CSCI 544: Applied Natural Language Processing

Syntactic Parsing

Xuezhe Ma (Max)

Models

Course Organization

NLP Tasks

Recap: Sequence Labeling?

A type of structured prediction tasks

$$Y = \langle y_i, y_2, ..., y_n \rangle \qquad \text{NNP} \qquad \text{VBZ} \qquad \text{IN} \qquad \text{NNP} \qquad \\ X = \langle x_i, x_2, ..., x_n \rangle \qquad \text{USC} \qquad \text{is} \qquad \text{in} \qquad \text{California}$$

Assigning each token of X, e.g. x_i a corresponding label y_i

Syntactic Structure: Constituency vs. Dependency

Theme: How to represent the structure of sentences using (syntax) trees?

Two views of linguistic structures

- Constituency
 - phrase structure grammar
 - Based on context-free grammars (CFGs)
- Dependency
 - = dependency structure grammar

Constituency vs. Dependency

The man saw the girl with the telescope

Constituency Structure

- Starting units: words are given a category: part-of-speech tags
 - N = noun, V = verb, DT = determiner
- Phrases: words combine into phrases with categories
 - NP = noun phrase, VP = verb phrase, S = sentence
 - Phrases can combine into bigger phrases recursively

The man saw the girl with the telescope

Dependency Structure

The basic idea:

• Syntactic structure consists of lexical items, linked by binary asymmetric relations called dependencies.

• In the words of Lucien Tesniere [Tesniere1959]:

• The sentence is an organized whole, the constituent elements of which are *words* [1.2]. Every word that belongs to a sentence ceases by itself to be isolated as in the dictionary. Between the word and its neighbors, the mind perceives *connection*, the totality of which forms the structure of the sentence [1.3]. The structural connections establish *dependency* relations between the words. Each connection in principle unites a *superior* term and an *inferior* term [2.1]. The superior term receives the name *governor*, and the inferior term receives the name *subordinate*.

Constituency vs. Dependency

- Dependency structures explicitly represent
 - Head-dependent relations (directed arcs)
 - Functional categories (arc labels)
- Constituent structures explicitly represent
 - Phrases (non-terminal nodes)
 - Structural categories (non-terminal symbols)

Some Theoretical Frameworks

- Word Grammar (WG) [Hudson 1984, Hudson 1990, Hudson 2007]
- Functional Generative Description (FGD) [Sgall et al. 1986]
- Dependency Unification Grammar (DUG) [Hellwig 1986, Hellwig 2003]
- Meaning-Text Theory (MTT) [Mel'čuk 1988, Milićević 2006]
- (Weighted) Constraint Dependency Grammar ([W]CDG) [Maruyama 1990, Menzel and Schröder 1998, Schröder 2002]
- Functional Dependency Grammar (FDG)
 [Tapanainen and Järvinen 1997, Järvinen and Tapanainen 1998]
- Topological/Extensible Dependency Grammar ([T/X]DG) [Duchier and Debusmann 2001, Debusmann et al. 2004]

Dependency Parsing

Why Syntactic Structures?

I saw a girl with a telescope

Why Syntactic Structures?

Kids Normal People

Watching a Watching a

Model Train Model Train

Syntactic Structures Resolve Ambiguity

Limitation of Syntactic Structures

Syntax structures cannot resolve semantic ambiguities

Normal People Software Engineers

Watching a Model Train

Watching a model Train

The same syntactic structures
Different semantic meaning of "model"

Terminology

Superior	Inferior
Head	Dependent
Governor	Modifier
Regent	Subordinate
:	:

- ullet A dependency structure can be defined as a directed graph G, consisting of
 - ullet A set of nodes V
 - A set of directed arcs E (directed edges)
 - A linear precedence order < on V (word order)

Is this directed graph a valid dependency tree?

- ullet A dependency structure can be defined as a directed graph G, consisting of
 - ullet A set of nodes V
 - A set of directed arcs E (directed edges)
 - A linear precedence order < on V (word order)
- Formal Conditions of Dependency Structures
 - ullet G is connected: there exists a directed path from the root to every other node

- ullet A dependency structure can be defined as a directed graph G, consisting of
 - ullet A set of nodes V
 - A set of directed arcs E (directed edges)
 - A linear precedence order < on V (word order)
- Formal Conditions of Dependency Structures
 - ullet G is connected: there exists a directed path from the root to every other node
 - G is acyclic: no cycles like $A \to B, B \to C, C \to A$

- ullet A dependency structure can be defined as a directed graph G, consisting of
 - ullet A set of nodes V
 - A set of directed arcs E (directed edges)
 - A linear precedence order < on V (word order)
- Formal Conditions of Dependency Structures
 - ullet G is connected: there exists a directed path from the root to every other node
 - G is acyclic: no cycles like $A \to B, B \to C, C \to A$
 - ullet G obeys the single-head constraint: each non-root node has only one head

Dependency Structures: An Example

Invalid

Additional Constraint: Projectivity

• Definition of projectivity: there are no crossing dependency when the words are laid out in their linear order, with all arcs above the words

Non-projectivity arises due to long distance dependencies or in languages with flexible word order.

