Data Mining

Lecture 7 Associative Networks and Recurrent Classification

http://www.informatik.uni-hamburg.de/WTM/

Associative Memory: simple Form of Neural Learning

- We link patterns in our brains
- We generalise from patterns we have seen
 - Example: recognize letters in different fonts
- This is Context-Addressable or Associative Memory

The Hopfield Network as Associative Memory

- An example of a network of McCulloch and Pitts networks
 - Perceptrons
 - Binary Threshold Units

- Symmetric weights
- No self connection
- Invented by J. Hopfield

The Hopfield Network: A simple Attractor Network and Associative Memory

 All connected to every other neuron

Synchronous or random update

$$S_i = \operatorname{sign}\left(\sum_{j=1}^n w_{ij} S_j\right)$$

Representing Images

Learning the Pattern

Setting the weights:

$$S_i = \operatorname{sign}\left(\sum_{j=1}^n w_{ij} S_j\right)$$

$$\Rightarrow w_{ij} = \frac{1}{N} s_i s_j$$

only positive weight if both units are1 or -1

Using the Memory

Attractors

- The correct pattern is an attractor
- Useful for constraint satisfaction
- Useful for noisy preclassification
- Useful for known attractors

More Patterns in the Memory

- Need to learn many patterns not just one
- Set the weights to the average for all input patterns p:

$$w_{ij} = \frac{1}{N} \sum_{p} s_i^p s_j^p$$

For any input, network will converge to the closest trained pattern

"Energy" in the Network

$$H = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} s_i s_j$$

- This represents how much energy is in the network
- It decreases as the network stabilises
- The attractors are local minima of the energy function

Energy Landscapes

Similar as in the context of Error function minimization

Energy Landscapes

Example and Data Mining Application: Hopfield Neural Network for Face Detection (1)

Reconstruct a learned pattern from **noisy input**:

Nodes are binary perceptrons p with:

$$p(x) = \begin{cases} 1 & \sum w_{ij} \cdot x_i > \theta \\ -1 & \text{otherwise} \end{cases}$$

- Every neuron is fully connected with all neurons except itself
- For HNNs with symmetric weights: Network converges to final *stable state* $w_{ij} = \sum_{i=1}^{m} x_i^m \cdot x_j^m$ if $j \neq i$,
- Hebb-learning:

$$w_{ij} = \sum_{m=1}^{M} x_i^m \cdot x_j^m \quad \text{if } j \neq i,$$

$$w_{ij} = 0$$
 otherwise

M is the number of patterns

Hopfield Neural Network for Face Detection (2)

Used "Haar-like" features: Small sets of adjacent pixels

- Efficient method for interesting aspects in images
- Can be computed very fast
- Examples of selected features:

 Feed image patches (features) into the HNN

More details later in the lecture as well!

Multilayer Perceptron can be used as Autoassociative Network

Autoassociative Network

Data compression
Use of less dimensions than the input
"Auto": Same input and output

Autoassociative Network

Store the second layer of weights and these activations

Moving from Memory to Function Approximation: Radial Basis Function Network

- RBF neurons fire proportionally to the distance between input and neuron in weight space
- No bias in hidden layer

Radial Basis Function Network: Idea (1)

Neurons firing more likely in certain horizontal or vertical positions

Radial Basis Function Network: Idea (2)

Count of the number of spikes per second as the distance of a rod from the light varies horizontally

The same case for vertical direction

The combination of the two makes a set of circles

Nodes Representing Radial Bases in Weight Space

Circle indicates receptive field

Using RBF as a Universal Approximator

RBF equally spaced nodes to cover the whole of weight space

Representing Receptive Fields with RBF

unit represented with its incoming weights to its inputs

The Radial Basis Function Algorithm

- Position the RBF centres by either:
 - Using the k-means algorithm to initialise the positions of the RBF centres OR
 - Setting the RBF centres to be randomly chosen datapoints

$$g(x, w, \sigma) = \exp\left(\frac{-\|x - w\|^2}{2\sigma^2}\right)$$

- Train the output weights e.g. by
 - Using the Perceptron

Controls width of Gaussian

RBF example: Reactive Navigation Network

Computed

RBF example: Reactive Navigation Network

Input			Output	
Sensor Front Left	Sensor Back	Sensor Front Right	Motor Left	Motor Right
1	0	0	0	-1
0	1	0	1	1
0	0	1	-1	0
1	0	1	-1	-1
1	1	0	0	1
0	1	1	1	0
1	1	1	0	0
0	0	0	1	1

