# **Efficient Video Coding in ADAS**

Presented by,

**Nithil Anantheshwar Rao** 

Imma Nummer: 93851

Subject: Efficient Video Coding

Submitted to,

Prof. Dr.-Ing. Christian Langen

**Hochschule Karlsruhe**University of
Applied Sciences







# Where Efficient Video Coding Is Used In ADAS

### **Automotive Applications**

- Lane Keeping Assist
- Adaptive Cruise Control
- Pedestrian Detection

# **Project Objective**

### **Preprocessing**

Initial cleanup and noise reduction

### Compression

Data size reduction with quality trade-offs

### **Lane Detection**

Extract road markers for driving assistance

### **Object Detection & Tracking**

Identify and follow moving objects



# **Raw Video Input**

**Video Source** 

RGB video stream

Challenges

High redundancy, irrelevant background details

**Next Step** 

Preprocessing to prepare data

# **Preprocessing Techniques**

### **Grayscale Conversion**



**Gaussian Blur** 



Eliminates color channels to reduce computation

Removes high-frequency noise, aiding edge detection

# MATLAB Code (GrayGauss)

```
function graygauss(inputVideo)
           % GRAYGAUSS Shows all video processing stages in one window
3
           % Displays original, grayscale, and blurred video in tiled layout
 4
          % Usage: graygauss('video path.mp4')
 5
6
           %% 1. Initialize Video Reader
7
           if ~exist(inputVideo, 'file')
 8
               error('Video file not found: %s', inputVideo);
9
10
           vr = VideoReader(inputVideo);
11
12
           % 2. Create Single Figure with Tiled Lavout
13
           fig = figure('Name', 'Video Processing Pipeline', ...
14
                       'Position', [100 100 1200 800], ...
15
                       'NumberTitle', 'off');
16
          % Create tiled layout (1 row, 3 columns)
17
18
          t = tiledlayout(fig, 1, 3, 'Padding', 'none', 'TileSpacing', 'compact');
19
20
          % Create axes for each video stream
21
           ax1 = nexttile(t); h1 = imshow(zeros(vr.Height, vr.Width, 3, 'uint8'));
22
           title(ax1, 'Original Video');
23
24
           ax2 = nexttile(t): h2 = imshow(zeros(vr.Height, vr.Width, 'uint8')):
25
           title(ax2, 'Gravscale Conversion'):
26
27
           ax3 = nexttile(t); h3 = imshow(zeros(vr.Height, vr.Width, 'uint8'));
28
           title(ax3, 'Gaussian Blur (\sigma=2)');
29
30
           %% 3. Real-Time Processing Loop
31
          try
32 🖃
              while hasFrame(vr) && isvalid(fig)
                   % Read current frame
```

```
% Read current frame
33
34
                   originalFrame = readFrame(vr);
35
36
                   % Processing pipeline
37
                    grayFrame = rgb2gray(originalFrame);
38
                    blurredFrame = imgaussfilt(gravFrame, 2):
39
40
                   % Update displays
41
                    set(h1, 'CData', originalFrame);
42
                   set(h2, 'CData', grayFrame);
                   set(h3, 'CData', blurredFrame);
43
44
45
                   % Control playback speed and update display
46
                    pause(1/vr.FrameRate);
47
                   drawnow;
48
               end
49
           catch ME
50
               disp(['Processing stopped: 'ME.message]);
51
           end
52
53
           %% 4. Cleanup
           if isvalid(fig), close(fig); end
54
55
           close(vr);
56
       end
```

# **DCT-Based Compression**

### **Purpose**

Reduce data size, keep key visual features

# $\frac{8 \text{ Columns}}{8 \times 512} = 64 \times 64 \text{ (Blocks)}$

### 8×8 pixels

Reduce Spatial Redundancy

### **Method**

Block-wise DCT plus quantization

(Discrete Cosine Transform)



Lower Q

Low Q: High quality, low compression



Higher Q

High Q: Low quality, high compression

# **Discrete Cosine Transform**







Video is divided into 8×8 blocks where DCT reduces spatial redundancy. The brighter areas in the error image show where more data was lost during compression.

