Shallow fermionic shadow with error mitigation

wubujiao

March 13, 2024

1 Open question

(1) Can we directly measure γ_S with a fermionic quantum device?

2 PPT for CS

$$\mathcal{M} = \mathbb{E}_{\mathcal{U}} \left[\mathcal{U}^{-1} M_x \mathcal{U} \right] = \Pi_0 + f \Pi_1 \text{ where } f = \frac{\text{Tr}(M_x \Pi_1)}{\text{Tr}(\Pi_1)} = \frac{1}{2^n + 1}.$$

$$\mathcal{M}^{-1} = \Pi_0 + (2^n + 1) \Pi_1$$

$$\widetilde{\mathcal{M}} = \mathbb{E}_{\mathcal{U}} \left[\mathcal{U}^{-1} M_x \Lambda \mathcal{U} \right] = \Pi_0 + f \Pi_1 \text{ where } f = \frac{\text{Tr}(M_x \Lambda \Pi_1)}{\text{Tr}(\Pi_1)}$$

$$\mathcal{M}^{-1} = \Pi_0 + f^{-1} \Pi_1$$

$$\mathbb{E}_{U \sim \mu_H(4)} U^{\otimes 2} \otimes \bar{U}^{\otimes 2} = \sum_{\sigma, \tau} Wg(\sigma^{-1}\tau) |\sigma\rangle \langle \tau|$$

3 Preliminaries

Let $\widetilde{\mathcal{M}}_d$ denote the noisy shallow classical shadow channel with depth d and noise Λ for each layer. Let $O_d \in \mathbb{R}^{n \times n}$ represent the orthogonal matrix.

4 Main results

Lemma 1 (Ref. [1]). For $\mu \in \{0,1\}^{2n}$, let $\alpha_{\mu,d} \in [0,1]$ be defined as

$$\alpha_{\mu,d} := \Pr_{\mathcal{U} \sim \mathbb{U}_d} \left[\mathcal{U} \left(P^{(\mu)} \right) \in \pm \mathcal{Z} \right] = \langle 0 | \mathcal{U}(P^{(\mu)}) | 0 \rangle^2, \tag{1}$$

then $\widetilde{\mathcal{M}}_d \left(P^{(\mu)} \right) = \frac{(2^n - 1)(1 - p)^k + 1}{2^n} \alpha_{\mu, d} P^{(\mu)}$.

Theorem 1. In the assumption that the noise for each layer forms a 2-design, the classical shadow for the qubit system can be denoted as

$$\widetilde{\mathcal{M}} =$$
 (2)

5 Shallow fermionic classical shadow

Let

$$\mathcal{M}_d := \int_{Q \in O_d} d\mu(Q) \mathcal{U}_Q^{\dagger} M_z \mathcal{U}_Q. \tag{3}$$

denote the fermionic shadow with depth d.

Lemma 2. The shallow fermionic shadow has the property

$$\mathcal{M}_d(\gamma_S) = \alpha_{S,d}\gamma_S,\tag{4}$$

where $\alpha_{S,d} = \int_{Q \sim O_d} d\mu(Q) \left| \langle 0 | U_Q \gamma_S U_Q^{\dagger} | 0 \rangle \right|^2$.

Proof. Since Pauli-X is in the matchgate group, we can simplify the shallow fermionic channel as

$$\mathcal{M}_{d}(\gamma_{S}) = \int_{Q \sim O_{d}} d\mu(Q) \left[\sum_{b \in \{0,1\}^{n}} \langle b | U_{Q} \gamma_{S} U_{Q}^{\dagger} | b \rangle U_{Q}^{\dagger} | b \rangle \langle b | U_{Q} \right]$$

$$(5)$$

$$=2^{n}\int_{Q\sim O_{d}}d\mu(Q)\left[\left\langle 0|U_{Q}\gamma_{S}U_{Q}^{\dagger}|0\right\rangle U_{Q}^{\dagger}|0\rangle\left\langle 0|U_{Q}\right].$$
(6)

If S' is not equal to S, then there exists a permutation matrix Q such that

$$Q|_{S,S} = \mathbb{I}, \quad Q|_{S',S'} = -\mathbb{I},\tag{7}$$

and hence

$$[\gamma_S, U_Q] = 0, \quad \{\gamma_{S'}, U_{Q'}\} = 0.$$
 (8)

