GROUP 01

TEAM NAME: INFERENTIA

STATE OF THE PROBLEM

The nominal GDP is the measure of country's economic output for a calendar year, using the current rates and excluding the inflation rate. For example, the real GDP of the country is 5.0 % and the inflation rate is 2.0% then the nominal GDP of the country is 3.0 %. To calculate the Nominal GDP, the data of the variables associated with it should be available. Currently, the nominal GDP data by industry is available with a 3-year-lag. While, the data associated with the variable is available at many data sources.

There are three generally accepted ways to calculate GDP:

- 1. Product approach: adding up the market values of all final goods/services.
- 2. Expenditure approach: adding up the total expenditure of different sectors of the economy.
- 3. Income approach: adding up the income generated by the production of final goods/services

We here, follow the expenditure based approach. The formula to calculate the GDP is given below:

$$GDP = C + I + G + NX$$

C: Consumption expenditure is the expenditure by households on consuming goods/services

I: Investment is the purchase of new capital goods (tools, instruments, machines, buildings, and other constructions) and additions to inventories

G: Government purchases is the expenditure by all levels of government on goods/services

NX: Net exports is the value of exports of goods/services minus the value of imports of goods/services

- Exports are goods produced within Canada and sold to the rest of the world
- Imports are goods produced outside Canada and purchased by Canadian households, firms, and governments

OBJECTIVE OF THIS ANALYSIS

The main objective of this analysis is to create a model which will help is predicting the Nominal GDP will a very less error rate. For creating the model, we need to use publicly available data sources, and apply data analysis techniques to generate timely estimates of nominal GDP.

DATA SETS TO BE USED FOR ANALYSIS:

[1] Multifactor productivity and related variables.

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3610020801

[2] Gross domestic product (GDP) at basic prices

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3610043403

[3] World Bank Data

https://www.google.com/publicdata/explore?

<u>ds=d5bncppjof8f9_&met_y=ny_gdp_mktp_cd&idim=country:CAN:MEX:IND&hl=en&dl=en#!</u>
<u>ctype=l&strail=false&bcs=d&nselm=h&met_y=ny_gdp_mktp_cd&scale_y=lin&ind_y=false&rdim=country&ld=en_US&dl=en&ind=false</u>

[4] Stock Exchange Data

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1010012401

[5] Currency Exchange Rates

https://www.ofx.com/en-ca/forex-news/historical-exchange-rates/

https://www.statista.com/statistics/412804/euro-to-canadian-dollar-average-annual-exchange-rate/

Note: The other sources are all from the stats can website which will be included later.

VARIABLES

Possible Response Variables:

Variable Name	Data Years	Data Seasonality	
Nominal GDP	2009 - 2016	Annual [3]	

Explanatory Variables: (The ones highlighted in red have strong impact and will be used in further analysis)

anarysisj				
Variable Name	Data Years	Data Seasonality	Indicator Type	Correlation
Population Per Year	2009-2016	Annual [3]	Leading	R = 0.18
				P = 0.67
Export of goods	2010-2016	Annual [3]	Leading	R = 0.65
				P = 0.81
Import of goods	2010-2016	Annual [3]	Leading	R = 0.62
				P = 0.1
Real Interest Rate (%)	2009-2016	Annual [3]	Lagging	R = -0.67
				P = 0.066
Domestic Companies (Total)	2009-2016	Annual [3]	Leading	R = 0.67
				P = 0.088
Travel Services (% of service	2009-2016	Annual [3]	Leading	R = 0.9
imports BoP)				P = 0.0022
Energy Use (Kg of oil equivalent	2009-2016	Annual [3]	Leading	R = 0.31
per capita)				P = 0.45
Agricultural land (% of land area)	2009-2016	Annual [3]	Leading	R = -0.63
				P = 0.093
Refugee Population	2009-2016	Annual [3]	Leading	R = 0.54

