MATH 350; Assignment 6; Jake R. Gameroff; ID: 261115879.

Problem 1. Let D be a directed graph and for each edge $e \in E(D)$ let $\varphi(e) \ge 0$ be an integer so that for every $v \in V(D)$

$$\sum_{e \in \delta^-(v)} \varphi(e) = \sum_{e \in \delta^+(v)} \varphi(e).$$

Show that there is a list C_1, \ldots, C_n of directed cycles (possibly with repetition) so that every edge e of D belongs to exactly $\varphi(e)$ of these cycles.

Proof. Let D be a digraph as given above. We induct on $\sum_{e \in E(D)} \varphi(e)$.

Base case. If $\sum_{e \in E(G)} \varphi(e) = 0$, then $\varphi(e) = 0$ for each $e \in E(G)$. Thus, for every $v \in V(D)$, $\sum_{e \in \delta^-(v)} \varphi(e) = \sum_{e \in \delta^+(v)} \varphi(e) = 0$. Thus there are zero cycles such that every edge e of D belongs to $\varphi(e) = 0$ cycles (the claim is vaccuously true).

Induction. Let $k \geq 1$ be an integer so that $\sum_{e \in E(D)} \varphi(e) = k$. Thus, there is at least one edge $f \in E(D)$ for which $\varphi(f) > 0$. Let D' be the graph obtained from D by deleting f, i.e. $D' = D \setminus f$. Suppose f has ends $a, b \in V(D)$, where a is the head and b is the tail. Then $\psi := \varphi|_{E(D')}$ is an (a, b)-flow. The value of ψ is at least 1, since $\varphi(f) \geq 1$.

Thus, by Lemma 9.3, there exists at least one directed path P from a to b in D' such that for every $e \in E(P)$, e belongs to at most $\psi(e)$ of these obtained paths (there is just one in this case). Thus, P has positive flow, i.e. $\psi(e) > 0$ for every $e \in E(P)$. Indeed, if P has an edge e such that $\psi(e) = 0$, then e can not belong to P, a contradiction (it would belong to at most 0 of the obtained paths). Thus, there is a directed cycle C in D given by V(C) := V(P) and $E(C) := E(P) \cup \{f\}$ and such that for every edge $e \in E(C)$, $\varphi(e) \geq 1$.

Using this cycle C, we define

$$p(e) := \begin{cases} \varphi(e) - 1 & e \in E(C) \\ \varphi(e) & e \notin E(C). \end{cases}$$

Thus, $p(e) \ge 0$ for $e \in E(D)$, and for $v \in V(D)$, it follows that $\sum_{e \in \delta^-(v)} p(e) = \sum_{e \in \delta^+(v)} p(e)$, since for every edge in C with head v there is an edge in C with tail v (since C is a directed cycle) and for any other edge e, $p(e) = \varphi(e)$. Thus, p satisfies the assumtpions of the problem statement and we have

$$\sum_{e \in E(D)} p(e) \le \sum_{e \in E(D)} \varphi(e) = k,$$

thus we can apply the induction hypothesis! Hence there exists a list of directed cycles C'_1, C'_2, \ldots, C'_m in D such that every edge e of D belongs to exactly p(e) of these cycles.

Now, consider the list of cycles $C, C'_1, C'_2, \ldots, C'_m$. For an edge e not in C, it belongs to exactly $p(e) = \varphi(e)$ cycles in the list. For an edge e in C, it belongs to $p(e) + 1 = \varphi(e)$ cycles in the list, since we have added the cycle C to the list. Thus, every edge e of D belongs to exactly $\varphi(e)$ cycles in the list $C, C'_1, C'_2, \ldots, C'_m$, as desired.

Problem 2. Show that R(3,4) = 9.

Proof. We commence by proving that $R(3,4) \leq 9$. Let G be an arbitrary graph on 9 vertices. We have two cases.

