Inferencia Estadística Principios de Reducción

Gabriel Martos Venturini gmartos@utdt.edu

UTDT

Recapitulación

- Modelos estadísticos (familia exponencial y localización-escala).
- Estimador/estadístico: Principios y propiedades.

• Un estadístico $T_n(\underline{X})$ (donde $\underline{X} \equiv \{X_1, \dots, X_n\}$) es una v.a. con la que típicamente intentamos estimar cierto parámetro de interés:

$$\{X_1,\ldots,X_n\}\stackrel{iid}{\sim} \mathsf{Bern}(\theta), \ \mathsf{y} \ \mathsf{consideremos} \ T_n(\underline{X}) = \sum_{i=1}^n X_i/n.$$

- T_n constituye una reducción de \underline{X} y debería cumplir ciertos principios:
 - Suficiencia: No queremos perder información al pasar de $\{X_1, \dots, X_n\}$ a T_n cuando intentamos estimar (en cualquier sentido) a θ .
 - Verosimilitud: Una vez realizada la muestra, toda la información relevante sobre θ está contenida en la función de verosimilitud.
 - Invarianza: Las conclusiones que sacamos de $\{X_1 = x_1, \dots, X_n = x_n\}$ no deberían cambiar cuando la escala en la que observamos los datos y los parámetros del modelo estadístico cambian de manera compatible.

3/32

JTDT Principios

Agenda

- Principio de Suficiencia
 - Definición y algunos ejemplos
 - Ancillaridad y Completitud (Teorema de Basu)
- Principio de Verosimilitud
- 3 Principio de Invarianza
- 4 Apéndice

Agenda

- Principio de Suficiencia
 - Definición y algunos ejemplos
 - Suficiencia minimal
 - Ancillaridad y Completitud (Teorema de Basu)
- 2 Principio de Verosimilitud
- Principio de Invarianza
- Apéndice

UTDT

• Sea $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta) \text{ y } T_n \equiv T(\underline{X}).$

Informal: T_n es suficiente para el parámetro θ si **contiene toda la información** que hay en la muestra aleatoria X respecto de θ .

- Si T_n es un estadístico suficiente para θ , entonces la información respecto de θ que tenemos en \underline{x} y $T_n(\underline{x}) = t$ es equivalente.
- El estimador de θ debería ser función de un estadístico suficiente.

Definition (Suficiencia)

Un estadístico T_n es suficiente para el parámetro θ si la distribución condicional de $X \mid T_n = t$ no depende de θ . Es decir se cumple que:

$$P(\underline{X} = \underline{x} | T_n(\underline{x}) = t)$$
 es constante respecto de θ .

- La suficiencia es una propiedad asociada al modelo estadístico.
- En la practica no es sencillo determinar la distribución de $X \mid T_n = t$.

UTDT Principios 6/32

Condición a verificar para la suficiencia

• Si $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta) \text{ luego } \underline{X} \sim f(\underline{x}; \theta) \stackrel{iid}{=} \Pi_{i=1}^n f(x_i; \theta).$

Teorema (Factorización de Fisher-Neyman)

Un estadístico T_n es suficiente para θ si y solo si existen funciones $g(T_n(\underline{x}); \theta)$ y $h(\underline{x})$ tales que podemos factorizar $f(\underline{x}; \theta)$ como:

$$f(\underline{x}; \theta) \equiv g(T_n(\underline{x}); \theta) h(\underline{x})$$
 para todo \underline{x} y $\theta \in \Theta$.

Remark: Notar que $g(T_n(\underline{x}); \theta) \ge 0$ solo puede depender de los datos a través de T_n y que $h(\underline{x}) \ge 0$ no puede depender del parámetro.

- Ejemplo 1: Cantidad de éxitos cuando $X \sim \text{Bern}(\theta)$.
- Ejemplo 2: Media muestral cuando $X \sim N(\theta, \sigma_0^2)$.
- Ejemplo 3: El máximo en la muestra cuando $X \sim U(0, \theta)$.

