

AED - 2019-2020 - 1° Semestre Algoritmos e Estruturas de Dados

2º Exame, 3 de Fevereiro de 2020, 11h30m Duração: 3 horas Prova escrita, individual e sem consulta

NOME:	NÚMERO:	
	PARTE I - Questões de Escolha Múltipla (A/B/C/D)	

Preencha as respostas na tabela (usando <u>apenas</u> letras maiúsculas). Se nenhuma opção servir, escreva **NENHUMA**. Se pretender alterar a sua resposta, risque e escreva ao lado a sua nova opção. Todas as questões de escolha múltipla seguintes valem 0.75 valores. Estas questões de escolha múltipla não respondidas são cotadas com 0 valores, mas por cada resposta errada são descontados 0.75/4 valores.

Questão	1	2	3	4	5	6
Resposta						

1. Qual das seguintes tabelas não resulta de uma execução do algoritmo da união rápida equilibrada.

A. 0 1 2 2 2 2 4 5 0 0 C. 8 8 8 8 8 8 8 8 8	B. 7 5 3 3 4 3 6 7 8 9 D. 1 2 9 9 4 5 6 7 4 9
A. 1 1 2 3 3 3 3 5 6 1	B. 0 8 6 4 4 5 4 7 8 9
C. 9 9 9 9 9 9 9 9 9	D. 0 2 3 0 0 5 6 7 8 5
A. 2 2 2 3 4 4 4 4 6 7	B. 0 1 9 7 5 5 6 5 8 9
C. 0 0 0 0 0 0 0 0 0	D. 6 1 3 4 1 1 6 7 8 9
A. 4 2 2 3 2 5 6 7 8 6 C. 7 7 7 7 7 7 7 7 7 7	B. 0 1 1 1 1 3 4 9 9 9 9 D. 1 8 8 3 4 5 6 3 8 0

- 2. Dada uma tabela com N inteiros, se pretendermos determinar se há elementos repetidos na tabela, qual das afirmações abaixo está correta?
 - A. A forma mais eficiente de descobrir se há números repetidos é ordenar a tabela, com custo $\mathcal{O}(N^2)$, e percorrê-la, procurando números idênticos em posições consecutivas.
 - B. É possível fazer a operação sugerida em A em tempo $\mathcal{O}(N)$ mas requer memória adicional.
 - C. É possível obter o resultado indicado em B, sem memória adicional.
 - D. Se transformar a tabela num heap (heapify()) podemos retirar os elementos do heap um a um, por ordem, e ver se há repetidos, com custo total $\mathcal{O}(N)$.
 - A. Se transformar a tabela num heap (heapify()) podemos retirar os elementos do heap um a um, por ordem, e ver se há repetidos, com custo total $\mathcal{O}(N)$.
 - B. A forma mais eficiente de descobrir se há números repetidos é ordenar a tabela, com custo $\mathcal{O}(N^2)$, e percorrê-la, procurando números idênticos em posições consecutivas.
 - C. É possível fazer a operação sugerida em B em tempo $\mathcal{O}(N)$ sem memória adicional.
 - D. É possível obter o mesmo resultado que indicado em C mas requer memória adicional.

- A. A forma mais eficiente de descobrir se há números repetidos é ordenar a tabela, com custo $\mathcal{O}(N^2)$, e percorrê-la, procurando números idênticos em posições consecutivas.
- B. Se transformar a tabela num heap (heapify()) podemos retirar os elementos do heap um a um, por ordem, e ver se há repetidos, com custo total $\mathcal{O}(N)$.
- C. É possível fazer a operação sugerida em A em tempo $\mathcal{O}(N)$ mas requer memória adicional.
- D. É possível obter o resultado indicado em C, sem memória adicional.
 - A. Se transformar a tabela num heap (heapify()) podemos retirar os elementos do heap um a um, por ordem, e ver se há repetidos, com custo total $\mathcal{O}(N)$.
 - B. A forma mais eficiente de descobrir se há números repetidos é ordenar a tabela, com custo $\mathcal{O}(N^2)$, e percorrê-la, procurando números idênticos em posições consecutivas.
 - C. É possível fazer a operação sugerida em B, sem memória adicional, em tempo $\mathcal{O}(N)$.
 - D. É necessário usar memória adicional para obter o resultado indicado em C.
- 3. Considere a função à esquerda e indique qual dos conjuntos indicados à direita não majora a complexidade temporal da função.

```
void f(int N)
{
  for (int j=0; j<N; j++)
  ;
}</pre>
```

A. $\mathcal{O}(N^2)$ B. $\mathcal{O}(2^N)$

C. $\mathcal{O}(\log N)$

D. $\mathcal{O}(N)$

4. Considere a função à esquerda e indique qual dos conjuntos indicados à direita não majora a complexidade temporal da função.

