M DIOUM 1S2 **************************

LIMITES - CONTINUITE - DERIVATION & ETUDE DE FONCTION

Exercice 1

Étudier la limite en x_0 de la fonction f.

a)
$$f(x) = x^2 + x + 1$$
, $x_0 = 2$.

b)
$$f(x) = \frac{3x-1}{7x-4}$$
, $x_0 = 1$.

c)
$$f(x) = \frac{x^3 - 8}{x - 2}$$
, $x_0 = 2$

a)
$$f(x) = x^2 + x + 1$$
, $x_0 = 2$.
b) $f(x) = \frac{3x - 1}{7x - 4}$, $x_0 = 1$.
c) $f(x) = \frac{x^3 - 8}{x - 2}$, $x_0 = 2$.
d) $f(x) = \frac{x^2 + 2x - 3}{3x^2 - 2x - 1}$, $x_0 = 1$.
e) $f(x) = \frac{x - 3}{\sqrt{x - 3}}$, $x_0 = 9$.

e)
$$f(x) = \frac{x-3}{\sqrt{x-3}}$$
, $x_0 = 9$.

f)
$$f(x) = \frac{\sqrt{x+1}-2}{\sqrt{x+6}-3}$$
, $x_0 = 3$.

f)
$$f(x) = \frac{\sqrt{x+1}-2}{\sqrt{x+6}-3}$$
, $x_0 = 3$.
g) $f(x) = \frac{x-\sqrt{x^2-x+1}}{2x-\sqrt{4x^2+2}}$, $x_0 = 0$.

h)
$$f(x) = \frac{\sqrt{x+1}-2}{x-3}$$
, $x_0 = 3$.

i)
$$f(x) = \frac{x}{\sqrt{1+x^2}-1}$$
, $x_0 = 0$.

j)
$$f(x) = \frac{x^2(x-3)}{x - \sqrt{x+6}}, \quad x_0 = 3.$$

k)
$$f(x) = \frac{2x - \sqrt{x+1} - 4}{(x+1)(x-3)}, \quad x_0 = 3.$$

l)
$$f(x) = \frac{x - \sqrt{x + 2}}{\sqrt{4x + 1} - 3}$$
, $x_0 = 2$.

m)
$$f(x) = \frac{x - \sqrt{x^2 - x + 1}}{2x - \sqrt{4x^2 + 2}}, \quad x_0 = 0.$$

h)
$$f(x) = \frac{2x - \sqrt{4x^2 + 2}}{x - 3}$$
, $x_0 = 0$.
i) $f(x) = \frac{\sqrt{x + 1} - 2}{x - 3}$, $x_0 = 3$.
i) $f(x) = \frac{x^2(x - 3)}{\sqrt{1 + x^2} - 1}$, $x_0 = 0$.
j) $f(x) = \frac{x^2(x - 3)}{x - \sqrt{x + 6}}$, $x_0 = 3$.
k) $f(x) = \frac{2x - \sqrt{x + 1} - 4}{(x + 1)(x - 3)}$, $x_0 = 3$.
l) $f(x) = \frac{x - \sqrt{x + 2}}{\sqrt{4x + 1} - 3}$, $x_0 = 2$.
m) $f(x) = \frac{x - \sqrt{x^2 - x + 1}}{2x - \sqrt{4x^2 + 2}}$, $x_0 = 0$.
n) $f(x) = \frac{\sqrt{x + 4} - \sqrt{3x + 4}}{\sqrt{x + 1} - 1}$, $x_0 = 0$.
o) $f(x) = \frac{2}{x^2 - 1} - \frac{1}{x - 1}$, $x_0 = 1$.

o)
$$f(x) = \frac{2^{\sqrt{x^2 + 1}}}{x^2 - 1} - \frac{1}{x - 1}, \quad x_0 = 1.$$

p)
$$f(x) = \frac{\sqrt{x-1} - \sqrt{3}}{x^2 - 16}$$
, $x_0 = 4$.

