

ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

PATIENT

DISEASE Brain glioblastoma (GBM)
NAME Huang, Cheng-Pin
DATE OF BIRTH 02 January 1968
SFX Male

MEDICAL RECORD # 47743760

PHYSICIAN

ORDERING PHYSICIAN Hsu, Pin-Chuan
MEDICAL FACILITY Taipei Veterans General Hospital
ADDITIONAL RECIPIENT None
MEDICAL FACILITY ID 205872
PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN SITE Brain
SPECIMEN ID S110-30711 C (PF210345)
SPECIMEN TYPE Slide Deck
DATE OF COLLECTION 15 October 2021

SPECIMEN RECEIVED 04 November 2021

Biomarker Findings

Microsatellite status - MS-Stable
Tumor Mutational Burden - 3 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

NF1 loss exons 1-8
MDM2 amplification
PTEN Q171* - subclonal†
PPP2R2A rearrangement exon 8
RB1 loss exons 3-12
TERT promoter -146C>T

3 Disease relevant genes with no reportable alterations: EGFR, IDH1, PDGFRA

† See About the Test in appendix for details.

2 Therapies with Clinical Benefit

23 Clinical Trials

O Therapies with Resistance

BIOMARKER FINDINGS

Microsatellite status - MS-Stable

Tumor Mutational Burden - 3 Muts/Mb GENOMIC FINDINGS NF1 - loss exons 1-8 10 Trials see p. 11 MDM2 - amplification 6 Trials see p. 9

PTEN - Q171* - subclonal

10 Trials see p. 13

THERAPY /	AND CLINICAL '	TRIAL IMPLICATIONS	
-----------	----------------	--------------------	--

No therapies or clinical trials. see Biomarker Findings section

No therapies or clinical trials. see Biomarker Findings section

THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
none	Selumetinib
	Trametinib
none	none
none	none

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

PPP2R2A - rearrangement exon 8 p. 6 TERT - promoter -146C>T p. 7

RB1 - loss exons 3-12 p. 6

PATIENT Huang, Cheng-Pin TUMOR TYPE
Brain glioblastoma (GBM)
COUNTRY CODE
TW

REPORT DATE 10 Nov 2021 ORDERED TEST # ORD-1227775-01

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and exhaustive. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies.

Therapies contained in this report may have been approved by the US FDA.

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and

experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

Low-level MSI has been reported in 5-9% of glioblastoma (GBM) samples⁶⁻⁸. A large-scale study did not find high-level microsatellite instability (MSI-H) in any of 129 GBM samples⁶, although a small-scale study reported MSI-H in 4 of 15 pediatric GBMs and 1 of 12 adult GBMs⁹. The frequency of MSI has been reported to be increased in relapsed compared to primary GBM⁶, in GBMs with a previous lower grade astrocytoma⁷, and in giant cell GBM compared to classic GBM⁸.

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹⁰. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH₂, MSH₆, or PMS₂¹⁰⁻¹². This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers13-15. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins 10,12,14-15.

BIOMARKER

Tumor Mutational Burden

RESULT 3 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1¹⁶⁻¹⁸, anti-PD-1 therapies¹⁶⁻¹⁹, and combination nivolumab and ipilimumab²⁰⁻²⁵. In glioma, a lack of association between TMB and clinical benefit from immune checkpoint inhibitors has been reported^{16,26-27}. However, multiple case studies have reported that patients with ultramutated gliomas driven by POLE

mutations have benefited from treatment with anti-PD-1²⁸⁻²⁹ or anti-PD-L1³⁰ therapies. Therefore, although increased TMB alone may not be a strong biomarker for PD-1 or PD-L1 inhibitors in this cancer type, these agents may have efficacy for patients with glioma harboring both high TMB and POLE mutation.

FREQUENCY & PROGNOSIS

Glioblastoma (GBM) harbors a median TMB of 2.7 mutations per megabase (muts/Mb), and 4.2% of cases have high TMB (>20 muts/Mb)³¹. For pediatric patients, high TMB has been reported in a subset of high-grade gliomas, frequently in association with mutations in mismatch repair or proofreading genes and in TP53, whereas BRAF alterations or other oncogene fusions were observed more frequently in brain tumors harboring low TMB³²⁻³³. Increased TMB has been reported to correlate with higher tumor grade in glioma³⁴ and glioblastoma (GBM) tissue samples with biallelic mismatch repair deficiency

(bMMRD)²⁸, as well as with shorter OS of patients with diffuse glioma³⁵.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma $^{36-37}$ and cigarette smoke in lung cancer³⁸⁻³⁹, treatment with temozolomide-based chemotherapy in glioma⁴⁰⁻⁴¹, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁴²⁻⁴⁶, and microsatellite instability (MSI)^{42,45-46}. This sample harbors a TMB below levels that would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents $^{16,26-30}$.

GENOMIC FINDINGS

GENE

NF1

ALTERATION loss exons 1-8

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence in neurofibromatosis Type 1-associated neurofibroma⁴⁷⁻⁵⁰, glioma or glioblastoma⁵⁰⁻⁵⁴, and non-small cell lung cancer⁵⁵, NF1 inactivation may predict sensitivity to MEK inhibitors such as cobimetinib, trametinib, binimetinib, and selumetinib. Loss or inactivation of NF1 may also predict sensitivity to mTOR inhibitors, including everolimus and temsirolimus, based on limited clinical data⁵⁶⁻⁵⁸ and strong preclinical data in models of malignant peripheral nerve sheath tumor (MPNST)⁵⁹⁻⁶⁰. A preclinical study suggests that combined mTOR and MEK inhibition is

effective in a model of NF1-deficient MPNST⁶¹. Whereas frequent adverse events precluded a recommended Phase 2 dose and schedule for the combination of trametinib and everolimus in a Phase 1b trial for solid tumors⁶², a retrospective study for heavily pretreated patients with solid tumors reported tolerable regimens of the combination for 23/31 patients, with 16 patients treated >3 months and evaluable patients achieving a median PFS of 6.5 months⁶³.

FREQUENCY & PROGNOSIS

NF1 mutation has been observed in 5-6% of lower grade gliomas and 9-14% of glioblastoma multiforme (GBM) cases; homozygous deletion of NF1 was observed in 1% of lower grade gliomas and 2-3% of GBMs^{40,64-66}. Among GBM subtypes, NF1 mutation and loss were reported most frequently in the mesenchymal subtype, 37% (14/28) and 38% (21/55) of cases, respectively⁶⁷. NF1 loss was significantly associated with decreased overall and disease-specific survival in patients with lower grade gliomas (II-III), but not in those

with GBM68.

FINDING SUMMARY

NF1 encodes neurofibromin, a GTPase-activating protein (GAP) that is a key negative regulator of the RAS signaling pathway⁶⁹. Neurofibromin acts as a tumor suppressor by repressing RAS signaling⁷⁰. Alterations such as seen here may disrupt NF1 function or expression⁷⁰⁻⁷⁹.

POTENTIAL GERMLINE IMPLICATIONS

Germline mutations in NF1 cause the autosomal dominant disorder neurofibromatosis type 1, which is characterized in part by increased risk of developing various tumors, including sarcoma, glioma, breast carcinoma, and neuroendocrine and hematological neoplasms⁸⁰⁻⁸². Estimates for the prevalence of the disorder in the general population range from 1:2,500 to 1:3,000⁸³⁻⁸⁴, and in the appropriate clinical context, germline testing of NF1 is recommended.

