Rozwiązywanie równań i układów równań nieliniowych cz. I

Seweryn Tasior, WI, grupa 5

08.05.2025

1 Wprowadzenie

1.1 Treść ćwiczenia

Stosując metodę Newtona oraz metodę siecznych wyznacz pierwiastki równania f(x) = 0., następnie dokonaj odpowiedniej analizy uzyskanych wyników.

$$f(x) = (x-1)e^{-14x} + x^{12}$$

dla $x \in [-0.7, 1.1]$.

1.2 Dane techniczne

Programy zostały napisane w języku Python w wersji 3.11.5. Dodatkowo, do narysowania wykresów i tabel zostały użyte biblioteki Pandas i matplotlib. Pomocniczo do wykonywania obliczeń zastosowano funkcjonalności biblioteki.

Zadania programistyczne wykonano na laptopie Lenovo IdeaPad Gaming 3 15ACH6. Urządzenie posiada 6-rdzeniowy procesor o taktowaniu 4,4 GHz. Korzystano przy tym z systemu operacyjnego Windows 11.

2 Realizacja ćwiczenia

Rysunek 1: Wykres funkcji analizowanej podczas ćwiczenia

W ćwiczeniu wykorzystano i zaimplementowano iteracyjne wzory na znajdywania miejsc zerowych metodą siecznych i Newtona. Dla każdego z nich warunkiem stopowym było kryterium residualne i przyrostowe.

Wyznaczono pochodną funkcji i określono ją jako:

$$f'(x) = e^{-14x}(15 - 14x) + 12x^{11}$$

Do obliczeń użyto 3 różnych dokładności $\epsilon \in \{10^{-3}, 10^{-7}, 10^{-12}\}$, zarówno dla metody Newtona, jak i metody siecznych.

W ćwiczeniu, na podstawie wyliczeń narzędzia Wolphramalpha, wykorzystano przybliżoną wartość miejsca zerowego funkcji wynoszącą:

$$x_0 = 0.5157485$$

Wartość x_0 uznano jako faktyczną wartość miejsca zerowego. Była ona porównywana z wynikami uzyskanymi za pomocą wcześniej wspomnianych algorytmów numerycznych służących do wyznaczania miejsc zerowych.

Na podstawie uzyskanych wyników sporządzono tabelę oraz ich analizy, porównujące wyniki metod dla zadanych kryteriów.

