Билеты к экзамену по матанализу 3 семестр Холодова

Шишминцев Дмитрий

16 января 2024 г.

Билеты по математическому анализу, III семестр ИТМО ВТ, лектор Холодова. Старался расписывать максимально коротко и понятно. Содержит безграничное количество ошибок и неточностей, так как в математике я не силен, а так же использовал ChatGPT для помощи в написании билетов. Используйте на свой страх и риск.

- 1 Функции нескольких переменных. Понятие n-мерного координатного пространства. Область определения. Предел функции.
- ФНП: Это математические отображения, которые зависят от двух или более независимых переменных.
- N-мерное координатное пространство: Это пространство с N измерениями, где каждая переменная представляет одну из N координат.
- ОБЛАСТЬ ОПРЕДЕЛЕНИЯ: Это множество значений независимых переменных, для которых функция имеет определение и может быть вычислена.
- ПРЕДЕЛ ФУНКЦИИ: Это значение, к которому стремится функция, когда независимые переменные приближаются к определенной точке в её области определения. Формально это выражается как $\lim_{(x,y)\to(a,b)} f(x,y)$
- 2 Непрерывность функции нескольких переменных. Основные теоремы о непрерывных функциях (арифметические операции над непрерывными функциями, непрерывность сложной функции, знакопостоянство непрерывной функции, о промежуточных значениях, ограниченности и достижении наименьшего и наибольшего значений).
- Определение непрерывности: Функция f(x,y) непрерывна в точке (a,b), если $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$. Пример: $f(x,y) = x^2 + y^2$ непрерывна везде.
- АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ: Если f и g непрерывны в точке, то $f+g, f-g, f\cdot g$ и, при $g\neq 0, \frac{f}{g}$ тоже непрерывны в этой точке.
- Непрерывность сложной функции: Если f непрерывна в точке b и g непрерывна в точке a, где a=g(b), то сложная функция f(g(x)) непрерывна в точке b.
- Знакопостоянство: Если функция f непрерывна на интервале и не равна нулю, то она сохраняет знак на этом интервале.
- ТЕОРЕМА О ПРОМЕЖУТОЧНЫХ ЗНАЧЕНИЯХ: Если f непрерывна на [a,b] и d между f(a) и f(b), то существует такое c в [a,b], что f(c)=d
- Ограниченность и экстремумы: Если функция f непрерывна на замкнутом и ограниченном множестве, то она ограничена и принимает на этом множестве наибольшее и наименьшее значения.

- 3 Дифференцируемость функции нескольких переменных. Полный дифференциал, частные производные. Геометрический и физический смысл частных производных. Необходимое и достаточные условия дифференцируемости функции нескольких переменных.
- Дифференцируемость: Функция f(x,y) дифференцируема в точке (a,b), если существуют такие числа A и B, что $f(x,y) = f(a,b) + A(x-a) + B(y-b) + o(\sqrt{(x-a)^2 + (y-b)^2})$, где o обозначает "бесконечно малое".
- Полный дифференциал: Если функция дифференцируема, то её полный дифференциал задается как $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$.
- Частные производные: $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ это производные функции f по переменным x и y соответственно.
- ГЕОМЕТРИЧЕСКИЙ СМЫСЛ: $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ показывают скорость изменения f вдоль осей x и y.
- Физический смысл: В физике частные производные могут представлять, например, скорость изменения температуры в определенной точке в пространстве.
- НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ ДИФФЕРЕНЦИРУЕМОСТИ: Для дифференцируемости функции необходимо, чтобы существовали и были непрерывны все её частные производные в рассматриваемой точке. Это условие необходимо, но не всегда достаточно для дифференцируемости функции.

4 Свойство инвариантности формы первого дифференциала функции нескольких переменных.

- Инвариантность первого дифференциала: Свойство инвариантности первого дифференциала заключается в том, что форма первого дифференциала функции нескольких переменных сохраняется при замене переменных.
- ФОРМУЛИРОВКА: Если $f(x_1, x_2, \dots, x_n)$ дифференцируемая функция и $x_i = g_i(u_1, u_2, \dots, u_m)$ для $i = 1, 2, \dots, n$, где g_i дифференцируемые функции, то дифференциал df можно выразить через du_j и останется линейной комбинацией дифференциалов независимых переменных.
- ПРИМЕР: Для функции f(x,y), где x=g(u,v) и y=h(u,v), дифференциал $df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$ примет вид $df=\frac{\partial f}{\partial u}du+\frac{\partial f}{\partial v}dv$, что демонстрирует инвариантность формы.
- Значение: Это свойство позволяет переходить от одних переменных к другим без изменения основной структуры дифференциала, что полезно при решении задач в координатах, удобных для конкретной ситуации.

5 Дифференцируемость сложной функции нескольких переменных.

- Дифференцируемость сложной функции: Рассмотрим функции u = f(x,y), x = g(t,s) и y = h(t,s). Тогда сложная функция u = f(g(t,s),h(t,s)) дифференцируема в точке (t_0,s_0) , если f,g,h дифференцируемы в соответствующих точках.
- ФОРМУЛА ДИФФЕРЕНЦИРОВАНИЯ: Дифференциал сложной функции находится по формуле:

$$du = \frac{\partial f}{\partial x} \cdot \frac{\partial g}{\partial t} dt + \frac{\partial f}{\partial x} \cdot \frac{\partial g}{\partial s} ds + \frac{\partial f}{\partial y} \cdot \frac{\partial h}{\partial t} dt + \frac{\partial f}{\partial y} \cdot \frac{\partial h}{\partial s} ds$$

- ПРИМЕР: Если u=f(x,y) с $x=t^2$ и $y=s^3$, то $du=\frac{\partial f}{\partial x}\cdot 2tdt+\frac{\partial f}{\partial y}\cdot 3s^2ds$.
- Значение: Это позволяет анализировать изменение сложной функции в зависимости от изменений в каждой из составляющих переменных и широко применяется в различных областях, таких как физика, инженерия и экономика.

6 Неявные функции. Теоремы существования. Дифференцирование неявной функции.

- НЕЯВНЫЕ ФУНКЦИИ: Неявная функция задается уравнением F(x,y)=0, где не всегда возможно выразить y явно как функцию от x.
- Теорема существования: По теореме о неявной функции, если функция F(x,y) и ее частные производные непрерывны в окрестности точки (a,b) и $\frac{\partial F}{\partial y}(a,b) \neq 0$, то в некоторой окрестности этой точки существует уникальная функция y = f(x), такая что F(x,f(x)) = 0.
- Дифференцирование неявной функции: Если F(x,y)=0 определяет y как неявную функцию от x, то ее производную можно найти как $\frac{dy}{dx}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial x}}$.
- ПРИМЕР: Для $x^2 + y^2 = 1$, $\frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}$.
- Значение: Неявные функции широко используются в математике и прикладных науках, особенно в ситуациях, где явное выражение функции невозможно или неудобно.

7 Касательная плоскость и нормаль к поверхности. Геометрический смысл полного дифференциала функции двух переменных.

