Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

15 Lecture 15 Jun 04 2018

15.1 Group Action

15.1.1 Cayley's Theorem

Theorem 42 (Cayley's Theorem)

If G is a finite group of order n, then G is isomorphic to a subgroup of S_n .

Proof

Since G is finite, let $G = \{g_1, g_2, ..., g_n\}$ and let S_G be the permutation group of G. By identifying g_i with i, where $1 \le i \le n$, we see that $S_G \cong S_n^{-1}$. Therefore, it suffices to find an injective homomorphism² $\sigma: G \to S_G$.

Consider the function $\mu_a: G \to G$, where $a \in G$, such that $\mu_a(g) = ag$ for all $g \in G$. Clearly, μ_a is surjective. Suppose $\mu_a = \mu_b$, where $b \in G$. Then $a = \mu_a(1) = \mu_b(1) = b$. Thus μ_a is also injective. It follows that $\mu_a \in S_G$ by definition.

Now define the function $\sigma: G \to S_G$ such that $\sigma(a) = \mu_a$. Clearly, σ is injective, since $\sigma(a) = \sigma(b) \implies \mu_a = \mu_b$. Observe that $\sigma(ab) = \mu_{ab} = ab = \mu_a\mu_b$. Thus σ is a group homomorphism. Note that $\ker \sigma = \{1\}$, the trivial group. It follows from the First Isomorphism Theorem that $G \cong \operatorname{Im} \sigma \leq S_G \cong S_n$.

Cayley's Theorem is, however, too strong at times. We can certainly find a smaller integer m such that G is contained in S_m . Con-

 1 S_{G} is the permutation group of G. We can think of S_{G} as a group of permutations that permutes the index of the elements of G. Since there are n indices, there are n! ways to permute the indices, and so $|S_{G}| = n! = |S_{n}|$. Then we can certainly find some isomorphism from S_{G} to S_{n} , and so $S_{G} \cong S_{n}$.

² Why do we need injectivity? We need homomorphicity in order to invoke the First Isomorphism Theorem so that we can get $G \cong \operatorname{im} \sigma \leq S_G \cong S_n$.

³ We shall use $H \le G$ to denote that H is a subgroup of G from here on.

⁴ This is a result from Proposition 36

sider the following example.

Example 15.1.1

Let $H \leq G$ with $[G : H] = m < \infty$. Let $X = \{g_1H, g_2H, ..., g_mH\}$ be the set of all distinct left cosets of H in G⁵. For $a \in G$, define $\lambda_a : X \to X$ by $\lambda_a(gH) = agH, gH \in X$.

Note that λ_a is a bijection⁶, and so $\lambda_a \in S_X$, the permutation group of X. Consider the mapping $\tau: G \to S_X$ defined by $\tau(a) = \lambda_a$ for $a \in G$. Note that $\forall a,b \in G$, $\lambda_{ab} = \lambda_a \lambda_b$. Thus τ is a homomorphism. Note that if $a \in \ker \tau$, then aH = H which implies $a \in H$ by Proposition 22. Thus $\ker \tau \subseteq H$.

From the example above, if we apply the First Isomorphism Theorem, then

$$G_{\ker \tau} \cong \operatorname{im} \tau \leq S_X \cong S_m \leq S_n.$$

This is the result that we desired.

Theorem 43 (Extended Cayley's Theorem)

Let $H \leq G$ with $[G:H] = m < \infty$. If G has no normal subgroup contained in H except for the trivial subgroup $\{1\}$, then G is isomorphic to a subgroup of S_m .

Proof

By our assumption, let X be the set of all distinct left cosets of H in G. Then we have that |X| = m and so $S_X \cong S_m$. From Example 15.1.1, we have that there exists a group homomorphism $\tau: G \to S_X$ with $K := \ker \tau \subseteq H$. So by the First Isomorphism Theorem, we have that

$$G_{K} \cong \operatorname{im} \tau$$
.

Since $K \subseteq H$ and $K \triangleleft G$, we have, by assumption, that $K = \{1\}$. It follows that

$$G \cong \operatorname{im} \tau \leq S_X \cong S_m$$
.

⁵ This is simply a consequence of [G:H] = m.

⁶ This is true as shown in the proof above, but it can also serve as a tiny exercise.

⁷ This is as argued in the proof of Cayley's Theorem.

Corollary 44

Let $|G| = m \in \mathbb{N}$ and p the smallest prime such that p|m. If $H \leq G$ with [G:H] = p, then $H \triangleleft G$.

Proof

Let X be the set of all distinct left cosets of H in G. We have |X| = p and so $S_X \cong S_p$. Let $\tau: G \to S_X \cong S_p$ be as defined in Example 15.1.1, with $K := \ker \tau \subseteq H$. By the First Isomorphism Theorem, we have that

$$G_{K} \cong \operatorname{im} \tau \leq S_{X} \cong S_{p}$$
,

i.e. G/K is isomorphic to a subgroup of S_p . Therefore, by Lagrange's Theorem, we have that $\left| G/K \right| p!$.

Also, since $K \subseteq H$, if $[H : K] = k \in \mathbb{N}$, then

$$\left| \frac{G}{K} \right| \stackrel{\text{(1)}}{=} \frac{|G|}{|K|} = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = pk,$$

where (1) is by Proposition 35. Therefore we have that pk | p! and so k | (p-1)!.

Note that $k \mid |H|^8$, which divides |G|, and p is the smallest prime dividing |G|. Thus evrey prime divisor of k must be $\geq p.9$ Thus k=1, which implies that K=H. Therefore, $H \triangleleft G$ as desired.

15.1.2 Group Action

Definition 28 (Group Action)

Let G be a group, X a non-empty set. A group action of G on X is a mapping $G \times X \to X$ denoted as $(a, x) \to ax$ such that

1.
$$1 \cdot x = x, x \in X$$

2.
$$a \cdot (b \cdot x) = (ab) \cdot x$$
, $a, b \in G$, $x \in X$

In this case, we say G acts on X.

⁸ This is clear since |H| = k |K|.

⁹ By the Fundamental Theorem of Arithmetic, and since k is finite, let $k = p_1^{a_1} p_2^{a_2} ... p_m^{e_m}$, where p_i 's are distinct primes and $a_i \in \mathbb{N}$ are the multiplicities of the ith, and by the Well-Ordering Principle, let $p_i < p_{i+1}$. Then we have, for some $b = b_1^{c_1} b_2^{c_2} ... b_j^{c_j} \in \mathbb{N}$ where the b_i 's are distint primes, $b_i < b_{i+1}$, and $c_i \in \mathbb{N} \cup \{0\}$,

$$m = kb = p_1^{a_1} p_2^{a_2} \dots p_m^{a_m} b_1^{c_1} b_2^{c_2} \dots b_i^{c_j}.$$

Since p is the smallest prime that divides m, we have

$$p = \min\{p_1, p_2, ..., p_m, b_1, b_2, ..., b_j\}$$

= \text{min}\{p_1, b_1\}