Towards Bayesian Graph Neural Networks

Andrew Carr

Perception, Control, and Cognition Lab

Table of contents

- 1. Introduction
- 2. Background
- 3. Our Method
- 4. Experiments

Introduction

Problem

Figure 1: Graph with imputed edge distributions

Problem

$$G = (a, V, E)$$

$$V = \{v_i\}_{i=1:N^e}$$

$$E = \{e_k, v_k, u_k\}_{k=1:N^e}$$

Motivation

- · Visual scene understanding
- · Few-shot learning
- Learning dynamics of physical systems
- Traffic prediction
- · Multi-agent systems
- Natural language processing
- · semi-supervised text classification

Background

 \cdot Operate on Graph Structured Input

- · Operate on Graph Structured Data
- · Neural Operations on Graphs (e.g., spectral convolution)

Use Eigeninformation from traditional Graph Laplacian to perform convolution

$$L = D - A$$

- Operate on Graph Structured Input
- · Neural Operations on Graphs (e.g., spectral convolution)
- Fixed sized input

- · Operate on Graph Structured Input
- · Neural Operations on Graphs (e.g., spectral convolution)
- · Fixed sized input
- · Difficult to scale

- · Operate on Graph Structured Input
- · Neural Operations on Graphs (e.g., spectral convolution)
- · Fixed sized input
- · Difficult to scale
- No measure of uncertainty

$$P(Y_T|X_T, X_C, Y_C) \iff P(Y_T|X_T, r_C)$$

Figure 2: Conditional Neural Process Architecture

$$r_i = h_{\theta}(\vec{x_i}) \qquad \forall \vec{x_i} \in X_C$$
 (1)

$$r_{C} = r_{1} \oplus r_{2} \oplus r_{3} \oplus \cdots \oplus r_{n} \tag{2}$$

$$z_i = g_{\phi}(\vec{y_i}|r_C) \qquad \forall \vec{y_i} \in X_T$$
 (3)

• Flexible

- Flexible
- Scalable

- Flexible
- Scalable
- Measures uncertainty

Our Method

· Conditional Neural Process on Graphs

- · Conditional Neural Process on Graphs
- Edges are context points

- · Conditional Neural Process on Graphs
- Edges are context points
- · Spectral Features

Normalized Symmetric Graph Laplacian

$$L = I_n - D^{-1/2}AD^{-1/2}$$

$$\Lambda = \sigma(L)$$

Take the eigenvectors of the graph laplacian and select the first k to obtain the local spectral eigen features

$$\Lambda|_{k}=\left(\Lambda_{kj}\right)_{\substack{k\in r\\1\leq j\leq m}}$$

Or, more clearly

$$\Lambda|_{k} = (\Lambda_{kj})_{\substack{k \in r \\ 1 \le j \le m}}$$

```
def get_local_spectral_eigen_features(G, ind, k):
    """
    G - graph (networkx graph)
    ind - location of the context point edge in the adjacency matrix
    k - hyperparameter tuned based on the size of the input graphs in X_C
    """
    A = nx.adjacency_matrix(G).toarray()
    N = A.shape[0]
    diags = A.sum(axis=1)**(-1/2)
    D = scipy.sparse.spdiags(diags.flatten(), [0], N, N, format='csr').toarray()
    L = np.eye(N) - D.dot(A).dot(D) # calculate normalized graph laplacian
    val, vec = np.linalg.eig(L)
    return vec[ind][:k]
```

Additionally the value and degree of each node on the edge are used as features

Algorithm

How does it work?

Algorithm Walk Through

```
1: Let X input graphs
 2: for t = 0, \dots, n_{\text{enochs}} do
       for x_i in X do
          Sample p \leftarrow \text{unif}(p_0, p_1)
          Assign n_{\text{context points}} \leftarrow p \cdot |\text{Edges}(x_i)|
 5:
          Sparsely Sample x_i^{cp} \leftarrow x_i |_{n_{\text{context points}}}
          Compute degree and adj matrix D, A for graph x_i^{cp}
 7:
          Compute L \leftarrow I_{n_{\text{context points}}} - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}
 9.
           Define F^{cp} as empty feature matrix for x_i^{cp}
          Define F as empty feature matrix for full graph x_i
10:
          for edge k in xi do
11:
              Extract eigenfeatures Alp from L
12:
              Concatenate [\Lambda]_b; v_b; u_b; d(v_b); d(u_b)] where v_b, u_b are the at-
13:
     tribute values at the node, and d(v_k), d(u_k) the degree at the node.
              if edge k \in x_i^{cp} then
14:
                Append features for context point to F^{cp}
15.
              end if
16:
              Append features for all edges to F
17-
18.
          end for
           Encode and aggregate r_C \leftarrow h_\theta(F^{cp})
19-
          Decode \tilde{x_i} \leftarrow g_{\phi}(F|r_C)
20:
          Calculate Loss l \leftarrow \mathcal{L}(\tilde{x_i}, x_i)
21:
          Step Optimizer
22:
       end for
23.
24: end for
```

Experiments

16 Datasets

Dataset	X	N	<i>E</i>	$ \cup\{e_k\} $
AIDS	2000	15.69	16.20	3
BZR_MD	306	21.30	225.06	5
COX2_MD	303	26.28	335.12	5
DHFR_MD	393	23.87	283.01	5
ER_MD	446	21.33	234.85	5
Mutagenicity	4337	30.32	30.77	3
MUTAG	188	17.93	19.79	4
PTC_FM	349	14.11	14.48	4
PTC_FR	351	14.56	15.00	4
PTC_MM	336	13.97	14.32	4
Tox21_AHR	8169	18.09	18.50	4
Tox21_ARE	7167	16.28	16.52	4
Tox21_aromatase	7226	17.50	17.79	4
Tox21_ARLBD	8753	18.06	18.47	4
Tox21_ATAD5	9091	17.89	18.30	4
Tox21_ER	7697	17.58	17.94	4

Table 1: Features of the explored data sets

· Random Value

- · Random Value
- · Common Value

- · Random Value
- · Common Value
- · Common Local Value

- · Random Value
- · Common Value
- · Common Local Value
- · Random Forest

- · Random Value
- · Common Value
- · Common Local Value
- · Random Forest
- · Neural Network

Evaluation of Success

 Acceptable Success: Gain insight into Bayesian Neural Networks on Graph Structured Data

Evaluation of Success

- Acceptable Success: Gain insight into Bayesian Neural Networks on Graph Structured Data
- Stretch Success: Beat all baselines in Precision, Recall, and F1-Score

Timeline

- · Proposal May 2019
- · Experiments May September 2019
- · Submit Thesis to Committee October 1 2019
- · Defense around October 15 2019

References i

See https://arxiv.org/abs/1902.10042 for complete list of references