

Data Science (CDA) Knowledge exploitation

- José Hernández Orallo, DSIC, UPV, jorallo@upv.es
- Fernando Martínez Plumed
 - Using material from Cèsar Ferri and Toby Segaran's book "Programming Collective Intelligence" (https://www.safaribooksonline.com/library/view/programming-collective-intelligence/9780596529321/cho2.html)
 - http://grouplens.org/datasets/movielens/

- Unit 4: Knowledge exploitation
 - Assistants, prescriptors and recommenders
 - Integration into decision making, dashboards and monitoring.

Assistants and prescriptors

- Assistants and prescriptors don't give predictions, but must give advice or prescriptions to let the user take the decision:
 - This goes beyond the idea of having soft classifiers, and minimise cost or risk functions.
 - An assistant can suggest to take an action and not only be asked about which action to take.
 - A prescriptor suggests decisions that are usually accompanied by the implications of those decisions (risks, costs, etc.), and alternative choices.
 - One may (or may not) have a decision made between several courses of action, but never take it!

Assistants and prescriptors

Digital assistants (Siri, Google Now, Cortana, ...):

Based on contextual information, digital assistants are able to influence and manage customers' purchase decisions.

Conversational Commerce - Future Use Case

Note: Future use case as expected by industry experts Flash Insight Conversational Commerce at Home | August 2016

Mücke Sturm Company, http://www.slideshare.net/muecke-sturm/conversational-commerce-65314019

Probability

Assistants and prescriptors

Prescriptions (risk or utility management)

0.1: Minor 0.3: Moderate 0.5: Major 0.7: Critical		0.05	0.1	0.2	0.4	0.8
		Very Low	Low	Medium	High	Very High
0.1	Very Low up to 10%	0.005	0.01	0.02	0.04	0.08
0.3	Low 11-30%	0.015	0.03	0.06	0.12	0.24
0.5	Medium 31-50%	0.025	0.05	0.10	0.20	0.40
0.7	High 51-70%	0.035	0.07	0.14	0.28	0.56
0.9	Very High 71-90%	0.045	0.09	0.18	0.36	0.72

- Risk evaluation is concerned with assessing probability and impact of individual risks.
 - Some risks, such as financial risk, can be evaluated in numerical terms.
 - Others, such as adverse publicity, can only be evaluated in subjective ways.

Impact

0.05: Very Unlikely 0.1: Possible 0.2: Likely 0.4: Very Likely 0.8: Almost Certain

Risk Log - Example	Tolerability Level = 0.20			
Hazard	Impact	Probability	Risk Rating	
Computer system failure	0.05	0.9	0.045	
Building damage	0.8	0.1	0.08	

http://www.ruleworks.co.uk/riskguide/images/risk-tolerance-en.gif

0.7: Critical

0.9: Catastrophic

- Recommenders are the prototypical case of a prescriptor → Predict the subjective evaluation a user will give to an item.
- How things are chosen now?
 - New products are recommended exploiting the evaluations or ratings provided by user(s) for previously viewed or purchased items.
 - E.g., Amazon, netflix, Ciao, Booking, Trip advisor, Be2, Delicious, Youtube

Approaches:

- Collaborative filtering: They collect and analyse data about the preferences of the users. They recommend new items by observing preferences of <u>similar users</u>
 - Facebook, Linkedin, Last.Fm...
- Content-based filtering: They collect information about items and then similarities are computed among them.
 When a user expresses preference about an item, the system recommends the most <u>similar items</u>
 - Imdb, Rotten tomatoes, Pandora,...
- o **Hybrid systems**: Combine both techniques
 - Netflix, seethisnext...

- Unit 4: Knowledge exploitation
 - o Assistants, prescriptors and recommenders
 - Integration into decision making, dashboards and monitoring.

The idea is to exploit the potential of the extracted models, integrate them into the decision-making processes of the organisation, spread reports about the extracted knowledge, etc.

- In order to apply a model we need to:
 - Interpret and understand it.
 - Contrast it with the previous knowledge.
 - o Combine it with other models of the same problem or combine them globally (simulation).
 - o Exchange and spread it.
 - Integrate it, if necessary, in software applications, DSS and the organisation structure.
 - Adapt it to new application context.

Understand the knowledge:

- Black-box models can be made more understandable:
 - Converted into rules by rule extraction or distillation.
 - Represented graphically.

Models in general can be presented as (interactive)

reports on the web.

 Dashboards may include model prescriptions and simulation.

Combining models and simulation

- o (Not talking about boosting, bagging or random forest)
- o We're talking about using several models (of different characteristics, including manual models).
 - Through weighting majority, stacking or cascade
- o Outputs of a model can be input of another
 - (predictions of the customer affluence model are used as input for sales model).

Exchange and Integration.

- o How to insert models into our applications?
- o How to export models to other platforms?
 - Need for standards:
 - PMML: predictive model markup language
 - http://dmg.org/pmml/products.html

Monitoring

- Detects if the model doesn't work as well as it usually did (or as it should).
- o Periodic evaluation using fresh data
 - Alarms
- o Open to comments from the users.
- Detect context changes.

Revision

- If the model cannot be adapted to the new context or change of data, revision is needed:
 - Partial: part of the model is changed (e.g., obsolete rules) and part is preserved.
 - Total: the new model changes drastically.
- o If revision is not possible:
 - The model is retrained completely.

