Übung 10 Computational Physics III

Matthias Plock (552335) Paul Ledwon (561764)

20. Juli 2018

Inhaltsverzeichnis

		Betrachtungen zum Parameter $R(L)$	
1	\mathbf{Bes}	timmung von κ_c in $d=2,3,4$ Dimensionen	1
2	2.1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	

0.1 Betrachtungen zum Parameter R(L)

Für die Magnetisierung gilt im Falle großer Systeme für die unterschiedlichen Phasen

$$<|M|^2>^{L\to\infty} \begin{cases} \chi\,L^{-d} & \text{ungeordnet/paramagnetisch/symmetrisch} \\ \operatorname{const} L^{-\eta} & \operatorname{Kosterlitz-Thouless} \\ |M_0|^2 & \operatorname{ferromagnetisch/Goldstone} \end{cases}$$

Damit ergibt sich

$$R(L) = \frac{<|M|^2>_{2L}}{<|M|^2>_L} = \overset{L\to\infty}{=} \begin{cases} 2^{-d} & \text{ungeordnet/paramagnetisch/symmetrisch} \\ 2^{-\eta} & \text{Kosterlitz-Thouless} \\ 1 & \text{ferromagnetisch/Goldstone} \end{cases}$$

Hierbei ist d die Dimension des Systems und $\eta = \sigma(\frac{1}{\kappa})$ bzw. im XY-Modell $\eta = \frac{1}{4\pi\kappa}$.

0.2 Betrachtungen zum Fehler von R(L)

Für die gaußsche Fehlerfortpflanzung ist eine Normalverteilung des Fehlers der unterschiedlichen Größen, sowie die Unkorreliertheit der verschiedenen Größen notwendig.

Im Gegensatz zum Binderparameter, der aus Größen aus derselben Messung berechnet wird und diese dadurch korreliert sind, wird der Parameter R(L) aus Messwerten zwei verschiedener Messungen berechnet, wodurch keine Korrelation vorliegt. Durch die Normalverteilung der Fehler ist es darum möglich, zur Bestimmung des Fehlers von R(L) eine Fehlerfortpflanzung durchzuführen.

1 Bestimmung von κ_c in d = 2, 3, 4 Dimensionen

Für verschiedene Systemgrößen L (und 2L) wurde jeweils in 2,3 und 4 Dimensionen für verschiedene Werte von κ wurde das Betragsquadrat der Magnetisierung mittels einer Monte-Carlo-Simulation gemessen.

Aus den Ergebnissen dieser Messungen wurde dann R(L) bestimmt und in Abb. 1-3 geplotted. Aus den Schnittpunkten von $R(L_1)$ und $R(L_2)$ sollte nun das kritische κ bestimmt werden, dass die paramagnetische und ferromagnetische Phase voneinander trennt. Die Werte von R schneiden sich jedoch mehr als einmal, weswegen diese Methode nicht angewendet wurde. Stattdessen wurde aus den Plots das κ_c aus den Sprüngen abgelesen, welche die beiden Phasen voneinander trennen.

Abbildung 1: Bestimmung von κ_c in 2 Dimensionen für verschiedene Systemgrößen L

Damit ergibt sich für die kritischen κ ungefähr

$$\kappa_{c,2d} = 0.425$$

$$\kappa_{c,3d} = 0.25$$

$$\kappa_{c,4d} = 0.175$$

2 Konvergenzverhalten von $R(\infty)$

2.1 Kosterlitz-Thouless-Phase

Im XY-Modell wird für R(L) in 2 Dimensionen in der Kosterlitz-Thouless-Phase und große Systeme folgendes Konvergenzverhalten erwartet: $R=2^{-\frac{1}{4\pi\kappa}}$

Für verschiedene Systemgrößen und für $\kappa=0.5>\kappa_c$ wurde die Magnetisierung gemessen und R berechnet und graphisch dargestellt, siehe Abb. 4.

2.2 Hoehere Dimensionen

Abbildung 2: Bestimmung von κ_c in 3 Dimensionen für verschiedene Systemgrößen L

Abbildung 3: Bestimmung von κ_c in 4 Dimensionen für verschiedene Systemgrößen L

Abbildung 4: Konvergenzverhalten Rfuer grosse Systeme in Abhaengigkeit von κ

Abbildung 5: Konvergenzverhalten Rfuer grosse Systeme in Abhaengigkeit von κ