

Lecture 7: Random Processes, Part I

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

October 25, 2021

- (1) Introduction of Random Processes
- (2) Bernoulli Processes
- (3) Poisson Processes: Poisson RV and Basic Idea
- (4) Poisson Processes: Definition and Properties
- (5) Playing with Bernoulli and Poisson Processes
- (6) Random Incidence Phenomenon

October 25, 2021 1 / 65

October 25, 2021 2 / 65

Roadmap

KAIST EE

Things that evolve in time

- (1) Introduction of Random Processes
- (2) Bernoulli Processes
- (3) Poisson Processes: Poisson RV and Basic Idea
- (4) Poisson Processes: Definition and Properties
- (5) Playing with Bernoulli and Poisson Processes
- (6) Random Incidence Phenomenon

- Many probabilistic experiments that evolve in time
 - $\,{}^{_{\odot}}\,$ Sequence of daily prices of a stock
 - Sequence of scores in football
 - $\,{}^{\circ}\,$ Sequence of failure times of a machine
 - $\,{}^{\circ}\,$ Sequence of traffic loads in Internet
- Random process is a mathematical model for it.

(a) Prices of a crytocurrency

(b) Internet traffic traces

- A random process is a sequence of random variables indexed by time.
- Time: discrete or continuous (a modeling choice in most cases)
- Notation
- $(X_t)_{t\in\mathcal{T}}$ or $\Big(X(t)\Big)_{t\in\mathcal{T}}$, where $\mathcal{T}=\mathbb{R}$ (continuous) or $\mathcal{T}=\{0,1,2,\ldots\}$ (discrete)
- For the discrete case, we also often use $(X_n)_{n\in\mathbb{Z}_+}$.
- We will use all of them, unless confusion arises.
- For a fixed time t, X_t (or X(t)) is a random variable.
- The values that X_t (or X(t)) can take: discrete or continuous

• Example. Discrete time RP. $\{X_1, X_2, X_3, \dots, \}$.

- X_i : # of Covid-19 infections at day i in South Korea, which is a random variable.
- Then. $X_i: \Omega \mapsto \mathbb{R}$, where the sample space Ω is the set of all outcomes.
- An outcome $\omega \in \Omega$ is a infinite sequence of infections
- \circ For example, $\omega_1 = (100, 150, 130, \ldots)$, $\omega_2 = (200, 300, 400, \ldots)$
- $X_3(\omega_1) = 130$, $X_2(\omega_2) = 300$, $X_1(\omega_2) = 200$, etc.
- Example. Continuous time RP. $(X(t))_{t \in \mathbb{R}^+}$
 - \circ X(t): bitcoin price at time t, which is a random variable.
 - Then, $X(t): \Omega \mapsto \mathbb{R}$.
 - An outcome $\omega \in \Omega$ is a trajectory of prices over $[0, \infty)$
 - $\times X(3.7, \omega_1) = 3409, X(2, \omega_2) = 5000, X(7.8, \omega_3) = 2800, \text{ etc.}$

L8(1) October 25, 2021 5 / 65 L8(1) October 25, 2021

Random Processes: Our Interest

KAIST EE

4 Types of Random Processes

- Question. Already studied a sequence (or a collection) of rvs X_1, X_2, \ldots, X_n . What's the difference?
 - Assume a discrete time random process for our discussion.
- Physical difference: infinite sequence of X_1, X_2, \ldots, \ldots
 - Sample space? set of all outcomes?
 - an outcome: an infinite sequence of sample values x_1, x_2, \ldots
- Semantic difference: Understand i in Xi as time. Also, interesting questions are asked from the random process point of view.
 - Dependence: How X_1, X_2, \ldots are related to each other as a time series. Prediction of values in the future.
 - Long-term behavior: What is the fraction of times that a stock price is above 3000?
 - Other interesting questions, depending on the target random process

- Types of time and value
- (a) continuous time, continuous value
- (b) continuous time, discrete value
- (c) discrete time, continuous value
- (d) discrete time, discrete value

Random Processes in This Course

Roadmap

- The simplest RP
- discrete time
- $X_i \perp \{X_{i-1}, X_{i-2}, \dots, X_1\}$
- Bernoulli Process (BP)
- "today" independent of "past"

Jacob Bernoulli (1654 - 1705), Swiss

- The simplest RP
- Continous time version of BP
- $[X(s)]_{s=0}^t \perp [X(s)]_{s=t}^{t+a}$
- Poisson Process (PP)
- "today" independent of "past"

Simeon Denis Poisson (1781 - 1840), France

- One-step more general than BP/PP
- discrete time
- X_i depends on X_{i-1} , but $\coprod \{X_{i-2}, X_{i-2}, \dots, X_1\}$
- Markov Chain (MC)
- "today" depends only on "yesterday"

Andrey Markov (1856 - 1922), Russia

(1) Introduction of Random Processes

(2) Bernoulli Processes

- (3) Poisson Processes: Poisson RV and Basic Idea
- (4) Poisson Processes: Definition and Properties
- (5) Playing with Bernoulli and Poisson Processes
- (6) Random Incidence Phenomenon

L8(1) October 25, 2021 9 / 65 L8(2) October 25, 2021 10 / 65

Bernoulli Process

Bernoulli Process: Questions

- At each "minute", we toss a coin with probability of head 0 .
 - Sequence of lottery wins/looses
 - $\,{}_{\circ}\,$ Customers (each second) to a bank
 - $\,{}_{\circ}\,$ Clicks (at each time slot) to server
- ullet A sequence of independent Bernoulli trials $X_1, X_2, \ldots,$
- We call index 1, 2, ...time slots (or simply slots)

00101000011011100

- Discrete time, discrete value
- One of the simplest random processes
- A type of "arrival" process

Please pause the video and write down the questions that you want to ask about Bernoulli process.

