MATH 3142 Notes — Spring 2016

Your Name Here
UNC Charlotte

Updated: January 14, 2016

This document is a template for you to take notes in my MATH 3142 course. For your note check grade, you are required to complete all proofs/solutions for the problems specified. This template will be updated periodically throughout the course; you are responsible for updating your copy as the template is updated. See the syllabus for more details.

You should maintain your notes on Overleaf.com and provide me with a link so I can check on them. I'll give you notice before notes are "due"; when they are due I will download a copy myself from Overleaf.

This is not a replacement for the textbook for this course, *Advanced Calculus* by Patrick M. Fitzpatrick. Many proofs are outlined in that text, as well as all the relevant definitions and other results not included in these notes.

A proof is valid if and only if it uses concepts proven previously in the book. For example, you cannot prove a lemma in Chapter 6 using a theorem from Chapter 10, but using a proposition from Chapter 4 is allowed.

I hope you enjoy working through these results. Please email me with any questions.

— Dr. Steven Clontz (sclontz5@uncc.edu)

Chapter 6

Integration: Two Fundamental Theorems

6.1 Darboux Sums: Upper and Lower Integrals

Lemma (6.1). Suppose that the function $f:[a,b]\to\mathbb{R}$ is bounded and the numbers m,M have the property that

$$m \le f(x) \le M$$

for all x in [a, b]. Then, if P is a partition of the domain [a, b],

$$m(b-a) \le L(f,P)$$
 and $U(f,P) \le M(b-a)$.

Proof.

Lemma (6.2, The Refinement Lemma). Suppose that the function $f:[a,b] \to \mathbb{R}$ is bounded and that P is a partition of its domain [a,b]. If P^* is a refinement of P, then

$$L(f,P) \leq L(f,P^\star) \text{ and } U(f,P^\star) \leq U(f,P).$$

Proof. \Box

Lemma (6.3). Suppose that the function $f:[a,b]\to\mathbb{R}$ is bounded and that P_1,P_2 are partitions of its domain. Then $L(f,P_1)\leq U(f,P_2)$.

Proof.

Lemma (6.4). For a bounded function $f:[a,b] \to \mathbb{R}$,

$$\int_{a}^{b} f \le \overline{\int_{a}^{b}} f.$$

Proof.

Exercise (2). For an interval [a, b] and a positive number δ , show that there is a partition $P = \{x_i : 0 \le i \le n\}$ of [a, b] such that each partition interval $[x_i, x_{i+1}]$ of P has length less than δ .

 \Box

Exercise (3). Suppose that the bounded function $f:[a,b] \to \mathbb{R}$ has the property that for each rational number x in the interval [a,b], f(x)=0. Prove that

$$\int_{a}^{b} f \le 0 \le \overline{\int_{a}^{b}} f.$$

 \square

Exercise (6). Suppose that $f:[a,b]\to\mathbb{R}$ is a bounded function for which there is a partition P of [a,b] with L(f,P)=U(f,P). Prove that $f:[a,b]\to\mathbb{R}$ is constant.

 \Box Solution.

6.2 The Archimedes-Riemann Theorem

Lemma (6.7). For a bounded function $f:[a,b]\to\mathbb{R}$ and a partition P of [a,b],

$$L(f,P) \le \int_a^b f \le \overline{\int_a^b} f \le U(f,P).$$

Proof.

Theorem (6.8, The Archimedes-Riemann Theorem). Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Then f is integrable on [a, b] if and only if there is a sequence $\{P_n\}$ of partitions of the interval [a, b] such that

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0.$$

Moreover, for any such sequence of partitions,

$$\lim_{n \to \infty} L(f, P_n) = \int_a^b f = \lim_{n \to \infty} U(f, P_n).$$

Proof.

Example (6.9). Show that a monotonically increasing function $f:[a,b]\to\mathbb{R}$ is integrable.

Solution. \Box

Example (6.11). Show that $\int_0^1 x^2 dx = \frac{1}{3}$.

5

Solution. \Box

Exercise (4). Prove that for a natural number n,

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Then use this fact and the Archimedes-Riemann Theorem to show that $\int_a^b x \, dx = (b^2 - a^2)/2$.

 \square

Exercise (6b). Use the Archimedes-Riemann Theorem to show that for $0 \le a < b$,

$$\int_{a}^{b} x^2 \, dx = \frac{b^3 - a^3}{3}.$$

Solution. \Box

Exercise (9). Suppose that the functions $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ are integrable. Show that there is a sequence $\{P_n\}$ of partitions of [a, b] that is an Archimediean sequence of partitions for f on [a, b] and also an Archimedean sequence of partitions for g on [a, b].

 \square

6.3 Additivity, Monotonicity, and Linearity