Annexe X Jeux de données – H ightarrow au au

L'analyse du chapitre 4 est basée sur les données à $\sqrt{s}=13\,\mathrm{TeV}$ collectées en 2016, 2017 et 2018 par l'expérience CMS, correspondant à une luminosité intégrée de 35,9 + 41,5 + 59,7 fb⁻¹. Seuls les événements certifiés par la collaboration CMS sont considérés. Cette sélection est renseignée dans les fichiers JSON du tableau X.1. Les jeux de données utilisés pour chacun des états finaux considérés, ainsi que leurs gammes de *runs* et luminosités intégrées respectives, sont donnés dans les tableaux X.2, X.3 et X.4.

La modélisation du boson de Higgs du modèle standard est obtenue avec les jeux de données simulées correspondent aux modes de production du boson de Higgs ggh, VBF, VH (Wh, Zh et ggZh) et $t\bar{t}h$. Les listes de ces jeux de données simulées utilisés pour les trois années analysées sont données dans les tableaux X.5, X.7 et X.9.

La modélisation des bosons de Higgs neutres additionnels du MSSM, c'est-à-dire $\Phi \to \tau \tau$ avec $\Phi = H, A$, est obtenue avec les jeux de données $gg \to \Phi \to \tau \tau$ et $gg \to bb\Phi \to \tau \tau$ simulé avec AMC@NLO [1] et PYTHIA pour l'hadronisation. Les listes de ces jeux de données simulées utilisés pour les trois années analysées sont données dans les tableaux X.6, X.8 et X.10.

Les jeux de données simulées utilisés afin de modéliser les bruits de fond sont listés dans les tableaux X.11, X.12 et X.13. Les différents processus sont regroupés comme suit :

```
-Z \rightarrow \tau \tau, Z \rightarrow \ell \ell:
                               -W + jets:
                                                               — Diboson :
    --Z \rightarrow LL,
                                   -W + jets,
                                                                    — Single top,
    -Z+1 jet,
                                    -W+1 jet,
                                                                    — VVTo2L2Nu,
    -Z + 2 jets,
                                    -W+2 jets,
                                                                    - WZTo2L2O,
    -Z + 3 jets,
                                    -W+3 jets,
                                                                    — WZTo3LNu,
                                    -W+4 jets,
    -Z+4 jets,

    ZZTo2L2Q,

    — EWK Z \rightarrow LL,
                                    - EWK W^-,
                                                                    — ZZTo4L.
                                    - EWK W^+,
    — EWK Z → \nu\nu;
                                    -W\gamma;
```

Les jeux de données encapsulées (*embedded*) sont listés dans les tableaux X.14, X.15 et X.16. Ces jeux de données sont utilisés dans une estimation du bruit de fond contenant des paires de leptons tau à partir des données elles-mêmes.

Références

[1] J. Alwall & coll. « The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations ». *Journal of High Energy Physics* **07** (2014), p. 079. doi: 10.1007/JHEP07(2014)079. arXiv: 1405.0301 [hep-ph].

Année	Fichier de certification JSON
2016	Cert_271036-284044_13TeV_ReReco_07Aug2017_Collisions16_JSON.txt
2017	Cert_294927-306462_13TeV_EOY2017ReReco_Collisions17_JSON_v1.txt
2018	Cert_314472-325175_13TeV_17SeptEarlyReReco 2018ABC_PromptEraD_Collisions18_JSON.txt

Tableau X.1 – Fichiers de certification JSON.

