Module 3: Portfolio Return & Risk The Two-Asset Case

Statistical Relationships for a Two-Asset Portfolio

	Asset a	Asset b	
Expected return on each asset	r_a	r_b	
Risk (volatility)	σ_{a}	σ_{b}	
% holding in each asset	\mathbf{W}_{a}	w_b	$w_a + w_b = 1$

Statistical Relationships for a Two-Asset Portfolio

Asset *a* Asset *b*

Expected return on each asset

 r_a

 r_b

Risk (volatility)

 σ_{a}

 σ_{b}

% holding in each asset

 W_a

 W_b

 $w_a + w_b = 1$

Covariance between A & B: σ_{ab}

Correlation between A & B:

 $\rho_{ab} = \sigma_{ab} / (\sigma_a \sigma_b)$

Statistical Relationships for a Two-Asset Portfolio

Asset a

Asset b

Expected return on each asset

 r_a

 r_b

Risk (volatility)

 σ_{a}

 σ_{h}

% holding in each asset

 W_a

 W_b

 $w_a + w_b = 1$

Covariance between A & B: σ_{ab}

Correlation between A & B:

$$\rho_{ab} = \sigma_{ab} / (\sigma_a \sigma_b)$$

Portfolio return r_p and volatility σ_p are then calculated as:

$$r_p = w_a r_a + w_b r_b$$

$$w_a + w_b = 1$$

$$\sigma_{p} = [w_{a}^{2}\sigma_{a}^{2} + w_{b}^{2}\sigma_{b}^{2} + 2w_{a}w_{b}\sigma_{a}\sigma_{b}\rho_{ab}]^{1/2}$$

Statistical Relationships for a Two-Asset Portfolio: Calculation Check

		<u>Asset A</u>	<u>Asset B</u>
Expected return	r	5%	8%
Risk (volatility)	σ	9%	15%
Correlation between A & B	ρ	5	0%

$$\sigma_P =$$

Please calculate the return and volatility for the portfolio of A & B when $w_a = 40\%$

$$r_{p} = w_{a}r_{a} + w_{b}r_{b}$$

$$\omega_{a} + w_{b} = 1$$

$$\sigma_{p} = [w_{a}^{2}\sigma_{a}^{2} + w_{b}^{2}\sigma_{b}^{2} + 2w_{a}w_{b}\sigma_{a}\sigma_{b}\rho_{ab}]^{\frac{1}{2}}$$

- Graphical demonstration of range of possible portfolios of two assets
 - Asset A has higher return and higher risk than Asset B
 - What range of portfolios can we create from these two assets?

$$r_{p} = w_{a}r_{a} + w_{b}r_{b}$$
 $w_{a} + w_{b} = 1$
 $\sigma_{p} = [w_{a}^{2}\sigma_{a}^{2} + w_{b}^{2}\sigma_{b}^{2} + 2w_{a}w_{b}\sigma_{a}\sigma_{b}\rho_{ab}]^{1/2}$

- Graphical demonstration of range of possible portfolios of two assets
 - Asset A has higher return and higher risk than Asset B
 - What range of portfolios can we create from these two assets?

$$r_{p} = w_{a}r_{a} + w_{b}r_{b}$$

$$\sigma_{p} = [w_{a}^{2}\sigma_{a}^{2} + w_{b}^{2}\sigma_{b}^{2} + 2w_{a}w_{b}\sigma_{a}\sigma_{b}\rho_{ab}]^{\frac{1}{2}}$$

- Graphical demonstration of range of possible portfolios of two assets
 - The white curve demonstrates the range of all possible portfolios
 - Portfolio risk-return outcome driven by selection of w_a (and hence w_b)

$$r_{p} = w_{a}r_{a} + w_{b}r_{b}$$
 $w_{a} + w_{b} = 1$
 $\sigma_{p} = [w_{a}^{2}\sigma_{a}^{2} + w_{b}^{2}\sigma_{b}^{2} + 2w_{a}w_{b}\sigma_{a}\sigma_{b}\rho_{ab}]^{\frac{1}{2}}$

If ρ = 0.5 & w_a = 0.4 as before: r_p = 6.8%, σ_p = 11.2%

$$r_{p} = w_{a}r_{a} + w_{b}r_{b}$$
 $w_{a} + w_{b} = 1$
 $\sigma_{p} = [w_{a}^{2}\sigma_{a}^{2} + w_{b}^{2}\sigma_{b}^{2} + 2w_{a}w_{b}\sigma_{a}\sigma_{b}\rho_{ab}]^{1/2}$

Return & Risk for a Two-Asset Portfolio Concept Check

(1) Which statistical variable drives curvature?

- (i) r_a (iv) σ_a
- (ii) r_b (v) σ_b
- (iii) w_a (vi) ρ_{ab}

Return & Risk for a Two-Asset Portfolio Concept Check

- (1) Which statistical variable drives curvature?
 - (i) r_a
- (iv) σ_a
- (ii) r_b
- (v) σ_b
- (iii) w_a
- (vi) ρ_{ab}

- (2) As the variable decreases, which way does the curve stretch?
- (3) Under what circumstances would the curve from A to B be linear (so that investors' portfolio options are limited to the straight line between A & B)?

- When ρ_{ab} < 1, portfolio possibilities exist that have *lower* volatility and higher return, than Asset B alone
 - Shaded region of the curve
- This is the benefit of diversification: combinations of assets almost invariably offer better risk-return profiles than individual assets

