Российской авиакомпании F9, выполняющей внутренние пассажирские перевозки, важно понять предпочтения пользователей, покупающих билеты на разные направления.

Нам предстоит изучить базу данных и проанализировать спрос пассажиров на рейсы в города, где проходят крупнейшие культурные фестивали.

Шаг 1. Аналитика средствами Python

query_1.csv — результат первого запроса. В нём содержится такая информация:

- *model* **модель самолета;
- flights_amount количество рейсов для каждой модели самолетов model в сентябре 2018 года.

query 3.csv — результат третьего запроса. В нём содержится такая информация:

- city город;
- average_flights среднее количество рейсов, прибывающих в город (city) за день в сентябре 2018 года.

Шаг 2. Проверка гипотезы средствами Python

query_last.csv — результат последнего запроса. В нём следующая информация:

- week_number **номер недели;
- ticket_amount количество проданных билетов за неделю;
- festival week есть ли на этой неделе фестиваль;
- festival_name название фестиваля.

Проверим гипотезу: «Средний спрос на билеты во время фестивалей не отличается от среднего спроса на билеты в обычное время».

1. Аналитика

In [1]:

```
import pandas as pd
import numpy as np
```

In [2]:

```
#импортируем данные
df1=pd.read_csv('/datasets/query_1.csv')
df2=pd.read_csv('/datasets/query_3.csv')
df3=pd.read_csv('/datasets/query_last.csv')
```

In [3]:

```
#изучим данные в них
df1
```

Out[3]:

	model	flights_amount
0	Airbus A319-100	607
1	Airbus A321-200	960
2	Boeing 737-300	630
3	Boeing 767-300	600
4	Boeing 777-300	300
5	Bombardier CRJ-200	4446
6	Cessna 208 Caravan	4557
7	Sukhoi SuperJet-100	4185

In [4]:

```
#проверим типы данных на корректность df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8 entries, 0 to 7
Data columns (total 2 columns):
model 8 non-null object
flights_amount 8 non-null int64
dtypes: int64(1), object(1)
memory usage: 256.0+ bytes
```

In [5]:

df1.describe()

Out[5]:

flights_amount

count	8.000000
mean	2035.625000
std	1965.203947
min	300.000000
25%	605.250000
50%	795.000000
75%	4250.250000
max	4557.000000

In [6]:

df2

Out[6]:

	city	average_flights
0	Абакан	3.870968
1	Анадырь	1.000000
2	Анапа	2.161290
3	Архангельск	5.354839
4	Астрахань	2.451613
96	Чита	1.580645
97	Элиста	4.870968
98	Южно-Сахалинск	4.290323
99	Якутск	2.741935
100	Ярославль	1.322581

101 rows × 2 columns

In [7]:

```
# проверим, есть ли пропуски
df2.isna().sum()
```

Out[7]:

city 0
average_flights 0
dtype: int64

In [8]:

```
df2.info()
```

In [9]:

df2.describe()

Out[9]:

	average_flights
count	101.000000
mean	5.494189
std	13.119790
min	1.000000
25%	2.000000
50%	3.000000
75%	5.870968

129.774194

In [10]:

max

приведем значения столбца среднее количество полетов к целочисленной форме df2['average_flights']=df2['average_flights'].astype('int')

In [11]:

df2

Out[11]:

	city	average_flights
0	Абакан	3
1	Анадырь	1
2	Анапа	2
3	Архангельск	5
4	Астрахань	2
96	Чита	1
97	Элиста	4
98	Южно-Сахалинск	4
99	Якутск	2
100	Ярославль	1

101 rows × 2 columns

Вывод: данные изучены, пропусков нет, тип изменили на целочисленный.

In [12]:

```
#выберем mon-10 городов по количеству рейсов
top10 = df2.sort_values(by='average_flights', ascending=False).head(10)
```

In [13]:

top10

Out[13]:

	city	average_flights
43	Москва	129
70	Санкт-Петербург	31
54	Новосибирск	17
20	Екатеринбург	11
33	Красноярск	11
63	Пермь	10
67	Ростов-на-Дону	10
10	Брянск	10
84	Ульяновск	9
73	Советский	9

In [14]:

#nocmpoum графики: модели самолётов и количество рейсов df1.plot.bar(x='model', rot=45) #plot(x='model', y='flights_amount', figsize=(15,10))

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f02925f3650>

Вывод: Чем меньше самолет, тем больше рейсов выполняет.

In [15]:

```
#построим графики: города и количество рейсов

df2.plot.bar(x='city',rot=90, figsize=(20,15))
```

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0254a93d50>

Вывод: Высокие значения у Москвы и Санкт-Петербурга. У остальных городов примерно на одном уровне. А мой город Пермь вошел в Топ-10!

In [16]:

```
#построим графики: mon-10 городов и количество рейсов
top10.plot.bar(x='city',rot=45, figsize=(20,15))
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f02541b0f10>

2. Проверка гипотезы

In [17]:

df3

Out[17]:

	week_number	ticket_amount	festival_week	festival_name
0	30	43568	30.0	Park Live
1	31	51034	31.0	Пикник Афиши
2	32	51675	NaN	NaN
3	33	51378	NaN	NaN
4	34	51492	NaN	NaN
5	35	51360	NaN	NaN
6	36	51386	36.0	Видфест
7	37	51670	NaN	NaN
8	38	51518	NaN	NaN
9	39	51623	NaN	NaN

Проверим гипотезу: «Средний спрос на билеты во время фестивалей не отличается от среднего спроса на билеты в обычное время».

In [18]:

from scipy import stats as st

НО Средний спрос на билеты во время фестивалей равен среднему спросу на билеты в обыч ное время

H1 Средний спрос на билеты во время фестивалей и средний спрос на билеты в обычное вр емя различаются

Для проверки гипотезы будем использовать t-критерий Стьюдента, так как этот критерий применяется для сравнения средних значений двух независимых между собой выборок, крити ческий уровень статистической значимости

alpha = .05, так как объем выборки небольшой

#отсортируем датафрейм по условию наличия и отсутствия фестивалей df3_without_fest = df3.query('festival_week== "NaN"') df3_without_fest

Out[18]:

	week_number	ticket_amount	festival_week	festival_name
2	32	51675	NaN	NaN
3	33	51378	NaN	NaN
4	34	51492	NaN	NaN
5	35	51360	NaN	NaN
7	37	51670	NaN	NaN
8	38	51518	NaN	NaN
9	39	51623	NaN	NaN

In [19]:

```
df3_with_fest = df3.query('festival_week != "NaN"')
df3_with_fest
```

Out[19]:

 week_number	ticket_amount	festival_week	festival_name
30	43568	30.0	Park Live
1 31	51034	31.0	Пикник Афиши
36	51386	36.0	Видфест

In [20]:

```
df3_without_fest_mean = df3_without_fest['ticket_amount']
df3_with_fest_mean = df3_with_fest['ticket_amount']
```

```
In [21]:
```

```
df3 without fest mean.describe()
Out[21]:
count
             7.000000
         51530.857143
mean
std
          130.933098
         51360.000000
min
25%
         51435.000000
50%
         51518.000000
75%
         51646.500000
         51675.000000
max
Name: ticket_amount, dtype: float64
In [22]:
df3 with fest mean.describe()
Out[22]:
count
             3.000000
mean
        48662.666667
std
         4415.619700
min
         43568.000000
25%
         47301.000000
50%
         51034.000000
75%
         51210.000000
max
         51386.000000
Name: ticket_amount, dtype: float64
у данных значительно отличается дисперсия
In [23]:
alpha = .05 # критический уровень статистической значимости, так как объем выборки небо
#https://www.statmethods.ru/stati/vybor-urovnya-znachimosti-pri-proverke-statisticheski
kh-gipotez/
#https://www.machinelearningmastery.ru/statistical-hypothesis-tests-in-python-cheat-she
et/
results = st.ttest ind(df3 without fest mean,
    df3_with_fest_mean,equal_var=False)
print('p-значение: ', results.pvalue)
if (results.pvalue < alpha): #сравним получившееся р-значение с заданным уровнем статис
тической значимости
    print("Отвергаем нулевую гипотезу")
else:
    print("Не получилось отвергнуть нулевую гипотезу")
```

р-значение: 0.377432493172683 Не получилось отвергнуть нулевую гипотезу

За нулевую гипотезу принимаем положительное предположение о том, что средний спрос на билеты во время фестивалей равен среднему спросу на билеты в обычное время. За альтернативную гипотезу берем: Средний спрос на билеты во время фестивалей и средний спрос на билеты в обычное время различаются. Для проверки использовали сравнение р-значения с заданным уровнем статистической значимости. За уровень значимости используется значение 0.05, такую вероятность ошибки считаем допустимой.

Вывод: Не получилось отвергнуть нулевую гипотезу о том, что средний спрос на билеты во время фестивалей равен среднему спросу на билеты в обычное время.