

Unidade 6 - Algoritmos em Grafos

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecidovfreitas@gmail.com

Bibliografia

QualitSys

- Algoritmos Teoria e Prática Cormen 2ª edição Editora Campus
- Fundamentos da Teoria dos Grafos para Computação M.C. **Nicoletti**, E.R. **Hruschka** Jr. 3ª Edição LTC
- Grafos Teoria, Modelos, Algoritmos Paulo Oswaldo Boaventura Netto, 5ª edição
- Grafos Conceitos, Algoritmos e Aplicações Marco Goldbarg, Elizabetj Goldbarg, Editora Campus
- A first look at Graph Theory John Clark, Derek Allan Holton 1998, World Cientific
- Introduction to Graph Teory Robin J. **Wilson** 4th Edition Prentice Hall 1996
- Introduction to Graph Theory Douglas **West** Second Edition 2001 Pearson Edition
- Mathematics A discrete Introduction Third Edition Edward R. Scheinerman 2012
- Discrete Mathematics and its Applications Kenneth H. **Rosen** 7th edition McGraw Hill 2012
- Data Structures Theory and Practice A. T. **Berztiss** New York Academic Press 1975 Second Edition
- Discrete Mathematics R. Johnsonbaugh Pearson 2018 Eighth Edition
- Graph Theory R. Diestel Springer 5th Edition 2017
- Graph Theory Theory and Problems of Graph Theory V. Balakrishnan Schaum's Outline McGraw Hill 1997

Tipo abstrato de Dado Grafo

- ✓ Um grafo é uma coleção de vértices e arestas;
- ✓ Pode-se modelar a abstração por meio de uma combinação de três tipos de dados: Vértice,
 Aresta e Grafo;
- ✓ Um vértice (VERTEX) pode ser representado por um objeto que armazena a informação fornecida pelo usuário, por exemplo, informações de um aeroporto;
- Uma aresta (EDGE) armazena relacionamentos entre vértices, por exemplo: número do vôo, distâncias, custos, etc.
- ✓ A ADT Graph deve incluir diversos métodos para se operar com grafos;
- ✓ A ADT Graph pode lidar com grafos direcionados ou não-direcionados. Uma aresta (u,v) é dita direcionada de u para v se o par (u,v) é ordenado, com u precedendo v;
- ✓ Uma aresta (u,v) é dita **não direcionada** se o par (u,v) **não** for ordenado.

Métodos - TAD Grafo

outgoing Edges (v): Returns an iteration of all outgoing edges from vertex v.

incoming Edges (v): Returns an iteration of all incoming edges to vertex v. For

an undirected graph, this returns the same collection as

does outgoing Edges(v).

insertVertex(x): Creates and returns a new Vertex storing element x.

insertEdge(u, v, x): Creates and returns a new Edge from vertex u to vertex v,

storing element x; an error occurs if there already exists an

edge from u to v.

removeVertex(v): Removes vertex v and all its incident edges from the graph.

removeEdge(e): Removes edge e from the graph.

Estruturas de Dados para Grafos

✓ Duas abordagens são geralmente aplicadas:

- ✓ Lista de Adjacências
- ✓ Matriz de Adjacências

Lista de Adjacências

✓ Emprega-se uma lista de vértices, no qual cada vértice aponta para uma outra lista com as arestas incidentes ao vértice;

Qual o desempenho dos algoritmos que usam Listas de Adjacência?

Qual o desempenho dos algoritmos com a Lista de Adjacência?

- ✓ A pesquisa de um determinado vértice na lista de vértices, tem complexidade O(n);
- ✓ Igualmente, a pesquisa de uma determinada aresta na lista de arestas, tem complexidade O(n);
- ✓ O método que insere um novo vértice na lista de vértices, tem complexidade O(1);
- ✓ O método que insere uma nova aresta na lista de arestas também tem complexidade O(1);
- ✓ O método que retorna os vértices na lista de vértices tem complexidade O(n);
- ✓ O método que retorna as arestas na lista de arestas tem complexidade O(n);
- ✓ O método que remove um vértice tem complexidade O(deg(v)).

