

SEMINAIRE THEMATIQUE Réseaux cellulaires

"Ne te lasse jamais d'apprendre quelque chose de nouveau à chaque fois que tu en as l'occasion."

Shelda Otoniel

Introduction aux réseaux cellulaires

Moubitang à Dang Yannick

RESEAU CELLULAIRE

C'est quoi un réseau cellulaire?

 C'est un réseau de communications spécialement destiné aux équipements mobiles.

Quel est son rôle?

 Il permet la communication entre ces unités mobiles ainsi qu'avec l'ensemble des abonnés au téléphone mobile.

Comment ça?

 L'onde radio dans le cas d'un réseau cellulaire est le lien entre l'abonné et l'infrastructure de l'opérateur.

Le principe

- Le territoire est divisé en cellules
- Chaque cellule est desservie par une station de bas
- L'ensemble des cellules forme un seul réseau
- Les ressources peuvent être réutilisées entre les cellules

Avantages

- Service continu sur un très large territoire
- Puissances d'émission moins importantes
- Meilleure capacité

Ingénierie

- Planification : déploiement des cellules
- Dimensionnement : nombre de ressources par cellule

TAILLE DE CELLULES

La taille des cellules dépend de plusieurs paramètres

- La puissance d'émission des émetteurs
- Le seuil de sensibilité des récepteurs
- L'environnement radio (rural ou urbain)
- Le nombre d'utilisateurs dans la cellule
- La fréquence utilisée

TAILLE DE CELLULES (2)

***** Hiérarchie

- Macro cellule (1-30 km)
 Zones rurales
 Faible densité d'utilisateurs
- Micro cellule (1 km)
 Zones urbaines et péri-urbaines
 Densité moyenne d'utilisateurs
- Pico cellule (100m)
 Zones urbaines denses
 Forte densité d'utilisateurs
- Femto cellule (10m)
 Privé, hotspots
 A partir de la 3G

SECTORISATION

Cellule simple

- 1 antenne sur 1 pylône dessert une cellule
- Pylône placé au centre de la cellule
- Antenne à 360°

Cellule tri-sectorisée

- 3 antennes sur 1 pylône desservent 3 cellules
- Pylône placé à l'intersection des 3 cellules
- Antennes à 120°

CLASSIFICATION DES RESEAUX SANS FILS

❖ WPAN (Wireless Personal Area Network (≤ 10 m)

Exemple: Bluetooth, Zigbee

❖ WLAN (Wireless Local Area Network (100m – 1km)

Exemple: Wi-Fi

❖ WMAN (Wireless Metropolitain Area Network (1km − 50km)

Exemple : Wimax

WWAN (Wireless Wilde Area Network (> 50 km)

Exemple: Réseaux cellulaires 2G, 3G et 4G

CLASSIFICATION DES RESEAUX SANS FILS (2)

REGLEMENTATION

Normes et standards

- Pourquoi ?
 - Terminaux et équipements compatibles
- Agence
 - ART (Agence des Régulations des Télécommunications)
- Projets
 - GSM (Global System for Mobile Communications)
 - 3GPP (3rd Generation Partnership Project)

Loi

- Pourquoi ?
 - Collocation de différents systèmes (radio, TV, Wi-Fi, cellulaire...)
 - Santé

LES RESEAUX CELLULAIRES AU CAMEROUN

- Marché (Cameroun) ?
- Réseaux opérésCamtel, MTN, Orange, Nexttel
- Norme
 - 4 générations de standards (GSM, 3GPP)
 - Couches 1 à 3 pour tout le trafic et la signalisation
 - Couches supérieures pour les applications spécifiques (voix, SMS)
- Caractéristiques techniques
 - Trafic voix et données
 - Débit de quelques kbit/s en 2G à ? Gbit/s théorique en 4G
 - Grande portée (jusqu'à quelques dizaines de kilomètres)
 - Cellulaire

