IPESUP 2023/2024

Colle 4 MPSI/MP2I Jeudi 9 novembre 2023

Planche 1

- 1. Caractériser les fonctions f dérivables de \mathbb{R}_+^* dans \mathbb{R} telles que $\forall (x,y) \in (\mathbb{R}_+^*)^2$, f(xy) = f(x) + f(y).
- 2. Étude de la fonction $x \mapsto |\sin(x)|^{\sin(x)}$.
- 3. On note $f: x \mapsto \arcsin \sqrt{x}$. Quel est le domaine de définition de f? Rechercher une primitive de f.

Indication : on pourra calculer l'intégrale $\int_0^{\sqrt{x}} \frac{u^2}{\sqrt{1-u^2}} du$ à l'aide du changement de variable $u = \sin(v)$.

Planche 2

- 1. Définition de l'arscinus. Dérivabilité et expression de sa dérivée.
- 2. Montrer que

$$\forall x \in \mathbb{R}^*, \frac{1}{\sinh(x)} = \frac{1}{\tanh(x/2)} - \frac{1}{\tanh(x)}$$

En déduire une expression pour tout réel x non nul de $\lim_{n\to+\infty} \sum_{k=0}^{n} \frac{1}{\sinh(2^k x)}$.

3. Soit $(a,b) \in]1,+\infty[^2$ tel que a < b. Calculer $\int_a^b \frac{dx}{x\sqrt{x-1}}$. Déterminer ses limites le cas échéant, lorsque a tend vers 1^+ et b vers $+\infty$.

Planche 3

- 1. Soit $a:I\to\mathbb{C}$ une fonction continue sur un intervalle I. Ensemble des solutions de y'+ay=0.
- 2. Montrer que $\forall x \in [0,1]$, $\arcsin(\sqrt{x}) = \frac{\pi}{4} + \frac{1}{2}\arcsin(2x-1)$.
- 3. Soit $\alpha \in]0,1]$. Calculer $\int_{\alpha}^{1} \frac{dt}{t^{1/2} + t^{1/3}}$ et déterminer sa limite le cas échéant, lorsque α tend vers 0^+ .

Indication : on pourra utiliser la division euclidienne du polynôme X^3 par X+1.

Bonus

$$\frac{\pi}{4} = 6 \arctan\left(\frac{1}{8}\right) + 2 \arctan\left(\frac{1}{57}\right) + \arctan\left(\frac{1}{239}\right)$$
?