This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
 - TEXT CUT OFF AT TOP, BOTTOM OR SIDES
 - FADED TEXT
 - ILLEGIBLE TEXT
 - SKEWED/SLANTED IMAGES
 - COLORED PHOTOS
 - BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

•					
·					
		*			
	•				
·			*		
r					

BUNDESREPUBLIK DEUTSCHLAND

②

21

2 (3) Deutsche Kl.: 6 a, 22/10

1362365

1 Offenlegungsschrift 1

Aktenzeichen:

2137042

Anmeldetag:

P 21 37 042.3 24. Juli 1971...

Offenlegungstag: 10. Februar 1972

Ausstellungspriorität:

Unionspriorität 30 **②** Datum:

28. Juli 1970

3 Land: Großbritannien

③ Aktenzeichen: 36564-70

<u>54</u>) Bezeichnung: Verfahren zur Herstellung neuer Enzymaufbereitungen

(1)

Zusatz zu:

@

Ausscheidung aus:

1

Anmelder:

Novo Terapeutisk Laboratorium A/S, Kopenhagen

Vertreter gem. § 16 PatG:

Louis, D., Dr.; Pöhlau, C., Dipl.-Phys.; Lohrentz, F., Dipl.-Ing.;

Patentanwälte, 8500 Nürnberg und 8130 Starnberg

@

Als Erfinder benannt:

Nielsen, Tage Kjaer, Herlev;

Markussen, Erik Kjaer, Vaerloese (Dänemark)

ORIGINAL INSPECTED

Novo Terapeutisk Laboratorium A/S, Kopenhagen (Dänemark)

Verfahren zur Herstellung neuer Enzymaufbereitungen.

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Enzympräparaten, die feste Kügelchen von im wesentlichen einheitlicher Größe enthalten.

In der vorliegenden Beschreibung und in den Ansprüchen sollen unter dem Ausdruck "Pellets" nicht nur normale Pellets verstanden werden, sondern auch extrudierte (stranggepreßte), geformte Körper, die eine längliche Struktur, beispielsweise eine spaghettiartige Struktur besitzen.

Es ist bekannt, ein extrudiertes Material dadurch in feste Kügelchen von einheitlicher Größe zu überführen, daß die extrudierten Pellets in einen Behälter mit stationären festen Seitenwänden und einer bodenseitig drehbar gelagerten Reibplatte gebracht werden, die mit einer Geschwindigkeit von etwa 100 und bis zu 1.800 u/min rotiert. Die Spheronisierung wird durch die Zentrifugalkraft und die Reibung bewirkt und kann in Maschinen durchgeführt werden, die unter dem Markennamen MARUMERIZER auf dem Markt sind.

Diese Maschinen können von der Eli Lilly Company bezogen werden; sie werden hergestellt von der Fuji Denki Kogyo Company, Osaka, Japan.

Es wurde nun gefunden, daß die Spheronisierung im Zusammenhang mit Enzympräparaten von Nutzen ist, insbesondere solchen, die in der sich mit der Herstellung von Detergenzien befassenden Industrie verwendet werden, beispielsweise bei Präparaten, welche Enzyme und Additive enthalten, die im allgemeinen in Waschmittelund Reinigungsmittelzusammensetzungen eingesetzt werden, wobei dann das Verfahren mit gewissen extrudierten enzymhaltigen Pellets durchgeführt wird. Diese Pellets werden in an sich bekannter Weise aus einer Misch ung aus 75 % - 97 % eines festen, ein Enzym enthaltenden Pulvers mit 25 % bis 3 % Wasser erhalten.

Hiernach hat die Erfindung ein Verfahren zum Gegenstand, bei dem enzymhaltige Pellets, die durch Extrusion einer Mischung aus 75 - 97 % festem enzymhaltigem Pulver, das gegebenenfalls einen Enzymstabilisator enthält, und 25 bis 3 % Wasser erhalten wurden, einer Spheronisierung mit Rotationsgeschwindigkeiten bis zu 2.000 u/min in einer Apparatur unterworfen werden, in welcher die Pellets der Einwirkung von Zentrifugal- und Reibungskräften ausgesetzt werden, wonach gegebenenfalls die erhaltenen festen Kügelchen einer Fließbetttrocknung unterzogen werden.

