

Test report No.
Page
Issued date
FCC ID

: 1 of 65 : February 26, 2018 : VPYLB1NX

: 11932168H-A-R1

RADIO TEST REPORT

Test Report No.: 11932168H-A-R1

Applicant : Murata Manufacturing Co., Ltd.

Type of Equipment : Communication Module

Model No. : Type1NX

FCC ID : VPYLB1NX

Test regulation : FCC Part 15 Subpart C: 2018

(WLAN, BT LE parts)

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the above regulation.

4. The test results in this report are traceable to the national or international standards.

5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

7. This report is a revised version of 11932168H-A. 11932168H-A is replaced with this report.

September 19 to December 27, 2017

Representative test engineer:

Date of test:

Takafumi Noguchi

Engineer Consumer Technology Division

Approved by:

Takayuki Shimada

Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date : 11932168H-A-R1 : 2 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

REVISION HISTORY

Original Test Report No.: 11932168H-A

Revision	Test report No. 11932168H-A	Date	Page revised	Contents
- (Original)		February 13	-	-
1	11932168H-A-R1	2018 February 26, 2018 February 26, 2018	P 21	Addition of 99 % Occupied Bandwidth data
1	11932168H-A-R1	February 26, 2018	P 24, 25	Page 60 and 61 moved to page 24 and 25.
_				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page

Issued date FCC ID : 11932168H-A-R1 : 3 of 65

: February 26, 2018 : VPYLB1NX

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: Operation of E.U.T. during testing......9 **SECTION 4: SECTION 5: SECTION 6:** Radiated Spurious Emission15 **SECTION 7:** 6 dB Bandwidth and 99 % Occupied Bandwidth 21 Power Density 59 **APPENDIX 2: APPENDIX 3:**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

SECTION 1: Customer information

Company Name : Murata Manufacturing Co., Ltd.

Address : 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan

Telephone Number : +81-75-955-6736 Facsimile Number : +81-75-955-6634 Contact Person : Motoo Hayashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Communication Module

Model No. : Type1NX

Serial No. : Refer to Section 4, Clause 4.2

Rating : VBAT: Min. 3.35 V / Typ. 3.6 V / Max. 4.8 V

*VIO: Min. 1.71 V / Typ. 1.8 V / Max. 1.89 V * VIO don't influence the RF characteristic.

Receipt Date of Sample : September 15, 2017
Country of Mass-production : China and Japan
Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: Type1NX (referred to as the EUT in this report) is a Communication Module.

General Specification

Clock frequency(ies) in the system : 37.4 MHz (X'tal)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radio Specification

Radio Type : Transceiver

Power Supply (inner) : DC 1.35 V, 1.2 V, 3.3 V, 2.5 V

Specification of Wireless LAN (IEEE802.11b/g/a/n-20/n-40/11ac-20/11ac-40/11ac-80)

Type of radio	IEEE802.11b *1)	IEEE802.11g/n	IEEE802.11a/n/ac	IEEE802.11n/ac	IEEE802.11ac
		(20 M band) *1)	(20 M band)	(40 M band)	(80 M band)
Frequency	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz	5180 MHz - 5240 MHz	5190 MHz - 5230 MHz	5210 MHz
of operation			5260 MHz - 5320 MHz	5270 MHz - 5310 MHz	5290 MHz
			5500 MHz - 5720 MHz	5510 MHz - 5710 MHz	5530 MHz - 5690 MHz
			5745 MHz - 5825 MHz	5755 MHz - 5795 MHz	5775 MHz
Type of modulation	DSSS	OFDM-CCK	OFDM		
	(CCK, DQPSK, DBPSK)	(64QAM, 16QAM, QPSK, BPSK)			
Channel spacing	5 MHz		20 MHz	40 MHz	80 MHz
Antenna type	Dipole antenna				
Antenna Gain	2.4 GHz; 0.2 dBi				
	5 GHz: 1.4dBi				

Bluetooth (Ver. 4.2 with EDR function)

	Bluetooth Ver.4.2 with EDR function *1)
Frequency	2402 MHz - 2480 MHz
of operation	
Type of modulation	BT: FHSS (GFSK, π/4DQPSK, 8DPSK)
	LE: GFSK
Channel spacing	BT: 1 MHz
, ,	LE: 2 MHz
Antenna type	Dipole antenna
Antenna Gain	2.4 GHz: 0.2 dBi

^{*1}) This test report applies to IEEE802.11b/g/n-20 (2412 MHz - 2462 MHz) and Bluetooth Ver.4.2 with EDR function (LE part: 2402 MHz - 2480 MHz).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} WLAN and Bluetooth do not transmit simultaneously.

Test report No. : 11932168H-A-R1 Page : 6 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on February 2, 2018 and effective March 5, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	QP 25.9 dB, 0.15000 MHz, N AV 24.3 dB, 29.03089 MHz, N / 29.02807 MHz, N	Complied	-
6dB Bandwidth	FCC: KDB 558074 D01 DTS Meas Guidance v04 IC: -	FCC: Section 15.247(a)(2) IC: RSS-247 5.2(a)		Complied	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 DTS Meas Guidance v04 IC: RSS-Gen 6.12	FCC: Section 15.247(b)(3) IC: RSS-247 5.4(d)	See data.	Complied	Conducted
Power Density	FCC: KDB 558074 D01 DTS Meas Guidance v04 IC: -	FCC: Section 15.247(e) IC: RSS-247 5.2(b)		Complied	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 DTS Meas Guidance v04 IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	0.6 dB 2390.000 MHz, AV, Hori.	Complied	Conducted (below 30 MHz)/ Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

The RF Module has its own regulator.

The RF Module is constantly provided voltage (DC 1.35 V, 1.2 V, 3.3 V, 2.5 V) through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revisions made after testing date do not affect the test specification applied to the EUT.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 DTS Meas Guidance v04 12.2.7.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Page : 7 of 65

Issued date : February 26, 2018 : VPYLB1NX FCC ID

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Antenna terminal test	Uncertainty (+/-)			
RF output power	1.2 dB			
Antenna terminal conducted emission / Power density / Burst power	3.1 dB			
Adjacent channel power / Channel power				
Below 3 GHz				
3 GHz to 6 GHz	2.7 dB			

Frequency range	Conducted emission using AMN(LISN) (+/-)
0.009 MHz - 0.15 MHz	3.1 dB
0.15 MHz - 30 MHz	2.5 dB

	Radiated emission
Test distance	(+/-)
	9 kHz - 30 MHz
3 m	3.8 dB
10 m	3.6 dB

	I	Radiated emission (Below 1 GHz)		
Dolomites	(3 m*) ((+/-)	(10 m*) (+/-)		
Polarity	30 MHz - 200 MHz	200 MHz -	30 MHz -	200 MHz -	
	30 MHZ - 200 MHZ	1000 MHz	200 MHz	1000 MHz	
Horizontal	5.0 dB	5.3 dB	5.0 dB	5.0 dB	
Vertical	5.2 dB	6.3 dB	5.0 dB	5.0 dB	

	Radiated emission (Above 1 GHz)						
(3 m*) (+/-)			(1 m*) (+/-)		(10 m*) (+/-)		
	1 GHz -	6 GHz -	10 GHz -	26.5 GHz -	1 GHz -		
	6 GHz	18 GHz	26.5 GHz	40 GHz	18 GHz		
	5.2 dB	5.5 dB	5.5 dB	5.4 dB	5.5 dB		

^{*}Measurement distance

 $\frac{Conducted\ Emission\ test}{The\ data\ listed\ in\ this\ test\ report\ has\ enough\ margin,\ more\ than\ the\ site\ margin.}$

Radiated emission test
The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 9 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

Mode	Remarks*
IEEE 802.11b (11b)	11 Mbps, PN9
IEEE 802.11g (11g)	48 Mbps, PN9
IEEE 802.11n 20 MHz BW (11n-20)	MCS 0, PN9
Bluetooth Low Energy (BT LE)	Maximum Packet Size, PRBS9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

*Power of the EUT was set by the software as follows;

Power settings: 11b: 15

11g: 9.5 11n: 7.5

BT LE: CYW4373A0_001.001.025.0007.0000_02

Software: WLAN: Tera term- $4.\overline{8.7}$

BT LE: Blue tool 1.8.9.3

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s) for WLAN

Test Item	Operating Mode	Tested frequency		
Conducted Emission,	Tx 11g *1)	2437 MHz		
Radiated Spurious Emission (Below 1GHz)				
Conducted Spurious Emission				
Radiated Spurious Emission (Above 1GHz)	Tx 11b	2412 MHz		
	Tx 11g	2437 MHz		
	Tx 11n-20	2462 MHz		
6dB Bandwidth,	Tx 11b	2412 MHz		
Maximum Peak Output Power,	Tx 11g	2437 MHz		
Power Density,	Tx 11n-20	2462 MHz		
99% Occupied Bandwidth				
*1) The mode was tested as a representative, because it had the highest power at antenna terminal test.				

