SEM

Brent Rappaport
October 30, 2017

Load in data

```
data_wide <- read.csv("/Users/BrentRappaport/Box Sync/WashU/Classes/Longtudinal Methods/1-descriptives-
data wide <- data wide[,-1]
#Make sex_01 a binary variable where O=Male and 1=Female
data_wide$sex_01 <- data_wide$sex-1
#Make sex_c a factor variable
data wide$sex c <- ifelse(data wide$sex 01==0, "Male", "Female")
data_wide$sex_c <- as.factor(data_wide$sex_c)</pre>
#Center SES
data_wide$T1Income_to_Need_c <- as.numeric(scale(data_wide$T1Income_to_Need, center=T, scale=F))
#Make ageO_ a variable of age from beginning of study (relative age to beginning), rather than aboslute
data_wide <- data_wide %>%
  mutate(age0_1 = age_1 - age_1,
         age0_3 = age_3 - age_1,
         age0_5 = age_5 - age_1,
         age0_10 = age_10 - age_1,
         age0_12 = age_12 - age_1,
         age0_14 = age_14 - age_1,
         age0_16 = age_16 - age_1,
         age0_18 = age_18 - age_1)
#Convert data to long form
data_long <- data_wide %>%
  gather(c(-ID,-sex,-sex_01,-sex_c,-T1_ACES_sum,-ethin,-T1Income_to_Need,-T1Income_to_Need_c,-IQ, -momm
           -momanxie, -momsuici, -momatten, -momsubab, -momschiz, -mompsnos, -momeatdi, -momcondu, -mom
           -rel_affective, -rel_MDD, -mom_MDDBP, -first_MDDBP, -rel_SUD),
         key = "time", value = "value") %>%
  separate(time, into = c("variable", "wave")) %>%
  spread(variable, value)
data_long$wave <- as.integer(data_long$wave)</pre>
#sort by id
data long <- data long[order(data long$ID),]</pre>
```

Question 1

```
#1. Specify your model: Marker variable approach
mod.1 <- 'peer =~ PPeerScale_1 + TPeerScale_1
aggression =~ PAggScale_1 + TAggScale_1
```

```
prosocial =~ PProScale_1 + TProScale_1'
#2. Fit the model
fit.1 <- cfa(mod.1, data=data_wide, missing= "ML")</pre>
# other functions include sem, growth, and lavaan. All have different defaults (See below). we will use
#3. Display the summary output
summary(fit.1, fit.measures=TRUE)
## lavaan (0.5-23.1097) converged normally after 104 iterations
##
                                                      Used
                                                                  Total
##
     Number of observations
                                                        283
                                                                    306
##
     Number of missing patterns
##
##
##
     Estimator
                                                        ML
##
     Minimum Function Test Statistic
                                                    27.094
##
     Degrees of freedom
                                                     0.000
##
     P-value (Chi-square)
##
## Model test baseline model:
##
##
     Minimum Function Test Statistic
                                                   207.342
    Degrees of freedom
##
                                                        15
##
    P-value
                                                     0.000
##
## User model versus baseline model:
##
##
     Comparative Fit Index (CFI)
                                                     0.890
     Tucker-Lewis Index (TLI)
##
                                                     0.726
##
## Loglikelihood and Information Criteria:
##
                                                 -4181.427
##
     Loglikelihood user model (HO)
##
     Loglikelihood unrestricted model (H1)
                                                 -4167.880
##
##
    Number of free parameters
                                                         21
##
     Akaike (AIC)
                                                  8404.855
##
    Bayesian (BIC)
                                                  8481.409
##
     Sample-size adjusted Bayesian (BIC)
                                                  8414.818
##
## Root Mean Square Error of Approximation:
##
##
                                                     0.111
     90 Percent Confidence Interval
##
                                              0.071 0.156
##
     P-value RMSEA <= 0.05
                                                     0.008
##
## Standardized Root Mean Square Residual:
##
                                                     0.050
##
     SRMR
## Parameter Estimates:
##
```

```
##
     Information
                                                   Observed
##
     Standard Errors
                                                   Standard
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
##
     peer =~
##
       PPeerScale 1
                          1.000
##
       TPeerScale_1
                          1.348
                                   0.262
                                             5.135
                                                      0.000
##
     aggression =~
##
       PAggScale_1
                          1.000
##
       TAggScale_1
                          1.191
                                   0.285
                                             4.186
                                                      0.000
##
     prosocial =~
##
       PProScale_1
                          1.000
##
       TProScale_1
                          1.476
                                   0.292
                                             5.051
                                                      0.000
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
     peer ~~
##
##
                          6.009
                                   1.587
                                             3.785
                                                      0.000
       aggression
##
       prosocial
                          6.953
                                   1.579
                                             4.405
                                                      0.000
##
     aggression ~~
##
       prosocial
                          1.750
                                   0.473
                                             3.703
                                                      0.000
##
## Intercepts:
                      Estimate Std.Err z-value P(>|z|)
##
##
      .PPeerScale 1
                         60.277
                                   0.533 113.061
                                                      0.000
##
      .TPeerScale_1
                         59.308
                                   0.691
                                            85.771
                                                      0.000
##
                                   0.183
                                           70.141
                                                      0.000
      .PAggScale_1
                         12.830
                                            54.933
##
                         13.004
                                   0.237
                                                      0.000
      .TAggScale_1
##
      .PProScale_1
                          6.827
                                   0.178
                                            38.249
                                                      0.000
##
      .TProScale_1
                          5.731
                                   0.240
                                            23.922
                                                      0.000
##
       peer
                          0.000
       aggression
##
                          0.000
##
                          0.000
       prosocial
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .PPeerScale_1
                         58.115
                                   6.821
                                             8.519
                                                      0.000
##
      .TPeerScale 1
                         60.794
                                  10.465
                                             5.809
                                                      0.000
##
                          6.022
                                   0.946
                                             6.369
                                                      0.000
      .PAggScale_1
##
      .TAggScale 1
                          7.020
                                             5.240
                                                      0.000
                                   1.340
##
      .PProScale_1
                          6.297
                                   0.748
                                             8.422
                                                      0.000
##
      .TProScale 1
                          6.344
                                   1.290
                                             4.917
                                                      0.000
##
       peer
                         22.325
                                   6.673
                                             3.346
                                                      0.001
##
                          3.447
                                   1.008
                                             3.421
                                                      0.001
       aggression
                                             3.569
                                                      0.000
##
                          2.692
                                   0.754
       prosocial
#Fixed factor approach
fit.2 <- cfa(mod.1, std.lv=TRUE, data=data_wide, missing= "ML")</pre>
summary(fit.2, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-23.1097) converged normally after 88 iterations
```

Total

Used

##

## ##	Number of observat	ions			283	3	06
##	Number of missing	patterns			4		
##	.				147		
##	Estimator	0			ML		
##			1ST1C		27.094 6		
##	0				0.000		
##	i varac (oni bquar	C)			0.000		
	Model test baseline	model:					
##							
##	Minimum Function T	est Stat	istic		207.342		
##	Degrees of freedom	l			15		
##	P-value				0.000		
##							
	User model versus ba	seline m	odel:				
##	Comparative Fit In	dov (CET)		0.890		
##	Tucker-Lewis Index		,		0.726		
##		(/					
##	Loglikelihood and In	formatio	n Criteri	a:			
##							
##	Loglikelihood user				4181.427		
##	Loglikelihood unre	stricted	model (H	1) -	4167.880		
##	N 1 C C				0.4		
##	Number of free par Akaike (AIC)	ameters			21 8404.855		
##	Bayesian (BIC)				8481.409		
##	Sample-size adjust	ed Baves	ian (BIC)		8414.818		
##		J					
##	Root Mean Square Err	or of Ap	proximati	on:			
##							
##	RMSEA	_	_		0.111		
##			rval	0.07			
##	P-value RMSEA <= 0	.05			0.008		
	Standardized Root Me	an Squar	e Residua	1:			
##	2041144141111						
##	SRMR				0.050		
##							
##	Parameter Estimates:						
##							
##	Information				Observed		
##	Standard Errors				Standard		
	Latent Variables:						
##		stimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	peer =~		·				
##	PPeerScale_1	4.725	0.706	6.692	0.000	4.725	0.527
##	TPeerScale_1	6.368	0.975	6.532	0.000	6.368	0.633
##	aggression =~						
##	PAggScale_1	1.857	0.271	6.842	0.000	1.857	0.603
##	TAggScale_1	2.212	0.344	6.431	0.000	2.212	0.641
##	prosocial =~						

```
##
       PProScale 1
                          1.641
                                   0.230
                                             7.139
                                                      0.000
                                                                1.641
                                                                          0.547
##
       TProScale_1
                          2.422
                                   0.326
                                             7.438
                                                      0.000
                                                                2.422
                                                                         0.693
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
     peer ~~
##
                          0.685
                                   0.115
                                             5.981
                                                      0.000
                                                                0.685
                                                                          0.685
       aggression
                          0.897
                                   0.115
                                                      0.000
                                                                0.897
                                                                         0.897
##
       prosocial
                                             7.828
##
     aggression ~~
##
                                   0.107
                                             5.379
                                                      0.000
                                                                0.575
                                                                         0.575
       prosocial
                          0.575
##
## Intercepts:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
                                   0.533 113.061
##
      .PPeerScale_1
                         60.277
                                                      0.000
                                                               60.277
                                                                         6.721
##
      .TPeerScale_1
                         59.308
                                   0.691
                                            85.771
                                                      0.000
                                                               59.308
                                                                         5.891
##
      .PAggScale_1
                         12.830
                                   0.183
                                            70.141
                                                      0.000
                                                               12.830
                                                                          4.169
##
                         13.004
                                   0.237
                                            54.933
                                                      0.000
                                                               13.004
                                                                         3.768
      .TAggScale_1
##
      .PProScale 1
                          6.827
                                   0.178
                                            38.249
                                                      0.000
                                                                6.827
                                                                         2.277
##
      .TProScale_1
                          5.731
                                   0.240
                                            23.922
                                                      0.000
                                                                5.731
                                                                         1.640
##
       peer
                          0.000
                                                                0.000
                                                                         0.000
##
       aggression
                          0.000
                                                                0.000
                                                                         0.000
##
       prosocial
                          0.000
                                                                0.000
                                                                          0.000
##
## Variances:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
      .PPeerScale 1
                         58.115
                                   6.821
                                             8.519
                                                      0.000
                                                               58.115
                                                                         0.722
##
      .TPeerScale_1
                         60.794
                                  10.465
                                             5.809
                                                      0.000
                                                               60.794
                                                                         0.600
##
                          6.022
                                   0.946
                                             6.369
                                                      0.000
                                                                6.022
                                                                         0.636
      .PAggScale_1
##
                          7.020
                                                      0.000
                                   1.340
                                             5.240
                                                                7.020
                                                                         0.589
      .TAggScale_1
                          6.297
                                                      0.000
##
      .PProScale_1
                                   0.748
                                             8.422
                                                                6.297
                                                                         0.701
##
      .TProScale_1
                          6.344
                                   1.290
                                             4.917
                                                      0.000
                                                                6.344
                                                                         0.520
##
       peer
                          1.000
                                                                1.000
                                                                          1.000
##
       aggression
                          1.000
                                                                1.000
                                                                          1.000
##
                          1.000
                                                                1.000
                                                                          1.000
       prosocial
#Effects coding approach
mod.3 <- 'peer =~ NA*PPeerScale_1 + pe1*PPeerScale_1 + pe2*TPeerScale_1</pre>
          aggression =~ NA*PAggScale_1 +a1*PAggScale_1 + a2*TAggScale_1
          prosocial =~ NA*PProScale_1 + pr1*PProScale_1 + pr2*TProScale_1
     pe1 == 2 - pe2
     a1 == 2 - a2
     pr1 == 2 - pr2
fit.3 <- cfa(mod.3, data=data_wide, missing= "ML")</pre>
summary(fit.3, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-23.1097) converged normally after 98 iterations
##
##
                                                        Used
                                                                   Total
##
     Number of observations
                                                         283
                                                                     306
##
##
     Number of missing patterns
##
```

```
##
     Estimator
                                                        ML
##
    Minimum Function Test Statistic
                                                    27.094
##
     Degrees of freedom
     P-value (Chi-square)
                                                     0.000
##
##
## Model test baseline model:
##
     Minimum Function Test Statistic
##
                                                   207.342
##
     Degrees of freedom
                                                        15
                                                     0.000
     P-value
##
##
## User model versus baseline model:
##
     Comparative Fit Index (CFI)
                                                     0.890
##
     Tucker-Lewis Index (TLI)
                                                     0.726
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                 -4181.427
     Loglikelihood unrestricted model (H1)
##
                                                 -4167.880
##
##
    Number of free parameters
                                                        21
     Akaike (AIC)
                                                  8404.855
##
##
     Bayesian (BIC)
                                                  8481.409
     Sample-size adjusted Bayesian (BIC)
##
                                                  8414.818
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                     0.111
     90 Percent Confidence Interval
                                              0.071 0.156
##
     P-value RMSEA <= 0.05
##
                                                     0.008
##
## Standardized Root Mean Square Residual:
##
                                                     0.050
##
     SRMR
##
## Parameter Estimates:
##
##
     Information
                                                  Observed
     Standard Errors
##
                                                  Standard
##
## Latent Variables:
                      Estimate Std.Err z-value P(>|z|)
                                                             Std.lv Std.all
##
##
     peer =~
##
       PPrScl_1 (pe1)
                         0.852
                                  0.095
                                            8.945
                                                     0.000
                                                              4.725
                                                                       0.527
##
       TPrScl_1 (pe2)
                         1.148
                                  0.095
                                         12.055
                                                     0.000
                                                              6.368
                                                                       0.633
##
     aggression =~
##
       PAggSc_1 (a1)
                         0.913
                                  0.119
                                            7.700
                                                     0.000
                                                              1.857
                                                                       0.603
##
       TAggSc_1 (a2)
                         1.087
                                  0.119
                                            9.174
                                                     0.000
                                                              2.212
                                                                       0.641
     prosocial =~
##
##
       PPrScl_1 (pr1)
                         0.808
                                  0.095
                                            8.473
                                                     0.000
                                                              1.641
                                                                       0.547
       TPrScl_1 (pr2)
                         1.192
                                  0.095
                                           12.510
                                                     0.000
                                                              2.422
                                                                       0.693
##
##
```

Covariances:

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	peer ~~						
##	aggression	7.729	1.490	5.187	0.000	0.685	0.685
##	prosocial	10.107	1.557	6.492	0.000	0.897	0.897
##	aggression ~~						
##	prosocial	2.375	0.509	4.664	0.000	0.575	0.575
##							
##	Intercepts:				- () ()		
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.PPeerScale_1	60.277	0.533	113.061	0.000	60.277	6.721
##	.TPeerScale_1	59.308	0.691	85.771	0.000	59.308	5.891
##	.PAggScale_1	12.830	0.183	70.141	0.000	12.830	4.169
##	.TAggScale_1	13.004	0.237	54.933	0.000	13.004	3.768
##	.PProScale_1	6.827	0.178	38.249	0.000	6.827	2.277
##	.TProScale_1	5.731	0.240	23.922	0.000	5.731	1.640
##	peer	0.000				0.000	0.000
##	aggression	0.000				0.000	0.000
##	prosocial	0.000				0.000	0.000
##							
##	Variances:				- () ()		
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.PPeerScale_1	58.115	6.821	8.519	0.000	58.115	0.722
##	.TPeerScale_1	60.794	10.465	5.809	0.000	60.794	0.600
##	.PAggScale_1	6.022	0.946	6.369	0.000	6.022	0.636
##	.TAggScale_1	7.020	1.340	5.240	0.000	7.020	0.589
##	.PProScale_1	6.297	0.748	8.422	0.000	6.297	0.701
##	.TProScale_1	6.344	1.290	4.917	0.000	6.344	0.520
##	peer	30.764	7.199	4.273	0.000	1.000	1.000
##	aggression	4.139	0.774	5.349	0.000	1.000	1.000
##	prosocial	4.127	0.794	5.194	0.000	1.000	1.000
##							
##	Constraints:						
##					Slack		
##	pe1 - (2-pe2)				0.000		
##	a1 - (2-a2)				0.000		
##	pr1 - (2-pr2)				0.000		

Across the three models, the estimates of the latent variables (or the factor loadings) obviously change, but consistently indicate a larger factor loading teacher report onto the latent variable than parent report. This model indicates that the latent variables are accounting for a significant amount of variability in the indicators.

In the fixed factor model, the covariance estimates indicate the correlation between the latent variables, here indicating that the Peer and Prosocial variables are highly correlated (0.897), while Peer and Aggression and Aggression and Prosocial are moderately related (0.685 and 0.575, repectively). The std.all is not introduced in the marker model, but does not change across the fixed factor and effects coding, since it is the standardized indicator of how much variance is being accounted for by the latent variable.

The variance estimates for the latent variables also change. In the first (marker variable approach) and third model (effects coding), the estimates for the latent variables indicate that they are accounting for substantial variance in the scores. In the second model (fixed factor), the variance estimates are fixed to 1, and the variances of the residuals remains unchanged. In the third model (effects coding), the standarized estimates (std.all) are fixed to 1, but the raw estimates show significant variance accounted for.

Question 2

The RMSEA is above 0.1 (0.111), indicating a poor fit, however the SRMR is 0.050 indicating an acceptable fit. The CFI and TFI additionally fall below 0.90 (or 0.93) at 0.890 and 0.726, respectively, suggesting a less than optimal fit. The model indicates 15 degrees of freedom indicating that is it overidentified (good).

