An Introduction to Non Standard Topology

Jared Holshouser

September 12, 2014

1 Superstructures and Monomorphisms

Let $\mathbb{N} \subseteq X$.

Definition 1. Let $V_0(X) = X$ and $V_{n+1}(X) = V_n(X) \cup \mathcal{P}(V_n(X))$. The superstructure over X is $V(X) = \bigcup_{n \in \mathbb{N}} V_n(X)$.

Definition 2. The language \mathcal{L}_X for V_X is $\mathcal{L}_X = \{\varepsilon\}$. Note that = is interpreted as set equality on $V(X) \setminus X$.

A formula of \mathcal{L}_X is built up from

- Atomic formulas: $x \in y$, x = y, $\langle x_1, \dots, x_n \rangle \in y$, $\langle x_1, \dots, x_n \rangle = y$, $\langle \langle x_1, \dots, x_n \rangle, x \rangle \in y$ and $\langle \langle x_1, \dots, x_n \rangle, x \rangle = y$,
- Logical Connectives, and
- $\forall x \in y\varphi$ and $\exists x \in y\varphi$.

Example 1. An example of a formula in \mathcal{L}_X is

$$\forall x \in b (x \in y \land \langle y, a \rangle = b)$$

Let $\mathbb{N} \subseteq Y$ and let $*: V(X) \to V(Y)$ be an injection.

Definition 3. If φ is a formula in \mathcal{L}_X , the *-transform $^*\varphi$ of φ is the formula in \mathcal{L}_Y obtained by replacing each constant c occurring in φ with *c .

Definition 4. $*:V(X) \to V(Y)$ is a monomorphism iff

- 1. $*\emptyset = \emptyset$
- 2. If $a \in X$, then $a \in Y$ and if $n \in \mathbb{N}$, then n = n.
- 3. If $a \in V_{n+1}(X) \setminus V_n(X)$, then $a \in V_{n+1}(Y) \setminus V_n(Y)$.
- 4. If $a \in V_n(X)$ for $n \ge 1$ and $b \in a$, then $b \in V_{n-1}(X)$. This is called Strictness.
- 5. For any φ in \mathcal{L}_X , φ holds in V(X) iff φ holds in V(Y). This is called the transfer principle.

Theorem 1. Suppose that * is a monomorphism.

1. Let $a, b, a_1, \dots, a_n \in V(X)$. Then

$$(a) * \{a_1, \cdots, a_n\} = \{*a_1, \cdots, *a_n\}$$

(b)
$$*\langle a_1, \cdots, a_n \rangle = \langle *a_1, \cdots, *a_n \rangle$$

(c)
$$a \in b$$
 iff $*a \in *b$

(d)
$$a = b \text{ iff } *a = *b$$

(e)
$$a \subseteq b$$
 iff $*a \subseteq *b$

$$(f) * (\bigcup_{i=1}^{n} a_i) = \bigcup_{i=1}^{n} * a_i \text{ and } * (\bigcap_{i=1}^{n} a_i) = \bigcap_{i=1}^{n} * a_i$$

$$(g) * (a_1 \times \cdots \times a_n) = *a_1 \times \cdots \times *a_n.$$

- 2. If P is a relation on $a_1 \times \cdots \times a_n$, then *P is a relation on * $a_1 \times \cdots \times a_n$. For n = 2, *(dom(P)) = dom(*P) and *(ran(P)) = ran(*P).
- 3. If $f: a \to b$, then $f: a \to b$ and f(f(c)) = f(c) for each $c \in a$. Also, f is 1-1 iff f is 1-1.

Proof. All of these result from transferring the appropriate sentence. For instance consider 1a). Here we would transform

$$\forall x \in b \, (x = a_1 \vee \cdots \vee x = a_n) \land a_1 \in b \land \cdots \land a_n \in b$$

For 1f) (with n=2) we would transfer $\forall x \in c (x \in a \lor x \in b)$ and $\forall x \in a (x \in c)$ and $\forall x \in b (x \in c)$. \square

Let \mathcal{U} be an ultrafilter on an index set I.

