Remark: Monotone functions are of bounded variation. Linear Combinations of bounded variation are also of bounded variation, If $f: \Gamma a \cdot b7 \rightarrow \mathbb{C}$ is of bounded variation and $a \leq x < y \leq b$. then flrigg is of bounded variation. Definition: If f: [aib] - C is of bounded variation, then for all $a \le x \le y \le b$ we define Vf (x, y) = sup = | f(xx) - f(xx-)| We call $V_f(x,y)$ the total variation of f on [x,y]Theorem: (Jordan Decomposition Theorem) Let f: [a16] -> IR be of bounded variation. Define $V,D: Ea,b7 \rightarrow IR$ by $V(x) = V_f(a,x)$ for all $x \in [a,b]$ and D = V - f. Then V and D are non-dec-Hence, a IR-valued function is of bounded variation if and only if it is the difference of two non decreasing functions. Proof: We claim for all a < x < y < b, that Vf(a,y) = Vf(a,x) + Vf(x,y). This will imply V is non-decreasing. If P is a partition of [a,x7 and Q is a partition of [x,y7, then PUQ is a partition of [a,y], so Vf(a,y) = Vf(a,x) + Vf(x,y). Conversely, if P is a partition of [a,y7, add in x to get P being the union of a partition on Eax7 with a partition on [xiy]. As this does not decrease the term, we take the sup of in Vf (a,y), we get the desired inequality. Next, note that for all a < x < y < b, we have

D(y) - D(x) = (V(y) - V(x)) - (f(y) - f(x))= $V_f(x,y) - (f(y) - f(x))$ $\geq |f(y)-f(x)| - |f(y)-f(x)| > 0$ Corollary: If $f: [a_1b] \rightarrow \mathbb{C}$ is of bounded variation, then f'exists almost everywhere and $f' \in L_1([a_1b], \lambda)$, Proof: Without loss of generality, say f is IR - valued. Then f = V - D where V and D are hondecreasing. By LDT, f'almost everywhere and f' = V' - D'Recall V', $D' \ge 0$ by LDT, so $|f'| \le V' + D'$ almost everywhere, su $\int_{\text{EarbJ}} |f'| d\lambda \leq \int_{\text{EarbJ}} V' + D' d\lambda$ $\leq V(b) - V(a) + D(b) - D(a)$ < \infty by the LOT, Absolutely Continuous Functions Definition: Let f: [aib] - C. We say f is absolutely continuous on [aib] if for all E>0 there exists 8>0 such that if $a \leq a_1 < b_1 \leq a_2 \leq b_2 \leq \cdots \leq a_n < b_n \leq b_i \leq a_n < b_n \leq b_i \leq a_n < b_n \leq b_i \leq a_n < b_n \leq a_n < b_n \leq a_n < b_n \leq a_n < a$ such that $\sum_{k=1}^{n} |b_k - a_k| < \delta$, then $\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \epsilon$. Remark: The set of absolutely continuous functions are closed under linear combinations and complex conjugates, so it suffices to consider IR -valued functions.

Example: If f: [a,b] -> IR is differentiable on [a,b] with $|f'| \leq M$ for some M>0, then for all E>0, let $\delta = \frac{\varepsilon}{M} > 0$. Then if $a \leq a_1 < b_1 \leq a_2 < b_2 \leq \cdots \leq a_n < b_n \leq b$ is such that $\frac{1}{\kappa}$, $|b_{\kappa}-a_{\kappa}|<\delta$, then by MVT, we know that |f(bk)-f(ak)| = M|bk-ak|, so = (f(bk)-f(ak)) = MS = € so f is absolutely continuous. Example: f(x) = |x| is absolutely continuous but not differentiable on [-1,1]. Theorem: Let f: [a,b] -> IR be absolutely continuous. Then f is Continuous and f is of bounded variation. Proof: Take n=1 and f is continuous. For bounded variation, let E=1. Because f is continuous, choose of for such ε in the def of absolute continuity. Let $P = \frac{1}{2} x_{\varepsilon} \frac{3h}{\kappa} = 0$ a partition of Caib?, Let le IN be such that $a + \frac{5}{2}l \le b \le a + \frac{5}{2}(l+1)$ let p' = p v 1a + & m 1 = 1 tx 3 x:0. Then $\sum_{k=1}^{N} |f(x_k) - f(x_{k-1})| \le \sum_{k=1}^{N} |f(t_k) - f(t_{k-1})|$ Note for P'n[a+≤m, a+≤(m+1)], for all 0 ≤ m ≤ l, we get a collection of end points of intervals that when ordered via increasing order yields intervals whose sums of lengths is at most $\frac{8}{2}$, so absolutely continuous implies that $\sum_{k=1}^{\infty} |f(t_k) - f(t_{k-1})| \le 1$ for each of these 1+1 intervals so

