Alberi binari

Abbiamo già visto che il numero delle righe di una tavola di verità, e quindi la sua complessità, dipende dal numero delle c.a. dell'enunciato o fbf da esaminare, tale numero cresce rapidamente essendo una potenza di due, già con quattro c.a. si hanno ben sedici righe, con cinque c.a. trentadue righe e così via.

Un modo più semplice per determinare il valore di verità di una fbf consiste nel costruire un albero binario di formule ben formate, sfruttando un algoritmo dovuto a Quine.

Il procedimento da seguire per la costruzione di un albero binario è il seguente: si parte dalla fbf da esaminare, che viene detta vertice o radice dell'albero, e si fanno delle ramificazioni sostituendo, ordinatamente, ogni occorrenza di una componente atomica con V (vero) e F (falso); quindi si semplifica secondo, regole che discendono direttamente dal significato dei connettivi, ottenendo in tal modo fbf via via più semplici. Il procedimento termina quando si arriva a "fbf terminali" costituite di sole V o F.

Alla fine della costruzione, se alla base dell'albero tutte le "fbf terminali" sono V la fbf è una tautologia, se sono tutte F è una contraddizione, altrimenti (non tutte V e non tutte F) si tratta di una fbf sintetica.

Dal significato attribuito ai connettivi, le fbf possono esse semplificate operando le sostituzioni riportate nella tabella che segue:

Regole di semplificazione

Connettivi	fbf	sostituzione
Negazione	¬ ¬P	P
	$\neg V$	F
	$\neg \mathbf{F}$	\mathbf{V}
Congiunzione	V∧Q	Q
	P∧V	P
	F∧Q	F
	P∧F	F
	P∧P	P
	$P \land \neg P$	<u>F</u>
	$\neg P \land P$	F
Disgiunzione	V∨Q	V
	P∨V	\mathbf{V}
	F∨Q	Q P
	P∨F	
	P∨P	P
	$P \lor \neg P$	V
	$\neg P \lor P$	V
Implicazione	V⇒Q	Q
	P⇒V	\mathbf{V}
	F⇒Q	V
	P⇒F	$\neg P$
	P⇒P	V
	P⇒¬P	$\neg P$
	¬P⇒P	P
Coimplicazione	V⇔Q	Q
	P⇔V	P
	F⇔Q	$\neg Q$
	P⇔F	$\neg P$
	P⇔P	\mathbf{V}
	P⇔¬P	F
	¬P⇔P	\mathbf{F}

Consideriamo adesso le fbf delle quali abbiamo costruito le tavole di verità e costruiamo i corrispondenti alberi binari (le "fbf terminali" sono sottosegnate da |=|).

Dall'esame degli alberi si deduce che le fbf P, S e T sono sintetiche, Q e U sono tautologie mentre R è una contraddizione.

Costruiamo adesso gli alberi binari di due fbf con quattro componenti atomiche.

Dall'esame degli alberi si deduce che le fbf W_1 e W_2 sono entrambe sintetiche.

Se costruendo una parte dell'albero si incontrano sia V che F, ci si può fermare, dato che la fbf sarà sintetica; ad esempio per P bastava costruire una sola delle due parti, per W_1 , S e T bastava solo la parte sinistra, per W_2 la parte destra.