DM N°10 (pour le 01/03/2011)

Préambule

Pour tout entier naturel k, on définit les polynômes Γ_k par :

$$\Gamma_0 = 1$$
, $\Gamma_1 = X$, $\Gamma_2 = \frac{X(X-1)}{2}$... $\Gamma_k = \frac{X(X-1)...(X-k+1)}{k!}$

Le but du problème est d'étudier quelques propriétés de ces polynômes et des séries du type :

$$\sum_{n=0}^{\infty} a_n \Gamma_n(x)$$

où x est une variable réelle et $(a_n)_{n\geqslant 0}$ une suite réelle .

PARTIE I:

On établit dans cette partie des propriétés des polynômes Γ_k utiles pour la suite.

- **1.** Calculer $\Gamma_k(x)$ $(k \ge 1)$ pour tout entier $x \in \mathbb{Z}$ (on distinguera 3 cas).
- **2.** Établir, pour tout entier $n \ge 1$, les formules :

$$\Gamma_n(X+1) - \Gamma_n(X) = \Gamma_{n-1}(X)$$
 et $n\Gamma_n(X) = (X-n+1)\Gamma_{n-1}(X)$

PARTIE II:

- **1.** Soit f une application de $[\alpha, +\infty[$ dans \mathbb{R} , où $\alpha \leq 0$.
 - a) Montrer qu'il existe une suite de réels $(a_n)_{n\geqslant 0}$ et une seule possédant la propriété suivante : pour tout n, la fonction

$$f(x) - \sum_{k=0}^{n} a_k \Gamma_k(x)$$

est nulle pour x égal aux n+1 entiers consécutifs $0, 1, 2, \ldots, n$.

 \lceil On pourra procéder par récurrence sur n \rceil

La suite $(a_n)_{n\geqslant 0}$ sera dite associée à la fonction f.

- **b)** Montrer que la suite associée à la fonction $x \mapsto b^x$ (b > 0) est : $a_n = (b-1)^n$.
- **2. a)** On suppose de plus ici que f est de classe \mathscr{C}^{∞} , et (a_n) désigne toujours la suite associée à f. On donne un réel $x \ge \alpha$. Montrer qu'il existe, pour tout entier naturel N, un réel θ tel que :

$$f(x) = \sum_{k=0}^{N} a_k \Gamma_k(x) + \Gamma_{N+1}(x) f^{(N+1)}(\theta)$$

Etudier d'abord le cas $x \in \{0, 1, ..., N\}$.

Sinon, on pourra utiliser la fonction auxiliaire qui à t associe $f(t) - \sum_{k=0}^{N} a_k \Gamma_k(t) - A\Gamma_{N+1}(t)$, où A est une constante convenablement choisie, et appliquer plusieurs fois le théorème de Rolle.

b) En déduire que, pour tout n entier naturel, il existe un réel positif λ_n tel que $a_n = f^{(n)}(\lambda_n)$.

PARTIE III:

Soit $(a_n)_{n\geqslant 0}$ une suite donnée de nombres réels. On lui associe la série $\sum_{n=0}^{\infty}a_n\Gamma_n(x)$. Dans cette partie, on étudie des propriétés de cette série.

1. Soit x un réel fixé, non égal à un entier naturel. On considère la suite $(\mu_n)_{n\geqslant 1}$ définie par :

$$\mu_n = n^{\rho} \left| \Gamma_n(x) \right|$$

a) Étudier, selon le réel ρ, la nature de la série de terme général

$$u_n = \ln(\mu_{n+1}) - \ln(\mu_n)$$

- b) Que peut-on dire de la limite de la suite (μ_n) ? (discuter selon les valeurs de ρ).
- c) Montrer qu'il existe un réel strictement positif K(x) tel que l'on ait :

$$\lim_{n \to +\infty} n^{x+1} \left| \Gamma_n(x) \right| = K(x)$$

(on ne cherchera pas à calculer K(x)).

