Projet Bonaventure : Modélisation formelle des exigences d'un système de transport intelligent

Steve Tueno^{1,2}, Marc Frappier¹, Régine Laleau²

¹GRIL – Université de Sherbrooke, Canada ²LACL – Université Paris Est Créteil Val de Marne, France

7 novembre 2018

Sommaire

- Contexte
- 2 Travail effectué
 - Modélisation des exigences fonctionnelles
 - Modélisation des exigences non-fonctionnelles
- 3 Travail à effectuer
 - Tâches
 - Proposition d'objectifs

SysML/KAOS : Méthode formelle d'ingénierie des exigences Projet FORMOSE (ANR-14-CE28-0009)

FORMOSE:

Méthode et outils pour la modélisation formelle des exigences de systèmes critiques et complexes.

Sommaire

- 1 Contexte
- 2 Travail effectué
 - Modélisation des exigences fonctionnelles
 - Modélisation des exigences non-fonctionnelles
- Travail à effectuer
 - Tâches
 - Proposition d'objectifs

Modélisation des exigences fonctionnelles Livrable: Projet_Bonaventure_Livrable1_functional_goals.pdf

Modélisation des exigences non-fonctionnelles Livrable: Projet_Bonaventure_Livrable2_non_functional_goals.pdf

Modélisation des obstacles Livrable : Projet_Bonaventure_Livrable2_non_functional_goals.pdf

Sommaire

- 1 Contexte
- 2 Travail effectué
 - Modélisation des exigences fonctionnelles
 - Modélisation des exigences non-fonctionnelles
- Travail à effectuer
 - Tâches
 - Proposition d'objectifs

Tâches

- **① Définition des objectifs** d'une spécification formelle des exigences du système.
- élaboration d'un modèle de domaine circonscrit aux objectifs identifiés au point (1).
- Onstruction d'une spécification formelle circonscrite aux objectifs identifiés au point (1).
- 4 Vérification et validation de la spécification formelle.

Tâches

- Définition des objectifs d'une spécification formelle des exigences du système.
- **Élaboration d'un modèle de domaine** circonscrit aux objectifs identifiés au point (1).
- Onstruction d'une spécification formelle circonscrite aux objectifs identifiés au point (1).
- 4 Vérification et validation de la spécification formelle.

Tâches

- Définition des objectifs d'une spécification formelle des exigences du système.
- Élaboration d'un modèle de domaine circonscrit aux objectifs identifiés au point (1).
- **3** Construction d'une spécification formelle circonscrite aux objectifs identifiés au point (1).
- 4 Vérification et validation de la spécification formelle.

Proposition I (1/2)

Vérification des contraintes de raffinement des buts fonctionnels

Objectif

Spécifier formellement les buts fonctionnels et vérifier :

- Raffinement AND: la conjonction des sous-buts satisfait le but parent.
- Raffinement OR: la disjonction des sous-buts satisfait le but parent.

Ceci permet de détecter :

- Des omissions : les sous-buts ne sont pas suffisant pour satisfaire le but parent.
- Des ambiguités : il n'est pas possible de décrire un but de façon précise.
- Des **redondances** : plusieurs buts satisfont le même objectif.
- Des contradictions.

Proposition I (1/2)

Vérification des contraintes de raffinement des buts fonctionnels

Objectif

Spécifier formellement les buts fonctionnels et vérifier :

- Raffinement AND: la conjonction des sous-buts satisfait le but parent.
- Raffinement OR: la disjonction des sous-buts satisfait le but parent.

Ceci permet de détecter :

- Des **omissions** : les sous-buts ne sont pas suffisant pour satisfaire le but parent.
- Des ambiguités : il n'est pas possible de décrire un but de façon précise.
- Des redondances : plusieurs buts satisfont le même objectif.
- Des contradictions.

