SACRAMENTO MUNICIPAL UTILITY DISTRICT 100-MW_e PHOTOVOLTAIC POWER PLANT

JET PROPULSION LABORATORY

R.V. Powell

Chronology

- SMUD unsolicited proposal to:
 - U.S. Department of Energy (DOE)
 - California Energy Commission (CEC)
- Congress mandated \$6.8M for FY'82 for SMUD Project
- Negotiations for July 1982 start

The SMUD Power-Plant Proposal

- Unsolicited proposal (Dec. '81)
- 100 MW in 10 phases Rancho Seco site
- 1 MW 1st phase 24 months
- Design selected for 1st phase
- Alternative designs planned for later stages
- SMUB Project Manager
- CEC assist in environment impact
- Federal/State role is to share early cost risk
- Cooperative agreement
- Projec^{*} Review Board

PLENARY SESSION: R.V. POWELL

Special Features

- Differential funding trom government to limit cost/kW to a fixed value
- Government would be reimbursed when cost falls below fixed value
- Cost overruns would either be absorbed by SMUD or would result in a change of scope by the Project Review Board

The Government Contract/Cooperative Agreement

- DOE cooperative agreement, June '82
- CEC contract, June '82
- Limited to 1st 1 MW
- Alternative designs to be considered
- DOE/PV Design Assistance Team
- SMUD Project Klenager
- Project Review Board

ENERGY ECONOMICS: DOES PHOTOVOLTAICS FIT IN?

SHELL OIL CO.

M. Sagenkahn

(Abridged)

1980 Energy Budget, Crude Oil Equivalents: MM bbl/day

	TRANSP	RES./	INDUST	CHEM FDSTKS	EXPORTS	ELEC UTIL	SYN CRUDE	SYN	TOTAL
OIL	8.5	2.4	2.9	1.0	0.5	1.4	-	-	16.7
GAS		3.7	4.0	0.3	-	1.8	-	-	9.8
COAL		0.1	1.6	-	1.1	5.8	-	-	8.6
JUCLEAR						1.2			1.2
HYDRO						1.4			1.4
SHALE							-		-
RENEWABLE						-			-
DELV'D ELECTRICITY		2.1	1.3			(<u>3.4</u>)			
TOTALS	8.5	8.3	9.8	1.3	1.6	8.2	-	-	37.7

Energy Growth in the United States, Crude Oil Equivalents: MM bbl/day

	19	975	19	980	19	91	20	000
				<u> </u>		<u>z</u>		
OIL	15.5	46	16.7	44	16.2	38	14.1	36
GAS	9.5	28	9.8	26	7.5	18	6.8	14
COAL	6.9	20	8.6	23	12.8	30	19.7	41
NUCLEAR	.8	2	1.2	3	3.4	8	3.8	8
HYDRO	1.5	4	1.4	4	1.7	4	1.7	3
SHALE	-	-	-	-	0.5	1	1.0	2
RENEWABLE	-	-	-	-	0.4	1	0.9	2
TOTALS	34.2	100	37.7	100	42.5	100	48.0	100
		2.0% A	AI*	-1.17	MI	-1.47 A	AI	

^{*}ANNUALIZED AVERAGE INCREASE

U.S. Electric Utility Input Energy by Full Source, Crude Oil Equivalents: MM bbl/day

	197	75	158	30	19	91	200	0
						<u> </u>		<u>z</u>
OIL	1.5	16	1.4	12	0.9	6	0.8	4
GAS	1.6	17	1.8	16	1.3	9	0.9	5
COAL	4.1	43	5.8	50	7.9	52	11.4	61
NUCLEAR	0.8	8	1.2	10	3.4	22	3.8	20
HYDRO	1.5	16	1.4	12	1.7	11	1.7	9
RENEWABLE	-	-	~	-	0.1	-	0.2	1
DELV'D ELEC.	(2.8)		(3.4)		(4.6)		(5.8)	
TOTALS ENERGY INPUT	6.7	4.0% AA	8.2	2.8% AA	10.7	-2.6%	13.0 MI	

Solar Energy Forecast (Consistent With Total Energy Forecast)

- O OF 0.9 MM BBL/DAY COE RENEWABLE ENERGY FORECAST TO 2000, 0.2 MM BBL/DAY WOULD BE SOLAR
- o OF 0.2 MM BBL/DAY SOLAR, 20% WOULD BE PHOTOVOLTAIC
- o THE 0.4 MM BBL/DAY PHOTOVOLTAIC WOULD
 BE DIVIDED ABOUT EQUALLY BETWEEN RESIDENTIAL/
 COMMERCIAL, INDUSTRIAL AND ELECTRIC UTILITY

