

PCIM Conference Record

Wenjie Xu

09/2024

Power Brain – Al tool: Design automation for power converters

Fig. 2: Examples of the annoated PDF page and figures for object detection algorithm.

Fig. 7: An interpolation map of on-resistance.

Fig. 8: An look-up table on conduction losses.

14360

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 38, NO. 11, NOVEMBER 2023

Magnetically Controlled Transformer With Variable Turns Ratio and Low Series Inductance: Analysis and Implementation Toward Its Application in SMPS

Magnetically Controlled Transformer With Variable Transformer With Var

Camilo Suarez Buitrago[®], Diego Bernal Cobaleda[®], *Student Member, IEEE*, and Wilmar Martinez[®], *Senior Member, IEEE*

Fig. 1. VT principle of operation. (a) Transformer $N_p:(N_{s1}-N_{s2})$. (b) Transformer $N_p:N_{s_1}$. (c) Variable reluctance. (d) Magnetic circuit.

Double E–E core VT structure isometric view.

水下机车的柔性纳米晶片状带芯,IET

高功率无线充电的混合纳米晶代芯分析

PC: C. Jiang (CityU)

Power electronics, transport electrification

Trained HKU, Cambridge U

2 book chapters, 60 papers, 15 patents

- Winner of Acorn Blue Sky Research, Cambridge University
- Silver Award in Youth Innovation
- Gold Medal in Asia Exhibition

Trained Tsinghua U, ETH Zürich 2 books, 100 papers

- HKU Scholar in Top 1%
- IEEE IAS Ralph Lee Prize Paper Award
- IEEE Trans. on Smart Grid Best Paper (1st)

Nonlinear circuits and systems, smart grid

Associate Vice-President, Innovation & Enterprise Director, CityU Academy of Innovation

- IEEE CASS Charles A. Desoer Technical Achievement Award
- Grand Prize & Gold Medal, Silicon Valley International Invention Festival
- Best Paper Awards in IEEE Trans.

Co-PI: X. Yu (PolyU)

Electrochemical energy storage, lithium battery

Trained Tsinghua U, Japan National Institute

- Best Presentation in Graphene Forum
- Excellent Oral Presentation in Tsinghua

双向阻断 IGCT-Plus 器件

关键参数		
V _{DRM} /V _{RRM}	8000	٧
I_{TGQM}	5500	Α
I _{TSM}	40	kA
V _{TO}	1.23	٧
r _T	0.27	mΩ

IGCT(集成门极换流晶闸管)

IGCT-MMC阀塔

清华大学支直流研究中心:

定制化IGCT器件技术,支流开端技术,功率变换技术,系统分析和控保技术

IGCT技术优势:

大容量, 高可靠, 高效率, 低成本, 高密度

IGCT-串联ANPC模块

Si₃N₄ AlGaN GaN

(b)

Fig. 5. (a) Illustration of the trapping process in the DUT; the interface electron

(a)

 βQ_S

Fig. 5. (a) Illustration of the trapping process in the DUT; the interface electron trapping occurs mainly in the critical high-field region near the drain contact. (b) Illustration of the 1-D trapping model in the vertical direction near the drain. The energy barrier is lifted up when additional electrons get trapped.

Repetitive transient overvoltage ringing

Fig. 4. (a) Schematics of the unclamped inductive switching circuit with *in-situ* $R_{DS(on)}$ monitoring; (b) the measured drain overvoltage waveform with a $V_{DS,Peak}$ of 120 V.

Fig. 9 and 10 show the excellent overvoltage robustness of the pGaN gate in GaN HEMTs, which also validates the applicability of the 1% duty cycle-based repetitive transient overvoltage specification for the gate.

Fig. 9. In-situ 7 $V_{DS,Peak}$ monitoring during 1 trillion overvoltage pulses of three EPC2057 GaN transistors, where no measurable $V_{GS,Peak}$ degradation is seen.

Fig. 8. (a) Schematics of the gate UIS test circuit; (b) the measured gate overvoltage waveform with a V_{GS,Peak} of 7 V.

Fig. 6. Evolution of $R_{DS(on)}$ shift of a representative EPC2204 and EPC2302 DUTs under 120 $V_{DS,Peak}$ UIS testing.

Fig.1 Typical Thermal Network of ZthJW

Fig.7. New TO247 ZthJW Thermal Network B (full coupling)

比较分析了不同热阻模型的准确度

Fig.3. Traditional TO247 ZthJW Thermal Network

Fig.6. New TO247 ZthJW Thermal Network A (per switch)

USB-PD 66W, 1.89kW/L Efficiency = 93%

AC input voltage: 90~264Vac

USB PD output:

5V3A,9V3A,15V3A,20V3.25A PDO,

3.3~21V3.25A PPS

Transformer

Core: ECW23.7F/12.8 DMR96

Inductance Lm: 210uH

Np: 18T 0.1*20 Ns: 3T 0.1*80

Lk: 3uH

Q1: CoolGaN IGLD60R190D1AUMA1

Vds:600V

Rdson: 190mΩ

Coss: 32.5pF

Qg: 3.2nC

Q2: OptiMOS™ 5 BSC050N10NS5

Vds:100V Rdson: 5mΩ Coss: 490pF Qg: 49nC

Controller: CYPAP212A1, CYPAS211A1

High Power Density ZVS Flyback Converter

Fig. 3. Equivalent circuit in Primary Energy Storage Stage

Fig. 5. Equivalent circuit in Secondary Energy Delivery Stage

High Power Density ZVS Flyback Converter

Fig. 8. Equivalent circuit in ZVS pulse

Fig. 10. Equivalent circuit in primary ZVS implementation stage

Fig. 1. Cold sprayed hybrid-heat sinks.

Fig. 2. Cold sprayed hybrid-heat sinks.

Fig. 2 (a) Cold Spray deposited Cu contact tracks on Aluminum

The results illustrate that the properties of **cold-sprayed Cu** in the assprayed state are comparable with bulk-Cu with **98% IACS electrical conductivity** and thermal conductivity of **368 W/mK**. Perfectly gas-tight Cu-deposits with a He-leakage rate smaller than **1×10-7 mbar-l/s** have been produced.

Thanks

09/2024

Reference:

