

Assignment 2: Machine Learning Foundations – Advanced Linear & Logistic Regression

Course: BCA - 3rd Year

Subject: Machine Learning Foundations

Topic: Advanced Linear and Logistic Regression

Submission Deadline: (Insert Date)

Objective

To enhance understanding of Linear and Logistic Regression by applying them to real-world datasets using feature scaling, regularization, and multi-feature modeling.

Part A: Multi-Feature Linear Regression

Create a Jupyter Notebook named regression_models_assignment2.ipynb.

- 1. Import Required Libraries
 - o pandas, numpy, matplotlib, seaborn
 - sklearn.linear_model, sklearn.model_selection, sklearn.metrics, sklearn.preprocessing

2. Load Dataset

- Use a dataset like house_prices.csv, insurance.csv, or any with multiple numeric features
- 3. Data Exploration & Preprocessing
 - Check for nulls, use .describe() and .info()
 - Encode categorical features using pd.get_dummies()
 - Use MinMaxScaler or StandardScaler on numeric features
- 4. Train-Test Split
 - Use 75% for training and 25% for testing
- 5. Apply Linear Regression
 - o Train a LinearRegression() model on the dataset
 - o Evaluate with:
 - r2_score, mean_absolute_error, mean_squared_error
- 6. Plot Prediction vs Actual
 - Use scatter plot or line chart to compare predictions with actual values

Part B: Logistic Regression with Regularization

Use a classification dataset such as:

- breast_cancer (from sklearn.datasets)
- Or heart_disease.csv, diabetes.csv

Tasks:

7. Load & Preprocess Data

- Load dataset using sklearn.datasets.load_breast_cancer() or pandas.read_csv()
- o Handle missing values and normalize numeric features
- 8. Train-Test Split
 - Split data into training and testing (80/20 split)
- 9. Train Logistic Regression with Regularization
 - Use LogisticRegression(penalty='I2', C=1.0)
 - Train and predict using test data
- 10. Model Evaluation
- Display:
 - Confusion Matrix
 - Accuracy Score
 - Classification Report (Precision, Recall, F1)
- Visualize Confusion Matrix using heatmap
- 11. Bonus (Optional)
- Plot ROC curve using sklearn.metrics.roc_curve and auc

Deliverables

- Jupyter Notebook: regression_models_assignment2.ipynb
- Dataset (CSV or from sklearn)
- Submit all in a folder named: ML_Regression_Assignment2_YourName

Evaluation Criteria

Criteria		Marks
Multi-feature Linear Regression	10	
Logistic Regression with Regularization	10	
Evaluation, graphs, and model interpretation	5	
Clean code and structure	5	
Total	30	

Reference Resources

- <u>Scikit-learn Linear Regression</u>
- Scikit-learn Logistic Regression
- ROC and AUC sklearn docs
- Feature Scaling sklearn.preprocessing