Matematička analiza III

http://fly.srk.fer.hr/~mordor/mat3.pdf

Ovo je sažetak formula, definicija i teorema s drugog dijela kolegija Matematička analiza 3 na FER-u (akad. god. 1997/98). (izostavljeni su dijelovi kompleksne analize). Ovdje se nalaze sve formule na jednom mjestu uz minimalna potrebna objašnjenja i definicije. Namjena ovog teksta je da služi kao referenca; zato su izostavljeni primjeri. Za primjere pogledati auditorne! Također su radi kompletnosti dodani neki sadržaji koji su obrađivani samo na predavanjima, ali NE i na auditornima. Takvi sadržaji označeni su zvjezdicom (*).

1	Ortogonalni sustavi	3
1.1	Fourierov red	3
1.1.1	Periodičke funkcije	3
1.1.2	Trigonometrijski Fourierov red	3
1.1.3	Fourierov red parnih i neparnih funkcija	4
1.1.4	Spektar periodičke funkcije. Parsevalova jednakost.	4
1.1.5	*Kompleksni zapis Fourierovog reda	4
1.2	Ortogonalni sustavi	5
1.2.1	Fourierov red po ortogonalnom sustavu	5
1.2.2	Gramm-Schmidtov postupak ortogonalizacije	6
1.2.3	Legendreovi polinomi	6
1.2.4	Čebiševljevi polinomi	7
2	Integralne transformacije	9
2.1	Fourierov integral	9
2.1.1	Sinus integralni	9
2.1.2	*Kompleksni zapis Fourierovog integrala	9
2.2	Laplaceova transformacija	10
2.2.1	Osnovna svojstva	11
2.2.2	Transformacije nekih funkcija	12
2.2.3	Diracova δ funkcija	13
2.2.4	Laplaceova transformacija periodičke funkcije	13
2.2.5	Traženje originala. *Mellinov integral.	13
2.2.6	Primjene Laplaceove transformacije	14
3	Diferencijalne jednadžbe	15
3.1	Linearne diferencijalne jednadžbe	15
3.1.1	Homogena LDJ	15
3.1.2	Homogena LDJ s konstantnim koeficijentima	15
3.1.3	Nehomogena LDJ s konstantnim koeficijentima	16
3.1.3.1	Metoda neodređenih koeficijenata	16
3.1.3.2	Metoda varijacije konstanti (Lagrangeova metoda)	17
3.1.4	Svođenje na LDJ s konstantnim koeficijentima	17
3.1.4.1	Eulerova diferencijalna jednadžba	17
3.1.5	*Rješavanje pomoću redova	18

1 Ortogonalni sustavi

1.1 Fourierov red

1.1.1 Periodičke funkcije

Definicija 1.1 Funkcija $f: R \to R$ je periodička ako postoji broj T>0 takav da vrijedi $f(x)=f(x+T), \forall x\in R$. Broj T se naziva period funkcije f. Svaki cjelobrojni višekratnik kT perioda T je također period (uz $k\in Z\setminus\{0\}$). Najmanji period (ako postoji) naziva se temeljni period.

Najjednostavnija periodička funkcija je sinus: $f(x) = C \sin(\omega x + \phi)$. Zbroj $A \cos(\alpha x) + B \sin(\beta x)$ je periodička funkcija samo ako su α i β sumjerljivi, tj. omjer α/β je racionalan. Također vrijedi slijedeće:

$$A\cos(\omega x) + B\sin(\omega x) = C\sin(\omega x + \phi)$$

gdje za C i ϕ vrijede relacije:

$$C = \sqrt{A^2 + B^2}$$
$$\tan \phi = \frac{A}{B}$$

(pri određivanju ϕ treba paziti na predznake A i B).

1.1.2 Trigonometrijski Fourierov red

Definicija 1.2 Sustav funkcija 1/2, $\cos \frac{2\pi x}{T}$, $\sin \frac{2\pi x}{T}$, ..., $\cos \frac{2n\pi x}{T}$, $\sin \frac{2n\pi x}{T}$ nazivamo osnovni trigonometrijski sustav. Neka je $f:[a,b]\to R$ integrabilna funkcija i T=b-a. Brojeve

$$a_n := \frac{2}{T} \int_a^b f(x) \cos \frac{2n\pi x}{T} dx$$
$$b_n := \frac{2}{T} \int_a^b f(x) \sin \frac{2n\pi x}{T} dx$$

nazivamo $Fourierovim\ koeficijentima$ funkcije f po osnovnom trigonometrijskom sustavu. Trigonometrijski red

$$S(x) := \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{2n\pi x}{T} + b_n \sin \frac{2n\pi x}{T})$$

naziva se Fourierovim redom funkcije f. S(x) je periodička funkcija s periodom T.

Definicija 1.3 Kažemo da funkcija f zadovoljava Dirichletove uvjete na intervalu [a, b] ako:

- 1. ima najviše konačno mnogo prekida i svi su oni prve vrste (tj. u točki prekida postoje konačni lijevi i desni limesi).
- 2. ima konačan broj strogih ekstrema.

