

Chapter 6

Parallel Processors from Client to Cloud

Multiprocessor vs. Multicore

- Multiprocessor
 - Several processors connected by an interconnection network
 - Shared memory system
 - · Uniform vs. non-uniform memory access
 - Message passing system
 - · Processors communicate via send and receive

- Multiple processor cores on a chip using SoC technology
- They communicate via on-chip network
- Homogeneous
 - » IBM Power 5, Intel, Sun T1/T2
- Heterogeneous
 - » IBM Cell

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Introduction

- Goal: connecting multiple computers to get higher performance
 - Multiprocessors
 - Scalability, availability, power efficiency
- Task-level (process-level) parallelism
 - High throughput for independent jobs
- Parallel processing program
 - Single program run on multiple processors
- Multicore microprocessors
 - Chips with multiple processors (cores)

Chapter 6 — Parallel Processors from Client to Cloud RST©NTHU

Hardware and Software

- Hardware
 - Serial: e.g., Pentium 4
 - Parallel: e.g., quad-core Xeon e5345
- Software
 - Sequential: e.g., MatLab matrix multiplication
 - Concurrent: e.g., operating system
- Sequential/concurrent software can run on serial/parallel hardware
 - Challenge: making effective use of parallel hardware

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

What We've Already Covered

- §2.11: Parallelism and Instructions
 - Synchronization (II 'load linked' and sc 'store conditional')
- §3.6: Parallelism and Computer Arithmetic
 - Associativity
- §4.10: Parallelism and Advanced Instruction-Level Parallelism
- §5.8: Parallelism and Memory Hierarchies
 - Cache Coherence

34

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

5

Parallel Programming

- Parallel software is the problem
- Need to get significant performance improvement
 - Otherwise, just use a faster uniprocessor, since it's easier!
- Difficulties
 - Partitioning
 - Coordination
 - Communications overhead

2016/4/

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

6

The Difficulty of Creating Parallel Processing Proj

Amdahl's Law

- Sequential part can limit speedup
- Example: 100 processors, 90× speedup?

$$T_{\text{new}} = T_{\text{parallelizable}} / 100 + T_{\text{sequential}}$$

$$Speedup = \frac{1}{(1 - F_{\text{parallelizable}}) + F_{\text{parallelizable}} / 100} = 90$$

- \circ Solving: $F_{parallelizable} = 0.999$
- Need sequential part to be 0.1% of original time

635

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

7

Scaling Example

a₁+a₂+...+a₁₀

A+R

- Workload: sum of 10 scalars, and 10 × 10 matrix sum
- Speed up from 10 to 100 processors
- I. Single processor: Time = $(10 + 100) \times t_{add}$
- 2. 10 processors
 - \circ Time = 10 × t_{add} + 100/10 × t_{add} = 20 × t_{add}
 - Speedup = 110/20 = 5.5 (55% of potential)
- 3. 100 processors
 - Time = $10 \times t_{add} + 100/100 \times t_{add} = 11 \times t_{add}$
 - $^{\circ}$ Speedup = 110/11 = 10 (10% of potential)
- Assumes load can be balanced across processors

636

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Scaling Example (cont)

- Single processor: Time = $(10 + 10000) \times t_{add}$
- 10 processors
 - \circ Time = 10 × t_{add} + 10000/10 × t_{add} = 1010 × t_{add}
 - Speedup = 10010/1010 = 9.9 (99% of potential)
- 100 processors
 - $^{\circ}$ Time = I0 × t_{add} + I0000/I00 × t_{add} = II0 × t_{add}
 - Speedup = 10010/110 = 91 (91% of potential)
- Assuming load balanced

Chapter 6 — Parallel Processors from

Strong vs Weak Scaling

- Strong scaling: how the solution time varies with the number of processors for a fixed total problem size
 - As in the previous example
- Weak scaling: how the solution time varies with the number of processors for a fixed problem size per processor.
 - 10 processors, 10 × 10 matrix sum
 - Time = $20 \times t_{add}$
 - 100 processors, 32 × 32 matrix sum
 - Time = $10 \times t_{add} + 1000/100 \times t_{add} = 20 \times t_{add}$
 - Increases 10x problem size for 10x processors for same performance gain

