

$$y_1 = y_{E1} = f_1(y_1, y_2; \vec{p}) = p_0 y_1 + p_1 y_2 + p_2 y_1^2 + p_3 y_1 y_2 + p_4 y_2^2 + \dots + y_2^3$$

 $y_2 = y_{E2} = f_2(y_y, y_2; \vec{q})$

channels were selected by their correlation

astonishing results:

Grade
$$N_f = 6$$

 $f(y_1, y_2; \vec{p}) = p_0 y_1 + p_1 y_2 + \dots + \frac{p_7 y_2^6}{p_1^6}$

same equation, different ivp:

Grade
$$N_f = 6$$

 $f(y_1, y_2; \vec{p}) = p_0 y_1 + p_1 y_2 + \dots + p_2 y_2^6$

3d fit: $f(y_1, y_2, y_3; \vec{p})$

does $\underline{\mathbf{not}}$ work using \mathbf{odd} grades N_f

either this result or solution would run into infinity

channels were selected by their correlation

$$f_i(y_1, y_2, y_3) = p_0 y_1 + p_1 y_2 + p_2 y_3 + p_3 y_1^2 + p_4 y_1 y_2 + p_5 y_1 y_3 + p_6 y_2^2 + p_7 y_2 y_3 + p_8 y_3^2$$

3D fit $Grade N_f = 2$

expected phaseplot and ode phaseplot

expected phaseplot and ode phaseplot

3D fit $Grade N_f = 4$

expected phaseplot and ode phaseplot

expected phaseplot and ode phaseplot

