GATE 2008 Multiple Choice Questions

EE25BTECH11010-ARSH DHOKE

Q.1 – Q.20 Carry one mark each

×	, vi Que d'arrig one marin euch		
1.	The total number of isomers of Co(en) ₂ Cl ₂	(en = ethylenediamine) is	
	(a) 4	(c) 6	
	(b) 3	(d) 5	
			(GATE CY 2008)
2.	Metal-metal quadruple bonds are well-know	vn for the metal	
	(a) Ni	(c) Fe	
	(b) Co	(d) Re	
			(GATE CY 2008)
3.	The reaction of Al ₄ C ₃ with water leads to the	ne formation of	
	(a) methane	(c) propene	
	(b) propyne	(d) propane	
			(GATE CY 2008)
4.	The correct statement about C ₆₀ is		
	(a) C ₆₀ is soluble in benzene		
	(b) C ₆₀ does not react with <i>tert</i> -butyllithiu	m	
	(c) C_{60} is made up of 10 five–membered a	and 15 six-membered rings	
	(d) Two adjacent five-membered rings sha	are a common edge	(GATE CY 2008)
5.	The lattice parameters for a monoclinic crys	stal are	
	(a) $a \neq b \neq c$; $\alpha = \gamma = 90^{\circ}$		
	(b) $a = b \neq c$; $\alpha \neq \beta \neq \gamma$		
	(c) $a \neq b \neq c$; $\alpha \neq \beta \neq \gamma$		
	(d) $a = b = c$; $\alpha = \gamma = 90^{\circ}$		(GATE CY 2008)

- 6. The magnetic moment of $[Ru(H_2O)_6]^{2+}$ corresponds to the presence of
 - (a) four unpaired electrons
 - (b) three unpaired electrons
 - (c) two unpaired electrons
 - (d) zero unpaired electrons

7. The compound that is **NOT** aromatic is

Figure 1: Option A

Figure 2: Option B

Figure 3: Option C

Figure 4: Option D

(GATE CY 2008)

8. The order of stability for the following cyclic olefins is

Figure 5: Figure for Q.8

(a) I < II < III < IV

- (b) I < III < IV < I
- $(c) \ \ II < III < I < IV$
- $(d) \ IV < II < I < III$

9. The most acidic species is

Figure 6: Option A

Figure 7: Option B

Figure 8: Option C

Figure 9: Option D

(GATE CY 2008)

10. The major product of the following reaction is

Figure 10: Figure for Q.10

Figure 11: Option A

Figure 12: Option B

Figure 13: Option C

Figure 14: Option D

- 11. In the carbylamine reaction, R-X is converted to R-Y via the intermediate Z. R-X, R-Y and Z, respectively, are
 - (a) R-NH₂, R-NC, carbene
 - (b) R-NH₂, R-NC, nitrene
 - (c) R-NC, R-NH₂, carbene
 - (d) R-OH, R-NC, nitrene

(GATE CY 2008)

12. The compound that is **NOT** oxidized by KMnO₄ is

16.	For a one component system, the maximum is	number of phases that can co	exist at equilibrium
	(a) 3	(c) 1	
	(b) 2	(d) 4	(GATE CY 2008)
17.	At $T = 300$ K, the thermal energy $(k_B T)$ in C	cm ⁻¹ is approximately	
	(a) 20000	(c) 5000	
	(b) 8000	(d) 200	(GATE CY 2008)
18.	For the reaction $2X_3 \rightarrow 3X_2$, the rate of form	nation of X_2 is	
	(a) $3\left(-\frac{d[X_3]}{dt}\right)$		
	(b) $\frac{1}{2}\left(-\frac{d[X_3]}{dt}\right)$		
	(c) $\frac{1}{3} \left(-\frac{d[X_3]}{dt} \right)$		
	(d) $\frac{3}{2} \left(-\frac{d[X_3]}{dt} \right)$		(GATE CY 2008)
19.	The highest occupied molecular orbital of H	IF is	
	(a) bonding	(c) ionic	
	(b) antibonding	(d) nonbonding	(GATE CY 2008)
20.	The residual entropy of the asymmetric mole at absolute zero. The number of orientation state is	•	
	(a) 4	(c) 2	
	(b) 3	(d) 1	
			(GATE CY 2008)
	Q.21 to Q.75 Carry two marks each		
21.	The spectroscopic ground state symbol an $\left[Ti(H_2O)_6\right]^{3+} \text{ are }$	d the total number of electron	ronic transitions of
	(a) ${}^3T_{1g}$ and 2	(c) ${}^{1}T_{1g}$ and 3	
	(b) ${}^{3}A_{2g}$ and 3	(d) ${}^{3}A_{2g}$ and 2	(GATE CY 2008)
22.	The structures of the complexes [Cu(NH ₃) ₄ spectively are	$[ClO_4)_2$ and $[Cu(NH_3)_4](ClO_4)_2$	lO ₄) in solution re-

