材料与化学化下业。

单的近似人

4.5

 $3.~(4\,
m ft)$ 在 C_2^+ 、 H_2^+ 、 He_2^+ 和 NO 分子中,存在单电子 σ 键的是 H_2^+ ,存在单电子 π 键的是 E_2^+ ,存在三电子 E_2^+ ,存在三电子 E_2^+ ,存在三电子 E_2^+ ,存在三电子 E_2^+ ,存在三电子 E_2^+ ,有在三电子 E_2^+ ,有量 E_2^+

4. (4 分) 对氢原子 1s 态,(1)ψ²在 r 为 处有最大值; (2) 径向分布函数 4πr²ψ² 在 r 为 处有极大值。

5. (4分) 写出原子单位制下, 氧原子中电子的薛定谔方程:

[\$ (-\frac{1}{2}\varphi') - \frac{8}{2}\frac{1}{1} + \frac{1}{2}\frac{8}{2}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\fra

微观粒子不可能有确定的位置和速度

7. (6 分) ⁵F₂ 谱项的多重度为 5 ,总轨道角动量为 12 大 ,在外磁场中将分裂成 5 个微观状态。

8. (6分) 试给出下列分子所属的点群: SO₂ C₂ , N₂O C₂ , CO₂ Dook 。

9. (4分) 若以x轴为键轴,s, d_{xy} , p_z , d_{xz} 四种轨道中,能与 p_y 轨道有最大重叠的轨道是

day , 形成 72 键。

到

る

10. (6 分)已知氢原子的 $\psi_{2pz} = \frac{1}{4\sqrt{2\pi a_0^3}} \left(\frac{r}{a_0}\right) e^{-\frac{r}{2a_0}} \cos\theta$,它对应的原子轨道能大小为 $-\frac{7.4}{100}$

11. (2分)判别分子有无旋光性的标准是 分子有无象转轴

12. (4分)体系电子的完全波函数可用 Slater 行列式表示, B 原子可能的 Slater 行列式波函数

13. (2分) 试写出共轭分子 H₂C=C + 的 Hückel 行列式为:

(210)

三、辨析下列概念,试用最简洁的文字、公式或实例加以说明。 (每小题 5 分, 共 10 分)

1. 简并态和非简并态

告: 简并态是指具有相同能量的状态, 非简并态是指能量调的状态。 例如: 三维立方势箱中, 4113, 4111, 4111 三种状态的能量相同,

和这三种状态为简并态,即他们的能量具简并的:一个少洲, 生犯 的能量即是不相同的, 积这两种状态为非简节态。

2. 几率密度和几率

售:儿童病度即1412,表示粒子在单位体积出现的概率 几平即了了141岁时,表示粒子在一下小体积内出现的概率,即几年度度 对小体积无的积分

三、计算题(共8分)

请给出氧原子在下列情况下的光谱项,并排出能级高低。

(1)考虑电子相互作用时的光谱项; (2)考虑自旋-轨道相互作用时的光谱支项。

解: O原子核外\\\$排布为: 15252p4 27轨道有4个好,其光谱项与光谱支项与2节相同,只是能及序 会有所不同.

0:20为半充满后,则能级序为:

E(3P2) < E(3P0) < E(1D2) < E(1S0)

