Lecture #11 – Intro to Video (Part 1)

Making a Video (*Capturing, Editing, Outputting)

- Video: a sequence of still images (photographs) that create the illusion of movement when played in succession
- 2 types of video:
 - 1. Analog → smooth electronic waves ex. TV
 - 2. Digital \rightarrow each frame is a bitmapped graphic, stored as 0s and 1s
- Steps to making a video: Take footage, transfer video to computer, edit video, store and play

Analog vs. Digital - understanding it

- Analog Camcorder:
 - o Electronic signals are recorded
 - Disadv: *Picture loses quality
 - o Must convert it to digital BEFORE we can put it on our computer to edit
 - To convert analog video to digital video we need a video capture card**
- Digital Video Camcorder:
 - o Records binary code (string of 1s and 0s)
 - o Adv: No image degradation
 - o Thus no need to convert!
 - Use Firewire or USB cable to move video to computer

Digital Video Camcorders - DV25 specs

- DV25 is the most common DV(digital video) compression used by today's camcorders
- DV25 Format Specs:
 - o Pixel Dimension is 720 X 480 (note this is 3:2 ratio)
 - o Frame Aspect Ratio either 4:3 or 16:9
 - Data Rate: 25 mega bits per second (that's why it is DV25)
 - o Frame Rate: 29.97 fps
 - Colour Sampling: YUV 4:1:1 (compression)

YUV (YIQ) or YCbCr (for MPEG compression) and Color Sampling

Color Compression in the camera

- For still images RGB is commonly used
- For video the model is YUV (YIQ) or YCbCr (for MPEG compression)
- *Y → luminance (brightness)
- *UV or (CbCr) → chrominance (color/hue)
- Black and White TV only used the Y signal
- Human eye is more sensitive to variations <u>in brightness</u> (our eyes have more rods which detect brightness. Cones detect color but we have fewer of them.
- VIDEO COMPRESSION works on reducing COLOR; therefore, use Color Sampling technique

Color Sampling:

- Refers to compression technique for video
- Scale:
 - o 4– no compression
 - 0 max compression
 - 4:4:4 means no compression
- X:Y:Z (ex.4:4:4)
 - X- brightness
 - o Y, Z color
 - 4- no compression, 0-full compression

Video Capture Devices: video capture card vs. Firewire vs. Thunderbolt

- Firewire 400
 - o Firewire is a <u>high speed</u> data transfer technology
 - Could transmit at 400 Mbps
 - o Peer to Peer Technology
- PC's solution → USB 1.1
 - O USB 1.1 could transmit at 12 Mbps
 - o too slow for video, thus used for mice, keyboards, printers
- USB 2.0
 - o came along, backward compatible, transmitted at *480 Mbps
 - o could beat with Firewire 400 and does video
 - Master/Slave technology
- Thunderbolt technology (for Mac Laptops)
 - o **10Gbps** Faster than Firewire

0

Digital Video standards for TV

- 2 standards: NTSC and PAL
- NTSC standard
 - o frame rate was originally 30fps but went down to 29.97 to accommodate for color information
 - Began in the U.S.
- PAL standard
 - o Began in Britain, Europe
 - o Frame rate is set for 25 fps
- Tv scanning methods
 - o Interlaced (scans lines 1,3,5,7.. or lines 2,4,6,8..)
 - o Progressive (scans lines 1,2,3,4,5..)

NTSC Standards: Frame Size

High Definition for NTSC:

1440 X 1080

- \rightarrow ratio is (4:3)
- → pixels are not square

1280 X 720

- → ratio is 16:9
- → pixels are square

The Frame Size of Standard DV Frame:

For NTSC → 720 X 480 pixels

- → **3:2** ratio (1.5)
- → Pixels are distorted (not square)
- For **Pal** → 720 X 576 pixels
 - → 4:3 ratio (1.3)
 - → Pixels are distorted (not square)

^{*}PC's now have Firewire 800 Mbps and USB3.0 emerged at 5Gbps

Resolution Comparisons

- Older technology → Screen resolution 480
- PLASMA or LCD → Screen resolutions 720p or 1080p

Format	Lines of Resolution
VHS, VHS-C	240 lines
8mm	240 lines
Hi 8mm	400 lines
Most older TVs (standard, SDTV)	480 lines
DV 8mm, Mini DV	480 lines
High Definition (HD) TV	720 lines Or 1080 lines

Popular Digital Video Formats: advantages of each

• Digital Advantage: higher <u>resolution</u> (# of horizontal lines)

