Estimação de modelos econométricos — algumas considerações *

Fernando de Holanda Barbosa **

1. Introdução; 2. Identificação e mínimos quadrados indiretos; 3. Identificação e estimação; 4. Multicolinearidade, amostras pequenas, modelos grandes.

1. Introdução

A literatura econométrica contém um bom número de estimadores para os parâmetros de equações estruturais de um modelo de equações simultâneas. Quanto à informação que utilizam, estes estimadores podem ser classificados em duas classes: os de informação limitada e os estimadores de informação completa. Os estimadores de informação limitada levam em conta apenas a informação que diz respeito a uma particular equação do modelo, enquanto os estimadores de informação completa incorporam toda

^{*} O autor deseja agradecer os comentários e sugestões de Clovis de Faro e Maria da Conceição Silva a uma versão preliminar deste trabalho. Após a conclusão desta versão, chegou as minhas mãos a revista Econometrica de julho de 1976 que contém um paper de autoria de J. Daniel Khazzoon intitulado An indirect least squares estimator for overidentified equations, no qual o estimador indireto generalizado de mínimos quadrados é derivado com o auxílio da matriz inversa de Moore-Penrose. A derivação que apresento aqui foi obtida independentemente pelo autor do presente trabalho, em um paper preparado para o Curso de Econometria II, oferecido pelo Prof. Arnold Zellner na Universidade de Chicago em março de 1974. O enfoque que adoto não faz uso da inversa de Moore-ePnrose. Entretanto, os resultados são idênticos aos de Khazzoon.

^{**} Do Instituto de Pesquisas do IPEA.

a informação contida no modelo. Um dos estimadores de informação limitada é o estimador indireto de mínimos quadrados. É bastante conhecido o fato de este estimador ser restrito a equações estruturais exatamente identificadas. No segundo item deste trabalho mostramos que o estimador indireto de mínimos quadrados pode ser generalizado de tal maneira a tornar viável a sua aplicação também no caso de equação estrutural superindentificada. O estimador indireto generalizado de mínimos quadrados é consistente, porém não é assintoticamente eficiente. Como os demais estimadores de informação limitada, as propriedades deste estimador, para pequenas amostras, não são conhecidas. ¹

Uma proposição bastante familiar, na literatura econométrica, é a de que a estimação dos parâmetros estruturais de uma equação estrutural pressupõe a identificação da equação. Entretanto, devido ao fato de que é possível obterem-se estimadores dos parâmetros da equação estrutural quando a condição de ordem é satisfeita mas a condição de posto (rank) deixa de ser observada, é bem possível que alguns dos modelos encontrados na econometria aplicada não sejam identificados. O terceiro item cuida deste problema, lembrando que alguns testes de hipóteses foram elaborados com o intuito de eliminar a possibilidade da estimação de parâmetros não-identificados.

Uma das justificativas, talvez a única do ponto de vista teórico, para o uso de mínimos quadrados ordinários na estimação de modelos de equações simultâneas não-recursivos é quando o modelo é grande ou a amostra é pequena. Em outras palavras, quando o número de variáveis predeterminadas é maior que o número de observações, um caso bastante comum em modelos econométricos, a estimativa de mínimos quadrados em dois estágios reduz-se a mínimos quadrados ordinários. O último item deste trabalho reproduz esta propriedade demonstrando-a, porém, a partir de um enfoque diferente do originalmente empregado para a sua derivação.

2. Identificação e mínimos quadrados indiretos

Com o objetivo de tornar a exposição mais clara, repetimos a seguir o bem conhecido teorema na literatura econométrica que diz respeito à identificação de uma equação estrutural quando se sabe, a priori, que

872 R.B.E. 2/77

¹ Algumas propriedades, para pequenas amostras, já são conhecidas para estimadores de informação limitada. Por exemplo, para o estimador de mínimos quadrados em dois estágios, veja Mariano (1972).

alguns coeficientes da equação em estudo são iguais a zero. 2 Sem perda de generalidade, a primeira equação de um sistema de L equações simultâneas com K variáveis predeterminadas pode ser escrita,

$$y_1 = Y_1 \gamma_1 + X_1 \beta_1 + u_1 = Z_1 \delta_1 + u_1 \tag{2.1}$$

onde γ_1 , um vetor L_1 x 1, e β_1 , um vetor K_1 x 1, são os parâmetros estruturais a serem estimados. A matriz $[y_1 \mid Y]_1$ é a matriz das variáveis endógenas incluídas na equação (2.1) de ordem T x $(1 + L_1)$: onde T é o tamanho da amostra, ou seja, o número de observações. A matriz $X = [X_1 \mid X_0]$, de ordem T x $(K_1 + K_1)$, é a matriz de variáveis predeterminadas do sistema de equações simultâneas e $K_2 = K - K_1$ variáveis predeterminadas que são excluídas da equação (2.1). O vetor u_1 é um vetor T x 1 de erros aleatórios, o qual, por hipótese, tem valor esperado zero e matriz de variância-covariância igual a σ_1 I, onde I é a matriz identidade. A matriz $Z_1 = [Y_1 \mid X_1]$ e o vetor $\delta'_1 = [\gamma'_1 \mid \beta'_1]$.