# MATLAB Code (DCT)

```
function DCT(inputVideo, 0)
2 =
           % DCTVIDEOCOMPRESSION Demonstrates DCT-based video compression
3
           % Shows original, compressed, and error frames side-by-side
4
           % Usage: dctVideoCompression('video.mp4', 0)
           % O: Quantization factor (higher = more compression)
6
           %% 1. Initialize Video
8
           if ~exist(inputVideo, 'file')
9
               error('Video file not found: %s', inputVideo);
10
11
           vr = VideoReader(inputVideo);
12
13
           %% 2. Create Display Window
14
           fig = figure('Name', 'DCT Video Compression', ...
                       'Position', [100 100 1200 400]);
15
16
17
           % Original video
18
           ax1 = subplot(1,3,1);
19
           h1 = imshow(zeros(vr.Height, vr.Width, 3, 'uint8'));
20
           title(sprintf('Original\n(%dx%d)', vr.Width, vr.Height));
21
22
           % Compressed video
23
           ax2 = subplot(1,3,2);
24
           h2 = imshow(zeros(vr.Height, vr.Width, 'uint8'));
25
           title(sprintf('DCT Compressed\n0=%d, 8x8 blocks', 0));
26
27
           % Error visualization
28
           ax3 = subplot(1,3,3);
29
           h3 = imshow(zeros(vr.Height, vr.Width, 'uint8'));
30
           title('Compression Error');
```

```
32
           %% 3. DCT Processing Pipeline
33 🖃
           while hasFrame(vr) && isvalid(fig)
34
               % Read and convert frame
35
              original = readFrame(vr);
36
               gray = im2double(rgb2gray(original));
37
38
               % DCT Compression
39
               dctFun = @(block) round(dct2(block.data) ./ 0);
40
               dctBlocks = blockproc(gray, [8 8], dctFun);
41
42
               % Reconstruction (inverse DCT)
43
               idctFun = @(block) idct2(block.data * 0);
44
               compressed = blockproc(dctBlocks, [8 8], idctFun);
45
46
               % Convert back to display format
47
               compressed8 = im2uint8(compressed);
48
               errorImg = im2uint8(abs(gray - compressed));
49
50
              % Update displays
               set(h1, 'CData', original);
51
52
               set(h2, 'CData', compressed8);
53
               set(h3, 'CData', errorImg);
54
55
              % Control playback speed
56
               pause(1/vr.FrameRate);
57
              drawnow;
58
           end
59
60
           %% 4. Cleanup
           if isvalid(fig), close(fig); end
61
62
           close(vr);
63 L
```

# **Role of Quantization Factor**

















| Q Value               | What It Means           | Visual Quality | Compression          |
|-----------------------|-------------------------|----------------|----------------------|
| Low Q (e.g., 1–3)     | Less quantization       | High quality   | Low compression      |
| Medium Q (e.g., 5–10) | Balanced quantization   | Good quality   | Moderate compression |
| High Q (e.g., 13–15)  | Aggressive quantization | Low quality    | High compression     |

