

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Метод картографирования помещений на основе визуальной одометрии

Студент: Коротыч Михаил Дмитриевич

Научный руководитель: Мальцева Диана Юрьевна

Цель и задачи

Цель: разработка метода картографирования помещений на основе визуальной одометрии

Задачи:

- сделать обзор предметной области и существующих методов картографирования помещений с помощью ЭВМ;
- разработать основные положения предполагаемого метода картографирования помещений на основе визуальной одометрии;
- спроектировать и реализовать программное обеспечение для демонстрации разработанного метода;
- исследовать характеристики разработанного метода.

Картография помещений с помощью ЭВМ

Картография помещений используется для построения и эксплуатации различного вида карт и схем в условиях ограниченного пространства.

Примеры карт-схем помещений, построенных ЭВМ

Построение двумерных карт-схем помещений с проекцией объектов на плоскость пола

Было принято решение разработать способ построения двумерной карты-схемы:

- 1. Большое количество способов применения 2D-карт-схем: от схемы эвакуации до проверки качества уборки роботом-пылесосом.
- 2. Трёхмерные карты требуют большее количество памяти для хранения на ЭВМ (телефоне или компьютере).
- 3. Нет способов построения карты в обычных бытовых условиях. Нельзя сфотографировать помещение и получить карту-схему хотя бы его части.

Сравнение методов компьютерной картографии помещений

Метод	Требование подготовки помещения	Входные данные	Средняя цена оборудования, руб.	Вес оборудования, г
Метод визуальной одометрии	Нет	Последовательность изображений	4029,20	От 30 до 200
Метод с использованием бинокулярной камеры	Нет	Координаты точек препятствий	30890	От 350 до 1000
Комбинированный метод	Да (расстановка светоотражаю щих маяков и радиометок)	Данные от радиосенсоров, от дальномеров, камеры глубины	133468,15	От 1000 и больше

Визуальная одометрия — метод оценки положения устройства по изображениям его окружения.

Метод картографирования помещений на основе визуальной одометрии

Выявление точек интереса

- Интенсивность пикселя числовое значение пикселя от 0 до 255 в монохромном изображении.
- Точка интереса точка изображения, в окрестности которой интенсивность пикселя изменяется относительно её центра.
- Градиент интенсивности в окрестности точки интереса имеет два направления.

Детектор Ши— Томаси для выявления точек интереса на изображении

1.Вычисление градиентов I_x и I_y функции интенсивности изображения I по

оси X и Y:

$$I_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \cdot I; \qquad I_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \cdot I;$$

2.Вычисление матрицы автокорреляции $\emph{\textbf{M}}$ в окрестности $\emph{\textbf{W}}$ каждой точки:

$$M = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix}$$

- 3.Вычисление минимального собственного значения $\lambda_{min} = min(\lambda_1, \lambda_2)$ матрицы M для каждой точки изображения.
- 4. Если $\lambda_{min} < k \in [0,04; 0,06]$, то точка не является точкой интереса.

Вычисление оптического потока. Метод Лукаса — Канаде

Оптический поток — вектор смещения пикселя от текущего кадра к следующему. Функция интенсивности изображения:

$$I(x,y,t) \approx I(x+dx,y+dy,t+dt)$$
 \Rightarrow $I_x \cdot u + I_y \cdot v + I_t = 0$,

$$I_x = \frac{\partial I}{\partial x}; I_y = \frac{\partial I}{\partial y}; I_t = \frac{\partial I}{\partial t}$$

$$u = \frac{dx}{dt}$$
; $v = \frac{dy}{dt}$

Решение:

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \sum_{i} I_{x_{i}}^{2} & \sum_{i} I_{x_{i}} I_{y_{i}} \\ \sum_{i} I_{x_{i}} I_{y_{i}} & \sum_{i} I_{y_{i}}^{2} \end{bmatrix}^{-1} \begin{bmatrix} -\sum_{i} I_{x_{i}} I_{t_{i}} \\ -\sum_{i} I_{y_{i}} I_{t_{i}} \end{bmatrix}$$

Построение карты-схемы. Алгоритм кластеризации *k*-средних

Построение карты-схемы. Иерархический агломеративный алгоритм кластеризации

Иерархия кластеров, выявленных агломеративным алгоритмом, будет соответствовать иерархии контуров объектов на сцене.

- 1. Каждая точка рассматривается как отдельный кластер.
- 2.Вычисление матрицы расстояний между всеми парами кластеров. Нахождение пары кластеров с минимальным расстоянием.
- 3.Объединение выбранных кластеров в один новый кластер. Обновление матрицы расстояний, учитывая новый кластер.
- 4.Повторение шага 3 до тех пор, пока не останется только один кластер.

