Online Learning Summer School Copenhagen 2015 Lecture 1

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Online Learning

Outline

- 1 The Online Learning Framework
 - Online Classification
 - Hypothesis class
- 2 Learning Finite Hypothesis Classes
 - The Consistent learner
 - The Halving learner
- 3 Structure over the hypothesis class
 - Halfspaces
 - The Ellipsoid Learner

Gentle Start: An Online Classification Game

For t = 1, 2, ...

- ullet Environment presents a question x_t
- Learner predicts an answer $\hat{y}_t \in \{\pm 1\}$
- Environment reveals true label $y_t \in \{\pm 1\}$
- Learner pays 1 if $\hat{y}_t \neq y_t$ and 0 otherwise

Gentle Start: An Online Classification Game

For t = 1, 2, ...

- ullet Environment presents a question x_t
- Learner predicts an answer $\hat{y}_t \in \{\pm 1\}$
- Environment reveals true label $y_t \in \{\pm 1\}$
- ullet Learner pays 1 if $\hat{y}_t \neq y_t$ and 0 otherwise

Goal of the learner: Make few mistakes

Example Applications

- Weather forecasting (will it rain tomorrow)
- Finance (buy or sell an asset)
- Spam filtering (is this email a spam)
- Compression (what's the next symbol in a sequence)
- Proxy for optimization (will be clear later)

When can we hope to make few mistakes?

When can we hope to make few mistakes?

- Task is hopeless if there's no correlation between past and future
- We are making no statistical assumptions on the origin of the sequence
- Need to give more knowledge to the learner

Prior Knowledge

Recall the online game:

For $t = 1, 2, \ldots$ get question $x_t \in \mathcal{X}$, predict $\hat{y}_t \in \{\pm 1\}$, then get $y_t \in \{\pm 1\}$

The realizability by ${\cal H}$ assumption

- ullet ${\cal H}$ is a predefined set of functions from ${\cal X}$ to $\{\pm 1\}$
- Exists $f \in \mathcal{H}$ s.t. for every t, $y_t = f(x_t)$
- The learner knows \mathcal{H} (but of course doesn't know f)

Prior Knowledge

Recall the online game:

For $t = 1, 2, \ldots$ get question $x_t \in \mathcal{X}$, predict $\hat{y}_t \in \{\pm 1\}$, then get $y_t \in \{\pm 1\}$

The realizability by ${\cal H}$ assumption

- ullet ${\cal H}$ is a predefined set of functions from ${\cal X}$ to $\{\pm 1\}$
- Exists $f \in \mathcal{H}$ s.t. for every t, $y_t = f(x_t)$
- The learner knows \mathcal{H} (but of course doesn't know f)

Remark: What if our prior knowledge is wrong?

We'll get back to this question later

Not always helpful

- Let $\mathcal{X} = \mathbb{R}$, and \mathcal{H} be thresholds:
- $\mathcal{H} = \{h_{\theta} : \theta \in \mathbb{R}\}$, where $h_{\theta}(x) = \mathrm{sign}(x \theta)$ $h_{\theta}(x) = -1 \qquad h_{\theta}(x) = 1$
- ullet Theorem: for every learner, exists sequence of examples which is consistent with some $f\in\mathcal{H}$ but on which the learner will always err
- Exercise: Prove the theorem by showing that the environment can follow the bisection method

Outline

- The Online Learning Framework
 - Online Classification
 - Hypothesis class
- 2 Learning Finite Hypothesis Classes
 - The Consistent learner
 - The Halving learner
- Structure over the hypothesis class
 - Halfspaces
 - The Ellipsoid Learner

Learning Finite Classes

- Assume that \mathcal{H} is of finite size
 - E.g.: ${\cal H}$ is all the functions from ${\cal X}$ to $\{\pm 1\}$ that can be implemented using a Python program of length at most b
 - \bullet E.g.: ${\mathcal H}$ is thresholds over a grid ${\mathcal X}=\{0,\frac{1}{n},\frac{2}{n},\dots,1\}$

Learning Finite Classes

The consistent learner

- Initialize $V_1 = \mathcal{H}$
- For t = 1, 2, ...
 - Get x_t
 - Pick some $h \in V_t$ and predict $\hat{y}_t = h(x_t)$
 - Get y_t and update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$

Theorem

The consistent learner will make at most $|\mathcal{H}|-1$ mistakes

Theorem

The consistent learner will make at most $|\mathcal{H}|-1$ mistakes

Proof.