GENE

MDM2

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

MDM2 antagonists disrupt the MDM2-p53 interaction, thereby stabilizing p5385. Preclinical studies have suggested that the amplification of MDM2, in the absence of concurrent TP53 mutations, may increase sensitivity to these agents⁸⁶⁻⁸⁷. Preliminary Phase 1 studies of the MDM2-p53 antagonist alrizomadlin (APG-115) reported a PR in a patient with liposarcoma harboring an MDM2 amplification and wildtype for TP53 and SD in 21%-38% (6/28 and 5/13, respectively) of patients in genomically unselected solid tumors⁸⁸⁻⁸⁹. A Phase 2 trial of alrizomadlin in combination with pembrolizumab reported a PR in 1 of 3 patients with malignant peripheral nerve sheath tumor that had failed standard therapy, as well as PRs in patients with multiple

types of solid tumors that had failed immunotherapy, including 1 out of 14 patients with non-small cell lung cancer; 1 out of 5 patients with urothelial carcinoma; and 2 out of5, 1 out of 5, and 1 out of 11 patients with mucosal, uveal, and cutaneous melanoma, respectively90. Phase 1b studies of the MDM2 inhibitor idasanutlin for refractory AML in combination with cytarabine or venetoclax reported anti-leukemic response rates of 33% (25/75) and 37% (11/30), respectively⁹¹⁻⁹²; clinical benefit (58% ORR, 7/12) with idasanutlin monotherapy has been reported for patients with polycythemia vera⁹³. The dual MDM2/MDM4 inhibitor ALRN-6924 led to an ORR of 27% (4/15) for patients with TP53 wildtype peripheral T-cell lymphoma in a Phase 2 study94; responses have also been observed in TP53 wildtype AML, MDS, Merkel cell carcinoma, colorectal cancer, and liposarcoma95-96.

FREQUENCY & PROGNOSIS

In the Glioblastoma Multiforme (GBM) TCGA dataset, amplification of MDM2 has been found in 8% of cases⁶⁵. A study has reported amplification of the 12q14–15 region, where MDM2 and CDK4 reside, in 5% (2/42) of GBMs⁹⁷. Amplification of

MDM2 has been associated with poor survival in patients with glioblastoma⁹⁷⁻⁹⁸.

FINDING SUMMARY

MDM2 encodes an E3 ubiquitin protein ligase, which mediates the ubiquitination and subsequent degradation of p53, Rb1, and other proteins 99-101. MDM2 acts to prevent the activity of the tumor suppressor p53; therefore, overexpression or amplification of MDM2 may be oncogenic $^{102-103}$. Overexpression or amplification of MDM2 is frequent in cancer¹⁰⁴. Although two retrospective clinical studies suggest that MDM2 amplification may predict a short time-to-treatment failure on anti-PD-1/PD-L1 immune checkpoint inhibitors, with 4/5 patients with MDM2 amplification 105 and 2/3 patients with MDM2 or MDM4 amplification¹⁰⁶ experiencing tumor hyperprogression, amplification of MDM2 or MDM4 was not associated with shorter progression-free survival (PFS) in a retrospective analysis of non-small cell lung cancer (NSCLC) outcomes with immune checkpoint inhibitors (hazard ratio of 1.4, p=0.44)¹⁰⁷. The latter study reported PFS of >2 months for 5/8 patients with MDM₂/MDM₄ amplification¹⁰⁷.

GENOMIC FINDINGS

GENE

PTEN

ALTERATION
Q171* - subclonal

TRANSCRIPT ID

CODING SEQUENCE EFFECT 511C>T

VARIANT ALLELE FREQUENCY (% VAF) 3.7%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

PTEN loss or mutation leads to activation of the PI₃K-AKT-mTOR pathway and may predict sensitivity to inhibitors of this pathway¹⁰⁸⁻¹¹¹. Clinical studies in glioblastoma have not observed an association between PTEN deficiency and response to everolimus or temsirolimus 112-114. Preclinical data indicate that PTEN loss or inactivation may predict sensitivity to PARP inhibitors115-119, and clinical benefit has been observed for patients with PTEN-altered breast cancer including triple negative breast cancer¹²⁰, ovarian cancer¹²¹, uterine leiomyosarcoma¹²², and endometrial cancer¹¹⁹ treated with PARP inhibitors. However, some studies have reported a lack of association between PTEN mutation and PARP inhibitor sensitivity¹²³⁻¹²⁴.

Potential Resistance —

Limited clinical evidence in glioblastoma²⁶,

leiomyosarcoma¹²⁵, and melanoma¹²⁶ suggests that PTEN alterations may predict a lack of response to anti-PD-1 therapy. In an analysis of 39 patients with metastatic melanoma treated with pembrolizumab or nivolumab, patients with PTEN-expressing tumors achieved significantly greater reduction of tumor size than those with reduction or loss of PTEN expression¹²⁶. In a retrospective analysis of 66 patients with glioblastoma, tumors from nivolumab or pembrolizumab non-responders were significantly enriched for PTEN mutations²⁶. In a patient with uterine leiomyosarcoma treated with pembrolizumab monotherapy, a treatment-resistant tumor arose that harbored PTEN loss¹²⁵.

FREQUENCY & PROGNOSIS

Studies in the literature have indicated that PTEN alterations (mutation or homozygous deletion) occur most frequently in glioblastoma (GBM), less frequently in anaplastic astrocytoma, and rarely in lower grade glioma subtypes including low grade astrocytoma, oligodendroglioma, oligoastrocytoma, and ependymoma¹²⁷⁻¹³⁴. One study detected PTEN mutation in 42% (97/232) and loss in 10% (24/232) of IDH-wildtype GBM samples analyzed135. In the TCGA dataset, PTEN mutation was observed in 23% of GBM cases and PTEN deletion was reported in 7% of cases⁶⁵, while in the Lower Grade Glioma TCGA dataset, PTEN mutation was observed in 4% of cases and homozygous deletion observed in 1.2% of cases⁶⁴. Decreased PTEN expression is associated with the higher grade GBM tumors¹³⁶. Loss of PTEN correlated with significantly worse prognosis in all grades of gliomas 131,137.

FINDING SUMMARY

PTEN encodes an inositol phosphatase that functions as a tumor suppressor by negatively regulating the PI₃K-AKT-mTOR pathway; loss of PTEN can lead to uncontrolled cell growth and suppression of apoptosis¹⁰⁹. Alterations such as seen here may disrupt PTEN function or expression^{133,138-177}.

POTENTIAL GERMLINE IMPLICATIONS

One or more of the PTEN variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with hamartoma tumor syndrome (ClinVar, Sep 2021)¹⁷⁸. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. PTEN mutations underlie several inherited disorders, collectively termed PTEN hamartoma tumor syndrome (PHTS), which include Cowden syndrome (CS) and its variant Lhermitte-Duclos disease (LD), Bannayan-Riley-Ruvalcaba syndrome (BRRS), PTEN-related Proteus $syndrome\ (PS), and\ Proteus-like\ syndrome^{179\text{-}180}.$ The mutation rate for PTEN in these disorders ranges from 20 to 85% of patients179,181. The estimated incidence of Cowden syndrome is 1/ 200,000, which may be an underestimate due to the high variability of this disorder¹⁷⁹. Given the association between PTEN and these inherited syndromes, in the appropriate clinical context, germline testing for mutations affecting PTEN is recommended.

GENOMIC FINDINGS

PPP2R2A

ALTERATION rearrangement exon 8

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no approved therapies to directly address copy number alteration or mutations of PPP2R2A. While preclinical studies have linked PPP2R2A loss with defective HR repair and sensitivity to the PARP-1 inhibitor veliparib, the Phase 2 PROfound study reported a shorter median PFS for patients with PPP2R2A-altered prostate cancer treated with olaparib as compared to investigator's choice of abiraterone/prednisone or enzalutamide (2.7 months vs. not reached, HR = 6.61)¹⁸²⁻¹⁸⁴. Activation of PP2A with forskolin or the sphingosine analogue FTY720 has be shown to be beneficial in the context of CML and ALL185 and is being investigated in tumors of the lung, breast, and colon¹⁸⁶⁻¹⁸⁸. In addition, other agents have been shown to upregulate PP2A activity in the context of various tumors¹⁸⁹. However, the efficacy of these compounds in the context of PPP2R2A

mutations has not yet been evaluated (PubMed, 2021).

