Value Function Methods

CS 285

Instructor: Sergey Levine UC Berkeley

Recap: actor-critic

batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Can we omit policy gradient completely?

 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$: how much better is \mathbf{a}_t than the average action according to π arg $\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$: best action from \mathbf{s}_t , if we then follow π

at least as good as any $\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)$.

regardless of what $\pi(\mathbf{a}_t | \mathbf{s}_t)$ is!

Policy iteration

High level idea:

policy iteration algorithm:

- 1. evaluate $A^{\pi}(\mathbf{s}, \mathbf{a}) \longleftarrow$ how to do this? $\begin{cases} 2. & \text{set } \pi \leftarrow \pi' \end{cases}$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

as before:
$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

let's evaluate $V^{\pi}(\mathbf{s})!$

Dynamic programming > the way of evaluate

Let's assume we know $p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$, and \mathbf{s} and \mathbf{a} are both discrete (and small)

0.2	0.3	0.4	0.3
0.3	0.3	0.5	0.3
0.4	0.4	0.6	0.4
0.5	0.5	0.7	0.5

16 states, 4 actions per state

can store full $V^{\pi}(\mathbf{s})$ in a table! \mathcal{T} is $16 \times 16 \times 4$ tensor

$$\mathcal{T}$$
 is $(16 \times 16 \times 4)$ tensor

bootstrapped update
$$V^{\pi}(\mathbf{s}) \leftarrow E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})}[V^{\pi}(\mathbf{s}')]]$$

just use the current estimate here

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases} \text{ determined: } V^{\pi}(\mathbf{s}) \leftarrow r(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \pi(\mathbf{s}))}[V^{\pi}(\mathbf{s}')] \end{cases}$$

deterministic policy $\pi(\mathbf{s}) = \mathbf{a}$

simplified:
$$V^{\pi}(\mathbf{s}) \leftarrow \overline{r}(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}' | \mathbf{s}, \pi(\mathbf{s}))} [V^{\pi}(\mathbf{s}')]$$

Policy iteration with dynamic programming

policy iteration:

1. evaluate $V^{\pi}(\mathbf{s})$ 2. set $\pi \leftarrow \pi'$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

policy evaluation:

$$V^{\pi}(\mathbf{s}) \leftarrow r(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \pi(\mathbf{s}))}[V^{\pi}(\mathbf{s}')]$$

0.	2	0.3	0.4	0.3
0.3	3	0.3	0.5	0.3
0.4	4	0.4	0.6	0.4
0.5	5	0.5	0.7	0.5

16 states, 4 actions per state can store full $V^{\pi}(\mathbf{s})$ in a table!

$$\mathcal{T}$$
 is $16 \times 16 \times 4$ tensor

Even simpler dynamic programming

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

$$\arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')]$$
 (a bit simpler)

value iteration algorithm:

2. set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

A (Sia) - (154) + (154) + (15,0) | max (15,0

Fitted Value Iteration & Q-Iteration

Fitted value iteration

how do we represent $V(\mathbf{s})$?

big table, one entry for each discrete s neural net function $V: \mathcal{S} \to \mathbb{R}$

$$\mathcal{L}(\phi) = \frac{1}{2} \left\| V_{\phi}(\mathbf{s}) - \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a}) \right\|^{2}$$

 $\mathbf{s} = 0: V(\mathbf{s}) = 0.2$

s = 1 : V(s) = 0.3

s = 2 : V(s) = 0.5

 $V^{\pi}(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$

improve the policy

$$|\mathcal{S}| = (255^3)^{200 \times 200}$$

(more than atoms in the universe)

fitted value iteration algorithm:

curse of dimensionality

What if we don't know the transition dynamics?

fitted value iteration algorithm:

- 1. set $\mathbf{y}_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')])$ 2. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(\mathbf{s}_i) \mathbf{y}_i||^2$

need to know outcomes` for different actions!

Back to policy iteration...

policy iteration:

- 1. evaluate $Q^{\pi}(\mathbf{s}, \mathbf{a})$ 2. set $\pi \leftarrow \pi'$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

policy evaluation:

can fit this using samples

Can we do the "max" trick again?

policy iteration:

1. evaluate $V^{\pi}(\mathbf{s})$

2. set $\pi \leftarrow \pi'$

fitted value iteration algorithm;

1. $\operatorname{set}(\mathbf{y}_i) \leftarrow \underbrace{\max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')])}_{2. \operatorname{set} \phi \leftarrow \operatorname{arg min}_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(\mathbf{s}_i) - \mathbf{y}_i||^2}$

forget policy, compute value directly 🗸

can we do this with Q-values also, without knowing the transitions?

fitted Q iteration algorithm:

1. set
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')]$$
 \leftarrow
2. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$

- + works even for off-policy samples (unlike actor-critic)
- + only one network, no high-variance policy gradient
- no convergence guarantees for non-linear function approximation (more on this later)

doesn't require simulation of actions!