(a) square planar and tetrahedral

	(c) octahedral and trigonal bipyrar	
	(d) tetrahedral and square planar	(GATE CY 2008)
23.	In biological systems, the metal ions	involved in electron transport are
	(a) Na ⁺ and K ⁺	(c) Ca^{2+} and Mg^{2+}
	(b) Zn^{2+} and Mg^{2+}	(d) Cu^{2+} and Fe^{3+}
		(GATE CY 2008)
24.	<u> </u>	1.0 M of a substrate and 1.0 μ M of a catalyst yields 1.0 turnover frequency (TOF) of the reaction (s ⁻¹) is
	(a) 10^2	(c) 10^{-3}
	(b) 10^1	(d) 10^3
		(GATE CY 2008)
25.	The expected magnetic moments of lanthanide metal complexes are usual	the first-row transition metal complexes and those of the ally calculated using
	(a) μ_{so} equation (s.o. = spin only)	for both lanthanide and transition metal complexes
	(b) μ_{so} equation for lanthanide me plexes	tal complexes and μ equation for transition metal com-
	(c) μ_{so} equation for transition metaplexes	al complexes and μ equation for lanthanide metal com-
	(d) μ_{eff} equation for transition metaplexes	al complexes and μ_{so} equation for lanthanide metal com- (GATE CY 2008)
26.	The Brønsted acidity of boron hydric	des follows the order
	(a) $B_2H_6 > B_4H_{10} > B_5H_9 > B_{10}H_{10}$	
	(b) $B_2H_6 = B_4H_{10} > B_5H_9 = B_{10}H_9$	14
	(c) $B_{10}H_{14} > B_5H_9 > B_4H_{10} > B_2H_{10}$	H_6
	(d) $B_5H_9 > B_4H_{10} > B_2H_6 > B_{10}H_6$	14
		(GATE CY 2008)

(b) The crystals should have Frenkel defects

(a) The crystals will be non-stoichiometric

correct statement is

(b) octahedral and square pyramidal

27. NaCl is crystallised by slow evaporation of its aqueous solution at room temperature. The

	(c) The percentage tion and its rate	<u> </u>	als will depend on the	concentration of the solu-
	(d) The nature of de evaporation	fects will depend upon	n the concentration of t	he solution and its rate of (GATE CY 2008)
28.	CaTiO ₃ has a perovsk is	kite crystal structure.	The coordination numb	per of titanium in CaTiO ₃
	(a) 9		(c) 3	
	(b) 6		(d) 12	
				(GATE CY 2008)
29.	If ClF ₅ were to be sto (assume that Cl is not		its ¹⁹ F NMR spectrum	$\left(Ifor^{19}F = \frac{1}{2}\right) \text{ would be}$
	(a) a doublet and a t	triplet		
	(b) a singlet			
	(c) a doublet and a s	singlet		
	(d) two singlets			(GATE CY 2008)
30.	The point group of N	SF ₃ is		
	(a) D_{3d}		(c) D_{3h}	
	(b) C_{3h}		(d) $C_{3\nu}$	
				(GATE CY 2008)
31.	When NiO is heated compound Li _x Ni _{1-x} O			9°C, a non-stoichiometric
	(a) an n-type semice	onductor containing or	nly Ni ¹⁺	
	(b) an n-type semico	onductor containing N	i ¹⁺ and Ni ²⁺	
	(c) a p-type semicon	nductor containing Ni ²	²⁺ and Ni ³⁺	
	(d) a p-type semicor	nductor containing onl	ly Ni ³⁺	(GATE CY 2008)
	o			
32.	White phosphorus, P ₄	, belongs to the		
	(a) closo system	(b) <i>nido</i> system	(c) arachno system	(d) hypho system
				(GATE CY 2008)
33.	Among the compound	ds Fe ₃ O ₄ , NiFe ₂ O ₄ and	d Mn ₃ O ₄	