Question 3

```
#Longitudinal CFA
mod.4.full <- '</pre>
peer1 =~ PPeerScale_1 + TPeerScale_1
peer2 =~ PPeerScale_3 + TPeerScale_3
peer3 =~ PPeerScale_5 + TPeerScale_5
peer4 =~ PPeerScale_10 + TPeerScale_10
peer5 =~ PPeerScale_12 + TPeerScale_12
peer6 =~ PPeerScale 14 + TPeerScale 14
peer7 =~ PPeerScale_16 + TPeerScale_16
peer8 =~ PPeerScale_18 + TPeerScale_18
agg1 =~ PAggScale_1 + TAggScale_1
agg2 =~ PAggScale_3 + TAggScale_3
agg3 =~ PAggScale_5 + TAggScale_5
agg4 =~ PAggScale_10 + TAggScale_10
agg5 =~ PAggScale_12 + TAggScale_12
agg6 =~ PAggScale_14 + TAggScale_14
agg7 =~ PAggScale_16 + TAggScale_16
agg8 =~ PAggScale_18 + TAggScale_18
pro1 =~ PProScale_1 + TProScale_1
pro2 =~ PProScale_3 + TProScale_3
pro3 =~ PProScale_5 + TProScale_5
pro4 =~ PProScale_10 + TProScale_10
pro5 =~ PProScale 12 + TProScale 12
pro6 =~ PProScale_14 + TProScale_14
pro7 =~ PProScale 16 + TProScale 16
pro8 =~ PProScale_18 + TProScale_18
## correlated residuals across time
PPeerScale_1 ~~ PPeerScale_3 + PPeerScale_5 + PPeerScale_10 + PPeerScale_12 + PPeerScale_14 +
PPeerScale_16 + PPeerScale_18
PPeerScale_3 ~~ PPeerScale_5 + PPeerScale_10 + PPeerScale_12 + PPeerScale_14 +
PPeerScale_16 + PPeerScale_18
PPeerScale_10 + PPeerScale_12 + PPeerScale_14 + PPeerScale_16 + PPeerScale_18
PPeerScale_10 ~~ PPeerScale_12 + PPeerScale_14 + PPeerScale_16 + PPeerScale_18
PPeerScale_12 ~~ PPeerScale_14 + PPeerScale_16 + PPeerScale_18
PPeerScale_14 ~~ PPeerScale_16 + PPeerScale_18
PPeerScale_16 ~~ PPeerScale_18
TPeerScale_1 ~~ TPeerScale_3 + TPeerScale_5 + TPeerScale_10 + TPeerScale_12 + TPeerScale_14 +
TPeerScale 16 + TPeerScale 18
TPeerScale_3 ~~ TPeerScale_5 + TPeerScale_10 + TPeerScale_12 + TPeerScale_14 +
TPeerScale 16 + TPeerScale 18
TPeerScale_10 + TPeerScale_12 + TPeerScale_14 + TPeerScale_16 + TPeerScale_18
```

```
TPeerScale_10 ~~ TPeerScale_12 + TPeerScale_14 + TPeerScale_16 + TPeerScale_18
TPeerScale_12 ~~ TPeerScale_14 + TPeerScale_16 + TPeerScale_18
TPeerScale_14 ~~ TPeerScale_16 + TPeerScale_18
TPeerScale 16 ~~ TPeerScale 18
PAggScale_1 ~~ PAggScale_3 + PAggScale_5 + PAggScale_10 + PAggScale_12 + PAggScale_14 +
PAggScale_16 + PAggScale_18
PAggScale_3 ~~ PAggScale_5 + PAggScale_10 + PAggScale_12 + PAggScale_14 +
PAggScale_16 + PAggScale_18
PAggScale_5 ~~ PAggScale_10 + PAggScale_12 + PAggScale_14 + PAggScale_16 + PAggScale_18
PAggScale_10 ~~ PAggScale_12 + PAggScale_14 + PAggScale_16 + PAggScale_18
PAggScale_12 ~~ PAggScale_14 + PAggScale_16 + PAggScale_18
PAggScale_14 ~~ PAggScale_16 + PAggScale_18
PAggScale_16 ~~ PAggScale_18
TAggScale_1 ~~ TAggScale_3 + TAggScale_5 + TAggScale_10 + TAggScale_12 + TAggScale_14 +
TAggScale_16 + TAggScale_18
TAggScale_3 ~~ TAggScale_5 + TAggScale_10 + TAggScale_12 + TAggScale_14 +
TAggScale_16 + TAggScale_18
TAggScale_10 + TAggScale_12 + TAggScale_14 + TAggScale_16 + TAggScale_18
TAggScale_10 ~~ TAggScale_12 + TAggScale_14 + TAggScale_16 + TAggScale_18
TAggScale_12 ~~ TAggScale_14 + TAggScale_16 + TAggScale_18
TAggScale_14 ~~ TAggScale_16 + TAggScale_18
TAggScale_16 ~~ TAggScale_18
PProScale_1 ~~ PProScale_3 + PProScale_5 + PProScale_10 + PProScale_12 + PProScale_14 +
PProScale_16 + PProScale_18
PProScale_3 ~~ PProScale_5 + PProScale_10 + PProScale_12 + PProScale_14 +
PProScale_16 + PProScale_18
PProScale_5 ~~ PProScale_10 + PProScale_12 + PProScale_14 + PProScale_16 + PProScale_18
PProScale_10 ~~ PProScale_12 + PProScale_14 + PProScale_16 + PProScale_18
PProScale_12 ~~ PProScale_14 + PProScale_16 + PProScale_18
PProScale_14 ~~ PProScale_16 + PProScale_18
PProScale_16 ~~ PProScale_18
TProScale_1 ~~ TProScale_3 + TProScale_5 + TProScale_10 + TProScale_12 + TProScale_14 +
TProScale_16 + TProScale_18
TProScale_3 ~~ TProScale_5 + TProScale_10 + TProScale_12 + TProScale_14 +
TProScale_16 + TProScale_18
TProScale_5 ~~ TProScale_10 + TProScale_12 + TProScale_14 + TProScale_16 + TProScale_18
TProScale_10 ~~ TProScale_12 + TProScale_14 + TProScale_16 + TProScale_18
TProScale_12 ~~ TProScale_14 + TProScale_16 + TProScale_18
TProScale_14 ~~ TProScale_16 + TProScale_18
TProScale_16 ~~ TProScale_18
mod.4 <- '
peer1 =~ PPeerScale_1 + TPeerScale_1
peer2 =~ PPeerScale_3 + TPeerScale_3
peer3 =~ PPeerScale_5 + TPeerScale_5
peer4 =~ PPeerScale_10 + TPeerScale_10
peer5 =~ PPeerScale_12 + TPeerScale_12
peer6 =~ PPeerScale_14 + TPeerScale_14
```

```
agg1 =~ PAggScale_1 + TAggScale_1
agg2 =~ PAggScale_3 + TAggScale_3
agg3 =~ PAggScale_5 + TAggScale_5
agg4 =~ PAggScale 10 + TAggScale 10
agg5 =~ PAggScale_12 + TAggScale_12
agg6 =~ PAggScale_14 + TAggScale_14
pro1 =~ PProScale 1 + TProScale 1
pro2 =~ PProScale 3 + TProScale 3
pro3 =~ PProScale_5 + TProScale_5
pro4 =~ PProScale_10 + TProScale_10
pro5 =~ PProScale_12 + TProScale_12
pro6 =~ PProScale_14 + TProScale_14
## correlated residuals across time
PPeerScale_1 ~~ PPeerScale_3 + PPeerScale_5 + PPeerScale_10 + PPeerScale_12 + PPeerScale_14
PPeerScale_3 ~~ PPeerScale_5 + PPeerScale_10 + PPeerScale_12 + PPeerScale_14
PPeerScale_5 ~~ PPeerScale_10 + PPeerScale_12 + PPeerScale_14
PPeerScale_10 ~~ PPeerScale_12 + PPeerScale_14
PPeerScale_12 ~~ PPeerScale_14
TPeerScale_1 ~~ TPeerScale_3 + TPeerScale_5 + TPeerScale_10 + TPeerScale_12 + TPeerScale_14
TPeerScale 3 ~~ TPeerScale 5 + TPeerScale 10 + TPeerScale 12 + TPeerScale 14
TPeerScale_5 ~~ TPeerScale_10 + TPeerScale_12 + TPeerScale_14
TPeerScale_10 ~~ TPeerScale_12 + TPeerScale_14
TPeerScale_12 ~~ TPeerScale_14
PAggScale_1 ~~ PAggScale_3 + PAggScale_5 + PAggScale_10 + PAggScale_12 + PAggScale_14
PAggScale_3 ~~ PAggScale_5 + PAggScale_10 + PAggScale_12 + PAggScale_14
PAggScale_5 ~~ PAggScale_10 + PAggScale_12 + PAggScale_14
PAggScale_10 ~~ PAggScale_12 + PAggScale_14
PAggScale_12 ~~ PAggScale_14
TAggScale_1 ~~ TAggScale_3 + TAggScale_5 + TAggScale_10 + TAggScale_12 + TAggScale_14
TAggScale_3 ~~ TAggScale_5 + TAggScale_10 + TAggScale_12 + TAggScale_14
TAggScale_5 ~~ TAggScale_10 + TAggScale_12 + TAggScale_14
TAggScale_10 ~~ TAggScale_12 + TAggScale_14
TAggScale_12 ~~ TAggScale_14
PProScale_1 ~~ PProScale_3 + PProScale_5 + PProScale_10 + PProScale_12 + PProScale_14
PProScale_3 ~~ PProScale_5 + PProScale_10 + PProScale_12 + PProScale_14
PProScale_5 ~~ PProScale_10 + PProScale_12 + PProScale_14
PProScale_10 ~~ PProScale_12 + PProScale_14
PProScale_12 ~~ PProScale_14
TProScale_1 ~~ TProScale_3 + TProScale_5 + TProScale_10 + TProScale_12 + TProScale_14
TProScale_3 ~~ TProScale_5 + TProScale_10 + TProScale_12 + TProScale_14
TProScale_5 ~~ TProScale_10 + TProScale_12 + TProScale_14
TProScale_10 ~~ TProScale_12 + TProScale_14
TProScale_12 ~~ TProScale_14
fit.4 <- cfa(mod.4, data=data_wide, missing="ML", std.lv=TRUE)</pre>
```

```
inspect(fit.4,"cor.lv")
         peer1 peer2 peer3 peer4 peer5 peer6 agg1 agg2 agg3 agg4 agg5
## peer1 1.000
## peer2 0.785 1.000
## peer3 0.875 0.818 1.000
## peer4 0.667 0.461 0.798 1.000
## peer5 0.626 0.655 1.070 1.060 1.000
## peer6 0.626 0.636 0.911 0.794 0.902 1.000
## agg1 0.655 0.421 0.453 0.369 0.226 0.445 1.000
## agg2 0.346 0.452 0.411 0.247 0.229 0.311 0.713 1.000
## agg3 0.500 0.570 0.689 0.438 0.447 0.460 0.833 0.809 1.000
## agg4 0.485 0.396 0.464 0.620 0.406 0.496 0.685 0.577 0.695 1.000
## agg5 0.484 0.328 0.456 0.482 0.597 0.479 0.677 0.604 0.946 0.715 1.000
## agg6 0.578 0.553 0.677 0.470 0.508 0.728 0.802 0.633 0.907 1.008 0.750
## pro1 0.843 0.620 0.598 0.513 0.359 0.444 0.518 0.292 0.449 0.182 0.217
## pro2 0.650 0.993 0.644 0.473 0.377 0.510 0.439 0.599 0.457 0.236 0.080
## pro3 0.391 0.576 0.749 0.590 0.581 0.674 0.489 0.532 0.620 0.336 0.370
## pro4 0.624 0.466 0.700 0.828 0.726 0.777 0.385 0.279 0.391 0.515 0.620
## pro5 0.467 0.593 0.604 0.742 0.865 0.747 0.521 0.560 0.592 0.514 0.825
## pro6 0.658 0.480 0.638 0.607 0.570 0.836 0.552 0.427 0.685 0.498 0.477
##
         agg6 pro1 pro2 pro3 pro4 pro5 pro6
## peer1
## peer2
## peer3
## peer4
## peer5
## peer6
## agg1
## agg2
## agg3
## agg4
## agg5
## agg6 1.000
## pro1 0.313 1.000
## pro2 0.351 0.962 1.000
## pro3 0.430 0.761 0.858 1.000
## pro4 0.417 0.470 0.583 0.914 1.000
## pro5 0.658 0.445 0.775 0.789 0.894 1.000
## pro6 0.841 0.668 0.434 0.657 0.695 1.224 1.000
summary(fit.4, standardized=TRUE, fit.measures=TRUE)
## lavaan (0.5-23.1097) converged normally after 1106 iterations
##
##
                                                                Total
                                                     Used
##
     Number of observations
                                                      302
                                                                  306
##
##
    Number of missing patterns
                                                      154
##
##
     Estimator
                                                       ML
##
                                                  601.706
    Minimum Function Test Statistic
##
    Degrees of freedom
                                                      351
                                                    0.000
    P-value (Chi-square)
##
```

```
##
## Model test baseline model:
##
##
     Minimum Function Test Statistic
                                                   3901.060
##
     Degrees of freedom
                                                        630
     P-value
                                                      0.000
##
##
## User model versus baseline model:
##
##
     Comparative Fit Index (CFI)
                                                      0.923
##
     Tucker-Lewis Index (TLI)
                                                      0.862
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                 -20159.009
##
     Loglikelihood unrestricted model (H1)
                                                 -19858.157
##
##
     Number of free parameters
                                                        351
##
     Akaike (AIC)
                                                  41020.019
     Bayesian (BIC)
##
                                                  42322.379
##
     Sample-size adjusted Bayesian (BIC)
                                                  41209.199
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                      0.049
##
     90 Percent Confidence Interval
                                               0.042 0.055
##
     P-value RMSEA <= 0.05
                                                      0.626
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                      0.072
##
## Parameter Estimates:
##
     Information
##
                                                   Observed
##
     Standard Errors
                                                   Standard
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
##
     peer1 =~
##
       PPeerScale 1
                          5.096
                                   0.640
                                            7.968
                                                      0.000
                                                               5.096
                                                                         0.566
##
       TPeerScale 1
                          5.996
                                   0.973
                                            6.164
                                                      0.000
                                                               5.996
                                                                         0.594
     peer2 =~
##
##
       PPeerScale_3
                          5.486
                                   0.563
                                            9.749
                                                      0.000
                                                               5.486
                                                                         0.643
##
       TPeerScale_3
                          5.891
                                   0.758
                                            7.772
                                                      0.000
                                                               5.891
                                                                         0.670
##
     peer3 =~
                                            7.499
                                                      0.000
                                                                4.224
##
       PPeerScale_5
                          4.224
                                   0.563
                                                                         0.483
##
       TPeerScale_5
                          6.885
                                   0.861
                                            7.998
                                                      0.000
                                                               6.885
                                                                         0.715
##
     peer4 =~
                                                      0.000
                                                               5.106
##
       PPeerScale_10
                          5.106
                                   0.675
                                            7.563
                                                                         0.560
##
                          7.022
                                   1.073
                                            6.542
                                                      0.000
                                                               7.022
                                                                         0.646
       TPeerScale_10
##
     peer5 =~
##
       PPeerScale_12
                          6.199
                                   0.578
                                            10.726
                                                      0.000
                                                               6.199
                                                                         0.672
##
       TPeerScale 12
                          8.656
                                   0.962
                                            8.995
                                                      0.000
                                                               8.656
                                                                         0.796
```

##	peer6 =~	C 400	0 674	0 507	0 000	C 400	0 654
##	PPeerScale_14	6.423	0.674	9.527	0.000	6.423	0.654
##	TPeerScale_14	7.970	0.894	8.920	0.000	7.970	0.776
##	agg1 =~	1 600	0 022	7 064	0 000	1 600	O E46
##	PAggScale_1	1.690	0.233	7.264 6.873	0.000	1.690	0.546 0.693
##	TAggScale_1	2.423	0.353	6.873	0.000	2.423	0.693
##	agg2 =~	1 001	0 007	C 711	0 000	1 001	0 504
##	PAggScale_3	1.601	0.237	6.744	0.000	1.601	0.594
##	TAggScale_3	1.782	0.341	5.224	0.000	1.782	0.593
##	agg3 =~	4 600	0.005	7 050	0 000	4 000	0 500
##	PAggScale_5	1.633	0.225	7.250	0.000	1.633	0.583
##	TAggScale_5	1.379	0.268	5.148	0.000	1.379	0.519
##	agg4 =~						
##	PAggScale_10	1.841	0.230	8.017	0.000	1.841	0.732
##	TAggScale_10	1.856	0.312	5.955	0.000	1.856	0.643
##	agg5 =~						
##	PAggScale_12	1.439	0.188	7.635	0.000	1.439	0.645
##	TAggScale_12	1.659	0.327	5.069	0.000	1.659	0.544
##	agg6 =~						
##	PAggScale_14	1.295	0.155	8.377	0.000	1.295	0.642
##	TAggScale_14	1.799	0.258	6.983	0.000	1.799	0.703
##	pro1 =~						
##	PProScale_1	1.344	0.221	6.092	0.000	1.344	0.453
##	TProScale_1	2.499	0.362	6.902	0.000	2.499	0.718
##	pro2 =~						
##	PProScale_3	1.312	0.198	6.616	0.000	1.312	0.457
##	TProScale_3	2.210	0.335	6.588	0.000	2.210	0.644
##	pro3 =~						
##	PProScale_5	1.485	0.209	7.119	0.000	1.485	0.516
##	TProScale_5	2.472	0.328	7.541	0.000	2.472	0.739
##	pro4 =~						
##	PProScale_10	1.009	0.226	4.466	0.000	1.009	0.374
##	TProScale_10	2.272	0.560	4.055	0.000	2.272	0.622
##	pro5 =~						
##	PProScale_12	1.227	0.199	6.169	0.000	1.227	0.425
##	TProScale_12	2.423	0.396	6.118	0.000	2.423	0.653
##	pro6 =~						
##	PProScale_14	1.239	0.207	5.997	0.000	1.239	0.440
##	TProScale_14	2.743	0.390	7.033	0.000	2.743	0.728
##							
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.PPeerScale_1 ~~						
##	.PPeerScale_3	21.969	4.443	4.945	0.000	21.969	0.453
##	.PPeerScale_5	26.160	4.759	5.497	0.000	26.160	0.459
##	.PPeerScale_10	18.896	5.134	3.680	0.000	18.896	0.336
##	.PPeerScale_12	15.508	4.534	3.420	0.001	15.508	0.305
##	.PPeerScale_14	14.051	5.082	2.765	0.006	14.051	0.254
##	.PPeerScale_3 ~~						
##	.PPeerScale_5	32.253	4.526	7.126	0.000	32.253	0.645
##	.PPeerScale_10	26.818	4.574	5.863	0.000	26.818	0.544
##	.PPeerScale_12	16.325	4.314	3.784	0.000	16.325	0.366
##	.PPeerScale_14	18.945	4.723	4.011	0.000	18.945	0.390
##	.PPeerScale_5 ~~						
	-						

