LOGVINENKO-SEREDA THEOREM ON HIGHER DIMENSIONS

YUNLEI WANG

Contents

1.	Poisson kernel for higher dimensions	1
2.	Poisson-Jensen Formula in general form	2
3.	Logvinenko-Sereda Theorem in higher dimension spaces	3
4.	Logvinenko-Sereda Theorem in manifolds	4
References		5

1. Poisson kernel for higher dimensions

Consider the steady-state heat equation in the upper half-space $\left\{x\in\mathbb{R}^d,y>0\right\}$

$$\sum_{j=1}^{d} \frac{\partial^2 u}{\partial x_j^2} + \frac{\partial^2 u}{\partial y} = 0$$

with the Dirichlet boundary condition u(x,0) = f(x). A solution to this problem is given by the convolution

$$u(x,y) = (f * P_y^{(d)}(x))$$
(1.1)

where $P_y^{(d)}(x)$ is the *d*-dimensional Poisson kernel

$$P_y^{(d)}(x) := \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} e^{-2\pi |\xi| y} \, \mathrm{d}\xi.$$
 (1.2)

By using the subordination principle and the d-dimensional heat kernel, we obtain

$$P_y^{(d)}(x) = \frac{\Gamma((d+1)/2)}{\pi^{(d+1)/2}} \frac{y}{(|x|^2 + y^2)^{(d+1)/2}}.$$
 (1.3)

E-mail address: wcghdwyl@gmail.com.

Y. WANG

2. Poisson-Jensen Formula in General form

Definition 2.1. The function $g(x, \xi, D)$ is said to be a Green's function of x with respect to the bounded domain D in \mathbb{R}^m and the point ξ of D, if

- (i) g is a harmonic function of x in D except at the point $x = \xi$;
- (ii) g is continuous in \overline{D} except at $x = \xi$ and g = 0 on the boundary of D;
- (iii) $g + \log |x \xi|$ remains harmonic at $x = \xi$ if m = 2, $g |x \xi|^{2-m}$ remains harmonic at $x = \xi$ if m > 2..

Theorem 2.1. Suppose that D is a bounded regular domain in \mathbb{R}^m with boundary ∂D . Then for every x in D and Borel set e on ∂D there exists a number $\omega(x,e)$ with the following properties

- (i) For fixed $x \in D$, $\omega(x, e)$ is a Borel measure on ∂D and $\omega(x, \partial D) = 1$.
- (ii) For fixed $e \subset \partial D$, $\omega(x, e)$ is a harmonic function of x in D.
- (iii) If $f(\xi)$ is a semi-continuous function defined on ∂D then

$$u(x) = \int_{\partial D} f(\xi) d\omega(x, e_{\xi})$$
 (2.1)

is the harmonic extension of $f(\xi)$ to D. The measure $\omega(x,e) = \omega(x,e,D)$ will be called the harmonic measure of e at x with respect to D.

Theorem 2.2. Suppose that D is a bounded regular domain in \mathbb{R}^m whose boundary ∂D has zero m-dimensional Lebesgue measure, and that u(x) is s.h. and not identically $-\infty$ on $D \cup \partial D$. Then we have for $x \in D$

$$u(x) = \int_{\partial D} u(\xi) d\omega(x, e_{\xi}) - \int_{D} g(x, \xi, D) d\mu e_{\xi}, \qquad (2.2)$$

where $\omega(x,e)$ is the harmonic measure of e at x, $g(x,\xi,D)$ is the Green's function of D and $d\mu$ is the Riesz measure of u in D.

In particular, we can set D as the upper half-space

$$\mathbb{H}^{d+1} := \left\{ x \in \mathbb{R}^d, y > 0 \right\}.$$

The boundary is

$$\partial \mathbb{H}^{d+1} = \left\{ x \in \mathbb{R}^d, y = 0 \right\} = \mathbb{R}^d.$$

And the harmonic measure $P_y^{(d)} := \omega(x, y, e_{\xi})$ is

$$P_y^{(d)}(x) = c_d \frac{y}{(|x|^2 + y^2)^{(d+1)/2}}$$
(2.3)

with $c_d = \frac{\Gamma((d+1)/2)}{\pi^{(d+1)/2}}$.

3. Logvinenko-Sereda Theorem in higher dimension spaces

Theorem 3.1 (Logvinenko-Sereda). Given any function $f \in L^2(\mathbb{R}^d)$, $d \geq 2$ and $\operatorname{spec} f \subset [-R, R]^d$, then we have

$$\int_{\mathbb{R}^d} |f|^2 \, \mathrm{d}x \le C \int_S |f|^2 \, \mathrm{d}x \tag{3.1}$$

where S is a γ -thick set and C depends only on γ , R and d.

