

100V 1.6m Ω N-Ch Power MOSFET

Features

- Ultra-low R_{DS(ON)}
- · Low Gate Charge
- · High Current Capability
- 100% UIS Tested, 100% R_a Tested

Product Summary

Parameter	Value	Unit
V _{DS}	100	V
$V_{GS(th)_Typ}$	2.7	V
I_D (@ $V_{GS} = 10V$) (1)	271	Α
$R_{DS(ON)_Typ}$ (@ $V_{GS} = 10V$)	1.6	mΩ

Applications

- Power Managerment in Telecom., Industrial Automation, CE
- Current Switching in DC/DC & AC/DC (SR) Sub-systems
- Motor Driving in Power Tool, E-vehicle, Robotics

TO220-3L Top View

Ordering Information

Device	Package	# of Pins	Marking	MSL	T _J (°C)	Media	Quantity (pcs)
JMSH1002AC-U	TO220-3L	3	SH1002A	N/A	-55 to 150	Tube	50
JMSH1002AE-13	TO263-3L	3	SH1002A	1	-55 to 150	13-inch Reel	800

Absolute Maximum Ratings (@ T_A = 25°C unless otherwise specified)

Parameter	arameter		Value	Unit
Drain-to-Source Volta	age	V _{DS}	100	V
Gate-to-Source Volta	age	V _{GS}	±20	V
Continuous Drain $T_C = 25^{\circ}C$ Current ⁽¹⁾ $T_C = 100^{\circ}C$		1	271	Δ.
		I _D	171	A
Continuous Drain Current ⁽⁶⁾	T _C = 25°C	I _D	180	А
Pulsed Drain Current	(2)	I _{DM}	886	Α
Avalanche Current (3)	I _{AS}	120	Α
Avalanche Energy (3)		E _{AS}	720	mJ
T _o = 25°C		Б	313	10/
Power Dissipation (4) $T_C = 10$	T _C = 100°C	P _D	125	W
Junction & Storage T	emperature Range	T _J , T _{STG}	-55 to 150	°C

Electrical Characteristics (@ T_J = 25°C unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
STATIC PARAMETERS							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$		100			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 80V, V_{GS} = 0V$				1.0	μА
	DSS		$T_J = 55^{\circ}C$			5.0	μΑ
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 20V$				±100	nA
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	2.0	2.7	4.0	V
Static Drain-Source ON-Resistance	R _{DS(ON)}	V _{GS} = 10V, I _D = 20A	TO263-3L		1.6	2.0	mΩ
	' DS(ON)	V _{GS} = 10 V, 1 _D = 20A	TO220-3L		1.8	2.3	mΩ
Forward Transconductance	g _{FS}	$V_{DS} = 5V, I_{D} = 20A$			51		S
Diode Forward Voltage	V_{SD}	$I_{S} = 1A, V_{GS} = 0V$			0.70	1.0	V
Diode Continuous Current	Is	T _C = 25°C				313	Α
DYNAMIC PARAMETERS (5)							
Input Capacitance	C _{iss}				9623		pF
Output Capacitance	C _{oss}	V _{GS} = 0V, V _{DS} = 50V, f = 1MHz			2091		pF
Reverse Transfer Capacitance	C _{rss}				1.2		pF
Gate Resistance	R_g	V _{GS} = 0V, V _{DS} = 0V, f = 1MHz			2.4		Ω
SWITCHING PARAMETERS (5)							
Total Gate Charge (@V _{GS} = 10V)	Qg				155		nC
Total Gate Charge (@V _{GS} = 6.0V)	Q_g	V _{GS} = 0 to 10V			101		nC
Gate Source Charge	Q_{gs}	$V_{DS} = 50V, I_{D} = 20A$			31		nC
Gate Drain Charge	Q_{gd}	1			37		nC
Turn-On DelayTime	t _{D(on)}				34		ns
Turn-On Rise Time	t _r	$V_{GS} = 10V, V_{DS} = 50V$ $R_{L} = 2.5\Omega, R_{GEN} = 6\Omega$			67		ns
Turn-Off DelayTime	$t_{D(off)}$				145		ns
Turn-Off Fall Time	t _f				111		ns
Body Diode Reverse Recovery Time	t _{rr}	$I_F = 15A$, $dI_F/dt = 100A$	Vμs		76		ns
Body Diode Reverse Recovery Charge	Q_{rr}	$I_F = 15A$, $dI_F/dt = 100A/\mu S$			116		nC

Thermal Performance

Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	49	59	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.30	0.40	°C/W

Notes:

- Computed continuous current assumes the condition of T_{J_Max} while the actual continuous current depends on the thermal & electro-mechanical application board design.
- 2. This single-pulse measurement was taken under T_{J_Max} = 150°C.
- 3. This single-pulse measurement was taken under the following condition [L = 100μ H, V_{GS} = 10V, V_{DS} = 50V] while its value is limited by $T_{J,Max}$ = 150°C.
- 4. The power dissipation P_{D} is based on T_{J_Max} = 150°C.
- 5. This value is guaranteed by design hence it is not included in the production test.
- 6. Continuous current rating is limited by the package used.

Typical Electrical & Thermal Characteristics

Figure 2: Transfer Characteristics

Figure 3: $R_{DS(ON)}$ vs. Drain Current

Figure 4: R_{DS(ON)} vs. Junction Temperature

Figure 5: Body-Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Electrical & Thermal Characteristics

Figure 7: Current De-rating

Figure 8: Power De-rating

Figure 9: Maximum Safe Operating Area

Figure 10: Single Pulse Power Rating, Junction-to-Case

Figure 11: Normalized Maximum Transient Thermal Impedance

TO220-3L Package Information

Package Outline

D.11.4	MILLIMETER					
DIM.	MIN.	NOM.	MAX.			
A	4.24		4.70			
A1	2.20		3.00			
ь	0.70		0.95			
bl	1.14		1.70			
С	0.40		0.60			
C1	1.15		1.40			
D	28.00		29.80			
D1	8.80		9.90			
Е	9.70		10.50			
L1			3.80			
L2	6.25		6.90			
L3	2.40		3.00			
e		2.54 BSC				

TO263-3L Package Information

Package Outline

DIM.	MILLIMETER				
DIWI.	MIN.	NOM.	MAX.		
A	4.24		4.77		
Al	2.30		2.89		
A2	0.00	0.10	0.25		
ь	0.70		0.96		
bl	1.17		1.70		
C	0.30		0.60		
C1	1.15		1.42		
D	14.10		15.88		
D1	8.50		9.60		
E	9.78		10.36		
L	1.78		2.79		
L1			1.75		
e		2.54			

Recommended Footprint

