T-GSA

Transformer with Gaussian-weighted self-attention for speech enhancement

Jaeyoung Kim, Mostafa El-Khamy, Jungwon Lee
ICASSP 2020

Introduction

• Transformer Neural Networks(TNN) usually has good performance on many tasks.

Transformer Neural Networks(TNN) usually has good performance on many tasks.

But this is not the case in speech enhancement.

PESQ							
Methods\SNR(dB)	-10	-5	0	5	10	15	
CNN-LSTM	1.43	1.65	1.89	2.16	2.35	2.54	
O-T	1.29	1.45	1.63	1.87	2.07	2.29	

PESQ

Methods\SNR(dB)	-10	-5	0	5	10	15
CNN-LSTM	1.43	1.65	1.89	2.16	2.35	2.54
O-T	1.29	1.45	1.63	1.87	2.07	2.29

PESQ

Methods\SNR(dB)	-10	-5	0	5	10	15
CNN-LSTM	1.43	1.65	1.89	2.16	2.35	2.54
O-T	1.29	1.45	1.63	1.87	2.07	2.29
T-AB	1.49	1.67	1.85	2.01	2.28	2.50

PESQ

Methods\SNR(dB)	-10	-5	0	5	10	15
CNN-LSTM	1.43	1.65	1.89	2.16	2.35	2.54
О-Т	1.29	1.45	1.63	1.87	2.07	2.29
T-AB	1.49	1.67	1.85	2.01	2.28	2.50

- Appropriate position information can bring performance improvements.
- The author proposed Gaussian Weighted Self Attention and applied it to Real & Complex Transformer.

Proposed Architectures

Gaussian Weighted Self Attention

$$P_l = egin{bmatrix} p_{1,1}^l & p_{1,2}^l & \cdots & p_{1,T}^l \ p_{2,1}^l & p_{2,2}^l & \cdots & p_{1,T}^l \ dots & dots \ p_{T,1}^l & p_{T,2}^l & \cdots & p_{T,T}^l \ \end{pmatrix}$$

$$p_{i,j}^l = -rac{(i-j)^2}{\sigma_i^2}$$
, σ_l is a trainable parameter.

Gaussian Weighted Self Attention (cont.)

 Usage in Self-Attentional Acoustic Models (as bias)

$$Softmax(rac{Q_l(K_l)^T}{\sqrt{d}} + P_l)V_l$$

 Usage in this paper (as weighted)

$$Softmax(rac{Q_l(K_l)^T}{\sqrt{d}}\odot oldsymbol{e^{P_l}})V_l$$

Model Real Transformer

Model (cont.) Complex Transformer

Output

Real Mask

$$|\hat{S}| = M \odot |X| \ \hat{S} = |\hat{S}|e^{ngle X}$$

Complex Mask

$$egin{aligned} \hat{S}_r &= M_r \odot X_r - M_i \odot X_i \ \hat{S}_i &= M_r \odot X_i + M_i \odot X_r \end{aligned}$$

$$\hat{s} = Griffin ext{-}Lim\ Algorithm(\hat{S})$$

Output (cont.) Griffin-Lim Algorithm

 $Input: complex \ spectrogram \ A_0 e^{j\Omega_0}$ for all $n \ from \ 1 \ to \ N \ do$ $A_n e^{j\Omega_n} \leftarrow stft(stft^{-1}(A_0 e^{j\Omega_{n-1}}))$ end for $tom \ tom \$

Experiments

Dataset

QUT-NOISE-TIMIT

- Number of Noise Types: 5
- Train
 - SNR: -5 \ 5 dB
 - Total Length: 25 hours
- Test
 - SNR: -10~15 dB
 - Total Length: 12 hours

The detailed data selection is described here.

Dataset (cont.)

