Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Module		Beam Coverplate Weld Connection		
MainModule			Moment Connection	
Moment(I	Moment(kNm)*		10.0	
Shear(l	(N)*			10.0
Axial (k	:N) *			10.0
		Section	•	
	Beam S	ection *		UB 610 x 229 x 140
	Mate	erial *		E 250 (Fe 410 W)A
т	Ultimate stren	ngth, fu (MPa)		410
	Yield Strengt	th , fy (MPa)		250
$(B-t)$ α	Mass	139.9	Iz(mm4)	1117770000.0
4	Area(mm2) -	17820.0	Iy(mm4)	45050000.0
ZZ D	A			
	D(mm)	617.0	rz(mm)	250.0
R_1	B(mm)	230.2	ry(mm)	50.0
В	t(mm)	13.1	Zz(mm3)	3622000.0
Y	T(mm)	22.1	Zy(mm3)	391000.0
	FlangeSlope	90	Zpz(mm3)	4142000.0
	R1(mm)	12.7	Zpy(mm3)	391000.0
	R2(mm)	0.0		
		Weld Details		
Weld T	Weld Type			Fillet
Type of weld	Type of weld fabrication		Shop Weld	
Material grade overwrite (MPa) Fu		410.0		

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Ac (kN)		$Ac = \frac{A * f_y}{\gamma_{m0} * 1000}$ $= \frac{17820.0 * 250}{1.1 * 1000}$ $= 4050.0$	
Shear Capacity Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 1000}$ $= \frac{572.8 * 13.1 * 250}{\sqrt{3} * 1.1 * 1000}$ $= 984.60265$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 1000000}$ $= \frac{1 * 1074527 * 250}{1.1 * 1000000}$ $= 244.21$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1}$ $= \frac{1.5 * 3622000.0 * 250}{1.1}$ $= 1234.77$	
Moment Capacity Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(244.21, 1234.77)$ = 244.21	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
	$Ac_{min} = 0.3 * A_c$	$Au = max(A, Ac_{min})$	
Axial Load Au (kN)	= 0.3 * 4050.0	= max(10.0, 1215.0)	Pass
	= 1215.0	= 1215.0	
	$Sc_{min} = 0.6 * A_c$	$Vu = max(V, Vc_{min})$	
Shear Load Vu (kN)	= 0.6 * 984.6	= max(10.0, 590.76)	Pass
	= 590.76	= 590.76	
	$Mc_{min} = 0.5 * M_c$	$Mu = max(M, Mc_{min})$	
Moment Load Mu (kNm)	= 0.5 * 244.21	= max(10.0, 122.11)	Pass
	= 122.11	= 122.11	
		$A_w = Axial \ force \ in \ web$	
		$= \frac{(D-2*T)*t*Au}{4}$	
			215
		$= \frac{(617.0 - 2 * 22.1) * 13.1 * 1}{17020.0}$	215.0
		$ \begin{array}{c} $	
Forces Carried by Web			
		$M_w = Moment \ in \ web$	
		$=\frac{Z_w*Mu}{Z}$	
		2	
		$=\frac{1074527*122.11}{4142000.0}$	
		= 31.68	
		$A_f = Axial \ force \ in \ flange$	
		$=\frac{Au*B*T}{A}$	
		$A \\ 1215.0 * 230.2 * 22.1$	
		$=\frac{1213.0 * 230.2 * 22.1}{17820.0}$	
		= 346.87	
		$M_f = Moment \ in \ flange$	
		$= Mu - M_w$	
Forces Carried by Flange		= 122.11 - 31.68	
		= 90.43	
		$F_f = flange \ force$	
		$= \frac{M_f * 1000}{D - T} + A_f$	
		2 1	
		$= \frac{90.43}{617.0 - 22.1} + 346.87$	
		=498.88	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Design Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	Thickness of Thicker part $= max(22.1, 18.0)$ $= 22.1$ $IS800: 2007 cl.10.5.2.3 Table 21,$	16	Pass
Max Weld Size (mm)	$\begin{aligned} t_{w_{min}} &= 6 \\ Thickness \ of \ Thinner \ part \\ &= Min(22.1, 18.0) = 18.0 \\ t_{w_{max}} &= 18.0 \end{aligned}$	16	Pass
Flange Weld Strength (N/mm)	$Stress = \frac{F_f * 1000}{F_{rl}}$ $= \frac{498.88 * 1000}{575}$ $= 867.6100185794166$	2120.95	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.4 Flange Plate Check-Outside/Inside

Check	Required	Provided	Remarks
Min. Plate Height (mm)	50	$b_{fp} = B - 2 * sp$ $= 230.2 - 2 * 21$ $= 185$	Pass
Min. Plate Length (mm)	185	$l_{fp} = [2 * (l_w + 2 * s) + g]$ $= [2 * (2152 * 16) + 10.0]$ $= 500$	Pass
Min. Inner Plate Height (mm)	50	$b_{ifp} = \frac{B - 4 * sp - t_w - 2 * r_1}{2}$ $= \frac{230.2 - 4 * 21 - 13.1 - 2 * 12.1}{2}$ $= 50$	Pass
Max. Inner Plate Height (mm)	$b_{ifp} = \frac{B - 4 * sp - t_w - 2 * r_1}{2}$ $= \frac{230.2 - 4 * 21 - 13.1 - 2 * 12.7}{2}$ $= 50$	50	Pass
Min. Inner Plate Length (mm)	185	$l_{fp} = [2 * (l_w + 2 * s) + g]$ $= [2 * (2152 * 16) + 10.0]$ $= 500$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View