

А. В. Соломонов, В. С. Сорокин, Б. Л. Антипов, Н. П. Лазарева

Материалы электронной техники

Конспект лекций

СПбГЭТУ «ЛЭТИ», 2021 г.

4.5 ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ

Диэлектрические потери. Параллельная и последовательная схемы замещения диэлектрика с потерями

Диэлектрическими потерями называют электрическую мощность, затрачиваемую на нагрев диэлектрика, находящегося в электрическом поле.

Потери энергии в диэлектриках наблюдаются как при переменном, так и при постоянном напряжениях, поскольку в технических материалах обнаруживается сквозной ток утечки, обусловленный электропроводностью. При постоянном напряжении, когда нет периодической поляризации, качество материала характеризуется, как указывалось, значениями удельных объемного и поверхностного сопротивлений, которые определяют значение $R_{\rm из}$ (см. рис. 4.7).

При воздействии переменного напряжения на диэлектрик в нем кроме сквозной электропроводности могут проявляться другие механизмы превращения электрической энергии в тепловую. Поэтому качество материала недостаточно характеризовать только сопротивлением изоляции.

В инженерной практике чаще всего для характеристики способности диэлектрика рассеивать энергию в электрическом поле используют угол диэлектрических потерь, а также тангенс этого угла.

Углом диэлектрических потерь δ называется угол, дополняющий до 90° угол сдвига фаз ϕ между током и напряжением в емкостной цепи.

В случае идеального диэлектрика вектор тока в такой цепи опережает вектор напряжения на угол 90° , при этом угол δ равен нулю. Чем больше рассеивается в диэлектрике мощность, тем меньше угол сдвига фаз ϕ и тем больше угол диэлектрических потерь δ и его функция $tg\delta$.

Тангенс угла диэлектрических потерь $tg\delta$ непосредственно входит в формулу для рассеиваемой в диэлектрике мощности, поэтому практически наиболее часто пользуются этой характеристикой.

Рассмотрим схему, эквивалентную конденсатору с диэлектриком, обладающим потерями. Эта схема должна быть выбрана с таким расчетом, чтобы активная мощность, расходуемая в данной схеме, была равна мощности, рассеиваемой в диэлектрике конденсатора, а ток был бы сдвинут относительно напряжения на тот же угол, что и в рассматриваемом конденсаторе.

Поставленную задачу можно решить, заменив конденсатор с потерями идеальным конденсатором с параллельно включенным активным сопротивлением

(параллельная схема) или конденсатором с последовательно включенным сопротивлением (последовательная схема). Такие эквивалентные схемы, конечно, не дают объяснения механизма диэлектрических потерь и введены только условно.

Параллельная и последовательная эквивалентные схемы представлены на рис. 4.41. Там же даны соответствующие диаграммы токов и напряжений.

Рисунок 4.41 – Параллельная (a) и последовательная (б) эквивалентные схемы диэлектрика с потерями и соответствующие им векторные диаграммы

Обе схемы эквивалентны друг другу, если при равенстве полных сопротивлений $Z_1 = Z_2 = Z$ равны соответственно их активные и реактивные составляющие. Это условие будет соблюдено, если углы сдвига тока относительно напряжения равны и значения активной мощности одинаковы.

Для параллельной схемы из векторной диаграммы имеем:

$$tg\delta = I_a/I_C = 1/(\omega C_C R); \qquad (4.52)$$

$$P_a = UI_a = U^2 \omega C_n \operatorname{tg}\delta, \tag{4.53}$$

для последовательной схемы:

$$tg\delta = U_a/U_C = \omega C_s r; (4.54)$$

$$P_{\rm a} = UI_{\rm a} = I^2 r = \frac{U^2 r}{x^2 + r^2} = \frac{U^2 r}{x^2 (1 + r^2 / x^2)} = \frac{U^2 \omega C_s \operatorname{tg} \delta}{1 + \operatorname{tg}^2 \delta}.$$
 (4.55)

