Fn	$(f \circ g)(x) = f(g(x)), composite$			Domain: $\{x \mid x \in A \text{ and } f(x) \in B\}$				
	domain: \mathbb{R} , range: $\{x \mid x \geq 0\} = \mathbb{R}^+$	∪ {0} = [0, ∞)	$diff: A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$					
	fn is increasing if $a < b \Rightarrow f(a) < f(b)$	for any a, b	any a, b		fn is decreasing if $a < b \Rightarrow f(a) > f(b)$ for any a , b			
	even fn: $f(-x) = f(x)$			symmetric about y-a	axis			
	odd fn: $f(-x) = -f(x)$ (if not odd/ever	n, proof by counter e.	g.)	symmetric about origin				
	power fn: x^n , $n \in \mathbb{Z}^+$			if n is odd, fn is odd	if n is even, fn is even			
Trigo	$\sin^2\theta + \cos^2\theta = 1$ $\sin(A \pm B) = 0$	sinA cosB ± cosA sinB	sin	(-x) = - sin x	csc(-x) = -csc(x)			
		cosA cosB ∓ sinA sinB	3 cos	$(-x) = \cos(x)$	sec(-x) = sec(x)			
	$1 + \cot^2\theta = \csc^2\theta \qquad \text{tan(A ± B)} =$	$tanA \pm tanB$	tan	(-x) = - tan x	$\cot(-x) = -\cot(x)$			
	$1 - x^2 \le \cos x$ for $-\pi/2 < x < \pi/2$		f triang	le and $ heta$ is angle opp	c, $ - \theta \le \sin\theta \le \theta $			
	$x < \tan x$ for $0 < x < \pi/2$	then $c^2 = a^2 + b^2 - 2$			$ - \theta \le \sin\theta \le \theta $ $ - \theta \le 1 - \cos\theta \le \theta $			
					$\frac{ - 0 \le 1 - \cos \theta \le \theta }{\sin \theta}$			
	$\sin 2\theta = 2\sin\theta\cos\theta = \frac{2\tan\theta}{1+\tan^2\theta}$	$\csc 2\theta = \frac{\sec \theta \csc \theta}{2}$ $\sec 2\theta = \frac{\sec^2 \theta}{2 - \sec^2 \theta}$		$\cos^2\theta = \frac{1 + \cos 2\theta}{2}$ $\sin^2\theta = \frac{1 - \cos 2\theta}{2}$	$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$			
	$\cos 2\theta = \cos^2\theta - \sin^2\theta = \frac{1 - \tan^2\theta}{1 + \tan^2\theta}$	$\sec 2\theta = \frac{\sec^2 \theta}{\cos^2 \theta}$	$\frac{\theta}{20}$	$\sin^2\theta = \frac{1-\cos 2\theta}{2}$	$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$			
	$1+tan^2\theta$	$2-sec$ $\cot^2\theta$	∠θ −1	2	$\theta \rightarrow 0 \theta$			
	$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$	$\cot 2\theta = \frac{\cot^2 \theta}{2\cot \theta}$	θ		$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1$			
	$sin(\pi - x) = sin x$	$(a+b)^3 = a^3 + 3a^2b$	+ 3ab ² +	⊦ b³	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$			
	$cos(\pi - x) = -cos x$	$(a-b)^3 = a^3 - 3a^2b +$	+ 3ab² -	b ³	$\begin{bmatrix} -1 & 6 \\ -n & 2 & (n(n+1))^2 \end{bmatrix}$			
	$tan(\pi - x) = -tan x$	$y-x = (y^{1/n}-x^{1/n})(y^{(n-1)})$	^{-1)/n} + y ^{(r}	$x^{1-2)/n}x^{1/n} + + x^{(n-1)/n}$	$\sum_{i=1}^{n} i^3 = \left(\frac{8(3+2)}{2}\right)$			
Limits	slope = gradient = m = $\frac{y_1 - y_0}{x_1 - x_0}$			tangent line at y_0 : (2	$y - y_0) = m(x - x_0)$			
Intuitive	only depends on values of $f(x)$	for x near a. (not at a	1)	$\lim f(x) = L$, if value of f(x) is arbitrarily close to L by				
defn	,,	my depends on values of t(x) for x fieur a, (not at a)			taking x sufficiently close to a (intuitive definition)			
	$f\lim_{x \to \infty} f(x) = I \text{ and } \lim_{x \to \infty} g(x)$	If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ 4. $\lim_{x \to a} f(x) = L$			close to a (intuitive definition)			
Properties	$\lim_{x \to a} f(x) = L \text{ and } \lim_{x \to a} g(x)$	If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ 4.						
