

Photon Efficiency Measurement Using Z Tag & Probe

M. Pieri, M. Sani

University of California, San Diego

Introduction

- We have measured the efficiencies of different photon selections using the Z Tag and Probe method:
 - e.g. EGM-I0-006, QCD-I0-019...
- The very same methods will be used with electrons:
 - Electron Identification and Reconstruction efficiencies...
- We have compared and checked the consistency of the results obtained using three different methods:
 - Counting, Fit, Opposite Sign Same Sign
- The results of this study are documented in the following analysis notes:
 - Electrons: CMS AN-2010/291 (in progress),
 - Photons: CMS AN-2010/292 (v6 is going to be uploaded)

Selection and Samples

- Numbers for different photon selections have been measured:
 - Egamma Loose/Tight, "Exotica", photon selection for H->γγ...
 - the following results refers to the "Exotica" selection:
 - $\sigma i \eta i \eta < 0.013 (0.03)$, H/E < 0.05
 - TkIso < 2.0 + 0.001*ET, ECALISO < 4.2 + 0.006*ET</p>
 - HCALIso < 2.2 + 0.0025*ET
- Meaurements have been carried on using ~35 pb⁻¹ of data using CMSSW_3_8_X.
- The MC samples used are:
 - Zee, Wenu, QCD_enriched, bc_to_e, Photon+Jet.

Counting (Overview)

- Tag and Probe definitions:
 - Tag: CiC SuperTight electron with SC ET > 20 GeV
 - Probe: SC ET > 20 GeV
- To reduce the final uncertainty we have used factorization:
 - split the selection into two sets of cuts (σ_{inim} +H/E isolations):
 - ightharpoonup compute ϵ counting events and performing MC $\,$ bg subtraction
 - Combine partial efficiencies and correct for possible correlations: $(\epsilon^{\text{MC}}_{\text{TOT}} \epsilon^{\text{MC}}_{\text{fact}})$
- Statistical errors are binomial.
- Systematics: uncertainty on the background assumed 100% plus 50% of the estimated correlation between the measurements.

Counting (Isolation)

Counting (Results)

E_{T}	MC	DATA	R (DATA/MC)	
	Barrel			
20 - 35	$86.97 \pm 0.16 \%$	$86.49 \pm 0.45 \pm 1.95 \%$	0.995 ± 0.023	
35 - 45	$92.21 \pm 0.11 \%$	$90.05 \pm 0.33 \pm 0.16 \%$	0.977 ± 0.004	
45 - inf	$93.61 \pm 0.13 \%$	$90.98 \pm 0.43 \pm 0.02 \%$	0.972 ± 0.005	
Endcap				
20 - 35	$88.54 \pm 0.22 \%$	$88.28 \pm 0.55 \pm 1.07 \%$	0.997 ± 0.014	
35 - 45	$93.20 \pm 0.16 \%$	$92.36 \pm 0.49 \pm 0.35 \%$	0.991 ± 0.007	
45 - inf	$94.94 \pm 0.20 \%$	$94.18 \pm 0.62 \pm 0.16 \%$	0.992 ± 0.007	

Results available also as a function of eta, fBrem and R9.

Fit (Overview)

- Take <u>signal</u> shape from MC for passing and failing events:
 - Breit-Wigner (x) Modified Crystall-Ball (https://twiki.cern.ch/twiki/bin/view/CMS/ElectronTagAndProbe)
- Performed extended likelihood fit to data with signal + exponential (background) PDF:
 - tail parameters of signal PDF fixed from MC,
 - get signal and background yields from the fit.
- Systematics:
 - Background: tried different PDF for the background,
 - Energy scale: vary electron energy (by current energy scale uncertainty) and compute corresponding efficiency,
 - Signal: change tail of the PDF and check the contribution.

Fit MC signal only (PDF)

FAILING

ENDCAP

Fit (DATA)

FAILING

ENDCAP

Fit (Results)

 No factorization is involved here, it has to be checked if factorization could help in reducing uncertainty.