A forma reduzida das variáveis endógenas incluídas na equação (2.1) pode ser escrita,

$$[y_1 \mid Y_1] = [X_1 \mid X_o] \begin{bmatrix} \pi_{11} & \Pi_{10} \\ \pi_{01} & \Pi_{00} \end{bmatrix} + [v_1 \mid V_1]$$
 (2.2)

onde π_{11} e π_{01} são vetores coluna de ordem K_1 x l e K_2 x l, respectivamente. As matrizes Π_{10} e Π_{00} são matrizes de ordem K_1 x L_1 e K_2 x L_1 , respectivamente, e a matriz $[v_1 \ | \ V_1]$ é a matriz de ordem T x $(1 + L_1)$ de erros aleatórios da forma reduzida.

Pós-multiplicando ambos os lados da equação acima por $[1 \mid -\gamma'_1]'$, obtemos: ³

$$y_1 - Y_1 \gamma_1 = X_1 (\pi_{11} - \Pi_{10} \gamma_1) + X_o (\pi_{01} - \Pi_{00} \gamma_1) + u_1$$
 (2.3)

² A demonstração apresentada aqui usa a regra de normalização do coeficiente da variável y_1 . Esta regra, ou quaquer outra, não é necessária para o estudo da identificação. Entretanto, para o nosso propósito, esta regra é extremamente conveniente. Para o estudo do problema de identificação sem fazer uso de regras de normalização veja, por exemplo, Koopmans & Hood (1953).

Estamos usando a propriedade de que $v_1 - V_1\gamma_1 = u_1$ a qual pode ser derivada como se segue. O modelo de L equações simultâneas pode ser escrito em sua forma estrutural na forma $Y\Gamma = XB + U$. As matrizes Γ e B são matrizes de parâmetros de ordem $L \times L$ e $K \times K$, respectivamente. A matriz de variáveis endógenas y é de ordem $T \times L$. A matriz $U = [u_1, 2, ..., u_L]$ de erros aleatórios é de ordem $T \times L$. A forma reduzida é obtida a partir da forma estrutural pós-multiplicando ambos os lados da equação estrutural por Γ^{-1} : $Y = XB\Gamma^{-1} + U\Gamma^{-1} = X\Pi_1 + V$, onde $\Pi_1 = B\Gamma^{-1}$ e $V = U\Gamma^{-1}$. A primeira columa de Γ corresponde aos coeficientes das variáveis endógenas na equação (2.1) e é dada pelo vetor $[1 ! - \gamma_1' : 0']'$. Do fato que $V\Gamma = U$ concluímos que $v_1 - V \cdot \gamma_1 = u_1$.

Comparando as equações (2.1) e (2.3) temos que,

$$\pi_{11} - \Pi_{10} \ \gamma_1 = \beta_1$$

$$\pi_{01} - \Pi_{00} \ \gamma_1 = 0$$
(2.4)

ou usando notação matricial:

$$\begin{bmatrix} \pi_{11} \\ \pi_{01} \end{bmatrix} = \begin{bmatrix} \Pi_{10} & I \\ \Pi_{00} & 0 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \beta_1 \end{bmatrix}$$
 (2.5)

Com a finalidade de simplificar a notação, denominamos Q a matriz de ordem $(K_1 + K_2)$ x $(L_1 + K_1)$ que apareceu no lado direito da equação (2.5):

$$Q = \begin{bmatrix} \Pi_{10} & I \\ \Pi_{00} & 0 \end{bmatrix} = [\Pi \ D] \tag{2.6}$$

onde:

$$\Pi = \begin{bmatrix} \Pi_{10} \\ \Pi_{00} \end{bmatrix} \quad \mathbf{e} \quad D = \begin{bmatrix} I \\ 0 \end{bmatrix}$$

A expressão depois do segundo sinal de igualdade em (2.6) é uma forma alternativa de escrever a matriz Q, que será útil mais adiante em conexão com o estimador indireto generalizado de mínimos quadrados. Denominamos por π o vetor $\pi' = [\pi'_{11} \mid \pi'_{01}]$. Assim, podemos escrever a a equação (2.5) como:

$$\pi = Q \, \delta_1 \tag{2.7}$$

A equação estrutural (2.1) será identificada, quando for possível calcular os coeficientes β'_s e γ'_s da forma estrutural a partir do conhecimento dos coeficientes π'_s da forma reduzida. Isto é, a equação (2.1) será identificada, se e somente se a equação (2.7) tiver uma única solução

374

⁴ Não se deve perder de vista o fato de que identificação não é um problema relativo somente a modelos de equações simultâneas. De um modo geral, o problema de identificação existe quando um dado conjunto de observações y pode ser gerado por diferentes funções de densidade de probabilidade, isto ϵ , $p(y/\theta) = p(y/\phi)$, onde $\theta \in \phi$ são diferentes parâmetros. Neste caso, não se pode discernir a partir da amostra qual dos dois modelos está gerando as observações y. O modelo é dito não-identificado e os parâmetros não são identificados. Para uma explicação mais detalhada veja Zellner (1971) p. 253-8.