FREQUENCY & PROGNOSIS

Somatic missense alterations of PPP2R2A are rare. occurring in 1% of cancers across all solid or hematological tumor types (COSMIC, 2021)190. In the TCGA datasets, PPP2R2A deletion was reported at the highest incidence in ovarian serous cystadenocarcinoma (8.2%), prostate adenocarcinoma (7.6%), non-small cell lung carcinoma (NSCLC, 5.3%), bladder urothelial carcinoma (5.6%), colorectal adenocarcinoma (4.7%), breast invasive carcinoma (4.4%), and at lesser frequencies in other cancer types (cBioPortal, 2021)¹⁹¹⁻¹⁹². In the literature, decreased expression of PPP2R2A has been reported in up to 40% of NSCLC^{182-183,193}, with downregulation also reported in other types of cancers, including breast cancer¹⁹³⁻¹⁹⁴ and prostate cancer¹⁹⁵⁻¹⁹⁶. One study reported PPP2R2A copy number alteration (CNA, classified as either homozygous or heterozygous deletion) in 54% of patients with breast carcinoma, and it was associated with decreased overall survival (OS) compared to patients without PPP2R2A CNA¹⁹³. Multiple studies have reported that PPP2R2A CNA in breast carcinoma is associated with ER-positive tumors193-194.

Furthermore, concurrent PPP2R2A deletion and CCND1 overexpression may define a group of luminal-like, aggressive breast cancer that is associated with both poorer disease-free survival and decreased OS as well as a high risk of relapse¹⁹³. In the context of prostate adenocarcinoma, a retrospective analysis reported that PPP2R2A hemizygous deletion was found in 42% of patients and was associated with shorter disease-free survival and higher tumor stage, whereas homozygous loss of PPP2R2A was less common (15%) and showed a non-significant tendency toward poorer prognosis¹⁹⁶.

FINDING SUMMARY

PPP2R2A is located on chromosome 8p21.2 and encodes B55alpha, a B regulatory subunit of the tumor suppressor protein phosphatase 2 (PP2A)¹⁹³. PP2A is a serine/threonine phosphatase involved in regulation of cell growth and division and has been implicated in the negative regulation of proteins involved in DNA double-strand break repair, including ATM, CHK1/2, and gamma-H2AX^{183,193,197-198}. Loss of function of PP2A has been associated with cell transformation; loss of PPP2R2A has been associated with increased ATM phosphorylation and activity of CHK2, BRCA1, and RAD51^{183,199-200}.

GENE

RB₁

ALTERATION

loss exons 3-12

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of limited clinical data²⁰¹ and strong preclinical data²⁰²⁻²⁰⁴, RB1 inactivation may be associated with sensitivity to inhibitors of Aurora kinase A, particularly in small cell lung cancer. It should be noted that a trial of the Aurora kinase A inhibitor alisertib in advanced prostate cancer did not find an association between RB1 deletion and clinical benefit²⁰⁵. Other approaches to target RB1 inactivation under investigation in preclinical studies include inhibitors of BCL-2 family members²⁰⁶ and activation of the NOTCH pathway²⁰⁷.

- Potential Resistance -

Rb inactivation may predict resistance to CDK4/6 inhibitors such as palbociclib, abemaciclib, and ribociclib, which act upstream of Rb²⁰⁸⁻²¹⁷.

Nontargeted Approaches —

Loss of Rb function has been associated with increased sensitivity to cytotoxic agents and chemotherapeutics in both preclinical studies and in patients with bladder or breast cancer²¹⁸⁻²¹⁹.

FREQUENCY & PROGNOSIS

In the TCGA datasets, RB1 mutation or homozygous deletion was observed in 9% of glioblastomas⁶⁵ and 2.5% of lower grade glioma cases⁶⁴. In one study, loss of RB1 transcript expression was observed in 10.6% of glioblastomas and occurred more frequently in the proneural subtype²²⁰. One study reports that mutation of RB1 is correlated with shorter survival in glioblastoma patients²²¹. Several studies suggest that RB1, PTEN, and/or TP53

mutations are early events in the development of glioblastoma²²²⁻²²⁴.

FINDING SUMMARY

RB1 encodes the retinoblastoma protein (Rb), a tumor suppressor and negative regulator of the cell cycle^{219,225}. Alterations such as seen here may disrupt RB1 function or expression²²⁶⁻²³².

POTENTIAL GERMLINE IMPLICATIONS

Mutations in RB1 underlie the development of retinoblastoma (RB), a rare tumor that arises at a rate of approximately 1:20,000 live births, with nearly 5,000 new cases worldwide per year²³³. Germline mutations in RB1 account for approximately 40% of RB tumors²³⁴ and are associated with an increased risk of developing secondary malignancies that include soft tissue and bone sarcoma and malignant melanoma²³⁵⁻²³⁶. In the appropriate clinical context, germline testing of RB1 is recommended.

GENOMIC FINDINGS

GENE

TERT

ALTERATION promoter -146C>T

TRANSCRIPT ID NM_198253

CODING SEQUENCE EFFECT

-146C>T

VARIANT ALLELE FREQUENCY (% VAF) 18.4%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

Therapeutic options for targeting tumors with TERT mutations are limited, although a variety of approaches are under development, including immunotherapies utilizing TERT as a tumorassociated antigen, antisense oligonucleotide- or peptide-based therapies, and TERT promoter-directed cytotoxic molecules.

FREQUENCY & PROGNOSIS

TERT promoter mutations have been reported in 51-59% of gliomas $^{237-238}$, most frequently in

glioblastoma (GBM, 54-84%), gliosarcoma (81%), oligodendroglioma (78%), and historically in oligoastrocytomas (25-31%) but less frequently in lower grade astrocytomas (10-18%) and in only 1% of ependymomas²³⁷⁻²⁴¹. In patients with glioblastoma (GBM), the prevalence of TERT promoter mutation is lower in pediatric primary GBM (11%) and adult secondary GBM (28%) compared with adult primary GBM (58-83%)237,239. One study detected TERT promoter mutations in 78% (181/232) of IDH-wildtype GBM samples analyzed¹³⁵. The significance of the TERT promoter mutation as an independent prognostic indicator in patients with glioma is not clear. While TERT promoter mutations significantly associate with poor prognosis in patients with GBM, this correlation may be due to the association with primary GBM as opposed to IDH-positive secondary GBM^{237,239,242-243}. In the context of IDHwildtype glioma, TERT mutations are associated with reduced OS, whereas in IDH-mutated, 1p/ 19q co-deleted oligodendroglioma, TERT mutations are associated with improved OS (NCCN CNS Cancers Guidelines, v5.2020). TERT promoter mutation has been shown to be significantly associated with increased TERT gene expression in astrocytoma, oligodendroglioma, and GBM243.

FINDING SUMMARY

Telomerase reverse transcriptase (TERT, or hTERT) is a catalytic subunit of the telomerase complex, which is required to maintain appropriate chromosomal length²⁴⁴. Activation of TERT is a hallmark of cancer, being detected in up to 80-90% of malignancies and absent in quiescent cells²⁴⁵⁻²⁴⁷. Mutations within the promoter region of TERT that confer enhanced TERT promoter activity have been reported in two hotspots, located at -124 bp and -146 bp upstream of the transcriptional start site (also termed C228T and C250T, respectively)²⁴⁸⁻²⁵⁰, as well as tandem mutations at positions -124/-125 bp and -138/-139 bp²⁴⁸.

POTENTIAL DIAGNOSTIC IMPLICATIONS

TERT mutations are associated with 1p/19q codeletion in oligodendrogliomas, and are highly recurrent in IDH/ATRX-wildtype glioblastoma (GBM) (NCCN CNS Cancers Guidelines, v5.2020). Co-occurring TERT mutation, IDH mutation, and 1p/19q co-deletion is indicative of oligodendroglioma, whereas IDH mutation in the absence of TERT mutation is suggestive of astrocytoma (NCCN CNS Cancers Guidelines, v5.2020).

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Selumetinib

Assay findings association

NF1

loss exons 1-8

AREAS OF THERAPEUTIC USE

Selumetinib is a MEK inhibitor that is FDA approved to treat pediatric patients 2 years of age and older with neurofibromatosis type 1 (NF1) who have symptomatic, inoperable plexiform neurofibromas (PNs). Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in neurofibromatosis type 1 (NF1)-associated neurofibroma^{47-50,251-255}, glioma^{50-54,256}, and non-small cell lung cancer⁵⁵, NF1 inactivation may predict sensitivity to MEK inhibitors.