Teorem 1.1 Dirichletov teorem osigurava da se funkcija koja zadovoljava Dirichletove uvjete podudara sa svojim Fourierovim redom u svim točkama neprekinutosti. Vrijedi:

$$S(x) = \begin{cases} f(x) & f \text{ neprekinuta u } x \\ \frac{1}{2}(f(x+0) + f(x-0)) & f \text{ prekinuta u } x \end{cases}$$

1.1.3 Fourierov red parnih i neparnih funkcija

Funkcija je parna ako je f(x) = f(-x). U tom slučaju je $b_n = 0$, $a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$. Funkcija je neparna ako vrijedi f(x) = -f(-x). Tada je $a_n = 0$, $b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$.

1.1.4 Spektar periodičke funkcije. Parsevalova jednakost.

Definicija 1.4 Niz $\{c_n\}$ s općim članom $c_n = \sqrt{a_n^2 + b_n^2}$ nazivamo amplitudni spektar funkcije f čiji su Fourierovi koeficijenti a_n i b_n .

Definicija 1.5 Pišemo $f \in L^2[a,b]$ ako vrijedi $\int_a^b |f(x)|^2 dx < \infty$. Takve funkcije se nazivaju kvadratno integrabilne. Definiramo normu (u $L^2[a,b]$) funkcije kao:

$$||f|| := \sqrt{\int_a^b |f(x)|^2 dx}$$

Niz funkcija S_k teži funkciji f u L^2 normi ako $||S_k - f|| \to 0$ kad $k \to \infty$.

Neka je f po dijelovima neprekidno diferencijabilna. Fourierov red funkcije f konvergira prema toj funkciji u svakoj točki u kojoj je f neprekidna. Štoviše, konvergencija je uniformna na svakom zatvorenom intervalu na kojem je f neprekidna pa Fourierov red možemo derivirati i integrirati član po član. Ako je općenitije $f \in L^2[a,b]$ tada Fourierov red konvergira u L^2 normi. Kao posljedicu toga dobivamo Parsevalovu jednakost:

$$\frac{1}{2}c_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{2}{T} \int_a^b |f(x)|^2 dx$$

1.1.5 *Kompleksni zapis Fourierovog reda

Nakon malo raspisivanja, dolazi se do slijedećih formula za zapis Fourierovog reda funkcije f u kompleksnom obliku ($\omega_0 = 2\pi/T$):

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{in\omega_0 x}$$

gdje se koeficijenti c_n računaju formulom:

$$c_n = \frac{1}{T} \int_a^b f(\xi) e^{-in\omega_0 \xi} d\xi$$

1.2 Ortogonalni sustavi

1.2.1 Fourierov red po ortogonalnom sustavu

Neka je I=(a,b) ili [a,b], te $\rho:I\to R^+$ proizvoljna neprekidna pozitivna funkcija (težinska funkcija). Pretpostavljamo da $f:I\to R$ ima slijedeća svojstva:

- f je po dijelovima neprekidna. U točkama prekida kao i na rubovima intervala postoje jednostrani konačni limesi.
- f je po dijelovima neprekidno diferencijabilna.
- f je kvadratično integrabilna s težinom ρ , tj. $\int_a^b f(x)^2 \rho(x) dx < \infty$.

Prostor svih takvih funkcija označavamo D(a, b). D(a, b) je vektorski prostor.

Definicija 1.6 Na D(a,b) uvodimo skalarni produkt formulom:

$$(f|g) := \int_{a}^{b} f(x)g(x)\rho(x)dx$$

On ima svojstva:

$$1. \quad (f|f) \ge 0$$

2.
$$(f|a) = (a|f)$$

2.
$$(f|g) = (g|f)$$

3. $(\lambda f|g) = \lambda(f|g)$

4. $(f_1 + f_2|g) = (f_1|g) + (f_2|g)$ 5. $(x|y)^2 < (x|x)(y|y)$

Svojstvo 5. naziva se Cauchy-Schwartz-Bunjakovski nejednakost.

Definicija 1.7 Formulom $||f|| := \sqrt{(f|f)}$ definira se *norma*. Ona ima slijedeća svojstva:

- $||f|| \ge 0$
- $\|\alpha f\| = |\alpha| \|f\|$
- $||f_1 + f_2|| \le ||f_1|| + ||f_2||$

Svojstvo 3. naziva se nejednakost trokuta.

Definicija 1.8 Udaljenost dviju funkcija definiramo kao $d(f_1, f_2) := ||f_1 - f_2||$.

Za sustav funkcija w_0, w_1, \dots kažemo da je ortogonalan ako vrijedi: Definicija 1.9

$$(w_n|w_m) = \begin{cases} > 0 & n = m\\ 0 & n \neq m \end{cases}$$

Fourierov red funkcije f po ortogonalnom sustavu w_n je:

$$S(f) := \sum_{n=0}^{\infty} c_n w_n$$

Koeficijenti c_n računaju se po formuli:

$$c_n = \frac{1}{\|w_n\|^2} (f|w_n)$$

Fourierov red po ortogonalnom sustavu ima svojstvo $najbolje \ aproksimacije$ funkcije f u udaljenosti d.