- КАСАТЕЛЬНАЯ ПЛОСКОСТЬ: Для поверхности, заданной функцией z = f(x,y), касательная плоскость в точке (x_0,y_0,z_0) задается уравнением $z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$, где f_x и f_y частные производные f по x и y соответственно.
- НОРМАЛЬ К ПОВЕРХНОСТИ: Нормальный вектор к поверхности в точке (x_0, y_0, z_0) задается вектором $\mathbf{n} = (f_x(x_0, y_0), f_y(x_0, y_0), -1).$
- Геометрический смысл полного дифференциала: Полный дифференциал функции f(x,y), заданный как $df = f_x dx + f_y dy$, представляет собой приращение функции, вызванное бесконечно малыми изменениями аргументов x и y. Геометрически, это приращение соответствует высоте между касательной плоскостью и поверхностью функции в точке (x_0, y_0) .
- ПРИМЕР: Для функции $z=x^2+y^2$, касательная плоскость в точке (1,1,2) задается как z-2=2(x-1)+2(y-1), и нормальный вектор в этой точке будет (2,2,-1).
- Значение: Понимание касательной плоскости и нормали к поверхности важно для анализа свойств поверхностей и функций в математике и прикладных науках, например, в геометрии, физике и инженерии.

8 Частные производные высших порядков. Теорема о независимости результата дифференцирования от порядка дифференцирования.

- Частные производные высших порядков: Частные производные высших порядков функции f(x,y) получаются путем последовательного дифференцирования. Например, вторая частная производная по x и затем по y обозначается как $\frac{\partial^2 f}{\partial u \partial x}$.
- Теорема Шварца (о независимости порядка дифференцирования): Если все вторые частные производные функции f(x,y) непрерывны в некоторой области, то они не зависят от порядка дифференцирования. То есть, $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$.
- ПРИМЕР: Для $f(x,y)=x^2y$, получаем $\frac{\partial^2 f}{\partial y \partial x}=\frac{\partial}{\partial y}(2xy)=2x$ и $\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial}{\partial x}(x^2)=2x$, что подтверждает теорему Шварца.
- Значение: Теорема Шварца важна, так как она обеспечивает консистентность в вычислениях частных производных и используется в различных областях математики, включая дифференциальные уравнения и математический анализ.

9 Дифференциалы высших порядков.

- Дифференциалы высших порядков: Дифференциалы высших порядков функции f(x) определяются итеративно. Второй дифференциал d^2f определяется как дифференциал первого дифференциала df, третий дифференциал d^3f как дифференциал второго, и так далее.
- Формулировка для второго дифференциала: Второй дифференциал функции f(x) задается как $d^2f = d(df) = d(f'(x)dx) = f''(x)dx^2$.
- ОБЩИЙ СЛУЧАЙ: n-й дифференциал d^nf для функции одной переменной f(x) выражается через n-ю производную: $d^nf = f^{(n)}(x)dx^n$.
- ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ: Для функций нескольких переменных, например f(x,y), дифференциалы высших порядков включают частные производные всех возможных комбинаций переменных.
- ПРИМЕР: Для $f(x,y) = x^2y$, второй дифференциал d^2f будет включать члены вида d^2x , dxdy, и dy^2 , умноженные на соответствующие частные производные второго порядка f.
- Значение: Дифференциалы высших порядков играют ключевую роль в таких областях, как теория приближений, дифференциальные уравнения и математический анализ.

10 Формула Тейлора для функции нескольких переменных.

- ФОРМУЛА ТЕЙЛОРА: Формула Тейлора для функции нескольких переменных позволяет аппроксимировать значение функции $f(x_1, x_2, \dots, x_n)$ в окрестности точки (a_1, a_2, \dots, a_n) с использованием производных функции в этой точке.
- Формулировка: Разложение до k-го порядка имеет вид:

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{|\alpha|=1}^{k} \frac{D^{\alpha} f(\mathbf{a})}{\alpha!} (\mathbf{x} - \mathbf{a})^{\alpha} + R_k(\mathbf{x})$$

где $\mathbf{x}=(x_1,\ldots,x_n),\ \mathbf{a}=(a_1,\ldots,a_n),\ \alpha$ - мульти-индекс, $D^{\alpha}f$ - частная производная порядка $|\alpha|$, и $R_k(\mathbf{x})$ - остаточный член.

- ПРИМЕР: Для функции $f(x,y) = e^x \sin(y)$, разложение второго порядка в окрестности точки (0,0) дает $f(x,y) \approx 1 + x \frac{y^2}{2}$.
- Значение: Формула Тейлора используется для приближенных вычислений значений функций, в анализе ошибок и в различных приложениях математического анализа и прикладной математики.

11 Экстремум функции нескольких переменных. Необходимые и достаточные условия экстремума. Условный экстремум. Метод множителей Лагранжа. Наименьшее и наибольшее значения функции нескольких переменных.

- ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ: Точка $(x_0, y_0, ...)$ является точкой экстремума функции f(x, y, ...), если в этой точке функция достигает локального минимума или максимума.
- НЕОБХОДИМЫЕ УСЛОВИЯ ЭКСТРЕМУМА: Если в точке $(x_0, y_0, ...)$ функция f имеет экстремум, то все её первые частные производные в этой точке равны нулю: $\frac{\partial f}{\partial x}(x_0, y_0, ...) = 0, \frac{\partial f}{\partial y}(x_0, y_0, ...) = 0,$ и так далее.
- Достаточные условия экстремума: После проверки необходимых условий, используются вторые частные производные и их знаки для определения наличия максимума или минимума.
- Условный экстремум: Экстремум функции f(x,y,...) при наличии условий $g_i(x,y,...)=0$.

- МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА: Используется для нахождения условного экстремума. Формулируется задача максимизации или минимизации f(x,y,...) при условиях $g_i(x,y,...)=0$ с помощью функции Лагранжа $L(x,y,...,\lambda_1,...,\lambda_m)=f(x,y,...)-\sum \lambda_i g_i(x,y,...)$.
- Наименьшее и наибольшее значения функции: Для определения наименьшего и наибольшего значений функции на заданном множестве используются методы анализа экстремумов, включая проверку граничных точек и критических точек внутри множества.

12 Двойной интеграл. Определение. Геометрический смысл. Вычисление с помощью повторного интегрирования. Основные свойства.

- Определение двойного интеграла: Двойной интеграл функции f(x,y) по области D в плоскости XY определяется как

$$\iint_D f(x,y) \, dx \, dy.$$

Он представляет собой предел суммы произведений значений функции на площади малых подобластей, когда размеры этих областей стремятся к нулю.

- Геометрический смысл: Если $f(x,y) \ge 0$ на D, то двойной интеграл представляет собой объем тела, ограниченного сверху поверхностью z = f(x,y), снизу плоскостью XY и по сторонам областью D.
- Вычисление через повторное интегрирование: Двойной интеграл может быть вычислен как последовательность двух одномерных интегралов:

$$\iint_D f(x,y) \, dx \, dy = \int_a^b \left(\int_c^d f(x,y) \, dy \right) dx,$$

где [a,b] и [c,d] - интервалы интегрирования для x и y.

