(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002—356454

(P2002-356454A)

(43)公開日 平成14年12月13日(2002.12.13)

(51) Int. Cl. 7	識別記号	FΙ		デ ~	-73-1' (参考)
CO7C 39/38		CO7C 39/38		4C062	
B01J 31/02	101	B01J 31/02	101	Z 4G069	
// CO7B 61/00	300	C07B 61/00	300	4H006	
CO7D309/32		CO7D309/32		4H039	
CO7M 7:00		CO7M 7:00			
		審査請求有	請求項の数	te or	(全16頁)

(21)出願番号 特願2002-66187(P2002-66187) (71)出願人 396020800 科学技術振興事業団 (22)出願日 平成14年3月11日(2002.3.11) 埼玉県川口市本町4丁目1番8号 (72)発明者 小林 修 (31)優先権主張番号 特願2001-123599 (P2001-123599) 東京都千代田区猿楽町1-6-6-702 (32)優先日 平成13年3月15日(2001.3.15) (72)発明者 石谷 暖郎 (33)優先権主張国 日本 (JP) 東京都豊島区南池袋1-16-4 ワーベ寿 々208

(74)代理人 100093230

弁理士 西澤 利夫

最終頁に続く

(54) 【発明の名称】ビナフトール誘導体とキラルジルコニウム触媒並びに不斉へテロディールズ・アルダー反応方法

(57)【要約】 (修正有)

【課題】 高い収率と高い立体選択性、優れた不斉選択性で不斉へテロデイールズ・アルダー反応を行うことのできる、新しい技術手段を提供する。

【解决手段】 次式

(式中のR'は、ヨウ素原子またはパーフルオロアルキル基を示し、R'は、水素原子、ヨウ素原子、臭素原子またはパーフルオロアルキル基を示す)で表わされる化合物またはその鏡像体もしくはそのラセミ化合物であることを特徴とするピナフトール誘導体を提供し、この光学活性化合物を配位子としたキラルジルコニウム触媒の存在下に、アルデヒド化合物とダニシェフスキージエン化合物とを反応させて、含酸素複素環の環化体化合物を合成する。

【特許請求の範囲】 【請求項1】 次式

【化1】

(式中のR'は、ヨウ素原子またはパーフルオロアルキル基を示し、R'は、水素原子、ヨウ素原子、臭素原子またはパーフルオロアルキル基を示す)で表わされる化合物またはその鏡像体もしくはそのラセミ化合物であることを特徴とするピナフトール誘導体。

【請求項2】 請求項1のピナフトール化合物の光学活性体とジルコニウム化合物を構成成分としていることを特徴とするキラルジルコニウム触媒。

【請求項3】 ジルコニウム化合物がジルコニウムアルコキシド化合物である請求項2のキラルジルコニウム触媒。

【請求項4】 一級アルコール化合物が併用される請求項2または3のキラルジルコニウム触媒。

【請求項5】 水が併用される請求項2ないし4のいずれかのキラルジルコニウム触媒。

【請求項6】 請求項2ないし5のいずれかのキラルジルコニウム触媒の存在下に、アルデヒド化合物とダニシェフスキージエン化合物とを反応させて、含酸素複素環の環化体化合物を合成することを特徴とする不斉へテロディールズ・アルダー反応方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この出願の発明は、ビナフトール誘導体とキラルジルコニウム触媒並びに不斉へテロディールズ・アルダー反応方法に関するものである。

[0002]

【従来の技術とその課題】不斉合成反応法は、医薬品、香料、化粧料、農薬、あるいは機能性ポリマー合成等の分野において重要な手段となってきているが、この不斉合成反応を触媒的に実現することは必ずしも容易ではない。

【0003】この出願の発明者らは、このような背景を踏まえて、ジルコニウム(2r)化合物と各種のピナフトール化合物とから調製されるキラルジルコニウム触媒を用いての不斉合成反応の検討を進め、すでに、アルデヒド化合物とシリルエノールエーテル化合物との不斉アルドール反応が高収率かつ高anti、高エナンチオ選択的に進行することを見出している。

【0004】このような実績から、発明者らは不斉へテ 上の数)として表わされるが、ここで、nの数としてロデイールズ・アルダー(Diels-Alder) 反応についても は、より好適には、 $1\sim8$ 程度のものとして考慮され検討したが、必ずしも期待したとおりの満足できる結果 50 る。さらに具体的には、たとえば $-CF_1$, $-C_2F_3$,

は得られないでいた。

【0005】そこで、この出願の発明は、以上のとおりの問題点を解消し、高い収率と高い立体選択性、優れた不斉選択性で不斉へテロディールズ・アルダー反応を行うことのできる、新しい技術手段を提供することを課題としている。

[0006]

【課題を解決するための手段】この出願の発明は、上記の課題を解決するものとして、第1には、次式

[0007]

【化2】

【0008】(式中のR'は、ヨウ素原子またはパーフルオロアルキル基を示し、R'は、水素原子、ヨウ素原子、臭素原子またはパーフルオロアルキル基を示す)で表わされる化合物またはその競像体もしくはそのラセミ化合物であることを特徴とするピナフトール誘導体を提供する。

【0009】また、この出願の発明は、第2には、上記のピナフトール化合物の光学活性体とジルコニウム化合物を構成成分としていることを特徴とするキラルジルコニウム触媒を提供し、第3には、ジルコニウム化合物がジルコニウムアルコキシド化合物であるキラルジルコニウム触媒を、第4には、一級アルコール化合物が併用されるキラルジルコニウム触媒を、第5には、水が併用されるキラルジルコニウム触媒を提供する。

【0010】そして、この出願の発明は、上記のキラルジルコニウム触媒の存在下に、アルデヒド化合物とダニシェフスキージエン化合物とを反応させて、含酸素複素環の環化体化合物を合成することを特徴とする不斉へテロディールズ・アルダー反応方法をも提供する。

[0011]

40

【発明の実施の形態】この出願の発明は上記のとおりの 特徴をもつものであるが、以下にその実施の形態につい て説明する。

【0012】この出願の発明の提供する前記式で表わされるピナフトール化合物は、光学活性なキラル触媒を構成する配位子等として機能するものである。なかでも、前記式においては、符号R'およびR'が、ヨウ素原子あるいはパーフルオロアルキル基であるものが特徴的なものとして例示される。パーフルオロアルキル基としては、一般式としては、たとえば一C。F:...(nは1以上の数)として表わされるが、ここで、nの数としては、より好適には、1~8程度のものとして考慮される。さらに具体的には、たとえば一CF:..-C.Fi.

