Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2021

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 24 pages. *Hierdie nasienriglyne bestaan uit 24 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes te aanvaar om 'n probleem op te los, word NIE toegelaat NIE.

	GEOMETRY • MEETKUNDE					
C	A mark for a correct statement (A statement mark is independent of a reason)					
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)					
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)					
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)					
S/R	Award a mark if statement AND reason are both correct					
5/K	Ken 'n punt toe as die bewering EN rede beide korrek is					

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

10	11	13	14	14	15	16	18	18
19	19	20	21	35	35	37	40	41

1.1.1	$\bar{x} = \frac{396}{18}$ Answer only: Full marks	✓ 396
	$\bar{x} = 22$ Slegs antw: Volpunte	✓ answer (2)
1.1.2	$\sigma = 10,1707 \approx 10,17$	✓ answer (1)
1.1.3	$\overline{x} + \sigma = 32,17$	✓ 32,17 ✓ 5
	∴ 5 days	(2)
1.2	$22 \times 18 = 396$ ordered/bestel $20 \times 18 = 360$ sold/verkoop Total not sold/Totaal nie verkoop nie: 36	✓ $18\overline{x}_1$ and $18\overline{x}_2$ ✓ answer (2)
	OR/OF	(2)
	22-20 = 2 $2 \times 18 = 36$	$\checkmark \ \overline{x}_1 - \overline{x}_2$ $\checkmark \text{ answer}$ (2)
1.3.1	Option B/ <i>Opsie B</i> Any one of the following reasons/ <i>Enige een van die</i> vlg redes:	✓ B
	 Median/Mediaan = 18,5 Q₁ = 14 	✓ reason
	$Q_1 = 14$ • IQR = 21	(2)
	 Mean > Median, therefore the data is skewed to the right 	
1.3.2	Data is positively skewed/skewed to the right	✓ answer
	Data is positief skeef/skeef na regs	(1) [10]

Price of milk in rands per 5-litre container (x) Prys van melk in rand, per 5 liter-houer (x)	26	32	36	28	40	33	29	34	27	30
Number of 5-litre containers of milk sold (y) Aantal 5 liter-houers melk verkoop (y)	48	30	26	44	23	32	39	29	42	33

3.1.1	$m_{\rm BE} = m_{\rm CE} = \frac{0 - (-2)}{12 - 4}$	OR/OF $m_{\rm BE} = m_{\rm CE} = \frac{-2 - 0}{4 - 12}$	✓ substitution C & I	Ξ
	$=\frac{1}{4}$	$=\frac{1}{4}$	✓ answer	(2)
3.1.2	$m_{AB} = \tan 81,87^{\circ}$ $m_{AB} = 7$	Answer only: Full marks Slegs antw: Volpunte	✓ substitution ✓ answer	(2)
3.2	$y = mx + c$ $0 = \frac{1}{4}(12) + c$ $c = -3$	$y - y_1 = m(x - x_1)$ $y - 0 = \frac{1}{4}(x - 12)$ $y = \frac{1}{4}x - 3$	✓ substitution of E	
	$c = -3$ $y = \frac{1}{4}x - 3$ OR/OF		✓ answer	(2)
	$y = mx + c$ $-2 = \frac{1}{4}(4) + c \qquad \text{or}$	$y - y_1 = m(x - x_1)$ $y - (-2) = \frac{1}{4}(x - 4)$	✓ substitution of C	
	$c = -3$ $y = \frac{1}{4}x - 3$	$y = \frac{1}{4}x - 3$	✓ answer	(2)

NSC/NSS – Marking Guidelines/Nasienriglyne

3.3.1	$y = \frac{1}{4}x - 3$ $k = \frac{1}{4}k - 3$ $\frac{3}{4}k = -3$ $k = -4$ $\therefore B(-4; -4)$	✓ substitution ✓ answer (2)
	OR/OF $m_{\text{BE}} = \frac{1}{4}$ OR/OF $m_{\text{BE}} = \frac{1}{4}$ $\frac{0-k}{12-k} = \frac{1}{4}$ $\frac{k}{k-12} = \frac{1}{4}$	✓ substitution
	-4k = 12 - k k = -4 ∴ B(-4; -4) $ 4k = k - 12 k = -4$	✓ answer (2)
	OR/OF	
	$m_{AB} = \tan 81,87^{\circ}$ $m_{AB} = 7$ $m_{AB} = \frac{10 - k}{-2 - k}$ $7(-2 - k) = 10 - k$ $-14 - 7k = 10 - k$ $-6k = 24$	✓ substitution
	$ \begin{vmatrix} -6k &= 24 \\ k &= -4 \end{vmatrix} $	✓ answer
	$\therefore B(-4; -4)$ \mathbf{OR}/\mathbf{OF}	(2)
	EB: $y = \frac{1}{4}x - 3$ and AB: $y = 7x + 24$ $\frac{1}{4}x - 3 = 7x + 24$	✓ equating EB & AB
	$\frac{27}{4}x = -27$ $x = k = -4$ $\therefore B(-4; -4)$	✓ answer (2)