Die nach der Erfindung erhaltenen Enzymaufbereitungen enthalten Partikel von praktisch einheitlicher Größe, die für indu-

strielle Zwecke eingesetzt werden können. Die Partikel sind im wesentlichen staubfrei und besitzen für ihre Handhabung eine ausreichende Festigkeit, so daß eine Staubbildung vermieden ist. Die Partikel besitzen weiterhin zufriedenstellende Fließeigenschaften für den Transport in Fabriken.

In den nachfolgenden Beispielen werden Rotationsgeschwindigkeiten von etwa bis zu 800 - 1000 u/min während der Spheronisierung angewendet; jedoch können auch Geschwindigkeiten bis etwa 2.000 u/min Anwendung finden.

Bei einer vorzugsweisen Ausführungsform der Erfindung wird die Spheronisierung in einer Maschine desjenigen Typs durchgeführt, der unter dem Markennamen MARUMERIZER Rauf dem Markt ist.

Das nach dem erfindungsgemäßen Verfahren erhaltene Produkt ist leicht löslich, sowohl in heißem als auch in kaltem Wasser.

Dies stellt einen besonderen Vorteil dann dar, wenn das Enzymprodukt als Zusatz zu Vorwaschmittel oder einem Einweichmittel verwendet wird.

Die erfindungsgemäßen Produkte besitzen eine gute Lagerungsbeständigkeit, auch unter hinsichtlich der Temperatur und Feuchtigkeit ungünstigen Bedingungen, auch dann noch wenn sie in Perborate enthaltenden Waschmitteln verwendet werden.

The second second

THE RESERVE WAS A MINER OF THE PARTY OF

Gegebenenfalls können die erfindungsgemäßen Produkte noch weiter dadurch verbessert werden, daß sie in an sich bekannter Weise mit einer flachen Überzugsmasse überzogen werden, wie es beispielsweise in J. Am. Pharm. Association, Aug. 1954, Vol. XLIII, No. 8 beschrieben ist. Hierbei wird vorzugsweise ein Wachs bzw. eine wachsartige Substanz verwendet, gegebenenfalls eine etwas klebrige Substanz. Die Überzugsmasse soll jedoch in Wasser leicht löslich und dispergierbar sein.

Beispiele für bevorzugte Überzugsmassen sind, wie auch in der vorerwähnten Schrifttumsstelle erwähnt, Polyäthylenglycol 6000
bis 1000, aber auch Nonylphenolpolyglycoläther mit 16 bis 50
Äthylenglycol-Einheiten, äthoxylierte Fettalkohole, in denen
der Kohlenwasserstoffteil des Alkohols 12 bis 20 Kohlenstoffatome und der Polyglycolteil 15 bis 80 Polyäthylenglycoleinheiten besitzt, Fettalkohole, Fettsäuren und Mono- und Diester
der Fettsäuren und Glycerol.

Das nach der Erfindung vorgesehene Überzugsverfahren wird am besten in einer einfachen und wohlfeilen Apparatur durchgeführt. Hierzu kann ein Mischer des Trommeltyps dienen, der mit sich drehenden Mischwerkzeugen ausgestattet ist. Auf diese Weise kann die Verwendung von komplizierten und teuren Spezialkesseln oder Fließ- bzw. Fördereinheiten mit einer Düsenanordnung vermieden werden. Darüberhinaus ist es oft möglich, das Überzugsmaterial lediglich aufzuschmelzen und in die Mischtrommel einzugießen bzw. einzuschütten oder hineinzusprühen, wodurch ein besonderer Lösungsprozess entfällt.

Die überzogenen Produkte können eingefärbt werden, beispielsweise mit Titandioxid oder Pigmentfarben. Die überzogenen Produkte sind auch gegen etwaigen Abrieb, der zur unerwünschten Bildung von enzymhaltigem Staub Anlaß geben könnte, geschützt.

