Notes on Galois Theory

BY WENCHAO ZHANG SUSTC

June 10, 2020

Abstract

This note is a rearrangement of the lecture notes for the Galois theory at South University of Science and Technology of China, 2012. This supplementary course is taught by Prof. Jie-Tai Yu. The original scanned version by Camscanner is archived on Nutstore (older account) and Onedrive (SUSTC).

Table of contents

1	Introduction	1
2	Field extension	2
3	Galois Extension	8
4	Solvable Groups	1
5	More on Galois Theory	3
6	Finite Field Extension	3
In	dex	5

1 Introduction

There are four main theorems in the Galois theory.

Theorem 1.1. For any polynomial $f \in k[x]$ with deg(f) = 0, we can uniquely determine Gal(f).

Note. Gal(f) is the symmetric group of roots and it keeps the coefficients of f unchanged.

Theorem 1.2. f(x) = 0 is solvable if and only if Gal(f) is solvable.

Theorem 1.3. The Galois group of the general polynomial equation $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0$ is $Gal(f) = S_n$.

The coefficients a_0, \ldots, a_{n-1} are independent symbols.

Theorem 1.4. S_n $(n \ge 5)$ is unsolvable.

Here is the relations for those theorems between algebra equations and Galois groups.

Figure 1.1. Relations for main theorems

2 Field extension

F, K, E, L, A are always represent fields.

Definition 2.1. (extension) $F \subseteq K \Leftrightarrow K \supseteq F \Leftrightarrow K/F \Leftrightarrow \stackrel{K}{\mid}$.

Remark 2.2. K/F implies that K is a F-vector space.

Definition 2.3. (finite extension) $\dim(K/F) := [K:F]$, if $\dim(K/F)$ is finite, then we call K/F a finite extension.

Example 2.4. $[\mathbb{C}:\mathbb{R}]=2$, and $\{1,\sqrt{-1}\}$ is a \mathbb{R} -basis of \mathbb{C} .

Theorem 2.5. (tower of extensions) If there are two finite extensions, K/E, E/F with [K:E] = m, [E:F] = m respectively, then K/F is also a finite extension such that [K:F] = mn.

Proof. Consider an *E*-basis $\{\alpha_i\}_1^n$ of *K* and a *F*-basis $\{\beta_j\}_1^m$ of *E*, then $\{\alpha_i\beta_j\}_{1,1}^{n,m}$ is a *F*-basis of *K*, whose dimension is mn.

Definition 2.6. (algebraic extension) α is algebraic over F, if there exists $f(x) \in F[x]$ with $def(f) \geqslant 1$ s.t. $f(\alpha) = 0$. α is called an algebraic element over F.

If $\forall \alpha \in K$, s.t. α is always algebraic over F, then K/F is called an **algebraic extension**.

Theorem 2.7. A finite extension is always an algebraic extension.

Proof. Let [K:F] = n, then we have $\forall \alpha \in K$, $\{1 = \alpha^0, \alpha, \alpha^2, \dots, \alpha^n\} \subseteq K$ are linear dependent (since there are n+1 elements). Thus there exist $b_0, b_1, \dots, b_n \in F$ with at least one nonzero element, s.t.

$$b_0 \cdot 1 + b_1 \alpha + \dots + b_n \alpha^n \equiv 0$$

Define $f(x) = b_0 + b_1 x + \dots + b_n x^n \in F[x]$, then $f(\alpha) = 0$. Hence α is algebraic over F.

Remark 2.8. The converse result is not true. There are infinite algebraic extensions, for example, let \mathbb{A} be the algebraic closure of \mathbb{Q} in \mathbb{C} , then $[\mathbb{A}:\mathbb{Q}] = \infty$. However, α is algebraic over F, if and only if $[F[\alpha]:F] < \infty$.

代数扩张本身并不一定是有限扩张, 但可表作有限子扩张的归纳极限。

Definition 2.9. (fractional field) F(u) is the smallest field containing F and u, i.e.

$$F(u) := \left\{ \frac{f(u)}{g(u)} \middle| f(x), g(x) \in F[x], g(u) \neq 0 \right\}.$$

Theorem 2.10. u is algebraic over F if and only if $F(u) = F[u] = \{f(u) | f(x) \in F[x]\}.$

Proof. " \Rightarrow " We only need to proof $\frac{1}{g(u)}(g(u) \neq 0)$ can be written as a polynomial of u. Let $p(x) \in F[x]$ be the minimal polynomial of u in F[x], s.t. p(u) = 0.

Then p(x) is irreducible over F. We claim that for any $f(x) \in F[x]$ with f(u) = 0, we have p(x)|f(x). Actually, f(x) = q(x)p(x) + r(x) with $\deg(r(x)) < \deg(p(x))$, so r(u) = 0 thus r(x) = 0 (because of the minimality of p(x).).

So for $g(u) \neq 0$, $p(x) \nmid g(x)$. By BEZOUT's identity, there exist $a(x), b(x) \in F[x]$ such that a(x)p(x) + b(x)g(x) = 1. Then b(u)g(u) = 1 which implies $\frac{1}{g(u)} = b(u)$.

"\(\infty\)" Because F(u) = F[u] then $1/u \in F[u]$, thus there exists f(u) = 1/u, i.e. u f(u) - 1 = 0. Let $g(x) = x f(x) - 1 \in F[x]$, then g(u) = 0, i.e. u is algebraic over F.

Example 2.11. $\mathbb{R}[i] = \mathbb{R}(i) \Rightarrow 1/i = f(i) = -i$, i.e. $g(x) = -x^2 - 1$ is the characteristic polynomial of i. On the other hand, i is algebraic over \mathbb{R} . For example, consider g(i) = 2i + 1, $\frac{1}{2i+1} = \frac{2i-1}{-5} = \frac{1-2i}{5}$.