HISTORIQUE

Première Génération (1G)

Pas de standardisation

Caractéristiques : Analogique

Service: Voix

Réseaux

- AMPS (Advanced Mobile Phone System)
 - Bell Labs
 - 1978
- NMT (Nordic Mobile Telephone)
 - Finlande, Suède, Norvège, Danemark
 - Commercialisé en France par SFR
 - 1981
- Radiocom 2000
 France Télécom 1986

Deuxième Génération (2G)

Standard

- GSM (Global System for Mobile Communications)
 - ETSI
 - 1991

Caractéristiques

- Numérique
- Interface radio FDMA / TDMA
- Bandes 900 et 1800 MHz

Services: Voix, SMS, Téléservices

Évolutions

- Standards
 - GPRS (General Packet Radio Services)
 - EDGE (Enhanced Data rates for GSM Evolution)
- Caractéristiques
 - Basé sur le réseau d'accès GSM
 - Réseau coeur IP
 - Allocation dynamique de ressources par blocs
 - Schémas de modulation et de codage (meilleur débit selon la qualité radio)
- Services : Données

Troisième Génération (3G)

Standard

- UMTS (Universal Mobile Telecommunications System)
- ITU
- 2002

Caractéristiques

- Interface radio W-CDMA
- Réseau de transport ATM
- Bandes 900 (2G) et 2100 MHz

Services: Voix, SMS, Données

Évolutions

Standards

HSPA (High Speed Packet Access), HSPA+, DC-HSPA+ (Dual Carrier)

- Caractéristiques
 - Basé sur le réseau UMTS
 - Allocation de ressources partagées
 - Schémas de modulation et de codage
 - MIMO (Multiple Input Multiple Output) 2x2 (HSPA+)
 - Utilisation de 2 porteuses adjacentes (DC-HSPA+)
 - Passage au réseau de transport IP
- Services : Données

Évolutions

Standards

HSPA (High Speed Packet Access), HSPA+, DC-HSPA+ (Dual Carrier)

- Caractéristiques
 - Basé sur le réseau UMTS
 - Allocation de ressources partagées
 - Schémas de modulation et de codage
 - MIMO (Multiple Input Multiple Output) 2x2 (HSPA+)
 - Utilisation de 2 porteuses adjacentes (DC-HSPA+)
 - Passage au réseau de transport IP
- Services : Données

Standard

- LTE (Long Term Evolution)
- -ITU
- -2009

Caractéristiques

- Interface radio OFDMA en DL et SC-FDMA en UL
- Réseau accès et coeur tout IP
- Bandes 700, 800, 1800 (2G), 2100 (3G) et 2600 MHz

Services: Données

Quatrième Génération (4G) 2

Évolutions

- Standard
 - LTE-Advanced
- Caractéristiques
 - Basé sur le réseau LTE
 - Agrégation de porteuses
 - MIMO
 - Relais
- CoMP (Coordinated Multi-Point)
- SON (Self-Organizing Network)
- VolTE (Voice on LTE)
- Services : Voix, Données

	Standard	Services	Nouveautés	Multiplexage	Débits moyens
1G (1980s)	RadioCom, AMPS	Voix	Premier réseau cellulaire	FDMA	-
2G (1980s)	GSM	Voix, SMS	Numérique SMS	FDMA/ TDMA	9 kbit/s
	GPRS	Data	Schéma de modulation et de codage. Allocation dynamique de ressources Service data (réseau cœur IP)	-	50 kbit/s
	EDGE	Data	Schémas de modulation et de codage	-	64 kbit/s
3G(2000s)	UMTS	Voix, SMS, Data	Nouvelle interface radio (W-CDMA) Nouveau réseau d'accès	W-CDMA	384 kbit/s
3G+	HSPA	Data	Allocation de ressources partagées Schémas de modulation et de codage	-	3,6 Mbit/s
3G++ H+	HSPA+	Data	Allocation de modulation et de codage MIMO 2x2	-	5 Mbit/s
	DC-HSPA+	Data	Utilisation de 2 porteuses adjacentes	-	10 Mbit/s
4G(2010s)	LTE	Data	Nouvelle interface radio (OFDMA) Nouveau réseau d'accès et réseau cœur (tout sur IP	OFDMA (DL) SC-FDMA (UL)	40 Mbit/s
4G+	LTE-Advanced	Voix, Data	Agrégation de porteuses, MIMO, Relais, CoMP, SON VoLTE	-	300 Mbit/s

