

Rodrigue Van Brande 6 janvier 2015 TABLE DES MATIÈRES 2

Table des matières

	Première partie				
	1.1 Statistique descriptive en 1D				
	1.2 Statistique descriptive en 2D				
	Deuxième partie				
	2.1 Probabilités				
	2.1.1 Formule de Bayes				
	2.2 Variables aléatoires				
	2.2.0.1 Distribution d'une fonction monotone d'une variable aléatoire				
	2.2.0.2 Distribution de la somme de deux variables aléatoires				
	2.2.0.3 Distribution de la différence de deux variables aléatoires				
	2.2.0.4 Distribution du produit de deux variables aléatoires				
,	Autres aides				
	3.1 Tableau du formulaire				
	3.2 Densité et répartition				
	3.3 Distributions				

1 Première partie

- 1.1 Statistique descriptive en 1D
- 1.2 Statistique descriptive en 2D

2 Deuxième partie

- 2.1 Probabilités
- 2.1.1 Formule de Bayes
- 2.2 Variables aléatoires
- 2.2.0.1 Distribution d'une fonction monotone d'une variable aléatoire

$$W = G(V)$$

2.2.0.2 Distribution de la somme de deux variables aléatoires

$$Z = V + W$$

2.2.0.3 Distribution de la différence de deux variables aléatoires

$$Z = V - W$$

2.2.0.4 Distribution du produit de deux variables aléatoires

$$Z = VW F_Z(x) = \iint_{\xi \cdot \eta \le x} f_{(V,W)}(\xi,\eta) d\xi d\eta$$

3 Autres aides

3.1 Tableau du formulaire

	μ	σ^2	$\psi(t)$
$\mathcal{B}(n,p)$	np	np(1-p)	$(pe^t + q)^n$
\mathcal{P}_{λ}	λ	λ	$e^{\lambda(e^t-1)}$
$\operatorname{Exp}_{\lambda}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$
Indicatrice(p)	p	p(1 - p)	$1 + p(e^t - 1)$
Uniforme $[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{t} \frac{e^{tb} - e^{ta}}{b - a}$
$\mathcal{N}(\mu, \sigma)$	μ	σ^2	$e^{\mu t + (\sigma^2 t^2)/2}$
$\chi^2_{(n)}$	n	2n	$(1-2t)^{-n/2}$
t_n	0 n > 1	$\frac{n}{n-2} \qquad n > 2$	aucun
$\mathcal{F}_{(m,n)}$	$\frac{n}{n-2}$ $n>2$	$\frac{2n^2(n+m-2)}{m(n-2^2(m-4))} \qquad n > 2$	aucun

Tableau dans le formulaire disponible à l'examen écrit (en rouge à connaître)

3.2 Densité et répartition

	Fonction de densité $f(x)$	Fonction de répartition $F(x)$	
$\mathcal{B}(n,p)$	P[B(n,p)=k]	$\sum_{k=0}^{x} P[B(n,p) = k]$	
\mathcal{P}_{λ}	$P[\mathcal{P}_{\lambda} = k] = \frac{\lambda^k}{k!} e^{-\lambda}$	$\frac{\sum_{k=0}^{x} P[\mathcal{P}_{\lambda} = k]}{1 - e^{-\lambda x} x \ge 0}$	
$\operatorname{Exp}_{\lambda}$	$\begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\int 1 - e^{-\lambda x} x \ge 0$	
Exp_{λ}	$\begin{cases} 0 & x < 0 \end{cases}$		
	$\left(D(V-1)\right)$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \end{cases}$	
Indicatrice (p)	$V_A \Rightarrow \begin{cases} P(V_A = 1) = p \\ P(V_A = 0) = 1 - p \end{cases}$	$\begin{cases} 1-p & 0 \le x < 1 \end{cases}$	
	$P(V_A = 0) = 1 - p$	$1 x \ge 1$	
		$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x > b \end{cases}$	
Uniforme $[a,b]$	$\begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & sinon \end{cases}$	$\begin{cases} \frac{x-a}{b-a} & a \leq x < b \end{cases}$	
		1 x > b	
$\mathcal{N}(\mu, \sigma)$	$\frac{\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\begin{cases} \frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}} & x > 0\\ 0 & x \le 0 \end{cases}}$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{(u-\mu)^2}{2\sigma^2}} du$	
. 2	$\int \frac{1}{\sqrt{2\pi}} e^{\frac{x^2}{2}} x > 0$		
$\chi^2_{(n)}$	$\begin{cases} 0 & x \leq 0 \end{cases}$	$\frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{x^2}{2}} du$	
t_n	Densité indépendante de σ		
$\mathcal{F}_{(m,n)}$	Densité indépendante de σ		

3.3 Distributions

