Государственный астрономический институт имени П.К. Штернберга Московский государственный университет имени М.В. Ломоносова Физический факультет

Специальный астрономический практикум

Основные понятия космологии и моделирование поведения масштабного фактора

Contents

Введение	1
Теория	1
Метрики многообразий	1
Метрика FRW	2
Постоянная Хаббла	2
Космологическое красное смещение	3
Приближение идеальной жидкости	4
Уравнение непрерывности	Ę
Уравнения Фридмана	6
Космологические решения	7
Практика	ę
Задача 1	Ć
Задача 2	11

Введение

Одним из самых фундаментальных направлений в современной астрономии является физическая космология.

Космология как учение о Вселенной является одним из самых древних направлений человеческой мысли: вопрос о происхождении окружающего мира, его нынешнем статусе и последующей судьбе закономерно возникает у любого разумного субъекта.

В начале XX века к мифологическим и философским моделям Вселенной добавилась физическая. Основным фундаментом для физической космологии стало развитие Общей теории относительности Альбертом Эйнштейном (далее - OTO), в особенности публикации 1916-17 годов. Статью "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" ("Космологические соображения в общей теории относительности") можно считать первой публикацией по физической космологии. Затем, в 20-х годах, Александр Фридман предложил теорию расширяющейся Вселенной, которая задала направление дальнейших исследований.

Теория

Метрики многообразий

Прежде чем начать изучать эволюцию материи в пространстве, необходимо изучить свойства самого пространства. Из наблюдений на больших масштабах, мы можем судить об <u>однородности</u> и <u>изотропности</u> пространства. Данный факт ложится в основание космологического принципа.

Математически доказано, что при выборе размерности пространства $\dim(X) = 3$, существует только $\underline{3}$ вида однородного и изотропного множества точек (<u>многообразия</u>): плоскость \mathbb{R}^3 , 3-сфера \mathbb{S}^3 и 3-гиперболоид \mathbb{H}^3 . Эти многообразия отличаются друг от друга одним важным параметром - <u>кривизной</u>: для плоскости кривизна нулевая (евклидова геометрия), для сферы - положительна (риманова геометрия), для гиперболоида - отрицательна (геометрия Лобачевского).

Теперь необходимо определить математический объект, который задаёт расстояние между точками для данных многообразий - $\underline{\text{метрику}}$. Мы будем пользоваться обозначениями, такими же, как для интервала в ОТО (т.е. для расстояниями между событиями (точками) в 4-х мерном пространстве-времени). Проще всего дело обстоит с плоскостью \mathbb{R}^3 :

$$ds^2 = dx^2 + dy^2 + dz^2 (1)$$

Куда интереснее дело обстоит для сферы и гиперболоида. Для начала, опишем сферу через вложение в пространство большей размерности \mathbb{R}^4 :

$$ds^{2} \left[\mathbb{R}^{4} \right] = dR^{2} = dx^{2} + dy^{2} + dz^{2} + d\eta^{2} = dr^{2} + d\eta^{2}$$
 (2)

Отсюда:

$$\eta = -\frac{rdr}{\sqrt{R^2 - r^2}}\tag{3}$$

Для удобства работы со сферой переидём в сферическую систему координат: $(x, y, z) \to (r, \theta, \varphi)$

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \theta \end{cases}$$
 (4)

Переходя к дифференциальному представлению:

$$\begin{cases} dx = dr \sin \theta \cos \varphi + r \cos \theta \cos \varphi - r \sin \theta \sin \varphi \\ dy = dr \sin \theta \sin \varphi + r \cos \theta \sin \varphi + r \sin \theta \cos \varphi \\ dz = dr \cos \theta - r \sin \theta \end{cases}$$
 (5)

В этих выражениях первые члены суммы являются членами дифференциала по радиус-вектору , вторые - по углу θ , третьи - по углу φ (dr, $d\theta$ и $d\varphi$ соответственно). Перепишем метрику для сферы в сферических координатах:

$$ds^{2}[\mathbb{S}_{R}^{3}] = \frac{R^{2}}{R^{2} - r^{2}} dr^{2} + r^{2} \left(d\theta^{2} + \sin \theta^{2} d\varphi^{2} \right)$$
 (6)