Definition 5. The bounded ultrapower of V(X) is

$$\prod_{\mathcal{U}}^{0} V(X) := \bigcup_{n \in \mathbb{N}} \prod_{\mathcal{U}} \left[V_n(X) \setminus V_{n-1}(X) \right]$$

Define $e: V(X) \to \prod_{\mathcal{U}}^{0} V(X)$ by $e(a) = [c_a]$ where $c_a(i) = a$ for all $i \in I$.

Definition 6. We define the Mostowski collapse $M: \prod_{\mathcal{U}}^{0} V(X) \to V(^{*}X)$ as follows: First set

$$^*X = \prod_{\mathcal{U}} X$$

Then for $b \in \prod_{\mathcal{U}} X$, set M([b]) = [b] and for $b \in \prod_{\mathcal{U}} [V_n(X) \setminus V_{n-1}(X)]$, set

$$M([b]) = \left\{ M([a]) : [a] \in \bigcup_{k=1}^{n-1} \prod_{\mathcal{U}} [V_k(X) \setminus V_{k-1}(X)] \land [a] \in_{\mathcal{U}} [b] \right\}$$

Lemma 1. e and M have the following important properties:

- 1. e and M are 1-1.
- 2. e maps X into *X and M maps *X onto *X.
- 3. e maps $V_{n+1}(X) \setminus V_n(X)$ into $\prod_{\mathcal{U}} [V_{n+1}(X) \setminus V_n(X)]$ and M maps $\prod_{\mathcal{U}} [V_{n+1}(X) \setminus V_n(X)]$ into $V_{n+1}(^*X) \setminus V_n(^*X)$.
- 4. $a \in b$ iff $e(a) \in_{\mathcal{U}} e(b)$ and $[a] \in_{\mathcal{U}} [b]$ iff $M([a]) \in M([b])$.
- 5. $e(X) = [c_X] \text{ and } M([c_X]) = *X.$
- 6. Let $[a], [b] \in \prod_{\mathcal{U}}^{0} V(X)$ and put $c_i = \{a_i, b_i\}$ for all $i \in I$. Then $[c] \in \prod_{\mathcal{U}}^{0} V(X)$ and $M([c]) = \{M([a]), M([b])\}$, where $c(i) = c_i$. We can do the same thing with more terms. We can also replace $\{\}$ with $\langle \rangle$ and = with \in . In other words, the atomic formulas of \mathcal{L}_X push through in the obvious way.
- 7. If $[b] \in_{\mathcal{U}} e(a)$ and $a \in V_n(X) \setminus V_{n-1}(X)$, then $[b] \in_{\mathcal{U}} e(V_{n-1}(X))$.

Proof. We show select non-obvious parts. Since M is the identity on X it is clearly 1-1 there. Now suppose $[a] \neq [b]$ are not in X. Then set

$$U_a = \{i \in I : \exists v_i \in a_i (v_i \notin b_i)\}$$
 and $U_b = \{i \in I : \exists v_i \in b_i (v_i \notin a_i)\}$

As $[a] \neq [b]$, either $U_a \in \mathcal{U}$ or $U_b \in \mathcal{U}$. WLOG $U_a \in \mathcal{U}$. Choose $v_i \in a_i \setminus b_i$ for all $i \in U_a$. let $v(i) = v_i$ if $i \in U_a$ and v(i) = c otherwise, for some constant c. Then $M([v]) \in M([a]) \setminus M([b])$.

