Fast elliptic curve scalar multiplications in SN(T)ARK circuits

Youssef El Housni (Linea), Thomas Piellard (Linea), Simon Masson (ZKNox) and Liam Eagen (Alpen Labs)

October 1st, 2025 - Medellin, Latincrypt

1/17

Y. El Housni ECC in SNARK Latincrypt 2025

Overview

- Preliminaries
 - SNARKs
 - Elliptic curves

- 2 Contributions
 - Elliptic curves in SNARKs
 - Implementation

Y. El Housni ECC in SNARK Latincrypt 2025

Preliminaries

(Zero-knowledge) Succinct Non-interactive ARguments of Knowledge (zk-SNARK)

Let F be a public NP program, x and z be public inputs, and w be a private input such that

$$z := F(x, w)$$

7K-SNARK consists of algorithms

A ZK-SNARK consists of algorithms S, P, V s.t. for a security parameter λ :

Setup: (pk, vk) \leftarrow $S(F, 1^{\lambda})$ Prove: π \leftarrow P(x, z, w, pk)

Prove: $\pi \leftarrow P(x, z, w, pk)$

Arithmetization

$$x^3 + x + 5 = 35$$
 (x = 3)

constraints:

$$o = l \cdot r$$

$$a = x \cdot x$$

$$b = a \cdot x$$

$$c = (b + x) \cdot 1$$

 $d = (c+5) \cdot 1$

witness:

$$\vec{w} = \begin{pmatrix} \text{one} & x & d & a & b & c \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 & 35 & 9 & 27 & 30 \end{pmatrix}$$

SNARKs examples: Groth16 and PLONK

- m = number of wires
- \bullet n = number of multiplications gates
- \bullet a = number of additions gates
- $\ell =$ number of public inputs
- $M_{\mathbb{G}} = \text{multiplication in } \mathbb{G}$
- P=pairing

	Setup	Prove	Verify
Groth16 [Gro16]	$3n \ \mathrm{M}_{\mathbb{G}_1} \ m \ \mathrm{M}_{\mathbb{G}_2}$	$ \begin{array}{c c} (3n+m-\ell) & \mathrm{M}_{\mathbb{G}_1} \\ & n & \mathrm{M}_{\mathbb{G}_2} \\ & 7 & \mathrm{FFT} \end{array} $	$\begin{array}{c} \operatorname{3P} \\ \ell \ \operatorname{M}_{\mathbb{G}_1} \end{array}$
PLONK (KZG) [GWC19]	$egin{array}{cccc} d_{\geq n+a} & \mathtt{M}_{\mathbb{G}_1} \ 1 & \mathtt{M}_{\mathbb{G}_2} \ 8 & \mathtt{FFT} \end{array}$	$9(n+a)$ $M_{\mathbb{G}_1}$ 8 FFT	2P 18 M _{ℂ1}

6/17

Elliptic curves

$$E: Y^2 = X^3 + aX + b$$
 elliptic curve defined over \mathbb{F}_q and $r \mid \#E(\mathbb{F}_q)$

Figure: Chord-and-tangent rule over $\ensuremath{\mathbb{R}}$

Y. El Housni

• How to compute [141]P?

8/17 8/17

Y. El Housni ECC in SNARK Latincrypt 2025

• How to compute $[141]P = [10001101_2]P$? Q = P

• How to compute $[141]P = [10001101_2]P$? Q = [2]P

• How to compute $[141]P = [10001101_2]P$? $Q = [2^2]P$

1 How to compute $[141]P = [10001101_2]P$? $Q = [2^3]P$

> Y. El Housni **ECC in SNARK** Latincrypt 2025

• How to compute $[141]P = [10001101_2]P$? $Q = [2^4]P$

• How to compute $[141]P = [10001101_2]P$? $Q = [2^4]P + P$

• How to compute $[141]P = [10001101_2]P$? $Q = [2]([2^4]P + P)$

• How to compute $[141]P = [10001101_2]P$? $Q = [2]([2^4]P + P) + P$

• How to compute $[141]P = [10001101_2]P$? $Q = [2]([2]([2^4]P + P) + P)$

• How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P)$

> 8/17 rypt 2025 8 / 17

• How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$

● How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.

