Deep Learning pare Vision
Convolutional Neural Notwooks (CULL) Feature extractor classifier Perception: red do une sok neurona entroda x=[x,1x,1x,1x,1x,1x,1x] y=wxx+b= y = W x + b = = = = = = x x x + b paramotes W= [su, so, ... or,] Podemos resolver: -Requesión Lineal - Clasificación lineal Sequence of the contract of th - incluse 'b' como all
- no lingue! be 15 = 1 - There we alkadorum.

- Calcular error

- Calcular 30 with

- Ajushar wi para disminur creat

- Will - 2E

- Wals do para; Learn rate

- 2E , 72 Leaven rate $u_{\infty} = u_{i} - \eta \frac{\Sigma E}{2a_{i}}, \quad \eta = 0, \dots 1$ Graduer Decert (6D): se realize at mome tempo pera $u_{0}(t) = u_{0}(t_{i}) - \eta \frac{\Sigma E}{2a_{0}(t_{i})}$ $u_{0}(t_{i}) = u_{0}(t_{i}) - \eta \frac{\Sigma E}{2a_{0}(t_{i})}$ $u_{0}(t_{i}) = u_{0}(t_{i}) - \eta \frac{\Sigma E}{2a_{0}(t_{i})}$ 5 (E-1) $\mathcal{M}^{\alpha}(f) = \mathcal{M}^{\alpha}(f^{-1}) - \delta \frac{2m^{\alpha}(f^{-1})}{2E}$ (3.8) = $(3.9)^2$ 3x = 3x 33. \\
\frac{3\pi}{3\pi} \cdot \frac{3\pi}{3\pi} \cdot \frac{3\pi}{8\pi} \cdot \frac{3\pi}{8\pi} \cdot \frac{3\pi}{8\pi} \cdot \frac{3\pi}{8\pi} \cdot \frac{\pi}{8\pi} \cdot \ d (0) 1(0.1) Function AND Funcion XOR X, 72 3 X Pacephá multicapa (MLP) ¿Qué pasaría s';?

To poremos achinaciones ac

si lineales? thus posa tengo l'operationes
Lineales una tras otra?

XW. W = XW; W=WW.

