SCALE-FREE ADAPTIVE PLANNING

FOR DETERMINISTIC DYNAMICS & \gamma-DISCOUNTED REWARDS

PETER BARTLETT, VICTOR GABILLON, JENNIFER HEALEY & MICHAL VALKO

BRAND NEW ADAPTIVE MCTS PLANNER: PlaTyPOOS

adapts its behavior to an unknown range of rewards

requires **no assumptions** or knowledge of noise

empirically learns much faster than UCB approaches

gets the **fast rate** of deterministic planning in low noise for all regimes

→ exponentially faster than OLOP

not a rare case!

adapts also to the **global smoothness** ρ and beyond the base smoothness provided by γ

TREE SEARCH FOR THE WIN!

Is this zero order optimization?

ZIPF: SequOOL AND StroquOOL

A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption, Bartlett, Gabillon and Valko, Algorithmic Learning Theory, 2019

OPTIMIZATION VS. PLANNING

optimization planning

lower regret for planning! (Bubeck+Munos'10) thanks to the reuse of samples

We figured the amount the samples needed!

OUR LOVELY PLAT POOS

Input: n, A**Initialization:** open the root node \emptyset , h_{\max} times $h_{\max} \leftarrow \left\lfloor \frac{n}{2(\log_2 n + 1)^2} \right\rfloor, p_{\max} \leftarrow \left\lfloor \log_2 \left(h_{\max} \right) \right\rfloor$ For h=1 to h_{\max} \blacktriangleleft exploration \blacktriangleright For $p = \lfloor \log_2(h_{\text{max}}/\lceil h^2 \gamma^{2h} \rceil) \rfloor$ down to 0open $\lceil h2^p\gamma^{2h} \rceil$ times the at most $\left | \frac{h_{\max}}{h\lceil h2^p\gamma^{2h} \rceil} \right |$ non-opened $a^{h,i} \in A^h$ with highest values $\widehat{u}(a^{h,i})$ and given $T_{a^{h,i}} \geq \lceil (h-1)2^p \gamma^{2(h-1)} \rceil$ For $p \in [0:p_{\max}]$ **◄** cross-validation ▶ evaluate $(t+1)\gamma^{2t}h_{\max}(1-\gamma^2)^2$ times the actions at round t, a_t^p , of the *candidates*: arg max $a \hspace{-0.05cm} \in \hspace{-0.05cm} A^{\bullet} \hspace{-0.05cm} : \hspace{-0.05cm} \forall t \hspace{-0.05cm} \in \hspace{-0.05cm} [2 \hspace{-0.05cm} : \hspace{-0.05cm} h(a)], \hspace{-0.05cm} T_{a_{\lceil t \rceil}} \hspace{-0.05cm} \geq \hspace{-0.05cm} \left\lceil (t \hspace{-0.05cm} - \hspace{-0.05cm} 1) 2^p \gamma^{2(t \hspace{-0.05cm} - \hspace{-0.05cm} 1)} \right\rceil$ Output $a^n \leftarrow$ $\operatorname{arg\,max} \quad \widehat{u}(a^p)$

• implements **Zipf** exploration for MCTS StroquOOL

 $\{a^p, p \in [0:p_{\max}]\}$

• explicitly pulls an action at depth h+1, γ times less than action at depth h, $(Q^*(x,a) =$ $r(x,a) + \sup_{\pi} \sum \gamma^t r(x_t, \pi(x_t), x_t)$

r = # consecutive

visits

• does not use UCB & no use of R_{max} and b

r=2

NUMERICAL SIMULATIONS

r = # consecutive

visits

b=10 (top center), b=20, (top right), b=50(bottom left). Bottom right: true b is set to 10.

Bubeck & Munos: Only for uniform strategies . . .

Empirical behavior in the figures mimics the behavior of the complexities in the table.

	$\gamma^2 \kappa \le 1$		$\gamma^2 \kappa \ge 1$	
	High noise (ii)	Low noise (ii)	High noise (iii)	Low noise (iii)
(X)	$\left(\frac{n}{b^2}\right)^{-\frac{1}{2}}$	$ ho^{\sqrt{n}}$	$\left(\frac{n}{b^2}\right)^{-\frac{\log(1/\rho)}{\log(\gamma^2\kappa/\rho^2)}}$	$\left(\frac{n}{b^2}\right)^{-\frac{\log(1/\rho)}{\log(\kappa)}}$
ε	$\left(\frac{n}{b^2}\right)^{-\frac{\log(1/\rho)}{\log(\kappa)}}$	$\kappa = 1 : \rho^n$ $\kappa > 1 : \left(\frac{n}{b^2}\right)^{-\frac{\log(1/\rho)}{\log(\kappa)}}$	$\left(\frac{n}{b^2}\right)^{-\frac{\log(1/\rho)}{\log(\kappa)}}$	$\left(\frac{n}{b^2}\right)^{-\frac{\log(1/\rho)}{\log(\kappa)}}$

MCTS SETTING

MDP with **starting state** $x_0 \in X$, action space A

n interactions: At time t playing a_t in x_t leads to Deterministic dynamics $g: x_{t+1} \triangleq g(x_t, a_t)$, **Reward:** $r_t(x_t, a_t) + \varepsilon_t$ with ε_t being the noise

Objective: Recommend action a(n) minimizing

 $r_n \triangleq \max_{a \in A} Q^*(x, a) - Q^*(x, a(n))$ simple regret

where $Q^{\star}(x, a) \triangleq r(x, a) + \sup_{\pi} \sum_{t} \gamma^{t} r(x_{t}, \pi(x_{t}))$

Assumption: $r_t \in [0, R_{\text{max}}]$ and $|\varepsilon_t| \leq b$ **Approach:** Explore without parameters $R_{\text{max}} \& b$

OLOP (BUBECK AND MUNOS, 2010)

OLOP implements Optimistic Planning using Upper Confidence Bound (UCB) on the Q value of a sequence of q actions a_1, \ldots, a_q :

$$\widehat{Q}_{t}(a_{1:q}) \triangleq \underbrace{\sum_{h=1}^{q} \left(\gamma^{h} \widehat{r}_{h}(t) + \frac{\gamma^{h} b}{\sqrt{T_{a_{h}}(t)}} \right)}_{\text{estimation of observed reward}} + \underbrace{\frac{R_{\max} \gamma^{q+1}}{1 - \gamma}}_{\text{unseen reward}}$$

in optimization under a fixed budget n, excellent strategies ignore R_{\max} or b

BLACK-BOX OPTIMIZATION

use the partitioning to explore f (uniformly)