4 D > 4 B > 4 E >

Suficiencia en familias exponenciales de 1 parámetro

- Sea $\underline{X} := \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta) = h(x)c(\theta) \exp\left(w(\theta)t(x)\right).$
- El estadístico $T_n \equiv \sum_{i=1}^n t(X_i)$ es suficientes para θ .

$$\underline{X} \sim f(\underline{x}; \theta) = \prod_{i=1}^{n} h(x_i) c(\theta) \exp(t(x_i) w(\theta)),$$

$$= \left(\underbrace{\prod_{i=1}^{n} h(x_i)}_{h(\underline{x})} \right) \underbrace{c^n(\theta) \exp\left(\sum_{i=1}^{n} t(x_i) w(\theta)\right)}_{g(T_n(\underline{x}); \theta)}.$$

• Ejemplo: Modelo Geométrico en la familia exponencial.

$$f(x;\theta) = \mathbb{1}_{[\mathbb{N}]}(x)\theta(1-\theta)^{x-1}$$
, luego $t(X) = X$.

▶ Por lo tanto $T_n = \sum_{i=1}^n X_i$ es suficiente para θ .

 4 □ ▶ 4 □ ▶ 4 ≡ № 10 ≡ № 10

Familias exponenciales de k parámetros

• Sea $\underline{X} := \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$, con $f(x; \theta)$ en la familia exponencial y $\theta \in \Theta \subseteq \mathbb{R}^k$, entonces:

$$f(x; \theta) = h(x)c(\theta) \exp \left(\sum_{i=1}^{k} w_i(\theta)t_i(x)\right), \text{ donde } \theta = (\theta_1, \dots, \theta_k).$$

- Notar que X_1 puede ser una variable o un vector aleatorio.
- Luego los estadísticos:

$$\mathbf{T}_n(\underline{X}) = \Big(T_{n,1}(\underline{X}) = \sum_{j=1}^n t_1(X_j), \ldots, T_{n,k}(\underline{X}) = \sum_{j=1}^n t_k(X_j)\Big),$$

son suficientes para θ .

• Ejemplo: Modelo normal (k = 2).

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 恵 - 夕久で

9/32

JTDT Principios

Recapitulación

- Principio de Suficiencia: Es deseable que la inferencia sobre el parámetro de interés esté basada en un estadístico suficiente.
- Criterio de factorización de Fisher-Neyman / Familia Exponencial.
- La suficiencia es una propiedad vinculada al modelo estadístico.
- Una transformación biyectiva de un estadístico suficiente da como resultado otro estadístico suficiente, en otras palabras no son únicos.
 - ▶ Ejemplo: $T_n = \sum_{i=1}^n X_i$ es suficiente para θ cuando $X \sim \text{Bern}(\theta)$ entonces también lo es $\overline{X}_n = T_n/n$ (transformación biyectiva).
- En familias exponenciales los estimadores máximo verosímiles son funciones de los estadísticos suficientes (lo formalizamos en S3).
 - ► En caso de existir un estimador UMVUE, éste es función de un estadístico suficiente (ver Lehmann—Scheffé en S4).

UTDT Principios 10/32

Estadístico suficiente minimal

Para
$$\{X_1,\ldots,X_n\} \stackrel{iid}{\sim} f(x;\theta)$$
:

- En general existen muchos estadísticos suficientes, el mismo vector aleatorio \underline{X} es un estadístico suficiente (pero poco reductor) para θ .
- La suficiencia minimal apunta a identificar estadísticos que compacten al máximo la información de la muestra sin perder información de θ .

Definition (Estadístico suficiente minimal)

 T_n es **minimal suficiente** para θ si para cualquier otro estadístico suficiente T'_n , se cumple que si $T'_n(\underline{x}) = T'_n(\underline{y})$ entonces $T_n(\underline{x}) = T_n(\underline{y})$.

- $T_n(X) = X$ NO es minimal suficiente cuando $X \sim \text{Bern}(\theta)$.
 - ▶ Para $\underline{x} = \{1, 1, 0\}$ e $y = \{1, 0, 1\}$: $T_n(\underline{x}) = \underline{x} \neq T_n(y) = y$.
 - ▶ Sin embargo: $T'(\underline{x}) = \sum_{i=1}^{3} x_i = 2 = T'(\underline{y})$ (T' es suficiente para θ).

