Smoothness and some deformation rings

Daniel Miller

August 7, 2016

1 Notation

As is typical, if G is a profinite group and M a topological G-module, we write $H^{\bullet}(G, M)$ for the continuous cohomology of G with coefficients in M. If k is a field and $Gal(k^{\text{sep}}/k)$ acts continuously on M, we write $H^{\bullet}(k, M)$ instead of $H^{\bullet}(Gal(k^{\text{sep}}/k), M)$.

Suppose $\operatorname{Gal}_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ acts on M. Then for each place v, the we write $\operatorname{H}^{\bullet}(v, M) = \operatorname{H}^{\bullet}(\mathbf{Q}_{v}, M)$. If M is unramified outside a set S of places, we write $\operatorname{H}^{\bullet}(S, M) = \operatorname{H}^{\bullet}(\operatorname{Gal}(\mathbf{Q}_{S}/\mathbf{Q}), M)$, where \mathbf{Q}_{S} is the maximal extension of \mathbf{Q} unramified outside S.

Fix a finite field k of characteristic p. Let W(k) be the ring of Witt vectors of k, and let $C_{W(k)}$ be the category of local artinian W(k)-algebras with residue field k. Fix once and for all a continuous representation $\bar{\rho}: \operatorname{Gal}_{\mathbf{Q}} \to \operatorname{GL}_2(k)$. If S is a finite set of places outside which $\bar{\rho}$ is unramified, define a functor $\mathcal{X}_S(\bar{\rho}): C_{W(k)} \to \operatorname{set}$ by letting

$$\mathcal{X}_S(\bar{\rho})(A) = \{\text{deformations of } \bar{\rho} \text{ to } \operatorname{Gal}(\mathbf{Q}_S/\mathbf{Q}) \to \operatorname{GL}_2(A)\}.$$

Since $\bar{\rho}$ is fixed, we will generally drop it from the notation. It is well known that there is a canonical isomorphism $\mathfrak{t}_{\mathcal{X}_S} \simeq \mathrm{H}^1(S, \operatorname{ad} \bar{\rho})$. The functor \mathcal{X}_S is smooth if and only if $\mathrm{H}^2(S, \operatorname{ad} \bar{\rho}) = 0$. More generally, if $A_1 \twoheadrightarrow A_0$ in $\mathsf{C}_{\mathrm{W}(k)}$ has kernel \mathfrak{a} annihilated by \mathfrak{m}_{A_1} , then for each $\rho_0 \in \mathcal{X}_S(A_0)$, there is an "obstruction class" $o(\rho_0) \in \mathrm{H}^2(S, \operatorname{ad} \bar{\rho}) \otimes \mathfrak{a}$ whose vanishing is necessary and sufficient for the existence of a lift of ρ_0 to $\rho_1 \in \mathcal{X}_S(A_1)$.

For a place v of \mathbf{Q} , let $\mathcal{X}_v = \mathcal{X}_v(\bar{\rho})$ classify deformations of $\bar{\rho}|_{\mathrm{Gal}(\overline{\mathbf{Q}_v}/\mathbf{Q})}$. If S is a finite set of places of \mathbf{Q} , write $\mathcal{X}_{\partial S} = \prod_{v \in S} \mathcal{X}_v$. Clearly $\mathfrak{t}_{\mathcal{X}_{\partial S}} = \bigoplus_{v \in S} \mathrm{H}^1(v, \mathrm{ad} \bar{\rho})$.

We will tacitly fix all determinants, which means that we deal with the cohomology of ad $^{\circ}$ $\bar{\rho}$, the space of trace-zero matrices.

2 Smoothness

Let $\mathcal{X}, \mathcal{Y}: \mathsf{C}_{\mathsf{W}(k)} \to \mathsf{set}$, and $f: \mathcal{X} \to \mathcal{Y}$ a morphism. One says f is formally smooth if whenever $A_1 \twoheadrightarrow A_0$ in $\mathsf{C}_{\mathsf{W}(k)}$, the natural map

$$\mathcal{X}(A_1) \to \mathcal{X}(A_0) \times_{\mathcal{Y}(A_0)} \mathcal{Y}(A_1)$$

is surjective. In other words, if $x_0 \in \mathcal{X}(A_0)$ is such that $f(x_0)$ lifts to $\mathcal{Y}(A_1)$, then x_0 lifts to $\mathcal{X}(A_1)$. Clearly the composite of smooth morphisms is smooth.

3 Poitou-Tate duality

Let $V \in \mathsf{Rep}_k(\mathbf{Q})$ be unramified outside a finite set S of places. Suppose we have a set $\{L_v : v \in S\}$, where $L_v \subset \mathrm{H}^1(v,V)$. Let $L^{\perp} = \{L_v^{\perp} : v \in S\}$, where $L_v^{\perp} \subset \mathrm{H}^1(v,V^*)$ is the annihilator of L_v under the cup product. Define

$$\mathrm{H}^1_L(S,V) = \ker\bigg(\mathrm{H}^1(S,V) \to \bigoplus_{v \in S} \frac{\mathrm{H}^1(v,V)}{L_v}\bigg),$$

and similarly for $\mathrm{H}^1_{L^{\perp}}(S,V^*)$. Poitou-Tate duality gives us an exact sequence

$$\mathrm{H}^1(S,V) \to \bigoplus_{v \in S} \mathrm{H}^1(v,V) \to \mathrm{H}^1(S,V^*)^\vee \to \mathrm{H}^2(S,V) \to \bigoplus_{v \in V} \mathrm{H}^2(v,V).$$

Quotient out by L to obtain

$$\mathrm{H}^{1}(S,V) \to \bigoplus_{v \in S} \frac{\mathrm{H}^{1}(v,V)}{L_{v}} \to \mathrm{H}^{1}_{L^{\perp}}(S,V^{*})^{\vee} \to \mathrm{H}^{2}(S,V) \to \bigoplus_{v \in V} \mathrm{H}^{2}(v,V). \quad (*)$$

When L = 0, we write $\coprod_{S}^{1}(V) = \operatorname{H}_{0}^{1}(S, V)$.

