Real Analysis

Manoj C Patil

November 8, 2021

Contents

Intr	oduction to Real Analysis	7
1.1	The Algebraic Properties of $\mathbb R$	7
1.2	The Order Properties of $\mathbb R$	9
1.3	Absolute Value and Real Line	12
1.4	Triangular Inequality	15
1.5	Completeness Property	28
Sets	Operations	33
	1.11.21.31.41.5	Introduction to Real Analysis 1.1 The Algebraic Properties of \mathbb{R} 1.2 The Order Properties of \mathbb{R} 1.3 Absolute Value and Real Line 1.4 Triangular Inequality 1.5 Completeness Property Sets Operations

	2.1	Set Operations	33
	2.2	Distributive Law	38
	2.3	Basic Notatioons Theory	44
	2.4	Archemedian Property	64
	2.5	Cauchy Schwartz Inequality	73
3	Eler	nents of Point Set Topology	77
	3.1	Terminology and Notations	77
	3.2	Compact Set	96
	3.3	Heine Borel theorem	98
4	Seq	uence and Series	101
	4.1	Squeeze Theorem	116
	4.2	Monotone Sequence	120

	4.3	Cauchy Sequence	126
	4.4	Infinite Series	129
	4.5	Establish the converges/divergence of series	141
	4.6	Test for Non-Absolute Convergence	152
5	Fun	ection and Continuity	159
	5.1	Continuous Function	169
	5.2	Continuous function on Interval	174
	5.3	Continuity	183
	5.4	Continuity And Gauges	190
6	Diff	ferentiation	197
	6.1	Derivative	197
	6.2	Chain Rule	205

	6.3	Taylor's Theorem	218
	6.4	Maximum or Minimum for function of two variables	221
7	Seq	uence and Series of Function	225
	7.1	Sequence of Function	225
	7.2	Cauchy Criteria for Uniform Convergence	234
	7.3	Series of Function	236
8	Rieı	mann Integral	243
	8.1	Introduction	243
	8.2	Some Properties of Integral	247
	8.3	Fundamental theorem of Integral calculus	254
	8.4	Indefinite Integral	255
	8.5	Examples	256

Chapter

Introduction to Real Analysis

1.1 The Algebraic Properties of $\mathbb R$

Algebraic Properties of $\mathbb R$ On the set $\mathbb R$ of real numbers there are two binary operations, denoted by + and \cdot and called addition and multiplication, respectively. These operations satisfy the following properties :

(A1) a + b = b + a for all $a, b \in \mathbb{R}$ (commutative property of addition);

(A2) (a+b)+c=a+(b+c) for all $a,b,c\in\mathbb{R}$ (associative property of addition);

- (A3) there exists an element $0 \in \mathbb{R}$ such that 0 + a = a and a + 0 = a for all $a \in \mathbb{R}$ (existence of a zero element);
- (A4) for each $a \in \mathbb{R}$ there exists an element $a \in \mathbb{R}$ such that a + (-a) = 0 and (-a) + a = 0 (existence of negative elements);
- (M1) ab = ba for all $a, b \in \mathbb{R}$ (commutative property of multiplication);
- (M2) (ab)c = a(bc) for all $a, b, c \in \mathbb{R}$ (associative property of multiplication);
- (M3) there exists an element $1 \in \mathbb{R}$ distinct from 0 such that 1a = a and a1 = a for all $a \in \mathbb{R}$ (existence of a unit element);
- (M4) for each $a \in \mathbb{R} \{0\}$ there exists an element $1/a \in \mathbb{R}$ such that a(1/a) = (1/a)a = a and
- (D) a(b+c)=(ab)+(ac) and (b+c)a=(ba)+(ca) for all $a,b,c\in\mathbb{R}$ (distributive property of multiplication over addition).

1.2 The Order Properties of $\mathbb R$

There is a nonempty subset \mathbb{R}^+ of \mathbb{R} , called the set of positive real numbers, that satisfies the following properties :

- 1. If $a, b \in \mathbb{R}^+$, then $a + b \in \mathbb{R}$.
- 2. If $a, b \in \mathbb{R}^+$, then ab belongs to \mathbb{R} .
- 3. If $a \in \mathbb{R}$, then exactly one of the following holds : $a \in \mathbb{R}^+$ OR a = 0 OR $(-a) \in \mathbb{R}^+$.
- 1. Let $a, b, c \in \mathbb{R}$

if a > b and b > c then a > c

Given that,

a > b and b > c

 $\therefore a-b>0$ and $b-c>0\cdots$ i.e $(a-b),(b-c)\in\mathbb{R}^+$

 $(a-b) + (b-c) > 0 \cdots (1^{st} \text{ order prop})$

$$\therefore a - c > 0 \Rightarrow a > c$$

2. If a > b then a + c > b + c

Given that,

$$a > bi.e \cdot a - b > 0$$

$$\therefore a - b \in \mathbb{R}^+$$

$$\therefore a+c-c-b>0$$

$$(a+c)-(b+c)>0$$

$$\therefore a+c>b+c$$

3. If a > b and c > 0 then, ca > cb

Given that, a > b & c > 0: (a - b) > 0 & c > 0

i.e
$$(a-b), c \in \mathbb{R}^+$$

$$(a-b) \cdot c \in \mathbb{R}^+ \dots (2^{\text{nd}} \text{ order prop})$$

$$\therefore (a-b) \cdot c > 0 \Rightarrow a \cdot c - bc > 0 \Rightarrow ac > bc$$

4. If a > b and c < 0 then, ca < cb

Given that, a > b & c < 0

$$(a-b) \in \mathbb{R}^+ \& -c \in \mathbb{R}^+ \dots (3^{\text{rd}} \text{ order prop})$$

$$\therefore -c(a-b) > 0$$

$$\therefore -ca + cb > 0$$

$$\therefore cb > ca$$

$$\therefore ca < cb$$

1.3 Absolute Value and Real Line

Absolute value and Real line

Absolute value:-

$$|a| = \begin{cases} a & \text{if } a > 0 \\ -a & \text{if } + a < 0 \\ 0 & \text{if } a = 0 \end{cases}$$

Theorem 1.3.1. *For* $a, b \in \mathbb{R}$

- $|ab| = |a|.|b| \forall a, b \in \mathbb{R}$
- *b*) $|a|^2 = a^2 \forall a \in \mathbb{R}$
- c) if c > 0 then $|a| \le c$ iff $-c \le a \le c$
- $|a| |a| \le a \le |a| \forall a \in \mathbb{R}$

Proof. a) $|ab| = |a|.|b| \forall a, b \in \mathbb{R}$

• if
$$a = 0$$
 or $b = 0 \Rightarrow ab = 0 = |ab| = |a| \cdot |b|$

• if
$$a > 0$$
 or $b > 0 \Rightarrow ab > 0$

$$|ab| = a \cdot b = |a| \cdot |b|$$

• if
$$a > 0$$
 or $b < 0 \Rightarrow ab < 0$

$$|ab| = -a \cdot b = (-a) \cdot b = a \cdot (-b) = |a| \cdot |b|$$

• if
$$a < 0$$
 or $b > 0 \Rightarrow ab < 0$

$$|ab| = -ab = |a| \cdot |b|$$

• if
$$a < 0$$
 or $b < 0 \Rightarrow ab > 0$

$$|ab| = ab = |a| |b|$$

- Hence proved -

b)
$$|a|^2 = a^2 \forall a \in \mathbb{R}$$

 $\forall a \in \mathbb{R}, a^2 \in \mathbb{R} \text{ i.e } a^2 \ge 0$

let
$$|a^2|^2 = |a| \cdot |a| = a \cdot a = a^2$$
, if $a > 0$

$$(-a) \cdot (-a) = a^2$$
, if $a < 0$

Hence,
$$|a|^2 = a^2$$

c) if c > 0 then $|a| \le c$ iff $-c \le a \le c$

Given that,

$$c > 0 \& |a| \le c$$

i) To show $-c \le a \le c$

Now,
$$|a| = \max(a, -a) \le c$$

$$\Rightarrow a \le c\& - a \le c$$

$$\Rightarrow a \le c \& a \ge -c$$

$$-c \le a \le c$$

ii) Given that, $-c \le a \le c \& \text{To show:-} |a| \le c$

$$\Rightarrow a \le c \& -a \le -c$$

$$|a| \le c ... (|a| = max(a, -a))$$

d) For $a \neq 0 \in \mathbb{R}, |a| > 0... |a| = \max(a, -a)$

Put
$$c = |a| > 0$$
 in **c**)

$$\therefore -c \le a \le c \Rightarrow -|a| \le a \le |a|$$

1.4 Triangular Inequality

Triangular Inequality:-

Theorem 1.4.1. *If* $a, b \in \mathbb{R}$ *then* $|a + b| \le |a| + |b|$

Proof. if $a, b \in \mathbb{R}$ then

$$-|a| \le a \le |a|$$

+

$$- |b| \le b \le |b|$$

$$-(|a|+|b|) \le a+b \le (|a|+|b|)\dots$$
(Themorem:-1.1.1-d))) let $|a|+|b|=c$

$$\therefore -c \le a + b \le c$$

$$\Rightarrow |a + b| \le c \dots (Th^m - 1.1.1 - c)$$

$$|a+b| \le |a| + |b|$$

Corollary 1.4.1.1. *If* $a, b \in \mathbb{R}$

a)
$$||a| - |b|| \le |a - b|$$

b)
$$|a - b| \le |a| + |b|$$

Proof. a) We know that, $a, b \in \mathbb{R}$

$$a = a - b + b$$

$$|a| = |a - b + b| \le |a - b| + |b|$$

$$\Rightarrow |a| - |b| \le |a - b| \tag{1.1}$$

Also,
$$b = b - a + a$$

$$|b| = |b - a + a| \le |b - a| + |a|$$

$$\therefore |b| - |a| \le |a - b| \tag{1.2}$$

from equation (1.1) & (1.2)

$$||a| - |b|| \le |a - b|$$

b)

if
$$a, b, c \in \mathbb{R}$$

$$|a+c| \le |a|+|c|$$

Put
$$c = -b$$
, $|c| = |-b| = |b|$

$$|a+(-b)| \le |a|+|-b|$$

$$|a-b| \le |a| + |b|$$

Corollary 1.4.1.2. *If* $a_1, a_2 ... a_n$ *are any real no then* $|a_1 + a_2 + \cdots + a_n| \le |a_1| + |a_2| + \cdots + |a_n|$

Definition 1.4.1 (Real line): A convenient and Familiar interpretation of real no system is the real line.

$$-3 - 2 - 1 \quad 0 \quad 1 \quad 2 \quad 3$$

Definition 1.4.2 (ϵ -Neighbourhood:-): let $a \in \mathbb{R}$ & ϵ > 0, then ϵ - neighbourhood of a is the set

Department of Statistics, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

$$V_{\epsilon}(a) = \{x | x \in \mathbb{R}, |x - a| < \epsilon\} \dots 0 \le |x - a| < \epsilon\}$$

$$V_{\epsilon}(a) = (a - \epsilon, a + \epsilon) \subseteq \mathbb{R}$$

Since
$$|x - a| < \epsilon \Rightarrow -\epsilon < x - a < \epsilon \Rightarrow a - \epsilon < x < a + \epsilon$$
)

Definition 1.4.3 (Deleted- ϵ -Neighbourhood:-): $\delta_{\epsilon}(a) = v_{\epsilon}(a) - \{a\}$

$$= (a - \epsilon, a + \epsilon) - \{a\}$$

$$i.e0 < |x-a| < \epsilon$$

Example 1:

If $a, b \in \mathbb{R}$. Show that |a + b| = |a| + |b| if and only if $ab \ge 0$

Proof. i) Given that $ab \ge 0$, To prove-|a+b| = |a| + |b|

if
$$ab \ge 0 \Rightarrow a \ge 0, b \ge 0$$
 or $a \le 0, b \le 0$

$$a+b \ge 0$$

$$\therefore |a| = a, |b| = b$$

$$|a+b| = a+b$$

$$= |a|+1b|$$

$$a+b \le 0$$

$$\therefore |a| = -a, |b| = -b$$

$$|a+b| = -(a+b)$$

$$= -a-b$$

$$= |a|+|b|$$

ii) Given that |a+b| = |a| + |b|, To prove $ab \ge 0$

$$|a+b|^2 = (|a|+|b|)^2$$

$$\therefore a^2 + b^2 + 2ab = |a|^2 + |b|^2 + 2 \cdot |a| \cdot |b|$$

$$\therefore 2ab = 2|a|.|b|....(\because |a|^2 = a^2)$$

$$ab = |a| \cdot |b|$$

$$ab = |ab|...$$
 (Theorem:- 1.1.1-a))

$$\therefore ab \ge 0$$

Example 2:

Show that if $a, b \in \mathbb{R}$ then

i)
$$\max\{a,b\} = \frac{1}{2}(a+b+|a-b|), \min\{a,b\} = \frac{1}{2}(a+b-|a-b|)$$

ii) $min\{a, b, c\} = min\{min\{a, b\}, c\}$

Proof. i) let
$$a > b \Rightarrow = |a - b| = a - b$$

$$max(a,b) = a (1.3)$$

Consider, RHS

$$= \frac{1}{2}(a+b-|a-b|)$$

$$= \frac{1}{2}(a+b+a-b))... \text{ from } (1.3)(a-b) \ge 0$$

$$= a$$

$$= LHS$$

$$let \min(a, b) = b \tag{1.4}$$

Consider,
$$RHS = \frac{1}{2}(a+b-|a-b|)$$

= $\frac{1}{2}(a+b-(a-b))$

$$= b$$

$$=$$
 LHS

ii) Suppose, a > b > c

LHS=
$$min\{a, b, c\} = c$$

RHS= $min\{a, b\}, c\} = min\{b, c\}$

RHS=C

= LHS

Hence, $\min\{a, b, c\} = \min\{\min\{a, b\}, c\}$

Example 3:

If $x, y, z \in \mathbb{R}$ & $x \le z$, Show that $x \le y \le z$ if and only if |x - y| + |y - z| = |x - z|

$$x \le z \Rightarrow x - z \le 0$$
 : $|x - z| = z - x$

Proof. i) Given that $x \le y \le z, x, y, z \in \mathbb{R}$

$$\therefore |x-y| = y - x \& |y-z| = z - y$$

To show |x - y| + |y - z| = |x - z|

Consider, LHS =
$$|x - y| + |y - z|$$

= $y - x + z - y$
= $z - x$
= $|x - z|$
= RHS

ii) Given that |x - y| + |y - z| = |x - z|

To show, $x \le y \le z$

let
$$a = (x - y), b = (y - z)$$

$$(x - y) + (y - z)| = |x - y| + |y - 2|$$

$$\Rightarrow (x - y)(y - z) \ge 0 \dots (\exists |a + b| = |a| + |b| \Leftrightarrow ab \ge 0)$$

$$\therefore a, b \ge 0$$

$$i.e(x - y), (y - z) \ge 0$$

$$x \ge y, y \ge z$$

$$\therefore x \ge y \ge z$$

which is not possible Since $x \le z$ -(given)

$$a,b \leq 0$$

$$(x-y), (y-z) \le 0$$

$$\therefore x \leq y, y \leq z$$

$$\therefore x \leq y \leq z$$

Example 4:

If a < x < b, a < y < b. Show that |x - y| < b - a.

Proof. Given that,

$$0 < x - a < b - a \tag{1.5}$$

$$0 < y - a < b - a \tag{1.6}$$

multiplying by (-1) to (1.6) and add in (1.5)

$$0 \le -a \le b-a$$

$$-(b-a) \le a - y \le b - a$$

$$-(b-a) \le x - y \le (b-a) \Rightarrow |x-y| < (b-a)$$

Definition 1.4.4 (Upper bound): Let $S \neq \phi \subseteq \mathbb{R}$, the set s is said to be bounded above if $\exists a \in \mathbb{R} \Rightarrow x \leq a \forall x \in S$ Each such 'a 'is called as upper bound of S.

Definition 1.4.5 (Lower bound): Let $S \neq \phi \subseteq \mathbb{R}$. The set S is said to be bounded below if $\exists b \in \mathbb{R} \stackrel{s.t}{\Rightarrow} x \geq b \forall x \in S$ Each such b is called as lower bound of S.

Definition 1.4.6 (Bounded Set): If both lower and upper bound exist.

Definition 1.4.7 (Unbounded set): If set S is not bounded.

Definition 1.4.8 (Supremum & Infimum): Let S be a non-empty subset of \mathbb{R} if S is bounded above/below then a no u is said to be supremum/Infimum (least upper bound or greatest lower bound) of S if it satisfies the conditions:-

- i) u is an upper(lower) bound of S.
- *ii)* if v is any upper(lower) bound of S then $u \le v(u \ge v)$.

1.5 Completeness Property

Statement:-If set is bounded below then its infimum must be exists and if set is bounded above then its supremum must be exists this property is known as completeness property.

let $\mathbb{N} = 1, 2, \dots 4$ bounded below

Unbounded= $\{\infty\}$ = Supremum

Lower bound= $\{\infty, ..., -1, 0, 1\}$ = Infimum = 1

Example 5:

Let $A \subseteq B$ then Prove that,

- I) $\inf A \ge \inf B$
- II) $\sup A \leq \sup B$

Proof. I) Given that, $A \subseteq B$, $x \in A \Rightarrow x \in B$

also, $\inf A = u$ and $\inf B = v \dots$ (assume)

if *u* is inf *A* then, by definition,

- i) *u* is lower bound, $x \ge u \forall x \in A$
- ii) if u_1 is another lower bound, then $u_1 < u \forall u_1$ Assume that, $\inf B \ge i n f A$

Assume that, $\inf B \ge \inf A$

i.e
$$v \ge u$$

i.e
$$x \ge v \ge u, \forall x \in B$$

$$\therefore x \ge v \ge u, \forall x \in A$$

 \Rightarrow if u is inf, we can not have lower bound greater than u.

So, our assumption is wrong.

Hence, $u \ge V$ i.e inf $A \ge \inf B$

II) let $\sup A = u$ and $\sup B = v$

if *u* is supremum of *A* then, by definition

- i) *u* is upper bound of *A* i.e $x \le u$, $\forall x \in A$
- ii) if u_1 is any other upper bound then $u \le u_1 \forall u_1$

Assume that, Sup $A \ge \sup B$

$$u \ge v$$

i.e $v \le u$

$$x \le v \le u, \forall x \in B$$

$$x \le v \le u, \forall x \in A$$

 \Rightarrow if u is sup of A then we can not have upper bound less than u. So assumption is wrong.

Hence, $u \le V$ i.e sup $A \sup B$

Example 6:

$$S = 1 - \frac{(-1)^n}{n}$$
, $n \in \mathbb{N}$. Find infimum & suptemum $S = \{2, 1/2, 1 + 1/3, 1 - 1/4, 1 + 1/5, 1 - 1/6, ...\}$
 $\therefore \inf s = 1/2 \text{ of sup } s = 2$

Example 7:

$$S = \frac{(-1)^n}{n}, n \in \mathbb{N}$$

$$S = \{-1, 1/2, -1/3, 1/4, -1/5, \dots\}$$

$$LB = (-\infty, -1] \Rightarrow Inf = -1 \in S,$$

$$UB = [1/2, \infty) \Rightarrow sup = 1/2 \in S$$

Example 8:

$$S = \{\frac{1}{m} - \frac{1}{n}, m, n \in \mathbb{N}\}$$

$$S = \{0, 1/2, -1/2, 1 - 1/3, -2/3, 1, -1, \ldots\}$$

$$LB = (-\infty, -1] \Rightarrow Inf = -1 \notin S,$$

$$UB = (1, \infty) \Rightarrow \sup = 1 \notin S$$

Example 9:

$$S = \{\frac{n-1}{n}, n \in \mathbb{N}\} = \{1 - \frac{1}{n}, n \in \mathbb{N}\}$$

$$S = \{0, 1 - 1/2, 1 - 1/3, 1 - 1/4, \dots\}$$

$$LB = (-\infty, 0] \Rightarrow Inf S = 0 \in S,$$

$$UB = [1, \infty) \Rightarrow \sup S = 1 \notin S$$

 \mathbb{Z} Chapter

Sets Operations

2.1 Set Operations

1. Union $A \cup B = \{x/x \in Aorx \in B\}$

2. Intersection $A \cap B = \{x/x \in A \& x \in B\}$

3. Complement $A^c = \{x/x \in A, x \in \Omega\}$

4. Substraction $A - B = A \setminus B = A \cap B^c = \{x/x \in A \ but \ x \notin B\}$

Theorem 2.1.1. if A, B, C are sets then,

a)
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

b)
$$A \setminus (B \cap C) = (A \setminus B) \bigcup (A^{\setminus C})$$

Proof. To Prove:-

- i) $A \setminus (B \cup C) \subseteq (A \setminus B \cap A \setminus C)$
- ii) $(A \setminus B \cap A \setminus C) \subseteq A \setminus (B \cup C)$
- i) $A \setminus (B \cup C) \subseteq (A \setminus B \cap A \setminus C)$
 - i) let $x \in A \setminus (B \cup C)$ i.e $x \in A \cap (B \cup C)^C$
 - $\Rightarrow x \in A \text{ and } x \in (B \cup C)^C$
 - $\Rightarrow x \in A \text{ and } x \notin (B \cup C)$
 - $\Rightarrow x \in A \text{ and } (x \notin B \text{ and } x \notin C)$
 - \Rightarrow ($x \in A \& x \notin B$) and ($x \in A \& x \notin C$)
 - $\Rightarrow x \in A \cap B^C$ and $x \in A \cap C^C$

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

$$\Rightarrow x \in (A \backslash B) \cap (A \backslash C)$$

$$\therefore A \setminus (B \bigcup C) \subseteq (A \setminus B) \bigcap (A \setminus C) \tag{2.1}$$

ii) $x \in (A \backslash B) \cap (A \backslash C)$

 $\Rightarrow x \in A \setminus B \text{ and } x \in A \setminus C$

 $\Rightarrow x \in (A \cap B^C)$ and $x \in (A \cap C^C)$

 \Rightarrow ($x \in A \& x \notin B$) and ($x \in A \& x \notin C$)

 $\Rightarrow x \in A \text{ and } (x \notin B \text{ and } x \notin C)$

 $\Rightarrow x \in A \text{ and } (x \in (B \cup C)^C)$

 $\Rightarrow x \in A \cap (B \cup C)$

$$A \setminus B \bigcap A \setminus C \subseteq A \setminus (B \bigcup C) \tag{2.2}$$

from (2.1) & (2.2)

$$A \setminus (B \cup C) = A \setminus B \cap A \setminus C$$

ii) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

To Prove:-

- i) $A \setminus (B \cap C) \subseteq (A \setminus B) \cap (A \setminus C)$
- ii) $A \setminus B \cup A \setminus C \subseteq A \setminus (B \cup C)$
- i) let $x \in A \setminus (B \cap C)$ i.e $x \in A \cap (B \cap C)^C$
 - $\Rightarrow x \in A \text{ and } x \in (B \cap C)^C$
 - $\Rightarrow x \in A \text{ and } x \notin (B \cap C)$
 - $\Rightarrow x \in A \text{ and } (x \notin B \text{ or } x \notin C)$
 - \Rightarrow ($x \in A \& x \notin B$) or ($x \in A \& x \notin C$)
 - $\Rightarrow x \in A \cap B^C \text{ or } x \in A \cap C^C$

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

$$\Rightarrow x \in (A \backslash B) \bigcup (A \backslash C)$$

$$\therefore A \setminus (B \cap C) \subseteq A \setminus B \bigcup A \setminus C \tag{2.3}$$

- ii) $x \in A \setminus B \cup A \setminus C$
 - $\Rightarrow x \in A \setminus B \text{ or } x \in A \setminus C$
 - $\Rightarrow x \in (A \cap B^C) \text{ or } x \in (A \cap C^C)$
 - \Rightarrow ($x \in A \& x \notin B$) or ($x \in A \& x \notin C$)
 - $\Rightarrow x \in A \text{ and } (x \notin B \text{ or } x \notin C)$
 - $\Rightarrow x \in A \text{ and } (x \in (B \cap C)^C)$
 - $\Rightarrow x \in A \cap (B \cap C)^C$
 - $\Rightarrow x \in A \setminus (B \cap C)$

Chapter 2. Sets Operations

M.Sc. (Statistics) Lecture Notes

$$A \backslash B \bigcup A \backslash C \subseteq A \backslash (B \bigcap C)$$

from (2.3) & (2.4)

$$A \setminus (B \cap C) = A \setminus B \cup A \setminus C$$

-Hence Proved-

2.2 Distributive Law

Distributive Law:-

- a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof. a) To Prove:-

(2.4)

i) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ let $x \in A \cup (B \cap C)$

- $\Rightarrow x \in A \text{ or } x \in B \cap C$
- $\Rightarrow x \in A \text{ or } x \in B \text{ and } x \in C$
- $\Rightarrow x \in A \text{ or } x \in B \text{ and } x \in A \text{ or } x \in C$
- $\Rightarrow x \in A \cup B$ and $x \in A \cup C$
- $\Rightarrow x \in (A \cup B) \cap (A \cup C)$

$$\therefore A \bigcup (B \cap C) \subseteq (A \bigcup B) \cap (A \bigcup C) \tag{2.5}$$

ii) $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

let $x \in (A \cup B) \cap (A \cup C)$

- $\Rightarrow x \in (A \cup B)$ and $x \in (A \cup C)$
- \Rightarrow ($x \in A \text{ or } x \in B$) and ($x \in A \text{ or } x \in C$)

 $\Rightarrow x \in Aor(x \in Bandx \in C)$

 $\Rightarrow x \in A \cup (B \cap C)$

$$(A \bigcup B) \bigcap (A \bigcup C) \subseteq A \bigcup (B \bigcap C) \tag{2.6}$$

from (2.5) & (2.6)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

- b) To Prove:
 - i) $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

let $x \in A \cap (B \cup C)$

- \Rightarrow $x \in A$ and $x \in (B \cup C)$
- $\Rightarrow x \in A \text{ and } (x \in B \text{ or } x \in C)$
- \Rightarrow ($x \in A$ and $x \in B$) or ($x \in A$ and $x \in C$)
- $\Rightarrow x \in (A \cap B)$ or $(x \in A \cap C)$
- $\Rightarrow x \in (A \cup B) \cup (A \cap C)$

$$\therefore A \bigcap (B \bigcup C) \subseteq (A \bigcap B) \bigcup (A \bigcap C) \tag{2.7}$$

ii) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

let $x \in (A \cap B) \cup (A \cap C)$

- $\Rightarrow x \in (A \cap B)$ or $x \in (A \cap C)$
- \Rightarrow ($x \in A$ and $x \in B$) or ($x \in A$ and $x \in C$)
- $\Rightarrow x \in A$ and $(x \in B$ or $x \in C)$

 $\Rightarrow x \in A$ and $(x \in B \cup C)$

 $\Rightarrow x \in A \cap (B \cup C)$

$$(A \cap B) \bigcup (A \cap C) \subseteq A \cap (B \cup C) \tag{2.8}$$

from (2.7) & (2.8)

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Theorem 2.2.1. *If* A & B *are sets, Show that* $A \subseteq B$ *if and only if* $A \cap B = A$

Proof. i) Assume that $A \subseteq B$ to Prove that $A \cap B = A$

let
$$x \in A \Rightarrow x \in B$$

$$\therefore x \in B \dots (\because A \subseteq B)$$

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

 $\Rightarrow x \in A \cap B$

$$\therefore A \subseteq A \cap B \tag{2.9}$$

Also, by definition,

$$A \bigcap B \subseteq A \tag{2.10}$$

from (2.9) and (2.10)

$$A = A \bigcap B \tag{2.11}$$

ii) Assume that $A \cap B = A$, to prove $A \subseteq B$ We know that, $A \cap B \subseteq B$ Chapter 2. Sets Operations

M.Sc. (Statistics) Lecture Notes

$$\Rightarrow A \subseteq B \tag{2.12}$$

from (2.11) and (2.12)

$$A \subseteq Biff A = A \cap B \tag{2.13}$$

-Hence Proved-

2.3 Basic Notatioons Theory

Definition 2.3.1 (Cartesian Product): let A&B be two sets,

A = <2,3,4> & <1,5,6> then cartesian prodct is given by

$$A \times B = \{ <2, 1>, <2, 5>, <2, 6>, <3, 5>, <3, 6>, <4, 1>, <4, 5>, <4, 6> \}$$

Definition 2.3.2 (Function): Let A&B be sets then a function from A to B is a set f of ordered

M.Sc. (Statistics) Lecture Notes Chapter 2. Sets Operations

pairs in $A \times B$ such that for each $a \in A$ then there exists a unique $b \in B$ with $(a, b) \in f$. In other words if $\langle a, b \rangle \in f \otimes \langle a, b' \rangle \in f \Rightarrow b = b'$

Types of Function

Definition 2.3.3 (One-One (Injective) Function): The Function f is said to be injective (or One-One) if whenever $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

$$\begin{array}{c}
A \xrightarrow{f} B \\
 \hline
 \begin{array}{c}
x_1 & \xrightarrow{y_1} & y_2 \\
x_2 & \xrightarrow{y_2} & y_3
\end{array}$$

Definition 2.3.4 (Onto (Surjective) Function): The function f is said to be Surjective if f(A) = B i.e if the range R(f) = B.