##	.PPeerScale_10	36.720	5.255	6.988	0.000	36.720	0.634
##	.PPeerScale_12	18.668	4.750	3.930	0.000	18.668	0.356
##	.PPeerScale_14	26.659	5.135	5.192	0.000	26.659	0.468
##	.PPeerScale_10 ~~						
##	.PPeerScale_12	22.175	5.387	4.117	0.000	22.175	0.429
##	.PPeerScale_14	33.305	5.567	5.982	0.000	33.305	0.593
##	.PPeerScale_12 ~~						
##	.PPeerScale_14	28.045	5.504	5.095	0.000	28.045	0.552
##	.TPeerScale_1 ~~						
##	.TPeerScale_3	0.800	6.367	0.126	0.900	0.800	0.015
##	.TPeerScale_5	-8.932	7.910	-1.129	0.259	-8.932	-0.163
##	.TPeerScale_10	-2.300	8.956	-0.257	0.797	-2.300	-0.034
##	.TPeerScale_12	2.459	7.737	0.318	0.751	2.459	0.046
##	$.{\tt TPeerScale_14}$	1.140	8.148	0.140	0.889	1.140	0.022
##	.TPeerScale_3 ~~						
##	.TPeerScale_5	-13.169	5.957	-2.211	0.027	-13.169	-0.300
##	.TPeerScale_10	-4.421	6.760	-0.654	0.513	-4.421	-0.082
##	.TPeerScale_12	-7.631	6.601	-1.156	0.248	-7.631	-0.178
##	.TPeerScale_14	-2.835	6.259	-0.453	0.651	-2.835	-0.067
##	.TPeerScale_5 ~~						
##	.TPeerScale_10	9.469	9.325	1.015	0.310	9.469	0.169
##	.TPeerScale_12	-12.496	8.779	-1.423	0.155	-12.496	-0.282
##	.TPeerScale_14	-0.160	7.959	-0.020	0.984	-0.160	-0.004
##	.TPeerScale_10 ~~						
##	.TPeerScale_12	-2.153	10.601	-0.203	0.839	-2.153	-0.039
##	.TPeerScale_14	10.188	8.834	1.153	0.249	10.188	0.190
##	.TPeerScale_12 ~~						
##	$.{\tt TPeerScale_14}$	-4.200	8.042	-0.522	0.601	-4.200	-0.098
##	.PAggScale_1 ~~						
##	.PAggScale_3	3.595	0.580	6.199	0.000	3.595	0.640
##	.PAggScale_5	3.279	0.585	5.608	0.000	3.279	0.556
##	.PAggScale_10	1.358	0.506	2.683	0.007	1.358	0.306
##	.PAggScale_12	0.749	0.472	1.587	0.113	0.749	0.169
##	.PAggScale_14	1.592	0.421	3.778	0.000	1.592	0.396
##	.PAggScale_3 ~~						
##	.PAggScale_5	3.210	0.568	5.649	0.000	3.210	0.651
##	.PAggScale_10	1.278	0.476	2.682	0.007	1.278	0.344
##	.PAggScale_12	1.080	0.435	2.480	0.013	1.080	0.292
##	.PAggScale_14	1.065	0.373	2.855	0.004	1.065	0.318
##	.PAggScale_5 ~~						
##	.PAggScale_10	2.080	0.490	4.248	0.000	2.080	0.534
##	.PAggScale_12	0.928	0.479	1.938	0.053	0.928	0.239
##	.PAggScale_14	1.131	0.384	2.945	0.003	1.131	0.321
##	.PAggScale_10 ~~						
##	.PAggScale_12	1.798	0.446	4.033	0.000	1.798	0.615
##	.PAggScale_14	0.513	0.388	1.321	0.187	0.513	0.193
##	.PAggScale_12 ~~						
##	.PAggScale_14	0.637	0.317	2.012	0.044	0.637	0.241
##	.TAggScale_1 ~~						
##	.TAggScale_3	1.268	0.950	1.335	0.182	1.268	0.208
##	.TAggScale_5	1.087	0.753	1.444	0.149	1.087	0.190
##	.TAggScale_10	0.309	0.766	0.404	0.686	0.309	0.056
##	.TAggScale_12	-0.125	0.842	-0.149	0.882	-0.125	-0.019
##	.TAggScale_14	0.816	0.753	1.083	0.279	0.816	0.178

шш	TAC1- 2						
## ##	.TAggScale_3 ~~	1.204	0.648	1.859	0.063	1.204	0.219
##	.TAggScale_5 .TAggScale_10	1.025	0.640	1.503	0.063	1.204	0.219
##	.TAggScale_10	0.948	0.896	1.058	0.133	0.948	0.192
##	.TAggScale_12	0.402	0.598	0.671	0.502	0.402	0.133
##	.TAggScale_5 ~~	0.402	0.596	0.071	0.502	0.402	0.091
##	.TAggScale_10	0.667	0.596	1.119	0.263	0.667	0.133
##	.TAggScale_10	-0.010	0.643	-0.015	0.203	-0.010	-0.002
##	.TAggScale_12	0.313	0.518	0.604	0.546	0.010	0.002
##	.TAggScale_14 ~~	0.313	0.516	0.004	0.540	0.313	0.070
##	.TAggScale_10	1.349	0.748	1.805	0.071	1.349	0.239
##	.TAggScale_12	0.281	0.668	0.421	0.674	0.281	0.070
##	.TAggScale_12 ~~	0.201	0.000	0.121	0.071	0.201	0.010
##	.TAggScale_14	-0.209	0.578	-0.361	0.718	-0.209	-0.045
##	.PProScale_1 ~~	0.200	0.010	0.001	0.110	0.200	0.010
##	.PProScale_3	3.012	0.565	5.331	0.000	3.012	0.446
##	.PProScale_5	3.334	0.564	5.913	0.000	3.334	0.511
##	.PProScale_10	2.791	0.531	5.256	0.000	2.791	0.421
##	.PProScale_12	2.179	0.518	4.205	0.000	2.179	0.315
##	.PProScale_14	1.647	0.525	3.134	0.002	1.647	0.246
##	.PProScale_3 ~~						
##	.PProScale_5	2.995	0.532	5.635	0.000	2.995	0.476
##	.PProScale_10	2.976	0.530	5.620	0.000	2.976	0.465
##	.PProScale_12	2.588	0.540	4.791	0.000	2.588	0.388
##	.PProScale_14	2.760	0.522	5.287	0.000	2.760	0.428
##	.PProScale_5 ~~						
##	.PProScale_10	2.855	0.526	5.432	0.000	2.855	0.462
##	.PProScale_12	3.395	0.520	6.535	0.000	3.395	0.528
##	.PProScale_14	2.516	0.499	5.043	0.000	2.516	0.404
##	.PProScale_10 ~~						
##	.PProScale_12	4.154	0.546	7.615	0.000	4.154	0.635
##	.PProScale_14	3.330	0.539	6.181	0.000	3.330	0.526
##	.PProScale_12 ~~						
##	.PProScale_14	3.057	0.569	5.374	0.000	3.057	0.463
##	.TProScale_1 ~~						
##	.TProScale_3	-0.306	1.148	-0.267	0.790	-0.306	-0.048
##	.TProScale_5	-0.114	1.079	-0.106	0.916	-0.114	-0.021
##	.TProScale_10	-0.082	1.210	-0.067	0.946	-0.082	-0.012
##	.TProScale_12	0.579	1.175	0.493	0.622	0.579	0.085
##	.TProScale_14	-2.537	1.338	-1.896	0.058	-2.537	-0.406
##	.TProScale_3 ~~	4 004	4 404	4 407	0.040	4 004	0.047
##	.TProScale_5	-1.284	1.101	-1.167	0.243	-1.284	-0.217
##	.TProScale_10	0.327	1.393	0.235	0.815	0.327	0.043
##	.TProScale_12	-0.566	1.254	-0.452	0.652	-0.566	-0.077
##	.TProScale_14	0.876	1.218	0.719	0.472	0.876	0.129
##	.TProScale_5 ~~	1 076	1 201	1 250	0 174	1 076	0 001
##	.TProScale_10 .TProScale_12	-1.876 -0.804	1.381	-1.359	0.174	-1.876	-0.291
##	_		1.120	-0.718	0.473	-0.804	-0.127
## ##	.TProScale_14 .TProScale_10 ~~	-0.283	1.081	-0.262	0.794	-0.283	-0.049
##	.TProScale_10 ~~	-0.124	1.570	-0.079	0.937	-0.124	-0.015
##	.TProScale_12	0.537	1.467	0.366	0.715	0.537	0.013
##	.TProScale_12 ~~	0.001	1.401	0.000	0.710	0.001	0.010
##	.TProScale_14	-3.793	1.541	-2.461	0.014	-3.793	-0.522
	.111000010_11	0.100	1.011	2.101	0.011	0.100	J.022

##	peer1 ~~						
##	peer2	0.785	0.103	7.656	0.000	0.785	0.785
##	peer3	0.875	0.114	7.660	0.000	0.875	0.875
##	peer4	0.667	0.140	4.757	0.000	0.667	0.667
##	peer5	0.626	0.107	5.856	0.000	0.626	0.626
##	peer6	0.626	0.120	5.236	0.000	0.626	0.626
##	agg1	0.655	0.114	5.741	0.000	0.655	0.655
##	agg2	0.346	0.127	2.717	0.007	0.346	0.346
##	agg3	0.500	0.130	3.836	0.000	0.500	0.500
##	agg4	0.485	0.122	3.981	0.000	0.485	0.485
##	agg5	0.484	0.129	3.763	0.000	0.484	0.484
##	agg6	0.578	0.119	4.866	0.000	0.578	0.578
##	pro1	0.843	0.120	7.025	0.000	0.843	0.843
##	pro2	0.650	0.134	4.846	0.000	0.650	0.650
##	pro3	0.391	0.119	3.294	0.001	0.391	0.391
##	pro4	0.624	0.230	2.714	0.007	0.624	0.624
##	pro5	0.467	0.144	3.246	0.001	0.467	0.467
##	pro6	0.658	0.146	4.499	0.000	0.658	0.658
##	peer2 ~~						
##	peer3	0.818	0.091	8.994	0.000	0.818	0.818
##	peer4	0.461	0.113	4.095	0.000	0.461	0.461
##	peer5	0.655	0.094	6.932	0.000	0.655	0.655
##	peer6	0.636	0.094	6.774	0.000	0.636	0.636
##	agg1	0.421	0.106	3.956	0.000	0.421	0.421
##	agg2	0.452	0.107	4.234	0.000	0.452	0.452
##	agg3	0.570	0.117	4.866	0.000	0.570	0.570
## ##	agg4	0.396 0.328	0.104 0.119	3.801 2.764	0.000 0.006	0.396 0.328	0.396 0.328
##	agg5 agg6	0.553	0.119	5.200	0.000	0.553	0.553
##	aggo pro1	0.620	0.100	5.700	0.000	0.620	0.620
##	pro2	0.993	0.103	9.618	0.000	0.993	0.993
##	pro3	0.576	0.105	5.473	0.000	0.576	0.576
##	pro4	0.466	0.164	2.842	0.004	0.466	0.466
##	pro5	0.593	0.124	4.787	0.000	0.593	0.593
##	pro6	0.480	0.116	4.122	0.000	0.480	0.480
##	peer3 ~~						
##	peer4	0.798	0.091	8.790	0.000	0.798	0.798
##	peer5	1.070	0.088	12.182	0.000	1.070	1.070
##	peer6	0.911	0.084	10.793	0.000	0.911	0.911
##	agg1	0.453	0.125	3.623	0.000	0.453	0.453
##	agg2	0.411	0.129	3.194	0.001	0.411	0.411
##	agg3	0.689	0.129	5.360	0.000	0.689	0.689
##	agg4	0.464	0.116	3.994	0.000	0.464	0.464
##	agg5	0.456	0.130	3.502	0.000	0.456	0.456
##	agg6	0.677	0.114	5.960	0.000	0.677	0.677
##	pro1	0.598	0.128	4.664	0.000	0.598	0.598
##	pro2	0.644	0.137	4.686	0.000	0.644	0.644
##	pro3	0.749	0.109	6.893	0.000	0.749	0.749
##	pro4	0.700	0.171	4.084	0.000	0.700	0.700
##	pro5	0.604	0.130	4.632	0.000	0.604	0.604
##	pro6	0.638	0.131	4.884	0.000	0.638	0.638
##	peer4 ~~						
##	peer5	1.060	0.084	12.685	0.000	1.060	1.060
##	peer6	0.794	0.085	9.284	0.000	0.794	0.794

##	agg1	0.369	0.136	2.707	0.007	0.369	0.369
##	agg2	0.247	0.147	1.689	0.091	0.247	0.247
##	agg3	0.438	0.150	2.912	0.004	0.438	0.438
##	agg4	0.620	0.113	5.476	0.000	0.620	0.620
##	agg5	0.482	0.149	3.234	0.001	0.482	0.482
##	agg6	0.470	0.122	3.858	0.000	0.470	0.470
##	pro1	0.513	0.128	4.017	0.000	0.513	0.513
##	pro2	0.473	0.141	3.363	0.001	0.473	0.473
##	pro3	0.590	0.107	5.495	0.000	0.590	0.590
##	pro4	0.828	0.157	5.283	0.000	0.828	0.828
##	pro5	0.742	0.137	5.425	0.000	0.742	0.742
##	pro6	0.607	0.142	4.268	0.000	0.607	0.607
	peer5 ~~	0.007	0.142	4.200	0.000	0.007	0.007
##	-	0.000	0.060	14 515	0 000	0.000	0 000
##	peer6	0.902	0.062	14.515	0.000	0.902	0.902
##	agg1	0.226	0.111	2.033	0.042	0.226	0.226
##	agg2	0.229	0.116	1.976	0.048	0.229	0.229
##	agg3	0.447	0.110	4.072	0.000	0.447	0.447
##	agg4	0.406	0.098	4.164	0.000	0.406	0.406
##	agg5	0.597	0.103	5.780	0.000	0.597	0.597
##	agg6	0.508	0.098	5.178	0.000	0.508	0.508
##	pro1	0.359	0.109	3.301	0.001	0.359	0.359
##	pro2	0.377	0.125	3.005	0.003	0.377	0.377
##	pro3	0.581	0.089	6.514	0.000	0.581	0.581
##	pro4	0.726	0.163	4.455	0.000	0.726	0.726
##	pro5	0.865	0.108	8.029	0.000	0.865	0.865
##	pro6	0.570	0.117	4.889	0.000	0.570	0.570
##	peer6 ~~						
##	agg1	0.445	0.114	3.891	0.000	0.445	0.445
##	agg2	0.311	0.119	2.610	0.009	0.311	0.311
##	agg3	0.460	0.120	3.832	0.000	0.460	0.460
##	agg4	0.496	0.097	5.094	0.000	0.496	0.496
##	agg5	0.479	0.117	4.091	0.000	0.479	0.479
##	agg6	0.728	0.090	8.077	0.000	0.728	0.728
##	pro1	0.444	0.111	4.000	0.000	0.444	0.444
##	pro2	0.510	0.124	4.115	0.000	0.510	0.510
##	pro3	0.674	0.091	7.407	0.000	0.674	0.674
##	pro4	0.777	0.160	4.858	0.000	0.777	0.777
##	pro5	0.747	0.114	6.544	0.000	0.747	0.747
##	pro6	0.836	0.112	7.474	0.000	0.836	0.836
##	agg1 ~~						
##	agg2	0.713	0.092	7.738	0.000	0.713	0.713
##	agg3	0.833	0.102	8.190	0.000	0.833	0.833
##	agg4	0.685	0.109	6.296	0.000	0.685	0.685
##	agg5	0.677	0.141	4.790	0.000	0.677	0.677
##	agg6	0.802	0.101	7.965	0.000	0.802	0.802
##	pro1	0.518	0.114	4.537	0.000	0.518	0.518
##	pro2	0.439	0.130	3.387	0.001	0.439	0.439
##	pro3	0.489	0.122	4.007	0.000	0.489	0.489
##	pro4	0.385	0.171	2.254	0.024	0.385	0.385
##	pro5	0.521	0.135	3.876	0.000	0.521	0.521
##	pro6	0.552	0.141	3.901	0.000	0.552	0.552
##	agg2 ~~	0.002					
##	agg3	0.809	0.104	7.767	0.000	0.809	0.809
##	agg4	0.577	0.121	4.765	0.000	0.577	0.577
	- 60 -						

##	agg5	0.604	0.137	4.427	0.000	0.604	0.604
##	agg6	0.633	0.132	4.802	0.000	0.633	0.633
##	pro1	0.292	0.130	2.252	0.024	0.292	0.292
##	pro2	0.599	0.125	4.805	0.000	0.599	0.599
##	pro3	0.532	0.119	4.472	0.000	0.532	0.532
##	pro4	0.279	0.170	1.643	0.100	0.279	0.279
##	pro5	0.560	0.138	4.048	0.000	0.560	0.560
##	pro6	0.427	0.136	3.147	0.002	0.427	0.427
##	agg3 ~~						
##	agg4	0.695	0.113	6.139	0.000	0.695	0.695
##	agg5	0.946	0.149	6.337	0.000	0.946	0.946
##	agg6	0.907	0.123	7.386	0.000	0.907	0.907
##	pro1	0.449	0.134	3.342	0.001	0.449	0.449
##	pro2	0.457	0.142	3.205	0.001	0.457	0.457
##	pro3	0.620	0.123	5.027	0.000	0.620	0.620
##	pro4	0.391	0.182	2.152	0.031	0.391	0.391
##	pro5	0.592	0.139	4.260	0.000	0.592	0.592
##	pro6	0.685	0.137	4.988	0.000	0.685	0.685
##	agg4 ~~						
##	agg5	0.715	0.106	6.756	0.000	0.715	0.715
##	agg6	1.008	0.092	10.963	0.000	1.008	1.008
##	pro1	0.182	0.128	1.416	0.157	0.182	0.182
##	pro2	0.236	0.138	1.703	0.089	0.236	0.236
##	pro3	0.336	0.112	3.008	0.003	0.336	0.336
##	pro4	0.515	0.155	3.332	0.001	0.515	0.515
##	pro5	0.514	0.124	4.148	0.000	0.514	0.514
##	pro6	0.498	0.119	4.189	0.000	0.498	0.498
##	agg5 ~~						
##	agg6	0.750	0.134	5.603	0.000	0.750	0.750
##	pro1	0.217	0.128	1.694	0.090	0.217	0.217
##	pro2	0.080	0.141	0.570	0.569	0.080	0.080
##	pro3	0.370	0.123	3.009	0.003	0.370	0.370
##	pro4	0.620	0.171	3.629	0.000	0.620	0.620
##	pro5	0.825	0.136	6.065	0.000	0.825	0.825
## ##	pro6 agg6 ~~	0.477	0.134	3.559	0.000	0.477	0.477
##	pro1	0.313	0.126	2.493	0.013	0.313	0.313
##	-	0.313	0.120	2.493	0.013	0.313	0.313
##	pro2 pro3	0.430	0.141	3.790	0.000	0.430	0.430
##	pro4	0.417	0.113	2.582	0.010	0.417	0.417
##	pro5	0.658	0.101	5.269	0.000	0.658	0.658
##	pro6	0.841	0.111	7.587	0.000	0.841	0.841
##	pro1 ~~	0.011	0.111	7.007	0.000	0.011	0.011
##	pro2	0.962	0.129	7.478	0.000	0.962	0.962
##	pro3	0.761	0.104	7.323	0.000	0.761	0.761
##	pro4	0.470	0.176	2.671	0.008	0.470	0.470
##	pro5	0.445	0.160	2.788	0.005	0.445	0.445
##	pro6	0.668	0.167	4.009	0.000	0.668	0.668
##	pro2 ~~	3.000	• •				
##	pro3	0.858	0.125	6.857	0.000	0.858	0.858
##	pro4	0.583	0.181	3.225	0.001	0.583	0.583
##	pro5	0.775	0.160	4.851	0.000	0.775	0.775
##	pro6	0.434	0.157	2.759	0.006	0.434	0.434
##	pro3 ~~						
	•						

