Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER:NJM5532

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

Spice Model


```
*$
* PART NUMBER:NJM5532
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM5532 OUT1 -IN1 +IN1 VEE +IN2 -IN2 OUT2 VCC
X U1 +IN1 -IN1 VCC VEE OUT1 NJM5532 SUB
X U2
       +IN2 -IN2 VCC VEE OUT2 NJM5532_SUB
.ends NJM5532
.subckt NJM5532_SUB 1 2 3 4 5
 c1 11 12 8.6603E-12
 c2 6 7 30.000E-12
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 945.77E3 -1E3 1E3 950E3 -950E3
 ga 6 0 11 12 2.3854E-3
 acm 0 6 10 99 21.298E-9
 iee 10 4 dc 230.95E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 3 11 419.21
 rc2 3 12 419.21
 re1 13 10 194.51
 re2 14 10 194.51
 ree 10 99 865.98E3
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 2.6358E3
 vb 9 0 dc 0
 vc 3 53 dc 2.7845
 ve 54 4 dc 2.7845
 vlim 7 8 dc 0
 vlp 91 0 dc 38
 vln 0 92 dc 38
.model dx D(Is=800.00E-18)
.model dy D(ls=800.00E-18 Rs=1m Cjo=10p)
.model gx1 NPN(ls=800.00E-18 Bf=557.42)
.model qx2 NPN(Is=815.3794E-18 Bf=592.06)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	+16	+16	0
-Vout(V)	-16	-16	0

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	0.5	0.501	0.2

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	8	7.999	-0.013

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb (nA)	200	200.015	0.007
Ibos (nA)	10	10.006	0.060

Open Loop Voltage Gain

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Av-dc	94	93.987	-0.014

Gain Bandwidth

Simulation result

Evaluation circuit

Comparison table C_L = 100pF, R_L = 600 Ω

	Measurement	Simulation	%Error
f-0dB(MHz)	10	9.998	-0.02

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(50043.768/0.503716) = 99.943 dB

	Measurement	Simulation	%Error
CMRR(dB)	100	99.943	-0.057

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain

Before

Remark Gain Bandwidth

Before

Remark Common-Mode Rejection Voltage gain

Before

