R University ETI Exam 2021-03-04

Exam ID 00001

Nar	ne:														_	
<u>Stu</u>	dent	t ID:													_	
Sig	natu	ıre:													_	
1.	(a)		(b)		(c)	X	(d)		(e)		(f)	X	(g)	X	(h)	
	(i)	X	[]													
2.	(a)	X	(b)	X	(c)	X	(d)	X	(e)	X	(f)	X	(g)	X	(h)	X
	(i)	X	[X]													
3.	(a)	X	(b)		(c)		(d)		(e)							
4.	(a)	X	(b)		(c)	X	(d)	X	(e)							
5.	(a)	X	(b)		(c)		(d)	X	(e)	X						
6.	(a)		(b)		(c)		(d)		(e)	X	(f)		(g)		(h)	
	(i)		[X]													
7.	(a)	X	(b)	X	(c)	X	(d)	X	(e)	X	(f)		(g)	X	(h)	
	(i)		[]													
8.	(a)		(b)	X	(c)		(d)		(e)	X	(f)	X	(g)	X	(h)	
	(i)		[]													
9.	(a)		(b)		(c)		(d)		(e)		(f)		(g)		(h)	X
	(i)		[]													

10. (a) **X** (b) (c) **X** (d) **X** (e) (f) **X** (g) **X** (h) (i) []

1. Problem

Welche der folgenden Aussagen sind richtig?

- a) Die Formel $(q \to m) \to (z \lor \neg q \lor m)$ ist unerfüllbar.
- b) Die Formel $(q \land m) \lor (\neg m \lor \neg q)$ ist unerfüllbar.
- c) Die Formel $(\neg m \land q) \rightarrow True$ ist eine Tautologie.
- d) Die Formel \neg False $\land \neg ((\neg m \land \neg q) \lor \neg z)$ ist unerfüllbar.
- e) Die Formel $(q \land \neg m) \lor (\neg q \land \neg m) \lor (\neg q \land m) \lor (m \land q)$ ist unerfüllbar.
- f) Die Formel $m \land z \land (False \land (True \lor q)) \land q$ ist unerfüllbar.
- g) Die Formel $(m \lor q) \land (\neg q \land \neg m)$ ist unerfüllbar.
- h) Die Formel $((x \to s) \land \neg s) \to \neg x$ ist unerfüllbar.
- i) Die Formel $(q \land m) \rightarrow (m \land z)$ ist erfüllbar aber keine Tautologie.
- j) Die Formel ((m \to x) \land (q \to (m \land z))) \to ((z \to \neg s) \to (q \to \neg s)) ist unerfüllbar.

Solution

- a) Falsch. Die Formel ist eine Tautologie.
- b) Falsch. Die Formel ist eine Tautologie.
- c) Wahr.
- d) Falsch. Die Formel ist erfüllbar aber keine Tautologie.
- e) Falsch. Die Formel ist eine Tautologie.
- f) Wahr.
- g) Wahr.
- h) Falsch. Die Formel ist eine Tautologie.
- i) Wahr.
- i) Falsch. Die Formel ist eine Tautologie.

2. Problem

Betrachten Sie die folgende Belegung v der Atome p, q und r. Welche der folgenden Formeln evaluieren unter dieser Belegung zu T?

$$v(a) = \begin{cases} T & a = p \\ F & a = q \\ F & a = r \end{cases}$$

- a) $r \lor p \lor q \lor (p \rightarrow r)$
- b) $q \vee (p \wedge r) \vee \neg q$
- c) $(r \wedge p) \rightarrow (p \vee r)$
- d) $r \lor (p \land (q \rightarrow p))$
- e) $(q \wedge p) \vee (p \vee (q \wedge r))$
- f) $\neg (q \lor r) \lor (r \land p)$
- g) $\neg (p \rightarrow q \land p)$
- h) $p \rightarrow (q \rightarrow p)$
- i) $(r \rightarrow p \land r) \lor q$
- j) $r \wedge p \rightarrow q \wedge r$

Solution

a) Wahr

- b) Wahr
- c) Wahr
- d) Wahr
- e) Wahr
- f) Wahr
- g) Wahr
- h) Wahr
- i) Wahr
- j) Wahr

