Statistical Inference

Lecture 2: Transformations and Expectations

MING GAO

DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn

Mar. 8, 2018

Outline

Transformation

Functions of a r.v.

Monotone Transformations

Expectation

Properties of Expectations Moment Moment Generating Functions

Differentiating Under an Integral Sign

Take-aways

Outline

Transformation

Functions of a r.v.

Monotone Transformations

Expectation

Properties of Expectations Moment

Moment Generating Functions

Differentiating Under an Integral Sign

Take-aways

If X is a r.v., then any function of X, say g(X), is also a r.v..

If X is a r.v., then any function of X, say g(X), is also a r.v..

A natural question is whether we can describe the probabilistic behavior of Y in terms of that of X.

If X is a r.v., then any function of X, say g(X), is also a r.v..

- A natural question is whether we can describe the probabilistic behavior of Y in terms of that of X.
- That is, for any set *A*,

$$P(Y \in A) = P(g(X) \in A).$$

If X is a r.v., then any function of X, say g(X), is also a r.v..

- A natural question is whether we can describe the probabilistic behavior of Y in terms of that of X.
- That is, for any set A,

$$P(Y \in A) = P(g(X) \in A).$$

• We associate with g an inverse mapping, denoted as g^{-1} , which is a mapping from subsets of Y to subsets of X, and is defined by $g^{-1}(A) = \{x \in X | g(x) \in A\}$.

If X is a r.v., then any function of X, say g(X), is also a r.v..

- A natural question is whether we can describe the probabilistic behavior of Y in terms of that of X.
- That is, for any set *A*,

$$P(Y \in A) = P(g(X) \in A).$$

- We associate with g an inverse mapping, denoted as g^{-1} , which is a mapping from subsets of Y to subsets of X, and is defined by $g^{-1}(A) = \{x \in X | g(x) \in A\}$.
- For any set $A \subset \mathcal{Y}$,

$$P(Y \in A) = P(g(X) \in A) = P(X \in g^{-1}(A)).$$

Example of discrete transformation

Binomial transformation

A discrete r.v. X has a binomial distribution if its pmf is of the form

$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots, n.$$

Example of discrete transformation

Binomial transformation

A discrete r.v. \boldsymbol{X} has a binomial distribution if its pmf is of the form

$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots, n.$$

Consider the r.v. Y = g(X) = n - X, and $\mathcal{Y} = \{y | y = g(x), x \in \mathcal{X}\} = \{0, 1, \dots, n\}$.

Example of discrete transformation

Binomial transformation

A discrete r.v. X has a binomial distribution if its pmf is of the form

$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots, n.$$

Consider the r.v. Y = g(X) = n - X, and $\mathcal{Y} = \{y | y = g(x), x \in \mathcal{X}\} = \{0, 1, \dots, n\}$.

$$f_Y(y) = \sum_{x \in g^{-1}(y)} f_X(x) = f_X(n - y)$$

$$= \binom{n}{n - y} p^{n - y} (1 - p)^{n - (n - y)} = \binom{n}{y} (1 - p)^y p^{n - y}.$$

Example of continuous transformation

Uniform transformation

Suppose X has a uniform distribution on the interval $(0,2\pi)$, that is

$$f_X(x) = \begin{cases} \frac{1}{2\pi}, & 0 < x < 2\pi; \\ 0, & \text{otherwise.} \end{cases}$$

Example of continuous transformation

Uniform transformation

Suppose X has a uniform distribution on the interval $(0,2\pi)$, that is

$$f_X(x) = \begin{cases} \frac{1}{2\pi}, & 0 < x < 2\pi; \\ 0, & \text{otherwise.} \end{cases}$$

Consider the r.v. $Y = \sin^2(X)$, and $\mathcal{Y} \in [0, 1]$.

Example of continuous transformation

Uniform transformation

Suppose X has a uniform distribution on the interval $(0,2\pi)$, that is

$$f_X(x) = \begin{cases} \frac{1}{2\pi}, & 0 < x < 2\pi; \\ 0, & \text{otherwise.} \end{cases}$$

Consider the r.v. $Y = \sin^2(X)$, and $\mathcal{Y} \in [0, 1]$.

$$f_Y(y) = P(Y \le y)$$

= $P(X \le x_1) + P(x_2 \le X \le x_3) + P(X \ge x_4)$
= $2P(X \le x_1) + 2P(x_2 \le X \le \pi),$

where x_1 and x_2 are the two solutions to $\sin^2(x) = y$ for $0 < x < \pi$.

Outline

Transformation

Functions of a r.v.

Monotone Transformations

Expectation

Properties of Expectations

Moment

Moment Congrating Function

Differentiating Under an Integral Sign

Take-aways

Let X have cdf $F_X(x)$, let Y=g(X), and let $\mathcal X$ and $\mathcal Y$ be defined as

$$\mathcal{X} = \{x | f_X(x) > 0\}$$
 and $\mathcal{Y} = \{y | y = g(x) \text{ for } x \in \mathcal{X}\}.$

Let X have cdf $F_X(x)$, let Y = g(X), and let $\mathcal X$ and $\mathcal Y$ be defined as

$$\mathcal{X} = \{x | f_X(x) > 0\}$$
 and $\mathcal{Y} = \{y | y = g(x) \text{ for } x \in \mathcal{X}\}.$

a. If g is increasing on \mathcal{X} , $F_Y(y) = F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$;

Let X have cdf $F_X(x)$, let Y = g(X), and let $\mathcal X$ and $\mathcal Y$ be defined as

$$\mathcal{X} = \{x | f_X(x) > 0\}$$
 and $\mathcal{Y} = \{y | y = g(x) \text{ for } x \in \mathcal{X}\}.$

- a. If g is increasing on \mathcal{X} , $F_Y(y) = F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$;
- b. If g is decreasing on \mathcal{X} and X is a continuous r.v.,

$$F_Y(y) = 1 - F_X(g^{-1}(y)) \text{ for } y \in \mathcal{Y};$$

Let X have cdf $F_X(x)$, let Y = g(X), and let $\mathcal X$ and $\mathcal Y$ be defined as

$$\mathcal{X} = \{x | f_X(x) > 0\}$$
 and $\mathcal{Y} = \{y | y = g(x) \text{ for } x \in \mathcal{X}\}.$

- a. If g is increasing on \mathcal{X} , $F_Y(y) = F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$;
- b. If g is decreasing on \mathcal{X} and X is a continuous r.v., $F_{\mathcal{Y}}(v) = 1 F_{\mathcal{X}}(g^{-1}(v))$ for $v \in \mathcal{Y}$:

Proof.

