Analytical Geometry and Linear Algebra. Lecture 1.

Vladimir Ivanov

Innopolis University

August 27, 2021

Outline

- Part 1. About the course
- Part 2. Introduction. Vector spaces. Linear independence. Basis
- Part 3. Dot product

• What is this course about?

- What is this course about?
- How to get high grade in this course?

- What is this course about?
- How to get high grade in this course?
- How to use this course in your projects?

What is this course about?

Topics of the course

- Vector spaces, matrices and transformations in 2D and 3D
- Lines and planes
- Conics or quadric curves
- Quadratic surfaces
- Polar and spherical coordinates

Goals of this course

What you will learn in this course?

- to use vectors and matrices to solve applied problems
- to change basis in a vector space
- to calculate determinants
- to recognise different transformations, such as rotation, reflection, shear, etc.
- to work with lines and planes in 2D and 3D
- to operate with quadric curves, such as ellipse, hyperbola and parabola
- many more + some examples in Python :)

How to get a high grade in this course?

Grading in the course

- Labs 5%
- Test 1 15%
- Midterm 35%
- Test 2 15%
- Final Exam 30%

In total, 100 %

How to get the highest grade?

- Attend classes (either online or offline)
 - Labs
 - Tutorials
 - Lectures
- Solve assignments (also at home) on your own and in groups
- Read books (check the list in moodle)
- Come to office hours (either online or offline)

Repeat:)

- Friday
 - attend lecture
 - attend tutorial
 - review materials after classes
 - come to office hours

- Friday
 - attend lecture
 - attend tutorial
 - review materials after classes
 - come to office hours
- Saturday / Sunday
 - read books / watch online courses
 - try to solve assignments (aka Homework)
 - make a list of questions for the Lab

Friday

- attend lecture
- attend tutorial
- review materials after classes
- come to office hours

Saturday / Sunday

- read books / watch online courses
- try to solve assignments (aka Homework)
- make a list of questions for the Lab

Monday

- attend labs
- ask your questions
- participate in labs

- Friday
 - attend lecture
 - attend tutorial
 - review materials after classes
 - come to office hours

Saturday / Sunday

- read books / watch online courses
- try to solve assignments (aka Homework)
- make a list of questions for the Lab

Monday

- attend labs
- ask your questions
- participate in labs

Tuesday - Thursday

- apply your knowledge by some programming (yay!)
- do not forget about other courses

Team of the course and Materials

- Vladimir Ivanov (PhD), Principal Instructor, Lectures
- Mohammedreza Bahrami (PhD), Tutorials
- Anastasia Puzankova, Labs
- Oleg Bulichev, Labs
- Eugene Marchuk, Labs

Resources: Books, Assignments, Useful links, etc.

Please, check Moodle!

Applications of Linear Algebra and Analytical Geometry

Applications of AGLA in Computer Science and Engineering

Areas:

- Computer Graphics and Computer Games
- Machine Learning, Data Analysis
- Natural Language Processing
- Robotics
- Computer Vision
- and many, many other areas...
- maybe, even in the backend...

Applications

Computer Graphics and Computer Games

- 2D/3D graphics
- Projective geometry, Homogeneous coordinates
- Collision detection in games. Calculation of trajectories

Machine Learning, Data Analysis

- Linear Regression
- Eigendecomposition
- Singular Value Decomposition
- Covariance matrix
- Linear Layers, Attention Mechanisms in Neural Networks

Agenda: Week 1

Vectors. Linear Independence

- Points and Vectors
- Vector Addition. Scalar Vector Multiplication
- Properties of Vector Arithmetic
- Vector spaces, Subspaces
- Span, Linear Independence
- Vector Bases and Vector Coordinates in Basis

Notation

- We denote points by capital italic letters, e.g., A, B, ..., Q, ...
- We denote numbers by Greek letters, e.g., $\alpha, \beta, ..., \lambda, \theta, ...$ and sometimes by Latin letters, a, b, ..., v, u, x, ...
- We denote vectors by **bold** letters, e.g., a, b, ..., v, u, x, ...,
- and also we denote vectors by a letter with an arrow, e.g. $\vec{a}, \vec{b}, \vec{u}$
- and sometimes we denote vectors by end-points, e.g. $\overline{AB}, \overline{BC}, \overline{OA}$
- \circ \mathbb{R} is the set of real numbers
- C is the set of complex numbers

Introduction

Points and Vectors (informally). Direction

Vector. Geometrical point of view. Vectors as 'arrows' in plane or in 3D space

Let A and B be two points.