3. Problem

Sei $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ eine Boolsche Algebra und sei $F = x_2 + (\sim(x_1) \cdot x_2)$ ein Boolscher Ausdruck. Welche der folgenden Aussagen ist richtig?

a) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

<i>S</i> ₁	S ₂	$f(s_1, s_2)$
0	0	0
0	1	1
1	0	0
1	1	1

b) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

s_1	s ₂	$f(s_1, s_2)$
0	0	0
0	1	0
1	0	0
1	1	1

c) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

s_1	s_2	$f(s_1, s_2)$
0	0	1
0	1	1
1	0	1
1	1	0

d) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

,			
	s_1	s ₂	$f(s_1, s_2)$
	0	0	1
	0	1	0
	1	0	0
	1	1	0

e) Keine der Aussagen ist stimmig.

Solution

- a) Wahr
- b) Falsch
- c) Falsch
- d) Falsch
- e) Falsch

4. Problem

Welche der folgenden Aussagen sind immer richtig, wenn $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ eine Boolesche Algebra ist?

a) Für alle $a, b \in B$ gilt $a + b = a + \sim (a)b$.

- b) Für alle $a, b \in B$ gilt a = b(a + b).
- c) $\langle B; \cdot, 1 \rangle$ ist ein kommutativer Monoid.
- d) Für alle $a \in B$ gilt $a \cdot \sim (a) = 0$.
- e) $\langle B; +, 1 \rangle$ ist ein kommutativer Monoid.

Solution

- a) Wahr. Die Gleichung bezeichnet eines der Absorptionsgesetze.
- b) Falsch.
- c) Wahr. Dies ist eines der Grundgesetze der Boolschen Algebra.
- d) Wahr. Dies ist eines der Grundgesetze der Boolschen Algebra.
- e) Falsch.

5. Problem

Betrachten Sie folgende Menge von Gleichungen mit der Konstante e, den Funktionen \cdot und inv und den Variablen x, y und z:

$$E = \{ e \cdot x \approx x, x \cdot e \approx x, \text{ inv}(x) \cdot x \approx e, (x \cdot y) \cdot z \approx x \cdot (y \cdot z) \}$$

Vervollständigen Sie den folgenden Beweisbaum. Aus Platzgründen teilen wir diesen in vier Teile auf, die wir mit römischen Ziffern kennzeichnen.

$$\frac{e \cdot x \approx x \in E}{E \vdash inv(x) \cdot x \approx e} \stackrel{(a)}{=} \frac{E \vdash inv(x) \cdot x \approx e}{E \vdash inv(inv(x)) \cdot inv(x) \approx e} \stackrel{(\sigma = 1)}{=} \frac{E \vdash x \approx x}{E \vdash x \approx e \cdot x} \stackrel{(a)}{=} \frac{E \vdash e \cdot x \approx (inv(inv(x)) \cdot inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(b)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))} \stackrel{(c)}{=} \frac{E \vdash x \approx inv(inv(x))}{E \vdash x \approx inv(inv(x))$$

I:

II:

$$\frac{\frac{x \cdot \mathbf{e} \approx x \in E}{E \vdash x \cdot \mathbf{e} \approx x}}{E \vdash \mathsf{inv}(\mathsf{inv}(x)) \cdot \mathbf{e} \approx \mathsf{inv}(\mathsf{inv}(x))} \xrightarrow{(\sigma = \{x \mapsto \mathsf{inv}(\mathsf{inv}(x))\})} (\mathsf{t})} \frac{\mathbb{E} \vdash \mathsf{inv}(\mathsf{inv}(x)) \cdot (\mathsf{inv}(x) \cdot x) \approx \mathsf{inv}(\mathsf{inv}(x))}{\mathsf{t}}$$

III:

$$\frac{E \vdash \mathsf{inv}(\mathsf{inv}(x)) \approx \mathsf{inv}(\mathsf{inv}(x))}{E \vdash \mathsf{inv}(\mathsf{inv}(x)) \cdot (\mathsf{inv}(x) \cdot x)} \stackrel{(\mathsf{r})}{=} \frac{\mathsf{inv}(x) \cdot x \approx \mathsf{e} \in E}{E \vdash \mathsf{inv}(x) \cdot x \approx \mathsf{e}} \stackrel{(\mathsf{a})}{=} (\mathsf{k})$$