2.1 Wyniki przy pomocy kryterium przyrostowego $(|x_{n+1} - x_n| < \epsilon)$

2.1.1 Tabele dla metoda siecznych

Tabela 1: Wyniki dla metody siecznych dla zmiennego lewego brzegu

a	b	ϵ	x	Iteracje	Precyzyjny?
		10^{-3}	0.55890416	11	Nie
0.7	1.1	$^{10}_{10}^{-7}_{10}^{-12}$	0.51575227	15	Nie
		10 12	0.51574856	17	Tak
		$^{10}^{-3}$	0.55874912	11	Nie
0.6	1.1	10-7	0.51575216	15	Nie
		10-12	0.51574856	17	Tak
		$^{10}^{-3}$	0.55811776	11	Nie
0.5	1.1	10^{-7}	0.51575176	15	Nie
		10^{-12}	0.51574856	17	Tak
		$^{10}_{10}^{-3}$	0.55554701	11	Nie
0.4	1.1	10-7	0.51575049	15	Nie
		10-12	0.51574856	17	Tak
		$_{10}^{-3}$	0.54527289	11	Nie
0.3	1.1	$_{10}-7$	0.51574874	15	Nie
		$^{10}_{10}$ $^{-7}_{10}$ $^{-12}$	0.51574856	16	Tak
		10-3	0.55272641	9	Nie
0.2	1.1	7	0.51574963	13	Nie
		$^{10}_{10}$	0.51574856	15	Tak
		10-3	0.55704467	2	Nie
0.1	1.1	10-7	0.51575335	6	Nie
		$^{10}_{10}$ – 12	0.51573335	8	Tak
		10-3	0.46050001	5	Nie
0.0	1.1	10-7	0.46052281 0.51574849	9	Nie Nie
		$^{10}_{10}$ – 12	0.51574849	10	Tak
		10-3			
0.1	1.1	10-7	0.46400910 0.51574854	7 11	Nie Tak
0.1		$^{10}_{10}$ – 12	0.51574854	12	Tak
0.2	1.1	$^{10}^{-3}$ $^{10}^{-7}$	0.45844555 0.51574840	6 10	Nie Nie
J. 2	1.1	10-12	0.51574840	10	Tak
0.3	1.1	$^{10^{-3}}$	0.45252948	4	Nie
0.3	1.1	$\frac{10^{-7}}{10^{-12}}$	0.51574785 0.51574856	8 10	Nie Tak
			0.31374836	10	ıak
		10-3	0.46312446	2	Nie
0.4	1.1	10-1	0.51574845	6	Nie
		10-12	0.51574856	7	Tak
0.5		$_{10}^{-3}$	0.50004049	0	Nie
	1.1	10-7	0.51574855	4	Tak
		10-12	0.51574856	5	Tak
		$_{10}^{-3}$	0.55324961	2	Nie
0.6	1.1	10-7	0.51575086	6	Nie
		10-12	0.51574856	8	Tak
		10-3	0.5438087	5	Nie
0.7	1.1	10-7	0.51574867	9	Nie
1.7		$\frac{10}{10}$ – 12	0.51574856	10	Tak
5.7		10-3	0.54519599	7	Nie
J.7			5.01010000		Nie
	1.1	10-7	0.51574873	11	
	1.1	10-7	0.51574873 0.51574856	11 12	Tak
	1.1	$^{10^{-7}}_{10^{-12}}$	0.51574856	12	Tak
0.8	1.1	10^{-7} 10^{-12}	0.51574856 0.56214311	8	Tak Nie
0.8		$^{10^{-7}}_{10^{-12}}$	0.51574856	12	Tak
0.7		$ \begin{array}{r} 10^{-7} \\ 10^{-12} \end{array} $ $ \begin{array}{r} 10^{-3} \\ 10^{-7} \\ 10^{-12} \end{array} $	0.51574856 0.56214311 0.51575520 0.51574856	8 12 14	Tak Nie Nie Tak
0.8		$ \begin{array}{r} 10^{-7} \\ 10^{-12} \end{array} $ $ \begin{array}{r} 10^{-3} \\ 10^{-7} \end{array} $	0.51574856 0.56214311 0.51575520	8 12	Tak Nie Nie

Tabela 2: Wyniki dla metody siecznych dla zmiennego prawego brzegu

a	b	ϵ	x	Iteracje	Precyzyjny?
		10-3	0.55890416	11	Nie
-0.7	1.1	10-7	0.51575227	15	Nie
		10-12	0.51574856	17	Tak
		10-3	0.54317820	10	Nie
-0.7	1.0	10-7	0.51574866	14	Nie
		10-12	0.51574856	15	Tak
-0.7	0.0	10^{-3}	0.54973351	8	Nie
-0.7	0.9	$^{10}_{10}^{-7}_{10}^{-12}$	0.51574910	12	Nie
			0.51574856	14	Tak
0.7	0.8	10-3	0.55103919	6	Nie
-0.7	0.8	$^{10}_{10}^{-7}_{10}^{-12}$	0.51574929	10	Nie
			0.51574856	12	Tak
		$^{10}^{-3}$	0.54552000	4	Nie
-0.7	0.7	10-7	0.51574874	8	Nie
		10-12	0.51574856	9	Tak
		$^{10}^{-3}$	0.55364621	1	Nie
-0.7	0.6	$^{10}_{10}$ $^{-7}_{-12}$	0.51575106	5	Nie
		10-12	0.51574856	7	Tak
0 =	0.5	10^{-3}	0.50000001	0	Nie
-0.7	0.5	10-7	0.51574855	3	Tak
		10-12	0.51574856	4	Tak
		$^{10}^{-3}$	0.46244300	1	Nie
-0.7	0.4	10-7	0.51574842	5	Nie
		10-12	0.51574856	6	Tak
		10^{-3}	0.44857622	3	Nie
-0.7	0.3	10-7	0.51574718	7	Nie
		10-12	0.51574856	9	Tak
		10^{-3}	0.48005144	6	Nie
-0.7	0.2	10-7	0.51574505	9	Nie
		10-12	0.51574856	11	Tak
0.7	0.1	$^{10^{-3}}$	0.47304933	8	Nie
-0.7	0.1	10-7	0.51574583	11	Nie
		10-12	0.51574856	13	Tak
		10-3	0.46641859	10	Nie
-0.7	0.0	10 10 ⁻⁷	0.51574856	14	Tak
		10-12	0.51574856	15	Tak
0.7	0.1	10-3	0.46019025	12	Nie
-0.7	-0.1	$\frac{10^{-7}}{10^{-12}}$	0.51574847	16	Nie
			0.51574856	17	Tak
0.7	0.0	10-3	0.45441001	14	Nie
-0.7	-0.2	10^{-7}	0.51574813	18	Nie
		10-12	0.51574856	20	Tak
	0.5	$^{10}^{-3}$	0.44927791	16	Nie
-0.7	-0.3	10-7	0.51574743	20	Nie
		10-12	0.51574856	22	Tak
		$^{10}^{-3}$	0.48554319	19	Nie
-0.7	-0.4	10-1	0.51574661	22	Nie
		10-12	0.51574856	24	Tak
		$^{10}^{-3}$	0.4850708	21	Nie
-0.7	-0.5	10-1	0.51574645	24	Nie
		10-12	0.51574856	26	Tak
		10^{-3}	0.45138083	22	Nie
-0.7	-0.6	10-7	0.51574777	26	Nie
		$_{10}^{-12}$	0.51574856	28	Tak

