

GPU Teaching Kit

Accelerated Computing

Module 7.1 – Parallel Computation Patterns (Stencil)

Convolution

Objective

- To learn <u>convolution(素积)</u>, an important method
 - Widely used in audio, image and video processing
 - Foundational to <u>stencil computation(模板计算)</u> used in many science and engineering applications
 - Basic 1D and 2D convolution kernels

Convolution as a Filter

- Often performed as a <u>filter(滤波器)</u> that <u>transforms</u>
 <u>signal or pixel values</u> into more desirable values.
 - Some filters <u>smooth out(平滑)</u> the signal values so that one can see the big-picture trend
 - Others like <u>Gaussian filters(高斯滤波器)</u> can be used to <u>sharpen(锐化)</u> boundaries and edges of objects in images.

Convolution – a computational definition

- An array operation where each output data element is <u>a</u> weighted sum of a collection of neighboring input <u>elements</u>
- The weights used in the weighted sum calculation are defined by an input mask array(输入掩码数组), commonly referred to as the convolution kernel(卷积核)
 - We will refer to these mask arrays as <u>convolution masks</u> to avoid confusion.
 - The value pattern of the mask array elements defines the type of filtering(滤波类型) done
 - Our image blur example in Module 3 is a special case where all mask elements are of the same value and <u>hard coded(硬编码)</u> into the source code.

1D Convolution Example

- Commonly used for audio processing
 - Mask size is usually an <u>odd number of elements</u> for <u>symmetry(</u>对称) (5 in this example)
- The figure shows calculation of P[2]

P[2] = N[0]*M[0] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]

Calculation of P[3]

Convolution Boundary Condition

- Calculation of output elements near the boundaries (<u>beginning and end</u>) of the array need to deal with <u>"ghost" elements(幽灵元素)</u>
 - Different policies (0, replicates of boundary values, etc.)

A 1D Convolution Kernel with Boundary Condition Handling

This kernel forces all elements outside the valid input range to 0

```
void convolution 1D basic kernel(float *N, float *M,
      float *P, int Mask Width, int Width)
int i = blockIdx.x*blockDim.x + threadIdx.x;
float Pvalue = 0;
int N start point = i - (Mask Width/2);
for (int j = 0; j < Mask Width; <math>j++) {
  if (N start point + j \ge 0 \&\& N start point + j < Width) {
    Pvalue += N[N start point + j]*M[j];
P[i] = Pvalue;
```

A 1D Convolution Kernel with Boundary Condition Handling

This kernel forces all elements outside the valid input range to 0

```
global void convolution 1D basic kernel(float *N, float *M,
       float *P, int Mask Width, int Width)
int i = blockIdx.x*blockDim.x + threadIdx.x;
float Pvalue = 0;
int N start point = i - (Mask Width/2);
if (i < Width) {
  for (int j = 0; j < Mask Width; <math>j++) {
    if (N start point + j \ge 0 \&\& N start point + j < Width) {
     Pvalue += N[N start point + j]*M[j];
  P[i] = Pvalue;
```

2D Convolution

N						
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	5	6
5	6	7	8	5	6	7
6	7	8	9	0	1	2
7	8	9	0	1	2	3

