第四章第二次作业 22.4.26

1、硅 N 沟道 JFET 具有如下参数: $N_a=10^{18}cm^{-3}$, $N_d=10^{15}cm^{-3}$, a=2μm, L=20μm 和 Z=0.2cm。计算: (1) 内建电势 V_{bi} ; (2) $V_{\rm P}$ 夹断电压和内夹断电压 $V_{\rm P0}$; (3) 冶金学电导 G_0 ; (4) 在栅极和漏极零偏压时实际的沟道电导。(5) 计算器件的截止频率。

(硅电子迁移率 1450 cm²/V•s, 相对介电常数 ε_r =12, 本征载流子浓度 n_i =9.65 × 10⁹ cm⁻³)

- 2、T=300K 时,考虑一个 p 沟道的硅 pn JFET。假定栅极掺杂浓度 $N_d=10^{18}cm^{-3}$ 的器件为例,若该沟道的掺杂浓度为 $N_a=2\times 10^{16}cm^{-3}$ 。 确定沟道的宽度 2a,以使 $V_p=2.25$ V。
- 3、试推导如图所示的 n 沟道 JEFT 的电流与电压关系。它的沟道截面为 $2a \times 2a$,被 P^+ 区所包围,且器件长度为 L。

4、一个 n 沟道的 GaAs MESFET 的势垒高度 $\phi_{Bn}=0.9$ V,掺杂浓度为 $N_D=10^{17}$ cm-³,尺寸为沟道宽度 a=0.2μm,L=1μm,Z=10μm。在 T=300K 下判断改器件是增强型还是耗尽型?求该器件的夹断电压 $V_{\rm P}$,简单推导 I-V 特性并计算 $V_{\rm G}=0$ 时的饱和电流。

(迁移率恒定为 $5000 \text{cm}^2/\text{V} \cdot \text{s}$, 相对介电常数 $\varepsilon_r = 12.9$)