1991 Energy Budget, Crude Oil Equivalents: MM bbl/day

	TRANSP	RES./	INDUST	CHEM FDSTKS	EXPORTS	UTIL	SYN CRUDE	SYN GAS	TOTAL
OIL	9.5	2.1	2.9	1.3	0.3	0.9	(0.9)	0.1	16.2
GAS		3.8	2.7	0.3	-	1.3	-	(0.6)	9.8
COAL		0.1	2.1	-	1.5	7.9	0.6	0.6	12.8
NUCLEAR						3.4			3.4
HYDRO						1.7			1.7
SHALE							0.5		0.5
RENEWABLE		0.1	0.2			0.1			0.4
DELV'D ELECTRICITY	_	2.8	1.8			(<u>4.6</u>)			
TOTALS	9.5	8.9	9.7	1.6	1.8	10.7	0.2	0.1	42.5

2000 Energy Budget, Crude Oil Equivalents: MM bbl/day

	TRANSP	RES./	INDUST	CHEM FDSTKS	EXPORTS	ELEC UTIL	SYN CRUDE	SYN GAS	TOTAL
OIL	9.4	1.7	2.8	1.5	0.3	0.8	(2.4)		14.1
GAS		4.8	1.9	0.5	-	0.9		(1.3)	6.8
COAL			2.5		1.7	11.4	2.5	1.6	19.7
NUCLEAR						3.8			3.8
HYDRO						1.7			1.7
SHALE							1.0		1.0
RENEWABLE		0.2	0.5			0.2			0.9
DELV'D	<u></u>	3.7	2.1			<u>(5.8)</u>		_	
TOTALS	9.4	10.4	9.8	2.0	2.0	13.0	1.1	0.3	48.0

Recent Energy Price Trends (Dec. 1980 to Sept. 1981)

	Z AAI
PURCHASED INDUSTRIAL ELECTRICITY	21.5
CRUDE OIL (AV. REFINERS ACQUISITION COST)	9.0
NATURAL GAS (UTILITY COST)	46.0
COAL (UTILITY COST)	21.5

Carrier OF POUR QUALITY

10 kW Diesel Generator

PREMISES

TOTAL INVESTMENT: \$37M TODAY

\$32M IN 15 YEARS

(EXPERIENCE CURVE EFFECT)

OPERATION & MAINTENANCE COSTS:

\$5000/YR NOW

\$4000/YR IN 15 YEARS

DIESEL PRICE: \$1.00/GALLON AT REFINERY GATE

\$0.40/GALLON DELIVERY

	NOM	15 YEARS HENCE					
		<u>37</u> * \$1.56	12*	-1%*			
REFINERY GATE	\$1.00	\$1.56	\$1.16	\$.84			
DELIVERY	.40	.35	.35	.35			
DELIVERED DIESEL PRICE	\$1.40/GAL	\$1.91/GAL	\$1.51/GAL	\$1.91/GAL			

OCES NOT INCLUDE ANY BATTERY STORAGE

10 kW Photovoltaic System

PREMISES

TOTAL INVESTMENT: FOR \$11/WP - \$700M

\$2.50/WP - \$275M

OPERATION & MAINTENANCE COSTS:

FOR \$11/WP - \$3000/YR \$2.50/WP - \$2000/YR

LIFE OF SYSTEM - 20 YEARS

RETURN ON CAPITAL - 4% REAL

INCLUDES 1 DAY BATTERY STORAGE AT AN 80% DEPTH OF DISCHARGE

^{*}REAL CRUDE OIL RATE OF INCREASE

Economic Comparison Between PV and Diesel-Generated Electricity for a 10 kW System

Conclusions

- o THE EXTREMELY RAPID INCREASE IN ENERGY COSTS DURING THE PAST DECADE HAS:
 - 1. CAUSED DRAMATIC REDUCTIONS IN DEMAND
 - IMPROVED SUPPLY AND THE SUPPLY OUTLOOK
- o THE OUTLOOK FOR A COMFORTABLE U.S. ENERGY BALANCE TO THE END OF THIS CENTURY HAS BRIGHTENED CONSIDERABLY.
- O THE PRESSURE FOR DEVELOPMENT OF RENEWABLE SOURCES OF ENERGY AND COAL CONVERSION PROCESSES HAS, AS A RESULT OF THE ABOVE, LESSENED.
- O THESE DEVELOPMENTS WILL, OF COURSE, STILL BE NEEDED TO FILL SUBSTANTIAL PORTIONS OF THE FUTURE ENERGY DEMAND. THE CURRENT SITUATION SUGGESTS THIS TIMING TO BE WELL INTO THE NEXT CENTURY.
- THE EVENTUAL ECONOMIC COMPETITIVENESS OF PHOTOVOLTAICS FOR ANY GIVEN END USE IS, IN ANY EVENT, MORE A FUNCTION OF MANUFACTURING COST PER PEAK WATT OUTPUT THAN THE RATE OF REAL PRICE INCREASES OF TRADITIONAL ENERGY SOURCES.