Exercice 2

Calculer les limites suivantes :
$$\lim_{x \to \frac{4}{3}} \frac{(x-2)(3x-4)}{3x-4}; \lim_{x \to 2} \frac{x^2+x-6}{x^2-5x+6}; \\ \lim_{x \to -\infty} x + \sqrt{x^2-2x}; \lim_{x \to +\infty} \sqrt{x^2+x+1} - \sqrt{x^2-1};$$

$$\lim_{x \to +\infty} \sqrt{x^2 + x + 2} - x; \lim_{x \to -\infty} \sqrt{x^2 + x + 1} + 2x;$$

$$\lim_{x \to +\infty} \sqrt{\frac{x - 1}{x + 1}} - 1; \lim_{x \to -\infty} \frac{x - \sqrt{x^2 - 3x + 5}}{x + 3 - \sqrt{x^2 - 6x}}$$

$$\lim_{x \to +\infty} \sqrt{\frac{x-1}{x+1}} - 1; \lim_{x \to -\infty} \frac{x - \sqrt{x^2 - 3x + 5}}{x + 3 - \sqrt{x^2 - 6x}}$$

Calculer la limite à gauche et la limite à droite de la fonction f en x_0 ; f admet-elle une limite en x_0 ?

a)
$$\begin{cases} f(x) = 2x^2 - 1 \text{ si } x \le 1\\ f(x) = \frac{x^2 + x - 2}{x^2 - 3x + 2} \text{ si } x \ge 1 \end{cases} \quad x_0 = 1$$

b)
$$f(x) = \frac{x^2 - 2}{x^3 + 1}$$
, $x_0 = -1$

b)
$$f(x) = \frac{x^2 - 2}{x^3 + 1}$$
, $x_0 = -1$
c)
$$\begin{cases} f(x) = \frac{\sqrt{6 - x} - 2}{x - 2} \text{ si } x \le 2\\ f(x) = \frac{\sqrt{3 - x} - 1}{4\sqrt{2x} - 8} \text{ si } x \ge 2 \end{cases}$$

Étudier les limites aux bornes de D_f .

1)
$$f(x) = \frac{2x^2 + 4x - 5}{-3x^2 - 5x + 2}$$
; 2) $f(x) = \frac{4x + 3}{4x^2 - 1}$;
3) $f(x) = \frac{3x^2 - 4x^3 + 2x - 1}{x^3 - x^2 - x + 1}$;

3)
$$f(x) = \frac{3x^2 - 4x^3 + 2x - 1}{x^3 - x^2 - x + 1}$$
;

4)
$$f(x) = x + \sqrt{x^2 + 1}$$
; 5) $f(x) = \frac{\sqrt{x^2 + 1} - 1}{x^2}$.

Exercice 5

Étudier la continuité de la fonction f en x_0 dans les

cas suivants :
a)
$$\begin{cases} f(x) = \frac{x^2 - |x|}{x^2 + |x|} \text{ si } x \neq 0 \\ f(0) = -1 \end{cases}, x_0 = 0;$$

b)
$$\begin{cases} f(x) = \frac{x - \sqrt{x} - 2}{\sqrt{x} - 2} \\ f(4) = 3 \end{cases}, x_0 = 4$$

c)
$$f(x) = \sqrt{\frac{x(x-1)}{x+2}}, x_0 = 1$$

Exercice 6

la fonction g définie On considère $\int g(x) = \frac{x+1}{\sqrt{x^2 - 1}} \text{ si } x \neq -1$

Étudier la continuité de g en -1.

Exercice 7

Soit la fonction f définie par $f(x) = \frac{2x^2 - 1}{x - 3}$.

- 1) Déterminer D_f et calculer les limites aux bornes.
- 2) Déterminer les réels a, b et c tels que, pour tout $x \operatorname{de} D_f$, $f(x) = ax + b + \frac{c}{x - c}$
- 3) En déduire que la droite (Δ), d'équation y = 2x + 6, est asymptote à la courbe C_f en $-\infty$ et $+\infty$.

Étudier la position relative de la courbe C_f et de la droite (Δ) .

On considère la fonction f de \mathbb{R} vers \mathbb{R} définie par : $\begin{cases} x^2 + x - 6 & \text{si } x < 2\\ 2x - a & \text{si } x > 2 \end{cases}$

Pour quelles valeurs de a et b la fonction f est-elle continue en 2?

Exercice 9

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = \begin{cases} -1 - x & \text{si } x \in]-\infty; -1\\ \sqrt{1 - x^2} & \text{si } x \in]-1; 1[\\ x - 1 & \text{si } x \in]1; +\infty[\end{cases}$$

Étudier la continuité de f sur \mathbb{R} .

Calculer la fonction dérivée de la fonction f en précisant l'ensemble de dérivabilité.

