Oscillateur amorti

Sor	nmaire					
I Introduction	3					
I/A Évolutions en régime libre, exemple RLC $\dots \dots \dots$						
I/B Équation différentielle						
I/C Équation caractéristique et régimes de solutions						
II Oscillateur amorti électrique : circuit RLC série libre 5						
II/A Présentation						
II/B Bilan énergétique						
II/C Équation différentielle du circuit						
II/D Résolutions pour chaque cas						
III Exemple amorti mécanique : ressort $+$ frottements fluides $\dots \dots \dots$						
III/A Présentation						
$\mathrm{III/B}$ Équation différentielle						
$\mathrm{III/C}$ Bilan de puissance						
III/D Solutions						
IV Résumé oscillateurs amortis						
% Capacit	és exigibles					
Analyser, sur des relevés expérimentaux, l'évolution de la forme des régimes transitoires en fonction des paramètres caractéristiques.	Caractériser l'évolution en utilisant les notions d'amplitude, de phase, de période, de fréquence, de pulsation.					
Prévoir l'évolution du système à partir de considérations énergétiques. Écrire sous forme canonique l'équation différentielle afin d'identifier la pulsation propre et le facteur de qualité. Décrire la nature de la réponse en fonction	 ☐ Réaliser un bilan énergétique. ☐ Déterminer la réponse détaillée dans le cas d'un régime libre ou d'un système soumis 					
	à un échelon en recherchant les racines du polynôme caractéristique. Déterminer un ordre de grandeur de la durée du régime transitoire selon la valeur du					
de la valeur du facteur de qualité.	facteur de qualité.					

~ L:	essentiel
Définitions	
\bigcirc E5.1 : Équation caractéristique amorti 4 \bigcirc E5.2 : Circuit RLC libre 5	E5.1 : Résultat pseudo-périodique 8 E5.2 : Espace des phases pseudo-pér 9
E5.3 : Situation initiale et bilan des forces 12	\bigcirc E5.3 : Espace des phases critique 10
Propriétés	\bigcirc E5.4 : Espace des phases apériodique . 11
E5.1 : Équation différentielle amorti 4	☐ Démonstrations ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
 □ E5.2 : Bilan de puissance RLC libre 6 □ E5.3 : Équation différentielle RLC libre 6 	E5.1 : Bilan de puissance RLC libre 5 E5.2 : Équation différentielle RLC libre 6
☐ E5.4 : Solution pseudo-périodique 7	E5.3 : Solution pseudo-périodique 7
\bigcirc E5.5 : Régime transitoire $Q > 1/2$ 8 \bigcirc E5.6 : Solution critique 9	\bigcirc E5.4 : Régime transitoire pseudo-pér 8 \bigcirc E5.5 : Solution critique 9
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\bigcirc E5.6 : Régime transitoire critique 10
 □ E5.8 : Solution apériodique	E5.7 : Solution apériodique
☐ E5.10 : Équation ressort amorti 13	© E5.9 : Équation ressort amorti 13
\bigcirc E5.11 : Bilan de puissance ressort 13 \bigcirc E5.12 : Solutions ressort 14	
>> Implications	E5.1 : Solutions oscillateur amorti 5
E5.1 : Régimes de solutions	E5.2 : Évolution énergétique RLC série 6
\bigcirc E5.2 : Résultat à grand Q 8 \bigcirc E5.3 : Résultat à faible Q 12	\bigcirc E5.3 : Analogie RLC-ressort amorti 13 \bigcirc E5.4 : Résumé – pas de par cœur! 14
	ı

I. Introduction 3

I | Introduction

I/A Évolutions en régime libre, exemple RLC

En reprenant les résultats du LC libre, nous devrions en réalité observer que les oscillations dans le circuit s'atténuent. Soit le circuit RLC suivant 1 , avec $L=43\,\mathrm{mH}$ et $C=20\,\mathrm{nF}$:

♦ Lorsque la **résistance est petite** : on observe **plusieurs oscillations**.

On observe une série d'oscillations à la période $T\approx 184\,\mu s$. On observe environ 15 oscillations lorsque $R\approx 100\,\Omega$ (résistance interne du GBF + de la bobine), 9 oscillations lorsque $R\approx 180\,\Omega$, 3 oscillations lorsque $R\approx 500\,\Omega$.

♦ Lorsque la résistance est plus grande : les oscillations disparaissent.