2.1.2 Analiza metody siecznych

W tabelach 1 i 2 zaobserwowano,
że im mniejsze ϵ (co oznacza wyższą wymaganą precyzję), tym większa liczba iteracji jest konieczna do osiągnięcia pożądanej wartości x-a. Dla $\epsilon=10^{-12}$ metoda siecznych znajduje zawsze pożądany pierwiastek x_0 (w kolumnie "Precyzyjny?"wskazuje odpowiedź "Tak"), dla $\epsilon=10^{-7}$ wyniki w większości przypadków są nieprecyzyjne, choć liczba iteracji do osiągnięcia wyniku jest nieznacznie mniejsza. Natomiast dla $\epsilon=10^{-3}$ metoda zbiega jeszcze szybciej (charakteryzuje się małą liczbą iteracji), ale wszystkie wartości są znacznie odległe od rzeczywistego pierwiastka, co jest zgodne z oczekiwaniami dla tak luźnego kryterium.

Zauważono, że najmniejsza liczba iteracji w obu tabelkach występuje, gdy jeden z brzegów jest równy 0.5. Ten przypadek jest również interesujący, ponieważ dla $\epsilon=10^{-3}$ liczba iteracji wynosi 0, co oznacza, że początkowa sieczna nie spełnia kryterium przyrostowego już dla pierwszej wyliczonej wartości. Ponadto zaobserwowano, że dla pozostałych przedziałów liczba iteracji jest nierosnąca do momenty osiągnięcia przedziału z brzegiem 0.5, a następnie dla kolejnych przedziałów staje się niemalejąca.

