Grundbegriffe der Informatik - Tutorium

- Wintersemester 2011/12 -

Christian Jülg

http://gbi-tutor.blogspot.com

14. Dezember 2010

Quellennachweis & Dank an: Martin Schadow, Susanne Putze, Tobias Dencker, Sebastian Heßlinger, Joachim Wilke

Übersicht

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- 8 Wegematrix
 - Algorithmen
- Abschluss

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- Wegematrix
 - Algorithmen
- Abschluss

Ein ungerichteter Graph U...

- 1 ... kann eine Einbahnstraße modellieren
- ② ... wurde definiert als U = (N, T, S, P)
- ... hat ausschließlich symmetrische Kanten

Ein Pfad...

- **1** ... wird als Liste $p = (v_0, \ldots, v_n) \in V^{(+)}$ angegeben
- $oldsymbol{0}$... mit $v_0 = v_n$ heißt geschlossen oder Zyklus
- \bullet ... hat die Länge |p|

- ... ist immer präfixfrei.
- 2 ... ist immer eindeutig.
- \bullet ... kann definiert sein als $C:\{a,b,c\} \rightarrow \{0.1\}^*$ mit C(a)=00, C(b)=010, C(c)=001.
- ... codiert selten vorkommende Symbole durch kurze Wörter.
- **5** ... lässt sich mittels eines Baumes bestimmen.

Ein ungerichteter Graph U...

- 1 ... kann eine Einbahnstraße modellieren
- 2 ... wurde definiert als U = (N, T, S, P)
- ... hat ausschließlich symmetrische Kanten

Ein Pfad...

- ... wird als Liste $p = (v_0, \ldots, v_n) \in V^{(+)}$ angegeben
- 2 ... mit $v_0 = v_n$ heißt geschlossen oder Zyklus
- \bullet ... hat die Länge |p|

- ... ist immer präfixfrei.
- 2 ... ist immer eindeutig.
- \bullet ... kann definiert sein als $C:\{a,b,c\} \rightarrow \{0.1\}^*$ mit C(a)=00, C(b)=010, C(c)=001.
- ... codiert selten vorkommende Symbole durch kurze Wörter.
- 5 ... lässt sich mittels eines Baumes bestimmen.

Ein ungerichteter Graph U...

- 1 ... kann eine Einbahnstraße modellieren
- 2 ... wurde definiert als U = (N, T, S, P)
- ... hat ausschließlich symmetrische Kanten

Ein Pfad...

- ... wird als Liste $p = (v_0, \ldots, v_n) \in V^{(+)}$ angegeben
- 2 ... mit $v_0 = v_n$ heißt geschlossen oder Zyklus
- \bullet ... hat die Länge |p|

- ... ist immer präfixfrei.
- 2 ... ist immer eindeutig.
- \bullet ... kann definiert sein als $C:\{a,b,c\} \rightarrow \{0.1\}^*$ mit C(a)=00, C(b)=010, C(c)=001.
- ... codiert selten vorkommende Symbole durch kurze Wörter.
- **1** ... lässt sich mittels eines Baumes bestimmen.

Ein ungerichteter Graph U...

- 1 ... kann eine Einbahnstraße modellieren
- 2 ... wurde definiert als U = (N, T, S, P)
- 3 ... hat ausschließlich symmetrische Kanten

Ein Pfad...

- ... wird als Liste $p = (v_0, \ldots, v_n) \in V^{(+)}$ angegeben
- 2 ... mit $v_0 = v_n$ heißt geschlossen oder Zyklus
- \bullet ... hat die Länge |p|

- 1 ... ist immer präfixfrei.
- 2 ... ist immer eindeutig.
- \bullet ... kann definiert sein als $C: \{a,b,c\} \rightarrow \{0.1\}^*$ mit C(a)=00, C(b)=010, C(c)=001.
- ... codiert selten vorkommende Symbole durch kurze Wörter.
- **1** ... lässt sich mittels eines Baumes bestimmen.