				P = 0.17
Personal Remittances (received in US \$)	2009-2016	Annual [3]	Lagging	R = 0.54 P = 0.17
Personal Remittances (paid in US \$)	2009-2016	Annual [3]	Leading	R = 0.94 P = 0.00049
Railways, Passengers carried	2009-2016	Annual [3]	Leading	R = -0.56 P = 0.15
Air transport, Passengers carried, Domestic	2009-2016	Annual [3]	Leading	R = 0.25 P = 0.56
Air transport, Passengers carried, Worldwide	2009-2016	Annual [3]	Leading	R = 0.1 P = 0.81
Tourists Per Year	2009-2016	Annual	Leading	R = -0.27 P = 0.53
Stock Market	2009-2016	Annual [3]	Leading	R = -0.3 P = 0.47
Toronto Stock Exchange, value of shares traded (x 1,000,000)	2009-2016	Monthly[4]	Lagging	R= -0.54 P= 0.17
Toronto Stock Exchange, volume of shares traded (x 1,000,000)	2009-2016	Monthly[4]	Lagging	R=-0.68 P=0.062
USD to CAD Exchange Rates	2009-2016	Annual	Lagging	R = -0.63 P = 0.092
10-year Government of Canada bond rate	2009-2016	Monthly[5]	Lagging	R= -0.17 p= 0.69
EUR to CAD Exchange Rates	2009-2016	Annual	Lagging	R = -0.74 P = 0.034
Housing Market	2009-2016	Annual [2]	Leading	R = 0.3 P = 0.46
Employment Rate	2009-2016	Annual	Leading	R= 0.28 P= 0.5
Ease of doing business	2009-2016	Annual	Leading	R= 0.23 P= 0.59
Incoming International Tourists	2009-2016	Annual [3]	Leading	
Real GDP	2009-2016	Annual [1]	Lagging	R = 0.28 P = 0.6
Income and Wage Growth/Decline	2009-2016	Annual [3]	Lagging	R= 0.69 p=0.059
Unemployment Rate	2009-2016	Annual [3]	Lagging	R= -0.49 P= 0.21
CPI (Inflation)	2009-2016	Annual [3]	Lagging	R = 0.56 P = 0.15
Interest Rate	2009-2016	Annual	Lagging	R= -0.68 p= 0.066
Manufacturing	2009-2016	Annual	Leading	R = 0.45 P = 0.26
Average labor productivity.	2009-2016	Annual [1]	Leading	R= 0.26 P = 0.54

Consumption	2009-2016	Annual [3]	Leading	R= 0.52
				P= 0.19
Investment	2009-2016	Annual [3]	Leading	R= 0.49
				P= 0.22

HYPOTHESIS AND OBSERVATION

- We have performed EDA for almost around 35 variables and found that many show a strong
 positive and a strong negative correlation with the Nominal GDP of years between 2009 and
 2016. (The red marked variables are the strong ones)
- We all add up other variables as we progress, there are few more variables identified, but as
 the data is monthly, we have not done the transformation and will be doing it so in the
 upcoming week.
- We have directly used values in the frames in multiple places as import files and transforming the data was time consuming and will be done in upcoming weeks.
- All the graphs after performing correlation are given below.
- After the graphs, there is non formatted rough code which has been combine from different machines.
- The code needs to be cleaned and automated as the values are mostly hard-coded in the frames from 2009-2016.
- As shown in the above table, data for export and import is available from 2010 to 2016.
- First we added the mean value for the year 2009, however we got much better results when we substitute it with mean.

