Predicting Demand

Contents

Introduction & Data	2
Exercices	2
Problem 1 : Exploratory Data Analysis	2
1.1	3
1.2	3
1.3	3
Problem 2 : Simple Logistic Regression	
2.1: Preparing the Data	
2.1.1	
2.1.2	4
2.1.3	4
2.2	4
2.3	4
2.3.1	4
2.3.2	5
2.3.3	
Problem 2.3.4	
2.3.5	5
Problem 3: Adding More Variables	
3.1	
3.1.1	5
3.1.2	7
3.2	8
3.2.1	8
3.2.2	8
3.2.3	8
3.2.4	
3.2.5	10

Problem .	4: CA	RT																	 	1	0
4.1 .																			 	1	0
	4.1.1																		 	1	1
	4.1.2																		 	1	5
	4.2.1																		 	1	6
	4.2.2		 																 	 1	6

Introduction & Data

Bike-sharing systems are appearing all over the world; examples include Citi Bike in New York City, Santander Cycles in London, and ofo in China. These services allow users to make short-term bike rentals. In docked systems, docking stations are set up in prespecified locations, and users must pick up and return the bike to a docking station within the system. In dockless systems, users are able to pick up and return bikes to any desired location (pickups pending availability). There is a lot of research in Bike-sharing systems and as a start, in this problem, we will attempt to understand the factors that influence a high demand for this service.

Dataset: bikes.csv

In the dataset above, each observation represents one hour of the day (10886 hours). Here is a detailed description of the variables:

- season: 1 = spring, 2 = summer, 3 = fall, 4 = winter
- holiday: whether the day is considered a holiday
- workingday: whether the day is neither a weekend nor holiday
- weather:
 - 1: Clear, Few clouds, Partly cloudy, Partly cloudy
 - 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
 - 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
 - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- *temp*: temperature in Celsius
- atemp: "feels like" temperature in Celsius
- *humidity*: relative humidity
- *windspeed*: wind speed
- count: number of total rentals
- demand_level: 1 if count is at least 250, 0 otherwise
- hour: the hour of the day (0-23)

In this problem, we will use various classification methods to try to predict the demand level.

Exercices

Problem 1: Exploratory Data Analysis

```
## 'data.frame': 10886 obs. of 11 variables:
## $ season : int 1 1 1 1 1 1 1 1 1 1 ...
## $ holiday : int 0 0 0 0 0 0 0 0 0 ...
```

```
## $ workingday : int 0 0 0 0 0 0 0 0 0 ...
## $ weather
                : int
                       1 1 1 1 1 2 1 1 1 1 ...
## $ temp
                 : num
                       9.84 9.02 9.02 9.84 9.84 ...
## $ atemp
                 : num 14.4 13.6 13.6 14.4 14.4 ...
                : int
## $ humidity
                       81 80 80 75 75 75 80 86 75 76 ...
##
  $ windspeed
                : num 00000...
  $ count
                : int 16 40 32 13 1 1 2 3 8 14 ...
## $ demand_level: int 0 0 0 0 0 0 0 0 0 ...
## $ hour
                : int 0 1 2 3 4 5 6 7 8 9 ...
```

1.1

Which season has the most rentals?

Answer:

- 1. Summer (2)
- 2. **Fall (3)**
- 3. Winter (4)
- 4. Spring (1)

1.2

What is the average temerature in Celsius?

[1] 20.23086

 $Answer:\,20.23086$

1.3

What is the average temerature in Celsius during the high demand hours?

High demand is defined by demand_level = 1.

 $Answer:\ 24.48587$

Problem 2 : Simple Logistic Regression

2.1: Preparing the Data

 $\mathbf{2.1.1}$ We will now split the data into a training and testing set. To do this, we use the sample.split() function.

Which variable will be used in this function?

- 1. temp
- 2. count
- 3. demand_level
- 4. season

2.1.2 Set your random seed to 100 and create a training and test set using the sample.split() function in the caTools library, with 70% of the observations in the training set and 30% in the testing set.