SUPPORTING DATA

Clinical data on the efficacy of selumetinib for the treatment of glioblastoma are limited (PubMed, Sep 2021). Selumetinib has demonstrated clinical activity in low-grade glioma. A Phase 2 study of selumetinib for patients with low-grade glioma (LGG) reported 8/25 PRs for patients with BRAF alterations and 10/25 PRs for those with NF1-associated LGG⁵¹; a Phase 1 study of selumetinib reported 5/25 PRs for patients with LGG²⁵⁷. A Phase 2 study of selumetinib for patients with tumors with activating alterations in the MAPK pathway

evaluated 8 patients with high-grade glioma (HGG); 2 SDs and no objective responses were observed in this subset²⁵⁸. Selumetinib has demonstrated efficacy in NF1-associated neurofibroma in Phase 2 studies^{48,251-252} and a Phase 1 study⁴⁷. Phase 2 studies reported clinical responses in low-grade glioma 51,257 , melanoma $^{259\text{-}263}$, and in lung^{55,264-265} and endometrial cancer²⁶⁶. A Phase 2 study of selumetinib for patients with activating alterations in the MAPK pathway reported a DCR of 15% (3/20), with no objective responses observed²⁵⁸. Phase 1 studies of selumetinib to treat patients with solid tumors reported 1/15 PR for a patient with colorectal cancer (CRC) and 5/15 SDs for patients with tonsil squamous cell carcinoma (SCC), non-small cell lung cancer (NSCLC), and CRC²⁶⁷; 2/39 PRs (for patients with CRC) and 18/39 SDs were achieved when selumetinib was administered in combination with cyclosporin A²⁶⁸. Multiple Phase 1 studies combining selumetinib with erlotinib or temsirolimus²⁶⁹, docetaxel or dacarbazine²⁷⁰, AKT inhibitors²⁷¹, or cixutumumab (an anti-IGF-1R antibody)²⁷² reported clinical responses for patients with advanced solid tumors including NSCLC, thyroid carcinoma, tongue SCC, and ovarian cancer.

Trametinib

Assay findings association

NF1

loss exons 1-8

AREAS OF THERAPEUTIC USE

Trametinib is a MEK inhibitor that is FDA approved as a monotherapy to treat patients with melanoma with BRAF V600E or V600K mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in neurofibromatosis type 1 (NF1)-associated neurofibroma $^{47-50,251-255}$, glioma $^{50-54,256}$, and non-small cell lung cancer 55 , NF1 inactivation may predict sensitivity to MEK inhibitors.

SUPPORTING DATA

Case studies of trametinib in NF1-associated low-grade glioma have reported 7 PRs, including 2 patients with pilocytic astrocytoma, 2 patients with diffuse astrocytoma, 3 patients with low-grade glioma

experiencing PRs of over 6 months^{50,52-53,256}. A study of four pediatric patients with BRAF mutation-positive nonoperable astrocytoma reported a reduction in tumor volume in response to trametinib for the 3 optic gliomas with BRAF duplication²⁷³⁻²⁷⁴. A patient with pilocytic astrocytoma harboring an NFIA-RAF1 fusion that had progressed on multiple lines of prior treatment exhibited ongoing SD following treatment with trametinib²⁷⁵. Whereas frequent adverse events precluded a recommended Phase 2 dose and schedule for the combination of trametinib and everolimus in a Phase 1b trial for solid tumors⁶², a retrospective study for heavily pretreated patients with solid tumors reported tolerable regimens of the combination for 23/31 patients, with 16 patients treated >3 months and evaluable patients achieving a median PFS of 6.5 months⁶³.

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require

medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

MDM2

ALTERATION amplification

RATIONALE

Inhibitors of the MDM2-p53 interaction are being tested in clinical trials. Overexpression or

amplification of MDM2 may increase sensitivity to these agents, but more data are required.

NCT04589845	PHASE 2
Tumor-Agnostic Precision Immuno-Oncology and Somatic Targeting Rational for You (TAPISTRY) Platform Study	TARGETS ALK, ROS1, TRKA, TRKB, TRKC, RET, PD-L1, AKTs, ERBB2, MDM2, PI3K- alpha

LOCATIONS: Zhongzheng Dist. (Taiwan), Taipei City (Taiwan), Tainan (Taiwan), Seoul (Korea, Republic of), Beijing (China), Woolloongabba (Australia), Darlinghurst (Australia), Randwick (Australia), Melbourne (Australia), Haifa (Israel)

NCT03449381	PHASE 1
This Study Aims to Find the Best Dose of BI 907828 in Patients With Different Types of Advanced Cancer (Solid Tumors)	TARGETS MDM2
LOCATIONS: Tokyo, Chuo-ku (Japan), Ottawa (Canada), Connecticut, New York, Tennessee, Florida	

NCT03611868	PHASE 1/2
A Study of APG-115 in Combination With Pembrolizumab in Patients With Metastatic Melanomas or Advanced Solid Tumors	TARGETS MDM2, PD-1

LOCATIONS: Brisbane (Australia), California, Arizona, Missouri, Arkansas, Pennsylvania, New York, Tennessee, Texas

NCT03158389	PHASE 1/2
NCT Neuro Master Match - N ² M ² (NOA-20)	TARGETS ALK, RET, CDK4, CDK6, mTOR, MDM2, PD-L1, SMO

LOCATIONS: Berlin (Germany), Dresden (Germany), Regensburg (Germany), Bochum (Germany), Frankfurt am Main (Germany), Essen (Germany), Mainz (Germany), Heidelberg (Germany), Cologne (Germany), Mannheim (Germany)

NCT03107780	PHASE 1
MDM2 Inhibitor AMG-232 in Treating Patients With Recurrent or Newly Diagnosed Glioblastoma	TARGETS MDM2
LOCATIONS: California, Michigan, Pennsylvania, Massachusetts, New York, Maryland, North Carolin	a Alahama

TUMOR TYPE Brain glioblastoma (GBM) REPORT DATE 10 Nov 2021

ORDERED TEST # ORD-1227775-01

CLINICAL TRIALS

NCT03725436	PHASE 1
ALRN-6924 and Paclitaxel in Treating Patients With Advanced, Metastatic, or Unresectable Solid Tumors	TARGETS MDM2, MDM4
LOCATIONS: Texas	

CLINICAL TRIALS

GE	N	Е
N	ŀ	-1

ALTERATION

RATIONALE

On the basis of clinical evidence and strong preclinical evidence, NF1 inactivation may predict sensitivity to MEK inhibitors. Limited clinical

data and strong preclinical data indicate that loss or inactivation of NF1 may also predict sensitivity to mTOR inhibitors.

loss exons 1-8	
NCT03239015	PHASE 2
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event	TARGETS EGFR, ERBB2, ERBB4, PARP, mTOR, MET, RET, ROS1, VEGFRS, BRAF, CDK4, CDK6
LOCATIONS: Shanghai (China)	
NCT04337463	PHASE NULL
ATG-008 Combined With Toripalimab in Advanced Solid Tumors	TARGETS mTORC1, mTORC2, PD-1
LOCATIONS: Chongqing (China), Chengdu (China)	
NCT04803318	PHASE 2
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, KIT, PDGFRA, RET, VEGFRs, MEK
LOCATIONS: Guangzhou (China)	
NCT04801966	PHASE NULL
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF
LOCATIONS: Melbourne (Australia)	
NCT03905148	PHASE 1/2
Study of the Safety and Pharmacokinetics of BGB-283 and PD-0325901 in Patients With Advanced or Refractory Solid Tumors	TARGETS RAFs, EGFR, MEK
LOCATIONS: Nedlands (Australia), Blacktown (Australia), Randwick (Australia), Melbourne (Australia)), Texas
NCTO4185831	PHASE 2
A MolEcularly Guided Anti-Cancer Drug Off-Label Trial	TARGETS PD-L1, MEK
LOCATIONS: Uppsala (Sweden), Gothenburg (Sweden)	

