离散数学 第6章 图

Discrete Mathematics

黄正华

Email: huangzh@whu.edu.cn

武汉大学 数学与统计学院

November 18, 2012

图论起源

图论的最早论文是欧拉 (Leonhard Euler) 在 1736 年发表的. 文章讨论了 哥尼斯堡七桥问题. 当时哥尼斯堡 (Königsberg, 今俄罗斯加里宁格勒) 市区跨普雷格尔河 (Pregel) 两岸, 河中心有两个小岛. 小岛与河的两岸有七座桥连接.

七桥问: 能回到.

参考书籍

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.

The Macmillan Press Ltd., 1976

▶ J. A. 邦迪 U. S. R. 默蒂 著 吴望名, 李念祖, 吴兰芳, 谢伟如, 梁文沛 译 图论及其应用.

科学出版社, 1984.

- 图的基本概念
- 2 路与回路
- ③ 图的矩阵表示
- 4 欧拉图与汉密尔顿图
- 5 平面图
- 6 对偶图与着色

图的定义

七桥问题可以简洁地由左图表示. 这类图示包含三个组成部分:结点、边、结点与 边的对应关系.抽象其特点,我们得到 图 (Graph) 的定义.

图的定义

七桥问题可以简洁地由左图表示. 这类图示包含三个组成部分:结点、边、结点与 边的对应关系.抽象其特点,我们得到 图 (Graph) 的定义.

Definition 1.1

- 一个图 G 是一个三元序组 $\langle V(G), E(G), \varphi_G \rangle$, 其中
 - V(G) 是一个非空的结点集合 (vertex set),
 - *E*(*G*) 是边集合 (edge set),
 - φ_G 是从边集合 E(G) 到结点无序偶 (有序偶) 集合上的函数.

Example 1.2

设
$$G = \langle V(G), E(G), \varphi_G \rangle$$
, 其中 $V(G) = \{a, b, c, d\}$, $E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6\}$, 而 φ_G 定义为

$$\begin{split} \varphi_G(e_1) &= (a, \ b), \quad \varphi_G(e_2) = (a, \ c), \\ \varphi_G(e_3) &= (b, \ d), \quad \varphi_G(e_4) = (b, \ c), \\ \varphi_G(e_5) &= (d, \ c), \quad \varphi_G(e_6) = (a, \ d). \end{split}$$

图 G 可用图形表示为如下的图 (a) 或 (b):

- 每条边都是无向边的图叫无向图;
- 每条边都是有向边的图叫有向图:
- 既有无向边又有有向边的图叫混合图.

(a) 无向图

- 每条边都是无向边的图叫无向图;
- 每条边都是有向边的图叫有向图:
- 既有无向边又有有向边的图叫混合图.

- 每条边都是无向边的图叫无向图;
- 每条边都是有向边的图叫有向图;
- 既有无向边又有有向边的图叫混合图.

这些图可分别表示为:

$$G = \langle V, E \rangle = \left\langle \left\{ v_1, v_2, v_3, v_4, v_5 \right\}, \left\{ (v_1, v_2), (v_2, v_3), (v_3, v_4), (v_2, v_4) \right\} \right\rangle$$

这些图可分别表示为:

$$G = \langle V, E \rangle = \left\langle \left\{ v_1, v_2, v_3, v_4, v_5 \right\}, \left\{ (v_1, v_2), (v_2, v_3), (v_3, v_4), (v_2, v_4) \right\} \right\rangle$$

$$G' = \langle V', E' \rangle = \left\langle \left\{ v'_1, v'_2, v'_3, v'_4 \right\}, \left\{ \langle v'_1, v'_2 \rangle, \langle v'_2, v'_3 \rangle, \langle v'_3, v'_1 \rangle, \langle v'_1, v'_4 \rangle, \langle v'_4, v'_2 \rangle \right\} \right\rangle$$

黄正华 (武汉大学)

这些图可分别表示为:

$$G = \langle V, E \rangle = \left\langle \left\{ v_1, v_2, v_3, v_4, v_5 \right\}, \left\{ (v_1, v_2), (v_2, v_3), (v_3, v_4), (v_2, v_4) \right\} \right\rangle$$

$$G' = \langle V', E' \rangle = \left\langle \left\{ v_1', v_2', v_3', v_4' \right\}, \left\{ \langle v_1', v_2' \rangle, \langle v_2', v_3' \rangle, \langle v_3', v_1' \rangle, \langle v_1', v_4' \rangle, \langle v_4', v_2' \rangle \right\} \right\rangle$$

$$G'' = \langle V'', E'' \rangle = \left\langle \left\{ v_1'', v_2'', v_3'', v_4'' \right\}, \left\{ (v_1'', v_4''), (v_2'', v_4''), \langle v_1'', v_3'' \rangle, \langle v_3'', v_4'' \rangle \right\} \right\rangle$$

- 若两个结点与同一条边相关联,则称两个结点是邻接点.
- 关联于同一结点的两条边叫邻接边.

Figure: 例如, "v₃ 与 v₄", "v₁ 与 v₃" 是<mark>邻接点</mark>

- ◆ 若两个结点与同一条边相关联,则称两个结点是邻接点.
- 关联于同一结点的两条边叫邻接边.

Figure:例如, "e₂₃与 e₃₄", "e'₃₁与 e'₂₃"是邻接边

- 设图 $G = \langle V, E \rangle$, $e_k = (v_i, v_j)$, 则 v_i , v_j 叫 e_k 的端点; 并称 e_k 与 v_i , v_j 相 关联.
- 关联于同一结点的一条边, 称为自回路或环.
- 环的方向没有意义: 它即可作为有向边, 也可作无向边.

- 设图 $G = \langle V, E \rangle$, $e_k = (v_i, v_j)$, 则 v_i , v_j 叫 e_k 的端点; 并称 e_k 与 v_i , v_j 相 关联.
- 关联于同一结点的一条边, 称为自回路或环.
- 环的方向没有意义: 它即可作为有向边, 也可作无向边.

- 设图 $G = \langle V, E \rangle$, $e_k = (v_i, v_j)$, 则 v_i , v_j 叫 e_k 的端点; 并称 e_k 与 v_i , v_j 相 关联.
- 关联于同一结点的一条边, 称为自回路或环.
- 环的方向没有意义: 它即可作为有向边, 也可作无向边.

- 不与任何结点相邻接的结点, 称为孤立点.
- 仅由孤立结点组成的图叫零图; 由一个孤立结点构成的图叫平凡图.

(a) 孤立点: v₅

- 不与任何结点相邻接的结点, 称为孤立点.
- 仅由孤立结点组成的图叫零图; 由一个孤立结点构成的图叫平凡图.

(a) 孤立点: v₅

(b) 零图

• 关联于同一对结点的多条边 (有向边应同向), 叫平行边.

- 关联于同一对结点的多条边 (有向边应同向), 叫平行边.
- 包含平行边的图, 叫多重图.

- 关联于同一对结点的多条边 (有向边应同向), 叫平行边.
- 包含平行边的图, 叫多重图.
- 不含平行边和环的图, 叫简单图.

在图 $G = \langle V, E \rangle$ 中, 与结点 v 相关联的边数, 叫该结点的<mark>度数</mark>, 记作 $\deg(v)$.

在图 $G = \langle V, E \rangle$ 中, 与结点 v 相关联的边数, 叫该结点的<mark>度数</mark>, 记作 $\deg(v)$.

• 称 $\Delta(G) = \max \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最大度;

在图 $G = \langle V, E \rangle$ 中,与结点 v 相关联的边数,叫该结点的度数,记作 $\deg(v)$.

- 称 $\Delta(G) = \max \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最大度;
- 称 $\delta(G) = \min \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最小度.

在图 $G = \langle V, E \rangle$ 中,与结点 v 相关联的边数,叫该结点的度数,记作 $\deg(v)$.

- 称 $\Delta(G) = \max \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最大度;
- 称 $\delta(G) = \min \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最小度.
- 约定: 每个环在其对应的结点上, 度数增加 2.

在图 $G = \langle V, E \rangle$ 中,与结点 v 相关联的边数,叫该结点的<mark>度数</mark>,记作 $\deg(v)$.

- 称 $\Delta(G) = \max \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最大度;
- 称 $\delta(G) = \min \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最小度.
- 约定: 每个环在其对应的结点上, 度数增加 2.

例如左图 G 中, 各结点度数为:

$$\deg(a) = 2; \qquad \deg(b) = 3;$$

$$\deg(c) = 2; \qquad \deg(d) = 2;$$

$$\deg(e) = 5.$$

在图 $G = \langle V, E \rangle$ 中,与结点 v 相关联的边数,叫该结点的<mark>度数</mark>,记作 $\deg(v)$.

- 称 $\Delta(G) = \max \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最大度;
- 称 $\delta(G) = \min \{ \deg(v) \mid v \in V(G) \}$ 为图 G 的最小度.
- 约定: 每个环在其对应的结点上, 度数增加 2.

例如左图 G 中, 各结点度数为:

$$\deg(a) = 2; \qquad \deg(b) = 3;$$

$$\deg(c) = 2; \qquad \qquad \deg(d) = 2;$$

$$\deg(e) = 5.$$

最大度和最小度为:

$$\Delta(G) = 5;$$
 $\delta(G) = 2.$

每个图中, 结点度数的总和等于边数的 2 倍.

$$\sum_{v \in V} \deg(v) = 2|E|.$$

每个图中, 结点度数的总和等于边数的 2 倍.

$$\sum_{v\in V} \deg(v) = 2|E|.$$

证: 因为每条边关联两个结点, 且一条边给予关联的每个结点的度数为 1,

每个图中, 结点度数的总和等于边数的 2 倍.

$$\sum_{v\in V} \deg(v) = 2|E|.$$

证: 因为每条边关联两个结点, 且一条边给予关联的每个结点的度数为 1,

从而一条边产生且仅产生两度, 故结点度数的总和是边数的 2 倍.

每个图中, 结点度数的总和等于边数的 2 倍.

$$\sum_{v \in V} \deg(v) = 2|E|.$$

证: 因为每条边关联两个结点, 且一条边给予关联的每个结点的度数为 1,

从而一条边产生且仅产生两度, 故结点度数的总和是边数的 2 倍.

☞ 一个图的结点度数是偶数.

黄正华 (武汉大学) 离散数学 第6章 图

Example 1.5

设一个图具有 10 个结点, 而且每个结点的度数都为 6. 问此图有多少条边?

Example 1.5

设一个图具有 10 个结点, 而且每个结点的度数都为 6. 问此图有多少条边?

解: 结点度数的总和为

$$\sum_{v \in V} \deg(v) = 10 \times 6 = 60.$$

设一个图具有 10 个结点, 而且每个结点的度数都为 6. 问此图有多少条边?

解: 结点度数的总和为

$$\sum_{v \in V} \deg(v) = 10 \times 6 = 60.$$

所以 2|E| = 60. 得 |E| = 30, 即此图有 30 条边.

任何图中, 度数为奇数的结点必为偶数个.

任何图中, 度数为奇数的结点必为偶数个.

 $\overline{\mathbf{u}}$: 设 V_1 和 V_2 分别是图 G 中奇数度数和偶数度数结点集.

任何图中, 度数为奇数的结点必为偶数个.

 $\overline{\mathbf{u}}$: 设 V_1 和 V_2 分别是图 G 中奇数度数和偶数度数结点集. 则

$$\sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v) = \sum_{v \in V} \deg(v) = 2|E|$$

上式中 $\sum_{v \in V_2} \deg(v)$ 为偶数, 2|E| 也是偶数.

任何图中, 度数为奇数的结点必为偶数个.

设 V_1 和 V_2 分别是图 G 中奇数度数和偶数度数结点集. 则

$$\sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v) = \sum_{v \in V} \deg(v) = 2|E|$$

上式中 $\sum \deg(v)$ 为偶数, 2|E| 也是偶数.

故
$$\sum_{v \in V_2} \deg(v)$$
 必为偶数,

故
$$\sum_{v \in V_1} \deg(v)$$
 必为偶数, 即 $|V_1|$ 是偶数.

在有向图 G 中,

- 射入一个结点的边数, 称为该结点的入度, 记为 $\deg^-(v)$;
- ② 由一个结点射出的边数, 称为该结点的出度, 记为 $\deg^+(v)$;
- ③ 结点入度与出度之和, 称为该结点的度数, 即 $\deg(v) = \deg^-(v) + \deg^+(v)$.

左图中,

● 结点 *a* 的出度为 4, 入度为 1, 结点 *a* 的 度数为 5.

左图中,

- 结点 a 的出度为 4, 入度为 1, 结点 a 的 度数为 5.
- 其余各结点的度数皆为 3:
 - 结点 b 的出度为 0, 入度为 3;
 - 结点 c 的出度为 1, 入度为 2;
 - 结点 d 的出度为 2, 入度为 1.

在有向图中, 所有结点出度之和等于所有结点入度之和. 即

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|.$$

在有向图中, 所有结点出度之和等于所有结点入度之和. 即

$$\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|.$$

证: 因每条有向边恰好产生一个出度和一个入度,

从而出度和入度是成对出现的, 所以出度之和等于入度之和.

18 / 152

完全图

Definition 1.10

• 简单图 $G = \langle V, E \rangle$ 中, 若每对结点之间均有边相连, 则称该图为完全图.

完全图

Definition 1.10

- 简单图 $G = \langle V, E \rangle$ 中, 若每对结点之间均有边相连, 则称该图为完全图.
- 有 n 个结点的无向完全图记作 K_n .

完全图

Definition 1.10

- 简单图 $G = \langle V, E \rangle$ 中, 若每对结点之间均有边相连, 则称该图为完全图.
- 有 n 个结点的无向完全图记作 K_n .

无向完全图 K_n 的边数为 $\frac{1}{2}n(n-1)$.

无向完全图 K_n 的边数为 $\frac{1}{2}n(n-1)$.

证: K_n 中任意两个结点有且仅有一条边相连, 那么 n 个结点中任取两个结点的组合数为

$$\binom{n}{2} = \frac{1}{2}n(n-1).$$

无向完全图 K_n 的边数为 $\frac{1}{2}n(n-1)$.

证: K_n 中任意两个结点有且仅有一条边相连, 那么 n 个结点中任取两个结点的组合数为

$$\binom{n}{2} = \frac{1}{2}n(n-1).$$

即 K_n 的边数为

$$|E| = \frac{1}{2}n(n-1).$$

无向完全图 K_n 的边数为 $\frac{1}{2}n(n-1)$.

证: K_n 中任意两个结点有且仅有一条边相连, 那么 n 个结点中任取两个结点的组合数为

$$\binom{n}{2} = \frac{1}{2}n(n-1).$$

即 K_n 的边数为

$$|E| = \frac{1}{2}n(n-1).$$

注意

完全图, 首先是简单图 (不含有平行边和环).

由图 G 的所有结点和所有能使图 G 成为完全图的添加边组成的图, 称为图 G 相对于完全图的<mark>补图</mark>, 或简称为 G 的<mark>补图</mark>, 记作 \overline{G} .

由图 G 的所有结点和所有能使图 G 成为完全图的添加边组成的图, 称为图 G 相对于完全图的<mark>补图</mark>, 或简称为 G 的<mark>补图</mark>, 记作 \overline{G} .

Figure: $G 与 \overline{G} 互为补图$.

给定图 $G = \langle V, E \rangle$ 和 $G_1 = \langle V_1, E_1 \rangle$,

- 如果 $E_1 \subseteq E$, $V_1 \subseteq V$, 则称 G_1 为 G 的子图.
- 如果 $V_1 = V$, 即 G_1 包含 G 的所有结点,则称 G_1 为 G 的生成子图.

给定图 $G = \langle V, E \rangle$ 和 $G_1 = \langle V_1, E_1 \rangle$,

- 如果 $E_1 \subseteq E$, $V_1 \subseteq V$, 则称 G_1 为 G 的子图.
- 如果 $V_1 = V$, 即 G_1 包含 G 的所有结点,则称 G_1 为 G 的生成子图.

Example 1.14

如图, G_1 , G_2 是 G 的子图, 也是 G 的生成子图. G_3 仅为 G 的子图.

设图 $G_1 = \langle V_1, E_1 \rangle$ 是 $G = \langle V, E \rangle$ 的子图. 令 $G_2 = \langle V_2, E_2 \rangle$, 如果

- $E_2 = E E_1$,
- 且 V_2 中仅包含 E_2 中的边所关联的结点,

则称 G_2 为子图 G_1 相对于图 G 的<mark>补图</mark>.

设图 $G_1 = \langle V_1, E_1 \rangle$ 是 $G = \langle V, E \rangle$ 的子图. 令 $G_2 = \langle V_2, E_2 \rangle$, 如果

- $E_2 = E E_1$,
- 且 V_2 中仅包含 E_2 中的边所关联的结点,

则称 G_2 为子图 G_1 相对于图 G 的<mark>补图</mark>.

