

relation of

$$-15^\circ \leq \Delta\phi < 0^\circ.$$

14. A method of recording/reproducing optical information,
comprising the steps of: projecting light in spots with respect to
5 both first and second portions of a recording layer of the optical
information recording medium according to claim 5; and forming
recording marks having mark lengths nT to mT to perform recording, so
that $IL1$ and $IL2$ satisfy a relation of $1 < (IL2/IL1) < 1.3$.

15. A method of recording/reproducing optical information,
comprising the steps of: projecting light in spots with respect to
10 both first and second portions of a recording layer of the optical
information recording medium according to claim 6; and forming
recording marks having mark lengths nT to mT to perform recording, so
that ILL , $IS1$, $IL2$ and $IS2$ satisfy a relation of
15 $0.7 < (IS2/IL2)/(IS1/IL1) < 1$.

16. A method of recording/reproducing optical information,
having a step of projecting light in spots using an objective lens
with respect to both first and second portions of a recording layer
using the optical information recording medium according to any one of
20 claims 1 to 8, wherein assuming that a wavelength of the light is λ , a
numerical aperture of the objective lens is NA , and a shortest mark
length of the recording mark is ML ,
 $0.25 < NA \cdot ML / \lambda < 0.38$ is established.

17. An optical information recording/reproducing apparatus
25 having an optical head which projects light in spots with respect to
both first and second portions of a recording layer using the optical
information recording medium according to any one of claims 1 to 8.

18. The optical information recording/reproducing apparatus

REPLACED BY
ART 34 AMDT

according to claim 17, wherein the optical head has an objective lens having a numerical aperture of 0.8 to 0.9.

19. The optical information recording/reproducing apparatus according to claim 17, wherein the optical head has a laser light source which emits the light having a wavelength λ , and an objective lens having a numerical aperture NA, and the optical head forms the recording mark in such a manner as to establish $0.25 < NA \cdot ML / \lambda < 0.38$ assuming that a shortest mark length of the recording mark formed by irradiation with the light is ML.