-C, F, 等である。また、弗索原子を結合するアルキル 基炭素鎖は、直鎖状だけでなく、分枝鎖状であってもよい。このような場合としては、たとえば-CF (CF,), -CF (CF,) (CF, CF,) 等が例示される。

【0013】以上のとおりのこの出願の発明のピナフトール化合物は、たとえば後述の実施例に例示したように、公知の化合物からの置換反応や付加反応等によって合成することができる。

【0014】この出願の発明においては、以上のとおり 10 のピナフトール化合物は、光学活性化合物として、あるいはセラミ化合物として提供される。光学活性なピナフトール化合物は、キラル触媒を、様々な遷移金属化合物とともに形成することができる。たとえば、Zr, Hf, Ti, Sc, Yb, Y, La, Pb, Fe、等々の遷移金属の化合物との組合わせによってキラル触媒が構成される。

【0015】なかでも、この出願の発明の不斉へテロディールズ・アルダー反応のためのキラル触媒として有用なものが、前記のピナフトール化合物とジルコニウム化 20合物により構成されているものである。

【0016】この際の光学活性なビナフトール化合物としては、たとえば次式のものが例示される。

[0017]

【化3】

(A)-3,3'-6 BINOL

(R)-3,3'-1,-6,6'-(C2F5)2BINOL

【0018】そして、ジルコニウム化合物としては、ジルコニウムアルコキシド化合物がより好適なものとして例示される。

【0019】以上のキラル触媒を用いてのこの出願の発明の不斉へテロディールズ・アルダー反応は、アルデヒド化合物とダニシェフスキージエン)(Danishefsky's diene) との反応によって含酸素複素環の環化体化合物を得ることを目的としている。

【0020】より詳しくは、たとえば次式

【0021】 【化4】

[0022] (R'は、置換基を有していてもよい炭化水素もしくは複素環基を示す)で表わされるアルデヒド化合物を、次式

[0023]

【化5】

【0024】(R'およびR'は、各々、同一または別異に、水素原子または置換基を有していてもよい炭化水素基もしくは複素環基を示し、R'およびR'は、各々、同一または別異に、炭化水素基を示す)で表わされるジエン化合物と反応させて、次式

[0025]

【化6】

【0026】で表わされる含酸素複素環の環化体化合物を合成することである。

【0027】上記において炭化水素基は、脂肪族、脂環式、芳香族、芳香脂肪族等の各種のものであってよい。そして、不斉へテロデイールズ・アルダー反応においては、前記のキラル触媒に加えて、エタノール、プロピルアルコール、プチルアルコール等の一級アルコール化合物、さらには水を併用することが有効でもある。一級アルコール化合物と水を共に併用する場合には、水の割合は、モル比として、0.05以上0.4以下とすることが好ましい。反応に際しての光学活性ピナフトール化合物の使用量は、3~30モル%、より好ましくは5~20モル%とすることが、また、ジルコニウム化合物については、1~30モル%、より好ましくは3~15モル%とすることが一般的に考慮される。一級アルコール化合物を添加する場合には、通常は、20~120モル%、より好ましくは30~90モル%が考慮される。

【0028】反応原料としてのジエン化合物に対しては、アルデヒド化合物を、0.2~2倍モル、より好適 50 には0.5~1.5倍モル程度の割合とすることが考慮 される。

【0029】反応は、溶媒中において、より好適には、 炭化水素溶媒や、ハロゲン化炭化水素溶媒等を用いて、 -20℃~30℃、より好ましくは、-10℃~10℃ 程度の範囲で行われる。雰囲気は、大気中でもよいし、 不活性雰囲気としてもよい。

【0030】以上のとおりのこの出願の発明の方法によ って、たとえば、Zr (OBu),と3, 3'-I,BI NOLまたはその誘導体、及び一級アルコールから調製 されるキラルジルコニウム触媒存在下、アルデヒドにDa 10 nishefsky's dieneを反応させて、目的とする環化体を 高立体選択的に得ることができる。また、6,6'位に パーフルオロアルキル基を導入したビナフトール化合物 を不斉配位子として用いて反応を行うことにより、対応 する環化体を高収率、高trans 選択的に得ることができ る。

【0031】そこで以下に実施例を示し、さらに詳しく 説明する。もちろん、以下の例によって発明が限定され ることはない。

[0032]

【実施例】 〈実施例 1 〉

不斉配位子の合成

<A>(R) -3, 3'-I, BINOLの合成 (R) -2, 2' -bis (methoxymethyloxy) -1, 1' -binaphthyl

[0033]

【化7】

【0034】アルゴン雰囲気下、水素化ナトリウム(純 度60%, 12.6g, 315mmol) を無水石油工 ーテルにて洗浄し、無水テトラヒドロフラン (THF, 80mL) に懸濁させ、0℃攪拌下(R) -ビナフトー \mathcal{W} ((R) -1, 1'-binaphthalene -2, 2'-di ol, 15.0g, 52.4mmol)のTHF溶液(5 0mL)を30分間で滴下した。滴下終了後そのままの 温度で30分間、および室温で2時間攪拌した。再度0 ℃に冷却した後、メトキシメチルクロリド(11.8m L, 157mmol) を加えた後室温に昇温し1時間攪 **拌した。0℃下メタノールをゆっくり反応系に加えて反** 応を停止し、ジエチルエーテルとH,Oを加えて分液 し、水層よりジエチルエーテルにて一度抽出した。有機 層を合わせH,O、飽和食塩水で順次洗浄した後、無水 硫酸ナトリウムで乾燥した。濾過、減圧濃縮し、得られ た固体を塩化メチレンとヘキサンから再結晶することに より目的物 (R) -2, 2'-bis(methoxymethyloxy) -1, 1'-binaphthyl (17.0g, 収率93%)を 無色プリズム晶で得た。

[0035]

【表 1 】

¹H NMR (CDCl₃) δ 3.13 (s, 6H), 4.96 (d, 2H, J = 6.6 Hz), 5.67 (d, 2H, J = 6.8 Hz), 7.1 ~ 7.3 (m, 2H), 7.33 (ddd, 2H, J = 8.3, 6.4, 1.4 Hz), 7.56 (d, 2H, J = 9.0 Hz), 7.86 (d, 2H, J = 8.0H2), 7.94 (d, 2H, J = 9.0 Hz).

13C NMR (CDCl3) 8 55.8, 95.2, 117.3, 121.3, 124.0, 125.5, 126.3, 127.8, 129.4, 129.9, 134.0,

 $[0\ 0\ 3\ 6]$ (R) -3, 3' -diiodo-1, 1' -binaphthalene -2, 2' -diol ((R) -3, 3' - I BINOL)

[0037]

【化8】

【0038】アルゴン雰囲気下、(R)-2,2'-bi s (methoxymethyloxy) -1, 1' -binaphthyl (2. 0 1g, 5.37mmol) を無水ジエチルエーテルに溶 解させ、0℃攪拌下n-プチルリチウムのヘキサン溶液 (1.54N, 8.72mL, 13.4mmol)を加 えてそのままの温度で30分間攪拌し、さらに室温に昇 温して4時間攪拌した。再度0℃に冷却してヨウ素(I 1, 4. 77g, 18. 8mmol) のテトラヒドロフ ラン溶液 (THF, 25mL) を1時間かけて滴下し、 室温に昇温して終夜攪拌した。反応液にメタノールを加 50 【0039】

えた後、酢酸エチルとH. Oを加えて分液し、水層より 酢酸エチルにて一度抽出した。有機層を合わせ、10% 亜硫酸水素ナトリウム水溶液で二度、H,Oで二度、飽 和炭酸水素ナトリウム水溶液で二度、飽和食塩水で一度 洗浄し、無水硫酸ナトリウムで乾燥した。濾過、減圧濃 縮後、得られた組生成物を塩化メチン(30mL)に溶 解させ、0℃攪拌下40%塩酸メタノール溶液(6m L)を加えて2時間攪拌した。反応液にH,Oを加え、

40 析出した固体を酢酸エチルを加えて溶解させて分液し た。酢酸エチルを用いて水層から一度抽出した後、有機 層を合わせ、H.O、飽和炭酸水素ナトリウム水溶液、 飽和食塩水にて順次洗浄し、無水硫酸ナトリウムで乾燥 した。濾過、減圧濃縮し、シリカゲルカラムクロマトグ ラフィー (ヘキサン-酢酸エチル) で精製し、酢酸エチ ルとヘキサンより再結晶して目的物(R)-3,3'diiodo-1, 1'-binaphthalene-2, 2'-diol (1.06g, 収率37%)を淡黄色プリズム晶で得 た。

【表2】

¹H NMR (CDCl3) δ 5.41 (s, 2H), 7.07 (d, 2H, J = 8.6 Hz), 7.32 (ddd, 2H, J = 8.6, 7.1, 1.2 Hz), 7.38 (ddd, 2H, J = J = 8.3, 6.8, 1.0 Hz), 7.79 (d, 2H, J = 8.8 Hz), 8.52 (s, 2H). 13C NMR (CDCl3) 8 86.5, 112.6, 124.4, 124.8, 127.3, 128.0, 130.7, 133.2, 140.4, 150.1.