##	pro4	0.914	0.164	5.582	0.000	0.914	0.914
##	pro5	0.789	0.117	6.714	0.000	0.789	0.789
##	pro6	0.657	0.126	5.227	0.000	0.657	0.657
##	pro4 ~~						
##	pro5	0.894	0.153	5.840	0.000	0.894	0.894
##	pro6	0.695	0.169	4.107	0.000	0.695	0.695
##	pro5 ~~						
##	pro6	1.224	0.174	7.052	0.000	1.224	1.224
##							
##	Intercepts:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.PPeerScale_1	60.344	0.530	113.923	0.000	60.344	6.697
##	.TPeerScale_1	59.230	0.697	85.008	0.000	59.230	5.870
##	.PPeerScale_3	62.021	0.515	120.454	0.000	62.021	7.275
##	$. exttt{TPeerScale}_3$	61.773	0.634	97.398	0.000	61.773	7.030
##	.PPeerScale_5	62.256	0.531	117.193	0.000	62.256	7.114
##	.TPeerScale_5	61.023	0.661	92.303	0.000	61.023	6.334
##	.PPeerScale_10	61.468	0.570	107.823	0.000	61.468	6.739
##	.TPeerScale_10	60.514	0.792	76.395	0.000	60.514	5.569
##	.PPeerScale_12	61.906	0.559	110.679	0.000	61.906	6.710
##	.TPeerScale_12	59.415	0.770	77.139	0.000	59.415	5.464
##	.PPeerScale_14	61.339	0.619	99.142	0.000	61.339	6.242
##	.TPeerScale_14	60.598	0.765	79.254	0.000	60.598	5.900
##	.PAggScale_1	12.798	0.181	70.543	0.000	12.798	4.133
##	.TAggScale_1	12.859	0.235	54.672	0.000	12.859	3.678
##	.PAggScale_3	13.252	0.162	81.682	0.000	13.252	4.920
##	.TAggScale_3	13.458	0.221	60.837	0.000	13.458	4.481
##	.PAggScale_5	13.158	0.170	77.423	0.000	13.158	4.699
##	.TAggScale_5	14.012	0.189	74.019	0.000	14.012	5.272
##	.PAggScale_10	14.064	0.158	88.828	0.000	14.064	5.593
##	.TAggScale_10 .PAggScale_12	14.076	0.214	65.877	0.000	14.076	4.875
## ##	.TAggScale_12	14.400 14.094	0.137 0.230	105.347 61.175	0.000	14.400 14.094	6.453 4.623
##	.PAggScale_12	14.730	0.230	114.742	0.000	14.730	7.295
##	.TAggScale_14	14.730	0.128	75.526	0.000	14.730	5.652
##	.PProScale_1	6.803	0.132	38.931	0.000	6.803	2.292
##	.TProScale_1	5.705	0.236	24.161	0.000	5.705	1.640
##	.PProScale_3	7.665	0.174	44.050	0.000	7.665	2.670
##	.TProScale_3	6.319	0.247	25.616	0.000	6.319	1.842
##	.PProScale 5	7.958	0.176	45.163	0.000	7.958	2.765
##	.TProScale_5	6.086	0.234	25.991	0.000	6.086	1.820
##	.PProScale 10	8.803	0.170	51.747	0.000	8.803	3.260
##	.TProScale_10	6.920	0.275	25.128	0.000	6.920	1.893
##	.PProScale_12	8.933	0.176	50.771	0.000	8.933	3.096
##	.TProScale_12	7.120	0.272	26.193	0.000	7.120	1.919
##	.PProScale 14	8.843	0.181	48.904	0.000	8.843	3.140
##	.TProScale_14	6.711	0.286	23.464	0.000	6.711	1.781
##	peer1	0.000		- -		0.000	0.000
##	peer2	0.000				0.000	0.000
##	peer3	0.000				0.000	0.000
##	peer4	0.000				0.000	0.000
##	peer5	0.000				0.000	0.000
##	peer6	0.000				0.000	0.000
##	agg1	0.000				0.000	0.000

##	agg2	0.000				0.000	0.000
##	agg3	0.000				0.000	0.000
##	agg4	0.000				0.000	0.000
##	agg5	0.000				0.000	0.000
##	agg6	0.000				0.000	0.000
##	pro1	0.000				0.000	0.000
##	pro2	0.000				0.000	0.000
##	pro3	0.000				0.000	0.000
##	pro4	0.000				0.000	0.000
##	pro5	0.000				0.000	0.000
##	pro6	0.000				0.000	0.000
##	P-00	0.000				0.000	0.000
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.PPeerScale_1	55.223	6.450	8.562	0.000	55.223	0.680
##	.TPeerScale_1	65.878	10.037	6.563	0.000	65.878	0.647
##	.PPeerScale_3	42.594	5.382	7.915	0.000	42.594	0.586
##	.TPeerScale_3	42.514	6.633	6.410	0.000	42.514	0.551
##	.PPeerScale_5	58.731	5.888	9.974	0.000	58.731	0.767
##	.TPeerScale_5	45.410	9.652	4.704	0.000	45.410	0.489
##	.PPeerScale_10	57.127	7.271	7.857	0.000	57.127	0.687
##	.TPeerScale_10	68.757	13.407	5.128	0.000	68.757	0.582
##	.PPeerScale_12	46.694	5.794	8.059	0.000	46.694	0.549
##	.TPeerScale_12	43.335	11.477	3.776	0.000	43.335	0.366
##	.PPeerScale_14	55.301	7.127	7.760	0.000	55.301	0.573
##	.TPeerScale_14	41.959	9.727	4.313	0.000	41.959	0.398
##	.PAggScale_1	6.728	0.792	8.500	0.000	6.728	0.702
##	.TAggScale_1	6.351	1.419	4.474	0.000	6.351	0.520
##	.PAggScale_3	4.694	0.724	6.480	0.000	4.694	0.647
##	.TAggScale_3	5.844	1.066	5.484	0.000	5.844	0.648
##	.PAggScale_5	5.173	0.674	7.678	0.000	5.173	0.660
##	.TAggScale_5	5.162	0.698	7.396	0.000	5.162	0.731
##	.PAggScale_10	2.935	0.721	4.069	0.000	2.935	0.464
##	.TAggScale_10	4.891	0.886	5.518	0.000	4.891	0.587
##	.PAggScale_12	2.910	0.491	5.925	0.000	2.910	0.584
##	.TAggScale_12	6.541	0.982	6.661	0.000	6.541	0.704
##	.PAggScale_14	2.399	0.346	6.931	0.000	2.399	0.588
##	$.{ t TAggScale_14}$	3.318	0.658	5.043	0.000	3.318	0.506
##	.PProScale_1	7.000	0.738	9.490	0.000	7.000	0.795
##	.TProScale_1	5.857	1.594	3.673	0.000	5.857	0.484
##	.PProScale_3	6.518	0.636	10.250	0.000	6.518	0.791
##	.TProScale_3	6.890	1.268	5.434	0.000	6.890	0.585
##	.PProScale_5	6.075	0.680	8.934	0.000	6.075	0.734
##	.TProScale_5	5.075	1.352	3.754	0.000	5.075	0.454
##	.PProScale_10	6.275	0.696	9.015	0.000	6.275	0.860
##	.TProScale_10	8.193	2.392	3.424	0.001	8.193	0.613
##	.PProScale_12	6.819	0.657	10.386	0.000	6.819	0.819
##	.TProScale_12	7.897	1.623	4.865	0.000	7.897	0.574
##	.PProScale_14	6.393	0.669	9.556	0.000	6.393	0.806
##	.TProScale_14	6.675	1.754	3.806	0.000	6.675	0.470
##	peer1	1.000				1.000	1.000
##	peer2	1.000				1.000	1.000
##	peer3	1.000				1.000	1.000
##	peer4	1.000				1.000	1.000

```
##
        peer5
                            1.000
                                                                     1.000
                                                                               1.000
##
                            1.000
                                                                               1.000
        peer6
                                                                     1.000
                                                                               1.000
##
        agg1
                            1.000
                                                                     1.000
##
                            1.000
                                                                     1.000
                                                                               1.000
        agg2
##
        agg3
                            1.000
                                                                     1.000
                                                                               1.000
##
                            1.000
                                                                     1.000
                                                                               1.000
        agg4
##
                            1.000
        agg5
                                                                     1.000
                                                                               1.000
##
        agg6
                            1.000
                                                                     1.000
                                                                               1.000
##
        pro1
                            1.000
                                                                     1.000
                                                                               1.000
##
        pro2
                            1.000
                                                                     1.000
                                                                               1.000
##
        pro3
                            1.000
                                                                     1.000
                                                                               1.000
##
        pro4
                            1.000
                                                                     1.000
                                                                               1.000
##
        pro5
                            1.000
                                                                     1.000
                                                                               1.000
##
        pro6
                            1.000
                                                                     1.000
                                                                               1.000
```

semPaths(fit.4, what="std")

The first model autoregressive) shows acceptable fit with the RMSEA and SRMR below 0.10 and the CFI above 0.9 (0.923 to be exact). There is a consistently larger factor loading of the teacher-report scores on the latent variables at each wave for the peer and prosocial scale (but not for the aggression scale where the loadings are equal). The most interesting thing to appear in the model is the significant correlations between the parent scores over time, but not the teacher scores. This is to be expected since the parents remain the same over this time, while the teachers change year to year.

```
#Longitudinal path model predicting later times by previous times (autoregressive)
mod.5.full <- '</pre>
##define latent variables
peer1 =~ L1*PPeerScale_1 + L2*TPeerScale_1
peer2 =~ L1*PPeerScale_3 + L2*TPeerScale_3
peer3 =~ L1*PPeerScale_5 + L2*TPeerScale_5
peer4 =~ L1*PPeerScale_10 + L2*TPeerScale_10
peer5 =~ L1*PPeerScale_12 + L2*TPeerScale_12
peer6 =~ L1*PPeerScale_14 + L2*TPeerScale_14
```

```
peer7 =~ L1*PPeerScale_16 + L2*TPeerScale_16
peer8 =~ L1*PPeerScale_18 + L2*TPeerScale_18
agg1 =~ L1*PAggScale_1 + L2*TAggScale_1
agg2 =~ L1*PAggScale_3 + L2*TAggScale_3
agg3 =~ L1*PAggScale_5 + L2*TAggScale_5
agg4 =~ L1*PAggScale_10 + L2*TAggScale_10
agg5 =~ L1*PAggScale_12 + L2*TAggScale_12
agg6 =~ L1*PAggScale_14 + L2*TAggScale_14
agg7 =~ L1*PAggScale_16 + L2*TAggScale_16
agg8 =~ L1*PAggScale_18 + L2*TAggScale_18
pro1 =~ L1*PProScale_1 + L2*TProScale_1
pro2 =~ L1*PProScale_3 + L2*TProScale_3
pro3 =~ L1*PProScale_5 + L2*TProScale_5
pro4 =~ L1*PProScale_10 + L2*TProScale_10
pro5 =~ L1*PProScale_12 + L2*TProScale_12
pro6 =~ L1*PProScale_14 + L2*TProScale_14
pro7 =~ L1*PProScale_16 + L2*TProScale_16
pro8 =~ L1*PProScale_18 + L2*TProScale_18
## free latent variances at later times (only set the scale once)
peer2 ~~ NA*peer2
peer3 ~~ NA*peer3
peer4 ~~ NA*peer4
peer5 ~~ NA*peer5
peer6 ~~ NA*peer6
peer7 ~~ NA*peer7
peer8 ~~ NA*peer8
agg2 ~~ NA*agg2
agg3 ~~ NA*agg3
agg4 ~~ NA*agg4
agg5 ~~ NA*agg5
agg6 ~~ NA*agg6
agg7 ~~ NA*agg7
agg8 ~~ NA*agg8
pro2 ~~ NA*pro2
pro3 ~~ NA*pro3
pro4 ~~ NA*pro4
pro5 ~~ NA*pro5
pro6 ~~ NA*pro6
pro7 ~~ NA*pro7
pro8 ~~ NA*pro8
peer2 ~~ peer1
peer3 ~~ peer2
peer4 ~~ peer3
peer5 ~~ peer4
peer6 ~~ peer5
peer7 ~~ peer6
peer8 ~~ peer7
```

```
agg2 ~~ agg1
agg3 ~~ agg2
agg4 ~~ agg3
agg5 ~~ agg4
agg6 ~~ agg5
agg7 ~~ agg6
agg8 ~~ agg7
pro2 ~~ pro1
pro3 ~~ pro2
pro4 ~~ pro3
pro5 ~~ pro4
pro6 ~~ pro5
pro7 ~~ pro6
pro8 ~~ pro7
## correlated residuals across time
PPeerScale_1 ~~ PPeerScale_3 + PPeerScale_5 + PPeerScale_10 + PPeerScale_12 + PPeerScale_14 +
PPeerScale_16 + PPeerScale_18
PPeerScale_3 ~~ PPeerScale_5 + PPeerScale_10 + PPeerScale_12 + PPeerScale_14 +
PPeerScale 16 + PPeerScale 18
PPeerScale_10 + PPeerScale_12 + PPeerScale_14 + PPeerScale_16 + PPeerScale_18
PPeerScale 10 ~~ PPeerScale 12 + PPeerScale 14 + PPeerScale 16 + PPeerScale 18
PPeerScale_12 ~~ PPeerScale_14 + PPeerScale_16 + PPeerScale_18
PPeerScale_14 ~~ PPeerScale_16 + PPeerScale_18
PPeerScale_16 ~~ PPeerScale_18
TPeerScale_1 ~~ TPeerScale_3 + TPeerScale_5 + TPeerScale_10 + TPeerScale_12 + TPeerScale_14 +
TPeerScale_16 + TPeerScale_18
TPeerScale_3 ~~ TPeerScale_5 + TPeerScale_10 + TPeerScale_12 + TPeerScale_14 +
TPeerScale_16 + TPeerScale_18
TPeerScale_10 + TPeerScale_12 + TPeerScale_14 + TPeerScale_16 + TPeerScale_18
TPeerScale_10 ~~ TPeerScale_12 + TPeerScale_14 + TPeerScale_16 + TPeerScale_18
TPeerScale_12 ~~ TPeerScale_14 + TPeerScale_16 + TPeerScale_18
TPeerScale_14 ~~ TPeerScale_16 + TPeerScale_18
TPeerScale_16 ~~ TPeerScale_18
PAggScale 1 ~~ PAggScale 3 + PAggScale 5 + PAggScale 10 + PAggScale 12 + PAggScale 14 +
PAggScale_16 + PAggScale_18
PAggScale_3 ~~ PAggScale_5 + PAggScale_10 + PAggScale_12 + PAggScale_14 +
PAggScale_16 + PAggScale_18
PAggScale_5 ~~ PAggScale_10 + PAggScale_12 + PAggScale_14 + PAggScale_16 + PAggScale_18
PAggScale_10 ~~ PAggScale_12 + PAggScale_14 + PAggScale_16 + PAggScale_18
PAggScale_12 ~~ PAggScale_14 + PAggScale_16 + PAggScale_18
PAggScale_14 ~~ PAggScale_16 + PAggScale_18
PAggScale_16 ~~ PAggScale_18
TAggScale_1 ~~ TAggScale_3 + TAggScale_5 + TAggScale_10 + TAggScale_12 + TAggScale_14 +
TAggScale_16 + TAggScale_18
TAggScale_3 ~~ TAggScale_5 + TAggScale_10 + TAggScale_12 + TAggScale_14 +
TAggScale_16 + TAggScale_18
TAggScale_10 + TAggScale_12 + TAggScale_14 + TAggScale_16 + TAggScale_18
TAggScale_10 ~~ TAggScale_12 + TAggScale_14 + TAggScale_16 + TAggScale_18
```

```
TAggScale_12 ~~ TAggScale_14 + TAggScale_16 + TAggScale_18
TAggScale_14 ~~ TAggScale_16 + TAggScale_18
TAggScale_16 ~~ TAggScale_18
PProScale_1 ~~ PProScale_3 + PProScale_5 + PProScale_10 + PProScale_12 + PProScale_14 +
PProScale 16 + PProScale 18
PProScale_3 ~~ PProScale_5 + PProScale_10 + PProScale_12 + PProScale_14 +
PProScale_16 + PProScale_18
PProScale_5 ~~ PProScale_10 + PProScale_12 + PProScale_14 + PProScale_16 + PProScale_18
PProScale_10 ~~ PProScale_12 + PProScale_14 + PProScale_16 + PProScale_18
PProScale_12 ~~ PProScale_14 + PProScale_16 + PProScale_18
PProScale_14 ~~ PProScale_16 + PProScale_18
PProScale_16 ~~ PProScale_18
TProScale_1 ~~ TProScale_3 + TProScale_5 + TProScale_10 + TProScale_12 + TProScale_14 +
TProScale 16 + TProScale 18
TProScale_3 ~~ TProScale_5 + TProScale_10 + TProScale_12 + TProScale_14 +
TProScale 16 + TProScale 18
TProScale_5 ~~ TProScale_10 + TProScale_12 + TProScale_14 + TProScale_16 + TProScale_18
TProScale_10 ~~ TProScale_12 + TProScale_14 + TProScale_16 + TProScale_18
TProScale 12 ~~ TProScale 14 + TProScale 16 + TProScale 18
TProScale_14 ~~ TProScale_16 + TProScale_18
TProScale_16 ~~ TProScale_18
mod.5 <- '
##define latent variables
peer1 =~ L1*PPeerScale_1 + L2*TPeerScale_1
peer2 =~ L1*PPeerScale_3 + L2*TPeerScale_3
peer3 =~ L1*PPeerScale_5 + L2*TPeerScale_5
peer4 =~ L1*PPeerScale_10 + L2*TPeerScale_10
peer5 =~ L1*PPeerScale_12 + L2*TPeerScale_12
peer6 =~ L1*PPeerScale_14 + L2*TPeerScale_14
agg1 =~ L1*PAggScale 1 + L2*TAggScale 1
agg2 =~ L1*PAggScale_3 + L2*TAggScale_3
agg3 =~ L1*PAggScale_5 + L2*TAggScale_5
agg4 =~ L1*PAggScale_10 + L2*TAggScale_10
agg5 =~ L1*PAggScale 12 + L2*TAggScale 12
agg6 =~ L1*PAggScale_14 + L2*TAggScale_14
pro1 =~ L1*PProScale_1 + L2*TProScale_1
pro2 =~ L1*PProScale_3 + L2*TProScale_3
pro3 =~ L1*PProScale_5 + L2*TProScale_5
pro4 =~ L1*PProScale_10 + L2*TProScale_10
pro5 =~ L1*PProScale_12 + L2*TProScale_12
pro6 =~ L1*PProScale_14 + L2*TProScale_14
## free latent variances at later times (only set the scale once)
peer2 ~~ NA*peer2
peer3 ~~ NA*peer3
peer4 ~~ NA*peer4
peer5 ~~ NA*peer5
```

```
peer6 ~~ NA*peer6
agg2 ~~ NA*agg2
agg3 ~~ NA*agg3
agg4 ~~ NA*agg4
agg5 ~~ NA*agg5
agg6 ~~ NA*agg6
pro2 ~~ NA*pro2
pro3 ~~ NA*pro3
pro4 ~~ NA*pro4
pro5 ~~ NA*pro5
pro6 ~~ NA*pro6
peer2 ~~ peer1
peer3 ~~ peer2
peer4 ~~ peer3
peer5 ~~ peer4
peer6 ~~ peer5
agg2 ~~ agg1
agg3 ~~ agg2
agg4 ~~ agg3
agg5 ~~ agg4
agg6 ~~ agg5
pro2 ~~ pro1
pro3 ~~ pro2
pro4 ~~ pro3
pro5 ~~ pro4
pro6 ~~ pro5
## correlated residuals across time
PPeerScale_1 ~~ PPeerScale_3 + PPeerScale_5 + PPeerScale_10 + PPeerScale_12 + PPeerScale_14
PPeerScale_3 ~~ PPeerScale_5 + PPeerScale_10 + PPeerScale_12 + PPeerScale_14
PPeerScale_5 ~~ PPeerScale_10 + PPeerScale_12 + PPeerScale_14
PPeerScale_10 ~~ PPeerScale_12 + PPeerScale_14
PPeerScale_12 ~~ PPeerScale_14
TPeerScale_1 ~~ TPeerScale_3 + TPeerScale_5 + TPeerScale_10 + TPeerScale_12 + TPeerScale_14
TPeerScale_3 ~~ TPeerScale_5 + TPeerScale_10 + TPeerScale_12 + TPeerScale_14
TPeerScale_5 ~~ TPeerScale_10 + TPeerScale_12 + TPeerScale_14
TPeerScale_10 ~~ TPeerScale_12 + TPeerScale_14
TPeerScale_12 ~~ TPeerScale_14
PAggScale_1 ~~ PAggScale_3 + PAggScale_5 + PAggScale_10 + PAggScale_12 + PAggScale_14
PAggScale_3 ~~ PAggScale_5 + PAggScale_10 + PAggScale_12 + PAggScale_14
PAggScale_5 ~~ PAggScale_10 + PAggScale_12 + PAggScale_14
PAggScale_10 ~~ PAggScale_12 + PAggScale_14
PAggScale_12 ~~ PAggScale_14
TAggScale_1 ~~ TAggScale_3 + TAggScale_5 + TAggScale_10 + TAggScale_12 + TAggScale_14
TAggScale_3 ~~ TAggScale_5 + TAggScale_10 + TAggScale_12 + TAggScale_14
```

```
TAggScale_5 ~~ TAggScale_10 + TAggScale_12 + TAggScale_14
TAggScale_10 ~~ TAggScale_12 + TAggScale_14
TAggScale_12 ~~ TAggScale_14
PProScale_1 ~~ PProScale_3 + PProScale_5 + PProScale_10 + PProScale_12 + PProScale_14
PProScale_3 ~~ PProScale_5 + PProScale_10 + PProScale_12 + PProScale_14
PProScale_5 ~~ PProScale_10 + PProScale_12 + PProScale_14
PProScale_10 ~~ PProScale_12 + PProScale_14
PProScale_12 ~~ PProScale_14
TProScale_1 ~~ TProScale_3 + TProScale_5 + TProScale_10 + TProScale_12 + TProScale_14
TProScale_3 ~~ TProScale_5 + TProScale_10 + TProScale_12 + TProScale_14
TProScale_5 ~~ TProScale_10 + TProScale_12 + TProScale_14
TProScale_10 ~~ TProScale_12 + TProScale_14
TProScale_12 ~~ TProScale_14
fit.5 <- sem(mod.5, data=data_wide, missing = "ML", std.lv=TRUE, control=list(iter.max=1000), verbose=F
summary(fit.5, standardized=TRUE, fit.measures=TRUE)
## ** WARNING ** lavaan (0.5-23.1097) did NOT converge after 1000 iterations
## ** WARNING ** Estimates below are most likely unreliable
##
##
                                                      Used
                                                                 Total
##
    Number of observations
                                                       302
                                                                   306
##
                                                       154
##
    Number of missing patterns
##
##
                                                        ML
    Estimator
    Minimum Function Test Statistic
##
                                                        NA
##
    Degrees of freedom
                                                        NA
    P-value
##
                                                        NA
##
## Parameter Estimates:
##
##
    Information
                                                  Observed
    Standard Errors
                                                  Standard
##
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|) Std.lv Std.all
##
    peer1 =~
##
       PPerScl_1 (L1)
                         1.604
                                     NA
                                                              1.604
                                                                       0.183
##
       TPerScl_1 (L2)
                         2.200
                                     NA
                                                              2.200
                                                                       0.215
##
    peer2 =~
##
       PPerScl_3 (L1)
                         1.604
                                     NA
                                                              4.719
                                                                       0.574
##
       TPerScl_3 (L2)
                         2.200
                                     NA
                                                              6.474
                                                                       0.716
##
    peer3 =~
                                                              4.020
       PPerScl_5 (L1)
                                                                       0.461
##
                         1.604
                                     NA
##
       TPerScl_5 (L2)
                         2.200
                                     NA
                                                              5.515
                                                                       0.608
##
    peer4 =~
##
       PPrScl_10 (L1)
                         1.604
                                                              4.874
                                                                       0.544
                                     NA
##
       TPrScl_10 (L2)
                         2.200
                                     NA
                                                              6.688
                                                                       0.624
    peer5 =~
##
##
       PPrScl_12 (L1)
                                                              5.914
                                                                       0.662
                         1.604
                                     NA
```