It implies

$$\frac{1}{2^n} \operatorname{Tr} \left(\gamma_{S'} \mathcal{M}_d(\gamma_S) \right) = \int_{Q \sim Q_d} d\mu(Q) \left\langle 0 | U_Q \gamma_S U_Q^{\dagger} | 0 \right\rangle \left\langle 0 | U_Q \gamma_{s'} U_Q^{\dagger} | 0 \right\rangle \tag{9}$$

$$= \int_{Q \sim Q_d} d\mu(Q) \left\langle 0 | U_Q U_{Q'} \gamma_S U_{Q'}^{\dagger} U_Q^{\dagger} | 0 \right\rangle \left\langle 0 | U_Q U_{Q'} \gamma_{s'} U_{Q'}^{\dagger} U_Q^{\dagger} | 0 \right\rangle \tag{10}$$

$$= -\int_{Q \sim Q_{+}} d\mu(Q) \left\langle 0|U_{Q}\gamma_{S}U_{Q}^{\dagger}|0\right\rangle \left\langle 0|U_{Q}\gamma_{s'}U_{Q}^{\dagger}|0\right\rangle. \tag{11}$$

Hence $\mathcal{M}_d(\gamma_S) = \alpha_{s,d}\gamma_S$.

Lemma 3 (Wan et al. [2]). Let Q be a matrix uniformly randomly sampled from orthogonal group $\mathcal{O}(n)$, then

$$\int_{Q \sim M_n} d\mu(Q) \left[\mathcal{U}_Q \right] = |\mathbb{I}\rangle \rangle \langle \langle \mathbb{I}|$$
(12)

$$\int_{Q \sim M_n} d\mu(Q) \left[\mathcal{U}_Q^{\otimes 2} \right] = \sum_{k=0}^{2n} |\mathcal{R}_k^{(2)}\rangle\rangle\langle\langle\mathcal{R}_k^{(2)}| \tag{13}$$

$$\int_{Q \sim M_n} d\mu(Q) \left[\mathcal{U}_Q^{\otimes 3} \right] = \sum_{\substack{k_1, k_2, k_3 \ge 0 \\ k_1 + k_2 + k_3 \le 2n}} |\mathcal{R}_{k_1, k_2, k_3}^{(3)} \rangle \rangle \langle \langle \mathcal{R}_{k_1, k_2, k_3}^{(3)} |$$
 (14)

where

$$|\mathcal{R}_{k}^{(2)}\rangle\rangle = {2n \choose k}^{-1/2} \sum_{S \subseteq [2n], |S| = k} |\gamma_{S}\rangle\rangle|\gamma_{S}\rangle\rangle \tag{15}$$

$$|\mathcal{R}_{k}^{(3)}\rangle\rangle = \begin{pmatrix} 2n \\ k_{1}, k_{2}, k_{3}, 2n - k_{1} - k_{2} - k_{3} \end{pmatrix}^{-1/2} \sum_{\substack{S_{1}, S_{2}, S_{3} \subseteq [2n] disjoint \\ |S_{j}| = k_{j}, 1 \le j \le 3}} |\gamma_{S_{1}}\gamma_{S_{2}}\rangle\rangle|\gamma_{S_{2}}\gamma_{S_{3}}\rangle\rangle|\gamma_{S_{3}}\gamma_{S_{1}}\rangle\rangle$$
(16)

Figure 1: Tensor network representation for computing $\alpha_{S,d}$.

Lemma 4.

$$\int_{Q \sim M_n} d\mu(Q) \left[\mathcal{U}_Q^{\otimes 2} \right] = ??? \tag{17}$$

Lemma 5. Given any observable γ_S and an unknown quantum state ρ , let v be the estimation of $Tr(\rho\gamma_S)$ with shallow fermionic shadow \mathcal{M}_d . Then the variance in the average of the input state can be bounded to $1/\alpha_{S,d}$.

Proof.

$$\operatorname{Var}(v) \le \mathbb{E}[|v|^2] \tag{18}$$

$$= \int_{Q \sim O_d} d\mu Q \mathbb{E}_{\rho} \left[\sum_b \langle b | U_Q \rho U_Q^{\dagger} | b \rangle \left| \langle b | U_Q \mathcal{M}_d^{-1}(\gamma_S) U_Q^{\dagger} | b \rangle \right|^2 \right]$$
 (19)

$$= \int_{Q \sim O_d} d\mu Q \left[\sum_b \left| \langle b | U_Q \mathcal{M}_d^{-1}(\gamma_S) U_Q^{\dagger} | b \rangle \right|^2 \right]$$
 (20)

$$= \frac{2^n}{|\alpha_{S,d}|^2} \int_{Q \sim O_d} \langle 0|U_Q \gamma_S U_Q^{\dagger} |0\rangle \langle 0|U_Q \gamma_S^{\dagger} U_Q^{\dagger} |0\rangle \tag{21}$$

$$=\frac{1}{\alpha_{S,d}}. (22)$$

Lemma 6. $\alpha_{S,d}$ can be bounded to...

