

Análisis de señales Examen de segundo corte

Escuela de Ciencias exactas e Ingeniería Código: SA2019IG01_EXA02

	Profesor: Marco Teran
Name:	Deadline: 23 de abril de 2019

1. Para la siguiente secuencia:

$$r[n] = \frac{4 + 2\sin\left(\frac{3n\pi}{15}\right)}{8}$$

- (a) (0.5 points) Dibujar la secuencia periodica y encontrar su periodo N.
- (b) (3.0 points) Determinar la representación de la Serie de Fourier de tiempo discreto (DTFS)
 - ullet La expresión para los coeficientes de Fourier deben estar totalmente resueltos, simplificados y expresados en función de k.
- (c) (0.5 points) Encontrar el valor de c_0 y c_{15} .

Tabla de formulas

Serie de Fourier	Tiempo (variable independiente)	
	Tiempo continuo	Tiempo discreto
Exponencial compleja:		
	$c_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-j\omega_k t} dt$	$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\Omega_k n}$
	$x(t) = \sum_{k=-\infty}^{\langle T \rangle} c_k e^{j\omega_k t}$	$x[n] = \sum_{n = \langle N \rangle} c_k e^{j\Omega_k n}$
Trignométrica:	$a_k = \frac{2}{T} \int x(t) \cos(\omega_k t) dt$	
	$b_k = \frac{2}{T} \int_{\langle T \rangle}^{\langle T \rangle} x(t) \sin(\omega_k t) dt$	
	$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(\omega_k t) + b_k \sin(\omega_k t)$	

Análisis de señales Examen de primer corte

Escuela de Ciencias exactas e Ingeniería Código: SA2019IG01_EXA01

	Profesor: Marco Teran
Name:	Deadline: 12 de marzo de 2019

1. Para la siguiente señal periódica de tiempo continuo:

$$z(t) = 3e^{2t}$$
, entre [0, 4]

- (a) (0.5 points) Dibujar la señal periodica y encontrar su periodo fundamental T.
- (b) (3.0 points) Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) utilizando exclusivamente Serie trigonométrica de Fourier.
 - ullet La expresión para los coeficientes de Fourier deben estar totalmente resueltos, simplificados y expresados en función de k.
- (c) (0.5 points) Encontrar los coeficientes para valores de k=0 y k=1.

Tabla de formulas

Serie de Fourier	Tiempo (variable independiente)	
	Tiempo continuo	Tiempo discreto
Exponencial compleja:		
	$c_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-j\omega_k t} dt$	$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\Omega_k n}$
	$x(t) = \sum_{k=-\infty}^{\langle T \rangle} c_k e^{j\omega_k t}$	$x[n] = \sum_{n = \langle N \rangle} c_k e^{j\Omega_k n}$
Trignométrica:	$a_k = \frac{2}{T} \int x(t) \cos(\omega_k t) dt$	
	$b_k = \frac{2}{T} \int_{\langle T \rangle}^{\langle T \rangle} x(t) \sin(\omega_k t) dt$	
	$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(\omega_k t) + b_k \sin(\omega_k t)$	

Análisis de señales Examen de primer corte

Escuela de Ciencias exactas e Ingeniería Código: SA2019IG01_EXA01

	Profesor: Marco Teran
Name:	Deadline: 12 de marzo de 2019

1. Para la siguiente señal periódica de tiempo continuo:

- (a) (0.5 points) Dibujar la señal peiodica y encontrar su periodo fundamental T.
- (b) (3.0 points) Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) utilizando exclusivamente Serie de Fourier de exponencial compleja.
 - ullet La expresión para los coeficientes de Fourier deben estar totalmente resueltos, simplificados y expresados en función de k.
- (c) (0.5 points) Encontrar los coeficientes para valores de k=0 y k=-3.

Tabla de formulas

Serie de Fourier	Tiempo (variable independiente)	
	Tiempo continuo	Tiempo discreto
Exponencial compleja:		
	$c_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-j\omega_k t} dt$	$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\Omega_k n}$
	$x(t) = \sum_{k=-\infty}^{\langle T \rangle} c_k e^{j\omega_k t}$	$x[n] = \sum_{n = \langle N \rangle} c_k e^{j\Omega_k n}$
Trignométrica:	$a_k = \frac{2}{T} \int x(t) \cos(\omega_k t) dt$	
	$b_k = \frac{2}{T} \int_{\langle T \rangle}^{\langle T \rangle} x(t) \sin(\omega_k t) dt$	
	$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(\omega_k t) + b_k \sin(\omega_k t)$	