Übungsblatt 09

Aufgabe 01

Betrachten Sie das "Wikinger"-Beispiel aus der Vorlesung.

Nehmen Sie an, dass die Reihenfolge in Zahlen 3, 2 und 1 ausgedrückt werden kann, also schätzt z.B. ein Wikinger Carlsberg mit 3 Einheiten, Becks mit 2 und Astra mit 1 Einheit.

Teilaufgabe a - Setting

- Wähler N = {1, . . . , n}
- Ergebnisse O = {Astra, Becks, Carlsberg}
- Typen:
 - Nordlicht (nl): Astra > Becks > Carlsberg
 - Hanseat (ha): Becks > Astra > Carlsberg
 - Wikinger (wi): Carlsberg > Becks > Astra
- Verteilung P(nl) = P(ha) = 0.49, P(wi) = 0.02

In einem Profil a_{-wi} = [a, a, –, b, b] bezeichneten wir b als beste Antwort von wi. Bestätigen Sie rechnerisch, dass b den höchsten erwarteten Nutzen bringt.

- Nordlicht (nl): Astra > Becks > Carlsberg
 Hanseat (ha): Becks > Astra > Carlsberg
 Wikinger (wi): Carlsberg > Becks > Astra
- Aktionsprofil: $a_{-w} = [a, a, -, b, b]$

$$\mathbb{E}(u(a)) = 1$$
, weil Astra mit 3: 2 Stimmen gewählt wird $\mathbb{E}(u(b)) = 2$, weil Becks mit 3: 2 Stimmen gewählt wird $\mathbb{E}(u(c)) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 = 1.5$

weil zwischen Astra und Becks gelost wird

⇒ Nutzen bei b ist am größten, also wählt der Wikinger b!

Geben Sie ein Equilibrium in reinen Strategien für |N| ≥ 5 an.

gesucht: Gleichgewicht in reinen Strategien

Lösung: Profil
$$a = [a, ..., a, b, ..., b, b, ..., b]$$
 mit $\mathbb{P}(nl) = \mathbb{P}(ha) = 0.49, \mathbb{P}(wi) = 0.02$

- Nordlichter werden nicht wechseln, da sie bereits für Astra stimmen und Becks (mit höchster Gewinnchance) ihre zweitbeste Alternative wäre
- Hanseaten werden nicht wechseln, da sie bereits für Becks stimmen und Astra (das gewinnen kann falls es zufällig genügend Nordlichter sind) ihre zweitbeste Alternative wäre
- Wikinger werden nicht wechseln, da Carlsberg chancenlos ist und sie deshalb ihre zweitbeste Alternative unterstützen werden
- ⇒ kein Agent kann sich verbessern
- $\Rightarrow a$ ist Nash-Gleichgewicht

Gibt es eine dominante Strategie für w, falls |N| = 3 gilt?

gesucht: dominante Strategie für wi bei |N| = 3

ha+nl wi	AA	AB	AC	ВВ	ВС	СС
А	1*	1	1	2*	2	3*
В	1*	2*	2	2*	2	3*
С	1*	2*	3*	2*	3*	3*

Für wi ist c eine dominante Strategie bei |N| = 3, da die Auszahlung stets mindestens so hoch ist wie bei anderer Wahl.

Gehen Sie von der Population N = {w, h, n} mit genau einem Wikinger, einem Hanseaten und einem Nordlicht aus.

Welches Aktionsprofil ist ein Nash-Equilibrium in reinen Strategien?

Welche soziale Auswahlfunktion wird dadurch implementiert?

gesucht: Gleichgewicht in reinen Strategien für |N| = 3

<u>Lösung:</u> Profil a = [c, b, a]

- Der Wikinger hat Auszahlung $\frac{1}{3} \cdot (3 + 2 + 1) = 2$. Würde er b wählen, bekäme er mit b ebenfalls 2, wählt er a, bekäme er mit a 1 also keine Verbesserung möglich.
- Der Hanseat hat auch Auszahlung $\frac{1}{3} \cdot (3 + 2 + 1) = 2$. Würde er a wählen, bekäme er mit a ebenfalls 2, wählt er c, bekäme er mit c 1 also keine Verbesserung möglich.
- Das Nordlicht hat ebenfalls Auszahlung $\frac{1}{3} \cdot (3 + 2 + 1) = 2$. Würde es b wählen, bekäme es mit b auch 2, wählt es c, bekäme es mit c 1 also keine Verbesserung möglich.
- ⇒ kein Agent kann sich verbessern
- $\Rightarrow a$ ist Nash-Gleichgewicht in reinen Strategien für |N|=3.
- ⇒ Mehrheitswahl als soziale Auswahlfunktion

Betrachten Sie nun das "Vasen"-Beispiel, also eine Auktion, bei der Agenten einen Wert für einen Gegenstand nennen, der Höchstbietende den Zuschlag erhält und den Preis des Zweithöchsten bezahlt.

