Лабораторная работа №2 «Алгоритм симметричного шифрования S-DES»

1. Цель работы:

Изучение работы простейшего алгоритма симметричного шифрования S-DES.

2. Основные теоретические сведения:

Упрощенный DES - это алгоритм шифрования, имеющий, скорее, учебное, чем практическое значение. По свойствам и структуре он подобен DES, но имеет гораздо меньше параметров. Данный алгоритм был разработан профессором Эдвардом Шейфером (Edward Schaefer) из Университета Санта-Клара.

На рис. 1 показана общая структура упрощенного алгоритма S-DES. Данный алгоритм получает на входе 8-битовый блок открытого текста и 10-битовый ключ, а на выходе генерируется 8-битовый блок шифрованного текста. Алгоритм дешифрования S-DES в качестве исходных данных использует 8-битовый блок шифрованного текста и тот же 10-битовый ключ, который применялся для шифрования, а в результате работы алгоритм дешифрования должен генерировать 8-битовый блок открытого текста.

Рис. 1. Структура упрощенного алгоритма S-DES

Алгоритм шифрования включает последовательное выполнение пяти операций:

- начальной перестановки ІР,
- сложной функции f_K , являющейся композицией операций перестановки и подстановки и зависящей от полученного ключа,
- перестановки SW, при которой две половинки последовательности данных просто меняются местами,
- еще раз функции f_K ,
- перестановки, обратной начальной (IP⁻¹).

Данный алгоритм можно представить в виде:

uuuфрованный $meкcm = IP^{-1}$ (f_{K2} (SW (f_{K1} (IP (omкрытый mekcm))))), omкрытый $mekcm = IP^{-1}$ (f_{K1} (SW (f_{K2} (IP (uuuфрованный mekcm))))).

где

 $K_1 = P8$ (Shift (P10 (ключ))), $K_2 = P8$ (Shift (Shift (P10 (ключ)))).

2.1. Вычисление ключей S-DES

В алгоритме S-DES используется 10-битовый ключ, который должен быть как у отправителя, так и у получателя сообщения. Из этого ключа на определенных этапах шифрования и дешифрования генерируется два 8-битовых подключа. На рис. 2 показана схема процедуры создания этих подключей.

Сначала выполняется перестановка битов ключа следующим образом. Если 10-битовый ключ представить в виде (k_1 , k_2 , k_3 , k_4 , k_5 , k_6 , k_7 , k_8 , h_9 , h_{10}), то перестановку P10 можно задать формулой:

10-битовый ключ

P10

10

 $P10(k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, h_9, h_{10}) = (k_3, k_5, k_2, k_7, k_4, h_{10}, k_1, h_9, k_8, k_6).$ Можно также представить перестановку P10 в следующей табличной форме.

				P1	10				
3	5	2	7	4	10	1	9	8	6

После этого отдельно для первых пяти битов и отдельно для вторых выполняется циклический сдвиг влево LS-1, который еще называют вращением.

Затем применяется перестановка Р8, в результате которой из 10-битового ключа сначала выбираются, а затем переставляются 8 битов по следующему правилу.

В результате этой операции получается первый подключ K_1 .

Теперь нужно вернуться к двум 5-битовым строкам, полученным в результате применения функций LS-1, и выполнить с каждой из этих строк циклический сдвиг влево на две позиции LS-2.

Наконец, применив к полученной в результате последовательности перестановку P8, получим подключ K_2 .

Например:

Ключ : <u>1011001001</u> После P10: <u>1001111000</u> После LS-1: 0011110001

После LS-1: 0011110001 \rightarrow После P8 (K1): $\underline{11010110}$ После LS-2: 1110000110 \rightarrow После P8 (K2): $\underline{01001001}$

P8

LS-2

K1

2.2. Шифрование S-DES

На рис. 3 представлена более подробная схема алгоритма шифрования S-DES. Как уже упоминалось, процесс шифрования представляет собой последовательное выполнение пяти операций.

2.2.1. Начальная и завершающая перестановки

На вход алгоритма поступает 8-битовый блок открытого текста, к которому применяется начальная перестановка, заданная функцией IP.

IP							
2	6	3	1	4	8	5	7

Все 8 битов открытого текста сохраняют свои значения, но меняется порядок их следования. На завершающей стадии алгоритма выполняется обратная перестановка.

	IP-1							
4	1	3	5	7	2	8	6	

Как легко убедиться с помощью простой проверки, вторая из приведенных выше перестановок действительно является обратной по отношению к первой, т.е. $IP^{-1}(IP(X)) = X$.

2.2.2. Функция f_K

Самым сложным компонентом S-DES является функция f_K , представляющая собой комбинацию перестановки и подстановки. Первой операцией является операция расширения/перестановки последних четырех входных битов.

E/P							
4	1	2	3	2	3	4	1

Затем к полученному значению с помощью операции XOR добавляется 8-битовый подключ.