We prove 6) now. By definition, $M([c]) = \{M([y]) : y_i \in \{a_i, b_i\} \text{ a.e}\}$. If $y_i \in \{a_i, b_i\}$ a.e. let $A = \{i : y_i = a_i\}$ and $B = \{i : y_i = b_i\}$. Then $A \cup B \in \mathcal{U}$ so $A \in \mathcal{U}$ or $B \in \mathcal{U}$. Therefore

$$M([c]) = \{M([y]) : y_i = a_i \text{ a.e}\} \cup \{M([y]) : y_i = b_i \text{ a.e}\} = \{M([a]), M([b])\}$$

Theorem 2 (Los's Theorem). If $\varphi(x_1, \dots, x_n)$ is a formula in \mathcal{L}_X with x_1, \dots, x_n free and $[a_1], \dots, [a_n] \in \prod_{\mathcal{U}}^0 V(X)$, then ${}^*\varphi(M([a_1]), \dots, M([a_n]))$ is true in ${}^*V(X)$ iff

$$\{i \in I : \varphi(a_1(i), \cdots, a_n(i))\} \in \mathcal{U}$$

Proof. This follows by induction on the formula φ .

Theorem 3. Let $*: V(X) \to V(*X)$ by $*= M \circ e$. Then * is a monomorphism.

Proof. The first four properties are true based off of lemma 1. We will show that the transfer principle holds. Let φ be a sentence of \mathcal{L}_X . Then by Los's theorem, ${}^*\varphi$ is true in $V({}^*X)$ iff $\{i \in I : \varphi\} \in \mathcal{U}$. Since φ is a sentence, it has no free variables, its either true or false for V(X). If its true, then $\{i \in I : \varphi\} = I \in \mathcal{U}$. If its false, then $\{i \in I : \varphi\} = \emptyset \notin \mathcal{U}$. So ${}^*\varphi$ is true iff φ is true. \square

2 Enlargements

Definition 7. If $A \in V_n(X) \setminus V_0(X)$ for some $n \ge 1$, we set $\mathcal{P}_F(A) = \{B \subseteq A : B \text{ is finite}\}$. We call $^*\mathcal{P}_F(A)$ the hyperfinite subsets of A.

Example 2. Let $j \in \mathbb{N}$. Then $J = \{n \in \mathbb{N} : n \leq j\}$ is a hyperfinite subset of \mathbb{R} .

The transfer principle tells us that elementary results that hold for finite sets also hold for hyperfinite sets.

Definition 8. Elements of V(X) and elements of the form $b \in V(X)$ are called standard. Everything else is non-standard.

Example 3. If $X = \mathbb{R}$, real numbers are standard. If $a < b \in \mathbb{R}$, then $I = \{x \in {}^*\mathbb{R} : a \le x \le b\}$ is standard. If $\alpha < \beta \in {}^*\mathbb{R}$ are infinitesimal and $J = \{x \in {}^*\mathbb{R} : \alpha \le x \le \beta\}$, then J is non-standard.

Definition 9. $V(^*X)$ is an enlargement of V(X) iff for all $A \in V(X)$ there is a $B \in {}^*\mathcal{P}_F(A)$ such that $^*a \in B$ for all $a \in A$.

Example 4. Let $j \in \mathbb{N}$ be infinite. Then $\{n \in \mathbb{N} : 0 \le n \le j\}$ contains every natural number.

We aim to construct an index set and a filter so that V(*X) is an enlargement. Let

$$J = \{a \in V(X) : a \neq \emptyset \land \text{ a is finite}\}\$$

For $a \in J$, let $J_a = \{a \in J : a \subseteq b\}$. Let \mathcal{F} be the filter generated by the J_a . Let \mathcal{V} be an ultrafilter extending \mathcal{F} . Note that \mathcal{F} is non-principal.

Theorem 4. If V(*X) is constructed from V(X) using V and J, then it is an enlargement.

Proof. Let $A \in V(X)$. Define $\Gamma : J \to \mathcal{P}_F(A)$ by $\Gamma(a) = a \cap A$. Let $B = M([\Gamma])$. Then $B \in {}^*\mathcal{P}_F(A)$. If $x \in A$, then

$$J_{(x)} = \{ a \in J : x \in a \} = \{ a \in J : x \in a \cap A \} \in \mathcal{V}$$

So
$$[c_x] \in_{\mathcal{V}} [\Gamma]$$
, so $*x = M \circ e(x) \in B$.

