6. Spojitost funkce

Spojitost patří k nejvýznamnějším vlastnostem funkcí. Setkáváme se s ní - jako s požadovanou vlastností funkcí - ve všech částech matematické analýzy.

6.1. Pojem spojitosti funkce

Intuitivní představa spojitosti funkce f v bodě x_0 je spojena s grafem funkce: graf v tomto bodě "není přetržený", funkce je v daném bodě definována a v malém okolí bodu x_0 jsou malé i změny funkce. Spojitost v bodě je lokální vlastnost funkce.

D (spojitost funkce v bodě): Říkáme, že funkce f je spojitá v bodě $x_0 \Leftrightarrow$

1° je v bodě x_0 definována (tj. $x_0 \in D(f)$),

2° [je-li x_0 hromadným bodem D(f), pak] existuje vlastní $\lim_{x \to x_0} f(x)$ a platí

$$3^{\circ} \lim_{x \to x_0} f(x) = f(x_0)$$

Poznámka: Někdy se vynechává podmínka v hranaté závorce. Její ponechání rozšiřuje spojitost i do izolovaných bodů D(f) a umožňuje jednodušší formulaci některých vět.

Úlohy:

- **6.1.1.** Definujte spojitost v bodě x_0 zleva a spojitost zprava.
- **6.1.2.** Načrtněte graf funkce f tak, aby nastaly tyto jevy:
- v bodě $x_1 \notin D(f)$ má funkce vlastní limitu,
- -v bodě $x_2 \notin D(f)$ limita zleva je menší než limita zprava, obě jsou vlastní,
- -v bodě x_3 je funkce spojitá zleva, limita zprava je menší než limita zleva,
- -v bodě x_4 je funkce spojitá zprava a limita zprava je větší než limita zleva,
- -v bodě $x_5 \in D(f)$ má vlastní limitu, která je však menší než funkční hodnota,
- -v bodě $x_6 \in D(f)$, limita zleva je větší než $f(x_6)$, limita zprava je menší než $f(x_6)$,
- v bodě $x_7 \notin D(f)$ je limita zleva $-\infty$, limita zprava $+\infty$,
- -v bodě $x_8 \in D(f)$ je limita zleva $+\infty$, vlastní limita zprava je menší než $f(x_8)$,
- -v bodě $x_9 \in D(f)$ má funkce nevlastní limitu $+\infty$.
- **D**: Hromadný bod x_0 definičního oboru D(f), v němž funkce f není spojitá, se nazývá **bod ne- spojitosti** funkce f.
- **D** (druhy nespojitosti): Nespojitost v bodě x_0 se nazývá
- *odstranitelná* \Leftrightarrow f má v bodě x_0 vlastní limitu, ale funkční hodnota $f(x_0)$ buď není definována nebo není rovna limitě;
- neodstranitelná ve všech ostatních případech nespojitosti.

Neodstranitelnou nespojitost nazveme

- -1. druhu ⇔ v bodě x_0 existují obě jednostranné vlastní limity, ale jsou různé; rozdíl limit $f(x_0+)-f(x_0-)$ (někdy jen absolutní hodnotu tohoto rozdílu) nazýváme skok;
- 2. druhu ve všech ostatních případech.

Poznámka: Odstranitelnou nespojitost lze odstranit tak, že funkci f v bodě x_0 dodefinujeme nebo předefinujeme tak, aby se funkční hodnota rovnala limitě funkce v bodě x_0 .

Úlohy:

- **6.1.3.** Rozhodněte, jakou nespojitost má funkce f z příkladu 2 v bodech x_1 až x_9 .
- **6.1.4.** Dokažte, že Dirichletova funkce je nespojitá pro každé $x \in \mathbf{R}$. Jaká je to nespojitost?

Dále uvádíme přehled základních vět o spojitosti v bodě x_0 ; v případě, že tento bod je hromadným bodem D(f), plynou tyto věty z vět o limitách.