If we err at round t, then the $h \in V_t$ we used for prediction will not be in V_{t+1} . Therefore, $|V_{t+1}| \leq |V_t| - 1$.

Theorem

The consistent learner will make at most $|\mathcal{H}|-1$ mistakes

Proof.

If we err at round t, then the $h \in V_t$ we used for prediction will not be in V_{t+1} . Therefore, $|V_{t+1}| \leq |V_t| - 1$.

Can we do better?

The Halving learner

The Halving learner

- Initialize $V_1 = \mathcal{H}$
- For t = 1, 2, ...
 - Get *x*_t
 - Predict Majority $(h(x_t): h \in V_t)$
 - $\bullet \ \ \mathsf{Get} \ y_t \ \mathsf{and} \ \mathsf{update} \ V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$

Theorem

The Halving learner will make at most $\log_2(|\mathcal{H}|)$ mistakes

Theorem 1

The Halving learner will make at most $log_2(|\mathcal{H}|)$ mistakes

Proof.

If we err at round t, then at least half of the functions in V_t will not be in V_{t+1} . Therefore, $|V_{t+1}| \leq |V_t|/2$.

Theorem

The Halving learner will make at most $log_2(|\mathcal{H}|)$ mistakes

Proof.

If we err at round t, then at least half of the functions in V_t will not be in V_{t+1} . Therefore, $|V_{t+1}| \leq |V_t|/2$.

Corollary

The Halving learner can learn the class \mathcal{H} of all python programs of length < b bits while making at most b mistakes.

Powerful, but ...

- **1** What if the environment is not consistent with any $f \in \mathcal{H}$?
 - We'll deal with this later

Powerful, but ...

- **①** What if the environment is not consistent with any $f \in \mathcal{H}$?
 - We'll deal with this later
- ② While the mistake bound of Halving grows with $\log_2(|\mathcal{H}|)$, the runtime of Halving grows with $|\mathcal{H}|$
 - Learning must take computational considerations into account

Outline

- The Online Learning Framework
 - Online Classification
 - Hypothesis class
- 2 Learning Finite Hypothesis Classes
 - The Consistent learner
 - The Halving learner
- 3 Structure over the hypothesis class
 - Halfspaces
 - The Ellipsoid Learner

Efficient learning with structured ${\cal H}$

Example:

- Recall again the class $\mathcal H$ of thresholds over a grid $\mathcal X = \{0, \frac{1}{n}, \dots, 1\}$ for some integer $n \gg 1$
- Halving mistake bound is $\log(n+1)$
- ullet A naive implementation of Halving takes $\Omega(n)$ time
- How to implement Halving efficiently?

Efficient learning with structured ${\cal H}$

Efficient Halving for discrete thresholds

- Initialize $l_1 = 0, r_1 = 1$
- For t = 1, 2, ...
 - Get $x_t \in \{0, \frac{1}{n}, \dots, 1\}$
 - Predict $sign((x_t l_t) (r_t x_t))$
 - Get y_t and if $x_t \in [l_t, r_t]$ update:
 - if $y_t = 1$ then $l_{t+1} = l_t, r_{t+1} = x_t$
 - if $y_t = -1$ then $l_{t+1} = x_t, r_{t+1} = r_t$

Efficient learning with structured ${\cal H}$

Efficient Halving for discrete thresholds

- Initialize $l_1 = 0, r_1 = 1$
- For t = 1, 2, ...
 - Get $x_t \in \{0, \frac{1}{n}, \dots, 1\}$
 - Predict $\operatorname{sign}((x_t l_t) (r_t x_t))$
 - Get y_t and if $x_t \in [l_t, r_t]$ update:
 - if $y_t = 1$ then $l_{t+1} = l_t, r_{t+1} = x_t$
 - if $y_t = -1$ then $l_{t+1} = x_t, r_{t+1} = r_t$
- Exercise: show that the above is indeed an implementation of Halving and that the runtime of each iteration is $O(\log(n))$

