

Laboratory 3

Gate Level Minimization using Karnaugh Maps

1. Introduction and Purpose of Experiment

Students will learn to minimize Boolean Expressions using K-Maps and then simulate and implement them.

2. Aim and Objectives

Aim: To apply K-Maps to minimize Boolean expressions

Objectives: At the end of this lab, the student will be able to

- Apply K-Maps to simplify three- and four-variable Boolean Expressions
- Implement minimized expressions using basic and universal gates
- 3. Experimental Procedure
 - a. Minimize the following expressions using K-Maps.
 - 1. $F(A, B, C) = \sum (1,3,5,7)$
 - 2. $F(A, B, C, D) = \sum (0,2,3,7,11,13,14,15)$
 - 3. $F(A,B,C) = \sum (2,3,4,5) + \phi(6,7)$
 - 4. $F = \sim A \sim B \sim C \sim D + A \sim C \sim D + \sim BC \sim D + \sim ABCD + B \sim CD$
 - 5. $F(A, B, C, D) = \prod (1,3,5,7,13,15)$
 - 6. $F(A, B, C, D) = \prod (1,3,6,9,11,12,14)$
 - 7. $F = (\sim A + B + \sim D) + (\sim A + \sim B + \sim C) + (\sim A + \sim B + C) + (\sim B + C + \sim D)$
 - b. Draw truth tables and circuit diagrams for the minimized expressions in 3(a) considering:
 - 3(a) 1 and 3(a) 2: Use basic gates
 - 3(a) 3 and 3(a) 4: Use NAND gates
 - 3(a) 5: Use basic gates
 - 3(a) 6 and 3(a) 7: Use NOR gates
 - c. Use Logisim to generate truth tables and circuit diagrams for the expressions in 3(a).
 - d. Implement the minimized expressions of 3(a)3 to 3(a)6. Show the output to the course leader.
 - e. With an example, show why incorrect grouping in K-Maps may result in a non-minimized expression

Your document should include:

- Handwritten truth tables and circuit diagrams for the expressions
- Logisim screenshots
- Answer to 3(e)

3.a.1. $F(A, B, C) = \sum (1,3,5,7) \dots$

3.a.2. $F(A, B, C, D) = \sum (0,2,3,7,11,13,14,15)...$

3.a.3. $F(A, B, C) = \sum (2,3,4,5) + \phi(6,7)$..

3.a.4. $F = \sim A \sim B \sim C \sim D + A \sim C \sim D + \sim BC \sim D + \sim ABCD + B \sim CD...$

3.a.5. $F(A, B, C, D) = \prod (1,3,5,7,13,15)...$

3.a.6. $F(A, B, C, D) = \prod (1,3,6,9,11,12,14)...$

3.a.7. $F = (\sim A + B + \sim D) + (\sim A + \sim B + \sim C) + (\sim A + \sim B + C) + (\sim B + C + \sim D)$

3.e Let's take the example of 3.a.4, where the K-Map is:

		C, D			
		00	01	11	10
A, B	00	1	0	0	1
	01	1	0	0	1
	11	1	0	0	1
	10	1	1	1	1
	(A	+ D)	(B +	(D	

Since it is a POS form the 0's are grouped, forming two groups of 4 zeros, and the minimized expression is $(A + \sim D)(\sim B + \sim D)$

If instead of that, the 6 zeros were grouped as 3 groups of 2 zeros each, we would have 3 terms in our expression, which would then be $(A+B+\sim D)(A+\sim B+\sim D)(\sim A+\sim B+\sim D)$, which is not minimized, doing further Boolean simplification the actual minimized expression is obtained and it reduces to $(A+\sim D)(\sim B+\sim D)$.

Hence it can be concluded that incorrect grouping in K-Map can lead to unnecessary terms in the expression, that have to be then further manually simplified.