222	1 1150	1
3.3.2	In $\triangle AFG$:	
	$m_{\rm AC} = \frac{10 - (-2)}{-2 - 4} = -2$	$\checkmark m_{AC} = -2$ $\checkmark \tan \theta = -2$
	$\tan \theta = m_{\rm AC} = -2$	$\checkmark \tan \theta = -2$
	$\theta = 180^{\circ} - 63,43^{\circ}$	(0 116 570
	$\therefore \theta = 116,57^{\circ}$	✓ θ=116,57°
	$\therefore \hat{A} = 116,57^{\circ} - 81,87^{\circ} \text{ [ext } \angle \text{ of } \Delta \text{]}$	
	$\therefore \hat{A} = 34,70^{\circ}$	✓ answer
		(4)
	OR/OF	
	In $\triangle ABC$: $a = BC = 2\sqrt{17}$: $b = AC = 6\sqrt{5}$: $c = AB = 10\sqrt{2}$	✓ all 3 lengths
	, , , , , , , , , , , , , , , , , , ,	v an 3 lengths
	$a^2 = b^2 + c^2 - 2bc \cdot \cos A$	
	$(2\sqrt{17})^2 = (6\sqrt{5})^2 + (10\sqrt{2})^2 - 2(6\sqrt{5})(10\sqrt{2}).\cos A$	✓ substitution into the
		correct cosine rule
	$\cos A = \frac{\left(6\sqrt{5}\right)^2 + \left(10\sqrt{2}\right)^2 - \left(2\sqrt{17}\right)^2}{2\left(6\sqrt{5}\right)\left(10\sqrt{2}\right)}$	✓ cos A subject
	$2(6\sqrt{5})(10\sqrt{2})$	3
	= 0,822	
	∴ A = 34,7°	✓ answer
	A – 54, 1	(4)
3.3.3	(12+(-2) 10+(0))	
	$M\left(\frac{12+(-2)}{2};\frac{10+(0)}{2}\right)$	
	Diagonals intersect at the point (5; 5)	✓ <i>x</i> -value ✓ <i>y</i> -value
3.4.1	BE = ET	(2)
3.4.1		✓ substitution of E & T
	$4\sqrt{17} = \sqrt{(12-p)^2 + (0-p)^2}$	✓ equating
	$\left(4\sqrt{17}\right)^2 = \left(\sqrt{(12-p)^2 + (0-p)^2}\right)^2$	
	$272 = 144 - 24p + p^2 + p^2$	
	$p^2 - 12p - 64 = 0$	✓ standard form
	(p-16)(p+4) = 0	✓ factors
	:. $p = 16$ or $p = -4$ (n.a.)	$\checkmark p = 16$
	∴T(16; 16)	(5)
3.4.2a	$(x-12)^2 + y^2 = \left(4\sqrt{17}\right)^2 = 272$	✓ LHS ✓ RHS
2 1 24		(2)
3.4.2b	$m_{\text{radius}} = \frac{1}{4}$	
	$m_{\text{tangent}} = -4$	✓ m _{tangent}
	$y = -4x + c$ OR/OF $y - y_1 = -4(x - x_1)$	5
	$\begin{vmatrix} y4x + c & \text{ONOT} & y & y_1 - 4x + c \\ -4 - 4(-4) + c & y - (-4) = -4(x - (-4)) \end{vmatrix}$	✓ substitution of B
	a = 20	
	$\begin{vmatrix} c = -20 \\ y = -4x - 20 \end{vmatrix} $ $y = -4x - 20$	✓ equation
		(3)
		[24]

4.1	Radius = 4 units/eenhede	✓ answer	
			(1)
4.2.1	CD⊥CN		
	\therefore C(-1;7)	$\checkmark x$ value $\checkmark y$ value	
1.0.0			(2)
4.2.2	CD = 6 units		
	$\therefore D(5;7)$	$\checkmark x$ value $\checkmark y$ value	(2)
			(2)
4.2.3	$\perp h = 5 \text{ units}$	$\checkmark \perp h = 5 \text{ units}$	
	DC = 6 units		
	Area $\triangle BCD = \frac{1}{2}(6)(5)$	✓ substitution into	
		Area formula	
	$=15 \mathrm{units}^2$	✓ answer	
			(3)
	OR/OF		
		(1. 5ita	
	$\perp h = 5 \text{ units}$	$\checkmark \perp h = 5 \text{ units}$	
	DC = 6 units		
	Area $\triangle BCD = \frac{1}{2} [Area \text{ of } \parallel^m]$	✓ substitution into	
	2 2	Area formula	
	$=\frac{1}{2}[(5)(6)]$		
	_		
	$=15 \mathrm{units}^2$	✓ answer	
			(3)