We will first consider projective parsing

Dataset	# Sentences	(%) Projective
English	39,832	99.9
Chinese	16,091	100.0
Czech	72,319	76.9
German	38,845	72.2

Two Families of Dependency Parsing Algorithms

Graph-based Dependency Parsing

- Learning: Induce a model for scoring an entire dependency graph for a sentence
- Parsing: Find the highest-scoring dependency graph

Transition-based Dependency Parsing

- Learning: Induce a model for predicting the next state transition, given the transition history
- Parsing: Construct the optimal transition sequence

Graph-based Dependency Parsing

Graph-based Dependency Parsing

- The General Problem
 - We have an input sentence x
 - We have a set valid dependency structures $\mathcal{T}(x)$
 - Aim is to provide a conditional probability p(y|x), $y \in \mathcal{T}(x)$

$$p(y|x) = \frac{\exp(v \cdot f(x, y))}{\sum_{y' \in \mathcal{T}(x)} \exp(v \cdot f(x, y'))}$$

How to simplify the feature function f(x, y)?

First-order Model

• Factorize f(x, y) into each edge of y

$$p(y|x) = \frac{\exp(v \cdot f(x,y))}{\sum_{y' \in \mathcal{T}(x)} \exp(v \cdot f(x,y'))} \qquad f(x,y) = \sum_{e \in y} f(x,e)$$

the score of an edge

$$\exp(v \cdot f(x, y)) = \exp(v \cdot \sum_{e \in y} f(x, e)) = \prod_{e \in y} \exp(v \cdot f(x, e))$$

First-order Model

• Factorize f(x, y) into each edge of y

$$p(y|x) = \frac{\exp(v \cdot f(x, y))}{\sum_{y' \in \mathcal{T}(x)} \exp(v \cdot f(x, y'))} \qquad f(x, y) = \sum_{e \in y} f(x, e)$$

Two standard problems:

Learning:
$$\sum_{y' \in \mathcal{T}(x)} \exp(v \cdot f(x, y'))$$

Decoding: arg max $\exp(v \cdot f(x, y'))$ $y' \in \mathcal{T}(x)$

- Cubic Parsing Algorithm [Eisner, 1996]
- Projective Parse Trees only
 - $\mathcal{I}(x)$ only contains projective trees
- Define a dynamic programming table
 - $\pi[s,t,d,c]=$ maximum probability of a dependency graph spanning words s,...,t inclusive, with direction $d\in\{\rightarrow,\leftarrow\}$, and completeness $c\in\{0,1\}$
- Our goal is to calculate $\max_{y \in \mathcal{T}(x)} p(y \mid x) = \pi[0, n, \rightarrow, 1]$

complete items

 $\pi[s, t, \rightarrow 1]$ dependency graphs from word s to t, with s as the root

 $\pi[s, t, \leftarrow, 1]$ dependency graphs from word s to t, with t as the root

complete items

 $\pi[s, t, \rightarrow 1]$ dependency graphs from word s to t, with s as the root

 $\pi[s, t, \leftarrow, 1]$ dependency graphs from word s to t, with t as the root

incomplete items

 $\pi[s,t, o,0]$ dependency graphs from word s to t, with s as the root and an edge $s\to t$

 $\pi[s, t, \leftarrow, 0]$

dependency graphs from word s to t, with t as the root and an edge $s \leftarrow t$

• Dynamic programming derivations

• Dynamic programming derivations


```
Initialization: C[s][s][d][c] = 0.0 \quad \forall s, d, c
for k:1..n
 for s:1..n
   t = s + k
    if t > n then break
     % First: create incomplete items
    C[s][t][\leftarrow][0] = \max_{s < r < t} (C[s][r][\rightarrow][1] + C[r+1][t][\leftarrow][1] + s(t,s))
    C[s][t][\to][0] = \max_{s \le r < t} (C[s][r][\to][1] + C[r+1][t][\leftarrow][1] + s(s,t))
     % Second: create complete items
    C[s][t][\leftarrow][1] = \max_{s \le r < t} (C[s][r][\leftarrow][1] + C[r][t][\leftarrow][0])
    C[s][t][\to][1] = \max_{s < r < t} (C[s][r][\to][0] + C[r][t][\to][1])
  end for
end for
                                                                                                    Running time:
                                                                                                          O(n^3)
```

Higher-order Parsing

- First-order: factorizing features into each edge
- Higher-order: factorizing features into more complex components

$$f(x,y) = \sum_{p \in y} f(x,p)$$

Non-projective Parsing

• Two standard problems:

```
Learning: \sum_{y' \in \mathcal{T}(x)} \exp(v \cdot f(x, y'))
```

- Decoding: arg max $\exp(v \cdot f(x, y'))$ $y' \in \mathcal{T}(x)$
- First-order Model:
 - Learning: Matrix-Tree Theorem [Koo et al., 2007]
 - Decoding: Maximum Spanning Tree algorithm [McDonald, 2005]
- High-order Models: NP-hard

