

Architecture Distribuée

Natural Language Processing : Analyse de sentiments sur des reviews d'hôtels

F.Hammouch S.Mahboubi P.Zozor

Sous la direction de Alex Lima

SOMMAIRE

01

Introduction

02

Présentation des données

03

Architecture et environnement Technique

04

Pipeline & Modèle

05

Démonstration

06

Conclusions et perspectives

Introduction

Introduction

- Elaboration d'un process permettant de classifier du texte à l'aide de modèles de Machine Learning en continue
- Big Data : Sans API → objectif minimum Fichier plat > 500 000 lignes → Envoi séquentielle ligne/ligne
- Review Hotels : Booking.com un site néerlandais qui propose des hébergements dans différents types d'hotêls

Présentation des données

Présentation des données

- Hotel Reviews (Kaggle): 515 000 lignes
 - Split du fichier .csv Originel en 2 Fichiers .csv (80%-20%)
 - Séparation des review + et (lignes différentes) → 849 548 lignes
 - Nettoyage du fichier (";", suppression de variables, des N/A)
 - Correction des mauvaises interpretations (No Negative ou No Positive)
 - Equilibrage des avis positifs et négatifs
- Dataset Training: 746 400 lignes (55% avis positifs / 45% négatifs)
- Dataset Streaming: 103 148 lignes (55% avis positifs / 45% négatifs)

Architecture et environnement technique

Architecture et environnement technique Schéma

8

DataViz

Prédictions

Architecture et environnement technique Docker Compose

Image Docker:

- Pyspark-Notebook
- Spark Master
- Spark Worker
- Kafka
- Zookeper
- Mongo
- Mongo-express

Pipeline & Modèle

Pipeline et Modèle Principe

Pipeline & Modèle

- Pipeline: Recherche des meilleurs paramètres
 - Ngram (1,(2,3))
 - HashingTF NumFeatures
- Evaluation de 4 modèles:
 - Decision Tree Classifier
 - RandomForest Classifier
 - Gradient-Boosted Tree Classifier
 - Logistic Regression
- Optimisation du modèle de Régression Logistique
 - numFeatures à 1 million
 - Evaluation prédiction : 88%
 - → Difficultés rencontrées dans la mise en place de Grid search et de la cross validation pour l'optimisation des hyperparamètres

Démonstration

Conclusions et perspectives

Conclusion

Obtention d'un modèle satisfaisant

Beaucoup d'apprentissage

- Analyse de sentiment "à la volée"
- Architecture sous Docker
- Kafka Pyspark
- PysparK Mongo
- Pyspark ML & Processus NLP
- Modèles et Pipeline (save & load)

Perspectives

- Modèle Word2vec
- Sauvegarde des modèles sous MongoDB
- Une dataviz plus poussé avec Streamlight
- Lancer le consumer dans le shell (image alpine de spark trop light)
- Stream depuis l'API Tripadvisor, Booking (pas de retour)
- Stemmatisation, Lemmatisation?