Math 104 Real Analysis

Instructor: Peng Zhou

KELVIN LEE

Contents

1	The	e Real Number Systems 3	
	1	Natural Numbers N	
	2	Rational Numbers \mathbb{Q}	
	3	Real Numbers $\mathbb R$	
	4	$+\infty$ and $-\infty$	
	5	Reading (Rudin's)	
2	Seq	uences 8	
	6	Limits of Sequences	
	7	Proofs of Limits	
	8	Limit Theorems for Sequences	
	9	Monotone Sequences and Cauchy Sequences	
	10	lim sup's and lim inf's	
3	Met	tric Spaces and Topology 17	
	11	Metric Spaces	
	12	Connected Sets	
4	Seri	ies 21	
	13	Series	
	14	Alternating Series	
5	Cor	ntinuity 24	
	15	Limits of Functions	
6	Differentiation 25		
	16	The Derivative of a Real Function	
	17	Mean Value Theorem	
	18	L'Hospital's Rule	

1 Natural Numbers \mathbb{N}

Definition 1.1 (Peano Axioms (Peano Postulates)). The properties of the set of natural numbers, denoted \mathbb{N} , are as follows:

- (i) 1 belongs to \mathbb{N} .
- (ii) If n belongs to \mathbb{N} , then its successor n+1 belongs to \mathbb{N} .
- (iii) 1 is not the successor of any element in \mathbb{N} .
- (iv) If $n, m \in \mathbb{N}$ have the same successor, then n = m.
- (v) A subset of \mathbb{N} which contains 1, and which contains n+1 whenever it contains n, must equal to \mathbb{N} .

Remark. The last axiom is the basis of mathematical induction. Let $P_1, P_2, P_3, ...$ be a list of propositions that may or may not be true. The principle of mathematical induction asserts all the statements $P_1, P_2, ...$ are true provided

- P_1 is true. (Basis for induction)
- $P_n \implies P_{n+1}$. (Induction step)

2 Rational Numbers \mathbb{Q}

Definition 2.1 (Rational Numbers). The set of rational numbers, denoted \mathbb{Q} , is defined by

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid n, m \in \mathbb{Z}, n \neq 0 \right\},\,$$

which supports addition, multiplication, subtraction, and division.

Remark. \mathbb{Q} is a very nice algebraic system. However, there is no rational solution to equations like $x^2 = 2$.

Definition 2.2 (Algebraic Number). A number is called an **algebraic number** if it satisfies a polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where c_0, \ldots, c_n are integers, $c_n \neq 0$ and $n \geq 1$.

Remark. Rational numbers are always algebraic numbers.

Theorem 2.3 (Rational Zeros Theorem). Suppose c_0, c_1, \ldots, c_n are integers and r is a rational number satisfying the polynomial equations

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where $n \ge 1, c_n, c_0 \ne 0$. Let $r = \frac{c}{d}$ where $\gcd(c, d) = 1$. Then $c \mid c_0$ and $d \mid c_n$. In simpler terms, the only rational candidates for solutions to the equation have the form $\frac{c}{d}$ where c is a factor of c_0 and d is a factor of c_n .

Proof. Plug in $r = \frac{c}{d}$ to the equation, we get

$$c_n \left(\frac{c}{d}\right)^n + c_{n-1} \left(\frac{c}{d}\right)^{n-1} + \dots + c_1 \left(\frac{c}{d}\right) + c_0 = 0.$$

Then we multiply by d^n on both sides and get

$$c_n c^n + c_{n-1} c^{n-1} d + \dots + c_1 c d^{n-1} + c_0 d^n = 0.$$

Solving for c_0d^n , we obtain

$$c_0 d^n = -c \left(c_n c^n + c_{n-1}^{n-2} + \dots + c_2 c d^{n-2} + c_1 d^{n-1} \right).$$

Then it follows that $c \mid c_0 d^n$. Since gcd(c, d) = 1, c can only divide c_0 . Now let's instead solve for $c_n c^n$, then we have

$$c_n c^n = -d \left(c_{n-1} c^{n-1} + c_{n-2} c^{n-2} d + \dots + c_1 c d^{n-2} + c_0 d^{n-1} \right).$$

Thus $d \mid c_n c^n$, which implies $d \mid c_n$ because gcd(c, d) = 1.

Corollary 2.4. Consider

$$x^{n} + c_{n-1}x^{n-1} + \dots + c_{1}x + c_{0} = 0,$$

where $c_0, c_1, \ldots, c_{n-1}$ are integers and $c_0 \neq 0$. Any rational solution of this equation must be an integer that divides c_0 .

Proof. Since the Rational Zeros Theorem states that d must divide c_n , which is 1 in this case, r is an integer and it divides c_0 .

Example 2.5. $\sqrt{2}$ is not a rational number.

Proof. Using Corollary 5, if $r = \sqrt{2}$ is rational, then $\sqrt{2}$ must be an integer, which is a contradiction.

3 Real Numbers \mathbb{R}

3.1 The Completeness Axiom

Definition 3.1 (Maximum/minimum). Let S be a nonempty subset of \mathbb{R} .

- (i) If S contains a largest element s_0 (i.e., $s_0 \in S$, $s \le s_0 \forall s \in S$), then s_0 is the **maximum** of S, denoted $s_0 = \max S$.
- (i) If S contains a smallest element, then it is called the **minimum** of S, denoted as min S.

Remark.

- If s_1, s_2 are both maximum of S, then $s_1 \ge s_2, s_2 \ge s_1$, which implies that $s_1 = s_2$. Thus the maximum is **unique** if it exists.
- However, the maximum may not exist (e.g. $S = \mathbb{R}$).
- If $S \subset \mathbb{R}$ is a finite subset, then max S exists.

Definition 3.2 (Upper/Lower bound). Let S be a nonempty subset of \mathbb{R} .

- (i) If a real number M satisfies $s \leq M$ for all $s \in S$, then M is an **upper bound** of S and S is said to be bounded above.
- (i) If a real number m satisfies $\leq s$ for all $s \in S$, then m is a **lower bound** of S and S is said to be bounded below.
- (i) S is said to be bounded if it is bounded above and bounded below. Thus S is bounded if there exist real numbers m and M such that $S \subset [m, M]$.

Definition 3.3 (Supremum/Infimum). Let S be a nonempty subset of \mathbb{R} .

- If S is bounded above and S has a least upper bound, then it is called the **supremum** of S, denoted by sup S.
- If S is bounded below and S has a greatest lower bound, then it is called the **infimum** of S, denoted by inf S.

Remark. If S has a maximum, then max $S = \sup S$. Similarly, if S has a minimum, then min $S = \inf S$. Also note that $\sup S$ and $\inf S$ need not belong to S.

Example 3.4. Suppose we have $S = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\}$. Then max S does not exist and sup S = 1.

Proof. Suppose for contradiction that it exists. Then it must be of the form $1 - \frac{1}{n_0}$ for some $n_0 \in \mathbb{N}$. However,

$$1 - \frac{1}{n_0 + 1} > 1 - \frac{1}{n_0},$$

and $1 - \frac{1}{n_0 + 1} \in S$. Hence a contradiction.

Theorem 3.5 (Completeness Axiom). Every nonempty subset $S \subset \mathbb{R}$ that is bounded above has a least upper bound. In other words, sup S exists and is a real number.

Corollary 3.6. Every nonempty subset $S \subset \mathbb{R}$ that is bounded below has a greatest lower bound inf S.

