2016年南开大学计算机与控制工程学院信息安全专业

《信息安全数学基础》试卷 (A卷)

题号	1	2	3	4	5
得分					

- 一、完成下面各题(每小题 4 分, 5 小题, 共计 20 分)
- 1. 试求17⁴²(mod55)。

学号

2. 判断 5 是否是模 77 的二次剩余,给出判断过程。

3. 分别在有理数域、复数域和有限域 \mathbb{Z}_5 内分解多项式 $x^2 - 3x + 6$ 。

4. 试求 ord₁₇(6)。

5. 试分别给出非交换的群、非交换的环、非整环的环的例子。

得分

二、(10分) 求解方程: $x^2 \equiv 36 \pmod{77}$ 。

得分

三、(20 分)给的正整数n,

- (1) 利用简化剩余类的概念,证明欧拉定理:正整数 a 与 n 互素,则 $a^{\varphi(n)}\equiv 1 \pmod{n}$ 。
- (2) 环 \mathbf{Z}_n 是域当且仅当n是素数。

得分

四、(25 分) 设 G_1 , G_2 是群, e_1 , e_2 分别是 G_1 , G_2 的幺元, $f:G_1 \to G_2$ 为 G_1 到 G_2 的同态映射,证明:

- (1) $f(e_1) = e_2$ 且对任意 $g \in G_1$, $f(g)^{-1} = f(g^{-1})$;
- (2) f 的像 Im $f = \{f(g) | g \in G_1\}$ 是 G_2 的子群;
- (3) f 的核 $\text{Ker } f = \{g \in G_1 \mid f(g) = e_2\}$ 是 G_1 的正规子群;
- (4) $\[\text{id } N = \text{Ker } f \]$, $\[\text{id } G_1 \] / \[N = \{gN \] g \in G_1 \} \]$ 构成群;
- (5) 群 G_1/N 到群 Im f 的映射 ϕ 满足: $\phi(gN) = f(g)$, 则 ϕ 为一一映射;
- (6) $G_1 / \operatorname{Ker} f \cong \operatorname{Im} f$

得分

五、(25 分)设素数 p>3,有限域 Z_p 上的椭圆曲线 $E: y^2 \equiv x^3 + ax + b \pmod p$, $a, b \in Z_p$ 且 $4a^3 + 27b^2 \neq 0$ 。 对 E 上非无穷远点的任意点 $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$,令 $P_3 = P_1 + P_2 = (x_3, y_3)$,则 (E, +) 构成群,定义无穷远点为单位元,其加法如下:①当 $x_1 = x_2, y_1 + y_2 = 0$ 时,则 $P_3 = P_1 + P_2$ 为无穷远点;② 其它情形, $x_3 = \lambda^2 - x_1 - x_2$, $y_3 = \lambda(x_1 - x_3) - y_1$,

若在 Z_{23} 上定义椭圆曲线 $E: y^2 = x^3 + 3x + 1$,点 $P = (5, y) \in E$ 且 $2y \le 23$ (1) 求y的值;

- (2) 求点 3*P*和 5*P*的坐标;
- (3) 求5P在(E,+)中的阶。