	ODIOR	
	OR/OF Let angle of inclination of $RC = \alpha$	
	Let angle of inclination of BC = α	
	$\tan \alpha = \frac{5}{3}$	
	$\alpha = 59,036^{\circ}$	
	$\hat{BCD} = 180^{\circ} - \alpha$	
	BCD=180°-59,036°	(pâp 100 0 00
		✓ BĈD=120,96°
	BĈD=120,96°	✓ substitution into
	1 (—)	Area rule
	Area $\triangle BCD = \frac{1}{2} (\sqrt{34})(6) \sin 120,96^{\circ}$	✓ answer
	$= 15 \text{ units}^2$	(3)
4.3.1	M(3; -1) [reflection of N(-1; 3) about the line $y = x$]	✓ coordinates of M (A)
	\therefore MN = $\sqrt{(3-(-1))^2+(-1-3)^2}$	✓ substitution of M&N
	$MN = \sqrt{32} = 4\sqrt{2} = 5,66$ units	✓ answer
	1717 - V32 - 4V2 - 3,00 units	(3)
4.3.2	M(3;-1)	()
	$m_{\text{MN}} = \frac{3 - (-1)}{1 + 3} = -1$	
	$m_{MN} - \frac{1}{-1-3} - 1$	
	MN: $-1 = -(3) + c$ or $y - 3 = -1(x+1)$	
	c=2 y-3=-x-1	✓ equation of MN
	$\therefore y = -x + 2$ $y = -x + 2$	
	x = -x + 2	
		✓ equating AF & MN
	$ \begin{array}{c} 2x = 2 \\ x = 1 \end{array} $	
	$\begin{array}{c} x = 1 \\ \therefore y = 1 \end{array}$	$\checkmark x$ value $\checkmark y$ value
	midpoint (1; 1)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	OR / OF N(-1; 3) F(3; 3)	
	N(-1;3)	
	$y_{\rm F} = y_{\rm N} = 3$	
	Reflected about $y = x$	
	$A(-\vec{1};-1)$	
ļ	$\therefore F(3;3)$	✓✓ coordinates of F
	(-1+3, -1+3)	
	midpoint $\left(\frac{-1+3}{2}; \frac{-1+3}{2}\right) = (1; 1)$	$\checkmark x$ value $\checkmark y$ value
		(4)
ļ		
		•

DBE/November 2021

			<u></u>	
5.1	$\frac{\sin 140^{\circ}.\sin(360^{\circ}-x)}{\cos x}$			
	$\cos 50^{\circ}$. $\tan(-x)$			
	$\sin 40^{\circ}(-\sin x)$		$\sqrt{\sin 40^{\circ}} - \sin x$	
	$= \frac{1}{\sin 40^{\circ}(-\tan x)}$		\checkmark co-ratio \checkmark $-\tan x$	
	$-\sin x$			
	$=\frac{\sin x}{\sin x}$		$\sqrt{\tan x} = \frac{\sin x}{\cos x}$	
	$-\frac{1}{\cos x}$		$\cos x$	
	$=\cos x$		✓ answer	
				(6)
5.2	LHS = $\frac{-2\sin^2 x + \cos x + 1}{1 - \cos(540^\circ - x)}$ R1	$HS = 2\cos x - 1$		
	LHS = $\frac{-2(1-\cos^2 x) + \cos x + 1}{1 - (-\cos x)}$			
	LHS = $\frac{-2 + 2\cos^2 x + \cos x + 1}{1 + \cos x}$		200(2.10 37) 2003	
	LHS = $\frac{2\cos^2 x + \cos x - 1}{1 + \cos x}$		✓ standard form	
	LHS = $\frac{(2\cos x - 1)(\cos x + 1)}{1 + \cos x}$		✓ factors	
	$LHS = 2\cos x - 1$			
	∴LHS = RHS			
				(4)
5.3.1	$\sin 26^\circ - \sqrt{1 + n^2}$			
	$\sin 36^\circ = \sqrt{1 - p^2}$	$\int_{1}^{\infty} \sqrt{1-n^2}$	✓ method	
	$\tan 36^\circ = \frac{\sqrt{1-p^2}}{n}$	$\sqrt{36^{\circ}}$, memon	
	<i>p</i> —	p	\checkmark value of p	
	OR/OF	1 -	✓ answer	, <u>.</u> .
				(3)
	$\cos^2 36^\circ = 1 - \sin^2 36^\circ$		✓ method	
	$\cos 36^{\circ} = \sqrt{1 - (1 - p^2)}$			
	= p		$\checkmark \cos 36^\circ = p$	
	$\tan 36^\circ = \frac{\sin 36^\circ}{\cos 36^\circ}$			
				
