MATH 312 Spring 2025

Homework #9 (due Mar 30)

Finish HW#8

I don't know if it was spring break brain or what, but only one person has so far turned in HW#8. So, do that. I've changed everyone's due date for HW#8 to be Mar 30.

Automorphism groups

In class we figured out $\operatorname{Aut}(\mathbb{Z}_n, +)$ for $n = 2 \dots 12$. (They end up being isomorphic to (U_n, \cdot) , the group of integers relatively prime to n with the operation multiplication mod n.) Let's explore $\operatorname{Aut}(G)$ for some non-cyclic groups G.

Problem 1. Find $Aut(V_4)$. Hints:

- Say $V_4 = \langle a, b \rangle$. Any automorphism of V_4 is determined by what it does to those two generators. How many choices do you have for where a goes? How many choices do you then have for where b goes? So how many possible automorphisms do you have in total?
- Do your automorphisms commute, or does the order of composition matter?

Problem 2. Find $Aut(D_3)$. Hints:

- Again, automorphisms are determined by what they do to the generators.
- Also, automorphisms preserve order. Where can r go? Where can f go?
- Do your automorphisms commute?

Semidirect products

Problem 3. The semidirect product $\mathbb{Z}_3 \rtimes \mathbb{Z}_2$ is a group of order 6 (= 2 × 3). Draw it:

- Inflate \mathbb{Z}_2 and insert a copy of \mathbb{Z}_3 in each inflated node.
- Rewire the copy of \mathbb{Z}_3 in the 1-node. (There is only one interesting way to do this.)
- Pop the nodes of \mathbb{Z}_2 and reconnect the \mathbb{Z}_2 arrows "straight up" -0 to 0, 1 to 1, and 2 to 2.

Problem 4. I will tell you for free that $\mathbb{Z}_3 \rtimes \mathbb{Z}_2$ is isomorphic to one of the groups of order 6 that we already know. Construct an **explicit** isomorphism $\phi : \mathbb{Z}_3 \rtimes \mathbb{Z}_2 \to G$ for the correct group G:

- (a) write a recipe for sending elements of $\mathbb{Z}_3 \rtimes \mathbb{Z}_2$ to G,
- (b) show that your recipe is a homomorphism,
- (c) show that your homomorphism is injective and surjective.

(Hint: This will be easier if you figure out a minimal set of generators for both $\mathbb{Z}_3 \times \mathbb{Z}_2$ and G, and then figure out how to map the generators over correctly.)

MATH 312 Spring 2025

Problem 5. In class we constructed three different versions of $C_5 \times C_4$; two are drawn below. C_5 and C_4 were "compatible" because there were automorphisms of C_5 that had order dividing $|C_4|$. Choose two other cyclic groups that are "compatible" and construct their semidirect product.

(Look at the code here and conclude that you should **not** try to draw these in tikz, lol.)

Problem 6. (Bonus!) Try constructing $V_4 \bowtie C_3$, and also $C_3 \bowtie V_4$. (I promise both of them are "compatible" in the sense above.)