Digitaltechnik Wintersemester 2017/2018 15. Vorlesung

Inhalt

1. Klausurorganisation

2. Klausurinhalt

3. Thematische Wiederholung

Agenda

1. Klausurorganisation

2. Klausurinhalt

3. Thematische Wiederholung

Ablauf

- Sprechstunden für Vorbereitungsfragen
 - Raad Bahmani (S4|14 R4.1.05): 08.+22.02.18 jeweils 10:00 12:00
 - Andreas Engel (S2|02 E106): 07.+14.+21.02.18 jeweils 14:00 16:00
- spätestens KW 8: Raumeinteilung im Moodle bekannt gegeben
 - S1|01 A1, A4, A5, A01, A03, A04
 - S1|05 122 (Maschinenhaus)
 - S2|02 C205 (Piloty)

 - S2|06 030 (Physik)
- ggf. Nachteilsausgleich bei Prüfungskommission (Tim Neubacher) anmelden
- Durchführung am 27.02.2018 ab 11:00 Uhr
- etwa KW 12: Ergebnisse in TUCaN verfügbar
- KW 13 oder 14: Klausureinsicht

Klausurdurchführung am 27.02.18 ab 11:00

- mitbringen: Lichtbildausweis, Studierendenausweis, dokumentenechter Stift
- nicht mitbringen: Taschenrechner, Schreibblock
- Sitzordnung: jeweils eine Reihe und zwei Spalten Platz halten
- Verlesen der Durchführungsregeln (siehe Rückseite Deckblatt)
- gemeinsames Durchgehen aller Aufgaben
- erst danach beginnt 90 min Bearbeitungszeit

Klausurdurchführung am 27.02.18 ab 11:00

- Anwesenheitskontrolle während der Bearbeitung
 - Lichtbildausweis und Studierendenausweis griffbereit halten
 - Mitschreiben "unter Vorbehalt", falls nicht auf Zulassungsliste
 - ⇒ Teilnahmeberechtigung im Nachgang klären
- Tutoren stehen für Verständnisfragen bereit
- Lösungen (inkl. Lösungsweg) direkt auf Aufgabenblättern eintragen
- bei Bedarf werden Zusatzblätter ausgegeben
- vorzeitige Abgabe bis max. 15 min vor Ende der Bearbeitungszeit
- keine Aufgabenblätter mitnehmen

Deckblatt vor der Bearbeitung ausfüllen

Name (Nach-, Vorname)							
Matrikel-Nr.							
Unterschrift							
Prüfungsordnung	□ Bachelor of Science – PO 2015						
Bitte ankreuzen	□ Bachelor of Science – PO 2009						
	☐ Bachelor of Science – PO 2007						
	☐ Bachelor of Science – PO 2004						
	☐ Bachelor of Education						
	□ Sonstiger Abschluss:						
Anzahl abgegebene Zusatzblätter:							

Hilfsblatt: Einheitenvorsätze

Bezeichnung	Kürzel	Wert	Bezeichnung	Kürzel	Wert	Bezeichnung	Kürzel	Wert
Milli	m	10^{-3}	Kilo	k	10^{3}	Kibi	Ki	2^{10}
Mikro	μ	10^{-6}	Mega	M	10^{6}	Mebi	Mi	2^{20}
Nano	n	10^{-9}	Giga	G	10^{9}	Gibi	Gi	2^{30}
Piko	p	10^{-12}	Tera	T	10^{12}	Tebi	Ti	2^{40}

Hilfsblatt: Schaltsymbole

Hilfsblatt: Boolsche Algebra

	Axiom Dual		Bedeutung			Theorem	l	Dual	Bedeutung	
A1	$B \neq 1 \Rightarrow B = 0$	A1'	$B \neq 0 \Rightarrow B = 1$	Dualität		T1	$A \cdot 1 = A$	T1'	A+0=A	Neutralität
A2	$\overline{0} = 1$	A2'	$\overline{1} = 0$	Negieren		T2	$A \cdot 0 = 0$	T2'	A + 1 = 1	Extremum
A3	$0 \cdot 0 = 0$	A3'	1 + 1 = 1	Und / Oder		Т3	$A \cdot A = A$	T3'	A+A=A	Idempotenz
A4	$1 \cdot 1 = 1$	A4'	0 + 0 = 0	Und / Oder			$\overline{\overline{A}} = A$			Involution
A5	$0 \cdot 1 = 1 \cdot 0 = 0$	A5'	1+0=0+1=1	Und / Oder		T5	$A \cdot \overline{A} = 0$	T5'	$A + \overline{A} = 1$	Komplement
	Thomas	our Dual							l Bad	!

