UNCLASSIFIED

AD NUMBER AD868862 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAR 1970. Other requests shall be referred to Air Force Weapons Lab., Attn: WLEE, Kirtland AFB, NM 87117. **AUTHORITY** AFWL ltr dtd 16 Mar 1972

AFWL-TR-69-114, Vol 1

USER'S MANUAL

Volume i

Boundary Layer Integral Matrix Procedure
(BLIMP)

Larry W. Anderson
Eugene P. Bartlett
Robert M. Kendall

TECHNICAL REPORT NO. AFWL-TR-69-114, Vol J.

March 1970

AIR FORCE WEAPONS LABORATOR
Air Force Systems Command
Kirtland Air Force Base
New Mexico

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (\mbox{WLEE}), Kirtland AFB, NM, 87117.

USER'S MANUAL

Volume I

Boundary Layer Integral Matrix Procedure

(BLIMP)

Larry W. Anderson

Eugene P. Bartlett

Robert M. Kendall

TECHNICAL REPORT NO. AFWL-TR-69-114, Vol I

This document is subject to special export controls and each transmit? It to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLEE), Kirtland AFB, NM, 87117. Distribution is limited because of the technology discussed in the report.

AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland Air Force Base New Mexico

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government way have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to-manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is made available for study with the understanding that proprietary interests in and relating thereto will not be impaired. In case of apparent conflict or any other questions between the Government's rights and those of others, notify the Judge Advocate, Air Force Systems Command, Andrews Air Force Base, Washington, D. C. 20331.

DO NOT RETURN THIS COPY. RETAIN OR DESTROY.

FOREWORD

This report was prepared by the Aerotherm Corporation, Mountain View, California, under Contract F29601-68-C-0062. The research was performed under Program Element 62601F, Project 5791, Task 27.

Inclusive dates of research were March 1968 through October 1969. The report was submitted 11 February 1970 by the Air Force Weapons Laboratory Project Officer, Captain Ronald H. Aungier (WLEE).

Information in this report is embargeed under the US Export Control Act of 1949, administered by the Department of Commerce. This report may be released by departments or agencies of the US Government to departments or agencies of foreign governments with which the United States has defense treaty commitments, subject to approval of AFWL (WLEE), Kirtland AFB, NM, 87117.

This technical report has been reviewed and is approved.

Ronald Warngier RONALD H. AUNGIER

Captain, USAF Project Officer

WALTER M. HART, JR.

Major, USAF

Chief, Fuzing Environment Branch

CARL F. DAVIS

Colonel, USAF

Chief, Electronics Division

ABSTRACT

A complete description of the Boundary Layer Integral Matrix Procedure (BLIMP) computer code is given, including descriptions and explanations of the program input preparation, interpretation of output, special output for debugging purposes, and a list and definitions of the Fortran variables. Three sample problems are included, ranging in complexity from air flow over a flat plate to air flow over an ablating reentry vehicle nosetip and heat shield composed of three different surface materials. A section on changing program dimensions is also included.

(Distribution Limitation Statement No. 2)

CONTENTS

Section		Page
I	INTRODUCTION	1
II	PROBLEM DESCRIPTION	.2
III	INPUT	3
IV	OUTPUT	[.] 29
	1. Summary of Standard Output	30
	 Standard Output of Boundary Layer Input Data (Called from RECASE) 	30
	 Standard Output of Property input Data (Called from INPUT) 	32.
	 Standard Chemistry Output for Boundary Layer Edge Expansion (Called from EQUIL) 	34
	5. Summary Table of Edge Conditions (Called from REFCON)	35
	 One-Line-Per-Iteration Output of Boundary Layer Itera- tion Called from ITERAT) 	37
	 Standard Output for Boundary Layer Solution (Called from OUTPUT) 	38
v	SAMPLE CASES	42
	l. Sample Case l - Flat Plate in Air Boundary Layer	42
	2. Sample Case 2 - Ablating Phenolic Carbon Flat Plate	69
	3. Sample Case 3 - Ablating Reentry Vehicle Shape	109
'VI	POTENTIAL PROBLEM AREAS	136
	1. Discussion	136
	2. Debug Output for BLIMP	137
VII	OPERATING PROCEDURES	145
VIII	PROGRAM DIMENSIONING	146
ΊΧ	FORTRAN VARIABLES LIST	155
	APPENDIX I - Wall Boundary Conditions	199
	APPENDIX II - Force Constants from Reference 3	202
	REFERENCES	203

SECTION I

INTRODUCTION

This report contains a description of the Boundary Layer Integral Matrix Procedure (BLIMP) Fortran V computer program and instructions for using the program. The BLIMP program solves the laminar or turbulent, nonsimilar, multicomponent, equilibrium boundary layer for axisymmetric or planar bodies and for general chemical systems. The theoretical development and computational procedures which form the basis for this computer program are discussed in reference 1. The present report is a revised version of reference 2, which detailed the use of an earlier version of the program. The publication of this new User's Manual was prompted by several improvements in the BLIMP code, the most notable of which is the addition of a model for the analysis of turbulent flows. This turbulent model is discussed in detail in reference 1.

A summary of the types of problems which can be treated is presented in Section II. A comprehensive set of input instructions is presented in Section III which includes descriptions of the various options which are available to the user. The standard output format is described in Section IV. Input and output for several sample cases are presented in Section V. Potential problem areas and a description of special debug output which can be obtained are presented in Section VI. Operating procedures for a CDC 6600 computer system are presented in Section VII, and instructions for changing program dimensions are included in Section VIII. Fortran variables and definitions are given in Section IX:

SECTION II

PROBLEM DESCRIPTION

The BLIMP program uses a strip-integral numerical procedure to solve, with as much accuracy as desired, a comprehensive set of equations describing fluid flow in a boundary layer (reference 1). The equations apply to general, ionized chemical systems in local chemical equilibrium (reference 3). Unequal diffusion and thermal diffusion coefficients for each species can be considered through the use of convenient approximations for these coefficients described in reference 4. Relations of the Sutherland-Wassiljewa type are used for mixture molecular viscosity and conductivity.

For turbulent flows, the time-averaged equations of motion are solved utilizing an eddy viscosity model to describe the "Reynolds stress" term, plus constant turbulent Prandtl and Schmidt numbers in the energy and species conservation equations. Eddy viscosity is related to a variable mixing length in the region very near the wall, and to global parameters of the flow in the outer portion of the boundary layer. Turbulent transport terms in the equations of motion are considered only after the transition criterion, an input transition Reynolds number on momentum thickness, has been satisfied.

The procedure applies to arbitrary planar or axisymmetric, blunt or sharp body geometries. Transverse curvature may be considered for axisymmetric bodies. The boundary-layer edge gas must be adiabatic but it may be nonisentropic. With regard to boundary layer edge conditions, it is necessary for the user to supply only composition of the edge gas, stagnation enthalpy and pressure, and distributions of pressure, entropy (if nonisentropic) and incident radiation flux around the body. The incident radiation is not attenuated in the boundary layer but enters directly into the wall energy balance (when one is performed).

At the wall it is possible to assign temperature and mass fluxes of various component gas mixtures defined by the user, to require the surface to be in equilibrium with whatever condensed species is predicted by the program to be the surface species, to permit rate-controlled surface reactions specified by the user, and to perform a steady state energy balance at the wall (in which case the boundary layer is completely coupled to the wall response). A candidate surface species can be considered to be removed mechanically in the event it wants to appear as the surface above a "fail temperature" prescribed by the user (e.g., the fail temperature for silica might be selected as its melt temperature). Such boundary conditions as mass addition, ablation material, and body shape can be varied discontinuously around the body, and the type of wall boundary condition can be altered in different regions over the body.

SECTION III

ÍNPUT

The BLIMP program uses punched cards as the input media. Formatted read statements are used throughout. A comprehensive set of input instructions comprises the bulk of this section. Input data for several sample problems are presented in Section V.

The input instructions presented herein are annotated by discussions of program options, appropriate units, procedures for avoiding convergence problems and other information to help the user in his decision making and to present to him the full potential of the program. Unfortunately, this has the effect of making the input appear much more complex than it really is. Actually, the BLIMP program is quite simple and straightforward to use considering the complexity of the problems which it can treat and the large number of options it contains. It is recommended that the user review the entire set of instructions each time he formulates a problem for at least the first several dozen submittals. After this, it may be convenient for the user to prepare his own abbreviated set of user instructions for those options of primary interest to him.

3

GROUP 1 CONTROL CARD. TITLE. AND IDENTIFICATION (CALLED FROM RECASE)

CARD 1.FORMAT(2011.15A4).KR

- FIELD 1 (COLUMNS 1-20) THIS IS THE VARIABLE KR(DIMENSIONED 20) WHICH IS USED TO CONTROL THE VARIOUS PROGRAM OPTIONS
 - COLUMN 1 DETERMINES WHETHER A NEW SET OF ETA VALUES IS TO BE INPUT FOR PRESENT CASE (SEE GROUP 4)
 - O USES RESIDENT VALUES FROM PREVIOUS CASE
 - 1 VALUES INPUT BY USER (MANDATORY FOR FIRST CASE)
 - COLUMN 2 DESIGNATES TYPE OF FIRST GUESSES TO BE UTILIZED FOR PRIMARY VARIABLES (SEE GROUP 9)
 - O USES BUILT-IN RELATIONS TO CALCULATE FIRST GUESSES (REQUIRES READING ONLY GUESS FOR ENTHALPY OF THE GAS AT THE WALL).

 RECOMMENDED FOR MOST SITUATIONS.
 - 1 FIRST GUESSES INPUT BY USER
 - 2 USES RESIDENT VALUES FROM PREVIOUS CASE (CANNOT BE USED FOR FIRST CASE OR WHEN COMPOSITION OF EDGE GAS IS DIFFERENT FROM PREVIOUS CASE)
 - 3 FIRST GUESSES INPUT BY USER ARE ACCEPTED AS SOLUTION AT FIRST TIME AND FIRST OR SUBSEQUENT (FOR RESTART) STATION.
 - COLUMN: 3 DETERMINES TREATMENT OF STREAMWISE DERIVATIVES. SEE REFERENCE 1. SECTION III FOR EXPLANATION OF DIFFERENCE RELATIONS.
 - O PERFORMS SIMILAR SOLUTION AT EACH STREAMWISE STATION
 - 1 CONSIDERS TWO-POINT DIFFERENCE RELATIONS AT ALL STATIONS WITH THE FOLLOWING EXCEPTIONS (A SIMILAR SOLUTION IS PERFORMED AT THE FIRST STATION FOR NON-BLUNT BODIES AND AT THE FIRST TWO STATIONS FOR BLUNT BODIES)
 - 2 CONSIDERS THREE POINT DIFFERENCE RELATIONS AT ALL STATIONS WITH THE FOLLOWING EXCEPTIONS (A SIMILAR SOLUTION IS PERFORMED AT THE FIRST STATION AND A TWO-POINT SOLUTION IS PERFORMED AT THE SECOND STATION FOR NON-BLUNT BODIES, SIMILAR SOLUTIONS ARE PERFORMED AT THE FIRST AND SECOND STATIONS AND A TWO-POINT SOLUTION IS PERFORMED FOR BLUNT BODIES, AND A TWO-POINT SOLUTION IS PERFORMED FOR THE FIRST STATION AFTER A DISCONTINUITY SEE CARD SET 4 OF GROUP 3)

COLUMN 4 DETERMINES WHEN OUTPUT BLOCK IS TO BE PRINTED

- O OUTPUT BLOCK PRINTED FOR CONVERGED SOLUTION OR FOR NONCONVERGED SOLUTION AFTER 50 ITERATIONS (WITH APPROPRIATE COMMENT)
- 1 OUTPUT BLOCK PRINTED AFTER EACH ITERATION

COLUMN 5 DETERMINES TREATMENT OF ENTROPY LAYER

- 0 NOT USED
- 1 NOT USED
- 2 NOT USED
- 3 NOT USED
- 4 AN ISENTROPIC EXPANSION AROUND THE BODY IS PERFORMED (IN THE CASE OF A BLUNT BODY. THE ENTROPY CORRESPONDS TO THAT BEHIND A NORMAL SHOCK)
- A NONISENTROPIC EXPANSION AROUND THE BODY IS PERFORMED, THE USER SUPPLYING ENTROPY CHANGES BETWEEN STREAMWISE STATIONS (THIS IS A ZEROTH APPROXIMATION TO AN ENTROPY LAYER, THE VELOCITY GRADIENT AT THE BOUNDARY LAYER EDGE BEING NEGLECTED SEE CARD SET 1 AND CARD 2 OF GROUP 15), KR(7)=0 OR 2 ONLY.
- DESIGNATES BODY SHAPE (IN THE CASE OF AXISYMMETRIC SHARP BODIES AND AXISYMMETRIC AND PLANAR BLUNT BODIES, A TRANSFORMATION OF STREAMWISE DISTANCE, S, TO S**3, S**4, AND S**2, RESPECTIVELY, IS UTILIZED TO PERFORM STREAMWISE INTEGRATIONS IN ORDER TO TAKE ADVANTAGE OF THE WAY THAT EDGE VELOCITY AND LOCAL BODY RADIUS VARY WITH S IN THE VICINITY OF THE TIP OR STAGNATION REGION. THEREFORE, A 4 OR 9 IN COL. 6 IS REQUIRED IF THE SOLUTION DOES NOT START FROM A SHARP TIP OR STAGNATION POINT. FURTHERMORE, IN THE CASE OF SHARP OR BLUNT BODIES, A DISCONTINUITY INTRODUCED AT A DOWNSTREAM STATION REVERTS TO INTEGRATION WITH RESPECT TO S STARTING AT THAT STATION. IT IS RECOMMENDED THAT THIS BE DONE AFTER AN APPRECIABLE CHANGE OF SURFACE INCLINATION WITH RESPECT TO THE FREE-STREAM VELOCITY FROM THAT AT THE TIP OR STAGNATION POINT. THE OPTIMUM SWITCHOVER POINT DEPENDS ON THE SPECIFIC BODY SHAPE. IT IS LEFT TO THE USER TO ESTABLISH THIS FOR THE BODY SHAPE OF INTEREST. THE METHOD FOR IMPLEMENTING A DISCONTINUITY IS DISCUSSED UNDER CARD SET 4 OF GROUP 3).
 - O AXISYMMETRIC BLUNT BODY
 - 1 PLANAR BLUNT BODY
 - 2 AXISYMMETRIC SHARP BODY
 - 3 PLANAR SHARP BODY

- 4 AXISYMMETRIC OR PLANAR SHAPE WHICH HAS NO SHARP TIP OR BLUNT STAGENATION POINT, FOR EXAMPLE, A NOZZLE
- 5 AXISYMMETRIC BLUNT BODY WITH TRANSVERSE CURVATURE
- 6 NOT USED
- 7 AXISYMMETRIC SHARP BODY WITH TRANSVERSE CURVATURE
- 8 AXISYMMETRIC SHAPE WITH INTERNAL FLOW AND TRANSVERSE CURVATURE
- 9 EXTERNAL FLOW OVER AXISYMMETRIC SHAPE WHICH HAS NO SHARP TIP OR BLUNT STAGNATION POINT AND WITH TRANSVERSE CURVATURE

COLUMN 7 DESIGNATES WHETHER OR NOT TURBULENT FLOW WILL BE CONSIDERED.

- 0 LAMINAR FLOW ONLY
- 1 NOT USED IN PRESENT VERSION OF PROGRAM
- 2 TURBULENT, FLOW WILL BE COMPUTED IF TRANSITION CRITERIA IS EXCEEDED (SEE GROUP 8).
- COLUMN -8 -DESIGNATES FORM: IN WHICH WALL MASS FLUXES ARE INPUT. (KR(8) IS NOT UTILIZED IF WALL FLUXES ARE NOT INPUT. THE FLUX NORMALIZING PARAMETER IS NOT GENERALLY KNOWN IN ADVANCE SO KR(8)=0 IS NORMALLY USED WHEN FLUXES ARE INPUT). UTILIZED IN CARD SETS 7 AND 11 IN GROUPS 16, 17, 18, ...
 - O WALL FLUXES INPUT IN LBS/SEC FT**2
 - 1 WALL FLUXES INPUT IN NORMALIZED FORM (I.E. DIVIDED BY -ALPHASTAR SEE EQUATION 44 OF NASA CR-1062)
- COLUMN 9 TOGETHER WITH COLUMN 11, THIS SPECIFIES THE TYPE OF WALL BOUNDARY CONDITIONS. THE USER IS URGED TO FAMILIARIZE HIMSELF WITH THE DISCUSSION IN APPENDIX I BEFORE CHOOSING THESE OPTIONS.
 - O NOT GENERALLY USED. ASSIGNED ELEMENTAL MASS FRACTIONS AND STREAM FUNCTION AT THE WALL (REQUIRES KR(11) = 0 OR 1).
 - 1 NOT GENERALLY USED. ASSIGNED ELEMENTAL MASS FRACTIONS AND TOTAL MASS FLUX AT THE WALL (REQUIRES KR(11) = 0 OR 1).
 - 2 ASSIGNED COMPONENT MASS FLUXES AT THE WALL (MDOT EDGE GAS: MDOT PYROLYSIS GAS: MDOT CHAR-- REQUIRES KR(11) = 0. 1. OR 2).
 - 3 NOT USED
 - 4 WALL STEADY STATE ENERGY BALANCE WHILE SATISFYING WALL MASS BALANCES AND LIMITED SURFACE EQUILIBRIUM (USE KR(11) = 0, KR(7) = 0 OR 2.

- COLUMN 10 DETÉRMINES TYPE OF CURVE FITS EMPLOYED TO RÉPRESENT THE PRIMARY VARIABLES OF VELOCITY RATIO, TOTAL ENTHALPY, AND ELEMENTAL MASS FRACTIONS (KR(10)=0 IS RECOMMENDED FOR ACCURACY FOR MOST PROBLEMS, HOWEVER, KR(10)=1 IS BETTER FOR SEVERE PROBLEMS (E.G., NEARLY BLOWN OFF BOUNDARY LAYERS) FOR WHICH CUBICS CAN BECOME POORLY BEHAVED)
 - O UTILIZES CONNECTED CUBICS
 - 1 UTILIZES CONNECTED QUADRATICS EXCEPT FOR OUTERMOST SEGMENT WHERE CONNECTED CUBICS ARE EMPLOYED.
 - 2 UTILIZES CONNECTED QUADRATICS EVERYWHERE.
 - 3 SAME AS 2 BUT DEMANDS ZERO VELOCITY GRADIENT AT THE OUTER EDGE OF THE BOUNDARY LAYER (OVERRIDES THE ALPHA CONSTRAINT SEE GROUP 4. CARD 3).
- COLUMN 11 TOGETHER WITH COLUMN 9. THIS DESIGNATES THE TYPE OF WALL BOUNDARY CONDITION (SEE APPENDIX I). SEE GROUPS 16, 17, 18, . . .
 - ASSIGNED WALL TEMPERATURE. ALSO USED WITH KR(9)=4. THIS OPTION TOGETHER WITH KR(9)=2 WILL YIELD SURFACE EQUILIBRIUM OR KINETIC SURFACE SOLUTION IF THE ASSIGNED TEMPERATURE IS GREATER THAN THE ASSIGNED ABLATION TEMPERATURE (SEE GROUP: 11. CARD 1. FIELD 7. THE PROGRAM WILL CALCULATE THE APPROPRIATE CHAR FLUX. (ASSIGNED CHAR FLUX SHOULD BE SET TO ZERO (SEE GROUP 16. CARD SET 11).
 - 1 ASSIGNED WALL ENTHALPY.
 - 2 SURFACE EQUILIBRIUM WITH ASSIGNED COMPONENT MASS FLUXES (REQUIRES KR(9) = 2). THE PROBLEM IS WELL-POSED AND WILL CONVERGE
 ONLY IF THERE EXISTS A TEMPERATURE ABOVE 250K GIVING SURFACE
 EQUILIBRIUM FOR THE ASSIGNED COMPONENT MASS FLUXES. USE WITH
 CAUTION FOR ANALYSES OF MATERIALS WITH PLATEAU-LIKE BEHAVIOR.
 - 3 CABLE SOLUTIONS ONLY. ASSIGNED WALL TEMPERATURE.
 - 4 CABLE SOLUTIONS ONLY. SURFACE EQUILIBRIUM.
- COLUMN 12 DETERMINES WHETHER OR NOT NEW DATA FOR THERMODYNAMIC AND TRANSPORT PROPERTIES ARE TO BE USED AND WHETHER OR NOT SURFACE KINETIC DATA ARE TO BE CONSIDERED (SEE GROUPS 11, 12,13, AND 14). APPLIES ONLY FOR KR(7)=0 OR 2, (KR(12) MUST BE 0, 2, 5, OR 7 FOR FIRST CASE). IN THE FOLLOWING, X=5 FOR KINETIC DATA AND X=0 FOR NO KINETIC DATA.
 - X USER INPUTS NEW DATA FOR ELEMENTS AND MOLECULAR, ATOMIC, AND IONIC SPECIES. THERMOCHEMICAL DATA NOT PRINTED IN OUTPUT.

- 1+X USES RESIDENT ELEMENTAL AND SPECIES DATA.
- 2+X SAME AS: KR(12)=X EXCEPT THERMOCHEMICAL DATA ARE PRINTED IN-OUTPUT. (WHEN X=5 KINETIC DATA ALWAYS PRINTED IN OUTPUT).
- COLUMN 13 PERMITS THE ASSIGNMENT OF A CONVERGENCE DAMPING FACTOR (THIS IS OVERRIDDEN IF A SMALLER DAMPING FACTOR IS COMPUTED INTERNALLY BY SOME CONSTRAINT)
 - 10 NO DAMPING FACTOR IS ASSIGNED
 - J IF JEIS GREATER THAN ZERO, CORRECTIONS ARE DAMPED UNIFORMLY BY J/10
 THIS PROCEDURE IS NOT RECOMMENDED AS IT IS VERY INEFFICIENT AND THE
 DAMPING COMPUTED BY THE PROGRAM IS USUALLY ADEQUATE
- COLUMN 14 DÉTERMINES MODEL TO BE EMPLOYED FOR MULTICOMPONENT TRANSPORT PROPERTIES. APPLIES ONLY FOR KR(7) = 0 OR 2. CONSIDERING UNEQUAL DIFFUSION COEFFICIENTS CAN SUBSTANTIALLY INCREASE THE NUMBER OF ITERATIONS (AND SOMETIMES CONVERGENCE DOES NOT OCCUR IN THE ALLOWED NUMBER OF ITERATIONS) DUE TO THE USE OF INEXACT DERIVATIVES IN THE NEWTON-RAPHSON ITERATION PROCEDURE
 - TO CONSIDERS: UNEQUAL DIFFUSION AND THERMAL DIFFUSION COEFFICIENTS FOR ALL SPECIES
 - 1 CONSIDERS UNEQUAL DIFFUSION COEFFICIENTS FOR ALL SPECIES BUT **NEGLECTS THERMAL DIFFUSION**
 - 2 CONSIDERS EQUAL DIFFUSION COEFFICIENTS AND NEGLECTS THERMAL DIFFUSION
- COLUMN 15 NON-ZERO ENTRY PROVIDES DEBUG OUTPUT FOR FIRST GUESSES AND LINEAR MATRICES (SEE DEBUG INSTRUCTIONS FOR MORE DETAILED INFORMATION ON COLUMNS 15 THROUGH 20)
 - O NO DEBUG
 - 1: FIRST GUESSES ARE DUMPED
 - 2 LINEAR MATRICES BEFORE AND AFTER INVERSION ARE ALSO DUMPED
- COLUMN 16 NON-ZERO ENTRY PROVIDES DEBUG OUTPUT FOR WALL FLUXES AND SURFACE EQUILIBRIUM ITERATION (SOME OF THE TESTS ARE ACTUALLY MADE ON KR(7), SEE DEBUG INSTRUCTIONS)
 - O NO DEBUG
 - X FOR X GREATER THAN ZERO. THE DERIVATIVES OF WALL ENERGY AND MASS FLUXES WITH RESPECT TO REDUCED NONLINEAR VARIABLES (DGJRNL). AND THE ASSOCIATED ERRORS (WALLQJ AND DELQJW) ARE DUMPED. ALSO. THE MATRIX OF WALL RELATIONS BEFORE AND AFTER MATRIX INVERSION IS DUMPED FOR KR(11)=2 PROBLEMS.

- Y FOR Y GREATER THAN UNITY, SURFACE EQUILIBRIUM ITERATION INFORMATION IS ALSO DUMPED (AS IN KR(18)) AND IF KR(17) IS GREATER THAN ZERO, THE DERIVATIVES OF WALL ENERGY AND MASS FLUXES WITH RESPECT TO ALL NONLINEAR VARIABLES (DOUNL) ARE ALSO DUMPED.
- COLUMN 17 NON-ZERO ENTRY PROVIDES DEBUG OUTPUT FOR COEFFICIENTS IN NON-LINEAR EQUATIONS AND FOR STREAMWISE DERIVATIVES
 - O NO DEBUG
 - X FOR X GREATER THAN ZÈRO, STREAMWISE DERIVATIVE INFORMATION IS DUMPED.
 - Y FOR (Y+1-ITS) GREATER THAN ZERO, WHERE ITS IS THE NUMBER OF THE CURRENT BOUNDARY LAYER ITERATION, THE COEFFICIENTS WHICH COMBINE TO MAKE UP THE NONLINEAR EQUATIONS (COEEGY ARRAY) AND CERTAIN LINEAR AND NONLINEAR ERROR INFORMATION ARE DUMPED AND THE DERIVATIVES OF THE NONLINEAR EQUATIONS WITH RESPECT TO THE NONLINEAR VARIABLES (AM ARRAY) ARE DUMPED BEFORE AND AFTER INVERSION.
- COLUMN 18 NON-ZERO ENTRY PROVIDES DEBUG OUTPUT FOR CHEMISTRY ITERATION (KR(7) = 0 OR 2 ONLY). (THE TESTS ARE ACTUALLY MADE ON KR(7). SEE DEBUG INSTRUCTIONS).
 - O NO DEBUG
 - 1 DUMPS CHEMISTRY ITERATIONS IN DETAIL FOR ITS GREATER THAN 45 WHERE ITS IS THE COUNTER ON CHEMISTRY ITERATIONS
 - 2. DUMPS ONE LINE PER ITERATION DURING EACH CHEMISTRY ITERATION
 - Y FOR Y OF 3 THROUGH 6, DUMPS CHEMISTRY ITERATIONS IN DETAIL WHEN (5*(Y-2)-ITS) IS GREATER THAN ZERO.
 - X FOR X OF 7 THROUGH 9. DUMPS CHEMISTRY ITERATIONS IN DETAIL WHEN ITS IS GREATER THAN 10X-50.
- COLUMN 19 NON-ZERO ENTRY PROVIDES DEBUG OUTPUT FOR LINEAR AND NONLINEAR ERRORS
 - O NO DEBUG
 - DUMPS (FOR EACH ITERATION) THE FOLLOWING. ERRORS FOR NONLINEAR MOMENTUM (FNLE), ENERGY (GNLE), AND SPECIES (SPNLE) EQUATIONS, ERRORS (DRNL) AND COEFFICIENTS (DVNL) FOR NONLINEAR WALL BOUNDARY CONDITIONS, AND ERRORS FOR TAYLOR SERIES EXPANSIONS AND LINEAR BOUNDARY CONDITIONS FOR F AND ITS DERIVATIVES (FLE), ENTHALPY AND ITS DERIVATIVES (GLE), AND ELEMENTAL MASS FRACTIONS AND THEIR DERIVATIVES (SPLE).

COLUMN 20 NON-ZERO ENTRY PROVIDES DEBUG OUTPUT FOR THERMODYNAMIC AND TRANSPORT PROPERTIES (KR(7) = 0 OR 2 ONLY).

- O NO DEBUÉ
- X FOR X GREATER THAN ZERO FIVES THERMODYNAMIC AND TRANSPORT PROPERTY INFORMATION FOR EACH CHEMISTRY SOLUTION.
- 2 GIVES MATRIX OF PROPERTY DERIVATIVES BEFORE AND AFTER INVERSION

FIELD 2 (COLUMNS 21-80), CASE

TITLE OF CASE (ALPHANUMERIC). USED FOR IDENTIFICATION OF PRINTED OUTPUT)

CARD 2

INSERT A BLANK CARD HERE

GROUP 2 NUMBER OF ELEMENTS (CALLED FROM RECASE)

CARD 1, FORMAT(12,8X,4011)

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), NSP

NUMBER OF ELEMENTS IN THE SYSTEM NOT INCLUDING ELECTRONS (MAX. OF 9)

FIELDS 2-51 (COLUMNS (11-60), KS(M), M=1,NS ***** USED ONLY FOR KR(9) OR ANY OF THE KR9 = 3 OR 4 *****

THE SURFACE MATERIAL IS SPECIFIED IN ADVANCE BY THE USER FOR KR(9) = 3 OR 4. UP TO THREE MATERIAL COMBINATIONS ARE ALLOWED. EACH COMBINATION MAY HAVE A SEPARATE PYROLYSIS GAS AND CHAR MATERIAL SPECIFIED IN GROUP 11. FIELD 5. ENTER A 1. 2. OR 3 TO DENOTE MATERIAL COMBINATION 1. 2. OR 3 STARTING WITH THE STATION 1 ENTRY IN COLUMN 11. STATION 2 IN COLUMN 12. ETC. SEE ALSO GROUP 6. CARDS 1 AND 2.

GROUP 3 TIMES AND STATIONS (CALLED FROM RECASE)

CARD 1. FORMAT(12)

FIELD 1 (COLUMNS 1-2) RIGHT-JUSTIFIED) NITEM

NUMBER OF TIMES (OR SUBCASES) BEING CONSIDERED IN PRESENT CASE. (MAXIMUM OF 50). A SERIES OF PROBLEMS CAN BE CONSIDERED AS A SEQUENCE OF TIMES (OR SUBCASES) IN THE SAME CASE AS LONG AS THE FOLLOWING ARE UNCHANGED. NUMBER OF ELEMENTS (GROUP 2). STREAMWISE STATIONS (CARD 3 AND CARD SET 4 OF THIS GROUP). NODAL SPACING (GROUP 4). BODY SHAPE (GROUP 5). AND ELEMENTAL AND SPECIES DATA (GROUP 10 OR 11 THRU 14) (AND THUS EDGE GAS AND WALL MATERIAL). CALCULATIONS ARE PERFORMED FOR ALL TIMES AT A GIVEN STATION BEFORE PROCEEDING TO NEXT STATION AND THUS APPEAR: IN THIS ORDER IN THE PRINTED AND PUNCHED CARD OUTPUT.

CARD SET 2, FORMAT(8E10.4)

FIELD 1 (COLUMNS 1+10), FIELD 2 (COLUMNS 11+20), ETC., 8-TO A CARD, TIME(M), M=1+NITEM (SEE CARD 1 OF THIS GROUP)

TIME, SEC. THIS VARIABLE SERVES ONLY TO IDENTIFY SOLUTIONS SINCE TIME DOES NOT ENTER INTO THE SOLUTION OF THE PROBLEM. USE A NEGATIVE ENTRY FOR TIME(1) IF IT IS DESIRED THAT THESE IDENTIFICATION NUMBERS BE CALLED CASES IN THE OUTPUT FORMAT (OTHERWISE, THEY ARE IDENTIFIED AS TIMES).

CARD 3, FORMAT(12,8X,4011)

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), NS

NUMBER OF STREAMWISE STATIONS (MAXIMUM OF 40)

FIELD 2 (COLUMNS 11-50), KR9

VALUES TO BE ASSIGNED TO KR(9) WHEN WALL BOUNDARY CONDITIONS ARE TO BE CHANGED AT DOWNSTREAM STATIONS (SEE CARD 1 OF GROUP 1). COLUMN 11 CORRESPONDS TO STATION S(1), COLUMN 12 TO STATION S(2), AND SO CN. IF WALL BOUNDARY CONDITIONS ARE NOT TO BE CHANGED AT DOWNSTREAM STATIONS, THIS FIELD SHOULD BE LEFT BLANK. WHEN THE KR9() ARE EMPLOYED, KR(9) SHOULD BE GIVEN THE SAME VALUE AS KR9(1) EXCEPT WHEN USING THE TRANSPIRATION OPTION DESCRIBED IN APPENDIX I OF THIS MANUAL. AT THE PRESENT TIME, IT IS POSSIBLE TO CONSIDER ANY COMBINATIONS OF KR9 OF 2, 3, AND 4 COMPRISING REGIONS OF AN ABLATION MATERIAL AND REGIONS WHERE THERE IS NO ABLATION (THESE NONABLATING REGIONS ARE OBTAINED BY USE OF KR9() = 2 WHILE ASSIGNING ZERO COMPONENT MASS FLUXES, SEE CARD SET 11 OF GROUP 16)

3....

CARD SET 4. FORMAT(8E10.4)

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, S(L), L=1,NS (SEE CARD 3 OF THIS GROUP)

STREAMWISE DISTANCE UPON WHICH BOUNDARY-LAYER SOLUTION IS BASED, FEET. A BLUNT-BODY PROBLEM (KR(6) = 0.1 OR 5) SHOULD START WITH AN S(1) OF 0. A SHARP-BODY PROBLEM (KR(6) = 2.3 OR 7) OR A NOZZLE-TYPE PROBLEM (KR(6) = 4 OR 8) MUST NOT START WITH A S(1) OF 0. BUT MUST START WITH SOME FINITE DISTANCE. THE BOUNDARY LAYER IS ASSUMED TO BE SIMILAR UP TO AND INCLUDING THIS FIRST STATION. A NEGATIVE ENTRY FOR S(L) SIGNIFIES A DISCONTINUITY AT THAT STATION. THIS PRODUCES A TWO-POINT DIFFERENCE SOLUTION AT THE FIRST STATION AFTER THE DISCONTINUITY AND THUS HAS AN EFFECT ONLY FOR THREE-POINT SOLUTIONS (KR(3)=2), ALSO, FOR BLUNT BODIES, A MINUS SIGN AT A STATION CAUSES STREAMWISE INTEGRATIONS TO REVERT TO S AS THE INDEPENDENT VARIABLE - SEE DISCUSSION UNDER CARD 1, COLUMN 6 OF GROUP 1.

GROUP 4 NODAL DATA (CALLED FROM RECASE) *** SKIP THIS GROUP FOR KR(1)=0 ***

CARD 1. FORMAT(12) ***** USED ONLY IF KR(1)=1 *****

FIELD 1 (COLUMNS 1-2) RIGHT-JUSTIFIED) , NETA-

NUMBER OF NODAL POINTS ACROSS THE BOUNDARY LAYER INCLUDING WALL AND BOUNDARY LAYER EDGE (MAXIMUM OF 15).

CARD SET 2. FORMAT(8E10.4) ***** USED ONLY IF KR(1)=1 *****

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), (ETC., 8 TO A CARD, ETA(1), I=1,NETA (SEE CARD 1 OF THIS GROUP)

ETA STATIONS ACROSS THE BOUNDARY LAYER, STARTING AT WALL (ETA=0.0). IT IS RECOMMENDED THAT THE VALUE OF ETA AT THE BOUNDARY-LAYER EDGE BE GIVEN A VALUE OF ABOUT 5.0 SO THAT THE STRETCHING PARAMETER WILL BE NEAR UNITY. ALSO, THERE SHOULD NOT BE MUCH MORE THAN A TWO-FOLD CHANGE IN DISTANCE BETWEEN TWO NEIGHBORING NODES. BEST ACCURACY FOR A GIVEN NUMBER OF NODES IS OBTAINED IF THE NODES ARE CLOSER TOGETHER NEAR THE WALL. FOR LAMINAR PROBLEMS, 7 NODES ARE OFTEN SUFFICIENT WITH A TYPICAL SPACING BEING 0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 AND WITH KAPPA = 5, CBAR = 0.8 (SEE CARD 3, FIELDS 1 AND 2 OF THIS GROUP). FOR TURBULENT BOUNDARY LAYERS, MORE NODES ARE NEEDED CLOSE TO THE WALL DUE TO THE STEEP GRADIENTS THERE. A TYPICAL SPACING WOULD BE 0.0, 0.024, 0.040, 0.072, 0.120, 0.200, 0.320, 0.480, 0.800, 1.400, 2.000, 3.200, 5.000, WITH KAPPA = 11 AND CBAR = 0.95. WHATEVER THE NODE SPACING THE USER MUST EXAMINE THE SOLUTIONS TO BE SURE THAT A REASONABLE CURVEFIT IS OBTAINED NEAR THE WALL. THIS CAN BE A PROBLEM FOR LARGE STREAMWISE DISTANCES IN TURBULENT FLOWS.

CARD 3, FORMAT(12,E10.4) +++++ USED ONLY IF KR(1)=1 +++++

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), KAPPA

THE VARIABLE KAPPA IS ASSOCIATED WITH THE CONSTRAINT WHICH IS UTILIZED TO EFFECT A STRETCHING OF ETA; THE BOUNDARY-LAYER COORDINATE NORMAL TO THE SURFACE, IN ORDER TO EFFECTIVELY USE THE ASSIGNED NODAL SPACING (SEE CARDS 1 AND 2 OF THIS GROUP). KAPPA IS THE INDEX FOR THE NODAL POINT AT WHICH THE VELOCITY RATIO IS FIXED. TO ILLUSTRATE, IF KAPPA IS 5, THEN THE FIFTH NODAL POINT COUNTING FROM THE WALL AND INCLUDING THE WALL WILL HAVE A VALUE OF CBAR (A QUANTITY WHICH IS INPUT IN THE SECOND FIELD OF THIS CARD).

FIELD 2 (COLUMNS 3-12), CBAR

CBAR IS THE VALUE OF THE VELOCITY RATIO AT THE BOUNDARY-LAYER NODE DESIGNATED KAPPA (SEE DISCUSSION UNDER FIELD 1: OF THIS CARD)

GROUP: 5 BODY SHAPE DATA (CALLED FROM RECASE)

CARD 1, FORMAT(2E10.4) ***** USED ONLY IF BLUNT BODY, KR(6)=0.1, OR 5 *****

FIELD 1 (COLUMNS 1-10), CONE

CONE HALF-ANGLE IN SPHERE-CONE SHAPE BODIES, LEAVE BLANK FOR OTHER BODY SHAPES.

FIELD 2 (COLUMNS 11-20), RNOSE

EFFECTIVE NOSE RADIUS, FEET, THE VALUE READ INTO THIS FIELD IS OVER-RIDDEN IF THE PRESSURE RATIO AT THE FIRST STATION, PRE(1), IS READ IN AS A ZERO (SEE CARD SET 3 OF GROUP 15), IF PRE(1) IS NON-ZERO, THEN A NON-ZERO ENTRY IN THE CURRENT FIELD IS USED IN THE CALCULATION OF STAGNATION POINT VELOCITY GRADIENT FROM THE NEWTONIAN RELATION

DUES = SQRT(2./RHOE * PE * 32.1740 * 2116.) / RNOSE

WHERE DUES IS THE STAGNATION POINT VELOCITY GRADIENT AND RHOE AND PE ARE LOCAL STAGNATION DENSITY (LB/FT3) AND PRESSURE (ATM), RESPECTIVELY. THIS LATTER APPROACH IS REQUIRED FOR BLUNT-BODY PROBLEMS IF THERE IS ONLY ONE STATION (NS = 1, SEE CARD 3 OF GROUP 3). WHEN RNOSE IS READ INTO THE CURRENT FIELD AND NOT BEING OVERRIDDEN (I.E., WHEN PRE(1) IS NOT SET EQUAL TO ZERO) A MACH NUMBER CORRECTION (IMPORTANT FOR LOW FREE-STREAM MACH NUMBERS) CAN BE MADE BY INPUTTING

RNOSE = REFF / SQRT(1. - PINF / PE)

WHERE REFF IS THE TRUE EFFECTIVE NOSE RADIUS (FEET) AND PINF IS THE FREE STREAM STATIC PRESSURE (LB/FT2). (IF THE CURRENT FIELD IS LEFT BLANK AND PRE(1) IS NON-ZERO, THE STAGNATION-POINT VELOCITY GRADIENT IS COMPUTED FROM A CURVE FIT OF THE PRE AROUND THE BODY. IN ANY EVENT, A CURVE FIT OF PRESSURE IS USED TO COMPUTE VELOCITY GRADIENT FOR STATIONS 2 AND BEYOND).

CARD SET 2, FORMAT(8E10.4) ***** NOT USED IF KR(6)=1 OR 3 *****

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, ROKAP(L), L=1, NS (SEE CARD 3 OF GROUP 3)

THIS IS THE LOCAL BODY RADIUS IN FEET NORMAL TO THE BODY CENTERLINE RAISED TO THE KAPPA POWER WHERE KAPPA IS UNITY FOR AXISYMMETRIC BODIES AND ZERO FOR PLANAR BODIES. THEREFORE, ROKAP IS UNITY FOR PLANAR BODIES AND LOCAL BODY RADIUS FOR AXISYMMETRIC BODIES. FOR PLANAR BODIES, THIS CARD SET IS USED ONLY IF KR(6) = 4. TWO SPECIAL INPUT FORMATS CAN BE USED. FOR SPHERE CONE BODIES, SET ROKAP(1) EQUAL TO MINUS THE NOSE RADIUS. THE NOSE RADIUS IS THEN SET TO -ROKAP(1) AND ROKAP(1) IS SET TO ZERO. IF SUBSEQUENT ROKAP() ARE INPUT AS ZEROES, THE PROGRAM COMPUTES ROKAP FROM S FOR A SPHERICAL NOSE. THE FIRST NONZERO ENTRY IS THE ROKAP AT THE CONE TANGENT POINT. IF THIS IS AGAIN FOLLOWED BY ZEROES, LINEAR INTERPOLATION IS USED TO THE NEXT NONZERO ENTRY TO YIELD ROKAP ALONG A CONICAL AFTERBODY.

FOR SHARP CONES, KR(6) = 2 OR 7, SET ROKAP(1) EQUAL TO MINUS THE CONE HALF ANGLE IN DEGREES. ROKAP(1) IS THEN SET TO ZERO AND THE PROGRAM COMPUTES ROKAP FROM S FOR A SHARP CONE OF THE SPECIFIED HALF ANGLE.

GROUP 6 MATERIAL PROPERTY DATA NEEDED FOR WALL QUASI-STEADY ENERGY BALANCE (CALLED FROM RECASE) *****CONSIDER THIS GROUP ONLY IF KR(9) OR ANY OF THE KR9 IS EQUAL TO 3 OR GREATER*****

CARD 1, FORMAT(9E8.3) ** USED ONLY IF KR(9) OR ANY OF THE KR9 IS 3 OR 4 **

FIELDS 1.4.7 (COLUMNS 1-8, 25-32, 49-56), EMIV(I), I=1,3

SURFACE EMITTANCE OF THE MATERIAL COMBINATIONS BEING CONSIDERED UNDER KR(9) OR KR9 OF 3 OR 4.

FIELDS 2.5.8 (COLUMNS 9-16, 33-40, 57-64), HCARB(I), I=1.3

HEAT OF FORMATION (BTU/LB) OF THE VIRGIN STATE OF THE ABLATION MATERIALS BEING CONSIDERED UNDER KR(9) OR KR9 OF 3 OR 4.

FIELDS 3,6,9 (COLUMNS 17-24, 41-48, 65-72), HPG(I), I=1,3

HEAT OF FORMATION (BTU/LB) OF THE TRANSPIRANTS BEING CONSIDERED UNDER KR(9) OR KR9 OF 3 OR 4.

CARD 2. FORMAT(6A4) ** USED ONLY WITH CARD 1 **

FIELDS 1:2: AND 3 (COLUMNS 1-8: 9-16: 17-24)

NAMES OF SURFACE SPECIES FOR MATERIAL COMBINATIONS 1:2: AND 3 EXACTLY AS THEY APPEAR IN THE THERMODYNAMIC DATA TABLES (GROUP 13): LEFT JUSTIFIED:

GROUP 7 FUNCTION-OF-TIME DATA (CALLED FROM RECASE)

CARD SET 1, FORMAT(8E10.4)

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, PTET(M), M=1,NITEM (SEE CARD 1 OF GROUP 3)

LOCAL STAGNATION PRESSURE FOR EACH TIME BEING CONSIDERED. ATMOSPHERES

CARD SET 2. FORMAT(8E10.4)

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, GE(M), M=1,NITEM (SEE CARD 1 OF GROUP 3)

STAGNATION ENTHALPY FOR EACH TIME BEING CONSIDERED, BTU/LB

CARD SET 3, FORMAT(8E10.4)

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, RADFL(M), M=1,NITEM (SEE CARD 1 OF GROUP 3)

INCIDENT RADIATION FLUX ABSORBED BY THE SURFACE AT STATION S(1) FOR EACH TIME BEING CONSIDERED, BTU/SEC FT2 (IF A SURFACE ABSORPTIVITY LESS THAN UNITY IS TO BE CONSIDERED, THESE ENTRIES SHOULD BE CORRECTED FOR SURFACE ABSORPTIVITY). THIS INFORMATION IS USED ONLY FOR KR(9) OR KR9 OF 4 OR 6. INPUT BLANKS IN THIS FIELD FOR OTHER TYPES OF PROBLEMS. RADIATION FLUX AT OTHER STATIONS WILL BE INPUT AS RATIOS IN GROUP 15.

GROUP 8 TURBULENT FLOW PARAMETERS (CALLED FROM TREMBL) **** CONSIDER THIS GROUP ONLY IF KR(7)=2 OR 3 ****

CARD 1, FORMAT(6E10.3)

FIELDS 1-6, (COLUMNS 1-10, 11-20, 21-30, 31-40, 41-50, 51-60) ELCON, YAP, CLNUM, SCT, PRT, RETR

ELCON IS THE PRANDTL MIXING LENGTH CONSTANT (0.44 IS A TYPICAL VALUE).

YAP IS A CONSTANT OF PROPORTIONALITY IN THE MIXING LENGTH EXPRESSION (11.823 IS A TYPICAL VALUE).

CLNUM IS THE CLAUSER CONSTANT OF PROPORTIONALITY IN WAKE REGION (0.018 IS A TYPICAL VALUE).

SCT IS THE TURBULENT SCHMIDT NUMBER.

PRT IS THE TURBULENT PRANDTL NUMBER.

RETR IS THE TRANSITION REYNOLDS NUMBER BASED ON MOMENTUM THICKNESS. IF RETR IS EXCEEDED, TURBULENCE TERMS WILL BE INCLUDED IN THE GOVERNING EQUATIONS.

GROUP 9 FIRST GUESS OR RESTART INFORMATION (CALLED FROM FIRSTG) **** SKIP THIS GROUP FOR KR(2)=2. CONSIDER ONLY CARD 6 FOR KR(2)=0 ****

CARD 1, FORMAT(3E10.4,5X,15) **** USED ONLY FOR KR(2)=1 OR 3 ****

FIELD 1 (COLUMN 1-10) ALPH

FIRST GUESS OR RESTART VALUE FOR BOUNDARY LAYER NORMALIZING PARAMETER (USE A 1.0 IF A BETTER GUESS IS NOT KNOWN).

FIELD 2 (COLUMNS 11-20) F(1.1)

FIRST GUESS OR RESTART VALUE FOR STREAM FUNCTION AT THE WALL.

FIELD 3 (COLUMNS 21-30) F(3.1)

FIRST GUESS OR RESTART VALUE FOR NORMALIZED VELOCITY GRADIENT AT THE WALL.

FIELD 4 (COLUMN 36-40, RIGHT JUSTIFIED) IST

STATION NUMBER FOR RESTART. MEANINGFUL ONLY FOR KR(2)=3.

CARD SET 2. FORMAT(8E10.4) **** USED ONLY FOR KR(2)=1 OR 3 ****

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, F(2,1), I=1,NETA.

FIRST GUESSES OR RESTART VALUES FOR VELOCITY RATIO F(2,1) ACROSS THE BOUNDARY LAYER.

CARD SET 3, FORMAT(8E10.4) **** USED ONLY FOR KR(2)=1 OR 3 ****

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, G(2,1), G(1,1), I=1,NETA

FIRST GUESSES OR RESTART VALUES FOR ENTHALPY GRADIENT AT THE WALL G(2,1) AND ENTHALPY G(1,1) ACROSS THE BOUNDARY LAYER, BTU/LB.

CARD SET 4, FORMAT(8E10.4; **** USED ONLY FOR KR(2)=1 OR 3 AND NSP GREATER THAN 1 ****

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, (SP(2,1,K), SP(1,1,K), I=1,NETA) K=1, NSP-1

FIRST GUESSES OR RESTART VALUES FOR ELEMENTAL MASS FRACTION GRADIENT AT THE WALL SP(2,1,K) AND ELEMENTAL MASS FRACTION VALUES SP(1,1,K) ACROSS THE BOUNDARY LAYER. READ IN WALL GRADIENT AND VALUES AT NODES FOR EACH SPECIES BEFORE GOING ON TO NEXT SPECIES. START EACH SPECIES ON A NEW CARD.

- CARD SET 5, FORMAT(4012) **** USED ONLY FOR KR(2)=1 OR 3 AND NSP GREATER THAN 1 ****
 - FIELD 1 (COLUMNS 1-2, RIGHT JUSTIFIED), FIELD 2 (COLUMNS 3-4, RIGHT JUSTIFIED), ETC., (LEF(K), K=1,NSP) (SEE CARD 1 OF GROUP 2)

ENTRIES IN THESE FIELDS MUST INDIVIDUALLY CORRESPOND TO THE ELEMENTS AS THEY ARE SELECTED FROM THE THERMODYNAMIC DATA (SEE DISCUSSION UNDER GROUP 13) ACCORDING TO WHETHER, FOR THE FIRST STATION, THE ELEMENT IS

- 0 NOT PRESENT
- 1 PRESENT DUE TO LOCAL INJECTION
- 2 PRESENT DUE TO UPSTREAM INJECTION (NOT POSSIBLE AT FIRST STATION)
- 3 PRESENT FROM THE EDGE GAS
- CARD 6, FORMAT(E10,4) ***** USED ONLY FOR KR(2)=0 *****

FIELD 1 (COLUMNS 1-10)+ GW

FIRST GUESS FOR ENTHALPY OF THE GAS AT THE WALL, BTU/LB

GROUP 10 THIS CARD GROUP IS NOT USED IN THE PRESENT VERSION OF THE PROGRAM.

GROUP 11 ELEMENTAL DATA (CALLED FROM INPUT)

+*** SKIP THIS GROUP FOR KR(12)=1 OR 6 OR FOR KR(7)=1 OR 3 ****

CARD 1. FORMAT(13.F7.0.7F10.4) **** USED ONLY FOR KR(12)=0.2.5. OR 7

FIELD 1 (COLUMNS 1-3, RIGHT-JUSTIFIED), IS

NUMBER OF ELEMENTS IN THE SYSTEM INCLUDING ELECTRONS IF CONSIDERED (THIS ENTRY WILL BE THE SAME AS CARD 1 OF GROUP 2 (EXCEPT FOR THE DIFFERENT FORMAT) FOR SYSTEMS NOT CONTAINING ELECTRONS BUT WILL BE ONE GREATER FOR SYSTEMS CONTAINING ELECTRONS)

FIELDS 2 AND 3 (COLUMNS 4-10,11-20) FFAR, FITMOL

CONSTANTS IN THE CURVEFIT OF FF(J) IN TERMS OF MOLECULAR WEIGHT..

FF(J)=(WTM(J)/FITMOL)**FFAR

FFAR AND FITMOL ARE PRESUMED TO BE 0.431 AND 23.4 IF NO ENTRY IS MADE.

FIELDS 4, 5, AND 6 (COLUMNS 21-30, 31-40, 41-50) BASMOL, SIGMA, EPOVRK

THESE VARIABLES DEFINE THE REFERENCE SPECIES PROPERTIES FOR FF(J) (REF. 5). BASMOL IS THE MOLECULAR WEIGHT OF THE REFERENCE SPECIES. SIGMA AND EPOVRK ARE THE SPECIES SIGMA AND EPSILON/K AS DEFINED BY REFERENCE 6. FOR THE CONVENIENCE OF THE USER. A TABLE OF SIGMA AND EPOVRK REPRODUCED FROM REFERENCE 6 IS INCLUDED AS APPENDIX II TO THIS MANUAL. STANDARD VALUES DESCRIBED IN REFERENCE 5 ARE USED IF NO ENTRIES ARE MADE.

FIELD 7 (COLUMNS 71-80) TF(N+1) **** USED ONLY FOR KR(9) = 2 WITH KR(11) = 0 ****

ABLATION TEMPERATURE, ABOVE WHICH EQUILIBRIUM CHAR REMOVAL RATE WILL BE DETERMINED. BELOW THIS TEMPERATURE, SURFACE EQUILIBRIUM IS SUPPRESSED. AUTOMATICALLY SET TO 50,000 K IF NO ENTRY. AN ABLATION TEMPERATURE MUST BE ENTERED HERE IF SURFACE CHEMISTRY IS TO BE CONSIDERED.

CARDS 2,3..., IS (ONE FOR EACH ELEMENT, SEE CARD 1, FIELD 1 OF THIS GROUP), FORMAT(13,3A4,E9.3,7E8.3) **** USED ONLY FOR KR(12)=0,2.5, OR 7 ***

FIELD 1 (COLUMNS 1-3, RIGHT-JUSTIFIED), KAT(K)

ATOMIC NUMBER OF ELEMENT (99 FOR ELECTRON). CARDS MUST BE ORDERED WITH THIS NUMBER ASCENDING WITH ELECTRON LAST (WHEN CONSIDERED).

FIELD 2, (COLUMNS 4-15) ATA(K), ATB(K), ATC(K)

NAME OF ELEMENT (USED FOR OUTPUT ONLY). FOR BEST LOOKING OUTPUT, ELEMENTS WITH 3 OR 4 LETTERS (EG., IRON) SHOULD START IN COLUMN 6, ELEMENTS WITH 5, 6, OR 7 LETTERS (EG., CARBON) SHOULD START IN COLUMN 5, AND ELEMENTS WITH 8 OR MORE LETTERS (EG., NITROGEN) SHOULD START IN COL. 4.

FIELD 3 (COLUMNS 16-24), WAT(K)

ATOMIC WEIGHT OF ELEMENT

FIELD 4 (COLUMNS 25-32) TK(K+1)

AMOUNT OF ELEMENT IN BOUNDARY-LAYER EDGE GAS. SEE BELOW FOR UNITS.

FIELDS 5 TO 10 (COLUMNS 33-40, 41-48, 49-56, 57-64, 65-72, 73-80) TK(K,J)

AMOUNT OF ELEMENT IN PYROLYSIS GAS AND CHAR FOR EACH OF THE THREE ALLOWABLE MATERIALS. FIELDS 5 AND 6 ARE FOR MATERIAL 1, FIELDS 7 AND 8 FOR
MATERIAL 2, ETC. NEGATIVE VALUES ARE USED TO DESIGNATE RELATIVE MASSES
OF ELEMENTS, WHEREAS POSITIVE VALUES ARE USED TO DESIGNATE RELATIVE
NUMBERS OF ATOMS. AS AN EXAMPLE OF THE LATTER, THE ENTRIES FOR A SILICA
CHAR COULD BE 1. FOR THE ELEMENT SILICON AND 2. FOR OXYGEN.

GROUP 12 DIFFUSION FACTOR DATA (CALLED FROM INPUT)

**** SKIP THIS GROUP FOR KR(7)=1 OR 3 OR FOR KR(12)=1 OR 6 OR IF IT

IS DESIRED TO USE THE MOLECULAR WEIGHT APPROXIMATION FOR

DIFFUSION FACTORS (SEE FIELDS 2 AND 3 OF CARD 1 OF GROUP 11).

ALWAYS SKIP FOR KR(7)=1 OR 3. ****

CARD 1, FORMAT(I3) ***** USED ONLY FOR KR(12)=0, 2, 5 OR 7 AND THEN ONLY IF IT IS DESIRED TO READ IN DIFFUSION FACTOR DATA FOR ONE OR MORE SPECIES *****

FIELD 1 (COLUMNS 1-3, RIGHT-JUSTIFIED) NFF

NUMBER OF MOLECULES FOR WHICH DIFFUSION FACTOR DATA ARE TO BE READ (SEE FIELDS 2 AND 3 OF CARD 1 OF GROUP 11).

CARDS 2, 3,..., AS REQUIRED (DIFFUSION FACTOR DATA REQUESTED BY CARD 1 OF THIS GROUP ARE ENTERED HERE 4 TO A CARD) FORMAT(4(2A4,E12.4)) ****** USED ONLY FOR KR(12)=0, 2, 5 OR 7 AND THEN ONLY IF THE CONDITIONS OF CARD 1 OF THIS GROUP ARE MET *****.

FIELDS 1, 3, 5, AND 7 (COLUMNS 1-8, 21-28, 41-48, AND 61-68, RESPECTIVELY)

NFIA(J) AND NFIB(J) IN EACH FIELD

AFWL-TR-69-114

NAME OF MOLECULE AS IT APPEARS IN COLUMNS 73-80 ON FIRST CARD OF 3-CARD THERMODYNAMIC DATA SET FOR THE MOLECULE (SEE GROUP 13, CARDS 1, 4, 7, .)

FIELDS 2, 4, 6, AND 8 (COLUMNS 9-20, 29-40, 49-60, AND 69-80 RESPECTIVELY)
FFIN(J) IN EACH FIELD

A SET OF FF(J) ARE INCLUDED IN THE PROGRAM. IF ANY OF THESE ARE TO BE CHANGED, THE NEW VALUES FOR EACH OF THE SPECIES NAMED IN FIELDS 1,3,5 ETC. ARE ENTERED HERE UNDER THE VARIABLE NAME FFIN(J). THEY ARE THEN SORTED BY SPECIES NAME AND ENTERED INTO THE PROPER SLOTS IN THE FF(J) ARRAY. THESE DIFFUSION FACTORS ARE REFERENCED TO OXYGEN (02) OR OTHER REFERENCE SPECIES INDICATED IN GROUP 11. TO OBTAIN ACCURATE VISCOSITY CALCULATIONS USE

FF(J)=(SIGMA(J)*WTM(J)**.25*EPOVRK(J)**.0795)/(SIGMA(REF)*WTM(REF) **.25*EPOVRK(REF)**.0795)

GROUP 13 THERMOCHEMICAL DATA (CALLED FROM INPUT)

***** SKIP THIS GROUP FOR KR(12)=1 OR 6 OR KR(7)=1 OR 3 ****

THERE ARE THREE CARDS FOR EACH MOLECULAR, ATOMIC, CONDENSED, OR IONIC A TOTAL OF 70 SPECIES OF ALL TYPES ARE ALLOWED. THE NUMBER SPECIES. OF ALLOWABLE CONDENSED-PHASE MATERIALS WHICH CAN BE SIMULTANEOUSLY PRESENT IN ANY SOLUTION IS 4. ANY NUMBER OF CONDENSED PHASE SPECIES CAN BE INCLUDED IN THE THERMOCHEMICAL DATA DECK. (NOTE... CONDENSED SPECIES ARE REQUIRED IN SURFACE EQUILIBRIUM CALCULATIONS FOR CONSID-ERATION AS CANDIDATE SURFACE MATERIALS BUT ARE NOT PRESENTLY CONSID-ERED AS CANDIDATE SPECIES WITHIN THE BOUNDARY LAYER). A BLANK CARD AFTER THE LAST SET CONCLUDES THE THERMODYNAMIC DATA. THE ARRANGEMENT OF THESE CARD SETS IS OF CONSEQUENCE IN SO FAR AS IT DETERMINES THE BASE SPECIES UPON WHICH MASS BALANCES ARE PERFORMED. THE FIRST INDE-PENDENT SET OF BASE SPECIES BEING SELECTED. SINGULAR MATRICES CAN RE-SULT FROM CERTAIN SETS OF THEORETICALLY ACCEPTABLE BASE SPECIES DUE TO ROUND-OFF ERRORS, FURTHERMORE, MASS BALANCES, ETC. FOR THE (NSP)TH BASE SPECIES (SEE CARD 1 OF GROUP 2) IS OBTAINED BY DIFFERENCE. THEREFORE. THE ELEMENT REPRESENTED BY THIS BASE SPECIES SHOULD BE PRESENT IN APPRECIABLE QUANTITIES THROUGHOUT THE BOUNDARY LAYER. FOR EXAMPLE, FOR ABLATION IN AIR, MOLECULAR NITROGEN IS A GOOD CHOICE FOR THE (NSP) TH BASE SPECIES. FINALLY, THE ORDER OF THE BASE SPECIES DETERMINES THE REACTANTS FOR KINETICS PROBLEMS (SEE GROUP 14, CARD 3) EXCEPT FOR THESE CONSIDERATIONS, ATOMIC, MOLECULAR, AND CONDENSED SPECIES CAN BE ARRANGED IN ANY ORDER. WHEN IONIZED FLOWS ARE CON-SIDERED. THE ATOMIC. MOLECULAR AND CONDENSED SPECIES DATA MUST APPEAR FIRST AND BE FOLLOWED BY. FIRST, ELECTRON SPECIES DATA, AND

THEN THE IONIC SPECIES DATA (WHICH CAN BE IN ANY ORDER). THE DATA FORMAT ACCEPTED BY THE PROGRAM (DESCRIBED BELOW) IS AS GENERATED BY THE AEROTHERM TCDATA PROGRAM AND IS THE SAME AS THAT USED IN NAVWEPS REPORT 7043. THERMOCHEMICAL DATA DECKS HAVE BEEN GENERATED FOR ABOUT 600 SPECIES, BASED MOSTLY ON CURVE FITS OF JANAF DATA.

CARDS 1, 4, 7, ..., ONE FOR EACH MOLECULE FORMAT(7(F3.0,13),30X,2A4)

***** USED ONLY FOR KR(12)=0, 2, 5 OR 7 *****

FIELDS 1, 3, 5, ..., ONE FOR EACH ELEMENT IN MOLECULE (COLUMNS 1-3, 7-9, 13-15, ...), ALPT(N) IN EACH FIELD

NUMBER OF ATOMS (OF ATOMIC NUMBER GIVEN IN SUBSEQUENT FIELD) IN A MOLECULE OF THIS SPECIES. IF FIELD ONE IS ZERO THIS CARD IS PRESUMED TO BE THE END OF THE THERMODYNAMIC DATA.

FIELDS 2. 4. 6. ... ONE FOR EACH ELEMENT IN MOLECULE (COLUMNS 4-6. 10-12. 16-18. ...). JAT(N) IN EACH FIELD

ATOMIC NUMBERS OF ELEMENTS IN MOLECULES (LISTED IN ASCENDING SEQUENCE).

LAST FIELD (COLUMNS 73-80)

MOLECULAR DESIGNATION (E.G., SIO2) FOR OUTPUT AND AS IDENTIFIER FOR DIFFUSION FACTOR DATA.

CARDS 2, 5, 8, ..., ONE FOR EACH MOLECULE FORMAT(6E9.6,6X,F6.0,11)

***** USED ONLY FOR KR(12)=0, 2, 5 OR 7 *****

FIELD 1 (COLUMNS 1-9), RA(J)

HEAT OF FORMATION OF MOLECULE AT 298 DEG K FROM JANAF BASE STATE (ELEMENTS IN MOST NATURAL FORM AT 298 DEG. K). CAL/MOLE.

FIELDS 2-6 (COLUMNS 10-18, 19-27, 28-36, 37-45, AND 46-54), CH(J,1), RC(J,1), RD(J,1), RE(J,1)

CONSTANTS APPROPRIATE TO LOWER TEMPERATURE RANGE OF THERMODYNAMIC DATA-TAKING F2, F3, ..., AS FIELDS 2, 3, ETC., THE CURVE FITS ARE AS FOLLOWS WITH T IN DEG K, H IN CAL/MOLE, AND S IN CAL/MOLE DEG K.

HEAT CAPACITY, CP=F3+F4+T+F5/T++2

ENTHALPY, H-H298=F2+F3+(T-3000)+0.5+F4+(T**2-3000**2) -F5*(1/T-1/3000)

ENTROPY, S=F6+F3+LN(T/3000)+F4+(T-3000)-0.5+F5+(1/T++2-1/3000++2)

FIELD 7 (COLUMNS 61-66), TU(J+1)

UPPER LIMIT OF LOWER TEMPERATURE RANGE IN DEG K. (FOR CONDENSED-PHASE MATERIALS WHICH MELT. IT IS APPROPRIATE TO USE MELT TEMPERATURES).

FIELD 8 (COLUMN 67), KPHA(1)

- 1 SIGNIFIES GASEOUS SPECIES
- 2 SIGNIFIES SOLID SPECIES
- 3 SIGNIFIES LIQUID SPECIES

CARDS 3, 6, 9, ..., ONE FOR EACH MOLECULE FORMAT(6E9.6,6X,F6.0,11)

***** USED ONLY FOR KR(12)=0, 2, 5 OR 7 *****

FIELDS 1-8 (COLUMNS 1-67)

SAME AS CARDS 2, 5, 8, ..., EXCEPT USE CONSTANTS FOR UPPER TEMPERATURE RANGE AND FIELD 7 IS THE FAIL TEMPERATURE OF THIS SPECIES AS A SURFACE.

LAST CARD AS MENTIONED PREVIOUSLY, A BLANK CARD IS USED TO SIGNIFY THE END OF THERMOCHEMICAL DATA

GROUP 14 SURFACE KINETIC DATA (CALLED FROM INPUT)

**** SKIP THIS GROUP FOR KR(12)=0+1+ OR 2 OR KR(7)= 1 OR 3 ****

REACTIONS OF THE SURFACE MATERIALS WITH ADJACENT BOUNDARY LAYER GASES CAN BE KINETICALLY CONTROLLED ACCORDING TO AN ARRHENIUS TYPE RELATION. FOR EXAMPLE, IN THE REACTION

C* + 1/2 02 + CO

THE MASS FLUX RELATION IS

$$\frac{\mathring{m}_{C}}{\overline{m}_{C}} = FKF * exp \left(EAK / (1.9869 * T) \right) * \left(P_{O_{2}}^{\frac{1}{2}} - \frac{P_{CO}}{K_{p}} \right)^{EXK}$$

WHERE

mc = CARBON MASS FLUX

Mc = CARBON MOLECULAR WEIGHT FKF = PRE-EXPONENTIAL FACTOR

EAK = ACTIVATION ENERGY

T = TEMPERATURE

P = PARTIAL PRESSURE OF THE SUBSCRIPTED SPECIES

K = EQUILIBRIUM CONSTANT

EXK = REACTION ORDER

THESE CONSTANTS AND FACTORS ARE INPUT ON THE CARDS DESCRIBED BELOW. FURTHER DISCUSSION OF KINETIC MODELS FOR ABLATION CAN BE FOUND IN REFERENCE 7. FOR EXAMPLE-

CARD 1, FORMAT(13)

FIELD 1 (COLUMNS 1~3, RIGHT JUSTIFIED), MT

NUMBER OF KINETICALLY CONTROLLED REACTIONS TO BE CONSIDERED. IF TWO PROBLEMS ARE STACKED TOGETHER SEPARATED BY A COMMA (SEE CARD 1 OF LAST GROUP) AND IF THE FIRST IS A KINETICS PROBLEM AND THE SECOND IS TO BE EQUILIBRIUM, THEN FOR THE SECOND, KINETICS MUST BE TURNED OFF USING KR(12)=5.6 OR 7 AND MT=0.

CARDS 2.5.8..., ONE FOR EACH KINETICALLY CONTROLLED REACTION, FORMAT(8E10.4)

FIELD 1 (COLUMNS 1-10), FKF(N)

PRE-EXPONENTIAL FACTOR FOR SURFACE MASS BALANCES IN LB-MOLES OF REACTANT PER FT**2 PER SECOND.

FIELD 2 (COLUMNS 11-20), EAK(N)

ACTIVATION ENERGY FOR THE FORWARD REACTION IN CALORIES PER GRAM-MOLE

FIELD 3 (COLUMNS 21-30), EXK(N)

REACTION EXPONENT. THE DRIVING POTENTIAL AS OBTAINED FROM THE REACTION STOICHIOMETRY IS RAISED TO THIS POWER IN EVALUATING THE REACTION RATE. EXK = 1.0 IS RECOMMENDED.

CARDS 3,6,9..., ONE FOR EACH KINETICALLY CONTROLLED REACTION, FORMAT(8E10.4)

FIELDS 1,2,3,..., ONE FOR EACH BASE SPECIES (COLUMNS 1-10,11-20,...), RMU(K,N)

STOICHIOMETRIC COEFFICIENTS ON REACTANTS. IN THE PRESENT FORMULATION ONLY BASE SPECIES MAY BE USED AS REACTANTS. THUS SOME CARE MUST BE USED IN ESTABLISHING THE ORDER OF GROUP 13.

CARDS 4.7.10... ONE FOR EACH KINETICALLY CONTROLLED REACTION, FORMAT(8E10.4)

FIELDS 1.2.3.... ONE FOR EACH BASE SPECIES (COLUMNS 1-10.11-20....),

STOICHIOMETRIC COEFFICIENTS ON THE PRODUCTS, OR ON THEIR EQUILIBRIUM BASE SPECIES EQUIVALENTS IF THEY ARE NOT BASE SPECIES. FOR EXAMPLE IF THE BASE SPECIES ARE CO, H20, H2, AND C* FOR A SYSTEM WHERE C* IS THE ONLY ISOLATED (NONEQUILIBRIUM) SPECIES, A REACTION WRITTEN AS

H2 + 2C* = C2H2

COULD EQUIVALENTLY BE WRITTEN

H2 + 2C* = 2CO + 3H2 - 2H2O

AND THIS IS THE MANNER IN WHICH THE PRODUCT COEFFICIENTS WOULD BE INPUT-THIS EQUIVALENT REPRESENTATION CAN NOT BE USED FOR REACTANTS.

GROUP 15 STREAMWISE DISTRIBUTIONS FOR EDGE CONDITIONS (CALLED FROM REFCON)

CARD SET 1, FORMAT(8E10.4) ***** USED ONLY FOR KR(5)=5 *****

FIELD 1 (COLUMNS 1-10): FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, DSIP(L), L=1,NS (SEE CARD 3 OF GROUP 3)

DECREASE IN EDGE ENTROPY FROM PREVIOUS STATION TO CURRENT STATION, CAL/GM DEG K (THE STAGNATION POINT ENTROPY IS COMPUTED BY THE PROGRAM. DSIP IS USED TO DECREMENT THE ENTROPY AT DOWNSTREAM STATIONS TO TAKE INTO ACCOUNT SHOCK CURVATURE. DSIP(1) SHOULD BE SET EQUAL TO ZERO.)

CARD 2, FORMAT(I2) ***** USED ONLY IF CARD SET 1 IS USED ****

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), IDSIP

IYEM WHEN DSIP IS TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUBCASE) USE BLANK CARD IF DSIP IS TO REMAIN UNCHANGED FOR ALL REMAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

CARD SET 3, FORMAT(8E10.4)

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, PRE(L), L=1.NS (SEE CARD 3 OF GROUP 3)

RATIO OF LOCAL STATIC TO STAGNATION PRESSURE. IN ADDITION TO DEFINING THE LOCAL PRESSURE, THIS DATA IS USED TO FORM THE LOCAL VELOCITY GRADIENT AT THE STAGNATION POINT AND OTHER BODY STATIONS. DUE TO THE SENSITIVITY OF THE PROGRAM TO THE VELOCITY GRADIENT IN THE STAGNATION REGION.
TWO OPTIONS HAVE BEEN INCORPORATED TO ALLOW A SMOOTHER VELOCITY GRADIENT
DISTRIBUTION THAN IS TYPICALLY OBTAINED BY READING NUMBERS FROM A SET
OF CURVES. FOR EXAMPLE. THE VARIOUS OPTIONS ARE CONTROLLED BY THE
ENTRIES IN THIS PRESSURE TABLE AND THE EFFECTIVE NOSE RADIUS ENTRY
(GROUP 5. CARD 1. FIELD 2).

1) PRE(1) IS READ IN BUT RNOSE IS NOT

THE INPUT PRESSURES ARE CURVEFITTED AND PRESSURE AND VELOCITY GRADIENTS ARE EVALUATED DIRECTLY FROM THE RESULTING CURVE.

2) PRE(1) AND RNOSE BOTH READ IN.

STAGNATION POINT VELOCITY GRADIENT EVALUATED FROM

DUES = 1./RNOSE*SQRT(2.*PE/RHOE*32.174*2116.)

3) PRE(1) NOT READ IN. AND PRE () NOT READ IN FOR AN ARBITRARY NUMBER OF STATIONS.

IN THIS INSTANCE THE VELOCITY GRADIENT IS ASSUMED TO BE LINEAR AND A NEWTONIAN PRESSURE DISTRIBUTION FOR SMALL S/R IS ASSUMED AT THOSE STATIONS FOR WHICH NO PRESSURE IS INPUT. FIRST, AN EFFECTIVE NOSE RADIUS, RNOSE, IS COMPUTED FROM THE FIRST NONZERO PRESSURE ENTRY FROM THE RELATION

RNOSE = S(L)/SQRT(1-PRE(L))

THE STAGNATION POINT VELOCITY GRADIENT IS THEN FOUND AS IN OPTION (2) ABOVE. PRESSURE FOR STATION LL LESS THAN L IS FOUND FROM

PRE(LL) = 1. - (S(LL)/RNOSE)**2

CARD 4. FORMAT(I2) ***** USED ONLY IF CARD SET 3 IS USED ****

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), IPRE

ITEM WHEN PRE IS TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUBCASE) USE BLANK CARD IF PRE IS TO REMAIN UNCHANGED FOR ALL REMAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

CARD SET 5, FORMAT(8E10.4)

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, RADR(L), L=1,NS (SEE CARD 3 OF GROUP 3)

RATIO OF LOCAL TO STAGNATION POINT INCIDENT RADIATION. THIS INFORMATION IS USED ONLY FOR KR(9) OR KR9 OF 4. INPUT BLANKS INTO THIS FIELD FOR OTHER TYPES OF PROBLEMS.

CARD 6, FORMAT(12)

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), IRAD

ITEM WHEN RADR IS TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUBCASE) USE BLANK CARD IF RADR IS TO REMAIN UNCHANGED FOR ALL REMAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

GROUP 16 STREAMWISE DISTRIBUTIONS FOR INPUT WALL CONDITIONS (CALLED FROM REFCON)

CARD SET 1. FORMAT(8E10.4) *** USED ONLY FOR KR(11)=1 AND KR(9)=0.1. OR 2 **

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, HW(L,1), L=1,NS (SEE CARD 3 OF GROUP 3)

ENTHALPY OF THE GAS AT THE WALL, BTU/LB

CARD 2, FORMAT(I2) ***** USED ONLY IF CARD SET 1 IS USED ****

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), IHW

ITEM WHEN HW IS TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUBCASE). USE BLANK CARD IF HW IS TO REMAIN UNCHANGED FOR ALL REMAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

CARD SET 3, FORMAT(8E10.4) ***** USED ONLY IF KR(11)=0 AND KR(9)=0,1, OR 2, IF KR(9)=3 OR IF ANY OF THE KR9=2 OR 3 ****

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, TW(L,1), L=1,NS (SEE CARD 3 OF GROUP 3)

WALL TEMPERATURE, DEG R

CARD 4, FORMAT(12) ***** USED ONLY IF CARD SET 3 IS USED *****

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), ITW

ITEM WHEN TW IS TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUBCASE). USE BLANK CARD IF TW IS TO REMAIN UNCHANGED FOR ALL REMAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

CARD SET 5, FORMAT(8E10.4) ***** USED ONLY FOR KR(9)=0 AND KR(11)=0 OR 1 ***

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, FW(L,1), L=1,NS (SEE CARD 3 OF GROUP 3)

WALL STREAM-FUNCTION (NEGATIVE FOR MASS ADDITION)

CARD 6, FORMAT(12) ***** USED ONLY IF CARD SET 5 IS USED *****

FIELD 1 (COLUMNS, 1-2, RIGHT-JUSTIFIED), IFW

ITEM WHEN FW IS TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUBCASE). USE BLANK CARD IF FW IS TO REMAIN UNCHANGED FOR ALL REMAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

CARD SET 7. FORMAT(8E10.4) ***** USED ONLY FOR KR(9)=1 AND KR(11)=0 OR 1 ***

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, RHOVW(L,1), L=1,NS (SEE CARD 3 OF GROUP 3)

TOTAL MASS FLUX AT THE WALL (LB/SEC FT2 OR DIMENSIONLESS FOR KR(8)=0 OR 1, RESPECTIVELY, POSITIVE FOR MASS INJECTION)

CARD 8, FORMAT(12) ***** USED ONLY IF CARD SET 7 IS USED *****

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), IRHOVW

ITEM WHEN RHOVW IS TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUBCASE). USE BLANK CARD IF RHOVW IS TO REMAIN UNCHANGED FOR ALL RE-MAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

CARD SET 9, FORMAT(8E10.4) **** USED ONLY FOR KR(7)=0 OR 2, KR(9)=0 OR 1, AND KR(11)=0 OR 1.

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, DO K=1,NSPM1 SPW(K,L,1), L=1,NS NSPM1=NSP-1 (SEE CARD 1 OF GROUP 2 AND CARD 3 OF GROUP 3)

WALL ELEMENTAL MASS FRACTIONS IN THE SAME ORDER THAT THEY ARE SELECTED FROM THE THERMODYNAMIC DATA (SEE DISCUSSION UNDER GROUP 13)

CARD 10, FORMAT(12) ***** USED ONLY IF CARD SET 9 IS USED *****

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), ISPW

ITEM WHEN THE SPW ARE TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUB-CASE). USE BLANK CARD IF THE SPW ARE TO REMAIN UNCHANGED FOR ALL RE-MAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

CARD SET 11, FORMAT(8E10.4) **** USED ONLY FOR KR(7)=0 OR 2 WITH KR(9)=2 AND KR(11)=0.1, OR 2, OR WITH ANY OF THE KR9=2

FIELD 1 (COLUMNS 1-10), FIELD 2 (COLUMNS 11-20), ETC., 8 TO A CARD, DO N=1,3 FLUXJ(N,L,1), L=1,NS (SEE CARD 3 OF GROUP 3)

WALL MASS FLUXES OF BOUNDARY-LAYER EDGE GAS, PYROLYSIS GAS, AND CHAR, RESPECTIVELY (SEE GROUP 11, CARDS 2,3, ..., FIELD 4), LB/SEC FT2 OR DIMENSIONLESS FOR KR(8) = 0 OR 1, RESPECTIVELY. POSITIVE FOR MASS INJECTION WHEN KR(8) = 0 AND NEGATIVE FOR MASS INJECTION WHEN KR(8)=1. READ IN ALL EDGE GAS VALUES, THEN START PYROLYSIS GAS VALUES ON A NEW CARD AND READ ALL PYROLYSIS GAS VALUES, ETC.

Ę

CARD 12 FORMAT(I2) ***** USED ONLY IF CARD SET 11 IS USED *****

FIELD 1 (COLUMNS 1-2, RIGHT-JUSTIFIED), IFLUXJ

ITEM WHEN THE FLUXJ ARE TO BE UPDATED WHERE ITEM IS INDEX ON TIME (OR SUBCASE). USE BLANK CARD IF THE FLUXJ ARE TO REMAIN UNCHANGED FOR ALL REMAINING TIMES OR IF NO MORE TIMES ARE TO BE CONSIDERED.

GROUPS 17.18.19. (13+NITEM) SEE CARD 1 OF GROUP 3 (CALLED FROM REFCON)

UPDATING INFORMATION FOR STREAMWISE DISTRIBUTIONS OF EDGE AND WALL CONDITIONS FOR TIMES 2,3,4, ..., NITEM. NO ADDITIONAL INFORMATION AFTER GROUP 16 IS REQUIRED FOR NITEM = 1 OR IF CARDS 2,4,6,... OF GROUPS 15 AND 16 ARE ALL BLANK. DATA ARE SUPPLIED FOR EACH SET AND ONLY EACH SET OF STREAMWISE INFORMATION FOR WHICH THE CURRENT TIME HAS BEEN DESIGNATED IN A PREVIOUS GROUP (E.G. CONSIDER TW AT TIME 4 (GROUP 19). TW DATA (I.E., CARD SET 3 AND CARD 4 OF GROUP 16 WOULD BE REQUIRED IF A 4 HAS APPEARED IN CARD 4 OF GROUP 18,17 OR 16) ALL DATA REQUIRED AT TIME 2 (IF ANY) ARE SUPPLIED. FIRST (GROUP 17), THEN FOR TIME 3 (GROUP 18), TIME 4 (GROUP 19), ETC. FOR EACH TIME, THESE DATA ARE SUPPLIED IN THE SAME ORDER AS LISTED UNDER GROUPS 15 AND 16. IN PARTICULAR, IT SHOULD BE NOTED THAT EACH ODD-NUMBERED CARD MUST BE FOLLOWED BY THE APPROPRIATE EVEN-NUMBERED CARD SIGNIFYING FOR WHAT TIME (IF ANY) DATA OF THIS SAME TYPE IS TO BE UPDATED AGAIN.

LAST GROUP (CALLED FROM BLIMP)

CARD 1 FORMAT(A1)

FIELD 1 (COLUMN 1), JAST

THE PURPOSE OF THIS ENTRY IS TO PERMIT A TEST ON WHETHER OR NOT A NEW CASE IS TO FOLLOW. IN THE EVENT A CASE DOES NOT CONVERGE IN THE ALLOTTED NUMBER OF ITERATIONS, ANY REMAINING CARDS FOR THAT CASE ARE READ AND THEN IGNORED UNTIL A COMMA (,) OR A PERIOD (,) IS ENCOUNTERED IN COLUMN 1. A COMMA SIGNIFIES ANOTHER CASE, WHILE A PERIOD SIGNIFIES THAT THERE ARE NO CASES TO FOLLOW.

SECTION IV

OUTPUT

The BLIMP program provides a complete set of output data for each boundary layer solution including such global quantities as the various boundary layer thicknesses, wall heat and mass fluxes, and transfer coefficients plus profiles of state and transport properties as well as profiles of the primary variables (e.g., f, f' f"). This output is provided automatically for each converged boundary layer solution and can also be obtained after each iteration if requested by KR(4) = 1. In either event, a one-line-per-iteration output of the boundary layer iteration is always provided. In addition, most of the input data are output as are the results of the boundary layer edge expansion. The specific output of these various types are presented in Subsections 1-7 below. Along with the title appearing in the output are presented the Fortran variable, dimensions, and a brief definition. Sample output for several cases are presented in Section V.

Additional debug output can be obtained by use of nonzero values of KR(15) through KR(20) or when chemistry nonconvergences (or impending nonconvergences) occur. This is described in Section VI.

1. SUMMARY OF STANDARD OUTPUT

STANDARD OUTPUT OF BOUNDARY LAYER INPUT DATA

STANDARD OUTPUT OF PROPERTY INPUT DATA

STANDARD CHEMISTRY OUTPUT FOR BOUNDARY LAYER EDGE EXPANSION

SUMMARY TABLE OF EDGE CONDITIONS

ONE-LINE-PER-ITERATION OUTPUT OF BOUNDARY LAYER ITERATION

STANDARD OUTPUT FOR BOUNDARY LAYER SOLUTION

2. STANDARD OUTPUT OF BOUNDARY LAYER INPUT DATA (CALLED FROM RECASE)

TITLE APPEAR- ING IN OUTPUT		UNITS	DEFINITION
IDENTIFICA- TION	IDENT		SEE FORTRAN VARIABLES LIST
CASE TITLE	CASE		SEE FORTRAN VARIABLES LIST
CONTROL NUMBERS	KR(I). I=1.20		SEE FORTRAN VARIABLES LIST
U/UE TO Norm• eta	CBAR		SEE FORTRAN VARIABLES LIST
NODAL PT. AT WHICH ETA NORMALIZED	KAPPA		SEE FORTRAN VARIABLES LIST
ETA VALUES	ETA(I),I=1, NETA		BOUNDARY LAYER NORMAL COORDINATE DEFINED BY EQ(33) OF NASA CR-1062

TITLE APPEAR- ING IN OUTPUT		UNITS	DEFINITION
NOSE RADIUS (FOR SPHERE BODIES ONLY)	RADNO	FT	SEE INPUT INSTRUCTIONS, GROUP 5
CONE HALF ANGLE (FOR CONIC BODIES ONLY)	CONE	DEG	SEE INPUT INSTRUCTIONS, GROUP 5
SURFACE EMITTANCE (IF KR(9) OR ANY OF THE KR9() =3,4,5,6)	EMISC OR EMIST		SEE INPUT INSTRUCTIONS, GROUP 6
ENTHALPY OF CHAR AT REF- ERENCE TEMP- ERATURE (IF KR(9) OR AN' OF THE KR9(= 4	•	BTU/LB	SEE INPUT INSTRUCTIONS, GROUP 6
ENTHALPY OF PYROLYSIS GAS (IF KR (9) OR ANY OF THE KR9 ()= 4	HPG	BTU/LB	SEE INPUT INSTRUCTIONS, GROUP 6
CASE (OR TIME+SEC)	TIME(I), I=1, NITEM		SEE FORTRAN VARIABLES LIST
TOTAL Enthalpy	GE(I),I=1, NITEM	BTU/LB	TOTAL ENTHALPY FOR EACH CASE (OR TIME)
TOTAL PRESSURE	PTET(I), I=1, NITEM	ATM	TOTAL PRESSURE FOR EACH CASE (OR TIME)
INCIDENT RAD FLUX	RADFL(I)+ I=1+NITEM	BTU/SEC- SQ FT	REFERENCE INCIDENT RADIATION FLUX (USUALLY STAGNATION POINT VALUE)
MIX LENGTH CONST (IF KR(7) = 2)	ELCON		SEE INPUT INSTRUCTIONS+ GROUP 8

TITLE APPEAR- FORTRAN UNITS DEFINITION ING IN OUTPUT VARIABLE SUBLAYER YAP SEE INPUT INSTRUCTIONS, GROUP 8 CONST YA+ (IF KR(7)=2) CLAUSER SEE INPUT INSTRUCTIONS, GROUP 8 CLNUM NUMBER (IF KR(7) = 2TURBULENT SCT SEE INPUT INSTRUCTIONS, GROUP 8 SCHMIDT NUMBER (IF KR(7) = 2**TURBULENT** PRT SEE INPUT INSTRUCTIONS, GROUP 8 PRANDTL NUMBER (IF KR(7) = 2)TRANSITION RETR SEE INPUT INSTRUCTIONS, GROUP 8 MOM. THICK. RE (IF KR(7) = 2)

3. STANDARD OUTPUT OF PROPERTY INPUT DATA (CALLED FROM INPUT)

TITLE APPEAR- FORTRAN UNITS DEFINITION ING IN OUTPUT VARIABLE

KAT(J),J=1,IS AT. NO. ATOMIC NUMBER

ELEMENT (ATA(J),ATB(J), ELEMENT NAME

ATC(J), J=1, [S)

ATOMIC WT . (L) TAW ATOMIC WEIGHT J=1.15

RELATIVE (TK(J.I). GRAM ATOMS OF ELEMENT J PER UNIT ATOMIC I=1.7) MASS IN EACH COMPONENT OF EACH ELEMENTAL WTS/UNIT

COMPOSITIONS J=1,1S MATERIAL COMBINATION MASS

FOR COMPON-

ENTS 1.2.3

TITLE APPEAR- ING IN OUTPUT	· _	UNITS	DEFINITION

CARD 1 OF (ALPT(K) SEE FORTRAN VARIABLES LIST THERMO DATA JAT(K). FOR FIRST K=1.7). SPECIES AMOA + AMOB

CARDS 2 AND (RA(K).CH(KK.K)
3 OF THERMO .RC(KK.K).RD
DATA FOR (KK.K).RE(KK. SEE FORTRAN VARIABLES LIST FIRST K) +RF(KK+K) + TU(KK+K)+KPHA SPECIES (K) . K=1.2) . FF(KK)

REPEAT CARDS 1.2 AND 3 OF THERMO DATA FOR ALL SPECIES

ELEMENT	ATA(I), ATB(I), ATC(I), I=1,IS	ELEMENTS
BASE SP	IC(I), IM(I), I=1, IS	BASE SPECIES CHOSEN FOR EACH ELEMENT
SIGMA	SIGMA	SEE INPUT INSTRUCTIONS. GROUP 11
EPOVRK	EPOVRK	SEE INPUT INSTRUCTIONS. GROUP 11
MREF	BASMOL	SEE INPUT INSTRUCTIONS. GROUP 11
FITMOL	FITMOL	SEE INPUT INSTRUCTIONS. GROUP 11
FFA	FFA	SEE INPUT INSTRUCTIONS, GROUP 11
FITGMW	FITGMW	SEE INPUT INSTRUCTIONS. GROUP 11
GGA	GGA	CONSTANT USED IN TRANSPORT PROPERTIES CALCULATIONS. ALWAYS 0.4540 IN THIS VERSION OF THE PROGRAM
SPECIES	FAMOA(KK), FAMOB(KK), KK = 1,N	SPECIES NAMES
F(I)	FF(KK), KK= 1, N	MOLECULAR DIFFUSION CORRELATION COEFFICIENTS DESCRIBED IN REFERENCE 4.
G(1)	GG(KK), KK= 1, N	QUANTITY USED IN THE BUDDENBERG- WILKE MIXTURE FORMULA FOR VISCOSITY

AS DISCUSSED IN REFERENCE 5.

TITLE APPEAR- FORTRAN UNITS DEFINITION ING IN OUTPUT VARIABLE

KINETIC M.M=1.MT KINETIC REACTION NUMBER

REACTION (IF MT GT 0)

REACTANT (FAMOA(I) + FAMOB SEE FORTRAN VARIABLES LIST

COEFFS (I), (RMU(I,M), (IF MT GT 0) M=1,MT),I=1,

IS)

PRODUCT (FAMOA(I) + FAMOB SEE FORTRAN VARIABLES LIST

COEFFS (I), (PMU(I,M), (IF MT GT 0) M=1.MT).I=1.

15)

PRE-EXPONENT (FKF(M).M=1. LB-MOLES SEE FORTRAN VARIABLES LIST

FACTOR MT), I=1, IS OF REACT-(IF MT GT 0) ANT/SEC-SQ FT

ACTIVATION (EAK(M),M=1, CALORIES/ SEE FORTRAN VARIABLES LIST

ENERGY MT), I=1, IS GM-MOLE

(IF MT GT 0)

REACTION SEE FORTRAN VARIABLES LIST (EXK(M),M=1,

ORDER (IF MT GT 0) MT) , I=1 , IS

STANDARD CHEMISTRY OUTPUT FOR BOUNDARY LAYER EDGE EXPANSION (CALLED FROM EQUIL)

TITLE APPEAR- ING IN OUTPUT	FORTRAN VARIABLE	UNITS	DEFINITION
CP-FROZEN	CPF	CAL/GM- DEG K	SEE FORTRAN VARIABLES LIST
CP-EQUIL	CSP	CAL/GM- DEG K	SEE FORTRAN VARIABLES LIST
DLNM/DLNT	ALF		SEE FORTRAN VARIABLES LIST
DLNM/DLNP	BETH		SEE FORTRAN VARIABLES LIST
GAMMA	GAM		SEE FORTRAN VARIABLES LIST

TITLE APPEAR- ING IN OUTPUT		UNITS	DEFINITION
TEMP	т	DEG K	SEE FORTRAN VARIABLES LIST
PRES	P	ATM	SEE FORTRAN VARIABLES LIST
MOL WT	WM		SEE FORTRAN VARIABLES LIST
RELATIVE MASSES OF COMPONENTS 1,2 AND 3	W		MEANINGLESS FOR BOUNDARY LAYER EDGE CALCULATIONS
ENTHALPY	HIP	CAL/GM	SEE FORTRAN VARIABLES LIST
ENTROPY	SIP	CAL/GM- DEG K	SEE FORTRAN VARIABLES LIST
DENSITY	RHR	LB/CU FT	SEE FORTRAN VARIABLES LIST
VEL	VEL	FT/SEC	SEE FORTRAN VARIABLES LIST
MACH	VMACH		SEE FORTRAN VARIABLES LIST
AREA	AREA	SQ FT/LB/ SEC	MEANINGLESS FOR BOUNDARY LAYER EDGE CALCULATIONS
SPECIES	FAMOA(I)+FAMOB (I)+I=1+N		SEE FORTRAN VARIABLES LIST
MOLE FR.	VN(I) • I=1 • N		SEE FORTRAN VARIABLES LIST

5. SUMMARY TABLE OF EDGE CONDITIONS (CALLED FROM REFCON)

TITLE APPEAR- ING IN OUTPUT	FORTRAN VARIABLE	UNITS	DEFINITION
DISTANCE	S(1).I=1.NS	FT	SEE FORTRAN VARIABLES LIST
ROKAP	ROKAP(I)+I=1+ NS	FT	SEE FORTRAN VARIABLES LIST
XI	XI(1), I=1,NS	(LB/SEC) **2	SEE FORTRAN VARIABLES LIST

TITLE APPEAR- ING IN OUTPUT		UNITS	DEFINITION
PRESSURE RATIO	PRE(1) . I=1 . NS		SEE FORTRAN VARIABLES LIST
STATIC PRESSURE	PE(I+1)+I=1+ NS	ATM	SEE FORTRAN VARIABLES LIST
ED GE VELOCITY	UE(I).I=1.NS	FT/SEC	SEE FORTRAN VARIABLES LIST
BETA	BETAM(1) . I=1 . NS	5	SEE FORTRAN VARIABLES LIST
INCIDENT RAD. FLUX	RADS(I), 1=1, NS	BTU/SEC- SQ FT	SEE FORTRAN VARIABLES LIST
ENTROPY DROP	DSIP(I):I=1: NS	BTU/LB- DEG R	SEE FORTRAN VARIABLES LIST
WALL ENTH- ALPY (IF KR(11)=1)	HW(I,1),I=1, NS	₫TU/LB	SEE FORTRAN VARIABLES LIST
WALL TEMP. (IF KR(9)=3 OR 5 OR IF KR(9)=0.1.2 WITH KR(11) =0)	TW(I.1), I=1, NS	DEG R	SEE FORTRAN VARIABLES LIST
WALL STREAM FUNCTION (IF KR(9)=0)	FW(I,1),I=1.NS		SEE FORTRAN VARIABLES LIST
MASS FLUX (IF KR(9)=2 AND KR(8)=0		LB/SEC- SQ FT	SEE FORTRAN VARIABLES LIST
NORMALIZED MASS FLUX (IF KR(9)=2 AND KR(8)=1			SEE FORTRAN VARIABLES LIST
ELEMENTAL MASS FRACTION (IF KR(9)=0 OR 1	NSPM1		SEE FORTRAN VARIABLES LIST
COMP FLUX (IF KR(9)=2 AND KR(8)=0	I=1.NS),	LB/SEC- SQ FT	SEE FORTRAN VARIABLES LIST

TITLE APPEAR - FORTRAN ING IN OUTPUT VARIABLE

UNITS

DEFINITION

NORMALIZED (FLUXJ(K:1:1), COMP FLUX I=1:NS), (IF KR(9)=2 K=1:3 AND KR(8)=1)

SEE FORTRAN VARIABLES LIST

6. ONE-LINE-PER-ITERATION OUTPUT OF BOUNDARY LAYER ITERATION (CALLED FROM ITERAT)

TITLE APPEAR- ING IN OUTPUT		UNITS	DEFINITION
ITS	ITS		ITERATION NUMBER
TIME	TIMD	SECONDS	ELAPSED TIME SINCE BEGINNING SOLUTION AT THIS STATION
ALPH	ALPH		NORMALIZING PARAMETER IN ETA DIRECTION
FPPW	FPPW		F(3:1)/ALPH**2: SHEAR FUNCTION AT WALL
DAMP	EASE		DAMPING FACTOR APPLIED UNIFORMLY TO ALL CORRECTIONS
MAX LINEAR ERROR	ELMM		MAXIMUM LINEAR ERROR (APPROACHES ZERO WHEN DAMPING FACTOR APPROACHES UNITY)
MAX ERROR IN MOMENTUM EQUATIONS	IFNLM.FNLEM		INDICE OF MOMENTUM EQUATION WITH MAXIMUM ERROR (I=1 AT WALL) AND VALUE OF ERROR
MAX ERROR IN ENERGY EQUATIONS	IGNLM.GNLEM	BTU/LB	INDICE OF ENERGY EQUATION WITH MAXIMUM ERROR (I=1 AT WALL) AND VALUE OF ERROR
MAX ERROR IN SPECIES EQUATIONS	(ISPNLM(K) SPNLEM (K),K=1, NSPM1)		FOR EACH BASE SPECIES, INDEX OF SPECIES EQUATION WITH MAXIMUM ERROR (I=1 AT WALL) AND VALUE OF ERROR

7. STANDARD OUTPUT FOR BOUNDARY LAYER SOLUTION (CALLED FROM OUTPUT)

TITLE APPEAR- ING IN OUTPUT		UNITS	DEFINITION
ALPHA	ALPH		SEE FORTRAN VARIABLES LIST
xI	XI(IS)	(LB/SEC) **2	SEE FORTRAN VARIABLES LIST
ROKAP	ROKAP(IS)	FT	SEE FORTRAN VARIABLES LIST
PRESSURE	PE(IS.1)	ATM	SEE FORTRAN VARIABLES LIST
EDGE VELOCITY	UE(IS)	FT/SEC	SEE FORTRAN VARIABLES LIST
BETA	BETA		SEE FORTRAN VARIABLES LIST
FLUX NORMALIZING PARAMETER	-1./C3	LB/SEC+ SQ FT	FLUX NORMALIZING PARAMETER DEFINED BY EQ(44) OF NASA CR-1062
DIFFUSIONAL HEAT FLUX	-WALLQ/C3	BTU/SEC- SQ FT	DIFFUSIONAL HEAT FLUX TO THE WALL GIVEN BY EQ(49) OF NASA CR-1062
TOT ENTH HEAT FLUX	-(WALLG+6(1,1) *RHOVW(IS,1))/C3	BTU/SEC- SQ FT	DIFFUSIONAL HEAT FLUX TO THE WALL LESS THE ENERGY ASSOCIATED WITH THE CONVEC- TION OF GAS INTO THE BOUNDARY LAYER
RERAD HEAT FLUX	(.481E-12)+ EMIS+(T(1)) ++4.	BTU/SEC- SQ FT	RATE AT WHICH ENERGY IS RERADIATED FROM THE WALL, FOR KR(9)=3 THROUGH 6 ONLY
QCOND	QDIFU	BTU/SEC- SQ FT	ENERGY CONDUCTED INTO THE WALL DUE TO TEMPERATURE GRADIENT IN THE GAS AT THE WALL. DIFFUSIONAL FLUX NOT INCLUDED
WALL SHEAR	SHEAR	LB/SQ FT	SEE FORTRAN VARIABLES LIST
MECH REM	(W(2)+W(3)-RHO VW(IS+1))/C3		RATE AT WHICH WALL MATERIAL IS REMOVED IN A CONDENSED STATE
PYROL GAS MASS FLUX	W(2)/C3	LB/SEC- SQ FT	RATE AT WHICH COMPONENT 2 (USUALLY PYROLYSIS GAS) IS INJECTED INTO BOUNDARY LAYER
CHAR MASS FLUX	W(3)/C3	LB)SEC- SQ FT	RATE AT WHICH COMPONENT 3 (USUALLY CHAR) IS INJECTED INTO BOUNDARY LAYER (INCL- UDING CONDENSED PHASE REMOVAL)

TITLE APPEAR- ING IN OUTPUT		UNITS	DEFINITION
	RHOVW(IS+1) /C3	LB/SEC- SQ FT	RATE AT WHICH GAS IS INJECTED INTO THE BOUNDARY LAYER
ELEMENTAL MASS DIFF- USIVE FLUXES	VJKW(I),I=1, NSP	LB/SEC- SQ FT	DIFFUSIVE MASS FLUXES OF ELEMENTS (IR- RESPECTIVE OF MOLECULAR CONFIGURATION) INTO THE BOUNDARY LAYER AT THE WALL
MOM TRANS COEFF, RHO+UE+CF/2	CF	LB/SEC- SQ FT	SEE FORTRAN VARIABLES LIST
HEAT TRANS COEFF, RHO*UE*CH	СН	LB/SEC- SQ FT	SEE FORTRAN VARIABLES LIST
BLOWING PARAMETER (BASED ON CH) FOR PYROL GAS	W(2)/(C3*CH)		PYROLYSIS GAS RATE NORMALIZED BY RHOE*UE*CH
BLOWING PARAMETER (BASED ON CH) FOR CHAR	W(3)/(C3+CH)		CHAR RECESSION RATE NORMALIZED BY RHOE*UE*CH
BLOWING PARAMETER (BASED ON CH) FOR TOTAL GAS	BLOW		SEE FORTRAN VARIABLES LIST
ELEMENTAL MASS TRANS- FER COEFFS. RHOE+UE+CM	CM(I),I=1, NSP	LB/SEC- SQ FT	SEE FORTRAN VARIABLES LIST
MOMENTUM THICKNESS, THETA	ТНМОМ	FT	SEE FORTRAN VARIABLES LIST
DISPLACEMENT THICKNESS, DELSTAR	DELST	FT	SEE FORTRAN VARIABLES LIST
EFFECTIVE BODY DISPLACE	DELBD	FT	EFFECTIVE BODY DISPLACEMENT THICKNESS

TITLE APPEAR- ING IN OUTPUT		UNITS	DEFINITION
ENTHALPY THICKNESS, LAMBDA	THENGY	FT	SEE FORTRAN VARIABLES LIST
REYNOLDS NUMBER PER FOOT	RHOE(IS)*UE (IS)/VMUE(IS)	1/FT	
MASS THICKNESSES	THELEM(I) · I=1 · NSP	FT	SEE FORTRAN VARIABLES LIST
DISTANCE FROM WALL	Y(I), I=1.NETA	FT	ACTUAL DISTANCE FROM BODY MEASURED NORMAL TO SURFACE
ETA	ETA(I)*ALPH, I=1,NETA		CONVENTIONAL DEFINITION OF BOUNDARY LAYER NORMAL COORDINATE DEFINED BY EQ (32) OF NASA CR-1062
F	F(1+1)+1=1+NET	A	STREAM FUNCTION
FP(=U/UE)	F(2.1)/ALPH. E=1.NETA		VELOCITY RATIO
FPP	F(3.1)/ALPH**2 I=1.NETA	•	SHEAR FUNCTION (DERIVATIVE OF VELOCITY RATIO WITH & SECT TO CONVENTIONAL ETA)
SHEAR	DUDS(I) INLINETA	LBF/FT**2	LOCAL SHEAR STRESS
TOTAL ENTH- ALPY•G	G(1.1), I=1.NETA	BTU/LB	TOTAL ENTHALPY
GP	G(2.1)/ALPH. I=1.NETA	BTU/LB	DERIVATIVE OF TOTAL ENTHALPY WITH RESPECT TO CONVENTIONAL ETA
GPP	6(3+1)/ALPH**2 +1=1+NETA	STU/LB	SECOND DERIVATIVE OF TOTAL ENTHALPY WITH RESPECT TO CONVENTIONAL ETA
STATIC ENTHALPY	H(\$\$	BTU/LB	STATIC ENTHALPY
TEMP	T(I)	DEG R	STATIC TEMPERATURE
ELEC COLL FREQ	DER(8)	1/SEC	ELECTRON COLLISION FREQUENCY

TITLE APPEAR ING IN OUTPUT		UNITS	DEFINITION
DENSITY RHO	RHO(I), I=1:NETA	LB/CU FT	DENSITY
VISCOSITY, MU	YMU(I), I=1,NETA	LB/SEC-FT	VISCOSITY
RHO*MU/(RHOE *MUE) • C	CADC(I), I=1,NETA		PRODUCT OF DENSITY AND VISCOSITY NORMALIZED BY THEIR VALUES AT EDGE
SPECIFIC HEAT	CPBAR(I)+ I=1+NETA	BTU/LB- DEG R	FROZEN SPECIFIC HEAT
THERMAL	COND, I=1, NETA	BTU/SEC- FT-DEG R	THERMAL CONDUCTIVITY
PRANDTL NUMBER	PR(I).I=1.NETA		PRANDTL NUMBER BASED ON FROZEN SPECIFIC HEAT
MODIFIED SCHMIDT NUMBER	SC(I), I=1,NETA		REFERENCE SYSTEM SCHMIDT NUMBER DEFINED BY EQ(46) OF NASA CR-1062
MOLECULAR WEIGHT	VMW(I).I=1.NET	A	MOLECULAR WEIGHT
RHOSQ*EPS/ RHOE * MUE	EPSA(I) I=1+NETA		DIMENSIONLESS EDDY VISCOSITY
MACH NUMBER	ACH		MACH NUMBER
ELEMENTAL FRACTIONS AND THEIR	(SP(1.1.K).I=1 NETA).K=1.NSP		MASS FRACTIONS OF BASE SPECIES AND THEIR FIRST AND SECOND DERIVATIVES WITH RESPECT TO ETA (CONVENTIONAL DEFINITION
FIRST AND SECOND DER- IVATIVES WITH RESPECT	K=1.NSP	H	SEE EQ(32) OF NASA CR-1062)
TO ETA	(SP(3+I+K)/ALP(++2+I=1+NETA)+ K=1+NSP	H	
MOLE FRAC- TIONS	(FR(J,I),I=1, NETA),J=1, NSPEC		MOLE FRACTIONS

SECTION V

SAMPLE CASES

A total of three sample cases are discussed in this section. Input cards and sample output for each case are shown in each subsection.

1. SAMPLE CASE 1 - FLAT PLATE IN AIR BOUNDARY LAYER

The first sample case consists of a cooled nonablating flat plate in a supersonic air boundary layer. This problem is perhaps overly simple for a sophisticated nonsimilar general chemistry program such as this one, however it does illustrate the basic features of the program in a direct fashion. A nonsimilar solution is called for on a planar sharp body in laminar flow. Wall temperature is assigned at 530° R with wall mass fluxes set to zero everywhere along the plate. Two cases are considered: $P_{\circ} = 1.0$ atmospheres and $P_{\circ} = 10.0$ atmospheres. Stagnation enthalpy is 1000 Btu/lb for both cases. Four stations along the plate are analyzed (1, 2, 6, and 12 inches) and seven nodes are assigned through the boundary layer. Only two elements (N and O) are required to describe the air boundary layer, however, five candidate species (N, O, NO, N₂, O₂) are provided in the thermochemical data tables. For both cases considered, the air is assumed to expand to a pressure ratio P/P_{\circ} of 0.1278 corresponding to an edge Mach number of approximately 2.0.

```
AFWL-TR-69-114, Vol. I
```

a. Input cards for Sample Case Number 1

10104300210002000000 NONABLATING FLAT PLATE IN AIR

```
2
2
-1.
       2.
.08333
       .16667
               •5
                      1.0
0.0
       0.5
               1.0
                      1.5
                              2.0
                                      3.0
                                              5.0
5 0.8
1.0
       10.0
1000.
       1000.
0.0
100.
 7NITROGEN
           14.008
                  -.765
           16.000
 80XYGEN
                  -.235
        112965+6 134370+5 486944+1 383516-4 958460+5 480900+2
                                          500. 3000.1
                                                     0 • N
0 • N
                                                       0
                                                     0.0
                                                     0.0
 1 7 1 8 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 06/63
                                                       NO
215800+5 227000+5 877623+1 899031-4-789656+6 688490+2 500. 3000.1
                                                     0 . NO
215800+5 227000+5 916260+1 657885-5-212519+7 688490+2 3000, 5000,1
                                                     0.NO
       N2
000000-0 221650+5 862699+1 116090-3-103715+7 637650+2
                                          500. 3000.1
                                                     0.N2
000000-0 221650+5 984175+1-116232-3-612728+7 637650+2 3000. 5000.1
                                                     0.N2
02
                                                     0.02
                                                     0.02
.1278
       .1278
               .1278
                      .1278
 (3 blank cards)
530.
               530.
       530.
                      530.
```

(5 blank cards)

b. Output from Sample Case Number 1

BOUNDARY LAYER INTEGRAL MATRIX PROGRAM (BLIMP)

AEROTHERM COSPORATION, PALO ALTO, CALIF (RMK, EPB) 24 OCT 69 15:31:50

CASE WOWABLATING FLAT FLATE IN AIR

PUNCH CONTROL IDENT JSPEC -0

ETA VALUES VODAL PT. AT WHICH ETA NORM. UZUE TO NORM, ETA

5,000-01 1,000+00 1,500+00 2,000+00 3,000+00 5,000+00 0.00 8,000-01

1,00000+00 2,00000+00

1,000000+03 1,000000+03 1,05050+00 1,00500+01 TOTAL ENIMALPY, STU/LB TOTAL PRESSURE, ATM

0,0000 INCIDENT HAD FLUX, B/SF2 9,00000 24 OCT 69 15:31150 . ı

CHAR 3 -.00000000 CHAR 2 -.0000000 -.00000000 PYRO.GAS 2 -.3003000 -.CG03000 CHAR 1 -.0000000 -.0000000 -,0000000 RELATIVE ELEMENTAL COMPOSITIONS, ATOMIC VTS/UNIT MASS EDGE GAS .0546117 .0146875 ATOMIC WT 14.00809 16.00000 ELEMENT NITROGENO OXYGEN

THERMODYNAMIC PROPERTY CURVE-FIT DATA (SEE MANUAL FOR FORMAT)

ELEMENT NITROGEN OXYGEN BASE SP N O MOLECULAR TRANSPORT PRUPERTIES

VISCOSITY BUDDENBERG - MILKE MIXTURE FORMULA WITH MU(I) CALCULATED ON

VISCOSITY BUDDENBERG - MILKE MIXTURE FORMULA WITH EUCKEN CORRECTION

THERMAL CONDUCTIVITY MASON - SAXENA MIXTURE FORMULA WITH EUCKEN CORRECTION

DIFFUSION COEFFICIENTS D(I,J) * DBAR/(F(I)*F(J)) WITH DBAR BASED ON

SIGMA = 3.4470, EPOVRK = 106,7000, AND MREF * 32,0000

METHOUS EMPLOYED

O CONDENSED PHASE, VALUES FOR F(1) AND G(1) SET EQUAL TO 1.E+10

1 VALUES FOR F(1) (OR G(1)) INPUT DIRECTLY

2 VALUES FOR F(1) (OR G(1)) CALCULATED BY F(1) #(M(1)/FITMOL)***FFA AND G(1) # (M(1)/FITGMY)***GGA WHERE M(1) IS SPECIES MOLECULAR WEIGHT, FITMOL # 24,3000, AND GGA # .4540

3 VALUES FOR G(1) CALCULATED BY G(1) = SORT(DBAR/D(1,1)) = (SIGMA(1)/SIGMA)

• (EPS(1)/EPOVRK) ••5.0795 + (H(1)/HREF) ••0.25 WHERE \$IGMA(1) AND EPS(1)

ARE GIVEN WITH THERMODYNAMIC DATA

SPECIES F(1) METHOD G(1) METHOD SPECIES F(1) METHOD G(1) METHOD N 1729 2 1779 2 0 1778 2 1827 2 NO 1,059 2 1,101 2 NZ 1,024 2 1,067 2 NZ 1,093 2 1,133 2

STAGNATION SOLUTION FOLLOWED BY BOUNDARY-LAYER EDGE EXPANSION

CP-FROZEV CP-EQUIL DLWM/DLNT DLWM/DLNP GAMMA
.30420+00 .34629-C0 -.10340-01 .37709-03 .12543+01

TEMP = 2239.7493 DEG-K PRES = 1,00000 ATM MOL WT = 20.03340

RELATIVE MASSES OF COMPONENTS 1.2 AND 3 .00000 .00000 .00000

ENTHALPY = .555556403 CAL/GM ENTROPY = .21925+01 CAL/GM-DEG K
DENSITY = .941198-02 LB/CUFT

VEL = .000 FT/SEC MACH = -.000 AREA = .000 SGFT/LB/SEC

SPECIES 10LE F4, SPECIES "OLE FP, SPECIES MOLE FR, N .1662C-07 0 .15141-P2 '0 .14150-01 N2 .78038-J7 32 .20395-00

.21925+01 CAL/GM-DEG X MAL WT = 28,8603590 .200+01 AREA # .105+00 SGFT/LR/SEC .88598-03 SPECIFS MOLE FR. ,13064+01 GAMMA .37253-06 Ş りしてペインしょう 9ELATIVE MASSES OF COMPONENTS 1,2 AND 3 .00000 ENTHALPY = .2994989+03 CAL/GM ENTROPY = .197491-02 LB/CUFT

VEL = .480+04 FT/SEC MACH = .200+01 ARFA = .16558-05 .21150-00 MOLE FR. .29988-00 .29351-0C -.16535-14 SPECIES .17561-13 ' YOLE FR. CP-FR0ZEN SPECIES

.00000 .00000 .21925+01 CAL/GM-DEG K MOL WT = 28,8603590 .200+01 AREA # .105+00 SGFT/LB/SEC .88598-03 MOLE FR .13064+01 GAMMA SPECIES .-FROZEN CP-EGUIL DLNM/DLNT DLNM/DLNP .20988-00 .29351-60 -.17971-04 ,40233-06 2 AELATIVE MASSES OF COMPONENTS 1.2 AND 3 .00000 ENTHALPY = .2994989+03 CAL/GM ENTROPY = .2994989+03 CAL/GM ENTROPY = .107491-02 LR/CUFT .21150-00 MOLE FR. SPECIES .17561-17 .78761-G^ FOLE FR. CP-FR0ZEN SPECIES

.21925+01 CAL/GM-DEG K MOL WT # 28.8603580 .200+01 AREA # .105+00 SOFT/LB/SEC .88598-03 MOLE FR. ,13064+01 SPECIES ,40233-06 ş --FROZEN CP-EGUIL OLYM/OLNT DLNM/DLNP .28948-ng .29351-00 -.18526-34 ,40233-0 RELATIVE MASSES OF COMPONENTS 1.2 AND 3 .00000 ENTHALPY = .2994989+03 CAL/GM ENTROPY = .097491-02 LB/CUFT

VEL = .480+04 FT/SEC MACH = .200+01 AREA = .21150-09 MOLE FR. SPECIES .17561-13 .78761-0n MOLE FR. CP-FR02EN SPECIES

CP-FROZEN CP-EQUIL DLNM/DLNT DLNM/DLNP GAMMA, 28988-00 .29351-00 -.18518-04 .41723-06 .13064+01
TEMP # 1420,6675 DEG-K PRES * .1278 ATM MOL WT * 28.8603580

DISTANCE, FT	,43336-71	.16667-00	.50000-00	,10000+01
ROKAP	100001.	,19035,+01	.10909+01	.19990+91
XI,(LH/SEC)**?	.24587-04	.49377-C4	.14813-13	.29626-03
PRESSURE MATIO	.12786-00	.12780-30	.12760-90	.12780-00
STATIC PHESQURE, ATM	.12740-00	,12787-00	.12789-90	.12789-00
EDGE VELUCITY, FT/SEC	48034+04	.48034+04	.48034+04	.48034+04
8£12	-,21177-97	-,30708-07	.10165-06	.00000
INCIDENT MADIATION FLUX	00000.	00000	00000.	,00000
ENTROPY UROP, ATUZLB R	00000.	00000	,0000.	00000
-1/FLUX "ORY, PARAMETER	-,23718+02	-,33544+02	\$8099+02	-,82164+02
NALL TEMPERATURE, DEG R	.53000+03	.53000+03	.53000+03	.53000+03
COMP FLITAILB/SEC FT2	-,00000	-,00000	c0000·-	00000
COMP FLUX, LA/SEC FT. +2	-,00000	-,00000	-,00900	00000
COMF FLMX, LA/SEC FT++2	00000	00000	-,00000	-,00000

ELECTRON COLL FREG (1/SEC) (1/SEC) 2.340+10 2.347+10 2.154+10 1.987+10 1.983+10 5.070 9.659-01 1.360+00 1.965+00 2.004+00 00EC R) 1.325+03 1.325+03 2.144+03 2.350+03 2.516+03 MACH 2.262+01 RHOSQ+EPS /RHOE+HUE 8141C ENTHALPY (87U/LB) 2.024+02 3.245+02 4.179+02 4.179+02 5.25+02 5.392+02 0000000 FLUX NORMALIZING DIFFUSIONAL TOT ENTH RERAD
PARAMETER
4.216-02 2.262+01 2.262+01 0.000 F7. 15131150 (97U/LB) 1.793+02 1.793+02 -1.301+01 -1.395+02 -1.695+02 -1.695+02 -1.695+01 -1.695+01 MOLECULAR WEIGHT FLUXES (LB/SEC ELEMENTAL MASS TRANSFER COEFFICIENTS.
RHOE+VE+VE+CM (LB/SEC S9 FT) FOR
NITROGEN U:4GEN
-1.235+00 -1.235+00 64 S (87U/L8) 2,1594-02 3,140+02 3,604+02 2,7884-02 7,0194-01 A COURT OF C (FT) FOR MASS DIFFUSIVE OXYGEN BHEAR TOTAL ENTH-HALPY.C (18/TSG) (874/LB) (3.125+00 2.155+01 3.125+00 2.167+02 2.935+00 4.020+02 2.470+00 5.981+02 3.324-01 7.313+02 3.324-01 1.000+03 5,491-03 5,557-06 -5,557-04 1333 PRANDTL J NUMBER 000000000 MASS THICKNESSES OXYGEN .93330-01 1,726) 3,129+00 3,105+00 2,939+00 2,705+00 1,726+00 3,324-01 ELEMENTAL VITROGEN 3,038+09 5,497-03 0.0.0 OINENSION VELOCITY (FT/SEC) 4.803+03 SPECIFIC SPECIF MOW TRANS MEAT TRANS BLOWING PARAMETERS
COEFF, COEFF, (BASED ON CH) FOR
HMO&UE*CF/7 RHO&UE*CH PYROL GAS CHAR TOTAL GAS
2,093-02 2.436-02 0.000 0.000 TOTAL GAS 0.030 0.000 6.1011-01 6.1011-01 7.7501-01 1.7501-01 1.000+00 1,000+60 1.278-01 FP (=U/UE) PRESSURE MASS FLUXES
H PYROL GAS CHAR
(LB/SEC SG FT)
0,000 (ATA) FROW "ALL BHO FRO HALL BHO FRO HALL BHO FRO HALL BHO FRO HALL BASE FT 0.000 9.529-03 1.107-09 1.038-04 2.391-03 2.799-05 1.1036-03 2.494-05 1.979-03 3.433-03 1.979-03 3.119-05 1.3433-05 1.979-03 3.119-05 1.3433-05 1.979-03 3.119-05 1.3433-05 1.979-03 3.119-05 1.3433-05 1.979-03 3.119-05 1.3433-05 1.3433-05 1.3433-05 1. 2,000 2,129-01 4,985-01 8,985-01 1,890+00 081+00 FPP.
5548 ,2602
4709 ,2952
3974 ,3575
3397 ,4610
3047 ,6678
28661,0000
29031,0000 (74) ROKAP u. /SEC1++7 2.469-05 MECH REM 1, x 1 0.000 ETA NOCAL INFORMATION 1746 1,349 1,800 2,249 1,458 2,747 1,412 3,649 1,103 4,051 1,099 4,643 1,099 FRO FANCE, FRO FANCE, CFT) 0.000 1.038-04 3.548-04 1.030-03 1.030-03 3.431-03 SHEAR (LB/SQ FT) 3,125+00

-50-

3.433-03	ET∆	7.650-31	2.350-01 -0.000 -1.593-08		1.581-06 8.716-04 7.876-01 2.115-01
915Ta\CF FROM WALL'FT 1,238-04 3,547-04 6,796-04 1,030-93 1,810-03 3,433-03	RESPECT TO	7.650-3: 7,650-01 7.6	7.859*UN 5.852-UN -0.8611UN 1.575-UN 2.350-U1 2.350-U1 2.350-U1 2.350-U1 2.350-U1 4.947-UN 6.851-U9 -5.789-UB -1.593-UB -1.593-UN		9.081-15 1.167-06 7.822-04 7.877-01 2.116-01
1.030-33	TIVES WITH	7,650-01	2.350-01 6.851-09 -5.892-08		4.993-16 2.501-07 4.518-04 7.678-01 2.117-01
91STANCE FROM WALL, FT 04 6,796+04 1,030-3	NO DERIVAT	7,650-01	2.350-01 4 987-08 -7,329-08		7.029=18 2.602=08 2.015=04 7.880=01 2.118=01
918 3.547-04	T A'D SECC	7.650-61	2.350-01 2.905-07 -4.379-07		8.371-22 2.153-10 3.631-05 7.880-01 2.119-01
1,039-04	THEIR FIRS	7,650-01	-1,739-67 -1,348-07 -1,348-07		9,217-31 3,833-15 7,191-07 7,881-01 2,119-01
0.0.0	ELEVENTAL FRACTIONS 15 THEIR VIRST 10 SECOND DERIVATIVES WITH RESPECT TO ETA	7.650-31	2,969-75 -7,29-67 4,379-37 7,679-88 5,692-36 6,691-86 1,395-3 2,350-01 2,353-01 2,350-01 2,350-01 2,350-01 2,350-01 2,350-0 1,618-25 -1,348-07 2,905-07 4 987-08 6,851-39 -5,789-08 -0,000 -2,969-05 7,739-07 -4,379-07 -7,329-08 5,892-08 6,861-08 -1,593-0	SVO	1.000-37 1.000-37 1.500-14 7.881-01
	ELEYENTAL F	2	o	MOLE FRACTIONS	0 N N O N N O N N O N N O N N O N N O N N O N

15:31:55 24 OCT 69

CASE 2

.20340+01 CAL/GM-DEG K MOL WT = 28,8531520 SOFT/LB/SEC HOLE FR. ,12623+01 .000 SPECIES .12468-03 9 OLNM/OLNP AREA . 40LE FR. .49902-03 .20445-00 -.34015-92 DLNM/DLNT SPECIES 0 02 .33342-00 CP-EGUIL HOLE FR. . 56687-03 ,30426-00 CP-FROZEN SPECIES

.20340+01 CAL/GM-DEG K HOL WT = 28.8603750 .105-01 30FT/LB/SEC .88434-03 MOLE FR GAMMA ,13065+01 SPECIES CP-EQUIL DLNH/DLNT DLNH/DLNP ,29346-30 -,51436-05 ,10431-06 .200+01 AREA # TEMP # 1425.3238 DEG-K PRES # 1,2780 ATM RELATIVE MASSES OF COMPONENTS 1,2 AND 3 ,000000 ENTHALPY # ,2993956+03 CAL/GM ENTROPY # DENSITY # ,197539-01 LB/CUFT VBC # ,200+01 AREA # 40LE FR. .52090-06 .21150-00 SPECTES 0 02 .54992-14 1 OLE FR. ,28988-00 CP-FR0ZEN SPECIES A A2

.20340+01 CAL/GM-DEG K MOL WT = 28.8603750 .105-01 SGFT/LB/SEC .88434-03 MOLE FR. .13065+01 GAMMA SPECIES .10431-06 CP-EGUIL DLNM/DLNT DLNM/DLNP .29346-00 -.61441-05 .10431-0 .200+01 AREA . TEMP # 1420,323A DEG-K PRES # 1,2780 ATH
KELAIIVE MASSES OF COMPONENTS 1,2 AND 3 .00000
E-1THALPY # ,2993956+03 CAL/GM ENTROPY #
UENSITY # ,197539-01 LB/CUFT
VEL # ,480+04 FI/SEC 4ACM # ,200+01 AREA # .52090-06 MOLE FR. SPECIES 0 02 MOLE FR. .54992-14 .78761-07 .28988-00 CP-FROZEN SPECIES

.20340+01 CAL/GM-DEG P MOL W? = 28.8603750 .105-01 SQFT/LB/SEC ,13065+01 .00000 SPECIES .13411-06 CP-EQUIL DLWM/DLNT DLWM/DLNP .29346-00 -.51486-05 .13411-(,200+01 AREA . PRES = 1,2780 ATM 1,2 AND 3 ,00000 CAL/GM ENTROPY = MOLE FR TE':P = 1420,3238 DEG=K PRES = 1,2
RELATIVE MASSES OF COMPONENTS 1,2 AND 3
ENTHALPY = ,2993956+03 CAL/GM EN
DENSITY = ,197539*01 LB/CUFT
VEL = ,480+04 FT/SEC *ACH = ,200+01 SPECIES .28988-00 MOLE FR CP-FROZEN SPECIES

GAMMA

•

DISTANCE,FT	, A3339-91	.16667-00	. 50000-00	.1000001.
ROKAP	1000001	.10000+01	.10000+01	.100001.
X1,(LB/SEC)++2	.24694-03	,49391-03	.14817-02	.29634-02
PRESSURE RATIO	,12786-00	,12780-00	.12780-00	.12780-30
STATIC PRESSURE, ATM	,12780+01	,12780+01	.12780+01	.12780+01
EDGE VELOCITY.FT/SEC	.48044+04	.48044+04	.46044+04	.48044+04
BETA	-,12386-06	-,87872-07	.39383-06	-,20327-06
INCIDENT RADIATION FLUX	. 00000	00000	. 00000	. 00000
ENTROPY DROP, BTU/LB R	00000.	00000	00000.	. 00000
"1/FLUX NORM, PARAMETER	-,74993+01	-,10606+02	18370+02	-,25979+02
WALL TEMPERATURE, DEG R	,53000+03	,53000+03	.53000+03	.53000+03
NORMALIZED COMP FLUX	00000	00000	00000'	00000.
NORMALIZED COMP FLUX	.00000	00000	.00000	.00000
VORMALIZED COMP FLUX	00000	00000	00000	00000

```
ELECTRON
COLL FREG
4.136-61
2.738-11
2.748-11
2.147-11
2.060-11
                                                                                                                                                                                                                                                                                                                                                                                                5.300+002
2.1326+003
2.137+003
2.343+003
2.3609+003
2.3609+003
                                                                                                                   7.154+01
                                                                                                                                                                                                                                                                                                                                                                                  (DEG R)
                                                                                                                                    ELEMENTAL MASS DIFFUSIVE FLUXES (LB/SEC SQ FT) FOR TOTAL GAS VITROGEN OXYGEN
                                                                                                                                                                                                                                                                                                                                                             STATIC
ENTHALPY
($745.00
2.003401
3.245402
4.175402
4.177402
5.249402
5.249402
5.249402
                                                                              FLUX NOR-
MALIZING DIFFUSIONAL TOT ENTH RERAD
PARAMETER
(BTU/SEC SG FT)
1.333-01 7.155+01 7.155+01 0.000
-24 OCT 69 15131155
                                                                                                                                                                                                                                                                                                                                                                                    (9TU/LB)
1.794+02
1.794+02
1.323+01
1.333+02
1.333+02
1.333+02
1.333+02
                                                                                                                                                                                                  MOW TRANS HEAT TRANS BLOWING PARAMETERS ELEMENTAL MASS TRANSFER COEFFICIENTS,
COEFF, COEFF, (BASED ON CH) FOR HOGE-UE-CM (LB/SEC SG FT) FOR RHOG-UE-CF/2 RHOG-UE-CH PYROL GAS CHAR TOTAL GAS NITROGEN OXYGEN
6,622-02 7,704-02 0,000 0,000 0,000 -3,001-01 -3,001-01
                                                                                                                                                                                                                                                                                                                                                                                     (87U/LB)
2,156+02
3,142+02
3,540+402
5,541+02
7,019+01
                                                                                                                                                                                                                                                                            MASS THICKNESSES (FT) FOR
                                                                                                                                                                                                                                                                                                                                                              SHEAR TOTAL ENTH-
(LB/FTSG) (BTU/LB) (
9.888+00 7,125+01 2
9.286+00 2,165+02 3
7.815+00 5,982+02 3
7.815+00 5,982+02 3
5.461+00 7,717+02 2
                                                                                                                                                                                                                                                                                                                            1,164-04 1,281-04 1,281-04 1,354-04 3,039+06 -5,567-03 -5,568-03
,83330-01 FFET
                                                                                                                                                                               2,952-06 -2,952-06
                                               00
                   MAX, ERRORS ! 4 CONSERVATION EGS.
                                                                                                                                                                                                                                                                           MOMENTUM DISPLACE, EFFECTIVE ENTHALPY REYNOLDS MASS THICKNESSES THICKNESS, NUMBER THICKNESS, NUMBER THICKNESS, NUMBER THETA DELSTAR DISPLACE, LAMBDA PER FOOT VITROGEN OXYGEN (FT)
                                             5.7-05
                                                                                                                                                                                                                                                                                                                                                                                      0.000 (CB/FTSG)
                                             ~~
                                                                                BETA
                                                                                          (L9 /SEC)++2 (FT) (ATM) VELOCITY (FT) (ATM) (FT/SEC) 1,099+00 2,469-04 1,000+00 1,278+00 4,804+03 0,000
                  TIME ALPH FPP. ERROP MOMENTUM ENERGY 1973 1:099 6:-Cd 6 -3:1-04 3 -3:0-01 1:295 1:099 2:003 2:-08 6 -1:7-04 3 -1:6-01
 - STREAMMISE DIMENSION
                                                                                                                                                                                                                                                                                                                                                                                                     0.000
                                                                                                                                                                                                                                                                                                                                                                                                    0.000
1.881-01
4.102-01
6.254-01
8.000-01
9.752-01
                                                                               FRESSURE
(ATM)
                                                                                                                                                                                                                                                                                                                                                                  FP
(=U/UE)
                                                                                                                                                        MECH REY PYROL GAS CHAR
(LB/SEC SG FT)
0.000 0.000
                                                                                                                                            MASS FLUXES
                                                                                                                                                                                                                                                                                                                                                                                                      0,000
4,908-02
2,130-01
4,987-01
8,929-01
1,890+00
                                                                                    20KAP
                                                                                                                                                                                                                                                                                                                                                                    Ŀ
                                                                                                                                                                                                                                                                                                                                                                                                       0.000
5.495-01
1.099+00
1.649+00
2.198+00
3.297+00
                                                                               x1
(1.9
                                                                                                                                                                                  9,888+00 0.000
                                                                                                                                                                                                                                                                                                                                                                    ETA
                                                                                                                                                                                                                                                                                                                                                      NODAL INFORMATION
                                                                                                                                                                                                                                                                                                                                                                                                      2,000
1,281
1,121
2,118
2,218
1,711
1,711
1,711
1,711
1,04
1,04
                                                                                                                                              AALL
SWEAR
(LB/S9 FT)
                       TERATER VALUES
                                                                                                                                                                                                                                                                                                                                                                    DISTANCE,
FROM WALL
(FT)
```

LUNT STO	SENSITY. <	18008111	Z COL	おとに ここ ここ	コイドスコー		011100:				•
FROM WALL RHO THE /RHOI	AHO.	PH DE	RHOE - MUE,	/RHOE-MUE, HEAT COND (8TU NU	COND (8TU	NUMBER	SCIENTO I	FH0IEM	/KMOE+MUE	202	
	(110)/97	10/00/1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	740	4.292-03	-6.918-07	6.870-01	6.940-01			0.00	/
20.00	70-476-4	1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.400	2.454=01	7.253-06	6.854-01	6.940-01			5.073-01	
20-102.5	2010-02		004204	2.722-04	9.841-06	6.855-01	6.940-01			9,671-01	1
1,141-9	2005	CO-6/15	00-771-1	101010		4.84.0	A 040-01			1.362+00	
2,118-04	2.363-02	5,74-05	1.002001	1000000	101444	10164	4.040-04			1.669+03	
3,250-04	2.156-02	2,948-05	1.020*000		10.40.40.40.40.40.40.40.40.40.40.40.40.40	**************************************	4.940-01			1.970+00	
5,711-04	2.013-02	3.123-05	9.999-01	2,899-01	1,320-05	9 6.858-01 6	6.941-01	2.886+01	000.0	2,002+00	

1,000+03

-55-

RESPECT TO 3,281-05 1,121-04 2,118-04 3,250-04 FRACTIONS AND THEIR FIRST AND SECOND DERIVATIVES WITH ELEMENTAL

7,650-01 7.650-01 7.650-01 7,650-01 7,650-01 ,650-01 2,308-07 -2,747-07 1,165-07 7.650-01

5.856-10 2.350-01 -0.000 -5.856-10		5,535-15	10-1221	6.655-04	7,676-01	2,115-01
-2.333-08 2.350-01 -2.500-08 2.333-08		2,547-15	10-2011	7.646-04	7.8/7-01	2,116-01
-1,567-08 2,350-01 -4,221-08 1,567-08		2,387-22 1,945-18 1,366-16 2,547-15 5	00-6261	4,396-04	7.878-01	2,117-01
-1,353-07 2,350-01 -1,165-07 1,353-07		1,945-18	1.000-19	1,965-04	7.680-01	2,118-01
7.119-07 2.350-01 2.747-07 -7.119-07		2.387-22	0.451-11	3.561-05	7.880-01	2.119-01
6.617-05 -9,199-07 7.119-07 -1,353-07 -1,567-08 -2,333-08 5.856-10 2,350-01 2,350-01 2,350-01 2,350-01 2,350-01 2,350-01 2,350-01 2,550-01 2,550-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 2,500-01 1,550-01 1,550-01 1,550-01 2,333-08 -5,856-10		1,931-31	1,216-15	198-07	7,881-01	1119-01
6.617-05 2.350-01 3.613-05		1.000-30	1,000-30	1.500-16	7.881-01	2,119-01
0	MOLE FRACTIONS	z	o	02	٠ ٢٧	05

c	
7	
-1	
~	
ပ်	
Ň	
r24 OCT 69 15151:57	
'	
'	
⊬ ui	
iii Li	
.16567-00 FEET	
ç	
5	
\$	
ž	
•	
ć	
STREAM ISE DIMENSION	
ú	
2	
വ	
ri U	
.,	
>	
w	
Ë	
Ĭ	
1	
:	
ï	
•	
1 1 1 1	
•	
١	
•	
•	
**	
CASE	
AS	
Ü	

									CT204 TR04	SEC)	50+10 58+10	2,349+10 2,156+10	59+10 40+10	71+10										
									ELEC		2.3	22.7	20.0	1.9										
		000ND							TEMP	(DEC R)	5,300+02	1.801+03	2,343+03	2,558+03	N M A CH	000	5.072-01	1.362+00	.669+0	.002+0				
		REAAD SG FT) 0.000	50 FT) FOR						STATIC	(9TU/LB)	7,125+01	3,246+02	5.251+02	5,392+02	RHOSO*EPS /RHOE*MUE		0000	36	86	38				
		HEAT FLUXES L TOT EVTH (BTU/SEC 1,600+01	1 (L9/SEC S		CLENTS, FOR				ddS	(gTU/LB)	1.794+02	-1.317+01	-1.896+02	1.831+01	OLECULAR VFIGHT	2 8 8 4 10 4				2.886+01				
		DIFFUSIONAL 1.600+31	IVE FLUXES		SOFF)	F03			ā	(BTU/LB)	2,156+02	3.634+02	2,745+02	0.0.0	MODIFIED M SCHMID?	NUMBER	6.940-01	6.940-01	6.940-01	6,940-01 6,941-01	4.848-03	ETA	7.650-01	
ON Eas.	.5-05 0	FLUX NOR- MALIZING DI PARAMETER 2,981-02	MASS DIFFUSIVE OXYGEN	-1,363-06	MASS TRANSFER E-CM (LB/SEC OXYGEN -1.212-01	JESSES (FT)	OXYGEN	-6,364-04	OTAL ENTH-	<u>ت</u> ب	9	4.021+02	2 2 2	5 5	PRANDTL NUMBER		6.854-01	6.838-01	6.857-01	6.858-01	2,554-03	RESPECT TO	7,650-01	
USERVAT!	, n •	3ETA M M 0.030	ELEMENTAL M	1,343-06 -	LEYENTAL RHOE+U ITROGEN 1.212-01	MASS THICKNESSE	VITROGEN C	-6.338-04	SHEAR TO	(1975150)	2,210+00	2.076+00	1,221+00	0.000	THERMAL	/SEC FT R)	7,253-06	9.841-06	1.231-05	1,301-05	1 WALL,FT 1.454-03	TIVES .ITH	7.650-01	
41 2505	W 1/1	EDGE VELOCITY (FT/SEC) 4.803+63	OTAL CAS	0.000	RS OR OTAL GAS 0.000		NUMBER PER FOOT	3,038+05	g G		.904-01	4.139-01	663-01	.000	SPECIFIC	ATUZE RY	2,454-01	2,722-01	2.863-01	2.891-01 2.899-01	STANCE FROM	ND DERIVAT	7.650-01	
XAX	~ ~ ~	PRESSURE (ATM) V		sa FT) 0.000	PARAMET ON CH) CHAR		. SS.	(FT) 6.052-04		(=0/0E)	0.000	4.102-01	8.000-01	1.000+00	RHO+MU		1.710+00	1,127+00	1.030+00	1.006+00	D15	T AND SECOND	7.650-01	
LYP YAX.L	#C#23 499 6464 1000 608	20KAP P (FT) 1,000+00	MASS FL PYROL GAS		BLOWING (BASED GAS OF OF OR OF OR OF OR OF OF OR OF	~~~	ű	(FT) 5,724-04	i k		000'0	4,937-02 2,130-01	8,928-01	1,890+00 4,081+00	VISCOSITY	La/SEC FT				3,084-05	1,467-04	THEIR FIRS	7,650-01	
	2903 29041	XI (LB /SEC)++2 4.938-05	KECH REF	0.000	HEAT TRAUS COEFF, RHO-UE-CH F 1.723-02		38,	(FT) 5.728-04	1102 ETA		0000	5.495-01 1.099+07	1,648+0n 2,198+0n	3.297+03 5.495+30	<u>.</u>		3.8.0-03	2.804-03	2,362-03	2.012-03	0.000	FRACTIONS AND	0-01	İ
סור	11ME ALPH ,667 1.099 ,985 1.099	ALPMA ((L9/S9 FT) 2,210+00	7, 44S	MOMENTUM D	THICKNESS, TH		INF JRMA	FRC" ALL	0.000	1,467-04	9,471-04	2,554-03	37.41817	FROW WALL (FT)	0000.0	5,013-04	9.471-04	2,554-03		ELEPENTAL FRAC		
ITERA	148 248			_	ä				NODAL D18		57-											8 18		

.

