Zadanie 1. Sortowanie

Rozważmy problem sortowania ciągu liczb całkowitych z przedziału [1..k] dla znanej całkowitej wartości k. Poniżej prezentujemy algorytm rozwiązujący ten problem, zgodny z następującą specyfikacją:

Specyfikacja:

```
Dane: n, k – liczby całkowite dodatnie
```

$$T[1..n]$$
 – ciąg liczb całkowitych z zakresu $[1..k]$

Wynik:
$$W[1..n]$$
 – uporządkowany niemalejąco ciąg liczb z tablicy $T[1..n]$

Algorytm Sortowanie

Zadanie 1.1 (0-1)

Uzupełnij poniższą tabelę – podaj końcową zawartość tablicy *Liczba_wystapien* dla odpowiednich danych wejściowych.

n	k	T[1n]	Końcowa zawartość Liczba_wystapien[1k]		
10	5	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	[2, 2, 2, 3, 1]		
5	10	[1, 3, 3, 5, 10]	4,0,2,0,1,0,0,0,1		
5	5	[5, 5, 5, 5, 5]	0,0,0,0,5		
10	4	[1, 2, 3, 1, 2, 3, 1, 1, 2, 3]	4, 5, 3, 0		

Zadanie 1.2 (0-2)

Rangą elementu T[i] w ciągu T[1..n] nazywać będziemy liczbę elementów ciągu T[1..n], które są mniejsze od T[i].

Przykład:

Dla n=10, k=5 oraz T[1..10] = [1, 2, 3, 4, 5, 1, 4, 3, 2, 5] mamy:

- ranga elementu T[8] (T[8] = 3) jest równa 4, gdyż w ciągu T[1..10] występują cztery elementy mniejsze od T[8]: dwa razy występuje liczba 1 i dwa razy występuje liczba 2;
- ranga T[10] (T[10] = 5) jest równa 8, gdyż w ciągu T[1..10] występuje osiem liczb mniejszych od T[8];
- ranga T[6] (T[6] = 1) jest równa 0.

Przyjmij, że tablica *Liczba_wystapien* ma zawartość uzyskaną po wykonaniu algorytmu *Sortowanie*. Na podstawie tego faktu uzupełnij poniższy algorytm w taki sposób, aby po jego wykonaniu wartość zmiennej r była równa randze elementu T[i], dla ustalonego i $(1 \le i \le n)$:

$$r \leftarrow 0$$
 $dla j=1... vykonuj$
 $r \leftarrow r+Liczba_wystapien[j]$

Miejsce na obliczenia.

Zadanie 1.3 (0-3)

Rozważmy algorytm, w którym teraz elementy tablicy T mogą być dowolnymi dodatnimi liczbami całkowitymi.

Algorytm LicznikiModdla i=1..k wykonuj $Liczba_wystapien[i] \leftarrow 0$ dla i=1..n wykonuj $m \leftarrow 1+(T[i] \mod k)$ $Liczba_wystapien[m] \leftarrow Liczba_wystapien[m] + 1$ $w \leftarrow Liczba$ wystapien[1]

Uzupełnij poniższą tabelę:

n	k	T[1n]	Końcowa zawartość Liczba_wystapien[1k]
10	2	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	[5, 5]
10	3	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	C2, 5, 3]
10	4	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	0,3,2,2]
10	5	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	[1,2,0,2,3]

Uzupełnij specyfikację algorytmu LicznikiMod:

Dane: n, k – liczby całkowite dodatnie

T[1..n] – tablica liezb çalkowitych dodatnich

Wynik: w- Note his policelized in prule K

Miejsce na obliczenia.

	Nr zadania	1.1.	1.2.	1.3.
Wypełnia	Maks. liczba pkt.	1	2	3
egzaminator	Uzyskana liczba pkt.			