Level Measurement defect classification using ML

Features for the dataset:

1.water_level → directly measured by the tank sensor in the model.

2.level_rate → can be computed using a derivative block on water_level.

3.valve_position \rightarrow available as the actuator output (pump control voltage or valve opening).

4.pump_status → you can create a binary signal based on whether the pump voltage is above a threshold.

5.controller_output → PID controller output is available.

6.setpoint → the reference water level input to the system.

7.error_signal \rightarrow can be computed as setpoint - water_level.

Target Values:

Output Label	Description
0	Normal operation
1	Leakage
2	Overflow
3	Clogged valve
4	Pump failure
5	Sensor fault
6	Controller fault

Normal model (water_level_control_original.slx)

Faults:

1 Leakage

Water leaks OUT of the tank continuously

Water level drops faster than normal

Pump works harder (controller output increases)

Valve opens more to compensate

2 Overflow

Water level rises above normal setpoint

Too much inflow OR restricted outflow

Controller tries to close valve

Upper limit: 0.4 (valve can only open 40%)

Lower limit:0

3 CLOGGED VALVE FAULT

Valve stuck partially closed

Water cannot flow out properly

Water level rises

Controller output tries to open valve more (but fails)

Upper limit: 0.25 (valve stuck at 25% max opening)

Lower limit: 0

4 PUMP FAILURE FAULT

Pump not working at full capacity

Less water pumped into tank

Water level drops

Controller output maxes out trying to compensate

Gain value: 0.25 (pump only 25% effective)

5 SENSOR FAULT

Level sensor gives noisy/incorrect readings

Controller receives wrong information

Erratic control actions

Actual level may be OK, but measured level is noisy

Noise power: 1.5 (high noise)[Band limited white noise]

Sample time: 0.1

Click OK

6 CONTROLLER FAULT

PID controller poorly tuned

Wrong gains cause poor control

Oscillations, slow response, or instability

System never settles properly

proportional gain is decreased(kp).

original gain values

fault controller gain values

##Code for generating values from the simulink model

```
function save_fault_data(fault_name, fault_label, setpoint_value, ...
                        water_level, controller_output, valve_position, tout)
   %% Save fault data from simulation signals
   % fault_name : string (e.g., 'Normal', 'Leak', etc.)
% fault_label : integer label (e.g., 0 for normal, 1 for fault)
   % setpoint_value : numeric setpoint
                     : vector of water level values
   % water level
   % controller_output : vector of controller outputs
   : vector of time values
   fprintf('Processing %s data (Label: %d)...\n', fault_name, fault_label);
   % Ensure column vectors
   wl = water level(:);
   co = controller_output(:);
   vp = valve_position(:);
   time = tout(:);
   % Calculate sampling time
   dt = mean(diff(time));
   % Calculate derived features
   level_rate = [0; diff(wl)] / dt;
                                            % derivative of water level
   pump_status = double(co > 0.1);
                                              % binary pump status
   % Create setpoint vector
   setpoint = setpoint_value * ones(size(wl));
   % Calculate error signal
   error_signal = setpoint - wl;
   % Combine all 7 features into matrix
    features = [wl, level_rate, vp, pump_status, co, setpoint, error_signal];
```

```
% Create labels (all same for this fault type)
    labels = fault_label * ones(length(wl), 1);
    % Save to .mat file
    filename = sprintf('fault_data_%s_label%d.mat', fault_name, fault_label);
    save(filename, 'features', 'labels', 'fault_name', 'fault_label',
       % Save to Excel file also
    excel_filename = sprintf('fault_data_%s_label%d.xlsx', fault_name, fault_label);
    % Convert to table with headers for readability
    T = array2table(features, 'VariableNames', ...
{'WaterLevel', 'LevelRate', 'ValvePosition', 'PumpStatus', ...
         'ControllerOutput', 'Setpoint', 'ErrorSignal'});
    % Add time and labels as extra columns
    T.Time = time;
    T.Labels = labels;
    % Write to Excel
   writetable(T, excel_filename);
    fprintf('Excel file saved: %s\n', excel_filename);
   % Display summary
    fprintf('Saved: %s\n', filename);
    fprintf(' Samples: %d\n', length(labels));
               Duration: %.1f seconds\n', max(time));
    fprintf('
              Water level range: [%.2f, %.2f] m\n', min(wl), max(wl));
    fprintf('
               Controller output range: [%.2f, %.2f]\n', min(co), max(co));
              Valve position range: [%.2f, %.2f]\n', min(vp), max(vp));
    fprintf('
    fprintf('\n');
end
```

Data Generated snap:

1	WaterLevel	LevelRate	ValvePosition	PumpStatus	ControllerOutput	Setpoint	ErrorSignal	Time	Labels
2	250	0	-361.1726978	0	-722.3453955	500	-245	0	0
3	249.897732	-11.29647644	-361.0250589	0	-722.0501178	500	-244.897732	0.000221905	0
4	249.387021	-56.41323904	-360.2877681	0	-720.5755362	500	-244.387021	0.001331433	0
5	247.909664	-163.1888296	-358.1549775	0	-716.3099549	500	-242.909664	0.004553818	0
6	245.698415	-244.2545531	-354.962701	0	-709.925402	500	-240.698415	0.009412942	0
7	242.906302	-308.4167966	-350.9318578	0	-701.8637157	500	-237.906302	0.015611216	0
8	240.14586	-304.9183736	-346.9467368	0	-693.8934735	500	-235.14586	0.021809489	0
9	236.527826	-399.6480721	-341.7235481	0	-683.4470963	500	-231.527826	0.030041933	0
10	232.9642	-393.6381741	-336.5789048	0	-673.1578097	500	-227.9642	0.038274377	0
11	228.716164	-469.2380213	-330.4462103	0	-660.8924206	500	-223.716164	0.048253668	0
12	224.545443	-460.6978332	-324.4251303	0	-648.8502606	500	-219.545443	0.058232958	0
13	220.45063	-452.3129881	-318.5136346	0	-637.0272691	500	-215.45063	0.068212249	0
14	216.430346	-444.0806618	-312.7097298	0	-625.4194597	500	-211.430346	0.07819154	0
15	212.483233	-435.9980806	-307.011459	0	-614.022918	500	-207.483233	0.088170831	0
16	208.607961	-428.0625216	-301.4169006	0	-602.8338011	500	-203.607961	0.098150122	0
17	207.897393	-78.48939231	-309.6241798	0	-619.2483595	500	-202.897393	0.1	0
18	204.272612	-400.3932327	-304.3912432	0	-608.7824863	500	-199.272612	0.109249392	0
19	200.709022	-393.6341836	-299.2466428	0	-598.4932856	500	-195.709022	0.118498783	0
20	197.205589	-386.989166	-294.1888883	0	-588.3777766	500	-192.205589	0.127748175	0
21	193.7613	-380.4562567	-289.2165145	0	-578.4330291	500	-188.7613	0.136997567	0
22	190.375155	-374.0335649	-284.328081	0	-568.6561621	500	-185.375155	0.146246959	0
23	187.046174	-367.7192316	-279.5221716	0	-559.0443432	500	-182.046174	0.15549635	0
24	183.773392	-361.5114293	-274.7973939	0	-549.5947879	500	-178.773392	0.164745742	0
25	180.555862	-355.4083611	-270.1523793	0	-540.3047585	500	-175.555862	0.173995134	0
26	177.392652	-349.4082606	-265.5857818	0	-531.1715637	500	-172.392652	0.183244525	0
27	174.282844	-343.5093912	-261.0962786	0	-522.1925573	500	-169.282844	0.192493917	0
20	474 707000	274 4000464	242 7545002	^	405 5004006	F00	100 707000	0.2	^