## ##	TPrScl_12 peer6 =~	(L2)	2.200	NA			8.113	0.755
	PPrScl_14	(T 1)	1 604	NT A			E 000	0 600
##	-		1.604	NA			5.902	0.620
##	TPrScl_14	(L2)	2.200	NA			8.097	0.784
##	agg1 =~							
##	PAggScl_1		1.604	NA			1.604	0.523
##	TAggScl_1	(L2)	2.200	NA			2.200	0.644
##	agg2 =~							
##	PAggScl_3	(L1)	1.604	NA			1.400	0.527
##	TAggScl_3		2.200	NA			1.921	0.638
##	agg3 =~	()	2,200				1.021	0.000
##	PAggScl_5	(T 1)	1.604	NA			1.291	0.480
##	TAggScl_5	(L2)	2.200	NA			1.772	0.630
##	agg4 =~							
##	PAggSc_10		1.604	NA			1.571	0.646
##	TAggSc_10	(L2)	2.200	NA			2.156	0.719
##	agg5 =~							
##	PAggSc_12	(L1)	1.604	NA			1.299	0.592
##	TAggSc_12	(L2)	2.200	NA			1.782	0.583
##	agg6 =~							
##	PAggSc_14	(I.1)	1.604	NA			1.226	0.609
##	TAggSc_14		2.200	NA			1.682	0.678
##	pro1 =~	(12)	2.200	1411			1.002	0.010
##	PProScl_1	(T 1)	1.604	NA			1.604	0.531
##	_			NA NA			2.200	
	TProScl_1	(LZ)	2.200	NA			2.200	0.649
##	pro2 =~	(T 4)	1 004	NT A			1 405	0 505
##	PProScl_3		1.604	NA			1.485	0.505
##	TProScl_3	(L2)	2.200	NA			2.037	0.607
##	pro3 =~							
##	PProScl_5		1.604	NA			1.703	0.579
##	TProScl_5	(L2)	2.200	NA			2.336	0.700
##	pro4 =~							
##	PPrScl_10	(L1)	1.604	NA			1.270	0.458
##	TPrScl_10	(L2)	2.200	NA			1.743	0.490
##	pro5 =~							
##	PPrScl_12	(L1)	1.604	NA			1.480	0.494
##	TPrScl_12		2.200	NA			2.031	0.569
##	pro6 =~	' —- <i>'</i>						
##	PPrScl_14	(T 1)	1.604	NA			1.579	0.538
##	TPrScl_14			NA			2.166	0.619
##	111501_14	(12)	2.200	IVA			2.100	0.013
	C							
	Covariances:			G. 1 F	7	D(>)	G. 1 1	G. 1 11
##	4		Estimate	Sta.Err	z-value	P(> Z)	Std.lv	Std.all
##	peer1 ~~		F 400	37.4			4 700	4 700
##	peer2		5.100	NA			1.733	1.733
##	peer2 ~~							
##	peer3		6.129	NA			0.831	0.831
##	peer3 ~~							
##	peer4		5.947	NA			0.780	0.780
##	peer4 ~~							
##	peer5		11.956	NA			1.067	1.067
##	peer5 ~~							
##	peer6		12.100	NA			0.892	0.892
##	agg1 ~~							

##	agg2	0.596	NA	0.683	0.683
##	agg2 ~~				
##	agg3	0.550	NA	0.781	0.781
##	agg3 ~~				
##	agg4	0.523	NA	0.662	0.662
##	agg4 ~~				
##	agg5	0.527	NA	0.664	0.664
##	agg5 ~~				
##	agg6	0.442	NA	0.713	0.713
##	pro1 ~~				
##	pro2	0.886	NA	0.957	0.957
##	pro2 ~~				
##	pro3	0.879	NA	0.894	0.894
##	pro3 ~~	0 770	37.4	0.000	0.000
##	pro4	0.776	NA	0.923	0.923
##	pro4 ~~	0.640	DT A	0.000	0.000
##	pro5 pro5 ~~	0.648	NA	0.886	0.886
## ##	pro6	1.115	NA	1.227	1.227
##	.PPeerScale_1 ~~	1.113	IVA	1.221	1.221
##	.PPeerScale_3	24.736	NA	24.736	0.427
##	.PPeerScale_5	28.019	NA	28.019	0.421
##	.PPeerScale_10	20.800	NA	20.800	0.322
##	.PPeerScale_12	15.719	NA	15.719	0.273
##	.PPeerScale_14	15.105	NA	15.105	0.235
##	.PPeerScale_3 ~~				
##	.PPeerScale_5	32.988	NA	32.988	0.633
##	.PPeerScale_10	27.099	NA	27.099	0.535
##	.PPeerScale_12	15.298	NA	15.298	0.339
##	.PPeerScale_14	18.807	NA	18.807	0.373
##	.PPeerScale_5 ~~				
##	.PPeerScale_10	36.683	NA	36.683	0.631
##	.PPeerScale_12	16.984	NA	16.984	0.328
##	.PPeerScale_14	25.783	NA	25.783	0.446
##	.PPeerScale_10 ~~				
##	.PPeerScale_12	20.707	NA	20.707	0.412
##	.PPeerScale_14	32.669	NA	32.669	0.582
##	.PPeerScale_12 ~~	07 600	DT A	07 600	0 550
##	.PPeerScale_14 .TPeerScale_1 ~~	27.629	NA	27.629	0.552
## ##	.TPeerScale_3	2.184	NA	2.184	0.035
##	.TPeerScale 5	-3.337	NA NA	-3.337	-0.046
##	.TPeerScale 10	-0.196	NA	-0.196	-0.002
##	.TPeerScale_12	7.675	NA	7.675	0.109
##	.TPeerScale_14	2.113	NA	2.113	0.033
##	.TPeerScale_3 ~~				
##	.TPeerScale_5	-12.551	NA	-12.551	-0.276
##	.TPeerScale_10	-4.207	NA	-4.207	-0.080
##	.TPeerScale_12	-8.730	NA	-8.730	-0.196
##	.TPeerScale_14	-4.818	NA	-4.818	-0.119
##	.TPeerScale_5 ~~				
##	.TPeerScale_10	12.457	NA	12.457	0.206
##	.TPeerScale_12	-6.682	NA	-6.682	-0.132
##	.TPeerScale_14	1.093	NA	1.093	0.024

##	.TPeerScale_10 ~~				
##	.TPeerScale_12	1.996	NA	1.996	0.034
##	.TPeerScale_14	11.285	NA	11.285	0.210
##	.TPeerScale_12 ~~				
##	.TPeerScale_14	-1.874	NA	-1.874	-0.041
##	.PAggScale_1 ~~				
##	.PAggScale_3	3.815	NA	3.815	0.647
##	.PAggScale_5	3.598	NA	3.598	0.583
##	.PAggScale_10	1.707	NA	1.707	0.352
##	.PAggScale_12	0.899	NA	0.899	0.194
##	.PAggScale_14	1.787	NA	1.787	0.429
##	.PAggScale_3 ~~				
##	.PAggScale_5	3.524	NA	3.524	0.661
##	.PAggScale_10	1.609	NA	1.609	0.384
##	.PAggScale_12	1.328	NA	1.328	0.333
##	.PAggScale_14	1.241	NA	1.241	0.345
##	.PAggScale_5 ~~				
##	.PAggScale_10	2.431	NA	2.431	0.555
##	.PAggScale_12	1.323	NA	1.323	0.317
##	.PAggScale_14	1.319	NA	1.319	0.350
##	.PAggScale_10 ~~				
##	.PAggScale_12	2.058	NA	2.058	0.627
##	.PAggScale_14	0.789	NA	0.789	0.266
##	.PAggScale_12 ~~				
##	.PAggScale_14	0.794	NA	0.794	0.281
##	.TAggScale_1 ~~				
##	.TAggScale_3	1.275	NA	1.275	0.211
##	.TAggScale_5	1.088	NA	1.088	0.191
##	.TAggScale_10	0.118	NA	0.118	0.022
##	.TAggScale_12	-0.383	NA	-0.383	-0.059
##	.TAggScale_14	0.923	NA	0.923	0.194
##	.TAggScale_3 ~~	0.001	NT A	0.001	0 104
## ##	.TAggScale_5	0.981	NA NA	0.981 0.749	0.194
##	.TAggScale_10 .TAggScale_12	0.749 0.630	NA NA	0.630	0.155 0.110
##	.TAggScale_12 .TAggScale_14	0.830	NA NA	0.337	0.110
##	.TAggScale_14 .TAggScale_5 ~~	0.337	IVA	0.337	0.000
##	.TAggScale_10	0.208	NA	0.208	0.046
##	.TAggScale_10	-0.432	NA	-0.432	-0.080
##	.TAggScale_12	0.047	NA	0.047	0.012
##	.TAggScale_10 ~~	0.01	****	0.01.	0.012
##	.TAggScale_12	1.223	NA	1.223	0.236
##	.TAggScale_14	-0.119	NA	-0.119	-0.031
##	.TAggScale_12 ~~				
##	.TAggScale_14	-0.298	NA	-0.298	-0.066
##	.PProScale_1 ~~				
##	.PProScale_3	2.738	NA	2.738	0.421
##	.PProScale_5	3.004	NA	3.004	0.489
##	.PProScale_10	2.676	NA	2.676	0.424
##	.PProScale_12	2.079	NA	2.079	0.312
##	.PProScale_14	1.466	NA	1.466	0.232
##	.PProScale_3 ~~				
##	.PProScale_5	2.777	NA	2.777	0.456
##	.PProScale_10	2.933	NA	2.933	0.469

##	.PProScale_12	2.550	NA	2.550	0.386
##	.PProScale_14	2.723	NA	2.723	0.434
##	.PProScale_5 ~~				
##	.PProScale_10	2.617	NA	2.617	0.443
##	.PProScale_12	3.269	NA	3.269	0.524
##	.PProScale_14	2.422	NA	2.422	0.409
##	.PProScale_10 ~~				
##	.PProScale_12	4.127	NA	4.127	0.643
##	.PProScale_14	3.254	NA	3.254	0.534
##	.PProScale_12 ~~				
##	.PProScale_14	2.645	NA	2.645	0.411
##	.TProScale_1 ~~				
##	.TProScale_3	0.338	NA	0.338	0.049
##	.TProScale_5	0.423	NA	0.423	0.069
##	.TProScale_10	0.323	NA	0.323	0.040
##	.TProScale_12	1.032	NA	1.032	0.137
##	.TProScale_14	-1.751	NA	-1.751	-0.247
##	.TProScale_3 ~~				
##	.TProScale_5	-0.934	NA	-0.934	-0.147
##	.TProScale_10	0.739	NA	0.739	0.089
##	.TProScale_12	0.064	NA	0.064	0.008
##	.TProScale_14	0.783	NA	0.783	0.107
##	.TProScale_5 ~~				
##	.TProScale_10	-0.743	NA	-0.743	-0.100
##	.TProScale_12	-0.249	NA	-0.249	-0.036
##	.TProScale_14	0.274	NA	0.274	0.042
##	.TProScale_10 ~~				
##	.TProScale_12	0.881	NA	0.881	0.097
##	.TProScale_14	1.022	NA	1.022	0.120
##	.TProScale_12 ~~				
##	.TProScale_14	-1.961	NA	-1.961	-0.243
##	peer1 ~~				
##	peer3	4.817	NA	1.922	1.922
##	peer4	4.250	NA	1.398	1.398
##	peer5	5.037	NA	1.366	1.366
##	peer6	5.036	NA	1.368	1.368
##	agg1	1.536	NA	1.536	1.536
##	agg2	0.724	NA	0.829	0.829
##	agg3	0.892	NA	1.108	1.108
##	agg4	0.993	NA	1.014	1.014
##	agg5	0.893	NA	1.103	1.103
##	agg6	0.983	NA	1.286	1.286
##	pro1	2.080	NA NA	2.080 1.609	2.080
## ##	pro2 pro3	1.490 1.150	NA NA	1.083	1.609 1.083
##	pro3 pro4	1.492	NA NA	1.883	1.883
##	pro5	1.159	NA NA	1.255	1.255
##	pros pro6	1.159	N A N A	1.656	1.255
##	proo peer2 ~~	1.031	INA	1.030	1.000
##	peer2 ~~ peer4	3.745	NA	0.419	0.419
##	peer5	7.310	NA NA	0.419	0.419
##	peer6	6.988	NA NA	0.645	0.645
##	agg1	1.078	NA NA	0.366	0.366
##	agg2	1.078	NA NA	0.422	0.422
ππ	4552	1.000	MU	0.422	0.722