Canal	Jeu de données	Gamme de run	\mathcal{L} (fb ⁻¹)
$ au_{ m h} au_{ m h}$	/Tau/Run2016B-17Jul2018_ver2-v1/MINIAOD	272007 - 275376	5,788
$ au_{ m h} au_{ m h}$	/Tau/Run2016C-17Jul2018-v1/MINIAOD	275657 - 276283	2,573
$ au_{ m h} au_{ m h}$	/Tau/Run2016D-17Jul2018-v1/MINIAOD	276315 - 276811	4,248
$ au_h au_h$	/Tau/Run2016E-17Jul2018-v1/MINIAOD	276831 - 277420	4,009
$ au_h au_h$	/Tau/Run2016F-17Jul2018-v1/MINIAOD	277772 - 278808	3,102
$ au_{h} au_{h}$	/Tau/Run2016G-17Jul2018-v1/MINIAOD	278820 - 280385	7,540
$ au_{ m h} au_{ m h}$	/Tau/Run2016H-17Jul2018-v1/MINIAOD	280919 - 284044	8,606
$\mu au_{ m h}$	/SingleMuon/Run2016B-17Jul2018_ver2-v1/MINIAOD	272007 - 275376	5,788
$\mu au_{ m h}$	/SingleMuon/Run2016C-17Jul2018-v1/MINIAOD	275657 - 276283	2,573
$\mu au_{ m h}$	/SingleMuon/Run2016D-17Jul2018-v1/MINIAOD	276315 - 276811	4,248
$\mu au_{ m h}$	/SingleMuon/Run2016E-17Jul2018-v1/MINIAOD	276831 - 277420	4,009
$\mu au_{ m h}$	/SingleMuon/Run2016F-17Jul2018-v1/MINIAOD	277772 - 278808	3,102
$\mu au_{ m h}$	/SingleMuon/Run2016G-17Jul2018-v1/MINIAOD	278820 - 280385	7,540
$\mu au_{ m h}$	/SingleMuon/Run2016H-17Jul2018-v1/MINIAOD	280919 - 284044	8,606
$e au_{ m h}$	/SingleElectron/Run2016B-17Jul2018_ver2-v1/MINIAOD	272007 - 275376	5,788
$e au_{ m h}$	/SingleElectron/Run2016C-17Jul2018-v1/MINIAOD	275657 - 276283	2,573
$e au_{ m h}$	/SingleElectron/Run2016D-17Jul2018-v1/MINIAOD	276315 - 276811	4,248
$e au_{ m h}$	/SingleElectron/Run2016E-17Jul2018-v1/MINIAOD	276831 - 277420	4,009
$e au_{ m h}$	/SingleElectron/Run2016F-17Jul2018-v1/MINIAOD	277772 - 278808	3,102
$e au_{ m h}$	/SingleElectron/Run2016G-17Jul2018-v1/MINIAOD	278820 - 280385	7,540
$e au_{ m h}$	/SingleElectron/Run2016H-17Jul2018-v1/MINIAOD	280919 - 284044	8,606
	/MuonEG/Run2016B-17Jul2018_ver2-v1/MINIAOD	272007 - 275376	5,788
еµ	/MuonEG/Run2016C-17Jul2018-v1/MINIAOD	275657 - 276283	2,573
еµ	/MuonEG/Run2016D-17Jul2018-v1/MINIAOD	276315 - 276811	4,248
еµ	/MuonEG/Run2016E-17Jul2018-v1/MINIAOD	276831 - 277420	4,009
еµ	/MuonEG/Run2016F-17Jul2018-v1/MINIAOD	277772 - 278808	3,102
еµ	/MuonEG/Run2016G-17Jul2018-v1/MINIAOD	278820 - 280385	7,540
еµ	/MuonEG/Run2016H-17Jul2018-v1/MINIAOD	280919 - 284044	8,606

Tableau X.2 – *Jeux de données utilisés en 2016.*

Canal	Jeu de données	Gamme de run	\mathcal{L} (fb ⁻¹)
$ au_{ m h} au_{ m h}$	/Tau/Run2017B-31Mar2018-v1/MINIAOD	297046 - 299329	4,823
$ au_{ m h} au_{ m h}$	Tau/Run2017C-31Mar2018-v1/MINIAOD	299368 - 302029	9,664
$ au_h au_h$	Tau/Run2017D-31Mar2018-v1/MINIAOD	302030 - 303434	4,252
$ au_h au_h$	/Tau/Run2017E-31Mar2018-v1/MINIAOD	303824 - 304797	9,278
$\tau_{\rm h} au_{ m h}$	/Tau/Run2017F-31Mar2018-v1/MINIAOD	305040 - 306462	13,54
$\mu au_{ m h}$	/SingleMuon/Run2017B-31Mar2018-v1/MINIAOD	297046 - 299329	4,823
$\mu au_{ m h}$	/SingleMuon/Run2017C-31Mar2018-v1/MINIAOD	299368 - 302029	9,664
$\mu au_{ m h}$	/SingleMuon/Run2017D-31Mar2018-v1/MINIAOD	302030 - 303434	4,252
$\mu au_{ m h}$	/SingleMuon/Run2017E-31Mar2018-v1/MINIAOD	303824 - 304797	9,278
$\mu au_{ m h}$	/SingleMuon/Run2017F-31Mar2018-v1/MINIAOD	305040 - 306462	13,54
$e au_{ m h}$	/SingleElectron/Run2017B-31Mar2018-v1/MINIAOD	297046 - 299329	4,823
$e au_{ m h}$	/SingleElectron/Run2017C-31Mar2018-v1/MINIAOD	299368 - 302029	9,664
$e au_{ m h}$	/SingleElectron/Run2017D-31Mar2018-v1/MINIAOD	302030 - 303434	4,252
$e au_{ m h}$	/SingleElectron/Run2017E-31Mar2018-v1/MINIAOD	303824 - 304797	9,278
$e au_{ m h}$	/SingleElectron/Run2017F-31Mar2018-v1/MINIAOD	305040 - 306462	13,54
еµ	/MuonEG/Run2017B-31Mar2018-v1/MINIAOD	297 046 — 299 329	4,823
еµ	/MuonEG/Run2017C-31Mar2018-v1/MINIAOD	299368 - 302029	9,664
еµ	/MuonEG/Run2017D-31Mar2018-v1/MINIAOD	302030 - 303434	4,252
еµ	/MuonEG/Run2017E-31Mar2018-v1/MINIAOD	303824 - 304797	9,278
еµ	/MuonEG/Run2017F-31Mar2018-v1/MINIAOD	305040 - 306462	13,54

