

Dive into Eigen Decomposition

1 / 深入特征值分解

无处不在的特征值分解

生命之殇,并非求其上,却得其中;而是求其下,必得其下。

The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark.

—— 米开朗琪罗 (Michelangelo) | 文艺复兴三杰之一 | 1475 ~ 1564

- ◀ numpy.meshgrid() 产生网格化数据
- ◀ numpy.prod() 指定轴的元素乘积
- ◀ numpy.linalg.inv() 矩阵求逆
- numpy.linalg.eig() 特征值分解
- ◀ numpy.diag() 以一维数组的形式返回方阵的对角线元素,或将一维数组转换成对角阵
- ✓ seaborn.heatmap() 绘制热图

14.1 方阵开方

本章是上一章的延续,继续探讨特征值分解及其应用。这一节介绍利用特征值分解完成方阵开方。

如果方阵 A 可以写作:

$$A = BB \tag{1}$$

 $B \in A$ 的平方根。利用特征值分解,可以求得 A 的平方根。

首先对矩阵 A 特征值分解:

$$\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1} \tag{2}$$

令:

$$\mathbf{B} = V \Lambda^{\frac{1}{2}} V^{-1} \tag{3}$$

 B^2 可以写成:

$$\mathbf{B}^{2} = \left(\mathbf{V} \Lambda^{\frac{1}{2}} \mathbf{V}^{-1}\right)^{2} = \mathbf{V} \Lambda^{\frac{1}{2}} \mathbf{V}^{-1} \mathbf{V} \Lambda^{\frac{1}{2}} \mathbf{V}^{-1} = \mathbf{V} \Lambda \mathbf{V}^{-1} = \mathbf{A}$$
 (4)

即:

$$A^{\frac{1}{2}} = V A^{\frac{1}{2}} V^{-1} \tag{5}$$

▲ 注意, 能特征值分解的矩阵存在平方根矩阵。

类似地, 方阵 A 的立方根可以写成:

$$A^{\frac{1}{3}} = V A^{\frac{1}{3}} V^{-1} \tag{6}$$

继续推广, 可以得到:

$$\mathbf{A}^{p} = \mathbf{V} \mathbf{\Lambda}^{p} \mathbf{V}^{-1} \tag{7}$$

其中, p 为任意实数。

举个例子

给定如下方阵 A, 求解如下矩阵的平方根:

$$A = \begin{bmatrix} 1.25 & -0.75 \\ -0.75 & 1.25 \end{bmatrix} \tag{8}$$

对 A 进行特征值分解得到:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$A = \begin{bmatrix} 1.25 & -0.75 \\ -0.75 & 1.25 \end{bmatrix} = VAV^{-1} = \begin{bmatrix} \sqrt{3}/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} \sqrt{3}/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & \sqrt{3}/2 \end{bmatrix}$$
(9)

矩阵 B 为:

$$\mathbf{B} = \mathbf{V} \mathbf{A}^{\frac{1}{2}} \mathbf{V}^{-1} = \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2}/2 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} \\
= \begin{bmatrix} 1 & 1/2 \\ -1 & 1/2 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} = \begin{bmatrix} 3\sqrt{2}/4 & -\sqrt{2}/4 \\ -\sqrt{2}/4 & 3\sqrt{2}/4 \end{bmatrix} \tag{10}$$

Bk4 Ch14 01.py 求解上述例子中 A 的平方根。

14.2 矩阵指数:幂级数的推广

给定一个标量 a, 指数 e^a 可以用幂级数展开表达:

$$e^{a} = \exp(a) = 1 + a + \frac{1}{2!}a^{2} + \frac{1}{3!}a^{3} + \cdots$$
 (11)

⇒对于(11)这个式子感到生疏的读者,可以回顾《数学要素》第17章有关泰勒展开内容。

类似地,对于方阵 A,可以定义**矩阵指数** (matrix exponential) e^A 为一个收敛幂级数:

$$e^{A} = \exp(A) = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \cdots$$
 (12)

如果 A 可以特征值分解得到如下等式, 计算 (12) 则容易很多:

$$A = V \Lambda V^{-1} \tag{13}$$

其中,

$$\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_D \end{bmatrix}$$
(14)