RBF example: Reactive Navigation Network

Rule-extraction and Rule Insertion with RBF Networks

Rule Extraction Algorithm

- Input:
 - Hidden weights η (centre position)
- Output:
 - One rule per output class
- Procedure:
 - 1. Train RBF network on data set
 - 2. Cluster hidden units by class
 - 3. For each class cluster
 - 4. For each η
 - 5. Get min value
 - 6. Get max value
 - 7. For each class
 - 8. Write out rule by:
 - 9. For each η = [min-max] interval
 - 10. Join intervals with AND
 - 11. Add Class label
 - 12. Write rule to file

Extracted Rules from the IRIS Data Set

Rule 1

IF (SL
$$\geq$$
 4.4 AND \leq 5.7) AND

IF (SW \geq 2.9 AND \leq 4.4) AND

IF (PL \geq 1.3 AND \leq 1.5) AND

IF (PW \geq 0.2 AND \leq 0.4)

THEN. Setosa

Rule 2

```
IF (SL \geq 4.9 AND \leq 6.9) AND
IF (SW \geq 2.0 AND \leq 3.1) AND
IF (PL \geq 3.5 AND \leq 5.0) AND
IF (PW \geq 1.0 AND \leq 1.7)
THEN..Versicolor
```

Rule 3

```
IF (SL \geq 5.8 AND \leq 7.2) AND
IF (SW \geq 2.8 AND \leq 3.1) AND
IF (PL \geq 4.5 AND \leq 5.8) AND
IF (PW \geq 1.5 AND \leq 2.4)
THEN..Virginica
```

Training without Data: Knowledge Insertion into RBF Networks

Example of Approximation Capability of Radial **Basis Function Network - Script online!**

http://lcn.epfl.ch/tutorial/english/rbf/html/index.html

Test it online!

Example: Mesh Skinning for Face Animation with Radial Basis Functions

[James D. Edge, University of Surrey]

Example: Modeling a Face Mesh with RBFs

[http://cg.alexandra.dk/]

Intermediate Recap and Summary

- MLP can approximate and learn continuous functions
- Due to nonlinear activation function and multiple layers more powerful than perceptron learning
- RBFs introduce the concept of *locality* into a network

- Reading and experiments
 - Marsland chapter 3 on MLP, chapter 5 on RBFs
 - Experiment with the code!

Introduction to Recurrent Neural Networks: Types of Connectivity

- Feedforward networks
 - These compute a series of transformations.
 - Typically, the first layer is the input and the last layer is the output.
- Recurrent networks
 - These have directed cycles in their connection graph.
 They can have complicated dynamics.
 - More biologically realistic.

Simple Recurrent Network (SRN)

Problem with Time

```
[011100000]
[000111000]
```

- Two vectors appear to be instances of the same basic pattern, but displaced in space
- Relative temporal structure should be preserved in the face of absolute temporal displacements

Simple Recurrent Network (SRN)

- Motivation for using internal state information
- Copy the internal hidden layer for next input
- Paper: Elman J., Finding Structure in Time, Cognitive Science 14, 1990

Simple recurrent network (SRN)

- Activations are copied from hidden layer to context layer on a one-forone basis, with fixed weight of 1.0.
- Straight lines represent trainable connections.