VIDEO PAUSE

- **Q1**.
- Q2.
- **Q3**.
- Q4.
- Q5.

L8(2) October 25, 2021 11 / 65 L8(2) October 25, 2021 12 / 65

(Q1) # of arrivals in the first n slots?

- $S_n = X_1 + X_2 + \cdots + X_n$
- $S_n \sim \text{Binomial}(n, p)$
- $\mathbb{E}(S_n) = np$, $var(S_n) = np(1-p)$
- This will hold for any n consecutive slots.

(Q2) # of slots T_1 until the first arrival?

- $T_1 \sim \text{Geom}(p)$
- $\mathbb{E}(T_1) = 1/p$, $\text{var}(T_1) = \frac{1-p}{p^2}$

• T₁ is geometric? Memoryless

- Conditioned no first arrival at some time, what's the distribution of the remaining time until the first arrival?
- Still, geometric.
- But, more than that, as we will see. Independence across time slots leads to many useful properties, allowing the quick solution of many problems.

Independence across slots \implies the fresh-start anytime when I look at the process?

(Q3)
$$U = X_1 + X_2 \perp \!\!\! \perp V = X_5 + X_6$$
?

- Yes
- Because X_is are independent

(Q4) After time n = 6, I start to look at the process $(X_n)_{n=6}^{\infty}$?

- $(X_1, ..., X_5) \perp \!\!\!\perp (X_n)_{n=6}^{\infty}$
- Fresh-start after a deterministic time n (doesn't matter what happened until n = 5.
- If you watch the on-going Bernoulli process(p) from some time n, you still see the same Bernoulli process(p).

L8(2) October 25, 2021 L8(2)

October 25, 2021 14 / 65

Fresh-start after Random time N(1)

KAIST EE

Fresh-start after Random N (2)

13 / 65

KAIST EE

(Q5) The process $(X_N, X_{N+1}, X_{N+2}, ...)$? Fresh-start even after random N?

- This means that the time I start to look at the process is a random variable.
- Examples of N
- **E1.** Time of 3rd arrival
- **E2**. First time when 3 consecutive arrivals have been observed
- **E3**. Time just before 3 consecutive arrivals

- E2 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | |

- Difference of N from n
 - The time when I watch the on-going Bernoulli process is random.
- *N* is a random variable, i.e., $N : \Omega \mapsto \mathbb{R}$. What is Ω ?
- Do we experience the fresh-start for any N? E1. E2. and E3?

(Q5) The process $(X_N, X_{N+1}, X_{N+2}, ...)$? Fresh-start even after random N?

- **E1.** Time of 3rd arrival
- **E2.** First time when 3 consecutive arrivals have been observed
- **E3**. Time just before 3 consecutive arrivals

- **E1.** When I watch the process, N has been already determined. Yes
- E2. Same as E1. Yes
- E3. Need the future knowledge. '111' does not become random. No
- The question of N = n? can be answered just from the knowledge about X_1, X_2, \dots, X_n ? Then, Yes! (see pp. 301 for more formal description)

subsequent idle slot

Regard an arrival as a server being busy (just for our easy understanding)

I B

• (Q6) B_1 is a random variable. Distribution of B_1 ?

• N: time of the first busy slot. N is a stopping time?

• First busy period B_1 : starts with the first busy slot and ends just before the first

B B B I I B B B B I I I I B

I I I I I B B B B I I I I B

• Yes. Thus, fresh-start after N. Because we can answer the question of N = n?, just

- In probability theory, a random time N is said to be a stopping time, if the question of "N = n?" can be answered only from the present and the past knowledge of X_1, X_2, \ldots, X_n .
- https://en.wikipedia.org/wiki/Stopping time
- Fresh-start after N in Bernoulli process? Yes, if N is a stopping time.
- Please think about two examples of stopping time and not.

VIDEO PAUSE

- Yes. Time when 10 consecutive arrivals have been observed
- No. Time of 2nd arrival in 10 consecutive arrivals

L8(2)

L8(2)

October 25, 2021 18 / 65

October 25, 2021 17 / 65

Distribution of Busy Periods (2)

Time of k-th arrival

B B B I I B B B B I I I I B 1 1 1 1 1 1 8 8 8 8 1 1 1 1 8

- Question. What about the second busy period B_2 ?
- N: time of the first busy slot of the second busy period. N is a stopping time?
- Yes. Thus, fresh-start after N.
- Then, B_1 and B_2 are identically distributed as Geom(1 p).
- B_3, B_4, \dots ?