Proof. Consider the set $-S = \{-s \mid s \in S\}$. Since S is bounded below there exists an $m \in \mathbb{R}$ such that $m \leq s$ for all $s \in S$. This implies $-m \geq -s$ for all $s \in S$, so $-m \geq u$ for all $u \in -S$. Thus, -S is bounded above by -m. The Completeness Axiom applies to -S, so $\sup -S$ exists. Now we show that $\inf S = -\sup -S$. Let $s_0 = \sup -S$, we need to prove

$$-s_0 \le s$$
 for all $s \in S$,

and if $t \leq s$ for all $s \in S$, then $t \leq -s_0$. The first inequality will show that $-s_0$ is a lower bound while the second inequality will show that $-s_0$ is the greatest lower bound, i.e., $-s_0 = \inf S$. The proofs of the two claims are left as an exercise.

Theorem 3.7 (Archimedean Property). If a, b > 0, then na > b for some positive integer n.

Proof. Suppose the property fails for some pair of a, b > 0. That is, for all $n \in \mathbb{N}$, we have $na \le b$, meaning that b is an upper bound for the set $S = \{na \mid n \in \mathbb{N}\}$. Using the Completeness Axiom, we can let $s_0 = \sup S$. Since a > 0, we have $s_0 - a < s_0$, so $s_0 - a$ cannot be an upper bound for S. It follows that $s_0 - a < n_0 a$ for some $n_0 \in \mathbb{N}$, which then implies that $s_0 < (n_0 + 1)a$. Since $(n_0 + 1)a$ is in S, s_0 is not an upper bound for S, which is a contradiction.

Theorem 3.8 (Denseness of \mathbb{Q}). If $a, b \in \mathbb{R}$ and a < b, then there is a rational $r \in \mathbb{Q}$ such that a < r < b.

Proof. We need to show that $a < \frac{m}{n} < b$ for some integers m and n where $n \neq 0$. Equivalently, we want

$$an < m < bn$$
.

Since b-a>0, the Archimedean property shows that there exists an $n\in\mathbb{N}$ such that

$$n(b-a) > 1 \implies bn - an > 1.$$

Now we need to show that there is an integer m between an and bn.

$4 + \infty \text{ and } -\infty$

We adjoint $+\infty$ and $-\infty$ to \mathbb{R} and extend our ordering to the set $\mathbb{R} \cup \{-\infty, +\infty\}$. Explicitly, we have $-\infty \le a \le +\infty$ for all $a \in \mathbb{R} \cup \{-\infty, +\infty\}$.

Remark. $+\infty$ and $-\infty$ are not real numbers. Theorems that apply to real numbers would not work.

We define

 $\sup S = +\infty$ if S is not bounded above

and

 $\inf S = -\infty$ if S is not bounded below.

5 Reading (Rudin's)

5.1 Ordered Sets

Definition 5.1 (Order). Let S be a set. An **order** on S is a relation, denoted by <, with the following two properties:

• If $x \in S$ and $y \in S$, then one and only one of the statements

$$s < y, \quad x = y, \quad , y < x$$

is true.

• If $x, y, z \in S$, if x < y and y < z, then x < z.

Definition 5.2 (Ordered Set). An **ordered set** is a set S in which an order is defined.

For example, Q is an ordered set if r < s is defined to mean that s - r is a positive rational number.

5.2 Fields

Definition 5.3 (Field). A field is a set F with two operations: addition and multiplication, which satisfy the following field axioms:

(A) Axioms for addition

- (A1) If $x, y \in F$, then $x + y \in F$.
- (A2) (Commutativity) $\forall x, y \in F, x + y = y + x$.
- (A3) (Associativity) $\forall x, y, z \in F$, (x + y) + z = x + (y + z).
- (A4) (Identity) $\forall x \in F, 0 + x = x$.
- (A5) (Inverse) $\forall x \in F$, there exists a corresponding $-x \in F$ such that

$$x + (-x) = 0.$$

(M) Axioms for multiplication

- (M1) If $x, y \in F$, then $xy \in F$.
- (M2) (Commutativity) $\forall x, y \in F, xy = yx$.
- (M3) (Associativity) $\forall x, y, z \in F$, (xy)z = x(yz).
- (M4) (Identity) $\forall x \in F$, 1x = x.
- (M5) (Inverse) $\forall x \in F$, there exists a corresponding $\frac{1}{x} \in F$ such that

$$x\left(\frac{1}{x}\right) = 1.$$

(D) The distributive law

$$\forall x, y, z \in F, x(y+z) = xy + xz.$$

Definition 5.4 (Ordered Field). An **ordered field** is a field F which is also an *ordered set*, such that

- (i) if y < z and $x, y, z \in F$, x + y < x + z,
- (i) if x, y > 0 and $x, y \in F$, xy > 0.

SEOUENCES

6 Limits of Sequences

Definition 6.1 (Sequence). A sequence is a function whose domain is a set of the form $\{n \in \mathbb{Z} \mid n \geq m\}$ where m is usually 1 or 0.

One may wonder why do we care about sequence, and the answer is that sequences are useful for approximation.

Definition 6.2. A sequence $\{s_n\}$ of real numbers is said to **converge** to the real number s if $\forall \epsilon > 0$, $\exists N > 0$ such that for all positive integers n > N, we have

$$|s_n - s| < \epsilon$$
.

If $\{s_n\}$ converges to s, we write $\lim_{n\to\infty} s_n = s$, or simply $s_n \to s$, where s is called the **limit** of the sequence. A sequence that does not converge to some real number is said to **diverge**.

7 Proofs of Limits

Example 7.1. Prove $\lim_{n\to\infty} \frac{1}{n^2} = 0$.

Scratch. For any $\epsilon > 0$, we want

$$\left| \frac{1}{n^2} - 0 \right| < \epsilon \iff \frac{1}{n^2} < \epsilon \iff \frac{1}{\epsilon} < n^2 \iff \frac{1}{\sqrt{\epsilon}} < n.$$

Thus, we can just take $N = \frac{1}{\sqrt{\epsilon}}$.

Proof. Let $\epsilon > 0$ and $N = \frac{1}{\sqrt{\epsilon}}$. Then n > N implies $n > \frac{1}{\sqrt{\epsilon}}$ which implies $n^2 > \frac{1}{\epsilon}$ and hence $\epsilon > \frac{1}{n^2}$. Thus n > N implies $\left|\frac{1}{n^2} - 0\right| < \epsilon$. This proves our claim.

Example 7.2. Prove $\lim_{n\to\infty} \frac{3n+1}{7n-4} = \frac{3}{7}$.

Scratch. $\forall \epsilon > 0$, we need $\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon$, which implies that

$$\left| \frac{21n+7-21n+12}{7(4n-4)} \right| < \epsilon \implies \left| \frac{19}{7(7n-4)} \right| < \epsilon.$$

Since 7n-4>0, we can remove the absolute value sign and have

$$\frac{19}{7\epsilon} < 7n - 4 \implies \frac{19}{49\epsilon} + \frac{4}{7} < n.$$

Thus, we have $N = \frac{19}{49\epsilon} + \frac{4}{7}$.

Proof. Let $\epsilon > 0$ and let $N = \frac{19}{49\epsilon} + \frac{4}{7}$. Then n > N implies $n > \frac{19}{49\epsilon} + \frac{4}{7}$, hence $7n > \frac{19}{7\epsilon} + 4$, which gives us $\frac{19}{7(7n-4)} < \epsilon$, and thus $\left| \frac{3n+1}{7n-4} - \frac{3}{7} \right| < \epsilon$. Then we are done.