• Bound the complexity to calculate $\alpha_{S,d}$.

We can utilize the MPS method to solve it.

Let matrix T be the probability matrix and the (j, k)-th element $T_{j,k}$ denote the probability transforming P_j to P_k after performing a unitary U_Q with Q uniformly randomly picked from P_{2n} , where $j \in \{0, 1\}^2$, and $j_l = 1$ iff the l-th qubit of γ_S be identity.

• Bound the variance.

6 Error mitigation for fermionic shallow CS

Theorem 2. The noisy classical shadow with any noise model is the same as that with Pauli noise.

From Ref. [3], we can get the robust version for shallow classical shadow.

3

7 gamma to pauli

k = 0:

 $\gamma_0 = \underline{\hspace{1cm}}$

k = 1:

$$\gamma_4 =$$

$$-\underline{Y}$$

$$-\underline{Z}$$

k = 2:

$$\begin{array}{c} \gamma_1\gamma_2=\mathrm{i}\\ \\ ----\end{array}$$

$$\begin{array}{c} \gamma_1\gamma_3=-\mathrm{i}\\ -\underline{X}--\\ -\underline{Y} \end{array}$$

$$\begin{array}{c} \gamma_1\gamma_4=-\mathrm{i}\\ & -\underline{Y}\\ & -\underline{Y} \end{array}$$

$$\begin{array}{c} \gamma_2\gamma_3 = -\mathrm{i} \\ -\underline{X} \\ -\underline{X} \end{array}$$

$$\gamma_2 \gamma_4 = i$$

$$- X$$

$$\gamma_3\gamma_4 = i$$
 Z

k = 3:

$$\gamma_1 \gamma_2 \gamma_3 = i$$
 X

$$\gamma_1 \gamma_2 \gamma_4 = i$$

$$- Y$$

$$\begin{array}{c} \gamma_1\gamma_3\gamma_4=\mathrm{i}\\ &-\overline{\mathbf{Z}}\\ &-\overline{\mathbf{X}} \end{array}$$

k = 4:

$$\begin{array}{c} \gamma_1\gamma_2\gamma_3\gamma_4 = \\ - \boxed{\mathbf{Z}} - \\ - \boxed{\mathbf{Z}} \end{array}$$

8 Representation of 2-fold twirling

Here, we aim to give a representation of $\int d\mu(Q)\mathcal{U}_Q^{\otimes 2}$. Due to Lemma. 3, we have

$$\int_{Q \sim M_n} d\mu(Q) \mathcal{U}_Q^{\otimes 2} = |\gamma_{\emptyset}\rangle\rangle|\gamma_{\emptyset}\rangle\rangle\langle\langle\gamma_{\emptyset}|\langle\langle\gamma_{\emptyset}| + \frac{1}{4} \sum_{i,j} |\gamma_i\rangle\rangle|\gamma_i\rangle\rangle\langle\langle\gamma_j|\langle\langle\gamma_j| + \frac{1}{6} \sum_{\substack{i_1 \neq i_2 \\ j_1 \neq j_2}} |\gamma_{i_1}\gamma_{i_2}\rangle\rangle|\gamma_{i_1}\gamma_{i_2}\rangle\rangle\langle\langle\gamma_{j_1}\gamma_{j_2}|\langle\langle\gamma_{j_1}\gamma_{j_2}| + \frac{1}{4} \sum_{\substack{i_1 \neq i_2, j_1 \neq j_2 \\ i_1 \neq i_3, j_1 \neq j_3 \\ i_2 \neq i_3, j_2 \neq j_3}} |\gamma_{i_1}\gamma_{i_2}\gamma_{i_3}\rangle\rangle|\gamma_{i_1}\gamma_{i_2}\gamma_{i_3}\rangle\rangle\langle\langle\gamma_{j_1}\gamma_{j_2}\gamma_{j_3}|\langle\langle\gamma_{j_1}\gamma_{j_2}\gamma_{j_3}| + |\gamma_1\gamma_2\gamma_3\gamma_4\rangle\rangle|\gamma_1\gamma_2\gamma_3\gamma_4\rangle\rangle\langle\langle\gamma_1\gamma_2\gamma_3\gamma_4|\langle\langle\gamma_1\gamma_2\gamma_3\gamma_4|$$

