Understanding Deep Neural Networks

Chapter Two

Network Structure

Zhang Yi, *IEEE Fellow* Autumn 2019

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- **■**Continuous Time Neural Networks
- Assignments

- A brain contains about 10¹¹ neurons
- Each neuron has about 10⁴ connections

Brief Review of Brain Structure • Information flow in the brain layer by layer Chorold Retina

Ciliary body

Concept of Layer

- 1. Neural network with layers
- 2. Neurons receive the outputs of neurons at previous layer as inputs.

The typical human neocortex:

- 1000cm²
- Stretched flat, the human neocortical sheet is roughly the size of a large dinner napkin.
- 2mm thick
- 30 billion neurons
- A tiny square millimeter contains an estimated 100,000 neurons.
- 100 trillion synapses.

Almost everything related to intelligence such as: perception, language, imagination, mathematics, art, music, and planning—occurs on the neocortex.

- A neocortex is divided into several functional regions, such as visual area, auditory area, touch area, associate area, etc..
 - The functional regions are arranged in an irregular patchwork quilt physically.
 - Nearly identical architecture.

Concept of regions

- How are the regions connected?
 - Functionally the regions are arranged in a branching hierarchy.
 - Lower regions feed information up to higher regions.
 - Higher regions send feedback down to lower regions.

Concept of Hierarchy Connection

Physically: irregular quilt. Functionally: hierarchy.

Neural Network = Neurons + Connections

The information flow in the network by some kind of electricity.

Problem: Can we develop computational models for the neural network?

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- **■**Continuous Time Neural Networks
- Assignments

- Basic Components
 - Soma (cell body)
 - Dendrite
 - Axon

- Basic Functions
 - Collecting
 - Functioning
 - Transferring

- Characters
 - Multi-inputs
 - Mon-output

w > 0, exciting connection w < 0, inhibition connection

$$a = f\left(\sum_{i=1}^{n} w_i x_i\right)$$

Math model

$$a = f\left(\sum_{i=1}^{n} w_i x_i\right)$$

Linear function

$$f(z) = z$$

Rectifier function

$$f(z) = \begin{cases} z, & z \ge 0 \\ 0, & z < 0 \end{cases}$$

Sigmoid function

$$f(z) = \frac{1}{1 + e^{-z}}$$

Hard-limit function

$$f(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0 \end{cases}$$

A Simple Example

$$a = f(2x_1 + 2x_2 - 1)$$

$$z = 2x_1 + 2x_2 - 1$$

$$f(s) = \begin{cases} 1, & s \ge 0 \\ 0, & otherwise \end{cases}$$

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- ■Continuous Time Neural Networks
- Assignments

Neural Network = Neurons + Connections

Topological structure of neural networks

Layer L Layer L-1Layer l+1Layer *l* Layer 2 Layer 1

Another view to NN structure

Topological structure of neural networks

 a_i^l denotes the output value of the neuron.

Layer *l*

25

$$W^{l} = \begin{bmatrix} w_{11}^{l} & \cdots & w_{1n_{l}}^{l} \\ \vdots & w_{ij}^{l} & \vdots \\ w_{n_{l+1}1}^{l} & \cdots & w_{n_{l+1}n_{l}}^{l} \end{bmatrix}_{n_{l+1} \times n_{l}}$$

 a^l is the input of l+1 layer. a^{l+1} is produced from a^l . a^l is called the network prediction at l layer. a^L is called the network prediction.

Problem:

How to do the forward computing?

Layer *l*

Layer l+1

Layer
$$l$$
 Layer $l+1$

$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

 a^l is the input of l+1 layer. a^{l+1} is the representation of a^l .

One page to understand forward computing

Forward computing a^l

Algorithm:

Input
$$W^{l}$$
, a^{1}
for $l = 1$: L

$$a^{l+1} = fc(W^{l}, a^{l})$$
return

Function $fc(W^l, a^l)$ $for i = 1: n_{l+1}$ $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$ $a_i^{l+1} = f(z_i^{l+1})$

end

Component form

$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

Vector form $\begin{cases} a^{l+1} = f(z^{l+1}) \\ z^{l+1} = w^l a^l \end{cases}$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

External Inputs

External inputs:

If neurons in l layer are not connected to any neurons in previous layer, these neurons are called external inputs of l+1 layer. External inputs can exist in any layer except the last one.

