Интеграл Лебега

- 1. Пусть (X, μ) пространство с мерой, $\mu(X) < \infty$, A_1, \ldots, A_n измеримые подмножества X, причем каждая точка X принадлежит не менее чем k множествам из набора A_1, \ldots, A_n . Докажите, что $k\mu(X) \leqslant \sum_{i=1}^n \mu(A_i)$.
- 2. Пусть (X, μ) пространство с конечной мерой. Докажите, что измеримая функция $f: X \to \mathbb{K}$ интегрируема тогда и только тогда, когда $\sum_n \mu\{x \in X: |f(x)| \geqslant n\} < \infty$.
- 3. Пусть $f:[a,b] \to \mathbb{K}$ интегрируемая по Лебегу функция, причем $\int_{[a,x]} f \, d\lambda = 0$ для любого $x \in [a,b]$ (где λ мера Лебега). Докажите, что f=0 п.в.
- 4. Приведите пример, показывающий, что теорема о монотонной сходимости неверна без предположения о монотонности, а теорема о мажорированной сходимости неверна без предположения о существовании интегрируемой мажоранты.
- 5. Приведите пример, показывающий, что лемма Фату неверна без предположения о неотрицательности функций.
- 6. На лекции лемма Фату была выведена из теоремы о монотонной сходимости, а теорема о мажорированной сходимости из леммы Фату. Замкните это «кольцо» и покажите, что теорема о монотонной сходимости следует из теоремы о мажорированной сходимости.
- 7. Пусть $f_n \to f$ в $\mathscr{L}^1(X,\mu)$ (где (X,μ) некоторое пространство с мерой).
 - (a) Докажите, что существует такая функция $F \in \mathcal{L}^1(X,\mu)$, что для некоторой подпоследовательности (f_{n_k}) выполнено условие $|f_{n_k}| \leqslant F$ п.в. для всех k.
 - (b) Всегда ли верно утверждение п. (a) для исходной последовательности (f_n) ?
- 8. Пусть (f_n) последовательность неотрицательных интегрируемых функций на пространстве с мерой (X,μ) , сходящаяся п.в. к интегрируемой функции f, причем $\int f_n \, d\mu \to \int f \, d\mu$. Докажите, что $f_n \to f$ в $\mathscr{L}^1(X,\mu)$.
- 9. Пусть $c \colon [0,1] \to [0,1]$ канторова лестница. Вычислите интегралы: (a) $\int_0^1 c(x) \, dx$; (b) $\int_0^1 x \, d\mu_c(x)$, где μ_c мера Лебега—Стилтьеса на [0,1], порожденная функцией c.
- 10. Приведите пример ограниченной измеримой по Лебегу функции на [0,1], не совпадающей почти всюду ни с какой функцией, интегрируемой по Риману.
- 11. Приведите пример непрерывной, но не интегрируемой по Лебегу функции на $[0,+\infty)$, для которой существует несобственный интеграл $\lim_{b\to +\infty} \int_0^b f(x)\,dx$.
- 12. Приведите пример последовательности ограниченных борелевских функций на [0,1], сходящейся к нулю в $\mathcal{L}^1[0,1]$, но не сходящейся ни в одной точке.
- 13. Постройте пример такой измеримой функции $f \colon [0,1] \times [0,1] \to \mathbb{R}$, что интегралы

$$\int_0^1 \left(\int_0^1 f(x, y) \, dx \right) dy, \qquad \int_0^1 \left(\int_0^1 f(x, y) \, dy \right) dx \tag{1}$$

существуют, но не равны друг другу. Какое условие теоремы Фубини при этом нарушается?

14. Постройте пример такой измеримой функции $f:[0,1]\times[0,1]\to\mathbb{R},$ что один из интегралов (1) существует, а другой — нет. Какое условие теоремы Фубини при этом нарушается?