- How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

- **1** How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

```
[10001101_2]P_1
                           +[10111000_2]P_2
Precomputed table : \{0, P_1, P_2, P_1 + P_2\}
```

- **1** How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

```
[10001101_2]P_1
                           +[10111000_2]P_2
Precomputed table : \{0, P_1, P_2, P_1 + P_2\}
```

8/17

- How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

```
\begin{aligned} & & [10001101_2]P_1 \\ & & + [10111000_2]P_2 \end{aligned} Precomputed table : & \{0, P_1, \textcolor{red}{P_2}, P_1 + P_2\} \end{aligned}
```

Y. El Housni ECC in SNARK Latincrypt 2025

- **1** How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

```
[10001101_2]P_1
                           +[10111000_2]P_2
Precomputed table : \{0, P_1, P_2, P_1 + P_2\}
```

Y. El Housni **ECC in SNARK** 8/17

- **1** How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

```
[10001101_2]P_1
                           +[10111000_2]P_2
Precomputed table : \{0, P_1, P_2, P_1 + P_2\}
```

8/17

- How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

```
\begin{aligned} & [10001\textcolor{red}{101}_2]P_1 \\ & + [10111\textcolor{red}{000}_2]P_2 \end{aligned} Precomputed table : & \{0, \textcolor{red}{P_1}, P_2, P_1 + P_2\}
```

8/17

- **1** How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

```
[10001101_2]P_1
                           +[10111000_2]P_2
Precomputed table : \{0, P_1, P_2, P_1 + P_2\}
```

8/17

- **1** How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

```
[10001101_2]P_1
                           +[10111000_2]P_2
Precomputed table : \{0, P_1, P_2, P_1 + P_2\}
```

Latincrypt 2025

8/17

- **1** How to compute $[141]P = [10001101_2]P$? $Q = [2^2]([2]([2^4]P + P) + P) + P = [141]P \checkmark$ Cost: $o(\log(k))$ additions $(\log(k) = 256)$.
- ② How to compute $[10001101_2]P_1 + [10111000_2]P_2$?

$$[10001101_2]P_1\\+[10111000_2]P_2$$
 Precomputed table : $\{0,P_1,P_2,P_1+P_2\}$

Cost: $o(\log(k))$ additions + precomputation table.

Y. El Housni

Gallant–Lambert–Vanstone: a technique to speed up scalar multiplication for specific curves: $[k]P = [k_1]P + [k_2]\psi(P)$ where $\psi(P)$ is easy to compute, and k_1, k_2 halved size. Examples:

Example

j=0 curves (e.g. SECP256K1, BN256, BLS12-381), $Y^2=X^3+b$ $\psi: E\to E$ defined by $(x,y)\mapsto (\omega x,y)$ (and $0_E\mapsto 0_E$) such that $\psi(P)=[\lambda]P$, where both ω and λ are cubic roots of unity in \mathbb{F}_p and \mathbb{F}_r respectively.

- write k as $k_1 + \lambda k_2 \pmod{r}$
- ② replace $[\lambda]P$ by $\psi(P)$ and compute $[k_1]P + [k_2]\psi(P)$

9/17

Y. El Housni ECC in SNARK Latincrypt 2025

Contributions

10/17 10/17

Y. El Housni ECC in SNARK Latincrypt 2025

Motivation

Proving scalar multiplications using SNARKs:

Y. El Housni

- SNARK composition (proof of proof): BN254, BLS12-381, BLS12-377/BW6-761, MNT4/6
- zero-knowledge virtual machines (zkVM): BN254, BLS12-381, SECP256K1
- Verkle trie (data structure for Ethereum): Bandersnatch, Jubjub
- Account abstraction (Ethereum): P-256, Ed25519

ECC in SNARK Latincrypt 2025 11 / 17

Hinted scalar multiplication

Consider the equation [k]P = Q.

