Bytes file

© Created	@Jun 10, 2021 11:17 AM
: <u>≡</u> Tags	

Exploratory Data Analysis

Number of data points in each class

Observation:- Class 5 has less number of data points, Imbalance data problem.

File size as feature

ID	File Name	Size
0	01azqd4InC7m9JpocGv5	4.234863
1	01lsoiSMh5gxyDYTl4CB	5.538818
2	01jsnpXSAlgw6aPeDxrU	3.887939
3	01kcPWA9K2BOxQeS5Rju	0.574219
4	01SuzwMJEIXsK7A8dQbl	0.370850

Box plot of file size as feature

Observation:- Class 2, 5 and 9 can be easily distinguished from other classes, using only the file size feature

Copy of Bag of word as feature of the file

# ID	Aa File Name	# 0	# 1	# 2	# 3	# 4	# 5	# 6	# 7	# 8	o	# f9	# fa	# fb	# fc
0	01azqd4InC7m9JpocGv5	601905	3905	2816	3832	3345	3242	3650	3201	2965		3101	3211	3097	2758
1	01lsoiSMh5gxyDYTI4CB	39755	8337	7249	7186	8663	6844	8420	7589	9291		439	281	302	7639
2	01jsnpXSAlgw6aPeDxrU	93506	9542	2568	2438	8925	9330	9007	2342	9107		2242	2885	2863	2471
3	01kcPWA9K2BOxQeS5Rju	21091	1213	726	817	1257	625	550	523	1078		485	462	516	1133
4	01SuzwMJEIXsK7A8dQbl	19764	710	302	433	559	410	262	249	422		350	209	239	653

Copy of Combining Bag of Words and File size as Features

# ID	Aa File Name	# 0	# 1	# 2	# 3	# 4	# 5	# 6	# 7	# 8	o	# f9	# fa	# fb	# fc
0	01azqd4InC7m9JpocGv5	601905	3905	2816	3832	3345	3242	3650	3201	2965		3101	3211	3097	2758
1	01lsoiSMh5gxyDYTI4CB	39755	8337	7249	7186	8663	6844	8420	7589	9291		439	281	302	7639
2	01jsnpXSAlgw6aPeDxrU	93506	9542	2568	2438	8925	9330	9007	2342	9107		2242	2885	2863	2471
3	01kcPWA9K2BOxQeS5Rju	21091	1213	726	817	1257	625	550	523	1078		485	462	516	1133
4	01SuzwMJEIXsK7A8dQbl	19764	710	302	433	559	410	262	249	422		350	209	239	653

Copy of Normalizing the Features

# ID	Aa File Name	# 0	# 1	# 2	# 3	# 4	# 5	# 6	# 7	# 8
0	01azqd4InC7m9JpocGv5	0.262806	0.005498	0.001567	0.002067	0.002048	0.001835	0.002058	0.002946	0.002638
1	01lsoiSMh5gxyDYTI4CB	0.017358	0.011737	0.004033	0.003876	0.005303	0.003873	0.004747	0.006984	0.008267
2	01jsnpXSAlgw6aPeDxrU	0.040827	0.013434	0.001429	0.001315	0.005464	0.00528	0.005078	0.002155	0.008104
3	01kcPWA9K2BOxQeS5Rju	0.009209	0.001708	0.000404	0.000441	0.00077	0.000354	0.00031	0.000481	0.000959
4	01SuzwMJEIXsK7A8dQbl	0.008629	0.001	0.000168	0.000234	0.000342	0.000232	0.000148	0.000229	0.000376

Multivariate analysis of the Features

Perplexity = 50

Observation:- Class 2 and 3 are clearly separated whereas other classes have poor distinctions

Perplexity = 30

Observation:- Class 2 and 3 are clearly separated whereas other classes have poor distinctions

Test Train Split

Number of data points in train data: 6955 Number of data points in test data: 2174

Number of data points in cross validation data: 1739

Check for distribution of data

We check for the distribution of classes in each split by plotting a histogram.