	1. $\lim_{x \to a} [f(x) + g(x)] = L + R$	<i>A</i> 5.	$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$					
	$2. \lim_{x \to a} [f(x) - g(x)] = L - R$	<i>M</i> 6.	$[f(x)]^n = L^n, \ n \in \mathbb{Z}^+$					
	$3. \lim_{x \to a} cf(x) = cL$	7	$x \to a$ $\lim_{n \to \infty} n / f$	$\overline{f(x)} = \sqrt[n]{L}$, $n \in \mathbb{Z}^+$ and if n is even, $f(x) \ge 0$ for all x near a				
Finalina II			$\underset{x\to a}{\text{min}} \sqrt{y}$					
Finding lir	ν-	$\max_{a} f(x) = f(a)$			ry simplifying/rationalise fraction			
1-sided lir	$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^{-}} f(x)$	$= L \text{ and } \lim_{x \to a^+} f(x)$	= L	$ if \lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} $	$f(x) \Rightarrow \lim_{x \to a} f(x)$ DNE			
Infinite lin	n If taking x sufficiently close to	a, value of f(x) is arbit	trarily la	rge/small,	$\lim_{x \to a} H(x) = \pm \infty$			
	Infinite limits make sense, but							
Squeeze 7	Theorem If $f(x) \le g(x) \le h(x)$	for all x near a (excep	ot at a) a	and $\lim_{x \to a} f(x) = \lim_{x \to a} h$	$f(x) = L$, then $\lim_{x \to a} g(x)$ exists and $= L$			
Squeeze Theorem If $f(x) \le g(x) \le h(x)$ for all x near a (except at a) and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} h(x)$, where $g(x)/h(x) = f(x)$ Use if a not in domain of $f(x)$					in of f(x)			
Precise de		0.3 a 8 > 0 such that	t f(x) -	ll< ∈ whenever 0 < l	x-al < δ			
	$x \rightarrow a$			El re Milenevel o ri	, u 10			
Triangle II			_	+ 0	11.45			
Precise de	,	•			•			
	•	Left hand limit: for every $\epsilon > 0$, there exists a num $\delta > 0$ s.t. $0 < a - x < \delta => f(x) - L < \epsilon + \infty$ limit: for every $M > 0$, there exists a num $\delta > 0$ s.t. $0 < x - a < \delta => f(x) > M$						
	•	$-\infty$ limit: for every $M < 0$, there exists a num $\delta > 0$ s.t. $0 < x-a < \delta => f(x) < M$						
Precise de	•							
as $x \rightarrow \pm 0$			•					
Prove lim		CAISES & HATTI IVI S.C. A	- IVI ->					
1.500	2. Choose a δ (found in working	ng) to prove that 0 < 1	x-al < 8	S => f(x)- < <i>e</i>				
Continuo		<u> </u>	•	f continuity:				
at a pt	. ,	• •			1. f(a) is well-defined, i.e. a is in domain of f; and			
	$\lim f(x) = f(a)$, then f is co		2. $\lim_{x \to 0} f(x)$ exists, i.e. it is a real number; and					
	$\sum_{x \to a} (x) = x + x = 0$ Opp of continuous is discontinuous		$Y \rightarrow a$		e defn of limits apply here as well			
			70 00		c acm or mines apply here as well			
Removab								
discontinu	Let $f_1(x) = \begin{cases} f(x) & \text{if } x \neq 0 \\ \lim_{x \to \infty} f(x) & \text{if } x = 0 \end{cases}$. Then f ₁ is the <i>contin</i>	uous ex	tension of f at a				
Infinite	Let $f_1(x) = \begin{cases} f(x) & \text{if } x \neq a \\ \lim_{x \to a} f(x) & \text{if } x = a \end{cases}$. Then f_1 is the <i>continuous extension</i> of f at a							
discontinu	Suppose f has at least 1 1-sided infinite limit at a: $\lim_{x \to a^+} f(x) = \pm \infty$; or $\lim_{x \to a^-} f(x) = \pm \infty$							
	Then vertical line x = a is an asymptote of y = 1(x) and t is said to have an injunite discontinuity at a							
Jump	Suppose $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ exists, but $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$							
discontinu	Then f is said to have a jump discontinuity at a							
1-sided	$\lim_{x\to a^-} f(x) = f(a).$ Then f is continuous from the left at a							
continuity	$\int_{x\to a^+}^{x\to a} f(x) = f(a)$. Then f is continuous from the right at a							
	$x \rightarrow a^+$ f is continuous at a iff f is cont			from the right at a				
Continuity		aoas iroili tiic icit d	it a allu	are right at a				
on interva								
J., .,	The rais of this continuous at every $x \in \{a, b\}$, and it is continuous from the right at a, and it is continuous from the left at b							

Proving	Use limits to show that no matter value of a, pt 3 holds		/ \					
Composite fn	Let f and g be 2 fn. Suppose $\lim_{x\to a} f(x) = b$ and $\lim_{y\to b} g(y) = c$.							