二、填空题(共 48 分)
1. (6分)原子轨道线性组合成分子轨道的要遵循的原则有: 別几里作品以
70. J. III 動動管由 能与p. 勒達左思士(5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
(4%) 若以 y 轴为键轴, s 、 d_{xy} 、 p_z 和 d_{xz} 四种轨道中,能与 p_y 轨道有最大重叠的轨道是
5, 形成 6 键
3. (3 分)从分子轨道理论出发,简述共价键的本质: 京十九万万万
4. (4分)顺式 氯乙烯 (CIHC=CHCI) 分子屋 群,其全部对称元素为
4. (4分 顺式) 氣 Z烯 (CIHC=CHCI) // / / / / / / / / / / / / / / / / /
E, G, 6V. /
5. $(3 f)$ 苯分子具有 C_6 旋转轴,该对称元素可以产生的对称操作有 $\widehat{\mathbf{E}}$ 、 $\widehat{\mathbf{C}}$ 、 $\widehat{\mathbf{C}$ 、 $\widehat{\mathbf{C}}$ 、 $\widehat{\mathbf{C}}$ 、 $\widehat{\mathbf{C}}$
为一个人,这种本质区别在于 离找分子机道 电子在整个分 例运动,多中心;
6.(3分)离域分子轨道和定域分子轨道的举版区域,二中心
2 /
7. (6分)试给出下列分子所属的点群: CCl ₄
8. (8分) 在 C ₂ ⁺ 、H ₂ ⁺ 、He ₂ ⁺ 和 NO 分子中,存在单电子σ键的是 H ₂ ⁺ ,存在三电子σ键的
- Hρ, / 左在单电子π键的是 2 / , 存在一电 , 存在一电 , 存在
9. (3分) 判别分子有无旋光性的标准是是否有象转轴。
9. (3分) 判别分子有无旋光性的标准是
$10. (8分)$ 在分子轨道理论中,假设 ϕ_i 和 ϕ_j 是发生相互作用的两个原子轨道 $(i \neq j)$,则积分
万场4.5 十二的咖啡 意义定
$T = \int_{0}^{+\infty} \frac{1}{1+t} \int_{$
九九百年为自和4里看为代达历机上上八十一。积为一十一
(写出积分的形式)被称为重叠积分,表示的物理意义是中,从上下扩张上下的工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工

三. 计算题和简述题 (共22分):

1. N₂ 比 O₂+

1. N_2 的键能(7.37 eV)比 N_2^+ 的键能(6.34 eV)要大,但 O_2 的键能(5.08 eV)却比 O_2^+ 的键能(6.48 eV)小。请写出 N_2 , N_2^+ , O_2 , O_2^+ 基态的电子组态,并结合分子轨道理论解释这个事实。

解: 时组态.

N2: $(6_{15})^2 (6_{25})^2 (6_{25})^2 (\pi_{2}py)^2 (\pi_{2}pz)^2 (6_{2}px)^2$ Fig. $\frac{1}{2}(10-4)=3$

Note: (615) (615) (615) (615) (615) (7277) (7277) (7272) (6272) (6272) (6272) (6272) (6272)

键级越大越稳定

N2的键级比N2+大,所以N2比N2+稳定,N2键能比N2+大。

0.的键级比0元小,所以心对0种稳定,0.键能比0六小。

10

解

8.下列分子轨道哪个不是 CH4分子中电子的离域分子轨道?())

(A) $\Psi = c_1 \phi_{2p_x}^C + c_2 \phi_{1s}^{H_a} - c_3 \phi_{1s}^{H_b} + c_4 \phi_{1s}^{H_c} - c_5 \phi_{1s}^{H_d}$

(A)
$$\Psi = c_1 \phi_{2p_x}^C + c_2 \phi_{1s}^C$$

(B) $\Psi = c_1 \phi_{2s}^C + c_2 \phi_{2p_x}^C + c_3 \phi_{2p_y}^C + c_4 \phi_{2p_z}^C + c_5 \phi_{1s}^{H_0}$

- $(C) \Psi = c_1 \phi_{2p_x}^C + c_2 \phi_{1s}^{H_a} c_3 \phi_{1s}^{H_b} + c_4 \phi_{1s}^{H_c} c_5 \phi_{1s}^{H_d}$
- (D) $\Psi = c_1 \phi_{2p_x}^C + c_2 \phi_{1s}^{H_o} c_3 \phi_{1s}^{H_b} c_4 \phi_{1s}^{H_c} + c_5 \phi_{1s}^{H_d}$
- 9. 利用以下哪一原理,可以判定 CO、CN-的分子轨道与 N2 相似?((A) 轨道对称性守恒原理 (B) Franck-Condon 原理

- (C) 等电子原理
- 10. 下列分子属于 D3h 群的是..... (A) 非交错非重叠式 CH₃-CF₃ (B)重叠式乙烷
 - (C)非交错非重叠式乙烷 (D)交错式乙烷