 \bigcirc

External inputs

External Inputs

Internal representations / outputs

$$a^{l} = \begin{bmatrix} x^{l} \\ y^{l} \end{bmatrix}$$

$$z^{l+1} = W^{l}a^{l}$$

$$y^{l+1} = f(z^{l+1})$$

$$a^{l+1} = \begin{bmatrix} x^{l+1} \\ y^{l+1} \end{bmatrix}$$

$$Layer 1 \quad Layer 2 \quad Layer l \quad Layer l+1 \quad Layer l-1 \quad Layer L$$
Input layer Output layer

Nonlinear Mapping / Dynamical Systems

A neural network can be looked as a nonlinear mapping or a dynamical system.

$$\begin{bmatrix} a^{L} = f\left(W^{L-1}f\left(W^{L-2}f\left(W^{L-3}\cdots f(W^{1}a^{1})\right)\right)\right) \\ R^{n_{1}} & \\ & \text{Nonlinear mapping} \end{bmatrix}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right) \longrightarrow a_i(l+1) = f\left(\sum_{j=1}^{n_l} w_{ij}(l) a_j(l)\right)$$

Dynamical system

Nonlinear Mapping / Dynamical Systems

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

An example: XOR-worms problem

Doted worms

 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Smooth worms

 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

An example: XOR-worms problem

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = f[f(2x_1 + 2x_2 - 1) + f(-x_1 - x_2 + 1.5) - 1.5] \qquad \boxed{1}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad f(s) = \begin{cases} 1, & s \ge 0 \\ 0, & otherwise \end{cases}$$

An FNN is a nonlinear mapping.

Problem: Can we construct an FNN to replace F?

An example: XOR-worms problem

An example: XOR-worms problem

Handwritten Digits Recognition

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- **■**Continuous Time Neural Networks
- Assignments

Discrete Time Neural Networks

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right) \implies a_i(l+1) = f\left(\sum_{j=1}^{n_l} w_{ij}(l) a_j(l)\right) \stackrel{l \to t}{\longrightarrow} a_i(t+1) = f\left(\sum_{j=1}^{n_t} w_{ij}(t) a_j(t)\right)$$

Discrete time

Suppose that

1.
$$n_1 = n_2 = \dots = n_L = n$$

1.
$$n_1 = n_2 = \dots = n_L = n$$

2. $W^1 = W^2 = \dots = W^L = W$

$$a_i^{l+1} = f\left(\sum_{j=1}^n w_{ij} a_j^l\right) \qquad \qquad a^{l+1} = f(Wa^l)$$

$$a^{l+1} = f(Wa^l)$$

$$a_i^{l+1} = f\left(\sum_{j=1}^n w_{ij} a_j^l\right)$$

$$a_i(t+1) = f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

$$a_i(t+1) = f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

Problem:

How to develop model for continuous time neural networks?

Starting from here:
$$a_i(t+1) = f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$
 $a_i(t+1) - a_i(t) = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$

 ϵ is an infinitesimal variable, thus, there are infinite layers

$$\frac{da_i(t)}{dt} = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

$$a_i(t+1) - a_i(t) = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

$$a_i(t+1) - a_i(t) = 1 \cdot \left[-a_i(t) + f\left(\sum_{j=1}^n w_{ij} a_j(t)\right) \right]$$

$$a_i(t+\epsilon) - a_i(t) = \epsilon \cdot \left[-a_i(t) + f\left(\sum_{j=1}^n w_{ij} a_j(t)\right) \right]$$

$$\frac{a_i(t+\epsilon) - a_i(t)}{\epsilon} = \left[-a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right) \right]$$

$$\frac{da_i(t)}{dt} = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

 ϵ is an infinitesimal variable, thus, there are infinite layers

Summary

$$\epsilon = 1, t = l$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

$$\epsilon \to 0$$
1. $n_1 = n_2 = \dots = n_L = n$
2. $W^1 = W^2 = \dots = W^L = W$

$$\frac{da_i(t)}{dt} = -a_i(t) + f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

Outline

- ■Brief Review of Brain Structure
- ■Computational Model of Neurons
- ■Computational Model of Neural Networks
- **■**Continuous Time Neural Networks
- Assignments

Assignment

Implement the forward computing of this NN:

- in component form
- in vector form

Algorithm in Component form:
$$Input\ W^l, a^1$$

$$for\ l=1:L$$

$$a^{l+1}=fc_c(W^l,a^l)$$

$$return$$
 Function $fc_c(W^l,a^l)$
$$for\ i=1:n_{l+1}$$

$$z_i^{l+1}=\sum_{j=1}^{n_l}w_{ij}^la_j^l$$

$$a_i^{l+1}=f(z_i^{l+1})$$
 end

Thanks