Ejemplos de Integración Definida por aproximación

Pregunta 1: Halle la longitud del arco de la curva $y = 3 \operatorname{sen}(2x)$ en $[0, 2\pi]$ usando la regla trapezoidal con n = 6.

Respuesta:

Para hallar la longitud del arco de la curva $y = 3 \operatorname{sen}(2x)$ en el intervalo $[0, 2\pi]$ usando la regla trapezoidal con n = 6, seguiremos los siguientes pasos:

1. **Fórmula de la longitud del arco:** La longitud del arco L de una curva y = f(x) en el intervalo [a,b] está dada por la fórmula:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

2. Calcular la derivada $\frac{dy}{dx}$: Nuestra función es $y = 3 \operatorname{sen}(2x)$. Derivamos y con respecto a x:

$$\frac{dy}{dx} = \frac{d}{dx}(3\operatorname{sen}(2x)) = 3\cdot\cos(2x)\cdot\frac{d}{dx}(2x) = 3\cos(2x)\cdot 2 = 6\cos(2x)$$

3. Calcular $\left(\frac{dy}{dx}\right)^2$:

$$\left(\frac{dy}{dx}\right)^2 = (6\cos(2x))^2 = 36\cos^2(2x)$$

4. Expresión para la longitud del arco: Sustituyendo en la fórmula de la longitud del arco, obtenemos:

$$L = \int_0^{2\pi} \sqrt{1 + 36\cos^2(2x)} \, dx$$

5. **Regla Trapezoidal:** La regla trapezoidal para aproximar la integral $\int_a^b f(x) dx$ con n subintervalos es:

$$T_n = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right]$$

donde $\Delta x = \frac{b-a}{n}$ y $x_i = a + i\Delta x$.

6. Aplicar la regla trapezoidal con n=6: En nuestro caso, $a=0,\,b=2\pi,\,\mathrm{y}$ n=6.

Calculamos Δx :

$$\Delta x = \frac{2\pi - 0}{6} = \frac{2\pi}{6} = \frac{\pi}{3}$$

1

Los puntos x_i son: $x_0 = 0, x_1 = \frac{\pi}{3}, x_2 = \frac{2\pi}{3}, x_3 = \pi, x_4 = \frac{4\pi}{3}, x_5 = \frac{5\pi}{3}, x_6 = 2\pi$

Nuestra función a evaluar es $f(x) = \sqrt{1 + 36\cos^2(2x)}$. Calculamos los valores de $f(x_i)$:

$$f(x_0) = f(0) = \sqrt{37} \approx 6,0828$$

$$f(x_1) = f(\frac{\pi}{3}) = \sqrt{10} \approx 3,1623$$

$$f(x_2) = f(\frac{2\pi}{3}) = \sqrt{10} \approx 3,1623$$

$$f(x_3) = f(\pi) = \sqrt{37} \approx 6,0828$$

$$f(x_4) = f(\frac{4\pi}{3}) = \sqrt{10} \approx 3,1623$$

$$f(x_5) = f(\frac{5\pi}{3}) = \sqrt{10} \approx 3,1623$$

$$f(x_6) = f(2\pi) = \sqrt{37} \approx 6,0828$$

Ahora aplicamos la regla trapezoidal:

$$T_{6} = \frac{\frac{\pi}{3}}{2} \left[f(0) + 2f(\frac{\pi}{3}) + 2f(\frac{2\pi}{3}) + 2f(\pi) + 2f(\frac{4\pi}{3}) + 2f(\frac{5\pi}{3}) + f(2\pi) \right]$$

$$= \frac{\pi}{6} \left[\sqrt{37} + 2\sqrt{10} + 2\sqrt{10} + 2\sqrt{37} + 2\sqrt{10} + 2\sqrt{10} + \sqrt{37} \right]$$

$$= \frac{\pi}{6} \left[4\sqrt{37} + 8\sqrt{10} \right]$$

$$= \frac{2\pi}{3} \left[\sqrt{37} + 2\sqrt{10} \right]$$

$$\approx \frac{2 \cdot 3,1416}{3} [6,0828 + 2(3,1623)]$$

$$\approx 2,0944[6,0828 + 6,3246]$$

$$\approx 2,0944 \cdot 12,4074$$

$$\approx 25,987$$

Por lo tanto, la longitud del arco de la curva $y = 3 \operatorname{sen}(2x)$ en $[0, 2\pi]$ usando la regla trapezoidal con n = 6 es aproximadamente 25,987.

Pregunta 2: Integre la siguiente función entre los límites a = -1 y b = 1, utilizando 6 intervalos, usando la regla de Simpson:

$$\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

Respuesta:

Para integrar la función $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ entre los límites a = -1 y b = 1 utilizando la regla de Simpson con n = 6 intervalos, seguimos los siguientes pasos:

1. Fórmula de la regla de Simpson:

$$S_n = \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{n-1}) + f(x_n) \right]$$

donde $\Delta x = \frac{b-a}{n}$ y $x_i = a + i\Delta x$.

