



#### General Physics II

**Ganesh Kuwar Chhetri** 

Dept. of Physics, School of Science, Kathmandu University

### Course

Course Title: General Physics II

Course Code: PHYS 102

Level: B.Sc. & B.E.

Cr. Hrs.: 2 (32 Hrs.]

Year:

Semester:

**Electricity and Magnetism – 27 Hrs** 

Modern Physics – 5 Hrs

#### **Text Books:**

- I. David J. Griffith, Introduction to Electrodynamics
- 2. R.A. Serway and J.W. Jewett, Physics for Scientist and Engineers

with Modern Physics

3. D. Halliday, R. Resnick, and K. Krane, Physics Volume 2





## **Course Objectives**

- To understand the terminology, facts, concepts and principles of electricity, magnetism and modern physics
- To demonstrate an understanding of the application of Physics in everyday life and the role of physics in other disciplines
- To recognize the importance of the work of key scientists
- To develop strong problem-solving skills
- To interpret data presented in tables, diagrams or graphs
- To develop experimental and investigative abilities
- To develop positive attitudes towards Physics
- To provide the basis for further study of the subject

### **Course Outline**

|                           | <u>TOPICS</u>                    | LECTURE HOURS |
|---------------------------|----------------------------------|---------------|
| ELECTRICTIY AND MAGNETISM |                                  |               |
| I.                        | Vector Analysis                  | 3             |
| 2.                        | Electrostatic Field              | 6             |
| 3.                        | Electrostatic Field in Matter    | 4             |
| 4.                        | Magnetostatics                   | 4             |
| 5.                        | Magnetostatic Field in Matter    | 4             |
| 6.                        | Electromagnetic Induction        | 3             |
| 7.                        | Electromagnetic Wave Propagation | 3             |
| MODERN PHYSICS            |                                  |               |
| ١.                        | Molecules and Solids             | 3             |
| 2.                        | Nuclear Physics                  | 2             |
|                           | TOTAL                            | 32            |

# <u>Chapter - I</u> Vector Analysis

#### Vector Algebra

- Vector Operations
- Vector Algebra: Component Form
- Triple Products
- Position, Displacement and Separation Vectors

#### Differential Calculus

- Ordinary Derivative
- Gradient, Divergence, Curl
- Product Rules
- Second Derivatives

#### Integral Calculus

- Line, Surface, and Volume Integrals
- -The Fundamental Theorems for Gradients, Divergences and Curls
- Spherical Polar Coordinates

#### **Scalars and Vectors**

Scalars have magnitude only and obey the rules of arithmetic and ordinary algebra.

<u>Examples</u>: distance, mass, temperature, charge, electric potential, work, energy etc.

A **scalar quantity** is completely specified by a single value with an appropriate unit (5 m).

 Vectors have both magnitude and direction and obey the rules of vector algebra.

<u>Examples</u>: displacement, velocity, force, momentum, torque, electric field, magnetic field etc.

A **vector quantity** is completely described by a number and appropriate units plus a direction (5m, north).

### **Vectors**

- A particle travels from A to B along the path shown by the dotted red line
  - This is the **distance** traveled and is a scalar
- The displacement is the solid line from A to B
  - The displacement is independent of the path taken between the two points
  - Displacement is a vector



### **Vector Notation**

- In texts, we shall denote a vector by putting an arrow over the letter  $(\vec{A}, \vec{B})$  and so on).
- The magnitude of a vector is written  $|\vec{A}|$  or A.
- In diagrams, vector is denoted by arrow: the length of the arrow is proportional to the magnitude of the vector, and the arrowhead indicates its direction.



