Performing t-tests

HYPOTHESIS TESTING IN PYTHON

James Chapman
Curriculum Manager, DataCamp

Two-sample problems

- Compare sample statistics across groups of a variable
- converted_comp is a numerical variable
- age_first_code_cut is a categorical variable with levels ("child" and "adult")
- Are users who first programmed as a child compensated higher than those that started as adults?

Hypotheses

 H_0 : The mean compensation (in USD) is **the same** for those that coded first as a child and those that coded first as an adult.

$$H_0$$
: $\mu_{child} = \mu_{adult}$

$$H_0$$
: $\mu_{child} - \mu_{adult} = 0$

 H_A : The mean compensation (in USD) is **greater** for those that coded first as a child compared to those that coded first as an adult.

$$H_A$$
: $\mu_{child} > \mu_{adult}$

$$H_A$$
: $\mu_{child} - \mu_{adult} > 0$

Calculating groupwise summary statistics

```
stack_overflow.groupby('age_first_code_cut')['converted_comp'].mean()
```

```
age_first_code_cut
adult 111313.311047
child 132419.570621
Name: converted_comp, dtype: float64
```


Test statistics

- Sample mean estimates the population mean
- ullet a sample mean
- ullet $ar{x}_{child}$ sample mean compensation for coding first as a child
- ullet $ar{x}_{adult}$ sample mean compensation for coding first as an adult
- $ar{x}_{child} ar{x}_{adult}$ a $\emph{test statistic}$
- z-score a (standardized) test statistic

Standardizing the test statistic

$$z = rac{ ext{sample stat - population parameter}}{ ext{standard error}} \ t = rac{ ext{difference in sample stats - difference in population parameters}}{ ext{standard error}} \ t = rac{(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}}) - (\mu_{ ext{child}} - \mu_{ ext{adult}})}{SE(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}})}$$

Standard error

$$SE(ar{x}_{
m child} - ar{x}_{
m adult}) pprox \sqrt{rac{s_{
m child}^2}{n_{
m child}} + rac{s_{
m adult}^2}{n_{
m adult}}}$$

s is the standard deviation of the variable

n is the sample size (number of observations/rows in sample)

Assuming the null hypothesis is true

$$t = rac{(ar{x}_{
m child} - ar{x}_{
m adult}) - (\mu_{
m child} - \mu_{
m adult})}{SE(ar{x}_{
m child} - ar{x}_{
m adult})}$$

$$H_0$$
: $\mu_{
m child} - \mu_{
m adult} = 0 \quad o \quad t = rac{(ar x_{
m child} - ar x_{
m adult})}{SE(ar x_{
m child} - ar x_{
m adult})}$

$$t = rac{(ar{x}_{
m child} - ar{x}_{
m adult})}{\sqrt{rac{s_{
m child}^2}{n_{
m child}} + rac{s_{
m adult}^2}{n_{
m adult}}}}$$

Calculations assuming the null hypothesis is true

```
xbar = stack_overflow.groupby('age_first_code_cut')['converted_comp'].mean()
adult
         111313.311047
child
         132419.570621
Name: converted_comp, dtype: float64 age_first_code_cut
s = stack_overflow.groupby('age_first_code_cut')['converted_comp'].std()
adult
         271546.521729
child
         255585.240115
Name: converted_comp, dtype: float64 age_first_code_cut
n = stack_overflow.groupby('age_first_code_cut')['converted_comp'].count()
adult
         1376
child
          885
```


Name: converted_comp, dtype: int64

Calculating the test statistic

$$t = rac{\left(ar{x}_{
m child} - ar{x}_{
m adult}
ight)}{\sqrt{rac{s_{
m child}^2}{n_{
m child}} + rac{s_{
m adult}^2}{n_{
m adult}}}}$$

```
import numpy as np
numerator = xbar_child - xbar_adult
denominator = np.sqrt(s_child ** 2 / n_child + s_adult ** 2 / n_adult)
t_stat = numerator / denominator
```

1.8699313316221844

Let's practice!