E_{T}	MC	DATA	R (DATA/MC)	
	Barrel			
20 - 35	$86.97 \pm 0.16 \%$	$82.23 \pm 1.14 \pm 1.58 \%$	0.945 ± 0.022	
35 - 45	$92.21 \pm 0.11 \%$	$89.54 \pm 0.43 \pm 0.55 \%$	0.971 ± 0.008	
45 - inf	$93.61 \pm 0.13 \%$	$90.77 \pm 0.52 \pm 0.82 \%$	0.970 ± 0.010	
Endcap				
20 - 35	$88.54 \pm 0.22 \%$	$88.89 \pm 1.60 \pm 3.44 \%$	1.004 ± 0.043	
35 - 45	$93.20 \pm 0.16 \%$	$90.99 \pm 0.56 \pm 0.43 \%$	0.977 ± 0.008	
45 - inf	$94.94 \pm 0.20 \%$	$93.42 \pm 0.10 \pm 0.95 \%$	0.984 ± 0.010	

Results available also as a function of eta, fBrem and R9.

OS/SS (Overview)

 Given the number of OS and SS passing and failing events, the signal can be extracted from the following formula:

$$N = \frac{(N_{OS} - N_{SS})}{(1 - 2q)^2} - (B_{OS} - B_{SS})$$

- q = charge mis-id (different for passing and failing events), taken from MC (for failing event can be hardly determined from data)
- B_{os} and B_{ss} number of OS/SS background events.
- Systematics:
 - Background events: $100\% \times (B_{os} B_{ss})$
 - Charge mis-id: assumed 50% error

	Passing	Failing	
Barrel			
0 - 0.5	0.34%	0.98%	
0.5 - 1.0	0.45%	1.25%	
1.0 - 1.4442	0.81%	1.83%	
TOT	0.52%	1.24%	
Endcap			
1.566 - 1.8	1.87%	2.82%	
1.8 - 2.1	2.00%	2.72%	
2.1 - 2.5	2.67%	3.85%	
TOT	2.21%	3.07%	

OS/SS (Results)

 No factorization is involved here, it has to be checked if factorization could help in reducing uncertainty.

E_{T}	MC	DATA	R (DATA/MC)	
	Barrel			
20 - 35	$86.97 \pm 0.16 \%$	$86.22 \pm 0.48 \pm 1.59 \%$	0.991 ± 0.019	
35 - 45	$92.21 \pm 0.11 \%$	$90.53 \pm 0.34 \pm 0.59 \%$	0.981 ± 0.008	
45 - inf	$93.61 \pm 0.13 \%$	$91.08 \pm 0.44 \pm 0.17 \%$	0.973 ± 0.005	
Endcap				
20 - 35	$88.54 \pm 0.22 \%$	$88.98 \pm 0.60 \pm 2.17 \%$	1.005 ± 0.025	
35 - 45	$93.20 \pm 0.16 \%$	$93.04 \pm 0.48 \pm 0.99 \%$	0.998 ± 0.012	
45 - inf	$94.94 \pm 0.20 \%$	$94.26 \pm 0.66 \pm 0.21 \%$	0.993 ± 0.007	

Results available also as a function of eta, fBrem and R9.

Pileup

Recently MC samples with pileup have been simulated.

- We have compared signal MC with pileup to estimate the effect on the selection efficiency:
 - Exotica Selection: MC/MC_{PU} = I.OI (BARREL), I.OOI (ENDCAP)
 - Hgg Selection: MC/MC_{PU} = 1.05 (BARREL), 1.01 (ENDCAP)

Pileup Data/MC Comparison

Summary

- We have measured various photon selection efficiencies using Z Tag and Probe method using ~35 pb⁻¹ of data.
- We have tested three different techniques: counting, fit and opposite sign-same sign:
 - the same methods will be used to measure electron efficiencies as well.
- The three results are in good agreement:

	COUNT	FIT	OS/SS
BARREL	0.981 ± 0.008	0.967 ± 0.011	0.982 ± 0.011
ENDCAP	0.991 ± 0.007	0.983 ± 0.016	0.994 ± 0.013

 We have also studied the selection efficiencies as a function of the number of reco vertices to check pileup effect.