LOCATIONS: Kansas

CLINICAL TRIALS

NCT03158389	PHASE 1/2
NCT Neuro Master Match - N ² M ² (NOA-20)	TARGETS ALK, RET, CDK4, CDK6, mTOR, MDM2, PD-L1, SMO
LOCATIONS: Berlin (Germany), Dresden (Germany), Regensburg (Germany), Bochum (Germany), Heidelberg (Germany), Cologne (Germany), Mannheim (Germany)	any), Frankfurt am Main (Germany), Essen (Germany), Maina
NCT02407509	PHASE 1
Phase I Trial of RO5126766	TARGETS RAFs, MEK, mTOR
LOCATIONS: London (United Kingdom), Sutton (United Kingdom)	
NCT04800822	PHASE 1
PF-07284892 in Participants With Advanced Solid Tumors	TARGETS SHP2, ROS1, ALK, BRAF, EGFR, MEK
LOCATIONS: California, Michigan, New York, Tennessee, Texas	
NCT03217669	PHASE 1
Epacadostat (INCB24360) in Combination With Sirolimus in Advanced Malignancy	TARGETS IDO1, mTOR

CLINICAL TRIALS

GENE PTEN

ALTERATION Q171* - subclonal

RATIONALE

PTEN loss or inactivating mutations may lead to increased activation of the PI₃K-AKT-mTOR pathway and may indicate sensitivity to inhibitors

of this pathway. PTEN loss or inactivation may also predict sensitivity to PARP inhibitors.

NCT04337463	PHASE NULL
ATG-008 Combined With Toripalimab in Advanced Solid Tumors	TARGETS mTORC1, mTORC2, PD-1
LOCATIONS: Chongqing (China), Chengdu (China)	
NCT04740190	PHASE 2
Talazoparib - Carboplatin for Recurrent High-grade Glioma With DDRd	TARGETS PARP
LOCATIONS: Hong Kong (Hong Kong)	
NCT04001569	PHASE 1/2
AZD8186 and Paclitaxel in Advanced Gastric Cancer	TARGETS PI3K-beta
LOCATIONS: Seongnam-si (Korea, Republic of)	
NCT02264678	PHASE 1/2
Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents	TARGETS ATR, PARP, PD-L1
LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Cambridge (United Kingdom), Sutton (United Kingdom), Villejuif (France), Saint Herblain (France), California	dom), Withington (United Kingdom), London (United
NOTO 471FC00	
NC104/15620	PHASE 2
NCTO4715620 Niraparib Combined With Radiotherapy in rGBM	TARGETS PARP
Niraparib Combined With Radiotherapy in rGBM	TARGETS
Niraparib Combined With Radiotherapy in rGBM LOCATIONS: Tianjin (China)	TARGETS
	TARGETS PARP

CLINICAL TRIALS

NCT03772561	PHASE 1		
Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid Tumor Malignancies	TARGETS PARP, AKTs, PD-L1		
LOCATIONS: Singapore (Singapore)			
NCT04614909	PHASE NULL		
Phase 0/2 Study of Pamiparib in Newly Diagnosed and rGBM	TARGETS PARP		
LOCATIONS: Arizona			
NCT04801966	PHASE NULL		
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF		
LOCATIONS: Melbourne (Australia)			
NCT03994796	PHASE 2		
Genetic Testing in Guiding Treatment for Patients With Brain Metastases	TARGETS ALK, ROS1, TRKA, TRKB, TRKC, CDK4, CDK6, PI3K, mTOR		
LOCATIONS: Alaska, Washington			

TUMOR TYPE
Brain glioblastoma (GBM)

REPORT DATE 10 Nov 2021

ORDERED TEST # ORD-1227775-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

BAP1 **FANCA** JUN MSH₆ S292T E559K M260I H501Y PDCD1LG2 (PD-L2) **PTPRO MTOR** TSC2 T1834_T1837del F236L R684C S989R

APPENDIX

Genes Assayed in FoundationOne®CDx

FoundationOne CDx is designed to include genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 324 genes as well as introns of 36 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B)	APC
AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2
BTK	C11orf30 (EMSY)	C17orf39 (GID4)	CALR	CARD11	CASP8	CBFB	CBL	CCND1
CCND2	CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73
CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1
DDR2	DIS3	DNMT3A	DOT1L	EED	EGFR	EP300	EPHA3	EPHB1
EPHB4	ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2
FAM46C	FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12
FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3
FGFR4	FH	FLCN	FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3
GATA4	GATA6	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3F3A
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNK1	MLH1	MPL	MRE11A	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	NOTCH3
NPM1	NRAS	NSD3 (WHSC1L1)	NT5C2	NTRK1	NTRK2	NTRK3	P2RY8	PALB2
PARK2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)	PDGFRA
PDGFRB	PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIM1	PMS2
POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI	PTCH1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	REL	RET
RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC	SDHD	SETD2
SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1
SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3	STK11	SUFU
SYK	TBX3	TEK	TET2	TGFBR2	TIPARP	TNFAIP3	TNFRSF14	TP53
TSC1	TSC2	TYRO3	U2AF1	VEGFA	VHL	WHSC1	WT1	XPO1
XRCC2	ZNF217	ZNF703						
DNA GENE LIS	T: FOR THE DETE	CTION OF SELECT	Γ REARRANGEM	ENTS				
ΔΙΚ	RCI 2	RCR	RRAF	RRC A1	RRCA2	CD74	FGFR	FTV4

ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)
MSH2	MYB	MYC	NOTCH2	NTRK1	NTRK2	NUTM1	PDGFRA	RAF1
RARA	RET	ROS1	RSPO2	SDC4	SLC34A2	TERC*	TERT**	TMPRSS2

^{*}TERC is an NCRNA

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Loss of Heterozygosity (LOH) score Microsatellite (MS) status Tumor Mutational Burden (TMB)

^{**}Promoter region of TERT is interrogated

APPENDIX

About FoundationOne®CDx

FoundationOne CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

ABOUT FOUNDATIONONE CDX

FoundationOne CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details: www.rochefoundationmedicine.com/f1cdxtech.

INTENDED USE

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI), tumor mutational burden (TMB), and for selected forms of ovarian cancer, loss of heterozygosity (LOH) score, using DNA isolated from formalin-fixed, paraffinembedded (FFPE) tumor tissue specimens. The test is intended as a companion diagnostic to identify patients who may benefit from treatment with therapies in accordance with approved therapeutic product labeling. Additionally, F1CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with solid malignant neoplasms.

TEST PRINCIPLES

FoundationOne CDx will be performed exclusively as a laboratory service using DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples. The proposed assay will employ a single DNA extraction method from routine FFPE biopsy or surgical resection specimens, 50-1000 ng of which will undergo whole-genome shotgun library construction and hybridization-based capture of all coding exons from 309 cancer-related genes, one promoter region, one non-coding (ncRNA), and select intronic regions from 34 commonly rearranged genes, 21 of which also include the coding exons. The assay therefore includes detection of alterations in a total of 324 genes.