Example 7.3. Prove $\lim_{n\to\infty} 1 + \frac{1}{n}(-1)^n = 1$.

Scratch. $\forall \epsilon > 0$, we want n large enough, such that

$$|a_n - 1| < \epsilon \iff \left| 1 + \frac{1}{n} (-1)^n - 1 \right| < \epsilon \iff \left| \frac{1}{n} (-1)^n \right| < \epsilon \iff \frac{1}{n} < \epsilon \iff n > \frac{1}{\epsilon}.$$

Just take $\alpha = \frac{1}{\epsilon}$, then $n > N \to |a_n - 1| < \epsilon$

8 Limit Theorems for Sequences

Definition 8.1 (Bounded). A sequence $\{s_n\}$ of real numbers is said to be **bounded** if the set $\{s_n \mid n \in \mathbb{N}\}$ is a bounded set, i.e., if there exists a constant M such that $|s_n| \leq M$ for all n.

Theorem 8.2. Convergent sequences are bounded.

Proof. Let $\{s_n\}$ be a convergent sequence and let $s = \lim_{n \to \infty} s_n$. Let $\epsilon > 0$ be fixed. Then by convergence of the sequence, there exists an number $N \in \mathbb{N}$ such that

$$n > N \implies |s_n - s| < \epsilon.$$

By the triangle inequality we see that n > N implies $|s_n| < |s| + \epsilon$. Define $M = \max\{|s| + \epsilon, |s_1|, \dots, |s_N|\}$. Then $|s_n| \le M$ for all $n \in \mathbb{N}$, so $\{s_n\}$ is a bounded sequence.

Theorem 8.3. Let $\{s_n\}$ and $\{t_n\}$ be sequences in \mathbb{R} such that $s_n \to s$ and $t_n \to t$. Let $k \in \mathbb{R}$ be a constant. Then

- (i) $ks_n \to ks$.
- (ii) $(s_n + t_n) \rightarrow s + t$.
- (iii) $s_n t_n \to st$.
- (iv) If $s_n \neq 0$ for all n, and if $s \neq 0$, then $\frac{1}{s_n} \to \frac{1}{s}$.
- (v) If $s_n \neq 0$ and $s \neq 0$ for all n, then $\frac{t_n}{s_n} \to \frac{t}{s}$.

Proof of (i). Since the case where k=0 is trivial, we assume $k\neq 0$. Let $\epsilon>0$ and we want to show that $|ks_n-ks|<\epsilon$ for large n. Since $\lim_{n\to\infty}=s$, there exists N such that

$$n > N \implies |s_n - s| < \frac{\epsilon}{|k|}.$$

Then

$$n > N \implies |ks_n - ks| < \epsilon$$
.

Proof of (ii). Let $\epsilon > 0$. We need to show

$$|s_n + t_n - (s+t)| < \epsilon$$
 for large n .

Using triangle inequality, we have $|s_n + t_n - (s+t)| \le |s_n - s| + |t_n - t|$. Since $s_n \to s$, there exists N_1 such that

$$n > N_1 \implies |s_n - s| < \frac{\epsilon}{2}.$$

Similarly, there exists N_2 such that

$$n > N_2 \implies |t_n - t| < \frac{\epsilon}{2}.$$

Let $N = \max\{N_1, N_2\}$. Then clearly

$$n > N \implies |s_n + t_n - (s+t)| \le |s_n - s| + |t_n - t| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Proof of (iii). We use the identity

$$s_n t_n - st = (s_n - s)(t_n - t) + s(t_n - t) + t(s_n - s).$$

Given $\epsilon > 0$, there are integers N_1, N_2 such that

$$n > N_1 \implies |s_n - s| < \sqrt{\epsilon}$$

 $n > N_2 \implies |t_n - t| < \sqrt{\epsilon}$

If we take $N = \max\{N_1, N_2\}, n \ge N$ implies

$$|(s_n - s)(t_n - t)| < \epsilon$$

which implies that

$$\lim_{n \to \infty} (s_n - s) (t_n - t) = 0.$$

Applying (i) and (ii), we get

$$\lim_{n \to \infty} (s_n t_n - st) = 0.$$

Proof of (iv). Choosing m such that $|s_n - s| < \frac{1}{2}|s|$ if $n \ge m$, we see that

$$|s_n| > \frac{1}{2}|s| \quad (n \ge m).$$

Given $\epsilon > 0$, there is an integer N > m such that n > N implies

$$|s_n - s| < \frac{1}{2}|s|^2 \epsilon.$$

Hence, for $n \geq N$

$$\left|\frac{1}{s_n} - \frac{1}{s}\right| = \left|\frac{s_n - s}{s_n s}\right| < \frac{2}{|s|^2} |s_n - s| < \epsilon.$$

Proof of (v). Using (iv), we have $\frac{1}{s_n} \to \frac{1}{s}$, and by (iii), we get

$$\lim_{n\to\infty}\frac{t_n}{s_n}=\lim_{n\to\infty}\frac{1}{s_n}\cdot t_n=\frac{1}{s}\cdot t=\frac{t}{s}.$$

Theorem 8.4.

(i) $\lim_{n\to\infty} \frac{1}{n^p} = 0$ for p > 0.

(ii) $\lim_{n\to\infty} a^n = 0$ if |a| < 1.

(iii) $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$.

(iv) $\lim_{n\to\infty} a^{\frac{1}{n}} = 1$ for a > 0.

Proof of (i). Let $\epsilon > 0$ and let $N = \left(\frac{1}{\epsilon}\right)^{\frac{1}{p}}$. Then n > N implies $n^p > \frac{1}{\epsilon}$ and thus $\epsilon > \frac{1}{n^p}$. Since $\frac{1}{n^p} > 0$, this shows n > N implies $\left|\frac{1}{n^p} - 0\right| < \epsilon$.

Proof of (ii). The case for a=0 is trivial. Suppose that $a\neq 0$. Since |a|<1, we can write $|a|=\frac{1}{1+b}$ where b>0. By the binomial theorem, we have $(1+b)^n\geq 1+nb>nb$, then

$$|a^n - 0| = |a^n| = \frac{1}{(1+b)^n} < \frac{1}{nb}.$$

Consider $\epsilon > 0$ and let $N = \frac{1}{\epsilon b}$. Then n > N implies $n > \frac{1}{\epsilon b}$ and thus $|a^n - 0| < \frac{1}{nb} < \epsilon$.

Proof of (iii). Let $s_n = n^{\frac{1}{n}} - 1$. Then $s_n \ge 0$ and by the binomial theorem,

$$n = (1 + s_n)^n \ge \frac{n(n-1)}{2} s_n^2.$$

Hence,

$$0 \le s_n \le \sqrt{\frac{2}{n-1}} \implies s_n \to 0.$$

Proof of (iv). Suppose a > 1. Let $s_n = a^{\frac{1}{n}} - 1$. Then $s_n > 0$, and by the binomial theorem,

$$1 + ns_n \le (1 + s_n)^n = a,$$

so that

$$0 < s_n \le \frac{p-1}{n}.$$

Hence, $s_n \to 0$. The case for a = 1 is trivial, and if 0 , the result is obtained by taking reciprocals.

8.1 Upper and lower limits

Definition 8.5. Let $\{s_n\}$ be a sequence of real numbers with the property that for every real M there is an integer N such that $n \geq N$ implies $s_n \geq M$. We then write

$$s_n \to +\infty$$
.

