MPSI 2

Programme des colles de mathématiques.

Semaine 16 : du lundi 14 février au vendredi 18.

Liste des questions de cours

- $\mathbf{1}^{\circ}$) Montrer que $\|(x_1,\ldots,x_n)\|_1 = \sum_{i=1}^n |x_i|$ définit une norme sur \mathbb{K}^n .
- $\mathbf{2}^{\circ}$) Si l'on pose, pour tout $f \in \mathcal{C}([a,b],\mathbb{K})$, $||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$, montrer que l'on définit une norme sur $\mathcal{C}([a,b],\mathbb{K})$.
- 3°) Montrer que les boules d'un espace vectoriel normé sont des convexes.
- 4°) Si E un espace vectoriel normé et A une partie non vide de E, montrer que l'application $E \longrightarrow \mathbb{R}_+$ est 1-lipschitzienne.
- $\mathbf{5}^{\circ}$) Si E_1, \ldots, E_p sont p espaces vectoriels normés, montrer que sur $E_1 \times \cdots \times E_p$, les trois normes classiques, $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$ sont deux à deux équivalentes.
- **6**°) Si E est un \mathbb{K} -espace vectoriel muni de deux normes équivalentes N et $\|.\|$, montrer que, pour toute suite (x_n) de E et pour tout $l \in E$, $x_n \xrightarrow[n \to +\infty]{N} l \iff x_n \xrightarrow[n \to +\infty]{\|.\|} l$.
- $\mathbf{7}^{\circ}$) Soient $(\alpha_n) \in \mathbb{K}^{\mathbb{N}}$ et $(x_n) \in E^{\mathbb{N}}$ telles que $\alpha_n \underset{n \to +\infty}{\longrightarrow} \alpha$ et $x_n \underset{n \to +\infty}{\longrightarrow} x$. Montrer que $\alpha_n . x_n \underset{n \to +\infty}{\longrightarrow} \alpha . x$.
- 8°) Soit (u_n) une suite de scalaires vérifiant la relation de récurrence $u_{n+2} = au_{n+1} + bu_n$. Donner une expression de u_n en fonction de n. Démontrez-le.
- 9°) Déterminer la limite en $+\infty$ de $(1+\frac{1}{n})^n$.
- 10°) Enoncer le théorème de la limite monotone. Démontrer-le dans le cas d'une suite croissante majorée.
- 11°) Montrer que a est une valeur d'adhérence de (x_n) si et seulement si $\forall \varepsilon \in \mathbb{R}_+^*, \ \forall N \in \mathbb{N}, \ \exists n \geq N \ d(x_n, a) < \varepsilon.$
- 12°) Enoncer et démontrer le lemme des pics.
- 13°) Théorème de Bolzano-Weierstrass dans \mathbb{C} : énoncé et démonstration, en supposant que le théorème est déjà démontré pour les suites de réels.

Thèmes de la semaine : normes et suites

1 Espaces vectoriels normés ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C})

1.1 Définition d'une norme

Corollaire de l'inégalité triangulaire.

Vecteurs unitaires.

Restriction d'une norme à un sous-espace vectoriel.

Les normes 1, 2 et ∞ sur \mathbb{K}^n .

Hors programme : pour
$$p \in [1, +\infty[, \|(x_1, ..., x_n)\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$
.

Normes 1,2, ∞ , et plus généralement normes $p \in [1, +\infty[$ (hors programme), sur un produit d'un nombre fini d'espaces vectoriels normés et sur $\mathcal{C}([a, b], \mathbb{K})$.

1.2 Distance

Distance associée une norme.

Définition d'un espace métrique.

Seul cas au programme : une partie A d'un espace vectoriel normé munie de la restriction sur A^2 de la distance associée à la norme est un espace métrique.

Boules ouvertes, boules fermées, sphères.

Boule unité.

Les boules d'un espace vectoriel normé sont des convexes.

Dans un espace métrique, distance d'un point à une partie non vide, distance entre deux parties non vides, diamètre d'une partie non vide A noté $\delta(A)$.

Le diamètre d'une boule fermée de rayon r est inférieur à 2r. Il est égal à 2r dans le cas d'un espace vectoriel normé.

Si
$$\emptyset \neq A \subset B$$
, alors $\delta(A) \leq \delta(B)$.

Parties bornées d'un espace vectoriel normé.

