1 Teoremas sin demostracion

1.1 Teorema del valor intermedio para funciones continuas

Sea f
 una funcion continua en [a,b] sea d
 entre f(a) y f(b) entonces existe $c \in [a,b]$ tal que
 f(c)=d

1.2 Teorema del valor medio

Sea f una funcion continua en [a,b] y derivable en (a,b). Entonces para cada $x,c\in[a,b]$ se cumple que $\left(\frac{f(x)-f(c)}{x-c}\right)=f'(\xi)$, para algún ξ entre x y c

1.3 Teorema del Taylor

Sea $f \in C^{(n)}[a,b]$ y existe $f^{(n+1)}$ en (a,b), entonces $\forall x,c \in [a,b]$ se tiene: $f(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c) (x-c)^k + E_n(x) \text{ donde}$ $E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-c)^{n+1} \text{ con } \xi \text{ entre x y c}$

1.4 Metodo Newton Global

Sea una función, tal que f" continua, f convexa, creciente y tiene un raíz, entonces
raíz es único y el metodo de Newton converge $\forall x_0 \in \mathbb{R}$

1.5 Unicidad de conjunto linealmente independiente

Si $\{\phi_0(x),...,\phi_n(x)\}$ es un conjunto LI(linealmente independiente) en el espacio de polinomio de grado $\leq n$, entonces todo polinomio de grado $\leq n$ puede escribirse de manera única como combinación lineal de $\{\phi_0(x),...,\phi_n(x)\}$

1.6 Aproximación por mínimos cuadrados

Si $\{\phi_0,...,\phi_n\}$ es un conjunto ortogonal de funciones en [a,b] respecto de w, entonces la aproximación de cuadrados mínimos a f en [a,b] es

$$P(x) = \sum_{k=0}^{n} a_k \phi_k(x)$$
, para $k = 0, ..., n$, donde

$$a_k = \frac{\int_a^b w(x)f(x)\phi_k(x)dx}{\int_a^b w(x)(\phi_k(x))^2 dx}$$

1.7 Relación de recurrencia

El conjunto de funciones polinomiales $\{\phi_0, ..., \phi_n\}$ definido de la siguiente forma ortogonal en [a,b], respecto de la función de w(x)

$$\phi_0(x) = 1, \ \phi_1(x) = x - B_1, \ x \in [a, b], \ donde$$

$$B_1 = \frac{\int_a^b w(x)x(\phi_0(x))^2 dx}{\int_a^b w(x)(\phi_0(x))^2 dx},$$

Para
$$k \ge 2$$

$$\phi_k(x) = (x - B_k)\phi_{k-1}(x) - C_k\phi_{k-2}(x), x \in [a, b], \text{ donde}$$

$$B_k = \frac{\int_a^b w(x)x(\phi_{k-1}(x))^2 dx}{\int_a^b w(x)(\phi_{k-1}(x))^2 dx}, y$$

$$C_k = \frac{\int_a^b w(x)x(\phi_{k-2}(x))^2 dx}{\int_a^b w(x)(\phi_{k-2}(x))^2 dx}$$

1.8 Corolario

Para todo n > 0 el conjunto de funciones gemeradas en el teorema de Relación de recurrencias(anterior) es LI en [a,b] y $\int_a^b w(x)\phi_n(x)\phi_k(x)dx = 0$ con k < n

2 Teoremas con demostracion

2.1 Metodo Biseccion (convergencia)

Si $[a_0, b_0]$, $[a_1, b_1]$,...., $[a_n, b_n]$,.... denotan los sucesivos intervalos del método de bisección, entonces $\exists \lim_{n\to\infty} a_n$, $\lim_{n\to\infty} b_n$ donde son iguales representan una raíz de f.

raíz de f. Si
$$C_n = \left(\frac{a_n + b_n}{2}\right)$$
 y $r = \lim_{n \to \infty} C_n$ entonces $\frac{a_n + b_n}{2}$

$$|r - C_n| \le \left| \frac{1}{2^{(n+1)}} (b_0 - a_0) \right|$$

Dem: Si $[a_0,b_0],[a_1,b_1],...$ son los intervalos del algoritmo de bisección. Entonces

