Standard 05. Cal	Iculus of Cu	rves																									
Calculus of Curve	es																										
In single-variab	ole coloulus	21011	loarni	- bo	1	n 1	ako	tho	lim	م المنا	doris	امان	ND (and	into	ova	۱ ۵	C <:	nala	VIA	rial	do I	-unc	tion	, C	(~)	
This section aims		1 '														9								١.	"		
17/13 300 1101 311110	S TO CATCHO	111000	1000		100		VOITO		10170	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1(0)9	, 5(0				lor Co.					J. Cu			
limits																											
The limit of a ve	ector-valued	func	tion is	s int	uitiv	e:	lim i	(t) =	= lim	< X1-	t), y	t),:	Z(t)	>= 6	< lim	XL:	t),	lim >	ylt).	, lim	211)>.	You	l sii	mpl	1	
take the limit o										^					8-70	`		E 74		6-70							
We can extend the						1 Y									initi	on c	of.	cont	inui	4	for	vect	TOY-	valu	ed		
functions: a vec	ctor-valued	functi	ion fl	t) is	COY	tinu	ous	at	a if	- lin	ท รี l+ >a	t) = '	r̃(a).														
- T - 11	, , , , , , , , , , , , , , , , , , ,	1	100			, 1	1		J			7.		-1		_2											
example. Is the					(む) =	- t(COS 1:	ار, د		n(t) >							>										
lim τ(t)= < lim to t->π = < π·-1,		t->11	COULT	, -							= < 11		'			·CII	-										
= ζ -π, π,											=4-																
			₽ (t)	is	con	hnuc	ous	at 1	π.																		
derivatives																											
definition the sc	ame way we fixed im	did	for 1	imits	. Th	e de	eriva	tive	for	a ve	ctor	- va	lued	fu	nctic	n,	Ì(t	, is	de	fine	do	is fo	بالمال	os:			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = \lim_{n \to \infty} \frac{d}{dt}(\vec{r}(t)) = \lim_{n \to \infty} \frac{d}{dt}(\vec{r}(t$	ame way wo f(th)-f(t) im h → o derivative	e did = < li	for li m x(t+	imits	t) ,	e <u>de</u> im ¥	eriva (t+h)- h	tive	for	a ve	ctor	- va	lued	fu	nctic	n,	Ì(t	, is	de	fine	do	is fo	بالمال	os:			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1$ in example. Find the $\vec{r}'(t) = \langle x'(t), y'(t) \rangle$	ame way wo f(th)-f(t) im h → o derivative	e did = < li: n:	for $\frac{x(t+1)}{0}$	imits	t), t	e <u>de</u> im ^{vi} →o	eriva (t+h)- h	tive	for	a ve	ctor	- va	lued	fu	nctic	n,	Ì(t	, is	de	fine	do	is fo	بالمال	os:			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = \int_{0}^{t} (t) = \int_{0}^{t} ($	ame way wo f(th)-f(t) im h → o derivative	e did = < li h	for $ $ $m \xrightarrow{x(t+1)} 0$ $(t) = < t$ $(t) = 1 \cdot 0$	imits	t), t	e <u>de</u> im ^{vi} →o	eriva (t+h)- h	tive	for	a ve	ctor	- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = \int_{0}^{t} (t) = \int_{0}^{t} ($	ame way wo f(th)-f(t) im h → o derivative	e did = < li n of 7 x'(t)	for $\frac{x(t+1)}{0}$	cost	t), t	e $\frac{de}{dt}$ $\Rightarrow 0$ $\Rightarrow 0$ $\Rightarrow t \leq t$	eriva (t+h)- h sinlt	tive	for	a ve	ctor	- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the solution the solution the solution the solution the solution the solution that the example. Find the $\vec{r}'(t) = \langle x'(t), y'(t) \rangle$ $x(t) = t \cos(t)$	ame way wo f(th)-f(t) im h → o