

CLAIMS

What is claimed is:

- 1 1. A fuel processor for generating a H₂ rich gas from a fuel,
2 comprising:
 - 3 (a) an inlet projecting through an exterior housing of the fuel
4 processor attached to a steam line, an O₂ rich gas line, and a fuel line;
 - 5 (b) an inner reforming zone comprising a sidewall, a first end
6 connected to the inlet, a partial oxidation catalyst and a steam reforming catalyst or a
7 combined partial oxidation and steam reforming catalyst, and a second end;
 - 8 (c) an outer reforming zone comprising the sidewall of the inner
9 reforming zone, an outer sidewall, a first end connected to the second end of the inner
10 reforming zone, and a second end;
 - 11 (d) a cooling zone comprising a first end connected to the second end
12 of the outer reforming zone and a second end;
 - 13 (e) a sulfur removal zone comprising a sulfur removal agent, a first
14 end connected to the second end of the cooling zone, and a second end; and
 - 15 (f) a water-gas-shift zone comprising a catalyst that catalyzes the
16 conversion of carbon monoxide and water to carbon dioxide and H₂, a first end connected
17 to the second end of the sulfur removal zone, and a second end connected to an outlet of
18 the fuel processor.
- 1 2. The fuel processor of claim 1, wherein the cooling zone further
2 comprises an injection tube that allows water to be directly injected into the cooling zone.
- 1 3. The fuel processor of claim 1, wherein the outer reforming zone
2 further comprises a partial oxidation catalyst and a steam reforming catalyst or a
3 combined partial oxidation and steam reforming catalyst.

1 4. The fuel processor of claim 1, wherein the inner reforming zone
2 comprises a combined partial oxidation and steam reforming catalyst comprising a
3 transition metal and an oxide-ion conducting portion, further wherein the transition metal
4 is selected from the group consisting of platinum, palladium, ruthenium, rhodium,
5 iridium, iron, cobalt, nickel, copper, silver, gold, and combinations thereof, and the
6 oxide-ion conducting portion is selected from the group consisting of ceramic oxides
7 crystallizing in the fluorite structure, LaGaO_3 , and mixtures thereof.

1 5. The fuel processor of claim 4, wherein the combined partial
2 oxidation and steam reforming catalyst is platinum on gadolinium doped ceria.

1 6. The fuel processor of claim 1, wherein the sidewall of the inner
2 reforming zone and the outer sidewall of the outer reforming zone are formed from
3 stainless steel.

1 7. The fuel processor of claim 1, further comprising a steam heating
2 zone disposed between at least a portion of the outer reforming zone and at least a portion
3 of the water-gas-shift zone.

1 8. The fuel processor of claim 1, further comprising an air heating
2 zone disposed between at least a portion of the water-gas shift zone and the exterior
3 housing of the fuel processor.

1 9. The fuel processor of claim 1, wherein the sulfur-removal agent
2 comprises zinc oxide.

1 10. The fuel processor of claim 1, wherein the catalyst in the water-
2 gas-shift zone comprises a noble metal on ceria, wherein the noble metal is selected from
3 the group consisting of ruthenium, rhodium, palladium, platinum, and combinations
4 thereof.

- 1 11. A fuel processor for generating a H₂ rich gas from a fuel,
- 2 comprising:
 - 3 (a) an inlet projecting through an exterior housing of the fuel
 - 4 processor into a mixing zone, the inlet attached to a steam line and a fuel line;
 - 5 (b) an inner reforming zone comprising a sidewall, a first end
 - 6 connected to the inlet, and a second end;
 - 7 (c) an inner tube attached to an O₂ rich gas line and at least partially
 - 8 surrounded by the inner reforming zone;
 - 9 (d) an outer reforming zone comprising the sidewall of the inner
 - 10 reforming zone, an outer sidewall, a first end connected to the second end of the inner
 - 11 reforming zone, and a second end;
 - 12 (e) a cooling zone comprising a first end connected to the second end
 - 13 of the outer reforming zone and a second end;
 - 14 (f) a sulfur removal zone comprising a first end connected to the
 - 15 second end of the cooling zone, and a second end; and
 - 16 (g) a water-gas-shift zone comprising a first end connected to the
 - 17 second end of the sulfur removal zone, and a second end connected to an outlet of the
 - 18 fuel processor.
- 1 12. The fuel processor of claim 11, wherein the water-gas-shift zone
- 2 further comprises a first water-gas-shift zone and a separate second water-gas-shift zone,
- 3 further wherein the first water-gas-shift zone comprises a first end connected to the
- 4 second end of the sulfur removal zone and a second end, and further wherein the second
- 5 water-gas-shift zone comprises a first end connected to the second end of the first water-
- 6 gas-shift zone and a second end connected to the outlet of the fuel processor.
- 1 13. The fuel processor of claim 12, further comprising a cooling tube
- 2 having an inlet and an outlet and extending through the second water-gas-shift zone.

1 14. The fuel processor of claim 11, wherein the inner tube extends into
2 the mixing zone.

1 15. The fuel processor of claim 11, further comprising a steam inlet
2 extending through the exterior housing of the fuel processor and connected to a pipe that
3 extends through the fuel processor to a steam outlet, the steam outlet connected to a
4 steam line that is connected to the inlet projecting through the exterior housing of the fuel
5 processor into the mixing zone.

1 16. The fuel processor of claim 11, further comprising a fuel inlet
2 connected to a fuel line that runs through the fuel processor or around the exterior
3 housing of the fuel processor to a fuel outlet, wherein the fuel outlet is connected to a fuel
4 line that is connected to the inlet projecting through the exterior housing of the fuel
5 processor into the mixing zone.

1 17. The fuel processor of claim 11, wherein the cooling zone
2 comprises a coiled coolant tube that extends through the cooling zone.

1 18. The fuel processor of claim 11, wherein the inner reforming zone
2 comprises a partial oxidation catalyst and a steam reforming catalyst or a combined
3 partial oxidation and steam reforming catalyst.

1 19. The fuel processor of claim 18, wherein the inner reforming zone
2 comprises a combined partial oxidation and steam reforming catalyst, the combined
3 partial oxidation and steam reforming catalyst comprising a transition metal and an
4 oxide-ion conducting portion, wherein the transition metal is selected from the group
5 consisting of platinum, palladium, ruthenium, rhodium, iridium, iron, cobalt, nickel,
6 copper, silver, gold, and combinations thereof, and the oxide-ion conducting portion is
7 selected from the group consisting of ceramic oxides crystallizing in the fluorite
8 structure, LaGaO₃, and mixtures thereof.

1 20. The fuel processor of claim 19, wherein the combined partial
2 oxidation and steam reforming catalyst comprises platinum on gadolinium doped ceria.

1 21. The fuel processor of claim 11, wherein the sidewall of the inner
2 reforming zone and the outer sidewall of the outer reforming zone are formed of stainless
3 steel.