MPPT Direct pour application Photovoltaïque

Grand Nicolas, Ondet Olivier, Yicong Li, Cenhao Liu

BA04

17/06/2024

Table des matières

- Introduction
- Perturb and Observe
- 3 Perturb and Observe Amélioré
- 4 Incremental MPPT
- Fuzzy Logic
- 6 Conclusion

Évolution de la consommation mondiale d'énergie entre 1850 et 2017

Figure: Evolution de la demande mondiale en énergie

Figure: schéma d'un PV

Figure: le point MPP

Perturb and Observe

Objectif : Optimiser la recherche du point de puissance maximale (MPP) d'un système photovoltaïque.

Principe: Ajuster le pas de perturbation de manière dynamique pour suivre et s'adapter aux variations réelles de l'environnement et des conditions opérationnelles.

Méthode :

- Calculer dP/dV par la relation : $\frac{dP}{dV} = \frac{\Delta P}{\Delta V}$
- Si $\frac{\Delta P}{\Delta V} > 0$, augmenter la tension pour atteindre le MPP
- Si $\frac{\vec{\Delta}\vec{P}}{\Delta V} < 0$, diminuer la tension pour atteindre le MPP

Principe de la méthode P&O

Figure: Organigramme de la méthode P&O

Implémentation avec Matlab et Simulink

On utilise le PV qu'on modélise en cours: KC200GT.

Figure: MPPT direct par P&O avec KC200GT

calcul du gain adapté

on cherche l'énergie récupérée pour plusieurs gains.

Figure: MPPT direct par P&O avec KC200GT

Perturb and Observe Amélioré

Limitations du P&O : Limitations en termes d'efficacité et de précision, notamment en raison de sa dépendance à un pas de perturbation statique.

Principe d'amélioration : l'ajustement automatique du pas de perturbation en fonction de la déviation réelle.

Méthode :

- Calculer dP/dV par la relation : $\frac{dP}{dV} = \frac{\Delta P}{\Delta V}$
- Si $\frac{dP}{dV} > error$, utilisation de grand pas, dDbig.
- Si $\frac{d\dot{P}}{dV}$ < error, utilisation de petit pas, dDsmall.
- Si $\frac{\widehat{\Delta P}}{\Delta V} > 0$, augmenter la tension pour atteindre le MPP
- Si $\frac{\overline{\Delta}\dot{P}}{\Delta V} <$ 0, diminuer la tension pour atteindre le MPP

Analyse de performance d'un système photovoltaïque

Préparation des données :

- Utilisation des données de température et d'irradiation fournies pour la période du 1er avril 2023 au 31 mars 2024.
- Transformation des données de format 1440*366 en une seule colonne avec les dates-heures exprimées en secondes.

Importation et simulation dans Simulink :

- Importation des données préparées de Matlab workspace.
- Simulation tenant compte des variations quotidiennes d'irradiation solaire et de température des cellules sur une année complète.

Analyse des résultats :

- Agrégation des données simulées par jour sur une période de 366 jours.
- Calcul de l'énergie produite par jour et par an en kWh pour évaluer la performance énergétique du système.

Comparaison entre P&O et P&OA

Après la simulation, nous obtenons le résultat de la puissance sur une année pour P&O et P&OA.

Figure: Puissance sur une année avec P&O (rouge) et P&OA (bleu)

Comparaison entre P&O et P&OA

Après le traitement des données, nous calculons l'énergie produite par le PV avec P&O et P&OA.

En résumé sur une année, le PV avec P&O produit 180,28 kWh, tandis que le PV avec P&OA produit 179,36 kWh.

Comparaison entre P&O et P&OA

Figure: Comparaison de l'énergie produite par jour pour les algorithmes MPPT Direct P&O et P&OA.

Efficacité annuelle (P&O) = 17.94%

Efficacité annuelle (P&OA) = 17.85%

Incremental Conductance Algorithm

Objectif: Optimisation de l'extraction d'énergie des panneaux photovoltaïques (PV).

Principe : Utilisation de la conductance incrémentale pour suivre le point de puissance maximale.