Proof. From now on, we always consider functions f of the space

$$H^2(\mathbb{R}^d) := \left\{ f(x) := \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} F(\xi) \, \mathrm{d}\xi : \mathrm{supp} F(\xi) \subset [0, \infty)^d \text{ and } \|F\|_{L^2(\mathbb{R}^d)} < \infty \right\}.$$

To prove the Logvinenko-Sereda Theorem in \mathbb{R}^d , $d \geq 2$, we can view the function f as a multivariable holomorphic function $f(z_1, z_2, \dots, z_d)$. For example, in 2-dimensional case, we consider function $f(z_1, z_2)$ in domain $\mathbb{H} \times \mathbb{H}$, or a function in domain $\mathbb{D} \times \mathbb{D}$ by conformal transformation. Indeed, the key step in the proof of the theorem in \mathbb{R} is the following inequality for all $f \in H^2(\mathbb{R})$

$$\log |(P_1^{(1)} * f)(x)| \le (P_1^{(1)} * \log |f|)(x). \tag{3.2}$$

Now consider any function $f \in H^2(\mathbb{R}^2)$, then we have the multivariable holomorphic function

$$f(z_1, z_2) = \int_{\mathbb{R}^2} e^{2\pi i z_1 \xi_1} e^{2\pi i z_2 \xi_2} F(\xi_1, \xi_2).$$

Then by using (3.2) twice we obtain

$$\log \left| \left(P_1^{(1)}(x_2) * \left(P_1^{(1)}(x_1) * f \right) \right)(x) \right| \le \left(P_1^{(1)}(x_2) * \left(\log \left| P_1^{(1)}(x_1) * f \right| \right) \right)(x)$$

$$\le \left(P_1^{(1)}(x_2) * \left(P_1^{(1)}(x_1) * \log \left| f \right| \right) \right)(x).$$

Here, the term $P(f)(x) := \left(P_1^{(1)}(x_2) * \left(P_1^{(1)}(x_1) * f\right)\right)(x)$ can be written as

$$P(f)(x) = \frac{1}{\pi^2} \int_{\mathbb{R}} \frac{\mathrm{d}t_2}{1 + (x_2 - t_2)^2} \int_{\mathbb{R}} f(t_1, t_2) \frac{\mathrm{d}t_1}{1 + (x_1 - t_1)^2}.$$
 (3.3)

Then we have the similar inequality

$$\log |P(f)(x)| \le (P(\log |f|))(x). \tag{3.4}$$

And the rest is to prove that

S is a γ -thick set if and only if $P(\chi_S)(x) \ge \gamma' > 0$ for any $x \in \mathbb{R}^d$.

The proof is exactly the same as 1-dimensional case.

4 Y. WANG

We have mentioned that in 1-dimension, we need the inequality

$$\log |P(f)(x)| \le (P(\log |f|))(x). \tag{3.5}$$

This inequality can be derived from the Poisson-Jensen's Formula, since $u(z) = \log |f(z)|$ is a subharmonic function given f(z) in hardy space. However, the key step (3.5) of the proof of the Logvinenko-Sereda Theorem for $d \geq 2$ is established by reducing the inequality to 1-dimensional case.

If we can prove that the harmonic extension u of any $f \in H^2(\mathbb{R}^d)$ is log-subharmonic (i.e., $\log |u|$ is subharmonic), then we can establish the inequality

$$\log |\left(P_y^{(d)} * f\right)|(x) \le \left(P_y^{(d)} * \log |f|\right)(x)$$

directly through the Poisson-Jensen's Formula. Hence the L-S Theorem can be achieved if the following conjecture is true:

Conjecture. The harmonic extension of any $f \in H^2(\mathbb{R}^d)$ is log-subharmonic.

4. Logvinenko-Sereda Theorem in manifolds

To generalize the proof of the L-S Theorem in a Riemannian manifold (M, g), we need to

- (i) Define the Paley-Wiener space. For example, in closed manifolds, use $X_L := \text{span } \{\phi_i : \Delta_a \phi_i = -\lambda_i \phi_i, \lambda_i \leq L\}$ to replace $H^2(\mathbb{R}^d)$.
- (ii) Define the harmonic extension u of $f \in X_L$ in manifold $N := M \times \mathbb{R}_{\geq 0}$, $\partial N = M$. For closed manifolds, let $k_L = \dim X_L$ and $f = \sum_{i=1}^{k_L} \beta_i \phi_i$, then we can define the harmonic extension

$$u(x,t) = \sum_{i=1}^{k_L} \beta_i \phi_i e^{-\sqrt{\lambda_i}t}.$$
 (4.1)

Then we need to give a similar Poisson-Jensen's Formula

$$u(x) = \int_{M} u(\xi) d\omega(x, e_{\xi}) - \int_{N} g(x, \xi, N) d\mu e_{\xi}$$

$$(4.2)$$

for any subharmonic function u.

- (iii) Prove that the harmonic extension u of f is log-subharmonic. This step, together with the Poisson-Jensen's Formula, is not necessary if we can get the inequality (3.5) by other ways.
- (iv) Give the definition of L-S thick set.

Remark 4.1. (1) The symbol P(f) in (3.5) now represents the harmonic extension of f with respect to some fixed point. (2) The condition of bounded spectrum is necessary for the theorem since we need $||f||_{L^2(M)} \leq C||P(f)||_{L^2(M)}$.

For closed manifolds, the paper [2] gives the definition of L-S thick set and L-S Theorem. However, the proof of the theorem is based on a contradiction argument, hence cannot give an explicit constant.

In particular, for sphere \mathbb{S}^d , the paper [1] gives an explicit constant based on the fact that the eigenfunctions are spherical polynomials.

References

- [1] Alexander Dicke and Ivan Veselic. Spherical logvinenko-sereda-kovrijkine type inequality and null-controllability of the heat equation on the sphere. arXiv preprint arXiv:2207.01369, 2022.
- [2] Joaquim Ortega-Cerdà and Bharti Pridhnani. Carleson measures and logvinenko-sereda sets on compact manifolds. In *Forum Mathematicum*, volume 25, pages 151–172. De Gruyter, 2013.