I | Filtre RC du second ordre

On considère le filtre de la figure ci-dessous avec $u_e(t) = E\cos(\omega t)$

- 1. Prévoir le comportement asymptotique du filtre.
- 2. Déterminez sa fonction de transfert $\underline{\underline{H}}(\omega) = \frac{\underline{U_s}}{\underline{\underline{U_e}}} = \frac{\underline{U_s}}{\underline{\underline{U}}} \cdot \underline{\underline{U_e}}$ sous la forme :

$$\underline{H}(\omega) = \frac{G_0}{1 - x^2 + jx/Q}$$

On identifiera nottament la pulsation propre ω_0 tel que $x=\omega/\omega_0$ et Q

- 3. Tracez le diagramme de Bode du filtre
- 4. Obtenir à partir des résultats précédents l'équation différentielle dont u_s est solution.

I | Filtre passe-haut d'ordre 2

On considère le filtre suivant :

- 1. Justifier que ce filtre est un filtre passe-haut.
- 2. Déterminer sa fonction de transfert et l'écrire sous la forme :

$$\underline{H} = \frac{jQx}{1 + jQ\left(x - \frac{1}{x}\right)}$$
 avec $x = \frac{\omega}{\omega_0}$.

On donnera l'expression de la pulsation caractéristique ω_0 et celle du facteur de qualité Q.

- 3. Déterminer la pente des asymptotes du diagramme de Bode en gain. Tracer qualitativement son allure en supposant que le facteur de qualité est tel que le circuit n'est pas résonant.
- 4. Tracer qualitativement l'allure du diagramme de Bode en phase en supposant toujours que le facteur de qualité est tel que le circuit n'est pas résonant.
- 5. Ce filtre peut-il avoir un comportement dérivateur ? intégrateur ?

I | Miroir de Lloyd

On dispose une source ponctuelle S monochromatique de longueur d'onde $\lambda=650\,\mathrm{nm}$ à une distance horizontale $L=45\,\mathrm{cm}$ d'un détecteur D. Initialement, un miroir de longueur L/3 positionné à égale distance de S et D se trouve en z=0 (même côte que S et D). On lâche le miroir à t=0 sans vitesse initiale. Il ne subit que les effets de la pesanteur.

La réflexion sur le miroir métallique s'accompagne d'un retard de phase égale à π . L'indice optique de l'air est supposé égal à 1.

On donne dans le tableau ci-dessous l'instant t_k auquel est mesuré le $k^{\text{ième}}$ maximum d'intensité par le détecteur D.

indice k	1	2	3	4	5	6	7	8	9
$t_k \text{ (ms)}$	7,42	9,77	11,11	12,08	12,86	13,53	14,10	14,62	15,00

- 1. Pour une position z(t) du miroir, représenter les deux rayons qui interfèrent au niveau du détecteur D.
- 2. Déterminer l'expression de la différence de marche δ_D entre ces deux ondes au point D. Pour cela, il pourra être utile de faire apparaître une source fictive S' image de S par le miroir. Simplifier cette expression dans le cas où $L \gg z(t)$. On rappelle qu'au premier ordre en $\epsilon \ll 1$, $\sqrt{1+\epsilon} \approx 1+\epsilon/2$.
- 3. En déduire l'expression de l'intensité en D en fonction du temps. On rappelle la formule de Fresnel

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\Delta \phi)$$

- 4. Quelle est l'intensité reçue en D à t=0 ?
- 5. Déterminer l'expression de l'instant t_k auquel est observé le $k^{\text{ième}}$ maximum d'intensité en D.
- 6. Á l'aide d'une régression linéaire, déterminer la valeur de g.

I Corde de Melde : superposition d'ondes

On considère une corde de Melde de longueur L. On interprète la vibration de la corde de la manière suivante : le vibreur émet une onde qui se propage en direction de la poulie où elle est réfléchie ; cette onde réfléchie se propage en direction du vibreur où elle est elle-même réfléchie ; l'onde réfléchie se propage en direction de la poulie où elle se réfléchit, et ainsi de suite. L'axe (Ox) est parallèle à la corde au repos ; le vibreur est en x = 0 et la poulie en x = L. Le vibreur émet une onde $s_0(x,t)$ telle que

$$s_0(0,t) = a_0 cos(\omega t)$$

La célérité des ondes sur la corde est c et on note $k = \omega/c$. On fait les hypothèses simplificatrices suivantes :

• lorsqu'une onde incidente s_i arrive sur la poulie en x = L, l'onde réfléchie s_r vérifie :

$$s_r(L,t) = -r \, s_i(L,t)$$

où r est un coefficient compris entre 0 et 1;

• lorsqu'une onde incidente s_i arrive sur le vibreur en x=0, l'onde réfléchie s'_r vérifie :

$$s'_r(0,t) = -r's'_i(0,t)$$

où r' est un coefficient compris entre 0 et 1.

- 1. Exprimer l'onde $s_0(x,t)$.
- 2. Exprimer l'onde $s_1(x,t)$ qui apparaît par réflexion de l'onde s_0 sur la poulie, puis l'onde $s_2(x,t)$ qui apparaît par réflexion de s_1 sur le vibreur, puis l'onde $s_3(x,t)$ qui apparaît par réflexion de s_2 sur la poulie.
- 3. À quelle condition les ondes s_0 et s_2 sont-elles en phase en tout point ? Que constate-t-on alors pour les ondes s_1 et s_2 ? La condition précédente est supposée réalisée dans la suite.
- 4. Justifier l'expression suivante de l'onde totale existant sur la corde :

$$s(x,t) = a_0 \left\{ 1 + rr' + (rr')^2 + \dots + (rr')^n + \dots \right\} \cos(\omega t - kx) - r a_0 \left\{ 1 + rr' + (rr')^2 + \dots + (rr')^n + \dots \right\} \cos(\omega t - kx)$$

5. En quels points de la corde l'amplitude de la vibration est-elle maximale? Exprimer l'amplitude maximale A_{max} en fonction de a, r et r'. On rappelle la formule :

$$\sum_{n=0}^{\infty} (rr')^n = \frac{1}{1 - rr'}$$

- 6. En quels points l'amplitude est-elle minimale? Exprimer l'amplitude minimale A_{\min} .
- 7. Expérimentalement on trouve $\frac{A_{\min}}{a_0} \approx 1$ et $\frac{A_{\max}}{a_0} \approx 10$

Déterminer r et r'.