TP14: Logarithme discret et couplages

Résumé du TP

Bertrand Meyer 15 juin 2020

Le contexte cryptographique

Hypothèse de sécurité

La sécurité $\stackrel{\checkmark}{\blacktriangleright}$ de nombreux protocoles cryptographiques est gagée sur la difficulté du logarithme discret, i.e. trouver $k \in \mathbb{Z}$ tel que

 $g = b^k$, pour g, b donnés dans un groupe abélien (G, \cdot) .

Exemple

- · Diffie-Hellman
- · Elgamal
- · Protocole à 3 passes de Shamir ou de Massey-Omura

État de l'art

- · Dans un groupe générique G, la complexité est en $O(\sqrt{|G|})$.
 - → Baby-step, giant step 🍨 🖥 de Shanks

État de l'art

- Dans un groupe générique G, la complexité est en $O(\sqrt{|G|})$. \rightarrow Baby-step, giant step $\textcircled{\bullet}$ de Shanks
- Si la factorisation de |G| est connue, on peut réduire le problème à des sous-groupes d'ordre p où p diviseur premier de |G| (lemme chinois et relèvement p-adique).
 - ightarrow méthode de Pohlig-Hellman

État de l'art

- Dans un groupe générique G, la complexité est en $O(\sqrt{|G|})$. \rightarrow Baby-step, giant step $\stackrel{\bullet}{\bullet}$ de Shanks
- Si la factorisation de |G| est connue, on peut réduire le problème à des sous-groupes d'ordre p où p diviseur premier de |G| (lemme chinois et relèvement p-adique).
 - → méthode de Pohlig-Hellman
- Si $G = \mathbb{F}_q^{\times}$, la complexité est dans certains cas en $(\log q)^{O(\log \log q)}$ (quasipolynomiale)
 - → Barbulescu, Gaudry, Joux & Thomé (2013)

On préfère désormais les courbes elliptiques de taille proche d'un premier pour les usages cryptographiques.

Quelques techniques

Pas de bébé, pas de géant

Supposons que $|G| < s^2$ et $g = b^k$ ($b, g \in G$ connus, $k \in \mathbb{Z}$ inconnu).

Ecrivons $k = \log_b g = is + j$ avec i, j < s. Alors

$$b^k = b^{is+j} = g \Leftrightarrow gb^{-j} = (b^s)^i$$
.

On énumère dans une table de hachage 着

ℓ	pas de bébé : $gb^{-\ell}$ 🁶	pas de géant : $(b^{\mathrm{s}})^\ell$ $ extstyle{ ilde{ heta}}$
0	*	*
1	*	*
:	÷	÷:
s - 1	*	*

et on cherche une collision.

Complexité $O(\sqrt{|G|})$

ρ de Pollard

On cherche k tel que $b^k = g$.

On simule une « marche aléatoire » dans $b^{\alpha}g^{\beta}$ avec une suite définie par récurrence $(w_n)_{n\in\mathbb{N}}$. Forme de la suite en ρ \clubsuit .

$$w_{n+1} = \begin{cases} g \cdot w_n & \text{si hash}(w_n)\%3 = 0 \\ w_n^2 & \text{si hash}(w_n)\%3 = 1 \\ b \cdot w_n & \text{si hash}(w_n)\%3 = 2 \end{cases} \qquad (\beta \leftarrow \beta + 1)$$
$$(\alpha \leftarrow 2\alpha, \beta \leftarrow 2\beta)$$
$$(\alpha \leftarrow \alpha + 1)$$

En cas de collision (algorithme du lièvre 🖫 et de la tortue 🥮)

Paradoxe des anniversaires : complexité en $O(\sqrt{|G|})$.

Calcul d'indice (version simplifiée)

On fixe une base de friabilité $\{p_1, p_2, \dots, p_k\}$. On génère des relations (en tirant des α)

$$\{b^{\alpha}=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}\}.$$

Calcul d'indice (version simplifiée)

On fixe une base de friabilité $\{p_1, p_2, \dots, p_k\}$. On génère des relations (en tirant des α)

$$\{b^{\alpha}=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}\}.$$

On résout le système

$$\{\alpha = e_1 \log_b p_1 + e_2 \log_b p_2 + \cdots e_k \log_b p_k.$$

pour déterminer $\log_b p_1$, ..., $\log_b p_k$.

Calcul d'indice (version simplifiée)

On fixe une base de friabilité $\{p_1, p_2, ..., p_k\}$. On génère des relations (en tirant des α)

$$\{b^{\alpha}=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}\}.$$

On résout le système

$$\{\alpha = e_1 \log_b p_1 + e_2 \log_b p_2 + \cdots e_k \log_b p_k.$$

pour déterminer $\log_b p_1$, ..., $\log_b p_k$.