# MATLAB Code (DCT Comparison)

```
function dctComparison(inputVideo, 0 values)
 2 =
           % DCTVIDEOCOMPARISON Shows original vs multiple DCT-compressed versions
 3
           % Usage: dctVideoComparison('video.mp4', [1,2,5,7,10,13,15])
 4
 5
           %% 1. Initialize Video
 6
           if ~exist(inputVideo, 'file')
 7
               error('Video file not found: %s', inputVideo);
 8
           end
 9
           vr = VideoReader(inputVideo);
10
11
           %% 2. Create Figure with Tiled Layout
           fig = figure('Name', 'DCT Compression Comparison', ...
12
13
                       'Position', [100 100 150*length(0 values)+300 500]);
14
15
           % Create tiled layout (1 row for original + N rows for O values)
16
           t = tiledlayout(fig, 2, length(Q values), 'TileSpacing', 'compact');
17
18
           %% 3. Initialize Displays
19
           % Original video
20
           ax0 = nexttile(t, [1 length(Q values)]);
21
           h0 = imshow(zeros(vr.Height, vr.Width, 3, 'uint8'));
22
           title(ax0, 'Original Video');
23
24
           % Create axes for each O value
25
           h = gobjects(1, length(0 values));
           for i = 1:length(Q values)
26 -
27
               ax = nexttile(t):
28
               h(i) = imshow(zeros(vr.Height, vr.Width, 'uint8'));
29
               title(ax, sprintf('Q=%d', Q values(i)));
30
31
32
           %% 4. Real-Time Processing
33 🖹
           while hasFrame(vr) && isvalid(fig)
```

```
32
           %% 4. Real-Time Processing
33 [-]
           while hasFrame(vr) && isvalid(fig)
34
               % Read frame
35
               original = readFrame(vr):
36
               gray = im2double(rgb2gray(original));
37
38
               % Process for each O value
39
               compressed_frames = cell(1, length(Q_values));
40 =
               for i = 1:length(0 values)
41
                   % DCT Compression Pipeline
42
                   dctFun = @(block) round(dct2(block.data)/O values(i));
43
                   quantized = blockproc(gray, [8 8], dctFun);
44
45
                   % Reconstruction
46
                   idctFun = @(block) idct2(block.data*0 values(i));
47
                   reconstructed = blockproc(quantized, [8 8], idctFun);
48
49
                   compressed frames{i} = im2uint8(reconstructed);
50
51
52
               % Update displays
53
               set(h0, 'CData', original);
54 =
               for i = 1:length(0 values)
55
                   set(h(i), 'CData', compressed frames{i});
56
               end
57
58
               pause(1/vr.FrameRate);
59
               drawnow;
60
           end
61
62
           close(vr);
```



# **Lane Detection Pipeline**

### 1 Canny Edge Detection

Detects strong and weak edges in the image by computing image gradients. Essential for identifying lane boundaries in high-contrast areas.

### 2 Region of Interest

Applies a mask to focus only on the relevant part of the image (e.g., road area), reducing noise and false detections outside the drivable space.

### 3 Hough Transform

Detects lines by converting edge points into a parameter space and finding co-linear arrangements. Ideal for detecting lane markings from edges.

# **Lane Detection Pipeline**



**Canny Edge Detection** 

Detects Edges



**Region of Interest** 

Removes the irrelevant parts



**Hough Transform** 

Detects straight lines from edges.

# MATLAB Code (CannyROI)

| 1 🗐  | function cannyroi(inputVideo)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2 🗐  | % LANEDETECTIONWITHDCT Shows pipeling                    | e from DCT compression to lane detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 3    | % Compares DCT output with Canny edg                     | es and ROI masking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 4 -  | % Usage: laneDetectionWithDCT('your                      | video.mp4')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 5    |                                                          | A CONTRACTOR OF THE CONTRACTOR |  |  |
| 6    | %% 1. Initialize Video                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 7    | if ~exist(inputVideo, 'file')                            | <pre>if ~exist(inputVideo, 'file')</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 8    | error('Video file not found: %s', inputVideo);           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 9    | end                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 10   | <pre>vr = VideoReader(inputVideo);</pre>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 11   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 12   | %% 2. Create Figure with Tiled Layou                     | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 13   | fig = figure('Name', 'Lane Detection Pipeline with DCT', |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 14   | 'Position', [100 100 1200 400]);                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 15   |                                                          | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 16   | % Create 1x4 tile layout (DCT compre                     | % Create 1x4 tile layout (DCT compressed   Canny edges   ROI edges   Combined)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 17   | t = tiledlayout(1, 4, 'Padding', 'no                     | <pre>t = tiledlayout(1, 4, 'Padding', 'none', 'TileSpacing', 'compact');</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 18   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 19   | %% 3. Initialize Processing Paramete                     | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 20   | params.cannyThresh = [0.1 0.3]; %                        | Canny edge thresholds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 21   | params.roiHeight = 0.6; %                                | ROI covers lower 60% of image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 22   | params.gaussianSigma = 2; %                              | Blurring strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 23   | params.dctThreshold = 0.1; %                             | DCT compression threshold (keep 10% of coeffs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 24   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 25   | %% 4. Processing Loop                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 26 🖃 | while hasFrame(vr) && isvalid(fig)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 27   | % Read and preprocess frame                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 28   | <pre>frame = readFrame(vr);</pre>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 29   | <pre>gray = rgb2gray(frame);</pre>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 30   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 31   | %% Stage 0: DCT Compression (You                         | r Existing Pipeline)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 32   | dctFrame = performDCTCompression                         | (gray, params.dctThreshold);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 73   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

