1.A. Za mrežu prikazanu slikom izračunati napon  $u_{R2}(t)$  ako su zadane normalizirane vrijednosti elemenata:  $R_1=1$ ,  $R_2=1$ ,  $L_1=1$ ,  $L_2=2$ ,  $L_3=4$  te napon generatora  $u_0(t)=S(t)$ .



Rješenje:



1.B. Za mrežu prikazanu slikom izračunati napon  $u_{R2}(t)$  ako su zadane normalizirane vrijednosti elemenata:  $R_1$ =1,  $R_2$ =1,  $L_1$ =1,  $L_2$ =2,  $L_3$ =4,  $M_{12}$ =1/2,  $M_{13}$ =2,  $M_{23}$ =3 te napon generatora  $u_0(t)$ =S(t).



Rješenje:

$$U_{R2}(s) = \frac{1}{s} + \frac{0.186}{(s + 0.8554)} - \frac{1.186}{(s + 0.0780)} \implies u_{R2}(t) = \left[1 + 0.186 \cdot e^{-0.8554t} - 1.186 \cdot e^{-0.0780t}\right] \cdot S(t).$$

2. Za mrežu na slici odrediti i skicirati odziv napona  $u_2(t)$  ako je zadano:  $u_0(t) = S(t)$ ,  $R_1 = 1$ ,  $R_2 = 1$ ,  $C_1 = 1$ ,  $U_C(0) = 1$ . Odziv izračunati rješavanjem Laplaceove transformacije.



## Rješenje:

Pomoću Laplaceove transformacije dobivamo:



$$U_2(s) = \frac{2}{s+1} - \frac{1}{s} \implies u_2(t) = 2 \cdot e^{-t} \cdot S(t) - S(t)$$



3. Izračunati odziv napona  $u_2(t)$  na otporu  $R_2$  za mrežu prikazanu slikom. Zadano je: pobuda  $u_0(t) = \delta(t)$ , početni napon na kapacitetu  $C_1$  je  $u_{C1}(0) = 1$  i normalizirane vrijednosti elemenata  $R_1 = R_2 = 1$ ,  $C_1 = C_3 = 1$ ,  $L_2 = 2$ .



# Rješenje:

Pomoću Laplaceove transformacije dobivamo:



$$U_2(s) = \frac{1}{(s+1)(s^2+s+1)}$$

$$U_2(s) = \frac{1}{s+1} - \frac{s}{s^2 + s + 1} \implies u_2(t) = \left[ e^{-t} - e^{-\frac{t}{2}} \cos \frac{\sqrt{3}}{2} t + \frac{1}{\sqrt{3}} e^{-\frac{t}{2}} \sin \frac{\sqrt{3}}{2} t \right] \cdot S(t)$$

4. Odredite odziv  $i_{R3}(t)$  mreže na slici ako je pobuda  $u_0(t)=\delta(t)$ . Zadano je:  $R_1=R_2=1$ ,  $R_3=2$ ,  $C_1=C_2=2$ ,  $\alpha=2$ .





Rješenje: Primjena Laplaceove transformacije i transformacija naponskih izvora u strujne

$$i_{R3}(t) = \frac{1}{\sqrt{3}} \cdot e^{-\frac{1}{4}t} \cdot \sin \frac{\sqrt{3}}{4} t \cdot S(t)$$



5. Odrediti odziv  $U_{izl}(s)$  za mrežu prikazanu slikom ako je pobuda  $U_1(s) = \frac{1}{s}$ . Zadano je  $R_1 = R_2 = R_3 = R_4 = R_5 = 1$ ,  $C_1 = 1$ .



Rješenje:

$$U_{izl}(s) = U_6(s) = \frac{R_2(R_3 + R_4)}{sC_1R_1R_5(R_3 + R_4) + R_4(R_1 + R_2)} \cdot U_1(s)$$

$$U_{izl}(s) = U_6(s) = \frac{1 \cdot (1+1)}{s \cdot 1 \cdot (1+1) + 1 \cdot (1+1)} \cdot \frac{1}{s} = \frac{2}{2s+2} \cdot \frac{1}{s} = \frac{1}{s} \cdot \frac{1}{s+1}$$

6. Za mrežu prikazanu slikom odrediti nadomjesnu shemu po Theveninu obzirom na priključnice 1-1', primjenom jednadžbi petlji, ako je pobuda  $u_0(t)=S(t)$ . Zadane su normirane vrijednosti elemenata: R=0.5, r=0.5,  $\mu=0.5$ , C=1 i početni napon na kapacitetu  $u_C(0)=2$ .