- (1) $a_0 \le a_1 \le \dots \le b_0$
- (2) $b_0 \le b_1 \le \dots \le a_0$
- (3) $b_{n+1} a_{n+1} = \frac{1}{2}(b_n a_n)$

Como sabemos que $\{a_n\}$ es acotada superiormente, además es no decreciente, entonces es convergente (1)

Luego como $\{b_n\}$ es acotada inferiormente, además es no creciente, entonces es convergente (2)

Ademas

$$b_{n+1} - a_{n+1} = \left(\frac{1}{2}\right)(b_n - a_n) = \left(\frac{1}{2^2}\right)(b_{n-1} - a_{n-1}) = \dots = \left(\frac{1}{2^{n+1}}\right)(b_0 - a_0)$$

Entonces

$$\lim_{n \to \infty} (b_{n+1} - a_{n+1}) = (\lim_{n \to \infty} b_{n+1}) - (\lim_{n \to \infty} a_{n+1})$$
$$= \lim_{n \to \infty} \left(\frac{b_0 - a_0}{2^{n+1}}\right) = 0$$

Luego
$$(\lim_{n\to\infty} b_{n+1}) - (\lim_{n\to\infty} a_{n+1}) = 0$$
 entonces $\lim_{n\to\infty} b_{n+1} = \lim_{n\to\infty} a_{n+1} = r$

Veamos que ambos limites tiende a una raíz de f, es decir, veamos que r es una raíz f. Sabemos que $f(a_n)^*f(b_n) \leq 0$

Entonces si tomamos limite, como f es continua, obtenemos que

 $\lim_{n\to\infty} f(a_n) \lim_{n\to\infty} f(b_n) = f(\lim_{n\to\infty} a_n) f(\lim_{n\to\infty} b_n) = f(r)^2 \le 0$

Entonces f(r) = 0, por ende r es una raíz de f

Veamos que $|r - C_n| \le |2^{-(n+1)}(b_0 - a_0)|$

Tenemos que:

$$|r - C_n| \le \left| \left(\frac{1}{2} \right) (b_{n+1} - a_{n+1}) \right| \le \left| \left(\frac{1}{2^2} \right) (b_n - a_n) \right| \le \dots \le \left| \left(\frac{1}{2^{n+1}} \right) (b_0 - a_0) \right|$$

2.2 Metodo Newton (convergencia)

Sea f : $\mathbb{R} \to \mathbb{R}$ una funcion tal que f" es continua y f'(r) $\neq 0$ donde r es raíz de f, entonces existe δ tal que, si el punto inicial de método de Newton X_0 satisface $|r-X_0| \leq \delta$, luego todas las aproximaciones generadas por el algoritmo $\{X_n\}$ satisfacen $|r-X_n| \leq \delta$, la sucesión $\{X_n\}$ converge a r y la convergencia es cuadrática.

$$|X_{n+1} - r| \le C(\delta) |X_n - r|^2$$
 (convergencia cuadrática)

Dem: Sea $e_n = r - X_n$ (error en la etapa n)

En la etapa n+1, tenemos:

$$e_{n+1} = r - X_{n+1} = r - \left(X_n - \frac{f(X_n)}{f'(X_n)}\right) = r - X_n + \frac{f(X_n)}{f'(X_n)} = e_n + \frac{f(X_n)}{f'(X_n)}$$
$$= \left(\frac{e_n f'(X_n) + f(X_n)}{f'(X_n)}\right) (1)$$

Sabemos por Taylor que f
 alrededor de ${\cal X}_n$ tenemos:

f($X_n + h$) = $f(X_n) + f'(X_n)h + \frac{1}{2}f''(\xi_n)h$, luego si tomamos $h = e_n$ obtenemos $X_n + h = X_n + e_n = X_n + (r - X_n)$, por ende $0 = f(r) = (f(X_n) + f'(X_n)e_n + f''(\xi_n)e_n^2)$, ξ_n entre x y r Entonces $f(X_n) + f'(X_n)e_n = -\frac{1}{2}f''(\xi_n)e_n^2$, (2), de (1) y (2) se obtiene: $e_{n+1} = -\frac{1}{2} \frac{f''(\xi_n)}{f'(X_n)} e_n^2$ (3)

Para acotar (3), definimos
$$C(\delta) = \frac{1}{2} \left(\frac{\max_{\{|x-r| \leq \delta\}} |f''(x)|}{\min_{\{|x-r| \leq \delta\}} |f'(x)|} \right)$$

Como f' y f" son continuas alrededor de r, luego |f'(x)| y |f''(x)| alcanzan su mínimo y su máximo, respectivamente en el intervalo cerrado y acotado $[r-\delta,r+\delta]$. Luego dado $\delta>0$, para todo x y ξ talque $|x-r\leq \delta|$ y $|\xi-r|\leq \delta$. Se tiene que $\frac{1}{2} \frac{f''(\xi)}{f'(x)} \le C(\delta)$

Ahora elegimos un δ tan pequeño tal que $\delta C(\delta) < \rho$

Esto es posible si $\delta \to 0$, $C(\delta) \to \frac{1}{2} \frac{f''(r)}{f'(r)}$, bien definido, pues por hipótesis,

 $f'(r) \neq 0$, por lo tanto, $\delta C(\delta) \rightarrow 0$

Supongamos que X_n es tal que $|e_n| = |X_n - r| \le \delta$ Como ξ_n esta entre X_n y r, $|\xi_n - r| \le \delta$ Por def de $C(\delta)$ tenemos $\frac{1}{2} \frac{f''(\xi_n)}{f'(X_n)} \le C(\delta)$. Luego por (3)

$$|e_{n+1}| = \frac{1}{2} \frac{|f''(\xi_n)|}{|f'(X_n)|} e_n^2 \le C(\delta)e_n^2 = C(\delta)|e_n||e_n| \le C(\delta)\delta|e_n| \le \rho|e_n|$$

Luego $X_{n+1}-r=|e_{n+1}|\leq \rho|e_n|<|e_n|\leq \delta$ Por último si X_0 es talque $|X_0-r|\leq \delta$, luego por lo anterior $|e_n|\leq \rho|e_{n+1}|\leq \delta$

Como 0 < ρ < 1 y $e_0 \le \delta$, $\lim_{n \to \infty} f^n = 0$, $\lim_{n \to \infty} |e_n| = 0$ y $\lim_{n \to \infty} X_n = r$

2.3 Propiedades de Punto Fijo

Sea g continua en [a,b]

(1) si $g(a) \in [a, b]$ y $g(b) \in [a, b]$ entonces existe $r \in [a, b]$ tal que g(r) = r

(2) si ademas existe g' tal que $|g(x)| \le k \ \forall x \in (a,b)$ y para algún $k \in (0,1)$, entonces el punto fijo es único en $(a,b) \ \forall x \in (a,b)$

Dem:

- (1) Si g(a) = a ó g(b) = b, entonces nada que probar, si esta no existe, g(a) > a y g(b) < b. Definimos h(x) = g(x) x, h continua, en [a,b], tenemos h(a) = g(a) a > 0, h(b) = g(b) b < 0, por lo tanto por Teorema de Valor Intermedio sabemos que existe $r \in (a,b)$ tal que h(r) = 0, entonces g(r) = r
- (2) Supongamos que existen p y q en [a,b] tal que $g(p)=p,\ g(q)=q,\ \text{con}\ p\neq q$ Por Teorema de Valor Medio, $g(p)-g(q)=g'(\xi)(p-q),\ \text{con}\ \xi$ entre p y q, luego $|p-q|=|g(p)-g(q)|=|g'(\xi)||(p-q)|\leq k|p-q|<|p-q|,\ \text{absurdo,}\ \text{entonces}\ p=q\blacksquare$

2.4 Convergenca de Punto Fijo

Sea g una función tal que $g(x) \in [a, b] \ \forall x \in [a, b]$, ademas supongamos |g'(x)| < k con $0 < k < 1 \ \forall x \in (a, b)$. Entonces para cualquier $p_0 \in [a, b]$, la sucesión definida por $p_n = g(p_{n-1})$, para $n \ge 1$, converge al unico punto fijo en [a,b]

Dem:

Por el teorema anterior sabemos que existe punto fijo p
 en [a,b]. Como la g transforma [a,b] en si mismo, la sucesión $\{p_n\}_n$ esta bien definida $\forall n \geq 0$ y
 $p_n \in [a,b] \forall n$.