Example 1.16

图中 G_1 相对于 G 的补图是 G_2 ;

而 G_3 相对于 G 的补图是 G_4 .

设图 $G_1 = \langle V_1, E_1 \rangle$ 是 $G = \langle V, E \rangle$ 的子图. 令 $G_2 = \langle V_2, E_2 \rangle$, 如果

- $E_2 = E E_1$,
- 且 V2 中仅包含 E2 中的边所关联的结点,

则称 G_2 为子图 G_1 相对于图 G 的<mark>补图</mark>.

Example 1.16

图中 G_1 相对于 G 的补图是 G_2 ;

而 G_3 相对于 G 的补图是 G_4 . 问: G_1 的补图是?

图的同构

Definition 1.17

给定图 $G = \langle V, E \rangle$ 和 $G' = \langle V', E' \rangle$, 如果存在双射 $g: V \to V'$, 且 $e = (v_i, v_j)$ 是 G 的一条边当且仅当 $e' = (g(v_i), g(v_j))$ 是 G' 的一条边, 则称 G' 与 G 同构. 记作 $G \simeq G'$.

图的同构

Definition 1.17

给定图 $G = \langle V, E \rangle$ 和 $G' = \langle V', E' \rangle$, 如果存在双射 $g: V \to V'$, 且 $e = (v_i, v_j)$ 是 G 的一条边当且仅当 $e' = (g(v_i), g(v_j))$ 是 G' 的一条边, 则称 G' 与 G 同构. 记作 $G \simeq G'$.

从定义可得两图同构的几个必要条件:

- 结点数相同;
- ② 边数相同;
- 3 对应结点的度数相等.

图的同构

Definition 1.17

给定图 $G = \langle V, E \rangle$ 和 $G' = \langle V', E' \rangle$, 如果存在双射 $g: V \to V'$, 且 $e = (v_i, v_j)$ 是 G 的一条边当且仅当 $e' = (g(v_i), g(v_j))$ 是 G' 的一条边, 则称 G' 与 G 同构. 记作 $G \simeq G'$.

从定义可得两图同构的几个必要条件:

- 结点数相同;
- ② 边数相同;
- 3 对应结点的度数相等.

注

简言之, 同构的两个图的顶点之间, 具有保持相邻关系的一一对应.

判断下列图是否同构:

判断下列图是否同构:

 $v_1 \rightarrow u_1, v_3 \rightarrow u_3, v_4 \rightarrow u_2, v_2 \rightarrow u_4,$ 容易判断是同构的.

判断下列图是否同构:

☞ $v_1 \to u_1, v_3 \to u_3, v_4 \to u_2, v_2 \to u_4$, 容易判断是同构的.

(把图 G_2 中的 u_4 上移就看得更清楚了.)

判断下列图是否同构:

 $v_1 \rightarrow u_1, v_3 \rightarrow u_3, v_4 \rightarrow u_2, v_2 \rightarrow u_4,$ 容易判断是同构的.

(把图 G_2 中的 u_4 上移就看得更清楚了.)

判断下列图是否同构:

 $v_1 \rightarrow u_1, v_3 \rightarrow u_3, v_4 \rightarrow u_2, v_2 \rightarrow u_4,$ 容易判断是同构的.

(把图 G_2 中的 u_4 上移就看得更清楚了.)

图中 G_1 , G_2 , G_3 , G_4 是彼此同构的.

图中 G_1 , G_2 , G_3 , G_4 是彼此同构的.

☞ 事实上, 它们都是完全图 K₄.

下面的三个图是同构的:

图中 G_1 , G_2 是彼此不同构的.

如果两图同构,则对应结点的度数应相同.

- 度数为 3 的两个结点 v_1 与 u_1 相对应.
- 但是, 与分别 v_1 和 u_1 相邻接的各三个结点, 度数不一致:
 - v_1 的三个邻接点中, 度数为 2 的有一个, 度数为 1 的有两个;
 - u_1 的三个邻接点中, 度数为 2 的有两个, 度数为 1 的有一个.

判断下列图是否同构:

判断下列图是否同构:

注意 G_1 中有两个度数为 3 的结点 v_3 , v_2 ; G_2 中度数为 3 的结点是 u_5 , u_3 . 容易看到图形是同构的.

判断下列图是否同构:

注意 G_1 中有两个度数为 3 的结点 $v_3, v_2; G_2$ 中度数为 3 的结点是 u_5, u_3 . 容易看到图形是同构的.

把 46 上移可以看得更清楚.

判断下列图是否同构:

注意 G_1 中有两个度数为 3 的结点 $v_3, v_2; G_2$ 中度数为 3 的结点是 u_5, u_3 . 容易看到图形是同构的.

把 46 上移可以看得更清楚.

练习 P.279 (4)

下面两个图是同构的. 4

a彼得森图. 彼得森 (Julius Peter Christian Peterson, 1839 – 1910) 丹麦人.

练习 P.279 (4)

下面两个图是同构的. 4

a彼得森图. 彼得森 (Julius Peter Christian Peterson, 1839 - 1910) 丹麦人.

练习 P.279 (4)

下面两个图是同构的. 4

根据点与边的关联关系, 在两图编号相同的结点间建立双射, 便可知这两个图同构.

a彼得森图. 彼得森 (Julius Peter Christian Peterson, 1839 – 1910) 丹麦人.

Figure: 判断同构性

Figure: 判断同构性

Figure: 判断同构性

Figure: 判断同构性

Figure: 判断同构性

Figure: 判断同构性

- 1 图的基本概念
- 2 路与回路
- 3 图的矩阵表示
- 4 欧拉图与汉密尔顿图
- 5 平面图
- 6 对偶图与着色

路与回路

本节主要内容:

- 路
- ② 连通的概念
- ◎ 删除结点和边与图的连通性
- 有向图的可达性
- 有向图的连通性

路

图论中的一个常见问题是从给定的结点出发, 沿着边移动, 到达另一指定结点. 所经过的点边序列就形成了路的概念.

图论中的一个常见问题是从给定的结点出发, 沿着边移动, 到达另一指定结点. 所经过的点边序列就形成了路的概念.

Definition 2.1

给定图 $G = \langle V, E \rangle$, 设 $v_0, v_1, v_2, \cdots, v_n \in V$, $e_1, e_2, \cdots, e_n \in E$, 其中 e_i 是关 联结点 v_{i-1}, v_i 的边, 点边交替序列

$$v_0 e_1 v_1 e_2 v_2 \cdots e_n v_n$$

称为联结 v_0 到 v_n 的路.

图论中的一个常见问题是从给定的结点出发,沿着边移动,到达另一指定结点.所经过的点边序列就形成了路的概念.

Definition 2.1

给定图 $G = \langle V, E \rangle$, 设 $v_0, v_1, v_2, \dots, v_n \in V$, $e_1, e_2, \dots, e_n \in E$, 其中 e_i 是关 联结点 v_{i-1}, v_i 的边, 点边交替序列

$$v_0 e_1 v_1 e_2 v_2 \cdots e_n v_n$$

称为联结 v_0 到 v_n 的路.

• v_0 和 v_n 分别称为该路的起点和终点.

图论中的一个常见问题是从给定的结点出发,沿着边移动,到达另一指定结点.所经过的点边序列就形成了路的概念.

Definition 2.1

给定图 $G = \langle V, E \rangle$, 设 $v_0, v_1, v_2, \dots, v_n \in V$, $e_1, e_2, \dots, e_n \in E$, 其中 e_i 是关 联结点 v_{i-1}, v_i 的边, 点边交替序列

$$v_0 e_1 v_1 e_2 v_2 \cdots e_n v_n$$

称为联结 v_0 到 v_n 的路.

- v_0 和 v_n 分别称为该路的起点和终点.
- 如果 $v_0 = v_n$, 称该路为回路.

- 若路中各边均不相同,则称为迹;
- ② 若路中各结点均不相同,则称为<mark>通路</mark>;
- ◎ 若闭合通路中各结点均不相同,则称为圈.

- v₁e₁v₂e₅v₄e₈v₅e₇v₃ 是迹 (无重复的边), 也是通路 (无重复结点);
- $v_2e_3v_3e_4v_2e_6v_5e_8v_4e_5v_2$ 是回路 (起点与终点重合), 但不是圈;
- $v_2 e_3 v_3 e_7 v_5 e_6 v_2$ 是圈 (是回路, 但没有重复的结点).

- $v_1e_1v_2e_5v_4e_8v_5e_7v_3$ 是迹 (无重复的边), 也是通路 (无重复结点);
- v₂e₃v₃e₄v₂e6v₅e8v₄e₅v₂是回路(起点与终点重合),但不是圈;
- $v_2 e_3 v_3 e_7 v_5 e_6 v_2$ 是圈 (是回路, 但没有重复的结点).

- $v_1e_1v_2e_5v_4e_8v_5e_7v_3$ 是迹 (无重复的边), 也是通路 (无重复结点);
- $v_2e_3v_3e_4v_2e_6v_5e_8v_4e_5v_2$ 是回路 (起点与终点重合), 但不是圈;
- $v_2 e_3 v_3 e_7 v_5 e_6 v_2$ 是圈 (是回路, 但没有重复的结点).

 黄正华 (武汉大学)
 离散数学 第6章 图
 November 18, 2012
 38 / 152

- $v_1e_1v_2e_5v_4e_8v_5e_7v_3$ 是迹 (无重复的边), 也是通路 (无重复结点);
- $v_2e_3v_3e_4v_2e_6v_5e_8v_4e_5v_2$ 是回路 (起点与终点重合), 但不是圈;
- $v_2 e_3 v_3 e_7 v_5 e_6 v_2$ 是圈 (是回路, 但没有重复的结点).

在具有 n 个结点的图中, 如果从结点 v_i 到 v_k 存在一条路, 则从结点 v_i 到 v_k 必存在一条不多于 n-1 边的路.

November 18, 2012

在具有 n 个结点的图中, 如果从结点 v_j 到 v_k 存在一条路, 则从结点 v_j 到 v_k 必存在一条不多于 n-1 边的路.

证: 设从结点 v_j 到 v_k 存在一条路, 该路的结点序列为

$$v_j \cdots v_i \cdots v_k$$
.

如果该路有 m 条边,则该路的结点序列中有 m+1 个结点.

在具有 n 个结点的图中, 如果从结点 v_j 到 v_k 存在一条路, 则从结点 v_j 到 v_k 必存在一条不多于 n-1 边的路.

证: 设从结点 v_j 到 v_k 存在一条路, 该路的结点序列为

$$v_j \cdots v_i \cdots v_k$$
.

如果该路有m条边,则该路的结点序列中有m+1个结点.

若 m > n - 1, 则必存在结点 v_s , 它在该路中不止出现一次, 可设该路的结点序列为

$$v_j \cdots v_s \cdots v_s \cdots v_k$$
.

在具有 n 个结点的图中, 如果从结点 v_j 到 v_k 存在一条路, 则从结点 v_j 到 v_k 必存在一条不多于 n-1 边的路.

证: 设从结点 v_i 到 v_k 存在一条路, 该路的结点序列为

$$v_j \cdots v_i \cdots v_k$$
.

如果该路有 m 条边,则该路的结点序列中有 m+1 个结点.

若 m > n-1, 则必存在结点 v_s , 它在该路中不止出现一次, 可设该路的结点序列为

$$v_j \cdots v_s \cdots v_s \cdots v_k$$
.

去掉 v_s 到 v_s 之间这段路:

$$v_j \cdots \underbrace{v_s \cdots v_s}_{} \cdots v_k \Rightarrow v_j \cdots v_s \cdots v_k.$$

则 $v_i \cdots v_s \cdots v_k$ 仍然是 v_i 到 v_k 的路, 但此时路中边数已减少.

在具有 n 个结点的图中, 如果从结点 v_j 到 v_k 存在一条路, 则从结点 v_j 到 v_k 必存在一条不多于 n-1 边的路.

证: 设从结点 v_i 到 v_k 存在一条路, 该路的结点序列为

$$v_j \cdots v_i \cdots v_k$$
.

如果该路有 m 条边,则该路的结点序列中有 m+1 个结点.

若 m > n - 1, 则必存在结点 v_s , 它在该路中不止出现一次, 可设该路的结点序列为

$$v_j \cdots v_s \cdots v_s \cdots v_k$$
.

去掉 v_s 到 v_s 之间这段路:

$$v_j \cdots \underbrace{v_s \cdots v_s}_{} \cdots v_k \Rightarrow v_j \cdots v_s \cdots v_k.$$

则 $v_i \cdots v_s \cdots v_k$ 仍然是 v_i 到 v_k 的路, 但此时路中边数已减少.

如果所得的这条路中的边仍然大于 n-1, 重复上述步骤, 最终可得一条 v_i 到 v_k 且路中边数不多于 n-1 条边的路.

例如下图有 5 个结点, $v_1e_1v_2e_3v_3e_4v_2e_6v_5e_8v_4$ 是图中从 v_1 到 v_4 路, 它有 5 条边.

去掉 v_2 到 v_2 之间的路 $e_3v_3e_4v_2$, 所得的路 $v_1e_1v_2e_6v_5e_8v_4$ 仍然是从 v_1 到 v_4 路, 其边数小于 5-1.

连通

Definition 2.3

在无向图 G 中, 如果从结点 u 到 v 存在一条路, 则称结点 u 和结点 v 是<mark>连通</mark>的.

连通

Definition 2.3

在无向图 G中,如果从结点 u到 v存在一条路,则称结点 u 和结点 v是<mark>连通</mark>的.

Definition 2.4

对无向图 $G = \langle V, E \rangle$ 而言, 结点集合 V 上的连通关系是等价关系. 该连通关系将结点集合作出一个划分, 每个划分块连同它们所关联的边称为图 G 的一个<mark>连通分支</mark>.

连通

Definition 2.3

在无向图 G中,如果从结点 u到 v存在一条路,则称结点 u 和结点 v是<mark>连通</mark>的.

Definition 2.4

对无向图 $G = \langle V, E \rangle$ 而言, 结点集合 V 上的连通关系是等价关系. 该连通关系将结点集合作出一个划分, 每个划分块连同它们所关联的边称为图 G 的一个连通分支. 把图 G 的连通分支数记为 W(G).

Example 2.5

如图, 图 G 是具有三个连通分支的非连通图.

Figure:非连通图 G.

Example 2.5

如图,图 G 是具有三个连通分支的非连通图.

Figure: 非连通图 G.

G 的连通分支数为

$$W(G) = 3.$$

Example 2.5

如图,图 G 是具有三个连通分支的非连通图.

Figure: 非连通图 G.

G的连通分支数为

$$W(G) = 3.$$

Definition 2.6

若图 G 只有一个连通分支, 则称图 G 是<mark>连通图</mark>.

连通性 & 结点和边的删除

连通图中, 删除某些点或者边, 将使图变得不连通.

连通性 & 结点和边的删除

连通图中, 删除某些点或者边, 将使图变得不连通. 结点和边的删除:

• 在图中删除结点 v, 就是将结点 v 及 v 所关联的边都删除.

连通性 & 结点和边的删除

连通图中, 删除某些点或者边, 将使图变得不连通. 结点和边的删除:

- 在图中删除结点 v, 就是将结点 v 及 v 所关联的边都删除.
- 在图中删除某边,则只须删除该边,而保留边所关联的结点.

设无向图 $G = \langle V, E \rangle$ 中, 若有结点集 $V_1 \subset V$, 使图 G 删除了 V_1 的所有结点后所得的子图是不连通的, 而删除了 V_1 的任一真子集后所得的子图仍是连通的, 则称 V_1 是图 G 的点割集.

设无向图 $G = \langle V, E \rangle$ 中, 若有结点集 $V_1 \subset V$, 使图 G 删除了 V_1 的所有结点后所得的子图是不连通的, 而删除了 V_1 的任一真子集后所得的子图仍是连通的, 则称 V_1 是图 G 的点割集.

如果某一个结点构成一个点割集,则称该结点为割点.

设无向图 $G = \langle V, E \rangle$ 中, 若有结点集 $V_1 \subset V$, 使图 G 删除了 V_1 的所有结点后所得的子图是不连通的, 而删除了 V_1 的任一真子集后所得的子图仍是连通的, 则称 V_1 是图 G 的点割集.

如果某一个结点构成一个点割集,则称该结点为割点.

Example 2.8

如图, (a) 中删除割点 s, 成为有两个连通分支的非连通图 (b).

