E-commerce SQL analysis

Problem Statement

Analysing the sales, product, and customer data for an e-commerce company. getting various insights and calculating various KPI and data with SQL in Big Query.

Dataset:

https://drive.google.com/drive/folders/1xU91jKUknFRtBlC9vrKUSfhSC9_kvb30

Data Disctionary:

Variable	Description
HOUSEHOLD_KEY	Uniquely identifies each household
AGE_DESC	Estimated age range
MARITAL_STATUS_CODE	Marital Status (A - Married, B- Single, U - Unknown)
INCOME_DESC	Household income
HOMEOWNER_DESC	Homeowner, renter, etc.
HH_COMP_DESC	Household composition
HOUSEHOLD_SIZE_DESC	Size of household up to 5+
KID_CATEGORY_DESC	Number of children present up to 3+

Variable	Description
HOUSEHOLD_KEY	Uniquely identifies each household
BASKET_ID	Uniquely identifies a purchase occasion
DAY	Day when transaction occurred
PRODUCT_ID	Uniquely identifies each product
QUANTITY	Number of the products purchased during the trip
SALES_VALUE	Amount of dollars retailer receives from sale
STORE_ID	Identifies unique stores
COUPON_MATCH_DISC	Discount applied due to retailer's match of manufacturer coupon
COUPON_DISC	Discount applied due to manufacturer coupon
RETAIL_DISC	Discount applied due to retailer's loyalty card program
TRANS_TIME	Time of day when the transaction occurred
WEEK_NO	Week of the transaction. Ranges 1 - 102

Variable	Description
PRODUCT_ID	Number that uniquely identifies each product
DEPARTMENT	Groups similar products together
COMMODITY_DESC	Groups similar products together at a lower level
SUB_COMMODITY_DESC	Groups similar products together at the lowest level
MANUFACTURER	Code that links products with same manufacturer together
BRAND	Indicates Private or National label brand
CURR_SIZE_OF_PRODUCT	Indicates package size (not available for all products)

Goal:

This project aims to leverage the power of e-commerce data (sales, product, and demographic(Customer)) analysed through SQL to unlock actionable insights driving profitable growth. By delving into customer behaviour, product trends, and sales

patterns, we will uncover hidden value that can inform key business decisions. We need to find these patterns and calculate various metrics and KPIs that suit the data and the goal.

Table description:-

⊞	hh_d	omographic	Q QUERY	· +2	SHARE	СОРУ	± SNAPSI
	SCHEMA	DETAILS	PREVIEW	TABL	E EXPLORER	PREVIEW	INSIGH
	∓ Filt	er Enter property na	me or value				
		Field name	Ту	уре	Mode	Key	Collation
		AGE_DESC	S	TRING	NULLABLE	-	-
		MARITAL_STATUS	_CODE S	TRING	NULLABLE	-	-
		INCOME_DESC	S	TRING	NULLABLE	-	-
		HOMEOWNER_DES	sc s	TRING	NULLABLE	-	-
		HH_COMP_DESC	S	TRING	NULLABLE	-	-
		HOUSEHOLD_SIZE	_DESC S	TRING	NULLABLE	-	-
		KID_CATEGORY_DE	SC S	TRING	NULLABLE	-	-
		household_key	IN	NTEGER	NULLABLE	-	-

Here are some of the insights that have been derived from writing SQL query from the data.

1. The number of orders that have small, medium or large order value (small:0-10 dollars, medium:10-20 dollars, large:20+)

```
SELECT

CASE

WHEN SALES_VALUE BETWEEN 0 AND 10 THEN 'Small'

WHEN SALES_VALUE BETWEEN 10 AND 20 THEN 'Medium'

ELSE 'Large'

END AS Order_Size,

COUNT(*) AS Number_of_Orders

FROM `data_analytics.transaction_data`

GROUP BY Order_Size
```

Query results

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	Order_Size ▼	h	Number_of_Orders	1.
1	Small		1016841	
2	Medium		21653	
3	Large		10081	

2. Top 3 stores with highest foot traffic for each week

```
WITH Store_Traffic AS (
    SELECT STORE_ID, WEEK_NO, COUNT(DISTINCT HOUSEHOLD_KEY) AS Customer_Count
FROM `data_analytics.transaction_data`
    GROUP BY STORE_ID, WEEK_NO
)
SELECT STORE_ID, WEEK_NO, Customer_Count
FROM (
    SELECT *, ROW_NUMBER() OVER (PARTITION BY WEEK_NO ORDER BY Customer_Count
DESC) AS Rank
    FROM Store_Traffic
) AS Ranked_Stores
WHERE Rank <= 3</pre>
```

