CONTENTS

	Pre	face		xix	
1	Introduction				
	1-1		ents of a Digital Communication System	1	
			nunication Channels and Their Characteristics	1	
			ematical Models for Communication Channels	11	
			storical Perspective in the Development of Digital	11	
			nunications	13	
	1-5		riew of the Book	16	
			graphical Notes and References	16	
2	Pro	babili	ty and Stochastic Processes	17	
	2-1		•	17	
		2-1-1		• • •	
			and Probability Densities	22	
		2-1-2		28	
		2-1-3		33	
		2-1-4	Some Useful Probability Distributions	37	
			Upper bounds on the Tail Probability	53	
		2-1-6		00	
			Theorem	58	
	2-2	Stocha	astic Processes	62	
		2-2-1	Statistical Averages	64	
		2-2-2	Power Density Spectrum	67	
		2-2-3	▼ •	68	
		2-2-4	Sampling Theorem for Band-Limited Stochastic Processes	72	
		2-2-5			
			Cyclostationary Processes	74 75	
	2-3		graphical Notes and References	13 77	
	Probl		Prahinem 140109 and Weterestices	77 77	
	11001	CIED		11	

_	- ·		
	urce Coding	82	
3-1	Mathematical Models for Information	82	
3-2	A Logarithmic Measure of Information	84	
	3-2-1 Average Mutual Information and Entropy	87	
	3-2-2 Information Measures for Continuous Random Variables	91	
3-3	Coding for Discrete Sources	93	
	3-3-1 Coding for Discrete Memoryless Sources	94	
	3-3-2 Discrete Stationary Sources	103	
	3-3-3 The Lempel-Ziv Algorithm	106	
3-4		108	
	3-4-1 Rate-Distortion Function	108	
	3-4-2 Scalar Quantization	113	
	3-4-3 Vector Quantization	118	
3-5		125	
	3-5-1 Temporal Waveform Coding	125	
	3-5-2 Spectral Waveform Coding	136	
	3-5-3 Model-Based Source Coding	138	
	Bibliographical Notes and References	144	
Pro	blems	144	
	aracterization of Communication Signals		
and	d Systems	152	
4-1	Representation of Bandpass Signals and Systems	152	
	4-1-1 Representation of Bandpass Signals	153	
	4-1-2 Representation of Linear Bandpass Systems	157	
	4-1-3 Response of a Bandpass System to a Bandpass Signal	157	
	4-1-4 Representation of Bandpass Stationary Stochastic Processes		
4-2		159	
4-2	2 Signal Space Representation 4-2-1 Vector Space Concepts	163	
	4-2-1 Vector Space Concepts 4-2-2 Signal Space Concepts	163	
	4-2-3 Orthogonal Expansions of Signals	165 165	
4-3		173	
₹*.	4-3-1 Memoryless Modulation Methods	173 174	
	4-3-2 Linear Modulation with Memory	174 186	
	4-3-3 Nonlinear Modulation Methods with Memory	190	
4-4		203	
4	4-4-1 Power Spectra of Linearly Modulated Signals	203 204	
	4-4-2 Power Spectra of CPFSK and CPM Signals	204 209	
	4-4-3 Power Spectra of Modulated Signals with Memory	209 220	
4-5		220 223	
-	blems	223 224	
0-	atimum Deceivers for the Additive White		
	otimum Receivers for the Additive White	233	
3-1	Optimum Receiver for Signals Corrupted by AWGN	233	
	5-1-1 Correlation Demodulator	234	
	5-1-2 Matched-Filter Demodulator	238	

