MATB24 TUTORIAL PROBLEMS 7, SOLUTIONS

KEY WORDS: inner product, inner product space, dot product, orthogonal complement, orthogonal projection

RELEVANT SECTIONS IN THE TEXTBOOK: Sec 3.5, 6.1, 6.2

WARM-UP:

- (1) Write down a complete definition or a complete mathematical characterization for the following terms.
 - \bullet An inner product on a vector apace V
 - An inner product space
 - \bullet Orthogonal complement of a subspace W of an inner product space V
 - Orthogonal decomposition of a vector \vec{v} in an inner product space V
 - An orthogonal set of vectors
 - \bullet An orthogonal basis for a vector space W
 - \bullet An orthonormal basis for a vector space W
- (2) Give an example of the described object or explain why such an example does not exists.
 - An inner product on \mathbb{R}^2 other than the dot product.
 - An inner product on \mathbb{R}^3 other than the dot product.
 - Two vectors in \mathbb{R}^3 that are orthogonal with respect to dot product but not with respect to your example of inner product.
 - A vector in \mathbb{R}^3 with length one with respect to dot product and a different length with respect to your example of inner product.
 - Two different orthogonal bases of \mathbb{R}^2 .
 - ullet A vector in an inner product space V that is orthogonal to every other vector.
 - 4 mutually orthogonal vectors in \mathbb{R}^3 .

A:

(1) Let V_1 be the subspace of \mathbb{R}^4 given by

$$x_1 - x_2 - 2x_3 = 0,$$

$$x_2 + x_3 - 2x_4 = 0.$$

Find an orthonormal basis of V_1 .

(2) Let V_2 be the subspace of \mathbb{R}^4 given by

$$x_1 + x_2 - x_3 - 2x_4 = 0.$$

Find an orthonormal basis of V_2 .

(3) Let \vec{w} be the vector

$$\vec{w} = \begin{bmatrix} 1\\2\\-1\\2 \end{bmatrix} \in \mathbb{R}^4.$$

Find the orthogonal projections of \vec{w} onto the subspaces V_1, V_2 .

(4) Show that any subspace V of \mathbb{R}^n has an orthonormal basis. ¹

¹Hint: start with any basis, then try to modify it to make it orthonormal.

Solution.

(1) Writing the equations as rows yields the matrix $\begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 1 & 1 & -2 \end{bmatrix}$. Letting the last two columns be the free variables r, s, the nullspace is given by [(-s+2r)+2s, -s+2r, s, r], which is spanned by the following two vectors:

$$(\vec{u}, \vec{v}) = \left(\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right),$$

These are already orthogonal, so normalizing gives the orthonormal basis $\left(\frac{1}{\sqrt{3}}\vec{u}, \frac{1}{3}\vec{v}\right)$.

(2) By inspection, $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ are orthogonal vectors in V_2 , and $\vec{z} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

 $\begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} \in V_2 \text{ is independent of } \vec{u} \text{ and } \vec{v} \text{ (e.g. the zeros in components do not match)}$

and orthogonal to \vec{u} . So

$$(\vec{u}, \vec{v}, \vec{z} - \mathrm{proj}_{\vec{v}}(\vec{z})) \ = \ \left(\vec{u}, \vec{v}, \vec{z} - \frac{\vec{z} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}\right) \ = \ \left(\begin{bmatrix}1\\0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\2\\0\\1\end{bmatrix}, \begin{bmatrix}1\\-\frac{2}{5}\\-1\\\frac{4}{5}\end{bmatrix}\right)$$

is an orthogonal set in V_2 (e.g. $\vec{z}_{\vec{v}^\perp} = z - \operatorname{proj}_{\vec{v}}(\vec{z})$, so this vector is orthogonal to \vec{v} , and since $\operatorname{proj}_{\vec{v}}(\vec{z})$ is parallel to \vec{v} which is orthogonal to \vec{u} , and since \vec{z} is orthogonal to \vec{u} , therefore $\vec{z}_{\vec{v}^\perp} \cdot \vec{u} = \vec{z} \cdot \vec{u} - \operatorname{proj}_{\vec{v}}(\vec{z}) \cdot u = 0 - 0 = 0$), and by normalizing we get an orthonormal basis of V_2 .

