PATENT ABSTRACTS OF JAPAN BEST AVAILABLE COPY

(11) Publication number: 2002371037 A

(43) Date of publication of application: 26.12.02

(51) Int. CI

C07C 68/08 B01D 3/14 C07C 68/06 C07C 69/96

(21) Application number: 2001177479

(22) Date of filing: 12.06.01

(71) Applicant:

MITSUBISHI CHEMICALS CORP

(72) Inventor:

KANAMARU TAKASHI

(54) METHOD FOR PRODUCING DIMETHYL CARBONATE HAVING HIGH PURITY

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method for producing dimethyl carbonate having high purity by efficiently removing glycol ether produced as a by-product in the transesterification reaction ethylene carbonate and methanol.

SOLUTION: Dimethyl carbonate is produced in high purity by distilling a transesterification reaction product of ethylene carbonate and methanol with a distillation column having a theoretical plate number of \approx 10 to concentrate the by-produced glycol ether in the column, extracting the concentrated glycol ether from the side stream and distilling out high-purity dimethyl carbonate from the column top.

COPYRIGHT: (C)2003,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-371037 (P2002-371037A)

(43)公開日 平成14年12月26日(2002.12.26)

(51) Int.Cl. ⁷	識別記号	FΙ	= mm */d5,de)
C 0 7 C 68/08		0000	テーマコート*(参考)
B01D 3/14		C 0 7 C 68/08	4D076
DUID 3/14		B 0 1 D 3/14	· -
C 0 7 C 68/06			A 4H006
69/96	• .	C 0 7 C 68/06	Α
09/96	•	69/96	
·			L

審査請求 未請求 請求項の数4 OL (全 5 頁)

(01)	出願番号
12.17	山湖田守

特願2001-177479(P2001-177479)

(22)出願日

平成13年6月12日(2001.6.12)

(71)出顧人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 金丸 髙志

三重県四日市市東邦町1番地 三菱化学株

式会社内

(74)代理人 100068065

弁理士 長谷川 一 (外3名)

Fターム(参考) 4D076 AA16 AA22 AA24 BB03 EA11Z

EA14Y EA17Z

4H006 AA02 AD11 BC52 BD84

(54) 【発明の名称】 高純度ジメチルカーポネートの製造方法

(57)【要約】

【課題】エチレンカーボネートとメタノールを原料とするエステル交換反応で副生するグリコールエーテルを効率よく除去して高純度のジメチルカーボネートを製造する方法を提供すること。

[解決手段] エチレンカーボネートとメタノールをエステル交換反応させて得られた反応生成液を、理論段数 1 0 段以上の蒸留塔を用いて蒸留して、副生グリコールエーテルを塔内で濃縮しその側流から抜き出し、かつ、その塔頂からグリコールエーテルを含まない高純度ジメチルカーボネートを留出させることを特徴とする高純度ジメチルカーボネートの製造方法。

1

(特許請求の範囲)

-【請求項 I 】エチレンカーボネートとメタノールをエス テル交換反応させて得られた反応生成液を、理論段数 1 ο 段以上の蒸留塔を用いて蒸留して、副生グリコールエ デルを塔内で濃縮しその側流から抜き出し、かつ、そ の塔頂からグリコールエーテルを含まない高純度ジメチ ルカーボネートを留出させることを特徴とする高純度ジ メチルカーボネートの製造方法。

【請求項2】蒸留塔の還流比を1以上の最適な条件を選 択することで、上記グリコールエーテルの濃縮を、蒸留 10 -塔の供給段より上部で行うことを特徴とする請求項 1 に 記載の高純度ジメチルカーボネートの製造方法。

【請求項3】蒸留塔の回収部を理論段数3段以上とする <u> ととを特徴とする請求項1に記載の髙純度ジメチルカー</u> ボネートの製造方法。

【請求項4】蒸留塔の操作圧力を大気圧以下とすること を特徴とする請求項 1 に記載の高純度ジメチルカーボネ **ムトの製造方法。**

[発明の詳細な説明]

[0001]