*The details of Operating mode(s) for BT LE

Test Item	Operating Mode	Tested frequency
Conducted Emission,	Tx BT LE	2402 MHz
6dB Bandwidth,		2440 MHz
Maximum Peak Output Power,		2480 MHz
Power Density,		
99% Occupied Bandwidth,		
Spurious Emission (Radiated / Conducted)		

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}This setting of software is the worst case.

Test report No. : 11932168H-A-R1 Page : 10 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

4.2 Configuration and peripherals

For Conducted Emission

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Communication Module	Type1NX	17	Murata Manufacturing Co., Ltd.	EUT
В	Jig Board	-	-	Murata Manufacturing Co., Ltd.	*1)
С	Regulated DC Power Supply	PW16-5ADP	171116437	TEXIO	-

^{*1)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.5	Unshielded	Unshielded	-
2	AC Cable	1.0	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 11 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

For Radiated Emission test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Communication Module	Type1NX	17	Murata Manufacturing Co., Ltd.	EUT
В	Jig Board	-	-	Murata Manufacturing Co., Ltd.	*1)

^{*1)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.5	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1
Page : 12 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

[For Antenna Terminal Conducted test]

WLAN

: Standard Ferrite Core

Description of EUT and Support equipment

No.	Item Model number		Serial number	Manufacturer	Remarks
	Communication	Type1NX	9	Murata	EUT
Α	Module			Manufacturing Co.,	
				Ltd.	
В	Jig board 1	-	-	-	*1)
C	Jig board 2	-	-	-	-
D	Jig board 3	-	-	-	-
Е	BRIX	GB-BKi3HA-7100	SN1717630455	GIGABYTE	-
F	USB Memory	SDCZ33	BM170525475D	Sandisk	-
G	AC Adaptor	9NA0654719	H6141013436	FSP GROUP INC.	-
Н	Laptop PC	CF-N8HWCDPS	OBKSA07449	Panasonic	-
I	AC Adaptor	CF-AA6372B	637BM610701051E	Panasonic	-

^{*1)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	0.55	Unshielded	Unshielded	-
2	Signal Cable	0.10	Unshielded	Unshielded	-
3	Signal Cable	0.30	Unshielded	Unshielded	-
4	DC Cable	1.50	Unshielded	Unshielded	-
5	AC Cable	0.60	Unshielded	Unshielded	-
6	LAN Cable	3.00	Unshielded	Unshielded	-
7	DC Cable	1.10	Unshielded	Unshielded	-
8	AC Cable	0.90	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11932168H-A-R1
Page : 13 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

BLE

: Standard Ferrite Core

Description of EUT and Support equipment

DUSCI	Description of ECT and Support equipment						
No.	Item	Model number	Serial number	Manufacturer	Remarks		
	Communication	Type1NX	9	Murata	EUT		
Α	Module			Manufacturing Co.,			
				Ltd.			
В	Jig board 1	-	-	-	*1)		
C	Jig board 2	-	-	-	-		
D	Laptop PC	CF-N8HWCDPS	OBKSA07449	Panasonic	-		
Е	AC Adaptor	CF-AA6372B	637BM610701051E	Panasonic	-		

^{*1)} The test was performed with the module that as normal assumed implementation conditions. The use of a jig does not influence on the test result.

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	0.55	Unshielded	Unshielded	-
2	Signal Cable	0.10	Unshielded	Unshielded	-
3	Serial Cable	0.50	Shielded	Shielded	-
4	DC Cable	1.10	Unshielded	Unshielded	-
5	AC Cable	0.90	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11932168H-A-R1 Page : 14 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

1) For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.
Page
Issued date

: 11932168H-A-R1 : 15 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "KDB 558074 D01 DTS Meas Guidance v04".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below:

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1
Page : 16 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20~dBc~was~applied~to~the~frequency~over~the~limit~of~FCC~15.209~/~Table~4~of~RSS-Gen~8.9 (IC)~and~outside~the~results a constant of the con

restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analyzer		Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			If duty cycle was less than	
			98%, a duty factor was	
			added to the results.	
Test Distance	3 m	4.5 m *2) (1 GH	z – 10 GHz),	4.5 m *2) (1 GHz – 10 GHz),
		1 m *3) (10 GH:	z – 26.5 GHz)	1 m *3) (10 GHz – 26.5 GHz)

^{*1)} Average Power Measurement was performed based on 6. 0 & 12.2.5 of "KDB 558074 D01 DTS Meas Guidance v04".

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $20 \times \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

^{*3)} Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

⁻ The noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

: 11932168H-A-R1 Test report No. Page : 17 of 65

Issued date : February 26, 2018 : VPYLB1NX FCC ID

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	20 MHz / 3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v04".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Test report No. : 11932168H-A-R1 Page : 18 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

APPENDIX 1: Test data

Conducted Emission

Test place Ise EMC Lab. No.3 Measurement Room

Report No. 11932168H

Date October 29, 2017

Temperature / Humidity 21 deg. C / 59 % RH

Engineer Takafumi Noguchi

Mode Tx 11g 2437 MHz

LIMIT : FCC15. 207 QP FCC15. 207 AV

_	Reading	Level	Corr.	Resu	ılts	Lin	nit	Mar	gin		
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	26. 9	1. 9	13. 2	40. 1	15. 1	66.0	56.0	25. 9	40. 9	N	
0. 16016	24. 5	0.9	13. 2	37. 7	14. 1	65.5	55.5	27.8	41.4	N	
0. 27522	11.3	-1.0	13. 2	24. 5	12. 2	61.0	51.0	36.5	38.8	N	
24. 88358	5. 2	2. 5	14. 5	19. 7	17. 0	60.0	50.0	40.3	33.0	N	
27. 9941 0	11.3	9. 4	14. 6	25. 9	24. 0	60.0	50.0	34. 1	26.0	N	
29. 03089	12.6	11.1	14. 6	27. 2	25. 7	60.0	50.0	32.8	24. 3	N	
0. 15000	26. 6	1.8	13. 2	39. 8	15.0	66.0	56.0	26. 2	41.0	L	
0. 16016	24. 5	0. 9	13. 2	37. 7	14. 1	65.5	55. 5	27.8	41.4	L	
0. 27466	11. 2	-0. 7	13. 2	24. 4	12.5	61.0	51.0	36.6	38. 5	L	
24. 88339	4. 0	0.6	14. 5	18. 5	15. 1	60.0	50.0	41.5	34. 9	L	
27. 99378	11. 2	9. 4	14. 6	25. 8	24. 0	60.0	50.0	34. 2	26.0	L	
29. 03052	10.9	9. 2	14. 6	25. 5	23.8	60.0	50.0	34. 5	26. 2	L	

CHART: WITH FACTOR Peak hold data. CALCULATION: RESULT = READING + C.F (LISN + CABLE + ATT) Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 19 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Conducted Emission

