Calculating recombination distances between 2 genes

Can use linkage to develop a "map" of chromosomes

- Chromosomes are linear
- Neighboring variants tend to stay associated
 - "Parental" combination more common than "recombinant" combination in gametes
- Range: full association (0% recombination) to no association (50% recombination)
- ... but how do we know what variant is at "A"?

"Genetic markers"

- Reference point in the genome with 2+ alleles
 - Don't necessarily know ahead of time where it is
- May be "molecular": assay via molecular bio
 - a: sequence GTGAAAAGCTATGTAGT
 - A: sequence GTGGCTATGTAGT

"Genetic markers"

- Reference point in the genome with 2+ alleles
 - Don't necessarily know ahead of time where it is
- May be "phenotypic": red vs. white eyes

AA, Aa

aa

Sequence difference at an "eye color gene" makes it so **aa** individuals have white eyes

Use crosses (or pedigree) and inferred genotypes to make map

- Identify "recombinants" and "parentals"
- If A and B are linked, what are fractions of all?
- If A and B are unlinked, what are fractions of all?

Use crosses (or pedigree) and inferred genotypes to make map

 What would proportions be if "sort of" linked?

 What does the fraction recombinant tell you?

- Cinnabar (bright red) x Vestigial wings (vg) eyes (cn)

 Cinnabar (bright red) x Vestigial wings (vg) eyes (cn)

(c) 2009 Muhammad Mahdi Karim

- Offspring: all have normal eyes and wings
 - Is cinnabar form dominant or recessive?
 - Is vestigial form dominant or recessive?
 - What is the genotype of this fly?

- Cinnabar (bright red) x Vestigial wings (vg) eyes (cn)
- Offspring: all have normal eyes and wings

$$\frac{\text{cn} \qquad \text{vg}^+}{\text{cn}^+ \qquad \text{vg}}$$

• Cross F1 females above to cn-vg males. What is the males' genotype?

- Cinnabar (bright red) x Vestigial wings (vg) eyes (cn)
- Offspring: all have normal eyes and wings
- Cross F1 females to cn-vg males.

$$\frac{\text{cn} \qquad \text{vg}^+}{\text{cn}^+ \qquad \text{vg}} \times \frac{\text{cn} \qquad \text{vg}}{\text{cn} \qquad \text{vg}} \quad \text{Test cross}$$

What are parental and recombinant offspring?

$$\frac{\operatorname{cn} \quad \operatorname{vg}^{+}}{\operatorname{cn}^{+} \quad \operatorname{vg}} \times \frac{\operatorname{cn} \quad \operatorname{vg}}{\operatorname{cn} \quad \operatorname{vg}} \qquad \text{Test cross}$$

- What if there is total linkage between the cn and vg genes?
- What if cn and vg are "unlinked"?
- What if linked but not totally so?

The fraction recombinant reflects the distance between the genes

- % recombinant is called "map units" (mu)
 - In Drosophila, often called centiMorgans (cM)
 - Recombinant fraction ranges from 0% to 50% (= 0-50cM)
- Gives an idea of distance between genes
 - Developed before we had "genome sequences" and known physical distances in base-pairs
 - In humans, average 1.3cM ~ 1 million bases
- Can determine linear order of genes

What if saw these numbers?

$$\frac{\operatorname{cn} \quad \operatorname{vg}^{+}}{\operatorname{cn}^{+} \quad \operatorname{vg}} \times \frac{\operatorname{cn} \quad \operatorname{vg}}{\operatorname{cn} \quad \operatorname{vg}}$$
 Test cross

Image Credits, Unit 4-2

- Electrophoresis apparatus, © 2006 Jeffrey M. Vinocur, CC by-SA 3.0, en.wikipedia.org.
- Fly vestigial wings, © Rob Wyatt, Western Kentucky University, all rights reserved, reprinted with permission
- Fruit fly, © 2009 Muhammad Mahdi Karim, available under the GNU Free Documentation License, Version 1.2, en.wikipedia.org.
- Fruit fly drawings, © Rob Wyatt, Western Kentucky University, all rights reserved, reprinted with permission