This can be obtained by BEZOUT's identity as well: the minimal polynomial of i is $p(x) = x^2 + 1$. Then there exists $a(x)p(x) + b(x)g(x) = a(x)(x^2 + 1) + b(x)(2x + 1) = 1$. We can use the Euclidean algorithm.

$$(x^{2}+1) = (2x+1)\left(\frac{1}{2}x+1\right) - \frac{5}{2}x$$
$$2x+1 = \left(-\frac{5}{2}x\right)\left(-\frac{4}{5}\right) + 1$$
$$-\frac{5}{2}x = 1 \times \left(-\frac{5}{2}x\right)$$

By the penultimate(倒数第二个) identity,

$$1 = (2x+1) + \frac{4}{5} \left(-\frac{5}{2}x \right)$$

$$= (2x+1) + \frac{4}{5} \left[(x^2+1) - (2x+1) \left(\frac{1}{2}x + 1 \right) \right]$$

$$= (2x+1) \left[1 - \frac{4}{5} \left(\frac{1}{2}x + 1 \right) \right] + \frac{4}{5} (x^2+1)$$

$$= (2x+1) \left(\frac{1-2x}{5} \right) + \frac{4}{5} (x^2+1)$$

i.e. $a(x) = \frac{4}{5}$, and $b(x) = \frac{1-2x}{5}$.

Remark 2.12. The monic and irreducible polynomial which vanishes u for an algebraic extension F(u)/F is called the minimal polynomial in F[x] of u, and is denoted by MinPoly $_F(u)$.

Theorem 2.13. Let u be algebraic over F, then $[F(u): F] = \deg(\operatorname{MinPoly}_F(u))$.

Proof. For F(u) = F[u], we want to prove that $\{1, u, \dots, u^{n-1}\}$ is a F-basis of F[u].

1) Suppose

$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$

is the minimal polynomial of u, then p(u) = 0. Thus

$$u^n = -(a_{n-1}u^{n-1} + \cdots + a_0)$$

i.e. any f(u) can be represent by the basis.

2) All the elements inside the basis are linear independent, if not then there exists a smaller degree polynomial vanishes u, which contradicts to the minimality of p(x).

In summary, we have $[F(u): F] = \deg(\text{MinPoly}_F(u))$.

Theorem 2.14. If α , β are algebraic over F, so are $\alpha \pm \beta$, $\alpha\beta$ and α/β ($\beta \neq 0$).

Theorem 2.15. Let K/F be a field extension, and $E := \{\alpha \in K | \alpha \text{ is algebraic over } F\}$. Then K/E/F and E/F is algebraic.

Such E is called algebraic closure of F in K.

Theorem 2.16. (tower of algebraic extensions) If K/E, E/F are algebraic extensions, then K/F is algebraic as well.

Proof. $\forall a \in K$, let $\operatorname{MinPoly}_E(\alpha) = x^n + b_{n-1}x^{n-1} + \dots + b_1x + b_0$, thus $F(b_0, \dots, b_{n-1}, a) / F(b_0, \dots, b_{n-1}, a) / F(b_0, \dots, b_{n-1}, a) / F$ is algebraic and finite. Thus by Theorem tower of finite extensions, $F(b_0, \dots, b_{n-1}, a) / F$ is finite, hence algebraic.

Definition 2.17. (composition) Suppose E, F contained in some larger field, the smallest field containing F and E is called composition field, which denoted by FE = EF = F(E) = E(F).

Definition 2.18. (lifting) If we have K/F and E/F, then we called KE/E a lifting of K/F, and KE/K a lifting of E/F.

Theorem 2.19. If K/F is algebraic, then the lifting KE/E is also algebraic.

Proof. We consider an arbitrary elements α in K, then α is algebraic over F. Since E/F, we have α is also algebraic over E (coefficients are in F must be in E). By Theorem 2.14, for any $\beta \in E$, we have $\alpha\beta, \alpha \pm \beta, \alpha/\beta$ (for $\beta \neq 0$) is algebraic over E. Hence, we have all elements of KE is algebraic over E, i.e. KE/E is algebraic.

Theorem 2.20. If K/F is finite, then the lifting KE/E is also finite.

Proof. Assume [K:F]=n, such that $K=F(\alpha_1,...,\alpha_n)$, thus $KE=EF(\alpha_1,...,\alpha_n)=E(\alpha_1,...,\alpha_n)$. Consider two towers of finite extensions:

$$F(\alpha_{1}, \dots, \alpha_{n}) \qquad E(\alpha_{1}, \dots, \alpha_{n})$$

$$| \qquad | \qquad |$$

$$F(\alpha_{1}, \dots, \alpha_{n-1}), \qquad E(\alpha_{1}, \dots, \alpha_{n-1})$$

$$| \qquad | \qquad |$$

$$F(\alpha_{1}) \qquad E(\alpha_{1})$$

$$| \qquad | \qquad |$$

$$F \qquad E$$

Since $\deg(\text{MiniPoly}_F(\alpha_i)) \geqslant \deg(\text{MiniPoly}_E(\alpha_i))$, thus by induction $[KE: E] \leqslant [K: F] = n$.

Definition 2.21. (Composition of field extensions) KE/F is the composition of K/F and E/F.

Theorem 2.22.

- 1. If K/F, E/F are finite, then KE/F is finite.
- 2. If K/F, E/F are algebraic, then KE/F is algebraic.

Proof. K/F is finite(resp. algebraic) $\Rightarrow KE/E$ is finite (resp. algebraic) because of lifting. E/F is finite, hence by the tower properties, KE/F is finite (resp. algebraic).

Definition 2.23. (embedding) An embedding $F \xrightarrow{\varphi} L$ is a field injective homomorphism from F into L.

$$F \xrightarrow{\sigma} \sigma(F) \xrightarrow{\mathrm{id}} L.$$

Definition 2.24. (τ acts on function) Let $g(\alpha) \in F[\alpha]$ and $F[\alpha] \xrightarrow{\tau} L$. Then

$$\tau(g)(x) = \tau(b_n)x^n + \dots + \tau(b_0) \in \tau(F)[x].$$

g(x) is irreducible over $F \iff \tau(g)(x)$ is irreducible over $\tau(F)$.

 α is a root of $g(x) \iff \beta := \tau(\alpha)$ is a root of $\tau(g)(x)$.

Definition 2.25. (restriction of embedding) Let K/F be a field extension, $K \stackrel{\tau}{\hookrightarrow} L$ is an embedding, then we call $\tau|_F = \sigma$ the restriction of embedding from F into L. i.e. $\forall a \in F$, $\tau(a) = \sigma(a)$.