Méthode :

- Calculer la conductance instantanée (I/V) et la conductance incrémentale $(\Delta I/\Delta V)$.
- Utilisation de la relation :

$$\frac{dP}{dV} = I + V \frac{dI}{dV}$$

- Si $\Delta I/\Delta V = -I/V$, le point de puissance maximale est atteint.
- Si $\Delta I/\Delta V > -I/V$, augmenter la tension pour atteindre le MPP.
- Si $\Delta I/\Delta V < -I/V$, diminuer la tension pour atteindre le MPP.

Avantage de l'Algorithme INC

Avantages :

- Suivi précis et rapide du point de puissance maximale.
- Bonne performance sous des conditions de variation rapide de l'irradiation et de la température.
- Réduction des pertes d'énergie.

Fuzzy Logic

- Objectif: Optimisation de l'extraction d'énergie des panneaux photovoltaïques (PV).
- Principe: Utilisation des degrés de vérité plutôt que de la logique binaire traditionnelle.
 - Suivi plus stable et continu du point de puissance maximale.
 - Réponse rapide aux variations de l'irradiation et de la température.
 - Réduction des fluctuations de puissance.

Implémentation avec Matlab et Simulink

Pour implémenter le MPPT par logique floue, Matlab et Simulink sont utilisés pour modéliser et simuler le système. Les étapes incluent :

- Modélisation du Panneau PV : Création d'un modèle de panneau PV basé sur ses caractéristiques I-V et P-V.
- Conception du Contrôleur Flou : Définition des ensembles flous et des règles de décision dans Matlab.
- Simulation et Analyse: Utilisation de Simulink pour simuler le comportement du système sous différentes conditions d'irradiance et de température.

Intégration convertisseur DC DC

Pour la simulation du convertisseur SEPIC (Single-Ended Primary-Inductor Converter) dans Matlab et Simulink, les étapes comprennent :

- Modélisation du Circuit : Création d'un schéma du circuit SEPIC dans Simulink.
- Paramétrage des Composants : Définition des valeurs des inductances, des condensateurs et des caractéristiques de l'interrupteur.
- Simulation du Comportement Dynamique : Analyse des performances du convertisseur sous différentes conditions de charge et de tension d'entrée.

Système Fuzzy Logic

Voici un exemple d'inclusion d'image:

Figure: Bloc Simulink PV + Fuzzy Logic

Grafcet Fuzzy Logic

Figure: Grafcet Fuzzy Logic

FIS File Creation

Description : Ces images illustrent la création d'un fichier FIS

Table :Règles implémentées dans le contrôleur de logique floue

E\DE	NB	NS	Z	PS	PB
NB	ZE	ZE	ZE	PS	PB
NS	ZE	ZE	PS	PS	РВ
ZE	NS	NS	ZE	PS	PS
PS	NB	NS	NS	ZE	ZE
PB	NB	NB	NS	ZE	ZE

Système de Logique Floue de Mamdani

- **Définition** : Un modèle de logique floue utilisant des règles If-Then pour modéliser les décisions.
- Composantes :
 - Fuzzification : Transformation des entrées précises en ensembles flous.
 - Base de Règles : Ensemble de règles définissant le comportement du système.
 - Inférence : Application des règles pour générer une sortie floue.
 - **Défuzzification** : Conversion des sorties floues en une valeur précise.
- Application: Utilisation dans Matlab et Simulink pour modéliser et simuler le système PV.

Conclusion

Nous avons exploré différentes techniques de MPPT pour optimiser les systèmes photovoltaïques :

- Algorithme P&O: Simple et intuitif, ajuste dynamiquement la tension pour suivre le MPP.
- Algorithme P&OA: Amélioration du P&O avec un pas adaptatif pour une convergence plus rapide.
- Conductance Incrémentale: Utilise les variations de courant et de tension pour un suivi précis du MPP, performant sous des conditions changeantes.
- Logique Floue: Offre une optimisation stable et continue, gérant l'incertitude avec des inférences floues.

Chaque méthode a ses avantages. Le choix de la stratégie MPPT dépend des besoins spécifiques du système photovoltaïque et des conditions environnementales.

Merci

Merci pour votre attention!