Reference manual for the trackit package documentation

of

March 16, 2009

Version 0.2-57
Date 2009-03-16
Title Track tagged individuals from light measurements
Author Anders Nielsen <anders.nielsen@hawaii.edu>, John Sibert <sibert@hawaii.edu></sibert@hawaii.edu></anders.nielsen@hawaii.edu>
Maintainer Anders Nielsen <anders.nielsen@hawaii.edu></anders.nielsen@hawaii.edu>
Depends R (>= 2.2.0), MASS, date
Suggests
Description Track tagged individuals from raw light measurements. This package contain tools for estimating the track from a time series of light
License BSD
URL https://www.soest.hawaii.edu/tag-data/software/
R topics documented:
angle2light 2 deltat 3 drifter 4 fitmap 5 get.avhrr.sst 5 get.blended.sst 7 get.sst.from.server 8

light.simulator10mooring12plotbasemap13plotlat14

2 angle2light

	plotlon	15
	plotsst	16
	plot.trackit	17
	prepit	18
	print.trackit	20
	scroll	20
	trackit-internal	21
	trackit	21
	two.layer.depth.corr	23
Index		25

angle2light

angle2light

Description

A dataset describing the estimated relationship between solar altitude in degrees (-90)-(90) above the horizon and the transformed light level measured in the tag

Usage

```
data(angle2light)
```

Format

A data frame containing two columns angle and light. There are 1801 observations (rows).

Details

This data set, or another one of similar structure is required input for the function light.simulator.

This particular data set is extracted from the fitted relationship between altitude and light in the mooring example.

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (submitted).

```
data(angle2light)
plot(angle2light, type='1', lwd=3, col='red')
```

deltat 3

deltat deltat

Description

A table of DeltaT, which is the empirical difference between dynamic time (DT) and universal time UT in seconds.

Usage

```
data(deltat)
```

Format

A data frame with 70 observations on the following 5 variables.

```
day a numeric vector
month a numeric vector
year a numeric vector
DTminusUT a numeric vector
JDE a numeric vector
```

Details

A small internal detail is that if the dataset is loaded as below the column JDE will not show up, but if it is not loaded it is available for internal use.

Source

```
http://www.stjarnhimlen.se/comp/time.html
```

```
data(deltat)
plot(deltat[,3]+deltat[,2]/12, deltat[,4], xlab="year", ylab=expression(Delta*T))
```

4 drifter

drifter

drifter

Description

Data from a Wildlife Computer pop-up archival tag (PAT, version 2)

Usage

```
data(drifter)
```

Format

A data frame with 4536 observations on the following 9 variables.

```
year a numeric vector
month a numeric vector
day a numeric vector
hour a numeric vector
min a numeric vector
sec a numeric vector
depth a numeric vector
light a numeric vector
temp a numeric vector
```

Details

Notice in the example that scan=FALSE. This is the correct option, because PAT version 2 scans the data and saves only the data around the solar events.

Source

Data provided by Mike Musyl.

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (submitted).

fitmap 5

fitmap

Plot the most probable track on a map

Description

Plot the most probable track and possibly its confidence region on a map

Usage

```
fitmap(x, ci=FALSE, ...)
```

Arguments

 $x \hspace{1cm} \textbf{An object returned from the $\texttt{trackit}$ function} \\$

ci If TRUE the 95% confidence region is added to the plot

... additionel arguments to plotbasemap

Value

Value is NULL

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu)

```
get.avhrr.sst
```

Get SST-field from avhrr source

Description

This function allows easy access to a avhrr SST database.

Usage

get.avhrr.sst

Arguments

track	A single data.frame containing a track or a list of data.frames each containing a track. The idea is that the function should only download the SST-data spanning the region and period of the tracks that needs to be analyzed.
lonlow	The lowest longitude where SST is downloaded
lonhigh	The highest longitude where SST is downloaded
latlow	The lowest latitude where SST is downloaded
lathigh	The highest latitude where SST is downloaded
folder	Is where the downloaded raw data files are stored. This defaults to a temporary directory.
server	The url of the server
product	The 7-character name of the imagery product. Refer to the Coastwatch site for the complete list of relevant SST products. http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowserWW360.jsp?get=gridData\&dataSet=
nday	Time resolution should be either '5day' or '8day'
centertime	The time stamp of the image '00' is from midnight to midnight, and '12' is from noon to noon.