Chapter 2. Sets Operations

M.Sc. (Statistics) Lecture Notes

Definition 2.3.5 (One-One & Onto (Bijective) Function): The Function f is both one-one and onto then it is said to be bijective.

Definition 2.3.6 (Into Function): If f is not onto then it is called as into function.

Definition 2.3.7 (Composite Function): If $f: A \to B$ and $g: A \to B$ and if $R(f) \subseteq D(g) = B$ then the composite function $g \circ f$ is the function from $A \to C$ $g \circ f: A \to C$ is composite function if $g \circ f(x) = g(f(x))x \in A$

Example 10:

$$f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 2x, g(y) = 3y^2 - 1$$

Proof. Given that,
$$f(x) = 2x$$
, $g(y) = 3y^2 - 1$

Chapter 2. Sets Operations

M.Sc. (Statistics) Lecture Notes

$$g \circ f(x) = g(f(x))$$

$$= g(2x)$$

$$= 3(2x)^{2} - 1$$

$$= 12x^{2} - 1$$

$$f \circ g(y) = f(g(y))$$

$$= f(3y^{2} - 1)$$

$$= 2(3y^{2} - 1)$$

$$= 6y^{2} - 2$$

$$\therefore g \circ f \neq f \circ g$$

Example 11:

Show that if $f: A \rightarrow B$ then, E, F are subsets of A then,

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

- a) $f(E \cup F) = f(E) \cup f(F)$ and
- b) $f(E \cap f) \subseteq f(E) \cap f(F)$

Proof. a)
$$f: A \rightarrow B, E, F \subseteq A$$

$$f(E) = \{y/y = f(x), x \in E \subseteq A\} \subseteq B$$

$$f(F) = \{y/y = f(x), x \in F \subseteq A\} \subseteq B$$

$$f(E \cup F) = \{y/y = f(x), x \in E \cup F\}$$

To Prove,

- i) $f(E \cup F) \subseteq f(E) \cup f(F)$
- ii) $f(E) \cup f(F) \subseteq f(E \cup F)$

 $let y \in f(E \bigcup F)$

$$\Leftrightarrow y = f(x), x \in E \bigcup F$$

$$\Leftrightarrow y = f(x), x \in Eorx \in F$$

$$\Leftrightarrow y = f(x), x \in E \subseteq A$$
or $y = f(x), x \in F \subseteq A$

$$\Leftrightarrow y \in f(E) \text{ or } y \in f(F)$$

$$\Leftrightarrow y \in f(E) \bigcup f(F)$$

$$f(E \cup F) \subseteq f(E) \cup f(F) \& f(E) \cup f(F) \subseteq f(E \cup F)$$
$$f(E \cup F) = f(E) \cup f(F)$$

To Prove,

b)
$$f(E \cap f) \subseteq f(E) \cap f(F)$$

$$let y \in f(E \cap F)$$

$$\Rightarrow$$
 $y = f(x), x \in E \cap F$

$$\Rightarrow y = f(x), x \in E$$
 and $x \in F$

$$\Rightarrow y = f(x), x \in E$$
 and $y = f(x), x \in F$

$$\Rightarrow$$
 $y \in f(E)$ and $y \in f(F)$

$$\Rightarrow y \in f(E) \cap f(F)$$

$$f(E \cap F) \subseteq f(E) \cap f(F)$$

Example 12:

Example for $f(E) \cap f(F) \subsetneq f(E \cap F)$

$$let f(x) = x^2$$

$$E = \{1, 2\}, f(E) = \{1, 4\}$$

$$F = \{-2, 4\}, f(E) = \{4, 16\}$$

$$E \cap F = \{\phi\}, f(E) \cap f(F) = \{4\}$$

$$f(E \cap F) = \{\phi\}$$

$$f(E) \cap f(F) \subsetneq f(E \cap F)$$

Example 13:

Show that if $f: A \rightarrow B$ and G, H are subsets of B then,

a)
$$f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$$
 and

b)
$$f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$$

Proof. a) $f: A \rightarrow B$

$$f^{-1}(G) = \{x/f(x) \in G\} \subseteq A$$

$$f^{-1}(H) = \{x/f(x) \in H\} \subseteq A$$

let
$$x \in f^{-1}(G \cup H)$$

$$\Leftrightarrow f(x) \in G \bigcup H$$

$$\Leftrightarrow f(x) \in Gor f(x) \in H$$

$$\Leftrightarrow x \in f^{-1}(G)$$
 or $x \in f^{-1}(H)$

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

$$\Leftrightarrow x \in f^{-1}(G) \bigcup f^{-1}(H)$$

$$f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$$

-Hence Proved-

b) let
$$x \in f^{-1}(G \cap H)$$

$$\Leftrightarrow f(x) \in G \cap H$$

$$\Leftrightarrow f(x) \in Gandf(x) \in H$$

$$\Leftrightarrow x \in f^{-1}(G)$$
 and $x \in f^{-1}(H)$

$$\Leftrightarrow x \in f^{-1}(G) \cap f^{-1}(H)$$

$$f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$$

-Hence Proved-

Example 14:

Show that if $f: A \to B$ is injective & $E \subseteq A$ then $f^{-1}(f(E)) = E$. Give an example to show that equality need not hold if f is not injective.

Proof. Given that, $f: A \rightarrow B$ is injective

i.e if
$$x \neq y \Rightarrow f(x) \neq f(y) \forall x, y \in A$$

$$E = \{x/x \in E, f(x) \in B\} \subseteq A$$

$$f(E) = \{y/y = f(x) \in f(E), x \in A\} \subseteq B$$

To prove
$$f^{-1}(f(E)) = E$$

$$\mathrm{let}x\in f^{-1}(f(E))$$

$$\Rightarrow f(x) \in f(E)$$

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

 $\Rightarrow x \in E \dots (: f \text{ is one-one function})$

$$f^{-1}(f(E)) \subseteq E \tag{2.14}$$

Now, let $x \in E$

$$\Rightarrow f(x) \in f(E)f^{-1}(H) = \{x/f(x) \in H, x \in A\}$$

$$x \in f^{-1}(f(E))$$

$$E \subseteq f^{-1}(f(E)) \tag{2.15}$$

from (2.14) & (2.15)

$$f^{-1}(f(E)) = E$$

Example 15:

let
$$f(x) = x^2$$

 $E\{1,2\} \Rightarrow f(E)\{1,4\}$
 $f^{-1}(f(E) = \{(1,-2,-2)\}$
 $f^{-1}(f(E) \neq E$

Example 16:

Show that if $f: A \to B$ is surjective and $E \subseteq A$ then $f(f^{-1}(H)) = H$. Give an example to show that equality need not hold if f is not surjective.

Proof. $f: A \rightarrow B, H \subseteq B$ and f is surjective i.e every element in B has inverse image in A

To prove: $f(f^{-1}(H)) = H$

let $y \in f(f^{-1}(H))$

 $\Rightarrow f(x) \in f(f^{-1}(H))$

 $\Rightarrow x \in f^{-1}(H)$

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

$$\Rightarrow$$
 $y = f(x) \in H$

$$\therefore f(f^{-1}(H)) \subseteq H \tag{2.16}$$

let $y \in H$ then

 $\exists x \in A$ such that,

$$y = f(x) \in H...(\cdot, \cdot)$$
 f is onto)

$$\Rightarrow x \in f^{-1}(H)$$

$$\Rightarrow f(x) \in f(f^{-1}(H)) \dots (x \in E \Rightarrow f(x) \in f(E))$$

$$\Rightarrow y \in f^{-1}(H)$$

from (2.16) & (2.17)

$$f(f^{-1}(H)) = H$$

Definition 2.3.8 (Finite & Infinite Sets): 1. The empty set ϕ is said to have zero elements

- 2. If $n \in \mathbb{N}$, a set S is said to have n elements if there exists a bijection from set $\mathbb{N} = \{1, 2, ..., n\}$ on \mathbb{S}
- 3. A set S is said to be finite if it is either empty or it has n elements for some $n \in \mathbb{N}$.
- 4. A set S is said to be infinite if it is not finite.

Theorem 2.3.1 (Uniqueness Theorem). If S is finite set, then the number of elements in S is

 \hat{u} nique number in \mathbb{N} .

The set \mathbb{N} of natural numbers is an infinite set.

Theorem 2.3.2. Supprose that S&T are sets and $T\subseteq S$

- *a)* If S is finite Set, then T is a finite Set.
- b) If T is an infinite set then S is an infinite Set.

Proof. a) $T \subseteq S$ and S is finite Set

- i) Suppose $S = \phi \Rightarrow T = \phi \Rightarrow T$ is finite
- ii) When $S \neq \phi$ then there are two possibilities.
 - 1) $T = \phi \Rightarrow T$ is a finite Set **or**
 - 2) $T \neq \phi$

We will prove this by method of mathematical induction.

• #(S) = 1 and as $T \neq \phi \Rightarrow S = T$

Hence as *S* is finite \Rightarrow *T* is finite

• Now assume that this statement is true for #(S) = k

i.e $\#(S) = k \& T \subseteq S \Rightarrow T$ is finite set.

• Now, lets prove it for #(S) = k + 1

As *S* is finite, it has bijection with N_{k+1}

$$S = \{f(1), f(2), \dots f(k+1)\}\tag{2.18}$$

lets define, $S_1 = S - f(k+1)$

$$\therefore \#(S)_1 = k \text{ and } T_1 = T - f(k+1) \qquad \qquad \#(S_1)$$

Now, if $f(k+1) \notin T \Rightarrow T_1 = T \subseteq S_1$

and as $\#(S)_1 = k \& T \subseteq S_1 \subseteq T$ is finite

if
$$f(k+1) \in T_1 \Rightarrow T_1 = T - f(k+1) \subseteq S_1$$

 $T_1 \subseteq S_1, \#(S_1) = k \Rightarrow T_1 \text{ is finite} \Rightarrow T \text{ is finite}.$

-Hence Proved-

Hence, if *T* is infinite \Rightarrow *S* is also infinite.

61

enumerable

Definition 2.3.9 (Countably Infinite): A set is said to be denumerable or countably infinite if there exists bijection of \mathbb{N} onto S.

Definition 2.3.10 (Countable Set): A set S is said to be countable if it is either finite or denumerable.

Definition 2.3.11 (Uncountable Set): A set S is said to be uncountable if it is not countable.

The following statements are equivalent (

- 1. S is a countable set
- 2. \exists surjection of \mathbb{N} onto S
- 3. \exists injection of *S*onto \mathbb{N}

Example

- 1. Set of even/odd numbers are denumerable.
- 2. Set of all integers (denumerable).
- 3. The union of two disjoint denumerable sets is again denumerable.
- 4. The sets $\mathbb{N}, \mathbb{N}^2, \mathbb{N}^n$ are denumerable.

Theorem 2.3.3. Suppsose that S&T are sets and $T\subseteq S$

- a) If S is countable, then T is a countable set.
- b) If T is an uncountable then S is an uncountable Set.

Theorem 2.3.4. The Set \mathbb{Q} of rational numbers is denumerable.

Proof. lets prove it for \mathbb{Q}^+ first.

$$\mathbb{Q} = \left\{ \frac{p}{q}, q \neq 0 \right\}, \mathbb{Q}^+ = \left\{ 1, \frac{1}{2}, \dots, \frac{2}{1}, \frac{2}{2}, \frac{2}{3} \right\}$$

We can map \mathbb{Q}^+ with \mathbb{N}^2 however, mapping will not be injection as

$$\frac{1}{1} = \frac{2}{2} = \frac{3}{3} \dots \text{ or } \frac{1}{2} = \frac{2}{4} = \frac{3}{6} \dots$$

To proceed $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ is countable.

lets define, $g: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}^+$ is mapping of ordered pairs < m, n > into rational no $\frac{m}{n}$

$$\frac{1}{1}\frac{1}{2}\frac{1}{3}\frac{1}{4}\dots$$

$$\frac{2222}{1234}$$
...

$$\frac{3333}{1234}$$
...

•

•

$\Rightarrow \mathbb{Q}^+$ is countable

Similarly, \mathbb{Q}^- is also countable

So, $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^-$ is countable.... (: Union of two disjoint denumerable sets is again denumerable)

• Countable union of countable sets again countable.

2.4 Archemedian Property

If $x \in \mathbb{R}$, then there exists $n_x \in \mathbb{N}$ subject to $x < n_x$.

Proof. By method of contradication,

$$x \in \mathbb{R}, n_x < x \forall n_x \in \mathbb{N}$$

 \therefore *x* is upper bound for set \mathbb{N}

By completeness property, the set which has upper bound must have supremum (says)

M.Sc. (Statistics) Lecture Notes Chapter 2. Sets Operations

$$n_x < u n_x \in \mathbb{N}$$

$$n_{x+1} \le u \forall n_x$$

$$n_x \le u - 1 \forall n_x$$

 $\therefore u-1$ is also upper bound < u (by definition)

But we know that, Supremum is the least upper bound i.e there exits no other upper bound which is less than u.

So our assumption is wrong.

Hence, $x < n_x, x \in \mathbb{R}$

Corollary 2.4.0.1. *If*
$$S = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\}$$
 then inf $S = 0$

Proof. $S \neq \phi$ and 0 is lower bound of S.

 \therefore By completeness Property, set S has infimum (v)

Let,
$$\varepsilon \in \mathbb{R}$$
, $\frac{1}{\varepsilon} > 0 \Rightarrow \frac{1}{\varepsilon} \in \mathbb{R}$

... By archemedian property

$$\exists n \in \mathbb{N}, 0 < \frac{1}{\varepsilon} < n \Rightarrow 0 < \frac{1}{n} < \varepsilon \Rightarrow 0 \text{ is inf } (S)$$

Corollary 2.4.0.2. *If* t > 0, $\exists n_t \in \mathbb{N} \Rightarrow 0 < \frac{1}{n_t} < t$

Proof.
$$t > 0, \frac{1}{t} > 0 \Rightarrow \frac{1}{t} \in \mathbb{R}$$

∴ By archemedian property, $\exists n \in \mathbb{N}$ subject to $\frac{1}{t} < n_t, \exists n_t \in \mathbb{N}$

$$\Rightarrow 0 < \frac{1}{n_t} < t$$

Corollary 2.4.0.3. *If*
$$y > 0$$
, $\exists n_y \in \mathbb{N} \exists n_{y-1} \le y < n_y$

Proof. Given that y > 0 i.e $y \in \mathbb{R}$

 $y < n_y, \exists n_y \in \mathbb{N} \dots$ By archemedian property

$$E_y = \{ n \mid y < n, n \in \mathbb{N} \}$$

 \Rightarrow *y* is lower Bound of E_y

 \Rightarrow least element of E_y is $\inf(n_y)$

$$\Rightarrow n_{y-1} \le y < n_y$$

Theorem 2.4.1 (Density Theorem). *If* $x \otimes y$ *are any real numbers with* x < y, *then* \exists *a ratioanl*

numbers $r \in \mathbb{Q}$ *such that* x < r < y

Proof. assume x > 0, $x \in \mathbb{R}$

Given,
$$x > y \Rightarrow y - x > 0$$
, $y - x \in \mathbb{R}$

$$\exists n \in \mathbb{N}, \frac{1}{n} < y - n \dots (corollarly 2.4.0.2)$$

$$x,y \in \mathbb{R}$$
, $x < y \Rightarrow y - x > 0$

$$= 3 + x \in \mathbb{R}$$

$$= x < x < y$$

$$1 < ny - nx$$

$$nx+1 < ny$$

$$1 < \eta y - \eta_{*} \chi \tag{2.19}$$

Also, $x > 0 \Rightarrow n_x > 0$ then $\exists m \in \mathbb{N}$ such that $m - 1 \le n_x < m, \dots (corollarly 2.4.0.3)$

Chapter 2. Sets Operations M.Sc.(Statistics) Lecture Notes

from (2.19)

 $\Rightarrow x < r < y$, where $r = \frac{m}{n}$ = rational number

-Hence Proved-

68

Corollary 2.4.1.1. If x and y are any real numbers with x < y then \exists an irrational number $r \in \mathbb{Q}^c \ni x < r < y$

Proof. By density theorem,

If x < y then $\exists r_1 \in \mathbb{Q} \ni x < r_1 < y$. Here x < y

$$\therefore \sqrt{2}x < \sqrt{2}y$$

$$\sqrt{2}x < r_1 < \sqrt{2}y$$

$$x < \frac{r_1}{\sqrt{2}} < y$$

$$x < r < y \quad \text{where} \quad r = \frac{r_1}{\sqrt{2}} = \text{irrational number}$$

-Hence Proved-

Intervals:-

- $[a, b] = \{x/a \le x \le b\} = \text{Closed}$
- $(a, b) = \{x/a \le x \le b\} = Open$
- $[a, b) = \{x/a \le x \le b\}$ = Half Closed- Half Open
- $(a, b] = \{x/a \le x \le b\} = \text{Half Closed- Half Open}$

Intersection:-

Finite :-
$$\bigcap_{i=1}^{n} \left[0, \frac{1}{n}\right]$$

Arbitrary:-

$$\bigcap_{i=1}^{\infty} = \{0\}$$

$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right) = \phi$$

$$\bigcap_{n=1}^{\infty} (n, \infty) = \phi$$

$$\bigcup_{n=1}^{\infty} (-n, n) = \{-\infty, \infty\}$$

$$\bigcap_{n=1}^{\infty} (-n, n) = \{-1, 1\}$$

$$\bigcap_{n=1}^{\infty} \left[-1, 1 + \frac{1}{n} \right] = [-1, 1]$$

$$\bigcup_{n=1}^{\infty} \left[-1, 1 - \frac{1}{n} \right] = [-1, 1]$$

$$\bigcap_{n=1}^{\infty} [-n, n] = [-1, 1]$$

$$\bigcap_{n=1}^{\infty} [-n, n] = (-\infty, \infty)$$

Theorem 2.4.2. \mathbb{R} *is uncountable.*

Proof. Assume that \mathbb{R} is countable so does (0,1) is countable.

We can write one-one correspondence with ${\mathbb N}$ as,

$$b_1 = 0.a_{11}a_{12}a_{13}... \neq C$$

$$b_2 = 0.a_{21}a_{22}a_{23}... \neq C$$

$$b_3 = 0.a_{31}a_{32}a_{33}... \neq C$$

:

:

:

$$b_i = 0.a_{i1}a_{i2}a_{i3}...a_{ii} \neq C$$

$$b_i = 0.C_1C_2C_3... \in (0,1)$$

$$C_1 \neq a_{11}$$

$$C_2 \neq a_{22}$$

$$C_3 \neq a_{33}$$

:

:

$$C_i \neq a_{ii}$$

As $C_i \neq a_i$ there does not exists any $C_i \neq C$

- ⇒ Our counting Scheme is wrong.
- \Rightarrow Our assumption is wrong.
- \Rightarrow (0,1) must be uncountable.
- $\Rightarrow \mathbb{R}$ is uncountable.

M.Sc. (Statistics) Lecture Notes

Chapter 2. Sets Operations

2.5 Cauchy Schwartz Inequality

Let $a_i, b_i \in \mathbb{R} \forall i$ then

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

Proof. let $x \in \mathbb{R}$ then,

$$a_i x + b_i \in \mathbb{R} \dots : a_i, b_i \in \mathbb{R}$$

$$\therefore (a_i x + b_i)^2 \ge 0$$

$$a_i^2 x^2 + 2a_i x b_i + b_i^2 \ge 0$$

$$\Rightarrow (\sum_{i=1}^{n} a_i^2) x^2 + 2(\sum_{i=1}^{n} a_i b_i) x + \sum_{i=1}^{n} b_i^2 \ge 0$$

Chapter 2. Sets Operations

M.Sc. (Statistics) Lecture Notes

$$Ax^2 + 2Bx + C \geqslant 0 \tag{2.20}$$

where,

$$A = \sum_{i=1}^{n} a_i^2, B = \sum_{i=1}^{n} a_i b_i, C = \sum_{i=1}^{n} b_i^2$$

let
$$x = \frac{-B}{A}$$

: from (2.20)

$$A\left(\frac{B}{A}\right)^{2} + 2B\left(\frac{-B}{A}\right) + C \ge 0 \Rightarrow \frac{B^{2}}{A} - \frac{2B^{2}}{A} + C \ge 0$$
$$\Rightarrow \frac{-B^{2}}{A} + C \ge 0$$

$$\Rightarrow C \geqslant \frac{B^2}{A}$$

$$\Rightarrow A \cdot C \geqslant B^2$$

$$\Rightarrow B^2 \geqslant A \cdot C$$

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

-Hence Proved-

Note:-

Equality hold if a_i and b_i is equal to zero.

If
$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$
 then $Ax^2 + 2Bx + C = 0$

Chapter 2. Sets Operations

M.Sc.(Statistics) Lecture Notes

Chapter 3

Elements of Point Set Topology

3.1 Terminology and Notations

Definition 3.1.1 (Member of a set): If an element x is in a set A, we write $x \in A$ and say that x is a member of A, or that x belongs to A. If x is not in A, we write $x \notin A$

Definition 3.1.2 (Subset): If every element of a set A also belongs to a set B, we say that A is a subset of B and write $A \subseteq B$ or $B \supseteq A$

Definition 3.1.3 (Proper Subset): We say that a set A is a proper subset of a set B if $A \subset B$, but there is at least one element of B that is not in A.

Definition 3.1.4 (Equal Sets): Two sets A and B are said to be equal, and we write A = B, if they contain the same elements. i.e. $A \subseteq B$ and $B \supseteq A$.

A set is normally defined by either listing its elements explicitly, or by specifying a property that determines the elements of the set.

- The set of natural numbers $\mathbb{N} := \{1, 2, 3, \dots, \}$
- The set of integers $\mathbb{Z} := \{0, 1, -1, 2, -2, 3, -3, \dots, \}$
- The set of rational numbers $\mathbb{Q} = \{m/n : m, n \in \mathbb{Z} \ and \ n \neq 0\}$,
- ullet The set of real numbers ${\mathbb R}$

Definition 3.1.5 (Open Set): A subset G of \mathbb{R} is open in \mathbb{R} if for each $x \in G$ there exists a neighbourhood \forall of x such that $v \subseteq G$.

Definition 3.1.6 (Closed set): A subset f of \mathbb{R} is closed in \mathbb{R} if the complement f^C is open in \mathbb{R}

G is open iff for $x \in G\exists \in x > 0$

$$x \in (x - \varepsilon_x, x + \varepsilon_x) \subseteq G$$

e.g. $(-\infty, \infty) = \mathbb{R}$ - open as well as closed

(0,1) - open

(*a*, *b*) - open

 $[a,\infty)$ - not open but closed

[*a*, *b*] - not open but closed

 ϕ - open and closed

[*a*, *b*) - neither open nor closed

(*a*, *b*] - neither open nor closed

 $\mathbb Q$ - not closed not open

 \mathbb{N} - closed but not open

 ${\mathbb I}$ - closed but not open

Definition 3.1.7 (Interior point): For some $x \in s$ if \exists open interval $I_x \ni x \in I_x \subseteq then x$ is called interior point of set S.