非完全图 G 的点连通度(简称连通度) 定义为:

$$k(G) = \min \{ |V_i| | V_i$$
 是点割集 }

由定义可知, 连通度是为了产生一个不连通图所要删除结点的最少数目. 那么,

• 非连通图的连通度为 0;

非完全图 G 的点连通度(简称连通度) 定义为:

$$k(G) = \min \{ |V_i| | V_i$$
 是点割集 }

由定义可知, 连通度是为了产生一个不连通图所要删除结点的最少数目. 那么,

- 非连通图的连通度为 0;
- 存在割点的连通图的连通度为 1:

非完全图 G 的点连通度(简称连通度) 定义为:

$$k(G) = \min \{ |V_i| | V_i$$
 是点割集 }

由定义可知, 连通度是为了产生一个不连通图所要删除结点的最少数目. 那么,

- 非连通图的连通度为 0;
- 存在割点的连通图的连通度为 1:
- 完全图 K_n 删除 m(m < n-1) 个结点后仍是连通的, 删除 n-1 个结点后成为仅有一个孤立结点的平凡图, 故定义

$$k(K_n) = n - 1.$$

例如, 完全图 K_5 的删除:

所以, $k(K_5) = 4$.

设无向图 $G = \langle V, E \rangle$ 为连通图, 若有边集 $E_1 \subset E$, 使图 G 删除了 E_1 中的所有边后所得的子图是不连通的, 而删除了 E_1 的任一真子集后所得的子图仍是连通的, 则称 E_1 是图 G 的边割集.

设无向图 $G = \langle V, E \rangle$ 为连通图, 若有边集 $E_1 \subset E$, 使图 G 删除了 E_1 中的所有边后所得的子图是不连通的, 而删除了 E_1 的任一真子集后所得的子图仍是连通的, 则称 E_1 是图 G 的边割集.

如果某一条边构成一个边割集,则称该边为割边(或桥).

设无向图 $G = \langle V, E \rangle$ 为连通图, 若有边集 $E_1 \subset E$, 使图 G 删除了 E_1 中的所有边后所得的子图是不连通的, 而删除了 E_1 的任一真子集后所得的子图仍是连通的, 则称 E_1 是图 G 的边割集.

如果某一条边构成一个边割集,则称该边为割边(或桥).

Example 2.12

求下图所示的图 G 的割点和割边.

设无向图 $G = \langle V, E \rangle$ 为连通图, 若有边集 $E_1 \subset E$, 使图 G 删除了 E_1 中的所有边后所得的子图是不连通的, 而删除了 E_1 的任一真子集后所得的子图仍是连通的, 则称 E_1 是图 G 的边割集.

如果某一条边构成一个边割集,则称该边为割边(或桥).

Example 2.12

求下图所示的图 G 的割点和割边.

割点: b, c, e.

设无向图 $G = \langle V, E \rangle$ 为连通图, 若有边集 $E_1 \subset E$, 使图 G 删除了 E_1 中的所有边后所得的子图是不连通的, 而删除了 E_1 的任一真子集后所得的子图仍是连通的, 则称 E_1 是图 G 的边割集.

如果某一条边构成一个边割集,则称该边为割边(或桥).

Example 2.12

求下图所示的图 G 的割点和割边.

割点: b, c, e. 割边: e_{ab} , e_{ce}

非平凡图 G 的边连通度定义为:

$$\lambda(G) = \min\{ |E_1| \mid E_1$$
 是边割集}.

非平凡图 G 的边连通度定义为:

$$\lambda(G) = \min\{ |E_1| \mid E_1$$
 是边割集 $\}.$

由定义可知, 边连通度是为了产生一个不连通图所要删除边的最少数目.

• 若 G 为平凡图 a , 定义 $\lambda(G)=0$;

非平凡图 G 的边连通度定义为:

$$\lambda(G) = \min\{ |E_1| \mid E_1$$
 是边割集 $\}.$

由定义可知, 边连通度是为了产生一个不连通图所要删除边的最少数目.

- 若 G 为平凡图 a , 定义 $\lambda(G)=0$;
- G 为非连通图时 $\lambda(G)$ 亦为 0.

^a平凡图: 由一个孤立结点构成的图.

求下图所示的图 G 的边连通度.

求下图所示的图 G 的边连通度.

删除边 e_{cd} 就会产生不连通图,

求下图所示的图 G 的边连通度.

删除边 e_{cd} 就会产生不连通图, 所以

$$\lambda(G) = 1.$$

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

分析: k(G) 是点连通度; $\lambda(G)$ 是边连通度; $\delta(G)$ 是图 G 的最小度.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

分析: k(G) 是点连通度; $\lambda(G)$ 是边连通度; $\delta(G)$ 是图 G 的最小度.

证: 若 G 不连通, 则 $k(G) = \lambda(G) = 0$, 而 $\delta(G) \ge 0$, 故上式成立.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G).$$

 $\frac{\mathbf{f}}{\mathbf{f}}$ $\mathbf{k}(G)$ 是点连通度; $\lambda(G)$ 是边连通度; $\delta(G)$ 是图 G 的最小度.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

分析: k(G) 是点连通度; $\lambda(G)$ 是边连通度; $\delta(G)$ 是图 G 的最小度.

正: 若 G 不连通, 则 $k(G) = \lambda(G) = 0$, 而 $\delta(G) \ge 0$, 故上式成立. 若 G 连通, 分两部分证明.

① 证明 $\lambda(G) \leq \delta(G)$.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G).$$

分析: k(G) 是点连通度; $\lambda(G)$ 是边连通度; $\delta(G)$ 是图 G 的最小度.

- ① 证明 $\lambda(G) \leq \delta(G)$.
- 如果 G 是平凡图 (只有一个孤立点构成的图), 则 $\lambda(G) = 0 \leq \delta(G)$.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G).$$

分析: k(G) 是点连通度; $\lambda(G)$ 是边连通度; $\delta(G)$ 是图 G 的最小度.

- ① 证明 $\lambda(G) \leq \delta(G)$.
- 如果 G 是平凡图 (只有一个孤立点构成的图), 则 $\lambda(G) = 0 \leq \delta(G)$.
- 如果 G 不是平凡图,则因每一个结点所有关联的边必含有一个边割集,故 $\lambda(G) \leq \delta(G)$. (因删去某结点关联的所有边,该结点将成为孤立结点,使原图变成不连通,故被删去的边中必含有边割集.)

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

分析: k(G) 是点连通度; $\lambda(G)$ 是边连通度; $\delta(G)$ 是图 G 的最小度.

- ① 证明 $\lambda(G) \leq \delta(G)$.
- 如果 G 是平凡图 (只有一个孤立点构成的图), 则 $\lambda(G) = 0 \leq \delta(G)$.
- 如果 G 不是平凡图,则因每一个结点所有关联的边必含有一个边割集,故 $\lambda(G) \leq \delta(G)$. (因删去某结点关联的所有边,该结点将成为孤立结点,使原图变成不连通,故被删去的边中必含有边割集.)

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

续证: 若 G 连通,

② $\mathbb{E} k(G) \leq \lambda(G)$.

设 G 为无向图, 则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

- ② 证 $k(G) \leq \lambda(G)$.
- 若 $\lambda(G) = 1$, 则 G 有一条割边, 从而 k(G) = 1.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

- ② $\mathbb{E} k(G) \leq \lambda(G)$.
- 若 $\lambda(G) = 1$, 则 G 有一条割边, 从而 k(G) = 1.
- 若 $\lambda(G) \ge 2$, 因删去 $\lambda(G)$ 条边可使 G 不连通, 但删去 $\lambda(G) 1$ 条边 G 仍是连通的, 且此时出现有一条桥 e = (u, v).

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G).$$

- ② 证 $k(G) \leq \lambda(G)$.
- 若 $\lambda(G) = 1$,则G有一条割边,从而k(G) = 1.
- 若 $\lambda(G) \ge 2$, 因删去 $\lambda(G)$ 条边可使 G 不连通, 但删去 $\lambda(G) 1$ 条边 G 仍是连通的, 且此时出现有一条桥 e = (u, v).
 - 对这 $\lambda(G) 1$ 条边中的每条边, 都选一个与 u 或 v 不同的端点, 删去这些端点, 则至少删去 $\lambda(G) 1$ 条边.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G).$$

- ② 证 $k(G) \leq \lambda(G)$.
- 若 $\lambda(G) = 1$, 则 G 有一条割边, 从而 k(G) = 1.
- 若 $\lambda(G) \ge 2$, 因删去 $\lambda(G)$ 条边可使 G 不连通, 但删去 $\lambda(G) 1$ 条边 G 仍是连通的, 且此时出现有一条桥 e = (u, v).
 - 对这 $\lambda(G) 1$ 条边中的每条边, 都选一个与 u 或 v 不同的端点, 删去这些端点, 则至少删去 $\lambda(G) 1$ 条边.
 - 如果这时产生的图是不连通的,则 $k(G) \leq \lambda(G) 1 < \lambda(G)$;

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

续证: 若 G 连通,

- ② 证 $k(G) \leq \lambda(G)$.
- 若 $\lambda(G) = 1$, 则 G 有一条割边, 从而 k(G) = 1.
- 若 $\lambda(G) \ge 2$, 因删去 $\lambda(G)$ 条边可使 G 不连通, 但删去 $\lambda(G) 1$ 条边 G 仍是连通的, 且此时出现有一条桥 e = (u, v).
 - 对这 $\lambda(G) 1$ 条边中的每条边, 都选一个与 u 或 v 不同的端点, 删去这些端点, 则至少删去 $\lambda(G) 1$ 条边.
 - 如果这时产生的图是不连通的,则 $k(G) \leq \lambda(G) 1 < \lambda(G)$;
 - 如果这时产生的图是连通的, 则 e 仍是桥, 此时再删去 u 或 v, 必产生一个非连通图, 故 $k(G) \leq \lambda(G)$.

黄正华 (武汉大学)

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G).$$

续证: 若 G 连通,

- ② 证 $k(G) \leq \lambda(G)$.
- 若 $\lambda(G) = 1$, 则 G 有一条割边, 从而 k(G) = 1.
- 若 $\lambda(G) \ge 2$, 因删去 $\lambda(G)$ 条边可使 G 不连通, 但删去 $\lambda(G) 1$ 条边 G 仍是连通的, 且此时出现有一条桥 e = (u, v).
 - 对这 $\lambda(G) 1$ 条边中的每条边, 都选一个与 u 或 v 不同的端点, 删去这些端点, 则至少删去 $\lambda(G) 1$ 条边.
 - 如果这时产生的图是不连通的, 则 $k(G) \leq \lambda(G) 1 < \lambda(G)$;
 - 如果这时产生的图是连通的, 则 e 仍是桥, 此时再删去 u 或 v, 必产生一个非连通图, 故 $k(G) \leq \lambda(G)$.

由上述, 定理得证.

设 G 为无向图,则

$$k(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

这个定理的证明可以用下图的例子予以说明. 这里

$$k(G) = 2,$$

$$\lambda(G) = 3,$$

$$\delta(G) = 4.$$

一个连通无向图 G 中的结点 v 是割点的充分必要条件是,存在两个结点 u 和 w, 使连接结点 u 和 w 的 \triangle 每一条路都通过 v.

一个连通无向图 G 中的结点 v 是割点的充分必要条件是,存在两个结点 u 和 w, 使连接结点 u 和 w 的 \triangle 每一条路都通过 v.

证: ① 若结点 v 是连通无向图 $G = \langle V, E \rangle$ 的割点, 删去 v 得子图 G', 则 G' 至 少包含两个连通分支:

$$G_1 = \langle V_1, E_1 \rangle, \qquad G_2 = \langle V_2, E_2 \rangle$$

一个连通无向图 G 中的结点 v 是割点的充分必要条件是, 存在两个结点 u 和 w, 使连接结点 u 和 w 的 \triangle 每一条路都通过 v.

证: ① 若结点 v 是连通无向图 $G = \langle V, E \rangle$ 的割点, 删去 v 得子图 G', 则 G' 至 少包含两个连通分支:

$$G_1 = \langle V_1, E_1 \rangle, \qquad G_2 = \langle V_2, E_2 \rangle$$

取 $u \in V_1$, $w \in V_2$, 因 G 连通, 故 G 必有一条连结 u 和 w 的路 c.

一个连通无向图 G 中的结点 v 是割点的充分必要条件是, 存在两个结点 u 和 w, 使连接结点 u 和 w 的 \triangle 每一条路都通过 v.

证: ① 若结点 v 是连通无向图 $G = \langle V, E \rangle$ 的割点, 删去 v 得子图 G', 则 G' 至 少包含两个连通分支:

$$G_1 = \langle V_1, E_1 \rangle, \qquad G_2 = \langle V_2, E_2 \rangle$$

取 $u \in V_1$, $w \in V_2$, 因 G 连通, 故 G 必有一条连结 u 和 w 的路 c. 但 u 和 w 在 G' 不连通, 因此路 c 必须经过点 v, 这说明连接结点 u 和 w 的每条路都通过 v.

一个连通无向图 G 中的结点 v 是割点的充分必要条件是, 存在两个结点 u 和 w, 使连接结点 u 和 w 的 \triangle 每一条路都通过 v.

证: ① 若结点 v 是连通无向图 $G = \langle V, E \rangle$ 的割点, 删去 v 得子图 G', 则 G' 至 少包含两个连通分支:

$$G_1 = \langle V_1, E_1 \rangle, \qquad G_2 = \langle V_2, E_2 \rangle$$

取 $u \in V_1$, $w \in V_2$, 因 G 连通, 故 G 必有一条连结 u 和 w 的路 c. 但 u 和 w 在 G' 不连通, 因此路 c 必须经过点 v, 这说明连接结点 u 和 w 的每条路都通过 v.

② 反之, 若连接任意结点 v_i 和 v_j 的每条路都通过 v, 删去 v 得子图 G'', 则 在 G'' 中, 此二结点必不连通的, 故 v 是图 G 的割点.

一个连通无向图 G 中的结点 v 是割点的充分必要条件是, 存在两个结点 u 和 w, 使连接结点 u 和 w 的 \triangle 每一条路都通过 v.

证: ① 若结点 v 是连通无向图 $G = \langle V, E \rangle$ 的割点, 删去 v 得子图 G', 则 G' 至 少包含两个连通分支:

$$G_1 = \langle V_1, E_1 \rangle, \qquad G_2 = \langle V_2, E_2 \rangle$$

取 $u \in V_1$, $w \in V_2$, 因 G 连通, 故 G 必有一条连结 u 和 w 的路 c. 但 u 和 w 在 G' 不连通, 因此路 c 必须经过点 v, 这说明连接结点 u 和 w 的每条路都通过 v.

② 反之, 若连接任意结点 v_i 和 v_j 的每条路都通过 v, 删去 v 得子图 G'', 则 在 G'' 中, 此二结点必不连通的, 故 v 是图 G 的割点.

定理得证.

• 无向图的连通概念不能直接推广到有向图.

- 无向图的连通概念不能直接推广到有向图.
- 在有向图 $G = \langle V, E \rangle$ 中, 如果从结点 u 到 v 有一条路, 则称从 u 可达 v.

- 无向图的连通概念不能直接推广到有向图.
- 在有向图 $G = \langle V, E \rangle$ 中, 如果从结点 u 到 v 有一条路, 则称从 u 可达 v.
- 如果 u 可达 v, 则 u, v 之间的最短路的长度, 称为结点 u, v 之间的<mark>距离</mark>, 记作 $d\langle u, v\rangle$,

- 无向图的连通概念不能直接推广到有向图.
- 在有向图 $G = \langle V, E \rangle$ 中, 如果从结点 u 到 v 有一条路, 则称从 u 可达 v.
- 如果 u 可达 v, 则 u, v 之间的最短路的长度, 称为结点 u, v 之间的<mark>距离</mark>, 记作 $d\langle u, v \rangle$, 它满足性质:

$$d\langle u, v \rangle \geqslant 0 \tag{1}$$

$$d\langle u, u \rangle = 0 \tag{2}$$

$$d\langle u, v \rangle + d\langle v, w \rangle \geqslant d\langle u, w \rangle \tag{3}$$

• 如果从 u 到 v 不可达, 则记 $d\langle u, v\rangle = \infty$.

- 如果从 u 到 v 不可达, 则记 $d\langle u, v\rangle = \infty$.
- 距离的概念也适用于无向图.

- 如果从 u 到 v 不可达, 则记 $d\langle u, v\rangle = \infty$.
- 距离的概念也适用于无向图.
- 注意, 对有向图, $d\langle u, v\rangle$ 一般不等于 $d\langle v, u\rangle$.

- 如果从 u 到 v 不可达, 则记 $d\langle u, v\rangle = \infty$.
- 距离的概念也适用于无向图.
- 注意, 对有向图, $d\langle u, v\rangle$ 一般不等于 $d\langle v, u\rangle$.
- 将 $D = \max \{ d\langle u, v \rangle \mid u, v \in V \}$ 称为图 G 的直径.

- 如果从 u 到 v 不可达, 则记 $d\langle u, v\rangle = \infty$.
- 距离的概念也适用于无向图.
- 注意, 对有向图, $d\langle u, v\rangle$ 一般不等于 $d\langle v, u\rangle$.
- 将 $D = \max \{ d\langle u, v \rangle \mid u, v \in V \}$ 称为图 G 的直径.
- 可达性是有向图结点集上的二元关系, 它是自反的和传递的, 但一般不是对称的. 所以可达性不是等价关系.

