Parametric Methods

Probability and Inference

- Result of tossing a coin is Head/1 or Tail/0
- Random variable $X \in \{1,0\}$ Bernoulli: $P(X=1) = p_0^X (1-p_0)^{1-X}$
- Training set: $\mathcal{X} = \{X_t\}_{t=1}^N$ Estimation: $p_0 = \frac{\# \ of \ heads}{\# \ of \ toesses} = \frac{\sum_{t=1}^N X_t}{N}$
- The rule for prediction of the next toss: Heads if $p_o > \frac{1}{2}$, Tails otherwise

Maximum likelihood estimate of p₀

Define log-likelihood function as

$$\mathcal{L}(p_0|X_1, X_2, ..., X_N) = log P(X_1, X_2, ..., X_N) = \sum_{t=1}^{N} log P(X_t)$$

$$= \sum_{t=1}^{N} X_t log p_0 + (1 - X_t) log (1 - p_0)$$

The maximum likelihood estimate of p₀ can be obtained by solving

$$p_0 = \operatorname*{argmax} \mathcal{L}(p_0 | X_1, X_2, ..., X_N)$$

$$p_0$$

$$\frac{\partial \mathcal{L}(p_0|X_1, X_2, ..., X_N)}{\partial p_0} = 0$$

$$\Rightarrow \frac{\sum_{t=1}^N X_t}{p_0} - \frac{N - \sum_{t=1}^N X_t}{1 - p_0} = 0$$

$$\Rightarrow p_0 = \frac{\sum_{t=1}^N X_t}{N}$$

Parametric Estimation

- $\mathcal{X} = \{X_t\}_{t=1}^N$ where $X_t \sim P(X)$
- Parametric estimation:

Assume a form for $P(X|\theta)$ and estimate θ by its sufficient statistics T(X) e.g., Assume $X_t \sim \mathcal{N}(\mu, \sigma^2)$ and $\theta = \{\mu, \sigma^2\}$

If a statistic T(X) is a **sufficient statistic of underlying parameter** θ , we have $P(X = \alpha | \theta, T(X)) = P(X = \alpha | T(X))$.

Well-Known Probability Distributions

Maximum Likelihood Estimation

• Likelihood of θ given the sample $\mathcal{X} = \{X_t\}_{t=1}^N$ $\ell(\theta \mid \mathcal{X}) = P(\mathcal{X} \mid \theta) = \prod_t P(X_t \mid \theta)$ because X_t are i.i.d.

Log-likelihood function

$$\mathcal{L}(\theta \mid \mathcal{X}) = log\ell(\theta \mid \mathcal{X}) = \sum_{t} logP(X_{t} \mid \theta)$$

Maximum likelihood estimator (MLE)

$$\theta^* = \operatorname*{argmax} \mathcal{L}(\theta \mid X)$$

Bernoulli/Multinomial Density

- **Bernoulli**: Two states, failure/success, $X_t \in \{0,1\}$
 - $P(X) = p_0^X (1 p_0)^{1-X}$
 - $\mathcal{L}(p_0|\mathcal{X}) = \log \prod_t p_0^{X_t} (1 p_0)^{1 X_t}$
 - MLE: $p_0 = \frac{\sum_t X_t}{N}$
- Multinomial: $X_t = [x_{1;t}, ..., x_{K;t}], K>2, x_{i;t} \in \{0,1\}$
 - $P(x_1, \dots, x_K) = \prod_i p_i^{x_i}$
 - $\mathcal{L}(p_1, ..., p_K | \mathcal{X}) = log \prod_t \prod_i p_i^{x_{i;t}}$
 - MLE: $p_i = \frac{\sum_t x_{i;t}}{N}$

Gaussian (Normal) Distribution

•
$$P(x) \sim \mathcal{N}(\mu, \sigma^2)$$

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• MLE for μ and σ^2 :

$$m = \frac{\sum_t x_t}{N}$$
 (sample mean)

$$s^2 = \frac{\sum_t (x_t - m)^2}{N}$$
 (sample covariance)