Lorsque $R \approx 2.9 \,\mathrm{k}\Omega$, on observe un régime transitoire dont la durée est d'environ 250 µs (à 95%). Lorsque $R \approx 7.5 \,\mathrm{k}\Omega$, on observe un régime transitoire plus long, d'environ 420 µs.

Analyse

Lorsque l'on excite le système RLC, le système a deux principales réponses :

- 1) Système oscillantpour $R < R_c$, de pseudo-période ² supérieure à T_0 ;
- 2) Système non-oscillant pour $R > R_c$: le transitoire augmente avec R.
- 1. https://tinyurl.com/ypbwcwfs
- 2. On parle de pseudo-période car le signal est diminué.

Équation différentielle I/B

Propriété E5.1 : Équation différentielle amorti

Un oscillateur amorti à un degré de liberté est un système dont l'évolution temporelle est décrite par une grandeur x(t) solution d'un équation différentielle du type :

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}x}{\mathrm{d}t} + {\omega_0}^2 x = {\omega_0}^2 x_{\mathrm{eq}}$$

- 1) $x_{\rm eq}$ la position d'équilibre
- 2) ω_0 la pulsation **propre** 3) Q le facteur de qualité

Remarque E5.1 : Analyse de l'équation

Par lecture de cette équation, Q est sans dimension pour qu'on retrouve que ω_0 s'exprime en s^{-1} car $\frac{dx}{dt}$ est de dimension $[x] \cdot s^{-1}$.

De plus, on remarque que **plus** Q **est élevé**, plus le terme d'ordre 1 est négligeable devant les autres, donc plus on se rapproche de l'harmonique. Le facteur de qualité traduit donc à quel point le système est idéal.

Equation caractéristique et régimes de solutions

💙 Définition E5.1 : Équation caractéristique amorti

Pour résoudre une équation différentielle homogène, on suppose une solution de la forme $x(t) = A \exp(rt)$ avec $r \in \mathbb{C}$. En injectant cette expression dans l'équation différentielle, on obtient l'équation caractéristique :

$$r^2 + \frac{\omega_0}{Q}r + {\omega_0}^2 = 0$$

C'est un trinôme du second degré, dont le discriminant Δ est

$$\Delta = \left(\frac{\omega_0}{Q}\right)^2 - 4\omega_0^2 = \frac{{\omega_0}^2}{Q^2} \left(1 - 4Q^2\right)$$

♥ Implication E5.1 : Régimes de solutions

Selon la valeur du discriminant, on aura différentes valeurs de r:

$$\Delta > 0 \Leftrightarrow \frac{\omega_0^2}{\sqrt{2}} \left(1 - 4Q^2 \right) > 0 \Leftrightarrow 4Q^2 < 1 \Leftrightarrow Q < \frac{1}{2}$$

Q > 1/2: régime pseudo-périodique, racines complexes et oscillations décroissantes;

Q = 1/2: régime critique, racine double réelle;

Q < 1/2: régime apériodique, racines réelles et décroissance exponentielle sans oscillation.

Notation E5.1 : \pm et \mp

Il est courant de noter les racines r_{\pm} pour dénoter à la fois r_{+} et r_{-} . Dans ce cas, l'expression de la racine contient le signe \pm , ce qui signifie que r_{+} correspond à l'expression avec le +, et r_{-} correspond à l'expression avec le -.

Si l'expression contient le signe \mp , c'est l'opposé : r_+ correspond à l'expression avec -.

_	Important E5.1 : Solutions oscillateur amorti		orti	
		Racines		Solution
	Pseudo-pér.	$r_{\pm} = -\frac{\omega_0}{2Q} \pm j\Omega$ avec $\Omega = \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1}$	x(t)	$= \exp\left(-\frac{\omega_0}{2Q}t\right) \times \underbrace{\left[A\cos(\Omega t) + B\sin(\Omega t)\right]}_{\text{partie décroissante}} $ partie oscillante
	Critique	$r = -\frac{\omega_0}{2Q} = -\omega_0$		$x(t) = (At + B) \exp(-\omega_0 t)$
	${f Ap}$ eriodique	$r_{\pm} = \frac{\omega_0}{2Q} \left(-1 \pm \sqrt{1 - 4Q^2} \right)$		$x(t) = A \exp(r_+ t) + B \exp(r t)$

II | Oscillateur amorti électrique : circuit RLC série libre

II/A Présentation

♥ Définition E5.2 : Circuit RLC libre

- ♦ Il est constitué de l'association en série d'une résistance, d'une bobine et d'un condensateur idéaux.
- \diamondsuit On suppose le condensateur initialement chargé.
- \diamondsuit À t=0, on coupe le générateur.