A. $\mathcal{O}(N^{\frac{1}{2}})$

B. $\mathcal{O}(N)$

C. $\mathcal{O}(N^2)$

D. $\mathcal{O}(2^N)$

5. Dada a árvore binária que abaixo se apresenta, qual das seguintes afirmações é falsa?

- A. O varrimento in-fixado produz output crescente.
- B. $\,$ A árvore é ordenada mas não é balanceada AVL.
- C. A árvore é ordenada.
- D. A inserção de um elemento de chave 85 preserva o balanceamento.
- 6. Dada a árvore binária que abaixo se apresenta, qual das seguintes afirmações é falsa?

55

- A. O varrimento in-fixado produz output crescente.
- B. A árvore é ordenada mas não é balanceada AVL.
- C. A árvore é ordenada.
- D. A inserção de um elemento de chave 85 preserva o balanceamento.
- 7. Sejam f e g duas funções de variável natural, $N \ge 0$. Diga qual a opção correcta.

A.	$f \in \mathcal{O}(g) \Rightarrow g \in \Theta(f)$	B. $f \in \Omega(g) \Rightarrow f \in \mathcal{O}(g)$	
C.	$f \in \Theta(a) \Rightarrow a \in \Theta(f)$	D. $f \in \mathcal{O}(a) \Rightarrow f \in \Omega(a)$	

A. $f \in \mathcal{O}(g) \Rightarrow f \in \Omega(g)$	B. $f \in \mathcal{O}(g) \Rightarrow g \in \Theta(f)$
C. $f \in \Omega(g) \Rightarrow f \in \mathcal{O}(g)$	D. $f \in \Theta(g) \Rightarrow g \in \Theta(f)$

A. <i>f</i>	$\in \Theta(g) \Rightarrow g \in \Theta(f)$	В.	$f \in \mathcal{O}(g) \Rightarrow f \in \Omega(g)$
C. f	$\in \mathcal{O}(g) \Rightarrow g \in \Theta(f)$	D.	$f \in \Omega(g) \Rightarrow f \in \mathcal{O}(g)$

A.
$$f \in \mathcal{O}(g) \Rightarrow f \in \Omega(g)$$
 B. $f \in \mathcal{O}(g) \Rightarrow g \in \Theta(f)$ C. $f \in \Omega(g) \Rightarrow f \in \mathcal{O}(g)$ D. $f \in \Theta(g) \Rightarrow g \in \Theta(f)$

8. Aplicou-se o algoritmo de ordenação "shellsort" à tabela seguinte: $\mid 19 \mid 12 \mid 13 \mid 18 \mid 20 \mid 11 \mid 17 \mid 15 \mid 14 \mid 16 \mid$. Qual das sequências de h é tal que para o segundo valor de h não há qualquer troca?

A.
$$h = 6, 4, 1$$
 B. $h = 5, 3, 1$ C. $h = 5, 4, 1$ D. $h = 6, 3, 1$

9. Aplicou-se o algoritmo de ordenação "shellsort" à tabela seguinte: $\mid 29 \mid 22 \mid 23 \mid 28 \mid 30 \mid 21 \mid 27 \mid 25 \mid 24 \mid 26 \mid$. Qual das sequências de h é tal que para o segundo valor de h não há qualquer troca?

A.
$$h = 5, 3, 1$$
 B. $h = 5, 4, 1$ C. $h = 6, 3, 1$ D. $h = 6, 4, 1$

10. Aplicou-se o algoritmo de ordenação "shellsort" à tabela seguinte: $\mid 39 \mid 32 \mid 33 \mid 38 \mid 40 \mid 31 \mid 37 \mid 35 \mid 34 \mid 36 \mid$. Qual das sequências de h é tal que para o segundo valor de h não há qualquer troca?