Outline

- 1 The Online Learning Framework
 - Online Classification
 - Hypothesis class
- 2 Learning Finite Hypothesis Classes
 - The Consistent learner
 - The Halving learner
- 3 Structure over the hypothesis class
 - Halfspaces
 - The Ellipsoid Learner

Halfspaces

$$\mathcal{H} = \{ \mathbf{x} \mapsto \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b) : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R} \}$$

- Inner product: $\langle \mathbf{w}, \mathbf{x} \rangle = \mathbf{w}^{\top} \mathbf{x} = \sum_{i=1}^{d} w_i x_i$
- ullet w is called a weight vector and b a bias

Halfspaces

$$\mathcal{H} = \{ \mathbf{x} \mapsto \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b) : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R} \}$$

- Inner product: $\langle \mathbf{w}, \mathbf{x} \rangle = \mathbf{w}^{\top} \mathbf{x} = \sum_{i=1}^{d} w_i x_i$
- ullet w is called a weight vector and b a bias
- ullet For d=1, the class of Halfspaces is the class of thresholds
- \bullet W.l.o.g., assume that $x_d=1$ for all examples, and then we can treat w_d as the bias and forget about b

Using halving to learn halfspaces on a grid

- Let us represent all numbers on the grid $G = \{-1, -1 + 1/n, \dots, 1 1/n, 1\}$
- Then, $|\mathcal{H}| = |G|^d = (2n+1)^d$
- Therefore, Halving's bound is at most $d \log(2n+1)$
- We will show an algorithm with a slightly worse mistake bound but that can be implemented efficiently

The Ellipsoid Learner

- Recall that Halving maintains the "Version Space", V_t , containing all hypotheses in $\mathcal H$ which are consistent with the examples observed so far
- ullet Each halfspace hypothesis corresponds to a vector in G^d
- ullet Instead of maintaining V_t , we will maintain an ellipsoid, \mathcal{E}_t , that contains V_t
- We will show that every time we make a mistake the volume of \mathcal{E}_t shrinks by a factor of $e^{-1/(2n+2)}$
- On the other hand, we will show that the volume of \mathcal{E}_t cannot be made too small (this is where we use the grid assumption)

Background: Balls and Ellipsoids

- Let $B = \{ \mathbf{w} \in \mathbb{R}^d : \|\mathbf{w}\|^2 \le 1 \}$ be the unit ball of \mathbb{R}^d
- Recall: $\|\mathbf{w}\|^2 = \langle \mathbf{w}, \mathbf{w} \rangle = \mathbf{w}^{\top} \mathbf{w} = \sum_{i=1}^d w_i^2$
- An ellipsoid is the image of a ball under an affine mapping: given a matrix M and a vector ${\bf v}$,

$$\mathcal{E}(M, \mathbf{v}) = \{M\mathbf{w} + \mathbf{v} : ||\mathbf{w}||^2 \le 1\}$$

The Ellipsoid Learner

- We implicitly maintain an ellipsoid: $\mathcal{E}_t = \mathcal{E}(A_t^{1/2}, \mathbf{w}_t)$
- Start with $\mathbf{w}_1 = \mathbf{0}$, $A_1 = I$
- For t = 1, 2, ...
 - Get \mathbf{x}_t
 - Predict $\hat{y}_t = \operatorname{sign}(\mathbf{w}_t^{\top} \mathbf{x}_t)$
 - Get y_t
 - If $\hat{y}_t \neq y_t$ update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \frac{y_t}{d+1} \frac{A_t \mathbf{x}_t}{\sqrt{\mathbf{x}_t^{\top} A_t \mathbf{x}_t}}$$
$$A_{t+1} = \frac{d^2}{d^2 - 1} \left(A_t - \frac{2}{d+1} \frac{A_t \mathbf{x}_t \mathbf{x}_t^{\top} A_t}{\mathbf{x}_t^{\top} A_t \mathbf{x}_t} \right)$$

