This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(54) ERROR CORRECTION SYSTEM

(11) 59-165152 (A)

(43) 18.9.1984 (19) JP

(21) Appl. No. 58-39227

(22) 11.3.1983

(71) HITACHI SEISAKUSHO K.K. (72) HARUO KAZAMI

(51) Int. Cl3. G06F11/10

PURPOSE: To reduce the number of pins in case of closing to one LSI, etc., by allowing file counting for data transfer to substitute for shift counting for syndrome calculation and performing processing similar to data transfer.

CONSTITUTION: An SQ update control circuit 4 operates by an external signal READ TAG to update the contents of an SQ register 5. Serial data SRDATA from a disk device is inputted to an error correction control circuit ECC1 and a serial-parallel converting circuit 2. The circuit ECC1 selects the input data and supplies its output to an ECC buffer 3. The ECC buffer 3 codes a polynomial based upon correction codes in READ operation and performs error detection when a read of the correction codes is completed. Parallel data converted by the serial-parallel converting circuit 2 is ANDed by an AND circuit 7 by SQ condition and the output of a bit string register 6, and a strobe signal of read data is sent to a processor.

(54) HIGH-SPEED DECODING METHOD OF QUADRUPLEX ERROR-CORRECTION BCH CODE

(11) 59-165153 (A)

(43) 18.9.1984 (19) JP

(21) Appl. No. 58-39816

(22) 9.3.1983

(71) HIROICHI OKANO (72) HIROICHI OKANO

(51) Int. Cl³. G06F11/10

PURPOSE: To realize an efficient decoder for a quadruplex error correction BCH code by employing a method of solution for a quartic equation of a Galois field and a method of solution which solves even less than a cubic equation by referring it to a quartic equation.

CONSTITUTION: The decoder for quadruplex error BCH codes which uses an ROM represents elements by exponents and also represents elements of degree 0 which use the exponents 0, $1\cdots 2^m-2$ all by 1, i.e. (111···1). Circuits CG6 and CG7 are circuits which calculate coefficients of an error position polynomial. When $A = S_1(S^4_1 + S_3) + S_3(S^3_1 + S_3) = 0$, an SWC·8 is placed at the upper side to decide on that there is a one or two-bit error. Then, the error position polynomial is regarded as a quartic equation to calculate coefficients σ_{41} (i=1, 2, 3, and 4). The circuit CG1·6 is a circuit which calculates σ_{22} from $\sigma_{22} = (S^3_1 + S_3)/S_1$ and the CG2·7 calculates the σ_{42} , σ_{43} , and σ_{44} .

a: 0-dimension (11···1)

(54) MICROPROCESSOR WITH TEST FUNCTION

(11) 59-165154 (A)

(43) 18.9.1984 (19) JP

(21) Appl. No. 58-39107

(22) 11.3.1983

(71) TOSHIBA K.K. (72) MASAMICHI SUGAI

(51) Int. Cl3. G06F11/22

PURPOSE: To confirm whether a specific execution speed is obtained or not with minimum added hardware by arranging a testing ROM area to the position in a mask ROM where a read time is the longest.

CONSTITUTION: A control storage MROM1 is provided with an area T part 101 for an AC test independently of a user program area U part 102 to decide on whether the specific execution speed is obtained or not. A start address is A in normal operation and B in AC test mode. For example, the time accessing to a data RAM6 by a data transfer instruction is longer than the time of read of data from an MROM7 for data and an arithmetic register 5, a data ROM6 is specified for source field specification for the AC test. When the complicate operation is carried out, the combination of specific instructions is stored in the T part selectively. Then, a series of instructions in the T part is executed, and when the result is correct, it is decided that the AC test is O.K.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

59-165153

(43) Date of publication of application: 18.09.1984

(51)Int.Cl.

G06F 11/10

(21)Application number: 58-039816

(71)Applicant : OKANO HIROICHI

(22)Date of filing:

09.03.1983

(72)Inventor: OKANO HIROICHI

(54) HIGH-SPEED DECODING METHOD OF QUADRUPLEX ERROR CORRECTION BCH CODE

(57)Abstract:

PURPOSE: To realize an efficient decoder for a quadruplex error correction BCH code by employing a method of solution for a quartic equation of a Galois field and a method of solution which solves even less than a cubic equation by referring it to a quartic equation.

CONSTITUTION: The decoder for quadruplex error BVH codes which uses an ROM represents elements by exponents and also represents elements of degree 0 which use the exponents 0, 1...2m-2 all by 1, i.e. (111...1). Circuits CG6 and CG7 are circuits which calculate coefficients of an error position polynomial. When A=S1(S51+S5)+S3(S31+S3) \neq 0, an SWC.8 is placed at the upper side to decide on that there is a one or two-bit error. Then, the error position polynomial is regarded as a quartic equation to calculate coefficients σ 4i (i=1, 2, 3, and 4). The circuit CG1.6 is a circuit which calculates σ 22 from σ 22=(S31+S3)/S1 and the CG2.7 calculates the σ 42, σ 43, and σ 44.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(9) 日本国特許庁 (JP)

①特許出顧公開

⑩公開特許公報(A)

昭59—165153

 識別記号

庁内整理番号 7368-5B ❸公開 昭和59年(1984)9月18日

発明の数 1 審査請求 未請求

(全 6 頁)

会4重誤り訂正BCH符号の高速復号法

②特

顏 昭58—39816

②出

質 昭58(1983)3月9日

②発 明 者 岡野博一

徳山市城ケ丘4丁目9-1-201

の出願人 岡野博一

徳山市城ケ丘4丁目9-1-201

明即至

(発明の名称)

4重数り訂正BCH将号の高速復号法

(特許請求の範囲)

1。 ガロア体の3次以下の方程式を4次方程式として解くことを特徴と する4種以り訂正BCH符号の限号方式

(ソフトプログラムによって実現したもの)

- 2。 ガロア体の3次以下の方程式を4次方程式として無くことを特徴と する4度減り訂正BCH初号の復号器
- 3. 上記、4歳限り訂正BCH符号の復号法(1,2項を含む)を合成 符号(BCH符号と他の試り訂正符号を合成したもの)の復号法の一 都として含む復号方式
- 4。 ガロア体の4次以下の方程式の解決を用いるシステムにおいて、上 記1.2項の方法を用いることを特徴とするシステム

(発明の群婚な説明)

本発明は4量減り訂正BCH符号の復号法に関するものである。

情報処理システムの高信頼度化の一手法として、試り訂正符号が実用されている。BCH符号は特に誤り訂正能力が高く重要な符号であるが、復号 智が複雑となる欠点を有する。

しかし、古典代数学を応用したガロア体の4次方程式の解説、さらに3次 以下の方程式も4次方程式とみなして解く方法を用いれば、効率的な4量 減り訂正BCH符号の個号間が構成できる。

さて、定益を簡単に述べる。

 $GF(2^m)$ の意始元を仪とし、以。 X^2 , X^5 , X^5 を使とする参項式 を $m_{\chi}(x)$, $m_{\chi'}(x)$, $m_{\chi'}(x)$, $m_{\chi'}(x)$ とすると、4 重接り 訂正BCH将号の生成参項式は、

 $G(x)=m_{x}(x)\cdot m_{x}(x)\cdot m_{y}(x)\cdot m_{y}(x)$ (1) である。このとき、初号長n=2^元-1である。

BCH容号の復号は次の4つの過程からなる。

- (1)受債系列からのシンドロームの算出
- (2)禁り位置多項式の係款および減りビット数の特定
- (3) 鉄り位置多項式の解決
- (4)鉄り訂正の実行

・シンドロームは受信系列を $m_x(x)$, $m_y(x)$,

特周昭59-165153(2)

(6)

 $R_S(x)$ 。 $R_T(x)$ とすると次式で表わされる。 s, -R, (A) $S_3 - R_3 (\alpha^3)$ $S_B = R_S (\alpha^5)$ (2) S, -R, ((() シンドロームS, ~ Sy はシフトレジスタあるいは、ROM (Read

Only Memory)を用いると容易に算出される。

なお、ガロア体GF(2th)上の元のベクトル表現と指数表現とで表わさ れるが、ここでは指数表現で表わすこととなる。したがって元は、〇(年 元) . a° , 以 . · · · · · · 《2^{19_2} である。

さて、つぎにガロア体の方程式の放法について述べる。各低数が口の場 合にも無けるように工夫している。

(一次方程式の場合)

x+6,, =0 (3) の根はx - で,, である。

(二次方程式の場合)

$$x^2 + G_{21} \times + G_{22} = 0 \tag{4}$$

(4) 式の抜け びょーロのとき x, -x2 - 622 Y2 もちろん、 チェニーロのとき様は口である。

つぎに、
$$G_{21}$$
 キロのとき $x=G_{21}$ y とおき $y^2+y+G_{22}/G_{23}^2=0$

(三次方程式の場合) つぎの3次方程式の療法を考える。 y3 +7y+8=0 (6) 式において、

7-0068 y-8%

x = 621 , x2 =0 となる。

ソル・ソコとすると、(4)式の様は、

 $x_1 = \sigma_2, y_1$, $x_2 = \sigma_2, y_2 = \sigma_{2i} + x_i$

もちろん、δ=0のと# Y=0である。

つぎに、ガキロのとき エーガーオッとおき、

z + z + 8/1/2 - 0 (7) を得る。(7)式の根を 8/4分 に対応したテーブルに格納しておく。

(5) 式の現を ^Gz V_{G2} に対応したテーブルに格的しておく。 根を

なお、 621 キロかつ 622 = 0のとき (5) 式の後は ぴ。 ひとなり、

根をこし(1-1, 2, 3)とすると、(6) 式の根はY! = 722! (1-1, 2, 3) となる。

なお、~140かつ、<math>~00とき(7) 式の根Yは、<math>~0である。 さて、つぎに辿り位置多項式の形法について述べる。

(4ピット語りの場合)

鉄り位置多項式は、

(5)

x 4+641 x3 + 642 x2 +643 x+644=0 (8) となる。したがって、4次方程式を解くことになる。・ さて(8)式はガロア体上の方程式なので、古典代数学の公式はそのま ま用いることができない。しかし、次のようにすると解くことができる。 まず、(日) 式の根を×1(1=1, 2, 3, 4) とすると、 $Y=(x_1+x_2+)$ (x_3+x_4) を使とする3次の補助方程式とし て次式を得る。

$$\delta = 643^2 + 641^2 644 + 641642 643$$
 (10)
きて、(8) 気が次式のように因数分類されるとする。

$$(x^2+px+q)(x^2+p'x+q')=0$$
 (11)

(8) 式、(11) 式の名係数を比較して、

$$p+p'=\sigma_{QI} \qquad \qquad (12)$$

$$q+q'+pp'=\theta az \qquad (13)$$

$$p' q + p q' = f_{43}$$
 (14)

(15) q q' = 6+4

さらに、 Yの空能から

$$Y = p p^{r} . (16)$$

ここで、(9)式の様子は、(6)式の解決を用いて求核のうちの任意 の一様である。

したがって、(12)式、(16)式より、x²+の/x+Y=0を (4) 式の放送を用いて解き、p, p' を求めることができる。 気様にして、(13) 式、(15) 式からq。q' を求める。そして、 (14) 式を満足する (p, q), (p', q') の組を求めれば、 p, qよりx, , xz がp' , q' よりxg , x4 が算出される。 (3ピット族りの場合)

鎖り位置多項式は、

$$\mathbf{x}^2+\mathbf{r}_{H}\,\mathbf{x}^3+\mathbf{r}_{H}\,\mathbf{x}+\mathbf{r}_{H}\,\mathbf{x}=0$$
 (17)
となる。(17)式に \mathbf{x} もかけて \mathbf{r} も加え、 $\mathbf{4}$ 次方程式とみなして次式

 $x^{4} + 6_{21} \times^{2} + 6_{22} \times^{2} + 6_{22} \times + 0 = 0$ (18)

(18) 式は(8) 式と間様にして解くことができる。 すなわち、(18)式の役を×i(i=1, 2, 3), ×4=0とする と、 $Y=(x_1+x_2)(x_2+D)$ を根とする3次の補助方程式とし

$$\lambda^3 + 7\lambda + \delta = 0 (19)$$

ここで、 クーグランナグショクショ

$$S = \sigma_{22}^2 + \sigma_{21} \sigma_{22} \sigma_{23} \tag{20}$$

したがって、(18)式と(11)式と比較して、

$$p + p' = \sigma_{2/}$$
 (21)

$$q+q^{\dagger}+pp^{\prime}=f_{32}. \qquad (22)$$

特開昭59-165153 (3)

p' q+pq' ~ 633

qq' = 0 (24)