II/B Bilan énergétique

♥ Démonstration E5.1 : Bilan de puissance RLC libre

On fait un bilan de puissances :

$$\begin{aligned} u_C i + u_L i + u_R i &= 0\\ \Leftrightarrow u_C \times C \frac{\mathrm{d} u_C}{\mathrm{d} t} + L \frac{\mathrm{d} i}{\mathrm{d} t} \times i + R i^2 &= 0\\ \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{1}{2} C u_C^2 + \frac{1}{2} L i^2 \right) &= -\mathcal{P}_J \end{aligned} \right) i = C \frac{\mathrm{d} u_C}{\mathrm{d} t}, \ u_L = L \frac{\mathrm{d} i}{\mathrm{d} t} \ \mathrm{et} \ u_R = R i$$

♥ Propriété E5.2 : Bilan de puissance RLC libre

L'énergie emmagasinée dans le circuit est progressivement dissipée par effet JOULE dû à la résistance :

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} = -\mathcal{P}_J$$

avec
$$\mathcal{E} = \mathcal{E}_C + \mathcal{E}_L = \frac{1}{2}Cu_C^2 + \frac{1}{2}Li^2$$
.

Important E5.2: Évolution énergétique RLC série

On a donc bien une perte d'énergie à cause de la dissipation dans la résistance. Il y aura donc progressivement une perte de la tension de u_C , d'où l'amortissement.

II/C Équation différentielle du circuit

♥ Démonstration E5.2 : Équation différentielle RLC libre

Avec la loi des mailles,

$$\begin{aligned} u_L + u_R + u_C &= 0 \\ \Leftrightarrow L \frac{\mathrm{d}i}{\mathrm{d}t} + Ri + u_C &= 0 \\ \Leftrightarrow LC \frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + RC \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C &= 0 \end{aligned} \right) \begin{array}{c} u_L = L \frac{\mathrm{d}i}{\mathrm{d}t} \\ \text{et } u_R = Ri \\ i = C \frac{\mathrm{d}u_C}{\mathrm{d}t} \\ \text{forme} \\ \text{canonique} \end{aligned}$$

On détermine l'expression de Q par identification :

$$\frac{\omega_0}{Q} = \frac{R}{L}$$

$$\Leftrightarrow \frac{1}{Q\sqrt{LC}} = \frac{R}{L}$$

$$\Leftrightarrow Q = \frac{L}{R\sqrt{LC}}$$

$$\Leftrightarrow Q = \frac{1}{R}\sqrt{\frac{L}{C}}$$

$$\Leftrightarrow Q = \frac{1}{R}\sqrt{\frac{L}{C}}$$

$$\Leftrightarrow Q = \frac{1}{R}\sqrt{\frac{L}{C}}$$

♥ Propriété E5.3 : Équation différentielle RLC libre

L'équation différentielle de la tension $u_C(t)$ aux bornes d'un condensateur d'un circuit RLC en régime libre est

$$\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u_C}{\mathrm{d}t} + {\omega_0}^2 u_C = 0$$

$$\Diamond$$
 $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ le facteur de qualité.

Les conditions initiales (continuité de u_C aux bornes de C et de i traversant L) sont

$$u_C(0^-) = u_C(0^+) = E$$

 $i(0^-) = i(0^+) = 0$

II/D Résolutions pour chaque cas

(II/D) 1 Cas $\Delta < 0 \Leftrightarrow Q > 1/2$: régime pseudo-périodique

${ m II/D})\,1.1$ Solution de l'équation

♥ Démonstration E5.3 : Solution pseudo-périodique

On part de l'équation caractéristique :

$$r^2 + \frac{\omega_0}{Q}r + {\omega_0}^2 = 0 \quad \text{donc} \quad \Delta = \frac{{\omega_0}^2}{Q^2} \left(1 - 4Q^2\right) < 0$$