A.
$$h = 5, 4, 1$$
 B. $h = 6, 3, 1$ C. $h = 6, 4, 1$ D. $h = 5, 3, 1$

11. Aplicou-se o algoritmo de ordenação "shellsort" à tabela seguinte: |49|42|43|48|50|41|47|45|44|46|. Qual das sequências de h é tal que para o segundo valor de h não há qualquer troca?

A.
$$h = 6, 3, 1$$
 B. $h = 6, 4, 1$ C. $h = 5, 3, 1$ D. $h = 5, 4, 1$

12. Dada a árvore binária que abaixo se apresenta, qual das seguintes afirmações é falsa?

A. O varrimento in-fixado produz output crescente.

B. A árvore é ordenada mas não é balanceada AVL.

C. A árvore é ordenada.

D. A inserção de um elemento de chave 85 preserva o balanceamento.

13. Dada a árvore binária que abaixo se apresenta, qual das seguintes afirmações é falsa?

- A. O varrimento in-fixado produz output crescente.
- B. A árvore é ordenada mas não é balanceada AVL.
- C. A árvore é ordenada.
- D. A inserção de um elemento de chave 85 preserva o balanceamento.
- 14. Considere a função à esquerda e indique qual dos conjuntos indicados à direita não majora a complexidade temporal da função.

```
void f(int N)
{
  for (int j=0; j<N; j++)
  ;
}</pre>
```

A. $\mathcal{O}(2^N)$

B. $\mathcal{O}(\log N)$

C. $\mathcal{O}(N)$

D. $\mathcal{O}(N^2)$

15. Considere a função à esquerda e indique qual dos conjuntos indicados à direita não majora a complexidade temporal da função.

A. $\mathcal{O}(N)$

B. $\mathcal{O}(N^2)$

C. $\mathcal{O}(2^N)$

D. $\mathcal{O}(N^{\frac{1}{2}})$

PARTE II - Questões de Escolha Binária (V/F)

Preencha as respostas na tabela (usando <u>apenas</u> letras maiúsculas – V(erdadeira) ou F(alsa)). Cada questão de escolha binária vale 0.50 valores. As questões não respondidas ou erradas são cotadas com 0 valores.

Questão	7	8	9	10	11	12	13	14
Resposta								

- 16. A complexidade da operação de união do algoritmo da união rápida não é pior que a complexidade da operação de procura no algoritmo da procura rápida.
- 17. Com um tipo de dados abstracto, se for alterada apenas a implementação interna será necessário actualizar a definição da respectiva interface para o cliente.
- 18. Considere dois algoritmos que resolvem o mesmo problema. O algoritmo que corre em $\mathcal{O}(N^2)$ é sempre mais rápido do que o que corre em $\mathcal{O}(N^3)$.
- 19. Numa árvore binária, se todos os elementos da sub-árvore esquerda forem menores que a raíz e todos os elementos da sub-árvore direita forem maiores que a raíz, então a árvore diz-se ordenada.
- 20. Seja G um grafo ponderado não direccionado e seja T o conjunto de arestas que constitui a sua árvore mínima de suporte. Seja agora G' um grafo com os mesmos vértices e arestas que G, mas todas as arestas de G' são c>0 mais caras que as arestas de G. T também é a árvore mínima de suporte de G'.
- 21. Se no algoritmo de Kruskal para determinação da árvore mínima de suporte de um grafo, não ordenarmos as arestas mas fizermos todos os restantes passos, obtemos ainda assim uma árvore de suporte.
- 22. No algoritmo da união rápida ponderada com compressão de caminho, se p e q estiverem no mesmo conjunto, então os seus id[.] são iguais.
- 23. Considerando a complexidade temporal, o caso médio do algoritmo de ordenação "selection" é idêntico ao pior caso.
- 24. No algoritmo da união rápida ponderada com compressão de caminho, se p e q estiverem no mesmo conjunto, então os seus id[.] são iguais.
- 25. Considerando a complexidade temporal, o caso médio do algoritmo de ordenação "selection" é idêntico ao pior caso.
- 26. A complexidade da operação de união do algoritmo da união rápida é melhor que a complexidade da operação de procura no algoritmo da procura rápida.
- 27. Com um tipo de dados abstracto, se for alterada apenas a implementação interna não será necessário actualizar a definição da respectiva interface para o cliente.
- 28. Considerando a complexidade temporal, o caso médio do algoritmo de ordenação "selection" é idêntico ao pior caso.
- 29. Considere dois algoritmos que resolvem o mesmo problema. O algoritmo que corre em $\mathcal{O}(N^2)$ pode ser mais lento que o que corre em $\mathcal{O}(N^3)$.
- 30. Numa árvore binária ordenada o elemento que possua a maior chave não pode ter filhos à sua esquerda.
- 31. A execução do passo inicial do algoritmo de Kruskal, a ordenação das arestas por ponderação crescente, não é essencial para que a árvore de suporte a que se chega seja mínima.
- 32. Considerando a complexidade temporal, o caso médio do algoritmo de ordenação "selection" é idêntico ao pior caso.
- 33. Considere dois algoritmos que resolvem o mesmo problema. O algoritmo que corre em $\mathcal{O}(N^2)$ é sempre mais rápido do que o que corre em $\mathcal{O}(N^3)$.
- 34. A complexidade da operação de união do algoritmo da união rápida não é pior que a complexidade da operação de procura no algoritmo da procura rápida.

