2011-II: Transmission Lines and Antennas

PRINTED ANTENNAS: RECTANGULAR PATCH ANTENNA ANALYSIS AND DESIGN

Javier Leonardo Araque Quijano
Of: 453 – 204, Ext. 14083
jlaraqueq@unal.edu.co
Universidad Nacional de Colombia

Printed Antennas

Line-fed Rectangular Patch

- A grounded subtrate is used as support medium, h << λ
- A normal microstrip line is used to feed the antenna (Wf $\ll \lambda$).
- Antenna is a very wide microstrip line (W~λ): wide, open edges allow leaking of guided wave energy into space
- A simple model and analysis will be presented

Accounting for discontinuities

- The effect of edges is modelled by (equal) complex admittances, conductance is due to radiation, susceptance to the capacitive effect between patch and ground plane.
- Resonance is achieved when patch Zin is purely real, i.e. admitance due to right edge is transformed by patch line into its complex conjugate \rightarrow patch line length is somewhat less than $\lambda/2$ due to capacitances (apparent enlongation).

Edge Conductance and Capacitance

• Conductance is obtained from ratio of power radiated by a "slot" to the square modulus of voltage applied:

$$G_e = \frac{2P_{rad}}{|V_0|^2} = \frac{-2 + \cos(X) + XS_i(X) + \frac{\sin(X)}{X}}{120\pi^2}$$

$$X = k_0 W$$

$$S_i(x) = \int_0^x \frac{\sin u}{u} du$$

• Capacitance is most conveniently expressed in terms of the apparent enlongation of the patch line using conventional microstrip formulas (real patch length must be $\lambda_g/2$ minus twice this):

$$\frac{\Delta L}{h} = 0.412 \frac{\epsilon_{r,eff} + 0.3}{\epsilon_{r,eff} - 0.258} \cdot \frac{W/h + 0.264}{W/h + 0.8}$$
$$L_{patch} = \frac{\lambda_0}{2\sqrt{\epsilon_{r,eff}}} - 2\Delta L$$

Enhancing the Model

• Computation of Ge above assumes the slot radiates in isolation. Plugging two of these into the model assumes that <u>power adds up</u>, which is not exact since superposition applies to *fields* not power: *fields radiated by these edges interfer in space*, sometimes constructively and sometimes destructively. This effect is accounted by adding a mutual conductance:

$$G_{12} = \frac{1}{120\pi^2} \int_0^{\pi} \left[\frac{\sin\left(\frac{k_0 W}{2} \cos \theta\right)}{\cos \theta} \right]^2 J_0(k_0 L \sin \theta) \sin^3 \theta \, d\theta$$

This model is valid only at resonance or close, as it assumes equiphase excitation of the "edge antenna elements". Total input impedance is thus computed as follows:

$$R_{in} = \frac{1}{2(G_e + G_{12})}$$

Controlling Patch Input Resistance

• A wider patch has lower input resistance. Sometimes 50Ω require a too wide patch!

Controlling input Resistance (2)

• By suitably modifying the feed, different V/I ratio at input terminal are obtained, thus changing input resistance → inset feed

• Wg is chosen so that the grounded coplanar waveguide T.L. has the same characteristic impedance as the microstrip line.

Patch Design Procedure

Usually one needs to obtain a fixed value for the patch input impedance. Two design procedures can be used:

- Set W to an "optimum" value, then use inset feed to attain the specified impedance.
- Compute W to control input impedance.

Design with Inset Feed for small Rin (say < 150 Ohm)

- Given f, h, epsr, Zin:

1. Compute patch width using a rule of thumb value:
$$W_{opt} = \frac{1}{2} \frac{\lambda_0(f_R)}{\sqrt{\varepsilon_{average}}} \qquad \varepsilon_{average} = \frac{1}{2} (\varepsilon_r + 1)$$

2. Compute effective dielectric constant (for sure W>h) and apparent patch enlongation $\triangle L$

$$\epsilon_{r,eff} = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2\sqrt{1 + 12\frac{h}{W}}}$$

$$\frac{\Delta L}{h} = 0.412 \frac{\epsilon_{r,eff} + 0.3}{\epsilon_{r,eff} - 0.258} \cdot \frac{W/h + 0.264}{W/h + 0.8}$$

3. Compute patch length considering the above:

$$L = \frac{\lambda_g}{2} - 2\Delta L = \frac{c}{2f\epsilon_{ref}} - 2\Delta L$$

4. Compute resulting Rin (from curves or formulas), choose inset dimensions Lg, Wg to attain goal Rin.

Design for Rin varying W For large Rin (say >150 Ohm)

- Choose $L/\lambda_0 \approx \frac{1}{2} \frac{1}{\sqrt{\varepsilon_r}}$ Compute W from curves such that Zin is obtained.
- Follow steps 2-4 as in previous case.
- The resulting value for L will be slightly different from the one initially chosen...
- Iterate if necessary with the new value for L
- This manual/graphical procedure is to be avoided whenever possible: it involves tedious computations and is prone to error; furthermore, solution is inexact in view of visual interpolation being required. The preferred way is to write a program to solve exactly the non-linear equation system (see next slide).

Design for Rin varying W (exact solution)

- The design equations for the patch can be represented in a dependence graph (left): arrows indicate the availability of an explicit equation to compute the element at the tip from all the elements where arrows originate (f, h and epsr are implicitly available for all expressions).
- This diagram shows that W is an independent variable, and ultimately one may write down an equation:

$$Zin = g(W)$$

- This equation may thus solved using a nonlinear solver (e.g. MATLAB's fzero):
- $W = argmin_{w}|g(W) Zspec|$