Matrix Completion with Implicit Clustering

Md Enayat Ullah¹

Supervisors:

Dr. Purushottam Kar 1

Dr. Debassis Kundu 1

Dr. Prateek Jain²

November 8, 2016

¹Indian Institute of Technology Kanpur

²Microsoft Research, India

Table of Contents

- 1. Matrix Completion
- 2. Modification
- 3. Rank-1 Components
- 4. Experiments

Figure 1: User-Items Rating Matrix (Incomplete)

Figure 2: User-Items Rating Matrix (Completed!)

Low rank Matrix Completion

III-posed Problem

Constraints

1. Low rank (rank(M) = $k \ll \min(m, n)$)

Figure 3: Low rank Decomposition

Applications

- Collaborative Filtering (Recommendation Systems)
- System Identification

Algorithms

- Convex Relaxation (CR09)
- Alternating Minimization (KOM09), (JNS13)

Projection Operator

Given:

Define:

$$\Omega := \{(i,j) \in [m] \times [n] \text{ s.t } M_{ij} \text{ is observed}\}$$

$$P_{\Omega}(M)_{ij} := \begin{cases} M_{ij} & \forall (i,j) \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

Optimization

Optimization Problem

$$\min_{U,V} f(U,V) = \left\| P_{\Omega} \left(UV^{T} \right) - P_{\Omega} \left(M \right) \right\|_{\mathcal{F}}^{2}$$
where $U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}$

Non-Convex Objective

- 1. Exact-minimization is NP-Hard.
- 2. Exponentially large number of local minima.
- 3. Saddle points

Constraints

- 1. Low rank (rank(M) = $k \ll \min(m, n)$)
- 2. Uniformly and Independently sampled entries.

Sample complexity = $O(k^4 n \log n)$.

What if?

0	0	0	0	0	0
0	0	0	0	0	0
0	0	3	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Incoherence

Incoherence

A matrix $M \in \mathbb{R}^{m \times n}$ of rank k is incoherent with parameter μ if

$$\|U^i\|_2 \le \frac{\mu\sqrt{k}}{\sqrt{m}} \ \forall \ i \in [m]$$

$$\left\| V^{j} \right\|_{2} \leq \frac{\mu \sqrt{k}}{\sqrt{n}} \; \forall \; j \in [n]$$

where $M = U\Sigma V$ is the SVD of M and U^i and V^j are the i^{th} and j^{th} row of U and V respectively.

9

Algorithm

Algorithm 1 Alternating Minimization for Matrix Completion

```
1: Input: P_{\Omega}(M), \Omega

2: Output: \widehat{U}^{T}, \widehat{V}^{T}

3: Initialize U^{0} = \text{LSVD}(P_{\Omega}(M), r)

4: for t = 1, 2, ..., T do

5: \widehat{V}^{t+1} = \underset{V}{\operatorname{arg min}} \left\| P_{\Omega} \left( \widehat{U}^{t} V^{T} - M \right) \right\|_{\mathcal{F}}^{2}

6: \widehat{U}^{t+1} = \underset{U}{\operatorname{arg min}} \left\| P_{\Omega} \left( U \left( \widehat{V}^{t+1} \right)^{T} - M \right) \right\|_{\mathcal{F}}^{2}

7: end for
```

Therorem (JNS13)

Let $M = U^* \Sigma^* V^{*T} (n \ge m) \in \mathbb{R}^{m \times n}$ be a rank-k μ -incoherent matrix. Also, let each entry of M be observed uniformly and independently with probability

$$p > C \frac{\left(\frac{\sigma_1^*}{\sigma_r^*}\right)^2 \mu^4 k^{2.5} \log n \log \left(\frac{r||M||_{\mathcal{F}}}{\epsilon}\right)}{m \delta_{2k}^2}$$

where $\delta_{2k} \leq \frac{\sigma_T^*}{12k\sigma_1^*}$ and C>0 is a global constant. Then with high probability, for $T=C'\log\frac{\|M\|_{\mathcal{F}}}{\epsilon}$, the outputs \widehat{U}_T and \widehat{V}_T with input $(\Omega,P_\Omega(M))$ satisfy $\left\|M-\widehat{U}_T\widehat{V}_T^T\right\|^{\mathcal{F}} \leq \epsilon$.