Test place Ise EMC Lab. No.3 Measurement Room

Report No. 11932168H

Date October 29, 2017

Temperature / Humidity 21 deg. C / 59 % RH

Engineer Takafumi Noguchi

Mode Tx BT LE 2402 MHz

LIMIT : FCC15.207 QP FCC15.207 AV

-	Reading	Level	Corr.	Resi	ults	Lin	nit	Mar	gin		
Frequency	QP	A۷	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	23. 2	0. 5	13. 2	36. 4	13.7	66.0	56.0	29.6	42.3	N	
0. 16036	20. 9	-0. 3	13. 2	34. 1	12.9	65.4	55.4	31.3	42.5	N	
0. 27565	11.7	-0. 6	13. 2	24. 9	12. 6	60. 9	50.9	36.0	38. 3	N	
24. 88136	5.0	2. 1	14. 5	19. 5	16.6	60.0	50.0	40.5	33.4	N	
27. 99141	11.3	9. 5	14. 6	25. 9	24. 1	60.0	50.0	34. 1	25. 9	N	
29. 02807	12. 6	11. 1	14. 6	27. 2	25. 7		50.0	32. 8	24. 3	N	
0. 15000	23. 2	0. 5		36. 4	13. 7	66.0	56.0	29.6	42.3	L	
0. 16028	20. 9	-0. 3		34. 1	12. 9		55.4	31.3	42. 5	L	
0. 27623	11.9	-0. 5	13. 2	25. 1	12.7	60.9	50.9	35.8	38. 2	L	
24. 88130	3. 3	-0. 6	14. 5	17. 8	13. 9	60.0	50.0	42. 2	36. 1	L	
27. 99141	11.4	9. 6	14. 6	26. 0	24. 2		50.0	34. 0	25. 8	L	
29. 02807	11.0	9. 2	14. 6	25. 6	23. 8	60.0	50.0	34. 4	26. 2	L	

CHART: WITH FACTOR Peak hold data. CALCULATION: RESULT = READING + C.F (LISN + CABLE + ATT) Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1
Page : 20 of 65
Issued date : February 26, 2018

Issued date : February 26, FCC ID : VPYLB1NX

Conducted Emission

Test place Ise EMC Lab. No.3 Measurement Room

Report No. 11932168H
Date October 29, 2017
Temperature / Humidity 21 deg. C / 59 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 21 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

6 dB Bandwidth and 99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date October 19, 2017

Temperature / Humidity 24 deg. C / 53 % RH

Engineer Ryota Yamanaka

Mode Tx

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for
		Bandwidth		6 dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	11.7691	8.685	> 500.000
	2437	11.7441	9.242	> 500.000
	2462	11.8673	8.501	> 500.000
11g	2412	17.3281	16.411	> 500.000
	2437	17.3456	16.440	> 500.000
	2462	17.3629	16.400	> 500.000
11n-20	2412	18.5732	17.605	> 500.000
	2437	18.5872	17.590	> 500.000
	2462	18.6830	16.963	> 500.000
BT LE	2402	1.0544	0.719	> 500.000
	2440	1.0541	0.708	> 500.000
	2480	1.0549	0.716	> 500.000

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1
Page : 22 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

6 dB Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 23 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

6 dB Bandwidth

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 24 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

99 %Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date October 19, 2017

Temperature / Humidity 24 deg. C / 53 % RH

Engineer Ryota Yamanaka

Mode Tx

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 25 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

99 % Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date September 21, 2017

Temperature / Humidity 25.5 deg. C / 47 % RH

Engineer Takafumi Noguchi

Mode Tx

11n-20 BT LE 2412 MHz 2402 MHz # Agilent Agilent Ref 107 dBµV *Peak Log 10 dB/ Ref 107 dB**µ**V *Peak Log 10 dB/ LgAv M1 S2 M1 52 Center 2.412 00 GHz #Res BW 510 kHz Span 3 MHz .VBW 1.5 MHz Sweep 1.04 ms (1201 pts) #Res BW 30 kHz . VBW 100 kHz Sweep 3.2 ms (1201 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -6.00 dB x dB -6.00 dB 18.5732 MHz 1.0544 MHz Transmit Freq Error x dB Bandwidth Transmit Freq Error x dB Bandwidth -82.420 kHz 20.001 kHz 2437 MHz 2440 MHz # Agilent Agilent Ref 107 dB**µV***Peak
Log
10
dB/ Ref 107 dB**µ**V *Peak Log 10 dB/ #Atten 10 dE #Atten 10 dB LgAv M1 S2 Center 2.437 00 GHz Span 50 MHz mi 52 Center 2.440 000 0 GHz Span 3 MHz #Res BW 510 kHz •VBW 1.5 MHz Sweep 1.04 ms (1201 pts) *Res BW 30 kHz . VBW 100 kHz Sweep 3.2 ms (1201 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % Occupied Bandwidth Occ BW % Pwr 99.00 % -6.00 dB 18.5872 MHz 1.0541 MHz Transmit Freq Error x dB Bandwidth Transmit Freq Error x dB Bandwidth 2462 MHz 2480 MHz # Agilent # Agilent Ref 107 dBµV #Peak Log 10 Ref 107 dB**µ**V •Peak Log 10 dB/ dB/ LgAv M1 S2 Center 2.462 00 GHz Span 50 MHz #Res BW 30 kHz *Res BW 510 kHz •VBW 1.5 MHz Sweep 1.04 ms (1201 pts) Sweep 3.2 ms (1201 pts) Occupied Bandwidth Occupied Bandwidth Occ BW % Pwr 99.00 X Occ BW % Pwr 99.00 % x dB -6.00 dB -6.00 dB 18.6830 MHz 1.0549 MHz

Transmit Freq Error

29 016 kHz

UL Japan, Inc. Ise EMC Lab.

Transmit Freq Error x dB Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

–119.385 kHz 17.867 MHz

Page : 26 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Maximum Peak Output Power

Test place Ise EMC Lab. No.3 Measurement Room

Report No. 11932168H
Date December 27, 2017
Temperature / Humidity 25 deg. C / 31 % RH
Engineer Takafumi Noguchi

Mode Tx 11b

Freq.	Reading	Cable	Atten.	Result		Liı	mit	Margin
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	7.05	1.70	10.10	18.85	76.74	30.00	1000	11.15
2437	6.79	1.70	10.10	18.59	72.28	30.00	1000	11.41
2462	6.50	1.70	10.10	18.30	67.61	30.00	1000	11.70

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

2412MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	5.89	
2	6.48	
5.5	6.66	
11	7.05	*

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 27 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

 Date
 September 19, 2017
 November 2, 2017

 Temperature / Humidity
 24 deg. C / 53 % RH
 25 deg. C / 50 % RH

Engineer Tomohisa Nakagawa Ken Fujita

Mode Tx 11g

Freq.	Reading	Cable	Atten.	Result		Liı	Margin	
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	10.08	0.80	10.05	20.93	123.88	30.00	1000	9.07
2437	10.14	0.80	10.05	20.99	125.60	30.00	1000	9.01
2462	9.91	0.80	10.05	20.76	119.12	30.00	1000	9.24

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

2412MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
6	10.03	
9	9.95	
12	9.64	
18	9.50	
24	9.16	
36	9.10	
48	10.08	*
54	8.11	

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 28 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

 Date
 September 19, 2017
 November 2, 2017

 Temperature / Humidity
 24 deg. C / 53 % RH
 25 deg. C / 50 % RH

Engineer Tomohisa Nakagawa Ken Fujita

Mode Tx 11n-20

Freq.	Reading	Cable	Atten.	Result		Limit		Margin
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	9.95	0.80	10.05	20.80	120.23	30.00	1000	9.20
2437	9.09	0.80	10.05	19.94	98.63	30.00	1000	10.06
2462	9.34	0.80	10.05	20.19	104.47	30.00	1000	9.81

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

2412MHz

MCS	Reading	Remark
Number		
	[dBm]	
0	9.95	*
1	9.07	
2	8.92	
3	8.94	
4	8.12	
5	9.29	
6	8.11	
7	8.19	

^{*} Worst MCS

All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 29 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateSeptember 19, 2017October 19, 2017Temperature / Humidity24 deg. C / 53 % RH24 deg. C / 53 % RHEngineerTomohisa NakagawaRyota Yamanaka

Mode Tx BT LE

ſ	Freq.	Reading	Cable	Atten.	Result		Liı	mit	Margin
			Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Γ	2402	-3.51	0.80	10.05	7.34	5.42	30.00	1000	22.66
Ī	2440	-3.76	0.80	10.05	7.09	5.12	30.00	1000	22.91
I	2480	-5.80	0.80	10.05	5.05	3.20	30.00	1000	24.95

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-A-R1 Test report No. Page : 30 of 65

: February 26, 2018

Issued date FCC ID : VPYLB1NX

Average Output Power (Reference data for RF Exposure / SAR testing)

