TPS61288EVM-064 Evaluation Module

ABSTRACT

This user's guide describes the characteristics, operation, and the use of the TPS61288EVM-064 evaluation module (EVM). The EVM contains the TPS61288 device, which is a high-performance, high-efficiency synchronous boost converter which integrates two low on resistance power FETs. This user's guide includes EVM specifications, recommended test setup, test results, schematic diagram, bill of materials, and the board layout.

Table of Contents

1 Introduction	
1.1 Performance Specification	2
1.2 Modification	
2 Connector, Test Point and Jumper Descriptions	
2.1 Connector and Test Point Descriptions.	
2.2 Jumper Configuration	
3 Schematic, Bill of Materials, and Board Layout	
3.1 Schematic	
3.2 Bill of Materials	
3.3 Board Layout	
4 Revision History	
•	
List of Figures	
Figure 3-1. TPS61288EVM-064 Schematic	3
Figure 3-2. TPS61288EVM-064 Top-Side Layout	6
Figure 3-3. TPS61288EVM-064 Inner Layer1 Layout	6
Figure 3-4. TPS61288EVM-064 Inner Layer2 Layout	
Figure 3-5. TPS61288EVM-064 Bottom-Side Layout	
List of Tables	
	,
Table 1-1. Performance Specification Summary	
Table 2-1. Connectors and Test Points	
Table 3-1. Bill of Materials	

Trademarks

All trademarks are the property of their respective owners.

Introduction www.ti.com

1 Introduction

1.1 Performance Specification

Table 1-1 provides a summary of the TPS61288 EVM performance specifications. All specifications are given for an ambient temperature of 25°C.

Table 1-1. Performance Specification Summary

Parameter	Test Condition	MIN	TYP	MAX	Unit
V _{IN}		2.7	3.6	8.8	V
V _{OUT}	V _{IN} = 3.5 V, I _O < 2.3 A	12.66	12.92	13.17	V
Default Switching Frequency			500		kHz

1.2 Modification

The printed-circuit board (PCB) for this EVM is designed to accommodate some modifications by the user. The external component can be changed according to the real application.

2 Connector, Test Point and Jumper Descriptions

This section describes how to properly connect, set up, and use the TPS61288EVM-064.

2.1 Connector and Test Point Descriptions

This EVM includes I/O connectors and test points as shown in Table 2-1. The power supply must be connected to input connectors, J1 and J2. The load must be connected to output connectors, J3 and J4.

Table 2-1. Connectors and Test Points

Reference Designator	Description
J1	Input voltage positive connection
J2	Input voltage return connection
J3	Output voltage positive connection
J4	Output voltage return connection
TP1	VIN_S+ is for positive input voltage sensing
TP2	VIN_S- is for negative input voltage sensing
TP3	VO_S+ is for positive output voltage sensing
TP4	VO_S- is for negative output voltage sensing
TP5	Bode+ is for bode plot measurement connection
TP6	Bode- is for bode plot measurement connection
TP7	Test point to measure SW pin waveform

2.2 Jumper Configuration

JP1 (VIN Control)

The JP1 jumper connects the control VIN with power VIN. By default, this jumper is set to the ON position. Take off the jumper for a user-defined voltage.

2.2.1 JP2 (Enable)

The JP2 jumper enables the device. By default, this jumper is set to the VCC position. Put this jumper in the GND position to disable the output.

3 Schematic, Bill of Materials, and Board Layout

This section provides the TPS61288EVM-064 schematic, bill of materials (BOM), and board layout.

3.1 Schematic

Figure 3-1 shows the schematic of the TPS61288EVM-064.

Figure 3-1. TPS61288EVM-064 Schematic

3.2 Bill of Materials

Table 3-1 lists the BOM of the TPS61288EVM-064.

