Principles of Data- and Knowledge-based Systems

Torsten Schaub University of Potsdam torsten@cs.uni-potsdam.de

Relational normal form: Overview

- 1 Introduction
- 2 Functional dependencies
- 3 Boyce-Codd normal form
- 4 Summary

Outline

- 1 Introduction
- 2 Functional dependencies
- 3 Boyce-Codd normal form
- 4 Summary

Introduction (1)

- Relational database design theory is based mainly on a class of constraints called "Functional Dependencies" (FDs). FDs are a generalization of keys.
- This theory defines when a relation is in a certain normal form (e.g. Third Normal Form, 3NF) for a given set of FDs.
- It is usually bad if a schema contains relations that violate the conditions of a normal form.

Introduction (2)

If a normal form is violated, data is stored redundantly, and information about different concepts is intermixed. E.g. consider the following table:

COURSES					
CRN	TITLE	INAME	PHONE		
22268	DB	Brass	9404		
42232	DS	Brass	9404		
31822	IS	Spring	9429		

■ The phone number of "Brass" is stored two times. In general, the phone number of an instructor will be stored once for every course he/she teaches.

Introduction (3)

- Of course, it is no problem if a column contains the same value two times (e.g. consider a Y/N column).
- But in this case, the following holds: If two rows have the same value in the column INAME, they must have the same value in the column PHONE.
- lacktriangle This is an example of a functional dependency: INAME ightarrow PHONE.
- Because of this rule, one of the two PHONE entries for Brass is redundant.

Introduction (4)

- Table entries are redundant if they can be reconstructed from other table entries and additional information (like the FD in this case).
- Redundant information in database schemas is bad:
 - Storage space is wasted.
 - If the information is updated, all redundant copies must be updated.
 If one is not careful, the copies become inconsistent (Update Anomaly).

Introduction (5)

■ In the example, the information about the two concepts "Course" and "Instructor" are intermixed in one table.

This is bad:

- The phone number of a new faculty member can be stored in the table only together with a course (Insertion Anomaly).
- When the last course of a faculty member is deleted, his/her phone number is lost (Deletion Anomaly).

Introduction (6)

- Third Normal Form (3NF) is considered part of a decent database design.
- Boyce-Codd Normal Form (BCNF) is slightly stronger, easier to define, and better matches intuition.
 Intuitively, BCNF means that all FDs are already enforced by keys.
- Only BCNF is defined here.
- If a table is in BCNF, it is automatically in 3NF.

Outline

- 1 Introduction
- 2 Functional dependencies
- 3 Boyce-Codd normal form
- 4 Summary

Functional Dependencies (1)

- Functional dependencies (FDs) are generalizations of keys.
- A functional dependency specifies that an attribute (or attribute combination) uniquely determines another attribute (or other attributes).
- Functional dependencies are written in the form

$$A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m$$
.

■ This means that whenever two rows have the same values in the attributes A_1, \ldots, A_n , then they must also agree in the attributes B_1, \ldots, B_m .

Functional Dependencies (2)

■ As noted above, the FD "INAME \rightarrow PHONE" is satisfied in the following example:

COURSES					
CRN	TITLE	INAME	PHONE		
22268	DB	Brass	9404		
42232	DS	Brass	9404		
31822	IS	Spring	9429		

■ If two rows agree in the instructor name, they must have the same phone number.

Functional Dependencies (3)

- A key uniquely determines every attribute, i.e. the FDs "CRN→TITLE", "CRN→INAME", "CRN→PHONE" are trivially satisfied:
 - There are no two distinct rows that have the same value for a key (CRN in this case).
 - Therefore, whenever rows t and u agree in the key (CRN), they must actually be the same row, and therefore agree in all other attributes, too.
- Instead of the three FDs above, one can also write the single FD "CRN \rightarrow TITLE, INAME, PHONE".

Functional Dependencies (4)

- In the example, the FD "INAME → TITLE" is not satisfied: There are two rows with the same INAME, but different values for TITLE.
- In the example, the FD "TITLE \rightarrow CRN" is satisfied.
- However, like keys, FDs are constraints: They must hold in all possible database states, not only in a single example state.

