Name:

Value: 4

- I. Multiple Choice. Choose the one best answer.
- 1. Which of the following is correct?
 - a) $T1(X) = 2X^2$ dominates T2(X) = 2X
 - b) T2(X) = 2X dominates $T1(X) = 2X^2$
 - c) neither $T1(X) = 2X^2$ nor T2(X) = 2X dominates the other
- 2. Which of the following is correct?
 - a) $T1(X) = 5X^2$ dominates $T2(X) = 2X^3$
 - b) $T2(X) = 2X^{3}$ dominates $T1(X) = 5X^{2}$
 - c) neither $T1(X) = 5X^2$ nor $T2(X) = 2X^3$ dominates the other
- 3. Which of the following is correct?
 - a) $T1(Y) = 55Y^{15} + 3Y^4 + 7500$ dominates $T2(Y) = Y^{16} + 2$
 - b) $T2(Y) = Y^{16} + 2$ dominates $T1(Y) = 55Y^{15} + 3Y^4 + 7500$
 - c) neither $T1(Y) = 55Y^{15} + 3Y^4 + 7500$ nor $T2(Y) = Y^{16} + 2$ dominates the other
- 4. Which of the following is correct?
 - a) T1(Z) = (Z+3)(Z+5) dominates T2(Z) = 250Z
 - b) T2(Z) = 250Z dominates T1(Z) = (Z+3)(Z+5)
 - c) neither T1(Z) = (Z+3)(Z+5) nor T2(Z) = 250Z dominates the other
- 5. Which of the following is correct?
 - a) T1(Z) = (Z+7)(Z+9) dominates $T2(Z) = 2Z^3$
 - b) $T2(Z) = 2Z^3$ dominates T1(Z) = (Z+7)(Z+9)
 - c) neither T1(X) = (Z+7)(Z+9) nor $T2(Z) = 2Z^3$ dominates the other
- 6. Which of the following is correct?
 - a) $T1(N) = 37N^2$ dominates $T2(N) = N \log N$
 - b) $T2(N) = N \log N$ dominates $T1(N) = 37N^2$
 - c) neither $T1(N) = 37N^2$ nor $T2(N) = N \log N$ dominates the other
- 7. Which of the following is correct?
 - a) $T1(N) = 37N^2$ dominates $T2(N) = N^2 \log N$
 - b) $T2(N) = N^2 \log N$ dominates $T1(N) = 37N^2$
 - c) neither $T1(N) = 37N^2$ nor $T2(N) = N^2 \log N$ dominates the other

- 8. Which of the following is correct?
 - a) $T1(N) = \log_2 N$ dominates $T2(N) = \log_3 N$
 - b) $T2(N) = \log_3 N$ dominates $T1(N) = \log_2 N$
 - c) neither $T1(N) = \log_2 N$ nor $T2(N) = \log_3 N$ dominates the other
- 9. Which of the following is correct?
 - a) T1(N) = 84 dominates $T2(N) = \log_9 N$
 - b) $T2(N) = \log_0 N$ dominates T1(N) = 84
 - c) neither T1(N) = 84 nor $T2(N) = \log_9 N$ dominates the other
- 10. Which of the following is correct?
 - a) $T1(X) = \frac{3X+2}{X}$ dominates T2(X) = 766X

 - b) T2(X) = 766X dominates $T1(X) = \frac{3X+2}{X}$ c) neither $T1(X) = \frac{3X+2}{X}$ nor T2(X) = 766X dominates the other
- 11. Which of the following is correct?

 - a) $T1(X) = \frac{X^4 + X^2 17}{X^3}$ dominates $T2(X) = X^2$ b) $T2(X) = X^2$ dominates $T1(X) = \frac{X^4 + X^2 17}{X^3}$ c) neither $T1(X) = \frac{X^4 + X^2 17}{X^3}$ nor $T2(X) = X^2$ dominates the other
- 12. Which of the following is correct?
 - a) $T1(W) = W^9$ dominates $T2(W) = 9^W$
 - b) $T2(W) = 9^W$ dominates $T1(W) = W^9$
 - c) neither $T1(W) = W^9$ nor $T2(W) = 9^W$ dominates the other
- 13. Which of the following is correct?
 - a) T1(W) = W! dominates $T2(W) = 67^W$
 - b) $T2(W) = 67^W$ dominates T1(W) = W!
 - c) neither T1(W) = W! nor $T2(W) = 67^W$ dominates the other
- 14. Which of the following is correct?
 - a) $T1(V) = V^V$ dominates $T2(V) = 25^V$
 - b) $T2(V) = 25^V$ dominates $T1(V) = V^V$
 - c) neither $T1(V) = V^V$ nor $T2(V) = 25^V$ dominates the other
- 15. Which of the following is correct?
 - a) $T1(X,Y) = 2X^3Y$ dominates T2(X,Y) = 3XY
 - b) T2(X,Y) = 3XY dominates $T1(X,Y) = 2X^3Y$
 - c) neither $T1(X,Y) = 2X^3Y$ nor T2(X,Y) = 3XY dominates the other