Proposition I (1/2)

Vérification des contraintes de raffinement des buts fonctionnels

Objectif

Spécifier formellement les buts fonctionnels et vérifier :

- Raffinement AND: la conjonction des sous-buts satisfait le but parent.
- Raffinement OR: la disjonction des sous-buts satisfait le but parent.

Ceci permet de détecter :

- Des **omissions** : les sous-buts ne sont pas suffisant pour satisfaire le but parent.
- Des ambiguités : il n'est pas possible de décrire un but de façon précise.
- Des redondances : plusieurs buts satisfont le même objectif.
- Des contradictions.

Proposition I (2/2)

Vérification des contraintes de raffinement des buts fonctionnels

Preuves à décharger : But G raffiné en sous buts G1 et G2 :

Opérateur AND

• G_1 _Guard $\Rightarrow G_1$ Guard

- G_{2} — $Guard \Rightarrow G$ —Guard
- $(G_1 Post \wedge G_2 Post) \Rightarrow G_P ost$

Opérateur OR

- G_{1} — $G_{uard} \Rightarrow G_{uard}$
- G_1 _Post $\Rightarrow G$ _Post
- G_1 _Post $\Rightarrow \neg G_2$ _Guard

- G_2 _Guard $\Rightarrow G$ _Guard
- G_2 – $Post <math>\Rightarrow G$ –Post
- G_{2} – $Post \Rightarrow \neg G_{1}$ –Guard

Proposition II (1/2)

Vérification de la concordance entre limite de visibilité et vitesse maximale autorisée

Objectif

Spécifier formellement :

- le tunnel;
- la courbure du tunnel : limite de visibilité en chaque point ;
- la vitesse limite en chaque point;

et vérifier qu'en chaque point du tunnel, la vitesse limite soit définie de façon à donner suffisament de latitude à un véhicule pour freiner, dès le moment où il aperçoit un véhicule devant lui.

Proposition II (2/2)

Vérification de la concordance entre limite de visibilité et vitesse maximale autorisée

Ainsi:

- pour un véhicule positionné en xx;
- supposé roulant à la vitesse limite en xx VLim(xx);

il s'agit de vérifier que $dFrein(VLim(xx)) \leq VisiLim(xx)$, où :

- dFrein(VLim(xx)) est la distance mimimale de freinage associée à la vitesse limite VLim(xx).
- VisiLim(xx) est la limite de visibilité en xx.

Proposition III

Prise en compte des PMVs dans l'évaluation de la concordance entre limite de visibilité et vitesse maximale autorisée

Objectif

Variante de la proposition II dans laquelle les notifications affichées par les PMVs influent sur la vitesse limite en certains points du tunnel.

Il s'agit:

- d'associer une vitesse limite à chaque message affiché par un PMV, en tout point xx où le panneau est visible. Eg :
 - "trafic normal" $\Rightarrow VLim(xx) = 70 \text{ KM/H}$
 - "trafic dense" \Rightarrow VLim(xx) = 40 KM/H
- d'évaluer la distance minimale de freinage dans chaque cas et vérifier qu'elle concorde avec la limite de visibilité.

Proposition IV

Liveness : vérification de l'efficacité des plans de feux

Objectif

Vérifier si le plan de feux associé à chaque niveau de trafic contribue à résorber le trafic.

Spécifier formellement :

- les véhicules présents dans le tunnel;
- les véhicules entrant pendant une durée définie;
- les véhicules sortant pendant une durée d'activation du feu vert (croisement Nazareth/Wiliam);

et vérifier si la durée du feu vert est suffisante pour que la congestion se résorbe après un certain intervalle de temps.

Proposition V

Écart entre trafic observé et trafic réel

Objectif

Définir et vérifier des contraintes sur l'écart entre le trafic observé et le trafic réel. Eg :

- le niveau de trafic observé doit être le même que le niveau de trafic réel.
- l'écart entre le nombre de véhicules observés et le nombre de véhicules réellement présents doit être de ± 5.

Quelles contraintes vérifier?

D'autres propositions?

