Динамические кратчайшие пути

Салью Артур 371 группа

Задача 1

Вам дан ориентированный взвешенный граф G с положительными весами. Обновление — увеличение веса ребра (уменьшения запрещены). Предполагается, что кратчайшие пути уникальны: (между парой вершин x и y есть только один кратчайший путь). Из этого следует, что если между вершинами x и y есть несколько однородных путей, то вершины в этих путях попарно различны (кроме самих конечных вершин x и y).

Определение 1 (Однородные пути). Путь π_{xy} в графе G однородный, если любой его подпуть является кратчайшим в графе G.

Докажите следующие утверждения:

Задача 1 (а). Не более, чем n^3 путей в графе после увеличения веса ребра становятся однородными. В качестве доказательства придумайте такой худший случай.

Доказательство. Пусть увеличили вес ребра (u,v). Рассмотрим все такие пути $\pi_{uz}=(u,v,...,z)$. Для каждой фиксированной вершины z может существовать не более одного однородного π_{uz} , иначе нарушается условие уникальности кратчайшего пути (По определению однородного пути π_{vz} является кратчайшим). Так как число рёбер $(u,v) \leq m$, где m — число всех ребер в графе, а в качестве вершины z могут выступать оставшиеся n-2 вершины графа, то стать однородными могут O(nm) путей. Так как в полном графе $m=C_n^2=\frac{n(n-1)}{2}$, то финальная оценка однородных путей от числа вершин $O(n^3)$

Пример такого графа представлен на рисунке 1. Синим выделены однородные пути из вершин набора $1..N_1$ в вершины набора $1..N_4$. Изначально ребра с весами 5 не входили в однородные пути, однако при изменении веса (u,v) эти рёбра были включены. Учитывая число вершин наборов $N_i = \Theta(n)$, мы получили $|N_1| \cdot |N_2| \cdot |N_4| = \Theta(n^3)$ однородных путей.

Задача 1 (b). Не более, чем n^2 путей в графе после увеличения веса ребра перестают быть однородными

Доказательство. Пусть увеличили вес ребра (i,j). Рассмотрим все такие пути $\pi_{uv} = (u,...,i,j,...,v)$. В силу утверждения о попарно различных вершинах в однородных путях, существует единственный однородный π_{uv} . Вершины u,v можно выбрать $A_n^2 = \frac{n!}{(n-2)!} = n(n-1)$ способами. А значит при увеличении веса (i,j) исчезнуть могут не более $n(n-1) < n^2$ однородных путей.

Рис. 1: Пример к задаче 1 (а)