Session 2: Basics of R continued

Overview

Statistics and plots for categorical data

Statistics and plots for quantitative data

Generating random data and probability functions

For loops

Writing functions

Categorical data

Categorical data

- # Get information about drinking behavior
- > drinking_vec <- profiles\$drinks
- # Create a table showing how often people drink
- > drinks_table <- table(drinking_vec)
- > drinks_table

Relative frequency table

We can create a relative frequency table using the function:

> prop.table(my_table)

Can you create a relative frequency table for the drinking behavior of the people in the okcupid data set?

- > drinks_table <- table(profiles\$drinks)
- > prop.table(drinks_table)

What is the proper statistical notation for these values: \hat{p} or π ?

Bar plots

(pun intended?)

We can plot the number of items in each category using a bar plot

> barplot(my_table)

Can you create a bar plot for the drinking behavior of the people in the okcupid data set?

- > drinks_table <- table(profiles\$drinks)
- > barplot(drinks_table)

What is wrong with this plot?

Labeling plots

Can you figure out how to label the axes?

Pie charts

We can also use the pie() function to create pie charts

> pie(drinks_table)

Questions?

Quantitative data

Quantitative data: statistics

There are several statistics that describe the central tendency of quantitative data...

• The mean: mean()

The median: median()

Can you calculate the mean and median of OkCupid user's heights?

Quantitative data: Visualizing heights

Q: How can we visualize the heights in the profiles data frame?

Visualizing heights

We can create histograms in R using the hist() function

Can you create a histogram of heights?

> hist(profiles\$height)

> hist(profiles\$height, breaks = 50)

OkCupid users are taller than the average person

Can we see this in the profiles data?

Histogram of heights

abline() adds lines to plots

Box plots can also visualize quantitative data

R: boxplot(v)

Outliers

Outliers on boxplots are values that are more than 1.5 * IQR

What should we do if we have outliers?

Investigate!

- If there are due to an error, remove them
- If not, need to account for them

OkCupid users' heights

People under 20" tall?

CitiBike data

Let's look at the bike share data from NYC

> load('daily_bike_totals.rda')

CitiBike analysis

What does each case correspond to?

We can use the dim() function to get how many cases and variables there are

How many are there?

Scatter plots

We can use the plot(x, y) function to create scatter plots

Can you create a scatter plot of the relationship between the minimum and maximum temperatures?

Scatter plots

Relationship between minimum and maximum temperatures

Plotting time series

We can use the plot(x, y) function to plot time series

Plotting time series

Total number of trips on each day

Questions?

Generating random data

R has built in functions to generate data from different distributions

All these functions start with the letter r

The uniform distribution

```
# generate n = 100 points from U(0, 1)
```

- > rand_data <- runif(100)
- > hist(rand data)

The normal distribution

generate n = 100 points from N(0, 1)

- > rand_data <- rnorm(100)
- > hist(rand_data)

Generating random data

If we want the same sequence of random numbers we can set the random number generating seed

- > set.seed(123)
- > runif(100)

Q: Why would we want the same sequence of random number?

Cumulative distributions

R has built in functions to get probabilities from different distributions

All these functions start with the letter p

The uniform distribution

$$P(X \le .25)$$
 punif(.25)

The normal distribution

$$P(X \le 2)$$
 pnorm(2)

For loops

For loops are useful when you want to repeat a piece of code many times under similar conditions

The syntax for a for loop is:

```
for (i in 1:100) {
    # do something
    i is incremented by 1 each time
}
```

For loops

For loops are particularly useful in conjunction with vectors...

```
my_results <- NULL # create an empty vector to store the results
for (i in 1:100) {
      my_results[i] <- i^2
}</pre>
```

Using a for loop to Simulate a sampling distribution

```
sampling dist <- NULL
for (i in 1:1000) {
      rand data \leftarrow runif(100) # generate n = 100 points from U(0, 1)
      sampling dist[i] <- mean(rand data) # save the mean
hist(sampling dist)
                         # visualize the sampling distribution
SE <- sd(sampling dist)
                         # get the standard error
```

Let's try it in R!

Writing functions

We've used many R functions in this class

Let's explore writing our own functions!