Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua Saila: Teknologia Elektronikoa

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Kurtsoa:	1.	
Nota:		
		-

Taldea: 31

Izen-Abizenak:

Konputadoreen Teknologiaren Oinarriak

Iraupena: 3 ordu Data: 2022/12/21

- 1. (1 puntu) Irakurri arretaz ondorengo baieztapenak eta adierazi egia edo gezurra diren, kasu guztietan zure erantzuna justifikatuz.
 - (a) $\{q_1, q_2, q_3\}$ kargek laugarren karga, q_4 , baten gainean eragiten duten indarra q_1 kargak q_4 -kargaren gainean eragiten duen indarraren moduluaren, q_2 kargak q_4 -aren gainean eragiten duen indarraren moduluaren eta q_3 kargak q_4 -aren gainean eragiten duen indarraren moduluaren batuketaren berdina da.

Solution: Gezurra

(b) Eroale baten puntu batean +3C-ko karga eskuinerantz zirkulatzen da segundo bakoitzean, eta, aldi berean, segundo erdi bakoitzeko -5C-ko karga fluxua dago ezkerrerantz. Puntu horretan korrontearen intentsitate osoa 8 A-koa izango da.

Solution: Gezurra. I = 3/1 - (-5/0.5) = 13 A

(c) Hurrengo irudiko zirkuituan da 2. eta 3. elementuek emandako potentzia 100 W da.

Solution: Egia

(d) Hurrengo irudian, eta 50Hz-ko maiztasun baterako, kapazitate baliokidea $200\mu F$ dira .

Solution: Gezurra.

(e) Hurrengo zirkuituan, menpeko korronte-iturriaren korrentearen balioa $0.4I_x$ da. Hori kontuan hartuta, 0.4-ren balio unitateak miliamperoak izango dira (mA).

Solution: Gezurra.

(f) Norton erresistentzia baliokideak eta Thevenin erresistentzia baliokideak balio bera dute, baldin eta iturri kontrolaturik ez badago.

Solution: Gezurra, beti dute balio bera.

(g) Erresistentziez eta DC tentsio-iturri batez soilik osatutako zirkuitu batean ez dago egoera iragankorrik.

Solution: Egia

(h) Material isolatzaileetan banda debekatua (GAP) txikia da.

Solution: Gezurra

(i) Hiru BJT transistore mota daude: NPN, PNP eta PPN.

Solution: Gezurra, NPN eta PNP baino ez dira existitzen.

(j) Diodo guztiek 0.7V-ko atalase-tentsioa dute, fabrikatzeko erabilitako materiala edozein dela ere.

Solution: Gezurra, atalase-tentsioa erabilitako materialaren araberakoa da.

(k) RTL teknologian NOT ate bat sortzeko 2 transistore behar dira.

Solution: Gezurra

- 2. (2 puntu) Zirkuitu bat diseinatu nahi da korronte hauek lortzeko: $I_{R1}=1mA,\ I_{R2}=2mA$ y $I_{R3}=4mA$.
 - (a) Klasean ikusitako edozein metodo erabiliz, kalkulatu $R_1,\,R_2$ eta R_4 balioak.
 - (b) Potentzien balantzea egin.

Solution:

$$R_2=10K\Omega,\ R_4=2K\Omega,\ R_1=24K\Omega;$$

$$I_{R2}R_2 - E = 0$$

$$E - I_{R3}R_3 - I_{R3}R_4 = 0$$

$$R_1I_{R1} - 0.5V_{AB} - R_2I_{R2} = 0$$

$$V_{AB} = R_4I_{R3} = 8V$$

$$\sum P_{ced} = \sum P_{abs} = 144mW$$

3. (2.5 puntu) Irudiko zirkuitua ikusita:

- (a) A eta B puntuen arteko Thevenin zirkuitu baliokidea kalkulatu eta marraztu.
- (b) A eta B puntuen arteko Norton zirkuitu baliokidea kalkulatu eta marraztu.
- (c) Zein da A eta B puntuen artean jartzen den erresistentzia berri batek kontsumi dezakeen potentzia maximoa? Zer balio izan beharko luke erresistentzia horrek?

Solution: $R_{th} = 4K\Omega$, $V_{th} = 8V$, $I_{NORTON} = 2mA$, $R_{NORTON} = R_{TH}$, $R = 4k\Omega\Omega$ $P_{max} = 4mW$

- 4. (2 puntu) Irudiko zirkuitua kontuan hartu hurrengo galderak erantzuteko.
 - (a) Etengailuak denbora luzea darama A puntura konektatuta, eta t=0 s unean B puntura konektatzen da. Kalkulatu magnitude hauen balioak: $v_c(0^-)$; $v_c(0^+)$; $i_c(0^-)$; $i_c(0^+)$; $v_c(\infty)$; $i_c(\infty)$.
 - (b) Adierazi zenbat denbora igaro behar den kommutadorea B puntura eramaten denetik kondentsadoreak bere muturretan 10.55 V-ko tentsioa izan dezan.

Solution:
$$v_c(0^-) = v_c(0^+) = 20V; i_c(0^-) = 0mA; i_c(0^+) = 6mA; v_c(\infty) = 5V; i_c(\infty) = 0$$

 $t = 0.497s$

- 5. (1.5 puntu) Aztertu zirkuitua:
 - (a) Kalkula ezazu V_{CE} , V_{BE} , I_B , I_C , I_E eta transistorearen egoera adierazi.
 - (b) Zein da LED diodoak xahututako potentzia?
 - (c) Zein da R_B -ren lehen balioa kolektoretik korronte bat mantentzen bada, baina transistorearen egoera aldatzen bada? Balio maximoa edo minimoa da?

Datuak:
$$V_{in} = 5V$$
, $\beta = 100$, $V_{BE} = 0.7 V$, $V_{CE_{sat}} = 0.2 V$, $V_{LED} = 1.5 V$

Solution:

V_{in}	$I_B(uA)$	$I_c(mA)$	$I_E(mA)$	$V_{CE}(V)$	$V_{BE}(V)$	Estado
5	4300	2.66	6.96	0.2	0.7	sat.

 $P_{LED} = 3.99mW R > 161.654K\Omega$ activa

- 6. (1 puntu) Diseinatu eta ebatzi:
 - (a) 2 sarrerako OR ate bat, DL teknologiarekin.
 - (b) 2 sarrerako AND ate bat, CMOS teknologiarekin.