Details

Value

The path returned from the function is where all the raw SST files are saved.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu), Chi Lam (chihinl@usc.edu), Dave Foley (Dave.Foley@noaa.gov)

References

TALK TO DAVE FOLEY

See Also

```
get.sst.from.server,get.avhrr.sst
```

```
# No example supplied here
```

get.blended.sst 7

get.blended.sst	Get SST-field from blended source	

Description

This function allows easy access to a blended SST database.

Usage

```
get.blended.sst(track, lonlow, lonhigh, latlow, lathigh, folder = tempdir(),
   server = "http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowserWW360.jsp?get=gridI
   nday = "5day")
```

Arguments

track	A single data.frame containing a track or a list of data.frames each containing a track. The idea is that the function should only download the SST-data spanning the region and period of the tracks that needs to be analyzed.
lonlow	The lowest longitude where SST is downloaded
lonhigh	The highest longitude where SST is downloaded
latlow	The lowest latitude where SST is downloaded
lathigh	The highest latitude where SST is downloaded
folder	Is where the downloaded raw data files are stored. This defaults to a temporary directory.
server	the url of the server
nday	Time resolution should be either '5day' or '8day'

Details

Value

The path returned from the function is where all the raw SST files are saved.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu), Chi Lam (chihinl@usc.edu), Dave Foley (Dave.Foley@noaa.gov)

References

TALK TO DAVE FOLEY

See Also

```
get.sst.from.server,get.avhrr.sst
```

8 get.sst.from.server

Examples

```
# No example supplied here
```

```
get.sst.from.server
```

Get SST-field from server

Description

This function allows easy access to three different SST sources that has been setup for this purpose. Data is downloaded from within R and stored in a format ready to be used.

Usage

Arguments

track	A single data.frame containing a track or a list of data.frames each containing a track. The idea is that the function should only download the SST-data spanning the region and period of the tracks that needs to be analyzed.
lonlow	The lowest longitude where SST is downloaded
lonhigh	The highest longitude where SST is downloaded
latlow	The lowest latitude where SST is downloaded
lathigh	The highest latitude where SST is downloaded
folder	Is where the downloaded raw data files are stored. This defaults to a temporary directory.
server	Presently three servers are available. The default is the fairly coarse Reynold's one 1x1-degree 8-day composites. This source is fast to download, but may be too coarse in some areas. The two other servers are the AVHRR-GAC 3-day and AVHRR-GAC 8-day composites these have a 0.1x0.1-degree resolution. The server names are: http://atlas.nmfs.hawaii.edu/cgi-bin/gac3day_extract.py and http://atlas.nmfs.hawaii.edu/cgi-bin/gac8day_extract.py
	nttp://atias.nmis.nawaii.edu/cgi-bin/gacoday_extfact.py

Details

The servers has been set up to extract SST-fields that covers a track (or a set of tracks) in simple way from within R. To use the default source type a command similar to:

```
sst.path <- get.sst.from.server(track1)
Notice 'track1' can be replaced by a list of tracks like:
sst.path <- get.sst.from.server(list(track1, track2))</pre>
```

gmt3

to obtain an SST-field covering a set of tracks.

To use one of the two other servers simply supply the server name as in:

```
sst.path <- get.sst.from.server(list(track1, track2), server='http://atlas.nmfs.hav
bin/gac3day_extract.py')
or
sst.path <- get.sst.from.server(list(track1, track2), server='http://atlas.nmfs.hav
bin/gac8day_extract.py')
```

To use a user supplied SST-source please see documentation for the function

Value

The path returned from the function is where all the raw SST files are saved.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu), Russell Moffitt (Russell.Moffitt@noaa.gov)

References

TALK TO RUSS

See Also

```
get.blended.sst
```

Examples

```
# No example supplied here
```

```
gmt3 gmt3
```

Description

A dataset of land polygons used for plotting maps

Usage

```
data(gmt3)
```

Format

A data frame with 504522 observations on the following 2 variables.

```
longitude a numeric vector
latitude a numeric vector
```

10 light.simulator

Source

```
http://gmt.soest.hawaii.edu/
```

Examples

```
data(gmt3)
```

light.simulator

Simulate artificial datasets

Description

This function is mainly used for model validation by the package authors. For a given set of model parameters it simulate a dataset that follows the model. It can be useful for setting up simulation studies.