Text uses bold with arrow to denote a vector: **A**Also used for printing is simple bold print: **A** 

# **Equality of Two Vectors**

- Two vectors are equal if they have the same magnitude and the same direction
- $\vec{A} = \vec{B}$  if A = B and they point along parallel lines
- All of the vectors shown are equal



# Negative of a Vector

- The negative of a vector is defined as the vector that, when added to the original vector, gives a resultant of zero
  - Represented as −A
  - $\vec{\mathbf{A}} + \left(-\vec{\mathbf{A}}\right) = 0$
- The negative of the vector will have the same magnitude, but point in the opposite direction

# Four Vector Operations

#### I. Addition of Two Vectors



Place the tail of  $\vec{B}$  at the head of  $\vec{A}$ ; the sum,,  $\vec{A}+\vec{B}$  is the vector from the tail of  $\vec{A}$  to the head of  $\vec{B}$ .



If  $\vec{A} - \vec{B}$ , then use  $\vec{A} + (-\vec{B})$ .



### **Addition of Vectors**

#### Triangle Law of Vector Addition

If two sides of a triangle taken in the same order represent the two vectors in magnitude and direction, then the third side in the opposite order represents the resultant of two vectors.



# Parallelogram Law of Vector Addition

If two vectors are represented in magnitude and direction by the two sides of a parallelogram drawn from a point, then their resultant is given in magnitude and direction by the diagonal of the parallelogram passing through that point.



$$\bullet \left| \mathbf{R} = \left| \vec{\mathbf{P}} + \vec{\mathbf{Q}} \right| = \sqrt{\mathbf{P}^2 + \mathbf{Q}^2 + 2\mathbf{P}\mathbf{Q} \cos \theta} \right|$$

$$\bullet \tan \beta = \frac{Q \sin \theta}{P + Q \cos \theta}$$

#### **Addition is commutative**:

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

#### **Addition is associative:**

$$\overline{\left(\vec{\mathbf{A}} + \vec{\mathbf{B}}\right) + \vec{\mathbf{C}}} = \overline{\vec{\mathbf{A}}} + \left(\vec{\mathbf{B}} + \vec{\mathbf{C}}\right)$$

# Multiplication by a Scalar

• Multiplying of a vector by a positive scalar multiples the magnitude but leaves the direction unchanged.



• Multiplying a vector by a negative scalar changes its magnitude and reverses its direction.  $\vec{A}$ 

 $-3\vec{A}$ -3 $\vec{A}$  is three times as long as  $\vec{A}$  and points in the opposite direction.

• Scalar multiplication is distributive:

$$a(\vec{A} + \vec{B}) = a\vec{A} + a\vec{B}$$

### Dot Product (Scalar Product) of Two Vectors

The dot product of two vectors is defined by

$$\vec{A} \cdot \vec{B} \equiv AB \cos \theta$$
 (a scalar)  $\left[ W = \vec{F} \cdot \vec{S} \right]$ 



- ➤ The dot product is **commutative**:
- ➤ The dot product is **distributive**:
- If the two vectors are parallel, then

If two vectors are perpendicular

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

$$\vec{A} \cdot \vec{B} = AB$$

$$\vec{A} \cdot \vec{B} = 0.$$

 $\succ$  For any vector  $ec{E}$  ,

$$\vec{E} \cdot \vec{E} = E^2$$

$$\Rightarrow E = \sqrt{\vec{E} \cdot \vec{E}}$$

# **Example 1:**

• Let  $\vec{C} = \vec{A} - \vec{B}$  (Figure D-1), and calculate  $\vec{C} \cdot \vec{C}$ .



Figure D-I

Solution: 
$$\vec{C} \cdot \vec{C} = (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B})$$

$$= \vec{A} \cdot \vec{A} - \vec{A} \cdot \vec{B} - \vec{B} \cdot \vec{A} + \vec{B} \cdot \vec{B}$$

$$\therefore C^2 = A^2 + B^2 - 2AB\cos\theta$$

This is the **law of cosines**.

# Cross Product (Vector Product) of Two Vectors

The cross product of two vectors is defined by

$$\vec{A} \times \vec{B} \equiv AB \sin\theta \hat{n}$$
 (a vector)  $\vec{\tau} = \vec{r} \times \vec{F}$ 

where  $\hat{n}$  is the unit vector perpendicular to the plane  $\vec{A}$  and  $\vec{B}$ .

