Math 29: Computability Theory

Spring 2024

Student: Amittai Siavava

PSET 1 — 04/05/2024

Prof. Miller

Problem 1.

The rational numbers, \mathbb{Q} , are $\left\{\frac{p}{q}\mid p,q\in\mathbb{Z},q>0\right\}$. The Gaussian rationals are complex numbers of the form $\{r+si\mid r,s\in\mathbb{Q}\}$. Provide a bijection between the Gaussian rationals and ω .

Prove that it is a bijection.

This... is a bijection.

Problem 2.

Give a register machine which converges if there is a 2 in \mathbb{R}_0 and diverges otherwise.

Figure 1: Converge if there is a 2 in R_0 and diverge otherwise.

Algorithm 1: Converge if there is a 2 in R_0 and diverge otherwise.

1 while $R_0 \neq 0$ do

 \triangleright Decrement n

2 $R_0 \leftarrow R_0 - 1$

 $\mathbf{3}$ if $R_0=0$ then

 ${\rm \vartriangleright} \ \ {\rm If} \ \ n=0 \, {\rm ,} \ \ {\rm then} \ \ m \geq n$

 $\mathbf{4} \quad R_2 \leftarrow R_2 + 1$

Problem 3.

Prove that the squaring function is computable by providing a register machine which takes in n in R_0 and outputs n^2 in R_1 . You may use the multiplication function x(n,m) — which starts with n in R_0 and m in R_1 and outputs $n \cdot m$ in R_2 — as a black box function labeled M.

Algorithm 2: Calculate $f: n \mapsto n^2$ for $n \in \omega$.

- 1 while $(status := R_0 1) \neq e \text{ do}$
- riangleright Copy n to R_1 and R_2 , which sets $R_0=0$

- **2** $R_1 \leftarrow R_1 + 1$
- $\mathbf{3} \quad \boxed{R_2 \leftarrow R_2 + 1}$
- 4 while $(status := R_2 1) \neq e \text{ do}$

riangleright Move n from R_2 back to R_0

$$R_0 \leftarrow R_0 + 1$$

- $\mathbf{6}$ call M
- 7 while $(status := R_1 1) \neq e \text{ do}$
- continue
- 9 while $(status := R_2 1) \neq e$ do
- $R_1 \leftarrow R_1 + 1$

- hd Call M to populate R_2 with $n^2 \coloneqq R_0 \cdot R_1$
 - \triangleright Set $R_1 \leftarrow 0$
 - \triangleright Move n^2 from R_2 to R_1

Problem 4.

Prove that the set of ordered pairs of natural numbers (x, y) such that $x \leq y$ is computable by providing a register machine which takes n and m as imputs in R_0 and R_1 respectively and outputs 1 if $n \leq m$ and 0 in R_2 otherwise.

Figure 3: Calculate $f:(x,y)\mapsto \begin{cases} 1 & \text{if } x\leq y.\\ 0 & \text{otherwise.} \end{cases}$

Algorithm 3: Calculate $f:(x,y)\mapsto \begin{cases} 1 & \text{if } x \leq y. \\ 0 & \text{otherwise.} \end{cases}$

1 while $R_0 \neq 0$ do

 $\begin{array}{|c|c|c|c|c|}
R_0 \leftarrow R_0 - 1 \\
R_1 \leftarrow R_1 - 1
\end{array}$

4 if $R_1 = 0$ then

 $R_2 \leftarrow R_2 + 1$

 \triangleright Decrement n

ho If n=0, then $m\geq n$