TP n°03 : Titrages pH-métrique du Destop

I. Contexte du sujet

Une solution commerciale d'un déboucheur de canalisation contient principalement de d'hydroxyde de sodium (Na⁺ + HO⁻) à forte concentration, et quelques adjuvants, dont l'ammoniac (NH₃), que l'on pourra négliger. Pour faire simple, on peut dire que ce déboucheur de canalisation, « casse » les molécules, notamment organiques des matières qui encombrent les tuyaux, mais en préservant la tuyauterie. C'est un produit efficace, certes, mais très dangereux.

Comment vérifier le titre massique du Destop par titrage pH-métrique ?

II. Documents à disposition

Doc n°1: Données

Sur l'étiquette du Destop, on lit « Soude à 10 % », c'est-à-dire le <u>titre massique en pourcent</u> en hydroxyde de sodium. (masse d'hydroxyde de sodium contenue dans 100 g de Destop)

La densité du Destop est de $d_d = 1,20$ et la masse volumique de l'eau est $\rho_{eau} = 1,0.10^3$ g.L⁻¹

La solution titrée est une solution de Destop diluée 50 fois.

La soude est une solution basique de formule $Na^+ + HO^ M_{NaOH} = 40.0$ g.mol⁻¹

L'acide chlorhydrique est une solution acide de formule H₃O⁺ + Cl⁻

burette graduée burette graduée sonde de pH barreau magnétique agitateur magnétique

Doc n°4 : Incertitudes

On néglige l'incertitude sur la concentration du réactif titrant.

<u>Incertitude sur la mesure de pH</u>:

u(pH) = 0.1 unité pH

<u>Incertitude sur le prélèvement :</u>

 $u(V_{titr\'e}) = 0.1 \, mL$

Incertitude sur la détermination de V_E :

 $u(V_E) = 0.2 \text{ mL}$

Incertitude sur la concentration du réactif titré :

$$u(C_{titr\acute{e}}) = C_{titr\acute{e}} \times \sqrt{\left(\frac{u(V_E)}{V_E}\right)^2 + \left(\frac{u(V_{titr\acute{e}})}{V_{titr\acute{e}}}\right)^2}$$

Lorsqu'une grandeur mesurée est multipliée par une valeur non mesurée, l'incertitude subie la même opération.

III. Matériel à disposition

- Un pH-mètre
- 1 agitateur magnétique (+ gros turbulent)
- 3 béchers
- 1 burette de 25 mL
- 1 pipette jaugée de 20,0 mL

- 1 pissette d'eau distillée.
- 1 flacon Destop dilué 50 fois
- 1 flacon d'acide chlorhydrique à $C_A = 0.100 \text{ mol.} L^{-1}$
- 1 feuille de papier millimétrée.

IV. Travail à effectuer.

S'APPROPRIER

- 1°- Quelles sont les précautions à prendre pour manipuler le Destop ? Justifier.
- 2°- Identifier le réactif titrant et le réactif titré et leur position dans le montage.
- 3°- En déduire l'équation de la réaction support du titrage.
- 4°- Comment sera le pH de la solution dans le bécher avant le début du titrage ? Justifier.
- 5°- Comment va évoluer le pH au cours du titrage ? Justifier. Que devra-t-on observer ?
- 6°- Par quelle méthode va-t-on déterminer le volume équivalent ?

RÉALISER

- Rincer la burette avec le réactif titrant et ajuster le zéro. (Attention, choisissez correctement les béchers à utiliser en fonction de leur taille)
- Rincer la pipette jaugée avec le réactif titré puis en prélever 20,0 mL et les verser dans le bécher de 100 mL.
- Préparer l'électrode du pH-mètre.
- Placer l'électrode sur son support dans le bécher et ajuster le dispositif de manière à ce que <u>la cellule soit correctement</u> <u>immergée dans la solution, sans toucher les parois, ni le turbulent qui agite.</u> (vous pourrez ajouter <u>un minimum</u> d'eau distillée)
- Attention l'agitation doit être suffisamment rapide, mais pas trop (pas de creux à la surface).

Préparer une feuille de papier millimétré pour tracer la courbe pH = f(V) (1 cm pour 1 mL et 1 cm pour 1 unité pH). Les axes devront correspondre aux extrémités du quadrillage, et donc NE PAS être tracé SUR le quadrillage.

- Placer, au crayon, le point correspondant au pH initial sur votre feuille de papier millimétré.
- Ajouter 2,0 mL de réactif titrant dans le bécher, placer le point correspondant sur le graphique.
- Poursuivre les ajouts de 2,0 mL <u>tant que le pH varie peu</u> (< 0,4 pH). Si le pH varie de 0,4 ou plus <u>n'ajouter que 1,0 mL</u>, puis passer à 0,5 mL si l'augmentation de pH est encore supérieure ou égale à 0,4. Lorsque les variations de pH diminuent, réaugmenter le volume de réactif titrant ajouté et continuer jusqu'à 25,0 mL.

VALIDER

 1° - Tracer, au crayon, à main lever la courbe pH = f(V) en respectant les « formes » attendus.

Appel 1 : Appeler le professeur pour vérifier votre tracé.

2°- À l'aide de la méthode des tangentes indiquées sur le doc n°3, déterminer le volume de solution titrante versée à l'équivalence associé à son incertitude.

Appel 2 : Appeler le professeur pour vérifier votre construction et votre volume équivalent.

3°- Déterminer la concentration en mole C_{titré} de la solution titrée associée à son incertitude.

Appel 3 : Appeler le professeur pour vérifier résultat.

- 4° En déduire la concentration en quantité d'hydroxyde de sodium du Destop C_{Destop} associée à son incertitude. <u>Appeler le professeur</u>
- 5°- En déduire le titre massique en pourcent expérimental. <u>Appeler le professeur</u>
- 6°- Le résultat est-il conforme à l'étiquette du produit. Justifier.

compétence	Coefficient	Niveau validé			
		Α	В	С	D
REA2 Suivre les consignes	1				
REA 3 Réaliser un titrage	1				
CON1 Exploiter un titrage	1				
COM2 Exprimer un résultat	1				

Note: / 10