	$=\frac{\sqrt{1-p^2}}{}$		✓ answer	
	p		uns wei	(3)

5.3.2	cos 108°	
	$=-\cos 72^{\circ}$	✓ reduction
	$=-\cos(2\times36^{\circ})$	√ double angle
	$=-(2\cos^2 36^\circ -1)$	✓ expansion
	$=-2p^2+1$	\checkmark answer i. t. o. p (4)
	OR/OF	
	cos 108°	✓ reduction
	$=-\cos 72^{\circ}$	✓ double angle
	$= -\cos(2 \times 36^{\circ})$ = -(1 - 2\sin^2 36^{\circ})	✓ expansion
	$=-1+2\left(\sqrt{1-p^2}\right)^2$	
		\checkmark answer i. t. o. p
	$= -1 + 2(1 - p^2)$	(4)
	$=-2p^2+1$	
	OR/OF	
	cos 108°	✓ reduction
	$=-\cos 72^{\circ}$ $=-\cos (2\times36^{\circ})$	✓ double angle
	$= -(\cos^2 36^\circ - \sin^2 36^\circ)$	✓ expansion
		CAPAIISIOII
	$=-\left(p^2-\left(\sqrt{1-p^2}\right)^2\right)$	\checkmark answer i. t. o. p
	$=-(p^2-(1-p^2))$	(4)
	$=-2p^2+1$	
	OR/OF	
	cos108°	
	$=\cos(2\times54^{\circ})$	✓ double angle
	$=2\cos^2 54^{\circ} - 1$	✓ cxpansion
	$= 2(1-p^2)-1$	r
	$=1-2p^2$	\checkmark answer i. t. o. p
	OR/OF	$\begin{array}{c c} & \text{answer 1. t. 0. } p \\ & & (4) \end{array}$
	$\cos 108^{\circ} = \cos(72^{\circ} + 36^{\circ})$	
	$=\cos 72^{\circ}\cos 36^{\circ} - \sin 72^{\circ}\sin 36^{\circ}$	✓ expansion
	$= (2\cos^2 36^\circ - 1)\cos 36^\circ - (2\sin 36^\circ \cos 36^\circ)\sin 36^\circ$	
	$= 2\cos^3 36^\circ - \cos 36^\circ - 2\cos 36^\circ \sin^2 36^\circ$	✓ both double angle identities
	$=2p^{3}-p-2p\left(\sqrt{1-p^{2}}\right)^{2}$	
	$=2p^3-p-2p+2p^3$	✓ value of sin 36°
		\checkmark answer i. t. o. p
	$=4p^3-3p$	(4)
		[17]

13
NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

QUESTION/VRAAG 6	
$6.1.1 \qquad \cos(\alpha + \beta)$	
$=\cos(\alpha-(-\beta))$	$\sqrt{\cos(\alpha-(-\beta))}$
$= \cos \alpha \cos(-\beta) + \sin \alpha \sin(-\beta)$	✓ expansion
$= \cos \alpha \cos \beta + \sin \alpha (-\sin \beta)$	✓ reduction (3)
$= \cos \alpha \cos \beta - \sin \alpha \sin \beta$	(3)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(10 (6 1)
$= 2 \cos 6x \cos 4x - \cos(6x + 4x) + 2\sin^2 x$	$\checkmark \cos 10x = \cos(6x + 4x)$
$= 2 \cos 6x \cos 4x - (\cos 6x \cos 4x - \sin 6x \sin 4x) + 2 \sin^2 x$	\checkmark expansion of $\cos(6x + 4x)$
$= \cos 6x \cos 4x + \sin 6x \sin 4x + 2\sin^2 x$	
$=\cos 2x + 2\sin^2 x$	$\checkmark \cos 2x$
$=1-2\sin^2 x + 2\sin^2 x$	$\checkmark 1 - 2\sin^2 x$
= 1	✓ answer (5)
$6.2 \tan x = 2\sin 2x$	
$\frac{\sin x}{\cos x} = 2(2\sin x \cos x)$	
COSA	✓ quotient identity
$\sin x = 4\sin x \cos^2 x$	✓ double angle identity
$4\sin x \cos^2 x - \sin x = 0$	
$\sin x(4\cos^2 x - 1) = 0$	✓ factors
$\sin x = 0 \qquad \qquad \text{or} \qquad \cos^2 x = \frac{1}{2}$	
$\sin x = 0$ or $\cos^2 x = \frac{1}{4}$ $\cos x = -\frac{1}{2}$	✓ both equations
$\cos x = -\frac{1}{x}$	
	$\checkmark x = 180^{\circ}$
$x = 180^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$ or $x = 120^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$	$\checkmark x = 120^{\circ} \& 240^{\circ} \text{ OR/OF}$
$x = 240^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$	$x = \pm 120^{\circ}$
OR/OF	$\checkmark k.360^\circ; k \in \mathbb{Z}$
$\tan x = 2\sin 2x$	(7)
$\frac{\sin x}{\cos x} = 4\sin x \cos x$	✓ quotient identity
$\frac{1}{\cos x} = 4\sin x \cos x$	quonom raomity
$\sin x = 4\sin x \cos^2 x$	
$4\sin x \cos^2 x - \sin x = 0$	✓ identity
$4\sin x(1-\sin^2 x)-\sin x=0$	Identity
$3\sin x - 4\sin^3 x = 0$	
$\sin x(3-4\sin^2 x)=0$	✓ factors
$\sin x = 0 \qquad \text{or} \qquad \sin^2 x = \frac{3}{4}$	
	✓ both equations
$\sin x = \frac{\sqrt{3}}{2} \text{or } \sin x = -\frac{\sqrt{3}}{2}$	$\checkmark x = 180^{\circ}$
	$\checkmark x = 120^{\circ} \& 240^{\circ} \text{ OR/OF}$
$x = 180^{\circ} + k.360^{\circ}, k \in \mathbb{Z} \text{ or } x = 120^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	$x = \pm 120^{\circ}$
or $x = 240^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	$\checkmark k.360^\circ; k \in \mathbb{Z}$
- · · · · · · · · · · · · · · · · · · ·	(7)
	[15]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