On the contrary, τ is an extension embedding of σ on K.

Note. There is a unique restriction for fixed embedding, while there are several extension for a certain embedding.

Theorem 2.26. The number of extension τ over σ for the field extension $F(\alpha)/F$ equals to the number of distinct roots of $\sigma(p)(x)$ in L, where p(x) is the minimal polynomial of α over F. In particular, this number is $\leq [F(\alpha): F]$.

Proof. Let β be a root of $\sigma(g)(x)$ in L,

$$\forall q(\alpha) = b_n \alpha^n + \dots + b_1 \alpha + b_0, \ b_i \in F \text{ are not all zero}$$

we may define $\tau(g(\alpha)) = \sigma(g)(\beta) = \sigma(b_n)\beta^n + \cdots + \sigma(b_0) \in L$. We prove that τ is a homomorphism and extension, since $\tau(g(\alpha) + h(\alpha)) = \tau(g(\alpha)) + \tau(h(\alpha))$, $\tau(g(\alpha)h(\alpha)) = \tau(g(\alpha))\tau(h(\alpha))$ and $\tau|_F = \sigma$, $\tau(\alpha) = \sigma(\alpha)$.

Then
$$F[\alpha] \cong F[X]/\langle p(x)\rangle \cong \frac{\sigma(F)[X]}{\langle \sigma(p)(x)\rangle} \cong \sigma(F)[\beta].$$

Definition 2.27. (separable element) An algebraic element α over F is called separable over F iff $\operatorname{MinPoly}_F(\alpha)$ has no multiple roots in any extension field of F.

Note 2.28. For separable element α , $[\tau:\sigma] = [F(\alpha):F] = \deg(\text{MinPoly}_F(\alpha))$.

If F is characteristic 0, then any algebraic element α is naturally separable.

Theorem 2.29. Let F be a field $f(x) \in F[x]$ (deg $f \ge 1$) has no multiple roots in any extension field of F iff gcd(f(x), f'(x)) = 1.

Proof. (sketch) Consider
$$f(x) = (x-a)^m g(x)$$
.

Corollary 2.30. If char(F) = 0, $p(x) \in F[x]$ is irreducible over F, then p(x) has no multiple roots.

Proof. Let $\deg(p(x)) = n$, then $\deg(p'(x)) = n - 1$, since $p'(x) \not\equiv 0$, hence $\gcd(p(x), p'(x)) = 1$. By Theorem 2.29, there is no multiple roots.

Theorem 2.31. Let F be a finite field, then every algebraic elements α over F is separable.

Proof. Let $|K: \mathbb{F}_q| = n$, choose $\{u_1, u_2, \dots, u_n\}$ as an \mathbb{F}_q basis of K. Then any element of K can be written as

$$a = b_1 u_1 + \cdots + b_n u_n, b_i \in \mathbb{F}_a$$

For each b_i , we have q choices, then we have q^n distinct elements.

Corollary 2.32. Let F be a finite field, char(F) = p, then $F = \mathbb{F}_{p^m}$ $(m \ge 1)$.

Consider $\mathbb{F}_{p^m}(\alpha)/\mathbb{F}_{p^m}$, and deg(MinPoly $\mathbb{F}_q(\alpha)$) = n, then $\mathbb{F}_{p^{mn}}^*$ is a group with $p^{mn}-1$ elements. We then have $\alpha^{p^{mn}-1}=1 \Longrightarrow \alpha^{p^{mn}}-\alpha=0$ (no multiple roots.)

Theorem 2.33. (separable extension) Let K/F be finite. K/F is called separable if [K:F] equals the number of distinct τ .

Proposition 2.34. K/F is separable $\iff \forall \alpha \in K$, α is separable over F.

Proof. " \Leftarrow " Consider algebraic extension $K = F(\alpha_1, \alpha_1, \dots, \alpha_n) / F(\alpha_1, \dots, \alpha_{n-1}) / \dots / F$ and the extension of embedding $\tau / \sigma_{n-1} / \dots / \sigma$.

"\(\Rightarrow\)" Suppose on the contrary K/F is separable but $\exists \alpha \in K$ is in separable over F. Consider the extension $\bar{\sigma}: F(\alpha) \to L$ of embedding $\sigma: F \to L$. Then the distinct τ over $\bar{\sigma}$ is $\leq [K: F(\alpha)]$ and distinct $\bar{\sigma}$ over σ is $<[F(\alpha): F]$. Thus the distinct τ over σ is $<[K: F(\alpha)][F(\alpha): F] = [K: F]$.

Note 2.35. The infinite extension of \mathbb{F}_p is an example of non-separable extension. In fact, consider $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z} = \{0,1\}$, $F = \mathbb{F}_2(u^2)$ and $K = \mathbb{F}_2(u)$. Then $\operatorname{Minpoly}_F(u) = (x-u)^2 = x^2 - u^2$. But there is only 1 embedding (identity) over F.

Definition 2.36. (primitive element) Suppose K = F(u), then u is called a primitive element of K over F.

Lemma 2.37. Suppose K/\mathbb{F}_q is finite, then $\exists \alpha \in K$ such that $K = \mathbb{F}_q(\alpha)$.

Proof. $[K: \mathbb{F}_q] = n$, then $K = \mathbb{F}_{q^n}$, hence $K - \{0\}$ is a cyclic group,

$$K - \{0\} = \{1, \alpha, \alpha^2, \dots, \alpha^{q^n - 2}\},\$$

Thus $K = \mathbb{F}_q(\alpha)$.

Theorem 2.38. Let K/F be finite separable extension, then $\exists \alpha \in K$, such that $K = F(\alpha)$.

Proof. We only prove F is infinite case. WLOG, we may assume $K = F(\beta, \gamma)$. Since $K = F(\alpha_1, ..., \alpha_r) = F(\alpha_3, ..., \alpha_r)(\alpha_1, \alpha_2) = E(\alpha_1, \alpha_2)$.

