Développement 7. Optimisation dans un espace de Hilbert

Le lemme se trouve dans le livre de P. CIARLET [1] et la proposition dans le recueil de développements [2].

Lemme 1. Soit H un espace de Hilbert réel. Alors toute suite bornée de H admet une sous-suite convergente dans H.

Preuve Soit $(x_n)_{n\in\mathbb{N}}$ une suite bornée de H. Tout d'abord, on se place dans le cas où l'espace H est séparable. Soit $\{f_k\}_{k\in\mathbb{N}}\subset H$ une partie dense. L'inégalité de Cauchy-Schwarz assure que la suite scalaire $(\langle x_n,f_0\rangle)_{n\in\mathbb{N}}$ est bornée. Par le théorème de Bolzano-Weierstrass, on peut alors trouver une extraction $\varphi_0\colon \mathbb{N}\longrightarrow \mathbb{N}$ telle que la suite $(\langle x_{\varphi_0(n)},f_0\rangle)_{n\in\mathbb{N}}$ converge. De même, la suite $(\langle x_{\varphi_0(n)},f_1\rangle)_{n\in\mathbb{N}}$ étant bornée, il existe une extraction $\varphi_1\colon \mathbb{N}\longrightarrow \mathbb{N}$ telle que la suite $(\langle x_{\varphi_0\circ\varphi_1(n)},f_1\rangle)_{n\in\mathbb{N}}$ converge. Par récurrence, on peut alors trouver une suite $(\varphi_k)_{k\in\mathbb{N}}$ d'extractions telle que, pour tout entier $k\in\mathbb{N}$, la suite $(\langle x_{\varphi_0\circ\cdots\varphi_k(n)},f_k\rangle)_{n\in\mathbb{N}}$ converge. Ainsi l'application

$$\varphi \colon \begin{vmatrix} \mathbf{N} \longrightarrow \mathbf{N}, \\ n \longmapsto \varphi_0 \circ \cdots \circ \varphi_n(n) \end{vmatrix}$$

est une extraction telle que la suite $(\langle x_{\varphi(n)}, f_k \rangle)_{n \in \mathbb{N}}$ converge pour tout entier $k \in \mathbb{N}$. Montrons que la sous-suite $(x_{\varphi(n)})_{n \in \mathbb{N}}$ converge faiblement dans H ce qui conclura le cas particulier. Soient $f \in H$ un élément et $\varepsilon > 0$ un réel. Comme la suite $(x_n)_{n \in \mathbb{N}}$ est bornée, il existe un réel M > 0 tel que

$$\forall n \in \mathbf{N}, \qquad ||x_n|| < M.$$

Comme la partie $\{f_k\}_{k\in\mathbb{N}}$ est dense, il existe un entier $k\in\mathbb{N}$ tel que

$$||f - f_k|| < \varepsilon/M.$$

Pour tous entiers $p,q \in \mathbb{N}$, les inégalités triangulaire et de Cauchy-Schwarz donnent

$$\begin{aligned} |\langle x_{\varphi(p)}, f \rangle - \langle x_{\varphi(q)}, f \rangle| &= |\langle x_{\varphi(p)}, f - f_k \rangle + \langle x_{\varphi(p)} - x_{\varphi(q)}, f_k \rangle + \langle x_{\varphi(q)}, f_k - f \rangle| \\ &\leq |\langle x_{\varphi(p)}, f - f_k \rangle| + |\langle x_{\varphi(p)} - x_{\varphi(q)}, f_k \rangle| + |\langle x_{\varphi(q)}, f - f_k \rangle| \\ &\leq \|x_{\varphi(p)}\| \|f - f_k\| + |\langle x_{\varphi(p)} - x_{\varphi(q)}, f_k \rangle| + \|x_{\varphi(q)}\| \|f - f_k\| \\ &< 2\varepsilon + |\langle x_{\varphi(p)} - x_{\varphi(q)}, f_k \rangle|. \end{aligned}$$

D'après le précédent paragraphe, la suite $(\langle x_{\varphi(n)}, f_k \rangle)_{n \in \mathbb{N}}$ converge, donc elle est de Cauchy, c'est-à-dire qu'il existe un entier $N \in \mathbb{N}$ tel que

$$\forall p, q \geqslant N, \qquad |\langle x_{\varphi(p)}, f_k \rangle - \langle x_{\varphi(q)}, f_k \rangle| < \varepsilon.$$

Ceci montre que

$$\forall p, q \geqslant N, \qquad \left| \langle x_{\varphi(p)}, f \rangle - \langle x_{\varphi(q)}, f \rangle \right| < 3\varepsilon.$$

Ainsi la suite scalaire $(\langle x_{\varphi(n)}, f \rangle)_{n \in \mathbb{N}}$ est de Cauchy, donc elle converge. On conclut que la sous-suite $(x_{\varphi(n)})_{n \in \mathbb{N}}$ converge faiblement dans H grâce au théorème de Riesz.