Using an Illumina® HiSeq platform, hybrid capture–selected libraries will be sequenced to high uniform depth (targeting >500X median coverage with >99% of exons at coverage >100X). Sequence data will be processed using a customized analysis pipeline designed to accurately detect all classes of genomic alterations, including base substitutions, indels, focal copy number amplifications, homozygous gene deletions, and selected genomic rearrangements (e.g.,gene fusions). Additionally, genomic signatures including loss of heterozygosity (LOH), microsatellite instability (MSI) and tumor mutational burden (TMB) will be reported.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. The F1CDx report may be used as an aid to inform molecular eligibility for clinical trials. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne CDx identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne CDx for identifying a copy number amplification is four (4) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne CDx analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table
Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials
Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK* (NCCN*) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Limitations

1. In the fractional-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the F1CDx assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator assay using a pan-tumor FFPE tissue sample set. Patients with results categorized as "MS-

APPENDIX

About FoundationOne®CDx

- Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.
- 2. TMB by F1CDx is determined by counting all synonymous and non-synonymous variants present at 5% allele frequency or greater (after filtering) and the total number is reported as mutations per megabase (mut/Mb) unit. Observed TMB is dependent on characteristics of the specific tumor focus tested for a patient (e.g., primary vs. metastatic, tumor content) and the testing platform used for the detection; therefore, observed TMB results may vary between different specimens for the same patient and between detection methodologies employed on the same sample. The TMB calculation may differ from TMB calculations used by other assays depending on variables such as the amount of genome interrogated, percentage of tumor, assay limit of detection (LoD), filtering of alterations included in the score, and the read depth and other bioinformatic test specifications. Refer to the SSED for a detailed description of these variables in FMI's TMB calculation https://www.accessdata.fda.gov/cdrh_docs/ pdf17/P170019B.pdf. The clinical validity of TMB defined by this panel has been established for TMB as a qualitative output for a cut-off of 10 mutations per megabase but has not been established for TMB as a quantitative score.
- 3. The LOH score is determined by analyzing SNPs spaced at 1Mb intervals across the genome on the FoundationOne CDx test and extrapolating an LOH profile, excluding armand chromosome-wide LOH segments. Detection of LOH has been verified only for ovarian cancer patients, and the LOH score result may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas. The LOH score will be reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine LOH. Performance of the LOH classification has not been established for samples below 35% tumor content. There may be potential interference of ethanol with LOH detection. The interfering effects of xylene, hemoglobin, and triglycerides on the LOH score have not been demonstrated.
- 4. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- 5. Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine

6. Reflex testing to an alternative FDA approved companion diagnostic should be performed for patients who have an ERBB2 amplification result detected with copy number equal to 4 (baseline ploidy of tumor +2) for confirmatory testing. While this result is considered negative by FoundationOne®CDx (F1CDx), in a clinical concordance study with an FDA approved FISH test, 70% (7 out of 10 samples) were positive, and 30% (3 out of 10 samples) were negative by the FISH test with an average ratio of 2.3. The frequency of ERBB2 copy number 4 in breast cancer is estimated to be approximately 2%. Multiple references listed in https://www.mycancergenome.org/content/ disease/breast-cancer/ERBB2/238/ report the frequency of HER2 overexpression as 20% in breast cancer. Based on the F1CDx HER2 CDx concordance study, approximately 10% of HER2 amplified samples had copy number 4. Thus, total frequency is conservatively estimated to be approximately 2%.

whether the patient is a candidate for biopsy.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may vary.

Precision of VAF for base substitutions and indels

BASE SUBSTITUTIONS	%CV*		
Repeatability	5.11 - 10.40		
Reproducibility	5.95 - 12.31		
INDELS	%CV*		
INDELS Repeatability	%CV*		

^{*}Interquartile Range = 1^{st} Quartile to 3^{rd} Quartile

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert

panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or

APPENDIX

About FoundationOne®CDx

governmental, will reimburse a patient for the cost of FoundationOne CDx.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. FoundationOne CDx is performed using DNA derived from tumor, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ткі	Tyrosine kinase inhibitor

MR Suite Version 5.1.1

The median exon coverage for this sample is 816x

APPENDIX References

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- Martinez R, et al. Oncology (2004) pmid: 15331927
- 7. Martinez R, et al. J. Cancer Res. Clin. Oncol. (2005) pmid: 15672285
- 8. Martinez R, et al. Cancer Genet. Cytogenet. (2007) pmid: 17498554
- 9. Szybka M. et al. Clin. Neuropathol. () pmid: 12908754
- 10. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 11. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 12. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- 13. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 14. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 15. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 16. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 17. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid:
- 18. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 19. Cristescu R, et al. Science (2018) pmid: 30309915
- 20. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 21. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 22. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 23. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 24. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 25. Sharma P. et al. Cancer Cell (2020) pmid: 32916128
- 26. Zhao J, et al. Nat. Med. (2019) pmid: 30742119
- 27. Touat M, et al. Nature (2020) pmid: 32322066
- 28. Bouffet E, et al. J. Clin. Oncol. (2016) pmid: 27001570
- 29. Johanns TM, et al. Cancer Discov (2016) pmid:
- 30. Lukas RV, et al. J. Neurooncol. (2018) pmid: 30073642
- 31. Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 32. Patel RR, et al. Pediatr Blood Cancer (2020) pmid:
- 33. Johnson A. et al. Oncologist (2017) pmid: 28912153
- 34. Draaisma K, et al. Acta Neuropathol Commun (2015) pmid: 26699864
- 35. Wang L, et al. BMC Cancer (2020) pmid: 32164609
- 36. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 37. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 38. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 39. Rizvi NA, et al. Science (2015) pmid: 25765070
- 40. Johnson BE, et al. Science (2014) pmid: 24336570
- 41. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 42. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 44. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 45. Nature (2012) pmid: 22810696
- 46. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid:

43. Briggs S, et al. J. Pathol. (2013) pmid: 23447401

- 47. Dombi E, et al. N. Engl. J. Med. (2016) pmid: 28029918
- 48. Schalkwijk S, et al. Cancer Chemother Pharmacol (2021) pmid: 33903938

- 49. Toledano H, et al. Childs Nerv Syst (2021) pmid: 33751171
- 50. Ronsley R, et al. Cancer Med (2021) pmid: 33939292 51. Fangusaro J. et al. Lancet Oncol. (2019) pmid: 31151904
- 52. Manoharan N, et al. J Neurooncol (2020) pmid:
- 32780261 53. Kondyli M, et al. J Neurooncol (2018) pmid: 30097824
- 54. Awada G, et al. Case Rep Oncol () pmid: 33082744
- 55. Middleton G, et al. Nature (2020) pmid: 32669708
- 56. Lim SM, et al. Oncotarget (2016) pmid: 26859683
- 57. Weiss B, et al. Neuro-oncology (2015) pmid: 25314964
- 58. Janku F, et al. Oncotarget (2014) pmid: 24931142
- 59. Johannessen CM, et al. Curr. Biol. (2008) pmid: 18164202
- Johannessen CM, et al. Proc. Natl. Acad. Sci. U.S.A. (2005) pmid: 15937108
- 61. Malone CF, et al. Cancer Discov (2014) pmid: 24913553
- 62. Tolcher AW, et al. Ann. Oncol. (2015) pmid: 25344362
- 63. Patterson et al., 2018: AACR Abstract 3891
- 64. Cancer Genome Atlas Research Network, et al. N. Engl. J. Med. (2015) pmid: 26061751
- 65. Brennan CW, et al. Cell (2013) pmid: 24120142
- 66. Nature (2008) pmid: 18772890
- 67. Verhaak RG, et al. Cancer Cell (2010) pmid: 20129251
- 68. Vizcaíno MA, et al. Hum. Pathol. (2015) pmid: 26190195
- 69. Hattori S, et al. Biochem. Biophys. Res. Commun. (1991) pmid: 1904223
- 70. Morcos P, et al. Mol. Cell. Biol. (1996) pmid: 8628317
- 71. Ballester R, et al. Cell (1990) pmid: 2121371
- 72. Xu GF, et al. Cell (1990) pmid: 2116237
- 73. Martin GA, et al. Cell (1990) pmid: 2121370
- 74. Thomas L, et al. Hum. Mutat. (2012) pmid: 22807134
- 75. Skuse GR, et al. Hum. Mol. Genet. (1997) pmid: 9300663
- 76. Messiaen LM, et al. Genet. Med. () pmid: 11258625
- 77. Ars E, et al. Hum. Mol. Genet. (2000) pmid: 10607834
- 78. Messiaen LM, et al. J. Med. Genet. (2005) pmid: 15863657
- 79. Poullet P, et al. Mol. Cell. Biol. (1994) pmid: 8264648
- 80. Jett K, et al. Genet. Med. (2010) pmid: 20027112
- 81. Patil S, et al. Oncologist (2012) pmid: 22240541
- 82. Evans DG, et al. Clin Sarcoma Res (2012) pmid:
- Upadhyaya M, et al. J. Med. Genet. (1995) pmid: 8544190
- 84. Williams VC, et al. Pediatrics (2009) pmid: 19117870
- 85. Cheok CF, et al. Nat Rev Clin Oncol (2011) pmid:
- 86. Ohnstad HO, et al. Cancer (2013) pmid: 23165797
- 87. Gamble LD, et al. Oncogene (2012) pmid: 21725357
- 88. Zhang et al., 2019; ASCO Abstract 3124
- 89. Rasco et al., 2019; ASCO Abstract 3126
- 90. Tolcher et al., 2021; ASCO Abstract 2506 91. Martinelli et al., 2016; EHA21 Abstract S504
- 92. Daver et al., 2018: ASH Abstract 767
- 93. Mascarenhas et al., 2019; ASH Abstract 134
- 94. Shustov et al., 2018: ASH Abstract 1623
- 95. Sallman et al., 2018; ASH Abstract 4066 96. Meric-Bernstam et al., 2017; ASCO Abstract 2505
- 97. Zheng S, et al. Genes Dev. (2013) pmid: 23796897
- 98. Fischer U, et al. Int. J. Cancer (2010) pmid: 19839052
- 99. Sdek P, et al. Mol. Cell (2005) pmid: 16337594
- 100. Brady M, et al. Mol. Cell. Biol. (2005) pmid: 15632057
- 101. Li M, et al. Mol. Cell (2004) pmid: 15053880
- 102. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675