Soient A un ensemble non vide et E un espace vectoriel normé . On note $\mathcal{B}(A,E)$ l'ensemble des applications bornées de A dans E. Pour $f \in \mathcal{B}(A,E)$, on note $\|f\|_{\infty} = \sup \|f(a)\|$.

Alors $(\mathcal{B}(A, E), \|.\|_{\infty})$ est un espace vectoriel normé.

Soit E un espace vectoriel normé. On note $l^{\infty}(E)$ l'ensemble des suites bornées à valeurs dans E. Si $(x_n)_{n\in\mathbb{N}}\in l^{\infty}(E)$, on note $\|(x_n)\|_{\infty}=\sup_{n\in\mathbb{N}}\|x_n\|:(l^{\infty}(E),\|.\|_{\infty})$ est un espace vectoriel normé.

1.3 Applications k-Lipschitziennes

Une composée d'applications lipschitziennes est lipschitzienne.

Si E est un espace vectoriel normé, l'application $\|.\|$ est 1-lipschitzienne.

Si E un espace vectoriel normé et A une partie non vide de E, l'application $\begin{matrix} E & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & d(x,A) \end{matrix}$ est 1-lipschitzienne.

L'application $i^{\text{ème}}$ projection $p_i: E_1 \times \cdots \times E_p \longrightarrow E_i \\ x = (x_1, \dots, x_p) \longmapsto x_i \text{ est 1-lipschitzienne lorsque } E_1 \times \cdots \times E_p \text{ est muni de l'une de ses trois normes classiques, } \|.\|_1, \|.\|_2 \text{ ou } \|.\|_{\infty}.$

1.4 Normes équivalentes

 $\|.\|_1$ et $\|.\|_2$ sont équivalentes si et seulement si $Id_E:(E,\|.\|_1)\longrightarrow(E,\|.\|_2)$ et $Id_E:(E,\|.\|_2)\longrightarrow(E,\|.\|_1)$ sont lipschitziennes.

Si E_1, \ldots, E_p sont p espaces vectoriels normés, alors sur $E_1 \times \cdots \times E_p$, les trois normes classiques, $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$ sont deux à deux équivalentes.

Si $\|.\|_1$ et $\|.\|_2$ sont deux normes équivalentes sur E, alors une partie A de E est bornée pour $\|.\|_1$ si et seulement si elle est bornée pour $\|.\|_2$.

Si f est une application lipschitzienne de E dans F, alors elle reste lipschitzienne si l'on remplace dans E et F les normes par des normes équivalentes.

2 Limite d'une suite dans un espace métrique (E, d)

Unicité de la limite.

Suites convergentes, suites divergentes.

Si E est un \mathbb{K} -espace vectoriel muni de deux normes équivalentes N et $\|.\|$, alors, pour toute suite (x_n) de E et pour tout $l \in E$, $x_n \xrightarrow[n \to +\infty]{N} l \iff x_n \xrightarrow[n \to +\infty]{\|.\|} l$.

Toute suite convergente est bornée.

Notation. Pour la fin de ce paragraphe, on suppose que E est un espace vectoriel normé.

La somme de deux suites convergentes de vecteurs converge vers la somme des limites. Si $(x_n + y_n)$ converge, alors (x_n) et (y_n) ont la même nature.

Soient $(\alpha_n) \in \mathbb{K}^{\mathbb{N}}$ et $(x_n) \in E^{\mathbb{N}}$.

- Si l'une des suites est bornée et si l'autre tend vers 0, alors $\alpha_n x_n \xrightarrow[n \to +\infty]{} 0$.
- Si $\alpha_n \xrightarrow[n \to +\infty]{} \alpha$ et $x_n \xrightarrow[n \to +\infty]{} x$, alors $\alpha_n . x_n \xrightarrow[n \to +\infty]{} \alpha . x$.

Une suite (x_n) à valeurs dans un produit cartésien de p espaces vectoriels normés converge si et seulement si ses p suites composantes convergent et dans ce cas, la limite de (x_n) est égale au p-uplet dont les composantes sont les limites des suites composantes.

Propriété similaire pour une suite à valeurs dans un K-espace vectoriel de dimension finie, en fonction des suites coordonnées.

3 Suites de complexes

Soit
$$(z_n) \in \mathbb{C}^{\mathbb{N}}$$
 et $\ell \in \mathbb{C}$. Alors $z_n \underset{n \to +\infty}{\longrightarrow} \ell$ si et seulement si $\operatorname{Re}(z_n) \underset{n \to +\infty}{\longrightarrow} \operatorname{Re}(\ell)$ et $\operatorname{Im}(z_n) \underset{n \to +\infty}{\longrightarrow} \operatorname{Im}(\ell)$.