Example Prediction

Input: w₁ w₂ w₃ w_n
Output: w₂ w₃ w₄ w_{n+1}

Backpropagation Through Time (e.g. 3 steps)

Learning Structure in Letter Sequences

- Multi-bit inputs with temporal extent and longer sequences
- 3 consonants (b, d, g) combined in random order to obtain 1000-letter sequence. Then each consonant replaced using rules
 - b->ba
 - d->dii
 - g->guuu

- Example: dbgbddg... into diibaguuubadiidiiguuu
- Task: predict next letter (uncertainty: sometimes clear, sometimes not)

Vector Definitions of Alphabet

	Consonant	Vowel	Interrupted	High	Back	Voiced
b	[1	0	1	0	0	1]
d	[1	0	1	1	0	1]
g	[1	0	1	0	1	1]
a	0]	1	0	0	1	1]
i	0]	1	0	1	0	1]
u	0]	1	0	1	1	1]

SRN for Letter Sequences

6 input units, 20 hidden units, 6 output units, and 20 context units

Root Mean Squared Error in Letter Prediction Task

- Labels indicate the correct output prediction at each point in time
- Once network has consonant as input, it can predict following vowel
- After a "d", "g", "b" the prediction error drops, then it rises

Learning Lexical Classes from Word Order

- Order of words is constraint
- Can a network learn structure from order?
- Sentence generator based on categories of lexical items
- Each word represented by random 31 bit vector
- Each word represented by a different bit which is on if word present
- 27,354 word vectors in the 10,000 sentences were concatenated

Categories of Lexical Items

Category	Examples
NOUN-HUM	man, woman
NOUN-ANIM	cat, mouse
NOUN-INANIM	book, rock
NOUN-AGRESS	dragon, monster
NOUN-FRAG	glass, plate
NOUN-FOOD	cookie, sandwich
VERB-INTRAN	think, sleep
VERB-TRAN	see, chase
VERB-AGPA	move, break
VERB-PERCEPT	smell, see
VERB-DESTROY	break, smash
VERB-EA	eat

Templates for Sentence Generator

	WORD 1	WORDS	WORD 3
	NOUN-HUM	VERB-EAT	NOUN-FOOD
	NOUN-HUM	VERB-PERCEPT	NOUN-INANIM
	NOUN-HUM	VERB-DESTROY	NOUN-FRAG
	NOUN-HUM	VERB-INTRAN	
	NOUN-HUM	VERB-TRAN	NOUN-HUM
\bigcap	NOUN-HUM	VERB-AGPAT	NOUN-INANIM
l	NOUN-HUM	VERB-AGPAT	
	NOUN-ANIM	VERB-EAT	NOUN-FOOD
	NOUN-ANIM	VERB-TRAN	NOUN-ANIM
	NOUN-ANIM	VERB-AGPAT	NOUN-INANIM
	NOUN-ANIM	VERB-AGPAT	
	NOUN-INANIM	VERB-AGPAT	
	NOUN-AGRESS	VERB-DESTORY	NOUN-FRAG
	NOUN-AGRESS	VERB-EAT	NOUN-HUM
	NOUN-AGRESS	VERB-EAT	NOUN-ANIM
	NOUN-AGRESS	VERB-EAT	NOUN-FOOD

Learning successive words

INPUT		OUTPUT	
000000000000000000000000000000000000000	(woman)	000000000000000000000000000000000000000	(smash)
000000000000000000000000000000000000000	(smash)	00000000000000000001000000000	(plate)
0000000000000000000100000000	(plate)	000001000000000000000000000000000000000	(cat)
000001000000000000000000000000000000000	(cat)	0000000000000000010000000000	(move)
00000000000000000010000000000	(move)	00000000000000010000000000000	(man)
000000000000000100000000000000	(man)	000100000000000000000000000000000000000	(break)
0001000000000000000000000000000	(break)	000010000000000000000000000000000000000	(car)
0000100000000000000000000000000	(car)	010000000000000000000000000000000000000	(boy)
0100000000000000000000000000000	(boy)	0000000000000000010000000000	(move)
00000000000000000010000000000	(move)	00000000001000000000000000000	(girl)
00000000001000000000000000000	(girl)	000000000100000000000000000000	(eat)
000000000100000000000000000000	(eat)	001000000000000000000000000000000000000	(bread)
0010000000000000000000000000000	(bread)	000000010000000000000000000000	(dog)
000000010000000000000000000000	(dog)	0000000000000000010000000000	(move)
00000000000000000010000000000	(move)	0000000000000000100000000000	(mouse)
000000000000000001000000000000	(mouse)	00000000000000000100000000000	(mouse)
00000000000000000100000000000	(mouse)	0000000000000000010000000000	(move)
00000000000000000010000000000	(move)	100000000000000000000000000000000000000	(book)
100000000000000000000000000000000000000	(book)	000000000000001000000000000000	(lion

