HOMEWORK

数理方程与特殊函数

王翎羽 U202213806 提高 2201 班

2024年3月18日

练习五

1. 求下列定解问题的解:

$$\left\{ \begin{array}{l} u_{xx} + u_{yy} = 0, \quad 0 < x < 1, 0 < y < 1, \\ u_{x}(0, y) = u_{x}(1, y) = 0, \\ u(x, 0) = 1 + \cos 3\pi x, \quad u(x, 1) = 3\cos 2\pi x. \end{array} \right.$$

解: 设
$$u(x,y)=X(x)Y(y)$$
, 则得到 $YX^{''}+XY^{''}=0$, 即得到 $\frac{X^{''}}{X}=-\frac{Y^{''}}{Y}=-\lambda$. 即有 $Y^{''}-\lambda Y=0$ 和 $X^{''}+\lambda X=0$. 其中 $X^{'}(0)=X^{'}(1)=0$.

当 $\lambda < 0$ 时,方程没有非平凡解. 当 $\lambda = 0$ 时,X(x) = A + Bx,

$$X X'(0) = X'(1) = 0, X(x) \equiv A, Y(y) = D + Ey$$

当 $\lambda > 0$ 时,X 的通解为 $X(x) = B\cos\sqrt{\lambda}x + C\sin\sqrt{\lambda}x, X'(x) = -B\sqrt{\lambda}\sin\sqrt{\lambda}x + C\sqrt{\lambda}\cos\sqrt{\lambda}x$.

由边界条件得, $\lambda = (n\pi)^2, n = 1, 2, 3..., X(x) = B \cos n\pi x.$

由通解可得, $Y(y) = Fe^{n\pi y} + Ge^{-n\pi y}$.

那么
$$u(x,y) = A(D+Ey) + \sum_{n=1}^{\infty} B_n(F_n e^{n\pi y} + G_n e^{-n\pi y}) \cos n\pi x$$
, 令 $a_n = B_n F_n$, $b_n = B_n G_n$.

$$u(x,0) = AD + \sum_{n=1}^{\infty} (a_n + b_n) \cos n\pi x = 1 + \cos 3\pi x$$
. 易得 $AD = 1$,

以及
$$a_n + b_n = 2 \int_0^1 \cos 3\pi x \cdot \cos n\pi x dx = \begin{cases} 1, & n = 3, \\ 0, & n \neq 3. \end{cases}$$

$$u(x,1) = A(D+E) + \sum_{n=1}^{\infty} (a_n e^{n\pi} + b_n e^{-n\pi}) \cos n\pi x = 3 \cos 2\pi x.$$

可得
$$AD + AE = 0, a_n e^{n\pi} + b_n e^{-n\pi} = 2 \int_0^{13} \cos 2\pi x \cdot \cos n\pi x dx = \begin{cases} 3, & n = 2, \\ 0, & n \neq 2. \end{cases}$$

解方程, 得:
$$u(x,y) = 1 - y + \frac{3}{e^{2\pi} - e^{-2\pi}} (e^{2\pi y} - e^{-2\pi y}) \cos 2\pi x + \frac{1}{e^{3\pi} - e^{-3\pi}} (e^{3\pi} e^{3\pi y} + e^{-3\pi} e^{-3\pi y}) \cos 3\pi x.$$

2. 设有一内半径为 r_1 ,外半径为 r_2 的圆环形导热板,上下两侧绝热. 如果内圆温度保持零度,而外圆温度保持 $u_0(u_0 > 0)$ 度,试求稳恒状态下该导热版的温度分布规律 $u_r(r,\theta)$. 问题归结为在稳恒状态下,求解拉普拉斯方程 $\Delta u = u_{xx} + u_{yy} = 0$ 边值问题,即在极坐标系下求解定解问题:

$$\begin{cases} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, & r_1 < r < r_2, 0 < \theta < 2\pi, \\ u(r_1, \theta) = 0, & u(r_2, \theta) = u_0, & 0 < \theta < 2\pi, \\ u(r, \theta) = u(r, \theta + 2\pi). & (Natural Boundary Condition) \end{cases}$$

解: 设
$$u(r,\theta)=R(r)\Phi(\theta)$$
, 则有 $R^{''}+\frac{1}{r}R^{'}\Phi+\frac{1}{r^{2}}R\Phi^{''}=0$, 得到 $\frac{r^{2}R^{''}+rR^{'}}{R}=-\frac{\Phi^{''}}{\Phi}=\lambda$. 对于 $\Phi^{''}+\lambda\Phi=0$, $\Phi(\theta)=\Phi(\theta+2\pi)$, 当 $\lambda<0$ 时,问题没有非平凡解.