2.1.3 Metoda Newtona

2.1.4 Tabela dla metoda Newtona

Tabela 3: Wyniki metody Newtona dla funkcji

Startowy x	ϵ	x	Iteracje	Precyzyjny?
	10^{-3}	0.49440340	17	Nie
-0.7	10^{-7}	0.51574898	19	Nie
	10^{-12}	0.51574856	20	Tak
	10^{-3}	0.46549537	15	Nie
-0.6	10^{-7}	0.51574858	18	Tak
	10^{-12}	0.51574856	19	Tak
	10^{-3}	0.4973651	14	Nie
-0.5	10^{-7}	0.51574875	16	Nie
	10^{-12}	0.51574856	17	Tak
	10^{-3}	0.46138315	12	Nie
-0.4	10^{-7}	0.51574860	15	Nie
	10^{-12}	0.51574856	16	Tak
	10^{-3}	0.48774233	11	Nie
-0.3	10^{-7}	0.51574857	13	Tak
	10^{-12}	0.51574856	14	Tak
	10^{-3}	0.45840126	9	Nie
-0.2	10^{-7}	0.51574864	12	Nie
	10^{-12}	0.51574856	13	Tak
	10^{-3}	0.48582200	8	Nie
-0.1	10^{-7}	0.51574861	10	Nie
	10^{-12}	0.51574856	11	Tak
	10^{-3}	0.45700636	6	Nie
0.0	10^{-7}	0.51574866	9	Nie
	10^{-12}	0.51574856	10	Tak
	10^{-3}	0.48551569	5	Nie
0.1	10^{-7}	0.51574864	7	Nie
	10^{-12}	0.51574856	8	Tak
	10^{-3}	0.45791406	3	Nie
0.2	10^{-7}	0.51574864	6	Nie
	10^{-12}	0.51574856	7	Tak
	10^{-3}	0.48762480	2	Nie
0.3	10^{-7}	0.51574857	4	Tak
	10^{-12}	0.51574856	5	Tak
	10^{-3}	0.46244297	0	Nie
0.4	10^{-7}	0.51574860	3	Tak
	10^{-12}	0.51574856	4	Tak
	10^{-3}	0.5161017	0	Nie
0.5	10^{-7}	0.51574895	1	Nie
	10^{-12}	0.51574856	2	Tak
	10^{-3}	0.55364625	0	Nie
0.6	10^{-7}	0.51574872	3	Nie
	10^{-12}	0.51574856	4	Tak
	10^{-3}	0.54532514	2	Nie
0.7	10^{-7}	0.51574858	5	Tak
	10^{-12}	0.51574856	6	Tak
	10^{-3}	0.56732788	3	Nie
0.8	10^{-7}	0.51575136	6	Nie
	10^{-12}	0.51574856	7	Tak
	10^{-3}	0.54134624	5	Nie
0.9	10^{-7}	0.51574857	8	Tak
	10^{-12}	0.51574856	9	Tak
	10^{-3}	0.5497934	6	Nie
1.0	10^{-7}	0.51574861	9	Nie
	10^{-12}	0.51574856	10	Tak
	10^{-3}	0.55283786	7	Nie
1.1	10^{-7}	0.51574869	10	Nie
	10^{-12}	0.51574856	11	Tak

2.1.5 Analiza metody Newtona

W tabeli 3, podobnie jak w poprzednich tabelach, zaobserwowano, że im mniejsze ϵ , tym więcej iteracji jest potrzebnych do osiągnięcia pożądanej wartości x-a. Dla wyników uzyskanych z precyzjami $\epsilon=10^{-12}$, $\epsilon=10^{-7}$

i $\epsilon=10^{-3}$ zastosowanie mają te same obserwacje co w analizie tabel 1 i 2..

Ponownie spostrzeżono, że najmniej iteracji występuje, gdy punkt startowy x jest równy 0.5. Co więcej, liczba iteracji dla $\epsilon=10^{-3}$ jest znacznie mniejsza w większości przypadków w porównaniu z tabelami 1 i 2, co oznacza, że ta metoda szybciej osiąga zbieżność. Taką samą tendencję zauważono również dla innych wartości ϵ , gdzie w przeważającej części odnotowano mniejszą liczbę iteracji.