(23)

前記と関係に、Yと(2))式よりp。p'が求まる。 ついて、(22)式、(24)式より、

$$x^2 + (6_{22} + Y) \times +0 = 0$$
 (25)

の根としてq, q' を得る。(2.5) 式は(4) 式と関係にして耐くと(q, q') = (G_{32} +Y, G) となる。

$$p' + p + q' = x_3 (\sigma_{32} + Y) + (x_1 + x_2) \times 0$$

= $x_1 x_2 x_3$

- 022

(" 6sz=x, x2 +x2 x3 +x3 x, .

$$Y=x_1x_2+x_2x_3$$

そして、 $(p, q) = (p, \sigma_{32} + Y), (p', q') = (p', D)$ より、それぞれ (4) 式の解法を用いて、(18) 式の根 $x_1, x_2, x_3, x_4 = Dを得る。$

したがって、後×!より口を降いておけば良い。

(2ビット誤りの場合)

試り位置多項式は、

$$x^2 + \theta_{21}x + \theta_{22} = 0 (26)$$

となる。

防項と四様に $G_{41} \leftrightarrow G_{21}$, $G_{42} \leftrightarrow G_{22}$, $G_{43} = G_{44} = 0$ として4次方程 式どじて贈くことができる。

なお、このとき、(9)式に対応する式が

$$\lambda^3 + c_2^2 \lambda + 0 = 0 \tag{27}$$

となり根はY=0.0xxとなるが、Y=Dを用いる方が効率が良い。

(1ピット減りの場合)

減り位置多項式は

$$x + \delta_{ij} = 0 \tag{28}$$

となる。 日禄に $G_{4/4+}$ $G_{1/2}$ $G_{4/2}=G_{4/2}=G_{4/2}=0$ として4次方程式として際くことができる。

なお、このとき(9)式に対応する式が

$$\lambda^3 + 0\lambda + 0 = 0 \tag{29}$$

となるが、様はY=0である。

以上によって、3ビット以下の誤り位置参項式も4ビットの誤り位置参項 式として解放できることが分った。

つぎに、減り位置多項式の係数について述べる。

(4ピット扱りの場合)

誤り位置多項式の係数は次式となる。

 $G_{44} = S_1 , G_{42} = (S_1 (S_1^{9} + S_1) + S_2 (S_1^{5} + S_5)) / A.$ $G_{43} = (S_1 (S_1^{3} S_3 + S_1 S_1) + S_2 (S_1^{6} + S_2^{3})) / A.$ $G_{44} = (S_1^{3} (S_1^{9} + S_2) + S_3 (S_1^{9} + S_1 S_2^{3} + S_2) + S_3 (S_1^{9} + S_1^{7})) / A.$

ただし、

$$A=S_1(S_1^2+S_2)+S_2(S_1^2+S_2)$$
 (30)

(3ピット族りの場合)

関り位置多項式の係及は(30)式を用いて求めることができる。即ち、 $G_{3/}=G_{4/},G_{3/}=G_{4/2},G_{2/}=G_{4/2}$ 、 $(F_{4/}=0)$ となる

(2ピット誘りの場合)

A=Oとなるので、(30)式を用いることができない。 誤り位置多項式の係数は次式より求める。

$$G_{21} = S_1$$
, $G_{22} = (S_1^2 + S_3)/S_1$ (31)

()ビット誤りの場合)

鉄り位置が項式の低数は(31)式を用いて求めることができる。即う、 $\sigma_{II}=\sigma_{2I}=S_{I}$ 。 $(G_{22}=0)$ となる (祭明略)。

さて、以上を含とめると4重額り訂正BCH符号の復号手順は次のようになる。

- (1)シンドローム 81.83.85.87 の算出
- (2)誤り位置参項式の係数の算出
 - (30) 式においてA~0ならば、3または4ビット減りと初定し、
 - (30)式により誤り位置多項式の低数を算出する。A=Oならば、
 -)または2ビット誤りと利定し、(3))式により誤り収置多項式の係数を算出する。
- (3) 1 ~4ビット試りの試り位置多項式を置て4次方程式とみなして 解き根、即ち、試り位置を求める。
- (4)根のうち、O元を除き誤りを訂正する。