Similarly, if for every real M there is an integer N such that $n \geq N$ implies $s_n \leq M$, we write

$$s_n \to -\infty$$
.

9 Monotone Sequences and Cauchy Sequences

Definition 9.1 (Monotone sequence). A sequence $\{s_n\}$ of real numbers is called an *increasing* sequence if $s_n \leq s_{n+1}$ for all n, and $\{s_n\}$ is called a decreasing sequence if $s_n \geq s_{n+1}$ for all n. If $\{s_n\}$ is increasing, then $s_n \leq s_m$ whenever n < m. A sequence that is increasing or decreasing will be called a **monotone sequence** or a **monotonic sequence**.

Theorem 9.2. All bounded monotone sequences converge.

Proof. Let $\{s_n\}$ be a bounded increasing sequence, Let $= \{s \mid n \in \mathbb{N}\}$ and let $u = \sup S$, Since S is bounded, u represents a real number. We show $s_n \to u$. Let $\epsilon > 0$. Since $u - \epsilon$ is not an upper bound for S, there exists N such that $s_N > u - \epsilon$. Since $\{s_n\}$ is increasing, $s_N \leq s_n$ for all $n \geq N$. Of course $s_n \leq u$ for all n, so n > N implies $u - \epsilon < s_n \leq u$, which implies $|s_n - u| < \epsilon$. Hence $s_n \to u$. The proof for bounded decreasing sequences is left as an exercise.

Theorem 9.3.

- (i) If $\{s_n\}$ is an unbounded increasing sequence, then $s_n \to +\infty$.
- (ii) If $\{s_n\}$ is an unbounded decreasing sequence, then $s_n \to -\infty$.

Corollary 9.4. If $\{s_n\}$ is a monotone sequence, then the sequence either converges, diverges to $+\infty$, or $-\infty$. Thus $\lim s_n$ is always meaningful for monotone sequences.

Proof. Simply apply the previous two theorems.

Definition 9.5. Let $\{s_n\}$ be a sequence in \mathbb{R} . We define

$$\limsup s_n = \lim_{N \to \infty} \sup \{ s_n \mid n > N \}$$

and

$$\lim\inf s_n = \lim_{N \to \infty} \inf \{ s_n \mid n > N \}$$

Theorem 9.6. Let $\{s_n\}$ be a sequence in \mathbb{R} .

(i) If $\lim s_n$ is defined (real, or $\pm \infty$), then

$$\lim\inf s_n = \lim s_n = \lim\sup s_n.$$

(ii) If $\lim \inf s_n = \lim \sup s_n$, then $\lim s_n$ is defined and

$$\lim s_n = \lim \inf s_n = \lim \sup s_n.$$

Definition 9.7 (Cauchy sequence). A sequence $\{s_n\}$ of real numbers i called a **Cauchy sequeurce** if for each $\epsilon > 0$ there exists a number N such that

$$m, n > N \implies |s_n - s_m| < \epsilon.$$

Lemma 9.8. Convergent sequences are Cauchy sequences.

Proof. Suppose $\lim s_n = s$. Since the terms s_n are close to s for large n, they must also be close to each other; indeed

$$|s_n - s_m| = |s_n - s + s - s_m| \le |s_n - s| + |s - s_m|.$$

Let $\epsilon > 0$. Then there exists N such that

$$n > N \implies |s_n - s| < \frac{\epsilon}{2}.$$

Clearly we can also write

$$m > N \implies |s_m - s| < \frac{\epsilon}{2},$$

SO

$$m, n > N \implies |s_n - s_m| \le |s_n - s| + |s - s_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $\{s_n\}$ is a Cauchy sequence.

Lemma 9.9. Cauchy sequences are bounded.

Proof. Let $\epsilon = 1$. By definition, we have N in N such that

$$m, n > N \implies |s_n - s_m| < 1.$$

In particular, $|s_n - s_{N+1}| < 1$ for n > N, so $|s_n| < |s_{N+1}| + 1$ for n > N. If $M = \max\{|s_{N+1} + 1, |s_1|, |s_2|, \dots, |s_N|\}$, then $|s_n| \le M$ for all $n \in \mathbb{N}$.

Theorem 9.10. A sequence is a convergent sequence if and only if it is a Cauchy sequence.

Proof. Earlier we have shown one direction in a lemma. We now only need to show that Cauchy sequences are convergent sequences. Consider a Cauchy sequence $\{s_n\}$ and it is bounded by previous lemma. We now need to show that

$$\lim\inf s_n=\lim\sup s_n.$$

Let $\epsilon > 0$. Since $\{s_n\}$ is a Cauchy sequence, there exists N so that

$$m, n > N \implies |s_n - s_m| < \epsilon.$$

In particular, $s_n < s_m + \epsilon$ for all m, n > N. This shows $s_m + \epsilon$ is an upper bound for $\{s_n \mid n > N\}$, so $v_N = \sup\{s_n \mid n > N\} \le s_m + \epsilon$ for m > N. This, in turn, shows $v_N - \epsilon$ is a lower bound for $\{s_m \mid m > N\}$, so $v_N - \epsilon \le \inf\{s_m \mid m > N\} = u_N$. Thus

$$\limsup s_n \le v_N \le u_N + \epsilon \le \liminf s_n + \epsilon.$$

Since this holds for all $\epsilon > 0$, we have $\limsup s_n \leq \liminf s_n$. Since $\limsup s_n \geq \liminf s_n$ always holds, we are done.

9.1 Subsequences

Definition 9.11 (Subsequence). Suppose $\{s_n\}_{n\in\mathbb{N}}$ is a sequence. A **subsequence** of this sequence is a sequence of the form $\{t_k\}_{k\in\mathbb{N}}$

Theorem 9.12. Every sequence $\{s_n\}$ has a monotonic subsequence.

Proof. We say that the n-th term is dominant if $s_m < s_n$ for all m > n. There are two cases:

Case 1: Suppose there are infinitely many dominant terms, and let $\{s_{nk}\}$ be any subsequence consisting solely of dominant terms. Then $s_{nk+1} < s_{nk}$ for all k, so $\{s_{nk}\}$ is a decreasing sequence.

Case 2: Suppose there are only finitely many dominant terms. Select n_1 so that s_{n_1} is beyond all the dominant terms of the sequence. Then given $N \ge n_1$, there exists m > N such that $s_m \ge s_N$.

Theorem 9.13 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent subsequence.

Proof. Using previous theorem, we have a monotonic subsequence. Since monotonic bounded sequence are convergent, we are done. \Box

Alternative proof. Suppose that $\{s_n\}$ is bounded. Then there exists M > 0 such that $|s_n| < M$ for all $n \in \mathbb{N}$. Let $A_1 = \{n \in \mathbb{N} \mid s_n \in [0, M]\}$, $B_1 = \{n \in \mathbb{N} \mid s_n \in [-M, 0]\}$. Since $A_1 \cup B_1 = \mathbb{N}$ is an infinite set, hence at least one of A_1, B_1 is infinite. WLOG assume that A_1 is infinite. We then cut [0, M] into two halves, and repeat the same procedure, then at least one of [0, M/2] and [M/2, M] contains infinitely many points of the sequence. Then, we get a nested sequence of closed intervals,

$$I_1 \supset I_2 \supset \cdots, \qquad |I_{n+1}| = \frac{1}{2}|I_n|.$$

One can pick subsequence $\{s_{nk}\}$ such that for all k, s_{nk} is in I_k , and $n_{k+1} > n_k$. Then this subsequence is Cauchy, hence is convergent.

