Design and Modeling of Fluid Power Systems ME 597/ABE 591 Lecture 4

Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems

MAHA Fluid Power Research Center Purdue University

Content

Displacement machines – design principles & scaling laws

Power density comparison between hydrostatic and electric machines

Volumetric losses, effective flow, flow ripple, flow pulsation

Steady state characteristics of an ideal and real displacement machine

Torque losses, torque efficiency

Displacement machine

due to compressibility of a real fluid

 $V_{min}=V_{T}$ with $V_{T...}$ dead volume

K_{A...} adiabatic bulk modulus

Displacement machine

due to viscosity & compressibility of a real fluid

Pressure drop between displacement chamber and port

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Power Density

Hydraulic Motor

 $F_e = I \cdot B \cdot L \cdot \sin \alpha$ with I current [A]

 $F_h = p \cdot L \cdot h$

B ... magnetic flux density [T] or [Vs/m²]

Torque: $T = I \cdot B \cdot L \cdot \sin \alpha \cdot r$

 $T = p \cdot L \cdot h \cdot r$

Example

Power: $P = T \cdot \omega = T \cdot 2 \cdot \pi \cdot n$

For electric motor follows: $P = I \cdot B \cdot L \cdot r \cdot 2 \cdot \pi \cdot n$

assuming α=90

For hydraulic motor follows: $P = p \cdot L \cdot h \cdot r \cdot 2 \cdot \pi \cdot n$

Force density: Electric Motor

$$\frac{F_e}{L \cdot h} = \frac{J \cdot b \cdot h \cdot B \cdot L}{L \cdot h} = J \cdot b \cdot B$$

Hydraulic Motor

$$\frac{F_h}{L \cdot h} = p$$

up to $5 \cdot 10^7$ Pa

 $7.6 \cdot 10^6 \,\mathrm{A \cdot m} \cdot 1.8 \,\mathrm{Vs \cdot m} \cdot 3.10^{-3} \,\mathrm{m} = 4.1 \cdot 10^4 \,\mathrm{Pa}$

with a cross section area of conductor: $9 \cdot 10^{-6} \, \mathrm{m}^2$

Mass / Power Ratio

Electric Machine

Positive displacement machine

0.1 ... 1 kg/kW

Positive displacement machines (pumps & motors) are:

- 10 times lighter
- o min. 10 times smaller
- much smaller mass moment of inertia (approx. 70 times)

much better dynamic behavior of displacement machines

Displacement Machines Swash Plate Machines Axial Piston Machines **Piston Machines** Bent Axis machines In-line Piston Machines with external piston support Radial Piston Machines with internal piston support External Gear **Gear Machines** Internal Gear Annual Gear Vane Machines Screw Machines others Fixed displacement machines Variable displacement machines

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Bent Axis & Swash Plate Machines

Torque generation on cylinder block Torque generation on "swash plate"

Radial force F_R exerted on piston!

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Openings in cylinder bottom

In case of plane valve plate

In case of spherical valve plate

Plane valve plate

Plane valve plate

Outlet

Connection of displacement chambers with suction and pressure port

Comparison of axial piston

- Simple and compact design
- Short response time, high bandwidth
- Through going shaft
- Long service life, low loaded bearings
- Limited swash plate angle β_{max} ca. 21°
- High radial piston forces

- higher max. speed
- Angle ß up to 45°
- Less losses
- High loaded bearings
- Expensive design
- Synchronisation required

15

Steady state characteristics

ideal displacement machine

Displacement volume of a variable displacement machine:

$$V = \alpha \cdot V_{\text{max}}$$

Scaling laws

The pump size is determined by the displacement volume V [cm³/rev]. Usually a proportional scaling law, conserving geometric similarity, is applied, resulting in stresses remaining constant for all sizes of units.

$$T = \frac{\Delta p \cdot V}{2 \cdot \pi}$$

$$Q = V \cdot n$$

$$\Delta p = p_2 - p_1$$

First Order Scaling Laws:

$$L = \lambda \cdot L_0$$

$$T = \lambda^3 . T_0$$

$$P = \lambda^2$$
. P_0

$$V_i = \lambda^3 . V_{i0}$$

$$m = \lambda^3 \cdot m_0$$

$$n = \lambda^{-1} \cdot n_0$$

Assuming same maximal operating pressures for all unit sizes and a constant maximal sliding velocity!

Example

The maximal shaft speed of a given pump is 5000 rpm. The displacement volume of this pump is V= 40cm³/rev. The maximal working pressure is given with 40 MPa. Using first order scaling laws, determine:

- the maximal shaft speed of a pump with 90 cm³/rev
- the torque of this larger pump
- the maximal volume flow rate of this larger pump
- the power of this larger pump

For the linear scaling factor follows:
$$\lambda = \sqrt[3]{\frac{V}{V_0}} = \sqrt[3]{\frac{90}{40}} = 1.31$$

Maximal shaft speed of the larger pump: $n = \lambda^{-1} \cdot n_0 = 1.31^{-1} \cdot 5000 \text{ rpm} = 3816.8 \text{ rpm}$

Torque of the larger pump:
$$T = \frac{\Delta p \cdot V}{2 \cdot \pi} = \frac{40 \cdot 10^6 \,\text{Pa} \cdot 90 \cdot 10^{-6} \,\text{m}^3}{2 \cdot \pi} = 573.25 \,\text{Nm}$$

Maximal volume flow rate:

$$Q_{\text{max}} = V \cdot n_{\text{max}} = 90 \cdot 10^{-6} \text{ m}^3/\text{rev} \cdot 3816.8 \text{ rpm} = 0.3435 \text{ m}^3/\text{min} = 343.5 \text{ l/min}$$

Power of the larger pump: $P = \Delta p \cdot Q = 40 \cdot 10^6 \,\text{Pa} \cdot 0.3435 \,\text{m}^3 \cdot \frac{1}{60} \,\text{s}^{-1} = 229 \,\text{kW}$

Real Displacement Machine

Effective Flow rate:

$$Q_e = \alpha \cdot V_{\text{max}} \cdot n - Q_S$$

Effective torque:

$$\frac{T_e}{T_e} = \frac{\Delta p \cdot \alpha \cdot V_{\text{max}}}{2 \cdot \pi} + T_S$$

Q_S ... volumetric losses

*T*_S ...torque losses

Volumetric Losses

 Q_{SL} external and internal volumetric losses = flow through laminar resistances:

$$Q_{SL} = C_{\mu} \cdot \frac{\Delta p}{\mu}$$
Assuming

$$Q = \frac{b \cdot h^3 \cdot \Delta p}{12 \cdot \mu}$$

Assuming const. gap height

Dynamic viscosity $\mu =$

$$\mu = f(\theta, p)$$

Volumetric Losses

Effective volume flow rate is reduced due to compressibility of the fluid

$$\int_{B}^{C} \frac{dV}{V} = \int_{B}^{C} -\frac{1}{K_{A}} dp \qquad \Longrightarrow \qquad \ln V_{C} - \ln V_{B} = -\frac{1}{K_{A}} \Phi_{C} - p_{B}$$

$$\Rightarrow$$

$$\ln V_C - \ln V_B = -\frac{1}{K_A} \left(\mathbf{p}_C - p_B \right)$$

$$\Delta V_B = V_B \left(1 - e^{-\frac{1}{K_A}} \Phi_C - p_B \right) \qquad \bullet$$

simplified

$$\Delta V_{B} = V_{B} \frac{\Delta p}{K_{A}}$$

$$Q_{SK} = n \cdot \Delta V_B$$

with n ... pump speed

Steady state characteristics

of a real displacement machine

$$Q_i = V \cdot n = \alpha \cdot V_{\text{max}} \cdot n$$

Effective volumetric flow rate $Q_e = Q_i - Q_S$

$$Q_e = Q_i - Q_S$$

 θ ...temperature

Steady state characteristics

Effective mass flow at pump outlet Q_{me}

Loss component due to compressibility does not occur!

Instantaneous Pump Flow

Instantaneous volumetric flow Q_a

$$Q_a = \frac{dV}{dt} = f \, \mathbf{Q}$$

Volumetric flow displaced by a displacement chamber

$$Q_{ai} = f \, \Phi_i$$

The instantaneous volumetric flow is given by the sum of instantaneous flows Q_{ai} of each displacement element:

$$Q_a = \sum_{i=1}^k Q_{ai}$$

k ... number of displacement chambers, decreasing their volume, i.e. being in the delivery stroke

$$k = \frac{z}{2}$$

z is an even number $k = \frac{\lambda}{2}$ z ... number of displacement elements

z is an odd number $k = \frac{z}{2} + 0.5$ or $k = \frac{z}{2} - 0.5$

$$k = \frac{z}{2} + 0.5$$

$$k=\frac{z}{2}-0.$$

Flow pulsation of pumps

Pressure pulsation

Flow pulsation

Non-uniformity grade of volumetric flow is defined:

$$\delta_{Q} = \frac{Q_{\text{max}} - Q_{\text{min}}}{Q_{mi}}$$

$$Q_{mi} = \frac{Q_{\text{max}} + Q_{\text{min}}}{2}$$

$$\delta_{Q} = 2 \cdot \frac{Q_{\text{max}} - Q_{\text{min}}}{Q_{\text{max}} + Q_{\text{min}}}$$

Torque Losses

$$T_S = T_{S\mu} + T_{S\rho} + T_{S\rho} + T_{Sc} \implies \text{constant value}$$

Torque loss due to viscous friction in gaps (laminar flow)

$$T_{S\mu} = k_{T\mu} \cdot \frac{\mu}{h} \cdot n = C_{T\mu} \cdot \mu \cdot n$$

h...gap height

Torque loss to overcome pressure drop caused in turbulent resistances

$$T_{S\rho} = C_{T\rho} \cdot \rho \cdot n^2$$

$$\Delta p_s = \lambda \cdot \frac{l}{d} \cdot \rho \cdot \frac{v^2}{2} + \xi \cdot \rho \cdot \frac{v^2}{2}$$

Torque loss linear dependent on pressure

$$T_{Sp} = C_{Tp} \cdot \Delta p$$

$$\xi$$
 ... drag coefficient

$$\lambda$$
 ... flow resistance coefficient $\lambda_{turbulent} = \frac{0.3164}{\sqrt[4]{\text{Re}}}$

effective torque required at pump shaft

Steady state characteristics

Torque losses

of a real displacement machine

$$T_S = f(n, \Delta p, V, \theta)$$

Steady state characteristics

Effective Torque

$$T_e = T_i + T_S = \frac{\Delta p \cdot \alpha \cdot V_{\text{max}}}{2 \cdot \pi} + T_S$$

Axial Piston Machine

Piston displacement:
$$s_P = -z$$

$$s_P = -R \cdot \tan \beta \left(-\cos \varphi \right)$$

Piston stroke:

$$H_P = 2 \cdot R \cdot \tan \beta$$

R ... pitch radius

 $z = b \cdot \tan \beta$

$$b = R - y$$

$$y = R \cdot \cos \varphi$$

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Inner dead point IT

+ *y*

 $A_0 = AT$

Kinematic Parameters

Piston velocity in z-direction:

$$v_P = \frac{ds_P}{dt} = \frac{ds_P}{d\varphi} \cdot \frac{d\varphi}{dt} = -\omega \cdot R \cdot \tan \beta \cdot \sin \varphi$$

Piston acceleration in z-direction:

$$a_P = \frac{dv_P}{dt} = \frac{dv_P}{d\varphi} \cdot \frac{d\varphi}{dt} = -\omega^2 \cdot R \cdot \tan \beta \cdot \cos \varphi$$

Circumferential speed

$$v_{u} = R \cdot \omega$$

Centrifugal acceleration:

$$a_{u} = R \cdot \omega^{2}$$

Instantaneous Volumetric Flow

For an ideal pump

without losses

Geometric displacement volume:

$$V_{g} = z \cdot A_{P} \cdot H_{P}$$

z ... number of pistons

In case of pistons arranged parallel to shaft axis:

$$V_g = z \cdot \frac{\pi \cdot d_P^2}{2} \cdot R \cdot \tan \beta$$

 $V_g = z \cdot \frac{\pi \cdot d_P^2}{2} \cdot R \cdot \tan \beta$ Geometric flow rate: $Q_g = n \cdot z \cdot \frac{\pi \cdot d_P^2}{2} \cdot R \cdot \tan \beta$ \Longrightarrow Mean value over time