Definition 3.1.8 (Interior of Set): Collection of all interior point is called interior of set (S_i) .

example $S = \{[0, 1], [0, 1), (0, 1]\}, S_i(0, 1)$

Theorem 3.1.1. Finite union of open sets is open.

Proof. let *A* and *B* be two finite open sets.

Claim- $A \cup B$ is open set.

 \therefore *A* & *B* be two open set.

 $\Rightarrow \forall x \in A, \exists I_x \subseteq A \text{ and } \forall x \in B \exists I_x \subseteq B$

let $x \in A \cup B$

 $x \in A$ or $x \in B$

 $\therefore x \in I_x \subseteq A$ or $x \in I_x \subseteq B$

 $\Rightarrow x \in I_x \subseteq A \cup B$

 $\Rightarrow A \cup B$ is open set.

Theorem 3.1.2. Finite intersection of open set is open.

Proof. let *A* & *B* be two open sets.

claim- $A \cap B$ is open.

let $x \in A \cap B$

 $\therefore x \in A$ or $x \in B$

 $\Rightarrow \exists I_x \ni x \in I_x \subseteq A$ and $x \in I_x \subseteq B$

 $\Rightarrow x \in I_x \subseteq A \cap B$

 $\Rightarrow A \cap B$ is open set.

Theorem 3.1.3. Arbitary union of open sets is open.

Proof. $let\{A_i\}_{i=1}^{\infty}$ be collection of open sets.

claim- $\bigcup_{i=1}^{\infty} A_i$ is open set

$$letx \in \bigcup_{i=1}^{\infty} A_i$$

 $\Rightarrow x \in A_j$, for some $j \in I$

 $\Rightarrow x \in I_x \subseteq A_j$, for some $j \in I$

$$\Rightarrow x \in I_x \subseteq A_j \subseteq \bigcup_{i=1}^{\infty} A_i$$

$$\therefore \bigcup_{i=1}^{\infty} A_i \text{ is open set.}$$

Theorem 3.1.4. Arbitary intersection of open sets may or may not be open set.

Proof. Set
$$S_n = \left(1 - \frac{1}{n}, 1 + \frac{1}{n}\right)$$

$$\bigcap_{n=1}^{\infty} S_n = \{1\} \text{ which is not open set.}$$

Theorem 3.1.5. Finite union of two closed set is closed.

Proof. let *A* & *B* closed set.

Claim- $A \cup B$ is closed set.

Since, $A^C \& B^C$ are open sets.

 $\Rightarrow A^C \cap B^C$ is open set.

 $\Rightarrow (A \cup B)^C$ is open set

 $\Rightarrow A \cup B$ is closed set

Theorem 3.1.6. Finte intersection of two closed set is closed.

Proof. let *A* & *B* two closed set.

 $\Rightarrow A^C \& B^C$ are two open sets.

 $\Rightarrow A^C \cup B^C$ is again open set.

 $\Rightarrow (A \cap B)^C$ is open set

 $\Rightarrow A \cap B$ is closed set

Theorem 3.1.7. Arbitary union of closed sets may not be closed.

Example 17:

[Counter example] $A_n = [0, n], \cup A_n[0, \infty)$ -closed

$$A_n = \left[0, 1 - \frac{1}{n}\right]$$

$$A_1 = \{0\}$$

$$A_2 = \left[0, \frac{1}{2}\right] \cup A_n[0, 1) \text{ -not closed}$$

$$A_3 = \left[0, 1 - \frac{1}{3}\right] \dots (\cdot \cdot \cdot (-\infty, 0) \cup [1, \infty) \text{ -not open})$$

Theorem 3.1.8. Every open set is union of open intervals.

Proof. Suppose $S = \{x_1, x_2, x_3\}$

let S be an open set, $S = \{x_1, x_2, x_3 ...\} = \{x_i\}$

for each $x_i \in I_{x_i} \subseteq S$

$$\{x_i\} \subseteq I_{x_i} \subseteq S$$

$$S = \bigcup \{x_i\} \subseteq \bigcup_{i \in I} \subseteq I_{x_i} \subseteq S$$

Hence, Every open set is union of open intervals.

Theorem 3.1.9. *Interior of set is open set.*

Proof. Given that, Let S^i is interior.

S is open set.

Claim-
$$x \in S^i$$
, $\exists I_x \in S^i \ni x \in I_x \subseteq S^i$

let $x \in S^i$

 \Rightarrow *x* is interior point of *S*

$$\Rightarrow x \in I_x \subseteq S^i$$

let
$$y \in I_x \Rightarrow y \in S \Rightarrow y \in I_x \subseteq S$$

$$\Rightarrow y \in S^i, y \in I_x$$

 \therefore *y* is also interior point of *S*

this is true for all $y \in I_x$

$$I_x \subseteq S^i \Rightarrow x \in I_x \subseteq S^i$$

 \Rightarrow S^i is open set.

Theorem 3.1.10. *Interior of set is largest open subset of set.*

Proof. let $S \subseteq \mathbb{R}$, S^i is interior set of S.

Claim:- $S^i \subseteq S$ is largest open set.

We prove this by method of contradiction

Assume that, *T* is largest open subset of set *S*.

(S^i is not largest) i.e $S^i \subseteq T \subseteq S$

 S^i is proper subset of T

Since, $S^i \in T$

 \exists some $x \in T, x \notin S^i$

Now, $x \in T \subseteq S \Rightarrow x$ is interior point of S

This contradicts to our assumption that $x \notin S^i$

... Our assumption is wrong.

Hence, Interior of set is largest open subset.

Definition 3.1.9 (Limit point of set): Let c be the limit point of set S if for any $\varepsilon > 0$, $\exists x \in S \ni$

$$0 < |x - c| < \varepsilon$$

$$i.e - \varepsilon < x - c < \varepsilon$$

i.e
$$c - \varepsilon < x < c + \varepsilon$$

i.e
$$x \in \delta_{\varepsilon}(c)$$

$$\Rightarrow \#(\delta_{\varepsilon} \cap A) \neq 0$$

example-
$$S = \left\{ \frac{1}{n}, n \in \mathbb{R} \right\}$$
, 0 is l imit point of S .

Definition 3.1.10 (Derived Set): The set of all limit points of Set S is called the derived set of S and denoted by S'

 $S' = \{c/c \text{ is limit point of } S\}$

Definition 3.1.11 (Closed Set): The set S is said to be closed set if it contains all of its limit points (i.e $S' \subseteq S$)

Definition 3.1.12 (Closure Set): $S = S \cup S'$

Example 18:

1.
$$S = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\}$$
, $S = \{0\} \notin S$ [Neither open nor closed]

$$\overline{S} = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\} \cup \{0\}$$

2.
$$S = \mathbb{Q}$$
, $S' = \mathbb{R}\overline{S} = \mathbb{R}$

3.
$$S = \mathbb{I}$$
, $S' = \phi \overline{S} = \mathbb{I}$

4.
$$S = \mathbb{N}, S' = \phi \overline{S} = \mathbb{N}$$

Note:- If *S* is closed then $S = \overline{S}$

Theorem 3.1.11. *Let* $S \subseteq T$ *then* $S' \subseteq T'$

Proof. Let $c \in S'$

M.Sc.(Statistics) Lecture Notes

 \Rightarrow *c* is limit point of *S*

for any $\varepsilon > 0$, $\delta_{\varepsilon}(c) \cap S \neq \phi$

- $\Rightarrow \delta_{\varepsilon}(c) \cap T \neq \phi \text{ as } S \subseteq T$
- \Rightarrow c is limit point of T
- $\Rightarrow c \in T'$
- $\therefore S' \subseteq T'$

Theorem 3.1.12. *Show that* $(S \cup T)' = S' \cup T'$

Proof. To prove, $(S \cup T)' = S' \cup T'$

i.e

- a) $(S \cup T)' \subseteq S' \cup T'$
- b) $S' \cup T' \subseteq (S \cup T)'$

• first we prove part b)

$$S \subseteq S \cup T \Rightarrow S' \subseteq (S \cup T)'$$

$$T \subseteq S \cup T \Rightarrow T' \subseteq (S \cup T)'$$

$$\Rightarrow S' \cup T' \subseteq (S \cup T)' \tag{3.1}$$

- a) let $c \in (S \cup T)'$
 - \Rightarrow *c* is limit points of $S \cup T$

$$\Rightarrow \exists S \cup T \ni x \in \delta_{\varepsilon}(c)$$

$$\Rightarrow x \in S \ni x \in \delta_{\varepsilon}(c) \text{ or } x \in T \ni x \in \delta_{\varepsilon}(c)$$

- \Rightarrow c is limit point of S or c is limit point of T
- $\Rightarrow c \in S' \text{or} c \in T'$
- $\Rightarrow c \in S' \cup T'$

$$(S \cup T)' \subseteq S' \cup T' \tag{3.2}$$

from (3.1) and (3.2)

$$(S \cup T)' = S' \cup T'$$

Theorem 3.1.13. Finite intersection of two closed set is closed.

Proof. let *S* & *T* be two closed sets.

$$\therefore S' \subseteq S \text{ and } T' \subseteq T$$

Claim: $S \cap T$ is closed

i.e
$$(S \cap T)' \subseteq (S \cap T)$$

We know,

$$S \cap T \subseteq S \Rightarrow (S \cap T)' \subseteq S' \subseteq S$$

$$S \cap T \subseteq T \Rightarrow (S \cap T)' \subseteq T' \subseteq T$$

$$(S \cap T)' \subseteq (S \cap T)$$

 $\therefore S \cap T$ is closed set.

Theorem 3.1.14. *let* S & T *be subsets of* \mathbb{R} , $S' \cap T'$ *may or may not be subset of* $S \cap T'$

Proof. :
$$S' = [1,2], T'[2,3]$$

$$(S \cap T) = \phi \& S' \cap T' = \{2\}$$

$$\Rightarrow (S' \cap T')' = \phi$$

$$\therefore S' \cap T' \nsubseteq (S' \cap T')'$$

Definition 3.1.13 (Dense Set): A Subset $A \subseteq \mathbb{R}$ is said to be dense set in \mathbb{R} if every point of \mathbb{R} is point of A or limit point of \mathbb{R} or equivalently if closure of A is \mathbb{R}

$$\overline{A} = A' \cup A = \mathbb{R}$$

- A set *A* is said to be dense in itself if $\overline{A} = A$
- A set A is said to be nowhere dense relative to $\mathbb R$ if no neighborhood of $\mathbb R$ is contained in the closure of A
- A set is said to be perfect if it is identical with its derived set or equivalently a set which is closed and dense in itself.

Theorem 3.1.15. Set is closed if and only if its complement is open.

Proof. a) let *S* be closed set

To prove- S^c is open.

let $x \in S^c$

 \Rightarrow *x* is not limit point of $S(\overline{S} = S)$

for some $\varepsilon > 0$, $V_{\varepsilon}(x) \cap S = \phi$

$$(x - \varepsilon, x + \varepsilon) \subseteq S^c$$

 $\therefore S^c$ is open.

b) let S^c is open set

To prove- *S* is closed set

By method of contradiction,

Assume that *S* is not closed.

 \therefore \exists some limit point of x of $S \ni x \notin S$

$$\Rightarrow x \in s^c$$

for some $\varepsilon > 0 \exists (x - \varepsilon, x + \varepsilon) \subseteq S^c \dots (: S^c \text{ is open set})$

$$v_{\varepsilon}(x) \cap S = \phi$$

which is not possible as *x* is limit point

- \Rightarrow Our Assumption is that $x \ni S$ is wrong
- \Rightarrow All limit point of S are in S
- \Rightarrow is closed set.

Theorem 3.1.16. Derived set of set is closed.

Proof. let $S \subseteq \mathbb{R}$, S' is derived set of S.

To prove- S' is closed i.e $(S')' \subseteq S' = S'$

let $c \in S'' \Rightarrow c$ is limit point of S'

i.e every $\varepsilon - neighborhood\ v$ of c contains at least one point x of $S' \ni x \neq c$

i.e $x \in S' \Rightarrow x$ is limit point of set S.

 \therefore Every ε neighborhood v of x contains at least one point of S.

As $x \in v$, v is also a ε neighborhood of x

 $\therefore v$ contains atleast one point of S.

In this way, we can prove that, every ε neighborhood v of c contains infintly many points of S.

 \therefore *C* is limit point of set *S* .

Also $c \in S'$

As $c \in S'' \Rightarrow c \in S'$, $S'' \subseteq S' \Rightarrow S'$ is closed set when $S'' = \phi$

then $S'' \subseteq S' \Rightarrow S'$ is closed set.

3.2 Compact Set

Definition 3.2.1 (Open Cover): Let A be a subset of \mathbb{R} . An open cover of A is an collection $G = \{G_{\alpha}\}$ of open sets in \mathbb{R} whose union contains A i.e

$$A \subseteq \cup_{\alpha} G_{\alpha}$$

Definition 3.2.2 (Subcover): if G' is subcollection of sets from G such that the union of sets in G' also contains A then G' is called a subcover of G

Definition 3.2.3 (Finite Subcover): A subset k of \mathbb{R} is said to be compact if every open cover of \mathbb{R} has finite subcover.

Example 19:

1.
$$S = (0,1), G_i = \left(0, 1 - \frac{1}{1}\right)$$

 $\cap G_i = (0,1) \supseteq (0,1)$
 $\cap G_i = \left(0, 1 - \frac{1}{n}\right) \nsubseteq (0,1)$
 $\therefore (0,1)$ is not compact

2. N is not compact

3.3 Heine Borel theorem

Theorem 3.3.1 (Heine Borel theorem). *The set k is compact set if and only if it is closed* & *bounded*.

Proof. Given that, *k* is compact set.

i.e Every open cover exists finite subcover.

claim- k is bounded & closed.

1. *k* is bounded

$$G_i = (-i, i), G = \mathbb{R}$$

$$\bigcup_{i=1}^{n} G_i = (-n, n), k \subseteq (-n, n)$$

 $\therefore k$ is bounded

2. k is closed i.e k^c is open

let $x \in k^c$

$$G_n = \left(-\infty, x - \frac{1}{n}\right) \cup \left(x + \frac{1}{n}, \infty\right)$$

$$G_1 = (-\infty, x-1) \cup (x+1, \infty)$$

$$G_2 = \left(-\infty, x - \frac{1}{2}\right) \cup \left(x + \frac{1}{2}, \infty\right)$$

. . .

. . .

. . .

$$G_n = \left(-\infty, x - \frac{1}{n}\right) \cup \left(x + \frac{1}{n}, \infty\right)$$

 $\therefore k$ is closed.

Hence, from a) and b),

k is compact if and only if it is closed and bounded.

Chapter 4

Sequence and Series

Definition 4.0.1 (Sequence and Series): A sequence of real numbers is function defined on the set \mathbb{N} whose range is contained in the set $\mathbb{R}(x : \mathbb{N} \to \mathbb{R})$

Denoted by x, (x_n) , $(x_n, n \in \mathbb{N})$

example
$$\frac{1}{n}$$
, $\frac{1}{n^2}$, $2n$, $n^2 + 1$, $n^2 - n$

- Constant Sequence- $x_n = x, \forall n \in \mathbb{N}$
- *Increasing Sequence*- $x_n \le x_{n+1}$, $\forall n \in \mathbb{N}$

- Strictly increasing sequence- $x_n < x_{n+1} \forall n \in \mathbb{N}$
- Decreasing Sequence- $x_n \ge x_{n+1}, \forall n \in \mathbb{N}$
- *Strictly Decreasing Sequence-* $x_n > x_{n+1}$, $\forall n \in \mathbb{N}$

Definition 4.0.2 (Fibonacci Sequence): $x_1, x_2, x_{n+2} = x_{n+1} + x_n$

• <u>Limit of Sequence-</u> A Sequence $(x_n) \in \mathbb{R}$ is said to be converage to $x \in \mathbb{R}$ or x is said to be limit of (x_n) if for every $\varepsilon > 0 \exists > 0$ $k(\varepsilon) \in \mathbb{N}$ such that

$$|x_n - x| < \varepsilon, \forall n \ge k(\varepsilon)$$

If sequence has <u>limit</u>, we say that sequence is convergent. IF it has <u>no limit</u> has no limit, we say that is divergent.

$$lim(x_n) = x \ or \ x_n \rightarrow x$$

• Ocillating Sequence: $(x_n) = (-1)^n$, $n \in \mathbb{N}$ - (non convergent)

$$(x_n) = \frac{(-1)^n}{n}, n \in \mathbb{N}$$

Definition 4.0.3 (Uniqueness of limit point): A sequence in \mathbb{R} have atmost limit point one.

let x_1 & x_2 be two limit points of x_n

$$\therefore \text{ for any } \varepsilon > 0 \ \forall, \ n \ge k_1(\varepsilon) \ \& \ |x_n - x_1| < \varepsilon$$

$$\exists k_1(\varepsilon) \in \mathbb{N} \ni |x_n - x_1| < \varepsilon, \forall n \geqslant k_1(\varepsilon)$$

$$\exists \ k_2(\varepsilon) \in \mathbb{N} \ni |x_n - x_2| < \varepsilon, \ \forall \ n \geqslant k_2(\varepsilon)$$

$$k(\varepsilon) = max(k_1(\varepsilon), k_2(\varepsilon))$$

$$\forall n \in \mathbb{N} \ni n \ge k(\varepsilon)$$

$$|x_1 - x_2|$$

$$= |x_1 - x_n + x_n - x_2|$$

$$\leq |x_n - x_1| + |x_n - x_2|$$

$$\leq \varepsilon + \varepsilon$$

 $\leq 2\varepsilon$

As this statement is true for any $\varepsilon > 0$, $x_1 = x_2$

Hence, Sequence have atmost one limit point.

Definition 4.0.4 (Tail Sequence): If $\{x_1, x_2, ...\}$ is sequence of real numbers and if m is given natural number then m-t ail of x_n is sequence

$$x_m = \{x_{m+n}/x_{m+1}, x_{m+2}...\}$$

Theorem 4.0.1. Let x_n be sequence of real numbers and let $m \in \mathbb{N}$ then $m - tail\ x_m$ of x_n converges if & only if x_n converges.

Proof. Let
$$x_n \to x$$
 i.e $\lim_{n \to \infty} x_n = x$

 \Rightarrow for any $\varepsilon > 0$, $\exists k(\varepsilon) \in \mathbb{N}$

such that $|x_n - x| < \varepsilon$, $\forall n \ge k(\varepsilon)$

$$\Rightarrow x - \varepsilon < x_n < x + \varepsilon, \ \forall n \ge k(\varepsilon)$$

$$\Rightarrow x - \varepsilon < x_k, x_{k+1}, \ldots < x + \varepsilon$$

$$let y_n = x_{m+n}, n$$

$$\Rightarrow x - \varepsilon < y_{k-m}, y_{k+1-m}, \ldots < x + \varepsilon$$

$$\Rightarrow x - \varepsilon < y_n < x + \varepsilon \forall n \ge k(\varepsilon) - m = k_1(\varepsilon)$$

$$\Rightarrow |y_n - x| < \varepsilon \, \forall \, n \ge k_1(\varepsilon)$$

$$y_n \to x$$

-Hence proved-

Theorem 4.0.2. Let x_n be a sequence of real numbers and $x \in \mathbb{R}$ if a_n is sequence of positive real numbers with $\lim a_n = 0$ and if for some constant c > 0 and some $m \in \mathbb{N}$, we have $|x_n - x| \le ca_n$, $\forall n \ge m$ then it follows that $\lim x_n = x$

Proof. Given that $lima_n = 0$

i.e
$$a_n \rightarrow 0$$

$$\therefore$$
 by definition, for any $\varepsilon > 0$, $\frac{\varepsilon}{c}$ ($\because c > 0$)

 $\exists k(\varepsilon) \in \mathbb{N} \text{ such that }$

$$|a_n - 0| < \frac{\varepsilon}{c}$$
 $a_n < \frac{\varepsilon}{c} \dots (\because a_n > 0)$

let
$$k_1(\varepsilon) = max(m_1k_1(\varepsilon))$$

$$\forall n \geq k_1(\varepsilon)$$

$$|x_n-x|$$

$$\leq ca_n$$

$$\leq c(\varepsilon/c)$$

$$\leq \varepsilon, \forall n \geq k_1(\varepsilon)$$

$$\therefore x_n \to x$$

Definition 4.0.5 (Bounded Sequence): A Sequence of real numbers x_n is said to be bounded if $\exists m > 0$ such that $|x_n| \le m, \forall n \in \mathbb{N}$

Theorem 4.0.3. The Convergent sequence of real numbers is bounded.

Proof. let $x_n \rightarrow x$

 \therefore by definition, for any $\varepsilon > 0$, $\exists k(\varepsilon) \in \mathbb{N}$

such that $|x_n - x| < \varepsilon, \forall n \ge k(\varepsilon)$

$$\therefore x - \varepsilon < x_n < x + \varepsilon, \forall n \ge k(\varepsilon)$$

let

$$M = max\{|x_1|, |x_2|, \dots |x_k|, x + \varepsilon\}$$

$$|x_n| \leq M, \forall n$$

 $\Rightarrow x_n$ is bounded.

-Hence Proved-

Theorem 4.0.4. *a)* Let x_n and y_n be sequence of real numbers that converges to x and y respectively and let $c \in \mathbb{R}$ then, the sequence X + Y, X - Y, XY and CX converges to x + y, x - y, xy and cx

b) If $x_n \to x$ and z_n is sequence of non-zero real numbers that converges to z and if $z \neq 0$ then

$$\frac{X}{Z} \to \frac{x}{z}$$

Proof. a) given that $x_n \to x$

 \therefore by definition, for any $\varepsilon > 0, \frac{\varepsilon}{2} > 0$

 $\exists k_1(\varepsilon) \in \mathbb{N}$ such that

$$|x_n - x| < \varepsilon/2, \forall n \ge k_1(\varepsilon)$$

also,
$$y_n \rightarrow y$$

 \therefore by definition, for any $\varepsilon > 0, \frac{\varepsilon}{2} > 0$

 $\exists k_2(\varepsilon) \in \mathbb{N}$ such that

$$|y_n - y| < \varepsilon/2, \forall n \ge k_2(\varepsilon)$$

let
$$k(\varepsilon) = max(k_1(\varepsilon), k_2(\varepsilon))$$

$$\therefore \forall n \ge k(\varepsilon)$$

i)
$$|(x_n + y_n) - (x + y)| = |x_n - x + y_n - y|$$

$$\leq |x_n - x| + |y_n - y| \dots$$
 (triangular inequality)
 $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$

 $\leq \varepsilon$

$$\therefore (x_n + y_n) \rightarrow (x + y)$$

ii)
$$|(x_n - y_n) - (x + y)| = |x_n - x - y_n - y|$$

 $\leq |x_n - x| + |y_n - y| \dots$ (triangular inequality)
 $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$

 $\leq \varepsilon$

$$\therefore (x_n - y_n) \to (x - y)$$

iii) $x_n \rightarrow x$

 \therefore by definition, for any $\varepsilon > 0, \frac{\varepsilon}{2M} > 0, \dots (\because M > 0)$

 $\exists k_1(\varepsilon) \in \mathbb{N}$ such that

$$|x_n - x| < \varepsilon/2M, \forall n \ge k_1(\varepsilon)$$

also,
$$y_n \rightarrow y$$

$$\therefore$$
 by definition, for any $\varepsilon > 0, \frac{\varepsilon}{2|x|} > 0, \dots (\because |x| > 0)$

 $\exists k_2(\varepsilon) \in \mathbb{N} \text{ such that }$

$$|y_n - y| < \varepsilon/2|x|, \forall n \ge k_2(\varepsilon)$$

let
$$k(\varepsilon) = max(k_1(\varepsilon), k_2(\varepsilon))$$

$$\therefore \forall n \ge k(\varepsilon)$$

$$|(x_n y_n) - (xy)| = |x_n y_n - x y_n + x y_n - xy|$$

$$\leq |y_n||x_n - x| + |x_n||y_n - y|...$$
 (triangular inequality)

$$\leq M \tfrac{\varepsilon}{2M} + |x| \tfrac{\varepsilon}{2}$$

$$\leq \varepsilon$$

$$\therefore x_n y_n \rightarrow xy$$

iv)
$$x_n \rightarrow x$$

 \therefore by definition, for any $\varepsilon > 0, \frac{\varepsilon}{|c|} > 0, \dots (\because |c| > 0)$

 $\exists k(\varepsilon) \in \mathbb{N} \text{ such that }$

$$|x_n - x| < \frac{\varepsilon}{|c|}, \forall n \ge k(\varepsilon)$$

$$|(cx_n - cx)| = |c| \cdot |x_n - x|$$

$$\leq |c| \cdot \frac{\varepsilon}{|c|}$$

$$\leq \varepsilon$$

$$\therefore cx_n \rightarrow cx$$

b) $x_n \to x$ and $z_n \to z$

 \therefore by definition, for any $\varepsilon > 0, \varepsilon, |z|, m > 0$

 $\exists k(\varepsilon) \in \mathbb{N} \text{ such that }$

$$|z_n - z| < \varepsilon. |z|.m, \forall n \ge k(\varepsilon)$$

$$let y_n = \frac{1}{z_n}$$

let
$$y_n = \frac{1}{z_n}$$

consider, $|(y_n - x)| = \left|\frac{1}{z_n} - \frac{1}{z}\right|$

$$=\frac{|z-z_n|}{|z_n.z|}$$

$$\leq \frac{\varepsilon.|z|.m}{|z_n|.|z|}$$

$$\leq \frac{\varepsilon.m}{|z_n|}$$

 $\leq \varepsilon \dots (z_n \text{ is bounded } m < z_n < m)$

$$\therefore \frac{1}{x_n} \to \frac{1}{z}$$

$$\therefore y_n \to y$$

we know that, $x_n y_n \to xy \dots (\because \text{if } x_n \to x \& y_n \to y \text{ then } x_n y_n \to xy)$

$$\therefore \frac{x_n}{z_n} \to \frac{x}{y}$$

-Hence Proved-

Theorem 4.0.5. *If* $x_n \to x$ *and if* $x_n \ge 0$, $\forall n \in \mathbb{N}$ *then* $x = \lim x_n \ge 0$

Proof. Given that, $x_n \to x$

 \therefore by definition, for any $\varepsilon > 0$

 $\exists \ k(\varepsilon) \in \mathbb{N}$

such that $|x_n - x| < \varepsilon, \forall n \ge k(\varepsilon)$

we will prove this by method of contradiction.

let if possible x < 0

$$\therefore -x > 0$$

Assume, $0 < \varepsilon < -x$

 $\therefore x - \varepsilon < 0 \text{ and } x + \varepsilon < 0 \&$

 $\therefore x - \varepsilon < x_n < x + \varepsilon, \forall n \ge k(\varepsilon)$

 $\therefore x_n < 0$

which contradicts to given statement that $x_n \ge 0$

: Our assumption is wrong.