Functional Dependencies (5)

- Therefore, it is a database design task to determine which FDs should hold. This cannot be decided automatically, and the FDs are needed as input for the normalization check.
- In the example, the DB designer must find out whether it can ever happen that two courses are offered with the same title (e.g. two sessions of a course that is overbooked).
- If this can happen, the FD "TITLE \rightarrow CRN" does not hold in general.

Functional Dependencies (6)

Sequence and multiplicity of attributes in an FD are unimportant, since both sides are formally sets of attributes:

$${A_1, \ldots, A_n} \to {B_1, \ldots, B_m}.$$

- In discussing FDs, the focus is on a single relation R. All attributes A_i , B_i are from this relation.
- The FD $A_1, \ldots, A_n \to B_1, \ldots, B_m$ is equivalent to the m FDs:

$$A_1, \dots, A_n \rightarrow B_1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A_1, \dots, A_n \rightarrow B_m.$$

FDs vs. Keys

■ FDs are a generalization of keys: $A_1, ..., A_n$ is a key of

$$R(A_1,\ldots,A_n,B_1,\ldots,B_m)$$

if and only if the FD " $A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m$ " holds.

■ Given the FDs for a relation, one can compute a key by finding a set of attributes A_1, \ldots, A_n that functionally determines the other attributes.

Trivial FDs

- A functional dependency $\alpha \to \beta$ such that $\beta \subseteq \alpha$ is called trivial.
- Examples are:
 - $lue{}$ TITLE ightarrow TITLE
 - \blacksquare INAME, PHONE o PHONE
- Trivial functional dependencies are always satisfied (in every database state, no matter whether it satisfies other constraints or not).
- Trivial FDs are not interesting.

Implication of FDs (1)

- CRN→PHONE is nothing new when one knows already CRN→INAME and INAME→PHONE.
- A set of FDs $\{\alpha_1 \to \beta_1, \dots, \alpha_n \to \beta_n\}$ implies an FD $\alpha \to \beta$ if and only if every DB state which satisfies the $\alpha_i \to \beta_i$ for $i = 1, \dots, n$ also satisfies $\alpha \to \beta$.

Implication of FDs (2)

- One is normally not interested in all FDs which hold, but only in a representative set that implies all other FDs.
- Implied dependencies can be computed by applying the Armstrong Axioms:
 - If $\beta \subseteq \alpha$, then $\alpha \to \beta$ trivially holds (Reflexivity).
 - If $\alpha \to \beta$, then $\alpha \cup \gamma \to \beta \cup \gamma$ (Augmentation).
 - If $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$ (Transitivity).

Implication of FDs (3)

- A simpler way to check whether $\alpha \to \beta$ is implied by given FDs is to compute first the attribute cover α^+ of α and then to check whether $\beta \subseteq \alpha^+$.
- The attribute cover $\alpha_{\mathcal{F}}^+$ of a set of attributes α is the set of all attributes \mathcal{B} that are uniquely determined by α (with respect to given FDs \mathcal{F}).

$$\alpha_{\mathcal{F}}^+ := \{ B \mid \mathsf{The}\; \mathsf{FDs}\; \mathcal{F} \; \mathsf{imply}\; \alpha \to B \}.$$

lacksquare A set of FDs $\mathcal F$ implies lpha o eta if and only if $eta \subseteq lpha_{\mathcal F}^+$.

Implication of FDs (4)

■ The cover is computed as follows:

```
Input: \alpha (Set of attributes) \alpha_1 \to \beta_1, \dots, \alpha_n \to \beta_n (Set of FDs)

Output: \alpha^+ (Set of attributes, Cover of \alpha)

Method: x := \alpha;

while x did change do

for each given FD \alpha_i \to \beta_i do

if \alpha_i \subseteq x then

x := x \cup \beta_i;

output x;
```

Implication of FDs (5)

Consider the following FDs:

```
ISBN 
ightarrow TITLE, PUBLISHER ISBN, NO 
ightarrow AUTHOR PUBLISHER 
ightarrow PUBLURL
```

- Suppose we want to compute {ISBN}⁺.
- We start with $x = \{ISBN\}.$

Implication of FDs (6)

■ The first of the given FDs, namely

ISBN ightarrow TITLE, PUBLISHER

- has a left hand side (ISBN) that is contained in the current set x (actually, $x = \{ISBN\}$).
- Therefore, we can extend x by the attributes on the right hand side of this FD, i.e. TITLE, and PUBLISHER:

```
x = \{ISBN, TITLE, PUBLISHER\}.
```

Implication of FDs (7)

Now the third of the FDs, namely

PUBLISHER
$$\rightarrow$$
 PUB_URL

is applicable:

Its left hand side is contained in x.