Definicija 1.10 Kažemo da je sustav (w_n) baza za prostor D(a,b) ako $\forall f \in D(a,b)$ vrijedi $d(S_n(f),f) \to 0$ kad $n \to \infty$. Tada će se u točkama neprekinutosti f podudarati sa svojim Fourierovim redom.

I ovdje vrijedi Parsevalova jednakost, ali u slijedećem obliku: Ako je $f = \sum_{k=0}^{\infty} c_k w_k$ tada vrijedi

$$\sum_{k=0}^{\infty} c_k^2 \|w_k\|^2 = \|f\|^2$$

1.2.2 Gramm-Schmidtov postupak ortogonalizacije

Neka je f_0, f_1, \dots niz nezavisnih funkcija. Taj sustav zamjenjujemo sustavom ortogonalnih funkcija na slijedeći način:

$$w_0 := f_0$$

$$w_1 := f_1 - \frac{(f_1|w_0)}{\|w_0\|^2} w_0$$

$$\vdots$$

$$w_n := f_n - \frac{(f_n|w_0)}{\|w_0\|^2} w_0 - \dots - \frac{(f_n|w_{n-1})}{\|w_{n-1}\|^2} w_{n-1}$$

Normu w_n možemo računati po slijedećoj formuli:

$$||w_n||^2 = ||f_n||^2 - \frac{(f_n|w_0)^2}{||w_0||^2} - \dots - \frac{(f_n|w_{n-1})^2}{||w_{n-1}||^2}$$

1.2.3 Legendreovi polinomi

Sustav $\{P_n\}$ Legendreovih polinoma ortogonalan je na intervalu [-1,1] uz težinsku funkciju $\rho(x) \equiv 1$. Do Legendreovih polinoma dolazimo od sustava $\{x^n\}$ Gramm-Schmidtovim postupkom, ali dobivene w_n treba pomnožiti konstantom kako bi se zadovoljio uvjet $P_n(1) = 1$. Tako dolazimo do prvih nekoliko Legendreovih polinoma koji su također prikazani i na slici 1.1.

Slika 1.1 Legendreovi polinomi

$$P_0(x) = 1$$

$$P_1(x) = x$$

$$P_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$
:

6

Legendreove polinome možemo računati prema Rodriguesovoj formuli (uz $P_0(x) = 1$):

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} ((x^2 - 1)^n)$$

ili prema rekurzivnoj relaciji:

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

uz $P_0(x) = 1$, $P_1(x) = x$. Normu Legendreovih polinoma možemo računati prema formuli:

$$||P_n||^2 = \frac{2}{2n+1}$$

Legendreovi polinomi čine bazu u D(-1,1).

1.2.4 Čebiševljevi polinomi

Sustav $\{T_n\}$ Čebiševljevih polinoma ortogonalan je na [-1,1] uz težinsku funkciju $\rho(x)=\frac{1}{\sqrt{1-x^2}}$. Za računanje s Čebiševljevim polinomima najpraktičnija je eksplicitna formula:

$$T_n(x) = \cos(n \arccos x)$$

Za normu vrijedi:

$$||T_n||^2 = \begin{cases} \pi & n = 0\\ \frac{\pi}{2} & n \ge 1 \end{cases}$$

Čebiševljevi polinomi čine bazu u D(-1,1). Prvih par čebiševljevih polinoma prikazano je na **slici 1.2**.

Slika 1.2 Čebiševljevi polinomi

2 Integralne transformacije

2.1 Fourierov integral

Neka je $f: R \to R$ apsolutno integrabilna, tj. $\int_{-\infty}^{\infty} |f(x)| dx < \infty$. Tada postoje integrali

$$A(\lambda) := \frac{1}{\pi} \int_{-\infty}^{\infty} f(\xi) \cos(\lambda \xi) d\xi$$
$$B(\lambda) := \frac{1}{\pi} \int_{-\infty}^{\infty} f(\xi) \sin(\lambda \xi) d\xi$$

Funkcije $A(\lambda)$ i $B(\lambda)$ nazivaju je kosinusni, odn. sinusni spektar od f. Funkcija

$$F(x) := \int_0^\infty (A(\lambda)\cos \lambda x + B(\lambda)\sin \lambda x)d\lambda$$

naziva se Fourierov integral funkcije f. Ako funkcija zadovoljava na svakom zatvorenom intervalu Dirichletove uvjete, tada se ona može prikazati pomoću Fourierovog integrala i vrijedi:

$$F(x) = \begin{cases} f(x) & f \text{ neprekinuta u } x \\ \frac{1}{2}(f(x+0) + f(x-0)) & f \text{ prekinuta u } x \end{cases}$$

