Suites

Définition

Une suite est une fonction numérique définie sur l'ensemble des entiers naturels IN, ou sur l'ensemble des entiers supérieurs à un certain entier naturel n_0 .

L'image d'un entier naturel n est notée u(n) ou u_n (c'est la notation indicielle).

n est souvent appelé l'indice ou le rang du terme u_n .

La suite est notée $(u_n)_{n\in\mathbb{N}}$ ou $(u_n)_{n\geqslant n_0}$.

Exemples

Exemples

1°) On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_n = \frac{n}{n^2 + 1}$

Cette suite est définie par la donnée explicite de u_n pour tout entier n.

On peut calculer facilement un terme quelconque :
$$u_0 = \frac{0}{0^2 + 1} = 0$$
 ; $u_{10} = \frac{10}{10^2 + 1} = \frac{10}{101}$; $u_{3254} = \frac{3254}{3254^2 + 1}$

2°) On considère la suite $(u_n)_{n\geqslant 1}$ définie par $u_1=2$ et la relation $u_{n+1}=-3u_n+1$ pour tout $n\geqslant 1$.

La suite est définie par son premier terme u_1 et par une relation (dite relation de récurrence) permettant de passer d'un terme au terme suivant.

En utilisant la relation de récurrence avec n = 1, on obtient

$$u_{1+1} = -3u_1 + 1$$
 donc $u_2 = -3u_1 + 1 = -3 \times 2 + 1 = -5$

Puis en utilisant à nouveau la relation de récurrence avec n = 2, on obtient $u_2 = -3u_2 + 1$ donc $u_2 = -3u_2 + 1 = -3 \times (-5) + 1 = 16$

$$u_{2+1} = -3u_2 + 1$$
 donc $u_3 = -3u_2 + 1 = -3 \times (-5) + 1 = 16$

Pour calculer u_{50} , il faudra calculer de proche en proche tous les termes u_4 , u_5 , u_6 ..., u_{49} , u_{50}

Une calculatrice ou un ordinateur peuvent alors être très utiles pour donner des valeurs approchées.

Représentation graphique

On appelle représentation graphique d'une suite (u_n) l'ensemble des points de coordonnées $(n; u_n)$. (Ces points ne seront pas reliés entre eux puisque n ne prend que des valeurs entières)

Exercice 01 (voir réponses et correction)

On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_n = \frac{1}{2}n - 2$.

Calculer les dix premiers termes de la suite. Représenter graphiquement cette suite. Que remarque-t-on ?

Exercice 02 (voir réponses et correction)

On considère la suite $(u_n)_{n\geqslant 1}$ définie par $u_n=\frac{1}{2n-1}$. Calculer u_1 ; u_2 ; u_3 ; u_4 .

Montrer que pour tout $n\geqslant 1$: $u_{n+1}-u_n=\frac{-2}{(2n-1)(2n+1)}$. En déduire que pour tout $n\geqslant 1$: $u_{n+1}\leqslant u_n$

Exercice 03 (voir <u>réponses et correction</u>)

On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n = \frac{1}{2^{n-2}} - 6$. Calculer v_0 ; v_1 ; v_2 ; v_3 ; v_4

En utilisant une calculatrice ou un tableur sur ordinateur, donner une valeur approchée de v_{10} ; v_{20} ; v_{40} .

Exercice 04 (voir réponses et correction)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=-2$ et $u_{n+1}=\frac{1}{2}u_n-3$. Calculer u_1 ; u_2 ; u_3 ; u_4 .

En utilisant une calculatrice ou un tableur sur ordinateur, donner une valeur approchée de u_{10} ; u_{20} ; u_{40} .

Exercice 05 (voir réponses et correction)

On considère la suite (u_n) définie par $u_n = -3n + 5$ pour tout $n \in \mathbb{N}$.

Donner l'expression en fonction de n de : u_{n+1} ; u_n + 1 ; u_{n+2} ; u_{2n} ; u_{n^2} ; u_{2n+1}

Exercice 06 (voir <u>réponses et correction</u>)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=10$ et $u_{n+1}=u_n-2n^2+3n$.

Calculer u_1 ; u_2 ; u_3 ; u_4 ; u_5 .

Pour $n \ge 1$, exprimer u_n en fonction de u_{n-1}

En utilisant une calculatrice ou un tableur sur ordinateur, donner une valeur approchée de u_{10} ; u_{20} ; u_{40} .

Définition

Soit la suite $(u_n)_{n \ge n_0}$

On dit que (u_n) est croissante si : pour tout $n \ge n_0$ $u_{n+1} \ge u_n$. On dit que (u_n) est décroissante si : pour tout $n \ge n_0$ $u_{n+1} \le u_n$. On dit que (u_n) est stationnaire si : pour tout $n \ge n_0$ $u_{n+1} = u_n$.