- **V 1**: Jsou-li funkce f, g spojité v bodě x_0 , $c \in R$, pak jsou v tomto bodě spojité též funkce f + g, f g, $c \cdot f$, $f \cdot g$, |f| a pro $g(x_0) \neq 0$ i f/g. (Pro součty, rozdíly a součiny platí tato vlastnost při libovolném konečném počtu členů resp. činitelů.)
- **V 2**: Je-li funkce φ spojitá v bodě x_0 , funkce f spojitá v bodě $a = \varphi(x_0)$, pak složená funkce $f \circ \varphi$ je spojitá v bodě x_0 .
- **V** 3: Je-li funkce f spojitá v bodě x_0 , pak existuje okolí $U(x_0)$ tak, že na $D(f) \cap U(x_0)$ je f omezená (je to tzv. lokální omezenost spojité funkce).
- **V** 4: Nechť funkce f je spojitá v bodě x_0 , který je hromadným bodem D(f), a $f(x_0) \neq 0$. Pak existuje okolí $U(x_0)$ tak, že $\forall x \in R$ platí $x \in U(x_0) \cap D(f) \Rightarrow \operatorname{sgn} f(x) = \operatorname{sgn} f(x_0)$.
- **V** 5: Nechť x_0 je oboustranný hromadný bod D(f). Funkce f je spojitá v bodě $x_0 \Leftrightarrow$ je v něm spojitá zleva i zprava.
- **V** 6 (Pravidlo ε δ): Necht' x_0 je hromadným bodem D(f). Funkce f je spojitá v bodě $x_0 \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tak}$, že $\forall x \in R$ platí $x \in U(x_0, \delta) \cap D(f) \Rightarrow f(x) \in U(f(x_0), \varepsilon)$.

Poznámka: Tato vlastnost se též nazývá Cauchyova definice spojitosti; tedy takto lze definovat spojitost funkce v hromadném bodě D(f) bez použití pojmu limita. (V uvedeném pravidle $\varepsilon - \delta$ je ovšem pojem limity fakticky obsažen, viz pravidlo $\varepsilon - \delta$ pro limitu funkce.) Podobně následující větu lze chápat jako za Heineho definici spojitosti.

- **V** 7: Nechť x_0 je hromadným bodem D(f). Funkce f je spojitá v bodě $x_0 \Leftrightarrow \forall \{x_n\}, x_n \in D(f), x_n \to x_0$ platí $f(x_n) \to f(x_0)$.
- **V** 8: Základní elementární funkce jsou spojité ve všech bodech, v nichž jsou definovány.

Úloha 6.1.5. Pro které funkce naleznete důkaz V 8 v příkladech 5. kapitoly?

6.2. Funkce spojité na množině

Spojitost funkce na množině je globální vlastností funkce.

D: Říkáme, že funkce *f je spojitá na množině M* \subset $D(f) \Leftrightarrow$ je spojitá v každém bodě množiny *M*. Zápis: $f \in C(M)$. Říkáme, že funkce *f je spojitá* \Leftrightarrow f je spojitá na D(f).

Poznámka: Je třeba rozlišovat spojitost na D(f) a spojitost na uzávěru $\overline{D}(f)$. Např. funkce f: y = 1/x je podle výše uvedené definice spojitá, neboť je spojitá na $D(f) = (-\infty, 0) \cup (0, +\infty)$, ale není spojitá na množině $R = \overline{D}(f)$.

Někdy lze požadavek na spojitost funkce poněkud "oslabit" a uvažovat funkce jen "po částech spojité" (viz např. Newtonův vzorec v kap. 11).

D: Funkce f se nazývá **po částech spojitá** na $M \Leftrightarrow$ je spojitá ve všech bodech množiny M s výjimkou konečného počtu bodů M, v nichž je definovaná a má zde nespojitost 1. druhu nebo nespojitost odstranitelnou.

K tomu, abychom mohli spojitosti prakticky využívat, je třeba se přesvědčit, které z běžně používaných funkcí jsou spojité. Platí:

V: Všechny základní elementární funkce jsou spojité.

Z vlastností spojitosti 6.1, 1,2,8, plyne, že jsou spojité i všechny funkce, které ze základních elementárních funkcí dostaneme konečným počtem aritmetických operací a skládání funkcí.

Nejdůležitějším zvláštním případem spojitosti na M je spojitost na intervalu. Přitom spojitost na uzavřeném intervalu $\langle a,b\rangle$ znamená, že f je spojitá na (a,b), v levém krajním bodě a je spojitá zprava a v pravém krajním bodě b je spojitá zleva.

6.3. Vlastnosti funkcí spojitých na intervalu

V (1. Weierstrassova věta): Je-li funkce spojitá na intervalu $\langle a,b\rangle$, pak je na tomto intervalu omezená.