Definition 2.17

在简单有向图 G 中,

- 任何一对结点间,如果至少从一个结点到另一个结点可达,则称该图是单侧 连通的.
- 如果图 G 中任何一对结点之间相互可达, 则称图 G 是强连通的.
- 如果在图 G 中略去边的方向, 视为无向图是连通的, 则称图 G 是<mark>弱连通</mark>的.

下列各有向图的连通性:

• G₁ 是强连通的 (任何一对结点之间相互可达);

下列各有向图的连通性:

- G₁ 是强连通的 (任何一对结点之间相互可达);
- G₂ 是单侧连通的 (任何一对结点间, 至少从一个结点到另一个结点可达);

November 18, 2012 55 / 152

下列各有向图的连通性:

- G₁ 是强连通的 (任何一对结点之间相互可达);
- ullet G_2 是单侧连通的 (任何一对结点间, 至少从一个结点到另一个结点可达);
- G3 是弱连通的 (略去边的方向, 视为无向图是连通的).

黄正华 (武汉大学) 离散数学 第6章 图 November 18, 2012 55 / 152

一个有向图是强连通的,当且仅当 G 中有一个回路,它至少包含每个结点一次.

一个有向图是强连通的, 当且仅当 G 中有一个回路, 它至少包含每个结点一次.

证: 充分性.

一个有向图是强连通的, 当且仅当 G 中有一个回路, 它至少包含每个结点一次.

 $\overline{\mathbf{u}}$: 充分性. 如果图 G 中有一个回路, 它至少包含每个结点一次, 则 G 中任何两个结点相互可达, 故图 G 是强连通的.

一个有向图是强连通的, 当且仅当 G 中有一个回路, 它至少包含每个结点一次.

 $\overline{\mathbf{u}}$: 充分性. 如果图 G 中有一个回路, 它至少包含每个结点一次, 则 G 中任何两个结点相互可达, 故图 G 是强连通的.

必要性.

一个有向图是强连通的, 当且仅当 G 中有一个回路, 它至少包含每个结点一次.

证: 充分性. 如果图 G 中有一个回路, 它至少包含每个结点一次, 则 G 中任何两个结点相互可达, 故图 G 是强连通的.

必要性. 如果有向图 G 是强连通的,则 G 中任何两个结点相互可达,故可从图中任一结点 v 出发,经由图中所有的结点,再返回 v,从而形成一个回路.

Definition 2.20

在简单有向图 G中,

• 具有强连通性的极大子图, 称为强分图. (或者说, 一个子图 G' 是强分图, 如果 G' 具备强连通性, 且任何包含 G' 的子图都不再具备强连通性.)

57 / 152

Definition 2.20

在简单有向图 G中,

- 具有强连通性的极大子图, 称为强分图. (或者说, 一个子图 G' 是强分图, 如果 G' 具备强连通性, 且任何包含 G' 的子图都不再具备强连通性.)
- 具有单侧连通性的极大子图, 称为单侧分图.

Definition 2.20

在简单有向图 G中,

- 具有强连通性的极大子图, 称为强分图. (或者说, 一个子图 G' 是强分图, 如果 G' 具备强连通性, 且任何包含 G' 的子图都不再具备强连通性.)
- 具有单侧连通性的极大子图, 称为单侧分图.
- 具有弱连通性的极大子图, 称为弱分图.

例如下图中,

• 包含结点 $\{v_1, v_2, v_3, v_4\}$ 的子图是强分图 (因为它具备强连通性, 而且再添加结点就不再具备强连通性).

例如下图中,

• 包含结点 $\{v_1, v_2, v_3, v_4\}$ 的子图是强分图 (因为它具备强连通性, 而且再添加结点就不再具备强连通性).

例如下图中,

- 包含结点 {v₁, v₂, v₃, v₄} 的子图是强分图 (因为它具备强连通性, 而且再添加结点就不再具备强连通性).
- 仅包含一个孤立结点 v₅ 的子图也是强分图 (再添加任意结点都不再具备强连通性).

例如下图中,

- 包含结点 {v₁, v₂, v₃, v₄} 的子图是强分图 (因为它具备强连通性, 而且再添加结点就不再具备强连通性).
- 仅包含一个孤立结点 v₅ 的子图也是强分图 (再添加任意结点都不再具备强连通性).
- 包含结点 $\{v_1, v_2, v_4\}$ 的子图是强连通图, 但不是强分图 (因为添加结点 v_3 可以得到更大的强连通图).

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且只位于一个强分图中.

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且只位于一个强分图中.

证: ① 设任意 $v \in V$, 令 S 是图 G 中所有与 v 相互可达的结点集合, 当 然 $v \in S$. 则 S 是 G 的一个强分图. 因此, G 的每个结点必位于一个强分图中.

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且只位于一个强分图中.

证: ① 设任意 $v \in V$, 令 S 是图 G 中所有与 v 相互可达的结点集合, 当 然 $v \in S$. 则 S 是 G 的一个强分图. 因此, G 的每个结点必位于一个强分图中.

② 假设 v 位于两个强分图 S_1 和 S_2 中,因 S_1 中每个结点与 v 相互可达,而 v 与 S_2 中每个结点也相互可达,故 S_1 和 S_2 中任何一对结点通过 v 都是相互可达的.

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且只位于一个强分图中.

证: ① 设任意 $v \in V$, 令 S 是图 G 中所有与 v 相互可达的结点集合, 当 然 $v \in S$. 则 S 是 G 的一个强分图. 因此, G 的每个结点必位于一个强分图中.

② 假设 v 位于两个强分图 S_1 和 S_2 中, 因 S_1 中每个结点与 v 相互可达,而 v 与 S_2 中每个结点也相互可达,故 S_1 和 S_2 中任何一对结点通过 v 都是相互可达的.

这与 S_1 和 S_2 为强分图矛盾.

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且只位于一个强分图中.

证: ① 设任意 $v \in V$, 令 S 是图 G 中所有与 v 相互可达的结点集合, 当 然 $v \in S$. 则 S 是 G 的一个强分图. 因此, G 的每个结点必位于一个强分图中.

② 假设 v 位于两个强分图 S_1 和 S_2 中,因 S_1 中每个结点与 v 相互可达,而 v 与 S_2 中每个结点也相互可达,故 S_1 和 S_2 中任何一对结点通过 v 都是相互可达的.

这与 S_1 和 S_2 为强分图矛盾. 故 G 的每个结点位于且只位于一个强分图中.

练习

若无向图 G 中恰有两个奇数度结点 u 和 v, 则 u, v 之间必有一条路.

练习

若无向图 G 中恰有两个奇数度结点 u 和 v, 则 u, v 之间必有一条路.

解: 由结论 "任何图中奇数度结点为偶数个", 所以 u, v 必位于 G 的同一连通分支中.

练习

若无向图 G 中恰有两个奇数度结点 u 和 v, 则 u, v 之间必有一条路.

解: 由结论 "任何图中奇数度结点为偶数个", 所以 u, v 必位于 G 的同一连通分支中.

则 u, v 之间必有一条路.

黄正华 (武汉大学)

- 1 图的基本概念
- 2 路与回路
- ③ 图的矩阵表示
- 4 欧拉图与汉密尔顿图
- 5 平面图
- 6 对偶图与着色

图的矩阵表示

本节主要内容:

- 邻接矩阵
- ② 可达性矩阵和连通矩阵
- ◎ 关联矩阵

邻接矩阵

Definition 3.1

设 $G = \langle V, E \rangle$ 是一个简单图, 它有 n 个结点 $V = \{v_1, v_2, \cdots v_n\}$, 则 n 阶方 阵 $A(G) = (a_{ij})$ 称为 G 的邻接矩阵, 其中

$$a_{ij} = \begin{cases} 1, & v_i \ni v_j \text{ 相邻接;} \\ 0, & \text{其它.} \end{cases}$$

左图的邻接矩阵为:

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

左图的邻接矩阵为:

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

- 当给定的简单图是无向图时, 邻接矩阵是对称的;
- 当给定的图是有向图时, 邻接矩阵并不一定对称.

例如,

上图的邻接矩阵列为:

$$A(G) = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 0 \\ v_2 & 0 & 0 & 1 & 1 \\ v_3 & 1 & 1 & 0 & 1 \\ v_4 & 1 & 0 & 0 & 0 \end{pmatrix}$$

例如,

上图的邻接矩阵列为:

$$A(G) = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 0 \\ v_2 & 0 & 0 & 1 & 1 \\ v_3 & 1 & 1 & 0 & 1 \\ v_4 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

有 v_i 到 v_j 的有向连线,则 $a_{ij}=1$; 否则, $a_{ij}=0$.

例如, 在下图 G 中将结点 v_1 与 v_2 的次序交换, 得到 G':

例如, 在下图 G 中将结点 v_1 与 v_2 的次序交换, 得到 G':

上两图的邻接矩阵分别为:

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad A(G') = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

例如, 在下图 G 中将结点 v_1 与 v_2 的次序交换, 得到 G':

上两图的邻接矩阵分别为:

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad A(G') = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

注意到, 矩阵 A(G) 和 A(G') 可以通过交换行和列而相互得出.

置换等价

- 一般地,如果两个矩阵可以通过交换行和列而相互得出,则称它们置换等价.
- 置换等价是 n 阶布尔矩阵集合上的一个**等价关系**.
- 忽略这种元素次序的任意性, 可取图 G 的任一邻接矩阵视为该图的邻接矩阵.

置换等价

- 一般地,如果两个矩阵可以通过交换行和列而相互得出,则称它们置换等价.
- 置换等价是 n 阶布尔矩阵集合上的一个等价关系.
- 忽略这种元素次序的任意性, 可取图 G 的任一邻接矩阵视为该图的邻接矩阵.

置换等价

- 一般地,如果两个矩阵可以通过交换行和列而相互得出,则称它们置换等价.
- 置换等价是 n 阶布尔矩阵集合上的一个等价关系.
- 忽略这种元素次序的任意性, 可取图 G 的任一邻接矩阵视为该图的邻接矩阵.

例如, 上图的两个置换等价邻接矩阵:

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad A(G) = \begin{pmatrix} v_2 \\ v_3 \\ v_1 \\ v_4 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

简单有向图 G 的邻接矩阵 $A(G) = (a_{ij})_{n \times n}$ 中,

- \bullet 第 i 行元素之和等于 v_i 的出度.
- ② 第 j 列元素之和等于 v_i 的入度.

简单有向图 G 的邻接矩阵 $A(G) = (a_{ii})_{n \times n}$ 中,

- 第 *i* 行元素之和等于 *v_i* 的出度.
- ② 第 j 列元素之和等于 v_i 的入度.

Example 3.5

例如, 如图有向图中,

- v_3 的出度 = 1+1+0+1=3,
- v_3 的入度 = 0+1+0+0=1.

$$A(G) = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ v_2 & 0 & 1 & 0 & 0 \\ v_2 & 0 & 0 & 1 & 1 \\ v_3 & 1 & 1 & 0 & 1 \\ v_4 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

问题: 设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), $V = \{v_1, v_2, \dots, v_n\}$. 如何计算连结 v_i 与 v_j 长度为 2 的路的数目?

问题: 设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), $V = \{v_1, v_2, \dots, v_n\}$. 如何计算连

结 v_i 与 v_j 长度为 2 的路的数目?

分析: 注意从 v_i 到 v_j 长度为 2 的路中间必经由某个结点 v_k , 即 $v_i \rightarrow v_k \rightarrow v_j$,

问题: 设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), $V = \{v_1, v_2, \dots, v_n\}$. 如何计算连结 v_i 与 v_j 长度为 2 的路的数目?

分析: 注意从 v_i 到 v_j 长度为 2 的路中间必经由某个结点 v_k , 即 $v_i \rightarrow v_k \rightarrow v_j$, 而且 $a_{ik} = a_{kj} = 1$, 那么 $a_{ik} \cdot a_{kj} = 1$.

问题: 设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), $V = \{v_1, v_2, \dots, v_n\}$. 如何计算连结 v_i 与 v_i 长度为 2 的路的数目?

分析: 注意从 v_i 到 v_j 长度为 2 的路中间必经由某个结点 v_k , 即 $v_i \rightarrow v_k \rightarrow v_j$, 而且 $a_{ik} = a_{kj} = 1$, 那么 $a_{ik} \cdot a_{kj} = 1$.

反之, 如果不存在路径 $v_i v_k v_j$, 则 $a_{ik} = 0$ 或 $a_{kj} = 0$, 从而 $a_{ik} \cdot a_{kj} = 0$.

问题: 设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), $V = \{v_1, v_2, \dots, v_n\}$. 如何计算连结 v_i 与 v_j 长度为 2 的路的数目?

分析: 注意从 v_i 到 v_j 长度为 2 的路中间必经由某个结点 v_k , 即 $v_i \rightarrow v_k \rightarrow v_j$, 而且 $a_{ik} = a_{kj} = 1$, 那么 $a_{ik} \cdot a_{kj} = 1$.

反之, 如果不存在路径 $v_i v_k v_j$, 则 $a_{ik} = 0$ 或 $a_{kj} = 0$, 从而 $a_{ik} \cdot a_{kj} = 0$. 所以从 v_i 到 v_j 长度为 2 的路径的数目等于

$$\underbrace{a_{i1} \cdot a_{1j}}_{v_i v_1 v_j} + \underbrace{a_{i2} \cdot a_{2j}}_{v_i v_2 v_j} + \dots + \underbrace{a_{in} \cdot a_{nj}}_{v_i v_n v_j} = \sum_{k=1}^{n} \underbrace{a_{ik} \cdot a_{kj}}_{v_i v_k v_j}$$

问题: 设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), $V = \{v_1, v_2, \dots, v_n\}$. 如何计算连结 v_i 与 v_j 长度为 2 的路的数目?

分析: 注意从 v_i 到 v_j 长度为 2 的路中间必经由某个结点 v_k , 即 $v_i \rightarrow v_k \rightarrow v_j$, 而且 $a_{ik} = a_{kj} = 1$, 那么 $a_{ik} \cdot a_{kj} = 1$.

反之, 如果不存在路径 $v_i v_k v_j$, 则 $a_{ik} = 0$ 或 $a_{kj} = 0$, 从而 $a_{ik} \cdot a_{kj} = 0$. 所以从 v_i 到 v_j 长度为 2 的路径的数目等于

$$\underbrace{a_{i1} \cdot a_{1j}}_{v_i v_1 v_j} + \underbrace{a_{i2} \cdot a_{2j}}_{v_i v_2 v_j} + \dots + \underbrace{a_{in} \cdot a_{nj}}_{v_i v_n v_j} = \sum_{k=1}^{n} \underbrace{a_{ik} \cdot a_{kj}}_{v_i v_k v_j}$$

按矩阵的乘法法则, 此和式恰好是 $\left(A(G)\right)^2$ 中第 i 行第 j 列元素 $a_{ij}^{(2)}$.

问题: 设图 $G = \langle V, E \rangle$ 的邻接矩阵为 $A(G), V = \{v_1, v_2, \dots, v_n\}$. 如何计算连 结 v_i 与 v_i 长度为 2 的路的数目?

分析: 注意从 v_i 到 v_i 长度为 2 的路中间必经由某个结点 v_k , 即 $v_i \rightarrow v_k \rightarrow v_i$, 而且 $a_{ik} = a_{ki} = 1$, 那么 $a_{ik} \cdot a_{ki} = 1$.

反之, 如果不存在路径 $v_i v_k v_i$, 则 $a_{ik} = 0$ 或 $a_{ki} = 0$, 从而 $a_{ik} \cdot a_{ki} = 0$. 所以从 v_i 到 v_i 长度为 2 的路径的数目等于

$$\underbrace{a_{i1} \cdot a_{1j}}_{v_i v_1 v_j} + \underbrace{a_{i2} \cdot a_{2j}}_{v_i v_2 v_j} + \dots + \underbrace{a_{in} \cdot a_{nj}}_{v_i v_n v_j} = \sum_{k=1}^n \underbrace{a_{ik} \cdot a_{kj}}_{v_i v_k v_j}$$

按矩阵的乘法法则, 此和式恰好是 $\left(A(G)\right)^2$ 中第 i 行第 j 列元素 $a_{ii}^{(2)}$.

$$\left(a_{ij}^{(2)}\right)_{n\times n} = \left(A\left(G\right)\right)^{2} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} .$$
黄此华 (武汉大学)

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$(A(G))^{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

例如, 如左有向图, $(A(G))^2$ 中的第 2 行第 1 列元素等于 2, 说明连结 v_2 与 v_1 长度为 2 的路的有两条: $v_2v_4v_1$, $v_2v_3v_1$.