• Time of the first arrival $Y_1 \sim \text{Geom}(p)$

using X_1, X_2, \ldots, X_n .

• B_1 is geometric with parameter (1-p)

(Q7) Time of the k-th arrival Y_k ?

VIDEO PAUSE

-
$$T_k = Y_k - Y_{k-1}$$
: k -th inter-arrival ($k \geq 2, \ T_1 = Y_1$)

$$- Y_k = T_1 + T_2 + \ldots + T_k.$$

- After each T_k , the fresh-start occurs.
- $\{T_i\}$ are i.i.d. and $\sim \text{Geom}(p)$
- We know Y_k 's expectation and variance: $\mathbb{E}[Y_k] = \frac{k}{p}$, $\text{var}[Y_k] = \frac{k(1-p)}{p^2}$, but its distribution?

- $Y_k = T_1 + T_2 + \ldots + T_k$.
- $\{T_i\}$ are i.i.d. and $\sim \text{Geom}(p)$

$$\mathbb{P}(Y_k = t) = \mathbb{P}(X_k = 1 \text{ and } k - 1 \text{ arrivals during the first } t - 1 \text{ slots})$$

$$= \mathbb{P}(X_k = 1) \cdot \mathbb{P}(k - 1 \text{ arrivals during the first } t - 1 \text{ slots})$$

$$= p \times \binom{t-1}{k-1} p^{k-1} (1-p)^{t-k} = \binom{t-1}{k-1} p^k (1-p)^{t-k}, \quad t = k, k+1, \dots$$

- In the sequence of Bernoulli trials, the time Y_k of k-th success
- PMF of Y_k

$$\mathbb{P}(Y_k = t) = \begin{cases} \binom{t-1}{k-1} p^k (1-p)^{t-k}, & \text{if} \quad t = k, k+1, \dots \\ 0, & \text{if} \quad t = 1, 2, \dots k-1 \end{cases}$$

• Pascal(1, p) = Geom(p)

L8(2)

October 25, 2021 21 / 65

L8(2)

October 25, 2021 22 / 65

Roadmap

Background: Poisson rv X with parameter λ (1)

- (1) Introduction of Random Processes
- (2) Bernoulli Processes
- (3) Poisson Processes: Poisson RV and Basic Idea
- (4) Poisson Processes: Definition and Properties
- (5) Playing with Bernoulli and Poisson Processes

• A random variable $S \sim \text{Bin}(n, p)$: Models the number of successes in a given number n of independent trials with success probability p.

$$p_S(k) = \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k}$$

• Our interest: very large n and very small p, such that $np = \lambda$, i.e., $\lim_{n \to \infty} p_S(k)$?

$$p_{S}(k) = \frac{n(n-1)\cdots(n-k+1)}{k!} \cdot \frac{\lambda^{k}}{n^{k}} \cdot \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{n}{n} \cdot \frac{(n-1)}{n} \cdots \frac{(n-k+1)}{n} \cdot \frac{\lambda^{k}}{k!} \cdot \left(1 - \frac{\lambda}{n}\right)^{n} \cdot \left(1 - \frac{\lambda}{n}\right)^{-k} \xrightarrow{n \to \infty} e^{-\lambda} \frac{\lambda^{k}}{k!}$$

• A Poisson random variable Z with parameter λ takes nonnegative integer values, whose PMF is:

$$p_Z(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

- Infinitely many slots (n) with the infinitely small slot duration (thus infinitely small success probabilty $p = \lambda/n$)
- $\mathbb{E}(Z) = \lambda$ (because $\lambda = np$ is the mean of binomial rv)
- $var(Z) = \lambda$ (because np(1-p) is the variance of binomial rv)

- A packet consisting of a string of *n* symbols is transmitted over a noisy channel.
- Each symbol: errorneous transimission with probability of 0.0001, independent of other symbols. Incorrect transmission is when at least one symbol is in error.
- Question. How small should n be in order for the probability of incorrect transmission to be less than 0.001?
- p is very small, and n is reasonably large \rightarrow Poisson approximation
- Prob. of incorrect transmission = $1 - \mathbb{P}(\text{no symbol error}) = 1 - e^{-\lambda} = 1 - e^{-0.0001n} < 0.0001$
- $n < \frac{-\ln 0.999}{0.0001} = 10.005$

L8(3)

October 25, 2021 25 / 65

KAIST EE

L8(3)

October 25, 2021

Design of Continuous Analogue of Bernoulli Process

KAIST EE

L4(3)

Key Design Idea to Develop a Continuous Twin (1)

- Remind. Geometric vs. Exponential
 - Two rvs with memoryless property
 - continuous system = discrete system with infintely many slots whose duration is infinitley small.
- Independence between what happens in a different time region
- Memoryless and fresh-start property
- Choose one of discrete or continuous versions for our modeling convenience.
- Question. How do we design the continuous analog of Bernoulli process?
 - Key idea: Making it as a limit of a sequence of Bernoulli processes
- Need a "modeling sense" to make this possible. It's a good practice for engineers!
- VIDEO PAUSE

- Continuous twin
 - Key point: Understand the number of arrivals over a given interval $[0, \tau]$.
 - Assume that it has some arrival rate λ (# of arrivals/unit time).
 - We know how to handle Bernoulli process with discrete time slots.
- Divide $[0,\tau]$ into slots whose length $=\delta$. Then, n=# of slots $=\frac{\tau}{\delta}$.