EDA ANALYSIS

```
library(plyr)
library(ggpubr)
year <- c(2009,2010,2011,2012,2013,2014,2015,2016)
ngdp <- c(1.37,1.61,1.7886,1.8243,1.8426, 1.7993,1.5596,1.5358)
population <- c(33628895.0, 34004889.0, 34339328.0, 34714222.0, 35082954.0, 35437435.0, 35702908.0, 36109487.0)
ExportAllIndustries<- c(0,359917422, 400244966, 407800730, 423614361, 469270980, 464754175,453686071)
ImportAllIndustries<- c(0,383812638, 425197604, 438058268, 451274218, 484545519, 505045626, 502117831)</pre>
RealInterestRate<- c(4.8,-0.3,-0.1,1.8,1.2,1.0,3.7,1.9)
TravelServicesImports<- c(29.1,30.5,31.1,31.3,31.1,31.0,29.9,28.7)
TotalDomesticCompanies<- c(3727,3771,3980,4030,3810,3948,3799,3368)
EnergyUse<-c(7797.1, 7788.6, 7911.6, 7733.4, 7743.7, 7897.9, 7631.3, 0)
AgrLand<-c(7,7,6.9,6.9,6.9,6.9,6.9)
RefPop<-c(99,90,109,123,99,95,80,84)
RemRec<-c(1196444724.41024,1199157750.27888, 1227344978.04621, 1254600489.98476, 1336538605.70778,
                      1351304689.29191, 1274255368.12748, 1289324860.09108)
RemPaid<-c(4662098288.9915, 5290453957.41713, 5557756827.74173, 5629382995.17341, 5702499908.42515,
                        5948213016.80636, 5114157603.63363, 5255722464.64191)
RailwaysPass<-c(1372.3,1346.3,1356.7,1341.8,1330.5,1300,1322.4,1380.87)
AirPass<-c(52583516,63277409,3753385,66078011.9547392,70467400.7928687,71526725.918431,75528607,80228302,85406425)
IntAirPass<-c(1198381,1234528.61925597,1245743.61579713,1280198.18557714,1263297.33686341,1290419,1322033,1359442)
{\tt dataSet} {\tt <-data.frame} (year, population, {\tt ExportAllIndustries}, {\tt ImportAllIndustries}, {\tt RealInterestRate}, {\tt TotalDomesticCompanies}, {\tt ImportAllIndustries}, {\tt ImportAllIndustrie
                                           TravelServicesImports,EnergyUse,AgrLand,RefPop,RemRec,RemPaid,RailwaysPass,AirPass,IntAirPass,ngdp)
dataSet<-dataSet%>%mutate(populationInMill=population/1000000)
dataSet<-dataSet%>%mutate(ExportMillDollar=ExportAllIndustries/1000000)
dataSet<-dataSet%>%mutate(ImportMillDollar=ImportAllIndustries/1000000)
```

```
dataSet%>%
rename(yr=year,
      pop=population,
      exp=ExportAllIndustries,
      imp=ImportAllIndustries,
      rir=RealInterestRate,
      tsi=TravelServicesImports,
      tdc=TotalDomesticCompanies,
      engu=EnergyUse,
      agl=AgrLand,
      rp=RailwaysPass,
      ap=AirPass,
      iap=IntAirPass,
      pmd=populationInMill,
       emd=ExportMillDollar,
       imd=ImportMillDollar
```

уг	pop	exp	imp	rir	tdc	tsi	engu	agl	RefPop	RemRec	RemPaid	rp	ap	iap	ngdp	pmd	emd	imd
<dbl></dbl>																		
2009	33628895	0	0	4.8	3727	29.1	7797.1	7.0	99	1196444724	4662098289	1372.30	52583516	1198381	1.3700	33.62889	0.0000	0.0000
2010	34004889	359917422	383812638	-0.3	3771	30.5	7788.6	7.0	90	1199157750	5290453957	1346.30	63277409	1234529	1.6100	34.00489	359.9174	383.8126
2011	34339328	400244966	425197604	-0.1	3980	31.1	7911.6	6.9	109	1227344978	5557756828	1356.70	66078012	1245744	1.7886	34.33933	400.2450	425.1976
2012	34714222	407800730	438058268	1.8	4030	31.3	7733.4	6.9	123	1254600490	5629382995	1341.80	70467401	1280198	1.8243	34.71422	407.8007	438.0583
2013	35082954	423614361	451274218	1.2	3810	31.1	7743.7	6.9	99	1336538606	5702499908	1330.50	71526726	1263297	1.8426	35.08295	423.6144	451.2742
2014	35437435	469270980	484545519	1.0	3948	31.0	7897.9	6.9	95	1351304689	5948213017	1300.00	75528607	1290419	1.7993	35.43744	469.2710	484.5455
2015	35702908	464754175	505045626	3.7	3799	29.9	7631.3	6.9	80	1274255368	5114157604	1322.40	80228302	1322033	1.5596	35.70291	464.7542	505.0456
2016	36109487	453686071	502117831	1.9	3368	28.7	0.0	6.9	84	1289324860	5255722465	1380.87	85406425	1359442	1.5358	36.10949	453.6861	502.1178