Приравнивая выражения (4.53) и (4.55), а также (4.52) и (4.54), найдем взаимосвязь между параметрами параллельной и последовательной эквивалентных схем:

$$C_p = \frac{C_s}{1 + \lg^2 \delta};\tag{4.56}$$

$$R = r\left(1 + \frac{1}{\mathsf{tg}^2\delta}\right). \tag{4.57}$$

Для высококачественных диэлектриков можно пренебречь значением tg δ по сравнению с единицей в формуле (4.56) и считать $C_p \approx C_s = C$. Выражения для мощности, рассеиваемой в диэлектрике, в этом случае будут также одинаковы у обеих схем:

$$P_{\rm a} = U^2 \omega C t g \delta. \tag{4.58}$$

Следует отметить, что при переменном напряжении в отличие от постоянного емкость диэлектрика с большими потерями становится условной величиной и зависит от выбора той или иной эквивалентной схемы. Отсюда и диэлектрическая проницаемость материала с большими потерями при переменном напряжении также условна.

Для большинства диэлектриков параметры эквивалентной схемы зависят от частоты. Поэтому, определив каким-либо методом значения емкости и эквивалентного сопротивления для данного конденсатора при некоторой частоте, нельзя использовать эти параметры для расчета угла потерь при другой частоте. Такой расчет справедлив только в отдельных случаях, когда эквивалентная схема имеет определенное физическое обоснование. Так, если для данного диэлектрика известно, что потери в нем определяются только потерями от сквозной электропроводности в широком диапазоне частот, то угол потерь конденсатора с таким диэлектриком может быть вычислен для любой частоты, лежащей в этом диапазоне, по формуле (4.52). Потери в таком конденсаторе определяются выражением

$$P_{\rm a} = U^2/R,$$
 (4.59)

где R — эквивалентное сопротивление потерь (в данном случае имеет смысл сопротивления изоляции).

Если же потери в конденсаторе обусловлены главным образом сопротивлением подводящих и соединительных проводов, а также сопротивлением самих электродов (обкладок), например тонким слоем серебра в слюдяном или керамическом конденсаторе, то рассеиваемая мощность в нем возрастет пропорционально квадрату частоты:

$$P_{\rm a} = UI_{\rm a} = U^2 \omega C \operatorname{tg} \delta = U^2 \omega^2 C^2 r. \tag{4.60}$$

Из выражения (4.60) можно сделать весьма важный практический вывод: конденсаторы, предназначенные для работы на высокой частоте, должны иметь

по возможности малое сопротивление как электродов, так и соединительных проводов и переходных контактов.

В большинстве случаев механизм потерь в конденсаторе сложный и его нельзя свести только к потерям от сквозной электропроводности или к потерям в контакте. Поэтому параметры эквивалентной схемы конденсатора необходимо определять при той частоте, при которой он будет использован.

Диэлектрические потери в реальных диэлектриках. Удельные потери

Диэлектрические потери, отнесенные к единице объема диэлектрика, называются удельными потерями. Их можно рассчитать по формуле

$$p_{yx} = \frac{P_a}{V} = \frac{U^2 \omega C tg \delta}{Sh} = \frac{U^2 \omega \epsilon_0 S tg \delta}{Shh} = \omega \epsilon_0 tg \delta E^2, \tag{4.61}$$

где V — объем диэлектрика между плоскими электродами; E — напряженность электрического поля.

Произведение $\operatorname{etg}\delta = \varepsilon''$ называется коэффициентом диэлектрических потерь.

Из выражения (4.61) следует, что при заданных частоте и напряженности электрического поля удельные диэлектрические потери в материале пропорциональны коэффициенту потерь.

В электродинамике при описании взаимодействия электромагнитного поля с веществом часто используется величина, называемая комплексной диэлектрической проницаемостью:

$$\tilde{\varepsilon} = \varepsilon' - j\varepsilon'', \tag{4.62}$$

где ϵ' и ϵ'' – действительная и мнимая составляющие соответственно.

