- 一、是非題
- 1. The transformation $T(v_1, v_2) = (v_1, 0)$ is linear.
- **2.** If T maps \mathbb{R}^n into \mathbb{R}^m , and T(0) = 0, then T is linear.
- 3. $T_1T_2 = T_2T_1$ where $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ is the rotation about the x-axis through an angle θ_1 and $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ is the rotation about the z-axis through an angle θ_2 .
- 4. Suppose $T(v_1) = (2.5)$, $T(v_2) = (1.3)$, $v_1 = (1.0)$, $v_2 = (0.1)$. Let $v_3 = (2, -1)$. Then $T(v_3) = (3.7)$.
- 5. $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ is the standard matrix for the linear operation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that maps a point (x, y) into its reflection about the origin.
- 6. Given two bases for the same vector space. There is always a transition matrix from one basis to the other basis.
- \blacksquare 7. The transition matrix from B to B is always the identity matrix.
- **8.** Any invertible $n \times n$ matrix is the transition matrix for some pair of bases for \mathbb{R}^n .
- 9. Let $[u_1, u_2, u_3]$ be a basis for \mathbb{R}^3 , and let $U = (u_1, u_2, u_3)$ be the matrix with columns u_1, u_2, u_3 . Then U^T is the transition matrix for the change of basis from the standard basis $[e_1, e_2, e_3]$ to $[u_1, u_2, u_3]$.
- 10. If $B = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$, then matrix $P = [c_1 \ c_2]^{-1}[b_1 \ b_2]$ satisfies $[x]_C = P[x]_B$.
- 11. If $m = \dim(V)$ and $n = \dim(W)$, β, γ are ordered basis of V and W, respectively, and T is a linear transformation, then $[T]_{\beta}^{\gamma}$ is an $m \times n$ matrix.
- 12. Suppose S and T are linear operators on a finite dimensional vector space V, α and β are ordered bases for V. If $[S]_{\alpha} = [T]_{\beta}$, then S = T.
- 13. Let $L: V \to V$ be a linear transformation. If x is a vector in the kernal of L, then L(v + x) = L(v) for all $v \in V$.
- 14. There does not exist linear transformation $T: V \to W$ such that N(T) = R(T).
- 15. Let *D* be the differentation operator on P_3 . Then $\ker(D) = \{0\}$.
- 16. Assume V and W are vector spaces and $L:V \to W$ is a linear transformation. If $\dim(V) = n$ and $\dim(W) = m$, then $\dim(\ker(L)) + \dim(L(V)) = m$.
- 17. Let $L: \mathbb{R}^6 \to \mathbb{R}^{10}$ be a linear transformation defined by L(x) = Ax for x in \mathbb{R}^6 . If $\dim(R(L)) = 3$, then $\dim(\ker(L)) = 7$.
- 18. The linear transformation $L: P_2 \to P_2$ defined by $L(ax^2 + bx + c) = 2ax + b$ is one-to-one.
- 19. If T is a linear transformation from \mathbb{R}^4 to \mathbb{R}^4 such that $N(T) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$. Then T is surjective.
- 20. There does not exist a linear transformation from \mathbb{R}^5 to \mathbb{R}^2 whose null space equals

$$\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 | x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$$

