P510/1 PHYSICS (Theory) Paper 1 Nov. /Dec. 2022 2½ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

PHYSICS (THEORY)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

Answer five questions, including at least one, but not more than two from each of the sections; A, B and C.

 $= 9.81 \text{ ms}^{-2}$.

Any additional question(s) answered will **not** be marked.

Non-programmable scientific calculators may be used.

Assume where necessary:

Acceleration due to gravity, g

Electron charge, $e = 1.6 \times 10^{-19} \text{ C}.$

Electron mass $= 9.11 \times 10^{-31} \text{ kg}.$

Mass of the earth $= 5.97 \times 10^{24} \text{ kg.}$ Plank's constant, $h = 6.6 \times 10^{-34} \text{ Js.}$

Stefan's Boltzmann's constant, $\sigma = 5.67 \times 10^{-8} \,\mathrm{Wm}^{-2} \,\mathrm{K}^{-4}$

Radius of the earth $= 6.4 \times 10^6 \,\mathrm{m}$. Radius of the sun $= 7 \times 10^8 \,\mathrm{m}$.

Radius of the earth's orbit about the sun $= 1.5 \times 10^{11} \,\mathrm{m}$.

Speed of light in a vacuum, $c = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}$.

Thermal conductivity of copper = $390 \text{ Wm}^{-1} \text{ K}^{-1}$.

Thermal conductivity of aluminium = $210 \text{ Wm}^{-1} \text{ K}^{-1}$.

Specific heat capacity of water $= 4200 \text{ J kg}^{-1} \text{ K}^{-1}$.

Universal gravitational constant, $G = 6.67 \times 10^{11} \text{ Nm}^2 \text{ kg}^{-2}$.

Avogadro's number, N_A = $6.02 \times 10^{23} \text{ mol}^{-1}$.

Surface tension of water $= 7.0 \times 10^{-2} \text{ Nm}^{-1}$.

Density of water = 1000 kgm^{-3} . Gas constant, R = 8.31 I mol^{-1}

Gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$. Charge to mass ratio, $e/m = 1.8 \times 10^{11} \text{ C kg}^{-1}$.

The constant $\frac{1}{4\pi\varepsilon_0}$ = 9.0 × 10⁹ F⁻¹ m.

Faraday constant, $F = 9.65 \times 10^4 \,\mathrm{C \, mol^{-1}}$.

1. (a) Define the following:

(i) Brittleness. (01 mark)

1

(ii) Elasticity. (01 mark)

(b) State Hooke's law. (01 mark)

(c) Figure 1 shows graphs of stress against strain for two metals X and Y.

State and explain which metal;

- (i) has a greater Young's modulus, (02 marks)
- (ii) is more ductile, (02 marks)
- (iii) is stronger than the other. (02 marks)
- (d) Two wires P and Q of the same material have equal length but the radius of P is twice that of Q. Which wire;
 - (i) can withstand the greater load before breaking? (02 marks)
 - (ii) has the greater strain for a given load? (02 marks)
- (e) A copper wire of length 4 m and cross sectional area 1.0×10^{-3} mm² is fixed between two rigid supports A and B, 4 m apart. What mass, when suspended at the middle of the wire will produce a sag of 1.5 m at that point? (Young's modulus of copper = 1.2×10^{11} Pa). (04 marks)
- (f) Explain why water flowing out of a small hole at the bottom of a wide tank results in a backward force on the tank. (03 marks)

- 2. (a) (i) What is meant by dimensions of a physical quantity? (01 mark)
 - (ii) The velocity, v of a wave of wavelength, λ on the surface of a liquid of surface tension, γ and density, ρ , is given by $v^2 = \frac{\lambda g}{2\pi} + \frac{2\pi \gamma}{\lambda \rho}$, where g is the acceleration due to gravity. Show that the equation is dimensionally consistent. (03 marks)
 - (b) Figure 2 shows acceleration-time graph for a body of mass 10 kg which starts from rest and moves in a straight line.

