ш

Eur päisch s Patentamt **European Patent Office** Office europé n des brev ts

11 Publication number:

0 284 071 B1

12

EUROPEAN PATENT SPECIFICATION

mo d-I

Date of publication of patent specification: 08.06.94 (a) Int. Cl.5: C07K 15/00, C07K 5/08,

21 Application number: 88104755.9

C07B 59/00, A61K 43/00, A61K 49/02, G01N 33/534 As used uses rudio

2 Date of filing: 24.03.88

- Metal-radionuclide-labeled proteins and glycoproteins for diagnosis and therapy.
- 3 Priority: 26.03.87 US 31440
- 43 Date of publication of application: 28.09.88 Bulletin 88/39
- 45 Publication of the grant of the patent: 08.06.94 Bulletin 94/23
- Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- 66 References cited: EP-A- 0 173 424 EP-A- 0 188 256 EP-A- 0 247 866
- 73 Proprietor: NEORX CORPORATION 410 West Harrison Street Seattle Washington 98119(US)
- 2 Inventor: Fritzberg, Alan R. 16703 - 74th Place West Edmonds Washington 98020(US) Inventor: Kasina, Sudhakar 13710 - 115th Ave. N.E. Kirkland Washington 98034(US)

Inventor: Vanderheyden, Jean-Luc 2418 West Lynn Seattle Washington 98199(US) Inventor: Srinivasan, Ananthachari 1142 - 109th N.E. Kirkland Washington 98033(US) Inventor: Rao, Tripuraneni N. 1204 Mill Creek Boulevard Nr. B203 Mill Creek Washington 98012(US)

74 Representative: Brown, John David et al **FORRESTER & BOEHMERT** Franz-Joseph-Strasse 38 D-80801 München (DE)

44

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notic of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention

10

25

This invention relates to radionuclide-labeled biological substances useful in the fields of diagnosis and therapy and is more particularly related to metal-chelating compounds in which the donor atoms are nitrogen and sulfur.

Description of the Background

Radiolabeled compounds are important tools in medical diagnosis and treatment. Such compounds are employed in a variety of techniques including the diagnosis of deep venous thrombi, the study of lymph node pathology, and the detection, staging and treatment of neoplasms. A number of these compounds employ metal radionuclides such as technetium-99m. When employing radionuclides for in vivo administration, it is desirable that the radionuclide localize in a target organ or cancer site. Therefore, radionuclides are usually formulated to provide preferential binding to or absorption by the particular organ or tissue. There is considerable interest in being able to accurately direct a radionuclide to a preselected site to reduce background radiation directed to surrounding or distant tissue, reduce the dosage, minimize background for in vivo imaging, and minimize undesirable side effects. Toward this end, methods involving specific ligands or receptors to which the radionuclide may be conjugated are of interest.

Description of Relevant Literature

Publications of interest include Khaw et al., J. Nucl. Med. (1982) 23:1011; Rhodes, B.A., Sem. Nucl. Med. (1974) 4:281; Davison et al., Inorg. Chem. (1981) 20:1629; and Byrne and Tolman, J. Nucl. Med. (1983) 24:126. See particularly Fitzberg et al., id. (1981) 22:258; and Fritzberg et al., id. (1982) 23:17 for descriptions of mercaptoacetyl derivatives of ethylene diaminecarboxylic acid derivatives. See also U.S. Patent No. 4,444,690.

Copending application Serial No. 624,098, filed June 25, 1984, discloses technetium derivatives of mercaptoacetylglycylgylcylgylcine for scintographic procedures and for evaluating renal function. Copending application Serial No. 692,000, filed January 14, 1985, discloses metal-radionuclide-labeled proteins for diagnosis and therapy therein the metal chelating compounds are dithiodiamidocarboxylic acids and derivatives thereof.

European Patent Application Publication No. 173,424 of Fritzberg discloses radiolabeled technetium chelates for use in renal function determinations. European Patent Application Publication No. 188,256 of Fritzberg discloses diaminodimercapto-chelating compounds and metal radionuclide chelates found therefrom for labeling proteins. European patent Application Publication No. 247,866 of Nicolotti and Dean discloses particular compounds for joining a radionuclide metal ion with a protein.

SUMMARY OF THE INVENTION

Metal-radionuclide-labeledproteins, carbohydrates, and glycoproteins are provided for the diagnosis and treatment of a variety of pathologic conditions. Specifically chelated radionuclide complexes conjugated to a protein, carbohydrate, or glycoprotein are employed for the diagnosis of physiological conditions, including lymph node pathology, deep venous thrombi and the detection of staging of neoplasms. Chelated radionuclides as protein and glycoprotein conjugates are employed for radiotherapy of tumors.

In particular, the radionuclide-labeled proteins, carbohydrates, and glycoproteins of the present invention are formed from the reaction of functional groups such as an activated carboxylic acid group or a primary amine group of a multidentate chelate with a free or terminal amino group on a protein with a preformed aldehyde moiety of a carbohydrate or glycoprotein, respectively. The aldehyde moiety can be formed from the reaction of periodate or other oxidizing agent with a sugar unit of a carbohydrate or a glycoprotein. The chelates comprehended by the present invention will generally be multidentate organic compounds with a sulfur atom and three nitrogen atoms (N₃S chelates) being available for bonding to a metal radionuclide such as, for example, $^{99m}TcO^{3+}$, $^{99m}TcO_2^+$, ReO^{3+} , or ReO_2^+ . For the purposes of the instant specification and the appended claims, the term "carbohydrate" will he taken to include carbohydrates (including oligosaccharides), the carbohydrate portion of a glycoprotein, or any other carbohydrate

moiety.

Brief Description of the Figures

Figures 1A to 1I depict the chemical structures of nine "N₃S" chelating compounds of the invention. The sulfur protecting group (PG), as well as the position of the protein conjugation group and other substituents, varies among the nine compounds represented.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

10

15

25

Improved methods and compositions are provided involving chelate precursors and derivatives for conjugating to proteins, carbohydrates and glycoproteins. The resulting peptide and carbohydrate conjugates, which conjugates are complexed with radionuclides, as well as the use of the conjugates in radioimaging and radiotherapy are also disclosed and discussed.

The metal chelating compounds will be thiotriaza chelators, where the heteroatoms that donate electrons to form bonds with the metal atom or ion are separated by two or three, preferably two, carbon atoms and the sulfur may be substituted or unsubstituted. In one embodiment of the invention, the terminal donor nitrogen atom is joined through a linking group, usually alkylene, to an amino (primary or secondary) group or to a non-oxo-carbonyl (carboxyl or derivative thereof) group, usually an acid or an active ester. The ester will be capable of forming an amide bond with an amino group in an aqueous medium. The chelating compound will also have from 0 to 3 carbonyl groups in the chain, particularly to the left of the nitrogen atom in the S--- N direction (i.e., at one or more of the positions designated by "X" in the formula below, thereby forming amide bonds). The chelator generally will have a total of from 8 to 26 carbon atoms, usually 8 to 20 carbon atoms. Various substituents may add more carbon atoms to the chelating compound.

The chelating compound may be linked to a polypeptide or carbohydrate in a variety of ways. If the chelator terminates in a carboxyl group or derivative thereof, the carboxyl group may be activated with carbodiimide and an alcohol to form an active ester or may already contain an active ester group that is reacted with an available amino group of a polypeptide or an amino sugar to form an amide bond. Alternatively, if the chelator terminates in an amino group, the amino group may be used to react with an aldehyde group, which may be derived by glycol cleavage of a sugar with periodate, to form a Schiff's base or cyclic imine or under conditions favoring reductive amination to form a secondary or tertiary amine or cyclic imine linkage.

The metal chelating compounds will have, for the most part, the following formula (I):

35

45

50

55

40

wherein:

T is H or a sulfur protecting group;

each X independently represents H2 or O;

each R independently represents a substituent selected from the group consisting of hydrogen; alkyl; geminal dialkyl; a non-alkyl chain of an amino acid other than cysteine (alkyl side chains being covered when R is an alkyl group); and -(CH₂)_n-Z;

Z represents -COOH, a conjugation group, or a targeting compound;

n is an integer of from 1 to about 4; and

R' is H_2 ; - $(CH_2)_n$ -Z; or an alkyl group having one or more polar groups substituted thereon; wherein the compound comprises at least one - $(CH_2)_n$ -Z substituent.

When Z is -NH2, n should be at least 2. When Z is other than -COOH, n preferably is 3.

The sulfur protecting group may be selected from alkyl, aryl, acyl, (preferably alkanoyl or benzoyl), thioacyl groups having 1 to about 7 carbons, and organothio groups having 1 to about 10 carbons.

For the R groups, the alkyl groups generally contain from 1 to 7 carbons, preferably from 1 to 4 carbons, and most preferably represent methyl.

Examples of substituents Z include, but are not limited to -NH₂, -NHNH₂, -COOH, a carboxylic ester, an imidate ester, an isothiocyanate group, a maleimide group, other Michael acceptor groups,

10

35

45

50

where W₁ is a polypeptide of at least two amino acids and W₂ and W₃ independently represent a carbohydrate, wherein the nitrogen is bonded to a carbon atom of the carbohydrate. "Carbohydrate" encompasses pure carbohydrates consisting entirely of sugar units as well as glycoproteins and other molecules containing amino acids, nucleic acids, or other moieties in addition to carbohydrate moieties. Usually W₂ and W₃ will be a carbohydrate, namely a polysaccharide, or the carbohydrate portion of a glycoprotein. Of particular interest are the carbohydrate portions of immunoglobulins and receptors. The bonds to the carbohydrates are formed where at least one saccharide unit either contains or has been oxidized to provide an oxo, e.g., aldehyde group.

The linkage between the carbohydrate and the chelate compound is through a secondary or tertiary amine, depending on the nature of the carbohydrate and the stoichiometry of the reaction between the chelate complex and the carbohydrate to form the imine or amine linkage.

