# # 2 Z Z	(*	うって	5n/.	. 6 2	ZC.	şk.			1.	<u> </u>	u-\I.	,
4		, -		(JE)	1	L,L,	\$. 五			IA 学機	多目は
	501	(1)	608	٤]	٤	09	台集	李糠		員全春岩	群 IA 学機	日元星公
	※ 欄 点	※ 雑 (その f)	₩ //	事 / 1	3.学	陪举	ī	F	计献即帮	9(半)日	1 4 6 1 1	平记一旗平
# 01		間却鏡法										

 $\frac{1}{12} \frac{1}{12} \frac$

1xZB+(86Z+xxZ) =+xZ = nene.

3. $f(x,y,z) = \sin x \sin z + e^y - z$ とおく。 $(1) \qquad f(x,y,z) = 0$ 区対し (x,y,z) = (0,0,1) の近く $(1) \qquad f(x,y,z) = 0$ 区対し (x,y,z) = (0,0,1) の近く $(1) \qquad f(x,y,z) = 0$ 区域 (x,y) = (0,0,1) の近く $(1) \qquad f(x,y,z) = 0$ 区域 (x,y) = (0,0,1) の近く $(1) \qquad f(x,y,z) = 0$ (1) の近く $(1) \qquad f(x,y,z) =$

 $\frac{1}{n^3} + \frac{1}{6n} \epsilon n + \frac{1}{n} \epsilon n + \frac{1}{n} \epsilon n + \frac{1}{n} \epsilon n + \frac{1}{n} \log (1 + 1)$ $\frac{1}{6n} + \frac{1}{6n} \epsilon n + \frac{1}{6n} \epsilon n + \frac{1}{n} \epsilon n + \frac{1}{n} \epsilon n + \frac{1}{n} \log (1 + 1)$ $\frac{1}{6n} + \frac{1}{6n} - \frac{1}{6n} + \frac{1}{6n} - \frac{1}{6n} + \frac{1}{6n} - \frac{1}{6n} + \frac{1}{6n$

 $0 = \frac{n^3}{sn} \min_{0 \le 1} (\frac{1}{n^3} + \frac{1}{sn}sd + \frac{1}{n}id + 1) \frac{1}{(n^3 + \frac{1}{sn}sd + \frac{1}{n}id + 1)} (\frac{1}{n} + 1) = 3$ $(2) \pm 1 + \frac{1}{sn}sd + \frac{1}{n}id + 1$ $(2) + \frac{1}{sn}sd + \frac{1}{n}id + 1$ $(3) + \frac{1}{sn}sd + \frac{1}{n}id + 1$ $(3) + \frac{1}{sn}sd + \frac{1}{n}id + 1$ $(4) + \frac{1}{sn}sd + \frac{1}{n}id + 1$ $(5) + \frac{1}{sn}sd + \frac{1}{n}id + 1$ $(6) + \frac{1}{n}id + 1$ $(7) + \frac{1}{sn}sd + \frac{1}{n}id + 1$ $(8) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(2) + \frac{1}{n}id + 1$ $(3) + \frac{1}{n}id + 1$ $(3) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(5) + \frac{1}{n}id + 1$ $(6) + \frac{1}{n}id + 1$ $(7) + \frac{1}{n}id + 1$ $(8) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(2) + \frac{1}{n}id + 1$ $(3) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(5) + \frac{1}{n}id + 1$ $(6) + \frac{1}{n}id + 1$ $(7) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(2) + \frac{1}{n}id + 1$ $(3) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(5) + \frac{1}{n}id + 1$ $(6) + \frac{1}{n}id + 1$ $(7) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(2) + \frac{1}{n}id + 1$ $(3) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(5) + \frac{1}{n}id + 1$ $(7) + \frac{1}{n}id + 1$ $(8) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(2) + \frac{1}{n}id + 1$ $(3) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(4) + \frac{1}{n}id + 1$ $(5) + \frac{1}{n}id + 1$ $(6) + \frac{1}{n}id + 1$ $(7) + \frac{1}{n}id + 1$ $(8) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(9) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ $(1) + \frac{1}{n}id + 1$ (2)

z = f(x,y) を $D = \{(x,y) \in \mathbb{R}^2 : y+x>0, y-x>0\}$ 上の C^2 秘閣数とする。2x = uv, $4y = u^2 + v^2$ とする とき、 $\frac{\partial^2 z}{\partial v \partial u}$ を z O x, y に関する偏薄関数とx, y \subset