Ainsi,

$$\begin{split} r_{\pm} &= \frac{-\frac{\omega_0}{Q} \pm \mathrm{j}\sqrt{-\Delta}}{2} \\ \Leftrightarrow r_{\pm} &= -\frac{\omega_0}{2Q} \pm \frac{\mathrm{j}}{2}\sqrt{\frac{{\omega_0}^2}{Q^2}\left(4Q^2-1\right)}} \\ \Leftrightarrow r_{\pm} &= -\frac{\omega_0}{2Q} \pm \mathrm{j}\frac{\omega_0}{2Q}\sqrt{4Q^2-1} \\ \Leftrightarrow r_{\pm} &= -\frac{\omega_0}{2Q} \pm \mathrm{j}\Omega \end{split} \right) \text{On extrait } \frac{\omega_0}{Q} \\ \Leftrightarrow r_{\pm} &= -\frac{\omega_0}{2Q} \pm \mathrm{j}\Omega \end{split}$$

d'où la définition de Ω :

$$\Omega = \frac{\omega_0}{2Q}\sqrt{4Q^2 - 1}$$

Ensuite, avec la forme générale de la solution on a

$$u_C(t) = \exp\left(-\frac{\omega_0}{2Q}t\right) \left[A\cos(\Omega t) + B\sin(\Omega t)\right]$$

 \diamond On trouve A avec la première condition initiale :

$$u_C(0) = E = 1 [A \cdot 1 + B \cdot 0] = A \quad \Rightarrow \quad \boxed{A = E}$$

 \diamond On trouve B avec la seconde CI :

$$\frac{\mathrm{d}u_C}{\mathrm{d}t} = -\frac{\omega_0}{2Q} \exp\left(-\frac{\omega_0}{2Q}t\right) \times \left[A\cos(\Omega t) + B\sin(\Omega t)\right] + \exp\left(-\frac{\omega_0}{2Q}t\right) \left[-A\Omega\sin(\Omega t) + B\Omega\cos(\Omega t)\right]$$

$$\Rightarrow \left(\frac{\mathrm{d}u_C}{\mathrm{d}t}\right)_0 = -\frac{\omega_0}{2Q}A + \Omega B = 0 \Leftrightarrow B = \frac{\omega_0}{2Q\Omega}E = \frac{E}{\sqrt{4Q^2 - 1}}$$

♥ Propriété E5.4 : Solution pseudo-périodique

Pour un facteur de qualité $Q>1/2,\,u_C$ s'exprime par

$$u_C(t) = E \exp\left(-\frac{\omega_0}{2Q}t\right) \times \left[\cos(\Omega t) + \frac{1}{\sqrt{4Q^2 - 1}}\sin(\Omega t)\right]$$

avec

$$\Omega = \frac{\sqrt{-\Delta}}{2} \Leftrightarrow \boxed{\Omega = \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1}}$$

La période des oscillations est alors

$$T = \frac{2\pi}{\Omega} = \frac{2\pi}{\omega_0} \frac{2Q}{\sqrt{4Q^2 - 1}} \Leftrightarrow T = T_0 \frac{2Q}{\sqrt{4Q^2 - 1}} > T_0$$

Les enveloppes sont

$$y(t) = \pm E \exp\left(-\frac{\omega_0}{2Q}t\right)$$

FIGURE E3

♥ Interprétation E5.1 : Résultat pseudo-périodique

La solution du polynôme caractéristique s'écrit donc comme la **somme de la solution d'ordre** 1 et de la solution d'ordre 2 harmonique :

$$r_{\pm} = -\frac{\omega_0}{2Q} \pm j\Omega$$
 soit $r_{\pm} = r_{\text{ordre 1}} + r_{\text{ordre 2 harmonique}}$

Ceci n'est pas très étonnant puisque l'EDLHC d'ordre 2 amortie est la somme d'une EDLHC d'ordre 2 harmonique et d'une EDLHC d'ordre 1.

Avec les propriétés de l'exponentielle $(e^{a+b} = e^a e^b)$, il est donc naturel que la solution amortie soit le **produit** des solutions d'ordre 1 et d'ordre 2 :

$$y_h(t) = \exp\left(-\frac{\omega_0}{2Q}t\right) \underbrace{\left[A\cos(\Omega t) + B\sin(\Omega t)\right]}_{\equiv e^{-t/\tau}} \underbrace{\operatorname{soit}}_{\equiv A\cos(\omega_0 t) + B\sin(\omega_0 t)} \operatorname{soit} \underbrace{\left[y_h(t) = y_{h,\text{ordre 1}} \times y_{h,\text{ordre 2 harmonique}}\right]}_{\equiv A\cos(\omega_0 t) + B\sin(\omega_0 t)}$$

II/D) 1.2 Régime transitoire

💙 Démonstration E5.4 : Régime transitoire pseudo-pér.

