Lezione 2: esercizi

Esercizio 1. Si derivi un modello in rappresentazione esterna (equazioni differenziali e funzione di trasferimento) e interna (spazio di stato) per il seguente circuito dove l'ingresso è la tensione del generatore $v_i(t)$ e l'uscita la tensione sull'induttore $v_L(t)$.

Esercizio 2. Si derivi un modello in rappresentazione esterna (equazioni differenziali e funzione di trasferimento) e interna (spazio di stato) per il seguente sistema meccanico dove l'ingresso è la forza esterna f(t) e le uscite gli spostamenti y_1 e y_2 (misurati dalla configurazione di equilibrio) delle due masse.

Esercizio 3. Siano $x_1(t)$, $x_2(t)$, $x_3(t)$ il numero di studenti iscritti al primo, secondo e terzo anno di un corso di laurea triennale nell'anno t, rispettivamente, e sia u(t) il numero di nuovi studenti del corso nell'anno t (cioè quelli che si iscrivono per entrare al primo anno nell'anno successivo). Sia inoltre y(t) il numero di studenti laureati nell'anno t. Sia infine α_i ($0 \le \alpha_i \le 1$) il tasso di promossi nell'anno di corso i-esimo e β_i ($0 \le \beta_i \le 1$) il tasso di ripetenti nell'anno di corso i-esimo. Si scriva un modello in rappresentazione interna (spazio di stato) che descriva la dinamica degli studenti con u(t) ingresso e y(t) uscita.