Kažemo da smo funkciju f razvili u harmonička titranja čije su frekvencije proizvoljni realni brojevi $0 < \lambda < \infty$. Kosinusni i sinusni spektar zajedno određuju amplitudni spektar: $am(\lambda) :=$ $\sqrt{A(\lambda)^2 + B(\lambda)^2}$. Ako je funkcija f parna, tada je $B(\lambda) \equiv 0$; ako je neparna vrijedi $A(\lambda) \equiv 0$. Fourierov integral se može zapisati na kraći način:

$$F(x) = \frac{1}{\pi} \int_0^\infty d\lambda \int_{-\infty}^\infty f(\xi) \cos \lambda (x - \xi) d\xi$$

2.1.1 Sinus integralni

Definiramo funkciju
$$sinus\ integralni:$$

$$\mathrm{Si}(x) := \int_0^\infty \frac{\sin(u)}{u} du$$

sa svojstvima:

- neparnost; $-\mathrm{Si}(x) = \mathrm{Si}(-x)$
- apscise maksimuma su $x_{max} = (2n+1)\pi$ $(n \ge 0)$; apscise minimuma su $x_{min} = 2n\pi \ (n \ge 1)$

Slika 2.1 Sinus integral-

 $\lim_{x\to\infty} \operatorname{Si}(x) = \frac{\pi}{2}$

Graf je prikazan na slici desno.

2.1.2 *Kompleksni zapis Fourierovog integrala

Nakon kraćeg računa dolazi se do slijedećeg zapisa Fourierovog integrala u kompleksnom obliku:

$$f(x) = \int_{-\infty}^{\infty} F(\lambda)e^{i\lambda x}d\lambda$$

F je spektralna funkcija od f koja se računa prema formuli:

$$F(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi) e^{-i\lambda\xi} d\xi$$

2.2 Laplaceova transformacija

Definicija 2.1 Original je svaka funkcija f(t) realne varijable t koja zadovoljava uvjete:

- 1. $f(t) \equiv 0 \text{ za } t < 0$
- 2. za $t \ge 0$ funkcija f(t) na bilo kojem konačnom dijelu osi t može imati najviše konačno prekida i to samo prve vrste
- 3. za $t \to \infty$ funkcija f(t) ima ograničen stupanj rasta,
tj. postoje konstante M > 0 i $a \ge 0$ takve da je $|f(t)| \le Me^{at} \ \forall t \ge 0$ t
j. f(t) je eksponencijalnog rasta.

Definicija 2.2 Infimum $a_0 \ge 0$ svih vrijednosti $a \ge 0$ za koje vrijedi $f(t) \le Me^{at}$ naziva se eksponent rasta funkcije f(t).

Definicija 2.3 Step funkcija definirana je kao:

$$S(t) := \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

Neka funkcija f(t) definirana za $-\infty < t < \infty$ zadovoljava uvjete 2. i 3. iz definicije originala, ali $f(t) \neq 0$ za t < 0. Tada je funkcija f(t)S(t) original.

Napomena 1: Uvijek tražimo Laplaceovu transformaciju funkcije f(t)S(t), ali radi kratkoće pisanja ne pišemo S(t).

Napomena 2: U Laplaceovoj transformaciji dopuštamo da f(t) bude kompleksna funckija realne varijable, tj. oblika $f(t) = f_1(t) + if_2(t)$ pri čemu su f_1 i f_2 realne funkcije za koje pretpostavljamo da su originali.

Definicija 2.4 Neka je $f: R \to C$. Laplaceova transformacija je funkcija

$$F(p) := \int_0^\infty e^{-pt} f(t) dt$$

 $(p \in C, t \in R)$ kompleksne vraijable p, koja postoji tamo gdje ovaj nepravi integral konvergira.

Oznake: Laplaceovu transformaciju označavamo sa: $f(t) \triangleright F(p)$, a inverznu Laplaceovu transformaciju sa $F(p) \triangleleft f(t)$.

Teorem 2.1 Integral $\int_0^\infty e^{-pt} f(t) dt$ apsolutno konvergira u području $Re(p) > a_0$, a_0 je eksponent rasta funkcije f.

Teorem 2.2 Laplaceova transformacija F(p) originala f(t) je analitička funkcija kompleksne varijable p u području $Re(p) > a_0$.

2.2.1 Osnovna svojstva

Ovdje pretpostavljamo da se f(t) preslikava u F(p), tj. $f(t) \triangleright F(p)$. Ako nije navedeno područje konvergencije, pretpostavlja se $Re(p) > a_0$.

