第3章 逻辑代数基础

逻辑代数描述了二值变量的运算规律,它是英国数学家布尔(George Boole)于1849年提出的,也称布尔代数。逻辑代数是按逻辑规律进行运算的代数,是分析和设计数字逻辑电路不可缺少的基础数学工具。

电路中的信号变量都为二值变量,只能有0、1 两种取值。

逻辑代数与算术不同。

§ 3.1 逻辑代数运算法则

A的反向 运算为 \overline{A}

$$\bar{0} = 1$$

$$\bar{1} = 0$$

或运算 逻辑加

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

与运算 逻辑乘

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

1. 基本定律

每一个定律都有两种形式:逻辑加和逻辑乘。这两种形式互为"对偶式"。

逻辑加逻辑乘

4) 定律 4
$$A+0=A$$
, $A+1=1$; $A\cdot 0=0$, $A\cdot 1=A$

5) 定律 5
$$A+\overline{A}=1$$
; $A \cdot \overline{A}=0$ (互补律)

8) DeMorgan's 定理
$$\overline{A}+\overline{B}=\overline{A}\cdot\overline{B}$$
; $\overline{AB}=\overline{A}+\overline{B}$ (摩根定理)

推论
$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$
 $\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$

2. 基本规则

1) 代入规则

等式两侧某一变量都用一个逻辑函数代入,等式仍成立。

例:

If
$$\overline{AX} = \overline{A} + \overline{X}$$
 $X = BC$

Left:
$$\overline{AX} = \overline{ABC}$$
 Right: $\overline{A} + \overline{BC} = \overline{A} + \overline{B} + \overline{C}$

So
$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$

2) 反演规则

将一个函数表达式 F 中所有的"与"(·)换成"或"(+),"或"(+)换成"与"(·);"0"换成"1","1"换成"0";原变量换成反变量,反变量换成原变量,则所得到的逻辑函数即F的反函数,表达对为函数 F 的反函数。如果 F 成立, \overline{F} 也成立。

注意: 1. 运算顺序不变

2. 不是一个变量上的反号保持不变

例 已知
$$F = A(B + \overline{C}) + CD$$
,求 \overline{F} 。

解:
$$\overline{F} = (\overline{A} + \overline{B}C)(\overline{C} + \overline{D})$$

3) 对偶规则

若 F 为一逻辑函数,如果将该函数表达式中所有"与"(·)换成"或"(+),"或"(+)换成"与"(·);"0"换成"1","1"换成"0",则所得到的逻辑函数即F的对偶式,表达式为F 。

如果 F 成立, F' 也成立

例: 已知 $F=A(B+\overline{C})+C$ 分别求 F' 和 \overline{F}

解: $F' = (A+B\overline{C})(C+D)$

 $\overline{F} = (\overline{A} + \overline{B}C)(\overline{C} + \overline{D})$

3. 常用公式

$$:$$
 $A+AB = A(1+B) = A$

2)
$$AB + A\overline{B} = A;$$
 $(A + B)(A + \overline{B}) = A$

$$\overline{\mathbb{H}}$$
: $AB+A\overline{B}=A(B+\overline{B})=A$

3)
$$A+\overline{A}B = A+B;$$
 $A(\overline{A}+B)=AB$

$$A+\overline{A}B = (A+\overline{A})(A+B) = A+B$$

4)
$$AB+\overline{A}C+BC = AB+\overline{A}C;$$
 $(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$

冗余定理

$$AB+\overline{A}C+BC = AB+\overline{A}C+(A+\overline{A})BC = AB+\overline{A}C+ABC+\overline{A}BC$$

$$=AB+\overline{A}C$$

推论: AB + AC + BCDE = AB + AC

5) 异或公式 (XOR) $A \oplus B = A \cdot B$

$$A \oplus B = \overline{A \cdot B}$$

证:
$$AB + \overline{AB} = \overline{AB} + \overline{AB}$$

$$A \oplus A = 0$$
, $A \oplus \overline{A} = 1$, $A \oplus 0 = A$, $A \oplus 1 = \overline{A}$

6) 如果 A⊕B⊕C=D

$$\begin{cases} A \oplus B \oplus D = C; \\ A \oplus C \oplus D = B; \\ B \oplus C \oplus D = A; \end{cases}$$

因果关系

多变量异或,变量为1的个数为奇数,异或结果为1;1的个数为偶数,结果为0;与变量为0的个数无关。

§ 3.2 逻辑函数的标准形式

3.2.1 最小项及标准与或式

1. 最小项(标准与项)

与项定义为字母(原变量或其反变量)的逻辑乘项.