[a.] $\{x \in \mathcal{X} | g(x) \le y\} = \{x \in \mathcal{X} | x \le g^{-1}(y)\}$ since If g is increasing. Furthermore, we have

$$F_Y(y) = \int_{x \in \mathcal{X}: x \le g^{-1}(y)} f_X(x) dx = \int_{-\infty}^{g^{-1}(y)} f_X(x) dx = F_X(g^{-1}(y)).$$

Uniform exponential relationship

Suppose $X \sim f_X(x) = 1$ if 0 < x < 1 and 0 otherwise, the uniform (0,1) distribution. It is straightforward to check that $F_X(x) = x, 0 < x < 1$. Let $Y = g(X) = -\log X$.

$$\frac{d}{dx}g(x) = \frac{d}{dx}(-\log x) = \frac{-1}{x} < 0$$
, for $0 < x < 1$.

Uniform exponential relationship

Suppose $X \sim f_X(x) = 1$ if 0 < x < 1 and 0 otherwise, the uniform (0,1) distribution. It is straightforward to check that $F_X(x) = x, 0 < x < 1$. Let $Y = g(X) = -\log X$.

$$\frac{d}{dx}g(x) = \frac{d}{dx}(-\log x) = \frac{-1}{x} < 0$$
, for $0 < x < 1$.

That is g(x) is a decreasing function. As $X \in [0,1]$ and $-\log x \in [0,\infty]$.

Uniform exponential relationship

Suppose $X \sim f_X(x) = 1$ if 0 < x < 1 and 0 otherwise, the uniform (0,1) distribution. It is straightforward to check that $F_X(x) = x, 0 < x < 1$. Let $Y = g(X) = -\log X$.

$$\frac{d}{dx}g(x) = \frac{d}{dx}(-\log x) = \frac{-1}{x} < 0, \text{ for } 0 < x < 1.$$

That is g(x) is a decreasing function. As $X \in [0,1]$ and $-\log x \in [0,\infty]$.

For y > 0, $y = -\log x$ implies $x = e^{-y}$, therefore,

$$F_Y(y) = 1 - F_X(g^{-1}(y)) = 1 - F_X(e^{-y}) = 1 - e^{-y}.$$

Of course, $F_Y(y) = 0$ for $y \le 0$.

Theorem for continuous r.v.

Let X have pdf $f_X(x)$ and let Y=g(X), where g is a monotone function. Suppose that $f_X(x)$ is continuous on $\mathcal X$ that $g^{-1}(y)$ has a continuous derivative on $\mathcal Y$. Then the pdf of Y is given by

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) | \frac{d}{dx} g^{-1}(y) |, & y \in \mathcal{Y}; \\ 0, & \text{otherwise.} \end{cases}$$

Proof.

Theorem for continuous r.v.

Let X have pdf $f_X(x)$ and let Y=g(X), where g is a monotone function. Suppose that $f_X(x)$ is continuous on $\mathcal X$ that $g^{-1}(y)$ has a continuous derivative on $\mathcal Y$. Then the pdf of Y is given by

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) | \frac{d}{dx} g^{-1}(y) |, & y \in \mathcal{Y}; \\ 0, & otherwise. \end{cases}$$

Proof.

By the chain rule,

$$f_Y(y) = \frac{d}{dx} F_Y(y) = \begin{cases} f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y), & \text{if g is increasing;} \\ -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y), & \text{if g is decreasing.} \end{cases}$$

10 / 54

Example

Inverted Gamma pdf

Question: Suppose X has the Gamma pdf

$$f(x) = \frac{1}{(n-1)!\beta^n} x^{n-1} e^{-x/\beta}, 0 < x < \infty.$$

Suppose we want to find the pdf of $g(X) = \frac{1}{X}$.

Example

Inverted Gamma pdf

Question: Suppose X has the Gamma pdf

$$f(x) = \frac{1}{(n-1)!\beta^n} x^{n-1} e^{-x/\beta}, 0 < x < \infty.$$

Suppose we want to find the pdf of $g(X) = \frac{1}{X}$.

Solution:

If we let y = g(x), then $g^{-1}(y) = \frac{1}{y}$ and $\frac{d}{dy}g^{-1}(y) = \frac{-1}{y^2}$.

Example

Inverted Gamma pdf

Question: Suppose X has the Gamma pdf

$$f(x) = \frac{1}{(n-1)!\beta^n} x^{n-1} e^{-x/\beta}, 0 < x < \infty.$$

Suppose we want to find the pdf of $g(X) = \frac{1}{X}$.

Solution:

If we let y = g(x), then $g^{-1}(y) = \frac{1}{y}$ and $\frac{d}{dy}g^{-1}(y) = \frac{-1}{y^2}$. Applying the above theorem, for $y \in (0, \infty)$, we get

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dx} g^{-1}(y) \right| = \frac{1}{(n-1)!\beta^n} \left(\frac{1}{y}\right)^{n-1} e^{-1/y\beta} \frac{1}{y^2}$$
$$= \frac{1}{(n-1)!\beta^n} \left(\frac{1}{y}\right)^{n+1} e^{-1/y\beta}.$$

Let X have pdf $f_X(x)$ and let Y = g(X). Suppose there exists a partition, A_0, A_1, \dots, A_k , of \mathcal{X} such that $P(X \in A_0) = 0$ and $f_X(x)$ is continuous on each A_i . Further, suppose there exist functions $g_i(x)$ defined on A_i for $1 \le i \le k$.

