Notações e Exemplos de Autômatos

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

17 de outubro de 2017

Plano de Aula

- Revisão
 - Linguagens Regulares: introdução

Notações e Exemplos de autômatos

Sumário

- Revisão
 - Linguagens Regulares: introdução

2 Notações e Exemplos de autômatos

Linguagens Regulares

O que é um computador?

- A Teoria da Computação utiliza modelos computacionais;
- Modelos computacionais são úteis para a construção de teorias matemáticas a respeito de computadores;
- Autômato finito (ou máquina de estados finito) é um dos modelos mais simples;
- Os autômatos finitos são bons modelos para computadores com uma quantidade extremamente limitada de memória.

Tapete Tapete Frontal Traseira **Porta**

sinal de entrada

		NENHUM	FRENTE	ATRÁS	AMBOS
estado		FECHADO			FECHADO
	ABERTO	FECHADO	ABERTO	ABERTO	ABERTO

FIGURA 1.3

Tabela de transição de estados para o controlador de porta automática

Estado Inicial

FECHADO.

Seguência de sinais

(FRENTE, ATRÁS, NENHUM, FRENTE, AMBOS, NENHUM, ATRÁS, NENHUM)

Sequência de estados

(ABERTO, ABERTO, FECHADO, ABERTO, ABERTO, FECHADO, FECHADO)

Capacidade de memória

• 1 bit.

Outros exemplos...

Controlador de um elevador.

Mais detalhes...

Vamos conhecer os pormenores de um autômato finito!

FIGURA 1.4

Um autômato finito chamado M_1 que tem três estados

Notações

- Diagrama de estado: M₁;
- Estados: q_1 , q_2 e q_3 ;
- Estado inicial: q₁;
- Estados de aceitação: q₂;
- Transições: são as setas saindo de um estado para outro.

<u>Fun</u>cionamento

Para uma dada cadeia de entrada ω , o autômato pode **aceitar** ou **rejeitar** a cadeia.

Exemplo: cadeia de entrada 1101

- Começa no estado q_1 ;
- 2 Lê 1, segue a transição de q_1 para q_2 ;
- **1** Lê 1, segue a transição de q_2 para q_2 ;
- **1** Lê 0, segue a transição de q_2 para q_3 ;
- **5** Lê 1, segue a transição de q_3 para q_2 ;
- **6** Aceita, porque M_1 está no estado de aceitação q_2 no final da entrada.

Exemplos

- M_1 aceita cadeias como: 1, 01, 11, 010101;
- \bullet M_1 aceita cadeias como: 100, 0100, 110000, 0101000000;
- \bullet M_1 rejeita cadeias como: 0, 010, 101000.

Pergunta

Qual é a linguagem constituída de todas as cadeias que M_1 aceita?

Por que é importante?

- Uma definição formal é precisa:
 - Os autômatos finitos podem ou não ter 0 estados de aceitação?
 - Eles devem ter exatamente uma transição saindo de cada estado para cada símbolo de entrada possível?
- Uma definição formal provê notação.

Um autômato finito determinístico (AFD) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, de forma que

- \bigcirc Q é um conjunto finito conhecido como os **estados**,
- Σ é um conjunto finito chamado o alfabeto,
- **3** $\delta: Q \times \Sigma \rightarrow Q$ é a função de transição,
- $Q q_0 \in Q$ é o estado inicial, e
- **5** $F \subseteq Q$ é o conjunto de estados de aceitação.

Sumário

- Revisão
 - Linguagens Regulares: introdução

Notações e Exemplos de autômatos

•
$$Q = \{q_1, q_2, q_3\};$$

- $Q = \{q_1, q_2, q_3\};$
- $\Sigma = \{0, 1\};$

- $Q = \{q_1, q_2, q_3\};$
- $\Sigma = \{0, 1\};$

	Q	0	1
$ullet$ δ é descrita como	q_1	q_1	q_2
	q_2	q 3	q_2
	q 3	q ₂	q_2

Descrição formal de M_1

• q_1 é o estado inicial, e

- q_1 é o estado inicial, e
- $F = \{q_2\}.$

Linguagem da máquina M

Linguagem da máquina M

 Se A é o conjunto de todas as cadeias que a máquina M aceita, dizemos que A é a linguagem da máquina M;

Linguagem da máquina M

- Se A é o conjunto de todas as cadeias que a máquina M aceita, dizemos que A é a linguagem da máquina M;
- L(M) = A;

Linguagem da máquina M

- Se A é o conjunto de todas as cadeias que a máquina M aceita, dizemos que A é a linguagem da máquina M;
- $\bullet \ L(M) = A;$
- M reconhece A.

Linguagem da máquina M

- Se A é o conjunto de todas as cadeias que a máquina M aceita, dizemos que A é a linguagem da máquina M;
- L(M) = A;
- M reconhece A.

Para evitar mal-entendidos...

O termo aceita será utilizado para cadeias.

E o termo reconhece será utilizado para linguagens.

Algo importante...

 Uma máquina pode aceitar várias cadeias, mas ela sempre reconhece uma única linguagem;

Algo importante...

- Uma máquina pode aceitar várias cadeias, mas ela sempre reconhece uma única linguagem;
- Mesmo se a máquina não aceitar nenhuma cadeia, ela reconhece ainda uma linguagem: ∅.

Algo importante...

- Uma máquina pode aceitar várias cadeias, mas ela sempre reconhece uma única linguagem;
- Mesmo se a máquina não aceitar nenhuma cadeia, ela reconhece ainda uma linguagem: Ø.

Em relação a $M_1...$

• $A = \{\omega \mid \omega \text{ contém pelo menos um 1 e um número par de 0s segue o último 1 };$

Algo importante...

- Uma máquina pode aceitar várias cadeias, mas ela sempre reconhece uma única linguagem;
- Mesmo se a máquina não aceitar nenhuma cadeia, ela reconhece ainda uma linguagem: Ø.

Em relação a $M_1...$

- $A = \{\omega \mid \omega \text{ contém pelo menos um 1 e um número par de 0s segue o último 1 };$
- $L(M_1) = A$;

Algo importante...

- Uma máquina pode aceitar várias cadeias, mas ela sempre reconhece uma única linguagem;
- Mesmo se a máquina não aceitar nenhuma cadeia, ela reconhece ainda uma linguagem: Ø.

Em relação a $M_1...$

- $A = \{ \omega \mid \omega \text{ contém pelo menos um 1 e um número par de 0s segue o último 1 } ;$
- $L(M_1) = A$;
- M₁ reconhece A.

FIGURA 1.8

Diagrama de estados do autômato finito de dois-estados M_2

FIGURA 1.8

Diagrama de estados do autômato finito de dois-estados M_2

Linguagem da máquina

$$L(M_2) = \{ \omega \mid \omega \text{ termina com um 1 } \}$$

FIGURA 1.10

Diagrama de estados do autômato finito de dois-estados M_3

FIGURA 1.10

Diagrama de estados do autômato finito de dois-estados M_3

Linguagem da máquina

 $L(M_3) = \{\omega \mid \omega \text{ \'e a cadeia vazia } \epsilon \text{ ou termina em um 0 } \}$

FIGURA 1.12 Autômato finito M_4

FIGURA 1.12 Autômato finito M_4

Linguagem da máquina

 $L(M_4) = \{ \omega \mid \omega \text{ começa e termina com o mesmo símbolo } \}$

FIGURA 1.14 Autômato finito M_5

Linguagem da máquina (Versão 1)

 $L(M_5) = \{\omega \mid \text{a soma dos símbolos em } \omega \text{ \'e 0 m\'odulo 3, exceto que } \langle \text{RESET} \rangle \text{ retorna o contador para 0} \}$

Linguagem da máquina (Versão 1)

 $L(M_5) = \{\omega \mid \text{a soma dos símbolos em } \omega \text{ \'e 0 m\'odulo 3, exceto que } \langle \text{RESET} \rangle \text{ retorna o contador para 0} \}$

Linguagem da máquina (Versão Alternativa)

$$L(\textit{M}_5) = \{\omega \mid \begin{cases} \left(\sum\limits_{i=1}^n \omega_i\right) \equiv_3 0, & \text{em que } \langle \textit{RESET} \rangle \neq \omega_j \\ & \text{para } 1 \leq j \leq n, \\ \left(\sum\limits_{i=j+1}^n \omega_i\right) \equiv_3 0, & \text{em que } \omega_j \text{ \'e o \'ultimo} \\ \langle \textit{RESET} \rangle \text{ em } \omega \end{cases} \}$$

Notações e Exemplos de Autômatos

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

17 de outubro de 2017