Figure 2.1. extension of fields and embeddings

Suppose [K:F] = n, $\#\sigma = n$ and $\#\bar{\sigma} \leq [F(\alpha):F]$. On the other hand,

$$[F(\beta,\gamma)\!:\!F(\alpha)][F(\alpha)\!:\!F] = [K\!:\!F] = n$$

Since $[F(\beta, \gamma): F(\alpha)] \geqslant \#\sigma/\bar{\sigma}$, $[F(\alpha): F] \leqslant \#\bar{\sigma}$. Hence $[F(\alpha): F] = \#\bar{\sigma}$.

So we define

$$f(x) = \prod_{1 \leqslant i \leqslant j \leqslant n} \left[\sigma_i(\beta + x\gamma) - \sigma_j(\beta + x\gamma) \right] = \prod_{1 \leqslant i \leqslant j \leqslant n} \left[\left(\sigma_i(\beta) - \sigma_j(\beta) \right) + \left(\sigma_i(\gamma) - \sigma_j(\gamma) \right) x \right]$$

Note that $\deg(f) \leq \binom{n}{2}$, $f \in A[X]$. For F is infinite, $\exists c \in F$, s.t. $f(c) \neq 0$. Then we have

$$\sigma_i(\beta) \neq \sigma_j(\beta), \sigma_i(\gamma) \neq \sigma_j(\gamma)$$

Thus
$$\#\bar{\sigma} = \#\sigma = n$$
, $F(\beta, \gamma) = F(\alpha)$.

Definition 2.39. We call τ is over F, if the following holds (i.e. fixed F)

$$\begin{array}{c|c}
\sigma & K \\
& \downarrow & \downarrow \\
\text{id } F \longrightarrow A
\end{array}$$

Theorem 2.40. Let K/F be algebraic, σ is an embedding from K into K over F, $\sigma(K) \subseteq K$. Then $\sigma(K) = K$ i.e. $\sigma \in \operatorname{Aut}(K/F)$.

Proof. K/F is algebraic, for each $\alpha \in K$, α is algebraic over F. Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be all distinct roots of MinPoly $_F(\alpha)$. Since σ is injective, σ is a permutation of $\{\alpha_1, \ldots, \alpha_r\}$. So $\exists \alpha_i$, s.t. $\sigma(\alpha_i) = \alpha$. Therefore, σ is surjective.

For non algebraic extension, we won't get an automorphism.

Example 2.41. (counter example) Consider K = F(u), $\varphi(F(u)) = F(u^2) \subsetneq F(u)$, where u is non-algebraic over F.

Definition 2.42. (normal extension) K/F is finite. If $\sigma(K) = K$, i.e. σ induce an automorphism of K. Then K/F is called a normal extension.

Example 2.43. (counter example) Consider the extension $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, and the embedding to \mathbb{C} , i.e. $\sigma: \mathbb{Q}(\sqrt[3]{2}) \to \mathbb{C}$ are extension of id. Then $\sigma_1 = \operatorname{Id}$, $\sigma_2: \sqrt[3]{2} \to \sqrt[3]{2}\omega$, $\sigma_3: \sqrt[3]{2} \to \sqrt[3]{2}\omega^2$. $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal.

Definition 2.44. (split field) $K = F(\alpha_1, ..., \alpha_n)$ is called split field of f(x) over F for α_i are all roots of f(x), and denoted by $K = \operatorname{Split}_F(f)$.

Theorem 2.45. K/F is $normal \iff K = \operatorname{Split}_F(f)$ for some $f(x) \in F[x]$.

Proof. " \Leftarrow " Suppose K is split field $K = F(\alpha_1, \dots, \alpha_n)$. $f(x) = (x - \alpha_1) \cdots (x - \alpha_n) \in F[x]$. We only need to prove $\sigma(K) \subseteq K$ and $\sigma(\alpha_i) = \alpha_i \in K$.

" \Longrightarrow " $K = F(\alpha_1, \dots, \alpha_r)$ is finite. MinPoly $_F(\alpha_i) = p_i(x) \in F[x]$. Let $p(x) = \prod_{i=1}^r p_i(x) \in F[x]$. K is split field of p(x).

3 Galois Extension

Definition 3.1. (embedding set) K/F is finite, define $\mathrm{Emb}(K/F) := \{\sigma | \sigma : K \to A, \mathrm{Id} : F \to A, \sigma / \mathrm{Id} \}$

Note 3.2. We don't need condition $\sigma(K) \subseteq K$ for the definition.

Definition 3.3. (fixed subfield) Let K/F be finite, $\emptyset \neq S \subseteq \text{Emb}(K/F)$. Define

$$K^S = \{ \alpha \in K | \sigma(\alpha) = \alpha \text{ for all } \sigma \in S \} \supseteq F$$

 K^S , $K^{\text{Emb}(K/F)}$ is a field and is a subfield of K.

Theorem 3.4. Let K/F be separable. Then $K^{\text{Emb}(K/F)} = F$.

Proof. We have $K^S \supset F$, suppose on the contrary $K^{\operatorname{Emb}(K/F)} \supseteq F$. Then there exists $\alpha \in K^{\operatorname{Emb}(K/F)}$ but $\alpha \notin F$, such that $\operatorname{MinPoly}_F(\alpha) = p(\alpha)$, $\deg(p(x)) \geqslant 2$. Then we have another root $\beta \neq \alpha$. Hence there is additional embedding $\sigma(\alpha) = \beta$. $\sigma \in \operatorname{Emb}(K/F)$. But by the definition of K^S , $\sigma(\alpha) = \alpha$, which is a contradiction.

Example 3.5. (counter example) $\mathbb{F}_2(u) = K/F = \mathbb{F}_2(u^2)$, then $\mathrm{Emb}(K/F) = \{\mathrm{Id}\}$. However, $K^{\mathrm{Emb}(K/F)} = K^{\{\mathrm{Id}\}} = K \neq F$.

Since all embeddings of a normal extension is an automorphism of K, hence we have

Theorem 3.6. If K/F is normal, then Emb(K/F) = Aut(K/F).

Definition 3.7. (Galois extension) A finite extension K/F is called Galois iff K/F is normal and separable. In this case, we denote the Galois group

$$Gal(K/F) := Aut(K/F).$$

Note 3.8. normal means all embeddings are automorphisms, separable means all embeddings are distinct.