1. Linearnost:

$$\sum_{k=1}^{n} c_k f_k(t) \triangleright \sum_{k=1}^{n} c_k F_k(p) \quad (\text{Re}(p) > \max_{k=1...n} a_0^k)$$

2. Množenje varijable konstantom:

$$f(\alpha t) \triangleright \frac{1}{\alpha} F(\frac{p}{\alpha}) \quad (\text{Re}(p) > \alpha a_0)$$

 $F(bp) \triangleleft \frac{1}{b} f(\frac{t}{b})$

3. Prigušenje:

$$e^{-\alpha t} f(t) \triangleright F(p+\alpha) \quad (Re(p) > a_0 - Re(\alpha))$$

4. Pomak: $(\tau > 0)$

$$f(t-\tau)S(t-\tau) \triangleright e^{-\tau p}F(p)$$

5. Deriviranje originala:

$$f'(t) \triangleright pF(p) - f(0)$$

Općenito, neka su prvih n derivacija originali. Tada je:

$$f^{(n)}(t) \triangleright p^n(F(p) - \frac{f(0)}{p} - \frac{f'(0)}{p^2} - \dots - \frac{f^{(n-1)}(0)}{p^n})$$

Specijalno, ako je $f(0) = f'(0) = \dots = f^{(n-1)}(0) = 0$, onda je $f^{(n)}(t) \triangleright p^n F(p)$

6. Deriviranje slike:

$$F'(p) \triangleleft -tf(t)$$

Općenito,

$$F^{(n)}(p) \triangleleft (-t)^n f(t)$$
$$t^n f(t) \triangleright (-1)^n F^{(n)}(p)$$

7. Integriranje originala:

$$\int_0^t f(t)dt \triangleright \frac{1}{p}F(p)$$

Općenito, ako imamo n integrala:

$$\int_0^t dt \int_0^t dt \dots \int_0^t f(t)dt \triangleright \frac{F(p)}{p^n}$$

8. Integriranje slike:

$$\int_{p}^{\infty} F(p)dp \triangleleft \frac{f(t)}{t}$$

gdje se integrira u kompleksnoj ravnini po bilo kojoj zraci (s rastućim x koordinatama). Općenito,

$$\int_p^\infty dp \int_p^\infty dp \dots \int_p^\infty F(p) dp \triangleleft \frac{f(t)}{t^n}$$

9. Preslikavanje konvolucije:

$$(f_1 * f_2)(t) \triangleright F_1(p)F_2(p)$$

Definicija 2.5 Konvoluciju dvije funkcije definiramo sa

$$(f_1 * f_2)(t) := \int_0^t f_1(\tau) f_2(t - \tau) d\tau$$

Za konvoluciju vrijedi komutativnost i asocijativnost.

2.2.2 Transformacije nekih funkcija

Područja konvergencije slika nisu navedena!

Definicija 2.6 Gate-funkcija:

$$G_{[a,b]}(t) := \left\{ \begin{matrix} 1 & t \in [a,b] \\ 0 & \text{ina\ensuremath{\check{e}e}} \end{matrix} \right.$$

To se može pisati i kao: $G_{[a,b]}(t) = S(t-a) - S(t-b)$

• Step funkcije i polinomi:

$$S(t) \triangleright \frac{1}{p}$$

$$S(t-a) \triangleright \frac{e^{-ap}}{p}$$

$$G_{[a,b]}(t) \triangleright \frac{e^{-ap}}{p} - \frac{e^{-bp}}{p}$$

$$t^{n} \triangleright \frac{n!}{p^{n+1}}$$

• Eksponencijalne i hiperbolne funkcije:

$$\begin{split} e^{at}S(t) & \trianglerighteq \frac{1}{p-a} \\ \cosh(\omega t) & \trianglerighteq \frac{p}{p^2-\omega^2} \\ \sinh(\omega t) & \trianglerighteq \frac{\omega}{p^2-\omega^2} \end{split}$$

• Trigonometrijske funkcije:

$$\sin(\omega t) \triangleright \frac{\omega}{p^2 + \omega^2}$$
$$\cos(\omega t) \triangleright \frac{p}{p^2 + \omega^2}$$

2.2.3 Diracova δ funkcija

Funkciju S(t) aproksimiramo nizom glatkih funkcija $S_{\epsilon}(t)$ koje konvergiraju prema S(t) (vidi sliku 2.2 za $\epsilon_2 < \epsilon_1$), te vrijedi:

Slika 2.2 Funkcije $S_{\epsilon}(t)$ i $S_{\epsilon}^{'}(t)$

Delta funkcija ima slijedeća svojstva:

- 1. $\delta(t) = 0, t \neq 0$
- 2. $\delta(t) = \infty, t = 0$
- 3. $\int_{-\alpha}^{\beta} \delta(t)dt = 1, \forall \alpha, \beta \ge 0$
- 4. $\int_{-\alpha}^{\beta} f(t)\delta(t)dt = f(0)$

Svojstvo 3. se lako dokaže:

$$\int_{-\alpha}^{\beta} \delta(t)dt = \int_{-\alpha}^{\beta} S'(t)dt = S(\beta) - S(-\alpha) = 1 - 0 = 1$$

Ponašanje δ funkcije pri Laplaceovoj transformaciji je slijedeće: $\delta(p) \triangleleft 1$ te $p^n \triangleleft \delta^{(n)}(t)$ (original delta funkcije je 1, a $ne\ S(t)$).