2.2 Wyniki przy pomocy kryterium residualnego ($|f(x_n)| < \epsilon$)

2.2.1 Tabele dla metoda siecznych

Tabela 4: Wyniki dla metody siecznych dla zmiennego lewego brzegu

a	b	ϵ	x	Iteracje	Precyzyjny?
		10^{-3}	1.09981575	0	Nie
0.7	1.1	10^{-7}	0.51574856	17	Tak
		10^{-12}	0.51574856	18	Tak
		10^{-3}	1.09925049	0	Nie
-0.6	1.1	10^{-7}	0.51574856	17	Tak
		10^{-12}	0.51574856	18	Tak
		10^{-3}	0.51575176	15	Nie
-0.5	1.1	10^{-7}	0.51574856	17	Tak
		10^{-12}	0.51574856	18	Tak
		10^{-3}	0.51575049	15	Nie
0.4	1.1	10^{-7}	0.51574856	17	Tak
		10^{-12}	0.51574856	18	Tak
		10^{-3}	0.51574874	15	Nie
0.3	1.1	10^{-7}	0.51574856	17	Tak
		10^{-12}	0.51574856	18	Tak
		10^{-3}	0.51574963	13	Nie
0.2	1.1	10^{-7}	0.51574856	15	Tak
		10^{-12}	0.51574856	16	Tak
		10^{-3}	0.60404082	1	Nie
0.1	1.1	10^{-7}	0.51574856	8	Tak
		10^{-12}	0.51574856	9	Tak
		10^{-3}	0.51578005	8	Nie
0.0	1.1	10^{-7}	0.51574856	10	Tak
		10^{-12}	0.51574856	12	Tak
		10^{-3}	0.51576449	10	Nie
0.1	1.1	10^{-7}	0.51574856	12	Tak
		10^{-12}	0.51574856	14	Tak
		10^{-3}	0.51574840	10	Nie
0.2	1.1	10^{-7}	0.51574856	12	Tak
		10^{-12}	0.51574856	13	Tak
		10^{-3}	0.51574785	8	Nie
0.3	1.1	10^{-7}	0.51574856	10	Tak
		10^{-12}	0.51574856	11	Tak
		10^{-3}	0.40097738	1	Nie
0.4	1.1	10^{-7}	0.51574856	8	Tak
		10^{-12}	0.51574856	9	Tak
		10^{-3}	0.50008087	1	Nie
0.5	1.1	10^{-7}	0.51574856	5	Tak
		10^{-12}	0.51574856	6	Tak
		10^{-3}	0.59933679	1	Nie
0.6	1.1	10^{-7}	0.51574856	8	Tak
-		10^{-12}	0.51574856	9	Tak
		10^{-3}	0.51574867	9	Nie
0.7	1.1	10^{-7}	0.51574856	11	Tak
•		10^{-12}	0.51574856	12	Tak
		10-3	0.51574873	11	Nie
0.8	1.1	10^{-7}	0.51574873	13	Tak
		10^{-12}	0.51574856	14	Tak
		10-3	0.51575520	12	Nie
0.9	1.1	10^{-7}	0.51575520	14	Tak
		10^{-12}	0.51574856	15	Tak
0.9			2.2.2.1.2000		
J.9			0.51550000	10	NT:
1.0	1.1	$10^{-3} \\ 10^{-7}$	0.51576260 0.51574856	13 15	Nie Tak

Tabela 5: Wyniki dla metody siecznych dla zmiennego prawego brzegu

a	b	ϵ	x	Iteracje	Precyzyjny?
		10^{-3}	1.09981575	0	Nie
-0.7	1.1	10^{-7}	0.51574856	17	Tak
		10^{-12}	0.51574856	18	Tak
		10^{-3}	0.99994455	0	Nie
-0.7	1.0	10^{-7}	0.51574856	15	Tak
		10^{-12}	0.51574856	17	Tak
		10^{-3}	0.89998526	0	Nie
-0.7	0.9	10^{-7}	0.51574856	14	Tak
		10^{-12}	0.51574856	15	Tak
		10^{-3}	0.79999664	0	Nie
-0.7	0.8	10^{-7}	0.51574856	12	Tak
		10^{-12}	0.51574856	13	Tak
		10^{-3}	0.69999937	0	Nie
-0.7	0.7	10^{-7}	0.51574856	10	Tak
		10^{-12}	0.51574856	11	Tak
		10^{-3}	0.59999991	0	Nie
-0.7	0.6	10^{-7}	0.59999991	0	Nie
		10^{-12}	0.51574856	8	Tak
		10^{-3}	0.50000001	0	Nie
-0.7	0.5	10^{-7}	0.50000001	0	Nie
		10^{-12}	0.51574856	5	Tak
		10^{-3}	0.40000008	0	Nie
-0.7	0.4	10^{-7}	0.40000008	0	Nie
		10^{-12}	0.51574856	8	Tak
		10^{-3}	0.30000034	0	Nie
-0.7	0.3	10^{-7}	0.51574856	9	Tak
		10^{-12}	0.51574856	10	Tak
		10^{-3}	0.20000143	0	Nie
-0.7	0.2	10^{-7}	0.51574856	11	Tak
		10^{-12}	0.51574856	12	Tak
		10^{-3}	0.10000579	0	Nie
-0.7	0.1	10^{-7}	0.51574856	13	Tak
		10^{-12}	0.51574856	14	Tak
. -	0.0	10^{-3}	0.00002283	0	Nie
-0.7	0.0	10^{-7}	0.51574856	15	Tak
		10^{-12}	0.51574856	16	Tak
0 =	0.1	10^{-3}	-0.09991269	0	Nie
-0.7	-0.1	10^{-7}	0.51574856	17	Tak
		10 ⁻¹²	0.51574856	19	Tak
0.7	0.0	10^{-3}	-0.19967795	0	Nie
-0.7	-0.2	$10^{-7} \\ 10^{-12}$	0.51574856	20	Tak
			0.51574856	21	Tak
0.7	0.2	10^{-3}	0.51574743	20	Nie
-0.7	-0.3	10^{-7}	0.51574856	22	Tak
		10 ⁻¹²	0.51574856	23	Tak
0.7	0.4	10^{-3}	0.51574661	22	Nie
-0.7	-0.4	10^{-7} 10^{-12}	0.51574856 0.51574856	$\frac{24}{25}$	Tak Tak
-0.7	-0.5	10^{-3} 10^{-7}	0.51574645	24	Nie
-0.7	-0.5	10^{-12}	0.51574856 0.51574856	$\frac{26}{27}$	Tak Tak
0.7	0.6	10^{-3} 10^{-7}	0.51574777	26	Nie
-0.7	-0.6	10^{-12}	0.51574856 0.51574856	28 29	Tak Tak
		TO	0.01074000	∠9	ıak