Das enzymhaltige Pulver enthält neben dem eigentlichen Enzym vorzugsweise geeignete Additive, beispielsweise schmierend wirkende Substanzen, Füllstoffe, Bindemittel und Enzymstabilisatoren. Beispiele für geeignete Schmierstoffe sind Polyäthylenglycole. Als Beispiele für Füllstoffe seien anorganische Salze, beispielsweise Natriumchlorid und Natriumsulfat, Pentanatriumtripolyphosphat, Tetranatriumpyrophosphat oder die entsprechenden Kaliumsalze, Cellulosepulver, Stärkepulver, Cellulosederivate, Abbauprodukte der Stärke, Stärkederivate, Gelatine, Kasein, Magermilchpulver, Polyvinylalkohol undPolyvinylpyrrolidone genannt. Einige dieser Substanzen können auch als Bindemittel wirken. Dies gilt beispielsweise für das Stärkeabbauprodukt Dextrin, Polyvinylpyrrolidon und Polyvinylalkohol. Gelatine, Stärkeabbauprodukte und andere Substrate für Enzyme und Polyvinylpyrrolidon sind Beispiele für Stabilisatoren. Insbesondere haben sich Kasein, Magermilchpulver und Polyvinylpyrrolidon als geeignet erwiesen.

Polyvinylpyrrolidon wirkt darüberhinaus in solcher Weise, daß jeder einzelne Strang des Extrudats weniger adhäsiv wird, so daß die Neigung, daß die Stränge bei der Spheronisierung aneinanderhaften, verringert wird.

Bei der Spheronisierung kann es vorteilhaft sein, ein die Pulverbildung förderndes Mittel zu verwenden, um ein Aneinanderhaften der spheronisierten Partikel zu vermeiden. Beispiele für solche Mittel sind anorganische Salze, wie wasserfreies Natriumsulfat, und anorganische Oxide, wie Titandioxid.

Das Verhältnis zwischen dem Enzympulver und Wasser in der Mischung, die spheronisiert werden soll, hängt von der Enzymaktivität des Enzympulvers und der gewünschten Enzymaktivität in dem spheronisierten Endprodukt ab.

Anhand der nachfolgenden Beispiele soll das erfindungsgemäße Verfahren verdeutlicht werden. In einigen der Beispiele wurde das unter dem Markennamen ALCALASE Bekannte Enzymkonzentrat benutzt, bei welchem es sich um ein Handelsprodukt handelt, das ein proteolytisches Enzym zusammen mit inaktiver organischer Substanz und einigen anorganischen Salzen, hauptsächlich Natriumsulfat, enthält. In einem Beispiel wurde ein unter dem Markennamen TERMOZYM bekanntes Enzymkonzentrat eingesetzt, das ebenfalls im Handel ist und amylolitsche Enzyme zusammen mit inaktiver organischer Substanz und einigen anorganischen Salzen, hauptsächlich Natriumsulfat enthält.

Weiterhin befinden sich unter den Ausführungsbeispielen solche, die die Verwendung von Hemicellulase, fungaler α-Amylase und einem unter dem Namen ENZYM X bekannten Enzym veranschaulichen, das auf dem in der Deutschen Patentanmeldung P 1800505.8-41 beschriebenen Weg durch Kultivierung des Bazillus-Stammes NCIB 109887/1237

No. 10147 (es handelt sich hierbei um die Hinterlegungsnummer für diesen Stamm bei der National Collection of Industrial Bacteria, Torry Research Station, Aberdeen, Schottland) erhalten wurde. Außer dem ENZYM X können ähnliche proteolytische Enzyme verwendet werden, die durch aerobe Kultivierung von proteasebildenden Arten der Gattung Bazillus auf einem Nährmedium mit einem pH zwischen 9 - 11 und unter Aufrecherhaltung eines pH in diesem Medium zwischen 7,5 und 10,5 während der Hauptperioder der Kultivierung erhalten wurde, wobei dieses proteolytische Enzym eine proteolytische Aktivität von 80 bis 100 % der maximalen Aktivität bei Bestimmung bei einem pH 12 nach der Anson Hämoglobin-Methode in Gegenwart von Harnstoff zeigen. Darüberhinaus können andere Amylasen und Proteinasen, wie auch milchkoagulierende Enzyme, Cellulasen, Glucoseisomerase, Pectinasen, Amyloglucosidase und β -Glucanase eingesetzt werden.