 $[0040] < B > (R) -3, 3' - I_1 - 6, 6'$ - (C:F:), BINOLの合成 (R) -6, 6' -dibromo -1, 1' -binaphthalen e-2, 2'-diol[0041]【化9】

7

【0042】アルゴン雰囲気下、(R)-ピナフトール (R) - 1, 1' - binaphthalene - 2, 2' - dio1,20.0g,69.9mmol) を無水塩化メチレ ン(400mL)に溶解させ、-45℃攪拌下臭素(B

r₁, 7. 92mL, 155mmol) の無水塩化メチ レン溶液(100mL)を1時間かけてゆっくり滴下 し、そのまま室温まで自然昇温し終夜攪拌した。反応液 に10%亜硫酸水素ナトリウム水溶液(300mL)を 加えて室温で3時間激しく攪拌した。反応液を分液し、 10 10% 亜硫酸水素ナトリウム水溶液で一度、H,Oで三 度、飽和炭酸水素ナトリウム水溶液で二度、飽和食塩水 で順次洗浄し、無水硫酸ナトリウムで乾燥した。濾過、 **減圧澱縮後得られた固体を塩化メチレンから再結晶する** ことにより、目的物 (R) - 6, 6' -dibromo -1, 1'-binaphthyl-2, 2'-diol(25.0g, 収率 81%)を淡黄色プリズム晶で得た。 [0043]

【表3】

¹H NMR (CDCl₃) δ 5.00 (s, 2H), 6.96 (d, 2H, J = 9.0 Hz), 7.37 (dd, 2H, J = 9.0, 2.0 Hz), 7.39 (d, 2H, J = 9.0 Hz), 7.89 (d, 2H, J = 9.0 Hz), 8.05 (d, 2H, J = 2.0 Hz). 13C NMR (CDCl3) & 110.6, 118.0, 119.0, 125.9, 130.4, 130.6, 130.7, 130.9, 131.9, 153.0.

[0044] (R) -6, 6'-dibromo -2, 2'bis (methoxymethyloxy) -1, 1' -binaphthyl [0045] 【化10】

【0046】アルゴン雰囲気下、水素化ナトリウム(純 度60%, 17.3g, 433mmol) を無水石油工 ーテルにて洗浄し、無水テトラヒドロフラン (THF, 160mL) に懸濁させ、0℃攪拌下(R)-6,6′ -dibromo - 1, 1' -binaphthyl - 2, 2' -diol(32.0g, 72.1mmol)のTHF溶液(70

mL)を30分間で滴下した。滴下終了後そのままの温 度で30分間、および室温で2時間攪拌した。再度0℃ に冷却した後、メトキシメチルクロリド (16.3m L, 217mmo1) を加えた後室温に昇温し1時間攪 拌した。0℃下メタノールをゆっくり反応系に加えて反 応を止めた後、ジエチルエーテルとH. Oを加えて分液 し、水層よりジエチルエーテルにて一度抽出した。有機 30 層を合わせH,O、飽和食塩水で順次洗浄した後、無水 硫酸ナトリウムで乾燥した。濾過、減圧濃縮し、得られ た固体を塩化メチレンとヘキサンから再結晶することに より目的物 ((R) -6, 6'-bibromo -2, 2'bis (methoxymethyloxy) -1, 1' -binaphthyl, 36.5g, 収率95%)を無色板状晶で得た。 [0047]

【表 4】 ¹H NMR (CDCl₃) δ 3.15 (s, 6H), 4.97 (d, 2H, J = 6.8 Hz), 5.08 (d, 2H, J = 6.8 Hz), 6.97 (d, 2H, J = 9.2 Hz), 7.29 (dd, 2H, J = 9.0, 2.0 Hz), 7.59 (d, 2H, J = 9.2), 7.85 (d, 2H, J = 9.2 Hz),

8.03 (d. 2H, J = 1.0 H2). 13C NMR (CDCl3) 8 55.9, 95.0, 118.0, 118.0, 120.7, 127.1, 128.7, 129.7, 129.8, 130.9, 132.4, 152.9.

[0048] (R) -6, 6' -diiodo-2, 2' -bis (methoxymethyloxy) -1, 1' -binaphthyl [0049] 【化11】

【0050】アルゴン雰囲気下、(R)-6,6⁻¹-di bromo -2, 2' -bis (methoxymethyloxy) -1, 1'-binaphthyl (20.0g, 37.6mmol) を無水 テトラヒドロフラン (180mL) に溶解させ、-78 ℃攪拌下n-プチルリチウムのヘキサン溶液(1.56 N, 113mmol) をゆっくり滴下し、そのまま2時 間攪拌した。反応溶液にヨウ素 (I., 28.6g, 1 50 13mmol) の無水テトラヒドロフラン溶液 (60m

L)を簡下した後、室温に昇温し終夜攪拌した。反応液に10% 亜硫酸水素ナトリウム水溶液を加えて攪拌した後、ジエチルエーテルを加えて分液し、水層よりジエチルエーテルにて一度抽出した。有機層を合わせ飽和炭酸水素ナトリウム水溶液で二度、H,Oで二度、飽和食塩水で二度洗浄し、無水硫酸ナトリウムで乾燥した。濾

過、減圧濃縮後、シリカゲルカラムクロマトグラフィーにて精製し、目的物(R) - 6, 6 '-diiodo-2, 2 '-bis(methoxymethyloxy) - 1, 1 '-binaphthyl (9.7g, 収率41%)を得た(褐色板状晶)。 [0051] [表5]

¹H NMR (CDCl₃) δ 3.15 (s, 6H), 4.97 (d, 2H, J = 6.8 Hz), 5.07 (d, 2H, J = 6.8 Hz), 6.83 (d. 2H, J = 8.8 Hz), 7.44 (dd, 2H, J = 8.8, 1.8 Hz), 7.57 (d, 2H, J = 9.2 Hz), 7.82 (d, 2H, J = 9.2), 8.25 (d, 2H, J = 1.8 Hz).

¹³C NMR (CDCl₃) δ 555.9, 89.3, 95.0, 117.8, 120.6, 127.1, 128.6, 131.4, 132.7, 134.8, 136.5, 153.0.

[0052] (R) -2, 2'—bis(methoxymethylox y) -6, 6'—bis(pentafluoroethyl) -1, 1'—binaphthyl

[0053] [化12]

[0054] アルゴン努囲気下、50 m L のシールドチューブに(R)-6, 6 ' -diiodo-2, 2 ' -bis (me thoxymethyloxy)-1, 1 ' -binaphthyl (4. 00 g, 6. 39 mm o1)、trimethylpentafluoroethyls ilane(TMSC₂F₄, 純度90%、5. 46 g, 2 5. 6 mm o1, 6成法後述)、3 ウ化銅(I)(3.