derivative	e did = < li n of 7 x'(t)	for $\frac{x(t+1)}{0}$ $\frac{x(t+1)}{0}$	cost	t), t	e $\frac{de}{dt}$ $\Rightarrow 0$ $\Rightarrow 0$ $\Rightarrow t \leq t$	eriva (t+h)- h sinlt	tive	for	a ve	ctor	- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1i$ example. Find the $\vec{r}'(t) = \langle x'(t), y'(t) \rangle$ $x(t) = t \cos(t)$ $y(t) = t$ $z(t) = t \sin(t)$	ame way wo f(th)-f(t) im h → o derivative	e did = < li n of 7 x'(t)	for $\frac{x(t+1)}{0}$ $\frac{x(t+1)}{0}$	cost	t), t	e $\frac{de}{dt}$ $\Rightarrow 0$ $\Rightarrow 0$ $\Rightarrow t \leq t$	eriva (t+h)- h sinlt	tive	for	a ve	ctor	- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1i$ example. Find the $\vec{r}'(t) = \langle x'(t), y'(t) \rangle$ $x(t) = t \cos(t)$ $y(t) = t$ $z(t) = t \sin(t)$ properties: $(\vec{u} + \vec{v})' = \vec{u}' + \vec{v}'$	ame way wo f(th)-f(t) im h → o derivative	e did = < li n of 7 x'(t)	for	imits $\cos(t)$	t) - si	e $\frac{de}{dt}$ im im im im it it it it it it	$\frac{(t+n)}{n}$ sinlt	tive - y(t)	for	a ve	ctor	- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the solution the solution the solution the solution the solution the solution that the sol	ame way wo flam h h h h h h h h h h h h h h h h h h h	e did = < li n of 7 x'(t)	for m x(t+	imits $\cos(t)$	t) - si + cos	e <u>de</u> im ** im ** i, t s n(t) · · · · · · · · · · · · · · · · · · ·	$\frac{(t+n)}{n}$ $\sin t$ 1 1 1 1	tive - y(t)	for	a ve	ctor	- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the solution the solution the solution the solution the solution the solution that the sol	ame way wo flam h h h h h h h h h h h h h h h h h h h	e did = < li n of 7 x'(t)	for m x(t+	imits $\cos(t)$	t) - si + cos	e $\frac{de}{dt}$ im im im im it it it it it it	$\frac{(t+n)}{n}$ $\sin t$ 1 1 1 1	tive - y(t)	for	a ve	ctor	- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1i$ example. Find the $\vec{r}'(t) = (x'(t), y'(t))$ $x(t) = t \cos(t)$ $y(t) = t$ $z(t) = t \sin(t)$	ame way wo flam h h h h h h h h h h h h h h h h h h h	e did = < li n of 7 x'(t)	for m x(t+	imits $\cos(t)$	t) - si + cos	e <u>de</u> im ** im ** i, t s n(t) · · · · · · · · · · · · · · · · · · ·	$\frac{(t+n)}{n}$ $\sin t$ 1 1 1 1	tive - y(t)	for	a ve	ctor	- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the sold $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1i$ example. Find the $\vec{r}'(t) = (x'(t), y'(t))$ $x(t) = t \cos(t)$ $y(t) = t$ $z(t) = t \sin(t)$	ame way we fixed im im h derivative (t), $z'(t)$) $\vec{v}'(t)$	= < li h. x'(t) x'(t) z'(t)	for m x(t+1) = 0 (t) = < t) = 1 · c = 1 · si	imits $\frac{dy}{dx} = \frac{x}{x}$ $\frac{dx}{dx} = \frac{x}{x}$	t) - si + cos = \vec{u} : = \vec{u} :	e <u>de</u> m im i, t s m(t).	1 1 1 1 1 1 1 1 1	+ive . y(t)	for a	<u>a ve</u> , <u>a(6++</u>)		- Va	lued = < ;	Fui	nctic	bn, :	Ì(t` ≥'(t`), is)>=	de de	fine x(t)	d 0, dt	is fo	بالمال	os:			
