

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут»

Лабораторна робота №2

з дисципліни «Моделювання та оптимізація комп'ютерних систем»

«SIMULINK: МОДЕЛЮВАННЯ ДИНАМІЧНИХ СИСТЕМ В СЕРЕДОВИЩІ SIMULINK»

ПІБ: Терентьєв Іван Дмитрович

- •		
Перевірив:		
персырив.		

Мета роботи:

- Вивчити графічний інтерфейс Simulink
- навчиться моделювати скінченні динамічні систем в середовищі Simulink пакета MatLab.

Загальне завдання

- 1. Побудувати схеми рішення тестової задачі в системі Simulink, отримати графік рішення. Порівняти з рішенням задач в MatLab за допомогою функції ode45.
- 2. Розв'язати цю задачу в MatLab, побудувати графік рішень.
- 3. Побудувати схему рішення в Simulink і от отримати графік рішення заданих задач.

$3a \partial a u a (mecmo в a)$: $x'(t) + 2x(t) = \sin(t), x(0) = 0$

Розв'язок за допомогою "MatLab"

Розв'язок за допомогою "Simulink"

Розв'язок за допомогою "ode45"

1)
$$\begin{cases} y' = \frac{z}{x}, \\ z' = \frac{2z^2}{x(y-1)} + \frac{z}{x}, \\ y(1) = 0, \quad z(1) = \frac{1}{3} \end{cases}$$
 Ha [1,2].

2)
$$\begin{cases} y' = (z - y)x, \\ z' = (z + y)x, \\ y(0) = 1, \quad z(0) = 1 \end{cases}$$
 Ha [0,1].

$$\begin{cases} y' = \cos(y + 2z) + 2, \\ z' = \frac{2}{x + 2y^2} + x + 1, \\ y(0) = 1, \quad z(0) = 0.05 \end{cases}$$
 Ha [0, 0.3].

$$\begin{cases} y' = e^{-(x^2 + z^2)} + 2x, \\ z' = 2y^2 + z, \\ y(0) = 0.5, \quad z(0) = 1 \end{cases}$$
 Ha [0, 0.3].

Задача:

5)
$$y'' = -\frac{y'}{x} + \frac{y}{x^2} + 1$$
, $y(3) = 6$, $y'(3) = 3$.

Висновок:

Під час виконання лабораторної роботи було досягнуто мету - вивчено графічний інтерфейс Simulink та опановано навички моделювання скінченних динамічних систем в середовищі Simulink пакета MatLab.

У першому завданні ми побудували схему рішення тестової задачі в системі Simulink та отримали графік рішення. Порівняння з рішенням, отриманим за допомогою функції ode45 у MatLab, дозволило відзначити ефективність та точність результатів, отриманих за допомогою Simulink.

У другому завданні ми розв'язали ту ж саму задачу безпосередньо у MatLab, побудувавши графік рішення. Це дозволило порівняти результати, отримані у Simulink, з результатами, отриманими безпосередньо в MatLab, що вказує на відповідність результатів обох підходів.

У третьому завданні ми побудували схему рішення в Simulink для заданих задач і отримали графіки рішення. Це підтвердило можливості Simulink у моделюванні та аналізі складних динамічних систем.

Отже, завдяки виконанню цієї лабораторної роботи ми успішно опанували інструменти моделювання та аналізу динамічних систем у середовищі Simulink, що збагатило наші знання та навички у сфері математичного моделювання.