Tableau X.3 – *Jeux de données utilisés en 2017.*

Canal	Jeu de données	Gamme de run	\mathcal{L} (fb $^{-1}$)
$ au_{ m h} au_{ m h}$	/Tau/Run2018A-17Sep2018-v1/MINIAOD	315252 - 316995	13,98
$ au_{ m h} au_{ m h}$	/Tau/Run2018B-17Sep2018-v1/MINIAOD	317080 - 319310	7,064
$ au_{ m h} au_{ m h}$	/Tau/Run2018C-17Sep2018-v1/MINIAOD	319337 - 320065	6,899
$\tau_h \tau_h$	/Tau/Run2018D-PromptReco-v2/MINIAOD	320673 - 325175	31,75
$\mu \tau_{\rm h}$	/SingleMuon/Run2018A-17Sep2018-v2/MINIAOD	315252 - 316995	13,98
$\mu au_{ m h}$	/SingleMuon/Run2018B-17Sep2018-v1/MINIAOD	317080 - 319310	7,064
$\mu au_{ m h}$	/SingleMuon/Run2018C-17Sep2018-v1/MINIAOD	319337 - 320065	6,899
$\mu au_{ m h}$	/SingleMuon/Run2018D-22Jan2019-v2/MINIAOD	320673 - 325175	31,75
$e\tau_{\rm h}$	/EGamma/Run2018A-17Sep2018-v2/MINIAOD	315252 - 316995	13,98
$e au_{ m h}$	/EGamma/Run2018B-17Sep2018-v1/MINIAOD	317080 - 319310	7,064
$e au_{ m h}$	/EGamma/Run2018C-17Sep2018-v1/MINIAOD	319337 - 320065	6,899
$e au_{ m h}$	/EGamma/Run2018D-22Jan2019-v2/MINIAOD	320673 - 325175	31,75
еµ	/MuonEG/Run2018A-17Sep2018-v1/MINIAOD	315252 - 316995	13,98
еµ	/MuonEG/Run2018B-17Sep2018-v1/MINIAOD	317080 - 319310	7,064
еµ	/MuonEG/Run2018C-17Sep2018-v1/MINIAOD	319337 - 320065	6,899
еµ	/MuonEG/Run2018D-PromptReco-v2/MINIAOD	320673 - 325175	31,75

Tableau X.4 – *Jeux de données utilisés en 2018.*

Processus	Jeu de données simulées	$\sigma \times \mathcal{BR}$ (pb)
ggh o au au	/GluGluHToTauTau_M125_13TeV ^{†1,2,3}	3,00 (N3LO)
VBF $h \to \tau \tau$	/VBFHToTauTau_M125_13TeV ^{+1,2,3}	0,237 (NNLO)
$W^+h o au au$	/WplusHToTauTau_M125_13TeV ^{†1}	0,0527 (NNLO)
$W^-h o au au$	/WminusHToTauTau_M125_13TeV $^{\dagger 1}$	0,0334 (NNLO)
Zh o au au	/ZHToTauTau_M125_13TeV ^{†1}	0,0477 (NNLO)
ggZh o qq au au	/ggZH_HToTauTau_ZToQQ_M125_13TeV ^{†1}	0,0054 (NNLO)
$ggZh o \nu \nu au au$	/ggZH_HToTauTau_ZToNuNu_M125_13TeV ^{†1}	0,0015 (NNLO)
$ggZh \rightarrow LL\tau\tau$	/ggZH_HToTauTau_ZToLL_M125_13TeV ^{†1}	0,0008 (NNLO)
$t \bar t h o au au$	/ttHJetToTT_M125_13TeV $^{\parallel 4}$	0,0318 (NLO)
$ggh \rightarrow WW$	/GluGluHToWWTo2L2Nu_M125_13TeV $^{\ddag 1}$	1,09 (N3LO)
$VBF \ h \to WW$	/VBFHToWWTo2L2Nu_M125_13TeV ^{‡1}	0,0850 (NNLO)
$W^+h \to WW$	/HWplusJ_HToWW_M125_13TeV $^{\dagger 1}$	0,18 (NLO)
$W^-h \to WW$	/HWminusJ_HToWW_M125_13TeV $^{\dagger 1}$	0,114 (NLO)
$Zh \rightarrow WW$	/HZJ_HToWW_M125_13TeV ⁺¹	0,163 (NLO)
$ggZh \to WW$	/GluGluZH_HToWW_M125_13TeV ⁺¹	0,0262 (NLO)

 $^{^1/}RunIISummer16 MiniAODv3-PUMoriond 17_94 X_mcRun2_asymptotic_v3-v*/MINIAODSIM$

Tableau X.5 – *Jeux de données simulées modélisant le boson de Higgs du modèle standard en 2016.*

Processus	Jeu de données simulées
$gg o \Phi o au au$	/SUSYGluGluToHToTauTau_M-*_TuneCUETP8M1_13TeV-pythia8 $^{ m 1}$
$gg o bb\Phi o au au$	$/ {\tt SUSYGluGluToBBHToTauTau_M-*_TuneCUETP8M1_13TeV-amcatnlo-pythia8}^1$

^{1/}RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v*/MINIAODSIM

Tableau X.6 – Jeux de données simulées modélisant les bosons de Higgs du MSSM en 2016.