-【発明の属する技術分野】本発明は、エチレンカーボネ -- トとメタノールをエステル交換反応させてジメチルカ **_ ボネートを製造する工程において副生したグリコール** ェーテルを効率よく分離する、高純度ジメチルカーボネ **_ トの製造方法に関するものである。**

[0002]

· 【従来の技術】ジメチルカーボネートの製造方法には、 **,タノールの酸化カルボニル化法、尿素のメタノリシス** 法、エステル交換法等があり、実用化ないしは提案され . ている。これらのうち、エチレンカーボネートとメタノ **_ルを反応させてジメチルカーボネートを製造するエス** テル交換法に関して検討した結果、エステル交換反応に [^] よりジメチルカーボネートを製造する過程で、グリコー ルエーテルが副生することがわかった。従来の検討では _{グリコールエーテルの除去に関する知見は得られていな} かった。

[0003]

・ [発明が解決しようとする課題] 従来のジメチルカーボ -_ネートの製造方法においては、グリコールエーテル分離* *に関しては検討されていなかったが、グリコールエーテ ルとジメチルカーボネートの沸点は比較的近いため、グ リコールエーテルは製品であるジメチルカーボネート側 に混入しやすいという問題点があった。すなわち、本発 明は、エチレンカーボネートとメタノールを原料とする エステル交換反応で副生するグリコールエーテルを効率 よく除去して高純度のジメチルカーボネートを製造する 方法を提供することを目的としている。

[00041

【課題を解決するための手段】本発明者らは、上記問題 点を解決するため、各種の検討を行った結果、副生する グリコールエーテルはジメチルカーボネートと沸点が近 いため、通常の蒸留分離においてはジメチルカーボネー トに同伴してジメチルカーボネートの純度を落とす原因 となるが、ジメチルカーボネート精製塔の運転条件を適 切に調整することにより、蒸留塔内、好ましくは供給段 より上の位置にグリコールエーテルを濃縮できること、 しかも、該濃縮部位すなわち側流からグリコールエーテ ルを、単独で又は他の成分とともに、抜き出すことによ り効果的に除去することができ、高純度のジメチルカー ボネートを留出させることができることを見出して、本 発明に到達した。

【0005】すなわち、本発明の要旨は、エチレンカー ボネートとメタノールをエステル交換反応させて得られ た反応生成液を、理論段数10段以上の蒸留塔を用いて 蒸留して、副生グリコールエーテルを塔内で濃縮しその 側流から抜き出し、かつ、その塔頂からグリコールエー テルを含まない高純度ジメチルカーボネートを留出させ ることを特徴とする髙純度ジメチルカーボネートの製造 方法に存する。

[0006]

20

【発明の実施の形態】エステル交換反応

該反応は、エチレンカーボネートとメタノールとを、触 媒の存在下、エステル交換反応させて、ジメチルカーボ ネートとエチレングリコールを生成するもので、下記式 (1)で表される。

[0007]

【化1】

[0008] 触媒としては、慣用のエステル交換触媒を 選択することができる。具体的には、均一系触媒とし て、トリエチルアミン等のアミン類、ナトリウム等のア ルカリ金属、クロロ酢酸ナトリウムやナトリウムメチラ , _{ント}等のアルカリ金属化合物、及びタリウム化合物が、

ン交換樹脂、アルカリ金属又はアルカリ土類金属の珪酸 塩を含浸した無定型シリカ類、アンモニウム交換Y型ゼ オライト、コバルトとニッケルとの混合酸化物等が、そ れぞれ例示できる。

【0009】エステル交換の反応条件としては、反応温 また不均一系触媒としては、官能基により変性したイオ 50 度は50~180°Cで、メタノールとエチレンカーボネ

ートの仕込みモル比は2~20とするのが一般的であ る。このモル比が2未満ではエステル交換の転化率が低 下し、一方20を超えると多量の未反応原料が系内に残 留し、加熱・冷却等のエネルギーを多く要したり、リサ イクル使用する場合の設備への負担が増す等の問題があ

【0010】このエステル交換反応は、平衡反応であ り、反応生成液には、生成物のジメチルカーボネートと* * エチレングリコールの他に、原料のエチレンカーボネー トやメタノールが含まれている。さらに、上記式(1) の主反応と同時に、下記式(2)の副反応によりグリコ ールエーテル(2-methoxyethanol)が 生成するので、反応生成液には、この副生グリコールエ ーテルも含まれる。

