

Computational Intelligence

Subject12: Swarm Intelligence

Instructor: Ali Tourani

A.Tourani1991@gmail.Com

Agenda

- Intro
- Migrating birds optimization
- Ant colony algorithm

Assume that a group of people are looking for an underground treasure:

- Every individual with a metal detector to scan
- ► The closer you get to the treasure, the louder alarm will be
- ► Everyone can hear the alarm noise of the person beside him/her
- ► The louder the alarm is, the more people try to get close to you
- ► **So**: the chance to find the treasure increases for the whole group

Important notes for the previous slide:

- ► A sample of **Swarm** behavior
- ► A population of simple agents
 - ▶ Interacting with each other and the environment
- Actually, group members try to solve a problem together
- ▶ The behavior of the group is more intelligent than individual's behavior
 - ▶ Intelligent global behavior unknown to the individual agents
- Examples:
 - Ant colonies, bird flocking, bacterial growth

Swarm Intelligence (SI)

- ► The inspiration comes from biological systems
- ► Collective behavior of decentralized, self-organized systems.
- ► Applications:
 - Autonomous vehicles
 - Data mining
 - ► Locate and killing tumors
 - ► Routing
 - Social networks

Swarm Intelligence (SI)

- ► Although individual might show simple behavior, the behavior of the group is complicated
- ▶ There is always a connection between the individual and group behaviors

Swarm Intelligence (SI)

- ► *Main factor*: the relationship between individuals
 - ▶ Leads to optimization and improvement
- ► Some agents might play more critical roles
- ► The interaction between individuals can be **direct** or **indirect**
 - ▶ *Direct*: using sound, image, chemical change, etc.
 - ▶ *Indirect (Stigmergy):* leave signs in the environment for other agents

Some of the well-known algorithms

- Ant Colony Optimization
- Honeybee Hive Optimization
- Bee Colony Optimization
- ► Termite Colony Optimization
- Particle Swarm Optimization
- Cat Swarm Optimization
- Bat Algorithm

- Inspired by bird flocks
- ► A population (swarm) of candidate solutions (particles)
- Optimization of a problem by iteratively improving candidates
 - ► Each iteration updates the best found solution
- Analyzing the movement of particles in the search space
 - ▶ Particle's movement → local best known position
 - ► Swarm movement → the best known positions in the search-space

Particle Swarm Optimization (PSO)

- ▶ Particles move in an n-D space which is called the Search Space
- ▶ Why? To find the best solution for the success of the swarm
- How? Based on knowledge or experience
- Output: the best local and general position

► Three main steps:

- ► Finding the best agents
- Fitness Calculation
- Convergence

- Neighborhood Principle
 - Particles try to have a behavior similar to their best neighbors
 - ▶ The subset of particles with which each particle can exchange information
 - ► This can be done through different topologies:
 - ▶ Star: each particle is connected to all others and can easily find the best particle
 - ▶ Ring: each particle can only share information with its close neighbor
 - ▶ Wheel: Only one particle is connected to all, others are isolated

Particle Swarm Optimization (PSO)

Topologies

(a) Star Neighborhood Structure

(b) Ring Neighborhood Structure

(c) Wheel Neighborhood Structure

- ► Individual Best
 - ► Each particle only compares its state with the best possible state of itself
 - ▶ It has no further information about others

- ► Global Best
 - ► This approach uses Star topology
 - ► Each particle tries to change its behavior towards the best particle's
 - ► Each particle uses its own experience to find the best solution

- Local Best
 - This approach uses Ring topology
 - ► Each particle tries to change its behavior towards the best neighbor's
 - ► Each particle uses its own experience to find the best solution

MBO Algorithm

- A neighborhood search technique
- Starts with a number of initial solutions (birds in a V formation)
 - ▶ Start: the initial solution, i.e. the leader bird
 - ▶ Progress: other birds trying to improve
- Replacement of the leader bird with following bird
 - ▶ It goes to the end of the left side
- Termination condition:
 - ► Reaching a predefined flapping parameter

- (1) Generate *n* initial solutions in V-formation
- (2) i = 0
- (3) while (i < I) do
- (4) **for** int j = 0; j < m; j++ **do**
- (5) Improve the leading solution by generating and evaluating k neighbors of it
- (6) i = i + k
- (7) **for** each solution S_r in the flock (except leader) **do**
- (8) Try to improve S_r by evaluating (k-x) neighbors of it and x unused best neighbors from the leader
- (9) i = i + (k x)
- (10) end
- (11) end
- (12) Move the leader solution to the end and forward one of the solutions following it to the leader position
- (13) end
- (14) Return the best solution in the flock

of neighbor solutions of leader bird
$$k \in \mathbb{N}^+$$
; $k = \{3, 5, 7 \cdots \}$

of shared neighbor solutions
$$x \in \mathbb{N}^+$$
; $x = \{1, 2, \dots, (k-1)/2\}$

of neighbor solutions of remaining birds (except leader) n=k-x

k=.	3
x =	1

Bird	Permutation	Fitness (Sum of Profit)	Neighbor	Permutation	Fitness
S_0	01011	81	N_{01}	00110	80
			N_{02}	00101	71
			N_{03}	11001	41
S_1	10100	80	N ₁₁	10101	81
			N_{12}	00110	80
			N_{13} (Shared= N_{02})	00101	71
S_2	00110	120	N ₂₁	10010	60
			N_{22}	00011	51
			N_{23} (Shared= N_{03})	11001	41
S_3	11000	40	N ₃₁ (Shared=N ₁₂)	00110	80
			N_{32}	00010	50
			N_{33}	11001	41
S_4	01000	30	N ₄₁	01010	80
			N ₄₂ (Shared=N ₂₂)	00011	51
			N_{43}	01001	31

Reference: https://doi.org/10.1016/j.procs.2017.06.012

- ► A probabilistic technique for solving computational problems
 - ► Goal: finding good paths through graphs
- Inspired by the pheromone-based communication of biological ants
- Optimization (metaheuristic)
 - ► Artificial Ants + Local search
- Ambient networks of intelligent objects

Applications

- Routing (networks/vehicles)
- Graph Coloring
- Scheduling
- ► Travelling salesman problem
- Antennas optimization
- Edge detection
- And so on ...

- ► A good practice to find the optimal path in a Graph
 - ► *G*=(Number of Nodes, Number of Edges)
- Other variations of the algorithm
 - Simple ACO
 - Ant System
 - ► Elitist Ant System
 - ► Ranked-based Ant System
 - Fast Ant System
 - Min-Max Ant System

The behavior of ants

- ▶ Finding the shortest path from colony to food resources
- ▶ Indirect communication with other agents through pheromone
 - ▶ Stigmergy: exchange of information between ants via the environment
- Random search for food resources in the initial stage
- Improvement after finding food
- Following equal paths using pheromones
 - ▶ Path with more pheromone, more chance to be chosen
- Pheromone evaporation over time
 - ► The possibility of discovering a new path

The behavior of ants

- Equal length paths:
 - Random selection of a route
 - ▶ *Return route*: route with more pheromones
- Two routes with different lengths:
 - Random selection of a route
 - ► Shorter path → path with more pheromones
 - ► Finally, choose the shorter path
 - ▶ A small percentage of ants still using the longer path

The behavior of ants

- Adding a new route:
 - Consider adding a shorter path after converging to the long path

- Some ants use the shorter path (randomly) and others stick to the longer one
- ▶ Why?
 - ▶ High density of pheromones in the long run
 - ► Slight evaporation of pheromones
- ▶ The faster the evaporation, the less the optimal path is maintained
- ▶ The slower the evaporation, the better the local catch

Questions?

