Quiz 2

Solution:

1) below is the designed binary tree for problem 1:

Therefore, the code of different characters are:

c₁: 1101, c₂:11001, c₃:11000, c₄:1001, c₅:101, c₆:0, c₇:111, c₈:1000

2) due to these constraints, we treat c_7c_1 and c_7c_2 as two new characters c_1' and c_2' , and their corresponding probability will be $f_1' = 0.06$ and $f_2' = 0.04$. Now we have 7 instead of 8 characters: c_1' , c_2' , c_3 , c_4 , c_5 , c_6 , c_8

Below is the designed binary tree. Therefore, the code of different characters are:

 c_1' : 1011, c_2' :10101, c_3 : 10100, c_4 : 1001, c_5 :11, c_6 :0, c_8 :1000

In 2), we simply ignore c_7 and only encode the remaining 7 symbols. In another word, this is equivalent to assigning a codeword of length 0 to symbol c_7 . Therefore, the frequency of c_7 is still 0.1, but its corresponding codeword length is 0. The remaining 7 symbols keep the same frequencies.

Now we compute the number of bits of N number of symbols.

1) we have 0.06N c_1 , 0.04N c_2 , 0.03N c_3 , 0.08N c_4 , 0.2N c_5 , 0.4N c_6 , 0.1N c_7 and 0.09N c_8 . Based on the bit number of different symbols, the total bit number M_I is calculated as:

$$M_1 = 4 * 0.06N + 5 * 0.04N + 5 * 0.03N + 4 * 0.08N + 3 * 0.2N + 1 * 0.4N + 3$$

* $0.1N + 4 * 0.09N = 2.57N$

2) Similarly, we compute the bit number M_2 of 2).

$$M_2 = 4 * 0.06N + 5 * 0.04N + 5 * 0.03N + 4 * 0.08N + 2 * 0.2N + 1 * 0.4N + 4$$

* $0.09N = 2.07N$

Obviously, M₂ is smaller than M₁