Чтобы объяснить это понятие, воспользуемся одним из фундаментальных уравнений электродинамики (первым уравнением Максвелла), устанавливающим связь между изменениями электрического и магнитного полей:

$$rot \mathbf{H} = \mathbf{J} + \mathbf{J}_{cm} = \gamma E + \varepsilon_0 \varepsilon \frac{\partial E}{\partial t}.$$
 (4.63)

Приведенное уравнение подтверждает тот факт, что магнитное поле отлично от нуля как при перемещении электрических зарядов (т. е. при наличии тока сквозной электропроводности через вещество), так и при изменении напряженности электрического поля во времени (т. е. при наличии тока смещения).

В однородных идеальных диэлектриках сквозной ток отсутствует, т. е. $\gamma = 0$. Для случая гармонического изменения поля уравнение (4.63) можно записать в комплексной форме:

$$rot\dot{H} = j\omega\varepsilon_0\varepsilon\dot{E}. \tag{4.64}$$

Если же имеем дело с несовершенным диэлектриком, обладающим заметными диэлектрическими потерями, то уравнение полного тока приобретает более сложный вид:

$$\operatorname{rot}\dot{H} = (\gamma_f + j\omega\varepsilon_0\varepsilon)\dot{E},\tag{4.65}$$

где γ_f — полная удельная активная проводимость на данной частоте, учитывающая как сквозную электропроводность, так и активные составляющие поляризационных токов.

Задачу о распространении электромагнитного поля в частично проводящей среде можно свести к случаю идеального диэлектрика, если в уравнение (4.6) ввести комплексную диэлектрическую проницаемость $\tilde{\epsilon}$:

$$rot\dot{H} = j\omega\varepsilon_0\tilde{\varepsilon}\dot{E},\tag{4.66}$$

где

$$\tilde{\varepsilon} = \varepsilon - j\gamma_f/(\omega\varepsilon_0). \tag{4.67}$$

Из сопоставления формул (4.62) и (4.67) следует, что действительная составляющая комплексной диэлектрической проницаемости $\varepsilon' = \varepsilon$, а мнимая $\varepsilon'' = \gamma_f/(\omega \varepsilon_0)$.

Ранее было показано, что $tg\delta$ — это отношение активной составляющей проводимости к емкостной составляющей (см. рис. 4.41, a). Поэтому для плоского конденсатора при данной частоте справедливо соотношение

$$tg\delta = \frac{\gamma_f S/h}{\omega \varepsilon_0 \varepsilon S/h} = \frac{\gamma_f}{\omega \varepsilon_0 \varepsilon} = \frac{\varepsilon''}{\varepsilon'}.$$
 (4.68)

Из выражений (4.58) и (4.61) ясно, что диэлектрические потери имеют важное значение для материалов, используемых в установках высокого напряжения, в высокочастотной аппаратуре и особенно в высоковольтных, высокочастотных устройствах, поскольку значение диэлектрических потерь пропорционально квадрату приложенного к диэлектрику напряжения и частоте. Большие диэлектрические потери в электроизоляционном материале вызывают сильный нагрев изготовленного из него изделия и могут привести к его тепловому разрушению.

Если диэлектрик используется в колебательном контуре, то диэлектрические потери препятствуют достижению высокой добротности (острой настройки на резонанс), так как с увеличением эквивалентного сопротивления потерь усиливается затухание колебаний в контуре.

Виды диэлектрических потерь

Диэлектрические потери по их физической природе и особенностям подразделяют на следующие виды:

- потери на электропроводность;
- релаксационные потери;
- ионизационные потери;
- резонансные потери;
- потери на гистерезис.

Потери на электропроводность обнаруживаются в диэлектриках, имеющих заметную электропроводность, объемную или поверхностную. Если при этом потери от других механизмов несущественны, то частотные зависимости $P_{\rm a}$ и ${\rm tg}\delta$, как упоминалось, могут быть получены при использовании параллельной эквивалентной схемы замещения реального диэлектрика. Они показаны на рис. 4.42, a.