1

当
$$\lambda = 0$$
 时, $\Phi(\theta) = A_0\theta + B_0$, 又由周期条件可知, $A_0 = 0$, $\Phi(\theta)_0 = B_0$.
对于 $R(r)$ 而言, $r^2R'' + rR' = 0$, 解得 $R_0(r) = C_0 \ln r + D_0$.

当
$$\lambda>0$$
 时, 通解为 $\Phi(\theta)=E\cos\sqrt{\lambda}\theta+F\sin\sqrt{\lambda}\theta$. 由边界条件可知, $\lambda=n^2,n=1,2\ldots$

代入可得
$$r^2R'' + rR' - \lambda R = 0$$
,解欧拉方程,解得 $:R_n(r) = C_nr^n + D_nr^{-n}$.

得到:
$$u(r,\theta) = B_0(C_0 \ln r + D_0) + \sum_{n=1}^{\infty} (E_n \cos n\theta + F_n \sin n\theta)(C_n r^n) + D_n r^{-n}$$
.

又
$$u(r_1, \theta) = B_0 C_0 \ln r_1 + B_0 D_0 + \sum_{n=1}^{\infty} (E_n \cos n\theta + F_n \sin n\theta) (C_n r_1^n) + D_n r_1^{-n}$$
 得到

$$\begin{cases} B_0 C_0 \ln r_1 + B_0 D_0 = 0, \\ \sum_{n=1}^{\infty} (E_n \cos n\theta + F_n \sin n\theta) (C_n r_1^n) + D_n r_1^{-n} = 0. \end{cases}$$

和
$$u(r_2,\theta) = B_0 C_0 \ln r_2 + B_0 D_0 = u_0$$

解得 $B_0 C_0 = \frac{u_o}{\ln \frac{r_2}{r_1}}$ 和 $B_0 D_0 = \frac{\ln r_1 u_0}{\ln \frac{r_1}{r_2}}$. 所以 $u(r,\theta) = \frac{u_0 \ln \frac{r}{r_1}}{\ln \frac{r_2}{r_1}}$.

3. 求下列定解问题的解:

$$\begin{cases} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, & 0 < r < 1, 0 < \theta < \frac{\pi}{2}, \\ u(r,0) = 0, & u(r, \frac{\pi}{2}) = 0, & 0 < r < 1, \\ u(1,\theta) = \theta(\frac{\pi}{2} - \theta). & 0 < \theta < \frac{\pi}{2} \end{cases}$$

解: 设
$$u(r,\theta) = R(r)\Phi(\theta)$$
, 则有 $R'' + \frac{1}{r}R'\Phi + \frac{1}{r^2}R\Phi'' = 0$, 得到 $\frac{r^2R'' + rR'}{R} = -\frac{\Phi''}{\Phi} = \lambda$. 对于 $\Phi'' + \lambda\Phi = 0$, $\Phi(\theta) = \Phi(\frac{\pi}{2})$, 当 $\lambda < 0$ 时,问题没有非平凡解. 当 $\lambda = 0$ 时, $\Phi(\theta) = A_0\theta + B_0$,又 $\Phi(0) = B = 0$, $\Phi(\frac{\pi}{2}) = \frac{\pi}{2}A = 0$,所以 $x \equiv 0$. 当 $\lambda > 0$ 时,通解为 $\Phi(\theta) = E\cos\sqrt{\lambda}\theta + F\sin\sqrt{\lambda}\theta$,又 $\Phi(0) = C\cos\sqrt{\lambda} \times 0 = C = 0$, $\Phi(\frac{\pi}{2}) = D\sin\sqrt{\lambda} \cdot \frac{\pi}{2} = 0$. 即 $\frac{\pi}{2}\sqrt{\lambda} = n\pi$. 所以 $\lambda = (2n)^2$, $n = 1, 2, \ldots$, 那么 $\Phi_n(\theta) = D_n \sin 2n\theta$, $n = 1, 2, \ldots$ 将 $\lambda = (2n)^2$... 代入,解欧拉方程,得到: $R_n(r) = E_n r^{2n} + F_n r^{-2n}$. 所以有 $u(r,\theta) = \sum_{n=1}^{\infty} (a_n r^{2n} + b_n r^{-2n}) \sin 2n\theta$,其中 $a_n = E_n D_n$, $b_n = F_n D_n$,由 $|R(0)| < +\infty$,则 $F_n = 0$. 所以 $a_n + b_n = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \theta(\frac{\pi}{2} - \theta) \sin 2n\theta d\theta = \frac{4}{\pi} \times \frac{2[1 - (-1)^n]}{8n^3}$.