Bei den Prozentangaben in den Beispielen handelt es sich um Gewichtsprozent.

Beispiel 1

Es wird eine Anteigung aus 30 % ALCALASE und 70 % Natriumsulfat hergestellt und die Mischung wird in einem Mischer mit 8 % Wasser, das auf die Mischung aufgesprüht wird, angefeuchtet.

Die angefeuchtete Mischung wird in an sich bekannter Weise durch ein 0,7 mm Sieb extrudiert. Die gebildeten Pellets werden dann

in einem MARUMERIZER R spheronisiert, zu Beginn mit einer Geschwindigkeit von 400 u/min bei gleichzeitigem Pulvernmit 3 % Titandioxid und einer Endgeschwindigkeit von 800 u/min. Etwaige Spuren an Staub können von der Pulversubstanz durch Absieben entfernt werden.

Das Endprodukt hat folgende Eigenschaften.

Proteolytische Aktivität

1.3 Anson Einheiten/g

Partikelgröße

0,7 mm

Schüttgewicht

etwa

1,0 g/cm³

Das Produkt ist staubfrei und in wässrigen Medien löslich.

Beispiel 2

Eine Anteigung aus 30 % ALCALASE (R) und 70 % Natriumchlorid wird mit 6 % Wasser angefeuchtet und extrudiert und hiernach wie in Beispiel 1 beschrieben spheronisiert. Das Endprodukt hatte dieselben Eigenschaften wie das nach Beispiel 1 erhaltende Endprodukt.

Beispiel 3

Eine Anteigung folgender Zusammensetzung

25 % ALCALASE®

10	% .	Dextrin .
5	%	Cellulosepulver
6	%	Polyäthylenglycol 6000
54	%	wasserfreies Natriumsulfat

wird mit 8 % Wasser angefeuchtet. Die angefeuchtete Mischung wird in an sich bekannter Weise durch ein 0,8 mm Sieb extrudiert. Die gebildeten Pellets werden wie in Beispiel 1 beschrieben spheronisiert mit der Maßgabe, daß anstelle von Titandioxid als die Pulverbildung begünstigendes Mittel wasserfreies Natriumsulfat eingesetzt wird.

Das Endprodukt hatte folgende Eigenschaften:

Proteolytische Aktivität	;	1.0	Anson	Einheiten/g
Partikelgröße		0.8	_	
Schüttgewicht	etwa	1.0	g/cm ³	•

Beispiel 4

Eine Anteigung aus 25 % ALCALASE R, 10 % Cellulosepulver und 65 % Natriumsulfat wird mit 77,5 % einer wässrigen Lösung angefeuchtet, die 10 % Hydroxypropylcellulose und 2 % Polyäthylenglycol 6000 enthielt.

Die angefeuchtete Mischung wird extrudiert und spheronisiert wie nach Beispiel 1. Das Endprodukt hatte dieselben Eigen-

schaften wie im Falle des Beispiels 3.

Die Hydroxypropylcellulose kann durch Polyvinylpyrrolidon ersetzt werden.

Beispiel 5

Eine Mischung aus 33,5 % ALCALASE R, 25 % TERMOZYM R, 18 %

Dextrin, 18.5 % Cellulosepulver und 5 % Polyäthylenglycol 6000

wird mit 16 % Wasser angefeuchtet und in an sich bekannter Weise

durch ein 0,8 mm Sieb extrudiert. Die gebildeten Pellets werden

dann wie in Beispiel 1 beschrieben spheronisiert.

Das Endprodukt hatte folgende Eigenschaften:

Proteolytische Aktivität	1.3 Anson Einheiten/g
Amylolytische Aktivität	135 SKB Einheiten/g
Partikelgröße	0.8 mm
Schüttgewicht	0.9 g/cm ³

Beispiel 6

Eine Pulvermischung folgender Zusammensetzung:

25	% .	ALCALASER
10	%	Cellulosepulver
ス	0/	Coletine

- 60 % wasserfreies Natriumsulfat
 - 2 % Polyäthylenglycol 6000

wird mit 16 % Wasser angefeuchtet, extrudiert und wie nach Beispiel 3 spheronisiert. Das Endprodukt hatte dieselben Eigenschaften wie im Falle des Beispiels 3.

