

CHEMISTRY

Chapter 5
ESTEQUIOMETRÍA

Verano San Marcos

2021

Lo sorprendente de una reacción

REACCIÓN QUÍMICA

DEFINICIÓN:

Es el proceso por el cual una o más sustancias sufren cambios o transformaciones en su estructura

interna, es decir, hay ruptura de enlaces en las sustancias iniciales formándose así nuevos enlaces que corresponden a nuevas sustancias.

EVIDENCIAS DE UNA REACCIÓN:

- a. Variación de olor, color, sabor
- b. Variación de energía
- c. Formación de un precipitado (aparición de una sustancia insoluble en el medio que se dirige al fondo por gravedad)
- d. Liberación o desprendimiento de un gas

ECUACIÓN QUÍMICA:

$$H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(g)}$$

Reactante

Producto

$$HCl_{(ac)} + MnO_{2(g)} \rightarrow MnCl_{2(ac)} + H_2O_{(g)} + Cl_{2(g)}$$

En las ecuaciones químicas utilizamos otros símbolos que se escriben como subíndices:

(s)	sólido
(1)	líquido
(g)	gaseoso
(ac)	acuoso (disuelto en agua)
↑	liberación de un gas
↓	precipitación de un sólido
Δ	variación de energía
(c)	cristalino

TIPOS DE REACCIONES QUÍMICAS:

1. De acuerdo a su forma

A. REACCIÓN DE ADICIÓN, COMPOSICIÓN O SÍNTESIS

Dos o más reactantes forman un solo producto.

B. REACCIÓN DE DESCOMPOSICIÓN:

Un solo reactante origina varios productos.

$$\frac{\mathsf{KClO}_3}{\mathsf{1}\,\mathsf{Reactante}} \to \frac{\mathsf{KCl} + \mathsf{O}_2}{\mathsf{2}\,\mathsf{Productos}}$$

C. REACCIÓN DE SUSTITUCIÓN SIMPLE:

Es cuando las un elemento desplaza a otro y lo sustituye.

D. REACCIÓN DE DOBLE SUSTITUCIÓN (METÁTESIS):

En este caso sucede un intercambio de elementos entre dos compuestos diferentes

2. De acuerdo a su combustión:

A. REACCIÓN DE COMBUSTIÓN COMPLETA:

Un combustible se quema al reaccionar con el oxígeno (comburente), produciendo dióxido de carbono y agua

$$C_3H_8$$
 + O_2 \rightarrow CO_2 + H_2O combustible comburente Dióxido de carbono

B. REACCIÓN DE COMBUSTIÓN INCOMPLETA:

Al quemar el combustible con el oxígeno se produce monóxido de carbono y agua

3. De acuerdo a su energía involucrada:

A. REACCIÓN EXOTÉRMICA:

Es aquella reacción que libera calor. Su entalpía de reacción es negativa (Δ H<0).

$$A + B \rightarrow C + D + CALOR$$

La entalpía de la reacción es negativa

B. REACCIÓN ENDOTÉRMICA:

La reacción absorbe calor, su entalpía de reacción es positiva ($\Delta H > 0$).

A + B + CALOR
$$\rightarrow$$
 C + D

Absorbe
calor

AH=+Q kJ/mol

La entalpía de la reacción es negativa

4. De acuerdo al tipo de reacción:

A. REACCIÓN IRREVERSIBLE:

$$H_2 + N_2 = NH_3$$

B. REACCIÓN REVERSIBLE:

Fe +
$$CuSO_4 \rightarrow FeSO_4 + Cu$$

01

CONSIDERACIONES

Por ningún motivo se debe modificar las fórmulas o símbolos de las sustancias. Cada número presente de la ecuación química indica una cantidad determinada de átomos

$$N.^{\circ}$$
 de átomos de aluminio = $5 \times 2 = 10$

$$N.^{\circ}$$
 de átomos de azufre = $5 \times 3 \times 1 = 15$

$$N.^{\circ}$$
 de átomos de oxígeno = $5 \times 3 \times 4 = 60$

BALANCE POR MÉTODO DE TANTEO

- Se recomienda empezar por los elementos metálicos o aquel que se encuentre en menor cantidad de sustancias.
- Dejar al hidrógeno y luego al oxígeno como últimos elementos a balancear.
- Los coeficientes pueden multiplicarse o dividirse por un factor común para lograr los valores mínimos enteros.

