

Programa de Arquitectura para entornos de Big Data & Cloud

BIG DATA ACADEMY

Big Data aplicado a la empresa

HAGA CLIC PARA AGREGAR TEXTO

¿Big Data aplicado a las empresas?

Concepción de un Proyecto Big Data

Tecnologías en el mundo del Big Data

Tecnologías en el mundo del Big Data

En 2020

Propuesta de mix tecnológico

Definición arquitectónica

HAGA CLIC PARA AGREGAR TEXTO

Vistas arquitectónicas

Arquitectura conceptual general de Big Data

Arquitectura tecnológica

Vistas de una arquitectura de Big Data

VISTAS DEL CORE DE BIG DATA

Vista de arquitectura

Vista de gobierno

Vista de infraestructura

Conceptual y tecnológica

Vista Conceptual con <u>Patrones de Diseño de Big Data</u>

¡Este diagrama sí lo podemos codificar!

Vista de Infraestructura

Vista de Gobierno

DATALAKE

Vista Tecnológica

Basado en el Ecosistema Estándar Hadoop

Los patrones de diseño son agnósticos al ecosistema tecnológico

¿Arquitecturas tecnológicas Cloud?

HAGA CLIC PARA AGREGAR TEXTO

Servicios Cloud

Language AP1

API

Vision API Translate API

¡Existen muchos servicios de Cloud!

Lo que nos importan son los Servicios de Big Data on Cloud

>

El flujo del Big Data on Cloud

Cada nube ofrece su propio mix tecnológico, pero el flujo de procesamiento es estándar y agnóstico a la nube:

4

Herramientas estándar

Almacenamiento

Interfaz SQL

ETL

Soluciones

Workflow

Herramientas cloud equivalentes

Flujo estándar sobre un Datalake

incluye un campo más?

PROCESAMIENTO

Traducción de estándares a cada cloud de cualquier flujo que llegue hasta UNIVERSAL

ESTANDAR BIG DATA CLOUD ON GCP

¿Y qué pasa con las soluciones?


```
#Importamos el objeto para instanciar una sesion
from pyspark.sql import SparkSession
#Instanciamos una sesion
#Dependiendo de la potencia del cluster, tomara hasta 3 minutos en asignarle recursos
spark = SparkSession.builder.getOrCreate()
#Leemos los datos que procesaremos
dfTransaccion = spark.read.format("parquet").load("/objects/inputs/transaccion")
#Almacenamos el dataframe como vista temporal
dfTransaccion.createOrReplaceTempView("dfTransaccion")
#Procesamos el dataframe
dfReporte = spark.sql("""
        T.ID PERSONA ID PERSONA,
        SUM (T.MONTO) MONTO TRANSACCIONES
        dfTransaccion T
   GROUP BY
#Guardamos el resultado en un directorio temporal del cluster
dfReporte.write.mode("overwrite").format("parquet").save("/objects/outputs/reporte")
```


Codificación agnóstica en SPARK sobre las tres nubes

Pueden ser soluciones más complejas como Redes Neuronales


```
# Ssection Aplicamos modelos de Deep Learning [RED NEURONAL]
#Importamos el algoritmo
from pyspark.ml.classification import MultilayerPerceptronClassifier
#Configuramos el algoritmo
algoritmo3 = MultilayerPerceptronClassifier(
   maxIter=1000,
   layers=[9, 50, 50, 2],
                                                                                                          M
   blockSize=128,
   seed=1234,
    labelCol='Survived'.
    featuresCol='features'
#Generamos el modelo con el algoritmo seleccionado
                                                                                                   Red Neuronal
modelo3 = algoritmo3.fit(dfTrain)
#Validamos el modelo
dfPredicciones3 = modelo3.transform(dfTest)
dfPredicciones3.show()
```

Codificación agnóstica en SPARK sobre las tres nubes

¡La implementación de nuestras soluciones <u>sí puede</u> <u>ser agnóstica</u>!

Vista de patrones de diseño [Proceso BATCH]

HAGA CLIC PARA AGREGAR TEXTO

Problema: Mi script tiene muchos pasos y no tengo suficiente RAM en el clúster

[PASO 1 -> PASO 10] 100 GB RAM

Los 10 primeros pasos se ejecutan en la RAM reservada ... 48 elided

Caused by: java.lang.OutOfMemoryError: Java heap space

scala> 20/06/09 08:28:58 ERROR TaskContextImpl: Error in TaskCompl
java.lang.IllegalStateException: Block broadcast_24 not found
at org.apache.spark.storage.BlockInfoManager\$\$anonfun\$2.ap

ERROR

No hay más RAM para los demás pasos y el proceso colapsa

Si nuestro proceso requiere de muchos pasos y ya no tenemos RAM, ¿cómo podemos programarlo sin que colapse?

Solución: Patrón checkpoint

Almacenamos en disco duro el dataframe del paso 10 para liberar toda la ram de los dataframes del paso 1 al paso 9 que lo generaron, leemos nuevamente el dataframe y continuamos procesándo

¿Y si aumentamos más pasos en el proceso?

<u>Cuando la memoria RAM esté a punto de llenarse, crearemos un checkpoint</u>, de esa manera nuestro proceso podrá tener todos los pasos necesarios

Gracias al "checkpoint", evitamos que la memoria colapse.

¿Y tiene alguna desventaja?: Sí, ya que agrega un paso de escritura al disco duro de la resultante de la cadena de procesos

Vista de patrones de diseño [Proceso MACHINE LEARNING]

HAGA CLIC PARA AGREGAR TEXTO

¿Qué es un tensor?

Objetos hiper-dimensionales

Cálculo tensorial

Aplicaciones para computación cuántica

Pongamos un ejemplo simple para entender el concepto

¿Qué es un tensor?

Representación tensorial [alto, ancho, canal]

Imagen original

Canal G

Canal B

Representación tensorial de una imagen

* IMAGEN RAW

Posición Y del pixel

[Tipo: JPG]

[Canales: RGB]

[Tamaño: 32x32 píxeles]

POR EJEMPLO

Pixel[PosX = 2, PosY = 1] = [R = 11, G = 70, B = 75]

Datasets para procesamiento de imágenes en Deep Learning

Dataset con 500 mil imágenes

Representación tensorial del Dataset

Arquitectura para Visión Artificial

Feature Engineering

Red Convolucional

Flatten

Red Neuronal

Machine Learning on Datalake

Alonso Melgarejo

Uso de GPU para procesos matriciales

Ya que la data la tenemos en forma matricial y usamos el álgebra lineal, podemos paralelizar aún más el procesamiento usando GPU

Infraestructura para Machine Learning on Datalake

LANDING UNIVERSAL SMART

Vista de patrones de diseño [ETL, Reporting, Real-Time]

HAGA CLIC PARA AGREGAR TEXTO

Patrón de procesamiento batch aplicado a reporting

Patrón de procesamiento en real time aplicado a redes sociales

Arquitectura estándar extendida para procesamiento en Real-Time

Arquitectura estándar extendida para procesamiento en Real-Time

Machine Learning on Datalake para explotación en Real-Time

Conclusiones

HAGA CLIC PARA AGREGAR TEXTO

Próximos pasos

Arquitecturas y patrones

Infraestructura Cloud y On-Premise

Machine Learning Escalable

Arquetipos de código