2.2.4 Laplaceova transformacija periodičke funkcije

Neka je f(t) periodička funkcija perioda T i f(t) original. Tada je

$$f(t) \triangleright \frac{1}{1 - e^{-pT}} \int_0^T e^{-pt} f(t) dt$$

2.2.5 Traženje originala. *Mellinov integral.

Slika 2.3 Put integracije za računanje Mellinovog integrala $(R \to \infty)$

Pri traženju originala koristimo se tablicom Laplaceovih transformacija (čitajući je u obrnutom smjeru) i prije navedenim svojstvima Laplaceove transformacije. Ili, (ako sve propadne) možemo iskoristiti slijedeći rezultat: Original funkcije F(p) je funkcija f(t) koja se može računati slijedećom formulom:

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} e^{pt} F(p) dp$$

Ovaj kompleksni integral se najlakše računa primjenom teorema o residuumu (x mora biti dovoljno velik (npr. x_0) da obuhvati sve singularitete, tj. da se svi singulariteti nalaze lijevo od pravca $x=x_0$; točan put integracije prikazan je na slici 2.3).

Teorem 2.3 Ako je f(t) original i $f(t) \triangleright F(p)$, onda je

$$\lim_{\text{Re}(p)\to\infty} F(p) = 0$$

Teorem 2.4 Neka je F(p) analitička funkcija u području Re(p) > a, koja zadovoljava uvjete:

- 1. U području $\operatorname{Re}(p) \geq x > a_0 \ F(p) \to 0$ kad $|p| \to \infty$. Konvergencija mora biti uniformna.
- 2. $\forall p \operatorname{Re}(p) = x > a_0$ integral $\int_{x-i\infty}^{x+i\infty} |F(p)| dy$ konvergira (p = x + iy).

Tada je F(p) Laplaceov transformat funkcije f(t).

2.2.6 Primjene Laplaceove transformacije

Jedna od primjena je rješavanje nehomogene diferencijalne jednadžbe s konstantnim koeficijentima, ako su zadani svi početni uvjeti.

Slijedeća od primjena je rješavanje električnih mreža: preslikamo mrežu iz gornjeg u donje područje, te ju riješimo u donjem području i vratimo u gornje područje. Pri tome se otpor (R), induktivitet (L) i kapacitet (C) preslikavaju u simboličke impedancije R, Lp, $\frac{1}{Cp}$. U donjem području vrijede Kirchhoffovi zakoni te pravila o serijskom i paralelnom spajanju otpora.

3 Diferencijalne jednadžbe

3.1 Linearne diferencijalne jednadžbe

Opći oblik linearne diferencijalne jednadžbe je:

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$

f(x) se ponekad naziva funkcija smetnji. Ovoj jednadžbi pridružujemo odgovarajuću homogenu:

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$

Za rješenje negomogene jednadžbe vrijedi slijedeći teorem:

Teorem 3.1 Neka je y_p bilo koje partikularno rješenje nehomogene jednadžbe, a y_o opće rješenje homogene. Tada je opće rješenje nehomogene dano sa $y = y_o + y_p$.

3.1.1 Homogena LDJ

Homogena LDJ je oblika:

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$

Da bi sastavili opće rješenje homogene diferencijalne jednadžbe, dovoljno je znati n linearno nezavisnih rješenja na intervalu [a,b]. Sustav y_1,y_2,\ldots,y_n linearno nezavisnih rješenja na [a,b] zovemo fundamentalni sustav rješenja. Da bi sustav rješenja $y_1\ldots y_n$ bio fundamentalan, nužno je i dovoljno da je njihov Wronskijan različit od 0 u svakoj točki intervala [a,b]. U stvari, dovoljno je uvjeriti se da je $W(x_0) \neq 0$ za neki $x_0 \in (a,b)$ jer to povlači $W(x_0) \neq 0$ $\forall x \in (a,b)$. Determinanta Wronskog definirana je na slijedeći način:

$$W(x) := \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y_1' & y_2' & \dots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$

Opće rješenje je dano formulom

$$y = C_1 y_1 + \ldots + C_n y_n$$

gdje su C_i proizvoljne realne konstante.

3.1.2 Homogena LDJ s konstantnim koeficijentima

Homogenoj LDJ s konstantnim koeficijentima

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-1} y^{'} + a_n y = 0$$

pridružen je karakteristični polinom:

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n$$

Korijene polinoma $P(\lambda)$ (tj. rješenja jednadžbe $P(\lambda) = 0$) nazivamo karakterističnim vrijednostima diferencijalne jednadžbe. Svaki korijen λ_i kratnosti n_i daje jedno fundamentalno rješenje y_i .

