

Marcelo Antonio Marotta Teleinformática e Redes 1 Trabalho FINAL

1 Enunciado

Simular o funcionamento da camada de enlace e camada física por meio da implementação dos protocolos de enquadramento, modulação banda-base e modulação por portadora. Os slides que estão disponíveis no moodle possuem os diagramas e exemplos de como cada etapa deve ser desenvolvida. Os grupos formados no trabalho devem ser mantidos.

Com o intuito de facilitar o entendimento dos protocolos da camada de enlace de dados e camada física, o trabalho foi dividido em etapas e subetapas.

1.1 Camada Física

$1.1.1 \quad [1/2]$ Modulação digital

Simular o funcionamento da camada física por meio da implementação das seguintes modulações digitais:

- Non-return to Zero Polar (NRZ-Polar);
- Manchester; e
- Bipolar.

Os slides que estão disponíveis no moodle no tópico Modulação possuem o diagrama e exemplos de como cada modulação deve ser desenvolvida.

$1.1.2 \quad [2/2]$ Modulação por portadora

Simular o funcionamento da camada física por meio da implementação das seguintes modulações por portadora:

- Amplitude Shift Keying (ASK);
- Frequency Shift Keying (FSK); e
- 8-Quadrature Amplitude Modulation (8-QAM).

Os slides que estão disponíveis no moodle no tópico Modulação possuem o diagrama e exemplos de como cada modulação deve ser desenvolvida.

1.2 Camada de Enlace

1.3 [1/3] Camada de Enlace

Acrescentar ao código do Trabalho Prático I, os protocolos de enquadramento de dados:

- Contagem de caracteres; e
- Inserção de bytes ou caracteres;

$1.4 \quad [2/3]$ Camada de Enlace

Acrescentar ao código da subetapa anterior, os protocolos de detecção de erros:

- Bit de paridade par; e
- CRC (polinômio CRC-32, IEEE 802).

1.5 [3/3] Camada de Enlace

Acrescentar ao código da subetapa anterior, o protocolo de correção de erros:

• Hamming.

2 Material a ser entregue

Relatório com no mínimo 5 páginas, contendo:

- Capa: Deve conter possuir as seguintes informações:(i)nome do simulador, e (ii) nome dos membros do Grupo.
- Introdução: Descrição do problema a ser resolvido e visão geral sobre o funcionamento do simulador.
- Implementação: Descrição detalhada do desenvolvimento com diagramas ilustrativos, o funcionamento dos protocolos, procedimentos utilizados, bem como decisões tomadas relativas aos casos e detalhes de especificação que porventura estejam omissos no enunciado.
- Membros: Descrição das atividades desenvolvidas por cada membro do grupo.
- Conclusão: Comentários gerais sobre o trabalho e as principais dificuldades encontradas no desenvolvimento do simulador.

Código fonte com os seguintes arquivos:

- CamadaFisica: Implementações das funções declaradas para camada física
- CamadaEnlace: Implementações das funções declaradas para camada de enlace
- InterfaceGUI: Implementações das funções necessárias para entrada de dados e resultados gráficos obtidos. (NÃO É UMA TELA DE TERMINAL - Utilize bibliotecas linux para GUI. Preferência: GTK^{1 2})

¹Python GTK: https://python-gtk-3-tutorial.readthedocs.io/en/latest/

²CPP GTK+ - https://www.gtk.org/docs/language-bindings/cpp

• Simulador: Código com a rotina principal chamadora das demais para simular as camadas de redes.

Obs.: Diferenciar quando for transmissor ou receptor.

O relatório e o código fonte devem ser submetidos compactados (.zip) no Moodle. Serão aceitos relatórios em Jupyter.

3 Critérios de Avaliação

O trabalho será pontuado de acordo coma implementação e os critérios da Tabela 1. Código com falta de legibilidade e modularização pode perder ponto conforme informado na Tabela 1. Erros gerais de funcionamento, lógica ou outros serão descontados como um todo.

Ítem	Quesitos	Max Pontos
Relatório	Documento PDF contendo todas as informações sobre o trabalho	+2
Código e execução	O projeto compilou e executou corretamente	+2
Resultado	Saídas corretas de acordo com os protocolo implementados	+3
Conceitos de TR 1	Código fonte implementados adequadamente	+3
Legibilidade e Modularização	Pode perde pontos caso não faça:	
	-Uso de comentários	
	-Indentação do código	-10
	-Uso de funções inadequadas (duplicada/redundante/não atingível	
	-Uso das declarações e implementações dos arquivos(.py, .hpp e .cpp) para o Simulador	
Atraso	Perde 1 ponto para cada dia de atraso da data estabelecida (Max 5)	-1
Plágio	Cópia de qualquer forma	-10

Tabela 1: Critérios de avaliação

4 Ferramentas

A implementação do trabalho será na linguagem C++ ou Python. Pode-se utilizar qualquer IDE/compilador para o desenvolvimento contanto que execute sem problemas no Linux.

5 Informações Importantes

Cada grupo deverá desenvolver o trabalho e cada membro do grupo deverá conhecer e dominar todos os trechos de código gerados. Os grupos deverão desenvolver o projeto de maneira independente para não haver cópia ou compartilhamento de código. O projeto irá passar por um verificador automático de plágio. Os projetos detectados como plágio receberão nota zero, independente do grupo. Dessa forma, fica a cargo do grupo proteger o projeto contra cópias

6 Datas

As datas e local da entrega do trabalho estarão disponíveis a partir do Moodle da Disciplina.