L'enveloppe est $E \exp\left(-\frac{\omega_0}{2Q}t\right) = E \exp\left(-t/\tau\right)$; d'où t_{95} tel que $u_C(t_{95}) = 0.05E$, soit

$$\mathscr{E} \exp\left(-\frac{t_{95}}{\tau}\right) = 0.05 \mathscr{E}$$

$$\Leftrightarrow -\frac{t_{95}}{\tau} = \ln(0.05)$$

$$\Leftrightarrow \frac{t_{95}}{\tau} = \ln(20)$$

$$\Leftrightarrow t_{95} = \tau \ln(20) = \frac{2\ln(20)}{\omega_0} Q \approx \frac{2\pi}{\omega_0} Q$$
On isole, on remplace et $2\ln 20 \approx 2\pi$

$lackbox{$\Psi$}$ Propriété E5.5 : Régime transitoire Q>1/2

Le temps de réponse à 95% est atteint à :

$$t_{95} \approx QT_0$$
 avec $T_0 = \frac{2\pi}{\omega_0}$

Ainsi, Q correspond au nombre d'oscillations observées.

Implication E5.2 : Résultat à grand ${\cal Q}$

Avec ces résultats on remarque en effet que quand $Q \to \infty$, on a à la fois

$$\boxed{\Omega \approx \omega_0} \quad \text{donc} \quad \boxed{T \approx T_0}$$

Mais aussi

$$\boxed{\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + \omega_0^2 u_C = 0} \quad \text{donc} \quad \boxed{u_C(t) = E \cos(\omega_0 t)}$$

On retrouve toutes les caractéristiques de la situation harmonique.

Interprétation E5.2 : Espace des phases pseudo-pér.

Contrairement à la situation harmonique, le tracé de la solution dans l'espace (u_C,i) n'est **pas** symétrique par inversion du temps : la dissipation par effet JOULE diminue l'énergie du système, et la tension diminue progressivement.

On observera donc une **spirale décroissante** avec beaucoup d'oscillations quand les amortissements ne sont pas trop élevés, et de moins en moins quand Q diminue.

FIGURE E4 – Faible amortissement

FIGURE E5 – Moyen amortissement

II/D) 2

Cas $\Delta = 0 \Leftrightarrow Q = 1/2$: régime critique

II/D) 2.1 Solution de l'équation

♥ Démonstration E5.5 : Solution critique

La seule racine de l'équation caractéristique est double, et vaut

$$r = -\omega_0$$
 soit $u_C(t) = (At + B) \exp(-\omega_0 t)$

 \diamond On trouve B avec la première condition initiale :

$$u_C(0) = E = (A \cdot 0 + B) \cdot 1 = B \quad \Rightarrow \quad \boxed{B = E}$$

 \diamond On trouve A avec la seconde CI :

$$\frac{\mathrm{d}u_C}{\mathrm{d}t} = (A)\exp(-\omega_0 t) + (At + E)(-\omega_0)\exp(-\omega_0 t)$$

$$\Rightarrow \left(\frac{\mathrm{d}u_C}{\mathrm{d}t}\right)_0 = A - \omega_0 E = 0 \Leftrightarrow A = \omega_0 E$$

♥ Propriété E5.6 : Solution critique

Pour un facteur de qualité Q = 1/2, u_C s'exprime par

$$u_C(t) = E(\omega_0 t + 1) \exp(-\omega_0 t)$$

et on n'observe pas une oscillation.

Interprétation E5.3 : Espace des phases critique

Au facteur de qualité critique, l'amortissement est suffisamment important pour empêcher u_C de passer sous 0.

FIGURE E7

II/D) 2.2 Régime transitoire

♥ Démonstration E5.6 : Régime transitoire critique

En négligeant le terme linéaire en t devant la décroissance exponentielle, on a

$$\exp(-\omega_0 t_{95}) = 0.05 \Leftrightarrow t_{95} = \frac{\ln(20)}{\omega_0} \approx \frac{\pi}{\omega_0}$$

♥ Propriété E5.7 : Régime transitoire critique

Le temps de réponse à 95% est atteint à partir de t_{95} tel que

$$t_{95} \approx \frac{T_0}{2}$$
 avec $T_0 = \frac{2\pi}{\omega_0}$

C'est le **régime le plus court** sans dépassement.