 $^{^2/}RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext1-v*/MINIAODSIM$

 $^{^3/}RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext2-v*/MINIAODSIM$

 $^{^4/}RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext4-v*/MINIAODSIM$

[†]_powheg_pythia8 || _amcatnloFXFX_madspin_pythia8

[‡]_powheg_JHUgenv628_pythia8

Processus	Jeu de données simulées	$\sigma \times \mathcal{BR}$ (pb)
ggh o au au	/GluGluHToTauTau_M125_13TeV ^{†1,2}	3,00 (N3LO)
VBF $h \to \tau \tau$	/VBFHToTauTau_M125_13TeV ^{†2}	0,237 (NNLO)
$W^+h o au au$	/WplusHToTauTau_M125_13TeV ^{†3}	0,0527 (NNLO)
$W^-h o au au$	/WminusHToTauTau_M125_13TeV ^{†3}	0,0334 (NNLO)
Zh o au au	/ZHToTauTau_M125_13TeV ^{†3}	0,0477 (NNLO)
ggZh o qq au au	/ggZH_HToTauTau_ZToQQ_M125_13TeV ^{†3}	0,0054 (NNLO)
ggZh o u u au au	/ggZH_HToTauTau_ZToNuNu_M125_13TeV ^{†3}	0,0015 (NNLO)
$ggZh \rightarrow LL\tau\tau$	/ggZH_HToTauTau_ZToLL_M125_13TeV ^{†3}	0,0008 (NNLO)
$t \bar t h o au au$	/ttHToTauTau_M125_TuneCP5_13TeV ^{†2}	0,0318 (NLO)
$ggh \rightarrow WW$	/GluGluHToWWTo2L2Nu_M125_13TeV $^{\S 3}$	1,09 (N3LO)
$VBF \ h \to WW$	/VBFHToWWTo2L2Nu_M125_13TeV $^{\S 3}$	0,0850 (NNLO)
$W^+h \to WW$	/HWplusJ_HToWW_M125_13TeV \ddagger3	0,18 (NLO)
$W^-h \to WW$	/HWminusJ_HToWW_M125_13TeV $^{\ddagger 3}$	0,114 (NLO)
$Zh \rightarrow WW$	/HZJ_HToWW_M125_13TeV $^{ m 3}$	0,163 (NLO)
$ggZh \to WW$	/GluGluZH_HToWW_M125_13TeV ^{‡3}	0,0262 (NLO)

 $^{^1/}RunIIFall17 \texttt{MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v*/MINIAODSIM}$

|| _powheg_JHUgenv714_pythia8_TuneCP5

Tableau X.7 – *Jeux de données simulées modélisant le boson de Higgs du modèle standard en 2017.*

Processus	Jeu de données simulées
$gg o \Phi o au au$	/SUSYGluGluToHToTauTau_M-*_TuneCP5_13TeV-pythia8 ¹
$gg \to bb\Phi \to \tau \tau$	$/ {\tt SUSYGluGluToBBHToTauTau_M-*_TuneCP5_13TeV-amcatnlo-pythia8}^1$

^{1/}RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM

Tableau X.8 – Jeux de données simulées modélisant les bosons de Higgs du MSSM en 2017.

 $^{^2/}RunIIFall17MiniAODv2-PU2017_12Apr2018_new_pmx_94X_mc2017_realistic_v14-v*/MINIAODSIM$

 $^{^3/}RunIIFall17MiniA0Dv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v*/MINIA0DSIM$