Lemma 3.9. If we have field extensions K/E/F, K/F is normal, then K/E is also normal.

Theorem 3.10. For field extension K/E/F, if K/F is Galois, then K/E is also Galois.

$$K^{\operatorname{Gal}(K/E)} = K^{\operatorname{Emb}(K/E)} = E$$
.

Theorem 3.11. K/F is Galois, then $Gal(K/K^H) = H$.

$$\begin{array}{cccc} K & & & & \{\mathrm{Id}\} \\ & & & & | \\ K^H & & & & H \\ & & & & | \\ F & & & & \mathrm{Gal}(K/F) \end{array}$$

Proof. Suppose $H = \{\sigma_1, ..., \sigma_r\}$. K/F is (finite) separable, $\exists \alpha \in K$ st. $K = F(\alpha) = K^H(\alpha)$. Define $f(x) = (x - \sigma_1 \alpha) \cdots (x - \sigma_r \alpha)$. $\forall \sigma \in H$, we have

$$\sigma(f)(x) = (x - \sigma\sigma_1 x) \cdots (x - \sigma\sigma_r x)$$

 $H = \{\sigma_1, \dots, \sigma_r\} = \{\sigma\sigma_1, \dots, \sigma\sigma_r\}$. It follows $f(x) = \sigma(f)(x)$. So the coefficients of f(x) doesn't change through σ , thus $f(x) \in K^H[x]$.

On the other hand $f(\alpha) = 0$, id $\in H$,

$$\operatorname{MinPoly}_{K^H}(\alpha)|f(x)\Longrightarrow [K:K^H]=[K^H(\alpha):K^H]\leq \#H$$

While $[K^H(\alpha): K^H] = \#$ distinct embedding K over $K^H = \#H$, hence

$$[K:K^H] = |H|$$

Every embedding of K/K^H is automorphism and K/K^H is normal and separable. Then K/K^H is Galois, and $Gal(K/K^H) = H$.

Theorem 3.12. (first fundamental theorem of Galois theory) Let K/F be Galois and $K \geqslant E \geqslant F$, then K/E is Galois and $K^{\operatorname{Gal}(K/E)} = E$.

For any subgroup of $\operatorname{Gal}(K/F)$, $H \subseteq \operatorname{Gal}(K,F)$. K/K^H is Galois and $\operatorname{Gal}(K/K^H) = H$. Define $A = \{E \mid K \geq E \geq F\}$, $B = \{H \mid H \subseteq \operatorname{Gal}(K/F)\}$.

$$\begin{split} \varphi \colon A \to B & \psi \colon B \to A \\ E \mapsto \varphi(E) = \operatorname{Gal}(K/E) & H \mapsto \psi(H) = K^H \end{split}$$

Then φ and ψ are bijective, counter-inclusion: $E_1 \leqslant E_2 \Rightarrow \operatorname{Gal}(K/E_1) \geqslant \operatorname{Gal}(K/E_2)$ and $H_1 \leqslant H_2 \Rightarrow K^{H_1} > K^{H_2}$. Moreover, $\varphi \circ \psi = \operatorname{Id}_B$, $\psi \circ \varphi = \operatorname{Id}_A$.

Note 3.13. φ, ψ are map between field and group, not homomorphism.

Lemma 3.14. Let λ be any embedding from E into A over F, if K/E is Galois then $\lambda(K)/\lambda(E)$ is also Galois and

$$\operatorname{Gal}(\lambda(K), \lambda(E)) = \lambda \operatorname{Gal}(K/E)\lambda^{-1}.$$

Proof. Suppose $\sigma \in \text{Gal}(K/E)$ only $\lambda \sigma \lambda^{-1}(\lambda(K)) = \lambda \sigma(K) = \lambda(K)$. For any $\lambda(\alpha) \in \lambda(E), \alpha \in E$, $\lambda \sigma \lambda^{-1}(\lambda(\alpha)) = \lambda \sigma(\alpha) = \lambda(\alpha)$.

Theorem 3.15. (second fundamental theorem of Galois theory) Let K/F be Galois, $K \ge E \ge F$, then E/F is Galois if and only if $Gal(K/E) \triangleleft Gal(K/F)$.

In particular, if E/F is Galois, $Gal(E/F) = \frac{Gal(K/F)}{Gal(K/E)}$.

Proof. " \Leftarrow " Let λ be any embedding from E into A over F. λ can be extended to embedding of K into A over F. For K/F is Galois, so we have $\lambda(K) = K$. We only need to prove $\lambda(E) = E$.

$$\operatorname{Gal}(K/\lambda(E)) = \operatorname{Gal}(\lambda(K)/\lambda(E)) = \lambda \operatorname{Gal}(K/E)\lambda^{-1} = \operatorname{Gal}(K/E),$$

The last equality holds because that $Gal(K/E) \triangleleft Gal(K/F)$. Hence,

$$\lambda(E) = K^{\operatorname{Gal}(K/\lambda(E))} = K^{\operatorname{Gal}(K/E)} = E.$$

$$\begin{array}{cccc} \lambda \colon & K & \longrightarrow \lambda(K) = K \\ & & & & \\ \downarrow & & & & \\ \lambda \colon & E & \longrightarrow \lambda(E) \\ & & \downarrow & & \\ \mathrm{id} \colon & F & \longrightarrow A \end{array}$$

Figure 3.1. Galois normal subgroup embedding field

" \Rightarrow " E/F is Galois. We define $\varphi(\operatorname{Gal}(K/F)) \to \operatorname{Gal}(E/F)$ by $\sigma \mapsto \varphi(\sigma) = \sigma|_E$. This is a surjective group homomorphism, and

$$\ker \varphi = \{ \sigma \in \operatorname{Aut}(K/F) : \sigma|_e = \operatorname{id}_E \} = \operatorname{Gal}(K/E)$$

Thus we have $\operatorname{Gal}(E/F) = \frac{\operatorname{Gal}(K/F)}{\operatorname{Gal}(K/E)}$.

