DCC-SIGNALE Lars Bockstette

Datum:		Name:					
Aufbau eines DC	$C ext{-}Signals$						
11111111111111111	0	XXXXXXXX	0	$01xCS_3S_2S_1S_0_{76543210}$	0	PPPPPPP	1
Synchronbits	Startbit	Adressbyte	Startbit	Befehlsbyte	Startbit	Prüfbyte	Endbit

Figure 1: Darstellung eines DCC Datenpakets im Betriebsmodus Bit 5 des Befehlsbytes ist 1 für Vorwärts und 0 für Rückwärts

Adressen der DCC-Decoder

0000-0000	Nachricht an alle Fahrzeugdecoder				
0000-0001 bis 0111-1111	Fahrzeugdecoder mit 7 Bit Adressen 0AAA-AAAA				
1000-0000 bis 1011-1111	Zubehördecoder mit 11 Bit Adressen 10AA-AAAA 1AAA-DAAR/0AA1				
1100-0000 bis 1110-0111	Fahrzeugdecoder mit 14 Bit Adressen 11AA-AAAA AAAA-AAAA				
1110-1000 bis 1111-1110	Reserviert für zukünftige Anwendungen				
1111-1111	Leerlauf oder auch Idle-Paket				

Figure 2: Adressbyte Aufteilung(A=Adressbit,D=Datenbit)

Fahrstufen der Lokomotiven

$S_3S_2S_1S_0C$	Fahrstufe	$S_3S_2S_1S_0C$	Fahrstufe	$S_3S_2S_1S_0C$	Fahrstufe	$S_3S_2S_1S_0C$	Fahrstufe
0 0 0 0 0	Stop	0 1 0 0 0	5	1 0 0 0 0	13	1 1 0 0 0	21
0 0 0 0 1	Stop**	0 1 0 0 1	6	1 0 0 0 1	14	1 1 0 0 1	22
0 0 0 1 0	EStop*	0 1 0 1 0	7	1 0 0 1 0	15	1 1 0 1 0	23
0 0 0 1 1	EStop**	0 1 0 1 1	8	1 0 0 1 1	16	1 1 0 1 1	24
0 0 1 0 0	1	0 1 1 0 0	9	1 0 1 0 0	17	1 1 1 0 0	25
0 0 1 0 1	2	0 1 1 0 1	10	1 0 1 0 1	18	1 1 1 0 1	26
0 0 1 1 0	3	0 1 1 1 0	11	1 0 1 1 0	19	1 1 1 1 0	27
0 0 1 1 1	4	0 1 1 1 1	12	1 0 1 1 1	20	1 1 1 1 1	28

Figure 3: C ist das LSB(least significant bit) S_3 ist das MSB(most significant bit)