HYPOTHESIS TESTING IN PYTHON

Calculating p-values from t-statistics

HYPOTHESIS TESTING IN PYTHON

James Chapman
Curriculum Manager, DataCamp

t-distributions

- t statistic follows a t-distribution
- Have a parameter named degrees of freedom, or df
- Look like normal distributions, with fatter tails

Degrees of freedom

- Larger degrees of freedom \rightarrow t-distribution gets closer to the normal distribution
- Normal distribution o t-distribution with infinite df
- Degrees of freedom: maximum number of logically independent values in the data sample

Calculating degrees of freedom

- Dataset has 5 independent observations
- Four of the values are 2, 6, 8, and 5
- The sample mean is 5
- The last value must be 4
- Here, there are 4 degrees of freedom

$$ullet \ df = n_{child} + n_{adult} - 2$$

Hypotheses

 H_0 : The mean compensation (in USD) is **the same** for those that coded first as a child and those that coded first as an adult

 H_A : The mean compensation (in USD) is **greater** for those that coded first as a child compared to those that coded first as an adult

Use a right-tailed test

Significance level

$$\alpha = 0.1$$

If $p \leq \alpha$ then reject H_0 .

Calculating p-values: one proportion vs. a value

from scipy.stats import norm
1 - norm.cdf(z_score)

$$SE(ar{x}_{
m child} - ar{x}_{
m adult}) pprox \sqrt{rac{s_{
m child}^2}{n_{
m child}} + rac{s_{
m adult}^2}{n_{
m adult}}}$$

- z-statistic: needed when using one sample statistic to estimate a population parameter
- t-statistic: needed when using multiple sample statistics to estimate a population parameter

Calculating p-values: two means from different groups

```
numerator = xbar_child - xbar_adult
denominator = np.sqrt(s_child ** 2 / n_child + s_adult ** 2 / n_adult)
t_stat = numerator / denominator
```

1.8699313316221844

```
degrees_of_freedom = n_child + n_adult - 2
```

2259

Calculating p-values: two means from different groups

Use t-distribution CDF not normal CDF

```
from scipy.stats import t
1 - t.cdf(t_stat, df=degrees_of_freedom)
```

0.030811302165157595

• Evidence that Stack Overflow data scientists who started coding as a child earn more.

Let's practice!

HYPOTHESIS TESTING IN PYTHON

Paired t-tests

HYPOTHESIS TESTING IN PYTHON

James Chapman
Curriculum Manager, DataCamp

US Republican presidents dataset

	state	county	repub_percent_08	repub_percent_12
0	Alabama	Hale	38.957877	37.139882
1	Arkansas	Nevada	56.726272	58.983452
2	California	Lake	38.896719	39.331367
3	California	Ventura	42.923190	45.250693
	• • •	• • •	•••	• • •
96	Wisconsin	La Crosse	37.490904	40.577038
97	Wisconsin	Lafayette	38.104967	41.675050
98	Wyoming	Weston	76.684241	83.983328
99	Alaska	District 34	77.063259	40.789626
[100 rows x 4 columns]				

100 rows; each row represents county-level votes in a presidential election.

¹ https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ

Hypotheses

Question: Was the percentage of Republican candidate votes lower in 2008 than 2012?

$$H_0$$
: $\mu_{2008} - \mu_{2012} = 0$

$$H_A$$
: $\mu_{2008} - \mu_{2012} < 0$

Set lpha=0.05 significance level.

- Data is paired → each voter percentage refers to the same county
 - Want to capture voting patterns in model

From two samples to one

```
sample_data = repub_votes_potus_08_12
sample_data['diff'] = sample_data['repub_percent_08'] - sample_data['repub_percent_12']
```

```
import matplotlib.pyplot as plt
sample_data['diff'].hist(bins=20)
```


Calculate sample statistics of the difference

```
xbar_diff = sample_data['diff'].mean()
```

-2.877109041242944

Revised hypotheses

Old hypotheses:

$$H_0$$
: $\mu_{2008} - \mu_{2012} = 0$

$$H_A$$
: $\mu_{2008} - \mu_{2012} < 0$

New hypotheses:

$$H_0$$
: $\mu_{ ext{diff}}=0$

$$H_A$$
: $\mu_{ ext{diff}} < 0$

$$t = rac{ar{x}_{ ext{diff}} - \mu_{ ext{diff}}}{\sqrt{rac{s_{diff}^2}{n_{ ext{diff}}}}}$$

$$df=n_{diff}-1$$

Calculating the p-value

n_diff = len(sample_data)

