# Busca em Imagens

Rafael Lopes

Rodrigo Okada William Mizuta

Setembro, 2010



### Introdução

O objetivo do trabalho foi criar um novo método de busca de imagens por similaridade, a fim de conhecer as funcionalidades do OpenCV.

- Foram utilizados quatro diferentes métodos:
  - Histograma global
  - Speeded Up Robust Features (SURF)
  - Momento de janelas
  - Histograma em janelas

- Foram utilizados quatro diferentes métodos:
  - Histograma global
  - Speeded Up Robust Features (SURF)
  - Momento de janelas
  - Histograma em janelas

- Foram utilizados quatro diferentes métodos:
  - Histograma global
  - Speeded Up Robust Features (SURF)
  - Momento de janelas
  - Histograma em janelas

- Foram utilizados quatro diferentes métodos:
  - Histograma global
  - Speeded Up Robust Features (SURF)
  - Momento de janelas
  - Histograma em janelas

- Foram utilizados quatro diferentes métodos:
  - Histograma global
  - Speeded Up Robust Features (SURF)
  - Momento de janelas
  - Histograma em janelas

# Histograma global

#### • Método de referência



### **SURF**

 Calcula a similaridade tentando fazer o correlacionamento sobre pontos de interesse



# Momento de janelas

 Divide a imagem em NxN janelas e calcula a diferença pelo momento das janelas de duas imagens



### Histograma em janelas

• Calcula a diferença entre janelas de duas imagens



### Similaridade - Metodologia da análise

- Comparação dos métodos com um ground truth
- Adoção de uma medida para calcular a similaridade entre os resultados
- Cálculo da média e do desvio padrão da nota atribuída para cada imagem de entrada

### Similaridade - Metodologia da análise

- Comparação dos métodos com um ground truth
- Adoção de uma medida para calcular a similaridade entre os resultados
- Cálculo da média e do desvio padrão da nota atribuída para cada imagem de entrada

$$T = \frac{\sum_{i=1}^{10} (10 - |l_i - p_i|) * (11 - p_i)}{\sum_{i=1}^{10} 10 * i}$$

### Similaridade - Metodologia da análise

- Comparação dos métodos com um ground truth
- Adoção de uma medida para calcular a similaridade entre os resultados
- Cálculo da média e do desvio padrão da nota atribuída para cada imagem de entrada

$$T = \frac{\sum_{i=1}^{10} (10 - |l_i - p_i|) * (11 - p_i)}{\sum_{i=1}^{10} 10 * i}$$

### Similaridade - Resultados

| Entrada  | Histograma | Surf  | Momentos   | Histograma |
|----------|------------|-------|------------|------------|
|          | Global     |       | em Janelas | em Janelas |
|          | 0.016      | 0.105 | 0.036      | 0.336      |
|          | 0.220      | 0.101 | 0.116      | 0.356      |
|          | 0.036      | 0.000 | 0.300      | 0.492      |
|          | 0.490      | 0.116 | 0.278      | 0.529      |
| $\mu$    | 0.126      | 0.154 | 0.236      | 0.075      |
| $\sigma$ | 0.144      | 0.105 | 0.172      | 0.066      |

### Classificador - curva ROC



### **Classificador - curva PrecisionxRecall**



#### Conclusão

- O trabalho introduziu os conceitos básicos do OpenCV, exercitando suas funcionalidades básicas
- Análise de resultados através de ground truth permite avaliação objetiva de algum método, quantificando sua precisão

### **Conclusão**

- O trabalho introduziu os conceitos básicos do OpenCV, exercitando suas funcionalidades básicas
- Análise de resultados através de ground truth permite avaliação objetiva de algum método, quantificando sua precisão