Рисунок 4.42 — Частотные (a) и температурные (б) зависимости потерь на электропроводность

Диэлектрические потери этого вида не зависят от частоты приложенного напряжения: $tg\delta$ уменьшается с частотой по гиперболическому закону. Значение тангенса угла диэлектрических потерь при данной частоте может быть вычислено по формуле

$$tg\delta = \frac{1.8 \cdot 10^{10}}{\varepsilon f \rho}.$$
 (4.69)

Потери сквозной электропроводности (рис. 4.42, δ) возрастают с ростом температуры по экспоненциальному закону:

$$P_{\mathbf{a}}(T) = A\exp(-b/T),\tag{4.70}$$

где A, b — постоянные для данного материала.

В зависимости от температуры $tg\delta$ изменяется по тому же закону, так как можно считать, что реактивная мощность $P_{\rm p}=U^2\omega\mathcal{C}$ от температуры практически не зависит.

Релаксационные потери обусловлены активными составляющими поляризационных токов. Они характерны для диэлектриков, обладающих замедленными видами поляризации, и проявляются в области достаточно высоких частот, когда сказывается отставание поляризации от изменения поля. Рассмотрим происхождение релаксационных потерь на примере дипольно-релаксационной поляризации полярных жидкостей, где физическая картина более проста и отчетлива.

При действии на диэлектрик синусоидального напряжения высокой частоты дипольные молекулы не успевают ориентироваться в вязкой среде и следовать за изменением поля. Отставание поляризации можно охарактеризовать зависимостями, показанными на рис. 4.43, *a*.

Рисунок 4.43 – Пояснения механизма релаксационных потерь (а, ..., г) в диэлектриках

Оно выражается в появлении некоторого угла фазового запаздывания ψ между дипольно-релаксационной поляризованностью диэлектрика $P_{\rm д-p}$ и напряженностью поля E.

С помощью кривых, представленных на рис. 4.43, a, легко показать, что зависимость $P_{\rm д-p}(E)$ при наличии фазового сдвига между ними имеет форму эллипса (рис. 4.43, δ). Интеграл по замкнутому контуру 0- δ - ϵ - ϵ - ϵ 0, т. е. площадь петли переполяризации, характеризует энергию, затрачиваемую электрическим полем на поляризацию единицы объема диэлектрика за один период:

$$\mathfrak{I}_{\mathsf{A}-\mathsf{p}} = \oint P_{\mathsf{A}-\mathsf{p}} dE \sim \varepsilon''. \tag{4.71}$$

При неизменной амплитуде напряженности поля площадь петли зависит от амплитудного значения поляризованности $P_{\rm д-p}$ и угла фазового сдвига ψ , которые, в свою очередь, определяются соотношением времени релаксации τ_0 и периода изменения поля. Если выполняется условие $\tau_0 \ll 1/\omega$, то за время каждого полупериода поляризация получает полное развитие, ее отставание от изменения поля практически отсутствует. При этом эллипс, характеризующий зависимость $P_{\rm д-p}(E)$, вырождается в прямую линию (рис. 4.43, ϵ), т. е. $\oint P_{\rm д-p} dE \approx 0$. Таким образом, если нет запаздывания поляризации по отношению к полю, то нет и релаксационных потерь.

В противоположном случае, когда $\tau_0 \gg 1/\omega$, релаксационная поляризация выражена очень слабо, т. е. средний угол поворота диполей за короткое время полупериода оказывается весьма незначительным. Поэтому потери энергии за период будут также малы (рис. 4.43, ε). Максимуму потерь соответствуют такие условия, при которых период изменения поля сравним со временем установления поляризации τ_0 (см. рис. 4.43, δ).

Рассмотренный механизм релаксационных потерь позволяет объяснить температурную и частотную зависимости $tg\delta_{д-p}$, которые отличаются наличием вза-имосвязанных максимумов (рис. 4.44, a, δ).