AB BCD AE

最小项(标准与项): n 变量函数, n 变量组成的与项中, 每个变量都以原变量或反变量形式出现一次, 且只出现一次。

n 个变量 □ 2ⁿ 个最小项

例如: 3 变量 A, B, C, 有 $2^3 = 8$ 个最小项:

 $\overline{A} \cdot \overline{B} \cdot \overline{C} = \overline{A} \cdot \overline{B}C = \overline{ABC} = \overline$

2. 最小项真值表

ग्रोऽ.₹	計	最	小项	编号	m_0	\mathbf{m}_1	m_2	m_3	m_4	m_5	m_6	m_{7}
A]		<u>C</u>	最	小项	ABC	ABC	AB C	ABC	ABC	$\overline{C} A \overline{B} C$	ABC	CABC
0	0	0			1	0	0	0	0	0	0	0
0	0	1			0	1	0	0	0	0	0	0
0	1	0			0	0	1	0	0	0	0	0
0	1	1			0	0	0	1	0	0	0	0
1	0	0			0	0	0	0	1	0	0	0
1	0	1			0	0	0	0	0	1	0	0
1	1	0			0	0	0	0	0	0	1	0
1	1	1			0	0	0	0	0	0	0	1

当ABC取某一组值时,只有一个最小项值为1,其他都等于0

最小项编号 m_i : 使某一最小项为 1 时,变量取值的二进制数对应的十进制数为此最小项的编号

例:

ABC: 010 $\overline{ABC} = 1$ 010 = 2

所以ABC 的编号为 m_2

例:

2 变量 A, B:
$$m_1 = \overline{AB}$$
, $m_3 = AB$

4 变量 A, B, C, D:
$$m_1 = \overline{A} \overline{B} \overline{C}D$$

 $m_5 = \overline{ABCD}$

$$m_{13} = AB\overline{C}D$$

- 1: 变量 变量取 1 对应于原变量
- 0: 反变量 变量取 0 对应于反变量

3. 标准与或式

$$F = \overline{AB} + A\overline{C} + A\overline{BC}$$
 与或式

如果一个与或式函数的每个与项都是最小项, 这个函数称为标准与或式

例:

$$F_1(A,B,C) = \overline{A}B\overline{C} + AB\overline{C} + \overline{A}BC + ABC$$

$$= m_2 + m_6 + m_3 + m_7$$

$$= \sum m(2,3,6,7)$$

标准与或式
$$m 可以忽略$$

与或式说明,变量取何值时,函数 F=1

例 1: 将下列函数变成标准与或式:

注: F(A,B,C) 必须写全, 涉及字母顺序即最小项编号

3.2.2 最大项及标准或与式

和项(或项)定义为字母(原变量或反变量)的逻辑加项.

$$A+B$$
 $\overline{A}+B+\overline{C}$ $\overline{D}+E+F$

1. 最大项

n 变量组成的或项中,每个变量都以原变量或反变量的形式出现一次,且只出现一次,此或项为最大项,标准或项。

n 变量 ⇒ 2ⁿ 最大项

三变量最大项真值表

			M_0	M_1	M_2	M_3	M_4	M_{5}	M_{6}	M_{7}
变	量						·			
A	B	\boldsymbol{C}	A+B+C	$A + B + \overline{C}$	$A + \overline{B} + C$	$C, A + \overline{B} + \overline{C}$	$\overline{A} + B + C$	$\overline{A} + B + \overline{C}$,	$\overline{A} + \overline{B} + C$,	$\overline{A} + \overline{B} + \overline{C}$
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

当 ABC 取某一组值时,只有一个最大项值为0, 其他都等于1

使某一最大项为0时,A,B,C 取值的二进制数对应的十进制数为此最大项的编号: M_i

例: 3 变量 A, B, C

$$M_2 = A + \overline{B} + C$$
 (010) $\notin A + \overline{B} + C = 0$
 $M_4 = \overline{A} + B + C$

