Probability and Counting Statistics 110 Lecture 1
Words, Sentences, Clarity, honesty
applications.
1 History: Mosteller-Wallace Federalist papers (History of U.
1) Govt: IQSS (Harvard Institute of or Quantitative Social Science)
Qumbling - the historical roots of the subject are exactly in games of chances - gambling Fermat-Pascal (1650's)
exactly in games of chances - gambling
Fermat-Pascal (1650's)
(V) Life - statistics is the logic of uncertainty (matho is the
10gic of certainty)
probability and Statistics are how we quantify and update our beliefs and deal with uncertainty.
probability and Statistics are how we quantify
and update our beliefs and deal with uncertainty.
A sample space is the set of all possible outcomes of an
experiment.
An event is a subset of the sample space of (A)
Naive definition of Probability
(Only rose this when we have strong justification for doing so)
for doing so)
$P(A) = \frac{\#favourable\ outcomes\ to\ A}{}$
event # possible outcomes
Assumptions - Att
(1) finite sample space
Reasonable assumption in some
problems where we have some Kind of
Symmetry.

Counting Multiplication Rule: If we have an experiment with na possible outcomes, and for each outcome of 1st explained there are no outcomes for 2nd expt, ..., for each outcome of (75-1)th expt. there are no outcomes for oth experiment, then overall there are ninz ... hr - in possible outcomes. Example ice cream : > 3 flavours (f1, f2, f3) 2 type of cones (C1, C2) = 2x3 (Choose cone first, flavour next) = 3x2 (Choose flavour fint, cone next) - prob. of full house of pocker, 5 cand hand Individual Completely shuffled and all 5 cards are equally likely. 13C, x 4C2, x 4C2, CLoose 3 out 4. Cargo air full house full boat Compose observed 5 ranked from highest to boat full hand 3 cards of Irank, 2 carde of anotherrank AIKIDIJI 201918171 eg. 3 \$ 3 \$ 3 \$ 6,5,4,3,2 600 4 options 4 options Myps diamonds D hearts () spader

Binomial coefficient , o if Kyn $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, we could have chosen # of subsets of support in people Herning order, so we have to divide it by K! when order does not matter because we overcommed h.(n-1).(n-2)...(n-k+1)by that factor Sampling table: Choose Kobjects out of n anything and we howmany ways of doing that is a sample of are there to do it? Ordermatters Order doesn't matter Samplewith n^{K} M+K-1 replacement without replacement mck or (x) mp_K pick k times from a set of nobjects, where order doesnot matter, with replacement.
i.e., hve pick I object, place it back, then
pick another or same object, place it
back, we do this K times.