Why do we use the sample.split() function?

- 1. It is the most convenient way to randomly split the data
- 2. It balances the independent variables between the training and testing sets
- 3. It balances the dependent variable between the training and testing sets
- 2.1.3 How many observation are there in the training set?

```
## [1] 7620
```

2.2

Train a logistic regression model using temp as the independent variable.

What is the coefficient of temp?

```
##
## Call:
## glm(formula = demand_level ~ temp, family = binomial, data = bikesTrain)
##
## Deviance Residuals:
##
      Min
                 1Q
                      Median
                                   3Q
                                           Max
  -1.6313 -0.8673 -0.5588
                               1.0896
                                        2.5204
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.224047
                                    -35.75
                           0.090173
                                              <2e-16 ***
                                      29.02
                                              <2e-16 ***
## temp
                0.110214
                           0.003798
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 9304.5 on 7619 degrees of freedom
## Residual deviance: 8308.6 on 7618 degrees of freedom
## AIC: 8312.6
##
## Number of Fisher Scoring iterations: 4
```

Answer: 0.110214

2.3

2.3.1 Using your logistic regression model, obtain predictions on the test set. Then, using a probability threshold of 0.5, create a confusion matrix for the test set.

What is the (test) accuracy of your logistic regression model?

$$Accuracy = \frac{TruePositive + TrueNegative}{Ntotal}$$

[1] 0.7290263

 $Answer:\,0.7290263$

2.3.2 Our baseline model in classification is to always predict the most frequent outcome in the test set. What is the (test) accuracy of this baseline model?

[1] 0.7002449

Answer: 0.7002449

2.3.3 What is the true positive rate of your logistic regression model?

$$Sensitivity = \frac{TruePositive}{TruePositive + FalseNegative}$$

[1] 0.2778345

Answer: 0.2778345

Problem 2.3.4 What is the false positive rate of your logistic regression model?

$$FalsePositiveErrorRate = \frac{FalsePositive}{TrueNegative + FalsePositive}$$

[1] 0.07783122

Answer: 0.07783122

- 2.3.5 Currently, we are predicting many more low demand observations than high demand observations. Which of the following is a way to change that?
 - 1. It is impossible to predict more high demand with this model. To change these results, another model can be used.
 - 2. To predict more high demand, decrease the prediction threshold.
 - 3. To predict more high demand hours, increase the prediction threshold.
 - 4. To predict more high demand hours, create more observations with high demand.

