$\aleph_1 \leq \mathfrak{s} \, \mathsf{k} \, \aleph_1 \leq \mathfrak{r} \, \mathfrak{o}$ 証明

でいぐ

2022年12月4日

目次

		_
$\aleph_1 \leq$	☞ の証明	2
$\aleph_1 \leq$	r の証明	2
3.1	直接証明	2
3.2	Baire の範疇定理を使う証明	
3.3	Lebesgue 測度を使う証明	
3.4	補足	;
	$\aleph_1 \le 3.1$ 3.2 3.3	$\aleph_1 \leq \mathfrak{s}$ の証明 $\aleph_1 \leq \mathfrak{r}$ の証明 3.1 直接証明 3.2 Baire の範疇定理を使う証明 3.3 Lebesgue 測度を使う証明 3.4 補足

1 定義

連続体濃度を \mathfrak{c} と書く、また、自然数の無限集合の全体の集合を $[\omega]^\omega$ と書く、

定義 1. 1. 自然数の無限集合 A, B について A が B を分割するとは,

$$|B \cap A| = |B \setminus A| = \aleph_0$$

を満たすことだとする.

- 2. 自然数の無限集合の集合 S, \mathcal{R} について
 - S が splitting family \iff $(\forall B \in [\omega]^{\omega})(\exists A \in S)(A \text{ が } B \text{ を分割する})$
 - \mathcal{R} % reaping family $\iff \neg(\exists A \in [\omega]^\omega)(\forall B \in \mathcal{R})(A \ \% \ B \ \& \%$ 割する)

 $\iff (\forall A \in [\omega]^{\omega})(\exists B \in \mathcal{R})(A \text{ が } B \text{ を分割しない})$

と定める.

3. sと r を

 $\mathfrak{s} = \min\{|\mathcal{S}| : \mathcal{S} \text{ it splitting family}\}$ $\mathfrak{r} = \min\{|\mathcal{R}| : \mathcal{R} \text{ it reaping family}\}$

と定義する.

 $[\omega]^{\omega}$ それ自体は splitting family でもあるし、reaping family でもある。 よって $\mathfrak{s} \leq \mathfrak{c}$ かつ $\mathfrak{r} \leq \mathfrak{c}$ が分かる.

本稿では、とても簡単な事実であるが、 $\aleph_1 \leq \mathfrak{s}$ と $\aleph_1 \leq \mathfrak{r}$ の証明を与える.

$2 \aleph_1 \leq \mathfrak{s}$ の証明

命題 **2.** \aleph_1 ≤ \mathfrak{s} .

証明. 自然数の無限集合の集合 S で高々可算濃度を持つものを任意にとる. $S=\{A_n:n\in\omega\}$ と枚挙しておく. 示すべきことは S が splitting family でないこと、すなわちある自然数の無限集合 B があって、B はどの A_n にも分割されないことである. 帰納法により次のような自然数の無限集合の列 $\langle B_n:n\in\omega\rangle$ を定める.

- 1. $B_n \subseteq A_n$ あるいは $B_n \subseteq \omega \setminus A_n$.
- 2. $B_0 \supseteq B_1 \supseteq B_2 \supseteq \dots$

これは取れる。実際, B_n まで取れたとき, B_n が無限集合なので, $B_n \cap A_n$ か $B_n \setminus A_n$ のどちらか一方が無限集合である。すると,無限な方の一方を取り, B_{n+1} と置けばよい。

次に、自然数の列 $\langle b_m : m \in \omega \rangle$ を次を満たすようにとる.

- 1. $b_0 < b_1 < b_2 < \dots$
- 2. $b_m \in B_m$.

これも帰納的に取っていくことができる.

最後に $B = \{b_m : m \in \omega\}$ とおけば、これはどの A_n にも分割されない。実際、 $B_n \subseteq A_n$ ならば、B の元は有限個を除いて A_n の元なので、 $B \setminus A_n$ は有限集合であるし、 $B_n \subseteq \omega \setminus A_n$ ならば、B の元は有限個を除いて $\omega \setminus A_n$ の元なので、 $B \cap A_n$ は有限集合であるからだ.

3 $\aleph_1 \leq \mathfrak{r}$ の証明

3.1 直接証明

命題 3. №1 < r.

証明. 自然数の無限集合の集合 $\mathcal R$ で高々可算濃度を持つものを任意にとる. $\mathcal R=\{B_n:n\in\omega\}$ と枚挙しておく. 示すべきことは $\mathcal R$ が reaping family でないこと, すなわちある自然数の無限集合 A があって, A はどの B_n も分割することである.

各自然数 n, m について次の 2 つの種類の要件を満たす B を構成できたら終わりである.

- (要件 (0,n,m)) m 以上の自然数が存在して、それは A に属さないが B_n には属す.
- (要件 (1, n, m)) m 以上の自然数が存在して、それは A にも B_n にも属す。

 $\pi: \omega \to \{0,1\} \times \omega \times \omega$ を全単射とする. B を近似する有限二進列の列 $\langle s_i: i \in \omega \rangle$ を次を満たすように構成する.

- 1. $s_0 \subseteq s_1 \subseteq s_2 \subseteq \ldots$
- $2. s_i$ を延長する任意の B は要件 $\pi(i)$ を満たす.

これが構成できることを見よう. $s_0=\varnothing$ とおく. s_i まで構成されたとしよう. $\pi(i+1)=(j,n,m)$ とする. j=0 のときは m と s_i の長さより大きくて B_n に属する自然数 k を取り,

 s_{i+1} を s_i の延長であって k 桁目が 0 なようにとる. j=1 のときは m と s_i の長さより大きくて B_n に属する自然数 k を取り, s_{i+1} を s_i の延長であって k 桁目が 1 なようにとる.これで構成された.

最後に B を s_i ($i \in \omega$) たちの貼り合わせとして定める. すなわち B を特性関数 χ_B が

$$\chi_B = \bigcup_{i \in \omega} s_i$$

となるようにとる.

3.2 Baire の範疇定理を使う証明

命題3の別証明.本質的に命題3と同じことをする.

自然数の無限集合の集合 $\mathcal R$ で高々可算濃度を持つものを任意にとる. $\mathcal R=\{B_n:n\in\omega\}$ と枚挙しておく.

 $n,m\in\omega$ に対してカントール空間 2^ω の部分集合 $D_{0,n,m}$ と $D_{1,n,m}$ を次で定める:

$$D_{0,n,m}=\{x\in 2^\omega: m$$
 以上のある桁 k において $x(k)=0$ かつ $k\in B_n\}$ $D_{1,n,m}=\{x\in 2^\omega: m$ 以上のある桁 k において $x(k)=1$ かつ $k\in B_n\}$

これらはカントール空間 2^ω の可算個の稠密開集合であるため Baire の範疇定理より共通部分は空でない。共通部分から元を取り、それを特性関数とする B を考えればこれが欲しかったものである。

3.3 Lebesgue 測度を使う証明

命題 3 の別証明 2. 上の証明の通り, $\mathcal{R} = \{B_n : n \in \omega\}$ と $D_{0,n,m}, D_{1,n,m}$ を考える. $D_{0,n,m}$ と $D_{1,n,m}$ はどれも Lebesgue 測度 1 なことがわかる.

実際,

$$\mu(2^{\omega} \setminus D_{0,n,m}) = \mu\left(\bigcap_{k \ge m, k \in B_n} \{x : x(k) = 1\}\right) = \prod_{k \ge m, k \in B_n} \frac{1}{2} = 0$$

なので $D_{0,n,m}$ は測度 1 である.ここで測度の計算に独立性を使った. $D_{1,n,m}$ も同様に測度 1 であると分かる.

よって、共通部分も測度 1 となり、元がある. \Box

3.4 補足

3.2 節と 3.3 節のそれぞれの証明から情報を抽出すると、次が従う. 証明は省略する.

命題 4. $cov(meager), cov(null) \le \mathfrak{r}$ かつ $\mathfrak{s} \le non(meager), non(null)$.

参考文献

[Bla10] Andreas Blass. "Combinatorial cardinal characteristics of the continuum". *Hand-book of set theory*. Springer, 2010, pp. 395–489.