11

Modification

Modifications

Figure 4: Two rank k components of M

Rank *k* components

Figure 5: Matrix Factorization of M_1 and M_2

Matrix Factorization

Figure 6: Matrix Completion with r rank-k components

Clustering

Figure 7: Clusters

Dictionary Learning

Figure 8: Dictionary Learning

Dictionary Learning

Algorithm 2 Alternating Minimization for Matrix Completion

```
1: Initialize U^0 = LSVD(P_{\Omega}(M), r)
2: for t = 1, 2, ... do
           for i = 1, 2 ... n do
3:
               \widehat{V}_{i}^{t} = \mathop{\mathrm{arg\,min}} \left\| P_{\Omega} \left( M^{i} - \widehat{U}^{t} V_{i} 
ight) 
ight\| \, 	ext{s.t.} \quad \left\| V_{i} 
ight\|_{0} \leq k \, \, / / 	ext{Sparse Recovery}
4:
5:
           end for
           for i = 1, 2 ... m do
6:
               \widehat{U}_{i}^{t+1} = \left(\sum_{i:(i,j)\in\Omega}\left(\widehat{V}_{j}^{t}
ight)^{T}\widehat{V}_{j}^{t}
ight)\left(\sum_{i:(i,j)\in\Omega}M_{i}^{j}\widehat{V}_{j}^{t}
ight)
7:
                                                                                                                             //LS Estimate
8:
           end for
9: end for
```

Sparse Recovery

Figure 9: Sparse Recovery $(m \ll n, ||X||_0 \le k)$

Constraint

 $\it A$ should satisfy Restricted Isometric Property.

Restricted Isometry Property (RIP)

Restricted Isometry Property (k, δ_k) (CT06)

A matrix $A \in \mathbb{R}^{m \times n}$ is said to satisfy k-RIP with RIP constant δ_k if $\forall X \in \mathbb{R}^n$ with $||X||_0 \le k$, the following hold:

$$(1 - \delta_k) \|X\|_2 \le \|AX\|_2 \le (1 + \delta_k) \|X\|_2$$

Optimization Problem

$$\widehat{X} = \underset{X}{\operatorname{arg\,min}} \|X\|_0 \text{ s.t. } AX = b$$

Sparse Recovery

ISTA(BT09)	IHT(BD09)		
A satistfies $(2k, \delta)$ -RIP for $\delta < 1$	A satisfies $(3k, \delta)$ -RIP for $\delta \leq \frac{1}{2}$		
$1+\sqrt{2}$			
Convergence: $\frac{1}{\epsilon}$ or $\frac{1}{\sqrt{\epsilon}}$	Convergence: $\log\left(\frac{1}{\epsilon}\right)$		
	$X^{t+1} = \Pi_{\mathcal{B}_0(k)} \left(X^t - A^T \left(A X^t - b ight) ight)$		
LASSO: $\min_{X} AX - b _{2}^{2} + \lambda X _{1}$			
	\tilde{X} \hat{X}		

Objective

Sample Complexity

• Information Theoretic samples required = $\mathcal{O}(mr + nk)$

Initialization

• \widehat{U}^0 (= $LSVD(P_{\Omega}(M), r)$) is "close" to U^*

Convergence

Alternating minimization converges to local/global minima

Rank-1 Components

Rank-1

 $\textbf{Figure 10:} \ \, \textbf{All components of rank 1}$

Experiments

Experiment

Figure 11: Experiment Flowchart

Error vs c

Figure 12: Error vs. c

Error vs rank

Figure 13: Error vs. rank

Error vs dimensions (m,n)

Figure 14: Error vs. dimensions (m,n)

References I

References

- [BD09] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing. *Applied and Computational Harmonic Analysis*, 27(3):265–274, 2009.
- [BT09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.
- [CR09] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization. *Foundations of Computational mathematics*, 9(6):717–772, 2009.

References II

- [CT06] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? *IEEE transactions on information theory*, 52(12):5406–5425, 2006.
- [JNS13] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 665–674. ACM, 2013.
- [KOM09] Raghunandan H Keshavan, Sewoong Oh, and Andrea Montanari. Matrix completion from a few entries. In 2009 IEEE International Symposium on Information Theory, pages 324–328. IEEE, 2009.