##	agg3	1.299	NA	0.548	0.548
##	agg4	1.038	NA	0.360	0.360
##	agg5	0.676	NA	0.284	0.284
##	agg6	1.244	NA	0.553	0.553
##	pro1	1.862	NA	0.633	0.633
##	pro2	2.724	NA	1.000	1.000
##	pro3	1.960	NA	0.627	0.627
##	pro4	1.347	NA	0.578	0.578
##	pro5	1.765	NA	0.650	0.650
##	pro6	1.486	NA	0.513	0.513
##	peer3 ~~	1.100	1421	0.010	0.010
##	peer5	10.421	NA	1.127	1.127
##	peer6	8.845	NA	0.959	0.959
##	-	1.012	NA	0.404	0.404
##	agg1	0.791	NA	0.362	0.404
	agg2				
##	agg3	1.442	NA	0.714	0.714
##	agg4	1.063	NA	0.433	0.433
##	agg5	0.882	NA	0.435	0.435
##	agg6	1.340	NA	0.699	0.699
##	pro1	1.577	NA	0.629	0.629
##	pro2	1.586	NA	0.683	0.683
##	pro3	2.186	NA	0.821	0.821
##	pro4	1.606	NA	0.809	0.809
##	pro5	1.543	NA	0.667	0.667
##	pro6	1.752	NA	0.710	0.710
##	peer4 ~~				
##	peer6	8.659	NA	0.774	0.774
##	agg1	0.954	NA	0.314	0.314
##	agg2	0.481	NA	0.181	0.181
##	agg3	0.976	NA	0.399	0.399
##	agg4	1.784	NA	0.599	0.599
##	agg5	1.061	NA	0.431	0.431
##	agg6	1.008	NA	0.434	0.434
##	pro1	1.540	NA	0.506	0.506
##	pro2	1.356	NA	0.482	0.482
##	pro3	1.934	NA	0.599	0.599
##	pro4	2.055	NA	0.854	0.854
##	pro5	2.224	NA	0.793	0.793
##	pro6	1.991	NA	0.665	0.665
##	peer5 ~~				
##	agg1	0.598	NA	0.162	0.162
##	agg2	0.578	NA	0.179	0.179
##	agg3	1.221	NA	0.411	0.411
##	agg4	1.353	NA	0.374	0.374
##	agg5	1.753	NA	0.587	0.587
##	agg6	1.380	NA	0.489	0.489
##	pro1	1.299	NA	0.352	0.352
##	pro2	1.351	NA	0.396	0.396
##	pro3	2.300	NA	0.587	0.587
##	pro4	2.366	NA	0.810	0.810
##	pro5	3.086	NA	0.907	0.907
##	pro6	2.243	NA	0.618	0.618
##	peer6 ~~				
##	agg1	1.460	NA	0.397	0.397
	00				

##	agg2	0.852	NA	0.265	0.265
##	agg3	1.296	NA	0.437	0.437
##	agg4	1.691	NA	0.469	0.469
##	agg5	1.344	NA	0.451	0.451
##	agg6	2.043	NA	0.726	0.726
##	pro1	1.618	NA	0.440	0.440
##	pro2	1.851	NA	0.543	0.543
##	pro3	2.654	NA	0.679	0.679
##	pro4	2.460	NA	0.844	0.844
##	pro5	2.602	NA	0.766	0.766
##	pro6	3.083	NA	0.851	0.851
##	agg1 ~~				
##	agg3	0.618	NA	0.767	0.767
##	agg4	0.613	NA	0.625	0.625
##	agg5	0.532	NA	0.656	0.656
##	agg6	0.580	NA	0.759	0.759
##	pro1	0.526	NA	0.526	0.526
##	pro2	0.408	NA	0.440	0.440
##	pro3	0.537	NA	0.506	0.506
##	pro4	0.374	NA	0.473	0.473
##	pro5	0.480	NA	0.520	0.520
##	pro6	0.555	NA	0.563	0.563
##	agg2 ~~				
##	agg4	0.452	NA	0.529	0.529
##	agg5	0.407	NA	0.576	0.576
##	agg6	0.396	NA	0.593	0.593
##	pro1	0.279	NA	0.319	0.319
##	pro2	0.490	NA	0.605	0.605
##	pro3	0.489	NA	0.528	0.528
##	pro4	0.236	NA	0.341	0.341
##	pro5	0.466	NA	0.578	0.578
##	pro6	0.381	NA	0.443	0.443
##	agg3 ~~				
##	agg5	0.594	NA	0.911	0.911
##	agg6	0.558	NA	0.906	0.906
##	pro1	0.390	NA	0.484	0.484
##	pro2	0.348	NA	0.467	0.467
##	pro3	0.561	NA	0.657	0.657
##	pro4	0.343	NA	0.538	0.538
##	pro5	0.454	NA	0.611	0.611
##	pro6	0.579	NA	0.730	0.730
##	agg4 ~~	0.766	NT A	1 002	1 000
## ##	agg6	0.766	NA NA	1.023	1.023 0.148
##	pro1 pro2	0.145 0.201	NA NA	0.148 0.222	0.148
##	pro3	0.330	NA	0.222	0.222
##	pro4	0.423	NA	0.545	0.545
##	pro4 pro5	0.423	NA NA	0.545	0.545
##	pro6	0.473	NA	0.490	0.324
##	agg5 ~~	0.410	MI	0.490	0.430
##	aggo ~~ pro1	0.150	NA	0.185	0.185
##	pro2	0.130	NA NA	0.055	0.165
##	pro3	0.292	NA	0.339	0.339
##	pro4	0.419	NA	0.653	0.653
	F	V. 110	1421	0.000	3.555

##	pro5	0.614	NA			0.821	0.821
##	pro6	0.369	NA			0.462	0.462
##	agg6 ~~						
##	pro1	0.222	NA			0.290	0.290
##	pro2	0.260	NA			0.368	0.368
##	pro3	0.359	NA			0.443	0.443
##	pro4	0.311	NA			0.514	0.514
##	pro5	0.482	NA			0.683	0.683
##	pro6	0.633	NA			0.841	0.841
##	pro1 ~~						
##	pro3	0.834	NA			0.785	0.785
##	pro4	0.399	NA			0.504	0.504
##	pro5	0.419	NA			0.454	0.454
##	pro6	0.637	NA			0.647	0.647
##	pro2 ~~	0.001	1411			0.017	0.017
##	pro4	0.449	NA			0.613	0.613
##	pro5	0.449	NA NA			0.776	0.776
	pro6		NA NA				
##	-	0.449	NA			0.492	0.492
##	pro3 ~~	0 770	NT A			0.705	0.705
##	pro5	0.779	NA			0.795	0.795
##	pro6	0.695	NA			0.665	0.665
##	pro4 ~~	0 570	37.4			0.740	0.740
##	pro6	0.578	NA			0.742	0.742
##	- .						
##	Intercepts:		a	_	56.1.13	a	a
##	DD 0 1 4	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.PPeerScale_1	60.352	NA			60.352	6.901
##	.TPeerScale_1	59.522	NA			59.522	5.822
	DD D	CO 011	AT A			CO 044	7 540
##	.PPeerScale_3	62.041	NA			62.041	7.543
##	.TPeerScale_3	61.692	NA			61.692	6.823
## ##	.TPeerScale_3 .PPeerScale_5	61.692 62.213	NA NA			61.692 62.213	6.823 7.138
## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5	61.692 62.213 61.144	NA NA NA			61.692 62.213 61.144	6.823 7.138 6.737
## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10	61.692 62.213 61.144 61.460	NA NA NA			61.692 62.213 61.144 61.460	6.823 7.138 6.737 6.863
## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10	61.692 62.213 61.144 61.460 60.611	NA NA NA NA			61.692 62.213 61.144 61.460 60.611	6.823 7.138 6.737 6.863 5.656
## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12	61.692 62.213 61.144 61.460 60.611 61.929	NA NA NA NA NA			61.692 62.213 61.144 61.460 60.611 61.929	6.823 7.138 6.737 6.863 5.656 6.933
## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12	61.692 62.213 61.144 61.460 60.611 61.929 59.528	NA NA NA NA NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528	6.823 7.138 6.737 6.863 5.656 6.933 5.542
## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346	NA NA NA NA NA NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441
## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631	NA NA NA NA NA NA NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867
## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797	NA NA NA NA NA NA NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174
## ## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_12 .TPeerScale_12 .TPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894	NA NA NA NA NA NA NA NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774
## ## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255	NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990
## ## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466	NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475
## ## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255	NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990
## ## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986	NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977
## ## ## ## ## ## ## ## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5 .PAggScale_10	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174	NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895
## ## ## ## ## ## ## ## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5 .PAggScale_10 .TAggScale_10 .TAggScale_10	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986	NA			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977
## ## ## ## ## ## ## ## ## ## ## ## ##	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5 .PAggScale_10 .TAggScale_10 .PAggScale_10 .PAggScale_12	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.400	NA N			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977 5.786 4.684 6.561
######################################	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5 .PAggScale_10 .TAggScale_10 .PAggScale_10 .PAggScale_12 .TAggScale_12	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049	NA N			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977 5.786 4.684
## ###################################	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5 .PAggScale_10 .TAggScale_10 .PAggScale_10 .PAggScale_12	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.400	NA N			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.400	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977 5.786 4.684 6.561
######################################	.TPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5 .PAggScale_10 .TAggScale_10 .PAggScale_10 .PAggScale_12 .TAggScale_12	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.000 14.095	NA N			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.400 14.095	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977 5.786 4.684 6.561 4.612
######################################	.TPeerScale_3 .PPeerScale_5 .TPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .TPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .TAggScale_5 .TAggScale_5 .PAggScale_10 .TAggScale_10 .PAggScale_10 .PAggScale_12 .TAggScale_12 .PAggScale_12	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.095 14.731	NA N			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.095 14.731	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977 5.786 4.684 6.561 4.612 7.321
#######################################	.TPeerScale_3 .PPeerScale_5 .TPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5 .PAggScale_10 .TAggScale_10 .TAggScale_10 .TAggScale_12 .TAggScale_12 .PAggScale_14 .TAggScale_14	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.400 14.095 14.731 14.494	NA N			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.400 14.095 14.731 14.494	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977 5.786 4.684 6.561 4.612 7.321 5.843
##########################	.TPeerScale_3 .PPeerScale_5 .TPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .TPeerScale_14 .TPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .PAggScale_5 .TAggScale_5 .TAggScale_5 .TAggScale_10 .TAggScale_10 .TAggScale_10 .TAggScale_12 .TAggScale_12 .TAggScale_14 .TAggScale_14 .TAggScale_14 .TAggScale_14	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.095 14.731 14.494 6.802	NA N			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.095 14.731 14.494 6.802	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977 5.786 4.684 6.561 4.612 7.321 5.843 2.252
##########################	.TPeerScale_3 .PPeerScale_5 .TPeerScale_10 .TPeerScale_10 .PPeerScale_12 .TPeerScale_12 .TPeerScale_12 .PPeerScale_14 .TPeerScale_14 .PAggScale_1 .TAggScale_1 .PAggScale_3 .TAggScale_3 .PAggScale_5 .TAggScale_5 .PAggScale_10 .TAggScale_10 .TAggScale_10 .PAggScale_12 .TAggScale_12 .TAggScale_12 .TAggScale_12 .TAggScale_14 .TAggScale_14 .TAggScale_14 .TProScale_1	61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.400 14.095 14.731 14.494 6.802 5.734	NA N			61.692 62.213 61.144 61.460 60.611 61.929 59.528 61.346 60.631 12.797 12.894 13.255 13.466 13.174 13.986 14.069 14.049 14.400 14.095 14.731 14.494 6.802 5.734	6.823 7.138 6.737 6.863 5.656 6.933 5.542 6.441 5.867 4.174 3.774 4.990 4.475 4.895 4.977 5.786 4.684 6.561 4.612 7.321 5.843 2.252 1.693

##	.PProScale_5	7.958	NA			7.958	2.706
##	.TProScale_5	6.099	NA			6.099	1.827
##	.PProScale_10	8.794	NA			8.794	3.170
##	.TProScale_10	6.943	NA			6.943	1.952
##	.PProScale_12	8.933	NA			8.933	2.983
##	.TProScale_12	7.179	NA			7.179	2.012
##	.PProScale_14	8.837	NA			8.837	3.013
##	.TProScale_14	6.776	NA			6.776	1.937
##	peer1	0.000				0.000	0.000
##	peer2	0.000				0.000	0.000
##	peer3	0.000				0.000	0.000
##	peer4	0.000				0.000	0.000
	-						
##	peer5	0.000				0.000	0.000
##	peer6	0.000				0.000	0.000
##	agg1	0.000				0.000	0.000
##	agg2	0.000				0.000	0.000
##	agg3	0.000				0.000	0.000
##	agg4	0.000				0.000	0.000
##	agg5	0.000				0.000	0.000
##	agg6	0.000				0.000	0.000
##	pro1	0.000				0.000	0.000
##	pro2	0.000				0.000	0.000
##	pro3	0.000				0.000	0.000
##	pro4	0.000				0.000	0.000
##	pro5	0.000				0.000	0.000
##	pro6	0.000				0.000	0.000
##	proo	0.000				0.000	0.000
##	Variancoc:						
##	Variances:	Eatimata	C+d Err	g_woluo	D(NIgl)	C+4 1	C+4 511
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
## ##	peer2	8.659	NA	z-value	P(> z)	1.000	1.000
## ## ##	peer2 peer3	8.659 6.284	NA NA	z-value	P(> z)	1.000 1.000	1.000 1.000
## ## ## ##	peer2 peer3 peer4	8.659 6.284 9.240	NA NA NA	z-value	P(> z)	1.000 1.000 1.000	1.000 1.000 1.000
## ## ## ##	peer2 peer3 peer4 peer5	8.659 6.284 9.240 13.599	NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000
## ## ## ##	peer2 peer3 peer4 peer5 peer6	8.659 6.284 9.240 13.599 13.545	NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000
## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2	8.659 6.284 9.240 13.599 13.545 0.763	NA NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000
## ## ## ## ##	peer2 peer3 peer4 peer5 peer6	8.659 6.284 9.240 13.599 13.545	NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000
## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2	8.659 6.284 9.240 13.599 13.545 0.763	NA NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3	8.659 6.284 9.240 13.599 13.545 0.763 0.649	NA NA NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960	NA NA NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656	NA NA NA NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584	NA NA NA NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127	NA NA NA NA NA NA NA NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627	NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ## ## ## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852	NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ## ## ## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970	NA	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
######################################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ## ## ## ## ## ## ## ##	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954
######################################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1 .PPeerScale_3	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677 45.391	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911 99.677 45.391	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954 0.671
######################################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1 .PPeerScale_3 .TPeerScale_3	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677 45.391 39.845	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954 0.671 0.487
###########################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1 .PPeerScale_3 .TPeerScale_3 .PPeerScale_5	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677 45.391 39.845 59.808	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911 99.677 45.391 39.845 59.808	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954 0.671 0.487 0.787
#########################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1 .PPeerScale_3 .TPeerScale_3 .PPeerScale_5 .TPeerScale_5	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677 45.391 39.845 59.808 51.948	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911 99.677 45.391 39.845 59.808 51.948	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954 0.671 0.487 0.787
###########################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1 .PPeerScale_3 .PPeerScale_5 .TPeerScale_5 .PPeerScale_10	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677 45.391 39.845 59.808 51.948 56.441	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911 99.677 45.391 39.845 59.808 51.948 56.441	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954 0.671 0.487 0.787 0.631 0.704
#########################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1 .PPeerScale_3 .TPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677 45.391 39.845 59.808 51.948 56.441 70.119	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911 99.677 45.391 39.845 59.808 51.948 56.441 70.119	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954 0.671 0.487 0.787 0.631 0.704 0.611
##########################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1 .PPeerScale_3 .TPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10 .TPeerScale_10 .TPeerScale_10	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677 45.391 39.845 59.808 51.948 56.441 70.119 44.810	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911 99.677 45.391 39.845 59.808 51.948 56.441 70.119 44.810	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954 0.671 0.487 0.787 0.631 0.704 0.611
#########################	peer2 peer3 peer4 peer5 peer6 agg2 agg3 agg4 agg5 agg6 pro2 pro3 pro4 pro5 pro6 .PPeerScale_1 .TPeerScale_1 .PPeerScale_3 .TPeerScale_5 .TPeerScale_5 .PPeerScale_10 .TPeerScale_10	8.659 6.284 9.240 13.599 13.545 0.763 0.649 0.960 0.656 0.584 0.858 1.127 0.627 0.852 0.970 73.911 99.677 45.391 39.845 59.808 51.948 56.441 70.119	NA N	z-value	P(> z)	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 73.911 99.677 45.391 39.845 59.808 51.948 56.441 70.119	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.966 0.954 0.671 0.487 0.787 0.631 0.704 0.611

```
##
      .PPeerScale_14
                         55.874
                                       NA
                                                                55.874
                                                                          0.616
##
                                       NA
                                                                          0.386
      .TPeerScale_14
                         41.237
                                                                41.237
                          6.831
                                                                          0.726
##
      .PAggScale_1
                                       NA
                                                                6.831
##
      .TAggScale_1
                                       NA
                                                                 6.831
                                                                          0.585
                          6.831
##
      .PAggScale_3
                          5.096
                                       NA
                                                                5.096
                                                                          0.722
##
                                       NA
      .TAggScale_3
                          5.365
                                                                5.365
                                                                          0.592
##
      .PAggScale_5
                          5.575
                                       NA
                                                                5.575
                                                                          0.770
##
      .TAggScale_5
                          4.758
                                       NA
                                                                 4.758
                                                                          0.603
##
      .PAggScale_10
                          3.445
                                       NA
                                                                 3.445
                                                                          0.583
##
                                       NA
      .TAggScale_10
                          4.351
                                                                 4.351
                                                                          0.484
##
      .PAggScale_12
                          3.131
                                       NA
                                                                 3.131
                                                                          0.650
##
                                       NA
                                                                          0.660
      .TAggScale_12
                          6.167
                                                                 6.167
##
      .PAggScale_14
                          2.546
                                       NA
                                                                 2.546
                                                                          0.629
##
      .TAggScale_14
                                       NA
                          3.324
                                                                 3.324
                                                                          0.540
##
                                       NA
      .PProScale_1
                          6.550
                                                                 6.550
                                                                          0.718
##
      .TProScale_1
                          6.634
                                       NA
                                                                 6.634
                                                                          0.578
##
                                       NA
      .PProScale_3
                          6.442
                                                                 6.442
                                                                          0.745
##
      .TProScale_3
                          7.130
                                       NA
                                                                 7.130
                                                                          0.632
##
                          5.750
      .PProScale_5
                                       NA
                                                                5.750
                                                                          0.665
##
      .TProScale_5
                          5.686
                                       NA
                                                                5.686
                                                                          0.510
##
      .PProScale_10
                          6.082
                                       NA
                                                                 6.082
                                                                          0.790
##
      .TProScale_10
                          9.622
                                       NA
                                                                 9.622
                                                                          0.760
##
                                       NA
      .PProScale_12
                          6.776
                                                                6.776
                                                                          0.756
##
                                       NA
      .TProScale_12
                          8.606
                                                                8.606
                                                                          0.676
##
                                       NA
      .PProScale_14
                          6.108
                                                                6.108
                                                                          0.710
##
      .TProScale_14
                          7.545
                                       NA
                                                                 7.545
                                                                          0.616
##
                          1.000
                                                                          1.000
       peer1
                                                                 1.000
##
                          1.000
                                                                 1.000
                                                                          1.000
       agg1
##
                          1.000
                                                                 1.000
                                                                          1.000
       pro1
```

Longitudinal path model did not converge after 1000 iterations!

```
#Longitudinal growth model with a fixed slope
mod.6.fixed <- ' i =~ 1*PPeerScale_1 + 1*PPeerScale_3 + 1*PPeerScale_5 + 1*PPeerScale_10 + 1*PPeerScal
                        1*PPeerScale_14 + 1*PPeerScale_16 + 1*PPeerScale_18
                 s =~ 0*PPeerScale_1 + 1*PPeerScale_3 + 2*PPeerScale_5 + 3*PPeerScale_10 + 4*PPeerScale_
                        5*PPeerScale_14 + 6*PPeerScale_16 + 7*PPeerScale_18
                 s ~~ 0*s #fixed slopes, no variance'
fit.6.fixed <- growth(mod.6.fixed, missing = "ML", data = data_wide)</pre>
inspect(fit.6.fixed, "cov.lv")
     i
## i 37.746
## s 0.998 0.000
#slope is 0.000
#Longitudinal growth model with a random slope an 6 month time metric (i.e. 1 unit = one 6 month period
mod.6.random <- ' i =~ 1*PPeerScale_1 + 1*PPeerScale_3 + 1*PPeerScale_5 + 1*PPeerScale_10 + 1*PPeerScale_10
                        1*PPeerScale_14 + 1*PPeerScale_16 + 1*PPeerScale_18
                  s =~ 0*PPeerScale_1 + 2*PPeerScale_3 + 4*PPeerScale_5 + 9*PPeerScale_10 + 11*PPeerSc
                        13*PPeerScale_14 + 15*PPeerScale_16 + 17*PPeerScale_18'
```

fit.6.random <- growth(mod.6.random, missing = "FIML", data = data_wide)</pre>

```
#Calculate a more precise time metric
apply(data_wide[,82:89], 2, mean, na.rm=T)
             age0_3 age0_5 age0_10 age0_12 age0_14 age0_16 age0_18
## 0.000000 1.022622 2.012532 4.597019 5.724867 6.709552 7.955476 9.164656
#Longitudinal growth model with a random slope and more precise time metric (i.e. 1 unit = 1 year)
mod.6.precise <- ' i =~ 1*PPeerScale_1 + 1*PPeerScale_3 + 1*PPeerScale_5 + 1*PPeerScale_10 + 1*PPeerSc
                        1*PPeerScale_14 + 1*PPeerScale_16 + 1*PPeerScale_18
                  s =~ 0*PPeerScale_1 + 1.022622*PPeerScale_3 + 2.012532*PPeerScale_5 + 4.597019*PPeer
                        5.724867*PPeerScale_12 + 6.709552*PPeerScale_14 + 7.955476*PPeerScale_16 +
                        9.164656*PPeerScale 18'
fit.6.precise <- growth(mod.6.precise, missing = "FIML", data = data_wide)</pre>
#Mulitlevel model with a random slope
mod.6.MLM <- lmer(PPeerScale ~ age0 + (age0 | ID), data_long)</pre>
summary(mod.6.MLM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: PPeerScale ~ age0 + (age0 | ID)
##
     Data: data_long
##
## REML criterion at convergence: 11238.1
##
## Scaled residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
## -6.8136 -0.3847 0.1067 0.4964 2.8507
##
## Random effects:
## Groups
            Name
                         Variance Std.Dev. Corr
             (Intercept) 49.7981 7.0568
## ID
                          0.8674 0.9313
##
             age0
                                           -0.36
## Residual
                         30.4889 5.5217
## Number of obs: 1660, groups: ID, 298
##
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 61.16479
                        0.47041 130.03
## age0
               0.14442
                           0.07681
                                      1.88
## Correlation of Fixed Effects:
        (Intr)
## age0 -0.481
summary(fit.6.precise)
## lavaan (0.5-23.1097) converged normally after 117 iterations
##
##
                                                     Used
                                                                Total
##
     Number of observations
                                                      302
                                                                  306
##
##
    Number of missing patterns
                                                       52
##
##
     Estimator
                                                       ML
    Minimum Function Test Statistic
##
                                                   75.186
```

```
##
     Degrees of freedom
                                                          31
##
     P-value (Chi-square)
                                                       0.000
##
## Parameter Estimates:
##
##
     Information
                                                    Observed
##
     Standard Errors
                                                    Standard
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
##
     i =~
##
       PPeerScale_1
                          1.000
                          1.000
##
       PPeerScale_3
##
                          1.000
       PPeerScale_5
##
       PPeerScale_10
                          1.000
##
       PPeerScale_12
                          1.000
##
                          1.000
       PPeerScale_14
##
       PPeerScale 16
                          1.000
##
       PPeerScale_18
                          1.000
##
##
       PPeerScale_1
                          0.000
##
       PPeerScale_3
                          1.023
##
       PPeerScale_5
                          2.013
##
       PPeerScale 10
                          4.597
##
       PPeerScale_12
                          5.725
       PPeerScale_14
##
                          6.710
##
       PPeerScale_16
                          7.955
##
       PPeerScale_18
                          9.165
##
## Covariances:
##
                       Estimate
                                Std.Err z-value P(>|z|)
##
     i ~~
##
       s
                         -2.300
                                    0.721
                                            -3.191
                                                       0.001
##
## Intercepts:
##
                       Estimate Std.Err z-value P(>|z|)
##
      .PPeerScale 1
                          0.000
##
      .PPeerScale_3
                          0.000
##
      .PPeerScale_5
                          0.000
##
      .PPeerScale_10
                          0.000
##
      .PPeerScale 12
                          0.000
##
      .PPeerScale_14
                          0.000
      .PPeerScale 16
                          0.000
##
##
      .PPeerScale_18
                          0.000
##
                         61.337
                                    0.474 129.331
                                                       0.000
       i
##
                          0.121
                                    0.077
                                             1.564
                                                       0.118
       s
##
## Variances:
                                Std.Err z-value P(>|z|)
##
                       Estimate
##
      .PPeerScale_1
                         40.855
                                    4.693
                                             8.706
                                                       0.000
                                                       0.000
##
                         27.885
                                    3.442
                                             8.102
      .PPeerScale_3
##
      .PPeerScale_5
                         24.093
                                   2.915
                                             8.266
                                                       0.000
##
      .PPeerScale_10
                         31.176
                                    3.487
                                             8.940
                                                       0.000
##
      .PPeerScale 12
                         30.816
                                    3.419
                                             9.014
                                                       0.000
```

```
##
      .PPeerScale_14
                         28.606
                                    3.655
                                             7.826
                                                       0.000
##
                                                       0.000
      .PPeerScale_16
                         29.246
                                    5.140
                                             5.690
##
      .PPeerScale_18
                         32.290
                                    8.094
                                             3.989
                                                       0.000
##
                         49.535
                                             8.915
                                                       0.000
                                    5.556
##
                          0.826
                                    0.138
                                             6.002
                                                       0.000
```

The mean estimate from the growth model (intercept= 61.337, and slope= 0.121) differs slightly from the fixed effects of the multilevel model (intercept= 61.165, slope= 0.144). The variance of the growth model (intercept= 49.535, slope= 0.826), also differs slightly from the random effect of the multilevel model (intercept= 49.80, slope= 0.867).

Question 5

Model won't run.

Question 6

##

```
#Longitudinal growth model with a fixed slope
mod.6.fixed <- ' i =~ 1*PPeerScale_1 + 1*PPeerScale_3 + 1*PPeerScale_5 + 1*PPeerScale_10 + 1*PPeerScal
                        1*PPeerScale 14 + 1*PPeerScale 16 + 1*PPeerScale 18
                 s =~ 0*PPeerScale_1 + 2*PPeerScale_3 + 4*PPeerScale_5 + 9*PPeerScale_10 + 11*PPeerScale_5
                        13*PPeerScale_14 + 15*PPeerScale_16 + 17*PPeerScale_18
                 s ~~ 0*s #fixed slopes, no variance'
fit.6.fixed <- growth(mod.6.fixed, missing = "ML", data = data_wide)
summary(fit.6.fixed)
## lavaan (0.5-23.1097) converged normally after 102 iterations
##
##
                                                      Used
                                                                 Total
##
     Number of observations
                                                       302
                                                                   306
##
##
     Number of missing patterns
                                                        52
```

```
##
     Estimator
                                                         ML
##
    Minimum Function Test Statistic
                                                    155.961
##
     Degrees of freedom
                                                         32
     P-value (Chi-square)
                                                      0.000
##
##
## Parameter Estimates:
##
##
     Information
                                                   Observed
##
     Standard Errors
                                                   Standard
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
##
     i =~
##
       PPeerScale_1
                          1.000
##
       PPeerScale_3
                          1.000
##
       PPeerScale_5
                          1.000
##
                          1.000
       PPeerScale_10
##
       PPeerScale 12
                          1.000
##
       PPeerScale_14
                          1.000
##
       PPeerScale 16
                          1.000
##
       PPeerScale_18
                          1.000
##
##
       PPeerScale_1
                          0.000
##
       PPeerScale 3
                          2.000
##
       PPeerScale_5
                          4.000
##
       PPeerScale_10
                          9.000
##
       PPeerScale_12
                         11.000
##
       PPeerScale_14
                         13.000
##
       PPeerScale_16
                         15.000
##
       PPeerScale_18
                         17.000
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
     i ~~
##
##
                          0.377
                                   0.165
                                             2.282
                                                      0.022
       s
##
## Intercepts:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .PPeerScale_1
                          0.000
                          0.000
##
      .PPeerScale_3
##
      .PPeerScale 5
                          0.000
##
      .PPeerScale_10
                          0.000
      .PPeerScale 12
                          0.000
##
##
      .PPeerScale_14
                          0.000
##
      .PPeerScale_16
                          0.000
##
      .PPeerScale_18
                          0.000
##
                                                      0.000
       i
                         61.326
                                   0.448 136.957
##
                          0.062
                                   0.031
                                             2.014
                                                      0.044
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
##
                          0.000
                                   5.167
##
      .PPeerScale_1
                         53.576
                                           10.369
                                                      0.000
##
      .PPeerScale 3
                         37.989
                                   4.066
                                             9.344
                                                      0.000
```

```
##
      .PPeerScale 5
                         29.102
                                    3.333
                                             8.731
                                                       0.000
##
      .PPeerScale_10
                         30.482
                                    3.489
                                             8.736
                                                       0.000
      .PPeerScale 12
                                                       0.000
##
                         33.846
                                    3.666
                                             9.232
##
      .PPeerScale_14
                         37.351
                                    4.275
                                             8.736
                                                       0.000
##
      .PPeerScale_16
                         41.767
                                    6.144
                                             6.799
                                                       0.000
##
      .PPeerScale 18
                                    8.566
                                             5.031
                                                       0.000
                         43.096
##
                         37.866
                                    4.623
                                             8.191
                                                       0.000
```

The model now does not allow for variance around the slope (since it is fixed), but does not affect the estimates (i.e. fixed effects). Interestingly, the relationship between the intercept and slope switches signs, and is now negative, whereas before it was positive.

Question 7

```
#Longitudinal growth model with a random slope, with a different time metric
mod.6.centered <- ' i =~ 1*PPeerScale_1 + 1*PPeerScale_3 + 1*PPeerScale_5 + 1*PPeerScale_10 + 1*PPeerS
                        1*PPeerScale_14 + 1*PPeerScale_16 + 1*PPeerScale_18
                  s =~ -8*PPeerScale_1 + -6*PPeerScale_3 + -4*PPeerScale_5 + 1*PPeerScale_10 + 3*PPeer
                         5*PPeerScale_14 + 7*PPeerScale_16 + 9*PPeerScale_18'
fit.6.centered <- growth(mod.6.centered, missing = "FIML", data = data_wide)</pre>
summary(fit.6.centered)
## lavaan (0.5-23.1097) converged normally after 94 iterations
##
##
                                                                  Total
                                                       Used
                                                        302
                                                                    306
##
     Number of observations
##
##
     Number of missing patterns
                                                         52
##
##
     Estimator
                                                         MT.
##
     Minimum Function Test Statistic
                                                     73.992
##
     Degrees of freedom
                                                         31
     P-value (Chi-square)
                                                      0.000
##
##
## Parameter Estimates:
##
##
     Information
                                                   Observed
##
     Standard Errors
                                                   Standard
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
##
     i =~
       PPeerScale_1
##
                         1.000
                         1.000
##
       PPeerScale_3
##
       PPeerScale_5
                         1.000
       PPeerScale_10
                         1.000
##
##
       PPeerScale_12
                         1.000
##
       PPeerScale_14
                         1.000
##
       PPeerScale_16
                         1.000
                         1.000
##
       PPeerScale 18
##
     s =~
##
       PPeerScale 1
                         -8.000
```

```
##
       PPeerScale_5
                         -4.000
##
       PPeerScale 10
                          1.000
##
       PPeerScale_12
                          3.000
##
       PPeerScale_14
                          5.000
##
       PPeerScale 16
                          7.000
##
       PPeerScale 18
                          9.000
##
## Covariances:
                                Std.Err z-value P(>|z|)
##
                       Estimate
##
     i ~~
##
                          0.620
                                   0.297
                                             2.088
                                                      0.037
       s
##
## Intercepts:
##
                       Estimate Std.Err z-value P(>|z|)
##
      .PPeerScale_1
                          0.000
##
                          0.000
      .PPeerScale_3
##
      .PPeerScale 5
                          0.000
##
      .PPeerScale_10
                          0.000
##
      .PPeerScale 12
                          0.000
##
      .PPeerScale_14
                          0.000
##
      .PPeerScale_16
                          0.000
##
      .PPeerScale_18
                          0.000
##
       i
                         61.836
                                   0.419 147.444
                                                      0.000
##
                          0.062
                                   0.041
                                             1.525
       S
                                                      0.127
##
## Variances:
                       Estimate Std.Err z-value P(>|z|)
##
                                   4.695
##
      .PPeerScale_1
                         40.519
                                             8.630
                                                      0.000
##
      .PPeerScale_3
                         27.747
                                   3.441
                                             8.064
                                                      0.000
##
      .PPeerScale_5
                         24.196
                                   2.914
                                             8.302
                                                      0.000
##
      .PPeerScale_10
                         31.108
                                   3.487
                                             8.922
                                                      0.000
##
      .PPeerScale_12
                         30.718
                                   3.410
                                             9.008
                                                      0.000
##
      .PPeerScale_14
                         28.187
                                   3.643
                                             7.738
                                                      0.000
##
      .PPeerScale 16
                         29.641
                                   5.153
                                             5.752
                                                      0.000
##
      .PPeerScale_18
                         32.970
                                   8.045
                                                      0.000
                                             4.098
##
       i
                         44.721
                                   4.369
                                            10.236
                                                      0.000
##
       s
                          0.232
                                   0.038
                                             6.067
                                                      0.000
summary(fit.6.random)
## lavaan (0.5-23.1097) converged normally after 135 iterations
##
##
                                                        Used
                                                                   Total
     Number of observations
                                                         302
                                                                     306
##
##
##
     Number of missing patterns
                                                          52
##
##
     Estimator
                                                          ML
##
     Minimum Function Test Statistic
                                                     73.992
##
     Degrees of freedom
                                                          31
                                                      0.000
##
     P-value (Chi-square)
## Parameter Estimates:
##
```

##

PPeerScale 3

-6.000

```
##
     Information
                                                   Observed
##
     Standard Errors
                                                   Standard
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
##
     i =~
##
       PPeerScale 1
                          1.000
##
       PPeerScale_3
                          1.000
##
       PPeerScale 5
                          1.000
##
       PPeerScale_10
                          1.000
##
       PPeerScale_12
                          1.000
##
       PPeerScale_14
                          1.000
##
       PPeerScale_16
                          1.000
##
       PPeerScale_18
                          1.000
##
     s =~
##
       PPeerScale_1
                          0.000
##
                          2.000
       PPeerScale_3
##
       PPeerScale 5
                          4.000
                          9.000
##
       PPeerScale_10
##
       PPeerScale 12
                         11.000
##
       PPeerScale_14
                         13.000
##
       PPeerScale_16
                         15.000
##
       PPeerScale_18
                         17.000
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
     i ~~
##
##
                         -1.234
                                   0.382
                                                      0.001
                                            -3.234
       s
##
## Intercepts:
                       Estimate Std.Err z-value P(>|z|)
##
                          0.000
##
      .PPeerScale_1
                          0.000
##
      .PPeerScale_3
##
                          0.000
      .PPeerScale_5
##
      .PPeerScale 10
                          0.000
##
      .PPeerScale_12
                          0.000
##
      .PPeerScale 14
                          0.000
##
      .PPeerScale_16
                          0.000
##
      .PPeerScale_18
                          0.000
##
       i
                                   0.476 128.953
                                                      0.000
                         61.339
##
                          0.062
                                   0.041
       s
                                             1.525
                                                      0.127
##
## Variances:
##
                       Estimate Std.Err z-value P(>|z|)
      .PPeerScale_1
##
                                   4.695
                         40.519
                                             8.630
                                                      0.000
##
                         27.747
                                   3.441
                                             8.064
                                                      0.000
      .PPeerScale_3
##
      .PPeerScale_5
                         24.196
                                   2.914
                                             8.302
                                                      0.000
##
      .PPeerScale_10
                         31.108
                                   3.487
                                             8.922
                                                      0.000
##
      .PPeerScale_12
                         30.718
                                   3.410
                                             9.008
                                                      0.000
##
      .PPeerScale_14
                         28.187
                                   3.643
                                             7.738
                                                      0.000
##
                         29.641
                                   5.153
                                             5.752
                                                      0.000
      .PPeerScale_16
##
      .PPeerScale 18
                         32.971
                                   8.045
                                             4.098
                                                      0.000
##
       i
                         49.632
                                   5.586
                                             8.885
                                                      0.000
##
                          0.232
                                   0.038
                                             6.067
                                                      0.000
```

The mean estimates and variance of the intercept changes slightly, since 0 now indicates the mean between the 4th and 5th wave rather than the 1st wave. The covariance between the intercept and slope flips sign, however this is harder to interpret given that the intercept is now halfway through the trajectory and not at the beginning. It does not seem to affect the fit statistics though.