- 16. Which of the following is correct?
 - a) $T1(X,Y) = X^2 + 75$ dominates T2(X,Y) = 7Y
 - b) T2(X,Y) = 7Y dominates $T1(X,Y) = X^2 + 75$
 - c) neither $T1(X,Y) = X^2 + 75$ nor T2(X,Y) = 7Y dominates the other
- 17. Which of the following is correct?
 - a) $T1(V, W) = W^3 + W + 74$ dominates T2(V, W) = V + 18
 - b) T2(V, W) = V + 18 dominates $T1(V, W) = W^3 + W + 74$
 - c) neither $T1(V, W) = W^3 + W + 74$ nor T2(V, W) = V + 18 dominates the other

II. Determine the big-O measure for each of the functions in the lower table. Choose from the various big-O measures in the upper table.

A. $O(1)$	B. $O(X)$	C. $O(\log X)$	D. $O(X \log X)$	E. $O(X^2)$	F. $O(X^3)$
G. $O(Y)$	H. $O(\log Y)$	I. $O(Y \log Y)$	J. $O(Y^2)$	K. $O(Y^3)$	L. $O(Y^{15})$
M. $O(Y^{16})$	N. $O(Z)$	O. $O(Z^2)$	P. $O(Z^3)$	Q. $O(\log N)$	R. $O(N)$
S. $O(N \log N)$	T. $O(N^2)$	U. $O(N^2 \log N)$	V. $O(W^3)$	W. $O(W^9)$	X. $O(9^{W})$
Y. $O(W!)$	Z. $O(67^{W})$	AA. $O(V)$	BB. $O(V^V)$	CC. $O(25^{V})$	DD. $O(XY)$
EE. $O(X^3Y)$, ,	. ,			

18.	$T1(X) = 2X^2$	19.	T2(X) = 2X
20.	$T1(X) = 5X^2$	21.	$T2(X) = 2X^3$
22.	$T1(Y) = 55Y^{15} + 3Y^4 + 7500$	23.	$T2(Y) = Y^{16} + 2$
24.	T1(Z) = (Z+3)(Z+5)	25.	T2(Z) = 250Z
26.	T1(Z) = (Z+7)(Z+9)	27.	$T2(Z) = 2Z^3$
28.	$T1(N) = 37N^2$	29.	$T2(N) = N \log N$
30.	$T1(N) = 37N^2$	31.	$T2(N) = N^2 \log N$
32.	$T1(N) = \log_2 N$	33.	$T2(N) = \log_3 N$
34.	T1(N) = 84	35.	$T2(N) = \log_9 N$
36.	$T1(X) = \frac{3X+2}{X}$	37.	T2(X) = 766X
38.	$T1(X) = \frac{X^4 + X^2 - 17}{X^3}$	39.	$T2(X) = X^2$
40.	$T1(W) = W^9$	41.	$T2(W) = 9^W$
42.	T1(W) = W!	43.	$T2(W) = 67^W$
44.	$T1(V) = V^V$	45.	$T2(V) = 25^V$
46.	$T1(X,Y) = 2X^3Y$	47.	T2(X,Y) = 3XY
48.	$T1(X,Y) = X^2 + 75$	49.	T2(X,Y) = 7Y
50.	$T1(V, W) = W^3 + W + 74$	51.	T2(V,W) = V + 18

- III. Rank the following big-O measures from greatest to least. (Recall that O(f) > O(g) if and only if f dominates g.)
 - a. O(N)
 - b. $O(N^3)$
 - c. $O(4^N)$
 - d. $O(\log_4 N)$
 - e. $O(\log_5 N)$
 - f. $O(N^2)$
 - g. O(1)
- h. $O(N \log_3 N)$
- i. $O(N^2 \log_3 N)$

52.	53.	54.	55.	56.	57.	58.	59.	60.

IV. Classify each big-O measure in the lower table using the classifications from the upper table. Choose the one best classification.

A. constant E. logarithmic		B. linear F. polynomial		C. quadratic G. exponential			D. cubi	С
61. O(N)		62.	$O(N^3)$		63.	$O(4^N)$		
64. $O(\log_4 N)$		65.	$O(\log_5 N)$		66.	$O(N^2)$		
67.	O(1)	68.	$O(N \log_3$	(N)	69.	$O(N^2$	$\log_3 N)$	

V. Determine the order of each function in the lower table using the classifications from the upper table. Choose the one best classification.

