UNIVERSIDAD DON BOSCO

Diseño y Programación de Software Multiplataforma

CICLO II 2024

ALUMNOS:

Alarcón Mendoza, Oscar Vladimir	AM221856
Quintanilla Rivera, Dylan Alfonso	QR240095
Aleman Ayala, Alejandro Marcelo	AA240399
Díaz Peñate, Odir Ezequiel	DP240089
Delgado Peñate, Salvador Enrique	DP240093

DOCENTE: Kevin Miguel Jiménez Hernández

Presentacion: https://www.canva.com/design/DAGkK1Od0_4/TkamBOppYvXby5jzq56Xbw/edit?utm_content=DAGkK1Od0_4&utm_campaign=designshare&utm_medium=link2&utm_source=sharebutton

Implementación de tecnología IoT con Realidad Aumentada (AR) en aplicaciones multiplataforma

- 1. Fundamentos de Realidad Aumentada (AR) en Aplicaciones Multiplataforma
- ¿Qué es la realidad aumentada y cómo se implementa en aplicaciones móviles?
- Comparación de frameworks multiplataforma que soportan AR: ARCore (Android), ARKit (iOS), Vuforia y WebXR.

ARCore (Android)

Plataforma de Google para realidad aumentada (RA) en Android. Usa la cámara y sensores para rastrear movimientos, detectar el entorno e integrar objetos virtuales con iluminación realista.

- Ventajas: Compatible con muchos dispositivos Android, buen rastreo de posición y superficies.
- **Limitaciones**: Depende del hardware y puede necesitar ajustes para mayor precisión.

ARKit (iOS)

Framework de Apple para RA en iOS, con excelente rastreo de posición, detección de planos y análisis de luz, optimizado para el ecosistema Apple.

- **Ventajas**: Experiencia fluida gracias a la integración con iOS, ideal para seguimiento facial y gráficos avanzados.
- **Limitaciones**: Solo para dispositivos Apple, exige hardware potente.

Vuforia

Framework multiplataforma (Android e iOS) enfocado en reconocer imágenes y objetos para activar contenido digital.

- Ventajas: Funciona en varios sistemas, muy preciso en reconocimiento visual.
- **Limitaciones**: La optimización varía por plataforma, y su costo puede ser elevado en proyectos grandes.

WebXR

API para RA y VR en navegadores web, sin necesidad de apps nativas.

- Ventajas: Fácil acceso desde navegadores, no requiere instalación.
- **Limitaciones**: Depende del navegador y hardware, menos potente que soluciones nativas para RA compleja.
- Implementación de AR en React Native (react-native-arkit, ViroReact) y Flutter (ar_flutter_plugin).

react-native-arkit

Módulo para integrar ARKit en React Native, exclusivo para iOS.

 Ventajas: Conexión directa con ARKit, acceso a funciones avanzadas como rastreo y detección de superficies en el ecosistema Apple.

ViroReact

Plataforma flexible y multiplataforma para RA en React Native, compatible con iOS (ARKit) y Android (ARCore) desde un solo código.

- **Ventajas**: Experiencias AR uniformes en ambas plataformas, buena documentación y soporte comunitario.
- **Limitaciones**: Puede haber dificultades para optimizar y alinear funciones debido a diferencias entre ARKit y ARCore.

Implementación de RA en Flutter

ar_flutter_plugin

Plugin para añadir RA en Flutter, usando ARCore y ARKit según el sistema.

- Ventajas: Permite apps de RA nativas con un solo código, aprovechando la interfaz declarativa de Flutter.
- **Limitaciones**: Menor madurez frente a soluciones nativas, lo que podría exigir ajustes personalizados en proyectos complejos.
- Casos de uso en la industria: Ejemplos de apps que usan AR para visualizar información de sensores IoT.

La RA combina datos de sensores IoT para mostrar información en tiempo real, mejorando la interacción y comprensión en entornos industriales.

• Mantenimiento Predictivo

Superpone datos como temperatura o vibración en equipos, ayudando a técnicos a detectar fallas o planificar mantenimientos.

