Tuning the senses

How pupils shape vision

Sebastiaan Mathôt

s.mathot@rug.nl

Data from Mathôt (2018)

Captures lots of light
Has lots of optical
distortions

Captures less light
Has less optical
distortions

The pupil responds to **three** things. (So far I've mentioned two.)

е

And to complicate things further, low-level pupil responses are modulated by high-level cognition

What (if any) function do cognitively driven pupil responses serve?

Let's review several findings ...

- You can focus attention
 - Narrowly → on central vision
 - Broadly → diffusely over a large part of the visual field, including peripheral vision
- How does this affect pupil size?

- Observation
 - Broad focus → large pupils
 - Narrow focus → small pupils
- Possible function
 - Small pupils enhance acuity by decreasing lens aperture
 - Mostly beneficial for central vision, where acuity is highest due to increased cone density on the retina

Exploration vs exploitation

Exploration vs exploitation

- Two modes of behavior
 - Exploration → prone to distraction, frequent task switching
 - Exploitation → focus on a single task
- The adaptive-gain theory links this to pupil size
 - Exploration → large pupils (and not very reactive)
 - Exploitation → medium-small pupils (and highly reactive)

Exploration vs exploitation

- Most studies on the link between exploration/ exploitation and pupil size have focused on game-like tasks
- We recently tested whether this link also holds for eye movements

a) Pupil size before region switches

Exploration v exploitation

- Observation
 - Exploration (gaze shifts between regions) → large pupils
 - Exploitation (gaze shifts within regions) → small pupils
- Possible function
 - Exploitation is accompanied by a narrow focus
 - ... and therefore benefits more from the increased visual acuity offered by small pupils
 - Analogous to the attentional-breadth interpretation
- May underlie
 - Pupil dilation linked to arousal and mental effort

- Eye movements are preceded by covert shifts of attention
- Covert attention modulates the pupil light response
- Are eye movements to bright/ dark surfaces accompanied by a preparatory pupil light response?

- Pupil-light-response latency should be reduced
 - If preparation is possible ...
 - the Constant condition
 - ... relative to when it is not
 - the Onset condition
- Initially (seemingly) inverse light response
 - If preparation is incongruent
 - the Swap condition

- Observation
 - Eye-movement preparation is accompanied by preparation of a pupil light response
- Possible function
 - Reduced latency of pupil light response
- May underlie
 - Cognitive modulation of the pupil light response by visual attention, visual working memory, language, etc.

Conclusion

Sensory tuning

- Emphasis on central vision over peripheral vision → pupil constriction
 - Narrow attentional focus
 - Exploitation mode of behavior
- Because central vision benefits most from the increased acuity offered by small pupils

Sensory tuning

- An intention to act with bright stimuli → pupil constriction
 - Eye-movement preparation
 - Covert attention
 - Visual awareness
 - Visual working memory
- Because this reduces the latency of the pupil light response

Sensory tuning

- Cognitively driven pupil responses may be a form of "sensory tuning"
- ... a subtle adjustment of the senses to optimize their properties for the current situation and the immediate future

Thank you!

Sebastiaan Mathôt

Mathôt, S. (2018) Pupillometry: psychology, physiology, and function. Journal of Cognition. http://doi.org/10.5334/joc.18

Mathôt, S. (2020) Tuning the senses: How the pupil shapes vision at the earliest stage. Annual Review of Vision Science. https://doi.org/10.1146/annurev-vision-030320-062352 Mathôt, S., & Vilotijević, A. (2023). Methods in pupillometry: design, preprocessing, and statistical analysis. Behavior Research Methods. https://doi.org/10.3758/s13428-022-01957-7 Vilotijević, A. & Mathôt, S. (2023). Functional benefits of cognitively driven pupil-size changes. WIREs Cognitive Science. https://doi.org/10.1002/wcs.1672

