Computer Vision Architectures of convolution neural networks - lecture 8

Adam Szmigielski aszmigie@pjwstk.edu.pl materials: ftp(public): //aszmigie/WMAEnglish

Popular convolutional network architectures

- RNN fast RNN, faster RNN
- SSD
- YOLO

LeNet-5 1998

Layer	Type	Maps	Size	Kernel Size	Step	F. Activation
Out	Fully connected		10	_		RBF
F6	Fully connected		84			tanh
C5	convolutions	120	1×1	5×5	1	tanh
S4	Connecting	16	5×5	$2\! imes\!2$	2	tanh
C3	convolutions	16	10×10	5×5	1	tanh
S2	connecting	6	$14\!\times\!14$	$2\! imes\!2$	2	tanh
C1	convolutions	6	28×28	5×5	1	tanh
In	Input	1	32×32			

- Została stworzona przez Yanna LeCuna w 1998 roku do rozpoznawania odręcznie pisanych cyfr (MNIST)
- Architektura LeNet-5 stanowi prawdopodobnie najbardziej znany przykład sieci CNN.

AlexNet 2012

Layer	Type	Maps	Size	Kernel Size	Step	Build. with zeros	F. activation
Out	Fully connected		1000			_	Softmax
F9	Fully connected		4096				${ m FeLU}$
F8	Fully connected		4096				${ m FeLU}$
C7	convolutions	256	13×13	3×3	1	SAME	${ m FeLU}$
C6	convolutions	384	13×13	3×3	1	SAME	${ m FeLU}$
C5	convolutions	384	13×13	3×3	1	SAME	${ m FeLU}$
S4	connecting	256	13×13	3×3	2	VALID	
С3	convolutions	256	$27\! imes\!27$	5×5	1	SAME	${ m FeLU}$
S2	connecting	96	$27\! imes\!27$	3×3	2	VALID	
C1	convolutions	96	55×55	11×11	4	SAME	${ m FeLU}$
In	Output	3(RGB)	$224\!\times\!224$			_	

- In order to reduce overtraining, the drop-off method was used on the outputs of the F8 and F9 layers, and they generated data,
- Local response normalization (LRN) was used in layers C1 and C3 neurons with the highest weights (the most activating) inhibit neurons located in the same position,

GoogLeNet 2014

- The creation of such an architecture was possible due to the introduction of subnets called bf inception modules
- The second set of convolution layers contains kernels of different sizes $(1 \times 1, 3 \times 3, \text{ and } 5 \times 5)$, which allows them to catch patterns at different scales.

- The first two layers reduce the height and length of the image four times,
- The local response normalization layer instructs previous layers to learn to recognize very different characteristics

- Two convolution layers, the first of which acts as the boundary layer.
- Local response normalization layer,
- Maximizing blending layer reduces the image dimensions twice as much,
- A tall stack of nine inception modules that
- Dropping is used to regularize, then a fully connected layer using the softmax activation function to display the estimated probabilities of the examples belonging to a given class.

ResNet 2015 - Residual Network

- Deep architecture was used consisting of 152 layers.
- connections bypassing (also called shortcut connections) used
- If we add x input to the network output (skipping connection), the network maps the function f(x) = h(x) x residual learning.

Deep residual network

• A deep residual network can be viewed as a stack of residual units, or small neural networks containing a bypass connection.

Object detection using convolutional networks

- R-CNN (Regions with CNN features) fast RNN, faster RNN
- SSD (Single Shot Multibox Detector)
- YOLO (You Only Look Once)

Region convolutional neural network - R-CNN

- Region proposal generating regions where the object can be located,
- Feature selection module feature extraction from each region,
- Classifier classifies features into one of the known classes using a classifier.

Long training (approx. 2000 region suggestions for each image). Searching for regions is not a learning algorithm - it can lead to wrong propositions and this error will not be corrected.

Architecture of the Fast R-CNN

- Single model to learn region and classification proposals at once,
- Uses a pre-trained network to select features.
- At the end of the network is a Region of Interest Pooling Layer (RoI Pooling) that extracts the features for each proposed region.
- Then this data is interpreted in a layer fully connected to two outputs
 - classifier and **bounding box**

Architecture of the Faster R-CNN model

- The main innovation of Faster R-CNN is the application of the Convolutional Network for Region Proposal Network (RPN),
- The RPN process begins with passing the entire image through the

convolutional layers.

- By using RPN instead of selective search, we create a fully learning network that can also share parameters between the convolutional layers in the RPN and the Fast R-CNN detector.
- In Faster R-CNN, the ROI Pooling layer takes the region suggestions not from the selective search results but from the RPN process

Single Shot Multibox Detector SSD 2016

- SSD is an object detection method based on the use of a single deep network,
- At the time of prediction, the network generates results for the presence of each category in the default areas
- The network combines predictions from multiple feature maps with different resolutions,
 - SSD has two backbone components and SSD layers Extra Feature Layers.

- The base model is usually a pre-trained image classification network,
- SSD does not use the panes moving across the image, it splits the image into a grid and each the cell in this mesh is responsible for detecting the objects
- If no object is detected, this cell becomes a background class cell.
- Tools such as the anchor box and receptive field are used, to easily detect many objects within one cell.

YOLO - You Only Look Once 2016

- https://storage.googleapis.com/openimages/web/index.html
- It uses features trained by deep neural networks in the Darknet framework.
- It is a fully convolutional network (FCN) it is indifferent to the size of the input image.

YOLO network performance

- The image is split into cells that form the $S \times S$ grid.
- The input to the YOLO network is the image, and the output is the coordinates x, y of the center of the area containing the object the bounding box (it bounding box) in this image, its width, height, and the probability for the class detected,
- If the center of an object falls within a grid cell, that cell becomes responsible for detecting that object.
- Each cell detects the B envelope and their confidence scores.
- Confidence intervals define the uncertainty of the detection of the object and the envelope,
- Once you have all possible boundaries, get rid of those that have a low probability of owning an object.

• For this, the non-maximum suppression algorithm is used to calculate the Jaccard index:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

YOLOv1

- The network has 24 convolution layers and 2 fully interconnected layers, 2 reducing layers (max-pooling).
- It is a convolutional network that simultaneously predicts multiple areas and class probabilities for those areas.
- YOLOv1 produces poorer results when the image contains many small objects, such as a flock of birds

YOLOv2 - YOLO9000 2016

- In the second version of the algorithm, YOLO detection is based on the also improved, new *Darknet19* model,
- Has fewer convolution layers and 5 reducing layers and a softmax layer,
- Envelope base anchors have been introduced: in YOLOv2 the envelopes have been introduced, as e.g. in Faster R-CNN the number of envelopes per image increased from 98 to over a thousand,
- The detection of small objects has been improved it creates detections on the map of features with dimensions of 13×13 ,
- Training with images at different scales.

- YOLOv3 is based on the improved *Darknet53* architecture it has 53 convolutional layers,
- Predictions at different scales the third version network predicts envelopes at three different scales of the image,