-3.522-08 2.350-01 -0.000 3.522-08 1,747-14 1,662-06 8,871-04 7,876-01 2,115-01 1.687-08 -2.350-01 -2.016-08 -1.687-08 8,133-15 1,100-06 7,661-04 7,87-01 2,116-01 7.372-08 2.350-01 6.085-08 -7.372-08 4.352-16 2.325-07 4.402-04 7.878-01 2.117-01 -2.970-07 2.350-01 -1.023-07 2.970-07 6.186-18 2.432-08 1.967-04 7.880-01 2.118-01 2.350-01 -3.667-07 4.811-07 7.576-22 2.044-10 3.563-05 7.880-01 2.119-01 1,354-06 -2,350-61 3,775-07 -9,271-31 3,845-15 7,199-07 7,881-01 2,119-01 7.412-05 2.350-01 4.110-05 -7.412-05 1.000-31 1.000-35 1.500-16 7.881-01 2.119-01 FRACTIONS MOLE

£
10:10:14 Po
_
-
<u>.</u>
-
C
-
5
4
7
:
•
•
1
-
A I
•
3
1506/-00 FEET
Š
-
Ċ
NC: sysald
ı.
_
_
111
رب
,
4
ul Y
5
•
1
ı
:
1
1
•
•
ı
•
ı
Č
. •
Ų,
C45E
U

					7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- +					
					ELEC.	(1/SEC) 4.330+11 2.330+11 2.349+11 2.156+11 2.060+11	1.97					
	900%0				TEMP	7.056 8) 1.326+02 1.826+03 2.137+03 2.3437+03 5.3430	2.557+03 MACH	0.000 5.073-01 9.670-01	1.669+00 1.970+00 2.002+00			
	RERAD SQ FT) 0.000	SO FT) FOR			STATIC	(ATU/LB) 7.125+01 2.005+02 3.246+02 4.179+02 4.767+02	5.390+02 8.390+02	/KHOF# MUE 0.000 0.000 0.000 0.000	0.000			
	HEAT FLUXES L TOT ENTH (BTU/SEC 5.060+01	S (LB/SEC	ICIENTS, FOR		9	(ATU/LB) 1.794+02 8.405+01 -1.324+01 -1.358+02 -1.358+02	1.831+01 10LECULAR	WFIGHT 2.886+01 2.886+01 2.886+01 2.886+01	200			
	91FFUSIONAL 5.050+01	SIVE FLUXE	R COEFFI SG FT)	F08	G .	(BT:/LB) 2.156+02 3.142+02 3.634+02 3.531+02 2.795+02	0.000 0.000 MODIFIED *	6.940101 6.940101 6.94010 6.94010	6.940-01 6.940-01 6.941-01	÷	ETA	7,650-01 0,000 -1,585-08
10% E35.	FLUX NOR- MALIZING D PARAMETER 9.429-02	MASS DIFFUSIVE OXYGEN 1.164-05	NTAL MASS TRANSFE HOE+UE+CY (LB/SFC GEN OXYGEN 4+00 3.793+00	THICKNESSES (FT) DGEV OXYGEN 50-04 1.754-04	TOTAL ENTH-	(STU/LB) 7.125+01 2.168+02 4.022+02 5.982+02 7.717+02	1.000+03	NUMBER 6.870-01 6.854-01 6.855-01	6.858-01 6.858-01 6.858-01	8.077-04	RESPECT TO	7.650-01 7.097-09 9.389-09
NSERVAT	a£†∆ 0.000	ELEMENTAL MITROGEN -1.164-05	ELEMENTAL AHOE+U VITROGEN 3.784+00	4855 THICK VITROGEV 1.750-04	SHEAR	6.991+00 6.991+00 6.946+00 6.566+00 5.526+00 7.861+00	THERMAL	COND (STU /SEC FT R) -6.916-07 / .254-06 9.842-06 1.141-05	1,231-05	7%	IVES WITH	7.650-01 2.435-08 -1.569-08
30RS 1	EDGE VELOCITY (FT/SEC) 4.804+03	TOTAL GAS	ERS FOR TOTAL GAS 0.000	REYNOLDS NUMBER PER FOOT 3.039+06	g	2.90 2.90 2.94 2.94 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	SPECIFIC	HEAT BTU/LB R) -4.292*02 2.455*01 2.722*01	2.863 2.891 2.891 2.890 01	~ •	Ž.	7.655-01 9.964-0A -1.370-07
٠٠, م	PRESSURE (AT%) 1.278+37	FLUXES CHAR SQ FT) 0.000	PARAYET ON CH) CHAR	ENTHALPY THICKNESS, LAMBDA (FT) 1.914-04	FP (=U/UE)	0.000 1.481-01 4.102-01 6.254-01 4.000-01	1.000+30 1.000+30	PHOE+MUE, C. 1.710+00 1.251+00 1.127+00	10-666 00+900	1.585	- -	7.650-01 -4.272-07 9.588-07
CAYP AX.L FREGE 67-12 6994,	1,009+60	MASS F PYROL GAS (LB/SEC 1,000	SASED (BASED CAS COS O. 0.000 O.000	EFECTIVE 90DY T 71SPLACE. (+T) 1,812-04	ī	() + () 4 (0 +	1,87,009 4,092+60 1SC0S1TY,	18/SEC FT 1.107-05 2.025-05 2.479-05	2,948-05 3,084-05 3,123-05	4,641-05	THEIR FIRS	7,650-01 2,023-07 -1,146-04
ALPH FFD :	x1 (LP /SEC)**? 4.939-04	JECH REM	HEAT TRANS COEFF, RHO+UE+CH 5.448-02	S.THICKNESS, DELSTAR (FT)	1107 ETA	10.00 H. 10.00	5.495+00 0ENSITY, V	(LB/CU FT) 9,529-02 5,3810-02 4,2803-02	2.156-02 2.013-02 1.975-02	0.000	ACTIONS AND	7.650-01 -1.108-05 2.053-05
ERATED VALUES S TIME ALI	1.099+0n	.4LL SHEAR (LB/SG FT) 6,991+00	4,682-02	*3%ENTES.T THICKNESS.T THEIA (FI) 1.644-04	INFORMA STAICE, OW WALL	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1,533-0 1,533-0	7 200	4,597-04 8,077-04 1,533-03		ELEMENTAL FRAC	z
ITER ITS			ı.L		10CAL 51	-59-					ELE	

-1 &		でアオゴゴ
2,350-0 -0.000 1,545-0		5.535-15 5.227-07 8.855-04 7.876-01 2.115-01
2,350-01 -7,097-09 -9,389-09		2.547-15 3.461-07 7.646-04 7.877-01 2.116-01
2.350-01 -2.435-08 1.569-08		2,954-31 2,408-22 1,951-18 1,367-16 1,221-15 6,480-11 7,679-09 7,326-08 7,209-07 3,567-05 1,966-04 4,397-04 7,881-01 7,880-01 7,878-01 2,119-01 2,117-01
2.350±01 -9.964±08 1.370±07		1.951 e15 7.679 = 09 1.966 e 04 7.880 = 01 2.118 = 01
2.350-01 4.272-07 -9.588-07		2,408-22 6,480-11 3,567-05 7,880:01 2,119-01
2,350-01 -2,023-07 1,146-06		2,954-31 1,221-15 7,209-07 7,881-01 2,119-01
2.350-01 2,350-01 2.3	S	1.000-39 1.500-39 1.500-16 7.881-01 7.19-01
0	MOLE FRACTIONS	2 0 Z Z O

TERATED VALUES 15 1.099 .2974 .4999 107 9 1.3-04 6 ALPHA 15 (ATM) VELCET (LBASE) 1.599-07 1.441-04 1.600+00 1.278-01 4.803 WALL SHEAF (LBASE) 1.599-07 1.441-04 1.600+00 1.278-01 4.803 WALL SHEAF (LBASE) WALL SHEAF (LBASE) WALL SHEAF WECH REA PYROL GAS CHAR TOTAL (LBASE) WOON TRANS HEAT TRANS BLOWING COEFF,	S 1' CONSERVATION FGG. ENERGY N 1.3-01 2 -7.0-05 3	RETA FLUX NOR- HEAT FLUXES TY MALIZING DIFFUSIONAL TOT ENTH RERAD GCOND C) PARAMETER (8TU/SEC SG FT) +03 0.0FG 1.721-02 9.238+00 0.000 9.238+00	ELEMENTAL MASS DIFFUSIVE FLUXES (LB/SEC SQ FT) FOR -1.237-06 1.237-06 ELEMENTAL MASS FRANSFER COEFFICIENTS, RHOE*-UE*-CM (1.8/SEC SO FT) FOR 1.768-01 1.770-01	DS MASS THICKNESSES (FT) FOR R AITROGEN OXYGEN +05 -2.999-02 -3.002-02	SHEAR TOTAL ENTH- GP GPP STATIC TEMP ELECTRON-ALPY, G GTU/LB) (BTU/LB) (1/8EC) (1	1C THERMAL PRANDTL MODIFIED MOLECULAR RHOSG-EPS MACH COND (ATU NUMBER SCHMIDT WFIGHT /RHOE-MUE NUMBER NUMBER SCHMIDT WFIGHT /RHOE-MUE NUMBER N
ED VALUES TIME ALPH		1 1FFUSIONAL 9.238+00	w ~ 6	0	67 (BTU/LB) 2.156+02 3.142+02 3.51+02 3.51+02 7.020+01 0.000	000 NCHON NCHON 66.0.00 66.0.00 66.0.00 66.0.00 66.0.00 66.0
ED VALUES 1.075 1.099 1.207 1.075 1.099 1.207 1.075 1.099 1.074	F.G.4	FLUX NOR- MALIZING PARAMETER 1.721-02	–	KNESSES OXYGEN		
ED VALUES TIME ALPH FFP. (ATM) "AXX.LI" "AXYERRORS 1.075 4.13-04 6 ALPHA XII (FT) (ATM) VELCCITY (FT) (ATM) VELCCITY (FT) (FT) (ATM) VELCCITY (ATM) VELCCT	VSERV 1 2	AET	11.2 A T T T T T T T T T T T T T T T T T T	4488 41780 -2.99	SHFAR (LA/FTS) 1.276+0 1.199+0 1.109+0 7.049-0 1.359-0	THERMAL COND (STU- /SEC FT F /253-06 9,000-07 1,141-08 1,231-08 1,31-08 1,31-08 1,31-08 2,518-03
ED VALUES TIME ALPH FFP, 499 107 9 14 1.099 10.07 9 1.099 107 9 1.099 107 9 1	RORS 6	EDGE VELCCITY (FT/SEC) 4.803+03	TAL GA .000 S R TAL GA	REYNOLOS VUMBER PER FOOT 3.038+0		υ ω · · · · · · · · · · · · · · · · · ·
ED VALUES 1675 1.099 .2954 .4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.4999 .3426.9999 .3426.9999 .3426.9999 .3426.9999 .3426.9999 .3426.9999 .3426.9999 .3426.9999 .3426.9999 .3426.9	, 50 to	m o	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ENTHAL HICKNE LAMBD (FT)	2 () 4 6 2 6	7HO HUD
ED VALUES IIME ALPH KFP. ALPHA XI (CSET) 1.099+0n 1.481-04 MALL (FT) 0.000	4 6665	-C<4P (FT) 1,000+00	PYROL (LB 0,09	EFFECTIVE RODY DISPLACE. (FT) 9,922-04		18COS1TY, 30 10,107-05 2,105-05 2,775-05 2,775-05 2,748-05 3,123-05 2,542-04
######################################	T. (4	XI EC) 481-0	MECH REA 0.000 HEAT TRA'S COEFF, RHO÷UE÷CH 9.947-C3	nisplace, Hickness, Relstar (FI) 9,922-04	ETA D. 0.00 C.	**************************************
نيد ند ندا	ATED VALUES TIME ALF	c 0		TOKNESS THETA (FT) 9.013-0		R

- - - - - STREAVISE DIMPASION .53300-00 FEET - - - -24 OCT 69 15131:58

CASE 1 -

A STATE OF THE PROPERTY OF STREET

7.650-01 0.000 3.485-08

7,650-01 7.650-01 7.650-01 7.650-01 7.650-01 1,931-07 3.915-07 -1.498-08 -3.952-08 4.092-08 3.611-07 -7.398-07 -4.466-08 7.319-08 -7.208-08

7.650-01 -2.653-05 4.863-05

z

```
2.350-01 2,350-01 2,350-01 2,350-01 2,350-01 2,350-01 2,350-01 2,550-01 2,550-01 2,550-01 2,653-05 -1,931-07 7,399-07 4,466-0A -7,319-0A 7,208-0R -0.000 -4,863-05 -3,611-07 7,399-07 4,466-0A -7,319-0A 7,208-0R -3,485-08 NO 1,000-37 3,658-15 2,051-10 2,434-0R 2,375-07 1,100-06 1,662-06 1,500-16 7,208-07 3,568-05 1,965-04 4,402-04 7,860-04 8,871-04 7,881-01 7,881-01 7,880-01 7,880-01 7,870-11 2,119-01 2,119-01 2,119-01 2,119-01 2,119-01 2,119-01 2,119-01 2,115-01 2,115-01 2,115-01
```

							ELECTRON COLL FREG	(1/SEC) 4,330+11 2,738+11	2.349411 2.156411 2.060411 1.990411	11.1/1.1		
; 	DAMP MAX.LIN MIX.ERRORS IN CONSERVATION EOS. Frror momentum energy n ,4999 608 6 6.8-36 3 7.8-03 2 -1.5-05 D	GCOND 2.921+01							2.143,40 2.143,40 2.343,40 2.343,40 3.343,40 3.343,40 3.343,40		0.000 5.073-01 9.670-01 1.362-00 1.669-00 2.002-00	
		RERAD SO FT)	SQ FT) FOR				STATIC ENTHALPY	(8TU/L8 7,125+0	4.172 4.767+02 5.249+02	RHOSQ+EP /RHOE+MU	000000	
		HEAT FLUXES L TOT ENTH (BTU/SEC 2,921+01	ES (LB/SEC	COEFFICIFNTS, G FT) FOR			GPP	(9TU/LB) 1.794+02 8.406+09	11.356+02. 11.356+02. 11.895+02. 12.895+02.	MOLECULAR	2.0006.01 2.0006.01 2.0006.01 2.0006.01 2.0006.01 2.0006.01	
		1FFUSIONA 2.921+01	JSIVE FLUXE	MASS TRANSFER COEFF) UE+CM (LB/SEC SG FT) OXYGEN 2.604-01	FT) FOR				3.934+02 3.931+02 2.765+02 7.019+01	MODIFIED SCHMIDT	2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	2,659-03
		FLUX NOR- MALIZING D PARAMETER 5.444-02	MASS DIFFUSIVE DXYGEN 7,995-07		KNESSES (6.826-04	Ξ		7.062402 5.982402 7.717402 9.633402	-	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1,399+03
		BET4 0.000	ELEMENTAL NITROGEN -7.995-07	ELEMENTAL RHOE• NITROGEN 2,604-01	SS TRO	6.826-04	SHEAR	= ' ' '	2.2290+00 4.300-01	THERMAL COND (BTU	7.00 0.00	M WALL,FT 7.962-04
		EDGE VELOCITY (FT/SEC) 4,804+03	TOTAL GAS	FOR TOTAL GAS	YNOLDS UMBER R FCOT	3.039+06	g. G.	WELL	2.062 2.062 2.062 2.062 2.062 2.062 2.062 2.062	SPECIFIC HEAT	2.00.00.00.00.00.00.00.00.00.00.00.00.00	DISTANCE FROM 04 5.188-04
		PRESSURE (ATM) 1.278+00	FLUXES CHAR SO FT)	PARAME ON CH) CHAR	THALPY CKNESS AMBAA (FT)	3.314-04	FP (=U/UE)	0 41	6	RHOE-MUE.		2.746-04
		90KAP (FT) 1,000+09	MASS F PYROL GAS (LB/SEC 0,000	S BLOWING (BASED PYROL GAS (FECTIVE RODY SPLACE. (FT)	3,138-04	L		4,987-01 8,929-01 1,690-00		20101 20101	8,038-05
	ITERATED VALUES ITS TIME ALPH FPP., 1 ,644 1.099 .2904	XI (LB /SEC)**? 1.4R2-03	MECH REM 0.000	HEAT TRANS COEFF, RHOGUE CH 3.146-07	m o	3.138-94 10N	ETA	5.495-01	1.649+00 2.198+00 3.297+00	DENSITY, V	20.20.02 20.881.02 20.881.02 20.881.02 20.136.02 10.75.02	0.000
CASE 2		1,099+00	7.4LL SHEAR (LB/SG FT) 4,035+00	MO" TAANS COEFF, RHO&UE®CF/2 2,703-02	MOMENTUR THICKNESS.T THETA (FFT)	2,848-04 5. NODAL INFORMATION	28	0,000 8,036-05	7,70 1,00 1,00 1,00 1,00 1,00 1,00 1,00	DISTANCE FROW WALL	2, 256-05 2, 1746-05 2, 1746-05 2, 256-04 2, 256-04 2, 256-04	

7.650-01 7.690-01 7.650-01 7.6

z

ELEMENTAL FRACTIONS AND THEIR FIRST AND SECOND DERIVATIVES WITH RESPECT TO ETA

2,350-01 2,350-6; 2,350-01 2,350-01 2,350-01 2,350-01 3,613-07 4,652-07 2,846-07 1,249-07 3,323-08 -0,000 1,891-07 -3,214-07 -2,978-07 -8,34-69 -6,365-98 3,342-08	2,547-15 5,535-15 3,461-07 5,227-07 7,646-04 8,855-04 7,877-01 7,876-01 2,116-01 2,115-01
2.350-01 3.323-08 -6.365-98	2.547-15 3.461-07 7.646-04 7.877-01 2.116-01
2.350-01 1.249-07 -8.334-68	1,347-16 7,326-08 4,397-04 7,878-01 2,117-01
2.350-01	1.951-19 7.678-09 1.966-04 7.880-01 2.118-01
2.350-61 4.652-07 -3.214-07	2,952-31 2,407-22 1. 1,220-15 6,479-11 7. 7,220-07 3,566-05 1. 7,881-01 7,880-01 7. 2,119-01 2,119-01 2.
2,350-01 3,613-07 1,891-07	2,952-31 1,220-15 7,208-07 7,881-01 2,119-01
2.350-91 8.476-04 -1.477-05	1.000-37 1.000-37 1.500-15 7.841-01
o	MOLE FRACTIONS N 0 0 0 N2 N2 02 02

```
ELECTRON
COLL FREG
(130+10
2.330+10
2.349+10
2.156+10
1.990+10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5.072+01
9.668-01
1.362+00
1.669+00
2.002+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.300 A)
1.326+032
2.1326+03
2.137+03
2.509+03
2.509+03
                                                                                                                                           532+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       MACH
                                                                                                                                                                           FOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (97U/LB)
7.175+01
2.009+02
4.186+02
4.7660+02
6.251+02
5.251+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RMOSQ.EPS
/RMOE.MUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                              STATIC
ENTHALPY
                                                                                                           RERAD
SQ FT)
0.000
                                                                                                                                                                           SQ FT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0000000
 69 15132:00
                                                                                          HEAT FLUXES
DIFFUSIONAL TOT EVTH
(8TU/SEC
2 6.532+00 6.532+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (BTU/LB) (RTU/LB)
2.156+02 1.794+02
3.142+02 8.407+01
3.604+02 -1.322+01
3.531+02 -1.356+02
2.785+02 -1.895+02
7.020+01 -6.218+01
0.000 1.831+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  MODIFIED MOLECULAR
SCHMIDT WEIGHT
NUMBER
6.940-01 2.886+01
6.940-01 2.886+01
6.940-01 2.886+01
6.940-01 2.886+01
6.940-01 2.886+01
6.941-01 2.886+01
                                                                                                                                                                       MASS DIFFUSIVE FLUXES (LB/SEC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.886+01
2.886+01
2.886+01
2.886+01
2.886+01
2.886+01
                                                                                                                                                                                                                                          RHOE+UE+CM (LB/SEC SO FT) FOR VITROGEN OXYGEN
 007
                                                                                                                                                                                                                                                                                                                                                    F 03
                                                                                                                                                                                                                                                                                                                                                    (FT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                             TOTAL ENTH-
MALPY, G
101 (7129/LB)
501 (7129/LB)
501 (7129/LB)
501 (7179/LB)
501 (7179
                                                                                          FLUX NOR-
MALIZING DI
PARAMETER
1.217-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -7.827-07 7.827-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              6.257-03
 .10000+01 FEET
                                                                                                                                                                                                                                                                                                                                                                                                              -2.532-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  THERMAL PRANDTL COND (8TU NUMBER 2 -6.954-07 6.854-01 9.843-06 6.855-01 1.141-05 6.855-01 1.321-05 6.858-01 1.320-05 6.858-01 1.320-05 6.858-01
                                                                                                                                                                                                                                                                                                    1.121-01 1.122-01
                             IN CONSERVATION EGS
                                                                                                                                                                                                                                                                                                                                                 MASS THICKNESSES
                                                             -6.7-05
                                                                                                                                                                        ELEMENTAL
VITROGEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (L3/FTSG)
9.024-01
9.965-01
7.135-01
7.135-01
9.612-01
                                                                                                                                                                                                                                                                                                                                                                                                              3.038+05 -2.528-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3,541-03
                                                                                                                                                                                                                                                                                                                                                                               VITROGEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             WALLIFT
                                                                                        EDGE 3ET4
VELOCITY
(FT/SEC)
1 4.803+03 0.00C
                                                             9.5-02
                                              そりとろいろ
- STREAVEISE DI MENSION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.710+00 -4.292-02 -1.251+00 2.455-01 1.127+00 2.722-01 1.053+00 2.820-01 1.056+00 2.891-01 9.999-01 2.899-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ISTANCE FROM
                                                                                                                                                                                                                                                                                     CAS
                                                                                                                                                                                          GAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          REYNOLDS
NUMBER
PER FOOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.320-03
                             MOVENTU" E
                                                       6.-73 9 9.6-35 6
                                                                                                                                                                                                                                                 S ELOWING PARAMETERS
(BASED ON CH) FOR
PYROL GAS CHAR TOTAL G
                                                                                                                                                                                                                                                                                                                                                                                                                                                             FPP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     /RHOE .MUE,
                                                                                                                                                                                                                                                                                                                                              10CKNES, THICKNESS, BODY THICKNESS, THEE DELSTAR DISPLACE, LAMBDA (FT) (FT) (FT) (FT) (FT) 1.274-03 1.403-03 1.403-03 1.403-03 1.403-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4.102-01
6.284-01
8.000-01
9.752-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.228-03
                                                                                                                                        1,033+63 1.278-01
                                                                                          PRESSURE
(ATM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (=U/UE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     AHG. MU
                                                                                                                                                                                       PYKOL GAS CHAR
(LB/SEC SQ FT)
0,000 0.000
                             FAROR N
                                                                                                                                                                       42S FLUXES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  E DENSITY, VISCOSITY, PAGE FT CLEYCU FT CASEC FT 9.229-03 1,107-05 03 2,803-03 2,79-05 03 2,155-05 03 2,155-05 03 2,155-03 3,123-05 02 1,975-03 3,123-05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2,130
2,130
2,130
4,986
1,929
1,890
1,890
4,082
                                                                                          SOKAF
(FT)
                                                                                                                           /SEC) **? 2.963-04
                                                                                                                                                                                                                                              MON TRANS HEAT TRANS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          COEFF, COEFF,
RHO-UE-CF/2 RHO-UE-CH
6,044-03 7.034-03
                                                                                                                                                                                                                                                                                                                                              MOWENTHE DISPLACE,
THICKNESS, THICK'ESS,
THETA DELSTAR
                                                                                                                                                                                        KECH REN
                                                                                                                                                                                                                    0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              000.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                          ET4
                                                                                             ×
                                                                                                                                                                                                                                                                                                                                                                                                                                           YOUAL INFORMATION
                                             11ME ALPH
.663 1.099
                        TTERATED VALUES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        11.22.10
12.22.10
12.22.10
13.22.10
13.23.10
11.183.10
11.183.10
                                                                                                                                       1.099+0^
                                                                                                                                                                                                  (L8/50 FT)
                                                                                                                                                                                                                       9,024-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                           DISTANCE,
FROM WALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DISTANCE
FROM WALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                          STANCE
                                                                                                                                                                        SHEAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (FT)
```

7.650-01 0.000 6.576-08

7.650-01 3.333-08 -9.609-08

7.650-01

7.650-01 7.650-01 -1.075-00 -9.827-07 1.682-07 9.523-07

7,650-01 -2,446-06 2,495-06

7.650-01-1.495-05

FRACTIONS AND

THEIR FIRST AND SECOND DERIVATIVES WITH RESPECT TO

-65-

2,350-01 -0.000 -6,576-08		1.767-14 1.662-06 8.871-04 7.876-01 2.115-01
2.350-01 -3.333-08 9.609-08		8.130-15 1.100-06 7.660-04 7.87*01 2.116-01
2.350-01 4.594-07 -4.444-07		6.200-18 4.353-16 8 2.435-08 2.355-07 1 1.968-04 4.402-04 7 7.880-01 7.878-01 7 2.118-01 2.117-01 2
2.350-01 9.827-07 -9.523-07		6.200-18 2.435-08 1.968-04 7.880-01 2.118-01
2.350-91 1.075-06 -1.682-97		.633-22 .052-10 .568-05 .840-01
2,350-01 2,446-05 -2,495-06		9,340-31 3,860-15 7,209-07 7,881-01 2,119-01
2.350-01 2,350-01 2,350-01 2,350+01 2,350-01 2,350-01 2,350-01 1,495-05 2,446-04 1,075-06 9,827+07 4,594-07 -3,333-08 -0,000 -2,276-05 -2,495-06 -1,682-07 -9,523-07 -4,444-07 9,609-08 -6,376-08		1.000-35 1.000-30 1.500-16 7.851-01 2.119-01
0	MOLE FRACTIONS	2 0 2 2 0 2 0 2 0 0

COLL FREG (1/SEC) 4.330+11 2.738+11 2.349+11 2.156+11 000 B 1.326 B 1.326 B 1.326 B 2.137 B 2.343 B 2.559 B 3.559 B 2.066+01 STATIC CHATHLE MALIZING DIFFUSIONAL TOT ENTH RERAD PARAMETER (BTU/SEC SG FT) 3.849-02 2.066+31 2.056+01 0.000 7 S (PTU/LB) 1.794+02 1.794+02 2.1.324+01 2.1.354+02 2.1.354+02 2.1.354+02 2.1.354+02 1.831+01 HEAT FLUXFS FLUXES (LA/SEC ELEMENTAL MASS TRANSFER COEFFICIENTS, 69 004 (BTU/LB)
2.156+02
3.142+02
3.504+02
2.751+02
7.019+01 AMOE+UE+CM (18/SEC SG FT) (FT) F04 MASS DIFFUSIVE TOTAL EVTH-HALFY.G 3) (37U/LB) 30 7.129-01 00 2.169-02 00 4.022-02 00 5.982-02 00 7.717-02 1.000-03 L ដ 3.110-06 -3.110-06 FLUX NORvitrogev OXYGEN -4.246-01 OXYGEN MASS THICKNESSES *AX, ERRORS IN CONSERVATION (L3/FTS9)
2.854+00
2.854+00
2.681+00
2.256+00
1.576+00
3.041-01 ELEMENTAL VIDORTIV VI TROGEN "1x,LIN "AX,ERRORS IN CONSERV FRAUP MOFFNIUM EMERGY 1.-03 6 3,2-36 2 -8,1-33 2 SHEAR AET4 0.000 related to age. (FT) (AT4) VELOCITY (FT/SEC) 1,000+01 1,278+94 4.894+03 FOR TOTAL GAS 0.000 2.904.01 4.1344.01 3.692.01 2.662.01 5.256.02 MOMENTIN DISPLACE, EFFECTIVE ENTHALPY REYNOLDS
THICKNESS, THICKNESS, NUMBER
THET DELSTAP DISFLACE, LAMBDA PEP FOOT
(FT) (FT) (FT)
4,328-04 4,438-24 4,687-04 3,039+06 TOTAL SAS 0.000 907 ALOWING PARAMETERS 4.102-01 6.254-01 8.000-01 9.752-01 1.000+00 (BASED ON CH) 0.000 FP (=U/UE) PRESSUPE 512F A CHAR 0.000 PYPOL GAS CHAR (LB/SEC SQ FT) 3.000 0.000 42SS FLUXES 2,000 4,908-02 2,130-01 4,987-01 8,929-01 1,899-00 PYRUL 645 0:000 6664 : 163. RHO+UE+C. F HEAT THA'S 00 44980 6409494 6999499 70994999 1144444 100000 /SEC) **? 2.963-07 χ. ω COEFF. 9.000 ETA × NOUAL INFORMATION 188 4LPH ITERATER VALUES *ALL SWEAR (LB/SG FT) 2,854+00 MOM TRANS 1,911-02 DISTANCE, FROM WALL COEFF (FT) TIME

0.000 5.073-01 9.670-01 1.362+00 1.669+00 1.970+00 MACH PHOSG*EPS /RHOE*MUE 2.000+01 2.000+01 2.000+01 2.000+01 2.000+01 2.000+01 MOLECULAR WF 16HT 3001FIED NUMBER 6.940-01 6.940-01 6.940-01 6.940-01 6.940-01 3,755-03 3.883-04 7.337-04 1.126-03 1.978-03 , RH05-WU SPECIFIC THER'AL PRANDTL /RH0F-WUE, HEAT COND (8TU NUMBER T C (RTU/LB R) /SEC FT R)
5 1.710-00 -4.292-02 -6.915-07 6.854-01 5 1.251-09 2.852-01 9.842-06 6.855-01 5 1.253-09 2.852-01 1.231-05 6.855-01 5 1.056-00 2.891-01 1.320-05 6.856-01 5 9.999-01 2.899-01 1.320-05 6.856-01 DISTANCE FROM WALL, FT /AHOF•MUE, 1,107-05 2,025-03 2,479-05 2,479-05 2,478-03 3,084-05 3,123-05 DENSITY, VISCOSITY, 1,137-04 3. (L&/CU F1) L 9.559-05 -04 2.803-05 -04 2.803-05 -03 2.156-02 -03 2.015-02 -03 1.975-05 Ç 0.000 0.000 1.000 FROW AALL

1.990+11 2,060+11

-67-

RESPECT TO THEIR FIRST AND SECOND DERIVATIVES WITH **€** FRACT I ONS ELEMENTAL

7,650-01 7,650-01 7,650-01 -1,013-07 -4,424-08 0,000 5,187-08 8,273-08 -4,248-08 7.650=01 -1.354=07 -6.215=08 7,652-01 7,650-01 +3,791-07 -1,967-07 7,320-07 1,115-07 7.650-01

5,535-15 5,227-07 8,855-04 7,876-01 2,115-01 2,350-01 -0,000 4,248-08 2.547-15 3.461-07 7.646-04 7.877-01 2.116-01 2.350-01 1,367-16 7,326-08 4,397-04 7,878-01 2,117-01 2.350-01 1.013-07 -5.187-08 1.951-18 7.678-0: 1.966-04 7.880-01 2.118-01 2,350-01 1,354-07 -6,215-08 2.407-22 6.480-11 3.566-05 7.880-01 2.119-01 2.350-01 1.967-07 -1.115-07 2,952-31 1,220-15 7,208-07 7,881-01 2,119-01 2,350-61 3,791-67 -3,320-07 2.350-03.2.427-05 1.000-30 1.000-30 1.500-16 7.881-01 2.119-01 FRACTIONS 20220

2. SAMPLE CASE 2 - ABLATING PHENOLIC CARBON FLAT PLATE

The second sample case is the solution of the boundary layer flow of air over an ablating phenolic carbon plate. This problem utilizes the multicomponent, general chemistry features of the program to greater advantage. A complete set of species thermochemical data is read in for all important species in the C-H-O-N-e system. Wall fluxes of the ablating material are prescribed, as is the wall temperature, thereby overriding any calculations of chemical equilibrium at the surface. Equal diffusion of all species is assumed and thermal diffusion is ignored for this problem. Solutions at six stations along the plate were requested, and a total of 13 nodes through the boundary layer were specified. Stagnation conditions for this problem were $P_{\rm O} = 43.4$ atmospheres and $H_{\rm O} = 2100$ Btu/lb. No radiation flux was specified.

The chemical composition data for this problem is of particular interest. It has been assumed that the phenolic carbon plate is in the steady-state ablation mode. It is apparent then, that the total elemental makeup of the ablation products as they are injected into the boundary layer must be the same as that of the virgin material. For phenolic carbon, it has been assumed that 0.326 pounds of resin are used per pound of virgin material and that the resin can be essentially represented by the molecule C_6H_6O (reference 8). Thus, every pound of virgin material consists of 0.9236 pounts of C, 0.0209 pounds of H, and 0.0554 pounds of O. This elemental composition is identical to that of the total ablation products for steady state ablation. The easiest way to input this ablation products chemical composition with the BLIMP code is to assign this chemical makeup to the "char" and delete any pyrolysis gas injection. This is the technique which has been used for this sample problem as can be seen below.

AFWL-TR-69-114, Vol.I

a. Input Cards for Sample Case Number 2

102043202	10202	GRAPHITE	PHENÓLIC	FLAT PLATE	TEST C	ASE		
4								
-1.								
6 03125	•36458	.69792	1.1562	1.6979	2.36	46		
13 0.	.024	•04	.072	•120	20		30	4.0
•80	1.4	2.0	3.2	5•0	•20		• 32	•48
11 •95	•••		012	310				
43.4								
2100.								
0.44	11.823	•019	.75	•75	250.			
1000.			***	****				
5 .431			3,467	106.7				
1HYDROGE	· · ·	0797		0209				
6 CARBON		011 008	745	9236				
8 OXYGEN	•		765 235	 0554				
99 ELECTE		0055						
3 6 0			0 0 0					C3
			622536-4-1					
1 6 0		0 0 0	792232-4-6	16877+6 798 D OJANAF (3000.	5000.1	0.C3 C*
			953976-4-7			500.	3000.2	
			291605-3 3					
1 6 1		0 0 0		O OJANAF (CO
			117021-3-89 424139-3-1					
1 1 0	0 0 0	0 0 0	0 0 0 (3000•	2000.1	0•C0 H
			555469-4 1			500.	3000.1	0.H
		308752+1	315025-3 9	29744+7 388	620+2			0.H
2 7 0	0 0 0	0 0 0	-	O OJANAF (N2
			116090-3-1(116232-3-6;					0 • N2 0 • N2
2 8 0		0 0 0				3000•	2000+1	02
			510872-3-1			500.	3000.1	
000000-0			290991-4-76			3000.	5000.1	0.02
1 6 0				OJANAF O			7000 4	C
			22812 5- 3 4(26190 8- 3 2(3000.1	0 • C
1 1 1				OJANAF O		3000	200011	CH
			302211-3-1			500.	3000.1	0 • CH
			463281-3 5			3000.	5000.1	0 • CH
			0 0 0 0			E00	3000 1	CHN
			552243-3-22 295052-3-1					0.CHN
			0 0 0 (J000 (20001	CHO
			300638-3-20			500.	3000.1	0 • CHO

```
-290000+4 323670+5 103028+2 633312-3 121615+8 789830+2 3000. 5000.1
                                                           0.CH0
CH2
                                                           0.CH2
 950000+5 329960+5 140728+2 132150-3-239493+7 684940+2 3000. 5000.1
                                                           0.CH2
 3 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0JANAF 12/62 319400+5 434190+5 182763+2 401025-3-461203+7 786040+2
                                                            CH3
                                               500. 3000.1
                                                           0.CH3
 319400+5 434190+5 204899+2-108028-3-114692+8 786040+2 3000. 5000.1
                                                          0.CH3
 4 1 1 6 0 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
                                                            CH4
-178950+5 530790+5 230948+2 677896-3-755061+7 825970+2
                                              500. 3000.1
                                                          0.CH4
-178950+5 530790+5 236053+2 374323-3-368234+7 825970+2 3000. 5000.1
                                                          0.CH4
 CN
 109000+6 232490+5 655906+1 115326-2 479517+6 669760+2 500. 3000.1
                                                          0 . CN
 109000+6 232490+5 988013+1 313855-3-649453+7 669760+2 3000. 5000.1
                                                          D.CN
COS
                                                          0.CO2
                                                          0.CO2
 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 9/61
                                                            C2
 198999+6 246990+5 776612+1 696081-3 185649+6 685519+2
                                              500. 3000.1
                                                          0.C2
198999+6 246990+5 104162+2 566841-4-640205+7 685519+2 3000. 5000.1
                                                          0.C2
C2H
                                                          0.C2H
117395+6 349620+5 148516+2 109402~3-503862+7 781140+2 3000. 5000.1
                                                          0.C2H
 C2H2
541900+5 482570+5 189960+2 769044-3-409039+7 849690+2 500. 3000.1
                                                          0.C2H2
541900+5 482570+5 203952+2 389062-3-645297+7 849690+2 3000. 5000.1
                                                          0.C2H2
        2 6 2
                                                            C2N2
 738699+5 511070+5 188740+2 559856-3-896873+6 985479+2 500. 3000.1
                                                          0.C2N2
738699+5 511070+5 208204+2 630229-5-346865+7 985479+2 3000. 5000.1
                                                          0.C2N2
 C3H
127703+6 489620+5 194464+2 508379-3-311933+7 928820+2 500. 3000.1
                                                          0.C3H
127703+6 489620+5 199582+2 245687-3-632514+6 928820+2 3000. 5000.1
                                                          0.C3H
 C3H2
106522+6 635170+5 247444+2 992918-3-437596+7 104666+3
                                              500. 3000.1
                                                          0.C3H2
0.C3H2
                                                            C3H3
764850+5 709520+5 286929+2 766031-3-548098+7 113604+3 500. 3000.1
                                                          0.C3H3
764850+5 709520+5 291672+2 456238-3-138601+7 113604+3 3000, 5000.1
                                                          0.C3H3
 1 1 1 7 0 0 0 0 0
                       6 0 0 0 0 0 0 JANAF 12/60
                                                            HN
792000+5 217660+5 823133+1 281555-3-126896+7 609290+2 500, 3000.1 792000+5 217660+5 765457+1 359853-3 180778+7 609290+2 3000, 5000,1
                                                          0.HN
                                                          0.HN
 1 1 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/60
                                                            H0
933000+4 214040+5 773193+1 394386-3-973561+6 613820+2
                                              500. 3000.1
                                                          0.H0
933000+4 214040+5 965144+1-443528-4-686115+7 613820+2 3000. 5000.1
                                                          0 • HO
        H2
000000-0 212100+5 711963+1 621950-3-712694+6 484650+2
                                              500. 3000.1
                                                          0.H2
000000-0 212100+5 681794+1 589854-3 265106+7 484650+2 3000, 5000,1
                                                          0.H2
 2 1 1 7 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/65
                                                            HSN
400999+5 305799+5 975862+1 114401-2-518970+6 701580+2 500. 3000.1 400999+5 305799+5 137419+2 229493-4-610024+7 701580+2 3000. 5000.1
                                                          0.H2N
                                                          0.H2N
 H20
-577980+5 302010+5 112254+2 811397-3-260800+7 684210+2 500. 3000.1
                                                          0.H20
-577980+5 302010+5 157278+2-191548-3-173599+8 684210+2 3000, 5000,1
                                                          0.H20
 N
```

```
112965+6 134370+5 486944+1 383516-4 958460+5 480900+2 500. 3000.1
                                                      0 . N
112965+6 134370+5 428957+1 240844-3-417273+6 480900+2 3000. 5000.1
                                                      0 . N
       N0
215800+5 227000+5 877623+1 899031-4-789656+6 688490+2
                                           500. 3000.1
                                                      0 • NO
 215800+5 227000+5 916260+1 657885-5-212519+7 688490+2 3000. 5000.1
                                                      0 • NO
   0
 595590+5 135220+5 497228+1 380768-5 154749+5 500960+2
                                           500. 3000.1
                                                      0.0
595590+5 135220+5 657489+1-224268-3-891782+7 500960+2 3000. 5000.1
                                                      0.0
 C4
242321+6 511230+5 205903+2 623436-4-257703+7 986760+2
                                           500. 3000.1
                                                      0.C4
 242321+6 511230+5 210714+2-434895-4-404939+7 986760+2 3000, 5000,1
                                                      0.04
500. 3000.1
                                                      0.C5
 242374+6 656230+5 271156+2-580271-4-543183+7 111641+3 3000, 5000,1
                                                      0.C5
 E-
       +149010+5+498851+1-272800-5-135900+6+164558+22000. 10000.1
                                                       E-
       +149010+5+498851+1-272800-5-135900+6+164558+22000. 10000.1
                                                       E-
   C+
+428985+6+150120+5+489657+1+180700-4+340000+5+484232+22000. 10000.1
                                                        C+
+428985+6+150120+5+489657+1+180700-4+340000+5+484232+22000. 10000.1
                                                        C+
   N+
+446641+6+151310+5+501751+1+(17100-4-184100+7+496847+22000. 10000.1
                                                       N+
+446641+6+151310+5+501751+1+617100-4-184100+7+496847+22000. 10000.1
                                                       N+
  N2+
+357258+6+251470+5+136508+2-327940-3-225630+8+656601+22000. 10000.1
                                                       N2+
+357258+6+251470+5+136508+2-327940-3-225630+8+656601+22000. 10000.1
                                                       N2+
   02-
-205250+5+267570+5+111480+2-656700-4-779100+7+699149+22000. 10000.1
                                                        02-
-205250+5+267570+5+111480+2-656700-4-779100+7+699149+22000, 10000,1
                                                        02-
   6 1 8 -1 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12/61
                                                       CO+
+294283+6+243830+5+893619+1+378000-4-150900+7+666595+22000. 10000.1
                                                        CO+
+294283+6+243830+5+893619+1+378000-4-150900+7+666595+22000. 10000.1
                                                        CO+
   +0;1
+232919+6+241970+5+910216+1+277400-4-316600+7+654379+22000. 10000.1
                                                       NO+
+232919+6+241970+5+916216+1+277400-4-316600+7+654379+22000, 10000,1
                                                       NO+
 0+
+371999+6+149290+5+336271+1+306710=3+590200+7+484849+22000. 10000.1
                                                        0+
+371999+6+149290+5+336271+1+306710-3+590200+7+484849+22000. 10000.1
                                                        0+
   02+
+279695+6+248730+5+594789+1+626340-3+103500+8+677731+22000. 10000.1
                                                       02+
+279695+6+248730+5+594789+1+626340-3+10350u+8+577731+22000.10000.1
                                                        02+
   0-
+245000+5+149430+5+216633+1+805240-3+532500+7+492947+22000. 10000.1
                                                        0-
+245000+5+149430+5+216633+1+805240-3+532500+7+492947+22000. 10000.1
                                                        0-
               .0724
                       .06089
                               .05135
                                       .04188
.0966
        .0841
   (3 blank cards)
                       4760.
4760.
       4760.
               4760.
                               4760.
                                      4760.
   (3 blank card,)
```

AFWL-TR-69-114, Vol.I

·10392 ·085338 ·070857 ·059069 ·045895 ·035085

AFWL-TR-69-114, Vol.I

b. Output from Sample Case Number 2

AEROTHERM COMPORATION, PALO ALTO, CALIF (RMK, EPB) 24 OCT 69 15:32:02 BOUNDARY LAYER 1.TEGASA * ATRIX PROGRAM (BLIVP)

TEST CASE CASE GRAPHITE PHENOLIC FLAT PLATE

2 Ç

0- 6-

P 0- 0-0 G N

PLYCH CONTROL IDENT JSPEC

NODAL PT. AT "HICH ETA NORM. U/UF TO LORM, ETA

2,400-02 0.000 1.400+00 9,500-11

1,200-01 2,000-n1 3,200-01 4,800-01 8,000-01

7,200-02

3,200+00

ETA VALUES

1,00000+00 2,10000+03 TOTAL E' THALPY, FTU/LB CASE

4,34000+01

TOTAL PRESSURE, ATY

4.4000-01 -0.00000-MIXING LENGTH CONSTANT = 4
SUBLAYER CONSTANT, YA+ = 1
CLAUSER NUMBER = 1
TURHULENT SCHMIDT MIMBER= 7
TURHULENT PRANDIL MIMBER= 7
TRANSITION NOM, THICK, RE = 2 INCIDENT RAP FLUX, B/SF2 -75-

		PYRO.GAS 3	••0000000	0000000	0000000	0000000	0000000	
69 15:32:02		CHAR 2	0000000	0000000	0000000	-,0000000	-,0000000	
24 OCT		PYRO.GAS 2	0000000	0000000	0000000	0000000	0000000	
		CHAR 1	.0207368	.0769039	.0000000	.0034628	.0000000	
	MASS	PYRO.GAS 1	0000000	• 0000000	0000000	••0000000	••0000000	
1 1 1 1 1	_	EDGE GAS	0000000	0000000	,0546117	,0146875	0000000.	
	RELATIVE ELEMENTAL COMPOSITIONS, ATOMIC WTS/UNIT	ATOMIC WT	1.00797	12.01100	14,00800	16.00000	•0000•	
CASE 1	EMENTAL COMP	ELEMENT	HYDROGEN	CARBON	NITROGEN	OXYGEN	ELECTRON	
CA	RELATIVE EL	AT. NO.		•	7	.10	66 .	

THERMODYNAMIC PROPERTY CURVE-FIT DATA (SEE MANUAL FOR FORMAT)

ਜਦ NN ਜਦ ਜਦ ਜਦ ਜਦ ਜਦ ਜਦ ਜਦ ਜਦ ਜਦ	ı न लल लल लल
000 000 000 000 000 000 000 000 000 00	
	00 00 00 00
79841+02 500.0000 12129+02 3000.0000 12129+02 500.0000 65370+02 500.0000 65370+02 500.0000 38862+02 500.0000 63765+02 500.0000 63765+02 500.0000 63765+02 500.0000 63765+02 500.0000 64765+02 500.0000 67973+02 500.0000 67973+02 500.0000 67973+02 500.0000 67973+02 500.0000 67973+02 500.0000 67973+02 500.0000 67973+02 500.0000 64612+02 5000.0000 64612+02 5000.0000 64612+02 5000.0000 64612+02 5000.0000 64644+02 5000.0000 68494+02 5000.0000	.79848+02 3000.0000 .82597+02 300.0000 .82597+02 300.0000 .66976+02 300.0000 .66976+02 300.0000 .79848+02 300.0000
20	7.00 + 0.00 to
44 00 00 00 00 00 00 00 00 00 00 00 00 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	V 000 00 VV
	8 00 00 00
60 61, 146823407 61, 176682406 61, 189821406 61, 18186408 61, 18186408 61, 18186408 61, 18186407 61, 18272407 61, 18272407 61, 18272407 61, 18272407 61, 18286407 61, 18386407 61, 18386	11489+08 17550+07 17550+07 17550+07 17550+07 17550+07 17539+07 17539+07
21.21 21.2 21.21.2 21 21.21 21.21.21.21.21.20.22.22.22.22.22.22.22.22.22.22.22.22.	1
	2 2 2 9
4 M 4 M 4 M 4 M 4 M 4 M 4 M 4 M 4 M 4 M	1
002204F 02204	100003 0479003 04790003 01878-03 11838-03 11838-03 01878-03 01878-03 01878-04 01878-04
44 44 44 44 44 44 44 44 44 44 44 44 44	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0
1464402 1464402 1644402 1644402 16460401 1660401 1660401 1660401 1660401 1660401 1660401 1660401 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402 17889402	0 0 0 0 0 0 0 0 4 4 0
22.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43419+05 0 0 0 0 23079+05 0 0 0 0 23249+05 0 0 0 0 36535+05 0 0 0 0 36535+05 0 0 0 0
1896776 18967766 18967766 18967766 190000 190000 190000 190000 190000 190000 190000 11420	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
n i i i i i i i i i i i i i i i i i i i	ય ને તે તો

-76-

		4.							44	44	44	44	44	44	44	# #	44	44	ਜਜ 00	
)	3001.0006 5001.0000	3000.0000	3001.0006	3000.0000	300000	3000.0000	3000.0000 3000.0000 5000.0000	3000.0000 5000.0000	3000.0000 5000.0000	3000.0000 5000.0000	3001.0000 5001.0010	3000.0000	3000.0000 5000.0000	3000.0000 5000.0000	000.000	000	900	.0000	.0000	
3007.1 5007.1	55	0.00	5	5				50	99	000.000	5.0	60	55	5.5	55	90	99	88		
300	500	300	10.00	, m	, w	, w	N N	200	W.0	300	500	200	800	88	500	3000.0000 5000.0000	10000.0000	10000	1000	
000	000	900	000	0 0	3 5		8 8 8	88	88	88	000	80	88	88	86	88			0000	
0.00	6.0	0.0	86	5				000	56	9.0	80.0	98	88	88	88	86	99	.00	99	
3000.0000	4+02 500.000 4+02 3040.000	C242 84969+02 500,0000 84969+02 3060,0000	C2N2 98548+02 500.0000 98548+02 4000 1000	02882+02 2000000000000000000000000000000	200	11360+03 500.0000	44 50 403 3030,000 60929402 500,000,0000 60929402 5000,0000 60929402 5000,0000	500,0000 3000,0000	H2 48465+02 500,0000 48465+02 3000,0000	H2N 70158+02 500.0000 70158+02 3000.0000	20 500.0000 3030.0300	48090+02 500,0000 48090+02 3000,0000	500.0000	50096+02 500,0000 50096+02 3000,0000	C4 98676+02 500,0000 98676+02 3000,0000	C5 4+03 500,0000 4+03 3000,0000	E- 116456+02 2000.0000 116456+02 2000.0000	2000	2002	
+92	202	7242 02 50 02 300	2000	10.5		Soble		200	025 027 027	100 H	92 3 92 3 92 3(2 8 8 2 8 8	288	088	288 2	ຽກຕ	₩ 200	5423+02 18423+02	N+ 9685+02 2001 9685+02 2001 N2+	,
524	144	+69	484	+ 4 20 80	÷ 20	0.9	9 6 6	8 8 9 4	6.00	10 10 4 +	21+	06	94	96	76+	44	50.0	23+	80 50 50 50 50 50 50 50 50 50 50 50 50 50	
68552- 68552-	78114 78114	849	985	928	104	113	609	40 61382+02 61382+02	4 6 4	701 701	68421+02 68421+02	5 4 4 0 6 4	NO 68849+02 68849+02	500	986 986	11164+03 11164+03	100	484 484	496	
• •	• •	• •	• •	•	• •	• •	• • •	• •	• •	• •	• •	• •	• •	• •	• •	• •	ન્	ન .	 ਰੂ ਜ਼	ı
504	1+07	107	51 -,89637+06 -,34636+07	6	. 43760+07	58 6/61 - 54810+07	9+07	90	71269+06	/65 -,51897+06 -,61092+07	07	95846+05	504	507	25770+07 40494+07	60	ZPW-122 12/6 13590+06 13590+06	926	12/6 +07 12/6	i
545+04 620+07	9751 0386	1994+07	587	761 1193+07	24. 160.	200	0.00	356 511	269	1974	380	346	552	175	700	13.	66.7	2007	122 12/ 8410+07 8410+07 122 12/	!
130	o +400	4.0	8.5	37.		98	1 28	6n -,97356+06 -,68611+07		72.2	51 -,26080+07 -,17360+08	2.4	63 -,78966+06 -,21252+07	62 .15475+05 89178+07	53.	60 -,33713+07 -,54316+07	777	ZPW-122 12/ ,34000+05 ,34000+05	1 44 1	•
۱ a		en n	_	<u>w</u>	E E	UER	•		0JANAF 03/69 62195-03 58985-03	a i	e i i Spp	JA*(AF 03/61 8352-04 4084-03	JANAF 06/63 9903-04 5788-05	3	-7			7	7)
-0-4 40-			3723-05	00FF 8AUE	99292-03	00UFF BAU 76603-03	28155-03 35985-03	00484F 12 39439-03 44353-04	0JANAF C3 62195-03 58985-03	0JANAF 12/ 11440-02 22949-04	1140-03 9155-03	4084-03	11444F 06 19903-04 15788-05	JANAF 0. 18077-05 12427-03	0JANAF 12 62344-04 43499-04	0JAVAF 12/6 80653-04 - 58027-04 -	0CONVAIR 27280-05 27280-05	0000-VAIR 18070-04 18070-04	4 1 4 A A	
6.4	940	04'AT 6904-0 3906-0	4. A 4. A 9.46	43.8 83.8	0292	603 403	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	414 439 353	A 2 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	444	11140-0 9155-0	352	788 788	427 427	104 A	0JAVAF 80653-0 58027-0	289 289 289 289	CONVAIR 8070-04 8070-04	0C0NVA1 61710-3 61710-0 61710-0	;
3,2,5	4 4	3. K	5 A. 4	88.	1983	85.	385	39.4	300	218	346	38.4	300	388	300	3 <i>\$</i> 2	22.2	See .	2220	,
بر . c	·		٥,,,	, o , r	ر ۾ ي	ر ف		. '	٠ ما	و _ ﴿	ໍຸ່່			و	٠, ',	٠, '	。 <u>'</u>	٠ م		•
÷ 6	; ∰ ∰ ;	5+02 5+02	0 0 0	000	0 0 0	404	0000	000	- -	, 00 00 00 00 00 00 00 00 00 00 00 00 00	5+02 8+02	9 0 0	0 0 0	0 E G	200	0 0 0	0 0 0 0 0 0	000	0 1010	t
766	13421+02 14452+02	U 3. n U 18396+n2 20395+n2	0 0, 0 0 18874+02 20920+02	19446+02	24744+02	28693+02	82313+01 76546+01	0 0, 0 0 77319+01 96514+01	0 0. 0 0 71196+01 68179+01	0 0. 0 0 97586+01 13742+02	11225+02 15728+02	48694+01 42896+01	0 0, 0 0 87762+01 91626+01	0 0. C C 49723+n1 65749+n1	0 0, 0 0 20590+02 21071+02	0 0, 0 0 26471+02 27116+02	49895+01 49895+01 49895+01	0 0. 0 0 44966+01 44966+01	50175+01 50175+01 50175+01 0 3. 0 0	;
7.40) 	2 f 4	ם הימ	10 -1-	รือ เก็บ	1000	1007	010	افيت	ت م جاد	3 H H	344	_ • • •	040	อน์น์	ם מַ מ	0 4 4	044	ວທູ້ທູ້ດ	,
ič it r	្តិ	ລຸດຄຸດ	0 50	ີ່ຕຸ້	6		0000	0 0 0, 05 0,		ລະເ ເຄີຍ ເຄື່ອ	ຸກັດ	ဦး သို့ သို့	0 02 05	0 0 05 05	ລັດຕິ	0 05 05	ວັ ^ນ ັ	52.0	0 0 0 0	;
5 6	14962+135 14962+115	0. 0 8257+03 8257+03	0. 0. 0. 01167+05 01167+65	18962+05		70952+05	9 9	1 0. 0 0 21404+05 21404+65	00	900	750	3437+05 3437+05 3437+05	, 0, 0 0 22700+05 22700+05	3522+05 3522+05 3522+05	, MM	200		700	<u> </u>	,
469	496	1828	911	0.68	63517+05 63517+05 63517+05		21766+05 21766+05	044	0 0 0 0 0 21210+05 21210+05	8 0. 6 8 80580+0\$ 80580+0\$	30201+05 50201+05 50201+05		2270	1350	1123+05 1123+05 1123+05	0 0, 0 0 65623+05 65623+05	0 0. 0 0. 14901+05 14901+05	0 0. 0 0 15912+05 15012+05	5133	,
1919	•	•	_ "; ";														• •••			
7 6 5	200	ה ה ה	7 0 7 0 0 5 0		,	م در در می در در	7,0 0,50 0,80	د د م م م م	C) (70.07 0.05 0.05		2 6 8	a a a a a a a a a a a a a a a a a a a	3 y 0	200	0 0+0+/ 2+04/	ဝ ပ	900		
9-040	1740+CK 1740+CK	1 Z. 6 5 54190+35 54190+15	70+ 70+	1 3, 6 1 12770+56	6.78 6.78 6.78 6.78 6.78 6.78 6.78 6.78	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 7 0 79200+05 79200+05	1 1, 3 (93310+n4 93300+04	000	1 1. 7 40100+0* 40100+05	7798+FE 7798+FE	11296+64 11296+64 11296+06	7 1, 4 (215 ⁸ 0+0 215 ⁸ 0+05	- N.N.	24232+04 24232+04	6 0. 2423/+¤4 24237+¤4	0000	-1, 99 2899+06 2899+n4	-1, 90 4664+24 4664+04 -1, 99	
199	117	1542 1444	6 2, 7 0 73870+05 73870+05	127	1 9 9 9	2 4 4 7	192	933	1 0. 00000 00000	144	477	777	225	8 0. (. (. (. (. (. (. (. (. (. (. (. (. (.	000	2463	00000	4.28 4.28 4.28	1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	
• •	• • •		,		ຸ້		- ··		· · ·		, i i		:		•		~ i i	. · ·	، . ام	
•	. ,		••	••	.,	•	••			-77	-		. •		-			- 🔻	~	,

, K

...

```
.48485+02 2000.0000 10000.0000
.48485+02 2000.0000 10000.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .49295+02 2000,0000 10000.0000
.49295+02 2000.0000 10000.0000
                                                                                                                                                                                                                 .66659+02 2000.0000 10000.0000
.66659+02 2000.0000 10000.0000
                                                                                                                                                                                                                                                                                                                         .65438+02 2000.0000 1000n.0000
.65438+02 2000.0000 10000.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        10000.0000
.65660+02 2000.0000 10000.0000
.65660+02 2000.0000 10000.0000
                                                                                                             .69915+02 2000,0000 10000,0000
.69915+02 2000,0000 10000,0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ,67773+02 2000,0000
,67773+02 2000,0000
                             -,22543+DR
-,22563+DR
                   -,32794-03
             25147+05 .1

25147+05 .1

26757+05 .1

26757+05 .1

26757+05 .1

26757+05 .1

27383+05 .1

24197+05 .1

24197+05 .1

24197+05 .1

24197+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14929+05 .1

14943+05 .1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       8-1, 99 0.
27970+06.
             25726+06
35726+06
-20525+05
-20525+05
-29428+06
-29428+06
-29428+06
-29428+06
-29428+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
-235292+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        8 1, 99 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            $37200+04
                                                                                                                                                                                                              ;
```

ELECTRON E-OXYGEN CO NITROGEN N2 CARBON S HYCROGEN I ELEMENT BASF SP MOLECULAR TRANSPORT PROPERTIES VISCOSITY BUDDENBERG - VILKE MIXTURE FORMULA WITH MU(1) CALCULATED THE BASIS OF O(I.I) = DBAR/G(1)+2 THERMAL CONDUCTIVITY MASON - SAXENA MIXTURE FORMULA WITH EUCKEN CORRECTION DIFFUSION COEFFICIENTS D(1,J) * DBAR/(F(1)*F(J)) WITH DBAR BASED ON SIGNA * 3.4670, EPOVRK * 106,7000, AND MREF * 32,0000

YETHOUS EMPLOYED

O CONDENSED PHASE, VALUES FOR F(1) AND G(1) SET EQUAL TO 1.E+10

G(1)) INPUT DIRECTLY 1 VALUES FOR F(I) (OR VALUES FOR F(1) (OR G(1)) CALCULATED BY F(1) =(M(1)/FITMOL)***FFA AND G(1) = (M(1)/FITGHW)***GGA WHERE M(1) IS SPECIES MOLECULAR WEIGHT, FITHOL = 23.4000, AND FFA = .4510, FITGMU = 24.3000, AND GGA = .45

3 VALUES FOR G(1) CALCULATED BY G(1) = SGRT(DBAR/D(1,1)) = (SIGMA(1)/SIGMA)

• (EPS(1)/EPOVAK) ++0.0795 • (M(1)/MREF) ++0.25 WHERE SIGMA(1) AND EPS(1)

ARE GIVEN WITH THERMODYNAMIC DATA

METHOD 1.067 1.067 .726 1.049 .779 F(1) METHOD G(1) .750 1.064 .802 .850 1.081 SPECIES 0200000 000 111 504 **YETHOD** ~~~~~~ 1.196 .00% 1.133 1.084 3 F(1) METHOD ~~~~~~ .258 .010 1.144 .777 1.397 1,204 SPECIFS
CS CS
CS CS
CCHO
CCHO

-78-

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$+01 = 28.1757830 CAL/GM-DEG K SQFT/LB/SEC 	- 28,8067470 - 28,8067470 - CAL/GM-DEG K SGFT/LB/SEC - 00000 - 00000
X	SPECIES MOLE CAL SPECIES MOLE H CH CH CH CH CH CH CH CH CH	6AMMA 1237 1237 10000 121376+01 1409-02 PECIES M
COS COSH COSH COSH COSH COSH COS COS COS COS COS COS COS COS COS COS	# 43.4000 ATM # 43.4000 ATM # 5.4000 ATM # 1000000 # 100000 # 100000 # 100000 # 100000 # 100000 # 100000 #	170LNT DLNM/CLN 12265-01 ,92588 15
1.032 1.035 1.035 1.241 1.245 1.356 1.358 1.133 1.133 1.133 1.133 1.133 0WED SY	.55791-00178 .506-K PRES .004PONENTS 1.2 AN .1166667-104 CAL/G .50136-00 LB/CUFT .50136-00 LB/CUFT .50136-00 LB/CUFT .5024	-P+EQUIL DLW,
1.047 1.0147 1.0147 1.0147 1.0147 1.1501 1.1501 1.113 1.113 1.113 1.113 1.100 F	* 316 40 - 10 G * 45 55 55 0 F * 17 19 2 7 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-FROZEN .30752-00 = 2536.109 AASSES OF AALPY = .3 .676+94 FT/ .676+94 FT/ .676+94 FT/ .676+94 FT/
146 A T I A S	76.79 8 FL 4 T 1 V E	16.75 RELATIVE DEVE VEL = DEVE C3 N2 O2

00060.	00000	00000	00000	00000	00000	.24655-01	00000	.33622-19	.37160-09	.10634-10	
CH2	3	C24	HY.S	3	ZZI	S	S	+2N	†CZ	•	
.00000	00000	00000	. 00000	00000	.00000	.17326-06	00000	.89252-24	.0000	.19452-13	
CH C	¥.	25	CZNZ	C3H3	75	7.	3	*	င်	05+	
.00000	00000.	.00000	00000	20000	00000	. 00000	.37167-02	00000.	.86527-17	,27314-14	
CHS	CH3	202	CSHS	C3H2	9	Н20	0	ţ	-20	.	

Gamma •12416+01	MOL WT = 28.8186390 .00000 .00000 .21376+01 CAL/GM-DEG K	MOLE FR.	000000	00000.	.22114-01 .96000 .26560 .2658-0 .5138-09
3,	.•	SPECTES H C*	555	1 1 C C C C C C C C C C C C C C C C C C	0 m n 0 1
DLNM/DLNT DLNM/DLNP 17820-91 .72116-	PRES = 3.6499 ATM 1.2 AND 3 .00000 CAL/GH ENTROPY = /CUFT AREA	MOLE FR. .00000 .15314-09	00000		.10107-06 .00000 .16978-24 .00000 .65236-14
CP-EQUIL DL:	725 DEG-K PRES F COMPONENTS 1,2 AN ,6360861+03 CAL/GM .323920-01 LB/CUFT 1/SEC MACH = ,2	SPECIES CO E-	00 0 0 4 0 4 0 4	2202 5202 543 543 543	Z 0 Z 0 0 4 + 0 0
CP-FR02EN CP-	TEGENTY = 2470.1725 DEG-K PELATIVE MASSES OF COMPONENTS ENTHALPY = ,5360861+03 OENSITY = ,323920-01 LB VEL = ,691+04 FT/SEC MACH	MOLE FR	.00000.	000000000000000000000000000000000000000	.00000 .28929-02 .00000 .49686-10
Ö	TEMP PELATIVE ENT DEW	SPECIES C3 N2	005 CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN	0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.12467+01	MOL WT = 28.8290880 .00000 .00000 .21376+01 CAL/GM-DEG K	MOLE FR.
2		SPECIES CH CH2 CN2 CN3 CN3
CP-EQUIL DLNM/DLNT DLNM/DLNP .35702-0013773-01 .54099-03	TEMP # 2399.4878 DEG-K PRES # 3,1422 ATM MELATIVE MASSES OF COMPONENTS 1,2 AND 3 .00000 ENTHALPY # .4109449+03 CAL/GM ENTROPY # DENSITY # .297175-01 LB/CUFT VEL # .708+04 FT/KEC MACH # .232+01 AREA #	MOLE FR. .00000 .78749-10 .00000 .00000
P-EQUIL DLNM .35702-001	7EG-K PRE 4PONENTS 1,2 19449+03 CAL/ 175-01 LB/CUF	SPECIES 60 60 64 64 62 62 62 62 62 62 62 63
CP-FR0ZEN CP.	TEMP # 2399.4878 DEG-K PRES # 11VE MASSES OF COMPONENTS 1,2 AND ENTHALPY # .4109449+03 CAL/GH DENSITY # .297175-01 LB/CUFT # .708+04 FT/AEC MACH # .23	MOLE FR. .00000 .77744-00 .00000 .00000
CP	TEYP HELAJIVE ENT) DENY	SPECIES C3 42 C42 C43 C643 C643 C643

.00000 .00000 .00000 .00000 .2348-20 .10749-09 .22427-11	MOL WT = 28.8384640 .00000 .00000 21376+01 CAL/GM-DEC K .551-02 SGFT/LR/SEC	GAMMA GAMMA GAMMA GAMMA GAMMA GAMMA	Õ•N ⊣ Ü
0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	ប	OSET COCCOCE
00000 674 00000 70 00000 0 25 00000 0 25 00000 0 24 00000 0 24 00000 0 24 00000 0 24 00000 0 24 00000 0 24 00000 0 24 00000 0	PRES = 2.6426 ATM IS 1.2 AND 3 .00000 33 CAL/GM ENTROPY = LB/CUFT .242+91 AREA =	ES MOLE FR. SPE .00000 CH .00000 CN .00000 CN .00000 CN .00000 CN .00000 CN .00000 CN .00000 CN .25566-07 CN .2566-26 N2+ .2566-26 N2+	2.2 AND 3 EN CLFT SALCT
n + + + + + + + + + + + + + + + + + + +	30 DEG-K COMPONENTS 1 .5828005+03 C 250018-01 LB/ /SEC MACH =	2	X M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2	# 2313.69 "ASSES OF #ALPY # \$117 # .725+04 FT	** CT9000 . 20264-01 . 20264-01 . 20264-01 . 20000 . 00000 . 00000 . 00000 . 15100-02 . 12327-11 . 12327-11 . 12327-11	# 2246.275 # ASSES OF # ASSES OF # ADDED OF TO # ADDED # ADDED OF TO # ADDED OF TO # ADDED OF TO # ADDED OF TO # ADDED # ADD
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	76_411VF 96_411VF 06_1VF 06_1VF	SPECIES (23	7649 RELATIVE 1067 VEL # DENY 02 03 02 04 04 04 04 00 04 00 00 00 00 00 00 00

.69494-22 .20704-10 .28336-12	6AMKA .12642+01	MOL WT = 28.8510960 .00000 .00000 .21376+01 CAL/GM-DEG K	.706-02 SQFT/LB/SEC	S MOLE FR.	.00000	.00000	.00000	.00000	00000.	00000	• 00000	.00000	00000	.11565-01	00000	.71195-23	.71058-11	.73615-13
+ 0 0 0 0	NM/PLNP .16074-03			SPECIES	I	ပံ	3	CH2	ຮັ	CSH	CZE	Z	N2I	Š	5	N2+	÷0N	6
.2346-27 .00300 .32224-15	DLNM/DLNT DLNM/DLNP 45801-02 .16074-	PRES * 1.8176 ATM 1.2 AND 3 .00000 CAL/GM ENTROPY * /CUFT	262+01 AREA	ES MOLE FR.	00000	.50069-11	.00000	. 00000	00000.	00000.	00000.	00000.	00000.	.42991-08	00000.	111107-28	.0000	,70731-16
**************************************	CP-EGUIL .33233-00	NTS +03 1 LB	MACH #	SPECIES	ပ	ů	U	Ö	Ž.	25	CSNS	CARA	42	2	3	ż	÷00	05+
.00000 .55591-11 .\$2372-21	CP-FROZEN CP- .30310-00 .3	12 P	,760+04 FT/SEC	£	00000	,78197-00	.20572-09	.00000	00000	00000	00000.	00000	00000.	00000.	.64356-03	00000	,20251-11	,51445-22
+ N+ 0	U	` ⋖	VEL =	SPECIES	S	22	05	S. E.	CF	202	C2H2	CINS	o I	H20	0	ငံ	05-	.

DISTANCE,FT	.31256-01	.35458-00	.69792-00	.11562+01	.16979+01	,23646+01
ROKAP	.10300+01	.10000+01	.13039+01	.19000+91	.10000+01	.10000+01
X1,(LB/SEC)2	,33751-93	,37575-62	.68137-02	.10509-01	.14326-01	.18378-01
PRESSURE MATIO	.9663E-n1	.84100-01	.72409-01	.60890-01	.51350-01	.41880-01
STATIC PRE CUELATY	.41924+01	,36499+01	.31422+01	.26426+01	.22286+01	.18176+01
EDGE VELOCITY, FT/SEC	.67568+04	,69144+04	,70764+94	.72533+04	.74177+04	,76025+04
ВЕТ∆	,43155-02	,56333-01	.10042+90	.12864-00	.16129-00	.22731-09
INCIDENT RAPIATION FLUX	, 00000	00000	. 30000	00000.	30000.	,0000,
ENTROPY URUP, 9TU/LB R	.0000	.00000	.00000	.00000	.0000	. 10000
*1/FLUX NOR", PARAMETER	-,24056+01	-,89235+01	-,13497+02	-,13497+02 -,19210+02	-,25693+02	-,34306+02
*ALL TE*PERATURE,DEG R	47630+04	,47600+04	.47600+04	.47600+04	.47600+04	,47600+04
COMP FLLX, LA/SEC FT**2	00000	-,00000	-, 00000	-,00000	-,00006	00000
COMP FLUX, LA/SEC FT**2	-,00000	-,00000	00000	-,00000	00000	00000
COMP FLUX, LA/SEC FT**2	.10392+00	,85338-01	.70457-01	.59069-01	.59069-01 ,45895-01	,35085-11

```
-84-
```

25		
51		
51	000000000	
-	00000000000000000000000000000000000000	
ě.	00000000000000000000000000000000000000	
ပ္ပ	T	
24 OCT 69 15132102	러러하다하다하다	
7	40000000000	
,	C5 1 - 1.0 1 - 1.0 1 - 7.0 1 -	
•	04676764844	
,31250-01 FEET ·		
Ē	100 EGS. 7-1-01 7-1-	
ģ	00 40 40 40 40 40 40 40 40 40 40 40 40 4	
Š	FWWWWWW444	
312	< ∪ >	
	E SAMESTA SE	
+ STREAMMISE DIMENSION	MAX, ERRORS IN CONSERVATION EGS. 6.5-01 1-2.2+03 1 2.4-01 4.6-01 1 9.2+02 1 2.4-01 4.6-01 1 9.2+02 1 2.4-01 3.6-01 1 7+03 1 2.6-01 2.4-01 1 1.7+03 1 2.6-01 2.4-01 1 1.4+03 1 2.6-01 2.4-01 1 3.4+03 1 2.6-01 2.4-01 1 3.4+03 1 3.6-03 3.2-01 1 2.7+01 1 3.6-03 3.2-02 1 2.7+01 1 4.0-02 4.7-02 1 -2.7+01 10 4.3-03 1	
510	T.N. C.O. C.O. C.O. C.O. C.O. C.O. C.O. C	
ĔŠ		
20	08	
'n	ERA	
3	XAX 1000 1100 1	
E X	2111111111	
12	MAX.LII. ERROR 2.+00 16 11.+00 16	J
•	AX. LI.	•
•	X E + + + + + + + + + + + + + + + + + +	i
		,
·	FPPU 5417 1469 5094 1799 5188 2120 5470 1848 4503 1957 3814 5268 3275 3397 2874 5785	,
•		•
•	7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3
•	<u>ה</u> ממונים בישורים מי	•
1		
•	ALPH ALPH 1.898 1.898 1.723 1.633 1.564 1.564	3
+1	TERATED VALUES 15 9.852 1.972 2 20.282 1.89 3 29.220 1.80 4 38.715 1.72 5 49.571 1.66 5 59.167 1.67 7 74.795 1.56	4
CASE	A 400445000 A 40044	ĭ
3	TED VALU 9,882 1 20,282 1 29,270 1 38,715 1 59,167 1 67,308 1 67,795 1	
		_
	TF 1277 450 600 (2

					ELECTRON COLL FREG (1/SEC) 4.740+11 4.380+111 4.380+111 4.381+111 4.381+111 4.381+111
	QCOND 1.242+03	α			TETP (OFF #) 4.760 % % % % % % % % % % % % % % % % % % %
	S RERAD C SG FT) 0.000	SQ FT) F0			STATIC ENTHALPY (BTU/LB) 7.296+02 6.044+02 9.182+02 1.013+03 1.081+03
**************************************	HEAT FLUXES L TOT ENTH (BTU/SEC 6.991+02	ES (LB/SEC OXYGEN 1.576-02	ICIENTS, FOR OXYGEN 5.639-01	0XYGEN 1.708-04	GPP (RTU/LB) 2.045+03 -2.0820+03 -2.3820+03 -1.030+03 -1.164+02
00000000000000000000000000000000000000	1FFUSIONA 7.625+02	JSIVE FLUX NITROGEN 6.713-02	ER COEFF C SO FT) UTROGEN 5.639-01	FT) FOR NITROGEN 14 1.705-04	. GP (MTU/LB) 1.453403 1.4637403 1.4697403 1.164403 6.947402 3.572402 1.899402
00 E B B V V W V V V V V V V V V V V V V V V	FLUX NOR- MALIZING D PARAMETER 4.157-01	MASS DIFF CARBON -8.105-02	MASS TRANSFER UE=CM (LB/SEC CARBON NIT 5.639-01 5.	THICKNESSES (F' OGEN CARBON 15-04 1,705-04	104AL HALPY, G (BTU/LB) (B109/LB) 7.453+02 1.003+02 1.1364-03 1.364-03 1.364-03
2 M	RETA 4.315-03	ELEMENTAL HYDROGEN -1,834-03	ELEMENTAL RHOE* HYDROGEN 5.639-01	MASS THICH HYDROGEN 1.705-04	SHEAR (LB/FTS0) 9.164+01 9.506+01 9.506+01 9.977+01 1.002+02
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	EDGE VELOCITY (FT/SEC) 6.757+03	TOTAL GAS 1.039-01	TERS FOR TOTAL GAS 2.031-01	REYNOLDS NUMBER PER FOOT 5.547+06	1.1.1 1.1.1
00000000000000000000000000000000000000	PRESSURE (ATM)	FLUXES CHAR SO FT) 1.039*01	OWING PARAME BASED ON CH) AS CHAR 2.031-01	ENTHALPY THICKNESS, LAMBDA (FT) 1.572-04	(#U/UE) 0.00 0 1.100 0 1.1500
2 A A A A A A A A A A A A A A A A A A A	ROKAP (FT) 1,000+00	MASS F PYROL GAS (LB/SEC 9,000	6 94 6,030	EFFECTIVE BODY DISPLACE. (FT) 4.031-04	F 2.50 1.2.50 1.2.3.45-01 1.2.013-01 1.2.53-01 3.382-02
S 127 127 127 127 130 131 131 139 139 139 139 139 139	XI (L8 /SEC)*#2 3,375-04	месн кем 0.000	HEAT TRANS COEFF, RHO®UE®CH 5.117-01	DISPLACE. THICKNESS. DELSTAR (FT) 3.766-04	110V ETA 0.030 9.031-07 1.639-01 2.949-01 4.916-01 8.193-01
115 20 20 20 20 20 20 20 20 20 20	ALP44 4,096+27		MOW TYANS COEFF, RHO&UE®CF/2 4,364-01	MO"ENTUM THICKNESS.T THETA (FT) 1.358-04	NODAL INFORMATION DISTANCE, FROM WALL (FT) 0.000 1.000 2.004-05 1. 3.418-05 2. 6.471-05 4. 1.086-04 8.

