Rozważmy następującą, uproszczoną wersję gry w "wojnę". Talia składa się z 52 kart. Dobrze potasowane karty rozdajemy dwóm graczom, każdemu po 26 i układamy w dwie kupki. Gracze wykładają kolejno po jednej karcie z wierzchu swojej kupki i sprawdzają wysokość obu kart. Jeśli obie wyłożone karty są równej wysokości (dwa asy lub dwa króle itd.) to mówimy, że następuje wojna. Po sprawdzeniu, obie karty odkładamy na bok i nie biorą już one udziału w dalszej grze. Powtarzamy tę procedurę 26 razy; gra kończy się, gdy obaj gracze wyłożą wszystkie karty.

Oblicz wartość oczekiwaną liczby wojen.

- (A) $\frac{26}{17}$
- (B) $\frac{52}{17}$
- (C) 4
- (D) $\frac{52 \cdot 51 \cdot 50 \cdot 49}{4^4 \cdot 13 \cdot 12 \cdot 11 \cdot 10}$
- (E) $\frac{13}{52} + \frac{12}{51} + \frac{11}{50} + \dots + \frac{2}{41} + \frac{1}{40}$

Niech W_1, W_2, W_3 będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym o gęstości

$$f(w) = \begin{cases} \lambda e^{-\lambda w} & dla \ w \ge 0; \\ 0 & dla \ w < 0. \end{cases}$$

Oblicz medianę zmiennej losowej

$$\frac{W_1}{W_2 + W_3}.$$

- (A) $med = \frac{\lambda}{\lambda + 1}$
- (B) $med = \frac{\sqrt{2}}{2}$
- (C) $med = \sqrt{2} 1$
- (D) $med = \frac{2}{3}$
- (E) $med = \frac{1}{2}$

Załóżmy, że K oznacza liczbę sukcesów w n próbach Bernoulliego z nieznanym prawdopodobieństwem sukcesu θ , czyli

$$\Pr(K = k) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}.$$

Rozważmy estymator parametru θ postaci

$$\hat{\theta} = \frac{a+K}{b+n} \, .$$

Niech n = 16. Przypuśćmy, że dodatnie liczby a i b dobrane zostały tak, że funkcja ryzyka estymatora,

$$R(\theta) = E_{\theta}[(\hat{\theta} - \theta)^2]$$

jest funkcją stałą, czyli $R(\theta) = R$ dla każdej wartości parametru θ .

Jeśli stwierdzisz, że a i b można tak dobrać, podaj liczbę R.

(A)
$$R = \frac{1}{64}$$

(B)
$$R = \frac{1}{16}$$

(C)
$$R = \frac{1}{100}$$

(D) nie istnieją takie liczby a i b dla których ryzyko jest stałe

(E)
$$R = \frac{1}{4}$$

Wiemy, że zmienne losowe $X_1, X_2, ..., X_m, ..., X_n$ są niezależne i mają jednakowy rozkład prawdopodobieństwa. Zakładamy, że 1 < m < n i znamy $Var(X_i) = \sigma^2$. Niech $S_m = X_1 + X_2 + ... + X_m$ i. $S_n = X_1 + X_2 + ... + X_m + ... + X_n$.

Oblicz $E \ Var(S_m \mid S_n)$.

(A)
$$E Var(S_m \mid S_n) = \frac{m}{n} \sigma^2$$

(B)
$$E Var(S_m \mid S_n) = \frac{m}{n+1}\sigma^2$$

(C) podane informacje nie wystarczają do obliczenia $E \ Var(S_m \mid S_n)$

(D)
$$E Var(S_m \mid S_n) = m \frac{n-1}{n} \sigma^2$$

(E)
$$E Var(S_m \mid S_n) = m \frac{n-m}{n} \sigma^2$$

Załóżmy, że X,Y są zmiennymi losowymi o łącznym rozkładzie normalnym, E(X)=E(Y)=0 , Var(X)=Var(Y)=1 i $Cov(X,Y)=\rho$.

Oblicz Var(XY).

(A)
$$Var(XY) = 1 + \rho^2$$

(B)
$$Var(XY) = 1 + 2\rho^2$$

(C)
$$Var(XY) = 1 - \rho^2$$

(D)
$$Var(XY) = 1$$

(E)
$$Var(XY) = (1 + \rho^2)^2$$

Załóżmy, że $X_1,...,X_4$ jest próbką z rozkładu normalnego $N(\mu,1)$, zaś $Y_1,...,Y_9$ jest próbką z rozkładu normalnego $N(\mu,2^2)$. Niech

$$\overline{X} = \frac{1}{4} \sum_{i=1}^{4} X_i$$
 będzie średnią z pierwszej próbki;

$$\overline{Y} = \frac{1}{9} \sum_{i=1}^{9} Y_i$$
 będzie średnią z drugiej próbki.

(Wariancja jest dla obu próbek znana, zaś μ jest nieznane).

