

http://ftmk.utem.edu.my

Chapter 2

Ts. Dr. Nazrulazhar Bahaman nazrulazhar@utem.edu.my

NETWORK TERMINOLOGY

BITS 2343 Computer Network

Objectives

- Describe the structure of a network, including the devices and media that are necessary for successful communications.
- Explain the function of protocols in network communications.
- Explain the advantages of using a layered model to describe network functionality.
- Describe the role of each layer in two recognized network models: The TCP/IP model and the OSI model.
- Describe the importance of addressing and naming schemes in network communications.

Platform for Communications

Elements, Components and Media

Elements of Communication

- Message source or sender
 - People or electronic devices that send a message to other individuals or devices
- Destination or receiver of the message
 - The message is received and interpreted

- Channel
 - Consists of the media that provides the pathway over which the message can travel from source to destination.

Communicating the Messages

- Segmentation
 - Divided the data into smaller, more manageable pieces called segments
 - Many different conversation can be interleaved on the network, giving each user a part or the bandwidth – multiplexing
 - Increases the reliability of network communication

Communicating the Messages

- Segmenting and multiplexing a message requires additional processes
 - · Addressing and labeling each segment at the source
 - · Reassembling the segments into its original message at the destination.

Components of the Network

- Networks use devices, media and services
- Hardware or physical elements
 - Devices and media
- Software that run on the networked devices
 - Services such as applications and processes that provide the functionality to direct and move the message through the network

End Devices

- An end device refer to a piece of equipment that is either the source or the destination of a message on a network
 - The interface between the human and the network
 - Also known as a host. Eg. -Computers, printers, VolP Phones
 - Each host is identified by an address
 - Role of end devices: Client, Server or Client & Server

Intermediary Devices

- · Provide connectivity and ensure data flows across the network
- Connect individual hosts to the network and can connect multiple individual networks to form an internetwork
- Use the destination host address to determine the path the messages take through the network
- Examples: Hubs, switches, access points, routers, modems, firewalls, etc

Intermediary Devices

• Processes

- · Regenerate and retransmit data signals
- Maintain information about what pathways or routes exist through the network and the internetwork
- Notify other devices of errors and communication failures
- Direct data along alternate routes when there is a link failure
- Classify and direct message according to QoS priorities
- Permit or deny the flow of data based on setting

Network Media

- · Modern networks primarily use three types of media
 - Copper
 - Glass or plastic fiber
 - Wireless
- The signal encoding method is different for each media type
 - Data is encoded onto electrical pulses on copper wires
 - Fiber optic transmission rely on pulses of light, within either infrared or visible light ranges
 - Pattern of electromagnetic waves represent the various bit values in wireless transmission

Network Media

• Examples of network media

BITS 2343 - Computer Networking

Network Media

- Selecting a network media
 - The distance the media can successfully carry a signal
 - The environment in which the media is installed
 - The amount of data and the speed at which it must be transmitted
 - The cost of the media and installation

LANs, WANs, and Internetworks

Network Infrastructures

- Network infrastructures can be vary in terms of"
 - The size of the area covered
 - The number of users connected
 - The number and type of services available
- Common types of network infrastructures
 - LANs
 - WANs
 - Internet

Local-Area Networks

- · A LAN usually spans a small geographical area
 - Provides services and applications to people within a common organization structure, such as a home, building or campus
 - Usually administered by single organization
 - · Security and access control policies are enforced on the network level

BITS 2343 - Computer Networking

Wide-Area Networks

- Telecommunication Service Provider (TSP) networks are used to interconnect an organization's LAN that are located geographically for apart
 - TSPs operate large regional networks that span long distance
 - The TSP networks are referred to as wide area networks
- WANs use specially designed network devices to makes the interconnections between LANs

BITS 2343 - Computer Networking

The Internet – A Network of Networks

- · a global mesh of interconnected networks
- Owned by large public and private organizations
- LANs and WANs maybe connected into internetworks
- The internet is an example of a public-accessible internetwork

Network Representations

Common Data Network Symbols

Rules That Govern Communications

- Protocol is a set of predetermined rules
- Implemented in software that is loaded on each host and network device
- A group of inter-related protocols that are necessary to perform a communication function is called a Protocol Suite

Format

- The format or structure of the message.
 - · How much data to put into each segment
 - Defines the sizes of each Protocol Data Unit (PDU)

BITS 2343 - Computer Networking

Process

• The process by which intermediary devices share information about the path to the destination

Error Messages

• The method to handle error and system messages between intermediary devices

Termination

- The process to setup and terminate communications or data transfers between hosts
 - Define the duration of inactivity or idle timeout to terminate a connection

Industry Standards

- A standard is a process that has been endorsed by the networking industry and officially approved by a standard organization
 - IEEE (Institute of Electrical and Electronic Engineers)
 - IETF (Internet Engineering Task Force)
- The use of standards in developing and implementing protocols ensures that products from different manufacturers can work together for efficient communication

Interaction of Protocols

- Application Protocol
- Transport Protocol
- Internetwork Protocol
- Network Access Protocol

BITS 2343 - Computer Networking

Interaction of Protocols

- Application Protocol
 - HTTP defined the content and formatting of the requests and responses exchanged between the client and the server
- Transport Protocol
 - TCP messages the individual conversations and divides to HTTP messages into smaller pieces called segments
 - TCP is also responsible for controlling the size and rate at which messages are exchanged.