 $g(x) = g_i(x), \text{ for } x \in A_i;$

- $g(x) = g_i(x)$, for $x \in A_i$;
- $g_i(x)$ is monotone on A_i ;

- $g(x) = g_i(x)$, for $x \in A_i$;
- $g_i(x)$ is monotone on A_i ;
- the set $\mathcal{Y} = \{y | y = g_i(x) \text{ for some } x \in A_i\}$ is the same for each $1 \le i \le k$;

- $g(x) = g_i(x)$, for $x \in A_i$;
- $g_i(x)$ is monotone on A_i ;
- the set $\mathcal{Y} = \{y | y = g_i(x) \text{ for some } x \in A_i\}$ is the same for each $1 \le i \le k$;
- $g_i^{-1}(y)$ has a continuous derivative on \mathcal{Y} for $1 \leq i \leq k$.

Let X have pdf $f_X(x)$ and let Y = g(X). Suppose there exists a partition, A_0, A_1, \cdots, A_k , of \mathcal{X} such that $P(X \in A_0) = 0$ and $f_X(x)$ is continuous on each A_i . Further, suppose there exist functions $g_i(x)$ defined on A_i for $1 \le i \le k$.

- $g(x) = g_i(x)$, for $x \in A_i$;
- $g_i(x)$ is monotone on A_i ;
- the set $\mathcal{Y} = \{y | y = g_i(x) \text{ for some } x \in A_i\}$ is the same for each $1 \le i \le k$;
- $g_i^{-1}(y)$ has a continuous derivative on \mathcal{Y} for $1 \leq i \leq k$.

Then

$$f_Y(y) = \begin{cases} \sum_{i=1}^k f_X(g_i^{-1}(y)) | \frac{d}{dx} g_i^{-1}(y) |, & y \in \mathcal{Y}; \\ 0, & \text{otherwise.} \end{cases}$$

Normal-Chi squared relationship

Suppose X has the standard normal distribution,

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, -\infty < x < +\infty.$$

Suppose $Y = g(X) = X^2$. Since $g(x) = x^2$ is monotone on $(-\infty, 0)$ and $(0, +\infty)$. Applying above theorem, we take

$$A_0 = \{0\}; A_1 = (-\infty, 0), g_1(x) = x^2, g_1^{-1}(y) = -\sqrt{y};$$

$$A_2 = (0, +\infty), g_2(x) = x^2, g_2^{-1}(y) = \sqrt{y}.$$

Normal-Chi squared relationship

Suppose X has the standard normal distribution,

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, -\infty < x < +\infty.$$

Suppose $Y = g(X) = X^2$. Since $g(x) = x^2$ is monotone on $(-\infty,0)$ and $(0,+\infty)$. Applying above theorem, we take

$$A_0 = \{0\}; A_1 = (-\infty, 0), g_1(x) = x^2, g_1^{-1}(y) = -\sqrt{y};$$

 $A_2 = (0, +\infty), g_2(x) = x^2, g_2^{-1}(y) = \sqrt{y}.$

Then the pdf of Y is

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-(-\sqrt{y})^2/2} |-\frac{1}{2\sqrt{y}}| + \frac{1}{\sqrt{2\pi}} e^{-(\sqrt{y})^2/2} |\frac{1}{2\sqrt{y}}|$$
$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y}} e^{-y/2}, 0 < y < \infty.$$

Probability integral transformation

Let X have continuous cdf $F_X(x)$ and define the r.v. Y as $Y = F_X(X)$. Then Y is uniformly distributed on [0,1], that is, $P(Y \le y) = y, 0 < y < 1$.

Probability integral transformation

Let X have continuous cdf $F_X(x)$ and define the r.v. Y as $Y = F_X(X)$. Then Y is uniformly distributed on [0,1], that is, $P(Y \le y) = y, 0 < y < 1$.

Proof.

For
$$Y = F_X(X)$$
 and $0 < y < 1$, we have

$$P(Y \le y) = P(F_X(X) \le y)$$

$$= P(F_X^{-1}(F_X(X)) \le F_X^{-1}(y))$$

$$= P(X \le F_X^{-1}(y))$$

$$= F_X(F_Y^{-1}(y)) = y.$$

Suppose that in order to raise income for a local seniors citizens home, the town council for Pickering decides to hold a charity lottery:

Suppose that in order to raise income for a local seniors citizens home, the town council for Pickering decides to hold a charity lottery:

Enter the Charity Lottery
One Grand Prize of \$20,000
20 additional prizes of \$500
Tickets only \$10

After reading the fine print. Is this a good bet?

Suppose that in order to raise income for a local seniors citizens home, the town council for Pickering decides to hold a charity lottery:

- After reading the fine print. Is this a good bet?
- If 1,000 tickets will be sold. Is this a good bet?

Suppose that in order to raise income for a local seniors citizens home, the town council for Pickering decides to hold a charity lottery:

- After reading the fine print. Is this a good bet?
- If 1,000 tickets will be sold. Is this a good bet?
- If 10,000 tickets will be sold. Is this a good bet?

Suppose that in order to raise income for a local seniors citizens home, the town council for Pickering decides to hold a charity lottery:

- After reading the fine print. Is this a good bet?
- If 1,000 tickets will be sold. Is this a good bet?
- If 10,000 tickets will be sold. Is this a good bet?
- If 100,000 tickets will be sold. Is this a good bet?

Question: If 1,000 tickets will be sold. Is this a good bet?

Enter the Charity Lottery One Grand Prize of \$20,000 20 additional prizes of \$500

Tickets only \$10

Question: If 1,000 tickets will be sold. Is this a good bet?

Enter the Charity Lottery
One Grand Prize of \$20,000
20 additional prizes of \$500

Tickets only \$10

We can compute the average win of every investor as follows:

$$\begin{aligned} \textit{avg.} &= \frac{20000 + 20 \times 500}{1000} = 30 > 10. \\ (\textit{avg.} &= \frac{1}{1000} \cdot 20000 + \frac{20}{1000} \times 500 + \frac{979}{1000} \times 0) \end{aligned}$$

Hence, it is worth to invest the charity lottery. If there are 10,000 tickets will be sold, how about your answer?

Question: If 1,000 tickets will be sold. Is this a good bet?