definition the sold $(\vec{r}(t)) = \vec{r}'(t) = 1i$ example. Find the $(\vec{r}'(t)) = (\vec{r}'(t)) = ($	ame way we fixed im has derivative (t), $\vec{z}'(t)$) $\vec{v}'(t)$	= did = < li n x'(t) x'(t)	for m x(t+	imits cost cost i.v) i.v) i.v) i.v)	t) - si + cos = u': = u'	e <u>de</u> im im i, t s n(t) i v t i v v v v v v	sinlt 1 1 1 1 1 1 1 1 1	+ive - y(t)	for a	a ve	r'lt)	- <u>Va</u>	lued = < ;	(t)-	sin (bn, :	√ (t)), is) > = sinlt	de d	fine x(t)	, dt	ylt),	ollou d dt 2	05:			
Refinition the sold $(\vec{r}(t)) = \vec{r}'(t) = 1i$ Example. Find the $\vec{r}'(t) = \langle x'(t), y'(t) \rangle$ $(\vec{r}(t)) = \langle x'(t), y'(t) \rangle$	ame way we fitth) - Fitth have a derivative at the definition for vector-value.	= < li>did = < li>n. x'(t) x'(t) z'(t) tion ued :	for	imits cost cost i.v) i.v) i.v) i.v) tegra	$\begin{array}{c} \vdots \\ t), \\ t), \\ t) \\ -\sin t \end{array}$ $\begin{array}{c} \vdots \\ \cos t \end{array}$	e $\frac{de}{dt}$ im im iii iii iii iii iii iii	$\vec{u} \cdot \vec{v}$ sin lt $\vec{u} \cdot \vec{v}$ $\vec{u} \cdot \vec{v}$ ector $\vec{v} \cdot \vec{v} \cdot \vec{v}$	+ive - y(t)	for in horo	a ve.	ctor n)-2(1) r'(t)	- <u>Va</u>	lued = < ;	(t)-	sin (bn, :	√ (t)), is) > = sinlt	de d	fine x(t)	, dt	ylt),	oll ou	se ĉ			
definition the so $\frac{d}{d\epsilon}(\vec{r}(t)) = \vec{r}'(t) = 1$ in $\frac{d}{d\epsilon}(\vec{r}(t)) = 1$ in $\frac{d}{d\epsilon}(\vec{r}(t)$	ame way wo flath)-Flat hand hand hand hand hand hand hand hand	e did = < li n x'(t) Y'(t) tion ued : alued	for	imits cost n(t) i v) i v) tegra	t) - si t) - si t cos = \vec{u} = \vec{u}	e $\frac{de}{dt}$ im if if if if if if if if if	sin lt $ \vec{u} \cdot \vec{v} $ $ \vec{v} \cdot \vec{u} \times \vec{v} $ ector $ \vec{v} \cdot \vec{u} \times \vec{v} $	Tive - y(t)	lued tt, S x(t)d	a ve. 3(6+++)	ctor n)-2(1) ctio	- <u>va</u> ::) ,	lued = < ;	(t)-	sin (bn, :	√ (t)), is) > = sinlt	de d	fine x(t)	, dt	ylt),	oll ou	se ĉ			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1$ in $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1$ in $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1$ in $\frac{d}{dt}(t) = t$ and $\frac{d}{dt}(t) = t$ in	ame way we fitth) - Fitth have a derivative at the definition for vector-value.	e did = < li n x'(t) Y'(t) tion ued : alued	for	imits cost n(t) i v) i v) tegra	t) - si t) - si t cos = \vec{u} = \vec{u}	e $\frac{de}{dt}$ im if if if if if if if if if	sin lt $ \vec{u} \cdot \vec{v} $ $ \vec{v} \cdot \vec{u} \times \vec{v} $ ector $ \vec{v} \cdot \vec{u} \times \vec{v} $	Tive - y(t)	lued tt, S x(t)d	a ve. 2 (6+1) fun. y(t) d t t t t t t t t t t t t t	ctor n)-24 h)-24 ctio	- <u>va</u> :i) ,	dt >	(t)-	sin (bn, :	√ (t)), is) > = sinlt	de d	fine x(t)	, dt	ylt),	oll ou	se ĉ			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1$ in $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(\vec{r}(t)) = \vec$	ame way we flath)-Flath im h aderivative (t), z'(t) > d the definition for vector-value the follows the follows the follows	tion ued: alued ing:	for 1 m x(t+ (t) = < t (t	imits cost n(t) i v) i v) tegra	t) - si t) - si t cos = \vec{u} = \vec{u}	e $\frac{de}{dt}$ im if if if if if if if if if	sin lt $ \vec{u} \cdot \vec{v} $ $ \vec{v} \cdot \vec{u} \times \vec{v} $ ector $ \vec{v} \cdot \vec{u} \times \vec{v} $	Tive - y(t)	lued tt, S x(t)d	4(t) dit, Si	ctor n)-21 ctio dt, S a v(t cost ii) S	- va ii) ;	cos	(t)-	sin (d	com	vite vite	sinlt	de d	fine x(t)	o, de	a to	oll ou	se ĉ			