JTDT Principios 11 / 32

Criterio para suficiencia minimal

Sea $f_{\underline{X}}(\underline{x}; \theta)$ la densidad de \underline{X} , T_n es minimal suficiente para θ cuando:

$$\frac{f_{\underline{X}}(\underline{x};\theta)}{f_{\underline{X}}(y;\theta)} \text{ es constante para todo } \theta \in \Theta \iff T_n(\underline{x}) = T_n(\underline{y})$$

Es decir que se cumplen, simultáneamente, las siguientes dos condiciones:

• Si para un par de muestras (datos) \underline{x} e y se cumple que:

$$\frac{f_{\underline{X}}(\underline{x};\theta)}{f_{\underline{X}}(\underline{y};\theta)} \text{ es constante para todo } \theta \in \Theta,$$

entonces debe verificarse que $T_n(\underline{x}) = T_n(y)$.

• Si para un par de muestras \underline{x} e \underline{y} se cumple que $T_n(\underline{x}) = T_n(\underline{y})$, entonces tiene que verificarse que:

$$\frac{f_{\underline{X}}(\underline{x};\theta)}{f_{\overline{X}}(y;\theta)}$$
 es constante para todo $\theta \in \Theta$.

UTDT Principios 12/32

Ejemplo: $X \sim \text{Bern}(\theta) \ (\theta \in (0,1)) \ \text{y} \ T_n = \sum_{i=1}^n X_i$

$$\frac{f_{\underline{X}}(\underline{x};\theta)}{f_{\underline{X}}(\underline{y};\theta)} = \frac{\theta^{T_n(\underline{x})}(1-\theta)^{n-T_n(\underline{x})}}{\theta^{T_n(\underline{y})}(1-\theta)^{n-T_n(\underline{y})}} = \frac{\left(\frac{\theta}{1-\theta}\right)^{T_n(\underline{x})}}{\left(\frac{\theta}{1-\theta}\right)^{T_n(\underline{y})}} = \left(\frac{\theta}{1-\theta}\right)^{T_n(\underline{x})-T_n(\underline{y})}.$$

- $\frac{f_{\underline{X}}(\underline{x};\theta)}{f_{\underline{X}}(y;\theta)} = 1 \iff T_n(\underline{x}) = T_n(\underline{y})$, para todo $\theta \in (0,1)$.
- Luego T_n es minimal suficiente.
- Bajo condiciones generales, en la familia exponencial:

$$X \sim f(x; \theta) = h(x)c(\theta) \exp(w(\theta)t(x)),$$

 $T_n = \sum_{i=1}^n t(X_i)$ es suficiente y minimal para θ .

• Un estadístico minimal suficiente no es necesariamente único.

▶ Ej:
$$T_n = \sum_{i=1}^n X_i$$
 y $T'_n = \sum_{i=1}^n X_i / n$ con $X \sim \text{Bern}(\theta)$.

UTDT Principios 13 / 32

Agenda

- Principio de Suficiencia
 - Definición y algunos ejemplos
 - Ancillaridad y Completitud (Teorema de Basu)
- 2 Principio de Verosimilitud
- 3 Principio de Invarianza
- 4 Apéndice

14 / 32

UTDT Principios

Estadístico Ancillar

- El concepto de *Ancillaridad* está contrapuesto al de Suficiencia:
 - \triangleright S_n se dice ancillar para θ si con S_n no puedo inferir nada respecto de θ .
 - ▶ En otras palabras: S_n **NO contiene información sobre** θ .
- Paradójicamente, un estadístico ancillar combinado con otro suficiente para θ , facilitan y enriquecen los métodos de inferencia.
 - ▶ Ver ejemplo en § 19.

Definition (Estadístico ancillar)

Un estadístico $S_n(\underline{X})$ es ancillar para θ si la distribución de S_n **NO** depende de θ . En otras palabras, para cualquier conjunto A se cumple que:

 $P(S_n(\underline{X}) \in A)$ es constante para todo $\theta \in \Theta$.