Usage

```
light.simulator(u = 0, v = 0, D = 100, ss1 = 80, ss2 = 15, ss3 = 2.5, rho = 0.05, k
```

Arguments

u	Model parameter (see reference)
V	Model parameter (see reference)
D	Model parameter (see reference)
ss1	Model parameter (see reference)
ss2	Model parameter (see reference)
ss3	Model parameter (see reference)
rho	Model parameter (see reference)
bsst	Model parameter (see reference)
sssst	Model parameter (see reference)
rad	Model parameter (see reference)
sundata	A dataset like the built-in angle2light describing the relationship between solar altitude angle and light level
sstdates	Dates where sstdata are to be used
fix.first	Release position
t	Light sampling times (before scanning)
window	Two numbers determining how large an interval around each solar event is used. First the mid-point is selected as the point that best separates day from night (details in reference), and then two numbers are used in the following way: The first number is the fraction (of a 24-hour period) from the mid-point towards the day side of the solar event. The second number is the fraction towards the night side. So the default $c(0.05, 0.01)$ corresponds to using an interval that

minutes total.

14.4 minutes towards the night side and 72 minutes towards the day side. 86.4

light.simulator 11

tmpfile	Name of temporary file
datfile	Name of data file
truefile	Name of file containing the true simulated track
keepfiles	Logical vector determining what files to keep
localsstfold	ler
	Option to supply saved or own sst files
sst.fun	supply your function to retrive sst
from.ystr	Is an integer vector with two elements describing what part of the file name describe the year of the first date the data file represents. For instance if the names of the data files all have the format RSyyyyddd_YYYYDDD.dat, where yyyy is the year of the first date the argument should be $c(3,6)$.
from.dstr	Is an integer vector with two elements describing what part of the file name describe the 'number of days into the year' of the first date the data file represents.
to.ystr	Is similar to $from.ystr$, but here for the year of the last date the data file represents.
to.dstr	Is similar to from.dstr, but here for the 'number of days into the year' of the last date the data file represents.

Value

A list containing the needed information about the simulation

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu) and John Sibert (sibert@hawaii.edu)

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (submitted).

See Also

trackit

Examples

No examples provided here, but try the ones in ?drifter and ?mooring

12 mooring

mooring

mooring

Description

Data from a Wildlife Computers archival tag (MK9, version 1.03)

Usage

```
data(mooring)
```

Format

A data frame with 323418 observations on the following 9 variables.

```
year a numeric vector
month a numeric vector
day a numeric vector
hour a numeric vector
min a numeric vector
sec a numeric vector
depth a numeric vector
light a numeric vector
temp a numeric vector
```

Source

Data is provided by Bruno Leroy from the Oceanic Fisheries Programme of the Secretariat of the Pacific Community.

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (submitted).

plotbasemap 13

plotbasemap	Plot land area on a map with colored polygons	

Description

Plots a map within given rectangular region showing land areas as colored polygons. Requires the mapping utility GMT.

Usage

Arguments

lon1	Longitude of lower left corner of rectangle
lon2	Longitude of upper right corner of rectangle
lat1	Latitude of lower left corner of rectangle
lat2	Latitude of upper right corner of rectangle
grid	Whether to plot grid lines on map
zoom	Whether to start in interactive zoom mode
landcolor	Color of polygons
seacolor	Color of ocean
data	dataset to use

Details

A map is plotted with polygons clipped at borders of map region.

If the function is started in zoom mode two left-clicks on the map will zoom it to the rectangle spanned by the two points. This zooming is repeated until a right-click on the map is done.

Value

Value is NULL

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu), and Pierre Kleiber.

```
plotbasemap(8,13,53,58)
```

14 plotlat

Description

Nice plot of the latitude component of the most probable track.

Usage

```
plotlat(fit, exr = NULL, mid=FALSE)
```

Arguments

fit	The fitted object as returned from the function trackit
exr	A vector of points. The y-range of the plot is extended to also span these points (if necessary).
mid	Mainly used internally. If \mathtt{TRUE} it is assumed that this plot is placed between a similar longitude and SST plot, and the first axis is omitted.

Value

No value is returned. This function is invoked for its side effects.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu) and John Sibert (sibert@hawaii.edu)

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (submitted).