Typically, W₁ will be an oligopeptide of at least two amino acids, or a polypeptide of at least about 1,000 molecular weight, usually at least about 2,000 molecular weight, generally less than about 1.6 MDal, more usually less than about 800 KDal. Of particular interest are receptors, e.g., immunoglobulins, either polyclonal or monoclonal antibodies or specific binding fragments thereof, or other naturally occurring receptors, e.g., T-cell receptors. Enzymes, hormones, and other compounds that exhibit specific binding to substrates or cells are also of interest.

T represents hydrogen or a sulfur protecting group. Any suitable sulfur protecting group may be used, including known alkyl, aryl, acyl (preferably alkanoyl or benzoyl), or thioacyl group having from 1 to about 7 carbons; or an organothio group having from 1 to about 10 carbons.

In one embodiment of the invention, the sulfur protecting group, when taken together with the sulfur atom to be protected, is a hemithioacetal group. Suitable hemithioacetals include, but are not limited to, those having the following formulae, wherein the sulfur atom is the sulfur atom of the chelating compound: $-S-CH_2-O-CH_2-CH(CH_3)_2-S-CH_2-O-(CH_2)_2-O-CH_3-S-CH_2-O-CH_3$

Preferred hemithioacetals generally are of the following formula, wherein the sulfur atom is the sulfur atom of the chelating compound:

wherein R³ is a lower alkyl group, preferably of from 2 to 5 carbon atoms, and R⁴ is a lower alkyl group, preferably of from 1 to 3 carbon atoms. Alternatively, R³ and R⁴ may be taken together with the carbon atom and the oxygen atom shown in the formula to define a nonaromatic ring, preferably comprising from 3 to 7 carbon atoms in addition to the carbon and oxygen atoms shown in the formula. R⁵ represents hydrogen or a lower alkyl group wherein the alkyl group preferably is of from 1 to 3 carbon atoms. Examples of such preferred hemithioacetals include, but are not limited to:

Tetrahydrofuranyl Methoxymethyl 2-methyl-tetrahydrofuranyl

Tetrahydropyranyl ethoxyethyl 2-methyl tetrahydrofuranyl

25
$$H_2$$
 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G

Advantages of using hemithioacetal sulfur protecting groups include the fact that a separate step for removal of the sulfur-protective groups is not necessary. The protecting groups are displaced from the compound during the radiolabeling in what is believed to be metal-assisted acid cleavage; i.e., the protective groups are displaced in the presence of the metal radioisotope at an acidic pH, and the radioisotope is bound by the chelating compound. The radiolabeling procedure thus is simplified, which is especially advantageous when the chelating compounds are to be radiolabeled in a hospital laboratory shortly before use. In addition, the basic pH conditions and harsh conditions associated with certain known radiolabelling procedures or procedures for removal of other sulfur protective groups are avoided. Thus, base-sensitive groups on the chelating compound survive the radiolabeling step intact. Such base labile groups include any group which may be destroyed, hydrolyzed, or otherwise adversely affected by exposure to basic pH. Certain protein conjugation groups, including esters, isothiocyanates, maleimides, and other Michael acceptors, among others, are relatively base labile. Thus, a radiolabeled chelate may be prepared, and the protein conjugation group remains intact for subsequent binding of the chelate to a targeting compound (e.g., an antibody).

Alternatively, an acetamidomethyl sulfur-protecting group may be used. This group is represented by the formula:

55

50

The acetamidomethyl group is displaced from the chelating compound during radiolabeling conducted at about 50 °C in a reaction mixture having a pH of about 3 to 6. The use of an acetamidomethyl group generally improves the water solubility of the chelating compound, which is desirable when the compound is to be attached to a protein or other biological targeting moiety prior to radiolabeling. Aqueous reaction mixtures are preferred for protein conjugation reactions, since organic solvents may denature or otherwise damage the protein.

A variety of other sulfur protecting groups may be used, some of which are described in Example X below.

The preferred chelate compounds according to the invention will generally have the following formula 10 (II):

wherein:

15

20

25

40

50

M is a radionuclide ion, to which 1 or 2 oxygen atoms may be bonded, especially if the metal is Tc or Re;

and the other symbols are as described for the compound of formula (I) above.

A variety of metal ions or complex ions may be employed as the radionuclide. These metals include, but are not limited to, copper, e.g., ⁶⁴Cu and ⁶⁷Cu; technetium, e.g., ^{99m}Tc; rhenium, e.g., ¹⁸⁶Re and ¹⁸⁸Re; lead, e.g., ²⁰³Pb and ²¹²Pb; palladium, e.g., ¹⁰⁹Pd; bismuth, e.g., ²¹²Bi, and gold, e.g., ¹⁹⁸Au. The metal may be present as an ion, e.g., ⁶⁴Cu² + and 67Cu² + (copper may end up in S-containing ligands as Cu +) or as an oxidized form, e.g., ^{99m}Tc0₃+, ¹⁸⁶ or ¹⁸⁸Re0³ + when incorporated in the chelate compounds.

The dashed lines in the formula presented for the chelate compounds of the invention represent four coordinate covalent bonds between the metal radionuclide M and the sulfur and the two nitrogen atoms shown in the formula.

Thus, the metal radionuclide is bound through relatively stable bonds in the chelate compounds of the invention.

The polypeptide or carbohydrate compounds attached to the chelator may be varied widely, depending upon the nature of the use of the radionuclide bound to the chelator. The carbohydrate may be a carbohydrate compound such as a polysaccharide, a glycoprotein, or other compounds comprising a carbohydrate moiety, as described above.

The polypeptides may be ligands or receptors, for example. Ligands may include such a variety of compounds as polypeptides, hormones, lymphokines, growth factors, peptide or carbohydrate substrates, particularly compounds binding to surface membrane receptors, where the complex may remain bound to the surface or become endocytosed. Among receptors are surface membrane receptors, antibodies, enzymes, naturally occurring receptors, lectins, and the like. Of particular interest are immunoglobulin-like compounds or binding fragments thereof, e.g., Fab, F(ab')₂, and F_V fragments of antibodies, and T-cell receptors.

Thus, the chelating compounds of the present invention are attached to a targeting compound (usually one of the above-identified polypeptides or carbohydrates) which serves to deliver the radionuclide chelate to a desired target site within a mammalian or human host. As used herein, the term "polypeptide" includes polypeptides, proteins, or fragments thereof. These proteins and polypeptides may be modified as long as the biological activity necessary for the intended diagnostic or therapeutic application of the radiolabeled polypeptide is retained. For example, a modified antibody or fragment thereof may be used as long as binding to the desired antigen still occurs. Modified proteins may be produced using such techniques as genetic engineering or protein engineering.

The targeting compound binds to a desired target site in vivo, thereby delivering the diagnostic or therapeutic radionuclide to the target site. An example of a target site is a cancer site. Many antigens associated with various types of cancer cells have been identified, and monoclonal antibodies specific for a number of these cancer cell-associated antigens also are known. Such antibodies are examples of the many polypeptides suitable for use as targeting compounds. Among the monoclonal antibodies that bind to cancer cells are anti-TAC, or other interleukin-2 receptor antibodies; 9.2.27 and NR-M1-05 to the 250 kilodalton human melanoma-associated proteoglycan; NR-Lu-10 to 37-40 kilodalton pancarcinoma glycoprotein; and OVB3 to an as yet unidentified tumor-associated antigen.

The chelating compound may be radiolabeled to form the corresponding radionuclide metal chelate, and the chelate subsequently is attached to the targeting moiety in the "preformed chelate approach." An alternative approach to preparing radiolabeled targeting moieties is the "post-formed chelate approach" in which the chelating compound is first attached to the protein or carbohydrate targeting molecule. The resulting conjugate is then reacted with a radionuclide metal to form a radionuclide metal chelate bound to the targeting molecule.

The conjugation group "Z" is a functional group which will react with a group on a desired targeting compound to bind the chelate or chelating compound thereto. The conjugation group chosen for use will vary according to the nature of the targeting compound (e.g., whether the targeting compound is a protein or a carbohydrate).

Proteins contain a variety of functional groups; e.g., carboxylic acid (COOH) or free amine (-NH₂) groups, which are available for reaction with a suitable functional group "Z" on a chelator to bind the chelator to the protein. For example, an active ester on the chelator reacts with free amine groups on lysine residues of proteins to form amide bonds. Alternatively, the protein and/or chelator may be derivatized to expose or attach additional reactive functional groups. The derivatization may involve attachment of any of a number of linker molecules such as those available from Pierce Chemical Company, Rockford, Illinois. (See the Pierce 1986-87 General Catalog, pages 313-354.) Alternatively, the derivatization may involve chemical treatment of the protein (which may be an antibody). Procedures for generation of free sulfhydryl groups on antibodies or antibody fragments also are known. (See U.S. Patent No. 4,659,839.) Maleimide conjugation groups on a chelator are reactive with the sulfhydryl (thiol) groups.

Alternatively, when the targeting compound is a carbohydrate, derivatization may involve chemical treatment of the carbohydrate; e.g., glycol cleavage of the sugar moiety of a glycoprotein antibody with periodate to generate free aldehyde groups. The free aldehyde groups on the antibody may be reacted with free amine or hydrazine conjugation groups on the chelator to bind the chelator thereto. (See U.S. Patent No. 4,671,958.)

Among the preferred conjugation groups for reaction with polypeptide targeting compounds are esters. The esters which may be utilized as conjugation groups represented by "Z" are those esters which provide a covalent, amide linkage with a polypeptide in an aqueous medium. One or another of the reactive esters may be preferred, depending upon the particular radionuclide, the protein, and the conditions for conjugation, as is understood in the art of peptide chemistry. Common esters which find use are o- and p-nitrophenyl, 2-chloro-4-nitrophenyl, cyanomethyl, 2-mercaptopyridyl, hydroxybenztriazole, N-hydroxy succinimide, trichlorophenyl, tetrafluorophenyl, tetrafluorothiophenyl, o-nitro-p-sulfophenyl, N-hydroxy phthalimide and the like. For the most part, the esters will be formed from the reaction of the carboxylate with an activated phenol, particularly nitro-activated phenols, or a cyclic compound based on hydroxylamine. As other hydroxylic compounds become available, these also may find use in this invention. Imidate esters, such as methyl imidate can be used to give amidine linkages.