Problem 3: Adding More Variables

3.1

3.1.1 We would now like to train a logistic regression model using all of the variables in the training set.

```
##
                season holiday workingday weather temp atemp humidity windspeed
## season
                          FALSE
                                              FALSE FALSE FALSE
                                                                    FALSE
                                                                              FALSE
                  TRUE
                                     FALSE
                           TRUE
                                                                    FALSE
                                                                              FALSE
## holiday
                 FALSE
                                     FALSE
                                             FALSE FALSE FALSE
                                                                              FALSE
## workingday
                 FALSE
                         FALSE
                                      TRUE
                                             FALSE FALSE FALSE
                                                                   FALSE
## weather
                 FALSE
                         FALSE
                                     FALSE
                                              TRUE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
                         FALSE
                                     FALSE
## temp
                 FALSE
                                             FALSE TRUE TRUE
                                                                   FALSE
                                                                              FALSE
                 FALSE
                         FALSE
                                             FALSE TRUE TRUE
                                                                   FALSE
                                                                              FALSE
## atemp
                                     FALSE
                                             FALSE FALSE FALSE
## humidity
                 FALSE
                         FALSE
                                     FALSE
                                                                    TRUE
                                                                              FALSE
## windspeed
                 FALSE
                          FALSE
                                     FALSE
                                             FALSE FALSE FALSE
                                                                   FALSE
                                                                               TRUE
## count
                 FALSE
                          FALSE
                                     FALSE
                                             FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
## demand_level
                 FALSE
                          FALSE
                                     FALSE
                                              FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
                                              FALSE FALSE FALSE
## hour
                                     FALSE
                                                                    FALSE
                                                                              FALSE
                 FALSE
                          FALSE
##
                count demand_level
                                     hour
                              FALSE FALSE
## season
                FALSE
                FALSE
                              FALSE FALSE
## holiday
## workingday
                FALSE
                              FALSE FALSE
## weather
                FALSE
                              FALSE FALSE
## temp
                FALSE
                              FALSE FALSE
                              FALSE FALSE
## atemp
                FALSE
## humidity
                FALSE
                              FALSE FALSE
## windspeed
                FALSE
                              FALSE FALSE
## count
                 TRUE
                               TRUE FALSE
## demand_level TRUE
                               TRUE FALSE
## hour
                FALSE
                              FALSE TRUE
##
                season holiday workingday weather temp atemp humidity windspeed
                         FALSE
                                              FALSE FALSE FALSE
                                                                   FALSE
## season
                 FALSE
                                     FALSE
                                                                              FALSE
## holiday
                 FALSE
                         FALSE
                                     FALSE
                                             FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
## workingday
                 FALSE
                         FALSE
                                     FALSE
                                             FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
## weather
                 FALSE
                         FALSE
                                     FALSE
                                             FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
## temp
                 FALSE
                         FALSE
                                     FALSE
                                             FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
                                             FALSE FALSE FALSE
## atemp
                 FALSE
                         FALSE
                                     FALSE
                                                                   FALSE
                                                                              FALSE
## humidity
                 FALSE
                         FALSE
                                     FALSE
                                             FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
## windspeed
                 FALSE
                          FALSE
                                     FALSE
                                              FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
                 FALSE
                          FALSE
                                     FALSE
                                              FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
## count
                                              FALSE FALSE FALSE
## demand_level
                 FALSE
                          FALSE
                                     FALSE
                                                                    FALSE
                                                                              FALSE
## hour
                          FALSE
                                     FALSE
                                              FALSE FALSE FALSE
                                                                   FALSE
                                                                              FALSE
                 FALSE
##
                count demand_level
                                     hour
## season
                FALSE
                              FALSE FALSE
                              FALSE FALSE
## holiday
                FALSE
                FALSE
                              FALSE FALSE
## workingday
## weather
                FALSE
                              FALSE FALSE
                              FALSE FALSE
## temp
                FALSE
## atemp
                FALSE
                              FALSE FALSE
## humidity
                FALSE
                              FALSE FALSE
## windspeed
                FALSE
                              FALSE FALSE
## count
                FALSE
                              FALSE FALSE
## demand level FALSE
                              FALSE FALSE
## hour
                FALSE
                              FALSE FALSE
```

Which of the following is true?

1. Weather and temp are highly correlated.

- 2. Season and weather are highly correlated.
- 3. Workingday and holiday are not highly correlated.
- 4. Temp and atemp are highly correlated.
- **3.1.2** Train a logistic regression model now using all of the following variables in the training set: season, holiday, workingday, weather, temp, humidity, windspeed, and hour