Plugging the table in Sec. 7, we present the two-fold twirling to the Pauli basis. Denote the twirling as a 4-bond tensor as the following rule,

$$T^{ij}_{ab} = \langle \langle P^{(a,b)} | \langle \langle P^{(a,b)} | \int_{Q \sim M_n} d\mu(Q) \mathcal{U}_Q^{\otimes 2} | P^{(i,j)} \rangle \rangle | P^{(i,j)} \rangle \rangle, \tag{23}$$

where $(a, b), (i, j) \in \{(b_1, b_2) \mid b_1, b_2 \in \{0, 1\}\}$. We also write T_{YZ}^{XY} instead of $T_{(1,0),(1,1)}^{(1,1)}$ for simplification.

We write down every element of tensor T, which is shown in Table. 1. Here, we give an example of the calculation of T_{XX}^{IZ} .

$$\begin{split} T_{XX}^{IZ} &= \langle \langle XX | \langle \langle XX | \int_{Q \sim M_n} d\mu(Q) \mathcal{U}_Q^{\otimes 2} | IZ \rangle \rangle | IZ \rangle \rangle \\ &= \langle \langle \gamma_2 \gamma_3 | \langle \langle \gamma_2 \gamma_3 | (-\mathrm{i})^2 \cdot \int_{Q \sim M_n} d\mu(Q) \mathcal{U}_Q^{\otimes 2} \cdot (-\mathrm{i})^2 | \gamma_1 \gamma_2 \rangle \rangle | \gamma_1 \gamma_2 \rangle \rangle \\ &= \frac{1}{6} \langle \langle \gamma_2 \gamma_3 | \sum_{\substack{i_1 \neq i_2 \\ j_1 \neq j_2}} | \gamma_{i_1} \gamma_{i_2} \rangle \rangle | \gamma_{i_1} \gamma_{i_2} \rangle \rangle \langle \langle \gamma_{j_1} \gamma_{j_2} | \langle \langle \gamma_{j_1} \gamma_{j_2} | | \gamma_1 \gamma_2 \rangle \rangle | \gamma_1 \gamma_2 \rangle \rangle \\ &= \frac{1}{6} \end{split}$$

From the first line to the second line, we use the correspondence relation in Sec. 7, $|IZ\rangle\rangle = -\mathrm{i}|\gamma_1\gamma_2\rangle\rangle$, $|XX\rangle\rangle = \mathrm{i}|\gamma_2\gamma_3\rangle\rangle$. Then, terms $|\gamma_{S_1}\rangle\rangle\langle\langle\gamma_{S_2}|\langle\langle\gamma_{S_2}|$ in $\int d\mu(Q)\mathcal{U}_Q^{\otimes 2}$ cancel if $|S_1|, |S_2| \neq 2$.

9 Calculate α

Lemma 7.

$$\gamma_S^{\dagger} = (-1)^{\frac{|S|(|S|-1)}{2}} \gamma_S \tag{24}$$

Proof.

$$\gamma_S^{\dagger} = \left(\gamma_{l_1} \gamma_{l_2} \cdots \gamma_{l_{|S|}}\right)^{\dagger}$$
$$= \gamma_{l_{|S|}} \gamma_{l_{|S|-1}} \cdots \gamma_{l_1}$$

Because $\{\gamma_i, \gamma_j\} = 2\delta_{ij}$, it will generate a coefficient $(-1)^{|S|-1}$ when we swap the γ_{l_1} to the first place. Thus, we have

$$\begin{split} \gamma_S^{\dagger} = & (-1)^{|S|-1} \gamma_{l_1} \gamma_{l_{|S|}} \gamma_{l_{|S|-1}} \cdots \gamma_{l_2} \\ = & (-1)^{|S|-1+|S|-2} \gamma_{l_1} \gamma_{l_2} \gamma_{l_{|S|}} \gamma_{l_{|S|-1}} \cdots \gamma_{l_3} \\ = & (-1)^{\frac{|S|(|S|-1)}{2}} \gamma_S \end{split}$$

Т	II	IX	IY	IZ	XI	XX	XY	XZ	YI	YX	YY	YZ	ZI	ZX	ZY	ZZ
II	1															
IX		1/4	1/4					1/4				1/4				
IY		1/4	1/4					1/4				1/4				
IZ				1/6		1/6	1/6			1/6	1/6		1/6			
XI					1/4				1/4					1/4	1/4	
XX				1/6		1/6	1/6			1/6	1/6		1/6			
XY				1/6		1/6	1/6			1/6	1/6		1/6			
XZ		1/4	1/4					1/4				1/4				
YI					1/4				1/4					1/4	1/4	
YX				1/6		1/6	1/6			1/6	1/6		1/6			
YY				1/6		1/6	1/6			1/6	1/6		1/6			
YZ		1/4	1/4					1/4				1/4				
ZI				1/6		1/6	1/6			1/6	1/6		1/6			
ZX					1/4				1/4					1/4	1/4	
ZY					1/4				1/4					1/4	1/4	
ZZ																1

Table 1: Values of tensor T. The head of columns represents the input of T while the head of rows represents the output of T. For example, the value in row 'XY' and column 'YZ' represent $T_{(1,0),(1,1)}^{(1,1),(0,1)}$. The blank space represents the value is 0.

Base on Lemma 7, the expression of α becomes

$$\begin{split} \alpha_{S,d} = & (-1)^{\frac{|S|(|S|-1)}{2}} \int_{Q \sim O_d} d\mu(Q) \left\langle 0 \right| U_Q \gamma_S U_Q^\dagger \left| 0 \right\rangle^2 \\ = & (-1)^{\frac{|S|(|S|-1)}{2}} \int_{Q \sim O_d} d\mu(Q) \left\langle \left\langle 0, 0 \right| \mathcal{U}_Q \otimes \mathcal{U}_Q \middle| \gamma_S \gamma_S \right\rangle \right\rangle \\ = & (-1)^{\frac{|S|(|S|-1)}{2}} \left\langle \left\langle 0, 0 \right| \left(\int_{Q \sim O_d} d\mu(Q) \mathcal{U}_Q^{\otimes 2} \right) \middle| \gamma_S \gamma_S \right\rangle \right\rangle. \end{split}$$

Now, we focus on dealing with $\int d\mu(Q)\mathcal{U}_Q^{\otimes 2}$. In Sec. 8, we give a tensor representation of $\int_{M_2} d\mu(Q)\mathcal{U}_Q^{\otimes 2}$. Let the two-fold twirling of a layer of match gates be $T_l^{(2)}$, where

$$T_l^{(2)} := \begin{cases} T^{\otimes \lfloor \frac{n}{2} \rfloor} & l \mod 2 = 1\\ \mathbb{1}_2 \otimes T^{\otimes \lfloor \frac{n-1}{2} \rfloor} \otimes \mathbb{1}_0 & l \mod 2 = 0 \end{cases}$$
 (25)

Then, we could bound the α to $1/6^d$

$$\begin{split} \alpha_{S,d} = & \langle \langle 0,0 | \int_{Q \sim Q_d} d\mu(Q) \mathcal{U}_Q^{\otimes 2} | \gamma_S, \gamma_S \rangle \rangle = \langle \langle 0,0 | \prod_{1 \leq l \leq d} T_l^{(2)} | \gamma_S, \gamma_S \rangle \rangle \\ \geq & \inf \{ \langle \langle \psi, \psi | T_l^{(2)} | \phi, \phi \rangle \rangle \mid |||\psi \rangle \rangle || = |||\phi \rangle \rangle || = 1 \}^d \\ \geq & \frac{1}{6^d} \end{split}$$

References

- [1] Christian Bertoni, Jonas Haferkamp, Marcel Hinsche, Marios Ioannou, Jens Eisert, and Hakop Pashayan. Shallow shadows: Expectation estimation using low-depth random clifford circuits. arXiv preprint arXiv:2209.12924, 2022.
- [2] Kianna Wan, William J. Huggins, Joonho Lee, and Ryan Babbush. Matchgate shadows for fermionic quantum simulation, 2022.

[3]	Yunchao Liu, near-term qua	, Matthew Otten, antum computers	Roozbeh Bassirianja via random circuit sa	ahromi, Liang mpling. $arXiv$	Jiang, and Bill preprint arXiv:2	Fefferman. 105.05232, 2	Benchmarking 2021.