现代光学研讨之

菲涅尔衍射的计算机模拟

张楚珩 曾培

PHY,NJU

理想信号到实际信号——采样过程

实际信号的频谱 —离散Fourier变换

• 连续Fourier变换

$$F(k) = \int_{-\infty}^{+\infty} f(x) \exp(-ikx) \, dx$$

• 离散Fourier变换

$$F(k_m) = \sum_{n=0}^{N-1} f(x_n) \exp(-i2\pi \frac{m}{Ndx} n \frac{dx}{x})$$

离散Fourier变换 理解之一: 过程

x	Array index	Before shift on array f	After shift on array f	Output index	
-2dx	1	$f_1 \to \exp(i2\pi m/N * 0)$	$f_3 \to \exp(i2\pi m/N*0)$	1	0/Ndx
-dx	2	$f_2 \to \exp(i2\pi m/N * 1)$	$f_4 \to \exp(i2\pi m/N * 1)$	2	1/Ndx
0	3	$f_3 \to \exp(i2\pi m/N * 2)$	$f_5 \to \exp(i2\pi m/N*2)$	3	2/Ndx
dx	4	$f_4 \to \exp(i2\pi m/N * 3)$	$f_1 \to \exp(i2\pi m/N * 3)$	4	3/Ndx
2dx	5	$f_5 \to \exp(i2\pi m/N * 4)$	$f_2 \to \exp(i2\pi m/N * 4)$	5	4/Ndx
		F=fft(f)	ifftshift(f)	Need fftshift(F)	

Fourier变换性质—Review

Courtesy: Wikipedia

离散Fourier变换 理解之二: 离散与周期性

- "离散"的两重含义
 - x空间离散: k空间的必然周期性
 - k空间不可避免地离散: x空间周期性?!
- x空间有界情况下周期延拓后的得到周期k空间的 Fourier转换

离散Fourier变换 理解之二: 离散与周期性

离散Fourier变换 真的靠谱? -_-

• 信号是否失真?

此处黑板上应该有图

换个角度看频谱

$$f(x)$$
 $F(k)$

$$f(x) \cdot comb(\frac{x}{\Delta x})$$

$$F(k)*\mathbb{F}\{comb(\frac{x}{\Lambda x})\}$$

$$f(x) \cdot comb(\frac{x}{\Delta x}) \cdot rect(\frac{x}{N \cdot \Delta x}) \qquad F(k) * \mathbb{F}\{comb(\frac{x}{\Delta x}) \cdot rect(\frac{x}{N \cdot \Delta x})\}$$

离散Fourier变换 理解之三: 卷积

$$f(x) \qquad \qquad F(k)$$

$$f(x) \cdot comb(\frac{x}{\Delta x}) \qquad \qquad F(k) * \mathbb{F}\{comb(\frac{x}{\Delta x})\}$$

$$f(x) \cdot comb(\frac{x}{\Delta x}) \cdot rect(\frac{x}{N \cdot \Delta x}) \qquad \qquad F(k) * \mathbb{F}\{comb(\frac{x}{\Delta x}) \cdot rect(\frac{x}{N \cdot \Delta x})\}$$
 真实信号 采样失真项

离散Fourier变换是在真实频谱信号基础上 卷积上采样失真项的Fourier变换的结果

离散Fourier变换 核心问题

$$F(k)*\mathbb{F}\{comb(\frac{x}{\Delta x})\}\$$

$$F(k)*\mathbb{F}\{comb(\frac{x}{\Delta x})\cdot rect(\frac{x}{N\cdot\Delta x})\}\$$

能否在一定程度上与 F(k) 保持一致?

卷积—Review

• 定义:

$$f(x) * g(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt$$

• 重要的性质:

$$f(x) * \delta(x) = f(x)$$

$$f(x) * \delta(x - x_n) = f(x - x_n)$$

$$f(x) * \sum_{m} g_{m}(x) = \sum_{m} f(x) * g_{m}(x)$$

$$comb(x) = \sum_{m} \delta(x - m)$$

$$f(x)*comb(x) = \sum_{m=-\infty}^{+\infty} f(x-m)$$

离散无限信号

$$F(k) * \mathbb{F} \{ comb(\frac{x}{\Delta x}) \} = \frac{1}{\Delta k} F(k) * comb(\frac{k}{\Delta k})$$

$$= \Delta k \cdot \frac{1}{\Delta k} \sum_{m=-\infty}^{+\infty} F(k) * \delta(k - m\Delta k)$$

$$= \sum_{m=-\infty}^{+\infty} F(k - \Delta k \cdot m) \qquad (\Delta k = \frac{2\pi}{\Delta x})$$

$$comb(ax) = \frac{1}{|a|} \sum_{m=-\infty}^{+\infty} \delta(x - \frac{m}{a})$$

or
$$\frac{1}{\Delta f}comb(\frac{f}{\Delta f})$$
 $(\Delta f = \frac{1}{\Delta x})$

离散无限信号 — 采样定理

$$F(f) * \mathbb{F} \{ comb(\frac{x}{\Delta x}) \} = \sum_{m = -\infty}^{+\infty} F(f - \Delta f \cdot m) \qquad (\Delta f = \frac{1}{\Delta x})$$

对于有限频域的信号 域宽为[-B,B]时:

即
$$\Delta f > 2B$$
 即 $\Delta x < \frac{1}{2B}$ 时

频域信号可分辨

离散有限信号 —Fourier变换失真

• 研究采样失真项的Fourier变换

$$\mathbb{F}\{comb(\frac{x}{\Delta x}) \cdot rect(\frac{x}{N \cdot \Delta x})\}$$

• 有限个Delta函数的Fourier变换

遗留问题之一

如何衡量 离散Fourier变换 失真程度?