Machine Learning Model

Random Model

Log loss on Cross Validation Data using Random Model 2.46 Log loss on Test Data using Random Model 2.48 Accuracy 11.49

Confusion Matrix

Recall Matrix

K Nearest Neighbor Classification

Hyperparameter Search

log_loss for k = 1 is 0.225386237304

 log_loss for k = 3 is 0.230795229168 log_loss for k = 5 is 0.252421408646

 log_loss for k = 7 is 0.273827486888

 $log_loss for k = 9 is 0.286469181555$

 $log_loss for k = 11 is 0.29623391147$

 $log_loss for k = 13 is 0.307551203154$

Results from the Best Model

For values of best alpha = 1 The train log loss is: 0.08

For values of best alpha = 1 The cross validation log loss is: 0.23

For values of best alpha = 1 The test log loss is: 0.24

Accuracy 95.49

Confusion Matrix

Recall Matrix

Logistic Regression

Hyperparameter Search

 $log_loss for c = 1e-05 is 1.56916911178$

 $log_loss for c = 0.0001 is 1.57336384417$

 $log_loss for c = 0.001 is 1.53598598273$

 $log_loss for c = 0.01 is 1.01720972418$

 $log_loss for c = 0.1 is 0.857766083873$

log_loss for c = 1 is 0.711154393309 log_loss for c = 10 is 0.583929522635 log_loss for c = 100 is 0.549929846589 log_loss for c = 1000 is 0.624746769121

Results from the Best Model

log loss for train data 0.50 log loss for cv data 0.55 log loss for test data 0.53 Number of misclassified points 87.67

Confusion Matrix

Recall Matrix

Random Forest Classifier

Hyperparameter Search

log_loss for c = 10 is 0.106357709164 log_loss for c = 50 is 0.0902124124145 log_loss for c = 100 is 0.0895043339776 log_loss for c = 500 is 0.0881420869288 log_loss for c = 1000 is 0.0879849524621 log_loss for c = 2000 is 0.0881566647295 log_loss for c = 3000 is 0.0881318948443

Results from the Best model

For values of best alpha = 1000 The train log loss is: 0.031

For values of best alpha = 1000 The cross validation log loss is: 0.09

For values of best alpha = 1000 The test log loss is: 0.08

Accuracy 96.76

Confusion Matrix

Recall Matrix

XgBoost Classification

Hyperparameter Search

log_loss for c = 10 is 0.20615980494 log_loss for c = 50 is 0.123888382365

 $log_loss for c = 100 is 0.099919437112$

 $log_loss for c = 500 is 0.0931035681289$

log_loss for c = 1000 is 0.0933084876012 log_loss for c = 2000 is 0.0938395690309

Results from the Best Model

For values of best alpha = 500 The train log loss is: 0.022

For values of best alpha = 500 The cross validation log loss is: 0.09

For values of best alpha = 500 The test log loss is: 0.08

Accuracy 98.67

Confusion Matrix

Recall Matrix

XgBoost Classification with best hyper parameters using Random Search

```
Fitting 3 folds for each of 10 candidates, totalling 30 fits
[Parallel(n_jobs=-1)]: Done 2 tasks
                                              | elapsed:
                                                            26.5s
[Parallel(n_jobs=-1)]: Done
                                9 tasks
                                              | elapsed: 5.8min
[Parallel(n_jobs=-1)]: Done 19 out of 30 | elapsed: 9.3min remaining: 5.4min
[Parallel(n\_jobs=-1)] : \ Done \ 23 \ out \ of \ 30 \ | \ elapsed : \ 10.1min \ remaining : \ 3.1min
[Parallel(n\_jobs=-1)] \colon \mbox{ Done } \mbox{ 27 out of } \mbox{ 30 } | \mbox{ elapsed: } \mbox{ 14.0min remaining: } \mbox{ 1.6min}
[Parallel(n\_jobs=-1)] \colon Done \quad 30 \ out \ of \quad 30 \ | \ elapsed \colon 14.2min \ finished
RandomizedSearchCV(cv=None, error_score='raise',
          estimator=XGBClassifier(base_score=0.5, colsample_bylevel=1, colsample_bytree=1,
       gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,
       min_child_weight=1, missing=None, n_estimators=100, nthread=-1,
       objective='binary:logistic', reg_alpha=0, reg_lambda=1,
       scale_pos_weight=1, seed=0, silent=True, subsample=1),
          fit_params=None, iid=True, n_iter=10, n_jobs=-1,
          param_distributions={'learning_rate': [0.01, 0.03, 0.05, 0.1, 0.15, 0.2], 'n_estimators': [100, 200, 500, 1000, 2000], 'max_dep
th': [3, 5, 10], 'colsample_bytree': [0.1, 0.3, 0.5, 1], 'subsample': [0.1, 0.3, 0.5, 1]},
           pre_dispatch='2*n_jobs', random_state=None, refit=True,
           return_train_score=True, scoring=None, verbose=10)
```

Best Parameters

{'subsample': 1, 'n_estimators': 500, 'max_depth': 5, 'learning_rate': 0.05, 'colsample_bytree': 0.5}

Results from the Best Parameter Model

train loss 0.022 cv loss 0.09 test loss 0.08

Accuracy 98.67