1. $I_{z_1}r_z$. $C^{h}(R,M) \longrightarrow C^{h}(R,M)$, $z \in R$ $M/R/K$	
$l_2(f)(r_1 \cdots r_n) = z f(r_1 \cdots r_n)$ Commodetive	
1/2(f) (1/-~1/n) = f(1/ 1/n) 2	
Induces 12, 52 which make H (R,Z) wto a symmetric R-bimodule	
A Note that Iz, 12 are left and right k-module makes respectively. That they commute with	
d and hence induce an action of R on H ⁿ (R,M) is also easy.	
Symmetry:	
Need to whow 33: C'(R,M) -> cn-(R,M) such that +dB + pd = 1/2-rz	
$\deg o: \circ \longrightarrow c^{\circ}(R,M) \stackrel{d}{\underset{\triangle}{\longleftarrow}} c'(R,M)$	
$\beta d(m) = J_2 m - \gamma_2 m$	
$\beta(r \mapsto rm - mr)$ ($zm - mz$)	
β(f) := f(z)	
$d_{\text{sg}} j: c^{\circ}(R,M) \stackrel{d}{\longleftarrow} c'(R,M) \stackrel{d}{\longleftarrow} c^{2}(R,M)$	
$ (dp \pm \beta d)(f)(r) = zf(r) - f(r)z $	
$d(\beta(f))(r) = \beta dfr = d(f(z))r = \beta df(r) = rf(z) - f(z)r + \beta df(r)$	
$\Rightarrow \pm \beta d(f)(Y) = z f(Y) - f(Y)Z + f(Z)Y - Y f(Z)$	
$\pm\beta\left(\left(\gamma_{1},\gamma_{2}\right)\longmapsto \Gamma_{1}\left(\gamma_{2}\right)-f(\gamma_{1}\gamma_{2})+f(\gamma_{1})\gamma_{2}\right)\left(\gamma\right)$	
$\beta : C^{2}(R,M) \longrightarrow C'(R,M)$	
$f \longmapsto (r \longmapsto f(z,r) - f(r,z))$	
1 , , , , , , , , , , , , , , , , , , ,	
41110	
Leap of faith:	
$\beta \colon C^{viff}(R,M) \longrightarrow C^{N}(R,M)$	
$ f \longmapsto ((r_1 \cdots r_n) \longmapsto f(z_1 r_1, \cdots r_n) - f(r_1 z_1 r_2 \cdots r_n) + \cdots + (-1)^n f(r_1 \cdots r_n z_n) $	
$\beta = \sum_{i=0}^{n} (-i)^{i} \beta_{i}$ $\beta = \sum_{i=0}^{n} (-i)^{i} \beta_{i}$ $\beta = \sum_{i=0}^{n} (-i)^{i} \beta_{i}$	
(= b)	
Claim: $C^{*}(R,M) \rightarrow C^{*}(R,M)$, $(d\beta+\beta d)f(r,-r_{n})=zf(r,r_{n})-f(r,r_{n})z$ How to use this?	
What kind of terms can occur in (dp+Bd)f(r,rn)	
Term Coefficient in dif Co-efficient in Bo	
$zf(r, r_n)$ 0 1	
$f(r_1 - r_n) z \qquad \qquad o \qquad (-1)^n \cdot (-1)^{n+1} = -1$	
100 100	

	Term	dB	βd			
f	·(zrir _{en}) j <i< th=""><th>dp (-1)i·(-1)</th><th>(-1) · (-1)</th><th></th><th></th><th></th></i<>	dp (-1)i·(-1)	(-1) · (-1)			
,	jith place					
f	(YiYit z) j>i	(-1) (-1)	(-1) ⁱ⁺¹ (-1) ⁱ			
	jth place					
t	(Y _C Z)	o	(-1) · (-1) + (-1) · (-1)	=0		
1						
11	ence proved :					
<i></i>	The grades					
9 M	€ Mod-R, N € R-mod	R as mult	Ling/dy H (P MON)	1-2	_	
			we/k. II.Ch, Italy	- 1		
	, NE R-Mod, H°(R, H					
ov.	$0 \leftarrow M_{\odot}N \leftarrow R_{\odot}M_{\odot}$		Λ /			
	r(m⊗n) ← r⊗ (m (-(m⊗n) r	⊗n) H =	= MON/ tx/(morn - mron)		
	marn — mran	2	; N®N			
			'N⊗N R			
0	\rightarrow Hom (MN) \rightarrow Hom (R, F	.6	H° = { f xf-fr=0}			
	$f \mapsto (r \mapsto r$	f-fr)	= Hom R (M, N)			
		.,				
z. J	= Ker (R&R				0 /	
	xsoy → xy		J)=0 for A the fi	ebl of algebraic mi	mbces / Q .	
A. 1)	I has the universal pr	eperty that ex	very douvation factors	Through it.	R → M d /3! q	
	$H'(R,J)=0 \Rightarrow Eway dei$	wation on J.	is inner, in farticu	lar d	q 1 4	
	I we such that	d(r) = rd-dr				
	$\Rightarrow \phi(x) = \mathring{\phi} \cdot d(x) = \mathring{\phi}$	(rd-dr) = r €	ja)- ja).r			
	→ H'(R,M)=0.					
2)	We invoke the theorem	that H'(F,M)=	=0 ∀M <=> F is a of	linite seperable d	extension of Q.	
				,	U U	