Question 8

```
fit.8.precise <- growth(mod.6.precise, missing = "FIML", estimator = "MLR", data = data_wide)
summary(fit.8.precise)
## lavaan (0.5-23.1097) converged normally after 117 iterations
##
##
                                                        Used
                                                                   Total
##
     Number of observations
                                                         302
                                                                     306
##
##
     Number of missing patterns
                                                          52
##
##
     Estimator
                                                          ML
                                                                  Robust
##
                                                     75.186
                                                                  60.401
     Minimum Function Test Statistic
##
     Degrees of freedom
                                                                      31
                                                          31
##
     P-value (Chi-square)
                                                      0.000
                                                                   0.001
     Scaling correction factor
                                                                   1.245
##
##
       for the Yuan-Bentler correction
##
## Parameter Estimates:
##
##
     Information
                                                   Observed
##
     Standard Errors
                                         Robust.huber.white
##
## Latent Variables:
                       Estimate Std.Err z-value P(>|z|)
##
     i =~
##
##
       PPeerScale 1
                          1.000
##
       PPeerScale_3
                          1.000
##
       PPeerScale_5
                          1.000
       PPeerScale_10
                          1.000
##
##
       PPeerScale_12
                          1.000
##
                          1.000
       PPeerScale 14
##
       PPeerScale 16
                          1.000
##
       PPeerScale_18
                          1.000
##
     s =~
                          0.000
##
       PPeerScale_1
##
       PPeerScale_3
                          1.023
##
       PPeerScale 5
                          2.013
##
       PPeerScale_10
                          4.597
##
       PPeerScale_12
                          5.725
##
       PPeerScale_14
                          6.710
##
       PPeerScale_16
                          7.955
##
       PPeerScale_18
                          9.165
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
##
     i ~~
```

```
## Intercepts:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .PPeerScale 1
                          0.000
##
      .PPeerScale 3
                          0.000
##
      .PPeerScale 5
                          0.000
##
                          0.000
      .PPeerScale_10
      .PPeerScale_12
##
                          0.000
##
                          0.000
      .PPeerScale_14
      .PPeerScale_16
##
                          0.000
##
      .PPeerScale_18
                          0.000
##
                                                      0.000
       i
                         61.337
                                   0.499 122.809
##
                                   0.082
                                                      0.143
       s
                          0.121
                                             1.465
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
                                   8.823
                                             4.630
                                                      0.000
##
      .PPeerScale 1
                         40.855
##
      .PPeerScale_3
                         27.885
                                   8.162
                                             3.416
                                                      0.001
                                             6.422
##
      .PPeerScale 5
                         24.093
                                   3.752
                                                      0.000
##
      .PPeerScale_10
                         31.176
                                   4.923
                                             6.333
                                                      0.000
##
      .PPeerScale 12
                         30.816
                                   9.265
                                             3.326
                                                      0.001
##
                                             4.384
      .PPeerScale_14
                         28.606
                                   6.525
                                                      0.000
##
      .PPeerScale 16
                         29.246
                                   6.830
                                             4.282
                                                      0.000
##
      .PPeerScale_18
                                             2.618
                         32.290
                                  12.336
                                                      0.009
##
       i
                         49.535
                                   7.071
                                             7.005
                                                      0.000
##
       s
                          0.826
                                   0.179
                                             4.615
                                                      0.000
summary(fit.6.precise)
## lavaan (0.5-23.1097) converged normally after 117 iterations
##
##
                                                       Used
                                                                   Total
##
     Number of observations
                                                        302
                                                                     306
##
##
     Number of missing patterns
                                                         52
##
##
     Estimator
                                                         ML
##
     Minimum Function Test Statistic
                                                     75.186
##
     Degrees of freedom
                                                         31
     P-value (Chi-square)
                                                      0.000
##
##
## Parameter Estimates:
##
                                                   Observed
##
     Information
##
     Standard Errors
                                                   Standard
##
## Latent Variables:
                       Estimate Std.Err z-value P(>|z|)
##
##
     i =~
##
       PPeerScale_1
                          1.000
##
                          1.000
       PPeerScale_3
##
       PPeerScale_5
                          1.000
##
                          1.000
       PPeerScale_10
##
       PPeerScale_12
                          1.000
```

-2.300

0.822

-2.798

0.005

##

##

```
##
       PPeerScale_14
                          1.000
##
       PPeerScale_16
                          1.000
##
       PPeerScale_18
                          1.000
     s =~
##
##
       PPeerScale_1
                          0.000
       PPeerScale 3
                          1.023
##
                          2.013
##
       PPeerScale 5
##
       PPeerScale_10
                          4.597
##
       PPeerScale_12
                          5.725
##
       PPeerScale_14
                          6.710
##
       PPeerScale_16
                          7.955
##
       PPeerScale_18
                          9.165
##
##
  Covariances:
##
                                  Std.Err z-value P(>|z|)
                       Estimate
##
     i ~~
##
                         -2.300
                                    0.721
                                                       0.001
                                             -3.191
       s
##
## Intercepts:
##
                       Estimate
                                  Std.Err z-value
                                                    P(>|z|)
##
      .PPeerScale_1
                          0.000
##
      .PPeerScale_3
                          0.000
##
                          0.000
      .PPeerScale 5
##
      .PPeerScale 10
                          0.000
##
      .PPeerScale_12
                          0.000
##
      .PPeerScale_14
                          0.000
##
      .PPeerScale_16
                          0.000
      .PPeerScale_18
                          0.000
##
##
                          61.337
                                           129.331
                                                       0.000
       i
                                    0.474
##
                          0.121
                                    0.077
                                              1.564
                                                       0.118
       s
##
##
  Variances:
##
                       Estimate
                                  Std.Err z-value
                                                     P(>|z|)
##
                         40.855
                                    4.693
                                              8.706
                                                       0.000
      .PPeerScale_1
##
      .PPeerScale 3
                         27.885
                                    3.442
                                              8.102
                                                       0.000
##
      .PPeerScale_5
                         24.093
                                    2.915
                                              8.266
                                                       0.000
##
      .PPeerScale 10
                         31.176
                                    3.487
                                              8.940
                                                       0.000
##
      .PPeerScale_12
                         30.816
                                    3.419
                                              9.014
                                                       0.000
##
      .PPeerScale_14
                         28.606
                                    3.655
                                              7.826
                                                       0.000
##
      .PPeerScale_16
                                              5.690
                                                       0.000
                         29.246
                                    5.140
      .PPeerScale_18
##
                                    8.094
                                              3.989
                                                       0.000
                         32.290
##
                         49.535
                                    5.556
                                              8.915
                                                       0.000
       i
##
                                              6.002
                                                       0.000
                          0.826
                                    0.138
```

Changing the estimator to MLR seemed to only add to the fit statistics, adding an extra "Robust" column to indicate the robust goodness of fit.

Question 9

```
semPaths(fit.1, what="std")
```


Extra: multivariate growth curves

add time-invariant covariates

```
#multiple MDDPRP by 100 to make it easier to analyze
data_wide <- data_wide %>%
        mutate(MDDPRP_100_1 = MDDPRP_1*100,
                                          MDDPRP_100_3 = MDDPRP_3*100,
                                          MDDPRP_100_5 = MDDPRP_5*100,
                                          MDDPRP_100_10 = MDDPRP_10*100,
                                          MDDPRP_100_12 = MDDPRP_12*100,
                                          MDDPRP_100_14 = MDDPRP_14*100,
                                          MDDPRP_100_16 = MDDPRP_16*100,
                                          MDDPRP_100_18 = MDDPRP_18*100)
#Multivariate growth curve
model.bi <- '
                  #create peer growth model
                                                                                    i.p =~ 1*PPeerScale_1 + 1*PPeerScale_3 + 1*PPeerScale_5 + 1*PPeerScale_10 + 1*PPeerS
                                                                                                               1*PPeerScale_14 + 1*PPeerScale_16 + 1*PPeerScale_18
                                                                                    s.p = 0*PPeerScale 1 + 1.022622*PPeerScale 3 + 2.012532*PPeerScale 5 + 4.597019*PPeerScale 5 + 4.597
                                                                                                                5.724867*PPeerScale_12 + 6.709552*PPeerScale_14 + 7.955476*PPeerScale_16 +
                                                                                                                9.164656*PPeerScale 18
                  # create depression growth model
                                                                                    i.d =~ 1*MDDPRP_100_1 + 1*MDDPRP_100_3 + 1*MDDPRP_100_5 + 1*MDDPRP_100_10 + 1*MDDPRP
                                                                                                                 1*MDDPRP 100 14 + 1*MDDPRP 100 16 + 1*MDDPRP 100 18
                                                                                    s.d = 0*MDDPRP_100_1 + 1.022622*MDDPRP_100_3 + 2.012532*MDDPRP_100_5 + 4.597019*MDDPRP_100_1 + 1.022622*MDDPRP_100_3 + 2.012532*MDDPRP_100_5 + 4.597019*MDDPRP_100_1 + 1.022622*MDDPRP_100_3 + 2.012532*MDDPRP_100_5 + 4.597019*MDDPRP_100_5 + 4.597
                                                                                                                5.724867*MDDPRP_100_12 + 6.709552*MDDPRP_100_14 + 7.955476*MDDPRP_100_16 +
                                                                                                                 9.164656*MDDPRP_100_18
```

```
i.p ~ T1Income_to_Need_c + IQ + T1_ACES_sum + rel_affective + rel_MDD + mom_MDDBP
              s.p ~ T1Income_to_Need_c + IQ + T1_ACES_sum + rel_affective + rel_MDD + mom_MDDBP
              i.d ~ T1Income_to_Need_c + IQ + T1_ACES_sum + rel_affective + rel_MDD + mom_MDDBP
              s.d ~ T1Income_to_Need_c + IQ + T1_ACES_sum + rel_affective + rel_MDD + mom_MDDBP
fit.bi <- growth(model.bi, data = data_wide, missing="FIML")</pre>
summary(fit.bi)
## lavaan (0.5-23.1097) converged normally after 272 iterations
##
##
     Number of observations
                                                        306
##
                                                        105
##
     Number of missing patterns
##
##
     Estimator
                                                        ML
##
    Minimum Function Test Statistic
                                                   371.660
##
    Degrees of freedom
                                                        194
                                                     0.000
     P-value (Chi-square)
##
##
## Parameter Estimates:
##
##
     Information
                                                  Observed
##
     Standard Errors
                                                  Standard
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
##
     i.p = ~
##
       PPeerScale_1
                         1.000
##
       PPeerScale_3
                         1.000
##
       PPeerScale_5
                         1.000
##
       PPeerScale 10
                         1.000
##
       PPeerScale 12
                         1.000
##
       PPeerScale_14
                         1.000
##
       PPeerScale_16
                         1.000
##
       PPeerScale_18
                         1.000
##
     s.p =~
##
       PPeerScale 1
                         0.000
##
       PPeerScale 3
                         1.023
##
       PPeerScale 5
                         2.013
##
       PPeerScale_10
                         4.597
       PPeerScale_12
##
                         5.725
##
       PPeerScale_14
                         6.710
##
       PPeerScale_16
                         7.955
##
       PPeerScale_18
                         9.165
##
     i.d =~
##
       MDDPRP_100_1
                         1.000
##
       MDDPRP_100_3
                         1.000
##
       MDDPRP_100_5
                         1.000
##
       MDDPRP 100 10
                         1.000
##
       MDDPRP_100_12
                         1.000
##
       MDDPRP_100_14
                         1.000
##
       MDDPRP_100_16
                         1.000
```

```
##
       MDDPRP_100_18
                          1.000
##
     s.d =~
##
       MDDPRP_100_1
                          0.000
##
       MDDPRP_100_3
                          1.023
##
       MDDPRP_100_5
                          2.013
##
       MDDPRP_100_10
                          4.597
##
       MDDPRP 100 12
                          5.725
       MDDPRP_100_14
##
                          6.710
##
       MDDPRP_100_16
                          7.955
##
       MDDPRP_100_18
                          9.165
##
## Regressions:
##
                       Estimate Std.Err z-value P(>|z|)
##
     i.p ~
##
                          1.453
                                   0.568
                                             2.559
                                                      0.011
       T1Incom_t_Nd_c
##
       ΙQ
                          0.028
                                   0.047
                                             0.591
                                                      0.554
##
       T1_ACES_sum
                          0.057
                                   0.265
                                             0.215
                                                      0.830
##
       rel affective
                         -0.067
                                   0.996
                                            -0.067
                                                      0.947
##
       rel MDD
                          0.786
                                   0.829
                                             0.949
                                                      0.343
##
       mom MDDBP
                         -1.171
                                   0.668
                                            -1.752
                                                      0.080
##
     s.p ~
##
       T1Incom_t_Nd_c
                         -0.138
                                   0.088
                                            -1.562
                                                      0.118
                                   0.007
##
                          0.002
                                             0.298
                                                      0.766
       ΙQ
##
       T1 ACES sum
                         -0.036
                                   0.044
                                            -0.807
                                                      0.419
##
                                   0.168
       rel_affective
                          0.060
                                             0.354
                                                      0.723
##
       rel MDD
                          0.007
                                   0.142
                                             0.051
                                                      0.959
##
       mom\_MDDBP
                         -0.107
                                   0.113
                                            -0.945
                                                      0.345
##
     i.d ~
##
                                   0.640
                         -0.312
                                            -0.488
                                                      0.626
       T1Incom_t_Nd_c
                                   0.051
##
                         -0.017
                                            -0.337
                                                      0.736
       ΙQ
##
       T1_ACES_sum
                          1.147
                                   0.316
                                             3.629
                                                      0.000
##
       rel_affective
                          2.318
                                   1.190
                                             1.947
                                                      0.051
##
       rel_MDD
                         -1.579
                                   0.991
                                            -1.594
                                                      0.111
##
       mom\_MDDBP
                          3.215
                                   0.804
                                             3.999
                                                      0.000
##
     s.d ~
##
                          0.111
                                   0.104
                                             1.076
                                                      0.282
       T1Incom_t_Nd_c
##
                         -0.010
                                   0.008
                                           -1.190
                                                      0.234
                                   0.052
##
       T1_ACES_sum
                         -0.015
                                            -0.285
                                                      0.775
##
       rel_affective
                         -0.295
                                   0.197
                                            -1.494
                                                      0.135
##
       rel_MDD
                          0.138
                                   0.166
                                             0.828
                                                      0.408
##
       mom MDDBP
                         -0.102
                                   0.130
                                            -0.784
                                                      0.433
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
##
    .i.p ~~
##
                         -1.877
                                   0.680
                                            -2.760
                                                      0.006
      .s.p
                                   4.644
##
      .i.d
                        -30.710
                                            -6.613
                                                      0.000
##
                          1.019
                                   0.730
                                             1.396
      .s.d
                                                      0.163
##
    .s.p ~~
##
      .i.d
                          0.492
                                   0.722
                                             0.681
                                                      0.496
##
                         -0.514
                                   0.119
                                                      0.000
      .s.d
                                            -4.315
##
    .i.d ~~
##
      .s.d
                         -2.190
                                   1.018
                                            -2.152
                                                      0.031
##
```

```
## Intercepts:
##
                       Estimate Std.Err z-value P(>|z|)
      .PPeerScale 1
##
                          0.000
                          0.000
##
      .PPeerScale_3
##
      .PPeerScale_5
                          0.000
##
      .PPeerScale 10
                          0.000
##
      .PPeerScale 12
                          0.000
      .PPeerScale_14
##
                          0.000
##
      .PPeerScale_16
                          0.000
##
      .PPeerScale_18
                          0.000
##
      .MDDPRP_100_1
                          0.000
      .MDDPRP_100_3
##
                          0.000
##
      .MDDPRP_100_5
                          0.000
##
      .MDDPRP_100_10
                          0.000
##
      .MDDPRP_100_12
                          0.000
##
      .MDDPRP_100_14
                          0.000
##
                          0.000
      .MDDPRP_100_16
##
      .MDDPRP_100_18
                          0.000
##
                         58.026
                                                       0.000
                                    4.969
                                            11.677
      .i.p
##
      .s.p
                         -0.005
                                    0.708
                                            -0.007
                                                       0.995
##
      .i.d
                          8.364
                                    5.446
                                             1.536
                                                       0.125
##
      .s.d
                          1.063
                                    0.859
                                              1.237
                                                       0.216
##
## Variances:
                                 Std.Err z-value P(>|z|)
##
                       Estimate
##
      .PPeerScale_1
                         39.338
                                    4.472
                                             8.797
                                                       0.000
##
      .PPeerScale_3
                         28.947
                                    3.480
                                             8.319
                                                       0.000
##
                         24.906
                                    2.946
                                             8.453
                                                       0.000
      .PPeerScale_5
##
      .PPeerScale_10
                         31.770
                                    3.495
                                             9.089
                                                       0.000
##
      .PPeerScale_12
                         30.610
                                    3.323
                                             9.212
                                                       0.000
##
      .PPeerScale_14
                         28.383
                                    3.547
                                             8.001
                                                       0.000
##
      .PPeerScale_16
                         27.819
                                    4.796
                                             5.800
                                                       0.000
##
      .PPeerScale_18
                         31.649
                                    7.656
                                             4.134
                                                       0.000
##
      .MDDPRP_100_1
                         82.095
                                    8.623
                                             9.520
                                                       0.000
      .MDDPRP_100_3
##
                         54.828
                                    6.075
                                             9.024
                                                       0.000
##
      .MDDPRP_100_5
                         53.384
                                             9.355
                                                       0.000
                                    5.707
##
      .MDDPRP 100 10
                         65.443
                                    6.936
                                             9.436
                                                       0.000
##
      .MDDPRP_100_12
                         54.041
                                    5.973
                                             9.048
                                                       0.000
##
      .MDDPRP_100_14
                         54.713
                                    6.390
                                             8.563
                                                       0.000
##
      .MDDPRP_100_16
                                                       0.000
                         47.167
                                    8.235
                                             5.727
##
      .MDDPRP_100_18
                                             4.158
                                                       0.000
                         57.816
                                   13.903
##
      .i.p
                         43.978
                                    5.119
                                             8.592
                                                       0.000
##
                                             6.009
      .s.p
                          0.812
                                    0.135
                                                       0.000
##
      .i.d
                         56.052
                                    7.554
                                              7.420
                                                       0.000
                                    0.202
                                              4.097
      .s.d
                          0.827
                                                       0.000
semPaths(fit.bi, what="std")
```


For the covariates, a higher initial peer score was associated with higher SES, but not higher IQ or fewer adverse events. Higher initial depressive symptoms predicted more adverse events and a greater likelihood of mother having an affective disorder (MDD or BP), however, SES was unrelated to initial depressive symptoms.