- 103. Cordon-Cardo C, et al. Cancer Res. (1994) pmid: 8306343
- 104. Beroukhim R, et al. Nature (2010) pmid: 20164920
- 105. Kato S. et al. Clin. Cancer Res. (2017) pmid: 28351930
- 106. Singavi et al., 2017; ESMO Abstract 1140PD
- 107. Rizvi H. et al. J. Clin. Oncol. (2018) pmid: 29337640
- 108. Courtney KD, et al. J. Clin. Oncol. (2010) pmid: 20085938
- 109. Simpson L, et al. Exp. Cell Res. (2001) pmid: 11237521
- 110. Patnaik A, et al. Ann. Oncol. (2016) pmid: 27672108
- 111. Milella M, et al. Sci Rep (2017) pmid: 28220839
- 112. Galanis E, et al. J. Clin. Oncol. (2005) pmid: 15998902 113. Kreisl TN, et al. J. Neurooncol. (2009) pmid: 19018475
- 114. Mason WP, et al. Invest New Drugs (2012) pmid: 22160854
- 115. Mendes-Pereira AM, et al. EMBO Mol Med (2009) pmid: 20049735
- 116. Shen Y, et al. Clin. Cancer Res. (2013) pmid: 23881923
- 117. Chatterjee P, et al. PLoS ONE (2013) pmid: 23565244
- 118. McCormick A, et al. Int. J. Gynecol. Cancer (2016) pmid: 26905328
- 119. Forster MD, et al. Nat Rev Clin Oncol (2011) pmid: 21468130
- 120. Eikesdal HP, et al. Ann Oncol (2021) pmid: 33242536
- 121. Dougherty et al., 2014; ASCO Abstract 5536
- 122. Pan M, et al. Perm J (2021) pmid: 33970096
- 123. Sandhu SK, et al. Lancet Oncol. (2013) pmid: 23810788
- 124. Romero I, et al. Gynecol Oncol (2020) pmid: 32988624
- 125. George S, et al. Immunity (2017) pmid: 28228279
- 126. Peng W. et al. Cancer Discov (2016) pmid: 26645196
- 127. Zhou XP, et al. Int. J. Cancer (1999) pmid: 10096247
- 128. Rasheed BK, et al. Cancer Res. (1997) pmid: 9331072
- 129. Davies MP, et al. Br. J. Cancer (1999) pmid: 10188904 130. Smith JS, et al. J. Natl. Cancer Inst. (2001) pmid:
- 11504770 131. Lin H. et al. Clin. Cancer Res. (1998) pmid: 9796977
- 132. Schmidt EE, et al. J. Neuropathol. Exp. Neurol. (1999) pmid: 10560660
- 133. Kato H, et al. Clin. Cancer Res. (2000) pmid: 11051241
- 134. Furnari FB, et al. Genes Dev. (2007) pmid: 17974913
- 135. Yan et al. 2020; DOI:10.1200/PO.19.00385
- 136. Sano T, et al. Cancer Res. (1999) pmid: 10213484 137. Srividya MR, et al. Neuropathology (2011) pmid:
- 21134002 138. Campbell RB, et al. J. Biol. Chem. (2003) pmid:
- 12857747 139. Rodríguez-Escudero I, et al. Hum. Mol. Genet. (2011)
- pmid: 21828076
- 140. He X, et al. Cancer Res. (2013) pmid: 23475934
- 141. Han SY, et al. Cancer Res. (2000) pmid: 10866302 142. Myers MP, et al. Proc. Natl. Acad. Sci. U.S.A. (1998)
- pmid: 9811831 143. Pradella LM, et al. BMC Cancer (2014) pmid: 24498881
- 144. Kim JS, et al. Mol. Cell. Biol. (2011) pmid: 21536651
- 145. Denning G, et al. Oncogene (2007) pmid: 17213812
- 146. Hlobilkova A, et al. Anticancer Res. () pmid: 16619501
- 147. Redfern RE, et al. Protein Sci. (2010) pmid: 20718038
- 148. Shenoy S, et al. PLoS ONE (2012) pmid: 22505997 149. Wang Y, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19329485
- 150. Okumura K, et al. J. Biol. Chem. (2006) pmid: 16829519
- 151. Lee JO, et al. Cell (1999) pmid: 10555148
- 152. Maxwell GL, et al. Cancer Res. (1998) pmid: 9635567
- 153. Risinger Jl. et al. Clin. Cancer Res. (1998) pmid: 9865913 154. Fenton TR, et al. Proc. Natl. Acad. Sci. U.S.A. (2012) pmid: 22891331

APPENDIX References

- Ngeow J, et al. J. Clin. Endocrinol. Metab. (2012) pmid: 23066114
- **156.** Lobo GP, et al. Hum. Mol. Genet. (2009) pmid: 19457929
- 157. Liu J, et al. Oncogene (2014) pmid: 23995781
- **158.** Maehama T, et al. Annu. Rev. Biochem. (2001) pmid: 11395408
- 159. De Vivo I, et al. J. Med. Genet. (2000) pmid: 10807691
- **160.** Ramaswamy S, et al. Proc. Natl. Acad. Sci. U.S.A. (1999) pmid: 10051603
- 161. Liu JL, et al. Mol. Cell. Biol. (2005) pmid: 15988030
- 162. Karoui M, et al. Br. J. Cancer (2004) pmid: 15026806
- 163. Gil A, et al. PLoS ONE (2015) pmid: 25875300
- 164. Furnari FB, et al. Cancer Res. (1998) pmid: 9823298
- 165. Spinelli L, et al. J. Med. Genet. (2015) pmid: 25527629
- **166.** Mingo J, et al. Eur. J. Hum. Genet. (2018) pmid: 29706633
- Wang Q, et al. J. Mol. Graph. Model. (2010) pmid: 20538496
- **168.** Andrés-Pons A, et al. Cancer Res. (2007) pmid: 17942903
- 169. Butler MG, et al. J. Med. Genet. (2005) pmid: 15805158
- Georgescu MM, et al. Proc. Natl. Acad. Sci. U.S.A. (1999) pmid: 10468583
- 171. Staal FJ, et al. Br. J. Cancer (2002) pmid: 12085208
- 172. Nguyen HN, et al. Oncogene (2014) pmid: 24292679
- Rahdar M, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19114656
- 174. Das S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12808147
- 175. Wang X, et al. Biochem. J. (2008) pmid: 18498243
- 176. Valiente M, et al. J. Biol. Chem. (2005) pmid: 15951562
- 177. Nguyen HN, et al. Oncogene (2015) pmid: 25263454
- Landrum MJ, et al. Nucleic Acids Res. (2018) pmid: 29165669
- **179.** Blumenthal GM, et al. Eur. J. Hum. Genet. (2008) pmid: 18781191
- 180. Orloff MS, et al. Oncogene (2008) pmid: 18794875
- 181. Zbuk KM, et al. Nat. Rev. Cancer (2007) pmid: 17167516
- **182.** Kalev P, et al. Cancer Res. (2012) pmid: 23087057
- **183.** Wang YQ, et al. J. Med. Chem. (2016) pmid: 27416328 **184.** de Bono J, et al. N. Engl. J. Med. (2020) pmid: 32343890
- 185. Perrotti D, et al. Lancet Oncol. (2013) pmid: 23639323
- **186.** Cristóbal I, et al. Mol. Cancer Ther. (2014) pmid: 24448818
- **187.** Saddoughi SA, et al. EMBO Mol Med (2013) pmid: 23180565
- 188. Baldacchino S, et al. EPMA J (2014) pmid: 24460909
- 189. Chen W, et al. Gastroenterol Res Pract (2013) pmid: 24307892
- 190. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 191. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 192. Gao J, et al. Sci Signal (2013) pmid: 23550210
- 193. Beca F, et al. BMC Cancer (2015) pmid: 25879784
- **194.** Curtis C, et al. Nature (2012) pmid: 22522925
- 195. Mao X, et al. Am J Cancer Res (2011) pmid: 21994901