Veamos la convergencia:

$$p_n - p = g(p_{n-1}) - g(p) = |g'(\xi_n)||p_{n-1} - p| \le k|p_{n-1} - p|$$
, luego $|p_n - p| \le k|p_{n-1} - p| \le \dots \le k^n|p_0 - p|$, como $0 < k < 1$, entonces $\lim_{n \to \infty} |p_n - p| = 0$

2.5 Unicidad Polinomio Interpolante

Sean $x_0, ..., x_n$ reales tal que $x_0 < ... < x_n$ con $y_0, ..., y_n$ arbitrarias asociadas, entoces existe un único polinomio P(x) tal que $gr(P) \le n$ que interpola a los puntos $x_0, ..., x_n$, es decir $P(x_i) = y_i$, con i = 0, ..., n

Dem:

(1) Interpolación

Veamos unicidad, para ello supongamos que existen dos polinomios de grado $\leq n$ tal que $P_n(x_i) = y_i$ y $Q_n(x_i) = y_i$, para i = 0, ..., n. Sea

 $h_n(x) = P_n(x) - Q_n(x)$, luego es un polinomio de grado $\leq n$ Luego se observa que $h_n(x) = P_n(x) - Q_n(x) = 0$ con i = 0, ..., n, pero como h_n es un polinomio con (n+1) raíces, entonces $h_n(x) = 0 \ \forall x$, por lo tanto $P_n(x) = Q_n(x) \ \forall x$

Veamos existencia, vamos a demostrar su existencia mediante el metodo de

lagrange y Newton, veamos primero el metodo de lagrange.

$$\ell_{i}(x) = \left(\frac{(x - x_{0})(x - x_{1})...(x - x_{i-1})(x - x_{i+1})...(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1})...(x_{i} - x_{i-1})(x_{i} - x_{i+1}...(x_{i} - x_{n}))}\right)$$

$$= \prod_{\substack{j=0\\j\neq i}}^{n} \left(\frac{(x - x_{i})}{(x_{i} - x_{j})}\right)$$

Como sabemos que

$$\ell_i(x_j) = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

Luego
$$P(x) = \sum_{i=0}^{n} Y_i \ell_i(x)$$

Por lo tanto
$$P(x_i) = \sum_{i=0}^{n} Y_i \ell_i(x_i) = Y_i$$

2.6 Error Polinomio Interpolante

Sea $f \in C^{n+1}(a,b)$ y P
 un polinomio de grado
 $\leq n$ que interpola a f en (n+1) puntos distintos $x_0, ..., x_n$ en [a,b]. Entonces para cada $x \in [a, b]$ existe $\xi \in (a, b)$ tal que

$$f(X) - P(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

Dem:

Si $x = x_i$

$$0 = f(x_i) - P(x_i) = \frac{1}{(n+1)!} f^{(n+1)} \xi \prod_{i=0}^{n} (x_i - x_j) = 0, \text{ ya que } i \in \{0, ..., j, ..., n\},\$$

luego vale para $x = x_i$

Si $x \neq x_i$

Sea
$$w(t) = \prod_{i=0}^{n} (t - x_i)$$

$$C = \frac{f(x) - p(x)}{w(x)}$$
, (constante, con $w(t) \neq 0$)

$$\phi(t) = f(t) - P(t) - Cw(t)$$
 (función en t). Por lo tanto

Sea
$$w(t) = \prod_{i=0}^{n} (t - x_i)$$

 $C = \frac{f(x) - p(x)}{w(x)}$, (constante, con $w(t) \neq 0$)
 $\phi(t) = f(t) - P(t) - Cw(t)$ (función en t), Por lo tanto
Luego como $\phi(x_i) = 0$ para cada $i \in \{0, ..., n\}$ y
 $\phi(x) = f(x) - P(x) - Cw(x) = f(x) - P(x) - \frac{f(x) - P(x)}{w(x)}$, luego