	2,583-04 7,283-04 7,283-04 1,046-03 1,596-43 2,343-23	1.966+00 3.277+00 5.735+00 8.193+00 1.311+01 2.048+01	7,823-01 1,762+00 3,826+00 5,093+00 1,091+01 1,628+01	7.557-01 6.848-01 9.860-01 9.966-01 1.000+00	6.915-02 5.107-02 3.312-02 1.734-02 1.616-03 0.000	9.566+01 8.692+01 6.202+01 3.868+01 3.727+00	1.597+03 1.726+03 1.902+03 2.010+03 2.094+03 2.100+03	1.119+02 8.502+01 8.745+01 3.090+01 3.034+00	-2.048+01 -1.122+01 -5.669+01 -9.329+01 1.099+01	1.145.403 1.185.403 1.1803.403 1.188.403 1.188.403 1.188.403	0.00 4 4 0.00 0.00 0.00 0.00 0.00 0.00	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	PRGX MALL CFT MALL 1.209-03 2.604-03 3.604-03 5.604-03 1.086-04 7.281-04 7.281-04 7.281-04 7.281-04 7.281-04 7.281-04 7.281-04	DE RISTA DE LA COMPANSION DEL COMPANSION DE LA COMPANSION DE LA COMPANSION DE LA COMPANSION	>	RHGE MUE P. 211 - 01 9.051 - 01 9.051 - 01 9.051 - 01 9.1056 - 01 9.1056 - 01 9.1056 - 01 9.522 - 01 9.542 - 01 9.542 - 01 9.542 - 01 9.542 - 01	8 HECK THE	THERMAL COND SEC FILU 2.202-05 2.342-05 2.342-05 2.346-05 2.271-05 2.271-05 2.271-05 2.271-05 2.271-05 2.271-05	PRANDTL NUMBER 6.667-01 6.800-01 6.913-01 7.012-01 7.052-01 7.052-01 7.054-01 7.074-01 7.074-01 7.074-01	ADDIFIED SCHMIDT N. 194-01 7. 198-01	MOLECULAR E10CULAR 2.72 2.72 2.803 2	AHOSGG EPS / RHOSG EPS / RHOSGG EPS / V. 216-02 / V. 570-102 / V. 570-03 / V.	N. M.	
-86-	ELEMENTAL FRA	0,000 1,33 FRACTIONS AND -1,168-02 -1,794-01 -3,732-03	0.000 1.209-05 1.558 1.00S AND THEIR FIRST 1.168-02 -2.950-02 - 1.795-03 - 1.743 1.72-03 - 1.32-03 1.361-01 3.732-02 1.361-01	064-051 13 2.3 1ND SEC 1121-02 11 -1.7 742-01 513-01	3.818-05 3.818-05 43-03 0ND DERIVAT: -6.102-02 64-01 -1.281-01	6.471-05 6.471-05 IVES WITH -8.076-02 -7.285-02 1.119-01	1.086-04 RESPECT TO -9.864-02 -3.617-02	1,736-04 ETA -1,121-01 -1,877-02 1,191-02	2.588-04 -1.219-01 -1.096-02 2.018-03	4,261-04 -1,345-01 -6,318-03	7.283-04 -1.520-01 -5.895-03	
	e r	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5,696-04 1,866-0 3,625-01 3,678-01 3, 4,076-01 4,108-0 5,329-02 5,438-02 5, 1,061-03 2,293-0 1,108-02 4,043-02 1, 1,692-04 -5,541-0 3,253-03 2,901-03 2,	41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000 000 000 000 000 000 000 000 000 00	.830- .324-	.883 .074 .051	.923-0 .376-0 .539-0	.952-0 .256-0 .994-0	990- 471- 928- 270-		
	N2	4.5.43.1.5.3.1.5.3.1.	-3,543-03 43,615-04,524 -7,053-05 -1,524 -7,059-04 2,688-03 6 6,459-01 6,588-01 7,558-01 6 1,297-01 1,323-01 7,535-0	1014141919191919191919191919191919191919	10-2.530-03 10-07 10-07 6.816-03 50-01 9.259-02 12.032-01	-1,438-03 2,210-03 6,959-01 5,265-02 -8,088-02	-7.142-04 6.988-04 7.088-01 2.614-02 -2.556-02	-3,707-04 2,353-04 7,186-01 1,357-02 -8,611-03	-2.165-04 3.985-05 7.256-01 7.923-03	1.947-05 1.947-05 7.347-01 6.012-03	1.164-04 1.067-05 7.474-01 4.261-03 -6.852-04	
ě.	MOLE FRACTIONS	Š										

1.743-19 1.290-20 4.040-21 7.186-22 1.149-22 1.530-23 2.263-24 4.152-25 2.524-26 7.397-29 1.251-31 1.521-36 0.000

S

Ì

00	3,102-01 2,545-01 2,204-01 1,707-01	1.276-01	9.201-02	6.716-02	5.059-02	3.139-02	1.115-02	
7	6,396-03 9,790 6,496-03 9,790	7.517-93	5.493-03	3,978-03	2.964-03	1.813-03	6.506-04	
75	.534-01 6.661-	6.982-01	7.122-61	7,232-91	7,313-01	7,420-01	7.565-01	
t w	1,455-11 /,724-01 /,745-01 5,348-11 2,293-09 8,163-09 5,125-08	2,917-08	2.911-08	2,495-08	2.039-08	1.357-08	5.128-09	
• U	00 0 000	00000	000.0	000.0	000.0	0.000	0.000	
. 20	123-04 2,844	2.847-02	4,723-02	6.441-02	7.865-02	9.985-02	1,353-01	
U	1.899-11 7.138-11 1.011-10 9.464-11 1.091-10 9.464-11 7.138-11 1.011-10 9.464-11	5.684-11	2,602-11	1.127-11	5.152-12	1.354-12	7.844-14	
ĭ	6.161-12 2.1755-12 8.133-12 4.875-12 4.161-12 4.875-12	2,169-12	7.909-13	2,904-13	1,174-13	2,593-14	1.098-15	
7	2.105-07 9.473	1.410-08	5.791-09	2,612-09	1,318-09	4.373-10	4.602-11	
O F O	12 3.140=14 5,295-06 5.118	1.901-06	1.034-06	5.799-07	3,470-07	1,482-07	2.463-08	
CHS	9 4.65 036-12 9 7 53	6.524-14	1,925-14	6,167-15	2,276-15	4.474-16	1.581-17	
£ 7.3	1,027-11 2.936	1,346-13	3,270-14	9.419-15	3.277-15	6.098-16	2.061-17	
7 7	620-13	1,789-15	3,531-16	8,939-17	2.861-17	4.810-18	1.403-19	
20	434-09	1.672-09	8.237-10	4.036-10	2,105-10	7.039-11	6.961-12	
د٥٥	13 / 413-15 228-02 5,554	7,069-02	7,008-02	6.728-02	6.376-02	5.669-02	4.028-02	
22	4.130-16 3,151-16 2,375-16 1.056-16	3,328-17	8.066-18	1.974-18	5.514-19	6.513-20	7.287-22	
C2H	724-14 1.999	9.986-16	2.030-16	4.623-17	1.264-17	1.514-18	1.892-20	
C2+2	936-14 1.297	2.607-16	4,349-17	6,856-18	2.270-18	2,547-19	2.980-21	
cs. 2	096-14	7,866-16	2.196-16	6.805-17	2.444-17	4,576-18	1,425-19	
777	351-19	6.452-22	7,050-23	9,321-24	1.603-24	9.113-26	2.494-28	
C3~5	1 2.243-36 065-21 3.692	2.171-24	1,863-25	2.035-26	3.010-27	1.366-28	2.442-31	
C3~5	1.000-30	2,164-26	1.484-27	1.380-28	1,813-29	6.974-31	9.291-34	
Z.	1,573-06 2.	1.966-06	1.416-06	9.846-07	7.057-07	3,975-07	1.176-07	
9	26-03 6.678	1,249-02	1.232-02	1,135-02	1.026-02	8,395-03	5.157-03	
75	5.434-04 0.565-02 1.014-(3,228-03	1,925-03	1,235-05	8,540-04	4.795-04	1,536-04	
45,	892	7.642-08	4,429-08	2,669-08	1,719-08	8,437-09	1.984-09	
H20	.10 1.406-11 [,853-02 1.882 [,7.0.	1,350-02	1,102-02	9.226-03	7,951-03	6.291-05	3.876-03	
2.	3,977-07 4,118-06 9,049-06 1,571-05	1,768-05	1.591-05	1,297-05	1.037-05	6.820-06	2,645-06	
50	1.103-04 2.119-03 5.829-07 1.377-02	2,129-02	2,711-02	3.067-02	3,266-02	3,424-02	3.368-02	
0	2,550-04 2,578-02 2,550-05 1,072-02 8,376-103 4,347-03 3,723-03	1.701-02	2.060-02	2.150-02	2,102-02	1,888-02	1.321-02	

1.257-17 2.909-21 5.333-10 9.571-17 5.891-09 1.242-16 2.305-10 9.436-36 1.000-30 5.176-20 7.992-10 2.554-12 1.046-16 1.496-08 1.025-15 5.841-10 8.965-22 1.675-15 3.831-34 1.000-30 9,256-10 8,156-10 2.745-16 8.390-10 1.912-19 6.259-15 2.204-08 2,561-15 4.000-12 6.262-21 4,555-32 3,615-33 1.936-20 3.934-19 4.692-16 7.879-10 1,332-14 2.666-08 4,126-15 4,834-12 0,000 9.456-10 3,007-38 7.862-19 6.349-10 6.341-20 7,885-16 2.907-14 5.231-12 3.069-08 6,195-15 7.444-10 3.008-29 7.711-30 6.639-31 8.073-37 1.242-18 1.824-19 1,126-15 3.709-10 7.112-15 4.241-12 5,655-14 3.028-08 1.556-21 4.948-33 4.484-34 1.828-35 8.

1.556-21 4.948-33 4.484-34 1.828-35 8.

1.656-21 9.805-20 2.481-19 3.226-19 1.

1.74-22 4.855-20 0.000

1.349-22 2.296-24 9.008-25

2.896-12 1.300-16 4.670-16 1.096-15 1.

2.292-12 1.300-16 4.670-16 1.066-15 1.

2.292-12 1.300-16 4.670-16 1.056-15 1.

2.292-12 1.300-16 4.670-16 1.056-16 1.056-15 1.

1.324-15 2.216-14 5.244-14 7.581-14 5.387-11 1.239-10 3.249-14 7.581-14 5.387-15 1.370-19 9.792-17 8.992-16 4.527-15 7.

1.370-19 9.792-17 8.992-16 4.527-15 7.

1.370-19 9.792-17 8.992-16 4.527-15 7.

2.500-13 3.030-14 1.984-14 9.77-12 6.149-11 3.997-10 7. 1.000-30 1.000-30 0.000 ÷05

05•

N2*

t ż

S ŭ

\$02

÷

05+

)

ζ.
۳۱ ۲۱
-
69
-
S
4
-2
١
t
١
Η.
Ü
ī
00
Ĩ
Ñ
9
r.
_
CI 4FNSION
Ñ
Ĺ
~
C
35 1 v
Ĕ.
ū
). -
v
١
1
1
٠
•
ı
i
ì
•
Š
4
O

					CTRO FR	N. V.	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	0COND				TEMP (DEG R)	0.000 0.000		MACH NUMBER 0.000
	RERAD SO FT) 0.000	SG FT) FOR			STATIC ENTHALPY (BTU/LB) 8.787+02	1.070+03 1.112+03 1.154+03 1.154+03 1.160+03	11.11.11.11.11.11.11.11.11.11.11.11.11.	RHOSG*EPS /RHOE*MUE 0.000
1	107 EVTH (87U/SE) 2,776+02	S (LB/SEC OYYGEN 1.232-02 CIENTS,	FOR OXYGEN 3.491-01	0xYGEN 1.019-03	GPP (ATU/LB) -4,657+03	-5.926+03 -4.830+03 -1.4.830+03 -1.5.03+02	12.025 12.025 12.025 12.025 14.22 14.22 16	MOLECULAR WEIGHT 1 2,733+01
044004646464646464646464646464646464646	1FFUSIOWA 3.526+02	SIVE FLUXES VITROGEN 5.246-02 FER COEFFIC	4 (LB/SEC SO FT) ABOV NITROGEN 191-01 3.491-01) FOR NITROGEN 1.019-03	GP (RTU/LB) 2,137+03	7, 339 + 03 7, 339 + 03 3, 429 + 02 1, 859 + 02 1, 854 + 02 1, 854 + 02	2.474-01 2.798-01 1.609-01 2.695-00 0.000	MODIFIED M SCHMIDT NUMBER 7,379-01
0000000 X	21%G D METER 21-01	SA S	0 A .	THICKNESSES (FT) GEN CARBON NI 9-03 1.019-03 1	AL ENT ALPY.G BTU/LB	165+0 230+0 397+0 483+0 562+0	1.091403 1.92403 2.012403 2.069403 2.100403	PRANDTL NUMBER 6.811-01
CONSERVAT 4-67 4-67 4-63 4-63 4-63 4-63 4-61 4	6,3-02		RHOE-UE HYDROGEN 3.491-01	4ASS THICK HYDROGEN 1.019-03	SHEAR T 3/FTS0) 780+61	6.327+01 6.488+01 6.620+01 6.651+01 6.651+01	2.45 2.05 3.05 3.05 4.05 4.05 4.45 4.65 4.05 0.00	THERMAL COND (BTU /SEC FT R) 2.209-05
х 0 0 4 4 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	VELOCITY (FT/SEC) 6.914+03	AL GAS	7074L 545 2.956-01	REYNOLDS NUMBER PER FOOT 5.164+05		1.257+05 5.310+01 2.807-01 1.461-01 7.984-02	3.154 2.674 2.674 1.711 9.340 1.450 0.00	SPECIFIC HEAT GTU/LB R) 3.364-01
X4.20	(ATM)	CHAR FTT) FS34-02	CHAR CHAR 1.956-01	HICKNESS, LAMBOA (FT) 1.067-03	FP (=U/UE)	3.166-01 4.192-01 5.183-01 5.879-01 6.493-01	7.37 8.068-01 8.961-01 9.500-01 9.940-01	RHO*MU HOE*MUE, C
7 CC 4W 4 C C C C C C C C C C C C C C C C	0+00	4685 FI	(#45ED PYROL GAS G,600	9007 TO SPLACE. (FT) 2,642-03	12 19	2001120	1,501,00 5,672,00 1,045,00 1,045,00 1,841,01 3,062,01	VISCUSITY, F MU /R. LB/SEC FT 4,473-C5
S 506 1.380,4 245 1.6679 245 245 2673 2673 2673 2673 2673 2673 2673 2673	71 /SEC)**2 3.757=03	(A)	COEFF, RHG*UE*C-15 2.887-01	TUM CISPLACE	7.A 3.3.d	.630-01 .717-01 .891-01 .152-01	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DE'SITY, V RHO (LB/CU FT) (2.869-92
TE. 1138 V L. C.	./95+00	/ / / / / / / / / / / / / / / / / / /	CC(: 3, Hi0e!!EeCF/2 i 2,689-01	100ENTUM 1110AUFASTE 11ETA (FF)	AL INFORMATION DISTANCE, E FROV AMIL (-1) 0.000	2444 4444 4444 4444 4444 4444 4444 444	1,657-03 2,713-03 4,604-03 6,389-03 9,724-03 1,449-03	DISTAICE ROW WALL (FT) 0,000
		J		-89-	400			L.

6.158-01 1.0305-01 1.0305-01 1.1505-00 1.315-00 1.5315-00 1.5315-00 1.9113-00 1.9113-00 2.209-00 2.209-00	4.604-03
1.234 1.234 1.234 1.234 1.346 1.	2,713-03
22.23.43.44.01 22.73.43.44.01 22.23.66.40.01 22.23.66.40.01 22.23.66.40.01 22.23.66.40.01 22.23.66.40.01 23.66.40.01 24.40.01	1,658-03
7.590-01 7.590-01 7.590-01 7.590-01 7.500-01 7.407-01 7.424-01 7.454-01 7.454-01	7,073-04 1,119-03 1,658-03 2,713-03
5.713-01 6.6813-01 6.988-01 7.028-01 7.028-01 7.078-01 7.078-01 7.078-01	
	WALL,FT 4.279-04
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	E FROM 73-04
**************************************	DISTANCE FROM 8.297-05 1.416-04 2.573-04 9-03 9.724-03 1.449-02
0.000000000000000000000000000000000000	8,297-05 9403 9.72
22.53.00 22.53.00 22.53.00 22.53.00 22.53.00 22.53.00 21.50 21.50 20.50	0.000
8 207-105 11 21 207-105 2 27 27 104 1 11 20 27 104 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

ELEMENTAL FRACTIONS AND THEIR FIRST AND SECOND DERIVATIVES WITH RESPECT TO ETA

MOLE FRACTIONS

ព	2.273-05 9,130-20 9.047-21 1.038-21	1,972-22	3.768-23	7.596-24	1.650-24	1.001-25	2.223-28
00	3.411-01 2.569-01 2.0639-01 1.600-01 1.289-01 1.025-01 8.115-02 6.442-02 4.140-02 1.483-02	1.289-01	1.025-01	8,115-02	6.442-02	4.140-02	1,483-02
1	3.538-03 2.018-02 1.531-02 1.209-02	9.290-03	7.039-03	5,341-03	4.090-03	2.498-03	8.547-04
N N	5.737-01 6,414-01 6.611-01 6.797-01	6,929-01	7.047-01	7.148-01	7,233-01	7.360-01	7,540-01
щ \$	7.24/10 4.144/12 2.932-00 46.685/08 5.110-08	4.736-08	4.070-08	3,354-08	2,710-08	1.747-08	6.006-09
*	0000 0000 0000 00000 00000	000.0	0,000	0.000	0.000	0.000	0.000
02	1.541-15 2.768-03 1.022-02 2.221-02 1.541-11 1.805-01 1.022-02 2.221-02	3,355-02	4.574-02	5.781-02	6.922-02	8.924-02	1.263-01

U	34 9,137-17 4,770-1	1.037-10	4.891-11	2.303-11	1,106-11	2.810-12	1.350-13
ï	5-15 2-132-17 3. 5-671-11 2-176-1	3.244-12	1.374-12	5,838-13	2.563-13	5.607-14	2.024-15
ક	.4/3-1/	1.434-08	7.373-09	3,920-09	2,163-09	7.359-10	7.268-11
C I	04 7.818-05 4.89	1.976-06	1.198-06	7.641-07	4.988-07	2.225-07	3.656-08
Ç+5	2,602-12 7.205-1	7.828-14	2.989-14	1.142-14	4.897-15	9.824-16	3.082-17
CH3	7,635-1	1.218-13	4.374-14	1.664-14	6,735-15	1.324-15	4.198-17
CH	1,523-13 2.14 7-21 2.405-24	1.267-15	4.183-16	1,493-16	5,752-17	1.053-17	3.013-19
ć	1,845-09 9	2.344-09	1,252-09	6.741-10	3,709-10	1.224-16	1.063-11
200	3,153-02 4.	5.948-02	6.216-02	6.307-02	6,264-02	5.929-02	4.594-02
C2	4,061-	6.222-17	1.807-17	5,366~18	1,669-18	1.925-19	1.681-21
C5 ⁻¹	1,602-13 2.582 2,602-13 2.582	1,330-15	3,760-16	1.116-16	3,522-17	4.289-18	4.494-20
C2H2	125-25 2:1//28 3 6:030-14 6:91(38-23 4 304-27	2.643-16	6.986-17	1,982-17	6.076-18	7.167-19	7.407-21
C212	4,629-14 9.	8.840-16	3.254-16	1.249-16	5.039-17	9.584-18	2.598-19
CS	7,396-19	8.430-22	1.506-22	2,903-23	6.118-24	3.590-25	7.846-28
C3+5	3.179-05 4.302-21 2.263-22 1.677-23	2.459-24	3.796-25	6.412-26	1,200-26	5.735-28	8.314-31
C3+3	5-54 1,00 6,912-23	2.021-26	2.779-27	4,256-28	7,317-29	3,010-30	3,381+33
ï	5,226-06 4	2.430-06	1.776-06	1,293-06	9,473-07	5,295-07	1.467-07
0	8,016-03	1,358-02	1,309-02	1.227-02	1,132-02	9.453-03	5.894-03
75	1,276-02 7,37;	3,082-03	2,164-03	1,555-03	1.143-03	6.619-04	2.121-04
H2.	3.172-07 1.942=	7.612-08	5.025-08	3,365-08	2.301-08	1,152-08	2.629-09
H2C	- *	1.088-02	9.963-03	9.086-03	8.284-03	6,937-03	4.606-03
2	200	2.673-05	2.182-05	1.743-05	1.383-05	8.792-04	3.092-06
NO ON	6,962-03 1.39	2.456-02	2.781-02	3,016-02	3,176-02	3,339-02	3.302-02
0	5,791-10 7,356-03 1,513-02 5,791-10 7,356-03 1,513-03 5,791-10 7,356-03	2,380-02	2.484-02	2,469-02	2.381-02	2.115-02	1,434-02
40	4,512-27 2.05	1.272-30	1.420-31	1.707-32	2,266-33	5,579-35	1.745-38
65	3,761-32 7	1.473-36	1.059-37	8,426-39	1.000-30	1.000-30	1.000-30
ţ	1,064-17 4,731-1	5,390-19	1.788-19	5.875-20	1.982-20	2,602-21	2.940-23
* 2	nc:	3.822-18	1.910-18	9.139-19	4,356-19	1.057-19	4.363-21
N2+	3.922-12 3.922-15 3.922-15 3.922-15 3.922-15 3.922-15	2,456-15	1,460-15	8,433-16	4.869-16	1.711-16	1,638-17
05-	6.940-2A 2,746-11 1,561-10 3,809-10 2,521-10 7,740-11 4,983-11	5.593-10	6,963-10	7,750-10	8.020-10	7.591-10	4.953-10

	2.158-13 5,397-15 3.956-13 2.096-13 1.120-13 5.576-14 2.714-14 1.329-14 3.427-15 1.618-16 E.774-14 2.305-20 0.300	1.120-13	5.576-14	2.714-14	1.329-14	3.427-15	1.618-16
1.606-	13 2,957-08 4,771-08 3,260-08 4,918-08 4,264-08 3,544-08 2,887-08 1,890-08 0,120 0	4.918-08	4.264-08	3.544-08	2.68/-08	10-040-1	
4.611-	2,130-09 3,804-10 2,08/-10 .22 1,404-14 2,611-14 2,512-14	1.900-14	1.262-14	7,846-15	4,753-15	1.756-15	1.702-1
1.263	1.317-17 2.948-19 7.835-20 1.263-24 1.640-12 5.275-12 8.120-12 8.641-12 7.963-12 6.726-12 5.413-12 3.308-17 9.036-13	8,641-12	7.963-12	6.726-12	5,413-12	3,308-12	9.036-1
402	1,080-13 1,941-14 8,568-15	1.269-09	1.246-09	1,127-09	9.718-10	6.769-10	2.459-1
	7,189-11 1,035-11 5,156-12						

1 - - - - - - - - STREA IN ISE DIMENSION . 69792-50 FEET - - - - 24 OCT 69 1513

```
CLECTRON

COLL

CO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (DEC R)
5.760+03
5.928+03
5.924+03
5.876+03
5.817+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.000
7.600-01
9.430-01
1.125+00
1.261+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .864+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RHOSO+EPS
/RHOE+MUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 STATATIC

SNITATIC

SNITAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2.559+00
6.219+00
1.467+61
2.795+01
                                                                                                                                                                                                                                                                                   RERAD
SG FT)
0.000
                                                                                                                                                                                                                                                                                                                                                                                                      S
                                                                                                                                                                                                                                                                                     DIFFUSIONAL TOT ENTH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          HEAT FLUXES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2.745+01
2.744+01
2.775+01
2.804+01
2.825+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             MOLECULAR.
WEIGHT
                                                                                                                                                                                                                                                                                                                                                                                                   ELEMENTAL MASS DIFFUSIVE FLUXES (LB/SEC HYDROGEN CARBON MITROGEN OXYGEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1,734-03
                                                                                                                                                                                                                                                                                                                                              7.409-02 2.747+02 2.091+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4,320-02 1,014-02
                                                     2.6.03
2.2.103
6.3.105
8.7.105
9.01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RHOE-UE-CM (LB/SEC S3 FT) FOR
HYDROGEN CARBON NITROGEN OX)
2.782-01 2.782-01 2.742-01 2.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MASS TRANSFER COEFFICE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             SCHMIDT
NUMBER
7.376-01
7.391-01
7.391-01
7.391-01
7.391-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (870/LB)
2.554-03
5.067-03
2.6757-03
1.6737-03
1.727-03
3.727-03
3.727-03
3.727-03
1.372-03
1.372-03
0.03
                          1,733-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         NITROGEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (FT) FOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    6.828-01
6.828-01
6.828-01
6.948-01
                                                                                                                                                                                                                                                        FLUX NOR-
MALIZING D
PARAMETER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -1,1A0-03 -5,217-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1,733-03
                             PRANDTL
NUMBER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CARBON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MASS THICKNESSES
CONSERVATION EGS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   THER*AL COND (BTU NECOND (BTU NECOND (BTU NECOND CE) 2.538-105 (2.446-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.406-105 (2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            VELOCITY
(FT/SEC)
7.076+03 1.004-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1,733-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ELEMENTAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       HYDROGEN
S. IN CONSERVE
ENERGY (
71.3+03 2
-5.1+02 2
1.5+01 5
-4.5+00 4
-2.1+01 4
6.6-02 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SHEAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        5 9.075-01 3.380-01
5 9.443-01 3.300-01
6 9.553-01 3.284-01
5 9.78-01 3.267-01
8 9.783-01 3.267-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SPECIFIC
HEAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PG" TRANS HEAT TRANS SLOWING PARAMETERS
CREFF, COEFF, (BASED ON CH) FOR
PHOSULSCF/2 RHOSULSCC PYROL GAS CHAR TOTAL GAS
2,1/7-01 2,339-01 1,000 3,029-01 3,029-01
                                                                                                                                                                                                                                                                                                                                                                                                      "1455 FLUXES
PYROL GAS CHAR TOTAL GAS
(LB/SEC SO FT)

3,000 7.086-02 7.086-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4.775+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    REYNOLDS
NUMBER
PER FOOT
                                ERROR MOMENTUM E. 2.-67 5 -7.5405 2 - 6 5 -3.2405 2 - 6 6 7 -7.9405 10 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 2 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8-03 12 - 6 7 -4.8
                                                                                                                                                                                                                                                             EDGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    EFFECTIVE ENTHALPY R
90DY THICKNESS,
51SPLACE. LAMBDA P
(FT) (FT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          7.1580-01
7.158-01
7.158-01
8.151-01
8.950-01
9.929-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RHO+MU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4,615-03 1,607-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.611-01
4.679-01
5.514-01
6.124-01
                                                                                                                                                                                                                                                                                                                                /SEC)**2
6.814-33 1,090+00 3.142*0
                                                                                                                                                                                                                                                                PRESSURE
                                                                                                                                                                                                                                                                                                (ATM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E DENSITY, VISCOSITY, R

BHO MU /RH

(LB/CU FT) LB/SEC FT

2.480-02 4,473-05 9

04 2.015-02 5,187-05 9

04 2.053-02 5,186-05 8

04 2.089-02 5,138-05 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.000
1.814-01 -5,828-01
5.023-01 -5,828-01
9.041-01 -4,064-01
9.049-01 -1,942-01
2.410+00 1,237-01
2.628+00 1,75400
6.046+00 1,75400
1.0548+01 1,1724-00
1.514-01 1,1724-01
2.418+01 2,657+01
3.779+01 3,415+01
                                  ROKAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1,299-03 4,257-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MOMENTUM DISPLACE,
THICKNESS, THICKNESS,
THETA DELSTAR
                                                                                                                                                                                                                                                                                                                                                                                                                                              "ECH RE"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ILFOPMATION
STANCE, ETA
                                                                                                                                                                                                                                                                        ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (FT)
0.000
1.434-04
2.450-04
4.590-04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SHEAM
(LB/SG FT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DISTANCE FROM MALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4,749+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DISTANCE
FROM WALL
     ITEMATER VALUES
ITS TIME AL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.00.AL
                                                                             40M450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -93-
```

1.592+00 1.592+00 1.748+00 2.126+00 2.2261+00 2.3261+00 2.3261+00	7.772-03
20011111111111111111111111111111111111	4.587-03 7.772-03
22.886401 22.8870401 22.8870401 22.8870401 22.8870401 22.887401 23.887401	2.807-03
7,396-01 7,599-01 7,402-01 7,407-01 7,424-01 7,436-01 7,436-01	1.896-03
5.978-01 7.004-01 7.024-01 7.048-01 7.071-01 7.076-01 7.078-01	1.200-03
22.3357 22.3357 22.3357 22.3356 22.3356 23.335	7.277-04
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	01STANCE FROM 1,434-04 2,430-04 4,390-04
0.088-01 9.075-01 9.025-01 9.667-01 9.667-01 9.9667-01	01S 2.430-04 4-02 2.42
5,172-05 5,054-05 5,024-05 4,948-05 4,777-05 4,351-05	01STANC 1,434-04 2,430-04 4,3
1,200-63 2,129-02 1,896-03 2,169-02 4,807-03 2,208-02 7,772-03 2,278-02 1,077-02 2,568-02 1,634-02 2,784-07 2,423-02 2,811-02	000.0
1,200-63 1,896-03 2,807-03 4,987-03 7,77-03 1,077-02 1,634-02 2,423-02	-

	.461-01	.493-03	. 814-04	.024-01	.037-03	.360-05	.994-04	.897-05	.558-06	.431-01	.524-03	.034-04
	1.270-01 -1	1.927-03 -3	3.163-04 2	5.967-0i 4	1.462-03 1	9.397-05 -8	3,764-04 5	9- 50-621	5.247-06 5	7.293-01 7.	5.561-03 2	2.286-04 -2
	1.142-01 -:	5,597-03 -	2,770-04	3,929-01	1,662-03	8.229-05 -	1,228-03	1.105-04 -	5.470-06	7.201-01	4.045-03	2.882-84 -
ETA	-1.060-01 -	-8.093-03	2,064-03	3,905-01	2.404-03	-6.131-04 -	1,391-03	-1,598-04 -	4.076-05	7,141-01	5.849-03	-1.492-03 -
RESPECT TO	-9,620-02	-1.343-02	5.889-03	3.876-01	3.990-03	-1.749-03	1.584-03	-2.653-04	1,163-04	7.070-01	9.709-03	-4.256-05
IVES WITH	-8.496-02	-2.378-02	1,711-02	3.842-91	7.063-03	-5.092-03	1.806-03	-4.695-04	3,379-04	6.989-01	1.718-02	-1.237-02
LEMENTAL FRACTIONS AND THEIR FIRST AND SECOND DERIVATIVES WITH RESPECT TO ETA	3,844-02 -3,855-02 -5,595-02 -7,270-02 -8,496-02 -9,620-02 -1,060-01 -1,142-01 -1,270-01 -1,461-01 -1,590-01	-6.558-01 -1.931-01 -9.473-02 -4.378-022.216-03 -6.583-04 0.000	2.551+0c 8.137-01 2.107-01 5.514-02 1.718-04 5.168-05 4.541-05	3,476-01 3,705-01 3,756-01 3,806-01 4,062-01 4,101-01 4,114-01	1.948-01 5,736-02 2,814-02 1,300-02 6,583-04 1,958-04 0,000	-7,577-01 -2,417-01 -6,259-02 -1,638-02 - 5,103-05 -1,538-05 -1,340-05	4,243-03 2,722-03 2,379-03 2,048-03 3,438-04 8,642-09 0,000	-1,295-02 -3,814-03 -1,871-03 -8,645-04 -	5.037-02 1,607-02 4,161-03 1,089-03 3,393-06 1,020-06 8,908-07	6.097-01 6.654-01 6.779-01 6.900-01 7.524-01 7.618-01 7.650-01	4.739-01 1,396-01 6.847-02 3,164-02 1.602-03 4.788-04 -0.000	~1,843+00 -5,881-01 -1,523-01 -3,988-02 -1,237-02 -4,286-03 -1,492-03 -2,002-04 -2,286-04 -2,034-04 -2,034-04 -1,242-04 -3,735-09 -3,260-09
LEMENTAL	S			00			ı			N N		

MOLE FRACTIONS

462-28	531-02	1.660-04	.545-01	1.244-09	0.000	241-01	077-13	8.1029
7.441-26	4.274-02	2.577-03	7.359-01 7	1.603-08	0.000	8.730-02	2,448-12	4.841-14
1.271-24	6.623-02	4.243-03	7,229-01	2,539-08	0,00	6.772-02	9.937-12	2 261-13
5.863-24	8.300-02	5.542-03	7.143-01	3,176-08	0.000	5.473-02	2,089-11	5.163-13
2,845-23	1,038-01	7.279-03	7.042-01	3,895-08	0,000	4,531-02	4,437-11	1.204-12
1.409-22	1,289-01	9.529-03	6.926-01	4.596-08	00000	3,401-02	9.308-11	2.808-12
4.802-05 3,422-20 4,688-21 6,688*22 1,409-22 2,845-23 5,863-24 1,271-24 7,441-26 1,462-28	3.404-01.2.396-01.1.969-01.1.571-01.	3.507-02 2.04-02 1.626-02 1.224-02	5.677-01 6.447-01 6.638-01 6.803*01 6.926-01 7.042-01 7.143-01 7.229-01 7.399-01 7.545-01 7.545-01	4.334-13 4.103-08 5.108-08 5.092-08	000.0 000.0 000.0 000.0	8.865-16 5.141-03 1.283-02 2.373-02 3.401-02 4.531-02 5.673-02 6.772-02 8.730-02 1.241-01	1.498-06 7.976-10 4.068-10 1.851e10 1.551e10	3.230-07 4.617-11 1.643-11 6.280-12
C3	ខ	ı	N N	ů	.	20	U	ĭ

Š	5.567-72 :.262-7 5.287-54 2.345-34	1.250-34	6.540-09	3.501-10	4,994=29.	\$:02 £02 E	6.540-11
C I	2,005-04 4,137-05 4,157-04 2,539-04	1,704-96	1.114-06	7.251-37	4.745-07	2,125-07	3.476-08
CH2	9.219-12 1.475-12 4.247-13 1.546-13 9.219-12 1.475-12 0.245 0.25	6.441-14	2.558-14	1.036-14	4,315-15	8.579-16	2.576-17
ř.	3.361-17	9.844-14	3.742-14	1.470-14	6.038-15	1.194-15	3,743-17
, 1,	4.431-7. 5.430-14 1.155-14 2.845-15 4.431-0.1 2.845-15	9.922-16	3.522-16	1,312-14	5.174-17	3.640-18	2.807-15
ડ	2.655-04 1.42224.1 3.689-05 2.655-04 1.422-14 3.689-05 2.655-04 1.422-14 4.400-14 0.000	2.043-99	1.118-39	6.048-10	3,313-10	1.072-10	8.770-12
502	2.400-07.513 4.500-13 0.100 2.400-07 3.520-02 4.5599-07 5.419-02	5.842-02	6.189-02	6,336-92	6.349-02	6,104-02	4.374-02
C2	1.925-16 7.365-15 9.225-14 1.550-16 1.920-16 1.9	4.955-17	1.470-17	4.406-18	1.360-14	1.513-19	1.180-21
C2 ¹⁴	1,717-03 7,233-14 1,559-14 3,431-15 7,723-14 1,559-14 3,431-15 7,735-15 7,535-14 1,559-14 3,431-15	1.044-15	3,100-16	9.410-17	2.942-17	3.549-18	3.476-2
C2+2	0.675-03 7,153-14 3,665-15 7,158-16 7,77-03 0,675-03 0,075-03 0,075	2.026-16	5.720-17	1.680-17	5.217-18	6.136-19	6.086-21
C2*.2	1.412-02 2.400-62 2.403-109-14 3.740-15 1.718+15	6.566-16	2.553-16	9:979-17	4.037-17	7.568-18	1.932-19
C3r	3.975-03 2.104-19 2.418-20 3.004-21 3.975-03 2.104-19 2.418-20 3.004-21	5.846-22	1.129-22	2,251-23	4.779-24	2.747-25	5.478-28
C3+2	4.891-05 1.047-21 9.246-23 9.473-24 4.891-05 1.047-21 9.2473-24	1.614-24	2.711-25	4.740-24	9.063-27	4.274-28	5.729-31
6343	2.963-04 1.361-23 9.642-25 3.324-26	1.24.5-26	1.922-27	3,101-28	5,440-29	2.252-30	2,361,-33
2	3.242-07 5.033-06 4.047-06 2.991-06	2,263-06	1,665-06	1,214-06	8.875-07	4.914-07	1.323-07
0	4.018-09 9,868-03 1,354-02 4.018-09 9,868-03 0,000	1,356-02	1,307-02	1,227-02	1,134-02	9.500-03	5.943-03
25	1.856-03 1.026-03 6.565-03 4.280-03	3.075-03	2.212-03	1.612-03	1.196-03	6.980-04	2.260-04
F\$4	9.856-08 2.456-07 1.586-07 9.969-08	6.811-08	4.592-08	3,113-08	2.140-08	1.074-08	2.435-09
н50	8.451-03 1,163-02 1,182-02 1,132-02	1.069-02	9,958-03	9,214-03	8,501-03	7.254-03	5.005-03
7	4.368-0.115-03 /.95/4-04 0.000 4.368-07 3.526-05 3.0528-05 2.083-05 2.05-08	2,603-05	2,107-05	1,659-05	1,312-05	8.178-06	2,739-06
Ç,	1.676-07-10. 1.600-07. 1.550-09. 1.5676-09.	2.426-02	2.711-02	2.922-02	3.068-02	3,213-02	3,156-02
ပ	4.734-10 1.138-02 1.797-02 4.734-11 1.138-02 1.797-02 2.248-02	2.448-02	2.514-02	2.476-02	2,372-02	2.085-02	1,379-02
2	2.474-97 1.152-27 8.144-29 6.132-30	7.787-31	9.362-32	1.159-32	1.536-33	3.614-35	9.632-39
CS	1.479-04 6.260-33 2.299-34 9.749-36	8.090-37	6.403-38	5.313-39	1.000-30	1.000-30	1.000-30
\$	5.918-14 9.742-18 3.848-18 1.250-14 3.848-18 1.250-14	4.550-19	1.516-19	4.936-20	1,630-29	2.020.21	1.956-23
*	3.226-20 3.226-27 3.226-27 3.226-37 3.226-37 3.226-37	3.274-18	1.604-18	7.594-19	3.480-19	7.953-20	2.831-21
N2+	4.311-72 6.613-15 5.255-15 3.350-15 4.311-10 4.45-15 3.350-15	2.112-15	1,238-15	7.042-16	3,986-16	1.340-16	1.151-17
-20	3.596-24 5.974-11 1.662-11 3.581-10	4.87,7-10	5,863-10	6.410-10	6.561-10	6.115-10	3.859-10
÷00	2.392-13 5,562-13 3,551-13 1.850-13	9.961-14	4.974-14	2,411-14	1.167-14	2.908-15	1,250-16
+ ON	1.346-13 4,150-C3 5,206-0A 5,234-0A 1.346-13 4,150-C3 5,206-0A 5,234-0A 1,685-09 2,410-10 1,079-10	4,758-08	4.061-98	3,336-98	2,687-08	1.720-08	5.822-09

4,734-12 2,806-12 7,132-13 8.245-10 5.611-10 1.930-10 1.751-14 1.134-14 6.897-15 4.083-15 1.439-15 1,244-16 5,942-12 9.688-10 1.089-09 7.225-12 4.187-22 2,382-14 2,910-14 2,417-14 1,751-14 7,081-18 1,104-19 1,876-20 8,069-25 3,249-12 6,326-12 8,053-12 8,081-12 1,389-13 1,005-14 3,357-15 1,073-09 1,139-09 5,138-11 5,747-12 2,254-12 024 ÷

						ELECTRON COLL FREG	2 (1/2) 2 (4/2) 2 (4/2	2.77-11 2.77-11 2.77-11 2.98-11 3.98-11 3.98-11 3.98-11 3.98-11	
		0COND				HE A	.0000 A) .00	/ W W W W W & 4 4 - C - G W & G C W H W - C - C - C C C C C C C C C C C C C C C	MACH NUMBER 0.000 8.731-01
1.57,:22		AERAD 50 FT) 0.000	SQ FT) FOR			, a , i	a 6 6 6 6 6	44464044444444444444444444444444444444	RHOSG*EPS /RHOE**UE 0.000 3.913+00
OCT 69 15:	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EAT FLUXES TOT ENTH (BTU/SEC 1.303+02	S (LB/SEC OXYGEN 8.335-03	CIENTS. FOR OYYGEN 2.165-01	0xYGEN 2.607-03	9	(970/LB) -4.856+03 -3.017+03 -8.126+02 -2.287+02		OLECULAR WEIGHT 2.760+01 2.738+01
24	0	FFUSIONAL	SIVE FLUXES NITROGEN 3.550-02	COEFFI Sa FT) Rogen 165-01) FOR MITROGEN 2.607-03	a :	542+03 1135+02 210+02 096+02	2.0374-01 1.0374-01 1.0374-01 2.0374-01 2.767+00 0.00	MODIFIED M SCHMIDT NUMPER 7.371-01 7.390-01
2+01 FFET	ON E08.	FLUX MOR- MALIZING D PARAMETER 5.206-02	MASS DIFFU CARBON -4.287-32	MASS TRANSFER E*CM: (LB/SEC CARBON VIT Z*165-01 Z*	CKNESSÉS (FT CARBON 3 3 2.607-03	AL ENT ALPY, G	.010+0 .010+0 .030+0 .410+0 .500+0	1.683.403 1.683.403 1.931.403 2.930.403 2.083.403 2.083.403 2.083.403	PRANDTL NUMBER 6.917-01 6.734-01
-11562	CONSERVATION OF SERVATION OF SE	3ETA 1.246-01	ELEMENTAL HYDROGEN -9.700-04	FLEMENTAL RHOE®U HYDROGEN 2.165-01	MASS THICK HYDROGEN 2.607-03	SHEAR I	A. 818+01 4. 342+01 4. 418+01 4. 469+01 4. 473+01	4.198+01 4.158+01 4.158+01 2.742+01 1.752+01 1.752+01 0.000	THERMAL COND (BTU /SEC FT R) 2.204-05 2.541-05
SE 014 441	ERRORS 100 100 100 100 100 100 100 10	EDGE VELOCITY (FT/SEC) 7.253+03	TOTAL GAS 5.937-02	ERS FOR TOTAL GAS 3.387-01	REYNOLDS NUMBER PER FOOT	qqq	3.603+00 7.798-01 3.862-01 1.837-01	5.44102 2.444102 1.96411 7.1464102 7.1464102 1.4441002 0.000100000000000000000000000000000	SPECIFIC HEAT BTU/LB K) 3.409-01
- STREAMAI	SAX SOLUS CONTROL SOLUS CONTROL SOLUS CONTROL	PRESSURE (114) 2.643+00	FLUXES 5 CHAR 5 S2 FT) 5.907-62	NG PARAMET ED ON CH) CHAR 3.387-01	ENTHALPY THICKNESS, LAMBDA (FI) 2.873-03	FP (=U/UE)	6.036-01 5.034-01 5.776-61 6.332-01	6.849-01 7.297-01 7.671-01 6.230-01 9.500-01 9.918-01	RHO*MU RHOE*MUE. C C (9.020-01 8.315-01
1 1 1 1 1	2. MANUMANA	1,000+00	#ASS F PYROL GAS (LB/SEC 7,000	S BLOWING (PASED PYHOL GAS (EFFECTIVE PONY T PISPLACE. (FT) 7,590-03	L L.	88-0 82-0 70-0 53-0	2,122-01 1,870+00 1,870+00 1,950+00 8,170+00 1,270+00 2,222+01 3,682+01	VISCOSITY, MU NU LB/SEC FT 4,473-65 5,189-05
1 1 1 1	PH FPP-1 58 3.4669 ,4999 35 3.6041,0000 30 3.60271,000 30 3.60271,000 30 3.60291,0000 30 3.60291,0000 30 3.60291,0000	XI (LH /SEC)**? 1.051-02	MECH REM 0.000	HEAT TRA'S COEFF, RHO#UE+CH B	1 DISPLACE. S.THICK'SES. DELSTAR (FT) (FT)	10N ETA	51-01 52-01 56-01	.626+03 .902+03 .902+03 .514+67 .136+01 .626+03	DENSITY, V RHO LB/CU FI) 2.098-67 1.667-02
CASE 1	ATED VALUES 5,641 7.88 12.470 8.1 13.184 8.1 13.594 8.1 23.594 8.1 39.619 8.1 44.224 8.1	4.230+08	; ALL SHEAR (LB/SG FT) 3, 814+D1	MON THANS COEFF, HHO-UE-CF/2 1,692-01	MOWENTUM THICKNESS.T THEIA (FI) 1.913-03	AL INFORMAT DISTANCE, FROM WALL	2007 7407 7407 7407 7407 7407 7407 7407	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DISTA.CE FROW WALL (F1) G.U00 2,247-04
	### ### ### ##########################		J	Ĵ.	-97-	NODAL D1			u.

1.2094-00 1.2094-00 1.3094-00 1.5774-00 1.6734-00 2.044-00 2.1974-00 2.1974-00 2.1974-00	1.193-02	1.447=01 3.239-03 2.351-04	4.020*01 9.621-04 6.985-05	6.271-04 6.396-05 4.643-06	7.420-01	7,766-29	1.545-02	7.554-01	4.367-09	1.222-01
2. 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.058-03	-1.257~01 -1 -4.532-03 -3 2.651÷04 2	3.963-01 1.346-03 7.873-09	1,001-03 -8.949-05 5:234-06	7.283-01 7 3.275-03 2 -1.916-04 -1	4.685-26	4.353-02	7.363-01	1.419-08	8.573-02
2.769+01 2.822+01 2.842+01 2.842+01 2.859+01 2.959+01 2.907+01 2.907+01 2.893+01	4,328-03	-1,131-01, - -5,152-03 - 2,384-04	3.926-01 1.530-03 7.081-05 -	1.250-03	7.192-01 3.724-03 -1.723-04 -	8.566-25	6,754-02	7,228-01	2.310-08 0.000	6.647-02
7,390-01 7,391-01 7,391-01 7,396-01 7,402-01 7,417-01 7,417-01 7,417-01 7,431-01 7,431-01	2.927-03 ĔTA	-1.049-01 - -7.456-03 - 1.771-03	3,902-01 2,215-03 -5,260-04	1,412-03 -1,472-04' - 3,497-05	7,133-01 5,388-03 -1,280-03 -	4.117-24	8.457-02	7,139-01	2.940-09	5,568-02
6.820-01 6.831-01 6.937-01 7.001-01 7.022-01 7.071-01 7.071-01 7.071-01 7.071-01	1:857-03 RESPECT TO	-9.526-02 - -1.230-02 -	3.873.01 3.654.03 -1.476-03	1.602-03 -2.429-04 - 9.810-05	7;064-01 6;891-03 -3;590-03 -	2.082-23	1.058-01	7.034-01	3,680-08	4.454,02
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	UCE FROM WALL,FT 525-04 1.128-03 12 DERIVATIVES:WITH E	-8.426-02 -2.152-02 -1.418-02	3.840-01	1,820-03 -4,250-04 2,799-04	6,984-01 1,556-02 -1.025-02	1.066-22	1.310-01	6.915-01	4.450-08 0.000	3,362-02
3.2852 3.28556 3.28566 3.28566 3.28566 3.128760 3.12866 3.12866 3.12866 3.07360 3.07360	STAN 62-C	7.249*02 1-01 -3.881*02		1.073-05 0.000 0.000 0.000 0.000 0.000 1.112-04	50-01 2.805-02 00 -3.201-02 70-05	5.132-22	1.586-01 00 1.288-02		08 5.082-08 .504-11 0.000	-02 2.386-02 2.026-01 -10 1.757-10
4	3.793- -02 3 AMD S	13-02 -5.694-02 - -1.711-01 -1.764 17-01 -8.148-02 - -6.706-04 0.000 7-01 1.640-01	7,-04 3,535-09 5,636, 3,711-00 3,759-01 4,692-02 2,420-02 3-04 1,992-04 0,000 -1,900-01 -4,871-02	2.677-03 2.361703 2. 2.677-03 2.361703 2. 2.04 1.043-04 0.000 3.252-03 -1.609-03 -7. -05 -1.324-09 0.000 11.263-02 3.238-03 8.	6.78 12-04 16-04 16-18	3.516	e m	17-05 0 6.62@-	5.420- 0.000	1,367 86-01 3.994
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2,247-04 51-02 2,495 THF!R FIRST	4 14 16 อันจุนม์	104 2.9 1 711-01 101 4.0 4 892-02 1 900-01	27-09 -1,049-09 22-677-03 -2,36 34-04 1.03-04 -3,252-03 -1,60 31-05 -1,324-09 11-263-02 3,23 77-05	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2,412-20	, h	57-04 2.607-05 6.465-01 6.65 57-01 7.761-01	0.000	6,315- -61 1 8,286-
1.695-02 1.786-02 1.8802-02 1.8302-02 1.937-02 2.065-02 2.198-02 2.198-02	0.000 1.451 FRACTIONS ANT	5.047-02 - -1.577 -7.711-01 - -2.092	3.440-01 2.290-01 -9.231-01	4,480-03 7,480-03 3,704 -1,523-02 -4,131 6,137-02	0 11 14	1.253	3.390-01	2.46 5.593-01 7.66	4.674-13	4.379-16 1.530 2.314-06
3,793,104 11,823,104 11,823,104 12,823,103 12,823,103 11,103,103 11,103,103 11,	ELEMENTAL FRAC	3	0	x	S N	MOLE FRACTIONS C3	S 1	88	ш O	C 05

3	0.00-00 01-666% 01-11.5 5.995-77 3,637-11 1.476-11 5.616-12	2.476-12	1.039-12	4.345-13	1.857-13	3.823-14	1.170-15
£	2,340-1/ 2,139-26 0,00 6,262-n2 1,234-07 4,514-9* 2,578-0P	1.118-08	5.932-99	3.147-09	1.755-09	5.880-10	5.464-11
Ç.	3,224-12 2,483-14 8,445 3,990-04 5,472-24 3,430-04 2,371-04		1.631-96	6.700-07	4.372-07	1.949-07	3.128-68
617	9.120-C2 1.157-17 4.004-13 1.351-13 5	5.522-14	2.175-14	8.639-15	3.541-15	6.854-16	1.919-17
č Š	2.442-02 2.310-12 2.442-03 2.124-13 2.442-03 0.000	8.244-14	3.170-14	1.241-14	5.069415	9.921-16	3.002-17
24.	2.612-05. 3,179-14 4.125-15 2.232-15 4.46-24 0 0.00	8.124-16	2.942-16	1.104-16	4.365-17	8.176-18	2.357-19
ڗ؞ۜ	3,773-621 6,185-24 0,100 3,773-64 1,324-68 6,779-37 3,359+09 1,696-17 0,506	1.852-39	9.845-10	5.212-10	2.799-40	8.764-11	6.620-12
C 12	1.540-02 0.4000 1.540-02 4.437-02 5.273-02 1.540-02 0.401-02	5.793-02	6.171-02	6.348-02	6.460-02	6.300-02	5.165-02
23	3.465-02 2.033-15 0.3000 3.465-06 2.033-15 5.3100-16 1.306-16	4.629-17	1.165-17	3.356-18	9.975-19	1.043-19	.6.994-22
C21	2.760-62 5,332-14 1.222-14 2.824-15 4.43-27 0.000	8.504-16	2,510-16	7.436-17	2.298-17	2.637-18	2.309-20
C2+2	8.549-03 1,359-14 2,703-15 5,667-16 3,1359-13 0,000	1.637-16	4.616-17	1,340-17	4.097-18	4.696-19	4.326-21
2123	2.344-03 1,463-14 4.315-15 1.325-15 2.344-03 1.463-14 4.315-15 1.325-15	5.148-16	1.947-16	7,468-17	2.962-17	5.371-1A	1,256-19
CZH	8.302-021 7.237-73 0.000 8.302-021 1.334-19 1.075-20 2.217-21	4,370-22	8.234-23	1.594-23	3,280-24	1.790-25	3.112-28
C3H2	4.176-015 5.580-52 6.516-24	1,130-24	1.877-25	3.229-26	5,955-27	2.681-28	3.169-31
C3H2	3.966-04 6.315-24 5.568-25 5.402-26	8.483-27	1.287-27	2,041-28	3.503-29	1.398-30	1,315-33
ź	2.897-07 4.977-06 3.883-06 2.833-06 2.903-07 4.977-06 3.883-06 2.833-06	2,124-36	1.545-06	1.114-06	8.063-07	4.391-07	1.137-07
H0	2.465-09 1.054-02 1.266-02 1.355-02	1.354-02	1.304-02	1.224-02	1.131-02	9.470-03	5,915-03
42	1.415-02 9:482-03 0:305-03 1.415-03 4.315-03 4.345-03	3.147-03	2.282-03	1,669-03	1.241-03	7.265-04	2,359-04
¥24	6.831-08-02 7109-07 11.396-07 8.957-08	6.162-08	4.159-08	2.812-08	1.926-08	9.613-09	2.145-09
72н	4.151-70 4.151-70 4.151-70 4.151-70 4.151-70 4.151-70 7.51-70	1.056-02	1.000-02	9.375-03	8,744-03	7,592-03	5,426-03
4	4.723-07 4,000-05 3.691-05 3.089-05	2,544-05	2.016-35	1,547-05	1.211-05	7.354-06	2,323-06
02	1.175-00 1.083-02 1.587-02 2.048-02	2,342-32	2.622-02	2,815-92	2.947-02	3:072-02	2.989-02
	3.624-11 1,406-02 1,969-02 2,351-02 7,244-03 2,572-03 1,523-03	2,505-02	2.536-02	2.470-92	2.346-02	2,033-02	1,305-02
20	d.386-07 6,803-28 5,253-29 4.090-30	5.105-31	5,881-32	6.901-33	4.669-34	1.856-35	3.984-39.
	6.514-76 3.018-36 0.000	4.829-37	3,664+38	2.871-39	1.000-30	1.000-30	1,000-30
÷	1.000 1.107-17 3.085-18 1.158-18	3.941-19	1.251-19	3.846-20	1.206-20	1.374-21	1.099-23
;	3.846-20 1.762-17 1.114-17 5.573-18 3.846-20 1.762-17 1.114-17 5.573-18	2.825-18	1.300-18	5.744-19	2.534-19	5.347-20	1.597-21
4 5 <i>x</i>	4.675-14.7.498-15 5.160-15 3.031-15 4.675-14 4.021-15 4.021-15	1,818-15	1.018-15	5,555-16	3,032-16	9, 617-17	7.263-18
-20	1.611-28 7,321-11 1,792-10 3:096-10	4.050-10	4,753-10	5.111-10	5,164-10	4.746-10	2.851-10
+60	2.626-13 6.113-13 3.526-13 1.740-13	9.042-14	4,355-14	2.038-14	9.552-15	2,262-15	8.628-17

5,257-13, 4.794-09 8.208-17 1.420-10 2,428-0A 1.510-08 4.416-13 1.088-15 2.256-12 3,285-15 6.694-10 3,962-12 3,820-08 3.071-08 5.769-15 5.136-12 8.022-10 2,104-18 3,293-21 0,000 1,034-13 4,983-08 5,517-08 5,209-08 4,589-08 3,820-08 1,259-09 1,408-10 4,823-11 3,538-22 3,283-14 3,205-14 2,370-14 1,614-14 9,924-15 4,275-18 3,467-20 3,277-21 4,395-25 4,398-12 6,394-12 7,631-22 5,009-10 8,034-19 9,762-10 9,940-10 9,228-10 7,631-22 5,009-10 8,034-19 9,762-10 9,940-10 9,228-10

05

6

Š. ċ

-100-

						ELEC COLL		100000	40000 4000 4000 4000	
		9.575+02				ر م س		~~~~		MACH NUMBER 0.000 9.760-01
138:13		3ERAD 59 FT) 0.000	SQ FT4 FOR			TATIC. NTHALP BTU/LB	134+0 134+0 134+0	1.092403	0.000.0	RHOSG-EPS /RHOE-MUE. 0.000 5.056+00 1.106+01
OCT 69 151	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EAT FLUXE TOT ENTH (BTU/SE 1.077+02	S (LB/SEC 0xYGEN 6.478-03	CIENTS, FOR OXYGEN 1.685-01	0xY6E ^w 3.724-03	GPP (ATU/LB)	2.583 6.961 997	-6.692+01 -6.692+01 -9.065+00	119 149 149 149 149 149 149	MOLECULAR WEIGHT 2.759+01 2.748+01 2.776+01
24	0.00 0.00	H IFFUSIONAL 1.541+32	SIVE FLUXE NITROGEN 2,759-02	FER COEFFI FC SG FT) VITROGEN 1.685-01	.) FOR 4ITROGEN 3,724-03	GP (BTU/LB)	2.802+03 7.304+02 3.806+02 1.921+02	4.09+02 4.092+01 2.864+01	1.853401 1.1853401 1.1843401 0.000	MODIFIED F SCHMIDT NUMBER 7.371-01 7.390-01
9+01 FEET	60 KE 00 KE	FLUX MOR- MALIZING D PARAMETER 3.892-02	MASS 01FFU CARBON -3.332-02	MASS TRANSFER E-CM (LB/SEC CARBON VI 1.685-01 1	THICKNESSES (FT) GEN CARBOW 1) 4-03 3,724-03	OTAL ENT HALPY, G (BTU/LR	370+0 370+0 445+0	1.584 1.644 1.694 1.745 1.059	. 932 . 932 . 008 . 008 . 100 . 000	PRANDTL NUMBER 6.910-01 6.763-01
0N .16979	EQCY C3 2 2 2 1+03 2 2 2 2+01 13 3 2 2 1 2 2 1 2 3 3 2 2 1 3 3 3 3 3	BETA 1.513-01	ELEMPNTAL HYDROGEN -7.539-04	ELEMENTAL RHOE+C HYDROGEN 1.645-01	MASS THICK HYDROGEN 3,724-03	SHEAR T	13.50 13.50 14.60 16.60	N 4 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2:23140 1:45640 1:89740 0:000	THERMAL COND (8TU /SEC 8TU 2.205-05 2.510-05 2.464-05
SE DIMENSI	A 20 12 2 1 20 12 12 12 12 12 12 12 12 12 12 12 12 12	EDGE VELOCITY (FT/SEC) 7.418+53	TOTAL GAS 4:589-02	ERS FOR TOTAL GAS 3.243-01	REYNOLDS NUMBER PER FOOT 3.979+06	d d	FIGHT	3.11.11.02 3.11.31.02 2.097.02		SPECIFIC HEAT BTU/LB R) 3.407-01 3.291-01
- STREAMS	100 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PRESSURE (AT4) 2.229+00	FLUXES CHAR SG FT) 4.589-02	ING PARAMET SED ON CHI CHAR 3.243-01	ENTHALPY THICKNESS, LAMBDA (FT) 3.925-03	FP (=U/UE)	⊖ <u>4</u> 10 10	14177	C O O O H	HHOOMU PHOE MUE. 0.906-01 0.375-01
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E DONAHAHO	40KAP (FT) 3,030+00	MASS P PYROL GAS (LB/SEC 6.000	BLOWING (BASED CAS CO. 0000 3.000	EFFECTIVE BODY DISPLACE. (FT) 1,073-02	u.	7.7.	2,35%-01 2,234-01 9,579-01 1,989+00	* * 4 WW	VISCOSITY, LB/SEC FT 4,473-05 5,139-05 5,142-05
1 1 1	EPH FPPU 294 3.7617 .4999 462 3.89141,CBUD 463 3.88451,3003 463 3.88861,BDUD	XI (LB /SEC)++? 1.433-0?	NECH REK 0.000	HEAT TRA'S COEFF, RHO+UE+CH 1.415-01	DISPLACE. THICKNESS, DELSTAR (FT)	TION ETA	0.000 2.031-03 3.385-01	1.693+07 2.708+07 4.062+07	0.//1+07 1.185+01 1.693+01 2.708+01 4.232+01	DENSITY, RHO (LB/CU FT) 1.768-U2 1.425-Q2 1.449-D2
CASE 1	ATED VALUE 5,599 8. 12,384 8. 13,053 8. 13,055 8. 23,265 8. 23,265 8. 33,495 8.	ALPHA 8,463+60	.44L SHEAR (LB/SU FT) 3,108+01	MOM TPANS COEFF, HHO+UE+CF/2 1,548-01	MONENTUM THICKNESS.1 THETA (FT) 2,562-03	AL INFORMA DISTANCE, FROM WALL (FI)	500	4000	5555	DISTANCE FROM WALL (FT) 0.000 3.167-04 5.317-04
	<u>ສ</u> ພັທ			4		ວູ				

11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1,660-02	-1.434;01 -3.067-03 2.060-04	4.016-01 9.111-04 -6.118-05	6.516-04 -6.057-05 4.067-06	7.412-01 2.217-03 -1.488-04		3.775-29		7.564-01	3.570-09	0.000	1.205-01	5.275-14
2.3394-01 1.2394-01 1.2394-01 1.775+02 2.1697-02 2.962-02 3.982-02 3.982-02	9.823-03	-1,249-01, -4,211-03 2,253-04	3.961-01 1.251-03 -6.691-05	1.017-03	7,278-013,043-05	,	2.454-26	2.564-03	7.374-01	1.205-08	0.000	8,498-02	1.423-12
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	6.025-03	-1.126-01 -4.731-03 1.920-04	3,925-01 1,405-03 -5,703-05	1,256-03 -9,342-05 3,791-06	7,190-01		4.464-25	4.261-03	7.241-01	1.985-08	0.000	6.641-02	6,110-12
7.5996-01 7.5996-01 7.599-01 7.550-01 7.550-01 7.550-01 7.550-01 7.550-01 7.550-01	4.077-03 ETA	-1.050-01 -6.849-03 1.564-03	3.902-01 2.034-03 -4.646-04	1,411-03	7,134-01 4,950-03 -1,130-03		2,128-24	5.595-03	7,153-01	2,544-08	0.000	5,604-02	1,326-11
7.07.1 - 0.01 7.07.1 - 0.01 7.07.1 - 0.01 7.07.1 - 0.01 7.07.1 - 0.01 7.07.1 - 0.01 7.07.1 - 0.01	2,587-03 RESPECT TÒ	-9.583-02 - -1.117-02 -	3.875-01	1.591-03	7,068=01 8,075=03 -3,077=03		1.056-23	7,379=03	7,051-01	3.210-08	0.000	4,534-02	2.904-11
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	WALL,FT 1,574-03 IVES WITH	-8.552-02 -1.929-02 -1.198-02	3.844-01 5.729-03	2.809-04 .3.86-04	6.993-01 1.394-02 6.660-03	,	5.104-23	9.666-03	6.937-01	3,916-08	0.00	3,403-02	6,226-11
2.260-01 2.260-01 2.221-01 2.221-01 2.221-01 2.221-01 2.221-01 2.221-01 2.221-01 2.221-01 2.221-01	NCE FROM .534.04 02 DERIVAT	0.00	3.812-01 4-01 1.016-02 01 1.090-02	2.009-03 6.752-04 - 7.247-04			2.344-22	37	6.818=01 6.818=01	4.529-08	0.00	2,564-02	1.251-10
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5,317+04 -02 5,98 AND SECO	-6.054902 -7.465- 1-01 -1.764-01 -7.004-02 -3.419- 4-04 0.000 1.324-01 3.670-	3.770-01 2.081-02 -04 0.000	1.24-0 4.113-13 1.24-0 0.00 1.24-0 0.00 1-03 -1.383-03 -6.75 1.567-05 0.00 1.749-07 1.420-06	6.813-01 6.9 -01 7.630-02 5.062-02 2.4 -04 -0.000 9.567-02 -2.6		1.407-21 3 3-38 0.000	1,627-02 1	. 2.241-05 0.000 .21-01 6.668-01 6.8 7 77-04 7 808-04	4.979-08 4. 5.437 4.488-1	.000	591-02	2.747-10
2010 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3,167-04 5-02 3,461 THEIR FIRST	63-01 -1.701-01 -1.764-01 -1.393-01 -7.465 -1.293-01 -7.004-02 -3.419 -2.2-03 -6.924-04 0.000 3.670 -1.384-01 3.670 0.00 3.670	5,728-01 3,770-01 3,812 54-01 4,095-01 4,114-01 4,138-02 2,081-02 1,016 05-04 2,057-04 0,000 -1,519-01 -3,932-02 -1,090	65-04 1.24-04 6.13-06 65-04 1.24-04 0.00 72,791-03 -1.383-03 -1.106-05 92-05 -1.367-05 0.000 1.1010-02 2.14-03	6,710-01 6.813-01 6.915 5-01 7:604-01 7.630-01 1,007-01 5.062-02 2.471 1-03 5.004-04 -0.000 5,696-01 -9.567-02 -2.652 3-05 -1.372-05 -5.198-05		251-32 3.038	343-03 3,432-04 03 2,050-02 1,627	13-04 2:241 6,521-01 77-01 7 774	4,853-08 4.9	00000	02-03	114
1.480-02 1.508-02 1.518-02 1.571-02 1.601-02 1.767-02 2.074-02 2.074-02	2,295 A'n T	5.023-02 - -1.563 -8.118-01 - -2.022	3,441-01 2,411-01 2,411-01 -9,834-01	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 4 8		1.386-04	.667	2,313 5,587-01			3.864-16	2.682-06 5,
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.00 ELEMENTAL FRACTIONS	ຽ	0		,	MOLE FRACTIONS	ក ខ	·	N.2	i u	Š	20	U
	ELEME	J	J	-102-	-	MOLE	<i>-</i>	•	•	144	•	•	•

4.288-07 2,146-11 9,376-12 3,760-12	1.710-12	7.309-13	3.042-13	1,321-13	2.724-14	7.993-16
i n	8.626-09	4.677-09	2,546-09	1.414-09	4:788-10	4.416-11
3.695-04 4.214-05 2.919-06 1.919-06	1,322-06	8.788-07	5.752-07	3.784-07	16704-07	2.738-08
9.077-0° 6,249-13 2.410-13 8.782-14	3,738-14	1:514-14	6,109-15	2,528-15	4.953-16	1.359-17
2.250-35 1,169-12 4,050-13 1,377-13	5.663-14	2,253-14	9.027-15	3,749-15	7,515-16	2,290-17
2,399-07 1,480-14 4,547-15 1,411-15	5.482-16	2,081-16	8.066-17	3,264-17	6,332-18	1.682-19
3,662+21 1,724-24 U.NUU 4,017-04 8,813-09 4,788-09 2,460-69	1,383-09	7.436-10	3.954-10	2,124-10	6.635-11	4.820-12
1.328-07 3,602-02 4,671-02 5,429-02	5,925-02	6.302-02	:6.534-02	6,628-02	6,512-02	5.448-02
4.377-04 9.178-16 2.702-16 7.209-17	2,516-17	6:859-18	1.996-18	5.944-19	6,194-20	3.863-22
2.895-03 2,317-14 6,250-15 1.607-15	5,150-16	1.560-16	4.710-17	1.470-17	1.705-18	1:435-20
8.346-03 5,550-15 1.341-15 3.199*16	9.871-17	2.910-17	8.676-1R	2,700-18	3.166-19	2.880-21
1,507-23 6,325-28 0,000 2,240-03 6,673-15 2,279-15 7,661-16	3,109-16	1,209-16	4.706-17	1.881-17	3,436-18	7.769-20
8.510-03 4.051-20 6.498-21 1.004-21	2,137-22	4;234-23	8,423-24	1:760-24	9.766-26	1.619-28
	5,133-25	9,043-26	1.609-26	3.029-27	1.398-24	1.597-31
7,155-35 1:000-30 0:000 3.489-06 1:510-24 1:805-25 2:128-26	3.690-27	5.988-28	9.889-29	1.742-29	7.193-31	6.655-34
2,391-37 1,000-30 0,000 2,833-07 4,159-06 3,255-06 2,399-06	1,811-06	1,324-06	9.561-07	6.921-07	3.767-07	9.583-08
1,999-08 1.177-09 0.000 2.336-09 1.134-02 1.285-02 1.345-02 1	1,334-02	11,281-02	1.202-02	1,111-02	9.319-03	5.833-03
1.439~02 8,239+03 8,826+03 4,074+03	3,032-03	2,232-03	1,651-03	1.238-03	7.342-04	2.419-04
6.385-04 1,600-07 1,099-07 7,274-08	5.097-08	3.487-08	2,379-08	1.640-08	8.265-09	1.848-09
1,085-02 1	1,062-02	1.013-02	9,571-03	8.994-03	7.922-03	5.841-03
5.145-07 3,708-05 3,322-05 2,751-05	2,255-05	1,780-05	1.376-05	1,058-05	6,356-06	1.936-06
3-0/ 4.636-08 1 1,232-02 1.656-	2,321-02	2,547-02	2.715-02	2.629-02	2.932-02	2.826-02
1,637-02 2,087-0	2.490-02	2.490-02	2.405-02	2.269-02	1.948-02	1:224-02
2-03 2.080-03 1. 1.457-28 1.484	1,876-31	2,281-32	2,747-33	3,490-34	7.569-36	1.000-30
4.612-34 2.821	1.471-37	1.196-38	1.000-30	1.000-30	1.000-30	1.000-30
0 1.000-30 921-18 2.174	2.371-19	7.519-20	2,307-20	7.175-21	8.021-22	5.772-24
2,668-26 1.173-30 0.000 4,516-20 1,189-17 7.184-18 3.558-18	1.796-18	8.202-19	3,581-19	1.557-19	3.193-20	8.570-22
1,369-23 1,318-26 2,382-28 5,042-16 5,309-15 3,565-15 2,087-15	1,250-15	6.971-16	3,771-16	2.037-16	6.331-17	4.422-18
2,120-19 1,317-21 7,029-23 1,319-28 8,691-11 1,708-10 2,651-10	3,313-10	3,780-10	3.990-10	3.978-10	3.570-10	2.089-10
8,441-11 1,617-11 5,584-12 2,830-13 4,266-13 2,460-13 1,230-13	6.449-14	3,118-14	1,496-14	6.791-15	1.590-15	5.682-17
1,190-18 1.233-21 0.000						

1.048-13 4,913-04 5.667-03 4.635-04 4.028-04 3.320-08 2.646-08 2.040-08 2.040-0 2.002-11 2.082-11 2.082-11 2.082-11 2.082-11 2.082-11 2.082-11 2.082-11 2.082-11 2.082-11 2.082-12 2.082-12 2.084-14 2.523-14 2.523-14 2.04-15 2.04-14 2.04-14 2.04-12 6.094-12 6.097-12 5.141-12 4.063+12 3.092-12 1.723-12 3.789-13 4.180-12 6.253-12 6.594-12 6.097-12 5.141-12 4.063+12 3.092-12 1.723-12 3.789-13 7.243-22 5.204-15 3.247-16 2.084-10 8.014-10 7.294-10 6.248-10 5.154-10 3.341-10 1.026-10 2.554-11 1.474-12 2.852-13 3.880-09 1.274-08 5.667-03 4.635-04 4.928-04 3.320-08 2.646-08 2.076-08 02+ ţ 6