- approxiate $E[V(\mathbf{s}_i')] \approx \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$

Fitted Q-iteration

full fitted Q-iteration algorithm:

$$\triangleright$$
 2. set $\mathbf{y}_i \leftarrow \underline{r}(\mathbf{s}_i, \mathbf{a}_i) + \overline{\gamma} \underline{\max}_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$

3. set
$$\phi \leftarrow \underset{\phi}{\operatorname{arg min}}_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$

parameters

dataset size N, collection policy iterations K gradient steps S

Review

- Value-based methods
 - Don't learn a policy explicitly
 - Just learn value or Q-function
- If we have value function, we have a policy
- Fitted Q-iteration

From Q-Iteration to Q-Learning

Tat = argman Dico, Why is this algorithm off-policy?

3. set
$$\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$

given **s** and **a**, transition is independent of π

this approximates the value of π' at \mathbf{s}'_i

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

Fitted Q-iteration

What is fitted Q-iteration optimizing?

full fitted Q-iteration algorithm:

2. set
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$
 this max improves the policy (tabular case) 3. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$

3. set
$$\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$

$$\mathcal{E} = \frac{1}{2} E_{(\mathbf{s}, \mathbf{a}) \sim \beta} \left[\left(Q_{\phi}(\mathbf{s}, \mathbf{a}) - [r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}')] \right)^{2} \right]$$
if $\mathcal{E} = 0$, then $Q_{\phi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}')$

if
$$\mathcal{E} = 0$$
, then $Q_{\phi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}')$

this is an *optimal* Q-function, corresponding to optimal policy π' :

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) & \text{maximizes reward} \\ 0 \text{ otherwise} & \text{sometimes written } Q^* \text{ and } \pi^* \end{cases}$$

most guarantees are lost when we leave the tabular case (e.g., use neural networks)

Online Q-learning algorithms

full fitted Q-iteration algorithm:

2. set
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

2. set
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$

$$Q_{\phi}(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}')$$

 $\mathbf{a} = \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$

online Q iteration algorithm:

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i) (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$

off policy, so many choices here!

Exploration with Q-learning

online Q iteration algorithm:

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3.
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$$

final policy:

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$
why is this a bad idea for step 1?

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 - \epsilon \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ \epsilon/(|\mathcal{A}| - 1) \text{ otherwise} \end{cases}$$

$$\pi(\mathbf{a}_t|\mathbf{s}_t) \propto \exp(Q_{\phi}(\mathbf{s}_t,\mathbf{a}_t))$$

"epsilon-greedy"

 $^{\prime}$ "Boltzmann exploration" $^{\prime}$

We'll discuss exploration in detail in a later lecture!

Review

- Value-based methods
 - Don't learn a policy explicitly
 - Just learn value or Q-function/
- If we have value function, we have a policy
- Fitted Q-iteration
 - Batch mode, off-policy method
- Q-learning
 - Online analogue of fitted Qiteration

Value Functions in Theory

Value function learning theory

value iteration algorithm:

- 1. set $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$ 2. set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

0.2	0.3	0.4	0.3
0.3	0.3	0.5	0.3
0.4	0.4	0.6	0.4
0.5	0.5	0.7	0.5

does it converge?

and if so, to what?

stacked vector of rewards at all states for action a

define an operator \mathcal{B} : $\underline{\mathcal{B}V} = \max_{\mathbf{a}} \left\{ r_{\mathbf{a}} + \gamma \mathcal{T}_{\mathbf{a}} V \right\}$

matrix of transitions for action a such that $\mathcal{T}_{\mathbf{a},i,j} = p(\mathbf{s}' = i | \mathbf{s} = j, \mathbf{a})$

 V^{\star} is a fixed point of \mathcal{B}

$$V^{\star}(\mathbf{s}) = \max_{\mathbf{a}} r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\star}(\mathbf{s}')], \text{ so } V^{\star} = \mathcal{B}V^{\star}$$

always exists, is always unique, always corresponds to the optimal policy

...but will we reach it?

