表 1:8086 寄存器

Category	Bits	Register Names	
General	16	AX(Accumulator), BX(Base), CX(Count), DX(Data)	
	8	AH, AL, BH, BL, CH, CL, DH, DL	
Pointer	16	SP(Stack Pointer), BP(Base Pointer)	
Segment	16	CS(Code Segment), DS(Data Segment), SS(Stack Segment), ES(Extra Segment)	
Instruction	16	IP(Instruction Pointer)	
Flag	16	FR(Flag Register)	

表 2: 8086 接脚

Signal	Description 2	00001安四	1
	-	0	=
ALE	Address Latch Enabled		Latched
BHE	Bank High Enabled	$AD_8 \sim AD_{15}$ Enabled	$AD_8 \sim AD_{15}$ Disabled
${ m DT}/{ m \overline{R}}$	direction of Data Transfer	sending data	receiving data
DEN	Data transceiver ENabled	enabled	disabled
WR	WRiting to Mem/IO	writing	
$\overline{ t RD}$	ReaDing from mem/IO	reading	
M/IO	CPU accessing Memory / IO	IO	Memory
INTR	INTerrupt Request, maskable		Requesting
	by clearing IF		
INTA	INTerrupt Acknowledge		Acknowledge
NMI	Non-Maskable Interrupt,		will be interrupted
	CPU is interrupted after fin-		
	ishing the current instruction;		
	cannot be masked by software		
HOLD	HOLD the bus request		hold
HLDA	HoLD request acknowledge		hold req ack
TEST	for debug	test	
READY	mem/IO is READY for trans-		ready
	fer		
RESET	reset the CPU, IP, DS, SS, ES		CS=0FFFFH
	and 6 inst in instruction queue		
	are cleared		

8086 16-bit, 20-bit address.

8088 16-bit internal, 8-bit external.

只有两段:

BIU (Bus Interface Unit) 连接内存与外设。

EU (Execution Unit) 执行之前获取的指令。

双工作模式

最小模式 $MN/\overline{MX} = 1$ 单 CPU。

最大模式 $MN/\overline{MX} = 0$ 多 CPU(8086+8087), 8288控制芯片。

8086读周期时序: 在8086读周期内,有关总线信号的变化如下:

- 1. M/IO在整个读周期保持有效,当进行存储器读操作时,M/IO为高电平;当进行I/O端口读操作时,M/IO为低电平.
- 2. A19/S6~A16/S3是在T1期间,输出CPU要读取的存储单元的地址高4位.T2~T4期间输出状态信息S6~S3.
- 3. BHE/S7在T1期间输出BHE有效信号(BHE为低电平),表示高8位数据总线上的信息可以使用,BHE信号通常作为奇地址存储体的选择信号(偶地址存储体的选择信号是最低地址位A0).T2~T4期间输出高电平.
- 4. ADI5~AD0在T1期间输出CPU要读取的存储单元或I/O端口的地址A15~A0.T2期间为高阻态,T3~T4期间,存储单元或I/O端口将数据送上数据总线.CPU从ADI5~AD0上接收数据. 5. ALE:在T1期间地址锁存有效信号,为一正脉冲,系统中的地址锁存器正是利用该脉冲的下降沿来锁存A19/S6~A16/S3,ADI5~
- 的20位地址信息以及BHE. 6. RD在T2期间输出低电平,送到被选中的存储器或I/O接口.要注意的是,只有被地址信号选中的存储单元或I/O端口,才会
- 7. DT/R在整个总线周期内保持低电平,表示本总线周期为读周期.在接有数据总线收发器的系统中,用来控制数据传输的方向.
- 8. DEN在T2~T3期间输出有效低电平,表示数据有效.在接有数据总线收发器的系统中,用来实现数据的选通. 8086写周期时序总线写操作的时序与读操作时序相似,其不同处在于:
- 1. AD15~AD0在T2~T4期间送上欲输出的数据,而无高阻态.
- 2. WR在T2~T4期间输出有效低电平,该信号送到所有的存储器和I/O接口.要注意的是,只有被地址信号选中的存储单元或I/O端口才会被WR信号写入数据.
- 3. DT/R在整个总线周期内保持高电平,表示本总线周期为写周期.在接有数据总线收发器的系统中,用来控制数据传输方

buscycle.png	

向.