 $\therefore x = \lim x_n \ge 0$

-Hence Proved-

Theorem 4.0.6. If $x_n \to x$, $y_n \to y$ are convergent sequence of real numbers and if $x_n \le y_n$, $\forall n \in$

 \mathbb{N} then $\lim x_n \leq \lim y_n$

Proof. Given that, $x_n \to x$, and $y_n \to y$ also, $x_n \le y_n$, $\forall n$

 $\Rightarrow y_n - x_n \ge 0$

$$\Rightarrow z_n \geqslant 0$$

Now,
$$y_n - x_n \rightarrow y - x(sayz)$$

As,
$$z_n \ge 0$$
, $z_n \to z$

 $\therefore z \ge 0 \dots$ (by above theorem)

$$\therefore y - x \ge 0$$

$$\therefore y \ge x$$

$$\therefore x \leq y$$

-Hence Proved

Theorem 4.0.7. *If* x_n *is convergent to some* $x \in \mathbb{R}$ *and* $a \le x_n \le b$, $\forall n$ *then* $a \le x \le b$

Proof. Given that, $x_n \to x$ and $a \le x_n \le b$

let
$$a_n = a \& b_n = b$$

i.e
$$a_n \rightarrow ai.eb_n \rightarrow b$$

$$\therefore a_n \leq x_n \leq b_n$$

i.e
$$a_n \le x_n \& x_n \le b_n$$

 $\lim a_n \le \lim x_n \otimes \lim x_n \le b_n \dots$ (by above theorem)

$$a \le x$$
 and $x \le b$: $a \le x \le b$

-Hence Proved-

4.1 Squeeze Theorem

Theorem 4.1.1. Suppose x_n , y_n and z_n are sequence of real numbers $\ni x_n \leqslant y_n \leqslant z_n$, $\forall n \in \mathbb{N}$ and $\lim x_n \leqslant \lim y_n$ then y_n is convergent and $\lim x_n = \lim y_n = \lim z_n$.

Proof. Given that, $x_n \le y_n \le z_n$, $\forall n$

let, $\lim x_n = \lim z_n = w$

i.e $x_n \to w$ and $z_n \to w$

 \therefore by definition, for any $\varepsilon > 0 \exists$

 $k_1(\varepsilon) \in \mathbb{N}$ and $k_2(\varepsilon) \in \mathbb{N}$ such that

 $|x_n - w| < \varepsilon, \forall n \ge k_1(\varepsilon) \text{ and } |z_n - w| < \varepsilon, \forall n \ge k_2(\varepsilon)$

$$\therefore w - \varepsilon \le x_n \le w + \varepsilon \text{ and } w - \varepsilon \le z_n \le w + \varepsilon$$

$$\therefore w - \varepsilon \le x_n \le y_n \text{ and } y_n \le z_n \le w + \varepsilon$$

$$\therefore w - \varepsilon \leq x_n \leq y_n \leq z_n \leq w + \varepsilon$$

i.e
$$w - \varepsilon \le y_n \le w + \varepsilon$$

i.e
$$|y_n - w| < \varepsilon$$
, $\forall \in k(\varepsilon) = max(k_1(\varepsilon), k_2(\varepsilon))$

$$\therefore y_n \to w$$

$$\lim x_n = \lim y_n = \lim z_n = w$$

Theorem 4.1.2. Given that, $x_n \to x$ then Show that,

$$a) |x_n| \rightarrow |x|$$

b)
$$\sqrt{x_n} \to \sqrt{x}$$

Proof. Given that, $x_n \rightarrow x$

 \therefore by definition, for any $\varepsilon > 0$, $\exists k(\varepsilon) \in \mathbb{N}$

such that $|x_n - x| < \varepsilon, \forall n \ge k(\varepsilon)$

consider,

$$||x_n| - |x||$$

 $\leq |x_n - x| \dots$ (by corollary of triangular inequality)

 $\leq \varepsilon$

$$|x_n| \rightarrow |x|$$

Given that, $x_n \to x$

... by definition, for any $\varepsilon > 0$, $\sqrt{x} > 0$, $\frac{\varepsilon}{\sqrt{x}} > 0$, $\varepsilon \sqrt{x} > 0$

 $\exists k(\varepsilon) \in \mathbb{N} \text{ such that }$

$$|x_n - x| \le \varepsilon \sqrt{x}, \ \forall \ k(\varepsilon) \in \mathbb{N}$$

As,
$$\sqrt{x} > 0$$

$$\therefore 0 < \sqrt{x} < \sqrt{x_n} + \sqrt{x}$$

$$\frac{1}{\sqrt{x}} > \frac{1}{\sqrt{x_n} + \sqrt{x}} \tag{4.1}$$

$$|\sqrt{x_n} - \sqrt{x}|$$

$$=\frac{|\sqrt{x_n}-\sqrt{x}|.|\sqrt{x_n}+\sqrt{x}|}{|\sqrt{x_n}-\sqrt{x}|}$$

$$=\frac{|x_n-x|}{\sqrt{x_n}+\sqrt{x}}$$

$$\leq \frac{|x_n - x|}{\sqrt{x}} \dots \text{ (from 4.1)}$$

$$\leq \frac{\varepsilon.\sqrt{x}}{\sqrt{x}}$$

 $\leq \varepsilon$

$$\therefore \sqrt{x_n} \to \sqrt{x}$$

4.2 Monotone Sequence

- *Monotone decreasing:* $x_n \ge x_{n+1}$, $\forall n$
- *Monotone increasing:* $x_n \le x_{n+1}$, $\forall n$

 x_n is called as monotone if it is increasing or decreasing.

Theorem 4.2.1 (Monotone Convergence theorem). *A monotone sequence of real numbers is convergent if and only if*

a) If x_n is bounded increasing sequence

$$lim(x_n) = Sup\{x_n, n \in \mathbb{N}\}\$$

b) If x_n is bounded decreasing sequence

$$lim(x_n) = Inf\{x_n, n \in \mathbb{N}\}\$$

Proof. We know that, Convergent sequence must be bounded.

Conversly, let x_n be monotone bounded sequence.

a) Assume x_n is increasing and bounded.

As x_n is bounded $M \in \mathbb{R}$, $|x_n| \le M$, $\forall n$

let,
$$S = \{x_n, \forall n \in \mathbb{N}\}$$

M upper bound of *S*

 \therefore By completeness property, $\exists x^* \in \mathbb{R}$

$$\ni x^* = Sup\{x_n, n \in \mathbb{N}\}\$$

$$\therefore x_n \leq x^* \forall \mathbb{N}$$

for any $\varepsilon > 0$ $x^* - \varepsilon$ is not supremum of S

$$\therefore x^* - \varepsilon < x_k \le x^*$$
, for some k

$$\Rightarrow x^* - \varepsilon < x_k \le x_{k+1} \le x_{k+2} \le \dots \le x^*$$

$$\therefore x^* - \varepsilon < x_n < x^*, \forall n \ge k(\varepsilon)$$

$$\therefore x^* - \varepsilon < x_n < x^* + \varepsilon$$

$$\therefore x^* = \lim x_n$$

i.e x_n is convergent sequence.

b) Assume x_n is decreasing and bounded.

As x_n is bounded $M \in \mathbb{R}$, $|x_n| \leq M$, $\forall n$

let,
$$S = \{x_n, \forall n \in \mathbb{N}\}$$

- -M lower bound of S
- \therefore By completeness property, $\exists x^* \in \mathbb{R}$

$$\ni x^* = Inf\{x_n, n \in \mathbb{N}\}$$

$$\therefore x_n \ge x^* \forall \mathbb{N}$$

for any $\varepsilon > 0$ $x^* + \varepsilon$ is not lower bound of S

$$\therefore x^* < x_k < x^* + \varepsilon$$
, for some k

$$\Rightarrow x^* < \ldots \leq x_{k+2} \leq x_{k+1} \leq x_k < x^* + \varepsilon$$

$$\therefore x^* < x_n < x^* + \varepsilon$$

$$\therefore x^* - \varepsilon < x_n < x^* + \varepsilon$$

$$\therefore x^* = \lim x_n$$

i.e x_n is convergent sequence.

Theorem 4.2.2. If x_n converges to x then any subsequences x_{n_k} of x_n also converges to x.

Proof. for any $\varepsilon > 0 \exists k(\varepsilon) \in \mathbb{N}$ such that,

$$|x_n - x| < \varepsilon, \forall n \ge k(\varepsilon)$$

let subsequence $x_{n_k} = \{x_{n_1}, x_{n_2}, x_{n_3}, ...\}$

As
$$x_n \to x \Rightarrow x - \varepsilon < x_n < x + \varepsilon$$

Also,
$$n_k \ge n \ge k(\varepsilon)$$

$$\rightarrow x - \varepsilon < x_{n_k} < x + \varepsilon, \forall n_k \ge k(\varepsilon)$$

$$\therefore X_{n_k} \to X$$

Theorem 4.2.3 (Monotone Subsequence theorem). If x_n is sequence of real numbers then there is subsequence of x_n that is monotone.

Proof. We will say that m^{th} term x_m is a peak if $x_m \ge x_n \forall n \ge m$.

Note that, In a decreasing sequence, every term is peak while in increasing sequence, no term is peak.

Case-1:-

 x_n has infinitely many peaks. In this case, we list the peaks by,

$$x_{m_1} \ge x_{m_2} \ge x_{m_3} \dots \ge x_{m_k}, \dots$$

 \therefore subsequence x_{m_k} is decreasing subsequence of x_n .

Case-2:-

 x_n has finitely number of peaks.

let these peaks be denoted by,

$$X_{m_1}, X_{m_2}, X_{m_3} \dots X_{m_r}$$

let $S_1 = m_r + 1$ be the first index beyond the last peak since x_{S_1} is not peak $\exists S_2 > S_1$

 $\exists x_{S_1} < x_{S_2} \text{ since } x_{S_2} \text{ is not peak } \exists S_3 > S_2$

 $\exists x_{S_2} < x_{S_3}$ continuing this way, we obtain an increasing sequence.

Theorem 4.2.4 (Bozano- Weistress theorem). *A bounded sequence of real numbers has convergent subsequence.*

Proof. Let x_n be bounded sequence.

.:. by monotone subsequence theorem,

 $\exists x_{n_k}$ subsequence of x_n that is monotone.

As x_n is bounded x_{x_k} is also bounded

... by monotone convergence theorem,

 x_{x_k} is monotone and bounded so convergent.

4.3 Cauchy Sequence

Definition 4.3.1 (Cauchy Sequence): A sequence of real numbers is said to be cauchy if for $every \, \varepsilon > 0, \, \exists \, H(\varepsilon) \in \mathbb{N} \, \ni |X_n - x_m| < \varepsilon, \, \forall \, n, m \geqslant H(\varepsilon)$

Theorem 4.3.1. Every convergent sequence is cauchy.

Proof. let $x_n \rightarrow x$

for any $\frac{\varepsilon}{2} > 0$, $\exists k(\varepsilon) \in \mathbb{N}$

 $\exists |X_n - x| < \frac{\varepsilon}{2}, \forall n \ge k(\varepsilon) \text{ let, } k_1, k_2 \in \mathbb{N} \text{ such that } \forall k_1, k_2 \ge k(\varepsilon)$

 $|X_{k_1}-x_{k_2}|$

 $\leq |X_{k_1} - x| + |X_{k_2} - x|$

 $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$

 $\leq \varepsilon$

Hence, every convergent sequence is cauchy.

Theorem 4.3.2. A cauchy sequence of real numbers is bounded.

Proof. let x_n be cauchy sequence and

let $\varepsilon = 1$ if H = H(1) and $n \ge H$ then $n \ge H$.

$$M = \sup\{|x_1|, |x_2|, |x_3|, \dots |x_{H-1}|, |x_H| + 1\}$$

then it follows that $|x_n| \le M \forall n$

: cauchy sequence of real numbers is bounded.

Definition 4.3.2 (Cauchy convergence criterion): A Sequence of real numbers is convergent if and only if it is cauchy sequence.

Definition 4.3.3 (Contractive Sequence): We say that the sequence x_n of real numbers is contractive sequence if there exists a constant c, 0 < c < 1 such that,

$$|x_{n+2} - x_{n+1}| \le c.|x_{n+1} - x_n|, \forall n$$

Theorem 4.3.3. Contractive sequence is cauchy sequence.

Proof. let x_n is contractive sequence

 $\therefore \exists c, 0 < c < 1 \text{ such that}$

$$|x_{n+2} - x_{n+1}| \le c.|x_{n+1} - x_n|, \forall n$$

for $\varepsilon > 0$ choose $k(\varepsilon) \in \mathbb{N} \ni \text{for } m > n$

$$|x_m - x_n|$$

$$= |x_m - x_{m-1} + x_{m-1} + \ldots + x_{n+1} - x_n|$$

$$\leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_n|$$

$$\leq c|x_{m-1}-x_{m-2}|+c|x_{m-2}-x_{m-3}|+\ldots+c|x_n-x_{n-1}|$$

$$\leq c^2 |x_{m-2} - x_{m-3}| + c^2 |x_{m-3} - x_{m-4}| + \dots + c|x_n - x_{n-1}|$$

$$\leq (c^{m-n} + c^{m-n-1} + \dots + c)|x_n - x_{n-1}|$$

$$\leq \frac{c(1-c^{m-n})}{1-c}|x_n-x_{n-1}|$$

$$\leq \varepsilon$$
 : $\frac{c(1-c^{m-n})}{(1-c)} < 1$

 $\therefore x_n$ is cauchy sequence.

Divergent Sequence Let x_n be sequence of real numbers

- a) $x_n \to +\infty$ and $\lim x_n = +\infty$ if every $\alpha \in \mathbb{R}$ there exists a natural number $k(\alpha)$ such that if $n \ge k(\alpha)$, then $x_n > \alpha$.
- b) $x_n \to -\infty$ and $\lim x_n = -\infty$ if every $\beta \in \mathbb{R}$ there exists a natural number $k(\beta)$ such that if $n \ge k(\beta)$, then $x_n < \beta$. We say that x_n is properly divergent if $\lim x_n = +\infty$ or $-\infty$

4.4 Infinite Series

Definition 4.4.1 (Infinite Series): If x_n is sequence in \mathbb{R} , then the infinite series generated by x_n is sequence S_n

$$S_1 = x_1$$

$$S_2 = x_1 + x_2$$

•

•

.

$$S_n = x_1 + x_2 + \dots x_n$$

Denoted by $\sum x_n$ or $\sum_{n=1}^{\infty} x_n$

Example 20:

1.
$$\sum_{n=0}^{\infty} r_n = 1 + r + r^2 + \dots$$

2.
$$\sum_{n=1}^{\infty} (-1^n) = (-1) + 1 + (-1) + \dots$$

3.
$$\sum \frac{1}{n(n+1)} = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4}$$

Theorem 4.4.1 (The n^{th} term test). *if* $\sum x_n$ *converges then* $\lim x_n = 0$

Proof. By definition $\sum x_n$ converges if S_n converges,

Since =
$$\sum_{i=1}^{n} x_i$$

$$\therefore x_n = S_n - S_{n-1}$$

$$\lim x_n = \lim S_n - \lim S_{n-1} = 0$$

Definition 4.4.2 (Cauchy Criterion for Series): The series $\sum x_n$ converges if and only if $\forall \epsilon > 0$,

 $\exists M(\varepsilon) \in \mathbb{N} \ni if m > n \ge M(\varepsilon) then$

$$|S_m - S_n| = |x_{n+1} + x_{n+2} + \dots + x_m| < \varepsilon$$

Theorem 4.4.2. let x_n be a sequence of non-negative real numbers then the series $\sum x_n$ converges if and only if the sequence S_k of partial sum is bounded.

$$\sum x_n = \lim S_k = \sup \{S_k : k \in \mathbb{N}\}\$$

Theorem 4.4.3. *Show that,*
$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

Proof. Suppose,

$$S_{n+1} = 1 + r + ... + r^n$$

$$S_n = 1 + r + \ldots + r^{n-1}$$

$$rS_n = (r + r^2 + \dots + r^n)$$

$$S_{n+1} - rS_n = 1$$

$$\therefore \lim_{n \to \infty} (S_{n+1} - rS_n) = 1 \lim_{n \to \infty} 1 = 1$$

$$\lim_{n \to \infty} (S_{n+1} - rS_n) = \lim_{n \to \infty} 1 = 1$$

$$\lim_{n \to \infty} (S - rS) = 1 (\dots \text{ where } S \sum_{n=0}^{\infty})$$

$$S(1 - r) = 1$$

$$S = \frac{1}{(1-r)}$$

Theorem 4.4.4. The p Series $\sum \frac{1}{n^p}$ converges when p > 1

Proof. if
$$k_1 = 2 - 1 = 1$$
, $S_{k_1} = 1$

$$k_1 = 2^2 - 1 = 3, 2^p < 3^p$$

$$S_{k_2} = \frac{1}{1^p} + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) < \frac{1}{1^p} + \frac{2}{2^p} = 1 + \frac{1}{2^{p-1}}$$

further, if $k_3 = 2^3 - 1$ then

$$S_{k_3} < S_{k_2} + \frac{4}{4^p} < 1 + \frac{1}{2^{p-1}} \frac{1}{4^{p-1}}$$
 finally, let $r = \frac{1}{2^{p-1}}$ Since $p > 1$

finally, let
$$r = \frac{1}{2^{p-1}}$$
 Since $p > 1$

Using mathematical induction

we can show that if $k_i = 2^j - 1$

$$0 < S_{k_j} < 1 + r + r^2 + \dots + r^{j-1} < \frac{1}{1-r}$$

 \Rightarrow The p-series converges if p > 1

The alternating harmonic series

$$\sum \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$$

is convergent

let
$$S_{2n} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{2n}\right)$$

$$S_{2n+1} = 1 - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \dots - \left(\frac{1}{2n} - \frac{1}{2n+1}\right)$$

Since
$$0 < S_{2n} < S_{2n} + \frac{1}{2n+1} = S_{2n+1} \le 1$$

 S_{2n} and S_{2n+1} both bounded and monotone, so by monotone convergence theorem, must be convergent and to same point.

$$\sum \frac{(-1)^{n+1}}{n}$$
 must be convergent.

Theorem 4.4.5 (The Comparision Test). Let x_n and y_n be real sequence and for some $k \in \mathbb{N}$

$$0 \le x_n \le y_n, \forall n \ge k$$

- *a)* Convergent of $\sum y_n \Rightarrow$ Convergence of $\sum x_n$
- *b)* Divergence of $\sum x_n \Rightarrow$ divergence of $\sum y_n$

Proof. a) Suppose $\sum y_n$ is convergent,

i.e for any $\varepsilon > 0$, $\exists M(\varepsilon) \in \mathbb{N} \ni m > n \ge M(\varepsilon)$

$$|y_{n+1} + \ldots + y_m| < \varepsilon$$

if $m > Sup(k, M(\varepsilon))$

$$0 \le x_{n+1} + \ldots + x_m \le y_{n+1} + \ldots + y_m < \varepsilon$$

 $\Rightarrow \sum x_n$ converges.

b) This statement i contrapositive to a)

Theorem 4.4.6 (Limit Comparison Test). Suppose x_n and y_n are strictly positive sequence and

Suppose following limit exists

$$r = \lim \left(\frac{x_n}{y_n}\right)$$

a) If $r \neq 0$ then $\sum x_n$ convergent iff $\sum y_n$ convergent.

b) If r = 0 then if, $\sum y_n$ convergent then $\sum x_n$ convergent.

Proof. a) Given
$$r = \lim_{n \to \infty} \frac{x_n}{y_n}$$

 \therefore by defination, For any $\varepsilon > 0$, \exists , $k(\varepsilon) \in \mathbb{N}$

such that
$$\left| \frac{x_n}{y_n} - r \right| < \varepsilon, \forall n \ge k(\varepsilon)$$

As $r \ne 0, \Rightarrow r > 0 \Rightarrow \varepsilon \frac{r}{2}$

As
$$r \neq 0$$
, $\Rightarrow r > 0 \Rightarrow \varepsilon \frac{r}{2}$

$$r - \varepsilon < \frac{x_n}{y_n} < r + \varepsilon$$

$$\left(\frac{r}{2}\right)y_n < x_n < \left(\frac{3r}{2}\right)y_n$$

$$\left(\frac{r}{2}\right)y_n < x_n$$

 \Rightarrow if x_n converges then $\sum y_n$ also converges. ... (by comparison test)

$$\therefore x_n < \left(\frac{3r}{2}\right) Y_n$$

 \Rightarrow If $\sum y_n$ converges then x_n also converges. ... (by comparison test)

$$r = 0$$
 i.e $\lim \left(\frac{x_n}{y_n}\right) = 0$

 \therefore by defination, For any $\varepsilon > 0$, \exists , $k(\varepsilon) \in \mathbb{N}$

such that

$$\left|\frac{x_n}{y_n} - 0\right| < \varepsilon$$

$$\left|\frac{x_n}{y_n}\right| < \varepsilon$$

$$\frac{x_n}{y_n} < \varepsilon$$

$$0 < x_n < \varepsilon y_n$$

... By comparison test,

 $\sum x_n$ converges if $\sum y_n$ converges.

Definition 4.4.3 (Absolute Convergence): let x_n be sequence in \mathbb{R} . We say that $\sum x_n$ is absolutely convergent if the series $\sum |x_n|$ is convergent. A series is said to be conditionally convergent if it is convergent but not absolutely convergent.

Example 21:

 $\sum \frac{(-1)^n}{n} \text{ is convergent but } \sum \left| \frac{(-1)^n}{n} \right| = \sum \frac{1}{n} \text{ is not convergent}$ $\therefore \sum \frac{(-1)^n}{n} \text{ is conditionally convergent.}$

Theorem 4.4.7. *If a series is absolutely convergent then it is convergent.*

Proof. $\sum |x_n|$ is convergent

 \therefore for any $\varepsilon > 0$ $M(\varepsilon) \in \mathbb{N}$

$$||x_{n+1}| + |x_{n+2}| + \ldots + |x_m|| < \varepsilon \forall m > n > M(\varepsilon)$$

$$|x_{n+1} + x_{n+2} + \ldots + x_m| \le \varepsilon$$

$$|x_{n+1}| + |x_{n+2}| + \ldots + |x_m| \le \varepsilon \forall m > n > M(\varepsilon)$$

 $\Rightarrow \sum x_n$ is convergent.

Theorem 4.4.8 (Limit Comparison Test- II-). Suppose x_n and y_n are non-zero real sequence and Suppose that following limit exists in \mathbb{R}

$$r = \lim \left(\frac{x_n}{y_n}\right)$$

- a) If $r \neq 0$ then $\sum x_n$ absolutely convergent iff $\sum y_n$ is absolutely convergent.
- b) If r = 0 and $\sum y_n$ is absolutely convergent then $\sum x_n$ absolutely convergent.

Theorem 4.4.9 (Root test). Let x_n be sequence in \mathbb{R} . Suppose that the limit $r = \lim |x_n|^{\frac{1}{n}}$ exists in \mathbb{R} then $\sum x_n$ is absolutely convergent when r < 1 and is divergent when r > 1.

Proof. r < 1, $r = \lim |x_n|^{\frac{1}{n}}, \exists r_1, r_1 \in (r, 1)$

$$|x_n|^{\frac{1}{n}} \leqslant r_1$$

$$|x_n| \leq \sum r_1^n$$

by comparison test,

 $|x_n| < (r_1)^n$ it is convergent

 $|x_n| < (r_1)^n$ it is absoultely convergent.

Theorem 4.4.10 (Ratio Test). Let x_n be non-zero sequence in \mathbb{R} . Suppose $r = \lim \left| \frac{x_{n+1}}{x_n} \right|$ exists then $\sum x_n$ is absolutely convergent when r < 1 and divergent when r > 1

Proof. r < 1, $r_1 \in (r, 1)$

$$\left|\frac{x_{n+1}}{x_n}\right| \le r_1, \forall n > k(\varepsilon)$$

$$|x_{n+1}| \le r_1 |x_n|$$

$$|x_{n+1}| \le r_1 |x_n| < r_1 \cdot r_1 |x_{n-1}| < \dots < r_1^n |x_1|$$

$$|x_{n+1}| < r_1^n.c$$

$$\therefore \sum |x_{n+1}| < \sum r_1^n.c$$

... by comparison test,

 $\sum x_n$ is absolutely convergent

4.5 Establish the converges/divergence of series

Example 22:

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$$

Chapter 4. Sequence and Series

$$\sum_{n=1}^{\infty} = \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots$$

The series is converges to zero

or
$$(n+1)(n+2) > n.n$$

$$\therefore \frac{1}{(n+1)(n+2)} < \frac{1}{n^2}$$

$$\therefore 0 < \frac{1}{(n+1)(n+2)} < \frac{1}{n^2}$$

by comparison test,

$$\sum \frac{1}{(n+1)(n+2)}$$
 is convergent.