• What's the limit as $\delta \to 0$ (equivalently, $n \to \infty$)

• Now, our design idea: during one time slot of length δ ,

$$\begin{split} \mathbb{P}(1 \text{ arrival}) &\propto \text{arrival rate and slot length} \\ \mathbb{P}(\geq 2 \text{ arrivals}) &\propto \text{something, but very small} \\ \text{ for small sloth length} \\ \mathbb{P}(0 \text{ arrival}) &= 1 - \mathbb{P}(1 \text{ arrival or } \geq 2 \text{ arrivals}) \end{split}$$

$$\mathbb{P}(1 ext{ arrival}) = \lambda \delta + o(\delta)$$
 $\mathbb{P}(\geq 2 ext{ arrivals}) = 0 + o(\delta)$
 $\mathbb{P}(0 ext{ arrival}) = 1 - \lambda \delta + o(\delta)$

- $o(\delta)$: some function that goes to zero faster than δ .
 - Thus, for very small δ , $o(\delta)$ becomes negligible, compared to δ .
 - Example: $o(\delta) = \delta^{\alpha}$, where any $\alpha > 1$

L8(3) October 25, 2021 29 / 65

- Our interest: probability of k arrivals over $[0, \tau]$
- Given "small" δ , # of arrivals $\sim \text{Bin}(n, p)$, where $n = \tau/\delta$ and $p = \lambda\delta$
- As $\delta \to 0$, $np = \tau/\delta \times \lambda \delta = \lambda \tau$.
- # of arrivals over $[0, \tau]$, $\sim \mathsf{Poisson}(\lambda \tau)$
- This is a continuous twin process of Bernous process, which we call Poisson process.

L8(3) October 25, 2021 30 / 65

Roadmap

KAIST EE

Poisson Process: Definition (1)

- (1) Introduction of Random Processes
- (2) Bernoulli Processes
- (3) Poisson Processes: Poisson RV and Basic Idea
- (4) Poisson Processes: Definition and Properties
- (5) Playing with Bernoulli and Poisson Processes
- (6) Random Incidence Phenomenon

An arrival process is called a Poisson process with rate λ , if the following are satisfied:

- (Independence) Let N_{τ} be the number of arrivals over the interval $[0,\tau]$. For any $\tau_1, \tau_2 > 0$, $N_{s+\tau_1} N_s$ is independent of $N_{t+\tau_2} N_t$, if $t > s + \tau_1$.
- The number of arrivals over two disjoint intervals are independent.
- (Time homogeneity) For any s, the distribution of $N_{s+\tau} N_s$ is equal to that of N_{τ} .
- \circ $N_{ au}$ becomes the number of arrivals over any interval of length au.
- (Small interval probability) Let $\mathbb{P}(k,\tau) = \mathbb{P}(N_{\tau} = k)$, which satisfy:

$$\mathbb{P}(0,\tau) = 1 - \lambda \tau + o(\tau)$$

$$\mathbb{P}(1,\tau) = \lambda \tau + o_1(\tau)$$

$$\mathbb{P}(k,\tau) = o_k(\tau) \quad \text{for } k = 2,3,\ldots, \quad \text{where} \quad \lim_{\tau \to 0} \frac{o(\tau)}{\tau} = 0, \quad \lim_{\tau \to 0} \frac{o_k(\tau)}{\tau} = 0$$

L8(4)

An arrival process is called a Poisson process with rate λ , if the following are satisfied:

- (Independence) Let N_{τ} be the number of arrivals over the interval $[0,\tau]$. For any $\tau_1, \tau_2 > 0$, $N_{s+\tau_1} - N_s$ is independent of $N_{t+\tau_2} - N_t$, if $t > s + \tau_1$.
- o The number of arrivals over two disjoint intervals are independent.
- (Time homogeneity) For any s, the distribution of $N_{s+\tau} N_s$ is equal to that of N_{τ} .
 - $\circ N_{\tau}$ becomes the number of arrivals over any interval of length τ .
- (Distribution of N_{τ}) N_{τ} is the Poisson rv with parameter $\lambda \tau$, i.e., if we let $\mathbb{P}(k,\tau) = \mathbb{P}(N_{\tau} = k)$, we have:

$$\mathbb{P}(k,\tau) = e^{\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, 2, \dots$$

L8(4)

October 25, 2021 33 / 65

(Q1) Number of arrivals of any interval with length $\tau \sim \text{Poisson}(\lambda \tau)$, i.e.,

$$\mathbb{P}(k,\tau) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, 2, \dots$$

$$\mathbb{E}(\textit{N}_{ au}) = \lambda au$$
 and $\mathsf{var}(\textit{N}_{ au}) = \lambda au$