See Also

trackit

Examples

No examples provided here, but try the ones in ?drifter and ?mooring

plotlon 15

plotlon Longitude p

Description

Nice plot of the longitude component of the most probable track.

Usage

```
plotlon(fit, exr = NULL, top = FALSE)
```

Arguments

fit	The fitted object as returned from the function trackit
exr	A vector of points. The y-range of the plot is extended to also span these points (if necessary).
top	Mainly used internally. If TRUE it is assumed that this plot is placed on top of a similar latitude plot, and the axis are adjusted accordingly.

Value

No value is returned. This function is invoked for its side effects.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu) and John Sibert (sibert@hawaii.edu)

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (submitted).

See Also

```
trackit
```

Examples

No examples provided here, but try the ones in ?drifter and ?mooring

16 plotsst

|--|

Description

Nice plot of the SST component of the most probable track.

Usage

```
plotsst(fit, exr = NULL)
```

Arguments

fit	The fitted object as returned from the function trackit
exr	A vector of points. The y-range of the plot is extended to also span these points

(if necessary).

Value

No value is returned. This function is invoked for its side effects.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu) and John Sibert (sibert@hawaii.edu)

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (in press).

See Also

```
trackit
```

Examples

No examples provided here, but try the ones in ?drifter and ?mooring

plot.trackit 17

plot.trackit Plot a fitted track

Description

Plots a nice representation of the fitted most probable track.

Usage

```
plot.trackit(x, onlylonlat=FALSE, ...)
```

Arguments

x The fitted object as returned from the function trackit
 onlylonlat For fitted objects with sst this option turns off the SST panel in the plot
 additional graphical parameters (currently not used)

Value

No value is returned. This function is invoked for its side effects.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu) and John Sibert (sibert@hawaii.edu)

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (submitted).

See Also

trackit

Examples

No examples provided here, but try the ones in ?drifter and ?mooring

18 prepit

\sim	~	$\overline{}$	\sim	÷	+
\sim	L	\vdash	\cup	_	L

Prepare a track for light based geolocation

Description

This function prepares the track for light based geolocation, by converting it to the right format, pre-computing various variables, and selecting the intervals around sunrise and sunset where the data is used in the geolocation model (if needed).

Usage

Arguments

track	A data frame with the columns year month day hour min sec depth light temp. The temperature is not yet used by the model, so just put zeroes in that column.
fix.first	A vector of eight numbers giving the (longitude, latitude, year, month, day, hour, minute, second) of the release position. Longitude in degrees east, and time as Greenwich Mean Time (GMT).
fix.last	A vector of eight numbers giving the (longitude, latitude, year, month, day, hour, minute, second) of the recapture position. Longitude in degrees east, and time as Greenwich Mean Time (GMT).
scan	This can be either TRUE (default) or FALSE. If TRUE a scanning algorithm (described in the reference) is applied to locate the influential parts of the data series, which are the intervals around sunrise and sunsets. If FALSE it is assumed that data only consists of data near sunrise and sunsets, which is for instance true if they come from a PAT tag.
window	If scan=TRUE these two numbers determines how large an interval around each solar event is used. First the mid-point is selected as the point that best separates day from night (details in reference), and then two numbers are used in the following way: The first number is the fraction (of a 24-hour period) from the mid-point towards the day side of the solar event. The second number is the fraction towards the night side. So the default $c(0.05, 0.01)$ corresponds to using an interval that 14.4 minutes towards the night side and 72 minutes towards the day side. 86.4 minutes total.
tmpfile	A string specifying the name of a temporary file.
datfile	A string specifying the name of the file to be used by the function trackit

prepit 19

keepfiles	A logical vector of two elements. First indicates if the temporary file is to be saved. Second indicates if the data file for trackit is to be saved. The default is FALSE in both cases, which means that everything needed is stored in the object returned from this function.	
internal	Logical indicating if the scanned track is to be stored in the returned object (default). If the track is long it may be advisable to turn this off in combination with keepfile=c (FALSE, TRUE).	
sst	A matrix containing columns year month day hour min sec sst	
from.ystr	Is an integer vector with two elements describing what part of the file name describe the year of the first date the data file represents. For instance if the names of the data files all have the format RSyyyyddd_YYYYDDD.dat, where yyyy is the year of the first date the argument should be $c(3,6)$.	
from.dstr	Is an integer vector with two elements describing what part of the file name describe the 'number of days into the year' of the first date the data file represents.	
to.ystr	Is similar to from.ystr, but here for the year of the last date the data file represents.	
to.dstr	Is similar to from.dstr, but here for the 'number of days into the year' of the last date the data file represents.	
localsstfolder		

If the SST source is a bunch of files in a local folder this is where the folder name is given as a string

Details

See reference.