para o vetor δ . Portanto, a condição necessária e suficiente para que a equação (2.1) seja identificada é que a matriz Q tenha o posto (rank) igual ao número de colunas $(L_1 + K_1)$, e que o vetor π pertença ao espaço gerado pelas colunas de Q, ou equivalentemente,

$$\rho \left[\Pi_{00} \right] = \rho \left[\pi_{01} \ \Pi_{00} \right] = L_1 \tag{2.8}$$

onde ρ representa o posto da matriz indicada entre colchetes. Uma condição necessária para a condição (2.8) ser satisfeita, denominada condição de ordem, é a seguinte:

$$K - K_1 \ge L_1 \tag{2.9}$$

É importante notar que a desigualdade acima pode verificar-se para uma equação estrutural e esta equação não ser identificada, porque a condição (2.8) não é observada. De qualquer forma, a desigualdade (2.9) é bastante popular, pois serve para, numa primeira aproximação, estudar se uma equação estrutural é identificada ou não, dado que sua aplicação é bastante simples: o número de variáveis predeterminadas excluídas da equação deve ser, pelo menos, igual ao número de variáveis endógenas incluídas, menos uma. Entretanto, o uso indiscriminado desta condição pode acarretar um erro bastante grave, como o de se estimarem os parâmetros de uma equação não-identificada. No próximo item mostraremos como tal fato pode ocorrer.

2.1 Identificação exata e superidentificação

No restante deste item admitimos que a condição (2.8) é satisfeita e que, portanto, a equação (2.1) é identificada.

A expressão (2.7) contém um sistema de K equações lineares com $(L_1 + K_1)$ incógnitas, os elementos do vetor δ_1 . A solução deste sistema é dada por:

$$\delta_1 = (Q' \ Q)^{-1} \ Q' \ \pi \tag{2.10}$$

Na hipótese de a condição de ordem (2.9) traduzir-se pela igualdade $K = K_1 + L_1$, a matriz Q é uma matriz quadrada de posto completo. Portanto, a solução (2.10) reduz-se a:

$$\delta_1 = Q^{-1} (Q')^{-1} Q' \pi = Q^{-1} \pi$$
 (2.11)

Neste caso, a equação estrutural (2.1) é dita ser exatamente identificada. Por outro lado, quando a condição de ordem se traduz pela desigualdade $K > K_1 + L_1$ e os valores estimados da forma reduzida, digagamos \hat{Q} e $\hat{\pi}$, são substituídos na expressão (2.7), obtemos diferentes valores para δ_1 de acordo com o subconjunto de $K_1 + L_1$ equações que for selecionado das K equações que formam o sistema (2.7). Neste caso, a equação estrutural (2.1) é superidentificada. É importante observar que, na solução do sistema (2.7) dada por (2.10), é irrelevante o fato de a equação ser exatamente identificada ou superidentificada pois a solução é única quando substituímos os valores de \hat{Q} e $\hat{\pi}$ em (2.10).

2.2 O estimador indireto generalizado de mínimos quadrados

O estimador indireto generalizado de mínimos quadrados $\hat{\delta}_1$ é obtido quando substituímos os valores de Q e π em (2.10) pelos estimadores $\hat{\Pi}$ e $\hat{\pi}$ de forma reduzida, isto é,

$$\hat{\delta}_1 = (\hat{Q}' \ \hat{Q})^{-1} \ \hat{Q}' \ \hat{\pi}, \tag{2.12}$$

onde a matriz \hat{Q} é expressa por

$$\widehat{Q} = [\widehat{\Pi} \mid D] \tag{2.13}$$

e os estimadores $\hat{\Pi}$ e $\hat{\pi}$ da forma reduzida são:

$$\hat{\Pi} = (X' \ X)^{-1} \ X' \ Y_1 \tag{2.14}$$

$$\hat{\pi} = (X' \ X)^{-1} \ X' \ y_1 \tag{2.15}$$

Denominamos o estimador $\hat{\delta}_1$ de estimador indireto generalizado de mínimos quadrados por dois motivos. Em primeiro lugar, porque este estimador é obtido indiretamente através dos estimadores $\hat{\Pi}$ e $\hat{\pi}$. Em segundo lugar porque, no caso particular de a equação estrutural ser exatamente identificada, $\hat{\delta}_1$ reduz-se ao tradicional estimador indireto de mínimos quadrados:

$$\hat{\delta}_1 = \hat{Q}^{-1} \hat{\pi} \tag{2.16}$$

Cuidemos, agora, de obter expressões algébricas para o estimador δ_1 em função das matrizes de observações X e $[y_1 \mid Y_1]$. Usamos a relação (2.13) para escrever o estimador δ_1 da seguinte forma:

$$\hat{\delta}_1 = \begin{bmatrix} \hat{\Pi}' & \hat{\Pi} & \hat{\Pi}' & D \\ D' & \hat{\Pi} & D' & D \end{bmatrix}^{-1} \begin{bmatrix} \hat{\Pi}' \\ D' \end{bmatrix} \hat{\pi}$$
 (2.17)

