Trigonometrie – Teil 1

Aufgrund dieser Zusammenhänge können die schon aus Band 1 bekannten Winkelfunktionswerte für spezielle Winkel angegeben und für Winkel $\alpha \ge 90^{\circ}$ erweitert werden.

	0° 0 rad	30° = ==================================	45° π/4	60° π/3	90° = 72	120° 2π/3	135° 3π/4	150° 5π/6	180° π	$\frac{270^{\circ}}{\frac{3\pi}{2}}$	360° 2π
$sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
cos(α)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
tan(α)	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nicht def.	-√3	-1	$-\frac{\sqrt{3}}{3}$	0	nicht def.	0

5.3 Erstelle mithilfe von GeoGebra eine Animation, die Sinus- und Cosinuswerte in Abhängigkeit eines beliebigen Winkels grafisch darstellt.

Lösung:

- Man gibt zwei Punkte A(0|0) und B(1|0) in die Eingabezeile ein. Mithilfe von Kreis mit Mittelpunkt durch Punkt zeichnet man einen Kreis c durch Anklicken von A und B. Somit erhält man den Einheitskreis.
- Man zeichnet mit Punkt auf Objekt einen beliebigen Punkt C auf c ein. Von A aus legt man mithilfe von Strahl einen Strahl durch C.
- Durch den Punkt C legt man mithilfe von Senkrechte Gerade ieine Normale auf die x-Achse und ermittelt mit Schneide deren Schnittpunkt D mit der x-Achse.
- Man zeichnet mit Strecke die Strecken d = DC und e = AD, die die Winkelfunktionswerte Cosinus bzw. Sinus darstellen, durch Anklicken von A und D bzw. D und C ein. Die Senkrechte durch DC kann verborgen werden.
- Mit gedrückter rechter Maustaste kann man den Punkt C entlang des Kreises verschieben. Dadurch verändert sich der Winkel und damit die zugehörigen Winkelfunktionswerte. Durch Klick auf die rechte Maustaste am Punkt C kann man auch über Animation ein den Punkt C den Kreis entlang laufen lassen.