Name: Gonzalo Ortega Carpintero

Exercise 1

Let $p: E \to B$ be a covering map. Let X be a path connected, simply connected and locally path connected topological space, let $x \in X$ and $f: X \to B$ be a continuous surjective function.

a) Proof. By the lifting criterion we have that $\forall e \in p^{-1}(f(x)), \exists ! \tilde{f}_e : X \to E$ continuos such that $p \circ \tilde{f}_e = f$ and $\tilde{f}_e(x) = e$. Suppose that f is a homeomorphism onto its image. Hence f is bijective, continuos and f^{-1} is continuos.

Take $x_1 \neq x_2 \in X$. As in particular f is injective, $f(x_1) \neq f(x_2)$ and therefore $p^{-1}(f(x_1)) \neq p^{-1}(f(x_1))$. As $p^{-1} \circ f = \tilde{f}_e$, we then have $\tilde{f}_e(x_1) \neq \tilde{f}_e(x_1)$. Thus \tilde{f}_e is injective. Every function is surjective onto its image, so in particular, \tilde{f}_e is surjective onto its image and therefore bijective.

By the lifting criterion, \tilde{f}_e is continuos. Also, $\tilde{f}_e^{-1} = f^{-1} \circ p$. As p is a covering, it is continuos, and we have that, \tilde{f}_e^{-1} can be formed by the composition of continuos functions. Therefore, it is continuos too and \tilde{f}_e is a homeomorphism into its image.

b) Proof. Let $e \neq e' \in p^{-1}(f(x))$. Suppose that there exists $h \in E$ such that $h \in \text{Im } \tilde{f}_e$ and $h \in \text{Im } \tilde{f}'_e$. That is, there would exist $x, x' \in X$ such that $\tilde{f}_e(x) = h$ and $\tilde{f}'_e(x') = h$. Hence we have that

$$f(x) = p(\tilde{f}_e(x)) = p(\tilde{f}'_e(x)) = f(x').$$

As f is injective, it must be x=x'. But by the uniqueness of lifts, as \tilde{f}_e and \tilde{f}'_e coincide on one point, they must be the same, and therefore e=e' making a contradiction. Thus, the images of \tilde{f}_e and \tilde{f}'_e must be disjoint.

Let $h \in p^{-1}(f(X))$. That means that $\exists x \in X$ such that $h = p^{-1}(f(x)) = \tilde{f}_h(x) \in \text{Im}(\tilde{f}_h)$. Thus,

$$p^{-1}(f(X)) \subseteq \bigsqcup_{e \in p^{-1}(f(x))} \operatorname{Im}(\tilde{f}_e).$$

If $h \in \bigsqcup_{e \in p^{-1}(f(x))} \operatorname{Im}(\tilde{f}_e)$, then $\exists e \in p^{-1}(f(x))$ such that $h \in \operatorname{Im}(\tilde{f}_e)$. That means that $\exists x \in X$ such that $h = \tilde{f}_e(x) = p^{-1}(f(x)) \in p^{-1}(f(X))$. Thus,

$$p^{-1}(f(X)) \supseteq \bigsqcup_{e \in p^{-1}(f(x))} \operatorname{Im}(\tilde{f}_e).$$

Exercise 5

Let $/Z_8$ act on $S^3=(z,w)\in\mathbb{C}^2\mid |z|^2+|w|^2=1$ as $[m]\cdot(z,w):=(\xi^mz,\xi^mw)$, where ξ is a primitive 8-th root of unity, $(z,w)\in S^3$ and $[m]\in\mathbb{Z}$.

a) As \mathbb{C}^2 is a metric space, let d be the induced distance function over S^3 . Define

$$\epsilon \coloneqq \frac{1}{2}d((z, w), \xi(z, w)).$$

Let $[m] \neq [n] \in \mathbb{Z}_8$ act over $(z, w) \in S^3$. Let $B_{\epsilon}((z, w))$ be the open ball of center (z, w) and radius ϵ . Then $[m] \cdot B_{\epsilon}((z, w)) = B_{\epsilon}(\xi^m(z, w))$ and $[n] \cdot B_{\epsilon}((z, w)) = B_{\epsilon}(\xi^n(z, w))$. If

$$B_{\epsilon}(\xi^m(z,w)) \cap B_{\epsilon}(\xi^n(z,w)) \neq \emptyset,$$

then exists $(x,y) \in S^3$ such that $(x,y) \in B_{\epsilon}(\xi^m(z,w))$ and $(x,y) \in B_{\epsilon}(\xi^n(z,w))$. That is

$$d((x,y),\xi^m(z,w)) < \epsilon,$$

$$d((x,y),\xi^n(z,w)) < \epsilon.$$

But then, by the triangle inequality of metric spaces,

$$d(\xi^m(z,w),\xi^n(z,w)) \le d(\xi^m(z,w),(x,y)) + d((x,y),\xi^n(z,w)) < 2\epsilon = d((z,w),\xi(z,w)).$$

This contradicts the fact that the minimum distance between the action of two roots of unity is the distance between the action of two consecutive roots. Hence, if $m \neq n$, then

$$B_{\epsilon}(\xi^{m}(z,w)) \cap B_{\epsilon}(\xi^{n}(z,w)) = \emptyset,$$

and the action if \mathbb{Z}_8 over S^3 is properly discontinuos.