'''	We know $x \to a$ (x \neq a) \Rightarrow y \to b and y \to b (y \neq b) \Rightarrow z \to c. B	λ ' μ						
	1. 1st part change to $x \to a$ ($x \ne a$) $\Rightarrow y \to b$ ($y \ne b$) OR 2. 2nd part change to $y \to b \Rightarrow z \to c$							
	Condition 1 means $\lim_{x\to a} f(x) = b$ and $f(x) \neq b \ \forall \ x$ in an	and $f(x) \neq b \forall x$ in an Condition 2 means g is continuous.						
	open interval containing a except at a	$\lim_{x \to a} g(f(x)) = c$	$= g(b) = g(\lim_{x \to a} \frac{1}{x})$	$\inf_{x \in a} f(x)$				
	$\lim_{x \to a} g(f(x)) = c = \lim_{y \to b} g(y)$							
Substitution in limits	$-\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h), \text{ where } h = x - a. \text{ (Derived from condition 1 of composite fn, } x \to a \text{ (x } \neq a) \Rightarrow h \to 0 \text{ (h } \neq 0\text{))}$							
III IIIIIIUS	- In particular, if f is continuous at a $\Leftrightarrow \lim_{x \to a} f(x) = f(a) \Leftrightarrow \lim_{h \to 0} f(a+h) = f(a)$ Suppose f is continuous at a and g is continuous at f(a). Then g of is continuous at a							
Continuous composite fn	Suppose f is continuous at a and g is continuous at f(a). The $\lim_{x\to a} g(f(x)) = g(\lim_{x\to a} f(x)) = g(f(a))$	hen g∘f is continu	ous at a					
Root fn	Root fn, $\sqrt[n]{x}$ is continuous on $(-\infty, \infty)$ if n is odd	[0, ∞) if n is ever	1					
Trigo fn	$\sin x$ and $\cos x$ are continuous on $\mathbb R$	$\cot x = \cos x / s$	in x and					
	$\tan x = (\sin x / \cos x)$ and $\sec x = (1 / \cos x)$ are continuous	csc x = 1 / sin x are continuous whenever sin x \neq 0						
	whenever $\cos x \neq 0 \mathbb{R} \setminus \{\pm \pi/2, \pm 3\pi/2, \pm 5\pi/2,\}$	$\mathbb{R} \setminus \{0, \pm \pi, \pm 2\pi,$	±3π,}					
IVT	Let f be a continuous fn on [a,b] Suppose $f(a) < 0$ and $f(b) > 0$ or $f(a) > 0$ and $f(b) < 0$, then $\exists c \in A$	$\in (a h) st f(c) = 0$						
	Suppose $f(a) \neq f(b)$ and N is btw $f(a)$ and $f(b)$, then $\exists c \in (a,b)$							
	Only prove there can be more than 1 root							
Derivative	Slope/gradient = m = $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) = \frac{dy}{dx}$	$=\frac{dy}{dx}\Big _{x}=\frac{d}{dx}f(a)=$	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$	f differentiable at a				
	Since $\lim_{h \to 0} f(a+h) = \lim_{x \to a} f(x)$, $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$	$\frac{dx}{f(a)} = a \qquad dx$	$x \rightarrow a$ $x - a$	means $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$				
	$h \to 0$ $x \to a$ $h \to 0$ h $x \to a$ $x = a$							
	Suppose f'(a) exists, then tangent line at x = a: y = f'(a)(x-a) + f(a) If f is differentiable at a, then f'(a) = $\frac{f(x)-f(a)}{x-a}$, then f is continuous at a							
	Converse may not be true. f is continuous at a does not imply f is differentiable at a							
Formulas		a		d (224 v) 222v				
	de (X) TIX , II I VO, X carriot be o	$\frac{d}{dx}(\sin x) = \cos x$		$\frac{d}{dx}(\cot x) = -\csc^2 x$				
	(1±g) = 1±g (g-) = (1/g) = -g/g-	$\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\tan x) = \sec^2 x$	a	$\frac{d}{dx}$ (sec x) = sec x tan x				
	$(f^2)' = 2f f'$ $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$, assuming $g(x) \neq 0$	$\frac{a}{dx}$ (tan x) = sec ² x		$\frac{d}{dx}(\csc x) = -\csc x \cot x$				
	(fg)' = f'g + fg'							
Chain rule	$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$ If f differentiable at x, g differentiable at f g'(f(x))f'(x)	(x), then g∘f is diff	erentiable at	x and (g∘f)'(x) =				
Implicit differentiation	,,	E.g. $x^3 + y^3 = 3xy$	$\Rightarrow 3x^2 + 3y^2 \cdot \frac{1}{2}$	$\frac{dy}{dx} = 3y + 3x \cdot \frac{dy}{dx}$				