4

[0011]

[化2]

30

【0012】蒸留分離

この副生グリコールエーテルは沸点124.4℃で、メ タノール(64.7℃)、ジメチルカーボネート(9: 0.3℃) より高沸点であり、エチレングリコール(1 97.3℃)、エチレンカーボネート(248.2℃) より低沸点である。反応生成液に含まれる、これらの成 分の中、メタノールは、ジメチルカーボネートの精留に 20 先立って除去し、エステル交換反応にリサイクルする。 【0013】メタノールを除去した反応生成液は、引き 続き蒸留によって、髙純度のジメチルカーボネート留出 液と、副生エチレングリコール及び未反応エチレンカー ボネートを含む缶出液とに分離する。缶出液として分離 されたエチレングリコールとエチレンカーボネートの混 合物は、通常、加水分解でエチレンカーボネートをエチ レングリコールに変えた後脱水し、エチレングリコール として製品化する。エチレングリコール側に混入したグ リコールエーテルがある場合は、脱水の操作で水ととも に除去できる。

【0014】本発明の蒸留分離の際、注意しなければな らない点として、次の1)~3)がある。

- 1) ジメチルカーボネートはとりわけ高純度が要求され る製品であり、グリコールエーテルが混入するのは好ま しくない。
- 2) グリコールエーテルの生成量は140℃の反応で 0. 1 m o 1%程度と微量なので、通常の蒸留条件では ジメチルカーボネートに混入し、分離できない。
- 3)グリコールエーテルの沸点がジメチルカーボネート に近いため、グリコールエーテルをエチレングリコール とともに分離しようとすると、ジメチルカーボネートも エチレングリコールに同伴されてロスが発生する。従っ て、一般的な蒸留条件の最適化程度では、これらの成分 の効率的な分離は困難であった。

【0015】従って、本発明においては、側留抜出を加 えた蒸留の条件を設定することにより、蒸留塔内の供給 段より上の部分にグリコールエーテルを顕著に濃縮し、 この部位から少量の液を抜き出すことにより、グリコー ルエーテルを効果的に除去することを特徴としている。

蒸留条件として、蒸留分離に必要な理論段数は、還流比 によって変わってくるが、経済性を考慮すると10段以 上が好ましく、15段以上がさらに好ましい。グリコー ルエーテルの濃縮のために、ある程度大きくすることは 必要であるが、大きすぎるとエネルギー消費量が増加す る。通常は理論段数100段以下、好ましくは50段以 下、より好ましくは30段以下のものを用いる。蒸留塔 の還流比を1以上の最適な条件を選択することで、グリ コールエーテルを蒸留塔の供給段より上部で濃縮する。 還流比は、1~10が好ましく、3~7がさらに好まし い。蒸留塔塔底からの缶出液をエチレングリコールとし て製品化するには、操作温度が高いと製品エチレングリ コールの品質に悪影響を及ぼすので、蒸留塔の操作圧力 は大気圧以下として塔底温度の上昇を避ける。ただし、 圧力を下げすぎると、分離効率、エネルギー効率ともに 悪化するので、適切な圧力を選択する必要がある。適切 な圧力範囲は、40kPa以下、好ましくは13~27 k Paの範囲である。また、蒸留塔の回収部を理論段数 3段以上とすることが、エチレングリコールへのジメチ ルカーボネートの混入を予防する点から好ましい。

【0016】蒸留塔には、充填塔、スルザーパッキン グ、メラバック、MCパック等の規則充填物、又はIM TP、ラシヒリング等の不規則充填物を充填した充填 塔、泡鐘塔、シーブトレイ、バルブトレイ塔を用いた棚 段塔等、いずれの型式を用いることもできる。

[0017]