- ОСНОВНЫЕ СВОЙСТВА:
 - Линейность: $\iint_D (af + bg) dx dy = a \iint_D f dx dy + b \iint_D g dx dy.$
 - Аддитивность: Если D разбита на подобласти D_1 и D_2 , то $\iint_D f \, dx \, dy = \iint_{D_1} f \, dx \, dy + \iint_{D_2} f \, dx \, dy$.
- Ограниченность: Если $m \leq f(x,y) \leq M$ для всех $(x,y) \in D$, то $m \cdot \operatorname{Area}(D) \leq \iint_D f(x,y), dx, dy \leq M \cdot \operatorname{Area}(D)$).

13 Замена переменных в двойном интеграле. Полярные координаты.

- Замена переменных в двойном интеграле: Замена переменных в двойном интеграле используется для упрощения вычислений или преобразования области интегрирования. Пусть x=g(u,v) и y=h(u,v), тогда

$$\iint_D f(x,y) \, dx \, dy = \iint_{D'} f(g(u,v), h(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du \, dv,$$

где $\left| \frac{\partial(x,y)}{\partial(u,v)} \right|$ - якобиан преобразования.

- ПЕРЕХОД К ПОЛЯРНЫМ КООРДИНАТАМ: В полярных координатах $x = r \cos \theta$ и $y = r \sin \theta$. Якобиан преобразования $r \, dr \, d\theta$, так что

$$\iint_D f(x,y) dx dy = \iint_{D'} f(r\cos\theta, r\sin\theta) r dr d\theta,$$

где D' - область интегрирования в полярных координатах.

- ПРИМЕР: Для вычисления интеграла круглой области с радиусом R, используя полярные координаты, область интегрирования становится $0 \le r \le R$, $0 \le \theta \le 2\pi$.
- Значение: Замена переменных, особенно переход к полярным координатам, часто упрощает вычисление двойных интегралов, особенно когда область интегрирования является круговой или секторной.

14 Тройной интеграл. Определение. Вычисление с помощью повторного интегрирования. Основные свойства.

- Определение тройного интеграла: Тройной интеграл функции f(x,y,z) по пространственной области D определяется как

$$\iiint_D f(x,y,z) \, dx \, dy \, dz.$$

Он представляет собой предел суммы произведений значений функции на объемы малых подобластей, когда размеры этих областей стремятся к нулю.

- Вычисление через повторное интегрирование: Тройной интеграл может быть вычислен как последовательность трех одномерных интегралов. Например,

$$\iiint_D f(x,y,z) \, dx \, dy \, dz = \int_a^b \left(\int_c^d \left(\int_e^f f(x,y,z) \, dz \right) dy \right) dx,$$

где [a,b],[c,d] и [e,f] - интервалы интегрирования для x,y и z соответственно.

- Основные свойства:
 - Линейность: $\iiint_D (af + bg) dx dy dz = a \iiint_D f dx dy dz + b \iiint_D g dx dy dz.$
 - Аддитивность: Если D разбита на подобласти $D_1, D_2, ...,$ то $\iiint_D f \, dx \, dy \, dz = \iiint_{D_1} f \, dx \, dy \, dz + \iiint_{D_2} f \, dx \, dy \, dz + \ldots$
 - Ограниченность: Если $m \leq f(x,y,z) \leq M$ для всех $(x,y,z) \in D$, то $m \cdot \text{Volume}(D) \leq \iiint_D f(x,y,z) \, dx \, dy \, dz \leq M \cdot \text{Volume}(D)$.

15 Замена переменных в тройном интеграле. Цилиндрические и сферические координаты.

- Замена переменных в тройном интеграле: Замена переменных используется для упрощения вычисления тройных интегралов, особенно когда область интегрирования сложна для описания в стандартных декартовых координатах. Формула замены переменных:

$$\iiint_D f(x,y,z) \, dx \, dy \, dz = \iiint_{D'} f(g(u,v,w),h(u,v,w),k(u,v,w)) \, |J| \, du \, dv \, dw,$$

где J - якобиан преобразования координат.

- Цилиндрические координаты: В цилиндрических координатах $x=r\cos\theta,\ y=r\sin\theta,\ z=z.$ Якобиан преобразования $r\,dr\,d\theta\,dz$, так что

$$\iiint_D f(x,y,z) \, dx \, dy \, dz = \iiint_{D'} f(r\cos\theta,r\sin\theta,z) \, r \, dr \, d\theta \, dz.$$

- СФЕРИЧЕСКИЕ КООРДИНАТЫ: В сферических координатах $x=\rho\sin\phi\cos\theta,\ y=\rho\sin\phi\sin\theta,\ z=\rho\cos\phi.$ Якобиан преобразования $\rho^2\sin\phi\,d\rho\,d\phi\,d\theta$, так что

$$\iiint_D f(x,y,z) dx dy dz = \iiint_{D'} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi d\rho d\phi d\theta.$$

- Значение: Замена переменных, особенно на цилиндрические или сферические координаты, значительно упрощает вычисление тройных интегралов во многих случаях, особенно когда область интегрирования имеет симметричную форму относительно оси или точки.

16 Криволинейный интеграл первого рода. Определение. Основные свойства. Вычисление.

- Определение криволинейного интеграла первого рода: Криволинейный интеграл первого рода функции f(x,y,z) вдоль кривой C определяется как

$$\int_C f(x, y, z) \, ds,$$

где ds - дифференциал дуги, представляющий бесконечно малый элемент длины кривой. Интеграл вычисляется как сумма значений функции, умноженных на длину соответствующего сегмента кривой.

- Основные свойства:
 - Линейность: $\int_C (af + bg) ds = a \int_C f ds + b \int_C g ds$, где a и b константы.
 - Зависимость от ориентации: Интеграл изменяет знак, если изменить направление обхода кривой.
 - Аддитивность: Если кривая C разбита на части C_1 и C_2 , то $\int_C f \, ds = \int_{C_1} f \, ds + \int_{C_2} f \, ds$.
- Вычисление: Если кривая C задана параметрически уравнениями $x=x(t),\ y=y(t),\ z=z(t)$ на интервале [a,b], то

$$\int_C f(x,y,z)\,ds = \int_a^b f(x(t),y(t),z(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}\,dt.$$

- ПРИМЕР: Для кривой, заданной $x=\cos t,\ y=\sin t,\ z=t$ на $[0,2\pi],$ и функции $f(x,y,z)=x^2+y^2,$ интеграл вычисляется соответственно.

17 Криволинейный интеграл второго рода. Определение. Основные свойства. Вычисление.

- Определение криволинейного интеграла второго рода: Криволинейный интеграл второго рода функций $P(x,y,z),\,Q(x,y,z)$ и R(x,y,z) вдоль кривой C определяется как

$$\int_C (P\,dx + Q\,dy + R\,dz),$$

где dx, dy, и dz - дифференциалы координат, а C - кривая в пространстве.

