An example poster using KnitR and LaTeX

Daniel Guest

University of Somewhere, Department of Something, One of the Labs

Introduction

- This is an example poster created in LATEX
- A few LATEX packages and other pieces of code and software are used to make this all work:
 - The beamer and beamerposter packages are integral to this poster
 - A slightly modified version of the beamerposter theme available from http://www.nathanieljohnston.

 com/2009/08/latex-poster-template/ was used to style the visual aspects of the poster
 - KnitR was used to allow the output of R code (text, numbers, and figures) to be included directly in the poster

Motivations

Why use LaTeX to make a poster? What advantages does it offer over PowerPoint or other alternatives?

- LaTeX emphasizes a clear separation of content from form, allowing you to focus on the "what" rather than the "how"
- KnitR allows for syntax-highlighted R code, or the output of R code, to be included directly in the poster
- LaTeX has great tools for high-quality typesetting of math, like $\int 2x^2 dx$
- Bibliography systems like biblatex make managing citations and including them in your poster easy
- If there's something unique you need to be able to do (like write International Phonetic Alphabet, or draw diagrams), you can likely extend LATEX through packages to do so

How it works

- The files
 - beamerthemconfposter.sty contains definitions of the title and blocks, as well as colors and theme options
 - beamerposter.sty provides the beamerposter package
 - poster.Rnw the source file, which is turned into a .tex file by KnitR
- The source file
 - The poster is composed of a title and columns, with each column being subdivided into blocks
 - Blocks contain the content of the poster, and come in two flavors normal (like the first block, "Introduction") and alert (like the this block, "Motivations")
 - R code is delimited by special characters **«»** and **©**

Some examples

KnitR supports high-quality syntax-highlighting of R (and many other languages), as well as directly including the output of R in the output document

my_summary

A tibble: 3 x 5

##		Species	sepallen	sepalwid	petallen	petalwid
##		<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	setosa	5.0	3.4	1.5	0.25
##	2	versicolor	5.9	2.8	4.3	1.33
##	3	virginica	6.6	3.0	5.6	2.03

This functionality includes graphs!

```
ggplot(my_data, aes(x=Sepal.Length, y=Sepal.Width, color=Petal.Length)) +
    geom_point() + facet_wrap(~Species)
```


And, there's a variety of options to control whether or not your R code is visible or hidden and the size and characteristics of your output text and/or graphs. For example, here's a graph using the airquality data set in R, but the actual R code that generated the graph hidden in the output document.

Picking joint bandwidth of 2.65

Resources

- http://www.personal.kent.edu/~rmuhamma/
 Systems/latex.html Big collection of LATEX
 resources
- https://yihui.name/knitr/ overview of KnitR
- https://yihui.name/knitr/options/—
 KnitR options to modify the behavior of R code chunks

An example compilation in Linux

```
Rscript -e "library(knitr);
knitr('./poster.Rnw')"
latexmk -pdf poster.tex
```

More examples of nice things LATEX can do

Math typesetting

$$\nabla \mathbf{f} = \frac{\partial \mathbf{f}}{\partial x} \hat{\mathbf{i}} + \frac{\partial \mathbf{f}}{\partial y} \hat{\mathbf{j}} + \frac{\partial \mathbf{f}}{\partial z} \hat{\mathbf{k}}$$
 (1)

$$f(\zeta) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\zeta}dx \tag{2}$$

Tables

Parameter	Texas	Minnesota
Population (mil.)	27	6
Median income (thou. \$)	56	68