Instantaneous volumetric flow:

$$Q_a = \sum_{i=1}^k Q_{ai}$$

k ...number of pistons, which are in the delivery stroke

with Q_{ai} instantaneous volumetric flow of individual piston

$$Q_{ai} = f \Phi_i$$

$$v_P = \omega \cdot R \cdot \tan \beta \cdot \sin \varphi$$

$$Q_{ai} = v_p \cdot A_P = \omega \cdot A_P \cdot R \cdot \tan \beta \cdot \sin \varphi_i$$

Instantaneous Volumetric Flow

PURDUE

In case of even number of pistons: $k = 0.5 \cdot z$

In case of odd number of pistons:

$$Q_a = \sum_{i=1}^k Q_{ai}$$

$$k_1 = \frac{z}{2} + 0.5$$
 for $0 < \varphi \le \frac{\pi}{z}$

and $k_2 = \frac{z}{2} - 0.5$ for $\frac{\pi}{z} < \varphi \le 2 \cdot \frac{\pi}{z}$

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Flow & Torque Pulsation

kinematic flow and torque pulsation due to a finite number of piston

Flow Pulsation:

Non-uniformity grade:

$$\delta_{Q} = \frac{Q_{\text{max}} - Q_{\text{min}}}{Q_{\text{mi}}} \quad \text{with } Q_{\text{mi}} = \frac{Q_{\text{max}} + Q_{\text{min}}}{2}$$

Even number of pistons:

Odd number of pistons:

$$\delta_Q = \frac{\pi}{2} \cdot \tan \frac{\pi}{2 \cdot \mathbf{z}}$$

$$\delta_Q = \frac{\pi}{2 \cdot z} \cdot \tan \frac{\pi}{4 \cdot z}$$

Torque Pulsation

$$\delta_{T} = \frac{T_{\text{max}} - T_{\text{min}}}{T_{mi}} \quad \text{with } T_{mi} = \frac{T_{\text{max}} + T_{\text{min}}}{2}$$

Flow & Torque Pulsation

kinematic flow and torque pulsation due to a finite number of piston z... number of pistons

Non-uniformity

Even number of pistons:

Odd number of pistons:

$$\delta_{\mathcal{Q}} = \delta_{T} = \frac{\mathcal{Q}_{\text{max}} - \mathcal{Q}_{\text{min}}}{\mathcal{Q}_{\text{mean}}} = \frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{mean}}}$$

$$\delta_{\mathcal{Q}} = \frac{\pi}{z} \cdot \tan \frac{\pi}{2 \cdot z}$$

$$\delta_{\mathcal{Q}} = \frac{\pi}{2 \cdot z} \cdot \tan \frac{\pi}{4 \cdot z}$$

NUMBER OF PISTONS	3	4	5	6	7	8	9	10	11	12	13	14
NON-UNIFORMITY of FLOW / TORQUE	0,1403	0,3253	0,0498	0,1403	0,0253	0,0781	0,0153	0,0498	0,0102	0,0345	0,0073	0,0253
NUMBED OF DISTONS	15	16	17	12	10	20	21	22	73	24	25	-00
NUMBER OF PISTONS	10	10	1.7	10	10	20	Z 1	44	23	44	20	26

Flow and torque pulsation frequency f:

Even number of pistons: $f=z^n$

Odd number of pistons: $f=2\cdot z\cdot n$

Flow Pulsation

Non-uniformity grade:

$$\delta_{Q} = \frac{Q_{\text{max}} - Q_{\text{min}}}{Q_{\text{mi}}} \quad \text{with } Q_{\text{mi}} = \frac{Q_{\text{max}} + Q_{\text{min}}}{2}$$

Kinematic non-uniformity grade for piston machines:

Number of pistons z	3	4	5	6	7	8	9	10	11
Non-uniformity grade δ	0.140	0.325	0.049	0.140	0.025	0.078	0.015	0.049	0.010

Volumetric losses $Q_s = f(\varphi)$ and $Q_s = f(\varphi)$, n, V_i, θ

$$Q_S = f \Phi p, n, V_i, \theta$$

Flow pulsation of a real displacement machine is much larger than the flow pulsation given by the kinematics

Flow Pulsation

Flow pulsation leads to pressure pulsation at pump outlet