- 35. Com um tipo de dados abstracto, se for alterada apenas a implementação interna será necessário actualizar a definição da respectiva interface para o cliente.
- 36. Seja G um grafo ponderado não direccionado e seja T o conjunto de arestas que constitui a sua árvore mínima de suporte. Seja agora G' um grafo com os mesmos vértices e arestas que G, mas todas as arestas de G' são c>0 mais caras que as arestas de G. T também é a árvore mínima de suporte de G'.
- 37. No algoritmo da união rápida ponderada com compressão de caminho, se p e q estiverem no mesmo conjunto, então os seus id[.] são iguais.
- 38. Numa árvore binária, se todos os elementos da sub-árvore esquerda forem menores que a raíz e todos os elementos da sub-árvore direita forem maiores que a raíz, então a árvore diz-se ordenada.
- 39. Se no algoritmo de Kruskal para determinação da árvore de suporte mínimo de um grafo, não ordenarmos as arestas mas fizermos todos os restantes passos, obtemos ainda assim uma árvore de suporte.
- 40. Considerando a complexidade temporal, o caso médio do algoritmo de ordenação "selection" é idêntico ao pior caso.
- 41. A complexidade da operação de união do algoritmo da união rápida é melhor que a complexidade da operação de procura no algoritmo da procura rápida.
- 42. Considere dois algoritmos que resolvem o mesmo problema. O algoritmo que corre em $\mathcal{O}(N^2)$ pode ser mais lento que o que corre em $\mathcal{O}(N^3)$.
- 43. No algoritmo da união rápida ponderada com compressão de caminho, se p e q estiverem no mesmo conjunto, então os seus id[.] são iguais.
- 44. Com um tipo de dados abstracto, se for alterada apenas a implementação interna não será necessário actualizar a definição da respectiva interface para o cliente.
- 45. Considerando a complexidade temporal, o caso médio do algoritmo de ordenação "selection" é idêntico ao pior caso.
- 46. A execução do passo inicial do algoritmo de Kruskal, a ordenação das arestas por ponderação crescente, não é essencial para que a árvore de suporte a que se chega seja mínima.
- 47. Numa árvore binária ordenada o elemento que possua a maior chave não pode ter filhos à sua esquerda.

PARTE III - Questões de Desenvolvimento

Responda a cada uma das questões de desenvolvimento em **folhas de exame separadas** e devidamente identificadas com nome e número.

[5.0] 48. Considere o grafo G cuja descrição se apresenta abaixo, através de listas de adjacências. Em cada caixa apresenta-se o par constituído pelo vértice (a negrito) e o valor da aresta, separados pelo carácter '/'. Por exemplo, o vértice **00** possui uma aresta de peso 2 para o vértice **07**.

00:	07 /02	\rightarrow	11 /03	\rightarrow	13 /05	\rightarrow	06 /08
01:	00 /09	\rightarrow	02 /01	\rightarrow	12 /05		
02 :	09 /07	\rightarrow	03 /01	\rightarrow	12 /03		
03:	00 /04	\rightarrow	04 /01	\rightarrow	05 /08		
04 :	12 /04	\rightarrow	05 /01	\rightarrow	08 /06		
05 :	02 /02	\rightarrow	10 /01	\rightarrow	08/02	\rightarrow	07 /05
06:	13 /11	\rightarrow	01 /01	\rightarrow	11 /03	\rightarrow	09 /07
07 :	03 /04	\rightarrow	10 /03	\rightarrow	12 /05	\rightarrow	06 /04
08:	11 /09	\rightarrow	00 /02				
09:	04 /05	\rightarrow	01 /10	\rightarrow	07 /08	\rightarrow	05 /03
10 :	13 /06	\rightarrow	12 /01				
11 :	00 /03	\rightarrow	03 /02	\rightarrow	09 /01		
12 :	08/07	\rightarrow	13 /01	\rightarrow	06 /07		
13 :	04 /01	\rightarrow	01 /02				