8.1	In ΔSQR:	
	$\frac{QS}{\sin x} = \frac{QR}{\sin(90^\circ + x)}$	✓ correct use of sine rule
	$\frac{QS}{S} = \frac{5}{S}$	
	$\frac{1}{\sin x} = \frac{1}{\cos x}$	$\checkmark \sin(90^\circ + x) = \cos x$
	$QS = \frac{5\sin x}{\cos x}$	$\checkmark QS = \frac{5\sin x}{\cos x}$
	$\frac{\cos x}{\cos x}$	$\frac{\sqrt{2}}{\cos x}$
	$QS = 5 \tan x$	(2)
		(3)
0.2	O.T. M.G.	C: 1
8.2	$\frac{QT}{\sin(180^\circ - 2x)} = \frac{TS}{\sin x}$	✓ correct use of sine rule
	$\sin(180^\circ - 2x) \sin x$	
	OT Stony	
	$\frac{QT}{\sin 2x} = \frac{5\tan x}{\sin x}$	\checkmark TS = QS = $5 \tan x$
	SIII ZX SIII X	
	$5\tan x \sin 2x$	5tan r sin 2 r
	$QT = \frac{5\tan x \sin 2x}{\sin x}$	$\checkmark QT = \frac{5 \tan x \sin 2x}{\sin x}$
	$5(\sin x)$ (2 sin recogn)	SHIX
	$QT = \frac{5\left(\frac{\sin x}{\cos x}\right)(2\sin x \cos x)}{\sin x}$	$\checkmark \tan x = \frac{\sin x}{\cos x}$
	$QT = \frac{1}{\sin x}$	COS X
	$QT = \frac{5\sin x (2\sin x)}{\sin x}$	$\sqrt{\sin 2x} = 2\sin x \cos x$
	$\sin x$	
	OT 10 sin v	(5)
	$QT = 10\sin x$	(5)

