

HEXFET® Power MOSFET

Application(s)

• Load/ System Switch

Features and Benefits

Features

Benefits

results in

Lower switching losses
Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	25	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.8	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	4.6	А
I _{DM}	Pulsed Drain Current	24	7
P _D @T _A = 25°C	Maximum Power Dissipation	1.25	14/
P _D @T _A = 70°C	Maximum Power Dissipation	0.80	W
Linear Derating Factor		0.01	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
R _{eJA}	Junction-to-Ambient (t<10s) @		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

1

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	25			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		20	24	mΩ	$V_{GS} = 10V, I_D = 5.8A$ ②
R _{DS(on)}	Static Dialif-to-Source Off-nesistance		32	41	11152	$V_{GS} = 4.5V, I_D = 4.6A$ ②
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.7	2.35	V	$V_{DS} = V_{GS}, I_D = 10\mu A$
I _{DSS}	Drain-to-Source Leakage Current	_		1.0		$V_{DS} = 20V, V_{GS} = 0V$
	Dialific-Source Leakage Current		_	150	μA	$V_{DS} = 20V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	_		100	~ A	V _{GS} = 20V
	Gate-to-Source Reverse Leakage	_		-100	nA	V _{GS} = -20V
R_{G}	Internal Gate Resistance		1.6		Ω	
gfs	Forward Transconductance	10			S	$V_{DS} = 10V, I_D = 5.8A$
Q_g	Total Gate Charge		5.4			I _D = 5.8A
Q_{gs}	Gate-to-Source Charge		1.0		nC	V _{DS} =13V
Q_{gd}	Gate-to-Drain ("Miller") Charge	_	0.81			V _{GS} = 10V ②
t _{d(on)}	Turn-On Delay Time	_	2.7			V _{DD} =13V ^②
t _r	Rise Time		2.1			I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		9.0		ns	$R_G = 6.8\Omega$
t _f	Fall Time		2.9			V _{GS} = 10V
C _{iss}	Input Capacitance		430			V _{GS} = 0V
C _{oss}	Output Capacitance		110		pF	V _{DS} = 10V
C _{rss}	Reverse Transfer Capacitance	_	49			f = 1.0MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			1.25		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			24		integral reverse sp-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 5.8A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		11	17	ns	$T_J = 25^{\circ}C$, $V_R = 20V$, $I_F = 5.8A$
Q _{rr}	Reverse Recovery Charge		4.2	6.3	nC	di/dt = 100A/µs ②

International **IOR** Rectifier

IRFML8244TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International **IOR** Rectifier

IRFML8244TRPbF

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance vs. Gate Voltage

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit www.irf.com

Fig 15. Typical Threshold Voltage vs. Junction Temperature

Fig 16. Typical Power vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIMETERS		INCHES		
STIVIBOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

- DIMENSIONING & TOLEPANCING PER ANSI Y14.5M1994
 DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 CONTROLLING DIMENSION MILLIMETERS (INCHES).
 CONTROLLING DIMENSION MILLIMETERS.
 ADATUM PLANE HIS LOCATED AT THE MCAL PARTING LINE.
 ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H.
 ADMENSIONS D AND EI ARE MEASURED AT TATUM PLANE H. DIMENSIONS DOES
 NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD FLASH MICLO PROTRUSIONS
- OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO -236 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001 W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WORK WEEK	W
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010	1 2 3 4 5 6 7 8 9	01 02 03 04 	A B C D
		26	_

X = PART NUMBER CODE REFERENCE:A = IRLML2402 S = IRLML6244

B = IRLML2803 T = IRLML6246 C = IRLML6302 U = IRLML6344 D = IRLML5103

V = IRLML6346W = IRFML8244 X = IRLML2244

E = IRLML6402 F = IRLML6401G = IRLML2502Y = IRI M 2246H = IRLML5203 Z = IRFML9244

I = IRLML0030 J = IRLML2030K = IRLML0100 L = IRLML0060M = IRLML0040

N = IRLML2060 P = IRLML9301B = IRI M 9303

Note: A line above the work week (as shown here) indicates Lead - Free.

W = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK W⊞K	W
2001 2002 2003 2004 2005	A B C D E	27 28 29 30	A B C D
2006 2006 2007 2008 2009 2010	EFGHJK	\$	×
		51 52	Y Z

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

International

TOR Rectifier

Orderable part number	Package Type	Standard Pack		Note
		Form	Quantity	
IRFML8244TRPbF	Micro3	Tape and Reel	3000	

Qualification information[†]

Qualification level	Consumer ^{††}		
	(per JEDEC JESD47F ^{†††} guidelines)		
	Minne	MSL1	
Moisture Sensitivity Level	Micro3	(per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- ③ Surface mounted on 1 in square Cu board.
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.11/2010