Em seguida, substituímos os valores de $\hat{\Pi}$ e $\hat{\pi}$ dados em (2.14) e (2.15) na expressão (2.17) e obtemos: ⁵

$$\hat{\delta}_{1} = \begin{bmatrix} Y'_{1} \ X \ (X' \ X)^{-2} \ X' \ Y_{1} & Y'_{1} \ X \ (X' \ X)^{-2} \ X' \ X_{1} \end{bmatrix}^{-1} \cdot (2.18)$$

$$\cdot \begin{bmatrix} Y'_{1} \ X \ (X' \ X)^{-2} \ X' \end{bmatrix} y_{1}$$

ou, usando uma notação mais simples: 6

$$\hat{\delta}_1 = [Z_1' \ X \ (X' \ X)^{-2} \ X' \ Z_1]^{-1} \ Z_1' \ X \ (X' \ X)^{-2} \ X' \ y_1$$
 (2.19)

2.3 Propriedades do estimador $\hat{\delta}_1$

Substituímos o valor de y_1 , dado pelo lado direito do segundo sinal de igualdade de (2.1), em (2.19), e obtemos:

$$\hat{\delta}_1 = \delta_1 + [Z_1' \ X \ (X' \ X)^{-2} \ X' \ Z_1]^{-1} \ Z_1' \ X \ (X' \ X)^{-2} \ X' \ u_1 \qquad (2.20)$$

De acordo com algumas hipóteses tradicionais no estudo dos estimadores dos parâmetros de um sistema de equações simultâneas temos que 7

$$\begin{aligned} plim \left[\frac{Z_1' \ X}{T} \left(\frac{X' \ X}{T} \right)^{-2} \ \frac{X' \ Z_1}{T} \right]^{-1} & \text{\'e finita, e} \\ plim \left[\frac{Z_1' \ X}{T} \left(\frac{X' \ X}{T} \right)^{-2} \ \frac{X' \ u_1}{T} \right] & \text{\'e igual a zero.} \end{aligned}$$

Aplicando estes resultados a (2.20) concluímos que,

$$plim \hat{\delta}_1 = \delta_1 \tag{2.21}$$

o que significa dizer que o estimador indireto generalizado de mínimos quadrados é consistente.

⁶ Embora não seja tão óbvio, é possível mostrar que: D' $\widehat{\Pi}=X'_1X(X'X)^{-2}X'Y_1$. A demonstração é bastante simples: D' $\widehat{\Pi}=D'$ $(X'X)^{-1}$ X' $Y_1=D'$ X' X $(X'X)^{-1}$ $(X'X)^{-1}$ X' $Y_1=X'_1$ X $(X'X)^{-2}X'Y_1$, tendo em vista que D' $X'=X'_1$. Similarmente, calcula-se o produto D' $\widehat{\Pi}$.

⁶ Para obtermos (2.19) a partir de (2.18) usamos o fato de que: $X'_1 X (X' X)^{-2} X' X = D' X' X (X' X)^{-2} X' X D = I$, pois D' D = I.

⁷ Estas hipóteses estão listadas em Theil (1971) cap. 10.

A distribuição assintótica da variável aleatória \sqrt{T} ($\hat{\delta}_1 - \delta_1$) pode ser obtida com o seguinte procedimento. Da expressão (2.20) temos que:

$$\sqrt{T} \left(\hat{\delta}_1 - \delta_1 \right) = \left[\frac{Z_1' X}{T} \left(\frac{X' X}{T} \right)^{-2} \frac{X' Z_1}{T} \right]^{-1} \frac{Z_1' X}{T} \left(\frac{X' X}{T} \right)^{-2} \frac{X' u_1}{\sqrt{T}}$$

$$(2.22)$$

Por outro lado, as hipóteses a que nos referimos abaixo de (2.20) nos possibilitam afirmar que:

$$plim \left[\frac{Z_1' X}{T} \left(\frac{X' X}{T} \right)^{-2} \frac{X' Z_1}{T} \right]^{-1} \frac{Z_1' X}{T} \left(\frac{X' X}{T} \right)^{-2} = G$$

onde G é uma matriz cujos elementos são finitos. Em seguida, lançamos mão do teorema que afirma que a distribuição assintótica de X' u_1/\sqrt{T} é normal com valor esperado zero e matriz de variância-covariância igual a σ_1 $plim\left(\frac{X'X}{T}\right)$. 8 Podemos, então, concluir que a distribuição assintótica de \sqrt{T} $(\hat{\delta}_1 - \delta_1)$ é normal com média zero e matriz de variância-covariância Var $\hat{\delta}_1$ igual a:

$$\sigma_1 G \left[plim \left(\frac{X' X}{T} \right) \right] G' = Var \hat{\delta}_1$$
 (2.23)

Embora o estimador indireto generalizado de mínimos quadrados tenha a propriedade de ser consistente, $\hat{\delta}_1$ não é assintoticamente eficiente, porque a variância deste estimador é diferente da variância do estimador de mínimos quadrados em dois estágios, o qual é assintoticamente eficiente. Com o objetivo de demonstrar esta proposição 9 comecemos por simplificar a notação denominando por P a matriz:

$$P = \left(\frac{X' X}{T}\right)^{-1} \frac{X' Z_1}{T} \tag{2.24}$$

Em seguida, introduzimos a matriz Δ definida por:

$$(P' \ P)^{-1} \ P' = \left(P' \ \frac{X' \ X}{T} \ P\right)^{-1} P' \left(\frac{X' \ X}{T}\right) + \Delta$$
 (2.25)

⁸ Veja Theil. op. cit. p. 487.