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- Wegematrix
 - Algorithmen
- 9 Abschluss

Aufgabenblatt 7

Blatt 7

• Abgaben: 20 / 24

Punkte: Durchschnitt der abgegeben Blätter: 14,0 / 20

häufige Fehler

7.1 beide Richtungen beachten

Aufgabenblatt 7

Blatt 7

- Abgaben: 20 / 24
- Punkte: Durchschnitt der abgegeben Blätter: 14,0 / 20

häufige Fehler

- 7.1 beide Richtungen beachten
- 7.4 b) in unger. Graphen muss Summe der Knotengrade gerade sein

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- 8 Wegematrix
 - Algorithmen
- Abschluss

Aufgabenblatt 8

Blatt 8

- Abgabe: 16.12.2011 um 12:30 Uhr im Untergeschoss des Infobaus
- Punkte: maximal 20

Themen

- Graphen
 - Isomorphie
 - Warshall-Algorithmus
 - Wegematrix

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- Wegematrix
 - Algorithmen
- 9 Abschluss

Gerichteter Graph

Definition

Ein gerichteter Graph G ist ein Tupel G = (V, E) mit

- der Grundmenge $V = \{v_i\}$ (die Menge der Ecken)
- der Relation $E \subseteq V \times V$ (die Menge der Kanten) Notationen für Kanten:
 - $(v, v') \in E$
 - $v \rightarrow_G v'$
 - \bullet $v \rightarrow v'$

Sind die beiden Graphen isomorph?

Gebt die Graphen in Tupelschreibweise an!

Ja, die beiden Graphen sind isomorph.

Gebt den Graph in Tupelschreibweise an!

Ja, die beiden Graphen sind isomorph.

$$G = (\{a, b, c, d, e\}, \{(a, b), (a, c), (a, d), (b, c), (d, b), (d, c)\})$$

Begriffe

• Ein Graph heißt **endlich**, wenn V endlich ist $(|V| < \infty)$.

- Ein Graph heißt **endlich**, wenn V endlich ist $(|V| < \infty)$.
- 2 Knoten x und y heißen adjazent, wenn es eine Kante $(x, y) \in E$ gibt.

- Ein Graph heißt **endlich**, wenn V endlich ist $(|V| < \infty)$.
- 2 Knoten x und y heißen **adjazent**, wenn es eine Kante $(x, y) \in E$ gibt.
- Eine **Schlinge** ist eine Kante der Form $(x, x) \in E$.

- Ein Graph heißt **endlich**, wenn V endlich ist $(|V| < \infty)$.
- 2 Knoten x und y heißen adjazent, wenn es eine Kante $(x, y) \in E$ gibt.
- Eine **Schlinge** ist eine Kante der Form $(x, x) \in E$.
- Ein Graph heißt schlingenfrei, wenn er keine Schlingen besitzt.

- Ein Graph heißt **endlich**, wenn V endlich ist $(|V| < \infty)$.
- 2 Knoten x und y heißen adjazent, wenn es eine Kante $(x, y) \in E$ gibt.
- Eine **Schlinge** ist eine Kante der Form $(x, x) \in E$.
- Ein Graph heißt schlingenfrei, wenn er keine Schlingen besitzt.
- G' = (V', E') ist ein **Teilgraph** von G = (V, E), wenn $V' \subseteq V$ und $E' \subseteq E \cap V' \times V'$
- zwei Graphen sind isomorph, wenn es eine Bijektion der Knoten von G_1 gibt, so dass er mit G_2 identisch ist

Aufgabe

Aufgabe

Gegeben sei ein gerichteter Graph mit n Knoten.

 Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind?

Aufgabe

Aufgabe

Gegeben sei ein gerichteter Graph mit n Knoten.

- Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind? **Lösung:** n^2 Kanten
- Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist?

Aufgabe

Aufgabe

Gegeben sei ein gerichteter Graph mit n Knoten.

- Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind? Lösung: n² Kanten
- Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist? **Lösung:** n(n-1) Kanten

gerichtete Bäume

Definition

In einem gerichteten Baum . . .

gerichtete Bäume

Definition

In einem gerichteten Baum ...

• ... gibt es genau einen Knoten $r \in V$ so dass: für alle $x \in V$ ex. genau ein Pfad von r nach x

gerichtete Bäume

Definition

In einem gerichteten Baum ...

- ... gibt es genau einen Knoten $r \in V$ so dass: für alle $x \in V$ ex. genau ein Pfad von r nach x
- ... ist die Wurzel eindeutig

Definition

Ein Pfad ist eine nichtleere Liste $p=(v_0,\ldots,v_n)\in V^+$, wenn für alle $i\in\mathbb{G}_n$ gilt $(v_i,v_{i+1})\in E$

Definition

Ein Pfad ist eine nichtleere Liste $p = (v_0, \dots, v_n) \in V^+$, wenn für alle $i \in \mathbb{G}_n$ gilt $(v_i, v_{i+1}) \in E$

• Die Anzahl n = |p| - 1 (der Kanten!) heißt die Länge des Pfades

Definition

Ein Pfad ist eine nichtleere Liste $p = (v_0, \dots, v_n) \in V^+$, wenn für alle $i \in \mathbb{G}_n$ gilt $(v_i, v_{i+1}) \in E$

- Die Anzahl n = |p| 1 (der Kanten!) heißt die *Länge* des Pfades
- Ein Pfad heißt wiederholungsfrei, wenn alle Knoten
 v₀,..., v_{n-1} und v₁,..., v_n je paarweise verschieden sind, also maximal v₀ und v_n gleich sind.