- $(A)\psi = \sqrt{\frac{1}{6}}\phi_S + \sqrt{\frac{1}{2}}\psi_P + \sqrt{\frac{3}{4}}\psi_d$ $(B)\psi = \frac{1}{2}\phi_s + \frac{1}{4}\psi_P + \frac{1}{3}\phi_d$ $(B)\psi = \frac{1}{2}\phi_s + \sqrt{\frac{1}{4}}\phi_P + \sqrt{\frac{1}{3}}\phi_d$ $(D)\psi = \sqrt{\frac{1}{2}}\phi_s + \sqrt{\frac{1}{4}}\phi_P + \sqrt{\frac{1}{3}}\phi_d$
- 13. 下面哪组分子都有偶极矩......((B) H₃BO₃和 BF₃ (A) PCl3和BF3
 - (C) PCl₃和 cis-ClHC=CHCl (D) H₃BO₃和 cis-ClHC=CHCl
- (A) $NF_3 > NH_3 > PF_3$ (B) $NH_3 > NF_3 > PF_3$ (C) $PF_3 > NF_3 > NH_3$

 $(A)N_2^+$ $(B)Li_2$ $(C)B_2$ $(D)C_2$ $(E)O_2^+$

4. (4分) 反式二氯乙烯 (CIHC=CHCI) 分子属 <u>C</u> #, 其全部对称元素为 <u>E</u> **C** 2 , **G** h , ; (दे)(दे)(दे) 5. (3 分) 苯分子具有 C_6 旋转轴,该对称元素可以产生的对称操作有 \hat{C}_6 , \hat{C}_6 , 6. (3分)杂化轨道和分子轨道的本质区别在于、历史车机道、只是原子轨道进行简单的 我性组合,杂化轨道改变了原来的原子轨道 7. (6分) 试给出下列分子所属的点群: SO₂ Cxy, CO₂ Danh, BF₃ Dxh。 8. (8分) 在 C_2^+ 、 H_2^+ 、 H_{2}^+ 和 NO 分子中,存在单电子 σ 键的是 H_2^+ ,存在三电子 σ 键的 是He, 存在单电子 π 键的是C9. (3分) 判别分子有无旋光性的标准是 孟其是正能与镜面的《像完全重合 10. (5分)在分子轨道理论中,假设 ϕ_i 和 ϕ_j 是发生相互作用的两个原子轨道,则积分 Ø; 与Ø; 发生相互作用附降低的能量。 三. 计算题和简述题 (共25分): 相对大小?同时计算 N22-的自旋磁矩。 N2 : (G15) (G15) (G25) (G25) (T2py) (T2px) (G2px) (Thing) (Tops) 1个双电子 5旗、两个三电子 T键 键纸 - (10-6)=2 而中性 N. 分子 键级为 = (10-4)=3 > 中性的3 N2的键长短

M = 2 N 5 (SH) NB= 2 N3 NB X

2. 用 HMO 法处理环戊二烯基(-1)离子, 其久期方程的解为 x =-2, -0.618, -0.618, 1.618, 1.618。 (1)写出环戊二烯基(-1)离子的 Hückel 行列式及离域 Π 键类型; (2)计算体系 π 电子能量; (3)计算 离域能。 (本题 12 分)

(2)
$$\chi = \frac{\alpha - E}{\beta}$$

 $E_1 = \alpha + 2\beta$
 $E_2 = \alpha + 0.618\beta$
 $E_3 = \alpha - 1.618\beta$
 $E_3 = \alpha - 1.618\beta$
 $E_4 = 2E_1 + 2E_2 + 2E_3 = 6\alpha + 2\beta$