	(a)	NiFe ₂ O ₄ and Mn ₃ O ₄ are normal spinels	S	
	(b)	Fe ₃ O ₄ and Mn ₃ O ₄ are normal spinels		
	(c)	Fe ₃ O ₄ and Mn ₃ O ₄ are inverse spinels		
	(d)	Fe_3O_4 and $NiFe_2O_4$ are inverse spinels		(GATE CY 2008)
34.	The	number of M-M bonds in $Ir_4(CO)_{12}$ are		
	(a)	four	(c) eight	
	(b)	six	(d) zero	
				(GATE CY 2008)
35.	Schr	ock carbenes are		
	(a)	triplets and nucleophilic	(c) singlets and nucleophil	ic
	(b)	triplets and electrophilic	(d) singlets and electrophil	ic
				(GATE CY 2008)
36.	The	INCORRECT statement about linear d	imethylpolysiloxane, [(CH ₃)	$_2$ SiO] _n , is
	(a)	it is extremely hydrophilic		
	(b)	it is prepared by a KOH catalysed ring-	opening reaction of [Me ₂ SiC	$O]_4$
	(c)	it has a very low glass transition temper	rature	
	(d)	it can be reinforced to give silicon elast	omers	(GATE CY 2008)
37.	Mate	ch the entries a-d with their correspondi	ng structures p–s	

Figure 19: Figure for Q.37

- (a) a s, b r, c q, d p
- (b) a p, b s, c q, d r
- (c) a q, b p, c s, d r
- (d) a s, b r, c p, d q

38. The reaction between \mathbf{X} and \mathbf{Y} to give \mathbf{Z} proceeds via

Figure 20: Figure for Q.38

- (a) 4π -conrotatory opening of X followed by *endo* Diels-Alder cycloaddition
- (b) 4π -disrotatory opening of X followed by *endo* Diels-Alder cycloaddition
- (c) 4π -conrotatory opening of X followed by *exo* Diels-Alder cycloaddition
- (d) 4π -disrotatory opening of X followed by *exo* Diels-Alder cycloaddition

39. The major products P_1 and P_2 , respectively, in the following reaction sequence are

Figure 21: Figure for Q.39

Figure 22: Option A

Figure 23: Option B

Figure 24: Option C

Figure 25: Option D

40. The products Y and Z are formed, respectively, from X via

Figure 26: Figure for Q.40

- (a) $h\nu$, conrotatory opening and Δ , disrotatory opening
- (b) $h\nu$, disrotatory opening and Δ , conrotatory opening
- (c) Δ , conrotatory opening and $h\nu$, disrotatory opening
- (d) Δ , disrotatory opening and $h\nu$, conrotatory opening

- 41. *o*-Bromophenol is readily prepared from phenol using the following conditions:
 - (a) i) $(CH_3CO)_2O$; ii) Br_2 ; iii) $HCl-H_2O$, Δ
 - (b) i) H₂SO₄, 100°C; ii) Br₂; iii) H₃O⁺, 100°C

- (c) N-Bromosuccinimide, dibenzoyl peroxide, CCl_4 , Δ
- (d) $Br_2/FeBr_3$ (GATE CY 2008)
- 42. The major product of the following reaction is

Figure 27: Figure for Q.42

Figure 28: Option A

Figure 29: Option B

Figure 30: Option C

Figure 31: Option D

43. The photochemical reaction of 2-methylpropane with F_2 gives 2-fluoro-2-methylpropane and 1-fluoro-2-methylpropane in 14:86 ratio. The corresponding ratio of the bromo products in the above reaction using Br_2 is most likely to be:

(a) 14:86

(b) 50:50

(c) 1:9

(d) 99:1

(GATE CY 2008)

44. The major product P of the following reaction is

Figure 32: Figure for Q.44

Figure 33: Option A

Figure 34: Option B

Figure 35: Option C

Figure 36: Option D

45. The reagent X in the following reaction is

Figure 37: Figure for Q.45

(GATE CY 2008)