Remarques

- On définit de la même façon une suite strictement croissante ou strictement décroissante en utilisant des inégalités strictes.
- Une suite croissante ou décroissante est appelée suite monotone.
- Étudier le sens de variation d'une suite, c'est déterminer si une suite est croissante ou décroissante (ou ni l'un ni l'autre).

hs.free.frl

Propriété

Soit (u_n) une suite croissante : $\sin n \ge p$, alors $u_n \ge u_p$. Soit (u_n) une suite décroissante : $\sin n \ge p$, alors $u_n \le u_p$.

Exercice 07 (voir réponses et correction)

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = -2n + 7$

Calculer les premiers termes de cette suite puis étudier son sens de variation.

Exercice 08 (voir réponses et correction)

On considère la suite définie par $u_n = \frac{n-1}{n+2}$ pour tout $n \in \mathbb{N}$. Démontrer que la suite (u_n) est croissante.

Exercice 09 (voir réponses et correction)

Étudier le sens de variation des suites :

$$(n^2 - n)_{n \in \mathbb{N}}$$

$$\left(\frac{3}{2^n}\right)_{n \ge 1}$$

$$\left(\frac{n+1}{n}\right)_{n \ge 1}$$

Exercice 10 (voir réponses et correction)

Une entreprise, propose pour recruter un nouvel employé deux types de rémunération :

Type 1 : Salaire annuel de 23 000 euros avec augmentation annuelle du salaire de 500 euros.

Type 2 : Salaire annuel de 21 000 euros avec augmentation annuelle du salaire de 4%.

- 1°) On note u_0 le salaire annuel initial, et u_n le salaire annuel après n années dans le cas de la rémunération de type 1. Donner les valeurs de u_0 , u_1 , u_2 .
- 2°) On note v_0 le salaire annuel initial, et v_n le salaire annuel après n années dans le cas de la rémunération de type 2. Donner les valeurs de v_0 , v_1 , v_2 .
- 3°) Donner une expression générale de u_n et v_n en fonction de n. Calculer u_5 et v_5 ; u_{10} et v_{10} .
- 4°)Le nouvel employé compte rester 8 ans dans l'entreprise. Quel type de rémunération va-t-il choisir ?

Définition

On dit qu'une suite $(u_n)_{n\geqslant n_0}$ est une suite arithmétique de raison r si :

pour tout
$$n \ge n_0$$
, $u_{n+1} = u_n + r$. (r étant une constante réelle)

Exemple

La suite 2; 5; 8; 11; 14 ... est la suite arithmétique de 1er terme 2 et de raison 3

Définition

On dit qu'une suite $(u_n)_{n \ge n_0}$ est une suite géométrique de raison q si :

pour tout
$$n \ge n_0$$
, $u_{n+1} = u_n \times q$. (q étant une constante réelle)

Exemple

La suite 3 ; 6 ; 12 ; 24 ; 48... est la suite géométrique de 1er terme 3 et de raison 2

Remarque

- Pour démontrer qu'une suite $(u_n)_{n \ge n_0}$ est arithmétique, on pourra calculer la différence $u_{n+1} u_n$. Si on constate que la différence est une constante r, on pourra affirmer que la suite est arithmétique de raison r.
- Pour démontrer qu'une suite $(u_n)_{n \ge n_0}$ est géométrique, on pourra calculer le quotient $\frac{u_{n+1}}{u_n}$. Si on constate que le quotient est une constante q, on pourra affirmer que la suite est géométrique de raison q.

Exercice 11 (voir réponses et correction)

Les suites définies sur IN par $u_n = 3n + 5$; $v_n = \frac{n+1}{n^2+1}$; $w_n = 3 \times 2^n$ sont-elles arithmétiques ? géométriques ?

Propriété

Soit $(u_n)_{n \ge n_0}$ une suite arithmétique de raison r.

Pour tout entier $n \ge n_0$ et tout entier $p \ge n_0$, on a $u_n = u_n + (n - p)r$.

Soit $(u_n)_{n \ge n_0}$ une suite géométrique de raison $q \ne 0$.

Pour tout entier $n \ge n_0$ et tout entier $p \ge n_0$, on a $u_n = u_p \times q^{(n-p)}$.

Cas particuliers

Si $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison r , on a : $u_n=u_0+nr$; $u_n=u_1+(n-1)r$. Si $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison q , on a : $u_n=u_0\times q^n$; $u_n=u_1\times q^{(n-1)}$.

Exercice 12 (voir réponses et correction)

 $(u_n)_{n\in\mathbb{N}}$ désigne une suite arithmétique de raison r.

