一道几何题的复数证明

习题 若有两个圆在点 α 相切,其中圆 C_1 在圆 C_2 内部,在两个圆之间有一串圆与圆 C_1 , C_2 相切,且互相相切于点 a, b, c, d, \cdots ,如图上.

证明这些切点 a, b, c, d, \cdots 共圆.

证明: 令 $f(z) = \frac{1}{z-\alpha}$. 由于f(z)是1-1线性分式映射,且把点 α 映成 ∞ ,因而把圆周 C_1 , C_2 分别映成两条平行直线,同时将 C_1 , C_2 之间的圆周映成与两条平行直线相切而且互相相切的圆周,如图下. 很明显,这些圆周具有相同的直径,且它们之间的切点f(a),f(b),f(c),f(d), \cdots ,共线,记为直线 Γ . 这条线位于像 $f(C_1)$, $f(C_2)$ 之间. 因为f(z)是1-1的映射,这些点的原像a, b, c, d, \cdots ,均落在逆映射 $f^{-1}(\Gamma)$ 上,由于 $f^{-1}(\Gamma)$ 是一个圆周,因而点a, b, c, d, \cdots 共圆. \square