-104-

READ & New of the contract of the tenth of the second

					#92.4			
	GCOND 2.758+02				TEMP CDEG R)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	UUU 444W + W W W W W W W W W W W W W W W W W W W	MAGE
*	0.000	SG FT) FOR			TATIC NTHALP STU/LB	0440 0440 0470 0470 0470 04040	1.0011400 1.0011400 0.0011400 0.0011400 0.0011400 0.0011400 0.00114000 0.00114000 0.00114000	RHOSG4EPS.
2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.1-1. 1.1-0.8 1.2-0.7 3.2-0.7 101_ENTH 101_ENTH 8.909+0.0.8	ES (LB/SEC OXYGEN 4.966-03	ICIENTS, FOR OXYGEN 1.305-01	0xYGEN. 5.209-03			11.076+00 11.076+00 11.078+00 17.081-01 11.082-01	MOLECULAR WEIGHT
00 00 00 00 00 00 00 00 00 00	2.6-05 12 7.6-05 12 7.3-05 12 2.2-05 12 1FEUSIONA 1.241+02	USIVE FLUXE VITROGEN Z.115-02	ANSFER COEFF BASEC SO FT) NITROGEN 01 1.305-01	T) FOR VITROGEN 5.209-03	GP (BTU/LB) 3,005+03	6.479+02 3.668+02 1.870+02 1.095+02 6.419+01	2.75501 2.75501 1.76501 1.112+01 3.100+00	MODIFIED P SCHMIDT
46+03 FEET 100 E3S. 1130 E3S. 1130 E3S. 1130 E3S. 125 E22 E30 E31	105 120 120 120 120 120 120 120 120 120 120	MASS DIFF CARBON -2.554-02	MASS TRANSI UE+CM (LB/SI CARBON :	CARBON	TOTAL ENTH- HALPY, G (3TU/LB) 9.980402	1.535+00 1.535+00 1.592+00 1.592+00 1.651+00	2.00% 2.00% 2.00% 2.00% 2.00%	PRÁNDTL NUMBER
CONSERVA CON	2.273-01	ELEMENTAL HYDROGEN -5.740-04	ELEMENTAL RHOE* HYDROGEN 1.305-01	MASS THICH HYDROGEN 5:209-03	SHEAR A/FTS0)	22.92.94 22.92.94 23.92.94 23.92.94 24.94	2,365-01 2,365-01 1,755-01 1,169-01 3,479-00 0,000	THERMAL COND (BTU
15E D14FVS 11VN EN 11V	1-03 12 7 1-03 12 7 2-03 7 -1 2-04 12 1 EDGE VELOCITY (FT/SEC)	707AL GAS 3.508-02	TERS FOR TOTAL GAS 3.115-01	REYNOLOS NUMBER PER FOOT	FPP 4.194-0	0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.644 1.644 1.660	SPECIFIC HEAT
1.06 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	-06 15 -1 -07 15 -1 -06 15 1 -06 16 1 -06 16 1 -16 18 +0	ES HAR FT) 508-02	PARAME ON CH) HAR 115-01	ENTHALPY THICKNESS, LAMBDA (FT) 5.230-03	FP (=0/t)	4 W & & V V	8.3893-01 8.3893-01 9.070-01 9.893-01	RHO-MUE,
4 4 4 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	0000 1.0000 2.000	MASS PYROL GAS (LB/SEC 0,000	S BLOWING (BASED CASED CAS	EFFECTIVE RODY DISPLACE. (FT) 1,509-02		,	2,027+00 4,221+00 8,730+00 1,349+01 2,346+01 3,877+01	VISCOSITY,
1	NNN NN	MECH RE 0.000	HEAT TRANS COEFF, PHOSUESCH 1.126-01	DISPLACE, THICKNESS, (ELSTAR (FT) 1.398-02	20.0	N M O H H V	2000 2000 2000 2000 2000 2000 2000 200	CENSITY, 1
ATED VALUE 1134 ARR 8- 12,188 8- 12,188 8- 12,188 8- 23,502 8- 23,503 8- 33,508 8- 33,508 8-	8,908 8. 9,004 8. 4,102 8. ALPHA	ALL 2AR 53 FT 931+0	MON TRANS COEFF, RHO-UE-CF/2 1,071-01	MOMENTIM THICKNESS, 1 THETA (FT) 3,297-05	INFORM ISTANCE, SOM WALL (FT) 0,000	0 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	8,035-03 1,318-02 2,227-02 3,077-02 4,633-02 6,774-02	DISTANCE FROM WALL
T T T T T T T T T T T T T T T T T T T	0 6 11 11 0 0		-105-		MOON LAU CU			-

11.0200 11.0200 11.0200 11.0200 11.030	2,227-02	-2.963-03 1:875-04	4.012-01 8.801-04 -5.568-05	.851	7.401-01 2.141:03 -1.355-04	.437-2	1.500-02	7.577-01 2.726-09 0;000
08144 # 4448 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1,318-02	-1,242-01 -3,977-03 1,980-04	3,959-01 1,161-03 -5,882-05	.032-0 .853-0	7.272-01 2.874-03 -1,431-04	.696-2	4,196-02	7,393-01 9,486-09 0.000
2.27.27.27.27.27.27.27.27.27.27.27.27.27	8.083-03	-1.127-01 -4.425-03 1.641-04	3.925-01 1.314-03 54.874-05	.256 .737. .240	7,190-01 3,198-03 -1,186-04	.736-2	4.028-03	7,264-01 1,578-08 0,000
NUMBER 7.372-01 7.391-01 7.391-01 7.392-01 7.397-01 7.401-01 7.401-01 7.414-01 7.424-01 7.434-01	.5.471-03	-1.053-01 -6.432-03 1.471-03	3.903-01 1.911-03 74.369-04	.270- .904:	7,136-01	-	5.281-03	7,180-01
6.892-01 6.982-01 6.991-01 6.991-01 7.026-01 7.076-01 7.076-01 7.076-01 7.076-01	3.474-03 RESPECT TO	-9.667-02 -1.041-02 3.883-03	3.677-01	.575-0 .055-0 .669-0	7.974-01 7.522-03 -2;907-03	.023-2	6.950=03	7,001-01
2.207-05 2.207-05 2.207-05 2.348-05 2.348-05 2.348-05 2.266-05 2.266-05 2.266-05 1.966-05 1.966-05 1.966-05 1.966-05	WALL.FT 2.115-03 IVES.WITH	-8.704-02 -1.792-02 1.095-02	3.849-01 5.292-03 -3.224-03	.765 .518	7.004-01 1.286-02 -7.844-03	926	9.070-03	6.971-01 3.195-08 0.000
811/LB R) 2.461-01 3.282-01 3.282-01 3.284-01 3.226-01 3.212-01 3.126-01 3.126-01 3.066-01	15TANCE FROM 4 1.284-03 774-02 COND DERIVAT	-7.699-02 -4-01 -3.128-02 10	3.619-01 4-01 9.290-03 10 10-764-03	4 9 4	6.931-01 50-01 2.260-02 00 72.376-02	6.317-	1.461-01 10 1.155-02	6.858-01 20-01 3.742-08 42-12 0.000
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.186-04 33-02 6.77	6-01 6-01 3-04 1:16	44408		01 6.838-01 .594-01 7.450 7.285-04 -0.000 01 -8.425-02 -0.		1,773-01 ; 2-04 0,000 1,507-02 ;	
LB/SEC FT 5,112-05 5,112-05 5,021-05 5,021-05 6,990-05 4,990-05 4,680-05 4,490-05 7,090-05	1,305-04 -02 4.6 HEIR FIR	5,134-02 -01 -1.68 1,240-01 -03 -7.31 4,456-01	5,743-01 5.78 49-01 5.78 49-01 5.78 5,682-02 1.87 51-04 2.172-04 51-05 2.172-04	2,470=03 99=04 1.53 -2,448=03 56=05 -1.44 8,802=03	6,746-01 193-01 193-01 1,595-03 143-03 1-3,222-01 180-05 180-05	2,230-21	2,08/-01 11-03 3,31 1,885-02	01 6,581-01 6,781-01 6,888-01 7,781-01 13 4,305-08 4,218 6,218 6,218 6,000 0,000 0,000 0,000 0,000
1.440-02 1.1440-02 1.184-02 1.205-02 1.279-02 1.305-02 1.305-02 1.464-02 1.786-02 1.786-02	0.000 3.077. TIONS AND T	4,785-02 - -1,546-01 - -8,49-01 - -2,003	3.448-01 2.510-01 2.510-01 1.046+01	4. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	6.106-03 6.106-03 7.5.545-03 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	.385-04 7.12	3.390-01 4.211- 4.192-03	5.607-01 6 7.688- 5.777-13 4 5.020- 0.000-
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.001 ELEMENTAL FRACTIONS	5	00	1	N2 MOLE FRACTIONS	: :	S 1	S F S
	<u> </u>		100		# 0 L			

20	3.615-14 1,090-02 1.817-52 2.757-02	3.647-02	4.644-02	5.648-02	6.660-02	8.431-02	1.186-01
v	1 1.356-01 214-10 1.661	3.879-11	1.817-11	8.289-12	3.810-12	8.862-13	3,156-14
5	151-11 5.27	1.016-12	4.392-13	1,841-13	8.005-14	1.663-14	4,775-16
, C	18 5,703-21 977-04 2,099	6.112-99	3.369-09	1.853-09	1.037-09	3,565-10	3.307-11
CHO	16 1.16/-14 (200-06 2.260	1.053-96	7.059-07	4,656-37	3.075-07	1.401-07	2.275-08
CH2	2.546-19 5.5484-11 5.000 9.034-63 3.164-13 1.311-13 5.029-14	2,202-14	9.098-15	3,717-15	1.553-15	3.099-16	8.511-18
CH3	.801-13 2.217	3.452-14	1.412-14	5.781-15	2,440-15	5.041-16	1.579-17
CH4	1994-15 2.42	3;349-16	1.320-16	5.260-17	.2.178-17	4.401-18	1.377-19
č	4.161-04 5.425-09 3.658409 1.611-09	9:164-10	4.962-10	2.643-10	1.423-10	4,447-11	3,153-12
202	့် ပြ	6;188-02	6.562-02	6.801-02	6,905-02	6.815-02	5.810-02
2 5	598-16 1.14	1:062-17	3.194-18	9,338-19	2.786-19	2.921-20	1.745-22
C2H	283	2:568-16	7.962-17	2.437-17	7.682-18	9.079-19	7.549-21
C2H2	166-15 5.977	5:047-17	1,540-17	4.690-18	1.484-18	1.794-19	1.656-21
C2N2	828-15 1.56	1.590-16	6.309-17	2,481-17	9.987-18	1.849-18	4.128-20
C3H	22 1.204-25 1119-20 2.108	8,133-23	1.671-23	3,394-24	7:196-25	4,105-26	6.730-29
C3H2	621-23 5.946	1:796-25	3.305-26	6.038-27	1:159-27	5,553-29	6.373-32
C3H3	375-25 4.930	1.238-27	2.115-28	3.609-29	6.520-30	2.819-31	2.669-34
N.	286-06 2.577	1,446-06	1.059-06	7,656-07	5.544-07	3,024-07	7.618-08
НО	179-02 1.28	1,301-02	1.245-02	1.165-02	1.077-02	9.046-03	5,685-03
Н2	7,294	2,883-03	2.149-03	1.605-03	1.213-03	7.303-04	2.457-04
H2*1	178-07 8.29	3,979-08	.2.750-08	1,690-38	1.311-08	6,688-09	1.512-09
420	120-02 1.136-	1,088-02	1.043-02	9,917-03	9.382-03	8.375-03	6.375-63
2		1.855-05	1,463-05	1,125-05	8.599-06	5.130-06	1.518-06
O _N	725	2,251-02	2.443-02	2.585-02	2,678-02	2.756-02	2,630-02
o	./75-02 2.128-0	2,409-02	2,379-02	2,277-02	2,133-02	1,815-02	1.118-02
3	586-29 3.158-	4.766-32	6.013-33	7.370-34	9,464-35	2.098-36	1.000-30
53	2,6	2:929-38	1.000-30	1.000-30	1.000-30	1.000-30	1.000-30
ţ	2,579-18 9.76C	1.100-19	3.496-20	1.067-20	3.296-21	3.653-22	2.438-24
*	6,352-18 3,729-	9.112-19	4.116-19	1.772-19	7.603-20	1.530-20	3.776-22
N2+	5,522-14 3,156-15 2,0A7-15 1,214-15 9,581-20 3,752-22 7,215-24	7.229-16	4.004-16	2,145-16	1.148-16	3.520-17	2.312-1A

3.243-17 2.933-09 2.854-17 2,465-13 6.728-11 2.283-10 9.501,16 9:962-09 4.413-16 1.178-12 2.483-10 3.580-10 4.080-15 1.641-08 1,394-15 2,155-12 2.821-10 5,849-10 5,214,10 4,395-10 2,519-15 .2.109-08 2.872-12 2.871-10 8.794-15 4.469-15 3.700-12 1.892-14 2.775-10 2.672-08 3,919-14 4.487-12 2.503-10 3.278-98 7.502-15 1.130-2n 8,591-11 1,459-10 2.046-10 2.5,534-11 8,684-12 2.536-12 3.089-13 2,578-13 1.486-13 7.466-14 3.089-13 2,578-13 1.486-13 7.466-14 3.089-13 4,559-20 4,140-22 0.000 3.645-10 4,559-20 7.09-14 1.674-14 1.144-14 7.545-12 3.008-12 5.008 ÷ **†**02 02+ -20 ÷

3. SAMPLE CASE 3 - ABLATING REENTRY VEHICLE SHAPE

Sample problem 3 is typical of the type of problem the aerospace thermodynamicist must solve quite often. At a discrete time during the trajectory, the nonsimilar solution for the boundary layer flow field over a sphere-cone body composed of a nose tip, window, and heat shield material is desired. For this problem, the following conditions were chosen:

P = 120.5 atmospheres

 $H_0 = 5520 \text{ Btu/lb}$

 $R_{y} = 0.5 \text{ inches}$

 $\theta_{cone} = 7.5^{\circ}$

A total of 29 body stations were required to describe the body static pressure distribution accurately. A great deal of care is used in selecting these points since cubic curve fits are used to determine pressure gradients. Large gaps in spacing or large changes in pressure between body stations can lead to very poor curve fits.

Of these 29 body stations, the first seven were assumed to include a graphite nose tip, the next four spanned a boron nitride window material, and the remaining 18 covered the carbon phenolic heat shield region. Once the body stations of interest had been selected, the automatic radius calculating scheme for card group 5 could be used, therefore only the radii at the nose, tangent point, and final body station were specified, with a minus sign on the nose radius at station 1. The rest of the input for this problem is similar to the previous sample problem. Boron was added to the list of elements, and the virgin material elemental makeups for the 3 materials were assigned to the char category for the steady-state ablation approximation. Sixty thermochemical species were included for this B-C-H-O-N-e system.

a. Input Cards for Sample Case Number 3

10204020400292000000TURBULENT B.L. 3 MATERIALS, C+, BN, C6H60

```
1111111222233333533333333333333
1
-1.
29
0.0
         .00417364 .00838991 .0126955
                                      ·0171465 ·0218166 - ·0268129 - ·0323082
         .0466570 -.059975 -.0627266 .070
                                                .075
                                                          .6775
.0386372
                                                                   .0875
                   .150
                                                .500
                                                          .700
         ,125
                             .200
                                      ·300
                                                                   1.0
. 1
1.5
                   3.0
                             4.0
                                      5.0164
         2.0
13
0.0
         .024
                   .04
                             .072
                                      -120
                                                .20
                                                          • 32
                                                                     .48
.80
         1.4
                   2.0
                             3.2
                                      5.0
7.5 ·95
11
         .041667
-.0416667
                   .041308
      (1 blank card)
                                       .687499
                        1.0
                                -4300.
                                              1.0
                                                      -358.6
1.0
        0.0
Cix
               C*
       BN≉
120.5
5520.
. 44
                   .019
                             .75
                                       .75
                                                250.
         11.283
3000.
                             3.467
                                        106.7
  6 .431 23.4
                    32.
                                                                     -0.0209
  1HYDROGEN
                1.00797
  5BORON
               10.811
  CARBON
               12.011
                                         1.
                                                                     -0.9236
  7NITROGEN
               14.008 -.765
               16.000 -.235
                                                                     -0.0554
  80XYGEN
                0.00055
 99ELECTRON
 C3
 189670+6 366220+5 146441+2 622536-4-168227+7 798410+2 500. 3000.1 189670+6 366220+5 144782+2 792232-4-646877+6 798410+2 3000. 5000.1
                                                                   0.C3
                                                                   0.C3
 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
 010100-0 144120+5 586075+1 953976-4-766621+6 121290+2 500. 3000.2 100.C*
 000000-0 144120+5 485134+1 293605-3 3J7209+7 121290+2 3000. 5000.2 100.C*
0.00
-26%170+5 223570+5 115496+2-4&4°39+3 1 3 36°3+8 653700+2 3000. 5000.1
                                                                   0.CO
      0 0 0 0 0 0 0 0 0 0 0 5 0 0JANAF 12/60
                                                                     Н
0.H
                                                                   O<sub>2</sub>H
                                                                     BN
 152000+6 244620+5 880110+1 108795-3-112446+6 699360+2 500. 3000.1
                                                                   0 . BN
 152000+6 244620+5 880750+1 998189-4 723668+5 699360+2 3000. 5000.1
                                                                   0.BN
1 5 1 7 JANAF 9/63 -595100+5 291896+5 119161+2 239906-4-891069+6 257049+2 500. 2500.2
                                                                     BN*
                                                                  10.BN*
-595100+5 290739+5 117157+2 257181=5-240029+6 256618+2 2500. 5000.2
```

```
2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
                                                              N2
000000-0 221650+5 862699+1 116090-3-103715+7 637650+2
                                               500. 3000.1
                                                            0.N2
000000-0 221650+5 984175+1-116232-3-612728+7 637650+2 3000. 5000.1
                                                            0.N2
 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
170886+6 135500+5 444433+1 228125-3 409830+6 492870+2
                                               500. 3000.1
                                                            0.0
170886+6 135500+5 412212+1 261908-3 262886+7 492870+2 3000. 5000.1
                                                            0 . C
CH
                                                            0.CH
142006+6 221300+5 707091+1 463281-3 552860+7 616120+2 3000. 5000.1
                                                            0.CH
                CHN
 312000+5 355930+5 137023+2 552243=3=228955+7 758620+2
                                                500. 3000.1
                                                            0.CHN
312000+5 355930+5 178895+2-295052-3-183671+8 758620+2 3000, 5000.1
                                                            0.CHN
 1 1 1 6 1 8 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
                                                              CHC
-290000+4 323670+5 128033+2 300638-3-201721+7 789830+2
                                                500. 3000.1
                                                            0.CH0
-290000+4 323670+5 103028+2 633312-3 121615+8 789830+2 3000. 5000.1
                                                            0.CHO
 2 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/62
                                                              CH2
950000+5 329960+5 132894+2 413822-3-290273+7 684940+2 500. 3000.1
                                                            0.CH2
950000+5 329960+5 140728+2 132150-3-239493+7 684940+2 3000, 5000.1
                                                            0.CH2
 3 1 1 6 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/62
                                                              CH<sub>3</sub>
319400+5 434190+5 182763+2 401025-3-461203+7 786040+2
                                                500. 3000.1
                                                            0.CH3
319400+5 434190+5 204899+2-108028-3-114692+8 766040+2 3000. 5000.1
                                                            0.CH3
 4 1 1 6 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
                                                             CH4
-178950+5 536790+5 230948+2 677896-3-755061+7 825970+2 500. 3000.1
                                                            0.CH4
0.CH4
                                                              CN
109000+6 232490+5 655906+1 115326-2 479517+6 669760+2 500. 3000.1
                                                            0.CN
109000+6 232490+5 988013+1 313855-3-649453+7 669760+2 3000. 5000.1
                                                            0.CN
1 6 2 8 0 0 0 G C 0 0 0 0 0JANAF 03/61 -940540+5 365350+5 144559+2 210386-3-182392+7 798480+2
                                                             C02
                                                500. 3000.1
                                                            0.CO2
-940540+5 365350+5 156451+2-381561-4-602768+7 798480+2 3000. 5000.1
                                                            0.CO2
C2
                                                            0.02
                                                            0.02
 C2H
 117395+6 349620+5 134210+2 469100-3-187509+7 781140+2 500. 3000.1
                                                            0.C2H
117395+6 349620+5 148516+2 109402-3-503862+7 781140+2 3000. 5000.1
                                                            0.C2H
 2 1 2 6 0 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
                                                              C2H2
 541900+5 482570+5 189960+2 769044-3-409039+7 849690+2
                                               500. 3000.1
                                                            0.C2H2
541900+5 482570+5 203952+2 389062-3-645297+7 849690+2 3000. 5000.1
                                                            0.C2H2
 2 6 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 3/61
                                                              C2N2
738699+5 511070+5 188740+2 559856-3-896873+6 985479+2 500. 3000.1
                                                            0.C2N2
738699+5 511070+5 208204+2 630229=5-346865+7 985479+2 3000. 5000.1
                                                            0.C2N2
 C3H
127703+6 489620+5 194464+2 508379-3-311933+7 928820+2 500, 3000.1
                                                            0.C3H
127703+6 489620+5 199582+2 245687-3-632514+6 928820+2 3000, 5000.1
                                                            0.C3H
 C3H2
106522+6 635170+5 247444+2 992918-3-437596+7 104666+3 500. 3000.1
                                                            0.C3H2
106522+6 635170+5 266623+2 364767-3-467730+7 104666+3 3000, 5000.1
                                                            0.C3H2
 1 1 1 7 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/60
                                                             HN
792000+5 217660+5 823133+1 281555-3-126896+7 609290+2 500. 3000.1
                                                            0 • HN
0.HN
                                                             H0
                                                            0 + HO
```

```
933000+4 214040+5 965144+1-443528-4-686115+7 613820+2 3000. 5000.1
                                                              0.H0
 H2
000000-0 212100+5 711963+1 621950-3-712694+6 484650+2
                                                 500. 3000.1
                                                              0.H2
000000-0 212100+5 681794+1 589854-3 265106+7 484650+2 3000, 5000.1
                                                              0.H2
 2 1 1 7 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/65
                                                               H2N
400999+5 305799+5 975862+1 114401-2-518970+6 701580+2 500. 3000.1
                                                              0.H2N
400999+5 305799+5 137419+2 229493-4-610024+7 701580+2 3000. 5000.1
                                                              0.H2N
 H20
-577980+5 302010+5 112254+2 811397-3-260800+7 684210+2
                                                 500. 3000.1
                                                              0.H20
-577980+5 302010+5 157278+2-191548-3-173599+8 684210+2 3000. 5000.1
                                                              0.H20
   7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
                                                               Ν
112965+6 134370+5 486944+1 383516=4 958460+5 480900+2
                                                 500. 3000.1
                                                              0 . N
112965+6 134370+5 428957+1 240844-3-417273+6 480900+2 3000. 5000.1
                                                              0 . N
   NO
215800+5 227000+5 877623+1 899031-4-789656+6 688490+2 500. 3000.1
                                                              0.NO
215800+5 227000+5 916260+1 657885-5-212519+7 688490+2 3000, 5000,1
                                                              0 • NO
 0
595590+5 135220+5 497228+1 380768-5 154749+5 500960+2
                                                 500. 3000.1
                                                              0.0
595590+5 135220+5 657489+1-224268-3-891782+7 500960+2 3000. 5000.1
                                                              0.0
02
                                                              0.02
000000-0 234460+5 103071+2 290991-4-783079+7 679730+2 3000. 5000.1
                                                              0.02
 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/60
                                                               C4
242321+6 511230+5 205903+2 623436-4-257703+7 986760+2
                                                              0.C4
                                                 500. 3000.1
242321+6 511230+5 210714+2-434895-4-404939+7 986760+2 3000. 5000.1
                                                              0.C4
 C5
242374+6 656230+5 264706+2 806528-4-337125+7 111641+3
                                                 500. 3000.1
                                                              0.C5
242374+6 656230+5 271156+2-580271-4-543183+7 111641+3 3000. 5000.1
                                                              0.C5
 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/60
                                                               В
132618+6 134240+5 506024+1-307108-4-985641+5 481210+2
                                                 500. 3000.1
                                                              0.8
132618+6 134240+5 507458+1-121838-4-726353+6 481210+2 3000. 5000.1
                                                              0 . B
   5 1 6 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 06/63
                                                               CB
198000+6 233870+5 887101+1 987600-4-461666+6 689650+2
                                                 500. 3000.1
                                                              0.CB
198000+6 233870+5 864500+1 134780-3 599853+6 689650+2 3000. 5000.1
                                                              0.CB
         BH
105630+6 226370+5 871723+1 193099-3-113880+7 593240+2 500. 3000.1
                                                              0 . BH
105630+6 226370+5 962344+1 127652-4-442568+7 593240+2 3000. 5000.1
                                                              0.BH
         5 1 8 0 0 0 0 0 0 0 0 0 JANAF 12/60
                                                               BHO
-471270+5 356030+5 142974+2 167620-3-201136+7 764730+2
                                                 500. 3000.1
                                                              0.880
-471270+5 356030+5 112392+2 644865+3 134967+8 764730+2 3000· 5000·1
                                                              0 . BHO
 BH02
-134100+6 456640+5 182280+2 425108-3-301044+7 924900+2
                                                 500. 3000.1
                                                              0.BH02
-134100+6 456640+5 168746+2 521159-3 699798+7 924900+2 3000. 5000.1
                                                              0.BH02
 2 1 1 5 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/60
                                                               BH2
660000+5 327480+5 131819+2 199298-3-211346+7 728220+2
                                                 500. 3000.1
                                                              0.BH2
660000+5 327480+5 133411+2 907704-4-580069+6 728220+2 3000. 5000.1
                                                              0.BH2
        5 2 8 0 0 0 0 0 0 0 0 0 JANAF 12/60
                                                               BH202
-450000+5 597060+5 246307+2 263481-3-476319+7 109074+3 500, 3000.1
                                                              0.BH202
                                                              0.BH202
-450000+5 597060+5 246015+2 206036-3-244306+7 109074+3 3000. 5000.1
 3 1 1 5 0 0 0 0 0 0 0 0 0 0 0 JANAF 12/60
                                                               BH3
180000+5 424590+5 179007+2 501613-3-495709+7 763790+2 500. 3000.1 180000+5 424590+5 186890+2 214061-3-464131+7 763790+2 3000. 5000.1
                                                              0.BH3
                                                              0.BH3
 3 1 1 5 3 8 0 0 0 0 0 0 0 0 0 JANAF 03/61
                                                               BH303
```

```
-238600+6 860730+5 356846+2 478490-3-720419+7 131808+3 500. 3000.1
                                                        0.BH303
-238600+6 860730+5 377529+2-105305-4-127237+8 131808+3 3000. 5000.1
                                                        0.BH303
   BO
574400+4 226450+5 862197+1 136981-3-631704+6 670240+2
                                             500. 3000.1
                                                        0.BO
574400+4 226450+5 803486+1 210252-3 264653+7 670240+2 3000. 5000.1
                                                        0.B0
 1 5 2 8 0 0 0 0 0 0 0 0 0 0 0 0 JANAF 06/63
                                                         B02
-726000+5 379300+5 148552+2 119400-4-999435+6 856360+2 500. 3000.1
                                                        0.B02
-726000+5 379300+5 118268+2 637770-3 935859+7 856360+2 3000, 5000.1
                                                        0.B02
B2
                                            500. 3000.1
                                                        0.B2
199300+6 238090+5 724425+1 412560-3 687918+7 678510+2 3000. 5000.1
                                                        0.B2
 4 1 2 5 4 8 0 0 0 0 0 0 0 0 0 JANAF 03/66
                                                         B2H404
-306999+6 125740+6 450887+2 266027-2-332605+7 179643+3
                                            500. 3000.1
                                                        0.B2H404
-306999+6 125740+6 543119+2 450391-4-157235+8 179643+3 3000. 5000.1
                                                        0.B2H404
B2H6
                                            500. 3000.1
                                                        0.B2H6
979999+4 957649+5 435286+2 258895-4-147630+8 125539+3 3000. 5000.1
                                                        0.B2H6
 B202
-111600+6 515500+5 207885+2 370455-5-251331+7 983970+2
                                            500. 3000.1
                                                        0.B202
-111600+6 515500+5 196641+2 203148-3 284908+7 983970+2 3000. 50(J.1
                                                        0.B202
 2 5 3 8 0 0 0 0 0 0 0 0 0 0 0 JANAF 03/61
                                                         B203
-210100+6 615070+5 257777+2-153675-4-427514+7 111710+3
                                            500. 3000.1
                                                        0.B203
-210100+6 615070+5 239286+2 345774-3 329402+7 111710+3 3000. 5000.1
                                                        0.B203
 E-
       +149010+5+498851+1-272800-5-135900+6+164558+22000. 10000.1
                                                         E-
       +149010+5+498851+1-272800-5-135900+6+164558+22000. 10000.1
                                                         E-
 C+
+428985+6+150120+5+489657+1+180700-4+340000+5+484232+22000. 10000.1
                                                         C+
+428985+6+150120+5+489657+1+180700-4+340000+5+484232+22000。10000。1
                                                         C+
 Ν+
+446641+6+151310+5+501751+1+617100-4-184100+7+496847+22000. 10000.1
                                                         N+
+446641+6+151310+5+501751+1+617100-4-184100+7+496847+22000. 10000.1
                                                         N+
 N2+
+357258+6+251470+5+136508+2-327940-3-225630+8+656601+22000. 10000.1
                                                         N2+
+357258+6+251470+5+136508+2-327940-3-225630+8+656601+22000.10000.1
                                                         N2+
 02-
-205250+5+267570+5+111480+2-656700-4-779100+7+699149+22000. 10000.1
                                                         02-
-205250+5+267570+5+111480+2-656700-4-779100+7+699149+22000. 10000.1
                                                         02-
 1 6 1 8 -1 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12/61
                                                         CO+
+294283+6+243830+5+893619+1+378000-4-150900+7+666595+22000. 10000.1
                                                         CO+
+294283+6+243830+5+893619+1+378000-4-150900+7+666595+22000. 10000.1
                                                         CO+
 1 7 1 8 -1 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12/61
                                                         NO+
+232919+6+241970+5+910216+1+277400-4-316600+7+654379+22000. 10000.1
                                                         NO+
+232919+6+241970+5+910216+1+277400-4-316600+7+654379+22000. 10000.1
                                                         N0+
 0+
+371999+6+149290+5+336271+1+306710-3+590200+7+484849+22000. 10000.1
                                                         0+
+371999+6+149290+5+336271+1+306710-3+590200+7+484849+22000. 10000.1
                                                         0+
 02+
+279695+6+248730+5+594789+1+626340-3+103500+8+677731+22000. 10000.1
                                                         02+
+279695+6+248730+5+594789+1+626340-3+103500+8+677731+22000. 10000.1
                                                         02+
 0-
+245000+5+149430+5+216633+1+805240-3+532500+7+492947+22000. 10000.1
                                                         0-
+245000+5+149430+5+216633+1+805240-3+532500+7+492947+22000. 10000.1
                                                         0-
```

(1 blank car!)

-- 1 . --

AFWL-TR-69-114, Vol.I

1.0 .5384 .0096 .016232	.9930 .3993 .0086 .016428	.9721 .21000 .0087 .016623	.9372 .17601 .0094 .016818	.8881 .10952 .012 .017014	.8246 .05867 .013	.7462 .0310 .014	.6516 .01320 .015
----------------------------------	------------------------------------	-------------------------------------	-------------------------------------	------------------------------------	-------------------------	------------------------	-------------------------

(6 blank cards)

b. Output from Sample Case Number 3

Since the output for 29 body stations is lengthy, not all the output is shown here. Both the standard chemistry output for boundary layer edge expansions and the standard output for boundary layer solutions have been limited to only the first three body stations.

SOUNDARY LAYER 1 (TEGRAL MATPIX PROGRAM (BLIMP)

AEMOTHEWN COMPCHATION, PALO ALTO, CALIF (AMK, EPB) 24 OCT 69 15:48129

CASE TURBULFNT A.L. 3 MATERIALS, C., RN. C6H40

0

C

C

G

c

~ O

> ~ 0

C

PUNCH CONTROL THE AT JSPEC U/UF TO "ORM, ETA

ETA VALUES

4.000-02 7.200-02 1.200-01 2.000-n1 3.200-01 4.800-01 8.000-01 3.200+00 5.000+00 0.006 2.400-02 1.403+00 2.000+00 NODAL PT. AT WHICH ETA NORM. 9.500-01

7.50000+00 DEGREES CONE HALF ANGLE 4.16657-02 NOSE RADIUS, FT

OUASI-STEADY ENERGY BALANCE AT THE WALL

3 1,00000+03 -3,56600+02 -0,0000 1.00000+00 -4.30000+03 -0.00000 BN® 1,00000+00 9,00000 -0,00000 C* SURFACE EMITTANCE ENTWALPY OF CHAR AT REFERENCE TEMP ENTWALPY OF PYROLYSIS GAS (RTU/LB) EQUILIBRIUM SURFACE SPECIES SURFACE NUMBER

1.00000+00 -116

5.52000+03 1,20500+02 TOTAL ENTHALPY, BTU/LB TOTAL PRESSURE, ATM

INCIDENT RAD FLUX, 8/SF2 -0,00000

SUBLAYER CONSTANT, YA+ = 1.1283+01 CLAUSEA NUMBER = 1.9000-02 TURRULE'T SCHMIDT NIMBER= 7.5000-01 TURRULE'T PRANDTL 'NYBER= 7.5000-01 TRA'SITION YOM,THICK'RE = 2.5000+02 4.4000-01 AIXING LENGTH CONSTANT =

Š

PYRO.6AS 3 -.0000000 7.0000000 -.0000000 -.0000000 -.0000000 CHAR 2 .0000000 .0402917 .0000000 .0402917 .0000000 24 OCT 69 15:48:29 PYRO,6AS 2
-.0000000
-.0000000
-.0000000
-.0000000 CHAR 1 .0000000 .0000000 .0532570 .0000000 - 0000000 - 0000000 - 0000000 - 0000000 - 0000000 - 0000000 SSTW EDGE GAS - 200 m CO RELATIVE ELEMENT CONFOSITICNS, ATOMIC AT

ATTAIN ELEMENT ATOMIC NE EDGG
1 MYDROGEN 1.05797 .200
5 BORDY 10.31100 .600
6 CARBON 14.07401 .601
7 NITROGEN 14.07401 .631
99 ELEFTRO .0755 .605 ٠ CASE 1

.0207868 .00000000 .0769039 .0000000 .0034628

THERMODYMANIC PROPERTY CURVE-FIT DATA (SEF MANUAL FOR FORMAT)

, , , , ,	~~	- 4 ·	<u>`</u>	 .	•	- 1 -1		v ~	, ,	-1 -1	1	-4 ·		**	••	**	-4			•		-1		4 +4	١,	. +1	-		
3000,0000 5000,0000	3300.0000 5000.0000	3007.000	0000.0006	3000.0000		5000.0000		5000.0000	•	5007.0000		3000.0000	0000.0006	3000.0000	0000.000¢	3030,0000	5000.0000		5000,0000		3004.0000	,5001,0000	Toop, good	5000.0000		3000.0000	5000.0000		5000.0000
.79841+02 5r0.0800 .79841+32 3080,0860	.12129+02 500.0000 .12129+02 3000.0000	560.0000		500.000	_	.69936+02 500,0000 .69936+02 3000,0000	220	25662+02 2550,000	22	.63765+02 500.0000 .63765+02 3000.0000		49287+02 500.0000	2 3000,0000	.61612+02 500.0000	Z 3000.0000	500.0000	٠.	Q .	./848.402	CHS	500.000	.68494+02 3000.0000		.78604-02 3000.0000	CHA	500.000	.82597+02 3000.0000	NO CO	.66976+02 3000.0000
79841+02 .79841+02	.12129+02	5.65370÷02	20+0/550, H	38862+02		.69936+02	2 6	25662+02	Z (.63765+02	U	49287+02	20+/924+•	.61612+02	20+21010.	,75862+02	.75862+92	S	78983+07		.68494+02	.68494+02	78604+02	78604+02	,	.82597+02	.82597+02	000000000000000000000000000000000000000	20+97696.
6n -,15823+07 -,64688+0¢	-,76662¥ů6 -,30720+07	61 -,89821+06	-,13156+08 60	17310+05	63	-,11245+06 ,72367+05		-124003+06	61	-,13372+07	61	40983+06	,26289+07	10018+07	.25280+07	-,22896+07	-,18367+08	61	20172+07	62	29027+07	-,23949+07	0.0 44120+07	11469+DP	61	-,78506+07	-,36823+07	41082101	-,64945+07
0JA.4E 12/6n .62254 .79223-04	.95378-34 .29161-03	<u>~</u>	.42414-35 - 0JANAF 12/6	35547-04	DJANAF 0976	.10879-03	Œ	25718-95	`	11609-03	>	.22012-03	.20191-03	30221-03	. 40,520 GB - 62,64.	.55224-03		~	63331-03	. 2	,41342-53	13215-03	40102-03		2		,37432-03	•	31345-02
6 5 6 0. 114544+62 114478+62	.586n7+n1 .48513+J1	.86504+61	. 11558+87 0 0 0 0 0	* 7	0 0 0	.88C11+01 .88c75+01		11716+32	<u>:</u>	.86270+01 .98417+01 -	00.00	44443+01	41221+01	- 3 :	10+Au/0/*	Ň	.17549+02 -		12853+02	0 0 0	.13289+02	-	.1A276+02	2040402	00.00	123095+02	. <u>L</u>	0 0 0 0 0	.98#41+01
3 0. 0 0. 36622+05 36622+05	.14412+05 .14412+05 .14412+05	0 0, 0 0, .22357+35	0 0 0 0	10.	0 0 0	.24462+05	-0-00-0-	.29074+05	0 0. 30.	.22165+95	0 6. 30.	.13550+05	40+04441.	.22130+05	. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	'n	.35>93+05	80.0	32367+05	0 0 0 0	. 52996+37		47419+05	43419+05	0 0 0 0	.53079+05	•	20.00	.23249+05
0. 947+74 947+9	.00000 .00000 .000000	-,26417+25	10.000	,52172+or 52172+or	5 1, 70.	.15200+04 .15200+04	5 1, 7-6.	.59518+15	7 0 . 5.	.00070	6 0 0 0 0	.17089+64	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.142n1+r5	1142014036	31200+05	.31200+05	11, 61.	ZV070+0+	1 1. A C.	.95036+ns	•	1 1 0 0 0.	31940+05	11, 60.	-117895+55	-,17895+55	ċ	10900+04
÷ .	4		· ;		ä	. •	+	i i 17.	۶.	•	7		-	;	+	•	•	-;	Li	2.	-		•		•	١	Ĭ	-	-

-117-

300,0000 1 5000,0000 1	3000.0000 1 5000.0000 1	3000,0000 1 5000,0000 1	3000,0000 1 9000,0000 1	3009.0000 1 5005.0000 1	3000,0000 1 5000,0000 1	3006,0000 1. 5006,0000 1.	3000.0000 1 9000:0000 1	3000.0000 1	3000.0000 1 5000.0000 1	3000.0000 1	3009.0000.1	3000.0000 1 5000.0000 1	3000.0000 1	3000.0000.1 5000.0000 1	3000.0000 1 3000.0000 1	3000.0000 1 \$000.0000 1	3000.0000 1 5000.0000 1	3000.0000 1 5000.0000 1	3000.0000 1 5000.0000 1
coź 52 550.0000 82 3000.0000	.+02 500.0000 :+02 3000.0000	+02 500:0000 +02 3000:0000	+05' 500,0000 +02' 500,0000	CZNZ +02 500.0000 +02 3000.0000	C3H 2+02 500.0000 2+02 3000.0000	+03 3000.0000 +03 3000.0000	+02 500.0000 +02 3000.0000	HO 02 500.0000 02 3000.0000	H2 02 500.0000 02 3000.0000	H2N 150+02 500.0000 150+02 500.0000	.HZ0 +02 500.0000 +02 3000.0000	N 02 \$00.0000 02 \$000:0000	500.0000 02 500.0000 02 3000.0000	0 02 500.0000 02 3000.0000	+02 \$00.0000 +02 \$00.0000	.02 500.0000 .02 5000.0000	23 500.0000 03 3000.0000	5 500.0000 02 3000.0000	22 300.0000 52 3000.0000
79848+	.68552+1 .68552+	.78114+ .78114+	.84969+	98548+	92882+	.104674	.60929+	.61382+	4846	.70158+	68421+	000	68849	.50096+	.67973+ .67973+	.98676+	11164+	481214	.68965+ .68965+
.1#239+07 60277+07	.18545+06 .64020+07	. 14751+07 . 14751+07 . 50386+07	. 40904+07 . 64530+07	.89687+04 .34686+07	. 51193+07 . 51193+07 . 63251+06	43760+07 48780+07 48773+07	.12690+07 .18078+07	. 97356+06 - 68611+07	.71269+06 .26511+07	.51097+04 .61002+07	.26080+07 .17360+08	99846+05 41727+06	.74966+06 .21252+07	15475+05 .15475+05 .89176+07	119272+06 78308+07	.25770+07 .40494+07	54318+07	98864+05 .72635+06	.46167+06 .59985+06
01444F 0376 21039-03 .38156-04	01816F 9/61 69608-03 5964-04	.4691C-03 -	. 76904-03 . 38906-03	01484 3761 .95986-03 .63023-05	.2053-03 .24559-03	00UFF BAUER .99292-03 .36477-03	.20155-03 .35935-03	01ANAF 12/ 19439-03 .44353-04	02194103 62194103 58985-03	11440-02 22949-04	. 19159-03	0JANAF 03/ 38332-04 24044-03	. 657.86 . 657.86 . 657.86	0JANAF 06/0 .38077-05 .22427-03	24087-03 24087-03 24099-04	62344104 43489-04	90653-04 56027-04	30711-04 12184-04	. 11476-03
0 0 0 0 0. 14456+02 15545+0? -	0 0, 0 0, ,7561+01 ,10416+02	0 7. 0 0. 13421+02 14852+02	18996+02 20395+02	0 0. C D. 18874+02 .20820+02	0 0, 0 0. 19446+02 19958+02	24744+02 24744+02 26662+02	.82313+01 .76546+01	0 0 0 0 0 . ,77319+01 ,96514+01 -	0 0. 0 0. 71196+01 .68179+01	97586+01 113742+02	11225+02 115728+02	0 0 0 0 0 0 4 4 4 4 2 8 9 6 + 0 1	.87752+01 .91526+01	0 0 0 0 0 49723+01 .49723+01	.00137+01 .10327+02	.27596+02 .21071+02 -	26471+02 ,27116+02 -	.50602+01	.8A710+01 .86450+01
0 0 0 0. .46535+05 .46535+05	0 0. 0 0. 24699+05 .24699+05	.34942+D5 .34942+D5 .34942+D5	.48257+US .48257+US	0 0. 0 0. .51107+05 .511°7+05	0 6. 7 0. •48962+65 •48962+85	.63517+05 .63517+05 .63517+05	.21766+05 .21766+05	0 0 0 0. .21404+05 .21404+05	0 0. 0 0. .21210+05 .21210+05	.30580+05 .30580+05	.30201+05 .30201+05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.22700+05 .22700+05	0 0, 0 0, 13522+05 ,13522+05	123446+05 123446+05	,51123+05 ,51123+05	65623+09 65623+09	13424+05 13424+05	.23347+09 .23367+05
6 2, 8 0. 94054005 94054005	6 D, D D. 119900406 119900434	11740+04 111740+04 111740+04	54190+05 .	6 2, 7 3. .73870+05 .73470+05	1 3, 5 0. .12770+u4 .12770+04	1 3, 6 0. 10652+06 10652+06	.79200+05 ,79200+05	1 1, 8 D. .933n0+04 .93300+04	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.40100+05 .40100+05	1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 04 0 0. ,11296+06 ,11296+04	21580+14 21580+15	\$ 0. C 0. \$9559435 \$9559405	00000	24232+04 ,24232+04	12423/+CA 12423/+CA	13262404	19800 ² 36 19800 ² 36
٠ <u>٠</u>	Ň,	i r	•	· N	.i (; ,	÷ ,	i.	· (N (, '	નં ,	.	à. ,	,	; ,			-

-118-

	3001.0000 1 5001.0000 1	3000.0000 1 5000.0000 1	2 0000 000	500,0000	3001.0000	1 0,0,0,0,0	3000,0000 1 5000,0000 1		1 0000.r000 10000.r000		5000,0000		5001.0000 1		1 0000.000		5000.0000 1		3000.0000 1 5000 0000 1	• 0000	3007.0000 1 5000.0000 1		3000,0000 1	• 0000•1.00	3000,0000 1 5000,0000 1		10000.0000 1	1 to	0000.0000 1		10000.0000 1	, , ,	1 000.000		1 0000.00001	1 0000,000	1 0000 000
	59324+0? 500.060A 36 59324+0? 3060.0900 56	570.0000		92490+02 3000,cn00 50	72822+02 550.0000 30		.10987+83 5r0.88388 30 .10987+83 3888.88888), 00r0.004 50+8/60/.), 0000.0008 50+8/60/.	6	5000.0000		67024+02 3000.0000 50	•	.85636+82 3000,0000 30		6/851+02 900.0000 30 6/851+02 3000.0000 50		17964+03 500.0000 3C		.12554+03 500.0000 3c		.98397+02. 500.0000 JC		.11171+03 500.0000 30 .11171+03 3000.0000 50		.10456+07 Z000.0000 100 .16456+02 2000.0000 100	•	.48423+02 2000.0000 100 .48423+02 2000.0000 100		0000.00		02 2000.0000 1000		.69915+02 2000.0000 100	1 0000	66659+02 2000.0000 1000
	• •	• •	•	• •									• •				• •	•								-							.65660+02 200	+1			• •
1618	-,11348+07 -,44257+07	20114+0?	` .	699AD+07	21135+07	-,5498/+06 2/60	-,47632+07	2/65	-,46413+07	3/61	.10530-0412724+0A	5/62	26465+07	•	63777-03 .93546+07	2/60			-,33241+07	2/64	-,34017+07	3/61	-,25133+07		32940+6	7P4-122 12/	27240-0513590+05 27240-0513590+05	7PH-122 12/6	. X4000+05	42	18410+07	2PH-122 12/	-,22563+04	ZPH-122 12/6	77910+07	ZPH-122 12/	15000+07
ي ع∡ عرد	12755-04	16752-03	0.04 AF 0.0	• •	•	•	.20604-03	•	• •		-,10530-04	0JA7.AF 0(-		.26603-32	•			20115-05	-	.34577-03	GIAV.COO	27280-05	DCONVAIR	18070-04	0C0'1VAIR	.61710-04	DCONVAIR	.32794-03	000010	-,65670-04	0000VA14	37800-34
	. 67172+11 . 46234+11	14277+12	C2 400 X	16-75+02	13182+62	,15541+02 C C. O O.	.24631+02		119649+02	0 6 . 7	37753+02	C 7. D C.	, #6349+01	C	11427+02	0	, 67102+01	ີ່ດີ	45589+02	0 0 0 0	.43579+02 .43579+02	0 0 0	,23788+02	0.0.7.0.	23929402		49.40.401		48966+01	0 0 0	50175+01	0 0 0 0	13651+02	0 11. 0 0.	11148+02	0 0, 0 0,	89362+01
ιου. ιου	.22637+05 .22637+15	. 15403+05 . 15403+05 . 15403+05	8 3. " 9.	42654-17	32748+05	8 0. L D.	.59706+35	0 0	. 4745455 . 4745454	8 4. 0 D.	.86073+05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.22645+nF	0.0.0.	.37930+05	0 0 0	. 23409+05	8 0 0	12574+04	0 0 0	.95755+15 .95765+15	0 0 0 0 0	.51550+08 .51880+08	0 0 0	. 61557+55 . 61557+55	0 0	14901+24	0 0 0	15012+05	00.00	.15131+05 .15131+05	0 0 0 0	.25147+05	0 0 0 0	.26757+05	99 D. E. D.	24363+05
11. 50.	.10563*34 .10563*C4	.4712/+05 -4712/+05	1 1 5 5 2.	-13410+EA	1 1, 5 G.	1 1. 5 2.	45000+04 45000+14	1 1, 50.	*************************************	11, 53.	23860+04	5 1, 4 0.	.57440+64	5 2, 8 0.	7.725 0±0F	50.	19936406	2, 5	50706+04 40708+04	1.2, 50.	.98000404 .98000404	5 2, 8 0.	-,11160+14 -,11160+14	5 5	21010+04 21010+04	99.00.00	3.000 000	6-1, 99 D.	. 42899+n. . 42899+n.	7-1, 49 0.	.4464464	7-1, 49 0.	,35726+04	8 1, 99 0.	.20525+05	6 1. 8-1.	.29428+06
4	•	; '	નં '	•	2	ς.		۲,		ี่ "	•	;		.		8.		•	- <u>-</u>]	119		2.	•	2.		.	. •	+		.		2.		2		;	

30, 100gn.0gn0_1	30 10000.0000 1	30 1000n, ngno 1:	1 0000.0001 00	10000;0000 1
,00+ 05438+02 2000.000	.65438+02 2000.000 .04 .04 .00.0000.0000	.37260*04 .14929*25 .33627*11 .36671-03 .59020+07 .48485602 2000.0000 10000.0000 1 2. 6-1, 99 0. 0 0. 0 0. 0 0. 0 0001VAIR ZPW-122 12/61 02* .27970*04 .24673*75 .59479*01 .62634*03 .10350*04 .67773*02 2000.0000 10000.0000 1	.67773+02 2000.000 0- .49295+02 2000.000	:49295+02 2000.0000 10000.0000
7PW-122 12/61 31660-07	2PH-122 12/61	2PH-122 12/61	.10350+0A ZPH-122 12/61 .53250+07	.53250 07
3CU VAIR	.27740-04 0COPVAIR .30471-03	.50671-03 0004V418 62634-03	00011V419 00021V419 00524-03	.80524-03
C D. D D.	.91322+01 6 0. 0 0. .33627+01	53627-91 C U 0 0. 59479-01	.59479+01 C 3. 0 G. .21663+01	,21663+01
99 0. 0 6. .24197-05	. 24197403 0 0 0 0 0. 14929405	.14929-25 0 0. 0 C. .24673-95	. 24943-05 . 14943-05	.14943+05
7 1. H-1.	.6367666 8-1, 99 3. .37200+86	.37258+84 6-1, 99 0. .27973+84	6 1. 90 0. 24500+05	.z*5i:c*5.
:	:	2.	-	

Þ

.245FG*G5 .14943+G5 ,21663+O1 ,80524-O3 ,5325G+G7 ;49295+G2 2000,0000 10 Element Hydhogen bopon clabon nitaogen oxygen Flectron Base SP H H

MULECULAR TRANSPORT PROPERTIES Viscosity Buddenberg - Wilke Mixture Formula With Mu(1) Calculated on The Basis of D(1,1) * DBAR/G(1)**2

THERMAL CONDUCTIVITY MASON - SAXENA MIXTURE FORMULA WITH EUCKEN CORRECTION

DIFFUSION COEFFICIENTS ,..., D(1,J) * DBAR/(F(1)*F(J)) WITH DBAR BASED ON SIGMA * 3.4670, EPOVAK * 106,7000, AND MREF * 32,0000

METHOUS EMPLOYED

C CONDENSED PMASE, VALUES FOR F(1) AND G(1) SET EQUAL TO 1.E+10

1 VALUES FOR F(1) (OR G(1)! INPUT DIRECTLY

2 VALUES FOR F(1) (OR G(1)) CALCULATED BY F(1) *(M(1)/F1TMOL)**FFA AND G(1) * (M(1)/F1TGM*)**GGA HERE M(1) IS SPECIES MNLECULAR WEIGHT, FITMOL = 23.4000, AND FFA = ,4310, F1TGMW* 24.3000, AND GGA = ,4540

3 VALUES FOR G(1) CALCULATED BY G(1) = SGRT(DBAR/D(1,1)) = (SIGMA(1)/SIGMA)

• (EPS(1)/EPGVRK) ••0.0795 • (M(1)/MREF) ••0.25 UMERE SIGMA(1) AND EPS(1)

ANY GIVEN HITH THERMODYNAMIC DATA

METHOD G(1) 753 1.032 1.211 F(1) 1.001 .826 .010 1.097 1.047 1.011 1.047 1.219 .826 F(1) PETHOD G(1) METHOD 1.196 .236 1.067 . 828 1.081 SPECIES

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		GAMMA .12121+01 .00000 .00000 .00000
02.00 1.144 0.00 0.00 0.00 0.00 0.00 0.00	EDGE EXPANS *31349-01 *00000 *PREA \$.00 SPECIE	00000000000000000000000000000000000000	DLNM/DLNP 10 .31478-01 .4565 ATH HOI COUDED
20000000000000000000000000000000000000	DLNM/D PRES 1,2 AN CAL/GW CAL/GW F,0	CCC CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCC	DLNM/DLNT D37610-E PRES =119 S 1.2 AND 3
11 11 11 11 11 11 11 11 11 11 11 11 11	07. FOLLOWE CP-EQU 00.7517 04.293 DEG- 05.00MPON 319990- 1319990- FT/SEC	000000 000000 000000 000000 000000 00000	TEN CP-EQUI 34-00 .76058 855.2024 DEG-K SES CF COMPONE
00000000000000000000000000000000000000	710 SC CP-FF CP-FF TIVE % 11 PE % 11 P	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CP-FRO. .3186 TEWD = 61 RELATIVE MASS

:524-02 SOFT/LB/SEC	S MOLE FR.		.17890-03	.00000	00000	00000	00000	00000.	00000	00000	.56287-01	00000	00000	00000	00000	00000	00000	00000	. 57168-06	.14552-05	•
	SPECIES	1	, w	v	9 1 0	410	6 22	C21'2	Z	HSN	OZ	3	ភូ	9405	EIN.	805	82H6	ţ	-20	ċ	
108+00 AREA, =	MOLE FR.	.00000	9729-00	.00000	00000	00000	0000	00000	00000	0000	7456-01	.68475-02	0000	0000	0000	0000	0000	0000	.77372-06	9678-03	20583-04
3/CJFT * .108						•						٠.	•						•	•	•
141-00 L	SPECIES	3	12	*7 C	ž	ņ	C 0 2	CZHZ	C3H2	2	7	95	œ	AHC	RH202	90	82H4	8203	¥2×	*O2	6
GEYSITY = .310141+00 LB/CUFT	MOLE FR.		00000.																		
0E" VEL =	SPECIES	£3	SN	ů	£	CH2	CS	CZH	CJH	9	H20	, O	cs S	RH GH	BH2	84303	82	8202	+ 2	• 00	05+

6AHMA 12124+01	MOL WT = 23.0732650 .00000 .24288+81 CAL/GM-DEG K	.266-02 SGFT/LB/8EC	MOLE FR.	00000	. 17568-03	00000	00000	00000	00000	00000	00000	00000	.56292-01	00000	00000	00000	00000	00000	00000	00000	. 100004-04	14040-09] a
		.266	SPECIES	I	ů	ပ	910	OH TO	C5	CSN2	7	Z Z Z	0 2	3	ဇ္	8402	Ø I ?	803	82H6	ţ	-20	ò	•
DLNM/DLNT DLNM/DLNT 37337-00 .31264-	PRES: #117,1380 ATM 12 AND 3 .00000 AL/GM ENTROPY #	.216-00 AREA	MOLE FR.	.0000	. 59811-00	00000	00000	00000	00000.	00000.	00000	.00000	.56508-01	. 69032-02	00000.	00000	.00000	00000.	00000.	00000.	.73337-06	.19318-03	.20084-04
CP-EGUIL DLN'	40	11	SPECIES	ខ	NZ	8N.	CEN	CHS	C02	C2 72	C3H2	F2	Z			BHO	8 ² 02	1 0	B2H404	8203		ò	6
CP-FR0ZEN C. 31806-00	TEMP = 6833,3364 DEG-K RELATIVE MASSES OF COMPONENTS ENTHALPY = 305060110	504 FT	MOLE FR.	.00000	.00000	20000.	.00000	.00000	, 00000	00000	00000.	.00000	00000.	.2A179-01	.00000	. 00000	00000	00000	.00000	00000.	,28769-06	00000	.71556-05
ຽ	TEND RELATIVE EVT	VEL #	SPECIES	ប	Z.	ů	3	CH2	S	CSH	C, T	皇	Н20	o	လ	T	8H2	84303	82	8202	ż	÷	02+

DISTANCE, FT	.00000 .38637-01 .16438+06 .15430+01	.41736-02 .46657-01 .12500-00 .20000+01	.84499-02 .59975-01 .15601-00	.12695-01 .62727-01 .20000-03 .40000+01	1,7147-91 20000-91 30000-90 50164+91	. 91817-11 . 75000-11 . 40000-10	. 74800-01 . 72800-01 . 70000-01	. 37500-01 . 37500-01 . 10000+01
ROKAF.	.00000 .00000 .46526-01 .22965-00	.41667-02 .37500-01 .49785-01 .29424-00	. ************************************	. 12500-01 . 41667-01 . 59564-01 . 59564-01	. 16667-31 . 42615-31 . 72601-31 . 68750-00	. 40000-11 . 40000-11 . 00044-01	.29000-01 .40904-01 .2474-00	. 29167-01 . 44867-01 . 15387-01
XI,(LB/SEC)**?	.00000 .12149-45 .47390-05	.20127-09 .20127-09 .49937-05	. 330000 . 334600 . 52746100 . 52746100 . 52746100	.27772-07 .36016-05 .59727-05 .32280-02	. 4 7 9 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 18400-106 44464-108 40-4664-1	. 44571-05 . 44571-05 . 82599-05	. 400400104 . 45040105 . 74206105
PRESSURE MATIO	.10000+01 .5384c-06 .96000-02	.9930n-00 .39930-00 .8600n-02	. 97210-00 . 210001-00 . 37000100 . 1662402	. 93720-03 .17601-00 .94000-02 .16818-01	. 100910-100 . 120952-100 . 170001-01	. #2467-02 . #8670-01	.74427-30 .31300-31 .14008-61	.45167-00 .13205-01 .15005-01
STATIC PRESCURE, ATM	.12050+03 .64877+02 .11568+01 .19560+01	.11966+03 .48116+02 .10363+01 .19796+01	.25335+03 .25335+03 .10483+03 .20531+03	.11293+03 .21209+02 .11327+01 .20266+01	.10702+01 .14467+01 .14467+01	. 2044+02 . 70697+01	. 104017+02 . 104585401.	.78518+02 .19908+01 .18075+01
EDGE VELUCITY, FT/SEC	.00060 .54841+04 .12766+95 .12201+05	.60006+03 .65906+04 .12805+05	40400000 404040404 40440404 804404	. 18186. 12725. 12725. 12725. 12725.	.0455-04 .06616-04 .0249-04 .0249-04	. 11185+04 . 10682+09 . 1242:+09	404.04.04.04.04.04.04.04.04.04.04.04.04.	. 120002+04 . 120002+04 . 12002+004
83- 814 814 814 814 814 814 814 814 814 814	.55960-09 .67493-00 .49692-00	.54475-00 .79160-00 11034+00	. 42050-00 . 11564-01 - 78462-01	.61778-00 .14415+01 12017+00 27359-02	.56159-00 1944641 -72529-01	. 34192-02	.57831-00 .57894-01 .16178-01	.41711-00 .79601-00 12932-01
INCIDENT MADIATION FLUX	000000	000000	0000000	00000	0000 0000 0000 0000	000000000000000000000000000000000000000	000	000000000000000000000000000000000000000
FNTROPY DROP, BTU/LB R			000000000000000000000000000000000000000	0000	0000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	C.C.C.
*1/FLUX NORM,PARAMETER	33202-00 5.57068-00 14237+02	-,38081-00 -,71499-00 -,15012+02 -,14107+02	1.114885:00 1.114885:00 1.14885:01 1.46885:01	-,41693-00 -,13761+01 -,12712+02 -,19332+02	1.00000 1.00000 1.00000 1.00000 1.0000 1.0000 1.0000	1.42237-00 1.32889+01 1.98025+01	45075-00 54993+01 10092+02	10000-00 10000-02

Φ.
N
-
-
OCT 69 151
•
œ
•
-
ပ်
Ç
•
Ñ
-24
•
1日日日
ш
LL.
_
0
0000
5
ŏ
•
Z
C
<u></u>
ž
w
2
STREASS DINENSION
m
~
3
7
•
æ
-
U,
-
ı
t
•
•
•
٠
•
•
1.
•
4
111
CASE
<
O
_

_						
		4.930+03				- C - C - C - C - C - C - C - C - C - C
cococ		RENAD SO.FT) 2.162+03	SQ FT: FOR OXYGEN 1.001-01	OXYGEN 1.662+00	OXYGEN 2.040-05	######################################
0000	00000	HEAT FLUXES L TOT EVTH (97U/SEC 2,162+03	ES CLB/SEC NITROGEN 3.258-01	FOR NITS.	Z. O. 44-09	######################################
00000	1444 1666 1666 1666 1666 1666 1666 1666	DIFFUSIONAL 3.991+03	USIVE FLUX CARBON -4.259-01	SABER CORFE SABER SO FTY CARBON 1.658400	FT3 FOR CARBON 2.048-05	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	140044 00000 100000 100040	FLUX NOR- MALIZING PARAMETER 3.012+00	MASS DIFF BORON -0.000	MASS TR UE COM CL BORON 10:000	ALCKNESSES (F	TO THE TO
₹ 0 2	(W)+0E+ DVWW0C ++++ 200000 1444E	9ETA 5.000-01	ELEMENTAL HYDROGEN -0.000	ELEMENTAL RHOE• HYDROGEN -0.000	4855 THIC HYDROGEN -0.000	SHEAR 0.000
ू हुँ भूतन्त्रन		i-υ	TOTAL GAS 5.704-01	TERS FOR TOTAL GAS 3.306.01	REYNOLDS NUMBER PER FOOT 0.000	# ************************************
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		PRESSURE (ATM) 1.205+02	FLUXES S CHAR C SQ FT) 5.703-01	PARAME ON CH) CHAR	ENTHALPY THICKNESS, LAMBDA (FT) 2,088-05	######################################
2	4	#644P (FT) 0,600	MASS F PYROL GAS CLHZEC 0,000	S BLOWING (BASED PYROL GAS 0.000 3	EAFECTIVE BODY DISPLACE. (FT)	F
I 0 00 0 00	501 50641 601 50641 603 505101 603 50521 604 50521	XI (LR /SEC)**? 0.000	MECH REM 0.000	COEFF. RHOWUE*CH	DISPLACE. THICKNESS, DELSTAM (FT) 5 1.085-05	ETA ETA 0.00C 3.030C-02 9.09C-02 1.515C-01 2.525C-01 1.010C-01 1.010C-01 1.010C-01 2.525C-01 6.312C-01 6.3
ATED VALUES TIME AL 17,871 1.6 25,543 1.7 31,863 1.7 39,006 1.5	46,269 56,110 63,724 70,523 76,071 80,635 1.2	ALPHA 1,262+00	WALL SHEAR (LB/SG FT) -0,000	PNS.	MOMENTUM THICKNESS.1 THETA (FT) 1,153-05	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
## # # # # # # # # # # # # # # # # # #	100 m o 1				24-	S Z

-124-

	3.874-05	-6.491-02 -1.027:01 3,773-02	3,724-01° 3,593-02 -1,320-02	0000.0	000	0,681-02 -2,484-02	1.081-09
	1.930-05	1.927-02	3.430-01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	7.392-02 5.762-03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00000000000000000000000000000000000000	1.042-05	6.374-02 -1.047-01	3.274-01	0 0 0 0	000.	2,316-02	3,247-03
7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	6.623-3A ETA		3,203-01 3,444-02 9,039-03	0.000.000000000000000000000000000000000	000.	1.679-02	1,277-02 5,167-01 0,000
7	4,003-0& RESPECT TO	9,881-02	3.280-02	000000000000000000000000000000000000000		2,347.02	3.239-02 3.163-01 0.000
UNUNUNUNUNUNU COCHHIGAVVV 40V HV YKWER-14 VARHOV 440 WV 4 11111111111 COCOOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	OM WALLIFT 6 2:351-06 ATIVES WÎTH	1,081-01 -9,074-02 -2,425-02	3.119-01 3:173-02 8.487-03	0.000	000000000000000000000000000000000000000	1,576,02	3.166-01
	1.393-0 1.393-0 -04:	36-01	-2.694-D3 8-01 3.100-01 4.114-01 9-02 3.111-02 0.000 1-03 1.221-02	22-04 20-000 0-000		. 273-0 0.273-0	3.195-02 3.166-01 00.000 00.000
1.84 + 0.0 +	7.673 4-04 T AND	L L 0	10 40 FA	000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.401.02 3 3.15 0.000 3.170.01 3 27.000 0.000 0.000 0.000
6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4,585-07 28-05 1.00 THEIR FIRS	1,189- -01 -1 8,719- 702 -7	1.02 9 3.081 9 3.089 2 5.02 2			2010 2010 2010 2010 2010 2010 2010 2010	3,490-02 3,4 3,170-01 3,1 44-02 3,827-07 0,000 0,000
2.25.00 2.25.0	0.00° 5.90A TIONS AND T	1,215+01 -1,293,-8,632-02 = -6,390,-2,266-02 = -6,390,-1	6,481 3,072-01 3,949 3,019-02 7,932-03	2.266 0.000 0.000 0.000 0.000		1.47 4.1 1.47 4.1 1.47 4.1 1.47 4.1	3.634-02 3.172-01 0.000 0.000
4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V 4 V	0.000 5.9 PENTAL FRACTIONS AND	១	၀	r	N (2	TE FRACTIONS	5 0 1 N

22	5.346-01 5,353-01 3,358-01 5,367-01	5.340-01	5.401-01	5.440-01	5.527-01	5.725-01	5.817-01
.	404-07 1.590	2.943-07	5,422-07	1.384-06	5;222-06	\$0-060.8	1,569-04
•	100 0 000 100 0 0 0 000	0.000	0.000	0.000	0.000	0.00	0.000
BNe	000.3	0,00,0	600.0	0.000	0,000	0.000	0.000
U	.926-C3 8.447	1,146-02	1.524-02	2,247-02	3,361-02	2.813-02	3.740-03
£		0.00.0	000.0	0.000	0.000	0.000	0.000
CHN	ດວລ໌ ຄື ວິດ ກາກ ກ	0,00.0	0.000	0.000	0.000	0.000	0.000
СНО		0,000	0.00	00000	0.000	0.000	0.00
CH2	00.00.00.00	0,000	000:0	000.0	0.000	0.000	0.000
CH3	000.0 000.0 000.0 000.0 0.000.0 0.000.0 0.000.0	0.000	000.0	0.000	0.000	0.000	0.000
CH4	00.000	0.000	0.000	0.000	0.000	0.000	0.000
ž	325-02 5.448	6.035-02	6.544-02	7.019-02	6.572-02	2,361-02	2,535-03
có2	307-06 2.373	2,767-06	3,311-96	4.684-06	9.523-06	6,870-05	4.396-04
C2	117	1.950-02	2,118-02	2,142-02	1.529-02	1.294-03	1.313-05
C2H	300 0000	0.000	000:0	000.0	0.000	0.000	0.000
C2H2	00.000.000.	0.000	000.0	000.0	0.000	0.000	0.000
CSNZ	711-02 2.58	1.990-02	1.463-02	.0.034-03	2,330-03	3.617-09	2,550-07
C3H	0.300 0 0.000 0.000 0.000 0.000 0.000	0.000	000:0	(0.000	0.000	0.000	0.000
C3H2	00.00	.000.0	00000	000.0	0.000	0.000	0.000
Z	00.00	0.000	00010	,a.000	0.000	0.000	0.000
Ю.	0.00	0.000	0,000	0.000	0.00	0.000	0.000
н2.	000.0	0.000	00000	0.000	0.000	0.000	000:0
H2N	000.0	0.000	00010	0.000	0.000	0.000	0.000
н20	000.000.000	0.000	000.0	000.0	0.00	0.000	000.0
z	.322	1.227-03	1.014-03	3,357-03	8.444-03	4.694-02	7,396-02
מט	14 3.735-04 3.777 1813-06 3.063-06 18 5.5-03 8 428	4.733-06	7.509-06	1.650-05	6.419-05	1.977-03	2,163-02
0	339-06 3.733	6.590-06	1.196.05	3,244-05	1.726-04	9.465-03	1.201-01
02	Dranger Transpo Transport Transports	2:000-10	4,366-10	1.684-09	1.823-08	9.349-06	9.500-04
*	3.076-04 - 19-42-04 -	2.159-03	1,526-03	6.983-04	1.073-04	8.395-08	4.845-12
CS	4.568-03 4.012-03 3.669-03 3.026-03 1.366-18 3.474-28 0.000	2.203-03	1.179-03	3.287-04	2.028-05	1.177-09	4.802-15

æ	0.00.0 0.00.0 0.00.0 0.00.0 0.00.0	0.0.0	0.000	0.00.0	0,000	0.0.0	3,000
	0.000 2.000 6.400 0.000	0.00.0	0.000	.g. g. g.	0,00	0.000	0.000
	0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0	0.00.0	00000	0.000	0.000	0.000	0.000
	000.0 000.0	0.000	0.00	000 • į	0.00 0	0.000	0.000
	0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0	0.000	0.000	, oʻoʻo	0,000	0.000	0.00.0
	. 02020 - 0202	0,000	000.0	.ó.000	0.000	0.000	0.00.0
BH202	0.000 0.000 0.000	0.0.0	0.000	00000	0.000.0	0.000	0.000
	000.00 00	0.000	000.0	0.0.0	0.000	5.000.0	0.000
	000.0 000.0 000.0 000.0 000.0	o.ańo	0.000	ġ•0u0	000.0	0.000	0.000
	0.036 0.06.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0	0.000	0.000	0.00	000.0	0000.6	າ.000
802	0000 00000 00000 00000	0.000	0,000	0.000	000.0	0.000	0.000
	0.00.0 0.00.0 0.00.0 0.00.0	0.000	0.000	0.000	0.000	000.0	0.000
В2н404.	000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 000.0 00	0.00.0	000.0	0.000	0.000	0.000	000;0
	0.00.0 0.00.0 0.00.0 0.000.0	0.000	0.000	0.000	0.000	0.000	0.000
	000.0 000.0 001.0 000.0	0.000	000.0	000.0	.0.00	0.000	0.000
	0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0	0.000	0.000	Ó.000	0.000	0.000	0.000
	1.016-07 1.233-07 1.399-07 1.708-07	2,614-07	4.844-07	1.238-06	4.548-06	2.474-05	3.185-06
	7.690-11 1.625-11 1.241-11 1.821-11 7.690-17 1.821-11 1.821-11	3.244-11	8,626-11	4.127-10	4:633-09	5,047-07	1.029-06
	4.753-10 5,803-10 6,630-10 8,654-10	1,295-09	2:570-09	7.796-09	4.452-08	1.422-06	2.118-04
	1.869-17 2.702-17 3.432-17 5.551-17	1.154-16	4,056-16	3.217-15	9,391,14	2.408-10	6.253-08
	1.237-04 1.448-08 1.509-08 1.986-08	2,732-08	4:710-08	1.142-07	4,654-07	7.652-06	5.856-06
¥04	1.726-00 2.055-09 2.311.09 2.929-09	4.218-09	7.999-09	2,392-08	1.599-07	1.670-05	1.497-04
	6.818-14 7.15 1.1563-13 1.763-	3,361-13	1.021-12	6,393-12	1.284-10	1.022-07	1.556-06
	1.216-14 1.683-15 2.053116 3.251-16 1.216-14 1.683-15 2.053116 3.251-16 000-17	6,396-16	2:086-15	1,555-14	4,863-13	2.195-09	2.343-07
-0	1.210-17 1.407-17 2.960-12 1.210-17 1.407-17 2.960-12 1.407-18 2.960-12	5,398-12	1,494-11	7,663-11	9,740-10	2.174-07	4.728-06

SURFACE SPECIES IS C.