M

1	2	3	2	1
2	3	4	3	2
3	4	5	4	3
2	3	4	3	2
1	2	3	2	1

	1	4	9	8	5
	4	9	16	15	12
	4	16	25	24	21
	8	15	24	21	16
	5	12	21	16	5

2D Convolution - Ghost Cells


```
global
void convolution 2D basic kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
              int maskwidth, int w. int h) {
  int Col = blockIdx.x * blockDim.x + threadIdx.x;
  int Row = blockIdx.y * blockDim.y + threadIdx.y;
  if (Col < w && Row < h) {
    int pixVal = 0;
                                                                             Col
    N start col = Col - (maskwidth/2);
    N start row = Row - (maskwidth/2);
                                                             Row -
    // Get the of the surrounding box
                                                                              6
    for(int j = 0; j < maskwidth; ++j) {</pre>
                                                                              7 8 5
      for(int k = 0; k < maskwidth; ++k) {
                                                                              8 9
        int curRow = N Start row + j;
        int curCol = N start col + k;
        // Verify we have a valid image pixel
        if(curRow > -1 && curRow < h && curCol > -1 && curCol < w)
                                                                              4 3
                                                                        2
                                                                                                  16 15 12
           pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                                                                                               16 25 24 21
                                                                           3 4 3 2
                                                                                               15 24 21
    // Write our new pixel value out
    out[Row * w + Col] = (unsigned char)(pixVal);
```

```
global
void convolution 2D basic kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
             int maskwidth, int w, int h) {
  int Col = blockIdx.x * blockDim.x + threadIdx.x;
  int Row = blockIdx.y * blockDim.y + threadIdx.y;
  if (Col < w && Row < h) {
    int pixVal = 0;
                                                                      N start col
    N start col = Col - (maskwidth/2);
                                                N start row
    N start row = Row - (maskwidth/2);
                                                                             5 6 7
    // Get the of the surrounding box
                                                                             6 7
    for(int j = 0; j < maskwidth; ++j) {</pre>
                                                                          6 7 8 5 6
      for(int k = 0; k < maskwidth; ++k) {
                                                                             8 9
        int curRow = N Start row + j;
        int curCol = N start col + k;
        // Verify we have a valid image pixel
        if(curRow > -1 && curRow < h && curCol > -1 && curCol < w)
                                                                       2
                                                                             4 3 2
                                                                                                 16 15 12
          pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                                                                                              16 25 24 21
                                                                          3 4 3 2
                                                                                              15 24 21 16
    // Write our new pixel value out
    out[Row * w + Col] = (unsigned char)(pixVal);
```

NVIDIA

```
global
void convolution 2D basic kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
              int maskwidth, int w, int h) {
  int Col = blockIdx.x * blockDim.x + threadIdx.x;
  int Row = blockIdx.y * blockDim.y + threadIdx.y;
  if (Col < w \&\& Row < h) {
    int pixVal = 0;
    N start col = Col - (maskwidth/2);
    N start row = Row - (maskwidth/2);
    // Get the of the surrounding box
    for(int j = 0; j < maskwidth; ++j) {
      for(int k = 0; k < maskwidth; ++k) {
        int curRow = N Start row + j;
        int curCol = N_start_col + k;
        // Verify we have a valid image pixel
        if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
           pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
    // Write our new pixel value out
    out[Row * w + Col] = (unsigned char)(pixVal);
```


GPU Teaching Kit

Accelerated Computing

Module 7.2 – Parallel Computation Patterns (Stencil)

Tiled Convolution

Objective

- To learn about tiled convolution algorithms
 - Some <u>intricate(复杂的)</u> aspects of tiling algorithms
 - Output tiles versus input tiles

Tiling Opportunity Convolution

- Calculation of <u>adjacent output elements</u> involve <u>shared input</u> <u>elements</u>
 - E.g., N[2] is used in calculation of P[0], P[1], P[2]. P[3 and P[5] assuming a 1D convolution Mask Width of width 5
- We can load all the input elements required by all threads in a block into the shared memory to reduce global memory accesses NOI N(1) N(2) N(3) N(4) N(5) N(6)

Input Data Needs

- Assume that we want to have each block to calculate T output elements
 - T + Mask Width -1 input elements are needed to calculate T output elements
 - T + Mask_Width -1 is usually not a multiple of T, except for small T values
 - T is usually significantly larger than Mask_Width

Definition – output tile

Each thread block calculates an output tile

Each output tile width is O_TILE_WIDTH

For each thread,

O_TILE_WIDTH is 4 in this example

Definition - Input Tiles

Each input tile has all values needed to calculate the corresponding output tile.

W NVIDIA

20

Two Design Options

- Design 1: The size of each thread block matches the size of an output tile
 - All threads participate in calculating output elements
 - blockDim.x would be 4 in our example
 - Some threads need to load more than one input element into the shared memory

- Design 2: The size of each thread block matches the size of an input tile
 - Some threads will not participate in calculating output elements
 - blockDim.x would be 8 in our example
 - <u>Each thread</u> loads one input element into the shared memory
- We will present Design 2 and leave Design 1 as an exercise.

Thread to Input and Output Data Mapping

For each thread, Index_i = index_o - n

were n is Mask_Width /2 n is 2 in this example

All Threads Participate in Loading Input Tiles

```
float output = 0.0f;
if((index i \ge 0) \&\& (index i < Width)) {
 Ns[tx] = N[index i];
else{
 Ns[tx] = 0.0f;
N: global memory
Ns:shared memory
```

Some threads do not participate in calculating output

```
if (threadIdx.x < O_TILE_WIDTH) {
  output = 0.0f;
  for(j = 0; j < Mask_Width; j++) {
    output += M[j] * Ns[j+threadIdx.x];
  }
  P[index_o] = output;
}</pre>
```

- index_o = blockldx.x*O_TILE_WIDTH + threadIdx.x
- Only <u>Threads 0 through O_TILE_WIDTH-1</u> participate in calculation of output.

