Matrix multiplication and graph powers

A matrix is a rectangular array of elements with a rows and m columns.

each element in a matrix is called an entry the uddress of an element, denoted Eij, is the element's location in row i and column j

in a square matrix, the rows and columns are equal

an adjacency matrix is a square matrix that corresponds to a digraph, G. There is a row who column for each vertex in the digraph.

if there is an edge from vertex i to vertex; $e_{ij} = 1$ if there is Not edge from vertex i to vertex; $e_{ij} = \emptyset$

a boolean matrix only has entries from Eo,13

Matrix multiplication

to multiply matrix A and B...
matrix A must be a mxk matrix
AND B must be a Kxn matrix
the product AxB will be a mxn matrix

to calculate AxB,

- the entry in the address ij of AxB is determined by multiplying row i of A with column; of B i.e the first element of i with first element of j
- then get the sum of the ij products
 i.e Ai Bij + Aiz Bzj + ... + AikBkj

 This is the dot product

the power of a matrix is the product of k copies of that matrix

if adjacency matrix A represents graph G, then AK is the adjacency matrix for graph GK.

There is a walk of length K from 4 to V in G

if and only if the entry in row u, colum V = I

in matrix AK

Theorem: Relationship blu the powers of a graph and the powers of its adjacency matrix:

Let G be a digraph with overtices, and let A be the own adjacency matrix for G.

→ for any K≥1, AK is the adjacency matrix for GK where Boolean addition and multiplication are used to compute AK

Matrix addition

Matrices of the same dimensions can be added by finding the sum of the elements of the same address

addition and graph unran

Let G and H be two digraphs with the same vertex set. Let A and B the adjacency matrices for G and H. The adjacency matrix for GUH is A+B, where boolean addition is used on the entries of A and B.