Package 'echoLD'

August 30, 2021

```
Type Package
Title echoverse module: LD downloading and processing
Version 0.99.0
Description echoverse module: LD downloading and processing.
URL https://github.com/RajLabMSSM/echoLD
BugReports https://github.com/RajLabMSSM/echoLD/issues
Encoding UTF-8
LazyData false
Depends R (>= 3.6.0)
SystemRequirements Python (>= 3.7.0)
biocViews
Imports echoconda,
     downloadR,
     magrittr,
     dplyr,
     utils,
     R.utils,
     stats,
     methods,
     Matrix,
     parallel,
     BiocManager,
     data.table,
     reticulate,
     GenomeInfoDb,
     GenomicRanges,
     VariantAnnotation,
     snpStats,
     seqminer,
     Rsamtools,
     gaston,
     rtracklayer,
     LDlinkR
Suggests markdown,
```

rmarkdown,

2 BST1

```
remotes,
knitr,
BiocStyle,
covr,
testthat (>= 3.0.0)

Remotes github::RajLabMSSM/echoconda,
github::RajLabMSSM/downloadR

RoxygenNote 7.1.1

VignetteBuilder knitr

License GPL (>= 3) + file LICENSE

Config/testthat/edition 3
```

R topics documented:

BST1	2
BST1_LD_matrix	3
get_UKB_MAF	4
liftover	5
load_or_create	6
locus_dir	8
popDat_1KGphase1	8
popDat_1KGphase3	9
	4.0
	10

BST1 **echolocatoR** output example: BST1 locus

Description

An example results file after running finemap_loci on the BST1 locus.

Usage

Index

```
data("BST1")
```

Format

data.table

SNP SNP RSID

CHR Chromosome

POS Genomic position (in basepairs)

... Optional: extra columns

Nalls2019

data.table

BST1_LD_matrix 3

Details

Data originally comes from the Parkinson's disease GWAS by Nalls et al., (bioRxiv).

Source

```
root_dir <-"~/Desktop/Fine_Mapping/Data/GWAS/Nalls23andMe_2019/BST1/Multi-finemap"
BST1 <-data.table::fread(file.path(root_dir,"Multi-finemap_results.txt")) BST1 <-update_cols(dat = BST1) BST1 <-find_consensus_SNPs(dat = BST1) usethis::use_data(BST1,overwrite = TRUE)</pre>
```

BST1_LD_matrix

LD with the lead SNP: BST1 locus

Description

Precomputed LD within the *BST1* locus (defined in BST1. LD derived British, European-decent subpopulation in the UK Biobank. Only includes a subset of all the SNPs for storage purposes (including the lead GWAS/QTL SNP).

Usage

```
data("BST1_LD_matrix")
```

Format

data.table

SNP SNP RSID

CHR Chromosome

POS Genomic position (in basepairs)

... Optional: extra columns

UK Biobank Nalls 2019

matrix

Details

Data originally comes from UK Biobank. LD was pre-computed and stored by the Alkes Price lab (see here).

Source

```
data("BST1") finemap_DT <-BST1 # Only including a small subset of the full # LD matrix
for storage purposes. lead_snp <-subset(finemap_DT,leadSNP)$SNP snp_list <-finemap_DT[which(finemap_
== lead_snp) -100:which(finemap_DT$SNP == lead_snp) + 100,]$SNP BST1_LD_matrix <-readRDS("../Fine_Matrix_BST1_LD_matrix_[snp_list,snp_list] usethis::use_data(BST1_LD_matrix,overwrite = T)</pre>
```

4 get_UKB_MAF

get_UKB_MAF

Get MAF from UK Biobank.

Description

If MAF column is missing, download MAF from UK Biobank and use that instead.

Usage

```
get_UKB_MAF(
  dat,
  output_path = file.path(tempdir(), "Data/Reference/UKB_MAF"),
  force_new_maf = FALSE,
  download_method = "axel",
  nThread = 1,
  verbose = TRUE,
  conda_env = "echoR"
)
```

Arguments

SNP-level data. dat output_path Path to store UKB_MAF file in. Download UKB_MAF file again. force_new_maf download_method • "axel": Multi-threaded • "wget": Single-threaded • "download.file": Single-threaded • "internal": Single-threaded (passed to download.file) • "wininet" : Single-threaded (passed to download.file) • "libcurl": Single-threaded (passed to download.file) • "curl": Single-threaded (passed to download.file) or "download.file" (single-threaded). nThread Number of threads to parallelize over. verbose Print messages.

Source

UKB

conda_env

Examples

```
data("BST1")
dat <- data.frame(BST1)[, colnames(BST1) != "MAF"]
BST1 <- get_UKB_MAF(dat = dat)</pre>
```

Conda environment to use.

liftover 5

liftover Genome build liftover

Description

Transfer genomic coordinates from one genome build to another.

