

Quantitative Text Analysis – Essex Summer School

Dictionaries

dr. Martijn Schoonvelde

University of Groningen

Today's class

Categorize text:

- Pros and cons of using off-the-shelf dictionaries
- Developing a dictionary
- Lab session

Analysis

- Three broad types of analysis (Boumans & Trilling 2016), from most deductive to most inductive:
 - counting and dictionary methods: the researcher can fully specify relevant features, and will categorise text accordingly
 - **supervised methods**: the researcher knows how to **categorise documents**, and uses machine learning methods to learn which features drive this categorisation
 - unsupervised methods: the researcher uses qta tools to learn about textual categorisation inductively

Dictionary methods

- "Dictionaries use the rate at which key words appear in a text to classify documents into categories or to measure the extent to which documents belong to particular categories" (Grimmer & Stewart, 2013)
 - That is, count words associated with specific meanings
- Dictionaries consist of key-value pairs
 - Key: label for the concept or equivalence class
 - Values: (multiple) terms or patterns of terms that are declared equivalent occurrences of the key class

Dictionary methods

Under what conditions do dictionary methods excel? (Van Atteveldt et al. 2022)

- The categories that we want to code are manifest and concrete rather than latent and abstract
 - Abstract theoretical constructs such as frames or ideologies are difficult to capture using dictionaries
- All known synonyms are included in the dictionary
- Dictionary entries do not have multiple meanings

Dictionaries and the economy

Source https://www.inversorglobal.com/2020/11/los-mejores-brokers-argentinos-de-2020/

Dictionary methods

Key questions when applying dictionaries concern their validity, recall, and precision

- Validity does the dictionary meaningfully operationalize our concept of interest?
- Recall does the dictionary identify all relevant content?
- Precision does the dictionary identify only relevant content?

Source: https://lse-my459.github.io/

Dictionary methods

Off-the-shelf dictionaries have a bit of a bad reputation. For example, lots of research that shows that sentiment dictionaries vary in their performance across types of text

Source: González Bailón & Paltoglu 2015

Issues with Dictionary Methods

Domain-specificity problem (Chan et al. 2020)

- No context word can have multiple meanings (polysemous words)
- Domain specific
 - "honourable" in HoC speeches
- Unknown unknowns
 - False negatives
- English bias in dictionary construction do they translate to other languages?

Recent advancements

Recent studies have made progress on these issue by developing domain-specific dictionaries that rely on machine translation, word embeddings or extensive human coding (Müller, 2021; Proksch *et al.*, 2019; Rauh, 2018; Rheault *et al.*, 2016; van Atteveldt *et al.*, 2008; Widmann, 2021).

Also: joint modeling of topics and sentiment – Joint Sentiment Topic model (JST) and the reversed Joint Sentiment Topic model (rJST) (Lin *et al.*, 2009; Lin *et al.*, 2012).

NRC Word-Emotion Association Lexicon

- Mohammad and Turney (2013)
- Annotation crowdsourced through Mechanical Turk
- NRC available through the package quanteda.sentiment
- Available in multiple languages

Length Class Mode anger 1247 -none- character anticipation 839 -none- character 1058 disgust -none- character fear 1476 -none- character 689 -none- character jov 3324 negative -none- character 2312 positive -none- character

-none- character

-none- character

-none- character

1191

1231

534

> summary(data_dictionary_NRC)

sadness

surprise

trust

Lexicoder Sentiment Dictionary

- Young and Soroka (2012)
- Valence dictionary, which builds on earlier dictionaries: Roget's Thesaurus, General Inquirer and the Regressive Image Dictionary
 - Positive: if + + + or if + + NA;
 - Negative if -- or if -- NA
 - For other words, contextual analysis through KWIC and other preprocessing steps to account for ambiguity
- 4567 positive and negative words
- Validated against 3 coders of 900 New York Times articles and other dictionaries

Lexicoder Sentiment Dictionary

- Trend in line with expetactions
- But levels differ across topics

LIWC

	LIWC		LIWC Cont.			
Category	Example	T-statistics	Category	Example	T-statistic	
Linguistics Processes			Negative emotion	hurt, ugly, nasty	6.49***	
Words > 6 letters		-3.41**	Anxiety	fearful, nervous	2.37	
Dictionary words		9.60****	Anger	hate, kill, annov	5.30***	
Total function words		8.98****	Sadness	cry, grief, sad	3.54***	
Personal pron.	I, them, her	7.07****	Cognitive process	cause, ought	6.09***	
1st pers singular	I, me, mine	9.83****	Insight	think, know	0.11	
1st pers plural	we, us, our	-2.38	Causation	effect, hence	0.93	
2nd person	you, your, thou	-0.91	Discrepancy	should, would	5.53***	
3rd pers singular	she, her, him	3.63**	Tentative	maybe, perhaps	5.95***	
3rd pers plural	their, they'd	2.47	Certainty	always, never	4.02***	
Impersonal pron.	it, it's, those	7.07****	Inhibition	block, constrain	0.32	
Articles	a, an, the	4.13***	Inclusive	with, include	4.74 ***	
Common verbs	walk, went, see	6.27***	Exclusive	but, without	7.53 ****	
Auxiliary verbs	am, will, have	5.76***	Perceptual process	out, millout	1.93	
Past tense	went, ran, had	8.70****	See	view, saw, seen	1.68	
Present tense	is, does, hear	4.00***	Hear	listen, hearing	-0.88	
Future tense	will, gonna	5.84***	Feel	feels, touch	1.94	
Adverbs	very, really	7.92****	Biological process	room, rouen	4.22***	
Prepositions	to, with, above	7.62****	Body	cheek, spit	5.02***	
Conjunctions	and, whereas	4.59***	Health	clinic, flu, pill	1.51	
Negations	no, not, never	1.71	Sexual	horny, incest	-0.61	
Quantifiers	few, many, much	2.98*	Ingestion	dish, eat, pizza	4.37***	
Numbers	second, thousand	-3.68**	Relativity	area, bend, exit	9.52 ****	
Swear words	damn, piss, fuck	5.53***	Motion	arrive, car	3.07*	
Spoken Categories	damen, process rates		Space	down, in, thin	8.87****	
Assent	agree, OK, yes	7.05****	Time	end, until	5.87***	
Nonfluency	er, hm, umm	1.41	Personal Concerns	ona, anu	5151	
Filters	blah, imean		Work	job, majors	0.05	
Psychological			Leisure	chat, movie	2.97*	
Social process	mate, talk, child	0.10	Achievement	earn, win	-1.22	
Family	son, mom, aunt	2.24	Home	family, kitchen	3.37**	
Friends	buddy, neighbor	2.10	Money	audit, cash	0.23	
Humans	adult, baby, boy	0.89	Religion	church, altar	-0.77	
Affective process	happy, cry	3.55**	Death	bury, coffin	0.49	
Positive emotion	love, nice, sweet	0.08		oary, comm		

