

# African Vultures Optimization (AVO) for Feature Selection

Analysis of Algorithms Project by

SULTAN | 56189 | BS/DS-4\_1

Instructor: Sir Usman Shareef



# The Problem of High-Dimensional Data in Machine Learning

#### Performance Degradation

High-dimensional datasets can lead to degraded machine learning model performance due to noisy or irrelevant data.

#### **Inefficient Training**

Irrelevant or redundant features increase computational costs and training time without improving results.

#### **Need for Feature Selection**

Efficient, fast, and accurate feature selection methods are critical for optimal model accuracy and scalability.



## The Solution: African Vultures Optimization Algorithm

#### Nature-Inspired Algorithm

AVO mimics vultures' energyefficient scavenging strategies for optimization.

#### **Binary Feature Selection**

Selects subsets of features represented as binary vectors where 1 means selected, 0 ignored.

#### Balanced Search

Maintains a balance between exploration of new solutions and exploitation of promising feature subsets.

### Dataset Overview: Breast Cancer Wisconsin Dataset

#### **Dataset Characteristics**

- 569 samples with 30 numeric features each
- Binary target: benign vs malignant tumors
- Widely used benchmark for classification and feature selection

#### **Preprocessing**

Data was split into training and testing sets to evaluate algorithm performance and prevent overfitting.

This setup allows reliable comparison of feature selection effectiveness.

## Code Design & Fitness Function

#### **Binary Encoding**

Features represented as binary vectors indicating whether to include each feature.

#### **Fitness Function Definition**

The function optimizes for classification accuracy penalized by the number of selected features:
(1 - Accuracy) + 0.01 × Feature Ratio

Logistic Regression serves as the evaluation model.

#### **Convergence Monitoring**

Algorithm progress tracked over 15 iterations to ensure effective feature subset selection.



Best Feature Subset (1 = selected):
[1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0
Final Fitness Score: 0 009847953216374324

Total Selected Features: 12

# Results: Convergence & Performance

#### **Feature Reduction**

AVO effectively reduced the number of features while maintaining classification accuracy.

#### Fitness Improvement

Fitness score consistently improved throughout the iterations, demonstrating algorithm stability and efficiency.

#### Small & Effective Subset

The final subset selected was compact yet highly effective for the classification task.

# Comparative Advantages and Real-World Impact

#### Algorithmic Benefits

- Superior ability to escape local optima
- Faster convergence rates
- Requires fewer fitness evaluations

#### Use Case Impact

- Accelerates medical diagnosis by reducing feature dimensionality
- Enables compact models for embedded AI applications
- Energy-efficient, suitable for resource-constrained environments



## Conclusion & Future Directions

#### Effectiveness of AVO

Demonstrated strong potential as a feature selection method by merging swarm intelligence with practical constraints.

#### Future Work

Plan to extend AVO applications to diverse domains including Internet of Things, finance, and text analytics for broader impact.

#### Engagement

Open for questions and collaborative discussions on further enhancement and deployment.

# THANK YOU FOR YOUR TIME