 $\overline{\mathrm{II/D}}$ 3 Cas $\Delta > 0$: régime apériodique

II/D) 3.1 Solution de l'équation

Démonstration E5.7 : Solution apériodique

Les racines de l'équation caractéristique sont réelles, et on a

$$r_{\pm} = \frac{-\frac{\omega_0}{Q} \pm \sqrt{\Delta}}{2}$$

$$\Leftrightarrow r_{\pm} = -\frac{\omega_0}{2Q} \pm \frac{\omega_0}{2Q} \sqrt{1 - 4Q^2}$$

$$\Leftrightarrow r_{\pm} = \frac{\omega_0}{2Q} \left(-1 \pm \sqrt{1 - 4Q^2} \right)$$

Ensuite, avec la forme générale de la solution on a

$$u_C(t) = A \exp(r_+ t) + B \exp(r_- t)$$

♦ Avec la première CI :

$$u_C(0) = E = A + B$$

♦ Avec la seconde CI :

$$\left(\frac{\mathrm{d}u_C}{\mathrm{d}t}\right)_0 = Ar_+ + Br_- = 0 \Leftrightarrow B = -\frac{Ar_+}{r_-}$$

En combinant, on trouve

$$A = -\frac{Er_{-}}{r_{+} - r_{-}} \quad \text{et} \quad B = \frac{Er_{+}}{r_{+} - r_{-}}$$

Or,

$$r_{+} - r_{-} = \frac{\omega_{0}}{2Q} \left(-1 + 1 + 2\sqrt{1 - 4Q^{2}} \right)$$

$$\Leftrightarrow r_{+} - r_{-} = \frac{\omega_{0}}{Q} \sqrt{1 - 4Q^{2}}$$

Propriété E5.8 : Solution apériodique

Pour un facteur de qualité Q < 1/2, u_C s'exprime par

$$u_C(t) = \frac{QE}{\omega_0 \sqrt{1 - 4Q^2}} \left(r_+ \exp(r_- t) - r_- \exp(r_+ t) \right)$$

et on n'observe **pas une oscillation**. Le régime transitoire est plus long que pour Q=1/2.

Interprétation E5.4 : Espace des phases apériodique

Pendant le régime apériodique, l'amortissement est suffisamment important pour non seulement empêcher u_C d'osciller, mais également pour **ralentir sa diminution** vers 0. Son trajet se fait donc à une vitesse plus faible, c'est-à-dire $\frac{\mathrm{d}u_C}{\mathrm{d}t}$ plus petit donc i plus petit.

FIGURE E9

II/D) 3.2 Régime transitoire

💙 Démonstration E5.8 : Régime transitoire apériodique

La décroissance sera guidée par l'exponentielle la « moins décroissante ». On cherche donc à savoir laquelle, on compare donc r_- et r_+ .

On remarque d'abord que les deux racines sont négatives (d'où la décroissance exponentielle) :

$$r_{+} < 0 \Leftrightarrow \underbrace{-\frac{\omega_{\emptyset}}{2Q}}_{\omega_{0} \text{ et } Q > 0} \left(1 - \sqrt{1 - 4Q^{2}}\right) \lesssim 0$$

$$\Leftrightarrow 1 - \sqrt{1 - 4Q^{2}} > 0$$

$$\Leftrightarrow \sqrt{1 - 4Q^{2}^{2}} < 1^{2}$$

$$\Leftrightarrow 4Q^{2} > 0$$

Or,

$$r_{-} < r_{+}$$

$$\Leftrightarrow |r_{-}| > |r_{+}|$$

$$\Leftrightarrow \left| \frac{1}{r_{-}} \right| < \left| \frac{1}{r_{+}} \right|$$

$$\Leftrightarrow \tau_{-} < \tau_{+}$$

$$(\cdot)^{-1}$$

$$\uparrow \tau = |1/r|$$

ce qui est vrai.

On estime alors la durée du régime transitoire à $t_{95} = \tau_+ \ln(20)$.