 $D\mathring{u}kaz$ (sporem): Kdyby funkce f nebyla omezená na $\langle a,b \rangle$ (např. shora), pak by ke každému $n \in N$ existoval bod $x_n \in \langle a,b \rangle$ tak, že $f(x_n) > n$. Posloupnost $\{x_n\} \subset \langle a,b \rangle$ je omezená, takže podle Bolzano - Weierstrassovy věty existuje vybraná konvergentní podposloupnost $\{x'_n\}$ s limitou x_0 , pro niž též $f(x'_n) > n$. Proto $f(x_0)$ je (podle Heineho definice spojitosti a podle věty o limitě nerovnosti) jednak $+\infty$ a jednak reálné číslo vzhledem ke spojitosti f v každém bodě $\langle a,b \rangle$, tedy i v x_0 , a to je spor. \square

Úloha 6.3.1. Na příkladech ukažte, že oba předpoklady 1. Weierstrassovy věty (spojitost funkce a uzavřenost intervalu) jsou podstatné pro platnost tvrzení věty. Tedy při narušení některého z těchto předpokladů není nutně splněno ani tvrzení.

V (2. Weierstrassova věta): Je-li funkce f spojitá na intervalu $\langle a,b\rangle$, pak na tomto intervalu nabývá své největší hodnoty i své nejmenší hodnoty. (Tedy existují body $c_1,c_2 \in \langle a,b\rangle$ tak, že $f(c_1) = \max_{x \in \{a,b\}} f(x), \ f(c_2) = \min_{x \in \{a,b\}} f(x)$.)

Důkaz (části o maximu): Podle 1. Weierstrassovy věty je f shora omezená, takže existuje konečné $\sup_{x \in (a,b)} f(x) = M$. Stačí tedy dokázat, že existuje $c_1 \in \langle a,b \rangle$ tak, že $f(c_1) = M$. Kdyby tako-

vý bod c_1 neexistoval, byla by funkce g(x) = M - f(x) na $\langle a,b \rangle$ spojitá a kladná. Proto i funkce 1/g(x) by byla na $\langle a,b \rangle$ spojitá, tedy podle 1. Weierstrassovy věty omezená kladnou konstantou L: $1/g(x) < L \Rightarrow g(x) > 1/L \Rightarrow f(x) < M - 1/L$; dostali jsme spor se 2. vlastností suprema, takže g(x) nemůže být stále kladná, tedy uvažovaný bod c_1 existuje.

Úloha 6.3.2. Na příkladech ukažte, že oba předpoklady 2. Weierstrassovy věty (spojitost funkce a uzavřenost intervalu) jsou podstatné pro platnost tvrzení věty. Tedy při narušení některého z těchto předpokladů není nutně splněno ani tvrzení. (Např. uvažte funkci y = x na intervalu (-1,1).)

V (Bolzano–Cauchyova): Je-li funkce f spojitá na $\langle a,b\rangle$ a platí-li $f(a) \cdot f(b) < 0$, pak existuje bod $\xi \in \langle a,b\rangle$ tak, že $f(\xi) = 0$.

 $D\mathring{u}kaz$ Bolzanovou metodou půlení intervalů: Interval $\langle a,b \rangle$ rozpůlíme bodem c_1 . Pokud $f(c_1)=0$, je $\xi=c_1$. Jinak označíme $\langle a_1,b_1 \rangle$ tu polovinu, kde $f(a_1)\cdot f(b_1)<0$. Interval $\langle a_1,b_1 \rangle$ rozpůlíme bodem c_2 ... Buď $\exists n \in N$ tak, že $\xi=c_n$ nebo dostáváme posloupnost vložených intervalů, které mají podle věty o vložených intervalech jediný společný bod ξ ; o něm se dokáže $f(\xi)=0$. Nemůže být $f(\xi)>0$, neboť by existovalo okolí $U(\xi)$ tak, že $\forall x \in U(\xi)$ by bylo f(x)>0 a to je spor (pro dosti velké n by bylo $\langle a_n,b_n\rangle \subset U(\xi)$). Stejně tak nemůže platit, že $f(\xi)<0$, proto $f(\xi)=0$.

Této věty se užívá např. při řešení rovnic k důkazu existence řešení.

Úloha 6.3.3. Dokažte, že rovnice $x + \sin(x - 1) = 0$ má alespoň jeden kořen.

[Uvažujeme např. a = -2, b = 2 (najděte menší interval!)]

V (věta o mezihodnotě): Nechť funkce f je spojitá na $\langle a,b\rangle$, $f(a) \neq f(b)$. Pak funkce f nabývá každé hodnoty q mezi f(a) a f(b).

Princip důkazu: Bolzano–Cauchyovu větu použijeme na funkci g(x) = f(x) - q.

