Sistemas de Propulsión

Grado en Ingeniería Aeroespacial en Vehículos Aeroespaciales Escuela Técnica Superior de Ingenieros de Telecomunicaciones

Introducción a los motores alternativos

Jorge Saavedra

Grado en Ingeniería Aeroespacial en Vehículos Aeroespaciales

Escuela Técnica Superior de Ingenieros de Telecomunicaciones

Contenidos

- 1. Introducción
- 2. Principios básicos de operación
- 3. Componentes
- 4. Optimización y desarrollo

Contenidos

- 1. Introducción
- 2. Principios básicos de operación
- 3. Componentes
- 4. Optimización y desarrollo

Los motores alternativos son

- una máquina de fluido que mediante elementos mecánicos permiten intercambiar energía mecánica con el exterior, a través de la energía disponible en el fluido que atraviesa la máquina
- una máquina térmica cuyos elementos mecánicos permiten intercambiar energía mecánica con el exterior a través de la varción de energía del fluido compresible que atraviesa la máquina.

Allison V170-V12 (P51-D Mustang)

Clasificación, según:

- > proceso de combustión
- > ciclo de operación
- > refrigeración
- > Admisión de combustible
- > presión de admisión
- número y disposición de cilindros

Clasificación

> proceso de combustión

Motor de encendido provocado (MEP)

Motor de encendido por compresión MEC

Clasificación

> proceso de combustión

Característica	MEP	MEC	
Formación de la mezcla	Durante la admisión	Final de la compresión	
Encendido de la mezcla	Mediante chispa eléctrica	Autoinflamación	
Regulación de la carga	Cuantitativa (± mezcla)	Cualitativa (± combustible)	
Combustibles	Ligeros (gasolina, GLP, GN, etanol, biogas)	Más pesados (gasoil, fueloil, biocombustibles)	
Fluido operante	Aire + combustible	Aire	
Relación de compresión 📉 🖰	7.5 - 11	12 - 24	
Régimen de giro máximo	Automoción: 7500 Competición: 18000	Automoción: 5000 Pesado: 2200 Grandes 2T: 80	
Rendimiento	0.2 - 0.3 +	0.35 - 0.5	
Dosado	≈1	< 0.95 (global)	
Potencia específica (KW/I)	Automoción: 70-90 (Bugatti Veyron) Competición: 230 (Ferrari F1 2004)	Automoción: 35 (II) – 65 (ID) Grandes 2T : 3 (Barco) Competición: 90 (Audi R10 Tdi)	

Clasificación

> ciclo de operación

De 4 Tiempos, 4T, 4 Stroke

De 2 Tiempos, 2T, 2 Stroke

Clasificación

> ciclo de operación

Motor de 4 tiempos

720*

Diagrama del indicador

4 stroke

12

Clasificación

> ciclo de operación

Motor de 2 tiempos

2 stroke

Diagrama del indicador

Clasificación

> refrigeración

Agua

Aceite

Clasificación

> Admisión de combustible

carburador

Inyección directa

Sistemas de Propulsión

Clasificación

> presión de admisión

Aspiración natural

Sobrealimentado

Ferrari 458 Italia

Clasificación

> número y disposición de cilindros

En línea

Pistones opuestos

Clasificación

> número y disposición de cilindros

En estrella

Campos de aplicación

	4T	2T
MEP	 Pequeñas aplicaciones Turismos y motocicletas Embarcaciones de recreo Pequeñas avionetas 	· -
MEC	 Turismos Vehículos industriales (medio y gran tamaño) Maquinaria agrícola Motores estacionarios industriales Embarcaciones tamaño pequeño-medio Maquinaria de obras públicas Ferrocarriles 	Maquinaria de obras públicas Ferrocarriles Grandes embarcaciones Grandes motores estacionarios

Contenidos

- 1. Introducción
- 2. Principios básicos de operación
- 3. Componentes
- 4. Optimización y desarrollo

Parámetros geométricos

Diámetro del pistón

Carrera del pistón

Relación carrera diámetro

Sección del pistón

Cilindrada unitaria

Número de cilindros

Cilindrada total

Volumen de la cámara de combustión

Relación de compresión

Número de ciclos por vuelta

D

S

S/D

$$A_p = \frac{\pi D^2}{4}$$

$$V_d = A_p S$$

Ζ

$$V_T = zV_d$$

 V_c

$$r = \frac{V_d + V_c}{V_C}$$

i

Gastos y dosado

El gasto másico de referencia por unidad de tiempo (o por cilindrio y ciclo) es el asociado al volumen total desplazado por el motor en condiciones de referencia

$$m_{ref} = \rho_{ref} V_T \, n \, i \, [g/s]$$

El gasto de aire es la masa admitida por el motor expresada como:

$$\dot{m_a} \left[\frac{g}{s} \right] \qquad m_{a,cc} \left[\frac{g}{cc} \right] \qquad \dot{m_a}' = \frac{m_a}{A_p} \left[\frac{g}{sm^2} \right]$$