Definition 9.14 (Subsequential limit). A subsequential limit is any real number or symbol $\pm \infty$ that is the limit of some subsequence of $\{s_n\}$.

Example 9.15. Consider $\{s_n\}$ where $s_n = n^2(-1)^n$. The subsequence of even terms diverges to $+\infty$ where as that of odd terms diverges to $-\infty$. Hence, the set $\{-\infty, +\infty\}$ is the set of subsequential limits of $\{s_n\}$.

Example 9.16. Consider $\{r_n\}$, a list of all rational numbers. Every real number is a subsequential limit of $\{r_n\}$ as well as $\pm \infty$. Thus, $\mathbb{R} \cup \{-\infty, +\infty\}$ is the set of subsequential limits of $\{r_n\}$.

Theorem 9.17. Let $\{s_n\}$ be any sequence. There exists a monotonic subsequence whose limit is $\limsup s_n$ and there exists a monotonic subsequence whose limit is $\liminf s_n$.

Proof. If $\{s_n\}$ is not bounded above, then a monotonic subsequence of $\{s_n\}$ has limit $\limsup s_n = +\infty$. Similarly, if $\{s_n\}$ is not bounded below, a monotonic subsequence has limit $\liminf s_n$. Consider the case that it is bounded above. Let $t = \limsup s_n$, and consider $\epsilon > 0$. There exists N_0 so that for $N \geq N_0$,

$$\sup \{s_n \mid n > N\} < t + \epsilon.$$

In particular, $s_n < t + \epsilon$ for all $n > N_0$. We now claim

$${n \in \mathbb{N} \mid |s_n - t| < \epsilon}$$
 is infinite.

Otherwise, there exists $N_1 > N_0$

Theorem 9.18. Let $\{s_n\}$ be any sequence in \mathbb{R} , and let S denote the set of subsequential limits of $\{s_n\}$.

- (i) S is non-empty.
- (ii) $\sup S = \limsup s_n$ and $\inf S = \liminf s_n$.
- (iii) $\lim s_n$ exists if and only if S has exactly one element, namely $\lim s_n$.

Proof. (i) is an immediate consequence of the previous theorem.

To prove (ii), consider any limit t of a subsequence $\{s_{nk}\}$ of $\{s_n\}$. By the

10 lim sup's and lim inf's

Let $\{s_n\}$ be any sequence of real numbers, and let S be the set of subsequential limits of $\{s_n\}$. Recall the following definition:

$$\limsup s_n = \lim_{N \to \infty} \sup s_n \mid n > N = \sup S$$

and

$$\lim\inf s_n = \lim_{N \to \infty} \inf s_n \mid n > N = \inf S.$$

Claim.

$$\liminf s_n \leq \limsup s_n$$
.

Proof. We know that

$$\sup_{n>N} s_n \ge \inf_{n>N} s_n.$$

Then take limit $N \to \infty$.

Claim. If $\{s_{n_k}\}$ is a subsequence, then

$$\limsup s_{n_k} \leq \limsup s_n$$
.

Theorem 10.1. If $\{s_n\} \to s > 0$ and $\{t_n\}$ is any sequence, then

$$\limsup s_n t_n = s \cdot \limsup t_n.$$

Here we allow the conventions $s \cdot (\pm \infty) = \pm \infty$ for s > 0.

Proof.
$$\Box$$

Question. If $\{s_{n_k} \cdot t_{n_k}\}$ converges, does that imply $\{t_{n_k}\}$ converges?

Answer. Yes. (Why?)

Theorem 10.2. Let $\{s_n\}$ be any sequence of nonzero real numbers. Then we have

$$\liminf \left| \frac{s_{n+1}}{s_n} \right| \le \liminf |s_n|^{1/n} \le \limsup |s_n|^{1/n} \le \limsup \left| \frac{s_{n+1}}{s_n} \right|.$$

Question. If $\{s_n\}$ is a bounded positive sequence, is $\frac{s_{n+1}}{s_n}$ a bounded sequence?

Answer. No. Consider 0 < a, b < 1, and take $a = \frac{1}{2}$ and $b = \frac{1}{n}$, then $\frac{a}{b} = \frac{n}{2}$.

Claim. If $\{s_n\}$ is bounded and monotone, then the ratio $\frac{s_{n+1}}{s_n}$ eventually converges to 1.

Proof. Since $\{s_n\}$ is bounded and monotone, it must converge to some limit s. Then

$$\lim \frac{s_{n+1}}{s_n} = \frac{\lim s_{n+1}}{s_n} = \frac{s}{s} = 1.$$

Question. Is it possible to have s_n to be bounded, but $\frac{s_{n+1}}{s_n}$ unbounded?

Answer. Yes. Consider

$$s_n = \begin{cases} 1 & n \text{ is even;} \\ \frac{1}{n} & n \text{ is odd.} \end{cases}$$

Question. If $\{s_n\}$ is positive and bounded, is it possible that $\frac{s_{n+1}}{s_n} \to 0$?

Answer. Yes. Consider $s_n = \frac{1}{n!}$. Then

$$\lim \frac{s_{n+1}}{s_n} = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

11 Metric Spaces

Definition 11.1 (Metric Space). A set X, containing elements called **points**, is said to be a **metric space** if with any two points p and q of X there is associated a real number d(p,q), called the *distance* from p to q, such that

- (i) d(p,q) > 0 if $p \neq q$; d(p,p) = 0;
- (ii) d(p,q) = d(q,p);
- (iii) $d(p,q) \le d(p,r) + d(r,q)$, for any $r \in X$.

Any function with these three properties is called a **distance function**, or a **metric**.

Definition 11.2 (Induced Metric). Let (X, d) be a metric space, and let $S \subset X$. Then, $(S, d|_S)$ is a metric space, where $d|_S$ is the **induced metric**, which is the metric d when restricted to S.

11.1 Topological Definitions

Definition 11.3 (Topology). A **topology** on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (i) \varnothing and X are in \mathcal{T} .
- (ii) The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- (iii) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a **topological space**.

Definition 11.4 (Open). If X is a topological space with topology \mathcal{T} , we say that a subset $U \subset X$ is an **open set** of X if U belongs to the collection \mathcal{T} . Hence, a topological space is a set X together with a collection of open subsets of X, such that:

- (i) \emptyset and X are both open;
- (ii) arbitrary unions of open sets are open;

(iii) finite intersections of open sets are open.

Definition 11.5 (Open/Closed Balls). Let (X, d) be a metric space. The **open ball** of radius ϵ at x is defined by:

$$\mathcal{B}_{\epsilon}(p) := \{ x \in X \mid d(p, x) < \epsilon \}$$

and the **closed ball** is defined by:

$$\bar{\mathcal{B}}_{\epsilon}(p) := \{ x \in X \mid d(p, x) \leqslant \epsilon \}.$$

Sometimes we also use the **neighborhood** of p to represent any open ball of any radius centered at p.

Definition 11.6 (Limit Point). A point $p \in E$ is a **limit point** if every open ball of p contains a point $q \neq p$ such that $q \in E$, i.e., for every $\delta > 0$,

$$\mathcal{B}^{x}_{\delta}(p) \cup E \neq \emptyset$$
.

Definition 11.7 (Dense). $E \subset X$ is **dense** in X if every points of X is a limit point of E or a point of E, i.e., $\overline{E} = X$.

Definition 11.8 (Interior Point). Let (X, d) be a metric space, and $E \subset X$. A point $p \in E$ is called an **interior point** of E if there is a open ball \mathcal{B} of P such that $\mathcal{B} \subset E$.

