

Genomic Selection in Sheep Breeding Programs

Outline

- What is different in sheep?
- Potential benefits to sheep breeding programs?
- Accuracy of prediction: expected and realized
- Reference population requirements
- Strategies for implementation
- Future developments

What is different in sheep?

- Existing data of high value as a RefPop
- Small Ne
- Only 1 breed (maybe 2)
- High genomic pred. acc.
- High Benefit/Cost ratio
- Large operators

- Existing data of limited value as a RefPop
- Higher Ne
- Many breeds
- Lower genomic pred. acc.
- Lower Benefit/Cost ratio
- Small operators/low cost

Challenges of implementing GS in sheep

- Economically viable? Cost vs benefit
 - How much genetic variation in profit?
 - How much increase in genetic gain?

Challenges of implementing GS in sheep

- Economically viable? Cost vs benefit
 - How much genetic variation in profit?
 - How much increase in genetic gain?
- Accuracy of genomic predictions?
 - Large genetic diversity, both within and across breeds

Challenges of implementing GS in sheep

- Economically viable? Cost vs benefit
 - How much genetic variation in profit?
 - How much increase in genetic gain?
- Accuracy of genomic predictions?
 - Large genetic diversity, both within and across breeds
- Breeding program structure
 - Many small operators
 - Genetic improvement tends to be 'low cost'

The multibreed nature of Australian sheep

Three "breed groups" each with separate genetic evaluations (1.5m+ animals)

Fine wool

Medium wool

Strong wool

Border Leicester

Coopworth

Composites

Poll Dorset

White Suffolk

Texel, ...

Genomic breeding values

Hard to measure, late in life traits

HTML

- Lean meat yield, meat quality
- Number of lambs weaned
- Adult wool traits
- Parasite Resistance
- Milk production

Infrastructure for GS in ozz sheep

Reference population

Information Numbers Floor

 Information Nucleus Flock 	18,000	50k (500)
 Sheep Genomics Flock 	4,000	50k (500)

- Validation sires 50k (500) 1,000
- 5,000 12k (500) Industry sires
- Resource Flocks

-	,
3x2,000	12k (500)

- ~2000 HD genotypes (mainly sires)
- Currently sequencing 500 key sires

Genotyping last 3 years

Test Type	Total Tests
50k Total	5,976
EOI Large Scale Trial	1,296
Resource Flock	248
INF	2,811
PPIII - 50k	1,478
Industry Sires	143
12k Total	9,818
Resource Flock	6,927
12k Commercial	2,891
Parentage Total	48,048
Resource Flock	8,449
INF	7,866
Parentage Commercial	30,252
INF 700k	2,067
Full sequence	10

Genomic prediction accuracies in sheep now

Trait group	Merino	Maternal	Terminal
Wool	0.30 to 0.50		
Body weight, muscle & fat scans	0.25 to 0.50	0.25 to 0.50	0.15 to 0.40
Worm egg count	0.30	< 0.10	0.30
Carcass	0.20	0.15	0.20
Reproduction	0.11 to 0.31	0.05 to 0.15	

Prediction across breeds has not been effective at 50K

Pipeline for delivering genomic breeding values 2013

Potential benefits of genomic selection for sheep

Wool Objective

1st		Rela	ative
selection	GS	respon	se/year
2	No	100%	
1	No	110%	100%
2	Yes	108%	
1	Yes	125%	114%

Accuracy -3%

Male generation interval -39%

Some of benefit is achieved w/o GS

Potential benefits of genomic selection for sheep

Meat Objective

1 st		Relative
selection	GS	response/year
1	No	100%
1	Yes	108%

Male generation interval -1%

Summary Potential Benefits

- 5 -15% more benefits for meat/wool objectives
- Not all benefits captured by current indexes
- Also a shift in benefit between traits

Genomic prediction accuracy Using Goddard et al, 2011

What effective population size?

Kijas et al 2012

Sampling?

Populations not homogeneous.

Within and between breed/line accuracies

Some accuracy due to population structure

Validating 'Genomic Prediction Accuracy'

More data is always good But does it increase accuracy as expected?

Strategies for implementation

- Reduce genotyping cost
 - Genotype males only ~ 3% loss
 - Genotype only the top ~20% ~10-15% loss
- Increase potential benefits
 - Earlier selection of candidates
 - Increase accuracy
 - Benefit of reproductive technologies

2-stage selection:

Testing 20% of drop gives most of benefit

2-stage selection

More traits and unfavourable correlations?

