Lab 2 Report

Ruijie Song

Feb.04.2021

Section 1 Report:

Figure 1. The gray scale image img04g.tif.

Figure 2. The power spectral density plots for block sizes of 64 \times 64

Figure 3. The power spectral density plots for block sizes of 128×128

Figure 4. The power spectral density plots for block sizes of 256 \times 256

Figure 5. The improved power spectral density estimate.

2 Power Spectral Density of a 2-D AR Process

1.

Figure 6. The image 255 * (x + 0.5).

Figure 7. The image y + 127.

2.

2)
$$F(e^{i\alpha}, e^{i\gamma}) = F(Z_1, Z_2)$$
 $f(m-m_0, n-n_0) \leftarrow e^{-i\mu m_0} e^{-i\nu n_0} f(e^{i\mu}, e^{i\gamma})$
 $H = \frac{Y}{X} = \frac{3}{1 - \alpha 9 e^{-i\mu} - 0.39 e^{-i\nu} + 0.7801 e^{-i\mu} e^{-i\nu}}$
 $3X = Y(1 - 0.99 e^{-i\mu} - 0.99 e^{-i\nu} + 0.9801 e^{-i\mu} e^{-i\nu})$
 $3X = \frac{9}{9}(1 - 0.44 + 9 - 0.99 e^{-i\nu} + 0.9801 e^{-i\mu} e^{-i\nu})$
 $4 = 3X + 0.99 g(m-1, n) - 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X + 0.99 g(m-1, n) + 0.99 g(m, n-1)$
 $4 = 3X$

Figure 8. Theoretically calculate Sy

Figure 9. A mesh plot of the function log Sy

Figure 10. A mesh plot of the log of the estimated power spectral density of y using BetterSpecAnal(y)

```
clear all
%% 1 Power Spectral Density of an Image
clear all
[img] = imread('img04g.tif');
map=gray(256);
colormap(gray(256));
image(img)
axis('image')
X = double(img)/255;
BetterSpecAnal(X);
%% 2 Power Spectral Density of a 2-D AR Process
x = rand(512, 512) - 0.5;
x_scaled=255*(x+0.5);
figure(1)
colormap(gray(256));
image(uint8(x_scaled))
x = padarray(x, [1 1]);
y = zeros(514, 514);
for i = 2:513
               for j = 2:513
                             y(i, j) = 3*x(i, j) + 0.99*y(i-1, j) + 0.99*y(i, j-1) - 0.9801*y(i-1, j-1);
               end
end
y = y(2:513, 2:513);
y127 = y+127;
figure (2)
colormap(gray(256));
image(uint8(y127))
S = zeros(100, 100);
K = 1; L = 1;
for u = linspace(-pi, pi, 100)
               for v = linspace(-pi, pi, 100)
                            S(K, L) = 1/12 * (abs(3/(1-0.99*exp(-sqrt(-1)*u)-0.99*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.9801*exp(-sqrt(-1)*v)+0.980
*u)*exp(-sqrt(-1)*v)))^2;
                            L = L+1;
               end
```

```
L = 1;
    K = K+1;
end
S = log(S);
figure(3)
mesh(linspace(-pi,pi,100),linspace(-pi,pi,100),S)
xlabel('\mu axis')
ylabel('\nu axis')
```

%% Use BetterSpecAnal(y), your Matlab function from the previous exercise, to estimate the power spectral density of y. Plot the estimated power spectral density and export the result.

BetterSpecAnal(y);

```
function BetterSpecAnal(x)
% initialize the e 25 non-overlapping image windows of size 64 	imes 64
windows = zeros(64, 64, 25);
% find the center of x
[r, c] = size(x);
r = r/2;
c = c/2;
N = 64;
% obtain the 64*64 windows
k = 1;
for i = 1inspace(-2, 2, 5)
    for j = 1inspace (-2, 2, 5)
        windows (:, :, k) = x(((r+i*N)-(N/2-1)):((r+i*N)+N/2), ((c+j*N)-(N/2-1)):((c+j*N)+N/2));
        k = k + 1;
    end
end
% create the 2-D Hamming window
W=hamming (64) *hamming (64)';
% Multiply each 64 	imes 64 window by a 2-D separable Hamming window
for k = 1:1:25
    windows(:,:,k) = windows(:,:,k) .* W;
end
% Compute the power spectrum for the NxN region
windows = (1/N^2)*abs(fft2(windows)).^2;
% Use fftshift to move the zero frequencies to the center of the plot
windows = fftshift(windows);
% Average this power spectral density across the 25 windows
A windows = mean(windows, 3);
% Display a mesh plot of the log of the estimated power spectral density
psd = log( A_windows );
x = 2*pi*((0:(N-1)) - N/2)/N;
y = 2*pi*((0:(N-1)) - N/2)/N;
figure
mesh(x, y, psd)
xlabel('\mu axis')
ylabel('\nu axis')
```

end