Effect-Driven Parsing

Formal studies on a categorical approach to semantic parsing

Matthieu Boyer

N

Yale

N

September 9 2025

École Normale Supérieure | Yale University

Context

- Categorical formalization of a type and effects system for natural-language semantics (following [BC25]).
- Develop a graphical, type-driven parsing formalism that derives sentence meaning compositionally from word meanings.

Typed Semantics for Natural Languages

Expression	Type	λ -Term
planet	$ extstyle{e} ightarrow extstyle{t}$	$\lambda x.\mathbf{planet}x$
	Generalizes to common nouns	
Jupiter	е	$\mathbf{j} \in \mathrm{Var}$
	Generalizes to proper nouns	
chase	$ extstyle{e} ightarrow extstyle{e} ightarrow extstyle{t}$	$\lambda o.\lambda s.\mathbf{chase}\left(o\right)\left(s\right)$
	Generalizes ⁻	to transitive verbs

Syntactic Types and Semantic Types

■ Syntax a cat and the cat should have the same type: e.

Syntactic Types and Semantic Types

- Syntax a cat and the cat should have the same type: e.
- No single canonical **cat** exists: that type cannot be **e**.

Syntactic Types and Semantic Types

- Syntax a cat and the cat should have the same type: e.
- No single canonical **cat** exists: that type cannot be **e**.

We will use (side-)effects to do the difference between them:

$$\mathbf{a} \ \mathbf{cat} = \{c \mid \mathbf{cat} \ c\} \tag{Set}$$

the cat =
$$x$$
 if cat⁻¹(\top) = { x } else $\#$ (Maybe)

Effects as Functors

Traditionally ([Mog89]), monads model side-effects.

Effects as Functors

Traditionally ([Mog89]), monads model side-effects.

Here, functors suffice and lighter structures are useful.

String Diagrams

String Diagrams are a formalism ([HM23]) that allows to visually represent the different threads of a computation and the possible side-effects that appear.

String Diagrams

String Diagrams are a formalism ([HM23]) that allows to visually represent the different threads of a computation and the possible side-effects that appear.

Used as a tool for parsing in [CSC10].

Other Categorical Theories

[Mar] and [SM25] use Hopf algebras to give a model for parsing.

[MZ25] use operads to prove results on CFGs.

Notations

- \blacksquare Language ${\cal L}$ of denotationally composed words.
- Base typing CCC C; Effects: functors $\mathcal{F}(\mathcal{L})$.

Notations

- Language \mathcal{L} of denotationally composed words.
- Base typing CCC C; Effects: functors $\mathcal{F}(\mathcal{L})$.
- Typing CCC: $\bar{\mathcal{C}}=$ closure of \mathcal{C} under $\mathcal{F}(\mathcal{L})^*$, products and exponentials.

Intuition: all (effect-sequence, base type) combos, with functions/products.

Intuitionistic-style Typing Judgements

We then have typing judgements for basic combinations:

$$\begin{split} \frac{\Gamma \vdash x : \tau & \Gamma \vdash F \in \mathcal{F}(\mathcal{L})}{\Gamma \vdash Fx : F\tau} \mathsf{Cons} \\ \frac{\Gamma \vdash x : F\tau_1 & \Gamma \vdash \varphi : \tau_1 \to \tau_2}{\Gamma \vdash \varphi x : F\tau_2} \mathsf{fmap} \end{split}$$

Intuitionistic-style Typing Judgements

We then have typing judgements for basic combinations:

$$\frac{\Gamma \vdash x : \tau_{1} \qquad \Gamma \vdash \varphi : \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash \varphi x : \tau_{2}} \mathsf{App}$$

$$\frac{\Gamma \vdash x : A\tau_{1} \qquad \Gamma \vdash \varphi : A\left(\tau_{1} \rightarrow \tau_{2}\right)}{\Gamma \vdash \varphi x : A\tau_{2}} \mathord{<\!\!\!*\!\!\!>}$$

Intuitionistic-style Typing Judgements

Typing judgements for natural transformations:

$$\frac{\Gamma \vdash x : \tau}{\Gamma \vdash x : A\tau} \texttt{pure/return}$$

$$\frac{\Gamma \vdash x : MM\tau}{\Gamma \vdash x : M\tau} \gt\gt=$$

$$\forall F \stackrel{\theta}{\Longrightarrow} G, \qquad \frac{\Gamma \vdash x : F\tau \qquad \Gamma \vdash G : S' \subseteq \star \qquad \tau \in S'}{\Gamma \vdash x : G\tau} \mathrm{nat}$$

Presentation

To present a language in our formalism, we need:

- A syntax;
- A typed dictionary using effects;
- A typed lexicon of non-verbal constructs.