Znajdź takie liczby r i d, żeby przedział

$$[r\overline{X} + (1-r)\overline{Y} - d, r\overline{X} + (1-r)\overline{Y} + d]$$

był przedziałem ufności dla μ na poziomie ufności $1-\alpha=0.95$ i przy tym długość tego przedziału (2d) była najmniejsza.

(A)
$$r = 0.47$$
, $d = 0.980$

(B)
$$r = 0.69$$
, $d = 1.022$

(C)
$$r = 0.50$$
, $d = 0.888$

(D)
$$r = 0.53$$
, $d = 1.960$

(E)
$$r = 0.64$$
, $d = 0.784$

Niech $X_1, X_2, ..., X_n$ będzie próbką z rozkładu prawdopodobieństwa Pareto o dystrybuancie

$$F_{\theta}(x) = \begin{cases} 1 - \frac{1}{x^{\theta}} & dla \ x \ge 1; \\ 0 & dla \ x < 1. \end{cases}$$

Przyjmując bayesowski punkt widzenia, przyjmujemy, że nieznany parametr θ jest zmienną losową o rozkładzie *a priori* wykładniczym, z gęstością

$$\pi(\theta) = \begin{cases} \lambda e^{-\lambda \theta} & dla \ \theta \ge 0; \\ 0 & dla \ \theta < 0. \end{cases}$$

Oblicz bayesowski estymator parametru θ , czyli wartość oczekiwaną a posteriori:

$$\hat{\theta} = E(\theta \mid X_1, ..., X_n).$$

(A)
$$\hat{\theta} = \frac{n+1}{\sum \ln X_i + \lambda}$$

(B)
$$\hat{\theta} = \frac{\sum \ln X_i + \lambda}{n}$$

(C)
$$\hat{\theta} = \frac{n+1}{\sum X_i + \lambda}$$

(D)
$$\hat{\theta} = \frac{n+\lambda}{1+\sum \ln X_i}$$

(E)
$$\hat{\theta} = \frac{n+\lambda}{\sum X_i + \lambda}$$

Niech $\chi_{0.1}^2(n)$ oznacza kwantyl rzędu 0.1 rozkładu chi-kwadrat z n stopniami swobody (liczbę, od której zmienna losowa o rozkładzie chi-kwadrat jest mniejsza z prawdopodobieństwem 0.1).

Oblicz

$$g = \lim_{n \to \infty} \frac{\chi_{0.1}^2(n) - n}{\sqrt{n}}.$$

(z dokładnością do 0.01).

- (A) g = 1.81
- (B) g = -1.28
- (C) g = -1.81
- (D) g = -2.56
- (E) granica nie istnieje

Niech $X_1,...,X_{10}$ będzie próbką z rozkładu prawdopodobieństwa o gęstości

$$f_{\theta}(x) = \begin{cases} & \theta \, x^{\theta - 1} \quad dla \ 0 < x < 1; \\ 0 \quad w \ przeciwnym \ przypadku. \end{cases}$$

Rozważmy test jednostajnie najmocniejszy hipotezy $H_0: \theta=1$ przeciwko alternatywie $H_1: \theta>1$ na poziomie istotności $\alpha=0.01$. Dla jakich wartości parametru θ ten test ma moc nie mniejszą, niż 0.99 ?

(Podaj wynik z dokładnością do 0.01).

- (A) $moc \ge 0.99$ wtedy i tylko wtedy, gdy $\theta \ge 4.55$
- (B) $moc \ge 0.99$ wtedy i tylko wtedy, gdy $\theta \ge 9.07$
- (C) nie istnieje takie $\theta > 1$, dla którego test ma moc ≥ 0.99
- (D) moc ≥ 0.99 wtedy i tylko wtedy, gdy $\theta \geq 4.61$
- (E) $moc \ge 0.99$ wtedy i tylko wtedy, gdy $\theta \ge 8.09$

Rozważmy następujący schemat urnowy:

W każdej z 10 urn znajdują się 2 kule, oznaczone liczbami:

- W urnie 1 znajdują się 2 kule oznaczone liczbą 1,
- w urnie 2 znajdują się 2 kule oznaczone liczbą 2,
- •
- w urnie 10 znajdują się 2 kule oznaczone liczbą 10.

Losujemy kulę z urny 1 i przekładamy ją do urny 2. Następnie (po wymieszaniu kul) losujemy kulę z urny 2 i przekładamy do urny 3, itd., kulę wylosowaną z urny 9 przekładamy do urny 10, wreszcie losujemy kulę z urny 10. Jakie jest prawdopodobieństwo, że ta ostatnia wylosowana kula ma numer większy, niż 6?

- (A) $\frac{7}{10}$
- (B) $\frac{80}{81}$
- (C) $\frac{7}{11}$
- (D) $\frac{241}{243}$
- (E) $\frac{77}{81}$

Egzamin dla Aktuariuszy z 12 października 2002 r.

Prawdopodobieństwo i Statystyka

Arkusz odpowiedzi*

Imię i nazwisko	KLUCZ	ODPOWIE	D Z I
-			
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	С	
3	С	
4	Е	
5	A	
6	Е	
7	A	
8	С	
9	A	
10	В	

11

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.