Bayes' Estimator

- ☐ Use prior information about the possible value range for the parameter
 - Useful for a small number of training examples
 - Treat θ as a random variable with prior $P(\theta)$
 - Bayes' rule: $P(\theta|\mathcal{X}) = P(\mathcal{X}|\theta)P(\theta)/P(\mathcal{X}) = P(\mathcal{X}|\theta)P(\theta)/\int P(\mathcal{X}|\theta')P(\theta')d\theta'$

• Full:
$$P(x|\mathcal{X}) = \int P(x|\theta,\mathcal{X})P(\theta|\mathcal{X})d\theta = \int P(x|\theta)P(\theta|\mathcal{X})d\theta$$

- Bayes': $\theta_{Bayes} = \int \theta P(\theta|\mathcal{X}) d\theta$
- \triangleright Difficult to evaluate when $P(\theta|\mathcal{X})$ does not have a simple form
- Maximum a Posteriori (MAP): $\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} P(\theta | \mathcal{X})$
- \triangleright Assume that $P(\theta|\mathcal{X})$ has a narrow peak around its mode
- Maximum Likelihood (ML): $\theta_{ML} = \underset{\theta}{\operatorname{argmax}} P(\mathcal{X}|\theta)$
- \triangleright Have no prior information about θ (i.e., $P(\theta)$ is flat)

An Example of Bayes' Estimator

- $x_t \sim \mathcal{N}(\theta, \sigma^2)$ and $\theta \sim \mathcal{N}(\mu_0, \sigma_0^2)$, where σ^2 , μ_0, σ_0^2 are known
- $\theta_{ML} = m$ (sample mean)

$$\bullet \underbrace{\theta_{MAP} = \theta_{Bayes} = E[\theta | \mathcal{X}]}_{\text{Because } P(\theta | \mathcal{X}) \text{ is normal}} = \underbrace{\frac{\frac{N}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}}}_{\text{Sample mean}} \times m + \underbrace{\frac{\frac{1}{\sigma_0^2}}{\frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}}}_{\text{Sample mean}} \times \mu_0 \xrightarrow[N \to \infty]{} m$$

Classification by Likelihood-Based Approaches (Generative Models)

• Estimate $P(x|C_i)$ and $P(C_i)$ from training samples.

• Assign
$$x$$
 to Class i if $P(x|C_i)P(C_i) > P(x|C_j)P(C_j), j \neq i$

Discriminant function:

$$g_i(x) = P(x|C_i)P(C_i)$$
or
$$g_i(x) = \log(P(x|C_i)) + \log(P(C_i))$$

Classification by Gaussian Generative Models

• If $P(x|C_i)$ are Gaussian distributions:

$$P(x|C_i) = \frac{1}{\sqrt{2\pi}\sigma_i} exp\left(-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right)$$

discriminant functions are

$$g_i(x) = -\frac{1}{2}\log(2\pi) - \log(\sigma_i) - \frac{(x - \mu_i)^2}{2\sigma_i^2} + \log P(C_i)$$

• Given the sample: $\mathcal{X}=\{x_t, \boldsymbol{r}_t\}_{t=1}^N, \boldsymbol{r}_t=[r_{1;t}, \dots, r_{K;t}]$ $x_t \in \mathcal{R}, r_{i;t}=\begin{cases} 1 & if x_t \in \mathcal{C}_i \\ 0 & if x_t \in \mathcal{C}_j, j \neq i \end{cases}$

ML estimates are

$$\widehat{P}(C_i) = \frac{\sum_t r_{i;t}}{N}, m_i = \frac{\sum_t r_{i;t} x_t}{\sum_t r_{i;t}}, s_i^2 = \frac{\sum_t r_{i;t} (x_t - m_i)^2}{\sum_t r_{i;t}}$$

Discriminant functions are

$$g_i(x) = -\frac{1}{2}\log(2\pi) - \log(s_i) - \frac{(x - m_i)^2}{2s_i^2} + \log\widehat{P}(C_i)$$

or

$$g_i(x) = \frac{1}{\sqrt{2\pi}s_i} exp\left(-\frac{(x-m_i)^2}{2s_i^2}\right) \times \hat{P}(C_i)$$

Learning

Regression

$$r = f(x) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Estimator $g(x|\theta)$
- $P(r|x) \sim \mathcal{N}(g(x|\theta), \sigma^2)$