利用特征值分解, A^k 可以写作:

$$\mathbf{A}^k = \mathbf{V} \mathbf{\Lambda}^k \mathbf{V}^{-1} \tag{15}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

其中, k 为非负整数。

将(15)代入(12),得到:

$$e^{A} = \exp(A) = VV^{-1} + V\Lambda V^{-1} + \frac{1}{2!}V\Lambda^{2}V^{-1} + \frac{1}{3!}V\Lambda^{3}V^{-1} + \cdots$$

$$= V(I + \Lambda + \Lambda^{2} + \Lambda^{3} + \cdots)V^{-1}$$
(16)

特别地,对角方阵 1 矩阵指数为:

$$e^{A} = \exp(A) = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \cdots$$
 (17)

容易计算对角阵 /1 矩阵指数 e⁻¹:

将(17)代入(16),得到:

$$e^A = V e^A V^{-1} \tag{19}$$

将(18)代入(19),得到:

$$\mathbf{e}^{A} = \mathbf{V} \begin{bmatrix} \mathbf{e}^{\lambda_{1}} & & & \\ & \mathbf{e}^{\lambda_{2}} & & \\ & & \ddots & \\ & & & \mathbf{e}^{\lambda_{D}} \end{bmatrix} \mathbf{V}^{-1}$$
 (20)

可以用 scipy.linalg.expm() 计算矩阵指数。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

14.3 斐波那契数列: 求通项式

本系列丛书《数学要素》介绍过斐波那契数列 (Fibonacci number),本节介绍如何使用特征值分解推导得到斐波那契数列通项解析式。

斐波那契数列可以通过如下递归 (recursion) 方法获得:

$$\begin{cases} F_0 = 0 \\ F_1 = F_2 = 1 \\ F_n = F_{n-1} + F_{n-2}, & n > 2 \end{cases}$$
 (21)

包括第0项, 斐波那契数列的前10项为:

$$0,1,1,2,3,5,8,13,21,34,55$$
 (22)

构造列向量

将斐波那契数列每连续两项写成列向量:

$$\boldsymbol{x}_{0} = \begin{bmatrix} F_{0} \\ F_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \boldsymbol{x}_{1} = \begin{bmatrix} F_{1} \\ F_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \boldsymbol{x}_{2} = \begin{bmatrix} F_{2} \\ F_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \boldsymbol{x}_{3} = \begin{bmatrix} F_{3} \\ F_{4} \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \boldsymbol{x}_{4} = \begin{bmatrix} F_{4} \\ F_{5} \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \dots$$
 (23)

图 1 所示为列向量连续变化过程,能够看到它们逐渐收敛到一条直线上。这条直线通过原点,斜率就是**黄金分割** (golden ratio):

$$\varphi = \frac{\sqrt{5} + 1}{2} \approx 1.61803 \tag{24}$$

图 1. 斐波那契数列列向量连续变化过程

连续列向量间关系

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

数列的第 k+1 项 \mathbf{x}_{k+1} 和第 k 项 \mathbf{x}_k 之间的关系可以写成如下矩阵运算:

$$\boldsymbol{x}_{k+1} = \begin{bmatrix} F_{k+1} \\ F_{k+2} \end{bmatrix} = \boldsymbol{A}\boldsymbol{x}_k = \boldsymbol{A} \begin{bmatrix} F_k \\ F_{k+1} \end{bmatrix}$$
 (25)

其中

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \tag{26}$$

因此 x_k 可以写成:

$$\mathbf{x}_{k} = A\mathbf{x}_{k-1}$$

$$= A^{2}\mathbf{x}_{k-2}$$

$$= A^{3}\mathbf{x}_{k-3}$$

$$\dots$$

$$= A^{k}\mathbf{x}_{0}$$
(27)

特征值分解

对 A 进行特征值分解:

$$A = V \Lambda V^{-1} \tag{28}$$

其中,

$$\Lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{bmatrix}, \quad V^{-1} = \frac{1}{\lambda_2 - \lambda_1} \begin{bmatrix} \lambda_2 & -1 \\ -\lambda_1 & 1 \end{bmatrix}$$
(29)