- Case 1. Suppose there is a vertex $v \in V(G)$ incident to at least 4 edges $e_1, e_2, e_3, e_4 \in E(G)$. Then, if f_1, f_2, f_3, f_4 are the respective ends of e_1, e_2, e_3, e_4 , if there is an edge from f_i to f_j for $1 \le i < j \le 4$, then G has a clique of size 3 and we are done. Otherwise, the ends f_1, f_2, f_3, f_4 form an independent set in G since they are pairwise non-adjacent and we are also done. Thus, in case 1, we can always find either a clique of size 3 or an independent set of size 4 in G, as needed.
- Case 2. There is a vertex of G is incident to at most 3 edges. Thus, in \overline{G} , there is a vertex $v \in V(\overline{G})$ which is incident to at least 6 edges $va_1, va_2, \ldots, va_6 \in E(\overline{G})$. Now we consider the subgraph X of G given by $V(X) := \{a_1, a_2, \ldots, a_6\}$ and whose edge set E(X) contains all edges in G which contain a vertex a_i as an end $(1 \le i \le 6)$. By lecture, R(3,3) = 6, thus X either has a clique of size 3 or an independent set of size 3. If X has a clique of size 3, then so does G and we are done; and if X has an independent set Y of size 3, then $Y \cup \{v\}$ is an independent set in G of size 4 as needed, since $va_i \notin E(\overline{G})$ for every $i = 1, 2, \ldots, 6$.

Thus, in either case, G either has a clique of size 3 or an independent set of size 4; hence $R(3,4) \leq 9$. To show that $R(3,4) \geq 9$, we suppose otherwise for a contradiction. Thus, if $R(3,4) \leq 8$ then every graph on 8 vertices contains a clique of size 3 or an independent set of size 4. However, consider the following graph G (drawn in blue) along with its complement \overline{G} (drawn in red):

By our supposition, G either has a clique of size 3 or an independent set of size 4. We show that either case produces a falsehood.

- If G contains a clique of size 3, then K_3 is a subgraph of which. Thus there is a vertex $w \in V(G)$ such that $w \in V(K_3)$. By symmetry, this implies that every vertex of G is in K_3 . Thus $v \in V(G)$ (highlighted in yellow) is in K_3 . But its three neighbours v_1, v_2, v_3 are pairwise non-adjacent, a contradiction since v must be in K_3 .
- Thus, G must contain an independent set of size 4. By lecture, equivalently, \overline{G} contains a clique of size 4. Thus \overline{G} contains K_4 . Thus there is a vertex $w \in V(\overline{G})$ that is in K_4 . But then, by symmetry, every vertex of \overline{G} is in K_4 . Thus $v \in V(\overline{G})$ (highlighted in yellow) is in K_4 . Thus there must be a 3 element subset of $\{w_1, w_2, w_3, w_4\}$ (neighbours of v) that contains K_3 . However, looking at the graph of \overline{G} ,

its easy to see that this is impossible, i.e. no three vertices in $\{w_1, w_2, w_3, w_4\}$ are pairwise adjacent. Thus, we have derived a contradiction.

Since both cases provide a contradiction, we conclude that $R(3,4) \leq 8$ so that $R(3,4) \geq 9$. Since R(3,4) is simultaneously ≤ 9 and ≥ 9 , we conclude that R(3,4) = 9.

Problem 3. For an integer $k \geq 3$, let $N = R_3(k, k, k)$ (N is the minimum integer such that in every coloring of edges of K_N in 3 colors there exists a set X of k vertices so that all edges between the vertices of X have the same color). Show that

1.

$$\binom{N}{k} \left(\frac{1}{3}\right)^{\binom{k}{2}-1} \ge 1$$

2. $N > 3^{k/2}$.