Example 3.16. Let $f(x) = x^3 - 2 = (x - \sqrt[3]{2})(x - \sqrt[3]{2}\omega)(x - \sqrt[3]{2}\omega^2)$, $\omega = \frac{-1 + \sqrt{3}i}{2}$. Consider $K = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) = \mathrm{split}_{\mathbb{Q}}(x^3 - 2)$. Then we have

Figure 3.2. Field extensions and group extensions

Note that Only $Gal(K/\mathbb{Q}(\sqrt{-3}))$ is a normal subgroup. Hence, only $\mathbb{Q}(\omega)/\mathbb{Q}$ is Galois.

Example 3.17. If K/E, E/F are Galois, then K/F is not always Galois. Here is an example, $K = \mathbb{Q}\left(\sqrt{1+\sqrt{2}}\right)$, $E = \mathbb{Q}(\sqrt{2})$ and $F = \mathbb{Q}$.

4 Solvable Groups

Definition 4.1. $\phi_n = \phi_n^{A/F} := \{\theta \in A | \theta^n = 1_F\} = \langle \varepsilon \rangle := \{\varepsilon^0 = 1, \varepsilon, \varepsilon^2, \dots\}, \ \varepsilon \text{ is called primitive } n \text{-root of } 1.$

Definition 4.2. K/F is Galois, then we call K/F is Abelian if Gal(K/F) is abelian, K/F is cyclic if Gal(K/F) is cyclic.

Theorem 4.3. Let ε be a primitive n-root of 1 in $A \supset F$, then $F(\varepsilon)/F$ is abelian. (Suppose $\operatorname{char}(F) \nmid n$)

Proof. $[\sigma(\varepsilon)]^n = \sigma(\varepsilon^n) = \sigma(1) = 1$, then $\sigma(\varepsilon) = \varepsilon^{n\sigma} \in F(\varepsilon)$. $\sigma(F(\varepsilon)) = F(\varepsilon)$. $(x^n - 1)' = nx^{n-1} \neq 0$, $\gcd(x^n - 1, nx^{n-1}) = 1$. So it is Galois and $\sigma \circ \tau = \tau \circ \sigma$ since

$$\tau \circ \sigma(\varepsilon) = \tau(\sigma(\varepsilon)) = \tau(\varepsilon^{n_{\sigma}}) = (\tau(\varepsilon))^{n_{\sigma}} = \varepsilon^{n_{\tau}n_{\sigma}} = \sigma \circ \tau(\varepsilon)$$

Theorem 4.4. Suppose F contains an n-th primitive root of 1, $\varepsilon \in F \subseteq A$, $\operatorname{char}(F) \nmid n$, and $\alpha^n = b \in F$, then $F(\alpha) / F$ is cyclic.

Proof. $\left(\frac{\sigma(\alpha)}{\alpha}\right)^n = \frac{\sigma(\alpha^n)}{\alpha^n} = \frac{\sigma(b)}{b} = \frac{b}{b} = 1$, and $\frac{\sigma(\alpha)}{\alpha} = \varepsilon_{\sigma} = \varepsilon^{n_{\sigma}} \in F(\alpha)$. Hence $\sigma(\alpha) = \varepsilon_{\sigma_n} \cdot \alpha \in F(\alpha)$. So $F(\alpha)/F$ is normal. Let $f(x) = x^n - b$, $f'(x) = nx^{n-1}$, $\gcd(f, f') = 1$ no multiple roots.

Hence, $F(\alpha)/F$ is separable and then Galois. Suppose $\sigma, \tau \in \operatorname{Gal}(K/F)$, then

$$\tau \sigma(\alpha) = \tau(\sigma(\alpha)) = \tau(\varepsilon_{\sigma}\alpha) = \varepsilon_{\sigma}\tau(\alpha) = \varepsilon_{\sigma}\varepsilon_{\tau}\alpha.$$

We make a group homomorphism that

$$\varphi(\operatorname{Gal}(F(\alpha)/F)) \cong \operatorname{Gal}(F(\alpha)/F) \stackrel{\varphi}{\longrightarrow} \phi_n^{A/F}$$
$$\sigma \mapsto \varphi(\sigma) = \varepsilon_\sigma$$

Since $\varphi(\tau\sigma) = \varepsilon_{\sigma\tau} = \varphi(\tau)\varphi(\sigma)$, $\sigma(\alpha) = \varepsilon_{\sigma}\alpha = \alpha$, it is a homomorphism and injective.

By the theorem, a subgroup of a cyclic group is also cyclic.

Definition 4.5. (solvable by radical) Let $f(x) \in F[x]$, $\deg(f) \geqslant 1$, f(x) is called solvable by radical over F if $\operatorname{Split}_F(f) := L \subseteq K$, K/F is Galois, s.t. $F = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_m = K$ with $F_1 = F(\varepsilon) \operatorname{char}(F) \nmid n$, $F_{i+1} = F_i(\alpha_{i+1})$, $\alpha_{i+1}^{n_i} = b_i \in F_i$, $n_i \mid n$, $\forall i = 1, 2, \ldots, n-1$.

In fact, $\operatorname{Gal}(K/F_1) \supseteq \operatorname{Gal}(K/F_2) \supseteq \cdots \supseteq \operatorname{Gal}(K/F_m) = \{\operatorname{id}\}, \operatorname{Gal}(F_{i+1}/F_i) \cong \frac{\operatorname{Gal}(K/F_i)}{\operatorname{Gal}(K/F_{i+1})}$, by the first and second fundamental theorems, we have that their are all abelian groups.

Example 4.6. $x^4 + bx^2 + c = 0$ is solvable by radical.

Definition 4.7. (solvable group) A group G is called sovable if

$$\exists G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_m = \{e\}$$

such that $G_{i+1} \triangleleft G_i$ with G_i/G_{i+1} is abelian.

Then we have $\operatorname{Gal}_F(f) = \operatorname{Gal}(\operatorname{Split}_F(f)) = \operatorname{Gal}(L/F) = \operatorname{Gal}(K/F)/\operatorname{Gal}(K/L)$. f(x) is solvable by radical over F iff $\operatorname{Gal}(f)$ is solvable.

Lemma 4.8. Let $N \triangleleft G$, then G/N is abelian iff $\forall a, b \in G$, $aba^{-1}b^{-1} \in N$.