Which of the following variables are significant at a level of 0.001 or less?

```
##
## Call:
  glm(formula = demand_level ~ season + holiday + workingday +
       weather + temp + humidity + windspeed + hour, family = binomial,
##
##
       data = bikesTrain)
##
## Deviance Residuals:
##
      Min
                1Q
                     Median
                                   3Q
                                           Max
                                        2.8967
## -2.1282 -0.7468 -0.4471
                               0.8365
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.895413
                           0.184754 -15.672 < 2e-16 ***
## season
               0.342095
                           0.029190 11.719
                                            < 2e-16 ***
## holiday
               -0.016277
                           0.169255 -0.096 0.92339
                           0.063433 -2.760 0.00579 **
## workingday -0.175048
## weather
               -0.026242
                           0.052297
                                    -0.502 0.61582
                0.097964
                           0.004078 24.025
                                            < 2e-16 ***
## temp
## humidity
               -0.029654
                           0.001863 -15.915 < 2e-16 ***
## windspeed
               0.003451
                           0.003748
                                     0.921 0.35706
                0.074677
                           0.004497 16.604 < 2e-16 ***
## hour
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 9304.5 on 7619 degrees of freedom
## Residual deviance: 7389.5 on 7611 degrees of freedom
## AIC: 7407.5
##
## Number of Fisher Scoring iterations: 5
  1. season
  2. holiday
  3. workingday
  4. weather
  5. temp
  6. humidity
```

- 7. windspeed
- 8. hour

3.2

Using your new logistic regression model, obtain predictions on the test set. Then, using a probability threshold of 0.5, create a confusion matrix for the test set.

3.2.1 What is the (test) accuracy of your logistic regression model?

$$Accuracy = \frac{TruePositive + TrueNegative}{Ntotal}$$

[1] 0.7672994

 $Answer:\,0.7672994$

3.2.2 Which of the following is true?

[1] 512

[1] 0.2327006

[1] 0.4770174

[1] 0.5229826

[1] 0.108439

- 1. Close to a third of time that there is high demand, the model will predict high demand.
- 2. Almost half of the times that there is high demand, the model will predict high demand.
- 3. About 75% of the times that there is high demand, the model will predict high demand.
- 4. About 10% of the times that there is low demand, the model will predict high demand.
- 5. About 25% of the times that there is low demand, the model will predict high demand.
- 6. About 7% of the times that there is low demand, the model will predict high demand.

3.2.3 Plot the ROC curve for your logistic regression model.

Which logistic regression threshold is associated with the lower-left corner of the ROC plot (true positive rate 0 and false positive rate 0)?

- 1. 0
- 2. 0.5
- 3. **1**

3.2.4 At roughly which logistic regression cutoff does the model achieve a true positive rate of 80% and a false positive rate of 40%?

Answer:

- 1. 0.01
- 2. **0.19**
- 3. 0.37
- $4. \ 0.55$
- 5. 0.73
- 6. 0.91

3.2.5 What is the AUC for your logistic regression model?

[1] 0.8031658

 $Answer:\ 0.8031658$

$Problem \ 4 : CART$

4.1

Set the random seed to 100.

Then use the caret package and the train function to perform 10-fold cross validation with the training data set to select the best cp value for a CART model that predicts the dependent variable <code>demand_level</code> using

all of the possible independent variables except count which was used to define the dependent variable. Select the cp value from a grid consisting of the values 0.0001, 0.0002, 0.0003, ..., 0.02.

Remember to convert the demand_level column to a factor variable.

If you have called your training set train, use the following code:

train\$demand_level = as.factor(train\$demand_level)