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date October 19, 2017 November 2, 2017 December 27, 2017 Temperature / Humidity 24 deg. C / 3 % RH 25 deg. C / 50 % RH 25 deg. C / 31 % RH Ryota Yamanaka Ken Fujita Takafumi Noguchi Engineer

Mode

11b 1Mbps

Freq.	Reading	Cable	Atten.	Re	Result		Result	
		Loss	Loss	(Time a	(Time average)		(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	3.25	0.80	10.05	14.10	25.70	0.08	14.18	26.18
2437	2.70	0.80	10.05	13.55	22.65	0.08	13.63	23.07
2462	3.05	0.80	10.05	13.90	24.55	0.08	13.98	25.00

11g 6 Mbps

- 2	**8								
	Freq.	Reading	Cable	Atten.	Res	Result		Re	esult
			Loss	Loss	(Time average)		factor	(Burst pov	ver average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
	2412	-0.47	0.80	10.05	10.38	10.91	0.28	10.66	11.64
	2437	-0.38	0.80	10.05	10.47	11.14	0.28	10.75	11.89
	2462	-0.46	0.80	10.05	10.39	10.94	0.28	10.67	11.67

11n-20 MCS 0

-	1111 20	WICD U							
	Freq.	Reading	Cable	Atten.	Res	Result		Re	esult
			Loss	Loss	(Time average)		factor	(Burst pov	ver average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
	2412	-1.99	0.80	10.05	8.86	7.69	0.30	9.16	8.24
	2437	-2.24	0.80	10.05	8.61	7.26	0.30	8.91	7.78
	2462	-1.97	0.80	10.05	8.88	7.73	0.30	9.18	8.28

BT LE

ſ	Freq.	Reading	Cable	Atten.	Res	Result		Result		
			Loss	Loss	(Time average)		factor	(Burst pov	ver average)	
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]	
Γ	2402	-5.87	0.80	10.05	4.98	3.15	2.00	6.98	4.99	
	2440	-6.14	0.80	10.05	4.71	2.96	2.00	6.71	4.69	
I	2480	-8.25	0.80	10.05	2.60	1.82	2.00	4.60	2.88	

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1
Page : 31 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Burst rate confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H
Date September 21, 2017
Temperature / Humidity 25.5 deg. C / 47 % RH
Engineer Takafumi Noguchi

Mode Tx

11b 11 Mbps 11g 48 Mbps

0.631

UL Japan, Inc. Ise EMC Lab.

Agilent

Log 10 dB/

LgAv

Center 2.437

Res BW 8 MHz

Marker Tr.

1R (

1a (

2R (

2a (

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

#VBW 50 MHz

X fixis 424.3 μs 1.344 ms 424.3 μs 1.441 ms

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test report No. : 11932168H-A-R1 Page : 32 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Burst rate confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date September 21, 2017
Temperature / Humidity 25.5 deg. C / 47 % RH
Engineer Takafumi Noguchi

Mode Tx

11b 1 Mbps 11g 6 Mbps

11n-20 MCS 0

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 33 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 17, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 60 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 26.5 GHz)

Mode Tx 11b 2412 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
,	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	_	
Hori	2390.000	PK	56.6	27.7	6.7	32.4	-	58.6	73.9	15.3	
Hori	4824.000	PK	45.2	31.7	9.0	31.4	-	54.5	73.9	19.4	
Hori	7236.000	PK	40.9	36.1	8.9	32.1	-	53.8	73.9	20.1	Floor noise
Hori	9648.000	PK	41.0	38.6	10.0	32.9	-	56.7	73.9	17.2	Floor noise
Hori	2390.000	AV	47.4	27.7	6.7	32.4	0.4	49.8	53.9	4.1	*1)
Hori	4824.000	AV	36.6	31.7	9.0	31.4	0.4	46.3	53.9	7.6	
Hori	7236.000	AV	32.0	36.1	8.9	32.1	-	44.9	53.9	9.0	Floor noise
Hori	9648.000	AV	32.2	38.6	10.0	32.9	-	47.9	53.9	6.0	Floor noise
Vert	2390.000	PK	55.4	27.7	6.7	32.4	-	57.4	73.9	16.5	
Vert	4824.000	PK	45.9	31.7	9.0	31.4	-	55.2	73.9	18.7	
Vert	7236.000	PK	41.0	36.1	8.9	32.1	-	53.9	73.9	20.0	Floor noise
Vert	9648.000	PK	41.1	38.6	10.0	32.9	-	56.8	73.9	17.1	Floor noise
Vert	2390.000	AV	46.3	27.7	6.7	32.4	0.4	48.7	53.9	5.2	*1)
Vert	4824.000	AV	37.0	31.7	9.0	31.4	0.4	46.7	53.9	7.2	
Vert	7236.000	AV	32.0	36.1	8.9	32.1	-	44.9	53.9	9.0	Floor noise
Vert	9648.000	AV	32.2	38.6	10.0	32.9	-	47.9	53.9	6.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 26.5 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

Loubt Da	ta Succi									
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	97.6	27.7	6.8	32.4	99.7	-	-	Carrier
Hori	2400.000	PK	64.3	27.7	6.8	32.4	66.4	79.7	13.3	
Vert	2412.000	PK	98.1	27.7	6.8	32.4	100.2	-	-	Carrier
Vert	2400.000	PK	62.8	27.7	6.8	32.4	64.9	80.2	15.3	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-A-R1
Page : 34 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 17, 2017
Temperature / Humidity Engineer C / 60 % RH
Takafumi Noguchi

(1 GHz - 10 GHz) Mode Tx 11b 2412 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 35 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 17, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 60 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 26.5 GHz)

Mode Tx 11b 2437 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	4874.000	PK	46.6	31.9	9.0	31.4	-	56.1	73.9	17.8	
Hori	7311.000	PK	41.2	36.2	8.9	32.2	-	54.1	73.9	19.8	Floor noise
Hori	9748.000	PK	41.4	38.7	10.1	33.0	-	57.2	73.9	16.7	Floor noise
Hori	4874.000	AV	37.6	31.9	9.0	31.4	0.4	47.5	53.9	6.4	
Hori	7311.000	AV	31.8	36.2	8.9	32.2	-	44.7	53.9	9.2	Floor noise
Hori	9748.000	AV	31.9	38.7	10.1	33.0	-	47.7	53.9	6.2	Floor noise
Vert	4874.000	PK	47.2	31.9	9.0	31.4	-	56.7	73.9	17.2	
Vert	7311.000	PK	41.2	36.2	8.9	32.2	-	54.1	73.9	19.8	Floor noise
Vert	9748.000	PK	41.3	38.7	10.1	33.0	-	57.1	73.9	16.8	Floor noise
Vert	4874.000	AV	38.1	31.9	9.0	31.4	0.4	48.0	53.9	5.9	
Vert	7311.000	AV	31.8	36.2	8.9	32.2	-	44.7	53.9	9.2	Floor noise
Vert	9748.000	AV	31.9	38.7	10.1	33.0	-	47.7	53.9	6.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $^{{}^{*}\}mathrm{Other}$ frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Page : 36 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 17, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 60 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 26.5 GHz)

Mode Tx 11b 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	51.8	27.8	6.8	32.4	-	54.0	73.9	19.9	
Hori	4924.000	PK	44.3	32.0	9.1	31.3	-	54.1	73.9	19.8	
Hori	7386.000	PK	41.4	36.3	8.9	32.2	-	54.4	73.9	19.5	Floor noise
Hori	9848.000	PK	41.4	38.8	10.1	33.0	-	57.3	73.9	16.6	Floor noise
Hori	2483.500	AV	43.8	27.8	6.8	32.4	0.4	46.4	53.9	7.5	*1)
Hori	4924.000	AV	35.4	32.0	9.1	31.3	0.4	45.6	53.9	8.3	
Hori	7386.000	AV	32.0	36.3	8.9	32.2	-	45.0	53.9	8.9	Floor noise
Hori	9848.000	AV	32.0	38.8	10.1	33.0	-	47.9	53.9	6.0	Floor noise
Vert	2483.500	PK	50.6	27.8	6.8	32.4	-	52.8	73.9	21.1	
Vert	4924.000	PK	44.4	32.0	9.1	31.3	-	54.2	73.9	19.7	
Vert	7386.000	PK	41.4	36.3	8.9	32.2	-	54.4	73.9	19.5	Floor noise
Vert	9848.000	PK	41.3	38.8	10.1	33.0	-	57.2	73.9	16.7	Floor noise
Vert	2483.500	AV	42.7	27.8	6.8	32.4	0.4	45.3	53.9	8.6	*1)
Vert	4924.000	AV	35.6	32.0	9.1	31.3	0.4	45.8	53.9	8.1	
Vert	7386.000	AV	32.0	36.3	8.9	32.2	-	45.0	53.9	8.9	Floor noise
Vert	9848.000	AV	32.0	38.8	10.1	33.0	-	47.9	53.9	6.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: $1~GHz - 10~GHz \qquad 20log~(4.5~m / ~3.0~m) = 3.53~dB$ 10~GHz - 26.5~GHz~20log~(1.0~m / ~3.0~m) = ~-9.5~dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $^{{}^{*}\}mathrm{Other}$ frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-A-R1
Page : 37 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 17, 2017
Temperature / Humidity Engineer 23 deg. C / 60 % RH
Takafumi Noguchi

