Proyecto Final. Problema de aprendizaje de pesos en características

BIG BANG - BIG CRUNCH

Metaheurísticas. Curso 2021 - 22. Gallego Menor, Francisco Javier javigallego@correo.ugr.es

ORIGEN DE LA METAHEURISTICA

- Introducida por Erol y Eksin, dos investigadores turcos, en 2006.
- Es una metaheurística basada en la teoría de evolución del universo.
- En un principio, se empezó a **usar** para **problemas de optimización**. El fin era hacer diversas comparaciones con los **algoritmos genéticos**, con los cuales comparte varias **similitudes**.
- Más tarde, en **2008**, **Genc y Hocaoglu** llevaron a cabo un estudio en el que clasificaron a este algoritmo principalmente por su veloz búsqueda en el espacio de búsqueda y una explotación agresiva en el espacio de soluciones.

DOS FASES PRINCIPALES

- 1) BIG BANG: creación de la población inicial aleatoria, de soluciones candidatas. Representa al proceso de exploracion de las soluciones.
- **2) BIG CRUNCH:** es la operación de convergencia en la que se calcula el centro de masa de las soluciones candidatas. Representa principalmente la explotacion de las mejores soluciones, aunque tambien se explora algo.

Aleatoriedad: equivale a la disipación de la energía.

Convergencia: equivale a la atracción gravitacional.

ELITE POOL

- Uno de los términos más importantes del algoritmo.
- Se almacenan el 10% de las mejores soluciones de cada solución.
- Permite una **mayor explotación** de las soluciones. En todo momento se conoce el valor de aquellas soluciones que sean mejores. .
- Las nuevas poblaciones se generan a partir de estas últimas. Por tanto, al no partir desde el "vació, cada vez se **generarán poblaciones mejores**.

CENTRO DE MASAS

- Otro de los términos más importantes del algoritmo.
- En física, el centro de masas es el punto geométrico que dinámicamente se comporta como si en él estuviera aplicada la resultante de las fuerzas externas al sistema.
- En nuestro caso, el centro de masas hara referencia a aquella solución de una población que mayor masa tenga, o lo que es lo mismo, aquella solución que mejor valor tenga para nuestra función objetivo.

PSEUDOCODIGO

- BIG BANG (generación de soluciones).
 - **Paso 1:** generamos una población de tamaño N y evaluamos en la función objetivo. Si es la primera vez, generamos de forma aleatoria total. De lo contrario, partimos del elite pool.
- BIG CRUNCH.

Repetir

- Paso 2: Generamos Ns vecinos para cada solución y reemplazamos al padre por el mejor descendiente Ci.
- Paso 3: buscar el centro de masa.
- Paso 4: Aplicamos la búsqueda local al centro de masa.
- **Paso 5:** Actualizamos el elite pool.
- Paso 6: Nos deshacemos de las peores soluciones

Hasta que solo quede una solución.

- Paso 7: Volver a (1) si no se cumple la condición de parada.
- Paso 8: Devolver la mejor solución

HIBRIDACION

- Para la hibridacion se ha utilizado la Búsqueda Local.
- La metaheurística en sí misma ya es una hibridación inicialmente. Es por esto, que vamos a realizar una comparación entre BB – BC y BB – BC inicial (+ Local Search).
- La Local Search se aplica al centro de masa de la población sucesivamente hasta que la población se reduce a un único elemento.
- Los resultados utilizando la hibridación son en general, algo mejores que sin ella.

RESULTADOS OBTENIDOS

	Ionosphere				Parkinson				Spectf-Heart			
Alg	Clas	Red	Agr	T	Clas	Red	Agr	T	Clas	Red	Agr	T
BL	0.89	0.85	0.87	2.22200	0.77	0.88	0.83	0.84650	0.88	0.82	0.85	3.60924
AGG-BLX	0.89	0.62	0.75	18.27602	0.93	0.71	0.82	13.49899	0.85	0.58	0.72	20.67197
AGG-AC	0.91	0.66	0.79	17.86634	0.97	0.75	0.86	12.70768	0.87	0.64	0.76	21.65144
AGE-BLX	0.90	0.63	0.76	20.74966	0.92	0.70	0.81	16.56119	0.86	0.59	0.72	24.35267
AGE-AC	0.92	0.88	0.90	20.62200	0.98	0.94	0.96	15.86924	0.89	0.79	0.84	23.34907
AM1	0.92	0.84	0.88	19.39848	0.95	0.90	0.92	14.27740	0.88	0.80	0.84	21.06626
AM2	0.90	0.71	0.80	19.68916	0.94	0.72	0.83	12.72460	0.86	0.68	0.77	20.27860
AM3	0.91	0.77	0.84	22.03035	0.95	0.83	0.89	13.35908	0.88	0.73	0.80	20.43009
BB-BC	0.88	0.94	0.91	22.31425	0.74	1.00	0.87	14.09645	0.87	0.86	0.86	22.36760
BB-BC + LS	0.88	0.96	0.92	22.75897	0.79	1.00	0.90	14.55609	0.91	0.89	0.90	22.70724