$$\mathbf{A} = \left(\begin{array}{cc} 0 & 1 \\ 3 & 2 \end{array}\right)$$

does not have a factorization $\mathbf{A} = \mathbf{L}\mathbf{U}$ with normalized lower triangular matrix \mathbf{L} and upper triangular matrix \mathbf{U} .

b) Let P be given by

$$\mathbf{P} = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & \\ & & 1 & & 0 & & \\ & & & & & 1 & \\ & & & & & \ddots & \end{pmatrix}$$

where the off-diagonal 1 are in the positions (i_1, i_2) and (i_2, i_1) (with $i_1 \neq i_2$). Show: The matrix $\mathbf{P}\mathbf{A}$ is the matrix \mathbf{A} with rows i_1 and i_2 interchanged. Furthermore, $\mathbf{P}^{-1} = \mathbf{P}^{\top} = \mathbf{P}$.

a)
$$L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 $U = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$(PA)_{in,j} = \lim_{n \to \infty} A_{i2j} = A_{i2j}$$

general:
$$\left(\begin{array}{c} 1_{n_0} \\ \vdots \\ 1_{n_2} \\ \vdots \\ 1 \end{array}\right)$$

$$(\rho^{T})_{i,j} = P_{j,i} = \delta_{j,i-1}$$

$$P_{j,i} = A, P_{i,j} = 0, P_{j,i} = 0$$

$$P_{j,i} = A, (P^{T})_{i,j} = 0, (P^{T})_{j,i} = 0$$

$$(\rho^{T})_{i_1j} = \rho_{ji_1} - \rho_{ji_2} = \delta_{ji_2} - \rho_{i_2i_1} - \rho_{i_2i_2} - \rho_{i_$$

$$(P)_{i2j} = P_{ji2} - P_{ji2} = S_{jin} - P_{anie} = A_{irest O}$$

$$L_{7(p^{T})_{iein} = A_{irest O}}$$

$$-5 P = P$$

8.4. The least squares method can also be used to fit the parameters of certain nonlinear problems. How would you determine the parameters C, k to fit given data (t_i, y_i) , i = 1, ..., N, to the law $y(t) = Ce^{-kt}$? How do you proceed to determine C, α for the law $y(t) = Ct^{\alpha}$?

- $\bf 8.5. \ \ Let \ Q$ be an orthogonal matrix. Show:
 - a) $\mathbf{x}^{\top}\mathbf{y} = ((\mathbf{Q})\mathbf{x})^{\top}(\mathbf{Q}\mathbf{y}) \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
 - b) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with m > n and its QR-factorization $\mathbf{A} = \mathbf{QR}$. Show: If \mathbf{A} has full rank (i.e., rank(\mathbf{A}) = n), then the diagonal entries of \mathbf{R} are non-zero.

$$a) \times \overline{y} = (Q_X)^T (Q_Y)$$

$$= \times^{\mathsf{T}} Q^{\mathsf{T}} Q \gamma$$

... Q....)