 $\frac{1}{\sum_{k=1}^{N} |f(x_k) - f(x_{k-1})|} \leq \sum_{k=1}^{N} |f(t_k) - f(t_{k-1})| \leq 2 + 1 < \infty$

Corollary: If $f: [a_1b] \rightarrow \mathbb{C}$ is absolutely continuous then f' exists almost everywhere, f' is measurable and $f' \in L_1[a_1b]$.

Proof: f is of bounded variation.

Theorem: Let $f: [a:b] \rightarrow IR$ is absolutely continuous. If f'=0 almost everywhere, then f is constant.

Corollary: The Cantor Ternary Function is not absolutely cont.

Proof: f'=0 almost everywhere but f is not continuous.

Proof of Theorem: Let $c \in (a, k]$, We will show f(c) = f(a).

Let E>O. Since f is absolutely continuous, choose 8>0.

Because f' = 0 a.e. there exists $X \subseteq IR$ such that

 $X \in \mathcal{M}(\mathbb{R})$, f'(x) = 0 $\forall x \in X$ and $\lambda(\mathbb{R}) \setminus X) = 0$. Consider

xeXn[a,c). Then

$$0 = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Hence for all $x \in X \cap [a,c)$ and all $\delta > 0$, there is $h < \delta_0$ such that $[x,x+h] \subseteq [a,c)$ and $[f(x+h)-f(x)] < \epsilon h$. As the set of all such intervals form a Vitali covering of $X \cap [a,c]$, there exists $h \in [N]$, $x_1, \dots, x_n \in X \cap [a,c]$ such that $x_k < x_{k+1}$ and $h_1, \dots, h_n > c$ such that if $I_k = [x_k, x_k+h_k)$, then $I_k = [x_k, x_k+h_k]$, are pairwise disjoint.

If (xk+hk) - f(xk) | < hk & and also

$$\lambda^* \left((X \cap [a \cdot c) \setminus (\bigcup_{k=1}^{n} I_{k}) \right) \leq \delta_{+} \text{ so } \lambda^* \left([a, b] \setminus X \right) = 0$$
Let $y_{k} = x_{k} + h_{k}$ for $1 \leq k \leq n$, $y_{0} = a$, $x_{n+1} = c$. Then
$$a = y_{0} \in x_{1} \leq y_{1} \leq x_{2} \leq y_{2} \leq \dots \leq x_{n} \leq y_{n} \in x_{n+1} = C. \text{ Note}$$

$$\prod_{k=1}^{n} |f(y_{k}) - f(x_{k})| \leq \prod_{k=1}^{n} |h_{k} c| = \lambda \left(\bigcup_{k=1}^{n} I_{k} \right) \in (c-a) \in A$$
Also,
$$\lim_{k=1}^{n+1} |f(x_{k}) - f(x_{k+1})| \leq \varepsilon \text{ because } \lim_{k=1}^{n+1} |x_{k} - y_{k+1}| \leq \delta \text{ so }$$
absolute continuity applies. Hence
$$|f(c) - f(a)| = \prod_{k=1}^{n} |f(y_{k}) - f(x_{k})| + \prod_{k=1}^{n+1} |f(x_{k}) - f(y_{k+1})|$$

$$\leq (c-a+1) \in C.$$
Therefore as \$\varepsilon_{0} \text{ was arbitrary.} \quad \(f(c) = f(a) \).

Theorem: Let \(f \in L_{1} \subseteq L_{1} \subseteq a_{1} \subseteq \) and let \(F : L_{a_{1}b_{1}} \) \to C \(be \)

defined by
$$F(x) = \int_{La_{1}x_{1}} f \, d\lambda$$
Then \(F \) is a basolutely continuous.

Proof: Let \(\varepsilon_{0} \) and \((c + F : L_{a_{1}b_{1}}) \to C \) by
\(y \) \((A) = \int_{A} \) \(|f| \) \(d \).

Then \(y \) is a measure. \(\varepsilon_{1} \) Assignment 3, there exists a \(\varepsilon_{0} \) such that if \(A \in M(IR) \) and \(\lambda(A) \) \(\varepsilon_{0} \) then \(\varepsilon_{0} \) \(\varepsilo