Setting Block Size

```
#define O_TILE_WIDTH 1020
#define BLOCK_WIDTH (O_TILE_WIDTH + 4)

dim3 dimBlock(BLOCK_WIDTH,1, 1);

dim3 dimGrid((Width-1)/O_TILE_WIDTH+1, 1, 1)

The Mask_Width is 5 in this example
In general, block width should be
   output tile width + (mask width-1)
```

1D convolution using shared memory

```
_global__ void convolution_1D_sm_st2(float *N, float *M, float *P)
    _shared__ float Ns[O_TILE_WIDTH + Mask_Width - 1];
  float Pvalue:
  int N_start_point;
  int tx=threadIdx.x;
  int idx o = blockldx.x*O TILE WIDTH + threadldx.x;
  int idx i = idx \circ - Mask Width / 2;
  if ((idx_i \ge 0) \&\& (idx_i < Array_Width)){
     Ns[tx] = N[idx i]:
   syncthreads();
   // //仅仅 Threads 0 到 O_TILE_WIDTH - 1 参与计算输出.
   if (tx< O TILE WIDTH) {
     Pvalue = 0:
     for (int j = 0; j < Mask_Width; j++) {</pre>
        Pvalue += Ns[tx + i] * M[i];
      P[idx o] = Pvalue;
      syncthreads();
                                                                                      6
```

Shared Memory Data Reuse

Element 2 is used by thread 4 (1X)

Element 3 is used by threads 4, 5 (2X)

Element 4 is used by threads 4, 5, 6 (3X)

Element 5 is used by threads 4, 5, 6, 7 (4X)

Element 6 is used by threads 4, 5, 6, 7 (4X)

Element 7 is used by threads 5, 6, 7 (3X)

Element 8 is used by threads 6, 7 (2X)

Element 9 is used by thread 7 (1X)

Ghost Cells

◎ NVIDIA

GPU Teaching Kit

Accelerated Computing

Module 7.3 – Parallel Computation Patterns (Stencil)

Tile Boundary Conditions

Objective

To learn to write a 2D convolution kernel

- 2D Image data types and API functions
- Using constant caching
- Input tiles vs. output tiles in 2D
- Thread to data index mapping
- Handling boundary conditions

2D Image Matrix with Automated Padding

- It is sometimes desirable to pad each row of a 2D matrix to multiples of DRAM bursts
 - So each row starts at the DRAM burst boundary
 - Effectively adding columns
 - This is usually done automatically by matrix allocation function
 - Pitch can be different for different hardware
- Example: a 3X3 matrix padded into a 3X4 matrix

Row-Major Layout with Pitch

Image Matrix Type in this Course

```
// Image Matrix Structure declaration
//
typedef struct {
   int width;
   int height;
   int pitch;
   int channels;
   float* data;
} * wbImage_t;
```

This type will only be used in the host code of the MP.

Setting Block Size

Using constant memory and caching for Mask

- Mask is used by all threads but not modified in the convolution kernel
 - All threads in a warp access the same locations at each point in time
- CUDA devices provide constant memory whose contents are aggressively(积极地) cached
 - Cached values are broadcast to all threads in a warp
 - Effectively <u>magnifies(液大)</u> memory bandwidth without consuming shared memory
- Use of const __restrict__ <u>qualifiers(限定符)</u> for the mask parameter informs the compiler that it is eligible for constant caching, for example:

```
__global__ void convolution_2D_kernel(float *P,
   float *N, height, width, channels,
   const float restrict *M) {
```

Shifting from output coordinates to input coordinate

```
int tx = threadIdx.x;
int ty = threadIdx.v;
int row o = blockIdx.y*O TILE WIDTH + ty;
int col o = blockIdx.x*O TILE WIDTH + tx;
int row i = row \circ - 2;
                                                  row o for
int col i = col \circ - 2;
                                                  Thread (0,0)
              row i for
             Thread (0,0)
```

Taking Care of Boundaries (1 channel example)

```
if((row_i >= 0) && (row_i < height) &&
  (col_i >= 0) && (col_i < width)) {
  Ns[ty][tx] = data[row_i * width + col_i];
} else{
  Ns[ty][tx] = 0.0f;
}</pre>
```

Use of width here is OK since pitch is set to width for this MP.

