Mathematical Expectation

Discrete Case:

Let X be a discrete random variable with pmf p(x). The mathematical expectation or expected value or population mean of X, denoted by E(X) or μ , is defined as

$$\mu = E(X) = \sum_{x} x \, p(x)$$

Example

Let *X* have the following pmf.

	х	0	1	4
1	p(x)	0.25	0.50	0.25

$$\mu = \sum_{x} x p(x)$$
= 0 × 0.25 + 1 × 0.50 + 4 × 0.25
= 1.5

Comparison with sample mean

Sample mean is defined as

$$\bar{x} = \frac{1}{n} \sum_{i} x_i f_i = \sum_{i} x_i \frac{f_i}{n}$$

Population mean is defined as

$$\mu = \sum_{x} x \, p(x)$$

That is, for sample mean each value is multiplied by relative frequency, while for population mean each value is multiplied by probability.

Example: population mean vs sample mean

Consider the following population (pmf):

х	1	2	7
p(x)	0.25	0.50	0.25

Here, the population mean is

$$\mu = \sum_{x} x p(x)$$
= 1 × 0.25 + 2 × 0.50 + 7 × 0.25
= 3.00

Let us take a sample of size n = 1000 from this population and construct the following frequency table.

V	Eraguanau	Relative	
Λ	Frequency	Frequency	
1	240	0.24	
2	510	0.51	
7	250	0.25	

The sample mean is

$$\bar{x} = \sum_{i} x_{i} \frac{f_{i}}{n}$$

$$= 1 \times 0.24 + 2 \times 0.51 + 7 \times 0.25$$

$$= 3.01$$

Continuous Case:

Let X be a continuous random variable with pdf p(x). The mathematical expectation or expected value or population mean of X, denoted by E(X) or μ , is defined as

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Example

Let *X* have the following pdf.

$$f(x) = \frac{1}{9}x^2, \ \ 0 < x < 3.$$

$$\mu = E(X) = \int_0^3 x \, \frac{1}{9} x^2 \, dx = 2.25$$

Example: population mean vs sample mean

Let us consider the population (pdf):

$$f(x) = 1, 0 < x < 1$$

Let us take a sample of size n = 1000 from this population and construct the following frequency table.

X	Frequency	Relative Frequency	Density
0.0 - 0.2	196	0.196	0.98
0.2 - 0.4	204	0.204	1.02
0.4 - 0.6	199	0.199	1.00
0.6 - 0.8	201	0.201	1.01
0.8 - 1.0	200	0.200	1.00

Let us compare the pdf (first plot below) and histogram (second plot below):

The population mean is

$$\mu = E(X) = \int_0^1 x \, 1 \, dx = 0.50$$

The sample mean is

$$\bar{x} = \sum_{i} m_i \frac{f_i}{n}$$

$$= 0.1 \times 0.196 + 0.3 \times 0.204 + 0.5 \times 0.199 + 0.7 \times 0.201 + 0.9 \times 0.200$$

$$= 0.501$$

Example

Let *X* have the following pdf.

$$f(x) = 0.75 (1 - x^2), -1 < x < 1.$$

$$\mu = E(X) = \int_{-1}^{1} x \ 0.75 \ (1 - x^2) \ dx = 0$$

This is a symmetric distribution. So, mean is exactly in the middle.

Exercise

Let *X* have the following pdf. Calculate the mean of *X*.

$$f(x) = x + 0.5, 0 < x < 1.$$

Solution

Do it yourself.