NOIP2017 模拟赛

题目名称	斜率	最优路线	小G的线段树
题目类型	传统型	传统型	传统型
目录	slope	path	segment
可执行文件名	slope	path	segment
输入文件名	slope.in	path.in	segment.in
输出文件名	slope.out	path.out	segment.out
每个测试点时限	1秒	2秒	1秒
内存限制	256MB	256MB	256MB
测试点/子任务数目	10	10	10
每个测试点分值	10	10	10

提交源程序文件名

对于 C++ 语言	slope.cpp	path.cpp	segment.cpp
对于 C 语言	slope.c	path.c	segment.c
对于 Pascal 语言	slope.pas	path.pas	segment.pas

如果你发现部分试题难度低于 NOIP,请不要惊讶,大家 AK 以后也不要大声喧哗,以免影响他人 AK。

最终测试时不打开任何优化开关。

斜率

(slope.pas/c/cpp)

【题目描述】

给定平面上 n 个点的坐标, 求所有经过这些点中至少两个点的直线的最大斜率。

【输入格式】

第一行一个整数 n, 表示点的个数。

接下来 n 行,每行两个正整数 x,y,描述每个点的坐标。

【输出格式】

一行一个实数表示答案,保留小数点后3位。

【样例 1】

slope.in	slope.out
3	1.000
12	
2 3	
3 4	

【样例 2】

见选手目录下 slope.in/slope.ans

【数据范围与约定】

对于 20%的数据, n<=10

对于 50%的数据, n<=103

对于 100%的数据, n<=5*105, 坐标<=107, 没有两点横坐标相同。

最优路线

(path.pas/c/cpp)

【题目描述】

一个 n 个点 m 条边的无重边无自环的无向图,点有点权,边有边权,定义一条路径的权值为路径经过的点权的最大值乘边权最大值。求任意两点间的权值最小的路径的权值。

【输入格式】

第一行两个整数 n,m,分别表示无向图的点数和边数。

第二行 n 个正整数, 第 i 个正整数表示点 i 的点权。

接下来 m 行每行三个正整数 ui,vi,wi,分别描述一条边的两个端点和边权。

【输出格式】

n 行每行 n 个整数,第 i 行第 j 个整数表示从 i 到 j 的路径的最小权值,如果从 i 不能到达 i ,则该值为-1。特别地,当 i=i 时输出 i0。

【样例1】

path.in	path.out
3 3	0 6 3
2 3 3	606
122	3 6 0
2 3 3	
131	

【样例 2】

见选手目录下 path.in/path.ans。

【数据范围与约定】

对于 20%的数据,n<=5,m<=8。

对于 50%的数据, n<=50

对于 100%的数据, n<=500,m<=n*(n-1)/2, 边权和点权不超过 109。

小G的线段树

(segment.pas/c/cpp)

【题目描述】

小 G 是一名 Oler,他最近学习了一种高级数据结构——线段树,做题时,他遇到了如下的问题:

维护一个序列,要求支持三种操作:

- 1.区间加上一个数 x
- 2.区间赋值为一个数 x
- 3.求一个区间的和

小 G 是一个爱思考的同学。他在做出来了这题之后,又提出了一个新的问题:如果把所有的操作随机打乱,那么每个询问的期望输出是多少呢?注意,随机打乱既所有 m!种操作排列的出现概率均等。

为了方便,我们假设询问在最后且不参与随机打乱。

考虑到精度问题,只要你的答案和标程答案的相对误差不超过 1e-8 就算正确。

【输入格式】

第一行两个整数 n m q,分别表示序列长度、修改数和询问数接下来一行 n 个整数 ai,表示序列的初始值

接下来 m 行,每行 4 个整数 c,l,r,x

若 c=1,则表示把区间[l,r]的元素加上 x

若 c=2,则表示把区间[l,r]的元素全赋为 x

接下来 q 行,每行 2 个整数 I,r,代表每次询问的左右端点。

【输出格式】

q 行,每行一个实数,按照输入顺序分别为 q 个询问的期望答案答案保留 3 位小数

【样例 1】

segment.in	segment.out
5 4 8	5.000
2 3 3 3 3	3.167
1132	3.500
1 3 5 1	1.500
2 2 4 1	4.000
2 1 3 4	11.667
11	12.167
2 2	17.167
3 3	
4 4	
5 5	
13	
25	
15	

【样例 2】

见选手目录下 segment.in/segment.ans

【数据范围与约定】

对于 30%的数据, n<=10,m<=10

对于 60%的数据, n<=1000,m<=1000

对于另外 10%的数据,没有操作 1

对于另外 10%的数据, q=1

对于 100%的数据,n,m,q<=100000,1<=ai<=100000,1 操作中的 x<=100,2 操作中的 x<=100000。

【提示】

离散型随机变量的一切可能取值 xi 与其对应的概率 pi 的乘积之 和称为该离散型随机变量的期望,即 $E(x) = \sum_{i=1}^{n} x_i p_i$ 。