4.1.1

```
## CART
##
## 7620 samples
##
     10 predictor
##
      2 classes: '0', '1'
##
## No pre-processing
   Resampling: Cross-Validated (10 fold)
  Summary of sample sizes: 6858, 6858, 6858, 6858, 6859, 6859, ...
   Resampling results across tuning parameters:
##
##
     ср
             Accuracy
                         Kappa
     0.0001
             0.8771645
                         0.7050045
##
##
     0.0002
             0.8796576
                         0.7108565
     0.0003
             0.8812336
##
                         0.7149349
##
     0.0004
             0.8812338
                         0.7147262
##
     0.0005
             0.8818891
                         0.7164062
##
     0.0006
             0.8814959
                         0.7153616
##
     0.0007
             0.8816275
                         0.7152725
##
     0.0008
             0.8817581
                         0.7152997
##
     0.0009
             0.8799189
                         0.7101193
##
     0.0010
             0.8808384
                         0.7116719
##
     0.0011
             0.8803135
                         0.7100818
##
     0.0012
             0.8800515
                         0.7087110
##
     0.0013
             0.8824142
                         0.7131980
##
     0.0014
             0.8821519
                         0.7122620
##
     0.0015
             0.8824147
                         0.7124114
##
     0.0016
             0.8822837
                         0.7119029
##
     0.0017
             0.8820212
                         0.7111081
     0.0018
##
             0.8807101
                         0.7073830
##
     0.0019
             0.8807101
                         0.7073830
##
     0.0020
             0.8792660
                         0.7047884
##
     0.0021
             0.8792660
                         0.7047884
##
     0.0022
             0.8783487
                         0.7022330
##
     0.0023
             0.8770350
                         0.6983291
##
     0.0024
             0.8770350
                         0.6983291
##
     0.0025
             0.8728399
                         0.6863527
##
     0.0026
             0.8725774
                         0.6847271
##
     0.0027
             0.8717900
                         0.6829382
##
     0.0028
             0.8704783
                         0.6777971
##
     0.0029
             0.8698213
                         0.6757721
##
     0.0030
             0.8687720
                         0.6719631
##
     0.0031
             0.8686407
                         0.6714946
     0.0032 0.8687720
##
                         0.6717877
```

```
##
     0.0033
             0.8690348
                         0.6722047
##
     0.0034
             0.8690348
                         0.6722047
             0.8698218
##
     0.0035
                          0.6725801
##
     0.0036
             0.8687740
                          0.6679670
##
     0.0037
             0.8685117
                          0.6664037
     0.0038
##
             0.8675931
                         0.6630438
     0.0039
                          0.6636094
##
             0.8674619
##
     0.0040
             0.8674619
                          0.6636094
##
     0.0041
             0.8677243
                          0.6638259
##
     0.0042
             0.8678556
                          0.6644698
##
     0.0043
             0.8678556
                          0.6644698
     0.0044
             0.8666755
##
                          0.6619898
##
     0.0045
             0.8666755
                          0.6619898
     0.0046
                          0.6619898
##
             0.8666755
##
     0.0047
             0.8660202
                          0.6599013
##
     0.0048
             0.8660202
                          0.6599013
##
     0.0049
             0.8615558
                          0.6475848
##
     0.0050
             0.8615558
                          0.6475848
     0.0051
##
             0.8615558
                          0.6475848
##
     0.0052
             0.8611616
                          0.6462203
##
     0.0053
             0.8611616
                         0.6462203
##
     0.0054
             0.8599793
                          0.6437120
     0.0055
##
             0.8599793
                          0.6437120
     0.0056
                          0.6426736
##
             0.8595856
             0.8595856
##
     0.0057
                          0.6426736
##
     0.0058
             0.8595856
                          0.6426736
##
     0.0059
                          0.6397574
             0.8584045
     0.0060
##
             0.8573532
                         0.6364415
##
     0.0061
                          0.6347088
             0.8568276
##
     0.0062
             0.8568276
                          0.6347088
##
     0.0063
             0.8568276
                          0.6347088
##
     0.0064
             0.8568276
                          0.6347088
##
     0.0065
             0.8568276
                          0.6347088
     0.0066
##
             0.8573532
                          0.6354008
##
     0.0067
             0.8559078
