Semesterarbeit MapReduce

Aufgabe 1 - Throughput pro Minute

Philipp Dubach - CAS Big Data HS19/20

Ausgangslage

Schreiben Sie ein MapReduce-Programm in Python (oder Java), welches den Throughput pro Minute bildet serverseitiges Log - nur mw_trace50 nehmen darin nur res_snd Records beachten zählen, wie res_snd pro Minute anfielen (dazu den time-Wert ohne Rest durch 1000*60 dividieren). die Werte als CSV-Datei ausgibt Stellen Sie die Entwicklung mit geeigneten Mitteln graphisch dar

Vorgehen

Ich habe mir die Aufgabe genau durchgelesen und dann den Datensatz angeschaut.

Im Prinzip war mir klar, dass es genauu gleich wie das Hello World Beispiel Word_Count funktionieren muss.

Die Aufgabe hat zudem noch der Hinweis wie der Schlüssel generiert werden muss, was das Ganze ein wenig einfach gestaltet.

Ich wusste so auf Anhieb, dass der Schlüssel die Minute sein muss ob das so funktioniert wusste ich jedoch so noch nicht.

Somit habe ich es einfach mal versucht den Schlüssel so zu setzen. Den Wert welchen ich aus dem Mapper rausgebe, war dann lediglich eine 1 welche ich dann im Reducer auf die Minuten aufsummiere.

Ich habe dann herausgefunden, dass ich den Mapper zum Debuggen einzeln laufen lassen kann,

was mir das ganze System ein wenig klarer erscheinen liess.

(Quelle: https://mrjob.readthedocs.io/en/latest/job.html)

Output des Mappers war dann der Key(jede Minute) mit jedem Value welchen ich als 1 definiert hatte.

Nun musste ich nur noch den Reducer dazu bringen, nach dem Key zu Gruppieren und die Aggregation auf meinen Values zu erzwingen.

Dazu habe ich den Key vom Mapper wieder als Key gesetzt und den Value habe ich dann summiert.

Hat alles auf Anhieb geklappt

Damit das Script bei grösseren Daten effizienter auf den Cluster laufen kann, habe ich zwischen Mapper und Reducer noch einen Combiner eingesetzt. Dieser Reduziert dann jeweils seinen Block bereits auf dem jeweiligen Node und

sendet dann den bereits reduzierten Datensatz an den Reducer.

Das Ganze habe ich mir dann in der Cli mittels stdout > als csv Datei abgespeichert.

Ergebnis und Visualisation

Die Daten habe ich mir dann auf ein Git Repo gesendet damit ich es hier direkt nutzen kann,

um den nachstehenden Code und dieses Dokument zu erstellen.

Import Librarys

```
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
import seaborn as sns
from datetime import datetime
%matplotlib inline
```

CSV in Pandas Datenframe laden

Daten prüfen

```
data_tp.head()
```

	TIMESTAMP	COUNT
0	1414252860	8755
1	1414252920	8707
2	1414252980	8687
3	1414253040	8458
4	1414253100	8463

	TIMESTAMP	COUNT
count	5.200000e+01	52.000000
mean	1.414252e+09	12501.788462
std	9.092854e+02	4440.705139
min	1.414251e+09	8096.000000
25%	1.414251e+09	9024.500000
50%	1.414252e+09	11029.500000
75%	1.414253e+09	14275.750000
max	1.414254e+09	25669.000000

Daten aufbereiten

```
data_tp["date_time"] = [datetime.fromtimestamp(int(i)) for
i in data_tp["timestamp"]]
data_tp = data_tp.sort_values(by="date_time")
data_tp.head()
```

	TIMESTAMP	COUNT	DATE_TIME
16	1414250520	25669	2014-10-25 17:22:00
17	1414250580	22612	2014-10-25 17:23:00
18	1414250640	23366	2014-10-25 17:24:00
19	1414250700	22102	2014-10-25 17:25:00
20	1414250760	21049	2014-10-25 17:26:00

Erster Plot - Density Plot

Der Plot zeigt wie der Anteil des Througtput pro Minute verteilt ist. Ähnlich des nächsten Histogamm Plot.

