

DM74LS290 4-Bit Decade Counter

General Description

The 'LS290 counter is electrically and functionally identical to the 'LS90. Only the arrangement of the terminals has been changed for the 'LS290.

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five.

This counter has a gated zero reset and gated set-to-nine inputs for use in BCD nine's complement applications.

To use the maximum count length (decade) of this counter, the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are as de-

scribed in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the 'LS290 counter by connecting the Q_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_A .

Features

- GND and V_{CC} on Corner Pins (Pins 7 and 14 respectively)
- Typical power dissipation 45 mW
- Count frequency 42 MHz

Connection Diagram

Dual-In-Line Package

Order Number DM74LS290M or DM74LS290N See NS Package Number M14A or N14A TL/F/6422-1

Absolute Maximum Ratings (Note)

if Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 7V

Operating Free Air Temperature Range

DM74LS 0°C to +70°C Storage Temperature Range -65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter			Units			
			Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	٧	
V _{IH}	High Level Input Voltage		2			V	
V _{IL}	Low Level Input Voltage				0.8	٧	
loh	High Level Output Current				-0.4	mA	
l _{OL}	Low Level Output Current				8	mA	
fCLK	Clock Freq. (Note 1)	A to Q _A	0	****	32	MHz	
		B to Q _B	0		16		
fclk	Clock Freq. (Note 2)	A to Q _A	0		20	MHz	
		B to Q _B	0		10	, IVIF1Z	
t₩	Pulse Width (Note 6)	Α	15				
		В	30			ns	
	Reset		15			1	
t _{REL}	Reset Release Time (Note 6)		25			ns	
TA	Free Air Operating Temperature		0		70	ů	

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 3)	Max	Units	
V _I	Input Clamp Voltage	$V_{CC} = Min, I_1 = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.7	3.4		٧
V _{OL} Low Level Output Voltage		$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$			0.35	0.5	v
	I _{OL} = 4 mA, V _{CC} = Min			0.25	0.4		
I _I Input Current @ Max Input Voltage		Max $V_{CC} = Max, V_I = 7V$	Reset			0.1	mA
	Input Voltage		A			0.2	
			В			0.4	
I _{IH} High Level Input Current	1 -	Note that $V_{CC} = Max, V_1 = 2.7V$	Reset			20	μΑ
	Current		Α			40	
			В			80	
ł _{IL}	Low Level Input		Reset			-0.4	mA
Current	Current		Α			-2.4	
			В			-3.2	
los	Short Circuit Output Current	V _{CC} = Max (Note 4)		-20		-100	mA
lcc	Supply Current	V _{CC} = Max (Note 5)			9	15	mA

Switching Characteristics at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input)					
			C _L = 15 pF		C _L = 50 pF		Units
		To (Output)	Min	Max	Min	Max	1
fMAX	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	o Q _B 16		10		MHZ
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _A		16		23	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _A		18		30	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _D		48		60	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _D		50		68	ns
^t PLH	Propagation Delay Time Low to High Level Output	B to Q _B		16		23	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _B		21		35	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _C		32		48	ns
^t PHL	Propagation Delay Time High to Low Level Output	B to Q _C		35		53	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _D		32		48	ns
^t PHL	Propagation Delay Time High to Low Level Output	B to Q _D		35		53	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	SET-9 to Q _A , Q _D		30		38	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	SET-9 to Q _B , Q _C		40		53	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		53	ns

Note 1: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5V$.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 5: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 2: C_L = 50 pF, R_L = 2 k Ω , T_A =25°C and V_{CC} = 5V.

Note 3: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 6: $T_A = 25^{\circ}C$ and V_{CC} 5V.

.

Function Tables

BCD Count Sequence (See Note A)

(555.1616.14)								
Count	Output							
	QD	QC	QB	QA				
0	L	L	L	L				
1	L	L	L	Н				
2	L	L	Н	L				
3	L	L	Н	Н				
4 5	L	Н	L	L				
5	L	Н	L	Н				
6	L	Н	Н	L				
7	L	Н	H	Н				
8	H	L	L	L				
9	H	L	L	Н				

Note A: Output \mathbf{Q}_{A} is connected to input B for BCD count

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

Bi-Quinary (5-2) (See Note B)

Count	Output					
	Q _A Q _B		QC	Q_{D}		
0	L	L	L	L		
1	L	L	L	H		
2 3	L	L	Н	L		
3	L	L	H	- Н		
4	L	Н	L	L		
5	Н	L	L	L		
6	Н	L	L	- н		
7	н	L	Н	L		
8	н	L	Н	н		
9	н	Н	L	L		

Note B: Output $\mathbf{Q}_{\mathbf{D}}$ is connected to input A for biquinary count.

Logic Diagram

Reset/Count Truth Table

Reset Inputs				Outputs			
R0(1)	R0(2)	R9(1)	R9(2)	QD	Qc	QB	QA
Н	Н	L	Х	L	L	L	L
Н	Н	Х	L	L	L	L	L
X	Х	Н	Н	Н	L	L	Н
Х	L	X	L	COUNT			
L	X	L	Х	COUNT			
L	Х	Х	L	COUNT			
X	L	L	Х	COUNT			