                          0.6308312
     0.0068
                         0.6308312
##
             0.8559078
##
     0.0069
             0.8559078
                          0.6308312
##
     0.0070
             0.8559078
                          0.6308312
##
     0.0071
             0.8559078
                          0.6308312
##
     0.0072
                         0.6308312
             0.8559078
     0.0073
                          0.6308312
##
             0.8559078
##
     0.0074
             0.8559078
                         0.6308312
     0.0075
##
             0.8559078
                         0.6308312
##
     0.0076
             0.8559078
                         0.6308312
     0.0077
##
             0.8551214
                         0.6278967
##
     0.0078
             0.8551214
                          0.6278967
##
     0.0079
             0.8551214
                         0.6278967
##
     0.0080
             0.8551214
                         0.6278967
##
     0.0081
             0.8551214
                         0.6278967
##
     0.0082
             0.8551214
                          0.6278967
##
     0.0083
             0.8555156
                         0.6296165
##
     0.0084
             0.8555156
                          0.6296165
##
     0.0085
             0.8555156
                          0.6296165
##
     0.0086
             0.8555156
                         0.6296165
```

```
##
     0.0087
             0.8555156
                         0.6296165
##
     0.0088
             0.8555156
                         0.6296165
##
     0.0089
             0.8555156
                         0.6296165
##
     0.0090
             0.8555156
                         0.6296165
##
     0.0091
             0.8555156
                         0.6296165
     0.0092
##
             0.8555156
                         0.6296165
     0.0093
##
             0.8555156
                         0.6296165
##
     0.0094
             0.8555156
                         0.6296165
##
     0.0095
             0.8555156
                         0.6296165
##
     0.0096
             0.8555156
                         0.6296165
##
     0.0097
             0.8555156
                         0.6296165
     0.0098
             0.8553844
##
                         0.6294168
     0.0099
##
             0.8553844
                         0.6294168
     0.0100
##
             0.8553844
                         0.6294168
##
     0.0101
             0.8553844
                         0.6294168
##
     0.0102
             0.8553844
                         0.6294168
##
     0.0103
             0.8553844
                         0.6294168
##
     0.0104
             0.8553844
                         0.6294168
     0.0105
##
             0.8553844
                         0.6294168
##
     0.0106
             0.8553844
                         0.6294168
##
     0.0107
             0.8553844
                         0.6294168
##
     0.0108
             0.8553844
                         0.6294168
##
     0.0109
                         0.6294168
             0.8553844
     0.0110
             0.8553844
                         0.6294168
##
##
     0.0111
             0.8553844
                         0.6294168
##
     0.0112
             0.8577450
                         0.6371550
##
     0.0113
             0.8577450
                         0.6371550
     0.0114
##
             0.8577450
                         0.6371550
##
     0.0115
             0.8577450
                         0.6371550
##
     0.0116
             0.8577450
                         0.6371550
##
     0.0117
             0.8577450
                         0.6371550
##
     0.0118
             0.8577450
                         0.6371550
##
     0.0119
             0.8577450
                         0.6371550
     0.0120
##
             0.8577450
                         0.6371550
##
     0.0121
             0.8577450
                         0.6371550
     0.0122
##
             0.8577450
                         0.6371550
##
     0.0123
             0.8577450
                         0.6371550
##
     0.0124
             0.8577450
                         0.6371550
##
     0.0125
             0.8577450
                         0.6371550
     0.0126
##
             0.8577450
                         0.6371550
     0.0127
                         0.6371550
##
             0.8577450
##
     0.0128
             0.8577450
                         0.6371550
     0.0129
##
             0.8577450
                         0.6371550
##
     0.0130
             0.8577450
                         0.6371550
##
     0.0131
             0.8577450
                         0.6371550
##
     0.0132
             0.8577450
                         0.6371550
##
     0.0133
             0.8577450
                         0.6371550
##
     0.0134
             0.8577450
                         0.6371550
##
     0.0135
             0.8577450
                         0.6371550
##
     0.0136
             0.8577450
                         0.6371550
##
     0.0137
             0.8577450
                         0.6371550
##
     0.0138
             0.8577450
                         0.6371550
