Name: Ms Rodsy Tahmid

TD: 20101021

Course Code: Cse 250

Experiment No.: 2

Experiment Name:

Introduction to Series and Parallel circuit

Ans:

1) Objective:

The experiment is to acquire acquaint us with seriesparallel circuits and to give us the idea about how
to connect different circuits in bread board.

(2) Apparatus;

Ly DC power supplies

L> Resistors

14 Bread board / Trainer board

L> Multimeter

3 Circuit/Block/System Diagram:

$$V_1 = (12 - 3.429) = 8.571$$
 , $V_2 = 1.714 \times 2$ = 3.428.

Figure 2:

Measurement of voltages across the resistors:

-> from PSpice Simulator. $12.00 \, \text{V} - 1.007 \, \text{V} = 10.993 \, \text{V}$

V2 = 1.007V

= 1.007 V - 0.08456 V = 0.92244 V1.007 V - 84.56 mV V3

V4 = 0.08456 V or 84.56 mV

 $V_5 = 84.56 \,\text{mV} - 7.687 \,\text{mV} = 76.873 \,\text{mV}$ [Or] 0.08456 V - 0'007687 V = 0.076873 V.

= 7.687 mV or 0.007687 V

Continuation.

$$T_1 = \frac{V_1}{R_1} = \frac{10.993}{10 \times 10^3} = 1.0993 \times 10^{-3} A$$

$$T_2 = \frac{V_2}{R_2} = \frac{1.007}{1 \times 10^3} = 1.007 \times 10^{-3} A$$

$$T_3 = \frac{V_3}{R_3} = \frac{0.92244}{10 \times 10^3} = 9.2244 \times 10^{-5} A$$

$$T_4 = \frac{V_4}{R_4} = \frac{0.08456}{1 \times 10^3} = 8.456 \times 10^{-5} A$$

$$T_5 = \frac{V_5}{R_5} = \frac{0.076873}{10 \times 10^3} = 7.6873 \times 10^{-6} \text{ A}$$

$$T_6 = \frac{V_6}{R_6} = \frac{0.007687}{1 \times 10^3} = 7.687 \times 10^{-6} A$$

$$T = \frac{V}{R}$$
.

For Figure 1:

$$V_1 = 8.574 V$$
 $V_2 = 1.714 V$.

$$T_1 = \frac{V_1}{R_1} = \frac{8.571}{10 \times 10^3} = 8.571 \times 10^{-4} \text{ A}$$

$$T_2 = \frac{V_1}{R_2} = \frac{8.571}{10 \times 10^3} = 8.571 \times 10^{-4} \text{ A}$$

$$T = V_2 \left(R_3 + R_4 + \frac{R_1 \times R_2}{R_1 + R_2} \right)$$

$$\Rightarrow T = 1.714 \left(1k + 1k + \frac{10k \times 10k}{10k + 10k} \right)$$

$$= 7 = 1.714 * 7k = 11.998 \times 10^3 A$$

$$T = \frac{\sqrt{2}}{R}$$

$$R = R_3 + R_4 + \frac{R_1 \times R_1}{R_1 + R_2} = 7k = 7 \times 10^3 \text{ s}$$

$$T = \frac{12}{1.714 \times 10^{-3}} = \frac{1.714 \times 10^{-3}}{7 \times 10^{3}} = \frac{2.449 \times 10^{-4}}{1.714 \times 10^{-3}} = \frac{1.714 \times 10^{-3}}{1.714 \times 10^{-3}} = \frac{1.71$$

Ans:
$$T_1 = \frac{1.714}{4} = \frac{1.714}{4} \times 10^{-3} \text{ A}$$

Figure 1: Report : 1) Tabular Form.

V, (v)	V2 (V)	V, +V, (v)	[(mA)	T2 (mA)	I (mA)
8.571	1-7-19 3.428	11.999	0.8571	0.8571	1.7142

For figure 2:

V, (v)	V ₂ (v)	V ₃ (v)	V4 (v)	V ₅ (v)	V ₆ (v)	V1 + V2 + V3 + V4 + V5 + V6	T. (mA)	T_2	
10.9933	3.007	0.92244	0.08456	0.076873	0.00783	13.091	1.0993	1.007	

0		0	_	<u> </u>	
13		44	T_5	Je	T_{\cdot}
(m)	_	(mA)	(mA)	(m A)	(mA)
92.2	23	84.56	7.687,3	7.687	2.2984
1 ×1	0	710	7.60,3	*10	2.2

Due to decimal places, accuracy is not obtained.

5 Discussion / Question

Voltage Source = 12

Calculated total Voltage = 13,09

ic there are discrepancies.

 $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 100 \Omega$

all to parallet.

3) $R_1 = R_2 = 1.5 \text{ k} \Omega = 1.5 \times 10^3 \Omega$

 $R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = 15 \text{ k}\Omega$

Republic
$$\frac{15k}{6} = 2.5k$$
, $\frac{1.5k}{2} = 0.75k$