R.B.E. 2/77

A demonstração que apresentamos abaixo é em grande parte baseada em Dhrymes (1974), quando este compara os estimadores de dois e três estágios.

Concluímos, da expressão anterior, que a matriz \Delta satisfaz a equação:

$$\Delta P = 0 \tag{2.26}$$

A matriz (2.23), a parte do escalar σ_1 , pode ser escrita em termos da matriz P, definida em (2.24), da seguinte forma:

$$G\left(\frac{X'\ X}{T}\right)G' = (P'\ P)^{-1}\ P'\left(\frac{X'\ X}{T}\right)^{-1}P\ (P'\ P)^{-1}$$
 (2.27)

onde o símbolo plim foi suprimido com a finalidade de não sobrecarregar a notação. Contudo, tanto a matriz P como as demais que aparecem depois da expressão (2.23) devem ser entendidas como limites em probabilidade (plim).

O lado direito da igualdade (2.27) pode ser escrito levando em conta a expressão (2.25) da seguinte maneira:

$$(P' P)^{-1} P' \left(\frac{X' X}{T}\right)^{-1} P (P' P)^{-1} =$$

$$= \left[\left(P' \frac{X' X}{T} P\right)^{-1} P' \frac{X' X}{T} + \Delta\right] \cdot \left(\frac{X' X}{T}\right)^{-1} \cdot \left(\frac{X' X}{T}\right)^{-1} \cdot \left(\frac{X' X}{T} P\right)^{-1} + \Delta'\right]$$

A expressão acima pode ser simplificada, tendo em vista que $\Delta P \equiv 0$. O resultado desta simplificação é:

$$(P' \ P)^{-1} \ P' \left(\frac{X' \ X}{T}\right)^{-1} P (P' \ P)^{-1} =$$

$$\left(P' \ \frac{X' \ X}{T} \ P\right)^{-1} + \Delta \left(\frac{X' \ X}{T}\right)^{-1} \Delta'$$
(2.29)

A primeira matriz que aparece no lado direito da expressão (2.29) é a matriz de variância-covariância $Var \hat{\delta}_1$ do estimador de mínimos quadrados em dois estágios (a parte do escalar σ_1):

$$\left(P' \frac{X' X}{T} P\right)^{-1} = \left[\frac{Z_1' X}{T} \left(\frac{X' X}{T}\right)^{-1} \frac{X' Z_1}{T}\right]^{-1} = Var \ \tilde{\delta}_1 \quad (2.30)$$

Portanto, a expressão (2.29) nos diz que:

$$Var \ \hat{\delta}_1 = Var \ \hat{\delta}_1 + \Delta \left(\frac{X' \ X}{T} \right)^{-1} \Delta' \tag{2.31}$$

Lembrando que a matriz $\left(\frac{X'X}{T}\right)^{-1}$ é uma matriz positiva definida, concluímos que a matriz $\Delta \left(\frac{X'X}{T}\right)^{-1}$ Δ' é pelo menos positiva semidefinida, o mesmo ocorrendo, portanto, com a matriz $Var \, \hat{\delta}_1 - Var \, \hat{\delta}_1$. Segue-se, então, que o estimador $\hat{\delta}_1$ não é, em geral, assintoticamente eficiente. No caso particular de a equação estrututral ser exatamente identificada, a equação (2.31) reduz-se a:

$$Var \ \hat{\delta}_1 = Var \ \tilde{\delta}_1 \tag{2.32}$$

porque a matriz P é uma matriz quadrada de posto completo e de (2.25) temos que P = 0.

A estatística

$$s_1 = \frac{1}{T} (y_1 - Z_1 \hat{\delta}_1) ' (y_1 - Z_1 \hat{\delta}_1)$$
 (2.33)

é um estimador consistente da variância σ_1 . A prova desta propriedade é bastante simples. Substituindo (2.1) em (2.33) obtemos:

$$s_{1} = \frac{u'_{1} u^{1}}{T} - \frac{u'_{1} Z_{1}}{T} (\hat{\delta}_{1} - \delta_{1}) - \frac{(\hat{\delta} - \delta_{1}) Z'_{1} u_{1}}{T} + (\hat{\delta}_{1} - \delta_{1}) Z'_{1} Z_{1} (\hat{\delta}_{1} - \delta_{1})$$

$$(2.34)$$

A partir de (2.34) concluímos que

$$plim \ s_1 = plim \ \frac{u_1' \ u_1}{T} = u_1' \tag{2.35}$$

baseados no fato de que plim $(\hat{\delta}_1 - \delta_1) = 0$ e de que plim $u_1, u_1/T = \sigma_1$.