[†]_powheg_pythia8

 $[\]S$ _powheg2_JHUGenV714_pythia8

[‡]_powheg_pythia8_TuneCP5

Processus	Jeu de données simulées	$\sigma \times \mathcal{BR}$ (pb)
ggh o au au	/GluGluHToTauTau_M125_13TeV ^{†1}	3,00 (N3LO)
VBF $h \to \tau \tau$	/VBFHToTauTau_M125_13TeV ⁺²	0,237 (NNLO)
$W^+h o au au$	/WplusHToTauTau_M125_13TeV ^{†1}	0,0527 (NNLO)
$W^-h o au au$	/WminusHToTauTau_M125_13TeV $^{\dagger 1}$	0,0334 (NNLO)
Zh o au au	/ZHToTauTau_M125_13TeV ^{†1}	0,0477 (NNLO)
ggZh o qq au au	/ggZH_HToTauTau_ZToQQ_M125_13TeV ^{†1}	0,0054 (NNLO)
ggZh o u u au au	/ggZH_HToTauTau_ZToNuNu_M125_13TeV ^{†1}	0,0015 (NNLO)
$ggZh \to LL\tau\tau$	/ggZH_HToTauTau_ZToLL_M125_13TeV ^{†1}	0,0008 (NNLO)
t ar t h o au au	/ttHToTauTau_M125_TuneCP5_13TeV ^{†1}	0,0318 (NLO)
$ggh \rightarrow WW$	/GluGluHToWWTo2L2Nu_M125_13TeV $^{\ddag 1}$	1,09 (N3LO)
$VBF \ h \to WW$	/VBFHToWWTo2L2Nu_M125_13TeV $^{\ddagger 1}$	0,0850 (NNLO)
$W^+h \to WW$	/HWplusJ_HToWW_M125_13TeV $^{\S 1}$	0,18 (NLO)
$W^-h \to WW$	/HWminusJ_HToWW_M125_13TeV $^{\S 1}$	0,114 (NLO)
$Zh \rightarrow WW$	/HZJ_HToWW_M125_13TeV $^{\S 1}$	0,163 (NLO)
$ggZh \rightarrow WW$	/GluGluZH_HToWW_M125_13TeV $^{\mid\mid 1}$	0,0262 (NLO)

^{1/}RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v*/MINIAODSIM

Tableau X.9 – Jeux de données simulées modélisant le boson de Higgs du modèle standard en 2018.

Processus	Jeu de données simulées
$gg o \Phi o au au$	/SUSYGluGluToHToTauTau_M-*_TuneCP5_13TeV-pythia8 ¹
$gg o bb\Phi o au au$	$/ {\tt SUSYGluGluToBBHToTauTau_M-*_TuneCP5_13TeV-amcatnlo-pythia8}^{1}$

 $^{^{1}/\}texttt{RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v*/\texttt{MINIAODSIM}}$

Tableau X.10 – Jeux de données simulées modélisant les bosons de Higgs du MSSM en 2018.

 $^{^2/}RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15_ext1-v*/MINIAODSIM$

Processus	Jeu de données simulées	σ (pb)
$Z \rightarrow LL$ (basse masse)	/DYJetsToLL_M-10to50 ^{†1}	21 658,0 (NLO)
Z o LL	/DYJetsToLL_M-50 ^{†2,3}	6077,22 (NNLO)
Z+1 jet	/DY1JetsToLL_M-50 ^{†1}	1253,1*
Z + 2 jets	/DY2JetsToLL_M-50 ^{†1}	409,4*
Z+3 jets	/DY3JetsToLL_M-50 ^{†1}	124,8*
Z+4 jets	/DY4JetsToLL_M-50 ^{†1}	67,33*
EWK $Z \rightarrow LL$	/EWKZ2Jets_ZToLL_M-50 ^{‡2,3}	4,321 (LO)
EWK $Z \rightarrow \nu \nu$	/EWKZ2Jets_ZToNuNu ^{‡2,3}	10,66 (LO)
$tar{t}$	/TTTo2L2Nu ^{§1}	88,29
$t \bar{t}$	/TTToHadronic \S^1	377,96
$t\overline{t}$	/TTToSemiLeptonic ${ m \S}^1$	365,35
VVTo2L2Nu	/VVTo2L2Nu_13TeV $^{\mid\mid 1,2}$	13,84
WZTo2L2Q	/WZTo2L2Q_13TeV $^{\parallel 1}$	5,52
WZTo3LNu	/WZTo3LNu_TuneCUETP8M1_13TeV $^{\P 1}$	4,43
ZZTo2L2Q	/ZZTo2L2Q_13TeV $^{\parallel 1}$	3,38
ZZTo4L	/ZZTo4L_13TeV $^{\P 2}$	1,26
Single top	/ST_t-channel_antitop_4f_inclusiveDecays $^{\diamond 1}$	80,95
Single top	/ST_t-channel_top_4f_inclusiveDecays $^{\diamond 1}$	136,02
Single top	/ST_tW_antitop_5f_inclusiveDecays $^{\square 2}$	35,85
Single top	/ST_tW_top_5f_inclusiveDecays $^{\square 2}$	35,85
W + jets	/WJetsToLNu ^{†1,3}	61 526,7 (NNLO)
W+1 jet	/W1JetsToLNu ^{†1}	11 805,6*
W + 2 jets	/W2JetsToLNu ^{†2}	3891,0*
W + 3 jets	/W3JetsToLNu ^{†2}	1153,2*
W+4 jets	/W4JetsToLNu ^{†2,3}	60,67*
EWK W ⁻	/EWKWMinus2Jets_WToLNu_M-50 ^{‡2,3}	23,24 (LO)
$EWK W^+$	/EWKWPlus2Jets_WToLNu_M-50 ^{‡2,3}	29,59 (LO)

