COMSCI/ECON 206

Computational Microeconomics

Autumn 2025

Dates: August 18, 2025, – October 10, 2025 **Meeting time**: MoWe 2:45 PM - 5:15 PM

Location: IB 2025

Course format: Seminar (+ Field Trip)

COMSCI/ECON 206 — Final Research Proposal

Play to innovate: An Interdisciplinary Approach from Game Theory to Mechanism Design

Due: Sunday Oct. 15, 11:00 P.M. (BJT) • Weight: 20%

Objectives — COMSCI/ECON 206 Final Research

Proposal

The Final Research Proposal synthesizes the learning journey of *Computational Microeconomics*. Building on **Problem Set 1 (game theory foundations)** and **Problem Set 2 (mechanism design applications)**, it asks students to frame an original question connecting economics and computation. Proposals should formalize strategic environments, implement computational tools (Python, NashPy, oTree), and compare theoretical predictions with human or AI-agent behavior. Ideas may grow from **classroom simulations, coding labs, or peer discussions**, where strategic interaction and bounded rationality were explored. The **field trip to innovation hubs** further inspires projects addressing auctions, voting, blockchain, or sustainability challenges. The final output includes a reproducible GitHub repository, a written proposal, and a symposium presentation, demonstrating mastery of theory, coding, and critical evaluation while cultivating DKU's principles of communication, collaboration, global perspective, purposeful engagement, and wise leadership

Title Page

Your report must begin with a professionally formatted title page that includes the following five elements:

1. Title and Author

- o Provide a clear and concise project title.
- List the full name(s) of the author(s).

2. Contribution to Sustainable Development Goals (SDGs)

- o Include a statement specifying which of the **United Nations' SDGs** your research contributes to.
- Briefly explain how your project aligns with these goals (e.g., promoting quality education, reducing inequalities, fostering sustainable cities, advancing responsible innovation).

3. Acknowledgments

- Express gratitude to the professor and classmates for their constructive feedback and guidance throughout the semester.
- o Acknowledge additional sources of support, including AIGC tools, open-source communities, or collaborators as appropriate.

4. Disclaimer

o Insert the following statement verbatim:

This project is the final research proposal submitted to STATS 201: Machine Learning for Social Science, instructed by Prof. Luyao Zhang at Duke Kunshan University in Autumn 2025.

5. Statement of Intellectual and Professional Growth

- Provide a short reflective paragraph on how the project contributed to your intellectual development (research design, technical mastery, interdisciplinary thinking) and professional growth (collaboration, ethical reflection, communication).
- Highlight specific ways the project enhanced your skills in applying machine learning to social science.

Body — COMSCI/ECON 206 Final Research Proposal

Part 1. Strategic Game Foundations (from PS1)

• **Objective**: Formalize a strategic game, identify equilibrium concepts (Nash, SPNE, Bayes–Nash, etc.), and evaluate efficiency and fairness.

• Methods:

- Use NashPy/QuantEcon for equilibrium computation.
- o Deploy Game Theory Explorer (GTE) for extensive-form analysis.
- o Conduct oTree sessions with classmates and compare to LLM play.
- **Output**: Theoretical solutions, computational results, and comparative analysis of equilibrium predictions vs. human/AI outcomes.

Part 2. Mechanism Design & Auctions (from PS2)

- **Objective**: Extend game-theoretic foundations into **mechanism design** by analyzing the **winner's curse** and testing human vs. AI strategies.
- Methods:
 - o Select an auction format (first-price, common-value, etc.).
 - o Design treatments and controls to test bounded rationality.
 - Run simulations with LLMs and compare to theoretical predictions and behavioral evidence.
- Output: Revised and extended analysis from PS1, auction experiments, and mechanism design insights.

Part 3. Voting & Institutions (from week 6 reflection)

- **Objective**: Connect theory to practice by designing a **simplified voting issue** inspired by real-world cases or field trip observations (e.g., UN climate action, blockchain governance).
- Methods:
 - Apply Nobel insights: Arrow's impossibility, Buchanan on institutions, Hurwicz– Maskin–Myerson on mechanism design, Shapley–Roth on matching, and Acemoglu–Johnson–Robinson on legitimacy.
 - o Propose an **innovative or hybrid voting rule**, integrating computation (e.g., blockchain consensus, reinforcement learning, algorithmic matching).
 - o Test designs through classroom simulations, coding, or prototype implementation.
- **Output**: Forward-looking mechanism design proposal, bridging classroom theory, Nobel frameworks, and experiential learning.

Part III – Supplementary Materials, GitHub Repository Submission

1. Supplementary Materials in the Report

- **GitHub Link**: Include the repository URL in the *Supplementary Materials* section of your PDF report.
- **Poster**: Submit your project poster in both the report appendix and the repository. This will also be used for the Final Symposium.
- Demo Video (optional but encouraged): Embed the video in your repository README.

2. GitHub Repository Requirements

Your repository is as important as the written report. It demonstrates reproducibility, transparency, and professional practice, consistent with **FAIR & CARE data governance principles** for replicability.

Repository Structure

```
<Project-Name>:<An Interdisciplinary Study>/
                     # Theoretical analysis (game theory, welfare, fairness)
 computational_scientist/ # Python scripts, Jupyter notebooks, solver outputs
 behavioral_scientist/ # oTree apps, human experiment results, LLM transcripts
- mechanism_design/
                         # Auction/voting design
- visualizations/
                    # Figures, payoff matrices, equilibrium diagrams, voting charts
- docs/
                  # Project documentation
   - Report.pdf
                     # Final report
                     # Symposium poster
   Poster.pdf
  - FieldTripReflection.md# Reflection linking field experience to methodology & impacts
 README.md
                        # Root README with project overview
```

Root README.md Must Include:

- 1. **Project Title and Abstract** Clear and concise summary of your research.
- 2. **Authors and Roles** Each contributor's role (Economist, Computational Scientist, Behavioral Scientist, Mechanism Designer).
- 3. Disclaimer –

This repository supports the final research proposal submitted to COMSCI/ECON 206: Computational Microeconomics, instructed by Prof. Luyao Zhang at Duke Kunshan University in Autumn 2025.

- 4. **Acknowledgments** Professors, classmates, LLMs, and open-source communities (NashPy, QuantEcon, GTE, oTree, etc.).
- 5. **Statement of Growth** Reflection on intellectual and professional development across PS1, PS2, classroom collaborative learning experiences and the field trip towards the final proposal.
- 6. **Table of Contents** With clickable links to folders and files.
- 7. **Navigation Instructions** Guide for reviewers to locate:
 - o Code for equilibria computation, mechanism design, and simulations.
 - Visualizations and outputs.
 - o Documentation (final report, poster, field trip reflection).
- 8. **Embedded Media** Poster and demo video (via Markdown embedding or links).