1

- 21. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a one-to-one linear transformation, then there are no distinct vectors u and v in \mathbb{R}^n such that T(u-v)=0.
- 22. If n < m and $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then T is one-to-one.
- 23. There are linear transformations $L: \mathbb{R}^3 \to \mathbb{R}^5$ that are onto.
- 24. Let V and W be finite-dimensional vector spaces and T be a linear transformation from V into W, then T maps linearly independent subsets of V into linearly independent subsets of W.
- 25. Let α be a basis for a finite dimensional vector space V. If T is a linear operator on V then T is onto if and only if $T(\alpha)$ is a basis for V.
- 26. The rank of any upper triangular matrix is the number of nonzero entries on its diagonal.
- 27. The rank of a matrix is equal to either the number of its nonzero rows or the number of its nonzero columns, whichever is smaller.
- 28. The product of two matrices has a rank equal to the smaller rank of the two matrices.
- 29. For two square $n \times n$ matrices A and B, rank(AB) = rank(A) if and only if B is nonsingular.
- 30. Elementary row operations preserves matrix rank but elementary column operations do not.
- 31. Let $A \in \mathbb{R}^{m \times n}$, where m < n. Suppose $a_{ij} < 0$ if j < i and $a_{ij} \neq 0$ if $i \leq j$. Let $B = E_k E_{k-1} \cdots E_2 E_1 A$, where E_1, \dots, E_k denote a sequence of $m \times m$ elementary matrices, then the row vectors of B are linearly independent.
- 32. Let A be $n \times n$. Then $rank(A) = rank(A^2)$.
- 33. Let A and B be $n \times n$ real matrices, if rank(A) = rank(B), then $rank(A^2) = rank(B^2)$.
- 34. If v is not a linear combination of $\{u_1, u_2, \dots, u_k\}$, then $rank([u_1 \quad u_2 \quad \dots \quad u_k \quad v]) = 1 + rank([u_1 \quad u_2 \quad \dots \quad u_k])$.
- 35. $rank(A) \le rank(A+B)$, where A and B are both $m \times n$ matrices.
- 36. If A is an $m \times n$ matrix, then the nullity of A^T plus the rank of A equals m.
- 37. For an $m \times n$ matrix A, the nullity of A equals the nullity of its transpose A^T .
- 38. If A is an $n \times m$ matrix, then $\dim(N(A)) + \dim(RS(A)) = m$.
- 39. If an $m \times n$ matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows, then the dimension of the solution space of Ax = 0 is m k.
- 40. Let A be an $m \times n$ matrix. Then $nullity(A) \ge n m$.
- 41. A is a 4 × 7 matrix and has four pivot columns. Thus, $R(A) = \mathbb{R}^4$ and $N(A) = \mathbb{R}^3$.
- 42. If the matrix A is 8×5 and rank(A) = 3, then the dimension of the row space of A is 5.
- 43. If the row vectors of A are linearly independent, then null space $N(A) = \{0\}$.
- 44. If the columns of a matrix are dependent, so are the rows of the matrix.
- 45. The column of a 5×8 matrix A whose rank is 5 form a linearly dependent set.
- 46. A is an $m \times n$ matrix $(m \neq n)$. If A has a right inverse C such that $AC = I_m$, then the column vectors of A span \mathbb{R}^m .

- 47. A is an $m \times n$ matrix $(m \neq n)$. If A has a left inverse B such that $BA = I_m$, then the column vector of A are linearly independent.
- 48. For an $n \times n$ matrix A, the columns of A are linearly independent if and only if the rows of A are linearly independent.
- 49. If a system Ax = b has more than one solution, then so does the system Ax = 0.
- 50. If A is a 3 × 5 matrix such that $\dim(N(A)) = 2$, then the equation $Ax = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$ has infinite many solutions.
- 51. If the rows of an $m \times n$ matrix A are linearly independent, then Ax = b is always solvable.
- 52. If the rows of an $m \times n$ matrix A are linearly independent, then the solution Ax = b, if it exists, is always unique.
- 53. If the columns of A are linearly independent, then Ax = b has exactly one solution for every b.
- 54. If the columns of an $m \times n$ matrix A are linearly independent, then Ax = b is always solvable.
- 55. Let A be an $m \times n$ matrix. If Au = Av implies u = v, then rank(A) = n.
- 56. If A is $m \times n$ and rank(A) = m, then the linear transformation $x \mapsto Ax$ is one-to-one.
- 57. If A is $m \times n$ and the linear transformation $x \mapsto Ax$ is onto, then rank(A) = m.
- 58. The non-pivot columns of a matrix are always linearly dependent.
- **59.** Row operations on a matrix A can change the linear dependence relations among the rows of A.
- 60. If A is an $m \times n$ matrix whose rows span \mathbb{R}^n , then the set of columns in A is linearly dependent.
- 61. A and A^T have the same null space.
- 62. If A is an $n \times n$ matrix, then the row space of A equals the column space.
- 63. If the row space equals the column space then $A^T = A$.
- 64. If E is an $m \times m$ elementary matrix, then A and EA must have the same null space.
- 65. If E is an $m \times m$ elementary matrix, then A and EA must have the same row space.
- 66. If E is an $n \times n$ elementary matrix, then A and AE must have the same column space.
- 67. Let A be an $m \times n$ matrix. If B is a nonsingular $n \times n$ matrix, then AB and A have the same null space.
- 68. If matrices A and B have the same reduced row-echelon form, then they have the same row space.
- 69. If $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{1 \times n}$, then the null space of $\begin{bmatrix} A \\ B \end{bmatrix}$ is the intersection of the null spaces of A and B.
- 70. The row space and null space of an invertible matrix A are the same.
- 71. If H is a subspace of \mathbb{R}^3 , then there is a 3 × 3 matrix A such that H equals the column space of A.
- 72. If A and B share the same four subspaces then A is a multiple of B.
- 73. Let $T, U: V \to W$ be linear transformations. If T and U are both one-to-one, then T+U is also one-to-one