Value function learning theory

value iteration algorithm:

- 1. set $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$ 2. set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

0.2	0.3	0.4	0.3
0.3	0.3	0.5	0.3
0.4	0.4	0.6	0.4
0.5	0.5	0.7	0.5

$$V^*$$
 is a fixed point of \mathcal{B}

$$V^{\star}(\mathbf{s}) = \max_{\mathbf{a}} r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\star}(\mathbf{s}')], \text{ so } V^{\star} = \mathcal{B}V^{\star}$$

we can prove that value iteration reaches V^* because \mathcal{B} is a contraction

contraction: for any V and \bar{V} , we have $\|\mathcal{B}V - \mathcal{B}\bar{V}\|_{\infty} \leq (\gamma \|V - \bar{V}\|_{\infty})$

gap always gets smaller by $\gamma!$

(with respect to ∞ -nor $\overline{\underline{\mathbf{m}}}$

what if we choose V^* as \bar{V} ? $\mathcal{B}V^* = V^*$!

$$\|\mathcal{B}V - V^{\star}\|_{\infty} \le \gamma \|V - V^{\star}\|_{\infty}$$

Non-tabular value function learning

value iteration algorithm (using \mathcal{B}):

fitted value iteration algorithm (using \mathcal{B} and Π):

 \blacksquare 1. $V \leftarrow \Pi \mathcal{B} V$

define new operator Π $\Pi V = \arg\min_{V' \in \Omega} \frac{1}{2} \sum \|V'(\mathbf{s}) - V(\mathbf{s})\|^2$

 Π is a projection onto Ω (in terms of ℓ_2 norm)

fitted value iteration algorithm:

1. set $\mathbf{y}_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')])$ 2. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(\mathbf{s}_i) - \mathbf{y}_i||^2$

updated value function

$$V' \leftarrow \arg\min_{V' \in \Omega} \frac{1}{2} \sum \|V'(\mathbf{s}) - (\mathcal{B}V)(\mathbf{s})\|^2$$

Non-tabular value function learning

fitted value iteration algorithm (using \mathcal{B} and Π):

1. $V \leftarrow \Pi \mathcal{B} V$

 Π is a contraction w.r.t. ℓ_2 -norm (Euclidean distance)

$$\|\mathcal{B}V - \mathcal{B}\bar{V}\|_{\infty} \le \gamma \|V - \bar{V}\|_{\infty}$$

$$\|\Pi V - \Pi \bar{V}\|^2 \le \|V - \bar{V}\|^2$$

but. $(\Pi \mathcal{B})$ is not a contraction of any kind

Conclusions:

value iteration converges

(tabular case)

fitted value iteration does **not** converge

not in general

often not in practice

What about fitted Q-iteration?

fitted Q iteration algorithm:

- 1. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')]$ 2. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{y}_i\|^2$

define an operator \mathcal{B} : $\mathcal{B}Q = r + \gamma \mathcal{T} \max_{\mathbf{a}} Q$

max now after the transition operator

define an operator Π : $\Pi Q = \arg\min_{Q' \in \Omega} \frac{1}{2} \sum \|Q'(\mathbf{s}, \mathbf{a}) - Q(\mathbf{s}, \mathbf{a})\|^2$

fitted Q-iteration algorithm (using \mathcal{B} and Π):

 \square 1. $Q \leftarrow \Pi \mathcal{B} Q$

 \mathcal{B} is a contraction w.r.t. ∞ -norm ("max" norm)

 Π is a contraction w.r.t. ℓ_2 -norm (Euclidean distance)

 $\Pi \mathcal{B}$ is not a contraction of any kind (Applies also to

But... it's just regression!

online Q iteration algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$
- 2. $\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$
- 3. $\phi \leftarrow \phi \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{y}_i)$

Dearning in a land on y address

isn't this just gradient descent? that converges, right?

Q-learning is not gradient descent!

$$\phi \leftarrow \phi - Q \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')))$$

no gradient through target value

A sad corollary

batch actor-critic algorithm:

- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

 ℓ_{∞} contraction \mathcal{B} (but without max)

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

 ℓ_2 contraction Π

An aside regarding terminology

 V^{π} : value function for policy π this is what the critic does

 V^* : value function for optimal policy π this is what value iteration does

fitted bootstrapped policy evaluation doesn't converge!

Review

- Value iteration theory
 - Operator for backup
 - Operator for projection
 - Backup is contraction
 - Value iteration converges
- Convergence with function approximation
 - Projection is also a contraction
 - Projection + backup is **not** a contraction
 - Fitted value iteration does not in general converge
- Implications for Q-learning
 - Q-learning, fitted Q-iteration, etc. does not converge with function approximation
- But we can make it work in practice!
 - Sometimes tune in next time