65g, 19.2mmol)、フッ化カリウム(1.48g, 25.5mmol)、ジメチルホルムアミド(DMF, 16mL)を加えて密封し、100℃で24時間 投拌した'''。室温にて放冷後、酢酸エチルとH, Oを加えて室温で投拌した後、セライトを用いて不溶物を適別した。分液し、水層より酢酸エチルで一度抽出した。有機層を合わせ、飽和食塩水とH, Oの1:1混合液で三度、飽和食塩水で一度洗浄し、無水硫酸ナトリウムで乾20燥した。濾過、減圧濃縮後シリカゲルカラムクロマトグラフィー(ヘキサンー塩化メチレン)にて精製し目的物(R)-2,2′-bis(methoxymethyloxy)-6,6′-bis(pentafluoroethyl)-1,1′-binaphthyl(3.21g,収率82%)を得た。【0055】【表6】

¹H NMR (CDCi₃) δ 3.18 (s, 6H), 5.05 (d, 2H, J = 6.8 Hz), 5.13 (d, 2H, J = 6.9 Hz), 7.22 (d, 2H, J = 9.0 Hz), 7.36 (d, 2H, J = 9.0 Hz), 7.71 (d, 2H, J = 9.2 Hz), 8.08 (d, 2H, J = 9.2 Hz), 8.17 (s, 2H).

¹³C NMR (CDCl₃) δ 56.0, 94.8, 113.7 (tq, J = 253, 38 Hz), 117.8, 119.2 (qt, J = 286, 39 Hz), 120.1, 122.8 (t, J = 5.1 Hz), 124.2 (t, J = 24 Hz), 126.1, 127.5 (t, J = 7.1 Hz), 128.5, 130.8, 135.3, 154.4

19F NMR (283 MHz, CDC13, CF3COOH:-76.5 ppm) & -84.8(3F), -114.5(2F).

HPLC: Daicel Chiralpak AD, hexane/PPOH = 19/1, flow rate = 0.5 mL/min, 254 nm : $tR = 10.3 \min(R)$, $tR = 9.2 \min(S)$.

MS (m/z) 610 (M+).

[a]p24 +78.5 (c 1.02, CHCl3).

[0056] (R) -3, 3' -diiodo-2, 2' -bi su(methoxymethyloxy) -6, 6' -bis (pentafluoroeth 40 yl) -1, 1' -binaphthyl

[0057]

【化13】

【0058】アルゴン雰囲気下、(R) -2, 2′-bi s(methoxymethyloxy) -6, 6′-bis(pentafluoroeth 50

yl) -1, 1′-binaphthyl (3.17g, 5.19m mol)を無水テトラヒドロフラン (THF, 60m L) に溶解させ、-78℃攪拌下sーブチルリチウムのシクロヘキサン-n-ヘキサン溶液 (1.02N, 30.8mL, 21.1mmol)を滴下した。そのままの温度で1時間攪拌した後、ヨウ素 (I, 7.92g, 31.2mmol)のTHF (25mL)溶液を滴下しさらに3時間攪拌した。メタノールを加えた後、酢酸エチルとH, Oを加えて室温へ昇温して分液し、水層より酢酸エチルで一度抽出した。有機層を合わせ、10%亜硫酸水素ナトリウム水溶液で二度、飽和食塩水で一

12

度洗浄し、無水硫酸ナトリウムで乾燥した。濾過、減圧 濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)で精製し、目的物(R)-3, 3' - diiodo-2, 2' - bis (methoxymethyloxy) -6, 6' -bis(pentafluoroethyl) -1, 1'-binaphthyl (3.19g, 収率71%)を得た。
[0059]
【表7】

¹H NMR (CDCl₃) δ 2.55 (s, 6H), 4.83 (d, 2H, J = 5.8 Hz), 4.84 (d, 7H, J = 6.1 Hz), 7.29 (d, 2H, J = 9.1 Hz), 7.47 (d, 2H, J = 8.8 Hz), 8.09 (s, 2H), 8.69 (s, 2H).

¹³C NMR (CDCl₃) δ 56.4, 94.2, 99.8, 113.3 (m, J = 254, 38 Hz), 119.1 (qt, J = 286, 39 Hz), 123.6 (t, J = 5.3 Hz), 125.7, 126.1 (t, J = 7.3 Hz), 126.2 (t, J = 24 Hz), 127.4, 130.9, 135.0, 141.2, 154.7.

¹⁹F NMR (283 MHz, CDCl₃), CF₃COOH:—76.5 ppm) δ -84.7(3F), -114.8(2F).

MS (m/z) 863 (M++1). [α] p^{23} +3.11 (c 1.11, CHCl3).

[0060] (R) -3, 3'-diiodo-6, 6'-bis(pentafluoroethyl) -1, 1'-binaphthalene -2, 2'-diol ((R) -3, 3'-1,-6, 6'-(C,F_i),BINOL)
[0061]
[化14]

[0 0 6 2] (R) -3, 3' -diiodo-2, 2' -bi s (methoxymethyloxy) -6, 6' -bis (pentafluoroeth yl) -1, 1' -binaphthyl (3. 5 4 g, 4. 1 1 m mp. 204 °C

mol)を塩化メチレン(CH, Cl, 20mL)に溶解させ、0℃攪拌下40%塩酸メタノール溶液を加え、1時間攪拌した。H, Oを加えて分液し、有機層をH, Oで二度、飽和食塩水で一度洗浄し、無水硫酸ナトリウムで乾燥した。濾過、減圧濃縮後シリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)にて精製し、目的物(R)-3,3′-diiodo-6,6′-bis(pental luoroethyl)-1,1′-binaphthalene-2,2′-diol(2.81g,収率88%)を得た。不斉反応にはさらに塩化メチレンとヘキサンにより再結晶したものを用いた(無色針状晶)。

【0063】 【表8】

¹H NMR (CDCl₃) δ 5.63 (s, 2H), 7.17 (d, J = 9.2 Hz), 7.46 (d, 2H, J = 8.9 Hz), 8.10 (s, 2H), 8.63 (s, 2H).

¹³C NMR (CDCi₃) δ 88.9, 112.7, 113.4 (rg, J = 253, 38 Hz), 116.9 (rg, J = 286, 39 Hz), 124.4 (r, J = 5.1 Hz), 125.1 (r, J = 24 Hz), 125.3, 126.7 (r, J = 7.3 Hz), 129.4, 134.8, 141.2, 151.9. ¹⁹F NMR (283 MHz, CDCl₃, CF₃COOH: -76.5 ppm) δ -84.7(3F), -114.8(2F).

HPLC: Daicel Chiralpak AD, hexane/PrOH = 9/1, flow rate = 1.0 mL/min, 254 nm: tR = 15.0 min (R), tR = 24.2 min (S).

FTIR [cm-1] (KBr) 3304.

MS (m/z) 774 (M+).

 $[\alpha]_{D^{23}}$ +51.2 (c 1.01, CHCl₃).

Elemental analysis for C24H10F10I2O2, calcd.: C 37.24, H 1.30; found: C 37.00, H 1.46.

