

Nozioni di base sulla valutazione dell'incertezza

Argomenti trattati

- Terminologia
 - ✓ Effetti sistematici ed incertezza
- Principali contributi di incertezza
- Classificazione dei metodi di misurazione
- II modello deterministico
 - Interpretazione del concetto di incertezza
 - Propagazione dell'incertezza
 - Casi notevoli

- Una babele di termini!
 - Errore
 - Precisione
 - Accuratezza
 - Incertezza
 - Risoluzione
 - Sensibilità
 - Effetto sistematico
 - ...
- per ragioni storiche ... e non solo!

Errore

- Impiegato in passato, distinguendo tra:
 - ✓ Errori sistematici: quelli che influenzano una misura sempre con lo stesso segno e lo stesso valore
 - Errori accidentali: quelli dovuti a fenomeni aleatori, quindi non controllabili dall'operatore
- Attualmente usato (measurement error) per indicare la differenza tra una misura ed un valore di riferimento
 - ✓ Nel caso del controllo di taratura di uno strumento, indica la differenza tra il valore misurato dallo strumento e quello generato da un campione

- Precisione (measurement precision)
 - Indica la capacità di un sistema di misurazione di fornire misure simili in condizioni specificate
 - Condizioni di ripetibilità
 - A parità di procedura, operatore, strumenti e condizioni di misura
 - Condizioni di riproducibilità
 - Con diverse procedure, operatori, strumenti, e condizioni di misura
 - Solitamente indicata mediante parametri di "imprecisione", quali varianza e deviazione tipo

- Accuratezza (measurement accuracy)
 - Indica la capacità di un sistema di misurazione di fornire misure "vicine" al valore effettivo del misurando
 - ✓ È un concetto qualitativo: lo strumento X è più
 accurato dello strumento Y se X fornisce errori minori
 - ✓ È spesso confuso con il termine "incertezza"
 - I costruttori preferiscono dichiarare che uno strumento è "accurato" piuttosto che "incerto"

- Incertezza (measurement uncertainty)
 - Indica l'indeterminazione nella conoscenza del misurando
 - ✓ Include tutti i contributi di incertezza
 - Espressa fornendo la misura in termini di fascia di valore
 - Il significato della fascia di valore dipende dal modello impiegato (deterministico o probabilistico)

- Risoluzione (measurement resolution)
 - Minima variazione della grandezza di ingresso di un dispositivo di misurazione che provoca una variazione apprezzabile della sua indicazione
 - ✓ Lunità di misura è quella della grandezza di ingresso
 - Indica la capacità del dispositivo di rilevare «piccole» variazioni del misurando
 - ✓ NOTA: potrei essere interessato a piccoli valori di risoluzione indipendentemente dall'incertezza
 - ✓ La risoluzione è un limite per l'incertezza

- Sensibilità (sensitivity)
 - Rapporto tra la variazione dell'indicazione (<u>uscita</u>) di un dispositivo di misurazione e la corrispondente variazione del misurando (<u>ingresso</u>)
 - ✓ Lunità di misura è quella dell'uscita diviso quella dell'ingresso (ad esempio, mm/V o div/V per un oscilloscopio)
 - Valore costante per dispositivi con caratteristica (nominalmente) lineare
 - ✓ Il reciproco rappresenta la costante di taratura
 - Per dispositivi non lineari dipende dal valore della grandezza di ingresso

- Effetto sistematico (systematic error)
 - Effetto, dovuto a diverse cause, che in misure ripetute rimane costante o varia in modo prevedibile
 - Una volta valutato può essere compensato correggendo la misura
 - ✓ La valutazione di un effetto sistematico è sempre affetta da incertezza

Effetti sistematici

- Effetti sistematici in una misura:
 le principali cause sono legate
 - all'interazione tra strumentazione e sistema in misura (effetto di carico o carico strumentale)
 - all'effetto delle grandezze di influenza
 - alle non idealità della strumentazione impiegata
 - ✓ ad esempio, errori di fuori zero (offset) e di guadagno

Effetti sistematici

- Non sempre è possibile, o conveniente, correggere un effetto sistematico:
 - In molti casi è necessario valutare l'entità dell'effetto sistematico impiegando valori noti del misurando
 - ✓ La valutazione del fuori zero è, solitamente, "indolore", mentre la valutazione dello scarto tra guadagno nominale e guadagno effettivo richiede l'impiego di campioni di riferimento non sempre disponibili.
 - La valutazione dell'effetto di carico richiede la conoscenza di parametri del sistema in misura e della strumentazione, che non sempre sono noti.