Maintenant, on ne suppose plus que l'espace H est séparable. On va se ramener au cas séparable. L'espace $H_0 := \overline{\mathrm{Vect}_{\mathbf{Q}}\{x_n\}_{n \in \mathbf{N}}}$ est fermé et séparable. La suite $(x_n)_{n \in \mathbf{N}}$ étant de H_0 , le cas particulier nous donne une extraction $\varphi \colon \mathbf{N} \longrightarrow \mathbf{N}$ telle que, pour tout élément $f_0 \in H_0$, la suite $(\langle x_{\varphi(n)}, f_0 \rangle)_{n \in \mathbf{N}}$ converge. Or le théorème du

supplémentaire orthogonal donne $H = H_0 \oplus H_0^{\perp}$. Ainsi pour tout élément $f \in F$ qu'on écrit $f = f_0 + f_1$ avec $f_0 \in H_0$ et $f_1 \in H_0^{\perp}$, on a

$$\forall n \in \mathbf{N}, \qquad \langle x_{\varphi(n)}, f \rangle = \langle x_{\varphi(n)}, f_0 \rangle,$$

donc la suite $(\langle x_{\varphi(n)}, f \rangle)_{n \in \mathbb{N}}$ converge.

Proposition 2. Soit $C \subset H$ une partie convexe fermée non vide. Soit $J \colon C \longrightarrow \mathbf{R}$ une fonction convexe continue. On suppose qu'elle est coercive si la partie C n'est pas bornée. Alors la fonction J atteint son minimum sur C.

Preuve Soit $(x_n)_{n\in\mathbb{N}}$ une suite minimisante de la fonction J sur H, c'est-à-dire vérifiant

$$J(x_n) \longrightarrow I := \inf_C J$$

Montrons qu'elle est bornée. Dans le cas où le convexe C est borné, c'est évident. On suppose donc que le convexe C n'est pas borné. Raisonnons par l'absurde et supposons que la suite $(x_n)_{n\in\mathbb{N}}$ n'est pas bornée. Dans ce cas, on peut trouver un extraction $\psi\colon \mathbb{N} \longrightarrow \mathbb{N}$ telle que $\|x_{\psi(n)}\| \longrightarrow +\infty$. La coercivité de la fonction J implique $J(x_{\psi(n)}) \longrightarrow +\infty$, contredisant l'hypothèse $J(x_n) \longrightarrow I < +\infty$. Dans les deux cas, la suite $(x_n)_{n\in\mathbb{N}}$ est bornée. Par conséquent, le lemme nous fournit une sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge faiblement dans H vers un élément $x^* \in H$.

Montrons que $J(x^*)=I$ ce qui conclura. Soit $\alpha>I$ un réel. Comme la fonction J est convexe et continue, l'ensemble $C_\alpha:=\{x\in C\mid J(x)\leqslant \alpha\}$ est convexe, fermé et non vide. Montrons que $x^*\in C_\alpha$. Notons $p_\alpha\colon H\longrightarrow C_\alpha$ l'application donnée par le théorème de projection. Comme $J(x_{\varphi(n)})\longrightarrow I$, il existe un entier $N\in \mathbb{N}$ tel que

$$\forall n \geqslant N, \qquad x_{\varphi(n)} \in C_{\alpha}$$

et la caractérisation par les angles obtus donne alors

$$\forall n \geqslant N, \qquad \langle x^* - p_{\alpha}(x^*), x_{\varphi(n)} - p_{\alpha}(x^*) \rangle \leqslant 0.$$

Comme la suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ converge faiblement vers l'élément x^* , en laissant tendre l'entier n vers l'infini dans la précédente inégalité, on obtient $\|x^* - p_\alpha(x^*)\|^2 \leq 0$ ce qui donne $x^* = p_\alpha(x^*) \in C_\alpha$, c'est-à-dire $J(x^*) \leq \alpha$. Finalement, ceci étant vrai pour tout réel $\alpha > I$, on obtient $J(x^*) \leq I$ et on conclut $J(x^*) = I$.

◁

Philippe Ciarlet. Introduction à l'analyse numérique matricielle et à l'optimisation. 3^e tirage. Masson, 1982.

² Lucas Isenmann et Timothée Pecatte. L'oral à l'agrégation de mathématiques. Ellipses, 2017.