É fácil derivar a partir de (2.23) e de (2.33) os erros-padrões (assintóticos) da estimativa do estimador indireto generalizado de mínimos quadrados. Isto é, a partir de (2.23) e (2.33) concluímos que os erros-padrões da estimativa dos elementos do vetor $\hat{\delta}_1$ são dados pelas raízes quadradas dos elementos da diagonal principal da matriz:

$$s_{1} [Z_{1}' X (X' X)^{-2} X' Z_{1}]^{-1} Z_{1}' X (X' X)^{-3} X' Z_{1} \cdot [Z_{1}' X (X' X)^{-2} X' Z^{1}]^{-1}$$

$$(2.36)$$

É um fato bem conhecido que o estimador de mínimos quadrados em dois estágios depende da regra de normalização adotada, isto é, de qual é a variável endógena escolhida para ser a variável "dependente" na equação estrutural em estudo. O mesmo não ocorre, entretanto, com o estimador de máxima verossimilhança de informação limitada. O estimador de mínimos quadrados indireto generalizado tem em comum com o estimador de mínimos quadrados em dois estágios o fato de que ambos dependem da regra de normalização. Obviamente, quando $T \rightarrow \infty$ a regra de normalização deixa de ser relevante.

Cabe, também, assinalar que o estimador indireto generalizado de mínimos quadrados não pertence, em geral, a classe-k de estimadores, a qual é definida por:

$$(\delta_{1})_{k} = \begin{bmatrix} Y_{1}' Y_{1} - k & \hat{U}_{1} & \hat{U}_{1} & & Y_{1}' X_{1} \\ & X_{1}' Y_{1} & & & X_{1}' X_{1} \end{bmatrix}^{-1} \begin{bmatrix} Y_{1}' - k & \hat{U}_{1}' \\ & X_{1}' & \end{bmatrix} y_{1} \quad (2.37)$$

onde

$$\hat{U}_1 = [I - X (X' X)^{-1} X'] Y_1$$

e k é um escalar arbitrário, o qual pode ser estocástico ou não. ¹⁰ Comparando-se as expressões (2.37) e (2.18), a conclusão mencionada no início deste parágrafo é obtida.

3. Identificação e estimação

O estimador de mínimos quadrados em dois estágios (MQ2E) pode ser derivado de diferentes maneiras. Para o propósito deste item o enfoque algébrico parece-nos o mais indicado. A equação (2.2) combinada com a equação (2.5) pode ser escrita:

$$y_1 = \begin{bmatrix} X_1 & X_0 \end{bmatrix} \begin{bmatrix} \Pi_{10} & I \\ \Pi_{00} & 0 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \beta_1 \end{bmatrix} + v_1$$
 (3.1)

¹⁰ Por exemplo, quando k=0 temos o estimador de mínimos quadrados ordinários; fazendo k=1 em (2.37) obtemos o estimador de mínimos quadrados em dois estágios. Quando $k=\mu$ e μ é a menor raiz da equação:

$$\left| \begin{bmatrix} \boldsymbol{v_1}' \\ \boldsymbol{Y_1'} \end{bmatrix} \boldsymbol{M_1} \left[\boldsymbol{y_1} \ \boldsymbol{Y_1} \right] - \boldsymbol{\mu} \begin{bmatrix} \boldsymbol{v_1}' \\ \boldsymbol{Y_1'} \end{bmatrix} \boldsymbol{M} \left[\boldsymbol{v_1} \ \boldsymbol{Y_1} \right] \right| = 0$$

onde:

$$M = I + X \; (X' \; X)^{-}{}' + X' \; M_1 = I - X_1 \; (X_1^{'} \; X_1^{'-1} \; X_1^{'},$$

o estimador da classe k coincide com o estimador de máxima verossimilhança de informação limitada. Para um estudo detalhado da classe k veja, por exemplo, Theil op. cit. cap. 10.

Se os valores de Π_{10} e Π_{00} fossem conhecidos, poderíamos aplicar o método de mínimos quadrados ordinários (MQO) à equação anterior. O estimador assim obtido seria dado por:

$$d_1 = [Q' \ X' \ XQ]^{-1} \ Q' \ X' \ y_1 \tag{3.2}$$

Entretanto, devido ao fato de que Π_{10} e Π_{00} são parâmetros que têm de ser estimados, visto não serem conhecidos *a priori*, o estimador (3.2) não pode ser aplicado na prática. Todavia, o problema é facilmente contornado usando-se a matriz

$$\hat{Q} = \begin{bmatrix} \hat{\Pi}_{10} & I \\ \hat{\Pi}_{00} & 0 \end{bmatrix}$$

ao invés da matriz Q em (3.2), onde $\hat{\Pi}_{10}$ e $\hat{\Pi}_{00}$ são os estimadores de minimos quadrados da forma reduzida (2.2). Desta maneira, obtemos o estimador de MQ2E:

$$\tilde{\delta}_1 = [\hat{Q}' \ X' \ X]^{-1} \ \hat{Q}' \ X' \ y_1 \tag{3.3}$$

Sob certas condições de regularidade, o estimador de MQ2E é consistente e \sqrt{T} $\tilde{\delta}_1 - \delta_1$) tem uma distribuição assintótica normal. ¹¹ Uma destas condições é a de que a equação estrutural (2.1) seja identificada, o que significa afirmar que, de acordo com (2.8) o posto de II₀₀ é igual a L_1 . Obviamente, o estimador de MQ2E (3.3) não existe quando a condição de ordem não é satisfeita, pois esta é uma condição necessária para a identificação da equação estrutural (2.1).