OR/OF	
$QT^{2} = QS^{2} + TS^{2} - 2QS.TS\cos Q\hat{S}T$ $QT^{2} = (5\tan x)^{2} + (5\tan x)^{2} - 2(5\tan x).(5\tan x)\cos(180^{\circ} - 2x)$ $QT^{2} = 50\tan^{2} x - 50\tan^{2} x(-\cos 2x)$	✓ correct use of cos rule ✓ $TS = QS = 5\tan x$
$QT^{2} = 50 \tan^{2} x(1 + \cos 2x)$ $QT^{2} = 50 \tan^{2} x(1 + 2\cos^{2} x - 1)$	$\sqrt{\cos 2x} = 2\cos^2 x - 1 \&$ reduction
$QT^{2} = 50 \tan^{2} x (2\cos^{2} x)$ $QT^{2} = 100 \frac{\sin^{2} x}{\cos^{2} x} (\cos^{2} x)$ $QT^{2} = 100 \sin^{2} x$	$ \sqrt{\tan x} = \frac{\sin x}{\cos x} $ $ \sqrt{QT^2} = 100\sin^2 x $
$QT = 10\sin x$ OR/OF	(5)
$TS^{2} = QS^{2} + TQ^{2} - 2QS.TQ.\cos x$ $(5 \tan x)^{2} = (5 \tan x)^{2} + TQ^{2} - 2(5 \tan x).TQ.\cos x$ $0 = TQ^{2} - 2(5 \tan x).TQ.\cos x$	 ✓ correct use of cos rule ✓ TS = QS = 5tanx ✓ quadratic equation ito TQ
$0 = \text{TQ} [\text{TQ} - 10 \tan x . \cos x]$ $\text{TQ} = 10 \tan x . \cos x (\text{TQ} \neq 0)$ $= 10 \frac{\sin x}{\cos x} . \cos x$ $= 10 \sin x$	$\checkmark TQ = 10\tan x \cdot \cos x$ $\checkmark \tan x = \frac{\sin x}{\cos x}$
	(5)
Area of $\Delta TQR = \frac{1}{2} . TQ.QR \sin TQR$ $= \frac{1}{2} (10 \sin 25^{\circ})(5)(\sin 70^{\circ})$ $= 9.93 \text{ unit}^{2}$	✓ correct substitution into the area rule ✓ answer (2)
	[10]

9.1	tangents from same(com	nmon) point/raaklyne vanaf dieselfde punt	✓ R	
				(1)
9.2.1		[∠s opp equal sides/∠e teenoor gelyke sye]	✓ R	
	$\therefore \hat{\mathbf{S}}_2 = 51^{\circ}$	[sum of \angle s in \triangle /som van \angle e in \triangle]	✓ S	
				(2)
9.2.2		[ext \angle of cyclic quad/buite \angle van koordevh]	✓ R	
	$\hat{\mathbf{S}}_3 = 42^{\circ}$		✓ answer	
	3			(2)
	OR/OF			
	$\hat{\mathbf{S}}_1 = 87^{\circ}$	[opp \angle s of cyclic quad/teenoorst \angle e v kdvh]	√ R	
	$\hat{S}_3 = 180^\circ - (87^\circ + 51^\circ)$		K	
	$\hat{\mathbf{S}}_3 = 42^{\circ}$	[∠s on a str line/∠e op reguitlyn]	✓ answer	
	$S_3 - 42$	[25 on a su fine/2e op reguniyn]		(2)
	I		I	[5]

DBE/November 2021

10.1	line from centre \perp to chord/lyn vanaf middelpunt \perp op koord	✓ R	
			(1)
10.2	$\therefore \hat{A}_1 = 90^\circ - x \qquad [\text{sum of } \angle \text{s in } \Delta / \text{som van } \angle e \text{ in } \Delta]$	✓ S	
	$\therefore \hat{\mathbf{M}}_1 = 180^\circ - 2x \ [\angle \text{at centre} = 2 \times \text{at circumf/midpts} \angle = 2 \times \text{omtreks} \angle]$	✓ S ✓ R	
			(3)
10.3	$\hat{CAD} = 90^{\circ}$ [\(\sim \text{in semi circle} \/ \sim \text{in halfsirkel} \)]	✓ S ✓ R	
	$\hat{A}_2 = 90^\circ - (90^\circ - x)$		
	$\hat{\mathbf{A}}_2 = \mathbf{x}$	✓ S	
	$\therefore \hat{\mathbf{A}}_2 = \hat{\mathbf{C}} = x$		
	∴ AD is a tangent [converse tan-chord theorem/omgek rkl-kd st.]	✓ R	
	OR/OF		(4)
	$\widehat{EMD} = 2x$ [adj suppl $\angle s/aanligg suppl \angle e$]	✓ S	
	$\therefore \hat{A}_2 = x \qquad [\angle \text{at centre} = 2 \times \angle \text{ at circumf/midpts} \angle = 2 \times \text{omtreks} \angle]$	~	
	$\therefore \hat{\mathbf{A}}_2 = \mathbf{C} = \mathbf{x}$	✓ S ✓ R	
	$\therefore AD \text{ is a tangent} \text{[converse tan-chord theorem/omgek rkl-kd st.]}$		
	The second control of the second condense of	✓ R	(4)
	OR/OF		(4)
	$\hat{M}_3 = 180^{\circ} - 2x$ [vert. opp/regoorstaande $\angle e$]		
	$\therefore \hat{A}_3 = 90^\circ - x$ [\angle at centre= $2 \times \angle$ at circumf/midpts \angle = 2	✓ S	
	×omtreks∠]	✓ R	
	$\hat{BAE} = 90^{\circ}$ [\angle in semi-circle/ \angle in halfsirkel]	✓ S	
	$\therefore \hat{A}_2 = C = x$	√ R	
	∴ AD is a tangent [converse tan-chord theorem/omgek rkl-kd st.]	V K	(4)
	OR/OF		(1)