El rendimiento volumétrico es un indicador del llenado del cilindro

$$\eta_V = \frac{\dot{m_a}}{\dot{m_{ref}}} = \frac{\dot{m_a}}{\rho_{ref} V_T \, n \, i}$$

Gasto de combustible

$$\dot{m_f} \left[\frac{g}{s} \right] \qquad m_{f,cc} \left[\frac{mg}{cc} \right]$$

Dosado

Absoluto
$$F = \dot{m_f}/\dot{m_a}$$
 $\lambda = \dot{m_a}/\dot{m_f}$

Relativo
$$F_r = F/F_e$$

F _e	Etanol	1/9
	GN	1 / 17
	Gasolina	1 / 14,6
	Gasoil	1 / 14,5
	Fueloil	1 / 13,8

F _R	MEP	≈1
	MEC	< 0,95 (global)

Grado de carga

Mide el par (o potencia) que está dando un motor en relación al par (o potencia) máximo a ese régimen de giro

$$\alpha = \frac{N_{e\alpha}}{N_{e \, max}} = \frac{M_{e\alpha}}{M_{e \, max}}$$

En MEP mariposa del acelerador (m_a)

En MEC combustible inyectado (m_f)

Parámetros indicados

Se refieren al ciclo cerrado real del motor

Se suelen calcular por integración entre los puntos muertos inferiores (según definición)

No tienen en cuenta el trabajo de bombeo, los rozamientos mecánicos, ni el accionamiento de auxiliares

Trabajo indicado (W_i) Es el trabajo producido en el ciclo cerrado (área dentro del diagrama p-V)

Potencia indicada (N_i) Es el trabajo indicado por unidad de tiempo $N_i = i W_i n$

Rendimiento indicado (η_i) Es la relación entre la potencia indicada desarrollada por el motor y la potencia térmica consumida

$$\eta_i = \frac{N_i}{\dot{m}_f H_E}$$

25

Parámetros efectivos

Se refieren al eje motor y tienen en cuenta:

El ciclo cerrado (parámetros indicados)

La pérdida de energía mecánica por el lazo de bombeo, rozamientos y el accionamiento de auxiliares (según norma)

Se suelen referir a todos los cilindros

Consumo específico efectivo ($g_{\rm ef}$): Combustible consumido por unidad de tiempo referido a la potencia mecánica desarrollada

$$g_{\mathrm{ef}} = \frac{\dot{m}_f}{N_e}$$

Parámetros efectivos

Consumo específico efectivo ($g_{\rm ef}$): Combustible consumido por unidad de tiempo referido a la potencia mecánica desarrollada

$$g_{\rm ef} = \frac{\dot{m}_f}{N_e}$$

Valores típicos(consumo mínimo): referido a gasolina/gasoil

	g _{ef,min} [g/kWh]	η _{e,max} [%]
MEP 2T ciclomotor	350	25
MEP 4T motocicleta	270	32
MEP 4T automóvil	240	35
MEC IDI 4T automóvil	240	35
MEC DI 4T automóvil – SOB	200	42
MEC DI 4T vehículo pesado -SOB	190	45
MEC DI 2T lento – SOB	156	54

Parámetros efectivos

Trabajo efectivo (W_e): Es el trabajo en el eje del motor. Es igual al trabajo indicado menos el de pérdidas mecánicas

$$W_e = W_i - W_{pm}$$

Potencia efectiva (N_e): Es el trabajo efectivo por unidad de tiempo

$$N_e = N_i - N_{pm}$$

Par efectivo (M_e) : Es el par obtenido en el eje motor

$$M_e = \frac{N_e}{\omega} = \frac{N_e}{2\pi n}$$

Rendimiento efectivo (η_e): Relación entre la potencia efectiva desarrollada y la potencia térmica consumida por el motor

$$\eta_e = \frac{N_e}{\dot{m}_f H_C}$$

El rendimiento efectivo máximo sólo se alcanza en determinadas condiciones de funcionamiento

Valores máximos

MEP 0.25-0.35

MEC 0.30-0.55

Parámetros efectivos

Rendimiento efectivo (η_e): Relación entre la potencia efectiva desarrollada y la potencia térmica consumida por el motor

$$\eta_e = \frac{N_e}{\dot{m}_f H_C}$$

El rendimiento efectivo máximo sólo se alcanza en determinadas condiciones de funcionamiento

Valores máximos:

MEP 0.25-0.35

MEC 0.30-0.55

Rendimiento mecánico (η_m) : Se define a partir de los parámetros indicado y

efectivo

$$\eta_m = \frac{N_e}{N_i} = \frac{pme}{pmi} = \frac{\eta_e}{\eta_i}$$

Parámetros efectivos

A partir de la expresión del rendimiento efectivo podemos escribir

$$N_e = \eta_e \dot{m}_f H_C$$

Expresando el gasto de combustible en función del dosado

$$F = \frac{\dot{m}_f}{\dot{m}_a} \to \dot{m}_f = F \, \dot{m}_a$$

O bien del dosado relativo

$$F_R = \frac{F}{F_e} \to \dot{m}_f = F_R F_e \, \dot{m}_a$$

La potencia efectiva se puede expresar como:

$$N_e = \eta_e \dot{m}_f H_c = \eta_e F_R F_e \, \dot{m}_a H_c$$

Finalmente la potencia efectiva en función del rendimiento volumétrico, se expresa como:

$$N_e = \eta_e \eta_V F_R F_e \rho_{ref} V_T \, n \, i \, H_C$$

Para un motor dado (ρ_{ref} , V_T , i, H_C , F_r , F_c), la potencia depende principalmente de:

Régimen de giro n

Rendimiento efectivo η_e

Llenado del motor η_V

Curvas características

Definición: representación gráfica de parámetros en función del régimen (c_m) o del grado de carga (α)

Curvas características $M_e y N_e$ en un MEP

Curvas características

Conservación de la energía (primer principio de la termodinámica)

Contenidos

- 1. Introducción
- 2. Principios básicos de operación
- 3. Componentes
- 4. Optimización y desarrollo

Camisa de Cilindro

Pistón

Biela

3. Componentes

Válvulas de admisión escape

Bujía

Eje de levas (cam shaft) Shaft-less valves*

3. Componentes

Carburador

Inyector

Air intake

3. Componentes

Inyector

Turbocharger

Supercharger

Sistema de escape

Contenidos

- 1. Introducción
- 2. Principios básicos de operación
- 3. Componentes
- 4. Optimización y desarrollo

2. Principios básicos de operación

Desafíos actuales

- ➤ Optimización energética ← → reducción de contaminantes
 - Límites de emisiones muy severos (hasta cero emisiones)
 - Desarrollo de motores condicionado por emisiones
 - Estrategias para reducir emisiones empeoran rendimiento y encarecen el motor
 - En futuro inmediato → reducción de CO₂ → mejora rendimiento
- Estado del arte
 - Los motores no aprovechan el potencial de optimización energética
 - El rendimiento de motores ha mejorado, a pesar de los límites de emisiones

Normativas europeas de emisión de contaminantes

Normativas europeas de emisión de contaminantes

Normativas europeas de emisión de contaminantes

4. Optimización y desarrollo

Estrategias de optimización

- Optimización del sistema de inyección
 - Aumento de presión de inyección
 - Reducción de diámetro de orificios
 - Inyectores con doble corona de orificios y accionamiento independiente
 - Doble inyector
 - Inyectores de geometría continuamente variable
- Accionamiento flexible de válvulas
 - Adecuación a condiciones de funcionamiento

Bajo-alto régimen de giro

Arranque en frío

Freno motor

- Control de la carga en MEP
- Desactivación de cilindros
- Realización de ciclos alternativos
- Relación de compresión variable
 - Adecuación a condiciones de funcionamiento (carga, presión de sobrealimentación, etc)
 - Adaptación al tipo de combustible
 - Combinación con nuevos modos de combustión (HCCI)

4. Optimización y desarrollo

Estrategias de optimización

- Recirculación de gases de escape avanzada
 - Producción de EGR en condiciones de $p_{adm}>p_{es}$ aprovechando pulsos de presión
 - EGR de baja presión (salida de turbina a entrada de compresor)
 - EGR de muy baja temperatura
 - EGR interno
- Evolución de las técnicas de sobre alimentación
 - Sobrealimentación en doble etapa
 - Combinación de compresor mecánico con turbocompresor
 - Asistencia al compresor en transitorios (motor eléctrico, inyección de aire comprimido en la turbina, etc)
- Post-tratamiento de gases de escape
- Nuevos combustibles
 - Derivados del crudo

Adecuación de propiedades a nuevas necesidades

- -Resistencia al autoencendido
- Menor contenido de azufre (hasta <10ppm), benceno (gasolinas), hidrocarburos pesados y densidad (gasoil)
- Combustibles alternativos
- Técnicas avanzadas de control
- Nuevos modos de combustión

4. Optimización y desarrollo

Hibridación – Funcionar en punto de óptimo rendimiento

Contenidos

- 1. Introducción
- 2. Principios básicos de operación
- 3. Componentes
- 4. Optimización y desarrollo

- "Motores de combustión interna alteranticos", F. Payri, J.M. Desantes
- "Internal combustion engine fundamentals", John B. Heywood
- > "Fundamentals of internal combustion engines", H. N. Gupta