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$(A(G))^{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

例如, 如左有向图, $(A(G))^2$ 中的第 2 行第 1 列元素等于 2, 说明连结 v_2 与 v_1 长度为 2 的路的有两条: $v_2v_4v_1$, $v_2v_3v_1$. 分析:

$$a_{21}^{(2)} = a_{21}a_{11} + a_{22}a_{21} + a_{23}a_{31} + a_{24}a_{41}$$
$$= 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 2.$$

注意从 v_2 到 v_1 长度为 2 的路中间必经由一个结点 v_k , 即 $v_2 \rightarrow v_k \rightarrow v_1$.

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$(A(G))^{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

例如,如左有向图, $(A(G))^2$ 中的第2行 第 1 列元素等于 2, 说明连结 v_2 与 v_1 长度为 2 的路的有两条: $v_2v_4v_1$, $v_2v_3v_1$. 分析:

$$a_{21}^{(2)} = a_{21}a_{11} + a_{22}a_{21} + a_{23}a_{31} + a_{24}a_{41}$$
$$= 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 2.$$

注意从 v_2 到 v_1 长度为 2 的路中间必经 $(A(G))^2 = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad \begin{array}{c} \text{由一个结点 } v_k, \, \mathbb{D} \, v_2 \to v_k \to v_1. \\ \text{比如, } k = 3 \, \text{时, } a_{23} a_{31} = 1 \cdot 1 \, \text{表示从 } v_2 \\ \text{到 } v_3, \, \text{再 } v_3 \, \text{到 } v_1 \, \text{有路.} \end{array}$ 逐 还可以进一步计算从 v_i 到 v_j 长度为 3 的路的数目.

注意从 v_i 到 v_j 长度为 3 的路径可视为从 v_i 到中间结点 v_k 长度为 1 的路 径, 再连接从 v_k 到 v_j 长度为 2 的路径.

luepsilon 还可以进一步计算从 v_i 到 v_j 长度为 3 的路的数目.

注意从 v_i 到 v_j 长度为 3 的路径可视为从 v_i 到中间结点 v_k 长度为 1 的路径,再连接从 v_k 到 v_j 长度为 2 的路径.

所以从 v_i 到 v_j 长度为 3 的路径的数目等于

$$a_{ij}^{(3)} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}^{(2)},$$

 \square 还可以进一步计算从 v_i 到 v_j 长度为 3 的路的数目.

注意从 v_i 到 v_j 长度为 3 的路径可视为从 v_i 到中间结点 v_k 长度为 1 的路径,再连接从 v_k 到 v_i 长度为 2 的路径.

所以从 v_i 到 v_i 长度为 3 的路径的数目等于

$$a_{ij}^{(3)} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}^{(2)},$$

即

$$\left(a_{ij}^{(3)}\right)_{n\times n} = \left(A(G)\right)^3 = \left(A(G)\right)\cdot \left(A(G)\right)^2.$$

 \square 还可以进一步计算从 v_i 到 v_j 长度为 3 的路的数目.

注意从 v_i 到 v_j 长度为 3 的路径可视为从 v_i 到中间结点 v_k 长度为 1 的路径,再连接从 v_k 到 v_i 长度为 2 的路径.

所以从 v_i 到 v_i 长度为 3 的路径的数目等于

$$a_{ij}^{(3)} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}^{(2)},$$

即

$$\left(a_{ij}^{(3)}\right)_{n\times n} = \left(A(G)\right)^3 = \left(A(G)\right)\cdot \left(A(G)\right)^2.$$

一般地有:

$$\left(a_{ij}^{(l)}\right)_{n\times n} = \left(A\left(G\right)\right)^{l} = \underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdots \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}}_{l}.$$

 $a_{ii}^{(l)}$ 表示从 v_i 到 v_i 长度为 l 的路的数目.

黄正华 (武汉大学)

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$(A(G))^{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$(A(G))^{3} = A(G) \cdot (A(G))^{2}$$

$$= \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

比如, $(A(G))^3$ 中的第 2 行第 1 列元素等于 1, 说明连结 v_2 与 v_1 长度为 3 的路的有一条 (即 $v_2v_3v_4v_1$).

Theorem 3.8

设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), 则矩阵 $\left(A(G)\right)^l$ 中的第 i 行第 j 列元素等于 G 中连结 v_i 与 v_j 长度为 l 的路的数目.

Theorem 3.8

设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), 则矩阵 $\left(A(G)\right)^l$ 中的第 i 行第 j 列元素等于 G 中连结 v_i 与 v_j 长度为 l 的路的数目.

证: 对 l 用数学归纳法.

Theorem 3.8

设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), 则矩阵 $\left(A(G)\right)^l$ 中的第 i 行第 j 列元素等于 G 中连结 v_i 与 v_j 长度为 l 的路的数目.

证: 对 l 用数学归纳法.

当 l=2 时, 由前述讨论可知成立.

Theorem 3.8

设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), 则矩阵 $\left(A(G)\right)^l$ 中的第 i 行第 j 列元素等于 G 中连结 v_i 与 v_j 长度为 l 的路的数目.

证: 对 l 用数学归纳法.

当 l=2 时, 由前述讨论可知成立.

设命题对 l 成立, 由

$$(A(G))^{l+1} = A(G) \cdot (A(G))^{l},$$

故

$$a_{ij}^{(l+1)} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}^{(l)},$$

Theorem 3.8

设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), 则矩阵 $\left(A(G)\right)^l$ 中的第 i 行第 j 列元素等于 G 中连结 v_i 与 v_j 长度为 l 的路的数目.

证: 对 l 用数学归纳法.

当 l=2 时, 由前述讨论可知成立.

设命题对 l 成立, 由

$$(A(G))^{l+1} = A(G) \cdot (A(G))^{l},$$

故

$$a_{ij}^{(l+1)} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}^{(l)},$$

上式右边的每一项表示由 v_i 经过一条边到 v_k , 再由 v_k 经过一条长度为 l 的路 到 v_j 的总长度为 l+1 的路的数目.

Theorem 3.8

设图 $G = \langle V, E \rangle$ 的邻接矩阵为 A(G), 则矩阵 $\left(A(G)\right)^l$ 中的第 i 行第 j 列元素等于 G 中连结 v_i 与 v_j 长度为 l 的路的数目.

证: 对 l 用数学归纳法.

当 l=2 时,由前述讨论可知成立.

设命题对 l 成立, 由

$$(A(G))^{l+1} = A(G) \cdot (A(G))^{l},$$

故

$$a_{ij}^{(l+1)} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}^{(l)},$$

上式右边的每一项表示由 v_i 经过一条边到 v_k , 再由 v_k 经过一条长度为 l 的路 到 v_j 的总长度为 l+1 的路的数目.

对所有 k 求和, 即得 $a_{ij}^{(l+1)}$ 是所有从 v_i 到 v_j 的长度为 l+1 的路的数目, 故命题对 l+1 成立.

可达性矩阵

对一个有 n 个结点的有向图, 要判断一个结点 v_i 到 v_j 是否存在路, 可以计算 A, A^2, A^3, \dots, A^n . 当有某个 A^l 的 $a_{ii}^{(l)} \ge 1$, 就表明结点 v_i 到 v_j 可达.

可达性矩阵

对一个有 n 个结点的有向图, 要判断一个结点 v_i 到 v_j 是否存在路, 可以计算 A, A^2, A^3, \dots, A^n . 当有某个 A^l 的 $a_{ii}^{(l)} \ge 1$, 就表明结点 v_i 到 v_j 可达.

(这里最多计算到 A^n 就可以了: 具有 n 个结点的有向图, 若结点 v_i 到 v_j 有一条路, 则必然有一条长度不超过 n 的通路.)

可达性矩阵

对一个有 n 个结点的有向图, 要判断一个结点 v_i 到 v_j 是否存在路, 可以计算 A, A^2, A^3, \cdots, A^n . 当有某个 A^l 的 $a_{ii}^{(l)} \ge 1$, 就表明结点 v_i 到 v_j 可达.

(这里最多计算到 A^n 就可以了: 具有 n 个结点的有向图, 若结点 v_i 到 v_j 有一条路, 则必然有一条长度不超过 n 的通路.)

有向图 G 中从 v_i 到 v_j 是否有路可达, 可用矩阵表达.

Definition 3.9

设 $G = \langle V, E \rangle$ 为简单有向图, $V = \{v_1, v_2, \cdots v_n\}$, 定义一个 $n \times n$ 矩阵 $P = (p_{ij})$, 其中

$$p_{ij} = \begin{cases} 1, & \text{从 } v_i \text{ 到 } v_j \text{ 至少存在一条路,} \\ 0, & \text{从 } v_i \text{ 到 } v_j \text{ 不存在路.} \end{cases}$$

称 P 为图 G 的可达性矩阵.

邻接矩阵 & 可达性矩阵

 \blacksquare 由图 G 的邻接矩阵 A, 可以得到可达性矩阵 P:

邻接矩阵 & 可达性矩阵

由图 G 的邻接矩阵 A, 可以得到可达性矩阵 P:

$$B_n = A + A^2 + \dots + A^n,$$

将 B_n 中不为零的元素全部换成 1, 而等于零的元素不变, 即得可达性矩阵 P.

设图
$$G$$
 的邻接矩阵为 $A=\begin{pmatrix}0&1&0&0\\0&0&1&1\\1&1&0&1\\1&0&0&0\end{pmatrix}$,求可达性矩阵.

设图
$$G$$
 的邻接矩阵为 $A=\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$,求可达性矩阵.

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad A^{4} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 2 & 2 & 3 \\ 3 & 3 & 2 & 3 \\ 2 & 1 & 0 & 1 \end{pmatrix},$$

设图
$$G$$
 的邻接矩阵为 $A=\begin{pmatrix}0&1&0&0\\0&0&1&1\\1&1&0&1\\1&0&0&0\end{pmatrix}$,求可达性矩阵.

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad A^{4} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 2 & 2 & 3 \\ 3 & 3 & 2 & 3 \\ 2 & 1 & 0 & 1 \end{pmatrix},$$

$$B_4 = A + A^2 + A^3 + A^4 = \begin{pmatrix} 3 & 4 & 2 & 3 \\ 5 & 5 & 4 & 6 \\ 7 & 7 & 4 & 7 \\ 3 & 2 & 1 & 2 \end{pmatrix},$$

设图
$$G$$
 的邻接矩阵为 $A=\begin{pmatrix}0&1&0&0\\0&0&1&1\\1&1&0&1\\1&0&0&0\end{pmatrix}$, 求可达性矩阵.

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad A^{4} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 2 & 2 & 3 \\ 3 & 3 & 2 & 3 \\ 2 & 1 & 0 & 1 \end{pmatrix},$$

设图
$$G$$
 的邻接矩阵为 $A=\begin{pmatrix}0&1&0&0\\0&0&1&1\\1&1&0&1\\1&0&0&0\end{pmatrix}$,求可达性矩阵.

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad A^{4} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 2 & 2 & 3 \\ 3 & 3 & 2 & 3 \\ 2 & 1 & 0 & 1 \end{pmatrix},$$

布尔矩阵的和、积

设
$$A = (a_{ij})_{n \times n}, B = (b_{ij})_{n \times n}$$
 是布尔矩阵,

• 令 $C = A \vee B = (c_{ij})_{n \times n}$, 称为布尔矩阵求 "和", 其中

$$c_{ij} = a_{ij} \vee b_{ij}.$$

布尔矩阵的和、积

设 $A = (a_{ij})_{n \times n}, B = (b_{ij})_{n \times n}$ 是布尔矩阵,

• 令 $C = A \vee B = (c_{ij})_{n \times n}$, 称为布尔矩阵求 "和", 其中

$$c_{ij} = a_{ij} \vee b_{ij}.$$

② 令 $D = A \circ B = (d_{ij})_{n \times n}$, 称为布尔矩阵求"积", 其中

$$d_{ij} = \bigvee_{k=1}^{n} \left(a_{ik} \wedge b_{kj} \right).$$

布尔矩阵的和、积

设
$$A = (a_{ij})_{n \times n}$$
, $B = (b_{ij})_{n \times n}$ 是布尔矩阵,

• 令 $C = A \lor B = (c_{ij})_{n \times n}$, 称为布尔矩阵求"和", 其中

$$c_{ij} = a_{ij} \vee b_{ij}$$
.

② 令 $D = A \circ B = (d_{ij})_{n \times n}$, 称为布尔矩阵求"积", 其中

$$d_{ij} = \bigvee_{k=1}^{n} \left(a_{ik} \wedge b_{kj} \right).$$

Example 3.11

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right) \vee \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array}\right).$$

可达性矩阵的计算

求可达性矩阵可简化为:

● 由图 G 的邻接矩阵 A 求可达性矩阵 P:

$$P = A^{(1)} \vee A^{(2)} \vee \dots \vee A^{(n)},$$

其中的元素 $A^{(i)}$ 表示 A^i 对应的布尔矩阵.

可达性矩阵的计算

求可达性矩阵可简化为:

● 由图 G 的邻接矩阵 A 求可达性矩阵 P:

$$P = A^{(1)} \vee A^{(2)} \vee \dots \vee A^{(n)},$$

其中的元素 $A^{(i)}$ 表示 A^i 对应的布尔矩阵.

- ② 用 Warshall 算法计算:
 - 因为有向简单图的邻接矩阵 A 可视为: 具有 n 个结点的集合 V 上的邻接关系 R 的关系矩阵;
 - 而可达性矩阵可视为: 邻接关系 R 的传递闭包所对应的矩阵.

计算可达性矩阵举例

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} A^2 = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} A^3 = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix} A^4 = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 2 & 2 & 3 \\ 3 & 3 & 2 & 3 \\ 2 & 1 & 0 & 1 \end{pmatrix}$$

方法 1. 先由邻接矩阵 A 求 B_4 ,

$$B_4 = A + A^2 + A^3 + A^4$$

然后写出可达性矩阵 P.

计算可达性矩阵举例

方法 2. 将 A, A^2 , A^3 , A^4 转换为布尔矩阵 $A^{(1)}$, $A^{(2)}$, $A^{(3)}$, $A^{(4)}$, 则

$$P = A^{(1)} \vee A^{(2)} \vee A^{(3)} \vee A^{(4)}.$$

计算可达性矩阵举例

方法 3. 用 Warshall 算法计算, 逐列进行: 在第 i 列中若有 $a_{ji}=1$, 则把第 i 行叠加到第 j 行.

关联矩阵

Definition 3.12

设
$$G = \langle V, E \rangle$$
 为无向图, $V = \{v_1, v_2, \cdots v_p\}$, $E = \{e_1, e_2, \cdots e_q\}$, 定义矩阵 $M(G) = (m_{ij})_{p \times q}$, 其中

$$m_{ij} = \begin{cases} 1, & \text{ if } v_i \not \in \mathbb{R} \\ 0, & \text{ if } v_i \not \in \mathbb{R} \end{cases}$$

称 M(G) 为图 G 的完全关联矩阵.

例如,写出下图的关联矩阵.

$$M(G) = \begin{pmatrix} v_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & 1 & 1 & 0 & 0 & 1 & 1 \\ v_2 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ v_4 & 0 & 0 & 0 & 1 & 1 & 0 \\ v_5 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- 因每边只关联两个结点, 故每列有且只有两个 1, 其余为 0.
- ② 每行各元素之和即相应结点的度数.
- 3 若某行各元素皆为 0,则相应结点为孤立结点.
- 平行边所对应的列完全相同.
- 同一个图当结点或边的编序不同时, 其对应的关联矩阵仅有行序和列序的 差异.

- 因每边只关联两个结点, 故每列有且只有两个 1, 其余为 0.
- ② 每行各元素之和即相应结点的度数.
- ③ 若某行各元素皆为 0,则相应结点为孤立结点.
- 平行边所对应的列完全相同.
- ⑤ 同一个图当结点或边的编序不同时, 其对应的关联矩阵仅有行序和列序的 差异.

- 因每边只关联两个结点, 故每列有且只有两个 1, 其余为 0.
- ② 每行各元素之和即相应结点的度数.
- 若某行各元素皆为 0,则相应结点为孤立结点.
- 平行边所对应的列完全相同.
- ⑤ 同一个图当结点或边的编序不同时, 其对应的关联矩阵仅有行序和列序的 差异.

- 因每边只关联两个结点, 故每列有且只有两个 1, 其余为 0.
- ② 每行各元素之和即相应结点的度数.
- ◎ 若某行各元素皆为 0,则相应结点为孤立结点.
- 平行边所对应的列完全相同.
- ⑤ 同一个图当结点或边的编序不同时, 其对应的关联矩阵仅有行序和列序的 差异.

- 因每边只关联两个结点, 故每列有且只有两个 1, 其余为 0.
- ② 每行各元素之和即相应结点的度数.
- ③ 若某行各元素皆为 0,则相应结点为孤立结点.
- 平行边所对应的列完全相同.
- 同一个图当结点或边的编序不同时, 其对应的关联矩阵仅有行序和列序的 差异.