12/17

Hinted scalar multiplication

Consider the equation [k]P = Q. The scalar k can be decomposed as $k = x/z \mod r$.

12/17

Hinted scalar multiplication

Consider the equation [k]P = Q. The scalar k can be decomposed as $k = x/z \mod r$. $\{x - kz = 0 \mod r\}$ is a lattice of dimension 2:

$$\begin{pmatrix} r & 0 \\ k & 1 \end{pmatrix} = \begin{pmatrix} \Box \Box \Box \Box \Box \Box & 0 \\ \Box \Box \Box \Box \Box \Box & 1 \end{pmatrix}$$

Hinted scalar multiplication

Consider the equation [k]P = Q. The scalar k can be decomposed as $k = x/z \mod r$. $\{x - kz = 0 \mod r\}$ is a lattice of dimension 2:

$$\begin{pmatrix} r & 0 \\ k & 1 \end{pmatrix} = \begin{pmatrix} \square \square \square \square \square \square & 0 \\ \square \square \square \square \square \square & 1 \end{pmatrix} \sim \begin{pmatrix} \square \square \square & \square \square \square \\ \square \square \square & \square \square \square \end{pmatrix}$$

Apply lattice reduction (like LLL) to find a short vectors. Expected size \sqrt{r} .

Hinted scalar multiplication

Consider the equation [k]P = Q. The scalar k can be decomposed as $k = x/z \mod r$. $\{x - kz = 0 \mod r\}$ is a lattice of dimension 2:

$$\begin{pmatrix} r & 0 \\ k & 1 \end{pmatrix} = \begin{pmatrix} \Box \Box \Box \Box \Box \Box & 0 \\ \Box \Box \Box \Box \Box \Box & 1 \end{pmatrix} \sim \begin{pmatrix} \Box \Box \Box & \Box \Box \Box \\ \Box \Box \Box & \Box \Box \Box \end{pmatrix}$$

Apply lattice reduction (like LLL) to find a short vectors. Expected size \sqrt{r} .

$$[k]P = Q \iff [x]P - [z]Q = 0$$

Hinted scalar multiplication

Consider the equation [k]P = Q. The scalar k can be decomposed as $k = x/z \mod r$. $\{x - kz = 0 \mod r\}$ is a lattice of dimension 2:

$$\begin{pmatrix} r & 0 \\ k & 1 \end{pmatrix} = \begin{pmatrix} \Box \Box \Box \Box \Box \Box & 0 \\ \Box \Box \Box \Box \Box \Box & 1 \end{pmatrix} \sim \begin{pmatrix} \Box \Box \Box & \Box \Box \Box \\ \Box \Box \Box & \Box \Box \Box \end{pmatrix}$$

Apply lattice reduction (like LLL) to find a short vectors. Expected size \sqrt{r} .

$$[k]P = Q \iff [x]P - [z]Q = 0$$

- [k]P = Q: scalar of size 256,
- [x]P [z]Q = 0: scalars of size 128. \checkmark

12/17 12/17

Consider the equation $[k_1]P_1 + [k_2]P_2 = Q$.