A 的特征方程为:

$$\lambda^2 - \lambda - 1 = 0 \tag{30}$$

求解(30), 可以得到两个特征值:

$$\lambda_1 = \frac{1 - \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 + \sqrt{5}}{2}$$
 (31)

 x_k 可以写成:

$$\mathbf{x}_{k} = \mathbf{V} A^{k} \mathbf{V}^{-1} \mathbf{x}_{0} \tag{32}$$

将 (29) 代入 (32), 得到:

$$\mathbf{x}_{k} = \frac{1}{\lambda_{2} - \lambda_{1}} \begin{bmatrix} 1 & 1 \\ \lambda_{1} & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1}^{k} \\ \lambda_{2}^{k} \end{bmatrix} \begin{bmatrix} \lambda_{2} & -1 \\ -\lambda_{1} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\
= \frac{1}{\lambda_{2} - \lambda_{1}} \begin{bmatrix} \lambda_{2}^{k} - \lambda_{1}^{k} \\ \lambda_{2}^{k+1} - \lambda_{1}^{k+1} \end{bmatrix}$$
(33)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

即,

$$\begin{bmatrix} F_k \\ F_{k+1} \end{bmatrix} = \frac{1}{\lambda_2 - \lambda_1} \begin{bmatrix} \lambda_2^k - \lambda_1^k \\ \lambda_2^{k+1} - \lambda_1^{k+1} \end{bmatrix}$$
(34)

确定通项式

因此 F_k 可以写成:

$$F_k = \frac{\lambda_2^k - \lambda_1^k}{\lambda_2 - \lambda_1} \tag{35}$$

将 (31) 代入 (35) 得到 F_k解析式:

$$F_{k} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k} - \left(\frac{1-\sqrt{5}}{2}\right)^{k}}{\sqrt{5}}$$
 (36)

至此,我们通过特征值分解得到斐波那契数列通项式解析式。

14.4 马尔科夫过程的平稳状态

→本系列丛书在《数学要素》中介绍过一个"鸡兔互变"的有趣例子。例子中,鸡兔之间存 在一定比例的相互转化。本节回顾这个例子,并介绍如何用特征值分解求解其平稳状态。

图 2 描述鸡兔互变的比例,每晚有 30%的小鸡变成小兔,其他小鸡不变;同时,每晚有 20% 小兔变成小鸡,其余小兔不变。这个转化的过程叫做**马尔科夫过程** (Markov process)。

马尔科夫过程满足以下三个性质: (1) 可能输出状态有限; (2) 下一步输出的概率仅仅依赖上 一步的输出状态; (3) 概率值相对于时间为常数。

图 2. 鸡兔互变的比例

"鸡兔互变"这个例子中,第 k 天,鸡兔的比例用列向量 $\pi(k)$ 表示;其中, $\pi(k)$ 第一行元素代表小鸡的比例,第二行元素代表小兔的比例。第 k+1 天,鸡兔的比例用列向量 $\pi(k+1)$ 表示。

变化的比例写成方阵 T, T 通常叫做转移矩阵 (transition matrix)。

这样 $k \rightarrow k + 1$ 变化过程可以写成:

$$k \to k+1$$
: $T\pi(k) = \pi(k+1)$ (37)

对于鸡兔互变, T为:

$$T = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix} \tag{38}$$

图 3. 不同初始状态条件下平稳状态

求平稳状态

如图 3 所示,我们初步得出结论不管初始状态向量 (k=0) 如何,鸡兔比例最后都达到了一定的平衡,也就是:

$$T\pi = \pi \tag{39}$$

有了本书特征值分解相关的知识,相信大家一眼就看出来(39)代表的关系就是特征值分解。

→ 看过本系列丛书《数学要素》一册的读者应该还记得图4这幅图,它从几何视角描述了不同初始状态向量条件下,经过连续12次变化,向量都收敛于同一方向。

对 T 进行特征值分解得到两个特征向量:

$$\mathbf{v}_1 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0.5547 \\ 0.8321 \end{bmatrix}$$
 (40)

显然,鸡兔总比例之和为 1。因此 π 的两个元素之和为 1,且元素取值均非负,因此选择 v_2 来计算 π :

$$\pi = \frac{1}{0.5547 + 0.8321} v_2 = \frac{1}{0.5547 + 0.8321} \begin{bmatrix} 0.5547 \\ 0.8321 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$$
 (41)