Monitorización de Infraestructuras
 Muestra datos estructurales o ambientales en tiempo real en construcciones o plantas, agilizando decisiones y respuestas a emergencias.

Formación
 y
 Capacitación
 Simula equipos con sensores IoT para entrenar empleados en interpretación de
 datos en entornos seguros antes de situaciones reales.

• Visualización de Smart Cities Expone datos de sensores urbanos (tráfico, aire, energía) en vivo, apoyando la gestión y planificación en ciudades inteligentes.

• Ejemplos de Apps

- Mantenimiento industrial: Visualiza el estado de equipos con datos en tiempo real.
- o Guías interactivas: Integra datos de sensores en museos o instalaciones.
- Seguridad: Destaca riesgos o mediciones críticas para equipos de emergencia

2. Aplicaciones IoT en el Desarrollo Multiplataforma

El Internet de las cosas (IoT) se refiere a la interconexión digital de objetos cotidianos a través de Internet, lo que permite a los dispositivos recopilar y transmitir información de forma autónoma. Esta tecnología abarca desde electrodomésticos inteligentes hasta aparatos de atención médica y sistemas inteligentes urbanos.

La integración de IoT con aplicaciones móviles permiten que las personas usen sus teléfonos para ver y administrar dispositivos inteligentes. Esto se hace utilizando aplicaciones que se comunican con los teléfonos para enviar instrucciones y a la vez obtener información rápidamente. Una aplicación permite a los usuarios controlar la temperatura de un termostato inteligente o recibir notificaciones de una configuración de seguridad en el hogar.

Protocolos de comunicación IoT: MQTT, HTTP REST, WebSockts

Para facilitar la comunicación entre dispositivos y aplicaciones IoT, se utilizan diferentes protocolos:

- MQTT (Message Queuing Telemetry Transport): Es un protocolo ligero de publicación/suscripción diseñado para conexiones con ancho de banda limitado y alta latencia. Es ideal para IoT debido a su eficiencia en el uso del ancho de banda y su capacidad para funcionar en dispositivos con recursos limitados.
- HTTP REST: Es un protocolo basado en el modelo cliente-servidor que utiliza operaciones estándar HTTP. Aunque es ampliamente utilizado en aplicaciones

- web, en el contexto de loT puede ser menos eficiente debido a su mayor sobrecarga en comparación con MQTT.
- WebSockets: Proporciona una comunicación bidireccional en tiempo real entre el cliente y el servidor sobre una única conexión TCP. Es útil para aplicaciones que requieren actualizaciones instantáneas, como chats en vivo o transmisiones de datos en tiempo real.

Uso de Bluetooth Low Energy (BLE) para conectar dispositivos IoT con una aplicación móvil

BLE (Bluetooth Low Energy) es una versión de Bluetooth que usa menos potencia para enviar y recibir señales de forma inalámbrica. Esto facilita a las aplicaciones móviles para interactuar con dispositivos de IoT que tienen restricciones estrictas de consumo energético, como son los sensores de proximidad, los rastreadores de frecuencia cardíaca y dispositivos de fitness.

La implementación de BLE en aplicaciones móviles facilita la conexión directa con dispositivos IoT cercanos, que permite el registro de datos y la recolección sin conectividad web. Para entenderlo de una forma seria, ejemplo, una aplicación de salud puede vincular a un rastreador de ejercicios utilizando Bluetooth para compartir información de entrenamiento.

Ejemplos de aplicaciones reales donde una aplicación móvil se conecta a un sistema IoT.

Hay múltiples ejemplos en los que las aplicaciones móviles interactúan con los sistemas IoT.