Definition

Ein Pfad ist eine nichtleere Liste $p = (v_0, \dots, v_n) \in V^+$, wenn für alle $i \in \mathbb{G}_n$ gilt $(v_i, v_{i+1}) \in E$

- Die Anzahl n = |p| 1 (der Kanten!) heißt die *Länge* des Pfades
- Ein Pfad heißt wiederholungsfrei, wenn alle Knoten
 v₀,..., v_{n-1} und v₁,..., v_n je paarweise verschieden sind, also maximal v₀ und v_n gleich sind.
- Falls $v_0 = v_n$ heißt der Pfad geschlossen. Dann ist der Pfad auch ein Zyklus.

Definition

Ein Pfad ist eine nichtleere Liste $p = (v_0, \dots, v_n) \in V^+$, wenn für alle $i \in \mathbb{G}_n$ gilt $(v_i, v_{i+1}) \in E$

- Die Anzahl n = |p| 1 (der Kanten!) heißt die *Länge* des Pfades
- Ein Pfad heißt wiederholungsfrei, wenn alle Knoten
 v₀,..., v_{n-1} und v₁,..., v_n je paarweise verschieden sind, also maximal v₀ und v_n gleich sind.
- Falls $v_0 = v_n$ heißt der Pfad geschlossen. Dann ist der Pfad auch ein Zyklus.
- ein geschlossener und wiederholungsfreier Pfad ist ein einfacher Zyklus.

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 6 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- Wegematrix
 - Algorithmen
- 9 Abschluss

Ungerichteter Graph

Definition

Ein ungerichteter Graph ist definiert als U = (V, E), wobei

- $V = \{v_i\}$ die Menge der Ecken ist und
- $E \subseteq \{\{x,y\} | x \in V \land y \in V\}$ die Menge der Kanten.

Ungerichteter Graph

Definition

Ein ungerichteter Graph ist definiert als U = (V, E), wobei

- $V = \{v_i\}$ die Menge der Ecken ist und
- $E \subseteq \{\{x,y\} | x \in V \land y \in V\}$ die Menge der Kanten.

Wie sähe dieser ungerichtete Graph als Menge aus?

Ungerichteter Graph

Definition

Ein ungerichteter Graph ist definiert als U = (V, E), wobei

- $V = \{v_i\}$ die Menge der Ecken ist und
- $E \subseteq \{\{x,y\} | x \in V \land y \in V\}$ die Menge der Kanten.

Wie sähe dieser ungerichtete Graph als Menge aus? $G = (\{a, b, c, d\}, \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{d, b\}, \{d, c\}\})$

Aufgabe

Aufgabe

Gegeben sei ein ungerichteter Graph mit n Knoten.

• Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist?

Aufgabe

Aufgabe

Gegeben sei ein ungerichteter Graph mit n Knoten.

- Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist? **Lösung:** n(n-1)/2 Kanten
- Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind?

Aufgabe

Aufgabe

Gegeben sei ein ungerichteter Graph mit n Knoten.

- Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist? **Lösung:** n(n-1)/2 Kanten
- Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind? **Lösung:** n(n+1)/2 Kanten

zusammenhängende Graphen

Definition

Wir nennen ...

• einen gerichteten Graphen streng zusammenhängend, wenn für jedes Knotenpaar $(x,y) \in V^2$ gilt: Es gibt in G einen Pfad von x nach y.

zusammenhängende Graphen

Definition

Wir nennen . . .

- einen gerichteten Graphen streng zusammenhängend, wenn für jedes Knotenpaar $(x, y) \in V^2$ gilt: Es gibt in G einen Pfad von x nach y.
- einen ungerichteten Graphen zusammenhängend, wenn der entsprechende gerichtete Graph streng zusammenhängend ist.

ungerichtete Bäume

Definition

• Jeder zusammenhängende ungerichtete Graph mit |E| = |V| - 1 ist ein ungerichteter Baum

ungerichtete Bäume

Definition

- Jeder zusammenhängende ungerichtete Graph mit |E| = |V| 1 ist ein ungerichteter Baum
- Im ungerichteten Baum kann theoretisch jeder Knoten Wurzel sein.

ungerichtete Bäume

Definition

- Jeder zusammenhängende ungerichtete Graph mit |E| = |V| 1 ist ein ungerichteter Baum
- Im ungerichteten Baum kann theoretisch jeder Knoten Wurzel sein.
- Daher wird i.d.R. ein Knoten als Wurzel hervorgehoben.