1)
$$f(x) = 4x^3 - 3x^2 + 1$$
; 2) $f(x) = \frac{4-x}{x+3}$;

3)
$$f(x) = \frac{2}{x^2 - 1}$$
; 4) $f(x) = 3x + 2 + \frac{2}{x} + \frac{1}{x^2}$;

5)
$$f(x) = \frac{1+\sqrt{x}}{1+\sqrt{2x}}$$
; 6) $f(x) = \left(\frac{x+1}{x-1}\right)^2$;

7)
$$f(x) = \sqrt{\frac{x+2}{x-1}}$$
; 8) $f(x) = (1+\sqrt{x})(\frac{1}{\sqrt{x}}-1)$;

9)
$$f(x) = \frac{1}{(4x-2)^2}$$
; 10) $f(x) = (x^2 - 3x + 2)^2$;

11)
$$f(x) = \sqrt{x^3 - 2x + 2}$$
; 12) $f(x) = \sqrt{-3x^2 + 4}$;

13) $f(x) = (x+1)(2x-5)^2$.

Exercice 11

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = (1 - x)\sqrt{|1 - x^2|}.$$

- 1) Etudier la dérivabilité de f en 1 et en -1. Donner l'ensemble de dérivabilité de f.
- 2) Calculer f'(x) dans chaque intervalle où elle est dérivable.

\land Exercice 12

Étudier la dérivabilité sur \mathbb{R} de f définie par :

$$\begin{cases} f(x) = \frac{\sqrt{1+x} - 1}{\sqrt{x}} \text{ si } x \neq 0 \\ f(0) = 0. \end{cases}$$

Exercice 13

Étudier la continuité et la dérivabilité de f en x_0 .

Extracter in continuite et in derivabilité de .

a)
$$\begin{cases} f(x) = \frac{x^2 - x - 2}{x} & \text{si } x \le 2 \\ f(x) = \frac{x - 2}{x^2 - 1} & \text{si } x > 2 \end{cases}$$
b)
$$\begin{cases} f(x) = 2x - 1 & \text{si } x < 1 \\ f(x) = \frac{1}{x} & \text{si } x \ge 1 \end{cases}$$

Déterminer les extréma des fonctions suivantes

(extréma relatifs) et préciser les : a)
$$f(x)=\frac{x^2+2x-3}{x-2}\,;$$
 b) $g(x)=\sqrt{3x^2+7x-2}\,;$

c)
$$h(x) = x^3 + \frac{11}{2}x^2 - 4x + 5$$
.

Exercice 15

On considère la fonction f définie par :

 $f(x) = x^3 + x^2 - 5x + 3$. Déterminer s'il existe les points de C_f où la tangente :

- 1) admet m comme coefficient directeur pour $m \in \{-2; -1; 0; 1; 2\}$
- 2) est parallèle à la droite $(D): y = \frac{1}{2}x + 3$
- 3) est perpendiculaire à la droite (D) : $y = \frac{1}{3}x + 1$
- 4) est dirigé par le vecteur $\vec{u}(2;-4)$

Exercice 16

Soit la fonction définie par : $f(x) = \frac{-2x^2 + 3x + 2}{2x - 1}$

- 1) Déterminer le domaine de définition D_f de f.
- 2) Trouver trois réels a,b et c tels que

$$f(x) = ax + b + \frac{c}{2x - 1}$$
 pour tout $x \in D_f$.

- 3) Déterminer les limites aux bornes de D_f ; en déduire que la droite d'équation $x = \frac{1}{2}$ est une asymptote à C_f .
- 4) Montrer que la droite d'équation (D): y = -x+1est une asymptote oblique à C_f .
- 5) Étudier la position de (C_f) par rapport à (D).
- 6) Calculer f'(x) puis étudier son signe. Dresser le tableau de variation de f.
- 7) Construire C_f .

🖾 Exercice 17

Soit la fonction h définie par $h(x) = \frac{2 + \sqrt{4 - x^2}}{r}$.

- 1) Déterminer le domaine de définition de h; étudier sa parité et préciser son domaine d'étude.
- 2) Étudier la dérivabilité de h en 2.
- 3) Déterminer la fonction dérivée de h puis établir son tableau de variation.
- 4) Tracer la courbe C_h de h.
- 5) Déterminer les points de rencontre de la courbe C_h avec la droite d'équation y = x.