Multi breed reference

- Genomic prediction from larger reference population is desirable
- Theoretical predictions usually consider homogenous populations
- In sheep and beef cattle industry we have multiple breeds, strains and crossbred animals in reference populations

Previous results fro multi-breed genomic predictions

Simulation

Some to little extra accuracy from across breed information
 (e.g. Ibanez -Escriche et al 2009; Toosi et al 2010; De Roos et al 2009)

Real Data

- Accuracy of GEBV lower for lower represented breeds
- Genomic prediction does not extend across breeds (based on 50k, Daetwyler et al)

Questions

- Benefit of combining multiple breeds real data?
- Is it better to have breed specific reference populations?
- Value of crossbreds?

Thinking GBLUP

Thinking GBLUP

GRM

G1 = overall allele frequency

G2 = breed haplotypes frequency

Design of study:

Results: Weight

Results: Accuracy of genomic prediction for Birth

		l I		
Reference		Reference		curacy ¹
population		 	G1	
Type	Size	 	Merino	
(1) = Merino	1000	 	0.38 bc	
(2) = Merino	2000	 	0.42 ^{cd}	
(3) = Merino	3000	 	0.47 ^d	
		l .		I

Accuracy of genomic prediction for Birth Weight

Reference			GEBV accuracy ¹	
population			G1	T
Type	Size		Merino	
(1) = Merino	1000		0.38 bc	
(2) = Merino	2000		0.42 ^{cd}	
(3) = Merino	3000		0.47 ^d	
BLxMerino	1472		0.29 a	
BLxMerino + (1)	2472		0.36 b	
BLxMerino + (2)	3472		0.39 bc	
BLxMerino + (3)	4472	i ! !	0.42 ^{cd}	

Accuracy of genomic prediction for Birth Weight

Reference		 	GEBV accuracy ¹		curacy ¹
population)	 	C	3 1	T
Type	Size		BL	Merino	
(1) = Merino	1000	 	-0.03 b	0.38 bc	
(2) = Merino	2000	 	-0.10 ab	0.42 ^{cd}	
(3) = Merino	3000	 	-0.16 a	0.47 d	
BLxMerino	1472		0.24 ^c	0.29 a	1
BLxMerino + (1)	2472	 	0.23 c	0.36 b	
BLxMerino + (2)	3472		0.17 ^c	0.39 bc	
BLxMerino + (3)	4472		0.18 c	0.42 cd	

Accuracy of genomic prediction for Birth Weight

Reference			GEBV accuracy ¹			
population			G	61	G	2
Type	Size		BL	Merino	BL	Merino
(1) = Merino	1000	 	-0.03 b	0.38 bc	-0.03 b	0.38 bc
(2) = Merino	2000	 	-0.10 ^{ab}	0.42 cd	-0.10 ^{ab}	0.42 cd
(3) = Merino	3000	 	-0.16 a	0.47 ^d	-0.14 a	0.47 d
BLxMerino	1472	 	0.24 ^c	0.29 a	0.24 ^c	0.29 a
BLxMerino + (1)	2472	 	0.23 ^c	0.36 b	0.24 ^c	0.39 bc
BLxMerino + (2)	3472	 	0.17 ^c	0.39 bc	0.17 ^c	0.39 bc
BLxMerino + (3)	4472	 	0.18 ^c	0.42 cd	0.18 ^c	0.42 ^{cd}

Accuracy of genomic prediction for Weaning Weight

Reference		 	GEBV accuracy ¹		curacy ¹
population			C	91	
Туре	Size	 	BL	Merino	
(1) = Merino	1000	 	-0.07 b	0.42 b	
(2) = Merino	2000		-0.13 b	0.49 c	
(3) = Merino	3000	 	-0.26 ^a	0.519	
BLxMerino	1547		0.32 d	0.31 ^a	
BLxMerino + (1)	2547	 	0.22 ^c	0.43 b	
BLxMerino + (2)	3547		0.16 °	0.46 b	
BLxMerino + (3)	4547	1 	0.17 c	0.47 bg	

Accuracy of genomic prediction for Post Weaning Weight

Reference	Reference		GEBV accuracy		
population			G	1	
Туре	Size		BL	Merino	
(1) = Merino	1000		-0.02 a	0.53 b	
(2) = Merino	2000		-0.04 ^a	0.57 bc	
(3) = Merino	3000		-0.08 a	(0.59 °)	
BLxMerino	1514		0.49°	0.45 ^a	
BLxMerino + (1)	2514		0.42 bc	0.56 bc	
BLxMerino + (2)	3514		0.37 b	0.54 bc	
BLxMerino + (3)	4514		0.36 b	0.56 bc	

