Université de Lille1 - FIL - MIAGE FA-FC M1

2008-2009

Partiel de Recherche Opérationnelle

Documents autorisés - Durée : 1h40

Exercice 1

On considère un projet composé de 5 tâches dont les durées et les contraintes de précédence sont données dans le tableau ci-après.

Tâche	Durée (en semaines)	Contraintes
A	6	-
В	3	Au plus tôt à la fin de A
C	4	Au plus tôt à la fin de A
D	8	Au plus tôt à la fin de B et C
E	3	Au plus tôt 2 semaines après la fin de B

- 1. Donner le graphe PERT du projet.
- 2. Donner l'ordonnancement au plus tôt, au plus tard, ainsi que le chemin et les tâches critiques du projet.
- 3. Proposer une modélisation du problème d'ordonnancement au plus tôt sous forme de programme linéaire et l'appliquer au projet ci-dessus.

Exercice 2

On considère le graphe orienté à 6 sommets et 8 arcs représenté par le tableau ci-dessous dont les valeurs désignent les poids associés aux arcs.

	Α	В	С	D	Е	F
Α	-	6	2	-	-	-
В	-	-	1	3	-	-
С	-	-	-	-	7	-
D	-	-	3	-	-	2
E	-	-	-	-	-	7
F	-	-	-	-	-	-

- 1. Montrer que le graphe représente un réseau de transport.
- 2. Trouver la valeur du flot maximum pouvant passer dans le réseau.
- 3. Proposer une modélisation du problème de recherche du flot maximum dans un réseau de transport sous forme de programme linéaire et l'appliquer au réseau ci-dessus.

Exercice 3

Pour bien fonctionner, une firme a besoin d'un nombre d'employés différent suivant le jour de la semaine. Le tableau ci-dessous montre le nombre minimum d'employés dont la firme a besoin pour chaque jour de la semaine. Il est exigé que chaque employé travaille 5 jours consécutifs et prend 2 jours de congé. Par exemple, un employé travaillant de mardi à samedi doit être en congé dimanche et lundi. La firme souhaite satisfaire ses besoins en employés en minimisant leur nombre.

Jour	Nombre d'employés requis
Jour 1 (Lundi)	17
Jour 2 (Mardi)	13
Jour 3 (Mercredi)	15
Jour 4 (Jeudi)	19
Jour 5 (Vendredi)	14
Jour 6 (Samedi)	16
Jour 7 (Dimanche)	11

Proposer une modélisation de ce problème sous forme d'un programme linéaire.

Exercice 4

1. Donner la représentation graphique de l'espace des solutions réalisables pour le programme linéaire suivant :

Max
$$z = 2x_1 + x_2$$

 $-x_1 - x_2 \ge -3$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

- 2. Résoudre le problème par la méthode graphique.
- 3. Vérifier le résultat obtenu à la question précédente par la méthode du simplexe.
- 4. Trouver le dual du programme linéaire.