Review

- Which is faster: Firewire 400 or USB 2.0 or Thunderbolt? → Thunderbolt 10GBps
- Every Apple computer has a firewire port, true or false ? → TRUE
- What was the Frame Rate for NTSC TVs in the 80s? →30 fps and then 29.97 fps (color)
- What is the *Frame Ratio* for NTSC TVs? \rightarrow 720 x 480 (4:3)
- What is the Frame Ratio for HD TVs? → 1440 x 1080 4:3 and 1280 x 720 16:9
- What does 1080p mean? → Horizontal line
- two types of data transfer methods you can use to move your video from your camcorder to your computer → USB, Firewire
- How many scan lines are there on an analog TV from the 1970s? → 480 lines -HD 720 x 1080
- What does 720p mean? →720 lines progressive scan 1,2,3,4,5
- name of the most common form of compression in the camcorder → DV 25

Lecture #12 - Video Part 2

Compression Strategies

- Date rate
 - Amount of video processed per second
 - Average data rate= file size/length=MB/sec
- General Compression Strategies → GOAL: Lower the file size of a video
 - 1. Lower the frame size of the video (less pixels)
 - 2. Lower the frame rate of the video (frames per second)
 - 3. Pick a codec that does higher compression
 - 4. Lower the picture quality of the video
- NOT IMPORTANT WITH VIDEO COMPRESSION
 - 1. Lowering the color depth
 - 2. Playing with the audio

Codecs

- A codec is a piece of code or program that shrinks large movie files
- It compresses video or audio as it is created (when stored → coded)
- when displaying it to the user, it decompresses the video or audio (when viewed → decoded)
- Most common codecs are:
 - Sorenson Spark
 - o H.264
 - o DivX

Video File formats (common types)

- .mov → Codecs: Animation, Sorenson Video, H.264, PlanarRGB, Cinepak
- avi → Codecs: Microsoft RLE, Intel Indeo Video, Cinepak
- .wmv → Pixelated quality/ Poorest quality
- .mpg/.mpeg → Good quality but big file quality
- .flv → Codecs: Sorenson Spark, On2 VP6 (can have transparent video), H.264 Best quality

Spatial vs. temporal compression

- 2 types of compression techniques:
 - 1. Spatial compression → within a frame
 - 2. Temporal compression → between frames

Spatial

- Compress each frame individually
- Uses the same techniques as JPG compression
- Codecs that do spatial compression are: Animation, PlanarRGB

Temporal

- Just save info on selected frames (called keyframes)
- o All other frames just save the differences from the previous keyframe
- Good when the difference between current frame and keyframe is small
- o Codecs using temporal compression are: Sorenson Video, H.264

Container File Formats

- A file format that stores both the data (the frames) AND how to play the data(which codec to use)
- Some common containers are: avi, mov, flv, mkv

Digital Media Players

- A piece of software that plays multimedia files (video or audio)
- Examples of media players: Quicktime, Itunes, Flash player, Real player

Video Transfer on the Web

- 3 main ways to get video/audio (media) from a website onto your computer so you can view it:
 - 1. Download
 - 2. Progressive Download
 - 3. Streaming

Download

- Entire video clip must be downloaded before it plays
- Usually uses HTTP protocol
- Data is permanently stored on machine

Progressive download

- After part of video is downloaded, it begins to play
- Data is permanently stored on machine

Streaming (aka as Webcasting)

- Packets sent down & immediately starts playing
- uses RTSP protocol
- o file is never permanently saved

Streaming

- streaming is either On-Demand or Live
- on demand → saves the file to a hard disk and then is played from that location
- Live → sends the information straight to the computer or device without saving the file to a hard disk

• In order to do streaming video, you need two things:

- 1. A streaming web server (RTSP) Real server
- 2. A video that has been converted to be streamed
- RealServer serves media clips to clients. It allows users to stream, rather than download, the media clips.
- Web server delivers pages to Web browsers over the Internet
- What streaming website has revolutionized video? → YOUTUBE

Unicast vs Multicast

- Unicast → each user gets his/her own stream of video, the server has to send out A LOT of data
 if several users are watching at once
- Multicast → sends the same stream to a bunch of users but then they lose the ability to pause, rewind, etc.

You Tube

- YouTube accepts video in the following formats: .WMV, .AVI, .MOV, MPEG and .MP4
- then converts them to the flv format (a Flash format)
- and uses one of: Sorenson Spark, V6 or H.264 video codec
- Youtube quality → Standard (original) format 320X240 pixels, mono audio

Review

- avi is a container file format → TRUE
- avi files will always use the same codec to play them → FALSE
- 3 ways of reducing the file size of a piece of video before moving it onto your website
 - 1. Lower frame size
 - 2. Lower frame rate
 - 3. Choose a codec
- Codec → A piece of software used for compression/decompress of videos and audios