	10. 烯内基阳离子的三个π分子轨道加下 III C C 体况以下
	10. 烯丙基阳离子的三个 π 分子轨道如下,则 C_1 — C_2 键级以及 C_1 原子的自由价分别为($\Psi_1 = \frac{1}{2}\phi_1 + \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{2}\phi_3$; $\Psi_2 = \frac{1}{\sqrt{2}}\phi_1 - \frac{1}{\sqrt{2}}\phi_3$; $\Psi_3 = \frac{1}{2}\phi_1 - \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{2}\phi_3$, (A) 0.707,1.025 (B) 1.000,1.025 (C) 1.500,0.025 (E) 2.000,0.025
	11. OF, OF+, OF- 三种粒子中,键级顺序为
	(A) $P_{\text{OF}} > P_{\text{OF}}^+ > P_{\text{OF}}^-$ (B) $P_{\text{OF}} > P_{\text{OF}}^-$ (C) $P_{\text{OF}} > P_{\text{OF}}^+$ (D) $P_{\text{OF}} > P_{\text{OF}}^-$
	12. 以 x 轴为键轴,按对称性匹配原则,两原子各提供 $3d_{x^2-y^2}$ 轨道时,两者可形成的
	MO 类型为
	(A) σ (B) π (C) δ (D) $\sigma-\pi$
	13. 通过变分法计算得到的微观体系的能量总是
	14. 下列分子轨道何者不是 CH ₄ 分子中电子的离域轨道?())
	(A) $\Psi = c_1 \phi_{2p_x}^C + c_2 \phi_{1s}^{H_a} - c_3 \phi_{1s}^{H_b} + c_4 \phi_{1s}^{H_c} - c_5 \phi_{1s}^{H_d}$
	(B) $\Psi = c_1 \phi_{2s}^C + c_2 \phi_{2p_x}^C + c_3 \phi_{2p_y}^C + c_4 \phi_{2p_z}^C + c_5 \phi_{1s}^{H_a}$
	(C) $\Psi = c_1 \phi_{2p_x}^C + c_2 \phi_{1s}^{H_a} - c_3 \phi_{1s}^{H_b} + c_4 \phi_{1s}^{H_c} - c_5 \phi_{1s}^{H_d}$
	(D) $\Psi = c_1 \phi_{2p_x}^C + c_2 \phi_{1s}^{H_a} - c_3 \phi_{1s}^{H_b} - c_4 \phi_{1s}^{H_c} + c_5 \phi_{1s}^{H_d}$
	15. 利用以下哪一原理,可以判定 CO、CN·的分子轨道与 N ₂ 相似? (A) 轨道对称性守恒原理 (B) Franck-Condon 原理 (C) 等电子原理
+425)	二、填空题(共 45 分)
17	1. (6分)原子轨道线性组合成分子轨道的要遵循的原则有: 对 机性匹配 ,
	能量相近最大重叠。
	2. $(4分)$ 若以 x 轴为键轴, s 、 d_{xy} 、 p_z 和 d_{xz} 四种轨道中,能与 p_y 轨道有最大重叠的轨道是
	□ (X) (X)
	3. (3分) 某共轭分子的 Hückel 行列式为: x 1 0 0 1 0 0 0 0 0 0
	则其可能的结构为:。

10. 使用 VSEPR 模型, 判断下列分子键角的大小 (A) NH ₃ > NF ₃ > PF ₃ (B) NF ₃ > NH ₃ > PF ₃ (C) PF ₅ (C)
(A)N ₂ ⁺ (B)Li ₂ (C)B ₂ (D)C ₂ (E)O ₂ ⁺ 12. 就氢原子波函数 φ _{2p,} 和 φ _{4p,} 两状态的图象,下列说法正确的是 (A)界面图相同 (B)电子云图相同 (C)径向分布图相同 (D)角度分布图相同 13. 在有外磁场作用下,多电子原子的能量层下四四
(A) n , l (B) n , l , m (C) n (D) n , m (A) 14. 已知某类氢离子的实波函数为 $\psi = \frac{1}{81} \sqrt{\frac{2}{\pi}} (\frac{z}{a_0})^{3/2} (6 - \frac{zr}{a_0}) (\frac{z}{a_0}) e^{-2r/3a_0} r \sin\theta \cos\varphi$, (A) $3p_x$ (B) $3p_y$ (C) $3p_z$
15. 已知 $\Psi = R \times Y = R \times \Theta \times \Phi$,其中 R , Θ , Φ , Y 皆已归一化,则下列式中哪些成立?
16. 谱项 ³ P 的可能微观状态共有
18. 利用以下哪一原理,可以判定 CO、CN的分子轨道与 N ₂ 相似
19. CI 原子基态的光谱项为 2P ,其能量最低的光谱支项为
0. 判断: 既不存在 C _n 轴, 又不存在σ _n 时, S _n 轴必不存在。() /