^{1/}RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v*/MINIAODSIM

Tableau X.11 – *Jeux de données simulées modélisant le bruit de fond en 2016.*

 $^{^2/}RunIISummer16 \texttt{MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext1-v*/\texttt{MINIAODSIM}}$

 $^{^3/}RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext2-v*/MINIAODSIM$

[†]_TuneCUETP8M1_13TeV-madgraphMLM-pythia8

[‡]_13TeV-madgraph-pythia8

 $[\]S$ _TuneCP5_PSweights_13TeV-powheg-pythia8

^{||} _amcatnloFXFX_madspin_pythia8

 $[\]P$ -amcatnloFXFX-pythia8

 $^{^{\}square}$ _13TeV-powheg-pythia8_TuneCUETP8M1

^{*} Déterminée à partir de la section efficace du jeu inclusif.

Processus	Jeu de données simulées	σ (pb)
$Z \rightarrow LL$ (basse masse)	/DYJetsToLL_M-10to50 ^{†2}	21 658,0 (NLO)
$Z \to LL$	/DYJetsToLL_M-50 ^{+3,4}	6077,22 (NNLO)
Z+1 jet	/DY1JetsToLL_M-50 ^{†5,8}	977 , 1*
Z+2 jets	/DY2JetsToLL_M-50 ^{†1,6}	347,3*
Z+3 jets	/DY3JetsToLL_M-50 ^{†1,2}	126,1*
Z+4 jets	/DY4JetsToLL_M-50 ^{†7}	71,67*
EWK $Z \rightarrow LL$	/EWKZ2Jets_ZToLL_M-50 ^{‡5}	4,321 (LO)
EWK $Z \rightarrow \nu \nu$	/EWKZ2Jets_ZToNuNu ^{‡5}	10,66 (LO)
$t ar{t}$	/TTTo2L2Nu ^{§5}	88,29
$tar{t}$	/TTToHadronic \S^5	377,96
$t ar{t}$	/TTToSemiLeptonic $^{\S 5}$	365,35
VVTo2L2Nu	/VVTo2L2Nu_13TeV $^{\mid\mid 1}$	13,84
WZTo2L2Q	/WZTo2L2Q_13TeV $^{\parallel 1}$	5,52
WZTo3LNu	/WZTo3LNu $^{\P 5}$	4,43
ZZTo2L2Q	/ZZTo2L2Q_13TeV $^{\parallel 1}$	3,38
ZZTo4L	/ZZTo4L ^{¶1}	1,26
Single top	/ST_t-channel_antitop_4f_inclusiveDecays $^{\diamond 1}$	80,95
Single top	/ST_t-channel_top_4f_inclusiveDecays $^{\diamond 5}$	136,02
Single top	/ST_tW_antitop_5f_inclusiveDecays \S^1	35,85
Single top	/ST_tW_top_5f_inclusiveDecays $^{\S 1}$	35,85
W + jets	/WJetsToLNu ^{†1,2}	61 526,7 (NNLO)
W+1 jet	/W1JetsToLNu ^{†1}	9370,5 [*]
W + 2 jets	/W2JetsToLNu ⁺¹	3170,9*
W + 3 jets	/W3JetsToLNu ^{†1}	1132,5*
W+4 jets	/W4JetsToLNu ^{†8}	631,5 [*]
EWK W ⁻	/EWKWMinus2Jets_WToLNu_M-50 ^{‡5}	23,24 (LO)
EWK W ⁺	/EWKWPlus2Jets_WToLNu_M-50 ^{‡5}	29,59 (LO)
$W\gamma$ (canal $e\mu$)	/WGToLNuG ^{†1}	464,4 (LO)

 $^{^1/}RunIIFall17MiniA0Dv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v*/MINIA0DSIM$

Tableau X.12 – *Jeux de données simulées modélisant le bruit de fond en 2017.*

 $^{^2/}RunIIFall17MiniA0Dv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v*/MINIA0DSIM$

^{3/}RunIIFall17MiniAODv2-PU2017RECOSIMstep_12Apr2018_94X_mc2017_realistic_v14-v*/MINIAODSIM

 $^{^4/}RunIIFall17MiniAODv2-PU2017RECOSIMstep_12Apr2018_94X_mc2017_realistic_v14_ext1-v*/MINIAODSIM$

⁵/RunIIFall17MiniAODv2-PU2017_12Apr2018_new_pmx_94X_mc2017_realistic_v14-v*/MINIAODSIM

^{6/}RunIIFall17MiniAODv2-PU2017_12Apr2018_new_pmx_94X_mc2017_realistic_v14_ext1-v*/MINIAODSIM

^{7/}RunIIFall17MiniAODv2-PU2017_12Apr2018_v2_94X_mc2017_realistic_v14-v*/MINIAODSIM

 $^{^8/}RunIIFall17MiniAODv2-PU2017_12Apr2018_v3_94X_mc2017_realistic_v14_ext1-v*/MINIAODSIM$

[†] TuneCP5 13TeV-madgraphMLM-pythia8

[‡]_TuneCP5_13TeV-madgraph-pythia8

[§]_TuneCP5_13TeV-powheg-pythia8

^{||} _amcatnloFXFX_madspin_pythia8

[¶] TuneCP5 13TeV-amcatnloFXFX-pythia8

^{*} Déterminée à partir de la section efficace du jeu inclusif.

