

Variants of Recurrent Neural Network

VietAI teaching team

Bước 1:
$$h_t = \tanh(Ws_{t-1} + Ux_t + b_s)$$

Bước 2:
$$y_t = \operatorname{softmax}(Vh_t + b_y)$$

$$\tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

softmax
$$(x_1) = \frac{e^{x_1}}{e^{x_1} + e^{x_2} + \dots + e^{x_n}}$$

Úng dụng

VietAl

- 1. Language model
- 2. Music generation

- 1. Long Short Term Memory
- 2. Gated Recurrent Unit
- 3. Bidirectional RNN
- 4. Deep-stacked RNN

- Long Short Term Memory (LSTM)
- Gated Recurrent Unit
- 3. Bidirectional RNN
- Deep-stacked RNN

💶 Giới thiệu LSTM

- Long short term memory (LSTM) là một biến thể của RNN
- Bao gồm 4 thành phần chính: cell, input gate, output gate và forget gate
- Các cell có nhiệm vụ nhớ các giá trị trong khoảng thời gian nhất định
- Ba cổng có nhiệm vụ điều chỉnh luồng thông tin vào và ra khỏi cell

Giới thiệu LSTM

- Mỗi cell trong LSTM network có khả năng xử lý dữ liệu một cách tuần tự
- LSTM rất phù hợp cho bài toán phân loại với dữ liệu theo chuỗi thời gian
- LSTM được phát triển để giải quyết vấn đề vanishing gradient khi huấn luyện với mô hình vanilla RNN

Cấu trúc cell

Legend:

Pointwize op

↑

Copy

Công thức LSTM

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

- $ullet x_t \in \mathbb{R}^d$: Vector đầu vào
- $ullet f_t \in \mathbb{R}^h$: Vector cổng forget
- $ullet i_t \in \mathbb{R}^h$: | Vector cổng input
- $ullet o_t \in \mathbb{R}^h$: Vector cổng output
- $ullet h_t \in \mathbb{R}^h$: Vector đầu ra của mỗi cell
- $ullet c_t \in \mathbb{R}^h$: Vector trạng thái mỗi state

t: Giá trị đang xét tại thời điểm t

Khởi tạo:
$$c_0 = 0$$
, $h_0 = 0$

- σ_q : sigmoid function.
- σ_c : hyperbolic tangent

$$ullet W \in \mathbb{R}^{h imes d}$$
 , $U \in \mathbb{R}^{h imes h}$ and $b \in \mathbb{R}^h$:

Ma trận weight và bias cần học

d và h là số chiều vector đầu vào và đầu ra

So sánh RNN và LSTM

1 Úng dụng

Bài tập ví dụ - LSTM

Bài tập 2:

Hãy tính giá trị h_1 với đầu vào:

$$x_1 = [2 \quad 3 \quad -1]$$

Các params của mạng:

$$W_f = \begin{bmatrix} 1 & -2 & 5 \\ 5 & 5 & 0 \end{bmatrix}$$
$$W_i = \begin{bmatrix} 0 & 2 & 5 \\ 3 & -4 & 1 \end{bmatrix}$$

$$W_o = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 3 \end{bmatrix}$$

$$W_c = \begin{bmatrix} -2 & 0 & 1 \\ 5 & 1 & 8 \end{bmatrix}$$

Legend: Layer Pointwize op Copy

$$U_f = \begin{bmatrix} 1 & 5 & 5 \\ 2 & 1 & 1 \end{bmatrix}$$

$$U_i = \begin{bmatrix} -1 & -5 & 3 \\ 2 & 1 & 0 \end{bmatrix}$$

$$U_o = \begin{bmatrix} 2 & 4 & -1 \\ 0 & 3 & 1 \end{bmatrix}$$

$$U_c = \begin{bmatrix} 1 & -1 & 1 \\ 0 & -2 & 6 \end{bmatrix}$$

$$b_i = b_o = b_f = b_c = [5 \ 2]$$

Bài tập ví dụ - LSTM

Giải:

Bước 1: Tính giá trị vector tại forget gate

Layer

Legend:

Pointwize op

Copy

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Bước 2: Tính giá trị vector tại input gate

Legend:

Pointwize op

 $\xrightarrow{\uparrow}$

Copy

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Bước 3: Cập nhật c

Legend:

Pointwize op Copy

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) lacksquare \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Bước 4: Tính giá trị output

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

- Long Short Term Memory
- 2. Gated Recurrent Unit (GRU)
- 3. Bidirectional RNN
- Deep-stacked RNN

2 Gated Recurrent Unit

- RNN-based model
- Được giới thiệu lần đầu tiên bởi Kyunghyun Cho et al.
- Hiệu suất ngang bằng với LSTM (trên bài toán music modeling và speech signal modeling)
- Có ít bộ trọng số hơn
- Hiệu suất cao hơn đối với những dataset nhỏ

2 Gated Recurrent Unit

Công thức GRU

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t &= (1-z_t) \circ h_{t-1} + z_t \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \end{aligned}$$

Công thức GRU

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t &= (1-z_t) \circ h_{t-1} + z_t \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \end{aligned}$$

Công thức GRU

$$z_t = \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t = (1-z_t)\circ h_{t-1} + z_t\circ \sigma_h(W_h x_t + U_h(r_t\circ h_{t-1}) + b_h)$$
 Thông tin update mới: $\widetilde{h_t}$

Bài tập ví dụ - GRU

Bài tập 3:

Các params của mạng:

Hãy tính giá trị
$$\hat{y}_1$$
 với đầu vào:
 $x_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}$
Các params của mang:

$$W_z =$$

$$W_z = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} \qquad U_z = \begin{bmatrix} 3 & 0 \\ -1 & 1 \end{bmatrix}$$

$$W_r = \begin{bmatrix} 1 & -1 \\ -6 & -1 \end{bmatrix} \qquad U_r = \begin{bmatrix} 1 & 1 \\ 4 & -3 \end{bmatrix}$$

$$U_r = \begin{bmatrix} 1 & 1 \\ 4 & -3 \end{bmatrix}$$

$$W_h = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$W_h = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \qquad U_h = \begin{bmatrix} 2 & 3 \\ 0 & -2 \end{bmatrix}$$

$$b_z = b_r = b_h = [1 \quad 1]$$

Bài tập ví dụ - GRU

Giải:

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t &= (1-z_t) \circ h_{t-1} + z_t \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \end{aligned}$$

Nội dung

- Long Short Term Memory
- Gated Recurrent Unit (GRU)
- 3. Bidirectional RNN
- Deep-stacked RNN

Bidirectional RNN

3 Thách thức

Bài tập 4: Hãy sử dụng one-hot encoding để output của bidirectional RNN sau (bỏ

qua tất cả activation function)

machine learning

machine
$$\rightarrow$$
 [1 0]

learning
$$\rightarrow$$
 [0 1]

$$\mathbf{U}_{A'} = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{W}_{A'} = \begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix}$$

$$V_{A'} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

$$U_A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$W_A = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$$

$$V_A = \begin{bmatrix} -1 & 0 \end{bmatrix}$$

Giải:

- Long Short Term Memory
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- 4. Deep-stacked RNN

Deep-stacked RNN

Deep-stacked RNN

$$\overrightarrow{h}_{t}^{i} = f\left(\overrightarrow{W}^{i}x_{t} + \overrightarrow{U}^{i}\overrightarrow{h}_{t-1}^{i}\right)$$

$$\overleftarrow{h}_{t}^{i} = f\left(\overleftarrow{W}^{i}x_{t} + \overleftarrow{U}^{i}\overleftarrow{h}_{t+1}^{i}\right)$$

$$y_t = \operatorname{softmax}\left(\left[\overleftarrow{h}_t^i, \overrightarrow{h}_t^i\right]\right)$$

Deep-stacked RNN

"is" "the" "problem" target word y_1 *y*₂ *y*₃ output likelihood W_{hy} $|W_{hh}|$ h_2 h_1 h_3 hidden state W_{xh} x_1 x_2 x_3 input embedding "What" "is" "the" input word

Character-level RNN

Word-level RNN