The figure shows the implemented processing chain. For clarity, the figure does not show the NRS and synchronization signals.

channel Model

free-space path loss (without antenna gain)

FSPL =
$$10 \times \log[(4pi \times d \times f \times 1/c)^2]$$

= $20 \times \log(4pi \times d \times 1/lambda)$

Speed of propogation divided by signal frequency (lambda = c / f)

$$PL_{FS} = 32.45 + 20\log_{10} f_c + 20\log_{10} d$$

$$d = \sqrt{R_E^2 \sin \alpha^2 + h_0^2 + 2h_0 R_E} - R_E \sin \alpha$$

Doppler shift model

(Doppler pre-compensation => method statement)

- Input: frequency (residential, edge), receiver speed, alpha
- Output: doppler shift
- 3GPP TR 38.811 (R15)
 - New Radio (NR) to support NTN
- 3GPP TR 38.901 (R16)
 - Channel model for frequencies from 0.5 to 100GHz
- · Fading channel model
 - 3GPP TDL-A~C: defined for non line-of-sight
 - TDL-D (Tapped delay line):
 - outdoor environment with line-of-sight
 - first tap: Ricean fading distribution

- Fading distribution: Rayleigh fading
- Use correlation matrix
- 模擬多徑效應,若不需MIMO系統則可以採用
- AWGN: Add Gaussian noise to signal
 - Ka頻段上的低軌衛星多徑效應

Parameters(Uplink & downlink)

- UE(terminal parameter):
 - 學姐的論文參數?
 - 3GPP: LTE; Evolved Universal Terrestrial Radio
 Access (E-UTRA); User Equipment radio transmission
 and reception (Rel 14)
- · Link-budget:
 - 3GPP: Discussion on link budget for NTN, . TSG RAN WG1 Meeting R1-1903998

Uplink

- Orbit Propogator: sgp4
- modulation format : SC-FDMA
- modulation order: QPSK
- carrier frequency parameter: 2000 MHz (2GHz)
- frequency offset : fd = fc × VD / c

fc = carrier frequency

VD = relative speed between satellite & user

- 地球同步衛星:0
- 太陽同步衛星:考慮相對速度

c = speed of light

antenna type (Satellite & GS)

- ground stations:
 - phased array antenna(custom-48 beam for

Iridium)

- UE:
 - (1,1,2) with omnidirectional antenna element (全向天線)
- Satellite:
 - phased array antenna(custom-48 beam)
 - omnidirectional antenna(有論文支援參數)

Method statement

- Doppler pre-compensation
 - (1) Frequency offset
 - (2) phase, fast Fourier transform (FFT) size
 - (3) Channel estimation : DMRS (number of symbols)

Compared with

- BS使用其他種類天線
- 不同高度的低軌衛星
- 不同家低軌衛星供應商(starlink數量最多,覆蓋面積...)
- 不同軌道傳播器(two_kepler, sgp4, sdp4)
- Beam diameter
 - 波束大小影響覆蓋範圍
 - 基地台部署數量
 - 論文實驗方法:縮小波束覆蓋範圍
- throughput
- resource utilization
- energy save
- subframe 消耗個數

Uplink Simulation Result

Block error rate (BLER) & SNR
 SNRmin=(Eb/No)dB + 10log (Rb/B)dB

Rb=bit rate per second (bit/s or bps)
B = bandwidth (Hz)

- Throughput (Kbps) & SNR & Number of BS
- 如果發射衛星數量夠多,則覆蓋範圍大
 - 定點式(地球同步衛星):
 - 2024/2 starlink has 5438 satellites
- 如果發射衛星數量不足,移動速度加快
 - 移動式(太陽同步衛星):
 - Eutelsat-Oneweb: 600 satellites
- 轉傳演算法策略
 - 近點(給衛星傳)
 - 遠點(先由地面基地台轉送)

辞弦

γ – Central Angle

- y is defined so that, it is non-negative and by the law of cosines.
- $\cos(\gamma) = \cos(L_e) \cos(L_s) \cos(l_s l_e) + \sin(L_e) \sin(L_s)$

The magnitude of the vectors joining the center of the Earth, the satellite and the Earth station are related by the law of cosine

•
$$d = r_s \left[1 + \left(\frac{r_e}{r_s}\right)^2 - 2\left(\frac{r_e}{r_s}\right)\cos(\gamma)\right]^{1/2}$$
 --(1)

• It is the communications path length, d along which path losses will be calculated.