SRN for Letter Sequences

- 31 input units, 150 hidden units,
- 31 output units, and 150 context units

Hierarchical Cluster Analysis

of Hidden Layers

Distance

A CASE Study: Real-world Semantic Sequence Classification with Recurrent Networks

- How can we learn to classify sequences?
- Classification belongs to most important human tasks
- Neural agent for Reuters news corpus
- News titles belong to one of eight main categories, e.g. money, energy, shipping, interest, economic, currency, corporate, commodity
- Corpus size: 82,339 words
- Number of different words in titles 11,104

Neural News Routing Architectures

- Various hybrid architectures containing:
 - pre-processing from statistics and information retrieval
 - Different forms of simple recurrent networks and extensions (recurrent plausibility networks)
- Partially recurrent connections for incremental context of an unrestricted phrase
- Titles presented as sequence of:
 - word input representations
 - category output representations
 - one pair for each word

Training and Evaluation of Neural News Routing

- At beginning of title, context layers initialized to 0
- Each unit in output layer corresponds to particular semantic category

INPUT UNITS

CONTEXT UNITS

- Output units representing desired semantic categories set to 1
- All other output units set to 0
- Define as "classified correctly" when at end of sequence, value for output unit for desired category is > 0.5

Neural News Routing (3)

- Average recall and precision values for each semantic category, and overall training and test sets
- Training regime forces network to assign desired category at beginning of title
- Training stopped when error over training set stops decreasing or use of validation set
- Typically, 700-900 epochs through whole training corpus

How to Get Appropriate Input Representations?

- Initial use of significance vectors to represent words
- Determined by frequency of words in different semantic categories

$$v(w,c_{i}) = \frac{Frequency\ of\ w\ in\ c_{i}}{\sum_{j} Frequency\ for\ w\ in\ c_{j}}\ for\ j \in \{1,...n\}$$

Each word w represented by vector $(c_1c_2\cdots c_n)$ c_i represents a certain semantic category

Examples of Significance Vectors

Word	MF	SH	IN	EC	CR	CO	CM	EN
а	,07	,02	,04	,17	,04	,28	,27	,10
and	,06	,02	,03	,15	,03	,25	,34	,09
bureau	,02	,00	,00	,38	,02	,02	,56	,01
mortgage	,01	,00	,30	,18	,00	,51	,00	,00
of	,07	,02	,03	,14	,03	,28	,31	,09
parker	,13	,00	,00	,00	,13	,73	,00	,00
the	,09	,03	,05	,18	,05	,20	,31	,09

MF: Money-fx IN: Interest CR: Currency CM: Commodity

SH: Ship EC: Economic CO: Corporate EN: Energy

Results using Significance Vectors

Category	Trai	ning Set	Tes	st Titles
	Recall	Precision	Recall	Precision
money-fx	84,36	84,62	84,74	69,56
ship	81,06	93,17	77,34	94,96
interest	77,93	82,71	85,42	83,45
economic	71,70	80,79	74,74	77,82
currency	85,75	91,46	85,36	87,16
corporate	88,81	92,31	94,87	95,10
commodity	86,27	94,77	86,47	88,31
energy	81,88	92,26	85,22	91,65
Total	85,15	86,99	91,23	90,73

Normalized Significance Vectors are better

- Significance Vectors represent plausibility of particular word occurring in a semantic category
- Should be Independent of number of examples observed in each category:

$$v(w,c_i) = \frac{Norm. freq. of w in c_i}{\sum_{j} Norm. freq. for w in c_j} for j \in \{1,...n\}$$

where:

Norm. freq. of w in
$$c_i = \frac{Freq. of w in c_i}{Number of titles in c_i}$$

We call normalized significant vectors Semantic Vectors 58

Why are Semantic Vectors (Normalised Significance Vectors) better?