Рассматривая единичную сферу R = 1:

$$ds^{2}[\mathbb{S}_{1}^{3}] = \frac{dr^{2}}{1 - r^{2}} + r^{2} \left(d\theta^{2} + \sin \theta^{2} d\varphi^{2} \right)$$
 (7)

Проделаем то же самое для гиперболоида \mathbb{H}^3 . Единственным отличием будет то, что, ввиду отрицательной кривизны гиперболоида, <u>сигнатура</u> его метрики (т.е. закон, по которому скалыдваются дифференциалы и считается скалярное произведение, а, значит, и расстояние между точками) будет не такой, как на сфере:

$$\operatorname{sn}(\mathbb{S}^3) = (+, +, +, +)$$
 (8)

$$\operatorname{sn}(\mathbb{H}^3) = (+, +, +, -) \tag{9}$$

Таким образом, получаем:

$$ds^{2}[\mathbb{H}_{R}^{3}] = \frac{R^{2}}{R^{2} + r^{2}}dr^{2} + r^{2}\left(d\theta^{2} + \sin\theta^{2}d\varphi^{2}\right)$$
(10)

$$ds^{2}[\mathbb{H}_{1}^{3}] = \frac{dr^{2}}{1+r^{2}} + r^{2} \left(d\theta^{2} + \sin \theta^{2} d\varphi^{2} \right) \tag{11}$$

Как видим, в знаменателе множителя при дифференциале радиус-вектора появился другой знак, связанный с другой сигнатурой. По своей форме, метрики для всех трёх многообразий очень похожи. Перепишем их в унифицированном виде:

$$ds^2 = \frac{dr^2}{1 - \kappa r^2} + r^2 \left(d\theta^2 + \sin \theta^2 d\varphi^2 \right)$$
(12)

где

$$\kappa = \begin{cases}
+1 = \mathbb{S}^3 \\
0 = \mathbb{R}^3 \\
-1 = \mathbb{H}^3
\end{cases}$$
(13)

Метрика FRW

Мы получили пространство для нашей Вселенной. Теперь, согласуясь с ОТО, нам необходимо получить пространство-время. В ОТО интервал, инвариантный относительно преобразований Лоренца, имеет вид:

$$ds^2 = c^2 dt^2 - dr^2$$
 или $ds^2 = -c^2 dt^2 + d\mathbf{r}^2$ (14)

где с - скорость света.

Выражение для пространственной части $d\mathbf{r}^2$ мы уже получили - (12),(13). Подставляем и получаем:

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2} \left(d\theta^{2} + \sin \theta^{2} d\varphi^{2} \right) \right]$$
(15)

где a(t) - это масштабный фактор, отвечающий за масштаб координатной сетки и её эволюцию в данной метрике. Выражение (15) называется метрикой FRW (метрика Фридмана-Робертсона-Уолкера).

Постоянная Хаббла

Выведем постоянную Хаббла чисто математически. Для этого, рассмотрим чисто прямолинейное движение в метрике FRW (смещение только вдоль r, без изменения θ и φ).

Определим физическое расстояние между объектами в метрике FRW как:

$$d_{phys} = a(t) \int_0^r \frac{dr}{\sqrt{1 - \kappa r^2}} \tag{16}$$

. Здесь мы имеем расстояние, которое мы измеряем функцией r. Нам необходимо перейти к ней из сопуствующей системы координат, т.е. систсемы координат одного из объектов. Пусть физическое расстоение отличается от расстояния в сопуствующей системе координат на величину a(t):

$$d_{ab}(t) = a(t)x(t) \tag{17}$$

Найдём скорость удаления объектов друг от друга:

$$v_{ab} = \dot{x}_{ab} = a(t)v + \dot{a}(t)x = a(t)v + \frac{\dot{a}(t)}{a(t)}a(t)x(t) = a(t)v + \frac{\dot{a}(t)}{a(t)}x_{ab}$$
(18)

