Test Analyse asymptotique 2020

Nom et prénom :

Question 1 Soit f définie sur \mathbb{R} telle que $f(x) = 1 + \frac{x}{2} - \frac{x^2}{3} + o(x^2)$. Alors,

On note $u_n = n^2 + 1$, $v_n = n + 3n^2$. Cocher la bonne comparaison : Question 2

$$\boxed{\mathbf{A}} \quad u_n \underset{n \to +\infty}{\sim} v_n^2$$

$$\Box$$
 $u_n \sim v_n$

$$\boxed{\textbf{A}} \quad u_n \underset{n \to +\infty}{\sim} v_n^2 \qquad \boxed{\textbf{B}} \quad u_n \underset{n \to +\infty}{\sim} v_n \qquad \boxed{\textbf{C}} \quad u_n \underset{n \to +\infty}{=} O(v_n) \qquad \boxed{\textbf{D}} \quad u_n \underset{n \to +\infty}{=} o(v_n)$$

$$\boxed{\mathbf{D}} \quad u_n = o(v_n)$$

Question 3 \clubsuit Dire, parmi les fonctions f et g proposées, lesquelles sont équivalentes en $0: f(x) \underset{x\to 0}{\sim} g(x)$ pour

Question 4 • Quelles fonctions f ont pour développement limité en 0: $f(x) = x - \frac{x^3}{3} + o(x^3)$?

$$\overline{\mathbf{A}}$$
 Arctan (x)

$$\boxed{\mathrm{B}}$$
 $\tan(x)$

$$\begin{array}{c|c}
\hline C & x\cos(x) \\
\hline F & Aucune...
\end{array}$$

$$\boxed{\mathbf{D}} \quad x \ln(1+x^2)$$

$$\boxed{\mathrm{E}}$$
 $\sin(x)$

Question 5 . Indiquer quelles limites suivantes sont nulles :

$$\boxed{\mathbf{A}} \quad \lim_{n \to +\infty} \frac{e^n}{n!}$$

$$\boxed{\mathbf{B}} \quad \lim_{n \to +\infty} \frac{e^{n/10}}{n^{10}}$$

$$\boxed{\mathbf{A}} \quad \lim_{n \to +\infty} \frac{e^n}{n!} \qquad \boxed{\mathbf{B}} \quad \lim_{n \to +\infty} \frac{e^{n/10}}{n^{10}} \qquad \boxed{\mathbf{C}} \quad \lim_{n \to +\infty} \frac{n^3}{(1,1)^n} \qquad \boxed{\mathbf{D}} \quad \lim_{n \to +\infty} \frac{(1,1)^n}{n^{0,3}}$$

$$\boxed{\mathbf{D}} \quad \lim_{n \to +\infty} \frac{(1,1)^n}{n^{0,3}}$$

Si $u_n \sim v_n$ et si $w_n \sim x_n$, alors a-t'on nécessairement $u_n + w_n \sim v_n + x_n$? Question 6

Question 7 $\exp(x) \sim \exp(2\sin(x))$?

 $\exp(x) - 1 \sim \exp(\sin(x)) - 1 ?$ Question 8

On a $\sqrt{1+x^2} \underset{x\to +\infty}{\sim} \sqrt{x^2+x}$, alors a-t'on $\exp(\sqrt{1+x^2}) \underset{\infty}{\sim} \exp(\sqrt{x^2+x})$?

A Vrai

Le développement limité à l'ordre 2 de $h(x) = \frac{1}{1-x} + \cos(x)$ en 0 est : Question 10

$$\boxed{\mathbf{A}} \quad 1 - x - \frac{x^2}{2} + o(x^2)$$

$$\boxed{C}$$
 $2+x+\frac{x^2}{2}+o(x^2)$

$$\boxed{D} \quad 2x - \frac{x^2}{2} + o(x^2)$$

Question 11 Donner le développement limité à l'ordre 2 de $f(x) = \exp(3+x)$ en 0 :

$$\boxed{\mathbf{B}} \quad e^3 \left(1 + x + \frac{x^2}{2} + o(x^2) \right)$$

C
$$1+(x-3)+\frac{(x-3)^2}{2}+o((x-3)^2)$$

$$\boxed{D}$$
 $e^3 + x + \frac{x^2}{2} + o(x^2)$

Question 12 \clubsuit Si $f(x) = x + 2 - \frac{3}{x} + o\left(\frac{1}{x}\right)$, alors

Déterminer les fonctions f qui ont pour DL $f(x) = (x-1) - \frac{(x-1)^2}{2} + o((x-2)^2)$

- [A] $\ln(x-1)$ [B] $1-e^x$ [C] $1-e^{-(x-1)}$
- $\boxed{\mathrm{D}} \quad \ln(x) \qquad \boxed{\mathrm{E}} \quad Aucune...$