15/32

UTDT Principios

Ejemplos

- Para un modelo normal $N(\mu, \sigma^2)$, S_n^2 es ancillar para μ .
 - Puesto que: $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}$.
- Dada $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} f(x; \mu, \theta)$ donde:

$$f(x; \mu, \theta) = \frac{1}{2\theta}$$
, si $\mu - \theta \le x \le \mu + \theta$.

- X_1 sigue un modelo de localización a partir de una uniforme en $[-\theta, \theta]$.
- Se puede demostrar que la densidad de $R_n \equiv X_{(n)} X_{(1)}$ es:

$$R_n \sim f(r,\theta) = \frac{n(n-1)r^{n-2}}{(2\theta)^{n-1}} \left(1 - \frac{r}{2\theta}\right), \text{ si } 0 \le r \le 2\theta.$$

▶ Luego R_n es ancillar para μ (Ejemplo 4.12 en KK).

Teorema de Basu

• Siendo la Suficiencia y la Ancillaridad conceptos contrapuestos, se tiende a pensar que dos estadísticos T_n y S_n , suficiente y ancillar para θ (en relación al modelo $f(x;\theta)$), deberían ser independientes:

$$P(T_n = t, S_n = s) = P(T_n = t)P(S_n = s) \text{ y } P(T_n = t | S_n = s) = P(T_n = t)$$

 \blacktriangleright Y por lo tanto: $Cov(T_n, S_n) = 0$.

- Generalmente esto es cierto, sin embargo no siempre vale.
 - ► Un contraejemplo en CB (§ 6.1.11, pp 259).
- Basu: Un estadístico T_n minimal suficiente para θ es independiente de todos los estadísticos ancillares de θ cuando $f_T(t;\theta)$ es **completo**.
 - 1 Porqué esto es importante? Necesitamos que el estadístico ancillar y suficiente sean independientes para diseñar herramientas de inferencia.
 - ¿Cómo aseguramos la completitud?

4日 > 4周 > 4 差 > 4 差 > 差 の 9 ○

Completitud

Definition (Completitud)

 $T_n \sim f_T(t;\theta)$ es completo si para toda función (medible) g para la que $E_{\theta}(g(T_n)) = 0 \ \forall \theta \in \Theta$; se cumple que $P_{\theta}(g(T_n) = 0) = 1 \ \forall \theta \in \Theta$.

- La completitud es una propiedad del modelo estadístico.
- Si $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$, con $f(x; \theta) = h(x)c(\theta) \exp(w(\theta)t(x))$.
 - $T_n = \sum_{i=1}^n t(X_i)$ es completo y minimal suficiente.

Example

Si $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} N(\mu, \sigma^2)$ (familia exponencial), \overline{X}_n es completo y (minimal) suficiente respecto de μ . Por otro lado S_n^2 es ancillar para μ . Por el teorema de Basu: \overline{X}_n y S_n^2 resultan variables aleatorias independientes.

18 / 32

Utilidad de los resultados expuestos

• Si $X \sim N(\mu, \sigma^2)$, por T. Basu \overline{X}_n y S_n^2 son independientes, luego*

$$\mathsf{Como}\ \overline{X}_n \bot S_n^2 \Rightarrow \frac{\frac{(\overline{X}_n - \mu)}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S_n^2}{(n-1)\sigma^2}}} = \frac{Z}{\sqrt{\chi_{n-1}^2/(n-1)}} = \frac{(\overline{X}_n - \mu)}{S_n/\sqrt{n}} \sim t_{n-1}.$$

• Nos permite construir intervalos de confianza para μ en poblaciones normales cuando σ^2 es desconocido:

$$P(\overline{X}_n - t_{\alpha/2, n-1} S_n / \sqrt{n} \le \mu \le \overline{X}_n + t_{\alpha/2, n-1} S_n / \sqrt{n}) = 1 - \alpha.$$

*Si $Z \sim N(0,1)$ y $V \sim \chi_n$ son v.a. independientes: $Z/\sqrt{V/n} \sim t_n$.