Word	MF	SH	IN	EC	CR	CO	CM	EN
а	,13	,12	,11	,16	,16	,06	,11	,15
agency	,07	,23	,04	,17	,09	,03	,12	,25
and	,12	,12	,09	,16	,14	,05	,15	,15
bureau	,00	,00	.00	,50	,11	,00	,32	,01
money	,33	,01	,40	,14	,10	,00	,01	,00
mortgage	,02	,00	,72	,15	,02	,09	,00	,00
of	,13	,11	,11	,15	,15	,06	,14	,14
parker	,25	,00	,00	,00	,56	,17	,00	,00
the	,15	,13	,12	,15	,18	,04	,11	,12

Mortgage (Hypothek) has high semantic value for interest (Zinsen)

Even distribution for stop words

Some Improvement Using Semantic Vector Input

Category	Trai	ning Set	Tes	st Titles
	Recall	Precision	Recall	Precision
money-fx	87.78	88.60	84.07	69.59
ship	81.65	88.13	82.73	93.88
interest	85.33	86.97	88.25	88.19
economic	76.22	83.54	78.36	80.30
currency	87.76	92.59	89.64	89.86
corporate	89.16	91.96	95.90	95.98
commodity	86.27	90.52	86.20	87.22
energy	89.19	95.48	86.58	91.56
Total	88.57	88.59	92.47	91.61

Removing Insignificant Words

- Pre-processing strategy from information retrieval
- Emphasize significant domain-dependent words
- Remove insignificant stop words
- Frequent, domain-independent words: determiners, prepositions & conjunctions
- 19 insignificant words removed using semantic vector representation

Stop Word Elimination Shows some Limited Improvement

Category	Trai	ning Set	Tes	t Titles
	Recall	Precision	Recall	Precision
money-fx	87.40	89.12	84.97	69.36
ship	79.14	88.85	78.42	93.53
interest	86.61	93.09	88.89	88.77
economic	79.12	87.80	79.28	82.64
currency	85.55	92.59	87.39	87.16
corporate	89.51	93.71	96.47	96.48
commodity	87.25	91.18	86.74	86.51
energy	85.32	94.19	83.86	90.54
Total	88.47	90.05	92.88	91.92

Can we do better if we give the Network more Sequential Memory? (Plausibility Networks)

- A plausibility networks is an extension of a simple recurrent network – adding more memory as hidden layers
- Recurrent plausibility network with 2 hidden & 2 context layers
- All other parameters same as experiment with semantic vector representation
- Some further improvement, especially for longer titles due to additional memory

Recurrent Plausibility Networks (RPN)

Results of Recurrent Plausibility Networks with Semantic Vectors (best results)

Category	Traii	ning Set	Tes	st Titles
	Recall	Precision	Recall	Precision
money-fx	87.34	89.47	86.03	76.70
ship	84.65	89.21	82.37	90.29
interest	85.24	87.77	88.19	86.05
economic	90.24	91.77	81.89	83.80
currency	88.89	91.36	89.64	89.86
corporate	92.31	92.66	95.55	95.43
commodity	92.81	93.14	88.84	90.29
energy	85.27	87.74	87.69	92.95
Total	89.05	90.24	93.05	92.29

Examples: Output Preferences for Sequences and Multiple Classes

.11	.22	.33	.44	.56	.67	.78	.89	1.00
Example (1)	MF	SH	IN	EC	CR	СО	CM	EN
BANK	.65		.48	.19	.36			
OF	.58		.40	.20	.30			
JAPAN	.74		.21	.23	.60			
INTERVENES	.97				.97			
SHORTLY	.98				.98			
AFTER	.96				.95			
TOKYO	.97				.96			
OPENS	.96				.95			

