UNIT 2

Lecture 31
Normalization
FD Closure and Minimal Cover

Closure of a set of FDs (Attribute Closure)

- 1. The closure of a set of FDs is the set of all FDs implied by a given set of FDs.
- 2. It can be calculated using Armstrong Axioms.
- 3. It can be used to check if a FD follows from a given set.
- 4. Can check if a set of attributes is a candidate key.

Armstrong Axiom to find Closure

```
X^+ := X;
Repeat

Old X^+ := X^+;
For each functional dependency Y \rightarrow Z in F do

If X^+ \supseteq Y then X^+ := X^+ \cup Z;

Until (X^+ = Old X^+);
```

Inference Rules for functional dependencies

1. Reflexive Rule

If
$$X \supset Y$$
 then $X \rightarrow Y$

2. Augmentation Rule

If
$$X \rightarrow Y$$
 then $XZ \rightarrow YZ$

3. Transitive Rule

If
$$X \rightarrow Y$$
 and $Y \rightarrow Z$ then $X \rightarrow Z$

4. Decomposition or Projective Rule

If
$$X \rightarrow YZ$$
 then $X \rightarrow Y$, and $X \rightarrow Z$

5. Union or Additive Rule

If
$$X \rightarrow Y$$
 and $X \rightarrow Z$ then $X \rightarrow YZ$

6. Pseudo transitive Rule

If
$$X \rightarrow Y$$
 and $YZ \rightarrow W$ then $XZ \rightarrow W$

Q.1 Consider the closure of following set F of functional dependencies for the relation scheme. $R = \{A, B, C, D, E, F\}, F = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, CD \rightarrow F\}$. Find F^+ .

Sol: The closure of a set of functional dependencies (F⁺) is the set of all functional dependencies implied by the set F.

So,
$$F^+ = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, CD \rightarrow F, B \rightarrow F\}$$

Since, $A \rightarrow B$ and $B \rightarrow F$ exists we have $A \rightarrow F$ by transitivity.

So,
$$F^+ = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, CD \rightarrow F, B \rightarrow F, A \rightarrow F\}$$

Since, A \rightarrow C and CD \rightarrow E exists we have AD \rightarrow E by pseudo transitivity

So,
$$F^+ = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, CD \rightarrow F, B \rightarrow F, A \rightarrow F, AD \rightarrow E\}$$

Since, A \rightarrow C and CD \rightarrow F exists we have AD \rightarrow F by pseudo transitivity

So,
$$F^+ = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, CD \rightarrow F, B \rightarrow F, A \rightarrow F, AD \rightarrow E, AD \rightarrow F\}$$

Covering Constraint

- A set of functional dependencies F is said to **cover** another set of functional dependencies E if every FD in E is also in F⁺; i.e. if any dependency in E can be inferred from F; we can say that E is **covered** by F.
- E.g. Consider the relation R (A, B, C, D) with 2 sets of FD's F = {A \rightarrow B, B \rightarrow C, C \rightarrow D} and G = {A \rightarrow B, C \rightarrow D}.
- So, we can say F is said to cover G because all FDs that is implied by G⁺ is already in F⁺.

Equivalence of Sets of Functional Dependencies

- Two sets of Functional dependencies E and F are **equivalent** if E⁺ = F⁺.
- Hence, equivalence means that every FD in E can be inferred from F, and every FD in F can be inferred from E; that is, E is equivalent to F if both the conditions E covers F and F covers E hold.
- We can determine whether F covers E by calculating X^+ with respect to F for each FD $X \rightarrow Y$ in E, and then checking this X^+ includes the attributes in Y. If this is the case for every FD in E, then F covers E.
- We determine whether E and F are equivalent by checking that E covers F and F covers E.

Q.2 Consider the following set of FDs F = {A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H}, and G = {A \rightarrow CD, E \rightarrow AH}. Check whether they are equivalent.

Sol: Two sets of FDs F and G are equivalent set of FDs if and only if $F^+ = G^+$.

So,
$$F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$$

From E \rightarrow AD we have E \rightarrow A and E \rightarrow D [By decomposition Rule]

So,
$$F^+ = \{A \rightarrow C, AC \rightarrow D, E \rightarrow A, E \rightarrow D, E \rightarrow H\}$$

From A \rightarrow C and AC \rightarrow D we have, A \rightarrow D [By pseudo transitive Rule]

So,
$$F^+ = \{A \rightarrow C, AC \rightarrow D, E \rightarrow A, E \rightarrow D, E \rightarrow H, A \rightarrow D\}$$

From E \rightarrow A and A \rightarrow C we have E \rightarrow C [By transitive Rule]

So,
$$F^+ = \{A \rightarrow C, AC \rightarrow D, E \rightarrow A, E \rightarrow D, E \rightarrow H, A \rightarrow D, E \rightarrow H\}$$

