Lemma 1

Let X, Y be arbitrary spaces which are dense in cX and cY, repectively. Let f be a continuous function from X onto Y, \bar{f} be the continuous extension of f. Let A be a closed subset of X. Then we have:

- (i) If f[A] is not closed in Y then there exists an element $x \in cl_{cX}A \setminus A$ such that $\bar{f}(x) \in cl_Y f[A] \setminus f[A]$.
- (ii) If f[A] is closed in Y then for any element $x \in cl_{cX}A \setminus A$ for which $\bar{f}(x) \in Y$ holds, we have $\bar{f}(x) \in f[A]$ holds.

Proof of (i):

We'll prove this fact first: $cl_{cY}f[A] \subseteq \bar{f}[cl_{cX}A]$.

Since \bar{f} is a closed map from cX to cY, $\bar{f}[cl_{cX}A]$ is closed in cY. Moreover, since $\bar{f}[cl_{cX}A]$ is a closed set containing the set $\bar{f}[A]$ as well as the set f[A], $cl_{cY}f[A]$ must be a subset of $\bar{f}[cl_{cX}A]$ by the definition of closures.

Now, back to the proof of (i). From $cl_{cY}f[A] \subseteq \bar{f}[cl_{cX}A]$, we get $cl_{cY}f[A] \cap Y \setminus f[A] \subseteq \bar{f}[cl_{cX}A] \cap Y \setminus f[A]$. By assymption, f[A] is not closed in Y. So, $cl_{cY}f[A] \cap Y \setminus f[A] \neq \emptyset$. Then, we get $\bar{f}[cl_{cX}A] \cap Y \setminus f[A] \neq \emptyset$ as well, which is equivalent of saying that there exists an element $x \in cl_{cX}A$ such that $\bar{f}(x) \in \bar{f}[cl_{cX}A] \cap Y \setminus f[A] = cl_Y \bar{f}[A] \setminus f[A]$.

Proof of (ii):

We'll prove this fact first: $\bar{f}[cl_{cX}A] \subseteq cl_{cY}f[A]$.

Let $y \in \bar{f}(cl_{cX}A)$. We will show y is also in $cl_{cY}f(A)$. Pick x an element of $cl_{cX}(A)$ such that $\bar{f}(x) = y$. Now let V be any open subset of cY that contains y. Since \bar{f} is continuous, there exist $U \in \tau(cX)$ such that $\bar{f}[U] \subseteq V$. Since $x \in U$ and $x \in cl_{cX}(A)$, U must meet A. So $\bar{f}[U]$ meets $\bar{f}[A]$ as well. So $\bar{f}[U] \subseteq V$ gives $V \cap \bar{f}[A] = \emptyset$.

Now back to the proof of (ii), we then have $\bar{f}[cl_{cX}A] \subseteq cl_{cY}f[A] \Rightarrow \bar{f}[cl_{cX}A] \cap Y \subseteq cl_{cY}f[A] \cap Y$. By assumption, f[A] is closed in Y, so $cl_{cY}f[A] \cap Y = f[A]$. So now we have $\bar{f}[cl_{cX}A] \cap Y \subseteq f[A]$, and it gives us that if $x \in cl_{cX}A \setminus A$ and if $\bar{f}(x) \in Y$, then $\bar{f}(x) \in f[A]$, as desired.