Quer	y results				
JOB IN	FORMATION	RESULTS	СНА	RT JSON	EXECUTION DETAILS
Row	STORE_ID ▼	WEEK_NO ▼	11	Customer_Count 🔻	
1	32004		6	16	
2	367		6	13	
3	335		6	10	
4	32004		59	29	
_	202		F0	٥٢	

3. Basic customer profiling.

```
SELECT HOUSEHOLD_KEY,

MIN(DAY) AS First_Visit,

MAX(DAY) AS Last_Visit,

COUNT(BASKET_ID) AS Number_of_Visits,

SUM(SALES_VALUE) AS Total_Spent,

AVG(SALES_VALUE) AS Avg_Spent_Per_Visit

FROM `data_analytics.transaction_data`

GROUP BY HOUSEHOLD_KEY

ORDER BY Avg_Spent_Per_Visit DESC;
```

JOB IN	IFORMATION	RESULTS	CHA	ART JSON	EXECUTION DETA	AILS EXECUTI	ON GRAPH
Row /	HOUSEHOLD_KEY	First_Visit		Last_Visit ▼	Number_of_Visits	Total_Spent ▼	Avg_Spent_Per_Visit
1	1730		34	707	99	1656.760000000	16.73494949494
2	1727		109	118	9	114.51	12.72333333333
3	1339		52	701	18	187.53	10.418333333333
4	991		44	665	44	451.6	10.26363636363
-	755		20	700	F7/	F461 F00000000	0.401040077777

4. Single customer analysis (highest spender)

```
with maxsales_per_household as (select household_key, max(SALES_VALUE) as
max_sales
from `data_analytics.transaction_data`
group by household_key)
```

select

m.household_key,m.max_sales,h.age_desc,h.MARITAL_STATUS_CODE,h.INCOME_DESC,h
.HOMEOWNER_DESC,h.HOUSEHOLD_SIZE_DESC,h.INCOME_DESC,h.KID_CATEGORY_DESC

```
from maxsales_per_household m
join `data_analytics.hh_domographic` h
on m.household_key=h.household_key
order by m.max_sales DESC
limit 1
  Query results
                                                                  JOB INFORMATION
                                                   EXECUTION GRAPH
                                     EXECUTION DETAILS
    household_key max_sales v
                        age_desc ▼
                                     MARITAL_STATUS_CODE ▼ INCOME_DESC ▼
                                                                   HOMEOWNER_DESC ▼ HOUSEHO
           1609
                     840.0 45-54
                                                           125-149K
```

5. Frequently bought together products

```
WITH Product_Pairs AS (
    SELECT a.BASKET_ID,
           LEAST(a.PRODUCT_ID, b.PRODUCT_ID) AS Product_1,
           GREATEST(a.PRODUCT_ID, b.PRODUCT_ID) AS Product_2
    FROM `data_analytics.transaction_data` a
    JOIN `data_analytics.transaction_data` b ON a.BASKET_ID = b.BASKET_ID
    WHERE a.PRODUCT_ID < b.PRODUCT_ID
),
Product_Frequency AS (
    SELECT Product_1, Product_2, COUNT(*) AS Frequency
    FROM Product_Pairs
    GROUP BY Product_1, Product_2
SELECT pf.Product_1, p1.SUB_COMMODITY_DESC AS Subcategory_1,
       pf.Product_2, p2.SUB_COMMODITY_DESC AS Subcategory_2,
       pf.Frequency
FROM Product_Frequency pf
JOIN `data_analytics.product` p1 ON pf.Product_1 = p1.PRODUCT_ID
JOIN `data_analytics.product` p2 ON pf.Product_2 = p2.PRODUCT_ID
ORDER BY pf.Frequency DESC
```