A directed line segment from A to B is denoted by: \overline{AB}

This directed line segment constitutes a vector.

Points and Vectors (informally). Direction

Vector. Geometrical point of view. Vectors as 'arrows' in plane or in 3D space

Let A and B be two points.

A directed line segment from A to B is denoted by: \overline{AB}

This directed line segment constitutes a vector.

Thus, each vector can be associated with a notion of *direction*. In this case, we can think of a vector as an "arrow" in space.

Points and Vectors (informally). Magnitude

Length (or Magnitude) of a Vector

Also, often (**but not always!**) vector has a *length* (or a magnitude). The length of a vector is denoted by $\|\mathbf{v}\|$.

Unit vector

A *unit vector*, ${\bf u}$ is a vector with unit length (so $\|{\bf u}\|$ =1). We can derive a unit vector as ${\bf u}={\bf v}/\|{\bf v}\|$.

The length of a vector is closely related to the **dot product**, an operation which will be discussed in the next lecture. Therefore, $\mathbf{v}/\|\mathbf{v}\|$ is called a normalized vector.

If you move the line segment to another line segment with the same direction and length, they constitute **the same vector**.

Examples: Points and Vectors (informally)

Note that vector $\lambda \mathbf{d}$ is either parallel ($\lambda > 0$) to or anti-parallel ($\lambda < 0$) to \mathbf{d} .

In this figure:
$$\lambda > 0$$
?
What if $\lambda = 0$?

Vector spaces

Vector space definition

Vector space

A *vector space* V over \mathbb{R} (or \mathbb{C}) is a collection of vectors, together with two operations:

- \circ a + b, addition of two vectors and
- \bullet $\lambda \mathbf{a}$, multiplication by a scalar ($\lambda \in \mathbb{R}$)

A scalar is a number from \mathbb{R} or \mathbb{C} , respectively.

Addition and multiplication SHOULD satisfy following axioms

Vector addition axioms

Vector addition $\mathbf{a} + \mathbf{b}$ is defined $\forall \mathbf{a}, \mathbf{b} \in V$

Vector addition has to satisfy the following axioms:

$$\bigcirc$$
 $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ (associativity)

$$\bigcirc$$
 There is a vector $\mathbf 0$ (zero vector) such that $\mathbf a + \mathbf 0 = \mathbf a$. (identity)

 \bigcirc For each vector ${\bf a},$ there exists a vector $(-{\bf a})$ such that ${\bf a}+(-{\bf a})={\bf 0}$ (inverse)

Scalar multiplication axioms

 $\lambda \mathbf{a}$ is defined $\forall \lambda \in \mathbb{R}, \forall \mathbf{a} \in V$

Scalar multiplication has to satisfy the following axioms:

- $\mathbf{Q} \lambda(\mu \mathbf{a}) = (\lambda \mu) \mathbf{a}.$

The scalar is called a *scalar*, because it **scales** a vector :)

Homework Assignment

Prove

The zero vector is unique.

Prove

The inverse vector (-a) is unique for any vector a.

Vectors as lists of numbers

Column vectors. Examples

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ — we will use **this notation!** We represent vectors as **columns!**

Vectors as lists of numbers

Column vectors. Examples

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ — we will use **this notation!** We represent vectors as **columns!**

Row vectors. Examples

 $\begin{bmatrix} 3 & 4 \end{bmatrix}$, $\begin{bmatrix} 3 & 4 & 5 \end{bmatrix}$, $\begin{bmatrix} x & y & z \end{bmatrix}$ Even though vectors can be represented as rows.

Vectors as lists of numbers

Column vectors. Examples

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ — we will use **this notation!** We represent vectors as **columns!**

Row vectors. Examples

 $\begin{bmatrix} 3 & 4 \end{bmatrix}$, $\begin{bmatrix} 3 & 4 & 5 \end{bmatrix}$, $\begin{bmatrix} x & y & z \end{bmatrix}$ Even though vectors can be represented as rows.

$$\begin{bmatrix} 3 & 4 \end{bmatrix} \neq \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Transposition

Transposition

$$\begin{bmatrix} 3 & 4 \end{bmatrix}^{\top} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \tag{1}$$

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix}^{\top} = \begin{bmatrix} 3 & 4 \end{bmatrix} \tag{2}$$