2.2.2 Analiza metody siecznych

W tabelach 4 i 5 zaobserwowano, że im mniejsze ϵ , tym więcej iteracji jest potrzebnych do spełnienia kryterium zbieżności. Dla $\epsilon=10^{-12}$ metoda siecznych zawsze znajduje pożądany pierwiastek; dla $\epsilon=10^{-7}$ wyniki w zdecydowanej większości przypadków są odpowiednie (w tabeli 4 wszystkie są precyzyjne), przy czym liczba iteracji do osiągnięcia wyniku jest zazwyczaj nieznacznie mniejsza (niż dla $\epsilon=10^{-12}$. Natomiast dla $\epsilon=10^{-3}$ wszystkie uzyskane wartości są odległe od rzeczywistego pierwiastka.

Ponownie zauważono, że najmniejsza liczba iteracji w obu tabelach występuje, gdy jeden z brzegów jest równy 0.5. Ten przypadek jest również interesujący, ponieważ w tabeli 5 dla $\epsilon=10^{-3}$ i $\epsilon=10^{-5}$ liczba iteracji

jest równa 0. Ogólnie, przypadek 0 iteracji występuje w tabeli 4 w przeważającej części wyników, natomiast dla zmiennego lewego brzegu dla dwóch pierwszych przypadków. Nie występuje zależność monotoniczna jak w poprzednich tabelach.

