Non-Deterministic Finite Automata

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

All input is consumed

Input cannot be consumed

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

There is a computation: all the input is consumed and the automaton is in an accepting state

Example

aa is accepted by the NFA:

because this computation accepts aa

Rejection example

An NFA rejects a string:

when there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

(read head does not move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aaa is rejected

Language accepted: $L = \{aa\}$

Another NFA Example

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Remarks:

- The λ symbol never appears on the input tape
- ·Simple automata:

·NFAs are interesting because we can express languages easier than FAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Transition Function δ

$$\mathcal{S}(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\mathcal{S}(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\}$$

$$\Rightarrow \in F$$

$$abaa \in L(M)$$

$$\Rightarrow \in F$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, q_j, ..., q_k, ...\}$$

and there is some $q_k \in F$ (accepting state)

$$w \in L(M) \qquad \mathcal{S}^*(q_0, w)$$

$$q_i \qquad \qquad q_k \in F$$