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- Wegematrix
 - Algorithmen
- Abschluss

Allgemein

ullet Gegeben ein Graph, dessen Kanten durch c(u,v) gewichtet sind

Allgemein

- Gegeben ein Graph, dessen Kanten durch c(u, v) gewichtet sind
- Der Graph besitze einen ausgezeichneten Anfangsknoten(Quelle) und Endknoten(Senke)

Allgemein

- Gegeben ein Graph, dessen Kanten durch c(u, v) gewichtet sind
- Der Graph besitze einen ausgezeichneten Anfangsknoten(Quelle) und Endknoten(Senke)
- Gesucht ist der maximale Fluss zwischen Quelle und Senke

Allgemein

- Gegeben ein Graph, dessen Kanten durch c(u, v) gewichtet sind
- Der Graph besitze einen ausgezeichneten Anfangsknoten(Quelle) und Endknoten(Senke)
- Gesucht ist der maximale Fluss zwischen Quelle und Senke

Beispiel

Gegeben sei ein Rohrsystem (von q nach s), durch das Wasser fließt. Wie viel Wasser kann auf einmal durch das Rohrsystem fließen?

Beispielgraph

Beispiel Routenplanung

Beispiel

Was ist der kürzeste Weg von S nach Z wenn an den Kanten die Entfernung zwischen den Städten eingetragen ist?

Matrizenrechnen!

Wer wünscht sich dazu Beispiele?

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- 8 Wegematrix
 - Algorithmen
- 9 Abschluss

Ein Graph - verschiedene Schreibweisen

Für den oben angegebenen Graphen - in grafischer Darstellung - gibt es verschiedene Darstellungsarten:

Tupeldarstellung (aus dem letzten Tut):

$$G = (\{a, b, c, d, e\}, \{(a, b), (a, c), (a, d), (b, c), (d, b), (d, c)\})$$

Ein Graph - verschiedene Schreibweisen

Für den oben angegebenen Graphen - in grafischer Darstellung - gibt es verschiedene Darstellungsarten:

Adjazenzliste:

a: [b,c,d]

b: [c]

c: []

d: [b, c]

e: [ˈ

Ein Graph - verschiedene Schreibweisen

Für den oben angegebenen Graphen - in grafischer Darstellung - gibt es verschiedene Darstellungsarten:

Adjazenzmatrix
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Ein Graph - verschiedene Schreibweisen

Für den oben angegebenen Graphen - in grafischer Darstellung gibt es verschiedene Darstellungsarten:

Adjazenzmatrix
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 was bedeutet $(A^2)_{ij}$?

Adjazenzlisten Adjanzenzmatrixen

Adjazenzlisten

• einfacher Zugriff auf alle adjazenten Knoten

Adjanzenzmatrixen

Adjazenzlisten

- einfacher Zugriff auf alle adjazenten Knoten
- Um zu überprüfen, ob eine Kante existiert, muss man eventuell alle Nachbarn durchgehen

Adjanzenzmatrixen

Adjazenzlisten

- einfacher Zugriff auf alle adjazenten Knoten
- Um zu überprüfen, ob eine Kante existiert, muss man eventuell alle Nachbarn durchgehen

Adjanzenzmatrixen

• schnelle Überprüfung, ob eine Kante zwischen zwei Knoten *i* und *j* existiert

Adjazenzlisten

- einfacher Zugriff auf alle adjazenten Knoten
- Um zu überprüfen, ob eine Kante existiert, muss man eventuell alle Nachbarn durchgehen

Adjanzenzmatrixen

- schnelle Überprüfung, ob eine Kante zwischen zwei Knoten *i* und *j* existiert
- Um auf einen Nachbarn zuzugreifen, muss man eventuell alle Knoten durchgehen

Welche Darstellungsform ist geeigneter?

Fiir einen...

• vollständigen Graphen?

Welche Darstellungsform ist geeigneter?

Für einen...

- vollständigen Graphen?
 Adjazenzmatrix
- Graphen mit nur wenigen Kanten?

Welche Darstellungsform ist geeigneter?

Für einen...