二、選擇題

- 1. $T: P_3 \to P_3$ is defined by $T(a_3x^3 + a_2x^2 + a_1x + a_0) = (a_3 + a_2 a_1)x^3 + (a_2 + a_1 2a_0)x$. Determine which of the following polynomials are in the kernel of T.
 - (A) $x^2 + x + 1$ (B) $2x^3 + 2x + 1$ (C) $2x^3 + x^2 + x + 2$ (D) $x^2 + x + 2$ (E) $-4x^3 + 5x^2 + x + 3$.
- 2. Suppose that A is a 4×6 matrix. Determine which of the following statements are true?
 - (A) The rank of A is at most 4.
 - (B) The rank of A^T is at most 4
 - (C) The number of general solution of Ax = 0 is at most 6.
 - (D) The nullity of A^T is at most 6.
- 3. Let H be an arbitrary $n \times n$ matrix. Then
 - (A) The row space of H is contained in the column space.
 - (B) The row space of H equals the column space of H.
 - (C) The row space of H has the same dimensions as the column space of H.
 - (D) The row space of H equals the null space of H.
 - (E) None of the preceding statements is true.
- 4. Given the linear operator T with standard matrix $[T]_E = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ and B-matrix $[T]_B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$
 - $\begin{bmatrix} 1 & 9 & -6 \\ 0 & 7 & -4 \\ 2 & 11 & -8 \end{bmatrix}$, which can be the correct basis for B?
 - (A) $\left\{\begin{bmatrix}1\\-2\\1\end{bmatrix},\begin{bmatrix}3\\-5\\4\end{bmatrix},\begin{bmatrix}4\\-3\\9\end{bmatrix}\right\}$ (B) $\left\{\begin{bmatrix}-1\\4\\2\end{bmatrix},\begin{bmatrix}3\\6\\2\end{bmatrix}\right\}$ (C) $\left\{\begin{bmatrix}-1\\1\\2\end{bmatrix},\begin{bmatrix}0\\2\\-1\end{bmatrix},\begin{bmatrix}1\\-2\\-1\end{bmatrix}\right\}$ (D) $\left\{\begin{bmatrix}1\\2\\-3\end{bmatrix},\begin{bmatrix}3\\5\\2\end{bmatrix},\begin{bmatrix}-2\\-3\\-4\end{bmatrix}\right\}$ (E) None of the above.
- 5. An affine transformation of \mathbb{R}^2 is a function $T: \mathbb{R}^2 \to \mathbb{R}^2$ of the form T(x) = Ax + b, where A is an

invertible 2×2 matrix and $b \in \mathbb{R}^2$. Which of the following statements are correct?

- (A) $T^{-1}(x) = A^{-1}x A^{-1}b$.
- (B) Affine transformations map straight lines to straight lines.
- (C) There is no affine transformation that can map a straight line to a circle.
- (D) Affine transformations maps parallel straight lines to parallel straight lines.
- (E) There exists an affine transformation that maps parallel straight lines to intersecting straight lines.