definition the so $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t) = 1$ in $\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(\vec{r}(t)) = \vec$	ame way wo flath)-Flath im h aderivative (t), z'(t) d the definition vector-value for vector-value the follows dt, Stat, S	tion ued ing i	for 1 m x(t+ ->0 (t) = < t (t) = < t (t) = 1 (t) =	imits cost n(t) i v) i v) tegra	t) - si t) - si t cos = \vec{u} = \vec{u}	e $\frac{de}{dt}$ im if if if if if if if if if	sin lt $ \vec{u} \cdot \vec{v} $ $ \vec{v} \cdot \vec{u} \times \vec{v} $ ector $ \vec{v} \cdot \vec{u} \times \vec{v} $	Tive - y(t)	lued tt, S x(t)d	4(t) dit, Si	ctor n)-24 h)-24 ctio	- va ii) ;	lued = < ; cos (t) dt t = <	(t)- (t)- (t)- (t)- (t)-	sin la	on, : t), : com	vite in the second seco	o, is > = sinlt ent	de d	Fine x(t)	o, de	a to	oll ou	se ĉ			
definition the sold $(\vec{r}(t)) = \vec{r}'(t) = 1$ example. Find the $\vec{r}'(t) = (\vec{r}(t)) = \vec{r}'(t) = 1$ example. Find the $\vec{r}'(t) = (\vec{r}(t)) = (\vec$	ame way we fleth)-Fleth im h derivative (t), z'(t) d the definit for vector-val for vector-val e the follow 2) dt, Stdt, S h h to, z'z t²+cz, si	tion ued ing ing ing cost	for 1: m x(t+ ->0 (t) = < t (t) = < t (t) = 1. (t) (t	imits cost n(t) i v) i v) tegra	t) - si t) - si t cos = \vec{u} = \vec{u}	e $\frac{de}{dt}$ im if if if if if if if if if	sin lt $ \vec{u} \cdot \vec{v} $ $ \vec{v} \cdot \vec{u} \times \vec{v} $ ector $ \vec{v} \cdot \vec{u} \times \vec{v} $	Tive - y(t)	lued tt, S x(t)d	4(t) dit, Si	ctor n)-21 ctio dt, S a v(t cost ii) S	- va ii) ;	dt > dt > dt dt = <	(t)- (t)- 2(t)0	sin (d	com	vite vite	t dt	de d	Fine x(t)	t) dt	a to	oll ou	se ĉ			
Refinition the sold $(\vec{r}(t)) = \vec{r}'(t) = 1$ Example. Find the $\vec{r}'(t) = (\vec{r}(t)) = \vec{r}'(t)$ Example. Find the $\vec{r}'(t) = (\vec{r}(t)) = (\vec{r}(t)) = (\vec{r}(t))$ Example. Find the $\vec{r}'(t) = (\vec{r}(t)) = $	ame way wo flath)-Flath im h aderivative (t), z'(t) d the definition vector-value for vector-value the follows dt, Stat, S	tion ued ing ing ing cost	for 1: m x(t+ ->0 (t) = < t (t) = < t (t) = 1. (t) (t	imits cost n(t) i v) i v) tegra	t) - si t) - si t cos = \vec{u} = \vec{u}	e $\frac{de}{dt}$ im if if if if if if if if if	sin lt $ \vec{u} \cdot \vec{v} $ $ \vec{v} \cdot \vec{u} \times \vec{v} $ ector $ \vec{v} \cdot \vec{u} \times \vec{v} $	Tive - y(t)	lued tt, S x(t)d	4(t) dit, Si	ctor n)-21 ctio dt, S a v(t cost ii) S	- va ii) ;	dt > dt > dt dt = <	(t)- (t)- 2(t)0	sin li	com	vite vite	t dt	de d	Fine x(t)	t) dt	a to	oll ou	se ĉ			

