

EXERCICE

ELECTROMAGNETISME

-EXERCICE 26.2-

• ENONCE :

- « Sphère chargée avec une cavité »
- 1) Soit une sphère de rayon R et de centre O_1 , uniformément chargée en volume ($\rho > 0$). Cette sphère présente une cavité de rayon a, de centre $O_2 \neq O_1$, vide de toute charge. Calculer le champ électrostatique dans cette cavité.
- 2) On considère maintenant un corps à répartition homogène de matière (on notera μ la masse volumique), comportant une grotte vide de toute masse : avec les mêmes notations que précédemment, on demande de calculer le champ gravitationnel dans la grotte.

EXERCICE

ELECTROMAGNETISME

CORRIGE:

« Sphère chargée avec une cavité »

- 1) Nous allons appliquer le théorème de superposition, en considérant la répartition réelle comme équivalente à la superposition de 2 sphères pleines :
 - l'une de rayon R et de centre O_1 , chargée positivement $(+\rho)$; le champ sera noté E_1 .
 - ullet l'autre de rayon a, de centre O_2 , chargée négativement (ho); le champ sera noté $\dot{E_2}$.

Rq : le calcul des champs \vec{E}_1 et \vec{E}_2 sera simple, car l'on retrouve une symétrie **sphérique** (pour chacune des sphères « fictives »), perdue dans le cas de la sphère réelle à cause de la cavité. On peut donc raisonner sur la figure suivante :

Pour chaque sphère, on peut tenir le raisonnement

- l'invariance par rotation fait que le champ ne dépend que de la variable r.
- tout plan contenant l'origine et le point M où l'on calcule le champ est plan de symétrie : le champ appartient à l'intersection de ces plans, il est donc radial.

En appliquant le théorème de Gauss à une sphère de rayon $r_1 \prec R$, il vient pour \vec{E}_1 :

 $\oint_{sph\grave{e}re} \vec{E}_1 \cdot d\vec{S} = 4\pi r_1^2 \times E_1 = \frac{q_{\rm int}}{\varepsilon_0} = \frac{4\pi r_1^3 \rho}{3\varepsilon_0} \quad (\vec{E}_1 \text{ ayant un module constant sur cette sph\`ere}).$

D'où :
$$\vec{E}_1 = \frac{\rho r_1}{3\varepsilon_0} \vec{e}_{r_1} = \frac{\rho}{3\varepsilon_0} \overline{O_1 M}$$

$$\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\rho}{3\varepsilon_0} (\overrightarrow{O_1 M} + \overrightarrow{MO_2}) = \frac{\rho}{3\varepsilon_0} \overrightarrow{O_1 O_2}$$

Rq: le champ électrostatique a donc la propriété remarquable d'être UNI FORME dans la

2) On applique cette fois le « théorème de Gauss de la gravitation » (analogie entre le champ coulombien et le champ newtonien, tous les deux en $1/\sqrt{r^2}$), soit :

 $\vec{g} \cdot d\vec{S} = -4\pi G m_{\text{int}}$ (G étant la constante universelle de la gravitation et m_{int} la masse contenue à l'intérieur de la surface fermée S). Après un calcul analogue, on obtient :

$$\vec{g} = \frac{4\pi G\mu}{3} \overrightarrow{O_1 O_2}$$
 (le champ gravitationnel est également **uniforme** dans la grotte).