6. Weekly change in Revenue Per Account (RPA)

```
WITH Weekly_Revenue AS (
```

```
SELECT HOUSEHOLD_KEY, WEEK_NO, SUM(SALES_VALUE) AS Weekly_Spend
  FROM `data_analytics.transaction_data`
  GROUP BY HOUSEHOLD_KEY, WEEK_NO
SELECT HOUSEHOLD_KEY, WEEK_NO,
        Weekly_Spend,
        LAG(Weekly_Spend, 1) OVER (PARTITION BY HOUSEHOLD_KEY ORDER BY
WEEK_NO) AS Previous_Week_Spend,
        (Weekly_Spend - LAG(Weekly_Spend, 1) OVER (PARTITION BY HOUSEHOLD_KEY
ORDER BY WEEK_NO)) AS RPA_Change
FROM Weekly_Revenue;
    Query results
    JOB INFORMATION
                       RESULTS
                                   CHART
                                              JSON
                                                        EXECUTION DETAILS
                                                                            EXECUTION GRAPH
          HOUSEHOLD_KEY
                         WEEK_NO ▼
                                       Weekly_Spend ▼ Previous_Week_Sper RPA_Change ▼
                    59
                                   10
                                               25.35
                                                               null
                                                                               null
      2
                    59
                                   11
                                               11.02
                                                              25.35
                                                                     -14.3300000000...
      3
                    59
                                   18 46.51999999999...
                                                              11.02
                                                                              35.5
      4
                    59
                                   23
                                       45.82000000000...
                                                      46.51999999999...
                                                                     -0.69999999999...
```

7. Top 10 products based on the total sales

```
SELECT
    p.SUB_COMMODITY_DESC,
    SUM(t.sales_value) AS total_sales
FROM `data_analytics.transaction_data` t
JOIN `data_analytics.product` p ON t.product_id = p.product_id
GROUP BY p.SUB_COMMODITY_DESC
ORDER BY total_sales DESC
LIMIT 10;
```

Quer	y results		
JOB IN	IFORMATION RESULTS	CHART	JSON EXECUTION DE
Row	SUB_COMMODITY_DESC ▼	total_sales ▼	6
1	GASOLINE-REG UNLEADED	255862.0500000	
2	SOFT DRINKS 12/18&15PK CA	65828.03999999	
3	FLUID MILK WHITE ONLY	64291.17999999	
4	BEERALEMALT LIQUORS	62697.95999999	
5	CIGARETTES	39761.87000000	
6	CHOICE BEEF	30455.36000000	
7	SHREDDED CHEESE	27515.169999999	
8	PRIMAL	25876.27000000	
9	PREMIUM	25518.25000000	
10	TOILET TISSUE	24574.22000000	

8. demographic groups (age, income, household size) have the highest average order value

```
d.AGE_DESC,
d.INCOME_DESC,
d.HOUSEHOLD_SIZE_DESC,
AVG(t.SALES_VALUE) AS Average_Order_Value

FROM `data_analytics.transaction_data` t

JOIN `data_analytics.hh_domographic` d ON t.HOUSEHOLD_KEY = d.HOUSEHOLD_KEY

GROUP BY d.AGE_DESC, d.INCOME_DESC, d.HOUSEHOLD_SIZE_DESC

ORDER BY Average_Order_Value DESC;
```

	ė.
RESULTS CHART JSO	N EXECUTION DETAILS EXECUTION GRAPH
INCOME_DESC ▼	HOUSEHOLD_SIZE_DESC ▼ Average_Order_Value
Under 15K	4 6.230102915951
175-199K	1 5.594245129870
Under 15K	2 5.045910852713
175-199K	2 4.985432432432
150 1747	1 4.544500001705

9. Which product categories have the highest total sales?

```
SELECT p.COMMODITY_DESC, SUM(t.SALES_VALUE) AS Total_Sales
FROM `data_analytics.transaction_data` t
JOIN `data_analytics.product` p ON t.PRODUCT_ID = p.PRODUCT_ID
GROUP BY p.COMMODITY_DESC
ORDER BY Total_Sales DESC;
```

Query results

JOB IN	IFORMATION	RESULTS	CHART	JSON
Row	COMMODITY_DE	SC ▼	Total_Sales ▼	11
1	COUPON/MISC IT	ΓEMS	258796.880000	00
2	SOFT DRINKS		136621.999999	99
3	BEEF		125580.690000	00
4	FLUID MILK PRO	DUCTS	81817.1800000	00
_	OLIFFOE		75004.0600000	00

