Neural Networks Part 2 Stanford CS231N

Name: Eli Andrew

• Activation Functions

- Sigmoid

- $* \sigma(x) = \frac{1}{1+e^{-x}}$
- * Saturated neurons (output close to 0 or 1) "kill" the gradients.
- * Sigmoid outputs are not zero-centered. If input to neuron is always all positive then gradient is either all positive or all negative. This leads to bad gradient updates.
- * This is why you want zero-mean data
- * e^{-x} is expensive to compute (compared to other options)

- Tanh

- * Attempts to solve the issue of being zero-centered.
- * Still kills the gradients when saturated.

- ReLU

- * Computes f(x) = max(0, x)
- * Neuron does not saturate in positive region (doesn't kill gradients).
- * Very computationally efficient
- * Converges must faster than other options.
- * Does not have zero-centered data
- * Kills gradient when less than 0.
- * Dead ReLU problem happens when neuron gets knocked off "data-manifold" and then can no longer update.
- * Initialize the ReLU units with slightly positive bias (0.01) to try and avoid the dead ReLU issue.

Leaky-ReLU

- * Computes f(x) = max(0.01x, x)
- * Does not die like regular ReLU

• Data Pre-processing

- Zero-center data (subtract mean from every feature)
- Normalize data (not as common for images)

• Weight Initialization

- Zero weight initialization doesn't break symmetry so all neurons update the same.