extend it to a basis of V using Corollary 3.6

Here the basis of W is $\{v_1, \ldots, v_r\}$ and the basis of U is $\{v_{r+1}, \ldots, v_n\}$

Theorem 4.3: Let V be the direct sum of subspaces U, W. Then

$$\dim V = \dim U + \dim W$$

Proof: Let $\{u_1, \ldots, u_r\}$ be a basis of U and let $\{w_1, \ldots, w_s\}$ be a basis of W

Then every element of U has a unique representation as a linear combination of $x_1u_1 + \cdots + x_ru_r$ for $x_i \in K$

Similarly, every element of W has a unique representation as a linear combination of $y_1w_1 + \cdots + y_sw_s$ for $y_j \in K$

Thus by definition, every element of V has a unique representation as a linear combination of

$$x_1u_1 + \cdots + x_ru_r + y_1w_1 + \cdots + y_sw_s$$

Clearly $u_1, \ldots, u_r, w_1, \ldots, w_s$ are linearly independent and generate V. Thus they form a basis of V

Thus we have $\dim V = \dim U + \dim W$

Definition - Direct Product: Let U, W be arbitrary vector spaces. Then the **direct product** of U and W, denoted $U \times W$, is the set of all pairs (u, w) whose first component is $u \in U$ and whose second component is $w \in W$

• Addition is defined componentwise

$$(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$$

• Scalar multiplication is defined by

$$c(u_1, w_1) = (cu_1, cw_1)$$

• Note: If n = r + s, then we see that K^n is the direct product $K^r \times K^s$

Theorem 4.4: $\dim(U \times W) = \dim U + \dim W$

Proof: Let $\{u_1, \ldots, u_r\}$ be a basis of U and let $\{w_1, \ldots, w_s\}$ be a basis of W

Then every element of U has a unique representation as a linear combination of $x_1u_1 + \cdots + x_ru_r$ for $x_i \in K$

Similarly, every element of W has a unique representation as a linear combination of $y_1w_1 + \cdots + y_sw_s$ for $y_j \in K$

Thus by definition, every element of $U \times W$ has a unique representation as a linear combination of

$$(x_1u_1+\cdots+x_ru_r,y_1w_1+\cdots+y_sw_s)$$

Thus the vectors form a basis and $\dim(U \times W) = \dim U + \dim W$

Note: The definition of direct sums and direct products can be extended to several elements

2 Matrices

2.1 Space of Matrices

Definition - Matrix: An m-by-n matrix in K is denoted by

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

- Each **component** is denoted a_{ij} for i = 1, ..., m and j = i, ..., n
- Each ith **row** is denoted $A_i = (a_{i1}, \ldots, a_{in})$
- Each jth column is denoted $A^j = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$
- Upshot: rows of a matrix may be viewed as n-tuples and columns may be viewed as m-tuples

Definition - Vector: $1 \times n$ matrix denoted (x_1, \ldots, v_n)

Definition - Column Vector: $n \times 1$ matrix denoted $\begin{bmatrix} x_1 \\ \vdots \\ v_n \end{bmatrix}$

Matrix operations:

- Addition: components a_{ij} and b_{ij} are added componentwise
- Scalar Multiplication: Each component a_{ij} is multiplied by c

Under these operations, it's clear that matrices satisfy all the properties of a vector space, which we denote $\mathrm{Mat}_{x\times n}(K)$

Definition - Transpose: Takes an m-by-n matrix A and creates an n-by-m matrix where $b_{ji} = a_{ij}$, denoted A^t

• Taking the transpose matrix effectively changes rows into columns and vice versa

Definition - Symmetric: Matrix A is symmetric if it is equal to its transpose

Definition - Diagonal Matrix: A square matrix is said to be a **diagonal matrix** if all of its components are zero except possibly the diagonal components a_{11}, \ldots, a_{nn}

Definition - Unit Matrix: A square matrix is said to be a **unit matrix** if all of its components equal 0 except the diagonal components, which are all equal to 1. This is denoted I_n

2.2 Linear Equations

Definition - Linear Equations: Let K be a field, let A be an m-by-n matrix, and let $b_1, \ldots b_m \in K$. Then linear equations are of the form

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

- This system is said to be **homogeneous** if $b_1 = \cdots = b_m = 0$
- Here the matrix A is called the **matrix of coefficients**

Clearly the homogeneous system always has the **trivial solution** where $x_i = 0$

Otherwise non-trival solutions are solutions (x_1, \ldots, x_n) such that some $x_i \neq 0$

The homogeneous system can also be rewritten as

$$x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} = 0$$

Thus a non-trivial solution $X = (x_1, \dots, x_n)$ is just an *n*-tuple $X \neq 0$, giving a relation of linear dependence between the columns A^1, \dots, A^n

This particular interpretation allows us to apply Theorem 3.1 of Chapter 1 where the column vectors are elements of K^m with dimension m over K

