MATH 850 Combinatorial Commutative Algebra Homework

(1) Let Δ be a simplicial complex with corresponding Stanley–Reisner ideal I_{Δ} , and let

$$m^{\tau} := \langle x_j : j \in \tau \rangle,$$

the monomial (prime) ideal corresponding to $\tau \subseteq [n].$ Show that

$$I_{\Delta} = \bigcap_{\sigma \in \Delta} m^{[n] \setminus \sigma}.$$

(2) Let $R := \mathbb{F}[x_1, x_2, x_3, x_4]$ and $I := \langle x_1, x_2, x_3, x_4 \rangle$. Compute a finite free resolution for the R-module R/I.

(3) Let Δ be the boundary of a pentagon. Compute I_{Δ} and one of its finite free resolutions.

(4) Let Δ be the boundary of an octahedron. Compute I_{Δ} and one of its finite free resolutions.

(5) Let $I := \langle x_1 x_3, x_1 x_4, x_2 x_4 \rangle \subset \mathbb{F}[x_1, x_2, x_3, x_4]$, and let I_d denote the \mathbb{F} -vector space of homogeneous polynomials in I of degree d. Compute the Hilbert function $h_I(n) := \dim_{\mathbb{F}}(I_n)$ and the Hilbert series

$$H_I(x) := \sum_{n \ge 0} h_I(n) x^n.$$