13/17

13 / 17

Consider the equation $[k_1]P_1 + [k_2]P_2 = Q$. The scalars k_1, k_2 can be simultaneously decomposed as

$$k_1 = \frac{x_1}{z} \bmod r, \qquad k_2 = \frac{x_2}{z} \bmod r.$$

Consider the equation $[k_1]P_1 + [k_2]P_2 = Q$. The scalars k_1, k_2 can be simultaneously decomposed as

$$k_1 = \frac{x_1}{z} \bmod r, \qquad k_2 = \frac{x_2}{z} \bmod r.$$

 $\{x_1 - k_1 z = 0 \mod r \text{ and } x_2 - k_2 z = 0 \mod r\}$ form a lattice of dimension 3:

$$\begin{pmatrix} r & 0 & 0 \\ 0 & r & 0 \\ k_1 & k_2 & 1 \end{pmatrix} = \begin{pmatrix} \Box \Box \Box \Box \Box \Box & 0 & 0 \\ 0 & \Box \Box \Box \Box \Box & 0 \\ \Box \Box \Box \Box \Box \Box & \Box \end{bmatrix}$$

Consider the equation $[k_1]P_1 + [k_2]P_2 = Q$. The scalars k_1, k_2 can be simultaneously decomposed as

$$k_1 = \frac{x_1}{z} \bmod r, \qquad k_2 = \frac{x_2}{z} \bmod r.$$

 $\{x_1 - k_1 z = 0 \mod r \text{ and } x_2 - k_2 z = 0 \mod r\}$ form a lattice of dimension 3:

Apply lattice reduction (like LLL) to find a short vectors. Expected size $\sqrt[3]{r^2}$.

ECC in SNARK Latincrypt 2025 13 / 17

Consider the equation $[k_1]P_1 + [k_2]P_2 = Q$. The scalars k_1, k_2 can be simultaneously decomposed as

$$k_1 = \frac{x_1}{z} \mod r, \qquad k_2 = \frac{x_2}{z} \mod r.$$

 $\{x_1 - k_1 z = 0 \mod r \text{ and } x_2 - k_2 z = 0 \mod r\}$ form a lattice of dimension 3:

Apply lattice reduction (like LLL) to find a short vectors. Expected size $\sqrt[3]{r^2}$.

$$[k_1]P_1 + [k_2]P_2 = Q \iff [x_1]P_1 + [x_2]P_2 - [z]Q = 0$$

Triple scalar multiplication with scalars of 171 bits. \checkmark

13/17 13/17

GLV: a technique to speed up scalar multiplication for specific curves: $[k]P = [k_1]P + [k_2]\psi(P)$ where $\psi(P)$ is easy to compute, and k_1, k_2 halved size.

GLV: a technique to speed up scalar multiplication for specific curves: $[k]P = [k_1]P + [k_2]\psi(P)$ where $\psi(P)$ is easy to compute, and k_1, k_2 halved size. **GLV with hints**: a fraction decompositions in $\mathbb{Z}[\lambda]$ where λ is an eigenvalue of ψ .

14/17

GLV: a technique to speed up scalar multiplication for specific curves: $[k]P = [k_1]P + [k_2]\psi(P)$ where $\psi(P)$ is easy to compute, and k_1, k_2 halved size. **GLV with hints**: a fraction decompositions in $\mathbb{Z}[\lambda]$ where λ is an eigenvalue of ψ .

Single scalar multiplication with GLV and hint

$$\begin{pmatrix} r & 0 & 0 & 0 \\ -\lambda & 1 & 0 & 0 \\ k & 0 & 1 & 0 \\ 0 & 0 & -\lambda & 1 \end{pmatrix}$$

$$[k]P = Q$$

$$\updownarrow$$

$$[x]P + [y]\psi(P) - [z]Q - [t]\psi(Q) = 0$$

Quadruple 64-bit scalar multiplication.

14/17 14/17

GLV: a technique to speed up scalar multiplication for specific curves: $[k]P = [k_1]P + [k_2]\psi(P)$ where $\psi(P)$ is easy to compute, and k_1, k_2 halved size. **GLV** with hints: a fraction decompositions in $\mathbb{Z}[\lambda]$ where λ is an eigenvalue of ψ .