Величина $\frac{\dot{a}}{a}$ связывает расстояние до объекта со скоростью его удаления (относительно другого объекта). Значение этой величины впервые было получено Эдвином Хабблом в 1929 году из наблюдений за галактиками:

$$H = \frac{\dot{a}}{a} \tag{19}$$

Космологическое красное смещение

Свет в ОТО движется по траектории, для которой выполняется условие

$$ds^2 = 0 (20)$$

Такие траектории называются светоподобными и являются <u>геодезическими</u>, т.е. кривыми наименьшей длины в искривлённом пространстве-времени. Рассмотрим чисто радиальное движение:

$$ds^{2} = 0 \Rightarrow cdt = \pm a(t) \frac{dr}{\sqrt{1 - \kappa r^{2}}}$$
(21)

По мере прохождения света через пространство, которое меняет свой масштаб по закону a(t), вместе с пространственной сеткой должна увеличиваться и длина волны фотона.

Для того, чтобы определить величину миграции длины в красную область, проинтегрируем уравнения при величинах $(t_0, t_1) \to (t_o + \delta t_0, t_1 + \delta t_1)$, где t_1 - время испускания сигнала из т. А, t_0 - время приёма сигнала в т. В, добавив промежуток между отправкой сигналами в δt_0 и промежутками приёма в δt_1 . Получим:

$$\begin{cases} c \int_{t_0}^{t_1} \frac{dt}{a(t)} = \int_0^r \frac{dr}{\sqrt{1 - \kappa r^2}} \\ c \int_{t_0 + \delta t_0}^{t_1 + \delta t_1} \frac{dt}{a(t)} = \int_0^r \frac{dr}{\sqrt{1 - \kappa r^2}} \end{cases}$$
(22)

Правые части равны ввиду того, что сигналы проходят одинаковые расстояния в пространестве (промежуток δt мал по сравнению со скоростью изменения масштабного фактора a(t), по крайней мере при стандартных условиях). Отсюда получаем:

$$\int_{t_0 + \delta t_0}^{t_1 + \delta t_1} \frac{dt}{a(t)} - \int_{t_0}^{t_1} \frac{dt}{a(t)} = 0 \Rightarrow \tag{23}$$

$$\Rightarrow \frac{\delta t_1}{a(t_1)} - \frac{\delta t_0}{a(t_0)} = 0 \tag{24}$$

Получаем условие на изменение промежутков испускания и приёма сигнала:

$$\delta t_0 = \frac{\delta t_1}{a(t_1)} \tag{25}$$

Относительно длины волны данное явление будет выглядеть так:

$$\begin{cases} \lambda_0 = c\delta t_0 \\ \lambda_1 = c\delta t_1 \end{cases} \tag{26}$$

Пользуясь формулой (25), получим:

$$\lambda_0 = \frac{a(t_0)}{a(t_1)} \lambda_1 \tag{27}$$

Отметим важный момент: вопреки массовому предубеждению, космологическое красное смещение <u>не</u> является разновидностью эффекта Доплера. Эффект Доплера появляется из-за от относительного движения объектов, в то время как космологическое красное смещение зависит не от относительного движения, а от уширения координатной сетки.

Приближение идеальной жидкости

Теперь мы можем полностью сфокусироваться на описании свойств материи в нашей модели Вселенной. Т.к. на расстояниях выше 10-100 Мпк галактики образуют однородную по распределению плотности структуру, мы будем аппроксимировать её моделями сплошной среды. Самая хорошо изученная модель из этого класса - модель идеальной жидности.

Параметрами, которыми описывается жидкость такого аида - это плотность $\rho(t)$ и плотность p(t). Если связать эти характеристики вместе, то мы получим *уравнение состояния*:

$$p = p(\rho) \tag{28}$$

В свою очередь, данные свойства материи могут зависеть от наличия релятивистских эффектов. Введём эту градацию: уравнение энергии для материи имеет вид

$$E^2 = m^2 c^4 + \mathbf{p}^2 c^2 \tag{29}$$

Для разных случаев имеем соотношения:

$$\begin{cases} pc \ll mc^2 \\ pc \gg mc^2 \end{cases} \Rightarrow \begin{cases} E \sim mc^2 \\ E \sim \mathbf{p}c \end{cases}$$
 (30)

Теперь найдём для этих видов материи уравнения состояния.