The chelators are synthesized from tripeptides such as glycylglycylglycine and S-protected active esters of acetic acid. For example, N-hydroxy succinimide S-benzoylthioacetylglycylglycylglycine (S-benzoyl MAG₃). Amino acids comprising various side chains may be employed in the synthesis of the compounds of the invention.

Depending upon the particular metal, various conditions and techniques will be employed for preparing the metal chelate. To prepare the technetium chelate, the chelating compound as a carboxylate, activated ester, or amine is combined with a pertechnetate solution in the presence of a reducing agent, e.g., stannous ion or dithionite under conventional conditions, whereby the technetium chelate is formed as a stable salt. The rhenium chelate may be formed from different routes. For example, by reducing perrhenate to rhenium (IV) hexachloride employing hypophosphorous acid and concentrated HCl at 95 °C. rhenium hexachlorid is formed. The rhenium hexachloride is then converted to the rhenium dioxo diethylenediamine chloride in 90% ethylenediamine at room temperature. At a basic pH in the presence of the subject chelating agents, the rhenium dioxo diethylenediamine chloride exchanges rapidly with the N₃S chelate.

For use in labeling large peptides and proteins, formation of a metal complex with a conjugating group included is preferable. This preformed approach allows exchange of the metal ion between the inorganic complex in which the metal ion is initially found and the chelate to occur under controlled conditions. Exchange of radioactive metal from a labile inorganic complex to a chelator already conjugated to antibody (the post-formed approach) results in variable amounts of non-specifically bound radioactivity caused by electron donor groups (nitrogen, oxygen, and sulfur atoms) on the antibody or other large protein.

For the preformed chelate approach, the chelated carboxylic acids may be present as an ester or esterified in accordance with conventional means. With the ester, a labile complex such as Tc-99m gluconate can be prepared and used to exchange with the N₃S activated ester forming a radionuclide complex suitable for protein conjugation. Alternatively, the carboxylic acid may be activated by employing a water soluble carbodiimide, e.g., EDCI, in an aqueous medium in the presence of at least a stoichiometric amount, preferably an excess of the esterifying hydroxylic compound. A suitable buffered aqueous medium may be employed. Any unreacted carbodiimide can be converted to urea by adding acetate. The aqueous medium may then be used directly without further purification for conjugation to the polypeptide. Preferably, polypeptide (e.g., protein) will be added to the ester-containing aqueous medium at a convenient concentration at a mildly alkaline pH, generally in greater than about 7.5 and less than about 10.5, and the reaction allowed to proceed for a sufficient time for all of the active ester to either react with the polypeptide or be active ester to either react with the polypeptide or be substantially completely hydrolyzed. Usually, the time will be less than about 6 hr and more than about 1 min, with temperatures ranging from about 0 to 50 °C, usually not exceeding about 40 °C. The particular conditions will be selected in accordance with the particular activated ester, the pH, the activity of the polypeptide, and the like.

The carbohydrate portion of glycoproteins can be oxidized with periodate to give aldehyde groups that can be used for conjugation. The protein is buffered in acetate at pH 5.5 and reacted with sodium periodate for about 1 min at room temperature. After quenching with glycerol the protein is purified by passage through a gel filtration column.

The amine may be condensed with the dialdehyde in the presence of mild acid, preferably in an aqueous medium with sodium cyanoborohydride to provide for reductive amination.

It may be more convenient for some applications to conjugate the chelating agent (N₃S) to the polypeptide or carbohydrate in the absence of the metal ion. For example, since some of the radionuclides contemplated by the present invention (e.g., ^{99m}Tc) have relatively short half-lives, it may be desirable to prepare the chelating-agent-conjugated polypeptide or carbohydrate moiety and then, shortly prior to administration, react the chelating compound-conjugated polypeptide or carbohydrate moiety with the radionuclide of interest. For example, the carboxylic acid group would be linked to the polypeptide to form an amide linkage, followed by the addition of the metal, in a weakly complexed form. Alternatively, for chelating compounds having a free primary amine group, the N₃S chelating compounds could be linked to a carbohydrate moiety, as discussed above, by linking the primary amine to the carbohydrate moiety following periodate treatment of the carbohydrate moiety, under mild reducing conditions to form a secondary or tertiary amine linkage; this procedure would then be followed by the appropriate reaction with the radionuclide to form the desired radiolabeled carbohydrate moiety.

Initially, as mentioned previously, the metal ion might non-specifically as well as specifically bind to the polypeptide or carbohydrate. However, the N₃S ligand center should form chelates of higher stability than the non-specific sites, and the metal ions under equilibrium conditions would migrate to the N₃S chelating group. Those metal ions not bound to the N₃S chelating group could be washed away under mild conditions with a chelating agent, e.g., EDTA, or a non-ionic detergent. Conveniently, the metal ion could be added as a weakly chelated ion or in the presence of a weakly chelating group, such as a uronate, e.g., gluconate, or tartrate.

The subject chelates will be administered to the mammalian host, normally by injection, intravenously, intraarterially, peritoneally, intratumorally, or the like, depending upon the particular site at which the radionuclide is desired. Generally, from about 0.1 to 2 ml will be injected into a host, depending upon the size of the host, with about 0.001 to 50uCi/kg of host. For human hosts, the dosage will usually be about 10-50mCi/70kg host, more usually about 25-35mCi/70kg host. For lower mammals, e.g., mice, 1-50uCi will be used for biodistribution studies, while up to or greater than 500uCi will be used for imaging studies. After administration of the radionuclide, depending upon its purpose, the host may be treated in various ways for detection or therapy by detection of the radioactive emissions from the site or sites where the radionuclide specifically binds.

The following examples are offered by way of illustration and not by way of limitation.

Reference Example I:

5

20

25

30

35

40

Synthesis of S-protected mercaptoacetylglycylglycylglycine (RMAG₃) RSCH₂C00Succ + H-Gly-Gly-Gly-OH ----) RMAG₃

To a solution of glycylglycylglycine in acetonitrile-water (80:20) containing triethylamine (10 ml of solvent and 3 equivalents of NEt₃ per mmol of gly-gly-gly-OH), S-protected thioglycotic acid succinimidate ester (1 equivalent) was added in one lot. The solution was stirred for 2 hours at room temperature. Solvents were removed in vacuo, and the residue was dissolved in 5-10 ml of water and acidified in hydrochloric acid (pH = 3-4). The product crystallized on standing, in the case of (a) and (b).

In case (c), no precipitate was obtained. The aqueous solution was evaporated to dryness and the product was isolated by silica-gel flash chromatography using CH_3CN : H_2O (95:5) as the eluent.

The reaction was run five times using different protecting groups.

 $Ra = C_6H_5CO$

 $Rb = p-C00tBu(C_6H_4)-CO-$

Rc =

, or other hemithioacetal protecting group

Example II:

Preparation of S-benzoyl-MAG-3 tetrafluorophenyl ester

To a suspension of 1.1 g (3 mmol) of S-benzoyl-MAG $_3$ in 150 mL of anhydrous tetrahydrofuran, 0.5 g (3 mmol) of 2,3,5,6-tetrafluorophenol and 0.68 g (3.3 mmol) of N,N'-dicyclohexylcarbodiimide were added and stirred for 72 hours at room temperature.

Approximately 100 ml of the solvent was removed under reduced pressure and the precipitated dicyclohexylurea was filtered. The filtrate was evaporated to dryness and the residue was dissolved in ~50 ml of warm acetonitrile and allowed to cool to room temperature. The crystallized solid (mostly dicyclohexylurea along with some product) was filtered and the filtrate was concentrated to about 30 ml and cooled in an ice-bath. The crystallized solid (some more dicyclohexylurea was filtered).

The filtrate was evaporated to ~5ml and the product was precipitated by addition of anhydrous ether to give 0.21 g of the product, mp. : 172-4 °C.

NMR (DMSO-d₆): δ 3.72-3.98 (m and s, 6, gly C \underline{H}_2 X2, S-CH₂), 4.36 (d,2,gly C \underline{H}_2), 7.62-8.8 (m,9, 3XN \underline{H} , C₆ \underline{H}_5 , p-C \underline{H} (TFP).

Example IIIa:

5

Synthesis of S-benzoyl MAG₃ tetraflu roph nyl active ster

φCOSCH₂-CO-Gly-Gly-Gly-OH + 2,3,5,6-TFP-OH ----- φCOSCH₂COglygly-gly-o-2,3,5,6-TFP

To a solution of the MAG $_3$ derivative in anhydrous THF (20mL/mmol), equimolar amounts of tetrafluorophenol and dicyclohexylcarbodiimide were added. The mixture was stirred overnight at room temperature. Dicyclohexylurea was filtered off, and the filtrate was dissolved in CH_2Cl_2 . The solution was washed with water, dried over anhydrous Na_2SO_4 and evaporated to about one-third of the original volume. The precipitated solid was removed, and the filtrate was evaporated to obtain the active ester (Ra, Rb) in 55-60% yield.

Removal of t-butyl groups (in the case of Rb) was accomplished by stirring the above product in anhydrous trifluoroacetic acid (5 ml of TFA/I mmol). The acid was removed in vacuo. Addition of cold water (5-10 ml) gave the product, which was filtered and dried under vacuum.

In the case of Rc, the reaction was conducted in a mixture of CH_3CN : H_20 (4:1; 20ml/mmol). To a solution of Rc (mmol) in CH_3CN : H_20 was added 3 mmol of 2',3',5',6'-tetrafluorophenol, and 3 mmol of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride was added and stirred for 8 hours. The solvent was removed and extracted with ethyl acetate. The organic layer was dried over MgSo₄ and evaporated to give an oil. Trituration with ether gave the tetraflurophenyl ester. The N-hydroxysuccinimide ester of Rc is prepared in a similar reaction.

Example IIIb

25

30

35

40

45

50

55

THP-S-CH2 COGIy-GIy-GIy-OSuCC. --> THP-S-CH2-CO-GIy-GIy-GIY-CONHNH2

To a solution of above succinimidate ester in THF (5 ml/mmol), 0.2 mL of hydrazine is added and stirred for 3-4 hours. The solvent is removed and product is isolated by silica gel chromatography. THP indicates a tetrahydropyranyl S-protecting group.