10. What is the repeat purchase rate for each demographic group?

11. Which stores have the highest average basket size?

```
SELECT t.STORE_ID, AVG(t.SALES_VALUE) AS Average_Basket_Size
FROM `data_analytics.transaction_data` t
GROUP BY t.STORE_ID
```

ORDER BY Average_Basket_Size DESC;

JOB IN	IFORMATION		RESULTS	CHART
Row	STORE_ID ▼	11	Average_Ba	sket_Size
1	309			43.62
2	342	22		39.99
3	14	14		39.0
4	89	96		30.0
г		10		20.40

12. Which products generate the most discount usage?

Query results

JOB IN	FORMATION	RESULTS	CHART	J	SON	EXECUTI	ON DETAIL
Row /	PRODUCT_ID ▼	SUB_COMM	ODITY_DESC ▼	11	Total_Disco	unts 🔻	
1	1033887	CAN CATFD	GOURMET/SUP P			0.01	
2	995436	CORNISH H	EN			0.0	
3	861973	SFT DRNK N	MLT-PK BTL CARB (0.0	
4	1124520	CIGARETTE	S			0.0	
_	005007	NATAT-LIANA	DULL			0.0	

Insights:-

- Order Size Distribution: The analysis revealed different order size categories—small, medium, and large—based on sales value. This classification helps understand the customer spending habits and the relative distribution of order values.
- **Store Foot Traffic:** The top 3 stores with the highest foot traffic for each week were identified. This information can be used to focus marketing efforts and inventory management on high-traffic stores, ensuring they are well-stocked and efficiently managed.
- **Customer Profiling:** Basic customer profiling, including first and last visits, total spending, and the average spent per visit, helps tailor personalized marketing and customer retention strategies.
- **High-Value Customers:** The highest spenders were identified through a single customer analysis. These customers can be targeted for loyalty programs and exclusive offers to further enhance their engagement and satisfaction.
- Product Bundling: Frequently bought together products were identified, offering insights into effective product bundling strategies. This can boost sales by promoting frequently paired items together as discounts or combo deals.
- Weekly Revenue Fluctuations: The analysis of revenue per account (RPA)
 highlighted week-over-week changes, which provides a deeper understanding
 of customer purchasing patterns and can help optimize promotions or offers
 during specific periods.
- **Top-Selling Products:** Identifying the top 10 products based on total sales highlights the most popular products, which can inform inventory management and marketing priorities.
- **Demographic Insights:** Insights into which demographic groups (age, income, household size) have the highest average order value offer a clear direction for demographic-specific marketing and product recommendations.
- Product Category Performance: Analysis of product categories with the highest total sales highlights which categories drive the most revenue, allowing for better category management and marketing focus.
- Repeat Purchase Rates: Understanding which demographic groups have the highest repeat purchase rates can help enhance retention strategies and target campaigns aimed at increasing customer loyalty.
- **Store Basket Size:** Stores with the highest average basket size were identified. This insight helps in understanding which locations encourage larger purchases and how to replicate those strategies across other stores.
- **Discount Usage:** Insights into which products generated the most discount usage can inform future promotions and discount strategies, ensuring that high-demand items are leveraged effectively during sales events.

Recommendations:

- Personalized Marketing: Utilise customer profiling and demographic insights to create personalised marketing campaigns. Target high-value and high-frequency customers with tailored offers to increase engagement and loyalty.
- **Inventory and Store Management**: Focus inventory replenishment on the top stores with the highest traffic and largest average basket sizes. This will ensure these stores are well-stocked and can continue driving high sales.
- **Product Bundling**: Implement product bundling strategies based on the frequently bought together analysis. Offering discounts or special promotions for these product pairs can drive higher transaction values.
- **Loyalty Programs for High-Spenders**: Introduce or enhance loyalty programs targeting high-value customers, offering exclusive discounts, early access to sales, or other perks to encourage continued engagement.
- Optimise Promotional Strategies: Use the analysis of weekly changes in revenue and discount usage to optimise promotional efforts. Target periods of low revenue with special deals or highlight high-discount products in promotional campaigns.
- Customer Retention Initiatives: Focus on increasing the repeat purchase rate among key demographic groups. Utilise insights from demographic data to tailor retention strategies like personalised offers or post-purchase follow-ups.
- Category-Specific Campaigns: Highlight the product categories that generate the most sales in marketing campaigns, ensuring that they remain well-promoted and continue driving revenue growth.