- (a) HO₂CN=NCO₂H
- (b) EtO₂CHC=CH-CO₂Et
- (c) EtO₂CN=NCO₂Et

Figure 38: Option D

46. The major product of the following reactions is

Figure 39: Figure for Q.46

Figure 40: Option A

Figure 41: Option B

Figure 42: Option C

Figure 43: Option D

47. The major product of the following reaction is

Figure 44: Figure for Q.47

Figure 45: Option A

Figure 46: Option B

Figure 47: Option C

Figure 48: Option D

48. In the following compound, the hydroxy group that is most readily methylated with CH_2N_2 is

Figure 49: Figure for Q.48

(a) p (c) r

 $(b) \ q \qquad \qquad (d) \ s$

(GATE CY 2008)

49. The most appropriate sequence of reactions for carrying out the following transformation is

Figure 50: Figure for Q.49

(a) i) O₃/H₂O₂; ii) excess SOCl₂/pyridine; iii) excess NH₃; iv) LiAlH₄

(b) i) O₃/Me₂S; ii) excess SOCl₂/pyridine; iii) LiAlH₄; iv) excess NH₃

(c) i) O₃/H₂O₂; ii) excess SOCl₂/pyridine; iii) LiAlH₄; iv) excess NH₃

(d) i) O₃/Me₂S; ii) excess SOCl₂/pyridine; iii) excess NH₃; iv) LiAlH₄

(GATE CY 2008)

- 50. The number of optically active stereoisomers possible for 1,3-cyclohexanediol in its chair conformation is
 - (a) 4
 - (b) 3
 - (c) 2

(d) 1 (GATE CY 2008)

51. The major product of the following reactions is

Figure 51: Figure for Q.51

Figure 52: Option A

Figure 53: Option B

Figure 54: Option C

Figure 55: Option D

52. In the following reaction,

Figure 56: Figure for Q.52

The absolute configurations of the chiral centres in X and Y are

- (a) 2S, 3R and 2R, 3R
- (b) 2R, 3R and 2R, 3S
- (c) 2S, 3S and 2R, 3R
- (d) 2S, 3R and 2S, 3R

(GATE CY 2008)

53. The IR stretching frequencies (cm $^{-1}$) for the compound X are as follows: 3300–3500 (s, br); 3000 (m); 2225 (s); 1680 (s).

Figure 57: Figure for Q.53

The correct assignment of the absorption bands is:

- (a) $\bar{v}_{OH} = 3300 3500$; $\bar{v}_{CH} = 3000$; $\bar{v}_{CN} = 2225$; $\bar{v}_{CO} = 1680$
- (b) $\bar{v}_{OH} = 3000$; $\bar{v}_{CH} = 3300 3500$; $\bar{v}_{CN} = 2225$; $\bar{v}_{CO} = 1680$
- (c) $\bar{\nu}_{\rm OH} = 3300 3500; \bar{\nu}_{\rm CH} = 3000; \bar{\nu}_{\rm CN} = 1680; \bar{\nu}_{\rm CO} = 2225$

(d) $\bar{\nu}_{OH} = 300$	$0; \bar{\nu}_{\text{CH}} = 3300 - 3500; \bar{\nu}_{\text{CH}}$	$\bar{v}_{\rm CN} = 1680; \bar{v}_{\rm CO} = 222$	25
			(GATE CY 2008)
			n that it has two 3-dimensional irreducible representations is
(a) 1		(c) 2	
(b) 6		(d) 3	(GATE CY 2008)
55. The total number to a constant ma		o nonidentical spin $\frac{1}{2}$ I	particles can be oriented relative
(a) 1		(c) 3	
(b) 2		(d) 4	(GATE CY 2008)
			t in interstellar space. Assuming th (m) approximately is
(a) 10^{10}	(b) 10^{19}	(c) 10^{24}	(d) 10 ¹⁴
			(GATE CY 2008)
	electrons of the bond		= $0.89 \varphi_{\text{covalent}} + 0.45 \varphi_{\text{ionic}}$. The same atom in 100 inspections of
(a) 79			
(b) 20			
(c) 45			
(d) 60			
			(GATE CV 2008)

58. For the reaction given below, the relaxation time is 10^{-4} s. Given that 10% of A remains at equilibrium, the value of k_1 (s⁻¹) is