(Q2) Time of first arrival T

$$F_T(t) = \mathbb{P}(T \le t) = 1 - \mathbb{P}(T > t) = 1 - P(0, t) = 1 - e^{-\lambda t}$$
 $f_T(t) = \frac{dF_T(t)}{dt} = \lambda e^{-\lambda t}, \quad t \ge 0.$

- $T \sim \text{Exp}(\lambda)$. Thus, $\mathbb{E}(T) = 1/\lambda$ and $\text{var}(T) = 1/\lambda^2$
- Continuous twin of geometric rv in Bernoulli process
- Memoryless

L8(4) October 25, 2021 34 / 65

Poisson Process: Example

Memoryless and Fresh-start Property

- Receive emails according to a Poisson process at rate $\lambda = 5$ messages/hour
- Mean and variance of mails received during a day
 - -5*24 = 120
- P[one new message in the next hour]

$$-\mathbb{P}(1,1) = \frac{(5\cdot 1)^1 e^{-5\cdot 1}}{1!} = 5e^{-5}$$

- P[exactly two msgs during each of the next three hours]

- Remind. Similar property for Bernoulli processes, but here no time slots.
- Fresh-start at deterministic time t: Start watching at time t, then you see the Poisson process, independent of what has happened in the past.
- Fresh-start at random time T: Similarly, it holds.
- For example, when you start watching at random time T_1 (time of first arrival).
- Generally, it holds when T is a stopping time.

(Q3) The k-th arrival time Y_{k} ?

- k-th inter-arrival time $T_k = Y_k Y_{k-1}$, k > 2, and $T_1 = Y_1$.
- $Y_k = T_1 + T_2 + \cdots + T_k$ is sum of i.i.d. exponential rvs.
- $\mathbb{E}[Y_k] = k/\lambda$ and $\text{var}[Y_k] = k/\lambda^2$, but what is the distribution of Y_k ?

- For a given δ , $\delta \cdot f_{Y_k}(y)$: prob. of k-th arrival over $[y, y + \delta]$.
- When δ is small, only one arrival occurs. Thus,
 - $\delta \cdot f_{Y_k}(y) = \mathbb{P} \left(\text{an arrival over } [y, y + \delta] \right) \times \mathbb{P} \left(k 1 \text{ arrivals before } y \right)$

$$pprox \lambda \delta imes \mathbb{P}(k-1,y) = \lambda \delta imes rac{\lambda^{k-1} y^{k-1} e^{-\lambda y}}{(k-1)!}$$

$$f_{Y_k}(y) = rac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0.$$

• This is called **Erlang** rv.

L8(4)

An Erlang random variable Z with parameter (k, λ) has the following pdf:

$$f_Z(z) = \frac{\lambda^k z^{k-1} e^{-\lambda z}}{(k-1)!}, \quad z \ge 0$$

- $n= au/\delta$, $p=\lambda\delta$, $np=\lambda au$				
	121212121212111111111111			
	0 # of shots = 7/5 T			

	Bernoulli process	Poisson process
time of arrival	Discrete	Continuous
PMF of # of arrivals	Binomial	Poisson
Interarrival time	Geometric	Exponential
Time of k -th arrival	Pascal	Erlang
Arrival rate	p/per slot	$\lambda/{\sf unit\ time}$

L8(4) October 25, 2021 38 / 65

Example: Poisson Fishing (Problem 10, page 329)

October 25, 2021

37 / 65

Roadmap

- Catching fish: Poisson process $\lambda = 0.6/\text{hour}$.
- Fish for 2 hours. Within 2 hours, if he catches at least one fish, then he stops at 2 hours. Otherwise, he fishes until one fish is caught.
- (Q1) $\mathbb{P}(\text{fishing time} > 2 \text{ hours})$

Method 1: $\mathbb{P}(0,2)$

Method 2: $\mathbb{P}(T_1 > 2)$

(Q2) $\mathbb{P}(2 < fishing time < 5)$

Method 1: $\mathbb{P}(0,2)(1-\mathbb{P}(0,3))$

Method 2: $\mathbb{P}(2 < T_1 < 5)$

(Q3) $\mathbb{P}(Catch at least two fish)$

 $\begin{array}{l} \text{Method } 1{:}\sum_{k=2}^{\infty} = 1 - \mathbb{P}(0,2) - \mathbb{P}(1,2) \\ \text{Method } 2{:}\ \mathbb{P}(Y_2 \leq 2) \end{array}$

- (Q4) $\mathbb{E}[\text{future fi. time}|\text{already fished for 3h}]$ Fresh-start. So, $\mathbb{E}[\exp(\lambda)] = 1/\lambda = 1/0.6$
- (Q5) $\mathbb{E}[F=\text{total fishing time}]$

$$2 + \mathbb{E}[F - 2] = 2 + \mathbb{P}(F = 2) \cdot 0 + \\ \mathbb{P}(F > 2) \cdot \mathbb{E}[F - 2|F > 2]$$
$$= 2 + \mathbb{P}(0, 2) \cdot \frac{1}{\lambda}$$

