Homework 12 Abstract Algebra Math 320 Stephen Giang

Problem 5.3.1: Determine whether the given congruence-class ring is a field. Justify your answer.

(a)
$$\mathbb{Z}_3[x]/(x^3+2x^2+x+1)$$

Let $p(x) = x^3 + 2x^2 + x + 1$. Notice that the congruence class will be polynomials of degree 2 or less. Also notice that the only factors of the p(x) that meet those requirements are polynomials with degree 2 and its root. Lastly notice the only numbers in \mathbb{Z}_3 are 0, 1, 2

$$p(0) = 1 \neq 0$$

 $p(1) = 5 \neq 0$
 $p(2) = 19 \neq 0$

This shows that p(x) is irreducible and has no zero divisors, so by Theorem 5.10, (a) is a field.

(b)
$$\mathbb{Z}_5[x]/(2x^3-4x^2+2x+1)$$

Let $p(x) = 2x^3 - 4x^2 + 2x + 1$. Notice that the congruence class will be polynomials of degree 2 or less. Also notice that the only factors of the p(x) that meet those requirements are polynomials with degree 2 and its root. Lastly notice the only numbers in \mathbb{Z}_5 are 0, 1, 2, 3, 4.

$$p(0) = 1$$

 $p(1) = 1$
 $p(2) = 5 = [0]$
 $p(3) = 25 = [0]$
 $p(4) = 73$

This shows that p(x) is not irreducible, and has zero divisors, (x-2), (x-3), so (b) is NOT a field

(c)
$$\mathbb{Z}_2[x]/(x^4+x^2+1)$$

Let $p(x) = x^4 + x^2 + 1$. Notice the only numbers in \mathbb{Z}_2 are 0 and 1. Notice that all factors of p(x) have to be of degree 4 or less. So it can consist of factors of degree 2 with another factor of the same degree or degree 3 with a root.

$$p(0) = 1 \neq 0$$
$$p(1) = 3 \neq 0$$

So this concludes that the only factors of p(x) have to be degree 2. So notice that the only polynomials of degree 2 in $\mathbb{Z}_2[x]$ are:

$$x^2$$
 $x^2 + x$ $x^2 + x + 1$ $x^2 + x + 1$

So we can see the multiplication table:

So because $[x^2 + x + 1]^2 = [x^4 + x^2 + 1] = [0]$, then p(x) is not irreducible, thus meaning (c) is NOT a field

Problem 5.3.5 (b): Show that $\mathbb{Q}(\sqrt{3})$ is isomorphic to $\mathbb{Q}[x]/(x^2-3)$.

Solution. Let $a+b\sqrt{3}, c+d\sqrt{3} \in \mathbb{Q}(\sqrt{3})$, with $a,b,c,d \in \mathbb{Q}$. Let the function $\phi: \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}[x]/(x^2-3)$, such that $\phi(a+b\sqrt{3})=a+bx$. Also note that in $\mathbb{Q}[x]/(x^2-3)$, $[x^2]=[3]$ Notice the following homomorphic properties:

$$\phi((a+b\sqrt{3}) + (c+d\sqrt{3})) = \phi((a+c) + (b+d)\sqrt{3}) = (a+c) + (b+d)x = a+c+bx+dx$$

$$= (a+bx) + (c+dx) = \phi(a+b\sqrt{3}) + \phi(c+d\sqrt{3})$$

$$\phi(a+b\sqrt{3})\phi(c+d\sqrt{3}) = (a+bx)(c+dx) = ac+adx+bcx+bdx^2 = ac+adx+bcx+3bd$$

$$= (ac+3bd) + (ad+bc)x = \phi((ac+3bd) + (ad+bc)\sqrt{3})$$

$$= \phi((a+b\sqrt{3})(c+d\sqrt{3}))$$

Now notice the following bijective properties:

$$\phi(a + b\sqrt{3}) = a + bx = c + dx = \phi(c + d\sqrt{3})$$

The only way for the following to be true is if a = c and b = d, thus proving injectivity.

Notice for any function in $\mathbb{Q}[x]/(x^2-3)$, [e+fx], it can always be written as $\phi(e+b\sqrt{3})$. Thus proving surjectivity.

So $\mathbb{Q}(\sqrt{3})$ is isomorphic to $\mathbb{Q}[x]/(x^2-3)$

Problem 6.1.2: Show that the set I of all polynomials with even constant terms is an ideal in Z[x].

$$I = \{ax^n + \dots + 2k | a \in \mathbb{F}, k \in \mathbb{Z}\}\$$

Notice that zero is in this set:

$$0_{\mathbb{Z}} = 0x^n + \dots + 2(0) \in I$$

Notice that the set is closed under subtraction, and let $r = a_1 x^n + ... + 2k$, $s = a_2 x^m + ... + 2j \in I$. Note: (It is implied that $a_1, a_2 \in \mathbb{F}$ and $k, j \in \mathbb{Z}$ because $r, s \in I$. This is implied with other sets in other problems as well:)

$$r - s = a_1 x^n + \dots + 2k - (a_2 x^m + \dots + 2j) = a_1 x^n - a_2 x^m + \dots + 2(k - j) \in I$$

Notice that the set satisfies the absorption property, and let $r = a_1 x^n + ... + 2k \in I$, $s \in \mathbb{Z}$.

$$rs = a_1 s x^n + \dots + 2s k = s r \in I$$

Thus I is an ideal in Z[x].