Ako je λ_i realan, tada je y_i oblika:

$$y_i = (C_1 + C_2 x + \ldots + C_{n_i} x^{n_i - 1}) e^{\lambda_i x}$$

Ukoliko je kratnost korijena λ_i $n_i = 1$, tada se gornja formula pojednostavljuje na

$$y_i = Ce^{\lambda x}$$

Ako je $\lambda = \alpha + i\beta$ kompleksan i kratnosti n_i , tada je y_i oblika:

$$y_i = e^{\alpha x} ((C_1 + C_2 x + \dots + C_{n_i} x^{n_i - 1}) \cos \beta x + (D_1 + D_2 x + \dots + D_{n_i} x^{n_i - 1}) \sin \beta x)$$

Ukoliko je kratnost $n_i = 1$, tada se ovo pojednostavljuje na

$$y_i = e^{\alpha x} (C \cos \beta x + D \sin \beta x)$$

Opće rješenje homogene je suma svih y_i . Pri pisanju općeg rješenja treba paziti da su sve konstante u svim y_i različite.

3.1.3 Nehomogena LDJ s konstantnim koeficijentima

Pri rješavanju nehomogene LDJ, prvo se riješi pridružena homogena, a zatim se potraži partikularno rješenje y_p . Opće rješenje nehomogene je tada $y = y_o + y_p$.

3.1.3.1 Metoda neodređenih koeficijenata

Ukoliko je desna strana nehomogene jednadžbe oblika

$$f(x) = e^{\alpha x} P_m(x)$$

(P je polinom stupnja m), tada se partikularno rješenje traži u obliku

$$y_p = x^k e^{\alpha x} Q_m(x)$$

 Q_m je polinom istog stupnja kao i P s neodređenim koeficijentima. Ako je α nultočka karakterističnog polinoma, tada je k njezina kratnost. Ukoliko α nije nultočka karakterističnog polinoma, tada se partikularno rješenje traži u obliku

$$y_p = e^{\alpha x} Q_m(x)$$

Ako je f(x) oblika

$$f(x) = e^{\alpha x} (P_r(x) \cos \beta x + P_s(x) \sin \beta x)$$

i $m = \max\{r,s\}$ (P_r i P_s su polinomi stupnja r i s) tada partikularno rješenje pretpostavljamo u obliku

$$y_p = x^k e^{\alpha x} (Q_m(x) \cos \beta x + R_m(x) \sin \beta x)$$

Ukoliko je $\alpha + i\beta$ korijen karakterističnog polinoma tada je k njegova kratnost. Ukoliko $\alpha + i\beta$ nije nultočka, tada izostavljamo član x^k (odn. k = 0 pa je $x^0 = 1$).

Uvrštavanjem pretpostavljenog rješenja y_p u nehomogenu jednadžbu i izjednačavanjem koeficijenata uz odgovarajuće linearno nezavisne funckije dobijemo sistem linearnih jednadžbi iz kojeg odredimo nepoznate koeficijente, a time i partikularno rješenje y_p .

3.1.3.2 Metoda varijacije konstanti (Lagrangeova metoda)

Metoda neodređenih koeficijenata "radi" samo ako je funkcija smetnji točno određenog oblika. U općem slučaju se partikularno rješenje može naći tako da se za konstante C_i iz rješenja homogene pretpostavi da su funkcije od x, tj. $C_i = C_i(x)$. Tada postavimo slijedeći sustav jednadžbi:

$$C'_{1}y_{1} + C'_{2}y_{2} + \dots + C'_{n}y_{n} = 0$$

$$C'_{1}y'_{1} + C'_{2}y'_{2} + \dots + C'_{n}y'_{n} = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$C'_{1}y_{1}^{(n-2)} + C'_{2}y_{2}^{(n-2)} + \dots + C'_{n}y_{n}^{(n-2)} = 0$$

$$C'_{1}y_{1}^{(n-1)} + C'_{2}y_{2}^{(n-1)} + \dots + C'_{n}y_{n}^{(n-1)} = f(x)$$

Rješavanjem ovog sistema dobivamo C_i . Integriranjem ovih C_i dobivamo nepoznate funckije. Pri tome se moraju zadržati konstante integracije! (za svaki integral $\int C_i(x)dx$ treba pisati posebnu konstantu integracije K_i). Sada je rješenje diferencijalne jednadžbe u obliku:

$$y = C_1(x)y_1 + \ldots + C_n(x)y_n$$

i može se raspisati u oblik $y = y_o + y_p$.

3.1.4 Svođenje na LDJ s konstantnim koeficijentima

Ako imamo linearnu diferencijalnu jednadžbu s nekonstantnim koeficijentima, tj. oblika

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = f(x)$$

želimo naći supstituciju $x=\phi(t)$ koja će ju prevesti u jednadžbu s konstantnim koeficijentima. Ako takva supstitucija postoji, ona je oblika

$$t = C \int \sqrt[n]{p_n(x)} dx$$

(C je konstanta, n je red diferencijalne jednadžbe) i ne postoji neka druga supstitucija kojom bi se to moglo postići.