Definition 10. A binary relation P is concurrent on $A \subseteq \text{dom}(P)$ iff for each $a \in A^{<\omega}$, there is a $y \in \text{ran}(P)$ so that $\langle a_i, y \rangle \in P$ for all $i < \ell(a)$. P is concurrent iff P is concurrent on dom(P).

Theorem 5. The following are equivalent

- 1. V(*X) is an enlargement of V(X)
- 2. For each concurrent relation $P \in V(X)$ there is a $b \in ran(*P)$ so that $\langle *x, b \rangle \in *P$ for all $x \in dom(P)$.

Proof. We will show that 1) implies 2). Let $B \in {}^*\mathcal{P}_F(\text{dom}(P))$ be so that for each $x \in \text{dom}(P)$, ${}^*x \in B$. Then in V(X)

$$\forall w \in \mathcal{P}_F(\text{dom}(P)) \exists y \in \text{ran}(P) \forall x \in w(\langle x, y \rangle \in P)$$

So by transfer, the *-transform of this statement is true in V(*X). So there is a $b \in \operatorname{ran}(*P)$ so that $\langle z, b \rangle \in *P$ for each $z \in B$.

3 Topology

Let (X, \mathcal{T}) be a topological space and assume that $\mathbb{N} \subseteq X$.

We will use the following as a black box for what follows:

Theorem 6. Set $V_0(X) = X$ and for $n \in \omega$, set $V_{n+1}(X) = \mathcal{P}(V_n(X)) \cup V_n(X)$. The supserstructure of X, $V(X) = \bigcup_{n \in \omega} V_n(X)$. Let ${}^*X = X^J/\mathcal{U}$, where J is an index set and \mathcal{U} is an ultrafilter on J. We have a map $*: V(X) \to V({}^*X)$ which has the following properties:

- 1. * is 1-1, preserves \in and preserves rank.
- 2. * preserves finite set operations.
- 3. (Transfer) A sentence φ holds in V(X) iff * φ holds in V(*X).
- 4. (Enlargement) If $P \in V(X)$ is a relation so that whenever $x_1, \dots, x_n \in dom(P)$ there is a $y \in ran(P)$ with $\langle x_i, y \rangle \in P$ for $1 \le i \le n$, then there is a $y \in ran(*P)$ so that $\langle *x, y \rangle \in *P$ for all $x \in dom(P)$.

3.1 Basic Notions

Definition 11. The sets in * \mathcal{T} are called *-open sets. The monad of a point $x \in X$ is

$$m(x) = \bigcap \{ *U : U \in \mathcal{N}_x \}$$

 $y \in {}^*X$ is said to be near $x \in X$ if $y \in m(x)$. We write $y \simeq x$ or x is a standard part of y. We say $y \in {}^*X$ is near standard if there is an $x \in X$ so that $y \simeq x$.

Example 5. In \mathbb{R} , $m(0) = \bigcap_{r \in \mathbb{R}^+} *(-r,r)$ is the set of infinitesimals.

Proposition 1. For all $x \in X$ there is a $V \in {}^*\mathcal{N}_x$ with $V \subseteq m(x)$.

Proof. Define P on $\mathcal{N}_x \times \mathcal{N}_x$ by $P(U,V) \iff V \subseteq U$. Then if $U_1, \dots, U_n \in \mathcal{N}_x$, we can find a $V \in \mathcal{N}_x$ so that $V \subseteq U_1, \dots, U_n$. Thus by enlargement, there is a $V \in {}^*\mathcal{N}_x$ so that $V \subseteq {}^*U$ for all $U \in \mathcal{N}_x$. So $V \subseteq m(x)$.