Value

A list containing all data needed in the model trackit, or references to files containing the data.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu) and John Sibert (sibert@hawaii.edu)

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (submitted).

See Also

trackit

Examples

No examples provided here, but try the ones in ?drifter and ?mooring

20 scroll

print.trackit

Print trackit object

Description

Prints a pretty summary of an object of class trackit

Usage

```
print.trackit(x, ...)
```

Arguments

x an object of class trackit typically generated with the trackit function.

... additional arguments

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu), John Sibert (sibert@hawaii.edu)

See Also

trackit

scroll

Scrolls through the light record

Description

Scrolls through the light record

Usage

```
scroll(track, n=1000)
```

Arguments

track A data.frame with a light column

n An integer step size

Value

No value is returned. This function is invoked for its side effects.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu) and John Sibert (sibert@hawaii.edu)

trackit-internal 21

trackit-internal Internal trackit objects

Description

Internal trackit objects.

Details

These are not to be called by the user.

trackit

trackit: Light based tracking

Description

This function fits a state space model developed to estimate the most probable track of archival tagged marine animals. The underlying movement model is a random walk with drift, and the observations are the light measurements surrounding each solar event.

Usage

```
trackit (prep.track, a2lpoints=15,
    u.init=0, v.init=0, D.init=100,
    ss1.init=1, ss2.init=5, ss3.init=1, rho.init=0.01,
    bsst.init=0, sssst.init=0.01, rad.init=200, dep1.init=0, dep2.init=0,
    phi.init=c(60,rep((200-60)/(a2lpoints-1),a2lpoints-1)),
    init=c(u.init,v.init,D.init,ss1.init,ss2.init,ss3.init,rho.init,
        bsst.init,sssst.init,rad.init,dep1.init,dep2.init,phi.init),
    u.ph=-1, v.ph=-1, D.ph=3, ss1.ph=2, ss2.ph=2, ss3.ph=2, rho.ph=3,
    bsst.ph=-1, sssst.ph=2, rad.ph=3, dep1.ph=-1, dep2.ph=-1,phi.ph=1,
    phase=c(u.ph,v.ph,D.ph,ss1.ph,ss2.ph,ss3.ph,rho.ph,
        bsst.ph,sssst.ph,rad.ph,dep1.ph,dep2.ph,phi.ph),
    blue.light.only=FALSE, save.dir=NULL)
```

Arguments

prep.track	A prepared track, which is the object returned from the function prepit
a2lpoints	The number of support points to be used in the cubic spline approximation of the relationship between solar altitude angle and the light reading in the tag.
u.init	Set initial value for model parameter u
v.init	Set initial value for model parameter v
D.init	Set initial value for model parameter D
ssl.init	Set initial value for model parameter σ_1^2