- Table 1. Two-sample T-test statistics of linguistic variables between geo-locator and non-locators. Significant differences of each LIWC attribute are indicated in the third column. (*p <0.01, **p<0.001, ***p<0.0001, ****p<1e-10)
- Developed by James Pennebaker and colleagues
- Extensively validated on various corpora

Dictionary methods in quanteda

text3 1

• A dictionary in **quanteda** assigns possible features to categories, or "keys". It can have as many categories as you wish, and can be composed of any possible feature.

```
> txt_dfm <- corpus(c("this is excellent", "bad", "good, not horrible")) %%
tokens() %>% dfm()
> sent_dict <- dictionary(list(positive=c("great", "good", "excellent"),</pre>
                              negative=c("bad", "horrible", "badly")))
+
> dfm_dict <- dfm_lookup(txt_dfm, dictionary = sent_dict)</pre>
> dfm dict
Document-feature matrix of: 3 documents, 2 features (33.33% sparse) and 0 docvars
      features
docs positive negative
 text1 1
 text2
```

Sentiment dictionaries in quanteda

Through **quanteda.textmodels** you have access to a number of **off-the-shelf sentiment** dictionaries:

- Polarity dictionaries have two lists of words, each indicating one "pole" (by default "positive" and "negative")
- 'Valence dictionaries have continuous values/weights associated with each word in a given category, and may have more or fewer than two categories.

Name	Description	Polarity	Valence
data_dictionary_AFINN	Nielsen's (2011) 'new ANEW' valenced word list		~
data_dictionary_ANEW	Affective Norms for English Words (ANEW)		~
data_dictionary_geninqposneg	Augmented General Inquirer Positiv and Negativ dictionary	~	
data_dictionary_HuLiu	Positive and negative words from Hu and Liu (2004)	~	
$data_dictionary_LoughranMcDonald$	Loughran and McDonald Sentiment Word Lists	~	
data_dictionary_LSD2015	Lexicoder Sentiment Dictionary (2015)	~	
data_dictionary_NRC	NRC Word-Emotion Association Lexicon	~	
data_dictionary_Rauh	Rauh's German Political Sentiment Dictionary	~	
data_dictionary_sentiws	SentimentWortschatz (SentiWS)	~	~

Source: https://github.com/quanteda/quanteda.sentiment/

Do's when using off-the-shelf dictionaries

- Read the dictionary
 - Domain-specific yes or no?
 - Change the dictionary if necessary but be transparent about it (i.e., report it)
- Try out on a subset of your corpus does it pick up on the construct you try to capture? And only your construct?
 - Assess specificity and sensitivity

Developing Dictionaries

- "When counting is automated, success or failure largely reflects a correct (excluding irrelevant data) and exhaustive (including all the relevant data)" (Boumans and Trilling 2016)
- As always, there is no silver bullet approach much depends on what construct the dictionary is supposed to capture

Developing Dictionaries

Van Atteveldt et al. (2022) propose the following workflow for constructing a dictionary:

- 1. Construct a dictionary based on theoretical considerations and by closely reading a sample of example texts.
- 2. Code some articles manually and compare with the automated coding.
- 3. Improve your dictionary and check again.
- 4. Manually code a validation dataset of sufficient size. The required size depends a bit on how balanced your data is if one code occurs very infrequently, you will need more data.
- 5. Calculate the agreement.
 - Precision and recall

Developing Dictionaries

- 1. Identify "extreme texts" with "known" categories / positions
 - Opposition leader and Prime Minister in a no-confidence debate
 - Five-star review of a product (excellent) and a one-star review (terrible)
- 2. Search for differentially occurring words using word frequencies
- 3. Examine these words in context to check their sensitivity and specificity
- 4. Examine inflected forms to see whether stemming or wildcarding is required
- 5. Use these words (or their lemmas) for categories

Source: https://lse-my459.github.io/

Assessing validity

Content validation

- Check sensitivity of results to exclusion of specific words.
- Disambiguate. For exampkle, check grammatical function of ambiguous words using POS tagging.

Concept validation

- Code a few documents manually and see if dictionary prediction aligns with human coding of document (check precision and recall)
- Check if categorisation behaves in predictable ways. For example, do newspaper articles about the economy peak during periods of economic uncertainty