- [1.5] a) Pretende-se aplicar procura em largura ("Breadth First Search" ou BFS), tomando o vértice **06** como ponto de partida e terminando apenas após estarem visitados todos os vértices do grafo, se tal for possível. Durante os seus cálculos, que deverá justificar de forma clara, represente a fila de procura através de uma lista de vértices. Na sua resolução deverá ser claro no final qual a ordem pela qual os vértices são visitados. Assuma que em cada nó, a ordem pela qual os seus adjacentes são visitados é dada pela posição na lista de adjacências respectiva.
- [2.0] b) Tomando de novo o vértice **06** como ponto de partida aplique o algoritmo de Dijkstra, justificando os seus cálculos.
- [1.0] c) Trace a árvore que obteve na alínea anterior.
- [0.5] d) Comente a seguinte afirmação: A BFS é usada como forma de obter solução para problemas de caminhos mais curtos.

- [4.0] 49. O número 24 possui exactamente D(24)=8 divisores, a saber: 1,2,3,4,6,8,12 e 24. Qualquer inteiro, excepto a unidade, possui sempre, pelo menos, dois divisores. Um número é primo se e só se possuir exactamente 2 divisores: 1 e ele próprio. Por exemplo, D(17)=2. É objectivo deste exercício escrever uma função que receba um número inteiro como argumento e calcule quantos números inteiros entre 1 e o número dado, inclusive, possuem exactamente 8 divisores.
 - Pretende-se, portanto, calcular $\sum_{i=1}^{N} \mathbf{1}\{D(i)=8\}$, em que $\mathbf{1}\{.\}$ vale 1 quando o argumento é verdade e vale 0 no caso contrário. Ou seja, $\mathbf{1}\{D(24)=8\}=1$, mas $\mathbf{1}\{D(17)=8\}=0$.
 - [2.0] a) Proponha um algoritmo o mais eficiente possível para resolver este problema, fazendo uso de uma descrição por texto e/ou socorrendo-se de um fluxograma suficientemente claro e devidamente explicado. Seja preciso e conciso na sua descrição.
 - [1.5] b) Escreva a função int all_with_8_divisors(int N) que implementa o algoritmo por si proposto, não se esquecendo de a comentar devidamente, para que seja claro o que pretende que cada troço do seu código faça.
 - [0.5] c) De forma devida e adequadamente detalhada e justificada, determine a complexidade temporal do seu algoritmo como função do parâmetro de entrada.

Nota: É possível resolver este problema em $\mathcal{O}(N^{\alpha})$ com $\alpha \leq 2$. Para obter a cotação completa neste exercício, a função, além de estar correcta, tem de ser o mais eficiente possível.

- [2.5] 50. Pensando em árvores genealógicas como contexto, o problema da ancestralidade resume-se a perguntar se numa árvore M-ária, um dado vértice v é ou não um antepassado de outro vértice w.

 Neste problema vamos discutir formas alternativas de resolver computacionalmente o problema da ancestralidade e discutir como o uso de memória adicional pode afectar a complexidade temporal.
 - [1.0] a) Assuma que se pretende escrever uma função que, recebendo como argumentos dois ponteiros para vértices da árvore, indique se o segundo argumento corresponde a um vértice descendente do primeiro.
 Sem escrever código, e fazendo uso do que aprendeu sobre árvores com raíz, descreva um algoritmo que permita resolver o problema da ancestralidade, dados dois vértices v e w, em tempo O(N), em que N é o número total de vértices na árvore.
 - [1.5] b) **Também sem escrever código** e inspirado no que aprendeu sobre árvores binárias e acervos, assuma que M pode tomar qualquer valor, mas que é uma constante conhecida, e indique de que forma seria possível resolver o mesmo problema em $\mathcal{O}(\log N)$. **Sugestão:** Considere a possibilidade de adicionar alguma informação a cada vértice. Explicite qual a informação que adicionaria e de que modo essa informação seria usada.