• If $\hat{y}_t = y_t$ keep $\mathbf{w}_{t+1} = \mathbf{w}_t$ and $A_{t+1} = A_t$

Suppose $\mathbf{x}_1 = (1,0)^{\top}, y_1 = 1.$

Suppose $\mathbf{x}_1 = (1,0)^{\top}, y_1 = 1$. Then:

$$\mathbf{w}_2 = \begin{pmatrix} 1/3 \\ 0 \end{pmatrix} \quad , \quad A_2 = \begin{pmatrix} 4/3 & 0 \\ 0 & 4/9 \end{pmatrix}$$

Suppose $\mathbf{x}_1 = (1,0)^{\top}, y_1 = 1$. Then:

$$\mathbf{w}_2 = \begin{pmatrix} 1/3 \\ 0 \end{pmatrix} \quad , \quad A_2 = \begin{pmatrix} 4/3 & 0 \\ 0 & 4/9 \end{pmatrix}$$

• \mathcal{E}_2 is Ellipsoid of minimum volume that contains $\mathcal{E}_1 \cap \{\mathbf{w} : y_1 \langle \mathbf{w}, \mathbf{x}_1 \rangle > 0\}$

Theorem

The Ellipsoid learner makes at most $2d(2d+2)\log(n)$ mistakes.

Theorem

The Ellipsoid learner makes at most $2d(2d+2)\log(n)$ mistakes.

Proof is based on two lemmas:

Lemma (Volume Reduction)

Whenever we make a mistake, $Vol(\mathcal{E}_{t+1}) \leq Vol(\mathcal{E}_t) e^{-\frac{1}{2d+2}}$.

Lemma (Volume can't be too small)

For every t, $Vol(\mathcal{E}_t) \geq Vol(B) (1/n)^{2d}$

Therefore, after M mistakes:

$$\operatorname{Vol}(B) (1/n)^{2d} \le \operatorname{Vol}(\mathcal{E}_t) \le \operatorname{Vol}(B) e^{-M \frac{1}{2d+2}}$$

Summary

- A basic online classification model
- Need prior knowledge
- Learning finite hypothesis classes using Halving
- The runtime problem
- The Ellipsoid efficiently learns halfspaces (over a grid)

Summary

- A basic online classification model
- Need prior knowledge
- Learning finite hypothesis classes using Halving
- The runtime problem
- The Ellipsoid efficiently learns halfspaces (over a grid)

Next lectures:

- ullet Online learnability: for which ${\cal H}$ can we have finite number of mistakes ?
- Non-realizable sequences
- Beyond binary classification A more general online learning game

Exercises

- Exercise on Page 7
- Exercise on Page 17
- Derive the Ellipsoid update equations
- Prove the two lemmas on Page 25

Background: Balls and Ellipsoids

- Recall: $\mathcal{E}(M, \mathbf{v}) = \{M\mathbf{w} + \mathbf{v} : ||\mathbf{w}||^2 \le 1\}$
- ullet We deal with non-degenerative ellipsoids, i.e., M is invertible
- SVD theorem: Every real invertible matrix M can be decomposed as $M = UDV^{\top}$ where U, V orthonormal and D diagonal with $D_{i,i} > 0$.
- Exercise: Show that $\mathcal{E}(M, \mathbf{v}) = \mathcal{E}(UD, \mathbf{v}) = \mathcal{E}(UDU^\top, \mathbf{v})$
- \bullet Therefore, we can assume w.l.o.g. that $M=UDU^{\top}$ (i.e., it is symmetric positive definite)
- ullet Exercise: Show that for such M

$$\mathcal{E}(M, \mathbf{v}) = \{\mathbf{x} : (\mathbf{x} - \mathbf{v})^{\top} M^{-2} (\mathbf{x} - \mathbf{v}) \le 1\}$$

where $M^{-2} = U D^{-2} U^\top$ with $(D^{-2})_{i,i} = D_{i,i}^{-2}$

Volume Calculations

- Let Vol(B) be the volume of the unit ball
- Lemma: If $M = UDU^{\top}$ is positive definite, then

$$\operatorname{Vol}(\mathcal{E}(M, \mathbf{v})) = \det(M)\operatorname{Vol}(B) = \left(\prod_{i=1}^{m} D_{i,i}\right)\operatorname{Vol}(B)$$