2. Calcular Δx y los puntos x_i : $\Delta x = \frac{1-(-1)}{6} = \frac{2}{6} = \frac{1}{3}$ Los puntos x_i son: $x_0 = -1, x_1 = -\frac{2}{3}, x_2 = -\frac{1}{3}, x_3 = 0, x_4 = \frac{1}{3}, x_5 = \frac{2}{3}, x_6 = 1.$

3. Evaluar la función $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} \approx 0.39894e^{-x^2/2}$ en los puntos x_i :

$$f(-1) \approx 0.2420$$

$$f(-\frac{2}{3}) \approx 0.3138$$

$$f(-\frac{1}{3}) \approx 0.3779$$

$$f(0) \approx 0.3989$$

$$f(\frac{1}{3}) \approx 0.3779$$

$$f(\frac{2}{3}) \approx 0.3138$$

$$f(1) \approx 0.2420$$

4. Aplicar la regla de Simpson:

$$S_6 = \frac{1/3}{3} \left[f(-1) + 4f(-\frac{2}{3}) + 2f(-\frac{1}{3}) + 4f(0) + 2f(\frac{1}{3}) + 4f(\frac{2}{3}) + f(1) \right]$$

$$\approx \frac{1}{9} \left[0.2420 + 4(0.3138) + 2(0.3779) + 4(0.3989) + 2(0.3779) + 4(0.3138) + 0.2420 \right]$$

$$\approx \frac{1}{9} \left[0.2420 + 1.2552 + 0.7558 + 1.5956 + 0.7558 + 1.2552 + 0.2420 \right]$$

$$\approx \frac{1}{9} \left[6.1016 \right]$$

$$\approx 0.6780$$

Por lo tanto, la aproximación de la integral utilizando la regla de Simpson con n=6 intervalos es aproximadamente 0,6780.

Pregunta 3: Dada la integral:

$$\int_0^\pi x^2 \operatorname{sen}(5x) \, dx$$

a) Calcularla por la regla de Simpson compuesta, dividiendo el intervalo de integración en 10 subintervalos, y hallar el error absoluto cometido.

Solución:

1. Regla de Simpson Compuesta: La regla de Simpson compuesta para aproximar la integral $\int_a^b f(x) \, dx$ con n (par) subintervalos es:

$$S_n = \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$$

donde $\Delta x = \frac{b-a}{n}$ y $x_i = a + i\Delta x$.

- **2. Calcular** Δx **y los puntos** x_i : Intervalo de integración: $[a,b] = [0,\pi]$ Número de subintervalos: n = 10 Ancho de cada subintervalo: $\Delta x = \frac{\pi 0}{10} = \frac{\pi}{10} \approx 0.314159$ Los puntos $x_i = a + i\Delta x = \frac{i\pi}{10}$ para $i = 0, 1, \ldots, 10$.
 - 3. Evaluar la función $f(x) = x^2 \operatorname{sen}(5x)$ en los puntos x_i :

i	$x_i = \frac{i\pi}{10}$	$5x_i$	$f(x_i) = \left(\frac{i\pi}{10}\right)^2 \operatorname{sen}\left(5 \cdot \frac{i\pi}{10}\right)$
0	0	0	0
1	$\frac{\pi}{10} \approx 0.31416$	$\frac{\pi}{2} \approx 1,57080$	$(\frac{\pi}{10})^2 \operatorname{sen}(\frac{\pi}{2}) \approx 0.09870$
2	$\frac{2\pi}{10} \approx 0.62832$	$\bar{\pi} \approx 3{,}14159$	$(\frac{2\pi}{10})^2 \sin(\pi) = 0$
3	$\frac{3\pi}{10} \approx 0.94248$	$\frac{3\pi}{2} \approx 4,71239$	$(\frac{3\pi}{10})^2 \sin(\frac{3\pi}{2}) \approx -0.88826$
4	$\frac{4\pi}{10} \approx 1,25664$	$2\pi \approx 6,28319$	$(\frac{4\pi}{10})^2 \sin(2\pi) = 0$
5	$\frac{5\pi}{10} \approx 1,57080$	$\frac{5\pi}{2} \approx 7,85398$	$(\frac{5\pi}{10})^2 \operatorname{sen}(\frac{5\pi}{2}) \approx 2,46740$
6	$\frac{6\pi}{10} \approx 1.88496$	$3\pi \approx 9{,}42478$	$(\frac{6\pi}{10})^2 \sin(3\pi) = 0$
7	$\frac{7\pi}{10} \approx 2{,}19911$	$\frac{7\pi}{2} \approx 10,99557$	$(\frac{7\pi}{10})^2 \sin(\frac{7\pi}{2}) \approx -7.56868$
8	$\frac{8\pi}{10} \approx 2.51327$	$4\pi \approx 12,56637$	$(\frac{8\pi}{10})^2 \sin(4\pi) = 0$
9	$\frac{9\pi}{10} \approx 2.82743$	$\frac{9\pi}{2} \approx 14{,}13717$	$(\frac{9\pi}{10})^2 \operatorname{sen}(\frac{9\pi}{2}) \approx 22,20662$
10	$\frac{10\pi}{10} \approx 3{,}14159$	$5\pi \approx 15,70796$	$(\frac{10\pi}{10})^2 \sin(5\pi) = 0$

4. Aplicar la regla de Simpson Compuesta:

$$S_{10} = \frac{\pi}{30} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + 2f(x_6) + 4f(x_7) + 2f(x_8) + 4f(x_9) + f(x_{10}) \right]$$

$$\approx \frac{\pi}{30} \left[0 + 4(0,09870) + 2(0) + 4(-0,88826) + 2(0) + 4(2,46740) + 2(0) + 4(-7,56868) + 2(0) + 4(22,20662) + 2(0) + 4(2,46740) + 2(0) + 4(-7,56868) + 2(0) + 4(22,20662) + 2(0) + 4(2,46740) + 2(0) + 4(2,46740) + 2(0) + 4(2,20662) + 2(0) + 4(2,20662) + 2(0) + 2(0,20662) + 2(0,2062$$

5. Cálculo del valor exacto de la integral: El valor exacto de la integral $\int_0^{\pi} x^2 \sin(5x) dx = \left[-\frac{1}{5} x^2 \cos(5x) + \frac{2}{25} x \sin(5x) + \frac{2}{125} \cos(5x) \right]_0^{\pi} = \frac{\pi^2}{5} - \frac{4}{125} \approx 1,94192.$