Problem 6.1.3:

(a) Show that the set $I = \{(k,0), k \in \mathbb{Z}\}$ is an ideal in the ring $\mathbb{Z} \times \mathbb{Z}$

Notice that zero is in this set:

$$0_{\mathbb{Z}\times\mathbb{Z}} = (0,0) \in I$$

Notice that the set is closed under subtraction, and let $r = (a, 0), s = (b, 0) \in I$.

$$r - s = (a, 0) - (b, 0) = (a - b, 0) \in I$$

Notice that the set satisfies the absorption property, and let $r=(a,0)\in I$ and $s=(b,c)\in \mathbb{Z}\times \mathbb{Z}$

$$rs = (a,0)(b,c) = (ab,0) = (b,c)(a,0) = (ba,0) = sr \in I$$

Thus I is an ideal in the ring $\mathbb{Z} \times \mathbb{Z}$

(b) Show that the set $T = \{(k, k), k \in \mathbb{Z}\}$ is not ideal in the ring $\mathbb{Z} \times \mathbb{Z}$

Notice that T does not satisfies the absorption property, and let $r=(1,1)\in I$ and $s=(2,3)\in\mathbb{Z}\times\mathbb{Z}$:

$$rs = (1,1)(2,3) = (2,3) \notin T$$

Thus I is not an ideal in the ring $\mathbb{Z} \times \mathbb{Z}$

Problem 6.1.8: If I is an ideal in R and J is an ideal in the ring S, prove that $I \times J$ is an ideal in the ring $R \times S$.

Let the following be true:

$$T = \{(i, j) | i \in I, j \in J\} = I \times J$$

Because I is an ideal in R and J is an ideal in the ring $S, 0_R \in I$ and $0_S \in J$, such that

$$0_{R\times S} = (0_R, 0_S) \in T$$

Notice that the set is closed under subtraction, and let $a = (i_1, j_1), b = (i_2, j_2) \in T$.

$$a - b = (i_1, j_1) - (i_2, j_2) = (i_1 - i_2, j_1 - j_2) \in T$$

Because I and R are ideals, notice that they also closed under subtraction with $i_1 - i_2 \in I$ and $j_1 - j_2 \in J$.

Notice that the set satisfies the absorption property, and let $a=(i,j)\in T$ and $b=(r,s)\in R\times S$, with $r\in R, s\in S$.

$$rs=(i,j)(r,s)=(ir,js)=(ri,sj)=sr\in T$$

Because I is an ideal of $R, ir \in I$ and because J is an ideal of $S, js \in R$

Thus $I \times J$ is an ideal in the ring $R \times S$.

Problem 6.1.41:

(a) Prove that the set S of rational numbers (in lowest terms) with odd denominators is a subring of \mathbb{Q} .

Let the following be true:

$$S = \left\{ \frac{a}{2k+1} \middle| a \nmid (2k+1), k \in \mathbb{Z} \right\}$$

Notice that zero is in this set:

$$0_{\mathbb{Q}} = \frac{0}{2k+1} \in S$$

Notice that the set is closed under subtraction, and let $r = \frac{a}{2k+1}, s = \frac{b}{2j+1} \in S$

$$r - s = \frac{a}{2k+1} - \frac{b}{2j+1} = \frac{a(2j+1) - b(2k+1)}{2(2kj+k+j) + 1} \in S$$

Notice that the set is closed under multiplication, and let $r = \frac{a}{2k+1}, s = \frac{b}{2j+1} \in S$

$$rs = \frac{a}{2k+1} * \frac{b}{2j+1} = \frac{ab}{2(2kj+k+j)+1} \in S$$

Thus S is a subring of \mathbb{Q}

(b) Let I be the set of elements of S with even numerators. Prove that I is an ideal in S.

Let the following be true:

$$I = \left\{ \frac{2a}{2k+1} \middle| a, k \in \mathbb{Z} \right\}$$

Notice that zero is in this set:

$$0_S = \frac{2(0)}{2k+1} \in I$$

Notice that the set is closed under subtraction, and let $r = \frac{2a}{2k+1}, s = \frac{2b}{2j+1} \in I$

$$r - s = \frac{2a}{2k+1} - \frac{2b}{2j+1} = \frac{2(a(2j+1) - b(2k+1))}{2(2kj+k+j)+1} \in I$$

Notice that the set satisfies the absorption property and let $r = \frac{2a}{2k+1} \in I, s = \frac{b}{2j+1} \in S$

$$rs = \frac{2a}{2k+1} * \frac{b}{2j+1} = \frac{2ab}{2(2kj+k+j)+1} = \frac{2ba}{2(2kj+k+j)+1} = sr \in I$$

Thus I is an ideal in S