- Основные свойства:
 - Линейность: Интеграл линеен по P, Q, и R.
 - Зависимость от ориентации: Значение интеграла зависит от направления обхода кривой.

- Независимость от параметризации: Значение интеграла не зависит от выбора параметризации кривой, при условии сохранения ориентации.
- Вычисление: Если кривая C параметризована функциями $x=x(t),\,y=y(t),\,z=z(t)$ на интервале [a,b], то

$$\int_{C} (P dx + Q dy + R dz) = \int_{a}^{b} (P(x(t), y(t), z(t)) \frac{dx}{dt} + Q(x(t), y(t), z(t)) \frac{dy}{dt} + R(x(t), y(t), z(t)) \frac{dz}{dt}) dt.$$

- ПРИМЕР: Для кривой, заданной $x=t,\,y=t^2,\,z=t^3$ на [0,1], и функций $P(x,y,z)=x,\,Q(x,y,z)=y,\,R(x,y,z)=z,$ интеграл вычисляется соответственно.

18 Связь между криволинейными интегралами первого и второго рода.

- Основные различия:
 - Криволинейный интеграл первого рода вычисляет сумму значений функции вдоль кривой, умноженных на длину каждого сегмента кривой.
 - Криволинейный интеграл второго рода вычисляет сумму проекций векторного поля на элементы кривой, умноженных на длину этих элементов.
- Связь через векторное поле: Криволинейный интеграл первого рода может быть интерпретирован как частный случай интеграла второго рода, где интегрируемая функция рассматривается как скалярное векторное поле.
- ПРИМЕР: Если рассмотреть векторное поле $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$, то криволинейный интеграл второго рода $\int_C \mathbf{F} \cdot d\mathbf{r}$ преобразуется в $\int_C (P \, dx + Q \, dy + R \, dz)$. Если \mathbf{F} является градиентом скалярной функции f, то интеграл второго рода преобразуется в интеграл первого рода $\int_C f \, ds$.
- Зависимость от ориентации: Интегралы первого рода не зависят от ориентации кривой, тогда как интегралы второго рода изменяют знак при изменении ориентации кривой.
- Физический смысл: Криволинейный интеграл первого рода часто связан с массой или длиной, в то время как интеграл второго рода связан с работой или циркуляцией векторного поля.

19 Формула Грина.

- ФОРМУЛИРОВКА ФОРМУЛЫ ГРИНА: Формула Грина связывает криволинейный интеграл второго рода по замкнутой кривой C с двойным интегралом по области D, ограниченной этой кривой. Она формулируется как

$$\oint_C (P dx + Q dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

где P и Q - непрерывно дифференцируемые функции на области D.

- ПРименение: Формула Грина используется для преобразования сложных криволинейных интегралов в более удобные для вычисления двойные интегралы и наоборот. Она также применяется в теории поля, где играет ключевую роль в доказательстве теорем векторного анализа.
- ТРЕБОВАНИЯ: Чтобы использовать формулу Грина, область D должна быть кусочно-гладкой и простой (то есть без самопересечений).
- Физический смысл: В физике формула Грина часто используется для вычисления циркуляции векторного поля или потока векторного поля через замкнутый контур.
- ПРИМЕР: Если P = -y и Q = x, то левая сторона формулы Грина представляет циркуляцию векторного поля по замкнутому контуру C, а правая сторона двойной интеграл, который в данном случае представляет удвоенную площадь области D.

20 Условия независимости криволинейного интеграла второго рода от пути интегрирования.

- НЕЗАВИСИМОСТЬ ОТ ПУТИ: Криволинейный интеграл второго рода $\int_C (P dx + Q dy + R dz)$ по кривой C в поле $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ не зависит от пути интегрирования в определенных условиях.
- НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ: Интеграл не зависит от пути, если выполняются следующие условия:
 - Векторное поле **F** должно быть консервативным, то есть существует скалярная функция f (потенциальная функция), для которой $\mathbf{F} = \nabla f$.
 - Частные производные *P*, *Q*, и *R* должны быть непрерывными в области интегрирования.
 - Область интегрирования должна быть простой и связной (то есть без дыр и разрывов).
- Эквивалентные условия: Эти условия эквивалентны тому, что ротор векторного поля ${\bf F}$ равен нулю, то есть $\nabla \times {\bf F} = 0$.
- ПРИМЕР: Если P = -y, Q = x, и R = 0, то векторное поле **F** не является консервативным, и криволинейный интеграл будет зависеть от пути.
- Значение: Независимость криволинейного интеграла второго рода от пути позволяет значительно упростить вычисления, выбирая наиболее удобный путь интегрирования.

21 Поверхностный интеграл первого рода. Определение. Вычисление. Свойства.

- Определение поверхностного интеграла первого рода: Поверхностный интеграл первого рода функции f(x,y,z) по поверхности S определяется как

$$\iint_{S} f(x, y, z) \, dS,$$

где dS - элемент площади поверхности. Интеграл равен сумме значений функции в каждой точке поверхности, умноженной на площадь элемента поверхности.

- Вычисление: Если поверхность S задана параметрически уравнениями $x=x(u,v),\ y=y(u,v),$ z=z(u,v), то

$$\iint_S f(x,y,z) dS = \iint_D f(x(u,v),y(u,v),z(u,v)) \sqrt{EG - F^2} du dv,$$

где $E = \left(\frac{\partial x}{\partial u}\right)^2 + \left(\frac{\partial y}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial u}\right)^2$, аналогично для F и G, и D - область в плоскости параметров u,v.

- Свойства:
 - Линейность: $\iint_S (af + bg) dS = a \iint_S f dS + b \iint_S g dS$.
 - Зависимость от ориентации: Значение интеграла не зависит от ориентации поверхности S.
 - Аддитивность: Если поверхность S разбита на части S_1 и S_2 , то $\iint_S f \, dS = \iint_{S_1} f \, dS + \iint_{S_2} f \, dS$.
- ПРИМЕР: Для сферической поверхности радиуса R и функции $f(x,y,z) = x^2 + y^2 + z^2$, поверхностный интеграл можно вычислить, параметризуя сферу и применяя формулу.

22 Поверхностный интеграл второго рода. Определение. Вычисление. Свойства.

- Определение: Поверхностный интеграл второго рода функций P,Q,R по ориентированной поверхности S определяется как

$$\iint_{\mathcal{C}} (P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy).$$

Этот интеграл оценивает поток векторного поля F = Pi + Qj + Rk через поверхность S.

- Вычисление: Если поверхность S параметризована уравнениями $x=x(u,v),\,y=y(u,v),\,z=z(u,v),$ то

$$\iint_S (P\,dy\,dz + Q\,dz\,dx + R\,dx\,dy) = \iint_D (P\,\frac{\partial(y,z)}{\partial(u,v)} + Q\,\frac{\partial(z,x)}{\partial(u,v)} + R\,\frac{\partial(x,y)}{\partial(u,v)})\,du\,dv,$$

где D - область на плоскости uv.

- Свойства: Линейность, зависимость от ориентации поверхности и аддитивность, аналогичные свойствам поверхностного интеграла первого рода.