Example 23:

$$2^{(\frac{-1}{n})}$$

$$\lim_{n\to\infty}2^{(\frac{-1}{n})}=1\neq0$$

 \therefore by n^{th} term test

 $2^{(\frac{-1}{n})}$ is divergent

Example 24:

 $\frac{n}{2^n}$

Applying ratio test

$$\left| \frac{x_{n+1}}{x_n} \right| = \left| \frac{(n+1)/2^{(n+1)}}{n/2^n} \right| = \left| \frac{n+1}{n} \right| \cdot \frac{1}{2}$$

$$\lim_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| = \frac{1}{2} < 1$$

 $\therefore \frac{\sum n}{2^n}$ is convergent.

Definition 4.5.1 (Integral test): Let f be a positive decreasing function on $\{t, t > 1\}$ then the series $\sum_{k=1}^{\infty} f(k)$ converges if and only if the improper integral

$$\int_{1}^{\infty} f(t)dt = \lim_{b \to \infty} \int_{1}^{b} f(t)dt$$

exists. In the case of convergence, the partial sum

$$S_n = \sum_{k=1}^n = f(k)$$
 and sum $S = \sum_{k=1}^\infty = f(k)$ satisfy the estimates

$$\int_{n+1}^{\infty} f(t)dt \le S - S_n \le \int_{1}^{\infty} f(t)dt$$

Example 25:

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

$$= \int_{1}^{\infty} \frac{1}{t^{p}} dt, \quad x_{n} \frac{1}{n^{p}}$$

$$= \left[\frac{t^{-p+1}}{-p+1} \right]_1^{\infty}$$

$$= \frac{1}{1-p} \left[\frac{1}{t^{p-1}} \right]_1^{\infty}$$

$$\frac{1}{p-1}, p > 1$$

$$\therefore \sum \frac{1}{n^p}$$
 is convergent

Definition 4.5.2 (Raabies Test): Let x_n be non-zero sequence in \mathbb{R} and let $a = \lim n \left(1 - \left| \frac{x_{n+1}}{x_n} \right| \right)$ whenever this limit exists then $\sum x_n$ absoultely convergent when a > 1 and is not absoultely convergent when a < 1

Example 26:

$$x_n = \frac{1}{n^p}$$

$$\left| \frac{x_{n+1}}{x_n} \right| = \left| \frac{\frac{1}{n+1}}{\frac{1}{n^p}} \right| = \left| \frac{n^p}{(n+1)^p} \right| = \left| \frac{1}{1 + \frac{1}{n}} \right|$$

$$\therefore \lim n \left(1 - \left| \frac{x_{n+1}}{x_n} \right| \right) = \lim n \left(1 - \left| \left(\frac{1}{1 + \frac{1}{n}} \right)^p \right| \right)$$

$$= \lim \left(\frac{\left(1 + \frac{1}{n} \right)^p - 1}{\frac{1}{n} \left(1 + \frac{1}{n} \right)^p} \right)$$

$$= \lim \left(\frac{p\left(1 + \frac{1}{n}\right)^{p+1} \left(-\frac{1}{n^2}\right)}{\frac{1}{n} \left(1 + \frac{1}{n}\right)^p} \right)$$

$$= \lim \left(\frac{-\frac{p}{n} \left(1 + \frac{1}{n} \right)}{\left(1 + \frac{1}{n} \right)^p} \right)$$

$$= \lim_{n \to \infty} \left(\frac{-p\left(1 + \frac{1}{n}\right)}{n} \right)$$

$$=\lim_{n\to\infty}p\left(-\frac{1}{n}-\frac{1}{n^2}\right)$$

$$= p$$

Example 27:

$$x_n = \frac{1}{n(n+1)}$$

$$\left| \frac{x_{n+1}}{x_n} \right| = \left| \frac{\frac{1}{(n+1)(n+2)}}{\frac{1}{n(n+1)}} \right| = \left| \frac{n}{n+2} \right| = \left| \frac{1}{1+\frac{2}{n}} \right|$$

$$\therefore \lim \left| \frac{x_{n+1}}{x_n} \right| = \left| \frac{1}{1 + \frac{2}{n}} \right| = 1$$

 \therefore Ratio test fails $(\because r = 1)$

we know n(n+1) > n.n

$$\frac{1}{n(n+1)} < \frac{1}{n^2}$$

$$\therefore \frac{1}{n(n+1)} < \frac{1}{n^2} \quad (0 < x_n < y_n)$$

by comparison test

As $\sum \frac{1}{n^2}$ is convergent, $\sum \frac{1}{n(n+1)}$ is also convergent.

Example 28:

$$\frac{n!}{n^n}$$

Using raabies test, we have,

consider,
$$\left| \frac{x_{n+1}}{x_n} \right| = \frac{1}{\left(1 + \frac{1}{n}\right)^n}$$

$$\Rightarrow \left(1 - \frac{1}{\left(1 + \frac{1}{n}\right)^n}\right)$$

$$=\frac{\left(1+\frac{1}{n}\right)^n-1}{\left(1+\frac{1}{n}\right)^n}$$

$$= n \left(1 - \frac{1}{\left(1 + \frac{1}{n} \right)^n} \right)$$
as $n \to \infty$, $r = \lim_{n \to \infty} n \left(1 - \left| \frac{x_{n+1}}{x_n} \right| \right) = 0 < 1$

$$\therefore \sum_{n \to \infty} x_n = \sum_{n \to \infty} \frac{n!}{n^n}$$
 is not absoultely convergent. i.e divergent.

Example 29:

$$\frac{n^2}{\sqrt{n+1}} = \left| \frac{x_{n+1}}{x_n} \right| = \frac{(n+1)^2}{\sqrt{n+2}} \cdot \frac{\sqrt{n+1}}{n^2}$$

$$= \left(1 + \frac{1}{n}\right)^2 \frac{\sqrt{1 + \frac{1}{n}}}{1 - \frac{2}{n}}$$

$$\Rightarrow n\left(1-\left|\frac{x_{n+1}}{x_n}\right|\right)$$

$$=\frac{\sqrt{1+\frac{2}{n}}-\left(1+\frac{1}{n}\right)^2\sqrt{1+\frac{1}{n}}}{\sqrt{\frac{1}{n^2}+\frac{2}{n^3}}}$$

Chapter 4. Sequence and Series M.Sc. (Statistics) Lecture Notes

 $\therefore \sum \frac{n^2}{\sqrt{n+1}}$ is not absloultely convergent. i.e divergent.

4.6 Test for Non-Absolute Convergence

Definition 4.6.1 (Alternative Series): A sequence of non-zero real numbers is said to be alternating if the terms $(-1)^{(n+1)}x_n$, $n \in \mathbb{N}$ are all positive (or all negative) real numbers. If the sequence x_n is alternating, we say that the series $\sum x_n$ is alternating series.

Theorem 4.6.1 (Alternating Series test). Let z_n be decreasing sequence with strictly positive numbers with $\lim z_n = 0$ then the alternating series $\sum (-1)^{n+1} z_n$ is convergent.

Proof. Given that z_n decreasing sequence and let $S_n = \sum (-1)^{n+1} z_n$

We have

$$S_{2n} = (z_1 - z_2) + (z_3 - z_4) + \ldots + (z_{2n-1} - z_{2n})$$

and Since $(z_k - z_{k+1}) \ge 0$, it follows that S_{2n} is increasing sequence

$$S_{2n} = z_1 - (z_2 - z_3) + \dots - (z_{n-2} - z_{n-1}) - z_{2n}$$

$$\therefore S_{2n} \leq z_1$$

 \therefore bounded by MCT, S_{2n} must be convergent to some number $c \in \mathbb{R}$.

We have to show that entire $S_n \to c$ if $\varepsilon > 0$, let $k \in \mathbb{N}$. if $n \ge k$

$$|S_{2n}-c| \le \frac{\varepsilon}{2} \text{ and } z_{2n+1} \le \frac{\varepsilon}{2}$$

$$|S_{2n+1} - c| = |S_{2n} + z_{n+1} - c|$$

$$\leq |S_{2n} - c| + |z_{n+1}|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$S_n \rightarrow c$$

 $S_n = \sum (-1)^{n+1} z_n$ is convergent.

Lemma 4.6.2 (Abels Lemma). $x_n, y_n \in \mathbb{R}$ $S_n = \sum_{i=1}^n with S_0 = 0$ if m > n then,

$$\sum_{k=n+1}^{m} x_k y_k = (x_m S_m - x_{n+1} S_n) + \sum_{k=n+1}^{m-1} (x_k - x_{k+1}) S_k$$

Chapter 4. Sequence and Series M.Sc. (Statistics) Lecture Notes

Proof.
$$y_k = S_k - S_{k-1}$$
 $\left(:: S_k = \sum_{i=1}^k y_i \& S_{k-1} = \sum_{i=1}^{k-1} y_i \right)$
 $x_k y_k = x_k S_k - x_k S_{k-1}$

$$\sum_{k=n+1}^{m} x_k y_k$$

$$= \sum_{k=n+1}^{m-1} (x_k S_k - x_k S_{k-1})$$

$$= x_{n+1}.S_{n+1} - x_{n+1}S_n + x_{n+2}S_{n+2} - x_{n+2}S_{n+1} + \dots + x_mS_m - x_mS_{m-1}$$

$$= (x_m S_m - x_{n+1} S_n) + \sum_{k=n+1}^{m-1} (x_k - x_{k+1}) S_k$$

Theorem 4.6.3 (Diricblet's Test). If x_n is decreasing 0, if $S_n = \sum y_i$ is bounded then $x_n y_n$ is convergent.

Proof. Let $S_n \le B$, $\forall n \in \mathbb{N}$. if m > n, by abels lemma and $x_k - x_{k+1} > 0$ (as x_n is decreasing)

Consider,

$$\sum_{k=n+1}^{m} x_k y_k$$

$$= \left| (x_m S_m - x_{n+1} S_n) + \sum_{k=n+1}^{m-1} (x_k - x_{k+1}) S_k \right|$$

$$\leq |(x_m S_m - x_{n+1} S_n)| + \sum_{k=n+1}^{m-1} (x_k - x_{k+1})|S_k|$$

Suppose,

$$S_m, S_n, S_k = B$$

$$\leq |x_m - x_{n+1}|B + B \sum_{k=n+1}^{m-1} (x_k - x_{k+1})|S_k|$$

$$\leq \frac{\varepsilon}{2B}B + B\frac{\varepsilon}{2B}$$

$$\leq \frac{\varepsilon}{2B}B + B\frac{\varepsilon}{2B}$$

 $\leq \varepsilon$

 $\therefore \sum x_n y_n$ is convergent.

Theorem 4.6.4 (Abel's Test). If x_n convergent monotone sequence and y_n is convergent then the series is $x_n y_n$ also convergent.

Proof. Let x_n is decreasing x

 $u_n = x_n - x$ decreasing 0

 $\sum u_n y_n$ is convergent by diricblets test

$$\sum_{n} x_{n} y_{n}$$

$$= \sum_{n} (x + u_{n}) y_{n}$$

$$= x \sum_{n} y_{n} + \sum_{n} u_{n} y_{n}$$

$$\sum_{n} x_{n} y_{n} \text{ is convergent sequence.}$$

Example 30:

 $\sum a_n$ convergent then

- 1. $\sum b_n = \frac{a_n}{n}$ is convergent sequence.
- 2. $\sum n^{1/n} a_n$ is divergent sequence.
- 3. $\sum a_n \sin n$ is divergent sequence.
- 4. $\sum \frac{\sqrt{a_n}}{n}$ is convergent sequence.
- 5. $\sum \sqrt{a_n}$ is divergent sequence.

Chapter 4. Sequence and Series

M.Sc. (Statistics) Lecture Notes

Shapter 5

Function and Continuity

Definition 5.0.1 (Cluster Point): Let $A \subseteq \mathbb{R}$. A point $c \in \mathbb{R}$ is cluster point of A if every $\delta > 0$ \exists at least one point $x \in A$, $x \neq c \ni |x - c| < \delta$

Theorem 5.0.1. The number $c \in \mathbb{R}$, is cluster point of $A \subseteq \mathbb{R}$ if and only if \exists sequence a_n in A such that $\lim(a_n) = c$ and $a_n \neq c$, $\forall n$

Proof. If c is cluster point of A then for any $n \in \mathbb{N}$ the $\frac{1}{n}$ neighbourhood $v_{1/n}(c)$ contains at least one point a_n in A distinct from c, then $a_n \in A$, $a_n \neq c \otimes |a_n - c| < \frac{1}{n} \Rightarrow \lim a_n = c$ conversly, if \exists a sequence a_n in $A^{\setminus \{c\}}$ with $\lim (a_n) = c$, then for any $\delta > 0$, \exists k such that

if $n \ge k$, then $a_n \in v_{\delta}(c)$. Therefor, δ neighbourhood $v_{\delta}(c)$ contains the point a_n , $\forall n \ge k$ which belong to A and are distinct from c.

Definition 5.0.2 (Limit of Function): Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$ be the cluster point of A. for a function $f: A \to \mathbb{R}$ a real number L is said to be limit of f at c if, given any $\varepsilon > 0$, $\exists \delta > 0$, $\exists \varepsilon \in A$ and $0 < |x - c| < \delta$ then $|f(x) - L| < \varepsilon$ then we say f converges to L at c.

Theorem 5.0.2. If $f: A \to \mathbb{R}$ and if c is a cluster point of A, then f can have only one limit at c.

Proof. We will prove this by method of contradiction.

Let L and L' be limits of f at c

For any
$$\varepsilon > 0$$
, $\exists \delta\left(\frac{\varepsilon}{2}\right) > 0 \ni x \in A \text{ and } 0 < |x - c| < \delta\left(\frac{\varepsilon}{2}\right)$

$$\Rightarrow |f(x) - L| < \frac{\varepsilon}{2}$$

Also,
$$\exists \, \delta' \left(\frac{\varepsilon}{2} \right) > 0 \quad \ni \quad x \in A \text{ and } |x - c| < \delta' \left(\frac{\varepsilon}{2} \right)$$

$$\Rightarrow |f(x) - L'| < \frac{\varepsilon}{2}$$

$$|L-L'|$$

$$= |L - f(x) + f(x) - L'|$$

$$\leq |L - f(x)| + |f(x) - L'|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

 $\leq \varepsilon$

Since, $\varepsilon > 0$ is arbitary, L = L'

Theorem 5.0.3 (Sequential Criterion). Let $f: A \to \mathbb{R}$ and let c be a cluster point of A then the

following are equivalent.

$$1. \lim_{x \to c} f(x) = L$$

2. for every x_n in A, $x_n \to c$, $x_n \neq c$, $\forall n \in \mathbb{N} \Rightarrow f(x_n) \to L$.

Definition 5.0.3 (Divergence Criterion): Let $A \subseteq \mathbb{R}$ let $f : A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be cluster point of A.

- a) If $L \in \mathbb{R}$ then f does not have limit L at c iff \exists sequence x_n in A with $x_n \neq c$, $\forall n \in \mathbb{N}$ such that sequence x_n converges to c. but the sequence $f(x_n)$ does not converges to L
- b) the function does not have a limit L at c iff $\exists x_n \text{ in } A \text{ with } x_n \neq c, \forall n \in \mathbb{N} \text{ such that the}$ sequence x_n converges to c but the sequence $f(x_n)$ does not converges in \mathbb{R}

$$f(x)=$$

$$f(x) = \begin{cases} +1 & if \ x > 0 \\ -0 & if \ x = 0 \\ -1 & if \ x < 0 \end{cases}$$

Theorem 5.0.4 (Limit Theorem). Let $A \subseteq \mathbb{R}$. and $c \in \mathbb{R}$, be cluster point of A we say that f is bounded on neighbourhood of c if \exists a δ neighbourhood of $v_{\delta}(c)$ of c and constant $M > 0 \ni |f(x)| \leq M \quad \forall x \in A \cap V_{\delta}(c)$

Theorem 5.0.5. If $A \subseteq \mathbb{R}$ and $f : A \to \mathbb{R}$ has limit at $c \in \mathbb{R}$ then f is bounded on some neighbourhood of c

Proof. If
$$L = \lim_{x \to c} f$$
 then for $\varepsilon = 1$, $\exists \delta_c < 0$

Such that
$$0 < |x - c| < \delta \Rightarrow |f(x) - L| < 1$$

$$|f(x)| - |L| \le |f(x) - L| < 1$$

if $x \in A \cap V_{\delta}(c)$, $x \neq c$ then,

|f(x)| < |L| + 1

if $c \notin A$, Take M = |L| + 1

while if $c \in A$, Take $M = Sup\{|f(x)|, |L| + 1\}$

- $|f(x)| \leq M$
- ∴ by limit theorem
- \therefore *f* is bounded on neighbourhood of *c*.

Definition 5.0.4: Let $A \subseteq \mathbb{R}$ and let f & g be function defined on A to \mathbb{R} . We define the sum f + g, the differnce f - g and the product $f \cdot g$ on $A \to \mathbb{R}$ to be function from A to \mathbb{R} given by,

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f.g)(x) = f(x).g(x)$$

Further if $b \in \mathbb{R}$

$$(bf)(x) = b.f(x)$$

finally, if $h(x) = \neq 0$,

$$\left(\frac{f}{h}\right)(x) = \frac{f(x)}{h(x)}$$

Theorem 5.0.6. Let $A \subseteq \mathbb{R}$ let f & g be function on $A \to \mathbb{R}$ and le $c \in \mathbb{R}$ be a cluster point of

$$A \rightarrow \mathbb{R} \& let$$

1. If
$$\lim_{x \to c} f = L \& \lim_{x \to c} g = M$$
 then

$$\lim_{x \to c} (f \pm g) = L \pm M$$

$$\lim_{x \to c} (f \cdot g) = L \cdot M$$

$$\lim_{x \to c} (b \cdot f) = b \cdot L$$

2.
$$\lim_{x \to c} \left(\frac{f}{c} \right) = \frac{L}{H}$$
where, $h(x) = \neq 0$ and $\lim_{x \to c} h(x) = H \neq 0$

Theorem 5.0.7. Let $A \subseteq \mathbb{R}$ let $f : A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be the cluster point of A.

if $a \le f(x) \le b \ \forall x \in A, x \ne c \ and \ if \quad \lim_{x \to c} f \ exists \ then \ a \le \lim_{x \to c} f \le b$

Proof. Given, $f: A \to \mathbb{R}$ and c is cluster point of A.

let $x_n \in A$ such that $x_n \to c$

$$\therefore f(x_n) \to L = \lim_{x \to c} f(x_n) = \lim_{x \to c} f(x)$$

Also,

$$a \le f(x) \le b$$

$$a \le f(x_n) \le b$$

$$a \le \lim_{x \to c} f(x_n) \le b$$

$$a \le \lim_{x \to c} f(x) \le b$$
$$a \le L \le b$$

Theorem 5.0.8 (Squeez Theorem). Let $A \subseteq \mathbb{R}$ let $f, g, h : \to \mathbb{R}$ & $c \in \mathbb{R}$ be a cluster point of A. If

$$f(x) \le g(x) \le h(x), \quad \forall x \in A, x \ne c \ \& \lim_{x \to c} f = \lim_{x \to c} h \ then, \lim_{x \to c} g = L.$$

Proof. Given, $f, g, h : \to \mathbb{R} \& c$ is cluster point of $A x_n \in A \Rightarrow x_n \to c$

$$f(x_n) \to L = \lim_{x \to c} f(x_n) = \lim_{x \to c} f(x) = \lim_{x \to c} h(x) = \lim_{x \to c} h(x_n)$$

i.e
$$f(x_n) \rightarrow L \& h(x_n) \rightarrow L$$

Also,

$$f(x) \le g(x) \le h(x)$$

$$f(x_n) \le g(x_n) \le h(x_n)$$

$$\lim_{x_n \to c} f(x_n) \le \lim_{x_n \to c} g(x_n) \le \lim_{x_n \to c} h(x_n)$$

$$\therefore L \leq \lim_{x \to c} g(x_n) \leq L$$

$$\lim_{x \to c} g(x_n) = L$$

i.e
$$g(x_n) \to L$$

i.e
$$\lim_{x\to c} g = L$$

-Hence Proved-

Definition 5.0.5: Let $A \in \mathbb{R}$ & let $fLA \to \mathbb{R}$

1. If $c \in \mathbb{R}$ is a cluster point of the set $A \cap (c, \infty) = \{x \in A, x > c\}$ then we say that $L \in \mathbb{R}$ is right hand limit of f at c

$$\lim_{x \to c^+} f(x) = L \text{ If given any } \varepsilon > 0 \quad \exists \quad \delta(\varepsilon) > 0 \quad \ni \quad \forall x \in A \text{ with } 0 < x - c < \delta \text{ then } |f(x) - c| < \varepsilon$$

$$L| < \varepsilon$$

2. If $c \in \mathbb{R}$ is a cluster point of the set $A \cap (-\infty, 0) = \{x \in A, x < c\}$ then we say that $L \in \mathbb{R}$ is left hand limit of f at c

$$\lim_{x \to c^{-}} f(x) = L \text{ If given any } \varepsilon > 0 \quad \exists \quad \delta(\varepsilon) > 0 \quad \ni \quad \forall x \in A \text{ with } 0 < -x + c < \delta \text{ then } |f(x) - c| < \varepsilon$$

5.1 Continuous Function

Definition 5.1.1 (Continuous Function): Let $A \subseteq \mathbb{R}$ let $f: A \to \mathbb{R}$ & let $c \in A$ we say that f is continuous at c if given any $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0 \ni if x$ is any point of A satisfying $|x - c| < \delta$, then $|f(x) - f(c)| < \varepsilon$ if f fails to be continuous at c then we say that f is discountinous at c

Theorem 5.1.1. A function $f: A \to \mathbb{R}$ is continuous at point $c \in A$ if and only if given any $\varepsilon > 0$, $v_{\varepsilon}(f(c))$ of $f(c) \exists$ of c such tat if x is any point of $A \cap v_{\delta}(c)$ then $f(x) \in v_{\varepsilon}(f(c))$ i.e $A \cap v_{\delta}(c) \subseteq v_{\varepsilon}(f(c))$

Proof. :
$$\lim_{x\to c} = L$$

i.e any $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0 \ni$

$$|x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$$

and $\lim f(x) = f(c)$

for any $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0 \ni$

$$|x-c| < \delta$$
, $\Rightarrow |f(x) - f(c)| < \varepsilon$

$$\therefore x \in A \cap v_{\delta}(c) \Rightarrow f(x) \in v_{\varepsilon}(f(c)), \quad \forall x$$

$$f(A \cap v_{\delta}(c)) \subseteq v_{\varepsilon}(f(c)) \dots (f \cap A \times A) \Rightarrow x \in B \text{ then } A \subseteq B$$

Definition 5.1.2 (Cobmbination of Continuous function): Let $A \subseteq \mathbb{R}$. Let f & g be function on A to \mathbb{R} , let $b \in \mathbb{R}$, Suppose that $c \in A$ & that f & g are continuous at c

- a) then f + g, f g, $f \cdot g$ and $b \cdot f$ are continuous at c
- b) if $h: A \to \mathbb{R}$ is continuous at $c \in A$ & if $h(x) \neq 0$, $x \in A$, then $\left(\frac{f}{h}\right)$ is also continuous at c

Definition 5.1.3 (Continuous Point): Let $A \subseteq \mathbb{R}$ & $f : A \to \mathbb{R}$. if $B \subseteq A$ we say that f is contin-

uous on set B if f is continuous at every point of B

Example 31:

Continuous

•
$$f(x) = x$$
, $x \in \mathbb{R}$

•
$$f(x) = x^2$$
, $x \in \mathbb{R}$

•
$$f(x) = \frac{1}{x}$$
, $x \in \mathbb{R}^+, \{0\}$

• f(x) = Polynomial function $x \in \mathbb{R}$

• f(x) = Rational function

• f(x) = Trignometric function

•
$$f(x) = \sqrt{f}$$
, $x \in \mathbb{R}$

Example 32:

Discontinuous

•
$$\psi(x) = \frac{1}{x}$$
, $x = 0$

• $\psi(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{Q}^c \end{cases}$
discount everywhere

$$\bullet \sin(x) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \\ 0, & x = 0 \end{cases}$$

$$\text{discount at } x = 0$$

• $\psi(x) = [x]$ = greatest integer function discount at integer

Theorem 5.1.2. Let $A \subseteq \mathbb{R}$. Let $f: A \to \mathbb{R}$ & let |f| be defined by $|f|x = |f(x)| \quad \forall x \in A$

- 1. If f is continuous at point $c \in A$ then |f| is countinuous at c
- 2. If f is continuous on A then |f| is continuous on A.

Theorem 5.1.3. Let $A, B \in \mathbb{R}$ & let $f : A \to \mathbb{R}$ & $g : B \to \mathbb{R}$ be function such that $f(A) \subseteq B$ if f is countinuous at point $c \in A$ and g is continuous at $b = f(c) \in B$ then the composition $g \circ f : A \to \mathbb{R}$ is continuous at c.

Proof. Let W be $\varepsilon-$ neighbourhood of g(b). since g is continuous at b there is a $\delta-$ neighbourhood of v of b=f(c) such that if $y\in B\cap v$ then $g(y)\in W$. Since f is also continuous at c, there is a v-neighbourhood v of $c\ni \varepsilon A\cap U$ then $f(x)\varepsilon v$

Since $f(A) \subseteq B$, it follows that if $x \in A \cap U$ then $f(x) \in B \cap v$ so that $g \circ f(x) = g(f(x)) \in W$ But, Since W is an arbitary $\varepsilon - neighbourhood$ of g(b) this implies $g \circ f$ is continuous at c.

5.2 Continuous function on Interval

Definition 5.2.1 (Bounded Function): A function $f: A \to \mathbb{R}$ is said to be bounded on A if $\exists a$ constant M > 0 such that $|f(x)| \le M$ for all $x \in A$

Theorem 5.2.1 (Boundedness Theorem-). Let I = [a, b] be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I then f is bounded on I.

Proof. Suppose *f* is bounded on *I*.

then, for any $n \in \mathbb{N}$, $\exists x_n \in I \ni |f(x_n)| > k$.