Usage

```
liftover(
  dat,
  chrom_col = "CHR",
  start_col = "POS",
  end_col = start_col,
  build_conversion = c("hg38ToHg19", "hg19ToHg38"),
  as_granges = FALSE,
  verbose = TRUE
)
```

SNP-level data table.

Arguments

dat

chrom_col Name of the chromosome column.

start_col Name of the start position column.

end_col Name of the end position column (can be same as start_col if all data is SNP-level).

build_conversion

From which to which genome build to lift over dat.

Trong which to which genome build to fift over day

 $as_granges \qquad \quad Return \ lifted \ dat \ as \ \underline{GenomicRanges} \ object.$

verbose Print messages.

Source

liftOver

UCSC chain files

Examples

```
data("BST1")
dat_lifted <- liftover(dat=BST1, build_conversion="hg19ToHg38")</pre>
```

6 load_or_create

load_or_create

Procure an LD matrix for fine-mapping

Description

Calculate and/or query linkage disequilibrium (LD) from reference panels (UK Biobank, 1000 Genomes), a user-supplied pre-computed LD matrix

Usage

```
load_or_create(
  locus_dir,
 dat,
  force_new_LD = FALSE,
 LD_reference = c("1KGphase1", "1KGphase3", "UKB"),
 LD_genome_build = "hg19",
  superpopulation = "EUR",
 remote_LD = TRUE,
  download_method = "axel",
  local_storage = NULL,
 LD_block_size = NULL,
  fillNA = 0,
  verbose = TRUE,
  remove_tmps = TRUE,
  as_sparse = TRUE,
 conda_env = "echoR",
 nThread = 1
```

Arguments

locus_dir Storage directory to use.

dat GWAS summary statistics subset to query the LD panel with.

force_new_LD If LD file exists, create a new one.

LD_reference LD reference to use:

- "1KGphase1": 1000 Genomes Project Phase 1
- "1KGphase3": 1000 Genomes Project Phase 3
- "UKB" : Pre-computed LD from a British European-decent subset of UK Biobank.

 LD_genome_build

Genome build of the LD panel (used only if providing custom LD panel).

superpopulation

Superpopulation to subset LD panel by (used only if LD_reference is "1KG-phase1" or "1KG-phase3".)

remote_LD Whether to pull the LD reference from remote repository, or locally stored files. download_method

"axel" : Multi-threaded "wget" : Single-threaded

load_or_create 7

- "download.file": Single-threaded
- "internal": Single-threaded (passed to download.file)
- "wininet": Single-threaded (passed to download.file)
- "libcurl": Single-threaded (passed to download.file)
- "curl": Single-threaded (passed to download.file)

or "download.file" (single-threaded).

local_storage

Storage folder for previously downloaded LD files. If LD_reference is "1KGphase1" or "1KGphase3", local_storage is where VCF files are stored. If LD_reference is "UKB", local_storage is where LD compressed numpy array (npz) files are stored. Set to NULL to download VCFs/LD npz from remote

storage system.

LD_block_size Block size. Passed to "-blocks-inform-frac" argument in plink. Recommended

default value is 0.7.

fillNA Value to fill LD matrix NAs with.

verbose Print messages.

Remove all temporary files like VCF, npz, and plink files. remove_tmps

as_sparse Convert the LD matrix to a sparse matrix.

Conda environment name. conda_env

nThread Number of threads to parallelize over.

Details

Options:

- Download pre-computed LD matrix from UK Biobank.
- Download raw VCF file from 1KG and compute LD on the fly.
- Compute LD on the fly from a user-supplied VCF file.
- Use a user-supplied pre-computed LD-matrix.

Value

A symmetric LD matrix of pairwise r values.

See Also

```
Other LD: LD_1KG_download_vcf(), LD_1KG(), LD_blocks(), LD_ukbiobank(), calculate_LD(),
construct_subset_vcf_name(), custom_panel(), dprime_table(), filter_LD(), filter_vcf_gaston(),
filter_vcf(), get_locus_vcf_folder(), index_vcf(), ldlinkr_ldproxy_batch(), leadSNP_block(),
plink_LD(), plink_file(), plot_LD(), popDat_1KGphase1, popDat_1KGphase3, query_vcf(),
rds_to_npz(), read_bin(), read_ld_table(), run_plink_LD(), saveSparse(), save_LD_matrix(),
snpstats_get_LD(), snpstats_get_MAF(), translate_population(), vcf_to_bed()
```

Examples

```
data("BST1")
data("locus_dir")
locus_dir <- file.path(tempdir(), locus_dir)</pre>
BST1 <- BST1[seq(1, 50), ]
#LD_matrix <- load_or_create(</pre>
```

```
# locus_dir = locus_dir,
# dat = BST1,
# LD_reference = "1KGphase1"
#)
```

locus_dir

Example results path for BST1 locus

Description

Example results path for BST1 locus

Usage

```
data("locus_dir")
```

Format

path string

Source

```
locus_dir <-"results/GWAS/Nalls23andMe_2019/BST1" usethis::use_data(locus_dir,overwrite
= T)
```

popDat_1KGphase1

Population metadata: 1KGphase1

Description

Individual-level metadata for 1000 Genomes Project (Phase 1).