Рисунок 4.44 – Особенности релаксационных потерь (а, ..., е) в диэлектриках

При низкой температуре из-за большой вязкости жидкого диэлектрика велико время релаксации поляризации ($\tau_0 \gg 1/\omega$), возможности поворота диполей в вязкой среде крайне ограничены. Поэтому амплитудное значение поляризованности $P_{\rm д-p}$ оказывается незначительным, соответственно мал и тангенс угла диэлектрических потерь. С повышением температуры вязкость жидкости уменьшается, а время релаксации приближается к времени периода изменения поля. Дипольно-релаксационная поляризация получает большее развитие, благодаря чему возрастает $tg\delta_{\rm d-p}$. При еще более высоких температурах время релаксации становится существенно меньше времени периода изменения напряженности поля. Поэтому практически исчезает запаздывание поляризации относительно поля (т. е. уменьшается угол отставания по фазе ψ) и уменьшаются релаксационные потери.

С повышением частоты максимум $tg\delta_{д-p}$ смещается в область более высокой температуры. Это связано с тем, что при меньшем времени полупериода инерционность поворота диполей будет сказываться даже при малых τ_0 , т. е. при более высоких температурах.

На рис. 4.44, δ приведены два максимума частотной зависимости $\mathrm{tg}\delta_{\mathrm{д-p}}$ при двух температурах; еще раз подчеркивается различие в частотных зависимостях $\mathrm{tg}\delta_{\mathrm{д-p}}$ и активной мощности $P_{\mathrm{a,d-p}}$ (на рисунке кривая $P_{\mathrm{a,d-p}}$ дана только для температуры T_2). Возрастание потерь с ростом частоты обусловлено усиливающимся отставанием поляризации от изменения поля (возрастает угол ψ). Когда же частота становится настолько велика, что $\tau_0 \gg 1/\omega$, дипольно-релаксационная поляризация выражена очень слабо, т. е. амплитудное значение поляризованности $P_{\mathrm{д-p}}$ оказывается незначительным. Поэтому малы потери энергии за период $\vartheta_{\mathrm{д-p}}$, а соответственно, мало значение $\mathrm{tg}\delta_{\mathrm{д-p}}$, характеризующего эти потери. Однако на высоких частотах велико число циклов поляризации диэлектрика в единицу времени и активная мощность, выделяющаяся в диэлектрике, остается практически постоянной несмотря на уменьшение $\mathrm{tg}\delta_{\mathrm{д-p}}$ с ростом частоты, что находится в соответствии с формулой (4.58).

На рис. 4.44, ϵ показано взаимное расположение частотных зависимостей трех параметров диэлектрика $\epsilon_{\rm д-p}$, ϵ'' и $\rm tg\delta_{\rm д-p}$, характеризующих дипольно-релаксационную поляризацию. Рис. 4.44, ϵ представляет собой выборку узкого частотного диапазона из широкого спектра частот, представленного на рис. 4.8. При частоте релаксации, определяемой из условия $2\pi f_{\rm pen}=1/\tau$, высота ступеньки $\epsilon_{\rm д-p}$ уменьшается вдвое, а коэффициент потерь достигает своего максимального

значения $\varepsilon''_{\max} = \varepsilon_{\infty} + \varepsilon_{\text{д-p}}/2$. Величина $\mathsf{tg}\delta_{\text{д-p}}$ также проходит через максимум, но при частоте ω_m несколько большей, чем частота релаксации:

$$\omega_m = \omega_{\text{pe}_{\pi}} \sqrt{\frac{\varepsilon_{\text{d-p}} + \varepsilon_{\infty}}{\varepsilon_{\infty}}}.$$
 (4.72)

Положение частотных максимумов ϵ'' и $tg\delta_{\mathtt{d-p}}$ зависит от температуры.

На рис. 4.44, *г...е* представлены изменения потерь с учетом вкладов релаксационного механизма и электропроводности диэлектрика.

