Inverzije permutacij, permutacijski grafi in tekmovalnostni grafi

Luka Uranič Mentorica: izr. prof. dr. Polona Oblak

Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko

Ljubljana, 2023

Uvod

- Kombinatorične interpretacije inverzij permutacij
- Graf inverzij
- Karakterizacija permutacijskega grafa
- Tekmovalnostni grafi
- Gručenje tekmovalcev

Permutacije in inverzije permutacij

Definicija permutacije:

Bijektivni preslikavi $\pi:[n] \to [n]$ rečemo permutacija.

Primer permutacije $\pi: [6] \rightarrow [6]$:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 5 & 2 & 6 & 4 \end{pmatrix} = (3, 1, 5, 2, 6, 4).$$

Definicija inverzije:

Inverzija permutacije $\sigma = (a_1, a_2, \dots a_n) \in S_n$ je urejen par (a_i, a_j) , kjer je i < j in $a_i > a_j$.

Inverzije permutacije π so $\{(3,1),(3,2),(5,2),(5,4),(6,4)\}.$

Število inverzij permutacije nam meri stopnjo neurejenosti oziroma oddaljenost permutacije od identične permutacije in je enako številu presečišč v puščičnem diagramu permutacije.

Identična permutacija id = (1, 2, ..., n) nima inverzij. Permutacija (n, n - 1, ..., 1) ima $\binom{n}{2}$ inverzij.

Definicija permutacijskega grafa:

Naj bo $\sigma \in S_n$. Graf inverzij permutacije σ , ki ga označimo z G_{σ} , je neusmerjen graf z $V(G_{\sigma}) = [n]$, kjer je $xy \in E(G_{\sigma})$ natanko tedaj, ko je (x,y) ali (y,x) inverzija permutacije σ . Vsak graf izomorfen grafu G_{σ} za neko permutacijo σ imenujemo permutacijski graf.

$$\pi = (3, 1, 5, 2, 6, 4)$$

Definicija kohezivnega zaporedja grafa:

Naj bo G neusmerjen graf na n vozliščih. Zaporedju vozlišč $I = (v_1, v_2, \ldots, v_n)$ rečemo kohezivno zaporedje grafa G, če sta za poljubne i, j, k, kjer je $1 \le i < k < j \le n$, izpolnjena naslednja pogoja:

- (a) Če je $v_i v_k \in E(G)$, $v_k v_j \in E(G)$, potem je $v_i v_j \in E(G)$.
- (b) Če je $v_i v_j \in E(G)$, potem je $v_i v_k \in E(G)$ ali $v_k v_j \in E(G)$.

$$\pi = (3, 1, 5, 2, 6, 4)$$

Karakterizacija permutacijskih grafov

Izrek:

Naj bo $\sigma \in S_n$. Zaporedje vozlišč $(\sigma(1), \sigma(2), \dots, \sigma(n))$ je kohezivno zaporedje permutacijskega grafa G_{σ} .

Izrek (karakterizacija permutacijskih grafov):

Graf G je permutacijski graf natanko tedaj, ko ima kohezivno zaporedje.

Zvezde in poti

Trditev:

Zvezda $K_{1,n}$ je permutacijski graf.

Trditev:

Pot P_n je permutacijski graf.

Trditev:

Drevo $K_{1,3}^*$ ni permutacijski graf.

Definicija gosenice:

Drevo je gosenica, če po odstranitvi vseh listov dobimo pot.

Lema:

Drevo je gosenica natanko tedaj, ko ne vsebuje podgrafa $K_{1,3}^*$.

Drevesa, ki so permutacijski grafi

Izrek:

Drevo je permutacijski graf natanko tedaj, ko je gosenica.

Permutacije gosenic

Izrek:

Naj bo $n \geq 3$ in C gosenica na n vozliščih. Potem obstajata natanko dve permutaciji iz S_n , katerih permutacijski graf je izomorfen grafu gosenice C.

Definicija rangiranja:

Rangiranje $c = (i_1, \dots, i_n)$ množice [n] je permutacija iz S_n . Pisali bomo $i \prec_c j$, kadar se vozlišče i pojavi pred vozliščem j v vektorju rangiranja c.