Suites arithmético-géométriques.

Suites homographiques.

Suites récurrentes linéaires d'ordre 2.

4 Suites de réels

4.1 Limites infinies

Divergence vers $+\infty$ (resp : $-\infty$) pour une suite de réels.

Divergence vers ∞ pour une suite d'un espace métrique.

Composition des limites : si
$$x_n \xrightarrow[n \to +\infty]{} \ell$$
 (où $x_n \in E$) et $\varphi(n) \xrightarrow[n \to +\infty]{} +\infty$ avec $\varphi(n) \in \mathbb{N}$, alors $x_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

Pour
$$x_n \in E$$
, $x_n \underset{n \to +\infty}{\longrightarrow} l$ si et seulement si $x_{2n} \underset{n \to +\infty}{\longrightarrow} l$ et $x_{2n+1} \underset{n \to +\infty}{\longrightarrow} l$.

Limites d'une somme, d'un produit ou d'un quotient de suites, avec des limites éventuellement infinies. Formes indéterminées $\infty - \infty$, $0 \times \infty$, $\frac{\infty}{\infty}$.

Pour étudier $a_n^{b_n}$ lorsque a_n et b_n dépendent de n, on remplace $a_n^{b_n}$ par $e^{b_n \ln(a_n)}$.

4.2 limites et relation d'ordre

Principe des gendarmes.

Lemme du tunnel : Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $x_n \underset{n \to +\infty}{\longrightarrow} \ell$. Si $a < \ell < b$. apcr, $a < u_n < b$. Le lemme du tunnel est faux avec des inégalités larges.

Si $a_n \leq b_n$, alors dans $\overline{\mathbb{R}}$, sous condition d'existence des limites, $\lim_{n \to +\infty} a_n \leq \lim_{n \to +\infty} b_n$. Ce résultat est faux avec des inégalités strictes.

Si X est une partie non vide de \mathbb{R} , il existe $(x_n) \in X^{\mathbb{N}}$ telle que $x_n \xrightarrow[n \to +\infty]{} \sup(X)$.

Théorème de la limite monotone.

Comportement asymptotique d'une suite géométrique.

4.3 Suites adjacentes

Si (x_n) et (y_n) sont adjacentes avec (x_n) croissante, alors ces deux suites convergent vers une limite commune $\ell \in \mathbb{R}$. De plus, pour tout $(p,q) \in \mathbb{N}^2$, $x_p \leq \ell \leq y_q$.

Théorème des segments emboîtés : Soit $(I_n)_{n\in\mathbb{N}}$ une suite de segments, décroissante au sens de l'inclusion, dont les longueurs tendent vers 0. Alors $\bigcap_{n\in\mathbb{N}} I_n$ est un singleton.

5 Les suites extraites

On se place dans un espace métrique quelconque.

Si une suite dans E converge vers ℓ , toutes ses suites extraites convergent vers ℓ .

Une suite extraite d'une suite extraite de (x_n) est une suite extraite de (x_n) .

valeurs d'adhérence d'une suite en tant que limite d'une suite extraite.

Propriété. (hors programme). a est une valeur d'adhérence de (x_n) si et seulement si $\forall \varepsilon \in \mathbb{R}_+^*$, $\forall N \in \mathbb{N}$, $\exists n \geq N$ $d(x_n, a) < \varepsilon$, c'est-à-dire si et seulement si $\forall \varepsilon > 0$, $\{n \in \mathbb{N}/x_n \in B_o(a, \varepsilon)\}$ est infini.

Lemme des pics : De toute suite de réels on peut extraire une suite monotone.

 $\text{Hors programme}: \limsup_{n \to +\infty} x_n = \lim_{n \to +\infty} \sup_{k \ge n} x_k, \ \liminf_{n \to +\infty} x_n = \lim_{n \to +\infty} \inf_{k \ge n} x_k.$

Théorème de Bolzano-Weierstrass dans un K-espace vectoriel de dimension finie.

6 Suites de Cauchy (hors programme)

Toute suite convergente de E est une suite de Cauchy.

Toute suite de Cauchy de E est bornée.

Si une suite de Cauchy possède une valeur d'adhérence alors elle est convergente.

Espaces métriques complets, espaces de Banach.

Les K-espaces vectoriels de dimensions finies sont de Banach.

Prévisions pour la semaine prochaine :

Séries de vecteurs