Integração Numérica

Qual é o significado dos símbolos abaixo?

$$\int f(x)dx$$

$$\int_{a}^{b} f(x) dx$$

Calcule as integrais abaixo.

$$\int 10x^4 dx$$

$$\int_2^6 10x^4 dx$$

Exercício

Escreva um programa que calcule o seguinte somatório.

$$\sum_{n=1}^{100} \frac{1}{n^2}$$

Como calcular a área abaixo de uma curva sem utilizar as regras do cálculo integral?

Partimos da definição formal de integral definida

$$\int_{a}^{b} f(x)dx = \lim_{\Delta x \to 0} \sum_{i=0}^{n} f(x_{i}) \Delta x$$

Regra dos retângulos

Regra dos retângulos n = 4

Regra dos retângulos n = 8

Regra dos retângulos n=16

Exercício

Calcule a integral definida da função $f(x) = 10x^4$ no intervalo $x \in [2; 6]$ utilizando a regra dos retângulos para n = 4.

Resolução do exercício

Resolução do exercício

$$\int_{2}^{6} 10x^{4} \cdot dx = A_{0} + A_{1} + A_{2} + A_{3}$$

$$= 1 \cdot 160 + 1 \cdot 810 + 1 \cdot 2560 + 1 \cdot 6250$$

$$= 160 + 810 + 2560 + 6250$$

$$= 9780$$

Regra dos retângulos

$$\int_{a}^{b} f(x) \cdot dx = A_{0} + A_{1} + A_{2} + A_{3}$$

$$= h \cdot f(x_{0}) + h \cdot f(x_{1}) + h \cdot f(x_{2}) + h \cdot f(x_{3})$$

$$= h \cdot [f(x_{0}) + f(x_{1}) + f(x_{2}) + f(x_{3})]$$

Portanto

$$\int_a^b f(x) \cdot dx = h \cdot \sum_{i=0}^{n-1} f(x_i)$$

onde

$$h = \frac{b-a}{n} \qquad x_0 = a \qquad x_{i+1} = x_i + h$$

Exercício

Escreva um programa que calcule a integral definida da função $f(x)=10x^4$ no intervalo $x\in[2;6]$ utilizando a regra dos retângulos para n=4.

Implementação computacional da regra dos retângulos

```
#include <math.h>
   #include <stdio.h>
3
   double f(double x){
     return 10*pow(x, 4);
6
7
   int main(){
     double a, b, h, x, integral, somatorio=0;
     int n, i;
10
11 a = 2;
b = 6;
n = 4:
    h = (b-a)/n:
14
15
     x = a:
     for(i=0; i<=n-1; i++){
16
       somatorio += f(x);
17
       x += h:
18
     }
19
     integral = h*somatorio;
20
     printf("%lf", integral);
21
22
```

Regra dos trapézios

Regra dos trapézios n = 4

Regra dos trapézios n = 8

Regra dos trapézios n = 16

Área do trapézio

onde:

- ▶ B: base maior
- ▶ b: base menor
- ► h: altura

Exercício

Calcule a integral definida da função $f(x) = 10x^4$ no intervalo $x \in [2; 6]$ utilizando a regra dos trapézios para n = 4.

Resolução do exercício

Resolução do exercício

$$\int_{2}^{6} 10x^{4} \cdot dx = A_{0} + A_{1} + A_{2} + A_{3}$$

$$= \frac{(160 + 810) \cdot 1}{2} + \frac{(810 + 2560) \cdot 1}{2} + \frac{(2560 + 6250) \cdot 1}{2} + \frac{(6250 + 12960) \cdot 1}{2}$$
$$= 485 + 1685 + 4405 + 9605$$

Regra dos trapézios

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \cdot [f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n})]$$

$$= \frac{h}{2} \cdot \left[f(x_{0}) + 2 \sum_{i=1}^{n-1} f(x_{i}) + f(x_{n}) \right]$$

onde

$$h = \frac{b-a}{n} \qquad x_0 = a \qquad x_{i+1} = x_i + h$$

Exercício

Escreva um programa que calcule a integral definida da função $f(x)=10x^4$ no intervalo $x\in[2;6]$ utilizando a regra dos trapézios para n=4.

Implementação computacional da regra dos trapézios

```
double f(double x){
     return 10*pow(x, 4);
   }
3
4
   int main(){
     double a, b, h, x, integral, somatorio=0;
     int n, i;
8 a = 2;
9 b = 6:
n = 4;
  h = (b-a)/n:
11
   x = a+h;
12
     for(i=1; i<=n-1; i++){
13
       somatorio += f(x);
14
       x += h;
15
     }
16
     somatorio *= 2;
17
     somatorio += f(a)+f(b);
18
19
     integral = h/2*somatorio;
     printf("%lf", integral);
20
21
```

Regra de Simpson

Retângulos \times trapézios \times Simpson

Regra dos retângulos função contínua (reta horizontal)

Regra dos trapézios função do 1º grau (reta inclinada)

Regra de Simpson função do 2º grau (parábola)

Regra de Simpson n = 4

Regra de Simpson n = 8

Regra de Simpson n = 16

Regra de Simpson (é necessário que *n* seja par)

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \cdot [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + 2f(x_{4}) + 4f(x_{5}) + 2f(x_{6}) + \dots + 4f(x_{n-3}) + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})]$$

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \cdot \left[f(x_0) + 4 \sum_{i=1}^{n-1} f(x_i) + 2 \sum_{i=2}^{n-2} f(x_i) + f(x_n) \right]$$

$$i = 1 \qquad i = 2$$

$$i \text{ impar} \qquad i \text{ par}$$

Exercício

Calcule a integral definida da função $f(x) = 10x^4$ no intervalo $x \in [2; 6]$ utilizando a regra de Simpson para n = 8.

Resolução do exercício

$$h = \frac{b-a}{n} = \frac{6-2}{8} = \frac{4}{8} = 0,5$$

i	Xi	$f(x_i)$
0	2	160
1	2,5	390,625
2	3	810
3	3,5	1500,625
4	4	2560
5	4,5	4100,625
6	5	6250
7	5,5	9150,625
8	6	12960

Resolução do exercício

Integral
$$= \frac{h}{3} \cdot \{f(x_0) + 4 \cdot [f(x_1) + f(x_3) + f(x_3) + f(x_7)] + +2 \cdot [f(x_2) + f(x_4) + f(x_6) + f(x_8)]\}$$

Integral $= \frac{0.5}{3} \cdot [160 + 4 \cdot (390, 625 + 1500, 625 + 4100, 625 + 9150, 625) + +2 \cdot (810 + 2560 + 6250) + 12960]$

Integral $= \frac{0.5}{3} \cdot [160 + 4 \cdot 15142.5 + 2 \cdot 9620 + 12960]$

Integral $= \frac{0.5}{3} \cdot [160 + 60570 + 19240 + 12960]$

Integral $= \frac{0.5}{3} \cdot 92930$

Integral $= 15488.333...$