Rješenje: Primjena Laplaceove transformacije



a) The veninov napon  $U_T(s) = U_2(s)$ 

$$U_T = \frac{1}{2} \cdot \frac{1}{s+3}$$

b) Theveninova impedancija:



$$Z_T = \frac{U}{I} = \frac{s+1}{2(s+3)}$$

7. Za mrežu prikazanu slikom odrediti nadomjesnu shemu po Nortonu obzirom na priključnice 1-1', koristeći postupak jednadžbi čvorišta, ako je pobuda  $u_0(t)=S(t)$ . Zadane su normirane vrijednosti elemenata: R=0.5, r=0.5,  $\mu=0.5$ , C=1 i početni napon na kapacitetu  $u_C(0)=2$ .



<u>Rješenje:</u> Primjena Laplaceove transformacije i transformacija naponskih izvora u strujne a) Nortonova struja:



b) Nortonova admitancija:



$$Y_N = 2\frac{s+3}{s+1}$$

8. Za mrežu prikazanu slikom napisati jednadžbe petlji. Konačni oblik jednadžbi prikazati u formi matrične jednadžbe. Izračunati napon  $U_1(s)$ , ako je zadana pobuda  $u_0(t) = S(t)$ ,  $\mu = 2/3$ , početna struja kroz induktivitet  $i_L(0) = 1$  i normirane vrijednosti elemenata: R=1, L=1/2 i C=1/3.



Rješenje: Primjena Laplaceove transformacije



$$u_1(t) = 6(e^{-t} - e^{-2t})S(t)$$

9. Za mrežu prikazanu slikom napisati jednadžbe čvorišta. Izračunati napon  $U_1(s)$ , ako je zadana pobuda  $u_0(t) = S(t)$ ,  $\mu = 2/3$ , početna struja kroz induktivitet  $i_L(0) = 1$  i normirane vrijednosti elemenata: R=1, L=1/2 i C=1/3.



Rješenje: Primjena Laplaceove transformacije



10. Za mrežu prikazanu slikom napisati jednadžbe čvorišta. Konačni oblik jednadžbi prikazati u formi matrične jednadžbe. Izračunati struju  $I_1(s)$ , ako je zadana pobuda  $u_0(t) = S(t)$ ,  $\alpha=1/2$ , početni napon na kapacitetu  $u_C(0)=1/2$  i normirane vrijednosti elemenata: R=2, L=1 i C=1.



Rješenje: Primjena Laplaceove transformacije



$$i_1(t) = e^{-t/2} \sin(0.5 \cdot t)$$

11. Za mrežu prikazanu slikom napisati jednadžbe petlji. Izračunati struju  $I_1(s)$ , ako je zadana pobuda  $u_0(t) = S(t)$ ,  $\alpha = 1/2$ , početni napon na kapacitetu  $u_C(0) = 1/2$  i normirane vrijednosti elemenata: R=2, L=1 i C=1.



Rješenje: Primjena Laplaceove transformacije



$$i_1(t) = e^{-t/2} \sin(0.5 \cdot t)$$

12. Za mrežu prikazanu slikom napisati jednadžbe čvorišta. Izračunati struju  $i_C(t)$ , ako je zadana pobuda  $i_0(t)=\delta(t)$ , početna struja kroz induktivitet  $i_L(0)=1$  i normirane vrijednosti elemenata:  $R_1=1$   $R_2=1$ , L=1 i C=1.



Rješenje: Primjena Laplaceove transformacije



$$i_C(t) = \delta(t) - 2e^{-t/2} \sin\left(\frac{\sqrt{3}}{2} \cdot t\right) S(t)$$

13. Za mrežu prikazanu slikom napisati jednadžbe petlji. Izračunati struju  $i_C(t)$ , ako je zadana pobuda  $i_0(t) = \delta(t)$ , početna struja kroz induktivitet  $i_L(0) = 1$  i normirane vrijednosti elemenata:  $R_1 = 1$   $R_2 = 1$ , L = 1 i C = 1.



Rješenje: Primjena Laplaceove transformacije



8

Struja petlje 1 jednaka je struji strujnoga izvora.

$$i_C(t) = \delta(t) - 2e^{-t/2} \sin\left(\frac{\sqrt{3}}{2} \cdot t\right) S(t)$$

14. Za mrežu prikazanu slikom odrediti nadomjesne parametre mreže po Teveninu  $U_T(s)$  i  $Z_T(s)$  na stezaljkama 1-1'. Zadano je R=2, r=1, C=1,  $i_0(t)=S(t)$ .