Proof of 1. Suppose by contradiction that $\binom{N}{k}(\frac{1}{3})^{\binom{k}{2}-1} = \binom{N}{k}3^{\binom{k}{2}-1} < 1$. We consider the graph K_N . There are $3^{\binom{N}{2}}$ possible colorings of K_N , since K_N has $\binom{N}{2}$ total edges which can each be coloured in one of three ways. For a given subset $S \subseteq V(K_N)$ with |S| = k, there are $3^{\binom{N}{2}-\binom{k}{2}}$ colorings of K_N in which the edges between vertices of S are monochromatic (since S has $\binom{k}{2}$ edges). Since there are 3 colours available, the total number of subsets $S \subseteq V(K_N)$ of size k such that the edges between vertices in S are monochromatic is

$$\underbrace{\binom{N}{k}}_{\text{choose } S} \cdot \underbrace{3 \cdot 3^{\binom{N}{2} - \binom{k}{2}}}_{\text{graphs s.t. } S \text{ has monochromatic edges}},$$

i.e. this is the number of colorings of K_N in which there is such a subset S. However, by hypothesis we have

$$\binom{N}{k} \cdot 3^{\binom{N}{2} - \binom{k}{2} + 1} = \binom{N}{k} 3^{1 - \binom{k}{2}} 3^{\binom{N}{2}} = \binom{N}{k} \left(\frac{1}{3}\right)^{\binom{k}{2} - 1} \cdot 3^{\binom{N}{2}} < 3^{\binom{N}{2}},$$

since we assumed that $\binom{N}{k}(\frac{1}{3})^{\binom{k}{2}-1} < 1$. Thus there exists a colouring of K_N in which there is no subset S with k elements and such that edges between its vertices are monochromatic, a contradiction to the hypothesis that $R_3(k,k,k) = N$. Thus, we conclude that $\binom{N}{k}(\frac{1}{3})^{\binom{k}{2}-1} \ge 1$, thereby completing the proof.

Proof of 2. By (1), it suffices to show that if $N < 3^{k/2}$, then $\binom{N}{k} 3^{1-\binom{k}{2}} < 1$ (as this would imply that $N \neq R_3(k,k,k)$), a contradiction. Notice that

$$\binom{N}{k} 3^{1-\binom{k}{2}} = 3^{1-\binom{k}{2}} \cdot \frac{N(N-1)\cdots(N-k+1)}{k!} \le 3^{1-\binom{k}{2}} \cdot \frac{N^k}{k!} < 3^{1-\binom{k}{2}} \cdot \frac{(3^{k/2})^k}{k!}$$

$$= \frac{3^{k^2/2} \cdot 3^{1-\binom{k}{2}}}{k!} \le \frac{3^{k^2/2} \cdot 3^{1-\binom{k}{2}}}{3^{k-1}}$$

$$= \frac{3 \cdot 3^{k^2/2}}{3^{k-1}3^{k(k-1)/2}} = 3^{1+k^2/2-(k-1+k(k-1)/2)} = 3^{2-k/2} \le 1,$$
(2.1)

as required (such holds for $k \ge 5$). (2.1) holds as $N < 3^{k/2}$ by hypothesis, and so does (2.2) since $k! \ge 3^{k-1}$ for $k \ge 5$ by induction.¹

 $[\]overline{\ ^{1}\text{For }k=5,\,5!=120>3^{5-1}=3^{4}=81.\ \text{If }k}\geq 5,\,(k+1)!=(k+1)k!\geq (k+1)3^{k-1}\geq 3\cdot 3^{k-1}=3^{k}\ \text{by the inductive hypothesis and since }k+1\geq 6.$

When k=4, if $N=R_3(4,4,4)<3^{4/2}=9 \implies N\leq 8$. Thus, $\binom{N}{k}3^{1-\binom{k}{2}}\leq \binom{8}{4}3^{1-\binom{4}{2}}\approx 0.2<1$ as needed, thus $N\geq 9$ for k=4 as needed. When k=3, we need show that $R_3(3,3,3)=N\geq 3^{3/2}\approx 5.1$ which is equivalent to showing that $N\geq 6$ since N is an integer. Suppose towards a contradiction that $N\leq 5$. We show that 5 vertices will not suffice, from which it follows trivially that neither 4, 3, 2, nor 1 vertex will suffice either. We must find a coloring of K_5 such that for every collection of three vertices, the edges between them are not monochromatic. Consider the following coloring of K_5 :

It is easy to see that for any collection of three vertices, the edges between them are not monochromatic. Thus, $N \ge 6 \ge 3^{k/2}$ when k = 3. Thus, the proof is complete.