Single scalar multiplication with GLV and hint

$$\begin{pmatrix} r & 0 & 0 & 0 \\ -\lambda & 1 & 0 & 0 \\ k & 0 & 1 & 0 \\ 0 & 0 & -\lambda & 1 \end{pmatrix}$$

$$[k]P = Q$$

$$\updownarrow$$

$$x]P + [y]\psi(P) - [z]Q - [t]\psi(Q) = 0$$

Quadruple 64-bit scalar multiplication.

Double scalar multiplication with GLV and hint

$$\begin{pmatrix} r & 0 & 0 & 0 \\ -\lambda & 1 & 0 & 0 \\ k & 0 & 1 & 0 \\ 0 & 0 & -\lambda & 1 \end{pmatrix}$$

$$[k]P = Q$$

$$\downarrow$$

$$[x]P + [y]\psi(P) - [z]Q - [t]\psi(Q) = 0$$

$$\begin{cases} (r & 0 & 0 & 0 & 0 \\ -\lambda & 1 & 0 & 0 & 0 \\ 0 & 0 & r & 0 & 0 & 0 \\ 0 & 0 & -\lambda & 1 & 0 & 0 \\ k_1 & 0 & k_2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -\lambda & 1 \end{pmatrix}$$

$$[k_1]P_1 + [k_2]P_2$$

$$\downarrow$$

$$\downarrow$$

$$[x_1]P_1 + [y_1]\psi(P_1) + [x_2]P_2 + [y_2]\psi(P_2)$$

$$-[z]Q - [t]\psi(Q) = 0$$

Sextuple 86-bit scalar multiplication.

14/17

Y. El Housni

Practical results

Implementation in the gnark library with two proof systems: Groth16 (R1CS) and PLONK (SCS).

Y. El Housni ECC in SNARK Latincrypt 2025 15/17

Practical results

Implementation in the gnark library with two proof systems: Groth16 (R1CS) and PLONK (SCS).

Curve	Previous work	This work	Speed-up
BN254	381467 scs	220436 scs	42%
	78246 r1cs	59351 r1cs	24%
BLS12-381	539973 scs	307045 scs	43%
	110928 r1cs	84508 r1cs	24%
Secp256k1	385461 scs	223188 scs	42%
	78940 r1cs	60089 r1cs	24%
P-256	612759 scs	294128 scs	52%
	157685 r1cs	78940 r1cs	50%
Jubjub	5863 scs	4549 scs	22%
	3314 r1cs	2401 r1cs	28%

Table: Implementation results for some curves.

15/17

15 / 17

Practical results

Implementation in the gnark library with two proof systems: Groth16 (R1CS) and PLONK (SCS).

Curve	Previous work	This work	Speed-up
BN254	381467 scs	220436 scs	42%
	78246 r1cs	59351 r1cs	24%
BLS12-381	539973 scs	307045 scs	43%
	110928 r1cs	84508 r1cs	24%
Secp256k1	385461 scs	223188 scs	42%
	78940 r1cs	60089 r1cs	24%
P-256	612759 scs	294128 scs	52%
	157685 r1cs	78940 r1cs	50%
Jubjub	5863 scs	4549 scs	22%
	3314 r1cs	2401 r1cs	28%

Table: Implementation results for some curves.

• The scalar decomposition is not optimal yet (xgcd vs 111),

15/17 15/17

Thank you

- Paper: https://eprint.iacr.org/2025/933.pdf
- Implementation: https://github.com/yelhousni/scalarmul-in-snark
- Use-cases: https://github.com/consensys/gnark
- Contact: https://yelhousni.github.io

16/17 16/17

Y. El Housni ECC in SNARK Latincrypt 2025

References I

Jens Groth.

On the size of pairing-based non-interactive arguments.

In Marc Fischlin and Jean-Sébastien Coron, editors, *EUROCRYPT 2016, Part II*, volume 9666 of *LNCS*, pages 305–326. Springer, Berlin, Heidelberg, May 2016.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.

PLONK: Permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge.

Cryptology ePrint Archive, Report 2019/953, 2019.