Some threads do not participate in calculating output. (1 channel example)

```
float output = 0.0f;
if(ty < O_TILE_WIDTH && tx < O_TILE_WIDTH) {
   for(i = 0; i < MASK_WIDTH; i++) {
     for(j = 0; j < MASK_WIDTH; j++) {
      output += M[i][j] * Ns[i+ty][j+tx];
   }
}</pre>
```

Some threads do not write output (1 channel example)

```
if(row_o < height && col_o < width)
  data[row_o*width + col_o] = output;</pre>
```


GPU Teaching Kit

Accelerated Computing

Module 7.4 – Parallel Computation Patterns (Stencil)

Analyzing Data Reuse in Tiled Convolution

Objective

- To learn to analyze the cost and benefit of tiled parallel convolution algorithms
 - More complex reuse pattern than matrix multiplication
 - Less uniform access patterns

An 8-element Convolution Tile

For Mask_Width=5, we load 8+5-1=12 elements (12 memory loads)

Each output P element uses 5 N elements

P[8] uses N[6], N[7], N[8], N[9], N[10] P[9] uses N[7], N[8], N[9], N[10], N[11] P[10] use N[8], N[9], N[10], N[11], N[12]

. . .

P[14] uses N[12], N[13], N[14], N[15], N[16] P[15] uses N[13], N[14], N[15], N[16], N[17]

A simple way to calculate tiling benefit

- -(8+5-1)=12 elements loaded
- 8*5 global memory accesses replaced by shared memory accesses
- This gives a bandwidth reduction of 40/12=3.3

In General, for 1D TILED CONVOLUTION

- O_TILE_WIDTH+MASK_WIDTH -1 elements loaded for each input tile
- O_TILE_WIDTH*MASK_WIDTH global memory accesses replaced by shared memory accesses
- This gives a reduction factor of

```
(O_TILE_WIDTH*MASK_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)
```

This ignores ghost elements in edge tiles.

Another Way to Look at Reuse

N_ds


```
N[6] is used by P[8] (1X)
N[7] is used by P[8], P[9] (2X)
N[8] is used by P[8], P[9], P[10] (3X)
N[9] is used by P[8], P[9], P[10], P[11] (4X)
N10 is used by P[8], P[9], P[10], P[11], P[12] (5X)
... (5X)
N[14] is used by P[12], P[13], P[14], P[15] (4X)
N[15] is used by P[13], P[14], P[15] (3X)
```

INVIDIA

Another Way to Look at Reuse

The total number of global memory accesses (to the (8+5-1)=12 N elements) replaced by shared memory accesses is:

$$1+2+3+4+5*(8-5+1)+4+3+2+1$$

= $10+20+10$
= 40

So the reduction is:

$$40/12 = 3.3$$

In General, for 1D

 The total number of global memory accesses to the input tile can be calculated as

```
1 + 2+...+ MASK_WIDTH-1 + MASK_WIDTH*(O_TILE_WIDTH-
MASK_WIDTH+1) + MASK_WIDTH-1 + ...+ 2 + 1

= MASK_WIDTH * (MASK_WIDTH-1) + MASK_WIDTH *

(O_TILE_WIDTH-MASK_WIDTH+1)

= MASK_WIDTH * O_TILE_WIDTH
```

For a total of O_TILE_WIDTH + MASK_WIDTH -1 input tile elements

Examples of Bandwidth Reduction for 1D

The reduction ratio is:

MASK_WIDTH * (O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH	16	32	64	128	256
MASK_WIDTH= 5	4.0	4.4	4.7	4.9	4.9
MASK_WIDTH = 9	6.0	7.2	8.0	8.5	8.7

For 2D Convolution Tiles

- (O_TILE_WIDTH+MASK_WIDTH-1)² input elements need to be loaded into shared memory
- The calculation of each output element needs to access
 MASK_WIDTH² input elements
- O_TILE_WIDTH² * MASK_WIDTH² global memory accesses are converted into shared memory accesses
- The reduction ratio is

O_TILE_WIDTH2 * MASK_WIDTH2/(O_TILE_WIDTH+MASK_WIDTH-1)2

Bandwidth Reduction for 2D

The reduction ratio is:

O_TILE_WIDTH	8	16	32	64
MASK_WIDTH = 5	11.1	16	19.7	22.1
MASK_WIDTH = 9	20.3	36	51.8	64

Tile size has significant effect on of the memory bandwidth reduction ratio.

This often argues for larger shared memory size.

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.