Theorems of Levi and Ado-Iwasawa

Swayam Chube

December 1, 2024

Abstract

It is known that every Euclidean Domain (ED) is a Principal Ideal Domain (PID). We present two exammples of PIDs that are not EDs, namely, $\mathbb{R}[X,Y]/(X^2+Y^2+1)$ and $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$.

§1
$$\mathbb{R}[X,Y]/(X^2+Y^2+1)$$

We first begin with two important lemmas.

LEMMA 1.1. Let *A* be a commutative ring in which every prime ideal is principal. Then, *A* is a principal ring.

Proof. Suppose not and let Σ denote the poset of all proper ideals that are not principal. Let $\mathscr C$ denote a chain in Σ and let $\mathfrak a = \bigcup \mathscr C$. If $\mathfrak a = (a)$ is principal, then there is an ideal $\mathfrak b \in \mathscr C$ that contains a, consequently, $\mathfrak b = (a)$, a contradiction. Thus, $\mathfrak a \in \Sigma$ and is an upper bound for $\mathscr C$. Due to Zorn's Lemma, Σ contains a maximal element, say $\mathfrak p$.

We contend that $\mathfrak p$ is prime. Suppose not. Then, there are $a,b\notin \mathfrak p$ with $ab\in \mathfrak p$. Note that $(\mathfrak p:b)$ is an ideal properly containing $\mathfrak p$ (since it also contains a) and hence, must be principal, say (c). Next, $\mathfrak p+(b)$ properly contains $\mathfrak p$ and hence, must be principal, say (d). Clearly, $\mathfrak p\supseteq (\mathfrak p:b)(\mathfrak p+(b))=(cd)$. On the other hand, if $x\in \mathfrak p$, then $x=\alpha d$ for some $\alpha\in A$. Since $\alpha d\in \mathfrak p$, we have $\alpha\in (\mathfrak p:b)=(c)$. Thus, $\mathfrak p\subseteq (\mathfrak p:b)(\mathfrak p+(b))$ and $\mathfrak p=(cd)$ is principal, a contradiction. Hence, $\mathfrak p$ is prime, and must be principal, again, a contradiction. This completes the proof.

LEMMA 1.2. Let A be a Euclidean Domain with Euclidean function $\delta: A \setminus \{0\} \to \mathbb{N}_0$. Then, there is a non-zero prime $p \in A$ such that $\pi: A \twoheadrightarrow A/p$ restricts to a surjective group homomorphism $\pi: A^{\times} \to (A/p)^{\times}$.

Proof. Let $p \in A$ be a non-zero element in $A \setminus A^{\times}$ that minimizes δ . Then, p must be irreducible, for if p = ab with a non-unit, then

$$\delta(p) = \delta(ab) \geqslant \delta(a) \geqslant \delta(p),$$

consequently, $\delta(a) = \delta(ab)$ whence b must be a unit. This shows that p is prime.

Now, let $\overline{a} \in A/p$ be invertible. Then, there is a non-zero $a \in A$ with $\pi(a) = \overline{a}$. Thus, there are q and r with a = pq + r. Since $r \neq 0$, we must have $\delta(r) < \delta(p)$, whereby, $r \in A^{\times}$. Note that $\pi(r) = \pi(a) = \overline{a}$ and hence, the restriction of π to $A^{\times} \to (A/p)^{\times}$ is surjective.

We are now ready to prove the main of this section. Let $A = R[X,Y]/(X^2 + Y^2 + 1)$ and let x and y denote the images of X and Y in A.

PROPOSITION 1.3. Every non-zero prime ideal in *A* is of the form (ax + by + c) where $(a, b) \neq 0$.

