$1.(1)\mathfrak{a}^e = S^{-1}\mathfrak{a}$

 $y \in \mathfrak{a}^e \Leftrightarrow y = \sum (a^i/1)(A_i/s_i)$. 将和式通一下分我们有: $y \in \mathfrak{a}^e \Leftrightarrow y = a/s \Leftrightarrow y \in S^{-1}\mathfrak{a}$.

- (2) 命题 3.11(2): $\mathfrak{a}^{ec} = \bigcup_{s \in S} (\mathfrak{a} : s)$
- $x \in \mathfrak{a}^{ec} = (S^{-1}\mathfrak{a})^c \Leftrightarrow x/1 = a/s$ 对某个 $a \in \mathfrak{a}, s \in S \Leftrightarrow (xs a)t = 0$ 对某个 $t \in s \Leftrightarrow xst \in \mathfrak{a} \Leftrightarrow x \in \bigcup_{s \in S} (\mathfrak{a}:s).$
- 10.(1) 当 $a \in A \mathfrak{p}$ 时, $\frac{a}{1} \cdot \frac{1}{a} = \frac{1}{1}$, 即 $\frac{a}{1}$ 为 $A_{\mathfrak{p}}$ 中的可逆元, 自然不为零. 那么 $\mathbb{C}_{A}\mathfrak{p} \subset \mathbb{C}_{A}S_{\mathfrak{p}}(0)$, 由德摩根反演律, $S_{\mathfrak{p}}(0) \subset \mathfrak{p}$. (证明需要我们调整了 (2)(3) 问的顺序)
- $(3)\frac{0}{1}$ 是分式化中的零元, 这是由于 $\frac{a}{s} + \frac{0}{1} = 0$, $\frac{a}{s}\frac{0}{1} = \frac{0}{1}$ 可以保证 $\frac{0}{1}$ 为零元, 任取 $p \in S_{\mathfrak{p}}(0)$, 则存在 $s \in A \mathfrak{p} \subset A \mathfrak{p}'$, 使得 sp = 0 注意到 $A \mathfrak{p} \subset A \mathfrak{p}'$, 此式说明 $\frac{p}{1}$ 亦为 $A_{\mathfrak{p}'}$ 中的零元, 于是 $S_{\mathfrak{p}}(0) \subset S_{\mathfrak{p}'}(0)$.
- (2) 充分性: 如果存在元素 $a \in \mathfrak{p} r(S_{\mathfrak{p}}(0))$, 那么集合 $\{sa^n : s \in S_{\mathfrak{p}}\}$ 是乘法封闭的. 因此 \mathfrak{p} 包含另一个素理想, 这与极小性矛盾.
- 必要性: 由 (3) 我们知道对任意的素理想 $\mathfrak{q} \subset \mathfrak{p}$, 有 $S_{\mathfrak{p}}(0) \subset S_{\mathfrak{q}} \subset \mathfrak{q}$. 那么 $r(S_{\mathfrak{p}}(0)) \subset r(\mathfrak{q}) = \mathfrak{q}$, 如果 $r(S_{\mathfrak{p}}(0)) = \mathfrak{p}$, 那么 $\mathfrak{p} \subset \mathfrak{q}$, 则 \mathfrak{p} 为极小理想.
- (4) 假设存在非零元 $a \in \bigcap_{\mathfrak{p} \in D(A)} S_{\mathfrak{p}}(0)$. 那么就有一个素理想 $\mathfrak{q} \in D(A)$, 它是包含 (0:a) 的素理想集合中的极小元. 因此 $a \in S_{\mathfrak{q}}(0)$, 那么存在 $s \in A \mathfrak{q}$ 使得 as = 0, 所以 $s \in (0:a) \subset \mathfrak{q}$, 矛盾!
- 11.(1) 系理 3.13: 在局部环 $A_{\mathfrak{p}}$ 中的素理想与 A 中包含在 \mathfrak{p} 的素理想一一对应. 但 \mathfrak{p} 极小, 所以 $S_{\mathfrak{p}}^{-1}\mathfrak{p}$ 为 $A_{\mathfrak{p}}$ 唯一的素理想, 而 $A_{\mathfrak{p}}$ 有唯一一个极大理想 \mathfrak{m} , 故 $S_{\mathfrak{p}}^{-1}\mathfrak{p}$ 为 $A_{\mathfrak{p}}$ 中的极大理想. 再由习题 10(2) 我们得到 $r(S_{\mathfrak{p}}(0)) = \mathfrak{p}$. 由分式化与求根运算可交换, 在 $A_{\mathfrak{p}}$ 中 $r(0) = r(S_{\mathfrak{p}}^{-1}S_{\mathfrak{p}}(0)) = S_{\mathfrak{p}}^{-1}r(S_{\mathfrak{p}}(0)) = S_{\mathfrak{p}}^{-1}\mathfrak{p}$. 使用命题 4.2,

零理想为 A_p 中 $S_p^{-1}\mathfrak{p}$ – 准素理想, 自然是最小的. 再由命题 4.8(2), 我们不难得出 $S_p(0)$ 为最小的 \mathfrak{p} – 准素理想.

- (2) 假设 $a \notin \mathfrak{N}$. 由小根的定义存在极小素理想 \mathfrak{p} 使得 $a \notin \mathfrak{p}$,, 那么利用 EX10(1) 的 $S_{\mathfrak{p}}(0) \subset \mathfrak{p}$ 可知 $a \notin S_{\mathfrak{p}}(0)$, 故 $a \in \mathfrak{a}$. 所以 $\mathfrak{a} \subset \mathfrak{N}$.
- (3) 如果零理想不可分解. 使用习题 9,D(A) 为与零相关联的素理想集合, 记 E 为 D(A) 中极小素理想的集合. 那么 E 自然也是 A 中极小素理想的集合, 那么 $\mathfrak{a} = \bigcap_{\mathfrak{p} \in E} S_{\mathfrak{p}}(0)$. 假设 $\mathfrak{a} = 0$, 由 (1)(2) 可知对每个 $\mathfrak{p} \in E$, $S_{\mathfrak{p}}(0)$ 都是 $\mathfrak{p} -$ 准素理想. 所以我们必定有 E = D(A), 所以零的每个素理想都是孤立的. 由 EX10(4) 我们不难得出充分性.
- 14. 假设 $\mathfrak{p} = (\mathfrak{a}:x)$ 为极大元但不为为素理想. 这说明存在 $a,b \notin \mathfrak{p}$ (亦即 $ax,bx \notin \mathfrak{p}$
- \mathfrak{a}) 使得 $abx \in \mathfrak{a}$. 我们取 $p' = (\mathfrak{a} : ax)$, 由于 $p \in \mathfrak{p} \Rightarrow axp = a(px) \in A\mathfrak{a} = \mathfrak{a} \Rightarrow p \in \mathfrak{p}'$, 加之 $b \notin \mathfrak{p}, b \in \mathfrak{p}'$ 故 $\mathfrak{p} \subsetneq \mathfrak{p}'$, 这与极大性矛盾, 所以 \mathfrak{p} 一定为素理想. 此时自然 有 $\mathfrak{p} = r(\mathfrak{p}) = r((\mathfrak{a} : x))$, 此式说明 \mathfrak{p} 是属于 \mathfrak{a} 的素理想.
- $1.f^*(V(a)) = f^{-1}(V(a)) = f^{-1}\{\mathfrak{p}|a \subset \mathfrak{p} \subset B, \mathfrak{p}$ 为素理想 $\} = \{f^{-1}(\mathfrak{p})|\mathfrak{p} \subset B\}$ 素理想 $, f^{-1}\mathfrak{p}\}$
- $\subset V(f^{-1}(a) \cup \ker f)$. 我们注意到 $\frac{A \setminus \ker f}{\mathfrak{p} \setminus \ker f} \cong A \setminus \mathfrak{p}$, 所以 A 中包含 $\ker f$ 的素理想与 $A \setminus \ker f$ 中的素理想有一个一一对应. 再由 $A \setminus \ker f \cong f(A)$, 那么 A 任意中包含 $\ker f \cup f^{-1}(a)$ 的素理想,可以通过映射 f 对应到 f(A) 中包含 a 的素理想,那么由 B 在 f(A) 上整,使用定理 5.9,我们可以知道 f(A) 中包含 a 的素理想 \mathfrak{p} ,都可以找到 B 中包含 a 的素理想 \mathfrak{q} ,使得 $\mathfrak{q} \cap f(A) = \mathfrak{p}$,这样我们便证明了反包含也是成立的,那么 $f^*(V(a)) = V(f^{-1}(a) \cup \ker f)$ 这就说明了 f^* 将闭集映为闭集.
- 4.(例子来自提示) 考虑 B = k[x] 中的子环 $A = k[x^2 1]$, 这里 k 为特征 0 域. 令 $\mathfrak{n} = (x 1)$, 由于 $x + 1 \notin (x 1) = \mathfrak{n}$, 但 $(x 1) \cap k[x^2 1] = (x^2 1) = \mathfrak{m}$, 所以

 $A_{\mathfrak{m}} = k[x^2 - 1]$, 显然元素 1/(x+1) 不为 $k[x^2 - 1]$ 上的整元.

- 8.(1) 取一个包含 B 的域, 使得 f,g 在其中的分解为线性因子, 设 $f = \prod (x \xi_i)$, $g = \prod (x \eta_j)$, 那么每个 ξ_i , η_j 都是 fg 的根, 因此在 C 上整. 由韦达定理, f,g 的系数可由 ξ_i , η_i 多项式表出, 由系理 5.3 我们得到 $f,g \in C[x]$.
- (2) 先构造一个环 B_1 , 使得 $f(x) = x^n + b_n x^{n-1} + \cdots b_1$ 在 B_1 上能分解出一个线性因子. 取环 $B_1 = B[r]/(f(r))$,r 为不定元. 显然 B 能作为一个子环嵌入 B_1 ,并且 $f(\overline{r}) = 0$,这里 \overline{r} 是 r 在 B_1 中的像. 对 f(x) 做关于 $(x-\overline{r})$ 的带余除法我们得到 多项式 $h(x) = x^{n-1} + e_{n-1} x^{n-2} + \cdots + e_1$, $e_i \in B_1$, 使得 $f(x) = (x-\overline{r})h(x) + r'$, $r' \in B_1$, 将 \overline{r} 代入我们得到 r' = 0, 故 $f(x) = (x-\overline{r})h(x)$, $h(x) \in B_1$. 重复这个过程,我们可以找到一个需要的环 B^* ,使得 f,g 可以在 B^* 中完全分解为线性因子的积,这时我们就可以使用结论 (1) 了.
- 9.(表述来自提示) 如果 $f \in B[x]$ 在 A[x] 上整, 那么 $f^m + g_1 f^{m-1} + \cdots + g_m = 0$ $(g_i \in A[x])$

设 r 是大于 m 和 g_1, \dots, g_m 的次数的一个整数, 令 $f_1 = f - x^r$. 那么 $(f_1 + x^r)^m + g_1(f_1 + x^r)^{m-1} + \dots + g_m = 0$

或者说 $f_1^m + h_1 f_1^{m-1} + \dots + h_m = 0$, 其中 $h_m = (x^r)^m + g_1(x^r)^{m-1} + \dots + g_m \in A[x]$. 在将 EX8 的结论引应用到多项式 $-f_1$ 与 $f_1^{m-1} + h_1 f_1^{m-2} + \dots + h_{m-1}$ 上, 我们便能得到结论.