Week 1 Homework

Qianlang Chen

Math 4400 Spring 2022

Exercise I

First, create a list of integers from 2 to 100 (as we know 1 is not prime):

Circle the first non-circled number from the list as our next prime, then cross out all multiples of that number:

Repeat this process:

...Until all numbers in the list are either circled or crossed out:

Now, the circled numbers above are the primes between 1 and 100:

Exercise 2

Suppose $\sqrt{2}$ is rational and $\sqrt{2} = \frac{a}{b}$, where $a, b \in \mathbb{Z}^+$.

By rearranging, we have $a^2 = 2b^2$.

Factorize a so that $a = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}$. It follows that $a^2 = p_1^{2k_1} p_2^{2k_2} \cdots p_n^{2k_n}$, meaning that the prime factorization of a^2 must have an even number of 2s (or any other prime) in it.

By similar logic, the prime factorization of b^2 must also have an even number of 2s in it.

However, we said that $a^2 = 2 \cdot b^2$, meaning that the prime factorization of a^2 must now have an odd number of 2s in it, which is a contradiction. Therefore, $\sqrt{2}$ cannot be rational.