100

```
s_diff = sample_data['diff'].std()
```

t_stat = (xbar_diff-0) / np.sqrt(s_diff**2/n_diff)

-5.601043121928489

degrees_of_freedom = n_diff - 1

99

$$t = rac{ar{x}_{ ext{diff}} - \mu_{ ext{diff}}}{\sqrt{rac{s_{ ext{diff}}^2}{n_{ ext{diff}}}}}$$

$$df = n_{
m diff} - 1$$

```
from scipy.stats import t
p_value = t.cdf(t_stat, df=n_diff-1)
```

9.572537285272411e-08

Testing differences between two means using ttest()

```
T dof alternative p-val CI95% cohen-d \
T-test -5.601043 99 less 9.572537e-08 [-inf, -2.02] 0.560104

BF10 power
T-test 1.323e+05 1.0
```

¹ Details on Returns from pingouin.ttest() are available in the API docs for pingouin at https://pingouin-stats.org/generated/pingouin.ttest.html#pingouin.ttest.

ttest() with paired=True

```
T dof alternative p-val CI95% cohen-d \
T-test -5.601043 99 less 9.572537e-08 [-inf, -2.02] 0.217364

BF10 power
T-test 1.323e+05 0.696338
```

Unpaired ttest()

```
T dof alternative p-val CI95% cohen-d BF10 \
T-test -1.536997 198 less 0.062945 [-inf, 0.22] 0.217364 0.927

power
T-test 0.454972
```

Unpaired t-tests on paired data increases the chances of false negative errors

Let's practice!

HYPOTHESIS TESTING IN PYTHON

ANOVA tests

HYPOTHESIS TESTING IN PYTHON

James Chapman
Curriculum Manager, DataCamp

Job satisfaction: 5 categories

```
stack_overflow['job_sat'].value_counts()
```

```
Very satisfied 879
Slightly satisfied 680
Slightly dissatisfied 342
Neither 201
Very dissatisfied 159
Name: job_sat, dtype: int64
```

Visualizing multiple distributions

Is mean annual compensation different for different levels of job satisfaction?

Analysis of variance (ANOVA)

• A test for differences between groups

```
Source ddof1 ddof2 F p-unc np2
0 job_sat 4 2256 4.480485 0.001315 0.007882
```

- 0.001315 $< \alpha$
- At least two categories have significantly different compensation

Pairwise tests

- $\mu_{ ext{very dissatisfied}}
 eq \mu_{ ext{slightly dissatisfied}}$
- $\mu_{\text{very dissatisfied}} \neq \mu_{\text{neither}}$
- $\mu_{ ext{very dissatisfied}}
 eq \mu_{ ext{slightly satisfied}}$
- $\mu_{\text{very dissatisfied}}
 eq \mu_{\text{very satisfied}}$
- $\mu_{\text{slightly dissatisfied}} \neq \mu_{\text{neither}}$

- $\mu_{ ext{slightly dissatisfied}}
 eq \mu_{ ext{slightly satisfied}}$
- $\mu_{ ext{slightly dissatisfied}}
 eq \mu_{ ext{very satisfied}}$
- $\mu_{
 m neither}
 eq \mu_{
 m slightly \ satisfied}$
- $\mu_{\text{neither}} \neq \mu_{\text{very satisfied}}$
- $\mu_{\text{slightly satisfied}} \neq \mu_{\text{very satisfied}}$

Set significance level to lpha=0.2.

