Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Практическая работа №5 по дисциплине **Теория вероятностей и математическая статистика**

Вариант №14

Выполнил: Состанов Тимур Айратович

Группа: Р3214

Преподаватель: Селина Елена Георгиевна

Задание

Каждый студент получает выборку из 20 чисел. Необходимо определить следующие статистические характеристики: вариационный ряд, экстремальные значения и размах, оценки математического ожидания и среднеквадратического отклонения, эмпирическую функцию распределения и её график, гистограмму и полигон приведенных частот группированной выборки. Для расчета характеристик и построения графиков нужно написать программу на одном из языков программирования. Листинг программы и результаты работы должны быть представлены в отчете по практической работе

Вариант №14

- 1																				
	0 50	0.07	0.09	0.41	0.40	ΙΛ 01	1 1 55	1 4 ก	1 9 /	10c1	1 0 0 4 1	0 22	1 0 0 1	1 1 2 2	しんピフ	1060	1076	0.40	100	0.25
	-0.00	-0.07	-0.95	-0.41	LU 40	וסטו	1 - 1 ()()	1 - 1 47 1	1 - 1 - 34	I =U O I	=0 04	I -U .).)	-0.84	- .).)	LU 07	しりりん	1070	L -U 40	100	L = U .5()
	0.00	0.0.	0.00	0.11	0.10	0.01	1		1	0.01	0.01	0.00	0.01	1.00	0.0.	0.02	0	0.10	0.0	0.0

Выполнение

Вариационный ряд

- 1										0.40	0 11					0.40				0.04
	-1.55	-1.42	-1.34	-1.33	-0.93	-0.87	-0.84	-0.61	-0.53	-0.48	-0.41	-0.35	-0.33	-0.04	0.3	0.48	0.57	0.62	0.76	0.81

Статистический ряд

-1.5	5 -1.42	-1.34	-1.33	-0.93	-0.87	-0.84	-0.61	-0.53	-0.48	-0.41	-0.35	-0.33	-0.04	0.3	0.48	0.57	0.62	0.76	0.81
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Экстремальные значения

Минимальное значение: $x_0 = -1.55$; Максимальное значение: $x_{20} = 0.81$

Размах

Размах = наибольшее значение - наименьшее значение = x_{20} - x_0 ; Размах = 2.36

Математическое ожидание

Для данной выборки статистический ряд будет совпадать с вариационным, так как каждое значение встречается только раз

Выборочное среднее (выборочное математическое ожидание) - среднее арифметическое всех значений выборки, считается по формуле:

$$\overline{x_B} = \frac{1}{n} \sum_{i=1}^k x_i \cdot n_i$$

Для исходной выборки

$$\overline{x_B} = -0.3745$$

Выбороная дисперсия

Выбороная дисперсия D_B - среднее арифметическое квадратов отклонений значений выборки от выборочной средней $\overline{x_B}$, считается по формуле:

$$D_B = \frac{1}{n} \sum_{i=1}^k (x_i - \overline{x_B})^2 \cdot n_i$$

$$D_B = -0.3745$$

Среднеквадратическое отклонение

Выборочное среднее квадратическое отклонение выборки определяется формулой

$$\sigma_B = \sqrt{D_B}$$

Для исходной выборки

$$\sigma_B = 0.743428$$

Исправленное выборочное среднее квадратическое отклонение

При решении практических используется величина

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{k} (x_{i} - \overline{x_{B}})^{2} \cdot n_{i} = \frac{1}{n-1} D_{B}$$

Которая называется исправленной выборочной дисперсией

Величина $S=\sqrt{S^2}$ называется исправленным выборочным средним квадратическим отклонением

Для исходной выборки

$$S = 0.762741$$

Эмпирическая функция распределения

Эмпирической (статистической) функцией распределения называется функция $F_n^x(x)$, определяющая для каждого значения x частность события $\{X < x\}$:

$$F_n^*(x) = p^* \{ X < x \}$$

Где $p^x = \frac{n_x}{n}$ - отношение количесвта вариантов $\{ {
m X} < {
m x} \}$ к общему числу вариантов

```
0
                при x < -1.55
          0.05 при -1.55 \le x < -1.42
          0.1
                при -1.42 \le x < -1.34
          0.15 при -1.34 \le x < -1.33
          0.2
                при -1.33 \le x < -0.93
          0.25
                при -0.93 \le x < -0.87
          0.3
                при -0.87 \le x < -0.84
          0.35 при -0.84 \le x < -0.61
          0.4
                при -0.61 \le x < -0.53
          0.45 при -0.53 \le x < -0.48
F_n^*(x) =
          0.5
                при -0.48 \le x < -0.41
          0.55 при -0.41 \le x < -0.35
          0.6
                при -0.35 \le x < -0.33
          0.65 при -0.33 \le x < -0.04
          0.7
                при -0.04 \le x < 0.3
          0.75 при 0.3 \le x < 0.48
          0.8
                при 0.48 \le x < 0.57
          0.85 при 0.57 \le x < 0.62
          0.9
                при 0.62 \le x < 0.76
          0.95
                при 0.76 \le x < 0.81
          1
                при x \ge 0.81
```


Рис. 1: График эмпирической функции распределения

Интервальный статистический ряд

Так как признак является непрерывным, то имеет смысл составить интервальный статический ряд (для дальнейшего использования в функции распределения). Пользуясь формулой Стерджеса, найдем величину интервала

$$h = \frac{x_{max} - x_{min}}{1 + log_2 n}$$

Для исходной выборки

$$h = 0.443448$$

Учитывая рекомендацию по выбору начала первого интервала $x=x_{min}-\frac{h}{2}$

[-1.7717;-1.3283)	[-1.3283;-0.8848)	[-0.8848;-0.4414)	[-0.4414;0.0021)	[0.0021;0.4455)	[0.4455;0.889)
4	1	5	4	1	5

Рис. 2: Гистограмма

Рис. 3: Полигон приведенных частот группированной выборки