Since, I is bounded, sequence x_n is bounded.

... By Bolzano weistress theorem,

 \exists subsequence x_{nk} that converges to some x

Since, *I* is closed, elements of sequence $x_{nk} \in I \Rightarrow x \in I$.

then, f is continuous at x so that $f(x_{nk})$ converges to f(x).

 $\Rightarrow |f(x_{nk})| > n_k > k \quad \forall k \in \mathbb{N}$

... Our assumption is wrong.

Hence, *f* must be bounded.

Definition 5.2.2 (Absolute Extremum): Let $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. We say that f has an absolute maximum on A if there is $x^* \in A$ such that

$$f(x^*) \ge f(x), \quad \forall x \in A$$

We say that f has absolute minimum on A if there is $x^* \in A$ such that

$$f(x^*) \ge f(x), \quad \forall x \in A$$

Theorem 5.2.2 (Maximum-Minimum Theorem). Let I = [a,b] be closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I then f has an absolute maximum and absolute minimum on I.

Proof.
$$f(I) = \{f(x); x ∈ I\}$$

I is a closed bounded and *f* is continuous on *I* then f(x) is also bounded is $\subseteq \mathbb{R}$

... By completness property, it has suremum and infimum

$$\therefore S^* = Sup\{f(I)\}, \quad S_* = Inf\{f(I)\}$$

claim- To show, $\exists x^*, x_* \in I$

 $\ni S^* = f(x^*) = absolute maximum$

 $S_* = f(x_*) = absolute minimum$

$$S_* = Inf\{f(I)\}$$

if $n \in \mathbb{N}$ then $S^* - \frac{1}{n}$ is not upper bound $\therefore S^* - \frac{1}{n} < f(x_n) < S^*, \quad \forall n \in \mathbb{N}$

$$\therefore S^* - \frac{1}{n} < f(x_n) < S^*, \quad \forall n \in \mathbb{N}$$

Since, I is bounded x_n is bounded By Bolzano weistress theorem,

 x_{n_k} subsequence of x_n and $x_{n_k} \rightarrow somex^*$

Also, As *I* is closed and $x_{n_k} \in I \Rightarrow x^*$ must be in I

 \Rightarrow f is continuous at x^* , $\lim f(x_{n_k}) = f(x^*)$

$$S^* - \frac{1}{n} < f(x_{n_r}) \le S^*, \quad \forall r \in \mathbb{N}$$

∴ by squeeze theorem

$$\lim f(x_{n_r}) = S^*$$

$$\therefore S^* = f(x^*) \text{ i.e } f(x^*) \ge f(x), \quad \forall x$$

 $\therefore x^*$ is absolute maximum

Similarly, we show x_* is absolute minimum

Theorem 5.2.3 (Location of Root). Let I = [a, b] & let $f : I \to \mathbb{R}$ be continuous on I. If f(a) < 0 of f(b) or f(b) < 0 < f(a), then $\exists c \in (a, b) \ni f(c) = 0$.

Proof. Assume that f(a) < 0 f(b)

Let $I_1 = [a_1, b_1]$ where, $a_1 = a, b_1 = b$

let
$$P = \frac{a+b}{2}$$
 if $f(P_1) = 0$ then $c = P_1$

if $P_1 \neq 0$, then wither $f(P_1) > 0$ or $f(P_1) < 0$

if $f(P_1) > 0$ then $a_2 = a_1, b_2 = P_1$ and if $f(P_1) < 0$

 $a_2 = P_1, b_2 = b_1$ thus, we get $I = [a_2, b_2] \in I_1$

continuing this bisectins, we obtain intervals $I_1, I_2, \dots I_k$

In this process, we terminate by locating a point $P_n \ni f(P_n) = 0$

if process does not terminate, we obtain nested sequence of bounded interval

$$I_n = [a_n, b_n]$$

$$\ni f(a_n) < 0 \& f(b_n) > 0$$

& length of interval
$$b_n - a_n = \frac{(b-a)}{2^{n-1}}$$

$$\Rightarrow \exists \quad a \text{ point } c \in I_n \quad \forall n \in \mathbb{N}$$

$$a_n \le c \le b_n$$
, $\forall n \in \mathbb{N}$

$$\Rightarrow 0 \le c - a_n \le b_n - a_n$$

$$\Rightarrow 0 \le c - a_n \le \frac{(b - a)}{2^{n - 1}}$$

$$\Rightarrow \lim f(a_n) = \lim f(b_n) = f(c)$$

$$\Rightarrow 0 \le b_n - c \le b_n - a_n$$

$$\Rightarrow 0 \le b_n - c \le \frac{(b-a)}{2^{n-1}}$$

Theorem 5.2.4 (Bolzano's Intermediate Theorem). Let I be an interval and let $f: I \to \mathbb{R}$ be continuous on I if $a, b \in I$ and if $k \in \mathbb{R}$ satisfies f(a) < k < f(b) then a point $c \in I$ between $a \& b \ni f(c) = k$.

Proof. 1. Assume that, a < b, a, b, $\in I$, f continuous on I

Define
$$g(x) = f(x) - k$$

As f(x) is continuous, g(x) is also continuous on I

Also,
$$f(a) < k < f(b)$$

$$f(a) - k < 0 < f(b) - k$$

$$g(a) < 0 < g(b)$$

... by location of root theorem

$$\exists c\ni g(c)=0$$

i.e
$$f(c) - k = 0$$

$$\therefore f(c) = k$$

2. Assume that, a > b, a, b, $\in I$, f continuous on I

Define
$$h(x) = k - f(x)$$

As f(x) is continuous, h(x) is also continuous on I

Also,
$$f(a) < k < f(b)$$

$$k - f(a) < 0 < k - f(b)$$

: by location of root theorem

$$\exists c\ni h(c)=0$$

i.e
$$k - f(c) = 0$$

$$\therefore f(c) = k$$

Corollary 5.2.4.1. *Let* I - [a, b] *be a closed bounded interval. Let* $f : I \to \mathbb{R}$ *be continuous on* I *if* $k \in \mathbb{R}$ *is any number satisfying* $Inf f(I) \le k \le Supf(I)$ *then* \exists *a number* $c \in I \ni f(c) = k$

Proof. Given that, *I* is a closed bounded interval and $f: I \to \mathbb{R}$ is continuous on *I*

... By maximum- minimum theorem,

 $\exists x^*, x_* \in I \text{ such that } f(x^*) = Sup\{f(I)\}\$

$$f(x_*) = Inf\{f(I)\}$$

Also, Given that, $Inf f(I) \le k \le Sup f(I)$

i.e
$$f(x^*) \le k \le f(x_*)$$

∴ by Bolzano intermediate theorem,

 $\exists c \in I \ni f(c) = k$

-Hence Proved-

Theorem 5.2.5. Let I be closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I then, the set $f(I) = \{f(x) : x \in I\}$ be closed bounded interval.

Proof. let,

$$m = Inf\{f(I)\}$$

$$M = Sup\{f(I)\}$$

by maximum - minimum theorem, $m, M \in f(I)$

$$f(I) \subseteq [m, M]$$

if
$$k \in [m, M]$$

... by bolzano-itermediate theorem

$$\exists c \in I, f(c) = I$$

Hence, $k \in f(I)$

$$\Rightarrow$$
 $[m, M] \subseteq f(I)$

 \therefore , f(I) is the interval m, M

5.3 Continuity

Definition 5.3.1 (Uniform Continuous): Let $A \subseteq \mathbb{R}$ & let $f: A \to \mathbb{R}$. We say that f is uniformly continuous on A if for each $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0 \ni if x, y, \in A$ are any numbers satisfying $|x - y| < \delta(\varepsilon) \Rightarrow |f(x) - f(y)| < \varepsilon$

Definition 5.3.2 (Non- Uniform Continuity): Let $A \subseteq \mathbb{R}$ & let $f : A \to \mathbb{R}$ then following statements are equivalent.

- i) f is not uniformly continuous on A.
- ii) $\exists a_n \ \varepsilon_0 > 0 \ \exists for \ every \ \delta > 0 \ there \ are \ points \ x_\delta, \ y_\delta \ in \ A \ such \ that,$ $|x_\delta y_\delta| < \delta \ and \ |f(x_\delta) f(y_\delta)| \ge \varepsilon_0$
- iii) $\exists a_n \ \varepsilon_0 > 0$ and two sequence $x_n \& y_n$ in A such that $\lim x_n y_n = 0$ and $|f(x_n) f(y_n)| \ge \varepsilon_0$, $\forall n \in \mathbb{N}$

Theorem 5.3.1 (Uniform Continuity Theorem). Let I be closed bounded interval and let f:

 $I \to \mathbb{R}$ be continuous on I then f is uniform continuous on I.

Proof. If *f* is not uniform continuous on *I* then,

 $\exists \ \varepsilon_0 > 0 \text{ and two sequence } x_n, y_n \in I$

$$|x_n - y_n| < \frac{1}{n} \& |f(x_n) - f(y_n)| \ge \varepsilon_0$$

Since I is bounded x_n , y_n are bounded.

 \exists subsequence x_{n_k} of x_n that converges to some elements $z \in I$ (as I closed) as

$$|x_n - y_n| < \frac{1}{n} \quad \forall n$$

Subsequence y_{n_k} of y_n also converges to z

$$|y_{n_k}-z|$$

$$= |y_{n_k} - x_{n_k} + x_{n_k} - z|$$

$$\leq |y_{n_k} - x_{n_k}| + |x_{n_k} - z|$$

 $\therefore y_{n_k}$ is also converges to z

Now if f is continuous at z both $f(x_{n_k})$ and $f(y_{n_k})$ must converges f(z)

But this not possible as $|f(x_n) - f(y_n)| \ge \varepsilon_0$

: Our assumption is wrong.

Definition 5.3.3 (Lipschitz Function): Let $A \subseteq \mathbb{R}$ and $f : A \to \mathbb{R}$ if there exists a constant k > 0 such that

 $|f(x) - f(u)| < k|x - u| \quad \forall x, u \in A \text{ then } f \text{ is said to be a Lipschitz function on } A$

Theorem 5.3.2. *Lipschitz function is an uniformly continuous function always.*

Proof. for Lipschitz function

$$|f(x) - f(u)| < k|x - u|$$
Now, $|x - u| < \frac{\varepsilon}{k} = \delta$, $|< \frac{\varepsilon}{k} > 0$ as $k > 0$

$$|f(x) - f(u)| < k \cdot \frac{\varepsilon}{k}$$

$$< \varepsilon$$

$$|x - u| < \delta \Rightarrow |f(x) - f(u)| < \varepsilon$$

Lipschitz function is always uniformly continuous function.

Theorem 5.3.3. If $f: A \to \mathbb{R}$ is uniformly continuous on subset A of \mathbb{R} and if x_n is a cauchy sequence in A, then $f(x_n)$ is cauchy sequence in \mathbb{R} .

Proof. let x_n is a cauchy sequence in A and let $\varepsilon > 0$ choose $x, y \in A$, $\delta > 0$

$$|x - u| < \delta \Rightarrow |f(x) - f(u)| < \varepsilon$$

Since, x_n is a cauchy sequence $\exists H(\delta)$

$$|x_n - x_m| < \delta, \quad \forall n, m \ge H(\delta)$$

(as *f* is uniformly continuous)

$$|f(x_n) - f(x_m)| < \varepsilon$$

Therefore, the sequence $f(x_n)$ is cauchy sequence.

Theorem 5.3.4 (Continuous Extension Theorem). A function f is uniformly continuous on (a,b) iff it can be defined at the end points a & b such that the extended function is continuous on [a,b].

Proof. Assume that function f is continuous on [a, b]

... by defination,

for any
$$\varepsilon > 0$$
, $\frac{\varepsilon}{2} > 0$, $\exists \delta(\varepsilon) > 0$ such that,

$$|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$$

let
$$x_1 \& x_2 \in [a, b]$$

by defination,

for any
$$\varepsilon > 0$$
, $\frac{\varepsilon}{2} > 0$, $\exists \delta(\varepsilon) > 0$ such that,

$$|x_1 - c| < \frac{\delta}{2} \Rightarrow |f(x_1) - f(c)| < \frac{\varepsilon}{2}$$

and,

for any $\varepsilon > 0$, $\frac{\varepsilon}{2} > 0$, $\exists \delta(\varepsilon) > 0$ such that,

$$|x_2 - c| < \frac{\delta}{2} \Rightarrow |f(x_2) - f(c)| < \frac{\varepsilon}{2}$$

consider,

$$|x_1 - x_2|$$

$$= |x_1 - c + c - x_2|$$

$$\leq |x_1 - c| + |x_2 - c|$$

$$\leq \frac{\delta}{2} + \frac{\delta}{2}$$

$$\leq \delta$$

and,

$$|f(x_1) - f(x_2)|$$

$$= |f(x_1) - f(c) + f(c) - f(x_2)|$$

$$\leq |f(x_1) - f(c)| + |f(x_2) - f(c)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

 $\leq \varepsilon$

$$|x_1 - x_2| \le \delta \Rightarrow |f(x_1) - f(x_2)| \le \varepsilon$$

 \therefore f is uniformly continuous on (a, b)

Conversly, Suppose f is uniformly continuous on (a, b). Lets define f(a) & f(b)

Lets x_n be sequence in $(a, b) \ni \lim x_n = a$

 \Rightarrow x_n is cauchy sequence and as f is uniformly continuous on (a, b) and $x_n \in (a, b)$

 \therefore by sequential criteria, $\lim f(x_n) = L$ exists if y_n is any other sequence in (a,b) that converges to a then

$$\lim x_n - y_n = a - a = 0$$

$$\lim f(y_n) = \lim (f(y_n) - f(x_n) + f(x_n)) = L$$

So we define, L = f(a)

then *f* is continuous at *a*

Similarly, we can find some M = f(b) and we can say that f is continuous on extended

[*a*, *b*]

Definition 5.3.4 (Step Function): $I \subseteq \mathbb{R}$ be an interval and let $S: I \to \mathbb{R}$ then S is called a step function if it has only a finite number of distinct values.

5.4 Continuity And Gauges

Definition 5.4.1 (Partition): A partition of an interval I = [a, b] is collection $P = \{I_1, I_2, ..., I_n\}$ of non-over-lapping closed intervals whose union is [a, b]. We generally denote $I_i = [x_{i-1}, x_i]$ where $a = x_0 < ... < x_{i-1} < x_i < ... < x_n = b$

The points x_i (i = 0,1,2,...n) are called the partition points of p. If a point t_i has been choosen from each interval I_i , for (i = 0,1,2,...n) then the points t_i are called tages and set of ordered pairs $\dot{p} = \{(I_1,t_1),(I_2,t_2),...(I_n,t_n)\}$ is called as tagged partition o I

Definition 5.4.2: A gauge on I is a strictly positive function defined on I. if δ is a gauge on I, then a tagged partition \dot{p} is said to be δ – f ine if

$$t_i \in I_i \subseteq [t_i - \delta(t_i), t_i + \delta(t_i)]$$

If a partition p of I = [a, b] is a $\delta - f$ ine $\& x \in I$, then $\exists a \text{ tag } t_i \text{ in } p \text{ such that } |x - t_i| \le \delta(t_i)$

Alternative proof of Boundedness Theorem

Proof. Since f is continuous on I, then for each $t \in I \ \exists \ \delta(t) > 0 \ \ni \ \text{if } x \in I \text{ and }$

$$|x-t| < \delta(t)$$
 then $|f(x)-f(t)| < 1$

Thus, $\delta - gaugeonI$ let $\{(I_i, t_i)\}_{i=1}^n$ be $\delta - fine$ partition on I and let

$$k = max\{|f(t_i)| \quad i = 1, 2, ... n\}$$

Given any $x \in I$ \exists *i* with $|x - t_i| \le \delta(t_i)$

$$= |f(x) - f(t_i) + f(t_i)|$$

$$\leq 1 + k$$

Since $x \in I$ is arbitary, f is bounded.

Definition 5.4.3 (Monotone and Inverse Function): If $A \subseteq \mathbb{R}$, then a function $f : A \to \mathbb{R}$ is

said to be increasing on A if whenver $x_1, x_2 \in A$ and $x_1 < x_2$ then $f(x_1) \le f(x_2)$

if $x_1, x_2 \in A$ and $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ then f is called strictly increasing function.

Similarly, for decreasing fucntion,

 $x_1 < x_2$ then $f(x_1) \ge f(x_2)$ and strictly decreasing function

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

Theorem 5.4.1. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be increasing on I. Suppose $c \in I$ is not endpoint of I then,

1.
$$\lim_{x \to c^{-}} = \sup\{f(x) | x \in I, x < c\}$$

2.
$$\lim_{x \to c^+} = \sup\{f(x) | x \in I, x > c\}$$

Proof. 1. Let $x \in I \& x < c \Rightarrow f(x) < f(c)$

So, for set $\{f(x)/x \in I, x > c\}$, f(c) is uppear bound, So by completeness property,

 \exists Supremum, say L.

if $\varepsilon > 0$, then $L - \varepsilon$ is not upper bound

Hence, $\exists y_{\varepsilon} \in I, y_{\varepsilon} < c$

$$\ni L - \varepsilon < f(y_{\varepsilon}) \leq L$$

Since, *f* is increasing, if $\delta_{\varepsilon} = c - y_{\varepsilon}$ and if

$$0 < c - y < \delta_c$$
 then

$$y_{\varepsilon} < y < c$$

So that, $t - \varepsilon < f(y_{\varepsilon}) \le f(y) \le L$

$$\Rightarrow |f(y) - L| < \varepsilon \text{ when } 0 < c - y < \delta_c$$

Simillarly we can prove (ii)

Theorem 5.4.2 (Continuous Inverse Function). Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be strictly monotone and continuous on I then the function g – i n v e r e t e

Proof. Let *f* is strictly increasing

Since f is continuous on I

By preservation of interval theorem,

J = f(I) is also an interval. Also,

 $f: I \to \mathbb{R}$ is strictly monotone and injective on I, threfore, inverse function $g: J \to \mathbb{R}$ exists if

 $y_1, y_2 \in J$ with $y_1 < y_2$ then

 $y_1 = f(x_1), \quad y_2 = f(x_2) \text{ for some } x_1, x_2 \in I$

 $\Rightarrow x_1 < x_2$ as function is increasing

$$\Rightarrow$$
 $x_1 = g(y_1) < g(y_2) = x_2$

Since, y_1 , y_2 arbitary elements of J with

 $y_1 < y_2$, we conclude that g is strictly increasing on J.

Now, we have to show that *g* is continuous on *J*.

As g(J) = I is an interval.

Indeed, if *g* is discontinuous at a point $c \in J$, then the jump at *c* is non-zero so that $\lim_{y \to c^-} g < \infty$

$$\lim_{y\to c^+} g$$

if we choose any number $x \neq g(c)$ satisfying $\lim_{y \to c^-} g < x \lim_{y \to c^+} g$

then, $x \neq g(y)$, for any $y \in J$

Hence, $x \notin I$ which contradicts to our given condition that I is interval.

 \therefore The inverse function g is continuous on J.

Chapter 6

Differentiation

6.1 Derivative

Definition 6.1.1 (Derivative): Let $I \subseteq \mathbb{R}$ be an interval. let $f: I \to \mathbb{R}$ and let $c \in I$. We say that a real number L is derivative of f at c if given any $\varepsilon > 0$ $\exists \delta(\varepsilon) > 0 \ni if x \in I$ satisfies $0 < |x - c| < \delta \Rightarrow \left| \frac{f(x) - f(c)}{x - c} - L \right| < \varepsilon$

We say, f is differntiable at c.

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

Theorem 6.1.1. *If* $f: I \to \mathbb{R}$ *has a derivative at* $c \in I$ *, then* f *is continuous at* c.

Proof.
$$\forall x \in I, x \neq c$$

$$f(x) - f(c) = \frac{f(x) - f(c)}{x - c}(x - c)$$

$$\lim_{x \to c} f(x) - f(c)$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} (x - c)$$

$$= f'(c).0$$

$$=0$$

$$\lim_{x \to c} f(x) = f(c)$$

$\therefore f$ is continuous at point c

if $f: I \to \mathbb{R}$ is continuous at point c then f may or may not be derivable at c.

Example 33:

f(x) = |x| is continuous at 0 but not differntiable at 0.

Theorem 6.1.2. Let $I \subseteq \mathbb{R}$ be an interval, let $c \in I$ & let $f : I \to \mathbb{R}$ & $g : I \to \mathbb{R}$ be function that are diffrentiable at c then

a)
$$(\alpha f)'(c) = \alpha f'(c), \quad \alpha \in \mathbb{R}$$

b)
$$(f+g)'(c) = f'(c) + g'(c)$$

$$(c) (fg)'(c) = f'(c)g(c) + f(c)g'(c)$$

$$d) \left(\frac{f}{c}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2} \quad (g(c) \neq 0)$$

Proof. a)
$$(\alpha f)'(c)$$

$$= \lim_{x \to c} \frac{(\alpha f)(x) - (\alpha f)(c)}{x - c}$$

Chapter 6. Differentiation M.Sc. (Statistics) Lecture Notes

$$= \lim_{x \to c} \frac{\alpha f(x) - \alpha f(c)}{x - c}$$

$$= \alpha \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

$$(\alpha f)'(c) = \alpha f'(c)$$

b)
$$\lim_{x \to c} \frac{(f+g)(x) - (f+g)(c)}{x-c} = (f+g)'(c)$$

$$\therefore (f+g)'(c)$$

$$= \lim_{x \to c} \frac{(f(x) + g(x)) - (f(c) + g(c))}{x - c}$$

$$= \lim_{x \to c} \frac{(f(x) - f(c)) - (g(x) + g(c))}{x - c}$$

M.Sc. (Statistics) Lecture Notes

Chapter 6. Differentiation

$$= \lim_{x \to c} \left\{ \frac{f(x) - f(c)}{x - c} \right\} + \lim_{x \to c} \left\{ \frac{g(x) - g(c)}{x - c} \right\}$$

$$(f+g)'(c) = f'(c) + g'(c)$$

c) Let
$$h(x) = fg(x)$$

$$h'(c) = \lim_{x \to c} \frac{h(x) - h(c)}{x - c}$$

$$= \lim_{x \to c} \frac{fg(x) - fg(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x).g(x) - f(c).g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x).g(x) - f(c).g(x) + f(c).g(x) - f(c).g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{(f(x) - f(c))g(x) + f(c).(g(x) - g(c))}{x - c}$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot \lim_{x \to c} g(x) + \lim_{x \to c} \frac{g(x) - g(c)}{x - c} \cdot f(c)$$

$$\underline{(fg)'(c) = f'(c)g(c) + f(c)g'(c)}$$

d) let
$$h = \frac{f}{g}$$

$$\therefore h'(c) = \lim_{x \to c} \frac{h(x) - h(c)}{x - c}$$

M.Sc. (Statistics) Lecture Notes

Chapter 6. Differentiation

$$\therefore \left(\frac{f}{g}\right)'(c)$$

$$= \lim_{x \to c} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(c)}{x - c}$$

$$= \lim_{x \to c} \frac{\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)}}{x - c}$$

$$= \lim_{x \to c} \frac{f(x).g(c) - f(c).g(x)}{g(x).g(c)(x - c)}$$

$$= \lim_{x \to c} \frac{f(x).g(c) - f(c).g(c) + f(c).g(c) - f(c).g(x)}{g(x).g(c)(x - c)}$$

Chapter 6. Differentiation M.Sc. (Statistics) Lecture Notes

$$= \lim_{x \to c} \frac{(f(x) - f(c)) \cdot g(c) + f(c) \cdot (g(x) - g(c))}{g(x) \cdot g(c)(x - c)}$$

$$= \lim_{x \to c} \left(\frac{1}{g(x).g(c)} \right) \left[\lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right).g(c) - \lim_{x \to c} \left(\frac{g(x) - g(c)}{x - c} \right) f(c) \right]$$

$$= \frac{1}{(g(c))^2} [f'(c).g(c) - g'(c)f(c)]$$

$$\left(\frac{f}{c}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2} \quad (g(c) \neq 0)$$

Theorem 6.1.3. Let f be defined on an interval I containing point c. Then f is differntial at c iff \exists a function ψ on I that is continuous at c and satisfies $f(x) - f(c) = \psi(x)(x - c)$ $x \in I$ In this case, $\psi(c) = f'(c)$

Proof. If
$$f'(c)$$
 exists we can define,
$$\psi(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & for x \neq c, x \in I \\ f'(c) & for x = c \end{cases}$$

$$\lim_{x \to c} \psi(x) = f'(c)$$

Now, assume that ψ function is continuous at c and satisfies

$$f(x) - f(c) = \psi(x).(x - c)$$

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \psi(c) = \psi(c) \text{ exists}$$

 $\therefore f$ is differntiable at c and $\psi(c) = f'(c)$

Chain Rule

Theorem 6.2.1 (Chain Rule). Let I, J be intervals in \mathbb{R} . Let $g: I \to \mathbb{R}$ & $f: J \to \mathbb{R}$ be function \ni $f(J) \subseteq I \ and \ let \ c \in J$

If f is differntiable at c & g is differntiable at f(c) then the composite function $g \circ f$ is diffrentiable at c and $(g \circ f)'(c) = g'(f(c)).f'(c)$

Proof. Given that *f* is diffrentiable at *c*

 \therefore 3 function ψ on $J \ni$

$$f(x) - f(c) = \psi(x).(x - c) \& f'(c) = \psi(c)$$

Also, g is diffrentiable at f(c)

 \exists function ψ on $I \ni$

$$g(f(x)) - g(f(c)) = \psi(f(x)).(f(x) - f(c)) \& g'(f(c)) = \psi(f(c))$$

Consider,

$$g \circ f(x) - g \circ f(c)$$

$$= g(f(x)) - g(f(c))$$

$$= \psi(f(x)).(f(x) - f(c))$$

$$= \psi(f(x)).(\psi(x).(x-c))$$

$$= [\psi(f(x)).\psi(x)].(x-c)$$

 $g \circ f$ is diffrentiable at c

Also,
$$\lim_{x \to c} \frac{g \circ f(x) - g \circ f(c)}{(x - c)}$$

$$= \lim_{x \to c} [\psi(f(x)).\psi(x)]$$

$$=\psi(f(c)).\psi(c)$$

$$(g \circ f)'(c) = g'(f(c)).f'(c)$$

Definition 6.2.1 (Inverse Function): Let I be an interval in \mathbb{R} and $f: I \to \mathbb{R}$ strictly monotone and continuous on I. let J = f(I) and let $g: J \to \mathbb{R}$ be strictly monotone and continuous function inverse to f.

