Prediction and Decision Making - Lesson Summary Notes

What You Learned:

- **Linear Regression Concepts**
- Linear regression uses **one independent variable** to predict a **dependent variable (y)**.
- **Simple Linear Regression (SLR)**: Analyzes the relationship between one x and one y variable.
- **Multiple Linear Regression**: Involves two or more predictor (x) variables to model a continuous target (y).
- **Visualization Tools with Seaborn**
- Use `regplot()` for regression visualization.
- Use `residplot()` to inspect residuals and assess model fit.
- A good residual plot:
 - Residuals centered around zero
 - Even distribution across x-axis
 - Constant variance (homoscedasticity)
- **Distribution Plots**
- Compare predicted vs. actual values.
- Especially helpful when using multiple features in a regression model.
- **Polynomial Regression**
- Polynomial regression fits a non-linear curve.
- The **order of the polynomial** affects model flexibility and fit.
- Use `np.polyfit()` for creating polynomial regression models.

Feature Transformation & Normalization - Use `PolynomialFeatures` from `sklearn.preprocessing` to expand features. - Use `StandardScaler` to normalize data (zero mean, unit variance). - Proper transformation improves model accuracy and interpretability. **Pipeline in scikit-learn** - Pipelines automate the workflow: transformation training prediction. - Simplifies code and prevents data leakage. - Example tasks handled in a pipeline: - Normalization - Polynomial feature generation - Model training & prediction **Model Evaluation Techniques** - Use `mean_squared_error` to measure the **average squared difference** between predicted and actual values. - Use `.score()` or `r2_score()` for the **R-squared (coefficient of determination)**: - Closer to **1.0** = better fit - Negative R² = poor model or overfitting **Interpreting Model Fit**

- Poor model:

- Low MSE

- Good model:

- High R² (e.g., > 0.8 depending on context)

- Low R²

- High MSE
- Residual plot shows patterns (non-randomness)
- **Best Practices**
- Use both **visual** (e.g., plots) and **numerical** (e.g., MSE, R2) metrics to evaluate models.
- A distribution plot is ideal for **multiple linear regression** diagnostics.
- Always validate assumptions using residual plots:
 - Random residuals good model
 - Curved or patterned residuals non-linearity or model issues

Tip:

Understand the context of your data. An "acceptable" R2 score depends on the problem domain.