_	
•	
Ξ.	
r	
-	
0	
24 OCT 69 19	
۲	
ဗ္ဂ	
_	
Ž	
•	
Ť	
- 4 -	
•	
-	
ių	
μ	
2 FEET	
ĭ	
3	
7	
11735-0	
٦.	
	,
Ž	
Ξ	
ŝ	
Ē,	
Σ.	
5	
56	
ä	
3	
Ä	
Ë	
r	
•	
'	
1 1 1 1 1 1 1 1 1 1	
,	
•	
	*
ı	
•	
٠	
-1	
и,	

THENSION	HAX.LIN HAX.ERR ERROR MOMENTUM 6-08 13 -2.0-02 2-07 13 -9.6-08 2-07 13 -9.6-08 6-508 6 7.9-05	PRESSURE ED (ATM) VELO (FT/ CFT/ CFT/ CFT/ CFT/ CFT/ CFT/ CFT/ C	XES. CHAR TOT FT)	METERS HOT HOT TOT	EFFECTIVE ENTHALPY REYN BODY THICKNESS, NUMBER PER (FT) (FT) (FT) 2.663-05 2.399-05 2.3	FP FP	0.00 1.70 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.3	97-01 8.583-02 5.7 83-01 1.428-01 5.7 106-01 2.276-01 5.6 132-02 3.382-01 5.4 220-02 5.46-01 4.7	9.500"01 9.7 9.997"01 7.0 1.000+000 0.0	CSITY, RHOHMU SPEC MU /RHOHMUE, HE SEC FT C (8TU, 1999-05 1,416+00 3, 436-05 1,406+00 3, 462-05 1,406+00 3, 552-05 1,364+00 3, 552-05 1,364+00 3,
2.3-03 2 -0.0 1 2.3-03 2 -0.0 3 2.4-06 2 -0.0 3 2.4-06 2 -0.0 3 2.4-06 2 -0.0 3 2.4-06 2 -0.0 2 2.50 2 2 -0.0 2 2.50 2 2 -0.0 2 2.50 2 2 -0.0 2 2.50 2 2 -0.0 2 2.50 2 2 -0.0 2 2.50 2 2 -0.0 2 2.50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IMENSION .41 ORS IN CONSERV ENERGY 1 -8.9+01 1 1 -4.5+01 3 3 2.4-01 3	BETA 12 5.448-0	GAS HYDROGE	ELENENT GAS HYOROGE 6-01 +0.000	MASS HYDRQ 8 -0.00	SHEAR	59-01 N.994+0 58-01 N.994+0 57-01 N.969+0 57-01 N.946+0	12:01 3:04/40 14:01 3:740/40 70:01 3:56/40 70:01 2:06/40 70:01 2:06/40	00 = 0 4 . 00 0 1 . 00 0 1 . 00 0 1 . 00 0 1 . 00 0 1 . 00 0 1 . 00 0 0 . 00 0 0 . 00 0 0 . 00 0 0 . 00 0 0 . 00 0 0 . 00 0 0 . 00 0 0 . 00 0 0 . 00	MONUNUNU MONUNUNU MONUNUNU MONUNUNUN MONUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNU
FUSIONAL TOT ENTRY SEAD CARD STATIC FOR THANK SEAD STATIC FOR THANK SEAD CARD STATIC FOR THANK SEAD CA	10N EGS. 10N EGS. 15103 1 2 12103 1 2 10105 8 2	NG D	MASS OTFFUS BORON C	MASS TRANS UE+CM (LB/S BORON	S (FT.)	OTAL ENTH-	3.116+03 3.137+03 3.137+03 3.161+03	uuuuu 0004	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	PRANDTL NUMBER 1,149-01 7,146-01 7,146-01 7,146-01
15:40:100:000 15:40:51 15:40:	2001 X 0000 X 00	HEÁT FUSIONAL TÓ 1652+03 2.	VE FLUKES (L RBON NITH	SO FT) 80 FT) 80N 484+00	FOR KRBON 2.357-05	g G	979-02 4 043-02 4 043-02 3 170-02 3	200 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00 00 00 00 00 00 00 00 00 00 00 00 00	ี้ การการการการการการการการการการการการการก
		LUXFS ENTH RERAD U/SEC SO FT) 0+03 2-130+0	SEC SO FT) F FN OXYGEN	FOR OXYGEN	0XYGEN 5 2.396-0	STATIC	0.116+0 0.116+0 0.110+0 0.110+0	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		R 00000

A CONTROL OF THE PROPERTY OF THE CONTROL OF THE CON

000000	20.	20-10-	-01	0		-01 -02 52	-04
4.2278-02 6.3838-02 9.168-02 1.035-01 1.077-01	4,365	-1.014	.545	0.000	0.000	6.933 6.592 -2.339	6.954 0.000 0.000 0.000 0.000 0.000 0.000
000000	2\.181-05	1.551-02 -1.120-01 -7.408-03	.443-0	2.591-03 0.000 0.000	000000000000000000000000000000000000000	6.402-01 7.285-02 4.817-03	1.097-05 3.161-01 0.000 0.000 9.771-01 9.039-05
2.727+01 2.679+01 2.556+01 2.461+01 2.401+01 2.96+01	1,177-05	5.874-02	3,292-01	1.248-02 0.000 0.000	0.000	6,121-01 6,727-02 2,321-02	2.634-03 3.202_01 0.000 0.000 5.563-01
7.367-01 7.377-01 7.370-01 7.379-01 7.394-01 7.394-01	7.474536 ETA	7,849-02	.406	0.000	000000000000000000000000000000000000000	5,971-01 6,334-02 1,632-92	1.133-02 3.185-01 0.000 0.000 5.493-01 1.398-06
7.090-01 7.065-01 7.067-01 7.067-01 7.063-01 7.062-01	4,516-06 RESPECT †0	9.290-02	.172-01	1,274-02 0,000 0,000	000000000000000000000000000000000000000	5.899-01 6.036-02 2.369-02	2.051-02 3.183-01 0.000 0.000 5.453-01 5.190-07
3.727-05 3.727-05 3.727-05 3.737-05 3.714-05	Z.651-06 (VES WITH	1.020-01 -8.943-02	3.141	6.249-03 0.000 0.000	000.0000.000000000000000000000000000000	5.840-01 5.842-02 1.532-02	2.647-02 3.185-01 0.000 0.000 5.432-01 2.773-07
111111	570-06 34 0ERIVAT	-0.1	-01	1.236-02 7-04 0.000 0.000		5.805-01 0-01 5.727-02 0 2.301-02 3-03	2.974-02 00 3.187-01 00 0.000 00 0.000 00 0.000 1.898-07 1.89-04
1.233+3n 1.141+3n 1.054+3n 1.024+3n 1.002+3n 1.007+3n	6.651-1-04 :	1.108-01 1.0 77-01 -1.764-01 -8.693-02 -8.8.8 77-03 0:000	1.011-02-2.419-03 -01 3.110-01 3.122 4.101-01 4.114-01 2.02 3.040-02 3.080	7,779-03 3 5-03 9,857- 0,000 0,000 0,000 0		0 0.000 6.783-01 9. 6-01 7.650-0 5.653-02 5. 4-03 -0.000 1.445-62 2. 3-03 1.833-6	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7,554-05 4,254-05 4,326-05 8,326-05 9,249-05 5,249-05	5,16a-67 -05 1.13 HEIR FIRS	1,125	20102	1,254-02 9-02 -3,535 9,000 0,000 0,000	00000000000000000000000000000000000000	0 0.000 5,771-01 5,7 2-01 7,625-01 2,615-02 5,04-03 2,32-02 1,4 0-02 -6,573-03	11 1.05 11 1.05 1.190-01 1.000 6.20 1.000 0.00 1.405-01 1.296-07 1.296-07
4.305-61 3.632-01 3.307-01 5.226-01 5.184-01	0.30¢ 6.45 TIONS AKT	1.150-01 -1.291 -8.550-02 -1	2.995-01 2.995-01 3.948-01 3.948-01 2.990-02 2.234-02	7.337-03 1 -2.259- 0.000 0.000	000°0 000°0 000°0 000°0 000°0 000°0	5.755-01 5.755-01 7.482- 5.560-02 4.153- 1.365-02 1.365-02 1.365-02	3.396-02 3.191-01 0.000 0.000 0.00 0.000 1.069-01 1.069-07
1,177-05 2,141-05 4,365-05 6,650-05 1,151-05 1,833-04	0.00¢ 6.45¢ ELEMENTAL FRACTIONS AND T	5	00	r	2 0	22	MOLE FRACTIONS C3 C0 H BN: N2 C
	ELEP			_	129-		мог

-129-

BN•	0.000	o.año	0.000	000.0	500.0	000.0	0.000
U	454-03 7.968	1.089-02	1,456-02	2.141-02	3.210-02	2.475-02	3,324-03
£	-u* <.v <u-u5 0.000 0.000</u-u5 	0.000	000.0	0¢0*0	.0.00.0	0.000	0.000
CH1;	000 *:	0.000	0.000	0.000	00000	00000	0.000
СНО		0.000	o.óoo	0.000	0.000	0.000	0.000
. снз	0.000 0.000 0.000	0.000	0.00.0	0.000	0.000	0.00.0	0.000
СНЗ	0.000, 0.000, 0.000	0,000	000.0	0,000	0,000	0.000	0.000
CH4	000	0.000	000.0	0.000	0.000	0.000	0.00.0
Š	4.954-02 5.134-02 5.262-02 5.498-02	5.839-02	6.335-02	6.772-02	6.221-02	2.043-02	2,304-03
c02	351-06 2.421	2.835-06	3.414-06	4.904-06	1,034-05	1.003-04	4.607÷04
C2	550-02 1.600	1.820-02	1.974-02	1.977-02	24,350-02	1.001-03	1.092-05
С2н	-u/ 1.09/-u% 0.000	0.000	0.000	0.000	0.000	0.000	0.000
CSHS	0,000,0	000,0	0,00.0	0.000	0,000	0.000	0.000
CZNZ	-	1.925-02	1.398-02	7,467-03	2.022-03	2.971-05	2.218-07
C3H	2./95-11 0.00()	0.000.0	000.0	00000	0.00.0	0.000	0.000
C3H2	000.0 0.000	0.000	00000	060°û	000.0	0.000	000°0
N.	.000. .000. .000.	00000	0.000	0.000	0.000	0.000	0.000
Č	00.0 0.000	0.00.0	0,000	0.000	0.000	000.0	0.000
H2	000	0.000	0,00.0	0.000	0,000	0.0.0	0.000
H2N.	0.000 0.000 0.000	0.000	000.0	0.000	0.00	0.000	000.0
н20	ວານລະ ດັ້ງ ວັນຄຸດ	0.00.0	000.0	0.000	0,000	0.000	0.000
z	6.575-76 7.416-04 3.C46-04 9.423-04	1,197-03	1.789-03	3,370-03	8.689-03	4.704-02	7,093-02
0 2	780-06 3.038-0	4,748-06	7.639-06	1.726-05	7.086-05	2.243-03	2.222-02
0	243-06 3.645-	6.228-06	1,206-05	3,384-05	1.916-04	1.071-02	1.214-01
02	6.643-11 11-0-5-11 5.61/-U1 6.643-11 11-299-10	2.017-10	4.510-10	1.829-09	2,185-08	1.196-05	1.013-03
C.4	649-03 2.537-	1.949-03	1,356-03	5.941-04	8.095-05	5.024-08	3.544-12
cs S	654-03 3.325	1.967-03	1.027-03	2,697-04	1.409-05	6.202-10	3,317-15
æ	00000 00000 00000 00000	0.000	0.00	0.000	0.000	0.000	0.000
c _B	3,000	000.0	000:0	00000	0.00.0	0.000	000.0
ВН	0.000	0.000	0.000	0.000	0.000	0.000	0.00

вно		o.ino	0.000	0.00.0	0.cJ	3.0.0	2,000
		0.00	0.000	000.0	0.000	00000	000,0
		0.ກ໊ຄ	060.0	0.000	ล.ข้อล	0.000	0.000
		0.00.0	0.000	0.0.0	9.00°	0.000	0.000
		0.000	ŋ.00r	0.00.0	970.9	0.000	0.00
		0.000	0.000	0.00.0	0,00.5	0.0.0	0.000
		0.000	0.00	زرغاه	0.000	0.000.	0.000
		0.000	000.0	0.00.0	00000	0.000	0.000
		0.00.0	000.0	0.000	0.00.0	0.00	ú00°0
7		0.000	0.000	0.000	0.000	0.000	0.00
		0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	00000	0.000	0.000	0.000
		0.000	0.000	0:00	0.000	000.0	0.000
	9.297-03 1.132-07 1.292-07 1.669-07	2,451-07	4.615-07	1.208-06	4.546-06	2.185-05	2.631-06
*	5.1/3-4/ 1.162-4R 4.000 6.959-17 9.253-12 1.143-11 1.689-11 8.959-17 3.484-07 3.066-17	3.060-11	8.359-11	4,17,5-10	5.056-09	5.061-07	8.891-07
	4.472-15 5.499-10 6.312-10 8.281-10 4.472-16 4.281-10	1,254-09	2.536-09	7,950-09	4,794-08	1.432-06	1.893-06
	1.712-17 2.473-17 3.177-17 5.136-17	1,101-16	4.014-16	3.409-15	1.121-13	3.035-10	6.508-08
•62	1.1×0-02 1.387-03 1.549-08 1.919-08	2,666-08	4,667-08	1.163-07	4.955-07	7.667-06	5.268-06
	1.687-00 2.019-09 2.283-09 2.907-09 1.687-09 2.907-09	4,232-09	8.184-09	2.545-08	1.834-07	1.906-05	1.455-04
	6.259-14 8.671-14 1.081-13 1.666-13 FREEDR 1.478-04	3,237-13	1,015-12	6,757-12	1:507-10	1,159-07	1.429-06
02+	1.147-16 1.602-16 2.013-16 3.154-16	6,331-16	2.140-15	1,713-14	6:123-13	2.816-09	2.302-07
-0	1,092-12 1,483-12 1,827-12 2,740-12 1,466-05 2,013-05 2,058-05	5.082-12	1.448-11	7.808-11	1.074-09	2.426-07	6.672-06

SURFACE SPECIES 15 C.

0000	0cova				Company
Z C C C C C C C C C C C C C C C C C C C	RERAD SO FT) 2.140+03	SQ FT) FOR OXYGEN 9.648-02	OXYGEN 1.636+00	OXYGEN 2.060-09	ATI
	HEAT FLUXES L TOT ENTH (BTU/SEC 3.140+03	ILB/SEC ITROGEN 3.141-01	CIFNTS. FOR NITROGEN 1.636+00	N1TROGEN 2.050-05	72000000000000000000000000000000000000
60-10-10-10-10-10-10-10-10-10-10-10-10-10	1FFUS 1 0NA 3.876+Q3	IVE FLUXE	ANSFER COEFFI BASEC SO FT) CARBON 1.636+00	FOR 1880N	######################################
04 E0S. 7-03 1 8-04 12 1-06 10	FLUX NOR- MALIZING O PARAMETER 2.956+00:	MASS DIFFUS BORON CO	HASS TRANS	CKNESSES, (FT) BORON CA	NA SECTION
. R. 4400	8ETA	ELEMENTAL HYDROGEN -0.000	ELEMENTAL RHOE-U HYDROGEN -0.000	MASS THICK HYDROGEN -0.000	SHEAR TO SHE
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EDGE VELOCITY (FT/SEC) 1,203+03	TOTAL GAS	FOR TOTAL GAS 1	REYNOLDS NUMBER PER FOOT 1	######################################
LIN MAX.ERR ROR MOMENTUR DA 13 4.9-02 DA 13 -3.4-04 OB 13 -3.4-04 OB 13 -3.4-04	PRESSURE (ATM) 1.171+02	FLUXES CH4R : 59 FT) 5:481-01	PARAMET ON CHI HAR 327-01	ENTHALPY F THICKNESS, LAMBDA F (FT) 2.116-05	### ### ##############################
DAMP MAX,LI FRROF ,4999' 608 :0000 708 :0000 308	HUKAP (FT) 8,333-63	.4855.F1 PYROL. GAS CLB/SEC (0.000	BLOWING (BASED CASED CASED CAS COOOL CAS COOOL CAS	EFFECTIVE E BODY TH DISPLACE. (FT) 2,521-05	######################################
# 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	XI LB /SEC)+62 3.893-09	ИЕСН КЕМ F	HEAT TRAMS COEFF, RHOSUESCH F 1.648+00	• • 10	ETA
ATED VALUES TIME ALPH 5.169 1.269 10.243 1.293 15.340 £.293	ALPHA - 1	WALL SHEAR (LB/SG FT) 8,207+01	MON TRANS H COEFF, RHOGUEGETZ R 2.195+00	HOWENTUM DISPLACE THICKNESS, THICKNESS, THETA DELSTAR (FT) (FT) 1.199-05 2.005-0	ON TANA TANA TANA TANA TANA TANA TANA TA
## ## ## ## ## ## ## ## ## ## ## ## ##			x	-13	OO N

2.02 1.02465 1.02465 2.0765-01 2.165-01 2.165-01 2.165-01	. 982 . 982 . 737	5.491-02 -1.356-02 0.000	0.0000000000000000000000000000000000000	6.491-02 -2.521-02	7.273-09 1.889-01 0.000 0.000 5.843-01 1.536-04
0.000 0.000 0.000 0.000 0.000 2.022-05	01 01 01 01	2.961-03. 0.000 0.000	000.0	0.5	1.094-05 3.151-01 0.000 0.000 5.752-01 5.270-05
2.724+31 2.656+01 2.457+01 2.457+01 2.461+01 2.397+01	.058-02 .031-01 .264 .285-01	3.004-02 1.142-02 0.000 0.000	000000000000000000000000000000000000000	6.109-01 6.702-02 2.124-02	2.74a-03 3.192-01 0.000 0.000 5.558-01 8.311-06
7.367-01 7.376-01 7.376-01 7.396-01 7.395-01 7.396-01	8.125-02. -9.698-02 -2.620-02 3.213-01	9,166-03 0,000 0,000	0.0000000000000000000000000000000000000	5,974-01 6,306-02 1,703-02	1.165-02 3.175-01 0.000 0.000 5.466-01 1.414-06
7.089-01 7.067-01 7.067-01 7.067-01 7.063-01 7.062-01	SPECT TO .595-02 .235-02 .339-02	1:167-02 0:00 0:00	000 * 0	5.879-01 6.006-02 2.172-02	2;143;02 3.172-01 0;00 0;000 5.425-01 5.413-07
3,426-05 3,734-05 3,731-05 3,731-05 3,736-05 3,766-05 3,766-05 2,456-05	.053-01 .934-02 .485-02	0.000 0.000 0.000 0.000		5:816-01 5.810-02 1.615-02	2.766-92 3.174-01 0.000 0.000 5.463-01 2.897-07
00-01 99-01 74-01 74-01 80-01 81-01 81-01	1.108-01 1.108-01 -8.757-02 10 -3.239-02 3.110-01 (4-01	1.132-02 1.132-02 1.000 0.000	0.000	000' 5782-01 550-01 5.694-02 100 2.107-02	15-02 3.107-02 0.000 3.175-01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 41-01 5.390-01 5.981-01 1.757-04
224-00 224-00 224-00 224-00 224-00 224-00 201-00 201-00 201-00	EIR FIRST AND SECOND DERIVA- 162-61 1.144-01 1.108-01 582-02 -4.440,02 -8.757-02 02 -6.585-03 0.00 1.17-02 -2.394-02 -3.239-07 0.2 8.037-03 -2.378-03 0.091-01 3.097-01 3.110-01 01 4.104-01 4.114-01	0.000 0.000 0.000	0.000 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	אלאים מי מי אלים מי מי אלים מי מי אלים מי מי מי אלים מי מי מי אלים
7,36n-59 1.2 8,424-55 1.6 8,224-65 1.6 7,303-65 1.6 0,231-65 1.0 n,226-65 1.0 4,785-67 6.0	1,162-01 1,14 0-01 -1,734-01 -1,982-02 -8,64 9-02 -6,585-03 -3,191-01 -2,39 -6,2 8,037-03, 3,091-01 3,09	2170	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 11 10 0 0 0 10 10 10 10 10 10 10 10 10
1,542-01 8 1,542-01 8 1,152-01 8 1,126-01 9 1,000	1104S AND TH 1.189-61 1 -1.320-7 -6.77-7 -2.344-01 3 3.381-01 3	6.203 2.126-10 6.203 2.126-10 7.000 0 0.000	0.600 0.600 0.600 0.600 0.600 0.600	0.000 5.730-01 5. 5.525-22 5. 5.525-52 5. 1.523-02 2.	3.550-02 3.413-02 3.19-01 3.178-01 7.59-01 3.178-01 0.000 0.000 0.000 0.000 0.359-01 5.376-01 1.122-07 1.359-07 0.000 0.000
1,0%0-05 2,0%7-05 4,049-05 6,163-05 1,046-64 1,644-04	ELEMENTAL FRACTIONS AND TH C3 1.189-51 1 -1.320-70-70-70-70-70-70-70-70-70-70-70-70-70	1	≈	N2	MOLE FRACTIONS C3 C0 H BN NZ C•
	E E E E	-	-133-	_	3016

i	,					,	
• 7.0		0.000	0.000	0.000	00°0	0.000	0.000
U	79-03 4.30	1.134-02	1.515-02	2,245-02	3,339-02	2:556-02	3,183-03
3	3,000 2.00 3,000 0.00	0.00.0	300°0	000.0	0.000	·0.00.0	0.000
CH	00 0.036 00 0.60	0.000	000.0	0.000	0.00	0,000	0.00
СНО	00.0 000.	0.000	0,000	000.0	0.000	0.000	0.000
	000.0 000.0 000.0 000.0.	0.900	0.000	0°0°0	0.00.0	3.000	0.000
CH3	000 000.	0.000	000.0	0.000	0,000	0.000	0.000
CH4		0.000	000.0	0.000	0.000	0.000	0.00
Š	0.000 5.250-02	5.962-02	6.465-02	6.910-02	6.346-02	2.104-02	2.187-03
C02	275-06	2.744-96	3,304-06	4.745-06	1,004-05	9.953-05	4.567-04
22	22-02 1.67	1.902-02	2,062-02	2.064-02	1.408-02	1.019-03	9.852-06
C2r	0.000 0.000 0.000	0.000	0.000	0.000	.000.0	0.000	0.000
C2H2	5 6	0.000	0.000	0.000	0.000	0.000	0.000
C242	2.856-72 2.660-72 2.532-02 2.285-02	1.934-02	1.406-02	7,518-03	2.028-03	2.893-05	1.965-07
C3H	, ,	0.000	0.000	0.000	0.000	0.000	0.000
C3H2	ຸເຄດ ີ ວະວວ	0.000	0.000	0.000	0.000	0.000	0.000
N.	000	0.000	0.000	0.000	0.000	0.00.0	0.000
01	000	0.000	000.0	0.000	0.000	00000	0.000
Н2	000 0.00	0.000	000.0	0.000	0.000	0.000	0.000
HZN	000	0.000	0.00	0.000	0.000	0.000	0.000
н20	00.0 0.00	0.000	0.000	0.000	0.000	0.000	0.000
z	.585-04 8.21	1.222-03	1.824-03	3.432-03	8.677-03	4.845-02	7.140-02
50	751-06 3.001	4.690,06	7.540-06	1.701-05	7.023-05	2.272-03	2.273-02
0	9-06 3.665	6.564÷06	1.211-05	3.391-05	1.932-04	1.106-02	1.254-01
02	071-11 9.32	1.970-10	4.398-10.	1.779-09	2,149-08	1.223-05	1.062-03
Ž,	788-03 2.670	2.050-03	1,427-03	6.257-04	8.466-05	4:964-08	2.836-12
c 5	4.395-03 3,846-03 3,503-03 2,876-03 4,395-03 2,876-03 3,503-03 2,876-03	2.072-03	1.082-03	2.838-04	1.473-05	6.019-10	2.501-15
æ	,000 0.000	0.000	0.00.0	0.000	0.000	0.000	0.000
83	00.00 000.000.000.000.000.000.000.000.0	0.00.0	000.0	0.000	0.000	000.0	0.000
T di	000 0.000 6.906	0.000	000.0	0.000	0.000	00000	0.00

(;	0.0°0 00°0 00°0 00°0		j.ang	3,990	0.626	9.03n	0.330	3.009
BH02	0.030		0.000	0.099	o o o o o	0.00.0	0.960	0.000
	000.0 000.0		0.000	0.090	0,000	0.000	0.000	0.000
	000.0 000.0 000.0 000.0 000.0		0.000	0.000	0.000	0,000	0.000	0.00.0
	000.0 00.00 00.00 00.00.0		0.00	0.000	0,000	0.00.0	0.000	0.000
	0.000 0 000.4 0000.0		0.000	00000	000.0	0.000	0.000	0.000
90	000.0 000.0 000.0		0.000	.000.0	0.000	0.00.0	0.000	0.000
	10:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0 00:0 0		0°00°0	0.000	0.0.0	0.00	0.000	0.00.0
95	00.0 c c00.0 c00.0 c00.0		0.00	3. 000.	0.000	0,000,0	0.000	0.00
B2-404	000.0 000.0 000.0		0.000	0.000	000°ó	000.0	0.000	0.00.0
	0.00 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0	0.000	0.000	0.000	0.00	0.000	0.00	0.000
5028		0.0.0	0.000	5.000	0.000	0.00.0	.000.0	0.000
82u3	000.0 000.0 000.0 000.0		0.000	0.000	0.000	0.000	0.000	9.000
	9.805-11 1192-011 1.357-010	1.755-07	2,573-07	4.835-07	1.263-06	4.773-06	2,318-05	2.509-06
	7.264-17 9.151-187-19 0.00	1.756-11	3,174-11	8.646-11	4,325-10	5.258-09	5.425-07	8.691-07
N.N.	7.553-10 6.608-10 6.402-10 6.4	2-10 8-411-10 7 434-07	1.271-09	2,567-09	8.029-09	4.674-08	1.494-06	1.878-06
	1.714-17 2.473-17 3.161-17 8.304-07	3.161m17 5.173-17	1.095-16	3.981-16	3,367-15	1.120-13	3,149-10	6.802-08
+00	1.197-7-1.406-08 1.566-04 1.7256-04 1.7256-04	1.943-08	2.695-08	4.712-08	1:172-07	5.023-07	7.940-06	5.112-06
+0n	1.677-09 2,005-09 2,261-09	1-09 2.884-09	4.193-09	8.096-09	2,513-08	1.625-07	1.967-05	1.485-04
	6.432-14 - 0.404 - 1.103-13 - 1.1	1.703-13	3.300-13	1.032-12	6,843-12	1.543-10	1.241-07	1.467-06
02+	01-966.1 .91-886.1 y1-861.1	10 3.120-16	6.246-16	2,106-15	1.679-14	6;081-13	2.968-09	2.402-07
	1.123-12 1,524-12 1.868-12 2.808-12 1.473-05 1.974-05 2.008-05	2.808-17 A-05	5.195-12	1.476-11	7,933-11	1.100-09	2.538-07	9.0-2,6.9

SURFACE SPECIES IS C.

SECTION VI

POTENTIAL PROBLEM AREAS

1. DISCUSSION

equations uses general Newton-Raphson iteration, as does the chemistry solution procedure. In this iteration process the derivatives of all equations with respect to the primary dependent variables are employed to drive the errors toward zero. The boundary layer equations converge very rapidly (3 or 4 iterations) when chemistry is not taken into account but the chemistry equations themselves are very nonlinear and, furthermore, can cause the boundary layer equations to become very nonlinear. Therefore, it has been necessary to develop extensive convergence damping procedures for both the chemistry and boundary layer iteration procedures. These have proven generally to be quite satisfactory, but difficulties are sometimes encountered for very severe problems. The types of problems which can occur, the symptoms of these problems, and procedures for coping with the problems are discussed in this section. The subject of possible program errors and debug output useful for tracing any such errors is discussed later in this section.

An unsuccessful solution usually manifests itself as a nonconvergent chemistry or a nonconvergent boundary layer. Often a nonconvergent chemistry is not the result of an inadequacy or programming error in the chemistry routines (EQUIL and its subroutines) but is traceable to one of the following: (1) an excursion has occurred during the boundary layer iteration such that the chemistry routines have been called upon to solve an impossible problem, or (2) a bad chemistry data deck has been employed. The latter could be bad thermochemical property data (e.g., curve fits which produce negative $\mathbf{C}_{\mathbf{p}}$) or a poor choice of species (e.g., omission of a species important to the solution). These types of considerations should be investigated first if a nonconvergent chemistry occurs.

On occasion when the equations are particularly nonlinear, the chemistry iteration can get temporarily trapped away from the solution. A very elaborate rescue procedure ensues which usually overcomes the difficulty but, sometimes, not within the allowed number of chemistry iterations. If a chemistry solution is nearly converged, recovery may be possible. For this reason, the boundary layer iteration is allowed to proceed with a notation in the output that a non-convergent chemistry has occurred. If no nonconvergent chemistries occur in the iteration just preceding a converged boundary layer solution, any prior chemistry nonconvergences can be disregarded. On the other hand, if a chemistry solution

is far from convergent, it may produce a fatal error in a subsequent chemistry or boundary layer iteration. In any event a STOP is encountered after 20 non-convergent chemistry solutions accumulate in the current case.

When a problem initiates during a boundary layer iteration, the first symptom often shows up as a nonconvergent chemistry (as mentioned previously). Again, this is usually the result of bad input data or a poorly posed problem. Occasionally, however, the boundary layer will not converge in the allowed number of iterations. Some recovery procedures have been developed into the boundary layer iteration but these are not as elaborate as those for the chemistry iteration. If this happens and it appears that the input data are all correct, it sometimes helps to rearrange boundary layer nodal spacing, especially for highly blown boundary layers. If this also fails, it may be that the problem is too severe for the iteration procedure.

If the user is considering unequal diffusion coefficients, he should then revert to assumed equal diffusion coefficients since the derivatives used in the convergence process (these do not affect the final answer as the solution converges) are less exact in unequal diffusion problems. Also, one could set up a sequence of subcases leading up to the problem of actual interest.

Lest the reader become frightened by these prospects, it should be emphasized that the convergence procedures employed in the chemistry and boundary layer iterations are nearly 100 percent reliable for most problems and get into difficulties only occasionally and then only for problems with massive blowing (say where the boundary layer gas in the vicinity of the wall consists of about 99 percent or more of gas injected from the wall) and for unequal diffusion problems where the unequal diffusion effects are very strong.

It is, of course, possible that a bug in the program has actually caused a problem. It is thus pertinent to review the operational status of the program. The BLIMP program has been used extensively over the last three years. During this time the number of boundary layer solutions which have been obtained probably exceeds one thousand, while the number of chemistry solutions (required at each boundary layer nodal point and for each boundary layer iteration) is probably well in excess of one hundred thousand. The recent addition of a turbulent model has indeed perturbed the size and some of the fluid mechanical aspects of the code, however these changes are largely confined to the TREMBL subroutine. The more complicated chemistry portions of the program have remained untouched and therefore debugged for the most part. A large number of check cases have thoroughly exercised the new turbulent and transiton model logic, therefore this portion of the program also should be error-free. In view of the size of the program and its enormous number of options, however, it is possible that some errors may still exist for some combinations of these options. For this reason an elaborate system of debug write statements has been retained in the program.

Debug output is obtained by setting KR(15) through KR(20) to nonzero values. The output obtained with the various KR options is summarized in Section III and described in detail in the remainder of this section. The ambitious and sophisticated user should be able to track down any such error with the use of this debug output and the information presented in this manual.

2. DEBUG OUTPUT FOR BLIMP

TIME OF CALL	CONDÍTION	DO LOOP	WRITE LIST		NÕ•
LINMAT BEFORE BA1 MATRIX INVERSION	KŔ(15) GT 1		MAT1I,MAT1J	2.13	Ģ1
	KR(15) GT 1	I=Ì+MAT1Ì	(BA1(I/J)/J=1/MAT1J)	12E10,3	02
LINMAT AFTER BA1 MATRIX INVERSION	KR(15) GT 1	I=1.MAT1I	(BA1(I+J)+J=1+MAT1J)	12E10.3	03
LINMAT BEFORE BA2 MATRIX INVERSION	KR(15) GT 1		MAT2I MAT2J	213	04,
	KR-(.15) GT 1	I=1.MAT2I	(BA2(I+J)+J=1+MAT2J)	12E10.3	05
LINMAT AFTER BA2 MATRIX INVERSION	KR(15) GT 1	I=1 (MAT2I	(RAZ(Î+J)+J=Î+MATZJ)	12E10.3	ŏ6
LINMAT AFTER GENERATION OF LAR	KR(15)- GT 1		LAR	2014	07
FIRSTG AFTER GALC- ULATION OF FIRST GUESSES.	KR(15) NÉ 0		((F(I)J),J=1,NETA),I= 1,4),(((SP(I)J,K-1), J=1,NETA),I=1,3),K=1, NSP)	7E10.3	08
EQUIL DURING EDGE EXPANSION	KQ(7) GT 1 KR(7)=0		T.P.WM	F10.4,F8.4 F11.7	•09
	KQ(7) GT 1 KR(7)=0		W	3È12.5	10
	KQ(7) GT 1 KR(7)=0		HIP+SIP+RHR	E14.7.E12 .5.E13.6	11
	KQ(7) GT 1 KR(7)=0		(FAMOA(I) + FAMOB(I) + VN (I) + DY(I) + Y(I) + VLNK (I) + IFC(I) + E(I) + CP(I) + I=1 + N)	2A4,4E13.5 ,15,2E13.9	
EQUIL DURING EDGE EXPANSION	KQ(7) NE 0 KR(7)=0		ITS-EL-ENL-T-AAA	I5:4F15.9	13

≩.

TIME OF CALL	GONDITION DO LOOP	WRITE LIST	FORMAT	NO.
EQUIL DURING EDGE EXPANSION FOR NONCONVERGENT CHEMISTRY	TED NO OF ITERATIONS)	ISS, ITEM, II, MITS, ITS, IQQ, HIP, SIP, TT(II), ALI, LEF, (FR(I, II), I=1, N) (ALSO, IG IS SET TO AND KR(7) TO 1 TO PRODUCE ADDITIONAL OUTPU	14/(10E1 2 .4))	6
RERAY FOR CHEMISTRY INVERSION DURING EDGE EXPANSION (CALL FROM EQUIL)	r KQ(7) GT1 KR(7)=0	RERAY PACKAGE(N=IN,C=A) (IL,IL),NN=0,D=B(IL), NNN=1,LS=0,IS=IG,ND=1	_	15.
CRECT DURING EDGE EXPANSION	KQ(7) GT 1 KR(7)=0	(VN(I).Y(I).DY(I).CMFF (I).FM(I).I=1.N)	4E12.4.15 4E12.4.1	
	KQ(7) GT 1 KR(7)=0	(EB(I)-1=1+1S)-	8E12.4	17
	KQ(7) GT 1 KR(7)=0	(X(I),I=1,INP)	8E12.4	18
	KQ(7) GT 1 KR(7)=0	(IB(I), I=1, IS)	1015	19
CONVERGED SOLUTION SOLUTION. 21 THROUGH NUMBER OF CHEMISTRY IS KR(18) +5-4. FOR	(SEE 13). 16,17,18 AND THE SEE THEN PRINTED (ITERATIONS FOR WHICH LATER ITERATIONS THERE (13) AND THE STANDARD	TERATION, ITS = -1 INDICATION OF THE PROPERTY OF THE PROPERTY OF THE PACKAGE OF T	CONVERGED TION. THE ON IS PRINT CHEMISTRY	
EQUIL DURING EDGE EXPANSION	KQ(7) GT 1 KR(7)=0	CPF+CSP+ALF+BETH+GAM	5E12.5	21
REPEAT 9: 10 AND 11	FOR CONVERGED SOLUTION	N		22
EQUIL DURING EDGE EXPANSION	KQ(7) GT 1 KR(7)=0	VEL . VMACH . AREA	3E10.3	23
REPEAT 12 FOR CONVE	ERGED SOLUTION			24,
RÉFCON AFTER CALL OF EQUIL	KR(15) IS=1+NS NE 0	IS.HE.UE(IS).PTE(IS.1) .TE(IS).RHOE(IS). VMUE(IS)	13,6E10.3	25

NSPM1 NE 0 NSPM1 NE 0 NSPM1 NE 0 (((HSP(I,J,K),K=1, NSPM1),J=1,3),I=1,4), (((HSP(I,J,K),K=1, NSPM1),J=1,3),I=1,7)) PERFORM 20 FOR CHEMISTRY SOLUTION IN BOUNDARY LAYER FOR II=1 (WALL), INSÉR- TING 28, 29 AND 30 BETWEEN 15 AND 21 FOR CONVERGED SOLUTION ONLY (23 NOT PRINTED FOR BOUNDARY LAYER SOLUTIONS) PROPS DURING BOUND— KR(20) NE 0 ARY LAYER CALCULA— TION FOR II=1 (WALL) PROPS DURING BOUND— KR(20) NE 0 ARY LAYER CALCULA— TION FOR II=1 (WALL) PROPS DURING BOUND— KR(20) NE 0 ARY LAYER CALCULA— TION FOR II=1 (WALL) PROPS DURING BOUND— KR(20) NE 0 DMU3H-DMU3K-DMU4H, BE12.4 BOUNDARY LAYER CALCULA— TION FOR II=1 (WALL) NONCER DURING BOUNDARY LAYER CALCULATION FOR I=1, WALL IMONE DURING BOUNDARY LAYER CALCULATION FOR I=1, WALL IMONE DURING KR(17) GT 0 KR(17) GT 0 RRR+I TE10.4+I5 3 KR(17) AND K=1+NSPM1 (SSS(L+K),L=1+7)+I NSPM1 GT 0 PERFORM 28 EXCEPT FOR II=2 IONLY DURING KR(17) GT 0 RRR+I TE10.4+I5 3	TIME OF CALL		DO LOOP		. ••••	NO •
NSPM1 NE 0				ALPHD: HALPH: C1: C2: C4: GD: ((ZM(I:J):J=1:6): I =1:4): ((ZG(I:J):J=1: 6): I=1:4): ((HF(I:J): J=1:5): I=1:7): ((HG(I:	10.3/8XSE 10.3/(8X	
TING 28, 29 AND 30 BETWEEN 15 AND 21 FOR CONVERGED SOLUTION ONLY (23 NOT PRINTED FOR BOUNDARY LAYER SOLUTIONS) PROPS DURING BOUND— KR(20) NE 0				NSPM1)+J=1+6)+1=1+4)+ (((HSP(I+J+K)+K=1+	10E10.3	27
ARY LAYER CALCULA- TION FOR II=1 (WALL) RR(7)=0 TI(I) **VMU1**VMU2**VMU3** TT(II) **VMU5**VMU6**FF(1)* **FF(2)**FF(3)**CPTIL** **AFTL**(VK**LI)***VMU6**FF(1)* **FF(2)**FF(3)**CPTIL** **AFTL**(VK**LI)***VMU(II) PROPS DURING BOUND- KR(20) NE 0 ARY LAYER CALCULA- TION FOR II=1 (WALL) NONCER DURING KR(7)=0 NONCER DURING KR(17) GT 0 C1**C2**C3**C4**C0EEQV* C0EFGV CALCULATION FOR II=1 **WALL IMONE DURING KR(17) GT 0 RRR**I TE10**4**I5 3 KR(17) AND K=1**NSPM1 (SSS(L*K)**L=1*7)**I NSPM1 GT 0 PERFORM 28 EXCEPT FOR II=2 IONLY DURING KR(17) GT 0 RRR**I TE10**4**I5 3	TING 28, 29 AND 30	BETWEEN 15	AND 21 FOR	DARY LAYER FOR II=1 (WAL Converged solution only	L). INSÉR- (23 NOT	28 [.]
ARY LAYER CALCULA- KR(7)=0 DMU4K,DHTILH,DHTILK, DTH,DTK,DRHOH,DRHOK, DZKH,DZKK,HG,VK,RMMG. NONCER DURING KR(17) GT 0 C1,C2,C3,C4,C0EEQV, C0EEQV, C0EEQV C0EEQV C0EEQV IMONE DURING KR(17) GT 0 RRR,I 7E10.4,I5 3 BOUNDARY LAYER CALCULATION FOR I=1, WALL IMONE DURING KR(17) GT 0 QQQ,I 7E10.4,I5 3 KR(17) GT 0 QQQ,I 7E10.4,I5 3 KR(17) AND K=1,NSPM1 (SSS(L,K),L=1,7),I 7E10.4,I5 3 PERFORM 28 EXCEPT FOR II=2 IONLY DURING KR(17) GT 0 RRR,I 7E10.4,I5 3	ARY LAYER CALCULA-	KR(7)=0		PR(II) + VMU1 + VMU2 + VMU3 + TT(II) + VMU5 + VMU6 + FF(1) + FF(2) + FF(3) + CPTIL + CVK-(I) + WTM(I) + ZK-		-29
BOUNDARY LAYER CALCULATION FOR I=1, WALL IMONE DURING BOUNDARY LAYER CALCULATION FOR I=2 KR(17) GT 0 GQQ+I KR(17) AND K=1+NSPM1 (SSS(L+K)+L=1+7)+I NSPM1 GT 0 PERFORM 28 EXCEPT FOR II=2 IONLY DURING COEFGV COEFGV COEFGV COEFGV COEFGV COEFGV RRR+I 7E10.4+I5 3 RRR+I 7E10.4+I5 3	ARY LAYER CALCULA-	KR(7)=0	0	DMU4K*DHTILH*DHTILK* DTH*DTK*DRHOH*DRHOK*	8E12•4	30
BOUNDARY LAYER CALCULATION FOR I=2 KR(17) GT 0 QQQ+I 7E10.4+I5 3 KR(17) AND K=1+NSPM1 (SSS(L+K)+L=1+7)+I 7E10.4+I5 3 NSPM1 GT 0 PERFORM 28 EXCEPT FOR II=2 IONLY DURING KR(17) GT 0 RRR+I 7E10.4+I5 3	BOUNDARY LAYER CALCULATION FOR	KR(17) GT	0		12E10+3	31
KR(17) AND K=1.NSPM1 (SSS(L.K).L=1.7).I 7E10.4.15 3 NSPM1 GT 0 PERFORM 28 EXCEPT FOR II=2 IONLY DURING KR(17) GT 0 RRR.I 7E10.4.15 3	BOUNDARY LAYER CALCULATION	KR(17) GT	0	RŘR•I	7E10.4+I5	32
NSPM1 GT 0" PERFORM 28 EXCEPT FOR II=2 IONLY DURING KR(17) GT 0 RRR+I 7E10.4+I5 3		KR(17) GT	0	999•I	7E10.4.15	33
IONLY DURING KR(17) GT 0 RRR+I 7E10.4+15 3				(SSS(L,K),L=1,7),I	7E10.4:15	34
	PERFORM 28 EXCEPT	FOR II=2				35
CALCULATION FOR I=2 -141-	BOUNDARY LAYER CALCULATION	KR(17) GT			7E10.4.15	36

TIME OF CALL	CONDITION DO	LOÓP WRITE LIST	FORMAT NO.
•	j	`	
	KR(17) GT 0	999•I	7E10.4:15 37
	KR(17), AND K=1 :NSPM1 GT 0	•NSPM1 (SSS(L•K)•L=1•7)•I	7E10.4(15 38
REPEAT 31			39
REPEAT 32 THROUGH 3 (BOUNDARY LAYER EDG		DARY LATER NODAL POINT UNTI	L I = NETA 40
NONCER JUST BEFORE MATRIX INVERSION	KR(19) GT; 0	FNLE, GNLE	11E10.3/ 41 (10E10.3)
	KR(19) AND NSPM1 GT 0	((SPNLE(I,K),K=1,NS ,I=1,MAT2J)	PM1) 11E10.3/ 42 (10E10.3)
RERAY FOR BOUNDARY LAYER INVERSION (CALL FROM NONCER)	KR(17) GT 0	RERAY PACKAGE(N=NAM NN=NSP+10D=ENLONN LS=LAROIS=IXOD=45	N=1•
NONCER JUST AFTER MATRIX INVERSION		FLE•GLË	11E10.3 44
	KR(17) AND	((SPLE(I'+K)+K=1+NSR	M1) + 11E10.3 45
NONCER BEFORE MATRIX INVERSION FOR WALL RELATIONS	KR(16) GT 1 KR(17): GT 0	((SPLE(I'+K)+K=1+NSP I=1+MAT2I) ((DQJNL(I+K)+K=1+NS I=1+NNLEQ)	P), 10E10.3 46
NONCER JUST BEFORE MATRIX INVERSION FOR WALL RELATIONS	KR(16) GT 0	((DQJRNL(I•K)•K=1•N I=1•NRNL)•DELQW•DE WALLQ•WALLJ	SP), 10E10.3 47 LJW,
KR(18) *5-4 OR (KR(1 IS ONE-LINE-OUTPUT	6)-1)45 FOR KR(PER CHEMISTRY I CKAGE IS EMPLOY	CE CHEMISTRY ITERATION UNTI 11)=2 PROBLEMS. FOR LATER I TERATION (GIVEN BY 13) AND ED FOR THE CONVERGED SOLUTI	TERATIONS THERE THE STANDARD
RERAY FOR INVERSION OF WALL RELATIONS, SURFACE EQUILIBRIUM OR KINETIC SOLUTION (CALL FROM NONCER)	KR(11)=2	RERAY PACKAGE(N=NRN ,C=AM(II+1,II+4),N D=DRNL(II+1),NNN=1 0,IS=IXX,ND=45)	N=0 •
NONCER JUST BEFORE CORRECTING PRIMARY VARIABLES	KR(17) OR KR(19) GT 0	DRNL	11E10·3 50

TIME OF CALL	CONDITION	DO LOOP	WRITE LIST		NO.
	KR(17) OR KR(19) GT		DVNL	11E10.3	51
	KR(17) OR KR(19) GT	0	FLE•GLE	11E10.3	52
	KR(17) OR KR(19) GT AND, NSPM1 GT Q		((SPLE(I,K):K=1,NSPM1), I=1,MAT2I	11E10.3	53
ITERAT AT END OF CURRENT BOUNDARY LAYER ITERATION	ALWAYŠ		ITS ALPH FPPW.EASE.ELMM .IFNLM.FNLEM.IGNLM. GNLEM.(ISPNLM(K). SPNLEM(K).K=1.NSPM1)	.F7.4.F6.4	
OUTPUT AT END OF CURRENT BOUNDARY LAYER ITERATION	KR(4)=1		STANDARD BOUNDARY Layer Output Package		55 °
REPEAT 28 THROUGH 55	FOR SUCCE	EDING BOUND	ARY LAYER ITERATIONS		56
RERAY DEBUG PACKAGE THE RERAY CALL LIST IS (N.C.NN.D.NN.) LS.IS.ND) THE DEBUG TEST VARIABLE IS IS ASSIGNED THE VALUE OF -1 BEFORE RETURN	IS=-2		NP+NNN+N	(15H ((C(I,J),J=1, I3,12H),(D(J),J=1, I3,6H),I= 1,I3,15H) BEFORE RERAY)	
	15=-2		NP.(L(I).I=1.NP)	(11H L(I) ,I=1,I3,5 X (30I3))	
	IS=-2 SINGULAR MATRIX (RETURN AFTER PRINTING)	I=1.N	(C(I,J),J=1,NP), (D(I,J),J=1,NN) (II,L(II),SD(II),II= 1,I) WHERE I IS INDEX IN DO LOOP RUNNING TO N	11E10.3/ (10E10.3) (24H PIVOT ROW/COL/ RES.RATIO 5(14.1H/I 3,1H/E9.2 (1H,))	
	IS=-2		(I,L(I),SD(I),I=1,NP)	SAME AS ABOVE	

TIME OF CALL	CONDITION	DO LÔOP	WRITE LIST	FORMAT	NO.
	IS=-2		NP+NNN+N	(15H (((
				I (J) (J=1	
				I3,12H) (D(J),J=1	
				I3+6H)+1	
				1,13,14	
				AFTER	
				ERAY)	
	IS=-2	I=1•N	(C(I,J),J=1,NP), (D(I,J),J=1,NNN)	1ÎE10.3/ (10E10.3	3)

SECTION 'VII

OPERATING PROCEDURES

This program is written in FORTRAN V source language for the CDC 6600, with a 130 K core, or a computer of similar configuration. Conventional formatted READ statements are used for input data. Card input and tabular output are on tape units KIN and KOUT, respectively, defined in the main routines (BLIMP or CABLE) as 5 and 6, respectively (KOUT is also defined in subroutine RERAY). Two scratch tapes, NBT and NBT2 are required for temporary storage of data needed for multi-case or multi-time solutions. These are assigned the numbers 13 or 14, respectively, in subroutine SETUP. For CABLE runs these tapes plus tape 12 should be saved for restarting purposes.

SECTION VIII

PROGRAM DIMENSIONING

The dependence of the variable dimensions within the program on the basic system dimensions is of key importance for those users desiring to make program modifications. Changes of system dimensions result not only in redimensioning of program variables but also changes in certain program instructions. A generalized technique for dealing with these dimension changes is presented below.

The technique which is used consists of presenting the list of program COMMONS and DIMENSIONS in general form, with a key to the general terminology used. The following definitions apply:

COM = number of components: (=7; 1 edge, 3 pyrolysis gas, 3 char)

NSP = number of elements (exclusive of electron)

NETA = number of n values (surface normal grid).

NS = number of streamwise stations

MOL = number of molecules

NCON = number of simultaneously failing surface condensed species +1

NITEM = number of times or cases

NKIN = number of kinetic reactions

NDISC = number of discontinuities which may be flagged.

The following code will be used

*A = CØM

*B = NSP-1

*C = NSP

*D = NETA-1

*E = NSP+1

*F = NETA

*G = NSP+2

 \star H' = NETA+3

*I = NSP + NCØN+3

*J = 2*NETA

*K' = 3*NETA-2

*L = NS

*M = NKIN

*N = NSP+3

*Ø = NCØN

*p = NDISC+1

**A = $19+\hat{N}ETA*-(2*NSP+6)$

**M = MØL+1

**N = NETA*(NSP+1)+3

 $**\dot{o}$ = NITEM

**P = NETA*(2*NSP+3)-2

**Q = 3*NS+5+NETA*(5+3*NSP)

**R = NS*(NSP+6)+7

**S = NETA*(7+3*NSP)+1

**T = 4*(NSP+1)*(NETA-1)+6

 $**\dot{u} = NS*(NSP+6)$

**V = MØL+2

**W = MØL+4

**X = NSP*(3*NSP+21)-9

**z = (NSP+1)*(NETA-2)-4/NPS-6

In the terminology of this code, Listing No. 1 at the end of this section describes the basic set of COMMON statements with the appropriate dimensions. Certain COMMONS must be modified for use in the set of chemistry routines (EQUIL, THERM, MATER, CRECT, INPUT, PROPS, and KINET) because of variable name anomalies. These COMMONS are shown in Listing No. 2.

Listing No. 3 indicates the common blocks required by each routine. Excluded from this list are truncated common blocks which are required for certain routines. In those cases where truncation results in a dimensionally independent COMMON, no reference is necessary. If it is dimensionally dependent, it is included on Listing No. 4 together with all dimension, equivalence and program statements which are affected by changes in system dimension. Each entry in this last table is identified by routine and approximate line location within that routine and can easily be located with respect to a current listing.

ŝ

LISTING NUMBER 1

STANDARD COMMONS FOR ALL ROUTINES EXCEPT WHERE ALTERNATES ARE INDICATED

```
COMMON/BLQCOM/ MOA(**M),
                             MOB(*+M) . NSPEC . FR(**M, *F) . W(3) . LEF(*E)
1, LEFS (*E), PIEASE, LEFW (*E)
 COMMON/BUMCOM/
                    BUMP, CORMA, EASE, ICORM, WDOT, TFZ, 1777, DTEMP, KIP, IX
                              C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15
 COMMON/COECOM/
1,C16,C17,C18,C19,C2Q,C21,C22,C23,C24,C25,C26,C27,C28,C29,C30,C31,C
232,C33,C34,C35,C36,C37,C38,C39,C40,C41,C42,C43,C44,C45,C46,C47,C48
3,049,050,051,052,053,054,055,056,057,058,059,060,061,062,063,064,0
465,C66,C67,C68,C69,C70,C71,C72,C73,C74,C75,C76,C77,C78,C79,C80,C81
5,C82,C83,C84,C85,C86,C87,C88
 COMMON/COECON/ CK1(+B),CK2(+B),CK3(+B),CK4(+B),CK5(+B),CK6(+B)
1,CK7(+B),CK8(+B),CK9(+B),CK10(+B),CK11(+B),CK12(+B),CK13(+B)
2.CK14(*B).CK15(*B).CK16(*B).CK17(*B).CK18(*B).CK19(*B).CK20(*B)
3,CK21(*B),CK22(*B),CKK1(*B,*B),CKK2(*B,*B),XM(5),XG(5),XSP(5,*C)
4+CKK3(*B+*B)
 COMMON/CRBCOM/HCARB, EMIS, STEF, ADUM, BOUM, CDUM, HTEF, HMAT, EMISC, EMIST
1. HPG. ASU(3). BSU(3). HPYG(3). HCHAR(3). EMIV(3). KS(*L). ISU
                            PE(*L, 1),PTE(*L, 1),SPE(*B,*L, 1),DUES,
 COMMON/EDGCOM/
1UE(*L),RHOE(*L),VMUE(*L),TE(*L),UEDGE,DUEDGE,D2UEDG,VMWE,HE,C90
2 .DSIP(*L).IDSIP.TTVC.TVCC(*L)
 COMMON/EPSCOM/ELCON:YAP:CLNUM:SCT:PRT:RED:DVS:RHOVS:PI:PIM:CL:
1EPSA(*F) . EPS1 . EL(*F) . DPI(*F.2) . DLI(**N) . DEPS(**N) . DEPC . TREF . RETR
 COMMON/EQPCOM/ RB(**M,2),RC(**M,2),RD(**M,2),RE(**M,2),RF(**M,2),
1 TU(**M,2),FF(**M),FFA,IFC(**M),ATA(*E),ATB(*E),ATC(*E),WAT(*E),
2KAT(+E), IR(+E), IZ, KZ(10), LAMI(++M), P,Z, TK(+E,+A), VN(++M),
3 VNU(++M++E),ITFF+KR2+HCH+NCV+WM+WTM(++M),YYY(++M)+YW(++M)+GG(++M)
4 /7Q(+E++A) /EPOVRK/SIGMA/BASMOL
 COMMON/EQTCOM/SIP.HIP.EEL.EENL.FLIQ.CPF.IRE.IER.AA.IITS.IN.IL.IIT.
1 MODE, HMELT, SMELT, TMAX, TMIN, MELT, SUMN, SUML, WS, WSS, BX, ISP2, ISPQ,
2 ISP+KKJ+SVA+SVB+SVC+SVD+SUMC+FFF+CMF+EP+RV+IFCJC+WTG+WTL+JC+HHG+
3 CCPG, TTMIN, TTMAX, L2, L3, IB(*G), EB(*E), EBL(*E), A(*I,*I), BB(*I),
4 IP(**M),ALP(*E),FNU(*E),GAMH(*E),GAMF(*E),SLAM(*E),DY(**M),RVS,
5 CP(**M),HH(**M),SB(**M),TC(**M),VLNK(**M),E(**M),PNUS(*E),
6 BC(*E),BLNK(*E),BY(*E),IBC(*E),BE(*E),JZ(*0)
 COMMON/ERRCOM/FLE( *K),GLE(*J),SPLE(*J,*B),ELA(**P),FLEM,GLEM
1.SPLEM(*B).ELM(*D).ELMM.IFLM.IGLM.ISPLM(*B).NELM.ILMM.DFL(*K)
2.DGL(+J).DSPL(+J.+B).FNLE(+H).GNLE(+F).SPNLE(+F.+B).ENL(++N)
3.FNLEM.GNLEM.SPNLEM(*B).
                                   ENLMM (IFNLM IGNLM ISPNLM (*B)
4.NENLM.INLMM.DFNL(+H).DGNL(+F).DSPNL(+F.+B).DRNL(+E)
 COMMON/ETACOM/ETA(+F) +DETA(+F) +DSQ(+D) +DCU(+D) +B1(+D) +B2(+D)
1, LAR(**N), BA1(*K, *H), BA2(*J, *F)
 COMMON/FLPCOM/TXI(2), TUE(2), TRHOE(2), TTE(2), TVMUE(2), TMAT(**T,2)
2,THF(*F,2),LEFT(*E,2),TPE(2),TRADS(2),TDSIP(2),KQT(2)
 COMMON/FLXCOM/DELQW.DELJW(*B).DQNL(**N).DJNL(**N.*B).WALLQ
1.WALLJ(#8).QW.VJKW(#C).TPWALL
 COMMON/HISCOM/C1,C2,C3,C4,ALPHD,BETA,ZM(4,*D),ZG(4,*D),ZSP(4,*D,*B
1 ),XI(+L),HF(+F,5),HG(+F,3),HSP(+F,3,+B),HALPH,HUE,HHUE,HFW,DLX2
```

AFWL-TR-69-114, Vol. I LISTING NUMBER 1 (continued)

```
2,C3M(*L),BETAM(*L)
 COMMON/INTCOM/ KR(20).KIN.KOUT.MAT11.MAT21.MAT1J.MAT2J.NETA.I.IS.N
15.IT.NTIME:NSP.NSPM1:NAM:NLEQ:NNLEQ:NRNL: ITS:KAPPA:CBAR:CASE(15)
            MWE NON KQ(10) , ITEM NITEM KR17 NBT NBT2 , IDENT KR9(*L)
3.KAUXO.JTIME.JSPEC.MD(3)
COMMON/KINCOM/MT+FKF(*M)+EAK(*M)+EXK(*M)+PMU(*E+*M)+RMU(*E+*M)+
1 DKPT(+M),PKP(+M),PKR(+M),RAT(+M),RSIG(+M),MA(+M),LL(+M),PMR(+M),
2 PRMU(*E,*M),EESE(*E)
COMMON/NONCOM/AM(**N***N)*DVNL(**N)*TCW*
1VLNKW.DLPH(+C).DLPK(+B.+C).DTHW.DTKW(+B).FLUXJB(+C)
COMMON/OUTCOM/Y(*F), RES, DELST, THENGY, THMOM, CH, BLOW, SHEAR, CF, SHAPE
1 /CM(*C)/THELEM(*C)
COMMON/PRMCOM/TIME(**0)*PRE(*L)*PTET(**0)*GE(**0)*S(*L)*ROKAP(*L)
1. RNOSE. VKAP. NDISC. IDISC(+L). NSD(+P). MSD(+P). ITF(++0). IPRE. RADNO.
2CONE, RADFL (**0), RADR (*L), RADS (*L), IRAD
COMMON/PRPCOM/PR(*F),T(*F),RHO(*F),SC(*F),CAPC(*F),QR(*F),H(*F)
1,CPBAR(*F),VMW(*F),PHIK(*F,*B),DRHOH,DRHOK(*B),ZK(*B),DZKH(*B),
2MU3K(*B).DMU4K(*B).DTK(*B).DPHIKH(*B).DPRK(*B).DSCK(*B).DCAPCK(*B)
3,DHTILK(*B),DQRK(*B),DCPBK(*B),DCPTK(*B),DMU12K(*B),DZKK(*B,*B)
                     DMU4H, DMU3H, DHTILH, VMU12, CT, CTR, CPTIL, HTIL
4 DPHIKK (*B +*B) +
5,VMU3,DTH,DCAPCH,DPRH,DSCH,DQRH,DCPBH,DCPTH,DMU12H,VMU(*F), RHOP
6(*F),PHIKP(*F),HP,TP,ZKP(*B),VMU3P,VMU4P,HTILP,CRH0(*D),GMR(*F)
COMMON/STTCOM/GAM1+PRDUM+PRA+PRB+PRC+PRD+VMUA+VMUB+VMUC+VMUD+NC+
1 FLD(6,3), VMWD
COMMON/TEMCOM/SPDUM(*B) DER(*L) DUMM1(*F) SLOPE(*F) REDUM(*F)
1.SDUM1(+L).SDUM2(+L).FWDUM(+L).XICON(+L).FWCON(+L).FWINIT( 1)
2.XIINIT( 1).DUDS( *L)
 COMMON/VARCOM/F(4+*F)+G(3+*F)+SP(3+*F+*C)+ALPH
1.RHOVW(*L, 1).FLUXJ( 3.*L, 1).IHW.ITW.IFW.ISPW.IRHOVW.IFLUXJ
```

The state of the s

à

LISTING NUMBER 2

THE FOLLOWING COMMONS SHOULD BE USED IN 820A THROUGH 825A AND 828A

COMMON /INTCOM/KKR(20) KIN KOUT MAT11 MAT21 MAT1J MAT2J NETA 11, 1ISS+NS+ITT+NTIME+NSP+NSPM1+NAM+NLEQ+NNLEQ+NRNL+MITS+KAPPA+CBAR+ 2CASE(15) BB(8) . MWE NON KD(10) , ITEM , NITEM , KR17 , NBT , NBT2 , IDENT , 3 KR9(+L) , KAUXO, JTIME, JSPEC, MD(3) COMMON /PRPCOM/PR(*F) +TT(*F) +RHO(*F) +SC(*F) +CAPC(*F) +QR(*F) +HH(*F) 1,CPBAR(*F),VMW(*F),PHIK(*F,*B),DRHOH,DRHOK(*B),ZK(*B),DZKH(*B), 2MU3K(*B) DMU4K(*B) DTK(*B) DPHIKH(*B) DPRK(*B) DSCK(*B) DCAPCK(*B) 3,DHTILK(*B),DQRK(*B),DCPBK(*B),DCPTK(*B),DMU12K(*B),DZKK(*B,*B) 4.DPHIKK(+B.+B). DMU4H, DMU3H, DHTILH, VMU12, CT, CTR, CPTIL, HTIL 5, VMU3, DTH, DCAPCH, DPRH, DSCH, DQRH, DCPBH, DCPTH, DMU12H, VMU(*F), RHOP 6(*F),PHIKP(*F),HP,TP,ZKP(*B),VMU3P,VMU4P,HTILP,CRHO(*D),GMR(*F) COMMON /BLQCOM/FAMOA(**M),FAMOB(**M),N *FR(**M**F),W(3)*LEF(*E) 1, LEFS (*E), PIEASE, LEFW (*E) COMMON /EQPCOM/ RB(**M,2),RC(**M,2),RD(**M,2),RE(**M,2),RF(**M,2), 1 TU(**M,2),FF(**M),FFA,IFC(**M),ATA(*E),ATB(*E),ATC(*E),WAT(*E), 2 KAT(*E), IR(*E), IS, KR(10), LAMI(**M), P, T, TK(*E, *A), VN(**M), 3 VNU(**M,*E),ITFF,KR2,HCH,NCY,WM,WTM(**M),Y(**M),YW(**M),GG(**M) 4 .TQ(*E,*A).EPOVRK.SIGMA.BASMOL COMMON /EQTCOM/SIP+HIP+EL+ENL+FLIQ+CPF+IRE+IER+AA+ITS+IN+IL+IT+ 1 MODE + HMELT + SMELT + TMAX + TMIN + MELT + SUMN + SUML + WS + WSS + B1 + ISP2 + ISPQ + 2 ISP,KKJ,SVA,SVB,SVC,SVD,SUMC,FFF,CMF,EP,RV,IFCJC,WTG,WTL,JC,HG, 3 CPG,TTMIN,TTMAX,L2,L3,IB(*G),EB(*E),EBL(*E),A(*I,*I),B(*I), 4 IP(**M) , ALP(*E) , FNU(*E) , GAMH(*E) , GAMF(*E) , SLAM(*E) , DY(**M) , RVS, 5 CP(**M),H(**M),SB(**M),TC(**M),VLNK(**M),E(**M),PNUS(*E), 6 BC(*E),BLNK(*E),BY(*E),IBC(*E),BE(*E),JJ(*0)

LISTING NUMBER 3

COOA	~			
	7 B03A	4 /p	RMCOM/	/EQPCOM/
/BLQCOM/	/BLQCOM/		RPCOM/	/EQTCOM/
/FLXCOM/	/EDGCOM/			
/HISCOM/	/FLPCOM/		EMCOM/	/ETACOM/
/INTCOM/	/HISCOM/		ARCOM/	/FLXCOM/
/PRMCOM/		/w	ALCOM/	/HISCOM/
/PRPCOM/	/INTCOM/			/INTCOM/
/VARCOM/	/PRMCOM/	В0	64	/OUTCOM/
	/VARCOM/		DGCOM/	/PRMCOM/
/WALCOM/	/WALCOM/			/PRPCOM/
	•		RRCOM/	
BUIA	B04A		TACOM/	/TEMCOM/
\RF6C0W\	/BLQCOM/		NTCOM/	/VARCOM/
/BUMCOM/		/P	RMCOM/	/WALCOM/
/COECOM/	/BUMCOM/	/v	ARCOM/	
/COECON/	/ERRCOM/	•		B11B 7
	/INTCOM/	В0	7 A	/BLQCOM/
/CRBCOM/	/PRMCOM/		DGCOM/	/COECOM
/EDGCOM/	/VARCOM/			/COECON/
/EPSCOM/	• • • • • • • • • • • • • • • • • • • •		ISCOM/	
/EQPCOM/	B05B		11100	/CRBCOM/
/EQTCOM/		′ /P		/EDGCOM/
/ERRCOM/	/BLQCOM/	/T	EMCOM/	/EPSCOM/
/ETACOM/	/BUMCOM/			/EQPCOM/
	/COECOM/		ALCOM/	/EQTCOM/
/FLPCOM/	/COECON/	/ ₩	ALCOMY	/ETACOM/
/FLXCOM/	/CRBCOM/	50		
/HISCOM/	/EDGCOM/	В0		/FLXCOM/
/INTCOM/	/EPSCOM/			/HISCOM/
/KINCOM/		/c		/INTCOM/
/NONCOM/	/EQPCOM/	/E	DGCOM/	/OUTCOM/
/OUTCOM/	/EQTCOM/		TACOM/	/PRMCOM/
	/ERRCOM/			/PRPCOM/
/PRMCOM/	/ETACOM/			/TEMCOM/
/PRPCOM/	/FLXCOM/			/VARCOM/
/STTCOM/	/HISCOM/		RPCOM/	/WALCOM/
/TEMCOM/	/INTCOM/	/ V	ARCOM/	/ WALCOM/
/VARCOM/	/NONCOM/			
/WALCOM/		B0	9A	B12B 3
	/PRPCOM/	/c	RBCOM/	/COECOM/
B02A	/VARCOM/		TACOM/	/COECON/
	/WAL.COM/		NTCOM/	/ERRCOM/
/INTCOM/				/ETACOM/
/WALCOM/	B05C	5	RMCOM/	/HISCOM/
	/BLQCOM/			
C02A 4	/BUMCOM/		0A	/INTCOM/
/BLQCOM/	/ BOMCOM/	/E	TACOM/	/NONCOM/
/EDGCOM/	/CRBCOM/		ISCOM/	/PRPCOM/
/FLPCOM/	/EDGCOM/		NTCOM/	/VARCOM/
	/EPSCOM/		RMCOM/	
/HISCOM/	/EQPCOM/			B13B 4
/INTCOM/	/EQTCOM/	/ V		
/PRMCOM/	/ERRCOM/			/COECOM/
/VARCOM/	/ETACOM/		- · ·	/COECON/
/WALCOM/	/FLXCOM/			/ERRCOM/
		/c	OECOM/	/ETACOM/
	/HISCOM/	/5	OECON/	/HISCOM/
	/INTCOM/	/0		/INTCOM/
	/NONCOM/			/NONCOM/
		/ E	PSCOM/	/PRPCOM/

LISTING NUMBER 3 (continued

** * * * *	
B14A	/EQPCOM
/EDGCOM/	/EQTCOM
/INTCOM/	\ \(\tag{1.00\(\)}\}}\}}}}}}}}}}\)
/PRMCOM/	B22A 10
/PRPCOM/	/BLQCOM
/STTCOM/	/BUMCOM/
	/EQPCOM
B14B	/EQTCOM
/STTCOM/	/KINCOM/
0404	/NONCOM/
B19A 4	, 1101100· III
/COECOM/	B23A 9
/COECON/	/BLQCOM
/EDGCOM/	/EQPCOM
/EPSCOM/	/EQTCOM
/ERRCOM/	, <u>E</u> # , o o
/ETACOM/	B24A 13
/HISCOM/	/BLQCOM
/INTCOM/	/EQPCOM
/NONCOM/	/EQTCOM
/PRPCOM/	/KINCOM/
/VARCOM/	, , , , , , , , , , , , , , , , , , , ,
54 5 T	B25A 5
B19T 4	/BLQCOM
/COECOM/	/EDGCOM/
/COECON/	/EQPCOM
/EDGCOM/	/EQTCOM
/ETACOM/	/INTCOM
/HISCOM/ /INTCOM/	/PRPCOM
/NONCOM/	/WALCOM/
/PRMCOM/	
/PRPCOM/	B27A
/TEMCOM/	/ETACOM/
/VARCOM/	/INTCOM/
/ VARCOM/	
B20A 11	B28A 5
/BLQCOM	/EQPCOM
/BUMCOM/	/EQTCOM
/EDGCOM/	/KINCOM/
/EQPCOM	
/EQTCOM	B29A
/FLPCOM/	/BLQCOM/
/FLXCOM/	/ETACOM/
/INTCOM	/INTCOM/
/NONCOM/	/PRMCOM/
/PRPCOM	/VARCOM/
/VARCOM/	
/WALCOM/	B30C
FRIDENTIF	/ERRCOM/
B21A 5	/ETACOM/
/BLOCOM	/NONCOM/
, neade	

LISTING NUMBER 4

```
DIMENSION HIST1(**Q), HIST2(**R), HIST3(**S), VMAT(**T), HIST4(**U)
                                                                          C02A 003
    DO 141 I=1 ***T
                                                                          C02A 035
    DIMENSION HIST1(**Q), HIST2(**R), HIST3(**S), VMAT(**T), HIST4(**U)
                                                                          B03A 003
    DO 184 I=1,**T
                                                                          B03A 091
    DIMENSIONDQJRNL(**M,1)
                                                                          B05B 004
    DIMENSIONDELQJW(1) ,DQJNL(**N,1) ,WALLQJ(1)
                                                                          B05B 005
    DIMENSIONCOEEQV(84), COEFQV(**X)
                                                                          B05B 006
    CALL RERAY(NAM, AM, NSP + 1, ENL, 1, LAR, IX, **N)
                                                                          B05A2290
725 DO 730 I=1,**P
                                                                          B05A4790
    DO 735 I=1 **N
                                                                         B05A4810
    DIMENSIONDQJRNL(**M,1)
                                                                         B05C 003
    DIMENSIONDELQJW(1) .DQJNL(**N.1) .WALLQJ(1)
                                                                         B05C 004
    CALL RERAY(NRNL-II, AM(II+1, II+4), 0, DRNL(II+1), 1, 0, IXX, **N)
                                                                         B05C3800
    DIMENSION CIJ(**M,1)
                                                                         B11A 003
    DIMENSION HIW(**M,3), VKIE(**M), VKIW(**M), ZIE(**M), ZIW(**M),
                                                                         B11B 003
   1ZIESTR(**M),ZIWSTR(**M),ZKWSRT(*C),ZKESRT(*C),ZKWSTT(*C),ZKESTT(*CB11B 004
  2),ZISDIF(**M),ZKDIF(*C),ZKTDIF(*C),CMK(*C)
                                                                         B11B 005
    DIMENSION CIJ(**M+1)
                                                                         B118 006
    DIMENSION CK23(*B) + CK24(*B) + CK25(*B) + CK26(*B)
                                                                         B13B 003
   DIMENSION D(ND+1)+SD(**N)+C(ND+1)+L(**N)+S(**N)+LL(**N)+LLL(**N)+ B15B 003
                                                                         B15B 004
    COMMON/ETACOM/ETA(*F) DETA(*F)
                                                                         B18A 004
    DIMENSION X(1),A(+0),B(+D),C(+D)
                                                                         B18A 005
    DIMENSION EPSOUT (**A)
                                                                         B19A 003
   DIMENSION DRHS(**N)
                                                                         B19T 003
   EQUIVALENCE (TU(**V), TF), (VNU, CIJ)
                                                                         B20A 006
   DIMENSION CIJ(**M,1),TF(1)
                                                                         B20A 007
   DIMENSION APE(*I,*I),BS(*I)
                                                                         B20A 008
   DIMENSION VLAM(**M,1), X(*I), GAMK(**M,1), KQ(10), DQJRNL(**M,1)
                                                                         B20A 009
   EQUIVALENCE(AM(**W),DQJRNL(**W),GAMK,VLAM)
                                                                         B20A 010
    CALL RERAY(IN,A,0,B,0,0,IG,*I)
                                                                         B20A 263
   CALL RERAY(IN, APE(IL, IL), 0, B(IL), 1, 0, IG, *I)
                                                                         B20A 373
   DIMENSION CIJ(**M,1),TF(1)
                                                                         B21A 003
   EQUIVALENCE(TU(**V),TF),(VNU,CIJ)
                                                                         B21A 004
   DIMENSION VLAM(**M+1)+ X(*I)
                                                                         B22A 005
   EQUIVALENCE (AM(**W), VLAM)
                                                                         B22A 006
   DIMENSION CIJ(**M,1),TF(1)
                                                                         B22A 007
   DIMENSION ECD(**M)
                                                                         B22A 008
   EQUIVALENCE(TU(**V),TF),(VNU,CIJ)
                                                                         B22A 009
   DIMENSION CIJ(**M,1),TF(1)
                                                                         B23A 005
   EQUIVALENCE(TU(**V),TF),(VNU,CIJ)
                                                                         B23A 006
   DIMENSION X(*I)
                                                                         B23A 007
   DIMENSION CMFF(**M)
                                                                         B23A 008
   DIMENSION CIJ(**M,1),TF(1)
                                                                         B24A 006
   DIMENSION UM(*E,*E)
                                                                         B24A 007
   EGUIVALENCE(TU(**V),TF),(VNU,CIJ)
                                                                         B24A 008
   DIMENSION C(*E), KPHA(2), RA(2), IM(*E), JAT(8), ALPT(8), TAU(*E, *E)
                                                                         B24A 009
   DIMENSION IC( *E).LIM(*E.*E)
                                                                         B24A 010
   DIMENSION FFIN(**M) *NFIA(**M) *NFIB(**M)
                                                                         B24A 011
```

LISTING NUMBER 4 (continued)

DIMENSION IFMET(**M), IGMET(**M), ZIGEPS(2), SORCE(8)

DIMENSION VK(*E), PA(*N,*N), PV(*G,*N)

DIMENSION ELKM(*M), DELK(*M)

B24A 012

B25A 005

B28A 004

SECTION IX

FORTRAN VARIABLES LIST

The Fortran variables are listed and defined at the end of this section. The routines within which the variables are valid are identified as follows. An L followed by a name in the right-hand column indicates that the variable is local to the routine of that name (e.g., L EQUIL). A C followed by a blank indicates the variable appears in unlabelled common, a C followed by a name indicates the variable appears in a labelled common of that name (e.g., C EQTCOM), and an E followed by a name indicates the variable is equivalenced to a variable appearing in a labelled common of that name (e.g., E EQTCOM). A tabulation of the common blocks included in the various subroutines was presented in the previous section.