Chapter 6 — Parallel Process 2016/4/21 Client to Cloud RST©NTHU

Instruction and Data Streams

An alternate classification

		Data Streams		
		Single	Multiple	
Instruction Streams	Single	SISD: Intel Pentium 4	SIMD: SSE instructions of x86	
	Multiple	MISD: No examples today	MIMD: Intel Xeon e5345	

- SPMD: Single Program Multiple Data
 - A parallel program on a MIMD computer
 - Conditional code for different processors

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST®NTHU

040

Example: DAXPY $(Y = a \times X + Y)$ Conventional MIPS code 1.d \$f0,a(\$sp) addiu r4,\$s0,#512 1.d \$f2,0(\$s0) mul.d \$f2,\$f2,\$f0 ;load scalar a ;upper bound of what to load ;load x(i) ;a × x(i) loop: 1.d \$f4,0(\$s1) \$f4,\$f4,\$f \$f4,0(\$s1) ;load y(i);a x x(i) + y(i);store into y(i);increment index to x 1.d add.d addiu \$50,\$50,#8 addiu \$51,\$51,#8 subu \$t0,r4,\$50 increment index to y \$t0,r4,\$s0 ;compute bound \$t0,\$zero,loop ;check if done Vector MIPS code \$f0,a(\$sp) \$v1,0(\$s0) ;load scalar a ;load vector x 1.d ΙV mulvs.d \$v2,\$v1,\$f0 lv \$v3,0(\$s1) ;vector-scalar multiply;load vector y \$v4,\$v2,\$v3 \$v4,0(\$s1) addv.d ;add y to product store the result 2016/4/21 RST©NTHU

Vector Processors

- Highly pipelined function units
- Stream data from/to vector registers to units
 - Data collected from memory into registers
 - Results stored from registers to memory
- Example: Vector extension to MIPS
 - 32 × 64-element registers (64-bit elements)
 - Vector instructions
 - 1v, sv: load/store vector
 - · addv.d: add vectors of double
 - addvs.d: add scalar to each element of vector of double
- Significantly reduces instruction-fetch bandwidth

50

Chapter 6 — Parallel Processors from Client to Cloud RST©NTHU

10

Vector vs. Scalar

- Vector architectures and compilers
 - Simplify data-parallel programming
 - Explicit statement of absence of loop-carried dependences
 - Reduced checking in hardware
 - Regular access patterns benefit from interleaved and burst memory
 - Avoid control hazards by avoiding loops
- More general than ad-hoc media extensions (such as MMX, SSE)
 - Better match with compiler technology

652

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

SIMD

- Operate elementwise on vectors of data
 - E.g., MMX and SSE instructions in x86
 - Multiple data elements in 128-bit wide registers
- All processors execute the same instruction at the same time
 - Each with different data address, etc.
- Simplifies synchronization
- Reduced instruction control hardware
- Works best for highly data-parallel applications

49

Chapter 6 — Parallel Processors from Client to Cloud RST©NTHU

15

Vector vs. Multimedia Extensions

- Vector instructions have a variable vector width, multimedia extensions have a fixed width
- Vector instructions support strided access, multimedia extensions do not
- Vector units can be combination of pipelined and arrayed functional units:

Multithreading

- Performing multiple threads of execution in parallel (share functional units)
 - Replicate registers, PC, etc. (state)
 - · Fast switching between threads
- I. Fine-grain multithreading
 - Switch threads after each cycle
 - Interleave instruction execution
 - If one thread stalls, others are executed
- 2. Coarse-grain multithreading
 - Only switch on long stall (e.g., L2-cache miss)
 - Simplifies hardware, but doesn't hide short stalls (e.g., data hazards)

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

17

Simultaneous Multithreading (SMT)