[0064] <C> (R) -3, 3'-1,-6, 6'-Br,BINOL、(R) -3, 3', 6, 6'-I,BINOLの合成

(R) -2, 2' -bis (methoxymethyloxy) -6, 6' -bistrimethylsilyl-1, 1' -binaphthyl [0065]

【化15】

[0066] アルゴン雰囲気下、(R) -6,6'-di bromo -2,2'-bis(methoxymethyloxy)-1,1' -binaphthyl(5.00g,9.39mmol)を無水 50

テトラヒドロフラン (THF) に溶解させ、-78℃攪拌下n-プチルリチウムのヘキサン溶液 (1.60N, 14.7mL, 23.5mmol) を加えて1時間攪拌した。同じ温度でトリメチルクロリド (3.06g, 28.2mmol) のTHF溶液 (20mL) を加えさらに3時間攪拌した。反応液にジエチルエーテルとH, Oを加え室温に昇温し、分液、水層よりジエチルエーテルで一度抽出した。有機層を合わせH, Oで二度、飽和食塩水で一度洗浄し、無水硫酸ナトリウムで乾燥した。濾過、減圧濃縮後シリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)で精製し、目的物 (R) -2, 2′-bis (methoxymethyloxy) -6, 6′-bistrimethylsilyl -1, 1′-binaphthyl (3.84g, 収率79%) を得た (無色プリズム晶)。

[0067]

【表9】

mp. 144 'C

13

¹H NMR (CDCl₃) 80.29 (s, 18H), 3.16 (s, 6H), 4.98 (d, 2H, J = 6.8 Hz), 5.05 (d, 2H, J = 6.6 Hz), 7.12 (d, 2H, J = 8.3 Hz), 7.32 (d, 2H, J = 8.4 Hz), 7.56 (d, 2H, J = 9.0 Hz), 7.94 (d, 2H, J = 9.0 Hz), 8.02 (s, 2H).

 ^{13}C NMR (CDCl₃) δ –1.1, 55.8, 95.3, 117.3, 121.1, 124.5, 129.4, 129.5, 130.3, 133.8, 134.2, 135.5, 153.0.

MS (m/z) 518 (M+).

 $[\alpha]_D^{23}$ -7.60 (c 1.00, CHCl₃).

Elemental analysis for C30H38O4Si2, calcd.: C 69.45, H 7.38; found: C 69.64, H 7.45.

[0068] (R) -3, 3' -diiodo-2, 2' -bi s (methoxymethyloxy) -6, 6' -bi strimethylsilyl -1, 1' -bi naphthyl

[0069]

【化16】

【0070】アルゴン雰囲気下、(R)-2, 2'-bis (methoxymethyloxy) -6, 6'-bistrimethylsilyl-1, 1'-binaphthyl (3.07g, 5.92mmo1) を無水テトラヒドロフラン(THF, 30mL)に 溶解させ、-78℃攪拌下s-プチルリチウムのシクロヘキサン-n-ヘキサン溶液(1.02N, 23.2m

L, 23.7mmol)を加えて1.5時間攪拌した。同じ温度でヨウ素(9.01g,35.4mmol)のTHF(15mL)溶液を加え、さらに2時間攪拌した。メタノール加えた後、酢酸エチルとH,Oを加えて室温へ昇温して分液し、水層より酢酸エチルで一度抽出した。有機層を合わせ、10%亜硫酸水素ナトリウム水溶液で二度、色和食塩水で一度順次洗浄し、無水硫酸ナトリウムで乾燥した。濾過、減圧濃縮後、シリカゲルカ20ラムクロマトグラフィー(ヘキサンー酢酸エチル)で精製し、目的物(R)-3,3'-diiodo-2,2'-bis(methoxymethyloxy)-6,6'-bistrimethylsilyl-1,1'-binaphthyl(4.30g,収率93%)で得た。

【0071】 【表10】

¹H NMR (CDCl₃) δ 0.30 (s. 18H), 2.65 (s. 6H), 4.68 (d. 2H, J = 5.5 Hz), 4.79 (d. 2H, J = 5.7 Hz), 7.14 (d. 2H, J = 8.4 Hz), 7.41 (d. 2H, J = 8.4 Hz), 7.91 (s. 2H), 8.55 (s. 2H). ¹³C NMR (CDCl₃) δ –1.2, 56.6, 92.2, 99.3, 125.3, 125.9, 131.1, 131.7, 132.5, 133.9, 138.1, 140.2, 152.3. MS (m/z) 770 (M+).

[\alpha]D¹⁷ -33.0 (c 1.02, CHCl₃).

[0072] (R) -6, 6' -dibromo -3, 3' -diiodo -1, 1' -binaphthalene -2, 2' -diol ((R) -3, 3' $-I_1 -6$, 6' $-Br_1BINO$ L)

[0073] [化17]

【0074】 (R) -2, 2´-bis(methoxymethyloxy) -6, 6´-bistrimethylsilyl-1, 1´-binaphthyl (2.50g, 3.19mmol) を四塩化炭素(25mL) に溶解させ、0℃攪拌下臭素(1.53g, 9.57mmol) の四塩化炭素(5mL) 溶液を加えて同じ温度で終夜攪拌した「、反応液に10%亜

硫酸水素ナトリウム水溶液を加え、室温で激しく攪拌した。酢酸エチルを加え分液し、有機層をHiOで二度、飽和食塩水で一度洗浄し無水硫酸ナトリウムで乾燥した。濾過、減圧濃縮して得られた粗生成物を塩化メチレン(10mL)に溶解し、0℃攪拌下40%塩酸メタノール溶液を加え1時間攪拌した。酢酸エチルとHiOを加えて分液し、水層より酢酸エチルで一度抽出した。有40機層を合わせ、HiOで二度、飽和食塩水で一度洗浄し、無水硫酸ナトリウムで乾燥した。濾過、減圧濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製することにより、目的物(R)-6,6′ーdibromo-3,3′ーdiiodo-1,1′ーbinaphthalene-2,2′ーdiol(2.08g,収率94%)を得た。不斉反応にはさらに酢酸エチルとヘキサンから再結晶したものを用いた(淡黄色プリズム晶)。

[0075]

. 【表11】

50

15 mp. 277 °C

¹H NMR (CDCl₃) δ 5.44 (s. 2H), 6.89 (d. 2H, J = 9.0 Hz), 7.37 (dd, 2H, J = 9.0, 2.0 Hz), 7.94 (d, 2H, J = 2.0 Hz), 8.40 (s, 2H).

⁴³C NMR (CDCl₃) & 88.5, 112.8, 118.6, 126.1, 129.1, 131.3, 131.5, 131.8, 139.2, 150.3.

FTIR [cm⁻¹] (KBr) 3521, 3503.

MS (m/z) 694 (M--1), 695 (M+), 696 (M++1), 697 (M++2), 698 (M++3).

 $[\alpha]_D^{18} + 74.3 (c 0.55, THF).$

Elemental analysis for C20H10Br2[2O2, calcd.: C 34.52, H 1.45; found: C 34.75, H 1.60

 $[0\ 0\ 7\ 6]$ (R) -3, 3', 6, 6' -tetraiodo -1, 1'-binaphthalene -2, 2'-diol (R) -3, 3', 6, 6' -1, BINOL) [0077] 【化18】

[0078] (R) -2, 2' -bis (methoxymethylox thyl (300mg, 0.382mmol) を四塩化炭素 (5mL) に溶解させ、-15℃攪拌下一塩化ヨウ素 (IC1, 250mg, 1.54mmol) の四塩化炭 素(1mL)溶液を加えて5分間攪拌した(7)。10% mp. 299 °C

亜硫酸水素ナトリウム水溶液を加え室温で激しく攪拌し 10 た後、酢酸エチルを加えて分液し有機層をH,Oで二 度、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し た。滅過、減圧濃縮後、得られた粗生成物を塩化メチレ ン8mLに溶解させ、0℃攪拌下40%塩酸メタノール 溶液(4mL)を加え、30分間攪拌した。H.O、酢 酸エチルを加えて分液し、水層より酢酸エチルで一度抽 出した。有機層を合わせH,Oで二度、飽和食塩水で一 度洗浄し、無水硫酸ナトリウムで乾燥した。濾過、減圧 **濃縮後シリカゲルカラムクロマトグラフィー(ヘキサン** - 酢酸エチル)にて精製し、塩化メチレンより再結晶す y) -6,6'-bistrimethylsilyl-1,1'-binaph 20 ることにより目的物(R)-3,3',6,6'-tetr aiodo -1, 1' -binaphthalene -2, 2' -diol (185mg, 収率61%)を黄色針状晶で得た。 [0079] 【表12】

> ¹H NMR (CDCl₃) δ 5.42 (s, 2H), 6.76 (d, 2H, J = 8.8 Hz), 7.53 (dd, 2H, J = 9.0, 1.7 Hz), 8.16 (d, 2H, J = 1.4 Hz), 8.37 (s, 2H). 12C NMR (CDC13) & 88.1, 89.8, 112.7, 126.1, 131.9, 132.1, 135.8, 136.4, 139.1, 150.4. FTIR (cm-1] (KBr) 3521, 3496. MS (m/z) 789 (M+), 790 (M++1). $[\alpha]_D^{18}$ +54.9 (c 0.61, THF).