Evaluation Dependency Parsing

- Unlabeled Attachment Score (UAS)
 - Percentage of words that have been assigned the corrected head
- Labeled Attachment Score (LAS)
 - Percentage of words that have been assigned the correct head & label
- Root Accuracy (RA)
 - Accuracy of the root dependencies

$$UAS = 5/6$$

$$LAS = 4/6$$

$$RA = 1/1$$

Parsing Exeriments

Penn Treebank

	UAS	Complexity
1st-proj	91.8	$O(n^3)$
1st-non-proj	91.7	$O(n^3)$
2nd-proj	92.4	$O(n^3)$
3nd-proj	93.0	$O(n^4)$
4nd-proj	93.4	$O(n^5)$

RNNs for Dependency Parsing

Recap: RNN for Sequence Labeling

A simple bidirectional LSTM model

No structured models to consider dependencies between Y

Dependency Parsing

An Unstructured Model

- Deep BiAffine Parser (Dozat, 2017)

$$P(y|x) = \prod_{i=1}^{n} P(j \to i|x)$$

$$P(j \to i \mid X) = \frac{\exp(h_i^T W z_j)}{\sum_{j'=0}^n \exp(h_i^T W z_{j'})}$$

Pros:

• Simple, no structured modeling

Cons:

• Outputs are not guaranteed to be a tree

Dependency Parsing

• DeepBiAffine Parser

	English	German
Graph-based (2nd-order)	92.4%	89.3%
BiAffine	94.1%	91.6%
BiAffine+CNNs	94.9%	93.4%

Dependency Parsing: NeuroMST Parser

• We stack a first-order graph-based model on top of a BLSTM-CNN encoder

Dependency Parsing

• DeepBiAffine Parser

	English	German
4th-proj	93.4%	89.3%
BiAffine	94.1%	91.6%
BiAffine+CNNs	94.9%	93.4%
NeuroMST	95.8%	93.8%

Transition-based Dependency Parsing

Transition-based Parsing

Basic Ideas

- Define a transition system for dependency parsing
- Learn a machine learning model for scoring possible transitions
- Parse by searching for the optimal transition sequence

Transition-based Parsing

• The Arc-standard Transition System

- Three data structures, a stack σ , a buffer β and a set α
- A configuration consists of
 - 1. A stack σ consisting of a sequence of words, e.g.,

$$\sigma = [\mathsf{root}_0, \mathsf{I}_1, \mathsf{live}_2]$$

2. A buffer β consisting of a sequence of words, e.g.,

$$\beta = [\text{in}_3, \text{New}_4, \text{York}_5, \text{city}_6, ._7]$$

3. A set α of labeled dependencies, e.g.,

$$\alpha = \{\{1 \to^{nsubj} 2\}, \{6 \to^{nn} 5\}$$

- Initial configuration: $\sigma = [\$], \ \beta = [w_1, ..., w_n], \ \alpha = \{\}$
- Three types of transition actions: LEFT-ARC, RIGHT-ARC, SHIFT
- A terminal configuration: $\sigma = [\$], \ \beta = []$

Transition-based Parsing

Transition-based Parsing: Parsing

No Exact Parsing Algorithm

- Greedy search or beam search
- Linear time complexity
- Comparable performance with graph-based parsing algorithms

Stack-Pointer Network for Dependency Parsing

- Order: Top-down, depth-first
- •Actions: "Point" to the next word to choose as a child
- Model: A neural network, based on "pointer networks"
- Advantages:
 - Top-down parsing maintains a global view of the sentence
 - High accuracy
 - Can maintain full history, low asymptotic running time (c.f. graph-based)

Transition System in StackPtr

- Two data structures
 - List (α): of words whose head has not been selected
 - Stack (σ): of partially processed head words whose children have not been fully selected
- Stack σ is initialized with the root symbol \$
- At each decoding step t
 - receive the top element of stack σ as head word w_h , and generate the hidden state h_t
 - compute the vector a^t using h_t and encoder hidden states s
 - generate an arc: choose a specific word (w_c) from α as the child of w_h , remove w_c from α and push it onto σ
 - complete a head: pop w_h out of σ

Dependency Parsing

• DeepBiAffine Parser

	English	German
4th-proj	93.4%	89.3%
BiAffine	94.1%	91.6%
BiAffine+CNNs	94.9%	93.4%
NeuroMST	95.8%	93.8%
StackPtr	95.9%	93.7%

Representation Transfer in Deep Learning

An Interesting Observation

A Probing Experiment

An Interesting Observation

	POS Tagging
BLSTM-CNN-CRF	97.6%
LSTM1 + SVM	97.7%
LSTM2 + SVM	97.8%

Neural Representations learned from a more challenging tasks can be applied to down-stream tasks!

Reading Materials

- Comparison and Integration of graph-based and transition-based dependency parsers
 - McDonald and Nivre, 2011