#### Laplace Transforms

CS 130 - Mathematical Methods in Computer Science

Jan Michael C. Yap

Department of Computer Science University of the Philippines Diliman

February 28, 2013

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- 3 Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- Solving Systems of ODEs

#### **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- 4 Solving Systems of ODEs

#### **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- 4 Solving Systems of ODEs

(Systems of) ODEs  $\Leftrightarrow$  (Inverse) Laplace Transform  $\Leftrightarrow$  Algebraic System

(Systems of) ODEs  $\Leftrightarrow$  (Inverse) Laplace Transform  $\Leftrightarrow$  Algebraic System

(System of) Linear ODEs with constant coefficients

(Systems of) ODEs  $\Leftrightarrow$  (Inverse) Laplace Transform  $\Leftrightarrow$  Algebraic System

- (System of) Linear ODEs with constant coefficients
- Initial conditions are usually needed to solve the ODEs

(Systems of) ODEs  $\Leftrightarrow$  (Inverse) Laplace Transform  $\Leftrightarrow$  Algebraic System

- (System of) Linear ODEs with constant coefficients
- Initial conditions are usually needed to solve the ODEs
  - Implicitly, we are looking for a particular solution when solving ODEs using Laplace Transforms

#### **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- 4 Solving Systems of ODEs

#### Laplace Transform

• Laplace transform of a function f(t), L[f(t)] defined for t > 0:

$$\int_0^\infty e^{-st} f(t) dt$$

#### Laplace Transform

• Laplace transform of a function f(t), L[f(t)] defined for t > 0:

$$\int_0^\infty e^{-st} f(t) dt$$

• s is an arbitrary positive number.

# Laplace Transform

• Laplace transform of a function f(t), L[f(t)] defined for t > 0:

$$\int_0^\infty e^{-st} f(t) dt$$

- s is an arbitrary positive number.
- Alternative notation for the Laplace transform of f(t) is F(s) or X(s)

• 
$$f(t) = k$$

• 
$$f(t) = k$$

$$\int_0^\infty k e^{-st} dt$$

• 
$$f(t) = k$$

$$\int_0^\infty k e^{-st} dt = k \left[ \frac{e^{-st}}{-s} \right]_0^\infty$$

• 
$$f(t) = k$$

$$\int_0^\infty k e^{-st} dt = k \left[ \frac{e^{-st}}{-s} \right]_0^\infty = k \left( -\frac{0}{s} - \left( -\frac{1}{s} \right) \right)$$

• 
$$f(t) = k$$

$$\int_0^\infty k e^{-st} dt = k \left[ \frac{e^{-st}}{-s} \right]_0^\infty = k \left( -\frac{0}{s} - \left( -\frac{1}{s} \right) \right)$$

$$L[k] = \frac{k}{s}$$

• 
$$f(t) = e^{-at}$$

• 
$$f(t) = e^{-at}$$

$$\int_0^\infty e^{-at}e^{-st}dt$$

• 
$$f(t) = e^{-at}$$

$$\int_0^\infty e^{-at}e^{-st}dt = \int_0^\infty e^{-(s+a)t}dt$$

• 
$$f(t) = e^{-at}$$

$$\int_0^\infty e^{-at}e^{-st}dt = \int_0^\infty e^{-(s+a)t}dt = \left[\frac{e^{-(s+a)t}}{-(s+a)}\right]_0^\infty$$

• 
$$f(t) = e^{-at}$$

$$\int_0^\infty e^{-at}e^{-st}dt = \int_0^\infty e^{-(s+a)t}dt = \left[\frac{e^{-(s+a)t}}{-(s+a)}\right]_0^\infty$$

$$L[e^{-at}] = \frac{1}{s+a}$$

• 
$$f(t) = \cos(at)$$

• 
$$f(t) = \cos(at)$$

$$\int_0^\infty e^{-st}\cos(at)dt$$

• 
$$f(t) = \cos(at)$$

$$\int_0^\infty e^{-st}\cos(at)dt = \left[\frac{e^{-st}\sin(at)}{a}\right]_0^\infty + \frac{s}{a}\int_0^\infty e^{-st}\sin(at)dt$$

• 
$$f(t) = \cos(at)$$

$$\int_0^\infty e^{-st} \cos(at) dt = \left[ \frac{e^{-st} \sin(at)}{a} \right]_0^\infty + \frac{s}{a} \int_0^\infty e^{-st} \sin(at) dt$$
$$= \frac{s}{a} \left( \left[ \frac{-e^{-st} \cos(at)}{a} \right]_0^\infty - \frac{s}{a} \int_0^\infty e^{-st} \cos(at) dt \right)$$

• 
$$f(t) = \cos(at)$$

$$\int_0^\infty e^{-st} \cos(at) dt = \left[ \frac{e^{-st} \sin(at)}{a} \right]_0^\infty + \frac{s}{a} \int_0^\infty e^{-st} \sin(at) dt$$
$$= \frac{s}{a} \left( \left[ \frac{-e^{-st} \cos(at)}{a} \right]_0^\infty - \frac{s}{a} \int_0^\infty e^{-st} \cos(at) dt \right)$$
$$\Rightarrow L[\cos(at)] = \frac{s}{a^2} - \frac{s^2}{a^2} L[\cos(at)]$$

• 
$$f(t) = \cos(at)$$

$$\int_0^\infty e^{-st} \cos(at) dt = \left[ \frac{e^{-st} \sin(at)}{a} \right]_0^\infty + \frac{s}{a} \int_0^\infty e^{-st} \sin(at) dt$$

$$= \frac{s}{a} \left( \left[ \frac{-e^{-st} \cos(at)}{a} \right]_0^\infty - \frac{s}{a} \int_0^\infty e^{-st} \cos(at) dt \right)$$

$$\Rightarrow L[\cos(at)] = \frac{s}{a^2} - \frac{s^2}{a^2} L[\cos(at)] \Rightarrow \left( 1 + \frac{s^2}{a^2} \right) L[\cos(at)] = \frac{s}{a^2}$$

$$f(t) = \cos(at)$$

$$\int_0^\infty e^{-st} \cos(at) dt = \left[ \frac{e^{-st} \sin(at)}{a} \right]_0^\infty + \frac{s}{a} \int_0^\infty e^{-st} \sin(at) dt$$

$$= \frac{s}{a} \left( \left[ \frac{-e^{-st} \cos(at)}{a} \right]_0^\infty - \frac{s}{a} \int_0^\infty e^{-st} \cos(at) dt \right)$$

$$\Rightarrow L[\cos(at)] = \frac{s}{a^2} - \frac{s^2}{a^2} L[\cos(at)] \Rightarrow \left( 1 + \frac{s^2}{a^2} \right) L[\cos(at)] = \frac{s}{a^2}$$

$$L[\cos(at)] = \frac{s}{s^2 + a^2}$$

• 
$$L[\sin(at)] = \frac{a}{s^2+a^2}$$

• 
$$L[t^n] = \frac{n!}{s^{n+1}}$$

• 
$$L[te^{-at}] = \frac{1}{(s+a)^2}$$

• 
$$L[t\cos(at)] = \frac{(s^2-a^2)}{(s^2+a^2)^2}$$

• 
$$L[t \sin(at)] = \frac{2as}{(s^2+a^2)^2}$$

• 
$$L[\sin(at) - at\cos(at)] = \frac{2a^3}{(s^2+a^2)^2}$$

• 
$$L[\cosh(at)] = \frac{s}{s^2 - a^2}$$

• 
$$L[\sinh(at)] = \frac{a}{s^2-a^2}$$

#### **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- 4 Solving Systems of ODEs

$$L[2t^5 + 7\cos(4t) - 1]$$

$$L[2t^5 + 7\cos(4t) - 1] = 2L[t^5] + 7L[\cos(4t)] - L[1]$$

$$L[2t^5 + 7\cos(4t) - 1] = 2L[t^5] + 7L[\cos(4t)] - L[1]$$

$$= 2\left(\frac{5!}{s^6}\right) + 7\frac{s}{s^2 + 16} - \frac{1}{s}$$

• First Shifting Theorem:  $L[e^{-at}f(t)] = F(s+a)$ 

• First Shifting Theorem:  $L[e^{-at}f(t)] = F(s+a)$ 

$$L[e^{-2t}\sin{(3t)}]$$

• First Shifting Theorem:  $L[e^{-at}f(t)] = F(s+a)$ 

$$L[e^{-2t}\sin(3t)] \Rightarrow F(s) = L[\sin(3t)] = \frac{3}{s^2 + 9}$$

• First Shifting Theorem:  $L[e^{-at}f(t)] = F(s+a)$ 

$$L[e^{-2t}\sin(3t)] \Rightarrow F(s) = L[\sin(3t)] = \frac{3}{s^2 + 9}$$

$$\Rightarrow F(s+a) = \frac{3}{(s+2)^2 + 9} = L[e^{-2t}\sin(3t)]$$

$$L[f'(t)] = sL[f(t)] - f(0) \text{ OR } L\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$L[f'(t)] = sL[f(t)] - f(0) \text{ OR } L\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$f(t) = t^3 e^{-t}$$

$$L[f'(t)] = sL[f(t)] - f(0) \text{ OR } L\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$f(t) = t^3 e^{-t} \Rightarrow f(0) = 0$$

$$L[f'(t)] = sL[f(t)] - f(0) \text{ OR } L\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$f(t) = t^3 e^{-t} \Rightarrow f(0) = 0 \Rightarrow f'(t) = 3t^2 e^{-t} - t^3 e^{-t}$$

$$L[f'(t)] = sL[f(t)] - f(0) \text{ OR } L\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$f(t) = t^3 e^{-t} \Rightarrow f(0) = 0 \Rightarrow f'(t) = 3t^2 e^{-t} - t^3 e^{-t}$$

$$L[f'(t)] = 3\left(\frac{2}{(s+1)^3}\right) - \frac{6}{(s+1)^4}$$

$$L[f'(t)] = sL[f(t)] - f(0) \text{ OR } L\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$f(t) = t^3 e^{-t} \Rightarrow f(0) = 0 \Rightarrow f'(t) = 3t^2 e^{-t} - t^3 e^{-t}$$

$$L[f'(t)] = 3\left(\frac{2}{(s+1)^3}\right) - \frac{6}{(s+1)^4} = \frac{6s}{(s+1)^4}$$

$$L[f'(t)] = sL[f(t)] - f(0) \text{ OR } L\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$f(t) = t^3 e^{-t} \Rightarrow f(0) = 0 \Rightarrow f'(t) = 3t^2 e^{-t} - t^3 e^{-t}$$

$$L[f'(t)] = 3\left(\frac{2}{(s+1)^3}\right) - \frac{6}{(s+1)^4} = \frac{6s}{(s+1)^4}$$

$$sL[f(t)] - f(0) = s\left(\frac{6}{(s+1)^4}\right) - 0$$

$$L[f'(t)] = sL[f(t)] - f(0) \text{ OR } L\left[\frac{dx}{dt}\right] = sX(s) - x(0)$$

$$f(t) = t^3 e^{-t} \Rightarrow f(0) = 0 \Rightarrow f'(t) = 3t^2 e^{-t} - t^3 e^{-t}$$

$$L[f'(t)] = 3\left(\frac{2}{(s+1)^3}\right) - \frac{6}{(s+1)^4} = \frac{6s}{(s+1)^4}$$

$$sL[f(t)] - f(0) = s\left(\frac{6}{(s+1)^4}\right) - 0 = \frac{6s}{(s+1)^4} = L[f'(t)]$$

$$L[f''(t)] = s^{2}L[f(t)] - sf(0) - f'(0) \text{ OR}$$

$$L\left[\frac{d^{2}x}{dt^{2}}\right] = s^{2}X(s) - sx(0) - x'(0)$$

$$L[f''(t)] = s^{2}L[f(t)] - sf(0) - f'(0) \text{ OR}$$

$$L\left[\frac{d^{2}x}{dt^{2}}\right] = s^{2}X(s) - sx(0) - x'(0)$$

$$f(t) = t^{3}e^{-t} \Rightarrow f(0) = f'(0) = 0$$

$$L[f''(t)] = s^{2}L[f(t)] - sf(0) - f'(0) \text{ OR}$$

$$L\left[\frac{d^{2}x}{dt^{2}}\right] = s^{2}X(s) - sx(0) - x'(0)$$

$$f(t) = t^{3}e^{-t} \Rightarrow f(0) = f'(0) = 0$$

$$f'(t) = 3t^2e^{-t} - t^3e^{-t} \Rightarrow f''(t) = 6te^{-t} - 6t^2e^{-t} + t^3e^{-t}$$

$$L[f''(t)] = s^{2}L[f(t)] - sf(0) - f'(0) \text{ OR}$$

$$L\left[\frac{d^{2}x}{dt^{2}}\right] = s^{2}X(s) - sx(0) - x'(0)$$

$$f(t) = t^{3}e^{-t} \Rightarrow f(0) = f'(0) = 0$$

$$f'(t) = 3t^{2}e^{-t} - t^{3}e^{-t} \Rightarrow f''(t) = 6te^{-t} - 6t^{2}e^{-t} + t^{3}e^{-t}$$

$$L[f''(t)] = \frac{6s^{2}}{(s+1)^{4}}$$

$$L[f''(t)] = s^{2}L[f(t)] - sf(0) - f'(0) \text{ OR}$$

$$L\left[\frac{d^{2}x}{dt^{2}}\right] = s^{2}X(s) - sx(0) - x'(0)$$

$$f(t) = t^{3}e^{-t} \Rightarrow f(0) = f'(0) = 0$$

$$f'(t) = 3t^{2}e^{-t} - t^{3}e^{-t} \Rightarrow f''(t) = 6te^{-t} - 6t^{2}e^{-t} + t^{3}e^{-t}$$

$$L[f''(t)] = \frac{6s^{2}}{(s+1)^{4}}$$

$$s^{2}L[f(t)] - sf(0) - f'(0) = s^{2}\left(\frac{6}{(s+1)^{4}}\right) - s(0) - 0$$

$$L[f''(t)] = s^{2}L[f(t)] - sf(0) - f'(0) \text{ OR}$$

$$L\left[\frac{d^{2}x}{dt^{2}}\right] = s^{2}X(s) - sx(0) - x'(0)$$

$$f(t) = t^{3}e^{-t} \Rightarrow f(0) = f'(0) = 0$$

$$f'(t) = 3t^{2}e^{-t} - t^{3}e^{-t} \Rightarrow f''(t) = 6te^{-t} - 6t^{2}e^{-t} + t^{3}e^{-t}$$

$$L[f''(t)] = \frac{6s^{2}}{(s+1)^{4}}$$

$$s^{2}L[f(t)] - sf(0) - f'(0) = s^{2}\left(\frac{6}{(s+1)^{4}}\right) - s(0) - 0 = \frac{6s^{2}}{(s+1)^{4}}$$

$$L[t\cos(7t)]$$

$$L[t\cos{(7t)}] = \frac{s^2 - 49}{(s^2 + 49)^2}$$

$$L[t\cos{(7t)}] = \frac{s^2 - 49}{(s^2 + 49)^2}$$

$$\Rightarrow L[\cos{(7t)})] = \frac{s}{s^2 + 49}$$

$$L[t\cos{(7t)}] = \frac{s^2 - 49}{(s^2 + 49)^2}$$

$$\Rightarrow L[\cos{(7t)})] = \frac{s}{s^2 + 49}$$

$$-\frac{dL[\cos{(7t)})]}{ds} = -\left(\frac{1}{s^2 + 49} - \frac{2s^2}{(s^2 + 49)^2}\right)$$

$$L[t\cos{(7t)}] = \frac{s^2 - 49}{(s^2 + 49)^2}$$

$$\Rightarrow L[\cos{(7t)}] = \frac{s}{s^2 + 49}$$

$$-\frac{dL[\cos{(7t)})}{ds} = -\left(\frac{1}{s^2 + 49} - \frac{2s^2}{(s^2 + 49)^2}\right) = -\left(\frac{49 - s^2}{(s^2 + 49)^2}\right)$$

$$L[t\cos{(7t)}] = \frac{s^2 - 49}{(s^2 + 49)^2}$$

$$\Rightarrow L[\cos{(7t)})] = \frac{s}{s^2 + 49}$$

$$-\frac{dL[\cos(7t))]}{ds} = -\left(\frac{1}{s^2 + 49} - \frac{2s^2}{(s^2 + 49)^2}\right) = -\left(\frac{49 - s^2}{(s^2 + 49)^2}\right)$$
$$= \frac{s^2 - 49}{(s^2 + 49)^2} = L[t\cos(7t)]$$

$$f(t) = te^{-t} \Rightarrow L[f(t)] = \frac{6}{(s+1)^4}$$

$$f(t) = te^{-t} \Rightarrow L[f(t)] = \frac{6}{(s+1)^4}$$

$$\lim_{t\to 0} t^3 e^{-t} = 0$$

$$f(t) = te^{-t} \Rightarrow L[f(t)] = \frac{6}{(s+1)^4}$$

$$\lim_{t\to 0} t^3 e^{-t} = 0$$

$$\lim_{s\to\infty}\frac{6s}{(s+1)^4}=0$$

• Final Value Theorem:  $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sL[f(t)]$ 

• Final Value Theorem:  $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sL[f(t)]$ 

$$f(t) = te^{-t} \Rightarrow L[f(t)] = \frac{6}{(s+1)^4}$$

• Final Value Theorem:  $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sL[f(t)]$ 

$$f(t) = te^{-t} \Rightarrow L[f(t)] = \frac{6}{(s+1)^4}$$
$$\lim_{t \to \infty} t^3 e^{-t} = 0$$

$$\lim_{s\to 0}\frac{6s}{(s+1)^4}=0$$

•  $L[2\sin(3t) - 3\cos(2t)]$ 

- $L[2\sin(3t) 3\cos(2t)]$
- $L[(t+1)^3]$

- $L[2\sin(3t) 3\cos(2t)]$
- $L[(t+1)^3]$
- $L[t(e^t + e^{-2t})]$

- $L[2\sin(3t) 3\cos(2t)]$
- $L[(t+1)^3]$
- $L[t(e^t + e^{-2t})]$
- Given  $\frac{dx}{dt} + x = e^t$ , and x(0) = 0, what is L[x(t)] ?

#### **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- Solving Systems of ODEs

• Given F(s), we can obtain the inverse Laplace transform of F(s) denoted as  $L^{-1}[F(s)]$ 

- Given F(s), we can obtain the inverse Laplace transform of F(s) denoted as  $L^{-1}[F(s)]$ 
  - It is implicitly assumed (at least for our examples later) that  $L^{-1}[F(s)]$  hold for t > 0.

- Given F(s), we can obtain the inverse Laplace transform of F(s) denoted as  $L^{-1}[F(s)]$ 
  - It is implicitly assumed (at least for our examples later) that  $L^{-1}[F(s)]$  hold for t > 0.
- Main idea: Convert F(s) into something familiar looking and just "back substitute" into the original function prior to applying Laplace transform

- Given F(s), we can obtain the inverse Laplace transform of F(s) denoted as  $L^{-1}[F(s)]$ 
  - It is implicitly assumed (at least for our examples later) that  $L^{-1}[F(s)]$  hold for t > 0.
- Main idea: Convert F(s) into something familiar looking and just "back substitute" into the original function prior to applying Laplace transform
- Useful tip: Inverse Laplace transforms are also linear, i.e.

$$L^{-1}[AF(s) + BG(s)] = AL^{-1}[F(s)] + BL^{-1}[G(s)]$$

- Given F(s), we can obtain the inverse Laplace transform of F(s) denoted as  $L^{-1}[F(s)]$ 
  - It is implicitly assumed (at least for our examples later) that  $L^{-1}[F(s)]$  hold for t > 0.
- Main idea: Convert F(s) into something familiar looking and just "back substitute" into the original function prior to applying Laplace transform
- Useful tip: Inverse Laplace transforms are also linear, i.e.

$$L^{-1}[AF(s) + BG(s)] = AL^{-1}[F(s)] + BL^{-1}[G(s)]$$

• (Another) Useful tip: Partial fraction decomposition can help make some functions be more familiar



• 
$$F(s) = \frac{3}{s^3} + \frac{4}{s-2}$$

• 
$$F(s) = \frac{3}{s^3} + \frac{4}{s-2}$$

$$L^{-1} \left[ \frac{3}{s^3} + \frac{4}{s-2} \right]$$

• 
$$F(s) = \frac{3}{s^3} + \frac{4}{s-2}$$

$$L^{-1} \left[ \frac{3}{s^3} + \frac{4}{s-2} \right] \Rightarrow 3L^{-1} \left[ \frac{1}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right]$$

• 
$$F(s) = \frac{3}{s^3} + \frac{4}{s-2}$$
  

$$L^{-1} \left[ \frac{3}{s^3} + \frac{4}{s-2} \right] \Rightarrow 3L^{-1} \left[ \frac{1}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right]$$

$$\Rightarrow 3L^{-1} \left[ \frac{1}{2} \frac{2}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right]$$

• 
$$F(s) = \frac{3}{s^3} + \frac{4}{s-2}$$
  

$$L^{-1} \left[ \frac{3}{s^3} + \frac{4}{s-2} \right] \Rightarrow 3L^{-1} \left[ \frac{1}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right]$$

$$\Rightarrow 3L^{-1} \left[ \frac{1}{2} \frac{2}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right] \Rightarrow \frac{3}{2}L^{-1} \left[ \frac{2}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right]$$

• 
$$F(s) = \frac{3}{s^3} + \frac{4}{s-2}$$
  

$$L^{-1} \left[ \frac{3}{s^3} + \frac{4}{s-2} \right] \Rightarrow 3L^{-1} \left[ \frac{1}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right]$$

$$\Rightarrow 3L^{-1} \left[ \frac{1}{2} \frac{2}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right] \Rightarrow \frac{3}{2}L^{-1} \left[ \frac{2}{s^3} \right] + 4L^{-1} \left[ \frac{1}{s-2} \right]$$

$$L^{-1}[F(s)] = f(t) = \frac{3}{2}t^2 + 4e^{2t}$$

• 
$$F(s) = \frac{2s+3}{s^2+3s}$$

• 
$$F(s) = \frac{2s+3}{s^2+3s}$$

$$\frac{2s+3}{s^2+3s} \Rightarrow \frac{2s+3}{s(s+3)}$$

• 
$$F(s) = \frac{2s+3}{s^2+3s}$$

$$\frac{2s+3}{s^2+3s} \Rightarrow \frac{2s+3}{s(s+3)} \Rightarrow \frac{A}{s} + \frac{B}{s+3}$$

• 
$$F(s) = \frac{2s+3}{s^2+3s}$$

$$\frac{2s+3}{s^2+3s} \Rightarrow \frac{2s+3}{s(s+3)} \Rightarrow \frac{A}{s} + \frac{B}{s+3}$$

$$\Rightarrow \frac{1}{s} + \frac{1}{s+3}$$

• 
$$F(s) = \frac{2s+3}{s^2+3s}$$

$$\frac{2s+3}{s^2+3s} \Rightarrow \frac{2s+3}{s(s+3)} \Rightarrow \frac{A}{s} + \frac{B}{s+3}$$

$$\Rightarrow \frac{1}{s} + \frac{1}{s+3} \Rightarrow L^{-1} \left[ \frac{1}{s} \right] + L^{-1} \left[ \frac{1}{s+3} \right]$$

• 
$$F(s) = \frac{2s+3}{s^2+3s}$$

$$\frac{2s+3}{s^2+3s} \Rightarrow \frac{2s+3}{s(s+3)} \Rightarrow \frac{A}{s} + \frac{B}{s+3}$$

$$\Rightarrow \frac{1}{s} + \frac{1}{s+3} \Rightarrow L^{-1} \left[ \frac{1}{s} \right] + L^{-1} \left[ \frac{1}{s+3} \right]$$

$$L^{-1}[F(s)] = f(t) = 1 + e^{-3t}$$

• 
$$F(s) = \frac{1}{s^2+9}$$

• 
$$F(s) = \frac{1}{s^2+9}$$

$$\frac{1}{s^2+9}$$

• 
$$F(s) = \frac{1}{s^2+9}$$

$$\frac{1}{s^2+9} \Rightarrow \frac{1}{3} \frac{3}{s^2+9}$$

• 
$$F(s) = \frac{1}{s^2+9}$$

$$\frac{1}{s^2+9} \Rightarrow \frac{1}{3} \frac{3}{s^2+9} \Rightarrow \frac{1}{3} L^{-1} \left[ \frac{3}{s^2+9} \right]$$

• 
$$F(s) = \frac{1}{s^2+9}$$

$$\frac{1}{s^2+9} \Rightarrow \frac{1}{3} \frac{3}{s^2+9} \Rightarrow \frac{1}{3} L^{-1} \left[ \frac{3}{s^2+9} \right]$$

$$L^{-1}[F(s)] = f(t) = \frac{1}{3} \sin(3t)$$

• 
$$F(s) = \frac{1}{(s+2)^5}$$

• 
$$F(s) = \frac{1}{(s+2)^5}$$
  
$$\frac{1}{(s+2)^5} = G(s+2)$$

• 
$$F(s) = \frac{1}{(s+2)^5}$$

$$\frac{1}{(s+2)^5} = G(s+2) \Rightarrow G(s) = \frac{1}{s^5} = \frac{1}{24} \frac{24}{s^5}$$

• 
$$F(s) = \frac{1}{(s+2)^5}$$

$$\frac{1}{(s+2)^5} = G(s+2) \Rightarrow G(s) = \frac{1}{s^5} = \frac{1}{24} \frac{24}{s^5} \Rightarrow \frac{1}{24} L^{-1} \left[ \frac{24}{s^5} \right] = \frac{1}{24} t^4$$

• 
$$F(s) = \frac{1}{(s+2)^5}$$

$$\frac{1}{(s+2)^5} = G(s+2) \Rightarrow G(s) = \frac{1}{s^5} = \frac{1}{24} \frac{24}{s^5} \Rightarrow \frac{1}{24} L^{-1} \left[ \frac{24}{s^5} \right] = \frac{1}{24} t^4$$

By the first shifting theorem,  $L^{-1}[G(s+2)] = L^{-1}[G(s)]e^{-2t}$ 

• 
$$F(s) = \frac{1}{(s+2)^5}$$

$$\frac{1}{(s+2)^5} = G(s+2) \Rightarrow G(s) = \frac{1}{s^5} = \frac{1}{24} \frac{24}{s^5} \Rightarrow \frac{1}{24} L^{-1} \left[ \frac{24}{s^5} \right] = \frac{1}{24} t^4$$

By the first shifting theorem,  $L^{-1}[G(s+2)] = L^{-1}[G(s)]e^{-2t}$ 

$$L^{-1}[F(s)] = f(t) = \frac{1}{24}t^4e^{-2t}$$



$$F(s) = \frac{s}{s^2 + 4s + 13}$$

• 
$$F(s) = \frac{s}{s^2 + 4s + 13}$$
  
$$\frac{s}{s^2 + 4s + 13} \Rightarrow \frac{s}{s^2 + 4s + 4 + 9}$$

• 
$$F(s) = \frac{s}{s^2 + 4s + 13}$$
  

$$\frac{s}{s^2 + 4s + 13} \Rightarrow \frac{s}{s^2 + 4s + 4 + 9} \Rightarrow \frac{s}{(s+2)^2 + 9}$$

• 
$$F(s) = \frac{s}{s^2 + 4s + 13}$$
  

$$\frac{s}{s^2 + 4s + 13} \Rightarrow \frac{s}{s^2 + 4s + 4 + 9} \Rightarrow \frac{s}{(s+2)^2 + 9}$$

$$\Rightarrow \frac{(s+2) - 2}{(s+2)^2 + 9} = G(s+2)$$

• 
$$F(s) = \frac{s}{s^2 + 4s + 13}$$
  

$$\frac{s}{s^2 + 4s + 13} \Rightarrow \frac{s}{s^2 + 4s + 4 + 9} \Rightarrow \frac{s}{(s+2)^2 + 9}$$

$$\Rightarrow \frac{(s+2) - 2}{(s+2)^2 + 9} = G(s+2) \Rightarrow G(s) = \frac{s-2}{s^2 + 9}$$

• 
$$F(s) = \frac{s}{s^2 + 4s + 13}$$
  

$$\frac{s}{s^2 + 4s + 13} \Rightarrow \frac{s}{s^2 + 4s + 4 + 9} \Rightarrow \frac{s}{(s+2)^2 + 9}$$

$$\Rightarrow \frac{(s+2) - 2}{(s+2)^2 + 9} = G(s+2) \Rightarrow G(s) = \frac{s-2}{s^2 + 9}$$

$$L^{-1}[G(s)] = \cos(3t) - \frac{2}{3}\sin(3t)$$

• 
$$F(s) = \frac{s}{s^2 + 4s + 13}$$
  

$$\frac{s}{s^2 + 4s + 13} \Rightarrow \frac{s}{s^2 + 4s + 4 + 9} \Rightarrow \frac{s}{(s+2)^2 + 9}$$

$$\Rightarrow \frac{(s+2) - 2}{(s+2)^2 + 9} = G(s+2) \Rightarrow G(s) = \frac{s-2}{s^2 + 9}$$

$$L^{-1}[G(s)] = \cos(3t) - \frac{2}{3}\sin(3t)$$

$$L^{-1}[F(s)] = f(t) = e^{-2t} \left(\cos(3t) - \frac{2}{3}\sin(3t)\right)$$

#### **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- 3 Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- Solving Systems of ODEs

### **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- 3 Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- Solving Systems of ODEs



#### Reminder

(Systems of) ODEs  $\Leftrightarrow$  (Inverse) Laplace Transform  $\Leftrightarrow$  Algebraic System

- (System of) Linear ODEs with constant coefficients
- Additionally, initial conditions are also needed to solve the ODEs
  - Implicitly, we are looking for a particular solution when solving ODEs using Laplace Transforms

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$L\left[\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x\right] = L[0]$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$L\left[\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x\right] = L[0]$$

$$\Rightarrow s^2 X(s) - sx(0) - x'(0) + 4(sX(s) - x(0)) + 13X(s) = 0$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$L\left[\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x\right] = L[0]$$

$$\Rightarrow s^2X(s) - sx(0) - x'(0) + 4(sX(s) - x(0)) + 13X(s) = 0$$

$$\Rightarrow s^2X(s) - 3s + 4sX(s) - 12 + 13X(s) = 0$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$L\left[\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x\right] = L[0]$$

$$\Rightarrow s^2X(s) - sx(0) - x'(0) + 4(sX(s) - x(0)) + 13X(s) = 0$$

$$\Rightarrow s^2X(s) - 3s + 4sX(s) - 12 + 13X(s) = 0$$

$$\Rightarrow s^2X(s) + 4sX(s) + 13X(s) = 3s + 12$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$L\left[\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x\right] = L[0]$$

$$\Rightarrow s^2X(s) - sx(0) - x'(0) + 4(sX(s) - x(0)) + 13X(s) = 0$$

$$\Rightarrow s^2X(s) - 3s + 4sX(s) - 12 + 13X(s) = 0$$

$$\Rightarrow s^2X(s) + 4sX(s) + 13X(s) = 3s + 12$$

$$\Rightarrow (s^2 + 4s + 13)X(s) = 3s$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$L\left[\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x\right] = L[0]$$

$$\Rightarrow s^2X(s) - sx(0) - x'(0) + 4(sX(s) - x(0)) + 13X(s) = 0$$

$$\Rightarrow s^2X(s) - 3s + 4sX(s) - 12 + 13X(s) = 0$$

$$\Rightarrow s^2X(s) + 4sX(s) + 13X(s) = 3s + 12$$

$$\Rightarrow (s^2 + 4s + 13)X(s) = 3s \Rightarrow X(s) = \frac{3s + 12}{s^2 + 4s + 13}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$X(s) = \frac{3s+12}{s^2+4s+13}$$

$$X(s) = \frac{3s+12}{s^2+4s+13} \Rightarrow X(s) = \frac{3s+12}{(s+2)^2+9}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$X(s) = \frac{3s + 12}{s^2 + 4s + 13} \Rightarrow X(s) = \frac{3s + 12}{(s+2)^2 + 9}$$

$$\Rightarrow X(s) = \frac{3s + 6 + 6}{(s+2)^2 + 9} \Rightarrow X(s) = \frac{3(s+2) + 6}{(s+2)^2 + 9}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$X(s) = \frac{3s + 12}{s^2 + 4s + 13} \Rightarrow X(s) = \frac{3s + 12}{(s+2)^2 + 9}$$

$$\Rightarrow X(s) = \frac{3s + 6 + 6}{(s+2)^2 + 9} \Rightarrow X(s) = \frac{3(s+2) + 6}{(s+2)^2 + 9}$$

$$\Rightarrow X(s) = 3\frac{(s+2)}{(s+2)^2 + 9} + 2\frac{3}{(s+2)^2 + 9}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$X(s) = \frac{3s+12}{s^2+4s+13} \Rightarrow X(s) = \frac{3s+12}{(s+2)^2+9}$$

$$\Rightarrow X(s) = \frac{3s+6+6}{(s+2)^2+9} \Rightarrow X(s) = \frac{3(s+2)+6}{(s+2)^2+9}$$

$$\Rightarrow X(s) = 3\frac{(s+2)}{(s+2)^2+9} + 2\frac{3}{(s+2)^2+9}$$

$$\Rightarrow L^{-1}[X(s)] = 3L^{-1}\left[\frac{(s+2)}{(s+2)^2+9}\right] + 2L^{-1}\left[\frac{3}{(s+2)^2+9}\right]$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 0$$
, where  $x = 3$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$X(s) = \frac{3s+12}{s^2+4s+13} \Rightarrow X(s) = \frac{3s+12}{(s+2)^2+9}$$

$$\Rightarrow X(s) = \frac{3s+6+6}{(s+2)^2+9} \Rightarrow X(s) = \frac{3(s+2)+6}{(s+2)^2+9}$$

$$\Rightarrow X(s) = 3\frac{(s+2)}{(s+2)^2+9} + 2\frac{3}{(s+2)^2+9}$$

$$\Rightarrow L^{-1}[X(s)] = 3L^{-1}\left[\frac{(s+2)}{(s+2)^2+9}\right] + 2L^{-1}\left[\frac{3}{(s+2)^2+9}\right]$$

 $x(t) = 3e^{-2t}\cos(3t) + 2e^{-2t}\sin(3t)$ 

• 
$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 50 \sin t$$
, where  $x = 1$  and  $\frac{dx}{dt} = 4$  when  $t = 0$ 

$$s^2X(s) - s - 4 + 6(sX(s) - 1) + 9X(s) = \frac{50}{s^2 + 1}$$

$$s^2X(s) - s - 4 + 6(sX(s) - 1) + 9X(s) = \frac{50}{s^2 + 1}$$

$$\Rightarrow s^2X(s) + 6sX(s) + 9X(s) - s - 10 = \frac{50}{s^2 + 1}$$

$$s^{2}X(s) - s - 4 + 6(sX(s) - 1) + 9X(s) = \frac{50}{s^{2} + 1}$$

$$\Rightarrow s^{2}X(s) + 6sX(s) + 9X(s) - s - 10 = \frac{50}{s^{2} + 1}$$

$$\Rightarrow (s^{2} + 6s + 9)X(s) = \frac{50}{s^{2} + 1} + s + 10$$

$$s^{2}X(s) - s - 4 + 6(sX(s) - 1) + 9X(s) = \frac{50}{s^{2} + 1}$$

$$\Rightarrow s^{2}X(s) + 6sX(s) + 9X(s) - s - 10 = \frac{50}{s^{2} + 1}$$

$$\Rightarrow (s^{2} + 6s + 9)X(s) = \frac{50}{s^{2} + 1} + s + 10$$

$$\Rightarrow X(s) = \frac{50}{(s^{2} + 1)(s + 3)^{2}} + \frac{s + 10}{(s + 3)^{2}}$$

• 
$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 50 \sin t$$
, where  $x = 1$  and  $\frac{dx}{dt} = 4$  when  $t = 0$ 

$$\Rightarrow X(s) = \frac{50}{(s^2+1)(s+3)^2} + \frac{s+10}{(s+3)^2}$$

$$\Rightarrow X(s) = \frac{50}{(s^2+1)(s+3)^2} + \frac{s+10}{(s+3)^2}$$

$$X(s) = \frac{5}{(s+3)^2} + \frac{3}{s+3} + \frac{-3s+4}{s^2+1} + \frac{1}{s+3} + \frac{7}{(s+3)^2}$$

$$\Rightarrow X(s) = \frac{50}{(s^2+1)(s+3)^2} + \frac{s+10}{(s+3)^2}$$

$$X(s) = \frac{5}{(s+3)^2} + \frac{3}{s+3} + \frac{-3s+4}{s^2+1} + \frac{1}{s+3} + \frac{7}{(s+3)^2}$$

$$X(s) = 12\frac{1}{(s+3)^2} + 4\frac{1}{s+3} - 3\frac{s}{s^2+1} + 4\frac{1}{s^2+1}$$

$$\Rightarrow X(s) = \frac{50}{(s^2+1)(s+3)^2} + \frac{s+10}{(s+3)^2}$$

$$X(s) = \frac{5}{(s+3)^2} + \frac{3}{s+3} + \frac{-3s+4}{s^2+1} + \frac{1}{s+3} + \frac{7}{(s+3)^2}$$

$$X(s) = 12\frac{1}{(s+3)^2} + 4\frac{1}{s+3} - 3\frac{s}{s^2+1} + 4\frac{1}{s^2+1}$$

$$x(t) = 12te^{-3t} + 4e^{-3t} - 3\cos t + 4\sin t$$



• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$ 

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$   

$$\Rightarrow s^2X(s) - s + 4 + 4(sX(s) - 1) - 3X(s) = \frac{4}{s - 1}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$ 

$$\Rightarrow s^2X(s) - s + 4 + 4(sX(s) - 1) - 3X(s) = \frac{4}{s - 1}$$

$$(s^2 + 4s - 3)X(s) = \frac{4}{s - 1} + s + 2$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$   

$$\Rightarrow s^2X(s) - s + 4 + 4(sX(s) - 1) - 3X(s) = \frac{4}{s - 1}$$

$$(s^2 + 4s - 3)X(s) = \frac{4}{s - 1} + s + 2$$

$$\Rightarrow X(s) = \frac{4}{(s - 1)(s^2 + 4s - 3)} + \frac{s + 2}{s^2 + 4s - 3}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$   

$$\Rightarrow s^2X(s) - s + 4 + 4(sX(s) - 1) - 3X(s) = \frac{4}{s - 1}$$

$$(s^2 + 4s - 3)X(s) = \frac{4}{s - 1} + s + 2$$

$$\Rightarrow X(s) = \frac{4}{(s - 1)(s^2 + 4s - 3)} + \frac{s + 2}{s^2 + 4s - 3}$$

$$\Rightarrow X(s) = \frac{2}{s - 1} + \frac{-2s - 10}{s^2 + 4s - 3} + \frac{s + 2}{s^2 + 4s - 3}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$   

$$\Rightarrow s^2X(s) - s + 4 + 4(sX(s) - 1) - 3X(s) = \frac{4}{s - 1}$$

$$(s^2 + 4s - 3)X(s) = \frac{4}{s - 1} + s + 2$$

$$\Rightarrow X(s) = \frac{4}{(s - 1)(s^2 + 4s - 3)} + \frac{s + 2}{s^2 + 4s - 3}$$

$$\Rightarrow X(s) = \frac{2}{s - 1} + \frac{-2s - 10}{s^2 + 4s - 3} + \frac{s + 2}{s^2 + 4s - 3}$$

$$\Rightarrow X(s) = \frac{2}{s - 1} + \frac{-s - 8}{s^2 + 4s - 3}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$ 

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-8}{s^2+4s-3}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$ 

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-8}{s^2 + 4s - 3}$$

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-2-6}{(s+2)^2 - 7}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$ 

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-8}{s^2 + 4s - 3}$$

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-2-6}{(s+2)^2 - 7}$$

$$\Rightarrow X(s) = \frac{2}{s-1} - \frac{s+2}{(s+2)^2 - 7} - \frac{6}{(s+2)^2 - 7}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$ 

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-8}{s^2 + 4s - 3}$$

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-2-6}{(s+2)^2 - 7}$$

$$\Rightarrow X(s) = \frac{2}{s-1} - \frac{s+2}{(s+2)^2 - 7} - \frac{6}{(s+2)^2 - 7}$$

$$\Rightarrow X(s) = 2\frac{1}{s-1} + (-1)\frac{s+2}{(s+2)^2 - 7} + \left(-\frac{6}{\sqrt{7}}\right)\frac{\sqrt{7}}{(s+2)^2 - 7}$$

• 
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} - 3x = 4e^t$$
, where  $x = 1$  and  $\frac{dx}{dt} = -2$  when  $t = 0$ 

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-8}{s^2+4s-3}$$

$$\Rightarrow X(s) = \frac{2}{s-1} + \frac{-s-2-6}{(s+2)^2-7}$$

$$\Rightarrow X(s) = \frac{2}{s-1} - \frac{s+2}{(s+2)^2-7} - \frac{6}{(s+2)^2-7}$$

$$\Rightarrow X(s) = 2\frac{1}{s-1} + (-1)\frac{s+2}{(s+2)^2-7} + \left(-\frac{6}{\sqrt{7}}\right)\frac{\sqrt{7}}{(s+2)^2-7}$$

$$x(t) = 2e^t - e^{-2t}\cosh\left(\sqrt{7}t\right) - \frac{6}{\sqrt{7}}e^{-2t}\sinh\left(\sqrt{7}t\right)$$

# **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- 3 Solving First and Second Order ODEs
  - Examples
    - General Solutions of ODEs and Laplace Transforms
- Solving Systems of ODEs



# General Solution of an ODE using (Inverse) Laplace Transforms

• In the event that no boundary conditions are given, we can still solve an ODE using Laplace transforms by setting x(0) = A and x'(0) = B, where A and B are arbitrary constants.

# General Solution of an ODE using (Inverse) Laplace Transforms

- In the event that no boundary conditions are given, we can still solve an ODE using Laplace transforms by setting x(0) = A and x'(0) = B, where A and B are arbitrary constants
- In actuality, we could solve the previous examples by solving first for the general solution, then plugging the boundary conditions to get the particular solution.
  - Obviously, that would take a little bit more work (which we usually DO NOT like), 'no?

$$s^2X(s) - As - B + 4X(s) = 0$$

• 
$$\frac{d^2x}{dt^2} + 4x = 0$$

$$s^{2}X(s) - As - B + 4X(s) = 0 \Rightarrow X(s) = \frac{As + B}{s^{2} + 4}$$

$$\frac{d^2x}{dt^2} + 4x = 0$$

$$s^2X(s) - As - B + 4X(s) = 0 \Rightarrow X(s) = \frac{As + B}{s^2 + 4}$$

$$\Rightarrow X(s) = A\frac{s}{s^2 + 4} + B\frac{1}{s^2 + 4}$$

• 
$$\frac{d^2x}{dt^2} + 4x = 0$$

$$s^2X(s) - As - B + 4X(s) = 0 \Rightarrow X(s) = \frac{As + B}{s^2 + 4}$$

$$\Rightarrow X(s) = A\frac{s}{s^2 + 4} + B\frac{1}{s^2 + 4}$$

$$x(t) = A\cos(2t) + B\sin(2t)$$

## **Topics**

- Laplace Transforms
  - Laplace Transforms and Solving ODEs
  - Laplace Transform
  - Useful Rules and Theorems
- 2 Inverse Laplace Transforms
- Solving First and Second Order ODEs
  - Examples
  - General Solutions of ODEs and Laplace Transforms
- Solving Systems of ODEs



Firstly, take the Laplace Transform of each equations.

- Firstly, take the Laplace Transform of each equations.
- Solve the resulting linear system algebraically.
  - One dependent variable gets solved

- Firstly, take the Laplace Transform of each equations.
- Solve the resulting linear system algebraically.
  - One dependent variable gets solved
- Apply inverse Laplace transform on the solution for one variable.

- Firstly, take the Laplace Transform of each equations.
- Solve the resulting linear system algebraically.
  - One dependent variable gets solved
- Apply inverse Laplace transform on the solution for one variable.
- "Back substitute" to solve for the other variable(s) using the obtained solution for one dependent variable.

$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

• Firstly, take the Laplace Transform of each equations.

$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

• Firstly, take the Laplace Transform of each equations.

$$sY(s) - 2 + 2X(s) = \frac{1}{s-1}$$
  
 $sX(s) - 1 - 2Y(s) = \frac{1}{s} + \frac{1}{s^2}$ 

$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$sY(s) + 2X(s) = \frac{1}{s-1} + 2$$
  
 $sX(s) - 2Y(s) = \frac{1}{s} + \frac{1}{s^2} + 1$ 

$$\frac{dy}{dt} + 2x = e^t$$
$$\frac{dx}{dt} - 2y = 1 + t$$
$$x(0) = 1 \text{ and } y(0) = 2$$

$$sY(s) + 2X(s) = \frac{1}{s-1} + 2$$

$$sX(s) - 2Y(s) = \frac{1}{s} + \frac{1}{s^2} + 1$$

$$\Rightarrow (4+s^2)X(s) = \frac{2}{s-1} + 4 + 1 + \frac{1}{s} + s$$

$$\frac{dy}{dt} + 2x = e^t$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$(4+s^2)X(s) = \frac{2}{s-1} + 4 + 1 + \frac{1}{s} + s$$

$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$(4+s^2)X(s) = \frac{2}{s-1} + 4 + 1 + \frac{1}{s} + s$$

$$\Rightarrow X(s) = \frac{2}{(s-1)(4+s^2)} + \frac{5}{4+s^2} + \frac{1}{s(4+s^2)} + \frac{s}{4+s^2}$$



$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$X(s) = \frac{2}{(s-1)(4+s^2)} + \frac{5}{4+s^2} + \frac{1}{s(4+s^2)} + \frac{s}{4+s^2}$$

$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$X(s) = \frac{2}{(s-1)(4+s^2)} + \frac{5}{4+s^2} + \frac{1}{s(4+s^2)} + \frac{s}{4+s^2}$$
$$\Rightarrow X(s) = \frac{2}{5} \frac{1}{s-1} + \frac{7}{20} \frac{s}{s^2+4} + \frac{23}{5} \frac{1}{s^2+4} + \frac{1}{4} \frac{1}{s}$$



$$\frac{dy}{dt} + 2x = e^{t}$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$X(s) = \frac{2}{5} \frac{1}{s-1} + \frac{7}{20} \frac{s}{s^2+4} + \frac{23}{5} \frac{1}{s^2+4} + \frac{11}{4} \frac{1}{s}$$

$$\frac{dy}{dt} + 2x = e^t$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

$$X(s) = \frac{2}{5} \frac{1}{s-1} + \frac{7}{20} \frac{s}{s^2+4} + \frac{23}{5} \frac{1}{s^2+4} + \frac{1}{4} \frac{1}{s}$$
$$x(t) = \frac{2}{5} e^t + \frac{7}{20} \cos(2t) + \frac{23}{10} \sin(2t) + \frac{1}{4}$$

$$\frac{dy}{dt} + 2x = e^t$$
$$\frac{dx}{dt} - 2y = 1 + t$$
$$x(0) = 1 \text{ and } y(0) = 2$$

 "Back substitute" to solve for the other variable(s) using the obtained solution for one dependent variable.

$$x(t) = \frac{2}{5}e^{t} + \frac{7}{20}\cos(2t) + \frac{23}{10}\sin(2t) + \frac{1}{4}$$

$$\frac{dy}{dt} + 2x = e^t$$
$$\frac{dx}{dt} - 2y = 1 + t$$
$$x(0) = 1 \text{ and } y(0) = 2$$

• "Back substitute" to solve for the other variable(s) using the obtained solution for one dependent variable.

$$x(t) = \frac{2}{5}e^{t} + \frac{7}{20}\cos(2t) + \frac{23}{10}\sin(2t) + \frac{1}{4}$$
$$y = \frac{1}{2}\left(\frac{dx}{dt} - 1 - t\right)$$

$$\frac{dy}{dt} + 2x = e^t$$

$$\frac{dx}{dt} - 2y = 1 + t$$

$$x(0) = 1 \text{ and } y(0) = 2$$

• "Back substitute" to solve for the other variable(s) using the obtained solution for one dependent variable.

$$y = \frac{1}{2} \left( \frac{dx}{dt} - 1 - t \right)$$

$$\frac{dy}{dt} + 2x = e^t$$
$$\frac{dx}{dt} - 2y = 1 + t$$
$$x(0) = 1 \text{ and } y(0) = 2$$

• "Back substitute" to solve for the other variable(s) using the obtained solution for one dependent variable.

$$y = \frac{1}{2} \left( \frac{dx}{dt} - 1 - t \right)$$

$$y(t) = \frac{1}{5}e^{t} + \frac{23}{10}\cos(2t) - \frac{7}{20}\sin(2t) - \frac{1}{2} - \frac{t}{2}$$



$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

Firstly, take the Laplace Transform of each equations.

$$sX(s) - 3 - Y(s) = \frac{1}{s^2 + 1}$$
  
 $sY(s) - 4 + X(s) = \frac{s}{s^2 + 1}$ 

$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$sX(s) - Y(s) = \frac{1}{s^2 + 1} + 3$$
  
 $sY(s) + X(s) = \frac{s}{s^2 + 1} + 4$ 

$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$sX(s) - Y(s) = \frac{1}{s^2 + 1} + 3$$
$$sY(s) + X(s) = \frac{s}{s^2 + 1} + 4$$
$$\Rightarrow s^2X(s) + X(s) = \frac{2s}{s^2 + 1} + 3s + 4$$

$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$s^2X(s) + X(s) = \frac{2}{s^2 + 1} + 3s + 4$$

$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$s^{2}X(s) + X(s) = \frac{2}{s^{2} + 1} + 3s + 4$$

$$\Rightarrow X(s) = \frac{2s}{(s^{2} + 1)^{2}} + \frac{3s}{s^{2} + 1} + \frac{4}{s^{2} + 1}$$

$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$X(s) = \frac{2s}{(s^2+1)^2} + \frac{3s}{s^2+1} + \frac{4}{s^2+1}$$

$$\frac{dx}{dt} - y = \sin t$$

$$\frac{dy}{dt} + x = \cos t$$

$$x(0) = 3 \text{ and } y(0) = 4$$

$$X(s) = \frac{2s}{(s^2+1)^2} + \frac{3s}{s^2+1} + \frac{4}{s^2+1}$$

$$x(t) = t \sin t + 3 \cos t + 4 \sin t$$



$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$x(t) = t \sin t + 3 \cos t + 4 \sin t$$

$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$x(t) = t \sin t + 3 \cos t + 4 \sin t$$

$$y = \frac{dy}{dt} - \sin t$$

$$\frac{dx}{dt} - y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
$$x(0) = 3 \text{ and } y(0) = 4$$

$$x(t) = t \sin t + 3 \cos t + 4 \sin t$$

$$y = \frac{dy}{dt} - \sin t$$

$$y(t) = t\cos t - 4\sin t + 4\cos t$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

Firstly, take the Laplace Transform of each equations.

$$sX(s) - 3 + 4sY(s) + 6Y(s) = 0$$
  
 $5sX(s) - 15 + 2sY(s) + 6X(s) = 0$ 



$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$sX(s) + (4s + 6)Y(s) = 3$$
  
 $(5s + 6)X(s) + 2sY(s) = 15$ 

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$sX(s) + (4s + 6)Y(s) = 3$$
  
 $(5s + 6)X(s) + 2sY(s) = 15$ 

$$\Rightarrow \left(\left(-\frac{5s+6}{s}\right)(4s+6)+2s\right)Y(s)=-3\frac{5s+6}{s}+15$$



$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$\left(\left(\frac{-5s-6}{s}\right)(4s+6)+2s\right)Y(s)=-3\frac{5s+6}{s}+15$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$\left(\left(\frac{-5s-6}{s}\right)(4s+6)+2s\right)Y(s) = -3\frac{5s+6}{s}+15$$

$$\Rightarrow \left(\frac{-18s^2-30s-36}{s}\right)Y(s) = \frac{-18}{s}$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$\left(\frac{-18s^2 - 54s - 36}{s}\right)Y(s) = \frac{-18}{s}$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$\left(\frac{-18s^2 - 54s - 36}{s}\right)Y(s) = \frac{-18}{s}$$

$$Y(s) = \frac{18}{18s^2 + 54s + 36} = \frac{1}{s^2 + 3s + 2}$$



$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

 Apply inverse Laplace transform on the solution for one variable.

$$Y(s) = \frac{1}{s^2 + 3s + 2}$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

 Apply inverse Laplace transform on the solution for one variable.

$$Y(s) = \frac{1}{s^2 + 3s + 2} = \frac{-1}{s+2} + \frac{1}{s+1}$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

 Apply inverse Laplace transform on the solution for one variable.

$$Y(s) = \frac{1}{s^2 + 3s + 2} = \frac{-1}{s+2} + \frac{1}{s+1}$$
$$y(t) = -e^{-2t} + e^{-t}$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$y(t) = -e^{-2t} + e^{-t}$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$y(t) = -e^{-2t} + e^{-t}$$

$$x = \frac{1}{6} \left( 5 \frac{dx}{dt} + 2 \frac{dy}{dt} \right)$$



$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$y(t) = -e^{-2t} + e^{-t}$$

$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$y(t) = -e^{-2t} + e^{-t}$$

$$\frac{dx}{dt} = -4\frac{dy}{dt} - 6y$$



$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$y(t) = -e^{-2t} + e^{-t}$$

$$\frac{dx}{dt} = -4\frac{dy}{dt} - 6y = -4(2e^{-2t} - e^{-t}) - 6(-e^{-2t} + e^{-t})$$



$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$y(t) = -e^{-2t} + e^{-t}$$

$$\frac{dx}{dt} = -4\frac{dy}{dt} - 6y = -4(2e^{-2t} - e^{-t}) - 6(-e^{-2t} + e^{-t}) = -2e^{-2t} - 2e^{-t}$$



$$\frac{dx}{dt} + 4\frac{dy}{dt} + 6y = 0$$

$$5\frac{dx}{dt} + 2\frac{dy}{dt} + 6x = 0$$

$$x(0) = 3 \text{ and } y(0) = 0$$

$$y(t) = -e^{-2t} + e^{-t}$$

$$\frac{dx}{dt} = -4\frac{dy}{dt} - 6y = -4(2e^{-2t} - e^{-t}) - 6(-e^{-2t} + e^{-t}) = -2e^{-2t} - 2e^{-t}$$

$$x(t) = e^{-2t} + 2e^{-t}$$



Laplace Transforms Inverse Laplace Transforms Solving First and Second Order ODEs Solving Systems of ODEs

#### **END OF LESSON 10**