#### Rješenje:

a) Teveninov napon  $U_T(s)$ :

$$U_T(s) = I_0 \cdot \frac{rRsC}{(R-r)sC+1} = \frac{1}{s} \cdot \frac{2s}{s+1} = \frac{2}{s+1}$$

b) Teveninova impedancija  $Z_T(s)$ :  $Z_T = \frac{U_2}{I}$ 



$$Z_T = \frac{U_2}{I} = 0$$

Sva struja teče kroz naponski izvor  $r \cdot i_1(t)$  koji je ujedno i isključen jer je  $i_1 = 0$  pa predstavlja kratki spoj( jer mu je potencijal na krajevima  $r \cdot i_1(t) = 0$  ).

Struja I može biti proizvoljna velika, ovisno o pomoćnom strujnom izvoru. (Ne smije se u ovom slučaju staviti pomoćni naponski izvor).

15. Za krug prikazan slikom odrediti nadomjesnu shemu po Nortonu obzirom na priključnice 1-1', koristeći postupak jednadžbi čvorišta, ako je pobuda  $u_0(t) = \delta(t)$ . Zadane su normirane vrijednosti elemenata: R=0.5, L=1, C=1, r=1 i početni uvjeti  $u_C(0)=0.5$ ,  $i_L(0)=1$ .



Rješenje: Primjena Laplaceove transformacije

a) Nortonova struja  $I_N(s)$ :



b) Nortonova admitancija  $Y_N(s)$ :



$$Y_N(s) = \frac{I}{U} = \frac{R + sr^2C}{r^2(sCR + 1)} + \frac{1}{sL} = \frac{s^2 + s + 1}{s(0.5s + 1)}$$

16. Odrediti odziv  $u_L(t)$  mreže prikazane slikom ako je zadano:  $R_s = R_L = 1$ , L = 1, C = 1,  $i_L(0) = 1$ ,  $u_C(0) = 1$  i poticaj:  $u_0(t) = e^{-t} S(t)$ .



Rješenje:



Rješenje:  $u_L(t) = (3-t) \cdot e^{-t} \cdot S(t)$ 

17. Za mrežu na slici odrediti napon na kapacitetu  $u_C(t)$ . Zadano je: R=4, C=1/2, L=2,  $i_L(0)=1.2$ A,  $u_C(0)=2.6$ V,  $u_g(t)=S(t)$ .



Rješenje: Primjenom Laplaceove transformacije:



$$u_C(t) = (-1.6 \cdot e^{-t} - 4t \cdot e^{-t}) \cdot S(t) - S(t)$$

18. Za prikazani dvopol odrediti admitanciju na priključnicama 1-1'. Zadano je L=1, C=1, r=1.



Rješenje:



$$Y_{II} = \frac{3s^2 + 1}{2s} = \frac{3}{2}s + \frac{1}{2s}$$

Konačno dobiveni dvopol ima oblik:

$$Y_{\parallel} \rightarrow \begin{array}{c} 1 \\ \hline 3 \\ \hline 1' \end{array} \qquad C \qquad 2 \Rightarrow L$$

19. Za mrežu prikazanu slikom odrediti odziv napona  $U_{iz}(s)$ , ako je zadan poticaj  $U_{ul}(s)=1$ . Zadano je  $R_1=1$ ,  $R_2=1$ ,  $R_3=1$ ,  $C_1=2$ ,  $C_2=1/2$ ,  $C_3=1$ .



## Rješenje:

$$U_{iz}(s) = \frac{1}{(s+1)(s^2+s+1)}$$

20. Odrediti i skicirati valni oblik napona  $u_C(t)$  u prikazanoj mreži ako je zadano: R=2, C=0.5, L=1,  $u_C(0)=2$ ,  $i_L(0)=4$ ,  $u_g(t)=2$   $e^{-t}$  S(t).



### Rješenje:

Primjenom Laplaceove transformacije i transformacija izvora:



$$u_C(t) = e^{-\frac{t}{2}} \left( 3\cos\frac{\sqrt{7}}{2}t + \frac{17}{\sqrt{7}}\sin\frac{\sqrt{7}}{2}t \right) \cdot S(t) - e^{-t} \cdot S(t)$$