VoiceBank-DEMAND

- Train
 - SNR: 15 \ 10 \ 5 and 0 dB
 - Number of Speakers: 28
 - Number of Noise Types: 10
- Test
 - SNR: 17.5 \ 12.5 \ 7.5 and 2.5 dB
 - Number of Speakers: 2
 - Number of Noise Types: 5

Hyperparameter

- Number of Encoder Layer
 - Real: 10
 - Complex: 6
- Number of Input Dim: 1024
- ullet Loss: $L_{SDR}+lpha L_{PESQ}, \; lpha=3.2$

QUT-NOISE-TIMIT PESQ

Methods\SNR(dB)	-10	-5	0	5	10	15
Noisy Input	1.07	1.08	1.13	1.26	1.44	1.72
CNN-LSTM	1.43	1.65	1.89	2.16	2.35	2.54
О-Т	1.29	1.45	1.63	1.87	2.07	2.29
T-AB	1.49	1.67	1.85	2.01	2.28	2.50
T-GSA	1.54	1.76	2.00	2.28	2.51	2.74
C-T-GSA	1.43	1.64	1.88	2.17	2.40	2.67

QUT-NOISE-TIMIT (cont.) SDR

Methods\SNR(dB)	-10	-5	0	5	10	15
Noisy Input	-11.82	-7.33	-3.27	0.21	2.55	5.03
CNN-LSTM	-2.31	1.80	4.36	6.51	7.79	9.65
O-T	-3.25	0.92	3.39	5.35	6.39	8.10
T-AB	-2.80	1.18	3.67	5.67	6.78	8.18
T-GSA	-1.66	2.35	4.95	7.10	8.40	10.36
C-T-GSA	-1.57	2.51	5.03	7.36	8.58	10.40

Evaluation on VoiceBank-DEMAND

Method\Metrics	CSIG	CBAK	COVL	PESQ	SSNR	SDR
Noisy Input	3.37	2.49	2.66	1.99	2.17	8.68
SEGAN	3.48	2.94	2.80	2.16	7.73	-
WAVENET	3.62	3.23	2.98	-	-	-
TF-GAN	3.80	3.12	3.14	2.53	-	-
CNN-LSTM	4.09	3.54	3.55	3.01	10.44	19.14
T-GSA	4.18	3.59	3.62	3.06	10.78	19.57

Conclusion

- Positional Weighted is better than Positional Bias in Speech Enhancement task.
- Complex NN has more advantages in SDR-related evaluation metrics.

Possible Future Improvement

Currently, each head on the same layer shares the positional weights.

 A set of position weights consists of only one Gaussian.

• The positional weights starts to spread from i==j as the center.

Currently, each head on the same layer shares the positional weights.

- A set of position weights consists of only one Gaussian.
 - Use multiple Gaussian functions
- The positional weights starts to spread from i==j as the center.

Currently, each head on the same layer shares the positional weights.

- A set of position weights consists of only one Gaussian.
 - Use multiple Gaussian functions
- The positional weights starts to spread from i==j as the center.
 - Add center offset.

Appendices

Appendix. A Griffin-Lim Algorithm

 $Input: complex \ spectrogram \ A_0 e^{j\Omega_0}$ for all $n \ from \ 1 \ to \ N \ do$ $A_n e^{j\Omega_n} \leftarrow stft(stft^{-1}(A_0 e^{j\Omega_{n-1}}))$ end for $ton \ ton \$

Appendix. A (cont.) Clean Magnitude + Noisy Phase

VoiceBank-DEMAND Test Dataset

- Window Size: 511
- Hop Length: 63
- Window Function: Hann Window

Appendix. A (cont.) Clean Magnitude + Noisy Phase

iter N	PESQ	STOI	SISDR
0	3.956	0.989	20.15
1	4.191	0.993	20.91
2	4.280	0.994	21.30
3	4.336	0.995	21.55
4	4.364	0.996	21.73

Appendix. B

The reason why the PESQ of C-T-GSA is **lower** than that of T-GSA

Author's guess:

- [□] Difficulty in predicting the phase spectrum [□] or
- [□] Overfitting due to the larger parameter size _□

Appendix. B

The reason why the PESQ of C-T-GSA is **lower** than that of T-GSA

Author's guess:

- ^r Difficulty in predicting the phase spectrum ^l or
- Overfitting due to the larger parameter size |

Really?

Appendix. B (cont.) w/o Output Phase

Methods\Metrics	SISDR	PESQ	STOI
SISDR (UNet)	18.57	2.59	0.935
SISDR (Complex UNet)	18.67	2.43	0.934
PMSQE (UNet)	13.07	3.05	0.930
PMSQE (Complex UNet)	13.55	3.00	0.931

Parameter Size: 3.1M (Complex UNet == UNet)