MATEMÁTICA UNINOVE

Módulo - III

Geometria espacial métrica

Cálculo de áreas e volumes de cilindros

Objetivo: Estudar os cilindros e seus elementos, calcular as áreas da base, lateral e total e os volumes dos cilindros.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

MATEMÁTICA UNINOVE - GEOMETRIA ESPACIAL MÉTRICA

Considere o seguinte problema:

Os depósitos de lixo nuclear, lixo de alta atividade radioativa produzido, no país têm formato cilíndrico. Supondo que o depósito tenha 5 metros de altura e 2 metros de raio da base, qual é o volume máximo de lixo que ele suporta?

Cilindro

Consideremos dois planos paralelos α e β , C um círculo de raio r e centro O contido em α , e s uma reta que intercepta α e β . Chama-se **cilindro** (ou cilindro circular) o sólido formado por todos os segmentos de reta paralelos a s, tais que uma de suas extremidades é um ponto do círculo C e a outra extremidade é um ponto no plano β .

MATEMÁTICA UNINOVE - GEOMETRIA ESPACIAL MÉTRICA

Elementos

Num cilindro, consideramos os seguintes elementos:

- Os círculos C e C', que são congruentes, são as **bases**.
- Os segmentos com uma extremidade em um ponto da circunferência de centro O e raio r e a outra no ponto correspondente da circunferência de centro O' e raio r, são as geratrizes.
- A distância entre os planos das bases α e β é a **altura** do cilindro.

Classificação

Dizemos que um cilindro é **reto** quando suas geratrizes são perpendiculares aos planos das bases, caso contrário, o cilindro é **oblíquo**.

Num cilindro reto, o comprimento da geratriz é igual à altura do cilindro (g = h).

Circunferência: é o conjunto dos pontos de um plano cuja distância a um ponto O dado é igual a uma distância r (não nula) dada.

MATEMÁTICA UNINOVE – GEOMETRIA ESPACIAL MÉTRICA

Na circunferência, destacamos:

- O ponto O é o centro.
- O segmento OP (de medida r) é o raio.
- O segmento AB (de medida 2r) é o diâmetro.
- O segmento CD é uma corda.

O comprimento (perímetro) da circunferência é dado por 2πr:

Círculo: é o conjunto dos pontos de um plano cuja distância a um ponto O dado é menor ou igual a uma distância r (não nula) dada. Ou seja, o círculo é a reunião da circunferência com seu interior.

A área do círculo é dada por $A_0 = \pi r^2$.

Áreas da superfície de um cilindro reto

Dado um cilindro reto, definimos:

- A área da base (A_b) é a área do círculo da base. $A_b = \pi r^2$.
- A **área lateral (A_I)** é a área do retângulo de lados $2\pi r$ e h. A_I = $2\pi rh$.
- A área total (A_t) é a soma da área lateral com as áreas das bases. $A_t = A_l + 2A_b = 2\pi r(h + r)$.

MATEMÁTICA UNINOVE – GEOMETRIA ESPACIAL MÉTRICA

Volume do cilindro

Para encontrar o volume de um cilindro, aplica-se o mesmo método usado para obter o volume de um prisma, ou seja, multiplica-se a área da base pela altura:

 $V_{cilindro} =$ área da base x altura = $\pi r^2 h$

Exemplo:

Calcular a área total e o volume do cilindro reto que tem raio da base 5 cm e altura 3 cm.

Solução:

A área lateral do cilindro é dada por:

 $A_I = 2\pi rh$

 $A_1 = 2 . \pi . 5 . 3 = 30\pi \text{ cm}^2$

A área da base é dada por:

 $A_b = \pi r^2$

 $A_b = \pi 5^2$

 $A_{b} = 25\pi \text{ cm}^{2}$

MATEMÁTICA UNINOVE – GEOMETRIA ESPACIAL MÉTRICA

Logo, a área total do cilindro é:

$$A_t = A_l + 2A_b$$

$$A_t = 30\pi + 2.25\pi = 80\pi \text{ cm}^2$$

E o volume é:
$$V = Ab . h = 25π . 3 = 75π cm^3$$

Vamos agora voltar ao problema apresentado e responder à pergunta proposta!

Para calcular o volume máximo de lixo que o depósito suporta temos:

$$V_{cilindro}$$
 = área da base x altura = $\pi r^2 h$ = π . (2) 2 . 5 = $20\pi \cong 62.8 \text{ m}^3$

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

DOLCE, O.; POMPEO, J.N. Fundamentos da Matemática Elementar – v. 10: Geometria Espacial: posição e métrica. São Paulo: Atual, 2000.

MELLO, J.L.P. *Matemática, volume único*: construção e significado. São Paulo: Moderna, 2005.