

December 2007

74VHC4066 **Quad Analog Switch**

Features

- Typical switch enable time: 15ns
- Wide analog input voltage range: 0–12V
- Low "ON" resistance: 30 Typ. ('4066)
- Low quiescent current: 80µA maximum (74VHC)
- Matched switch characteristics
- Individual switch controls
- Pin and function compatible with the 74HC4066

General Description

These devices are digitally controlled analog switches utilizing advanced silicon-gate CMOS technology. These switches have low "ON" resistance and low "OFF" leakages. They are bidirectional switches, thus any analog input may be used as an output and visa-versa. Also the 4066 switches contain linearization circuitry which lowers the "ON" resistance and increases switch linearity. The 4066 devices allow control of up to 12V (peak) analog signals with digital control signals of the same range. Each switch has its own control input which disables each switch when low. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to V_{CC} and ground.

Ordering Information

Order Number	Package Number	Package Description
74VHC4066M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC4066MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Truth Table

Input	Switch		
CTL	I/O-O/I		
L	"OFF"		
Н	"ON"		

Schematic Diagram

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	–0.5 to +15V
V _{IN}	DC Control Input Voltage	–1.5 to V _{CC} +1.5V
V _{IO}	DC Switch I/O Voltage	V_{EE} –0.5 to V_{CC} +0.5 V
I _{IK} , I _{OK}	Clamp Diode Current	±20mA
I _{OUT}	DC Output Current, per pin	±25mA
I _{CC}	DC V _{CC} or GND Current, per pin	±50mA
T _{STG}	Storage Temperature Range	−65°C to +150°C
P _D	Power Dissipation	600mW
	S.O. Package only	500mW
TL	Lead Temperature (Soldering 10 seconds)	260°C

Note:

1. Unless otherwise specified all voltages are referenced to ground.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply Voltage	2	12	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Rise or Fall Times			
	$V_{CC} = 2.0V$		1000	ns
	V _{CC} = 4.5V		500	
	V _{CC} = 9.0V		400	

DC Electrical Characteristics⁽²⁾

				T _A =	25°C	T _A = -40°C to 85°C	
Symbol	Parameter	Conditions	V _{CC}	Тур	1	aranteed Limits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	1
			9.0V		6.3	5.3	
			12.0V		8.4	8.4	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1
			9.0V		2.7	2.7	1
			12.0V		3.6	3.6	1
R _{ON}	Maximum "ON"	$V_{CTL} = V_{IH}, I_{S} = 2.0 \text{mA},$	4.5V	100	170	200	Ω
	Resistance ⁽³⁾	$V_{IS} = V_{CC}$ to GND (Fig. 1)	9.0V	50	85	105	1
			12.0V	30	70	85	1
		$V_{CTL} = V_{IH}, I_{S} = 2.0 \text{mA},$	2.0V	120	180	215	1
		$V_{IS} = V_{CC}$ or GND (Fig. 1)	4.5V	50	80	100	
			9.0V	35	60	75	
			12.0V	20	40	60	
R _{ON}	Maximum "ON"	CIL III'	4.5V	10	15	20	Ω
	Resistance Matching		9.0V	5	10	15	
			12.0V	5	10	15	
I _{IN}	Maximum Control Input Current	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 2 - 6V$			±0.05	±0.5	μA
I _{IZ}	Maximum Switch "OFF"	00 00 .	6.0V	10	±60	±600	nA
	Leakage Current		9.0V	15	±80	±800	
			12.0V	20	±100	±1000	
I _{IZ}	I _{IZ} Maximum Switch "ON" Leakage Current	$V_{CTL} = V_{IH}, V_{OS} = OPEN$	6.0V	10	±40	±150	nA
			9.0V	15	±50	±200	
		(Fig. 3)	12.0V	20	±60	±300	1
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND,	6.0V		1.0	10	μA
	Supply Current	$I_{OUT} = 0\mu A$	9.0V		2.0	20	1
			12.0V		4.0	40	1

Notes:

- 2. For a power supply of 5V \pm 10% the worst case on resistance (R_{ON}) occurs for VHC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.
- 3. At supply voltages (V_{CC} GND) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

AC Electrical Characteristics

 V_{CC} = 2.0V–6.0V V_{EE} = 0V–12V, C_L = 50pF (unless otherwise specified)