Interaction of Protocols

Internetwork Protocol

• IP is responsible for taking the formatted segments from TCP, encapsulating them into packets, assigning the appropriate IP addresses and selecting the best path to destination

Network Access Protocols

- Describes the data link management and the physical transmission of the data on the media.
- Data-link management protocols encapsulates the packets into frames
- The physical media standards and protocols govern how the signals are sent over the media and how they are interpreted by the receiving end device

Technology-Independent Protocols

- Many diverse types of devices can communicate using the same sets of protocols
- This is because protocols specify network functionality, not the underlying technology to support this functionality

BITS 2343 - Computer Networking

TCP/IP model

OSI model

The Benefits of a Layered Model

- Assists in protocol design
 - Protocol that operate at a specific layer have defined information that they act upon and a defined interface to the layers above and below
- Fosters competition
 - Product from different vendors can work together
- Prevent technology or capabilities changes in one layer from affecting other layers above and below
- Provides a common language to describe networking functions and capabilities

Protocol and Reference Models

- A protocol model provides a model that closely matches the structure of a particular protocol suite
 - Transmission Control Protocol/Internet Protocol (TCP/IP) model
- A reference model provides a common reference for maintaining consistency within all types of network protocols and services
 - It is not intended to be an implementation specification or to provide a sufficient level of detail to define precisely the services of the network architecture
 - The primary purpose is to aid in clearer understanding of the functions and processes involved
 - Open System Interconnection (OSI) model

Protocol and Reference Models

- TCP/IP model
 - The functions that occur at layer of protocols within the TCP/IP suite
- OSI model
 - · Used for network design, operation specifications and troubleshooting

TCP/IP Model

- Defines four communication functions that protocols perform
- An open standard develop in the early 1970s
 - Defined in publicly-available document called Request For Comment (RFCs)

Communication Process

BITS 2343 - Computer Networking

Communication Process

- I. Creation of data at the application layer of the originating source end-device
- 2. Segmentation and encapsulation of data as it passes down the protocol stack in the source end-device
- 3. Generation of the data onto the media at the network access layer of the stack
- 4. Transportation of the data through the internetwork, which consists of media and any intermediary devices
- 5. Reception of the data at the network access layer of the destination end-device
- 6. Decapsulation and reassembly of the data as it passes up the stack in the destination device
- Passing this data to the destination application at the application layer of the destination end device

BITS 2343 - Computer Networking

Protocol Data Units and Encapsulation

- Protocol Data Unit (PDU) is the generic term for "data" at each level
- Encapsulation is the process of adding control information as it passes through the layered model

Sending Process

- The Application layer begins the process by delivering the data to the transport layer
- The Application data is broken into TCP segments and segment is given a label, called a header
 - The header contains information about which process running on the destination computer should receive the message
 - It also contains the information to enable the destination process to reassemble the segments
- The TCP segment is sent to the Internet layer and encapsulated within an IP packet, which adds an IP header
 - The IP header contains the source and destination IP addresses

Sending Process

- The IP packet is sent to the Network Access layer where it is encapsulated with a frame header and trailer
 - Each frame header contains the source and destination physical address
 - The trailer contains error checking information
- Finally the bits are encoded onto the Ethernet media by the enddevice Network Interface Card (NIC)

Sending Process

BITS 2343 - Computer Networking

Receiving Process

BITS 2343 - Computer Networking

Comparing the OSI Model to the TCP/IP Model

- The functions of the Application,
 Presentation and Session layers of the OSI model are combined into on Application layer in the TCP/IP model
- The Data Link and Physical layers of OSI model combine to make the Network Access layer of the TCP/IP model
- The key parallel between the two models occur at layer 3 and 4 of the OSI model
 - TCP operates at TL
 - IP operates at IL / NL

Physical addresses

Logical addresses

Service Port numbers

Addressing

- Various types of addresses are needed to successfully deliver the data from a source application running on one host to the correct destination application running on another
 - Data Link physical addresses
 - Network logical addresses
 - Transport service port numbers

Getting Data to the End Device

- This is the physical address of the host (or end device)
 - In a LAN using Ethernet, this address is called the Media Access Control (MAC) address
 - Layer 2 addresses are used to communicate between device on a single local network

Getting Data Through the Internetwork

- This is the logical address
- Layer 3 addresses are primarily used to move data from local network to another local network
 - Enable intermediary network device to locate hosts on different networks

The Protocol Data Unit header also contains the network address.

Getting Data to the Right Application

- At layer 4, the information contained in the PDU header identifies the specific process or service running on the destination host device
 - The separately running programs are examples of individual processes

At the end device, the service port number directs the data to the correct conversation.

http://ftmk.utem.edu.my