23 Формула Остроградского-Гаусса.

- ФОРМУЛИРОВКА ФОРМУЛЫ ОСТРОГРАДСКОГО-ГАУССА: Формула связывает тройной интеграл по объему тела с поверхностным интегралом по замкнутой поверхности, ограничивающей это тело. Она формулируется как

$$\iiint_{V} \nabla \cdot \mathbf{F} \, dV = \oint_{S} \mathbf{F} \cdot d\mathbf{S},$$

где ${\bf F}$ - векторное поле, V - объем тела, S - замкнутая поверхность тела, $d{\bf S}$ - вектор, нормальный к элементу поверхности dS.

- ПРИМЕНЕНИЕ: Формула Остроградского-Гаусса используется для преобразования объемного интеграла в поверхностный интеграл и наоборот. Она широко применяется в физике и инженерии, в частности, в электродинамике и гидродинамике.
- ТРЕБОВАНИЯ: Для применения формулы векторное поле ${\bf F}$ должно быть непрерывно дифференцируемым во всем объеме V и на его границе S.

24 Формула Стокса.

- Формулировка Формулы Стокса: Формула Стокса связывает поверхностный интеграл второго рода по ориентированной поверхности S с криволинейным интегралом второго рода по её границе. Она формулируется как

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r},$$

где ${\bf F}$ - векторное поле, $\nabla \times {\bf F}$ - ротор поля ${\bf F}$, и ∂S - краевая кривая поверхности S.

- Применение: Формула Стокса широко используется в векторном анализе и теоретической физике, особенно в электромагнетизме и гидродинамике.
- ТРЕБОВАНИЯ: Векторное поле **F** должно быть непрерывно дифференцируемым на поверхности S и вдоль её границы ∂S .

25 Скалярное поле. Поверхности уровня, линии уровня скалярного поля. Производная по направлению. Градиент скалярного поля, координатное и инвариантное определения.

- Скалярное поле: Скалярное поле это функция, которая каждой точке пространства ставит в соответствие скаляр (число). Пример: температура в разных точках комнаты
- Поверхности и линии уровня: Поверхности уровня это множества точек, в которых скалярное поле имеет одинаковое значение. В трехмерном пространстве это поверхности, в двумерном линии (линии уровня).

- ПРОИЗВОДНАЯ ПО НАПРАВЛЕНИЮ: Производная скалярного поля f по направлению вектора ${\bf a}$ в точке ${\bf r}$ определяется как

$$\frac{\partial f}{\partial \mathbf{a}} = \nabla f \cdot \frac{\mathbf{a}}{|\mathbf{a}|},]$$

 ∇f - градиент поля в точке r

- ГРАДИЕНТ СКАЛЯРНОГО ПОЛЯ: Градиент скалярного поля f, обозначаемый ∇f , является векторным полем, каждый вектор которого указывает направление наибольшего увеличения значения поля и имеет величину, равную скорости изменения поля в этом направлении.

26 Дифференциальные уравнения первого порядка. Понятие уравнения и его решения. Поле направлений. Задача Коши. Теорема Пикара. Общее, частное и особое решения.

- Определение: Дифференциальное уравнение первого порядка это уравнение, содержащее производные функции по одной переменной, обычно записываемое в форме F(x, y, y') = 0.
- Решение уравнения: Решением дифференциального уравнения называется функция y = f(x), которая удовлетворяет этому уравнению.
- Поле направлений: Геометрическая интерпретация дифференциального уравнения, где каждой точке (x,y) ставится в соответствие направление, определяемое производной y'.
- Задача Коши: Задача нахождения решения дифференциального уравнения, удовлетворяющего начальному условию $y(x_0) = y_0$.
- ТЕОРЕМА ПИКАРА: Утверждает о существовании и единственности локального решения задачи Коши для дифференциального уравнения при определённых условиях.
- Общее, Частное и особое решения: Общее решение семейство функций, содержащее все решения уравнения. Частное решение одна конкретная функция из этого семейства. Особое решение решение, которое не может быть получено из общего решения.

27 Методы интегрирования уравнений первого порядка. Уравнения с разделяющимися переменными. Однородные уравнения и уравнения, приводящиеся к однородным.

- Уравнения с разделяющимися переменными: Это уравнения вида y'=g(x)h(x), которые можно решить, разделив переменные и интегрируя обе части уравнения, то есть $\int \frac{dy}{h(y)} = \int g(x)dx$
- Однородные уравнения: Уравнение вида $y' = f\left(\frac{y}{x}\right)$ называется однородным. Для его решения применяется замена переменных $v = \frac{y}{x}$, что приводит к уравнению с разделяющимися переменными.
- Уравнения, приводящиеся к однородным: Это уравнения вида y' = f(ax + by + c, dx + ey + f), которые могут быть приведены к однородному виду путём подходящей замены переменных.
- МЕТОД ИНТЕГРИРОВАНИЯ: Каждый из этих методов предполагает определённые шаги для преобразования и интегрирования исходного уравнения, приводя к его решению.

28 Линейные уравнения первого порядка. Уравнение Бернулли.

- Линейные уравнения первого порядка: Уравнение вида y' + p(x)y = q(x), где p(x) и q(x) заданные функции. Общее решение таких уравнений находится методом вариации произвольной постоянной.
- Уравнение Бернулли: Уравнение вида $y' + p(x)y = q(x)y^n$, где n не равно 1. Это уравнение преобразуется к линейному уравнению путем замены $z = y^{1-n}$, если $n \neq 0$ и $n \neq 1$.

- МЕТОД РЕШЕНИЯ: Для решения уравнения Бернулли после замены переменных применяется стандартный метод решения линейного дифференциального уравнения первого порядка.

29 Уравнения в полных дифференциалах. Интегрирующий множитель.

- Уравнения в полных дифференциалах: Уравнение вида M(x,y)dx + N(x,y)dy = 0 называется уравнением в полных дифференциалах, если существует такая функция F(x,y), что dF = Mdx + Ndy.
- Интегрирующий множитель: Если уравнение не является уравнением в полных дифференциалах, иногда можно найти функцию $\mu(x,y)$, такую что умножение обеих частей уравнения на μ превращает его в уравнение в полных дифференциалах.
- МЕТОД НАХОЖДЕНИЯ ИНТЕГРИРУЮЩЕГО МНОЖИТЕЛЯ: Часто зависит от конкретной формы функций M и N. Например, если $\frac{1}{N}(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x})$ является функцией только от x то существует интегрирующий множитель, зависящий только от x
- РЕШЕНИЕ УРАВНЕНИЙ: После нахождения интегрирующего множителя уравнение интегрируется как уравнение в полных дифференциалах, приводя к общему решению.

30 Уравнения первого порядка, не разрешенные относительно производной. Уравнения Лагранжа и Клеро.