CXW, X Elemph of Backprop on MLP (= Elemple Ejemph X=[0.05,01] Y=1 U1 = 0.15 W1 - 0.20 W3 = 0.25 W4 = 0.30 W4 = 0.30 W4 = 0.50 W4 = 0.50 a=σ(s) σ(); ognoide 6, r 0, 35 bz= 0.35 b3 = 0.6 E = \(\frac{1}{\chi} \Big(3 - \hat{3} \Big)^{\text{*}} Proceso 1) Forward pass 7-0.1 1) Calcular error
2) Calcular gradi 3) Calcular gradientes 4) Beekwert pass Eguster Toronard pass 5: 21/2, + 21/2, + 15 = (0.15/0.05) - (0.15/0.01) + 0.35 = 0.3815 0, = 0.11
$$\begin{split} & S_{\chi^{\pm}} = \omega_{\chi} \, x_{q} + w x_{1} \times \chi_{1} + \tilde{b}_{\chi} \\ & = \left(0.1\right) \left(0.05\right) + \left(0.2\right) \left(0.1\right) + 0.35 \\ & = 0.6879 \, \zeta_{q} \\ & G_{\chi} = \sigma^{-}(\tilde{s}_{\chi}) \end{split}$$
5=260, +692+63 =(65)(65995)+ (85)(05969)+ = 1. 2252 03 = 0 (53) = 0.773 a, = o (s.) = 0.5995 9 = 4, = 6.7 =3, E== 1 (3-3)2 = 0.5(1-0.733)2 (s) = o(s)(1-o(s)) $\frac{3E}{\delta a_{k}} = \frac{3E}{\delta a_{k}}, \frac{3c_{k}}{\delta a_{k}}, \frac{\delta b_{k}}{\delta a_{k}} = \frac{3}{\delta a_{k}} \frac{1}{\delta (s_{k}a_{k})^{2}}, \frac{\delta b_{k}}{\delta a_{k}}$ $= \frac{3}{\delta a_{k}} \frac{1}{\delta (s_{k}a_{k})^{2}}, \frac{3c_{k}}{\delta a_{k}}, \frac{3c_{k}}{\delta a_{k}}, \frac{4c_{k}a_{k}}{\delta a_{k}}, \frac{4c_{k}}{\delta a_{k}}$ $= \frac{3}{\delta (s_{k}a_{k})^{2}} \frac{1}{\delta (s_{k}a_{k})^{2}}, \frac{3c_{k}}{\delta a_{k}}, \frac{4c_{k}a_{k}}{\delta a_{k}}, \frac{4c_{k}}{\delta a_{k}}, \frac$ = 0.0258, = 80, 30, 30, = 83.0, $\begin{array}{ll} \partial u_{2} & \lambda & \partial u_{2} \\ & = \frac{2}{3} \left(2 - 0.3 \right) \frac{1}{36} \left(3 - 0.01 \right), \ O(3) \left(1 - 0^{-1} (3) \right), \ O_{2} \\ & = \left(\frac{3}{3} - 0.3 \right) \frac{1}{36} \left(3 - 0.01 \right), \ O(3) \left(1 - 0.01 \right), \ O(3) \\ & = \left(\frac{3}{3} - 0.3 \right) \left(0.01 \right), \ O(3) \left(0.01 \right), \$ \(\frac{\rho_1}{2\epsilon} = \frac{\rho_0}{2\epsilon} \cdot \frac{\rho_2}{2\epsilon} \cdot \frac{\rho_1}{2\epsilon} \cdot \frac{\rho_2}{2\epsilon} \cdot \frac{\rho_1}{2\epsilon} \cdot \frac{\rho_2}{2\epsilon} \cdot \f = 83 = - 0.0398 =-0.0138 $=\frac{2}{9}\frac{g^{\alpha\beta}}{\frac{2}{9}} + \frac{\frac{2}{3}}{\frac{2}{9}} \frac{(\alpha^{2}q^{2} + \beta^{2}(9^{2} + \beta^{2}) \cdot \frac{y^{\alpha}}{9} \cdot \lambda^{2})}{y^{2}} \cdot \frac{y^{\alpha\beta}}{9} \cdot \frac{y^{\alpha}}{9} \cdot \frac{y^{\alpha$ 3E = S2x2 = -0005 = \(\sigma \cdot \pi_{\sigma} \cdot \sigma \sigma \sigma \cdot \sigma \sigma \sigma \cdot \sigma \sigma \sigma \cdot \sigma \sigma \cdot \sigma \cd = (-0.0398)(0.5)(0.5945)(1-0.5975)(0.05) $\frac{3E}{8b_z} = 8,$ = -0.0053 $\frac{g\omega^{\epsilon}}{g\epsilon} = \underbrace{g^{3} \cdot \frac{g\sigma^{\epsilon}}{g\sigma^{\epsilon}} \cdot \frac{g\sigma^{\epsilon}}{g\sigma^{\epsilon}} \cdot \frac{g\sigma^{\epsilon}}{g\sigma^{\epsilon}}}_{g\sigma^{\epsilon}}$ $\frac{\delta E}{\delta \omega_{\phi}} = 8_1 \cdot \chi_2$ =-0.0005 = 0.0003 0.0000 0.= -0.0003 $w_i = w_i - \eta \frac{\lambda E}{\partial w_i}$ b = 0.3505 b = 0.3505 b = 0.604 35 = 1.232/32 } 1 = 0.274/92 y Q: Cómo hacemos para $\frac{g\alpha^2}{g\underline{E}} + \frac{gr^2}{g\alpha^2} + \frac{g\alpha^4}{g\alpha^4} + \frac{g\alpha^4}{g\alpha^$