Quatrième Génération (5G)

Standard

- NR (New Radio)
- ITU
- 2018 (Release 15)

Caractéristiques

- Versions Non-StandAlone (NSA) et StandAlone (SA)
- 3 aspects :
- eMBB (enhanced Mobile BroadBand)
- URLLC (Ultra-Reliable Low-Latency Communications)
- MMTC (Massive Machine Type Communications)
- Ondes millimétriques (24-86 GHz)

Architecture fonctionnelle

- Deux parties :
 - Utilisateur

- Réseau opéré
 - Réseau d'accès
 - Réseau cœur

- Utilisateur = téléphone mobile
- Équipement de l'utilisateur capable de se connecter à un réseau cellulaire
- Composé de :
 - Un terminal mobile
 - Une carte SIM (Subscriber Identity Mobile) en 2G ou USIM (Universal SIM) en 3G et +

• Noms:

- MS (Mobile Station) en 2G
- UE (User Equipment) en 3G et +

Réseau opéré

Réseau d'accès (RAN : Radio Access Network)

- Sous-système responsable de la connexion entre les téléphones mobiles et le réseau cœur
- Composé de :
 - Antennes radio
 - Stations de base
 - Contrôleurs de stations de base
 - Réseau de backhaul
 - Interfaces fonctionnelles

• Noms:

- BSS (Base Station Subsystem) en 2G
- GERAN (GSM Edge RAN) en GPRS
- UTRAN (UMTS Terrestrial RAN) en 3G
- E-UTRAN (Evolved Universal Terrestrial RAN)
 en 4G

Réseau cœur

- Sous-système responsable de la commutation ou du routage des appels et des messages issus ou à destination du réseau d'accès
- Sous-système responsable de la gestion de la mobilité des utilisateurs
- Composé de :
 - Commutateurs (circuit)
 - Routeurs (paquet)
 - Bases de données
 - Réseau de backhaul
 - Interfaces fonctionnelles

• Noms:

- NSS (Network Switching Subsystem) en 2G
- CN (Core Network) en 3G
- EPC (Evolved Packet Core) en 4G

Station de base

Fonctionnalités

- Gestion de la transmission radio (couche physique)
 - Modulation et démodulation, égalisation, codage, étalement de spectre (3G), structure de trame, etc.
- Mesures sur le signal reçu
- Exécution du contrôle de puissance
- Spécificités 2G
 - Gestion de la couche liaison des données pour la signalisation
 - Chiffrement
- Spécificités 3G
- Gestion de la sectorisation, séparation et recombinaison des signaux à destination ou issus de différents secteurs d'un node-B en cas de softer-handover

Equipements

- BTS (Base Transceiver Station) en 2G
- Node-B en 3G
- Compris dans l'eNode-B en 4G

Contrôleur de station de base

Fonctionnalités

- Gestion de la ressource radio
 - Allocation des ressources radio (stations de base, et utilisateurs)
- Utilisation des mesures pour le contrôle de puissance
- Interface avec le réseau cœur
 - Redirection des messages
- Gestion de la voie balise
- Gestion de la mobilité en communication
- Décision et exécution de handover
- Contrôle du soft-handover et des active sets (3G)
- Spécificités 3G 4G
- Gestion de la connexion RRC
- Chiffrement

