Мехмат МГУ, 4ый курс, 7 семестр Практикум по ЭВМ, 2022

Задача 4 (метод Рунге-Кутта)

Лещенко Сергей

9 декабря 2022

1 Формулировка задачи

Построить разностную схему со вторым порядком аппроксимации и найти ее решение при различных значениях h и α :

$$u^{(3)} + \cos(x) \cdot u^{(1)} + u = g(x)$$

$$u(0) = u^{(1)}(0) = 0, u(1) = \alpha; \alpha = 1, 10$$

Исследовать построенную разностную схему на устойчивость и сходиомсть ${\bf 3}$ амечание

По согласованию с преподавателем в условия были внесены изменения: нужно решить данную задачу методом Рунге-Кутта. В качестве g(x) была взята

$$\frac{\alpha}{\sin(1)}(x\cdot\cos^2(x)-2\sin(x)-2x\cdot\cos(x))$$

2 Методология

2.1 Метод Рунге-Кутты

Исходное уравнение было преобразовано в систему с тремя линейными Д.У. первого порядка и тремя краевыми условиями:

$$\begin{cases} u_1^{(1)} = u_2 \\ u_2^{(1)} = u_3 \\ u_3^{(1)} = g(x) - \cos(x) \cdot u_2 - u_1 \\ u_1(0) = 0 \\ u_2(0) = 0 \\ u_1(1) = \alpha \end{cases}$$

Полученная система решалась многомерным методом Рунге-Кутты 4-ого порядка для уравнений вида y' = f(x,y). В рамках данного метода значения искомой функции в следующих узловых точках находились по формуле:

$$y_{i+1} = y_i + \frac{h}{6}(K_0 + 2K_1 + 2K_2 + K_3)$$

где коэффициенты расчитываются следующим образом:

$$K_0 = f(x_i, y_i)$$

$$K_1 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_0)$$

$$K_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1)$$

$$K_3 = f(x_i + h, y_i + hK_3)$$

причем h - величина шага сетки по х

В результате, было получено приблежение решения в точках(узлах)

$$0 = x_0 < x_1 < \dots < x_{n-1} = 1$$

равномерно распределенных на отрезке [0,1].

Чтобы применить метод Рунге-Кутты, надо было свести полученную систему к системе 3ex ОДУ первого порядка, разрешенной относительно производных (т е свести к задаче Коши). Для этого был использован метод Ньютона.

2.2 Метод Ньютона

Нужно было найти связь между перменными $u_1(1)$ и $u_3(0)$. Для этих целей была взята некоторая $u_3(0)=\beta$, применяя метод Рунге-Кутты к которой, значение функции $u_1(1)=d_{cent}\neq\alpha$.

Далее применили метод Рунге-Кутты к точкам $\beta+h$ и $\beta-h$ и получили точки d_r и d_l соответственно.

Затем, была найдена центральная производная в точке β :

$$cent_{dif} = \frac{d_r - d_l}{2 \cdot h}$$

Далее была построена касательная в точке d_{cent} . Так как она перескала ось $u_3(0)$, тогда ее коэффициент b приобрел вид:

$$b = d_{cent} - cent_{dif} \cdot \beta$$

Следующим шагом была получена точка пересечения касательной и оси, заданных выше:

$$\gamma = \frac{\alpha - b}{cent_{dif}}$$

Необходимо было проверить: является ли данная точка искомой? Для этого применялся метод Рунге-Кутты к полученной точке, и если в результате $u_1(1) = \alpha$. Тогда $u_3(0) = \gamma$ являлось недосающим краевым условием для задачи Коши, описанной выше.

В противном случае алгортим действий применялся для точки γ и работал до тех пор, пока не было найдено необходимое краевое условие.

Рис. 1: Иллюстрация метода Ньютона (синим изображена функция f(x), ноль которой необходимо найти, красным — касательная в точке очередного приближения x_n). Здесь мы можем увидеть, что последующее приближение x_{n+1} лучше предыдущего x_n .

3 Результаты

В итоге, сходиомсть метода соответсвует заявленной - 4ый порядок. При увеличении точек разбиения отрезка отношение норм погрешностей со временем уменьшается. Это может быть связано с машинной погрешностью.

Ниже приведена таблица зависимости:

количество точек	погрешность	отношение норм погрешностей
5	3.711579e-05	1
9	2.038201e-06	18.21
17	1.176400e-07	17.326
33	7.033316e-09	16.726
65	4.293837e-10	16.38
129	2.651812e-11	16.192

Далее приведены примеры работы на разных количествах точек:

Рис. 2: при $n=5,\,\alpha=1.$

Рис. 3: при n = 9, $\alpha = 1$

Рис. 4: при n = 17, α = 1