21. Übungsblatt

Aufgabe 1

Aufgabe 3

a) Da die Leitung einen Widerstand besitzt, verrichtet der Strom an diesem Arbeit durch Aufheizen des Kabels.

$$P = U \cdot I = I^2 \cdot R$$

Dieser ist proportional zum Quadrat der Stromstärke I, d.h. diese sollte minimiert werden. Dafür muss die Spannung U angehoben werden. b)

$$P = I^2 \cdot R = 500^2 \ A^2 \cdot 0.2 \ k\Omega = 5 \cdot 10^4 \ W$$

Aufgabe 5

a)

1. Mit Gaußschem Satz

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \Rightarrow \int_V \vec{\nabla} \cdot \vec{E} \ dV = \int_V \frac{\rho}{\epsilon_0} \ dV = \frac{q_{\rm enq}}{\epsilon_0} \Rightarrow \oint_{\partial_V} \vec{E} \ d\vec{A} = \frac{q_{\rm enq}}{\epsilon_0}$$

2. Ebenfalls mit Gaußschem Satz

$$\vec{\nabla} \cdot \vec{B} = 0 \Rightarrow \int_{V} \vec{\nabla} \cdot \vec{B} \ dV = 0 \Rightarrow \oint_{\partial V} \vec{B} \ d\vec{A} = 0$$

3. Mit Satz von Stokes

$$\vec{\nabla} \times \vec{E} = -\partial_t \vec{B} \Rightarrow \int_A \vec{\nabla} \times \vec{E} \ d\vec{A} = \int_A -\partial_t \vec{B} \ d\vec{A} \Rightarrow \oint_{\partial_A} \vec{E} \ d\vec{r} = -\partial_t \int_A \vec{B} \ d\vec{A} = -\partial_t \phi$$

4.