Energy use (kg of oil equivalent per capita)

Personal remittances, received US\$

year	Manufacturing	housing_market	ngdp	labour_productivity	real_gdp	interest_rate	income_growth
<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
2009	317712.4	10756375	1.3700	1947.025	1845.013	4.80	-5.86
2010	331923.7	11146943	1.6100	1958.620	1901.550	-0.26	5.48
2011	348774.4	11519574	1.7886	1984.771	1965.018	-0.23	4.55
2012	360722.6	11715862	1.8243	2000.000	2000.000	1.39	1.27
2013	361340.7	11994309	1.8426	2034.268	2057.445	1.78	2.66
2014	372046.6	12356841	1.7993	2106.631	2116.766	1.01	1.99
2015	388448.9	12443428	1.5596	2109.523	2132.351	3.58	-1.58
2016	189379.7	12565782	1.5358	2130.964	2154.237	2.08	0.85


```
#nominal gdp dataframe
# putting nominal gdp data from [3] in a dataframe
year <- c(2009,2010,2011,2012,2013,2014,2015,2016)
ngdp <- c(1.37,1.61,1.7886,1.8243,1.8426, 1.7993,1.5596,1.5358)
df1 <- data.frame(year, ngdp)
A data.frame: 8 x
 2
   year
          ngdp
  <dbl>
         <dbl>
  2009 1.3700
  2010 1.6100
   2011 1.7886
  2012 1.8243
  2013 1.8426
   2014 1.7993
  2015 1.5596
   2016 1.5358
```

```
# preparing housing market dataframe from[2]
install.packages("readxl")
ibrary("readxl")
my_data <- read_excel("housing.xlsx")
install.packages("plyr")
library(plyr)
my_data1 <- numcolwise(sum)(my_data)
my_data2 <- t(my_data1)
colnames(my_data2)<-c("housing_market")
d <- my_data2
year <- rownames(d)
rownames(d) <- NULL
data <- cbind(year,d)
data</pre>
```

A matri	x: 8 x 2 of type chr
year	housing_market
2009	10756375
2010	11146943
2011	11519574
2012	11715862
2013	11994309
2014	12356841
2015	12443428
2016	12565782

```
# preparing labour productivity dataframe from[1]
my_data11 <- read_excel("labour productivity.xlsx")
my_data12 <- numcolwise(sum)(my_data11)
my_data21 <- t(my_data12)
colnames(my_data21)<-c("labour_productivity")
d1 <- my_data21
year <- rownames(d1)
rownames(d1) <- NULL
data1 <- cbind(year,d1)
data1
```