这个 π 叫做**平稳状态** (steady state)。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 4. 连续 12 夜鸡兔互变比例,几何视角,图片来自《数学要素》

Bk4 Ch14 02.py 绘制图3。

14.5 瑞利商

瑞利商 (Rayleigh quotient) 在很多机器学习算法中扮演重要角色,瑞利商和特征值分解有着密切关系。本节利用几何视角可视化瑞利商,让大家深入理解瑞利商这个概念。

定义

给定实数对称矩阵A,它的瑞利商定义为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$R(x) = \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x} \tag{42}$$

其中, $\mathbf{x} = [x_1, x_2, ..., x_D]^{\mathrm{T}}$ 。

A 注意, (42) 中x 不能为零向量0, 也就是说, $x_1, x_2, ..., x_D$ 不能同时为0。

先给出结论,瑞利商 R(x) 的取值范围:

$$\lambda_{\min} \le R(x) \le \lambda_{\max} \tag{43}$$

其中、 λ_{\min} 和 λ_{\max} 分别为矩阵 A 的最小和最大特征值。

最大值和最小值

求解 R(x) 的最大、最小值,等价于 R(x) 分母为定值条件下,求解分子的最大值和最小值。一般情况下,给定的条件是 x 为单位向量,即:

$$\mathbf{x}^{\mathrm{T}}\mathbf{x} = \|\mathbf{x}\|_{2}^{2} = 1 \iff \|\mathbf{x}\|_{2} = 1$$
 (44)

A 为对称矩阵, 对其特征值分解得到:

$$A = V \Lambda V^{\mathrm{T}} \tag{45}$$

R(x) 的分子可以写成:

$$(\boldsymbol{V}^{\mathsf{T}}\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Lambda} (\boldsymbol{V}^{\mathsf{T}}\boldsymbol{x}) = (\boldsymbol{V}^{\mathsf{T}}\boldsymbol{x})^{\mathsf{T}} \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{D} \end{bmatrix} (\boldsymbol{V}^{\mathsf{T}}\boldsymbol{x})$$
 (46)

令

$$\mathbf{y} = \mathbf{V}^{\mathrm{T}} \mathbf{x} \tag{47}$$

这样, (47) 可以写成:

$$\mathbf{y}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{D} \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{D} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{D} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{D} \end{bmatrix} = \lambda_{1} y_{1}^{2} + \lambda_{2} y_{2}^{2} + \dots + \lambda_{D} y_{D}^{2}$$
(48)

类似地, R(x) 的分母可以写成:

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} = (\boldsymbol{V}^{\mathrm{T}}\boldsymbol{x})^{\mathrm{T}}(\boldsymbol{V}^{\mathrm{T}}\boldsymbol{x}) = \boldsymbol{y}^{\mathrm{T}}\boldsymbol{y} = y_{1}^{2} + y_{2}^{2} + \dots + y_{D}^{2} = 1$$
(49)

这样、瑞利商就可以简洁地写成以v为自变量的函数R(v):

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$R(y) = \frac{\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_D y_D^2}{y_1^2 + y_2^2 + \dots + y_D^2}$$
(50)

举个例子

下面,我们以 2×2 矩阵为例,讲解如何求解瑞利商。给定A为:

$$A = \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} \tag{51}$$

R(x) 为:

$$R(x) = \frac{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}} = \frac{1.5x_1^2 + x_1x_2 + 1.5x_2^2}{x_1^2 + x_2^2}$$
(52)

A 的两个特征值分别为 $\lambda_1 = 2$, $\lambda_2 = 1$ 。R(x) 等价于 R(y), 根据 (50) R(y) 写成:

$$R(y) = \frac{y_1^2 + 2y_2^2}{y_1^2 + y_2^2} \tag{53}$$

推导最值

求解 R(y) 的最大、最小值,等价于 R(y) 分母为 1 条件下,分子的最大值和最小值。

简单推导 R(y) 最大值:

$$R(y) = y_1^2 + 2y_2^2 \le 2(y_1^2 + y_2^2) = 2$$
 (54)