Enter the Charity Lottery One Grand Prize of \$20,000 20 additional prizes of \$500

Tickets only \$10

We can compute the average win of every investor as follows:

$$avg. = \frac{20000 + 20 \times 500}{1000} = 30 > 10.$$

$$(avg. = \frac{1}{1000} \cdot 20000 + \frac{20}{1000} \times 500 + \frac{979}{1000} \times 0)$$

Question: If 1,000 tickets will be sold. Is this a good bet?

Enter the Charity Lottery
One Grand Prize of \$20,000
20 additional prizes of \$500

Tickets only \$10

We can compute the average win of every investor as follows:

$$\begin{aligned} \textit{avg.} &= \frac{20000 + 20 \times 500}{1000} = 30 > 10. \\ (\textit{avg.} &= \frac{1}{1000} \cdot 20000 + \frac{20}{1000} \times 500 + \frac{979}{1000} \times 0) \end{aligned}$$

Hence, it is worth to invest the charity lottery.

Question: If 1,000 tickets will be sold. Is this a good bet?

Enter the Charity Lottery One Grand Prize of \$20,000 20 additional prizes of \$500

Tickets only \$10

We can compute the average win of every investor as follows:

$$\begin{aligned} \textit{avg.} &= \frac{20000 + 20 \times 500}{1000} = 30 > 10. \\ (\textit{avg.} &= \frac{1}{1000} \cdot 20000 + \frac{20}{1000} \times 500 + \frac{979}{1000} \times 0) \end{aligned}$$

Hence, it is worth to invest the charity lottery. If there are 10,000 tickets will be sold, how about your answer?

Expected value

Definition

The **expected value or mean** of a r.v. g(X), denoted as E(g(X)), is

$$E(g(X)) = \begin{cases} \int_{-\infty}^{+\infty} g(x) f_X(x) dx, & \text{if X is continuous;} \\ \sum_{x \in X} g(x) P(X = x), & \text{if X is discrete;} \end{cases}$$

Expected value

Definition

The **expected value or mean** of a r.v. g(X), denoted as E(g(X)), is

$$E(g(X)) = \begin{cases} \int_{-\infty}^{+\infty} g(x) f_X(x) dx, & \text{if X is continuous;} \\ \sum_{x \in X} g(x) P(X = x), & \text{if X is discrete;} \end{cases}$$

- The **deviation** of X at $\omega \in \Omega$ is $X(\omega) E(X)$, the difference between the value of X and the mean of X.
- If $E|g(X)| = \infty$, we say that E(g(X)) does not exist.

Example I

Exponential mean

Question: Suppose X has an exponential (λ) distribution,

$$f(x) = \frac{1}{\lambda}e^{-x/\lambda}, 0 \le x < +\infty, \lambda > 0.$$

Suppose $Y = g(X) = X^2$.

Solution:

The E(X) is given by

$$E(X) = \int_0^\infty \frac{1}{\lambda} x e^{-x/\lambda} dx = -x e^{-x/\lambda} \Big|_0^\infty + \int_0^\infty e^{-x/\lambda} dx$$
$$= \int_0^\infty e^{-x/\lambda} dx = \lambda.$$

Example II

Binomial mean

Question: Suppose X has a binomial distribution, its pmf is given by

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}, x = 0, 1, \dots, n.$$

Solution:

$$E(X) = \sum_{x=0}^{n} x \cdot P(X = x) = \sum_{x=1}^{n} x \cdot \binom{n}{x} p^{x} (1 - p)^{n-x}$$

$$= \sum_{x=1}^{n} n \cdot \binom{n-1}{x-1} p^{x} q^{n-x} = np \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j} q^{n-1-j}$$

$$= np(p+q)^{n-1} = np$$

Expected value of Geometric r.v.s

Theorem

The expected number of successes when a r.v. X follows a Geometric distribution is $\frac{1}{p}$, where p is the probability of success on each trial.

Expected value of Geometric r.v.s

Theorem

The expected number of successes when a r.v. X follows a Geometric distribution is $\frac{1}{p}$, where p is the probability of success on each trial.

Proof.

We have known that $P(X = k) = q^{k-1}p$. Hence, we have

$$E(X) = \sum_{k=0}^{\infty} k \cdot q^{k-1} p = p(\sum_{m=1}^{\infty} \sum_{k=m}^{\infty} q^{k-1})$$
$$= p(\sum_{m=1}^{\infty} \frac{q^{m-1}}{1-q}) = \sum_{m=1}^{\infty} q^{m-1}$$
$$= \frac{1}{1-q} = \frac{1}{p}$$

Expected value of Geometric r.v.s

Theorem

The expected number of successes when a r.v. X follows a Geometric distribution is $\frac{1}{p}$, where p is the probability of success on each trial.

Proof.

We have known that $P(X = k) = q^{k-1}p$. Hence, we have

$$E(X) = \sum_{k=0}^{\infty} k \cdot q^{k-1} p = p(\sum_{m=1}^{\infty} \sum_{k=m}^{\infty} q^{k-1})$$
$$= p(\sum_{m=1}^{\infty} \frac{q^{m-1}}{1-q}) = \sum_{m=1}^{\infty} q^{m-1}$$
$$= \frac{1}{1-q} = \frac{1}{p}$$

Cauchy mean

A classic example of a r.v. whose expected value does not exist is a Cauchy r.v., that is, one with pdf

$$f_X(x) = \frac{1}{\pi} \frac{1}{1 + x^2}, -\infty < x < \infty.$$

It is straightforward to check that $\int_{-\infty}^{+\infty} f_X(x) dx = 1$, but $E[X] = \infty$. For any positive number M,

$$E|X| = \int_{-\infty}^{+\infty} \frac{|x|}{\pi} \frac{1}{1+x^2} dx = \frac{2}{\pi} \int_{0}^{+\infty} \frac{x}{1+x^2} dx$$
$$= \lim_{M \to \infty} \frac{2}{\pi} \int_{0}^{M} \frac{x}{1+x^2} dx = \frac{1}{\pi} \lim_{M \to \infty} \log(1+M^2) = \infty$$

and E(X) does not exist.

