CORRIGE

A) COMPOSES AROMATIQUES

A₁) Modèle du noyau benzénique (pages 4 - 5)

8 pts

A₂) Phénol

formules contributives

2 pts

a) phénol acide plus fort que propan-2-ol phénol: charge partielle positive sur O renforce la polarité de la liaison O-H et facilite la

3 pts

rupture hétérolytique de cette liaison propan-2-ol: l'effet I+ exercé par le radical isopropyle attaché à O affaiblit la polarité de la liaison O-H

d'où départ de H⁺ moins facile.

b) phénol: charge partielle négative sur le cycle facilite la fixation d'un agent électrophile benzaldéhyde: groupement -CHO exerce un effet M -, la charge partielle positive sur le cycle rend la fixation d'un agent électrophile plus difficile.

3 pts

B) ALCOOLS

 B_1) Estérification (pages 55 - 57)

12 pts

B₂) $2 \text{ R-OH} + 2 \text{ Na} \rightarrow 2 \text{ R-O'+2 Na'} + \text{H}_2(g)$

a)
$$n_{\text{H}_2} = 1,4:22,4 = 6,25.10^{-2} \text{ mol}$$

$$n_A = 2 \cdot n_{H_2} = 0,125 \text{ mol}$$

$$M_A = m/n = 60 \text{ g·mol}^{-1}$$

$$M_A = M_{C_2 H_{2n}O} = 14n + 18$$

$$\Rightarrow$$
 A = C₃H₇OH

 $3~C_2H_5CH_2OH + 2Cr_2O_7^{2-} + 16~H^+ \rightarrow 3~C_2H_5COOH + 4~Cr^{3+} + 11~H_2O$ ac. propanoïque

6 pts

3 CH₃-CHOH-CH₃ +
$$Cr_2O_7^{2-}$$
 + 8 H⁺ \rightarrow 3 CH₃-CO-CH₃ + 2 Cr³⁺ + 7 H₂O

$$n_A = 125/10 = 12,5 \text{ mmol}$$

$$n_{dichromate} = 21.0, 2 = 4,2 \text{ mmol}$$

$$^{n}A/^{n}$$
dichromate = 3 \Rightarrow A = alcool secondaire

C) AMINES

C₁) amine primaire à carbone asymétrique 2-aminobutane priorité: NH₂ > C₂H₅ > CH₃ > H

C₂) Les 3 composés ont des masses molaires comparables N,N-diméthylamine composé le plus volatil, amine tertiaire, pas de pont H... diéthylamine plus volatile que butan-1-ol: ponts H moins forts car ΔEN_{N-H} < ΔEN_{O-H}...

D) ACIDES et BASES

0)
$$K_0 = 10^{-4.8 \pm} = 1.35 \cdot 10^{-5}$$

 $C_0 = 0.1 \text{ mol. L}^4$
 $\Rightarrow [H_30'] = 1.16 \cdot 10^{-3} \text{ mol. L}^{-1}$
 $pH = 2.94 \quad pOH = 14 - 2.94 = 11.06$
 $d = \frac{[H_30']}{C_0} = 1.16 \cdot 10^{-2}$

c)
$$N_0 HA = 20.0, A = 2 \, mmol$$
 $N_0 N_0 OH = 4.0, A = 0, 7 \, mmol$
 $N_0 HA > N_0 N_0 OH \Rightarrow milonge fampon$
 $N_A = N_0 N_0 OH = 0, 7 \, mmol$
 $N_1 = N_0 N_0 OH = 0, 7 \, mmol$
 $N_1 = N_0 N_0 OH = 1, 3 \, mmol$
 $N_1 = N_0 N_0 OH = 1, 3 \, mmol$
 $N_1 = N_0 N_0 OH = 1, 3 \, mmol$

4 pts

4 pts