THE RESPIRATORY-VENTILATION SYSTEM

> PTA1010

FOLLOWING THE LECTURE THE STUDENT WILL BE ABLE TO:

- Describe normal anatomy and physiology of ventilation
- Discuss the mechanisms of quiet and forced inspiration and expiration including the muscles that contribute to each phase.
- Compare chest breathing to diaphragmatic breathing.
- Describe normal and abnormal lung volumes and capacities.

STRUCTURES OF THE RESPIRATORY SYSTEM

OXYGENATION: OXYGENATION: INTERNAL AND EXTERNAL RESPIRATION OXYGENATION:

Lab Values and Terms

PaCO2 = 35-45 mmHg PaO2= 80-100 mmHg

HYPOXEMIA- low level of blood O2

HYPOXIA- low level of O2 in tissues SaO2-95-98%

DYSPNEA- shortness of breath

APNEA- absence of breathing

EUPNEA- normal breathing

TACHYPNEA- fast rate: > 20 breaths/min

THORACIC CAGE- PROTECTS LUNG TISSUE

- ► True Ribs 1-7

 anterior sternal attachment
- ► False Ribs 8-10 attach to via cartilage
- Floating Ribs 11-12 no anterior attachment//

MECHANICS OF RESPIRATION

AIR FLOWS FROM A HIGHER PRESSURE TO LOWER PRESSURE UNTIL PRESSURE IS EQUALIZED.

Inspiration: Active muscle contraction

As lung space increases in size the atmospheric pressure within the lungs decreases- air enters

Expiration: Passive/relaxation of muscles

Lung space is reduced therefore increasing lung atmospheric pressure- air exits

QUIET RESPIRATION: TIDAL VOLUME

Primary Ventilatory Muscles: diaphragm, external intercostals

Mechanics: Space Increased as:

Diaphragm Contracts increases superior/inferior space

External Intercostals Contract— ↑ med/lateral (bucket handle)
↑ ant/post (pump handle)

Diaphragm- phrenic nerve C3-C5

Performs **60%-80%** during ventilation

Inhalation: contracts (dome down)

Exhalation: relaxes (dome moves up)

Internal and External Intercostals

Inhalation: Pull lower rib up and out (primarily Externals)

Exhalation: Pull upper rib down (internals)

MUSCLES/MECHANICS - DIAPHRAGM & INTERCOSTALS

LUNG VOLUMES

- ▶ TOTAL LUNG CAPACITY=
- Tidal volume
- Inspiratory reserve volume
- Expiratory reserve volume
- Residual volume

- IRV+ TV+ ERV = vital capacity
- RV is air that remains in the lungs to keep them inflated
- Total Lung capacity = IRV+ TV+ ERV+RV

LUNG CAPACITIES

Lung volume (mL)	5,000 4,000	Inspiratory reserve volume	Inspiratory capacity	Vital capacity	Total lung
	3,000				
		Tidal volume			capacity
	2,000	Expiratory reserve volume	Functional residual capacity		
	1,000	Residual volume			

- Respiratory Rate
- Breathing patterns
- Chest Size/diameter/recoil
- > Posture
- Skin/lip color
- ▶ Cough
- Normal or Adventitious breath sounds

OBSERVATION

DIAPHRAGMATIC VERSUS CHEST BREATHING

Diaphragmatic

- > Most Efficient
- Requires leastamount of energy

Chest Breathing

- Requires Marked
 Effort
- ► Increased Energy
- Decreased Volume
- ► Increased Rate

VENTILATION CHANGES RELATED TO **AGE**

- Decrease in chest wall compliance and mobility
- Decrease in recoil ability of lung tissues
- Changes in spinal curves that influence volumes
- Increase in work required for breathing
- Constant tidal volume
- Decrease in lung vital capacity
- Increase in residual volumes
- Decrease in gas exchange between lungs and circulatory system

VALSALVA'S MANEUVER: SEQUENCE OF EVENTS

Occurs when patient holds their breath and attempt to exhale. Sequence:

- ► Holding Prolonged breath= ↑ intrathoracic pressure trapping blood in veins
- Blood is prevented from entering heart due to pressure.
- Reflex Bradycardia occurs = slowing of heart or fainting or cardiac Arrest. Depending on health issues of patient.

IMPORTANT: Prevent breath holding when exercising.

Teach pursed lip breathing.

CLINICAL IMPLICATIONS:

COMPROMISED LUNG FUNCTION AND ACTIVITY TOLERANCE

Spinal Scoliosis and kyphosis: malalignment affects the posterior ribs and its mechanics= decrease lung volumes.

Forward Head, round shoulder posture: flexion limiting expansion between ribs reducing intake volume of air.

Arthritis and joint degeneration: reduced motion impairs rib elevation/depression.

Pneumonia: inflammation of the alveoli by bacteria/viral infection.

Bronchial Emphysema: alveoli distended= loss of elasticity.