	Theorem		Dual	Bedeutung
Т6	AB = BA	T6'	A + B = B + A	Kommutativität
T7	A(BC) = (AB)C	T7'	A + (B+C) = (A+B) + C	Assoziativität
Т8	A(B+C) = (AB) + (AC)	T8'	$A + (B \ C) = (A + B) (A + C)$	Distributivität
Т9	A(A+B)=A	T9'	A + (A B) = A	Absorption
T10	$(AB) + (A\overline{B}) = A$	T10'	$(A+B)(A+\overline{B})=A$	Zusammenfassen
T11	$(AB) + (\overline{A}C) + (BC) = (AB) + (\overline{A}C)$	T11'	$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$	Konsensus
T12	$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$	T12'	$\overline{A+B+C\ldots} = \overline{A} \overline{B} \overline{C}\ldots$	De Morgan

Hilfsblatt: SystemVerilog

Modul Deklaration

```
module modul ID
 #(parameter param ID = wert)
 (input datentyp /*[n:m]*/ in port ID.
   output datentyp /*[n:m]*/ out port ID):
 // lokale Signale
  datentyp /*[n:m]*/ signal_ID /*[k:l]*/;
 // parallele Anweisungen
  assign /* #delav */ signal = ausdruck:
  always sequentielle anweisung
  submodule #(parameter map) instanz (port map):
  // generische Anweisungen
  genvar id:
  generate
   if (bedingung) begin
     // lokale Signale, parallele Anweisungen
    end
   for (init: cond: step) begin
     // lokale Signale, parallele Anweisungen
    end
  endgenerate
endmodule
```

Sequentielle Anweisungen

```
// Zuweisung
signal = ausdruck: // blockierend
signal <= ausdruck: // nicht-blockierend
// verzögerte Anweisungen
#delav anweisung
@(ausdruck) anweisung
@(posedge ausdruck) anweisung
@(negedge ausdruck) anweisung
@* anweisung
// bedingte Anweisungen
if (bedingung) anweisung1 else anweisung2
case (ausdruck)
  wert1 : anweisung1
  wert2 : anweisung2
  default: anweisung3
endcase
// wiederholte Anweisung
for (init: cond: step) anweisung
// kombinierte Anweisung
begin anweisung1 anweisung2 ... end
```

Hilfsblatt: SystemVerilog

	Operator	Bedeutung					
	[]	Zugriff auf Vektorelement					
	~	bitweise NOT					
		logisches NOT					
_	-	unäre Negation					
ter	&	unäre Reduktion mit AND					
Ë	1	unäre Reduktion mit OR					
Ьö	^	unäre Reduktion mit XOR					
ler	~&	unäre Reduktion mit NAND					
Ξ	~1	unäre Reduktion mit NOR					
Ε	~^	unäre Reduktion mit XNOR					
ence	**	Exponentialfuntion					
Ē	÷	Multiplikation					
egi	/	Division					
ъ.	%	Modulo					
enz	+ -	Addition, Subtraktion					
ed	<< >>	logischer Shift					
rāz	<<< >>>	arithmetischer Shift					
ЬP	<	kleiner als					
Jac.	<=	kleiner oder gleich					
50	>	größer als					
E	>=	größer oder gleich					
bie.	==	gleich					
dn	!=	ungleich					
Ğ		bitweise gleich					
æ	!==	bitweise ungleich					
Vertikale Gruppierung nach Präzedenz, beginnend mit der höchsten	& ~&	bitweise AND, NAND					
Vei	^ ~^	bitweise XOR, XNOR					
-	~	bitweise OR, NOR					
	&&	logisches AND					
	- 11	logisches OR					
	?:	ternärer Operator					
	{}	Konkatenation					

// Bitbreite 'Basis Ziffernfolge 64'h0123456789abcd // hexadezimal 27'd0123456789 // dezimal 24'o012345679 // oktal 4'bxz01 // x - unbekannt/ungultig // x - hochomig

Elementare Datentypen

```
bit // zweiwertige Logik
logic // vierwertige Logik
byte // 8 bit signed
integer // 32 bit signed
longint // 64 bit signed
time // 64 bit signed for Zeitwerte
real // Gleitkomma-Werte
```

System Funktionen

```
// Basis und Genauigkeit der Simulationszeit setzen
'timescale base / precision:
Stime
               // aktuelle Systemzeit (als int)
Srealtime
               // aktuelle Systemzeit (als real)
$clog2(num)
              // Logarithmus zur Basis 2
Sdumpfile(pfad):// VCD Ausgabedatei setzen
$dumpvars:
              // (alle) Signale beobachten
$finish:
              // Simulation beenden
$display(format, ausdrücke); // Meldung ausgeben
     // %b binary format
     // %c ASCII character format
     // %d decimal format
     // %h hex format
      // %o octal format
     // %s string format
      // %t time format
```