Theorem 2.1: Let

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$
$$\dots$$
$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

be a homogeneous system of m linear equations in n unknowns, with coefficients in K. Assume n > m. Then the system has a non-trivial solution in K

Proof: By Theorem 3.1 of Chapter 1, we know that vectors A^1, \ldots, A^n must be linearly dependent

The general linear system of equations can be written as a linear combination of column vectors of A

$$x_1A^1 + \dots + x_nA^n = B$$

Theorem 2.2: Assume that m = n in the linear system described above, and that vectors A^1, \ldots, A^n are linearly independent. Then the system has a unique solution in K

Proof: Since A^1, \ldots, A^n are linearly independent, they form a basis of K^n

Thus any vector B has a unique expression as a linear combination of A^1, \ldots, A^n

$$B = x_i A^1 + \dots + x_n A^n$$

Thus $X = (x_1, \ldots, x_n)$, for $x_i \in K$, is the unique solution of the system

2.3 Multiplication of Matrices

Definition - Non-degeneracy: If $A \in K^n$ and $A \cdot X = 0$ for all $X \in K^n$, then A = O

Proof: $A \cdot E_i = 0$ for each unit vector. Since $A \cdot E_i = a_i$, we must have each $a_i = 0$. Thus A = O

Definition - Matrix Product: Let A be an m-by-n matrix and B be an n-by-s matrix. Then the **product** AB is the m-by-s matrix whose ik-coordinate is

$$\sum_{j=1}^{n} a_{ij}b_{jk} = a_{i1}b_{ik} + \dots + a_{in}b_{nk}$$

We can also interpret this definition as the dot product of row vectors, A_1, \ldots, A_m , of matrix A with the column vectors, B^1, \ldots, B^s , of matrix B. Then

$$AB = \begin{bmatrix} A_1 \cdot B^1 & \cdots & A_1 \cdot B^s \\ \vdots & \vdots & \vdots \\ A_m \cdot B^1 & \cdots & A_m \cdot B^s \end{bmatrix}$$

• For a column vector B, the product AB produces a column vector

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix}$$

• For a row vector X, the product XA produces a row vector

$$\begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}$$

Theorem 3.1: Let A, B, C be matrices and assume that A, B can be multiplied, A, C can be multiplied, and B, C can be added. Then A, B + C can be multiplied. Thus

$$A(B+C) = AB + AC$$

Furthermore, if $x \in K$, then

$$A(xB) + x(AB)$$

Proof: Let A_i be the *i*-th row of A, and let B^k , C^k be the *k*-th column of B and C, respectively

Then $B^k + C^k$ is the k-th column of B + C

By definition, the *ik*-component of AB is $A_i \cdot B^k$, the *ik*-component of AC is $A_i \cdot C^k$, and the *ik*-component of A(B+C) is $A_i \cdot (B^k + C^k)$

Thus by construction we see that A(B+C) = AB + AC

For the second assertion, note that the k-th column of xB is xB^k

Thus we see that

$$A_i \cdot xB^k = x(A_iB^k)$$

Thus by construction, our second assertion holds

Theorem 3.2: Let A, B, C be matrices such that A, B can be multiplied and B, C can be multiplied. Then we have

$$(AB)C = A(BC)$$

Proof: TODO

Definition - Invertible: Let A be a square $n \times n$ matrix. Then A is **invertible** if there exists an $n \times n$ matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I_n$$

• Note: the matrix B is unique, for if there was a matrix C such that $AC = CA = I_n$, then

$$B = BI_n B(AC) + I_n C = C$$

Definition - Matrix Powers: Let A be a square matrix. Then we can form the product A with itself multiple times, denoted A^m

- The usual rule $A^{r+s} = A^r A^s$ holds for $r,s \in Z \wedge r,s \geq 0$
- *Note**: We define $A^0 = I$

Theorem 3.3: Let A, B be matrices that can be multiplied. Then B^t, A^t can be multiplied and

$$(AB)^t = B^t A^t$$

Proof: Let $A = (a_{ij})$ and $B = (b_{jk})$, and let AB = C. Then

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$

Let $B^t = (b'_{kj})$ and $A^t = (a'_{ji})$. Then the ki-component of $B^t A^t$ is defined as

$$\sum_{i=1}^{n} b'_{kj} a'_{ji}$$

Since $b'_{kj} = b_{jk}$ and $a'_{ji} = a_{ij}$, we see that

$$\sum_{j=1}^{n} b'_{kj} a'_{ji} = \sum_{j=1}^{n} a_{ij} b_{jk}$$

By definition, this is the ki-component of C^t . Thus by construction the statement holds

Upshot: In terms of matrix multiplication, we can now write a system of linear equations in the from

$$AX = B$$

For an m-by-n matrix A, a column vector X of size n, and a column vector B of size m