实域、频域整空间、倒空间

固体物理		
格点的离散		
格点总数的有限		
格点的相对位移 (以研究固体热学性质为例)		
波恩-冯卡门边界条件		
$e^{i2\pi\frac{n}{N}m}(n,m\in\mathbb{Z})$		
格波		

1暴力积分法

$$U_0(x_0, y_0) = \iint U_1(x_1, y_1) h(x_1, y_1; x_0, y_0) dx_1 dy_1$$

$$h(x_1, y_1; x_0, y_0) = \frac{e^{ikz}}{i\lambda z} \exp\{\frac{ik}{2z} [(x_0 - x_1)^2 + (y_0 - y_1)^2]\}$$

$$U_{0}(m_{0}x_{0}, n_{0}y_{0}) = \sum_{\substack{m_{1}, n_{1} \\ i\lambda z}} U_{1}(m_{1}\Delta x_{1}, n_{1}\Delta y_{1})h(m_{1}\Delta x_{1}, n_{1}\Delta y_{1}; m_{0}x_{0}, n_{0}y_{0})\Delta x_{1}\Delta y_{1}$$

$$h(x_{1}, y_{1}; x_{0}, y_{0}) = \frac{e^{ikz}}{i\lambda z} \exp\{\frac{ik}{2z}[(x_{0} - x_{1})^{2} + (y_{0} - y_{1})^{2}]\}$$

2 传递函数抽样法

$$U_0(x_0, y_0) = IFFT \{FFT \{U_1(x_1, y_1)\} H(f_x, f_y)\}$$

$$H(f_x, f_y) = \exp[i2\pi\sqrt{\frac{1}{\lambda^2}} - f_x^2 - f_y^2]$$

$$U_0(m_0 \Delta x_0, n_0 \Delta y_0) = IDFT \{DFT \{U_1(m_1 \Delta x_1, n_1 \Delta y_1)\} H(p\Delta f_x, q\Delta f_y)\}$$

$$H(f_x, f_y) = \exp[i2\pi\sqrt{\frac{1}{\lambda^2} - f_x^2 - f_y^2}]$$

2 传递函数抽样法

3点扩散函数抽样法

$$U_0(x_0, y_0) = IFFT \{FFT \{U_1(x_1, y_1)\} \cdot FFT \{h(x_1, y_1)\}\}$$

$$h(x, y) = \frac{e^{ikz}}{i\lambda z} \exp\left[\frac{ik}{2z}(x^2 + y^2)\right]$$

$$U_{0}(m_{0}\Delta x_{0}, n_{0}\Delta y_{0}) = IDFT \{DFT \{U_{1}(m_{1}\Delta x_{1}, n_{1}\Delta y_{1})\} \bullet DFT \{h(m_{1}\Delta x_{1}, n_{1}\Delta y_{1})\}\}$$

$$h(x,y) = \frac{e^{ikz}}{i\lambda z} \exp\left[\frac{ik}{2z}(x^2 + y^2)\right]$$

3点扩散函数抽样法

$$f_{x} = \frac{x}{\lambda z}$$

4 加权函数抽样法

$$U_0(x_0, y_0) = \frac{e^{ikz}}{i\lambda z} e^{\frac{ik}{2z}(x_0^2 + y_0^2)} FFT\{U_1(x_1, y_1) \cdot e^{\frac{ik}{2z}(x_1^2 + y_1^2)}\}$$

$$U_{0}(p_{0}\Delta x_{0}, q_{0}\Delta y_{0}) = \frac{e^{ikz}}{i\lambda z} e^{\frac{ik}{2z}((p_{0}\Delta x_{0})^{2} + (q_{0}\Delta y_{0})^{2})} DFT\{U_{1}(m_{1}\Delta x_{1}, n_{1}\Delta y_{1}) \bullet e^{\frac{ik}{2z}((m_{1}\Delta x_{1})^{2} + (n_{1}\Delta y_{1})^{2})}\}$$

需满足
$$\Delta x_0 = \frac{\lambda z}{\Delta x_1}$$

4 加权函数抽样法

$$\Delta x \le \frac{1}{B_x} = \frac{1}{\frac{L}{\lambda z}} \Longrightarrow z \ge \frac{N\Delta x^2}{\lambda} \equiv Z_0$$

4 加权函数抽样法

最后模拟成像 恢复原长

- 暴力解法耗时长 时间复杂度~O(N4)
- 其他解法 时间复杂度~O(N²log N)
- $\text{在}Z < Z_0$ 时,使用第二种方法
- 在z>Z₀时,使用第三种或者第四种方法

遗留问题之二

不同方法的限制条件不同体制。 本质?

单缝和单丝

高斯光束的汇聚和发散

高斯光束的平行传播

至文谢!

- 谢谢大家!
- 感谢朱哲远学长和潮兴滨老师的帮助