- Уравнения Лагранжа: Уравнения вида F(x, y, y') = 0, которые не могут быть непосредственно разрешены относительно y'. Решение часто требует замены переменных или параметризации.
- Уравнения Клеро: Специальный тип уравнений вида $y = xy' + \phi(y')$, где ϕ некоторая функция. Для их решения применяется параметризация, где y' рассматривается как параметр.
- МЕТОДЫ РЕШЕНИЯ: Оба типа уравнений требуют специальных методов и подходов, включая параметризацию и возможное использование дифференциального исчисления.

31 Дифференциальные уравнения высших порядков. Основные понятия и определения. Задача Коши. Теорема Пикара. Понижение порядка уравнения. Уравнения, не содержащие искомой функции и последовательных первых производных. Уравнения, не содержащие независимой переменной.

- Основные понятия и определения: Дифференциальные уравнения, включающие производные выше первого порядка. Формулируются в виде $F(x, y, y', y'', \dots, y^{(n)}) = 0$.
- Задача Коши: Нахождение решения дифференциального уравнения, удовлетворяющего начальным условиям для функции и её производных до (n1) -го порядка.
- ТЕОРЕМА ПИКАРА: Обеспечивает существование и единственность локального решения задачи Коши для дифференциального уравнения при определённых условиях.
- Понижение порядка уравнения: Метод, позволяющий упростить уравнение, снизив его порядок, например, при наличии известного решения.
- Уравнения, не содержащие искомой функции и последовательных первых производных: Уравнения вида $F(x, y'', y''', \dots, y^{(n)}) = 0$, где искомая функция y не появляется явно.
- УРАВНЕНИЯ, НЕ СОДЕРЖАЩИЕ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ: Уравнения вида $F(y, y', y'', \dots, y^{(n)}) = 0$, где независимая переменная x не появляется явно.

- 32 Линейные дифференциальные уравнения n-го порядка. Свойства решений линейного однородного уравнения. Фундаментальная система решений и определитель Вронского. Признак линейной независимости решений. Формула Остроградского Лиувилля.
- Линейное однородное уравнение: Уравнение вида $y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_n(x)y = 0$, где $p_i(x)$ непрерывные функции на некотором интервале.
- ФУНДАМЕНТАЛЬНАЯ СИСТЕМА РЕШЕНИЙ: Набор из n линейно независимых решений уравнения, который образует базис в пространстве всех решений.
- Определитель Вронского: Для функций y_1, y_2, \ldots, y_n определитель Вронского выражается как

$$W(y_1, y_2, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}.$$

Если $W \neq 0$ в некоторой точке, решения линейно независимы.

- ФОРМУЛА ОСТРОГРАДСКОГО ЛИУВИЛЛЯ: Формула для вычисления определителя Вронского решений линейного дифференциального уравнения.
- 33 Построение общего решения линейного однородного уравнения по фундаментальной системе решений. Структура общего решения неоднородного уравнения. Принцип наложения. Метод вариации произвольных постоянных (метод Лагранжа) для уравнения 2-го порядка. Случай уравнения n-го порядка.
- Линейное однородное уравнения: Общее решение линейного однородного уравнения n-го порядка строится как линейная комбинация n линейно независимых решений (фундаментальной системы решений).
- СТРУКТУРА ОБЩЕГО РЕШЕНИЯ НЕОДНОРОДНОГО УРАВНЕНИЯ: Общее решение неоднородного уравнения и частного решения неоднородного уравнения и частного решения неоднородного уравнения.
- ПРИНЦИП НАЛОЖЕНИЯ: Для линейных уравнений сумма решений также является решением.
- МЕТОД ВАРИАЦИИ ПРОИЗВОЛЬНЫХ ПОСТОЯННЫХ: Метод позволяет найти частное решение неоднородного уравнения, варьируя постоянные в общем решении соответствующего однородного уравнения.
- 34 Системы дифференциальных уравнений. Основные понятия и определения. Нормальная система. Задача Коши. Механическое истолкование нормальной системы и ее решения. Теорема Пикара. Связь между уравнениями высшего порядка и системами дифференциальных уравнений 1-го порядка.
- ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ: Система дифференциальных уравнений состоит из нескольких дифференциальных у равнений, связывающих несколько неизвестных функций и их производные.
- Нормальная система: Система вида $\mathbf{y}' = \mathbf{F}(x, \mathbf{y})$, где \mathbf{y} вектор неизвестных функций, \mathbf{F} векторная функция.

- Задача Коши: Нахождение решения системы дифференциальных уравнений, удовлетворяющего начальным условиям.
- МЕХАНИЧЕСКОЕ ИСТОЛКОВАНИЕ: Системы дифференциальных уравнений часто возникают в механике при описании движения тел, где каждое уравнение системы представляет одно из движений.
- Теорема Пикара: Гарантирует существование и единственность решения задачи Коши для системы дифференциальных уравнений при определённых условиях.
- Связь с уравнениями высшего порядка: Любое дифференциальное уравнение высшего порядка может быть преобразовано в систему дифференциальных уравнений первого порядка.

35 Линейные системы. Свойства линейных систем. Фундаментальная матрица. Определитель Вронского. Критерий линейной независимости вектор-функций. Формула Остроградского – Лиувилля.

- Свойства линейных систем: Система линейных дифференциальных уравнений обладает свойством суперпозиции, то есть любая линейная комбинация решений является также решением системы.
- ФУНДАМЕНТАЛЬНАЯ МАТРИЦА: Матрица, столбцы которой состоят из линейно независимых векторфункций, являющихся решениями системы. Фундаментальная матрица используется для построения общего решения системы.
- Определитель Вронского: Определитель, построенный из решений системы уравнений, позволяющий определить линейную независимость этих решений.
- Критерий линейной независимости: Вектор-функции линейно независимы, если их определитель Вронского не равен нулю в некоторой точке.
- ФОРМУЛА ОСТРОГРАДСКОГО ЛИУВИЛЛЯ: Формула, связывающая фундаментальную матрицу системы линейных дифференциальных уравнений с определителем Вронского. Она описывает, как изменяется определитель Вронского в зависимости от коэффициентов системы уравнений.

36 Построение общего решения линейной однородной системы по фундаментальной системе решений. Интегрирование линейной однородной системы с постоянными коэффициентами методом Эйлера.

- Общее Решение линейной однородной системы: Если дана система уравнений вида $\mathbf{Y}' = A\mathbf{Y}$, где A матрица с постоянными коэффициентами, то общее решение можно построить, используя фундаментальную систему решений. Общее решение представляется в виде линейной комбинации фундаментальных решений с произвольными постоянными коэффициентами.
- МЕТОД ЭЙЛЕРА: Для интегрирования линейной однородной системы с постоянными коэффициентами метод Эйлера заключается в нахождении матрицы экспоненты e^{At} , которая является фундаментальным решением системы. Это достигается через разложение матрицы A на жорданову форму или диагонализацию, если это возможно.

37 Структура общего решения неоднородной линейной системы. Метод вариации произвольных постоянных (метод Лагранжа).

- СТРУКТУРА ОБЩЕГО РЕШЕНИЯ: Общее решение неоднородной линейной системы уравнений $\mathbf{Y}' = A\mathbf{Y} + \mathbf{B}$ представляет собой сумму общего решения соответствующей однородной системы и частного решения неоднородной системы.

