Vishay Siliconix

Dual N-Channel 2.5-V (G-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$			
20	0.030 @ V _{GS} = 4.5 V	6		
	0.040 @ V _{GS} = 2.5 V	5		

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED)						
Parameter		Symbol	10 secs	Steady State	Unit	
Drain-Source Voltage		V _{DS}	20		V	
Gate-Source Voltage		V _{GS}	±12		V	
Continuous Desig Courset /T 45000\2	T _A = 25°C	- I _D	6	4.8		
Continuous Drain Current (T _J = 150°C) ^a	T _A = 70°C		5	3.8		
Pulsed Drain Current		I _{DM}	30		А	
Continuous Source Current (Diode Conduction) ^a		I _S	1.7	1.0		
Mayimum Dawar Dissinations	T _A = 25°C	Б	2.0	1.25	W	
Maximum Power Dissipation ^a	T _A = 70°C	- P _D	1.3	0.8		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
	t ≤ 10 sec	R _{thJA}	50	62.5	°C/W	
Maximum Junction-to-Ambient ^a	Steady State		80	100		
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	30	40		

Notes a. Surface Mounted on 1" x 1" FR4 Board.

Vishay Siliconix

New Product

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)							
Parameter	Symbol	ool Test Condition		Тур	Max	Unit	
Static							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.6			V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			±100	nA	
7 0 1 1/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I _{DSS}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ	
Zero Gate Voltage Drain Current		$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			25		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	20			Α	
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 4.5 \ V, I_D = 6 A$		0.023	0.030	Ω	
Diam-Source On-State Resistance		$V_{GS} = 2.5 \text{ V}, I_D = 5 \text{ A}$		0.030	0.040	52	
Forward Transconductancea	9 _{fs}	V _{DS} = 15 V, I _D = 6 A		22		S	
Diode Forward Voltage ^a	V _{SD}	I _S = 1.7 A, V _{GS} = 0 V		0.7	1.2	V	
Dynamic ^b				•		•	
Total Gate Charge	Qg			13	20		
Gate-Source Charge	Q _{gs}	V_{DS} = 15 V, V_{GS} = 4.5 V, I_D = 6 A		3		nC	
Gate-Drain Charge	Q _{gd}			3.3		1	
Turn-On Delay Time	t _{d(on)}			22	35	ns	
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_{I} = 15 \Omega$		40	60		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_G = 6 \Omega$		50	75		
Fall Time	t _f			20	30		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 1.7 A, di/dt = 100 A/μs		40	80		

Notes

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing.

New Product

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

New Product

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Normalized Thermal Transient Impedance, Junction-to-Ambient