- In multiple-issue dynamically scheduled processor
 - Schedule instructions from multiple threads
 - Instructions from independent threads execute when function units are available
 - Within threads, dependencies handled by scheduling and register renaming
- Example: Intel Pentium-4 HT
 - Two threads: duplicated registers, shared function units and caches

R

646

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Future of Multithreading

- Will it survive? In what form?
- Power considerations ⇒ simplified microarchitectures
 - Simpler forms of multithreading
- Tolerating cache-miss latency
 - Thread switch may be most effective
- Multiple simple cores might share resources more effectively

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Prof. Ren-Song Tsay

Example: Sum Reduction

- Sum 100,000 numbers on 100 processor UMA
 - Each processor has ID: 0 ≤ Pn ≤ 99
 - Partition 1000 numbers per processor (=100,000/100)
 - Initial summation on each processor
 sum[Pn] = 0:

```
sum[Pn] = 0;
for (i = 1000*Pn; i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];
```

- Now need to add these partial sums
 - Reduction: divide and conquer
 - $^{\circ}\,$ Half the processors add pairs, then quarter, \dots
 - Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

4/21/2016 Prof. Ren-Song Tsay

History of GPUs

- Early video cards
 - Frame buffer memory with address generation for video output
- 3D graphics processing
 - Originally high-end computers (e.g., SGI)
 - Moore's Law ⇒ lower cost, higher density
 - 3D graphics cards for PCs and game consoles
- Graphics Processing Units
 - Processors oriented to 3D graphics tasks
 - Vertex/pixel processing, shading, texture mapping, rasterization

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

GPU Architectures

- Processing is highly data-parallel
 - GPUs are highly multithreaded
 - Use thread switching to hide memory latency
 - · Less reliance on multi-level caches
 - Graphics memory is wide and high-bandwidth
- Trend toward general purpose GPUs
 - Heterogeneous CPU/GPU systems
 - CPU for sequential code, GPU for parallel code
- Programming languages/APIs
 - DirectX, OpenGL
 - C for Graphics (Cg), High Level Shader Language (HLSL)
 - Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

- Don't fit nicely into SIMD/MIMD model
 - Conditional execution in a thread allows an illusion of MIMD
 - But with performance degradation
 - Need to write general purpose code with care

	Static: Discovered at Compile Time	Dynamic: Discovered at Runtime	
Instruction-Level Parallelism	VLIW	Superscalar	
Data-Level Parallelism	SIMD or Vector	Tesla Multiprocessor	

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

s from

Putting GPUs into Perspective					
Feature	Multicore with SIMD	GPU			
SIMD processors	4 to 8	8 to 16			
SIMD lanes/processor	2 to 4	8 to 16			
Multithreading hardware support for SIMD threads	2 to 4	16 to 32			
Typical ratio of single precision to double- precision performance	2:1	2:1			
Largest cache size	8 MB	0.75 MB			
Size of memory address	64-bit	64-bit			
Size of main memory	8 GB to 256 GB	4 GB to 6 GB			
Memory protection at level of page	Yes	Yes			
Demand paging	Yes	No			
Integrated scalar processor/SIMD processor	Yes	No			
Cache coherent	Yes	No			