		5.1.2 The Optimum Detector	244
		5-1-3 The Optimum Detector	244
		5-1-4 The Maximum-Likelihood Sequence Detector	249
		5-1-5 A Symbol-by-Symbol MAP Detector for Signals	
		with Memory	254
	5-2	Performance of the Optimum Receiver for Memoryless	
		Modulation	257
		5-2-1 Probability of Error for Binary Modulation	257
		5-2-2 Probability of Error for M-ary Orthogonal Signals	260
		5-2-3 Probability of Error for M-ary Biorthogonal Signals	264
		5-2-4 Probability of Error for Simplex Signals	266
		5-2-5 Probability of Error for M-ary Binary-Coded Signals	266
		5-2-6 Probability of Error for M-ary PAM	267
		5-2-7 Probability of Error for M-ary PSK	269
		5-2-8 Differential PSK (DPSK) and its Performance	274
		5-2-9 Probability of Error for QAM	278
		5-2-10 Comparison of Digital Modulation Methods	282
	5-3	Optimum Receiver for CPM Signals	284
	00	5-3-1 Optimum Demodulation and Detection of CPM	285
		5-3-2 Performance of CPM Signals	290 290
		5-3-3 Symbol-by-Symbol Detection of CPM Signals	
	5 1		296
	J- 4	Optimum Receiver for Signals with Random Phase in AWGN Channel	202
			301
		5-4-1 Optimum Receiver for Binary Signals	302
		5-4-2 Optimum Receiver for M-ary Orthogonal Signals	308
		5-4-3 Probability of Error for Envelope Detection of M-ary	
		Orthogonal Signals	308
		5-4-4 Probability of Error for Envelope Detection of Correlated	
		Binary Signals	312
	5-5	Regenerative Repeaters and Link Budget Analysis	313
		5-5-1 Regenerative Repeaters	314
		5-5-2 Communication Link Budget Analysis	316
	5-6	Bibliographical Notes and References	319
	Proble	ems	320
		•	
_			
6	Carr	rier and Symbol Synchronization	333
	6-1	Signal Parameter Estimation	333
		6-1-1 The Likelihood Function	335
		6-1-2 Carrier Recovery and Symbol Synchronization	
		in Signal Demodulation	336
	6-2	Carrier Phase Estimation	337
	~ 2	6-2-1 Maximum-Likelihood Carrier Phase Estimation	339
		6-2-2 The Phase-Locked Loop	
			341
		6-2-3 Effect of Additive Noise on the Phase Estimate	343
		6-2-4 Decision-Directed Loops	347
	۷ 1	6-2-5 Non-Decision-Directed Loops	350
	6-3	Symbol Timing Estimation	358
		6-3-1 Maximum-Likelihood Timing Estimation	359
		6-3-2 Non-Decision-Directed Timing Estimation	361

	Joint Estimation of Carrier Phase and Symbol Timing	365
	Performance Characteristics of ML Estimators	367
	Bibliographical Notes and References	370
Pro	blems	371
7 Ch	annel Capacity and Coding	374
	Channel Models and Channel Capacity	375
, -	7-1-1 Channel Models	375
	7-1-2 Channel Capacity	380
	7-1-3 Achieving Channel Capacity with Orthogonal Signals	387
	7-1-4 Channel Reliability Functions	389
7-2	Random Selection of Codes	390
	7-2-1 Random Coding Based on M-ary Binary-Coded Signals	390
	7-2-2 Random Coding Based on M-ary Multiamplitude Signals	397
	7-2-3 Comparison of R_0^* with the Capacity of the AWGN	
	Channel	399
7-3	Communication System Design Based on the Cutoff Rate	400
7-4	Bibliographical Notes and References	406
Proi	plems	406
8 Blo	ck and Convolutional Channel Codes	413
8-1	Linear Block Codes	413
	8-1-1 The Generator Matrix and the Parity Check Matrix	417
	8-1-2 Some Specific Linear Block Codes	421
	8-1-3 Cyclic Codes	423
	8-1-4 Optimum Soft-Decision Decoding of Linear Block Codes	436
	8-1-5 Hard-Decision Decoding	445
	8-1-6 Comparison of Performance between Hard-Decision and	
	Soft-Decision Decoding	456
	8-1-7 Bounds on Minimum Distance of Linear Block Codes	461
	8-1-8 Nonbinary Block Codes and Concatenated Block Codes	464
	8-1-9 Interleaving of Coded Data for Channels with Burst	4.50
0.4	Errors	468
8-2	Convolutional Codes	470
	8-2-1 The Transfer Function of a Convolutional Code	477
	8-2-2 Optimum Decoding of Convolutional Codes—	403
	The Viterbi Algorithm 8-2-3 Probability of Error for Soft-Decision Decoding	483
		486
	•	489
		492
		492 500
		500
	8-2-8 Practical Considerations in the Application of Convolutional Codes	En-c
0 1	Coded Modulation for Bandwidth-Constrained Channels	506
0-3		511 526
	DIVIORIAIMICAL INCICE AND INCICENCES	.)20
8-4 P rob		528