Bewertung

- 90 Punkte verteilt auf acht Aufgaben
 - 1 Punkt / Minute
 - erreichbare Punkte für (Teil-)Aufgaben sind angegeben
 - ► Tipp: zu Beginn Bearbeitungsreihenfolge individuell festlegen (Hauptaufgaben hängen nicht voneinander ab)

Notenskala											
benötigte Punkte	81	77	73	69	65	61	57	53	49	45	0

- für Studienleistung (alte PO): bestanden ab 45 Punkten
- es wird nicht "runterkorrigiert"
- wer beginnt, wird bewertet

Agenda

1. Klausurorganisation

2. Klausurinhalt

3. Thematische Wiederholung

Klausurinhalt

- Prüfungsrelevanter Stoff
 - V1 bis V14
 - ▶ Ü1 bis Ü13 (ohne Zusatzaufgaben)
- Aufgabentypen
 - 1 × Verständnisfragen
 - 6× ähnlich Übungsaufgaben
 - 1 × Transferaufgabe

Material für Vorbereitung

- Vorlesungsfolien und Übungsblätter
- Referenzliteratur (hauptsächlich Harris 2013)
- nicht bereitgestellt werden
 - Altklausuren
 - Testate
- für (System)Verilog
 - https://www.mikrocontroller.net/articles/Verilog
 - http://www.chipverify.com/verilog-tutorial
 - http://www.chipverify.com/system-verilog/system-verilog

SystemVerilog Tutorial

Preface Basics Data-types

D Flip-Flop with Async. Reset

D Latch

JK Flip-Flop

Positive Edge Detector

http://www.chipverify.com


```
Arrays
Operators
Parameters
                                         module tb:
Assignments
                                                   dff0 (.clk (clk),
Control Flow
                                                                  (d).
Modules
                                                          .rstn (rstn),
Module Instantiations
                                                                  (a));
Ports
Block Statements
                                           reg d;
                                           reg rstn;
Structured Procedures
                                           reg clk:
Functions
                                           always #5 clk = ~clk;
Simulation Guide
                                            initial begin
Introduction
                                              rstn
                                                        <= 1'b0:
Initial
                                              c1k
                                                        <= 1'b1:
                                              d
                                                        <= 1'b0:
Assign
More will come soon I
                                              #10 rstn <= 1'b1;
                                              #10 d
                                                         <= 1'b1:
                                              #10 d
                                                         <= 1'b0:
Examples
                                              #20 d
                                                         <= 1'b1;
Hello World!
                                              #20 $finish:
D Flip-Flop with Sync. Reset
```

Simulation of a D Flip-Flop

endmodule

Agenda

1. Klausurorganisation

2. Klausurinhalt

3. Thematische Wiederholung

MOSFET

Warum leitet nMOS für Gate = 1 (V_{DD}) ?

MOSFET

Warum leitet pMOS für Gate = 0 (GND)?

MOSFET

Warum hat MOSFET-Inverter statischen Leistungsumsatz?

Gatterverzögerung

Warum t_{pd} und t_{cd} an einem Gatter nicht immer identisch?

Paritätsbits

Unterschied zwischen fehlererkennenden und fehlerkorrigierend Paritätsbits?

kombinatorische / sequentielle / synchrone Schaltungen

FSM Zerlegung

SystemVerilog Initialisierungsphase (nicht klausurrelevant)

seq/init_events.sv

```
logic
           a = 1, b0:
   always
           #1 a=!a:
   always
                        $display("change a at %t", $time); // Ons, 1ns, 2ns
           @a
           @(posedge a) $display("posedge a at %t", $time); // 1ns,
   alwavs
           @(negedge a) $display("negedge a at %t", $time); //[Ons,]
5
   always
                                                                         2ns
7
   logic
           b = 1, bx:
           #1 b=!b;
   always
   always
           0h
                       $display("change b at %t", $time);
   alwavs
           @(posedge b) $display("posedge b at %t". $time);
10
           @(negedge b) $display("negedge b at %t", $time);
   always
11
12
13
   logic c = 1'bx;
   initial #1 c = 1'b0;
14
   alwavs
                        $display("change c at %t", $time); //
                                                                     1ns
15
           @c
           @(posedge c) $display("posedge c at %t", $time);
   always
16
           @(negedge c) $display("negedge c at %t", $time); //
   always
                                                                     1ns
17
```

Weitere Fragen

