EVML3

FEATURE DATA EXPLORATION

JEROEN VEEN

QUIZ TIME

- Individual, multiple-choice questions
- Online: http://www.socrative.com room 1PTGB6PY
- Open book quiz, so books and slides can be consulted
- HAN student number, so NOT your name, nickname or anything else.
- Quiz starts exactly at class hour and takes 10 minutes.
- Be on time and have your equipment prepared.

CONTENTS

- Thinking about data
- Splitting your data
- Feature engineering
- Exploring feature data
- Data preparation

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts." — Sir Arthur Conan Doyle, Sherlock Holmes

RECAP: MACHINE LEARNING APPROACHES

Source: Géron, ISBN: 9781492032632

REGRESSION EXAMPLE

Z

Wine quality = 12.145 + 0.00117 winter rainfall

- + 0.0614 average growing season temperature
- 0.00386 harvest rainfall.

_UNIVERSITY PPLIED SCIENCES

WORKING WITH REAL DATA

- Numerical information
- Values of quantitative variables
- Collected through measurement
- Usable for processing

Source: https://en.wikipedia.org/wiki/Data#/media/File:Data_types_-_en.svg

Ultimate goal of data processing: Turn information into insight!

UNREASONABLE EFFECTIVENESS OF DATA

 Data matters more than algorithms!

Source: Peter Norvig et al 2009

DEFINE YOUR OBJECTIVE

- What do you want to achieve?
 - > Define a SMART objective
- What classes apply?
- What data is available?
- What attributes are present?
- What data should be collected?
- What features matter?

Source: Simon Sinek

Why = The Purpose

What is your cause? What do you believe?

Apple: We believe in challienging the status quo and doing this differently

How = The Process

Specific actions taken to realize the Wi

Apple: Our products are beautifully designed and easy to use

What = The Result

What do you do? The result of Why. Proof.

Apple: We make computers

EXAMPLE: PEOPLE DETECTION

OF APPLIED SCIENCES

GETTING LABELED DATASETS

- Data acquisition
 - Field campaign
 - Controlled test set-ups
 - Scraping
- Data labelling
 - Domain experts
 - Hire data services
 - Control the experiments

Source: Basler, Artificial Intelligence in Image Processing

EXAMPLE: PUBLIC DATASETS

Source: Iris flower dataset

Source: MNIST database

See e.g. Scikit learn, Kaggle, Quandl, Google, Amazon

TRAINING AND TEST SETS: SPLITTING DATA

- training set—a subset to train a model.
- test set—a subset to test the trained model.
- You could imagine slicing the single data set as follows:

- Make sure that your test set meets the following two conditions:
 - Is large enough to yield statistically meaningful results.
 - Is representative of the data set as a whole. In other words, don't pick a test set with different characteristics than the training set.

STRATIFIED SAMPLING

 Make sure the subsets set properly reflect the population

Never train on test data.

If you are seeing surprisingly good results on your evaluation metrics, it might be a sign that you are accidentally training on the test set. For example, high accuracy might indicate that test data has leaked into the training set.

FEATURE ENGINEERING

- Turn data into feature vectors
- Abstraction of an image

Source: Basler, Artificial Intelligence in Image Processing

WHAT MAKES A GOOD FEATURE?

https://www.youtube.com/watch?v=N9fDIAflCMY&feature=youtu.be

FEATURE ENGINEERING

- Select features
- Decompose features (e.g. area -> length, width)
- Extract features (e.g. aggregate, combinations)
- Creating new features by gathering new data
- Add promising transformations of features (e.g., log(x), sqrt(x), x², etc.).

HAN_UNIVERSITY
OF APPLIED SCIENCES

IMAGE FEATURE ENGINEERING

- Keypoints
- Extract descriptors
- Rotational and scaling invariance

KEYPOINT DETECTOR METHODS

- FAST: simple, and prone to error?
- SIFT: computationally expensive, but highly expressive.
- SURF: faster and more robust
- Star: optimized for measuring camera self-motion
- BRIEF: extracting feature descriptions
- BRISK
- ORB
- FREAK
-

QUALITIES OF GOOD FEATURES

- Informative
- Discriminating
- Independent
- Nearly unique

Source: https://www.spiedigitallibrary.org/ContentImages/Journals/JEIME5/26/1/013023

NB later on feature scaling may be required

EXAMPLE: IRIS FLOWER DATA SET

Sepal and petal width and length

Source: https://en.wikipedia.org/wiki/Sepal

Iris Data (red=setosa,green=versicolor,blue=virginica)

EXPLORE THE DATA

- Get insights from a domain expert
- Set aside a subset of the data for exploration
- Study each attribute and its characteristics
 - categorical, int/float, bounded/unbounded, text, structured,
 - Noisiness and type of noise (stochastic, outliers, rounding errors)
- Visualize the data
- Study the correlations between attributes
- Think about how you would solve the problem manually

EXAMPLE: CALIFORNIA HOUSING PRICES

Source: Géron, ISBN: 9781492032632

TOOLS FOR EXPLORATORY DATA ANALYSIS

- Univariate analysis
- Histogram
- Scatterplot
- Boxplot
- Correlation heatmap

DATA QUALITY ISSUES

- Insufficient data. ML needs massive amounts of training data.
- Messy data. Data that contains a large amount of conflicting or misleading information.
- Dirty data. Data that contains missing values, categorical and character features with many levels, and inconsistent and erroneous values.
- Sparse data. Data that contains very few actual values and is instead composed of mostly zeros or missing values.
- Inadequate data. Data that is either unbalanced, incomplete or biased.

PIPELINES

- Sequence of data processing components
- First step is preparing the data

PREPARING DATA

- Data cleaning:
 - Fix or remove outliers (optional)
 - Fill in missing values (e.g., with zero, mean, median...) or drop their rows (or columns).
- Feature computation:
 - Selection
 - Transformation
- Feature scaling:
 - Standardize or normalize features.

EXAMPLE: OUTLIER DETECTION

- Assume feature values are normally distributed
- Compute Z-score of value
- Detect if z-score is above threshold
- Typically used in low dimensional feature space

Source: https://en.wikipedia.org/wiki/Standard_score

CLEANING DATA

- Scrubbing
 - Detect omitted values or duplicated examples and remove
 - Detecting bad feature values or labels can be far trickier
 - Outlier detection
 - Limited or sparse features / attributes
- Scaling
 - Avoid algorithm bias to features having a wider range
 - Help algorithms converge more quickly
 - Handling extreme outliers, e.g. log scaling, clipping

EXAMPLE: CLIPPING

https://developers.google.com/machine-learning/crash-course/representation/cleaning-data

PITFALLS

- Insufficient data
- Sampling bias: your dataset is not representative of the cases you want to generalize to
- Unbalanced data: your dataset does not represent classes equally (skewed, nonresponse)
- Non-stationary data: distribution changes within the data set
- Over/underfitting: optimizing for the wrong thing by considering too many or too few features
- Train-test contamination: you fail to distinguish training data from validation data.
- Target leakage: your training data includes data that will not be available at the time you make predictions

BIASES

- Selection bias: tendency to implicitly filter data based on some arbitrary criteria and then try to make sense out of it without realizing or acknowledging that we're working with incomplete data
- Availability bias: tendency to work with data that's easier to obtain rather than looking for data that is harder to gather but is more informative.
- False causality: tendency to assume that correlation implies causation
- Sunk cost fallacy: tendency to make decisions based on how much is already invested

INCLUDE VALIDATION

Validation Set: Another Partition