Processus	Jeu de données simulées	σ (pb)
$Z \rightarrow LL$ (basse masse)	/DYJetsToLL_M-10to50 ^{†1}	21 658,0 (NLO)
$Z \to LL$	/DYJetsToLL_M-50 ^{†1}	6077,22 (NNLO)
Z+1 jet	/DY1JetsToLL_M-50 ^{†1}	1007,6*
Z + 2 jets	/DY2JetsToLL_M-50 ^{†1}	344,3*
Z + 3 jets	/DY3JetsToLL_M-50 ^{†1}	125,3*
Z+4 jets	/DY4JetsToLL_M-50 ^{†1}	71,20*
EWK $Z \rightarrow LL$	/EWKZ2Jets_ZToLL_M-50 ^{‡1}	4,321 (LO)
EWK $Z \rightarrow \nu \nu$	/EWKZ2Jets_ZToNuNu ^{‡1}	10,66 (LO)
$t \bar t$	/TTTo2L2Nu ^{§1}	88,29
$tar{t}$	/TTToHadronic \S^1	377,96
$tar{t}$	/TTToSemiLeptonic \S^1	365,35
VVTo2L2Nu	/VVTo2L2Nu $^{\parallel 1}$	13,84
WZTo2L2Q	/WZTo2L2Q $^{\parallel 1}$	5,52
WZTo3LNu	/WZTo3LNu ^{¶2}	4,43
ZZTo2L2Q	/ZZTo2L2Q $^{\parallel 1}$	3,38
ZZTo4L	/ZZTo4L ^{¶1}	1,26
Single top	/ST_t-channel_antitop_4f_inclusiveDecays $^{\diamond 1}$	80,95
Single top	/ST_t-channel_top_4f_inclusiveDecays $^{\diamond 1}$	136,02
Single top	/ST_tW_antitop_5f_inclusiveDecays \S^2	35,85
Single top	${ m ST_tW_top_5f_inclusiveDecays}^{ m S2}$	35,85
W + jets	/WJetsToLNu ^{†1}	61 526,7 (NNLO)
W+1 jet	/W1JetsToLNu ^{†1}	9328,1*
W + 2 jets	/W2JetsToLNu ^{†1}	3181,5*
W+3 jets	/W3JetsToLNu ^{†1}	1116,2*
W+4 jets	/W4JetsToLNu ⁺¹	629,3 [*]
EWK W ⁻	/EWKWMinus2Jets_WToLNu_M-50 $^{\Box 1}$	23,24 (LO)
EWK W ⁺	/EWKWPlus2Jets_WToLNu_M-50 $^{\Box1}$	29,59 (LO)

^{1/}RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v*/MINIAODSIM

Tableau X.13 – *Jeux de données simulées modélisant le bruit de fond en 2018.*

²/RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15_ext1-v*/MINIAODSIM

[†]_TuneCP5_13TeV-madgraphMLM-pythia8

[‡]_TuneCP5_PSweights_13TeV-madgraph-pythia8

 $[\]S$ _TuneCP5_13TeV-powheg-pythia8

 $^{||\ \}_{13TeV_amcatnloFXFX_madspin_pythia8}$

 $[\]P$ _TuneCP5_13TeV-amcatnloFXFX-pythia8

[♦] _TuneCP5_13TeV-powheg-madspin-pythia8

 $^{^{\}square}$ _TuneCP5_13TeV-madgraph-pythia8

^{*} Déterminée à partir de la section efficace du jeu inclusif.

