NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA1101R Linear Algebra I

2018-2019 (Semester 1)

Tutorial 10

- 1. Let \boldsymbol{A} be a symmetric matrix. If \boldsymbol{u} and \boldsymbol{v} are two eigenvectors of \boldsymbol{A} associated with eigenvalues λ and μ , respectively, where $\lambda \neq \mu$, show that $\boldsymbol{u} \cdot \boldsymbol{v} = 0$ by following the following steps.
 - (a) Show that $\mathbf{v}^T \mathbf{A} = \mu \mathbf{v}^T$.
 - (b) Show that $\mathbf{v}^T \mathbf{A} \mathbf{u} = \mu \mathbf{v} \cdot \mathbf{u}$.
 - (c) Show that $\mathbf{v}^T \mathbf{A} \mathbf{u} = \lambda \mathbf{v} \cdot \mathbf{u}$.
 - (d) Show that $\boldsymbol{u} \cdot \boldsymbol{v} = 0$.
- 2. Let

$$\mathbf{A} = \begin{pmatrix} b & a & a \\ a & b & a \\ a & a & b \end{pmatrix}.$$

Find a matrix P that orthogonally diagonalize A and determine P^TAP .

- (a) Show that **A** has eigenvalues b a and 2a + b.
- (b) Find an orthogonal basis of the eigenspace E_{b-a} .
- (c) Find an orthogonal basis of the eigenspace E_{2a+b} .
- (d) Find a matrix P that orthogonally diagonalize A, and determine P^TAP .
- 3. Let

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

- (a) Compute A^4 .
- (b) Find a matrix \mathbf{B} such that $\mathbf{B}^2 = \mathbf{A}$.
- 4. A square matrix $(a_{ij})_{n\times n}$ is called a stochastic matrix if all the entries are non-negative and the sum of entries of each column is 1, i.e. $a_{1i} + a_{2i} + \cdots + a_{ni} = 1$ for $i = 1, 2, \ldots, n$.

Let \boldsymbol{A} be a stochastic matrix.

- (a) Show that $(1, 1, ..., 1)^T$ is an eigenvector of \mathbf{A}^T .
- (b) Show that 1 is an eigenvalue of \boldsymbol{A} .
- (c) Show that \mathbf{A}^k for $k \geq 0$ is a stochastic matrix.

(d) Let $\mathbf{u} = (u_1, u_2, \dots, u_n)^T$ be an eigenvector of \mathbf{A}^T associated an eigenvalue λ and denote

$$u_{\text{max}} = \max\{u_1, u_2, \dots, u_n\} \text{ and } u_{\text{min}} = \max\{u_1, u_2, \dots, u_n\},\$$

that is, u_{max} and u_{min} are the maximum and minimum elements in the set $\{u_1, u_2, \ldots, u_n\}$, respectively.

Show that $\lambda u_j \leq u_{\text{max}}$ and $u_{\text{min}} \leq \lambda u_j$ for all $1 \leq j \leq n$.

- (e) If λ is an eigenvalue of \boldsymbol{A} , then $\lambda \leq 1$.
- (f) If λ is an eigenvalue of \boldsymbol{A} , then $|\lambda| \leq 1$. (Hint: Apply Question (4e) to \boldsymbol{A}^2 .)
- 5. (This is an induction step for proving Remark 6.2.5.3.) Let \boldsymbol{A} be a square matrix of order n. By Theorem 6.2.3, to diagonalize \boldsymbol{A} , we need to find n linearly independent eigenvectors.

Suppose we already have m(< n) linearly independent eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$, say, $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ for $i = 1, 2, \dots, m$ where $\lambda_1, \lambda_2, \dots, \lambda_m$ are not necessarily distinct. For a new eigenvalue μ ($\mu \neq \lambda_i$ for $i = 1, 2, \dots, m$) of \mathbf{A} , let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be a basis for the eigenspace E_{μ} . Prove that $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is linearly independent.

(Hint: Consider the vector equation

$$a_1\boldsymbol{u}_1 + a_2\boldsymbol{u}_2 + \dots + a_m\boldsymbol{u}_m + b_1\boldsymbol{v}_1 + b_2\boldsymbol{v}_2 + \dots + b_p\boldsymbol{v}_p = \boldsymbol{0}.$$

By using the property of eigenvectors, show that

$$a_1(\lambda_1 - \mu)\boldsymbol{u}_1 + a_2(\lambda_2 - \mu)\boldsymbol{u}_2 + \dots + a_m(\lambda_m - \mu)\boldsymbol{u}_m = \mathbf{0}.$$

Then make use of the linearly independent assumption on u_1, u_2, \ldots, u_m , as well as v_1, v_2, \ldots, v_p , to finish the proof.)