

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Geometria — Lista 2 Prof. Adriano Barbosa

- (1) Seja D um ponto interior de um triângulo equilátero ABC de lado ℓ tal que $\overline{AD}=7$, $\overline{BD}=8$ e $\overline{CD}=5$. Considere um ponto E no exterior do triângulo ABC, conforme a figura, tal que o ângulo $D\hat{C}E=60^\circ$ e $\overline{CD}=\overline{CE}$.
 - (a) Mostre que os triângulos ACE e BCD são congruentes.
 - (b) Determine os comprimentos dos segmentos AE e DE.
 - (c) Encontre a medida do ângulo $A\hat{E}D$.
 - (d) Encontre o valor de ℓ .

- (2) No cilindro circular reto da figura, o raio da base mede 3cm e a altura mede 9cm. Sabe-se ainda que o segmento AB é perpendicular às bases e que o comprimento do menor arco AC é 2π cm.
 - (a) Determine a medida do segmento BC.
 - (b) Determine o ângulo $A\hat{B}C$.

- (3) O cubo ABCDEFGH da figura tem aresta igual a a. Os pontos M, N e P são os centros das faces AFED, DEHC e CBGH, respectivamente
 - (a) Determine o ângulo entre as faces MPA e MPN do tetraedro AMPN.
 - (b) Determine o volume do tetraedro AMPN.

- (4) Dado um triângulo ABC, sejam M o ponto médio do segmento BC e Γ a circunferência tal que o segmento AB é um diâmetro. Prove que $\overline{AB}=\overline{AC}$ se, e somente se, M pertence à circunferência Γ .
- (5) Um segmento que tem um vértice de um triângulo como uma das suas extremidades e a outra extremidade sobre o lado oposto a esse vértice é chamado de ceviana interna do triângulo. O Teorema de Ceva afirma que, em um triângulo ABC, as cevianas internas AA', BB' e CC' se intersectam em um mesmo ponto se, e somente se,

$$\frac{\overline{BA'}}{\overline{A'C}} \cdot \frac{\overline{CB'}}{\overline{B'A}} \cdot \frac{\overline{AC'}}{\overline{C'B}} = 1.$$

 $\frac{\overline{BA'}}{\overline{A'C}}\cdot\frac{\overline{CB'}}{\overline{B'A}}\cdot\frac{\overline{AC'}}{\overline{C'B}}=1.$ Prove, utilizando o Teorema de Ceva, que em um triângulo ABC:

- (a) As três medianas de um triângulo concorrem em um mesmo ponto.
- (b) As três bissetrizes internas de um triângulo concorrem em um mesmo ponto.