Gemäss der oberen Tabelle ist das Maxima (50%) bei ca.11029 pro Minute

```
sns.set(rc={'figure.figsize':(15,10)})
sns.distplot(data_tp["count"], hist=False, kde = True,
kde_kws = {'shade': True, 'linewidth': 1}, label =
"Anteil")
sns.distplot(data_tp["count"].quantile([.25, .5, .75]),
hist=False, kde = True, kde_kws = {'shade': True,
'linewidth': 1}, label = "Quantille 25/50/75")

plt.legend(prop={'size': 16}, title = 'Legende')
plt.title('Density Plot - Througtput pro Minute')
plt.xlabel('Anzahl Througtput pro Minute')
plt.ylabel('Density')
```


Zweiter Plot - Histogramm Plot

Der Plot zeigt im Gegensatz zum Densityplot die Häufigkeit der Througtput pro Minute

```
plt.figure(figsize=(15,10))
plt.hist(data_tp["count"],alpha=0.5,bins=10)
plt.xlabel('Anzahl Throughput pro Minute')
plt.ylabel('Häufigkeit')
plt.title('Histogramm - Häuigkeit der Anzahl Througtput
pro Minute')
```


Dritter Plot - Zeitreihe

Anzahl Throughput pro Minute über die Zeit

```
data_tp.plot(x="date_time",y="count",figsize=
  (15,10),label="Anzahl Througtput pro Minute")
plt.legend( title = 'Legende')
plt.title('Anzahl Througtput pro Minute über die Zeit')
plt.xlabel('Zeit')
plt.ylabel('Anzahl')
```


Aufgabe 2 - Durchschnittliche Latenz pro Minute

Ausgangslage

Schreiben Sie ein MapReduce-Programm in Python (oder Java),

welches pro Minute den Mittelwert der Responsetime bildet clientseitiges Log client_trace50
Differenz der time-Werte von Logsätzen, welche in client_id und loc_ts übereinstimmen (das sollten in der Log-Datei jeweils Paare sein)
Den Mittelwert über alle Log-Sätze bilen, welche in der gleichen Minute anfielen

(dazu, den time-Wert des Requests, d.h. den niedrigeren time-Wert des Logsatz-Paares, durch 1000*60 dividieren) die Werte als CSV-Datei ausgibt Stellen Sie die Entwicklung mit geeigneten Mitteln graphisch dar

Vorgehen

Die Aufgabe ist ein wenig komplexer als die erste Aufgabe. Ich habe realtiv lange gebrauch und die Systematik dahinter zu verstehen. Dies vorallem, weil es jeweils Paare sein müssen. Mir hat prinzibiel immer was gefehlt mit einem Mapper und einem Reduceer

Immer wenn ich dachte ich habe es bald, hatte ich wieder haufenweise Exeptions

Mir kamm dann die Idee, dass ich bei dieser Aufgabe nicht um zwei Mapper und Reducer herumkomme.

Ich musste dann in der MRJOB Dokumetation https://mrjob.readthedocs.io/en/latest/ nachlesen und habe die Lösung für mein Problem gefunden

Erster Mapper:

- Ich habe einen Key aus loc_ts und client_id erstellt welcher dann jeweils zweimal aus dem Mapper kommt.
- Aus Values gebe ich dann den Timestamp vom msg_send in Sekunden aus und jeweils den Timestamp von beiden Paarteilnehmer in ms

Erster Reducer:

- Den Key vom Mapper übernehme ich und gruppiere es somit
- Die Values der Timestamp Paare subrahiere ich um die Latenz zu ermitteln
 - den Timestamp in Sekunden gebe ich auch einfach wieder mit in den nächsten Mapper

- Hier setze ich nun den Timestamp der msg_send in Sekunden als neuer Key
- Als Value gebe ich dann die Latenz der jeweiligen Paare mit

Zweiter Reducer

- Den Key Timestamp von msg_send überneheme ich und gruppiere somit auf die Minute des Ereignisses
- Für Latenzzeiten berechne ich nun den Durchschnitt

Eigendlich ein recht kurzes Skript, welches mich aber sehr viel Zeit gekostet hat.