2.2.3 Metoda Newtona

2.2.4 Tabela dla metoda Newtona

Tabela 6: Wyniki metody Newtona

Startowy x	ϵ	x	Iteracje	Precyzyjny?
	10^{-3}	0.51574898	19	Nie
-0.7	10^{-7}	0.51574856	21	Tak
	10^{-12}	0.51574856	21	Tak
	10^{-3}	0.51574858	18	Tak
-0.6	10^{-7}	0.51574856	19	Tak
	10^{-12}	0.51574856	20	Tak
	10^{-3}	0.51574875	16	Nie
-0.5	10^{-7}	0.51574856	18	Tak
	10^{-12}	0.51574856	18	Tak
	10^{-3}	0.51574860	15	Nie
-0.4	10^{-7}	0.51574856	16	Tak
	10^{-12}	0.51574856	17	Tak
	10^{-3}	0.51574857	13	Tak
-0.3	10^{-7}	0.51574856	14	Tak
	10^{-12}	0.51574856	15	Tak
	10^{-3}	0.51574864	12	Nie
-0.2	10^{-7}	0.51574856	13	Tak
	10^{-12}	0.51574856	14	Tak
	10^{-3}	0.51574861	10	Nie
-0.1	10^{-7}	0.51574856	11	Tak
	10^{-12}	0.51574856	12	Tak
	10-3	0.51574866	9	Nie
-0.0	10^{-7}	0.51574856	10	Tak
	10^{-12}	0.51574856	11	Tak
	10^{-3}	0.51574864	7	Nie
0.1	10^{-7}	0.51574856	8	Tak
	10^{-12}	0.51574856	9	Tak
	10^{-3}	0.51574864	6	Nie
0.2	10^{-7}	0.51574856	7	Tak
	10^{-12}	0.51574856	8	Tak
	10^{-3}	0.51574857	4	Tak
0.3	10^{-7}	0.51574856	5	Tak
	10^{-12}	0.51574856	6	Tak
	10-3	0.51574860	3	Tak
0.4	10^{-7}	0.51574856	4	Tak
	10^{-12}	0.51574856	5	Tak
	10^{-3}	0.51574895	1	Nie
0.5	10^{-7}	0.51574856	3	Tak
	10^{-12}	0.51574856	3	Tak
	10^{-3}	0.51574872	3	Nie
0.6	10^{-7}	0.51574856	5	Tak
	10^{-12}	0.51574856	5	Tak
	10-3	0.51574858	5	Tak
0.7	10^{-7}	0.51574856	6	Tak
	10^{-12}	0.51574856	7	Tak
	10-3	0.51575136	6	Nie
0.8	10^{-7}	0.51575156	8	Tak
	10^{-12}	0.51574856	9	Tak
	10-3	0.51574857	8	Tak
0.9	$\frac{10}{10^{-7}}$	0.51574857	9	Tak Tak
	10^{-12}	0.51574856	10	Tak
1.0	10^{-3} 10^{-7}	0.51574861	9	Nie Tak
1.0	10^{-12}	0.51574856 0.51574856	10 11	Tak Tak
1 1	10^{-3} 10^{-7}	0.51574869	10	Nie
1.1	10^{-7} 10^{-12}	0.51574856	12	Tak
	10	0.51574856	12	Tak

2.2.5 Analiza metody Newtona

W tabeli 6 im mniejsze ϵ , tym więcej iteracji jest potrzebnych do osiągnięcia pożądanego. Dla $\epsilon=10^{-12}$ i $\epsilon=10^{-7}$ metoda Newtona znajduje pożądany pierwiastek x_0 dla każdego przypadku.Natomiast dla $\epsilon=10^{-3}$ metoda przy tym kryterium daje, w przeważającej liczbie przypadków, nieprecyzyjne wyniki.

Dodatkowo spostrzeżono, że najmniej iteracji w tabeli 6 ponownie występuje, gdy punkt startowy x jest równy 0.5. W tej metodzie, przy tym kryterium, nie występuje przypadek, w którym liczba iteracji jest równa 0. Podobnie jak w tabeli 1 i 2, obserwując dane od górnego wiersza, liczba iteracji jest nierosnąca aż do przypadku z x=0.5, po czym dla kolejnych punktów startowych staje się niemalejąca.

3 Wnioski

- Dokładniejsze pierwiastki, w porównaniu z wynikami uzyskanymi dla kryterium przyrostowego, uzyskano dla kryterium residualnego. Przy tym kryterium metoda Newtona w większej liczbie przypadków dawała pożądane wyniki, a przy $\epsilon=10^{-7}$ dawało jako jedyna wszsystkie precyzjne wyniki.
- Wszystkie testy wykazały, że $\epsilon=10^{-12}$ zapewnia dokładne wyniki. Dla $\epsilon=10^{-7}$ uzyskano w większości przypadków wyniki precyzy
jne, z mniejszą liczbą iteracji w porównaniu do $\epsilon=10^{-12}$. Natomiast dla
 $\epsilon=10^{-3}$ wyniki były zazwyczaj odległe od rzeczywistego pierwiastka, co świadczy o zbyt niskiej precyzji kryterium.
- Generalnie, najmniejszą liczbę iteracji dla obu metod zaobserwowano, gdy jeden z punktów początkowych (dla metody siecznych) lub punkt startowy (dla metody Newtona) był bliski wartości 0.5.