(1 GHz - 10 GHz) Mode Tx 11b 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1

Page : 38 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 17, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 60 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 26.5 GHz)

Mode Tx 11g 2412 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2390.000	PK	59.1	27.7	6.7	32.4		61.1	73.9	12.8	
Hori	4824.000	PK	41.0	31.7	8.0	31.4	-	49.3	73.9	24.6	Floor noise
Hori	7236.000	PK	40.9	36.1	8.9	32.1	-	53.8	73.9	20.1	Floor noise
Hori	9648.000	PK	41.1	38.6	10.0	32.9	-	56.8	73.9	17.1	Floor noise
Hori	2390.000	AV	49.5	27.7	6.7	32.4	1.8	53.3	53.9	0.6	*1)
Hori	4824.000	AV	31.0	31.7	8.0	31.4	-	39.3	53.9	14.6	Floor noise
Hori	7236.000	AV	32.0	36.1	8.9	32.1	-	44.9	53.9	9.0	Floor noise
Hori	9648.000	AV	32.2	38.6	10.0	32.9	-	47.9	53.9	6.0	Floor noise
Vert	2390.000	PK	58.1	27.7	6.7	32.4		60.1	73.9	13.8	
Vert	4824.000	PK	41.0	31.7	8.0	31.4	-	49.3	73.9	24.6	Floor noise
Vert	7236.000	PK	41.0	36.1	8.9	32.1	-	53.9	73.9	20.0	Floor noise
Vert	9648.000	PK	41.0	38.6	10.0	32.9	-	56.7	73.9	17.2	Floor noise
Vert	2390.000	AV	48.5	27.7	6.7	32.4	1.8	52.3	53.9	1.6	*1)
Vert	4824.000	AV	31.0	31.7	8.0	31.4	-	39.3	53.9	14.6	Floor noise
Vert	7236.000	AV	32.0	36.1	8.9	32.1	-	44.9	53.9	9.0	Floor noise
Vert	9648.000	AV	32.1	38.6	10.0	32.9	•	47.8	53.9	6.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 26.5 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	92.7	27.7	6.8	32.4	94.8	-	-	Carrier
Hori	2400.000	PK	58.3	27.7	6.8	32.4	60.4	74.8	14.4	
Vert	2412.000	PK	91.7	27.7	6.8	32.4	93.8	-	-	Carrier
Vert	2400.000	PK	56.7	27.7	6.8	32.4	58.8	73.8	15.0	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-A-R1
Page : 39 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 17, 2017
Temperature / Humidity Engineer C / 60 % RH
Takafumi Noguchi

(1 GHz - 10 GHz) Mode Tx 11g 2412 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11932168H-A-R1 Test report No. Page : 40 of 65

Issued date : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3 No.3

October 17, 2017 October 20, 2017 October 28, 2017 November 20, 2017 23 deg. C / 60 % RH 23 deg. C / 45 % RH Temperature / Humidity 23 deg. C / 58 % RH 21 deg. C / 59 % RH Takafumi Noguchi Takafumi Noguchi Shuichi Ohyama Engineer Takafumi Noguchi (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz) (Below 1 GHz)

Mode Tx 11g 2437 MHz

Polarity	Frequency	Detector	Reading	Ant Foo	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
1 Glarity	[MHz]	Detector	[dBuV]	[dB/m]	[dB]	[dB]	[dB]		[dBuV/m]	[dB]	Kemark
Hori	35.000	OP	22.8	15.7	7.2	32.2	լահյ	13.5	40.0	26.5	
Hori	50.000	`	22.6	10.7	7.5	32.2	Ī	8.6	40.0	31.4	
Hori	100.000	`	22.0	10.7	8.2	32.2	_	8.2	43.5	35.3	
Hori	240.000	`	22.1	11.7	9.5	32.0		11.3	46.0	34.7	
Hori	610.000	`	22.0	19.1	12.0	32.0]	21.1	46.0	24.9	
Hori	700.000	`	22.0	19.7	12.5	32.0		22.1	46.0	23.9	
Hori	4874.000	_	40.2	31.9	8.0	31.4		48.7	73.9		Floor noise
Hori	7311.000		41.3	36.2	8.9	32.2		54.2	73.9		Floor noise
Hori	9748.000		41.4	38.7	10.1	33.0]	57.2	73.9		Floor noise
Hori	4874.000		31.0	31.9	8.0	31.4	_	39.5	53.9		Floor noise
Hori	7311.000		31.8	36.2	8.9	32.2	_	44.7	53.9		Floor noise
Hori	9748.000		31.9	38.7	10.1	33.0	_	47.7	53.9	6.2	Floor noise
Vert	35.000		22.8	15.7	7.2	32.2	_	13.5	40.0	26.5	Tion hold
Vert	50.000	`	22.6	10.7	7.5	32.2	_	8.6	40.0	31.4	
Vert	100.000	`	22.1	10.1	8.2	32.2	_	8.2	43.5	35.3	
Vert	240.000	`	22.1	11.7	9.5	32.0	_	11.3	46.0	34.7	
Vert	610.000	`	22.0	19.1	12.0	32.0	_	21.1	46.0	24.9	
Vert	700.000	`	22.0	19.7	12.5	32.1	_	22.1	46.0	23.9	
Vert	4874.000		40.1	31.9	8.0	31.4	-	48.6	73.9	25.3	Floor noise
Vert	7311.000	PK	41.4	36.2	8.9	32.2	_	54.3	73.9	19.6	Floor noise
Vert	9748.000	PK	41.3	38.7	10.1	33.0	-	57.1	73.9	16.8	Floor noise
Vert	4874.000	AV	31.0	31.9	8.0	31.4	-	39.5	53.9	14.4	Floor noise
Vert	7311.000	AV	31.8	36.2	8.9	32.2	-	44.7	53.9	9.2	Floor noise
Vert	9748.000	AV	31.9	38.7	10.1	33.0	_	47.7	53.9	6.2	Floor noise

53.9 Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11932168H-A-R1

Page : 41 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 17, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 60 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 26.5 GHz)

Mode Tx 11g 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	_	
Hori	2483.500	PK	55.9	27.8	6.8	32.4	-	58.1	73.9	15.8	
Hori	4924.000	PK	40.2	32.0	8.1	31.3	-	49.0	73.9	24.9	Floor noise
Hori	7386.000	PK	41.3	36.3	8.9	32.2	-	54.3	73.9	19.6	Floor noise
Hori	9848.000	PK	41.3	38.8	10.1	33.0	-	57.2	73.9	16.7	Floor noise
Hori	2483.500	AV	46.3	27.8	6.8	32.4	1.8	50.3	53.9	3.6	*1)
Hori	4924.000	AV	30.7	32.0	8.1	31.3	-	39.5	53.9	14.4	Floor noise
Hori	7386.000	AV	32.0	36.3	8.9	32.2	-	45.0	53.9	8.9	Floor noise
Hori	9848.000	AV	32.0	38.8	10.1	33.0	-	47.9	53.9	6.0	Floor noise
Vert	2483.500	PK	54.0	27.8	6.8	32.4	-	56.2	73.9	17.7	
Vert	4924.000	PK	40.3	32.0	8.1	31.3	-	49.1	73.9	24.8	Floor noise
Vert	7386.000	PK	41.4	36.3	8.9	32.2	-	54.4	73.9	19.5	Floor noise
Vert	9848.000	PK	41.3	38.8	10.1	33.0	-	57.2	73.9	16.7	Floor noise
Vert	2483.500	AV	44.9	27.8	6.8	32.4	1.8	48.9	53.9	5.0	*1)
Vert	4924.000	AV	30.7	32.0	8.1	31.3	-	39.5	53.9	14.4	Floor noise
Vert	7386.000	AV	32.0	36.3	8.9	32.2	-	45.0	53.9	8.9	Floor noise
Vert	9848.000	AV	32.0	38.8	10.1	33.0	-	47.9	53.9	6.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 26.5 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-A-R1
Page : 42 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 17, 2017
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Takafumi Noguchi