Example 6. Let N be an infinite natural. Then $\left(-\frac{1}{N},\frac{1}{N}\right)\subseteq m(0)$ and $\left(-\frac{1}{N},\frac{1}{N}\right)\in {}^*\mathcal{N}_0$

Proposition 2. Let $A \subseteq X$. Then

- 1. A is open iff $m(x) \subseteq {}^*A$ for each $x \in A$.
- 2. A is closed iff $m(x) \cap A = \emptyset$ for all $x \in X \setminus A$. (iff whenever $y \in A$ and $y \subseteq X$, then $x \in A$.)

Proof. It suffices to show 1). First suppose that A is open. Let $x \in A$. Then there is a $U \in \mathcal{N}_x$ so that $U \subseteq A$. Then $m(x) \subseteq {}^*U \subseteq {}^*A$. Now for the converse. Let $x \in A$. Let $V \in {}^*\mathcal{N}_x$ be so that $V \subseteq m(x)$. Then

$$\exists V \in {}^*\mathcal{N}_x \, (V \subseteq {}^*A)$$

So by transfer, $\exists V \in \mathcal{N}_x (V \subseteq A)$.

Proposition 3. $x \in \bar{A}$ iff $m(x) \cap {}^*A \neq \emptyset$.

Proof. First suppose that $x \in \bar{A}$. Then for all $U \in \mathcal{N}_x$, $U \cap A \neq \emptyset$. Define P on $\mathcal{N}_x \times A$ by $P(U,y) \iff y \in U$. Now whenever $U_1, \dots, U_n \in \mathcal{N}_x$ there is a $y \in A$ so that $y \in U_1 \cap \dots \cap U_n$. So by enlargement, there is a $y \in *A$ so that $y \in *U$ for all $U \in \mathcal{N}_x$. So $y \in m(x) \cap *A$. Conversely suppose that $y \in m(x) \cap *A$. Let $U \in \mathcal{N}_x$. Then $*U \cap *A \neq \emptyset$. So by transfer, $U \cap A \neq \emptyset$. Thus $x \in \bar{A}$.

Proposition 4. X is

- T_0 iff for all $x, y \in X$ if $x \simeq y$ and $y \simeq x$, then x = y.
- T_1 iff for all $x, y \in X$ if $x \simeq y$, then x = y.
- T_2 iff for all $x, y \in X$ if $x \neq y$, then $m(x) \cap m(y) = \emptyset$.

Proof. We show the T_2 part. Suppose that X is T_2 and let $x, y \in X$ be so that $x \neq y$. Then there are open sets U and V so that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Thus $^*U \cap ^*V = \emptyset$. As $m(x) \subseteq ^*U$ and $m(y) \subseteq ^*V$, $m(x) \cap m(y) = \emptyset$. For the converse, let $x, y \in X$ with $x \neq y$. Let U and V be *-open so that $U \subseteq m(x)$ and $V \subseteq m(y)$. Then $U \cap V = \emptyset$. So

$$\exists U \in {}^*\mathcal{N}_x \exists V \in {}^*\mathcal{N}_y (U \cap V = \emptyset)$$

Thus by transfer $\exists U \in \mathcal{N}_x \exists V \in \mathcal{N}_y (U \cap V = \emptyset)$.

Remark 1. Suppose X is T_2 . For each $y \in {}^*X$ which is near standard, there is a unique $x \in X$ so that $y \simeq x$. We define $\operatorname{st}(y)$ to be this x.

Proposition 5. Let X, Y be topological spaces. Then $f: X \to Y$ is continuous iff whenever $x' \simeq x$, $^*f(x') \simeq f(x)$.

Proof. First suppose that f is cont. Then for all $U \in \mathcal{N}_{f(x)}$ there is a $V \in \mathcal{N}_x$ so that $f[V] \subseteq U$. Let $V \in {}^*\mathcal{N}_x$ be so that for all $U \in \mathcal{N}_{f(x)}$, ${}^*f[V] \subseteq {}^*U$. Then ${}^*f[V] \subseteq \bigcap_{U \in \mathcal{N}_{f(x)}} {}^*U = \mu(f(x))$.