Beispiel 7

Eine Pulvermischung der Zusammensetzung:

6.5 % ALCALASE®

10.9 % Magermilchpulver

82.6 % Natriumchlorid

wurde mit 18.5 % einer Lösung folgender Zusammensetzung

53 % Wasser

55 % Polyäthylenglycol 6000

82.6 % Polyvinylpyrrolidon

angefeuchtet. Diese Mischung wurde extrudiert und wie nach Beispiel 3 spheronisiert.

Das spheronisierte Produkt wurde fließbettgetrockmet bei 40^{0} bis 60° C bis auf einem Feuchtigkeitsgehalt von etwa 0.5~%.

Das Endprodukt hatte folgende Eigenschaften:

Proteolytische Aktivität

0.3 AU/g

Partikelgröße

0.7 mm

Schüttgewicht

 $1.05 \, \text{g/cm}^3$

Löslich in Wasser.

Beispiel 8

Pulvermischungen der Zusammensetzung

5.5 % ALCALASE (R)

5.5 % oder 11 % Kasein

89 % oder 84.5 % Natriumchlorid

wurden mit 18.5 % einer Lösung aus

53 % Wasser

35 % Polyäthylenglycol 6000

12 % Polyvinylpyrrolidon

angefeuchtet. Die feuchte Mischung wurde extrudiert und wie nach Beispiel 3 behandelt. Die Eigenschaften des Endproduktes entsprachen dem nach Beispiel 7.

Beispiel 9

Eine Anteigung der Zusammensetzung:

- 3 % ENZYM X (erhalten vom Stamm NCIB No. 10147)
- 2 % Polyvinylpyrrolidon
- 6 % Polyäthylenglycol (6000)
- 89 % Natriumchlorid

wurde mit 8 % Wasser angefeuchtet und durch ein o.9 mm Sieb extrudiert und bei einer Geschwindigkeit von 1000 u/min spheronisiert.

Das feuchte Produkt wurde fließbettgetrocknet bis herunter auf einen Feuchtigkeitsgrad von annähernd 0.5 %.

Die Eigenschaften des Endproduktes waren:

Proteolytische Aktivität

1 KNPU/g

Partikelgröße

etwa 0.8 mm

Schüttdichte

etwa 1.1 g/cm³

wasserlöslich

Beispiel 10

Eine Anteigung der Zusammensetzung:

- 12 % ALCALASE®
- 5.% Polyäthylenglycol 6000
- 1 % Polyvinylpyrrolidon
- 84 % Natrimcitrat

wurde mit 9.3 % Wasser angefeuchtet und extrudiert, spheronisiert und wie in Beispiel 9 getrocknet.

Die Eigenschaften des Endprodukts waren:

Proteolytische Aktivität

0.5 AU/g

Partikelgröße

. 0.7 mm

wasserlöslich

Beispiel 11

Eine Anteigung der Zusammensetzung:

- 2 % Hemicellulase
- 6 % Polyäthylenglycol 6000
- 2 % Polyvinylpyrrolidon
- 90 % Glucose

wurde mit 7 % Wasser angefeuchtet und durch ein 0.9 mm Sieb extrudiert und dann bei 900 u/min spheronisiert.

Das feuchte Produkt wurde bei 40°C bis auf einen Feuchtigkeitsgrad unter 1 % fließbettgetrocknet.

Die Eigenschaften des Endprodukts waren:

Enzymatische Aktivität

50.000 VHCE/g

Partikelgröße

 $0.9 \, \mathrm{mm}$

Schüttgewicht

0.8 g/cm³

wasserlöslich

Beispiel 12

Eine Anteigung der Zusammensetzung

35 % Fungalec Amylase

63 % Natriumchlorid

2 % Polyvinylpyrrolidon

wurde mit 12 % Wasser angefeuchtet und durch ein 0.8 mm Sieb extrudiert und bei einer Geschwindigkeit von 800 u/min spheronisiert.

Das spheronisierte Produkt wurde bei 50°C fließbettgetrocknet.