Effetti sistematici

- Non sempre è possibile, o conveniente, correggere un effetto sistematico:
 - Se un effetto sistematico non è corretto, diventa un contributo di incertezza
 - In caso di correzione, rimane un contributo residuo di incertezza
 - ✓ Il modello matematico impiegato per effettuare la correzione è una semplificazione della realtà
 - ✓ I parametri di questo modello non sono perfettamente noti

Principali contributi di incertezza

Principali contributi di incertezza

- Una misura con incertezza nulla non può essere ottenuta:
 - Gli strumenti impiegati non sono ideali
 - La misura ottenuta è diversa dalla misura "a vuoto" (effetto di carico)
 - Le grandezze di stato e quelle di influenza non sono perfettamente note
 - Le grandezze di stato (del sistema in misura) sono quelle che modificano il misurando
 - ✓ Le grandezze di influenza sono quelle che modificano le caratteristiche della strumentazione

Principali contributi di incertezza

- Una misura con incertezza nulla non può essere ottenuta:
 - La risoluzione con cui si osserva il segnale di misura è limitata (incertezza di quantizzazione)
 - Al segnale di misura è sovrapposto un processo casuale (rumore)
 - Il limite inferiore all'incertezza è fissato dalla cosiddetta "incertezza intrinseca del misurando", (definitional uncertainty):
 - ✓ La riduzione di questo contributo di incertezza richiede di complicare la definizione del misurando e, di conseguenza, anche la sua realizzazione

- Il modello deterministico, molto diffuso in passato, è impiegato ancora oggi
 - quando è accettata una sovrastima dell'incertezza
 - da molti costruttori per dichiarare le specifiche di incertezza dei propri strumenti

- La misura di un parametro è assegnata sotto forma di intervallo limitato (<u>fascia di valore</u>), solitamente simmetrico rispetto al valore m₀ assegnato al parametro
- Caratteristiche della fascia di valore:
 - ✓ Il misurando è compreso nella fascia di valore
 - ✓ Tutti gli elementi della fascia di valore sono ugualmente validi a rappresentare il misurando

Incertezza assoluta

Espressione di una misura:

$$m = (m_0 \pm \delta m) U$$

- √ δm: incertezza assoluta (espressa nella stessa unità di misura U del misurando)
- ✓ 2 δm : ampiezza della fascia di valore

- Incertezza assoluta
 - Esempi di misura:

$$r = (113 \pm 1) \Omega$$

 $m = (1.45 \pm 0.02) g$

L'incertezza assoluta non fornisce però una sensazione immediata della qualità di una misura:

$$I_1 = (13.60 \pm 0.01) \text{ m}$$

 $I_2 = (2320.10 \pm 0.01) \text{ m}$

✓ Le due misure l₁ ed l₂ sono caratterizzate dalla stessa incertezza assoluta, ma l₂ è più difficoltosa da ottenere

Incertezza relativa

In alternativa, si ricorre all'incertezza relativa εm oppure all'incertezza relativa percentuale $\varepsilon m_{\%}$:

$$\varepsilon m = \delta m/m_0$$
; $\varepsilon m_{\%} = 100 \cdot \delta m/m_0$

- √ εm: grandezza adimensionata
- ✓ Espressione di una misura:

$$m = m_0 U$$
, $\pm \varepsilon m$

Nel caso dell'esempio precedente:

$$I_1$$
 = 13.6 m, 0.07 %
 I_2 = 2320.1 m, 0.0004 %

Incertezza ridotta

Altra possibilità è l'incertezza ridotta, ossia l'incertezza riferita ad un valore convenzionale m_c del misurando:

$$\varepsilon m = \delta m/m_c$$
; $\varepsilon m_{\%} = 100 \cdot \delta m/m_c$

- ✓ NOTA: il simbolo è lo stesso di quello dell'incertezza relativa!
- Deve essere prestata massima attenzione quando si confrontano strumenti diversi

Incertezza ridotta

- Attenzione all'incertezza ridotta ... Voltmetro 1: portata 50 V; incertezza relativa: 1 % Votmetro 2: portata 100 V; incertezza relativa 0.5 %* *ridotta rispetto alla portata
 - Misurazione di una tensione pari a circa 30 V
 - Con voltmetro 1: (30 ± 0.3) V
 - Con voltmetro 2: (30 ± 0.5) V
- Incertezza ridotta spesso impiegata dai costruttori per ... confondere le idee!

Propagazione dell'incertezza

- Come si combinano i diversi contributi di incertezza che affliggono una misura?
 - Dipende dal metodo di misurazione impiegato
- Solitamente si distingue tra metodi
 - ✓ diretti: misura assegnata a partire dall'indicazione di uno strumento (a lettura diretta) o dal valore di uno o più campioni (per confronto)
 - ✓ indiretti: misura assegnata come risultato di un calcolo che coinvolge grandezze ottenute con metodi diretti

Propagazione dell'incertezza

- Metodi diretti
 - Si sommano i vari contributi
 - ✓ Incertezza strumentale
 - ✓ Incertezza di lettura
 - ✓ Effetti del rumore (ripetibilità)
 - Richiede l'applicazione di un metodo a letture ripetute
 - ✓ Incertezza intrinseca del misurando
 - **√** ...