2. Soit f une application de classe \mathscr{C}^{∞} de \mathbb{R}_+ dans \mathbb{R} vérifiant la propriété suivante :

Il existe un entier naturel n_0 tel que, pour tout y positif et tout entier n supérieur ou égal à n_0 , on ait : $\left|f^{(n)}(y)\right| \leq Mn$ M étant une constante strictement positive.

a) Soit $(a_n)_{n\geqslant 0}$ la suite associée à f selon la définition donnée en II.1.a . Montrer que l'on a, pour tout réel positif x :

$$f(x) = \sum_{n=0}^{\infty} a_n \Gamma_n(x)$$

[Indication : utiliser II.2.a et la question précédente]

- **b)** Que peut-on dire de f si cette fonction est nulle pour tout entier naturel?
- 3. Soient x et y deux réels, tous deux distincts d'un entier naturel. On suppose y > x. Que dire de la série $\sum_{n=0}^{\infty} a_n \Gamma_n(y)$ si la série $\sum_{n=0}^{\infty} a_n \Gamma_n(x)$ converge absolument?
- **4.** Soit x_0 un réel non entier naturel, b un entier strictement supérieur à $|x_0|$. Soit x un réel appartenant à $]x_0, b]$. On pose :

$$w_n(x) = \frac{\Gamma_n(x)}{\Gamma_n(x_0)}$$

- a) Établir que la suite $(w_n(x))_{n \ge b}$ est monotone et tend vers zéro.
- **b)** En déduire l'existence d'une constante K telle que, pour tout x appartenant à $[x_0, b]$ et pour tout $n \ge b$, on ait :

$$\left|\Gamma_n(x)\right| \leq K \left|\Gamma_n(x_0)\right|$$

c) Montrer que, si la série $\sum_{n=0}^{\infty} a_n \Gamma_n(x_0)$ converge absolument, alors la série $\sum_{n=0}^{\infty} a_n \Gamma_n(x)$ converge normalement sur tout compact de $[x_0, +\infty[$

- a) Démontrer le théorème suivant : 5.
 - ✓ Soit une série numérique convergente $\sum_{n=0}^{\infty} \lambda_n$, et une suite $(V_n)_{n \ge 0}$ d'applications

d'un intervalle I dans \mathbb{R} , telle que :

- \blacksquare pour tout x de I, la suite $n \longmapsto \mathsf{V}_n(x)$ est décroissante
- il existe M réel tel que, pour tout x de I et tout entier naturel n, $|V_n(x)| \leq M$.
 - \checkmark Alors la série de fonctions $\sum_{n=0}^{\infty} \lambda_n V_n(x)$ converge uniformément dans I

[A cet effet, on pourra poser
$$R_n = \sum_{k=n+1}^{\infty} \lambda_k$$
, puis démontrer la relation
$$\sum_{k=n+1}^{n+p} \lambda_k V_k(x) = R_n V_{n+1}(x) + \sum_{k=n+1}^{n+p-1} R_k (V_{k+1}(x) - V_k(x)) - R_{n+p} V_{n+p}(x)$$

et ensuite utiliser le critère de Cauchy uniforme

- **b)** Déduire de ce théorème et de III.4 que, si la série $\sum_{n=0}^{\infty} a_n \Gamma_n(x)$ converge en un point x_0 (x_0 non entier naturel), alors elle converge uniformément sur tout compact de $[x_0, +\infty[$.
- c) Montrer de plus qu'il y a convergence absolue sur $]x_0 + 1, +\infty[$

PARTIE IV:

On considère, dans cette partie, la série

$$\sum_{n=0}^{\infty} t^n \Gamma_n(x)$$

- **1.** On suppose ici |t| < 1.
 - a) Établir, à l'aide de la formule de Taylor avec reste intégral, la relation, pour tout entier N et tout réel x:

$$(1+t)^{x} = \sum_{0 \leq n \leq N} t^{n} \Gamma_{n}(x) + R_{N}(t,x)$$

où
$$R_N(t,x) = (N+1)\Gamma_{N+1}(x)\int_0^t \left(\frac{t-u}{1+u}\right)^N (1+u)^{x-1} du$$