No que diz respeito à existência de uma estimativa de MQ2E concluímos, baseados na expressão (3.3), que tal estimativa não existe quando a condição de ordem não é satisfeita. Porém, se a condição de ordem é satisfeita e a condição de posto não é — o que significa dizer que a equação (2.1) não é identificada — uma estimativa de MQ2E é facilmente obtida porque o posto de $\hat{\Pi}_{00}$, em pequenas amostras, é igual a L_1 com probabilidade um. Este fato pode conduzir a um procedimento completamente sem sentido: o de se estimarem os parâmetros de uma equação estrutural não-identificada. Por outro lado, a existência de tal possibilidade evidencia a importância da aplicação de teste de hipótese para saber se o modelo está corretamente especificado. É interessante observar que em

¹¹ Veja Theil op. cit. cap. 10.

econometria aplicada tais testes, em geral, não são aplicados. O pesquisador contenta-se em aplicar a condição de ordem, esquecendo-se da condição de posto. Isto não quer dizer que testes com a finalidade de testar a condição de posto não existam. Os testes existem e podem ser encontrados na literatura econométrica. ¹² Todavia, livros-textos como os de Johnston (1972) e Kmenta (1971), para citar dois livros bastante populares em cursos de econometria, simplesmente nem sequer mencionam a existência destes testes.

4. Multicolinearidade, amostras pequenas, modelos grandes

Swamy e Holmes (1971) e Fisher e Wadycki (1971) provaram, independentemente, que, ao contrário do que era afirmado na literatura econométrica, o estimador de mínimos quadrados de dois estágios existe e é único quando o posto da matriz de variáveis predeterminadas não é igual ao número de colunas desta matriz. Ademais, eles provaram que, na hipótese de o número de observaçeõs ser menor que o número total de variáveis predeterminadas, o que corresponde ao caso de amostras pequenas ou de modelos grandes, o estimador de MQ2E reduz-se a mínimos quadrados ordinários (MQO). A prova destas proposições baseou-se na generalização do estimador de MQ2E através do conceito da matriz inversa generalizada.

A seguir, reproduzimos alguns dos resultados derivados por aqueles autores, usando um enfoque diferente, devido a Basmann (1957), o qual não requer o uso da matriz inversa generalizada. Mais adiante, uma comparação entre os dois enfoques é apresentada.

4.1 O enfoque clássico linear generalizado de Basmann

O estimador de MQ2E pode ser obtido a partir de uma classe de estimadores d definido pelas seguintes relações: ¹³

$$d = A y_1 \tag{4.1}$$

$$A = [(CZ_1)' (CZ_1)]^{-1} (CZ_1)'$$
(4.2)

$$C' \quad C = C = C' \tag{4.3}$$

¹² Veja Koopmans & Hood. op. cit. p. 178-85.

¹⁸ O estimador indireto generalizado de mínimos quadrados não pertence à classe definida por (4.1) - (4.3). A comprovação desta afirmação pode ser feita comparando-se $d = [Z_1' \ CZ_1]^{-1} \ Z_1' \ C' \ x_1 \ com (2.19)$ e notando que $C' \ C \ne C = C'$.

Quando a matriz C é dada pela expressão

$$C = X (X' X)^{-1} X' (4.4)$$

o estimador d,

$$d = [Z_1' \ X \ (X' \ X)^{-1} \ X' \ Z_1]^{-1} \ Z_1' \ X \ (X' \ X)^{-1} \ X' \ y_1 \tag{4.5}$$

é o estimador de MQ2E, o qual é assintoticamente eficiente na classe definida por (4.1) - (4.3). É óbvio que se a matriz $(X' X)^{-1}$ não existe, o estimador (4.5) de MQ2E também não existe.

Quando a matriz X não é uma matriz de posto completo de coluna, o que ocorre na presença de multicolinearidade, ou ainda quando temos somente um pequeno número de observações, podemos escrever a matriz X da seguinte forma:

$$X = [X_r \mid X_s],$$

onde a matriz X_r de ordem $T \times r$ tem posto igual a r. Neste caso, podemos usar um estimador de MQ2E dentro da classe de estimadores definida por (4.1) - (4.3), com a matriz C definida por:

$$C = X_r (X_r' X_r)^{-1} X_r' (4.6)$$

O estimador assim obtido é um estimador menos eficiente (assintoticamente) que aquele dado por (4.1) - (4.4). O procedimento usual, quando multicolinearidade está presente, é o de escolher um subconjunto das variáveis predeterminadas, o que equivale a usar um estimador com a matriz C dada por (4.6).