Proof. Let \mathfrak{p} be a non-zero prime ideal of A. Note first that

$$\dim A = \dim R[X, Y] - ht((X^2 + Y^2 + 1)) = 1,$$

whence $\mathfrak p$ is maximal. Further, $A/\mathfrak p$ is a finitely generated $\mathbb R$ -algebra and also a field, and due to Zariski's Lemma, must be a finite extension of $\mathbb R$. Thus, $[A/\mathfrak p:\mathbb R]\leqslant 2$. Let $\overline{x},\overline{y}$ denote the images of x and y in $A/\mathfrak p$. Since $1,\overline{x},\overline{y}$ cannot be linearly independent over $\mathbb R$, we must have a non-trivial linear combination $a\overline{x}+b\overline{y}+c=0$ in $A/\mathfrak p$. Hence, $ax+by+c\in \mathfrak p$. If (a,b)=0, then $\mathfrak p$ would contain a unit which is impossible.

Note that (aX + bY + c) was a maximal ideal in R[X, Y]. Hence, (ax + by + c) is a maximal ideal in A. Further, the quotient A/(ax + by + c) strictly contains $\mathbb R$ and due to Zariski's Lemma, must be a finite extension of it, whence is isomorphic to $\mathbb C$. This shows that $\mathfrak p = (ax + by + c)$ and $A/\mathfrak p \cong \mathbb C$ thereby completing the proof.

PROPOSITION 1.4. *A* is a PID but not an ED.

Proof. Due to Proposition 1.3 and Lemma 1.1, A is a PID. Suppose A were an ED. According to Lemma 1.2, there is a non-zero prime $p \in A$ and a group surjection $\pi : A^{\times} \to (A/p)^{\times}$. Note that $A^{\times} \cong \mathbb{R}^{\times}$ and $(A/p)^{\times} \cong \mathbb{C}^{\times}$. But there is no surjective group homomorphism $\mathbb{R}^{\times} \to \mathbb{C}^{\times}$, a contradiction.

§2
$$\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$$

Let $K = \mathbb{Q}[\sqrt{-19}]$ be a number field and let \mathcal{O}_K denote the ring of integers in K. It is well known that $\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ and that it has class number 1. Hence, every fractional ideal over \mathcal{O}_K is principal. In particular, every integral ideal of \mathcal{O}_K is principal and \mathcal{O}_K is a PID.

We shall now argue that \mathcal{O}_K is not an ED. Suppose $\delta: \mathcal{O}_K \setminus \{0\} \to \mathbb{N}_0$ is a Euclidean function and let $p \in \mathcal{O}_K$ be a non-zero, non-invertible element that minimizes δ . Consider the canonical projection $\pi: \mathcal{O}_K \to \mathcal{O}_K/(p)$.

If $0 \neq \overline{a} \in \mathcal{O}_K/(p)$, then there is an $a \in \mathcal{O}_K$ that maps to it under π . We may write a = pq + r where $q \in \mathcal{O}_K$, $0 \neq r$ and $\delta(r) < \delta(p)$. Due to the minimality of $\delta(p)$, we must have that r is a unit. Note that the only units in \mathcal{O}_K are ± 1 . Indeed, if $x \in \mathcal{O}_K$ is a unit, then there are integers m and n such that

$$x = m + n\left(\frac{1+\sqrt{-19}}{2}\right) = \frac{(2m+n) + n\sqrt{-19}}{2}.$$

Since *x* is a unit, we have $N_{K/\mathbb{Q}}(x) = \pm 1$, that is,

$$(2m+n)^2 + 19n^2 = 4.$$

It is not hard to see, from the above equation, that the only solutions are $x = \pm 1$.

Hence, $r \in \{\pm 1\}$, in particular, $\mathcal{O}_K/(p)$ can have at at least 2 elements. Thus, the *ideal norm* of (p) is either 2 or 3. Hence, $N_{K/\mathbb{Q}}(p) \in \{2,3\}$.

We may suppose $p = m + n \frac{1 + \sqrt{-19}}{2}$. The equation involving norm gives us

$$(2m+n)^2+19n^2\in\{8,12\}.$$

Due to size reasons, n = 0. And we are left with $m^2 \in \{2,3\}$, which is impossible. Thus, \mathcal{O}_K cannot be an ED. This completes the proof.