แนวข้อสอบสามัญปี 2562

กำหนดให้ใช้ค่าต่อไปนี้ กรณีที่ต้องแทนค่าตัวเลข

$$g = 9.8 \text{ m/s}^2$$

$$\pi = 3.14159$$

$$180^{\circ} = \pi$$
 เรเดียน

ความหมายของสัญลักษณ์ต่างๆในโจทย์

สัญลักษณ์ log แทนลอการิทีมฐานสืบหรือตามที่กำหนดในโจทย์

$$\log 2 = 0.30, \ \log 3 = 0.48$$

ใช้กฎของดูลอมบ์ในรูป $F=rac{kq_1q_2}{r^2}$

- G คือ ค่าคงที่โน้มถ่างสากล
- h คือ ค่าคงที่ของพลังค์

1. กระสุนมาล m เคลื่อนที่ด้ายความเร็ว u เข้าชนก้อนไม้มาล M ซึ่งอยู่นิ่งก่อนชนบนพื้นระดับ กระสุนทะลุออกด้าย ความเร็ว $\frac{1}{2}u$ ก้อนไม้มีความเร็วเป็นเท่าไรหลังชน

- 1. $\frac{1}{2} \frac{m}{M} u$ 2. $\left(\sqrt{\frac{1}{2} \frac{m}{M}} \right) u$
- 3. $\frac{1}{2}u$
- 5. $\frac{3}{4} \frac{m}{M} u$

2. ยิงโพรเจกไทล์ในระนาบดิ่งเดียวกันพร้อมกัน ลูกหนึ่งออกจาก A อีกลูกออกจาก B ด้วยความเร็าต้นที่มีขนาด เท่ากันและมุมตั้งต้นเท่ากันและเท่ากับ heta ระยะห่างระหว่าง AB ต้องมีค่าไม่เกินเท่าไร โพรเจกไทล์จึงจะชนกัน ก่อนถึงพื้น

m กำลังเคลื่อนที่ตามแนว<u>งกลมในระนาบระดับ</u>บนผิวด้านในที่เกลี้ยงของถ้วยครึ่งทรงกลมรัศมี อัตราเร็วเชิงมุม ω ที่โตเหมาะสม มุม heta ต้องเป็นตามข้อใด

1. $\cos\theta = \frac{\omega^2 R}{g}$

$$2. \cos \theta = \frac{g}{\omega^2 R}$$

3.
$$\tan \theta = \frac{\omega^2 R}{g}$$

- 4. $\sin \theta = \frac{\omega^2 R}{g}$ 5. $\sin \theta = \frac{g}{\omega^2 R}$

- 1. 1
- $2. \frac{R-r}{R+r}$

5. อัตรา (P) ที่พลังงานไฟฟ้าสูญเสียไปเป็นพลังงานความร้อนในตัวต้านทาน x โอห์ม ขึ้นอยู่กับค่า x ตามกราฟรูป ใด

- 1. $\left(\frac{h}{f}\right)^{\frac{1}{2}}$
- 2. $\frac{h}{f}$
- 3. $\left(\frac{h}{f}\right)^{\frac{3}{2}}$
- Ψ . $\left(\frac{h}{f}\right)$
- 5. $\frac{h}{f+h}$

7. วัตถุสั้นๆ AB วางตัวบนเส้นแกนมุขสำคัญของเลนส์นูน โดยมีระยะ AO=u และระยะภาพจริงของ A คือ OA'=v ภาพจริง A'B' มีทิศทางอย่างไรและมีขนาดยาวเป็นกี่เท่าของ AB

- 1. $\stackrel{A'}{\longrightarrow} \stackrel{B'}{\longrightarrow}$, $\frac{v}{u}$ im
- 2. $B' \underbrace{vA'}_{u}$ inn
- 3. $\frac{A'}{\bullet}$ B' , $\left(\frac{v}{u}\right)^2$ in
- $H. \quad B' \qquad A' \qquad , \left(\frac{v}{u}\right)^2$ \dot{W}

5. $B' \longrightarrow A'$, $\left(\frac{v}{u}\right)^{\frac{1}{2}}$ im

 ${}_{5}^{11}B + {}_{1}^{1}H \rightarrow {}_{4}^{8}Be + (...)$ 8. พิจารณาสมการ

ธาตุในวงเล็บเป็นธาตุในข้อใด

- 1. 1H
- 2. $_{1}^{3}H$ 3. $_{2}^{3}He$ 4. $_{2}^{4}He$
- 5. ⁵₃*Li*

9. แหล่งกำเนิดเสียงอยู่ที่จุดศูนย์กลาง O ของวงรีซึ่งมีระยะครึ่งแกนเป็น a และ b ดังรูป คนที่เดินานรอบ O ตาม แนววงรีนี้จะได้ยินเสียงดังสุดมีระดับความเข้มเสียงสูงกว่าของเสียงเบาสุดอยู่ก็เดชิเบล

- 1. $10\log\left(\frac{b}{a}\right)$
- $3. \ 10 \left(\frac{a}{b}\right)$
- 5. $20\log\left(\frac{a}{b}\right)$