No caso de amostras pequenas, o número de variáveis predeterminadas, K, é menor que o número T de observações, e, obviamente, a matriz X' X não possui inversa. Dentro da classe de estimadores definida por (4.1) - (4.3) - (4.6), podemos selecionar um estimador d de MQ2E no qual a matriz X_r tenha o posto r igual a T. Da expressão (4.6) concluímos que, se ρ $(X_r) = T$ a matriz C = I, e de (4.1) e (4.2) segue-se que a estimativa deste estimador de MQ2E é

$$d = (Z_1' Z_1)^{-1} Z_1' y_1 (4.7)$$

A partir de (4.7), concluímos que a estimativa do estimador de MQ2E coincide com aquela obtida através de mínimos quadrados ordi-

nários. Observe, entretanto, que no enfoque apresentado na página anterior o estimador de MQ2E, que dá origem a este resultado, é diferente do estimador usual de MQ2E e, portanto, é menos eficiente (assintoticamente) que (4.5).

4.2 O enfoque da matriz inversa generalizada

O uso da matriz inversa generalizada para resolver o problema encontrado quando o posto da matriz de variáveis predeterminadas não é igual ao número de colunas desta matriz (inclusive os casos de multicolinearidade e de amostras pequenas) conduz à seguinte generalização do estimador de MQ2E. Ao invés de (4.4) a matriz C passa a ser definida pela expressão

$$C = X G X', \tag{4.8}$$

onde G é uma inversa generalizada da matriz X' X, isto é, X' X G X' X = X' X. Portanto, (4.1) - (4.3) e (4.8) fornecem o estimador de MQ2E generalizado, o qual é único, embora a matriz G não seja única. Esta propriedade baseia-se numa proposição, bem conhecida da álgebra linear, que nos diz ser a expressão (4.8) invariante quanto à escolha da matriz G. ¹⁴

Com a finalidade de comparar os dois enfoques apresentados, admitamos que o posto da matriz X seja igual a r e que $X = [X_r \mid X_s]$, X_r é uma matriz cujo posto é igual a r e em conseqüência as colunas da matriz X_s são combinações lineares das colunas da matriz X_r . Devido ao fato, já mencionado acima, de que (4.8) é invariante quanto à escolha da matriz G, podemos escolher, sem perda de generalidade, a seguinte inversa generalizada de G:

$$G = \begin{bmatrix} (X_r' \ X_r)^{-1} & 0 \\ 0 & 0 \end{bmatrix}$$
 (4.9)

onde as matrizes nulas aparecendo em (4.9) têm a ordem apropriada. ¹⁵ É fácil verificar que substituindo (4.9) em (4.8) obtemos:

$$C = X' G X = X_r (X_r' X_r)^{-1} X_r'$$
(4.10)

¹⁴ Veja, por exemplo, Searle (1971). É interessante observar que, se usarmos a inversa de Moore-Penrose, a qual é única, ao invés de G, os mesmos resultados são obtidos.

¹⁵ Para demonstrar que $G \in \text{uma inversa generalizada de } G \text{ usamos o fato de } X'_s X_s = X'_s X_r (X'_r X_r) - I X'_r X_s$,

A expressão (4.10) é igual à (4.6). Portanto, o estimador de MQ2E generalizado é equivalente ao estimador de MQ2E obtido quando incluise apenas um subconjunto de variáveis predeterminadas, observando-se a seguinte relação quanto ao posto da matriz X:

$$\rho(X_r) = \rho(X) = r \tag{4.11}$$

Entretanto, se acrescentarmos à classe de estimadores (4.1) - (4.3), (4.8) a condição de que

$$\rho(X) = K \quad \text{para} \quad T > T_0 \tag{4.12}$$

os dois estimadores passam a ser diferentes, pois o estimador de MQ2E generalizado é assintoticamente eficiente (quando $T \to \infty$, ρ (X) = K). Na verdade, é esta maneira peculiar de definir o estimador de MQ2E generalizado que dá margem à afirmação de Fisher e Wadycki de que "two stage least squares estimators (even when they are ordinary least squares estimators for the original T) possess consistency and asymptotic efficiency under the usual assumptions". 16

Bibliografia

Basmann, R. L. A generalized classical method of linear estimation of coeficients in a structural equation. *Econometrica*, v. 25, p. 77-83, 1957. Dhrymes, P. J. *Econometrics statistical foundations and applications*. New York, Springer-Verlag, 1974.

Fisher, W. D. & Wadycki, W. J. Estimating a structural equation in a large system. *Econometrica*, v. 39, p. 461-65, 1971.

Johnston, J. Econometric methods. 2. ed. New York, McGraw Hill, 1976.

Kmenta, J. Elements of econometrics. New York, Macmillan, 1971.

Koopmans, T. C. & Hood, W. C. The estimation of simultaneous linear economic relationships. In: Koopmans & Hood, ed. Studies in econometric method, monografia 14 da Cowles Comission. New York, John Wiley, 1953.

386 R.B.E. 2/77

¹⁸ Fisher & Wadycki (1971) p. 464.

Mariano, R. S. The existence of moments of the ordinary least squares and two-stage least squares estimators. *Econometrica*, v. 40, p. 643-52, 1972.

Searle, S. R. Linear models. New York, John Wiley, 1971.

Swamy, P. A. V. B. & Holmes, J. The use of undersized samples in the estimation of simultaneous equation system. *Econometrica*, v. 39, p. 455-59, 1971.

Theil, H. Principles of econometrics. New York, John Wiley, 1971.

Zellner, A. An introduction to bayesian inference in econometrics. New York, John Wiley, p. 255-8, 1971.