Why volume shrinks

• Suppose $A_t = UD^2U^{\top}$. Define $\tilde{\mathbf{x}}_t = DU^{\top}\mathbf{x}_t$. Then:

$$A_{t+1} = \frac{d^2}{d^2 - 1} \left(A_t - \frac{2}{d+1} \frac{A_t \mathbf{x}_t \mathbf{x}_t^{\top} A_t}{\mathbf{x}_t^{\top} A_t \mathbf{x}_t} \right)$$
$$= \frac{d^2}{d^2 - 1} UD \left(I - \frac{2}{d+1} \frac{\tilde{\mathbf{x}}_t \tilde{\mathbf{x}}_t^{\top}}{\|\tilde{\mathbf{x}}_t\|^2} \right) DU^{\top}$$

• By Sylvester's determinant theorem, $\det(I + \mathbf{u}\mathbf{v}^{\top}) = 1 + \langle \mathbf{u}, \mathbf{v} \rangle$. Therefore,

$$\det(A_{t+1}) = \left(\frac{d^2}{d^2 - 1}\right)^d \det(D) \det\left(I - \frac{2}{d+1} \frac{\tilde{\mathbf{x}}_t \tilde{\mathbf{x}}_t^\top}{\|\tilde{\mathbf{x}}_t\|^2}\right) \det(D)$$
$$= \det(A_t) \left(\frac{d^2}{d^2 - 1}\right)^d \left(1 - \frac{2}{d+1}\right)$$

Why volume shrinks

We obtain:

$$\frac{\text{Vol}(\mathcal{E}_{t+1})}{\text{Vol}(\mathcal{E}_t)} = \left(\frac{d^2}{d^2 - 1}\right)^{d/2} \left(1 - \frac{2}{d+1}\right)^{1/2} \\
= \left(\frac{d^2}{d^2 - 1}\right)^{\frac{d-1}{2}} \cdot \frac{d}{\sqrt{(d-1)(d+1)}} \cdot \frac{\sqrt{d-1}}{\sqrt{d+1}} \\
= \left(1 + \frac{1}{d^2 - 1}\right)^{\frac{d-1}{2}} \cdot \left(1 - \frac{1}{d+1}\right) \\
\leq e^{\frac{d-1}{2(d^2 - 1)}} \cdot e^{-\frac{1}{d+1}} = e^{-\frac{1}{2(d+1)}}$$

where we used $1 + a \le e^a$ which holds for all $a \in \mathbb{R}$.

Why volume can't be too small

- Recall, $y_t \langle \mathbf{w}^*, \mathbf{x}_t \rangle > 0$ for every t.
- Since $\mathbf{w}^{\star}, \mathbf{x}_t$ are on the grid G, it follows that $y_t \langle \mathbf{w}^{\star}, \mathbf{x}_t \rangle \geq 1/n^2$.
- Therefore, if $\|\mathbf{w} \mathbf{w}^{\star}\| < 1/n^2$ then

$$y_t\langle \mathbf{w}, \mathbf{x}_t \rangle = y_t\langle \mathbf{w} - \mathbf{w}^*, \mathbf{x}_t \rangle + y_t\langle \mathbf{w}^*, \mathbf{x}_t \rangle \ge -\|\mathbf{w} - \mathbf{w}^*\|\|\mathbf{x}_t\| + 1/n^2 > 0$$

• Convince yourself (by induction) that \mathcal{E}_t contains the ball of radius $1/n^2$ centered around \mathbf{w}^{\star} . It follows that

$$\operatorname{Vol}(B) (1/n^2)^d = \operatorname{Vol}(\mathcal{E}(\frac{1}{n^2}I, \mathbf{w}^*)) \le \operatorname{Vol}(\mathcal{E}_t)$$