Definition 11.9 (Open Sets). A subset $U \subset X$ is **open** if and only if for any $p \in U$, there exists $\delta > 0$ such that the open ball

$$\mathcal{B}_{\delta}(p) = \{x \in X \mid d(p, x) < \delta\} \subset U.$$

In other words, U is open if every point of U is interior.

Definition 11.10 (Closed Sets). A subset $E \subset X$ is **closed** if every limit point of E is a point of E. Equivalently, E is closed if and only if for any point $x \in E^c$, there exists $\delta > 0$, such that $\mathcal{B}_{\delta}(x) \cap E = \emptyset$.

Theorem 11.11 (Open/Closed). A set E is open if and only if its complement E^c is closed. Similarly, it is closed if and only if its complement is open.

Definition 11.12 (Closure). Let X be a metric space, if $E \subset X$, the **closure** of E is the set $\overline{E} = E \cup E'$, where E' is the set of all limit points of E. In other words, the **closure** of E is the intersection of all closed sets containing E, i.e., it is the smallest closed set containing E.

Theorem 11.13. If X is a metric space and $E \subset X$, then

- (i) the closure \overline{E} is closed;
- (ii) $E = \overline{E}$ if and only if E is closed;
- (iii) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

11.2 Compact Sets

Definition 11.14 (Open Cover). An **open cover** of a set E in a metric space X is a collection $\{U_i\}$ of open subsets of X such that $E \subset \bigcup_i U_i$.

Definition 11.15 (Compact Set). Let $K \subset S$. K is **compact** if every open cover of K contains a *finite* subcover. More explicitly, the requirement is that if $\{G_{\alpha}\}$ is an open cover of K, then there are finitely many indices $\alpha_1, \ldots, \alpha_n$ such that

$$K \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n}$$
.

Remark. Every finite set is compact. \mathbb{R} is not compact.

Theorem 11.16. Compact subsets of metric spaces are closed.

Theorem 11.17. Closed subsets of compact sets are compact.

Corollary 11.18. If F is closed and K is compact, then $F \cup K$ is compact.

Theorem 11.19 (Heine-Borel Theorem). A subset $E \subset \mathbb{R}^k$ is compact if and only if it is closed and bounded.

Theorem 11.20. If $E \subset X$ is compact, then E is a closed and bounded subset of X.

Theorem 11.21 (Weierstrass). Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Definition 11.22 (Convergence of Metric Space). A sequence $\{s_n\}$ in a metric space (S, d) converges to $s \in S$ if $\lim_{n\to\infty} d(s_n, s) = 0$. The sequence is a Cauchy sequence if for each $\epsilon > 0$, there exists an N such that

$$m, n > N \implies d(s_m, s_n) < \epsilon$$
.

Lemma 11.23. If $\{s_n\}$ converges to s, then s_n is Cauchy.

Proof. For any $\epsilon > 0$, there exists N > 0 such that for all n > N

$$d(s_n, s) < \frac{\epsilon}{2}.$$

Thus, for all n, m > N, we have

$$d(s_n, s_m) \le d(s_n, s) + d(s_m, s)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Definition 11.24 (Completeness). The metric space (S, d) is **complete** if every Cauchy sequence in S converges to some element in S.

Example 11.25 (Non-complete Metric Spaces).

- 1. $S = \mathbb{R} \setminus \{0\}$.
- 2. $S = \mathbb{Q}$.

Lemma 11.26. A sequence $\{x^{(n)}\}\in\mathbb{R}^k$ converges iff for each $j=1,2,\ldots,k$, the sequence $\{x_j^{(n)}\}$ converges in \mathbb{R} . A sequence $\{x_j^{(n)}\}$ in \mathbb{R}^k is a Cauchy sequence iff each sequence $\{x_j^{(n)}\}$ is a Cauchy sequence in \mathbb{R} .

Theorem 11.27. Euclidean k-space \mathbb{R}^k is complete.

Theorem 11.28 (Bolzano-Weierstrass Theorem). Every bounded sequence in \mathbb{R}^k has a convergent subsequence.

Theorem 11.29. Let $\{F_n\}$ be a decreasing sequence $(F_1 \supseteq F_2 \supseteq \cdots)$ of closed bounded nonempty sets in \mathbb{R}^k . Then $F = \bigcap_{n=1}^{\infty} F_n$ is also closed, bounded and nonempty.

Definition 11.30 (Open Cover). Let $E \subset S$. An **open cover** of E is a collection $\{G_{\alpha}\}$ of open subsets of S such that $E \subset \bigcup_{\alpha} G_{\alpha}$.

Remark. Every finite set is compact. \mathbb{R} is not compact.

Theorem 11.31 (Heine-Borel Theorem). A subset E of \mathbb{R}^k is compact iff it is closed and bounded.

Proof. Suppose $E \subset S$ is compact. Then pick some point $p \in S$ and consider $\{B_n(p) \mid n \in \mathbb{N}\}$, which covers S and thus covers E as well:

$$E \subset S = \bigcup_{n \in \mathbb{N}} B_n(p).$$

Since E is compact, there is a finite subcover such that

$$E \subset \bigcup_{i=1}^{M} B_{n_i}(p).$$

We can order the indices such that $n_1 < n_2 < \cdots, n_M$ then

$$E \subset B_{n_M}(p),$$

which implies that E is bounded. In particular, for any points $x, y \in E$,

$$d(x,y) \le d(x,p) + d(y,p) \le 2 \cdot n_M.$$

The remaining of the proof is left as an exercise.

Theorem 11.32. Every k-cell F in \mathbb{R}^k is compact.

12 Connected Sets

Definition 12.1 (Connected Sets). A set $E \subset X$ is **connected** if E is not a union of two

CHAPTER 4_______SERIES

13 Series

In this section we are interested in convergence of series, thus we use $\sum a_n$ to denote $\sum_{i=1}^{\infty} a_i$.

Definition 13.1 (Convergence/Divergence). The *n*-th partial sum of a sequence $\{a_n\}$ is defined as $s_n = \sum_{i=1}^n a_i$. We say that $\sum a_n$ converges iff the sequence of partial sums $\{s_n\}$ converges to a real number. Otherwise, we say that the series **diverges**.

Definition 13.2 (Absolute Convergence). The series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

Definition 13.3 (Geometric Series). A series of the form $\sum_{n=0}^{\infty} ar^n$ for constants a and r is a **geometric series**. For $r \neq 1$,

$$\sum_{k=0}^{n} ar^k = \frac{a(1-r^{n+1})}{1-r}.$$

For |r| < 1, since $\lim_{n \to \infty} r^{n+1} = 0$, using the formula above gives

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}.$$

If $a \neq 0$ and $|r| \geq 1$, then the sequence $\{ar^n\}$ does not converge to 0, so the series diverges.

Definition 13.4 (Cauchy Criterion). A series $\sum a_n$ satisfies the **Cauchy criterion** if its sequence $\{s_n\}$ of partial sums is a Cauchy sequence, i.e., for each $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n \ge m > N \implies \left| \sum_{i=m}^{n} a_i \right| < \epsilon.$$

Theorem 13.5. A series converges iff it satisfies the Cauchy criterion.

Corollary 13.6. If a series $\sum a_n$ converges, then $\lim a_n = 0$.

Proof. By Cauchy criterion, take n=m. Then for $\epsilon>0$, there exists N such that n>N implies $|a_n|<\epsilon$. Thus, $\lim a_n=0$.

