EXAMEN DE ROBOTIQUE MOBILE - M2 IAFA-AURO

Décembre 2022-75 mns - Documents autorisés

Nom: Prénom:

- 1. On veut planifier la trajectoire d'un robot humanoïde qui posséde n articulations dans un environnement connu (sol plat) avec des obstacles. On appelle q la configuration de l'humanoïde et on appelle q_{com} la configuration réduite du centre de masse (com), qui est définie par la position (x, y, z) et l'orientation du repère attaché au com. Vous disposez des fonctions suivantes :
 - $-STABLE(q_{com})$ qui retourne TRUE(FALSE) si le robot est (ou pas) stable statiquement en q_{com}

- COLLISION(q) qui retourne TRUE(FALSE) si le robot est en(sans) collision en q.

- $CALCUL_CM(q)$ qui retourne la valeur de q_{com} lorsque le robot se trouve à la configuration q.
- -PROJECT(q) qui retourne une configuration q' correspondant à la projection sur le sol de la configuration quelconque q en imposant au moins un pied à plat sur le sol.
- $-MARCHE(q_1, q_2)$ qui retourne la trajectoire discrétisée (pas constant) statiquement stable dans l'espace des configurations pour aller de q_1 à q_2 (q_i configuration avec au moins un pied au sol).
- (a) Quelle est la dimension de l'espace des configurations q?
- (b) Expliquer comment est calculée la fonction STABLE
- (c) Proposer une méthode pour planifier la trajectoire de ce robot humanoïde entre deux configurations.
- 2. On considère un atelier parfaitement connu W qui comporte des zones de travail D_i , des zones tapis T_j et des obstacles O. La géométrie et position des D_i , T_j et O sont parfaitement connues. La figure 1 illustre un exemple d'atelier avec un robot R dans la zone tapis T_2 .

FIGURE 1

La tâche du robot mobile consiste à transporter des pièces qui arrivent dans les zones tapis et que le robot récupère dans ces zones. Le robot transporte ces pièces vers les zones de travail D_i ou entre les différents zones de travail D_i . L'opérateur va décrire la tâche sous forme d'une suite de trajectoires entre T_j et D_i ou entre D_i .

Les robots mobiles ne doivent gérer que les transport des pièces, un système de supervision alimente correctement les T_i et les D_j .

Le robot mobile R est holonome, circulaire et équipé de :

- un système de localisation absolue par balises laser sans erreur.
- un système de capteur proximétrique permettant de percevoir sur une distance d_S autour du robot.
- (a) Donner et expliciter une méthode de planification de trajectoire dans le cas ou un seul robot est utilisé pour effectuer la tâche de transport d'objets. Donner un algorithme en pseudo-code. Utiliser la figure 1 pour expliciter votre approche.
- (b) Il y a maintenant des opérateurs humains qui peuvent traverser l'atelier. Modifier votre approche pour que la tâche de transport soit effectuée en garantissant la non-collision avec les opérateurs.

Attention:

- -les réponses du type : "J'utilise un Voronoi (ou)." SANS explications/justifications ET description de VOS fonctions utilisées valent 0.
- vous ne pouvez pas utiliser de capteur supplémentaire.
- 3. On désire connaître la position absolue X=(x,y) d'un robot mobile Rob dans le plan. On note θ sont orientation dans le repère de base.

Le robot se déplace soit en effectuant des translations pures dans la direction du robot, θ est constant; soit en effectuant des rotations pures, x et y sont constantes (voir figure 2). Ces commandes étant effectuées en boucle ouverte, elles engendrent des erreurs.

FIGURE 2 - Mouvements du robot

FIGURE 3 - Angle avec la balise

Rob est équipé d'un capteur absolu en orientation qui donne en permanence son orientation sans erreur, θ , dans le repère global.

Le robot est aussi équipé d'un système odométrique sans erreur en orientation (θ toujours connu parfaitement) mais qui engendre une erreur de mesure en translation qui est % à la distance parcourue. Une unique balises B couvre l'environnement de travail. La position de la balise (xb,yb) est connue précisement. Lorsqu'on interroge la balise, elle retourne l'angle α entre la direction du robot et la direction de la balise (voir figure 3).

Sachant qu'on connait parfaitement la position initiale du robot, X(0), à l'instant initial :

- (a) Expliquer comment effectuer la localisation.
- (b) Donner les équations de localisation.
- (c) Sachant que Rob va enchaîner des translations pures et des rotations pures (on exécute une ligne brisée) à quels moments faut-il faire le calcul de la localisation du robot afin de pouvoir connaître sa position à la fin de la ligne brisée?
- (d) Que se passe-t-il si la mesure de l'angle α est entachée d'une erreur? Donner une interprétation géométrique de cette erreur sur la position du robot.