Построение карты-схемы. Выпуклые оболочки

Выпуклая оболочка CH(S) — выпуклый многоугольник минимальной площади, содержащий все точки множества S.

Входные данные. Схема программного обеспечения

- Формат входной видеозаписи: AVI или MP4;
- Камера должна быть направлена вниз и охватывать как можно большее пространство картируемого помещения;
- Камера должна быть неподвижной;
- Длительность съёмки не более 5 секунд;
- Два параметра: количество кластеров для алгоритма *k*-средних и количество кластеров для иерархического алгоритма.

Зависимость количества точек интереса от контрастности сцены

- Низкая контрастность объекты переднего плана практически не отличимы от фона;
- Средняя контрастность объекты частично различимы, имеют длинную нечёткую тень;
- Высокая контрастность объекты хорошо различимы на фоне, тени объектов практически отсутствуют

г) Высокая контрастность

з) Высокая контрастность

и) Средняя контрастность

л) Средняя контрастность

Выводы из исследования зависимости количества точек интереса от контрастности сцены

- Чем выше контрастность сцены, тем больше будет распознано точек интереса (на 48,65%, т. е. почти на половину), поскольку очертания объектов и их теней чётче, а градиенты интенсивности будут иметь больший модуль;
- При корректной настройке камеры под условия съёмки точки интереса будут детектироваться даже в сильно затемнённом или засветлённом помещении;
- На видео, состоящих из абсолютно белых и абсолютно чёрных кадров, точек интереса обнаружено не было.

Исследование влияния конфигурации сцены на правдоподобность карты-схемы

Исследование влияния конфигурации сцены на правдоподобность карты-схемы: средняя сложность

Сцена средней сложности

Кластеры алг. *k*-средних (200) Кластеры иерарх. алг. (50)

Карта-схема

Исследование влияния конфигурации сцены на правдоподобность карты-схемы: высокая сложность

Сцена высокой сложности

Кластеры алг. *k*-средних (200)

Кластеры иерарх. алг. (70)

Карта-схема

Выводы из исследования зависимости правдоподобности карты-схемы от конфигурации сцены

- Чем больше предметов расположено на сцене, чем чаще пересекаются их контуры, тем сложнее добиться правдоподобности карты-схемы: в случае близко расположенных предметов правдоподобная кластеризация их отцентрированных точек интереса затруднена иерархическим алгоритмом ввиду их близости;
- Варьирование количества кластеров для алгоритма *k*-средних и иерархического алгоритма позволяют устранить неправдоподобность карты-схемы.

Исследование влияния задаваемого количества кластеров на правдоподобность карты-схемы

Однородная сцена

Вариант карты-схемы «А» (2; 1)

Вариант карты-схемы «Б» (50; 1)

Сцена низкой сложности

Вариант карты-схемы «А» (250; 3)

Вариант карты-схемы «Б» (100; 15)

Исследование влияния задаваемого количества кластеров на правдоподобность карты-схемы

Сцена средней сложности

Вариант карты-схемы «А» (70; 1)

Вариант карты-схемы «Б» (200; 50)

Сцена высокой сложности

Вариант карты-схемы «А» (200; 70)

Вариант карты-схемы «Б» (300; 97)

Выводы к исследованию правдоподобности карты-схемы в зависимости от задаваемого количества кластеров

Значения параметров, приводящие к наиболее правдоподобным картам-схемам (кол-во кластеров для алгоритма k-средних и кол-во кластеров для иерархического алгоритма соответственно):

- для однородных сцены 2 и 1 (минимальные);
- для сцен низкой сложности 100±50 и число, большее кол-ва предметов на сцене;
- для сцен средней сложности 100±50 и кол-во предметов на сцене;
- для сцен высокой сложности 300±50 и кол-во предметов на сцене.

Заключение

Все необходимые задачи были решены:

- сделан обзор предметной области и существующих методов картографирования помещений с помощью ЭВМ;
- разработаны основные положения предполагаемого метода картографирования помещений на основе визуальной одометрии;
- спроектировано и реализовано программное обеспечение для демонстрации разработанного метода;
- проведена апробация метода картографирования помещений на основе визуальной одометрии.

Поставленная цель была достигнута.

Направления дальнейшего развития

- Автоматический подбор параметров в зависимости от освещённости и конфигурации сцены;
- Возможность съёмки помещения в движении;
- Возможность отрисовки карты-схемы в рамках автоматического анализа через камеру.

Была принята к печати публикация на тему «Методы ориентации в помещении и их картографирования» на конференции «Студенческая научная весна» (секция ИУ7), 2023 г. (РИНЦ).