		[13]
	AF = FE and BM = ME [given & radii] $\therefore FM = \frac{1}{2} AB = 12 \text{ units} [Midpt Theorem/middelpuntstelling}]$ $EM = MB = CM = 18 \text{ units} [radii]$ $\therefore FE^2 = (18)^2 - (12)^2 [Pythagoras]$ $FE = 6\sqrt{5}$ $AE = 12\sqrt{5} \text{or} 26,83 \text{ units}$	✓ FM = 12 ✓ R ✓ EM = 18 ✓ using Pyth correctly ✓ answer (5)
	EM = MB = CM = 18 units [radii] \therefore EB = 36 units [diameter = 2 radius] \therefore AE ² = $(36)^2 - (24)^2$ [Pythagoras] AE = $12\sqrt{5}$ or 26,83 units OR/OF	✓ EB = 36 ✓ using Pyth correctly ✓ answer (5)
10.4	AF = FE and BM = ME [given & radii] $\therefore FM = \frac{1}{2} AB = 12 \text{ units} \qquad [Midpt Theorem/middelptstelling}]$	✓ FM = 12 ✓ R
		✓ R ✓ S ✓ R (4) ✓ S ✓ R ✓ S ✓ R ✓ S ✓ R (4)
	CD AB [midpt. Thm/ middelpuntst.] $B\hat{A}E = 90^{\circ} [\angle \text{ in semi-circle}/\angle \text{ in halfsirkel}]$ $\therefore \hat{A}_{3} = \hat{D} = 90^{\circ} - x [\text{alt.}\angle \text{s; CD} \text{AB/verwiss} \angle e]$	✓ S ✓ R

DBE/November 2021

QUESTION/VRAAG 11

11.1

Construction: Draw diameter BF and draw BE	✓Constr
Konstruksie: Trek middellyn BF en verbind BE	
$\hat{BFK} = 90^{\circ} \text{ or } \hat{DFK} = 90^{\circ} - \hat{BFD}$ [radius $\perp \text{ tangent}/\text{raaklyn}$]	✓ S ✓ R
	~ 11
$\hat{BEF} = 90^{\circ}$ [\(\neq \text{in semi-circle}/\semi-\sirkel\)]	✓ S
$\therefore \hat{DEF} = 90^{\circ} - \hat{BED}$	
= 90° - BFD [\angle s same segment/ \angle e dieselfde segment]	✓ S/R
	▼ S/R
∴ DFK=DÊF	
	(5)
	(5)

OR/OF

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

Construction: Draw radii DO and OF	✓ construction
Konstruksie: Trek radii DO en OF	
$O\hat{F}K = 90^{\circ}$ or $D\hat{F}K = 90^{\circ} - O\hat{F}D$ radius \perp tangent/raaklyn	
$O\hat{D}F = O\hat{F}D$ [$\angle s \text{ opp} = \text{sides}/\angle e \text{ teenoor} = sye$	[P]
$\therefore D\hat{O}F = 180^{\circ} - 2O\hat{F}D [\angle s \text{ of } \Delta / \angle e van \Delta]$	
$\hat{DEF} = 90^{\circ} - \hat{OFD}$ [\angle at centre = $2 \times \angle$ circumf/ midpts $\angle = 2 \times$ omtreks \angle]	✓ S/R
∴ DFK=DÊF	
DI K-DLI	(5)

OR/OF

22 NSC/NSS – Marking Guidelines/Nasienriglyne

Construction: Draw diameter BF and join BD.	✓ construction
Konstruksie: Trek middellyn BF en verbind BD.	
$\hat{BFK} = 90^{\circ} \text{ or } \hat{DFK} = 90^{\circ} - \hat{BFD} \text{ [radius} \perp \text{tangent/} raaklyn]}$	✓ S ✓/R
$\hat{FDB} = 90^{\circ}$ [\angle in half circle/semi-sirkel]	✓ S
$\hat{\mathbf{B}} = 90^{\circ} - \hat{\mathbf{BFD}}$	
$\therefore D\hat{F}K = \hat{B}$	
but $\hat{B} = \hat{E}$ [$\angle s$ same segment/ $\angle e$ dieselfde segment]	✓ S/R
$\therefore D\hat{F}K = \hat{E}$	(5)

