- 1.2.10 Let $y_1 = 1$ and for each $n \in \mathbb{N}$ define $y_{n+1} = \frac{3y_n + 4}{4}$.
 - (a) Use induction to prove that the sequence satisfies $y_n < 4$ for all $n \in \mathbb{N}$. Proof: For the base case, $y_1 = 1 < 4$. By the principle of mathematical induction for all $k \in \mathbb{N}$ if k < n then $y_k < 4$. We must show that $y_n < 4$. Since n - 1 < n, then by the induction hypothesis $y_{n-1} < 4$. Therefore,

$$y_{n-1} < 4$$

$$3y_{n-1} < 12$$

$$3y_{n-1} + 4 < 16$$

$$(3y_{n-1} + 4)/4 < 4$$

$$y_n < 4.$$

(b) We must show that (y_1, y_2, \dots) is increasing. For the base case, $y_1 = 1, y_2 = \frac{3+4}{4} = \frac{7}{4}, 1 < \frac{7}{4}$. By PMI for all $k \in \mathbb{N}$ if k < n then $y_k < y_{k+1}$. Since n-1 < n, by the induction hypothesis $y_{n-1} < y_n$. Therefore,

$$y_{n-1} < y_n$$

$$3y_{n-1} + 4 < 3y_n + 4$$

$$\frac{3y_{n-1} + 4}{4} < \frac{3y_n + 4}{4}$$

$$y_n < y_{n+1}$$