Outline

Transformation

Functions of a r.v. Monotone Transformations

Expectation

Properties of Expectations

Moment

Moment Generating Functions

Differentiating Under an Integral Sign

Take-aways

Linearity of expectations

Theorem

Let X be a r.v. and let a, b and c be constants. Then for any functions $g_1(x)$ and $g_2(x)$ whose expectations exist,

- a. $E(ag_1(X) + bg_2(X) + c) = aE(g_1(X)) + bE(g_2(X)) + c);$
- b. If $g_1(x) \ge 0$ for all x, then $E(g_1(X)) \ge 0$;
- c. If $g_1(x) \ge g_2(x)$ for all x, then $E(g_1(X)) \ge E(g_2(X))$;
- d. If $a \le g_1(x) \le b$ for all x, then $a \le E(g_1(X)) \le b$;

Expected value of Bernoulli trials

Proof with linearity of expectations

The expected number of successes when n mutually independent Bernoulli trials are performed, where p is the probability of success on each trial, is np.

Expected value of Bernoulli trials

Proof with linearity of expectations

The expected number of successes when n mutually independent Bernoulli trials are performed, where p is the probability of success on each trial, is np.

Proof.

Let X_i be # heads in the i-th Bernoulli trial, and X be the number of successes in n mutually independent Bernoulli trials. Hence we have $X = \sum_{i=1}^{n} X_i$, and $E(X_i) = p$.

$$E(X) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = np.$$

Uniform exponential relationship

Suppose $X \sim f_X(x) = 1$ if $0 \le x \le 1$ and 0 otherwise, the uniform (0,1) distribution. Let $Y = g(X) = -\log X$.

$$E(g(X)) = E(-\log X) = \int_0^1 -\log x dx = x - x \log x|_0^1 = 1.$$

We also have $Y = -\log X$ has cdf $1 - e^{-y}$, and pdf $f_Y(y) = \frac{d}{dy}(1 - e^{-y}) = e^{-y}, 0 < y < \infty$, which is a special case of the exponential pdf with $\lambda = 1$. Thus, E(Y) = 1.

Outline

Transformation

Functions of a r.v.

Monotone Transformations

Expectation

Properties of Expectations

Moment

Moment Generating Functions

Differentiating Under an Integral Sign

Take-aways

Moment

For each integer n, the n-th moment of X, μ'_n , is $\mu'_n = E(X^n)$. The n-th central moment of X, μ_n , is $\mu_n = E(X-\mu)^n$, where $\mu = \mu'_1 = E(X)$.

Moment

For each integer n, the n-th moment of X, μ'_n , is $\mu'_n = E(X^n)$. The n-th central moment of X, μ_n , is $\mu_n = E(X-\mu)^n$, where $\mu = \mu'_1 = E(X)$.

Variance

The variance of a r.v. X is its second central moment,

$$Var(X) = E(X - \mu)^2$$
.

The positive square root of Var(X) is the standard deviation of X.

- $Var(X) = E(X^2) (E(X))^2$;
- The variance gives a measure of the degree of spread of a distribution around its mean.

Exponential variance

Let X have the $exponential(\lambda)$ distribution. We can now calculate the variance by

$$Var(X) = E(X - \lambda)^2 = \int_0^\infty (x - \lambda)^2 \frac{1}{\lambda} e^{-x/\lambda} dx$$
$$= \int_0^\infty (x^2 - 2x\lambda + \lambda^2) \frac{1}{\lambda} e^{-x/\lambda} dx$$

To complete the integration, we can integrate each of the terms separately, using integration by parts on the terms involving x and x^2 .

Upon doing this, we find that

$$Var(X) = \lambda^2$$
.

Variance of Bernoulli trial

Question: A coin is flipped one time. Let Ω be the sample space of the possible outcomes, and let X be r.v. that assigns to an outcome # heads in this outcome. What is the variance of X if it is a biased coin with $P(\{H\}) = p$?

Variance of Bernoulli trial

Question: A coin is flipped one time. Let Ω be the sample space of the possible outcomes, and let X be r.v. that assigns to an outcome # heads in this outcome. What is the variance of X if it is a biased coin with $P(\{H\}) = p$?

Solution:

$$E(X^{2}) = 1^{2} \cdot p + 0^{2} \cdot (1 - p) = p$$

$$E(X) = 1 \cdot p + 0 \cdot (1 - p) = p$$

$$V(X) = E(X^{2}) - (E(X))^{2} = p - p^{2} = p(1 - p)$$

Variance of Binomial r.v.s

Question: Let r.v. X be the number of successes of n mutually independent Bernoulli trials, where p is the probability of success on each trial. What is the variance of X?

Variance of Binomial r.v.s

Question: Let r.v. X be the number of successes of n mutually independent Bernoulli trials, where p is the probability of success on each trial. What is the variance of X? **Solution:**

$$E(X^{2}) = \sum_{k=0}^{n} k^{2} \cdot P(X = k) = \sum_{k=1}^{n} k(k-1) \cdot P(X = k) + \sum_{k=1}^{n} k \cdot P(X = k)$$

$$= n(n-1)p^{2} \sum_{k=2}^{n} \binom{n-2}{k-2} p^{k-2} q^{n-k} + np$$

$$= n(n-1)p^{2} \sum_{j=0}^{n-2} \binom{n-2}{j} p^{j} q^{n-2-j} + np$$

$$= n(n-1)p^{2} (p+q)^{n-2} + np = n(n-1)p^{2} + np,$$

$$V(X) = E(X^{2}) - (E(X))^{2} = n(n-1)p^{2} + np - (np)^{2} = np(1-p).$$

Nonlinearity of variance

Theorem

If X is a r.v. on Ω , and if a and b are real numbers, then

$$V(aX+b)=a^2V(X).$$

Proof.