2.7 Diferencias Divididas

Las diferencias divididas satisfacen la ecuación $f[x_0,...,x_n]=\frac{f[x_1,...,x_n]-f[x_0,...,x_{n-1}]}{x_n-x_0}$

Dem:

Sea P_{n-1} el polinomio que interpola a f en $x_0,...,x_{n-1}$, con $gr(P_{n-1}) \leq n-1$ Sea Q el polinomio que interpola a f en $x_1,...,x_n$, con $gr(Q) \leq n-1$ Sea P_n el polinomio dado por $P_n(x) = (Q(x) + \frac{x-x_n}{x_n-x_0}(Q(x) - P_{n-1}(x)))(*)$

Veamos que P_n interpola a f en $x_0,...,x_n$, con $gr(P_n) \leq n$ Para i=1,...,n-1 $P_n(x_i)=f(x_i)$, ya que $Q(x_i)+\frac{x_i-x_n}{x_n-x_0}(Q(x_i)-P_{n-1}(x_i))$, como $Q(x_i)=f(x_i)=P_{n-1}(x_i)$, entonces $P_n=Q(x_i)$

Si
$$i = 0$$

 $P_n(x_0) = f(x_0)$, ya que $Q(x_0) + \frac{x_0 - x_n}{x_n - x_0}(Q(x_0) - P_{n-1}(x_0))$
Como $\frac{x_0 - x_n}{x_n - x_0} = -1$, entonces
 $Q(x_0) + \frac{x_0 - x_n}{x_n - x_0}(Q(x_0) - P_{n-1}(x_0)) = P_{n-1}(x_0) = f(x_0)$

Si
$$i=n$$

$$P_n(x_n)=f(x_n), \text{ ya que } Q(x_n)+\frac{x_n-x_n}{x_n-x_0}(Q(x_n)-P_{n-1}(x_n))$$

Como
$$\frac{x_n - x_n}{x_n - x_0} = 0$$
, entonces $Q(x_n) + \frac{x_n - x_n}{x_n - x_0} (Q(x_n) - P_{n-1}(x_n)) = Q(x_n) = f(x_n)$

Luego P_n y (*) son pol de grado $\leq n$ que interpola a f en los (n+1) puntos $x_0, ..., x_n$, por unicidad del polinomio interpolante, P_n y (*) son los mismos polinomios.

Veamos cual es el coeficiente de
$$x^n$$
, como $P_n(x)=Q(x)+\frac{x-x_n}{x_n-x_0}(Q(x)-P_{n-1}(x))$, tenemos $f[x_0,...,x_n]=\frac{f[x_1,...,x_n]-f[x_0,...,x_{n-1}]}{x_n-x_0}$

2.8 Punto que no pertenece a los puntos de interpolación

Sea P el polinomio de grado $\leq n$ que interpola f en los (n+1) nodos $x_0, ..., x_n$ (distintos). Si t es un punto distinto de los nodos, entonces

$$f(t) - P(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i)$$

Dem: Sea Qel polinomio de grado $\leq n+1$ que interpola a f
 en los pintos $x_0,...,x_n,t$. Entoces

$$Q(x) = P(x) + f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i)$$

Como
$$Q(t) = f(t)$$
, obtenemos $f(t) - P(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i) \blacksquare$

2.9 Relacion Diferencias Divididas con derivada n-ésima

Si f es n veces continuamente diferenciable en (a,b) y $x_0,...,x_n$ nodos distintos en [a,b], entonces existe $\xi \in (a,b)$ tal que

$$f[x_0, ..., x_n] = \frac{f^{(n)}(\xi)}{n!}$$

Dem:

Sea P el polinomio de grado $\leq n-1$ que interpola a f en $x_0,...,x_{n-1}$. Por el teorema del error en el polinomio interpolante tenemos

$$f(x_n) - P(x_n) = \frac{f^{(n)}(\xi)}{n!} \prod_{i=0}^{n-1} (x_n - x_i)$$
 (A)