• Define the log-likelihood function as $\mathcal{L}(\theta|\mathcal{X}) = \sum_t \log(P(r_t|x_t))$

$$\mathcal{L}(\theta|\mathcal{X}) = \log \prod_t P(x_t, r_t) = \log \prod_t P(r_t|x_t) P(x_t) = \log \prod_t P(r_t|x_t) + \log \prod_t P(x_t)$$
 ignore

Regression: From Log-Likelihood to Error

Estimating θ by maximization of

$$\mathcal{L}(\theta|\mathcal{X}) = \log \prod_{t} \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{\left(r_{t} - g(x_{t}|\theta)\right)^{2}}{2\sigma^{2}}\right)$$
$$= -N\log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^{2}} \sum_{t} \left(r_{t} - g(x_{t}|\theta)\right)^{2}$$

is equivalent to estimating θ by minimization of

$$E[\theta|\mathcal{X}] = \frac{1}{2} \sum_{t} (r_t - g(x_t|\theta))^2$$

 $\theta^* = \underset{\theta}{\operatorname{argmin}} E[\theta|\mathcal{X}]$ are called least squares estimates

Linear Regression

•
$$g(x_t|w_1, w_0) = w_1x_t + w_0$$

$$E[\theta|\mathcal{X}] = \frac{1}{2}\sum_t (r_t - g(x_t|\theta))^2$$

$$\frac{\partial E[\theta|\mathcal{X}]}{\partial w_1} = 0 \Rightarrow \sum_t x_t (r_t - w_1 x_t - w_0) = 0$$

$$\frac{\partial E[\theta|\mathcal{X}]}{\partial w_0} = 0 \Rightarrow \sum_t (r_t - w_1 x_t - w_0) = 0$$

$$\Rightarrow \begin{bmatrix} \sum_t x_t^2 & \sum_t x_t \\ \sum_t x_t & N \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} \sum_t x_t r_t \\ \sum_t r_t \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} \sum_t x_t^2 & \sum_t x_t \\ \sum_t x_t & N \end{bmatrix}^{-1} \begin{bmatrix} \sum_t x_t r_t \\ \sum_t r_t \end{bmatrix}$$

Polynomial Regression

•
$$g(x_t|w_k, ..., w_1, w_0) = \sum_{i=0}^k w_i x_t^i$$

$$\begin{bmatrix} x_1^k & \cdots & x_1 & 1 \\ x_2^k & \cdots & x_2 & 1 \\ \vdots & & \vdots & \vdots \\ x_N^k & \cdots & x_N & 1 \end{bmatrix} \begin{bmatrix} w_k \\ \vdots \\ w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{bmatrix}$$

$$\Rightarrow \mathbf{D}\mathbf{w} = \mathbf{r}$$

$$\Rightarrow \mathbf{w} = (\mathbf{D}^T \mathbf{D})^{-1} \mathbf{D}^T \mathbf{r}$$

Error Measures

• Square Error: $E[\theta|\mathcal{X}] = \frac{1}{2} \sum_{t} (r_t - g(x_t|\theta))^2$

- Relative Square Error: $E[\theta|\mathcal{X}] = \frac{\sum_t (r_t g(x_t|\theta))^2}{\sum_t (r_t \bar{r})^2}$, where $\bar{r} = \frac{1}{N} \sum_t r_t$
- Absolute Error: $E[\theta|\mathcal{X}] = \sum_{t} |r_t g(x_t|\theta)|$

• ϵ -sensitive Error: $E[\theta|\mathcal{X}] = \sum_t 1(|r_t - g(x_t|\theta)| > \epsilon)(|r_t - g(x_t|\theta)| - \epsilon)$

Bias and Variance

- **Bias**: The difference between the expectation of the approximating function and the target function.
- Variance: The average squared error between the output on a given particular training set and the average of all training patterns used.

