Lecture 12 - Discrete Q-learning

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning Course Page: [Click]

Model-based v.s. Model-free Algorithms

The model indicates the transition function and the reward function. This estimation could be in form of point estimation or distribution estimation like posterior sampling.

- Model-based Algorithm: maintains an estimate of the model and uses the model when interacting with the environment.
- Model-free Algorithm: does not estimate the world model.

When we do not have a reasonable estimation of the model (under large state and action spaces and continuous settings), an error will be induced by a wrongly estimated model as the model bias (maybe accumulate during learning).

Q-Learning

We start with the value iteration algorithm and discuss how the model could be lifted.

Algorithm 1: Value iteration

Q-Learning

- The terms $\sum_{s' \in S} P(s' \mid s, a) V(s')$ and $\sum_{s' \in S} P(s' \mid s, a) V^*(s')$ could remove the dependency on P by representing the action values.
- Introducing the step size so that the update only takes at α portion of the action value while the $1-\alpha$ portion of the action value remains the same.

```
Algorithm 2: Q-learning
Input: \epsilon, \alpha
For all (s, a) \in \mathcal{S} \times \mathcal{A}, Q'(s, a) \leftarrow 0, Q(s, a) \leftarrow \infty
while ||Q - Q'||_{\infty} > \epsilon do
     Q \leftarrow Q'
     Sample a trajectory \tau from the policy \pi(a \mid s) = \arg \max Q(s, a)
     For all state-action-reward-state tuple (s, a, r, s') \in \tau,
      Q'(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \max_{a' \in A} [r + \gamma Q(s', a')]
Q^* \leftarrow Q for all (s, a) \in \mathcal{S} \times \mathcal{A}
                                                                                                                                    (深圳)
\pi^* \leftarrow \arg\max Q(s, a)
                                                                                                                                   f Hong Kong, Shenzhen
return Q^*(s,a), \pi^*(s) for all s, a
```

Q-Learning

Q Learning in Grid World.

香港中文大學(深圳)

The Chinese University of Hong Kong, Shenzhen

Exploration and arepsilon-greedy Q-learning

In Q-learning, the trajectory sampled is subject to the current policy and thereof the current value estimation. However,

- It is possible that the algorithm is stuck at a suboptimal action value estimate and does not update itself.
- It is possible that some states are never explored with some initialization of the policy and value functions.

A simple way of involving exploration is to force the algorithm to select a random action with probability ε . This ε could delay over the iterations, as is in the ε -greedy algorithm for multi-armed bandits.

Exploration and arepsilon-greedy Q-learning

Algorithm 3: Q-learning with ε -greedy exploration

Input:
$$\epsilon$$
, α
For all $(s, a) \in S \times A$, $Q'(s, a) \leftarrow 0$, $Q(s, a) \leftarrow \infty$
while $||Q - Q'||_{\infty} > \epsilon$ do

Sample a trajectory τ from the policy

$$\pi(a \mid s) = \begin{cases} \arg\max_{a \in A} Q(s, a) & \text{with probability } 1 - \varepsilon \\ \operatorname{random action} & \text{with probability } \varepsilon \end{cases}$$

For all state-action-reward-state tuple $(s, a, r, s') \in \tau$, $Q'(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \max_{a' \in \mathcal{A}} [r + \gamma Q(s', a')]$ $Q^* \leftarrow Q \text{ for all } (s, a) \in \mathcal{S} \times \mathcal{A}$

$$Q^* \leftarrow Q$$
 for all $(s, a) \in \mathcal{S} \times \mathcal{A}$
 $\pi^* \leftarrow \arg\max_{a} Q(s, a)$

return
$$Q^*(s,a), \ \pi^*(s)$$
 for all s,a

采圳) Iong Kong, Shenzhen

Q-learning with UCB

In spite of simplicity, ε -greedy Q-learning does not have a rigorous regret guarantee.

- We present another variant of Q-learning with UCB exploration. This algorithm is the first Q-learning variant that has a rigorous regret guarantee of \sqrt{K} .
- We again use $Q_h(s,a)$ as the time-dependent action-value function, which is necessary when the horizon of each episode is constant.

Q-learning with UCB

Algorithm 4: Q-learning with UCB exploration

Input: α : adaptive step size; p: probability tolerance

Initialize $Q_h(s,a) \leftarrow H, N_h(s,a) \leftarrow 0$

while $k \leq K - 1$ do

Start an episode with s_0

for $h \leq H - 1$ do

Take action $a_h^k = \arg \max_a Q_h(s_h^k, a)$ and observe s_{h+1}^k

 $N_h(s_h^k, a_h^k) \leftarrow N_h(s_h^k, a_h^k) + 1$

Update the action value as

$$Q_h(s_h^k, a_h^k) \leftarrow (1 - \alpha)Q_h(s_h^k, a_h^k) + \alpha \left[r_h(s_h^k, a_h^k) + V_{h+1}(s_{h+1}^k) + c\sqrt{\frac{H^3 \log(nmHK/\delta)}{N_h(s_h^k, a_h^k)}} \right]$$

Update the state value as

$$V_h(s_h^k) = \min\left\{\max_a Q_h(s_h^k, a), H\right\}$$

$$\begin{aligned} Q_h^* &\leftarrow Q_h \\ \pi_h^* &\leftarrow \arg\max_a Q_h(s,a) \\ \mathbf{return} \ Q_h^*, \ \pi_h^* \ \text{for all} \ h \in [H] \end{aligned}$$

深圳) Hong Kong, Shenzhen

Q-learning with UCB

Theorem

By choosing $\alpha = \frac{H+1}{H+N}$ with the visitation count $N = N_h(s_h^k, a_h^k)$, there exists an absolute constant c such that with probability at least $1-\delta$ the regret of Q-learning with UCB exploration is at most $O(\sqrt{nmH^5K\log(nmHK/\delta)})$.

The proof relies on the cast of the variables into a filtration and therefore the use of the Azuma-Hoeffding inequality (introduced in LN3). For those students that are interested in the proof we could host you with a presentation of it.

Question and Answering (Q&A)