完全关联矩阵

Definition 3.14

设
$$G=\langle V,E\rangle$$
 为简单有向图, $V=\{v_1,v_2,\cdots v_p\},\,E=\{e_1,e_2,\cdots e_q\},\,$ 定义矩阵 $M(G)=\left(m_{ij}\right)_{p\times q}$, 其中

$$m_{ij} = \begin{cases} 1, & ext{ 若在 } G \mapsto v_i \not\in e_j \text{ 的起点,} \\ -1, & ext{ 若在 } G \mapsto v_i \not\in e_j \text{ 的终点,} \\ 0, & ext{ 若 } v_i \vdash e_j \text{ 不关联.} \end{cases}$$

M(G) 称为有向图 G 的完全关联矩阵.

例如, 写出如下简单有向图的关联矩阵.

$$M(G) = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 \\ v_1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ v_5 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \end{pmatrix}$$

从有向图的完全关联矩阵可得出图的有关信息:

- 每边关联一个始点,一个终点. 故每列只有一个元素为 1,一个元素为 -1, 其余为 0.
- ❷ 每行的 1 之和即相应结点的出度, -1 之和即相应结点的入度.
- 3 若某行各元素皆为 0,则相应结点为孤立结点.
- 4 平行边所对应的列完全相同.

从有向图的完全关联矩阵可得出图的有关信息:

- 每边关联一个始点,一个终点. 故每列只有一个元素为 1,一个元素为 -1, 其余为 0.
- ❷ 每行的 1 之和即相应结点的出度, -1 之和即相应结点的入度.
- 3 若某行各元素皆为 0,则相应结点为孤立结点.
- 平行边所对应的列完全相同.

从有向图的完全关联矩阵可得出图的有关信息:

- 每边关联一个始点,一个终点. 故每列只有一个元素为 1,一个元素为 -1, 其余为 0.
- ❷ 每行的 1 之和即相应结点的出度, -1 之和即相应结点的入度.
- 3 若某行各元素皆为 0,则相应结点为孤立结点.
- 4 平行边所对应的列完全相同.

从有向图的完全关联矩阵可得出图的有关信息:

- 每边关联一个始点,一个终点. 故每列只有一个元素为 1,一个元素为 -1, 其余为 0.
- ❷ 每行的 1 之和即相应结点的出度, -1 之和即相应结点的入度.
- ③ 若某行各元素皆为 0,则相应结点为孤立结点.
- 平行边所对应的列完全相同.

结点的合并

在关联矩阵里, 记 v_i 对应的行为 $\overrightarrow{v_i}$, 规定运算:

 $\overrightarrow{v_i} \oplus \overrightarrow{v_j}$

其中

- 对有向图, ⊕ 是普通的加法;
- ② 对无向图, ⊕ 是对应分量的模 2 加法运算.

运算的目的是把 v_i 与 v_j 合并, 而且要达到一个要求: 合并若得到了自回路, 要删去.

Example 3.16

(a) G

(b) G'

合并图中结点 v_4 与 v_5 , 反映在矩阵 M(G) 上 $v_4 \oplus v_5$.

89 / 152

两个关于关联矩阵的秩的结论:

Theorem 3.17

设连通图 G 有 r 个结点,则其完全关联矩阵的秩为 r-1.即

$${\rm rank}\, \mathit{M}(\mathit{G}) = \mathit{r} - 1$$

两个关于关联矩阵的秩的结论:

Theorem 3.17

设连通图 G 有 r 个结点,则其完全关联矩阵的秩为 r-1.即

$$\operatorname{rank} M(G) = r - 1$$

(证明略)

推论

设图 G 有 r 个结点, w 个最大连通子图, 则图 G 的完全关联矩阵的秩为 r-w.

图的矩阵表示所用到的几种不同的矩阵

● 邻接矩阵: 点与点之间的邻接关系.

图的矩阵表示所用到的几种不同的矩阵

● 邻接矩阵: 点与点之间的邻接关系.

 A^l 的作用?

图的矩阵表示所用到的几种不同的矩阵

● 邻接矩阵: 点与点之间的邻接关系.

 A^l 的作用?

❷ 可达性矩阵(和连通矩阵): 路的存在性.

图的矩阵表示所用到的几种不同的矩阵

● 邻接矩阵: 点与点之间的邻接关系.

 A^l 的作用?

② 可达性矩阵(和连通矩阵): 路的存在性.

可达性矩阵的三种求法?

图的矩阵表示所用到的几种不同的矩阵

● 邻接矩阵: 点与点之间的邻接关系.

 A^l 的作用?

② 可达性矩阵(和连通矩阵): 路的存在性.

可达性矩阵的三种求法?

③ 完全关联矩阵: 结点与边的关系.

图的矩阵表示所用到的几种不同的矩阵

● 邻接矩阵: 点与点之间的邻接关系.

 A^l 的作用?

② 可达性矩阵(和连通矩阵): 路的存在性.

可达性矩阵的三种求法?

⑤ 完全关联矩阵: 结点与边的关系.

运算 $\overrightarrow{v_i} \oplus \overrightarrow{v_i}$ 的作用?

练习

求如下有向图的邻接矩阵 A, 指出从 v_1 到 v_4 且长度为 2 和 4 的路. 并计算 A^2 , A^4 来验证.

解: 从 v_1 到 v_4 长度为 2 的路有 1 条: $v_1v_2v_4$.

练习

求如下有向图的邻接矩阵 A, 指出从 v_1 到 v_4 且长度为 2 和 4 的路. 并计算 A^2 , A^4 来验证.

练习

求如下有向图的邻接矩阵 A, 指出从 v_1 到 v_4 且长度为 2 和 4 的路. 并计算 A^2 , A^4 来验证.

解: 从 v_1 到 v_4 长度为 2 的路有 1 条: $v_1v_2v_4$. 从 v_1 到 v_4 长度为 4 的路有 3 条: $v_1v_2v_4v_2v_4$, $v_1v_2v_3v_2v_4$, $v_1v_4v_2v_3v_4$.

练习

求如下有向图的邻接矩阵 A, 指出从 v_1 到 v_4 且长度为 2 和 4 的路. 并计算 A^2 , A^4 来验证.

解: 从 v_1 到 v_4 长度为 2 的路有 1 条: $v_1v_2v_4$. 从 v_1 到 v_4 长度为 4 的路有 3 条: $v_1v_2v_4v_2v_4$, $v_1v_2v_3v_2v_4$, $v_1v_4v_2v_3v_4$.

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}, A^2 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix},$$

$$A^{3} = \begin{pmatrix} 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 2 & 1 & 2 \\ 0 & 2 & 0 & 1 \end{pmatrix}, A^{4} = \begin{pmatrix} 0 & 3 & 2 & 3 \\ 0 & 4 & 1 & 3 \\ 0 & 3 & 2 & 3 \\ 0 & 1 & 2 & 2 \end{pmatrix}.$$

- 1 图的基本概念
- 2 路与回路
- ③ 图的矩阵表示
- 4 欧拉图与汉密尔顿图
- 5 平面图
- 6 对偶图与着色

欧拉图与汉密尔顿图

本节主要内容:

- 欧拉图
- ❷ 有向图中的欧拉路
- ◎ 周游世界问题
- 汉密尔顿图
- 标识法

Definition 4.1

设图 G 无孤立结点.

- 若存在一条路, 经过图中每边一次且仅一次, 称该路为欧拉路.
- 若存在一条回路, 经过图中每边一次且仅一次, 则称该回路为欧拉回路.

具有欧拉回路的图叫欧拉图.

例如,下图具有欧拉路,而没有欧拉回路.

例如,下图具有欧拉路,而没有欧拉回路.

从图中 v_2 出发, 经过图中每边一次且仅一次到 v_3 , 可得欧拉路:

 $v_2v_1v_3v_5v_4v_2v_3$.

例如,下图具有欧拉路,而没有欧拉回路.

从图中 v_2 出发, 经过图中每边一次且仅一次到 v_3 , 可得欧拉路:

 $v_2v_1v_3v_5v_4v_2v_3$.

例如,下图具有欧拉路,而没有欧拉回路.

从图中 v_2 出发, 经过图中每边一次且仅一次到 v_3 , 可得欧拉路:

 $v_2 v_1 v_3 v_5 v_4 v_2 v_3$.

但此图不可能有欧拉回路, 因而不是欧拉图.

$\overline{\text{Theorem }4.3}$

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

必要性. 证:

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

证: 必要性. 设图 G 有欧拉路

 $v_0 e_1 v_1 e_2 v_2 \cdots e_i v_i e_{i+1} \cdots e_k v_k,$

其中结点可重复出现,但边不重复,且每条边都经历一次,

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

证: 必要性. 设图 G 有欧拉路

 $v_0 e_1 v_1 e_2 v_2 \cdots e_i v_i e_{i+1} \cdots e_k v_k,$

其中结点可重复出现,但边不重复,且每条边都经历一次,因此,欧拉路遍历 G中所有结点,所以 G 是连通的.

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

证: 必要性. 设图 G 有欧拉路

$$v_0 e_1 v_1 e_2 v_2 \cdots e_i v_i e_{i+1} \cdots e_k v_k,$$

其中结点可重复出现, 但边不重复, 且每条边都经历一次, 因此, 欧拉路遍历 G中所有结点, 所以 G 是连通的.

• 若 v_i 不是端点,则 $\deg(v_i)$ 必为偶数; (因 v_i 在欧拉路中每出现一次必关联两条边.)

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

证: 必要性. 设图 G 有欧拉路

$$v_0 e_1 v_1 e_2 v_2 \cdots e_i v_i e_{i+1} \cdots e_k v_k,$$

其中结点可重复出现, 但边不重复, 且每条边都经历一次, 因此, 欧拉路遍历 G中所有结点, 所以 G 是连通的.

- 若 v_i 不是端点,则 $\deg(v_i)$ 必为偶数; (因 v_i 在欧拉路中每出现一次必关联两条边.)
- 而对端点 v_0 和 v_k ,
 - 如果 $v_0 = v_k$, 则 $\deg(v_0)$ 为偶数, 即 G 中无奇数度结点;

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

证: 必要性. 设图 G 有欧拉路

 $v_0 e_1 v_1 e_2 v_2 \cdots e_i v_i e_{i+1} \cdots e_k v_k,$

其中结点可重复出现, 但边不重复, 且每条边都经历一次, 因此, 欧拉路遍历 G中所有结点, 所以 G 是连通的.

- 若 v_i 不是端点,则 $\deg(v_i)$ 必为偶数; (因 v_i 在欧拉路中每出现一次必关联两条边.)
- 而对端点 v_0 和 v_k ,
 - 如果 $v_0 = v_k$, 则 $\deg(v_0)$ 为偶数, 即 G 中无奇数度结点;
 - 如果 $v_0 \neq v_k$, 则 $\deg(v_0)$ 和 $\deg(v_k)$ 必为奇数, 故 G 中有两个奇数度结点.

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

证: 充分性.

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

 $\overline{\mathbf{u}}$: 充分性. 当 G 连通, 且有零个或两个奇数度结点. 可按如下方法构造一条欧拉路.

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

 $\overline{\mathbf{u}}$: 充分性. 当 G 连通, 且有零个或两个奇数度结点. 可按如下方法构造一条欧拉路.

(1) 若 G 有两个奇数度结点 v_0 和 v_k , 因 G 连通, 可构造一条迹 (无重复边的路) L_1 : $v_0e_1v_1e_2\cdots v_k$; 若 G 无奇数度结点, 则可从任何结点 v_i 出发构造一条闭迹 L_1 : $v_ie_1v_1e_2\cdots v_i$.

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

- (1) 若 G 有两个奇数度结点 v_0 和 v_k , 因 G 连通, 可构造一条迹 (无重复边的路) L_1 : $v_0e_1v_1e_2\cdots v_k$; 若 G 无奇数度结点, 则可从任何结点 v_i 出发构造一条闭迹 L_1 : $v_ie_1v_1e_2\cdots v_i$.
 - (2) 如果 L_1 遍历 G 的所有边,则 L_1 就是一条欧拉路.

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

- (1) 若 G 有两个奇数度结点 v_0 和 v_k , 因 G 连通, 可构造一条迹 (无重复边的路) L_1 : $v_0e_1v_1e_2\cdots v_k$; 若 G 无奇数度结点, 则可从任何结点 v_i 出发构造一条闭迹 L_1 : $v_ie_1v_1e_2\cdots v_i$.
 - (2) 如果 L_1 遍历 G 的所有边, 则 L_1 就是一条欧拉路.
- (3) 如果 L_1 未遍历 G 的所有边, 则删除 L_1 后得子图 G', G' 中每个结点的度数 为偶数.

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

- (1) 若 G 有两个奇数度结点 v_0 和 v_k , 因 G 连通, 可构造一条迹 (无重复边的路) L_1 : $v_0e_1v_1e_2\cdots v_k$; 若 G 无奇数度结点, 则可从任何结点 v_i 出发构造一条闭迹 L_1 : $v_ie_1v_1e_2\cdots v_i$.
 - (2) 如果 L_1 遍历 G 的所有边, 则 L_1 就是一条欧拉路.
- (3) 如果 L_1 未遍历 G 的所有边, 则删除 L_1 后得子图 G', G' 中每个结点的度数 为偶数. 因 G 连通, 所以 L_1 与 G' 至少有一个结点 v_j 重合, 在 G' 中从结点 v_j 出发可构造闭迹 L_2 .

无向图 G 有一条欧拉路, 当且仅当 G 连通, 且有零个或两个奇数度结点.

- (1) 若 G 有两个奇数度结点 v_0 和 v_k , 因 G 连通, 可构造一条迹 (无重复边的路) L_1 : $v_0e_1v_1e_2\cdots v_k$; 若 G 无奇数度结点, 则可从任何结点 v_i 出发构造一条闭迹 L_1 : $v_ie_1v_1e_2\cdots v_i$.
 - (2) 如果 L_1 遍历 G 的所有边, 则 L_1 就是一条欧拉路.
- (3) 如果 L_1 未遍历 G 的所有边,则删除 L_1 后得子图 G', G' 中每个结点的 度数 为偶数. 因 G 连通, 所以 L_1 与 G' 至少有一个结点 v_j 重合, 在 G' 中从结点 v_j 出发可构造闭迹 L_2 .
- (4) 如果 L_1 和 L_2 组合在一起恰为 G,则得一条欧拉路,否则重复第 3 步,如此下去,必可得到一条经过图 G 所有边的欧拉路.

推论

无向图 G 具有一条欧拉回路, 当且仅当 G 连通, 且所有结点度数皆为偶数.

推论

无向图 G 且有一多欧拉回路 当日何当 C 连通 目所有结点度数皆为偶数.

由推

$$deg(A) = 5$$
, $deg(B) = deg(C) = deg(D) = 3$.

故欧拉回路必不存在.

Example 4.4

"一笔画问题"即欧拉路的存在性问题. 例如下图中

$$\deg(v_2) = \deg(v_3) = 3,$$

$$\deg(v_1) = \deg(v_4) = \deg(v_5) = 2.$$

Example 4.4

"一笔画问题"即欧拉路的存在性问题. 例如下图中

$$\deg(v_2) = \deg(v_3) = 3,$$

$$\deg(v_1) = \deg(v_4) = \deg(v_5) = 2.$$

故必有从 v_2 到 v_3 的一笔画. (或 v_3 到 v_2)

Example 4.4

"一笔画问题"即欧拉路的存在性问题. 例如下图中

$$\deg(v_2) = \deg(v_3) = 3,$$

$$\deg(v_1) = \deg(v_4) = \deg(v_5) = 2.$$

故必有从 v_2 到 v_3 的一笔画. (或 v_3 到 v_2)

Example 4.4

"一笔画问题"即欧拉路的存在性问题. 例如下图中

$$\deg(v_2) = \deg(v_3) = 3,$$

$$\deg(v_1) = \deg(v_4) = \deg(v_5) = 2.$$

故必有从 v_2 到 v_3 的一笔画. (或 v_3 到 v_2)

Example 4.4

"一笔画问题"即欧拉路的存在性问题. 例如下图中

$$\deg(v_2) = \deg(v_3) = 3,$$

$$\deg(v_1) = \deg(v_4) = \deg(v_5) = 2.$$

故必有从 v_2 到 v_3 的一笔画. (或 v_3 到 v_2)

Example 4.4

"一笔画问题"即欧拉路的存在性问题. 例如下图中

$$\deg(v_2) = \deg(v_3) = 3,$$

$$\deg(v_1) = \deg(v_4) = \deg(v_5) = 2.$$

故必有从 v_2 到 v_3 的一笔画. (或 v_3 到 v_2)

Example 4.4

"一笔画问题"即欧拉路的存在性问题. 例如下图中

$$\deg(v_2) = \deg(v_3) = 3,$$

$$\deg(v_1) = \deg(v_4) = \deg(v_5) = 2.$$

故必有从 v_2 到 v_3 的一笔画. (或 v_3 到 v_2)

Example 4.4

"一笔画问题"即欧拉路的存在性问题. 例如下图中

$$\deg(v_2) = \deg(v_3) = 3,$$

$$\deg(v_1) = \deg(v_4) = \deg(v_5) = 2.$$

故必有从 v_2 到 v_3 的一笔画. (或 v_3 到 v_2)

欧拉路可推广到有向图.