Das Endprodukt hatte folgende Eigenschaften

Enzymatische Aktivität

1000 FAU/g

Partikelgröße

0.7 mm

Schüttgewicht.

etwa 0.9 g/cm³

Beispiel 13

Eine Anteigung der Zusammensetzung:

26 % ALCALASE®

4 % Pluronic L 61

70 % Natriumtripolyphosphat (Marchon Type d)

wurde mit 12,5 % Wasser angefeuchtet und durch ein 0.9 mm Sieb extrudiert.

Das Extrudat wurde wie in Beispiel 3 beschrieben spheronisiert.

Das Endprodukt hatte folgende Eigenschaften:

Proteolytische Aktivität

1.0 AU/g

Partikelgröße

0.9 mm

Schüttgewicht

etwa 1.0 g/cm^3

wasserlöslich

Beispiel 14

Eine Anteigung der Zusammensetzung:

Bakterielle Amylase	15	%
Polyäthylenglycose 6000	6	%
Polyvinylpyrrolidon	2	%
Natriumchlorid	77	%

wurde mit 5 % Wasser angefeuchtet und durch ein 0.9 mm Sieb extrudiert. Das Extrudat wurde in einem MARUMERIZER behandelt, die wobei sich "Nudeln" ergaben, jede eine Länge von 1 bis 3 mm besaßen.

Enzymatische Aktivität 250 KNE/g

Partikelgröße: kleine Zylinder mit abgerundeten

Endflächen: $0.8 \text{ mm} \times 1 - 3 \text{ mm}$

Schüttgewicht etwa 1 g/cm³

Wenn die nach der Erfindung erhaltenen Enzymaufbereitungen für Waschverfahren Anwendung finden sollen, so kann durch Versuche gezeigt werden, daß die Lagerungsbeständigkeit in Waschmitteln zufriedenstellend ist, insbesondere, wenn die vorerwähnten Enzymstabilisatoren eingesetzt werden.

Lagerungsbeständigkeit in Perborat enthaltenden Waschmitteln auf der Basis von Rest-Aktivität 30°C; 70 % rel. Feuchte Analysenmethode: TNBS

	2 Wochen	4 Wochen	6 Wochen	8 Wochen
Beispiel 7				
(10.9 % Magermilch- pulver)	92 %	74 %	63 %	62 %
Bezug: 6.5 % ALCALASE (R)				
2 % PVP 6 % PEG 6000	84 %	60 %	52 %	49 %
86 % NaCl				

Lagerbeständigkeit in Perborat-enthaltenden Waschmitteln Rest-Aktivität 35°C; 67 % rel. Feuchte Analysenmethode: TNBS

				. www.ser.
	2 Wochen	4 Wochen	6 Wochen	8 Wochen
ALCALASE (), pulveri- siert, nicht granu- liert (Doppeltest)	30 %	14 %	13 %	62 00 00
Bezugssubstanz granuliert (Doppeltest)	53 %	24 %	25 %	
Granulat 2 % PVP (Doppeltest)	52 %	38 %	36 % ·	40 =
Granulat 4 % PVP (Doppeltest)	58 %	44 % .	41 %	
Granulat 2 % PVP (4 Tests)	45 %	41 %	34 %	30 %
Ref. (4 Tests)	35 %	18 %	18 %	11 %

Rest-Aktivität 35°C; 67 % rel. Feuchte Analysenmethode: TNBS

	1 Woche	2 Wochen	4 Wochen	6 Wochen
Beispiel 7	93 %	78 %	65 %	
Bezug auf Beispiel 7	73 %	65 %	47 %	
Beispiel 8 (11 % Kasein)		75 %	64 %	51 %
Beispiel 8 (5.5 % Kasein)		72 %	54 %	43 %
Granulat 2.5 % Magermilchpulver	· eato Cilla Mills	46 %	40 %	en 40 cm
Granulat 5 % Magermilchpulver		52 %	42 %	
Bezug		29 %	24 %	