$$V(aX + b) = E((aX + b)^{2}) - (E(aX + b))^{2}$$

$$= E((a^{2}X^{2} + 2abX + b^{2})) - (a^{2}(E(X))^{2} + 2abE(X) + b^{2})$$

$$= a^{2}E(X^{2}) + 2abE(X) + b^{2} - a^{2}(E(X))^{2} - 2abE(X) - b^{2}$$

$$= a^{2}E(X^{2}) - a^{2}(E(X))^{2} = a^{2}V(X).$$

Bienaymé's formula

Theorem

Question: If X and Y are two independent r.v.s on a sample space Ω , then V(X+Y)=V(X)+V(Y). Furthermore, if X_i , $i=1,2,\cdots,n$, with n a positive integer, are pairwise independent r.v.s on Ω , then

$$V(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} V(X_i).$$

Proof:

$$V(X + Y) = E((X + Y)^{2}) - [E(X + Y)]^{2}.$$

$$= E(X^{2} + 2XY + Y^{2}) - ([E(X)]^{2} + 2E(X)E(Y) + [E(Y)]^{2})$$

$$= E(X^{2}) + 2E(XY) + E(Y^{2}) - [E(X)]^{2} - 2E(X)E(Y) - [E(Y)]^{2}$$

$$= E(X^{2}) + 2E(X)E(Y) + E(Y^{2}) - [E(X)]^{2} - 2E(X)E(Y) - [E(Y)]^{2}$$

$$= V(X) + V(Y)$$

Variance of Binomial r.v.s

Question: Let r.v. X be the number of successes of n mutually independent Bernoulli trials, where p is the probability of success on each trial. What is the variance of X?

Variance of Binomial r.v.s

Question: Let r.v. X be the number of successes of n mutually independent Bernoulli trials, where p is the probability of success on each trial. What is the variance of X?

Solution:

Let X_i be the number of success in the i-th Bernoulli trial. Thus, we have $X = \sum_{i=1}^{n} X_i$, X_i and X_j are independent for $i \neq j$.

$$E(X_i^2) = 1^2 p + 0^2 (1 - p) = p;$$

$$V(X_i) = E(X_i^2) - (E(X_i))^2 = p - p^2 = p(1 - p);$$

$$V(X) = \sum_{i=1}^n V(X_i) = np(1 - p).$$

Variance of Binomial r.v.s

Question: Let r.v.s X_i , $i=1,2,\cdots,n$, with n a positive integer, are independent and identical distribution r.v.s with $V(X_i) = \sigma^2$. What is the variance of $\frac{1}{n} \sum_{i=1}^{n} X_i$?

Variance of Binomial r.v.s

Question: Let r.v.s X_i , $i=1,2,\cdots,n$, with n a positive integer, are independent and identical distribution r.v.s with $V(X_i) = \sigma^2$.

What is the variance of $\frac{1}{n} \sum_{i=1}^{n} X_i$?

Solution:

$$V(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = (\frac{1}{n})^{2}V(\sum_{i=1}^{n}X_{i}) = (\frac{1}{n})^{2}\sum_{i=1}^{n}V(X_{i})$$
$$= (\frac{1}{n})^{2}n\sigma^{2} = \frac{\sigma^{2}}{n}$$

Variance of Binomial r.v.s

Question: Let r.v.s X_i , $i=1,2,\cdots,n$, with n a positive integer, are independent and identical distribution r.v.s with $V(X_i)=\sigma^2$. What is the variance of $\frac{1}{n}\sum_{i=1}^n X_i$?

Solution:

$$V(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = (\frac{1}{n})^{2}V(\sum_{i=1}^{n}X_{i}) = (\frac{1}{n})^{2}\sum_{i=1}^{n}V(X_{i})$$
$$= (\frac{1}{n})^{2}n\sigma^{2} = \frac{\sigma^{2}}{n}$$

That is, the variance of the mean decreases when n increases. It is a good property of variance.

Expectation of independent r.v.s

 $= E(Y) \sum r_1 \cdot P(X = r_1) = E(X)E(Y).$

Theorem

If X and Y are independent r.v.s on a sample space Ω , then

$$E(XY) = E(X)E(Y)$$
.

Proof: To prove this formula, we use the key observation that event XY = r is the disjoint union of events $X = r_1$ and $Y = r_2$ over all $r_1 \in X(\Omega)$ and $r_2 \in Y(\Omega)$ with $r = r_1 r_2$. We have

$$E(XY) = \sum_{r_1 \in X(\Omega)} r \cdot P(XY = r) = \sum_{r_1 \in X(\Omega), r_2 \in Y(\Omega)} r_1 r_2 \cdot P(X = r_1 \land Y = r_2)$$

$$= \sum_{r_1 \in X(\Omega)} \sum_{r_2 \in Y(\Omega)} (r_1 \cdot P(X = r_1)) (r_2 \cdot P(Y = r_2))$$

$$= \sum_{r_1 \in X(\Omega)} (r_1 \cdot P(X = r_1) \sum_{r_2 \in Y(\Omega)} (r_2 \cdot P(Y = r_2))) = \sum_{r_1 \in X(\Omega)} (r_1 \cdot P(X = r_1) E(Y))$$

 $r_1 \in X(\Omega)$

Outline

Transformation

Functions of a r.v. Monotone Transformations

Expectation

Properties of Expectations Moment

Moment Generating Functions

Differentiating Under an Integral Sign

Take-aways

Moment generating functions

Definition

Let X be a r.v. with cdf $F_X(x)$. The moment generating function of X (or F_X), denoted by $M_X(t)$, is

$$M_X(t) = E(e^{tX}).$$

- The expectation exists for t in some neighborhood of 0 if there is an h > 0, such that $E(e^{tX})$ for all $t \in (-h, h)$.
- The moment generating function does not exist if the expectation does not exist.
- The moment generating function can be computed as
 - \square X is continuous, $M_X(t) = \int_{-\infty}^{+\infty} e^{tx} f_X(x) dx$;
 - \Box X is discrete, $M_X(t) = \sum_{x} e^{tx} P(X = x)$.

Theorem

If X has moment generating function $M_X(t)$, then

$$E(X^n) = M_X^{(n)}(0),$$

where we define

$$M_X^{(n)}(0) = \frac{d^n}{dt^n} M_X(t)|_{t=0}.$$

Proof.

$$\frac{d}{dt}M_X(t) = \frac{d}{dt} \int_{-\infty}^{+\infty} e^{tx} f_X(x) dx = \int_{-\infty}^{+\infty} \frac{d}{dt} (e^{tx}) f_X(x) dx$$
$$= \int_{-\infty}^{+\infty} (xe^{tx}) f_X(x) dx = E(Xe^{tX}).$$

Proof Cont'd

Proof.