Definition 4.5

经过有向图中每边一次且仅一次的单向路 (回路), 称为单向欧拉路(回路).

欧拉路可推广到有向图.

Definition 4.5

经过有向图中每边一次且仅一次的单向路(回路), 称为单向欧拉路(回路).

Theorem 4.6

有向图 G 具有一条单向欧拉回路, 当且仅当 G 连通, 且每个结点的入度等于出度. 有向图 G 具有一条单向欧拉路, 当且仅当 G 连通, 且除两个结点之外, 每个结点的入度等于出度. 而这两个结点, 一个结点的入度比出度大 1, 另一个结点的入度比出度小 1.

(证明与前述定理类似.)

William Rowan Hamilton¹

哈密顿 (William Rowan Hamilton, 1805 — 1865), 爱尔兰数学家、物理学家.

- 1823 年到爱尔兰的三一学院学习.
- 1827 年获爱尔兰皇家天文学家的称号.
- 1835 年获封为爵士.
- 1837 年当选爱尔兰皇家科学院院长.

哈密顿在数学上的最主要贡献是发现了"四元数"(quaternions),建立了向量代数和向量分析的基础.

 $^{^1\}mathrm{Available}\ \mathrm{at}\ \mathtt{www.hkame.org.hk/bookmark2005}$

William Rowan Hamilton²

On October 6,

1843, while out walking in Dublin, Hamilton formed a new set of numbers called the quaternions in which there are four key ingredient numbers, namely 1, i, j, and k, satisfying the following multipicative rules:

$$i^2 = j^2 = k^2 = -1,$$

 $ij = k, \quad jk = i, \quad ki = j,$
 $ji = -k, \quad kj = -i, \quad ik = -j.$

Hamilton was so pleased with his discovery that he stopped on his walk to carve these equations with a knife into the sandstone of Brougham Bridge (see Irish stamp above).

²Available at http://www.maths.otago.ac.nz/

周游世界问题

十二面体的 20 个顶点 用不同的城市作标记. 智力 题的目标是在一个城市开始, 延十二面体的边旅行, 访问其他 19 个城市每个恰好一次, 回到第一个城市结束.

(旅行经过的回路可以 用钉子和细线来标记.)

正十二面体

103 / 152

一个展开了的正十二面体

一个展开了的正十二面体

汉密尔顿图

Definition 4.7

给定图 G,

- 经过图中每个结点一次且仅一次的路, 称为汉密尔顿路.
- 经过图中每个结点一次且仅一次的回路, 称为汉密尔顿回路.
- 具有汉密尔顿回路的图, 叫汉密尔顿图.

例如,判断下面各图是否为汉密尔顿图.

例如, 判断下面各图是否为汉密尔顿图.

● 图 (a) 中有汉密尔顿路, 但不存在汉密尔顿回路, 所以它不是汉密尔顿图;

例如, 判断下面各图是否为汉密尔顿图.

- 图 (a) 中有汉密尔顿路, 但不存在汉密尔顿回路, 所以它不是汉密尔顿图;
- 图 (b) 中有汉密尔顿回路, 它是汉密尔顿图;

例如, 判断下面各图是否为汉密尔顿图.

- 图 (a) 中有汉密尔顿路, 但不存在汉密尔顿回路, 所以它不是汉密尔顿图;
- 图 (b) 中有汉密尔顿回路, 它是汉密尔顿图;
- 图 (c) 中既无汉密尔顿回路, 也不存在汉密尔顿路.

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

证: 设 $C \in G$ 中的一条汉密尔顿回路.

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

证: 设 $C \in G$ 中的一条汉密尔顿回路.

• 如果 S 中的结点在 C 上两两相邻, 则 $W(C-S)=1\leqslant |S|$.

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

证: 设 $C \in G$ 中的一条汉密尔顿回路.

- 如果 S 中的结点在 C 上两两相邻, 则 $W(C-S)=1\leqslant |S|$.
- ② 如果 S 中的结点在 C 上存在 r $(2 \le r \le |S|)$ 个互不相邻的部分,则 $W(C-S) = r \le |S|$.

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

证: 设 $C \in G$ 中的一条汉密尔顿回路.

- 如果 S 中的结点在 C 上两两相邻, 则 $W(C-S)=1\leqslant |S|$.
- ② 如果 S 中的结点在 C 上存在 r ($2 \le r \le |S|$) 个互不相邻的部分,则 $W(C-S) = r \le |S|$.

一般说来, S 中的结点在 C 上既有相邻的, 又有不相邻的, 所以总有 $W(C-S) \leq |S|$.

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

证: 设 $C \neq G$ 中的一条汉密尔顿回路.

- 如果 S 中的结点在 C 上两两相邻, 则 $W(C-S)=1 \leq |S|$.
- ② 如果 S 中的结点在 C 上存在 r ($2 \le r \le |S|$) 个互不相邻的部分,则 $W(C-S) = r \le |S|$.

一般说来, S 中的结点在 C 上既有相邻的, 又有不相邻的, 所以总有 $W(C-S) \leq |S|$.

注意到 C-S 是 G-S 的生成子图, 故

$$W(G-S) \leqslant W(C-S) \leqslant |S|$$
.

Theorem $\overline{4.9}$

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

定理只是汉密尔顿图的必要条件.

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

定理只是汉密尔顿图的必要条件.

如果图 G 不满足这个条件,则 G 肯定不是汉密尔顿图.

若无向图 $G = \langle V, E \rangle$ 是汉密尔顿图, 任意 $S \subseteq V$, 则

$$W(G-S) \leqslant |S|,$$

其中 W(G-S) 表示 G 中删除 S 后所得子图 G-S 的连通分支数.

定理只是汉密尔顿图的必要条件.

如果图 G 不满足这个条件,则 G 肯定不是汉密尔顿图.

☞ 定理的用途: 判断一个图不是汉密尔顿图.

108 / 152

因为

$$W(G - \{a, b, c, d, e, f, g\}) = 9$$

因为

$$W(G - \{a, b, c, d, e, f, g\}) = 9$$
$$|\{a, b, c, d, e, f, g\}| = 7.$$

因为

$$W(G - \{a, b, c, d, e, f, g\}) = 9$$

$$\nleq |\{a, b, c, d, e, f, g\}| = 7.$$

因为

$$\begin{split} & W \big(G - \{ a, b, c, d, e, f, g \} \big) = 9 \\ & \not \leq \big| \{ a, b, c, d, e, f, g \} \big| = 7. \end{split}$$

所以图 G 不是汉密尔顿图.

即使图 G 满足定理的条件, 也不能肯定 G 是汉密尔顿图.

 黄正华 (武汉大学)
 离散数学 第6章 图
 November 18, 2012
 109 / 152

即使图 G 满足定理的条件, 也不能肯定 G 是汉密尔顿图. 如彼得森图, 它满足定理的条件, 但它不是汉密尔顿图.

- 删除 1 个或 2 个结点仍是连通图.
- 2 删除 3 个结点, 最多得 2 个连通分支的子图.
- 3 删除 4 个结点, 最多得 3 个连通分支的子图.
- 删除 5 个或 5 个结点,则所得子图的结点数已不大于 5,从而排除了出现 5 个以上连通分支的可能性.

所以该图满足 $W(G-S) \leq |S|$, 但可以证明它是<mark>非汉密尔顿图</mark>.

黄正华 (武汉大学)

即使图 G 满足定理的条件, 也不能肯定 G 是汉密尔顿图.

到目前为止,判断一个图是否为汉密尔顿图还只能依据定义. 只有部分满足特定条件的图才能用判别法 (充分条件).

设 G 是具有 n 个结点的简单图, 如果图中每对结点度数之和大于或等于 n-1, 则 G 中存在一条汉密尔顿路.

设 G 是具有 n 个结点的简单图, 如果图中每对结点度数之和大于或等于 n-1, 则 G 中存在一条汉密尔顿路.

证: ① 先证 G 连通, 用反证法.

② 在 G 中构造一条汉密尔顿回路.

设 G 是具有 n 个结点的简单图, 如果图中每对结点度数之和大于或等于 n-1, 则 G 中存在一条汉密尔顿路.

证: ① 先证 G 连通, 用反证法.

假设 G 不连通,则至少有两个连通分支 G_1 和 G_2 .

设 G 是具有 n 个结点的简单图, 如果图中每对结点度数之和大于或等于 n-1, 则 G 中存在一条汉密尔顿路.

证: ① 先证 G 连通, 用反证法.

假设 G 不连通, 则至少有两个连通分支 G_1 和 G_2 . 又设 G_1 有 n_1 个结点, G_2 有 n_2 个结点. 任取 $v_1 \in G_1, v_2 \in G_2$, 则

$$\deg(v_1) \leqslant n_1 - 1, \qquad \deg(v_2) \leqslant n_2 - 1$$

(因图 G 是简单图).

设 G 是具有 n 个结点的简单图, 如果图中每对结点度数之和大于或等于 n-1, 则 G 中存在一条汉密尔顿路.

$\overline{\mathbf{u}}$: ① 先证 G 连通, 用反证法.

假设 G 不连通, 则至少有两个连通分支 G_1 和 G_2 . 又设 G_1 有 n_1 个结点, G_2 有 n_2 个结点. 任取 $v_1 \in G_1, v_2 \in G_2$, 则

$$\deg(v_1) \leqslant n_1 - 1, \qquad \deg(v_2) \leqslant n_2 - 1$$

(因图 G 是简单图). 从而有

$$\deg(v_1) + \deg(v_2) \leqslant n_1 + n_2 - 2 < n - 1$$

与题设矛盾.

设 G 是具有 n 个结点的简单图, 如果图中每对结点度数之和大于或等于 n-1, 则 G 中存在一条汉密尔顿路.

$\overline{\mathbf{u}}$: ① 先证 G 连通, 用反证法.

假设 G 不连通, 则至少有两个连通分支 G_1 和 G_2 . 又设 G_1 有 n_1 个结点, G_2 有 n_2 个结点. 任取 $v_1 \in G_1, v_2 \in G_2$, 则

$$\deg(v_1) \leqslant n_1 - 1, \qquad \deg(v_2) \leqslant n_2 - 1$$

(因图 G 是简单图). 从而有

$$\deg(v_1) + \deg(v_2) \leqslant n_1 + n_2 - 2 < n - 1$$

与题设矛盾.

② 在 G 中构造一条汉密尔顿回路.

设 G 是具有 n 个结点的简单图, 如果图中每对结点度数之和大于或等于 n-1, 则 G 中存在一条汉密尔顿路.

$\overline{\mathbf{u}}$: ① 先证 G 连通, 用反证法.

假设 G 不连通, 则至少有两个连通分支 G_1 和 G_2 . 又设 G_1 有 n_1 个结点, G_2 有 n_2 个结点. 任取 $v_1 \in G_1, v_2 \in G_2$, 则

$$\deg(v_1) \leqslant n_1 - 1, \qquad \deg(v_2) \leqslant n_2 - 1$$

(因图 G 是简单图). 从而有

$$\deg(v_1) + \deg(v_2) \leqslant n_1 + n_2 - 2 < n - 1$$

与题设矛盾.

② 在 G 中构造一条汉密尔顿回路.

设 G 中有 p-1 条边的路 $v_1v_2\cdots v_p$, 且路中各结点均不同.

• 若 v_1 或 v_p 有邻接于不在该路上的结点,则可将该路扩展为包含该邻接结点的有 p 条边的路.

- 若 v_1 或 v_p 有邻接于不在该路上的结点,则可将该路扩展为包含该邻接结点的有 p 条边的路.
- 反之, 若 v_1 或 v_p 与该路外的结点都不邻接,则存在包含结点序 列 $v_1v_2\cdots v_p$ 的回路.

- 若 v_1 或 v_p 有邻接于不在该路上的结点,则可将该路扩展为包含该邻接结点的有 p 条边的路.
- 反之, 若 v_1 或 v_p 与该路外的结点都不邻接,则存在包含结点序 列 $v_1v_2\cdots v_p$ 的回路.事实上
 - ① 若 v_1 邻接 v_p , 则 $v_1v_2\cdots v_pv_1$ 即是所求的回路;

- 若 v_1 或 v_p 有邻接于不在该路上的结点,则可将该路扩展为包含该邻接结点的有 p 条边的路.
- 反之, 若 v_1 或 v_p 与该路外的结点都不邻接,则存在包含结点序列 $v_1v_2\cdots v_p$ 的回路.事实上
 - ① 若 v_1 邻接 v_p , 则 $v_1v_2\cdots v_pv_1$ 即是所求的回路;
 - ② 若 v₁ 与 v_p 不邻接,

- 若 v_1 或 v_p 有邻接于不在该路上的结点,则可将该路扩展为包含该邻接结点的有 p 条边的路.
- 反之, 若 v_1 或 v_p 与该路外的结点都不邻接, 则存在包含结点序 列 $v_1v_2\cdots v_p$ 的回路. 事实上
 - ① 若 v_1 邻接 v_p , 则 $v_1v_2\cdots v_pv_1$ 即是所求的回路;
 - ② 若 v_1 与 v_p 不邻接, 假设 v_1 与路内的 k 个结点 $v_s, v_m, \dots, v_j, \dots, v_t$ 相邻接, $2 \le s, m, \dots, j, \dots, t \le p-1$.

- 若 v_1 或 v_p 有邻接于不在该路上的结点,则可将该路扩展为包含该邻接结点的有 p 条边的路.
- 反之, 若 v_1 或 v_p 与该路外的结点都不邻接, 则存在包含结点序 列 $v_1v_2\cdots v_p$ 的回路. 事实上
 - ① 若 v_1 邻接 v_p , 则 $v_1v_2\cdots v_pv_1$ 即是所求的回路;
 - ② 若 v_1 与 v_p 不邻接, 假设 v_1 与路内的 k 个结点 $v_s, v_m, \dots, v_j, \dots, v_t$ 相邻接, $2 \le s, m, \dots, j, \dots, t \le p-1$.
 - 如果 v_p 与 $v_{s-1}, v_{m-1}, \dots, v_{j-1}, \dots, v_{t-1}$ 中之一邻接, 比如说 v_{j-1} ,

- 若 v_1 或 v_p 有邻接于不在该路上的结点,则可将该路扩展为包含该邻接结点的有 p 条边的路.
- 反之, 若 v_1 或 v_p 与该路外的结点都不邻接,则存在包含结点序 列 $v_1v_2\cdots v_p$ 的回路.事实上
 - ① 若 v_1 邻接 v_p , 则 $v_1v_2\cdots v_pv_1$ 即是所求的回路;
 - ② 若 v_1 与 v_p 不邻接, 假设 v_1 与路内的 k 个结点 $v_s, v_m, \dots, v_j, \dots, v_t$ 相邻接, $2 \le s, m, \dots, j, \dots, t \le p-1$.
 - 如果 v_p 与 $v_{s-1}, v_{m-1}, \dots, v_{j-1}, \dots, v_{t-1}$ 中之一邻接, 比如说 v_{j-1} ,

- 若 v_1 或 v_p 有邻接于不在该路上的结点,则可将该路扩展为包含该邻接结点的有 p 条边的路.
- 反之, 若 v_1 或 v_p 与该路外的结点都不邻接,则存在包含结点序 列 $v_1v_2\cdots v_p$ 的回路.事实上
 - ① 若 v_1 邻接 v_p , 则 $v_1v_2\cdots v_pv_1$ 即是所求的回路;
 - ② 若 v_1 与 v_p 不邻接, 假设 v_1 与路内的 k 个结点 $v_s, v_m, \dots, v_j, \dots, v_t$ 相邻接, $2 \leq s, m, \dots, j, \dots, t \leq p-1$.
 - 如果 v_p 与 $v_{s-1}, v_{m-1}, \dots, v_{j-1}, \dots, v_{t-1}$ 中之一邻接, 比如说 v_{j-1} , 则 $v_1v_2 \dots v_{j-1}v_pv_{p-1} \dots v_jv_1$ 即是所求的回路 (如图);

• 如果 v_p 与 $v_{s-1}, v_{m-1}, \cdots, v_{j-1}, \cdots, v_{t-1}$ (共 k 个) 都不邻接, 则 v_p 至多邻接 于 p-k-1 个结点 (路 $v_1v_2\cdots v_p$ 内除 v_p 外共 p-1 个结点). 从而

$$\deg(v_p) \leqslant p - k - 1$$

• 如果 v_p 与 $v_{s-1}, v_{m-1}, \cdots, v_{j-1}, \cdots, v_{t-1}$ (共 k 个) 都不邻接, 则 v_p 至多邻接 于 p-k-1 个结点 (路 $v_1v_2\cdots v_p$ 内除 v_p 外共 p-1 个结点). 从而

$$\deg(v_p) \leqslant p - k - 1$$

又 $\deg(v_1) = k$, 故 $\deg(v_p) + \deg(v_1) \leq p - 1 < n - 1$. 这与题设矛盾.