- Sachant que r = -3 et $u_0 = 10$, calculer u_5 et u_{124}
- Sachant que $r = \frac{1}{2}$ et $u_1 = -2$, calculer u_7 et u_{10} .
- Sachant que r = 2 et $u_4 = 30$, calculer u_0 et u_8 .
- Sachant que $u_4 = 35$ et $u_2 = 15$, calculer r et u_0 .

Exercice 13 (voir réponses et correction)

 $(u_n)_{n\in\mathbb{N}}$ désigne une suite géométrique de raison q.

- Sachant que $u_0 = 4$ et q = 3, calculer u_2 et u_5 .
- Sachant que $u_0 = 2$ et $q = \frac{1}{2}$, calculer u_4 et u_8 .
- Sachant que $u_1 = 10$ et q = 2, calculer u_5 et u_{12} .
- Sachant que $u_2 = 5$ et $u_3 = 7$, calculer u_4 .

http://xmaths.free.fr/

Propriété

Soit une suite arithmétique de premier terme a et de raison r, alors la somme des n premiers termes est

$$S = na + \frac{n(n-1)}{2}r$$

Soit une suite géométrique de premier terme a et de raison $q \neq 1$, alors la somme des n premiers termes est

$$S = a \frac{1 - q^n}{1 - q}$$

Remarque

Si le premier terme est u_0 , la somme des n premiers termes est $S = u_0 + u_1 + u_2 + \cdots + u_{n-1} = \sum_{k=0}^{n-1} u_k$

Si le premier terme est u_1 , la somme des n premiers termes est $S = u_1 + u_2 + u_3 + \cdots + u_n = \sum_{k=1}^{k=n} u_k$

Attention la somme $S = u_0 + u_1 + u_2 + \cdots + u_n$ est une somme de (n + 1) termes.

Exercice 14 (voir <u>réponses et correction</u>)

 (u_n) désigne une suite arithmétique de raison r, $S_n = u_0 + u_1 + \cdots + u_n$.

- Sachant que r = 5 et $u_0 = 1$, calculer u_4 et S_{10} .
- Sachant que $u_3 = 5$ et $S_4 = 15$, calculer r et u_0 .

 (u_n) désigne une suite géométrique de raison q, $S_n = u_0 + u_1 + \cdots + u_n$.

- Sachant que $u_0 = 3$ et $q = \frac{1}{3}$, calculer u_3 et S_3 .
- Sachant que $u_0 = 1$ et q = 2, calculer S_{10} .

Exercice 15 (voir réponses et correction)

Une entreprise achète une machine-outil neuve pour un prix de 120 000 euros.

On admet qu'en un an la machine perd 15% de sa valeur et qu'il en est ainsi tous les ans.

- 1°) On note P_n le prix de la machine au bout de n années. P_0 est donc le prix de la machine neuve. Calculer P_1 , P_2 , P_3 .
- 2°) Trouver une relation entre P_{n+1} et P_n .

En déduire l'expression de P_n en fonction de n. Déterminer P_7 .

3°)L'entreprise change la machine lorsque celle-ci a perdu 80% de sa valeur.

Au bout de combien d'années la machine sera-t-elle changée ?

Exercice 16 (voir <u>réponses et correction</u>)

Un capital est placé à un taux d'intérêt annuel de 10 %.

Déterminer en utilisant une calculatrice au bout de combien d'années ce capital a doublé.

Même question avec un taux d'intérêt annuel de 4,75 %.

Exercice 17 (voir <u>réponses et correction</u>)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $u_{n+1}=-u_n-n+1$ pour tout $n\in\mathbb{N}$.

Exprimer u_{n+2} en fonction de u_{n+1} , puis u_{n+2} en fonction de u_n .

En déduire les valeurs de u_2 ; u_4 ; u_6 ; u_8 ; u_{10} .

Déterminer u_1 et en déduire les valeurs de u_3 ; u_5 ; u_7 ; u_9 . Vérifier les résultats avec une calculatrice.

Exercice 18 (voir <u>réponses et correction</u>)

Un capital de 10 000 euros est placé sur un compte le 01/01/2005. Ce compte produit des intérêts de 4% par an. Chaque année, les intérêts sont ajoutés au capital et deviennent à leur tour générateurs d'intérêts. Pour n entier naturel, on appelle C_n le capital au 1er janvier de l'année (2005 + n). On a ainsi $C_0 = 10 000$.

- 1°) Déterminer C₁ et C₂.
- 2°) Exprimer C_{n+1} en fonction de C_n . En déduire une valeur approchée de C_{10} .
- 3°)On suppose maintenant qu'au 1er janvier de chaque année, à partir du 01/01/2006, la personne rajoute 1000 euros sur son compte. Calculer alors C_1 et C_2 , puis exprimer C_{n+1} en fonction de C_n . Déterminer une valeur approchée de C_{10} en utilisant une calculatrice ou un ordinateur.