In a similar set of reactions, other MAG₃ derivatives, where sulfur is protected as hemithioacetals are prepared (Rd, Rc).

Example IIIc

(i) To a solution of tBoc-Gly-Gly-Gly-NH₂ in (25 mL/mmol) of THF, 9 mL of BH₃ THF is added and the solution is refluxed for overnight (12-15 hours). Two mL of ethanol is added and the solution is evaporated to dryness. This process is repeated three more times and the resulting oil is dried to give a powder.

(ii) To a solution of the protected amine in anhydrous THF (5mL/mmol) equimolar amount of S-benzoylthioglycolic acid succinimidate ester is added. The solution is stirred for 3-4 hours. TLC shows one major component along with minor impurities. The major component is purified by silica gel column

chromatography (EtoAc:CH3OH: NEta).

$$--$$
 C₆H₅COSCH₂-CO-NH(CH₂)₂-N-(CH₂)₂-N-(CH₂)₂-NHtBoc

(iii) One mmol of the above protected compound is stirred with 5 mL of anhydrous trifluoroacetic acid. After 2-3 hours of stirring the trifluoroacetic acid is evaporated. The oily product is dissolved in ethanol and evaporated to dryness. This process is repeated two times. Ethanol containing 5-6 equivalents of dissolved hydrogen chloride was added and evaporated to dryness to give the product as a viscous oil which solidified upon adding ether.

30 Example IV

15

Preparation of Tc-99m MAG₃-IgG Antibody

In 0.10 mL of 1.0 M carbonate buffer pH 12.0 was dissolved 25ug of S-benzoylmercaptoglycylglycylglycine. Then 75 mCi of Tc-99m pertechnetate was added in about 1.0 mL followed by 1.0 mg of freshly dissolved sodium dithionite (10 mg/mL). The mixture was heated at 100°± 4°C for 3 min, then cooled in ice-bath for 5 min, to give 90-95% Tc-99m MAG₃ as determined by ITLC (CH₃CN solvent: 95% at origin; 10% ammonium acetate CH₃OH (1:1): 99% solvent front); anion exchange HPLC (Beckman AX, 10 micron 0.01 M Na₂SO₄/0.01 M Na₃PO₄, pH 7.0) retention volume 5.4 mL; revere phase HPLC (Beckman ODS, 5 micron 2% CH₃CN/0.01 M Na₃PO₄ pH 7.0) retention volume 7.6 mL).

The Tc-99m complex in carboxylate form was then esterified; 0.20 mL 1 N HCl, 0.30 mL of 0.2 M phosphate buffer pH 6.0, 10.0 mg 2,3,5,6-tetrafluorophenol (TFP) in 0.10 mL 90% CH₃CN, 12.5 mg of EDC in 0.10 mL of 90% CH₃CN, and the reaction was mixed at room temperature (20° ± 2°C) for 1 hr. At this point, 60-75% of the radioactivity was Tc-99m MAG₃-TFP ester as determined by ITLC (CH₃CN solvent: 60-75% at solvent front); anion exchange HPLC (Beckman AX, 10 micron 0.01 M Na₂SO₄/0.01 M Na₃PO₄ pH 7.0) retention volume 3.0 mL; reverse phase HPLC (Beckman ODS, 5 micron 34% CH₃CN/0.01 M Na₃PO₄ pH 7.0) retention volume 6.2 mL. The preparation was purified using a C₁₈ Baker column. The reaction mixture was loaded in the column, washed 2 times with water and then 8 times with 2.0 mL of 10% C₂H₅OH/0.01 M Na₃PO₄ pH 7.0. The product was eluted with CH₃CN. The radiochemical yields are 50-60% in Tc-99m MAG₃-TFP. The CH₃CN was removed, and the Tc-99m MAG₃-TFP was ready for conjugation.

The conjugation of the complex active ester was carried out by adding a 1.2 mg/mL solution of antimelanoma lgG in 0.2 M phosphate buffer pH 9.5 to the residue containing the Tc-99m activity. After 30 min, 40-50% of the radioactivity was bound to the antibody. Passage through a PD-10 gel filtration column gave 97% pure Tc-99m MAG₃-Antibody.

Example V

Preparation f activ ester of MAGGG (Succinimidylbenzoylmercaptoacetylglycylglycylglycine)

In a 50 ml round bottom flask, 0.37g (1 mmole) of benzoylmercaptoacetylglycylglycylglycine and 0.126g (1.1 mmole) of N-hydroxy succinimide are dissolved in approximately 25 mL of tetrahydrofuran and cooled to 5-10 °C in an ice bath. To this solution, 0.23g (1.1 mmole) of N,N'-dicyclohexylcarbodiimide is added. The solution is allowed to warm to room temperature and is stirred for 48 hours and the course of the reaction followed by TLC. The precipitate is removed by filtering; the filtered solution is evaporated to dryness under vacuum. The residue is redissolved in 50-60mL of dichloromethane; this solution is filtered and evaporated to dryness under vacuum. The residue is redissolved in 5-6mL ethanol with warming and allowed to crystallize for 3-4 hours. The crystals of product succinimidyl-MAGGG are recovered by filtration.

5 Example VI

Preparation of antibody chelating compound-conjugate

A stock solution of tetrafluorophenyl-MAGGG is prepared by dissolving 4.25mg in 5.0ml of DMF. 0.060ml of this solution was added to 0.54ml of a 5.5mg/ml solution of monoclonal antibody in 0.10M phosphate, 0.15 M NaCl at pH 7.0. Ligand to antibody offering ratio was 50:1. After stirring for 3 hours at room temperature the reaction mixture was purified by passage through a PD-10 gel filtration column.

The entire reaction mixture is purified on Sephadex G-25 previously equilibrated with PBS (1.5cm x 5.0cm plastic column, eluted with PBS). 1.2mL fractions are collected. Those fraction with an absorbance (280 nm) greater than 0.1 are combined. The combined fractions are concentrated in an Amicon filter with an Amicon PM10 membrane at 4 psi to a final volume of 0.5 to 1.0 ml.

The amount of chelating compound bound to the antibody is conveniently determined by removing the benzoyl group from the ligand with 0.1 N NaOH and reacting the resulting free sulfhydryl groups with Ellman's reagent.

Example VII

30

35

Analysis of Chelating Compound Conjugation to Monoclonal Antibody

Samples of chelating-compound-conjugated monoclonal antibody (Example VI) are prepared by adding up to 400uL to a test tube and adjusting the volume to 400uL with oxygen-free water, if necessary. If necessary, the samples, as prepared according to Example VI, can be diluted with oxygen-free water. Phosphate buffer (500uL; 0.1M sodium phosphate, 1mM EDT, pH 7.27) and 100u of 0.5M hydroxylamine hydrochloride (HA; prepared with oxygen-free water) are added to the test tubes which are then allowed to incubate at room temperature for one hour. Twenty (20) uL of a solution of 5uL of buffer and 9.0uL of Ellman's reagent (DTNB; 5.5'-dithiobis(2-nitrobenzoic acid)) is added; after five minutes, the absorbance of the reaction mixture is determined at 413 nm.

The amount of chelating compound conjugated to monoclonal antibody can be determined in either of two ways. A blank prepared as above, omitting the chelating compound-conjugated antibody, can be prepared and analyzed at 412 nm. The published extinction coefficient (Riddles, et al., 94 Anal. Biochem. 75 (1979)) can be used to calculate the concentration of free thiol by the following formula:

[thiol concentration] = $(A_{412} \text{ (sample)} - A_{412} \text{ (blank)}) X \text{ (dilution factor)/14,150 M}^{-1}$.

Alternatively, a standard curve can be constructed. A 0.25 mM solution of high purity cysteine is prepared in the buffer used for the chelating compound conjugation analysis (this standard solution should be prepared fresh daily). Serial dilutions of the cysteine standard are reacted with HA and DTNB as outlined above, and a standard curve of moles of cysteine vs. absorbance at 412 nm is constructed. The amount of chelating compound conjugated to the antibody can be determined directly from this standard curve.

55

Example VIII

Radi labeling of chelating-compound-conjugated antibody

a. Preparation of Technetium-99m Tartrate

To a vial of stannous tartrate solution containing 0.10mg of stannous chloride and 75mg of sodium tartrate in 0.60ml was added 0.50ml of Tc-99m sodium pertechnetate (2-4mg). The solution is equilibrated at room temperature for three min. If desired, the extent of reaction to form Technetium-99m tartrate can be determined by TLC.

Two Gelman ITLC-SG strips are spotted at the (marked) origin with small drops of the radioactive solution prepared above. Immediately, one of the strips is developed with saline solution; after drying the initial spot under a stream of nitrogen, the other strip is developed in methylethyl ketone (MEK). After the solvent fronts have traveled 75% of the length of the strips, the strips are removed from the development solutions and the solvent front is marked. The strips are cut midway between the origin and the solvent front. The radioactivity on each of the four pieces is determined by standard counting techniques. Since the Rf value of sodium pertechnetate is 1 in the MEK system and 1 in the saline system, and the Rf of technetium tartrate is 0 in the MEK system and 1 in the saline system, and the Rf value of technetium dioxide is 0 in both systems, the fraction of Tc-99m tartrate can be determined by the following equation:

20

25

30

fraction (Tc-99m tartrate) = 1.00 -
$$C_1$$
 MEK + C_0 saline C_0 saline C_0 saline

where C_1 and C_o are the radioactivity counts at the solvent front and origin, respectively, for the two solvents. The Tc-99m tartrate can be used if the fraction of Tc-99m tartrate is 0.85 or more.

b. Reaction of Tc-99m tartrate with chelating compound-conjugated antibody

The antibody MAGGG conjugate in Example 6 (0.10mg in 0.40ml of PBS buffer at pH 8) was reacted with Tc099m tartrate (0.10ml, 0.5-2mg) for 60 min at 50 °C. At that time, 80% of the Tc-99m radioactivity was bound to the antibody. Immunoactivity of the preparation as determined radioactivity bound to melanoma tumor cells was determined to be 84% after correction for nonprotein bound radioactivity.