Somit habe ich auch demensprechend freude gehabt, als ich es dann hingekriegt habe

Das CSV habe ich dann wieder auf Git hochgeladen, damit ich es hier verwenden kann.

CSV in Pandas Datenframe laden

Daten prüfen

```
data_lat.head()
```

	TIMESTAMP	AVG_LAT
0	1414252860	84.006794
1	1414252920	84.517108
2	1414252980	85.642924
3	1414253040	87.626930
4	1414253100	88.971571

	TIMESTAMP	AVG_LAT
count	5.200000e+01	52.000000
mean	1.414252e+09	65.256979
std	9.092854e+02	18.296435
min	1.414251e+09	24.560475
25%	1.414251e+09	51.906364
50%	1.414252e+09	67.277955
75%	1.414253e+09	81.898660
max	1.414254e+09	90.647722

Daten aufbereiten

```
data_lat["date_time"] = [datetime.fromtimestamp(int(i))
for i in data_tp["timestamp"]]
data_lat = data_lat.sort_values(by="date_time")
data_lat.head()
```

	TIMESTAMP	AVG_LAT	DATE_TIME
0	1414252860	84.006794	2014-10-25 17:22:00
1	1414252920	84.517108	2014-10-25 17:23:00
2	1414252980	85.642924	2014-10-25 17:24:00
3	1414253040	87.626930	2014-10-25 17:25:00
4	1414253100	88.971571	2014-10-25 17:26:00

Erster Plot - Desity Plot

```
sns.set(rc={'figure.figsize':(15,10)})
sns.distplot(data_lat["avg_lat"], hist=True, kde = True,
kde_kws = {'shade': True, 'linewidth': 1}, label =
"Anteil")
sns.distplot(data_lat["avg_lat"].quantile([.25, .5, .75]),
hist=False, kde = True, kde_kws = {'shade': True,
'linewidth': 1}, label = "Quantille 25/50/75")

plt.legend(prop={'size': 16}, title = 'Legende')
plt.title('Density Plot - Anteil Latenz pro Minute')
plt.xlabel('Durchschnitt Latenz pro Minute')
plt.ylabel('Density')
```


Zweiter Plot - Histogramm Plot

```
plt.figure(figsize=(15,10))
plt.hist(data_lat["avg_lat"],alpha=0.5,bins=15)
plt.xlabel('Anzahl durchschnittliche Latenz pro Minute')
plt.ylabel('Häufigkeit')
plt.title('Histogramm - Häuigkeit der durchschnittlichen
Latenz pro Minute')
```


Dritter Plot - Zeitreihe

```
data_lat.plot(x="date_time",y="avg_lat",figsize=
  (15,10),label="Durchschnittliche Latenz pro Minute")
plt.legend( title = 'Legende')
plt.title('Durchschnittliche Latenz pro Minute über die Zeit')
plt.xlabel('Zeit')
plt.ylabel('Latenz in ms')
```


Fazit Aufgabe Map Reduce

Nach der ersten Aufgabe welche ich realativ schnell erledigt hatte habe ich die zweite Aufgabe ziemlich unterschätzt. Ich habe viel Zeit investiert und eigendlich nur dank Aufgabe 2 richtig erkannt und gelernt, was eingendlich genau dahinter steckt.

Da ich die 2 CAS Data Analysis und Data Visualisation bereits gemacht habe wusste ich dann auch wie die Daten dann genutzt und Visualisiert werden können.

Ich sehe in Map/Reduce sogar ein Projekt, welches ich in der Arbeit einsetzen kann

Auf habe ich freude, weil ich mir einbilde, das ich diese Aufgabe korrekt gelöst habe.

Ob der Weg nun korrekt ist, werde ich von Ihnen ja noch erfahren

Vielen lieben Dank Philipp Dubach