Applications

Derivatives and integrals have a lot of applications, in fact the next standard is dedicated to one application of the derivative, we will discuss three short applications in this section.

equation of the tangent line

Recall from Calculus I that the derivative of a function is the slope of the tangent line. For vector-valued functions, the derivative gives a tangent vector that points in the direction of increasing t-values. This vector is used as a direction vector for the tangent.

Given the vector-valued function, $\vec{\tau}(t)$, we call $\vec{\tau}'(t)$ the tangent vector provided it exists and is not $\vec{0}$. The tangent line to $\vec{\tau}(t)$ at the point P is then the line that passes through the point P and is parallel to the tangent vector. If $\vec{\tau}'(t) = \vec{0}$ we would have a vector with no magnitude and no direction.

Given that $\vec{r}'(t) \neq \vec{0}$, the unit tangent vector to the curve is given by $\vec{T}(t) = \frac{\vec{r}(t)}{||\vec{r}'(t)||}$.

デ(t) shown in black, tangent line shown in red i.e. v(t)=ア+tデ(t)

example. Find the general formula for the unit tangent vector and the vector equation of the tangent line to the curve given by $\vec{r}(t) = \langle t\cos(t), t, t\sin(t) \rangle$ at $t = \pi$.

(i) r(t) = < toos(t), t, tsin(t)>

 $\vec{r}'(t) = \langle \cos(t) - \sin(t), 1, \sin(t) + \cos(t) \rangle$

 $||\vec{r}(t)|| = \int (\cos(t) - \sin(t))^2 + (1)^2 + (\sin(t) + \cos(t))^2$

= $\int \cos^2(t) - 2\cos(t) \sin(t) + \sin^2(t) + 1 + \sin^2(t) + 2\cos(t) \sin(t) + \cos^2(t)$

 $=\sqrt{2\cos^2(t)+2\sin^2(t)+1}$

 $T(t) = \frac{r(t)}{||\vec{r}(t)||} < \frac{\cos(t) + \sin(t)}{||z\cos^2(t) + z\sin^2(t) + 1|}, \frac{1}{||z\cos^2(t) + z\sin^2(t) + 1|} > \frac{\sin(t) - \cos(t)}{||z\cos^2(t) + z\sin^2(t) + 1|} > \frac{1}{||z\cos^2(t) + z\sin^2(t) + 1|}$

 $P = \vec{r}(\pi) = \langle \pi \cos(\pi), \pi, \pi \sin(\pi) \rangle = \langle -\pi, \pi, 0 \rangle$

tangent line: $\vec{v}(t) = \langle -\pi, \pi, 0 \rangle + t \langle -\frac{1}{13}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}} \rangle$

angle of intersection

Suppose two curves \vec{r} , and \vec{r}_z intersect at a point P. Then the angle they intersect at can be determined by finding the angle of intersection of the tangent vector vectors at the point P.