Equipements

- BSC (Base Station Controller) en 2G
- RNC (Radio Network Controller) en 3G
- Compris dans l'eNode-B en 4G

Commutateur (jusqu'en 3G)

Fonctionnalités

- Commutation des appels voix et des messages SMS
- Interface avec le Réseau Téléphonique Commuté (RTC)

Equipements

- MSC (Mobile Switching Center) et GMSC (Gateway MSC) en 2G et 3G
- MSC Server ou MSS en 3,5G (rétro-compatible à l'aide de Media GateWay)
- Pas de commutateur en 4G

Routeur (à partir de GPRS)

Fonctionnalités

- Routage des paquets (sessions de données)
- Allocation des adresses IP aux utilisateurs
- Respect de la QoS
- Interface avec Internet

Équipements

- SGSN (Serving GPRS Support Node) et GGSN(Gateway GSN) en 2G 3G
- S-GW (Serving GateWay) et P-GW (Packet Data Network GateWay) en 4G

Entités responsables de la mobilité

Fonctionnalités

- Gestion de la mobilité des utilisateurs
 - Zone de localisation (MSC)
 - Zone de routage (SGSN)
 - Zone de tracking (MME)
- Sécurité (MSC, MME)
 - Authentification des abonnés
 - Ordre de chiffrement
- Signalisation utilisateurs
 - Gestion des appels voix et SMS (MSC, domaine circuit 2G 3G)
 - Gestion des sessions de données (SGSN, MME)
- Exécution de certains handovers (MSC, SGSN, MME)
- Base de données locale pour les abonnés en visite (VLR, SGSN, MME)
 - Copie du profil abonné
 - Allocation du numéro d'abonné temporaire
 - Maintien de la localisation à la zone près

Équipements

- MSC pour le domaine circuit en 2G 3G
- VLR (Visitor Location Register) pour le domaine circuit en 2G 3G
- ❖ SGSN pour le domaine paquet en 2G 3G
- MME (Mobility Management Entity) en 4G

Bases de données utilisateurs

Données d'abonnement

- Données utilisateur (lien IMSI-MSISDN)
- Profil (restriction, services...)
- Localisation (VLR ou MME)
- Stockés dans
- HLR (Home Location Register) en 2G-3G
- HSS (Home Subscriber Server) en 4G

Données de sécurité

• Clés d'authentification

- Génération des informations nécessaires à l'authentification
- Génération des clés de chiffrement
- Stockés dans
- AuC (Authentication Center)

Données des équipements

- Liste des terminaux autorisés (IMEI)
- Stockés dans: EIR (Equipment Identity Register)

Architecture 2G

Architecture 3G

Architecture 4G

Architecture protocolaire

Architecture protocolaire du téléphone

- Couche physique
 - Communique avec la couche physique de la station de base
 - Dépend de la génération 2G, 3G, 4G
- Couche liaison
 - Communique avec la couche liaison de la station de base ou du contrôleur de station de base
 - Dépend de la génération 2G, 3G, 4G
- Couche réseau
 - Sous-divisée en trois sous-couches
 - Gestion de la ressource radio
 - Entre l'utilisateur et la station de base ou le contrôleur de station de base (réseau d'accès)
 - Gestion de la mobilité
 - Entre l'utilisateur et l'entité responsable de la mobilité (réseau cœur)
 - Gestion de la connexion / session
 - Entre le téléphone et l'entité responsable de la mobilité (réseau cœur)

3. Réseau

« mobilité »

« radio »

« connexion »