4 变量 A,B,C,D $M_2 = A + B + \overline{C} + D$ $M_{10} = \overline{A} + B + \overline{C} + D$

2. 标准或与式

$$F = (A + \overline{B})(B + C)$$
 或与式

每个或项都是最大项称为标准或与式

或与式说明,变量取何值时,函数 F=0

例:

$$F_2(A, B, C) = (A + B + C)(A + B + \overline{C})(\overline{A} + B + C +)(\overline{A} + B + \overline{C})$$
 $\mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1}$
 $= \mathbf{M}_0 \cdot \mathbf{M}_1 \cdot \mathbf{M}_4 \cdot \mathbf{M}_5$
 $= \prod \mathbf{M}(0,1,4,5)$
 \mathbf{M} 可以忽略

3.2.3 两种标准式间的关系

1) 最小项和最大项互为反函数

$$\overline{m_i} = M_i$$
 $F(A,B,C)$: $\overline{m_i} = \overline{A} \ \overline{B} \ C = A + B + \overline{C} = M_1$ $\overline{M_j} = m_j$ 最小项编号 最大项编号

2) 不在最小项中出现的编号,一定出现在最大项的编号中

$$F(A,B,C) = \Sigma \text{ m } (2,3,6,7)$$
 F₁ 与或式 = $\Pi \text{ M } (0,1,4,5)$ F₂ 或与式

标准与或式和标准与或式是一个逻辑关系的两种表达方式

§ 3.3 逻辑函数的公式化简

一个逻辑函数有多种表达形式

例如:
$$F = XY + \overline{YZ}$$
 (AND – OR) 与或式 $= (X + \overline{Y})(Y + Z)$ (OR – AND) 或与式 $= \overline{XY} \cdot \overline{YZ}$ (NAND – NAND) 与-非式 $= \overline{X+Y} + \overline{Y+Z}$ (NOR – NOR) 或非—或非式 $= \overline{XY} + \overline{YZ}$ (AND – OR – NOT) 与或非

上面五种都是最简式

化简目的: 少用元件完成同样目的, 成本低公式法化简

例1: 用公式法化简下式

$$F = A\overline{B} + \overline{AC} + \overline{BC}$$

$$= A\overline{B} + \overline{AC} \cdot \overline{BC}$$

$$= A\overline{B} + (A + \overline{C})(B + \overline{C})$$

$$= A\overline{B} + AB + A\overline{C} + B\overline{C} + \overline{C}$$

$$= A + \overline{C}$$

例 2: 用公式法化简下式

$$F = A\overline{B}C + A\overline{B}\overline{C} + \overline{D}\overline{E}(B+G) + \overline{D} + (\overline{A}+B)D + A\overline{B}CDE + A\overline{B}DEG$$

$$=A\overline{B} + \overline{D} + \overline{A\overline{B}D}$$

$$= A\overline{B} + \overline{D} + D = A\overline{B} + 1 = 1$$

例 3: 将下列函数化简成最简或与式。

$$G = (A + B + \overline{C})(A + B)(A + \overline{C})(B + \overline{C})$$

解: 对偶关系

$$G' = AB\overline{C} + AB + A\overline{C} + B\overline{C}$$
$$= AB + A\overline{C} + B\overline{C}$$

$$G = (A + B)(A + \overline{C})(B + \overline{C})$$

例 4:

$$L = AB + A\overline{C} + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F + G)$$

$$= A\overline{B}C + BC + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F + G)$$

$$= A + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D}$$

$$= A + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + \overline{C}D$$

$$= A + \overline{B}C + B\overline{C} + B\overline{D} + \overline{C}D$$

最简式 ^{项数最少} 每项中变量数最少

§ 3.4 卡诺图化简逻辑函数

用公式法化简逻辑函数时,有时很难看出是否 达到最简式。用卡诺图(Karnaugh Map)化简逻 辑函数具有简单、直观、方便的特点,较容易判断 出函数是否得到最简结果。