Introducing Higher-Order Constructs

We implement higher-order semantics (e.g. the future and plural) via functors.

Introducing Higher-Order Constructs

We implement higher-order semantics (e.g. the future and plural) via functors.

We also enforce the notion of scope islands as in [BC25]:

$$\mathbf{if} \,: (\mathbf{t} \setminus \mathcal{F}(\mathcal{L})^* \, \mathbf{Ct}) \to \mathbf{t} \to \mathbf{t}$$

Ambiguity

Handlers

Handlers for an effect F are natural transformations $F\Rightarrow \mathrm{Id}$ ([WSH14]) which invert units.

Handlers

Handlers for an effect F are natural transformations $F\Rightarrow \mathrm{Id}$ ([WSH14]) which invert units.

Language-Defined Handlers arise from fundamental properties of the considered effects.

Handlers

Handlers for an effect F are natural transformations $F\Rightarrow \mathrm{Id}$ ([WSH14]) which invert units.

- Language-Defined Handlers arise from fundamental properties of the considered effects.
- Speaker-dependant handlers which are dependent on the speaker.

String Diagrams Representation of Sentences

String diagram are a representation of the side-effects and types of a sentence across its computation.

Deformation of String Diagrams

Theorem 3.1 — Theorem 3.1 [Sel10], Theorem 1.2 [JS91] A well-formed equation between morphism terms in the language of monoidal categories follows from the axioms of monoidal categories if and only if it holds, up to planar isotopy, in the graphical language.

Equations on String Diagrams

Properties of monads, natural transformations, adjunctions and more can be explained in terms of commutative diagrams, but also as string diagram equations.

Moreover, Theorem 3.1 can be implemented as string diagram equations.

Confluence of Reductions

Theorem 3.2 — Confluence The reduction system defined by the specified equations is confluent and therefore defines normal forms.

Theorem 3.3 — Normalization Complexity Normalization is quadratic in the number of natural transformations.

This is accomplished using a formalism based on [DV22].

Parsing Algorithm

Typing syntax trees is exponentially too long.

Parsing Algorithm

Typing syntax trees is exponentially too long.

We use a Context-Free Grammar in five parts to model our typing system. This gives a complexity in $\mathcal{O}(|\mathcal{F}(\mathcal{L})| |\mathcal{S}| \, n^3)$.

Semantic Parse Trees I

Semantic Parse Trees II

Semantic Parse Trees III

Combinators as String Diagrams

A Parsing Diagram Step

Another Parsing Diagram Step

Building an Intuition

A Full Parsing Diagram

Reducing the grammar

We translate equalities on actual denotations (from combinators or from the denotational system) into the reduction system on string diagrams.

Commutation of effects, Theorem 3.1 and more, allow a reduction of the constant in the algorithmic complexity.

Conclusion

 Theoretical enhancement of a type system for natural language semantics;

Conclusion

- Theoretical enhancement of a type system for natural language semantics;
- No load added neither on the user (comprehension) nor the parser (efficiency).

Conclusion

- Theoretical enhancement of a type system for natural language semantics;
- No load added neither on the user (comprehension) nor the parser (efficiency).

I would like to thank Simon Charlow for his advice and guidance, my mother for the knitting, Antoine Groudiev for the rotation of the snakes in equation labels, Bella Senturia, Bob Frank and Paul-André Melliès for their suggestions of papers to read about categories and linguistics.