Figure 58: Figure for Q.58

(a) 9×10^5
(b) 10^5
(c) 10^6
(d) 9×10^6
(GATE CY 2008)
59. The minimum number of electrons needed to form a chemical bond between two atoms is
(a) 1
(b) 2
(c) 3
(d) 4
(GATE CY 2008)
60. The ground state electronic energy (Hartree) of a helium atom, neglecting the inter-electron repulsion, is
(a) -1.0
(b) -0.5
(c) -2.0
(d) -4.0
(GATE CY 2008)
61. A particle is confined to a one-dimensional box of length 1 mm. If the length is changed by 10^{-9} m, the % change in the ground state energy is
(a) 2×10^4
(b) 2×10^7
(c) 2×10^2
(d) 0
(GATE CY 2008)
62. A certain molecule can be treated as having only a doubly degenerate state lying at 360 cm ⁻¹ above the nondegenerate ground state. The approximate temperature (K) at which 15% of the molecules will be in the upper state is
(a) 500
(b) 150
(c) 200

(GATE CY 2008)
63. A box of volume <i>V</i> contains one mole of an ideal gas. The probability that all <i>N</i> particles will be found occupying one half of the volume leaving the other half empty is
(a) 1/2
(b) 2/N
(c) $(1/2)^N$
(d) $(1/2)^{6N}$
(GATE CY 2008)
64. According to the Debye-Hückel limiting law, the mean activity coefficient of 5×10 ⁻⁴ mol kg ⁻¹ aqueous solution of CaCl ₂ at 25°C is (the Debye-Hückel constant 'A' can be taken to be 0.509)
(a) 0.63
(b) 0.72
(c) 0.80
(d) 0.91
(GATE CY 2008)
65. The operation of the commutator $\left(x, \left(\frac{d}{dx}\right)\right)$ on a function $f(x)$ is equal to
(a) 0
(b) $f(x)$
(c) $-f(x)$
(d) $x \frac{df}{dx}$
(GATE CY 2008)
66. If a gas obeys the equation of state $P(V - nb) = nRT$, the ratio $(C_P - C_V)/(C_P - C_V)_{ideal}$ is
(a) > 1
(b) < 1
(c) 1
(d) $(1-b)$

- 67. Physisorbed particles undergo desorption at 27°C with an activation energy of 16.628 kJ mol⁻¹. Assuming first-order process and a frequency factor of 10¹² Hz, the average residence time (in seconds) of the particles on the surface is
 - (a) 8×10^{-10}
 - (b) 8×10^{-11}
 - (c) 2×10^{-9}
 - (d) 1×10^{-12}

- 68. The rotational constants for CO in the ground and the first excited vibrational states are 1.9 and 1.6 cm⁻¹, respectively. The % change in the internuclear distance due to vibrational excitation is
 - (a) 9
 - (b) 30
 - (c) 16
 - (d) 0

(GATE CY 2008)

69. The mechanism of enzyme (E) catalysed reaction of a substrate (S) to yield product (P) is:

$$E + S = \frac{k_1}{k_{-1}} [E S] = \frac{k_2}{k_{-2}} E + P ; \qquad \frac{-d[S]}{dt} = \frac{k_1 k_2 [S] - k_{-1} k_{-2} [P]}{k_1 [S] + k_{-2} [P] + k_{-1} + k_2} [E]_0$$

Figure 59: Figure for Q.69

If a small amount of S is converted to P, the maximum rate for the reaction will be observed for:

- (a) $(k_1 + k_2) \gg k_1 [S]_0$
- (b) $(k_1 + k_2) \ll k_1 [S]_0$
- (c) $(k_2 + k_{-1}) = (k_1 + k_1)$
- (d) $k_2 \ll k_1$

(GATE CY 2008)

- 70. The lowest energy state of the $(1s)^2(2s)^1(3s)^1$ configuration of Be is
 - (a) ${}^{1}S_{0}$
 - (b) ${}^{1}D_{2}$
 - (c) 3S_1
 - (d) ${}^{3}P_{1}$

Common Data Questions

Common Data for Questions 71, 72 and 73: An electron accelerated through a potential difference of φ volts impinges on a nickel surface, whose (100) planes have a spacing $d = 351.8 \times 10^{-12}$ m (351.8pm).

71. The de-Broglie wavelength of the electron is $\lambda/\text{pm} = (a/\varphi)^{1/2}$. The value of 'a' in volts is

- (a) 1.5×10^{-18}
- (b) 1.5×10^6
- (c) 6.63×10^5
- (d) 2.5×10^{18}

(GATE CY 2008)

- 72. The condition for observing diffraction from the nickel surface is:
 - (a) $\lambda \gg 2d$
 - (b) $\lambda \leq 2d$
 - (c) $\lambda \leq d$
 - (d) $\lambda \ge d$

(GATE CY 2008)

- 73. The minimum value of φ (V) for the electron to diffract from the (100) planes is:
 - (a) 3000
 - (b) 300
 - (c) 30
 - (d) 3

(GATE CY 2008)

Common Data for Questions 74 and 75: An iron complex $[FeL_3]^{2+}$ (L = neutral monodentate ligand) catalyses the oxidation of $(CH_3)_2S$ by perbenzoic acid.