(1 GHz - 10 GHz) Mode Tx 11g 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1

Page : 43 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

Engineer Takafumi Noguchi Takafumi Noguchi Takafumi Noguchi (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz)

Mode Tx 11n-20 2412 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	_	
Hori	2390.000	PK	65.2	27.7	6.7	32.4	-	67.2	73.9	6.7	
Hori	4824.000	PK	40.9	31.7	8.0	31.4	-	49.2	73.9	24.7	Floor noise
Hori	7236.000	PK	40.9	36.1	8.9	32.1	-	53.8	73.9	20.1	Floor noise
Hori	9648.000	PK	41.1	38.6	10.0	32.9	-	56.8	73.9	17.1	Floor noise
Hori	2390.000	AV	50.7	27.7	6.7	32.4	0.3	53.0	53.9	0.9	*1)
Hori	4824.000	AV	31.0	31.7	8.0	31.4	-	39.3	53.9	14.6	Floor noise
Hori	7236.000	AV	32.0	36.1	8.9	32.1	-	44.9	53.9	9.0	Floor noise
Hori	9648.000	AV	32.2	38.6	10.0	32.9	-	47.9	53.9	6.0	Floor noise
Vert	2390.000	PK	64.2	27.7	6.7	32.4	-	66.2	73.9	7.7	
Vert	4824.000	PK	40.9	31.7	8.0	31.4	-	49.2	73.9	24.7	Floor noise
Vert	7236.000	PK	41.1	36.1	8.9	32.1	-	54.0	73.9	19.9	Floor noise
Vert	9648.000	PK	41.2	38.6	10.0	32.9	-	56.9	73.9	17.0	Floor noise
Vert	2390.000	AV	49.7	27.7	6.7	32.4	0.3	52.0	53.9	1.9	*1)
Vert	4824.000	AV	31.0	31.7	8.0	31.4	-	39.3	53.9	14.6	Floor noise
Vert	7236.000	AV	32.0	36.1	8.9	32.1	-	44.9	53.9	9.0	Floor noise
Vert	9648.000	AV	32.2	38.6	10.0	32.9	-	47.9	53.9	6.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$ 10 GHz - 26.5 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	91.4	27.7	6.8	32.4	93.5	-	-	Carrier
Hori	2400.000	PK	59.8	27.7	6.8	32.4	61.9	73.5	11.6	
Vert	2412.000	PK	89.8	27.7	6.8	32.4	91.9	-	-	Carrier
Vert	2400.000	PK	58.3	27.7	6.8	32.4	60.4	71.9	11.5	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

: 11932168H-A-R1 Test report No. Page : 44 of 65 Issued date : February 26, 2018 : VPYLB1NX FCC ID

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 11932168H Test place Ise EMC Lab. No.3

Semi Anechoic Chamber

October 17, 2017 23 deg. C / 60 % RH Temperature / Humidity Takafumi Noguchi Engineer

(1 GHz - 10 GHz) Tx 11n-20 2412 MHz Mode

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1

Page : 45 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 17, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 60 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

 Engineer
 Takafumi Noguchi
 Takafumi Noguchi
 Takafumi Noguchi

 (1 GHz - 10 GHz)
 (10 GHz - 18 GHz)
 (18 GHz - 26.5 GHz)

Mode Tx 11n-20 2437 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	4874.000	PK	40.2	31.9	8.0	31.4	-	48.7	73.9	25.2	Floor noise
Hori	7311.000	PK	41.3	36.2	8.9	32.2	-	54.2	73.9	19.7	Floor noise
Hori	9748.000	PK	41.4	38.7	10.1	33.0	-	57.2	73.9	16.7	Floor noise
Hori	4874.000	AV	31.0	31.9	8.0	31.4	-	39.5	53.9	14.4	Floor noise
Hori	7311.000	AV	31.8	36.2	8.9	32.2	-	44.7	53.9	9.2	Floor noise
Hori	9748.000	AV	31.9	38.7	10.1	33.0	-	47.7	53.9	6.2	Floor noise
Vert	4874.000	PK	40.2	31.9	8.0	31.4	-	48.7	73.9	25.2	Floor noise
Vert	7311.000	PK	41.3	36.2	8.9	32.2	-	54.2	73.9	19.7	Floor noise
Vert	9748.000	PK	41.4	38.7	10.1	33.0	-	57.2	73.9	16.7	Floor noise
Vert	4874.000	AV	31.0	31.9	8.0	31.4	-	39.5	53.9	14.4	Floor noise
Vert	7311.000	AV	31.9	36.2	8.9	32.2	-	44.8	53.9	9.1	Floor noise
Vert	9748.000	AV	32.0	38.7	10.1	33.0	-	47.8	53.9	6.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $^{{}^{*}\}mathrm{Other}$ frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11932168H-A-R1

Page : 46 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3

 Date
 October 17, 2017
 October 20, 2017
 October 28, 2017

 Temperature / Humidity
 23 deg. C / 60 % RH
 23 deg. C / 58 % RH
 21 deg. C / 59 % RH

Engineer Takafumi Noguchi Takafumi Noguchi Takafumi Noguchi (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz)

Mode Tx 11n-20 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Logo	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity		Detector	_		Loss		,				Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	59.7	27.8	6.8	32.4	-	61.9	73.9	12.0	
Hori	4924.000	PK	40.3	32.0	8.1	31.3	-	49.1	73.9	24.8	Floor noise
Hori	7386.000	PK	41.4	36.3	8.9	32.2	-	54.4	73.9	19.5	Floor noise
Hori	9848.000	PK	41.4	38.8	10.1	33.0	-	57.3	73.9	16.6	Floor noise
Hori	2483.500	AV	46.3	27.8	6.8	32.4	0.3	48.8	53.9	5.1	*1)
Hori	4924.000	AV	30.8	32.0	8.1	31.3	-	39.6	53.9	14.3	Floor noise
Hori	7386.000	AV	32.0	36.3	8.9	32.2	-	45.0	53.9	8.9	Floor noise
Hori	9848.000	AV	32.0	38.8	10.1	33.0	-	47.9	53.9	6.0	Floor noise
Vert	2483.500	PK	58.1	27.8	6.8	32.4	-	60.3	73.9	13.6	
Vert	4924.000	PK	40.4	32.0	8.1	31.3	-	49.2	73.9	24.7	Floor noise
Vert	7386.000	PK	41.3	36.3	8.9	32.2	-	54.3	73.9	19.6	Floor noise
Vert	9848.000	PK	41.3	38.8	10.1	33.0	-	57.2	73.9	16.7	Floor noise
Vert	2483.500	AV	44.4	27.8	6.8	32.4	0.3	46.9	53.9	7.0	*1)
Vert	4924.000	AV	30.8	32.0	8.1	31.3	-	39.6	53.9	14.3	Floor noise
Vert	7386.000	AV	31.9	36.3	8.9	32.2	-	44.9	53.9	9.0	Floor noise
Vert	9848.000	AV	31.9	38.8	10.1	33.0	-	47.8	53.9	6.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-A-R1
Page : 47 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 17, 2017
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Takafumi Noguchi

(1 GHz - 10 GHz) Mode Tx 11n-20 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1
Page : 48 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission (Plot data, Worst case)

