STAT3622 Data Visualization

PCA

Data Object Conceptualization

Object Space

 $\leftarrow \rightarrow$

Descriptor Space

Curves

 \Re^d

Images

Manifolds

Shapes

Tree Space

Trees

Curves As Data

Object Space: Set of curves

Descriptor Space(s):

- Curves digitized to vectors
- Basis Representations:
 - Fourier (sin & cos)
 - B-splines
 - Wavelets

Curves As Data, I

Very simple example

- "2 dimensional" family of (digitized) curves
- Object space: piece-wise linear f'ns
- Descriptor space = \mathbb{R}^2

PCA: reveals "population structure"

Decomposition into modes of variation

Centered Raw Curves as Point Cloud

Projetion of Points onto PC1

- Coefficients of Projections are "Scores"
- Entries of Direction Vector are "Loadings"

Centered Raw Curves as Point Cloud

Projetion of Points onto PC2

Curves As Data, II

Deeper example

- 10-d family of (digitized) curves
- Object space: bundles of curves
- Descriptor space = \mathbb{R}^{10} (harder to visualize as point cloud)

PCA: reveals "population structure"

Functional Data Analysis, 10-d

Functional Data Analysis, 10-d

Functional Data Analysis, 10-d

Curves As Data, II

PCA: reveals "population structure"

- Mean → Parabolic Structure
- PC1 → Vertical Shift
- PC2 → Tilt
- higher PCs → Gaussian (spherical)

Decomposition into modes of variation

Functional Data Analysis, 10-d Toy Ex 2

Curves As Data, III

Two Cluster Example

- 10-d curves again
- Two big clusters
- Revealed by 1-d projection plot (left side)
- Note: Cluster Difference is not orthogonal to Vertical Shift

PCA: reveals "population structure"

Curves As Data, IV

More Complicated Example

50-d curves

Functional Data Analysis, 50-d Toy Ex 3

Functional Data Analysis, 50-d Toy Ex 3

E.g. Curves As Data, IV

More Complicated Example

- 50-d curves
- Pop'n structure hard to see in 1-d
- 2-d projections make structure clear

PCA: reveals "population structure"

Functional Data Analysis

Interesting Data Set:

- Mortality Data
- For Spanish Males (thus can relate to history)
- Each curve is a single year
- x coordinate is age
- Mortality = # died / total # (for each age)
- Study on log scale
- Investigate change over years 1908 2002

Note: Choice made of *Data Object*(could also study age as curves,
x coordinate = time)

Functional Data Analysis

Important Issue:

What are the Data Objects?

- Mortality vs. Age Curves (over years)
- Mortality vs. Year Curves (over ages)

Note: Rows vs. Columns of Data Matrix

Functional Data Analysis

Important Issue:

What are the Data Objects?

- Mortality vs. Age Curves (over years)
 - Mortality vs. Year Curves (over ages)

Note: Rows vs. Columns of Data Matrix

Conventional Coloring:

Rotate
Through
(7) Colors

Hard to See Time Structure

Color Code (Years)

1908	1927	1946	1965	1984
1909	1928	1947	1966	1985
1910	1929	1948	1967	1986
1911	1930	1949	1968	1987
1912	1931	1950	1969	1988
1913	1932	1951	1970	1989
1914	1933	1952	1971	1990
1915	1934	1953	1972	1991
1916	1935	1954	1973	1992
1917	1936	1955	1974	1993
1918	1937	1956	1975	1994
1919	1938	1957	1976	1995
1920	1939	1958	1977	1996
1921	1940	1959	1978	1997
1922	1941	1960	1979	1998
1923	1942	1961	1980	1999
1924	1943	1962	1981	2000
1925	1944	1963	1982	2001
1926	1945	1964	1983	2002

Find Population Center

(Mean Vector)

Compute in Descriptor Space

Show in Object Space

Mean Residual

Descriptor
Space
View of
Shifting Data
To Origin
In Feature
Space

Main Age
Effects in
Mean, Not
Variation
About Mean

Object Space
View of
Projections
Onto PC1
Direction

Main Mode
Of Variation:
Constant
Across Ages

Object Space
View of
Projections
Onto PC1
Direction

Main Mode
Of Variation:
Constant
Across Ages

Shows *Major*Improvement
Over Time

(medical technology, etc.)

And Change In Age Rounding Blips

Outliers

Outliers

1918 Global Flu Pandemie

Object Space
View of
Projections
Onto PC2
Direction

Object Space
View of
Projections
Onto PC2
Direction

Scores Plot Mortality Time Series

Descriptor (Point Cloud) Space View

Connecting
Lines
Highlight
Time Order

Good View of Historical

Effects

Try a Related Mortality Data Set:

Switzerland

(In Europe, but different history)

Mortality Time Series – Swiss Males

Mortality Time Series – Swiss Males

Some Points Similar to Spain:

- PC1: Overall Improvement
- Better for Young
- PC2: About 20 45 vs. Others
- Flu Pandemic
- Automobile Effects

Some Quite Different:

- No Age Rounding
- No Civil War

Time Series of Curves

- Just a "Set of Curves"
- But <u>Time Order</u> is Important!
- Useful Approach (as above):

Use *color* to code for *time*

End

Chemo-metric Time Series, HA 27

Raw Data:

- All 60 spectra essentially the same
- "Scale" of mean is much bigger than variation about mean
- Hard to see structure of all 1600 freq's

Chemo-metric Time Series, HA 27

Chemo-metric Time Series, HA 27 Centered Data:

- Now can see different spectra
- Since mean subtracted off
- Note much smaller vertical axis

Chemo-metric Time Series, HA 27

Chemo-metric Time Series, HA 27 Data zoomed to "important" freq's:

Raw Data:

- Now see slight differences
- Smoother "natural looking" spectra

Centered Data:

- Differences in spectra more clear
- Maybe now have "real structure"

Scale is important

Chemo-metric Time Series, HA 27

Chemo-metric Time Series, HA 27 Use of Time Order Coloring:

Raw Data:

Can see a little ordering, not much

Centered Data:

- Clear time ordering
- Shifting peaks? (compare to Raw)

PC1:

Almost everything?

PC1 Residuals:

Data nearly linear (same scale import'nt)

Object Space View, HA27

Strong structure in PC1 Resid (d < 2)

Functional Data Analysis

Interesting Real Data Example

- Genetics (Cancer Research)
- RNAseq (Next Gener'n Sequen'g)
- Deep look at "gene components"

Microarrays: Single number (per gene)

RNAseq: Thousands of measurements

Functional Data Analysis

Interesting Real Data Example

- Genetics (Cancer Research)
- RNAseq (Next Gener'n Sequen'g)
- Deep look at "gene components"

- Gene studied here: CDNK2A
- Goal: Study Alternate Splicing
- Sample Size, n = 180
- Dimension, $d = \sim 1700$

Alternate Splicing

Simple
1st
View:
Curve
Overlay

(log scale)

Often
Useful
Population
View:

PCA Scores

Suggestion
Of
Clusters?

Suggestion
Of
Clusters

Which
Are
These?

Manually "Brush" Clusters

Manually Brush Clusters

Clear
Alternate
Splicing

Important Points

- ✓ PCA found *Important Structure*
- ✓ In High Dimensional Data Analysis

d ~ 1700

Limitation of PCA

PCA can provide useful projection directions

But can't "see everything"...

Reason:

- PCA finds dir'ns of maximal variation
- Which may <u>obscure</u> interesting structure

Limitation of PCA

Toy Example:

Apple – Banana – Pear

Limitation of PCA, Toy EX

Limitation of PCA

Toy Example:

- Apple Banana Pear
- Obscured by "noisy dimensions"
- First 3 PC directions only show noise
- Study some rotations, to find structure

Limitation of PCA

Main Point:

- May be Important Data Structure
- Not Visible in First Few PCs

Limitation of PCA, E.g.

Interesting Data Set: NCI-60

- NCI = National Cancer Institute
- 60 Cell Lines (cancer treatment targets)
 For Different Cancer Types
- Measured "Gene Expression"
 - = "Gene Activity"
- Several Thousand Genes (Simultaneously)
- Data Objects = Vectors of Gene Exp'n
- Lots of Preprocessing

NCI 60 Data

Important Aspect: 8 Cancer Types

Renal Cancer

Non Small Cell Lung Cancer

Central Nervous System Cancer

Ovarian Cancer

Leukemia Cancer

Colon Cancer

Breast Cancer

Melanoma (Skin)

PCA Visualization of NCI 60 Data

- Can we find classes:
 - (Renal, CNS, Ovar, Leuk, Colon, Melan)
- Using PC directions?
- First try "unsupervised view"
- I.e. switch off class colors
- Then turn on colors, to identify clusters
- I.e. look at "supervised view"

NCI 60: Can we find classes Using PCA view?

NCI 60: Can we find classes Using PCA view?

PCA Visualization of NCI 60 Data

Maybe need to look at more PCs?

Study array of such PCA projections:

$$[PC1-4] \quad [1-4 \text{ } vs 5-8] \quad [1-4 \text{ } vs 8-12]$$

$$[PC5-8] \quad [5-8 \text{ } vs 9-12]$$

$$[PC9-12]$$

NCI 60: Can we find classes Using PCA 5-8?

NCI 60: Can we find classes Using PCA 5-8?

NCI 60: Can we find classes Using PCA 9-12?

NCI 60: Can we find classes Using PCA 9-12?

NCI 60: Can we find classes Using PCA 1-4 vs. 5-8?

NCI 60: Can we find classes Using PCA 1-4 vs. 5-8?

NCI 60: Can we find classes Using PCA 1-4 vs. 9-12?

NCI 60: Can we find classes Using PCA 5-8 vs. 9-12?

PCA Visualization of NCI 60 Data

Can we find classes using PC directions??

- Found some, but not others
- Nothing after the first five PCs
- Rest seem to be noise driven

Are There Better Directions?

- ✓ PCA only "feels" maximal variation
- √ Ignores Class Labels
- ✓ How Can We <u>Use</u> Class Labels?