Use the graph to find the;

- (i) distance travelled in 15 s. (04 marks)
- (ii) average force acting on the body over the 15 s. (03 marks)
- (c) With examples, explain any two of Newton's laws of motion. (04 marks)
- (d) (i) State the principle of conservation of linear momentum. (01 mark)
 - (ii) A particle of mass, M_1 moving with a velocity, U_1 collides with a stationary particle of mass, M_2 . The collision is elastic and the velocities of M_1 and M_2 after impact are v_1 and v_2 respectively. If the particles move in the same direction and

$$\alpha = \frac{M_2}{M_1}$$
, show that $U_1 = v_1 \frac{(1+\alpha)}{(1-\alpha)}$. (04 marks)

,	(0)	/2X	State Bernoulli's principle.	(02 marks)	
3.	(a)	(i) (ii)	the aid of a diagram, why air flows over the wings		
			of an aircraft causes a lift.	,	
	(b)	Air flows over the upper surfaces of an aircraft's wings at a speed of 135 m s ⁻¹ and passed the lower surfaces of the wing at a speed of			
		120 m s ⁻¹ .		(04 marks)	
		(i)	Calculate the pressure difference due to the flow.	(02 marks)	
		(ii)	Determine the lift force on the air craft if the total was 28 m^2 . (Assume density of air is 1.2 kg m ⁻³ .)	ring area is (02 marks)	
	(c)	(i)	What is meant by streamline flow?	(02 marks)	
		(ii)	With the aid of a labelled diagram, describe how the a fluid flow can be measured.	e velocity of (05 marks)	
	(d)	The depth of water in a tank of a large cross-sectional area is maintained at 2.0 m. If the water emerges out of the tank continuously through a hole of diameter 5 mm drilled at a height of 10.0 cm above the base of the tank, calculate the;			
		(i)	speed at which water emerges out from the hole.	(03 marks)	
		(ii)	rate of mass flow of water from the hole.	(02 marks)	
4.	(a)	(i)	Define angular velocity.	(01 1)	
		(ii)	Explain why a body moving with constant speed ale circular path has an acceleration.		
		(iii)	Derive an expression for the acceleration of a ball	ration of a body marks)	
			circular path of radius r with a constant speed v .		
	(b)	Define the following: (04 marks)			
		(i)	Projectile motion.		
		(ii)	Angle of projection.	(01 mark)	
	(c)	An object P is projected vertically upwards from the ground with a speed of 36 m s ⁻¹ . If object Q is dropped vertically above P from a height of 90 m above the ground after 2 s, find the;			
		(i)	time when P and Q collide, from the time P was thrown upwards.		
		(ii)	height above the ground where P and Q collide.	(07 marks)	
} ***			E collide.	(03 marks)	

(03 marks)

SECTION B

- 5. (a) Define the following:
 - (i) specific heat capacity. (01 mark)
 - (ii) specific latent heat of vaporisation. (01 mark)
 - (b) With the aid of a labelled diagram, describe an experiment to determine the specific latent heat of vaporization of a liquid. (07 marks)
 - (c) The inlet and outlet temperatures of water flowing in a continuous flow method are 15.2°C and 17.4°C respectively. A flow rate of 20 g min⁻¹ is obtained when a current of 2.3 A flows and a p.d of 3.3 V is applied. When oil, which flows in and out at the same temperature as water is used, the flow rate obtained is 70.0 g min⁻¹. Calculate the specific heat capacity of oil, if a p.d 3.9 V is applied and a current of 2.7A flows.

 (05 marks)
 - (d) Explain the effect of pressure on:
 - (i) boiling point of a liquid. (03 marks)
 - (ii) melting point of ice. (03 marks)
 - 6. (a) Define the following:
 - (i) Molar heat capacity of a gas at constant pressure. (01 mark)
 - (ii) Molar heat capacity of a gas at constant volume. (01 mark)
 - (b) Derive the expression $C_p C_V = R$, where C_p is the molar heat capacity of a gas at constant pressure and C_V is the molar heat capacity of a gas at constant volume and R is the gas constant. (05 marks)
 - (c) (i) Differentiate between adiabatic and isothermal expansions.