■ Therefore, we can add the right hand side of this FD to x and get

$$x = \{ISBN, TITLE, PUBLISHER, PUB_URL\}.$$

■ The last FD, namely

ISBN, NO
$$\rightarrow$$
 AUTHOR

is still not applicable, because NO is missing in x.

Implication of FDs (8)

After checking again that there is no way to extend the set x any further with the given FDs, the algorithm terminates and prints

$$\{ISBN\}^+ = \{ISBN, TITLE, PUBLISHER, PUB_URL\}.$$

• From this, we can conclude that the given FDs imply e.g.

ISBN
$$\rightarrow$$
 PUB_URL.

■ In the same way, one can compute e.g. the cover of {ISBN, NO}. It is the entire set of attributes

How to Determine Keys (1)

- $lue{}$ Given a set of FDs (and the set of all attributes ${\cal A}$ of a relation), one can determine all possible keys for that relation.
- $lpha \subseteq \mathcal{A}$ is a key if and only if $\alpha^+ = \mathcal{A}$.
- Normally, one is only interested in minimal keys.

How to Determine Keys (2)

- One can construct a key also in a less formal way.
- So one starts with the set of required attributes (that do not appear on any right side).
- If the required attributes do not already form a key, one adds attributes: The left hand side of an FD or directly one of the missing attributes.

Outline

- 1 Introduction
- 2 Functional dependencies
- 3 Boyce-Codd normal form
- 4 Summary

Motivation (1)

Consider again the example:

COURSES					
CRN	TITLE	INAME	PHONE		
22268	DB	Brass	9404		
42232	DS	Brass	9404		
31822	IS	Spring	9429		

- As noted above, the FD INAME→PHONE leads to problems, one of which is the redundant storage of certain facts (e.g. the phone number of "Brass").
- The FD INAME→PHONE leads exactly then to redundancies, if there are several lines with the same value for INAME (left side of the FD).
- Then these lines must also have the same value for PHONE (right side of the FD). Of these, all but one copy are redundant.

Motivation (2)

- Actually, any FD $A_1, ..., A_n \rightarrow B_1, ..., B_m$ will cause redundant storage unless $A_1, ..., A_n$ is a key, so that each combination of attribute values for $A_1, ..., A_n$ can occur only once.
- Avoid (proper) FDs by transforming them into key constraints. This is what normalization does.

Motivation (3)

- The problem in the example is also caused by the fact that information about different concepts is stored together (faculty members and courses).
- Formally, this follows also from "INAME→PHONE":
 - INAME is like a key for only part of the attributes.
 - It identifies faculty members, and PHONE depends only on the faculty member, not on the course.
- Again: The left hand side of an FD should be a key.

Boyce-Codd Normal Form (BCNF)

- A Relation *R* is in BCNF if and only if all its FDs are already implied by key constraints.
- I.e. for every FD " $A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m$ " one of the following conditions must hold:
 - The FD is trivial, i.e. $\{B_1, \ldots, B_m\} \subseteq \{A_1, \ldots, A_n\}$.
 - The FD follows from a key, because $\{A_1, \ldots, A_n\}$ or some subset of it is already a key.

Boyce-Codd Normal Form

Check

- From the given FDs $\mathcal F$ one can first determine the keys of the relation, and then apply the definition directly: For each FD $\alpha \to \beta$ from $\mathcal F$: If $\beta \not\subseteq \alpha$, then α contains one of the keys (plus possibly other attributes).
- However, one can also check for each FD $\alpha \to \beta$ with $\beta \not\subseteq \alpha$ whether the attribute cover α^+ is already the set of all the attributes of the relation.
 - Then α or a subset of it is just a key.