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 釣 Q C

JTDT Principios 19 / 32

Recapitulemos:

- T_n suficiente: Contiene toda la información sobre θ en la muestra.
- S_n ancillar: No contiene información sobre θ en la muestra.
- Los estadísticos en familias exponenciales de *k* parámetros:

$$\mathbf{T}_n(\underline{X}) = \Big(T_{n,1}(\underline{X}) = \sum_{j=1}^n t_1(X_j), \ldots, T_{n,k}(\underline{X}) = \sum_{j=1}^n t_k(X_j)\Big),$$

son minimal suficientes y completos para θ (en general).

- Basu: Si T_n es (minimal) suficiente y completo $\Rightarrow T_n$ es independiente respecto de cualquier otro estadístico ancillar de θ .
- ullet Si T_j es ancillar respecto del parámetro que estimamos con T_i (i
 eq j)

$$P(T_i = t_i | T_j = t_j) = P(T_i = t_i) \Rightarrow Cov(T_i, T_j) = 0.$$

UTDT Principios 20/32

Agenda

- Principio de Suficiencia
- 2 Principio de Verosimilitud
- 3 Principio de Invarianza
- 4 Apéndice

UTDT Principios

Función de Verosimilitud

• Sea $\underline{X} = \underline{x}$ (datos, una realización de $\underline{X} \equiv \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$ con $\theta \in \Theta$) definimos la función de verosimilitud como:

$$L(\theta) \equiv L_n(\theta|\underline{x}) = \prod_{i=1}^n f(x_i; \theta).$$

- En el apéndice se discute como construir $L(\theta)$ en muestreos NO iid.
- $L(\theta)$ debe entenderse como una función de θ , las $\underline{X} = \underline{x}$ están fijas.
- En el caso discreto: $L(\theta) = P_{\theta}(\underline{X} = \underline{x}) = P_{\theta}(\text{Datos} \mid \text{Modelo}).$
- $L(\theta)$ NO indica probabilidades de θ (que está fijo en la población!).
- Ejemplo: $X \sim \text{Bern}(\theta)$ y $x_1 = 1, x_2 = 1, x_3 = 0$.
- En la familia exponencial en general se cumple que $L(\theta|\underline{x})$ depende de los datos (fijos) a través del valor que toma el estadístico suficiente.

Figure: Función de verosimilitud del ejemplo anterior.

Ratio de verosimilitud

- La función de verosimilitud nos permite juzgar la plausibilidad de observar X = x entre diferentes valores posibles de $\theta \in \Theta$.
- Comparamos la verosimilitud de θ_1 contra θ_2 a partir del ratio:

$$\frac{L(\theta_1|\underline{x})}{L(\theta_2|\underline{x})} = \frac{P\Big(\mathsf{Observar}\ \underline{x}\,|\,X \sim f(x;\theta_1)\Big)}{P\Big(\mathsf{Observar}\ \underline{x}\,|\,X \sim f(x;\theta_2)\Big)}.$$

- ¿Cómo interpretamos el ratio?
 - Si $L(\theta_1|\underline{x})/L(\theta_2|\underline{x}) > 1 \Rightarrow$ Es más factible observar $\underline{X} = \underline{x}$ (datos de la muestra) si en la población $X \sim f(x; \theta_1)$ que si $X \sim f(x; \theta_2)$.
 - ★ θ_1 es más verosímil que θ_2 dada la evidencia \underline{x}^1 .
- Ej: $X \sim \text{Bern}(\theta) \text{ con } X_1 = 1, X_2 = 1, X_3 = 0 \text{ y } \theta_1 = 0.5 \text{ vs } \theta_2 = 0.75.$

¹Y asumiendo que en la población $X \sim f(x; \theta)$.

UTDT Principios 24 / 32

Otros ejemplos con $X \sim \text{Bern}(\theta)$

Figure: Izquierda $\sum_{i=1}^{100} X_i = 15$, centro $\sum_{i=1}^{100} X_i = 25$, y derecha $\sum_{i=1}^{100} X_i = 40$.