 (02 marks)
 - (ii) State two examples of adiabatic changes. (01 mark)
 - (d) A fixed mass of an ideal gas of volume 400 cm³ at 15 °C expands adiabatically and its temperature falls to 0 °C. It is then compressed isothermally until the pressure returns to its original value. If the molar heat capacity at constant pressure is 28.6 J mol⁻¹K⁻¹, calculate the final volume after isothermal compression. (05 marks)

- (01 mark)What is saturated vapour pressure of a liquid? Describe an experiment to show that a liquid boils when its (i) (e)
 - saturated vapour pressure equals to the atmospheric pressure. (04 marks) (ii)
- Define the following: (a) 7.

(01 mark)

Temperature gradient. (i)

(01 mark)

- Thermal conductivity.
- Explain why a poor conductor whose thermal conductivity is to be (03 marks) determined, must be thin and fairly of large surface area. (b)
- With the aid of a labelled diagram, describe how the presence of radiation is detected by a bolometer connected to Wheatstone bridge. (c) (06 marks)
- A metal sphere whose surface acts as a black body, is placed at the principal focus of a concave mirror of diameter 60 cm, which is (d) directed towards the sun. If the solar radiation falling normally on the earth is 1400 Wm⁻², and the mean temperature of the surroundings is 30 °C, find the diameter of the sphere when the maximum temperature (06 marks) it attains is 1870 °C.
- State three properties of radiant energy. (e)

(03 marks)

SECTION C

State any four properties of cathode rays. (a) 8.

(02 marks)

- Show that the path of an electron projected at right angles to a uniform (b) electric field is a parabola. (05 marks)
- Two metal plates each 5.0 cm long are held horizontally 4.0 cm apart (c) in a vacuum, one being vertically above the other. The upper plate is at a potential of 400 V while the lower one is earthed. Electrons having a velocity of $1.0 \times 10^7 \text{ ms}^{-1}$ enter horizontally mid-way between the plates and in a direction parallel to the 5.0 cm edge. Calculate the vertical deflection of the electron as it emerges from the plates. (04 marks)
- With the aid of a labelled diagram, describe how the specific (i) (d) charge of positive rays may be determined.
 - (06 marks) Explain how the set up in (d) (i) can be used to determine the (ii) abundance of isotopes.

(03 marks)

9. (a) What is meant by thermionic emission?

- (01 mark)
- (b) (i) Sketch the anode current versus anode voltage characteristics (02 marks) of thermionic diode. (05 marks)
 - (ii) Explain the main features of the curves. (05 marks)
- (c) (i) With the aid of a diagram, describe the operation of a Cathode (06 marks) ray oscilloscope (C.R.O).
 - (ii) Describe the use of a time base in a C.R.O. (02 marks)
- (d) Explain the wave form obtained on a C.R.O connected across the resistor R in the circuit shown in Figure 3. (04 marks)

- 10. (a) State two characteristics of a photo electric emission. (02 marks)
 - (b) (i) State **three** advantages of nuclear fusion over nuclear fission as a potential source of energy. (03 marks)
 - (ii) Why does nuclear fusion take place only at high temperatures? (01 mark)
 - (c) Given that;

mass of a proton = 1.0073 U, mass of an electron = 0.0005 U, mass of a neutron = 1.0087 U and mass of $^{227}_{87}Fr = 223.0198$ U.

- (i) Calculate the difference in the mass between $^{227}_{87}Fr$ nucleus and the sum of the masses of its nucleons. (05 marks)
- (ii) How is the difference in the masses in (c) (i) accounted for?
 (02 marks)
- (d) (i) State three uses of X rays. (03 marks)
 - (ii) Explain how quantum theory provides an explanation for the photoelectric effect. (04 marks)