Now we prove the converse. Let $x \in X$. Then by hypothesis, ${}^*f[\mu(x)] \subseteq \mu(f(x))$. By way of contradiction suppose that there is some $U \in \mathcal{N}_{f(x)}$ so that for all $V \in \mathcal{N}_x$, $f[V] \not\subseteq U$. Then for all $V_1, \dots, V_n \in \mathcal{N}_x$ there is a $y \in Y$ so that $y \in f[V_i] \setminus U$. So by enlargement we can find a $y \in Y$ so that $y \in Y_i$ for all $Y_i \in Y_i$. Thus $Y_i \in Y_i$ for all $Y_i \in Y_i$. Thus $Y_i \in Y_i$ for all $Y_i \in Y_i$. Thus $Y_i \in Y_i$ for all $Y_i \in Y_i$. Thus $Y_i \in Y_i$ for all $Y_i \in Y_i$. Thus $Y_i \in Y_i$ for all $Y_i \in Y_i$. Thus $Y_i \in Y_i$ for all $Y_i \in Y_i$ for all $Y_i \in Y_i$.

3.2 Products

Recall the following definition for the product topology.

Definition 12. The product topology of $X = \prod_{i \in I} X_i$ is the weak topology generated by projection maps.

Remark 2. * $X = *(\prod_{i \in I} X_i) = \prod_{i \in *I} Y_i$ for some Y_i so that for $i \in I$, $Y_i = *X_i$. For $i \notin I$, it is not clear what Y_i is.

Lemma 2. If $x \in X$, then

$$m(x) = \{ y \in {}^*X : y(i) \in m_i(x(i)) \text{ for } i \in I \}$$

Proof. Let $k(x) = \{y \in {}^*X : y(i) \in m_i(x(i)) \text{ for } \in I\}$. We will first show that $m(x) \subseteq k(x)$. The following is true

$$m(x) \subseteq \bigcap_{i \in I} \bigcap_{U \in \mathcal{N}_{x(i)}^i} \left(\left({}^*\pi_i^{-1} \right)^{\prime\prime} U \right) = \bigcap_{i \in I} \left[\left({}^*\pi_i^{-1} \right)^{\prime\prime} \left(\bigcap_{U \in \mathcal{N}_{x(i)}^i} {}^*U \right) \right] = k(x)$$

Now we will show that $k(x) \subseteq m(x)$. If

$$x \in V = (\pi_{i_1}^{-1})''(U_{i_1}) \cap \dots \cap (\pi_{i_n}^{-1})''(U_{i_n})$$

then $k(x) \subseteq {}^*V$ as $k(x) \subseteq \left({}^*\pi_i^{-1}\right)''({}^*U_i)$ for all $U_i \in \mathcal{N}_{x(i)}^i$ and * moves across finite intersections.

Theorem 7. A product of T_2 spaces is T_2 .

Proof. Say $X = \prod_{i \in I} X_i$. If $x, y \in X$ with $m(x) \cap m(y) \neq \emptyset$, let $z \in m(x) \cap m(y)$. Then for all $i \in I$, $z(i) \in m_i$ (*x(i)) m_i (*x(i)) So x(i) = y(i) for all $i \in I$. So x = y.

3.3 Compactness

Theorem 8 (Robinson's Theorem). $A \subseteq X$ is compact iff for all $y \in {}^*A$ there is an $x \in A$ with $y \simeq x$.

Proof. We prove the contrapositive. Suppose that for some $y \in {}^*A$, $y \notin m(x)$ for all $x \in A$. Then for all $x \in A$ there is a $U_x \in \mathcal{N}_x$ so that $y \notin {}^*U_x$. The U_x form a cover of A. Let U_1, \dots, U_n be a finite subcollection. Then *A is not a subset of ${}^*U_1 \cup \dots \cup {}^*U_n$. So by transfer, A is not a subset of U_1, \dots, U_n . That is the cover $\{U_x : x \in A\}$ has no finite subcover.