以上の復号手度のフローチャートを図りに示す。これは、容易にソフトプログラムによって実現できる。

まて、つずにROM(Read Only Memory)を用いた4重 試り訂正BCH有号の復号器の構成について述べる。

ここで、元を指数表現としその指数の。1。・・・・2^m-2を用いるの元は全て1、つまり、(111・・・・)で表わすこととする。なお、以下の説明で0元は0、他の元は α^0 、 α 、・・・・ α^{2^m2} を用いるが、如称では0元は全て1(111・・・・))。 α^L は α^L α

特面昭59-165153 (4)

まず図2に基本図路を示す。(a)は元の長算、(b)は元の除算、 (c)は元の加算を表わす。これらの図路はD元を含んだ演算も可能であ るとする。なお、これらの図路は匹に知られている。

図3は x^2+G_{21} $x+G_{22}=0$ の別法回路(SV2)であり、(4)式の別法を実現する回路である。X2は元の2乗を求める回路、 \div 2は平方様を求める回路である。ROM 2 1は(5)式、 $y^2+y+Ci=0$ の機を推納するROMである。係数 G_{21} , G_{22} が0でも様を求めることができるようにするためには、0の平方根を0とし、ROM 2 入力のに対して出力を0と 0 としておけば良い。

なお、SW A 2は G_{21} =00とま下例、 G_{21} +00とき上側とする。
つずに、図4は \mathcal{N}^3 + \mathcal{N} \mathcal{N} \mathcal{N} \mathcal{N} = 0の限法回路(SV3)であり、3根のうち 1 根を求める回路である。 \mathcal{N} 3 は \mathcal{N} \mathcal{N} 3 は \mathcal{N} 4 は \mathcal{N} 4 は \mathcal{N} 4 は \mathcal{N} 5 が 0 でも 根本 \mathcal{N} 6 な \mathcal{N} 7 に \mathcal{N} 6 は \mathcal{N} 7 に \mathcal{N} 7 に \mathcal{N} 7 に \mathcal{N} 8 は \mathcal{N} 7 に \mathcal{N} 9 は \mathcal{N} 7 に \mathcal{N} 9 は \mathcal{N} 9 は \mathcal{N} 9 に \mathcal

そして、減り位置多項式を 4 次方程式とみなして係数 G_{41} (i=1,2,3) 事業用する。

なお、CG 1 6は(31) 式によって、 δ_{22} を算出する回路であり、CG 2 7は(30) 式によって、 δ_{42} , δ_{43} , δ_{44} を算出する回路である。

根Yの算典 ドバのAに2.52算典 RS)、(P/Sのを選択 デタンよりより、エスス。工を単典 アカマ族 9 を 引正する。

富!四

特團昭59-165153(5)

发 3 图

第 4 图

* 5 P

第 6 图

特開昭59-165153(6)

手続補正書 (自発) (EE和155年 4月 14日 昭初 58年 4月 11日

特許庁長官 岩杉和 夹雕

- 1。 事件の表示 昭和5日年特許編第099816号
- 2. 免明の名称 4重減り訂正BCH符号の高速復号法
- 3. 福正七丁名者

事件との関係 特許的

人寒出行神

住所(息所)

ヤマウルロウマンドウ たか かつり 山口県体山市場ケ丘4丁目9-1-201

氏名

大的/ \$P 75% (是

6. 福正の対象

「明雄書の団面の簡単な説明の権」

7. 補正の内容

明細書の終りに次の項目と説明を追加する。

(図面の簡単な説明)

第1個は4重旗り訂正BCH符号の使号フローチャート

第2回は演算の基本回路

第3回は×2+621×+622=0の無法回路

1:y*+y+Ci =0の役を求めるROM

第4回は 入・イスス+ 8=0の解注回路

3:2³+z+C_L =0の復を求めるROM

4:立方徳を求めるROM

1987 P 5R 4.18 1884 EB 第5回は誤り位置多項式の低致を算出する回路

6: 623を算出する額路

7:642,643,644 老葉出する韓語

第6回は4ピット競り訂正BCH将号の復号器

9:シンドローム生成四数

10:減り位置多項式の低数無出奪路

11:7.8 莱出国路

12: ス・アス+8=0の放送回路

13:元の和を求める程路

14: X2+6以X+621=0の財法回路

15: (p, q), (p', q')の組を求める即称