推导 R(y) 最小值:

$$R(y) = y_1^2 + 2y_2^2 \ge \underbrace{\left(y_1^2 + y_2^2\right)}_{1} = 1$$
 (55)

几何视角

下面我们用几何方法来解释。

(52) 的分母为 1, 意味着分母代表的几何图形是个单位圆, 即,

$$x_1^2 + x_2^2 = 1 ag{56}$$

(52) 分子对应二次函数:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$f(x_1, x_2) = 1.5x_1^2 + x_1x_2 + 1.5x_2^2$$
(57)

这个二次函数对应的等高线图如所示图 5 (a) 所示。 $f(x_1, x_2)$ 等高线和单位圆相交的交点中找到 $f(x_1, x_2)$ 获取最大值和最小值点。最大特征值 λ_1 对应的特征向量 ν_1 , ν_1 这个方向上做一条直线,直线和单位圆交点 (x_1, x_2) 对应的就是瑞利商的最大值点;此时,瑞利商的最大值为 λ_1 。

图 6(a) 所示为 $f(x_1, x_2)$ 曲面,以及单位圆在曲面上的映射值对应的曲线。

→ 从视角来看,上述问题实际上是个含约束优化问题,本书第 18 章将介绍如何利用拉格朗日乘子法将含约束优化问题转化为无约束优化问题。

图 5. 平面上可视化 f(x1, x2) 和单位圆

图 6. 三维空间中可视化 $f(x_1, x_2)$ 和单位圆

▲ 请大家格外注意,采用单位圆作为限制条件是为了简化瑞利商对应的优化问题,而且单位圆正好是单位向量终点的落点。

实际上满足瑞利商最大值的点 (x_1, x_2) 有无数个,它们都位于特征向量 v_1 所在直线上。我们能 从图 7 中一睹瑞利商 $R(x_1, x_2)$ 曲面形状真容,以及瑞利商最大值和最小值对应的 (x_1, x_2) 坐标值。

▲ 注意, 瑞利商 R(x1, x2) 在 (0,0) 没有定义。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 7. 三维空间中可视化瑞利商

再举两个例子

给定矩阵A:

$$A = \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$
 (58)

它的特征值分别为 $\lambda_1 = 1$, $\lambda_2 = 0$ 。 $f(x_1, x_2)$ 等高线和曲面如图 5 (b) 和图 6 (b)所示。

图 5 (c) 等高线对应的矩阵 A 为:

$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \tag{59}$$

它的特征值分别为 $\lambda_1 = 1$, $\lambda_2 = -1$ 。图 6 (c) 所示为 $f(x_1, x_2)$ 曲面的形状。

三维空间

以上探讨的三种情况都是以 2×2 矩阵为例。在三维空间中,D=3 这种情况,(44) 对应的是一个单位圆球体,将 $f(x_1, x_2, x_3)$ 三元函数的数值以等高线的形式映射到单位圆球体,得到图 8。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger:https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 8. 三维单位球体表面瑞利商值等高线

Bk4 Ch14 03.py 绘制图5和图6。

14.6 特征值分解中的复数现象

本书前文在对实数矩阵进行特征值分解时,我们偶尔发现特征值、特征向量存在虚数。这一节讨论这个现象。

举个例子

给定如下 2×2 实数矩阵 A:

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \tag{60}$$

对 A 进行特征值分解, 得到两个特征值分别为:

$$\lambda_1 = 1 + i, \quad \lambda_2 = 1 - i \tag{61}$$

共轭复数

这对共轭特征值出现的原因是, 方阵 A 特征方程有一对复数解:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \tag{62}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

两个特征值共轭,因此它们也常被称作**共轭特征值** (conjugate eigenvalues)。当矩阵系数是实数的时候,非实数的特征值会以共轭复数形式成对出现。所谓**共轭复数** (complex conjugate),是指两个实部相等,虚部互为相反数的复数。

λι和λ2对应的特征向量分别是:

$$\mathbf{v}_1 = \begin{bmatrix} i \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -i \\ 1 \end{bmatrix} \tag{63}$$