Thus,

$$\frac{d}{dt}M_X(t)|_{t=0} = E(Xe^{tX})|_{t=0} = EX.$$

Proceeding in an analogous manner, we can establish that

$$\frac{d^n}{dt^n} M_X(t)|_{t=0} = E(X^n e^{tX})|_{t=0} = EX^n.$$

That is, the n-th moment is equal to the n-th derivative of $M_X(t)$ evaluated at t=0.

Gamma moment generating function

The Gamma pdf is

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} dx, 0 < x < \infty, \alpha > 0, \beta > 0.$$

The moment generating function is given by

$$M_X(t) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_0^{\infty} e^{tx} x^{\alpha - 1} e^{-x/\beta} dx$$
$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_0^{\infty} x^{\alpha - 1} e^{-x/(\frac{\beta}{1 - \beta t})} dx$$

Note that $\int_0^\infty f_X(x)dx = 1$, hence $\int_0^\infty x^{\alpha-1}e^{-x/\beta}dx = \Gamma(\alpha)\beta^{\alpha}$.

Gamma moment generating function Cont'd

If $t<rac{1}{eta}$,

$$M_X(t) = rac{1}{\Gamma(lpha)eta^lpha}\Gamma(lpha)ig(rac{eta}{1-eta t}ig)^lpha \ = ig(rac{1}{1-eta t}ig)^lpha.$$

The mean of the Gamma distribution is given by

$$E(X) = \frac{d}{dt} M_X(t) \big|_{t=0} = \frac{\alpha \beta}{(1-\beta t)^{\alpha+1}} \big|_{t=0} = \alpha \beta.$$

Moment generating functions VS. distributions

Theorem

Let $F_X(x)$ and $F_Y(y)$ be two cdfs all of whose moments exist

- If X and Y have bounded support, then $F_X(u) = F_Y(u)$ for all u if and only if $E(X^r) = E(Y^r)$ for all integers $r = 0, 1, 2, \cdots$
- If the moment generating functions exist and $M_X(t) = M_Y(t)$ for all t in some neighborhood of 0, then $F_X(u) = F_Y(u)$ for all u.

Convergence of moment generating functions

Suppose $\{X_i, i=1,2,\cdots\}$ is a sequence of r.v., each with mgf $M_{X_i}(t)$. Furthermore, suppose that, for all t in a neighborhood of 0,

$$\lim_{i\to\infty}M_{X_i}(t)=M_X(t),$$

where $M_X(t)$ is an mgf. Then there is a unique cdf $F_X(x)$ whose moments are determined by $M_X(t)$ and, for all x where $F_X(x)$ is continuous, we have

$$\lim_{i\to\infty}F_{X_i}(x)=F_X(x).$$

That is, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs.

Property of moment generating functions

For any constants a and b, the mgf of the r.v. aX + b is given by

$$M_{aX+b}(t) = e^{bt}M_X(at).$$

Proof.

$$\begin{aligned} M_{aX+b}(t) &= E(e_{(aX+b)t}) \\ &= E(e_{(aX)t}e^{bt}) \\ &= e^{bt}E(e_{(at)X}) \\ &= e^{bt}M_X(at). \end{aligned}$$

Leibnitz's Rule

If
$$f(x,\theta)$$
, $a(\theta)$ and $b(\theta)$ are differentiable w.r.t. θ , then
$$\frac{d}{d\theta} \int_{a(\theta)}^{b(\theta)} f(x,\theta) dx = f(b(\theta),\theta) \frac{db(\theta)}{d\theta} - f(a(\theta),\theta) \frac{da(\theta)}{d\theta} + \int_{a(\theta)}^{b(\theta)} \frac{\partial f(x,\theta)}{\partial \theta} dx.$$

Notice that if $a(\theta)$ and $b(\theta)$ are constant, we have a special case of Leibnitz's Rule:

$$\frac{d}{d\theta} \int_{a}^{b} f(x,\theta) dx = \int_{a}^{b} \frac{\partial f(x,\theta)}{\partial \theta} dx.$$

- If we have the integral of a differentiable function over a finite range, differentiation of the integral poses no problem;
- If the range of integration is infinite, problem can arise.

Interchanging differentiation and integration

Recall that if $f(x, \theta)$ is differentiable, then

$$\frac{\partial f(x,\theta)}{\partial \theta} = \lim_{\delta \to 0} \frac{f(x,\theta+\delta) - f(x,\theta)}{\delta},$$

So we have

$$\int_{-\infty}^{+\infty} \frac{\partial f(x,\theta)}{\partial \theta} dx = \int_{-\infty}^{+\infty} \lim_{\delta \to 0} \left[\frac{f(x,\theta+\delta) - f(x,\theta)}{\delta} \right] dx,$$

while

$$\frac{d}{d\theta} \int_{-\infty}^{+\infty} f(x,\theta) dx = \lim_{\delta \to 0} \int_{-\infty}^{+\infty} \left[\frac{f(x,\theta+\delta) - f(x,\theta)}{\delta} \right] dx.$$

Corollary of Lebesgue's Dominated Convergence Theorem

Suppose the function h(x, y) is continuous at y_0 for each x, and there exists a function g(x) satisfying

- $|h(x,y)| \le g(x)$ for all x and y;

Then,

$$\lim_{y \to y_0} \int_{-\infty}^{+\infty} h(x,y) dx = \int_{-\infty}^{+\infty} \lim_{y \to y_0} h(x,y) dx.$$

The key condition in this theorem is the existence of a dominating function g(x), with a finite integral.

Corollary

Suppose the function $f(x,\theta)$ is continuous at θ_0 , that is,

$$\lim_{\delta \to 0} \frac{f(x, \theta_0 + \delta) - f(x, \theta_0)}{\delta} = \frac{\partial f(x, \theta)}{\partial \theta} \big|_{\theta = \theta_0}$$

exists for every x, and there exists a function $g(x,\theta_0)$ and a constant $\delta_0>0$ such that

- $\left|\frac{f(x,\theta_0+\delta)-f(x,\theta_0)}{\delta}\right| \leq g(x,\theta_0)$ for all x and $|\delta| \leq \delta_0$;

Then,

$$\frac{d}{d\theta} \int_{-\infty}^{+\infty} f(x,\theta) dx \big|_{\theta=\theta_0} = \int_{-\infty}^{+\infty} \left[\frac{\partial f(x,\theta)}{\partial \theta} \big|_{\theta=\theta_0} \right] dx.$$

The distinction between θ and θ_0 is not stressed when $f(x,\theta)$ is differentiable at all θ .