Proof. $\forall a,b \in G, \ aba^{-1}b^{-1} \in N \Leftrightarrow aba^{-1}b^{-1}N = N \Leftrightarrow aNbNa^{-1}Nb^{-1}N = N \Leftrightarrow aNbN = bNaN \Leftrightarrow G/N \text{ is abelian}$

Lemma 4.9. Let $n \ge 5$, $N \triangleleft H \subseteq S_n$ if H has all 3-cycle then so is N with H/N abelian.

Proof. let i, j, k, r, s are distinct integers between 1 and n $(n \ge 5)$.

$$\sigma = (ijk)(krs)(ijk)^{-1}(krs)^{-1} = (ijk)(krs)(kji)(srk)$$

Consider these integers, $\sigma(i) = r$, $\sigma(r) = k$, $\sigma(k) = i$ thus $\sigma = (irk)$. N must have σ .

Theorem 4.10. $S_n(n \ge 5)$ is not solvable.

Proof. Suppose on the countrary, S_n is solvable. $S_n = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_m = \{id\}$ s.t. $G_{i+1} \triangleleft G_i$ and G_i/G_{i+1} abelian. G_1/G_2 , then G_2 has three cycles, hence G_m has three cycles. Contradiction! \square

5 More on Galois Theory

Definition 5.1. x_1, \ldots, x_n are independent variables over a field k. $K := k(x_1, \ldots, x_n)$, if $\forall g(x_1, \ldots, x_n) \in K$, $\forall \sigma \in S_n \subseteq \operatorname{Aut}(K)$. Define $\sigma(g)(x_1, \ldots, x_n) = g(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \in K$. $F = K^{S_n} := \{g \in K | \sigma(g) = g, \forall \alpha \in S_n\}$

Claim. $\forall \sigma \in S_n, \sigma \in \text{Aut}(K/K^{S_n}), [K:K^{S_n}] \geqslant \#\text{distinct embeddings} = n!$

Define
$$f(t) := (t - x_1) \cdots (t - x_n) = t^n + a_1 t^{n-1} + \cdots + a_{n-1} t + a_n, \ a_i \in K^{S_n}$$
.

Define $E := k(a_1, a_2, ..., a_n)$, $E \subseteq F$. And now we prove that E = F, we only need to prove $K/E \leqslant n!$.

In general, we have
$$E_{i-1} = E_i(x_i)$$
, and $f_i(t) = \frac{f(t)}{(t-x_{i+1})\cdots(t-x_n)} = (t-x_1)\cdots(t-x_i)$. $f_i(x_i) = 0$.

$$[E_{i-1}: E_i] \leqslant \deg(f_i) = i$$
. Thus $[K: E] \leqslant n! \Longrightarrow [K: E] = [K: F] = n!$.

Now Claim K/F is Galois and $Gal(K/F) = S_n$.

- normal ($\leq n!$ embeddings but we already have n!)
- separable (< n!)

Thus $\operatorname{Gal}_F(f) = \operatorname{Gal}(\operatorname{Split}_F(f)) = \operatorname{Gal}(K/F) = S_n$.

Example 5.2.
$$Gal_{\mathbb{Q}}((x-1)(x-2)\cdots(x-5)) = \{id\}, Gal_{\mathbb{Q}}(x^3-2) = S_3, Gal_{\mathbb{Q}}(x^5-5x-1) = S_5.$$

Question 1. (inverse Galois problem) Given a finite group G, can we find an Galois extension K/\mathbb{Q} such that $Gal(K/\mathbb{Q}) = G$?

6 Finite Field Extension

Theorem 6.1. Suppose A is a field with char A = p, then for every $q = p^m$, $m \ge 1$, there exists a unique subfield \mathbb{F}_q of A, where \mathbb{F}_q is a finite field with exact q elements.

Proof. Define $S = \{\alpha \in A | \alpha^q - \alpha = 0\} \subseteq A$, then if $\alpha, \beta \in S$, $(\alpha \pm \beta)^q = \alpha^q \pm \beta^q = \alpha \pm \beta \in S$, and $(\alpha\beta)^q = \alpha^q\beta^q = \alpha\beta \in S$. If in addition, $\beta \neq 0$, $(\alpha\beta^{-1})^q = \alpha^q(\beta^q)^{-1} = \alpha\beta^{-1} \in S$. So S is a field.

Take derivative of S, $(x^q - x)' = qx^{q-1} - 1 = -1$, i.e. $gcd(x^q - x, (x^q - x)') = 1$, which means $x^q - x$ no multiple roots.

Hence, $|S| = q = \deg(x^q - x)$. We set $\mathbb{F}_q := S$.

As for uniqueness, $|\mathbb{F}_q - \{0\}| = q - 1$ and $\alpha^{q-1} = 1$ which implies $\alpha^q - \alpha = 0$ containing 0 luckily. \square

Note. In a field with characteristic p, $p\alpha = 0$ for all $\alpha \in A$.

Lemma 6.2. $E = \mathbb{F}_{q^n}$ is unique in A.

Note 6.3. Namely, the field extension $A > E > \mathbb{F}_q$ is unique.

Proof. Note that $n = [E: \mathbb{F}_q] = \dim_{\mathbb{F}_q}(E)$. So there exists a basis of E over \mathbb{F}_q , u_1, u_2, \ldots, u_n , such that $\forall \alpha \in E$, $\alpha = b_1 u_1 + \cdots + b_n u_n$, where $b_i \in \mathbb{F}_q$ are unique. $|E| = q^n$. Then by Theorem 6.1, we have done.

From above lemma, we can immediately get following:

Theorem 6.4. Suppose there is a field extension $\mathbb{F}_{q^n}/\mathbb{F}_q$, then for every m|n, there is a unique \mathbb{F}_{q^m} . Alternatively, If E is an intermediate field of \mathbb{F}_{q^n} and \mathbb{F}_q , then there must exist a unique m, such that $\mathbb{F}_{q^m} = E$ and m|n.

This theorem means that the number of intermediate field E is equal to the number of positive integer divisors of n.