		\mathbf{I}	PU Te	rms
Туро	More descriptive		Official CUDA/ NVIDIA GPU torm	Book definition
sus	Vectorizable Loop	Vectorizable Loop	Grid	A vectorizable loop, executed on the GPU, mad up of one or more Thread Blocks (bodies of vectorized loop) that can execute in parallel.
Program abstractions	Body of Vectorized Loop	Body of a (Strip-Mined) Vectorized Loop	Thread Block	A vectorized loop executed on a multithreaded SIMD Processor, made up of one or more thre of SIMD instructions. They can communicate v Local Memory.
Prog	Sequence of SIMD Lane Operations	One iteration of a Scalar Loop	CUDA Thread	A vertical cut of a thread of SIMD instructions corresponding to one element executed by one SIMD Lane. Result is stored depending on ma and predicate register.
Machine object	A Thread of SIMD Instructions	Thread of Vector Instructions	Warp	A traditional thread, but it contains just SIMD instructions that are executed on a multithread SIMD Processor. Results stored depending on per-element mask.
Machi	SIMD Instruction	Vector Instruction	PTX Instruction	A single SIMD instruction executed across SIM Lanes.
	Multithreaded SIMD Processor	(Multithreaded) Vector Processor	Streaming Multiprocessor	A multithreaded SIMD Processor executes threads of SIMD instructions, independent of other SIMD Processors.
dware	Thread Block Scheduler	Scalar Processor	Giga Thread Engine	Assigns multiple Thread Blocks (bodies of vectorized loop) to multithreaded SIMD Processors.
Processing hardware	SIMD Thread Scheduler	Thread scheduler in a Multithreaded CPU	Warp Scheduler	Hardware unit that schedules and issues threa of SIMD instructions when they are ready to execute; includes a scoreboard to track SIMD Thread execution.
Ä	SIMD Lane	Vector lane	Thread Processor	A SIMD Lane executes the operations in a thre of SIMD instructions on a single element. Resu stored depending on mask.
are	GPU Memory	Main Memory	Global Memory	DRAM memory accessible by all multithreaded SIMD Processors in a GPU.
Memory hardware	Local Memory	Local Memory	Shared Memory	Fast local SRAM for one multithreaded SIMD Processor, unavailable to other SIMD Processo
Mem	SIMD Lane Registers	Vector Lane Registers	Thread Processor Registers	Registers in a single SIMD Lane allocated acro a full thread block (body of vectorized loop).

Loosely Coupled Clusters

- Network of independent computers
 - Each has private memory and OS
 - Connected using I/O system
 - E.g., Ethernet/switch, Internet
- Suitable for applications with independent tasks
 - Web servers, databases, simulations, ...
- High availability, scalable, affordable
- Problems
 - Administration cost (prefer virtual machines)
 - · Low interconnect bandwidth
 - · c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

86

Sum Reduction (Again)

- Sum 100,000 on 100 processors
- First distribute 1000 numbers to each
 - The do partial sums

```
sum = 0;
for (i = 0; i < 1000; i = i + 1)
   sum = sum + AN[i];
```

- Reduction
 - Half the processors send, other half receive and add
 - The quarter send, quarter receive and add, ...

Chapter 6 — Parallel Processors from Client to Cloud RST©NTHU

Sum Reduction (Again)

Given send() and receive() operations

```
limit = 100; half = 100; /* 100 processors */
  half = (half+1)/2; /* send vs. receive dividing line */
  if (Pn >= half && Pn < limit)
    send(Pn - half, sum);
  if (Pn < (limit/2))
    sum = sum + receive();
  limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */
```

- Send/receive also provide synchronization
- Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Network Characteristics

- Performance
 - Latency per message (unloaded network)
 - Throughput
 - · Link bandwidth
 - Total network bandwidth
 - · Bisection bandwidth
 - Congestion delays (depending on traffic)
- Cost
- Power
- Routability in silicon

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Parallel Benchmarks

- Linpack: matrix linear algebra
- SPECrate: parallel run of SPEC CPU programs Job-level parallelism
- SPLASH: Stanford Parallel Applications for Shared Memory
 - Mix of kernels and applications, strong scaling
- NAS (NASA Advanced Supercomputing) suite
 - o computational fluid dynamics kernels
- PARSEC (Princeton Application Repository for Shared Memory Computers) suite
 - Multithreaded applications using Pthreads and **OpenMP**

Chapter 6 — Parallel Processors from Client to Cloud RST©NTHU

Code or Applications?

- Traditional benchmarks
 - Fixed code and data sets
- Parallel programming is evolving
 - Should algorithms, programming languages, and tools be part of the system?
 - Compare systems, provided they implement a given application
 - E.g., Linpack, Berkeley Design Patterns
- Would foster innovation in approaches to parallelism

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Modeling Performance

- Assume performance metric of interest is achievable GFLOPs/sec
 - Measured using computational kernels from Berkeley Design Patterns
- Arithmetic intensity of a kernel
 - FLOPs per byte of memory accessed
- For a given computer, determine
 - Peak GFLOPS (from data sheet)
 - Peak memory bytes/sec (using Stream benchmark)

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Arithmetic Intensity

 Arithmetic Intensity: the ratio of floatingpoint operations per byte of memory accessed.

