Introduction to the Mechanism of Breathing & Ventilation

Dr. Denny C.W. Ma

Components of the Respiratory System

Upper Tract

Nose, pharynx & associated structures

Filter & humidify incoming air

Lower Tract

- Larynx, trachea, bronchi & lungs
- Include delicate conduction passages & gas exchange surfaces (alveoli)

Processes in Respiration

- To supply the body with <u>oxygen</u> & <u>dispose</u> of <u>carbon dioxide</u>
- Respiration involves 4 distinct processes:
 - 1. Pulmonary ventilation movement of air into & out of lungs
 - 2. External respiration gas exchange between lungs & blood
 - 3. Transport transport of O₂ & CO₂ between lungs & tissues
 - 4. <u>Internal</u> respiration gas exchange between systemic blood vessels & <u>tissues</u>

Pulmonary Ventilation

Movement of air into & out of lungs

External Respiration & Internal Respiration

Gas exchange between Lungs & blood

Gas exchange between systemic blood vessels & tissues

Transport (Oxygen)

Transport of O₂ from **lungs** to **tissues**

Transport (Carbon Dioxide)

Transport of CO₂ from **tissues** to **lungs**

Processes in Respiration

- To supply the body with <u>oxygen</u> & dispose of <u>carbon dioxide</u>
- Respiration involves 4 distinct processes:
 - 1. Pulmonary ventilation movement of air into & out of lungs
 - 2. External respiration gas exchange between lungs & blood
 - 3. Transport transport of O₂ & CO₂ between lungs & tissues
 - 4. <u>Internal</u> respiration gas exchange between systemic blood vessels & <u>tissues</u>

Pulmonary Ventilation

Two phases:

- Inspiration air flows into lungs
- Expiration gases exit lungs

Boyle's Law

Pressure (P) of a gas <u>varies inversely</u> with its <u>volume</u> (V) (when temperature (T) is constant)

Breathing

Thoracic cavity

Lung ← → **Atmosphere**

Inspiration & Expiration

Inspiration

Expiration

Volume change depends on movement of diaphragm & ribs

between thoracic & abdominal cavities

Action of diaphragm:

Dome-shaped diaphragm contracts, moves inferiorly & flattens out

→ Superior-inferior dimension of thoracic cavity increases

Action of intercostal muscle:

External intercostal muscles contracts

- → Rib cage is <u>elevated</u> & sternum is pulled <u>forward</u>
- → Circumference of thoracic cavity increases

Lungs are <u>stretched</u> & <u>intrapulmonary volume increases</u>

- → Intrapulmonary pressure drops (to -1 mm Hg) [below atmospheric pressure (0 mm Hg)]
- → Air flows into lungs down pressure gradient
 [until intrapulmonary pressure = atmospheric pressure = 0]

Lungs can slide but not separated from pleura

- → Lungs adhere to thoracic wall
- → Expand/recoil as thoracic cavity changes in volume during breathing

Quiet expiration depends on <u>natural elasticity</u> of lungs (instead of muscle contraction)

Inspiratory muscles relax & resume resting length

- → Rib cage descends (due to gravity)
- → Volume of thoracic cavity decreases
- → Lungs recoil

Intrapulmonary volumes decreases

- → <u>Intrapulmonary pressure rises</u> (to +1 mm Hg) [above atmospheric pressure (0 mm Hg)]
- → Gases flow out of lungs down pressure gradient [until intrapulmonary pressure = atmospheric pressure = 0]

Pressure & Volume Changes during Inspiration

Pressure & Volume Changes during Expiration

Pressure & Volume Changes during Expiration

Forced Inhalation & Expiration

Forced inhalation Forced expiration

Forced Inhalation & Expiration

Expiration

Forced

No muscles are required for exhalation muscles of inhalation relax and tissues undergo "elastic recoil" to their original position.

sternocleidomastoid scalene muscles, Muscles of forced inhalation external intercostals

diaphragm

Muscles of forced exhalation

internal intercostals

abdominal muscles rectus abdominis external obliques internal obliques transversus abdominis

External & Internal Intercostal Muscles

External & Internal Intercostal Muscles

Pulmonary Function Test

Spirometer:

To measure the volume & rate of air inspired & expired by the lungs

Lung Volumes & Capacities

A spirometer tracing showing lung volumes and capacities.

- Tidal volume (TV)
- Inspiratory reserve volume (IRV)
- Expiratory reserve volume (ERV)
- Residual volume (RV)

 Tidal volume (TV) – volume of air that moves into or out of lungs with each normal, quiet breath (~ <u>500 mL</u>)

 Inspiratory reserve volume (IRV) – extra volume of air that can be inspired forcibly (with maximum effort) after a tidal inspiration (2,100 – 3,200 mL)

 Expiratory reserve volume (ERV) – extra volume of air that can be evacuated (with maximum effort) from lungs after a tidal expiration (1,000 – 1,200 mL)

 Residual volume (RV) – volume of air left in lungs after strenuous expiration (1,200 mL)

Lung Capacities [sums of 2 or more volumes]

- Inspiratory capacity (IC)
- Functional residual capacity (FRC)
- Vital capacity (VC)
- Total lung capacity (TLC)

 Inspiratory capacity (IC) – total amount of air that can be inspired after a tidal expiration (TV + IRV)

 Functional residual capacity (FRC) – amount of air remaining in lungs after a tidal expiration (ERV + RV)

Vital capacity (VC) – total amount of exchangeable air (<u>TV + IRV + ERV</u>)

 Total lung capacity (TLC) – sum of all lung volumes (~ 6,000 mL in males)

Lung Volume & Capacities

Dead Space

Volume of inhaled air which does not take part in gas exchange

Anatomical dead space:

Volume of conducting respiratory passageways (150 mL)

Alveolar dead space:

Volume occupied by alveoli that cease to act in gas exchange (due to <u>collapse</u>, <u>obstruction</u> or <u>lack of adjacent pulmonary capillaries</u>)

Total dead space

= Anatomical + Alveolar dead spaces

Dead Space

- Healthy lungs: small alveolar dead space
- Certain lung diseases: increase in alveolar dead space

Non-respiratory Air Movements

Most result from reflex actions

Composition of Alveolar Gas

Atmosphere contains mostly oxygen & nitrogen

- Alveoli contain more carbon dioxide & water vapor
 - Gas exchanges in lungs
 - O₂ diffuses away from alveoli & CO₂ diffuses into alveoli
 - Air is humidified by conducting pathways

Key Points

Inspiration

Diaphragm & external intercostal muscles contract

- → Intrapulmonary volume increases
- → Intrapulmonary pressure drops
- → Air flows into lungs

Expiration

Inspiratory muscles relax

- → Intrapulmonary volumes decreases
- → Intrapulmonary pressure rises
- → Gases flow out of lungs

Forced Inhalation & Expiration

Lung Volumes & Capacities

Dead Space

- Anatomical dead space
- Alveolar dead space

Non-respiratory Air Movements