This operation transforms a row vector a to column vector and back

For any vector

$$(\mathbf{v}^{\top})^{\top} = \mathbf{v}$$

Examples

Example

Vector space V consisting of all functions f(x) that are continuous on \mathbb{R}

$$V = \{f(x), \text{such that} f(x) \text{ is continuous on } \mathbb{R}\}$$

Linear combination and linear independence

Linear combination

Vector $\mathbf{w} \in V$ is a <u>linear combination</u> of vectors $\mathbf{v_1}, \dots, \mathbf{v_n} \in V$ with coefficients $c_k \in \mathbb{R}$; (k = 1..n) such that

$$\mathbf{w} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_n \mathbf{v_n} = \sum_{k=1}^{n} c_k \mathbf{v_k}$$

Span

Span

Let
$$S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\} \subset V$$
.

$$span(S) \equiv \left\{ \mathbf{w} \in V : \mathbf{w} = \sum_{k=1}^{n} c_k \mathbf{v_k}, \quad \forall c_k \in \mathbb{R} \right\}$$

Basically, W = span(S) is the set of all (possible) linear combinations of the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$. Note that W is a subspace of V.

Subspace

Definition

W is a subspace of V if

- a) $W \subset V$ (subset)
- b) $\mathbf{u}, \mathbf{v} \in W \Rightarrow \mathbf{u} + \mathbf{v} \in W$ (closure under addition)
- c) $\mathbf{u} \in W, \lambda \in \mathbb{R} \Rightarrow \lambda \mathbf{u} \in W$ (closure under scalar multiplication)

Examples

Linear independence in \mathbb{R}^2 and in \mathbb{R}^3

Linearly independent vectors in \mathbb{R}^2

Two vectors \mathbf{a} and \mathbf{b} are *linearly independent* if for $\alpha_1, \alpha_2 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = 0$.

Linear independence in \mathbb{R}^2 and in \mathbb{R}^3

Linearly independent vectors in \mathbb{R}^2

Two vectors \mathbf{a} and \mathbf{b} are *linearly independent* if for $\alpha_1, \alpha_2 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = 0$.

Linearly independent vectors in \mathbb{R}^3

Vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are *linearly independent* if for $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} + \alpha_3 \mathbf{c} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

Linear independence in \mathbb{R}^2 and in \mathbb{R}^3

Linearly independent vectors in \mathbb{R}^2

Two vectors \mathbf{a} and \mathbf{b} are *linearly independent* if for $\alpha_1, \alpha_2 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = 0$.

Linearly independent vectors in \mathbb{R}^3

Vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are *linearly independent* if for $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} + \alpha_3 \mathbf{c} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

Try to give a definition for Linearly independent vectors in \mathbb{R}^n

Basis of a vector space

Basis

A **set** of vectors is a *basis* of a vector space if it spans a vector space and this set is **linearly independent**.

Basis in \mathbb{R}^2 and \mathbb{R}^3

Basis in \mathbb{R}^2

A set of vectors is a *basis* of \mathbb{R}^2 if it spans \mathbb{R}^2 and this set is **linearly independent**.

Standard basis in \mathbb{R}^2

 $\{\hat{\mathbf{i}},\hat{\mathbf{j}}\} = \{(1,0),(0,1)\}$ is a basis of \mathbb{R}^2 . They are the standard basis in \mathbb{R}^2 .

Standard basis in \mathbb{R}^3

 $\{\hat{\mathbf{i}},\hat{\mathbf{j}},\hat{\mathbf{k}}\}=\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis of \mathbb{R}^3 . They are the standard (canonical) basis in \mathbb{R}^3 .

Examples

Representation of a Vector in Vector Space

Theorem

Let V be a vector space over \mathbb{R}^n and let $\{e_1,...,e_n\}$ be a basis.

Then each vector \mathbf{u} can be identified with its coordinates $\{u_1,...,u_n\}$ in the basis.

$$\mathbf{u} = \sum_{k=1}^{n} u_k \mathbf{e_k}$$

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix}$$

Homework Assignment

Let P_3 , be a set of all polynomials of degree 3 or less.

Show that P_3 is a vector space over \mathbb{R} .

Hint: check axioms of vector space.

What could be a basis of P_3 ?

Give examples of two bases in P_3 .

Express the polynomial $x^3 - 2x^2 + 3$ in the basis.

End of Lecture 1.

Useful links

- https://www.geogebra.org
- https://youtu.be/fNk_zzaMoSs
- http://immersivemath.com/ila
- http://brilliant.com