化学物质基本概念·一·「物质的组成与分类」

物质的组成

1. 任何物质都是由 元素 组成

2. 单质:只由 一种元素 组成的 纯净物

化合物:由 多种元素 组成的 纯净物

3. 元素在物质中的存在形态:

1. 游离态:元素以 单质 形式存在的状态

2. 化合态:元素以 化合物 形式存在的状态

4. 同素异形体

1. 同种元素 形成不同 单质 称为 同素异形体异形体

1. 原子个数不同:如 O_2 和 O_3

2. 原子排列方式不同: 如金刚石和石墨

2. 同素异形体之间的性质差异主要体现在 **物理性质** 上,他们的化学性质相似 同素异形体之间的转化属于化学变化

物质的分类

混合物

混合物是由两种或两种以上物质混合而成的物质

下面列举常见的混合物:

1. 分散系:溶液、胶体、浊液等

2. 高分子化合物:蛋白质、纤维素、淀粉、塑料等

3. 其他物质:石油及其各种馏分、天然气、油脂、福尔马林、氨水、王水、碱石灰等

纯净物

单质

单质是由同一种元素组成的纯净物

1. 金属单质: 例如: K、Ca、Na、Mg、Al等

2. 非金属单质: 例如: S、Cl₂、He 等

- 1. 只含一种元素的物质不一定是纯净物。如氧气 O_2 和臭氧 O_3 混合得到的物质是混合物。
- 2. 同种元素的同位素单质混合得到的物质是纯净物。如氢的同位素氕氘氚组成的双原子分子 \mathbf{H}_2 、 \mathbf{D}_2 、 \mathbf{T}_2 混合在一起得到的是纯净物
- 3. 含水的物质不一定是混合物。如胆矾 ${
 m CuSO_4\cdot 5\,H_2O}$ 、绿矾 ${
 m FeSO_4\cdot 7\,H_2O}$ 、明矾 ${
 m KAl(SO_4)_2\cdot 12\,H_2O}$ 都是纯净物

化合物

化合物是由两种或两种以上的元素组成的纯净物

氧元素与另外一种化学元素组成的二元化合物叫做氧化物

a. 酸性氧化物

酸性氧化物指与水反应生成相应价态的酸,或与碱反应只生成一种相应价态的盐和水的氧化物。例如: SO_2 、 SO_3 、 $\mathrm{P}_2\mathrm{O}_5$ 、 SiO_2 、 $\mathrm{Mn}_2\mathrm{O}_7$ 等

- 1. 酸性氧化物不一定是非金属氧化物。如高锰酸酐 $\mathrm{Mn_2O_7}$ 既是酸性氧化物,又是金属氧化物
- $oldsymbol{2}$. 非金属氧化物不一定是酸性氧化物。如一氧化碳 $oldsymbol{\mathrm{CO}}$ 、一氧化氮 $oldsymbol{\mathrm{NO}}$ 、二氧化氮 $oldsymbol{\mathrm{NO}}$ 。都是不成盐氧化物
- 3. 酸性氧化物不一定能与水反应生成相应的酸。如二氧化硅 ${
 m SiO_2}$ 不与水反应。能与碱反应生成盐和水的氧化物不一定是酸性氧化物。如二氧化氮 ${
 m NO_2}$ 是不成盐氧化物,氧化铝 ${
 m Al_2O_3}$ 是两性氧化物
- 4. 酸性氧化物一定是酸酐,但酸酐不一定是酸性氧化物。如乙酸酐 $\mathrm{CH_3COOOCCH_3}$ 含有三种元素,不是氧化物,故不是酸性氧化物

b. 碱性氧化物

碱性氧化物指与水反应生成相应价态的碱,或与酸反应只生成一种相应价态的盐和水的氧化物。例如: ${
m Na_2O}$ 、 ${
m CaO}$ 、 ${
m MgO}$ 、 ${
m Fe_2O_3}$ 等