Por el teorema anterior

$$f(x_n) - P(x_n) = f[x_0, ..., x_n] \prod_{i=0}^{n-1} (x_n - x_i)$$
 (B)

Por lo tanto de (A) y (B) se obtiene $f[x_0, ..., x_n] = \frac{f^{(n)}(\xi)}{n!}$

2.10 Error en la interpolacion en un punto

Sea f definida en [a,b], n veces continuamente derivable en [a,b]. Sean $x_0, ..., x_n \in$ [a, b] distintos, $y \in [a, b]$. Entonces

$$\lim_{(x_0,...,x_n)\to(y,...,y)} f[x_0,...,x_n] = \frac{f^{(n)}(y)}{n!}$$

Sabemos que $\exists \xi \in (a, b)$ tal que

$$f[x_0, ..., x_n] = \frac{f^{(n)}(\xi)}{n!}$$

 $\begin{array}{l} f[x_0,...,x_n] = \frac{f^{(n)}(\xi)}{n!} \\ \text{Por ende si } (x_0,...,x_n) \to (y,...,y), \text{ entonces } \xi \to y \end{array}$

Luego tomamos el limite:

$$\lim_{(x_0,...,x_n)\to(y,...,y)} f[x_0,...,x_n] = \lim_{(x_0,...,x_n)\to(y,...,y)} \frac{f^{(n)}(\xi)}{n!} = \frac{f^{(n)}(y)}{n!}$$

Linealmente Indenpendiente

Si ϕ_j es un polinomio de grado j, j=0,...,n, entonces $\{\phi_0,...,\phi_n\}$ es LI en cualquier intervalo [a,b]

Dem:

Sean $C_0, ..., C_n \in \mathbb{R}$ tal que $P(x) = C_0 \phi_0(x) + ... + C_n \phi_n(x) = 0$, para cada $x \in$ [a,b]. Queremos ver que $C_j=0$, para j=0,...,n. Como P(x) se anula para cada $x \in [a, b]$, los coeficientes de cada potencia de x debe ser cero. En particular, el coeficiente de x^n es cero. Como el único término que x^n es $C_n\phi_n(x)$, entonces $C_n = 0$. Luego

 $P(x) = C_0 \phi_0(x) + ... + C_{n-1} \phi_{n-1}(x)$. Repitiendo esto (n-1) veces obtenemos $C_1 = \dots = C_n = 0$

2.12 $A^tAx = A^tb \Leftrightarrow \mathbf{x}$ minimiza cuadrados minimos

Sea $A \in \mathbb{R}^{nxm}, \ x \in \mathbb{R}^m$ con $m \leq n$ es solución del problema de cuadrados mínimos si y solo si

 $A^TAx = A^Tb$ para algun $b \in \mathbb{R}^m$, Ademas si A tiene rango p
mpleto, la solución x es única.

Dem:

Probemos primero \Rightarrow)

Si x es solución del problema de cuadrados minimos debemos ver que resuelve el sistema $A^TAx=A^Tb$, para algún b

Por hipotesis $||b - Ax||^2 \le ||b - Ay||^2$, para todo $y \in \mathbb{R}^m$

Sea y = x + tz con $z \in \mathbb{R}^m$, entonces

$$||b - Ax||^2 \le ||b - Ay||^2 = ||b - A(x + tz)||^2 = ||b - Ax - Atz)||^2$$
, entonces obtenemos

$$0 \le -2t\langle b - Ax, Az \rangle + t^2||Az||^2$$

$$2t\langle b-Ax,Az\rangle \leq t^2||Az||^2$$
, ahora

Si
$$t > 0$$

$$2\langle b - Ax, Az \rangle \le t||Az||^2$$

 $\sin t < 0$

 $t||Az||^2 \le 2\langle b-Ax,Az\rangle$, por ende si tomo el limite de ambos lados

$$\langle b - Ax, Az \rangle = 0$$
, luego

$$0 = (Az)^T(b - Ax) = z^TA^T(b - Ax) = z^T(A^Tb - A^TAx), \text{ entonces}$$

$$A^T - A^TAx = 0, \text{ por lo tanto } A^TAx = A^Tb$$

 \Leftarrow) Probemos que si \bar{x} es solución de $A^TAx=A^Tb$ entonces es minimizador de ||b-Ax||