A matrix: 8 x 2 of type chr

year	labour_productivity
2009	1947.025
2010	1958.62
2011	1984.771
2012	2000
2013	2034.268
2014	2106.631
2015	2109.523
2016	2130.964

```
my_data111 <- read_excel("real gdp.xlsx")
my_data121 <- numcolwise(sum)(my_data111)
```

```
my_data211 <- t(my_data121)
colnames(my_data211)<-c("real_gdp")
d11 <- my_data211
year <- rownames(d11)</pre>
 rownames(d11) <- NULL
 data11 <- cbind(year,d11)
data11
A matrix: 8 x 2 of
type chr
  year real_gdp
 2009 1845.013
 2010
        1901.55
  2011 1965.018
 2012
           2000
 2013 2057.445
 2014 2116.766
 2015 2132.351
 2016 2154.237
```

```
# preparing manufacturing activity dataframe from[1]
my_data1111 <- read_excel("manufacturing.xlsx")
my_data1112 <- t(my_data1111)
rownames(my_data1112) <- NULL
names(data3) <- lapply(data3[1, ], as.character)
data3 <- data3[-1,]
write.csv(data3,"File Name.csv", row.names = FALSE)
data3<- read.csv("File Name.csv", stringsAsFactors = FALSE)
names(data3)[names(data3) == "V1"] <- "year"
names(data3)[names(data3) == "V2"] <- "Manufacturing"
r1<-transform(data3, Manufacturing = as.numeric(Manufacturing))
x_new = aggregate(r1$Manufacturing, by=list(year=r1$year), FUN=sum)
x_new</pre>
```

```
year x
<int> <dbl>
2009 317712.4
2010 331923.7
2011 348774.4
2012 360722.6
2013 361340.7
2014 372046.6
2015 386448.9
2016 189379.7
```

```
#transforming different column values of dataframes to numeric from chr

df1<-transform(df1, ngdp = as.numeric(ngdp))
data<-transform(data, year = as.numeric(as.character (year)))
data1<-transform(data1, year = as.numeric(as.character(year)))
data1<-transform(data1, labour_productivity = as.numeric(as.character(labour_productivity)))
data<-transform(data, year = as.numeric(as.character(year)))
data<-transform(data, housing_market = as.numeric(as.character(housing_market)))
data11<-transform(data11, real_gdp = as.numeric(as.character(real_gdp)))
df1
x_new
data
data1
data11
```

year	ngdp
vdblv	vdble
2009	1.3700
2010	1.6100
2011	1.7886
2012	1.8243
2013	1.8428
2014	1.7993
2015	1.5598
2016	1.5358

Adata/name: 8 x 2

year	
sinte	vdblv
2009	317712.4
2010	331923.7
2011	348774.4
2012	380722.8
2013	381340.7
2014	372048.6
2015	388448.9
2016	189379.7

Adata/rame: 8 x 2

year	housing market
vdblv	vdblv
2009	10758375
2010	11146943
2011	11519574
2012	11715862
2013	11994309
2014	12356841
2015	12443428
2016	12585782

A data frame: 8 x 2

year	labour	productivity

dbl	vdblv
2009	1947.025
2010	1958.620
2011	1984.771
2012	2000.000
2013	2034.268
2014	2106.631
2015	2109.523
2016	2130.984

A data frame: 8 x 2

year	real gdp
vidble	vdbP
2009	1845.013
2010	1901.550
2011	1985.018
2012	2000.000
2013	2057.445
2014	2116,766
2015	2132.351
2016	2154.237

```
#merging dataframes 2 at a time
merged_df <- merge(df1, data1, by="year")
merged_df1 <- merge(x_new, data, by="year")
merged_df2 <- merge(merged_df1, merged_df, by="year")
merged df3 <- merge(merged df2, data11, by="year")
names(merged df3)[names(merged df3) == "x"] <- "Manufacturing"
merged df3
 A data.frame: 8 x 6
  year Manufacturing housing_market ngdp labour_productivity real_gdp
           <dbi> <dbi> <dbi> <dbi>
                                         <dbi><dbi><dbi><
  <int+
  2009
         317712.4 10756375 1.3700 1947.025 1845.013
         331923.7 11146943 1.6100
  2010
                                       1958.620 1901.550
  2011 348774.4 11519574 1.7886
                                      1984.771 1965.018
  2012
         360722.6
                   11715862 1.8243
                                       2000.000 2000.000
  2013 361340.7 11994309 1.8426 2034.268 2057.445
  2014
         372046.6 12356841 1.7993 2106.631 2116.766
  2015
         386448.9 12443428 1.5596
                                      2109.523 2132.351
  2016
         189379.7
                   12565782 1.5358
                                        2130.964 2154.237
```

