KUPC 2019 - I

Maximin Game

Outline

- b_1, b_2, \dots, b_N を、順序を保って 2 つの数列 a_1, a_2, \dots, a_N と b_1, b_2, \dots, b_N に分けることを考える。
- 0 と 1 からなる数列 s_1, s_2, \ldots, s_N が与えられる。
- 任意の i について、 $s_i = 0$ のとき $a_i < b_i$ 、 $s_i = 1$ のとき $a_i > b_i$ あるような分け方はいくつあるか?

s = 1,1,1,0,1 とする。

このとき、上のような大小関係が成り立つ。

▶ a₃ に注目すると、

) 囲われた部分の数は、すべて a_3 以下である。また逆に、囲われていない部分の数は、すべて a_3 より大きい。

同様に a₄, a₅ に注目すると、

囲われた部分で使われる数の集合は、それぞれ一意に定まる。また、囲われた部分内での *a* と *b* の大小関係は一定である。

- ▶ このように、sの値が変わる場所で数列を分割すると、独立な、より単純な問題に帰着することができる。
- 帰着する問題は、たとえば次のように表せる。
- 1,2,...,2K を、順序を保って 2 つの数列 $a_1,a_2,...,a_K$ と $b_1,b_2,...,b_K$ に分けることを考える。ただし任意の i について、 $a_i < b_i$ が成り立つ必要がある。そのような分け方はいくつあるか?

- a の要素を(の位置、b の要素を)の位置と対応させると、 この問題は、長さ 2K の正しいかっこ列の数え上げと等価で ある。
- ト 長さ 2K の正しいかっこ列の個数は、K 番目のカタラン数である $C_K = \frac{(2K)!}{(K+1)!K!}$ に等しいことが知られている。
- ▶ 帰着した各問題の解を掛け合わせれば、元の問題が解ける。

Statistic

▶ ここに統計情報を書く。