(Q6) $\mathbb{E}[\text{number of fish}] = \lambda \cdot 2 + \mathbb{P}(0,2) \cdot 1$

- (1) Introduction of Random Processes
- (2) Bernoulli Processes
- (3) Poisson Processes: Poisson RV and Basic Idea
- (4) Poisson Processes: Definition and Properties
- (5) Playing with Bernoulli and Poisson Processes
- (6) Random Incidence Phenomenon

Example

Alternative Description of the Bernoulli Process

- 1. Start with a sequence of independent geometric random variables T_1 , T_2 ,..., with common parameter p, and let these stand for the interarrival times.
- 2. Record a success (or arrival) at times T_1 , $T_1 + T_2$, $T_1 + T_2 + T_3$, etc.

Alternative Description of the Poisson Process

- 1. Start with a sequence of independent exponential random variables $T_1, T_2, ...$, with common parameter λ , and let these stand for the interarrival times.
- 2. Record an arrival at times T_1 , $T_1 + T_2$, $T_1 + T_2 + T_3$, etc.

- It has been observed that after a rainy day, the number of days until the next rain
 Geom(p), independent of the past.
- Question. What is the probability that it rains on both the 5th and the 8th day of the month?
- Approach 1: Handling this problem directly with the geometric PMFs is very tedious and complex.
- Approach 2: Rainy days is a Bernoulli process with arrival. probability p.
- Thus, the answer is p^2 .

L8(5) October 25, 2021 41 / 65

L8(5)

October 25, 2021 42 / 65

Coding of Random Arrivals

Notations In the Rest of These Slides

- Question. How to make software codes of Bernoulli process with p and Poisson process with λ
- Inter-arrival times are very handy.
- Bernoulli process with p: Obtain a sequence of random values following the geometric distribution with parameter p.
- Poisson process with λ : Obtain a sequence of random values following the exponential distribution with parameter λ .

- Bernoulli random variable: Bern(p)
- Bernoulli process: BP(p)
- Poisson random variable: $Poisson(\lambda)$
- Poisson process: $PP(\lambda)$

- Split BP(p) into two processes. Whenever there is an arrival, keep it w.p. q and discard it w.p. (1-q).
- Split decisions are independent of arrivals.
- Question. What are the two split processes?
- BP(pq) and BP(p(1-q)). Why?
- Are they independent? No.

L8(5) October 25, 2021 45 / 65

• Merge BP(p) and BP(q) into one process.

- Collided arrival is regarded just one arrival in the merged process
- Probability of having at least one arrival: 1 (1 p)(1 q) = p + q pq
- Merged process: BP(p+q-pq)
- $\mathbb{P}(\text{arrival from proc. } 1 \mid \text{arrival in the merged proc.}) = \frac{p}{p+q-pq}$

L8(5) October 25, 2021 46 /

Split: Poisson Process

Merge: Poisson Process (1)

- Split a Poisson process $PP(\lambda)$ into two processes by keeping each arrival w.p. p and discarding it w.p. (1-p)
- Question. What are the split processes?
- Let's focus on the process that we keep
- Independence and time-homogeneity? Yes
- Small interval probability over δ -interval
 - $\mathbb{P}(1 \text{ arrival}) = p\lambda\delta + p \cdot o(\delta) = p\lambda\delta + o(\delta)$
 - $\mathbb{P}(2 \text{ arrivals}) = p \cdot o(\delta) = o(\delta)$
 - $\mathbb{P}(0 \text{ arrival}) = 1 p\lambda\delta p \cdot o(\delta) p \cdot o(\delta) = 1 p\lambda\delta + o(\delta)$
- $PP(\lambda p)$ and $PP(\lambda(1-p))$

- Merge from $PP(\lambda_1)$ and $PP(\lambda_2)$
- Independence and time-homogeneity? Yes
- Small interval probabilty over δ -interval (ignoring $o(\delta)$ for small δ)

$$\mathbb{P}(0 \text{ arrival}) \approx (1 - \lambda_1 \delta)(1 - \lambda_2 \delta) \approx 1 - (\lambda_1 + \lambda_2)\delta$$

$$\mathbb{P}(1 \text{ arrival}) \approx (\lambda_1 \delta)(1 - \lambda_2 \delta) + \lambda_2 \delta(1 - \lambda_1 \delta) \approx (\lambda_1 + \lambda_2)\delta$$

• Merged process: $PP(\lambda_1 + \lambda_2)$

- Red: $PP(\lambda_1)$ and Blue: $PP(\lambda_2)$
- $\mathbb{P}(\text{from red} \mid \text{arrival at time } t \text{ in the merged proc.})? \frac{\lambda_1 \delta}{\lambda_1 \delta + \lambda_2 \delta} = \frac{\lambda_1}{\lambda_1 + \lambda_2}$
- Consider an event $A_k = \{k\text{-th arrival in the merged proc. is } red \}$
 - $\circ \ \mathbb{P}(A_k)? \ \frac{\lambda_1}{\lambda_1 + \lambda_2}$
 - \circ A_1,A_2,\ldots are independent: origins (red or blue) of arrivals in the merged proc. are independent
- $\mathbb{P}(\mathsf{k} \text{ out of first } 10 \text{ arrivals are red})?$ $\binom{10}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{10-k}$