	A. $O(1)$ E. $O(N^3)$			$O(N^2)$ $O(17^2)$	
70.	$T(N) = 3N^2 + N$	71.	$T(N) = 55N^3 + 77N^2 + 99$	72.	$T(N) = 2^N N^2$
73.	T(N) = 7501	74.	$T(N) = \log N + 46N$	75.	$T(N) = 3^{(N+1)}$
76.	$T(N) = \frac{N \log N}{2+N}$	77.	$T(N) = \frac{3N^4 + 4N^3}{5N^2 + N}$	78.	$T(N) = \frac{17^N}{N^2}$

VI. Determine the big-O measure for each of the functions in the lower table. Classify each big-O measure using the classifications from the upper table. Choose the one best classification.

		A. constant E. logarithmic		linear polynomial	C. quadratic G. exponential		. cubic	
79.	T(N)	$N) = 3N^2 + N$	80.	T(N) = 55N	$3 + 77N^2 + 99$	81.	T(N) =	$=2^NN^2$
82.	T(N	V) = 7501	83.	$T(N) = \log N$	N + 46N	84.	T(N) =	$=3^{(N+1)}$
85.	T(N	$N = \frac{N \log N}{2+N}$	86.	$T(N) = \frac{3N^4}{5N^2}$	$\frac{-4N^3}{+N}$	87.	T(N) =	$=\frac{17^N}{N^2}$

VII. Using big-O notation, estimate the running time of each of the following algorithms. You may assume that all variables are of type int. Choose the one best big-O measure from the table below.

```
 \begin{array}{|c|c|c|c|c|c|} \hline A. & O(1) & B. & O(\log X) & C. & O(X) \\ D. & O(X \log X) & E. & O(X^2) & F. & O(X^3) \\ G. & O(X!) & H. & O(X^X) & I. & O(X^2Y) \\ \hline \end{array}
```

```
88. ^{1} for (i = 1; i <= X; i++)
          for (j = 1; j \le X; j++)
            for (k = 1; k \le X; k++)
              // Five assignment instructions
89.
     for (i = 10; i <= X; i++)</pre>
     2
          // Two assignment instructions
          for (j = 15; j \le X; j++)
            for (k = 1; k \le X; k++)
              // Five assignment instructions
    10
            // Seven assignment instructions
    11
       }
    12
```

```
1 for (i = 1; i <= X; i++)</pre>
90.
     2 {
          for (j = 1; j \le X; j++)
           // Twenty assignment instructions
          for (j = 1; j \le X; j++)
            if (j \% 2 == 1)
              for (k = 1; k \le X; k++)
    10
                // Five assignment instructions
    11
    13 }
91. _{1} for (i = 1; i <= X; i++)
         for (j = i; j \le X; j++)
           // Six assignment instructions
         if (i % 2 == 1)
          // Four assignment instructions
    10
    11 }
92. ^{1} for (i = 1; i <= X; i++)
          for (j = 1; j \le Y; j++)
            for (k = 1; k \le X; k++)
             // Two assignment statements
            }
93. ^{1} i = 1;
     while (i <= X)</pre>
          // Three assignment instructions
          j = 17;
          while (j \le 100)
           // Two assignment instructions
     9
            j++;
          }
    10
    11
    12 }
```

```
94.
    1 i = X;
     ^{2} do
       {
         // Three assignment instructions
         j = 1;
         while (j \le X)
           // Two assignment instructions
         }
    10
         i--;
    12 } while (i >= 1);
95. ^{1} i = 1;
     while (i <= X)</pre>
         // Three assignment instructions
         j = 1;
         while (j \le X)
           // Two assignment instructions
           j = j * 2;
         }
    11
         i++;
    12 }
96. 1 i = X;
     while (i >= 1)
         // Three assignment instructions
         j = 1;
         while (j \le X)
           // Two assignment instructions
           j = j + 2;
         }
         i = i / 3;
    11
    12 }
97. 1 void RecA(int X)
         // Some task requiring constant time
        if (X > 0)
           RecA(X - 1);
     6 }
```

```
98.
     void RecB(int X)
     2 {
          int i;
          for (i = 1; i <= X; i++)
            // Some task requiring constant time
          if (X > 1)
            RecB(X - 1);
     10
     11 }
99. 1 void RecC(int X)
     2 {
          int i;
          for (i = 1; i <= X; i++)
            // Some task requiring constant time
          if (X > 1)
            RecC(X / 2);
     10
     11 }
100. 1 void RecD(int X)
     2 {
          int i;
          // Some task requiring constant time
          for (i = 1; i \le X; i++)
            if (X > 1)
              RecD(X - 1);
     9 }
```