Usage

```
data("popDat_1KGphase1")
```

Format

data.table

Source

```
popDat\_URL <-"ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/phase1\_integrated\_capopDat\_1KGphase1 <-data.table::fread(text = trimws(gsub(", \t", ", ", readLines(popDat\_URL))), sep = "\t", fill = T, stringsAsFactors = F, col.names = c("sample", "population", "superpop", "sex"), nThread = 4) usethis::use\_data(popDat_1KGphase1, overwrite = T)
```

popDat_1KGphase3

See Also

Other LD: LD_1KG_download_vcf(), LD_1KG(), LD_blocks(), LD_ukbiobank(), calculate_LD(), construct_subset_vcf_name(), custom_panel(), dprime_table(), filter_LD(), filter_vcf_gaston(), filter_vcf(), get_locus_vcf_folder(), index_vcf(), ldlinkr_ldproxy_batch(), leadSNP_block(), load_or_create(), plink_LD(), plink_file(), plot_LD(), popDat_1KGphase3, query_vcf(), rds_to_npz(), read_bin(), read_ld_table(), run_plink_LD(), saveSparse(), save_LD_matrix(), snpstats_get_LD(), snpstats_get_MAF(), translate_population(), vcf_to_bed()

popDat_1KGphase3

Population metadata: 1KGphase3

Description

Individual-level metadata for 1000 Genomes Project (Phase 3).

Usage

```
data("popDat_1KGphase3")
```

Format

data.table

Source

```
popDat\_URL <-"ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/integrated\_call\_samppopDat\_1KGphase3 <-data.table::fread(text = trimws(gsub(",\t",",",readLines(popDat\_URL))), sep = "\t",fill = T,stringsAsFactors = F,col.names = c("sample","population","superpop","sex"),nThread = 4) usethis::use_data(popDat_1KGphase3,overwrite = T)
```

See Also

```
Other LD: LD_1KG_download_vcf(), LD_1KG(), LD_blocks(), LD_ukbiobank(), calculate_LD(), construct_subset_vcf_name(), custom_panel(), dprime_table(), filter_LD(), filter_vcf_gaston(), filter_vcf(), get_locus_vcf_folder(), index_vcf(), ldlinkr_ldproxy_batch(), leadSNP_block(), load_or_create(), plink_LD(), plink_file(), plot_LD(), popDat_1KGphase1, query_vcf(), rds_to_npz(), read_bin(), read_ld_table(), run_plink_LD(), saveSparse(), save_LD_matrix(), snpstats_get_LD(), snpstats_get_MAF(), translate_population(), vcf_to_bed()
```

Index

* LD	plot_LD, <i>7</i> , <i>9</i>
load_or_create, 6	popDat_1KGphase1, 7, 8,
<pre>popDat_1KGphase1, 8</pre>	popDat_1KGphase3, 7, 9
<pre>popDat_1KGphase3, 9</pre>	
* datasets	query_vcf, <i>7</i> , <i>9</i>
BST1, 2	
BST1_LD_matrix, 3	rds_to_npz, 7, 9
locus_dir,8	read_bin, 7, 9 read_ld_table, 7, 9
popDat_1KGphase1, 8	run_plink_LD, 7, 9
popDat_1KGphase3, 9	run_piink_Eb, 7, 7
* standardizing functions	save_LD_matrix, 7,9
get_UKB_MAF,4	saveSparse, 7, 9
BST1, 2, 3	snpstats_get_LD, 7, 9
BST1_LD_matrix, 3	snpstats_get_MAF, 7, 9
5511_E5_matrix, 5	
calculate_LD, 7, 9	translate_population
construct_subset_vcf_name, 7, 9	vcf_to_bed, 7, 9
custom_panel, 7, 9	, . , .
download.file, 4, 7	
dprime_table, 7, 9	
aprime_table, 7, 5	
filter_LD, 7, 9	
filter_vcf, 7, 9	
filter_vcf_gaston, 7, 9	
GenomicRanges, 5	
get_locus_vcf_folder, 7, 9	
get_UKB_MAF,4	
index_vcf, 7, 9	
LD_1KG, 7, 9	
LD_1KG_download_vcf, 7, 9	
LD_blocks, 7, 9	
LD_ukbiobank, 7, 9	
ldlinkr_ldproxy_batch, 7, 9	
leadSNP_block, 7, 9	
liftover, 5	
load_or_create, 6, 9	
locus_dir, 8	
plink_file, 7, 9	
plink_LD, 7, 9	

7, 9