AKAD Bachelor of Science (Wirtschaftsinformatik) Modulzusammenfassung

WIM04

Formelsammlung

Daniel Falkner Rotbach 529 94078 Freyung daniel.falkner@akad.de 15. Februar 2013

Inhaltsverzeichnis

1	Folg	gen	3
	1.1	arithmetische Folgen	3
		1.1.1 Bildungsgesetz	3
	1.2	geometrische Folgen	
		1.2.1 Bildungsgesetz	3
2	Reił	nen	3
	2.1	arithmetische Reihen	4
		2.1.1 Bildungsgesetz	4
	2.2	geometrische Reihen	4
		2.2.1 Bildungsgesetz	4
3	Voll	ständige Induktion	4
4	Mat	rizen	4
	4.1	Transponierte Matrix	4
	4.2	Addition	5
		4.2.1 vom selben Typ	5
	4.3	Multiplikation	5
		4.3.1 mit einer reellen Zahl (Skalar)	5
		4.3.2 zweier Matrizen	5
		4.3.3 spezielle Matrixprodukte	5
	4.4	Inverse	
		4.4.1 Bestimmtung der inversen Matrix	5

1 Folgen

Eine Serie von Zahlen oder Größen 5, 10, 4, 1 $(a_n) = a_1, a_2, a_3, ..., a_n$

$$(a_n) = a_1, a_2, a_3, ..., a_n$$

1.1 arithmetische Folgen

- $\bullet \ a_{n+1} = a_n + d$
- 7, 11, 15, 19, 23, 27, ...
- $\bullet \mapsto d = 4$

1.1.1 Bildungsgesetz

$$a_n = a_1 + d * (n-1)$$

1.2 geometrische Folgen

- $\bullet \ an + 1 = a_n * q$
- 2, 6, 18, 54, 162, 486, ...
- $\bullet \mapsto q = 3$

1.2.1 Bildungsgesetz

$$a_n = a_1 * q^{n-1}$$

$$q = \sqrt[n-1]{\frac{a_n}{a_1}}$$

2 Reihen

Aus einer Folge ergibt sich eine Reihe

$$(s_n) = s_1, s_2, s_3, ..., s_n$$

$$(s_n) = a_1 + a_2 + a_3 + \dots + a_n = \sum_{j=1}^n a_j$$

2.1 arithmetische Reihen

- $(a_n) = 7, 11, 15, 19, \dots \mapsto a_1 = 7, d = 4$
- $(s_n) = 7, 18, 33, 52, \dots$

2.1.1 Bildungsgesetz

$$s_n = \frac{n}{2} * (a_1 + a_n) = \frac{n}{2} * (2a_1 + (n-1)d)$$

2.2 geometrische Reihen

- $(a_n) = 2, 6, 18, 54, \dots \mapsto a_1 = 2, q = 3$
- $(s_n) = 2, 8, 26, 80, ...$

2.2.1 Bildungsgesetz

$$s_n = a_1 * \frac{q^n - 1}{q - 1}, q \neq 1$$

3 Vollständige Induktion

- 1. Zeigen das die Formeln für n = 1 gelten
- 2. Zeigen das die Formeln für n + 1 gelten
 - a) Induktionsannahme festhalten a_n (zu beweisende Formel)
 - b) Die zubeweisende Formel für n + 1 herleiten a_{n+1}
 - c) Die Induktionsnahme + Ursprungsformel für n + 1 herleiten a_{n+1}

4

4 Matrizen

4.1 Transponierte Matrix

 ${\cal A}^T$ entsteht durch Vertauschen der Zeilen mit den Spalten von ${\cal A}$

Beispiel:

$$A_{(2,3)} = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 4 & -1 \end{bmatrix} A_{(3,2)}^T = \begin{bmatrix} 1 & -2 \\ 2 & 4 \\ 3 & -1 \end{bmatrix}$$

4.2 Addition

4.2.1 vom selben Typ

die gleichstehenden Elemente addieren und zu einer neuen Matrix zusammenfassen

4.3 Multiplikation

4.3.1 mit einer reellen Zahl (Skalar)

alle Elemente der Matrix mit der Zahl multiplizeren

4.3.2 zweier Matrizen

Zwei Matrizen sind multiplikationsverträglich wenn die Spaltenanzahl von A mit der Zeilanzahl von B übereinstimmt. Eine Hilfe bietet das Falk-Schema ¹

4.3.3 spezielle Matrixprodukte

- Zeilenvektor * Spaltenvektor = Skalar
- Spaltenvektor * Zeilenvekor = Matrix

4.4 Inverse

A vom Typ (n,n) ist regulär, d.h. A^{-1} (Inverse Matrix) existiert. Dann ist die Matrixgleichung A * X = B eindeutig lösbar.

4.4.1 Bestimmtung der inversen Matrix

- ullet Die Inverse A^{-1} lässt sich mit dem Gauß-Jordan-Verfahren ermitteln 2
- Eine quadratische Matrix A ist genau dann invertierbar, wenn ihre Determinate |A| ungleich Null ist

¹ http://de.wikipedia.org/wiki/Falksches_Schema

² http://de.wikipedia.org/wiki/Gau%DF-Jordan-Algorithmus