MIPS Reference Data

1

	IXC	ICI	ence Data			
CORE INSTRUCTI	ON SE	Т			OPCODE	
NAME ANEMO	NIC	FOR-			/ FUNCT	
NAME, MNEMO Add	add	MAT R	(8)	(1)	(Hex) 0 / 20 _{hex}	
Add Immediate		I	R[rd] = R[rs] + R[rt] $R[rt] = R[rs] + SignFytImm$			
	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}	
Add Imm. Unsigned			R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}	
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}	
And	and	R	R[rd] = R[rs] & R[rt]	(2)	0 / 24 _{hex}	
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c _{hex}	
Branch On Equal	beq	Ι	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}	
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}	
Jump	j	J	PC=JumpAddr	(5)	2_{hex}	
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}	
Jump Register	jr	R	PC=R[rs]		$0/08_{\hbox{hex}}$	
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}	
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{\rm hex}$	
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}	
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}	
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		$0 / 27_{hex}$	
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}	
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}	
Set Less Than Imm.	slti	Ι	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}	
Set Less Than Imm. Unsigned	sltiu	Ι	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}	
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}	
Shift Left Logical	sll	R	$R[rd] = R[rt] \le shamt$		0 / 00 _{hex}	
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}	
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}	
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}	
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}	
Store Word	sw	Ι	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}	
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)		
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}	
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic						
DAGIC INSTRUCTI	ONEO	DMA	TE			

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5
I	opcode	rs	rt		immediate	е
	31 26	25 21	20 16	15		-
J	opcode			address		
	31 26	25				

ARITHMETIC CORE INSTRUCTION SET

			/ FMT /FT
	FOR-		/ FUNCT
NAME, MNEMONIC	MAT		(Hex)
Branch On FP True bc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False bolf	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single add.	s FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add add.	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double		{F[ft],F[ft+1]}	
FP Compare Single c.x.s	* FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double *(via - 1 - 2 - 1 - 2 - 1 - 2	(ania.	{F[ft],F[ft+1]})?1:0	ř
FP Divide Single div.		==, <, or <=) (y is 32, 3c, or 3e) F[fd] = F[fs] / F[ft]	11/10//3
FP Divide		$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} /$	11/10//3
Double div.	d FR	{F[ft],F[ft+1]} - {F[ft],F[ft+1]}	11/11//3
FP Multiply Single mul.	s FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11/ /2
Double mul.	a FK	{F[ft],F[ft+1]}	11/11//2
FP Subtract Single sub.	s FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double Sub.	ı IK	$\{F[ft],F[ft+1]\}$	11/11//1
Load FP Single lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	I	F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double	_	F[rt+1]=M[R[rs]+SignExtImm+4]	
Move From Hi mfhi	R	R[rd] = Hi	0 ///10
Move From Lo mflo		R[rd] = Lo	0 ///12
Move From Control mfc0		R[rd] = CR[rs]	10 /0//0
Multiply mult		$\{Hi,Lo\} = R[rs] * R[rt]$	0//-18
Multiply Unsigned mult		$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith. sra	R	R[rd] = R[rt] >>> shamt	0//-3
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP sdc1	I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double		M[R[rs]+SignExtImm+4] = F[rt+1]	J

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

		CONVER	SION, A	SCII					
		(2) MIPS		Deci-		ASCII	Deci-	Hexa-	ASCII
opcode	funct	funct	Binary	mal	deci-	Char-	mal	deci-	Char-
(31:26)	(5:0)	(5:0)			mal	acter	Illai	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
		sub f	00 0001	1	1	SOH	65	41	Α
j	srl	$\mathtt{mul}.f$	00 0010	2	2	STX	66	42	В
jal	sra	${ t div.} f$	00 0011	3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs. f	00 0101	5	5	ENQ	69	45	E
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	$\operatorname{neg} f$	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000	8	8	BS	72	48	Н
addiu	jalr		00 1001	9	9	HT	73	49	I
slti	movz		00 1010	10	a	LF	74	4a	J
sltiu	movn		00 1011	11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100	12	С	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	O
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
	mflo	movz.f	01 0010	18	12	DC2	82	52	R
	mtlo	movn.f	01 0011	19	13	DC3	83	53	S
			01 0100	20	14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b	[
			01 1100	28	1c	FS	92	5c	/
			01 1101	29	1 d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	^
			01 1111	31	1 f	US	95	5f	_
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	•
lh	addu	$\operatorname{cvt.d} f$	10 0001	33	21	!	97	61	a
lwl	sub		10 0010	34	22	"	98	62	b
lw	subu		10 0011	35	23	#	99	63	С
lbu	and	cvt.w.f	10 0100	36	24	\$	100	64	d
lhu	or		10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
	nor		10 0111	39	27	,	103	67	g

