分光计实验报告

姓名:宋建宏 学号: PB21020677 班级: 203 院 22 级 5 班 日期: 2023 年 5 月 5 日

实验目的

初步了解分光计的工作原理, 学会调节、使用分光计。进行三棱镜顶角和最小偏向角的测量, 进而测量 三棱镜材料的折射率。

实验原理

用最小偏向角法测三棱镜材料的折射率。一束单色光以 i_1 角入射到 AB 面上,经棱镜两次折射后从 AC 面射出,出射角为 i_2' 人入射光与出射光之间的夹角 δ 称为偏向角。当棱镜顶角 A 一定时,当 $i_1=i_2'$ 时, δ 为最小,称为最小偏向角,记作 δ_{\min} 。此时有 $i_1'=\frac{A}{2}, i_1=\frac{\delta_{\min}+A}{2}$ 。设棱镜折射率为 n,则有

$$n = \frac{\sin i_1}{\sin i_1'} = \frac{\sin \frac{\delta_{\min} + A}{2}}{\sin \frac{A}{2}}$$

由此可知, 要测得折射率 n, 需测得顶角 A 和最小偏向角 δ_{\min} 。

实验仪器

分光计、双面平面镜、三棱镜、汞灯、遮光板。

测量记录

各实验测量数据及计算结果如下:

表 1: 顶角

次序	$ heta_1$	$ heta_2$	$ heta_1'$	$ heta_2'$	A
1	80°12'	260°10′	200°10′	20°08'	60°02'
2	198°49'	18°48'	78°50'	258°47'	60°00'
3	199°46'	19°46'	319°45'	139°45'	60°00'

表 2: 最小偏向角

次序	θ_1	θ_2	θ_1'	θ_2'	δ_{min}
1	339°00'	159°02'	30°40'	210°41'	50°40'
2	254°08'	74°10′	305°47'	125°48'	51°38'
3	257°19'	77°21'	308°58'	128°59'	51°38'

数据处理

为计算方便, 在处理过程中使用十进制。

顶角

平均值

$$\bar{A} = \frac{60.0333^{\circ} + 60.0000^{\circ} + 60.0000^{\circ}}{3} \approx 60.0111^{\circ}$$

标准差

$$\sigma = \sqrt{\frac{(60.0333^{\circ} - 60.0111^{\circ})^{2} + (60.0000^{\circ} - 60.0111^{\circ})^{2} + (60.0000^{\circ} - 60.0111^{\circ})^{2}}{3 - 1}}$$

$$\approx 0.0192^{\circ}$$

A 类不确定度

$$U_{A,A} = t_{0.95} \frac{\sigma}{C} = 4.3 \times \frac{0.0192}{\sqrt{3}} \approx 0.0477^{\circ}$$

B 类不确定度

$$U_{A,B} = \frac{k_{0.95}}{C} \sqrt{\Delta_{\%}^2 + \Delta_{\pitchfork}^2} = \frac{1.645}{\sqrt{3}} \times \sqrt{(0.0167^{\circ})^2 + (0.0083^{\circ})^2} \approx 0.0177^{\circ}$$

故顶角不确定度为

$$U_A = \sqrt{U_{A,A}^2 + U_{A,B}^2} = \sqrt{0.0477^2 + 0.0177^2} \approx 0.0509^\circ \approx 3' \quad (P = 0.95)$$

最小偏向角

平均值

$$\bar{\delta}_{\min} = \frac{50.6667 + 51.6333 + 51.6333}{3} \, ^{\circ} = 51.3111 \, ^{\circ}$$

标准差

$$\sigma = \sqrt{\frac{(50.6667 - 51.3111)^2 + (51.6333 - 51.3111)^2 + (51.6333 - 51.3111)^2}{3 - 1}} \circ$$

$$= 0.5581^\circ$$

A 类不确定度

$$U_{\delta_{\min},A} = t_{0.95} \frac{\sigma}{C} = 4.3 \times \frac{0.5581^{\circ}}{\sqrt{3}} \approx 1.386^{\circ}$$

B类不确定度

$$U_{\delta_{\min},B} = \frac{k_{0.95}}{C} \sqrt{\Delta_{\text{(c)}}^2 + \Delta_{\text{(f)}}^2} = \frac{1.645}{\sqrt{3}} \times \sqrt{(0.0167^\circ)^2 + (0.0083^\circ)^2} \approx 0.0177^\circ$$

故最小偏向角的不确定度为

$$U_{\delta_{\min}} = \sqrt{U_{\delta_{\min},A}^2 + U_{\delta_{\min},B}^2} = \sqrt{1.386^2 + 0.0177^2} \approx 1.386^{\circ} \approx 80' \quad (P = 0.95)$$

折射率

绿光下玻璃三棱镜折射率 n

$$n = \frac{\sin\left(\frac{A}{2} + \frac{\delta_{\min}}{2}\right)}{\sin\left(\frac{A}{2}\right)} = \frac{\sin\left(\frac{60.0111}{2} + \frac{51.3111}{2}\right)}{\sin\left(\frac{60.0111}{2}\right)} \approx 1.65115$$

折射率 n 的不确定度

$$\begin{split} U_n &= \sqrt{\left(\frac{\partial n}{\partial A} U_A\right)^2 + \left(\frac{\partial n}{\partial \delta_{\min}} U_{\delta_{\min}}\right)^2} \\ &= \sqrt{\left(\left(\frac{\cos\left(\frac{A}{2} + \frac{\delta_{\min}}{2}\right)}{2\sin\left(\frac{A}{2}\right)} - \frac{\sin\left(\frac{A}{2} + \frac{\delta_{\min}}{2}\right)\cos\left(\frac{A}{2}\right)}{2\sin^2\left(\frac{A}{2}\right)}\right) U_A\right)^2 + \left(\frac{\cos\left(\frac{A}{2} + \frac{\delta_{\min}}{2}\right)}{2\sin\left(\frac{A}{2}\right)} U_{\delta_{\min}}\right)^2} \\ &\approx 0.014 \,, P = 0.95 \end{split}$$

绿光下玻璃三棱镜折射率 n 最终结果

$$n = 1.651 \pm 0.014 \quad (P = 0.95)$$

误差分析

本次测量所得折射率不确定度较大,审查数据发现原因在于最小偏向角测量值相差较大,应为操作失误。 将最小偏向角的偏离较大数据剔除后重新计算得

$$U_n \approx 7.85 \times 10^{-4}$$

 $n = 1.6543 \pm 0.0008$

思考题

- 1. 已调好望远镜光轴垂直主轴,若将平面镜取下后,又放到载物台上(放的位置与拿下前的位置不同), 发现两镜面又不垂直望远镜光轴了,这是为什么?是否说明望远镜光轴还没调好?
- 答:这是因为载物台没有调整至水平。并不能说明望远镜光轴还没调好,只有将载物台先调水平后才能确认望远镜光轴受否已经调好。