Examenul național de bacalaureat 2021 Proba E. c)

Matematică M st-nat

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați termenul b_4 al progresiei geometrice $(b_n)_{n>1}$, știind că $b_5=6$ și $b_6=18$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x 4$. Determinați numerele reale m, știind că f(m) = m.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $100 \cdot 10^{2x} = 10^{3x}$
- **5p 4.** Determinați câte numere naturale pare, de două cifre, se pot forma cu cifre din mulțimea $\{0,1,2,3,4\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-4,0), B(4,0) și C(0,4). Determinați coordonatele centrului cercului circumscris triunghiului ABC.
- **5p 6.** Arătați că $\sin 2x = 1$, știind că $\operatorname{tg} x = 1$ și $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x+2 & 3 \\ -1 & x-2 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0)) = -1$.
- **5p b**) Determinați mulțimea valorilor reale ale lui x pentru care matricea A(x) este inversabilă.
- **5p** c) Se consideră numerele reale a, b și c, astfel încât $A(a) \cdot A(b) = A(c)$. Demonstrați că $a^2 + b^2 + 2c = 3$.
 - **2.** Pe mulțimea M = [-1,1] se definește legea de compoziție $x \circ y = x\sqrt{1-y^2} + y\sqrt{1-x^2}$.
- **5p** | a) Arătați că $0 \circ 1 = 1$.
- **5p b**) Determinați $x \in M$ pentru care $x \circ x = 0$.
- **5p** c) Demonstrați că $x \circ \sqrt{1-x^2} = 1$, pentru orice $x \in [0,1]$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = e^x + x \ln x 1$.
- **5p** a) Arătați că $f'(x) = e^x + \ln x + 1, x \in (0, +\infty)$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $e^x + x \ln x \ge \sqrt{e} + \frac{1}{2} \ln \frac{1}{2}$, pentru orice $x \in \left[\frac{1}{2}, +\infty\right]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 2} + \frac{x}{\sqrt{x^2 + 2}}$.
- **5p a)** Arătați că $\int_{0}^{1} f(x) \sqrt{x^2 + 2} dx = \frac{17}{6}$.
- **5p b**) Demonstrați că orice primitivă a funcției f este crescătoare pe $\mathbb R$.
- **5p** c) Se consideră funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) \frac{x}{\sqrt{x^2 + 2}}$. Determinați $a \in (0, +\infty)$ pentru care

$$\int_{0}^{1} g(x) dx = \frac{\sqrt{3}}{2} + \ln \frac{a + \sqrt{3}}{\sqrt{2}}.$$