Example IX

A comparative study was carried out in animals to determine the relative ability of ^{99m}Tc-MAG₃-NRML-05 Fab and ^{99m}Tc-N₂S₂-NRML-05 to labeled tumors in mice. These designations refer to the different chelating agents attached to antibody Fab fragments. The designation NRML-05 is a laboratory designation for a specific antibody to a melanoma tumor. MAG₃ is the N₃S chelating agent described in the preceding examples. N₂S₂ is a designation for a comparison chelating agent having two sulfurs and two nitrogens as electron donating atoms. The specific compound is 4,5-bis(2'-thio-acetamido)pentanoic acid.

Groups of four mice were injected with similar doses of technetium-labeled reagents. Nude mice bearing melanoma xenographs were utilized. Mice were sacrificed 20 hours post-injection, and samples were counted in a gamma counter. Two tables are set forth below presenting the data obtained. The first table shows percent dose-gram of tissue tested. The second table shows the tumor/tissue ratios (obtained by dividing the percent dose/gram present in a tumor by the percent dose/gram of the individual tissue types.

Table 1

	MAG3-Label		N ₂ S ₂ -Label	
Tissue	Avg.	Std. Dev.	Avg.	Std. Dev
Blood	0.16	0.01	0.20	0.03
Tail ³	0.44	0.11	0.96	0.89
Tumor	2.28	0.52	3.02	1.12
Skin	0.09	0.01	0.08	0.03
Muscle	0.04	0.00	0.35	0.52
Bon e [0.12	0.03	1.02	1.57
Lung [?]	0.78	0.26	10.23	5.49
Liver	0.26	0.01	0.88	0.34
Spleen	0.26	0.07	0.57	0.31
Stomach	0.23	0.14	0.76	0.51
Neck 🏻	0.05	0.01	0.12	0.05
Kidney	1.42	0.21	0.43	0.07
Intestine	0.50	0.33	0.38	0.17

Tabl 2

Tissue	MAG3-Label	N2S2-Label
Blood	14.09	14.86
Tail	5.34	4.57
Tumor	1.00	1.00
Skin	25.63	64.93
Muscle	54.89	39.68
Bone	21.03	15.73
Lung	3.47	0.47
Liver	8.71	3.66
Spleen	9.98	31.96
Stomach	11.84	36.73
Neck	42.54	29.86
Kidney	1.64	6.94
Intestine	5.61	9.35

The data indicates good targeting in tumor tissue. When MAG3 is utilized as a chelating agent, the tumor has the highest percentage dose per gram of any tissues tested. In this comparative study, use of the N_2S_2 chelator results in a greater percentage of the dose present in the lungs than in the tumor on a per gram basis. Other studies prior to and since this study show the lung concentration to be unusually high in this instance. However, other tissue concentrations are in agreement with usual values. The excretion pattern of the $Tc-99m-MAG_3$ chelate conjugate is also better than that of the N_2S_2 chelate. This shown by lower liver and spleen concentrations for the $Tc-99m-MAG_3$ chelate conjugate than for the N_2S_2 linked conjugate. Additionally, the low stomach levels for the MAG_3 material is indicative of high stability, since loss of Tc-99m as pertechnetate is seen as a relatively high level of radioactivity in stomach tissue.

40 Example X

Nine additional N_3S chelating compounds of the invention were synthesized. The chemical structures of these compounds are represented in Figure 1, wherein Figures 1A through 1I correspond to the nine compounds designated A through I. The sulfur protecting group (PG) and the three substituents represented as R, R', and R' are shown for each compound (by reading horizontally across the chart for each compound).

The abbreviations for the sulfur protecting groups (PG) in Figure 1 represent the following groups, wherein the sulfur atom shown is the sulfur atom of the chelating compound:

50

When the chelating compound comprises a methoxymethyl S-protecting group (as does compound I), the carbon immediately adjacent to the sulfur atom in the chelating compound (the alpha carbon) preferably has the substituent -CH2 COOH attached thereto.

TFP represents a 2,3,5,6-tetrafluorophenyl group. The 2,3,5,6-tetrafluorophenyl ester protein conjugation group preferably is at the terminus of a -(CH2)3- spacer when the preformed chelate approach is to be used, to minimize hydrolysis (or displacement) of the TFP group during the radiolabeling reaction. Compounds A and B, in which the TFP is attached to a shorter spacer, are more suitable for the postformed chelate approach, since the TFP already has reacted with a protein and is no longer subject to hydrolysis during radiolabeling in the post-formed approach.

Preferred chelating compounds include those in which substituent R" is -COOH.

30

The compounds are radiolabeled using procedures described above. The radiolabeling reaction conditions (e.g., pH and temperature) will vary according to such factors as the ease of displacement of the particular S-protecting group on the compound, as described above.

By using the compounds of the subject invention, one can rapidly conjugate proteins, carbohydrates, and glycoproteins to provide radionuclide substituted reagents for use in vivo. The reagents can be provided in pure form and in good yield, and the radionuclide metal is stably maintained as a chelate with the protein, carbohydrate, or glycoprotein for use in vivo. Thus, one can safely direct a radionuclide to a desired site, where only low levels of radioactivity will be non-specifically directed and bound.

Although the forgoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be apparent to those skilled in the art that certain changes and modifications may be practiced. Therefore, the description and examples should not be construed as limiting the scope of the invention, which is delineated by the appended claims.

The features disclosed in the foregoing description, in the claims and/or in the accompanying drawings may, both separately and in any combination thereof, be material for realising the invention in diverse forms thereof.

Claims

5

15

20

25

30

1. A compound of the formula:

10

wherein: •

T is H or a sulfur protecting group,

each:X independently represents H2 or O;

each rR independently represents a substitutent selected from the group consisting of hydrogen; a non-alkyliside chain of an amino acid other than cysteine; alkyl; geminal dialkyl; and - $(CH_2)_n$ -Z;

Z represents -COOH, a conjugation group, or a targeting compound;

n is an integer of from 1 to about 4; and

R' is H₂; -(CH₂)_n-Z; or an alkyl group having one or more polar groups substituted thereon and the compound comprises at least one -(CH₂)_n-Z substituent and where Z is a conjugation group that is reactive with a targeting compound or a targeting compound, wherein when R' is -(CH₂)_n-Z and Z is a targeting compound or a conjugation group that is reative with a targeting compound then n is 3 or 4.

- 2. The compound of Claim 1 wherein the sulfur protecting group is selected from the group consisting of alkyl, aryl, acyl, thioacyl, and organothio groups comprising from 1 to about 10 carbon atoms.
- 35 3. The compound of Claim 1 wherein the sulfur protecting group, when taken together with the sulfur atom to be protected, is a hemithioacetal group.
- 4. The compound of Claim 3 wherein the hemithioacetal group is selected from the group consisting of tetrahydrofuranyl, 2-methyl tetrahydrofuranyl, tetrahydropyranyl, 2-methyl tetrahydropyranyl, ethoxyethyl, and methoxymethyl groups.
 - 5. The compound of Claim 1 wherein the sulfur protecting group is selected from the group consisting of:

45

50

A compound of the formula:

10

and water soluble salts thereof, wherein:

M is a radionuclide which is chelated:

each X independently represents H2 or O;

each R independently represents a substituent selected from the group consisting of hydrogen; a non-alkyl side chain of an amino acid other than cysteine; alkyl; geminal dialkyl; and -(CH2)n-Z;

Z represents -COOH, a conjugation group, or a targeting compound;

n is an integer of from 1 to about 4; and

R' is H2; -(CH2)n-Z; or an alkyl group having one or more polar groups substituted thereon; and the compound comprises at least one -(CH₂)_n-Z substituent where Z is a conjugation group that is reactive with a targeting compound or a targeting compound, wherein when R' is -(CH2)n-Z and Z is a targeting compound or a conjugation group that is reactive with a targeting compound then n is 3 or 4.

- The compound of Claim 6 wherein M is a radionuclide selected from the group consisting of 99mTc. ¹⁸⁶Re, ¹⁸⁸Re, ⁶⁷Cu, ⁶⁴Cu, ²⁰³Pb, ²¹²Pb, ²¹²Bi, and ¹⁰⁹Pd.
 - The compound of Claim 1 or 6 wherein at least one substituent X is O.
 - The compound of Claim 8 wherein all three substituents X represent O.

10. The compound of Claim 1 or 6 wherein the conjugation group is selected from the group consisting of active esters, imidate esters, primary or secondary amines, hydrazines, isothiocyanates, maleimides, and other Michael acceptor groups.

- 11. The compound of Claim 10 wherein the conjugation group is a 2,3,5,6-tetrafluorophenyl ester group.
 - 12. The compound of claim 1 or 6 wherein the targeting compound is selected from the group consisting of proteins, glycoproteins, carbohydrates, and fragments thereof.
- 13. The compound of Claim 12 wherein the targeting compound is a monoclonal antibody or a fragment thereof.
 - 14. The compound of Claim 13 wherein the monoclonal antibody or fragment thereof is specific for cancer

15. The compound of Claim 1 or 6 wherein said compound comprises at least one substituent -(CH₂)_n-Zwherein Z is -COOH.

16. The compound of Claim 1 or 6 wherein said compound comprises a substituent -(CH2)3-Z wherein Z is a conjugation group or a targeting compound.

18

17. The compounds of Figures 1A to 11.

20

25

30

35

50

55

15

18. A method for radionuclide labeling of a glycoprotein comprising:

reacting said glycoprotein with a glycol cleaving agent to cleave at least one sugar to produce a dialdehyde or higher polyaldehyde to provide a polyaldehyde product;

reacting said polyaldehyde product with a compound according to Claim 1 wherein Z is amino, hydrazine, or an amino salt to produce a glycoprotein having a chelating compound conjugated thereto; and

reacting said glycoprotein having a chelating compound conjugated thereto with a radionuclide under conditions sufficient to form a glycoprotein-radionuclide chelate conjugate.

