摋

西安电子科技大学

考试时间 120

题	号	=	三.1	三.2	三.3	三.4	三.5	三.6	总 分
得	分								

1. 考试形式: 闭卷; 2. 本试卷共三大题, 满分 100 分; 3. 考试日期: 2019. 1

- 一. 单项选择题(每小题 4 分,共 20 分)
- 1. 已知随机事件 A_1, A_2, A_3 满足 $A_2 \subset A_1A_3$,则[
 - (A) $P(A_1A_2A_3) = P(A_1)P(A_2|A_1)P(A_3|A_2)$ (B) 若 A_2 发生,则 A_1 , A_3 不能同时发生
 - (C) $P(A_2) \ge P(A_1) + P(A_3) P(A_1 \cup A_3)$ (D) 若 A_1, A_3 都不发生,则 A_2 可能发生
- 2. 若离散随机变量 X 有分布律 $P\{X = x_i\} = p_i > 0, i = 1, 2, \dots, 则[$
 - (A) $E(X^2) [E(X)]^2 \ge 0$
- (B) sin(X) 是取无穷多个值的离散随机变量
- (C) X的分布函数是连续的
- (D) 若每一个 x_i 都在集合 Γ 之外,则 $P(X \in \Gamma)=0$
- 3. 二维随机变量 (X_1, X_2) 的联合概率密度函数为 $p(x_1, x_2)$,则[
 - (A) $EX_2 = \int_{-\infty}^{\infty} x_2 p(x_1, x_2) dx_2$
 - (B) $P\{|X_1| \le 1\} = \int_{-1}^1 p(x_1, x_2) dx_1$
 - (C) $p(x_1, x_2) \neq 0$
 - (D) 若 $p(x_1, x_2) = \int_{-\infty}^{\infty} p(x_1, x_2) dx_1 \int_{-\infty}^{\infty} p(x_1, x_2) dx_2$,则 X_1, X_2 相互独立
- 4. 以下关于点估计的各种说法中, 正确的是[

 - (A) 矩估计量没有极大似然估计量有效 (B) 矩估计量都是相合估计量
 - (C) 正态总体方差的矩估计量 $\frac{\sum_{i=1}^{n}(X_i-\overline{X})^2}{n}$ 是无偏的 (D) 无偏估计量是唯一的
- 5. 设 $X_1, X_2, \cdots, X_n, \cdots$ 是独立同分布的随机序列,均值为 μ ,则描述错误的是[
 - (A) 若 X_1 的方差不存在,则辛钦大数定理和中心极限定理都不成立
- (B) 若 X_1 服从泊松分布,则当 n 很大时, $X_1 + \cdots + X_n$ 既服从泊松分布也近似服从 正态分布
- (C) 随着 n 的不断增大,事件 $\left\{ \left| \frac{X_1 + \cdots + X_n}{n} \mu \right| > \frac{1}{2} \right\}$ 发生的可能性接近于零
- (D) 大数定理严格刻画了频率的稳定性
- 二. 填空题(每小题 4分, 共 20分)
- 1. 甲乙独立地分别从 [0,1]和 [0,2]均匀地各取一点,则甲小于乙的概率为[].
- 2. 设某地一年中停电的次数可以用参数为 2 的泊松随机变量 X 刻画, 而停水的次数可
- $3. 若 X_1, X_2, \cdots, X_n$ 是来自参数为 1 的指数分布总体的一个简单随机样本,S(x)记录这

第1页共4页

个样本中数值不超过 $x(x>0)$ 的个体的个数,则 $E[S(x)]=[$	
4. 已知 X~χ²(10),Y~χ²(10) 且它们相互独立,则 X/Y 服从自由度为[]的
[]分布.(第二空填具体的分布类型).	
5. 某 H 公司在面临全球发展阻力时,希望通过员工抗压指数来判断公司的承压情况	夗.
假设所有员工抗压表现相互独立且都服从均值为 μ 、方差为 σ^2 的正态分布. 现在 Π	公
司在某部门内部取得容量为6的一组抗压指数74、81、90、87、96、79,则μ的矩	话
计值为[], $\sigma^2 + \mu^2$ 的矩估计值为[]. (结果保留一位小数)	

三. 解答题 (每小题 10 分, 共 60 分)

1. (10分) 设随机变量 X 的分布函数 F(x) 的导数大于零,定义新的随机变量 Y = F(X),求 Y 的分布函数 $F_Y(y)$ 和方差 D(Y).

3. (10 分)设二维正态随机变量(X,Y)的概率密度如下,定义新随机变量 $T = \max\{X,Y\}$. $f(x,y) = \frac{1}{2\pi\sqrt{1-r^2}} \exp\{\frac{1}{2(1-r^2)}(-x^2+2rxy-y^2)\}, \ \$ 试求r = 0 时T 的概率密度 $f_T(t)$.

4. (10 分) 2018 年 10 月 24 日正式通车的港珠澳大桥是迄今为止最长的跨海大桥,被称为超级工程,它的质量和可靠性经过 2018 年 9 月 16 日超级台风"山竹"的检验而赢得全世界的赞誉. 假设港珠澳大桥上的风速大小服从瑞利分布,其概率密度如下

$$f(x) = \begin{cases} \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

若不同时段独立地测出 n 个风速数据 x_1,x_2,\cdots,x_n ,求未知参数 $\sigma(>0)$ 的最大似然估计值.

5. $(10 \, f)$ 在一次大型网络购物节中,假设网购者的消费水平服从均值为 μ (元),方差为 σ^2 的正态分布. 现有容量为 36 的网购消费水平简单样本,均值为 990,样本方差为 486,试在 $\alpha=0.5\%$ 的显著性水平下,作如下假设检验:

$$H_0$$
: $\mu = 1000$, H_1 : $\mu < 1000$
(注: $\sqrt{2} = 1.4142$, $\sqrt{3} = 1.7321$, $\sqrt{6} = 2.4495$, $t_{0.01}(36) = 2.4345$, $t_{0.005}(36) = 2.7195$, $t_{0.01}(35) = 2.4377$, $t_{0.005}(35) = 2.7238$)

6. (10 分)设大一新生的身高(单位:厘米)服从均值为 μ ,方差为100的正态分布. 现随机测得10位新生的身高数据如下:

181 170 171 164 176 158 161 173 166 170 试求 μ 的置信水平为 0.9 的置信区间.

(注: $z_{0.1}=1.28, z_{0.05}=1.65, z_{0.01}=2.33, z_{0.005}=2.57$,最终结果不需要化为小数)

订

绀

第4页共4页