We now prove the inverse. Suppose that A is not compact. Let \mathcal{U} witness this. Define P on $\mathcal{U} \times A$ by $P(U,x) \iff x \notin U$. Then whenever $U_1, \dots, U_n \in \text{dom}(P)$, there is an $x \in A$ so that $x \notin U_1 \cup \dots \cup U_n$. So by enlargement there is a $y \in {}^*A$ so that $y \notin {}^*U$ for all $U \in \mathcal{U}$. Now for all $x \in A$ there is a $U \in \mathcal{U}$ so that $m(x) \subseteq {}^*U$. Thus $y \notin m(x)$ for any $x \in A$.

Proposition 6. If X is compact and $A \subseteq X$ is closed, then A is compact.

Proof. Let $y \in {}^*A$. Then there is an $x \in X$ with $y \in m(x)$. As A is closed, $x \in A$.

Proposition 7. If X is T_2 and $A \subseteq X$ is compact, then A is closed.

Proof. Let $x \in \bar{A}$. Then $m(x) \cap {}^*A \neq \emptyset$. So let $y \in m(x) \cap {}^*A$. Then there is a $z \in A$ so that $y \in m(z)$. As X is T_2 it follows that x = z. So $x \in A$.

Proposition 8. Suppose K is compact, Y is a topological space, and $f: K \to Y$ is continuous and onto. Then Y is compact.

Proof. Let $y' \in {}^*Y$. Say that ${}^*f(x') = y'$. Then for some $x \in K$, $x' \simeq x$. Since f is continuous, ${}^*f(x') \simeq f(x)$. So $y \simeq f(x) \in Y$.

Theorem 9 (Tychonoff's Theorem). A product of compact spaces is compact.

Proof. Say $X = \prod_{i \in I} X_i$. Let $y \in {}^*X$. Then for each standard $i \in I$, $y(i) \in {}^*X_i$. So y(i) is near some point $x_i \in X_i$ for each $i \in I$. Let $x \in X$ be defined by $x(i) = x_i$. Then $y(i) \in m_i(x(i))$ for each $i \in I$. So $y \in m(x)$.

Theorem 10 (Alexander's Subbase Theorem). If S is a subbase for X and every cover of X by members of S has a finite subcover, then X is compact.

Proof. We prove the contrapositive. Suppose that X is not compact. Then there is a $y \in {}^*X$ so that for all $x \in X$ there is a $U_x \in \mathcal{N}_x$ so that $y \notin {}^*U_x$. Now each U_x is a finite intersection of V_i from \mathcal{S} , so one of the *V_i must omit y. Thus without loss of generality $U_x \in \mathcal{S}$ for all x. Let $\mathcal{U} = \{U_x : x \in X\}$. Then whenever $U_1, \dots, U_n \in \mathcal{U}, y \notin {}^*U_1 \cup \dots \cup {}^*U_n$, so *X is not covered by any finite collection of *U_x . Thus by transfer, X is not covered by any finite collection of U_x . So \mathcal{U} has no finite subcover and therefore X is not compact.

Theorem 11 (Heine-Borel Theorem). Let $K \subseteq \mathbb{R}^n$. Then K is compact iff K is closed and bounded.

Proof. Suppose K is compact. Then since \mathbb{R}^n is T_2 , K is closed. By way of contradiction suppose that K is unbounded. Then

$$\forall n \in \mathbb{N} \exists x \in K(||x|| > n)$$

Let N be an infinite integer. Then by transfer, there is a $y \in {}^*K$ so that ||y|| > N. But then y is not near any $x \in K$. So K is not compact. This is a contradiction. So K is bounded.

Conversely, suppose that K is closed and bounded. Let N be this bound. Let $y \in {}^*K$. By transfer, $||y|| \le N$. So y is near standard. Let $x \in \mathbb{R}^n$ be so that $y \simeq x$. Since K is closed, $x \in K$. So K is compact.