Energy Equivalents

	J	kg	III -	HZ
1 J	(1 J) = 1 J	$(1 \text{ J})/c^2 =$ $1.112650056 \times 10^{-17} \text{ kg}$	$\begin{array}{l} (1 \text{ J})/hc = \\ 5.03411762(39)\times 10^{24} \text{ m}^{-1} \end{array}$	$(1 \text{ J})/h =$ $1.509 190 50(12) \times 10^{33} \text{ Hz}$
1 kg	$\begin{array}{l} (1~{\rm kg})c^2 = \\ 8.987551787\times 10^{16}~{\rm J} \end{array}$	$\begin{array}{l} (1 \text{ kg}) = \\ 1 \text{ kg} \end{array}$	$\begin{array}{l} (1~{\rm kg})c/h = \\ 4.52443929(35)\times 10^{41}~{\rm m}^{-1} \end{array}$	$\begin{array}{l} (1~{\rm kg})c^2/h = \\ 1.35639277(11)\times 10^{50}~{\rm Hz} \end{array}$
1 m ⁻¹	$(1 \text{ m}^{-1})hc = 1.98644544(16) \times 10^{-25} \text{ J}$	$\begin{array}{l} (1~{\rm m}^{-1})h/c = \\ 2.210~218~63(17)\times 10^{-42}~{\rm kg} \end{array}$	$(1 \text{ m}^{-1}) = 1 \text{ m}^{-1}$	$(1 \text{ m}^{-1})c = 299792458 \text{ Hz}$
1 Hz	$(1 \text{ Hz})h = 6.62606876(52) \times 10^{-34} \text{ J}$	$\begin{array}{l} (1~{\rm Hz})h/c^2 = \\ 7.37249578(58)\times 10^{-51}~{\rm kg} \end{array}$	$(1 \text{ Hz})/c = 3.335 640 952 \times 10^{-9} \text{ m}^{-1}$	(1 Hz) = 1 Hz
1 K	$(1 \text{ K})k = 1.3806503(24) \times 10^{-23} \text{ J}$	$\begin{array}{l} (1~{\rm K})k/c^2 = \\ 1.5361807(27)\times 10^{-40}~{\rm kg} \end{array}$	$(1 \text{ K})k/hc = 69.503 56(12) \text{ m}^{-1}$	$(1 \text{ K})k/h = 2.0836644(36) \times 10^{10} \text{ Hz}$
1 eV	$(1 \text{ eV}) = 1.602176462(63) \times 10^{-19} \text{ J}$	$\begin{array}{l} (1\mathrm{eV})/c^2 = \\ 1.782661731(70)\times 10^{-36}\ \mathrm{kg} \end{array}$	$\begin{array}{l} (1~{\rm eV})/hc = \\ 8.06554477(32)\times 10^5~{\rm m}^{-1} \end{array}$	$(1 \text{ eV})/h = 2.417989491(95) \times 10^{14} \text{ Hz}$
1 u	$(1 \text{ u})c^2 = 1.49241778(12) \times 10^{-10} \text{ J}$	$(1 \text{ u}) = 1.66053873(13) \times 10^{-27} \text{ kg}$	$\begin{array}{l} (1~{\rm u})c/h = \\ 7.513006658(57)\times 10^{14}~{\rm m}^{-1} \end{array}$	$\begin{array}{l} (1~{\rm u})c^2/h = \\ 2.252342733(17)\times 10^{23}~{\rm Hz} \end{array}$
$1E_{ m h}$	$(1 E_{\rm h}) = 4.35974381(34) \times 10^{-18} \rm J$	$(1 E_{\rm h})/c^2 = 4.850 869 19(38) \times 10^{-35} {\rm kg}$	$(1 E_{\rm h})/hc = 2.194746313710(17) \times 10^7 {\rm m}^{-1}$	$(1 E_{\rm h})/h = 6.579 683 920 735 (50) \times 10^{15} {\rm Hz}$

Derived from the relations $E=mc^2=hc/\lambda=h\nu=kT$, and based on the 1998 CODATA adjustment of the values of the constants; $1 \text{ eV}=(e/\text{C}) \text{ J}, 1 \text{ u}=m_\text{u}=\frac{1}{12}m(^{12}\text{C})=10^{-3} \text{ kg mol}^{-1}/N_\text{A}$, and $E_\text{h}=2R_\infty hc=\alpha^2 m_\text{e}c^2$ is the Hartree energy (hartree).