[0.080] < D > (R) -3, 3' - (CF₃), BI

(R) -3, 3' -diiodo-2, 2' -bis (methoxymet hyloxy) -1, 1' -binaphthyl

[0081]

【化19】

[0082] (R) -2, 2' -bis (methoxymethylox y) -1, 1'—binaphthyl (10.0g, 28.5m mol)の無水ジエチルエーテル溶液(500mL)に 0℃攪拌下n-ブチルリチウムのヘキサン溶液(1.5 9N, 63mL, 100mmol) を加え、そのまま3 0分間攪拌し、さらに室温に昇温して4時間攪拌した。

再度0℃に冷却しヨウ素 (29.0g, 114mmo 1) のテトラヒドロフラン溶液(80mL)を1時間か けて滴下し、室温に昇温後終夜攪拌した。メタノールを 加えた後、酢酸エチルとH,Oを加えて分液し、水層よ り酢酸エチルで一度抽出した。有機層を合わせ、飽和炭 酸水素ナトリウム水溶液、H.O、飽和食塩水で順次洗 浄し無水硫酸ナトリウムで乾燥した。濾過、減圧濃縮後 40 シリカゲルカラムクロマトグラフィー(ヘキサン-酢酸 エチル)にて精製し、得られた固体を塩化メチレンとへ キサンから再結晶することにより、目的物(R)-3, 3' -diiodo - 2, 2' -bis (methoxymethyloxy) -1, 1'-binaphthyl (7. 16g, 収率47%) を掲 色プリズム晶で得た。

[0083]

【表13】

¹H NMR (CDCl₃) δ 2.60 (s, 6H), 4.69 (d, 2H, J = 5.7 Hz), 4.81 (d, 2H, J = 5.7 Hz), 7.17 (d, 2H, J = 8.4 Hz), 7.29 (ddd, 2H, J = 8.4, 6.8, 1.3 Hz), 7.42 (ddd, 2H, J = 7.9, 6.8, 1.3 Hz), 7.77 (d, 2H, J = 8.2 Hz), 8.54 (s, 2H).

13C NMR (CDCl3) & 56.5, 92.5, 99.4, 125.8, 126.2, 126.5, 126.7, 127.1, 132.2, 133.8, 140.0, 152.2.

[0084] (R) -2, 2'—bis (methoxymethylox y) -3, 3'—bis (trifluoromethyl) -1, 1'—bin aphthyl

[0085] [化20]

【0086】アルゴン雰囲気下、(R) -3, 3′-di iodo-2, 2′-bis(methoxymethyloxy) -1, 1′-binaphthyl(2.85g, 4.55mmol)、クロロジフルオロ酢酸メチル(5.26g, 36.4mmo

> 126.9, 129.0, 129.1 (q, J = 6.3 Hz), 129.1, 129.2, 135.6, 150.8. ¹⁹F NMR (283 MHz, CDCl₃, CF₃COOH:-76.5 ppm) δ -141.1

¹³C NMR (CDCl₃) δ 56.2, 99.7, 123.6 (q, J = 272 Hz), 123.9 (q, J = 30 Hz), 126.1, 126.2.

¹⁹F NMR (283 MHz, CDCl₃, CF₃COOH:-76.5 ppm) δ -141.

MS (m/z) 510 (M+).

 $\{\alpha\}_{D}^{24}$ -89.6 (c 1.04, CHCl3).

[0088] (R) -3, 3'-bis(trifluoromethyl)
-1, 1'-binaphthalene -2, 2'-diol ((R)
-3, 3'-(CF₃), BINOL)
[0089]
[化21]

[0090] (R) -2, 2'—bis (methoxymethylox y) -3, 3'—bis (trifluoromethyl) -1, 1'—bin 40

aphthyl (1.06g, 2.08mmol)を塩化メチレン (10mL) に溶解させ、0℃攪拌下40%塩酸メ30 タノール溶液 (3mL)を加えそのまま1時間攪拌した。H,Oを加え分液し、水層より塩化メチレンで一度抽出した。有機層を合わせ、H,Oで二度、飽和食塩水で一度洗浄し、無水硫酸ナトリウムで乾燥させた。濾過、減圧濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)で精製し、ジエチルエーテルとヘキサンより再結晶して目的物 ((R) -3, 3′-bis(trifluoromethyl)-1, 1′-binaphthalene-2, 2′-diol (0.61g, 収率69%)を得た。【0091】

【表 1 5】

18

1)、フッ化カリウム(1.06g,18.2mmo 1)をジメチルホルムアミド(DMF,4mL)に懸濁

させ、100℃で12時間攪拌した(1)。室温まで放冷

拌した。反応液をセライトを用いて濾過し、濾液を分液 し水層よりジエチルエーテルで二度抽出した。有機層を

合わせ、H.Oで二度、飽和食塩水で一度洗浄し、無水 硫酸ナトリウムで乾燥した。濾過、減圧濃縮後、シリカ ゲルカラムクロマトグラフィー(ヘキサン-塩化メチレ

ン) で精製し、目的物 (R) -2, 2′-bis (methoxym

ethyloxy) -3, 3' -bis(trifluoromethyl) -1,

10 後、反応液にジエチルエーテルとH. Oを加え室温で攪

19 mp. 246 °C

¹H NMR (CDCl₃) δ 5.30 (s, 2H), 7.12 (d, 2H, J = 7.7 Hz), 7.4 – 7.6 (m, 4H), 8.01 (d, 2H, J = 7.3 Hz), 8.38 (s, 2H).

13C NMR (CDCl3)

112.1, 118.8 (q, J = 32 Hz), 123.2 (q, J = 272 Hz), 123.9, 125.5, 127.8, 129.7, 130.1, 130.4 (q, J = 5.6 Hz), 134.6, 149.4.

19F NMR (283 MHz, CDCl3, CF3COOH:-76.5 ppm) 5-142.8.

HPLC: Daicel Chiralcel AD, became/PrOH = 40/1, flow rate = 1.0 mL/min, 254 nm: tR = 17.9 min (R), tR = 22.9 min (S).

FTIR (cm-1) (KBr) 3548.

MS (m/z) 422 (M+).

 $[\alpha]_D^{18} + 18.6 (c 0.65, CHCl_3).$

Elemental analysis for C22H12F6O2, calcd.: C 62.57, H 2.86; found: C 62.33, H 3.03.