Lagerbeständigkeit in
Perboratenthaltenden
Waschmitteln

Rest-Aktivität 30°C; 70 % rel. Feuchte

Wascinii Cleiii								
	1 Woche	2 Wochen	3 Wochen	4 Wochen	5 Wochen	6 Wochen	7 Wochen	8 Wochen
A. Granulat mit 10 % Kasein	91 %	94 %	94 %	68 %	61. %	58 %		
B. Bezug auf A	91 %	80 %	70 %	44 %	29 %	24 %	9 8 0	
C. Granulat mit 5 % Kasein	100 %	eo e3 e3	as 60 66	85 %	dia can 100	80 C C C	58 %	47 %
D. Bezug auf C	91 %	6-6-6-	6m 80 000 ·	76 %	800	w.æ.=	29 %	25 %

Vorstehend wurden die proteolytischen Aktivitäten nach der Anson-Methode, die in J. Gen. Physiol, 22, 79-89 (1938) beschrieben ist, bestimmt. Die TNBS-Methode zur Bestimmung der Proteaseaktivität ist beschrieben in J. Am. Oil Chem. Soc., 46:81 (1969). Die C-Amylaseaktivitäten wurden nach Cereal Chemistry 16, 172 (1939) bestimmt, allerdings mit einigen Modifizierungen; so könenen folgende Gleichungen für die Berechnungen verwendet werden:

1000 SKB Einheiten (pH 5.7)~53000 NOVO Einheiten für bakterielle &-Amylase und 1000 SKB Einheiten (pH 4.7)~37 FA Einheiten für fungale &-Amylase

Die Aktivität von Hemicellulasen wurde viskosimetrisch bestimmt.

Patentansprüche:

- 1. Verfahren zur Herstellung von Enzymaufbereitungen aus festen Kügelchen, die eine im wesentliche einheitliche Größe besitzen, dadurch gekennzeichnet, daß enzymhaltige Pellets, die durch Extrusion einer Mischung aus 75 bis 97 % eines festen enzymhaltigen Pulvers, das gegebenenfalls einen Enzymstabilisator enthält, und 25 bis 3 % Wasser erhalten wurden, einer Spheronisierung bei Anwendung einer Rotationsgeschwindigkeit bis etwa zu 2000 u/min in einer Apparatur unterworfen werden, in welcher die Pellets der Einwirkung von Zentrifugal- und Reibungskräften unterworfen werden, wonach gegebenenfalls die festen Kügelchen einer Fließbetttrocknung unterzogen werden.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Spheronisierung unter Verwendung eines die Pulverbildung fördernden Mittels durchgeführt wird, um eine Adhäsion zwischen den spheronisierten Partikeln zu vermeiden.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als die Pulverbildung förderndes Mittel ein anorganisches Salz verwendet wird.
- 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als die Pulverbildung förderndes Mittel ein anorganisches Oxid verwendet wird.

5. Verfahren nach einem oder mehreren der vorhergehenden

Ansprüche, dadurch gekennzeichnet, dass die Spheronisierung

in einer Zentrifuge mit stationären Seitenwänden und einer als Boden dienenden, rotierenden Friktionsplatte durchgeführt

wird.

6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem verwendeten festen Enzympulver als Stabilisator Gelantine, Kasein, Magermilchpulver und/oder andere Substrate für dieses Enzym und/oder Polyvinylpyrrolidon zugesetzt wird.

- 7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Enzympulver mit Proteasen, Amylasen, Amyloglucosidasen und/oder Isomerasen verwendet wird.
- 8. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Enzympulver mit Bakterienproteinase, Bakterienamylase, Hemicellulase, fungaler «Amylase und/oder proteolytischen Enzymen verwendet wird, die durch eine aerobe Kultivierung von proteasebildenden Arten der Gattung Bazillus auf einem Nährmedium mit einem pH zwischen 9 und 11 und Aufrechterhaltung eines pH in diesem Medium zwischen 7,5 und 10,5 während der Hauptperiode der Kultivierung erzeugt wurden, wobei die proteolytischen Enzyme eine proteolytische Aktivität zwischen 80 und 100 % der maximalen Aktivität bei Bestimmung bei einem pH 12 durch die Anson Hämoglobin-Methode in Gegenwart von Harnstoff besitzen.

eingegangen am 24.07.31

9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 1- 8, dadurch gekennzeichnet, daß das enzymhaltige Endprodukt in an sich bekannter Weise mit einem Überzug versehen wird, vorzugsweise in einer Mischapparatur des Trommeltyps mit drehbaren Mischwerkzeugen.