9	Signal Design for Band-Limited Channels	534
	9-1 Characterization of Band-Limited Channels	534
	9-2 Signal Design for Band-Limited Channels	540
	9-2-1 Design of Band-Limited Signals for No Intersymbol	
	Interference—The Nyquist Criterion	542
	9-2-2 Design of Band-Limited Signals with Controlled ISI—	
	Partial-Response Signals	548
	9-2-3 Data Detection for Controlled ISI	551
	9-2-4 Signal Design for Channels with Distortion	557
	9-3 Probability of Error in Detection of PAM	561
	9-3-1 Probability of Error for Detection of PAM with Zero ISI 9-3-2 Probability of Error for Detection of Partial-Response	561
	Signals	562
	9-3-3 Probability of Error for Optimum Signals in Channel	
	with Distortion	565
	9-4 Modulation Codes for Spectrum Shaping	566
	9-5 Bibliographical Notes and References	576
	Problems	576
10	Communication through Band-Limited Linear	
	Filter Channels	583
	10-1 Optimum Receiver for Channels with ISI and AWGN	584
	10-1-1 Optimum Maximum-Likelihood Receiver	584
	10-1-2 A Discrete-Time Model for a Channel with ISI	586
	10-1-3 The Viterbi Algorithm for the Discrete-Time White	
	Noise Filter Model	589
	10-1-4 Performance of MLSE for Channels with ISI	593
	10-2 Linear Equalization	601
	10-2-1 Peak Distortion Criterion	602
	10-2-2 Mean Square Error (MSE) Criterion	607
	10-2-3 Performance Characteristics of the MSE Equalizer	612
	10-2-4 Fractionally Spaced Equalizer	617
	10-3 Decision-Feedback Equalization	621
	10-3-1 Coefficient Optimization	621
	10-3-2 Performance Characteristics of DFE	622
	10-3-3 Predictive Decision-Feedback Equalizer	626
	10-4 Bibliographical Notes and References	628
	Problems	628
11	Adaptive Equalization	636
	11-1 Adaptive Linear Equalizer	636
	11-1-1 The Zero-Forcing Algorithm	637
	11-1-2 The LMS algorithm	639
	11-1-3 Convergence Properties of the LMS Algorithm	642
	11-1-4 Excess MSE Due to Noisy Gradient Estimates	644
	11-1-5 Baseband and Passband Linear Equalizers	648
	11-2 Adaptive Decision-Feedback Equalizer	649
	11-2-1 Adentive Equalization of Trallie Coded Signals	650