#applying correlation of explanatory variables to response variable nominal gdp and visualizing in r

```
xlab = "housing_market", ylab = "ngdp")
```

```
cor.coef = TRUE, cor.method = "pearson",
xlab = "consumption", ylab = "ngdp")
```

```
year <- c(2009,2010,2011,2012,2013,2014,2015,2016)
unemployment <- c(8.3,8.1,7.5,7.3,7.1,6.9,6.9,7)
df2 <- data.frame(year, unemployment)
# #merging data frame with merged_df3
merged_df4 <- merge(merged_df4, df2, by="year")
# # finding correlation between nominal gdp nd unemployment
```

```
library("ggpubr")
ggscatter(merged_df4, x = "unemployment", y = "ngdp",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "unemployment", ylab = "ngdp")
```

#Toronto Stock Exchange Trade Value Data

```
df_tse_val <- data.frame(year, ngdp)</pre>
df_all_stock <- read.csv("Stock_Market_Data.csv")
df bond rates <- read.csv("Bond Rates.csv")</pre>
df corp profs <- read.csv("Corporate Profits.csv")</pre>
df_all_stock %>% filter( i..REF_DATE > "2008-12")
colnames(df_all_stock)
df_all_stock_2009 <- df_all_stock %>%
filter(grepl( "Toronto Stock Exchange, value of shares traded", Stock.market.statistics),
     grepl( "2009-", i.. REF DATE))
tval_2009 <- sum(df_all_stock_2009$VALUE)
df_all_stock_2010 <- df_all_stock %>%
 filter(grepl( "Toronto Stock Exchange, value of shares traded", Stock.market.statistics),
     grepl( "2010-", "... REF_DATE))
tval 2010 <- sum(df_all_stock_2010$VALUE)
df_all_stock_2011 <- df_all_stock %>%
filter(grepl( "Toronto Stock Exchange, value of shares traded", Stock.market.statistics),
     grepl( "2011-", i.. REF DATE))
tval_2011 <- sum(df_all_stock_2011$VALUE)
df all stock 2012 <- df all stock %>%
filter(grepl( "Toronto Stock Exchange, value of shares traded", Stock.market.statistics),
     grepl( "2012-", "... REF_DATE))
tval 2012 <- sum(df all stock 2012$VALUE)
df_all_stock_2013 <- df_all_stock %>%
 filter(grepl( "Toronto Stock Exchange, value of shares traded", Stock.market.statistics),
     grepl( "2013-", "... REF_DATE))
tval_2013 <- sum(df_all_stock_2013$VALUE)
df_all_stock_2014 <- df_all_stock %>%
 filter(grepl( "Toronto Stock Exchange, value of shares traded", Stock.market.statistics),
     grepl( "2014-", "... REF_DATE))
tval_2014 <- sum(df_all_stock_2014$VALUE)
df_all_stock_2015 <- df_all_stock %>%
```

```
filter(grepl( "Toronto Stock Exchange, value of shares traded", Stock.market.statistics),
    grepl( "2015-", i.. REF DATE))
tval_2015 <- sum(df_all_stock_2015$VALUE)
df_all_stock_2016 <- df_all_stock %>%
filter(grepl( "Toronto Stock Exchange, value of shares traded", Stock.market.statistics),
    grepl("2016-", i.. REF DATE))
tval_2016 <- sum(df_all_stock_2016$VALUE)
tval <- c[tval_2009,
     tval_2010,
     tval_2011,
     tval_2012,
     tval_2013,
     tval_2014,
     tval 2015,
     tval 2016]
df tse <- data.frame(year, ngdp, tval)
df tse
#nominal gdp vs value of shares traded
ggscatter(df_tse, x = "ngdp", y = "tval",
     add = "reg.line", conf.int = TRUE,
     cor.coef = TRUE, cor.method = "pearson",