- 2. $20\log\left(\frac{b}{a}\right)$
- $4. \ 10 \log \left(\frac{a}{b}\right)$

10. ลูกแก้วทรงกลมทำด้วยแก้วดรรชนีหักเห μ แนวแสงออกทำมุมกื่องศากับแนวแสงเข้า

θ

2. $\theta - \arcsin\left(\frac{\sin\theta}{\mu}\right)$

3. $2\left\{\theta - \arcsin\left(\frac{\sin\theta}{\mu}\right)\right\}$

 $\Psi. \ \theta - \arcsin(\mu \sin \theta)$

5. $2\{\theta - \arcsin(\mu \sin \theta)\}$

11. วงแหวนโลหะบาง ๆร์ศมี R มวล m อุณหภูมิ T ทำด้วยโลหะที่มีสัมประสิทธิ์การขยายตัวเชิงเส้นเท่ากับ α จะ มีพล้งงานศักย์โน้มถ่วงเพิ่มขึ้นหรือลดลงจากเดิมเท่าไรที่อุณหภูมิ $T+\Delta T$

- 1. เท่าเดิม
- 2. เพิ่มขึ้นอีก $mgRlpha\Delta T$
- 3. ลดลง $mgRlpha\Delta T$

- 3. เพิ่มขึ้นอีก $2mgRlpha\Delta T$
- 4. ลดลง $2mgRlpha\Delta T$

12. ธาตุกัมมันตรังสี A สลายไปเป็นธาตุกัมมันตรังสี B ซึ่งสลายต่อไปเป็นธาตุ C ที่เสถียร ตามสมการ $A \to B \to C$ โดยที่จำนวนนิวเคลียสตั้งต้นของ A เป็น N_0 และของ B เท่ากับ C เป็นศูนย์ ดังแสดงในกราฟ จงจับคู่กราฟ \bigcirc (\bigcirc), \bigcirc กับธาตุที่ถูกต้องตามลำดับ

- 1. *A*, *B*, *C*
- $\mathsf{4.}\;\;B,C,A$

- 2. A, C, B
- 5. *C*, *B*, *A*

з. *B*, *A*, *C*

13. ที่จุด O ของรูป ก. ซึ่งเป็นวงลวดเดี่ยวๆ รัศมี R กระแส I มีสนามแม่เหล็ก $B=\frac{\mu_0 I}{2R}$ จงหาค่าสนามแม่เหล็ก ที่จุด O สำหรับรูป ข.

- **1.** 0
- $2. \ \frac{\mu_0 I}{3R}$
- $3. \ \frac{\mu_0 I}{4R}$
- 4. $\frac{\mu_0 I}{6R}$
- 5. $\frac{\mu_0 I}{8R}$

14. ตัวนำทรงกลมสองอันซ้อนกันอยู่และมีจุดศูนย์กลางร่วมกัน อันในมีรัศมี $R_{_{1}}$ และมีประจุ $+Q_{_{1}}$ อันนอกมีรัศมี $R_{_{2}}$ ประจุ $+Q_{_{2}}$ อันในมีศักย์ไฟฟ้าสูงกว่าอันนอกอยู่เท่าไร

- 1. $kQ_1 \left(\frac{1}{R_1} \frac{1}{R_2} \right)$
- 2. $kQ_2 \left(\frac{1}{R_1} \frac{1}{R_2} \right)$
- 3. $k\left(\frac{Q_2}{R_2} \frac{Q_1}{R_1}\right)$

- 4. $k\left(rac{Q_1}{R_1}-rac{Q_2}{R_2}
 ight)$
- 5. $k \left(\frac{Q_2}{R_1} \frac{Q_1}{R_2} \right)$

15. M เป็นมาลรามของก้อนน้ำหนัก ถาดและลูกสูบซึ่งมีพื้นที่ภาคตัดขวาง A P_a เป็นความดันบรรยากาศ ที่สภาวะสมดุลเชิงกลเราจะได้ว่า $\{M+(...)\}$ h= คงที่ จงหาปริมาณใน (...)

- **1.** 0
- 2. P_aA
- 3. $\frac{P_a}{g}$
- 4. $\frac{gA}{P_a}$
- 5. $\frac{P_a A}{g}$

16. น้ำซึ่งมีความหนาแน่น hoไหลเข้าจากทางซ้ายของท่อปลายเปิดทั้งสองด้านด้ายความเร็ว v_1 และไหลออกทางขวา ด้ายความเร็ว v_2 พลังงานจลน์ของน้ำไหลผ่านท่อต่อหน่ายเวลามีค่าเท่าไร

- 1. $\frac{1}{2} \rho A_1 v_1^2$
- 4. $\frac{1}{2}\rho A_{1}v_{1}^{3}$

- 2. $\frac{1}{2}\rho A_2 v_2^2$
- 5. $\frac{1}{2} \rho A_1 v_1^4$

- 17. แรงไฟฟ้าที่โปรตอนมาล ผลักกันมีขนาดเป็นกี่เท่าของขนาดของแรงโน้มถ่างระหว่างโปรตอนคู่ m ประจุ qเดียวกัน
- 3. $\frac{k}{G} \left(\frac{q}{m} \right)^2$ 4. $\frac{k}{G} \frac{q}{m}$ 5. $\frac{G}{k} \frac{q}{m}$