Lexicon

	_		
Expression	Туре	λ-Term	
planet	$\mathbf{e} o \mathbf{t}$	$\lambda x.$ planet x	
	Generalizes to common nouns		
carnivorous	$(e \rightarrow t)$	$\lambda x.$ carnivorous x	
	Generalizes to predicative adjectives		
skillful	$(\mathbf{e} \to \mathbf{t}) \to (\mathbf{e} \to \mathbf{t})$	$\lambda p.\lambda x.px \wedge \mathbf{skillful} x$	
	Generalizes to predicate modifier adjectives		
Jupiter	е	$j \in Var$	
	Generalizes to proper nouns		
sleep	$\mathbf{e} ightarrow \mathbf{t}$	$\lambda x.sleep x$	
	Generalizes to intran	itive verbs	
chase	$e \rightarrow e \rightarrow t$	$\lambda o. \lambda s. \text{chase}(o)(s)$	
	Generalizes to transi	(/ (/	
be	Generalizes to transi $(\mathbf{e} \to \mathbf{t}) \to \mathbf{e} \to \mathbf{t}$	(/ (/	
be she		tive verbs	
	$(\mathbf{e} \to \mathbf{t}) \to \mathbf{e} \to \mathbf{t}$	tive verbs $\lambda p.\lambda x.px$	
she		tive verbs $\lambda p.\lambda x.px$ $\lambda g.g_0$	
she it		tive verbs $\lambda p.\lambda x.px$ $\lambda g.g_0$ $\lambda g.g_0$	
she it which		tive verbs $\begin{array}{c} \lambda p.\lambda x.px \\ \lambda g.g_0 \\ \lambda g.g_0 \\ \lambda g.g_0 \\ \lambda p.\left\{x \mid px\right\} \end{array}$	
she it which the		tive verbs $\begin{array}{c} \lambda p.\lambda x.px \\ \lambda g.g_0 \\ \lambda g.g_0 \\ \lambda g. \{x \mid px\} \\ \lambda p.x \text{ if } p^{-1}(\top) = \{x\} \text{ else } \# \end{array}$	
she it which the a	$\begin{split} &(\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{e} \rightarrow \mathbf{t} \\ &\mathbf{r} \rightarrow \mathbf{e} \\ &\mathbf{Ge} \\ &(\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{Se} \\ &(\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{Me} \\ &(\mathbf{e} \rightarrow \mathbf{t}) \rightarrow \mathbf{De} \end{split}$	tive verbs $\begin{array}{l} \lambda p.\lambda x.px \\ \lambda g.\beta o \\ \lambda g.go \\ \lambda g.go \\ \lambda p.~\{x\mid px\} \\ \lambda p.~x~\text{if}~p^{-1}(\top) = \{x\}~\text{else}~\# \\ \lambda p.\lambda s.~\{\langle x,x+s\rangle\mid px\} \end{array}$	
she it which the a no		tive verbs $\begin{array}{l} \lambda p.\lambda x.px \\ \lambda g.y_0 \\ \lambda g.y_0 \\ \lambda g.y_0 \\ \lambda p.\ \{x\mid px\} \\ \lambda p.\ x\ \text{if}\ p^{-1}\ (\top) = \{x\} \ \text{else}\ \# \\ \lambda p.\lambda s.\ \{\langle x,x+s\rangle\mid px\} \\ \lambda p.\lambda c. \neg \exists x.px \wedge c\ x \end{array}$	
she it which the a no every		tive verbs $\begin{array}{l} \lambda p.\lambda x.px \\ \lambda g.90 \\ \lambda g.90 \\ \lambda p.\{x \mid px\} \\ \lambda p.x \text{ if } p^{-1}(\top) = \{x\} \text{ else } \# \\ \lambda p.\lambda s. \{(x,x+s) \mid px\} \\ \lambda p.\lambda c. \neg \exists x.px \wedge c.x \\ \lambda p.\lambda c. \forall x,px \Rightarrow cx \end{array}$	