- 1. 碱性氧化物一定是金属氧化物,但金属氧化物不一定是碱性氧化物。如高锰酸酐 ${
 m Mn_2O_7}$ 既是金属氧化物,又是酸性氧化物
- $oldsymbol{2}$. 碱性氧化物不一定能与水反应生成相应的碱。如氧化铁 $\mathrm{Fe_2O_3}$ 不与水反应
- ${f 3}$. 能与酸反应生成盐和水的氧化物不一定是碱性氧化物。如氧化铝 ${f Al}_2{f O}_3$ 是两性氧化物

c. 两性氧化物

两性氧化物是指既可以与酸反应生成相应价态的盐和水,又可以与碱反应生成相应价态的盐和水的氧化物。例如: ${
m Al_2O_3}$ 、 ${
m PbO}$ 、 ${
m ZnO}$ 等

双性物质:

单质: Al、Zn、Be

氧化物: Al₂O₃、ZnO、BeO

氢氧化物: $Al(OH)_3$ 、 $Zn(OH)_2$ 、 $Be(OH)_2$

盐:弱酸酸式盐

有机物:氨基酸、蛋白质

d. 不成盐氧化物

与两性氧化物完全相对地,不成盐氧化物是指既不可以与酸反应生成相应价态的盐和水,又不可以与碱反应生成相应价态的盐和水的氧化物。例如: ${
m CO}$ 、 ${
m NO}$ 、 ${
m NO}_2$ 等

Ⅱ酸

酸是指在水溶液中电离时产生的阳离子都是是氢离子的化合物

III 碱

碱是指在水溶液中电离时产生的阴离子都是氢氧根离子的化合物

$$egin{aligned} \{ egin{aligned} & ext{ Fixed Fixed$$

IV 盐

盐是指金属离子或铵根离子(NH_{4}^{+})与酸根离子或非金属离子结合的化合物

 $\pm \begin{cases} \mathbb{E} \pm : \mathrm{BaSO_4} \setminus \mathrm{KNO_3} \setminus \mathrm{NaCl} \\ \mathfrak{W}$ 式 $\pm : \mathrm{NaHCO_3} \setminus \mathrm{KHSO_4}$ 第 $\mathrm{Work} \pm : \mathrm{Cu_2}(\mathrm{OH})_2\mathrm{CO_3}$ 等 $\mathrm{SE} \pm : \mathrm{KAl}(\mathrm{SO_4})_2 \cdot 12\,\mathrm{H_2O}$ 等

a. 正盐: 在酸和碱完全中和生成的盐中,不含酸中的氢离子,也不含有碱中的氢氧根离子,这样的盐叫做正盐

b. 酸式盐:电离时生成的阳离子除金属离子(或 $\mathrm{NH}^+_\mathtt{A}$)外还有氢离子,阴离子为酸根离子的盐叫做酸式盐

c. 碱式盐: 电离时生成的阴离子除酸根离子外还有氢氧根离子

d. $ot\!g$ 盐: 由两种金属离子(可含 $ot\!NH_4^+$)和一种酸根离子构成的盐叫做复盐

材料分类

1. 金属材料: Fe、Cu、Al、合金 等

2. 无机非金属材料

1. 传统无机非金属材料: 陶瓷、玻璃、水泥等

2. 新型无机非金属材料: 高温结构陶瓷、光导纤维等

3. 有机高分子材料

1. 天然有机高分子材料: 淀粉、纤维素、蛋白质、天然橡胶 等

2. 合成有机高分子材料:塑料、合成纤维、合成橡胶等

其他分类方式

电离程度

• 电解质

在水溶液或熔融状态下能够导电的 化合物,如 HCl、NaOH、NaCl 等

■ 强电解质: 强酸、强碱、盐(大部分)、金属氧化物

■ 弱电解质:弱酸、弱碱、水、盐 (HgCl₂、(CH₃COO)₂Pb)

• 非电解质

在水溶液和熔融状态下都不能导电的 化合物,包含大多数有机化合物(酸类除外)、非金属氧化物(H2O 除外),如酒精、葡萄糖、 CH_4 等

• 既不是电解质,也不是非电解质: 单质和混合物

• 电解质导电条件:水溶液或熔融状态。电解质不是任何状态下都能导电,如固态 ${f NaCl}$ 不导电,溶于水或熔融状态下才能导电

•	电解质必须自身电源 于非电解质	蒭导电。如 NH_3	$_3$, CO_2 ,	SO_2 等溶于水均能导电,	但是溶于水后的产物导电,	不是自身电离导电,	所以均属