9.3-4: Phase Plane Portraits Classification of 2d Systems:

$$\mathbf{x}' = A\mathbf{x}, \ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
: $T = a + d, \ D = ad - bc, \ p(\lambda) = \lambda^2 - T\lambda + D$

Case A: $T^2 - 4D > 0$

⇒ real distinct eigenvalues

$$\lambda_{1,2} = (T \pm \sqrt{T^2 - 4D})/2$$

General Solution:

 $(\mathbf{v}_1, \mathbf{v}_2)$: eigenvectors)

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$$

 $L_{1,2}$: Full lines generated by $\mathbf{v}_{1,2}$

Half line trajectories:

if $c_2 = 0 \Rightarrow \mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1$ \Rightarrow trajectory is half line

$$H_{1+} = \{ \mathbf{x} = \alpha \mathbf{v}_1 \mid \alpha > 0 \} \text{ if } c_1 > 0$$

 $H_{1-} = \{ \mathbf{x} = \alpha \mathbf{v}_1 \mid \alpha < 0 \} \text{ if } c_1 < 0$

Same for $H_{2\pm}$ if $c_1 = 0$, $c_2 > 0$ or < 0

ullet The 4 half line trajectories separate 4 regions of ${f R}^2$

Phase portrait:

Sketch trajectories. Indicate direction of motion by arrows pointing in the direction of increasing t

Direction of Motion on Half Line Trajectories:

- If $\lambda_1 > 0$ then $\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1$
 - moves out to ∞ for $t \to \infty$ (outwards arrow on H_{1+})
 - approaches 0 for $t \to -\infty$
- If $\lambda_1 < 0$ then $\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1$
 - approaches 0 for $t \to \infty$ (inwards arrow on H_{1+})
 - moves out to ∞ for $t \to -\infty$

Saddle

$$\lambda_1 > 0 > \lambda_2$$

Half line trajectories

Generic Trajectories

Generic trajectory in each region approaches

- L_1 for $t \to \infty$
- L_2^- for $t \to -\infty$

Nodal source

$$\lambda_1 > \lambda_2 > 0$$

Half line trajectories

Generic Trajectories

 \longrightarrow : fast escape to ∞

Generic trajectory is

- parallel to L_1 for $t \to \infty$
- tangent to L_2 for $t \to -\infty$

Nodal sink

$$\lambda_1 < \lambda_2 < 0$$

Half line trajectories

Generic Trajectories

 \longrightarrow : fast approach to 0

Generic trajectory is

- parallel to L_1 for $t \to -\infty$
- tangent to L_2 for $t \to \infty$

2

Phase Portraits and Time Plots for Cases A (pplane6)

Saddle

Ex.:
$$A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$$

$$\lambda_1 = 3 \quad \leftrightarrow \mathbf{v}_1 = [2, 1]^T$$

 $\lambda_2 = -3 \leftrightarrow \mathbf{v}_2 = [-1, 1]^T$

Nodal Source

Ex.:
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

$$\lambda_1 = 4 \leftrightarrow \mathbf{v}_1 = [1, 1]^T$$

 $\lambda_2 = 2 \leftrightarrow \mathbf{v}_2 = [-1, 1]^T$

Nodal Sink

Ex.:
$$A = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$$
 Ex.: $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ **Ex.**: $A = \begin{bmatrix} -3 & -1 \\ -1 & -3 \end{bmatrix}$

$$\lambda_1 = 3 \quad \leftrightarrow \mathbf{v}_1 = [2, 1]^T \quad \lambda_1 = 4 \leftrightarrow \mathbf{v}_1 = [1, 1]^T \quad \lambda_1 = -4 \leftrightarrow \mathbf{v}_1 = [1, 1]^T \quad \lambda_2 = -3 \leftrightarrow \mathbf{v}_2 = [-1, 1]^T \quad \lambda_2 = 2 \leftrightarrow \mathbf{v}_2 = [-1, 1]^T \quad \lambda_2 = -2 \leftrightarrow \mathbf{v}_2 = [-1, 1]^T$$

Case B:
$$T^2 - 4D < 0 \Rightarrow \lambda = \alpha + i\beta$$
; $\alpha = T/2$, $\beta = \sqrt{4D - T^2}/2$

 λ complex \Rightarrow eigenvector $\mathbf{v} = \mathbf{u} + i\mathbf{w}$ complex \Rightarrow no half line solutions

General Solution: $\mathbf{x}(t) = e^{\alpha t}[c_1(\mathbf{u}\cos\beta t - \mathbf{w}\sin\beta t) + c_2(\mathbf{u}\sin\beta t + \mathbf{w}\cos\beta t)]$

Subcases of Case B

Center: $\alpha = 0$

- \Rightarrow x(t) periodic
- ⇒ trajectories are closed curves

Spiral Source: $\alpha > 0$

- ⇒ growing oscillations
- ⇒ trajectories are outgoing spirals

Spiral Sink: $\alpha < 0$

- ⇒ decaying oscillations
- ⇒ trajectories are ingoing spirals

Direction of Rotation: At $\mathbf{x} = [1, 0]^T$: y' = c. If $\begin{cases} c > 0 \Rightarrow \text{ counterclockwise} \\ c < 0 \Rightarrow \text{ clockwise} \end{cases}$

Borderline Case:

Center ($\alpha = 0$) is border between spiral source ($\alpha > 0$) and spiral sink ($\alpha < 0$).