- 196. Zhao Z, et al. Oncogenesis (2019) pmid: 31822657
- **197.** Freeman AK, et al. Cell Commun. Signal (2010) pmid: 20860841
- Wurzenberger C, et al. Nat. Rev. Mol. Cell Biol. (2011) pmid: 21750572
- Westermarck J, et al. Trends Mol Med (2008) pmid: 18329957
- 200. Eichhorn PJ, et al. Biochim. Biophys. Acta (2009) pmid: 18588945
- 201. Owonikoko et al., 2016; ESMO Abstract 14230
- 202. Hook KE, et al. Mol. Cancer Ther. (2012) pmid: 22222631
- **203.** Gong X, et al. Cancer Discov (2019) pmid: 30373917
- 204. Oser MG, et al. Cancer Discov (2019) pmid: 30373918
- 205. Beltran H, et al. Clin. Cancer Res. (2019) pmid: 30232224
- 206. Allaman-Pillet N, et al. Ophthalmic Genet. () pmid: 21955141
- 207. Viatour P, et al. J. Exp. Med. (2011) pmid: 21875955
- 208. Condorelli R, et al. Ann. Oncol. (2018) pmid: 29236940
- 209. Fry DW, et al. Mol. Cancer Ther. (2004) pmid: 15542782
- 210. Dean JL, et al. Oncogene (2010) pmid: 20473330
- 211. Dean JL, et al. Cell Cycle (2012) pmid: 22767154
- 212. Garnett MJ, et al. Nature (2012) pmid: 22460902
- **213.** Roberts PJ, et al. J. Natl. Cancer Inst. (2012) pmid: 22302033
- 214. Patnaik A, et al. Cancer Discov (2016) pmid: 27217383
- 215. O'Leary B, et al. Cancer Discov (2018) pmid: 30206110
- 216. Costa C. et al. Cancer Discov (2019) pmid: 31594766
- 217. Chen SH, et al. Oncogene (2018) pmid: 29059158
- 218. Derenzini M, et al. Clin. Cancer Res. (2008) pmid: 18381962
- 219. Knudsen ES, et al. Nat. Rev. Cancer (2008) pmid: 19143056
- 220. Goldhoff P, et al. J. Neuropathol. Exp. Neurol. (2012) pmid: 22157621
- 221. Bäcklund LM, et al. Clin. Cancer Res. (2003) pmid: 14519639
- **222.** Chow LM, et al. Cancer Cell (2011) pmid: 21397855
- 223. Nobusawa S, et al. Brain Pathol. (2010) pmid: 20406234
- **224.** Deighton RF, et al. Brain Pathol. (2010) pmid: 20175778
- 225. Burkhart DL, et al. Nat. Rev. Cancer (2008) pmid: 18650841
- **226.** Berge EO, et al. Mol. Cancer (2010) pmid: 20594292
- **227.** Giacinti C, et al. Oncogene (2006) pmid: 16936740
- 228. Otterson GA, et al. Proc. Natl. Acad. Sci. U.S.A. (1997) pmid: 9342358
- **229.** Otterson GA, et al. Am. J. Hum. Genet. (1999) pmid: 10486322
- **230.** Qin XQ, et al. Genes Dev. (1992) pmid: 1534305
- 231. Rubin SM, et al. Cell (2005) pmid: 16360038
- 232. Sun H, et al. Mol. Cell. Biol. (2006) pmid: 16449662
- 233. Chen Z, et al. Hum. Mutat. (2014) pmid: 24282159
- 234. Yun J, et al. Int J Ophthalmol (2011) pmid: 22553621
- 235. Houston SK, et al. Int Ophthalmol Clin (2011) pmid: 21139478
- 236. Ng AK, et al. Semin Radiat Oncol (2010) pmid:

- 19959033
- 237. Killela PJ, et al. Proc. Natl. Acad. Sci. U.S.A. (2013) pmid: 23530248
- 238. Killela PJ, et al. Oncotarget (2014) pmid: 24722048
- 239. Nonoguchi N, et al. Acta Neuropathol. (2013) pmid: 23955565
- 240. Liu X, et al. Cell Cycle (2013) pmid: 23603989
- **241.** Koelsche C, et al. Acta Neuropathol. (2013) pmid: 24154961
- 242. Reitman ZJ, et al. Acta Neuropathol. (2013) pmid: 24217890
- 243. Arita H, et al. Acta Neuropathol. (2013) pmid: 23764841
- **244.** Shay JW, et al. Semin. Cancer Biol. (2011) pmid: 22015685
- 245. Shay JW, et al. Eur. J. Cancer (1997) pmid: 9282118
- 246. Kim NW, et al. Science (1994) pmid: 7605428
- 247. Hanahan D, et al. Cell (2000) pmid: 10647931
- 248. Horn S, et al. Science (2013) pmid: 23348503
- 249. Huang FW, et al. Science (2013) pmid: 23348506
- 250. Vinagre J, et al. Nat Commun (2013) pmid: 23887589
- 251. Glassberg et al., 2020; ASPHO Abstract 2015
- **252.** Coyne et al., 2020; ASCO Abstract 3612
- 253. McCowage et al., 2018; ASCO Abstract 10504
- 254. Mueller et al., 2020: SNO Abstract NFB-17
- 255. Waldner et al., 2020; DOI: 10.1055/s-0040-1715638
- 256. Romo et al., 2019; SNO Abstract RARE-54
- **257.** Banerjee A, et al. Neuro-oncology (2017) pmid: 28339824
- 258. Allen et al., 2021; ASCO Abstract 10008
- **259.** Gupta A, et al. Ann. Oncol. (2014) pmid: 24567366
- 260. Robert C, et al. Lancet Oncol. (2013) pmid: 23735514
- **261.** Kirkwood JM, et al. Clin. Cancer Res. (2012) pmid: 22048237
- 262. Banerji U, et al. Clin. Cancer Res. (2010) pmid: 20179232
- 263. Boers-Sonderen MJ, et al. Anticancer Drugs (2012) pmid: 22293660
- **264.** Lopez-Chavez A, et al. J. Clin. Oncol. (2015) pmid: 25667274
- **265.** Hainsworth JD, et al. J Thorac Oncol (2010) pmid: 20802351
- 266. Coleman RL, et al. Gynecol. Oncol. (2015) pmid: 25887099
 267. Deming DA, et al. Invest New Drugs (2016) pmid:
- 26666244 **268.** Krishnamurthy A, et al. Cancer Res. (2018) pmid:
- 30042150 **269.** Infante JR, et al. Invest New Drugs (2017) pmid: 28424891
- **270.** LoRusso PM, et al. BMC Cancer (2017) pmid: 28264648
- 271. Tolcher AW, et al. Clin. Cancer Res. (2015) pmid: 25516890
- 272. Wilky BA, et al. Br. J. Cancer (2015) pmid: 25268371
- 273. Miller et al., 2016; ISPNO Abstract LG-01
- 274. Miller C, et al. J Neurosurg Pediatr (2017) pmid: 28009226
- 275. Yde CW, et al. Cancer Genet (2016) pmid: 27810072