Definicija tekmovanja para vozlišč:

Naj bo $R = \{c_1, c_2, \dots, c_r\}$ končna množica rangiranj. Potem rečemo, da par vozlišč $(i,j) \in [n] \times [n]$ (neposredno) tekmuje, če obstajata takšni rangiranji $c_s, c_t \in R$, da je $i \prec_{c_s} j$ ampak $j \prec_{c_t} i$.

Naj bo $R = \{c_1, c_2, c_3\}$ množica rangiranj množice [6]:

$$c_1 = (1, 2, 3, 4, 5, 6), \quad c_2 = (2, 1, 3, 4, 6, 5), \quad c_3 = (1, 4, 2, 3, 5, 6).$$

Pari vozlišč (1,2), (2,4), (3,4) in (5,6) tekmujejo.

Definicija tekmovanja para vozlišč:

Naj bo $R = \{c_1, c_2, \ldots, c_r\}$ množica rangiranj množice [n]. Tekmovalnostni graf množice rangiranj R definiramo kot neusmerjen graf $G_c(R) = ([n], E)$, kjer je množica povezav E podana na nasledni način: med i in j je povezava, če (i,j) tekmujeta.

Tekmovalnostni grafi

Definicija delne kohezivnosti:

Naj bo G neusmerjen graf na n vozliščih. Zaporedju vozlišč $l = (v_1, v_2, \ldots, v_n)$ rečemo delno kohezivno zaporedje grafa G, če za poljubne i, j, k, kjer je $1 \le i < k < j \le n$ velja naslednji pogoj: (b) Če je $v_i v_j \in E(G)$, potem je $v_i v_k \in E(G)$ ali $v_k v_j \in E(G)$.

Graf G je delno koheziven, če ima delno kohezivno zaporedje.

Izrek:

Vsak tekmovalnostni graf je delno koheziven.

Definicija množice posrednih in neposrednih tekmovalcev:

Če vzamemo množico rangiranj $R=\{c_1,\ldots,c_r\}$ množice [n], rečemo, da par vozlišč $(i,j)\in[n]\times[n]$ posredno ali neposredno tekmuje, če obstaja tak $k\in\mathbb{N}$ in vozlišča $i_1,\ldots,i_k\in[n]$, da (i,i_1) tekmujeta, (i_1,i_2) tekmujeta, \ldots , in (i_k,j) tekmujeta. Množici vozlišč $D\subseteq[n]$ rečemo množica posrednih in neposrednih tekmovalcev, če vsaka dva elementa $i,j\in D$ posredno ali neposredno tekmujeta in D je maksimalna glede na to lastnost.

 $D_{[p,q]} = \{x \in [n] \mid c_s^{-1}(x) \in [p,q] \text{ za nek } c_s \in R\}$

Algoritem za izračun množic posrednih in neposrednih tekmovalcev

$$c_1 = (1,2,3,4,5,6)$$

$$c_2 = (2,1,3,4,6,5)$$

$$c_3 = (1,4,2,3,5,6)$$

$$D_{[1,1]} = \{1,2\} \subseteq D_1 \qquad \max\{1,2,3\} = 3$$

$$D_{[1,3]} = \{1,2,3,4\} \subseteq D_1 \qquad \max\{1,2,3,4\} = 4$$

$$D_{[1,4]} = \{1,2,3,4\} = D_1$$

$$D_{[5,5]} = \{5,6\} \subseteq D_2 \qquad \max\{5,6\} = 6$$

$$D_{[5,6]} = \{5,6\} = D_2$$

Zaključek

- Permutacije in inverzije permutacij
- Permutacijski graf
- Kohezivno zaporedje
- Karakterizacija permutacijskih grafov
- Gosenice
- Drevesa, ki so permutacijski grafi
- Rangiranja
- Tekmovalnost para vozlišč
- Množica posrednih in neposrednih tekmovalcev
- Tekmovalnostni grafi
- Delna kohezivnost
- Algoritem za izračun množic posrednih in neposrednih tekmovalcev