				T _A = 2	25°C	T _A = -40°C to 85°C	
Symbol	Parameter	Conditions	V _{cc}	Тур.	l	aranteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		3.3V	25	30	20	ns
	Switch In to Out		4.5V	5	10	13	1
			9.0V	4	8	10	
			12.0V	3	7	11	-
t _{PZL} , t _{PZH}	Maximum Switch Turn "ON"	$R_L = 1k\Omega$	3.3V	30	58	73	ns
	Delay		4.5V	12	20	25	
			9.0V	6	12	15	1
			12.0V	5	10	13	1
t _{PHZ} , t _{PLZ}	Maximum Switch Turn "OFF"	$R_L = 1k\Omega$	3.3V	60	100	125	ns
	Delay		4.5V	25	36	45	
			9.0V	20	32	40]
			12.0V	15	30	38	
	Minimum Frequency	$R_L = 600\Omega$,	4.5V	40	\		MHz
	Response (Fig. 7) 20 log $(V_O/V_I) = -3dB$	$V_{IS} = 2 V_{PP} \text{ at } (V_{CC} / 2)^{(4)(5)}$	9.0V	100			
	Crosstalk Between any Two	$R_L = 600\Omega$, $F = 1MHz^{(5)(6)}$	4.5V	-52			dB
	Switches (Fig. 8)		9.0V	-50			
	Peak Control to Switch	$R_L = 600\Omega$, $F = 1$ MHz,	4.5V	100			mV
	Feedthrough Noise (Fig. 9)	$C_L = 50 \text{ pF}$	9.0V	250			
	Switch OFF Signal	$R_L = 600\Omega$, $F = 1$ MHz,	4.5V	-42			dB
	Feedthrough Isolation (Fig. 10)	V _(CT) V _{IL} ⁽⁵⁾⁽⁶⁾	9.0V	-44			
THD	Total Harmonic Distortion (Fig. 11)	$R_L = 10 \text{ k}\Omega$, $C_L = 50 \text{pF}$, $E = 1 \text{kHz}$					
	(Fig. 17)	$V_{IS} = 4 V_{PP}$	4.5V	.013			%
		$V_{IS} = 8 V_{PP}$	9.0V	.008			/
C _{IN}	Maximum Control Input Capacitance			5	10	10	pF
C _{IN}	Maximum Switch Input Capacitance			20			pF
C _{IN}	Maximum Feedthrough Capacitance	V _{CTL} = GND		0.5			pF
C_{PD}	Power Dissipation Capacitance			15			pF

Notes:

- 4. Adjust 0dBm for F = 1kHz (Null R_L / R_{ON} Attenuation).
- 5. V_{IS} is centered at V_{CC} / 2.
- 6. Adjust input for 0dBm.

AC Test Circuits and Switching Time Waveforms

Figure 1. "ON" Resistance

Figure 2. "OFF" Channel Leakage Current

Figure 3. "ON" Channel Leakage Current

Figure 4. t_{PHL}, t_{PLH} Propagation Delay Time Signal Input to Signal Output

Figure 5. t_{PZL}, t_{PLZ} Propagation Delay Time Control to Signal Output

Figure 6. t_{PZH} , t_{PHZ} Propagation Delay Time Control to Signal Output

Figure 7. Frequency Response

Crosstalk and Distortion Test Circuits

Figure 8. Crosstalk: Control Input to Signal Output

Figure 9. Crosstalk Between Any Two Switches

Figure 10. Switch OFF Signal Feedthrough Isolation

Figure 11. Sinewave Distortion

Typical Performance Characteristics

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the analog switch input pins, the voltage drop across the switch must not exceed 0.6V (calculated from the ON Resistance).

Physical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C,
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X145-14M
- E) DRAWING CONFORMS TO ASME Y14.5M-1994
- F) DRAWING FILE NAME: M14AREV13

Figure 12. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued) 5.0±0.1 -A-0.65 0.43 TYP 6.4 4.4±0.1 -B-1.65 3.2 □ 0.2 C B A PIN #1 IDENT. 6.10 0.45 -LAND PATTERN RECOMMENDATION SEE DETAIL A ALL LEAD TIPS 0.90+0.15 1.2 MAX □ 0.1 C 0.09-0.20 -C-0.10±0.05 0.65 0.19 - 0.30⊕ (0.13\mathred | A | B (S | C (S) 12.00°TOP & BOTTOM R0.09 min GAGE PLANE 0.25 0°-8° NOTES: 0.6±0.1 A. CONFORMS TO JEDEC REGISTRATION MO-153, SEATING PLANE R0.09min VARIATION AB, REF NOTE 6 -1 00 **B. DIMENSIONS ARE IN MILLIMETERS DETAIL A** C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS

- D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1982
- E. LANDPATTERN STANDARD: SOP65P640X110-14M
- F. DRAWING FILE NAME: MTC14REV6

Figure 13. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®]
Build it Now[™]
CorePLUS[™]
CROSSVOLT[™]
CTL[™]

Current Transfer Logic™ EcoSPARK® EZSWITCH™ *

FI M

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]

FACT[®]
FAST[®]
FastvCore[™]
FlashWriter[®]*

FPS™ FRFET®

Global Power Resource^{sм}

Green FPS™

Green FPS™ e-Series™

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™ MicroFET™ MicroPak™

MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench®

Programmable Active Droop™

QFĔT[®] QS™

QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™

SPM[®]
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8

SyncFET™
SYSTEM®
GENERAL

The Power Franchise®

Practice were franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC®

Ultra FRFET™
UniFET™
VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 132

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

74VHC4066M_Q 74VHC4066MTCX 74VHC4066MTC 74VHC4066MX 74VHC4066M 74VHC4066MTC_Q 74VHC4066N_Q 74VHC4066MTCX_NL