Writing Documents in RMarkdown

 $Neal\ Marquez$

February 21, 2019

1 R Markdown

R Markdown is a great way to not only inspect your data but also share your research with others who may not be as technically inclined as yourself. It should be seen as a tool that streamlines the process between analysis and dissemination of your work.

Building Nice tables is easy using the knitr package and the kable function. We can make tables as shown in the rmarkdown chunk as shown below and reference a figure by using a comand like "1" to reference table 1. Note that we use the abbreviation tab for table, fig for plots and figures and eq for equations.

```
stargazer(cars, title = "My table",
    align=TRUE, header = F,
    type = ifelse(knitr::is_latex_output(),"latex","html"),
    label = knitr::opts_current$get("label"))
```

Table 1: My table

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
speed	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

Table 2: My table 2

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Sepal.Length	150	5.843	0.828	4.300	5.100	6.400	7.900
Sepal.Width	150	3.057	0.436	2.000	2.800	3.300	4.400
Petal.Length	150	3.758	1.765	1.000	1.600	5.100	6.900
Petal.Width	150	1.199	0.762	0.100	0.300	1.800	2.500

For more complicated tables created using other packages or from your own latex or markdown we can add in label references by hand. Here we reference a regression table using a modified version of the stargazer package Table 3.

2 Including Plots

You can also embed plots, and refrence them too! See Figure 1.

Same for Equation (1)

$$Y = \exp(\beta_0 + \beta_1 X) \tag{1}$$

External figures are a little harder to format but still doable like in Figure 2.

Table 3: Results

	$Dependent\ variable:$				
	rat	ing	high.rating		
	OLS		probit		
	(1)	(2)	(3)		
complaints	0.692^{***} (0.149)	0.682*** (0.129)			
privileges	-0.104 (0.135)	-0.103 (0.129)			
learning	0.249 (0.160)	0.238^* (0.139)	0.164*** (0.053)		
raises	-0.033 (0.202)				
critical	0.015 (0.147)		-0.001 (0.044)		
advance			-0.062 (0.042)		
Constant	11.011 (11.704)	11.258 (7.318)	-7.476^{**} (3.570)		
Observations R^2 Adjusted R^2	30 0.715 0.656	30 0.715 0.682	30		
Log Likelihood Akaike Inf. Crit. Residual Std. Error			-9.087 26.175		
F Statistic	7.139 (df = 24) $12.063^{***} \text{ (df} = 5; 24)$	6.863 (df = 26) 21.743*** (df = 3; 26)			

Note:

*p<0.1; **p<0.05; ***p<0.01

Figure 1: Exponential Growth

Figure 2: Exponential Growth