1) Нерелятивистский случай

Paccmotpum N частиц в объёме V. Плотность частиц записывается как:

$$\rho = \frac{N}{V} \tag{31}$$

Теперь нам необходимо выразить плотность через импульс. Введём функцию распределения частиц по импульсам:

$$\rho = \iiint n(\mathbf{p})d\mathbf{p} \tag{32}$$

Ввиду однородности, можем переписать (32) тройной интеграл в одинарный без потери общности (коэффициент 3 возникать не будет, ввиду того, что мы интегрируем на бесконечность):

$$\rho = \int_0^\infty n(\mathbf{p}) d\mathbf{p} \tag{33}$$

Теперь, нам нужно выразить уже давление через импульс, чтобы получить связь между давлением и плотностью через импульс как параметр.

Рассмотрим давление частиц на куб объёма V. Введём его как поток импульса на единичную площадь, в нашем случае - например, грань z куба. Тогда:

$$p = \int_0^\infty \Phi_z \mathbf{p}_z n(\mathbf{p}) d\mathbf{p} \tag{34}$$

. Ввиду изотропности, давление на все грани по осям (x, y, z) одинаково. Отсюда:

$$\Phi_z \mathbf{p}_z = \frac{1}{3} (\Phi, \mathbf{p}) \tag{35}$$

Тогда:

$$p = \frac{1}{3} \int_0^\infty (\Phi, \mathbf{p}) n(\mathbf{p}) d\mathbf{p} = \frac{1}{3} \int_0^\infty m(\Phi, \mathbf{v}) n(\mathbf{p}) d\mathbf{p} = \frac{1}{3} \int_0^\infty m \mathbf{v}^2 n(\mathbf{p}) d\mathbf{p}$$
(36)

Избавляясь от интеграла через усреднение по скоростям, получим:

$$\frac{Nm}{3V}\mathbf{v}^2 = \frac{Nmc^2}{3V}\frac{\langle \mathbf{v}^2 \rangle}{c^2} \approx 0 \tag{37}$$

Получаем первое уравнение состояния:

$$p_{\rm m}(\rho) = 0 \tag{38}$$

Данный вид материи в русском сегменте называется <u>пылью</u> (в англ. <u>matter</u>) - это атомы водора, галактический газ, тёмная материя и т.д.

2) Релятивистский случай

Отличие здес состоит в том, что мы будем усреднять не по скоростям, а по энергии, поскольку для релятивистских частиц энергия в большей мере зависит не от массы покоя mc^2 , а от импульса $(E \sim pc)$:

$$p = \frac{1}{3} \int_0^\infty \mathbf{v} \mathbf{p} n(\mathbf{p}) d\mathbf{p} \approx \frac{1}{3} \int_0^\infty c \mathbf{p} n(\mathbf{p}) d\mathbf{p} = \frac{1}{3} \int_0^\infty E n(\mathbf{p}) = \frac{N \langle E \rangle}{3V} = \frac{1}{3} \rho$$
 (39)

Получаем второе уравнение состояния:

$$p_r(\rho) = \frac{1}{3}\rho \tag{40}$$

Данный вид материи называется $\underline{paduaqueŭ}$ (в англ. $\underline{radiation}$). Данному уравнению состояния подчиняется реликтовое излучение (СМВ), гравитационные волны и нейтрино.

В общем виде, для материи в приближении идеальной жидкости уравнение состояния можно записать в виде:

$$\boxed{p = \omega \rho} \tag{41}$$

Ограничение на ω можно получить ислувия на скорость звука в жидкости:

$$c_s^2 = c^2 \frac{dp}{d\rho} = \omega c^2 \Rightarrow \boxed{\omega \le 1}$$
 (42)