b) Calculer $\sup_{u \in [0,t]} \left| \frac{t-u}{1+u} \right|$; en déduire $\lim_{N \to +\infty} R_N(t,x) = 0$, puis l'égalité :

$$(1+t)^x = \sum_{n=0}^{\infty} t^n \Gamma_n(x)$$

- 2. Que peut-on dire de la série $\sum_{n=0}^{\infty} t^n \Gamma_n(x)$ lorsque |t| > 1?
- 3. On prend ici t=1. Pour quels x la série converge-t-elle? Montrer que sa somme est alors égale à 2^x . [On pourra appliquer II.2.a et s'en servir pour étudier la suite $n \mapsto 2^x - \sum_{k=0}^n \Gamma_k(x)$]
- **4.** On prend ici t = -1. Pour quels x la série $\sum_{n=0}^{\infty} (-1)^n \Gamma_n(x)$ est-elle absolument convergente? Pour quels x est-elle convergente? Soit $\sigma(x)$ sa somme; donner la valeur de $\sigma(x)$ lorsque x est un entier naturel.

5. On fixe x positif, et l'on pose, u décrivant [0,1]:

$$\varphi_x(u) = \sum_{n=0}^{\infty} (-1)^n u^n \Gamma_n(x)$$

Reconnaître, pour $u \neq 1$, cette fonction. Établir que la série ci-dessus converge normalement en u sur [0,1]. En déduire $\sigma(x)$ pour $x \geqslant 0$.

PARTIE V:

On considère dans cette partie des fonctions de la forme :

$$f(x) = \int_{-1}^{0} (1+t)^{x} h(t) dt$$

où h est une application continue de [-1,0] dans \mathbb{R} .

1. Montrer que, pour x > 0, on a la relation :

$$f(x) = \sum_{n=0}^{\infty} \left(\int_{-1}^{0} t^{n} h(t) dt \right) \Gamma_{n}(x)$$
 (1)

2. h désigne toujours une fonction définie et continue sur [-1,0], et on suppose x > -1. On étudie ici :

$$\lim_{N\to\infty}\int_{-1}^{0}h(t)R_{N}(t,x)dt$$

où $R_N(t,x)$ a été défini en IV.1.a .

- a) Montrer que l'intégrale $\int_{-1}^{0} h(t)R_{N}(t,x)dt$ existe.
- **b)** A l'aide du changement de variable $s = \frac{t u}{1 + u}$, établir, pour |t| < 1:

$$R_N(t,x) = (N+1)\Gamma_{N+1}(x)(1+t)^x \int_0^t (s+1)^{-x-1} s^N ds$$

c) En posant:

$$r_{\rm N}(t) = \int_0^t (s+1)^{-x-1} s^{\rm N} \, \mathrm{d}s \quad \text{et} \quad \mathrm{H}(t) = \int_{-1}^t (1+s)^x h(s) \, \mathrm{d}s$$

établir, à l'aide d'une intégration par parties :

$$\int_{-1}^{0} h(t) R_{N}(t,x) dt = -(N+1) \Gamma_{N+1}(x) \int_{-1}^{0} H(t) (1+t)^{-x-1} t^{N} dt$$

- **d)** Montrer que l'application $t \mapsto \left| H(t)(1+t)^{-x-1} \right|$ est bornée. En déduire que la relation **(1)** est vérifiée pour x > -1.
- **3.** On prend ici $h(t) = (1+t)^{\lambda}$, où $\lambda \ge 0$.
 - a) Pour quelles valeurs de x l'intégrale définissant f a-t-elle un sens?
 - **b)** Calculer $a_n = \int_{-1}^0 t^n h(t) dt$ pour tout entier naturel n.

c) Établir, pour x > -1, la relation :

$$f(x) = \sum_{n=0}^{\infty} a_n \Gamma_n(x)$$

d) En utilisant les pôles et les zéros de la différence

$$f(x) - \sum_{n=0}^{N} a_n \Gamma_n(x)$$

déterminer les valeurs de x pour lesquelles la relation (1) est valable.

