

COSC 522 – Machine Learning

Baysian Decision Theory – Nonparametric Learning

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville

http://www.eecs.utk.edu/faculty/qi

Email: hqi@utk.edu

Questions

- In general, what is non-parametric learning?
- Under what conditions that non-parametric learning would be preferred?
- What is parzen window and what are the potential issues?
- What is kNN intuitively?
- Does kNN also follow the MPP decision rule?
- What is the decision boundary of kNN?
- When k is fixed, is the radius of neighborhood fixed?
- Is 1NN the same as minimum distance classifier?
- What is the cost function of kNN? What is the optimization approach used? Is kNN optimal in Baysian sense?
- What are the potential issues with kNN?

Where Are We?

M. Mafu, "Advances in artificial intelligence and machine learning for quantum communication applications," IET Quantum Communication, 2024, DOI: 10.1049/qtc2.12094

 Estimate the density functions without the assumption that the pdf has a particular form

$$P(w_{j}|x) = \frac{p(x|w_{j})P(w_{j})}{p(x)}$$

Probability and pdf (the probability that a vector x fall within region R)

$$P = \int_{R} p(x') dx'$$

If p(x) does NOT vary significantly within R, then

$$P = p(x) V$$

 For a training set of n samples, k of them fall within the hypervolume V, we can then estimate p(x) by

$$p(x) = \frac{P}{V} \approx p_n(x) = \frac{\frac{k_n}{n}}{V}$$

PART I: PARZEN WINDOWS

Parzen Windows

- The density estimation at x is calculated by counting the number of samples fall within a hypercube of volume V centered at x
- Let R be a d-dimensional hypercube, whose edges are h units long.
 Its volume is then V=h^d
- Introducing the "window" function

$$\varphi(u) = \begin{cases} 1 & |u_j| \le 0.5 & j = 1, ..., d \\ 0 & otherwise \end{cases}$$

• Calculate k_n $k_n = \sum_{i=1}^n \varphi\left(\frac{x - x_i}{h}\right)$

Hence

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{\varphi\left(\frac{x - x_i}{h}\right)}{V}$$

Problems

- Hypercube why should a point just inside the hypercube contribute the same as a point very near to x, while a point just outside the hypercube contributes nothing?
- Use a continuous window function

Another Problem

- How to choose h?
- A large h will result in a great deal of smoothing and loss of resolution
- A very small h will tend to degenerate the estimator into a collection of n sharp peaks, each centered at a sampling point
- ◆ Solution: h should depend on the number of samples. If only a few samples are available, we require a large h and considerable smoothing, whereas if many points are available, we can use a smaller h without the danger of degenerating into separate peaks.

$$h = \frac{1}{\sqrt{n}}$$

Problem with Parzen Windows

- Discontinuous window function → Continuous (i.e., Gaussian)
- The choice of h

$$h = \frac{1}{\sqrt{n}}$$

Still another one: Fixed volume

PART II: K-NEAREST NEIGHBOR

The k-nearest neighbor (kNN) Decision Rule - Intuitively

 The decision rule tells us to look in a neighborhood of the unknown test sample for k samples. If within that neighborhood, more training samples lie in class i than any other class, we assign the unknown as belonging to class i.

kNN in Classification

$$p_n(x) = \frac{k_n/n}{V}$$

 Given c training sets from c classes, the total number of samples is

$$n = \sum_{m=1}^{c} n_m$$

• Given a point \mathbf{x} at which we wish to determine the statistics, we find the hypersphere of volume \mathbf{V} which just encloses k points from the combined set. If within that volume, k_m of those points belong to class m, then we estimate the density for class m by

$$p(x|w_m) = \frac{k_m/n_m}{V} \qquad P(w_m) = \frac{n_m}{n} \qquad p(x) = \frac{k/n}{V}$$

kNN Classification Rule

$$P(\omega_m \mid x) = \frac{p(x \mid \omega_m) P(\omega_m)}{p(x)} = \frac{\frac{k_m}{n_m V} \frac{n_m}{n}}{\frac{k}{nV}} = \frac{k_m}{k}$$

The decision rule tells us to look in a neighborhood of the unknown feature vector for k samples. If within that neighborhood, more samples lie in class i than any other class, we assign the unknown as belonging to class i.

kNN Decision Boundary

Figure 2.28 Plot of 200 data points from the oil data set showing values of x_6 plotted against x_7 , where the red, green, and blue points correspond to the 'laminar', 'annular', and 'homogeneous' classes, respectively. Also shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values of K.

From [Bishop 2006]

Potential Issues

- What is a good value of "k"? $k_n = \sqrt{n}$
- What kind of distance should be used to measure "nearest"
 - Euclidean metric is a reasonable measurement
- Computation burden
 - Massive storage burden
 - Need to compute the distance from the unknown to all the neighbors

Questions

- In general, what is non-parametric learning?
- Under what conditions that non-parametric learning would be preferred?
- What is parzen window and what are the potential issues?
- What is kNN intuitively?
- Does kNN also follow the MPP decision rule?
- What is the decision boundary of kNN?
- When k is fixed, is the radius of neighborhood fixed?
- Is 1NN the same as minimum distance classifier?
- What is the cost function of kNN? What is the optimization approach used? Is kNN optimal in Baysian sense?
- What are the potential issues with kNN?