这样的特征向量,常被称作共轭特征向量 (conjugate eigenvector)。

展开来说,本书前文讲述的向量矩阵等概念都是建立在实数 \mathbb{R}^n 基础之上,我们可以把同样的数学工具推广到复数空间 \mathbb{C}^n 上。

 \mathbb{C}^n 中的任意复向量 x 的共轭向量 \bar{x} ,也是 \mathbb{C}^n 中的向量。 \bar{x} 的分量是 x 对应分量的共轭复数。

比如,给定复数向量x和对应的共轭向量 \bar{x} 如下:

$$\mathbf{x} = \begin{bmatrix} 1+i \\ 3-2i \end{bmatrix}, \quad \overline{\mathbf{x}} = \begin{bmatrix} 1-i \\ 3+2i \end{bmatrix} \tag{64}$$

 $\operatorname{Re}(x)$ 和 $\operatorname{Im}(x)$ 分别叫做复向量 x 的实部和虚部,它们分别由 x 向量各个分量的实部和虚部构成。

比如 (64) 中复数向量 x 对应的实部 Re(x) 和虚部 Im(x) 分别为:

$$\operatorname{Re}(x) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad \operatorname{Im}(x) = \begin{bmatrix} i \\ -2i \end{bmatrix}$$
 (65)

读到这里很多读者可能已经不知所云。为了帮助大家理解,下面介绍一类有趣的 2 × 2 矩阵的特征值分解,以及它们对应的几何特征。

特征值分解

给定矩阵 A 如下:

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \tag{66}$$

其中, a和b均为实数,且不同时等于0。

容易求得 A 的复数特征值为一对共轭复数:

$$\lambda = a \pm bi \tag{67}$$

两者的关系如图9所示。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 9. 一对共轭特征值

两个共轭特征值的模相等,令 r 复数特征值的模:

$$r = |\lambda| = \sqrt{a^2 + b^2} = \sqrt{|A|} \tag{68}$$

容易发现,r是矩阵A行列式值的平方根。这样A可以写成:

$$\mathbf{A} = \sqrt{a^2 + b^2} \begin{bmatrix} \frac{a}{\sqrt{a^2 + b^2}} & \frac{-b}{\sqrt{a^2 + b^2}} \\ \frac{b}{\sqrt{a^2 + b^2}} & \frac{a}{\sqrt{a^2 + b^2}} \end{bmatrix} = r \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix}$$
(69)

图 9 所示复平面上, θ 为水平轴正方向和 (0,0) 到 (a,b) 射线的夹角, θ 也称作为复数 $\lambda_1 = a + bi$ 的辐角。

几何视角

有了上述分析,矩阵 A 的几何变换就变得很清楚,A 是缩放 (S) 和旋转 (R) 的复合。这就解释了上一章旋转矩阵进行特征值分解时,得到的两个特征值为共轭复数。

给平面上某个位置的 x_0 ,用矩阵 A 不断作用在 x_0 上:

$$\mathbf{x}_{n} = \mathbf{A}^{n} \mathbf{x}_{0} \tag{70}$$

如图 10 (a) 所示,当缩放系数 r=1.2>1,我们可以看到,随着 n 增大,向量 x_n 不断旋转向外。

如图 10 (b) 所示,当缩放系数 r = 0.8 < 1,我们可以看到,随着 n 增大,向量 x_n 不断旋转向内。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 10. 在矩阵 A 几何变换重复下,向量的 x 位置变化

Bk4 Ch14 04.py 绘制图 10。

本章主要着墨在特征值分解的应用,比如方阵开方、矩阵指数、斐波那契数列、马尔科夫过 程平衡状态等等。

本章特别值得注意的一个知识点是瑞利商,数据科学和机器学习很多算法中都离不开瑞利商。希望大家能从几何视角理解瑞利商的最值。本书还将在拉格朗日乘子法中继续探讨瑞利商。

本章最后以我们在对实数矩阵分解中遇到的复数现象为例,介绍了共轭特征值和共轭特征向量。注意,复数矩阵自有一套体系,比如实数矩阵中有转置,而复数矩阵的转置叫做**埃尔米特转置** (Hermitian transpose)。复数矩阵相关内容不在本书范围内,感兴趣的读者可以自行学习。

图 11. 总结本章重要内容的四副图