TaDA workshop - VLDB 2024

Fast and accurate regional effect plots for automated tabular data analysis

Vasilis Gkolemis^{1,2} Christos Diou² Eirini Ntoutsi³ Theodore Dalamagas¹

¹ATHENA Research and Innovation Center

²Harokopio University of Athens

³University of the Bundeswehr Munich

August 2024

- Introduction
 - Problem Statement
 - Proposed Pipeline
 - Regional RHALE our contribution
- Regional RHALE advantages
 - It is fast
 - It treats well correlated features
- Effector Python package

- Introduction
 - Problem Statement
 - Proposed Pipeline
 - Regional RHALE our contribution
- Regional RHALE advantages
 - It is fast
 - It treats well correlated features
- 3 Effector Python package

Problem Statement

I will try to convince you for 4 things!

- Introduction
 - Problem Statement
 - Proposed Pipeline
 - Regional RHALE our contribution
- Regional RHALE advantages
 - It is fast
 - It treats well correlated features
- 3 Effector Python package

Black box ML model + XAI = a good pipeline!

Black box ML model + Global effect methods = a good pipeline!

Black box ML model + Regional effect methods = a better pipeline!

Black box ML model + Regional RHALE = an even better pipeline!

Bike-sharing dataset

- hourly count of bike-rentals (2011, 2012)
- Design-matrix X:
 - year, month, day, hour
 - working day vs. non-working day
 - temperature
 - humidity
 - windspeed
- Target variable Y:
 - bike-rentals per hour
 - $\star Y_{\mu} = 189.5$
 - ★ $Y_{\sigma} = 181.4$
- Decision Making: decide a discount policy
- Data Understanding: confirm/reject some ideas about bike rentals

Proposed pipeline: Fit and Explain

- decide a discount policy
 - which hour of the day to apply the discount
 - how the feature x_{hour} relates to y_{bike_rentals}
- Step 1: Fit a black-box ML model
 - Could be any ML model
 - ▶ a Neural Network achieves RMSE \approx 45.35 counts (0.25 Y_{σ})
- Step 2: Use feature effect
 - Global effect: x_{hour} vs y_{bike_rentals} globally
 - Regional effect: Xhour vs Ybike_rentals regionally

Let's see!

Global Effect: PDP and RHALE

RHALE paper (Gkolemis et al., 2023b): ALE + heterogeneity

Regional Effect: Regional-PDP

- Introduction
 - Problem Statement
 - Proposed Pipeline
 - Regional RHALE our contribution
- Regional RHALE advantages
 - It is fast
 - It treats well correlated features
- Street Python package

Regional Effect: Regional-RHALE

- Introduction
 - Problem Statement
 - Proposed Pipeline
 - Regional RHALE our contribution
- Regional RHALE advantages
 - It is fast
 - It treats well correlated features
- 3 Effector Python package

- Introduction
 - Problem Statement
 - Proposed Pipeline
 - Regional RHALE our contribution
- Regional RHALE advantages
 - It is fast
 - It treats well correlated features
- 3 Effector Python package

- Introduction
 - Problem Statement
 - Proposed Pipeline
 - Regional RHALE our contribution
- Regional RHALE advantages
 - It is fast
 - It treats well correlated features
- Street Python package

- Introduction
 - Problem Statement
 - Proposed Pipeline
 - Regional RHALE our contribution
- Regional RHALE advantages
 - It is fast
 - It treats well correlated features
- 3 Effector Python package

Thank You!

- If you find this package useful, we would appreciate your feedback and a star on GitHub
- https://arxiv.org/abs/2404.02629
- https://github.com/givasile/effector
- https://xai-effector.github.io/

References I

- Apley, Daniel W. and Jingyu Zhu (2020). "Visualizing the effects of predictor variables in black box supervised learning models". In: Journal of the Royal Statistical Society. Series B: Statistical Methodology 82.4, pp. 1059–1086. ISSN: 14679868. DOI: 10.1111/rssb.12377. arXiv: 1612.08468.
- Friedman, Jerome H and Bogdan E Popescu (2008). "Predictive learning via rule ensembles". In: *The annals of applied statistics*. Publisher: JSTOR, pp. 916–954.
- Gkolemis, Vasilis, Theodore Dalamagas, and Christos Diou (Oct. 2022). "DALE: Differential Accumulated Local Effects for efficient and accurate global explanations". In: Asian Conference on Machine Learning (ACML).
 - Gkolemis, Vasilis et al. (2023a). "Regionally Additive Models: Explainable-by-design models minimizing feature interactions". In: arXiv preprint arXiv:2309.12215.

References II

- Gkolemis, Vasilis et al. (2023b). "RHALE: Robust and Heterogeneity-Aware Accumulated Local Effects". In: *ECAI 2023*. IOS Press, pp. 859–866.
- Goldstein, Alex et al. (Mar. 2014). Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. en. arXiv:1309.6392 [stat]. URL:
 - http://arxiv.org/abs/1309.6392 (visited on 01/23/2023).
- Herbinger, Julia, Bernd Bischl, and Giuseppe Casalicchio (Feb. 2022). REPID: Regional Effect Plots with implicit Interaction Detection. arXiv:2202.07254 [cs, stat]. DOI: 10.48550/arXiv.2202.07254. URL: http://arxiv.org/abs/2202.07254 (visited on 06/11/2023).
- (2023). "Decomposing Global Feature Effects Based on Feature Interactions". In: arXiv preprint arXiv:2306.00541.

References III

Lundberg, Scott M and Su-In Lee (2017). "A unified approach to interpreting model predictions". In: *Advances in neural information processing systems* 30.