DTC

P0116

Engine Coolant Temperature Circuit Range / Performance Problem

DESCRIPTION

Refer to DTC P0115 (See page ES-104).

DTC No.	DTC Detection Conditions	Trouble Areas
P0116	Case 1: Engine Coolant Temperature (ECT) between 35°C and 60°C (95°F and 140°F) when engine started, and conditions (a) and (b) met (2 trip detection logic) (a) Vehicle driven at varying speeds (accelerated and decelerated) (b) ECT remains within 3°C (5.4°F) of initial ECT Case 2: ECT more than 60°C (140°F) when engine started, and conditions (a) and (b) met (6 trip detection logic) (a) Vehicle driven at varying speeds (accelerated and decelerated) (b) ECT measurements remain within 1°C (1.8°F) of initial ECT on 6 successive occasions	ECT sensor

ES

MONITOR DESCRIPTION

The ECT sensor is used to monitor the ECT. The ECT sensor has a built-in thermistor with a resistance that varies according to the temperature of the engine coolant. When the ECT is low, the resistance of the thermistor increases. When the temperature is high, the resistance drops. These variations in the resistance are reflected in the voltage output from the ECT sensor.

The ECM monitors the sensor voltage and uses this value to calculate the ECT. If the sensor voltage output deviates from the normal operating range, the ECM interprets this deviation as a malfunction in the ECT sensor and sets the DTC.

Examples:

- Upon starting the engine, the ECT is between 35°C and 60°C (95°F and 140°F). If after driving for 250 seconds, the ECT remains within 3°C (5.4°F) of the starting temperature, the DTC is set (2 trip detection logic).
- Upon starting the engine, the ECT is over 60°C (140°F). If after driving for 250 seconds, the ECM remains within 1°C (1.8°F) of the starting temperature, the DTC is set (6 trip detection logic).

MONITOR STRATEGY

Related DTCs	P0116: Engine coolant temperature sensor output stuck at low engine coolant temperature P0116: Engine coolant temperature sensor output stuck at high engine coolant temperature
Required Sensors/Components (Main)	Engine coolant temperature (ECT) sensor
Required Sensors/Components (Related)	Crankshaft position sensor, intake air temperature sensor and mass air flow meter
Frequency of Operation	Continuous
Duration	250 seconds or more
MIL Operation	2 driving cycles: ECT sensor output stuck at low engine coolant temperature 6 driving cycles: ECT sensor output stuck at high engine coolant temperature
Sequence of Operation	None

TYPICAL ENABLING CONDITIONS

Engine Coolant Temperature Sensor Output Stuck at Low Engine Coolant Temperature:

Monitor runs whenever following DTCs not present	P0100 to P0103: Mass air flow meter
Cumulative idle off period	250 seconds or more
Speed increase by 18.6 mph (30 km/h) or more	10 times or more
Engine coolant temperature at engine start	35 to 60°C (95 to 140°F)
Intake air temperature at engine start	-6.7°C (20°F) or more

Engine Coolant Temperature Sensor Output Stuck at High Engine Coolant Temperature:

Monitor runs whenever following DTCs not present	P0100 to P0103: Mass air flow meter
Engine coolant temperature at engine start	60°C (140°F) or more
Intake air temperature at engine start	-6.7°C (20°F) or more
Stop and go*1	Once or more
Steady driving and stop*2	Once or more
Engine running time after engine start	0.3 seconds or more

^{*1:} The vehicle is stopped for 20 seconds or more and accelerated to more than 43.5 mph (70 km/h) within 40 seconds.

TYPICAL MALFUNCTION THRESHOLDS

Engine Coolant Temperature Sensor Output Stuck at Low Engine Coolant Temperature:

Variation of engine co	olant temperature	Less than 3°C (5.4°F)

Engine Coolant Temperature Sensor Output Stuck at High Engine Coolant Temperature:

Variation of engine coolant temperature 1°	1°C (1.8°F) or less
--	---------------------

COMPONENT OPERATING RANGE

Engine coolant temperature	Varies with actual engine coolant temperature
----------------------------	---

WIRING DIAGRAM

Refer to DTC P0115 (See page ES-105).

HINT:

- If any of DTCs P0115, P0117, P0118 or P0125 are set simultaneously with DTC P0116, the ECT sensor may have an open or a short circuit. Troubleshoot those DTCs first.
- Read freeze frame data using an intelligent tester. Freeze frame data record the engine condition when
 malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle
 was moving or stationary, if the engine was warmed up or not, if the airfuel ratio was lean or rich, and
 other data, from the time the malfunction occurred.

1 CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO DTC P0116)

- (a) Connect an intelligent tester to the DLC3.
- (b) Turn the ignition switch ON.
- (c) Turn the tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED II / DTC INFO / CURRENT CODES.
- (e) Read the DTC.

Result

Display (DTC output)	Proceed to
P0116	A
P0116 and other DTCs	В

B GO TO DTC CHART

^{*2:} Following these steps: 1) the vehicle is driven at 40.4 mph (65 km/h) or more for 30 seconds or more and the vehicle speed reaches 43.5 mph (70 km/h); 2) the vehicle is decelerated from 40.4 mph (65 km/h) to 1.86 mph (3 km/h) or less within 35 seconds; and 3) the vehicle is stopped for 10 seconds.

2 INSPECT THERMOSTAT (WATER INLET WITH THERMOSTAT)

- (a) Remove the thermostat (See page CO-9).
- (b) Check the valve opening temperature of the thermostat. **Standard:**

80 to 84°C (176 to 183°F)

HINT:

In addition to the above check, confirm that the valve is completely closed when the temperature is below the standard.

(c) Reinstall the thermostat (See page CO-9).

NG

REPLACE THERMOSTAT

REPLACE ENGINE COOLANT TEMPERATURE SENSOR

ES