Estimating Bias and Variance

• A training set $\mathcal{X} = \{x_t, r_t\}_{t=1}^N$ is partitioned in to M sample sets \mathcal{X}_i , i = 1, ..., M, to fit $g_i(x)$, i = 1, ..., M, respectively

 $\Box f(x)$: the target function

•
$$\bar{g}(x) = \frac{1}{M} \sum_{i} g(x)$$

•
$$Bias^2(g) = \frac{1}{N} \sum_t (\bar{g}(x_t) - f(x_t))^2$$

•
$$Variance(g) = \frac{1}{NM} \sum_{t} \sum_{i} (g_i(x_t) - \bar{g}(x_t))^2$$

Example:

 $g_i(x) = 2$ has no variance and high bias

 $g_i(x)$ = the average of the r in the ith sample set has lower bias with variance

M=5 N=60

M=20 N=240

Bias/Variance Dilemma

As the model complexity increases, bias decreases and variance increases

The variance and bias are dependent.

➤ Increase the number of training examples.

$$E\left[\left(r-g(x)\right)^{2}\right]$$

$$=E\left[\left(r-f(x)+f(x)-\bar{g}(x)+\bar{g}(x)-g(x)\right)^{2}\right]$$

$$=E\left[\left(r-f(x)\right)^{2}\right]+E\left[\left(f(x)-\bar{g}(x)\right)^{2}\right]+E\left[\left(\bar{g}(x)-g(x)\right)^{2}\right]$$

$$noise: \sigma^{2} \qquad bias^{2} \qquad variance$$

Model Selection Procedures

- Cross-validation: Measure generalization accuracy by testing on the example in the validation set (use this method if there is a large enough validation dataset)
- Regularization: Penalize complex models

$$E = error \ on \ data + \lambda \times model \ complexity \downarrow$$

- Criteria for model selection
 - Akaike's information criterion (AIC),

$$AIC = k - \log(\mathcal{L}), \downarrow$$

Bayesian information criterion (BIC)

$$BIC = klogN - 2log(\mathcal{L}), \downarrow$$

where \mathcal{L} is the largest likelihood of the model, k is the number of parameters in the model and N is the number of training examples

- Structural risk minimization (SRM)
- Minimum description length (MDL): Kolmogorov complexity, shortest description of data
 Prefer simpler models

Bayesian Model Selection

• Bayesian model selection is used when there is prior knowledge on models, P(Model)

$$P(Model|Data) = \frac{P(Data|Model)P(Model)}{P(Data)}$$
 constant
$$\Rightarrow \log(P(Model|Data)) = \log(P(Data|Model)) + \log(P(Model)) - \log(P(Data))$$
 if simpler models are favored

- Regularization≈the Bayesian approach, when simpler models are favored
- Average over a number of models with high posterior
 - Bayesian optimal classifier (most probable classification),
 - Voting, Ensembles (Chapter 17)

Regularization Example

Magnitudes may increase as polynomial order increases

Order	\boldsymbol{w}	$ w _{2}^{2}$
1	[0.105,-0.044]	0.114
2	[0.140,-0.033,-0.025]	0.156
3	[0.867,-1.072,0.406,-0.053]	1.438
4	[-0.387,1.565,-1.470,0.484,-0.056]	2.235

A smoother and flatter fit is desired

L2 regularization: $\|\mathbf{w}\|_2^2$

$$E[\boldsymbol{w}|\mathcal{X}] = \frac{1}{2} \sum_{t} (r_{t} - g(x_{t}\boldsymbol{w}|))^{2} + \lambda \sum_{i} w_{i}^{2}$$

Prior: $P(\mathbf{w}) \sim \mathcal{N}(0, 1/\lambda)$

L0 regularization: $\|\mathbf{w}\|_0^2$

L1 regularization: $\|\mathbf{w}\|_1^2$

Bayes Optimal Classifier

Bayes optimal classifier

$$\triangleright \operatorname{argmax} \sum_{h_i \in H} P(y|x, h_i) P(h_i|Data)$$

- Example,
- $\square P(h_1|Data) = 0.4, P(h_2|Data) = 0.25, P(h_3|Data) = 0.35$
 - h_1 is the MAP hypothesis.
- \square For an input x, suppose

$$P(y = +1|x, h_1) = 1, P(y = -1|x, h_2) = 1, P(y = -1|x, h_3) = 1,$$

where $y \in \{-1, +1\}$

- The MAP classification of x is +1
- The most probable classification of x is -1

•
$$\sum_{h_i \in H} P(+1|x, h_i) P(h_i|Data) = 0.4$$

$$\checkmark \sum_{h_i \in H} P(-1|x, h_i) P(h_i|Data) = 0.6$$