- 1. Competing exponentials
- 2. Sum of independent Poisson rvs
- 3. Poisson arrivals during and Exponential interval

L8(5)

October 25, 2021 49 / 65

October 25, 2021

50 / 65

Competing Exponential (1)

Competing Exponential (2)

L8(5)

- Two independent light bulbs have life times $T_a \sim \text{Exp}(\lambda_a)$ and $T_b \sim \text{Exp}(\lambda_b)$.
- (Q) Distribution of $Z = \min\{T_a, T_b\}$, the first time when a bulb burns out?
- Approach 1
 - $P(Z \ge z) = \mathbb{P}(T_a \ge z) \mathbb{P}(T_b \ge z) = e^{-\lambda_a z} e^{-\lambda_b z} = e^{-(\lambda_a + \lambda_b)z}$
 - \circ Thus, $Z \sim \mathsf{Exp}(\lambda_{\mathsf{a}} + \lambda_{\mathsf{b}})$
- Approach 2
 - \circ T_a and T_b are the first arrival times of two Poisson processes of λ_a and λ_b , respectively.
 - $\circ~Z$ is the first arrival time of merged Poisson process $(\lambda_a + \lambda_b)$.
 - Thus, $Z \sim \text{Exp}(\lambda_a + \lambda_b)$

- Three independent light bulbs have life time $T \sim \mathsf{Exp}(\lambda)$.
- (Q) $\mathbb{E}[\text{time until the last bulb burns out}]?$
- Understanding from the merged Poisson process
 - \circ T_1 : time until the first burn-out, T_2 : time until the second burn-out, T_3 : time until the third burn-out
 - $\mathbb{E}(T_1 + T_2 + T_3)$?
 - $\circ \ \mathsf{PP}(3\lambda) \xrightarrow{\mathsf{1st} \ \mathsf{burn} \ \mathsf{out}} \mathsf{PP}(2\lambda) \xrightarrow{\mathsf{2st} \ \mathsf{burn} \ \mathsf{out}} \mathsf{PP}(\lambda)$
 - \circ $T_1 \sim \mathsf{Exp}(3\lambda), \ T_2 \sim \mathsf{Exp}(2\lambda), \ T_3 \sim \mathsf{Exp}(\lambda)$

$$\mathbb{E}\Big[T_1+T_2+T_3\Big]=\frac{1}{3\lambda}+\frac{1}{2\lambda}+\frac{1}{\lambda}$$

- Two independent rvs X and Y, where $X \sim \text{Poisson}(\mu)$ and $Y \sim \text{Poisson}(\nu)$.
- Question. Distribution of X + Y? Complex convolution, but any other easy way?
- Poisson process perspective
 - X: number of arrivals of PP(1) over a time interval of length μ
 - Y: number of arrivals of PP(1) over a time interval of length ν
 - \circ Two intervals do not overlap and located in a consecutive manner $\implies X \perp \!\!\!\perp Y$
- Distribution of X + Y: the number of arrivals of PP(1) over a time interval of length $\mu + \nu$
- Thus, $X + Y \sim \mathsf{Poisson}(\mu + \nu)$

L8(5) October 25, 2021 53 / 65

- Problem 24, pp. 335
- Consider PP(λ) and an independent ry $T \sim \text{Exp}(\nu)$
- Question. Distribution of N_T ?
- Approach 1: Total probability theorem

$$\mathbb{P}(N_T = k) = \int_0^\infty \mathbb{P}(N_T = k | T = \tau) f_T(\tau) d\tau = \int_0^\infty \mathbb{P}(N_\tau = k) f_T(\tau) d\tau$$

Very tedious and not very intuitive.

L8(5) October 25, 2021 54 / 65

Poisson arrivals during Exponential Interval (2)

KAIST EE

Approximation of Binomial: Poisson vs. Normal

- Consider PP(λ) and an independent rv $T \sim \text{Exp}(\nu)$
- Consider another PP(ν), and let's view T as the first arrival time in PP(ν).
- Now, consider the merged process of $PP(\lambda)$ and $PP(\nu)$.
 - $\mathbb{P}[\text{from PP}(\lambda)|\text{arrival}] = \frac{\lambda}{\lambda + \nu} \text{ and } \mathbb{P}[\text{from PP}(\nu)|\text{arrival}] = \frac{\nu}{\lambda + \nu}$
- K: number of total arrivals until we get the first arrival from $PP(\nu)$.
 - Then, $K \sim \text{Geom}(\frac{\nu}{\lambda + \nu})$.
- Let L be the number of arrivals from $PP(\lambda)$ until we get the first arrival from $PP(\nu)$.

$$p_L(l) = p_K(l+1) = \left(\frac{\nu}{\lambda + \nu}\right) \left(\frac{\lambda}{\lambda + \nu}\right)^l, \quad l = 0, 1, \dots$$