Matriz de Adjacências

- ✓ Utiliza-se uma matriz **n x n** para o armazenamento do grafo;
- ✓ Sendo n o número de vértices do grafo;
- ✓ Uma aresta é representada por uma "marca" (um determinado valor) na posição (i,j) da matriz;
- ✓ Aresta liga o vértice i ao vértice j;
- ✓ Para muitos vértices e poucas arestas, desperdiça-se espaço.

	1	2	3	4
1	0	1	0	0
2	1	0	1	1
3	0	1	0	1
4	0	1	1	1

Qual o desempenho dos algoritmos com a estrutura Matriz de Adjacências?

Qual o desempenho dos algoritmos com Matriz de Adjacências ?

- ✓ A maior vantagem de uma matriz de adjacências é que qualquer aresta pode ser acessada no pior caso em tempo O(1);
- ✓ Entretanto, diversas outras operações são menos eficientes com o emprego de matriz de adjacências;
- ✓ Por exemplo, para se encontrar as arestas incidentes a um vértice V, deve-se examinar todas as n entradas associadas com V; Lembre-se que em listas de adjacência pode-se localizar arestas em O(d(V)).

			0	1	2	3
u		0		e	8	
v		1	e		f	
w		2	g	f		h
Z		3			h	

✓ Fornece uma forma compacta de representar grafos esparsos – aqueles para os quais |E| é muito menor que |V|². Assim, essa implementação é usualmente o método mais escolhido;

- ✓ A representação de um grafo G = (V,E) na forma de Listas de Adjacências consiste de um array Adj de | V|
 listas, uma para cada vértice em V;
- ✓ Para cada u ∈ V, a lista de ajdacência Adj[u] consiste de todos os vértices v tais que haja uma aresta (u,v) u ∈ E;
- ✓ Ou seja, Adj[u] consiste de todos os vértices adjacentes a u em G;
- ✓ Considerando que a lista de adjacências representa as arestas de um grafo, pode-se representar o grafo G com os atributos:
 V: conjunto de vértices de G e Adj[u]: conjunto de arestas de G, para todo u ∈ V;

Fonte: Cormen

- ✓ Em um grafo G direcionado, a soma dos nós de todas as listas de adjacências é |E|;
- ✓ Isso ocorre, uma vez que 1 aresta na forma (u,v) é representada uma única vez em Adj[u].

* 8 arestas

* 8 nós

- ✓ Em um grafo G não-direcionado, a soma dos nós de todas as listas de adjacências é 2 * |E|;
- ✓ Isso ocorre, uma vez que se (u,v) é uma aresta não-direcionada, então u aparece em Adj[u] e vice-versa.

* 7 arestas

* 14 nós

 ✓ Para grafos direcionados, a representação em listas de adjacências tem a desejável propriedade que a quantidade de memória necessária é Θ (V + E);

- √ 6 vértices
- √ 8 arestas

- √ 6 nós para vértices
- √ 8 nós para arestas

* Total de 14 nós

 ✓ Para grafos não-direcionados, a representação em listas de adjacências tem a desejável propriedade que a quantidade de memória necessária é Θ (V + 2*E);

- √ 5 vértices
- √ 7 arestas

- √ 5 nós para vértices
- √ 14 nós para arestas

* Total de 19 nós

- ✓ Pode-se facilmente adatar-se uma lista de adjacências para representar grafos com pesos;
- ✓ Ou seja, grafos para o qual cada aresta tem um peso associado, tipicamente dado por uma função de pesos:
 w: E → R.
- ✓ Por exemplo: seja G = (V,E) um grafo com pesos com uma função de pesos w. Pode-se armazenar o valor da função w para uma aresta e ∈ E no nó da lista ajd[u].