Examples (1)

- COURSES(<u>CRN</u>, TITLE, INAME, PHONE) with the FDs
 - \blacksquare CRN \rightarrow TITLE, INAME, PHONE
 - INAME \rightarrow PHONE

is not in BCNF because the FD "INAME \rightarrow PHONE" is not implied by a key:

- "INAME" is not a key of the entire relation.
- The FD is not trivial.
- However, without the attribute PHONE (and its FD), the relation is in BCNF:
 - lueen CRN ightarrow TITLE, INAME corresponds to the key.

Examples (2)

Suppose that each course meets only once per week and that there are no cross-listed courses. Then

CLASS(CRN, TITLE, DAY, TIME, ROOM)

satisfies the following FDs (plus implied ones):

- $lue{}$ CRN ightarrow TITLE, DAY, TIME, ROOM
- lacktriangleright DAY, TIME, ROOM ightarrow CRN
- The keys are CRN and DAY, TIME, ROOM.
- Both FDs have a key on the left hand side, so the relation is in BCNF.

Examples (3)

- Suppose that PRODUCT(NO, NAME, PRICE) has these FDs:

 - (1) NO \rightarrow NAME (3) PRICE, NAME \rightarrow NAME

 - (2) NO \rightarrow PRICE (4) NO, PRICE \rightarrow NAME
- This relation is in BCNF:
 - The first two FDs show that NO is a key. Since their left hand side is a key, they are no problem.
 - The third FD is trivial and can be ignored.
 - The fourth FD has a superset of the key on the left hand side, which is also no problem.

Splitting Relations (1)

 A table which is not in BCNF can be split into two tables ("decomposition"), e.g. split COURSES into

> COURSES_NEW(\underline{CRN} , TITLE, INAME \rightarrow INSTRUCTORS) INSTRUCTORS(INAME, PHONE)

■ General case: If $A_1, \ldots, A_n \to B_1, \ldots, B_m$ violates BCNF, create a relation $S(\underline{A_1}, \ldots, \underline{A_n}, B_1, \ldots, B_m)$ and remove B_1, \ldots, B_m from the original relation.

Splitting Relations (2)

When splitting relations, it is of course important that the transformation is "lossless", i.e. that the original relation can be reconstructed by means of a join:

```
COURSES = COURSES_NEW \bowtie INSTRUCTORS.
```

• I.e. the original relation can be defined as a view:

CREATE VIEW COURSES(CRN, TITLE, INAME, PHONE) AS

SELECT C.CRN, C.TITLE, C.INAME, I.PHONE FROM COURSES_NEW C, INSTRUCTORS I

WHERE C.INAME = I.INAME

Splitting Relations (3)

■ The split of the relations is guaranteed to be lossless if the intersection of the attributes of the new tables is a key of at least one of them ("decomposition theorem"):

```
\{\mathtt{CRN},\,\mathtt{TITLE},\,\mathtt{INAME}\}\cap\{\mathtt{INAME},\,\mathtt{PHONE}\}=\{\mathtt{INAME}\}.
```

- The above method for transforming relations into BCNF does only splits that satisfy this condition.
- It is always possible to transform a relation into BCNF by lossless splitting (if necessary repeated).

Splitting Relations (4)

Not every lossless split is reasonable:

STUDENTS		
SSN	FIRST_NAME	LAST_NAME
111-22-3333	John	Smith
123-45-6789	Maria	Brown

- Splitting this into STUD_FIRST(<u>SSN</u>,FIRST_NAME) and STUD_LAST(<u>SSN</u>,LAST_NAME) is lossless, but
 - is not necessary to enforce a normal form and
 - only requires costly joins in later queries.

Splitting Relations (5)

- Losslessness means that the resulting schema can represent all states which were possible before.
- However, the new schema allows states which do not correspond to a state in the old schema: Now instructors without courses can be stored.
- Thus, the two schemas are not equivalent: The new one is more general.