Pour $Q \ll 1$, on utilise $\sqrt{1+x} \sim 1+x/2$ pour simplifier r_+ :

$$r_{+} = -\frac{\omega_{0}}{2Q} \left(1 - \sqrt{1 - 4Q^{2}} \right)$$

$$\Rightarrow r_{+} \underset{Q \ll 1}{\sim} -\frac{\omega_{0}}{2Q} \left(1 - \left(1 - \frac{4Q^{2}}{2} \right) \right)$$

$$\Leftrightarrow r_{+} \underset{Q \ll 1}{\sim} -Q\omega_{0}$$

Avec $ln(20) \approx \pi$:

$$t_{95} \approx \frac{\pi}{Q\omega_0}$$
 soit $t_{95} \approx \frac{T_0}{2Q}$

♥ Propriété E5.9 : Régime transitoire apériodique

Le temps de réponse à 95% est atteint à partir de t_{95} tel que

$$t_{95} \approx \frac{T_0}{2Q}$$
 avec $T_0 = \frac{2\pi}{\omega_0}$

Implication E5.3 : Résultat à faible ${\cal Q}$

Quand $Q \longrightarrow 0$, on peut négliger le terme d'ordre 2 dans l'équation différentielle :

$$\frac{\omega_0}{Q} \frac{\mathrm{d}u_C}{\mathrm{d}t} + \omega_0^2 u_C = R \sqrt{\frac{C}{L}} \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{\sqrt{LC}} u_C$$
$$= \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{R} \sqrt{\frac{\chi}{\chi_{C^2}}} u_C = \boxed{\frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{RC} u_C}$$

d'où la décroissance exponentielle. D'autre part, les valeurs de r_{\pm} tendent vers la même valeur $r=-\frac{\omega_0}{2Q}$: en supposant la solution comme la somme des deux racines, on aurait une décroissance :

$$r = -\frac{\omega_0}{Q} = -\frac{1}{\sqrt{LC}} R \sqrt{\frac{C}{L}} \Leftrightarrow r = -R \sqrt{\frac{\mathscr{L}}{L^2 \mathscr{L}}}$$

soit une décroissance exponentielle avec un temps caractéristique $\tau = \frac{L}{R}$.

$oxed{ ext{III}}$ Exemple amorti mécanique : ressort + frottements fluides

III/A Présentation

Définition E5.3 : Situation initiale et bilan des forces

 \diamond **Référentiel** : \mathcal{R}_{sol} supposé galiléen

 \diamond **Repère** : $(O, \overrightarrow{u_x}, \overrightarrow{u_y})$ (voir schéma)

♦ Repérage :

$$\overrightarrow{OM} = (\ell(t) - \ell_0) \overrightarrow{u_x}; \overrightarrow{v} = \dot{\ell}(t) \overrightarrow{u_x}; \overrightarrow{a} = \ddot{\ell}(t) \overrightarrow{u_x}$$

♦ **Position initiale** : $OM(0) = L_0 > 0$

 \diamond Vitesse initiale : $\vec{v}(0) = \vec{0}$

FIGURE E10

♦ Bilan des forces :

III/B Équation différentielle

💙 Démonstration E5.9 : Équation ressort amorti

Avec le PFD:

$$\begin{split} m \, \overrightarrow{a} &= \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{F}_f + \overrightarrow{F}_r \\ \Leftrightarrow m \left(\begin{matrix} \frac{\mathrm{d}^2 \ell}{\mathrm{d} t^2} \\ 0 \end{matrix} \right) &= \left(\begin{matrix} -k(\ell(t) - \ell_0) - \alpha \frac{\mathrm{d} \ell}{\mathrm{d} t} \\ -mg + R \end{matrix} \right) \end{split}$$

Sur l'axe $\overrightarrow{u_x}$ on trouve donc

$$m\frac{\mathrm{d}^{2}\ell}{\mathrm{d}t^{2}} + \alpha \frac{\mathrm{d}\ell}{\mathrm{d}t} + k\ell(t) = k\ell_{0}$$

$$\Leftrightarrow \frac{\mathrm{d}^{2}\ell}{\mathrm{d}t^{2}} + \frac{\alpha}{m}\frac{\mathrm{d}\ell}{\mathrm{d}t} + \frac{k}{m}\ell(t) = \frac{k}{m}\ell_{0}$$

On identifie ω_0 et Q:

$$\omega_0^2 = \frac{k}{m} \Leftrightarrow \boxed{\omega_0 = \sqrt{\frac{k}{m}}}$$

et
$$\frac{\alpha}{m} = \frac{\omega_0}{Q} \Leftrightarrow Q = \frac{m\omega_0}{\alpha} \Leftrightarrow Q = \frac{\sqrt{km}}{\alpha}$$

Propriété E5.10 : Équation ressort amorti

La position x de la masse et la longueur ℓ du ressort sont régies par :

$$\frac{\mathrm{d}^2 \ell}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}\ell}{\mathrm{d}t} + \omega_0^2 \ell(t) = \omega_0^2 \ell_0$$

$$\Leftrightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x(t) = 0$$

 $\Diamond \left[\omega_0 = \frac{k}{m} \right]$ la pulsation propre;

$$\Diamond$$
 $Q = \frac{\sqrt{km}}{\alpha}$ le facteur de qualité.

