Text Clustering: Generative Probabilistic Models

Part 2

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Text Clustering: Generative Probabilistic Models (Part 2)

Likelihood Function: p(d)=?

$$\begin{aligned} p(d) &= p(\theta_1) p(d \mid \theta_1) + p(\theta_2) p(d \mid \theta_2) \\ &= p(\theta_1) \prod\nolimits_{i=1}^L p(x_i \mid \theta_1) + p(\theta_2) \prod\nolimits_{i=1}^L p(x_i \mid \theta_2) \\ \text{d=x_1 x_2 ... x_L} \end{aligned}$$

How can we generalize it to include k topics/clusters?

Mixture Model for Document Clustering

- Data: a collection of documents C={d₁, ..., d_N} 在k水场布中选择4 或文本版的
- Model: mixture of k unigram LMs: $\Lambda = (\{\theta_i\}; \{p(\theta_i)\}), i \in [1,k]$
 - To generate a document, first **choose a** θ_i according to $p(\theta_i)$, and then generate all words in the document using $p(w|\theta_i)$ 再9月0;女时
- Likelihood:

$$\begin{split} p(d \mid \Lambda) &= \sum\nolimits_{i=1}^{k} [p(\theta_i) \prod\nolimits_{j=1}^{|d|} p(x_j \mid \theta_i)] \\ &= \sum\nolimits_{i=1}^{k} [p(\theta_i) \prod\nolimits_{w \in V} p(w \mid \theta_i)^{c(w,d)}] \end{split}$$

Maximum Likelihood estimate

ንኤኢ/ሀኒ፫፫/ቴኒፕ
$$\Lambda^* = \arg\max_{\Lambda} p(d \mid \Lambda)$$

Cluster Allocation After Parameter Estimation

- Parameters of the mixture model: $\Lambda = (\{\theta_i\}; \{p(\theta_i)\}), i \in [1,k]$
 - Each θ_i represents the content of cluster i : p(w| θ_i)

 - Note that unlike in PLSA, $p(\theta_i)$ doesn't depend on d!
- Which cluster should document d belong to? c_d=? <4 < (1, k)
 - Likelihood only: Assign d to the cluster corresponding to the topic θ_i that most likely has been used to generate d $c_d = arg max_i p(d | \theta_i)$
 - − Likelihood + prior p(θ_i) (Bayesian): favor large clusters たいない。

 $c_{d} = \arg\max_{i} p(d \mid \theta_{i}) p(\theta_{i})$