Remark. The converse is not true. Consider $\sum \frac{1}{n} = +\infty$.

Theorem 13.7 (Comparison Test). Let $\sum a_n$ be a series where $a_n \geq 0$ for all n.

- (i) If $\sum a_n$ converges and $|b_n| \leq a_n$ for all n, then $\sum b_n$ converges.
- (ii) If $\sum a_n = +\infty$ and $b_n \ge a_n$ for all n, then $\sum b_n = +\infty$.

Proof of (i). For $n \geq m$, by the triangle inequality, we have

$$\left| \sum_{k=m}^{n} b_k \right| \le \sum_{k=m}^{n} |b_k| \le \sum_{k=m}^{n} a_k.$$

Since $\sum a_n$ converges, it satisfies the Cauchy criterion. It follows from the above that $\sum b_n$ also satisfies the Cauchy criterion, and so $\sum b_n$ converges.

Proof of (ii). Let $\{s_n\}$ and $\{t_n\}$ be the sequences of partial sums for $\sum a_n$ and $\sum b_n$ respectively. Since $b_n \geq a_n$ for all n, we have $t_n \geq s_n$ for all n. Since $\lim s_n = +\infty$, $\lim t_n = +\infty$, and so $\sum b_n = +\infty$.

Theorem 13.8 (Ratio Test). A series $\sum a_n$ of nonzero terms

- 1. converges absolutely if $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$;
- 2. diverges if $\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1$.
- 3. Otherwise $\liminf \left| \frac{a_{n+1}}{a_n} \right| \le 1 \le \limsup \left| \frac{a_{n+1}}{a_n} \right|$ and the test gives no information.

Theorem 13.9 (Root Test). Let $\sum a_n$ be a series and let $\alpha = \limsup |a_n|^{\frac{1}{n}}$. The series $\sum a_n$

- (i) converges absolutely if $\alpha < 1$;
- (ii) diverges if $\alpha > 1$.
- (iii) Otherwise, the test gives no information if $\alpha = 1$.

14 Alternating Series

Theorem 14.1. $\sum \frac{1}{n^p}$ converges iff p > 1.

Proof. If p > 1, then

$$\sum_{k=1}^{n} \frac{1}{k^{p}} \le 1 + \int_{1}^{n} \frac{1}{x^{p}} dx = 1 + \frac{1}{p-1} \left(1 - \frac{1}{n^{p-1}} \right) < 1 + \frac{1}{p-1} = \frac{p}{p-1}.$$

Hence,

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \le \frac{p}{p-1} < +\infty.$$

If $0 , then <math>\frac{1}{n} \le \frac{1}{n^p}$ for all n. Since $\sum \frac{1}{n}$ diverges, $\sum \frac{1}{n^p}$ diverges as well by the Comparison Test.

Theorem 14.2 (Integral Tests). Suppose that f(x) > 0 and is decreasing on the infinite interval $[k, \infty)$ (for some $k \ge 1$) and that $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ converges.

Theorem 14.3 (Alternating Series Theorem). If $a_1 \ge a_2 \ge \cdots \ge a_n \ge \cdots \ge 0$ and $\lim a_n = 0$, then the alternating series $\sum (-1)^{n+1} a_n$ converges. Moreover, the partial sums $s_n = \sum_{k=1}^n (-1)^{k+1} a_k$ satisfy $|s - s_n| \le a_n$ for all n.

Proof. Define $s_n = \sum_{j=1}^n a_j$. The subsequence $\{s_{2n}\}$ is increasing because $s_{2n+2} - s_{2n} = -a_{2n+2} + a_{2n+1} \ge 0$, Similarly, the subsequence $\{s_{2n-1}\}$ is decreasing.

CHAPTER 5______CONTINUITY

15 Limits of Functions

Definition 15.1 (ϵ - δ limit). Let X, Y be metric spaces, and $E \subset X$, and p a limit point of E. We write the **limit**

$$\lim_{x \to p} f(x) = f(p)$$

if there exists $f(q) \in Y$ such that for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$0 < d_X(x, p) < \delta \implies d_Y(f(x), f(p)) < \epsilon.$$

Theorem 15.2.

$$\lim_{x \to p} f(x) = q$$

if and only if

$$\lim_{n \to \infty} f\left(p_n\right) = q$$

for every sequence $\{p_n\}$ such that $p_n \neq p$ (for all n) and $p_n \rightarrow p$.

15.1 Continuous Functions

Definition 15.3 (Continuity). Let X and Y be metric spaces. A function $f: X \to Y$ is **continuous** at $p \in X$ if for any $\epsilon > 0$, there exists $\delta > 0$ such that for every $x \in X$,

$$d_X(x,p) < \delta \implies d_Y(f(x),f(p) < \epsilon.$$

Or equivalently, for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$f(B_{\delta}(p)) \subset B_{\epsilon}(f(p)).$$

Theorem 15.4 (Preimage of open subset is open). Let X and Y be metric spaces. A function $f: X \to Y$ is continuous if and only if for every open subset $U \subset Y$, $f^{-1}(U)$ is open.

Theorem 15.5 (Composition of continuous functions is continuous). If $f: X \to Y$ and $g: Y \to Z$ are continuous, then

$$g \circ f : X \to Z$$
 is continuous.

16 The Derivative of a Real Function

Definition 16.1 (Derivative). Let $f:[a,b] \to \mathbb{R}$ be a real valued function. We say f is **differentiable** at a point $p \in [a,b]$ if the following limit exists:

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} \qquad (x \in [a, b] \setminus \{p\})$$

f' is called the **derivative** of f.

Theorem 16.2. If f is differentiable at $p \in [a, b]$, then f is continuous at p.

Proof. We simply show that $\lim_{x\to p} f(x) = f(p)$, or $\lim_{x\to p} (f(x) - f(p)) = 0$. Since f'(p) exists, we have

$$\lim_{x \to p} (f(x) - f(p)) = \lim_{x \to p} \left(\frac{f(x) - f(p)}{x - p} \cdot (x - p) \right)$$
$$= \left(\lim_{x \to p} \frac{f(x) - f(p)}{x - p} \right) \cdot \left(\lim_{x \to p} x - p \right)$$
$$= f'(p) \cdot 0$$
$$= 0.$$

Remark. It is not true that if f is differentiable at p, then f is continuous in a neighborhood of p. Consider

$$f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ -x^2 & x \notin \mathbb{Q}. \end{cases}$$

f is both continuous and differentiable only at x = 0.

Remark. Consider

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0. \end{cases}$$

f'(0) does not exist because

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \sin\left(\frac{1}{x}\right)$$

does not exist.

Question. If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, and f'(x) exists at all $x \in \mathbb{R}$. Is f' continuous?

Answer. No. Consider

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x > 0\\ 0 & x \le 0. \end{cases}$$

Since $f'(0^+) = f'(0^-) = 0$, f'(0) = 0. For x > 0, $\lim_{x \to 0^+} f'(x) \neq 0$.

