CRYPTOGRAPHY

МЕТОДИ ТА ЗАСОБИ КРИПТОГРАФІЧНОГО ЗАХИСТУ ІНФОРМАЦІЇ

CTAHДAPT DES

Data Encryption Standard

СИММЕТРИЧНЫЙ АЛГОРИТМ → ОДИН КЛЮЧ

как для шифрования, так и дешифрования

!!!
$$D_{K}(*) = E_{K}^{-1}(*)$$
 $M = D_{K}(E_{K}(M))$

Data Encryption Standard

Блочный шифр → оперирует группами бит фиксированной длины — блоками, характерный размер которых меняется в пределах 64–256 бит. DES — блоки 64

DES – блоки 64 разряда S-DES – блоки 8 разрядов

На входе: блок *n* разрядов и ключ *k* разрядов. На выходе: шифрованный блок *n* разрядов.

S-DES → DES

Структура DES

Таблица начальной перестановки (IP)

58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
62	54	46	38	30	12	14	6	64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
61	53	37	37	29	21	13	5	63	55	47	39	31	23	15	7

Таблица конечной перестановки (IP-1)

40	8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28	35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26	33	1	41	9	49	17	57	25

Функция Фейстеля F(K,L)

Режимы использования DES

Режим электронной кодовой книги (ECB – electronic codebook).

Стандартный режим шифрования. Текст разбивается на блоки и блоки отдельно шифруются.

Режим сцепления блоков (CBC – cipher block chaining).

Каждый очередной блок открытого текста перед шифрованием складывается по **mod2** с предыдущим блоком зашифрованного текста.

Режимы использования DES

Режим обратной связи по шифротексту (CFB – cipher feedback).

Задается начальный код синхроссылки $C_{0.}$ Далее с помощью DES формируется «гамма» блоков.

 $C_i = Z_i \oplus C_i$, где $Z_i = DES(C_{i-1})$;

Режим обратной связи по выходу (OFB – output feedback).

Задается начальный код синхроссылки Z_0 . Далее с помощью DES формируется «гамма» блоков.

 $C_i = Z_i \oplus C_i$, где $Z_i = DES(Z_{i-1})$;

B **CFB** и **OFB** – **DES** используешься только как шифратор.

Криптостойкость определяется длиной ключа.

Мощность множества ключей

$$||K||=2^n$$

Здесь n - разрядность секретного ключа. **Атака** грубой силы требует перебора 2^n вариантов. Для n=56, вариантов $=7.2 \ 10^{16}$

Оценка:

Год	Название	Флопс	Время перебора
1949	Кило	<i>10</i> ³	2314814 лет
1964	Мега	106	2380 лет
1987	Гига	10^{9}	2,3 года
1997	Tepa	<i>10</i> ¹²	20 часов
2008	Пета	<i>10</i> ¹⁵	100 секунд
2021 ??	Экса	<i>10</i> ¹⁸	0,07 секунды

Криптостойкость определяется длиной ключа.

Мощность множества ключей

$$||K||=2^n$$

Атака грубой силы: для n=256, мощность $=1.1 \ 10^{77}$

Оценка:

Год	Название	Флопс	Время перебора
2008	Пета	<i>10</i> ¹⁵	<i>3,6 10⁵⁴</i> лет
2021 ??	Экса	<i>10</i> ¹⁸	<i>3,6 10⁵¹</i> лет

Атака «линейный криптоанализ»: Известны открытые тексты в количестве $2^{43} \rightarrow$ требуется 2^{43} операций .

Атака «дифференциальный криптоанализ»: Известны открытые тексты в количестве $2^{55} \rightarrow$ требуется 2^{55} операций .

!!! Объем памяти для хранения открытых текстов

«Слабые ключи»: (4 ключа)

$$k \longrightarrow DES_k(DES_k(X)) = X$$

СЛАБЫЙ КЛЮЧ (Hex)
0101 0101 0101
FEFE FEFE FEFE
1F1F 1F1F 1F1F
E0E0 E0E0 E0E0 E0E0

«Частично слабые ключи»: (6 пар)

$$(k_1, k_2) \longrightarrow DES_{k1}(DES_{k2}(X)) = X$$

КЛЮЧ 1 (Нех)	КЛЮЧ 2 (Нех)
01FE 01FE 01FE	FE01 FE01 FE01
1FE0 1FE0 1FE0	E0F1 E0F E0F

Шифры на основе сети Фейстеля

Название	Год	Раунд	Длина ключа	Размер блока
Lucifer	1971	16	48/64/128	48/32/128
DES	1977	16	56	64
Triple DES	1978	32/48	112/168	64
RC5	1994	1-255	0-2040 (128)	32/64/128
RC6	1998	20	128/192/256	128
KASUMI	1999	8	128	64
RTEA	2007	48/64	128/256	64

Шифры на основе сети Фейстеля

Название	Год	Раунд	Длина ключа	Размер блока
ГОСТ 28147-89	1989	4-32	256	64

Приказом Госпотребстандарта
Украины №495 от 22.01.2008 г ГОСТ
28147-89 был переиздан на территории
Украины и введён в действие с 1
февраля 2009 года под
наименованием ДСТУ ГОСТ 28147:2009

Согласно текущим приказам, ДСТУ ГОСТ 28147:2009 будет действовать до 01.01.2022 года. Замена – ДСТУ 7624:2014 (шифр «Калина»)

Вопросы:

- Поясните функционирование вычислителя функции Фейстеля в стандарте DES.
- Определите функцию S-блоков стандарта DES и его характеристики.
- Поясните организацию смесителя Фейстеля стандарта DES.
- Укажите режимы использования DES и их различия.
- Охарактеризуйте криптостойкость стандарта DES.

ЛИТЕРАТУРА

Block cipher cryptographic system. US patent US3798359A (1971).-

https://patents.google.com/patent/US3798359

ЛИТЕРАТУРА

Венбо Мао. Современная криптография: теория и практика.—М.: Издательский дом «Вильямс», 2005.—768 с.: ил. ISSN 5-8459-0847-7 (рус.)

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходный код на Си. – Москва: Вильямс, 2016. 1024 с.

ЛИТЕРАТУРА

Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Cetin Kaya Koc.

Cryptographic Algorithms on Reconfigurable Hardware. - Springer, 2006.

A. Menezes, P. van Oorschot, S. Vanstone.

Handbook of Applied Cryptography.- CRC Press, 1996.

END #9