Уравнение непрерывности

Уравнение непрерывности является космологическим аналогом закона сохранения энергии. В курсе теоретической механики мы познакомились с понятием лагранжева объёма сплошной среды. Для него выполняется условие:

$$\frac{dm}{dt} = 0 (43)$$

При этом:

$$m = \int_{V} \rho d^3x \tag{44}$$

Область V=V(t) меняется: перемещается и деформируется. Чтобы перейти к полевым переменным, используем теорему о среднем:

$$m = \int_{V} \rho(\mathbf{r}, t) d^{3}x = V \rho(\overline{\mathbf{r}}, t)$$
(45)

Поделим обе части на $\frac{1}{v}\frac{d}{dt}$ и перейдём к пределу:

$$\lim_{V \to 0} \frac{1}{V} \frac{dV}{dt} = (\nabla, \mathbf{v}) \tag{46}$$

Комбинируя уравнения (45) и (46), получим уравнение непрерывности в общем виде:

$$\boxed{\frac{d\rho}{dt} + \rho(\nabla, \mathbf{v}) = 0}$$
(47)

Для наглядности, выведем космологическое уравнение непрерывности из I закона термодинамиик:

$$dE = -pdV (48)$$

Отсюда:

$$\frac{dE}{dt} = -p\frac{dV}{dt} \tag{49}$$

Здесь используется физический объем пространства V. Свяжем его с координатным объёмом V_0 :

$$V = a^3(t)V_0 (50)$$

Дифференциируя, получаем:

$$\frac{dV}{dt} = 3a^2 \dot{a}V_0 \tag{51}$$

$$\frac{dE}{dt} = \frac{d}{dt}\rho V = \frac{d}{dt}\rho a^3(t)V_0 = \dot{\rho}a^3V_0 + 3\rho a^2\dot{a}V_0$$

$$\tag{52}$$

Поделив (51) и (52) на a^3 и подставив в (49), получим:

$$\boxed{\dot{\rho} + 3H(p+3\rho) = 0} \tag{53}$$

В предыдущей главе мы получили уравнение состояния в общем виде. Вместе с космологическим уравнением непрерывности они образуют систему:

$$\begin{cases} \dot{\rho} + 3H(p+3\rho) = 0\\ p = \omega\rho \end{cases}$$
 (54)

из которой, методом разделения переменных, мы получим зависимость плотности от времени:

$$\rho(t) = \rho_0 a(t)^{-3(1+\omega)}$$
(55)

Подставляя параметры для разных типов материи, получим уравнения:

$$\begin{cases}
\rho_m(t) = \frac{\rho_0}{a^3(t)}, \ \omega = 0 \\
\rho_r(t) = \frac{\rho_0}{a^4(t)}, \ \omega = \frac{1}{3}
\end{cases}$$
(56)

Если внимательно посмотреть на уравнения, то следует, что во Вселенной была эпоха, когда плотность радиации была больше плотности материи.

Уравнения Фридмана

Теперь, когда мы изучили кинематику частиц во Вселенной, нам нужно перейти к их динамике. Честным способом вывод динамических уравнений должен осуществляться через решение уравнений Эйнштейна в метрике FRW

$$R_{\mu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^2} T_{\mu\nu} \tag{57}$$

Данный вывод слишком сложен, поэтому мы воспользуемся другим, эврестическим методом.

Пусть Вселенная представляет из себя шар радуса S. Рассмотрим частицу массой m внутри этого шара. Запишем для неё уравнения Ньютона:

$$\begin{cases} \nabla^2 \Phi = \frac{4\pi G}{c^2} \rho \\ F = -m \nabla \Phi \end{cases}$$
 (58)

где Ф - гравитационный потенциал. Проинтегрируем уравнение по всему объёму. В силу теоремы Стокса:

$$\oint_{\Sigma} \nabla \Phi d\sigma = \frac{4\pi G}{c^2} \int_{V} \rho dV \tag{59}$$

В свою очередь:

$$\begin{cases}
\nabla \Phi(r) = \frac{GM(r)}{r^2} \\
M(r) = \frac{4\pi r^3}{3c^2 \rho}
\end{cases}$$
(60)

