زنجیرهسازی کارکردهای مجازی سرویس شبکه با لحاظ محدودیت منابع مدیریتی

مهندسی فناوری اطلاعات - شبکههای کامپیوتری

پرهام الوانى

بهار ۱۳۹۷

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دکتر بهادر بخشی

١

فهرست

- ◄ مقدمه
- ◄ چالشھا
- ◄ سابقهي كارها
- ◄ تعريف مساله
- ◄ چالشها و نوآوریهای مساله
 - ◄ معیار و نحوهی ارزیابی
 - ◄ مراجح

- ◄ عدم انعطافپذیری معماری فعلی شبکه
- ◄ در مجازیسازی کارکرد شبکه با استفاده از مجازیسازی منابع، میتوان کارکردها را بر روی سرورهای استاندارد اجرا کرد و بهرهوری منابع و هزینههای انرژی را کاهش داد.
- ▼ زنجیره سازی کارکرد سرویس نیز امکان ایجاد زنجیرهای از کارکردها را به صورت پویا فراهم میکند. در مجازیسازی کارکرد شبکه با استفاده از مجازیسازی منابع، میتوان کارکردها را بر روی سرورهای استاندارد اجرا کرد و بهرهوری منابع و هزینههای انرژی را کاهش داد.

شکل ۱: معماری سطح بالای مجازیسازی کارکردهای شبکه

K

NFVO وظیفه ی استقرار زنجیرههای کارکرد سرویس را برعهده دارد. همانگونه که در مستند ETSI نیز آمده است هر نمونه از کارکردهای مجازی شبکه نیاز دارد تحت مدیریت یکی از VNFMهای موجود در شبکه باشد.

چالشھا

- ◄ مديريت و هماهنگي
- ◄ مصرف بهینهی انرژی
 - ◄ تخصيص منابع
 - ◄ مسيريابي
- ◄ پذيرش زنجيرههاي کارکرد سرويس

جدول ۱: مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

تخصیص VNFM		اشتراک نمونه		انتساب کارکرد		نگاشت کارکرد و لینک		برخط یا برون خط		محدودیت ظرفیت پردازشی نمونه					منابع تخصیص یافته	منبع
ندارد	دارد	ندارد	دارد	چند نمونه	یک نمونه	لینک	کارکرد	برون خط	برخط	ندارد	دارد	CPU	BW	MEM	other	#
√	_	✓	_	_	✓	✓	✓	✓	_	✓	_	✓	✓	_	_	[1]
√	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	_	[۲]
√	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	_	[٣]
√	_	✓	_		✓	✓	✓	✓	_	_	✓	✓	✓	✓	_	پژوهش حاضر

سابقەي كارھا

[۴] هدف کاهش هزینهی عملیاتی در حالی که تاخیرهای ارتباطی و محدودیتهای ظرفیت رعایت میشوند. در این مقاله فرض میشود جایگذاری کارکردهای مجازی شبکه صورت پذیرفته است.

تعريف مساله

پذیرفتن بیشترین تقاضای زنجیره کارکرد سرویس با در نظر گرفتن نیاز هر نمونه کارکرد مجازی شبکه به یک m VNFM.

- ▶ توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت NFVI-PoPها موجود است.
 - lacktriangle تقاضای زنجیره کارکرد سرویس به صورت کامل و از پیش مشخص شده داریم.
 - ◄ هر تقاضا شامل نوع و تعداد نمونههای مجازی و پنهای باند لینکهای مجازی میباشد.
 - ▼ نوع کارکرد مجازی شبکه تعریف شده است که هر یک مقدار مشخصی از
 حافظه را مصرف میکنند.
 - ▼ تعداد پردازندههایی که به هر نمونه تخصیص مییابد با توجه به ترافیک ورودی نمونه مشخص میشود.
 - ◄ نمونهها بين زنجيرهها به اشتراک گذاشته نميشوند.

تعريف مساله

- ◄ محدودیت ظرفیت لینکها
- ◄ محدودیت توان پردازش سرورهای فیزیکی با توجه به میزان حافظه و تعداد
 پردازندهها

- ◄ برای مدیریت یکدست و آسانتر زنجیرهها و در عین حال جمعآوری راحتر خطاها،
 برای هر زنجیره یک VNFM تخصیص میدهیم.
 - ▼ VNFM ها میتوانند بین زنجیره به اشتراک گذاشته شوند.
 - ▶ هر نمونه از VNFMها می تواند تعداد مشخصی از نمونههای کارکرد مجازی شبکه را سرویس دهد.
- ارزو کردد. VNFM برای ارتباط میان هر نمونه از VNFMها و VNFها پهنای باند مشخصی رزرو میگردد.
 - ◄ بر روی هر NFVI-PoP حداکثر یک نمونه VNFM مستقر میگردد.

چالشهای مساله

- ◄ جایگذاری و مسیریابی توامان زنجیرههای کارکرد سرویس
- ▼ تخصیص منابع مدیریتی به زنجیرهها و مسیریابی ارتباط مدیریتی

نوآوریهای مساله

یکی از وظایف VNFM مانیتور کردن وضعیت و خطاهای نمونهها میباشد این امر باعث افزایش بار پردازشی VNFM میگردد و از سوی دیگر تحلیل این اطلاعات میبایست با تاخیر معقولی صورت پذیرد که این امر نیاز به یک بستر ارتباطی مطمئن دارد.