An asterisk (*) appearing before the equal sign (=) in the Fortran variables definition list indicates that the variable is valid only in the chemistry routines (EQUIL, PROPS, THERM, MATER, KINET, CRECT, INPUT) whereas a plus sign (+) indicates the variable is not valid in the chemistry routines. If neither a * or a + is indicated, the variable is valid in any routine which contains the variable in the appropriate COMMON block.

In the Fortran variables list, the subscripts have the following convention:

I =: Ith nodal point or nodal segment

J = Jth species (molecular, atomic, ionic and condensed)

K,KK = Kth or KKth element, base species, or related quantity

L = Lth streamwise station

 $M = M^{th} \text{ time (or subcase)}$

MK = MKth kinetically controlled reaction

N,NN = Other meanings, defined as used

Finally, variables referred to in the definitions are Fortran variable names except where specifically identified otherwise (e.g., in the definition of AM(N,NN), (BNL) is not a Fortran variable name but is defined in a referenced report).

FORTRAN VARIABLES LIST

A(N+NN)	ERROR COEFFICIENT ARRAY IN CHEMISTRY SOLUTION, N PERTAINS	C EQTCOM
	TO EQUATION WHEREAS NN PERTAINS TO VARIABLE.	
AA	PRODUCT OF PRESSURE TIMES MOLECULAR WEIGHT.	C EQTCOM
AAA	DEFUNCT VARIABLE, SET TO UNITY.	C EQPCOM
AB	LOCALLY DEFINED VARIABLE	L SLOPQ
ABB	LOCALLY DEFINED VARIABLE	L SLOPQ
ABER	ABSOLUTE VALUE OF RATIO OF A MASS BALANCE ERROR TO LARGEST TERM IN THAT MASS BALANCE.	L MATER
ABSVA	ABSOLUTE VALUE OF CONTRIBUTION OF A SPCIES TO A MASS BALANCE.	L MATER
ABX	ABSOLUTE VALUE OF LOG CORRECTION ON TEMPERATURE.	L CRECT
AC	LOCALLY DEFINED VARIABLE	L SLOPQ
ACC	LOCALLY DEFINED VARIABLE	L SLOPQ
ACH	MACH NUMBER	L OUTPUT
ADUM	COEFFICIENT IN SURFACE KINETIC RELATION FOR MATERIAL BEING CONSIDERED UNDER KR(9) = 5 OR 6 (SFE INPUT INSTRUCTIONS).	C CRBCOM
AF	LOCALLY DEFINED VARIABLE	L TRMBL
ALF	DERIVATIVE OF LOG MOLECULAR WEIGHT WITH RESPECT TO LOG TEMPERATURE AT CONSTANT PRESSURE.	-L EQUIL
ALP(K)	INPUT MASS QUANTITY OF ELEMENTS, EQ(25) OF NASA CR-1064.	C EQTCOM
ALPH	NORMALIZING PARAMETER FOR BOUNDARY LAYER NORMAL COORDINATE SEE EQ. (33) OF NASA CR-1062.	+C VARCOM
ALPHD	D1*ALPH + D2*HALPH WHERE D1 AND D2 ARE DEFINED BY EQ(88) O (89) OF NASA CR-1062.	RC HISCOM
ALPT(N)	NUMBER OF ATOMS OF AN ELEMENT WITH ATOMIC NUMBER JAT(N) IN A SPECIES.	L INPUT
ALSQ	ALPH**2	L FIRSTG
AM(N+NN)	COEFFICIENTS IN THE MATRIX DEFINED AS (BNL) IN EQ(150) OF NASA CR-1062.	C NONCOM
AMOA	ALPHANUMERIC VARIABLE, FIRST OF TWO PORTIONS OF SPECIES NAME.	L INPUT

АМОВ	ALPHANUMERIC VARIABLE, SECOND OF TWO PORTIONS OF SPECIES NAME.	L	INPUT
AMU5	VN(J) * WTM(J)/(FF(J) * (WDZ-VN(J) * FF(J) * WD7)) SUMMED OVER ALL SPECIES : **	L	PRGPS
APE (N.NN)	SAVED ARRAY A(N+NN) DURING INVERSION.	L	EQUIL
AR	WEIGHTING FACTOR IN LINEARIZING EQUILIBRIUM ASPECT OF KINE ICALLY CONTROLLED MASS BALANCE.	TL	KINET
APEA	AREA PER UNIT MASS FLOW DURING EXPANSION.	L	EQUIL
ARPH	ELEMENTAL MASS FRACTION OF ATOM.	L	EQUIL
ARPHM	MAXIMUM CONTRIBUTION TO CALCULATION OF AN ARPH.	L	EQUIL
ASTAR	A* USED IN TRANSPORT PROPERTIES	L	PROPS
ASU	FIRST FOUR CHARACTERS OF ALPHAMERIC NAME OF ASSIGNED SURFACE SPECIES	С	CRBCOM
ATA(K)	ALPHANUMERIC VARIABLE, FIRST OF THREE PORTIONS OF ELEMENT NAME.	С	EQPCOM
ATB(K)	ALPHANUMERIC VARIABLE, SECOND OF THREE PORTIONS OF ELEMENT NAME.	. с	EQPCOM
ATC(K)	ALPHANUMERIC VARIABLE, THIRD OF THREE PORTIONS OF ELEMENT NAME.	С	EQPCOM
ATEMP	ABS(DTEMP)	L	NONCER
B(N)	ERRORS USED WITH COEFFICIENTS TO YIELD CORRECTIONS IN CHEMISTRY ITERATIONS. IDENTICAL TO BB+.	!−C	EQTCOM
B(N)	ARRAY OF CONSTANTS DEFINED IN BLIMP, IDENTICAL TO BB*.	С	INTCOM
81	SAVED VALUE OF B(1) DURING INVERSION. EQUALS SURFACE EQUILIBRIUM ERROR FOR THAT OPTION.	L	EQUIL
81(1)	DSQ(I-1)/6	С	ETACOM
82(1)	DSQ(I-1)/3	С	ETACOM
BA1(N,NN)	MATRIX (BLFF) DEFINED BY FIGURE (3) OF NASA CR-1062 PREMULTIPLIED BY INVERSE OF (ALFF).	. - C	ETACOM
BA2(N·NN)	MATRIX (BLHH) OR (BLKK) DEFINED BY FIGURE (3) OF NASA CR- 1062 PREMULTIPLIED BY INVERSE OF (ALHH) OR (ALKK). RESPECTIVELY.		ETACOM
BASMOL	MOLECULAR WEIGHT OF REFERENCE SPECIES IN DIFFUSION FACTOR CALCULATIONS	С	EQTCOM
BDUM	COEFFICIENT IN SURFACE KINETIC RELATION FOR MATERIAL BEING CONSIDERED UNDER KR(9) = 5 OR 6 (SEE INPUT INSTRUCTIONS).	; C	CRBCOM

BETA	BETAM(L)	С	HISCOM
BETAM(L)	STREAMWISE PRESSURE GRADIENT PARAMETER DEFINED BY EQ(53) O NASA CR-1062.	FC	HISCOM
BETH	DERIVATIVE OF LOG MOLECULAR WEIGHT WITH RESPECT TO LOG	Ĺ	EQUIL
8F	PRESSURE AT CONSTANT TEMPERATURE. LOCALLY DEFINED VARIABLE	L	TRMBL
ВІР	NOMINALLY ZERO. SET TO 1. TO PREVENT PREMATURE CONVERGENCE	L	NONCER
BLOW	BLOWING PARAMETER BASED ON GAS MASS FLUX GIVEN BY RHOVW(IS+1)/(C3 * CH).	С	OUTCOM
BLOWCH	CHAR FLUX NORMALIZED BY HEAT TRANSFUR COEFFICIENT	L	OUTPUT
BLOWPG	PYROLYSIS GAS FLUX NORMALIZED BY HEAT TRANSFER COEFFICIENT	L	QUTPUT
BLQEQV	VARIABLE EQUIVALENCED TO BLOCOM FOR DUMPING PURPOSES	L	DUMCOM
BS(N)	SAVED ARRAY OF B(N) DURING INVERSION.	L	EQUIL
BSU	SECOND FOUR CHARACTERS OF ALPHAMERIC VALUE OF ASSIGNED SURFACE SPECIES	С	CRBCOM
BULP	LOG (BUMP).	L	CRECT
BUMEQV	VARIABLE EQUIVALENCED TO BUMCOM FOR DUMPING PURPOSES	L	DUMCOM
BUMP	CONTRIBUTION TO DAMPING FACTOR EASE RESULTING FROM SIGN CHANGES IN CRITICAL ERRORS.	С	BUMCOM
BUMP	10**4 * P. CONSTRAINTS ON CORRECTIONS ARE RELAXED FOR	L	CRECT
C(K)	PARTIAL PRESSURES BELOW THIS VALUE. GRAM ATOMS OF ELEMENT K IN A MOLECULE.	L	INPUT
Cl	1 +DZ WHERE DZ IS DEFINED BY EQ(88) OR (89) OF NASA CR-106	2Ç	HISCOM
C2	-(1+2*DZ) WHERE DZ IS DEFINED BY EQ(88) OR (89) OF NASA CR 1062.	- c	HISCOM
C3	C3M(L)	С	HISCOM
C3M(L)	-1/ALPHASTAR WHERE ALPHASTAR IS THE FLUX NORMALIZING PARA- METER DEFINED BY EQ (44) OF NASA CR-1062.	С	HISCOM
C4	BETA+1+DZ WHERE DZ IS DEFINED BY EQ(88) OR (89) OF NASA CR 1062.	- C	HISCOM
C5	1./ALPH	С	COECOM
C6	BETA * ALPH**2	C	COECOM

C7	-(UE(L)**2)/((ALPH**2)*25036.5)	С	COECOM
C8	ALPHD/ALPH	С	COECOM
C9	BETA+1.+DZ - ALPHD/ALPH	С	COECOM
C10	C7*F(2,I)	С	COECOM
C11	F(3.I)/ALPH	С	COECOM
C12	CAPC(I)/ALPH	С	COECOM
C13	C7 * F(3,1)	С	COECOM
C14	(1.+DZ)*F(1,I)+HF(I,5)	C	COECOM
C15	PR(I)-1	С	COECOM
C16	1./PR(I)	С	COECOM
C17	1./SC(I)	С	COECOM
C18	CTR*T(1)	C	COECOM
C19	CAPC(I)/(ALPH*SC(I))	С	COECOM
C20	CAPC(I)/(ALPH*PR(I))	C	COECOM
C21	1./CAPC(I)	С	COECOM
C22	C7*F(3,I)*(PR(I)-1.)*CAPC(I)/(ALPH*PR(I))	С	COECOM
C23	C3M(L)*QR(I)	С	COECOM
C24	CTR*VMU3	С	COECOM
C25	1./VMU12	С	COECOM
C26	RHOE(L)/RHO(I)	С	COECOM
C27	+VMU4P*CAPC(I)/(ALPH*SC(I))	С	COECOM
C28	CPBAR(I)*TP	С	COECOM
C29	CTR/VMU12	С	COECOM
C30	CT*CTR/VMU12	С	COECOM
C31	HTILP-(CPTIL+C30)*TP+CTR*T(I)*VMU3P+(HTIL-H(I)+CTR*VMU3 * T(I)) * VMU4P	С	COECOM
C32	-(F(2,I)*C7*F(3,I)*CAPC(I)/ALPH+C3M(L)*QR(I))+CPBAR(I)* TP * CAPC(I)/(ALPH*PR(I))+C31*CAPC(I)/(ALPH*SC(I))	C	COECOM
C33	(C32+C3M(L)*QR(I))/CAPC(I)	С	COECOM

C34	CAPC(I)/(ALPH*(PR(I)**2))	C	COECOM
C35	-CPBAR(I)*TP*CAPC(I)/(ALPH*(PR(I)**2))	С	COECOM
C36	-C31*CAPC(I)/ALPH*(SC(I)**2))	С	COECOM
C37	TP*CAPC(I)/ALPH	С	COECOM
C38	TP*CAPC(I)/(ALPH*PR(I))	С	COECOM
C39	=-TP*CAPC(I)/(ALPH*SC(I))	C	COECOM
C40	TP*CAPC(I)*CT*CTR/(VMU12**2*ALPH*SC(I))	С	COECOM
C41	(VMU4P*VMU3+VMU3P)*CTR*CAPC(I)/(ALPH*SC(I))	С	COECOM
C42	VMU4P*CAPC(I)*CTR*T(I)/(ALPH*SC(I))	С	COECOM
C43	C27+DCAPCH*C33+DPRH*C35+DSCH*C36=D0RH*C3M(IS)+DCPBH*C38 + DCPTH*C39+DMU12H*C40=DHTILH*C27+DTH*C41+DMU3H*C42	С	COECOM
C44	(CAPC(I)/ALPH)*(1./SC(I)=1./PR(I))	C	COECOM
C45	(CAPC(I)/ALPH)*(CPBAR(I)/PR(I)-(CT*CTR/VMU12+CPTIL)/SC(I))	C	COECOM
C46	CTR*T(I)*CAPC(I)/(ALPH*SC(I))	C	COECOM
C47	(CAPC(I)/ALPH*SC(I))) * (HTIL-H(I)+VMU3 * CT7 * T(I))	C	COECOM
C48	(CAPC(I)/ALPH)*(1./SC(I)=1./PR(I)) + DTH*C45+DMU3H*C46 + DMU4H*C47	C	COECOM
C49	RHOE(L)/(RHO(I)**2)	¢	COECOM
C50	BETA*(ALPH**2)*RHOE(L)/(RHO(I)**2)	C	COECOM
C51	DRHOH*C50	С	COECOM
C52	C7 * F(2:1) * C51	С	COECOM
C53	RHOP(I)/RHO(I)	C	COECOM
C54	BETA*(ALPH**2)*RHOE(L)*RHOP(I)/(RHO(I)**3)	С	COECOM
C55	-DRHOH * C54	С	COECOM
C56	F(2·I)/ALPH	C	COECOM
C57	C7 * F(3:1) *BETA*ALPH**2*RHOE(L)/(RHO(I)**2)	С	COECOM
C58	-C7 * F(2+1)*DRHOH * C54	С	COECOM
C59	-F(2:1)*(CRHOH*C57 + C58)/ALPH	Ç	COECOM

```
C COECOM
             C7 * F(2 \cdot I) * C43
C60
                                                                            C COECOM
             C7 + F(3+I) + C48
C61
                                                                            C COECOM
             -BETA * ALPH**2 * RHOE(L) * DSQ(I-1)/(12.*RHO(I)**2)
C62
                                                                            C COECOM
             RETA*ALPH**2*CRHO(I=1)
C63
             BETA*ALPH**2*(RHOE(L)/RHO(I)**2) *CETA(I-1)*(.5-DETA(I-1)
                                                                            C COECOM
C64
              *RHOP(I)/(6**RHO(I)))
                                                                            C COECOM
C65
             NOT CURRENTLY USED.
                                                                           · C COECOM
             -DRHOH*C64
C66
                                                                            C COECOM
              -DRHOH*BETA*ALPH**2*RHOE(L)*DSQ(I-1)/(12*RHO(I)**2)
C67
              -(F(2,I)/ALPH)*(C67*2*F(3,I)-F(2,I)*DRHOH*C64)*C7
                                                                            C COECOM
C68
                                                                            C COECOM
              C7*DRHOH*(F(3,1)*C62=F(2,1)*C64)
C69
                                                                            C COECOM
              C7*F(2:I)*C67
C70
                                                                            C COECOM
              NOT CURRENTLY USED.
C71
              F(2,I)*XM(1)+F(3,I)*XM(2)+F(4,I)*XM(3)+F(4,I-1)*XM(4)
                                                                            C COECOM
C72
              = INTEGRAL OF (F(2,1) * F(2,1) * DFTA).
                                                                            C COECOM
              (1,+DZ) * F(2,I)
C73
                                                                            C COECOM
              C7 * DCAPCH * F(3,I) * F(2,I)/ALPH + (1,+DZ) * F(1,I) +
C74
              HF(I,5)
                                                                            C COECOM
              DCAPCH * F(3,1)/ALPH
C75
                                                                            C COECOM
              (1.+DZ) * G(1.I)
C76
              C7 * F(3*I) * (1*-PR(I)) * CAPC(I)/(ALPH * PR(I)) + C7 *
                                                                            C COECOM
C77
              (F(2,I) * C43 + F(3,I) * C48)
              C7 * F(2 \cdot I) * (C48 - (PR(I) - 1 \cdot) * CAPC(I) / (PR(I) * ALPH))
                                                                            C COECOM
C78
                                                                             C COECOM
              C43 + (1.+DZ) * F(1.I) + HF (I.5)
C79
                                                                             C COECOM
              C48 + CAPC(I)/(ALPH * PR(I))
C80
                                                                             C COECOM
              -(C7 * F(2*I)**2 * DCAPCH + CAPC (I)) * F(3*I)/(ALPH**2)
C81
              -(C3M(L) * GR(I) + C32)/ALPH + 2. * F(2.1) *C22/ALPH -
                                                                             C COECOM
 C82
              F(2:1) * C7 * (F(2:1) * C43 + 2 * F(3:1) * C48) / ALPH
              CAPC(I) * F(3+I)/ALPH + ((1+DZ) * F(1+I) + HF(I+5))*F(2+I) C COECOM
 C83
              C32 + G(1:I) * ((1 + DZ) * F(1:I) + HF(I:5))
                                                                             C COECOM
 C84
```

C85	DETA(I=1) * BETA * ALPH**2 * RHOE(IS)/(RHO(I)**2) * (0.5+DETA(I=1) * RHOP(I)/(RHO(I)*6))	С	COECOM
C86	DSQ(I=1) * BETA * ALPH**2 * RHOE(L)/(12*RHO(I)**2)	c	COECOM
C87	C7 * F(3,1) * C86 * DRHOH	C	COECOM
C88	C7 * DRHOH * F(2.1) * C85	С	COECOM
C89	BETA * (ALPH ** 2) * CRH01	L	IONLY
C89	-C3 * ALPH * VMUE(L)	Ļ	OUTPUT
C90	ALPH * DUEDGE	¢	EDGCOM
CAPC(I)	PRODUCT OF DENSITY AND VISCOSITY NORMALIZED BY EDGE VALUE.	С	PRPCOM
CASE(N)	ALPHANUMERIC NAME OF CASE.	С	INTCOM
CBAR	VALUE OF THE VELOCITY RATIO AT BOUNDARY LAYER NODE KAPPA.	¢	INTCOM
CDUM	COEFFICIENT IN SURFACE KINETIC RELATION FOR MATERIAL BEING CONSIDERED UNDER KR(9) = 5 OR 6 (SEE INPUT INSTRUCTIONS).	С	CRBCOM
CF	MOMENTUM TRANSFER COEFFICIENT GIVEN BY CAPC(1)/ALPH * VMUE(IS)/C89*F(3*1)	С	OUTCOM
СН	HEAT TRANSFER COEFFICIENT BASED ON ENTHALPY POTENTIAL, GIVEN BY -WALLQ/(C3+(G(1,NETA)-G(1,1)))	С	OUTCOM
CHFLUX	LESS THAN ZERO VALUE IMPLIES PRESENCE OF CHAR ELEMENTS IN SURFACE CHEMISTRY	L	EQUIL
CH(N)	CURVE FIT CONSTANTS FOR THERMODYNAMIC DATA (THE QUANTITY F + H298 DISCUSSED IN GROUP 12 OF INPUT INSTRUCTIONS) N=1 FO LOW AND 2 FOR HIGH TEMPERATURE RANGE, IDENTICAL TO CCHH+		EGPCOM
CIJ(K•KK)	GRAM ATOM OF ELEMENT K IN BASE SPECIES KK.	E	EQPCOM
CK1(K)	DCAPC(K) * C33 + DPRK(K) * C35 + DSCK(K) * C36-DQRK(K) * C38 + DCPTK(K) * C39 + DMU12K(K) * C40-DHTILK(K) * C27 + DTK(K) * C41 + DMU3K(K) * C42		COECON
CK2(K)	DTK(K) * C45 + DMU3K(K) * C46 + DMU4K(K) * C47	С	COECON
CK3(K)	ZK(K)=SP(1:1:K)	С	COECON
CK4(K)	CAPC(I) * (ZK(K)=SP(1+I+K))/(ALPH * SC(I))	С	COECON
CK5(K)	DZKH(K) * (CAPC(I)/(ALPH * SC(I))) + DMU4H * CK4(K)	С	COECON
CK6(K)	ZKP(K) * (CAPC(I)/(ALPH * SC(I))) + VMU4P * CK4(K)	С	COECON
CK9(K)	DZKH(K) * VMU4P * (CAPC(I)/(ALPH * SC(I))) + CK6(K) * DCAPCH/CAPC(I) = CK6(K) * DSCH/SC(I)	С	COECON

CK13(K)	-DRHOK(K) * BETA * ALPH**2 * (RHOE(L)/RHO(I)**2) * DETA(I-1) * RHOP(I)/(6*RHO(I))).	C COECOM
CK14(K)	B1(I-1) * DPHIKH(K)	C COECON
CK15(K)	C7 * G1(I-1) * DPHIKH(K) * F(3.1)	C COECON
CK16(K)	PHIKP(K) * B1(I-1)	C COECON
CK17(K)	DCAPCK(K) * F(3.1)/ALPH	C COECON
CK18(K)	SP(1,I,K) = (1+DZ)	C COECON
CK19(K)	C7 * (F(3+1) * CK5(K) + F(2+1) * CK9(K))	C COECON
CK20(K)	C7 * CK5(K) * F(2.1)	C COECON
CK21(K)	+C7 * (F(2,I)/ALPH) * (F(2,I) * CK9(K) + 2 * F(3,I) * CK5(K)) - CK6(K)/ALPH	C COECON
CK22(K)	CK6(K) + SP(1,I,K) * ((1+DZ) * F(1,I) + HF(I,5))	C COECON
CK23(K)	DSQ(I-1) * DPHIKH(K) / 3.	L IONLY
CK24(K)	C7 * F(3:I) * CK23(K)	L IONLY
CK25(K)	DETA(I-1) * DPHIKH(K)	L IONLY
CK26(K)	C7 * F(2:I) * CK25(K)	L IONLY
CKK1(K+KK)	DZKK(K+KK) * CAPC(I)/(ALPH * SC(I)) + CK4(K) * DMU4K(KK)+ K TH EQUATION+ KK TH ELEMENT.	C COECON
CKK2(K+KK)	DZKK(K*KK) * VMU4P * (CAPC(I)/(ALPH * SC(I))) + DCAPCK(KK) * (CK6(K)/CAPC(I))+DSCK(KK) * CK6(K)/SC(I) (PLUS (1.+DZ) * F(1*I) + HF (I*5) - VMU4P * CAPC(I)/(ALPH*SC(I)) FOR K=KK ONLY). K TH EQUATION* KK TH ELEMENT.	
CKK3(K+KK)	DPHIKK(K+KK)	C COECON
CL	L(I) IN MIXING LENGTH FORMULATION. SEE REF. 1.	C EPSCOM
CLNUM	CLAUSER NUMBER USED IN DEFINING EDDY VISCOSITY IN THE WAKE PORTION OF THE BOUNDARY LAYER.	C EPSCOM
CM(K)	ELEMENTAL MASS TRANSFER COEFFICIENTS BASED ON MASS FRACTIO POTENTIAL, GIVEN BY VJKW(K)/(DUM(K)*WAT(K)) WHERE DUM(K) I THE SUMMATION OVER KK OF (SP(1,NETA,KK) ~SP(1,1,KK))/WTM(KK)*CIJ(K,KK)	
CMF	THE FACTOR BY WHICH ALL CORRECTIONS ARE DAMPED DURING CHEMISTRY ITERATIONS.	-L CRECT

CMFF(J)	THE VALUE OF CMF AFTER CONSIDERATION OF CONSTRAINTS ON THE CORRECTION TO BE APPLIED TO THE PARTIAL PRESSURE OF THE JI SPECIES.	
COEEQV(N)	GLOBAL SET OF COEFFICIENTS C5.C6.C7. ETC.	E COECOM
COEFQV(N)	GLOBAL SET OF COEFFICIENTS CK1.CK2. ETC.	E COECON
COND	THERMAL CONDUCTIVITY	L OUTPUT
CONE	CONE HALF-ANGLE FOR SPHERE-CONE SHAPED BODIES.	C PRMCOM
CONEQV	VARIABLE EQUIVALENCED TO COECON FOR DUMPING PURPOSES	L DUMCOM
CORAR(N)	CORRECTION ARRAY, COMPOSED OF CORRECTIONS IN H(I), I = 1 T NETA, AND (SP(1,I,K), I= 1, NETA), K= 1, NSPM1.	OE NONCOM
CORMA	THE VALUE OF THE MAXIMUM CORAR.	C BUMCOM
CP(J)	SPECIFIC HEAT.	C EQTCOM
CPA	LOCALLY DEFINED VARIABLE	L MATER
CPBAR(I)	FROZEN SPECIFIC HEAT OF THE MIXTURE.	C PRPCOM
CPF	FROZEN SPECIFIC HEAT. IDENTICAL TO CCPF+.	C EQTCOM
CPG	FROZEN SPECIFIC HEAT OF GAS. IDENTICAL TO CCPG+.	C EQTCOM
СРТ	FROZEN SPECIFIC HEAT OF GAS.	L STATE
CPTIL	PROPERTY OF THE GAS MIXTURE WHICH REDUCES TO CPBAR FOR EQUAL DIFFUSION COEFFICIENTS, SEE EQ(28) OF NASA CR-1062.	C PRPCOM
CRBEQV	VARIABLE EQUIVALENCED TO CRBCOM FOR DUMPING PURPOSES	L DUMCOM
CRHO(I-1)	C26 * DETA(I-1) * (1(RHOP(I)/RHO(I)) * DETA(I-1)/6)	C PRPCOM
CRH01	(RHOE(L) / RHO(I)) * DETA(I-1) * (1.+DETA(I-1) * RHOP(I) / (RHO(I) * 6.))	L IONLY
CSP	EQUILIBRIUM SPECIFIC HEAT OF GAS.	L EQUIL
СТ	COEFFICIENT APPEARING IN THE APPROXIMATION FOR THERMAL DIFFUSION COEFFICIENTS, SEE EG(26) OF NASA CR-1062, NUMERICAL LY EQUAL TO -0.5, SET EQUAL TO ZERO WHEN THERMAL DIFFUSION NEGLECTED.	-
CTR	CT * UNIVERSAL GAS CONSTANT.	C PRPCOM
CXM	LOCALLY DEFINED VARIABLE	L IONLY
СҮМ	LOCALLY DEFINED VARIABLE	L IONLY

CYSP	LOCALLY DEFINED VARIABLE	L IONLY
D	RERAY-SET OF CONSTANT VECTORS CONVERTED TO SOLUTION VECTORS	L RERAY
D	TAYLOR-ARGUMENT REPRESENTING DELTA ETA.	L TAYLOR
D1	THE D SUB ONE OF EQ(89) IN NASA CR-1062.	L HISTXI
D2	THE D SUB TWO OF EQ(89) IN NASA CR-1062.	L HISTXI
D2UEDG	SECOND DERIVATIVE OF UEDGE WITH RESPECT TO STREAM FUNCTION, SEE EQ(68) OF NASA CR-1062 (SET EQUAL TO ZERO IN PRESENT PROGRAM).	C EDGCOM
DBAR	REFERENCE DIFFUSION COEFFICIENT INTRODUCED IN APPROXIMATION FOR UNEQUAL DIFFUSION COEFFICIENTS, NUMERICALLY EQUAL TO 4.16E+8 * T * SQRT(T) / (OMEGA * P).	L PROPS
DCAPCH	DERIVATIVE OF CAPC WITH RESPECT TO H.	C PRPCOM
DCAPCK(K)	DERIVATIVE OF CAPC WITH RESPECT TO MASS FRACTION OF ELEMENT K.	C PRPCOM
DCLL	DERIVITIVE OF CL AT I WITH RESPECT TO CL AT I-1	L TRMBL
DCLPI	DERIVITIVE OF CL AT I WITH RESPECT TO PI AT I	L TRMBL
DCLPM	DERIVITIVE OF CL AT I WITH RESPECT TO PIM AT I-1	L TRMBL
DCPBH	DERIVATIVE OF CPBAR WITH RESPECT TO H. SET EQUAL TO ZERO IN CURRENT PROGRAM.	C PRPCOM
DCPBK(K)	DERIVATIVE OF CPBAR WITH RESPECT TO MASS FRACTION OF ELE- MENT K. SET EQUAL TO ZERO IN CURRENT PROGRAM.	C PRPCOM
DCPTH	DERIVATIVE OF CPTIL WITH RESPECT TO H, SET EQUAL TO ZERO IN CURRENT PROGRAM.	C PRPCOM
DCPTK(K)	DERIVATIVE OF CPTIL WITH RESPECT TO MASS FRACTION OF ELE- MENT K. SET EQUAL TO ZERO IN CURRENT PROGRAM.	C PRPCOM
DCU(I)	(DETA(I))**3	C ETACOM
DELJW(K)	ERROR IN DIFFUSIVE MASS FLUX. WALLJ(K). INTRODUCED DURING NEWTON-RAPHSON ITERATION.	C FLXCOM
DELQJW(N)	GLOBAL SET DELOW AND DELJW(K).	E FLXCOM
DELOW	ERROR IN DIFFUSIVE HEAT FLUX, WALLQ, INTRODUCED DURING NEW-TON-RAPHSON ITERATION.	C FLXCOM
DELST	DISPLACEMENT THICKNESS GIVEN BY Y(NETA)-C89*(F(1+NETA)-F(1+1))/ALPH.	C OUTCOM
DEPC	CONSTANT IN CORRECTION COEFFICIENTS ON EPSA(I) RESULTING FROM LINEAR CORRECTION COEFFICIENTS	C EPSCOM
DEPS(I)	DERIVATIVE OF EPSA(WITH RESPECT TO NONLINEAR VARIABLES	C EPSCOM

DER(L)	DIMENSIONED VARIABLE USED IN VARIOUS SUBROUTINES BUT NOT C TEMCOM USED FOR TRANSMITTING INFORMATION BETWEEN SUBROUTINES.
DETA(I)	ETA(I+1) - ETA(I) C ETACOM
DHTILH	DERIVATIVE OF HTIL WITH RESPECT TO H. C PRPCOM
DHTILK(K)	DERIVATIVE OF HTIL WITH RESPECT TO MASS FRACTION OF ELEMENTC PRPCOM K.
DIV	ROW NORMALIZING FACTOR IN GAUSSIAN ELIMINATION. L RERAY
DIVC	PRODUCT OF 'DIV' AND ELEMENT OF ROW. L RERAY
DKPT (MK)	DERIVATIVE OF LOG KP WITH RESPECT TO LOG TEMPERATURE. C KINCOM
DLI(I)	DERIVATIVE OF EL(I) WITH RESPECT TO NONLINEAR VARIABLES C EPSCOM
DLPH	A(3,1) EVALUATED AT THE WALL. C NONCOM
DLPK(K)	A(3+K+2) EVALUATED AT THE WALL. C NONCOM
DLX1	ALOG(XI(L) / XI(L-1)) L HISTXI
DLX2	STORED (HISTORIC) VALUE FOR DLOGXI DEFINED BY EQ(90) OF C HISCOM NASA CR~1062.
DMU12H	DERIVATIVE OF VMU12 WITH RESPECT TO H. SET EQUAL TO ZERO INC PRPCOM CURRENT PROGRAM.
DMU12K(K)	DERIVATIVE OF VMU12 WITH RESPECT TO MASS FRACTION OF ELE- C PRPCOMMENT K. SET EQUAL TO ZERO IN PRESENT PROGRAM.
DMU3H	DERIVATIVE OF VMU3 WITH RESPECT TO H. C PRPCOM
DMU3K(K)	DERIVATIVE OF VMU3 WITH RESPECT TO MASS FRACTION OF ELEMENTC PRPCOM K.
DMU4H	DERIVATIVE WITH RESPECT TO H OF THE COEFFICIENT MU4 DEFINEDC PRPCOM IN EQ(28) OF NASA CR-1062.
DMU4K(K)	DERIVATIVE WITH RESPECT TO MASS FRACTION OF ELEMENT K OF C PRPCOM THE COEFFICIENT MU4 DEFINED IN EQ(28) OF NASA CR-1062.
DPHIKH(K)	DERIVATIVE OF PHIK WITH RESPECT TO H. SET EQUAL TO ZERO IN C PRPCOM CURRENT PROGRAM.
DPHIKK (K+KK)	DERIVATIVE OF K TH PHIK WITH RESPECT TO MASS FRACTION OF C PRPCOM ELEMENT KK. SET EQUAL TO ZERO IN CURRENT PROGRAM.
DPI(3+K+2)	(ARRAY OF DERIVATIVES OF PI WITH RESPECT TO PRIMARY VARI- C EPSCOM ABLES)/TREF

DPRH	DERIVATIVE OF PR WITH RESPECT TO H. SET EQUAL TO ZERO IN CURRENT PROGRAM.	С	PRPCOM
DPRK(K)	DERIVATIVE OF PR WITH RESPECT TO MASS FRACTION OF ELEMENT SET EQUAL TO ZERO IN CURRENT PROGRAM.	KC	PRPCOM
OQJNL(N)	GLOBAL SET OF DONL AND DJNL(K).	Ε	FLXCOM
DQJRNL(N)	DERIVATIVE OF DIFFUSIVE HEAT AND MASS FLUXES, WALLOJ WITH RESPECT TO NTH REDUCED NONLINEAR VARIABLE.	Ε	NONCOM
DONL (N)	DERIVATIVE OF DIFFUSIVE HEAT FLUX, WALLO, WITH RESPECT TO THE NONLINEAR VARIABLE.	NC	FLXCOM
DQRH	DERIVATIVE OF GR WITH RESPECT TO H. SET EQUAL TO ZERO IN CURRENT PROGRAM.	С	PRPCOM
DQRK(K)	DERIVATIVE OF QR WITH RESPECT TO MASS FRACTION OF ELEMENT SET EQUAL TO ZERO IN CURRENT PROGRAM.	KC	PRPCOM
DRHOH	DERIVATIVE OF RHO WITH RESPECT TO H.	.c	PRPCOM
DRHOI	DERIVITIVE OF VELOCITY DEFECT THICKNESS WITH RESPECT TO RHO AT I	L	TRMBL
DRHOK (K)	DERIVATIVE OF RHO WITH RESPECT TO MASS FRACTION OF ELEMENT K.	¢	PRPCOM
DRNL(N)	REDUCED NONLINEAR ERRORS BEFORE MATRIX INVERSION. CORRECTIONS OF VARIABLES IN REDUCED NONLINEAR SET AFTER MATRIX INVERSION.	С	ERRCOM
DSCH	DERIVATIVE OF SC WITH RESPECT TO H. SET EQUAL TO ZERO IN CURRENT PROGRAM.	С	PRPCOM
DSCK(K)	DERIVATIVE OF SC WITH RESPECT TO MASS FRACTION OF ELEMENT SET EQUAL TO ZERO IN CURRENT PROGRAM.	KC	PRPCOM
DSIP(L)	DECREASE IN ENTROPY FROM PREVIOUS STATION TO CURRENT STATION L AT BOUNDARY LAYER EDGE DUE TO SHOCK CURVATURE (DSIP(1)= 0 BY DEFINITION).	С	EDGCOM
DSQ(I)	(DETA(I))**2	С	ETACOM
DSV	LOCALLY DEFINED VARIABLE	L	MATS1
DTD	DOWNWARD TEMPERATURE STEP USED IN SEEKING SURFACE EQUILIB-RIUM SOLUTION.	L	EQUIL
DTEMP	PREDICTED CHANGE IN SURFACE TEMPERATURE FOR THE CURRENT ITERATION DURING A KR(9)=6 PROBLEM.	Ļ	NONCER
DTH	DERIVATIVE OF T WITH RESPECT TO H.	С	PRPCOM
DTHW	DTH EVALUATED AT THE WALL.	С	NONCOM

DTK(K)	DERIVATIVE OF T WITH RESPECT TO MASS FRACTION OF ELEMENT	C+C PRPCOM
DTKW(K)	DTK EVALUATED AT THE WALL.	C NONCOM
MTD	LIMIT VALUE OF DELTA (1./T) IN CHEMISTRY SOLUTION.	L CRECT
DTU	UPWARD TEMPERATURE STEP USED IN SEEKING SURFACE EQUILIBRIUS SOLUTION.	UML EQUIL
DUB2 DUB3 DUB4 DUB5	LOCALLY INPUT VARIABLES, IF NON-ZERO ASSIGNED TO FITMOL, BASMOL, SIGMA AND EPOVRK, RESPECTIVELY	L INPUT L INPUT L INPUT L INPUT
DUDS(L)	DERIVATIVE OF EDGE VELOCITY WITH RESPECT TO S IN REFCON. TEMPORARY STORAGE AREA IN OTHER ROUTINES.	C TEMCOM
DUEDGE	DERIVATIVE UEDGE WITH RESPECT TO STREAM FUNCTION, SEE EQ(OF NASA CR-1062 (SET EQUAL TO ZERO IN PRESENT PROGRAM).	SBC EDGCOM
DUES	DERIVATIVE OF EDGE VELOCITY WITH RESPECT TO STREAMWISE COODINATE S.	ORC EDGCOM
DUM	LOCALLY DEFINED VARIABLE	L EQUIL
DUM	LOCALLY DEFINED VARIABLE	L ETIMEF
DUM	LOCALLY DEFINED VARIABLE	L FIRSTG
DUM	LOCALLY DEFINED VARIABLE	L KINET
DUM	LOCALLY DEFINED VARIABLE	L MATS1
DUM	LOCALLY DEFINED VARIABLE	L NONCER
DUM	LOCALLY DEFINED VARIABLE	L TRMBL
DUM1	LOCALLY DEFINED VARIABLE	L CRECT
DUM1	LOCALLY DEFINED VARIABLE	L EQUIL
DUM1	LOCALLY DEFINED VARIABLE	L FIRSTG
DUM1	LOCALLY DEFINED VARIABLE	L ICOEFF
DUM1	LOCALLY DEFINED VARIABLE	L IMONE
DUM1	LOCALLY DEFINED VARIABLE	L IONLY
DUM1	LOCALLY DEFINED VARIABLE	L KINET
DUM1	LOCALLY DEFINED VARIABLE	L LINCER
DUM1	LOCALLY DEFINED VARIABLE	L MATER

DUM1	LOCALLY DEFINED VARIABLE	L NONCER
DUM1	LOCALLY DEFINED VARIABLE	L OUTPUT
DUM1	LOCALLY DEFINED VARIABLE	L REFCON
DUM1	LOCALLY DEFINED VARIABLE	L RNLCER
DUM1	LOCALLY DEFINED VARIABLE	L TRMBL
DUM2	LOCALLY DEFINED VARIABLE	L EQUIL
DUM2	OCALLY DEFINED VARIABLE	L FIRSTG
DUM2	LOCALLY DEFINED VARIABLE	L ICOEFF
DUM2	LOCALLY DEFINED VARIABLE	L IMONE
DUM2	LOCALLY DEFINED VARIABLE	L IONLY
DUM2	LOCALLY DEFINED VARIABLE	L KINET
DUM2	LOCALLY DEFINED VARIABLE	L LINCER
DUM2	LOCALLY DEFINED VARIABLE	L MATER
DUM2	LOCALLY DEFINED VARIABLE	L OUTPUT
DUM2	LOCALLY DEFINED VARIABLE	L RNLCER
DUM2	LOCALLY DEFINED VARIABLE	L TRMBL
DUM3	LOCALLY DEFINED VARIABLE	L FIRSTG
DUMS	LOCALLY DEFINED VARIABLE	L IMONE
DUM3	LOCALLY DEFINED VARIABLE	L IONLY
DUM3	LOCALLY DEFINED VARIABLE	L LINCER
DUM3	LOCALLY DEFINED VARIABLE	L OUTPUT
DUM3	LOCALLY DEFINED VARIABLE	L TRMBL
DUM4	LOCALLY DEFINED VARIABLE	L IMONE
DUM4	LOCALLY DEFINED VARIABLE	L IONLY
DUM4	LOCALLY DEFINED VARIABLE	L LINCER
DUM4	LOCALLY DEFINED VARIABLE	L OUTPUT
DUM5	LOCALLY DEFINED VARIABLE	L IMONE
DUM5	LOCALLY DEFINED VARIABLE	L IONLY

DUM5	LOCALLY DEFINED VARIABLE	L LINCER
DUM6	LOCALLY DEFINED VARIABLE	L IMONE
DUM6	LOCALLY DEFINED VARIABLE	L LINCER
DUM7	LOCALLY DEFINED VARIABLE	L IMONE
DUM8	LOCALLY DEFINED VARIABLE	L IMONE
DUMP	P * 10**7* LIMIT PRESSURE IN CONTROLLING DAMPING OF CHEM- ISTRY SOLUTION.	L CRECT
DUZ	LOCALLY DEFINED VARIABLE	L OUTPUT
DVNL(N)	DAMPED NONLINEAR CORRECTIONS (GIVEN BY EQ(156) OF NASA CR-1062 MULTIPLIED BY EASE).	C NONCOM
DY(J)	CORRECTION ON VARIABLE Y(J)* IN CHEMISTRY SOLUTION.	C EQTCOM
DVS	VELOCITY DEFECT THICKNESS OVER DEL.	C EPSCOM
DYI	DAMPED CORRECTION ON VARIABLE Y(J)* IN CHEMISTRY SOLUTION.	L CRECT
DZ	THE D SUB ZERO OF EQ(89) IN NASA CR-1062.	L HISTXI
DZKH(K)	DERIVATIVE OF ZK WITH RESPECT TO H.	C PRPCOM
DZKK(K+KK)	DERIVATIVE OF K TH ZK WITH WITH RESPECT TO MASS FRACTION O	FC PRPCOM
	ELEMENT KK.	
E(N)	ERRORS IN CHEMISTRY EQUATIONS (MASS BALANCE ERRORS FOR N EQUAL TO OR LESS THAN IS*, EQUILIBRIUM ERRORS FOR N GREATE THAN IS*, WHERE IS* IS NUMBER OF ELEMENTS INCLUDING ELECTRON).	
E(N)	ERRORS IN CHEMISTRY EQUATIONS (MASS BALANCE ERRORS FOR N EQUAL TO OR LESS THAN IS*, EQUILIBRIUM ERRORS FOR N GREATE THAN IS*, WHERE IS* IS NUMBER OF ELEMENTS INCLUDING ELEC-	R
	ERRORS IN CHEMISTRY EQUATIONS (MASS BALANCE ERRORS FOR N EQUAL TO OR LESS THAN IS*, EQUILIBRIUM ERRORS FOR N GREATE THAN IS*, WHERE IS* IS NUMBER OF ELEMENTS INCLUDING ELECTRON). ABSOLUTE VALUE OF EQUILIBRIUM ERROR FOR A SPECIES IN CHEM-	R
EAB	ERRORS IN CHEMISTRY EQUATIONS (MASS BALANCE ERRORS FOR N EQUAL TO OR LESS THAN IS*, EQUILIBRIUM ERRORS FOR N GREATE THAN IS*, WHERE IS* IS NUMBER OF ELEMENTS INCLUDING ELECTRON). ABSOLUTE VALUE OF EQUILIBRIUM ERROR FOR A SPECIES IN CHEMISTRY SOLUTION.	L MATER C KINCOM
EAB EAK(MK)	ERRORS IN CHEMISTRY EQUATIONS (MASS BALANCE ERRORS FOR N EQUAL TO OR LESS THAN IS*, EQUILIBRIUM ERRORS FOR N GREATE THAN IS*, WHERE IS* IS NUMBER OF ELEMENTS INCLUDING ELECTRON). ABSOLUTE VALUE OF EQUILIBRIUM ERROR FOR A SPECIES IN CHEMISTRY SOLUTION. ACTIVATION ENERGY. DAMPING FACTOR, APPLIED UNIFORMLY TO ALL CORRECTIONS.	L MATER C KINCOM
EAB EAK(MK) EASE	ERRORS IN CHEMISTRY EQUATIONS (MASS BALANCE ERRORS FOR N EQUAL TO OR LESS THAN IS*, EQUILIBRIUM ERRORS FOR N GREATE THAN IS*, WHERE IS* IS NUMBER OF ELEMENTS INCLUDING ELECTRON). ABSOLUTE VALUE OF EQUILIBRIUM ERROR FOR A SPECIES IN CHEMISTRY SOLUTION. ACTIVATION ENERGY. DAMPING FACTOR, APPLIED UNIFORMLY TO ALL CORRECTIONS.	L MATER C KINCOM C BUMCOM
EAB EAK(MK) EASE EB(K)	ERRORS IN CHEMISTRY EQUATIONS (MASS BALANCE ERRORS FOR N EQUAL TO OR LESS THAN IS*, EQUILIBRIUM ERRORS FOR N GREATE THAN IS*, WHERE IS* IS NUMBER OF ELEMENTS INCLUDING ELECTRON). ABSOLUTE VALUE OF EQUILIBRIUM ERROR FOR A SPECIES IN CHEMISTRY SOLUTION. ACTIVATION ENERGY. DAMPING FACTOR, APPLIED UNIFORMLY TO ALL CORRECTIONS. MAGNITUDE OF LARGEST CONTRIBUTION TO K TH MASS BALANCE. MINIMUM CONTRIBUTION ACCEPTED TO K TH MASS BALANCE.	L MATER C KINCOM C BUMCOM C EQTCOM
EAB EAK(MK) EASE EB(K) EBL(K)	ERRORS IN CHEMISTRY EQUATIONS (MASS BALANCE ERRORS FOR N EQUAL TO OR LESS THAN IS*, EQUILIBRIUM ERRORS FOR N GREATE THAN IS*, WHERE IS* IS NUMBER OF ELEMENTS INCLUDING ELECTRON). ABSOLUTE VALUE OF EQUILIBRIUM ERROR FOR A SPECIES IN CHEMISTRY SOLUTION. ACTIVATION ENERGY. DAMPING FACTOR, APPLIED UNIFORMLY TO ALL CORRECTIONS. MAGNITUDE OF LARGEST CONTRIBUTION TO K TH MASS BALANCE. MINIMUM CONTRIBUTION ACCEPTED TO K TH MASS BALANCE. EB/(10**8) RESIDUAL ERROR IN CONDENSED EQUILIBRIUM IMPOSED IN CHEMIS*	L MATER C KINCOM C BUMCOM C EQTCOM C EQTCOM

EDGEQV	VARIABLE EQUIVALENCED TO EDGCOM FOR DUMPING PURPOSES	L	DUMCOM
EER	EQUILIBRIUM ERROR OF CONDENSED SPECIES BEING INTRODUCED DURING CURRENT ITERATION.	L	MATER
EESE(N)	RESIDUAL ERROR IN MASS BALANCE IMPOSED IN CHEMISTRY SOLU- TION AS A CONSEQUENCE OF BOUNDARY LAYER DAMPING.	L	MATER
EG2	CONTRIBUTION TO THERMAL FLUX DUE TO INEQUALITY OF TURBU- LENT PRANDTL AND SCHMIDT NUMBERS	L	TRMBL
EG3	CONTRIBUTION TO THERMAL FLUX DUE TO TURBULENT VISCOUS DISSIPATION	L	TRMBL
EHS	ERROR IN ENTHALPY OR ENTROPY FOR ASSIGNED ENTHALPY OR ENTROPY CHEMISTRY SOLUTIONS.	Ļ	MATER
EL	MAXIMUM EQUILIBRIUM ERROR, IDENTICAL TO EEL+.	С	EQTCOM
EL(I)	MIXING LENGTH NORMALIZED BY DEL.	С	EPSCOM
ELCON	MIXING LENGTH CONSTANT AS IN L=ELCON*Y.	С	EPSCOM
ELK	LOG OF EQUILIBRIUM IMBALANCE OF KINETIC REACTION.	Ļ	KINET
ELKM	LOG OF NON-EQUILIBRIUM OF KINETIC RELATION	Ļ	KINET
ELM(N)	GLOBAL SET OF MAXIMUM VALUES OF ERRORS FOR VARIOUS SETS OF TAYLOR SERIES EXPANSIONS.	С	ERRCOM
ELMM	MAXIMUM VALUE OF ELM(N).	С	ERRCOM
EMIS	SURFACE EMITTANCE OF THE MATERIAL BEING CONSIDERED UNDER KR(9) = 3.4.5 OR 6.	С	CRBCOM
EMISC	SURFACE EMITTANCE OF THE MATERIAL BEING CONSIDERED UNDER KR(9) = 3 OR 4.	С	CRBCOM
EMIST	SURFACE EMITTANCE OF THE MATERIAL BEING CONSIDERED UNDER KR(9) = 5 OR 6.	С	CRBCOM
EMIV	SURFACE EMISIVITY	С	CRBCOM
ENL	MAXIMUM MASS BALANCE ERROR. IDENTICAL TO EENL+.	С	EQTCOM
ENL(N)	GLOBAL SET OF ERRORS FOR LINEARIZED CONSERVATION EQUATIONS AND BOUNDARY CONDITIONS.	С	ERRCOM
ENLM(N)	GLOBAL SET OF MAXIMUM VALUES OF ERRORS FOR THE VARIOUS SET OF LINEARIZED CONSERVATION EQUATIONS AND BOUNDARY CONDITIONS.	sc	ERRCOM .
ENLMM	LARGEST VALUE OF ENLM.	С	ERRCOM
EOL	MULTIPLYING FACTOR USED TO SMOOTHLY TRANSFORM KINETIC MASS BALANCE TO EQUIVALENT EQUILIBRIUM EQUATION.	L	KINET

EP	ERROR IN OVERALL PRESSURE BALANCE.	L MATER
EPSA(I)	RHO(I)**2*(EDDY VISCOSITY)/(RHOE(L)*VMUE(L)).	C EPSCOM
EPI	LOCALLY DEFINED VARIABLE	L TRMBL
EPOVRK	EPSILON/K. OF REFERENCE SPECIES IN DIFFUSION CALCULATIONS	C EQTCOM
EPS	KINEMATIC EDDY VISCOSITY	L TRMBL
EPS1	KINEMATIC EDDY VISCOSITY IN WALL REGION	C EPSCOM
EPS2	KINEMATIC EDDY VISCOSITY IN WAKE REGION	L TRMBL
EPSOUT	VARIABLE EQUIVALENCED TO EPSCOM FOR OUTPUT PURPOSES	L TRMBL
EQPEQV	VARIABLE EQUIVALENCED TO EQPCOM FOR DUMPING PURPOSES	L DUMCOM
EQTEQV	VARIABLE EQUIVALENCED TO EQTCOM FOR DUMPING PURPOSES	L DUMCOM
ER	ERROR IN MASS BALANCE RELATION.	L MATER
ERPP1	DERIVITIVE OF DAWSON FUNCTION WITH RESPECT OF ITS ARGUMENT AT I	L TRMBL
ERPP2	DERIVITIVE OF DAWSON FUNCTION WITH RESPECT TO ITS ARGUMENT AT I-1	L TRMBL
ERP1	DAWSON FUNCTION OF ARGUMENT AT I	L TRMBL
ERP2	DAWSON FUNCTION OF ARGUMENT AT I-1	L TRMBL
ERREQV	VARIABLE EQUIVALENCED TO ERRCOM FOR DUMPING PURPOSES	L DUMCOM
ETA(I)	TRANSFORMED COORDINATE IN A DIRECTION NORMAL TO THE SURFAC DEFINED BY EQ (33) OF NASA CR-1062.	EC ETACOM
ETAEQV	VARIABLE EQUIVALENCED TO ETACOM FOR DUMPING PURPOSES	L DUMCOM
ETAT	LOCALLY DEFINED VARIABLE	L FIRSTG
EXEL	RATIO OF FORWARD TO REVERSE DRIVING POTENTIAL IN KINETIC EQUATIONS.	L KINET
EXK (MK)	ALWAYS SET TO 1.0, (REACTION EXPONENT).	C KINCOM
F(N+I)	STREAM FUNCTION (N=1), VELOCITY RATIO (N=2) AND DERIVATIVE OF ORDER N=2 OF VELOCITY RATIO WITH RESPECT TO ETA.	SC VARCOM
FAMOA(J)	ALPHANUMERIC VARIABLE, FIRST OF TWO PORTIONS OF SPECIES NAME. IDENTICAL TO MOA+.	C BLQCOM
FAMOB(J)	ALPHANUMERIC VARIABLE. SECOND OF TWO PORTIONS OF SPECIES NAME. IDENTICAL TO MOB+.	C BLQCOM

FD(N)	D1 * F(N+1+1) + D2 * HF(I+N+1) FOR N=1 THROUGH 3+ D1 * F(4 I-1)+D2 * HF(I-1+4) FOR N=4+	L HISTXI
FF(J)	DIFFUSION FACTOR INTRODUCED BY THE APPROXIMATION FOR DIFFUSION COEFFICIENTS BY EQ(19) OF NASA CR-1062.	-C EQPCOM
FFA	POWER ON MOLECULAR WEIGHT IF IT IS ASSUMED THAT THE DIFFU- SION FACTORS, FF(J), ARE PROPORTIONAL TO SPECIES MOLECULAR WEIGHTS, WTM(J), RAISED TO A POWER.	
FFAR FFF	POWER ON MOLECULAR WEIGHT READ IN IF IT IS ASSUMED THAT THE DIFFUSION FACTORS, FF(J), ARE PROPORTIONAL TO SPECIES MOLECULAR WEIGHTS, WTM(J), RAISED TO A POWER OTHER THAN 0.5 RATIO OF GAS MOLECULAR WEIGHT TO 'VMU2'.	
FFIN(J)	DIFFUSION FACTOR, FF(J), WHICH IS READ IN.	L INPUT
FFK2	PARAMETER SET EQUAL TO WM/VMU2 FOR EQUAL DIFFUSION COEFFI- CIENTS (KKR(14)=2) AND TO FF(K) FOR UNEQUAL DIFFUSION CO- EFFICIENTS (KKR(14)=0 OR 1).	L PROPS
FITMOL	CONSTANT IN CURVE FIT OF DIFFUSION FACTORS BASED ON MOLECULAR WEIGHTS	L INPUT
FKF(MK)	PRE-EXPONENTIAL FACTOR POUND MOLES OF REACTANT PER SECOND PER FT**2.	C KINCOM
FLD(N•NN)	CURVE FIT CONSTANTS FOR THERMODYNAMIC DATA FOR THE FLUID MIXTURE IN KR(7)=1 OPTION (SIMILAR TO THE QUANTITIES DISCUSSED IN GROUP 12 OF THE INPUT INSTRUCTIONS). NN= 1.2 OR 3 FOR TEMPERATURE RANGES LESS THAN 3600 DEG R. EQUAL TO OR GREATER THAN 3600 DEG R BUT LESS THAN 5400 DEG R. OR. EQUAL TO OR GREATER THAN 5400 DEG R. RESPECTIVELY. N REFERS TO COMPONENT OF THE NONREACTING FLUID MIXTURE.	
FLE(N)	ERROR FOR THE TAYLOR SERIES EXPANSIONS INVOLVING F(1.1) AND THEIR DERIVATIVES.	DC ERRCOM
FLEM	MAXIMUM VALUE OF FLE(N).	C ERRCOM
FLIQ	FRACTION OF A SPECIES WHICH IS LIQUID.	C EQTCOM
FLPEQV	VARIABLE EQUIVALENCED TO FLPCOM FOR DUMPING PURPOSES	L DUMCOM
FLUXJ (N+L+1)	CONVERGED VALUE FOR MASS FLUX OF COMPONENT N INTO THE BOUNDARY LAYER AT THE WALL, N 1 TO 3 FOR EDGE GAS, PYROLYSIS GAS AND CHAR, RESPECTIVELY.	C WALCOM
FLXEQV	VARIABLE EQUIVALENCED TO FLXCOM FOR DUMPING PURPOSES	L DUMCOM
FM(J)	3 IF UNIMPORTANT SPECIES (NOT SIGNIFICANT IN ANY MASS BAL-ANCE), OTHERWISE 1.	C EQTCOM
FN	LOCALLY DEFINED VARIABLE	L ERP

FNLEM	ERROR FOR THE LINEARIZED MOMENTUM EQUATIONS AND BOUNDARY CONDITIONS.	С	ERRCOM
FNU(K)	VNU(J+K) FOR CURRENT J.	C	EQTCOM
FPPW	F(3:1) PRINTED IN ONE-LINE-PER-ITERATION OUTPUT.	L	ITERAT
FR(J.I)	MOLE FRACTION.	С	BLQCOM
FW(L+1)	CONVERGED VALUE OF STREAM FUNCTION AT SURFACE OF BODY.	Ç	WALCOM
FWCON(L)	INTEGRAND IN CALCULATION OF FW IN REFCON. TEMPORARY STORAGE AREA IN OTHER ROUTINES.	C	TEMCOM
FWDUM(L)	FW * SQRT(2*XI) IN REFCON, TEMPORARY STORAGE AREA IN OTHER ROUTINES.	С	TEMCOM
G(N+1)	TOTAL ENTHALPY (N=1) AND ITS DERIVATIVES OF ORDER N=1 WITH RESPECT TO ETA.	С	VARCOM
GAM	ISENTROPIC EXPONENT.	L	EQUIL
GAM1	ISENTROPIC EXPONENT FOR HOMOGENEOUS MIXTURE	С	STTCOM
GAMF(K)	DEFINED BY EQ(79) OF NASA CR-1064.	c	EQTCOM
GAMH(K)	DEFINED BY EQ(80) OF NASA CR-1064.	С	EQTCOM
GAMK (K+KK)	DEFINED BY EQ (81) OF NASA CR-1064.	E	NONCOM
GD(N)	D1 * G(N,I) + D2 * HG(I,N) FOR N=1 THROUGH 3, D1 * G(3,I=1) + D2 + HG(I=1,3) FOR N=4.	L	HISTXI
GE(M)	STAGNATION ENTHALPY AT BOUNDARY LAYER EDGE.	С	PRMCOM
GLE(N)	ERROR FOR THE TAYLOR SERIES EXPANSIONS INVOLVING G(1:1) AND THEIR DERIVATIVES.	C	ERRCOM
GLEM	MAXIMUM VALUE OF GLE(N).	С	ERRCOM
GMR	ISENTROPIC EXPONENT FROM EQUILIBRIUM CALCULATION	С	PRPCOM
GNLEM	ERROR FOR THE LINEARIZED ENERGY CONSERVATION EQUATIONS.	С	ERRCOM
GW	FIRST GUESS FOR WALL ENTHALPY WHICH IS READ IN WHEN KR(2)=0)L	FIRSTG
H(I)	STATIC ENTHALPY OF THE MIXTURE. IDENTICAL TO HH*.	С	PRPCOM
H(J)	ENTHALPY. IDENTICAL TO HH+.	С	EQTCOM
HALPH	STORED (HISTORIC) VALUE OF ALPH ONE STATION UPSTREAM.	С	HISCOM
HCARB	HEAT OF FORMATION AT 298 DEG. K OF THE SURFACE MATERIAL BEING CONSIDERED UNDER KR(9) = 3 OR 4.	•C	CRBCOM
нсн	CHAMBER (OR STAGNATION) ENTHALPY.	L	EQUIL

HCHAR	CHAR ENTHALPY C CRBCOM	
HCWAL	ENTHALPY OF SURFACE SPECIES DURING KR(9) = 3 OR 4 OPTIONS. C EQPCOM	
HE	STATIC ENTHALPY OF GAS AT BOUNDARY-LAYER EDGE. C EDGCOM	
HET	TOTAL ENTHALPY OF GAS AT BOUNDARY-LAYER EDGE. L STATE	
HF(I+N)	STORED (HISTORIC) VALUE OF $F(N \cdot I)$ ONE STATION UPSTREAM FOR C HISCOM N=1 THROUGH 4, HF(I,5) = D1*F(1,I) + D2*HF(I.1) WHERE D1 AND D2 ARE DEFINED BY EQ(88) OR (89) OF NASA CR=1062.	
HG	ENTHALPY OF GAS. IDENTICAL TO HHG+. C EQTCOM	
HG(I+N)	STORED (HISTORIC) VALUE OF G(N+I) ONE STATION UPSTREAM. C HISCOM	
HH(I)	STATIC ENTHALPY OF THE MIXTURE. IDENTICAL TO H+. C PRPCOM	
HH(J)	ENTHALPY: IDENTICAL TO H(J)*. C EQTCOM	
HIP	ENTHALPY INPUT. C EQTCOM	
HISEQV	VARIABLE EQUIVALENCED TO HISCOM FOR DUMPING PURPOSES L DUMCOM	
HIST1(N)	SET OF VARIABLES STARTING WITH XI(1) TO BE STORED ON TAPE. E HISCOM	
HIST2(N)	SET OF VARIABLES STARTING WITH PE(1.1) TO BE STORED ON TAPEE EDGCOM	
HIST3(N)	SET OF VARIABLES STARTING WITH F(1.1) TO BE STORED ON TAPE. VARCOM	
HIST4(N)	SET OF VARIABLES STARTING WITH FW(1:1) TO BE STORED ON TAPEE WALCOM	
HM(J)	ENTHALPY OF FUSION. C EQPCOM	
HMAT	HEAT OF FORMATION AT 298 DEG. K OF THE MATERIAL BEING CON- C CRBCOM SIDERED UNDER KR(9) = 3.4.5 OR 6.	
HMELT	HM(J) IF J TH SPECIES IS CHANGING PHASE. OTHERWISE 0. C EQTCOM	
HOS	ENTHALPY OR ENTROPY OF SPECIES IN ASSIGNED ENTHALPY OR EN- L MATER TROPY CHEMISTRY SOLUTION.	
НР	DERIVATIVE OF H WITH RESPECT TO ETA. C PRPCOM	
нрс	HEAT OF FORMATION AT 298 DEG. K OF THE PYROLYSIS GAS BEING C CRBCOM CONSIDERED UNDER $KR(9) = 3$ OR 4.	
HPYG	PYROLYSIS GAS ENTHALPY C CRBCOM	
HSP(I+N+K)	STORED (HISTORIC) VALUE OF SP(N.I.K) ONE STATION UPSTREAM. C HISCOM	
HTEF	HEAT OF FORMATION AT 298 DEG. K OF THE MATERIAL BEING CON- C CRBCOM SIDERED UNDER $KR(9) = 5$ OR 6.	
HTIL	PROPERTY OF THE GAS MIXTURE WHICH REDUCES TO H(I) FOR EQUALC PRPCOM DIFFUSION COEFFICIENTS. SEE EQ(28) OF NASA CR-1062.	

HTILP	DERIVATIVE OF HTIL WITH RESPECT TO ETA. C	PRPCOM
HW(L+1)	CONVERGED ENTHALPY OF GAS AT THE WALL.	WALCOM
I	INDEX ON ETA, I=1, AT WALL, IDENTICAL TO II*.	
11	LOCAL INDEX	KINET
1777	VARIABLE TO CHECK IF SUBROUTINE HAS PREVIOUSLY BEEN ENTEREDO	вимсом
IAST	ASSIGNED THE VALUE COMMA (+) THROUGH A DATA STATEMENT FOR LUSE IN TEST OF WHETHER THERE IS TO BE ANOTHER CASE.	BLIMP
IB(K)	INDEX ON SPECIES WITH LARGEST CONTRIBUTION TO K TH MASS BALC ANCE, SUBSEQUENTLY ORDERED ON IB WITH DUPLICATES SET TO 1000.	EQTCOM
IBLANK	ASSIGNED THE VALUE BLANK () THROUGH A DATA STATEMENT FOR L USE IN TEST OF WHETHER THERE IS TO BE ANY PUNCHED CARD OUT- PUT.	OUTPUT
IC(K)	NEGATIVE INDEX OF ELEMENT CORRESPONDING TO KTH BASE SPECIESL	INPUT
ICORM	INDEX CORRESPONDING TO CORMA IN THE CORAR ARRAY.	BUMCOM
ICT	CYCLE COUNTER ON POST INVERSION MODIFICATION IN CHEMISTRY L SOLUTION	EQUIL
IDENT	ALPHANUMERIC IDENTIFICATION SYMBOL APPEARING ON PUNCHED C CARD DATA (NO CARDS PUNCHED IF IDENT IS INPUT AS A BLANK).	INTCOM
IDISC(L)	CONTROL VARIABLE FOR DISCONTINUITY (1 IF DISCONTINUITY) COTHERWISE 0).	PRMCOM
IDSIP	ITEM WHEN DSIP IS TO BE UPDATED. C	EDGCOM
IDUM	LOCALLY DEFINED VARIABLE	SETUP
IE	EQUATION INDEX FOR CONDENSED SPECIES.	MATER
IENLM	INDICIES ON MAXIMUM NON LINEAR ERRORS FOR EACH SET OF L CONSERVATION EQUATIONS	RNLCER
IENLM	INDICIES ON MAXIMUM NON LINEAR ERRORS FOR EACH SET OF L CONSERVATION EQUATIONS	NONCER
IER	EQUATION NUMBER TO REPRESENT NEWLY APPEARING CONDENSED SPE-C CIES.	EQTCOM
IFC(J)	CONTROL FLAG (0 GAS: -1 NONPRESENT CONDENSED: +1 PRESENT C CONDENSED: PRIOR FLAGS DECREMENTED BY 3 IF SPECIES CONTAINS NONPRESENT ELEMENT OR INCREMENTED BY 3 IF IT IS A BASE SPECIES REPRESENTING A NONPRESENT ELEMENT).	EQPCOM
IFLM	INDEX OF THE SET OF LINEAR EQUATIONS WHICH HAS THE LARGEST CERROR FLEM.	ERRCOM

IFLUXJ	ITEM WHEN FLUXJ IS TO BE UPDATED.	C WALCOM
IFN	INDEX ON LINEAR VARIABLE F(1,1)	L IMONE
IFN	INDEX ON LINEAR VARIABLE F(1.1)	L IONLY
IFNLM	INDEX OF THE LINEARIZED MOMENTUM EQUATION WHICH HAS THE LARGEST ERROR FNLEM.	C ERRCOM
IFP	INDEX ON NON-LINEAR VARIABLE F(2.1)	L IMONE
IFP	INDEX ON NON-LINEAR VARIABLE F(2.1)	L IONLY
IFPP	INDEX ON LINEAR VARIABLE F(3.1)	L IMONE
IFPP	INDEX ON LINEAR VARIABLE F(3.1)	L IONLY
IFPPP	INDEX ON LINEAR VARIABLE F(4.1)	L IMONE
IFPPP	INDEX ON LINEAR VARIABLE F(4.1)	L IONLY
IFW	ITEM WHEN FW IS TO BE UPDATED.	C WALCOM
IG	NOMINALLY ZERO, EQUALS ONE ON FIRST SET OF BOUNDARY LAYER CHEMISTRY SOLUTIONS. FIRST GUESS AT I+ IS SOLUTION AT I-IG.	L EQUIL
IG	ELIMINATION INDEX IN BASE SPECIES-ELEMENT CORRESPONDENCE LOGIC.	L INPUT
IGLM	INDEX OF THE SET OF LINEAR EQUATIONS WHICH HAS THE LARGEST ERROR GLEM.	C ERRCOM
IGNLM	INDEX OF THE LINEARIZED ENERGY CONSERVATION EQUATION WHICH HAS THE LARGEST ERROR GNLEM.	C ERRCOM
IHW	ITEM WHEN HW IS TO BE UPDATED.	C WALCOM
II	INDEX ON ETA, II=1 AT WALL, IDENTICAL TO I+.	C INTCOM
IIS	LOCAL INDEX	L RECASE
IJ	LOCAL INDEX	L PROPS
IK	LOCAL INDEX	L PROPS
IL	INDEX ON FIRST CHEMISTRY EQUATION TO BE SOLVED (1 FOR UN-KNOWN T AND 2 FOR KNOWN T).	C EQTCOM
ILMM	INDEX OF THE LINEAR EQUATION WHICH HAS THE LARGEST ERROR ELMM.	C ERRCOM
IM(K)	ROW AND COLUMN INDEX IN INVERSION OF CIJ TO UM.	L INPUT
IMI	LOCAL INDEX	L INPUT

LMI	LOCAL INDEX	L	INPUT
IML	LOCAL INDEX	L	INPUT
IN	NUMBER OF EQUATIONS BEING SOLVED (HAS THE VALUE OF THE LO- CAL VARIABLE ISPG IF TEMPERATURE IS UNKNOWN OR ISPG-1 IF TEMPERATURE IS KNOWN).	С	EQTCOM
INLMM	INDEX OF THE NONLINEAR EQUATION WHICH HAS THE LARGEST ERRO ENLMM.	RC	ERRCOM
INP	IN+2	L	CRECT
IPRE	ITEM WHEN PRE IS TO BE UPDATED.	С	PRMCOM
INTEQV	VARIABLE EQUIVALENCED TO INTCOM (EXCEPT KR(20)) FOR DUMPING PURPOSES	L	DUMCOM
INV	FLAG ON RESTART OF CHEMISTRY (PERMITS ONLY ONE RESTART)	L	EQUIL
IQ	FOR EACH NON-BASE GASEOUS SPECIES INITIALIZED TO ZERO. SET TO ONE IF SPECIES IS SIGNIFICANT IN ANY MASS BALANCE.	. r	MATER
IQQ	DEBUG(-2) AND NONCONVERGENT(-1) FLAG ON CALL TO AND RETURN FROM RERAY. RESPECTIVELY.	I L	EQUIL
IR(K)	CORRESPONDENCE VECTOR BETWEEN BASE SPECIES AND ELEMENTS.	С	EQPCOM
IRAD	ITEM WHEN RADR IS TO BE UPDATED.	Ç	PRMCOM
IRE	INDEX ON NEWLY APPEARING CONDENSED SPECIES.	С	EQTCOM
IRHOVW	ITEM WHEN RHOVW IS TO BE UPDATED.	С	WALCOM
IS	NUMBER OF ELEMENTS INCLUDING ELECTRON, IDENTICAL TO IZ+.	C	EQPCOM
IS	INDEX ON S. IS=1 AT STAGNATION POINT OR LEADING EDGE. IDENTICAL TO ISS*.	V ~ C	INTCOM
ISM	NSP-1	L	PROPS
ISP	NUMBER OF ELEMENTS INCLUDING ELECTRON PLUS ONE.	С	BUMCOM
ISP	SAME AS ISP IN INPUT.	L	EQUIL
ISP	(IS*) + 1 WHERE IS* IS THE NUMBER OF ELEMENTS INCLUDING	L	INPUT
ISP	ELECTRON. NSP + 1	L	PROPS
ISP2	NUMBER OF ELEMENTS INCLUDING ELECTRON PLUS TWO.	C	KINCOM
ISP2	NSP + 2	L	. PROPS
ISPLM(K)	INDEX OF THE SET OF LINEAR EQUATIONS WHICH HAS THE LARGEST ERROR SPLEM(K).	T C	ERRCOM

ISPN	INDEX ON NON-LINEAR VARIABLE (G(1,1) OR SP(1,1,K))	L IMONE
ISPN	INDEX ON NON-LINEAR VARIABLE (G(1,1) OR SP(1,1,K))	L IONLY
ISPNLM(K)	INDEX OF THE LINEARIZED ELEMENTAL CONSERVATION EQUATION WHICH HAS THE LARGEST ERROR SPNLEM(K).	C ERRCOM
ISPP	INDEX ON LINEAR VARIABLE (G(2.1) OR SP(2.1.K))	L IMONE
ISPP	INDEX ON LINEAR VARIABLE (G(2.1) OR SP(2.1.K))	L IONLY
ISPPP	INDEX ON LINEAR VARIABLE (G(3.1) OR SP (3.1.K))	L IMONE
ISPPP	INDEX ON LINEAR VARIABLE (G(3.1) OR SP (3.1.K))	L IONLY
ISPQ	ISP2 + NUMBER OF PRESENT CONDENSED SPECIES.	C KINCOM
ISPQ	NUMBER OF EQUATIONS SOLVED IN CHEMISTRY SOLUTIONS. IS+2+ NUMBER OF PRESENT CONDENSED SPECIES.	L EQUIL
ISPW	ITEM WHEN SPW IS TO BE UPDATED.	C WALCOM
ISS	INDEX ON S, ISS=1 AT STAGNATION POINT OR LEADING EDGE, IDENTICAL TO IS+.	C INTCOM
IST	LOCAL INDEX	L FIRSTG
ISU	INDEX OF SPECIES REPRESENTATIVE OF SURFACE	C CRBCON
ISV	ISV IS SET EQUAL TO IS* NEAR BEGINNING OF SUBROUTINE PROPS IS* THEN BEING SET TO NSP. IS* RESTORED TO ISV AT THE END OF PROPS.	
ISV2	LOCALLY DEFINED VARIABLE	L PROPS
ISVP	ISV+1	L PROPS
IŢ	NOT USED IN CURRENT VERSION, IDENTICAL TO IIT+.	C 'TCOM
IT	CURRENTLY SET TO UNITY, IDENTICAL TO ITT*.	C DM
ITEM	TIME (OR SUBCASE).	C 1 1COM
ITFF	NEGATIVE COUNT ON SUCCEEDING CHEMISTRY SOLUTIONS WHICH WILL ACCEPT RESIDENT SOLUTION AS FIRST GUESS.	LL EQUIL
ITS		C EQTCOM
ITS	COUNTER FOR BOUNDARY LAYER ITERATIONS, IDENTICAL TO MITS*.	C INTCOM
ITT	CURRENTLY SET TO UNITY. IDENTICAL TO IT+.	C INTCOM
ITW	ITEM WHEN TW IS TO BE UPDATED.	C WALCOM
IX	VARIABLE IN RERAY CALL SEQUENCE HAVING TO DO WITH PRINTING OF DEBUG OUTPUT, -2 GIVES DEBUG, COMES BACK 3 IF INVERSION SUCCEEDED, 1 IF SINGULAR.	