Релаксационные потери наблюдаются и у линейных диэлектриков с ионнорелаксационным и электронно-релаксационным механизмами поляризации. В неорганических стеклах за релаксацию ответственны слабосвязанные ионы, совершающие перескоки из одной ячейки пространственной структурной сетки в другую. Потенциальные барьеры, ограничивающие движение слабосвязанных ионов, неодинаковы вследствие локальных неоднородностей структуры стекла. Поэтому релаксационные потери в стеклах определяются широким набором времен релаксации, что приводит к расширению и некоторому сглаживанию максимумов в температурной и частотной зависимостях tgδ (рис. 4.45).

Рисунок 4.45 — Частотная и температурная зависимости тангенса угла диэлектрических потерь для неорганического стекла:

1 – потери на электропроводность; 2 – релаксационные потери; 3 – суммарные потери

Чем больше набор времен релаксации, тем меньше значение релаксационного максимума, так как уменьшается число релаксаторов каждого типа. Сглаженные максимумы релаксационных потерь могут в значительной мере маскироваться потерями на электропроводность и не проявляться в явном виде.

Потери, обусловленные миграционной поляризацией, характерны для неоднородных диэлектриков. Простейшей моделью такого диэлектрика является

двухслойный листовой материал, компоненты которого обладают различающимися удельными проводимостями и диэлектрическими проницаемостями. Конденсатор с таким диэлектриком и его эквивалентная схема показаны на рис. 4.46.

Рисунок 4.46 — Конденсатор с двухслойным диэлектриком (a) и его эквивалентная схема замещения (б)

Теоретический анализ, выполненный Вагнером на основе представлений Д. К. Максвелла, показал, что эффективная емкость и активная проводимость неоднородного слоистого диэлектрика зависят от частоты, при этом суммарные потери можно определить по формуле

$$tg\delta = \frac{C_1 tg\delta_1 + C_2 tg\delta_2}{C_1 + C_2},\tag{4.73}$$

где индексы 1 и 2 относятся к соответствующим слоям диэлектрика. Частотная зависимость $tg\delta$ в этом случае оказывается такой же, как у диэлектрика с релаксационной дисперсией (см. рис. 4.44, δ), хотя каждый из слоев может и не обладать релаксационной поляризацией. Частота релаксации миграционной поляризации зависит от параметров слоев. В частности, если в диэлектрике содержатся проводящие включения, то $\omega_{\rm pen}$ и соответствующий ей максимум $tg\delta$ попадают в радиочастотный диапазон. Картина качественно не изменяется при большем числе слоев и при произвольной форме проводящих или полупроводящих включений.

Миграционные потери удается наблюдать в таких слоистых диэлектриках, как гетинакс, текстолит, слюдопласты, неоднофазная керамика, композиционные пластмассы. Они проявляются также и в гигроскопичных (влагопоглощающих) материалах при их увлажнении.

Ионизационные потери свойственны газообразным веществам и твердым диэлектрикам, содержащим газовые включения (поры). Газы в нормальных условиях, в слабых электрических полях являются почти идеальными диэлектриками. Потери в них в этом случае обусловлены только электропроводностью. Даже в полярных газах ориентация диполей при поляризации не дает вклада в потери из-

за ничтожно малой вязкости среды. Для вычисления $tg\delta$ можно использовать формулу (4.69). Например, у воздуха в слабых полях, где соблюдается закон Ома, $\rho \approx 10^{13}$ Ом·м, и на частоте 50 Γ ц расчет дает $tg\delta = 3\cdot10^{-5}$.

Однако при высоких напряженностях (более 10^6 B/м) в газообразной среде развиваются процессы ударной ионизации (см. разд. 4.6). Ионизация молекул газа связана с поглощением энергии электрического поля, вследствие чего $tg\delta$ резко возрастает. Приближенно активные ионизационные потери в порах $P_{a.u}$ можно рассчитать по формуле

$$P_{\text{a.u}} = A_1 f (U - U_{\text{H}})^3, \tag{4.74}$$

где A_1 — эмпирическая константа; f — частота поля; $U_{\rm u}$ — пороговое напряжение ионизации, зависящее от размера пор и давления газа.

