ANSWER KEY

Q.1 (a)
$$X(f) = \frac{1}{2} \operatorname{tri} \left(\frac{f}{2}\right) e^{-j2\pi f}$$

(b) Magnitude Spectrum: $|X(f)| = \frac{1}{2} \operatorname{tri} \left(\frac{f}{2}\right)$

Phase Spectrum: $\angle X(f) = -2\pi f$

(c)
$$Y(f) = \frac{1}{4} \left[tri \left(\frac{f - 100}{2} \right) e^{-j0.5\pi} + tri \left(\frac{f + 100}{2} \right) e^{j0.5\pi} \right] e^{-j2\pi f}$$

 1^{st} -null bandwidth of y(t) = 4 Hz

Q.2 (a) Fundamental frequency =
$$\pi\sqrt{2}$$
 rad/s
DC value = 0

(b)
$${c_{\pm 1} = 2 \mp j, c_{-2} = -1 + j, c_{\pm 3} = -3, and c_k = 0 \text{ for } k \neq \pm 1, 2 \text{ and } \pm 3}$$

(c)
$$P = 30 \text{ W}$$

Q.3 (a)
$$E_x(f) = \frac{1}{\pi^2 f^2} [1 - \text{sinc}(2f)]^2$$

(b)
$$X(0) = \int_{-\infty}^{\infty} x(t) dt = \underbrace{\text{AREA UNDER } x(t) = 0}_{\text{by inspection of Figure Q3(a)}}$$

(c)
$$y(t) = \sum_{n} x(t-2n)$$

(d)
$$P_y(f) = \sum_{k} \frac{1}{4} |X(f)|^2 \delta \left(f - \frac{k}{2}\right)$$

Q.4 (a) A = 3, B = 4, C = 8, $\alpha = 2$, $\beta = 4$ and $\gamma = 2$

(b)
$$Q(f) = \left[24 \operatorname{sinc}(8f) + 4 \operatorname{sinc}^2(2f) \right] e^{-j8\pi f}$$

(c)
$$E = 101\frac{1}{3}$$
 J