Interpretación de la gráfica de la izquierda:

- Es más factible que los datos de la muestra se hayan generado de una población $\text{Bern}(\theta \approx 0.3)$ que de una población $\text{Bern}(\theta \approx 0.9)$.
- La inferencia del punto anterior no se modifica si observamos dos muestras distintas \underline{x} y \underline{x}' tales que $T_n(\underline{x}) = T_n(\underline{x}') = \sum_{i=1}^{100} X_i = 15$.

UTDT Principios 25 / 32

Interpretando la verosimilitud en el caso continuo

• Para todo $\varepsilon > 0$ y dada $\underline{X} = \underline{x}$, $B(\underline{x}, \varepsilon)$ representa el conjunto de todas las muestras " ε -parecidas a \underline{x} ". Luego se tiene que:

$$P_{\theta}(\underline{X} \in B(\underline{x}, \varepsilon)) \approx c(\varepsilon, \underline{x}) f_{\underline{X}}(\underline{x}; \theta) = c(\varepsilon, \underline{x}) L(\theta | \underline{x}).$$

• Al igual que en el caso discreto, podemos comparar la plausibilidad de que los datos se generen de un modelo con θ_1 o θ_2 (en un *entorno* de la evidencia \underline{x}) utilizando el ratio de verosimilitudes, ya que:

$$\frac{P_{\theta_1}(\underline{X} \in B(\underline{x}, \varepsilon))}{P_{\theta_2}(\underline{X} \in B(\underline{x}, \varepsilon))} \approx \frac{c(\varepsilon, \underline{x})L(\theta_1|\underline{x})}{c(\varepsilon, \underline{x})L(\theta_2|\underline{x})} = \frac{L(\theta_1|\underline{x})}{L(\theta_2|\underline{x})}.$$

Por tanto decimos que θ_1 es más verosímil que θ_2 , dada la evidencia $\underline{X} = \underline{x}$, si el ratio de verosimilitud es mayor que uno y viceversa.

• Ej: $X \sim \text{Exp}(\theta)$ con $X_1 = 1, X_2 = 3, X_3 = 2$ y $\theta_1 = 2$ vs $\theta_2 = 0.5$.

1071071272 2 940

El principio de verosimilitud

• Sean \underline{x} e y dos realizaciones de la muestra tales que

$$L(\theta|\underline{x}) = c(\underline{x},\underline{y})L(\theta|\underline{y})$$
 para todo $\theta \in \Theta$,

donde $c(\underline{x}, y)$ no depende de θ .

• La inferencia que hacemos respecto de θ con \underline{x} tiene que ser la misma que hacemos con \underline{y} , ya que para cualquier par $\theta_1, \theta_2 \in \Theta$ se cumple:

$$\mathsf{Si} \quad \frac{L(\boldsymbol{\theta}_1|\underline{x})}{L(\boldsymbol{\theta}_2|\underline{x})} > 1 \Rightarrow \frac{L(\boldsymbol{\theta}_1|\underline{x})}{L(\boldsymbol{\theta}_2|\underline{x})} = \frac{c(\underline{x},\underline{y})L(\boldsymbol{\theta}_1|\underline{y})}{c(\underline{x},\underline{y})L(\boldsymbol{\theta}_2|\underline{y})} = \frac{L(\boldsymbol{\theta}_1|\underline{y})}{L(\boldsymbol{\theta}_2|\underline{y})} > 1.$$

• Las conclusiones que extraemos de \underline{x} e y son las mismas:

$$L(\theta_1|\underline{x}) > L(\theta_2|\underline{x}) \Leftrightarrow L(\theta_1|\underline{y}) > L(\theta_2|\underline{y}).$$

• El principio de verosimilitud sugiere entonces que $L(\theta)$ contiene toda la información relevante para hacer inferencias respecto de θ .