From AC \rightarrow D we have AC \rightarrow CD [By augmenting C in both sides]

So,
$$F^+ = \{A \rightarrow C, AC \rightarrow D, E \rightarrow A, E \rightarrow D, E \rightarrow H, A \rightarrow D, E \rightarrow H, AC \rightarrow CD\}$$

From AC \rightarrow CD we have AC \rightarrow C and AC \rightarrow D [By decomposition Rule]

So,
$$F^+ = \{A \rightarrow C, AC \rightarrow D, E \rightarrow A, E \rightarrow D, E \rightarrow H, A \rightarrow D, E \rightarrow H, AC \rightarrow C\}$$
(i)

Q.2 Consider the following set of FDs F = {A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H}, and G = {A \rightarrow CD, E \rightarrow AH}. Check whether they are equivalent.

Sol : Now, $G = \{A \rightarrow CD, E \rightarrow AH\}$

From A \rightarrow CD and E \rightarrow AH we have A \rightarrow C, A \rightarrow D, E \rightarrow A and E \rightarrow D [By decomposition]

So,
$$G^+ = \{A \rightarrow C, A \rightarrow D, E \rightarrow A, E \rightarrow H\}$$

From $E \rightarrow A$, $A \rightarrow C$ and $A \rightarrow D$ we have, $E \rightarrow C$ and $E \rightarrow D$ [By transitive Rule]

So,
$$G^+ = \{A \rightarrow C, A \rightarrow D, E \rightarrow A, E \rightarrow H, E \rightarrow C, E \rightarrow D\}$$

From A \rightarrow D we have AC \rightarrow CD [By Augmenting C]

So,
$$G^+ = \{A \rightarrow C, A \rightarrow D, E \rightarrow A, E \rightarrow H, E \rightarrow C, E \rightarrow D, AC \rightarrow CD\}$$

From AC \rightarrow CD we have AC \rightarrow C and AC \rightarrow D [By decomposition]

So,
$$G^+ = \{A \rightarrow C, A \rightarrow D, E \rightarrow A, E \rightarrow H, E \rightarrow C, E \rightarrow D, AC \rightarrow C, AC \rightarrow D\}$$
(ii)

From (i) and (ii) we have $F^+ = G^+$, so they are equivalent.

Q.3 Consider the following set of FDs F = {A \rightarrow B, AB \rightarrow C, C \rightarrow AC, D \rightarrow E}, and G = {A \rightarrow BC, D \rightarrow AE}. Check whether they are equivalent.

Sol: Two sets of FDs F and G are equivalent set of FDs if and only if $F^+ = G^+$.

So,
$$F = \{A \rightarrow B, AB \rightarrow C, C \rightarrow AC, D \rightarrow E\}$$

From A \rightarrow B and AB \rightarrow C we have A \rightarrow C [By pseudo transitive Rule]

So,
$$F^+ = \{A \rightarrow B, AB \rightarrow C, C \rightarrow AC, D \rightarrow E, A \rightarrow C\}$$

From C \rightarrow AC we have, C \rightarrow A and C \rightarrow C [By decomposition Rule]

So,
$$F^+ = \{A \rightarrow B, AB \rightarrow C, C \rightarrow A, C \rightarrow C, D \rightarrow E, A \rightarrow C\}$$
 (i)

Now, We calculate G^+ , So, $G = \{A \rightarrow BC, D \rightarrow AE\}$

From A \rightarrow BC and D \rightarrow AE we have A \rightarrow B, A \rightarrow C, D \rightarrow A, D \rightarrow E [By decomposition Rule]

So,
$$G^+ = \{A \rightarrow B, A \rightarrow C, D \rightarrow A, D \rightarrow E\}$$

From A \rightarrow C we have AB \rightarrow BC and from AB \rightarrow BC we have AB \rightarrow B and AB \rightarrow C

So,
$$G^+ = \{A \rightarrow B, A \rightarrow C, AB \rightarrow B, AB \rightarrow C, D \rightarrow A, D \rightarrow E\}$$
 (ii)

From (i) and (ii), we have $F^+ \neq G^+$, so they are not equivalent.

- We define a set S of FDs to be irreducible if and only if it satisfies the following three properties:
 - 1. The right-hand side (the dependent) of every FD in S involves just one attribute (i.e, it is a singleton set).
 - 2. The left hand side (the determinant) of every FD in S is irreducible in turn meaning that no attribute can be discarded from the determinant without changing the closure S⁺ (i.e., without converting S into some set not equivalent to S). We will say such an FD is **left-irreducible**.
 - 3. No FD in S can be discarded from S without changing the closure S⁺ (i.e., without converting S into some set not equivalent to S).

```
E.g. 1
Consider a relation R(A, B, C, D, E) with a set of FDs
F = { A → BC, C → D, D → E}
is not an irreducible set of FDs because RHS of A → F
```

is not an irreducible set of FDs because RHS of A \rightarrow BC is not an singleton set.

