

№ 1.概念和基本工作原理

概念:

变制冷剂流量多联分体式空调系统,简称VRV (Variable Refrigerant Volume)系统。

原理:通过改变制冷剂流量,适应各房间负荷变化的直接膨胀式空气调节系统

②.组成和管路布置

室内机

包括室内风机、电子膨胀阀5和室内侧的换热器6及其他附件等。

3.工作范围

变制冷剂流量多联分体式空调系统的工作范围

分类内容	范围	分类内容	范围
制冷运行温度	-5℃DB~43℃DB	室内外机高度落差	≤50m
制热运行温度	-15°CWB~16°CWB	同一室外机系统室 内机同高度落差	≤18m
室内外机等效 配管长度	≤175m	室内外机容量比	≤135%

实际工作范围参照厂家样本

实际配管长度	室内外机实际配管长度		
	管径 (mm)	弯管等效长度(m)	回油弯等效长度 (m)
	9.52	0.18	1.3
	12.7	0.2	1.5
	15.88	0.25	2.0
弯管以及回油弯	19.05	0.35	2.4
等效长度	22.22	0.4	3.0
	25.4	0.45	3.4
	28.58	0.5	3.7
	31.8	0.55	4.0
	38.1	0.65	4.8
	44.5	0.8	5.9
线支管等效长度	0.5m		
集支管等效长度	集支管连接室内机总容量(kW)		等效长度 (m)
	78.4~84.0		2
	84.0~98.0		3
	>98.0		4

不同厂家上述参数略有区别。

各品牌制冷制热运行范围比对(单位:℃)

	GMV5	VRV3	MDV	
制冷运行范围	-10~52	-5~50	-20~50 , 未注	
制热运行范围	-20~27	-20~15.5	明具体范围	

各品牌配管长度设计(单位:m)

配管类型	最大实际 单管长	最大等效 单管长	最大室内外机 高低差	室内机间最 大落差
GMV5	165	190	90/50	30
VRV3	165	190	90/50	30
MDV	150	175	70/50	15

示例1:格力

超长配管

室外机至最远 室内机配管实 际长度: 165m

 $a-b \leq 40m$

示例2:三菱重工

▶ 4~6HP配管长度

* Ø 9.52mm (3/8")液管总长度必须为50m或以下

示例2:三菱重工

▶ 14~48HP配管长度

4.关于内外机容量比

对一台外机连多台内机的系统,同时使用率较低时一般允许一定的超配比例。

- 1 充分了解各个房间的用途和使用几率。
- 2 如同时使用率低于80%,可适当选内外机容量比为120%-130%,以降低工程造价。
- 3 如同时使用率高于90%,不建议内机超配,最好按 1:1配置。否则会造成内机能力的下降,影响效果。

对一拖一的产品内外机不存在配比的问题。

室内外机的容量配比系数选择参考表

同时使用率	最大容量 配比系数	同时使用率	最大容量 配比系数
小于等于70%	125%~135%	大于80%,小于 等于90%	100%~110%
大于70%,小于 等于80%	110%~125%	大于90%	100%

不同品牌,不同容量,内外机配比不同

如:某品牌配比

特点和适用场合

变制冷剂流量多联式空调系统的应用特点

优点

安装管路简单、节省空间,布置灵活,部分负荷情况下能效比高、节能性好、运行成本低,运行管理维护方便

缺点

初投资较高,对建筑设计有要求,特别对于高层建筑, 在设计时必须考虑系统的安装范围、室外机的安装位置,新风处理能力相对较差

适用场合:主要适用于中、小型规模的办公楼、饭店、学校、高档住宅等建筑,特别适合于房间数量多、区域划分细致的建筑。对于同时使用率较低(部分运转)的建筑物其节能性尤其显著。

多联机空调系统设计流程

1.设计条件和冷负荷计算

2.室内机制冷容量选择

3.系统组成和室外机制冷容量选择

4.室外机实际制冷容量计算

5室内机最终实际制冷容量计算

否

所有室内机最终实际制冷容 量>房间冷负荷?

是

6.结束

多联机空调系统设计流程

4.回到22.5.7,重新选择室内机容量

特殊情况

室内机是否可以加辅助电热器?

5电加热容量计算

注:考虑到空调使用时的安全性、 节能性,尽可能不要使用辅助电 加热

1.设计条件和热负荷计算

2.室外机实际制冷容量计算

3.室内机最终实际制冷容量计算

所有室内机最终实际制热容 量>房间负荷?

6.结束

是

空调系统制热能力校核流程图案

否

VRV多联机是家用中央空调中应用最广 泛的一种形式,在选用时应注意产品的工作 范围、配管要求、内外机配比等,选择合适 的品牌和型号。