On cherche β tel que $b^{\beta}g$ est friable

$$b^{\beta}g=p_1^{f_1}p_2^{f_2}\cdots p_k^{f_k}$$

$$\log_b g = -\beta + f_1 \log_b p_1 + \dots + f_k \log_b p_k$$

Brutal en apparence, complexité ok selon mise en œuvre de l'idée.

Couplages

Définition des couplages

Définition

Un couplage (en anglais pairing) \ref{fin} sur une courbe elliptique $\mathcal E$ est une application

$$e: \underbrace{\mathcal{E}[r]}_{r-\text{torsion}} \times \mathcal{E}[r] \to \underbrace{\mu_r}_{\text{racines } r^{\text{i\`emes}} \text{ de l'unit\'e}}$$

telle que

$$\cdot \forall P, P', Q \in \mathcal{E}, \quad e(P + P', Q) = e(P, Q)e(P', Q)$$

$$\cdot \ \forall P, Q, Q' \in \mathcal{E}, \quad e(P, Q + Q') = e(P, Q)e(P, Q')$$

$$\cdot \ \forall P \in \mathcal{E} \setminus 0_{\mathcal{E}}, \ \exists Q \in \mathcal{E}, \quad e(P,Q) \neq 1$$

$$\cdot \ \forall Q \in \mathcal{E} \setminus 0_{\mathcal{E}}, \ \exists P \in \mathcal{E}, \quad e(P,Q) \neq 1$$

Dans la pratique

Remarque : si t t.q. $r|q^t-1$, alors $\mu_r\subseteq \mathbb{F}_{q^t}$ et $\mu_r\simeq \mathbb{F}_{q^t}/(\mathbb{F}_{q^t})^r$.

Exemple

Deux couplages sont employés pour les courbes elliptiques

- · Le couplage de Tate
- · Le couplage de Weil

Applications en cryptographie

- · Attaque de Menezes, Okamoto et Vanstone sur le log discret
- · Diffie-Hellman triparti (Joux 2000)
- · Chiffrement fondé sur l'identité (Boneh-Franklin 2004)
- · Signatures courtes (Boneh-Lynn-Shacham 2004)

Attaque de M.O.V. sur le logarithme discret

Soient $B, G \in \mathcal{E}$ et $k \in \mathbb{Z}$ tels que $G = k \cdot B$. On note r l'ordre de B.

But:

Trouver k à partir de B et G.

Idée:

Pour tout $S \in \mathcal{E}$,

$$e(G,S) = e(kB,S) = e(B,S)^k$$

Conditions de fonctionnement :

Travailler dans \mathbb{F}_{q^t} avec $r|q^t-1$ pour assurer l'existence de racines r-ièmes de l'unité où r est l'ordre B.

 \rightarrow l'attaque n'est viable que si t est petit.

Fonctions de Miller et couplage de Tate

Pour $S \in \mathcal{E}[r]$ (point de r-torsion), on appelle fonction de Miller la fonction $f_{r,S}$ (unique à constante près) telle que

$$\operatorname{div}(f_{r,S}) = r \cdot (S) - r \cdot (0_{\mathcal{E}}).$$

Pour $T \in \mathcal{E}[r]$, on pose (le choix de Q n'a pas d'importance)

$$\hat{D}_T = (T+Q) - (Q)$$

Définition (Couplage de Tate)

$$\langle S, T \rangle_r = f_S(\hat{D}_T) = \frac{f_S(T+Q)}{f_S(Q)}$$
 mod puissances r -ième

Couplage de Weil

On définit de également un second couplage, dit couplage de Weil.

Théorème (Couplage de Weil) Le couplage de Weil se calcule par la formule

$$e_r(S,T) = \frac{\langle S,T \rangle_r}{\langle T,S \rangle_r} \mod puissances r-i\`eme$$

Evaluer une fonction de Miller

On note $f_{m,S}$ la fonction (unique à constante près) telle que

$$\operatorname{div}(f_{m,S}) = m(S) - (m \cdot S) - (m-1)(0_{\mathcal{E}}).$$

On note ℓ_{P_1,P_2} une équation de la droite passant par P_1 et P_2 et h_{P_1,P_2} la fraction $h_{P_1,P_2}=\frac{\ell_{P_1,P_2}}{\ell_{P_1+P_2,-P_1-P_2}}$

On a (par observation des diviseurs)

$$f_{m+1,S} = f_{m,S} \cdot h_{mS,S}$$

$$f_{2m,S} = f_{m,S}^2 \cdot h_{mS,mS}$$

On en déduit un algorithme qui calcule $f_{r,S}(P)$ en remontant la décomposition binaire de r.