- ✓ Uma potencial desvantagem da representação por **Lista de Adjacências** é que ela <u>não</u> provê uma forma rápida de se determinar se uma determinada aresta (u,v) está presente no grafo;
- ✓ Assim, será necessário pesquisá-la na Lista de Adjacências;

Busca em Grafos

- ✓ Consiste em "explorar" um grafo;
- ✓ Processo sistemático de como **caminhar** pelos vértices e arestas do grafo;
- ✓ Diversos problemas em grafos necessitam de operações de busca em grafos;
- ✓ A operação de busca pode exigir que se visite todos os vértices do grafo para determinados problemas;
- ✓ Os principais tipos de busca em grafos são: Busca em Profundidade, Busca em Largura e Busca pelo Menor Caminho;

- ✓ Parte-se de um vértice inicial e se explora o máximo possível cada um de seus ramos, antes de se retroceder ("Backtracking");
- Explora-se todas as arestas de um determinado vértice antes de se retornar a seu antecessor;
- ✓ A estratégia seguida pela busca em profundidade (Depth_first search ou DFS) é buscar mais fundo no grafo sempre que possível;
- ✓ A busca é encerrada quando se encontra o que se quer ou visita-se todos os vértices;

DFS – Funcionamento

Defina um nó inicial

Escolha um de seus adjacentes ainda não visitados

Visite-o

Repita o processo até atingir o nó objetivo, ou um nó cuja adjacência já tenha sido toda visitada (nó final)

Se atingir um nó final que não seja objetivo:

Volte ao pai deste Continue de um nó irmão ainda não visitado

DFS – Reescrevendo...

Defina um nó inicial

Enquanto este não for um nó objetivo ou final (nó cuja adjacência já tenha sido toda visitada)

Escolha um de seus adjacentes ainda não visitados Visite-o

Se nó final não objetivo:

Volte ao pai deste Se houver pai, repita. Senão escolha outro nó inicial

DFS – Funcionamento

Defina um nó inicial

Enquanto este não for um nó objetivo ou final (nó cuja adjacência já tenha sido toda visitada)

Escolha um de seus adjacentes ainda não visitados Visite-o

Se nó final não objetivo:

Volte ao pai deste Se houver pai, repita. Senão escolha outro nó inicial

Inicia-se por exemplo, a busca em V_0 .

Vértices adjacentes ainda não visitados a partir de V_0 : V_1 e V_2 Escolho V_2

Vértices adjacentes ainda não visitados a partir de V_2 : V_1 , V_4 , ou V_5 Escolho V_1

Vértices adjacentes ainda não visitados a partir de V₁: Nenhum Ainda há vértices a serem percorridos

Vértices adjacentes ainda não visitados a partir de V₂: V₄ ou V₅ Escolho V₄

Vértices adjacentes ainda não visitados a partir de V_4 : V_3 Escolho V_3

Vértices adjacentes ainda não visitados a partir de V_3 : não há Ainda há vértices não visitados Volto para o Pai: V_4 Escolho V_4

Vértices adjacentes ainda não visitados a partir de V_4 : não há Ainda há vértices não visitados Volto para o Pai: V_2 Escolho V_2

Vértices adjacentes ainda não visitados a partir de V_2 : V_5 Escolho V_5

Vértices adjacentes ainda não visitados a partir de V₅ : não Há Não há mais vértices a serem visitados

Fim da Busca em Profundidade

Sequência gerada: V_0 , V_2 , V_1 , V_4 , V_3 , V_5

Busca em Largura

- ✓ Parte-se de um vértice inicial e se explora todos os vértices vizinhos;
- ✓ Em seguida, para cada vértice vizinho, repete-se esse processo, visitando-se os vértices ainda não explorados;

Busca pelo menor caminho

- ✓ Parte-se de um vértice inicial, calcula-se a menor distância deste vértice à todos os demais, desde que exista uma aresta ligando-os;
- ✓ Esse problema pode ser resolvido com o Algoritmo de Dijkstra para grafos direcionados ou não direcionados com arestas de peso não negativo;