     xlab = "Toronto Stock Exchange Value traded", ylab = "real")
#Toronto Stock Exchange Volume Datadf_all_stock_v2009 <- df_all_stock %>%
filter(grepl( "Toronto Stock Exchange, volume of shares traded", Stock.market.statistics),
    grepl( "2009-", i.. REF_DATE))
tvol_2009 <- sum(df_all_stock_v2009$VALUE)
df_all_stock_v2010 <- df_all_stock %>%
filter(grepl( "Toronto Stock Exchange, volume of shares traded", Stock.market.statistics),
    grepl( "2010-", i.. REF DATE))
tvol_2010 <- sum(df_all_stock_v2010$VALUE)
df all stock v2011 <- df all stock %>%
filter(grepl( "Toronto Stock Exchange, volume of shares traded", Stock.market.statistics),
    grepl( "2011-", i.. REF DATE))
tvol_2011 <- sum(df_all_stock_v2011$VALUE)
df_all_stock_v2012 <- df_all_stock %>%
```

```
filter(grepl( "Toronto Stock Exchange, volume of shares traded", Stock.market.statistics),
    grepl( "2012-", "... REF_DATE))
tvol_2012 <- sum(df_all_stock_v2012$VALUE)
df_all_stock_v2013 <- df_all_stock %>%
filter(grepl( "Toronto Stock Exchange, volume of shares traded", Stock.market.statistics),
    grepl( "2013-", i.. REF DATE))
tvol_2013 <- sum(df_all_stock_v2013$VALUE)
df_all_stock_v2014 <- df_all_stock %>%
filter(grepl( "Toronto Stock Exchange, volume of shares traded", Stock.market.statistics),
    grepl( "2014-", "... REF_DATE))
tvol_2014 <- sum(df_all_stock_v2014$VALUE)
df_all_stock_v2015 <- df_all_stock %>%
filter(grepl( "Toronto Stock Exchange, volume of shares traded", Stock.market.statistics),
    grepl( "2015-", i.. REF DATE))
tvol_2015 <- sum(df_all_stock_v2015$VALUE)
df all stock v2016 <- df all stock %>%
filter(grepl( "Toronto Stock Exchange, volume of shares traded", Stock.market.statistics),
grepl( "2016-", "... REF_DATE))
tvol_2016 <- sum(df_all_stock_v2016$VALUE)
tvol <- c(tvol_2009,
     tvol_2010,
     tvol 2011,
     tvol_2012,
     tvol 2013,
     tvol_2014,
     tvol_2015,
     tvol 2016)
df tse <- data.frame(year, ngdp, tval,tvol)</pre>
df tse
#nominal gdp vs vol of shares traded
ggscatter(df_tse, x = "ngdp", y = "tvol",
     add = "reg.line", conf.int = TRUE,
     cor.coef = TRUE, cor.method = "pearson",
     xlab = "Toronto Stock Exchange Volume Traded", ylab = "real")
# Selected Government of Canada benchmark bond yields: 10 years
colnames(df_bond_rates)
```

```
df bond <- df bond rates %>%
filter(grepl( "Selected Government of Canada benchmark bond yields: 10 years", Rates),
    grepl("2009-|2010-|2011-|2012-|2013-|2014-|2015-|2016-", i.. REF_DATE))
df bond
df_bond_2009 <- df_bond %>% filter(grepl("2009", \(\tilde{\text{I..}}\)REF_DATE))
df bond 2009 <- sum(df bond 2009$VALUE)
bon_val_2009 <- (df_bond_2009/12)
bon_val_2009
df_bond_2010 <- df_bond %>% filter(grepl("2010", \(\tilde{i}\). REF_DATE))
df_bond_2010 <- sum(df_bond_2010$VALUE)
bon_val_2010 <- (df_bond_2010/12)
df_bond_2011 <- df_bond %>% filter(grepl("2011", \(\tilde{i}\). REF_DATE))
df_bond_2011 <- sum(df_bond_2011$VALUE)
bon val 2011 <- (df bond 2011/12)