二、填空题(共52分)

1. 氢原子	轨道 ¥420 的径	向部分和角度部分	分的节面数分别为	1		(C)
(<i>A</i>	A) 2, 2	(B) 2, 1	(C) 1, 2	(D) 1, 1		
		光电子动能与入身 (B) 频率	付光的哪个物理量 (C) 振幅	呈线形关系	?	(B)
			e原子,其德布罗意 (C) 2.0 nm		值是	(C)/
() ()	A) 分子中电子B) 分子中单个C) 分子中单电	在空间运动的波电子空间运动的	波函数 括空间运动和自加			(C) /
()	$A) P_{OF} > P_{OF}^{+} > P$	粒子中,键级顺 PoF (B) PoF (D) PoF				(В)
			$\leq E_{3s}$ (C) E_{3p}			(C) /
7. 氢原子	波函数 Ψ ₂ ρ _x ^Δ	$\{\hat{H}, \hat{M}_l^2, \hat{M}_{lz}$ 算符	许中哪几个算符的]本征函数?		(B)
(A)	$\hat{H}, \hat{M}_l^2, \hat{M}_{lz}$	(B) \hat{H}, \hat{M}_l^2	$(C)\hat{H}, M$	\hat{M}_{lz}	$(D)\hat{H}$	•
(A)誓	等于真实基态的	龙量。 (I	量总是 B)大于真实基态 D)小于真实基态	能量。		····(C)
三维立方 (A) 1		电子的体系的。 (C)3	多重度(2S+1) (D) 4	为		(A)

9.

办州大学 <u>结构化学(一)</u> 课程 期中考试试卷 #4页

考试形式_闭_卷 2015年5月
院系
学号1209401003 姓名 张东伟 成绩
72 一、选择题 (毎题 2 分, 共 30 分)
1. 某稳定的富烯 π 电子的 HOMO 轨道为: $\Psi = c_1 \phi_1 + c_2 \phi_2 + c_3 \phi_3 + c_4 \phi_4 + c_5 \phi_5 + c_6 \phi_6 \text{ (Y尚未归一化)},$ 则 HOMO 轨道上 C_1 原子的电荷密度为 (A) $\frac{2c_1}{\sum_i c_i^2}$ (B) $\frac{2c_1^2}{\sum_i c_i^2}$ (C) $2c_1$ (D) $2c_1^2$ 2. 对 O_3 分子,描述正确的是 (A) 平面线性分子, $2 \wedge \Pi_3^4$; (B) 平面折形分子, $2 \wedge \Pi_3^4$ (C) 平面线性分子, $1 \wedge \Pi_3^4$; (D) 平面折形分子, $1 \wedge \Pi_3^4$ 3. 下列轨道何者不可能是 C 原子的 sp^2 杂化轨道? (A) $\Psi = \sqrt{\frac{2}{3}} \phi_{2s}^C + \sqrt{\frac{1}{3}} \phi_{2n}^C$ (B) $\Psi = \sqrt{\frac{1}{3}} \phi_{2s}^C + \sqrt{\frac{2}{3}} \phi_{2p_2}^C$
$(C) \Psi = \sqrt{\frac{1}{3}} \phi_{2s}^{C} - \sqrt{\frac{1}{6}} \phi_{2p_{z}}^{C} - \sqrt{\frac{1}{2}} \phi_{2p_{y}}^{C} \qquad (D) \Psi = \sqrt{\frac{1}{3}} \phi_{2s}^{C} - \sqrt{\frac{1}{6}} \phi_{2p_{z}}^{C} + \sqrt{\frac{1}{2}} \phi_{2p_{y}}^{C}$ 4. 平面分子 2, 4, 6 — 三硝基苯酚中离域 T键为
5. 下列分子属于 D ₃ 群的是
 6. 下列分子轨道呈现对称性 (g) 的有
7. 判断:既不存在 C _n 轴,又不存在 σ _h 时, S _n 轴必不存在。()
8. 下列哪种分子与立方烷具有完全相同的对称性?
9. 使用 VSEPR 模型, 判断下列分子键角的大小