

#### Dr. Unchalisa Taetragool

Department of Computer Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi







## Neural Network: Quiz!







# Neural Network: Quiz!







### Dinner Schedule

Monday Tuesday Wednesday Thursday Friday





































### Weather Effect





Sunny New food Rain Leftover





## Weather Effect







# More Complicated RNN







## Vectors







# More Complicated RNN







# Food











### Weather



Weather



# More Complicated RNN







# Add \( \frac{1}{2} \)











# More Complicated RNN



















Credit: https://towardsdatascience.com













# Memory Cells













# Input and Output Sequences



#### **Sequence to Sequence**

I/P – the prices over the last N days O/P – the prices shifted by one day into the future



#### **Sequence to Vector**

I/P – the sequence of words corresponding to a review O/P – a sentiment score





# Input and Output Sequences



#### **Vector to Sequence**

I/P – an image O/P – a caption for that image



#### **Delayed Sequence to Sequence**

e.g. translating a sentence from one language to another Two-step model called an "Encoder-Decoder"

- Encoder a sequence-to-vector network
- Decoder a vector-to-sequence network works much better than trying to translate on the fly with a single sequence-to-sequence RNN





# **RNN Applications**





# Example: Predict Time Series









# Example: Character-Level Language Models





# Example: Encoder







#### How to Train RNN







# **Training RNN**



- Feed forward:
  - A simple one layer of input

$$\mathbf{h}_t = u_t \mathbf{X}_t + w_t \mathbf{h}_{t-1}$$

• Back propagation: Gradient descent!

$$E = \frac{1}{N} \sum_{i=1}^{n} (y_t^i - h_t^i)^2 \text{ then find } \frac{\partial E}{\partial u_t} \text{ and } \frac{\partial E}{\partial w_t}$$

$$u_t^{new} = u_t^{old} - \frac{\partial E}{\partial u_t}$$
 and  $w_t^{new} = w_t^{old} - \frac{\partial E}{\partial w_t}$ 



# Training RNN: Backpropagation Through Time (BPTT)

- Just like in regular backpropagation,
  - there is a first forward pass through the network
  - then the output sequence is evaluated using a cost function
  - the gradients of that cost function are propagated backward through the network
  - finally, the model parameters are updated using the gradients computed during BPTT





# Training RNN: Backpropagation Through Time (BPTT)







# Deep RNN







# Difficulties of Training RNN

- To train an RNN on long sequences, you will need to run it over many time steps, making the RNN a very deep network.
- Just like deep neural network, it may suffer from
  - taking forever to train
  - vanishing gradient problem
- To alleviate these problems, you can use
  - good parameter initialization
  - non-saturating activation functions (e.g., ReLU)
  - faster optimizers
  - etc.











- The vanishing gradient is due to the nature of back-propagation
- Weight adjustment from the gradient descent algorithm



• The bigger the gradient, the bigger the adjustments and vice versa.



- When doing back propagation, each node in a layer calculates it's gradient with respect to the effects of the gradients in the layer before it.
- So if the adjustments to the layers before it is small, then adjustments to the current layer will be even smaller.

new weight = weight - learning rate\*gradient







Gradients shrink as it back-propagates through time





# Solutions to short-term memory

- Long Short-Term Memory (LSTM)
- Gated Recurrent Units (GRU)







# RNN (recap)











→ concatenation

Credit: https://towardsdatascience.com





# Tanh activation







## Tanh activation









vector transformations without tanh











vector transformations with tanh



# Long Short-Term Memory (LSTM)

- The core concept of LSTM's are the cell state, and various gates.
- The cell state, in theory, can carry relevant information throughout the processing of the sequence.
- As the cell state goes on its journey, information get's added or removed to the cell state via gates.
- The gates are different neural networks that decide which information is allowed on the cell state.
- The gates can learn what information is relevant to keep or forget during training.





# Long Short-Term Memory (LSTM)







# Long Short-Term Memory (LSTM)

- 3 main gates:
  - Forget gate
    - decides what is relevant to keep from prior steps
  - Input gate
    - decides what information is relevant to add from the current step
  - Output gate
    - decides what the next hidden state should be





# Forget Gate











# Input Gate



- C<sub>1-1</sub> previous cell state
- forget gate output
- input gate output
- candidate



## Cell State



- C<sub>14</sub> previous cell state
- forget gate output
- input gate output
- candidate
- c new cell state



# **Output Gate**



- C<sub>1-1</sub> previous cell state
- forget gate output
- input gate output
- č, candidate
- Ct new cell state
- output gate output
- hidden state



# LSTM: input and new memory

LSTM cells takes the following input vectors:

- the input  $x_t$
- the past output  $h_{t-1}$
- the past cell state  $c_{t-1}$



#### **Forget Gate**

$$f_t = \sigma \left( W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

#### **Input Gate**

$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$



#### **Cell State**

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

### **Output Gate**

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$







## Standard RNNs to LSTM







# Gated Recurrent Units (GRU)

- GRU is the newer generation of Recurrent Neural networks and is pretty similar to an LSTM
- GRU's got rid of the cell state and used the hidden state to transfer information
- It only has two gates,
  - an update gate
    - acts similar to the forget and input gate of an LSTM
    - decides what information to throw away and what new information to add
  - a reset gate
    - decide how much past information to forget





# Gated Recurrent Units (GRU)







## **GRU Unit**





#### A mostly complete chart of

## **Neural Networks**

©2016 Fjodor van Veen - asimovinstitute.org

