Automatizační cvičení

A4	208 Základy modelování procesů v systému Dynast			
Siřiště Marek			1/10	Známka:
30.1.2019		6.2.2019		Odevzdáno:

Zadání:

Namodelujte lineární časovou funkci se zadanou strmostí růstu (její diferenciální rovnice: $y(t) = k - 1 \cdot \int u(t) dt$, kde u(t) = 1(t) a dvě soustavy 1. řádu (jejich diferenciální rovnice: $s1 \cdot y(t)' + s0 \cdot y(t) = u(t)$) se zadanými konstantami. Namodelujte soustavu 2. řádu pomocí sériového zapojení předchozích dvou soustav 1. řádu. Namodelujte soustavu 2. řádu (její diferenciální rovnice: $s2 \cdot y(t)'' + s1 \cdot y(t)' + s0 \cdot y(t) = u(t)$) s koeficienty vypočtenými z předchozích 2 soustav zapojených do série a porovnejte výsledné přechodové charakteristiky. Získejte přechodové charakteristiky a frekvenční charakteristiky v komplexní rovině. Zjistěte vliv jednotlivých koeficientů na chování soustavy.

a.)
$$s_1=21.5 s_0=5.7$$
 b.) $s_1=11.8 s_0=6.2$

b.)
$$s_1=11.8 s_0=6.2$$

c.)
$$k_{-1}=0,15$$

Postup:

Upravil jsem rovnice na vhodný tvar pro řešení (osamocení nejvyšší derivace):

$$\begin{aligned} \mathbf{s1} \times \mathbf{x}'_{(t)} + \mathbf{s0} \times \mathbf{x}_{(t)} &= \mathbf{u}_{(t)} \\ \mathbf{21}, 5\mathbf{x}'_{(t)} + 5, 7\mathbf{x}_{(t)} &= \mathbf{u}_{(t)} \\ \mathbf{x}'(t) &= \frac{\mathbf{u}(t)}{21, 5} - \frac{5, 7\mathbf{x}(t)}{21, 5} \\ \mathbf{x}'_{(t)} &= 0,0465\mathbf{u}_{(t)} - 0,265\mathbf{x}_{(t)} \end{aligned}$$

b.)

$$s1 \times x'_{(t)} + s0 \times x_{(t)} = u_{(t)}$$

$$11,8x'_{(t)} + 6,2x_{(t)} = u_{(t)}$$

$$x'(t) = \frac{u(t)}{11,8} - \frac{6,2x(t)}{11,8}$$

$$x'_{(t)} = 0,0847u_{(t)} - 0,525x_{(t)}$$

c.)
$$x_{(t)} = k_{-1} \int u_{(t)} dt$$

$$x_{(t)} = 0.15 \int u_{(t)} dt$$

d.) Pouze zapojení do série bez rovnice

$$F_{(p)} = F_{(p)1} \times F_{(p)2} = \frac{1}{5,7 + 21,5p} \times \frac{1}{6,2 + 11,8p}$$

$$F_{(p)} = \frac{1}{35,34 + 200,56p + 253,7p^{2}}$$

$$253,7x''_{(t)} + 200,56x'_{(t)} + 35,34x_{(t)} = u_{(t)}$$

$$x''(t) = 3,94 \times 10^{3}u_{(t)} - 0,79x'_{(t)} - 0,139x_{(t)}$$

- Navrhl jsem si schéma zapojení (viz schéma zapojení).
- Dle postupu jsem nakreslil jednotlivá zapojení v programu dynast.
- Nastavil jsem zdroje signálu (step a sin).
- Vykreslil jsem charakteristiky.
- Výsledné hodnoty jsem vhodně zpracoval.

Schéma zapojení:

a.)

1.1. Schéma pro vykreslení přechodové charakteristiky:

1.2. Schéma pro vykreslení frekvenční charakteristiky:

b.)

2.1. Schéma pro vykreslení přechodové charakteristiky:

2.2. Schéma pro vykreslení frekvenční charakteristiky:

c.)
3.1. Schéma pro vykreslení přechodové charakteristiky:

3.2. Schéma pro vykreslení frekvenční charakteristiky:

d.)4.1. Schéma pro vykreslení přechodové charakteristiky:

4.2. Schéma pro vykreslení frekvenční charakteristiky:

e.)
5.1. Schéma pro vykreslení přechodové charakteristiky:

5.2. Schéma pro vykreslení frekvenční charakteristiky:

Grafy:

1) Přechodové charakteristiky:

T = 4.5s k = 0.175

T= 2,4s k=0,162

 $k_{-1}=0,2$

 $T_n=0.5s$ $T_u=5.5s$ k=26m

 $T_n=0.5s$ $T_u=8.5s$ k=28.5m

2) Frekvenční charakteristiky:

Závěr:

Úlohu jsem stihl a úspěšně splnil. Tato úloha mi pomohla více pochopit modelování a jeho reálné využití stejně jako předchozí úloha. Modelování v programu Dynast je více praktické a jednodušší.