EE 115 Homework 1

1) (30 points) Consider a periodic message signal m(t) = m(t+T) which satisfies

$$m(t) = \begin{cases} 3 & 0 \le t < \frac{T}{3} \\ -3 & -\frac{T}{3} \le t < 0 \\ 0 & \frac{T}{3} \le t < \frac{T}{2} \\ 0 & -\frac{T}{2} \le t < -\frac{T}{3} \end{cases}$$
 (1)

For the above m(t), determine the following:

- a) The mean of m(t), i.e., $\lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} m(t) dt$; the energy of m(t) within |t| < T/2; and the average power of m(t) for $-\infty < t < \infty$.
- b) Simplify the expression of the coefficients $c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} m(t) e^{-j2\pi \frac{k}{T}t} dt$ in the Fourier series expansion $m(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi \frac{k}{T}t}$. What is the value of c_0 , and Why? Is c_k for any k real, imaginary or complex, and why? Is c_k an even or odd function of k, and why?
- c) Sketch the real and imaginary parts of the Fourier transform M(f) of m(t) for $|f| < \frac{6}{T}$.
- 2) (30 points) Determine the complex envelope of each of the following signals with respect to $\cos(2\pi f_c t)$:
 - a) $a(t)\cos(2\pi f_c t + \theta(t)) + b(t)\cos(2\pi f_c t + \phi(t))$.
 - b) $a(t)\cos(2\pi f_c t) b(t)\sin(2\pi f_c t) + c(t)\sin(2\pi f_c t + \phi(t))$.
 - c) $a(t)\sin(2\pi(f_c+\Delta)t+\theta(t))$.
- 3) (40 points) Consider the DSB-SC signal $u(t) = m(t)\cos(500\pi t)$ where $m(t) = \sin(10\pi t) + 2\cos(20\pi t)$. Determine the following:
 - a) The spectrum M(f) of m(t), and the spectrum U(f) of u(t).
 - b) Sketch each of |U(f)|, Re(U(f)) and Im(U(f)) versus f.
 - c) The demodulator of the DSB-SC signal starts with a mixer which produces $y(t) = u(t)\cos(500\pi t)$. Then you can apply a lowpass filter to y(t) to obtain m(t). Determine the frequency response of the required lowpass filter.

October 3, 2025 DRAFT