Prof. Ren-Song Tsay 4/21/2016

	Core i7- 960	GTX 280	GTX 480	Ratio 280/i7	Ratio 480/i
Number of processing elements (cores or SMs)	4	30	15	7.5	3.8
Clock frequency (GHz)	3.2	1.3	1.4	0.41	0.44
Die size	263	576	520	2.2	2.0
Technology	Intel 45 nm	TCMS 65 nm	TCMS 40 nm	1.6	1.0
Power (chip, not module)	130	130	167	1.0	1.3
Transistors	700 M	1400 M	3100 M	2.0	4.4
Memory brandwith (GBytes/sec)	32	141	177	4.4	5.5
Single frecision SIMD width	4	8	32	2.0	8.0
Dobule precision SIMD with	2	1	16	0.5	8.0
Peak Single frecision scalar FLOPS (GFLOP/sec)	26	117	63	4.6	2.5
Peak Single frecision s SIMD FLOPS (GFLOP/Sec)	102	311 to 933	515 to 1344	3.0-9.1	6.6-13.1
(SP 1 add or multiply)	N.A.	(311)	(515)	(3.0)	(6.6)
(SP 1 instruction fused)	N.A	(622)	(1344)	(6.1)	(13.1)
(face SP dual issue fused)	N.A	(933)	N.A	(9.1)	-
Peal double frecision SIMD FLOPS (GFLOP/sec)	51	78	515	1.5	10.1

Kernel	Units	Core i7-960	GTX 280	GTX 280/ i7-960
SGEMM	GFLOP/sec	94	364	3.9
MC	Billion paths/sec	0.8	1.4	1.8
Conv	Million pixels/sec	1250	3500	2.8
FFT	GFLOP/sec	71.4	213	3.0
SAXPY	GBytes/sec	16.8	88.8	5.3
LBM	Million lookups/sec	85	426	5.0
Solv	Frames/sec	103	52	0.5
SpMV	GFLOP/sec	4.9	9.1	1.9
GJK	Frames/sec	67	1020	15.2
Sort	Million elements/sec	250	198	0.8
RC	Frames/sec	5	8.1	1.6
Search	Million queries/sec	50	90	1.8
Hist	Million pixels/sec	1517	2583	1.7
Bilat	Million pixels/sec	83	475	5.7

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

53

Performance Summary

- GPU (480) has 4.4 X the memory bandwidth
 - Benefits memory bound kernels
- GPU has 13.1 X the single precision throughout, 2.5 X the double precision throughput
 - Benefits FP compute bound kernels
- CPU cache prevents some kernels from becoming memory bound when they otherwise would on GPU
- GPUs offer scatter-gather, which assists with kernels with strided data
- Lack of synchronization and memory consistency support on GPU limits performance for some kernels

Chapter 6 — Parallel Processors from 2016/4/21 Client to Cloud RST©NTHU

Multi-threading DGEMM

Use OpenMP:

```
void dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
for ( int sj = 0; sj < n; sj += BLOCKSIZE )
for ( int si = 0; si < n; si += BLOCKSIZE )
for ( int sk = 0; sk < n; sk += BLOCKSIZE )
do_block(n, si, sj, sk, A, B, C);
}</pre>
```

Chapter 6 — Parallel Processors from Client to Cloud RST©NTHU

4/21/2016

Pitfalls

- Not developing the software to take account of a multiprocessor architecture
 - Example: using a single lock for a shared composite resource
 - · Serializes accesses, even if they could be done in parallel
 - Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud RST©NTHU

Concluding Remarks

- Goal: higher performance by using multiple processors
- Difficulties
 - Developing parallel software
 - Devising appropriate architectures
- SaaS importance is growing and clusters are a good match
- Performance per dollar and performance per Joule drive both mobile and WSC

2016/4/21 RST©NTHU