,

	11-3	An Adaptive Channel Estimator for ML Sequence Detection	652
	11-4	Recursive Least-Squares Algorithms for Adaptive Equalization	654
		11-4-1 Recursive Least-Squares (Kalman) Algorithm	656
		11-4-2 Linear Prediction and the Lattice Filter	660
	11-5	Self-Recovering (Blind) Equalization	664
		11-5-1 Blind Equalization Based on Maximum-Likelihood	
		Criterion	664
		11-5-2 Stochastic Gradient Algorithms	668
		11-5-3 Blind Equalization Algorithms Based on Second-	
		and Higher-Order Signal Statistics	673
	11-6	Bibliographical Notes and References	675
	Prob	lems	676
12	Mui	Itichannel and Multicarrier Systems	680
	12-1		680
	121	12-1-1 Binary Signals	682
		12-1-2 M-ary Orthogonal Signals	684
	12-2	, ,	686
	12 2	12-2-1 Capacity of a Non-Ideal Linear Filter Channel	687
		12-2-2 An FFT-Based Multicarrier System	689
	12-3		692
	Prob		693
13	Spre	ead Spectrum Signals for Digital Communications	695
	13-1		697
	13-2		698
		13-2-1 Error Rate Performance of the Decoder	702
		13-2-2 Some Applications of DS Spread Spectrum Signals	712
		13-2-3 Effect of Pulsed Interference on DS Spread Spectrum	
		Systems	717
		13-2-4 Generation of PN Sequences	724
	13-3		729
		13-3-1 Performance of FH Spread Spectrum Signals in AWGN	
		Channel	732
		13-3-2 Performance of FH Spread Spectrum Signals in Partial-	
		Band Interference	734
		13-3-3 A CDMA System Based on FH Spread Spectrum Signals	741
	13-4	Other Types of Spread Spectrum Signals	743
	13-5	···	744
	13-6	Bibliographical Notes and References	752
	Prob		753
14	Dici	ital Communication through Fading	
4		tipath Channels	750
		•	758
	14-1		759
		14-1-1 Channel Correlation Functions and Power Spectra	762
		14-1-2 Statistical Models for Fading Channels	767

·

Append	ix B	Error Probability for Multichannel Binary Signals	882
Append	ix A	The Levinson-Durbin Algorithm	879
Prot	lems		873
		ographical Notes and References	872
		2 Carrier Sense Systems and Protocols	867
		ALOHA System and Protocols	863
15-4		om Access Methods	862
		Performance Characteristics of Detectors	859
		Suboptimum Detectors	854
		2 The Optimum Receiver	851
		CDMA Signal and Channel Models	849
15-3	_	-Division Multiple Access	849
15-1		city of Multiple Access Methods	840 843
		duction to Multiple Access Techniques	840
15 Mu	ltiuse	r Communications	840
	olems		833
14-7		ographical Notes and References	832
		5 Trellis-Coded Modulation	830
	14-6-4	System Design Based on the Cutoff Rate	814 825
	14-0-	Use of Constant-Weight Codes and Concatenated Codes for a Fading Channel	014
	146	Codes for a Raleigh Fading Channel	811
	14-6-3	Upper Bounds on the Performance of Convolutional	
		Linear Binary Block Codes	811
	14-6-2	2 Probability of Error for Hard-Decision Decoding of	
		Binary Block Codes	808
	14-6-1	Probability of Error for Soft-Decision Decoding of Linear	
14-6	Code	d Waveforms for Fading Channels	806
		3 Performance of RAKE Receiver	798
		2 The RAKE Demodulator	797
		A Tapped-Delay-Line Channel Model	795
14-3	Chan		795
1.4.5		3 M-ary Orthogonal Signals al Signaling over a Frequency-Selective, Slowly Fading	787
		2 Multiphase Signals	785
		Binary Signals	778
14-4		sity Techniques for Fading Multipath Channels	777
14-3		ency-Nonselective, Slowly Fading Channel	772
		Channel Model	770
14-2	The I	Effect of Characteristics on the Choice	

Appendix C	Error Probabilities for Adaptive Reception of M-phase Signals	887
	C-1 Mathematical Model for an M-phase Signaling Communications System	887
	C-2 Characteristic Function and Probability Density Function of the Phase θ	889
	C-3 Error Probabilities for Slowly Rayleigh Fading Channels	891
	C-4 Error Probabilities for Time-Invariant and Ricean Fading Channels	893
Appendix D Square-Root Factorization		897
References ar	899	
Index		917