Quiero ver que $||b - A\bar{x}||^2 \le ||b - Ax||$, para todo $x \in \mathbb{R}^m$

$$||Ax - b||^2 = ||Ax - A\bar{x} + A\bar{x} - b||^2 = ||Ax - A\bar{x}||^2 + 2\langle Ax - A\bar{x}, A\bar{x} - b\rangle + ||A\bar{x} - b||^2$$

Veamos que $0 \le \langle Ax - A\bar{x}, A\bar{x} - b \rangle$

$$\langle A(x-\bar{x}), A\bar{x}-b\rangle = \langle A\bar{x}-b, A(x-\bar{x})\rangle = (A(x-\bar{x}))^T(A\bar{x}-b)$$

$$(x - \bar{x})^T A^T (A\bar{x} - b) = (x - \bar{x})^T (A^T A\bar{x} - A^T b) = 0$$
, por lo tanto

$$||A\bar{x}||^2 \le ||Ax - b||^2$$
, para todo $x \in \mathbb{R}^m$

$A^tAx = A^tbunica$ solucion \Leftrightarrow A rango completo

Preguntar

Error trapecio integracion numerica

Error trapecio =
$$-f''(\xi)\frac{(b-a)^3}{12}$$

(1) Error de interpolación

(2)Teorema de valor intermedio para integrales

$$f(x) - P(x) = {1 \choose 2!} f''(\xi_x)(x-a)(x-b)$$
, donde $\xi_x \in [a,b]$

Ahora
$$\int_{a}^{b} f(x) - P(x)dx = \frac{1}{2!} \int_{a}^{b} f''(\xi_{x})(x-a)(x-b)dx$$

$$=^{(2)} \frac{1}{2!} f''(\xi_x) \int_a^b (x-a)(x-b) dx = -f''(\xi) \frac{(b-a)^3}{12} \blacksquare$$

Error simpson integracion numerica

Error simpson =
$$-\frac{(b-a)^5}{90}f^{(4)}(\xi)$$

El termino de error en la regla de simpson se puede establecer usando la serie

$$f(a+h) = f + hf' + \frac{1}{2!}h^2f'' + \dots$$
, luego por sustitución obtenemos

$$f(a+2h)=f+2hf'+\frac{1}{2!}2h^2f''+...,$$
 con estas 2 series se obtiene

$$f(a) + 4f(a+h) + f(a+2h) = 6f + 6hf' + 4h^2f'' + ...,$$
y asi tenemos

$$\frac{h}{3}[f(a)+4f(a+h)+f(a+2h)]=2hf+2h^2f'+\frac{4}{3}h^3f''+...,$$
luego por serie de Taylor

$$F(a+2h)=F(a)+2hF^{\prime}(a)+2h^2F^{\prime\prime}(a)+\dots$$

Sea
$$F(x) = \int_a^x f(t)dt$$
, por el teorema fundamenta del calculo, $F' = f$, obtenemos

$$\int_a^{a+2h} f(x)dx = 2hf + 2h^2f' + \frac{4}{3}h^3f'' + \dots, \text{ luego}$$

$$\int_a^b f(x)dx \approx \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right], \text{ con el termino de error}$$

$$-\frac{1}{90} \left(\frac{b-a}{2}\right)^5 f^{(4)}(\xi), \text{ para algun } \xi \text{ en (a,b), ya que}$$

$$\mathcal{O}(h^5) = -\frac{h^5}{90} f^{(4)}(\xi) \blacksquare$$

2.16 Teorema Regla Cuadratura gaussiana

Sea w(x) > 0, q(x) un polinomio distinto de cero y
de grado n+1 que es ortogonal a \prod_n , esto es

$$\int_{a}^{b} q(x)p(x)w(x)dx = 0, \text{ para todo } p \in \prod_{n},$$

si $x_0, ..., x_n$ son los ceros de q(x), entonces $\int_a^b f(x)w(x)dx$ es exacto para \prod_{2n+1}

