

Congratulations! You passed!

TO PASS 75% or higher

Keep Learning

GRADE 100%

Practice quiz on Types of Functions

TOTAL POINTS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A \rightarrow B$?

1 / 1 point

- $\bigcap f(a) = 4a$, for each $a \in A$
- $\bigcap f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$
- $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
- 0 f(1) = 5, f(2) = 8, and <math>f(10) = 40.

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1) = 5 \notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1 / 1 point

Suppose that $T:A \to Y$ is the function which gives T(a) = + if person a tests positive and T(a) = - if

Suppose that D:A o Z is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person \boldsymbol{a} if we have a false positive?

$$T(a) = +$$
 and $D(a) = H$

$$\bigcap T(a) = - \text{ and } D(a) = S$$

$$\bigcap T(a) = + \text{ and } D(a) = S$$

$$\bigcap T(a) = - \text{ and } D(a) = H$$

✓ Correct

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3. Consider the function $g:\mathbb{R} o\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the 1/1 point graph of g?

- $\bigcirc (-1,0)$
- $\bigcirc (0,-1)$
- \bigcirc (1,0)
- (2,-1)

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is \emph{not} on the graph of g.

4. Let the point A=(2,4). Which of the following graphs does *not* contain the point A?

 \bigcirc The graph of g(x) = x + 2

	lacktriangle The graph of $h(x)=x-1$	
	$igcirc$ The graph of $s(x)=x^2$	
	igcirc The graph of $f(x)=2x$	
	\checkmark Correct The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1\neq 4$, so the point $(2,4)$ is not on the graph of h .	
5.	Suppose that $h(x)=-3x+4$. Which of the following statements is true?	1/1 point
	h is neither a strictly increasing function nor a strictly decreasing function.	
	All statements are correct	
	igcirc h is a strictly increasing function	
	lacktriangledown is a strictly decreasing function	
	\checkmark Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true!	
6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$ Which of the following is a possible value for $f(3.7)$?	1 / 1 point
	● 17	
	O 14.7	
	\bigcirc -3	
	○ 3	
	\checkmark Correct	
	Since $f(3)=15$ is given and $3<3.7$, it must be that $15< f\big(3.7\big)$, and this answer satisfies that.	