- Consider $S_n \sim \text{Binomial}(n, p)$. Then, $S_n = \sum_{i=1}^n X_i$, where $X_i \sim \text{Bern}(p)$.
- Poisson approximation. Poisson(np) is a good approximation of S_n • Holds when $np = \lambda$ $(n \to \infty, p \to 0)$, i.e., X_i 's behavior changes over n.
- Normal approximation. $\sigma \sqrt{n}Z + n\mu$ is a good approximation of S_n
- Holds for a fixed p ($n \to \infty$), i.e., X_i 's behavior does not change over n.
- In practice, an actual numbers of n and p are given, so which approximation is good under what situation?
 - p = 1/100, n = 100: np = 1, very asymmetric X_i , small $p \implies Poisson$
 - p = 1/3, n = 100: large, reasonly symmetric p, at least moderate $n \implies Normal$
 - p = 1/100, n = 10,000: small p, but large $n \implies Both Poisson and Normal$

- (1) Introduction of Random Processes
- (2) Bernoulli Processes
- (3) Poisson Processes: Poisson RV and Basic Idea
- (4) Poisson Processes: Definition and Properties
- (5) Playing with Bernoulli and Poisson Processes
- (6) Random Incidence Phenomenon

- What we want to survey: How available are town buses in a city?
- Two approaches
- M1. (1) select a few buses at random, and (2) calculate the average number of riders in the selected bus
- M2. (1) select a few bus riders at random, (2) look at the buses that they rode, and (3) calculate the average number of riders in those buses
- Which is correct?
- (i) M1 = M2? (ii) M1 > M2? (iii) M1 < M2?

L8(6) October 25, 2021 57 / 65

L8(6)

October 25, 2021 58 / 65

Random Incidence Phenomemon (1)

Random Incidence Phenomemon (2)

- We know: in $PP(\lambda)$, inter-arrival time $\sim Exp(\lambda)$
- Fix a time instant t^* , and consider the length L of the inter-arrival interval that constains t^* .

- Practical context: Yung shows up at the bus station at some arbitrary time t^* and records the time from the previous bus arrival (U) until the next bus arrival (V)
- Question. What is the distribution of *L*?

VIDEO PAUSE

- t^{\star} is not random, so "random incidence" may be confusing and misleading.
- Assumption. For simplicity, t^* is large enough that we must have an arrival before t^* (U>0)
- One might superficially argue that $L \sim \text{Exp}(\lambda)$, but it is NOT.

page 37

$$L = (t^{\star} - U) + (V - t^{\star})$$

• $V - t^*$: Due to the memoryless property and the fresh-restart,

Thus,
$$V - t^* \sim \operatorname{Exp}(\lambda)$$

 t* – U: If we run the PP(λ) backwards in time, it remains Poisson. Why? More formally.

$$\mathbb{P}(t^{\star} - U > x) = \mathbb{P}(\text{no arrivals over } [t^{\star} - x, t^{\star}])$$
$$= e^{-\lambda x} = \mathbb{P}(T_{\text{inter}} > x)$$
Thus, $t^{\star} - U \sim \mathsf{Exp}(\lambda)$

• Time until we have two arrivals in $\mathsf{PP}(\lambda)$

 $L = (t^{\star} - U) + (V - t^{\star})$

• Erlang random variable with parameter
$$(2, \lambda)$$
, i.e.,

• $L = X_1 + X_2$, where $X_1, X_2 \sim \text{Exp}(\lambda)$

 $f_L(I) = \lambda^2 \cdot I \cdot e^{-\lambda I}, \quad I \ge 0$

• Mean $= 2/\lambda$

L8(6)

• Why not $Exp(\lambda)$? An observer who arrives at an arbitrary time is more likely to fall in a large rather than a small interarrival interval.

.8(6)

October 25, 2021 61 / 65

L8(6)

October 25, 2021 62 / 65

Back to Survey of Utilization of Town Buses

- Two Approaches
 - M1. (1) select a few buses at random, and (2) calculate the average number of riders in the selected bus
 - M2. (1) select a few bus riders at random, (2) look at the buses that they rode, and (3) calculate the average number of riders in those buses
- (i) M1 = M2? (ii) M1 > M2? (iii) M1 < M2?
- Answer: M1 < M2
- More likely to select a bus with a large number of riders than a bus that is near-empty.

Questions?

Review Questions

- 1) Explain what is random process. Why do we need such a concept?
- 2) Explain Bernoulli processes. When do we use Bernoulli processes?
- 3) Explain Poisson processes. When do we use Poisson processes?
- 4) What are the relations between those two processes? What features do they share?
- 5) In both processces, ho do we compute (i) number of arrivals over a given interval of time, (ii) time until the first arrival, (iii) time until *k*-th arrival?
- 6) What is Pascal rvs and Erlang rvs?
- 7) What is the "stopping time" and how is it related to fresh-restart?
- 8) See many examples on how merging and splitting of BP and PP can be used for intuitive soloving of many problems.

L8(6) October 25, 2021 65 / 65