- Метод вариации произвольных постоянных (метод Лагранжа): Этот метод заключается в нахождении частного решения неоднородной системы путем замены произвольных постоянных в общем решении однородной системы на функции от x и последующего определения этих функций из исходной неоднородной системы.

38 Функции комплексного переменного. Предел и непрерывность функций комплексного переменного.

- ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО: Функция комплексного переменного f(z) определяется для комплексных чисел z=x+iy, где x и y вещественные числа, и i мнимая единица.
- ПРЕДЕЛ ФУНКЦИИ: Предел функции f(z) в точке z_0 определяется как $\lim_{z\to z_0} f(z) = L$, если для каждой последовательности $\{z_n\}$, сходящейся к z_0 , соответствующая последовательность $\{f(z_n)\}$ сходится к L.
- Непрерывность функции: Функция f(z) непрерывна в точке z_0 , если $\lim_{z\to z_0} f(z) = f(z_0)$. Это означает, что малые изменения z вокруг z_0 приводят к малым изменениям f(z).

39 Производная и дифференциал функций комплексного переменного. Необходимые и достаточные условия дифференцируемости функций комплексного переменного.

- ПРОИЗВОДНАЯ ФУНКЦИИ: Производная функции f(z) в точке z_0 определяется как $f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) f(z_0)}{\Delta z}$, если этот предел существует.
- Дифференциал функции f(z) в точке z_0 определяется как $df = f'(z_0)dz$.
- НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ДИФФЕРЕНЦИРУЕМОСТИ: Функция f(z) дифференцируема в этой точке, что включает существование производной $f'(z_0)$. Для дифференцируемости функции f(z)=u(x,y)+iv(x,y) необходимо и достаточно выполнение условий Коши-Римана: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ и $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$.

40 Аналитические функции. Свойства нулей аналитических функций. Теорема единственности. Принцип аналитического продолжения. Связь аналитических функций с гармоническими.

- Аналитические функции: Функция комплексного переменного называется аналитической в точке, если она дифференцируема в этой точке и в некоторой её окрестности.
- Свойства нулей: Если аналитическая функция имеет ноль в точке, то либо этот ноль изолирован, либо функция тождественно равна нулю в некоторой окрестности этой точки.
- Теорема единственности: Если две аналитические функции совпадают в некоторой области, то они совпадают везде, где они обе определены и аналитичны.
- ПРИНЦИП АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ: Если аналитическая функция определена в некоторой области и известна её разложение в ряд Тейлора в точке этой области, то она может быть продолжена за пределы этой области.
- Связь с гармоническими функциями: Реальная и мнимая части аналитической функции являются гармоническими функциями.

41 Элементарные функции комплексного переменного и их свойства.

- Элементарные функции: Включают степенные функции, экспоненциальные функции, логарифмические функции, тригонометрические и обратные тригонометрические функции.
- Свойства:
 - Cтепенные функции: z^n где n целое или дробное, имеют разветвления при отрицательных и дробных n.
 - Экспоненциальные функции: e^z определена для всех комплексных z и периодична с периодом $2\pi i$.
 - Логарифмические функции: Логарифм $\ln z$ $\ln z$ является многозначной функцией и имеет разветвления
 - *Тригонометрические функции*: Функции $\sin z$ и $\cos z$ могут быть определены через экспоненциальную функцию и являются целыми функциями.
 - Обратные тригонометрические функции: Такие как $\arcsin z$, $\arccos z$, определяются через логарифмические функции и также являются многозначными.

42 Интеграл от функции комплексного переменного и его свойства.

- Определение интеграла: Интеграл от функции комплексного переменного f(z) вдоль кривой C в комплексной плоскости определяется как

$$\int_C f(z) dz = \int_a^b f(z(t))z'(t) dt,$$

где z(t) - параметрическое представление кривой C, и $a \le t \le b$.

- Свойства интеграла:
 - Линейность: $\int_C (af(z) + bg(z)) dz = a \int_C f(z) dz + b \int_C g(z) dz$.
 - Зависимость от пути: Если функция f(z) аналитична в области, содержащей кривую C, то интеграл не зависит от формы кривой C в этой области.
 - Оценка интеграла: $\left| \int_C f(z) dz \right| \leq \max_{z \in C} |f(z)| \cdot$ длина(C).

43 Интегральные теоремы Коши (для односвязной и для многосвязной областей).

- Теорема Коши для односвязной области: Если функция f(z) аналитична в односвязной области D и на её границе C, то

$$\int_C f(z) \, dz = 0.$$

Это утверждение означает, что интеграл аналитической функции по замкнутой кривой в односвязной области равен нулю.

- ТЕОРЕМА КОШИ ДЛЯ МНОГОСВЯЗНОЙ ОБЛАСТИ: Если функция f(z) аналитична в многосвязной области D, ограниченной замкнутыми кривыми C_1, C_2, \ldots, C_n , то

$$\sum_{i=1}^{n} \int_{C_i} f(z) dz = 0,$$

при условии, что каждая кривая C_i ориентирована положительно относительно области D.

- Значение теорем: Эти теоремы являются фундаментальными в комплексном анализе и играют ключевую роль в многих его аспектах, включая теорию функций и вычисление интегралов.

44 Независимость интеграла от пути интегрирования.

- НЕЗАВИСИМОСТЬ ОТ ПУТИ: Интеграл от аналитической функции f(z) по кривой в комплексной плоскости не зависит от пути интегрирования, если путь лежит в области, где функция аналитична. То есть, если C_1 и C_2 - два различных пути между точками A и B в области аналитичности f(z), то

$$\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.$$

- Условия: Это свойство верно, если функция f(z) аналитична на всей области, ограниченной путями C_1 и C_2 , и на самих этих путях.

45 Первообразная функции комплексного переменного. Неопределенный интеграл от функции комплексного переменного. Формула Ньютона-Лейбница.

- Первообразная функции комплексного переменного: Функция F(z) называется первообразной функцией для f(z) в области D, если F'(z) = f(z) для всех z в D.
- Неопределенный интеграл: Неопределенный интеграл от функции f(z) определяется как совокупность всех её первообразных и обозначается как $\int f(z) \, dz$.
- Формула Ньютона-Лейбница: Если F(z) первообразная f(z) на пути C от A до B, то

$$\int_C f(z) dz = F(B) - F(A).$$

Эта формула связывает определенный интеграл функции комплексного переменного с значениями её первообразной на концах пути интегрирования.

46 Интегральная формула Коши.

- Формулировка Интегральной формулы Коши: Пусть f(z) - аналитическая функция внутри и на границе простой замкнутой кривой C в комплексной плоскости. Тогда для любой точки a, лежащей внутри C,

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz.$$

 Значение: Эта формула позволяет вычислить значение аналитической функции внутри кривой на основе значений функции на самой кривой, подчеркивая фундаментальное свойство аналитических функций.

47 Высшие производные аналитической функции.