Theorem 6.2.2. If f is differentiable at c, $c \in I$ & $f'(c) \neq 0$ then g is diffrentiable at d = f(c) &

$$g'(d) = \frac{1}{f(c)} = \frac{1}{f'(g(d))}$$

Proof. Given that, f is differentiable at $c \in I$

∴ $\exists \psi$ on *I* continuous at $c \ni$

$$f(x) - f(c) = \psi(x).(x - c) \& \psi(c) = f'(c)$$

Since $f'(c) \neq 0 \Rightarrow \psi(c) \neq 0$

 \exists neighbourhood of c, $v = (c - \delta, c + \delta)$

$$\ni \quad \psi(x) \neq 0 \quad \forall x \in v \cap I$$

If $U = f(v \cap I)$ then inverse function g satisfies

$$f(g(y)) = y, \quad \forall y \in U$$

$$y - d = f(g(y)) - f(c) = \psi(g(y)).(g(y) - g(d))$$

since, $\psi(g(y)) \neq 0$, $\forall y \in U$

$$g'(y) - g(d) = \frac{1}{\psi(g(y))}(y - d)$$

Since, $\psi(g(y))$ is continuous at d

g'(d) exists and

$$g'(d) = \frac{1}{\psi(g(d))} = \frac{1}{\psi(c)} = \frac{1}{f'(c)}$$

Theorem 6.2.3. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is an even function [i.e $f(-x) = f(x) \forall x$] and has

M.Sc. (Statistics) Lecture Notes Chapter 6. Differentiation

derivative at every point, then the derivative f' is an odd function. Also, prove that if $g : \mathbb{R} \to \mathbb{R}$ is a diffrentiable odd function, then g' is even function.

Proof. a) Given that *f* is even function

$$f(x) = f(-x) \forall x$$

Also, *f* is differntiable at *c*

$$\therefore f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \text{ exists}$$

To prove, f' is odd function

i.e
$$f'(-c) = -f'(c)$$

consider,

$$f'(-c)$$

$$= \lim_{x \to -c} \frac{f(x) - f(-c)}{x + c}$$

$$= \lim_{-x \to c} \frac{f(x) - f(c)}{-x + c}$$

$$= \lim_{-x \to c} \frac{f(x) - f(c)}{-(x - c)}$$

$$=-f'(c)$$

 $\therefore f'$ is odd function.

b) Given that *g* is odd function

$$g(x) = g(-x) \forall x$$

Also, g is differntiable at c

$$\therefore g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c} \text{ exists}$$

To prove, g' is even function

i.e
$$g'(-c) = -g'(c)$$

consider,

$$g'(-c)$$

$$= \lim_{x \to -c} \frac{g(x) - g(-c)}{x + c}$$

$$= \lim_{-x \to c} \frac{-g(x) + g(c)}{-x + c}$$

$$= \lim_{-x \to c} \frac{g(x) - g(c)}{(x - c)}$$

$$=g'(c)$$

 \therefore g' is even function.

Theorem 6.2.4 (Interior Extremum). Let c be an interior point of the interval I at which f:

 $I \to \mathbb{R}$ has a relative extremum. If derivative of f at c exists, then f'(c) = 0

Proof. Let *f* has relative maximum at *c*

Chapter 6. Differentiation M.Sc. (Statistics) Lecture Notes

if
$$f'(c) > 0$$
, $\exists V_{\varepsilon}(c) \subseteq I$

$$\frac{f(x) - f'(c)}{x - c} > 0$$
, $\forall x \in V_{\varepsilon}(c), x \neq c$

if $x \in v, x > c$

$$f(x) - f(c) = (x - c) \cdot \frac{f(x) - f'(c)}{x - c} > 0$$

$$\therefore f(x) > f(c) \quad \forall x > 0, \quad x \in \nu_{\varepsilon}(c)$$

but, f has relative maximum at c.

So, our assumption is wrong that f'(c) > 0

Similarly, we can show that f'(c) < 0

$$\therefore f'(c) = 0$$

Corollary 6.2.4.1. Let $f: I \to \mathbb{R}$ be continuous on an interval I and suppose that f has relative extremum at an interior at c of I then either the derivative of f at c does not exists or it is equal to 0

Theorem 6.2.5 (Rolle's theorem). If a function f defined on [a, b] is

- 1. Continuous on [a, b]
- 2. derivable on (a, b)

3.
$$f(a) = f(b)$$

then
$$\exists c \in \mathbb{R}, c \in (a, b) \ni f'(c) = 0$$

Proof. Since, f is continuous $[a, b] \Rightarrow f$ is bounded

.: by maximum- minimum theorem,

If
$$m = inf\{f(I)\}\$$
and $M = Sup\{f(I)\}\$ then $\exists c, d \in (a, b)$

$$f(c) = m \& f(d) = M$$

there are two possibilities m = M or $m \neq M$

If
$$m = M$$

$$\Rightarrow inf\{f(I)\} = Sup\{f(I)\} \Rightarrow f \text{ is continuous}$$

$$\Rightarrow f'(c) = 0, \quad \forall c \in (a, b)$$

If $m \neq M$

$$\Rightarrow f(c) = m \neq f(a) \Rightarrow c \neq a$$

$$\Rightarrow f(c) = m \neq f(b) \Rightarrow c \neq b$$

 \Rightarrow c lies in (a, b)

Now, we have to show f'(c) = 0

IF f'(c) < 0, $\exists (c, c + \delta), \delta_1 > 0$ for every x of which f(x) < f(c) = m which contradicts to our assumption that infimum attains at c.

Similarly, f'(c) > 0 is not possible

$$\therefore f'(c) = 0$$

Theorem 6.2.6 (Langrange's Mean Value theorem). *If a function f defined on* [a, b]

- i) Continuous on [a, b]
- ii) differentiable on (a, b)

Chapter 6. Differentiation M.Sc. (Statistics) Lecture Notes

then
$$\exists c \in (a,b) \ni f'(c) = \frac{f(b) - f(a)}{b - a}$$

Proof. Let us define function ψ on [a,b] such that

 $\psi(x) = f(x) - Ax$, where A is constant.

As f(x) is continuous on [a, b] and differentiable on (a, b),

 $\psi(x)$ is also continuous on [a, b] and differentiable on (a, b)

Assume,
$$\psi(a) = \psi(b)$$

$$f(a) - A.a = f(b) - A.b$$

$$f(b) - f(b) = A(b - a)$$

$$A = \frac{f(b) - f(a)}{b}$$

$$\therefore A = \frac{f(b) - f(a)}{b - a}$$

$$\therefore \psi(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}\right) x$$

i) $\psi(x)$ is continuous on [a, b]

ii) $\psi(x)$ is derivable on (a, b)

iii)
$$\psi(a) = \psi(b)$$

∴ by rolle's theorem

$$\psi'(c) = f'(c) - \left(\frac{f(b) - f(a)}{b - a}\right)$$
$$f'(c) = \left(\frac{f(b) - f(a)}{b - a}\right)$$

Theorem 6.2.7 (Cauchy Mean Value theorem). *If* f.g *defined on* [a, b]

- i) continuous on [a, b]
- ii) derivable on (a, b)

iii)
$$g'(x) \neq 0$$
, $\forall x \in (a, b) \exists c \in (a, b) \ni$

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Proof. Let us deine function $\psi(x)$ on $[a, b] \ni$

$$\psi(x) = f(x) - Ag(x)$$

M.Sc. (Statistics) Lecture Notes

Chapter 6. Differentiation

- i) $\psi(x)$ is continuous on [a, b]
- ii) $\psi(x)$ is derivable on (a, b)

iii)
$$\psi(a) = \psi(b)$$

$$\Rightarrow f(a) + A.g(a) = f(b) - A.g(b)$$

$$\therefore f(b) - f(a) = A(g(b) - g(a))$$

$$A = \frac{f(b) - f(a)}{g(b) - g(a)}$$

∴ by rolles theorem,

$$\psi'(c) = 0$$

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

6.3 Taylor's Theorem

Theorem 6.3.1 (Taylor's Theorem). If a function f defined on [a, a + h] is such that

- i) $(n-i)^t h$ derivative f^{n-1} is continuous on [a, a+h] and
- ii) $n^t h$ derivative f^n exists on (a, a + h) then \exists at least one real number θ between 0 & 1 $(0 < \theta < 1)$ that,

$$f(a+h) = f(a) + hf'(a) + \left(\frac{h^2}{2!}\right)f''(a) + \left(\frac{h^3}{3!}\right)f'''(a) + \dots + \left(\frac{h^{n-1}}{(n-1)!}\right)f^{n-1}(a) + \left(\frac{h^n(1-\theta)^{n-p}}{p[(n-1)!]}\right)f^n(a+\theta h)$$

where p is given positive integer \mathbb{R}_n forms of remainder form-

M.Sc. (Statistics) Lecture Notes

Chapter 6. Differentiation

i)
$$R_n = \left(\frac{h^n (1-\theta)^{n-p}}{p[(n-1)!]}\right) f^n(a+\theta h)$$

ii)
$$R_n = \left(\frac{h^n(1-\theta)^{n-1}}{(n-1)!}\right) f^n(a+\theta h) \Rightarrow Cauchy$$

iii)
$$R_n = \left(\frac{h^n}{n!}\right) f^n(a+\theta h) \Rightarrow Called as Langrages Forms of remainder$$

Theorem 6.3.2 (Maclaurins Theorem). $f(x) = f(0) + xf'(0) + \left(\frac{x^2}{2!}\right)f''(0) + \left(\frac{x^3}{3!}\right)f'''(0) + \dots + \frac{x^3}{3!}f'''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x^3}{3!}f'''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x^3}{3!}f''''(0) + \dots + \frac{x^3}{3!}f''''(0) + \dots + \frac{x^3}{3!}f''''(0) + \dots$

$$\left(\frac{x^{n-1}}{(n-1)!}\right)f^{n-1}(0) + \left(\frac{x^n(1-\theta)^{n-p}}{p[(n-1)!]}\right)f^n(\theta x)$$

Example 34:

$$f(x) = e^x$$

∴ By Maclaurins theorem,

$$f(x) = f(0) + xf'(0) + \left(\frac{x^2}{2!}\right)f''(0) + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots$$

Example 35:

$$f(x) = \sin(x)$$

∴ By Maclaurins theorem,

$$f(x) = \sin 0 + x \cos 0 + \frac{x^2}{2!}(-\sin 0) + \frac{x^3}{3!}(-\cos 0) + \dots$$

$$\therefore \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

Example 36:

$$f(x) = \log(1+x)$$

$$f'(x) = \frac{1}{1+x}$$
, $f''(x) = \frac{-1}{(1+x)^2}$, $f'''(x) = \frac{2}{(1+x)^3}$

∴ By Maclaurins theorem,

M.Sc. (Statistics) Lecture Notes Chapter 6. Differentiation

$$f(x) = f(0) + xf'(0) + \left(\frac{x^2}{2!}\right)f''(0) + \left(\frac{x^3}{3!}\right)f'''(0) + \dots$$

$$f(x) = 0 + x(1) + \left(\frac{x^2}{2!}\right)(-1) + \left(\frac{x^3}{3!}\right)(2) + \dots$$

$$\log(1+x) = x - \frac{x^2}{2} \frac{x^3}{3} + \frac{x^4}{4} + \dots$$

6.4 Maximum or Minimum for function of two variables

f(a,b) is extreme value of f(x,y). if

i)
$$f_x(a, b) = 0 = f_y(a, b)$$

ii)
$$f_{xx}(a,b) = f_{yy}(a,b) - [f_{xy}(a,b)]^2 > 0$$

and this extreme value is maximum or minimum according as $f_{xx}(a,b)$ or $f_{yy}(a,b)$ is negative or positive.

Further investigation needed if,

$$f_{xx}(a,b).f_{yy}(a,b) - [f_{xy}(a,b)] = 0$$

Example 37:

find maximum and minimum of

$$f(x, y) = x^3 + y^3 - 3x + 12y + 20 = 0$$

Proof.
$$f_x(x, y) = 0$$

i.e
$$3x^2 - 3 = 0$$

$$x^2 = 1$$

$$x = \pm 1$$

$$f_y(x,y)=0$$

i.e
$$3y^2 + 12 = 0$$

$$y^2 = 4$$

$$x = \pm 2$$

M.Sc.(Statistics) Lecture Notes Chapter 6. Differentiation

$$f_{xx}(x, y) = 6x$$
, $f_{yy}(x, y) = 6y$, $f_{xy}(x, y) = 0$

for
$$x = 1$$
, $y = 2$

$$f_{xx}(x, y) = 6x = 6$$
, $f_{yy}(x, y) = 6y = 12$, $f_{xy}(x, y) = 0$

for
$$x = -1$$
, $y = -2$

$$f_{xx}(x, y) = 6x = -6$$
, $f_{yy}(x, y) = 6y = -12$, $f_{xy}(x, y) = 0$

for
$$x = -1$$
, $y = 2$

$$f_{xx}(x, y) = 6x = -6$$
, $f_{yy}(x, y) = 6y = 12$, $f_{xy}(x, y) = 0$

for
$$x = 1$$
, $y = -2$

$$f_{xx}(x, y) = 6x = 6$$
, $f_{yy}(x, y) = 6y = -12$, $f_{xy}(x, y) = 0$

minimum = (1, 2)

maximum = (-1, -2)

Chapter 6. Differentiation

M.Sc.(Statistics) Lecture Notes

Chapter

Sequence and Series of Function

7.1 Sequence of Function

Definition 7.1.1 (Sequence of Function): Let $A \subseteq \mathbb{R}$ be given and suppose that for each $n \in \mathbb{N}$ $\exists f_n : A \to \mathbb{R}$ we shall say that (f_n) is a sequence of function on A to \mathbb{R}

Definition 7.1.2 (Pointwise Convergent): Let f_n be a sequence of function on $A \subseteq \mathbb{R}$ to \mathbb{R} . let $A_0 \subseteq A$ & let $f_n : A_0 \to \mathbb{R}$ we say that the sequence f_n converges on A_0 to f if for each $x \in A_0$ the sequence $f_n(x)$ converges to f

The sequence $f_n: A \to \mathbb{R}$ converges to function $f_n: A_0 \to \mathbb{R}$ on A_0 iff for each $\varepsilon > 0$ & $x \in A_0 \exists$

$$k(\varepsilon_1 x) \in \mathbb{N} \quad \ni \quad |f_n(x) - f(x)| < \varepsilon, \quad \forall n \ge k(\varepsilon_1 x)$$

Example 38:

$$f_n(x) = \frac{x}{n}, \quad f(x) = 0$$

$$|f_n(x) - f(x)| < \varepsilon$$

i.e
$$\left| \frac{x}{n} - 0 \right| < \varepsilon \Rightarrow \left| \frac{x}{n} \right|$$

$$\therefore \frac{|x|}{n} < \varepsilon$$

$$\therefore n > \frac{|x|}{\varepsilon}$$

Example 39:

$$f_n(x) = x^n$$

$$|f_n(x) - f(x)| < \varepsilon$$

$$|x^n - 0| < \varepsilon$$
, $-1 < x < 1$

$$|x^n| < \varepsilon$$

$$n\log x < \log \varepsilon$$

$$n < \log\left(\frac{\varepsilon}{x}\right)$$

$$\therefore n > \log\left(\frac{x}{\varepsilon}\right)$$

Example 40:

$$f_n(x) = \frac{x^2 + nx}{n}, \quad x \in \mathbb{R}, \quad f(x) = x$$
$$|f_n(x) - f(x)| < \varepsilon$$

$$\left| \frac{x^2}{n} + x - x \right| < \varepsilon \left| \frac{x^2}{n} \right| < \varepsilon$$

$$\therefore \frac{x^2}{\varepsilon} < n$$

$$\therefore n > \frac{x^2}{\varepsilon}$$

Definition 7.1.3 (Uniform Convergence): A sequence of function on $A \subseteq \mathbb{R}$ to \mathbb{R} converges uniformly on $A_0 \subseteq A$ to a function $f: A_0 \to \mathbb{R}$ if for each $\varepsilon > 0$ there is a natural number $k(\varepsilon)$ (depending on ε but not on $x \in A_0$) \ni

$$|f_n(x) - f(x)| < \varepsilon, \quad \forall n \ge k(\varepsilon)$$

denoted by, $f_n(x) \xrightarrow{} f(x)$ on A_0

Lemma 7.1.1. A sequence f_n of function on $A \subseteq \mathbb{R}$ does not converges uniformly on $A_0 \subseteq A$ to a function $f: A_0 \to \mathbb{R}$ iff for some $\varepsilon_0 > 0$ \exists subsequence f_{n_k} of f_n and a sequence x_k in A_0 such that

$$|f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0, \quad \forall k \in \mathbb{N}$$

Example 41:

$$f_n(x) = \frac{x_k}{n_k}, \quad f(x) = 0, x_k = k, n_k = k$$
$$|f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0$$

$$\left| \frac{x_k}{n_k} - 0 \right| \Rightarrow \left| \frac{k}{k} - 0 \right|$$

$$\Rightarrow |1-0|$$

$$\Rightarrow |1| \geqslant \varepsilon$$

Example 42:

$$f_n(x) = \frac{x^2 + nx}{n}, \quad f(x) = x, x_k = k, n_k = -k$$

$$|f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0$$

$$\left| \frac{x_k^2}{n_k} + x_k - x_k \right| \geqslant \varepsilon_0 \Rightarrow$$

$$\left|\frac{k^2}{k}\right| \geqslant \varepsilon_0$$

$$|k| > \varepsilon$$

... not uniformly convergent

Example 43:

$$f_n(x) = x^n$$

$$f(x) = \begin{cases} 0 & ; 0 \le x < 1 \\ 1 & ; x = 1 \end{cases}$$

$$x_k = \left(\frac{1}{2}\right)^{\left(\frac{1}{k}\right)}, \quad n_k = k$$

$$|f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0$$

$$||x_k^{n_k} - 0|| \ge \varepsilon_0$$

$$\left| \left(\frac{1}{2} \right)^{\left(\frac{1}{k} \right)} - 0 \right| \ge \varepsilon_0$$

$$\therefore \left| \frac{1}{2} \right| > \varepsilon$$

... Not uniformly convergent

Definition 7.1.4 (Uniform Norm): If $A \subseteq \mathbb{R} \& \psi : A \to \mathbb{R}$ is a function we say that ψ is bounded on A. If the set $\psi(A)$ is bounded subset of \mathbb{R} if ψ is bounded we define the uniform norm of ψ on A by, $||\psi||_A = Sup\{|\psi(x)| : x \in A\}$

Note that, it follows that if $\varepsilon > 0$,

$$||\psi||_A \le \varepsilon \Leftrightarrow |\psi(x)| \Longleftrightarrow \varepsilon, \quad \forall x \in A$$

Lemma 7.1.2. A sequence f_n of bounded function on $A \subseteq \mathbb{R}$ uniformly on A to f if and only if

$$||f_n - f||_A \rightarrow 0$$

Example 44:

$$f(x) = x \quad [0,1]$$

$$Sup\{|\psi(x)|:x\in A\}=1$$

$$||f||_{A} = 1$$

Example 45:

$$f_n(x) = \frac{x}{n}, \quad f(x) = 0, \quad [0, 1]$$

$$|f_n(x) - f(x)| = |x|$$

$$||f_n - f||_A = \frac{1}{n}^n \to 0$$

Example 46:

$$f_n(x) = x^n$$
 [0, k], $f(x) = 0$

$$|f_n(x) - f(x)| = |x^n|$$

$$||f_n - f||_A = |k^n|$$

Example 47:

$$f_n(x) = x^n(1-x)$$
 $x \in [0,1], f(x) = 0$

$$|f_n(x) - f(x)| < \varepsilon$$

$$|x^n(1-x)-0| = |x^n(1-x)|$$

$$f_n(x) = x^n - x^{n+1}$$

$$f_n'(x) = nx^{n-1} - (n+1)x^n = 0$$

$$\Rightarrow nx^{n-1} = (n+1)x^n$$

$$\Rightarrow \frac{n}{n+1} = x$$

$$x = \frac{1}{\left(1 + \frac{1}{n}\right)}$$

$$\therefore ||f_n - f||_A = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \left(1 - \frac{1}{\left(1 + \frac{1}{n}\right)}\right)$$

$$= \left(1 + \frac{1}{n}\right)^{-n} \left(\frac{\frac{1}{n}}{1 + \frac{1}{n}}\right)$$

$$= \left(1 + \frac{1}{n}\right)^{-n} \left(\frac{1}{1 + \frac{1}{n}}\right) \to 0$$

7.2 Cauchy Criteria for Uniform Convergence

Theorem 7.2.1. Let f_n be a sequence of bounded function on $A \subseteq \mathbb{R}$ then this sequence converges uniformly on A to a bounded function f iff for each $\varepsilon > 0 \quad \exists \quad H(\varepsilon) \in \mathbb{N} \ni$

$$||f_m - f_n||_A \le \varepsilon, \quad \forall m, n \ge H(\varepsilon)$$

Proof. If
$$f_n(x) \xrightarrow{\sim} f(x)$$
 then for $\varepsilon > 0$ $\exists k \left(\frac{\varepsilon}{2}\right) \ni ||f_n - f||_A \le \left(\frac{\varepsilon}{2}\right) \quad \forall n \ge k \left(\frac{\varepsilon}{2}\right)$
Hence, if both $m, n \ge k \left(\frac{\varepsilon}{2}\right)$

$$|f_m(x)' - f_n(x)|$$

$$= |f_m(x) - f(x) + f(x)f_n(x)|$$

$$\leq = |f_m(x) - f(x)| + |f(x)f_n(x)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$\leq \varepsilon \quad \forall m, n \geq k \left(\frac{\varepsilon}{2}\right)$$

Conversly,

Suppose, $\varepsilon > 0$, $\exists H(\varepsilon) \in \mathbb{N}$

$$\exists ||f_m - f_n||_A \le \varepsilon, \quad \forall m, n \ge H(\varepsilon)$$

 \therefore for each $x \in A$

$$|f_m(x) - f_n(x)| \le ||f_m(x) - f_n(x)||_A \le \varepsilon, \quad \forall m, n \ge H(\varepsilon)$$

 \Rightarrow $f_m(x)$ is cauchy sequence and hence convergent.

$$\therefore \exists \quad f(x) = \lim_{n \to \infty} f_n(x) \quad \forall x \in A$$

We have $|f_m(x) - f_n(x)| \le \varepsilon$, $\forall m \ge H(\varepsilon)$

$$\therefore f_n(x) \xrightarrow{\rightarrow} f(x)$$
 on A

7.3 Series of Function

If f_n is sequence of function defined on subset D of \mathbb{R} with values in \mathbb{R} , the sequence of partial sums S_n of infinite series $\sum f_n$ is defined for x in D by,

$$S_1(x) = f_1(x)$$

$$S_2(x) = f_2(x) + S_2(x)$$

•

:

$$S_{n+1}(x) = S_n(x) + f_{n+1}(x)$$

:

:

- In the case sequence S_n of functions f_n converges to function f on D we say that $\sum f_n$ converges on D to f
- If the series $\sum |f_n(x)|$ converges for each $x \in D$, we say that $\sum f_n$ converges absolutely on D.

- if (S_n) sequence of partial sums is uniformly convergent on D to f, we say that $\sum f_n$ is uniformly converges on D
- If f_n is continuous on $D \subseteq \mathbb{R}$ to \mathbb{R} for each $n \in \mathbb{N}$ and if $\sum f_n$ converges f on D uniformly, then f is continuous on D

Definition 7.3.1 (Cauchy Criterion): f_n be a sequence of f_n on $D \subseteq \mathbb{R}$ to \mathbb{R} , the series $\sum f_n$ is uniformly convergent on D iff if for every uniformly $\varepsilon > 0$, $\exists M(c)$

$$\exists |f_{n+1}(x) + f_{n+2}(x) + \ldots + f_m(x)| < \varepsilon, \quad \forall m > n \le M(\varepsilon)$$

Theorem 7.3.1 (Weistress M-test). Let M_n be a sequence of positive real numbers such that $|f_n(x)| \le M_n \quad \forall \quad x \in D \quad \forall n \in \mathbb{N}$. If the series M_n is convergent then $\sum f_n$ is uniformly convergent on D

Proof. M_n is convergent,

By cauchy criterion for series,

for any $\varepsilon > 0$, $\exists k(\varepsilon) \in \mathbb{N}$

$$\exists M_{n+1} + M_{n+2} + \ldots + M_m < \varepsilon, \quad \forall m > n \leq k(\varepsilon)$$

$$\exists |f_{n+1}(x)| + |f_{n+2}(x)| + \dots + |f_m(x)| < M_{n+1} + M_{n+2} + \dots + M_m < \varepsilon$$

Also,

$$|f_{n+1}(x) + f_{n+2}(x) + \dots + f_m(x)| \le |f_{n+1}| + |f_{n+2}| + \dots + |f_m| < \forall m > n \ge k(\varepsilon)$$

∴ By Cauchy criterion,

 $\sum f_n$ is uniformly convergent on D.

Definition 7.3.2 (Power Series): A series of real function $\sum f_n$ is said to be power series around x = c if the function has the form $f_n(x) = a_n(x-c)^n$ where a_n and $c \in \mathbb{R}$ and where n = 0, 1, 2, ...