Functor Denotations

Constructor	fmap	Typeclass
$\mathbf{G}\left(\tau\right) = \mathbf{r} \to \tau$	$\mathbf{G}\varphi\left(x\right)=\lambda r.\varphi\left(xr\right)$	Monad
$\mathbf{W}(\tau) = \tau \times \mathbf{t}$	$\mathbf{W}\varphi\left(\langle a,p\rangle\right)=\langle\varphi a,p\rangle$	Monad
$\mathbf{S}\left(\tau\right)=\left\{ \tau\right\}$	$\mathbf{S}\varphi\left(\left\{ x\right\} \right)=\left\{ \varphi(x)\right\}$	Monad
$\mathbf{C}\left(\tau\right) = \left(\tau \to \mathbf{t}\right) \to \mathbf{t}$	$\mathtt{C}\varphi\left(x\right)=\lambda c.x\left(\lambda a.c\left(\varphi a\right)\right)$	Monad
$\mathbf{T}\left(\tau\right) = \mathbf{s} \to \left(\tau \times \mathbf{s}\right)$	$\mathrm{D}\varphi\left(\lambda s.\left\{\left\langle x,x+s\right\rangle px\right\}\right)=\lambda s.\left\langle \varphi x,\varphi x+s\right\rangle$	Monad
$\mathbf{F}\left(\tau\right)=\tau\times\mathbf{S}\tau$	$\mathbb{F}\varphi\left(\left\langle v,\left\{ x x\in D_{e}\right\} \right\rangle\right)=\left\langle \varphi\left(v\right),\left\{ x x\in D_{e}\right\} \right\rangle$	Monad
$\mathbf{D}\left(\tau\right) = \mathbf{s} \to \mathbf{S}\left(\tau \times \mathbf{s}\right)$	$\mathrm{D}\varphi\left(\lambda s.\left\{\left\langle x,x+s\right\rangle px\right\}\right)=\lambda s.\left\{\left\langle \varphi x,\varphi x+s\right\rangle px\right\}$	Monad
$\mathbf{M}\left(\tau\right)=\tau+\bot$	$\mathbf{M}\varphi\left(x\right) = \begin{cases} \varphi\left(x\right) & \text{if } \Gamma \vdash x : \tau \\ \# & \text{if } \Gamma \vdash x : \# \end{cases}$	Monad

CFG of English

```
CP
    := DP, VP
                         NP ::= AdjP, NP
      | Cmp, CP
                                NP, AdjP
      | CP, CBar
                         AdjP ::= TAdj, DP
CBar ::= Cor, CP
                                Deg, AdjP
Dbar ::= Cor, DP
                         VP
                             ::= TV, DP
                                AV, CP
DP ::= DP, Dbar
                                VP, AdvP
       Dmp, DP
       Det, NP
                         TV ::= DV, DP
        Gen, TN
                         AdvP ::= TAdv, DP
Gen
    := DP, GenD
```


CFG for Parsing

Combinator Denotations

$$>= \lambda \varphi.\lambda x.\varphi x \\ <= \lambda x.\lambda \varphi.\varphi x \\ \mathsf{ML}_{F} = \lambda M.\lambda x.\lambda y.(\mathsf{fmap}_{F}\lambda a.M(a,y))x \\ \mathsf{MR}_{F} = \lambda M.\lambda x.\lambda y.(\mathsf{fmap}_{F}\lambda b.M(x,b))y \\ \mathsf{A}_{F} = \lambda M.\lambda x.\lambda y.(\mathsf{fmap}_{F}\lambda a.\lambda b.M(a,b))(x) <*>y \\ \mathsf{UL}_{F} = \lambda M.\lambda x.\lambda \varphi.M(x,\lambda b.\varphi(\eta_{F}b)) \\ \mathsf{UR}_{F} = \lambda M.\lambda \varphi.\lambda y.M(\lambda a.\varphi(\eta_{F}a),y) \\ \mathsf{J}_{F} = \lambda M.\lambda x.\lambda y.\mu_{F}M(x,y) \\ \mathsf{C}_{LR} = \lambda M.\lambda x.\lambda y.\varepsilon_{LR}(\mathsf{fmap}_{L}(\lambda l.\mathsf{fmap}_{R}(\lambda r.M(l,r))(y))(x)) \\ \mathsf{EL}_{R} = \lambda M.\lambda \varphi.\lambda y.M(\Upsilon_{R}\varphi,y) \\ \mathsf{ER}_{R} = \lambda M.\lambda x.\lambda \varphi.M(x,\Upsilon_{R}\varphi) \\ \mathsf{DN}_{\bot} = \lambda M.\lambda x.\lambda y. \downarrow M(x,y)$$