معیار و نحوهی ارزیابی

- ◄ مدلسازي مساله
- ◄ حل مسالهی بهینه در ابعاد کوچک
 - ◄ پيادەسازى راەحل مكاشفەاي
- ◄ مقایسهی نتایج راهحل مکاشفهای با جواب بهینه
- ◄ مقایسه با کارهای مرتبط که نیازمندیهای مدیریتی را مدنظر قرار ندادهاند

- V. Eramo, A. Tosti, and E. Miucci, "Server resource dimensioning and routing of service function chain in NFV network architectures," *Journal of Electrical and Computer Engineering*, vol. 2016, pp. 1–12, 2016. [Online]. Available: https://doi.org/10.1155/2016/7139852
- M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba, "Distributed service function chaining," *IEEE Journal on Selected Areas in Communications*, vol. 35, no. 11, pp. 2479–2489, nov 2017. [Online]. Available: https://doi.org/10.1109/jsac.2017.2760178
- H. Huang, P. Li, S. Guo, W. Liang, and K. Wang, "Near-optimal deployment of service chains by exploiting correlations between network functions," *IEEE Transactions on Cloud Computing*, pp. 1–1, 2017. [Online]. Available: https://doi.org/10.1109/tcc.2017.2780165
- M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, "On the placement of VNF managers in large-scale and distributed NFV systems," *IEEE Transactions on Network and Service Management*, vol. 14, no. 4, pp. 875–889, dec 2017. [Online]. Available: https://doi.org/10.1109/tnsm.2017.2730199

فرمولبندي

پذیرش زنجیرههای کارکرد سرویس و مدیریت آنها با استفاده از VNFM

متغیرهای تصمیمگیری

- x_h binary variable assuming the value 1 if the hth SFC request is accepted; otherwise its value is zero
- y_{wk} the number of VNF instances of type k that are used in server $w \in V_s^{PN}$
- z_{vw}^k binary variable assuming the value 1 if the VNF node $v \in \bigcup_{i=1}^T V_{i,F}^{SFC}$ is served by the VNF instance of type k in the server $w \in V_s^{PN}$

متغیرهای تصمیمگیری

- \bar{y}_w binary varibale assuming the value 1 if VNFM on server $w\in V_s^{PN}$ is used; otherwise its value is zero
- \bar{z}_{hw} binary variable assuming the value 1 if hth SFC is assigned to VNFM on server $w\in V_s^{PN}$

فرمولبندى

$$\max \sum_{h=1}^{T} x_h \tag{1}$$

محدوديت حافظه نودها

$$\sum_{k=1}^{F} y_{wk} memory(k) + \bar{y_w} me\bar{m}ory \le N_{ram}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (2)

محدودیت تعداد پردازندههای نودها

$$\sum_{k=1}^{F} y_{wk} core(k) + \bar{y_w} c\bar{o}re \le N_{core}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (3)

اشتراک گذاری VNFها پشتیبانی نمیگردد.

$$\sum_{v \in \cup_{i=1}^{T} V_{i,F}^{SFC}} z_{vw}^{k} \le y_{wk} \quad \forall w \in V_{s}^{PN}, \forall k \in [1, \dots, F]$$
 (4)

اگر تقاضای $\ln n$ ام پذیرفته شده باشد میبایست تمام $VNF \ node$ های آن سرویس شده باشند. یک $VNF \ column$ حداکثر یکبار سرویس داده شود.

$$x_h = \sum_{k=1}^{F} \sum_{w \in V_s^{PN}} z_{vw}^k \quad \forall v \in V_{h,F}^{SFC}, \forall h \in [1, \dots, T]$$
 (5)

اگر تقاضای hام پذیرفته شده باشد میبایست توسط یک VNFM سرویس شده باشد.

$$x_h = \sum_{w \in V_s^{PN}} \bar{z}_{hw} \quad \forall h \in [1, \dots, T]$$
 (6)

$$\bar{z}_{hw} \le \bar{y}_w \quad \forall w \in V_s^{PN}, \forall h \in [1, \dots, T]$$
 (7)

محدوديت ظرفيت سرويسدهي VNFM

$$\sum_{i=1}^{I} z_{iw} \le capacity \quad \forall w \in V_s^{PN}$$
 (8)

فرمولبند*ي*

متغیرهای تصمیمگیری

 $\tau_{ij}^{(u,v)}$ binary variable assuming the value 1 if the virual link (u,v) is routed on the physical network link (i,j)

 $\bar{\tau}_{ij}^{\nu}$ binary variable assuming the value 1 if the management of VNF node ν is routed on the physical network link (i,j)

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \tau_{ij}^{(u,v)} - \sum_{(j,i)\in E^{PN}} \tau_{ji}^{(u,v)} = \sum_{k=1}^{F} z_{ui}^{k} - \sum_{k=1}^{F} z_{vi}^{k}$$

$$\forall i \in V_{S}^{PN}, (u,v) \in E_{h}^{SFC}, h \in [1, \dots, T]$$
(9)

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{\nu} - \sum_{(j,i)\in E^{PN}} \bar{\tau}_{ji}^{\nu} = \sum_{k=1}^{F} z_{vi}^{k} - \bar{z}_{hi}$$

$$\forall i \in V_{S}^{PN}, v \in V_{h,F}^{SFC}, h \in [1, ..., T]$$
(10)

محدوديت ظرفيت لينكها

$$\sum_{v \in \cup_{i=1}^{T} V_{i,F}^{SFC}} \bar{\tau}_{ij}^{v} * bandwidth + \sum_{(u,v) \in \cup_{i=1}^{T} E_{i}^{SFC}} \tau_{ij}^{(u,v)} * bandwidth(u,v) \leq C_{ij}$$

$$\tag{11}$$