- Automatización para una casa: Se utiliza para tener control de luces, termostatos y seguridad del móvil. Ya con esta tecnología loT se puede modificar la iluminación o el calor de una casa antes de llegar.
- Salud y fitness: Hay aplicaciones que se conectan a rastreadores de acondicionamiento físico para verificar el ejercicio, frecuencia cardíaca o dormir, brindándole actualizaciones en vivo.
- Gestión de flotas: Las empresas que usan aplicaciones para ver dónde están sus autos y cómo funcionan, haciendo que las cosas funcionen mejor.
- Para agricultura: Se usa de herramientas para verificar el suelo y el clima, ayudando a los agricultores a decidir cuándo regar y alimentar sus cultivos.

3. Integración de AR con loT

• Cómo visualizar datos de sensores IoT en AR: Ejemplo de un dashboard AR que muestre información en tiempo real.

Una de las formas más innovadoras de representar datos IoT es a través de interfaces AR superpuestas en el entorno físico. Esto permite, por ejemplo, que un técnico observe directamente sobre una máquina real la temperatura, estado de funcionamiento o niveles de energía, sin necesidad de consultar paneles externos.

Ejemplo: Dashboard AR en tiempo real

- **Escenario:** Una planta industrial tiene sensores IoT instalados en su maquinaria para monitorear temperatura, vibración y consumo eléctrico.
- Visualización: Con una app AR en una tablet o gafas inteligentes, al enfocar la cámara hacia una máquina, se despliega un dashboard flotante en AR mostrando:
 - o Temperatura actual.
 - o Consumo energético en tiempo real.
 - Notificaciones de mantenimiento.

Tecnología utilizada:

- o AR SDK (por ejemplo, Unity con Vuforia o AR Foundation).
- o Canal de datos desde sensores a través de MQTT/WebSocket.
- o Actualización en tiempo real con Firebase o un servidor backend.

• Cómo conectar una app AR con un servidor IoT: Uso de Firebase, MQTT o WebSockets para la transmisión de datos.

Para que una app de AR reciba datos de sensores IoT, es necesario un canal de comunicación confiable entre el hardware IoT y la aplicación. Aquí te mostramos tres tecnologías clave:

Firebase Realtime Database

- **Ventajas:** Facilidad de implementación, sincronización en tiempo real, ideal para prototipos.
- **Ejemplo:** Un sensor de humedad en una planta de invernadero envía datos al servidor; la app AR consulta Firebase y muestra en tiempo real los niveles de humedad sobre cada planta.

MQTT (Message Queuing Telemetry Transport)

- **Ventajas:** Ligero, ideal para dispositivos IoT con bajo consumo de energía, muy utilizado en la industria.
- **Ejemplo:** Un casco AR recibe datos desde un broker MQTT para visualizar alertas sobre presión o fugas de gas en tuberías industriales.

WebSockets

- Ventajas: Comunicación bidireccional persistente y en tiempo real.
- **Ejemplo:** En un sistema domótico, al enfocar la cámara hacia un dispositivo inteligente, se muestran los datos actuales de temperatura y consumo mediante WebSocket en una app web AR.
- Ejemplos de implementación en la industria: Aplicaciones en mantenimiento predictivo, monitoreo ambiental, domótica y salud.

Mantenimiento predictivo (Industria 4.0)

- **Uso:** Visualizar datos de desgaste, vibraciones, o ciclos de uso de piezas mecánicas.
- **Beneficio:** Permite al personal técnico prevenir fallas antes de que ocurran, guiados por datos en AR.

Monitoreo ambiental

- **Uso:** Drones o gafas AR muestran índices de contaminación, humedad o temperatura directamente sobre el entorno natural.
- **Beneficio:** Ideal para agricultura inteligente, zonas protegidas, o estudios ecológicos.

Domótica (Smart Home)

- **Uso:** Control de luces, termostatos y cámaras directamente desde la app AR, apuntando a los dispositivos físicos.
- **Beneficio:** Interacción intuitiva con los dispositivos del hogar, sin menús complejos.

Salud

- **Uso:** Monitoreo de pacientes mediante sensores biométricos (pulso, presión) con visualización directa en AR sobre camas hospitalarias.
- **Beneficio:** Mejora la atención inmediata al paciente y reduce errores humanos.