练习六

1. 求解如下定解问题:

$$\begin{cases} u_t = u_{xx} + \cos \pi x, & 0 < x < 1, t > 0 \\ u_x(0, t) = u_x(1, t) = 0, \\ u(x, 0) = 0 \end{cases}$$

解: 方程所对应的齐次方程 $u_t=u_{xx}$ 满足该边界条件的固有函数系为 $\{\cos n\pi x\}$. 设 $U(x,t)=\sum\limits_{n=1}^{\infty}u_n(t)\cos n\pi x$. 代入方程中,得:

$$\sum_{n=1}^{\infty} \left[u_n'(t) + n^2 \pi^2 u_n(t) \cos n \pi x \right] \cos n \pi x = \cos \pi x. \quad \text{ if } n \neq 1 \text{ 时,问题没有非平凡解.}$$
 if $n = 1$ 时,由 $Laplace$ 变换, $sU(s) - u(0) + \pi^2 U(s) = \frac{1}{s}$,得到 $U(s) = \frac{1}{\pi^2} \left(\frac{1}{s} - \frac{1}{\pi^2 + s} \right)$,由 $Laplace$ 逆变换,得到 $u(t) = \frac{1}{\pi^2} (1 - e^{-\pi^2 t})$. 所以 $u(x,t) = \frac{1}{\pi^2} (1 - e^{-\pi^2 t}) \cos \pi x$.

2. 求解如下定解问题:

$$\begin{cases} u_{tt} = a^2 u_{xx} + t \sin \frac{\pi x}{l}, & 0 \le x \le l, t \ge 0 \\ u(0,t) = u(l,t) = 0, & t \ge 0, \\ u(x,0) = 0, & u_t(x,0) = 0, & 0 \le x \le l \end{cases}$$

解: 方程所对应的齐次方程 $u_{tt}=a^2u_{xx}$ 满足该边界条件的固有函数系为 $\{\sin\frac{n\pi x}{l}x\}$.

设
$$U(x,t) = \sum_{n=1}^{\infty} u_n(t) \sin \frac{n\pi x}{l} x$$
. 代入方程中,得:

$$u_{tt} = \sum_{n=1}^{\infty} u_n''(t) \sin \frac{n\pi x}{l} x \, \text{Im} \, u_{xx} = \sum_{n=1}^{\infty} u_n(t) (-1) \left(\frac{n\pi}{l}\right)^2 \sin \frac{n\pi x}{l} x.$$

$$\displaystyle \mathbb{II} \, \sum_{n=1}^{\infty} \left[u_n''(t) + \left(\frac{n\pi\alpha}{l} \right)^2 \right] \sin \frac{n\pi x}{l} = t \sin \frac{\pi x}{l}.$$

当
$$n=1$$
 时, $u_1''(t)+\left(\frac{\pi\alpha}{l}\right)^2u_n(t)=t$, 且 $u_1''(0)=u_1(0)=0$.

由 Laplace 变换, 得:
$$s^{2}U_{1}(s) - su_{1}(0) - s'u_{1}(0) + (\frac{\pi\alpha}{l})^{2}U_{1}(s) = \frac{1}{s^{2}}$$

$$\mathbb{E} U_1(s) = \left(\frac{l}{\pi\alpha}\right)^2 \left(\frac{1}{s^2} - \frac{1}{\pi\alpha} \frac{\frac{\pi\alpha}{l}}{s^2 + \left(\frac{\pi\alpha}{l}\right)^2}\right).$$

由
$$Laplace$$
 逆变换, 得: $u_1(t) = \left(\frac{l}{\pi\alpha}\right)\left(t - \frac{l}{\pi\alpha}\sin\frac{\pi\alpha t}{l}\right)$. 即: $u(x,t) = \left(\frac{l}{\pi\alpha}\right)\left(t - \frac{l}{\pi\alpha}\sin\frac{\pi\alpha t}{l}\right)\sin\frac{\pi x}{l}$.