

Bergische Universität Wuppertal

FORTGESCHRITTENEN PRAKTIKUM

Strukturanalyse mit Röntgenstrahlung

Verfasser: Tutoren:

Henrik JÜRGENS Max Mustermann

Frederik Strothmann Max Mustermann

Abstract:

In diesem Versuch wird mittels Röntgenspektroskopie die Struktur verschiedener Materialien untersucht

Dies	ist	ein
Platz-	halter	für
die	bewertungs	Tabelle

Inhaltsverzeichnis

1	Einleitung	2
2	Messung des Emissionsspektrums 2.1 Versuchsdurchführung	
3	2.2 Verwendete Formeln	3
4	Fazit	3

1 Einleitung

Festkörper bilden eine der Grundlagen der heutigen Technologie, vor allem der Computer, die aus der heutigen Zeit nicht mehr weg zu denken sind. Deshalb ist es wichtig Eigenschaften von Festkörpern und Methoden zur Untersuchung dieser zu kennen. In diesem Versuch werden mittels Röntgenstrahlen verschieden Eingenschaften kristalliner Festkörper untersucht. Es werden zerstörungsfreie Methoden zur Untersuchung verwendet. Röntgenstrahlung sind elektromagnetische Wellen mit einer Wellenlänge von 1 pm bis 250 pm.

2 Messung des Emissionsspektrums

Im ersten Versuchsteil wird das Röntgenspektrum der Kupferanode mit einem Silicium(111)-Einkristall untersucht, für die Untersuchung werden drei verschieden Beschleunigungsspannungen und ein Ni-Filter verwendet. Untersucht werden die Zählraten in Abhängigkeit des Winkels, sowie die Lage aller Ordnungen der $K_{\alpha_{1,2}}$ - und K_{β} -Linien von Kupfer und deren Verhältnisse. Dann wird noch das Signal-Rausch-Verhältnis untersucht und weitere Details der Spektren besprochen. Im Anschluss soll noch die Netzebenabstände anderer Einkristalle untersucht werden. Untersucht werden Si(331)- und Ge(111)-Einkristalle. Die bestimmten Netzebenabstände werden mit Literaturwerten abgeglichen.

2.1 Versuchsdurchführung

Nach dem Braggschen Verfahren soll ein SI(111)-Einkristall untersucht werden. Genauer werden die Röntgenspektren für mindestens drei verschiedene Beschleunigungsspannungen aufgenommen. Zusätzlich wird ein Spektrum mit eingesetztem Ni-Filter bei einer hohen Röhrenspannung aufgenommen. Bei jeder Messung wird die Intensität als Funktion des Winkels bestimmt und die Lage aller Ordnungen der Braggreflexe der $K_{\alpha_{1,2}}$ - und K_{β} -Linien von Kupfer und deren Intensitätsverhältnisse zueinander. In der Messung des Emissionsspektrums mit Ni-Filter wird zusätzlich die Abschwächung der K_{β} -Linie und das "Signal zu Rausch" Verhältnis für die $K_{\alpha_{1,2}}$ - Linien, deren resultierende Energie und Energiebreite bestimmt. Zuletzt sollen die Netzebenenabstände weiterer Einkristalle bestimmt werden, indem der SI(111)-Einkristall durch diese ersetzt wird und die Emissionsspektren aufgenommen werden. Die Resultate werden dann mit Literaturwerten für die Netzebenenabstände verglichen.

2.2 Verwendete Formeln

Um das Emissionsspektrum der Kupferanode nach dem Braggschen Verfahren an einem SI(111)-Einkristall zu bestimmen, muss ein Literaturwert für den Netzebenenabstand vorausgesetzt werden. Der Netzebenenabstand beträgt (...)Å(Referenz auf Quelle).

3 Pulverdiffraktometrie

Nun soll mit der zuvor verwendeten Methode die Zusammensetzung unbekannter Pulverproben bestimmt werden. Aus den bestimmten Diffraktogrammen soll mittels einer Datenbank die Zusammensetzung bestimmt, so wie die Netzebenabstände berechnet werden. Graphisch soll auch die Verträglichkeit der gefundenen Kristallstruktur mit dem Diffraktogramm gezeigt werden und die mittlere Kristallgröße ermittelt werden.

4 Fazit