Splitting Relations (6)

- If instructors without courses are possible in the real world, the decomposition removes a fault in the old schema (insertion and deletion anomaly).
- If they are not,
 - a new constraint is needed that is not necessarily easier to enforce than the FD, but at least
 - the redundancy is avoided (update anomaly).

Outline

- 1 Introduction
- 2 Functional dependencies
- 3 Boyce-Codd normal form
- 4 Summary

Summary

- Data base design
- Redundancy causes anomalies on
 - Deletion
 - Insertion
 - Update
- Functional dependencies
 - Implication
 - Comutation of attribute cover
- BCNF eliminates all redundancies based on functional dependencies
 - Check
 - Split

Bibliography

■ The following list of references is compiled from the open source bibliography available at

https://github.com/krr-up/bibliography

■ Feel free to submit corrections via pull requests!

- S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
- [2] C. Aggarwal, editor. Data Streams — Models and Algorithms, volume 31 of Advances in Database Systems. Springer-Verlag, 2007.
- [3] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, chapter 2, pages 89–148. Morgan Kaufmann Publishers, 1987.
- [4] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases.

- In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'99), pages 68–79. ACM Press, 1999.
- [5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.
- [6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. In L. Popa, editor, *Proceedings of the Twenty-first ACM*

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'02), pages 1–16. ACM Press, 2002.

[7] C. Baral.

Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.

- [8] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag, 1990.
- [9] R. Elmasri and S. Navathe. Fundamentals of database systems. Addison-Wesley, 1994.
- [10] R. Fagin, J. Ullman, and M. Vardi. On the semantics of updates in databases. preliminary report. In *Proceedings of the Second ACM Conference SIGACT-SIGMOD*, pages 352–365, 1983.
- [11] H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: A deductive approach. Computing Surveys, 16(2):153–185, 1984.
- [12] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero, T. Schaub, and S. Thiele.

Potassco User Guide.

- University of Potsdam, 2 edition, 2015.
- [13] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.
- [14] M. Gelfond and Y. Kahl. Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, 2014.
- [15] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9:365–385, 1991.
- [16] H. Katsuno and A. Mendelzon. On the difference between updating a knowledge database and revising it.

In J. Allen, R. Fikes, and E. Sandewall, editors, *Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR'91)*, pages 387–394. Morgan Kaufmann Publishers, 1991.

[17] V. Lifschitz. Closed-world databases and circumscription. Artificial Intelligence, 27:229–235, 1985.

[18] V. Lifschitz.

Nonmonotonic databases and epistemic queries.

In J. Myopoulos and R. Reiter, editors, *Proceedings of the International Joint Conference on Artificial Intelligence*, pages 381–386. Morgan Kaufmann Publishers, 1991.

- [19] V. Lifschitz. Introduction to answer set programming. Unpublished draft, 2004.
- [20] V. Lifschitz, F. van Harmelen, and B. Porter, editors.

Handbook of Knowledge Representation. Elsevier Science, 2008.

[21] L. Liu and M. Özsu, editors. Encyclopedia of Database Systems. Springer-Verlag, 2009.

[22] V. Marek and M. Truszczyński. Nonmonotonic logic: context-dependent reasoning. Artifical Intelligence. Springer-Verlag, 1993.

[23] J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann Publishers, 1988.

[24] R. Reiter.

On closed world data bases.

In H. Gallaire and J. Minker, editors, *Logic and Databases*, pages 55–76. Plenum Press. New York, 1978.

[25] R. Reiter.

Towards a logical reconstruction of relational database theory.

In M. Brodie, J. Myopoulos, and J. Schmidt, editors, *On conceptual modeling: Perspectives from Artificial Intelligence, Databases and*

modeling: Perspectives from Artificial Intelligence, Datbases and Programming Languages, pages 191–233. Springer-Verlag, 1984.

[26] R. Reiter.

On asking what a database knows.

In J. Lloyd, editor, *Computational Logic*, pages 96–113. Springer-Verlag, 1990.

[27] J. Ullman.

Principles of Database Systems.

Computer Science Press, Rockville MD, 1982.

[28] J. Ullman.

Principles of Database and Knowledge-Base Systems.

Computer Science Press, 1988.