2. Liaison

Liaison

1. Physique

Phy

Couche réseau

- 1. Radio Ressource Control (RR en 2G, RRC en 3G 4G)
 - Gestion de la ressource radio
 - Chiffrement
 - Maintenance de la liaison (rapports de mesure, contrôle de puissance)
 - Handover
- 2. Mobility Management (MM pour la mobilité circuit en 2G 3G, GMM pour la mobilité paquet 2G 3G, EMM en 4G)
 - Gestion de la mobilité (inscription, mise à jour de localisation)
 - Gestion de la sécurité (authentification)
- 3. Connection Management (CM jusqu'en 3G) pour le domaine circuit
 - Établissement d'appel circuit
 - Call Control (CC): signalisation d'appel
 - Supplementary Services (SS): téléservices
 - Short Message Service (SMS)
- 4. Session Management (SM à partir de GPRS, ESM en 4G) pour le domaine paquet
 - Établissement de session de données

Architecture protocolaire (plan contrôle) 2G GSM (domaine circuit)

Architecture protocolaire (plan contrôle) 2G GPRS (domaine paquet)

Architecture protocolaire (plan contrôle) 4G

Partage des ressources

Partage du canal entre utilisateurs

Accès aléatoire

- Les utilisateurs utilisent le même canal à tour de rôle de manière aléatoire quand ils ont un paquet à transmettre
- Tirage au sort d'un instant d'utilisation
 - Aloha, Aloha slotté
 - Utilisé en réseaux cellulaires pour l'accès initial au service
- Écoute avant l'utilisation du canal
- CSMA/CA
- Utilisé en WiFi

Accès multiple

- Chaque utilisateur dispose d'une portion du canal
- Il existe plusieurs façons de diviser le canal radio
 - En fréquence
 - En temps
 - En code
- Utilisé en réseaux cellulaires pour les communications (signalisation, voix, données)

Accès multiple - Division en fréquences

- **FDMA** (Frequency Division Multiple Access)
 - Chaque utilisateur a une porteuse fréquentielle qui lui est attribuée
 - Utilisé en 1G, partiellement en 2G
 - Avantages :
 - Simple à implémenter
 - Limitations :
 - Nombre de porteuses fréquentielles fini dans la bande de fréquence opérée
 - Débit limité par porteuse

Accès multiple - Division en temps

- **TDMA (**Time Division Multiple Access)
 - Chaque utilisateur a un intervalle de temps (slot) attribué
 - Utilisé en 2G
 - Avantages :
 - Simple à implémenter
 - Permet de multiplexer plusieurs utilisateurs sur une même porteuse
 - Limitations :
 - Peu adapté à un trafic non régulier
 - Le débit diminue quand le nombre d'intervalles (utilisateurs) augmente

Accès multiple - Division en codes

- **CDMA** (Code Division Multiple Access)
 - Chaque utilisateur a un code avec lequel il chiffre ses données
 - Utilisé en 3G
 - Avantages :
 - Nombre de codes illimité
 - Permet de multiplexer plusieurs utilisateurs sur une même porteuse simultanément
 - Limitations :
 - Complexe à implémenter
 - Interférences

Accès multiple - Variante de la division en fréquence

- **OFDMA** (Orthogonal Frequency Multiple Access)
 - Orthogonal Frequency Division Multiple Access
 - Chaque utilisateur a une ou plusieurs porteuses qui lui sont attribuées pendant un intervalle de temps donné
 - Multiplexage en temps et en fréquence
 - Utilisé en 4G sur la voie descendante
 - Avantages :
 - Simple à implémenter
 - Meilleure efficacité spectrale (débit doublé)
 - Limitations :
 - Nécessite une forte puissance
 - Interférences

Duplexage

Séparation de la voie montante et de la voie descendante

- Voie montante : du mobile vers la station de base
- Voie descendante : de la station de base vers le mobile

Méthode 1 : Séparation en temps

- TDD (Time Division Duplex)
- Une même porteuse transporte la voie montante et la voie descendante dans des intervalles de temps différents
- Intervalle de garde

Méthode 2 : Séparation en fréquence

- FDD (Frequency Division Duplex)
- Une même porteuse transporte la voie montante et la voie descendante dans des intervalles de temps différents
- Intervalle de garde

THANK YOU FOR WATCHING