Ejm: Balancee :

$$1 P_4 + 2 V_2 O_5 \longrightarrow 4 V + 2 P_2 O_5$$

ESTEQUIOMETRÍ

«La estequiometría es la ciencia que mide las proporciones cuantitativas o relaciones de masa de los elementos químicos que están implicados (en una reacción química)». También estudia la proporción de los distintos elementos en un compuesto químico y la composición de mezclas químicas.

LEYES EXPERIMENTALES DE LA ESTEQUIOMETRIÁ:

LEYES PONDERALES (Relacionan masas)

- 1. Ley de conservacion de la masa(Lavoisier)
- 2. Ley de proporciones definidas(Proust)
- 3. Ley de proporciones múltiples(Daltón)
- 4. Ley de proporciones recíprocas(Wentzel Richter)

LEYES VOLUMÉTRICAS (Relacionan volúmenes)

1. Ley de volúmenes combinados (Gay Lussac)

CHEMISTRY

01

LEYES PONDERALES:

A. LEY DE CONSERVACION DE LA MASA:

Fue enunciada por el químico francés Antoine Lavoisier (1789); que establece: "En toda reacción química la suma de las masas de los reactantes es igual a la suma de las masas de los productos, por lo tanto, la masa no se crea ni se destruye solamente se transforma".

B. LEY DE PROPORCIONES DEFINIDAS:

La ley de las proporciones constantes o ley de las proporciones definidas es una de las <u>leyes</u> <u>estequiométricas</u>, según la cual cuando se combinan dos o más elementos para dar un determinado compuesto, siempre lo hacen en una relación constante de masas

Hidrógeno+ Oxígeno → Agua

$$2g + 16g → 18g$$

 $5g + 16g → 18g + 3g de H$
 $2g + 20g → 18g + 4g de O$
 $5g + 24g → 27g + 2g de H$

01

LEYES VOLUMÉTRICAS:

A. LEY DE VOLÚMENES COMBINADOS:

Lussac formuló en 1808 la Ley de los volúmenes de combinación que lleva su nombre, la cual puede enunciarse como sigue: en cualquier reacción química los volúmenes de todas las sustancias gaseosas que intervienen en la misma están en una relación de números enteros

sencillos

Entonces la relación de volúmenes será:

$$\frac{V(N_2)}{1} = \frac{V(H_2)}{2} = \frac{V(NH_3)}{3}$$

1. En la siguiente reacción:

$$N_2 + H_2 \rightarrow NH_3$$

¿qué cantidad de nitrógeno se necesita para combinarse con 12 g de hidrógeno?

Datos: PA(N = 14, H = 1)

- A) 14 g B) 28 g
- \bigcirc 56 g

- D) 20 g
- E) 112 g

$$\overline{M} = 28$$
 $\overline{M} = 2$
 $1 N_2 + 3H_2 \rightarrow 2NH_3$
 $1(28)g$
 X
 $12 g$
 $X = \frac{12.(28)}{6}$
 $X = 56 g$

PRACTICE

2. De acuerdo a la siguiente reacción:

$$CaCO_3 \rightarrow CaO + CO_2$$

se tiene 200 g de carbonato de calcio, CaCO₃.

¿Qué cantidad de CO, se desprende?

Datos: PA(Ca = 40, C = 12, O = 16)

- A) 44 g
- **ॐ**88 g
- C) 22 g

- D) 11 g
- E) 66 g

$$X = \frac{200.(44)}{100}$$

$$X = 88 g$$

De acuerdo a

$$Zn + HCl \rightarrow ZnCl_2 + H_2$$

al reaccionar 130 g de metal, ¿qué cantidad de gas hidrógeno se desprende?