Důsledek: Je-li funkce f spojitá na intervalu J, pak f(J) je interval nebo jednobodová množina.

V (vztah mezi monotónností a prostotou u funkcí spojitých na intervalu): Je-li funkce f spojitá na intervalu J, pak f je prostá právě tehdy, když je monotónní.

Princip důkazu: Vztah "ryze monotónní" \Rightarrow "prostá" platí zřejmě i pro nespojité funkce. Vztah "prostá" \Rightarrow "ryze monotónní" se dokáže sporem. Kdyby (prostá) funkce nebyla ryze monotónní, existovaly by tři body c_1 , c_2 , c_3 tak, že $f(c_2)$ by bylo větší (nebo menší) než $f(c_1)$ a $f(c_3)$. Z věty o mezihodnotě plyne existence bodů $x_1 \in (c_1, c_2)$, $x_2 \in (c_2, c_3)$ tak, že $f(x_1) = f(x_2)$, a to je spor s vlastností prostoty.

Úloha 6.3.4. Sestrojte náčrtek k poslední části důkazu předchozí věty.

V (o spojitosti inverzní funkce): Je-li funkce f na intervalu J spojitá a prostá, pak inverzní funkce f je též spojitá.

K důkazu se používá ryzí monotónnost funkce f a důsledek věty o mezihodnotě.

6.4. Stejnoměrná spojitost

Jako jsme vlastnost spojitosti "zmírnili" spojitostí po částech, můžeme tuto vlastnost zase "zpřísňovat".

D: Funkce f se nazývá *stejnoměrně spojitá* na množině $M \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta \geq 0 \ \text{tak}$, že pro každé dva body $x',x'' \in M$ platí: $|x' - x''| < \delta \implies |f(x') - f(x'')| < \varepsilon$.

Předně uvážíme, že stejnoměrná spojitost má smysl jen na množině (zejména na intervalu), neexistuje nějaká stejnoměrná spojitost v bodě. Je to tedy vlastnost globální. V definici si dále uvědomíme, že δ závisí pouze na ϵ , tj. nezávisí na poloze bodů x', x'' v M; u spojitosti na množině M obecně δ závisí také na bodu x_0 , tedy i když je funkce spojitá v každém bodě množiny M, nelze obecně k danému $\epsilon > 0$ najít takové $\delta > 0$, které by bylo stejné, ať zvolíme

 x_0 kdekoli na M. Např. u funkce $y = \operatorname{tg} x$ na $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, když volíme x_0 "stále blíže" k $\frac{\pi}{2}$, pak

pro dané ε (třeba = 1) musíme volit δ stále menší a menší, aby pro $x \in U(x_0, \delta)$ zůstaly funkční hodnoty f(x) v ε-okolí hodnoty f(x)).

Stejnoměrnou spojitost lze charakterizovat také ještě pomocí tzv. oscilace funkce.

D: Nechť funkce f je definovaná a omezená na množině M. Číslo $\omega = \sup_{x \in M} f(x) - \inf_{x \in M} f(x)$ se nazývá *oscilace funkce* f na množině M.

Je-li funkce spojitá na uzavřeném intervalu, pak místo rozdílu suprema a infima můžeme vzít rozdíl maxima a minima.

V (o oscilaci stejnoměrně spojité funkce): Funkce f je stejnoměrně spojitá na intervalu J, právě když $\forall \varepsilon > 0 \ \exists \delta > 0$ tak, že na každém podintervalu $I \subset J$ délky menší než δ je oscilace funkce menší než ε .

Vztah spojitosti a stejnoměrné spojitosti řeší následující dvě věty.

V (vztah stejnoměrné spojitosti a spojitosti na množině M): Je-li funkce f stejnoměrně spojitá na M, pak je na M spojitá.

Princip důkazu: Ze stejnoměrné spojitosti plyne spojitost v libovolném bodě x_0 , neboť $\forall \varepsilon > 0$ $\exists \delta > 0$ tak, že $\forall x \in D(f)$ platí: $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$.

 ${\bf V}$ (Cantorova věta): Je-li funkce f spojitá na intervalu $\langle a,b \rangle$, pak je na tomto intervalu stejnoměrně spojitá.

Důkaz se provádí užitím Borelovy věty o pokrytí: Je-li uzavřený interval $\langle a,b\rangle$ pokryt systémem S_v otevřených intervalů, pak existuje konečný podsystém $S_k \subset S_v$, který také pokrývá interval $\langle a,b\rangle$.

_ * _