22 trackit

ss2.init	Set initial value for model parameter σ_2^2
ss3.init	Set initial value for model parameter σ_3^2
rho.init	Set initial value for model parameter ρ
bsst.init	Set initial value for model parameter b_{sst}
sssst.init	Set initial value for model parameter σ_{sst}^2
rad.init	Set initial value for model parameter r (the radius)
dep1.init	Set initial value for model parameter d_1
dep2.init	Set initial value for model parameter d_2
phi.init	Set initial value for model parameter ϕ (a vector of a2lpoints elements)
init	A vector of initial values for all model parameters. Sticking to the model description in the reference the order of the elements are: u, v, D, σ_1^2 , σ_2^2 , σ_3^2 , ρ , b_{sst} , σ_{sst}^2 , r , d_1 , d_2 , ϕ_1 ,, ϕ_n .
u.ph	Set estimation phase for model parameter u . The options are: '-1' (kept fixed at initial value), '1' (first phase reserved for phi), '2' (second phase), or '3' (third phase). If estimation of u is turned on it is recommended to use phase '3'.
v.ph	Set estimation phase for model parameter $v.$ If estimation of v is turned on it is recommended to use phase '3'.
D.ph	Set estimation phase for model parameter D
ss1.ph	Set estimation phase for model parameter σ_1^2
ss2.ph	Set estimation phase for model parameter σ_2^2
ss3.ph	Set estimation phase for model parameter σ_3^2
rho.ph	Set estimation phase for model parameter ρ
bsst.ph	Set estimation phase for model parameter b_{sst} . If estimation of b_{sst} is turned on it is recommended to use phase '2'.
sssst.ph	Set estimation phase for model parameter σ_{sst}^2
rad.ph	Set estimation phase for model parameter r (the radius)
dep1.ph	Set estimation phase for model parameter d_1
dep2.ph	Set estimation phase for model parameter d_2
phi.ph	Set one common estimation phase for model parameters in ϕ
phase	A vector to set the phase in which each parameter is to be optimized. It is only recommended to tinker with these it you know what you are doing. There are three phases 1, 2, and 3. If it is desired to keep a parameter fixed at its initial value the phase should be set to -1. The order is the same as for the initial values, except that the phase of all the ϕ parameters are set by one element (the last one).
blue.light.o	nly
	A logic. If TRUE only solar angles between -3 and 5 are used. This option is under development and should not be used yet. Most often there is no convergence and if there is it should not be trusted.
save.dir	Optionally a string specifying a permanent directory name

two.layer.depth.corr 23

Details

See reference.

Value

A list containing all relevant information about the model fit including the estimated most probable track.

Author(s)

Anders Nielsen (anders.nielsen@hawaii.edu) and John Sibert (sibert@hawaii.edu)

References

Nielsen, A., and Sibert, J.R. 2007. State space model for light based tracking of marine animals. Can. J. Fish. Aquat. Sci. (in press).

See Also

```
prepit
```

Examples

No examples provided here, but try the ones in ?drifter and ?mooring

```
two.layer.depth.corr
```

Two layer depth correction

Description

Two layer depth correction done by estimating two extinction coefficients, As suggested be Phil Ekstrom

Usage

```
two.layer.depth.corr(track, daybyday=FALSE, D0=50)
```

Arguments

track	A data.frame with a light column and corresponding depth, day month and year columns
daybyday	If TRUE the this is done separately for each days data with separate coefficients for each day
D0	The depth that separates the two layers

24 two.layer.depth.corr

Value

A data.frame similar to the input, but with the light column corrected.

Author(s)

Anders Nielsen \langle anders.nielsen@hawaii.edu \rangle and John Sibert \langle sibert@hawaii.edu \rangle

References

http://www.lotek.com/irradiance.pdf (2002 paper by Phil Ekstrom)

Index

*Topic datasets	JDE(trackit-internal), 20
angle2light, 1	
deltat, 2	light.simulator, $2,9$
drifter,3	2.11
gmt3,8	mooring, 2, 11
mooring, 11	obliquity (trackit intornal) 20
*Topic internal	obliquity(trackit-internal),20
trackit-internal, 20	plot.trackit, 16
*Topic models	plotbasemap, 4, 12
fitmap,4	plotlat, 13
get.avhrr.sst,4	plotlon, 14
get.blended.sst, 6	plotsst, 15
get.sst.from.server,7	prepit, 17, 20, 22
light.simulator, 9	print.trackit, 19
plot.trackit, 16	princ. crackie, 17
plotbasemap, 12	rad.to.deg(trackit-internal), 20
plotlat, 13	,,
plotlon, 14	scroll, 19
plotsst, 15	sidereal.UT(trackit-internal), 20
prepit, 17	solar.altitude
print.trackit,19	(trackit-internal), 20
scroll, 19	solar.coordinates
trackit,20	(trackit-internal), 20
two.layer.depth.corr, 22	
	trackit, 4, 10, 13-19, <mark>20</mark>
angle2light, 1, 9	trackit-internal, 20
approxDeltaT(trackit-internal), 20	two.layer.depth.corr,22
<pre>deg.to.rad(trackit-internal), 20 deltat, 2 drifter, 3</pre>	
fitmap,4	
get.avhrr.sst, 4, 5, 6 get.blended.sst, 6, 8 get.sst.from.server, 5, 6, 7 gmt3, 8	
JD(trackit-internal),20	