- b) Let $L = S^3/\mathbb{Z}_8$. As $\pi_1(S^3)$ is trivial, S^3 is simply connected. As Z_8 acts properly discontinuos on S^3 , by Corollary 16, $\pi_1(L) \cong \mathbb{Z}_8$.
- c) By the classification theorem for coverings, there exists a bijection between the set of coverings $p: E \to L$ and the conjugacy classes of groups of $\pi_1(L)$. The sub groups of \mathbb{Z}_8 are: $1, \mathbb{Z}_2, \mathbb{Z}_4$ and \mathbb{Z}_8 . As all of them are normal, the conjugacy classes are the subgroups themselves. That is, up to equivalence of coverings, the four coverings of S^3 are:

$$p_1: S^3/\mathbb{Z}_8 \hookrightarrow_{\mathrm{id}} S^3/\mathbb{Z}_8,$$

$$p_2: S^3/\mathbb{Z}_4 \hookrightarrow_{/\mathbb{Z}_2} S^3/\mathbb{Z}_8,$$

$$p_3: S^3/\mathbb{Z}_2 \hookrightarrow_{/\mathbb{Z}_4} S^3/\mathbb{Z}_8,$$

$$p_4: S^3 \hookrightarrow_{/\mathbb{Z}_8} S^3/\mathbb{Z}_8.$$

d)

Exercise 7

Let K be a tame knot. Let X de the 2-dimensional CW complex associated to the Wirtinger presentation of $\pi_1(X) \cong \pi_1(S^3 \setminus K)$. Let v be the 0-cell of X.

a) Proof. Let q be a positive prime number. If H is a normal subgroup of $\pi_1(X)$ of index q, then $|\pi_1(X)/H| = q$. The quotient is a finite group of prime order, hence it is a cyclic group. As the quotient is finite and cyclic, then it must be $\pi_1(X)/H \cong \mathbb{Z}/q\mathbb{Z}$. Hence $\pi_1(X)/H$ is unique up to isomorphism and H would be the unique subgroup generating the quotient map $\phi \colon \pi_1(X) \twoheadrightarrow \pi_1(X)/H \cong \mathbb{Z}/q\mathbb{Z}$.

To prove the existence of H, note that as K is tame, Wirtinger presentation of $\pi_1(X)$ has a finite number of generators g_1, \ldots, g_n . Fix any $[k] \in \mathbb{Z}/q\mathbb{Z}$ different from 0 and note that it must be a generator of $\mathbb{Z}/q\mathbb{Z}$ since q is prime. Map every generator of $\pi_1(X)$ to [k] trough the homomorphism $\phi \colon \pi_1(X) \to \mathbb{Z}/q\mathbb{Z}$. That is, $\phi(g_i) = [k]$ for all $i = 1 \ldots n$. This is well-defined because the Wirtinger presentation relations imply that all generators are conjugate to one another, and they are sent to the same element under the given assignment. Note that ϕ is surjective because h is a generator. By the first group isometry theorem we have

$$\pi_1(X)/\ker(\phi) \cong \operatorname{Im}(\phi) \cong \mathbb{Z}/q\mathbb{Z}.$$

Now, just take $H = \ker(\phi)$.

b) Let $K = 4_1$. Let $p: Y \to X$ be the covering map associate to $\pi_1(X, v)$. Let q = 2. As seen in class, the Wirtinger of $\pi_1(S^3/4_1)$ is

$$\pi_1(S^3/4_1) \cong \langle a, b, c, d \mid ac^{-1}b^{-1}c, bd^{-1}c^{-1}d, ca^{-1}d^{-1}a \rangle.$$

Following the procedure seen in class, Y^0 are the elements of $\mathbb{Z}/2\mathbb{Z}$:

$$Y^0 = \{[0], [1]\}.$$

The elements of Y^1 are in bijection with $\{[0], [1]\} \times \{a, b, c, d\}$:

$$Y^1 = \big\{ e^1_{(0,a)} =: e, e^1_{(0,b)} =: f, e^1_{(0,c)} =: g, e^1_{(0,d)} =: h, \\ e^1_{(1,a)} =: i, e^1_{(1,b)} =: j, e^1_{(1,c)} =: k, e^1_{(1,d)} =: l \big\}.$$

Finally, elements in Y^1 are in bijection with $\{[0], [1]\} \times \{ac^{-1}b^{-1}c, bd^{-1}c^{-1}d, ca^{-1}d^{-1}a\}$:

$$\begin{split} Y^2 &= \big\{e^2_{(0,ac^{-1}b^{-1}c)}, e^2_{(0,bd^{-1}c^{-1}d)}, e^2_{(0,ca^{-1}d^{-1}a)}, \\ &e^2_{(1,ac^{-1}b^{-1}c)}, e^2_{(1,bd^{-1}c^{-1}d)}, e^2_{(1,ca^{-1}d^{-1}a)}\big\}. \end{split}$$

where the gluing maps can be given by

$$e^{2}_{(0,ac^{-1}b^{-1}c)} \longrightarrow eg^{-1}j^{-1}k$$

$$e^{2}_{(1,ac^{-1}b^{-1}c)} \longrightarrow ikfg$$

References

[1] Allen Hatcher, Algebraic Topology, Allen Hatcher 2001.