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.3 No.3

October 17, 2017 October 20, 2017 October 28, 2017 November 21, 2017 21 deg. C / 59 % RH Temperature / Humidity 23 deg. C / 60 % RH 23 deg. C / 58 % RH 23 deg. C / 45 % RH Takafumi Noguchi Takafumi Noguchi Shuichi Ohyama Engineer Takafumi Noguchi (1 GHz - 10 GHz) (10 GHz - 18 GHz) (18 GHz - 26.5 GHz) (Below 1 GHz)

Mode Tx 11g 2437 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 49 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 5, 2017
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Koji Yamamoto
Mode Tx BT LE 2402 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	40.000	QP	22.7	14.5	7.3	32.2	-	12.3	40.0	27.7	
Hori	100.000	QP	22.6	10.0	8.2	32.2	-	8.6	43.5	34.9	
Hori	150.000	QP	22.1	14.9	8.7	32.1	-	13.6	43.5	29.9	
Hori	300.000	QP	22.1	13.4	10.0	32.0	-	13.5	46.0	32.5	
Hori	500.000	QP	22.0	17.7	11.3	32.0	-	19.0	46.0	27.0	
Hori	700.000	QP	22.0	19.7	12.5	32.1	-	22.1	46.0	23.9	
Hori	2390.000	PK	41.2	27.7	6.7	32.4	-	43.2	73.9	30.7	
Hori	4804.000	PK	41.4	31.6	9.0	31.4	-	50.6	73.9	23.3	Floor noise
Hori	7206.000	PK	41.6	36.0	10.4	32.1	-	55.9	73.9	18.0	Floor noise
Hori	9608.000	PK	41.3	38.5	10.9	32.9	-	57.8	73.9	16.1	Floor noise
Hori	2390.000	AV	33.4	27.7	6.7	32.4	2.0	37.4	53.9	16.5	*1)
Hori	4804.000	AV	31.1	31.6	9.0	31.4	-	40.3	53.9	13.6	Floor noise
Hori	7206.000	AV	31.3	36.0	10.4	32.1	-	45.6	53.9	8.3	Floor noise
Hori	9608.000	AV	31.3	38.5	10.9	32.9	-	47.8	53.9	6.1	Floor noise
Vert	40.000	QP	22.7	14.5	7.3	32.2	-	12.3	40.0	27.7	
Vert	100.000	QP	22.6	10.0	8.2	32.2	-	8.6	43.5	34.9	
Vert	150.000	QP	22.1	14.9	8.7	32.1	-	13.6	43.5	29.9	
Vert	300.000	QP	22.1	13.4	10.0	32.0	-	13.5	46.0	32.5	
Vert	500.000	QP	22.0	17.7	11.3	32.0	-	19.0	46.0	27.0	
Vert	700.000	QP	22.0	19.7	12.5	32.1	-	22.1	46.0	23.9	
Vert	2390.000	PK	41.4	27.7	6.7	32.4	-	43.4	73.9	30.5	
Vert	4804.000	PK	41.4	31.6	9.0	31.4	-	50.6	73.9	23.3	Floor noise
Vert	7206.000	PK	41.6	36.0	10.4	32.1	-	55.9	73.9	18.0	Floor noise
Vert	9608.000	PK	41.3	38.5	10.9	32.9		57.8	73.9	16.1	Floor noise
Vert	2390.000	AV	33.3	27.7	6.7	32.4	2.0	37.3	53.9	16.6	*1)
Vert	4804.000	AV	31.1	31.6	9.0	31.4	-	40.3	53.9	13.6	Floor noise
Vert	7206.000	AV	31.3	36.0	10.4	32.1	-	45.6	53.9	8.3	Floor noise
Vert	9608.000	AV	31.3	38.5	10.9	32.9	-	47.8	53.9	6.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

20dBc Da	200BC Data Sneet													
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark				
				Factor										
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]					
Hori	2402.000	PK	98.8	27.7	6.8	32.4	100.9	-	-	Carrier				
Hori	2400.000	PK	38.0	27.7	6.8	32.4	40.1	80.9	40.8					
Vert	2402.000	PK	95.4	27.7	6.8	32.4	97.5	-	-	Carrier				
Vert	2400.000	PK	36.3	27.7	6.8	32.4	38.4	77.5	39.1					

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amprifier)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-A-R1
Page : 50 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11932168H
Test place Ise EMC Lab.
Semi Anechoic Chamber No.3
Date October 5, 2017

Temperature / Humidity
Engineer
Mode

23 deg. C / 45 % RH
Koji Yamamoto
Tx BT LE 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 51 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 5, 2017
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Koji Yamamoto
Mode Tx BT LE 2440 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	40.000	QP	22.7	14.5	7.3	32.2	-	12.3	40.0	27.7	
Hori	100.000	QP	22.6	10.0	8.2	32.2	-	8.6	43.5	34.9	
Hori	150.000	QP	22.1	14.9	8.7	32.1	-	13.6	43.5	29.9	
Hori	300.000	QP	22.1	13.4	10.0	32.0	-	13.5	46.0	32.5	
Hori	500.000	QP	22.0	17.7	11.3	32.0	-	19.0	46.0	27.0	
Hori	700.000	QP	22.0	19.7	12.5	32.1	-	22.1	46.0	23.9	
Hori	4880.000	PK	40.9	31.9	9.0	31.4	-	50.4	73.9	23.5	Floor noise
Hori	7320.000	PK	41.5	36.2	10.4	32.2	-	55.9	73.9	18.0	Floor noise
Hori	9760.000	PK	41.4	38.7	11.0	33.0	-	58.1	73.9	15.8	Floor noise
Hori	4880.000	AV	32.0	31.9	9.0	31.4	-	41.5	53.9	12.4	Floor noise
Hori	7320.000	AV	31.4	36.2	10.4	32.2	-	45.8	53.9	8.1	Floor noise
Hori	9760.000	AV	31.1	38.7	11.0	33.0	-	47.8	53.9	6.1	Floor noise
Vert	40.000	QP	22.7	14.5	7.3	32.2	-	12.3	40.0	27.7	
Vert	100.000	QP	22.6	10.0	8.2	32.2	-	8.6	43.5	34.9	
Vert	150.000	QP	22.1	14.9	8.7	32.1	-	13.6	43.5	29.9	
Vert	300.000	QP	22.1	13.4	10.0	32.0	-	13.5	46.0	32.5	
Vert	500.000	QP	22.0	17.7	11.3	32.0	-	19.0	46.0	27.0	
Vert	700.000	QP	22.0	19.7	12.5	32.1	-	22.1	46.0	23.9	
Vert	4880.000	PK	40.9	31.9	9.0	31.4	-	50.4	73.9	23.5	Floor noise
Vert	7320.000	PK	41.5	36.2	10.4	32.2	-	55.9	73.9	18.0	Floor noise
Vert	9760.000	PK	41.4	38.7	11.0	33.0	-	58.1	73.9	15.8	Floor noise
Vert	4880.000	AV	32.0	31.9	9.0	31.4	-	41.5	53.9	12.4	Floor noise
Vert	7320.000	AV	31.4	36.2	10.4	32.2	-	45.8	53.9	8.1	Floor noise
Vert	9760.000	AV	31.1	38.7	11.0	33.0	-	47.8	53.9	6.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 52 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Radiated Spurious Emission

Report No. 11932168H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 5, 2017
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Koji Yamamoto
Mode Tx BT LE 2480 MHz