Table 3-1. Bill of Materials

Designator	QTY	Value	Description	Package Reference	Part Number	Manufacturer
C1	1	47 μF	CAP, CERM, 22 μF, 25 V, ± 10%, X7R, 1210	7343-31	T495D476M025ATE120	Kemet
C2, C4, C5, C6, C7, C8, C9	7	22 µF	CAP, CERM, 22 μF, 25 V, ± 10%, X7R, 1210	1210	GRM32ER71E226KE15L	MuRata
C3	1	1 μF	CAP, CERM, 1 μF, 50 V, ± 20%, X5R, AEC-Q200 Grade 3, 0603	0603	GRT188R61H105ME13D	MuRata
C10	1	1000 pF	CAP, CERM, 1000 pF, 50 V, ± 10%, X5R, 0402	0402	GRM155R61H102KA01D	MuRata
C11	1	30 pF	CAP, CERM, 30 pF, 50 V, ± 5%, C0G/ NP0, 0402	0402	GRM1555C1H300JA01D	MuRata
C12	1	4.7 μF	CAP, CERM, 4.7 μF, 10 V, ± 10%, X5R, 0603	0603	0603ZD475KAT2A	AVX
C13	1	0.1 μF	CAP, CERM, 0.1 μF, 50 V, ± 10%, X7R, 0603	0603	GCM188R71H104KA57D	MuRata
C15, C16	2	0.1 μF	CAP, CERM, 0.1 μF, 50 V, ± 10%, X7R, AEC-Q200 Grade 1, 0402	0402	CGA2B3X7R1H104K050BB	TDK
J1, J2, J3, J4	4		Terminal, Turret, TH, Double	Keystone1502-2	1502-2	Keystone
JP1	1		Header, 100 mil, 2x1, Tin, TH	Header, 2 PIN, 100mil, Tin	PEC02SAAN	Sullins Connector Solutions
JP2	1		Header, 100 mil, 3x1, Tin, TH	Header, 3 PIN, 100mil, Tin	PEC03SAAN	Sullins Connector Solutions
L1	1		Fixed Inductor 2.2 μH 20% 100 kHz 19.5A 4.5mΩ	SMT_IND_11MM15_10MM0	CMLE105T-2R2MS	Cyntec
R1	1	294k	RES, 294 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW0402294KFKED	Vishay-Dale
R2	1	14.3k	RES, 14.3 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040214K3FKED	Vishay-Dale
R3	1	49.9	RES, 49.9, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040249R9FKED	Vishay-Dale
R5	1	36.5k	RES, 36.5 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040236K5FKED	Vishay-Dale
R6	1	0	RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04020000Z0ED	Vishay-Dale
SH-JP1, SH-JP2	2		Shunt, 100mil, Gold plated, Black	Shunt 2 pos. 100 mil	881545-2	TE Connectivity
TP1, TP2, TP3, TP4, TP5, TP6, TP7	7		Test Point, Miniature, Orange, TH	Orange Miniature Testpoint	5003	Keystone

Table 3-1. Bill of Materials (continued)

Table V II Dill VI Illatorialo (Voltariava)						
Designator	QTY	Value	Description	Package Reference	Part Number	Manufacturer
U1	1		Fully Integrated Synchronous Boost Converter	VQFN-HR11	TPS61288RQQR	Texas Instruments
C14	0	2200 pF	CAP, CERM, 2200 pF, 250 V, ± 10%, X7R, 0805	0805	GRM21AR72E222KW01D	MuRata
C17	0	100 μF	CAP, Polymer Hybrid, 100 μF, 25 V, ± 20%, 30 Ω, 6.3x7.7 SMD	6.3x7.7	EEHZA1E101XP	Panasonic
FID1, FID2, FID3	0		Fiducial mark. There is nothing to buy or mount.	N/A	N/A	N/A
R4	0	2.20	RES, 2.20, 1%, 0.25 W, AEC-Q200 Grade 0, 1206	1206	ERJ-8RQF2R2V	Panasonic

3.3 Board Layout

The TPS61288EVM board is a 4-layer PCB. The top and bottom layers copper thickness is 2-oz. The two inner layers copper thickness is 1-oz. Figure 3-2 and Figure 3-5 show the top view and bottom view, respectively. Figure 3-3 and Figure 3-4 show the inner layer 1 and inner layer 2, respectively.

Figure 3-2. TPS61288EVM-064 Top-Side Layout

Figure 3-3. TPS61288EVM-064 Inner Layer1 Layout

Figure 3-4. TPS61288EVM-064 Inner Layer2 Layout

Figure 3-5. TPS61288EVM-064 Bottom-Side Layout

INSTRUMENTS Revision History www.ti.com

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (July 2020) to Revision A (December 2020)					
•	Updated the numbering format for tables, figures and cross-references throughout the document	2			
•	Update was made in Section 3.1	3			
•	Update was made in Section 3.2	4			
•	Update was made in Section 3.3	6			

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated