Optimization algorithms

LATEST SUBMISSION GRADE

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	0 / 1 point
	O a № (7)(9)	
	্রন্ধ(৬)(গ	
	aH(7)⊗	
	্র _ব দ(ঙ)(গ	
	! Incorrect	
2.	Which of these statements about mini-batch gradient descent do you agree with?	€/1 point
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	ng
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
	Incorrect	
3. 1	Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	1/1 point
(If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
(If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-bat gradient descent.	ch
1	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole trainings before making progress.	t
	✓ Correct	
ı	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	✓ Correct	

Which of the following do you agree with?

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this boks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

✓ Correct

jan 1st:
$$\theta_1=10^{o}C$$

$$\mathrm{Jan}\, \mathrm{2nd} \colon \! \theta_{2}\, \mathrm{10}^{o}C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_b=\beta v_{b-1}+(1-\beta)\theta_b$. If v_0 is the value computed after day 2 without bias correction, and $v_0^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- (a) $v_2 = 7.5$, $v_2^{avreched} = 10$
- $\bigcirc v_2 = 10, v_2^{corrected} = 10$
- $v_2 = 10, v_2^{corrected} = 7.5$
- $v_2 = 7.5, v_2^{corrected} = 7.5$

8. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1/1 point

- $\bigcirc \alpha = \frac{1}{1+2k^{\frac{1}{2}}}\alpha_0$
- $\bigcirc \alpha = \frac{1}{\sqrt{k}} \alpha_0$
- $\alpha = 0.95^{\dagger} \infty$
- \bigcirc $\alpha = e^{\frac{1}{2}}\alpha_0$

- Decreasing β will shift the red line slightly to the right.
- Increasing β will shift the red line slightly to the right.
- \square Decreasing β will shift the red line slightly to the right.
- Increasing β will shift the red line slightly to the right.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (a) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

9.	Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[i]},b^{[i]},,W^{[i]},b^{[i]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	1/1 point
	✓ Try better random initialization for the weights	
	✓ Correct	
	Try mini-batch gradient descent	
	✓ Correct	
	✓ Try using Adam	
	✓ Correct	
	Try initializing all the weights to zero	
	✓ Try tuning the learning rate ∞	
	✓ Correct	
	10. Which of the following statements about Adam is False?	1/1 point
	O We usually use "default" values for the hyperparameters eta_1 , eta_2 and ε in Adam ($eta_1=0.9$, $eta_2=0.999$, $\varepsilon=10^{-8}$)	=
	 Adam should be used with batch gradient computations, not with mini-batches. 	
	Adam combines the advantages of RMSProp and momentum	
	The learning rate hyperparameter α in Adam usually needs to be tuned.	
	✓ Correct	