3.1.4.1 Eulerova diferencijalna jednadžba

Eulerova diferencijalna jednadžba je oblika

$$(ax+b)^{n}y^{(n)} + A_{1}(ax+b)^{n-1}y^{(n-1)} + \ldots + A_{n-1}(ax+b)y' + A_{n}y = f(x)$$

Dijeljenjem sa $(ax + b)^n$ dobivamo $p_n(x) = A_n/(ax + b)^n$ Sada imamo

$$t = C \int \sqrt[n]{\frac{A_n}{(ax+b)^n}} dx = C \frac{\sqrt[n]{A_n}}{a} \ln(ax+b)$$

Ako izaberemo $C = a/\sqrt[n]{A_n}$ imamo supstituciju

$$ax + b = e^t$$

odn.

$$t = ln(ax + b)$$

Sada treba $\frac{dy}{dx}$ izraziti pomoću derivacija $\frac{dy}{dt}$

$$y' = \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{dy}{dt}\frac{a}{ax+b} = \frac{dy}{dt}\frac{a}{e^t} = ae^{-t}\frac{dy}{dt}$$
$$y'' = \frac{d}{dx}y' = \frac{d}{dt}(y')\frac{dt}{dx} = \frac{d}{dt}(ae^{-t}\frac{dy}{dt})ae^{-t} = a^2e^{-2t}(\frac{d^2y}{dt^2} - \frac{dy}{dt})$$

Analogno se izvode i derivacije višeg reda. Uvrštavanjem dobivenih izraza za derivacije y po x preko derivacija y po t u diferencijalnu jednadžbu dobiva se diferencijalna jednadžba s konstantnim koeficijentima za dy/dt. Rješavanjem te jednadžbe po y(t) i uvrštavanjem ax+b umjesto t dobivamo rješenje početne diferencijalne jednadžbe.

3.1.5 *Rješavanje pomoću redova

Ova metoda je pogodna za rješavanje linearnih diferencijalnih jednadžbi s nekonstantnim koeficijentima. Pretpostavimo rješenje u obliku

$$y = \sum_{n=0}^{\infty} a_n x^n \tag{3.1}$$

gdje su a_i neodređeni koeficijenti. Ukoliko je rješenje analitička funkcija, tada se ono uvijek može napisati u obliku reda.

Promotrimo slijedeću diferencijalnu jednadžbu drugog reda:

$$p(x)y'' + q(x)y' + r(x)y = 0 (3.2)$$

Tada možemo izreći slijedeći teorem:

Teorem 3.2 Ako su p, q i r analitičke funkcije u okolini točke x_0 i $p(x_0) \neq 0$, onda je rješenje jednadžbe također analitička funkcija u okolini x_0 .

Uzmimo za primjer jednadžbu y'' + xy' + y = 0. Uzmemo $x_0 = 0$. p, q i r su analitičke te po **teoremu 3.2** postoji rješenje (jer je $p \equiv 1$ te je $p(x_0) = p(0) \neq 0$). Uvrstimo **formulu 3.1** u jednadžbu i dobijemo

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + x \sum_{n=1}^{\infty} na_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n = 0$$

Nakon promjene indeksa u sumama imamo:

$$\sum_{k=0}^{\infty} (k+2)(k+1)a_{k+2}x^k + \sum_{k=0}^{\infty} ka_k x^k + \sum_{k=0}^{\infty} a_k x^k = 0$$

što nakon sređivanja i izjednačavanja daje

http://fly.srk.fer.hr/~mordor/mat3.pdf

$$a_{k+2} = -\frac{a_k}{k+2} \quad k \ge 0$$

Dobijemo slijedeće jednakosti za koeficijente:

$$a_2 = -\frac{a_0}{2}$$

$$a_3 = -\frac{a_1}{3}$$

$$a_4 = -\frac{a_2}{4} = \frac{a_0}{2 \cdot 4}$$

$$a_5 = -\frac{a_3}{5} = \frac{a_1}{3 \cdot 5}$$

(na a_0 i a_1 nema nikakvih uvjeta: oni su određeni početnim uvjetima). Tako konačno rješenje možemo napisati u obliku:

$$y = a_0 y_1(x) + a_1 y_2(x)$$

= $a_0 (1 - \frac{x^2}{2} + \frac{x^4}{2 \cdot 4} - \frac{x^6}{2 \cdot 4 \cdot 6} + \dots) + a_1 (x - \frac{x^3}{3} + \frac{x^5}{3 \cdot 5} - \frac{x^7}{3 \cdot 5 \cdot 7} + \dots)$

Za slijedeći primjer uzmimo Besselovu diferencijalnu jednadžbu:

$$x^{2}y'' + xy' + (x^{2} - \nu^{2})y = 0 \quad (\nu \in R)$$

a rješenje želimo u okolini $x_0=0$. Budući da jednadžba ne zadovoljava uvjete **teorema 3.2** $(p(x)=x^2;\,p(x_0)=0)$ rješenje nije red potencija već poopćeni red potencija:

$$y = x^s \sum_{k=0}^{\infty} a_k x^k$$