Polarity	Frequency	Detector	Reading		Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	40.000	QP	22.7	14.5	7.3	32.2	-	12.3	40.0	27.7	
Hori	100.000	QP	22.6	10.0	8.2	32.2	-	8.6	43.5	34.9	
Hori	150.000	QP	22.1	14.9	8.7	32.1	-	13.6	43.5	29.9	
Hori	300.000	QP	22.1	13.4	10.0	32.0	-	13.5	46.0	32.5	
Hori	500.000	QP	22.0	17.7	11.3	32.0	-	19.0	46.0	27.0	
Hori	700.000	QP	22.0	19.7	12.5	32.1	-	22.1	46.0	23.9	
Hori	2483.500	PK	42.1	27.8	6.8	32.4	-	44.3	73.9	29.6	
Hori	4960.000	PK	40.9	32.1	9.1	31.3	-	50.8	73.9	23.1	Floor noise
Hori	7440.000	PK	41.8	36.4	10.3	32.2	-	56.3	73.9	17.6	Floor noise
Hori	9920.000	PK	41.5	38.9	11.0	33.1	-	58.3	73.9	15.6	Floor noise
Hori	2483.500	AV	34.0	27.8	6.8	32.4	2.0	38.2	53.9	15.7	*1)
Hori	4960.000	AV	32.1	32.1	9.1	31.3	-	42.0	53.9	11.9	Floor noise
Hori	7440.000	AV	31.5	36.4	10.3	32.2	-	46.0	53.9	7.9	Floor noise
Hori	9920.000	AV	30.8	38.9	11.0	33.1	-	47.6	53.9	6.3	Floor noise
Vert	40.000	QP	22.7	14.5	7.3	32.2	-	12.3	40.0	27.7	
Vert	100.000	QP	22.6	10.0	8.2	32.2	-	8.6	43.5	34.9	
Vert	150.000	QP	22.1	14.9	8.7	32.1	-	13.6	43.5	29.9	
Vert	300.000	QP	22.1	13.4	10.0	32.0	-	13.5	46.0	32.5	
Vert	500.000	QP	22.0	17.7	11.3	32.0	-	19.0	46.0	27.0	
Vert	700.000	QP	22.0	19.7	12.5	32.1	-	22.1	46.0	23.9	
Vert	2483.500	PK	41.7	27.8	6.8	32.4	-	43.9	73.9	30.0	
Vert	4960.000	PK	40.9	32.1	9.1	31.3	-	50.8	73.9	23.1	Floor noise
Vert	7440.000	PK	41.8	36.4	10.3	32.2	-	56.3	73.9	17.6	Floor noise
Vert	9920.000	PK	41.5	38.9	11.0	33.1	-	58.3	73.9	15.6	Floor noise
Vert	2483.500	AV	33.7	27.8	6.8	32.4	2.0	37.9	53.9	16.0	*1)
Vert	4960.000	AV	32.1	32.1	9.1	31.3	-	42.0	53.9	11.9	Floor noise
Vert	7440.000	AV	31.5	36.4	10.3	32.2	-	46.0	53.9	7.9	Floor noise
Vert	9920.000	AV	30.8	38.9	11.0	33.1	-	47.6	53.9	6.3	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11932168H-A-R1
Page : 53 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 11932168H
Test place Ise EMC Lab.
Semi Anechoic Chamber Date October 5, 2017
Temperature / Humidity Engineer Koji Yamamoto
Mode Tx BT LE 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1
Page : 54 of 65
Issued date : February 26, 2018
FCC ID : VPYLB1NX

Radiated Spurious Emission (Plot data, Worst case)

Report No. 11932168H
Test place Ise EMC Lab.
Semi Anechoic Chamber No.3
Date October 5, 2017
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Koji Yamamoto

Engineer Humidity 23 deg. C / 45 % RH Koji Yamamoto Mode Tx BT LE 2402 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 55 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date October 19, 2017

Temperature / Humidity 24 deg. C / 53 % RH

Engineer Ryota Yamanaka

Mode Tx 11g 48Mbps 2437MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	13.46	-89.8	0.80	9.8	2.0	1	-77.2	300	6.0	-15.9	45.0	60.9	
Ī	3110.00	-89.6	0.80	9.8	2.0	1	-76.9	30	6.0	4.3	29.5	25.2	

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 11932168H-A-R1 Page : 56 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date September 21, 2017
Temperature / Humidity 26 deg. C / 47 % RH
Engineer Takafumi Noguchi
Mode BT LE 2402MHz

	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	11.23	-101.9	0.80	9.8	2.0	1	-89.3	300	6.0	-28.0	46.5	74.5	
	175.00	-92.1	0.80	9.8	2.0	1	-79.5	300	6.0	-18.2	22.7	40.9	

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 11932168H-A-R1 Page : 57 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date September 21, 2017
Temperature / Humidity 26 deg. C / 47 % RH
Engineer Takafumi Noguchi
Mode BT LE 2440 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.35	-101.3	0.80	9.8	2.0	1	-88.6	300	6.0	-27.4	46.5	73.9	
274.00	-91.2	0.80	9.8	2.0	1	-78.5	300	6.0	-17.3	18.8	36.1	

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 11932168H-A-R1 Page : 58 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

Date September 21, 2017
Temperature / Humidity 26 deg. C / 47 % RH
Engineer Takafumi Noguchi
Mode BT LE 2480 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
ı			Loss	Loss	Gain*	(Number			bounce	(field strength)			
L	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	11.82	-101.4	0.80	9.8	2.0	1	-88.7	300	6.0	-27.5	46.1	73.6	
I	896.00	-91.4	0.80	9.8	2.0	1	-78.8	30	6.0	2.5	28.5	26.0	

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Test report No. : 11932168H-A-R1 Page : 59 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Power Density

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11932168H

DateOctober 19, 2017November 2, 2017December 27, 2017Temperature / Humidity24 deg. C / 53 % RH25 deg. C / 50 % RH25 deg. C / 31 % RHEngineerRyota YamanakaKen FujitaTakafumi Noguchi

Mode Tx

11b

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412	-19.24	1.70	10.10	-7.44	8.00	15.44
2437	-19.04	1.70	10.10	-7.24	8.00	15.24
2462	-18.99	1.70	10.10	-7.19	8.00	15.19

11g

118						
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412	-27.37	0.80	10.05	-16.52	8.00	24.52
2437	-26.83	0.80	10.05	-15.98	8.00	23.98
2462	-27.50	0.80	10.05	-16.65	8.00	24.65

11n-20

	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
			Loss	Loss			
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
	2412	-27.77	0.80	10.05	-16.92	8.00	24.92
Ī	2437	-27.11	0.80	10.05	-16.26	8.00	24.26
	2462	-26.26	0.80	10.05	-15.41	8.00	23.41

BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402	-17.51	0.80	10.05	-6.66	8.00	14.66
2440	-17.73	0.80	10.05	-6.88	8.00	14.88
2480	-19.87	0.80	10.05	-9.02	8.00	17.02

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 60 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 61 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11932168H-A-R1 Page : 62 of 65

Issued date : February 26, 2018 FCC ID : VPYLB1NX

APPENDIX 2: Test instruments

Test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE/CE	2017/10/31 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE/CE	2017/01/20 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE/CE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE/CE	-
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	RE/CE	2017/08/22 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE/CE	2017/08/22 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2016/11/23 * 12
MLA-22	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-191	RE	2017/01/26 * 12
MCC-51	Coaxial cable	UL Japan	-	-	RE	2017/07/12 * 12
MAT-98	Attenuator	KEYSIGHT	8491A	MY52462349	RE	2016/12/05 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2017/03/27 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	RE	2017/01/19 * 12
MLS-23	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	CE(EUT)	2017/07/24 * 12
MCC-112	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W(10m)/SFM1 41(3m)/sucoform14 1-PE(1m)/421-010(1 .5m)/RFM-E321(Sw itcher)	-/00640	CE	2017/07/12 * 12
MAT-66	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	=	CE	2016/12/24 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2017/05/22 * 12
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) / 1405S074(5m)	RE	2017/05/29 * 12
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2017/03/21 * 12
MHA-16	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170306	RE	2017/05/14 * 12
MHF-25	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	RE	2017/09/22 * 12
MSA-16	Spectrum Analyzer	Agilent	E4440A	MY46186390	AT	2017/09/20 * 12
MAT-58	Attenuator(10dB)	Suhner	6810.19.A	=	AT	2016/12/15 * 12
MMM-17	DIGIITAL HITESTER	Hioki	3805	070900530	AT	2017/01/19 * 12
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	AT	2016/12/13 * 12
MOS-29	Thermo-Hygrometer	Custom	CTH-201	2901	AT	2017/01/20 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	AT	2017/01/19 * 12
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	AT	2017/11/07 * 12
MPM-13	Power Meter	Anritsu	ML2495A	0824014	AT	2017/11/16 * 12
MPSE-18	Power sensor	Anritsu	MA2411B	0738174	AT	2017/11/16 * 12
MCC-170	Microwave Cable	Junkosha	MWX221	1409S493	AT	2017/03/13 * 12
MAT-20	Attenuator(10dB)(above 1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-110	-	AT	2017/12/04 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN