Отчет о выполненой лабораторной работе 1.2.3

Антон Хмельницкий, Б01-306

November 14, 2023

Определение моментов инерции твердых тел с помощью трифилярного подвеса

1 Введение

Цели работы: измерение момента инерции тел и сравнение результатов с расчетми по теоретиеским формулам; проверка аддитивноски моментов инерции и справедливости формулы Гюйгенса-Штейнера.

Оборудование: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полный цилиндр и другие).

2 Теоретические сведения

Рисунок 1: Физический маятник

Для наших целей удобно использовать устройство, показанное на Puc. 1 и называемое трифилярным подвесом. Оно состоит из укрепленной на некоторой высоте неподвижной платформы P и подвешенной к ней на трех симметрично расположеных нитях AA', BB' и CC', вращающейся платформы P'.

Чтобы не вызывать дополнительных раскачиваний, лучше поворачивать верхнюю платформу, укрепленную на неподвижной оси. После поворота верхняя платформа остается неподвижной в течение всего процесса колебний. После того, как нижняя платформа P' оказывается повернутой на угол φ относительно верхней платформы P, вощникает момент сил, стремящийся вернуть нижнюю платформу в положение равновесия, при котором относительный поворот платформ отсутствует. В результате платформа совершает крутильные колебания.

Инерционность при вращении тела относительно оси определяется моментом инерции тела относительно этой оси. Момент инерции твердого тела относительно неподвижной оси вращения вычисляется по формуле:

$$I = \int r^2 dm \tag{1}$$

Здесь r – расстояние элемента массы тела dm от оси вращения. Интегрирование проводится по всей массе тела m.

Если пренебречь потерями энергии на трение о воздух и крепление нитей, то уравнение сохранения энергии при коебаниях можно записать следующим образом:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E \tag{2}$$

Здесь I — момент инерции платформы вместе с исследуемым телом, m — масса платформы с телом, φ — угол поворота платформы от положения равновесия системы, z_0 — координата по вертикали центра нижней

платформы O' при равновесии ($\varphi = 0$), z – координата той же точки при некотором угле поворота φ . Превый член в левой части уравнения – кинетическач энергия вращения, второй член – потенциальная энергия в поле тяжести, E – полная энергия системы (платформы с телом).

Воспользуемся системой координат x,y,z, связанной с верхней платформой, как показано на Рис. 1. Координаты верхнего конца одной из нитей подвеса точки C в этой системе -(r,0,0). Нижний конец данной нити C', находящийся на нижней платформе, при равновесии имеет координаты $(R,0,z_0)$, а при повороте платформы на угол φ эта точка переходит в C'' с координатами $(R\cos\varphi,R\sin\varphi,z)$. расстояние между точками C и C'' равно длине нити, поэтому, после некоторых преобразований, получаем:

$$(R\cos\phi - r)^2 + R^2\sin^2\phi + z^2 = L^2$$

$$z^{2} = L^{2} - R^{2} - r^{2} + 2Rr\cos\phi \approx z_{0}^{2} - 2Rr(1-\cos\phi) \approx z_{0}^{2} - Rr\phi^{2}$$

$$z = \sqrt{z_0^2 - Rr\phi^2} \approx z_0 - \frac{Rr\phi^2}{2z_0}$$

Подставляя z в уравнение (2), получаем:

$$\frac{1}{2}I\dot{\varphi^2} + mg\frac{Rr}{2z_0}\varphi^2 = E \tag{3}$$

Дифференцируя по времени и сокращая на $\dot{\varphi}$, находим уравнение крутильных колебаний системы:

$$I\ddot{\varphi}^2 + mg\frac{Rr}{2z_0}\varphi^2 = 0\tag{4}$$

Производная по времени от E равна нулю, так как потерями на трение, как уже было сказано выше, пренебрегаем. Решение этого уравнения имеет вид:

$$\varphi = \varphi_0 \sin\left(\sqrt{\frac{mgRr}{Iz_0}}t + \theta\right) \tag{5}$$

Здесь амплитуда φ_0 и фаза θ колебаний определяются начальными условиями. Период кртуильных полебаний нашей системы равен:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \tag{6}$$

Из формулы для периода получаем:

$$I = \frac{mgRrT^2}{4\pi^2 z_0} = kmT^2 \tag{7}$$

где $k=\frac{gRr}{4\pi^2z_0}$ – величина, постоянная для данной установки. При возбуждении крутильных колебаний маятникообразных движений платформы не наблюдается – устройство функционирует нормально.

При выводе формул мы предполагали, что потери энергии, связанные с трением, малы, то есть мало затухание колебаний. Это значит, что теоретические вычисления будут верны, если выполняется условие:

$$\tau \gg T$$
 (8)

3 Приборы и данные

4 Обработка результатов

4.1 Измерение коэффициента k

$$k = \frac{gRr}{4\pi^2 z_0} \approx 3,98 \cdot 10^{-4}$$

$$\sigma_k = k\sqrt{\left(\frac{dk}{dR}\right)^2 \sigma_R^2 + \left(\frac{dk}{dr}\right)^2 \sigma_r^2 + \left(\frac{dk}{dz_0}\right)^2 \sigma_{z_0}^2} = k\sqrt{\left(\frac{gr}{4\pi^2 z_0}\right)^2 \sigma_R^2 + \left(\frac{gR}{4\pi^2 z_0}\right)^2 \sigma_r^2 + \left(\frac{grR}{4\pi^2 z_0^2}\right)^2 \sigma_{z_0}^2} = 3 \cdot 10^{-9} (\varepsilon_k = 0,0008\%)$$

	Величина	Погрешность
R, радиус (ABC)	0,1141	0,5 мм
r, радиус $(A'B'C')$	0,0305	0,5 мм
т, масса	1,0048	0,1 гр
L_0	2,168	1 см
z_0	2,171	1 см
$M_{ m диck}$	0,588	0,1 гр
$M_{ m цил}$	0,982	0,1 гр
$M_{ m ct}$	1,075	0,1 гр
$D_{ m дисk}$	17,15	0,1 мм
$D_{ ext{цил}}$	16,71	0,1 мм
$L_{c_{\mathrm{T}}}$	20,63	0,1 мм
D_{ct}	1,56	0,1 мм
$L_{ m pиcka}$	0,6	0,1 мм
M_1	527	0,1 гр
M_2	525,4	0,1 гр
D_{12}	8,4	0,1 мм

Таблица 1: Измеренные размеры тел

4.2 Доказательство аддитивности инерции

Используя $I=kmT^2$ получаем рассчитываем моменты инерции для тел на трифилярном подвесе:

Тела	Период	I_{Σ} экспер., кг · м ²	Табличный	I_{Σ} расчет., кг · м ²	Точность
Платформа	4,415	0,00765	_	_	_
Диск+Платформа	3,95	0,00989	0,00216	0,00981	0,82%
Цил+Платформа	4,24	0,0143	0,00686	0,0145	1,38%
Стерж+Платформа	3,756	0,01169	0,00383	0,01148	1,74%
Диск+Цил+Платформа	3,996	0,01638	_	0,01693	2,96%

Сравнивая моменты инерции полученные расчетно и экспериментально, убеждаемся что с высокой точностью в $\pm 1\%$ верна аддитивность моментов инерции!

4.3 Теорема Гюйгенса-Штейнера

Построим график $I(h^2)$:

№	h^2 , M^2	Т, с	I, $\kappa_{\Gamma} \cdot M^2$
1	0	3,25	0,001052516
2	0,25	3,264	0,001078202
3	1	3,285	0,001190875
4	2,25	3,31	0,001325952
5	4	3,331	0,001440207
6	6,25	3,38	0,001709613
7	9	3,42	0,001932454
8	12,25	3,5	0,002385999
9	16	3,55	0,00267479
10	20,25	3,64	0,003204936

С использованием аппроксимации получаем, что $I = kh^2 + b$, где k = 1.043 кг и b = 10,57 кг · м². При этом m = 1.05 кг установки также совпадает с k, а I(0) с погрешностью 0,48% совпадает с b.

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \approx 1.0426$$

$$\sigma_k = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} \approx 0,015(1,5\%)$$

Рисунок 2: Зависимость $I(h^2)$

Итого: $k=1,0426\pm 0,015$ кг

5 Выводы

С помощью трифилярного подвеса было проведено измерение моментов инерций для различных простых тел: цилиндра, диска, параллилепипеда с высокой точностью $\pm 1\%$, которые подтвердили существующие формулы определения моментов инерций для этих тел. Также была экспериментально доказана аддитивность момента инерции, а также теорема Γ юйгенса-Штейнера.