Curves can intersect multiple times (sometimes with different angles) so we must be careful when inputting the intersection point. Curves can also run at different "speeds" i.e. the parameters could be different for each curve at the point of intersection.

example. Find the angle of intersection for the curves $\vec{r}(t) = \langle \cos(t), -\sin(t), t \rangle$ and $\vec{r}_2(s) = \langle -s, s^2 - 1, \ln(s) + \pi \rangle$ at the point $P=(-1,0,\pi)$ First solve for the values t and $v: \vec{r}_1(\pi) = \langle \cos(\pi), -\sin(\pi), \pi \rangle = \langle +1, 0, \pi \rangle + \vec{r}_2(1) = \langle -1, (1)^2 - 1, |n(1) + \pi \rangle = \langle -1, 0, \pi \rangle$ Next find the tangent vectors: F; (t) = <-sin(t), -cos(t), 1 > { +2(s) = <-1, 2s, 5 > Tangent vectors at our given $t \in S$: \vec{r} , $(\pi) = \langle 0, 1, 1 \rangle$ \vec{r} \vec{r} $(1) = \langle -1, 2, 1 \rangle$ $\langle 0, -1, 1 \rangle \circ \langle -1, 2, 1 \rangle = ||\langle 0, -1, 1 \rangle|| \cdot ||\langle -1, 2, 1 \rangle|| \cdot ||\langle 0, -1, 1 \rangle||$ $(0)(-1) + (-1)(z) + (1)(1) = \sqrt{(0)^2 + (-1)^2 + (1)^2} \sqrt{(-1)^2 + (2)^2 + (1)^2} \cos(\theta)$ $0-2+1=\sqrt{2}\sqrt{6}\cos\theta$ $\frac{1}{2\sqrt{3}} = \cos(\theta)$ $\theta = \arccos(-\frac{\sqrt{3}}{6})$ arclenath There are two types of distance that are commonly discussed: · displacement - the "direct" or shortest distance between the starting point and end point. · total distance traveled - distance that takes into account the path followed. Here is a 2D photo to show why both are important. | | r(b) - r(b) | = the two points rub ; ru) subtracted Salif'(+) 11dt = the distance traveled along the curve FLE) In Calculus I, we found that the arclength for a two-dimensional curve is given by L= So [fit] + [glt] dt The natural extension to three-dimensions is L= So [f'(t)] + [g'(t)] dt. We can simplify this equation to be L= Sa 1171(t)11 dt example. Find the arclength of 7(t)=<t,3cost,3sint> where -5465. 7'(t)= <1,-3sint, 3cost> $|\vec{r}|_{\{t\}}|_{t} = |\vec{r}|_{t}^{2} + (-3\sin t)^{2} + (3\cos t)^{2} = |\vec{r}|_{t}^{4} = |\vec{r}|_{t}^{4}$ L= 10 (5-(-5)) = 1010 The last concept is the arclength function which tells us the distance traveled at time t. We define the arclength function as $s(t) = \int_0^t ||\vec{r}'(t)|| dt$. example. Determine the arclength function for \$\(\darkappa\) = < t, 3 cos(t), 3 sin(t)>. $\vec{r}'(t) = \langle 1, -3 \sin(t), 3 \cos(t) \rangle$ 117 (4)11= 110 s(t) = 50 10 dt = t 10 1 = t 10 We can also ask, where are we on the curve if we have traveled a specified distance? To find this we solve the arclength function for t and plug the result into the parameterization. example. Reparameterize the function into \$\forall (t(s)). $s = t \cdot 10^{1} = t = \frac{10^{1}}{10^{1}}$ $r^{2}(s(t)) = (\frac{5}{10}, 3\cos(\frac{3}{10}), 3\cos(\frac{3}{10}))$