3. $\frac{1}{2}\rho A_1 A_2 v_1 v_2$

18. ท่อรูปตัวยูปลายเปิดตั้งดิ่งอยู่ มีของเหลว A ความหนาแน่น $P_{\!\scriptscriptstyle A}$ กับของเหลว B ความหนาแน่น $\rho_{\!\scriptscriptstyle B}$ ซึ่งไม่ผสม กันบรรจุอยู่ดังรูป จงหาค่าของอัตราส่วน $\frac{\rho_{\!\scriptscriptstyle A}}{\rho_{\!\scriptscriptstyle B}}$

- 1. $\frac{1}{4}$
- 2. $\frac{1}{3}$
- 3. $\frac{1}{2}$
- 4. 2
- 5. 4

19. ถ้าอุณหภูมิของแก๊สอุดมคติในกระเปาะเพิ่มขึ้น 1 เคลาิน เม็ดปรอทจะเลื่อนขึ้นจากระดับเดิมเป็นระยะทางเท่าไร (ไม่ต้องคำนึงถึงการขยายตัวของท่อ)

20. คลื่นเสียงที่มีความถี่เท่ากับความถี่เรโซแนนซ์พื้นฐาน f_0 ของท่อก้นปิดในรูป ก. กับของรูป ข. จะให้ความถี่บีตส์ เท่ากับเท่าไร (ให้ถือว่า $\Delta x << L$)

- 1. $f_0 \frac{\Delta x}{L}$ 2. $2f_0 \frac{\Delta x}{L}$

- 21. หลักการความไม่แน่นอนของ Heisenberg $\Delta p_x \Delta x pprox h$ บอกว่าอนุภาคมาล m ที่ถูกกักไว้ในกล่องลูกบาศก์ด้าน ยาว a มีพลังงานจลน์ต่ำสุดโดยประมาณตามข้อใด

22. ความเข้มของแสงที่เลี้ยาเบนเนื่องจากสลิตเดี่ยวกว้าง b (รูป ก.) บรรยายได้ด้วยฟังก์ชีน

$$I(\theta) = I(0) \left\{ \frac{\sin \beta}{\beta} \right\}^2$$
, $\beta = \frac{\pi b}{\lambda} \sin \theta$ (รูป ข.)

แถบสว่างข้างแถบที่ 1 มีค่าสูงสุดที่ค่า eta เท่ากับกี่เรเดียนโดยประมาณ

- 1. 0
- 2. $\frac{\pi}{4}$
- 3. $\frac{\pi}{2}$
- **4.** π
- 5. $\frac{3\pi}{2}$

23. ก้อนโลหะมีโพรงอยู่ภายใน ผิวนอกของก้อนอยู่ที่ศักย์ไฟฟ้า V_0 ดังรูป สมมติให้ V_1 เป็นศักย์ไฟฟ้าในเนื้อโลหะ และ V_2 เป็นศักย์ไฟฟ้าในโพรงและที่ผิวโพรงข้อใดเป็นความสัมพันธ์ที่ถูกต้องสมบูรณ์ที่สุด

1. $V_1 = V_0$

2. $V_2 = V_0$

3. $V_1 = V_2$

 $\mathbf{4.}\ \, V_{2}=V_{1}=V_{0}$

5. $V_0 > V_1 > V_2$

24. กระแสที่ไหลผ่าน $R_{\scriptscriptstyle 2}$ มีมุมเฟสต่างจากมุมเฟสของกระแสที่ไหลผ่าน $R_{\scriptscriptstyle 1}$ กี่องศา

- 1. 90
- 2. 60
- 3. 45
- 4. 30
- **5.** 0

25. ลาดยาว L_0 เมื่อใช้เป็นสายลูกตุ้ม M ห้อยอยู่นิ่ง $_{f q}$ จะยืดยาวขึ้นจากเดิม $\Delta L_{_1}$ (รูป ก.) แต่เมื่อปล่อยลูกตุ้ม M เคลื่อนที่โดยประมาณตามแนววงกลม และเมื่อถึงจุดต่ำสุดลาดจะยืดยาวขึ้นจากเดิม (จาก L_0) เท่ากับ ΔL_2 (รูป ข.) จงหาดวามสัมพันธ์ระหว่าง ΔL_2 กับ ΔL_1

- 1. $\Delta L_2 = (3 2\cos\theta_0)\Delta L_1$
- 3. $\Delta L_2 = (\cos \theta_0) \Delta L_1$
- 5. $\Delta L_2 = \Delta L_1$ เสมอ

রূ
$$\mathfrak{I}$$
 \mathfrak{I} .
2. $\Delta L_2=(3+2\cos\theta_0)\Delta L_1$

 $\Psi. \ \Delta L_2 = (1 + \sin \theta_0) \Delta L_1$