23
NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2021

11.2

11.2.1(a)	$\hat{\mathbf{K}}_4 = \hat{\mathbf{S}}_1$ [tan chord theorem/raaklynkoordstelling] $\hat{\mathbf{M}}_2 + \hat{\mathbf{M}}_3 = \hat{\mathbf{S}}_1$ [corresp $\angle \mathbf{s}$; / ooreenk $\angle \mathbf{s}$; MN KS]	✓ S ✓ R ✓ S ✓ R	
	$\therefore \hat{\mathbf{K}}_4 = \hat{\mathbf{M}}_2 + \hat{\mathbf{M}}_3 = \mathbf{N}\hat{\mathbf{M}}\mathbf{L}$	(4)	1
11.2.1(b)	$\therefore \hat{\mathbf{K}}_4 = \hat{\mathbf{M}}_2 + \hat{\mathbf{M}}_3 = \mathbf{N}\hat{\mathbf{M}}\mathbf{L}$		
	:. KLMNis a cyclic quad [ext \angle of quad = opp int \angle / buite \angle van vh = teenoorst binne \angle]	✓ R (1)	1
	OR/OF		
	$N_1 = \hat{K}_1 + \hat{K}_2 = N\hat{K}S$ [corresp $\angle s$; / ooreenk $\angle s$; MN KS] $N\hat{K}S = K\hat{L}S$ [tan chord theorem / raaklynkoordstelling] $\hat{N}_1 = K\hat{L}S$		
	∴ KLMNis a cyclic quad [ext \angle of quad = opp int \angle / buite \angle van vh = teenoorst binne \angle]	✓ R (1))
	OR/OF		

NSC/NSS – Marking Guidelines/Nasienriglyne

	NIVI 100° V [ad: a		
	$NKL = 180^{\circ} - K_4 [adj. suppl.]$		
	$\therefore NKL = 180^{\circ} - NML [proved]$	(5	
	∴ KLMN is a cyclic quad [opp.∠s supplementary]	√ R	(1)
11.2.2	In ΔLKN ΔKSM:	<u> </u>	(1)
	$\hat{N}_3 = \hat{M}_3$ [\(\angle \text{s in the same seg}\) \(\angle \text{e in dieselfde sirkel segm}\)	✓ S ✓ R	
	$\hat{L}_1 = \hat{M}_2$ [\(\angle \text{s in the same seg}\) \(\angle \text{e in dieselfde sirkel segm}\)	√ S	
	$= \hat{\mathbf{K}}_2 \qquad [\text{alt } \angle \mathbf{s}; / \textit{verw} \angle \mathbf{e}; \ \mathbf{MN} \mathbf{KS}]$	✓ S/R	
	$N\hat{K}L = M\hat{S}K [\angle s \text{ of } \Delta / \angle e \text{ van } \Delta]$	✓ S	
	ΔLKN∭ ΔKSM		(5)
	OR/OF		
	In ΔLKN ΔKSM:		
	$\hat{N}_3 = \hat{M}_3$ [\(\angle \sin \) in the same seg / \(\angle e \) in dieselfde sirkel segm]	✓ S ✓ R	
	$N\hat{K}L = \hat{M}_1$ [ext \angle of cyclic quad/buite \angle van koordevh]	✓ S/R	
	$= \hat{S}_2 \text{[corresp } \angle \text{s/ooreenk } \angle e; \text{KS} \parallel \text{NM}]$	✓ S/K ✓ S	
	$\Delta LKN \parallel \Delta KSM [\angle, \angle, \angle]$	√ R	
	$\Delta LRIN_{\parallel} \Delta RSIVI [\angle, \angle, \angle]$		(5)
	OR/OF		
	In ∆LKN∥∆KSM:		
	$\hat{N}_3 = \hat{M}_3$ [\(\angle \text{s in the same seg } / \(\angle e \) in dieselfde sirkel segm]	(0 (5	
	$\hat{K}_4 + N\hat{K}L = \hat{S}_1 + \hat{S}_2$ [\(\angle s\) on straight line/\(\angle e\) op reguitlyn]	✓ S ✓ R	
	$\therefore N\hat{K}L = \hat{S}_2 [\hat{K}_4 = \hat{S}_1]$	✓ S/R ✓ S	
	ΔLKN ΔKSM [∠,∠,∠]		
		✓ R	(5)
11.2.3	$\frac{LK}{L} = \frac{KN}{L} \qquad [\Delta LKN \Delta KSM]$		(6)
	KS SM	✓ S ✓ R	
	$\therefore \frac{12}{\text{KS}} = \frac{4}{3}$	✓ substitution	
	KS = 9 units	✓ answer	
		WII 71 01	(4)
11.2.4	4SM = 3KN		
	$SM = \frac{3(8)}{4}$		
	SM = 6	\checkmark SM = 6	
	$\frac{LT}{LT} = \frac{LS}{LS}$ [line one side of $\Delta / lyn een sy v \Delta$]	/ C / D	
	NL ML	✓ S ✓ R	
	$\frac{LT}{16} = \frac{13}{19}$		
	$LT = \frac{208}{19} = 10,95$	✓ answer	
	19		(4)
			[23]