A deeper dive into loading data

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf Senior Data Science Content Developer, DataCamp

Our animals dataset

```
import pandas as pd
animals = pd.read_csv('animal_dataset.csv')
```

animal_name	hair	feathers	eggs	milk	predator	legs	tail	type
sparrow	0	1	1	0	0	2	1	0
eagle	0	1	1	0	1	2	1	0
cat	1	0	0	1	1	4	1	1
dog	1	0	0	1	0	4	1	1
lizard	0	0	1	0	1	4	1	2

Type categories: bird (0), mammal (1), reptile (2)

Our animals dataset: defining features

```
import numpy as np

# Define input features
features = animals.iloc[:, 1:-1]

X = features.to_numpy()
print(X)
```

```
[[0 1 1 0 0 2 1]

[0 1 1 0 1 2 1]

[1 0 0 1 1 4 1]

[1 0 0 1 0 4 1]

[0 0 1 0 1 4 1]]
```

Back to our animals dataset: defining target values

```
# Define target values (ground truth)
target = animals.iloc[:, -1]
y = target.to_numpy()
print(y)
```

```
[0 0 1 1 2]
```

TensorDataset

```
import torch
from torch.utils.data import TensorDataset
# Instantiate dataset class
dataset = TensorDataset(torch.tensor(X), torch.tensor(y))
# Access an individual sample
input_sample, label_sample = dataset[0]
print('input sample:', input_sample)
print('label sample:', label_sample)
input sample: tensor([0, 1, 1, 0, 0, 2, 1])
```

label sample: tensor(0)

DataLoader

```
from torch.utils.data import DataLoader

batch_size = 2
shuffle = True

# Create a DataLoader
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
```

- Epoch: one full pass through the training dataloader
- Generalization: model performs well with unseen data

DataLoader

```
# Iterate over the dataloader
for batch_inputs, batch_labels in dataloader:
    print('batch_inputs:', batch_inputs)
    print('batch_labels:', batch_labels)
batch_inputs: tensor([[1, 0, 0, 1, 1, 4, 1],
        [1, 0, 0, 1, 0, 4, 1]])
batch_labels: tensor([1, 1])
batch_inputs: tensor([[0, 1, 1, 0, 1, 2, 1],
        [0, 0, 1, 0, 1, 4, 1]])
batch_labels: tensor([0, 2])
batch_inputs: tensor([[0, 1, 1, 0, 0, 2, 1]])
batch_labels: tensor([0])
```

Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Writing our first training loop

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf

Senior Data Science Content Developer, DataCamp

Training a neural network

- 1. Create a model
- 2. Choose a loss function
- 3. Define a dataset
- 4. Set an optimizer
- 5. Run a training loop:
 - Calculate loss (forward pass)
 - Compute gradients (backpropagation)
 - Updating model parameters

Introducing the Data Science Salary dataset

experience_level	employment_type	remote_ratio	company_size	salary_in_usd
0	0	0.5	1	0.036
1	0	1.0	2	0.133
2	0	0.0	1	0.234
1	0	1.0	0	0.076
2	0	1.0	1	0.170

- Features: categorical, target: salary (USD)
- Final output: linear layer
- Loss: regression-specific

Mean Squared Error Loss

• MSE loss is the mean of the squared difference between predictions and ground truth

```
def mean_squared_loss(prediction, target):
    return np.mean((prediction - target)**2)
```

• in PyTorch:

```
criterion = nn.MSELoss()
# Prediction and target are float tensors
loss = criterion(prediction, target)
```

Before the training loop

```
# Create the dataset and the dataloader
dataset = TensorDataset(torch.tensor(features).float(),
                        torch.tensor(target).float())
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
# Create the model
model = nn.Sequential(nn.Linear(4, 2),
                      nn.Linear(2, 1))
# Create the loss and optimizer
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)
```

The training loop

```
for epoch in range(num_epochs):
    for data in dataloader:
        # Set the gradients to zero
        optimizer.zero_grad()
        # Get feature and target from the data loader
        feature, target = data
        # Run a forward pass
        pred = model(feature)
        # Compute loss and gradients
        loss = criterion(pred, target)
        loss.backward()
        # Update the parameters
        optimizer.step()
```

Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

ReLU activation functions

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf

Senior Data Science Content Developer, DataCamp

Sigmoid and softmax functions

SIGMOID for BINARY classification

SOFTMAX for MULTI-CLASS classification

Limitations of the sigmoid and softmax function

Sigmoid function:

- Outputs bounded between 0 and 1
- Usable anywhere in a network

Gradients:

- Very small for large and small values of x
- Cause saturation, leading to the vanishing gradients problem

The softmax function also suffers from saturation

ReLU

Rectified Linear Unit (ReLU):

- f(x) = max(x, 0)
- For positive inputs: output equals input
- For **negative** inputs: output is O
- Helps overcome vanishing gradients

In PyTorch:

Leaky ReLU

Leaky ReLU:

- Positive inputs behave like ReLU
- Negative inputs are scaled by a small coefficient (default 0.01)
- Gradients for negative inputs are non-zero

In PyTorch:

```
leaky_relu = nn.LeakyReLU(
  negative_slope = 0.05)
```


Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Learning rate and momentum

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf

Senior Data Science Content Developer, DataCamp

Updating weights with SGD

• Training a neural network = solving an optimization problem.

Stochastic Gradient Descent (SGD) optimizer

```
sgd = optim.SGD(model.parameters(), lr=0.01, momentum=0.95)
```

- Two arguments:
 - learning rate: controls the step size
 - momentum: adds inertia to avoid getting stuck

Impact of the learning rate: optimal learning rate

Step size decreases near zero as the gradient gets smaller

Impact of the learning rate: small learning rate

Impact of the learning rate: high learning rate

Convex and non-convex functions

This is a **convex function**.

This is a **non-convex function**.

• Loss functions are non-convex

Without momentum

• lr = 0.01 momentum = 0, after 100 steps minimum found for x = -1.23 and y = -0.14

With momentum

• lr = 0.01 momentum = 0.9, after 100 steps minimum found for x = 0.92 and y = -2.04

Summary

Learning Rate	Momentum		
Controls the step size	Controls the inertia		
Too high → poor performance	Helps escape local minimum		
Too low → slow training	Too small → optimizer gets stuck		
Typical range: 0.01 (10^{-2}) and 0.0001 (10^{-4})	Typical range: 0.85 to 0.99		

Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