- a) $E \vdash (x \cdot y) \cdot z \approx x \cdot (y \cdot z)$ gehört in Lücke 3
- b) $\{inv(x) \mapsto x\}$ gehört in Lücke 1
- c) $\{\operatorname{inv}(\operatorname{inv}(x)) \mapsto x, \operatorname{inv}(x) \mapsto y, x \mapsto z\}$ gehört in Lücke 4
- d) $inv(inv(x)) \cdot (inv(x) \cdot x)$ gehört in Lücke 5
- e) $(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \in E$ gehört in Lücke 2

Solution

$$\frac{e \cdot x \approx x \in E}{E \vdash \text{inv}(x) \cdot x \approx e} \stackrel{\text{(a)}}{=} \frac{\frac{\text{inv}(x) \cdot x \approx e \in E}{E \vdash \text{inv}(\text{inv}(x) \cdot \text{inv}(x) \approx e}}{\frac{E \vdash \text{inv}(\text{inv}(x)) \cdot \text{inv}(x) \approx e}{E \vdash e \approx \text{inv}(\text{inv}(x)) \cdot \text{inv}(x)}} \stackrel{\text{(b)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash e \cdot x \approx (\text{inv}(\text{inv}(x)) \cdot \text{inv}(x)) \cdot x}{E \vdash e \cdot x \approx \text{inv}(\text{inv}(x))}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash e \cdot x \approx \text{inv}(\text{inv}(x))}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx \text{inv}(\text{inv}(x))}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx \text{inv}(\text{inv}(x))}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx \text{inv}(\text{inv}(x))}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx \text{inv}(\text{inv}(x))}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{\frac{E \vdash x \approx x}{E}} \stackrel{\text{(c)}}{=} \frac{E \vdash x \approx x}{E}} \stackrel$$

1:

$$\frac{\frac{(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \in E}{E \vdash (x \cdot y) \cdot z \approx x \cdot (y \cdot z)} \text{ (a)}}{E \vdash (\mathsf{inv}(\mathsf{inv}(x)) \cdot \mathsf{inv}(x)) \cdot x \approx \mathsf{inv}(\mathsf{inv}(x)) \cdot (\mathsf{inv}(x) \cdot x)} \text{ ($\sigma = \{x \mapsto \mathsf{inv}(\mathsf{inv}(x)), y \mapsto \mathsf{inv}(x), z \mapsto x\})}}{E \vdash (\mathsf{inv}(\mathsf{inv}(x)) \cdot \mathsf{inv}(x)) \cdot x \approx \mathsf{inv}(\mathsf{inv}(x))} \text{ (t}$$

II:

$$\frac{\frac{X \cdot \mathsf{e} \approx X \in E}{E \vdash x \cdot \mathsf{e} \approx X} \, (\mathsf{a})}{E \vdash \mathsf{inv}(\mathsf{inv}(x)) \cdot \mathsf{e} \approx \mathsf{inv}(\mathsf{inv}(x))} \, \frac{(\sigma = \{x \mapsto \mathsf{inv}(\mathsf{inv}(x))\})}{(\mathsf{t})} \, \frac{E \vdash \mathsf{inv}(\mathsf{inv}(x)) \cdot (\mathsf{inv}(x) \cdot x) \approx \mathsf{inv}(\mathsf{inv}(x))}{(\mathsf{t})} \, (\mathsf{t})}$$

III:

$$\frac{E \vdash \mathsf{inv}(\mathsf{inv}(x)) \approx \mathsf{inv}(\mathsf{inv}(x))}{E \vdash \mathsf{inv}(\mathsf{inv}(x)) \cdot (\mathsf{inv}(x) \cdot x) \approx \mathsf{inv}(\mathsf{inv}(x)) \cdot e} \overset{\mathsf{(n)}}{(\mathsf{k})} \frac{\mathsf{inv}(x) \cdot x \approx \mathsf{e} \in E}{\mathsf{E} \vdash \mathsf{inv}(\mathsf{inv}(x)) \cdot \mathsf{e}} \overset{\mathsf{(a)}}{\mathsf{(k)}}$$

- a) Wahr
- b) Falsch
- c) Falsch
- d) Wahr
- e) Wahr

6. Problem

Betrachten Sie die formalen Sprachen $L = \{\epsilon, 0, 10, 100, 110\}$, $M = \{1, 11, 101, 111\}$ und $N = \{0, 1\}^*$. Welche der folgenden Aussagen sind richtig?

