CS 4/56101 Design & Analysis of Algorithms

- Course Website:
 - https://www.cs.kent.edu/~hmichaud/daa-f17
- **Instructor**: Heather M. Guarnera
 - Office: MSB 352
 - Email: hmichaud@kent.edu (Piazza is better)
 - Office Hours: TR 2:30-3:30, or by appointment
- Teaching Assistant: Shishir Rai
 - Email: srai@kent.edu

Books

• Textbook:

Algorithm Design: Foundations, Analysis, and Internet Examples, by Michael T. Goodrich and Roberto Tamassia, 1st edition, Wiley, 2001

An excellent reference:

Introduction to Algorithms, 3rd Edition, by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, MIT, 2009.

Academic Presence Verification

- Due to federal rules, instructors "must verify that students begin attendance in each course for which they are registered."
- Required to receive federal financial aid.
- Sign attendance sheet *once*.

Course Requirements

Exams

– Midterm 30% Oct. ??, during class

- Final 30% Dec. 13th 7:45-10:00am

- Exam Instructions:
 - Closed book
 - One handwritten sheet (one side) allowed
- Homework 40%
 - Good preparation for exams

Example: Boss assigns a task

- Given today's prices of pork, grain, sawdust, etc...
- Given constraints on what constitutes a hotdog.
- Make the cheapest hotdog.

Every industry asks these questions.

- Mundane programmer: "Um? Tell me what to code."
- Better: "I learned an algorithm that will work."
- Best: "I can develop an algorithm for you."

How to do this?

Design & Analysis of Algorithms

- Advanced data structures and their analysis
 - Time/space complexity for data structure operations
- Up to date grasp of fundamental problems and solutions
 - How to evaluate algorithms (correctness, complexity)
- Principles and techniques to solve the vast array of unfamiliar problems that arise in a rapidly changing field
 - Notations and abstractions for describing algorithms
 - Approaches to solve
- To think algorithmically like a 'real' computer scientist

Course Content

- A list of algorithms
 - Learn the code
 - Trace them until you are convinced that they work
 - Implement them.

```
class InsertionSortAlgorithm extends SortAlgorithm void sort(int a[]) throws Exception { for (int i=1; i < a.length; i++)  { int j=i; int B=a[i]; while ((j>0) && (a[j-1]>B)) { a[j]=a[j-1]; j--; } a[j]=B; }}
```

Course Content

- A survey of algorithmic design techniques
- Abstract thinking
- How to develop new algorithms for any problem that may arise

Start With Some Math

Classifying Functions

$$f(i) = n^{\Theta(n)}$$

Adding Made Easy

$$\sum_{i=1} f(i)$$
.

Time Complexity

$$t(n) = \Theta(n^2)$$

Recurrence Relations

$$T(n) = a T(n/b) + f(n)$$

Data Structures

Trees & Heaps

Hash Tables & Dictionaries

Searching & Sorting

Binary Search Tree

Red Black Trees

Sorting

Fundamental Techniques

Graph Algorithms

Graph Search

Network Flows

Shortest Path

Text Processing

Pattern Matching

Γ	Н	1	S		1	S		Α		S	1	M	P	L	E	E	X	Α	M	P	L	
	1	М	Р	L	Е																	1
	S	1	M	Р	L	E																1
		S	1	М	Р	L	E															
			S	1	M	Р	L	Е														
				S	1	M	Р	L	Е													
					S	1	M	Р	L	E												
						S	1	M	P	L	E		- 7					-				
							S	ı	M	Р	L	E										
								S	1	M	Р	L	Е									
									S	1	M	Р	L	Е								
										S	1	M	Р	L	Е							

Useful Learning Techniques

- You are expected to read ahead (before the lecture)
 - This will facilitate more productive discussion during class
- Practice explaining
 - You'll be tested on your ability to explain material
- Ask questions
 - Why is it done this way and not that way?
- Guess at potential algorithms for solving a problem
 - Look for input instances where your algorithm is wrong