Problem N.7

Quadratic Residues

Learning Objectives

• Consider properties of quadratic residues

Due Date: 4/5/2019 Folder: NumberTheory

File Name: N7_Quadratic_Name.py

Points: 5 points

Problem Background

When considering elements of \mathbb{Z}_p , we define a quadratic residue to be the numbers $n \in \mathbb{Z}_p$ such that there exists a $k \in \mathbb{Z}_p$ where

$$n = k^2$$
.

For example, let us consider \mathbb{Z}_11 . Then 1 is an obvious quadratic residue, since $1 = 1^2$. However, 3 is also a quadratic residue of \mathbb{Z}_11 , since $3 = 6^2 = 36 \equiv 3 \pmod{11}$.

There are some interesting patterns that occur when we consider \mathbb{Z}_p where p is prime. Therefore, for this problem we assume that p is prime for each of our \mathbb{Z}_p . We will consider two questions. First, how many elements of \mathbb{Z}_p are quadratic residues. The second question we consider is what values for p makes -1 a quadratic residue. Recall that -1 = (p-1) in \mathbb{Z}_p .

Program Criteria

Write a program that does the following:

- Create a variable P to denote the maximum value for p in your code.
- Counts the number of quadratic residues in \mathbb{Z}_p .
 - * Create a 2D numpy array count to store your results. This array will have 2 columns:

$$p$$
 Number of quadratic residues in \mathbb{Z}_p

The first column stores the value for p, the second column stores the number of quadratic residues in \mathbb{Z}_p .

- * For all primes $p \leq P$, count the number of quadratic residues in \mathbb{Z}_p and store the number in the count array.
- \star Print out count with appropriate text.
- Check if $-1 \in \mathbb{Z}_p$ is a quadratic residue
 - ★ Create a 2D numpy array neg_one to store your results. This array will have 2 columns:

The first column stores the value for p, the second column stores a True or False values, with True representing that -1 is a quadratic residue, and False stating otherwise.

- * For all primes $p \leq P$, determine if $-1 \in \mathbb{Z}_p$ is a quadratic residue of \mathbb{Z}_p and store the result in the neg_one array.
- * Print out neg_one with appropriate text.

Due Date: 4/5/2019

Deliverables

Place the following in a folder named NumberTheory in your repository:

- A Python file N7_Quadratic_Name.py that satisfies the program criteria.
- \bullet A pdf file N7_Quadratic_Name.pdf created with Latex:
 - \star State any patterns you notice relating the number of quadratic residues in \mathbb{Z}_p to the value of p.
 - * State any patterns you notices relating whether $-1 \in \mathbb{Z}_p$ is a quadratic residue to the value of p.

2