Accuracy of genomic prediction for PW-EMD

Reference Population		GEBV Accuracy			
		G1		 	
Туре	Size	BL	Merino	 	
(1) = Purebred Merino	1000	0.00 a	0.23 a		
(2) = Purebred Merino	2000	0.00 a	0.33 b	; 	
(3) = Purebred Merino	3000	-0.01 a	0.34 b	 	
BL*Merino	1602	0.18 b	0.22 a	 	
BL*Merino + (1)	2602	0.14 b	0.25 a		
BL*Merino + (2)	3602	0.13 b	0.30 a	 	
BL*Merino + (3)	4602	0.13 b	0.35 b	 	
	ļ	!		 	
	¦ Size	PD	Merino	; ! !	
PD*Merino	1890	0.46 b	0.18 ^a		
PD*Merino + (1)	2890	0.41 ab	0.26 b		
PD*Merino + (2)	3890	0.40 a	0.33 ^c	 	
PD*Merino + (3)	¦ 4890	0.40 a	0.35 °	 	
,	 				
	¦ Size	WS	Merino	 	
WS*Merino	1257	0.13 a	0.13 ^a		
WS*Merino + (1)	2257	0.11 a	0.19 a	! 	
WS*Merino + (2)	3257	0 11 a	0.25 b	 	
WS*Merino + (3)	4257	0.09 a	0.27 b	 	
(-,	!			 	

Accuracy of genomic prediction for PW-Fat

Reference Population		Accuracy			
		G1		 	
Туре	Size	¦ BL	Merino	 	
(1) = Purebred Merino	1000	0.00 a	0.31 ^c	 	
(2) = Purebred Merino	2000	-0.01 a	0.40 ^d	: 	
(3) = Purebred Merino	3000	-0.01 a	0.48 e	! ! !	
BL*Merino	1606	0.23 ^c	0.17 ^a	 	
BL*Merino + (1)	2606	0.22 ^c	0.24 ^b	 	
BL*Merino + (2)	3606	0.19 bc	0.32 ^c	: 	
BL*Merino + (3)	4606	0.16 b	0.40 d	! ! !	
	 	 		! ! 	
	Size	PD	Merino		
PD*Merino	1891	0.26 a	0.17 a	- -	
PD*Merino + (1)	2891	0.26 a	0.32 b	! ! !	
PD*Merino + (2)	3891	0.28 a	0.38 ^c	 	
PD*Merino + (3)	4891 (0.28 a	0.43 ^d	 -	
		 		, , ,	
	Size	¦ WS	Merino	 	
WS*Merino	1258	0.14 b	0.17 a		
WS*Merino + (1)	2258	0.13 °	0.35 ^b	! 	
WS*Merino + (2)	3258	0.11 b	0.42 ^c	 	
WS*Merino + (3)	4258	0.07 a	0.45 ^c	 	
	1	 		, 	

Conclusions:

- Using haplotypes from different breeds seemed to have a zero to negative impact on accuracy of within breed genomic prediction.
- Potential Reasons are:
 - Lack of LD between breeds
 - QTL effects differ between breeds
- Breed specific GRM does not have much impact
- Need to consider more breed specific reference populations with 50k GBLUP

Accuracy of imputation

(12>50k)

Test Set: 1328 crossbred

Ref Set: 500, 1000, 2000 crossbreds with 0%, 2%, 5% and 10% GRM

Accuracy of GEBV from imputed genotypes

Moghaddar et al 2014

GBV Accuracy

Higher accuracy with high density markers

Higher accuracy with high density markers

Higher accuracy with high density markers

Breaking unfavourable correlations?

Genome Wide Association Studies

Optimizing use of technologies

Proportion				Dams	G/yr	
Captured	Al	MOET	JIVET	Used	(\$)	L
0.06	0.95	0.00	0.05	261	\$2.26	1.87
0.32	0.77	0.04	0.19	221	\$2.82	1.46
0.32	0.77	0.04	0.13	221	ΥΖ. 02	1.40
0.64	0.36	0.10	0.54	136	\$3.96	1.21

Conclusions

 A number of challenges related to implementing genomic selection in sheep, but there are clear benefits

We need to increase the accuracy and across breed prediction

Armidale Animal Breeding

