Regressionsalgorythmen Prognostizieren omhand Daten.

. POLYNOMISCHE LEGRESSION

Hypothese. Wir haben Daten aus einem System erhoben, und wir wollen das Verhalten vom System bei anderen Daten mit Hilfe der Regression erfahren.

. Wir streben die Ermittlung einer Linie y=bo+bix an, dessen Abstand zu den Punkten des Datasets minimal ist.

Schriffe der linearen Prognose (Regression)

1	DATEN	4FRMIT	TLVNG
•	レハーレト	L IVII	I L V I V M

	*	4
C W _I	3	6 ¹ 5
cw ₂	4	8 ¹ 5
cwz	6	13
CWY	3	3 ¹ 5

2. MITTELWERT DER VARIABELN (Schwerpunkt des Datasets)

** DIE LINEARE RELIPESSION

GEHT DURCH DEN SCHWERPUNKT **

$$[\bar{x}, \bar{y}] \rightarrow \bar{y} = b_0 + b_1 \bar{x}$$

$$x = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{4} [3+4+6+3] = 4$$

$$y = \frac{1}{N} \sum_{i=1}^{N} y_i = \frac{1}{4} [6'5 + 8'5 + 13 + 3'5] = 7'875$$

3. MEIGUNG DER LINEAREN PROGNOSE

$$tg \propto = b_1 = \frac{dy}{dx}$$

4. SCHRITT. Ermittlung von bo.

$$\bar{y} = b_0 + 4^1 833 \times \rightarrow 7^1 875 = b_0 + 4^1 833 \cdot 4 \rightarrow b_0 = -11^1 458$$

Wenn x = 319, wie ist die Lineare Prognose für den Y-wert? y[x=3'9] = -11'458 + 4'833.(3'9) = 7'3903

NICHT LINEARE REGRESSION

Wir wollen die Beziehung zwischen einer Variable X und einer Vaniable Y mithilse einer NICHT LINEAPEN

REGR	ESSION	analysier	en. YT	
	×	1 4		1 4 2 1 4 X - 09 X + 2
cw,	1	215	30	
(W ₂	2	5'8	20	
CW3	3	11/9	10	
CWY	4	214		
ons	5	3112		2 3 4 5

Hypothese. Parabel. y=ax2+bx+c

1.
$$[1,2^{1}5] \rightarrow 2^{1}5 = a \cdot 1^{2} + b \cdot 1 + c = a + b + c$$

2.
$$[2,5'8] \rightarrow 5'8 = a.2^2 + b.2 + c = 4a + 2b + c$$
 (2)

3.
$$[3,119] \rightarrow 119 = a.3^2 + b.3 + c = 9a + 3b + c$$
 (3)

$$(2)-(1) \rightarrow 5^{1}8-2^{1}5 = 4a-a+2b-b+c-c$$

$$3^{1}3 = 3a+b$$
(4)

$$(3)-(2) \rightarrow 11'9-5'8 = 9a-4a+3b-2b+c-c$$

 $6'1 = 5a+b$ (5)

$$(5)-(4) \rightarrow 6'1-3'3=5a-3a+b-b$$

$$2'8=2a \rightarrow a=1'4 \rightarrow b=-0'9 \rightarrow c=2$$

$$(5)$$

$$y = 1/4 \times^2 - 0/9 \times + 2$$

Das Modell überprien:

31,5

CWI 1

cw2 2

CW3 3

CW4

W5

ERROR vorhergesagte $\hat{y} = 1/4 \times 20/9 \times +2/(\hat{y}-\hat{y})$ 14.(12)-09.1+2 = 25 25 14.(22)-09.2+2 = 57 58 $1/4.(3^2) - 0/9.3 + 2 = 11/9$ 11/9 14.(42)-09.4+2 = 214 214

 $44.(5^2) - 09.5 + 2 = 315$ Das Modell passt gut zu den Daten, auch wenn es leichte Abweichungen zibt

Welche Y. Werte sind in der CW7 zu erwarten?

$$\hat{J}_{[CW_7]} = 4^14.7^2 - 2^19.7 + 2 = 64^13$$