- 74. The formation of the organic product in the above reaction can be monitored by:
 - (a) gas chromatography
 - (b) cyclic voltammetry
 - (c) electron spin resonance
 - (d) fluorescence spectroscopy

(GATE CY 2008)

75. The oxidation state of the metal ion in the catalyst can be detected by:

- (a) atomic absorption spectroscopy
- (b) Mössbauer spectroscopy
- (c) HPLC
- (d) gas chromatography

1 Linked Answer Questions: Q.76 to Q.85 carry two marks each

Linked Answer Questions 76 and 77: In the reaction,

Figure 60: Figure for Q.76

76. Compound X is

$$\begin{array}{c} PPh_3 \\ Ph_3P - Rh - CI \\ H_3C - N \end{array}$$

Figure 61: Option A

Figure 62: Option B

Figure 63: Option C

Figure 64: Option D

77. $Rh(PPh_3)_3Cl$ reacts very fast with a gaseous mixture of H_2 and C_2H_4 to immediately give Z. The structure of Z is

(a) H_3C-CH_3

Figure 65: Option B

Figure 66: Option C

Figure 67: Option D

(GATE CY 2008)

Linked Answer Questions 78 and 79

The reaction of PCl₃ with methanol in the presence of triethylamine affords compound X. EI mass spectrum of X shows a parent ion peak at m/z = 124. Microanalysis of X shows that it contains C, H, O and P. The ¹H NMR spectrum of X shows a doublet at 4.0 ppm. The separation between the two lines of the doublet is approximately 15 Hz $(Jfor^1H \ and^{31}P = \frac{1}{2})$.

78. Compound X is:

- (a) $(CH_3O)_2P$
- (b) $(CH_3O)_2PO$
- (c) $(CH_3O)_2P(O)OH$
- (d) $(CH_3O)_2PH$

79. Upon heating, compound X is converted to Y, which has the same molecular formula as that of X. The ¹H NMR spectrum of Y shows two doublets centered at 3.0 ppm (separation of two lines = 20 Hz) and 4.0 ppm (separation of two lines = 15 Hz) respectively.

Compound Y is:

- (a) $(CH_3O)_2P(O)(OH)$
- (b) $(CH_3O)_2P$
- (c) $(CH_3O)(CH_3)P(O)$
- (d) $(CH_3O)(CH_3)P(OH)$

(GATE CY 2008)

Linked Answer Questions 80 and 81

For butyrophenone (PhCOCH₂CH₂CH₃),

80. The most probable fragmentation observed in the electron impact ionization (EI) mass spectrometry is

Figure 68: Option A

Figure 69: Option B

Figure 70: Option C

Figure 71: Option D

81. Photoirradiation leads to the following set of products.

Figure 72: Option A

Figure 73: Option B

Figure 74: Option C

Figure 75: Option D

(GATE CY 2008)

Linked Answer Questions 82 and 83: In the following reaction,

Figure 76: Figure for Q.82

82. the reactive intermediate I and the product P are

Figure 80: Option D

- 83. The product P shows 'm' and 'n' number of signals in ¹H and ¹³C NMR spectra, respectively. The values of 'm' and 'n' are
 - (a) m = 3 and n = 2
 - (b) m = 2 and n = 3
 - (c) m = 2 and n = 2
 - (d) m = 4 and n = 3

(GATE CY 2008)

Linked Answer Questions 84 and 85:

The infrared spectrum of a diatomic molecule exhibits transitions at 2144, 4262 and 6354 cm $^{-1}$ corresponding to excitations from the ground state to the first, second, and third vibration states respectively.

- 84. The fundamental transition (cm⁻¹) of the diatomic molecule is at
 - (a) 2157
- (b) 2170
- (c) 2183
- (d) 2196

(GATE CY 2008)

85. The anharmonicity constant (cm⁻¹) of the diatomic molecule is

(a) 0.018 (c) 0.006 (b) 0.012 (d) 0.003

(GATE CY 2008)

END OF THE QUESTION PAPER