3.4.1 卡诺图

卡诺图 (K-map)与真值表相似,可以给出输入所有可能组合所对应的输出值。与真值表不同的是卡诺图是由小格构成。每个小格代表一个二进制输入的组合。

n 个变量的卡诺图中有2n个小格,每个小格表示一个最小项。

2 变量卡诺图: F(A,B)

变量取值: 0→1

变量(A,B)位置确定,每小格代表的最小项就确定。

3 变量卡诺图: F(A,B,C)

$F_{\cdot}AB$						
~	00	01	11	10		
C_0	m_0	2	6	4		
1	m_1	3	7	5		

排列方式保证相邻 格之间只有一个变量 变化

AB顺序的排列方法

几何相邻:位置相邻 逻辑相邻:只有一个变量变化

4 变量卡诺图: F(A,B,C,D)

$F_{\setminus} AB$					
CD	00	01	11	10	
00	0	4	12	8	
01	1	5	13	9	
11	3	7	15	11	
10	2	6	14	10	

F_{\setminus} CD					
AB	00	01	11	10	
00	0	1	3	2	
01	4	5	7	6	
11	12	13	15	14	
10	8	9	11	10	

3.4.2 用卡诺图表示逻辑函数

例 1: 将真值表转换成卡诺图

A	В	\boldsymbol{C}	$oldsymbol{F}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

FA	<i>B</i> 00	01	11	10
C_0	0	0	1	0
1	0	1	1	1

例 2: 用卡诺图表示标准与或式和标准或与式

$$F(X,Y,Z) = \sum m(0,4,6)$$
 $F(X,Y,Z) = \prod M(1,2,3,5,7)$

$$F(X,Y,Z) = \prod M(1,2,3,5,7)$$

F 何时为1(最小项)

F 何时为 0 (最大项)

FX	<i>XY</i> 00	01	11	10
Z_0	1	0	1	1
1	0	0	0	0

例3: 将与或式填入卡诺图

$$F(X,Y,Z) = XY + \overline{Y}Z + \overline{X}\overline{Z}$$

$$= XY(Z + \overline{Z}) + \overline{Y}Z(X + \overline{X}) + \overline{X}\overline{Z}(Y + \overline{Y})$$

$$= XYZ + XY\overline{Z} + X\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + \overline{X}Y\overline{Z}$$

$$= \sum m(0,1,2,5,6,7)$$

直接填 XY:

在 XY = 11 的两个格中填1

F X	(Y 00	01	11	10
Z 0	1	1	1	
1	1		1	1

3.4.3 卡诺图化简逻辑函数

1. 求最简与或式

方法: 圈相邻格中的1, 合并最小项

圈 1: 根据下面规则将含有 1 的相邻格圈在一起

尽可能多地把相邻的矩形的 2ⁿ 个 1 圈在一起,消去变化了的 n 个变量,留下不变的变量是 1 写原变量,是 0 写反变量,组成 "与" 项;每个圈中至少有一个别的圈没圈过的 1,所有的 1 都要圈;1 可以重复圈;圈之间为"或"的关系。

圈 1个1, 2个1, 4个1, 8个1, 16个1

例 1: 用卡诺图化简下列函数

$$F(A,B) = \sum (0,1,3)$$

解:

- ①填卡诺图
- ②圈1
- ③ 将与项相加

$$F = \overline{A} + B$$

例 2: 化简函数

$$F = \overline{B} + AC$$

例 3:

$$F(A, B, C, D) = \overline{D} + AB$$

2. 求最简或与式

尽可能多的把相邻矩形个0圈在一起,消去变化了的n个变量,留下不变的变量,(是0写原变量,是1写反变量)组成或项;每个圈中至少有一个别的圈没圈过的0,所有0都要圈,0可重复圈,圈之间为与关系.