Подставляя выражения (60) в систему (58) с учетом (59), получаем:

$$m\ddot{r} = -\frac{GmM(r)}{r^2} \tag{61}$$

Умножим уравнение (61) на \dot{r} и проинтегрируем:

$$\frac{\dot{r}^2}{2} = \frac{GM(r)}{r} \tag{62}$$

Учитывая, что $r = a(t)r_0$, продифференциируем:

$$\frac{1}{2}\dot{a}^2r_0^2 - \frac{4\pi}{3c^2}\rho a^2r_0^2 = \text{const} = \alpha \tag{63}$$

Умножим обе части на $\frac{2}{a^2r_a^2}$ и получим:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\rho + \frac{2\alpha}{r_0^2 a^2} \tag{64}$$

где α имеет вид

$$\alpha = -\frac{\kappa c^2 r_0^2}{2R^2} \tag{65}$$

В конечном итоге, получаем ypashenue $\Phi pudмана$

$$H^{2} = \frac{8\pi G}{3c^{2}}\rho - \frac{\kappa c^{2}}{R^{2}a^{2}}$$
 (66)

Космологические решения

Получив основные результаты относительно свойств материи, мы можем получить <u>эволюцию</u> масштабного фактора во времени, в зависимости от того, каким видом материи заполнена рассматриваемая нами Вселенная. Для этого достаточно объединить (41),(53) и (66) в систему:

$$\begin{cases} H^{2} = \frac{8\pi G}{3c^{2}}\rho - \frac{\kappa c^{2}}{R^{2}a^{2}} \\ \dot{\rho} + 3H(p + 3\rho) = 0 \\ p = \omega\rho \end{cases}$$
(67)

1) <u>Плоские вселенные</u> ($\kappa = 0$)

$$H^2 = \frac{8\pi G}{3c^2} \frac{\rho}{a^{3(1+\omega)}} \tag{68}$$

Решая д.у. методом разделения переменных, получим:

$$a(t) = \left(\frac{t}{t_0}\right)^{\frac{2}{3(1+\omega)}} \tag{69}$$

1.1) Пыль (Вселенная Эйнштейна-де-Ситтера)

$$a_m^{\mathbb{R}}(t) = \left(\frac{t}{t_0}\right)^{\frac{2}{3}} \tag{70}$$

1.2) Радиация

$$a_r^{\mathbb{R}}(t) = \left(\frac{t}{t_0}\right)^{\frac{1}{2}} \tag{71}$$

2) Кривые вселенные ($\kappa \neq 0$)

$$H^2 = -\frac{\kappa c^2}{R^2 a^2} \tag{72}$$

Из уравнения Фридмана следует, что такая Вселенная ведёт себя как плоская с материей $\omega=-\frac{1}{3}$ (Вселенная \underline{Munha}):

$$a_{\omega}^{\mathbb{H}/\mathbb{S}} = \frac{t}{t_0} \tag{73}$$

Резюмируя:

$$\begin{cases} \omega = 0 \to a(t) \propto t^{\frac{2}{3}} \\ \omega = \frac{1}{3} \to a(t) \propto t^{\frac{1}{2}} \\ \omega = -\frac{1}{3} \to a(t) \propto t \end{cases}$$

$$(74)$$

Практика

ЧАСТЬ 1: ОБЯЗАТЕЛЬНАЯ

Задача 1: Нахождение красного смещения по спектру объекта (1 балл)

В данном упражнении Вам необходимо определить красное смещение линий в спектре астрономического объекта.

В качестве примера представлено 8 объектов, достаточно удалённых, чтобы красное смещение можно было считать космологическим.

Как известно, красное смещение определяется формулой:

$$z = \frac{\lambda_{obs} - \lambda_{lab}}{\lambda_{lab}} = \frac{\lambda_{obs}}{\lambda_{lab}} - 1 \tag{75}$$

Рассмотрим задачу на конкретном примере. Дан объект:

Figure 1: Галактика [Ra, Dec] = [142.762485722253, 28.5431078946331]

Его спектр имеет вид:

Figure 2: Спектр галактики

На спектре мы видим различные пики, соответствующие излучению различных элементов. Нас будут интересовать линии серии Бальмера H_{β} и дублет OIII, поскольку с ними удобно работать. Более красная линия дублета имеет пик выше, для O_{III} мы будем использовать её.