【0092】〈実施例2〉次の反応式に従って、不斉へ

[0093]

テロデイールズ・アルダー反応を行い、目的とする環化

【化22】

体を合成した。

【0094】その結果を表16に示した。また、表17

[0095]

には、生成物としての環化体の同定値を示した。環化体

【表16】

が高立体選択的に得られることが確認された。

entry	RCHO	Temp.(℃)	Yleld(%)	E6(%)
1	O PH	-20	70	97
2	a Lin	-20	6 5	84
3	O LH	-20	81	90
4	JP H	-20	58	93
5	~~~~H	-20	61	90

(R)-2-Phenyl-2,3-dihydro-4H-pyram-4-one

Ö

21

¹H NMR (CDC13) δ 2.66 (dd, 1H, J = 14, 2.5 Hz), 2.90 (dd, 1H, J = 17, 14 Hz), 5.42 (dd, 1H, J = 10, 3.5 Hz), 5.52 (d, 1H, J = 6.0 Hz), 7.3 - 7.4 (m, 5H), 7.48 (d, 1H, J = 6.0 Hz).

13C NMR (CDCl3) 8 43.3, 81.0, 107.3, 126.0, 128.8, 128.9, 137.8, 163.1,

192.1.

(R)-2-(p-Chlorophenyl)-2,3-dihydro-417-pyran-4-one

¹H NMR (CDCl₃) δ 2.64 (dd, 1H, J = 17, 3.7 Hz), 2.85 (dd, 1H, J = 14, 17 Hz), 5.41 (dd, 1H, J = 10.6, 3.7 Hz), 5.53 (d, 1H, J = 6.1 Hz), 7.34 (d, 2H, J = 8.7 Hz), 7.39 (d, 2H, 8.7 Hz), 7.47 (d, 1H, J = 6.1 Hz). ¹³C NMR (CDCl₃) δ 43.3, 80.2, 107.5, 127.4, 129.0, 134.7, 136.3,

162.9, 191.6.

(S)-2-Phenethyl-2,3-dihydro-4H-pyran-4-one

¹H NMR (CDCl₃) δ 1.95 (m, 1H), 2.15 (m, 1H), 2.42 (dd, 1H, J = 17, 5.1 Hz), 2.55 (dd, 1H, J = 17, 13 Hz), 2.80 (m, 2H), 4.39 (m, 1H), 5.40 (d, 1H, J = 6.0 Hz), 7.1 - 7.3 (m, 5H), 7.38 (d, 1H, J = 6.1 Hz). ¹³C NMR (CDCl₃) δ 30.9, 36.0, 41.8, 78.4, 107.1, 126.2, 128.4,

128.6, 140.6, 163.1, 192.4.

(R)-2-(p-Tolyl)-2,3-dihydro-4H-pyram-4-one

¹H NMR (CDCl₃) δ 2.28 (s, 3H), 2.53 (dd, 1H, J = 17, 3.5 Hz), 2.81 (dd, 1H, J = 14, 2.4 Hz), 5.29 (dd, 1H, J = 17, 3.6 Hz), 5.43 (dd, 1H, J = 6.1, 1.3 Hz), 7.1 - 7.3 (m, 4H), 7.37 (d, 1H, J = 6.1 Hz).

13C NMR (CDCl3) 5 21.2, 43.3, 81.0, 107.3, 126.1, 129.5, 134.8, 138.9,

163.2, 192.3.

(S)-2-Pentyl-2,3-dihydro-4H-pyran-4-one

¹H NMR (CDCl₃) δ 0.90 (c, 3H, J = 6.8 Hz), 1.3 - 1.5 (m, 6H), 1.66 (m, 1H), 1.81 (m, 1H), 2.43 (dd, 1H, J = 4.1, 1.2 Hz), 2.51 (dd, 1H, J = 17, 13 Hz), 4.4 (m, 1H), 5.4 (dd, 4H, J = 5.8, 1.0 Hz), 7.35 (d, 1H, J = 17, 13 Hz), 4.4 (m, 1H), 5.4 (dd, 4H, J = 5.8, 1.0 Hz), 7.35 (d, 1H, J = 17, 13 Hz), 4.4 (m, 1H), 5.4 (dd, 4H, J = 5.8, 1.0 Hz), 7.35 (d, 1H, J = 18, 1H), 7

= 6.1 Hz).

13C NMR (CDCl3) 8 13.9, 22.4, 24.4, 31.4, 34.3, 41.8, 79.5, 106.9, 163.3, 192.7.

【0097】〈実施例3〉次の反応式に従って、実施例

た。

1と同様にして不斉ヘテロデイールズ・アルダー反応を

[0098]

行い、対応する環化体を、高収率、高trans選択的に得

【化23】

【0099】 〈実施M4〉実施M3 と同様にして反応を行った。ただし、反応温度は-20 ℃とした。その結果を表18に示した。また、生成物としての環化体の同定

値を表19に示した。

84% Yield ois/trans = 13/87 94% ee (trans)

[0100]

【表18】

			1) Zr(O¹Bu)4 (10 mops)	
RCHO	+	OTMS	8,3"-1 ₂ -6,6"-(C ₂ F ₅) ₂ BINOL (15 mo05) Additive 2) TFA in CH ₂ Ch O'C	X R

Entry	RÇHO	Additive	Тептр. (℃)	Yield(cls/trans)	Ee(cis/trans)
. 1	O ^l H	PrOH(80),H ₂ O(20)	-80	quani(8/82)	78/98
2	ما الأمام	PrOH(80),H ₂ O(20)	-20	99(10/90)	71/97
3	J ⁱ H	PrOH(80),H ₂ O(20)	-20	83(15/87)	60/90

[0101]

【表19】

3,5-Dimethyl-2-phenyl-2,3-dihydro-4H-pyran-4-one

¹H NMR (CDC13) trans isomer: δ 0.92 (d, 3H, J = 6.8 Hz), 1.73 (s. 3H), 2.80 (dq, 1H, J = 13.4, 6.6 Hz), 4.91 (d, 1H, J = 13.4 Hz), 7.31 (s, IH), 7.3 - 7.5 (m, 5H).

cis isomer: δ 0.90 (d, 3H, J = 7.6 Hz), 1.74 (s, 3H), 2.60 (dq, 1H, J =7.3, 3.2 Hz), 5.47 (d, 1H, J = 3.2 Hz), 7.26 (s, 1H), 7.3 - 7.5 (m, 5H). 13C NMR (CDCl₃); trans isomer: δ 10.3, 10.7, 44.7, 86.9, 113.1, 127.3, 128.7, 129.0, 137.5, 158.7, 194.9. cir isomer: 8 9.9, 10.7, 45.7, 82.9, 112.5, 125.4, 127.9, 128.5, 136.8, 158.8, 197.7.

3,5-Dimethyl-2-(p-chlorophenyl)-2,3-dihydro-4H-pyran-4-one

¹H NMR (CDCl₃) trans isomer. δ 0.92 (d, 3H, J = 6.8 Hz), 1.72 (s, 3H), 2.74 (dq. 1H, J = 14, 6.8 Hz), 4.89 (d, 1H, J = 13 Hz), 7.30 (t, 1H), 7.3 - 7.4 (m, 4H).

cis isomer: 50.88 (d, 3H, J = 7.3 Hz), 1.74 (s, 3H), 2.56 (dq, 1H, J =7.3, 3.2 Hz), 5.44 (d, 1H, J = 2.9 Hz), 7.3 (s, 1H), 7.35 (dd, 4H, J = 8.8, 26 Hz),). 13C NMR (CDCl₃); trans isomer: δ 10.3, 10.7, 44.7, 86.0, 113.3, 128.7, 128.9, 134.8, 136.1, 158.5, 194.5. cis isomer: 8 9.9, 10.6, 45.5, 82.2, 112.7, 126.8, 128.7, 133.8. 135.3, 158.5, 197.3.