10 1000

10 1001

10 1010

10 1100

10 1101

10 1110

10 1111

11 0000

11 0001

11 0010

11 0011

11 0100

11 0101

11 0110

11 0111

11 1000

11 1001

11 1010

11 1011

11 1100

11 1101

11 1110

11 1111

40 28

41

42

45 2d

46

47

50 32

53

58 3a

59

60

61

62

29

2a

2b

2e 2f

30

31

33

34

35

36 6

39 9

3h

3c

3d

3e

3f

OPCODES, BASE CONVERSION, ASCII SYMBOLS

 $(1) \operatorname{opcode}(31:26) == 0$

sb

sh

SW

swr

11

lwc1

lwc2

pref

ldc1

1dc2

swc1

swc2

sdc1

sdc2

cache

swl

slt

tae

tgeu

teq

tne

c.f.f

c.un.f

c.eq.f

c.ueq.

c.olt.

c.ult./

c.ole.f

c.ule.

c.ngle.j

c.seq.f

c.ngl.f

c.lt.f

c.nge.f

c.ngt.

c.le.f

c.sf.

sltu

IEEE 754 FLOATING-POINT STANDARD

(3)

 $(-1)^{S} \times (1$ where S Double

	/ · · · · · · · · · · · · · · · · ·				
	Exponent	Fraction	Object		
$1 + Fraction) \times 2^{(Exponent - Bias)}$	0	0	± 0		
Single Precision Bias = 127,	0	≠0	± Denorm		
Precision Bias = 1023.	1 to MAX - 1	anything	± F1. Pt. Num.		
	MAX	0	±∞		
ngle Precision and	MAX	≠0	NaN		
Precision Formats:	S.P. MAX = 2	55, D.P. N	MAX = 2047		

4

IEEE 754 Symbols

IEEE Sin Double Precision Formats:

S Exponent Fraction 23 22 S Fraction Exponent 63 62 52 51

DATA ALIGNMENT

Double Word								
Word					W	ord		
Halfv	vord	Halfword		Hal	fword	Half	word	
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	
0	1	2	3	4	5	6	7	

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

-	TION CONTROL ALC	dio i Eno. Cr	AUSL A	IND 317	1103			
	В	Interrupt		E	xception	\Box		
	D	Mask			Code			
	31	15	8	6		2		
		Pending			U		Е	Ι
		Interrupt			M		L	Е
		15	8		4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable EXCEPTION CODES

h

0

р

q

u

W

DEL

68

69

6a

6d m

6e n 6f

70

71

72 73

74

75

76

79

7a

7b

7с

7d

7e

7f

104

105

106

107

108

109

110

113

114

115

116

117

118 119

121

122

123

124

125

126

= /	CEPTIC	DN CC	DES			
	Number	Name	Cause of Exception	Number	Name	Cause of Exception
	0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
	4	AdEL Address Error Exception 10 R	RI	Reserved Instruction		
	+	Aull	(load or instruction fetch)		KI	Exception
	5	AdES	AdES Address Error Exception 11	CpU	Coprocessor	
	3	rans	(store)	11	СРС	Unimplemented
	6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
	0	IDE	Instruction Fetch	12	Ov	Exception
	7	DBE	OBE Bus Error on 13		Tr	Trap
	_ ′	DDL	Load or Store	13	11	1
	8	Svs	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

in the state (is the state of t					
SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
10^{3}	Kilo-	K	2 ¹⁰	Kibi-	Ki
10^{6}	Mega-	M	2 ²⁰	Mebi-	Mi
10^{9}	Giga-	G	2 ³⁰	Gibi-	Gi
10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti
10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi
10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei
10^{21}	Zetta-	Z	2 ⁷⁰	Zebi-	Zi
1024	Yotta-	Y	280	Yobi-	Yi

⁽²⁾ opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $fmt(25:21) = 17_{ten} (11_{hex}) f = d (double)$