Partiel S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (5 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 2 (4 points)

On souhaite réaliser une mémoire RAM d'une capacité de 2 Mib (que l'on notera M) à l'aide de plusieurs mémoires RAM d'une capacité de 16 Kib (que l'on notera m). La mémoire M possède un bus de donnée de 16 bits et la mémoire m un bus de donnée de 4 bits. Répondez aux questions sur le <u>document réponse</u>.

Exercice 3 (5 points)

- 1. Câblez la <u>figure 1</u> afin de réaliser un **compteur asynchrone modulo 11**.
- 2. Câblez la <u>figure 2</u> afin de réaliser un **décompteur asynchrone modulo 11**.
- 3. Câblez la <u>figure 3</u> afin de réaliser un **registre à décalage** ($E \rightarrow Q0 \rightarrow Q1 \rightarrow Q2 \rightarrow Q3$).

Exercice 4 (6 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Sur le <u>document réponse</u>, donnez les expressions les plus simplifiées des entrées J et K de chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : J0 = 1, K1 = Q2).

Partiel S2 – Corrigé

Partiel S2 – Corrigé 2/6

Nom: Prénom:	Classe :
--------------	----------

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S E		S E M		M
75,75	0	10000101	00101111000000000000000		
0,46875	0	01111101	11100000000000000000000		

2.

Représentation IEEE 754	Représentation associée
20A1 8000 0000 0000 ₁₆	35×2^{-506}
7FF7 0000 0000 0000 ₁₆	NaN
0004 2000 0000 0000 ₁₆	33×2^{-1029}

Exercice 2

Question	Réponse
Quelle est la profondeur de la mémoire <i>m</i> ?	2 ¹² mots
Quelle est la profondeur de la mémoire <i>M</i> ?	2 ¹⁷ mots
Donnez le nombre de fils du bus d'adresse de la mémoire <i>m</i> .	12 fils
Donnez le nombre de fils du bus d'adresse de la mémoire M .	17 fils
Combien de mémoires doit-on assembler en parallèle ?	4 mémoires
Combien de mémoires doit-on assembler en série ?	32 mémoires
Combien de bits d'adresse vont servir à déterminer les entrées <i>CS</i> des mémoires ?	5 bits d'adresse
Quand la mémoire M est active, combien de mémoires m sont actives simultanément ?	4 mémoires <i>m</i>

Exercice 3

Figure 1

Figure 2

Figure 3

Exercice 4

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	0	0	0	Φ	0	Φ	1	Φ
0	0	1	0	Φ	1	Φ	Ф	0
0	1	1	0	Φ	Φ	0	Φ	1
0	1	0	1	Φ	Φ	0	0	Φ
1	1	0	Φ	0	Φ	0	1	Φ
1	1	1	Φ	0	Φ	1	Φ	0
1	0	1	Φ	0	0	Φ	Φ	1
1	0	0	Φ	1	0	Φ	0	Φ

Utilisez les tableaux de Karnaugh uniquement pour les solutions qui ne sont pas évidentes.

$$J0 = \overline{Q1}.\overline{Q2} + Q1.Q2 = \overline{Q1} \oplus \overline{Q2}$$

		Q1 Q0				
	J1	00	01	11	10	
02	0	0	1	Ф	Φ	
Q2	1	0	0	Φ	Φ	

$$J1 = Q0.\overline{Q2}$$

$$J2 = \overline{Q0}.Q1$$

$$\mathbf{K0} = \overline{\mathbf{Q1}}.\mathbf{Q2} + \mathbf{Q1}.\overline{\mathbf{Q2}} = \mathbf{Q1} \oplus \mathbf{Q2}$$

		Q1 Q0						
	K1	00 01 11 10						
Q2	0	Φ	Ф	0	0			
	1	Φ	Φ	1	0			

$$K1 = Q0.Q2$$

		Q1 Q0						
	K2	00 01 11 10						
02	0	Φ	Φ	Φ	Φ			
Q2	1	1	0	0	0			

$$K2 = \overline{Q0}.\overline{Q1}$$