Energy Equivalents

	J	kg	m^{-1}	Hz
1 J	$(1 \text{ J})/k = 7.242964(13) \times 10^{22} \text{ K}$	$(1 \text{ J}) = 6.24150974(24) \times 10^{18} \text{ eV}$	$(1 \text{ J})/c^2 = 6.700 536 62(53) \times 10^9 \text{ u}$	(1 J) = $2.29371276(18) \times 10^{17} E_{\rm h}$
1 kg	$(1 \text{ kg})c^2/k = 6.509 651(11) \times 10^{39} \text{ K}$	$(1 \text{ kg})c^2 = 5.60958921(22) \times 10^{35} \text{ eV}$	$(1 \text{ kg}) = 6.02214199(47) \times 10^{26} \text{ u}$	$(1 \text{ kg})c^2 = 2.06148622(16) \times 10^{34} E_h$
$1~\mathrm{m}^{-1}$	$\begin{array}{l} (1~{\rm m}^{-1})hc/k = \\ 1.4387752(25)\times 10^{-2}~{\rm K} \end{array}$	$\begin{array}{l} (1~{\rm m}^{-1})hc = \\ 1.239841857(49)\times 10^{-6}~{\rm eV} \end{array}$	$(1 \text{ m}^{-1})h/c = 1.331025042(10) \times 10^{-15} \text{ u}$	$\begin{array}{l} (1~{\rm m}^{-1})hc = \\ 4.556~335~252~750(35)\times 10^{-8}~E_{\rm h} \end{array}$
1 Hz	$\begin{array}{l} (1~{\rm Hz})h/k = \\ 4.799~2374(84)\times 10^{-11}~{\rm K} \end{array}$	$(1 \text{ Hz})h = 4.13566727(16) \times 10^{-15} \text{ eV}$	$(1 \text{ Hz})h/c^2 = 4.439821637(34) \times 10^{-24} \text{ u}$	$(1 \text{ Hz})h = 1.519829846003(12) \times 10^{-16} E_{\text{h}}$
1 K	(1 K) = 1 K	$(1 \text{ K})k = 8.617342(15) \times 10^{-5} \text{ eV}$	$(1 \text{ K})k/c^2 =$ $9.251098(16) \times 10^{-14} \text{ u}$	$(1 \text{ K})k = 3.166 8153(55) \times 10^{-6} E_{\text{h}}$
1 eV	$(1 \text{ eV})/k = 1.160 4506(20) \times 10^4 \text{ K}$	(1 eV) = $1 eV$	$(1 \text{ eV})/c^2 = 1.073544206(43) \times 10^{-9} \text{ u}$	$(1 \text{ eV}) = 3.67493260(14) \times 10^{-2} E_{\text{h}}$
1 u	$\begin{array}{l} (1~{\rm u})c^2/k = \\ 1.0809528(19)\times 10^{13}~{\rm K} \end{array}$	$\begin{array}{l} (1~{\rm u})c^2 = \\ 931.494013(37)\times 10^6~{\rm eV} \end{array}$	(1 u) = 1 u	$(1 \text{ u})c^2 = 3.423177709(26) \times 10^7 E_h$
$1 E_{\rm h}$	$(1 E_{\rm h})/k =$ 3.1577465(55) × 10 ⁵ K	$(1 E_{\rm h}) = 27.2113834(11) \text{eV}$	$(1 E_h)/c^2 =$ 2.921 262 304(22) × 10 ⁻⁸ u	$(1 E_{\rm h}) = 1 E_{\rm h}$

Derived from the relations $E=mc^2=hc/\lambda=h\nu=kT$, and based on the 1998 CODATA adjustment of the values of the constants; $1~{\rm eV}=(e/{\rm C})~{\rm J}, 1~{\rm u}=m_{\rm u}=\frac{1}{12}m(^{12}{\rm C})=10^{-3}~{\rm kg~mol}^{-1}/N_{\rm A}$, and $E_{\rm h}=2R_{\infty}hc=\alpha^2m_{\rm e}c^2$ is the Hartree energy (hartree).