- a) $(L \cup M) \cap N = \{\epsilon, 1, 10, 100, 110\}$
- b) $L \cap (M \cup N) = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$
- c) $(L \cup M) \cap N = \{0, 1, 10, 11, 100, 101, 110, 111\}$
- d) $L \cup M = \{0, 1, 10, 11, 100, 101, 110, 111\}$
- e) $L \cup M = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$
- f) $(L \cup M) \cap N = \{\epsilon, 0, 10, 11, 100, 101, 110, 111\}$
- g) Keine der Antworten
- h) $L \cap N = \{\epsilon, 0, 1, 10, 11, 100\}$
- i) $(L \cup M) \cap N = \{\epsilon, 1, 11, 101, 111\}$
- j) $(L \cup M) \cap N = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$

Solution

- a) Falsch.
- b) Falsch.
- c) Falsch.
- d) Falsch.

- e) Wahr.
- f) Falsch.
- g) Falsch.
- h) Falsch.
- i) Falsch.
- j) Wahr.

7. Problem

Betrachten Sie die folgende Grammatik $G = (\{A, K\}, \{s, x\}, R, A)$.

Regeln R der Grammatik G:

$$A
ightarrow \epsilon \mid K$$
s
 $K
ightarrow$ s $K \mid A$

Welche der folgenden Aussagen sind im Bezug auf diese Grammatik korrekt?

- a) Die Grammatik erzeugt eine rekursiv aufzählbare Sprache
- b) Die Grammatik erzeugt eine kontextsensitive Sprache
- c) Die Grammatik ist kontextfrei
- d) Die Grammatik erzeugt eine reguläre Sprache
- e) Die Grammatik erzeugt eine beschränkte Sprache
- f) Die Grammatik ist beschränkt
- g) Die Grammatik erzeugt eine kontextfreie Sprache
- h) Die Grammatik ist rechtslinear
- i) Keine der Aussagen ist korrekt
- i) Die Grammatik ist kontextsensitiv

Solution

- a) Wahr
- b) Wahr
- c) Wahr
- d) Wahr
- e) Wahr
- f) Falsch
- g) Wahr
- h) Falsch
- i) Falsch
- j) Falsch

8. Problem

Welche der folgenden Wörter werden von der Grammatik $G = (\{D, P, E\}, \{a, e, c, b\}, R, D)$ erzeugt? (Es sind maximal 5 Ableitungsschritte notwendig.)

Regeln R der Grammatik G:

$$D
ightarrow acPc$$
 $P
ightarrow \epsilon \mid E \mid aP \mid bP \mid Pb$
 $Eb
ightarrow Ea \mid P$

a) $D \Rightarrow^* aacabac \in L(G)$

- b) $D \Rightarrow^* acbaac \in L(G)$
- c) $D \Rightarrow^* \text{eacbbbc} \in L(G)$
- d) $D \Rightarrow^* \mathsf{cbc} \in L(G)$
- e) $D \Rightarrow^* acabac \in L(G)$
- f) $D \Rightarrow^* acabc \in L(G)$
- g) $D \Rightarrow^* acc \in L(G)$
- h) $D \Rightarrow^* \epsilon \in L(G)$
- i) $D \Rightarrow^* \operatorname{acb}Rbc \in L(G)$
- j) D ⇒* aca ∈ L(G)

Solution

- a) Falsch
- b) Wahr
- c) Falsch
- d) Falsch
- e) Wahr
- f) Wahr
- g) Wahr
- h) Falsch
- ii) i aisci
- i) Falsch
- j) Falsch

9. Problem

Betrachten Sie die Turingmaschine $M = (\{s, t, r, q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{\vdash, a, b, c, \sqcup\}, \vdash, \sqcup, \delta, s, t, r)$ mit δ