Из таблицы .CSV (не представленной в примере) для данного спектра, мы получим их длины волн:

$$\lambda(H_{\beta}) = 4991.143 \text{ Å}, \ \lambda(O_{III}) = 5140.436 \text{ Å}$$

В качестве референсных линий можете воспользоваться данными значениями:

·				
Line	Air	Vacuum		
H-beta	4861.325	4862.683		
[O III]	4958.911	4960.295		
[O III]	5006.843	5008.239		
[N II]	6548.05	6549.86		
H-alpha	6562.801	6564.614		
[N II]	6583.45	6585.27		
[S II]	6716.44	6718.29		
[S II]	6730.82	6732.68		

Air and Vacuum Wavelength of some Common Transitions

Figure 3: Лабораторные значения длины волн различных линий

Таким образом, пользуясь формулой (75), для данной галактики получим:

$$z \approx 0.02639$$

Особо внимательные студенты могли заметить, что в шапке графика присутствует значение красного смещения, вычисленное автоматически при создании графика:

$$z = 0.02635 \pm 0.00001$$

Как видим, мы, пользуясь только калькулятором и спектром, смогли с точностью до 4-го знака после запятой вычислить красное смещение объекта. Расхождение наших подсчетов с точным значением вызвано искажением длины волны при прохождении её сквозь атмосферу. Если провести оценку точности, то, с нашими ошибками, мы можем определить расстояние до объекта с погрешностью в несколько сотен тысяч световых лет. В космологических масштабах это очень точное измерение - ошибка сравнима с диаметром Млечного пути. Задание:

Перейдите по данной ссылке:

В данной директории находится 8 таблиц .CSV со спектрами разных объектов.

Вам необходимо:

- 1) Построить графическое изображение спектров
- 2) Отождествить на спектре линии излучения H_{β} и дублета OIII
- 3) Вычислить для объекта красное смещение
- 4) Составить таблицу [Номер объекта, $\lambda(\mathbf{H}_{\beta}), \; \lambda(\mathbf{O_{III}^{right}}), \; \mathbf{z}]$

По итогу упражнения необходимо представить: графики (8 шт.), таблица (1 шт.)

Задача 2: Определение параметров Вселенной в заданный момент времени (1 балл)

Вспомним формулу (27). В качестве соглашения, мы можем принять $a(t_0) = 1$ (нормируем значения масштабного фактора на его современное значение).

Поскольку в данный момент времени мы можем пользоваться приближением Вселенной с доминированием пыли, по формуле (70) мы можем определить момент времени, в который был испущен свет от объекта. Для этого произведём тривиальные действия - из (27) получаем:

$$\lambda_0 = \frac{\lambda_1}{a(t_1)} \Rightarrow a(t_1) = \frac{\lambda_1}{\lambda_0} \tag{76}$$

<u>$[BAMHO]$</u> не путаитесь: t_0 время <u>$npuema$</u> сигнала, а t_1 - время <u>$ucnyckahux$</u> . Нумерация произведена в соответствии с логическим порядком: нулевые коэффициенты относятся к настоящему времени.
BB
HIDDI(ODIII)

Подставляя в (70), получим:

$$\frac{\lambda_1}{\lambda_0} = \left(\frac{t_1}{t_0}\right)^{\frac{2}{3}} \tag{77}$$

Преобразовывая, находим время:

$$t_1 = t_0 \sqrt{\left(\frac{\lambda_1}{\lambda_0}\right)^3} \tag{78}$$

Теперь посчитаем, какое расстояние прошёл свет с момента, когда его испустила галактика. Считая скорость света постоянной в каждой точки пути, получим:

$$L = c\Delta t = c \left(t_0 - t_1 \right) = \left(1 - \sqrt{\left(\frac{\lambda_1}{\lambda_0} \right)^3} \right) c t_0$$
 (79)

Если пользоваться переводом отношения длин волн в красное смещение:

$$1 + z = \frac{1}{a(t_1)} \tag{80}$$

то, мы получим:

$$L = \left(1 - \sqrt{\frac{1}{(1+z)^3}}\right)ct_0 \tag{81}$$

— разобраться в расстоянии————-