Sea $f \in \prod_{2n+1}$, con

$$f \equiv qP + r$$
, con $P, r \in \prod_{2n+1}$, luego

$$f(x_i) = q(x_i)P(x_i) + r(x_i) = r(x_i)$$
, ya que $q(x_i) = 0$

Por lo tanto
$$\int_a^b f(x)w(x)dx = \int_a^b (q(x)P(x)+r(x))w(x)dx = \int_a^b r(x)w(x)dx = \sum_{i=0}^n r(x_i)A_i = \sum_{i=0}^n f(x_i)A_i$$

2.17 Teorema de numeros de cambio de signo int numerica

Sea w(x) > 0, sea f distinta de cero y continua en $a = t_0 < ... < t_n = b$, donde P es w-ortogonal a \prod_n , entonces f cambia de signo n+1 veces en el (a,b) Dem:

Veamos que existe un cambio de signo en el (a,b), sabemos que $1 \in \prod_n$, luego

 $\int_{a}^{b} f(x)w(x)dx = 0, \text{ entonces f tiene al menos un cero en (a,b)}.$

Aĥora veamos que hay n+1 cambios de signo

Supongamos que hay $r \leq n$ cambios de signo y sean $t_0, ..., t_{r+1}$ donde ocurre un cambio de signo, luego

f tiene un signo $[t_0, t_1)$

f tiene un signo (t_1, t_2)

f tiene un signo $[t_r, t_{r+1})$

Ahora, sea

$$P(x) = \prod_{i=1}^{r} (x - t_i)$$
, entoces $gr(P) \le r \le n$

Como P(x) cambia de signo en los mismos intervalos que f, tiene los mismos

$$\int_a^b f(x)P(x)w(x)dx \neq 0$$
, absurdo, pues f es ortogonal a P por hipotesis

por lo tanto
$$\int_a^b f(x)P(x)w(x)dx = 0$$
, por lo tanto $n+1 \le r \blacksquare$

2.18 Convergencia de Gauss Seidel

Si A tiene dominio diagonal, entonces los metodos de Gauss-Seidel converge

Sea $\delta(I-Q^{-1}A)<1$, sea x un autovector de autovalor λ y $||x||_{\infty}=1$, entonces $(I-Q^{-1}A)x=\lambda x$ ó $Qx-Ax=\lambda Qx$, luego

$$-Ux = \lambda Qx$$

$$-\sum_{j\neq i+1}^{n} a_{ij}x_{j} = \lambda \sum_{j=1}^{i} a_{ij}x_{j} = \lambda a_{ii} + \lambda \sum_{j=1}^{i-1} a_{ij}x_{j}, \text{ con } 1 \le i \le n$$

$$\begin{split} \lambda a_{ii} x_i &= -\sum_{j=i+1}^n a_{ij} x_j - \lambda \sum_{j=1}^{i-1} a_{ij} x_j \\ \text{Sea k tal que } |x_\ell| &\leq |x_k| = 1 \text{, para todo } \ell \text{, luego sea } i = k \end{split}$$

$$|\lambda||a_{kk}| \le \sum |a_{kj}| + |\lambda| \sum_{j=1}^{k-1} |a_{kj}|$$
, por lo tanto

$$|\lambda| \le \frac{\sum\limits_{j=k+1}^{n} |a_{kj}|}{\left(|a_{kk}| - \sum\limits_{j=1}^{k-1} |a_{kj}|\right)} < 1$$

Entonces $\delta(I-Q^{-1}A) < 1$, veamos que Gauss-Seidel converge

$$|a_{kk}| > \sum_{j < k} |a_{kj}| + \sum_{j > k} |a_{kj}|$$
, luego

$$|a_{kk}| - \sum_{j < k} |a_{kj}| > \sum_{j > k} |a_{kj}|$$

$$1 > \frac{\sum\limits_{j>k} |a_{kj}|}{|a_{kk}| - \sum\limits_{j< k} |a_{kj}|}, \text{ por lo tanto converge} \blacksquare$$