| 31 | %% Stage 0: DCT Compression (Your Existing Pipeline)                        |
|----|-----------------------------------------------------------------------------|
| 32 | <pre>dctFrame = performDCTCompression(gray, params.dctThreshold);</pre>     |
| 33 |                                                                             |
| 34 | %% Stage 1: Edge Detection on DCT Output                                    |
| 35 | <pre>blurred = imgaussfilt(dctFrame, params.gaussianSigma);</pre>           |
| 36 | edges = edge(blurred, 'Canny', params.cannyThresh);                         |
| 37 |                                                                             |
| 38 | %% Stage 2: ROI Masking                                                     |
| 39 | <pre>[rows, cols] = size(edges);</pre>                                      |
| 40 | <pre>roiY = round(params.roiHeight * rows);</pre>                           |
| 41 | <pre>roiPoints = [1, rows; cols/2, roiY; cols, rows];</pre>                 |
| 42 | <pre>roiMask = poly2mask(roiPoints(:,1), roiPoints(:,2), rows, cols);</pre> |
| 43 | maskedEdges = edges & roiMask;                                              |
| 44 |                                                                             |
| 45 | %% Stage 3: Combined Visualization                                          |
| 46 | combinedVis = frame;                                                        |
| 47 | <pre>[y, x] = find(maskedEdges);</pre>                                      |
| 48 | combinedVis(sub2ind(size(combinedVis), y, x)) = 255; % Mark edges in red    |
| 49 |                                                                             |
| 50 | %% Display Results                                                          |
| 51 | % DCT compressed frame                                                      |
| 52 | nexttile(1);                                                                |
| 53 | <pre>imshow(dctFrame, 'Border', 'tight');</pre>                             |
| 54 | title(sprintf('DCT Compressed (%.0f%% coeffs)', params.dctThreshold*100));  |
| 55 |                                                                             |
| 56 | % Canny edges                                                               |
| 57 | nexttile(2);                                                                |
| 58 | <pre>imshow(edges, 'Border', 'tight');</pre>                                |
| 59 | title('Canny Edge Detection');                                              |
| 60 |                                                                             |
| 61 | % ROI masked edges                                                          |
| 62 | nexttile(3);                                                                |

# **Focused Lane Detection**





- Only the lower road portion is processed for edge detection and line extraction, improving both speed and accuracy.
- Detected lane lines are highlighted using the masked region.

# **Optimized ROI**



# **Detecting Moving Objects**

### **Frame Differencing**

### **Concept:**

- Subtract previous frame from current
- Highlight pixels that have changed
- Motion = pixel intensity difference

### **Blob Analysis**

### **Concept:**

- Detect connected regions in the binary mask
- Group them as "blobs" representing objects
- Draw bounding boxes to track

### **Kalman Filter**

### **Concept:**

- Takes current position + velocity
- Predicts next position
- Corrects prediction if the actual observation is available

# Frame Differencing and Blob Analysis



Frame differencing detects movement, and blob analysis turns it into meaningful tracked objects.

Image Source: **Journal of Big Data** 

# **Kalman Filter-Based Tracking**



Estimates object location despite occlusion



Assigns consistent identifiers to tracked objects



Image Source: **Pysource** 

# **Gaps Compared to Industry Use**

- Real-time Embedded Systems: Integration with hardware like Jetson or STM32 missing
- **Deep Learning Models:** YOLOv12 could improve detection over frame differencing
- **Semantic Segmentation:** Needed for enhanced lane marking accuracy
- Sensor Fusion: Combining LiDAR and video for robust environment perception

# **Summary & Takeaways**

# **Essential Role of Video Processing**

Efficient video coding is key for reliable ADAS performance.

### **Educational Pipeline**

This project simulates core industry workflows simply and clearly.

### **Future-ready Foundation**

Provides groundwork for realworld ADAS application expansion.

# **Thank You!**

Please feel free to ask any questions or share your thoughts.