Theorem 16.3. Let $f, g : [a, b] \to \mathbb{R}$ and assume f, g are differentiable at p. Then

- (i) (f+g)'(p) = f'(p) + g'(p);
- (ii) $(f \cdot g)'(p) = f'(p)g(p) + f(p)g'(p);$
- (iii) if $g(p) \neq 0$, then

$$(f/g)'(p) = \frac{f'g - fg'}{q^2}.$$

Proof of (ii).

$$\lim_{x \to p} \frac{f(x)g(x) - f(p)g(p)}{x - p} = \lim_{x \to p} \frac{f(x)g(x) - f(x)g(p) + f(x)g(p) - f(p)g(p)}{x - p}$$

$$= \lim_{x \to p} f(x) \cdot \frac{g(x) - g(p)}{x - p} + \lim_{x \to p} \frac{f(x) - f(p)}{x - p} \cdot g(p)$$

$$= f(p)g'(p) + f'(p)g(p).$$

Theorem 16.4 (Chain Rule). Let $f:[a,b] \to \mathbb{R}$ be differentiable at $x_0 \in [a,b]$, and $g:I \to \mathbb{R}$ where $f([a,b]) \subset I$, and g is differentiable at $f(x_0)$. If

$$h(x) = g(f(x)) \qquad (x \in [a, b]),$$

then h is differentiable at x_0 and

$$h'(x_0) = g'(f(x_0))f'(x_0).$$

Proof. Let y = f(x) and $y_0 = f(x_0)$.

$$\lim_{x \to x_0} \frac{h(x) - h(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g(y) - g(y_0)}{x - x_0}.$$

Since $f'(x_0)$ exists, there exist functions u, v such that

$$f(x) = f(x_0) + (x - x_0)(f'(x_0) + u(x));$$

$$g(y) = g(y_0) + (y - y_0)(g'(y_0) + v(y)),$$

and $\lim_{x\to x_0} u(x) = 0$, $\lim_{y\to y_0} v(y) = 0$. Then

$$g(f(x)) - g(f(x_0)) = (f(x) - f(x_0))(g'(f(x_0)) + v(f(x)))$$

= $(x - x_0)(f'(x_0) + u(x))(g'(f(x_0)) + v(f(x))).$

Hence,

$$\lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} (f'(x_0) + u(x))(g'(f(x_0)) + v(f(x)))$$
$$= f'(x_0)g'(f(x_0)).$$

17 Mean Value Theorem

Definition 17.1 (Local Maximum). A point p is a **local maximum** of f if there exists a $\delta > 0$ such that $f(p) = \max f(\mathcal{B}_{\delta}(p))$. Likewise for local minimum.

Remark. If f is locally constant at p, then p is both a local maximum and local minimum.

Lemma 17.2. Let $f:[a,b] \to \mathbb{R}$. If f has a local maximum or local minimum at $p \in (a,b)$, and if f'(p) exists, then f'(p) = 0.

Proof. Suppose f has a local maximum at p. Then there exists $\delta > 0$ such that $f(p) \geq f(x)$ for $x \in (p - \delta, p + \delta)$. The derivative is

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p}.$$

This limit is ≥ 0 when $x \leq p$ and ≤ 0 when xp. Since f'(p) exists, then by squeeze theorem we must have f'(p) = 0.

Remark. The conditions that $p \in (a,b)$ and f'(p) exists are required since the endpoints a, b can be local maxima but the slopes there are not zero. In addition, there can be cases where p is a local maximum but f'(p) does not exist, consider f(x) = -|x|.

Theorem 17.3 (Rolle's Theorem). Let $f:[a,b] \to \mathbb{R}$ be continuous, and suppose f is differentiable on (a,b), and f(a)=f(b). Then there exists some $c \in (a,b)$ such that f'(c)=0.

Remark. Note that $[a, b] \subset \mathbb{R}$ is compact, and so f([a, b]) is also compact.

Proof. Consider the following cases:

- if f([a,b]) is a single point, then f is a constant function, any $c \in (a,b)$ has f'(c) = 0.
- if $\max(f([a,b)] \neq f(a)$, then let $p \in (a,b)$ such that $f(p) = \max(f([a,b]))$. Then by the above lemma, we have f'(p) = 0, where we let c = p.
- if min $(f[a,b]) \neq f(a)$, then similar argument shows f'(p) = 0.

Theorem 17.4 (Generalized Mean Value Theorem). Let $f, g : [a, b] \to \mathbb{R}$ be continuous and differentiable in (a, b). Then there exists $c \in (a, b)$ such that

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Proof. Take h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x). Then we have h(a) = h(b). Hence, by Rolle's theorem, there exists $c \in (a, b)$ such that h'(c) = 0 as desired.

Theorem 17.5 (Mean Value Theorem). If $f:[a,b]\to\mathbb{R}$ is continuous and differentiable on (a,b), then there exists $c\in(a,b)$ such that

$$f(b) - f(a) = (b - a)f'(c).$$

Proof. Use the generalized Mean Value Theorem by taking g(x) = x.

Corollary 17.6. Let f be differentiable on (a, b). Then for all $x \in (a, b)$,

- (i) if $f'(x) \ge 0$, then f is strictly increasing;
- (ii) if f'(x) = 0, then f is constant;
- (iii) if $f'(x) \leq 0$, then f is strictly decreasing.

Proof of (i). Let x < y be in (a, b). Then applying Mean Value Theorem to [x, y], there exists some $c \in (x, y)$ such that

$$f'(c) = \frac{f(y) - f(x)}{y - x} \ge 0.$$

Hence, we have $f(y) \geq f(x)$. Similar arguments apply to the other two claims.

Corollary 17.7. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and differentiable everywhere on \mathbb{R} . Suppose there exists M > 0 such that $|f'(x)| \leq M$ for all $x \in \mathbb{R}$. Then f is uniformly continuous.

Proof. For any $\epsilon > 0$, take $\delta = \frac{\epsilon}{M}$. Then for any $x \neq y$, with $|x - y| < \delta$, there exists some $c \in (x, y)$ such that

$$f(y) - f(x) = (y - x)f'(c),$$

which implies

$$|f(y) - f(x)| = |y - x| \cdot |f'(c)|$$

$$< \delta \cdot M = \epsilon.$$

Theorem 17.8 (Intermediate Value Theorem for Derivatives). Let $f:[a,b] \to \mathbb{R}$ be differentiable such that f'(a) < f'(b). Then for any $\lambda \in (f'(a), f'(b))$, there exists some $c \in (a,b)$ such that $f'(c) = \lambda$.

Remark. This is not an immediate application of the intermediate value theorem as the derivatives of continuous functions may not be continuous.

Proof. Let $g(x) = f(x) - \lambda x$. Our goal is to show that g has a root in (a, b). Since $g'(a) = f'(a) - \lambda < 0$, and $g'(b) = f'(b) - \lambda > 0$. Let $c \in [a, b]$ such that $c = \min g([a, b])$. Since g'(a) < 0 and g'(b) > 0, a, b are not global minimum, which implies that there exists some $c \in (a, b)$ that is a global minimum. Then using the previous lemma, we know that $g'(c) = f'(c) - \lambda = 0$ and so $f'(c) = \lambda$.

18 L'Hospital's Rule

Theorem 18.1 (L'Hospital's Rule). Suppose $f, g : [a, b] \in \mathbb{R}$ are differentiable in (a, b) and $g'(x) \neq 0$ for all $x \in (a, b)$, where $-\infty \leq a < b \leq +\infty$. Suppose

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \in \mathbb{R} \cup \{+\infty, -\infty\}$$

and one of the following holds:

- (i) $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$;
- (ii) $\lim_{x\to a} |g(x)| = \lim_{x\to a} |f(x)| = +\infty$.

Then we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Proof. TODO.

Example 18.2.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} e^{x \log \left(1 + \frac{1}{x} \right)}$$
$$= e^{\lim_{x \to \infty} x \log \left(1 + \frac{1}{x} \right)}$$
$$= e.$$