\land Exercice 18

Soit la fonction h définie par $h(x) = \sqrt{x^2 + 3x + 2}$

- 1) Déterminer le domaine de définition de h puis étudier les limites aux bornes de D_h .
- 2) Etudier la continuité de h en -1 et en -2.

Étudier la dérivabilité de h en -1 et en -2.

Interpréter graphiquement les résultats obtenus.

- 3) Montrer que la courbe C_h admet deux asymptotes obliques puis étudier leur position relative.
- 4) Déterminer la fonction dérivée de h puis établir son tableau de variation.
- 5) Tracer la courbe C_h de h.

Soit f la fonction définie par $f(x) = -x^3 - 2x + 4$.

- 1) Déterminer D_f et étudier les limites aux bornes.
- 2) Calculer f'(x) et en déduire le sens de variation $\mathrm{de}\ f.$
- 3) Dresser le tableau de variation de f.
- 4) Montrer que le point S(0;4) est centre de symétrie à C_f .
- 5) Tracer C_f dans une repère orthonormé $(O; \vec{i}, \vec{j})$.

Soit $f(x) = \frac{3x^2 + ax + b}{x^2 + 1}$.

- 1) Déterminer les réels a et b tels que C_f passe par le point A(0;3) et admet en ce point une tangente d'équation y = 4x + 3.
- 2) Étudier f et tracer C_f . Exercice 21 \bigstar

Soit la fonction f définie par

$$f(x) = \begin{cases} -x + \sqrt{x^2 + 4} & \text{si } x < 0\\ \sqrt{|4 - x^2|} & \text{si } x \ge 0. \end{cases}$$

- 1) Déterminer D_f .
- 2) Écrire f(x) sans valeur absolue.
- 3)a) Etudier la continuité de f en 0.
- b) Étudier la dérivabilité de f en 0. Interpréter les résultats.
- c) Étudier la dérivabilité de f en 2. Interpréter.
- 4) Étudier les branches infinies en l'infini.
- 5) Dresser le tableau de variation de f puis tracer la courbe.

🕰 Exercice 22

Soit f la fonction définie par $f(x) = \frac{x^2 + 3x - 2}{2x + 2}$, et C_f sa courbe représentative dans un repère orthonormé (O; i; j).

- 1) Déterminer D_f et étudier les limites aux bornes.
- 2) Montrer qu'il existe des réels a, b et c tels que pour tout x de D_f , $f(x) = ax + b + \frac{c}{x+1}$. Enduire que

la droite (D) d'équation $y = \frac{1}{2}x + 1$ est asymptote à C_f . Déterminer la position de (D) par rapport à

- 3) Montrer que C_f admet une asymptote parallèle à (Oy) et donner son équation.
- 4) Étudier le sens de variation de f dans les intervalles où elle est définie.
- 5) On désigne par A le point de la courbe C_f ayant pour abscisse 0, déterminer une équation de la droite T, tangente à la courbe C_f en A.
- 6) Construire, les asymptotes de C_f , le point A, la droite T et la courbe C_f .

Exercice 23

On considère la fonction f définie par

$$f(x) = \frac{x^2 + ax + b}{x - 1}$$

- 1) Déterminer les réels a et b tels que C_f passe par le point A(0;1) et admet en ce point une tangente horizontale.
- 1) On suppose a = 1, b = -1.
 - a) Déterminer les limites aux bornes de D_f .

Préciser les asymptotes éventuelles.

- b) Déterminer les réels α, β et γ tels que
- $f(x) = \alpha x + \beta + \frac{\gamma}{x-1}$. En déduire que la droite
- (D): y = x + 2 est asymptote oblique à la courbe.
- c) Dresser le tableau de variation de f puis tracer la courbe.
- 3) Résoudre graphiquement l'équation

$$x^2 + (1 - m)x + m - 1 = 0.$$

4) Soit $g(x) = \frac{x^2 + x - 1}{|x - 1|}$. Tracer C_g à l'aide de C_f .

Exercice 24 ★

Soit $f(x) = \sqrt{|x^2 - 2x - 3|}$.

- 1) Déterminer D_f . Justifier que f est continue sur \mathbb{R} .
- 2) Écrire f(x) sans valeur absolue. Étudier la continuité et la dérivabilité en -1 et 3 puis interpréter graphiquement les résultats.
- 3) Etudier les **branches infinies** de C_f en l'infini.
- 4) Tracer C_f .