【実施例】反応生成液

エステル交換反応器は、直径28cm、長さ200cm のジャケット付き管型反応器で、内部にコバルトーイッ トリウム系混合酸化物触媒を充填し、外部よりジャケッ トで内部温度を140℃に保持して、エチレンカーボネ ートとメタノールの反応を実施した。得られた反応生成 液は、塔頂圧力101.3kPa、塔頂温度64℃、塔 底温度160℃で蒸留分離した。塔頂からは、メタノー ル90重量%及びジメチルカーボネート10重量%から なる混合物を得た。一方、塔底からは、メタノールを分 離回収した反応生成液として、下記の組成の混合物を得

ジメチルカーボネート 19.7重量% グリコールエーテル 0. 1重量% エチレングリコール 13.6重量% エチレンカーボネート 66.5重量%

【0018】蒸留分離

上記のメタノールを分離回収した反応生成液は、図-1 に示す理論段数20段の蒸留装置にフィードし、蒸留分 離を行った。蒸留塔の運転条件を表-1、マスバランス ーテルの除去を考慮せず、ジメチルカーボネートとエチ レングリコール、エチレンカーボネートの分離のみを考 慮したケース、比較例2は、蒸留塔内にグリコールエー テルを濃縮したケース、実施例は、グリコールエーテル を中段から除去するケースである。

【0019】比較例1

蒸留塔の理論段数を20段(コンデンサーを第1段、リ ボイラーを第20段とする)とし、比較例1では、第7 段に、前記メタノールを分離回収した反応生成液をフィ ードした。還流比を1.2として、塔頂留出液にエチレ 20 ングリコールやエチレンカーボネートが混入せず、しか も缶出液のジメチルカーボネートが0.1 重量%程度と なるようにした。この条件でグリコールエーテルは全量 ジメチルカーボネートに混入する。

【0020】比較例2

比較例2では、グリコールエーテルとジメチルカーボネ ートを分離しやすくするため、フィード段を第14段に* *下げるとともに、還流比を5まで上げた。これによりグ リコールエーテルは第11段を中心として顕著に濃縮さ れた。グリコールエーテルは、フィード量の69%が缶 出液側に分配した。また、缶出中のジメチルカーボネー トは、還流を上げた効果で20重量ppm未満に低下し たが、留出ジメチルカーボネート中には依然グリコール エーテルが混入している。

【0021】実施例

実施例では、第12段から50g/hで側流液を抜き出 を表-2に示した。ここで、比較例1は、グリコールエ 10 した。側流にはグリコールエーテルが28重量%、ジメ チルカーボネートが52重量%含まれており、フィード されたグリコールエーテルの99.9重量%以上が側流 から除去できた。グリコールエーテルが除去されたこと により、塔頂留出液のジメチルカーボネート濃度は10 0重量%となり、缶出中にジメチルカーボネートは実質 的に含まれていない結果が得られた。

[0022]

【表1】

表一1	運転条	件		
	単位	比較例1	比較例2	実施例
圧力	kPa	16	16	16
段数		20	20	20
留田昼	g/h	2445.4	2445.4	2415.4
還流比		1.2	5	5
フィート段		第7段	第14段	第14股
側流段		_	_	第12段
伊德曼	a/b			80

[0023]

【表2】

表-2	マスパランス		_		単位 g/h
		フィード		側流	缶出
比較例1	シメチルカーホ ネート	2441	2431		10
	ク'リコールエーテル		14		
l .	エチレンク・リコール	1683			1683
i .	エチレンカーホ ネート	8230			8230
L	<u>#</u> }	12368	2445		9923
比較例2	シメチルカーホネート	2441	2441		
1	クリコールエーテル	14	4		10
l .	エチレンク・リコール	1683			1683
l	エチレンカーホ・ネート	8230			8230
	14	12368	2445		9923
実施例	シブメチルカーホ ネート	2441	2415	26	
l	ク・リコールエーテル	14		14	
[エチレンク リコール	1683		8	1675
	エチレンカーホ ネート	8230		2	8228
	計	12368	2415	50	9903

[0024]

【発明の効果】本発明によれば、エチレンカーボネート とメタノールを原料とするエステル交換反応で副生する グリコールエーテルを効率よく除去し、髙純度のジメチ 40 ルカーボネートを効率よく製造することができるという 効果が得られる。

【図面の簡単な説明】

【図1】 蒸留装置の線図的略図

【図1】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
^ <i>)</i>

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.