10 19. A method for radionuclide labeling of a glycoprotein comprising:

reacting said glycoprotein with a glycol cleaving agent to cleave at least one sugar to produce a dialdehyde or higher polyaldehyde to provide a polyaldehyde product; and

reacting said polyaldehyde product with a compound according to Claim 6, wherein Z is amino, hydrazine or an amino salt to produce a radionuclide chelate-conjugated glycoprotein.

15

5

- 20. A method for radionuclide labeling of a polypeptide, comprising reacting the polypeptide with a compound of Claim 6, wherein said compound comprises a conjugation group which reacts with the polypeptide, thereby binding the compound to the polypeptide.
- 20 21. A method for radionuclide labeling of a polypeptide, comprising:

reacting the polypeptide with a compound of Claim 1, wherein said compound comprises a conjugation group which reacts with the polypeptide, thereby binding the compound to the polypeptide, reacting the compound bound to the polypeptide with a radionuclide metal to form a chelate-polypeptide conjugate.

25

- 22. The method of Claim 18, 19, 20, or 21, wherein the glycoprotein or polypeptide is a monoclonal antibody or fragment thereof.
- 23. The method of Claim 22 wherein the monoclonal antibody or fragment thereof is specific for cancer cells.
 - 24. The method of claim 22, wherein the radionuclide is selected from the group consisting of ^{99m}Tc, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁰³Pb, ²¹²Pb, ²¹²Bi, ¹⁹⁸Au, and ¹⁰⁹Pd.
- 25. The compound according to Claim 6 wherein Z is a targeting compound which binds to target cells and M is a therapeutically effective radionuclide, for use as an active therapeutic substance.
 - 26. The compound according to Claim 6, wherein Z is a targeting compound which, binds to target cells and M is a diagnostically effective radionuclide, for use as a diagnostic agent.

0

27. The compound of Claim 25 or 26 wherein the target cells are cancer cells and the targeting compound is a monoclonal antibody or fragment thereof which binds to the cancer cells.

45

50

28. A compound of the formula:

5

10

15

wherein:

20

T is an alkyl, aryl, acyl, or thioacyl group having 1 to 7 carbons; an organo thio group having 1 to 10 carbon atoms; or hydrogen;

each X independently represents H2 or 0;

n is an integer of 3 or 4;

R is H; alkyl or geminal dialkyl, wherein said alkyl contains from 1 to 7 carbons; or a non-alkyl side chain of an amino acid other than cysteine; and

Z is amino; a carboxylic ester; an imidate ester;

30

25

wherein W_1 is a polypeptide having at least two amino acids;

35

40 or

 $-N = W_3$,

45

wherein W_2 and W_3 independently represent a carbohydrate and the nitrogen is bonded to a carbon atom of W_3 .

29. A compound of the formula:

5

10

15 wherein:

M is a radionuclide ion which is chelated, to which one or two oxygen atoms may be bonded;

R is hydrogen; alkyl or geminal dialkyl, wherein said alkyl contains from 1 to 7 carbons; or a non-alkyl side chain of an amino acid other than cysteine;

each X independently represents O or H2;

n is an integer of 3 or 4, Z is amino; and

Z is amino; a carboxylic ester; an imidate ester;

-C-Nn t 0 H

wherein W1 is a polypeptide having at least two amino acids;

30

40

25

20

35 or

 $-N = W_3$

wherein W_2 and W_3 independently represent a carbohydrate, where the nitrogen is bonded to a carbon atom of W_3 .

- 30. The compound of Claim 29, wherein M represents a radionuclide ion selected from ^{99m}Tc, ¹⁸⁵Re, and ¹⁸⁸Re, each having an oxygen atom bonded thereto.
- 45 31. A compound of the formula according to any one of Claims 1 to 5 wherein R' is -(CH₂)_n-Z.
 - 32. A compound of the formula according to any one of Claims 1 to 5 wherein the compound comprises at least two -(CH₂)_n-Z substituents where one Z is -COOH and another Z is a targeting compound or a conjugation group that is reactive with a targeting compound, and n is an integer of from 1 to 4 without limitation.
 - 33. A compound of the formula according to Claim 32 wherein R' is -(CH₂)_n-Z.

55

Pat ntansprüche

1. Eine Verbindung der Formel:

5

10

15

20

25

30

35

wobei:

T H oder eine Schwefel-Schutzgruppe ist,

jedes X unabhängig H2 oder O darstellt;

jedes R unabhängig einen Substituenten darstellt, der ausgewählt ist aus der Gruppe, die aus Wasserstoff; einer Nicht-Alkyl-Seitenkette einer anderen Aminosäure als Cystein; Alkyl; geminalem Dialkyl; und -(CH₂)_n-Z besteht;

Z -COOH, eine Konjugationsgruppe oder eine Anzielverbindung darstellt;

n eine ganze Zahl von 1 bis etwa 4 ist; und

 $R' H_2$; - $(CH_2)_n$ -Z; oder eine Alkylgruppe mit einer oder mehreren darauf substituierten polaren Gruppen ist und

die Verbindung wenigstens einen - $(CH_2)_n$ -Z-Substituenten umfaßt und wo Z eine Konjugationsgruppe ist, die mit einer Anzielverbindung reaktiv ist, oder eine Anzielverbindung, wobei, wenn R' - $(CH_2)_n$ -Z ist und Z eine Anzielverbindung oder eine Konjugationsgruppe ist die mit einer Anzielverbindung reaktiv ist, n dann 3 oder 4 ist.

- 2. Die Verbindung nach Anspruch 1, wobei die Schwefel-Schutzgruppe ausgewählt ist aus der Gruppe, die aus Alkyl-, Aryl- Acyl-, Thioacyl- und Organothiogruppen besteht, die von 1 bis etwa 10 Kohlenstoffatome umfassen.
- Die Verbindung nach Anspruch 1, wobei die Schwefel-Schutzgruppe, wenn mit dem zu schützenden Schwefelatom zusammengenommen, eine Hemithioacetalgruppe ist.

40

- 4. Die Verbindung nach Anspruch 3, wobei die Hemithioacetalgruppe ausgewählt ist aus der Gruppe, die aus Tetrahydrofuranyl-, 2-Methyltetrahydrofuranyl-, Tetrahydropyranyl-, 2-Methyltetrahydropyranyl-,Ethoxyethyl- und Methoxymethylgruppen besteht.
- 45 5. Die Verbindung nach Anspruch 1, wobei die Schwefel-Schutzgruppe ausgewählt ist aus der Gruppe, die aus:

50

besteht.

15

40

45

6. Eine Verbindung der Formel:

und wasserlösliche Salze derselben, wobei:

M ein Radionuklid ist, das chelatisiert ist;

jedes X unabhängig H2 oder O darstellt;

jedes R unabhängig einen Substituenten darstellt, der ausgewählt ist aus der Gruppe, die aus Wasserstoff; einer Nicht-Alkyl-Seitenkette einer anderen Aminosäure als Cystein; Alkyl; geminalem Dialkyl; und -(CH₂)_n-Z besteht;

Z -COOH, eine Konjugationsgruppe oder eine Anzielverbindung darstellt;

n eine ganze Zahl von 1 bis etwa 4 ist; und

R' H₂; -(CH₂)_n-Z; oder eine Alkylgruppe mit einer oder mehreren darauf substituierten polaren Gruppen ist; und

die Verbindung wenigstens einen - $(CH_2)_n$ -Z Substituenten umfaßt, wo Z eine Konjugationsgruppe, die mit einer Anzielverbindung reaktiv ist, oder eine Anzielverbindung ist, wobei, wenn R'- $(CH_2)_n$ -Z ist und Z eine Anzielverbindung oder eine Konjugationsgruppe ist, die mit einer Anzielverbindung reaktiv ist, n dann 3 oder 4 ist.

- Die Verbindung nach Anspruch 6, wobei M ein Radionuklid ist, das ausgewählt ist aus der Gruppe, die aus ^{99m}Tc, ¹⁸⁶Re, ¹⁸⁸Re, ⁶⁷Cu, ⁶⁴Cu, ²⁰³Pb, ²¹²Pb, ²¹²Bi und ¹⁰⁹Pd besteht.
- 50 8. Die Verbindung nach Anspruch 1 oder 6, wobei wenigstens ein Substituent X O ist.
 - 9. Die Verbindung nach Anspruch 8, wobei alle drei Substituenten X O darstellen.
- 10. Die Verbindung nach Anspruch 1 oder 6, wobei die Konjugationsgruppe ausgewählt ist aus der Gruppe. die aus Aktivestern, Imidatestern, primären oder sekundären Aminen, Hydrazinen, Isothiocyanaten, Maleimiden und anderen Michael-Akzeptorgruppen besteht.

- Die Verbindung nach Anspruch 10, wobei die Konjugationsgruppe eine 2,3,5,6-Tetrafluorphenylestergruppe ist.
- 12. Die Verbindung nach Anspruch 1 oder 6, wobei die Anzielverbindung ausgewählt ist aus der Gruppe, die aus Proteinen, Glykoproteinen, Kohlehydraten und Fragmenten derselben besteht.
- 13. Die Verbindung nach Anspruch 12, wobei die Anzielverbindung ein monoklonaler Antikörper oder ein Fragment desselben ist.
- 10 14. Die Verbindung nach Anspruch 13, wobei der monoklonale Antikörper oder das Fragment desselben spezifisch für Krebszellen ist.
 - 15. Die Verbindung nach Anspruch 1 oder 6, wobei besagte Verbindung wenigstens einen Substituenten -(CH₂)_n-Z umfaßt, in dem Z -COOH ist.
 - 16. Die Verbindung nach Ansprüch 1 oder 6, wobei besagte Verbindung einen Substituenten -(CH₂)_n-Z umfaßt, in dem Z eine Konjugationsgruppe oder eine Anzielverbindung ist.
 - 17. Die Verbindungen der Fig. 1A bis 11.

5

15

20

30

35

18. Ein Verfahren zur Radionuklid-Markierung eines Glykoproteins, welches umfaßt:

daß besagtes Glykoprotein mit einem glykolsgeltenden Agens zur Regelting gebi

daß besagtes Glykoprotein mit einem glykolspaltenden Agens zur Reaktion gebracht wird, um wenigstens einen Zucker abzuspalten, um ein Dialdehyd oder höheres Polyaldehyd herzustellen, um ein Polyaldehydprodukt bereitzustellen;

- daß besagtes Polyaldehydprödukt mit einer Verbindung nach Anspruch 1 zur Reaktion gebracht wird, wobei Z Amino, Hydrazin oder ein Aminosalz ist, um ein Glykoprotein mit einem daran konjugierten Chelatbildner herzustellen; und
 - daß besagtes Glykoprotein mit einem daran konjugierten Chelatbildner mit einem Radionuklid unter Bedingungen zur Reaktion gebracht wird, die ausreichend sind, um ein Glykoprotein-Radionuklid-Chelat-Konjugat zu bilden.
 - 19. Ein Verfahren zur Radionuklid-Markierung eines Glykoproteins, welches umfaßt: daß besagtes Glykoprotein mit einem glykolspaltenden Agens zur Reaktion gebracht wird, um wenigstens einen Zucker abzuspalten, um ein Dialdehyd oder höheres Polyaldehyd herzustellen, um ein Polyaldehydprodukt bereitzustellen; und daß besagtes Polyaldehydprodukt mit einer Verbindung nach Anspruch 6 zur Reaktion gebracht wird,
 - wobei Z Amino, Hydrazin oder ein Aminosalz ist, um ein Radionuklid-chelat-konjugiertes Glykoprotein herzustellen.
- 20. Verfahren zur Radionuklid-Markierung eines Polypeptids, welches umfaßt, daß das Polypeptid mit einer Verbindung nach Anspruch 6 zur Reaktion gebracht wird, wobei besagte Verbindung eine Konjugationsgruppe umfaßt, die mit dem Polypeptid reagiert, wodurch die Verbindung an das Polypeptid gebunden wird.
- 21. Ein Verfahren zur Radionuklid-Markierung eines Polypeptids, welches umfaßt:

 daß das Polypeptid mit einer Verbindung nach Anspruch 1 zur Reaktion gebracht wird, wobei besagte

 Verbindung eine Konjugationsgruppe umfaßt, die mit dem Polypeptid reagiert, wodurch die Verbindung
 an das Polypeptid gebunden wird,
- daß die an das Polypeptid gebundene Verbindung mit einem Radionuklid-Metall zur Reaktion gebracht wird, um ein Chelat-Polypeptid-Konjugat zu bilden.
 - 22. Das Verfahren nach Anspruch 18, 19, 20 oder 21, wobei das Glykoprotein oder Polypeptid ein monoklonaler Antikörper oder Fragment desselben ist.
- 55 23. Das Verfahren nach Anspruch 22, wobei der monoklonale Antikörper oder das Fragment desselben spezifisch für Krebszellen ist.

- 24. Das Verfahren nach Anspruch 22, wobei das Radionuklid ausgewählt ist aus der Gruppe, die aus ^{99m}Tc, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁰³Pb, ²¹²Pb, ²¹²Bi, ¹⁹⁸Au und ¹⁰³Pd besteht.
- 25. Die Verbindung nach Anspruch 6, wobei Z eine Anzielverbindung ist, die sich an Zielzellen bindet, und M ein therapeutisch wirksames Radionuklid ist, zur Verwendung als eine aktive therapeutische Substanz.
- 26. Die Verbindung nach Anspruch 6, wobei Z eine Anzielverbindung ist, die sich an Zielzellen bindet, und M ein diagnostisch wirksames Radionuklid ist, zur Verwendung als ein diagnostisches Mittel.
- 27. Die Verbindung nach Anspruch 25 oder 26, wobei die Zielzellen Krebszellen sind und die Anzielverbindung ein monoklonaler Antikörper oder Fragment desselben ist, der (das) sich an die Krebszellen bindet.
- 28. Eine Verbindung der Formel:

5

10

20

25

30

35

40

45

wobei:

T eine Alkyl-, Aryl-, Acyl- oder Thioacylgruppe mit 1 bis 7 Kohlenstoffen; eine Organothiogruppe mit 1 bis 10 Kohlenstoffatomen; oder Wasserstoff ist;

jedes X unabhängig H2 oder O darstellt;

n eine ganze Zahl von 3 oder 4 ist;

R H; Alkyl oder geminales Dialkyl, wobei besagtes Alkyl von 1 bis 7 Kohlenstoffe enthält; oder eine Nicht-Alkyl-Seitenkette einer anderen Aminosäure als Cystein ist; und

Z Amino; ein Carbonsäureester; ein Imidatester;

wobei W1 ein Polypeptid mit wenigstens zwei Aminosäuren ist;

oder

 $-N = W_3$

wobei W_2 und W_3 unabhängig ein Kohlehydrat darstellen und der Stickstoff an ein Kohlenstoffatom von W_3 gebunden ist, ist.

29. Eine Verbindung der Formel:

10

15 wobei:

M ein Radionuklid-Ion ist, das chelatisiert ist, an das ein oder zwei Sauerstoffatome gebunden sein

R Wasserstoff; Alkyl oder geminales Dialkyl, wobei besagtes Alkyl von 1 bis 7 Kohlenstoffe enthält; oder eine Nicht-Alkyl-Seitenkette einer anderen Aminosäure als Cystein ist;

jedes X unabhängig O oder H2 darstellt;

n eine ganze Zahl von 3 oder 4 ist; und

Z Amino; ein Carbonsäureester; ein Imidatester;

25

20

5

30 wobei W1 ein Polypeptid mit wenigstens zwei Aminosäuren ist;

35

. oder

-N = W₃

40

wobei W2 und W3 unabhängig ein Kohlehydrat darstellen, wobei der Stickstoff an ein Kohlenstoffatom von W3 gebunden ist, ist.

- 30. Die Verbindung nach Anspruch 29, wobei M ein Radionuklid-Ion darstellt, das ausgewählt ist aus 99mTc, ¹⁸⁶Re und ¹⁸⁸Re, wobei an jedes ein Sauerstoffatom gebunden ist. 45
 - 31. Eine Verbindung der Formel nach einem der Ansprüche 1 bis 5, wobei R' - $(CH_2)_n$ -Z ist.
- 32. Eine Verbindung der Formel nach einem der Ansprüche 1 bis 5, wobei die Verbindung wenigstens zwei -(CH₂)n-Z-Substituenten umfaßt, wobei ein Z -COOH ist und ein anderes Z eine Anzielverbindung oder 50 eine Konjugationsgruppe, die mit einer Anzielverbindung reaktiv ist, ist und n eine ganze Zahl von 1 bis 4 ohne Beschränkung ist.
 - 33. Eine Verbindung der Formel nach Anspruch 32, wobei R' -(CH₂)_n-Z ist.

Revendications

1. Composé de formule

5

10

15

20

25

30

dans laquelle :

T représente H ou un groupe protecteur de l'atome de soufre,

chaque substituant X représente indépendamment H2 ou O :

chaque substituant R représente indépendamment un substituant choisi entre l'hydrogène ; une chaîne latérale non alkylique d'un amino-acide autre que la cystéine ; un groupe alkyle ; un groupe dialkyle géminé ; et un groupe $-(CH_2)_n-Z$;

Z représente un groupe -COOH, un groupe de conjugaison ou un composé d'orientation vers une cible :

n est un nombre entier de 1 à environ 4 ; et

R' représente H_2 ; un groupe $-(CH_2)_n-Z$; ou un groupe alkyle portant un ou plusieurs groupes polaires comme substituants, et

ledit composé comprenant au moins un substituant -(CH₂)_n-Z dans lequel Z représente un groupe de conjugaison qui est réactif avec un composé d'orientation vers une cible ou bien représente un composé d'orientation vers une cible, n étant égal à 3 ou 4 lorsque R' représente un groupe -(CH₂)_n-Z et Z représente un composé d'orientation vers une cible ou un groupe de conjugaison qui est réactif avec un composé d'orientation vers une cible.

35

- Composé suivant la revendication 1, dans lequel le groupe protecteur de l'atome de soufre est un groupe choisi entre des groupes alkyle, aryle, acyle, thioacyle et organothio comprenant 1 à environ 10 atomes de carbone.
- 3. Composé suivant la revendication 1, dans lequel le groupe protecteur de l'atome de soufre, lorsqu'il est pris conjointement avec l'atome de soufre à protéger, est un groupe hémithioacétal.
 - 4. Composé suivant la revendication 3, dans lequel le groupe hémithioacétal est choisi entre les groupes tétrahydrofurannyle, 2-méthyl-tétrahydrofurannyle, étrahydropyrannyle, 2-méthyl-tétrahydropyrannyle, éthoxyéthyle et méthoxyméthyle.
 - 5. Composé suivant la revendication 1, dans lequel le groupe protecteur de l'atome de soufre est choisi entre les groupes

50

45

6. Composé de formule :

15

20

25

30

35

40

45

50

55

R S M N X

et ses sels hydrosolubles, formule dans laquelle :

M représente un radionucléide qui est chélaté ;

chaque substituant X représente indépendamment H2 ou O;

chaque substituant R représente indépendamment un substituant choisi entre l'hydrogène ; une chaîne latérale non alkylique d'un amino-acide autre que la cystéine, un groupe alkyle ; un groupe dialkyle géminé ; et un groupe -(CH₂)_n-Z ;

Z représente un groupe -COOH, un groupe de conjugaison ou un composé d'orientation vers une cible ;

n est un nombre entier de 1 à environ 4 ; et

R' représente H_2 ; un groupe $-(CH_2)_n-Z$; ou un groupe alkyle portant un ou plusieurs groupes polaires comme substituants ; et

ledit composé comprenant au moins un substituant -(CH₂)_n-Z dans lequel Z représente un groupe de conjugaison qui est réactif avec un composé d'orientation vers une cible ou bien représente un composé d'orientation vers une cible, n étant égal à 3 ou 4 lorsque R' représente un groupe -(CH₂)_n-Z et Z représente un composé d'orientation vers une cible ou un groupe de conjugaison qui est réactif avec un composé d'orientation vers une cible.

- Composé suivant la revendication 6, dans lequel M représente un radionucléide choisi dans le groupe consistant en ^{99m}Tc, ¹⁸⁶Re, ¹⁸⁸Re, ⁶⁷Cu, ⁶⁴Cu, ²⁰³Pb, ²¹²Pb, ²¹²Bi, et ¹⁰⁹Pd.
- 8. Composé suivant la revendication 1 ou 6, dans lequel au moins un substituant X représente O.
- 9. Composé suivant la revendication 8, dans lequel les trois substituants X représentent tous O.
- 10. Composé suivant la revendication 1 ou 6, dans lequel le groupe de conjugaison est un groupe choisi entre des esters actifs, des esters du type imidate, des amines primaires ou secondaires, des hydrazines, des isothiocyanates, des maléimides et d'autres groupes accepteurs de réaction de Michael.

- 11. Composé suivant la revendication 10, dans lequel le groupe de conjugaison est un groupe ester de 2,3,5,6-tétrafluorophényle.
- 12. Composé suivant la revendication 1 ou 6, dans lequel le composé d'orientation vers une cible est choisi dans le groupe consistant en protéines, glycoprotéines, glucides et leurs fragments.
 - 13. Composé suivant la revendication 12, dans lequel le composé d'orientation vers une cible est un anticorps monoclonal ou un de ses fragments.
- 16. Composé suivant la revendication 13, dans lequel l'anticorps monoclonal ou son fragment est spécifique de cellules cancéreuses.
 - 15. Composé suivant la revendication 1 ou 6, qui comprend au moins un substituant -(CH₂)_n-Z dans lequel Z représente un groupe -COOH.
 - 16. Composé suivant la revendication 1 ou 6, qui comprend un substituant -(CH₂)₃-Z dans lequel Z représente un groupe de conjugaison ou un composé d'orientation vers une cible.
 - 17. Composés représentés par les figures 1A à 11.

15

20

25

30

35

45

50

18. Procédé de marquage d'une glycoprotéine avec un radionucléide, comprenant :

la réaction de ladite glycoprotéine avec un agent de clivage de glycol pour cliver au moins un sucre pour produire un dialdéhyde ou un polyaldéhyde supérieur afin d'obtenir un produit polyaldéhydique ;

la réaction dudit produit polyaldéhydique avec un composé suivant la revendication 1 dans lequel Z représente un groupe amino, hydrazino, ou un sel d'amine pour produire une glycoprotéine à laquelle est conjugué un composé chélatant ; et

la réaction de ladite glycoprotéine à laquelle est conjugué un composé chélatant avec un radionucléide dans des conditions suffisantes pour former un conjugué glycoprotéine-chélate de radionucléide.

19. Procédé de marquage d'une glycoprotéine avec un radionucléide, comprenant :

la réaction de ladite glycoprotéine avec un agent de clivage de glycol pour cliver au moins un sucre afin de produire un dialdéhyde ou un polyaldéhyde supérieur de manière à obtenir un produit polyaldéhydique; et

la réaction dudit produit polyaldéhydique avec un composé suivant la revendication 6, dans lequel Z représente un groupe amino, hydrazino, ou un sel d'amine pour produire une glycoprotéine conjuguée avec un chélate de radionucléide.

- 20. Procédé de marquage d'un polypeptide avec un radionucléide, comprenant la réaction du polypeptide avec un composé suivant la revendication 6, dans lequel ledit composé comprend un groupe de conjugaison qui réagit avec le polypeptide, ce qui permet la liaison du composé au polypeptide.
 - 21. Procédé de marquage d'un polypeptide avec un radionucléide, comprenant :

la réaction du polypeptide avec un composé suivant la revendication 1, dans laquelle ledit composé comprend un groupe de conjugaison qui réagit avec le polypeptide, ce qui permet la liaison du composé au polypeptide,

la réaction du composé lié au polypeptide avec un métal consistant en un radionucléide pour former un conjugué chélate-polypeptide.

- 22. Procédé suivant la revendication 18, 19, 20 ou 21, dans lequel la glycoprotéine ou le polypeptide est un anticorps monoclonal ou son fragment.
- 23. Procédé suivant la revendication 22, dans lequel l'anticorps monoclonal ou son fragment est spécifique
 de cellules cancéreuses.
 - 24. Procédé suivant la revendication 22, dans lequel le radionucléide est choisi dans le groupe consistant en ^{99m}Tc, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁰³Pb, ²¹²Pb, ²¹²Bi, ¹⁹⁸Au et ¹⁰⁹Pd.

- 25. Composé suivant la revendication 6, dans lequel Z représente un composé d'orientation vers une cible qui se lie à des cellules cibles et M représente un radionucléide thérapeutiquement efficace, destiné à être utilisé comme substance thérapeutique active.
- 26. Composé suivant la revendication 6, dans lequel Z représente un composé d'orientation vers une cible qui se lie à des cellules cibles et M représente un radionucléide efficace à des fins de diagnostic, destiné à être utilisé comme agent de diagnostic.
- 27. Composé suivant la revendication 25 ou 26, dans lequel les cellules cibles sont des cellules cancéreuses et le composé d'orientation vers une cible est un anticorps monoclonal ou son fragment qui se lie aux cellules cancéreuses.
 - 28. Composé de formule :

15

25

20

30 dans laquelle :

T représente un groupe alkyle, aryle, acyle ou thioacyle ayant 1 à 7 atomes de carbone ; un groupe organothio ayant 1 à 10 atomes de carbone ; ou l'hydrogène ;

chaque substituant X représente indépendamment H2 ou O;

n est le nombre entier 3 ou 4 ;

R représente H ; un groupe alkyle ou dialkyle géminé, dans lequel ledit groupe alkyle contient 1 à 7 atomes de carbone ; ou une chaîne latérale non alkylique d'un amino-acide autre que la cystéine : et

Z représente un groupe amino : un ester carboxylique ; un ester du type imidate ; un groupe de formule

40

50

55

35

dans laquelle W₁ représente un polypeptide comprenant au moins deux amino-acides ; un groupe de formule

ou un groupe de formule -N = W₃

dans lesquelles W_2 et W_3 représentent indépendamment un glucide et l'atome d'azote est lié à un atome de carbone de W_3 .

29. Composé de formule

5

10

dans laquelle :

M représente un ion de radionucléide qui est chélaté, auquel peuvent être liés un ou deux atomes d'oxygène;

R représente l'hydrogène ; un groupe alkyle ou dialkyle géminé, dans lequel lesdits groupes alkyle contiennent 1 à 7 atomes de carbone ; ou une chaîne latérale non alkylique d'un amino-acide autre que la cystéine ;

chaque substituant X représente indépendamment O ou H2;

n est le nombre entier 3 ou 4;

Z représente un groupe amino ; un ester carboxylique ; un ester du type imidate ; un groupe de formule

25

20

30

dans laquelle W_1 représente un polypeptide comprenant au moins deux amino-acides ; un groupe de formule

35

40 01

ou un groupe de formule $-N \simeq W_3$ dans lesquelles W_2 et W_3 représentent indépendamment un glucide, et l'atome d'azote est lié à un atome de carbone de W_3 .

- 30. Composé suivant la revendication 29, dans lequel M représente un ion de radionucléide choisi entre ^{99m}Tc, ¹⁸⁶Re et ¹⁸⁸Re, chacun possédant un atome d'oxygène lié.
 - 31. Composé répondant à la formule suivant l'une quelconque des revendications 1 à 5, dans lequel R' représente un groupe -(CH₂)_n-Z.
- 32. Composé répondant à la formule suivant l'une quelconque des revendications 1 à 5, qui comprend au moins deux substituants -(CH₂)_n-Z dans lesquels un groupe Z représente un groupe -COOH et un autre groupe Z représente un composé d'orientation vers une cible ou un groupe de conjugaison qui est réactif avec un composé d'orientation vers une cible, et n est un nombre entier de 1 à 4, sans limitation.

55

33. Composé répondant à la formule suivant la revendication 32, dans lequel R' représente un groupe -(CH₂)_n-Z.

COMPOUND	<u>PG</u>	<u>R</u>	<u>R'</u>	<u>R"</u>
Α	THP	Н	Н	COOTFP
В	EOE	Н	Н	COOTFP
С	EOE	Н	H,	CH2-CH2-COOTFP
D	i-PrCO	CH ₂ -COOH	Н	CH2-CH2-COOTFP
E	i-PrCO	CH ₂ -COOH	CH2-COOH	CH2-CH2-COOTFP
F	i-PrCO	CH ₂ -CH ₂ -COOH	CH2-COOH	CH2-CH2-COOTFP
G	Acm	Н	Н	COOH
Н	Acm	CH2-CH2-CH2-COOTFP	Н	COOH
1	MOM ∝-CH ₂ COO⊦	H	Н	CH2-CH2-COOTFP

Listed below are links to the patents you ordered. You will need the Adobe Acrobat PDF viewer to look at the patents. These patents will be available to you for the next 36 hours and you may return to this screen from Customer Access at any time.

Use the **Update List** Button to refresh the status of your patent order and show if processing on the patent images is complete. Some patents may take several minutes to become available for viewing.

If necessary, please print this page and forward to your accounting department as a reference for your monthly bill.

Please do not pay by order number

Company name is not shown on this form for Internet security reasons.

This order will appear on your monthly invoice or statement (depending on your billing type).

Update List

Customer Number: 4500

Optipat Order Number is: 2923734

Date: 01-08-01 Time: 15:59:48

Docket: MRD-69

Delete Order

Patent Number	Patent Title	<u>Pages</u>	<u>View</u>	<u>View</u>	<u>Price</u>
EP284071A2 A2	Metal- radionuclide- labeled proteins and glycoproteins for diagnosis and therapy	20	First Rage	Full Patent	4.95
EP284071A2 A3	Metal- radionuclide- labeled proteins and glycoproteins for diagnosis and therapy	2	First [] Page <u>:</u>	Full Patent	Included in the A2 order
EP284071B1	Metal-	32	Little A.	टाम इन्हें।	4.95

radionuclidelabeled proteins and glycoproteins for diagnosis and therapy

Total: 9.90

Please contact tech_support@micropat.com if you have any problems.

Learn more about MicroPatent