df bond 2012 <- df bond %>% filter(grepl("2012", i.. REF DATE))
df_bond_2012 <- sum(df_bond_2012$VALUE)
bon val 2012 <- (df bond 2012/12)
df_bond_2013 <- df_bond %>% filter(grepl("2013", \(\tilde{\text{i..REF_DATE}}\))
df bond 2013 <- sum(df bond 2013$VALUE)
bon val 2013 <- (df bond 2013/12)
df_bond_2014 <- df_bond %>% filter(grepl("2014", \(\tilde{i}\). REF_DATE))
df bond 2014 <- sum(df bond 2014$VALUE)
bon_val_2014 <- (df_bond_2014/12)
df_bond_2015 <- df_bond %>% filter(grepl("2015",i..REF_DATE))
df_bond_2015 <- sum(df_bond_2015$VALUE)
bon_val_2015 <- (df_bond_2015/12)
df_bond_2016 <- df_bond %>% filter(grepl("2016", \(\tilde{i}\). REF_DATE))
df_bond_2016 <- sum(df_bond_2016$VALUE)
bon val 2016 <- (df bond 2016/12)
bond 10yr <- c(bon val 2009,
        bon_val_2010,
        bon val 2011,
        bon val 2012,
        bon val 2013,
        bon val 2014,
        bon_val_2015,
```

```
bon_val_2016)
bond 10yr
df_tse <- data.frame(year, ngdp, tval, tvol, bond_10yr)</pre>
df_tse
#nominal gdp vs vol of shares traded
ggscatter(df_tse, x = "ngdp", y = "bond_10yr",
    add = "reg.line", conf.int = TRUE,
    cor.coef = TRUE, cor.method = "pearson",
    xlab = "Selected Government of Canada benchmark bond yields: 10 years", ylab = "real")
# EUR_CAD Conversion Rates
eur_cad <- c(1.59,1.37,1.38,1.28,1.37,1.47,1.42,1.47)
df_tse <- data.frame(year, ngdp, tval, tvol, bond_10yr,eur_cad)</pre>
df tse
ggscatter(df_tse, x = "ngdp", y = "eur_cad",
    add = "reg.line", conf.int = TRUE,
    cor.coef = TRUE, cor.method = "pearson",
    xlab = "EUR to CAD Exchange Rates", ylab = "real")
#USD To CAD Conversion Rates
usd_cad <- c(1.141433,1.030533,0.989323,0.999997,1.030084,1.104347,1.279163,1.325521)
df_tse <- data.frame(year, ngdp, tval, tvol, bond_10yr,eur_cad, usd_cad)
df_tse
ggscatter(df_tse, x = "ngdp", y = "usd_cad",
    add = "reg.line", conf.int = TRUE,
    cor.coef = TRUE, cor.method = "pearson",
    xlab = "USD to CAD Exchange Rates", ylab = "real")
#Labour Productivity Rates
lab_prod <- c(53.8,54.6,55.6,55.8,56.7,58.1,58.1,58.3)
```

```
df_tse <- data.frame(year, ngdp, tval, tvol, bond_10yr,eur_cad, usd_cad, lab_prod)
df_tse
ggscatter(df_tse, x = "ngdp", y = "lab_prod",
    add = "reg.line", conf.int = TRUE,
    cor.coef = TRUE, cor.method = "pearson",
    xlab = "Labour Productivity", ylab = "real")
#Employment Rate
emp_level <- c(16.73,16.96,17.22,17.44,17.69,17.8,17.95,18.08)
df_tse <- data.frame(year, ngdp, tval, tvol, bond_10yr,eur_cad, usd_cad, lab_prod, emp_level)
df_tse
ggscatter(df tse, x = "ngdp", y = "emp level",
    add = "reg.line", conf.int = TRUE,
    cor.coef = TRUE, cor.method = "pearson",
    xlab = "Employment Rate", ylab = "real")
#Ease of Doing Business
eob <- c(8,12,13,17,19,13,20,22)
df tse <- data.frame(year, ngdp, tval, tvol, bond 10yr,eur cad, usd cad, lab prod, emp level,eob)
df_tse
ggscatter(df_tse, x = "ngdp", y = "eob",
    add = "reg.line", conf.int = TRUE,
    cor.coef = TRUE, cor.method = "pearson",
    xlab = "Ease of Doing Business", ylab = "real")
```