Example 48:

Power Series

$$\sum a_n x^n = a_0 x^0 + a_1 x + \dots + a_n x^n + \dots$$

$$\sum_{n=0}^{\infty} n! x^n \qquad \sum_{n=0}^{\infty} x^n \qquad \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Definition 7.3.3 (Radius of Convergence): $\sum a_n x^n$ be a power series if a sequence $|a_n|^n$ is bounded, we set $\rho = \lim Sup|a_n|^n$ if this sequence is not bounded, we set $\rho = +\infty$

We define radius of convergece of $\sum a_n x^n$ to be given by,

$$R = \begin{cases} 0 & ; if \quad \rho = +\infty \\ \frac{1}{\rho} & ; if \quad 0 < \rho < +\infty \\ \infty & ; \quad \rho = 0 \end{cases}$$

The interval of convergence is the open interval (-R, R)

Example 49:

$$\sum \frac{x^n}{2^n} \Rightarrow \left| \frac{1}{2^n} x^n \right|$$

$$\Rightarrow a_n.x^n$$

$$\rho = \lim Sup |a_n|^{\frac{1}{n}}$$

$$\Rightarrow \lim Sup \left| \frac{1}{2^n} \right|^{\frac{1}{n}}$$

$$\Rightarrow \frac{1}{2}$$

$$\Rightarrow R = \frac{1}{\rho} = 2$$

Example 50:

$$\sum nx^n \Rightarrow a_nx^n$$

$$R = \lim \left| \frac{a_n}{a_{n+1}} \right|$$

$$R = \lim \left| \frac{n}{n+1} \right|$$

$$R = \lim \left| \frac{1}{1 + \frac{1}{n}} \right|$$

$$R = 1$$

Chapter 8

Riemann Integral

8.1 Introduction

Riemann Integral

If I = [a, b] be closed bounded interval in \mathbb{R} then partition of I is a finite ordered set $\mathbb{P} = (x_0, x_1, ..., x_{n-1}, x_n)$ of points in I such that $a = x_0 < x_1 < x_2 < ... < x_{n-1} < x_n = b$.

The points of P are used to divide I = [a, b] into non-overlapping sub-intervals.

$$I_1 = [x_0, x_1], I_2 = [x_1, x_2], \dots, I_n = [x_{n-1}, x_n]$$

Norm of $P = ||p|| = max\{|x_i - x_{i-1}|, i = 1, 2, ..., n\}$

The norm of partition is merely the length of largest sub-interval into which the partition divide if point t_i has been choosen from each sub-interval $I_i = [x_{i-1}, x_i] = \forall i = 1 : n$ then the points are called as tages of sub- intervals I - i.

A set of ordered pairs

 $\dot{p} = \{[x_{i-1}, x_i], t_i\}_{i=1}^n$ is tagged partition of [a, b]

Definition 8.1.1 (Riemann Sum): If \dot{p} is the tagged partition, we define Riemann sum of function. $f:[a,b] \to \mathbb{R}$ corresponding to \dot{p} to be the number,

$$S(f, \dot{p}) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$$

Definition 8.1.2 (Riemann Integral): A function $f:[a,b] \to \mathbb{R}$ is said to be Riemann integrable on [a,b] if there exists a number $L \in \mathbb{R}$ such that for $\varepsilon > 0 \quad \exists \quad \delta_{\varepsilon} > 0 \quad \ni if \ \dot{p}$ is any tagged partition of [a,b] with $||\dot{p}|| < \delta_{\varepsilon}$ then

$$|S(f, \dot{p}) - L| < \varepsilon$$

The set of all Riemann integrable functions on [a, b] will be denoted by R[a, b]

i.e
$$||\dot{p}|| \to 0 \Rightarrow S(f, \dot{p}) \to L$$

Definition 8.1.3: If $f \in R[a,b]$ then the number L is uniquely determined and called as Rie-

 $mann\ Integral\ of\ f\ over\ [a,b]$

$$L = \int_{a}^{b} f(x) dx$$

Theorem 8.1.1. If $f \in R[a, b]$ then the value of the integral is uniquely determined.

Proof. Assume that L' & L'' both satisfy the definition and

let $\varepsilon > 0$ $\exists \delta'_{\frac{\varepsilon}{2}} > 0$ \ni if \dot{p}_1 is tagged partition with $||\dot{p}_1|| < \delta'_{\frac{\varepsilon}{2}}$ then

$$|S(f, \dot{p}_1) - L'| < \frac{\varepsilon}{2}$$

Similarly, $\exists \delta_{\frac{\varepsilon}{2}}'' > 0 \quad \ni \text{ if } \dot{p}_2 \text{ is tagged partition with } ||\dot{p}_2|| < \delta_{\frac{\varepsilon}{2}}'' \text{ then}$

$$|S(f, \dot{p}_2) - L''| < \frac{\varepsilon}{2}$$

Now, let
$$\delta_{\varepsilon} = min\left(\delta_{\frac{\varepsilon}{2}}', \delta_{\frac{\varepsilon}{2}}''\right)$$

let \dot{p} be tagged partition with $||\dot{p}|| < \delta_{\varepsilon}$

$$\Rightarrow |S(f, \dot{p}) - L'| < \frac{\varepsilon}{2}$$
 and

$$|S(f, \dot{p}_2) - L''| < \frac{\varepsilon}{2}$$

So,
$$|L' - L''| = |L' - S(f, \dot{p}) + s(f, \dot{p}) - L''|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

 $\leq \varepsilon$

As ε is arbitary, L' = L''

Theorem 8.1.2. Every constant function on [a, b] is in R[a, b].

Proof. Let $f(x) = k \ \forall \ x \in [a,b]$ be the constant function, if $\dot{p} = \{[x_{i-1},x_i],t_i\}_{i=1}^n$ is any tagged partition on [a,b]

$$S(f, \dot{p}) = \sum_{i=1}^{n} k(x_i - x_{i-1}) = k(b - a)$$

Hence, for any $\varepsilon > 0$, we can choose $\delta_{\varepsilon} > 0 \quad \ni \quad ||\dot{p}|| < \delta_{\varepsilon} \& S(f, \dot{p} - k(b - a))| = 0 < \varepsilon$

$$\int_{a}^{b} f(x)dx = k(b-a)$$

f(x) is an Riemmann integrable $f \in R[a,b]$

8.2 Some Properties of Integral

Theorem 8.2.1. Suppose that f & g are in R[a, b] then

a) If $k \in \mathbb{R}$, the function k.f is in R[a,b] and $\int_a^b kf = k \int_a^b f$

b) the function
$$f \& g$$
 is in $R[a,b]$ and $\int_a^b f + g = \int_a^b f + \int_a^b g$

c)
$$f(x) \le g(x) \quad \forall \quad x \in [a, b] \text{ then } \int_a^b f \le \int_a^b g(x) dx$$

Theorem 8.2.2. If $f \in [a, b]$ then f is bounded on [a, b]

Proof. Assume that f is unbounded on [a, b]

As $f \in [a, b]$, then for any $\varepsilon > 0$ $\exists \delta_{\varepsilon} > 0$

such that $||\dot{p}|| < \delta_{\varepsilon}$ then $|S(f, \dot{p}) - L| < \varepsilon$

Now, let $Q = \{[x_{i-1}, x_i]_{i=1}^n$ be partition on [a, b] with $||Q|| < \delta$. Since |f| is not bounded on [a, b], \exists at lest one sub-interval $[x_{k-1}, x_k]$ on [a, b] which |f| is not bounded.

Let tag Q by $t_i = x_i$ for $i \neq k$ and $k_k \in [x_{k-1}, x_k]$ such that,

$$|f(t_k).(x_k - x_{k-1})| > |L| + \varepsilon + \left| \sum_{i \neq k}^n f(t_i)(x_i - x_{i-1}) \right|$$

By triangular inequality |a+b| > |a| - |b|

$$|S(f,Q)| \ge |f(t_k)(x_k - x_{k-1})| - + \left| \sum_{i \ne k}^n f(t_i)(x_i - x_{i-1}) \right| > |L| + \varepsilon$$

: which is contradict to our assumpsion.

 $\therefore f$ is bounded on [a, b]

Definition 8.2.1 (Cauchy Criterion for Riemann Integrable function): A function $f : [a, b] \rightarrow \mathbb{R} \in R[a, b]$ if and only if for every $\epsilon > 0, \exists n_{\epsilon} > 0$ if $\dot{p} \& Q$ are any tagged partitions of [a, b] with $||\dot{p}|| < n_{\epsilon} \& ||\dot{Q}|| < n_{\epsilon}$ then,

$$|S(f, \dot{p}) - S(f, \dot{Q})| < \varepsilon$$

Theorem 8.2.3 (Squeez theorem). Let $f : [a,b] \to \mathbb{R}$ then $f \in R[a,b]$ if and only if for every

 $\varepsilon > 0 \exists function \alpha_{\varepsilon} \& w_{\varepsilon} in R[a, b] with$

$$\alpha_{\varepsilon}(x) \le f(x) \le w_{\varepsilon} \quad \forall \in R[a,b] \& such that \int_{a}^{b} w_{\varepsilon} - \alpha_{\varepsilon} < \varepsilon$$

Proof.
$$\iff$$
 Take $\alpha_{\varepsilon} = w_{\varepsilon} = f \quad \forall \varepsilon > 0$

$$\iff$$
 Let $\varepsilon > 0$, Since $\alpha_{\varepsilon}, w_{\varepsilon} \in R[a, b]$

$$\exists \delta_{\varepsilon} > 0 \quad \exists ||\dot{p}|| < \delta_{\varepsilon} \text{ then}$$

$$\left| S(\alpha_{\varepsilon}, \dot{p}) - \int_{a}^{b} \alpha_{\varepsilon} \right| < \varepsilon \, \& \left| S(w_{\varepsilon}, \dot{p}) - \int_{a}^{b} w_{\varepsilon} \right| < \varepsilon$$

$$\Rightarrow \int_{a}^{b} \alpha_{\varepsilon} - \varepsilon < S(\alpha_{\varepsilon}, \dot{p}) \quad \& \quad S(w_{\varepsilon}, \dot{p}) < \int_{a}^{b} w_{\varepsilon} + \varepsilon$$

As
$$\alpha_{\varepsilon} \leq f \leq w_{\varepsilon}$$

$$S(\alpha_{\varepsilon}, \dot{p}) \leq S(f, \dot{p}) \leq S(w_{\varepsilon}, \dot{p})$$

$$\Rightarrow \int_{a}^{b} \alpha_{\varepsilon} - \varepsilon \leq S(f, \dot{p}) \leq \int_{a}^{b} w_{\varepsilon} + \varepsilon$$

Consider anothr partition $||\dot{Q}|| < \delta_{\varepsilon}$

$$\Rightarrow \int_{a}^{b} \alpha_{\varepsilon} - \varepsilon \leq S(f, \dot{Q}) \leq \int_{a}^{b} w_{\varepsilon} + \varepsilon$$

$$\Rightarrow |S(f,\dot{Q}) - S(f,\dot{p})| < \int_{a}^{b} (w_{\varepsilon} - \alpha_{\varepsilon}) + 2\varepsilon \leq 3\varepsilon$$

Since, $\varepsilon > 0$, is arbitary, $f \in R[a, b]$

Theorem 8.2.4. *If* $f : R[a, b] \to \mathbb{R}$ *is continuous on* [a, b] *then* $f \in R[a, b]$

Proof. As f is continuous on closed bounded interval [a,b], f is uniformly continuous on [a,b]

$$\therefore \text{ for any } \varepsilon > 0, \quad \exists \quad \delta_{\varepsilon} > 0 \quad \ni \text{ if } u, v \in [a, b]$$

$$|u-v|<\delta_{\varepsilon}$$

$$\Rightarrow |f(u) - f(v)| < \frac{\varepsilon}{b-a}$$

Let $p = \{I_i\}_{i=1}^n$ be a partition such that $||p|| < \delta_{\varepsilon}$, let $u_i \in I_i$ be a point where f attains minimum value on I_i & $v_i \in I_i$ be a point where f attains maximum value on I_i

Let α_{ε} be the step function

$$\alpha_{\varepsilon}(x) = f(u_i) \quad \forall \quad x \in [x_{i-1}, x_i] (i = 1 : n-1)$$

Let w_{ε} be the step function

$$w_{\varepsilon}(x) = f(v_i) \quad \forall \quad x \in [x_{i-1}, x_i] (i = 1 : n - 1)$$

so,
$$\alpha_{\varepsilon}(x) \le f(x) \le w_{\varepsilon}(x) \quad \forall x \in [a, b]$$

$$0 \le \int_a^b (w_{\varepsilon} - \alpha_{\varepsilon}) = \sum_{i=1}^n (f(v_i) - f(u_i))(x_i - x_{i-1})$$

$$<\sum_{i=1}^{n} \left(\frac{\varepsilon}{(b-a)}(x_i - x_{i-1}) = \varepsilon\right)$$

∴ by squeez theorem,

 $f \in R[a,b]$

Theorem 8.2.5. If $f: R[a,b] \to \mathbb{R}$ is monotone on [a,b] then $f \in R[a,b]$

Proof. Suppose f is I on [a, b]

Assume $a < b, \varepsilon > 0$

$$h = \frac{f(b) - f(a)}{q} < \frac{\varepsilon}{(b - a)}$$

let
$$y_k = f(a) + k.h \quad \forall \quad k = 0, 1, ... q$$

let
$$A_k = f^{-1}[y_{k-1}, y_k] \quad \forall \quad k = 0, 1, \dots, q-1$$

The sets A_k are pairwise disjpoint and have union [a, b]

so A_k is either

- a) empty
- b) single point set
- c) non degenerate interval in [*a*, *b*]

We discard the sets for which a) holds and relabel remaining ones if we adjoin the end points of the remaining intervals A_k , we obtain closed intervals I_k

So we how have step functions $\alpha_{\varepsilon} \& w_{\varepsilon}$

$$\alpha_{\varepsilon}(x) = y_{k-1}, \quad w_{\varepsilon}(x)y_{k} \quad \forall x \in A_{k}$$

$$\alpha_{\varepsilon}(x) \leq f(x) \leq w_{\varepsilon}(x) \quad \forall x \in [a, b]$$

$$\int_{a}^{b} (w_{\varepsilon} - \alpha_{\varepsilon})$$

$$= \sum_{k=1}^{q} (y_{k} - y_{k-1})(x_{k} - x_{k-1})$$

$$= \sum_{k=1}^{q} h(x_{k} - x_{k-1})$$

$$= h.(b-a)$$

so, by squeez theorem,

$$f \in R[a,b]$$

8.3 Fundamental theorem of Integral calculus

Theorem 8.3.1. Suppose, there is finite set E in [a,b] and function f F: $[a,b] \to \mathbb{R}$ such that

1. F is continuous on [a, b]

2.
$$F'(x) = f(x) \quad \forall \quad x \in [a, b]^{\setminus E}$$

3.
$$f \in R[a, b]$$
 then $\int_{a}^{b} f = f(b) = f(a)$

Proof. Let $\varepsilon > 0$, since $f \in R[a, b] \ni \delta_{\varepsilon} > 0$

 \ni if p is any tagged partition $||\dot{p}|| < \delta_{\varepsilon}$

$$\left| S(f, \dot{p}) - \int_{a}^{b} f \right| < \varepsilon$$

If the sub-intervals in p are $[x_{i-1}, x_i]$ then

by MVT, $\exists u_i \in (x_{i-1}, x_i)$

$$F'(u_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} \quad \forall \quad i = 1:n$$

adding i = 1 : n

$$\sum_{i=1}^{n} f(x_{i}) - f(x_{i-1}) = \sum_{i=1}^{n} F'(u_{i})(x_{i} - x_{i-1})$$

$$F(a) - F(b) = \sum_{i=1}^{n} f'(u_{i})(x_{i} - x_{i-1}) = S(f, \dot{p})$$
Assuming $\dot{p}_{u} = \{ [x_{i} - x_{i-1}], u_{i} \}_{i=1}^{n}$

$$\Rightarrow \left| F(a) - F(b) - \int_{a}^{b} f \right| < \varepsilon$$

$$\Rightarrow \int_{a}^{b} f = F(a) - F(b)$$

8.4 Indefinite Integral

Definition 8.4.1 (Indefinite Integral): If $f \in R[a, b]$ then $f(z) = \int_a^z f \quad \forall \quad z \in [a, b]$

Theorem 8.4.1. The indefinite integral F is continuous on [a,b]. In fact, if $|f(x)| \le M \quad \forall x \in \mathbb{R}$

$$[a,b]$$
 then $|F(z) - F(w)| \le M|z - w| \quad \forall z, w \in [a,b]$

Proof. If $z, w \in [a, b]$, $w \le z$

$$F(z) = \int_{a}^{z} f = \int_{a}^{w} f + \int_{w}^{z} f = f(w) + \int_{w}^{z} f$$

$$\Rightarrow \int_{w}^{z} f = F(z) - F(w)$$

$$\text{if } -M \le f(x) \le M \quad \forall x \in [a, b]$$

$$-M(z - w) \le \int_{w}^{z} f \le M(z - w)$$

$$\Rightarrow |F(z) - F(w)| \le \left| \int_{w}^{z} f \right| \le M|z - w|$$

8.5 Examples

Example 51:

$$f(x) = x$$

$$g(x) = \frac{1}{x}$$

$$f \circ g = f(g(x)) = f\left(\frac{1}{x}\right) = \frac{1}{x}$$

$$g \circ f = g(f(x)) = g(x) = \frac{1}{x}$$
$$f \circ g = g \circ f$$

Example 52:

$$A_n = \{(n+1)k, \quad k \in \mathbb{N}\}$$

$$A_1 = \{2k, \quad k \in \mathbb{N}\}$$

$$A_2 = \{3k, \quad k \in \mathbb{N}\}$$

$$A_1 \cap A_2 = \{6k, \quad k \in \mathbb{N}\}$$

$$\cap A_i = \{\phi\}$$

$$\cup A_i = \mathbb{N} - \{1\}$$

Example 53:

$$\lim \frac{n^2}{n!}$$

$$\lim \frac{n.n}{n.(n-1)!}$$

$$\lim \frac{n}{(n-2)(n-1)!}$$

$$\lim_{n \to \infty} \frac{1}{\left(1 - \frac{1}{n}\right)} \lim_{n \to \infty} \frac{1}{(n-2)!}$$

$$= (1)(0)$$

0

Example 54:

Result:-
$$\lim_{x \to \infty} (1 + a^x)^{\frac{1}{x}} = e^a$$

$$x_n = (a^n + b^n)^{\frac{1}{n}}, \quad a < b$$

$$=\lim_{n\to\infty}(a^n+b^n)^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} b \left(\frac{a^n}{b^n} + 1 \right)^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} b \left(\left(\frac{a}{b} \right)^n + 1 \right)^{\frac{1}{n}}$$

$$=b.e^{\frac{a}{b}}$$

 $(a^n + b^n)^{\frac{1}{n}}$ is convergent, bounded and cauchy.

Example 55:

$$\sum x_n = \frac{1}{1} - \frac{1}{5} + \frac{1}{7} - \frac{1}{13} + \frac{1}{17}$$

$$\sum |x_n| = \frac{1}{1} + \frac{1}{5} + \frac{1}{7} + \frac{1}{13} + \frac{1}{17}$$

$$\sum x_n = \frac{(-1)^{n-1}}{4n - (-1)^n}$$

Example 56:

$$f_n(x) = \frac{1}{nx+1}, \quad x \in (0,1), f(x) = 0$$

$$|f_n(x) - f(x)| < \varepsilon$$

$$\left| \frac{1}{nx+1} - 0 \right| < \varepsilon$$

$$\therefore \left| \frac{1}{nx+1} \right|$$

$$|nx+1| > \frac{1}{\varepsilon}$$

Example 57:

Examine convergent of $\sum \left(\frac{1}{2^n} + \frac{1}{3^n}\right)$

$$\sum \left(\frac{1}{2^n} + \frac{1}{3^n}\right) = \sum \frac{1}{2^n} + \sum \frac{1}{3^n}$$

$$\sum \left(\frac{1}{2^n} + \frac{1}{3^n}\right) = \sum \left(\frac{1}{2}\right)^n + \sum \left(\frac{1}{3}\right)^n$$

$$\sum r_1^n + \sum r_2^n$$
 $r_1 = \frac{1}{2} < 1, r_2 = \frac{1}{3} < 1$

which is convergent

Example 58:

$$f_n(x) = \frac{1}{x^n} \quad x \in (0,1)$$

$$f(x) = \begin{cases} \text{not defined} & x = -1\\ \frac{1}{2} & x = 1\\ 0 & x > 1 \end{cases}$$

Example 59:

$$\lim_{n\to\infty} |x_n - x_{n+1}| = 0$$

 x_n does not converges for given example j

Example 60:

$$\sum \frac{1}{\sqrt{n^3 + 4}}$$
 Use comparision test
$$n < n^{\frac{3}{2}}, \quad n > 1$$

$$\frac{1}{n} > \frac{1}{n^{\frac{3}{2}}}$$
 As $\frac{1}{n}$ is divergent $\Rightarrow \frac{1}{n^{\frac{3}{2}}}$ is also divergent.

Definition 8.5.1 (Taylors expansion for two variables): f(x, y) =

$$f(a,b) + \left[(x-a)\frac{\partial}{\partial x} + (y-b)\frac{\partial}{\partial y} \right] f(a,b) + \frac{1}{2!} \left[(x-a)\frac{\partial}{\partial x} + (y-b)\frac{\partial}{\partial y} \right]^2 f(a,b) + \dots$$

$$\dots \frac{1}{(n-1)!} \left[(x-a)\frac{\partial}{\partial x} + (y-b)\frac{\partial}{\partial y} \right]^{n-1} f(a,b) + R_n$$

Example 61:

 a_n is bounded, decreasing sequence.

 b_n is bounded, increasing sequence

$$x_n = a_n + b_n$$

$$\sum |x_n - x_{n+1}|$$

$$= \sum |a_n + b_n - a_{n+1} - b_{n+1}|$$

$$=\sum |a_n-a_{n+1}+b_n-b_{n+1}|$$

$$\leq |a_n - a_{n+1}| + |b_n - b_{n+1}|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$\leq \varepsilon$$

$$\sum |x_n - x_{n+1}| \to 0$$

Example 62:

$$\sum_{n=2}^{\infty} \frac{1}{n(\log p)^p}, \quad p > 0$$

$$\log n < n$$

$$\frac{1}{\log n} > \frac{1}{n}$$

$$\left(\frac{1}{\log n}\right)^p > \frac{1}{n^p}$$

$$\frac{1}{n(\log n)^p} > \frac{1}{n^{p+1}}, \quad p+1 > 1$$

... by comparision test,

As $\sum \frac{1}{n^{p+1}}$ convergent $\Rightarrow \sum \frac{1}{n(\log n)}^p$ is convergent.

Example 63:

$$\sum x_n = \frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{n \cdot 2^n}$$

$$\left|\frac{x_{n+1}}{x_n}\right| = \left|\frac{\frac{1}{n+1^{2^{n+1}}}}{n2^n}\right|$$

$$= \left| \frac{n \cdot 2^n}{(n+1)2^{n+1}} \right|$$

$$= \left| \left(\frac{n}{n+1} \right) \frac{1}{2} \right|$$

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \left| \left(\frac{1}{1 + \frac{1}{n}} \right) \frac{1}{2} \right|$$

by ratio test

$$= \frac{1}{2} < 1$$

$$\sum x_n = \frac{1}{n2^n} \text{ is convergent.}$$

Example 64:

$$S = \left\{ 1 + \frac{(-1)^n}{n}, n \in \mathbb{N} \right\}$$

limit point of S = 1

Example 65:

$$\sum x_n = \sum \frac{1}{\sqrt{n} + \sqrt{n-1}}$$

$$n > \sqrt{n}$$

$$\frac{1}{n} < \frac{1}{\sqrt{n}}$$

by Ratio test,

$$\left| \frac{x_{n+1}}{x_n} \right| = \left| \frac{\frac{1}{\sqrt{(n+1)} + \sqrt{n}}}{\frac{1}{\sqrt{n} + \sqrt{n-1}}} \right|$$

$$= \left| \frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n+1} + \sqrt{n}} \right|$$

$$= \frac{n^{\frac{1}{2}}(1+\sqrt{1-\frac{1}{n}})}{n^{\frac{1}{2}}(1+\sqrt{1+\frac{1}{n}})}$$

$$| \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \left| \frac{n^{\frac{1}{2}} (1 + \sqrt{1 - \frac{1}{n}})}{n^{\frac{1}{2}} (1 + \sqrt{1 + \frac{1}{n}})} \right| = 1$$

∴ Ratio test fails here

$$\sum \frac{1}{\sqrt{n} + \sqrt{n-1}} \times \frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n} - \sqrt{n-1}} = \sum \sqrt{n} - \sqrt{n-1}$$

 $\therefore S_n = \sqrt{n}$ which divergent

$$\therefore \sum \frac{1}{\sqrt{n} + \sqrt{n-1}}$$
 is divergent.

Example 66:

$$\sum \frac{(2n-1)}{n(n+1)(n+2)} = \frac{1}{1 \cdot 2 \cdot 3} + \frac{3}{2 \cdot 3 \cdot 4} + \dots$$

$$\left| \frac{x_{n+1}}{x_n} \right| = \left| \frac{\frac{(2n-1)}{n(n+1)(n+2)(n+3)}}{\left(\frac{2n-1}{n(n+1)(n+2)}\right)} \right|$$

$$= \left| \frac{(2n+1)n}{(2n-)(n+3)} \right|$$

$$= \left| \frac{\left(2 + \frac{1}{n}\right)}{\left(2 - \frac{1}{n}\right)\left(1 + \frac{3}{n}\right)} \right|$$

$$| \lim \left| \frac{x_{n+1}}{x_n} \right| = 1$$

: Ratio test fails here.

$$\sum \left(\frac{2n-1}{n(n+1)(n+2)} \right) = \sum \frac{2n}{n(n+1)(n+2)} - \sum \frac{1}{n(n+1)(n+2)}$$

$$= \sum \frac{2}{(n+1)(n+2)} - \sum \frac{1}{n(n+1)(n+2)}$$

 $\therefore x_n$ is convergent.