Theorem 6.5. $\mathbb{F}_{q^n}/\mathbb{F}_q$ is Galois.

Proof. $\mathbb{F}_{q^n} = \operatorname{Split}_{\mathbb{F}_q}(x^{q^n} - x)$, $\mathbb{F}_{q^n}/\mathbb{F}_q$ is normal. Every element $\alpha \in \mathbb{F}_{q^n}$ is a root of $x^{q^n} - x$ (no multiple roots), hence separable over \mathbb{F}_q . Hence, the extension is Galois.

Theorem 6.6. $\mathbb{F}_{q^n}/\mathbb{F}_q$ is cyclic, i.e. $\operatorname{Gal}(\mathbb{F}_{q^n}:\mathbb{F}_q) = \langle \sigma \rangle = \{\sigma^0 = \operatorname{Id}, \sigma, \dots, \sigma^{n-1}\}$, where σ is defined as Frobenius automorphism

$$\sigma: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n},$$

$$\sigma \mapsto \sigma(\alpha) = \alpha^q$$
.

Proof. $\forall \alpha, \beta \in \mathbb{F}_{q^n}$, $\sigma(\alpha + \beta) = (\alpha + \beta)^q = \alpha^q + \beta^q = \sigma(\alpha) + \sigma(\beta)$, $\sigma(\alpha\beta) = (\alpha\beta)^q = \alpha^q\beta^q = \sigma(\alpha)\sigma(\beta)$ and $\sigma(1) = 1^q = 1$. So σ is a homomorphism.

If $\sigma(\alpha) = \sigma(\beta) \Rightarrow \alpha^q = \beta^q = (\alpha - \beta)^q = 0 \Longrightarrow \alpha = \beta$. Hence σ is injective. σ injective means surjective. Hence, σ is an automorphism. $\sigma \in \operatorname{Aut}(\mathbb{F}_{q^n})$.

Restriction in \mathbb{F}_q : $\forall a \in \mathbb{F}_q$, $\sigma(a) = a^q = a$. Then $\sigma \in \operatorname{Aut}(\mathbb{F}_{q^n}/\mathbb{F}_q) = \operatorname{Gal}(\mathbb{F}_{q^n},\mathbb{F}_q)$.

For $\forall \alpha \in \mathbb{F}_{q^n}$, $\sigma^n(\alpha) = \alpha^{q^n} = \alpha$, hence, $\sigma^n = \mathrm{Id}$.

For any $1 \le m < n$, $\sigma^m \ne \text{Id}$. If note, suppose $\sigma^m = \text{Id}$, then $\sigma^m(\alpha) = \alpha^{q^m} = \alpha$, i.e. α are a root of $x^{q^m} - x$ which contradicts to the minimal polynomial $x^{q^n} - x$.

So we have a relation of extension of fields and inclusion of subgroups as follows

 $\text{And } \operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q) = \frac{\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)}{\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_{q^m})} = \langle \sigma \rangle / \langle \sigma^m \rangle = \langle \sigma^{n/m} \rangle.$

Theorem 6.7. Let $f(x) \in \mathbb{F}_q(x)$, irreducible over \mathbb{F}_q with def(f) = n. Then $f(x)|x^{q^n} - x$.

Proof. Let α be a root of f(x), then α is also a root of $x^{q^n} - x$, since $\mathbb{F}_q(\alpha) = \mathbb{F}_{q^n}$, which means $f(x)|x^{q^n} - x$.

Theorem 6.8. $x^{q^n} - x = \prod_{m \mid n} \text{monic irreducible polynomials } f(x) \text{ over } \mathbb{F}_q \text{ of } \deg(f) = n.$

Proof. Note that $x^{q^m} - x | x^{q^n} - x$. In fact, $q^m - 1 | q^{n-1} - 1 \Longrightarrow x^{q^m - 1} - 1 | x^{q^n - 1} - 1 \Longrightarrow x^{q^m} - x | x^{q^n} - x$. Distinct no multiple root divisors.

Consider $\mathbb{F}_{q^{n_1}}, \mathbb{F}_{q^{n_2}}, \dots, \mathbb{F}_{q^{n_m}} \subseteq \mathbb{F}_{q^N}$, where $N = \text{lcm}(n_1, n_2, \dots, n_m)$. Define

$$\mathbb{F}_{q^{\infty}} = \bigcup_{n=1}^{\infty} \mathbb{F}_{q^n},$$

then it is a field.

Theorem 6.9. $\mathbb{F}_{q^{\infty}}$ is the smallest algebraically closed field containing \mathbb{F}_q and $\mathbb{F}_{q^{\infty}}/\mathbb{F}_q$ is algebraic.

Proof. Let $f(x) \in \mathbb{F}_{q^{\infty}}[x]$, with $\deg(f) \geqslant 1$. WLOG, we may assume f(x) is irreducible over $\mathbb{F}_{q^{\infty}}$,

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$

There exists N, such that $a_0, \ldots, a_{n-1} \in \mathbb{F}_{q^N}$. Then $f(x) \in \mathbb{F}_{q^N}[x]$. All roots of f(x) will be in $\operatorname{Split}_{\mathbb{F}_{q^N}}(f) := K$, while $K = \mathbb{F}_{q^{N/m}} \subseteq \mathbb{F}_{q^\infty}$ (can not be finite). All subfield is finite and algebraic, then \mathbb{F}_{q^∞} is algebraic.

Remark 6.10. $\mathbb{F}_{q^n} - \{0\} = \langle \alpha \rangle = \{\alpha^0 = 1, \alpha, \alpha^2, \dots, \alpha^{q^n - 2}\}, \text{ then } \mathbb{F}_{q^n} = \mathbb{F}(\alpha).$

Index

algebraic closure 4	Galois extension
algebraic extension	lifting
Bezout's identity	minimal polynomial
composition of field extensions 5	normal extension
composition of fields 4	primitive element
embedding	second fundamental theorem of Galois theory 10
embedding set 8	separable element
Euclidean algorithm	separable extension
field extension	solvable by radical
finite extension	solvable group
first fundamental theorem of Galois theory 10	split field
fixed subfield	tower of algebraic extensions
fractional field	tower of finite extensions
Frobenius automorphism	