• The direction of is determined by using right-hand rule.



# **Cross Product of Two Vectors**

- The cross product is **not commutative:**  $\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$
- The cross product is **distributive**:  $\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$
- If the two vectors are parallel, then  $\vec{A} \times \vec{B} = 0$
- If two vectors are perpendicular, then  $\left| \vec{A} \times \vec{B} \right| = AB$

Geometrically,

 $|\vec{A} \times \vec{B}|$  gives the area of the parallelogram generated by  $\vec{A}$  and  $\vec{B}$  (Figure D-2).



Figure D-2

### **Vector Algebra: Component Form**

• Let  $\hat{i}$ ,  $\hat{j}$ , and  $\hat{k}$  be unit vectors parallel to axes respectively (Figure V-I ).





$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
 and  $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ 

Addition of Two Vectors

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} + (A_z + B_z)\hat{k}$$

Multiplication by a Scalar

$$a\vec{A} = (aA_x)\hat{i} + (aA_y)\hat{j} + (aA_z)\hat{k}$$

### **Vector Algebra: Component Form**

#### **Dot Product of Two Vectors**

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1 \; ; \quad \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$$

For any vector 
$$\vec{A}$$
 ,  $A=\sqrt{{A_x}^2+{A_y}^2+{A_z}^2}$ 

#### **Cross Product of Two Vectors**

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$= (A_{y}B_{z} - A_{z}B_{y})\hat{i} + (A_{z}B_{x} - A_{x}B_{z})\hat{j} + (A_{x}B_{y} - A_{y}B_{x})\hat{k}$$

$$\because \left[\hat{i} \times \hat{i} = 0; \quad \hat{i} \times \hat{j} = \hat{k}, \quad \hat{j} \times \hat{i} = -\hat{k}\right]$$

# **Triple Product**

### **Scalar triple product:** $\vec{A} \cdot (\vec{B} \times \vec{C})$

For a parallelepiped generated by  $\vec{A}$ ,  $\vec{B}$  and  $\vec{C}$ .



$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \left| \vec{B} \times \vec{C} \right| (A \cos \theta)$$

= Area of the base of parallelepiped × Altitude of the parallelepiped

=Volume of the parallelepiped generated by  $\vec{A}$ ,  $\vec{B}$  and  $\vec{C}$ 

\* 
$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$$

$$* \vec{A} \cdot (\vec{B} \times \vec{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

$$(* \vec{A} \bullet (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \bullet \vec{C}$$

# **Triple product**

**Vector triple product**:  $\vec{A} \times (\vec{B} \times \vec{C})$ 

The vector triple product can be simplified by the **BAC-CAB** rule:

$$|\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})|$$

# Position and Displacement Vector

#### **Position Vector:**

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

\* 
$$\mathbf{r} = \sqrt{x^2 + y^2 + z^2} = (x^2 + y^2 + z^2)^{\frac{1}{2}}$$



\* 
$$\hat{\mathbf{r}} = \frac{\vec{\mathbf{r}}}{\mathbf{r}} = \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{\sqrt{x^2 + y^2 + z^2}}$$

#### **Infinitesimal Displacement Vector:**

$$\left| d\vec{l} = dx\hat{i} + dy\hat{j} + dz\hat{k} \right|$$

### **Separation Vector**

#### **Separation Vector**



The separation vector from the source point to the field point is

$$\vec{k} = (\vec{r} - \vec{r}')$$

$$= (x - x')\hat{i} + (y - y')\hat{j} + (z - z')\hat{k}$$

#### **Text Books & References**

- I. David J. Griffith, Introduction to Electrodynamics
- 2. R. A. Serway and J.W. Jewett, Physics for Scientist and Engineers with Modern Physics
- 3. Halliday and Resnick, Fundamental of Physics

Thank you