2015-PH-14-26

EE24BTECH11034 - K Teja Vardhan

October 29, 2024

The electric field component of a plane electromagnetic wave traveling in vac-
uum is given by $E(z,t) = E_0 \cos(kz - \omega t) \hat{i}$. The Pointing vector for the wave
is

(a)
$$\left(\frac{c\epsilon_0}{2}\right) E_0^2 \cos^2\left(kz - \omega t\right) \hat{j}$$

(b)
$$\left(\frac{c\epsilon_0}{2}\right) E_0^2 \cos^2\left(kz - \omega t\right) \hat{k}$$

(c)
$$c\epsilon_0 E_0^2 \cos^2(kz - \omega t) \hat{j}$$

(d)
$$c\epsilon_0 E_0^2 \cos^2(kz - \omega t) \hat{k}$$

- 2. Consider a system having three energy levels with energies $0, 2\epsilon$, and 3ϵ , with respective degeneracies of 2, 2, and 3. Four bosons of spin zero have to be accommodated in these levels such that the total energy of the system is 10ϵ . The number of ways in which it can be done is ______
- 3. The Lagrangian of a system is given by

$$L = \frac{1}{2}ml^2\left(\dot{\theta}^2 + \sin^2\theta\dot{\phi}^2\right) - mgl\cos\theta,$$

where m, l, and g are constants.

Which of the following is conserved?

- (a) $\sin^2 \theta$
- (b) $\sin \theta$
- (c) $\frac{\phi}{\sin \theta}$
- (d) $\frac{\phi}{\sin^2\theta}$
- 4. Protons and α -particles of equal initial momenta are scattered off a gold foil in a Rutherford scattering experiment. The scattering cross sections for proton on gold and α -particle on gold are σ_p and σ_α , respectively. The ratio $\frac{\sigma_\alpha}{\sigma_p}$ is

^{5.} For the digital circuit given below, the output X is

- (a) $\overline{A} + B \cdot C$
- (b) $\overline{\overline{A}} \cdot (B+C)$
- (c) $\overline{A} \cdot (B+C)$
- (d) $A + (B \cdot C)$
- 6. The Fermi energies of two metals X and Y are 5 eV and 7 eV and their Debye temperatures are 170 K and 340 K, respectively. The molar specific heats of these metals at constant volume at low temperatures can be written as $(C_v)_X = \gamma_X T + A_X T^3$ and $(C_v)_Y = \gamma_Y T + A_Y T^3$, where γ and A are constants. Assuming that the thermal effective mass of the electrons in the two metals are same, which of the following is correct?
 - (a) $\frac{\gamma_X}{\gamma_Y} = \frac{7}{5}, \frac{A_X}{A_Y} = 8$
 - (b) $\frac{\gamma_X}{\gamma_Y} = \frac{7}{5}, \frac{A_X}{A_Y} = 1$
 - (c) $\frac{\gamma_X}{\gamma_Y} = \frac{5}{7}, \frac{A_X}{A_Y} = 8$
 - (d) $\frac{\gamma_X}{\gamma_Y} = \frac{5}{7}, \frac{A_X}{A_Y} = \frac{1}{8}$
- 7. A two-level system has energies zero and E. The level with zero energy is non-degenerate, while the level with energy E is triply degenerate. The mean energy of a classical particle in this system at a temperature T is
 - (a) $\frac{Ee^{-\frac{E}{k_BT}}}{1+3e^{-\frac{E}{k_BT}}}$
 - (b) $\frac{Ee^{-\frac{E}{k_BT}}}{1+e^{-\frac{E}{k_BT}}}$
 - (c) $\frac{3Ee^{-\frac{E}{k_BT}}}{1+e^{-\frac{E}{k_BT}}}$
 - $(d) \frac{3Ee^{-\frac{E}{k_BT}}}{1+3e^{-\frac{E}{k_BT}}}$
- 8. A particle of rest mass M is moving along the positive x-direction. It decays into two photons γ_1 and γ_2 as shown in the figure. The energy of γ_1 is 1 GeV and the energy of γ_2 is 0.82 GeV. The value of M in units of $\frac{GeV}{c^2}$ is

- 9. If x and p are the x components of the position and the momentum operators of a particle respectively, the commutator $[x^2, p^2]$ is
 - (a) $i\hbar (xp px)$
 - (b) $2i\hbar (xp px)$
 - (c) $i\hbar (xp + px)$
 - (d) $2i\hbar (xp + px)$
- 10. The xy plane is the boundary between free space and a magnetic material with relative permeability μ_r . The magnetic field in the free space is $\vec{B}_1 = B_1 \hat{i} + B_2 \hat{k}$. The magnetic field in the magnetic material is
 - (a) $B_1 \hat{i} + B_2 \hat{k}$
 - (b) $\mu_r B_1 \hat{i} + \mu_r B_2 \hat{k}$
 - (c) $\frac{1}{u_r}B_1\hat{i} + B_2\hat{k}$
 - (d) $B_1 \hat{i} + \frac{1}{\mu_r} B_2 \hat{k}$
- 11. Let |l,m| be the simultaneous eigenstates of L^2 and L_z . Here L is the angular momentum operator with Cartesian components (L_x, L_y, L_z) , l is the angular momentum quantum number and m is the azimuthal quantum number. The value of |1,0| (L_x+iL_y) |1,-1| is
 - (a) 0
 - (b) ħ
 - (c) $\sqrt{2}\hbar$
 - (d) $\sqrt{3}\hbar$
- 12. For the parity operator P, which of the following statements is **NOT true**?
 - (a) P' = P

- (b) $P^2 = -P$
- (c) $P^2 = I$
- (d) $P' = P^{-1}$
- 13. For the transistor shown in the figure, assume $V_{BE}=0.7\,\mathrm{V}$ and $\beta_{dc}=100.$ If $V_{in}=5\,\mathrm{V},~V_{out}$ is ______.