Phase Portraits and Time Plots for Cases B (pplane6)

Center

Ex.:
$$A = \begin{bmatrix} 4 & -10 \\ 2 & -4 \end{bmatrix}$$

$$\lambda = 2i \leftrightarrow \mathbf{v} = \begin{bmatrix} 2+i \\ 1 \end{bmatrix}$$

Spiral Source

Ex.:
$$A = \begin{bmatrix} 0.2 & 1 \\ -1 & 0.2 \end{bmatrix}$$

$$\lambda = 0.2 + i \leftrightarrow \mathbf{v} = \begin{bmatrix} 1 \\ i \end{bmatrix}$$

Spiral Sink

Ex.:
$$A = \begin{bmatrix} 4 & -10 \\ 2 & -4 \end{bmatrix}$$
 Ex.: $A = \begin{bmatrix} 0.2 & 1 \\ -1 & 0.2 \end{bmatrix}$ **Ex.**: $A = \begin{bmatrix} -0.2 & 1 \\ -1 & -0.2 \end{bmatrix}$

$$\lambda = 2i \leftrightarrow \mathbf{v} = \begin{bmatrix} 2+i \\ 1 \end{bmatrix} \quad \lambda = 0.2 + i \leftrightarrow \mathbf{v} = \begin{bmatrix} 1 \\ i \end{bmatrix} \quad \lambda = -0.2 + i \leftrightarrow \mathbf{v} = \begin{bmatrix} 1 \\ i \end{bmatrix}$$

Degenerate Node: Borderline Case Spiral/Node

- Assume $T^2 4D = 0 \Rightarrow$ single eigenvalue $\lambda = T/2$
- Assume generic case: $(A \lambda I) \neq 0 \Rightarrow$ single eigenvector v
- Let $(A \lambda I)\mathbf{w} = \mathbf{v} \Rightarrow$ General solution:

$$\mathbf{x}(t) = c_1 e^{\lambda t} \mathbf{v} + c_2 e^{\lambda t} (\mathbf{w} + t \mathbf{v})$$

 \Rightarrow only two half line solutions on straight line generated by ${f v}$

Degenerate Nodal Source:

Degenerate Nodal Sink:

T > 0

borderline case { nodal source spiral source

T<0 borderline case $\begin{cases} \text{nodal sink} \\ \text{spiral sink} \end{cases}$

Saddle-Node: Borderline Case Node/Saddle

- Assume $D=0, T\neq 0 \Rightarrow$ eigenvalues $\lambda_1=0, \lambda_2=T$
- Let v_1, v_2 be the eigenvectors \Rightarrow General solution:

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$$

- \Rightarrow line of equilibrium points generated by ${
 m v}_1$
 - infinitely many half line solutions on straight lines parallel to line generated by \mathbf{v}_2

Unstable Saddle-Node:

T>0 borderline case $\left\{ \begin{array}{l} \mbox{nodal source} \\ \mbox{saddle} \end{array} \right.$

Stable Saddle-Node:

T < 0 borderline case $\left\{ egin{array}{ll} {
m nodal \ sink} \\ {
m saddle} \end{array}
ight.$

J SƯU TẬP

9.4: The (T,D)-Plane: $\lambda = T/2 \pm \sqrt{T^2 - 4D/2}$

Five Generic Cases:

- if D < 0 \Rightarrow saddle
- \bullet if D > 0 and
 - $-T > 0 \Rightarrow source$
 - $-T < 0 \Rightarrow sink$
 - $-T^2 > 4D \Rightarrow \text{node}$
 - $-T^2 < 4D \Rightarrow \text{spiral}$

Borderline Cases:

- if T=0 and $D>0 \Rightarrow$ center
- - if $T > 0 \Rightarrow$ unstable LIEU
 - if $T < 0 \Rightarrow$ stable
- if $T^2 = 4D$, $A \neq (T/2)I$, and
 - $-T > 0 \Rightarrow d$. nodal source
 - $-T < 0 \Rightarrow d$. nodal sink

Other Special Case: $A = \lambda I$, $\lambda \neq 0$

- only half line solutions from origin
- Name: $\begin{cases} unstable \\ stable \end{cases}$ star if $\begin{cases} \lambda > 0 \\ \lambda < 0 \end{cases}$

• if
$$D=0$$
, $T\neq 0 \Rightarrow$ saddle-node $= T>0 \Rightarrow T=0$ if $T>0 \Rightarrow T=0$ unstable Lieu $= T=0$ $= T=0$

Ex.:
$$A = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} \begin{cases} D = 2, T = -3 \\ T^2 - 4D = 1 \end{cases}$$

Ex.:
$$A = \begin{bmatrix} -10 & -25 \\ 5 & 10 \end{bmatrix} \begin{Bmatrix} D = 25 \\ T = 0 \end{Bmatrix}$$
 \Rightarrow center

$$c = 5 > 0 \Rightarrow$$
 counterclockwise direction of rotation

Typical Homework and Exam Problems

1. Given a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, classify the type of phase portrait.

In the case of centers and spirals you may also be asked to determine the direction of rotation.

2. Given a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, sketch the phase portrait.

The sketch should show all special trajectories and a few generic trajectories. At each trajectory the direction of motion should be indicated by an arrow.

- In the case of centers, sketch a few closed trajectories with the right direction of rotation. For spirals, one generic trajectory is sufficient.
- In the case of saddles or nodes, the sketch should include all half line trajectories and a generic trajectory in each of the four regions separated by the half line trajectories. The half line trajectories should be sketched correctly, that is, you have to compute eigenvalues as well as eigenvectors.
- In the case of nodes you should also distinguish between fast (double arrow) and slow (single arrow) motions (see p.2).
- **3.** Given A, find the general solution (or a solution to an IVP), classify the phase portrait, and sketch the phase portrait.