Datos: PA(Zn = 65, H = 1)

- A) 2 g B) 1 g
- **S**) 4 g

- D) 6 g
- E) 8 g

$$P.A. = 65$$
1 Zn + 2 HCl → 1 $ZnCl_2$ + 1 H_2
1 (65) g 1 1 I 1 I 2 I 2 I 2 I 3 I 3 I 4 I 4 I 4 I 4 I 5 I 6 I 6 I 6 I 7 I 8 I 8 I 9 I

$$X = \frac{130.(2)}{65}$$

$$X = 4 g$$

4. ¿Qué peso de oxígeno se requiere para la combustión completa de 160 g de CH₄?

Datos: PA(C = 12, H = 1, O = 16)

- D) 32 g
- E) 64 g

$$ar{M} = 16$$
 $ar{M} = 32$
1 CH_4 + 2 O_2 + 1 CO_2 + 2 H_2O
1(16) g 2(32) g
 g

$$X = \frac{160.(64)}{16}$$

$$X=640~g$$

- 5. ¿Qué peso de oxígeno se requiere para la combustión completa de 11 g de C₂H₈? Datos: PA(C = 12, H = 1, O = 16)
 - **ॐ** 40 g
- B) 4 g C) 400 g
- D) 320 g E) 360 g

$$\overline{M} = 44$$
 $\overline{M} = 32$
1 C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O
1 $(44)g$ \searrow 5 $(32)g$
 \searrow X

$$X = \frac{11.(160)}{44}$$

$$X = 40 g$$

HELICO |

6. ¿Qué peso de óxido de calcio se obtiene de acuerdo a Ca + $O_2 \rightarrow$ CaO cuando 80 g de Ca reaccionan con el oxígeno?

Datos: PA(Ca = 40, O = 16)

- A) 56 g B) 28 g (S) 112 g
- D) 120 g E) 130 g

$$X = \frac{80.(112)}{80}$$

$$X = 112 g$$

7. ¿Qué peso de gas oxígeno se desprende de acuerdo a $KClO_3 \rightarrow KCl + O_2$ cuando 245 g de KClO se descomponen?

Datos: PA(K = 3.9, Cl = 35,5, O = 16)

- A) 32 g 96 g C) 64 g

- D) 16 g
- E) 128 g

$$\overline{MF} = 122,5$$
 $\overline{M} = 32$
2 $KClO_3$ \rightarrow 2 KCl + $3O_2$
2 $(122,5)g$ $3(32)g$
2 $45 g$

$$X = \frac{245.(96)}{2(122,5)}$$

$$X = 96 g$$

PRACTICE

8. Para la obtención del amoniaco de manera industrial se emplea la síntesis de Haber-Bosch. En la siguiente reacción:

$$H_2 + N_2 \rightarrow NH_3$$

se combinan 6 moles de hidrógeno con suficiente cantidad de nitrógeno. ¿Cuántas moles de productos se obtiene?

A) 3

S 4

C) 6

D) 8

E) 10

$$X = 4 mol$$

PRACTICE

En la siguiente reacción:

$$Zn + HCl \rightarrow ZnCl_2 + H_2$$

se combinan 10 moles de Zn. ¿Qué cantidad de ácido (HCl) se requiere para utilizar todo el Zn?

- A) 10
- **S** 2

C) 5

D) 3

E) 50

RESOLUCIÓN:

$$1Zn + 2HCl \rightarrow 1ZnCl_2 + 1H_2$$

10 mol

$$X=\frac{10.(2)}{1}$$

$$X = 20 mol$$

- 10. Algunas reacciones que se dan en los hidrocarburos son las reacciones de combustión, que se dan cuando la sustancia combustible arde en presencia del oxígeno. En combustión completa de 2 moles de propano (C₃H₈), ¿cuántas moles de oxígeno gaseoso se requiere?
 - **3** 10

- B) 5 C) 15
- D) 2,5
- E) N. A.

$$X=\frac{2.(5)}{1}$$

$$X = 10 mol$$