Топология
1 курс
Задачи
А.Ю. Пирковский

Содержание

1	Лис	т	Οŀ	: :	L																														:	3
	1.1																															 	 			3
	1.2																															 	 		9	3
	1.3																															 	 		ç	3
	1.4																															 	 		4	1
	1.5																	i					i									 	 		4	1
2	Лис	T	Οŀ	: :	2																														ŀ	5
	2.1		1																														 		ŀ	ó
	2.2		2										٠.																				 		ŀ	ó
	2.3		3										٠.					,					,										 		ŀ	ó
	2.4		4																														 		ŀ	ó
	2.5		5															į.					į.									 	 		Ē	5
3	Лис	T	Οŀ	. :	3																														(3
	3.1																																 		(j
	3.2																																		(j
	3.3		~																																(j
	3.4																																		6	ĵ
	3.5																																		f	3

Листок 1

1.1

Пусть X — хаусдорфово топологическое пространство. Всегда ли верно, что $\overline{A \cap B} = \overline{A} \cap \overline{B}$ для любых $A, B \subset X$ (черта означает замыкание)?

▶

Пусть
$$A=(-1,0)$$
 $B=(0,1)$, тогда $\overline{A}\cap \overline{B}=\varnothing$, $\overline{A}=[-1,0]$ $\overline{B}=[0,1]$ тогда $\overline{A}\cap \overline{B}=0$

* Верно отношение: $A \cap B \subset A, \ A \cap B \subset B \Rightarrow \overline{A \cap B} \subset \overline{A}, \ \overline{A \cap B} \subset \overline{B} \Rightarrow \overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Ответ: нет.

1.2

Снабдим пространство $\mathbb{R}^{\mathbb{R}}$ всех функций из \mathbb{R} в \mathbb{R} топологией произведения (она же – топология поточечной сходимости). Найдите замыкание в $\mathbb{R}^{\mathbb{R}}$ множества всех многочленов без свободного члена.

>

Топология поточечной сходимости на \mathbb{R} – это топология, предбаза которой – образ множества $\sigma(X,I)$ $\forall x \in \mathbb{R}$ $\forall I \subset \mathbb{R}$

 ${f \mid f(0) = 0}$ $A = {\text{многочлены без свободного члена}}.$

- 1. Докажем, что ничего, кроме функций, проходящих через (0,0), не лежит в замыкании A. Рассмотрим произвольную функцию f, такую что $f(0) \neq 0$, и найдем ее окрестность, в которой нет точек из A. Без ограничения общности скажем, что f(0) = a, и зададим $I = (a \frac{|a|}{2}, a + \frac{|a|}{2})$, тогда в $\sigma(0, I)$ не лежит ни одного элемента из A, что равносильно тому, что $f \notin \overline{A}$, что и требовалось доказать
- 2. Докажем, что все функции проходят через (0,0) лежат в \overline{A} . f произвольная функция, такая что f(0)=0. Рассмотрим ее произвольную окрестность. Помимо условия в нуле у функции есть еще конечное множество точек с условием.

Тогда пусть есть $\sigma_i(x_i,I_i)$ i=1,...,n. Выберем в каждом I_i по точке. Получим набор из n+1 различной точки. Тогда составим по этим точкам интерполяционный многочлен Лагранжа. Известно, что он степени не выше $n.\Rightarrow$ в любой точке окрестности функции f мы нашли точку из A. Значит, f – предельная точка $A.\Rightarrow f\in \overline{A}$. Что и требовалось доказать

Ответ. Замыкание – все функции, проходящие через (0, 0).

1.3

Пусть X и Y — топологические пространства, причем Y хаусдорфово, и пусть $f: X \to Y$ — непрерывное отображение. Докажите, что его график (т.е. множество $\Gamma_f = \{(x, f(x)) : x \in X\}$) замкнут в $X \times Y$

Рассмотрим предельную точку графика, пусть это (x_0, y_0) . Предположим, что график не содержит предел (x_0, y_0) . Пусть $f(x_0) = y_1$, где $y_1 \neq y_0$. Тогда для y_1, y_0 существуют непересекающиеся окрестности. Так как отобраение непрерывно, то

$$\forall \varepsilon \ \exists \delta : \ x_0 \in (x_0 - \delta, x_0 + \delta), \ f(x_0) \in (y_1 - \varepsilon, y_1 + \varepsilon)$$

По определению предельной точки окрестности, для любой окрестности (x_0, y_0) существует хотя бы 1 точка из множества. Откуда в пересечении окрестностей еть точка из множества \Rightarrow противоречие. Тогда график содержит эту предельную точку, аналогично доказывается содержание и всех остальных точек.

1.4

Пусть A и B — замкнутые подмножества топологического пространства X, причем $A \cup B$ и $A \cap B$ связны. Докажите, что A и B связны. Верно ли это, если не требовать замкнутости A и B?

▶

Докажем от противного:

Пусть A несвязно, тогда $A=A_1\cup A_2$, где A_1,A_2 непустые и замкнутые множества.

1) $A_1 \cap B \neq \emptyset$ и $A_2 \cap B \neq \emptyset$

Тогда рассмотрим $(A_1 \cup A_2) \cap B = (A_1 \cap B) \cup (A_2 \cap B) = A \cup B$ — связно по условию. Тогда $(A_1 \cap B)$, $(A_2 \cap B)$ замкнуты (как пересечения замкнутых), откуда связное множество разбито на два непересекающихся замкнутых подмножества.

2)
$$A_1\cap B\neq\varnothing$$
 и $A_2\cap B=\varnothing$ $(A_1\cup A_2)\cup B=A_2\cup (A_1\cup B)$ тогда $(A_1\cup B)$ и A_2 замкнуты

3) $A_1 \cap B = \varnothing$ и $A_2 \cap B = \varnothing$ не может быть, так как $A \cup B$ связно

В случае когда A и/или B незамкнуто, есть контрпример: $A=[1,2],\ B=[0,1)\cup[2,3],\ A\cap B=\{2\}$ и $A\cup B=[0,3]$

1.5

Пусть X,Y,Z – топологические пространства, причем Y компактно, и пусть $f:X\times Y\to Z$ – непрерывное отображение.

Докажите, что для любого открытого множества $W \subset Z$ множество $M = \{x \in X \ \forall y \in Y: \ f(x,y) \in W\}$ открыто в X.

▶

 $x_0 \in M \ \forall y_i : \ f(x_0, y_i) \in W$

Так как Y – компактен, то для окретсностей y_i , назовем их U_i , выполнено: $\exists n : U_1 \cup U_2 \cup \ldots \cup U_n \supset Y$. Рассмотрим окрестность $(x_0, y_i) : V_i$ так как f непрерывно, W открыто, то $f(V_i) \subset W$

 $V_i=S_i imes U_i$, где S_i – окрестность x_i и $S=S_1\cap S_2\cap\ldots\cap S_n$, так как $S_1\cap\ldots\cap S_n$ – пересечение конечного числа открытых множеств, то S открыто.

Тогда $(x_0, y) \in (S, U)$, тогда заметим, что $f(S, U) \subset W$ (по построению), тогда множество из (x_0, y) – открыто, откуда открыто и M, что и требовалось.

- 2 Листок 2
- 2.1 1
- 2.2 2
- 2.3 3
- 2.4 4
- 2.5 5

- 3 Листок 3
- 3.1 1
- 3.2 2
- 3.3 3
- 3.4 4
- 3.5 5