(3) Letting \vec{u}, \vec{v} be as in the solution to Problem 1, we have

$$\operatorname{proj}_{V_1}(\vec{w}) \ = \ \left(\vec{w} \cdot \frac{1}{\sqrt{3}} \vec{u}\right) \frac{1}{\sqrt{3}} \vec{u} + \left(\vec{w} \cdot \frac{1}{3} \vec{v}\right) \frac{1}{3} \vec{v} \ = \ \frac{1}{9} \begin{bmatrix} 10 \\ 22 \\ -6 \\ 8 \end{bmatrix}.$$

By a similar computation using Problem (2),

$$\operatorname{proj}_{V_2}(\vec{w}) \ = \ egin{bmatrix} 1 \\ 2 \\ -1 \\ 2 \end{bmatrix}.$$

(4) This is the Gram-Schmidt process. Convert the basis $(\vec{b}_1, \ldots, \vec{b}_r)$ of V into the orthonormal basis $(\vec{u}_1, \ldots, \vec{u}_r)$ of V by inductively defining \vec{u}_k to be the normalization of

$$\vec{b}_k - \sum_{i=1}^{k-1} \frac{\vec{b}_k \cdot \vec{u}_i}{\vec{u}_i \cdot \vec{u}_i} \vec{u}_i.$$

B: Let V be a subspace of \mathbb{R}^m . We proved in class that for every $\vec{x} \in \mathbb{R}^m$ there is a unique vector $\operatorname{proj}_V(\vec{x}) \in V$ such that $\vec{x} - \operatorname{proj}_V(\vec{x})$ is orthogonal to V. The vector $\operatorname{proj}_V(\vec{x})$ is called the *orthogonal projection* of \vec{x} onto V, and we found a formula for it: if $\mathcal{U} = \{\vec{u}_1, \dots, \vec{u}_n\}$ is an orthonormal basis of V, then

$$\operatorname{proj}_V(\vec{x}) = \sum_{i=1}^n (\vec{x} \cdot \vec{u}_i) \vec{u}_i.$$

- (1) Prove that the transformation $\operatorname{proj}_V : \mathbb{R}^m \to \mathbb{R}^m$ is linear.
- (2) What is the kernel of $proj_V$?
- (3) Write the rank nullity equation for this transformation. Is it familiar?
- (4) Since the orthogonal projection $\operatorname{proj}_V: \mathbb{R}^m \to \mathbb{R}^m$ onto V is linear, there is an $m \times m$ matrix P such that $\operatorname{proj}_V(\vec{x}) = P\vec{x}$ for all $\vec{x} \in \mathbb{R}^m$. Can you find that matrix.²

Solution.

- (1) Using the formula $\operatorname{proj}_V(\vec{x}) = \sum_{i=1}^n (\vec{x} \cdot \vec{u}_i) \vec{u}_i$, this follows from the linearity of the dot product.
- (2) V^{\perp} . For example, if $\operatorname{proj}_V(\vec{x}) = \vec{0}$, then $\vec{x} = \vec{x} \operatorname{proj}(\vec{x})$ is orthogonal to V, i.e. $\vec{x} \in V^{\perp}$.
- (3) Since $V=\operatorname{Im}(\operatorname{proj}_V)$ and $V^\perp=\ker(\operatorname{proj}_V)$, the rank-nullity theorem says $\dim(V)+\dim(V^\perp)=m$
- (4) If A is the $m \times n$ matrix with columns $\vec{u}_1, \ldots, \vec{u}_n$, then $\operatorname{proj}(\vec{x}) = A(A^TA)^{-1}A^T\vec{x}$. The following is a brief explanation. Since $\operatorname{proj}(\vec{x}) \in V$, and the column space of A is precisely V, therefore $\operatorname{proj}(\vec{x}) = A\vec{r}$ for some $\vec{r} \in \mathbb{R}^n$. Then, since $\vec{x} A\vec{r}$ is orthogonal to V, therefore for any $\vec{y} \in \mathbb{R}^n$, $(\vec{x} A\vec{r}) \cdot A\vec{y} = 0$, i.e. $(A\vec{y})^T(\vec{x} A\vec{r}) = \vec{y}^T(A^T\vec{x} A^TA\vec{r}) = 0$. Since this holds for all such \vec{y} , it follows that $A^T\vec{x} A^TA\vec{r} = 0$. Since A is invertible due to its columns being independent, therefore A^TA is invertible, and hence $\vec{r} = (A^TA)^{-1}A^T\vec{x}$. Then, $\operatorname{proj}_V(\vec{x}) = A\vec{r} = A(A^TA)^{-1}A^T\vec{x}$.