 ℓ_0 reste donc la longueur d'équilibre du système.

Important E5.3 : Analogie RLC-ressort amorti

Ici aussi, les deux systèmes sont **régis par la même équation différentielle**. On observe une **oscillation amortie** du ressort autour d'une position d'équilibre, ici $x_{\rm eq} = 0 \Leftrightarrow \ell_{\rm eq} = \ell_0$.

Ici, c'est le coefficient de frottements α qui dissipe : on l'associe à R.

Méca←→Élec				
\leftarrow	$\rightarrow q$			
\leftarrow	\rightarrow i			
	$\rightarrow L$			
\leftarrow	$\rightarrow C^{-1}$			
	$\rightarrow \frac{1}{\sqrt{LC}}$			
\leftarrow	$\rightarrow R$			
	<			

III/C Bilan de puissance

Propriété E5.11 : \mathcal{P} ressort

Dans le système masse-ressort horizontal avec frottements fluides, l'énergie mécanique diminue progressivement proportionellement au coefficient de friction α :

$$\frac{\mathrm{d}\mathcal{E}_m}{\mathrm{d}t} = -\alpha v^2 < 0 \quad \text{donc} \quad \mathcal{E}_m(t) \searrow$$

Démonstration E5.10 : \mathcal{P} ressort

À partir du PFD $\times v$:

$$m\frac{\mathrm{d}v}{\mathrm{d}t}v(t) + \alpha\frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}x}{\mathrm{d}t} + kx\frac{\mathrm{d}x}{\mathrm{d}t} = 0$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\left(\underbrace{\frac{1}{2}mv^2 + \frac{1}{2}kx^2}_{=\mathcal{E}_{p,\mathrm{el}}}\right) = -\alpha v^2 \quad \text{if } f'$$

III/D Solutions

Propriété E5.12 : Solutions ressort

On a les mêmes solutions en changeant u_C par x et E par x_0

IV Résumé oscillateurs amortis

Important E5.4 : Résumé – pas de par cœur!				
Pseudo-périodique	Critique	Apériodique		
$\Delta < 0 \Leftrightarrow Q > 1/2$	$\Delta = 0 \Leftrightarrow Q = 1/2$	$\Delta > 0 \Leftrightarrow Q < 1/2$		
$r_{\pm} = -\frac{\omega_0}{2Q} \pm j\Omega$ $\Omega = \frac{\sqrt{-\Delta}}{2} = \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1}$	$r = -\frac{\omega_0}{2Q} = -\omega_0$	$r_{\pm} = \frac{\omega_0}{2Q} \left(-1 \pm \sqrt{1 - 4Q^2} \right)$		
$u_C(t) = E \exp\left(-\frac{\omega_0}{2Q}t\right) \times \left[\cos(\Omega t) + \frac{1}{\sqrt{4Q^2 - 1}}\sin(\Omega t)\right]$	$u_C(t) = E(\omega_0 t + 1) \exp(-\omega_0 t)$	$u_C(t) = \frac{QE}{\omega_0 \sqrt{1 - 4Q^2}} \times \left(r_+ \exp(r t) - r \exp(r_+ t)\right)$		
$t_{95} pprox QT_0$	$t_{95} pprox rac{T_0}{2}$	$t_{95} pprox rac{T_0}{2Q}$		
$R = 500 \Omega$ $Q = 2.93$	$R = 2932 \Omega$ $Q = 0.5$	$R = 7500 \Omega$ $Q = 0.2$		
$L = 43 \mathrm{mH}$ $C = 20 \mathrm{nF}$	$L = 0.043 \mathrm{H}$ $C = 0.00000002 \mathrm{F}$	$L = 0.043 \mathrm{H}$ $C = 0.00000002 \mathrm{F}$		
$R = 500 \Omega$ $Q = 2.93$	$R = 2932 \Omega$ $Q = 0.5$	$i \qquad R = 7500 \Omega$ $Q = 0.2$		
$L = 0.043 \mathrm{H}$ $C = 0.000000002 \mathrm{F}$	$L = 0.043 \mathrm{H}$ $C = 0.00000002 \mathrm{F}$	$L = 0.043 \mathrm{H}$ $C = 0.00000002 \mathrm{F}$		