EC: Economic MF: Money-fx

IN: Interest CR: Currency

Output Representations over Sequences

.11	.22	.33	.44	.56	.67	.78	.89	1.00
Example (2)	MF	SH	IN	EC	CR	СО	CM	EN
BANK	.65		.48	.19	.36			
OF	.58		.40	.20	.30			
JAPAN	.74		.21	.23	.60			
DETERMINED	.15		.56			.18		
ТО	.26		.50		.14			
KEEP	.22		.31					
EASY			.94					
MONEY	.17		.92					
POLICY	.43		.90					

MF: Money-fx

IN: Interest

EC: Economic

CR: Currency

CO: Corporate

Effects of Keywords on Classification

.11	.22	.33	.44	.56	.67	.78	.89	1.00
Example (3)	MF	SH	IN	EC	CR	СО	CM	EN
IRAN		.72				.16		.57
SOVIET		.90					.22	.35
UNION		.97					.14	.20
ТО		.95					.20	.19
SWAP		.92					.34	.26
CRUDE		.69						.84
REFINED		.23						.98
PRODUCTS		.15						.96

SH: Ship CO: Corporate

CM: Commodity EN: Energy

Sequence Learning Diagrams to show how the Network learns (1)

- Sequence learning diagrams to display performance of network learning over time for single sequences
- Based on sum squared error for each sequence for each epoch
- For analyzing sequences and learning in detail

Sequence Learning Diagrams (2)

"Canadian money supply falls in week"

Sequence Learning Diagrams (2)

"Iran, Soviet Union to swap crude, refined products"

Sequence Learning Diagrams (3)

"Assets of money market mutual funds fell 35.3 mln dlrs in latest week to 237.43 billion"

Current Research: Subspace Learning

- Need methods to point directly to main level 1 topic without using any classification algorithm
- This will increase search/categorization speeds
- Solution Subspace Learning
- Hybrid parallel classifiers based on semantic data subspaces to improve two-level categorization of text documents
- Each subspace can be handled separately with a different classifier using only reduced dimensions.

Data Domains as Subspaces

- The web contains many broad domains of data which are quite distinct from each other e.g. medicine, education, sports and politics
- Each of these domains constitutes a subspace of the data within which the documents are similar to each other but quite distinct from the documents in another subspace
- The data within these domains is frequently further divided into many subcategories

Document Subspace Clusters

Document Vector Representation

D=(∑ word significance vectors)/p
 where p=number of words in the document

- Two variations:
 - Document Full Significance Vector (FSV)
 - Document Conditional Significance Vector (CSV)

Full Significance

Considers occurrence of a word in all subtopics of all subspaces

Conditional Significance

Considers occurrence of a word in all subtopics of a particular subspace

Conditional Significance Vector

Component Blocks of the Flat Conditional Significance Vector

Hybrid Parallel Classifier Architecture

[Tripathi, Oakes, Wermter 2012, 2013]

CASE study for Hierarchical Classification

- Reuters RCV1 News Corpus
 - Reuters Headlines
 - Reuters Full Text (Headlines + Body Text)
 - 4 main topics, 50 subtopics
- LSHTC (Large Scale Hierarchical Text Classification)
 Corpus
 - From LSHTC challenge associated with the European Conference on Information Retrieval (ECIR), 2010
 - derived from the ODP (Open Directory Project) directory
 - data in the form of content vectors
 - 10 main topics, 158 subtopics

CASE study for Hierarchical Classification (2)

Summary

- Associative Memory and Radial Basis Networks
 - Approximate and learn Continuous Functions
 - Multiple layer for nonlinearity
- Recurrent Neural Networks for Prediction and Classification:
 - Efficiently applicable to
 - Sequence and stock market prediction
 - Handwriting and speech recognition
 - Attentive vision and keywords spotting... <u>and much more!</u>
 - Method to problem solving using some context
 - ... that is still deterministic and can be analyzed
- Further reading:
 - Rojas R. Introduction to Neural Networks.
 Berlin: Springer, 1996. (<u>Available online</u>)
 - Marsland. Machine Learning. 2009, chapter 4