EVT	Suppose f is continuous on [a,b], \exists c, d \in [a,b] s.t. $f(c) \leq f(x)$			alues: abs max, min				
Fermat's	If f has local extreme value at c, then either f'(c) don't exist or f'(c) exist and = 0							
Theorem Closed	This c is called a critical point. (Stationary pt if f'(c) = 0) Let f be continuous on [a,b]							
Interval Mtd	1. Evalute values of f at endpoints: f(a) and f(b)							
	2. Evaluate values of f at critical points on (a,b) s.t. f'(c) don	't exist or s.t. f'(c)	= 0					
	3. Compare values obtained in 1 and 2 (largest value = abso	·		· ·				
	Suppose fn f is continuous on [a,b] and differentiable on (a,b)	and f(a) = f(b)		$x \in (a,b)$, then $f(x) = C \forall x$				
Theorem 1	There must be $c \in (a,b)$ s.t. $f'(c) = 0$ Suppose fn f is continuous on $[a,b]$ and differentiable on (a,b)	h)		ere C is constant) \forall x \in (a,b), then f(x) =				
10101	$\exists c \in (a,b) \text{ s.t. } f'(c) = \frac{f(b)-f(a)}{b-a}$,5)	_	\in (a,b), where C is				
Increasing	Let fn f be continuous on close interval I, differentiable on i	nterior of I and f'		or every x in interior of I				
Test	Then, f is increasing (decreasing) on I							
	If f is non-decreasing on I, then $f'(x) \ge 0 \ \forall \ x \in I$							
1st	Let fn f be continuous at critical pt c, differentiable on open			C				
derivative test								
2nd	If f' don't change sign at c, no local extreme val at c Lemma. If $\lim_{x \to \infty} f(x)$ exists and +ve (-ve), then $f(x) > 0$ (< 0) \forall x in an open interval containing a, except at a							
derivative	Suppose f'(c) = 0. If f''(c) > 0, f has local min at c. If f''(c) < 0,			, preserv				
test	Suppose $f'(c) = 0$. If $f''(c) > 0$, it has local min at c. If $f''(c) < 0$, it has local max at c 2nd derivative test is inconclusive if $f'(c) = f''(c) = 0$							
Concavity	Suppose f is differentiable on open interval I, where f(x) - f(
	If graph of f lies above all its tangent lines on I, f concave up			_				
Concordity	If graph of f lies below all its tangent lines on I, f concave do	own on I, f(b) - f(a)	< t'(a)(b-a) a	nd t' decreasing on I				
Concavity Test	Suppose f is twice differentiable on open interval I If f''(x) > 0 \forall x \in I \Rightarrow f concave up on I. If f''(x) < 0 \forall x \in I \Rightarrow f	f concave down or	ı I					
1030	1 (A) × 0 × X C 1 × 1 concave up on 1.111 (A) × 0 × X C 1 → 1	SOLICAVE GOVVII OI	• •					

	If	f"(x) = 0, inconclusive						
Inflection		If f continuous at c, and change concavity at c ⇒ inflection pt at c						
point		If f is twice differentiable at c, f''(c) = 0 Assume for f g are differentiable at a and $\lim_{x \to a} f(x) = f(a) = 0$ and $\lim_{x \to a} g(x) = g(a) = 0$. Then f g are continuous at a						
l'Hôpital's Rule	A	Assume fn f,g are differentiable at a and $\lim_{x\to a} f(x) = f(a) = 0$ and $\lim_{x\to a} g(x) = g(a) = 0$. Then f,g are continuous at a						
	li x-	$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{[f(x) - f(a)]/(x - a)}{[g(x) - g(a)]/(x - a)}}{\frac{[g(x) - g(a)]/(x - a)}{[g(x) - g(a)]/(x - a)}} = \frac{\lim_{x \to a} [f(x) - f(a)]/(x - a)}{\frac{[g(x) - g(a)]/(x - a)}{[g(x) - g(a)]/(x - a)}} = \frac{f'(a)}{g'(a)}, \text{ provided g'(a)} \neq 0 \text{ (simple version)}$						
		et fn f,g s.t. $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$ and	$\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists or	r = ±∞. (Doe	es not matter if a is finite or infinite)			
	TI	Then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$ (0/0 version)						
	Le	Let fn f,g s.t. $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$ and $\lim_{x\to \infty} \frac{f'(x)}{g'(x)}$ exists or $\pm \infty$						
		Then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} (\infty / \infty \text{ form})$						
Cauchy's MVT		uppose f,g are continuous on [a,b] and difference $f'(c) = f(b) - f(a)$	erentiable on (a,	b) and g'(x)	\neq 0 for any x \in (a,b)			
10101		Then $\exists c \in (a,b) \text{ s.t. } \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$						
		Generalized MVT) Let $g(x) = x$. Then $g'(x) = 1$			B 4			
	Suppo	ose f' exist and is cts on [a,b] and f'' exists o	n (a,b) where a	<b. td="" then="" ∃<=""><td>$c \in (a,b) \text{ s.t. } f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2}f''(c)$</td></b.>	$c \in (a,b) \text{ s.t. } f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2}f''(c)$			
Area under graph		et f be non-negative continuous fn on [a,b] . Divide [a,b] into n equal subintervals			al area of n rectangles, L_n / R_n pproaches actual area as $n \to \infty$			
grapii		. Construct rectangle on each subintervals	vhose height	4. Ln / Nn a	pproaches actual area as ii / w			
	is	value of f at left/right endpoint of subinte	~					
Definite Into	egral	$\lim_{n\to\infty} \sum_{i=1}^n f(x_i^*) \Delta x = \int_a^b f(x) \ dx$						
Integrability	•	η,→ω "						
Continuous		and f is integrable over [a,b]		T				
Geometric properties		et f be nonnegative continuous fn on [a,b]		Let f be continuous fn on [a,b]. Let A_1 represent area above x-axis and A_2 area below x-axis				
properties		hen $\int_a^b f(x) dx$ = area btw y = f(x) and x-ax et f be a nonpositive continuous fn on [a,b]		$\int_{a}^{b} f(x) dx = A_1 - A_2 = \text{net area of region btw y = f(x)}$				
		hen -f is nonnegative and continuous on [a,b]			from a to b			
		$\int_{a}^{b} -f(x) dx$ = area btw y = f(x) and x-axis fr		$\int_a^b f(x) dx = A_1 + A_2 = \text{area of region}$				
1.		dx = c(b-a)		1 34 15 ()1	$\int_a^b f(x) dx = -\int_b^a f(x) dx$			
		$0 \ge g(x) \ \forall \ x \in [a,b], \text{ then } \int_a^b f(x) \ dx \ge \int_a^b g(x) \ dx$	(x) dx		6. If f is defined at a, $\int_a^a f(x) dx = 0$			
		a_a ,						
		$f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$	$a_1 = j_a$ j i i j i	8. $\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx$				
Anti-		is antiderivative of f on interval I if $F'(x) = f(x)$,			
derivative		1. $\int x^n = \frac{1}{n+1}x^{n+1} + C$, $n \ne 1$ 5. $\int \csc^2 kx = \frac{1}{n+1}$	$-\frac{1}{k}$ cot kx + C	$\frac{1}{k}\cot kx + C \qquad \qquad 9. \int \cot kx = \frac{1}{k}\ln \sin kx + C$				
		1. $\int x^n = \frac{1}{n+1} x^{n+1} + C$, $n \ne 1$ 5. $\int \csc^2 kx = \frac{1}{2} \cos kx + C$ 6. $\int \sec kx \tan kx = \frac{1}{k} \cos kx + C$	$1 kx = \frac{1}{k} sec kx + 0$	10. ∫	$\sec kx = \frac{1}{k} \ln \sec kx + \tan kx + C$			
		3. $\int \cos kx = \frac{1}{k} \sin kx + C$ 7. $\int \csc kx \cot kx$	$t kx = -\frac{1}{k} csc kx +$	C 11. ∫	$\csc kx = -\frac{1}{h} \ln \csc kx + \cot kx + C$			
		$4. \int \sec^2 kx = \frac{1}{k} \tan kx + C \qquad 8. \int \tan kx = -$	$\frac{1}{\nu}$ ln cos kx + C					
Fundament		Suppose f is continuous on [a,b]. Let $g(x) =$	ĸ	l	$\frac{d}{dx}\int_{a}^{x}f(t)dt = f(x)$			
Theorem of	f	Then g is continuous on [a,b], differentiab	- u	$f'(x) = f(x) \forall$	$x \in (a,b)$ $\begin{cases} \frac{dx}{du} \frac{du}{du} \int_{a}^{u} f(t) dt = \frac{du}{dx} \cdot f(u) \end{cases}$			
Calculus		$\int_{a}^{b} f(x) \ dx = F(b) - F(a) = F(x) \Big _{x = a}^{x = b}$			$\int dx du \int dx \int dx \int dx \int dx$			
MVT for de	finite i	integrals If f is continuous on [a,b], t	then∃c in [a,b]	s.t. $f(c) = \frac{1}{h}$	$\int_{a}^{b} f(x) dx$			
Indefinite Ir		ls Collection of all antiderivatives of f	is called the inde		ral of f w.r.t x and is denoted by $\int f(x) dx$			
Substi-		uppose $u = g(x)$ is differentiable, whose ran		E.g. ∫ 2 <i>x</i>	$x\sqrt{1-x^2}$ dx. Let u = 1-x ² . $\frac{du}{dx}$ = -2x			
tuition Rule		uppose g' is continuous and f is continuous hen $\int f(g(x))g'(x) dx = \int f(u) du$	on I.	$\int 2x\sqrt{1}$	$\frac{1}{1-x^2} dx = \int -\frac{du}{dx} \sqrt{u} dx = -\int \sqrt{u} du = -\frac{u^{3/2}}{3/2} + \frac{u^{3/2}}{3/2} + \frac{u^{3/2}}$			
		$\operatorname{nd} \int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$		$C = -\frac{2}{3} (1-x^2)^{3/2} + C$				
Odd/ Even I			is odd, then \int_{a}^{a}	f(x)dx = 0	If f is even, then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$			
Disconti-	Let	f be continuous on [a,b), discontinuous at	u		s at $c \in (a,b)$, and			
nuous Fn	b fr	om left, $\int_a^b f(x) dx = \lim_{t \to b^-} \int_a^t f(x) dx$	$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$	$\int_{0}^{c} f(x) dx + 1$	$\int_{c}^{b} f(x) dx$			
		f be continuous on (a,b], discontinuous at	- C	·	f both integrals exists,			
	a fro	om right, $\int_a^b f(x) dx = \lim_{t \to a^+} \int_t^b f(x) dx$	divergent if at	least one ir	ntegral is divergent			
		f(x)dx is convergent is limit exist /			(a,b) and $\lim_{x\to a^+} f(x) dx$ and $\lim_{x\to b^-} f(x) dx$ exist			
	u	ergent is limit DNE	extension of f, then $\int_a^b f(x) dx = \int_a^b f_1(x) dx$					

Infinit	:у	If .	$\int_a^t f(x) dx$	x exists ∀ t ≥	\geq a, then \int_a°	$^{\circ}f(x)$ c	dx = lin	$\int_{a}^{t} f(x)$:)dx	$\int_{-\infty}^{\infty}$	$\int_{-\infty}^{a} f(x) dx = \int_{-\infty}^{a} f(x) dx$	$f(x) dx \int_{0}^{x}$	$\int_{a}^{\infty} f(x) dx$	
			If $\int_{t}^{b} f(x) dx$ exists $\forall t \le b$, then $\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$							Convergent if both improper integrals on right are				
				convergent i					,	con	nvergent, else	divergent		
1-1 fn		n is 1-1 (one-to-one) if horizontal line intersects graph \leq 1 time R a \neq b \Rightarrow f(a) \neq f(b) for any a,b in domain, D of f) → R, [·]) ⁻¹ = f	$f^{-1}: R \to D. R$ is	domain	of f ⁻¹ and D is range of f ⁻¹				
OR $f(a) = f(b) \Rightarrow a = b$ for any a, b in domain, D of $f(a) = f(b) \Rightarrow a = b$ for any $a, b \in D$				f ⁻¹ (f	(x)) = x	•	f(f ⁻¹ (y)) =	y for any y ∈ R						
Findin				$\frac{f^{-1}(y) = x \Leftrightarrow}{\text{symmetric }}$		wrtlir	no v = v	<u>, </u>			, f ⁻¹ ∘ f ≠ f ∘ f ⁻¹	, v – f-1/v	1	
invers	•	I ai	iu i aie	symmetric ((Tenection)	W.I.L III	ile y – x	e y = x 1. Express x in terms of y 2. Interchange x and y to				• • • • • • • • • • • • • • • • • • • •	•	
Prope	rties		f is cts. f is 1-1 \Leftrightarrow f is monotonic (incr ^{ing} or decr ^{ing})						f is 1-1 cts fn. f incr ^{ing} (decr ^{ing}) \Rightarrow f ⁻¹ incr ^{ing} (decr ^{ing})					
, , , , , , , , , , , , , , , , , , ,			f is 1-1. f is continuous \Rightarrow f ⁻¹ is continuous							$(f^{-1})'(b) = \frac{1}{f'(a)}, f'(a) \neq 0$			1	
Invers Trigo	rigo si		domair				inuous 1		differentiable (-1,1)		derivati	ve 1		
IIIgo		cos ⁻¹	[-1, 1]					[-1,1]		(-1,1)		$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$ $\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$		
					[0, π]		[-1,1]			(-1,1)		$\frac{d}{dx}$ cos ⁻¹	$\frac{a}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$	
		:an ⁻¹	R		(-π/2, π/2				<u>ш</u>	<u>R</u>		$\frac{\frac{a}{dx}}{dx}$ tan ⁻¹	$X = \frac{1}{1+x^2}$	
		cot ⁻¹	IK .	1 f.d	(0, π)	2π		47		\mathbb{R} \mathbb{R} $(-\infty, -1) \cup (1, \infty)$ $(-\infty, -1) \cup (1, \infty)$ $\sec^{-1} x$		$\frac{d}{dx} \cot^{-1}$	$X = -\frac{1}{1+x^2}$	
		sec ⁻¹	(-∞, -1] U [1, ∞)	$[0,\frac{n}{2}) \cup [\pi$	$(1, \frac{3\pi}{2})$	(-∞,	-1] U [1	, ∞)	(-∞, - <u>`</u>	1) U (1, ∞)	$\frac{d}{dx}$ sec ⁻¹	$x = \frac{1}{x\sqrt{x^2 - 1}}, x > 1$	
		CSC ⁻¹	(-∞, -1] U [1, ∞)	$(0,\frac{\pi}{2}] \cup (\pi$	$\left[1, \frac{3n}{2}\right]$	(-∞,	-1] U [1	, ∞)	(-∞, -	1) ∪ (1, ∞)	$\frac{d}{dx}$ CSC ⁻¹	$x = -\frac{1}{x\sqrt{x^2 - 1}}, x > 1$	
	S	sin ⁻¹ x +	+ cos ⁻¹ x =	$=\pi/2, x \in [-2]$	1,1]	tan ⁻¹	₁ x + co.	$t^{-1} x = \pi$	/2		sec ⁻¹	< + csc ⁻¹ x	$=\begin{cases} \pi/2 & \text{if } x \ge 1\\ 5\pi/2 & \text{if } x \le -1 \end{cases}$	
	ithmic	In	$x = \int_{1}^{x} \frac{1}{t} dt$	dt (x > 0)	In x: (0, ∝	$ ho) ightarrow\mathbb{R}$			ln x i	s cts, c	differentiable,	incr ^{ing} and	d concave down on \mathbb{R}^+	
fn		In	1 = 0		$\lim_{x\to 0^+} \ln x$	= -∞,	$\lim_{x\to\infty} ln$	<i>x</i> = ∞,			nd a > 0. Then			
		Le	t x > 0 ar	nd $r \in \mathbb{Q}$. Th	ien ln(x ^r) = i	· In x			For a	any x ≠	$0, \frac{d}{dx} \ln x = \frac{1}{x}$	and $\int \frac{1}{x}$	$dx = \ln x + C$	
_	ithmic			bs value: y				ا عاماد ا	3	. Differ	rentiate w.r.t x			
	entiati nential			natural log: l = e = 2.718		1 1 ₁ (X)	+ + [[[] [[] [] [] [] [[] [] [] [] [] [] [] [)= f^{-1} : $\mathbb{R} \to \mathbb{R}^+$		ntiation if $y = 0$ x) = In x	
fn			$n \in \mathbb{N}$. T	hen e ⁿ = e*e				Let $x \in \mathbb{O}$. Then $f(e^x) = \ln(e^x) = x \ln e = x = e^{\ln x}$						
		In e = 1		e ⁰ = 1		_	$e^{r} = e^{m/n} = \sqrt[n]{e^{m}}$		$\lim_{x \to -\infty} e^x = 0$ $e^{-x} = 1/e^x$			$\lim_{x \to \infty} e^x = \infty$ $\frac{d}{dx} e^x = e^x$ $\frac{d}{dx} a^x = a^x \ln a$		
		$e^{x}e^{y} = e^{x+y}$					$(e^x)^y = e^{xy}$					$\frac{d}{dx}e^{x} = e^{x}$		
		Let $a > 0$ $a^r = e^{r \ln a}$		' '		$(a^x)^y = a^{xy}$		a-x = 1/a ^x						
		$\frac{d}{dx}$	$\frac{d}{dx} x^a = ax^{a-1} (x > 0, \text{ and for any a})$					$\left(\frac{1}{a+1}+C, ij \ a \neq -1\right)$			$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}}$			
								en domain of $f(x) = x^a$ is $[0, \infty]$ 1. Express $f(x)^{g(x)} = \exp[g(x)\ln f(x)]$						
		To find $\lim_{x\to 0} f(x)^{g(x)}$, where $f(x) > 0$							2. Interchange lim and exp function					
Hyper		Hyperbolic sine fn: $\sin x = \frac{e^x - e^{-x}}{2}$ Hyperbolic cosine fn: $\cosh x = \frac{e^x + e^{-x}}{2}$							sinh(x + y) = sinh x cosh y + cosh x sinh y cosh(x + y) = cosh x cosh y + sinh x sinh y					
Trigo	111	Hyperbolic cosine fn: $\cosh x = \frac{e^x + e^{-x}}{2}$						_	$\frac{d}{dx}\sinh x = \cosh x \text{ and } \frac{d}{dx}\cosh x = \sinh x$					
		$\cosh^2 x - \sinh^2 x = 1$						их		<u> </u>				
		fn sinh	sha n ⁻¹ incr	pe easing		domai	n ra R	ange	contin	iuous	differentiab		vative	
		cos		reasing, con	cave up	[1,∞)),∞)	[1,∞)		(1,∞)	$\frac{dx}{dx}$ Si	$\frac{nh^{-1} x = \frac{1}{\sqrt{1+x^2}}}{csh^{-1} x = \frac{1}{\sqrt{x^2 - 1}} for x > 1}$	
Invers	:e			be continuo						t suhst	itution but exp		-	
	itution	rule		continuous,					1030			anding ti		
Integr	ration	by par	ts $\int u_{d}^{d}$	$\frac{dv}{dx}$ dx = uv - \int	$\int \frac{du}{dx} v dx$				∫u	dv = u\	v -∫v du			
			$\int \frac{1}{(1-x)^2}$	$\frac{dx}{1+x^2)^n} = \int \left(a \right)^n$	$(\cos t)^{2n-2}$	lt			n∫ (cos x) ⁿ	$dx = (\cos x)^{n-1}$	sin x + (n-	-1)∫ (cos x) ⁿ⁻² dx	
Trigo	sub	1. $\sqrt{a^2 - x^2}$ (a > 0). Let x = a sin t, t \in [- π /2, π /2]						$\sqrt{a^2 - x^2}$ = a cos t						
		2. $\sqrt{a^2 + x^2}$ (a > 0). Let x = a tan t, t \in (- π /2, π /2) 3. $\sqrt{x^2 - a^2}$ (a > 0). Let x = a sec t, t \in [0, π /2) \cup [π , 3 π /2)					1 -	$\sqrt{a^2 + x^2} = a \sec t$ $\sqrt{x^2 - a^2} = a \tan t$						
Integr	ration			a > 0). Let x actorise der								v 1\/v+1\	/v ² + v + 1\/v ² - v + 1\	
_	l fracti	ions	linea	r factors and	d real irredu	ıcible q			rs "		70 11		$(x^2 + x + 1)(x^2 - x + 1)$	
Unive				tional expre			2+24 L-	,	sin	$\chi = \frac{2t}{1+t}$	$\frac{t}{t^2}$, cos x = $\frac{1-t}{1+t}$	$\frac{t^2}{t^2}$		
trigo s	งนม] I(S	siii X, COS	x) dx , $-\pi < x$	$c < \pi$, can be	evalu	ated b)	у		± 1	. 11	-		

Applications	Let f be a cts fn on [a, b], $f(a) = c$, $f(b) = d$, $f \ge g$, $f^{-1} \ge g^{-1}$ (if fns on diff side of axis, just take lower one as 0 /left as 0)							
	$y = f(x), x = f^{-1}(y)$	Rotate abt x-axis	Rotate abt y-axis					
	Area	$\int_a^b f(x) - g(x) dx$	$\int_{c}^{d} f^{-1}(y) - g^{-1}(y) dy$					
	Volume	$\int_a^b A(x) dx$	$\int_{c}^{d} A(y) dy$					
	Solids of Revolution (Disk, perp to axis of revolution)	$\int_a^b \pi[f(x)^2 - g(x)^2] dx$	$\int_{c}^{d} \pi [f^{-1}(y)^{2} - g^{-1}(y)^{2}] dy$					
	Solids of Revolution (Shell, parallel to axis of revolution)	$\int_{c}^{d} 2\pi y [f^{-1}(y) - g^{-1}(y)] dy$	$\int_a^b 2\pi x [f(x) - g(x)] dx$					
	Arc Length	$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	$\int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$					
	Surface Area	$\int_{a}^{b} 2\pi f(x) \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$	$\int_{c}^{d} 2\pi f^{-1}(y) \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$					

t = tan(x/2), i.e. x = 2tan⁻¹ t. $\frac{dx}{dt} = \frac{2}{1+t^2}$

 $\int f(\sin x, \cos x) dx = \int f(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}) \frac{2}{1+t^2} dt$

Name	Standard form	Eqn				
1st order ODE	$\frac{dy}{dx} = f(x)$	$y = \int f(x) dx$				
	$\frac{dy}{dx} = g(y)$	$\frac{dx}{dy} = \frac{1}{g(y)} \Rightarrow x = \int \frac{1}{g(y)} dy$				
1st order separable ODE	$\frac{dy}{dx} = f(x)g(y)$	$\int f(x) dx = \int \frac{1}{g(y)} dy, (g(y) \neq 0)$				
1st order homogeneous ODE	$\frac{dy}{dx} = F(x, y)$ where F(tx, ty) = F(x, y), i have y/x in F(x, y)	1. Let $z = \frac{y}{x}$. Then $y = xz$ and $\frac{dy}{dx} = z + x\frac{dz}{dx}$. $F(x, y) = F(1, z)$ for $x \ne 0$ 2. ODE becomes $z + x\frac{dz}{dx} = F(1, z)$, which is separable				
1st order linear ODE	$\frac{dy}{dx} + p(x)y = q(x)$	1. Evaluate $\int p(x) dx = P(x) + C$ 2. Use integrating factor $e^{P(x)}$. Then $\frac{d}{dx}e^{P(x)} = p(x)e^{P(x)}$				
		3. Multiply integrating factor to eqn $\Rightarrow \frac{d}{dx}[e^{p(x)}y] = e^{p(x)}q(x)$				
		4. $y = \frac{1}{e^{P(x)}} \int e^{P(x)} q(x) dx$				
Bernoulli's Eqn	$\frac{dy}{dx} + p(x)y = q(x)y^n$	For n \neq 0, 1. Let z = y ¹⁻ⁿ . $\frac{dz}{dx}$ = (1-n)y ⁻ⁿ $\frac{dy}{dx}$				
		Multiply $(1-n)y^{-n}$ to DE, $(1-n)y^{-n}\frac{dy}{dx} + (1-n)y^{-n}p(x)y = (1-n)y^{-n}q(x)y$ $\frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x)$, (linear ODE)				
Exponential growth & decay	$\frac{dy}{dt} = ky$	$y = Ce^{kt}$ If $k > 0$: law of natural growth If $k < 0$: law of natural decay				
Continuously compounded interest	Annually: $A(t) = A_0(1+r)^t$ n times per year: $A(t) = A_0(1+\frac{r}{n})^{nt}$	Continuously compounded: Let $n \to \infty$, $A(t) = \lim_{n \to \infty} A_0 \left(1 + \frac{r}{n}\right)^n$ = $A_0 e^{rt}$, $r =$ interest per annum, $A_0 =$ initial amt, $t =$ num of yea $m(t) = m(0)e^{kt}$, $k = -\frac{\ln 2}{t_{1/2}}$				
Radiocarbon Dating	$\frac{dm}{dt} = \text{km}$					
Logistic Population Growth	$\frac{dP}{dt} = kP \text{ (no M)}$	half-life: $t_{1/2}$ = time for half of qty to decay $P(t) = P_0 e^{kt}$ (if k is constant) $k < 0$, $P(t) \rightarrow 0$; $k > 0$ $P(t) \rightarrow \infty$				
M = carrying capacity	M > 0, k > 0	$P(t) = \frac{M}{1 + Ce^{-Mkt}} \text{ (logistic fn)}$ $P(0) = \frac{M}{1 + C}$ $P(0) = \frac{M}{1 + C}$ $P(0) > N$ $P(0) < N$				
Newton's Law of Cooling	$\frac{dT}{dt}$ = -r(T-T _S) (heat transfe	r model) where $r > 0$ $T(t) = T_S + (T_0 - T_S)e^{-rt}$. As $t \to \infty$, $T(t) \to T_S$				