pairwise_tests()

```
Paired Parametric
                                                                                              alternative
 Contrast
                                                                                          dof
                                                                                                                          BF10
                                                                                                               p-unc
                                                                                                                                  hedges
                                                         False
           Slightly satisfied
                                       Very satisfied
                                                                                  1478.622799
                                                                                                 two-sided
                                                                                                            0.000064
                                                                                                                      158.564 -0.192931
  job_sat
                                                                      True
                                                                                                 two-sided
  job_sat Slightly satisfied
                                               Neither
                                                         False
                                                                                   258.204546
                                                                                                            0.484088
                                                                                                                         0.114 - 0.068513
                                                                      True
                                                                            . . .
  job_sat Slightly satisfied
                                    Very dissatisfied
                                                         False
                                                                                   187.153329
                                                                                                 two-sided
                                                                                                           0.215179
                                                                                                                         0.208 - 0.145624
                                                                      True
  job_sat Slightly satisfied
                               Slightly dissatisfied
                                                         False
                                                                                   569.926329
                                                                                                 two-sided
                                                                                                           0.969491
                                                                                                                         0.074 - 0.002719
                                                                      True
                                                                                                 two-sided
  job_sat
                Very satisfied
                                              Neither
                                                         False
                                                                                  328.326639
                                                                                                           0.097286
                                                                                                                         0.337 0.120115
                                                                      True
                                                                                                 two-sided
  job_sat
               Very satisfied
                                    Very dissatisfied
                                                         False
                                                                                   221.666205
                                                                                                           0.455627
                                                                                                                         0.126 0.063479
                                                                      True
                                                                                                 two-sided
               Very satisfied
                               Slightly dissatisfied
                                                                                  821.303063
                                                                                                           0.002166
                                                                                                                          7.43 0.173247
  job_sat
                                                         False
                                                                      True
                                                                            . . .
                       Neither
  job_sat
                                    Very dissatisfied
                                                         False
                                                                                   321.165726
                                                                                                 two-sided
                                                                                                            0.585481
                                                                                                                         0.135 - 0.058537
                                                                      True
                       Neither
                                Slightly dissatisfied
                                                         False
                                                                                  367.730081
                                                                                                 two-sided
                                                                                                                               0.055707
  job_sat
                                                                      True
                                                                                                            0.547406
                                                                                                                         0.118
                               Slightly dissatisfied
             Very dissatisfied
                                                         False
                                                                                   247.570187
                                                                                                 two-sided
                                                                                                            0.259590
                                                                                                                         0.197
                                                                                                                               0.119131
  job_sat
                                                                      True
[10 rows x 11 columns]
```


As the number of groups increases...

Bonferroni correction

```
Contrast
                                                                         p-corr p-adjust
                                                                                              BF10
                                                                                                      hedges
                                                                p-unc
  job_sat Slightly satisfied
                                       Very satisfied
                                                             0.000064
                                                                       0.000638
                                                                                     bonf
                                                                                          158.564 -0.192931
  job_sat Slightly satisfied
                                              Neither
                                                                      1.000000
                                                             0.484088
                                                                                    bonf
                                                                                             0.114 - 0.068513
                                    Very dissatisfied
  job_sat Slightly satisfied
                                                             0.215179
                                                                      1.000000
                                                                                             0.208 - 0.145624
                                                                                     bonf
  job_sat Slightly satisfied Slightly dissatisfied
                                                             0.969491
                                                                      1.000000
                                                                                             0.074 - 0.002719
                                                                                    bonf
  job_sat
               Very satisfied
                                              Neither
                                                             0.097286
                                                                       0.972864
                                                                                             0.337 0.120115
                                                                                     bonf
               Very satisfied
                                    Very dissatisfied
                                                             0.455627
                                                                      1.000000
                                                                                             0.126
                                                                                                   0.063479
  job_sat
                                                                                     bonf
               Very satisfied
                               Slightly dissatisfied
  job_sat
                                                             0.002166
                                                                       0.021659
                                                                                              7.43
                                                                                                   0.173247
                                                                                    bonf
  job_sat
                       Neither
                                    Very dissatisfied
                                                             0.585481 1.000000
                                                                                             0.135 - 0.058537
                                                                                     bonf
                                                                                                   0.055707
  job_sat
                       Neither
                               Slightly dissatisfied
                                                             0.547406
                                                                      1.000000
                                                                                             0.118
                                                                                    bonf
  job_sat
            Very dissatisfied Slightly dissatisfied
                                                             0.259590 1.000000
                                                                                    bonf
                                                                                             0.197
                                                                                                   0.119131
[10 rows x 11 columns]
```


More methods

padjust : string

Method used for testing and adjustment of pvalues.

- 'none': no correction [default]
- 'bonf': one-step Bonferroni correction
- 'sidak': one-step Sidak correction
- 'holm': step-down method using Bonferroni adjustments
- 'fdr_bh': Benjamini/Hochberg FDR correction
- 'fdr_by': Benjamini/Yekutieli FDR correction

Let's practice!

HYPOTHESIS TESTING IN PYTHON