例 3 圈 0:

与或式和或与式可以互相转换

总结: 与或式圈 1

或与式圈 0

例 4: 将下式化简成最简与或式

$$G = B\overline{D} + \overline{A}B\overline{C} + A\overline{B}CD$$

例 5: 将下式化简成最简与或式

$$F = \overline{AC} + \overline{AC} + \overline{AB}$$
 $= \overline{AC} + \overline{AC} + \overline{BC}$
 $\Rightarrow \overline{P} = \overline{AC} + \overline{AC} + \overline{BC}$

最简式不是唯一的

例 6: 分别将下式化简成最简与或式和或与式

解: 在卡诺图中直接填 θ

最简或与式: 圈 θ

$$F(A,B,C,D) = (\overline{B} + D)(\overline{A} + \overline{C})(\overline{A} + B + \overline{D})$$

最简与或式:圈1

$$F(A,B,C,D) = \overline{A} \cdot \overline{B} + \overline{AD} + B\overline{CD} + \overline{B} \cdot \overline{C} \cdot \overline{D}$$

例7:已知 F=ABC+AD+ABD+ABCD+ABCD 化简上式,并分别用最少的与非门和或非门实现

解: 填卡诺图

1) 用与非门实现

$$F = \overline{\overline{A}\overline{D} + B}\overline{D} + A\overline{B}C$$

$$= \overline{\overline{A}\overline{D} \cdot \overline{B}\overline{D} \cdot \overline{A}\overline{B}C}$$

与或 ==> 与非 - 与非

$$F = \overline{\overline{A}\overline{D}} \cdot \overline{\overline{B}\overline{D}} \cdot \overline{\overline{A}\overline{B}C}$$

与非-与非门

$$F = \overline{(A+D)}(B+D)(A+B+C)$$

$$F = \overline{A + D} + \overline{B} + \overline{D} + \overline{A} + B + C$$

或与 或非 - 或非

化简:每个圈需一个门实现,各圈之间加一个门

$$F = \overline{A + \overline{D}} + \overline{\overline{B} + \overline{D}} + \overline{\overline{A} + B + C}$$

或非-或非门

3.4.4 具有随意项的逻辑函数的化简

实际逻辑电路中,有些变量(输入)组合不会出现或不允许出现,如 BCD 码中 1010~1111;这些组合对输出不产生任何影响(是 1 是 0 不影响输出),这种组合称"随意项".

例:

用 A, B, C 分别表示电机的正转、反转和停止三种状态:

 A=1
 正转

 B=1
 反转
 任何时刻只存在一个状态

 C=1
 停

随意项

卡诺图
$$\{X, \emptyset, \emptyset\}$$
 逻辑函数 $\{X, \emptyset, \emptyset\}$ 逻辑函数 $\{X, \emptyset, \emptyset\}$ $\{X, \emptyset\}$ $\{X, \emptyset, \emptyset\}$ $\{X, \emptyset\}$

化简时,根据化简需要, φ 可作1或作0;但不能既当1同时又当0

例 1: 用卡诺图化简函数

$$F(A,B,C,D) = \sum m(1,3,7,11,15) + d(0,2,5)$$

解:卡诺图

标角标: Φ_1, Φ_2, Φ_3

采用
$$\Phi_3 = 1$$
,

圈 1:

$$\Phi_1 = \Phi_2 = 0$$

$$F = CD + \overline{AD}$$

圈 0:

$$F = D(\overline{A} + C)$$

若采用
$$\Phi_1 = \Phi_2 = 1$$
,

圈 1:

$$\Phi_3 = 0$$

$$F = \overline{A} \cdot \overline{B} + CD$$

例 2: Simplify the logic function with don't care terms:

$$G = \overline{AC} + \overline{AB}$$
, $AB + AC = 0$
 $AB = \Phi$ $AC = \Phi$

物理意义:这两项 在函数中不起作用, 不是数学上的等于0

$$G = B + \overline{A} \cdot \overline{C}$$

3.4.5 引入变量卡诺图 (VEM) Variable Entered Map

一般,变量超过5个时,采用引入变量卡诺图方法化简逻辑函数。将n变量函数中一个变量作为引入变量,填入(n-1)变量卡诺图中。

例 1: 化简下列逻辑函数

$$F(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + AB\overline{C} + A\overline{B} \cdot \overline{C} + ABC$$
39\frac{3}{2}

将变量 C 拿出作为引入变量,将函数填入2变量卡诺图中

当A=0, B=0 时,F=C, 在 m_0 格填 \overline{C}

圈的原则与圈1相同,合并 相同变量

$$F = \overline{B} \cdot \overline{C} + AB$$

例 2: 化简下面引入变量卡诺图 (VEM):

$$F = D + AB + \overline{A} \cdot \overline{C}$$