To make an irreducible set of FDs we have

$$F = \{A \rightarrow B, \\ A \rightarrow C, \\ C \rightarrow D, \\ D \rightarrow E\}$$

E.g. 2

Consider a relation R(A, B, C, D, E) with a set of FDs

$$F = \{ A \rightarrow B,$$

 $AB \rightarrow D,$
 $D \rightarrow E\}$

is not an irreducible set of FDs because from A \rightarrow B and AB \rightarrow D we have A \rightarrow D [From pseudo transitive rule] that means B in AB \rightarrow D is an extraneous attribute.

To make an irreducible set of FDs we have

$$F = \{A \rightarrow B, \\ A \rightarrow D, \\ D \rightarrow E\}$$

```
E.g. 3
Consider a relation R(A, B, C, D, E) with a set of FDs
F = \{ A \rightarrow B,
         B \rightarrow C
        A \rightarrow C
         D \rightarrow E
    is not an irreducible set of FDs because from A \rightarrow B and B \rightarrow C we have A
    \rightarrow C [From transitive rule] that means A \rightarrow C is an redundant FD.
     To make an irreducible set of FDs we have
    F = \{A \rightarrow B,
         B \rightarrow C
```

 $D \rightarrow E$

Q.3 Given a relation schema R(A,B,C,D) and a set of FDs

 $A \rightarrow BC$

 $B \rightarrow C$

 $A \rightarrow B$

 $AB \rightarrow C$

 $AC \rightarrow D$

Compute an irreducible set of FDs that is equivalent to this set.

Sol: The first step is to rewrite the FDs such that each has a singleton right-hand side:

 $A \rightarrow B$

A→C [By Decomposition]

 $B \rightarrow C$

 $A \rightarrow B$

 $AB \rightarrow C$

 $AC \rightarrow D$

We observe immediately that is FD A \rightarrow B occurs twice, so one occurrence can be eliminated.

Next, attribute C can be eliminated from the left-hand side of the FD AC \rightarrow D, because we have A \rightarrow C, so A \rightarrow AC by augmentation, and we are given AC \rightarrow D, so A \rightarrow D by transitivity; thus the C on the left-hand side of AC \rightarrow D is redundant.

So the remaining FDs are:

 $A \rightarrow B$

 $A \rightarrow C$

 $B \rightarrow C$

 $AB \rightarrow C$

 $A \rightarrow D$

Next, we observe that the FD AB \rightarrow C can be eliminated, because again we have A \rightarrow C, so AB \rightarrow CB by augmentation, so AB \rightarrow C by decomposition. So the remaining FDs are:

- $A \rightarrow B$
- $A \rightarrow C$
- $B \rightarrow C$
- $A \rightarrow D$

Finally, the FD A \rightarrow C is implied by the FDs A \rightarrow B and B \rightarrow C, so it can also be eliminated. We are left with

- $A \rightarrow B$
- $B \rightarrow C$
- $A \rightarrow D$

This set is irreducible.

Q. Consider the Relation R(A,B,C,D,E,F,G,H,I,J) and a set of FDs

 $ABD \rightarrow E$

 $AB \rightarrow G$

 $B \rightarrow F$

 $C \rightarrow I$

 $CJ \rightarrow I$

 $G \rightarrow H$

Is this an irreducible set? What are the candidate keys?

Q. Consider the following set of FDs

 $AB \rightarrow C$

 $A \rightarrow DE$

 $B \rightarrow F$

F→GH

 $D \rightarrow II$

Find

- (i) Super Key
- (ii) Irreducible set
- (iii) Candidate Key

GATE Question

The following functional dependencies hold true for the relational schema R{V, W, X, Y, Z}:

$$V \rightarrow W$$

$$VW \rightarrow X$$

$$Y \rightarrow VX$$

$$Y \rightarrow Z$$

Which of the following is irreducible equivalent for this set of functional dependencies?

[GATE 2017]

MSQ Question

The following functional dependencies hold true for the relational schema R{A, B, C}:

- $A \rightarrow BC$
- $B \rightarrow AC$
- $C \rightarrow AB$

Which of the following is irreducible equivalent for this set of functional dependencies?

(A) $A \rightarrow B$

(B) $A \rightarrow C$

(C) $A \rightarrow B$

(D) $B \rightarrow A$

 $B \rightarrow C$

 $B \rightarrow A$

 $B \rightarrow C$

 $C \rightarrow B$

 $C \rightarrow A$

 $C \rightarrow B$

 $C \rightarrow B$

 $C \rightarrow A$

For Video lecture on this topic please subscribe to my youtube channel.

The link for my youtube channel is

https://www.youtube.com/channel/UCRWGtE76JlTp1iim6aOTRuw?sub confirmation=1