- Propagazione dell'incertezza
 - Metodi indiretti

Misurando Y esplicitato rispetto alle grandezze X_i :

$$Y=f(X_1, X_2, \dots, X_N)$$

$$\checkmark x_1=(x_{10} \pm \delta x_1) U_1$$

$$\checkmark \dots$$

$$\checkmark x_N=(x_{N0} \pm \delta x_N) U_N$$

Valutazione del misurando:

$$y_0 = f(x_{10}, x_{20}, ..., x_{N0})$$

Propagazione dell'incertezza

Metodi indiretti

Valutazione dell'incertezza assoluta:

$$\delta y = \left| \frac{\partial f}{\partial x_1} \right|_{(x_{10}, \dots, x_{N0})} \cdot \delta x_1 + \dots + \left| \frac{\partial f}{\partial x_N} \right|_{(x_{10}, \dots, x_{N0})} \cdot \delta x_N$$

Sviluppo in serie di Taylor della funzione f

- √ troncato ai termini del primo ordine
- ✓ nell'intorno del punto di lavoro

- Propagazione dell'incertezza
 - Metodi indiretti
 Valutazione dell'incertezza assoluta (altra forma):

$$\delta y = \sum_{i=1}^{N} \left| \frac{\partial f}{\partial x_i} \right|_{(x_{10}, \dots, x_{N0})} \cdot \delta x_i = \sum_{i=1}^{N} |c_i| \cdot \delta x_i$$

✓ c_i: coefficienti di sensibilità della funzione rispetto alle diverse variabili

- Propagazione dell'incertezza
 - Metodi indiretti

Valutazione dell'incertezza assoluta:

In pratica, le incertezze δx_i sono considerate come scostamenti rispetto ai valori nominali x_{i0} , che producono uno scostamento δy rispetto al valore

nominale y_0

Propagazione dell'incertezza

- Metodi indiretti
 - Il modello impiegato per la propagazione dell'incertezza corrisponde al caso pessimo:
 - ✓ ogni grandezza si considera "collocata" all'estremo della fascia di valore (scostamento = δx)
 - ✓ l'operatore valore assoluto applicato ai coefficienti di sensibilità esclude a priori qualsiasi forma di compensazione dei contributi di incertezza

Propagazione dell'incertezza

- Metodi indiretti
 - Il modello impiegato per la propagazione dell'incertezza corrisponde al caso pessimo:
 - È l'unico modo per garantire che il misurando sia compreso nella fascia di valore
 - È il principale motivo che ha portato alla definizione di un nuovo modello di interpretazione e propagazione dell'incertezza

- Casi notevoli
 - Somma e differenza

$$Y = a \cdot X_1 - b \cdot X_2$$

a e b costanti (>0)

$$\left| \frac{\partial f}{\partial x_1} \right| = a \qquad \left| \frac{\partial f}{\partial x_2} \right| = b$$

$$\delta y = a \cdot \delta x_1 + b \cdot \delta x_2$$

- Casi notevoli
 - Prodotto e rapporto

$$Y = \frac{a \cdot X_1 \cdot X_2}{b \cdot X_3}$$
; a e b costanti (>0)

$$\left| \frac{\partial f}{\partial \mathbf{x}_4} \right| = \frac{\mathbf{a} \cdot \mathbf{x}_2}{\mathbf{b} \cdot \mathbf{x}_3} = \frac{\mathbf{a} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2}{\mathbf{b} \cdot \mathbf{x}_3^2}$$

$$\left| \frac{\partial \mathbf{f}}{\partial \mathbf{x}_2} \right| = \frac{\mathbf{a} \cdot \mathbf{x}_1}{\mathbf{b} \cdot \mathbf{x}_3}$$

- Casi notevoli
 - Prodotto e rapporto

$$\delta \mathbf{y} = \frac{\mathbf{a} \cdot \mathbf{x_1} \cdot \mathbf{x_2}}{\mathbf{b} \cdot \mathbf{x_3}} \cdot \left(\frac{\delta \mathbf{x_1}}{\mathbf{x_1}} + \frac{\delta \mathbf{x_2}}{\mathbf{x_2}} + \frac{\delta \mathbf{x_3}}{\mathbf{x_3}} \right) =$$

$$= \mathbf{y} \cdot \left(\varepsilon_{\mathbf{x_1}} + \varepsilon_{\mathbf{x_2}} + \varepsilon_{\mathbf{x_3}} \right)$$

$$\varepsilon_{y} = \varepsilon_{x_{1}} + \varepsilon_{x_{2}} + \varepsilon_{x_{3}}$$

- Casi notevoli
 - Elevamento a potenza

$$Y = a \cdot X^N$$
; a costante (>0)

Riconducibile alla regola del prodotto

$$\mathbf{Y} = \mathbf{a} \cdot \prod_{i=1}^{N} \mathbf{X}_{i}$$

$$\varepsilon_y = N \cdot \varepsilon_x$$

- Casi notevoli
 - Radice

$$Y = a \cdot \sqrt[N]{X}$$
 ; a costante (>0)

Riconducibile alla regola della potenza

$$Y = a \cdot X^{1/N}$$

$$\varepsilon_y = \frac{1}{N} \cdot \varepsilon_x$$