Die Aktionen der Agenten A (Gebote) und die Abbildung von Aktionsprofilen zu Ergebnissen M sei wie in der Vorlesung.

Zeichnen Sie das Bayes-Spiel für zwei Agenten, die jeweils den (privaten) Typ {w, v} annehmen können, wobei w bedeutet, dass die Vase für den Agenten eine Einheit (wenig) wert ist und v zwei (viel).

Geben Sie eine Normalformdarstellung an, bei der Sie als Wahrscheinlichkeiten für beide Agententypen P(w) = 0.4 annehmen.

Nennen Sie Equilibria in reinen Strategien.

		W							
		1	2						
N	1	$(0^*, 0^*)$	$(0^*, 0^*)$						
	2	(0*, 0*)	$\left(-\frac{1}{2}, -\frac{1}{2}\right)$						
$\mathbb{P}(w, w) = 0.4^2 = 0.16$									

	1	2
1	$\left(\frac{1}{2},0^*\right)$	(0*, 0*)
2	(1*, 0*)	$\left(0^*, -\frac{1}{2}\right)$

$$\mathbb{P}(v, w) = 0.6 \cdot 0.4 = 0.24$$

	1	2
1	$\left(0^*,\frac{1}{2}\right)$	(0*, 1*)
2	$(0^*, 0^*)$	$\left(-\frac{1}{2},0^*\right)$

V

$$\mathbb{P}(w, v) = 0.4 \cdot 0.6 = 0.24$$

	1	2
1	$\left(\frac{1}{2},\frac{1}{2}\right)$	(0*, 1*)
2	(1*,0*)	$(0^*, 0^*)$

$$\mathbb{P}(v, w) = 0.6^2 = 0.36$$

Angenommen, die Vase könnte in ganzzahligen Werten von 0 bis 10 geschätzt werden und es treten nur die Typen w mit Zahlungsbereitschaft 2, m (mit 3) und v (mit 8) auf, wobei $\mathbb{P}(w) = 0.5$, $\mathbb{P}(m) = 0.4$ und $\mathbb{P}(v) = 0.1$

Sei nun eine Höchstgebot-Auktion (höchstes Gebot erhält den Zuschlag, zum höchsten Preis) zwischen 3 Spielern (N = {a, b, c}) gegeben. Was ist eine beste Antwort von Spieler a, falls er vom Typ v ist, auf ein Profil, in dem die anderen beiden Agenten wahrheitsgemäß abstimmen?

Ist wahrheitsgemäßes Abstimmen also eine dominante Strategie für alle Agenten?

and	bote derer ieler:	Wahrschei nlichkeit:	Mein Gebot:	0	1	2	3	4	5	6	7	8	9	10
8	8	0,01	Nutzen:	0	0	0	0	0	0	0	0	0	-1,00	-2,00
8	3	0,10		0	0	0	0	0	0	0	0	0	-1,00	-2,00
8	2	0,08		0	0	0	0	0	0	0	0	0	-1,00	-2,00
3	3	0,25		0	0	0	1,67	4,00	3,00	2,00	1,00	0	-1,00	-2,00
3	2	0,40		0	0	0	2,50	4,00	3,00	2,00	1,00	0	-1,00	-2,00
2	2	0,16		0	0	2,00	5,00	4,00	3,00	2,00	1,00	0	-1,00	-2,00
	erwarteter Nutzen für mich:			0,00	0,00	0,32	2,22	3,24	2,43	1,62	0,81	0,00	-1,00	-2,00

[→] Ist Spieler a (ich) von Typ v mit Zahlungsbereitschaft 8, sollte er das Gebot 4 abgeben.

[→] wahrheitsgemäßes Abstimmen bei dieser Auktion keine dominante Strategie!

Übungsgruppe 02 wünscht

Frohe Weihnachten!

