Tropical Support Vector Machines

MAP513 — Tuesday, December 19th

Samuel Boïté, Théo Molfessis Supervised by Xavier Allamigeon, Stéphane Gaubert

Tropical hyperplanes

- Max-plus semi-field: $\mathbb{R}_{\max} = \mathbb{R} \cup \{-\infty\}$ with addition $a \oplus b = \max(a,b)$ and multiplication $a \odot b = a + b$.
- Tropical hyperplane of apex $a \in \mathbb{R}^d_{\max}$: splits space depending on where x-a reaches its maximum coordinate.

• $H_a := \{x \in \mathbb{R}^d_{\max}, (x-a) \text{ reaches its max coordinate at least twice}\}.$

Tropical hyperplanes

• Tropical parametrised hyperplane of config. $\sigma = \{I^{\pm}\}: H_a^{\sigma} := \{x \in \mathbb{R}_{\max}^d, (x-a) \text{ reaches its max coordinate in } I^+ \text{ and } I^-\}$

Tropical classification problem

- n classes of d-dimensional points: $X_1, \ldots, X_n \subset \mathbb{R}^d$.
- Tropical distance: $d(u, v) := \max(u v) \min(u v)$.
- Hard separation with margin ν :

$$\forall x^k \in X^k$$
, $\arg\max_{i \in [d]} x_i^k \in I^k$, $i \in [d]$

$$d(H_a^{\sigma}, x^k) = \max(x^k - a) - \max_{\substack{\ell \neq k}} (x^k - a) \ge \nu.$$

Amounts to separate tropical spans.

Tropical Binary Classification Example

Describing tropical spans

- Shapley operator: non-decreasing map over \mathbb{R}^d_{\max} verifying $\forall \lambda \in \mathbb{R}_{\max}, T(\lambda + x) = \lambda + T(x)$.
- For T a Shapley map, we define $\mathcal{S}(T) = \{x \in \mathbb{R}^d, x \leq T(x)\}$.
- Important example: tropical projections:

$$\forall i \in [p], \quad P_X(x)_i = \max_{j \in [p]} \left\{ X_{ij} + \min_{k \in [d]} (-X_{kj} + x_k) \right\}.$$

$$\mathcal{S}(P_X) = \operatorname{Span}(X).$$

Hence tropical projections describe the sets we want to separate.

Dealing with non-separability

- Objective: Evaluating overlap $V^+ \cap V^-$ in terms of distance to separability.
- $\mathcal{S}(T^+ \wedge T^-) = \mathcal{S}(T^+) \cap \mathcal{S}(T^-)$: we have a Shapley for the intersection.
- We can make it diagonal-free.
- [Allamigeon, Gaubert et al.] $\rho(T) = \text{inrad } \mathcal{S}(T)$ when T DF.
- Eigenpairs computable in pseudo-polynomial time with Krasnoselskii-Mann.

Dealing with non-separability

• **Proposition.** Projecting points at distance less than $\rho(T)$ over H_a nullifies the interior of $V^+ \cap V^-$, with a eigenvector associated with $\rho(T)$.

Optimal margin in the separable case

- Let (a, λ) the unique eigenpair: in the separable case, $\lambda < 0$.
- Let the sectors $I^{\pm}:=\{i\in[d],\quad T^{\pm}(a)_i>\lambda+a_i\}$.
- **Proposition.** H_a^{σ} , given the sectors defined above, separates V^{\pm} with a margin of $-\lambda$. It is optimal in the case of finite point clouds.

Optimal margin in the separable case

- Let (a, λ) the unique eigenpair: in the separable case, $\lambda < 0$.
- Let the sectors $I^{\pm}:=\{i\in[d],\quad T^{\pm}(a)_i>\lambda+a_i\}$.
- **Proposition.** H_a^{σ} , given the sectors defined above, separates V^{\pm} with a margin of $-\lambda$. It is optimal in the case of finite point clouds.
- *Proof.* As T^{\pm} are non-expansive, we have for $x^{\pm} \in V^{\pm}$:

$$x_i^{\pm} \le \max(x^{\pm} - a) + T^{\pm}(a)_i$$
.

• For instance, let $i \in I^-$. Then $T^+(a)_i = \lambda + a_i$, so for $x^+ \in V^+$:

$$x_i^+ - a_i \le \max(x^+ - a) + \lambda.$$

• And:

$$d(H_a^{\sigma}, x^+) = \max(x^+ - a) - \max(x^+ - a)_{I^-} \ge -\lambda.$$

• For the optimality, when T^{\pm} is in the form:

$$T^{\pm}(x) := \sup_{v \in V^{\pm}} \left(v_i + \min(-v + x) \right).$$

• For $\varepsilon > 0$, we can find $v \in V^+$ such that:

$$T^+(a)_i - \varepsilon \le v_i - \max(v - a) \le T^+(a)_i$$
.

Hence:

$$\lambda - \varepsilon \le v_i - a_i - \max(v - a) \le \lambda$$
.

1. Hard-Margin Multi-Classification

All-Vs-All
$$T:=\bigvee T^k\wedge T^l$$
 Same proofs! $1\leq k < l \leq n$

One-Vs-All?
$$T^{(1)}:=T^1 \wedge \left(\bigvee_{j \neq 1} T^j\right).$$

2. Adding Features: Tropically Polynomial Decision Boundaries

- Initial space: \mathbb{R}^d .
- New space: $\operatorname{ver}(x) := (\langle x, \alpha \rangle)_{\alpha \in \mathcal{A}} \in \mathbb{R}^{\mathcal{A}}$.
- We consider integer combinations of features: $\mathscr{A}_s := (s\Delta_d) \cap \mathbb{Z}^d$.
- Ex: \mathcal{A}_1 corresponds to initial space, \mathcal{A}_2 also contains all sums of 2 features...
- [Zhang, 18] Feedforward neural networks + ReLU \equiv Tropical Rational Functions

2. Adding Features: Tropically Polynomial Decision Boundaries

Tropical hyperplane (\mathcal{A}_1)

2. Adding Features: Tropically Polynomial Decision Boundaries

One-vs-all hyperplanes (\mathcal{A}_1)

Blue class hard to separate

2. Adding Features: Tropically Polynomial Decision Boundaries

Veronese trick (\mathcal{A}_2): better!

Generated with Polymake, approximate overlap

2. Adding Features: Tropically Polynomial Decision Boundaries

Veronese trick (\mathcal{A}_3): overfitting!

Generated with Polymake, approximate overlap

3. Linear Hyperplanes Look Tropical on Log Paper

3. Linear Hyperplanes Look Tropical on Log Paper

- New data: $x^{\beta} = (x_{ij}^{\beta} := e^{\beta X_{ij}})_{ij}$.
- Hypersurface converges: $d_H(\beta^{-1}\log H^{\beta}, H^{trop}) \leq \beta^{-1}\log d$.
- When d high, β has to compensate, however if $\beta \bar{X}$ too high, numerical error!
- Tropical method will give higher numerical accuracy on higher dimensions.
- Bridging linear and tropical SVM theories?

3. Linear Hyperplanes Look Tropical on Log Paper

 $d = 3, \quad \beta = 10$