Canal	Jeu de données	Canal	Jeu de données
$ au_{ m h} au_{ m h}$	/EmbeddingRun2016B/TauTau*	еµ	/EmbeddingRun2016B/ElMu [*]
$ au_{ m h} au_{ m h}$	/EmbeddingRun2016C/TauTau $^{^st}$	еµ	/EmbeddingRun2016C/ElMu st
$ au_{ m h} au_{ m h}$	/EmbeddingRun2016D/TauTau st	еµ	/EmbeddingRun2016D/ElMu st
$ au_{ m h} au_{ m h}$	/EmbeddingRun2016E/TauTau st	еµ	/EmbeddingRun2016E/ElMu st
$ au_{ m h} au_{ m h}$	/EmbeddingRun2016F/TauTau st	еµ	/EmbeddingRun2016F/ElMu st
$ au_{ m h} au_{ m h}$	/EmbeddingRun2016G/TauTau st	еµ	/EmbeddingRun2016G/ElMu st
$ au_h au_h$	$/{\tt EmbeddingRun2016H/TauTau}^*$	еµ	$/{\tt EmbeddingRun2016H/ElMu}^*$
$\mu \tau_{\rm h}$	/EmbeddingRun2016B/MuTau*	$e au_{ m h}$	/EmbeddingRun2016B/ElTau*
$\mu au_{ m h}$	/EmbeddingRun2016C/MuTau st	$e au_{ m h}$	/EmbeddingRun2016C/ElTau st
$\mu au_{ m h}$	/EmbeddingRun2016D/MuTau st	$e au_{ m h}$	/EmbeddingRun2016D/ElTau st
$\mu au_{ m h}$	/EmbeddingRun2016E/MuTau st	$e au_{ m h}$	/EmbeddingRun2016E/ElTau st
$\mu au_{ m h}$	/EmbeddingRun2016F/MuTau st	$e au_{ m h}$	/EmbeddingRun2016F/ElTau st
$\mu au_{ m h}$	/EmbeddingRun2016G/MuTau $^{^st}$	$e au_{ m h}$	/EmbeddingRun2016G/ElTau st
$\mu au_{ m h}$	$/{\tt EmbeddingRun2016H/MuTau}^*$	$e au_{ m h}$	$/{\tt EmbeddingRun2016H/E1Tau}^*$

^{*}FinalState-inputDoubleMu_94X_Legacy_miniAOD-v5/USER

Tableau X.14 – *Jeux de données encapsulées en 2016.*

Canal	Jeu de données	Canal	Jeu de données
$ au_{ m h} au_{ m h}$	/EmbeddingRun2017B/TauTau $^{^st}$	еµ	/EmbeddingRun2017B/ElMu*
$ au_{ m h} au_{ m h}$	$/{\tt EmbeddingRun2017C/TauTau}^*$	еµ	/EmbeddingRun2017C/ElMu st
$ au_{ m h} au_{ m h}$	$/{ t Embedding Run 2017D/Tau Tau}^*$	еµ	/EmbeddingRun2017D/ElMu st
$ au_{ m h} au_{ m h}$	/EmbeddingRun2017E/TauTau st	еµ	/EmbeddingRun2017E/ElMu st
$ au_{ m h} au_{ m h}$	$/{\tt EmbeddingRun2017F/TauTau}^*$	еµ	$/{\tt EmbeddingRun2017F/ElMu}^*$
$\mu \tau_{\rm h}$	/EmbeddingRun2017B/MuTau*	$e au_{ m h}$	/EmbeddingRun2017B/ElTau*
$\mu au_{ m h}$	/EmbeddingRun2017C/MuTau st	$e au_{ m h}$	/EmbeddingRun2017C/ElTau st
$\mu au_{ m h}$	/EmbeddingRun2017D/MuTau st	$e au_{ m h}$	/EmbeddingRun2017D/E1Tau st
$\mu au_{ m h}$	/EmbeddingRun2017E/MuTau st	$e au_{ m h}$	/EmbeddingRun2017E/E1Tau st
$\mu au_{ m h}$	$/{\tt EmbeddingRun2017F/MuTau}^*$	$e au_{ m h}$	/EmbeddingRun2017F/ElTau $^{^st}$

 $^{^*} Final State-input Double \texttt{Mu_94X_miniAOD-v2/USER}$

Tableau X.15 – *Jeux de données encapsulées en 2017.*

Canal	Jeu de données	Canal	Jeu de données
$ au_{ m h} au_{ m h}$	/EmbeddingRun2018A/TauTau st	еµ	$/{\tt EmbeddingRun2018A/ElMu}^*$
$ au_{ m h} au_{ m h}$	/EmbeddingRun2018B/TauTau $^{^st}$	еµ	/EmbeddingRun2018B/ElMu $^{^st}$
$ au_{ m h} au_{ m h}$	/EmbeddingRun2018C/TauTau $^{^st}$	еµ	/EmbeddingRun2018C/ElMu $^{^st}$
$ au_h au_h$	$/{\tt EmbeddingRun2018D/TauTau}^*$	еµ	$/{\tt EmbeddingRun2018D/ElMu}^*$
$\mu \tau_{\rm h}$	/EmbeddingRun2018A/MuTau*	$e au_{ m h}$	/EmbeddingRun2018A/ElTau*
$\mu au_{ m h}$	/EmbeddingRun2018B/MuTau st	$e au_{ m h}$	/EmbeddingRun2018B/ElTau st
$\mu au_{ m h}$	/EmbeddingRun2018C/MuTau st	$e au_{ m h}$	/EmbeddingRun2018C/ElTau st
$\mu au_{ m h}$	/EmbeddingRun2018D/MuTau st	$e au_{ m h}$	$/{\tt EmbeddingRun2018D/ElTau}^*$

 $^{^*} Final State-input Double \texttt{Mu_102X_miniAOD-v1/USER}$

Tableau X.16 – *Jeux de données encapsulées en 2018.*