- Определение: Если функция f(z) аналитична в некоторой области, то все её производные существуют и также являются аналитическими в этой области.
- Вычисление высших производных: Высшие производные функции f(z) могут быть вычислены путем последовательного дифференцирования. Например, вторая производная f''(z) вычисляется как производная от f'(z) и так далее.
- Свойства: Высшие производные аналитической функции сохраняют свойства аналитичности, включая возможность разложения в ряд Тейлора и Лорана вокруг точки аналитичности.

48 Разложение аналитической функции в степенной ряд. Теорема Тэйлора.

- Разложение в степенной ряд: Если функция f(z) аналитична в окрестности точки a, то она может быть представлена степенным рядом (рядом Тейлора) вокруг этой точки:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n,$$

где
$$c_n = \frac{f^{(n)}(a)}{n!}$$
.

- Теорема Тэйлора: Эта теорема утверждает, что если f(z) аналитична в окрестности точки a, то её можно разложить в степенной ряд, который сходится к f(z) в этой окрестности. Коэффициенты ряда c_n определяются выражением $\frac{f^{(n)}(a)}{n!}$), где $f^{(n)}(a) - n$ - ая производная f в точке a

49 Ряды Лорана. Кольцо сходимости ряда Лорана. Теорема Лорана.

- Ряды Лорана
 Дорана для функции f(z) вокруг точки a представляет собой разложение в
 виде

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n,$$

где c_n - коэффициенты Лорана, определяемые по формуле

$$c_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz,$$

с интегрированием по кривой C, окружающей точку a.

- Кольцо сходимости: Ряд Лорана сходится в кольце $R_1 < |z-a| < R_2$, где R_1 и R_2 внутренний и внешний радиусы сходимости соответственно.
- ТЕОРЕМА ЛОРАНА: Утверждает, что если функция f(z) аналитична в кольце сходимости, то её можно представить с помощью единственного ряда Лорана в этом кольце.

50 Изолированные особые точки голоморфной функции. Их классификация посредством ряда Лорана. Устранимая особая точка и ее характеризация. Полюс и его характеризация. Существенно особая точка и ее характеризация.

- ИЗОЛИРОВАННЫЕ ОСОБЫЕ ТОЧКИ: Точка a называется изолированной особой точкой функции f(z), если f(z) не аналитична в точке a, но аналитична в некоторой окрестности этой точки.
- Устранимая особая точка: Если ряд Лорана функции f(z) в окрестности точки a не содержит отрицательных степеней, то a устранимая особая точка.
- Полюс: Точка a является полюсом функции f(z), если в ряду Лорана присутствуют члены с конечным числом отрицательных степеней.
- Существенно особая точка: Если в ряду Лорана присутствует бесконечное количество отрицательных степеней, точка a является существенно особой точкой.

51 Разложение функции в ряд Лорана в окрестности бесконечно удаленной точки.

- Ряд Лорана в Бесконечности: Для аналитической функции f(z) в окрестности бесконечно удаленной точки ее разложение в ряд Лорана выполняется через замену переменной $w=\frac{1}{z}$. Тогда

разложение функции f(z) будет иметь вид

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^n,$$

где z^n заменяется на w^{-n} , и разложение проводится в области, где w мало.

- ПРИМЕР: Для функции $f(z) = \frac{1}{z}$, ряд Лорана в бесконечности будет $f(z) = \frac{1}{z}$, или, в терминах w, f(w) = w.

52 Вычеты в изолированных особых точках. Основная теорема теории вычетов. Вычисление вычетов в конечных особых точках.

- Вычеты: Вычет функции f(z) в изолированной особой точке a определяется как коэффициент при $\frac{1}{z-a}$ в ряду Лорана этой функции в окрестности точки a.
- ОСНОВНАЯ ТЕОРЕМА ТЕОРИИ ВЫЧЕТОВ: Теорема утверждает, что интеграл от функции f(z) вдоль замкнутого контура C, не содержащего других особых точек, кроме a, равен $2\pi i$ умноженному на вычет в точке $a:\oint_C f(z)dz=2\pi\cdot Res(f,a)$
- Вычисление вычетов: Вычет в конечной особой точке может быть найден путем вычисления коэффициента при $\frac{1}{z-a}$ в ряду Лорана. Для простых полюсов, вычет равен пределу $\lim_{z\to a} (z-a)f(z)$.

53 Вычет относительно бесконечно удаленной особой точки. Теорема о сумме вычетов.

- Вычет в бесконечности: Вычет функции f(z) в бесконечно удаленной точке определяется как

$$\operatorname{Res}(f, \infty) = -\lim_{z \to \infty} z \cdot f(z).$$

Это определение основано на поведении функции в бесконечности и учитывает изменение ориентации контура при переходе к бесконечности.

- Теорема о сумме вычетов: Теорема утверждает, что сумма вычетов функции f(z) во всех её изолированных особых точках, включая бесконечность, равна нулю, если функция аналитична везде, кроме этих точек.

54 Вычисление криволинейных интегралов с использованием теории вычетов. Приложение теории вычетов к вычислению определенных интегралов от вещественных функций.

- Криволинейные интегралы и теория вычетов: Теория вычетов может быть использована для вычисления криволинейных интегралов от функций, аналитических во всех точках, кроме конечного числа изолированных особых точек. Интеграл вдоль замкнутого контура может быть найден как $2\pi i$ умноженное на сумму вычетов внутри контура.
- ПРИЛОЖЕНИЕ К ВЕЩЕСТВЕННЫМ ФУНКЦИЯМ: Теория вычетов также применяется к вычислению определенных интегралов вещественных функций, особенно для интегралов, распространяющихся на бесконечные интервалы или содержащих особенности. Это достигается путем расширения вещественной функции до комплексной функции и применения теории вычетов к соответствующему комплексному интегралу.

55 Вычисление несобственных интегралов с использованием теории вычетов. Леммы Жордана.

- Вычисление несобственных интегралов: Теория вычетов в комплексном анализе позволяет вычислять несобственные интегралы от вещественных функций, особенно эффективно при интегралах с бесконечными пределами или особенностями. Процесс включает расширение вещественной функции до комплексной, применение контурного интегрирования и использование вычетов для нахождения значения интеграла.
- ЛЕММЫ ЖОРДАНА: Леммы Жордана используются для оценки интегралов вида $\int_{C_R} f(z)e^{iz}\,dz$, где C_R полуокружность радиуса R в верхней полуплоскости. Лемма утверждает, что если f(z) ограничена на C_R и $R\to\infty$, то интеграл стремится к нулю. Это полезно при вычислении интегралов вида $\int_{-\infty}^{\infty} f(x)e^{ix}dx$, где f(x) функция с хорошими аналитическими свойствами на вещественной оси.
- Применение теории вычетов: При вычислении несобственных интегралов с помощью теории вычетов, контур интегрирования часто замыкается в комплексной плоскости так, чтобы включить полуокружности больших радиусов, и используются Леммы Жордана для обоснования отбрасывания вклада от этих полуокружностей. Затем применяется теорема о вычетах для вычисления интеграла по замкнутому контуру.