4 Formal smoothness of deformation spaces

Let $\bar{\rho}$, \mathcal{X}_S , $\mathcal{X}_{\partial S}$ be as above.

Theorem 4.1. $\partial \colon \mathcal{X}_S \to \mathcal{X}_{\partial S}$ is smooth if and only if $\coprod_S^1(\operatorname{ad}^{\circ} \bar{\rho}^*) = 0$.

Proof. Suppose we have $A_1 \to A_0$ in $C_{W(k)}$. Given $\rho_0 \in \mathcal{X}_S(A_0)$, the image $\partial(\rho_0) = (\rho_0|_V)_{v \in S}$ lifts to $\mathcal{X}_{\partial S}(A_1)$ if and only if $o(\partial \rho_0) \in \bigoplus_{v \in S} H^2(v, \operatorname{ad}^{\circ} \bar{\rho})$ vanishes. The original ρ_0 lifts to $\mathcal{X}_S(A_1)$ if and only if $o(\rho_0) \in H^2(S, \operatorname{ad}^{\circ} \bar{\rho})$ vanishes. In other words, smoothness is equivalent to the vanishing of

$$\ker\bigg(\operatorname{H}^2(S,\operatorname{ad}^\circ\bar{\rho})\to\bigoplus_{v\in S}\operatorname{H}^2(v,\operatorname{ad}^\circ\bar{\rho})\bigg)\simeq\operatorname{III}_S^1(\operatorname{ad}^\circ\bar{\rho}^*)^\vee,$$

the isomorphism being a part of Poitou-Tate duality.

Suppose we have a subfunctor $\mathcal{C} = \prod_{v \in S} \mathcal{C}_v \subset X_{\partial S}$; put $\mathfrak{c} = \mathfrak{t}_{\mathcal{C}}$. Define $\mathcal{X}_{\mathcal{C}}$ to be the pullback

$$\begin{array}{ccc} \mathcal{X}_{\mathcal{C}} & \longrightarrow & \mathcal{C} \\ \downarrow & & \downarrow \\ \mathcal{X}_{S} & \stackrel{\partial}{\longrightarrow} & \mathcal{X}_{\partial S} \end{array}$$

Theorem 4.2. If $H^1_{\mathbf{c}^{\perp}}(S, \operatorname{ad}^{\circ} \bar{\rho}^*) = 0$, then $\mathcal{X}_{\mathcal{C}} \to \mathcal{C}$ is smooth.

Proof. From (*), we already know that $\mathrm{III}_{S}^{1}(\mathrm{ad}^{\circ}\bar{\rho}^{*})=0$, so $\mathcal{X}\to\mathcal{X}_{\partial S}$ is smooth. Suppose $A_{1}\twoheadrightarrow A_{0}$ in $\mathsf{C}_{\mathrm{W}(k)}$, and let $\rho_{0}\in\mathcal{X}_{\mathcal{C}}(A_{0})$. If $\partial(\rho_{0})$ lifts to $\widetilde{\partial\rho_{0}}\in\mathcal{C}(A_{1})$, then because $\mathcal{X}_{S}\to\mathcal{X}_{\partial S}$ is smooth, ρ_{0} lifts to $\rho_{1}\in\mathcal{X}_{S}(A_{1})$. The exact sequence (*) tells us that

$$\mathfrak{t}_{\mathcal{X}_{\partial S}} = \partial_* \mathfrak{t}_{\mathcal{X}_S} + \mathfrak{c}.$$

It is well-known that lifts of $\partial(\rho_0)$ to $\mathcal{X}_{\partial S}(A_1)$ form a $\mathfrak{t}_{X_S} \otimes \mathfrak{a}$ -torsor. In particular, there exists $t = \partial_* c + d \in \mathfrak{t}_{\mathcal{X}_{\partial S}}$ such that $c \in \mathfrak{t}_{\mathcal{X}_S}$, $d \in \mathfrak{c}$, and $t \cdot \partial(\rho_1) = \widetilde{\partial(\rho_0)} \in \mathcal{C}(A_1)$. Then

$$\partial(c \cdot \rho_1) = (\partial_* c) \cdot \partial(\rho_1) = (-l) \cdot \widetilde{\partial(\rho_0)} \in \mathcal{C}(A_1).$$

So $c \cdot \rho_1$ is a lift of ρ_0 to $\mathcal{X}_{\mathcal{C}}(A_1)$.

Corollary 4.3. If there is a smooth $\mathcal{C} \subset \mathcal{X}_{\partial S}$ such that $H^1_{\mathfrak{c}^{\perp}}(S, \mathrm{ad}^{\circ} \bar{\rho}^*) = 0$, then $\mathcal{X}_{\mathcal{C}}$ is smooth.

Proof. Note that $\mathcal{X}_{\mathcal{C}} \to *$ is the composite of $\mathcal{X}_{\mathcal{C}} \to \mathcal{C}$ and $\mathcal{C} \to *$, both of which are smooth.