In the Claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

1 (previously presented) A digital image sensor, comprising: 1. 2 a first two-color photo-detector sensitive to a first total wavelength range, said 3 first two-color photo-detector having a first photo-detector element capable of absorbing light 4 within a first range of wavelengths of said first total wavelength range and a second photo-5 detector element capable of absorbing light within a second range of wavelengths of said first 6 total wavelength range, said first photo-detector element being in an elevated relation with 7 said second photo-detector element, said first photo-detector element being electrically 8 isolated from said second photo-detector element; and 9 a second two-color photo-detector having a third photo-detector element in an 10 elevated relation with a fourth photo-detector element, said third photo-detector element 11 being electrically isolated from said fourth photo-detector element, said second two-color 12 photo-detector being sensitive to a second total wavelength range different from said first 13 total wavelength range. 1 2. (original) The sensor of Claim 1, further comprising: 2 a substrate, said second photo-detector element being formed within said 3 substrate.

1	3.	(original)	The sensor of Claim 2, further comprising:		
2		a dielectric la	yer between said first photo-detector element and said second		
3	photo-detector element, said dielectric layer electrically isolating said first photo-detector				
4	element from said second photo-detector element.				
1	4.	(original)	The sensor of Claim 1, wherein said first photo-detector		
2	element is formed of amorphous silicon having a thickness selected to absorb light within				
3	said first range of wavelengths and pass light within said second range of wavelengths, said				
4	second photo-detector detecting light within said second range of wavelengths passed by said				
5	first photo-detector element.				
1	5.	(original)	The sensor of Claim 1, wherein said first and second photo-		
2	detector elements are photodiodes.				
1	6.	(original)	The sensor of Claim 5, wherein said photodiodes are PIN		
2	photodiodes.				
1	7.	(original)	The sensor of Claim 1, further comprising:		
	7.				
2		a color filter in	n an elevated relation with said first photo-detector element, said		
3	color filter absorbing light within a third range of wavelengths and passing light within said				
4	first and second ranges of wavelengths.				

2 a transparent metal conductor layer between said color filter and said first 3 photo-detector element. 9. 1 (original) The sensor of Claim 1, further comprising: 2 circuitry for driving said first photo-detector element and said second photo-3 detector element, said first photo-detector element being in an elevated relation with said 4 circuitry. 1 10. (canceled) 1 11. (currently amended) The sensor of Claim 1, wherein said first two-color 2 photo-detector further comprises a first color filter in an elevated relation with said first 3 photo-detector element of said first two-color photo-detector, said first color filter absorbing 4 light within a third range of wavelengths and passing light within said first and second ranges 5 of wavelengths, said second two-color photo-detector further comprising a second color filter 6 in an elevated relation with said third photo-detector element of said second two-color filter 7 photo-detector, said second color filter absorbing light within either said first or second 8 ranges of wavelengths, passing light within said third range of wavelengths and passing light 9 within either said first or second ranges of wavelengths not absorbed by said second color 10 filter. 1 12. (previously presented) The sensor of Claim 1, wherein said third photo-2 detector element is capable of accumulating charge upon reception of light within a third

The sensor of Claim 7, further comprising:

1

8.

(original)

4 charge upon reception of light within a fourth range of wavelengths. 1 13. (original) The sensor of Claim 12, wherein said first photo-detector 2 element produces a first color value, said second photo-detector element produces a second 3 color value, said third photo-detector element produces a third color value and said fourth 4 photo-detector element produces a fourth color value, and further comprising: 5 a third two-color photo-detector having a fifth photo-detector element in an 6 elevated relation with a sixth photo-detector element, said fifth photo-detector element being 7 electrically isolated from said sixth photo-detector element, said fifth photo-detector element 8 being capable of absorbing light within said first range of wavelengths and producing a fifth 9 color value, said sixth photo-detector element being capable of absorbing light within said 10 second range of wavelengths and producing a sixth color value; and 11 a fourth two-color photo-detector having a seventh photo-detector element in 12 an elevated relation with an eighth photo-detector element, said seventh photo-detector 13 element being electrically isolated from said eighth photo-detector element, said seventh 14 photo-detector element being capable of absorbing light within said first range of 15 wavelengths and producing a seventh color value, said eighth photo-detector element being 16 capable of absorbing light within said second range of wavelengths and producing an eighth 17 color value. 1 14. (previously presented) A digital image sensor, comprising: 2 a first two-color photo-detector sensitive to a first total wavelength range, said 3 first two-color photo-detector having a first photo-detector element capable of absorbing light

range of wavelengths and said fourth photo-detector element is capable of accumulating

3

4

within a first range of wavelengths of said first total wavelength range and a second photo-

5	detector element capable of absorbing light within a second range of wavelengths of said first					
6	total wavelength range, said first photo-detector element being in an elevated relation with					
7	said second photo-detector element;					
8	a first dielectric layer between said first photo-detector element and said					
9	second photo-detector element;					
10	a second two-color photo-detector having a third photo-detector element in an					
11	elevated relation with a fourth photo-detector element, said second two-color photo-detector					
12	being sensitive to a second total wavelength range different from said first total wavelength					
13	range; and					
14	a second dielectric layer between said third photo-detector element and said					
15	fourth photo-detector element.					
1	15. (original) The sensor of Claim 14, further comprising:					
2	a substrate, said second photo-detector element being formed within said					
3	substrate.					
1	16. (original) The sensor of Claim 14, wherein said first photo-detector					
1	, , , , , , , , , , , , , , , , , , , ,					
2	element is formed of amorphous silicon having a thickness selected to absorb light within					
3	said first range of wavelengths, said second photo-detector detecting light within said second					
4	range of wavelengths passed by said first photo-detector element.					
1	17. (original) The sensor of Claim 14, further comprising:					
2	a color filter in an elevated relation with said first photo-detector element, said					
3	color filter absorbing light within a third range of wavelengths and passing light within said					
4	first and second ranges of wavelengths.					

1	18.	(original)	The sensor of Claim 17, further comprising:			
2		a transparent	metal conductor layer between said color filter and said first			
3	photo-detecto	or element.				
1	19.	(original)	The sensor of Claim 14, further comprising:			
2		circuitry for d	riving said first photo-detector element and said second photo-			
3	detector elem	ent, said first photo-detector element being in an elevated relation with said				
4	circuitry.	circuitry.				
1	20.	(canceled).				
1	21.	(canceled).				
1	22.	(canceled).				
1	. 22.	(canceled).				
1	23.	(canceled).				
1	24.	(canceled).				
1	25.	(canceled).				
1	26.	(canceled).				

- 27. (previously presented) The sensor of Claim 1, wherein said first photo-detector element is formed of amorphous silicon having a first thickness selected to absorb light within said first range of wavelengths and said third photo-detector element is formed of amorphous silicon having a second thickness selected to absorb light within a third range of wavelengths.
- 28. (previously presented)The sensor of Claim 14, wherein said first photodetector element is formed of amorphous silicon having a first thickness selected to absorb
 light within said first range of wavelengths and said third photo-detector element is formed of
 amorphous silicon having a second thickness selected to absorb light within a third range of
 wavelengths.