Example

Let X have the exponential(λ) pdf given by $f(x) = \frac{1}{\lambda}e^{-x/\lambda}$, $0 < x < \infty$, and suppose we want to calculate

$$\frac{d}{d\lambda}E(X^n) = \frac{d}{d\lambda} \int_0^\infty x^n \frac{1}{\lambda} e^{-x/\lambda} dx$$

for integer n > 0.

If we could move the differentiation inside the integral, we would have

$$\frac{d}{d\lambda}E(X^n) = \int_0^\infty \frac{\partial}{\partial \lambda} x^n \frac{1}{\lambda} e^{-x/\lambda} dx$$
$$= \int_0^\infty \frac{x^n}{\lambda^2} (\frac{x}{\lambda}) e^{-x/\lambda} dx = \frac{1}{\lambda^2} E(X^{n+1}) - \frac{1}{\lambda} E(X^n).$$

$$E(X^{n+1}) = \lambda E(X^n) + \lambda^2 \frac{d}{d\lambda} E(X^n).$$

Justifying the interchange

We bound the derivative of $x^n \frac{1}{\lambda} e^{-x/\lambda}$. Now

$$|\frac{\partial}{\partial \lambda} \left(\frac{x^n e^{-x/\lambda}}{\lambda}\right)| = \frac{x^n e^{-x/\lambda}}{\lambda^2} |\frac{x}{\lambda} - 1| \le \frac{x^n e^{-x/\lambda}}{\lambda^2} \left(\frac{x}{\lambda} + 1\right) \cdot \left(\frac{x}{\lambda} > 0\right)$$

For $0 < \delta_0 < \lambda$ and $|\lambda^{'} - \lambda| \leq \delta_0$, we take

$$\left|\frac{\partial}{\partial \lambda} \left(\frac{x^n e^{-x/\lambda}}{\lambda}\right)\right|_{\lambda=\lambda'}\right| \leq \frac{x^n e^{-x/(\lambda+\delta_0)}}{(\lambda-\delta_0)^2} \left(\frac{x}{\lambda-\delta_0}+1\right) = g(x,\lambda).$$

Since the exponential distribution has all of its moments, i.e., $\int_{-\infty}^{+\infty} g(x,\lambda) < \infty$ as long as $\lambda - \delta_0 > 0$.

Thus, the example gives us a recursion relation for the moment of exponential distribution.

Interchanging differentiation and summation

Suppose that the series $\sum_{x=0}^{\infty} h(\theta, x)$ converges for all θ in an interval (a, b) of real numbers and

- $\frac{\partial}{\partial \theta} h(\theta, x)$ is continuous in θ for each x;
- $\sum_{x=0}^{\infty} \frac{\partial}{\partial \theta} h(\theta, x)$ converges uniformly on every closed bounded subinterval of (a, b).

Then,

$$\frac{d}{d\theta} \sum_{x=0}^{\infty} h(\theta, x) = \sum_{x=0}^{\infty} \frac{\partial}{\partial \theta} h(\theta, x).$$

The key condition in this theorem is the existence of a dominating function g(x), with a finite integral.

Example

Let X be a geometric distribution $P(X = x) = \theta(1 - \theta)^x, x = 0, 1, \dots, 0 < \theta < 1$. We have that $\sum_{x=0}^{\infty} \theta(1 - \theta)^x = 1$, and

$$\begin{aligned} \frac{d}{d\theta} \sum_{x=0}^{\infty} \theta (1-\theta)^x &= \sum_{x=0}^{\infty} \frac{d}{d\theta} \theta (1-\theta)^x \\ &= \sum_{x=0}^{\infty} \left[(1-\theta)^x - \theta x (1-\theta)^{x-1} \right] \\ &= \frac{1}{\theta} \sum_{x=0}^{\infty} \theta (1-\theta)^x - \frac{1}{1-\theta} \sum_{x=0}^{\infty} x \theta (1-\theta)^x \\ &= \frac{1}{\theta} - \frac{1}{1-\theta} E(X) = 0. \end{aligned}$$

That is $E(X) = \frac{1-\theta}{\theta}$.

Justifying the interchange

Let $h(\theta, x) = \theta(1 - \theta)^x$. Then $\frac{\partial}{\partial \theta} h(\theta, x) = (1 - \theta)^x - \theta x (1 - \theta)^{x-1}$, and verify that $\sum_{x=0}^{\infty} \frac{\partial}{\partial \theta} h(\theta, x)$ converges uniformly. Calculate $S_n(\theta)$ by

$$\lim_{n \to \infty} S_n(\theta) = \lim_{n \to \infty} \left(\sum_{x=0}^n \left[(1-\theta)^x - \theta x (1-\theta)^{x-1} \right] \right)$$

$$= \lim_{n \to \infty} \left(\frac{1 - (1-\theta)^{n+1}}{\theta} - \theta \sum_{x=0}^n \frac{\partial}{\partial \theta} (1-\theta)^x \right)$$

$$= \lim_{n \to \infty} \left(\frac{1 - (1-\theta)^{n+1}}{\theta} - \theta \frac{\partial}{\partial \theta} \sum_{x=0}^n (1-\theta)^x \right)$$

$$= \lim_{n \to \infty} \left(\frac{1 - (1-\theta)^{n+1}}{\theta} - \theta \frac{\partial}{\partial \theta} \frac{1 - (1-\theta)^{n+1}}{\theta} \right)$$

$$= \lim_{n \to \infty} (n+1)(1-\theta)^n = 0.$$

Take-aways

Conclusions

- Transformation
 - □ Functions of a r.v.
 - □ Monotone Transformations
- Expectation
 - Properties of Expectations
 - □ Moment
 - Moment Generating Functions
- Differentiating Under an Integral Sign