	⊢	а	b	С	Ц
s	(s, ⊢, R)	(q_0,\vdash,R)	(r, \sqcup, R)	1	2
q_0		(q_0, a, R)	(q_0, \mathbf{b}, R)	(q_0, \overline{c}, R)	(q_1, \sqcup, L)
q_1	(<i>r</i> , ⊢, <i>R</i>)	(r,\sqcup,R)	3	(r,\sqcup,R)	•
q_2	4	(q_2, a, L)	(q_2, b, L)	(q_2, c, L)	•
q_3	•	(r, \sqcup, R)	(r, \sqcup, R)	(r, \sqcup, R)	5

Beantworten Sie die folgenden Fragen bezüglich den Lücken in der Zustandstabelle, sodass $L(M) = \{a^n cb^n \mid n \geq 0\}$. Beachten Sie, dass · einen beliebigen Übergang anzeigt (diese Situationen werden nicht erreicht). Die Übergänge für die Zustände t und r sind ebenfalls irrelevant, da diese Zustände nie mehr verlassen werden können.

- a) (t, \sqcup, R) gehört in Lücke 2
- b) (q_2, \sqcup, R) gehört in Lücke $\boxed{3}$
- c) (r, \sqcup, R) gehört in Lücke 5
- d) (q_0, \sqcup, R) gehört in Lücke $\boxed{3}$
- e) (q_3, \sqcup, L) gehört in Lücke 2
- f) (t, \sqcup, R) gehört in Lücke 1
- g) (q_0, \sqcup, R) gehört in Lücke 4
- h) (t, \sqcup, R) gehört in Lücke 5

- i) (q_3, \sqcup, L) gehört in Lücke 1
- j) (s, \vdash, L) gehört in Lücke 4

Solution

	F	а	b	С	Ц
S	(<i>s</i> , ⊢, <i>R</i>)	(q_0,\vdash,R)	(r,\sqcup,R)	(q_3,\sqcup,R)	(r,\sqcup,R)
q_0		(q_0, a, R)	(q_0, b, R)	(q_0, c, R)	(q_1, \sqcup, L)
q_1	(<i>r</i> , ⊢, <i>R</i>)	(r,\sqcup,R)	(q_2,\sqcup,L)	(r, \sqcup, R)	
q_2	(<i>s</i> , ⊢, <i>R</i>)	(q_2, a, L)	(q_2, b, L)	(q_2, c, L)	
q ₃		(r,\sqcup,R)	(r, \sqcup, R)	(r, \sqcup, R)	(t,\sqcup,R)

- a) Falsch
- b) Falsch
- c) Falsch
- d) Falsch
- e) Falsch
- f) Falsch
- g) Falsch
- h) Wahr
- i) Falsch
- j) Falsch

10. Problem

Zeigen Sie, dass das while-Programm

while
$$i < n$$
 do $i := i + 1; x := x * i$ end

in Bezug auf die Vorbedingung $n \ge 0 \land i = 0 \land x = 1$ und die Nachbedingung x = n! korrekt ist, indem sie den folgenden Inferenzbaum im Hoare-Kalkül vervollständigen. Hier bezeichnet, für positive ganze Zahlen n, der Ausdruck n! die Faktorielle $n * (n-1) * \cdots * 1$.

a) x := x * i gehört in Lücke G

³ mit $x = i! \land i < n \models \boxed{J}$

b)

$$x = i! \wedge i \leq n$$

gehört in Lücke I

- c) $x = i! \land i \le n \land \neg (i < n)$ gehört in Lücke B
- d) $x * (i + 1) = (i + 1)! \wedge i + 1 \leq n$ gehört in Lücke \square
- e) $x * (i + 1) = (i + 1)! \land i + 1 \le n$ gehört in Lücke
- f) $x * i = i! \land i \le n$ gehört in Lücke F
- g) $n \ge 0 \land i = 0 \land x = 1$ gehört in Lücke A
- h) $x = i! \land i \le n$ gehört in Lücke C
- i) $n \ge 0 \land i = 0 \land x = 1$ gehört in Lücke H
- j) $x * i = i! \land i \le n$ gehört in Lücke J

Solution

Die Lösung sieht wiefolgt aus:

- a) Wahr
- b) Falsch
- c) Wahr
- d) Wahr
- e) Falsch
- f) Wahr
- g) Wahr
- h) Falsch
- i) Falsch
- j) Falsch