UTDT Principios 27 / 32

Agenda

- Principio de Suficiencia
- 2 Principio de Verosimilitud
- Principio de Invarianza
- 4 Apéndice

UIDI

- Invarianza de Escala: Si el modelo $f(x;\theta)$ y la evidencia empírica \underline{x} están fijos, los cambios de escala en \underline{x} solo deben producir cambios de escala en las estimaciones que hacemos de θ . Discutamos un ejemplo:
 - ▶ Dos investigadores utilizan el mismo modelo $f(x; \theta)$ y la misma muestra \underline{x} . Al primero se le reporta \underline{x} en escala de metros, al segundo en escala de centímetros. La inferencia de ambos debe ser compatible.
- Si hacemos inferencia sobre θ utilizando la función de verosimilitud, entonces el procedimiento/método será invariante (ver apéndice).
- Equivarianza: Imaginemos 2 investigadores resolviendo problemas de inferencia diferentes pero utilizando el mismo modelo estadístico $f(x;\theta)$. Si la evidencia de ambos coincide: $\underline{x}_1 = \underline{x}_2$, la inferencia que hacen ambos investigadores sobre θ debería ser la misma.
 - Si hacemos inferencia sobre θ utilizando la función de verosimilitud, entonces el procedimiento/método será equivariante.

JTDT Principios 29 / 32

Agenda

- Principio de Suficiencia
- 2 Principio de Verosimilitud
- 3 Principio de Invarianza
- 4 Apéndice

TDT Principios 30 / 32

Verosimilitud y datos dependientes

• Sea $\underline{X} \equiv \{X_1, \dots, X_n\} \stackrel{id}{\sim} f(x; \theta)$ (v.a. dependientes) con $\theta \in \Theta$. Dada $\underline{X} = \underline{x}$, podemos definir la función de verosimilitud como:

$$L(\boldsymbol{\theta}|\underline{x}) = f(x_1; \boldsymbol{\theta}) \prod_{i=2}^n f(x_i; \boldsymbol{\theta}|x_1, \dots, x_{i-1}).$$

- La anterior expresión surge de la "regla del producto".
- En el contexto de datos dependientes, solemos hacer algunos supuestos adicionales sobre la estructura probabilítistica subyacente. Por ejemplo, asumiendo que la secuencia $\{X_1,\ldots,X_n\}$ se observa de forma ordenada (por ejemplo en el tiempo) y que el modelo tiene estructura Markoviana, luego:

$$L(\boldsymbol{\theta}|\underline{x}) = f(x_1; \boldsymbol{\theta}) \prod_{i=2}^n f(x_i; \boldsymbol{\theta}|x_{i-1}).$$

• El caso no id es menos relevante en la práctica.

◆ロト ◆問ト ◆意ト ◆意ト ・ 意 ・ 釣り○

31/32

UTDT Principios

Verosimilitud e Invarianza de Escala

- Sea $\underline{X} \equiv \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$ con $\theta \in \Theta$. Dada $\underline{X} = \underline{x}$, consideremos la transformación biyectiva $Z = g(X)^2$.
- Como $f(z; \theta) = f(x; \theta)|J|_x$, donde $J_x = dX/dZ$ es el inverso del Jacobiano de la transformación g (que NO depende de θ), luego:

$$L(\theta|\underline{z}) = L(\theta|\underline{x})c(\underline{x}).$$

- ▶ Donde $c(\underline{x}) = \prod_{i=1}^{n} |J_{x_i}| > 0$ es una constante que no depende de θ .
- Como la verosimilitud $L(\theta|\underline{z})$ es proporcional a $L(\theta|\underline{x})$, la inferencia que hacemos con $\underline{z} = g(\underline{x})$ en el contexto del modelo $f(z;\theta)$ es equivalente a la que hacemos con \underline{x} en el contexto del modelo $f(x;\theta)$.

$$L(\theta_1|\underline{x}) > L(\theta_2|\underline{x}) \Leftrightarrow L(\theta_1|\underline{z}) > L(\theta_2|\underline{z}).$$

UTDT Principios 32 / 32

²Consideremos la muestra aleatoria: $\underline{Z} \equiv \{Z_1 = g(X_1), \dots, Z_n = g(X_n)\}.$