C: **Theorem 1:** Let A be an $m \times n$ matrix. Then for all $\vec{x} \in \mathbb{R}^n$ and $\vec{y} \in \mathbb{R}^m$, we have an equality

$$A\vec{x} \cdot \vec{y} = \vec{x} \cdot A^T \vec{y}.$$

Theorem 2: If A is an $m \times n$ matrix, then $\ker A^T = (\operatorname{Im} A)^{\perp}$. Also, $(\ker A^T)^{\perp} = (\operatorname{Im} A)$.

- (1) Verify Theorem 1 for the matrix $A = I_n$ and any \vec{x} and \vec{y} in \mathbb{R}^n
- (2) Verify Theorem 1 for the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ and any \vec{x} and \vec{y} in \mathbb{R}^2 .
- (3) Prove Theorem 1³
- (4) Prove theorem 2 using theorem 1.

Solution.

- (1) $I_n \vec{x} \cdot \vec{y} = \vec{x} \cdot \vec{y} = \vec{x} \cdot I_n \vec{y}$ since $I_n^T = I_n$.
- (2) $A\vec{x} \cdot \vec{y} = [x_1 + 2x_2, -x_2] \cdot y = x_1y_1 + 2x_2y_1 x_2y_2 = \vec{x} \cdot [y_1, 2y_1 y_2].$

²we will do this in class

³by interpreting the dot product of two vectors \vec{w} and \vec{v} in \mathbb{R}^n as a matrix product $\vec{w}^T \vec{v}$.

- (3) $\vec{A}x \cdot \vec{y} = (A\vec{x})^T \vec{y} = (\vec{x}^T) A^T \vec{y} = \vec{x}^T (A^T \vec{y}) = \vec{x} \cdot A^T \vec{y}$.
- (4) Take $x \in \ker A^T$. We need $y \cdot x = 0$ for all $y \in \operatorname{Im} A$. We need $Az \cdot x = 0$ for all z. By Theorem 1, this is the same as $z \cdot A^T x = 0$ for all z. Of course, this true because $A^T x = 0$ (def of kernel). For the reverse inclusion: say $y \in (\operatorname{Im} A)^{\perp}$. This means $Ax \cdot y = 0$ for all x. This is the same as $x \cdot A^T y = 0$ for all x. This means $A^T y = 0$, so $y \in \ker A^T$. The second statement holds by "perping" both sides.

D:

Let V and W be subspaces of coordinate vector spaces \mathbb{R}^n and \mathbb{R}^m , and suppose that $T:V\to W$ is an isomorphism.

- (1) If $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_r\}$ is a basis of V, is the set $\{T(\vec{b}_1), \dots, T(\vec{b}_r)\}$ necessarily a basis of W?
- (2) If $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_r\}$ is an orthonormal basis of V, is the set $\{T(\vec{b}_1), \dots, T(\vec{b}_r)\}$ necessarily an orthonormal basis of W?
- (3) Which $n \times n$ matrices A have the property that for every orthonormal basis $\{\vec{u}_1, \dots, \vec{u}_n\}$ of \mathbb{R}^n , the set $\{A\vec{u}_1, \dots, A\vec{u}_n\}$ is also an orthonormal basis of \mathbb{R}^n ? Can you come up with a few examples that works and a few that doesn't?

Solution.

- (1) Yes!
- (2) No! For instance, dilating \mathbb{R}^2 by a factor of 2 (i.e. $T(\vec{x}) = 2\vec{x}$) converts the orthonormal basis $(\vec{e_1}, \vec{e_2})$ of \mathbb{R}^2 into the non-orthonormal basis $(2\vec{e_1}, 2\vec{e_2})$.
- (3) By taking $(\vec{u}_1, \dots, \vec{u}_n)$ to be the standard basis of \mathbb{R}^n , we see that the columns of A must form an orthonormal basis of \mathbb{R}^n . In fact, this is also a sufficient condition, since a product of orthogonal $n \times n$ matrices is itself an orthogonal matrix. We will be better equipped to understand this after defining *orthogonal* transformations and matrices on the next week.

Exercises from the book: 1,3,5,7,9,11,19,20,24,25,26-28,33