a. each process b. all process c. the memor d. None of the	ess is containe es are containe y space is containe ese			s section of r us section of	memory memory			8
13) Translation a) Memory	b)	software	c)	processor			the above	re met is
a) Memory 14) The internace called a) logic bomb		software that trap door			d) none of			
15) The pattern	h)	virue signatur	9	c) arm	noured		multipartite	
a) steam 16) Consider a Considering SS initially at 53: a) 224	disk queue w STF (shortest b) 236	oith requests for seek time first c) 245	ty sorreading	ig, the total n	lers :98 183 umber of he	37 122 14 ad moven	nents is, if the	e disk head is
17) Random ac a) fast		etic tapes is _		compared to	o magnetic d y slow	lisks.		
a. creates a p b. creates a u c. Returns ZE d. All of the ab	ipe nidirectional RO on succe		el that can	be used fo	r interproce	ess comn	nunication.	
19) The protecta) object name		a process co rights-set		both (a) and	d (b)	d) none of the	mentioned
20) SSTF algori a) may cause st				ation c) do	A	starvation	on d) ca	uses aging
Q2 a) What do y		process? Des	scribe the p	PART B		s the ope	ration on pro	cesses with the
(ii) Describe to (ii) Describe Q3 a) Consider Process Arriva	the actions ta the following	aken by a ken	nel to conte	ext-switch be	tween proce	esses.		[5 Marks] [5 Marks] in milliseconds
P1 0		5	1					
P2 1		3						
P3 2 P4 4		3						
4								
Vhat is the aver emaining time,	age turnarous and round ro	nd time and a bin (time qua	average wa antum = 2)	iting time fo	r these proc	esses wit	th the preem	ptive shortest [10 Marks]
(i) Explain the ery large Value	Round-Robi	n (RR) Sche	duling. Wha	at will happe	n if time qua	anta in RI	R scheduling	will be set as a
(ii) What do you	ou understan	d by critical s	section pro vention met	blem? Explained thous.	ain Peterson	's solutio	n.	[5 Marks] [5 Marks] [10 Marks]
(i) Write Banke (ii) What do yo 5 a) What is pa 1 to 16).	ou understan	d by wait-for	-graph? Fx	e. oplain with a of numeric	n example. al taking one	e process	(P1) with m	[5 Marks] [5 Marks] any instructions [10 Marks]
	ntiguous mer ou mean by A	mory allocation	x? Explain	methods to		access m	atrix in detai	[5 Marks] [5 Marks] I. [10 Marks]
(i) Explain dire (ii) What are r	ect access sto network threa	orage device	s with the I	help of exan	nple.			[5 Marks]

Registration No. COURSE CODE : CSE316 COURSE NAME : OPERATING SYSTEMS Max. Marks: 70 Time Allowed: 03:00 hrs Read the following instructions carefully before attempting the question paper. 1. Match the Paper Code shaded on the OMR Sheet with the Paper code mentioned on the question paper and ensure that both are the same. 2. This question paper is divided into two parts A and B. 3. Part A contains 20 questions of 1 mark each. 0.25 marks will be deducted for each wrong answer. 4. Part B contains 5 questions of 10 marks each. In each question attempt either question (a) or (b), in case both (a) and (b) questions are attempted for any question then only the first attempted question will be evaluated. 6. Do not write or mark anything on the question paper except your registration no. on the designated space. 5. Attempt all the questions in serial order. 7. After completion of first 45 minutes, the OMR sheet will be taken by the invigilator. 8. Submit the question paper and the rough sheet(s) along with the answer sheet to the invigilator before leaving the examination hall. PART A Q1. can occur. 1) If the resources are always preempted from the same process, d) starvation b) system crash c) aging a) deadlock 2) A system is in the safe state if a) the system can allocate resources to each process in some order and still avoid a deadlock b) there exist a safe sequence c) Processes have been forcibly terminated. d) both (a) and (b) 3) Which one of the following is the deadlock avoidance algorithm? d) karn's algorithm c) elevator algorithm a) banker's algorithm b) round-robin algorithm 4) The larger the block size, the _____ the internal fragmentation. d) None of these a) greater b) lesser c) same 5) Which of the following memory allocation scheme suffers from external fragmentation? a)Segmentation b)Pure demand paging c)Swapping. d)Paging 6) Consider a system having m resources of the same type. These resources are shared by 3 processes A, B and C which have peak demands of 3, 4 and 6 respectively. For what minimum value of m deadlock will not occur? a) 7 b)9 c)10 7) Match the following: List - I List - II A. Contiguous allocation i. This scheme supports very large file sizes. ii. This allocation technique supports only sequential files. B. Linked allocation C. Indexed allocation iii. Number of disks required to access file is minimal. D. Multi-level indexed iv. This technique suffers from maximum wastage of space in storing pointers. Codes: В C iii (a) ii iv iii (b) iv (c) iv iv ii 8) Consider a program that consists of 8 pages (from 0, to 7) and we have 4 page frames in the physical memory for the pages. The page reference string is: 123256346373153634243451 The number of page faults in LRU page replacement algorithms are (without including initial page faults to fill available page frames with pages) will be? a) 11 b) 10 c) 9 d) 14 9) A virtual memory based memory management algorithm partially swaps out a process. This is an example of (b) long term scheduling (c) medium term scheduling (d) mutual exclusion 10) Consider a logical address space of 8 pages of 1024 words each, mapped onto a physical memory of 32 frames. How many bits are there in the logical address? a) 8 b) 10 c) 12 d)13 11) Assuming a 1 KB page size, what are the page numbers and offsets for the address 2374. a) Page = 1; offset = 326 b) Page = 1; offset = 327 c) Page = 2; offset = 326 d) Page = 2; offset = 327

(d)