- vollständigen Graphen?
 Adjazenzmatrix
- Graphen mit nur wenigen Kanten?
 Adjazenzliste
- Graphen, den wir später auf Reflexivität untersuchen wollen?

Welche Darstellungsform ist geeigneter?

Für einen...

- vollständigen Graphen?
 Adjazenzmatrix
- Graphen mit nur wenigen Kanten?
 Adjazenzliste
- Graphen, den wir später auf Reflexivität untersuchen wollen?
 Adjazenzmatrix

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- 8 Wegematrix
 - Algorithmen
- 9 Abschluss

Wegematrix I

Darstellung von Relationen

So wie die Adjazenzmatrix Relationen zwischen Knoten darstellt, können auch weitere Relationen als Matrix dargestellt werden. Ein Beispiel ist die Wegematrix, die eine Darstellungsform der Erreichbarkeitssrelation $E^* = \bigcup_{i=0}^{n-1} E^i$.

Für die Wegematrix gilt

$$W_{ij} = \begin{cases} 1, & \text{falls es in G einen Pfad von i nach j gibt} \\ 0, & \text{falls es in G keinen Pfad von i nach j gibt} \end{cases}$$

Aufwand

Zählweise

Beim Vergleich verschiedener Algorithmen in Bezug auf den Aufwand, sucht man nach einem Maß für die Anzahl der Rechenoperationen für eine Aufgabe der Größe n.

Beispiel

Aufwand

Zählweise

Beim Vergleich verschiedener Algorithmen in Bezug auf den Aufwand, sucht man nach einem Maß für die Anzahl der Rechenoperationen für eine Aufgabe der Größe n.

Beispiel

Summe aller Zahlen von 1 bis n:

$$\sum_{i=0}^{n} i =$$

Aufwand

Zählweise

Beim Vergleich verschiedener Algorithmen in Bezug auf den Aufwand, sucht man nach einem Maß für die Anzahl der Rechenoperationen für eine Aufgabe der Größe n.

Beispiel

Summe aller Zahlen von 1 bis n:

$$\sum_{i=0}^{n} i = n * (n+1)/2$$

Algorithmus I


```
// Matrix A sei die Adjazenzmatrix
    // Matrix W wird am Ende die Wegematrix enthalten
3
    // Matrix M wird benutzt um A zu berechnen
    W \leftarrow 0 // Nullmatrix
    for i \leftarrow 0 to n - 1 do
      M \leftarrow Id // Einheitsmatrix
       for j \leftarrow 1 to i do
          M \leftarrow M \cdot A // Matrixmultiplikation
10
       od
       W \leftarrow W + M // Matrixaddition
11
    od
12
    W \leftarrow \operatorname{sgn}(W)
13
```

Algorithmus II

Wegematrix II

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Ihr seid dran...

• Wie sieht die Wegematrix zum oben gezeigten Graph aus?

Wegematrix II

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Ihr seid dran...

- Wie sieht die Wegematrix zum oben gezeigten Graph aus?
- Wie sieht die Wegematrix für eine vollständig mit 1en gefüllte Matrix aus?

Wegematrix II

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Ihr seid dran...

- Wie sieht die Wegematrix zum oben gezeigten Graph aus?
- Wie sieht die Wegematrix für eine vollständig mit 1en gefüllte Matrix aus?
- Wann gilt allgemein W = A? Wann gilt $E^1 = A$?

- Aufwachen
- 2 Aufgabenblatt 7
- 3 Aufgabenblatt 8
- 4 Wdh.: Gerichtete Gr.
- 5 Wdh.: Ungerichtete Gr.
- 6 Gewichtete Graphen
- Darstellungsformen
- 8 Wegematrix
 - Algorithmen
- Abschluss

Was ihr nun wissen solltet!	١
	ı
	ı
	ı
	ı
	ı
	ш

Was ihr nun wissen solltet!

• Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?

- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?

- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?
- Vor- & Nachteile von Adjazenzliste und Adjazenzmatrix

- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?
- Vor- & Nachteile von Adjazenzliste und Adjazenzmatrix
- Was ist eine Wegematrix?

- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?
- Vor- & Nachteile von Adjazenzliste und Adjazenzmatrix
- Was ist eine Wegematrix?
- Was sind Gewichte von Graphen und wozu sind sie nützlich?

Was ihr nun wissen solltet!

- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?
- Vor- & Nachteile von Adjazenzliste und Adjazenzmatrix
- Was ist eine Wegematrix?
- Was sind Gewichte von Graphen und wozu sind sie nützlich?

Ihr wisst was nicht?

Stellt jetzt Fragen!