3,5-Dimethy)-2-(p-tolyl)-2,3-dihydro-419-pyran-4-one

¹H NMR (CDCl₃) trans isomer: δ 0.92 (d, 3H, J = 6.9 Hz), 1.72 (s, 3H), 2.73 (s, 3H), 2.80 (dq, 1H, J = 13.2, 6.8 Hz), 4.87 (d, 1H, J =13.4 Hz), 7.2 - 7.3 (m, 5H).

cis isomer: δ 0.90 (d, 3H, J = 7.3 H2), 1.73 (s, 3H), 2.37 (s, 3H), 2.57 (dq, 1H, J = 7.3, 3.3 Hz), 5.43 (d, 1H, J = 3.1 Hz), 7.2 - 7.3 (m, 4H), 7.37 (s, 1H).¹³C NMR (CDCl₃); trans isomer: δ 10.4, 10.7, 44.6, 21.2, 86.8, 113.0, 127.3, 129.3, 134.6, 138.9, 158.8, 195.1. cfs isomer. 5 9.9, 10.7, 21.1, 45.7, 83.0, 112.4, 125.4, 129.1, 133.8, 137.7, 158.9, 197.9.

<実施例5>この出願の発明の不斉へテロディールス・40 物のPrelactonr Cの効率的不斉合成を実現した。 アルダー反応の応用として天然物Prelactone Cの合成を 行った。反応は次式に沿って行い、96%の収率で天然

【化24】

Reaction conditions: a) $Zr(O'Bu)_4$ (10 mol %), (S)-2c (15 mol %), PrOH (120 mol %), H_2O (20 mol %), tolucne, -20 °C, 48 h, then $Sc(OTl)_3$ (10 mol %), CH_2Cl_2 , r.t., 81% yield, trans/cis=6/1, 90% ee (trans); b) NaBH₄-CeCl₃. BtOH-CH₂Cl₂, -78 °C, 90%, ds = 96/4; e) Dowex* 50W-X2, LiBr, H_2O , THF, 0 °C, 79%; d) Ag_2CO_3 -Cellie*, benzene, reflux, 96%.

中間生成物およびPrelacton Cの同定値は次の表20のとおりである。

【表20】

(2R, 3R)-3-methyl-2-((B)-1-propenyl)-2,3-dihydro-4H-pyran-4-one (trans-3): trans-3: IR [cm⁻¹] 1677, 1599, 1457, 1409, 1377, 1308, 1285, 1250, 1217. ¹H NMR (CDCl₃) δ 1.04 (d, 3H, J= 7.1 Hz), 1.76 (dd, 3H, J= 6.6, 1.7 Hz), 2.46 (dq, 1H, J= 12, 7.1 Hz), 4.39 (dd, 1H, J= 12, 8.3), 5.36 (d, 1H, J= 5.8 Hz), 5.57 (ddq, 1H, J= 15, 8.3, 1.7 Hz), 5.86 (ddq, 1H, J= 15, 6.6, 0.7 Hz), 7.30 (d, 1H, J= 6.1 Hz). ¹³C NMR (CDCl₃) δ 10.6, 17.7, 43.9, 85.5, 106.2, 127.4, 132.9, 162.2, 194.7. MS [m/z] 152 (M+), [α]D²²=+83.1 (c 1.35, CHCl₃, 87% cc). HRMS (m/z) calcd. for C₉H₁₂O₂ (M+): 152.0837; found: 152.0831. The ratio of trans- and cis- isomers was determined by ¹H NMR analysis, and the optical purity was determined by HPLC analysis (Daicel Chiralcel AS, hexane/¹PrOH = 100/1, flow rate = 1.0 mL/min: trans isomer t_R = 23.1 min (major), t_R = 19.5 min (minor); cis isomer t_R = 30.0 min (major), t_R = 48.0 min (minor)). Then, trans-3 was separated by column chromatography (silica gel, P.E.-diethyl ether=9:1) and used in the next reaction.

(2R, 3S, 4S)-4-Hydroxy-3-methyl-2-((E)-1-propenyl)-2,3-dihydro-4H-pyrane (4): m.p. 88 °C. IR [cm⁻¹] (KBr) 3246, 1651, 1457, 1378, 1357, 1335, 1312, 1282, 1268, 1233. 1 H NMR (CDCl₃) δ 0.98 (d, 3H, J= 6.8,Hz), 1.38 (d, 1H, J= 8.0 Hz), 1.65 (m, 1H), 1.75 (dd, 3H, J= 6.6, 1.7 Hz), 3.88 (m, 1H), 4.01 (m, 1H), 4.77 (dd, 1H, J=6.1, 2.2 Hz), 5.49 (ddq, 1H, J= 15, 8.0, 1.7 Hz), 5.79 (dq, 1H, J= 15, 6.4 Hz), 6.39 (dd, 1H, J= 6.3, 1.2 Hz). 13 C NMR (CDCl₃) δ 14.9, 17.8, 40.7, 69.1, 81.0, 104.8, 128.9, 130.9, 144.7. MS [m/z] 154 (M+), [α]_D²²= -88.9 (c 0.65, THF, >99% ce after recrystallization). HRMS (m/z) calcd. for C₉H₁₄O₂ (M+): 154.0994; found: 154.0997. The enantiomeric excess of the product was determined by HPLC analysis (Daicel Chiralpak AD, hexane/PrOH = 1000/1, flow rate = 1.0 mL/min: r_R = 20.5 min (major), r_R = 15.5 min (minor)) after benzoylation using benzoyl chloride and pyridine, DMAP.

(4R,5S,6R)-4-Hydroxy-5-methyl-6-((E)-1-propenyl)-tetrahydro-2H-pyran-2-one ((+)-Prelactone C, 6): IR [cm⁻¹] (near) 3434, 1730, 1454, 1376, 1244. ¹H NMR (CDCl₃) δ 1.03 (d, 3H, J= 6.7 Hz), 1.65 (m, 1H), 1.75 (dd, 3H, J= 6.8, 1.6 Hz), 2.49 (dd, 1H, J= 17, 8.6 Hz), 2.57 (br, 1H), 2.91 (dd, 1H, J= 17, 5.8 Hz), 3.77 (m, 1H), 4.19 (dd, 1H, J= 10. 8.6 Hz), 5.43 (ddq, 1H, J= 15, 8.2, 1.9 Hz), 5.80 (dq, 1H, J= 15, 6.7 Hz). ¹³C NMR (CDCl₃) δ 13.7, 17.6, 39.1, 41.5, 69.5, 84.1, 127.6, 132.4, 170.4. MS [m/z] 170 (M⁺), 152 ((M–H₂O) ⁺). [α]_D²⁴= +65.4 (c 0.71, MeOH). lit.)³ [α]_D²⁰= +57.6 (c 0.5, MeOH). HRMS (m/z) calcd. for C₉H₁₄O₃ (M⁺): 170.0943; found: 170.0972.

[0102]

【発明の効果】以上詳しく説明したとおり、この出願の 発明によって、高い収率と高い立体選択性、優れた不斉 選択性で不斉へテロデイールズ・アルダー反応を行うこ とのできる、新しい技術手段としての配位子化合物と、 これを用いたキラル触媒、並びに反応方法が提供され る。

フロントページの続き

Fターム(参考) 4C062 CC36 CC38

4G069 BA21A BA21B BC51A BC51B BE06A BE06B BE33A BE33B BE34A BE34B BE37A BE37B CB57 CB59 4H006 AA01 AB40 FC54 FE13 FE71

FE73 FE74 FE76 FE77

4H039 CA42 CH40