1	1. An isolated odontoprogenitor cell comprising a nucleic acid encoding an anti-
2	inflammatory polypeptide
1	2. The cell of claim 1, wherein said cell is derived from a periodontal ligament
1	3. The cell of claim 1, wherein said polypeptide is a cytokine.
1	4. The cell of claim 3, wherein said cytokine is interleukin-4 (IL-4).
1	5. The cell of claim 1, wherein said nucleic agid is operably linked to an
2	osteoblast-specific promoter.
1	6. The cell of claim 5, wherein said opteoblast-specific promoter is an
2	osteocalcin promoter.
1	7. The cell of claim 5, wherein said osteoblast-specific promoter is a bone
2	sialoprotein promoter.
1	8. The cell of claim 1, wherein expression of said nucleic acid is inducible.
1	9. The cell of claim 1, wherein expression of said nucleic acid is regulated by an
2	antibiotic compound.
1	10. The cell of claim 9, wherein said antibiotic compound is tetracycline or a
2	tetracycline analogue.
1	11. The cell of claim 10, wherein said tetracycline analogue is minocycline or
2	doxycycline.
1	12. A method of inhibiting osteolysis in a mammal, comprising introducing into
2	said mammal an isolated odontoprogenitor cell comprising a nucleic acid encoding an
3	anti-inflammatory polypeptide.

1	13.	The method of claim 12, wherein said mammal is suffering from or at risk of
2	develo	oping periodontitis.
1	14.	The method of claim 12, wherein said mammal is suffering from or at risk of
2	develo	oping alveolar bone loss due to periodontal disease.
1	15.	The method of claim 12, wherein said cell is administered to the periodontal
2	ligame	ent in the mandibular section of the jaw.
1	16.	An isolated osteoprogenitor cell comprising a nucleic acid encoding an anti-
2	inflam	matory polypeptide.
1	17.	The cell of claim 16, wherein said polypeptide is a cytokine.
1	18.	The cell of claim 17, wherein said cytokine is interleukin-4 (IL-4).
1	19.	The cell of claim 16, wherein said nucleic acid is operably linked to an
2	osteob	plast-specific promoter.
1	20.	The cell of claim 19, wherein said osteoblast-specific promoter is an
2	osteoc	alcin promoter.
1	21.	The cell of claim 19, wherein said osteoblast-specific promoter is an bone
2	sialopi	rotein promoter.
1	22.	The cell of claim 16, wherein expression of said nucleic acid is inducible.
1	23.	The cell of claim 16, wherein expression of said nucleic acid is regulated by
2	an anti	biotic compound.
1	24./	The cell of claim 23, wherein said antibiotic compound is tetracycline or a
2	tetracy	reline analogue.

		/
1	25.	The cell of claim 24, wherein said tetracycline analogue is minocycline or
2	doxyo	cycline.
1	26.	A method of inhibiting osteolysis in a mammal, comprising introducing into
2	said n	nammal an isolated osteoprogenitor cell comprising a nucleic acid encoding an
3	anti-ii	nflammatory polypeptide.
1	27.	The method of claim 26, wherein said cell is implanted into an articulating
2	joint o	of said mammal.
1	28.	The method of claim 26, wherein said cell is administered intratibially.
1	29.	The method of claim 26, wherein said cell is administered intrafemorally.
1	30.	The method of claim 26, wherein expression of said polypeptide is regulated
2	by an	antibiotic compound.
1	31.	The method of claim 26, wherein said antibiotic compound is tetracycline or a
2	tetrac	ycline analogue.
1	32.	The method of claim 31, further comprising administering minocycline to said
2	mamn	nal.
1	33.	The method of claim 30, wherein said antibiotic compound is administered
2	system	nically.
1	34.	The method of claim 26, further comprising administering an inhibitor of
2	cyclo	oxygenase II (COX-2).

1 35. /The method of claim 26, further comprising administering an inhibitor of tumor necrosis factor-alpha (TNFα).

1	36. The method of claim 26, wherein said mammal is suffering from or at risk of
2	developing rheumatoid arthritis.
1	37. The method of cliam 26, wherein said mammal is suffering from or at risk of
2	developing periapical or endechondral bone loss, artificial joint particle-induced
3	osteolysis, or osteolytic bone metastases.

2 2 2 2

38. A method of inducing differentiation of a bone marrow stromal cell, comprising contacting said cell with bone morphogenic protein-6.