Формула справедлива при $U \ge U_{\rm u}$. С увеличением давления газа относительно атмосферного пороговое напряжение $U_{\rm u}$ возрастает, так как сокращается длина свободного пробега электронов, производящих ударную ионизацию. Ионизация газа происходит особенно интенсивно в диапазоне радиочастот.

Зависимость $tg\delta$ от приложенного к диэлектрику напряжения называется *кривой ионизации*. Такая кривая для твердого пористого диэлектрика показана на рис. 4.47.

Рисунок 4.47 — Изменение $tg\delta$ в зависимости от напряжения для твердого пористого диэлектрика

При напряжении выше U_1 газ во всех порах полностью ионизован, энергия тратится лишь на поддержание ионизованного состояния. В этом случае рассеиваемая мощность линейно возрастает с увеличением напряжения. Соответственно $\operatorname{tg}\delta$ должен уменьшаться с нарастанием U, что непосредственно следует из выражения (4.58).

Ионизационные потери приводят к разогреву поверхности пор, так как при столкновении с ней ускоренные электроны теряют накопленную кинетическую

энергию. Наиболее опасны крупные поры размером более 0,1 мм, так как в них легче происходит образование электронных лавин (см. разд. 4.6). В хрупких материалах возникающие перепады температур порождают упругие напряжения, которые могут разрушить диэлектрик. Органическая изоляция может быть подвержена химическому разрушению посредством взаимодействия с озоном и активными оксидами азота, образующимися при ионизации воздуха.

Резонансные потери связаны с резонансной поляризацией и проявляются в том случае, когда частота электрического поля совпадает с собственной частотой колебаний осцилляторов (упруго связанных ионов или электронов). Резонансной частоте ω_{pes} соответствует область аномальной дисперсии, в которой диэлектрическая проницаемость ε' уменьшается с частотой (рис. 4.48).

Рисунок 4.48 — Изменение диэлектрической проницаемости ε' , коэффициента потерь ε'' и $tg\delta$ в области резонансной дисперсии

При резонансе коэффициент потерь ϵ'' проходит через максимум. Фактически в этих условиях конденсатор проявляет себя как активное сопротивление. В частотной зависимости $tg\delta$ также наблюдается максимум, но на частоте, несколько превышающей ω_{pes} .

В отличие от частоты релаксации $\omega_{\text{рел}}$, резонансная частота $\omega_{\text{рез}}$ стабильна и не зависит от температуры. С понижением температуры наблюдаются лишь обострения максимума в частотной зависимости ϵ'' .

Резонансное поглощение энергии, связанное с ионной поляризацией, происходит в инфракрасном диапазоне спектра на частотах $10^{12}...10^{13}$ Гц. Масса электронов на три порядка меньше. Поэтому электронный резонанс можно наблюдать на частотах $10^{14}...10^{15}$ Гц, т. е. в видимой или ультрафиолетовой областях.

Потери на гистерезис характерны только для сегнетоэлектриков и обусловлены присущей им доменной поляризацией. Последняя в переменных полях

сопровождается диэлектрическим гистерезисом. Из-за потерь на гистерезис сегнетоэлектрики отличаются большими значениями $tg\delta$, которые могут доходить до уровня 0,1...0,2. Потери на гистерезис, как и доменная поляризация, существуют лишь до характеристической температуры, называемой точкой Кюри T_K . При нагревании выше этой температуры доменная структура исчезает и наблюдается резкое снижение $tg\delta$, как показано на рис. 4.49.

Pисунок 4.49 — Tемпературные изменения $tg\delta$ в сегнетоэлектриках

Плавное возрастание tgδ при дальнейшем нагревании относительно точки Кюри связано с потерями на электропроводность или ионно-релаксационную поляризацию (подробнее см. разд. 4.2, 4.3).