##
     0.0139
             0.8577450
                         0.6371550
##
     0.0140 0.8577450
                         0.6371550
```

```
##
     0.0141
             0.8577450
                         0.6371550
##
     0.0142
             0.8577450
                         0.6371550
##
     0.0143
             0.8577450
                          0.6371550
     0.0144
##
             0.8577450
                          0.6371550
##
     0.0145
             0.8577450
                          0.6371550
     0.0146
##
             0.8577450
                         0.6371550
     0.0147
                          0.6371550
##
             0.8577450
##
     0.0148
             0.8577450
                         0.6371550
##
     0.0149
             0.8577450
                          0.6371550
##
     0.0150
             0.8577450
                          0.6371550
     0.0151
##
             0.8577450
                          0.6371550
     0.0152
             0.8577450
                          0.6371550
##
##
     0.0153
             0.8577450
                          0.6371550
     0.0154
##
             0.8577450
                          0.6371550
##
     0.0155
             0.8577450
                          0.6371550
##
     0.0156
             0.8577450
                          0.6371550
##
     0.0157
             0.8577450
                          0.6371550
##
     0.0158
             0.8577450
                          0.6371550
     0.0159
             0.8577450
##
                          0.6371550
##
     0.0160
             0.8577450
                          0.6371550
##
     0.0161
             0.8577450
                         0.6371550
##
     0.0162
             0.8577450
                          0.6371550
     0.0163
##
             0.8577450
                          0.6371550
     0.0164
             0.8577450
                          0.6371550
##
##
     0.0165
             0.8577450
                         0.6371550
##
     0.0166
             0.8574826
                          0.6371088
##
     0.0167
             0.8574826
                          0.6371088
     0.0168
##
             0.8574826
                          0.6371088
##
     0.0169
             0.8574826
                          0.6371088
##
     0.0170
             0.8574826
                          0.6371088
##
     0.0171
             0.8574826
                          0.6371088
##
     0.0172
             0.8574826
                          0.6371088
##
     0.0173
             0.8574826
                          0.6371088
     0.0174
##
             0.8574826
                          0.6371088
##
     0.0175
             0.8574826
                          0.6371088
     0.0176
##
             0.8574826
                         0.6371088
##
     0.0177
             0.8574826
                          0.6371088
##
     0.0178
             0.8574826
                          0.6371088
##
     0.0179
             0.8574826
                          0.6371088
     0.0180
##
             0.8574826
                         0.6371088
     0.0181
             0.8574826
                          0.6371088
##
##
     0.0182
             0.8574826
                         0.6371088
     0.0183
##
             0.8574826
                          0.6371088
##
     0.0184
             0.8574826
                          0.6371088
     0.0185
##
             0.8574826
                          0.6371088
##
     0.0186
             0.8574826
                          0.6371088
##
     0.0187
             0.8574826
                          0.6371088
##
     0.0188
             0.8574826
                          0.6371088
##
     0.0189
             0.8574826
                          0.6371088
##
     0.0190
             0.8574826
                          0.6371088
##
     0.0191
             0.8574826
                          0.6371088
     0.0192
##
             0.8574826
                          0.6371088
##
     0.0193
             0.8574826
                          0.6371088
##
     0.0194 0.8574826
                         0.6371088
```

```
0.6331569
##
     0.0195 0.8545954
##
     0.0196 0.8545954
                        0.6331569
     0.0197
##
             0.8545954
                        0.6331569
##
                        0.6331569
     0.0198
             0.8545954
##
     0.0199
             0.8545954
                        0.6331569
##
     0.0200
             0.8545954
                        0.6331569
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.0015.
```

Answer: 0.001

4.1.2

What does the first split indicate?

- 1. There will be a high demand of bikes before 7 AM.
- 2. There will not be a high demand of bikes before 7 AM.
- 3. If the hour is before 7 AM, we should look at the temperature.
- 4. If the hour is before 7 AM and the temperature is less than 17, there will not be a high demand

###4.2

4.2.1 What is the (test) accuracy of your CART model?

$$Accuracy = \frac{TruePositive + TrueNegative}{Ntotal}$$

[1] 0.8876301

4.2.2 What does the CART model predict on a Saturday, spring day at 9 AM when the temperature is 15 degrees Celsius?

- 1. high demand
- 2. low demand
- 3. Not enough information