Первые четыре бита поступают на вход модуля S0, на выходе которого получается 2-битовая последовательность, а оставшиеся четыре бита — на вход модуля S1, на выходе которого получается другая 2-битовая последовательность. Модули S0 и S1 можно определить так:

$$S0 = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 1 \end{bmatrix}, S1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 3 & 0 & 1 & 0 \\ 2 & 1 & 0 & 3 \end{bmatrix}$$

Эти S-модули (матрицы кодирования) работают следующим образом. Первый и четвертый биты входной последовательности рассматриваются как 2-битовые числа, определяющие строку, а второй и третий — как числа, определяющие столбец S-матрицы. Элементы, находящиеся на пересечении соответствующих строки и столбца, задают 2-битовые выходные значения. Например, если первые четыре бита равны (0100), то выходные 2 бита задаются значением, которое находится на пересечении строки 0 (00) и столбца 2 (10) матрицы S0 (оно равно 3 или (11) в двоичном представлении).

Теперь 4 бита, полученные на выходе модулей S0 и S1, преобразуются с помощью перестановки P4 следующим образом.

	P4		
2	4	3	1

Результат применения перестановки P4 добавляется к первым четырем входным битам с помощью операции XOR. Полученный результат и является значением функции f_K .

2.2.3. Функция-переключатель

Функция f_K изменяет только четыре левых бита. Поэтому следующей операцией в алгоритме шифрования является использование функции SW, которая меняет местами первые и последние четыре бита последовательности, чтобы при следующем вызове функции f_K последняя работала уже с другой четверкой битов. При втором вызове f_K функции E/P, S0, S1 и P4 остаются теми же, что и при первом, но вместо ключа K_1 , используется ключ K_2 .

Например:

Открытый текст: 1101 1010 После І/Р: 1001 1011 E/P: 11010111 После После XOR с K1: 00000001 01 10 После матриц: P4: 1010 После XOR с левыми 4: 0011 После fk1: 0011 1011 SW: 1011 0011 После E/P: 10010110 После После XOR с K2: 11011111 После матриц: 11 11 После P4: 1111 XOR с левыми 4: 0100 fk2: 0100 0011 После После I/P-1: 0000 1110 Шифров. текст: 0000 1110

3. Задание на лабораторную работу

Необходимо зашифровать с помощью алгоритма S-DES первые пять букв своей фамилии.

3.1. Порядок выполнения:

- 1. Взять первые 10 букв своих «ФамилияИмяОтчество».
- 2. Преобразовать их в 10-битный ключ по следующей схеме: каждая согласная буква заменяется на «1», а гласная на «0» (к гласным буквам относятся: а, я, у, ю, и, ы, о, ё, э, е; к согласным все остальные).
- 3. По известному алгоритму высчитать два подключа.
- 4. Взять первые пять букв своих «Фамилия Имя Отчество».
- 5. По приведенной ниже кодовой таблице ASCII, заменить каждую букву на соответствующий код (с учетом регистра).
- 6. Перевести каждый код в двоичное 8-битное представление.
- 7. Провести алгоритм S-DES для каждого 8-битного блока.
- 8. Полученные пять 8-битных шифрованных блока преобразовать в десятичный формат, которые и будут служить ответом.

-							
Кодовая таблица ASCII							
A = 128	a = 160	к = 138	к = 170	X = 149	x = 229		
Б = 129	б = 161	Л = 139	$\pi = 171$	Ц = 150	ц = 230		
B = 130	в = 162	M = 140	M = 172	Ч = 151	ਧ = 231		
$\Gamma = 131$	г = 163	H = 141	н = 173	Ш = 152	ш = 232		
Д = 132	д = 164	0 = 142	0 = 174	Щ = 153	щ = 233		
E = 133	e = 165	$\Pi = 143$	$\pi = 175$	ъ = 154	ъ = 234		
$\ddot{E} = 240$	ë = 241	P = 144	p = 224	ы = 155	ы = 235		
X = 134	x = 166	C = 145	c = 225	Ь = 156	ь = 236		
3 = 135	з = 167	T = 146	т = 226	Э = 157	э = 237		
И = 136	и = 168	y = 147	y = 227	Ю = 158	ю = 238		
Й = 137	й = 169	$\Phi = 148$	$\Phi = 228$	Я = 159	я = 239		

Рис. 3. Алгоритм S-DES

3*. Дополнительное задание на лабораторную работу.

- 1. Составить программу на языке высокого уровне (Pascal, C++), реализующую алгоритм шифрования S-DES, шифрующую буквы и символы, вводимые с клавиатуры.
- 2. Составить программу на языке высокого уровне (Pascal, C++), реализующую алгоритм шифрования S-DES, шифрующую файлы.

4. Содержание отчета

- 1. «ФамилияИмяОтчество».
- 2. 10-битовый ключ.
- 3. 2 подключа.
- 4. Пять 8-битовых блока.
- 5. Пять шифрованных блока.