IX	DIAGNOSTIC FLAG PREVIOUSLY USED TO INDICATE TYPE OF BAD IN PUT DETECTED.	I-L INPUT
IX	DEBUG FLAG.	L RERAY
12	NUMBER OF ELEMENTS INCLUDING FLECTRON. IDENTICAL TO IS*.	C EOPCOM
J	LOCAL INDEX	L ABMAX
J	LOCAL INDEX	L CRECT
J	LOCAL INDEX	L EQUIL
J	LOCAL INDEX	L FIRSTG
J	LOCAL INDEX	L HISTXI
J	LOCAL INDEX	L ICOEFF
J	LOCAL INDEX	L INPUT
J	LOCAL INDEX	L KINET
J	LOCAL INDEX	L LIAD
J	LOCAL INDEX	L LINMAT
J	LOCAL INDEX	L MATER
J	LOCAL INDEX	L MATS1
J	LOCAL INDEX	L NONCER
J	LOCAL INDEX	L OUTPUT
J	LOCAL INDEX	L PROPS
J	LOCAL INDEX	L RECASE
J	LOCAL INDEX	L REFCON
J	LOCAL INDEX	L RERAY
J	LOCAL INDEX	L RNLCER
J	LOTAL TNOCK	L SETUP
J	LOURL INDEX	L THERM
J	LOCAL INDEX	L TRMBL
JAST	READ IN AS COMMA (.) OR PERIOD (.) FOR TEST OF WHETHER THERE IS TO BE ANOTHER CASE (SEE INPUT INSTRUCTIONS).	L BLIMP

JAT(N)	ATOMIC NUMBER OF AN ELEMENT WHICH CONTAINS ALPT(N) ATOMS : A SPECIES.	INL INPUT
JB	LOCAL INDEX	L MATS1
JC	INDEX ON SURFACE CONDENSED SPECIES.	C EQTCOM
JJ	LOCAL INDEX	L NONCER
JJ	LOCAL INDEX	L REFCON
JJ	LOCAL INDEX	L RERAY
JJ	LOCAL INDEX	L RNLCER
JJ	LOCAL INDEX	L TRMBL
JL	LOCAL INDEX	L TRMBL
JM	J-1. WHERE 'J' IS BASE SPECIES COUNT.	L INPUT
JRHOVW	SET EQUAL TO UNITY IF RHOVW OR FLUXJ ARE READ IN FOR CURRENT TIME, OTHERWISE ZERO.	L REFCON
JT	LOCAL INDEX	L EQUIL
KAPPA	INDEX OF THE NODAL POINT AT WHICH THE VELOCITY RATIO IS FIXED.	C INTCOM
KAT(K)	ATOMIC NUMBER.	C EQPCOM
KIN	NUMBER OF TAPE FROM WHICH DATA IS READ.	C INTCOM
KINEQV	VARIABLE EQUIVALENCED TO KINCOM FOR DUMPING PURPOSES	L DUMCOM
KIP	CONTROL VARIABLE 0 UNLESS PERFORMING ASSIGNED TEMPERATURE CALCULATION DURING KR(9)=6 ENERGY BALANCE PROBLEMS (SEE DEFINITION OF TFZ).	C BUMCOM
KK	LOCAL INDEX	L EQUIL
KK	LOCAL INDEX	L ICOEFF
KK	LOCAL INDEX	L IMONE
KK	LOCAL INDEX	L INPUT
KK	LOCAL INDEX	L IONLY
KK	LOCAL INDEX	L LIAD
KK	LOCAL INDEX	L NONCER
KK	LOCAL INDEX	L RNLCER

KKR(N)	ARRAY OF INPUT INTEGERS WHICH CONTROL THE VARIOUS OPTIONS C INTCOM OF THE PROGRAM. IDENTICAL TO KR+.
KOUT	NUMBER OF TAPE ONTO WHICH DATA IS WRITTEN. C INTCOM
KPHA(N)	PHASE INDEX FOR A SPECIES, 1=GAS, 2=SOLID, 3=LIQUID. L INPUT
KQ(N)	IDENTICAL TO KR(N)* BY TRANSMITTAL THROUGH CALL LISTS OF C INTCOM PROGRAMS EQUIL AND INPUT. ALSO IDENTICAL TO KD(N)*.
KR(N)	CONTROL CARD FOR CHEMISTRY CALCULATION (KR(1)1S 0 FOR ASSI-C EQPCOM GNED TEMPERATURE, 1 FOR SURFACE EQUILIBRIUM, 2 FOR ASSIGNED ENTHALPY, KR(2) AND KR(3) ARE 1 IF ELEMENT AND SPECIES DATA ARE TO BE READ IN, OTHERWISE 0, KR(4) IS NOT USED, KR(5) IS 0 IF IT IS NOT A BOUNDARY LAYER EDGE SOLUTION, 1 FOR EXPANSION, 2 FOR STAGNATION, KR(6) IS 0 FOR BOUNDARY LAYER CALCULATION, 2 FOR SURFACE MASS BALANCE, KR(7) CONTROLS DEBUG, IDENTICAL TO KZ(N)+.
KR(N)	ARRAY OF INPUT INTEGERS WHICH CONTROL THE VARIOUS OPTIONS C INTCOM OF THE PROGRAM, IDENTICAL TO KKR*.
KR2	KKR(2) (FIRST GUESS FLAG) PRESERVES VALUE SINCE KKR(2) IS L EQUIL RESET TO ZERO IN SETUP.
KR9(L)	VALUES OF KR(9) WHEN WALL BOUNDARY CONDITIONS ARE TO BE C INTCOM CHANGED AT DOWNSTREAM STATIONS. CURRENT KR(9) ASSIGNMENT MADE NEAR BEGINNING OF SUBROUTINE NONCER.
KR17	SAVED VALUE FOR KR(17). C INTCOM
KS	SURFACE MATERIAL INDEX (FOR EACH STATION) C CRBCOM
L(N)	INDEX ON COLUMNS DURING INVERSION. L RERAY
LAM(K+J)	UNITY IF J TH SPECIES CONTAINS K TH ELEMENT, OTHERWISE ZEROC EQPCOM
LAR(N)	INDEX USED FOR REARRANGING ELEMENTS IN MATRIX OF NONLINEAR C ETACOM EQUATIONS (AM).
LAST	ASSIGNED THE VALUE PERIOD (.) THROUGH A DATA STATEMENT FOR L BLIMP USE IN TEST OF WHETHER THERE IS TO BE ANOTHER CASE.
LEF(K)	FLAG REGARDING MISSING ELEMENTS FOR CURRENT SOLUTION: 3 AL-C BLQCOM WAYS PRESENT FROM EDGE: 2 ALWAYS PRESENT DUE TO UPSTREAM INJECTION: 1 PRESENT DUE TO LOCAL INJECTION: 0 NOT PRESENT.
LEFS(K)	FLAG REGARDING MISSING ELEMENTS FROM PRIOR SOLUTION. SEE C BLQCOM LEF FOR NUMERICAL VALUES.
LEFT(K+N)	TEMPORARY STORAGE FOR LEF(K) DURING TAPE FLIP-FLOP FOR C N = 1 AND 2.
LEFUP	UPDATE LEF IF EQUAL TO ZERO (=MITS+II-2 FOR BOUNDARY LAYER L EQUIL SOLUTION, OTHERWISE=1),

LEFW(K)	FLAG REGARDING MISSING ELEMENTS FOR CURRENT WALL SOLUTION, SEE LEF FOR NUMERICAL VALUES.	C BLQCOM
LI	LOCAL INDEX	L LINMAT
LIM(K.KK)	LAM(K+KK) FOR KKTH BASE SPECIES.	L INPUT
LL(MK)	INDEX ON MASS BALANCE WHICH IS CONTROLLED BY N TH KINETIC REACTION.	C KINCOM
LL(N)	ROW INDEX OF PIVOT FOR NTH COLUMN.	L RERAY
LLL(N)	COLUMN INDEX OF PIVOT FOR NTH ROW.	L RERAY
LNZ	LOCAL INDEX	L RECASE
LPI	LOCAL INDEX	L IMONE
LPI	LOCAL INDEX	L IONLY
LPI	LOCAL INDEX	L NONCER
LPI	LOCAL INDEX	L TRMBL
LR	LOCAL INDEX	L TRMBL
LRK	LOCAL INDEX	L TRMBL
LS	INDEX USED TO REARRANGE COLUMNS IN RERAY (SEE LAR)	L RERAY
LSKIP	LOCAL INDEX	L NONCER
L2	INDEX ON PYROLYSIS GAS COMPONENT	C EQTCOM
L3	INDEX ON CHAR COMPONENT	C EQTCOM
М	LOCAL INDEX	L CRECT
М	LOCAL INDEX	L FIRSTG
М	LOCAL INDEX	L HISTXI
М	LOCAL INDEX	L INPUT
М	LOCAL INDEX	L KINET
М	LOCAL INDEX	L LINCER
М	LOCAL INDEX	L MATS1
М	LOCAL INDEX	L NONCER
М	LOCAL INDEX	L REFCON
M	LOCAL INDEX	L RERAY

M	LOCAL INDEX	L RNLCER
M1	COUNT ON PRINCIPAL SPECIES AFTER ORDERING IB.	L CRECT
MA(MK)	ORDERING VECTOR BASED ON HAVING RAT IN DESCENDING SEQUENCE	.C KINCOM
MAT1I	3 * NETA - 2. NUMBER OF TAYLOR SERIES EXPANSIONS AND LINEA BOUNDARY CONDITIONS INVOLVING F(1:1) AND ITS DERIVATIVES.	RC INTCOM
MAT1J	NETA + 3, NUMBER OF LINEARIZED MOMENTUM EQUATIONS AND BOUN ARY CONDITIONS.	DC INTCOM
MAT2I	2 * NETA; NUMBER OF TAYLOR SERIES EXPANSIONS AND LINEAR BOUNDARY CONDITIONS INVOLVING G(1;1) AND ITS DERIVATIVES OR THE K TH SPECIES; SP(1;1;K); AND ITS DERIVATIVES.	C INTCOM
MAT2J	NETA+ NUMBER OF LINEARIZED ENERGY OR K TH ELEMENTAL CONSER VATION EQUATIONS AND BOUNDARY CONDITIONS.	-C INTCOM
MELT	INDEX ON PHASE CHANGING SPECIES.	C EQTCOM
MI	MA(K)	L KINET
MITS	COUNTER FOR BOUNDARY LAYER ITERATIONS, IDENTICAL TO ITS+.	C INTCOM
MM	LOCAL INDEX	L KINET
MM	LOCAL INDEX	L NONCER
ММ	LOCAL INDEX	L REFCON
(L) AOM	ALPHANUMERIC VARIABLE. FIRST OF TWO PORTIONS OF SPECIES NAME. IDENTICAL TO FAMOA*.	C BLQCOM
MOB(J)	ALPHANUMERIC VARIABLE, SECOND OF TWO PORTIONS OF SPECIES NAME, IDENTICAL TO FAMOB*.	C BLQCOM
MODE	STORED VALUE FOR KR(1) *.	C EQTCOM
MOE	FLAG SET IN EQUIL AND USED IN CRECT. ZERO RESULTS IN EM- PHASIZING EQUILIBRIUM EQUATIONS DURING CHEMISTRY CONVER- GENCE. ONE RESULTS IN EMPHASIZING MASS BALANCES.	L EQUIL
MP	INDICES USED IN REARRANGING REACTIVE MASS BALANCES ACCORDS ING TO CONTROLLING REACTIONS.	L KINET
MPI	LOCAL INDEX	L IMONE
MPI	LOCAL INDEX	L IONLY
MPJ	LOCAL INDEX	L IMONE
MPJ	LOCAL INDEX	L IONLY
MPJ	LOCAL INDEX	L TRMBL

MSD(N)	HAS THE VALUE OF IS AT THE BEGINNING OF N TH REGION BOUNDE BY DISCONTINUITIES (MSD(1)=1 BY DEFINITION) WHERE IS IS INDEX ON S.	DC	PRMCOM
мт	NUMBER OF KINETICALLY CONTROLLED REACTIONS.	C	KINCOM
MWE	CONTROL VARIABLE (-1 FOR NEW CASE, SET TO ZERO AT THE END OF SUBROUTINE SETUP).	С	INTCOM
N1	NUMBER OF ROWS + 1	L	RERAY
NAM	NUMBER OF NONLINEAR EQUATIONS NOT INCLUDING NONLINEAR WALL BOUNDARY CONDITIONS, NNLEQ-NRNL.	. C	INTCOM
NBT	NUMBER OF ONE OF TWO TAPES USED IN FLIP-FLOP.	С	INTCOM
NBT2	NUMBER OF ONE OF TWO TAPES USED IN FLIP-FLOP.	С	INTCOM
NC	NUMBER OF COMPONENTS OF THE NONREACTING FLUID MIXTURE IN KR(7)=1 OPTION.	С	STTCOM
NCV	NONCONVERGENCE COUNT: INITIALLY ZERO: INCREMENTED BY ONE FOR EACH NONCONVERGENT CHEMISTRY SOLUTION:	L	EQUIL
ND	DIMENSION TRANSMITTED THROUGH CALL	L	RERAY
NDISC	NUMBER OF DISCONTINUITIES.	С	PRMCOM
NELM	NUMBER OF MAXIMUM LINEAR ERRORS ELM.	С	ERRCOM
NENLM	NUMBER OF MAXIMUM NONLINEAR ERRORS ENLM.	С	ERRCOM
NETA	NUMBER OF NODAL POINTS ACROSS BOUNDARY LAYER INCLUDING WAL	,LC	INTCOM
NFF	NUMBER OF SPECIES FOR WHICH DIFFUSION FACTORS, FF(J), ARE TO BE READ IN.	L	INPUT
NFIA(J)	FIRST OF TWO PORTIONS OF NAME OF MOLECULE FOR WHICH DIFFU- SION FACTOR, FF(J), IS BEING READ IN.	· L	INPUT
NFIB(J)	SECOND OF TWO PORTIONS OF NAME OF MOLECULE FOR WHICH DIFFUSION FACTOR, FF(J), IS BEING READ IN.	J-L	INPUT
NFM	NUMBER OF SIGNIFICANT SPECIES PLUS NUMBER OF NONPRESENT	L	MATER
NITEM	ELEMENTS. NUMBER OF TIMES (OR SUBCASES).	С	INTCOM
NLEQ	NUMBER OF LINEAR EQUATIONS: MAT11+NSP*MAT21:	C	INTCOM
NM	NUMBER OF ROWS LESS ONE	Ļ	RERAY
NN	NUMBER BY WHICH COLUMNS EXCEED ROWS IN PRINCIPAL ARRAY	L.	RERAY

NNLEQ	MATIJ + NSP * MAT2J, TOTAL NUMBER OF NONLINEAR EQUATIONS.	C INTCOM
NNN	NUMBER OF COLUMN VECTORS IN SECONDARY ARRAY	L RERAY
NON	CONTROL VARIABLE USED AFTER RETURNING FROM SUBROUTINE OUT- PUT (-1 WHEN RERUNNING FROM OUTPUT DURING ITERATIONS, O WHEN CONVERGED, +1 WHEN NONCONVERGED AFTER ALLOWED NUMBER OF ITERATIONS).	C INTCOM
NP	NUMBER OF COLUMNS IN PRIMARY ARRAY.	L RERAY
NPR	NUMBER OF DERIVATIVE PROPERTIES TO BE EVALUATED	L PROPS
NRNL	NSP + 1. NUMBER OF REDUCED NONLINEAR EQUATIONS.	C INTCOM
NS	NUMBER OF STREAMWISE STATIONS.	C INTCOM
NSD(N)	NUMBER OF STATIONS CONTAINED IN N TH REGION BOUNDED BY DISCONTINUITIES (S(1) CONSIDERED A DISCONTINUITY IN THIS DEFINITION).	
NSP	NUMBER OF ELEMENTS IN THE SYSTEM, NOT INCLUDING ELECTRONS.	C INTCOM
NSPEC	NUMBER OF SPECIES, IDENTICAL TO N*.	C BLQCOM
NSPM1	NSP-1	C INTCOM
NTIME	CURRENTLY SET TO UNITY.	C INTCOM
NUL	ZERO.	L HISTXI
N2I	LOCAL INDEX	L NONCER
N7	ITERATION AT WHICH DIAGNOSTIC OUTPUT WILL COMMENCE	L EQUIL
OMEGA	PARAMETER OF THIS NAME USED IN TRANSPORT PROPERTY CALCU- LATIONS INTRODUCED IN EQ(4) OF NASA CR-1063, NUMERICALLY EQUAL TO 1.07/(T/106.7) ** 0.159	L PROPS
OUTEGV	VARIABLE EQUIVALENCED TO OUTCOM FOR DUMPING PURPOSES	L DUMCOM
Р	PRESSURE.	C EQPCOM
PA(K+KK)	PARTIAL DERIVATIVE OF PROPERTY K WITH RESPECT TO LOG TA	L PROPS
PE(L.1)	LOG AA, LOG(Y(KK-2)). STATIC PRESSURE.	C EDGCOM
PHIK(I+K)	SOURCE TERM FOR KTH ELEMENT (EQUAL TO ZERO IN MIXED EQUI- LIBRIUM-FROZEN BOUNDARY LAYER).	C PRPCOM
PHIKP(K)	DERIVATIVE OF PHIK WITH RESPECT TO ETA.	C PRPCOM
PI	P(I) IN MIXING LENGTH FORMULATION. SEE REF. 1.	C EPSCOM
PID	LOCALLY DEFINED VARIABLE	L TRMBL

PIEASE	PRODUCT OF DAMPING FACTORS.	C BLQCOM
PIM	P AT NODE I-1	L TRMBL
PIN	P * (10**(-5)) USED TO INITIALIZE PARTIAL PRESSURES.	L EQUIL
PIN	SAME AS IN EQUIL.	L MATER
PINL	LOG (PIN).	L EQUIL
PKP(MK)	FORWARD RATE OF REACTION.	C KINCOM
PKR(MK)	REVERSE RATE OF REACTION.	C KINCOM
PLM	SUMMATION VN(J)*WTM(J) FOR ALL CONDENSED SPECIES.	L EQUIL
PMR(MK)	NET FORWARD RATE OF REACTION.	C KINCOM
PMU(K+MK)	STOICHIOMETRIC PRODUCT COEFFICIENT ON K TH BASE SPECIES.	C KINCOM
PMU1	VN(J) * FF(J) SUMMED OVER ALL GASEOUS SPECIES (=VMU1 * P).	L PROPS
PMU2	VN(J) * WTM(J) / FF(J) SUMMED OVER ALL SPECIES N* (=VMU2 * P).	L PROPS
PMU6	VN(J)/(FF(J) * (WD4-VN(J) * FF(J) * WD8)) SUMMED OVER ALL SPECIES N*•	L PROPS
PNUS(K)	SUMMATION VNU(J+K) * VN(J) OVER ALL GASES J+	L MATER
PR(I)	PRANDTL NUMBER.	C PRPCOM
PRA	CONSTANT IN THE PRANDTL NUMBER RELATION DEFINING PR (SEE PRDUM).	C STTCOM
PRB	CONSTANT IN THE PRANDTL NUMBER RELATION DEFINING PR (SEE PRDUM).	C STTCOM
PRC	CONSTANT IN THE PRANDTL NUMBER RELATION DEFINING PR (SEE PRDUM).	C STTCOM
PRD	CONSTANT IN THE PRANDTL NUMBER RELATION DEFINING PR (SEE PRDUM).	C STTCOM
PRDUM	PRANDTL NUMBER IF CONSIDERED CONSTANT, OTHERWISE, IT IS A CONSTANT IN THE RELATION\ PR=PRDUM+PRA * T ** PRB+PRC*T ** PRD; USED IN KR(7)= 1 OPTION ONLY.	C STTCOM
PRE(L)	RATIO OF LOCAL STATIC PRESSURE TO STAGNATION PRESSURE PTET	•C PRMCOM
PREQ	VARIABLE EQUIVALENCED TO PORTION OF PRPCOM FOR STORAGE TRANSFER	L NONCER
PRF	LOCALLY DEFINED VARIABLE	L TRMBL

PRMEQV	VARIABLE EQUIVALENCED TO PRMCOM FOR DUMPING PURPOSES	L DUMCOM
PRMU(K+MK)	PMU~RMU	C KINCOM
PRP	LOCALLY DEFINED VARIABLE RELATIVE TO ARRAY OF DERIVATIVE PROPERTIES BEING CALCULATED	L PROPS
PRPEQV	VARIABLE EQUIVALENCED TO PRPCOM FOR DUMPING PURPOSES	L DUMCOM
PRR	ARGUMENT REPRESENTING PRESSURE	L EQUIL
PRT	TURBULENT PRANDTL NUMBER	C EPSCOM
PTE(L+1)	LOCAL TOTAL PRESSURE.	C EDGCOM
PTET(M)	STAGNATION PRESSURE.	C PRMCOM
PV(N.NN)	DERIVATIVES OF VMU3 (NN=1), VMU4(NN=2), HTIL(NN=3) AND ZK(K (NN=3+K) WITH RESPECT TO ENTHALPY (N=1), PRESSURE (N=2) AND KTH ELEMENTAL MASS FRACTION (N=2+K).	
QA	LOCALLY DEFINED VARIABLE	L SLOPQ
QB	LOCALLY DEFINED VARIABLE	L SLOPQ
0C	LOCALLY DEFINED VARIABLE	L SLOPQ
91	NUMBER INTRODUCED INTO CALCULATION OF BETAM (WHICH DIFFERS FOR VARIOUS BODY SHAPES) DUE TO CHANGE IN MANNER OF INTE-GRATION IN THE VICINITY OF THE STAGNATION POINT OR LEADING EDGE.	
QR(I)	NET RADIATION FLUX TOWARD THE SURFACE (SET EQUAL TO ZERO I BLIMP, COMPUTED BY SUBROUTINE RAD IN RABLE).	INC PRPCOM
QS	LOCALLY DEFINED VARIABLE	L TRMBL
QW	DIFFUSIVE HEAT FLUX AT THE WALL, C32/C3 EVALUATED AT WALL.	C FLXCOM
R	LOCALLY DEFINED VARIABLE	L ERP
RA(N)	HEAT OF FORMATION OF MOLECULE AT 298 DEG K FROM JANAF BASE STATE, CAL/MOLE, N=1 OR 2 FOR LOW AND HIGH TEMPERATURE RAN GES, RESPECTIVELY.	L INPUT
RADFL(M)	INCIDENT RADIATION FLU. ABSORBED BY THE SURFACE AT STATION S(1).	C PRMCOM
RADNO	ACTUAL NOSE RADIUS OF A SPHERICALLY TIPPED BODY.	C PRINCOM
RADR(L)	RATIO OF INCIDENT RADIATION FLUX ABSORBED BY THE SURFACE THE VALUE AT STATION S(1), RADFL.	FOC PRMCOM
RADS(L)	INCIDENT RADIATION FLUX ABSORBED BY THE SURFACE.	C PRMCOM

RAT(MK)	LARGEST OF PKP, PKR, PMR. MEASURE OF REACTION IMPORTANCE.	C KINCOM
RC (J+N)	CURVE FIT CONSTANT FOR THERMODYNAMIC DATA (THE QUANTITY F3 DISCUSSED IN GROUP 12 OF INPUT INSTRUCTIONS), N=1 OR 2 FOR LOW AND HIGH TEMPERATURE RANGES, RESPECTIVELY.	
RD(J•N)	CURVE FIT CONSTANT FOR THERMODYNAMIC DATA (THE QUANTITY F4 DISCUSSED IN GROUP 12 OF INPUT INSTRUCTIONS), N=1 OR 2 FOR LOW AND HIGH TEMPERATURE RANGES, RESPECTIVELY.	C EQPCOM
RE(J•N)	CURVE FIT CONSTANT FOR THERMODYNAMIC DATA (THE QUANTITY F5 DISCUSSED IN GROUP 12 OF INPUT INSTRUCTIONS). N=1 OR 2 FOR LOW AND HIGH TEMPERATURE RANGES. RESPECTIVELY.	
RED	REYNOLDS NUMBER ON DEL WHERE DEL IS THE Y DIMENSION NORMAL IZING PARAMETER. ALSO, RED=VMUE(L)/ALPHASTAR WHERE ALPHASTAR IS THE FLUX NORMALIZING PARAMETER DEFINED BY EQ. 44 ONASA CR 1062.	
REF2	LOCALLY DEFINED VARIABLE	L OUTPUT
REF3	LOCALLY DEFINED VARIABLE	L OUTPUT
REF4	LOCALLY DEFINED VARIABLE	L OUTPUT
REG2	LOCALLY DEFINED VARIABLE	L OUTPUT
REG3	LOCALLY DEFINED VARIABLE	L OUTPUT
RERAD	RADIATION FLUX FROM WALL	L OUTPUT
RES	REYNOLDS NUMBER BASED 0 DISTANCE S.	C OUTCOM
RETA	LOCALLY DEFINED VARIABLE	L OUTPUT
RETHMO	REYNOLDS NUMBER ON MOMENTUM THICKNESS	L OUTPUT
RETR	TRANSITION REYNOLDS NUMBER BASED ON MOMENTUM THICKNESS.	C EPSCOM
RF(J•N)	CURVE FIT CONSTANT FOR THERMODYNAMIC DATA (THE QUANTITY F6 DISCUSSED IN GROUP 12 OF INPUT INSTRUCTIONS). N=1 OR 2 FOR LOW AND HIGH TEMPERATURE RANGES. RESPECTIVELY.	
RHO(I)	DENSITY OF GAS MIXTURE.	C PRPCOM
RHOE(L)	DENSITY OF BOUNDARY-LAYER EDGE GAS.	C EDGCOM
RHOP(I)	DERIVATIVE OF RHO WITH RESPECT TO ETA.	C PRPCOM
RH0VS	-RHOVW(L+1)/ALPHASTAR. SEE NASA CR 1062 FOR ALPHASTAR.	C EPSCOM
RHOVW(L+1)	CONVERGED VALUE FOR SURFACE ABLATION RATE.	C WALCOM
RHR	DENSITY.	L EQUIL
RI	LOCALLY DEFINED VARIABLE	L TRMBL

RMMG	RATIO OF MOLECULAR WEIGHT OBTAINED BY SUMMING PARTIAL PRES- SURES OVER ALL SPECIES TO THE MOLECULAR WEIGHT OBTAINED BY SUMMING OVER GAS PHASE SPECIES ONLY.	- C	EGTCOM
RMMGS	RMMG*RMMG	L	MATER
RMU(K+MK)	STOICHIOMETRIC REACTANT COEFFICIENT ON K TH BASE SPECIES.	С	KINCOM
RNOSE	EFFECTIVE NOSE RADIUS.	C	PRMCOM
ROKAP(L)	1 FOR PLANAR BODIES AND LOCAL BODY RADIUS FOR AXISYMMETRIC BODIES.	C	PRMCOM
RR	DENSITY RATIO	L	TRMBL
RRFD	LOCALLY DEFINED VARIABLE	L	TRMBL
RRP	LOCALLY DEFINED VARIABLE	L	TRMBL
RRPD	LOCALLY DEFINED VARIABLE	Ļ	TRMBL
RSIG(MK)	RELATIVE SIGNIFICANCE OF KINETIC REACTION IN MASS BALANCE.	С	KINCOM
RSQA	RMMGS*FFF/AA	L	MATER
RT	PERFECT GAS CONSTANT, R. TIMES TEMPERATURE, T.	L	KINET
S(L)	STREAMWISE COORDINATE ALONG BODY.	С	PRMCOM
S(N)	LARGEST CONTRIBUTION TO TERM IN N TH COLUMN.	Ļ	RERAY
SALPH	SIGNED VALUE OF ALPH	L	TRMBL
SB(J)	ENTROPY.	С	EQTCOM
SC(I)	REFERENCE SCHMIDT NUMBER, SEE EQ(46) OF NASA CR-1062.	С	PRPCOM
SCT	TURBULENT SCHMIDT NUMBER	С	EPSCOM
SD(N)	RATIO OF RESIDUAL TERM IN N TH COLUMN TO S(N).	L	RERAY
SDUM1(L)	VARIABLE OF INTEGRATION IN CALCULATION OF XI IN REFCON. TE PORARY STORAGE AREA IN OTHER ROUTINES.	MC	TEMCOM
SDUM2(L)	VARIABLE OF INTEGRATION IN CALCULATION OF FW IN REFCON. TE PORARY STORAGE AREA IN OTHER ROUTINES.	MC	TEMCOM
SDY	LOCALLY DEFINED VARIABLE	L	TRMBL
SHAPE	DELST/THMOM. SHAPE FACTOR.	С	OUTCOM
SHEAR	WALL SHEAR GIVEN BY CAPC(1)/ALPH * VMUE(IS) * UE(IS)/C89 * F(3:1)/32:1740	С	OUTCOM
SHIP	SAVED VALUE OF INPUT ENTHALPY.	L	EQUIL

SHMELT	ENTHALPY OR ENTROPY OF FUSION OF A SPECIES IF TEMPERATURE EQUALS FUSION TEMPERATURE OF THAT SPECIES.	L MATER
SIGMA	COLLISION CROSS SECTION FOR REFERENCE SPECIES	C EQTCOM
SIP	ENTROPY INPUT.	C EQTCOM
SLAM(K)	DEFINED BY EQ(83) OF NASA CR-1064.	C EQTCOM
SM(J)	ENTROPY OF FUSION.	C EQPCON
SMELT	SM(J) IF J TH SPECIES IS CHANGING PHASE, OTHERWISE 0.	C EQTCOM
SP(N.I.K)	ELEMENTAL MASS FRACTION (N=1) AND ITS DERIVATIVES OF ORDER N=1 WITH RESPECT TO ETA.	C VARCOM
SPEASE	SAVED VALUE OF PIEASE	L EQUIL
SPD(N)	D1 * SP(N+I+K) * D2 * HSP(I+N+K) FOR N=1 THROUGH 3+ D1 * SP(3+I=1+K) * D2 * HSP(I=1+3+K) FOR N=4+	L HISTXI
SPDUM(K)	DIMENSIONED VARIABLE USED IN VARIOUS SUBROUTINES BUT NOT USED FOR TRANSMITTING INFORMATION BETWEEN SUBROUTINES.	C TEMCOM
SPE(K.L.1)	ELEMENTAL MASS FRACTION AT BOUNDARY LAYER EDGE.	C EDGCOM
SPLE(N·K)	ERROR FOR THE TAYLOR SERIES EXPANSIONS INVOLVING SP(1:1:K) AND THEIR DERIVATIVES.	C ERRCOM
SPLEM(K)	MAXIMUM VALUE OF SPLE(N+K).	C ERRCOM
SPNEW	VARIABLE USED TO DENOTE PRESENCE OF NEW ELEMENT IN SYSTEM	L RNLCER
SPNEW	VARIABLE USED TO DENOTE PRESENCE OF NEW ELEMENT IN SYSTEM	L NONCER
SPNLEM(K)	ERROR FOR THE LINEARIZED ELEMENTAL CONSERVATION EQUATIONS.	C ERRCOM
SPW(K+L+1)	CONVERGED VALUE FOR ELEMENTAL MASS FRACTION OF BOUNDARY LAYER GAS AT THE WALL.	C WALCOM
SS	LOCALLY DEFINED VARIABLE	L SLOPQ
SSIP	SAVED VALUE OF INPUT ENTROPY.	L EQUIL
SSTAG	STAGNATION ENTROPY BASED ON 1 ATM PRESSURE.	L STATE
SSTAGA	STAGNATION ENTROPY BASED ON ACTUAL PRESSURE.	L STATE
STEF	STEFAN-BOLTZMANN CONSTANT.	C CRBCOM
STTEQV	VARIABLE EQUIVALENCED TO STTCOM FOR DUMPING PURPOSES	L DUMCOM
SUMD	RT*D LOG KP/D LOG T OF KINETIC REACTION.	L KINET
SUMG	OFF-DIAGONAL COLUMN SUMS OF GAMK USED TO STRENGTHEN DIAGO- NAL DOMINANCE OF ARRAY.	L EQUIL

SUMK	LOG KP OF KINETIC REACTION.	L KINET
SUML	LOG (SUMN/P)	C EQTCOM
SUMN	SUMMATION OF PARTIAL PRESSURES FOR ALL GAS PHASE SPECIES.	C EQTCOM
SUMP	SUM OF PRODUCT Y(N).	L KINET
SUMR	SUM OF REACTANT Y(N).	L KINET
T	STATIC TEMPERATURE IN DEG K. IDENTICAL TO Z+.	C EGPCOM
T(I)	STATIC TEMPERATURE IN DEG R. IDENTICAL 70 TT*.	C PRPCOM
TAU(K+KK)	INTERMEDIATE ARRAY USED IN FORMING UM.	L INPUT
TC(J)	-D LOG KP / D LOG T FOR FORMATION REACTION OF J TH SPECIES	.C EQTCOM
TCW	TO EVALUATED AT THE WALL FOR THE (ISP)TH ELEMENT.	C NONCOM
TDSIP(N)	TEMPORARY STORAGE FOR DSIP(L) DURING TAPE FLIP+FLOP FOR N = 1 AND 2.	С
TE(L)	TEMPERATURE AT BOUNDARY LAYER EDGE.	C EDGCOM
TEMEQV	VARIABLE EQUIVALENCED TO TEMCOM FOR DUMPING PURPOSES	L DUMCOM
TF(J)	FAIL TEMPERATURE OF SPECIES J.	E EGPCOM
TFMAX	MAXIMUM FAIL TEMPERATURE OF CANDIDATE SURFACE SPECIES.	L INPUT
TFZ THCOND	SURFACE TEMPERATURE TO WHICH CONVERGENCE IS TEMPORARILY AT TEMPTED DURING ENERGY BALANCE PROBLEMS USING KR(9)=6. ENTHALPY THICKNESS	-C BUMCOM
THELEM(K)	MASS THICKNESSES GIVEN BY DUZ(K)/DUM(K) WHERE DUZ(K) IS TH SUMMATION OVER KK OF C89/ALPH * ((F(1,NETA)-F(1,1)) *	IEL OUTPUT
	SP(1+NETA+KK)-XSP(S+KK))/ WTM(KK) * CIJ(K+KK) AND DUM(K) I THE SUMMATION OVER KK OF (SP(1+NETA+KK)-SP(1+1+KK)/WTM(KK) * CIJ(K+KK).	
THENGY	ENERGY THICKNESS GIVEN BY C89/ALPH * ((F(1.NETA)-F(1.1)) * G(1.NETA)-XG(5))/(G(1.NETA)-G(1.1)).	C OUTCOM
THF(I+N)	TEMPORARY STORAGE FOR HF(I+5) DURING TAPE FLIP-FLOP FOR N = 1 AND 2+	С
ТНМОМ	MOMENTUM THICKNESS GIVEN BY C89/ALPH * ((F(1.NETA)-F(1.1)) -XM(5)/ALPH).	C OUTCOM
TIMD	REAL ELAPSED TIME SINCE BEGINNING OF SOLUTION	L ITERAT
TIME (M)	TIME(OR SUBCASE).	C PRMCOM
TION	TEMPERATURE BELOW WHICH IONIZATION WILL BE SUPPRESSED	L EQUIL

The state of the s

TK(K+N)	GRAM ATOMS OF ELEMENT K PER UNIT MASS OF COMPONENT N.	C EQPCOM
TM	MAXIMUM OR MINIMUM TEMPERATURE IF DELTA T IS POSITIVE OR NEGATIVE, RESPECTIVELY.	L CRECT
TMAT(NN+N)	TEMPORARY STORAGE FOR VMAT(NN) DURING TAPE FLIP-FLOP FOR N = 1 AND 2.	С
XAMT	MAXIMUM TEMPERATURE ALLOWED FOR CURRENT ITERATION.	C EQTCOM
TMIN	MINIMUM TEMPERATURE ALLOWED FOR CURRENT ITERATION.	C EQTCOM
TMU3	VN(J) / FF(J) SUMMED OVER ALL SPECIES N** (=VMU3 * VMU2 * P).	L PROPS
TP	DERIVATIVE OF T WITH RESPECT TO ETA.	C PRPCOM
TPE(N)	TEMPORARY STORAGE FOR PE(L+1) DURING TAPE FLIP-FLOP FOR N = 1 AND 2+	С
TQ(K+N)	GRAM ATOMS OF BASE SPECIES K PER UNIT MASS OF COMPONENT N.	C EQPCOM
TRADS(N)	(SEE W(N) FOR DEFINITION OF COMPONENTS). TEMPORARY STORAGE FOR RADS(L) DURING TAPE FLIP-FLOP FOR N = 1 AND 2.	С
TREF	GROUP OF TERMS WHICH APPEARS IN DERIVATIVES OF PI. (REYNOLDS NUMBER ON DELST)/C26/(2.*CAPC(I)**2*YAP**2*PI).	C EPSCOM
TRHOE (N)	TEMPORARY STORAGE FOR RHOE(L) DURING TAPE FLIP-FLOP FOR N = 1 AND 2.	С
TS	PHASE CHANGE TEMPERATURE.	L INPUT
TT(I)	STATIC TEMPERATURE IN DEG R. IDENTICAL TO T+.	C PRPCOM
TTE(N)	TEMPORARY STORAGE FOR TE(L) DURING TAPE FLIP-FLOP FOR N = 1 AND 2.	С
TTMAX	MAXIMUM TEMPERATURE ALLOWED FOR THIS SOLUTION.	C EQTCOM
TTMIN	MINIMUM TEMPERATURE ALLOWED FOR THIS SOLUTION.	C EQTCOM
TTVC	VARIABLE T USED IN TRANSVERSE CURVATURE CALCULATIONS	C EDGCOM
TU(J•N)	UPPER TEMPERATURE OF TEMPERATURE RANGE FOR INPUTTING THERM DYNAMIC PROPERTY DATA FOR SPECIES J, N=1 OR 2 FOR LOWER AN UPPER TEMPERATURE RANGES, RESPECTIVELY.	
TUE (N)	TEMPORARY STORAGE FOR UE(L) DURING TAPE FLIP-FLOP FOR N= AND 2.	10
TVCC(IS)	CONSTANT USED IN TVC CALCULATIONS	C EDGCOM
TVMUE (N)	TEMPORARY STORAGE FOR VMUE(L) DURING TAPE FLIP-FLOP FOR N = 1 AND 2.	С

TW(L+1)	CONVERGED VALUE OF SURFACE TEMPERATURE.	¢	WALCOM
TXI(N)	TEMPORARY STORAGE FOR XI(L) DURING TAPE FLIP-FLOP FOR N= AND 2.	10	
UE(L)	BOUNDARY-LAYER EDGE VELOCITY.	С	EDGCOM
UEDGE	PARAMETER ENTERING INTO ENTROPY LAYER OPTION, SEE EQ(68)	FC	EDGCOM
UGH	NASA CR-1062 (SET EQUAL TO UNITY IN PRESENT PROGRAM). NORMALIZING FACTOR IN GAUSSIAN ELIMINATION.	L	INPUT
UKAP	EDGE VELOCITY NORMALIZED BY REFERENCE VELOCITY	L	NONCER
UM(K#KK)	MOLECULES OF BASE SPECIES K IN ELEMENT KK.	L	INPUT
UNIT(N)	COMPLEX FACTOR HAVING TO DO WITH DAMPING OF KINETICALLY COTROLLED MASS BALANCES.	ONC	KINCOM
UNIT(N)	SMOOTHING FACTOR RELATED TO IMPOSING RESIDUAL ERROR INTO REACTIVE MASS BALANCES AS A RESULT OF BOUNDARY LAYER DAMPING.		KINET
٧	LOCALLY DEFINED VARIABLE	L	INPUT
VA	LOCALLY DEFINED VARIABLE	L.	CRECT
VA	LOCALLY DEFINED VARIABLE	L	INPUT
VA	LOCALLY DEFINED VARIABLE	L	MATER
VA	LOCALLY DEFINED VARIABLE	L	PROPS
VA	LOCALLY DEFINED VARIABLE	L	THERM
VAREQV	VARIABLE EQUIVALENCED TO VARCOM FOR DUMPING PURPOSED	L	DUMCOM
VB	LOCALLY DEFINED VARIABLES	L	INPUT
VB	LOCALLY DEFINED VARIABLES	L	PROPS
VB	LOCALLY DEFINED VARIABLES	L	THERM
VC	LOCALLY DEFINED VARIABLES	Ļ.	INPUT
VC	LOCALLY DEFINED VARIABLES	L	PROPS
vc	LOCALLY DEFINED VARIABLES	L	THERM
VD	LOCALLY DEFINED VARIABLES	L	INPUT
VD	LOCALLY DEFINED VARIABLES	L.	THERM
VE	LOCALLY DEFINED VARIABLES	L	INPUT
VE	LOCALLY DEFINED VARIABLES	L	THERM

VEL	VELOCITY.	L EQUIL
VELSQ	SQUARE OF VELOCITY.	L EQUIL
VINT	P * 10**(~6)	L INPUT
VJKW(K)	DIFFUSIVE MASS FLUX OF BASE SPECIES AT THE WALL, CK6(K)/C3 EVALUATED AT THE WALL (IN OUTPUT, VJKW(K) IS MODIFIED TO REPRESENT DIFFUSIVE MASS FLUXES OF ELEMENTS AT THE WALL(.	C FLXCOM
VK(K)	SP(1.I.K)	L PROPS
VKAP	FLAG FOR BODY SHAPE (0 FOR PLANAR. 1 FOR AXISYMMETRIC).	C PRMCOM
VK1	LOCALLY DEFINED VARIABLES	L KINET
VK2	LOCALLY DEFINED VARIABLES	L KINET
VK3	LOCALLY DEFINED VARIABLES	L KINET
VLAM	MIXTURE THERMAL CONDUCTIVITY GIVEN BY RHO(I) * DBAR * VMU6 * 1.9869 / (WM * VMU1).	L PROPS
VLAM(J+K)	LAMBDA DEFINED IN EQ(83) OF NASA CR-1064.	E NONCOM
VLNK(J)	LOG KP FOR FORMATION REACTION OF J TH SPECIES.	C EQTCOM
VLNKW	VLNK EVALUATED AT THE WALL FOR THE (ISP)TH ELEMENT.	с нонсом
VMACH	MACH NUMBER	L EQUIL
VMACH	MACH NUMBER.	L STATE
VMAT(N)	SET OF VARIABLES STARTING WITH C1 TO BE STORED ON TAPE.	E HISCOM
VMECH	SURFACE MASS LOSS RATE DUE TO LIQUID LAYER FLOW	L OUTPUT
VMU(I)	VISCOSITY OF MIXTURE, COMPUTED IN SUBROUTINE PROPS AS RHO (I)*DBAR*VMU5/VMU1.	C PRPCOM
VMU1	COEFFICIENT MU1 DEFINED IN EQ(22) OF NASA CR-1062.	L PROPS
VMU2	SAME AS VMU2 IN PROPS.	L MATER
VMU2	COEFFICIENT MUZ DEFINED IN EQ(22) OF NASA CR-1062.	L PROPS
VMU3	PROPERTY OF THE GAS MIXTURE WHICH REDUCES TO 1/WM FOR EQUA DIFFUSION COEFFICIENTS, SEE EQ(28) OF NASA CR-1062.	LC PRPCOM
VMU3P	DERIVATIVE OF VMU3 WITH RESPECT TO ETA.	C PRPCOM
VMU4P	DERIVATIVE OF VMU4 WITH RESPECT TO ETA.	C PRPCOM
VMU5	CONTRIBUTION TO MIXTURE VISCOSITY GIVEN BY AMU5 * RMMG/AA.	L PROPS

VMU6	CONTRIBUTION TO MIXTURE THERMAL CONDUCTIVITY GIVEN BY (PMU + CPTIL/1.9869-2.5 * TMU3) / P.	6L PROPS
VMU12	PRODUCT OF THE TWO COEFFICIENTS MU1 AND MU2 DEFINED IN EQ (22) OF NASA CR-1062.	C PRPCOM
VMUA	CONSTANT IN THE VISCOSITY RELATION MU=(VMUA+T+*VMUB)/(VMUC T+VMUD), USED IN KR(7)= 1 OPTION ONLY.	STTCOM
VMUB	CONSTANT IN THE VISCOSITY RELATION DEFINED UNDER VMUA.	C STTCOM
VMUC	CONSTANT IN THE VISCOSITY RELATION DEFINED UNDER VMUA.	C STTCOM
VMUD	CONSTANT IN THE VISCOSITY RELATION DEFINED UNDER VMUA.	C STTCOM
VMUE(L)	VISCOSITY AT BOUNDARY LAYER EDGE.	C EDGCOM
AWM(I)	MOLECULAR WEIGHT OF THE MIXTURE.	C PRPCOM
VMWE	MOLECULAR WEIGHT OF GAS AT BOUNDARY LAYER EDGE.	C EDGCOM
(L)NV	PARTIAL PRESSURE.	C EQPCOM
VNU(J+K)	STOICHIOMETRIC COEFFICIENT ON K TH BASE SPECIES IN FORMATION OF J TH SPECIES.	C EQPCOM
VVOL	LOCALLY DEFINED VARIABLE	L REFCON
w(N)	COMPONENT MASS FLUX AT WALL, W(1) IS EDGE GAS, W(2) IS PY-ROLYSIS GAS, W(3) IS CHAR.	C BLQCOM
WALEGV	VARIABLE EQUIVALENCED TO WALCOM FOR DUMPING PURPOSES	L DUMCOM
WALLJ(K)	NORMALIZED DIFFUSIVE MASS FLUX AT WALL (DEFINED BY EQ(48) OF NASA CR-1062). CK6(K) EVALUATED AT THE WALL.	C FLXCOM
WALL®	NORMALIZED DIFFUSIVE HEAT FLUX AT THE WALL (DEFINED BY EQ (50) OF NASA CR-1062), C32 EVALUATED AT THE WALL.	C FLXCOM
WALLQU(N)	GLOBAL SET OF WALLO AND WALLJ.	E FLXCOM
WAT(K)	ATOMIC WEIGHT.	C EQPCOM
MDS	1.2 * AISTAR / PMU1	L PROPS
WD4	0.284 * WDZ	L PROPS
WD5	0.32 * AISTAR / PMU1	L PROPS
WD7	WDZ/PMU1 → WD2	L PROPS
WD8	WD4/PMU1-WD5	L PROPS
WDOT	ABLATION RATE IN THE CONVERGED SOLUTION OF MATERIAL CON- SIDERED UNDER KR(9)= 3 THROUGH 6.	C BUMCOM

WDZ	CONSTANT 1.385 WHICH ENTERS INTO CALCULATION OF MIXTURE TRANSPORT PROPERTIES.	L PROPS
WM	MOLECULAR WEIGHT OF MIXTURE.	C EQPCOM
WS	SUM OF PYROLYSIS AND CHAR MASS RATES.	L MATER
WSUM	W(1) + W(2) + W(3)	L NONCER
WT	MOLECULAR WEIGHT AS SUMMED.	L INPUT
WTG	PRESSURE * GAS MOLECULAR WEIGHT.	L MATER
WTL	SUMMATION OF VN(J) * WTM(J) FOR ALL CONDENSED SPECIES.	L MATER
(L)MTW	MOLECULAR WEIGHT OF SPECIES J.	C EQPCOM
X(N)	CORRECTIONS OF NONLINEAR VARIABLES IN CHEMISTRY SOLUTION.	E EQTCOM
X1	DAMPED VALUE OF DELTA LN T.	L CRECT
XD	LOCALLY DEFINED VARIABLE	L SLOPO
XG(N)	DEFINED BY EQ(86) OF NASA CR-1062 EVALUATED FOR P=G(1,1), N= 1 TO 4. XG(5) IS THE INTEGRAL OF (F(2,1)*G(1,1)*DETA) GIVEN BY EQ (85).	C COECON
XI(L)	TRANSFORMED STREAMWISE COORDINATE DEFINED BY EQS(31) AND (33) OF NASA CR-1062.	C HISCOM
XICON(L)	INTEGRAND IN CALCULATION OF XI IN REFCON: TEMPORARY STORAG AREA IN OTHER ROUTINES.	EC TEMCOM
XJ	LOCALLY DEFINED VARIABLE	L MATS1
XK	LOCALLY DEFINED VARIABLE	L MATSI
XKP	LOCALLY DEFINED VARIABLE	L MATS1
XM(N)	DEFINED BY EQ(86) OF NASA CR-1062 EVALUATED FOR P=F(2.1). N= 1 TO 4. XM(5) IS THE INTEGRAL OF (F(2.1)*F(2.1)*DETA) GIVEN BY EQ(85).	C COECON
XOT	LOCALLY DEFINED VARIABLE	L SLOPO
XOTT	LOCALLY DEFINED VARIABLE	L SLOPQ
XS	LOCALLY DEFINED VARIABLE	L MATS1
XSP(N+K)	DEFINED BY EQ(86) OF NASA CR-1062 EVALUATED FOR P=SP(1.1.K) N=1 TO 4. XSP(5.K) IS THE INTEGRAL OF (F(2.1)*SP(1.1.K) *DETA) GIVEN BY EQ(85).)C COECON
XT	LOCALLY DEFINED VARIABLE	L ABMAX

хто	LOCALLY DEFINED VARIABLE	L SLOPQ
XTT	LOCALLY DEFINED VARIABLE	L SLOPQ
Y(I)	ACTUAL DISTANCE FROM BODY MEASURED NORMAL TO SURFACE.	C OUTCOM
Y(J)	NATURAL LOG OF PARTIAL PRESSURE (=0 FOR PRESENT CONDENSED SPECIES), IDENTICAL TO YYY(J)+.	C EQPCOM
YAP	CONSTANT IN MIXING LENGTH EQUATION.	C EPSCOM
YC	INITIAL VALUE OF Y(J).	L INPUT
YDI	LOCALLY DEFINED VARIABLE	L TRMBL
YDIQ	LOCALLY DEFINED VARIABLE	L TRMBL
YDQD	LOCALLY DEFINED VARIABLE	L TRMBL
YDS	LOCALLY DEFINED VARIABLE	L TRMBL
YINT	ALOG(VINT)	L INPUT
YS	LOCALLY DEFINED VARIABLE	L SLOPQ
YW(K)	VALUE OF YYY(J) AT WALL (SAVED).	C EGPCOM
Z	STATIC TEMPERATURE IN DEG K. IDENTICAL TO T*.	C EQPCOM
ZG(N.I)	DEFINED BY EQ(94) OF NASA CR-1062 EVALUATED FOR P=G(1.1). N = 1 TO 4.	C HISCOM
ZK(K)	QUANTITY FOR ELEMENT K WHICH IS INTRODUCED AS A RESULT OF THE APPROXIMATION FOR BINARY DIFFUSION COEFFICIENTS AND REDUCES TO SP(1,1,K) FOR EQUAL DIFFUSION COEFFICIENTS (SEE EQ(25) OF NASA CR-1062).	
ZKP(K)	DERIVATIVE OF ZK WITH RESPECT TO ETA.	C PRPCOM
ZM(N+I)	DEFINED BY EQ(94) OF NASA CR-1062 EVALUATED FOR P=F(2,1), N = 1 TO 4.	C HISCOM
ZSP(N.I.K)	DEFINED BY EQ(94) OF NASA CR-1062 EVALUATED FOR P=SP(1+1+K N = 1 TO 4.)C HISCOM

APPENDIX I

WALL BOUNDARY CONDITIONS

Wall boundary conditions for the BLIMP program have been generalized to include surface thermochemistry considerations since a large proportion of the problems on which BLIMP is used include ablating surfaces. These wall boundary conditions are flagged by various combinations of the KR(9) and KR(11) flags. The purpose of this appendix is to explain the types of options that are available.

For typical engineering problems, there are several sets of boundary conditions which are used most often. These are typically combinations of the following conditions.

- o Chemical equilibrium between the gaseous boundary layer and the surface material
- o Assigned surface temperature
- o Assigned surface mass flux
- o Energy balance between the surface material and the gaseous boundary layer assuming steady state ablation.

Of course, these four conditions cannot be used in all possible combinations and do not constitute a complete list. Five combinations which can be used in the BLIMP program and the control card punches necessary to flag them are summarized below. A more general discussion is contained in reference 1. The reader should also note that a procedure for varying KR(9) as a function of body station (denoted KR9()) in this manual) is described under card 3, field 2 of group 3. This procedure allows the user to change the type of boundary conditions at various points along the body.

- a. Assigned temperature and mass flux
 - Use KR(9) = 2, KR(11) = 0. This combination is often used when experimental data or data from separate analyses are available to describe T and MDOT as functions of streamwise location. No surface material-boundary layer gas interaction chemistry is considered in the resulting solutions.
- b. Assigned temperature and surface equilibrium
 - Use KR(9) = 2, KR(11) = 0. This 'ption is obtained when the program compares the assigned temperature to the ablation temperature

(group 11, card 1) for the surface material in question. If the assigned temperature is larger, a surface equilibrium analysis is performed. The assigned MDOT should be zero.

With the surface equilibrium chemistry package called in, the program automatically chooses the correct surface material and calculates the correct mass loss rate at the assigned temperature. Surface kinetics and fail temperatures (e.g., for a melting material) may also be used with this option.

c. Assigned mass flux and surface equilibrium

Use KR(9) = 2, KR(11) = 2. This option also uses the surface equilibrium chemistry package mentioned in (b) above. The program will automatically choose the correct surface material and temperature to coincide with the assigned mass flux. Kinetics and fail temperatures can be used.

d. Steady state energy balance and surface equilibrium

Use KR(9) = 4, KR(11) = 0. Whenever KR(9) is greater than or equal to 3, a special surface chemistry package based on vapor pressures is called (see reference 3). The special chemistry package does not allow fail temperatures or kinetic control of reactions, and the surface material must be specified in advance. Within these limitations, the program will calculate the correct mass loss rate of specified surface material necessary to satisfy the steady state energy balance equation.

In the steady state energy balance, the pyrolysis front and the exposed material surface are assumed to be receding at identical rates. This special situation eliminates the need for an in-depth conduction analysis (see references 9 and 10) and allows ablation calculations to be performed as a subroutine to the boundary layer analysis. The steady state assumption is good for large ablation rates or small thermal diffusivity of the ablation material (reference 11). For charring materials it is also necessary that the ratio or pyrolysis gas to char mass removal rate approach the steady state ratio, which can be found from the virgin material composition.

e. Assigned flux of transpirant with steady state energy balance

Use KR(9) = 2, KR(11) = 0, and assign KR9() = 4, as required. This option allows an assigned flux of transpiring gas into the boundary layer through an ablating surface while maintaining surface equilibrium. The local surface condition is determined by the steady state energy balance. The flux of transpirant gas is input on card set 11

of group 16 as a pyrolysis gas. The fields for boundary layer edge gas and char fluxes must also be input in accordance with KR(9) = 2 but blank cards may be used. Card set 3 of group 16 for assigned wall temperature is also required in accordance with KR(11) = 0 but blank fields may be used. The boundary layer calculations use the KR9() = 4 value, the KR(9) = 2 option affecting only the reading of the transpiration flux. The heat of formation of the transpirant gas must be input in field 3 of card 1 of group 6.

The above combinations of boundary conditions are used in nearly all ablating and nonablating boundary layer flow analyses, however other combinations are possible. For example, for program checkout purposes it is sometimes useful to specify eleme; tal mass fraction together with stream function or mass fluxes at the wall (KR(9) = 0 or 1). This option is meaningless for unequal diffusion problems since the elemental mass fractions at the wall are not known in advance.

APPENDIX II

Table I

FORCE CONSTANTS FROM REFERENCE 6

Molecule		e/k
Alcl Alcl ₃	2.655 3.578 5.127	2750 932 472
AlC13	3.140	556
Alf Alfs Aln Alo	3.148 4.198 3.349 3.204 3.730 2.940	1046 2682
A10 A18	3.204 3.730	2682 542 1526 2750
A13 A1 ₂ A1r	2.940 3.711	2750 78.6
Ar AsH ₃ B	3.542 4.145 2.265 5.439	93.3 259.8 3331 430
BBr3 BC1 BC1 ₂	5.439 3.318	1026
BC1 ₂ BC1 ₃	4.902	682 537.7
BP S	5.127 2.000 3.543 4.190	537.7 612 599
BLS BLS		186.3
BI3 BO	5,908 2,944 5,508	570.2 596
·B(OCH ₃) ₃	5.505	396.7
Balle	2.480 4.821	3531 215.2
B203	4.158	2092 3603
BeBr ₂ BeCl ₂ BeCl ₂	2.610 4.235	3603 936 3067
	3.564 4.102	1067 936
Ber Ber ₂ Ber ₂	3.194 3.452	437 1266
Bel2	4 966	1019 3603
pr.	3.672	236.6 239
Be2 Br BrF BrF3 BrO	4.344	
gr.5	2,891 3,672 3,680 4,964 3,669 4,296 5,366	233 507.9 30.6
Cher.	5.01	235
CBr	6.12	442
CC173	4.048	157.8 188
CC1272	4.40% 5.25	213 253
-CC1-7	5.320 5.44	268 334
CC14	5.947 3.638	322.7 94.2
CFo.	3.977	100
CP3	4.320	121 154.0
CH	3.370 5.13 5.25	68.6 I
CHBrClP CHBrCl2	5.25	345 427
CHELZ	5.33 4.68	559 261
CHC13	5.34¥ 4.33	340.2 240
CH ₂ BrCl	4.88	410
CH ₂ BrCl CH ₂ ClP CH ₂ Cl ₂ CH ₂ P ₂	4.68	316 356.3
CH ² 1,5	4.00	318 630
CH3BL	5.16 4.110	449.2
CH ₃ C1 CH ₃ P	4.142 3.78 4.83	350 333 519
CH3I CH3OH	4.83 3.684	519 481.8
ə.'''		

Molecule	0	e/k
CH4	3.758	148,6
CN CO COS CP CS CS CS CS	3.856 3.690 4.130 3.941 4.400 4.216 4.483 3.913 4.053	75.0 91.7 336.0 195.2 227 199.4 467 78.8 231.8
C2H4 C2H6 C2H5C1 C2H5OH C2H5 CH3OCH3 CH3OCH3 CH3CCH eyclo-C3H6 C3H0	3.118	224.7 215.7 300 362.6 348.8 395.0 298.9 251.8 248.9 237.1
n-c3H70H CH3COCH3 CH3COCH3 n-C4H10 1mo-C4H10 C2H5OC2H5 CH3COC2H5 n-c5H12 C(CH3)4	4.549 4.600 4.936 4.687 5.278 5.679 5.206 5.784 6.484 5.549	576.7 560.2 469.8 531.4 530.1 513.8 521.3 341.1 193.4 412.3
C6H12 n-C6H14 C1 C1CN C1P C1P C1P C1P C1P C1P C1P	6,182 - 5,949 2,606 3,613 - 4,067 3,666 4,966 5,842 4,217 2,966	297.1 399.3 1227 130.8 338.7 203.4 335.7 184 316.0 112.6
FCN F2 HBr HC1 HC1 HF HI H3	3.578 3.567 2.708 3.363 3.630 3.539 3.348 4.211 5.673 2.827	168 112.6 37.0 449 569.1 344.7 330 268.7 85.4 59.7
H20 R202 H23 H25 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2	2.641 4.196 3.623 2.551 2.969 5.000 4.550 5.426 4.320 4.666	809.1 289.3 301.1 10.22 750 686.2 730 695.6 810.7 437.3
I2 Rr L1Br L1CN L1Cl L1F L1I L1O L12	5.160 5.658 2.650 5.748 5.996 5.708 5.278 4.180 3.334 5.200	474.2 178.9 1899 1815 \$69.1 1919 2305 1726 450 1899

		,
Molecule	•	e/x
Li20 Me MeCi MeCi2 MeP MeP2 MeP2 MeP3 MP3	3.561 8.996 3.759 4.340 3.929 3.623 3.301 3.296 4.154 3.312	1007 1614 714 1900 406 9064 1614 71.4 175 45.3
NOC1 NOC1 NOC1	2.900 3.492 4.112 3.798	860.3 116.7 305.3 71.4
N ₂ O Na NaBr NaCN NaC1 NaP	3.867 4.896 4.396 4.184 3.754	292.4 1375 1963 9666 1969 2963
NaI NaO NaOH Na ₂ O Na ² O	4.000 3.012 3.004 4.190 4.300 2.000	1804 303 1962 1876 1887 38.8
OF OF OF	3.606 3.412 3.678 3.147	106.7 100.6 161 73.6
PP PC1 PC1 PFS PFS PFS PFS PFS PFS PFS PFS PFS PFS	3.467 4.115 4.868 5.860 4.180 4.380 4.380 4.368 4.377 4.703	186.7 666 664 419 871 886.3 861.5 884 744
12 13 14 130 130 132 132 131 131 131 131	4.667 5.665 3.880 5.190 5.190 4.118 4.519 4.700 2.910 3.746	988 731 847 988,1 981,4 967 988,6 988,6 988,6
51014 51F 51F013 51F2C12 51F3C1 51F4 51F4 5102 5102 513	5.977 3.938 5.540 5.870 4.978 4.880 4.884 3.574 3.706 3.900	300.2 300 300 877 951 171.9 907.6 509 1004
Si ₂ SnBr ₄ SnCl ₄ UF ₆ In Ar Ar Ar He Kr	3.900 6.396 6.396 5.967 4.047 2.394 3.408 2.608 3.640 2.794	3606 543.7 460 250.8 251.0 1306 119.9 10.22 164.7 60.8
X•	4.602	204.9

REFERENCES

- 1. Anderson, L. W. and Kendall, R. M.; A Nonsimilar Solution for Multicomponent Reacting Laminar and Turbulent Boundary Layer Flows Including Transverse Curvature, AFWL-TR-69-106, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, October 1969.
- Bartlett, E. P. and Deblaye, C.; <u>User's Manual Boundary Layer Integral Matrix Procedure</u>, Aerotherm Corporation Final Report No. 68-42, October 15, 1968.
- 3. Kendall, R. M.; A General Apr Equilibrium-Nonequilibrium, H CR 1064, June 1968.
- 4. Bartlett, E. P., Kendall, R. M., and Rindal, R. A.; A Unified Approximation for Mixture Transport Properties for Multicomponent Boundary layer Applications, NASA CR 1063, June 1968.
- 5. Deblaye, C. and Bartlett, E. P.; An Evaluation of Thermodynamic and Transport Properties for Use in the BLIMP Nonsimilar Multicomponent Boundary Layer Program, Aerotherm Corporation Final Report No. 69-53, July 1969.
- 6. Svehla, R. A.; Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, NASA TR R-132, 1964.
- 7. Schaefer, J. W., Reese, J. J., and Anderson, L. W.; <u>Determination of Kinetic Rate Constants for the Reaction of Solid Propellant Combustion Products with Pyrolytic Graphite</u>, Aerotherm Corporation Final Report No. 68-31, May 1968.
- 8. Rindal, R. A., et al.; Experimental and Theoretical Analysis of Ablative Material Response in a Liquid Propellant Rocket Engine, NASA CR 72301, September 1967.
- 9. Green, L.; "Some Properties of a Simplified Model of Solid Propellant Burning," <u>Jet Propulsion</u>, 28, pp. 386-392, June 1958.
- 10. Bartlett, E. P. and Grose, R. D.; The Multicomponent Laminar Boundary Layer
 Over Graphite Sphere Cones: Solutions for Quasi-Steady Ablation and Application to Transient Reentry Trajectories, Sandia Laboratories, SC-CR-68-3665,
 May 1968.
- 11. Denison, M. R.; "Estimating Transient Temperature Distributions During Ablation," ARS Journal, 30, pp. 562-563, June 1960.

UNCL	ASSI	FIED
------	------	------

Security Classification		······································			
DOCUMENT CONTROL DATA - R & D					
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)					
Aerotherm Corporation	2.4	2. REPORT SECURITY CLASSIFICATION UNCLASSIFIED			
Mountain View, California 94040		2b. GROUP			
3. REPORT TITLE	L-				
USER'S MANUAL, Vol I, Boundary Layer Integ	ral Matrix Pro	cedure (I	BLIMP)		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) March 1968-October 1969					
5 AUTHOR(5) (First name, middle initial, last name)					
Larry W. Anderson; Eugene P. Bartlett; Rob	ert M. Kendall				
6. REPORT DATE	74. TOTAL NO. OF F	AGES	7b. NO. OF REFS		
March 1970	210	EDOD T	11		
en. CONTRACT OR GRANT NO. F29601-68-C-0062	9a. ORIGINATOR'S R	EPORT NUMB	F 4(3)		
b. PROJECT NO 5791	AFWL-TR-6	9-114, Vo	ol I		
^{c.} Task No. 27	9b. OTHER REPORT this report)	NO(S) (Any of	her numbers that may be assigned		
d.					
transmittal to foreign governments or fore approval of AFWL (WLEE), Kirtland AFB, NM, of the technology discussed in the report.	ign nationals 87117. Distr	may be ma	ade only with prior		
11. SUPPLEMENTARY NOTES	12. SPONSORING MIL	ITARY ACTIV	TITY		
	1	(WLEE)	, NM 87117		
(Distribution Limitation Statement No. 2) A complete description of the Boundary Layer Integral Matrix Procedure (BLIMP) computer code is given, including descriptions and explanations of the program input preparation, interpretation of output, special output for debugging purposes, and a list and definitions of the Fortran variables. Three sample problems are included, ranging in complexity from air flow over a flat plate to air flow over an ablating reentry vehicle nosetip and heat shield composed of three different surface materials. A section on changing program dimensions is also included.					

DD 1 NOV 66 1473

205

UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification	COV.	- والأند براكوري						
14.	EY WORDS		LINK A		LINK &		LINK C	
` <u> </u>		ROLE	WT	ROLE	WT	ROLE	WT	
Turbulent boundary laye:	•	}]	ļ				
viscous flow				1	Ì			
Plasma sheath		[[
Missile reentry		1	l		ł			
Computer program		1	ļ	1				
Nonsimilar boundary laye	r		1					
i wonstmillar boundary ray		ł	ļ	İ	ľ	1		
		ì	ł			1	1	
		1	1					
					ŀ			
		ĺ	{	1		1		
			1	1		1	1	
			}	j ,	!			
			1	1				
•			1]		}		
			{					
			l			1		
		- 1	1					
		ľ	Ì	!				
		ļ		}				
		1	İ			İ		
			ł		i	1		
			j]		
		İ	1	Ì		1		
		1	ł					
			1]		
			1	,				
			1	[i i		
		1	ł			! I	Į	
		1]]		j j		
						j l		
				ì				
		1	1					
] }	ì	
]]		
						1 1		
]		
		}				}		
		1						
		1						
		1		1			į	
		}						
		-]))		
			-	أجييحسما				