• 如果 v_p 与 $v_{s-1}, v_{m-1}, \cdots, v_{j-1}, \cdots, v_{t-1}$ (共 k 个) 都不邻接,则 v_p 至多邻接于 p-k-1 个结点 (路 $v_1v_2\cdots v_p$ 内除 v_p 外共 p-1 个结点). 从而

$$\deg(v_p) \leqslant p - k - 1$$

又 $\deg(v_1) = k$, 故 $\deg(v_p) + \deg(v_1) \le p - 1 < n - 1$. 这与题设矛盾.

以上已经证明, 存在包含所有结点 $v_1, v_2 \cdots, v_p$ 的回路.

因 G 连通, 故 G 中必有不属于该回路的结点 v_x , 它与 v_1, v_2, \cdots, v_p 中的某结点 v_k 邻接, 这样就得出包含 p 条边的路:

$$v_x v_k \cdots v_{j-1} v_p \cdots v_j v_1 v_2 \cdots v_{k-1}$$

因 G 连通, 故 G 中必有不属于该回路的结点 v_x , 它与 v_1, v_2, \cdots, v_p 中的某结点 v_k 邻接, 这样就得出包含 p 条边的路:

$$v_x v_k \cdots v_{j-1} v_p \cdots v_j v_1 v_2 \cdots v_{k-1}$$

对得到的 p 条边的路重复前述方法, 可得 p+1 条边的路.

因 G 连通, 故 G 中必有不属于该回路的结点 v_x , 它与 v_1, v_2, \cdots, v_p 中的某结点 v_k 邻接, 这样就得出包含 p 条边的路:

$$v_x v_k \cdots v_{j-1} v_p \cdots v_j v_1 v_2 \cdots v_{k-1}$$

对得到的 p 条边的路重复前述方法, 可得 p+1 条边的路.

如此继续, 可得有 n-1 条边的路, 它是汉密顿路.

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

 \overline{u} : 由前述的定理知, 在 G 中存在一条汉密尔顿路, 设为 $v_1v_2\cdots v_n$.

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

 $\overline{\mathbf{u}}$: 由前述的定理知, 在 G 中存在一条汉密尔顿路, 设为 $v_1v_2\cdots v_n$.

① 若 v_1 与 v_n 邻接,则得到一条汉密尔顿回路. 定理得证.

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

 $\overline{\mathbf{u}}$: 由前述的定理知, 在 G 中存在一条汉密尔顿路, 设为 $v_1v_2\cdots v_n$.

- 若 v₁ 与 v_n 邻接,则得到一条汉密尔顿回路. 定理得证.
- ② 若 $v_1 \subseteq v_n$ 不邻接,假设 v_1 邻接于 $v_{i_1}, v_{i_2}, \cdots, v_{i_k}, (2 \leq i_j \leq n-1)$.

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

 $\overline{\mathbf{u}}$: 由前述的定理知, 在 G 中存在一条汉密尔顿路, 设为 $v_1v_2\cdots v_n$.

- ① 若 v_1 与 v_n 邻接,则得到一条汉密尔顿回路. 定理得证.
- ② 若 v_1 与 v_n 不邻接,假设 v_1 邻接于 $v_{i_1}, v_{i_2}, \cdots, v_{i_k}, (2 \leqslant i_j \leqslant n-1)$. 可以证明 " v_n 邻接于 $v_{i_1-1}, v_{i_2-1}, \cdots, v_{i_{k-1}}$ 中之一".

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

 $\overline{\mathbf{u}}$: 由前述的定理知, 在 G 中存在一条汉密尔顿路, 设为 $v_1v_2\cdots v_n$.

- 若 v₁ 与 v_n 邻接,则得到一条汉密尔顿回路. 定理得证.
- ② 若 v_1 与 v_n 不邻接,假设 v_1 邻接于 $v_{i_1}, v_{i_2}, \cdots, v_{i_k}, (2 \leq i_j \leq n-1)$. 可以证明 " v_n 邻接于 $v_{i_1-1}, v_{i_2-1}, \cdots, v_{i_k-1}$ 中之一".

如果 v_n 不邻接于 $v_{i_1-1}, v_{i_2-1}, \dots, v_{i_k-1}$ 中任一结点,则 v_n 至多邻接于 n-k-1 个结点.

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

证: 由前述的定理知, 在 G 中存在一条汉密尔顿路, 设为 $v_1v_2\cdots v_n$.

- 若 v₁ 与 v_n 邻接,则得到一条汉密尔顿回路. 定理得证.
- ② 若 v_1 与 v_n 不邻接,假设 v_1 邻接于 $v_{i_1}, v_{i_2}, \cdots, v_{i_k}, (2 \leqslant i_j \leqslant n-1)$. 可以证明 " v_n 邻接于 $v_{i_1-1}, v_{i_2-1}, \cdots, v_{i_k-1}$ 中之一".

如果 v_n 不邻接于 $v_{i_1-1}, v_{i_2-1}, \cdots, v_{i_k-1}$ 中任一结点, 则 v_n 至多邻接于 n-k-1 个结点. 从而

$$\deg(v_n) \leqslant n - k - 1$$

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

 $\overline{\mathbf{u}}$: 由前述的定理知, 在 G 中存在一条汉密尔顿路, 设为 $v_1v_2\cdots v_n$.

- ① 若 v_1 与 v_n 邻接,则得到一条汉密尔顿回路. 定理得证.
- ② 若 v_1 与 v_n 不邻接,假设 v_1 邻接于 $v_{i_1}, v_{i_2}, \cdots, v_{i_k}, (2 \leqslant i_j \leqslant n-1)$. 可以证明 " v_n 邻接于 $v_{i_1-1}, v_{i_2-1}, \cdots, v_{i_{k-1}}$ 中之一".

如果 v_n 不邻接于 v_{i_1-1} , v_{i_2-1} , \cdots , v_{i_k-1} 中任一结点, 则 v_n 至多邻接于 n-k-1 个结点. 从而

$$\deg(v_n) \leqslant n - k - 1$$

又 $\deg(v_1) = k$, 故 $\deg(v_n) + \deg(v_1) \leq n - k - 1 + k = n - 1$. 这与题设矛盾.

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

 $\overline{\mathbf{u}}$: 由前述的定理知, 在 G 中存在一条汉密尔顿路, 设为 $v_1v_2\cdots v_n$.

- 若 v₁ 与 v_n 邻接,则得到一条汉密尔顿回路. 定理得证.
- ② 若 v_1 与 v_n 不邻接,假设 v_1 邻接于 $v_{i_1}, v_{i_2}, \cdots, v_{i_k}, (2 \leq i_j \leq n-1)$. 可以证明 " v_n 邻接于 $v_{i_1-1}, v_{i_2-1}, \cdots, v_{i_{k-1}}$ 中之一".

如果 v_n 不邻接于 v_{i_1-1} , v_{i_2-1} , \cdots , v_{i_k-1} 中任一结点, 则 v_n 至多邻接于 n-k-1 个结点. 从而

$$\deg(v_n) \leqslant n - k - 1$$

又 $\deg(v_1) = k$, 故 $\deg(v_n) + \deg(v_1) \leq n - k - 1 + k = n - 1$. 这与题设矛盾. 所以必有汉密尔顿回路 $v_1 v_2 \cdots v_{j-1} v_n v_{n-1} \cdots v_j v_1$.

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

注意:

本定理只不过是充分条件, 而非必要条件. 不满足定理中条件的图, 也可能是汉密尔顿图.

设 G 是具有 n 个结点的无向简单图, $n \ge 3$. 如果 G 中任一对结点度数之和都大于等于 n, 则在 G 中存在一条汉密尔顿回路. (即 G 是汉密尔顿图.)

注意:

本定理只不过是充分条件,而非必要条件.不满足定理中条件的图,也可能是汉密尔顿图.

Example 4.13

例如, 左图是具有 6 个结点的无向简单图, 它显然是汉密尔顿图, 但该图中任一对结点度数之和等于 4, 并不大于等于图中结点总数 6.

判断图 G 中是否存在汉密尔顿路或汉密尔顿回路, 除按定义来判断之外, 没有一个充分必要条件可以作为判断方法.

判断图 G 中是否存在汉密尔顿路或汉密尔顿回路, 除按定义来判断之外, 没有一个充分必要条件可以作为判断方法.

下面的标识法是一个可作参照的方法. (但这不是一个"充要条件".)

- 先用字母 A 标识图中任一结点,接着用 B 标识图中与 A 邻接的结点. 然后再用字母 A 标识图中与 B 邻接的结点,如此下去,直到图中所有结点标识完毕.
- ② 在标识过程中,遇到相邻结点出现相同标记时,可在此边上增加一个结点, 并标上相异标识.
- 标识完毕后, 如果若 A, B 数目差一个以上, 则该图不存在汉密尔顿回路.

判断图 G 中是否存在汉密尔顿路或汉密尔顿回路, 除按定义来判断之外, 没有一个充分必要条件可以作为判断方法.

下面的标识法是一个可作参照的方法. (但这不是一个"充要条件".)

- 先用字母 A 标识图中任一结点,接着用 B 标识图中与 A 邻接的结点. 然后再用字母 A 标识图中与 B 邻接的结点,如此下去,直到图中所有结点标识完毕.
- 在标识过程中,遇到相邻结点出现相同标记时,可在此边上增加一个结点, 并标上相异标识.
- 标识完毕后, 如果若 A, B 数目差一个以上, 则该图不存在汉密尔顿回路.

判断图 G 中是否存在汉密尔顿路或汉密尔顿回路, 除按定义来判断之外, 没有一个充分必要条件可以作为判断方法.

下面的标识法是一个可作参照的方法. (但这不是一个"充要条件".)

- 先用字母 A 标识图中任一结点,接着用 B 标识图中与 A 邻接的结点. 然后再用字母 A 标识图中与 B 邻接的结点,如此下去,直到图中所有结点标识完毕.
- 查 在标识过程中, 遇到相邻结点出现相同标记时, 可在此边上增加一个结点, 并标上相异标识.
- 标识完毕后, 如果若 A, B 数目差一个以上, 则该图不存在汉密尔顿回路.

判断图 G 中是否存在汉密尔顿路或汉密尔顿回路, 除按定义来判断之外, 没有一个充分必要条件可以作为判断方法.

下面的标识法是一个可作参照的方法. (但这不是一个"充要条件".)

- 先用字母 A 标识图中任一结点,接着用 B 标识图中与 A 邻接的结点. 然后再用字母 A 标识图中与 B 邻接的结点,如此下去,直到图中所有结点标识完毕.
- 在标识过程中, 遇到相邻结点出现相同标记时, 可在此边上增加一个结点, 并标上相异标识.
- 标识完毕后, 如果若 A, B 数目差一个以上, 则该图不存在汉密尔顿回路.

用标识法说明彼得森图不是汉密尔顿图.

- 先用字母 A 标识图中任一结点;
- 接着用 B 标识图中与 A 邻接的结点;
- 然后再用字母 A 标识图中与 B 邻接的结点.

用标识法说明彼得森图不是汉密尔顿图.

- 先用字母 A 标识图中任一结点;
- 接着用 B 标识图中与 A 邻接的结点;
- 然后再用字母 A 标识图中与 B 邻接的结点.

用标识法说明彼得森图不是汉密尔顿图.

- 先用字母 A 标识图中任一结点;
- 接着用 B 标识图中与 A 邻接的结点;
- 然后再用字母 A 标识图中与 B 邻接的结点.

用标识法说明彼得森图不是汉密尔顿图.

- 先用字母 A 标识图中任一结点;
- 接着用 B 标识图中与 A 邻接的结点;
- 然后再用字母 A 标识图中与 B 邻接的结点.

A, B 数目差一个以上, 所以彼得森图不存在汉密尔顿回路.

Example 4.14

本学期某个班的学生共计选修了 A, B, C, D, E, F 六门课. 其中一部分人同时 选修 A, C, D, 一部分选修 B, C, F, 一部分选修 B, E, 还有一部分选修 A, B. 期末考试要求每天考一门课, 六天内考完. 为了减轻学生负担, 要求每个人都不 会连续参加考试. 试设计一个考试日程表.

Example 4.14

本学期某个班的学生共计选修了 A, B, C, D, E, F 六门课. 其中一部分人同时选修 A, C, D, 一部分选修 B, C, F, 一部分选修 B, E, 还有一部分选修 A, B. 期末考试要求每天考一门课, 六天内考完. 为了减轻学生负担, 要求每个人都不会连续参加考试. 试设计一个考试日程表.

解: 以每门课为一个结点, 共同选修的课程之间用边相连, 得到图 (a). 由题意, 相邻结点对应的课程不能连续考试, 而不相邻的结点所对应的课程允许连续考试. 因此作图 (a) 的补图 (b).

Example 4.14

本学期某个班的学生共计选修了 A, B, C, D, E, F 六门课. 其中一部分人同时选修 A, C, D, 一部分选修 B, C, F, 一部分选修 B, E, 还有一部分选修 A, B. 期末考试要求每天考一门课, 六天内考完. 为了减轻学生负担, 要求每个人都不会连续参加考试. 试设计一个考试日程表.

解: 以每门课为一个结点, 共同选修的课程之间用边相连, 得到图 (a). 由题意, 相邻结点对应的课程不能连续考试, 而不相邻的结点所对应的课程允许连续考试. 因此作图 (a) 的补图 (b).

问题归结为在图 (b) 中找一条哈密尔顿路. 如依次按顺序 C, E, A, F, D, B 进行考试, 就是一个符合要求的考试安排.

- 1 图的基本概念
- ② 路与回路
- ③ 图的矩阵表示
- 4 欧拉图与汉密尔顿图
- 5 平面图
- 6 对偶图与着色

平面图

本节主要内容:

- 平面图的概念
- ② 欧拉公式
- ◎ 库拉托夫斯基定理

平面图的概念

Definition 5.1

能画在一个平面上且任何两边除端点外互不相交的图, 称为平面图.

平面图的概念

Definition 5.1

能画在一个平面上且任何两边除端点外互不相交的图, 称为平面图.

☞ 这里说的是"能画在",

平面图的概念

Definition 5.1

能画在一个平面上且任何两边除端点外互不相交的图, 称为平面图.

☞ 这里说的是"能画在",有些图形从表面看有几条边是相交的,但是不能就此肯定它不是平面图.

(b) G_2

(c) G_3

(a) G_1

(b) G₂

(c) G_3

(d) G_4

判断下面各图是否为平面图.

 G_1 , G_2 , G_3 是平面图, G_4 不是平面图.

120 / 152

将平面图 G 的每个边不交叉的图画在一个平面上, 称为图 G 的一个平面表

示.

Definition 5.3

平面图 G 的某个平面表示,将 G 所在的平面划分成若干区域,每个区域叫图 G 的一个面;包围每个面的边,称为该面的边界;边界上边的条数,叫该面的次数,面 r 的次数记作 $\deg(r)$.

将平面图 G 的每个边不交叉的图画在一个平面上,称为图 G 的一个平面表示.

Definition 5.3

平面图 G 的某个平面表示,将 G 所在的平面划分成若干区域,每个区域叫图 G 的一个面;包围每个面的边,称为该面的边界;边界上边的条数,叫该面的次数,面 r 的次数记作 $\deg(r)$.

Example 5.4

图 (a) 有 4 个面; 图 (b) 有 3 个面.

図 (b) 由 $d_{\text{eq}}(r_{1}) = 3$ $d_{\text{eq}}(r_{2}) = 5$ $d_{\text{eq}}(r_{2}) = 4$

一个有限平面图, 面的次数之和等于其边数的两倍.

一个有限平面图, 面的次数之和等于其边数的两倍.

证: 因一条边或是两个面的公共边,或在一个面中作为该面的边界被计算过两次,所以各面次数之和等于边数的两倍.

一个有限平面图, 面的次数之和等于其边数的两倍.

Example 5.6

● 图 (a) 有 6 条边; 4 个面, 每面次数皆为 3.

一个有限平面图, 面的次数之和等于其边数的两倍.

Example 5.6

- 图 (a) 有 6 条边; 4 个面, 每面次数皆为 3.
- 图 (b) 中 $\deg(r_1) = 3$, $\deg(r_2) = 5$, $\deg(r_3) = 4$. 图 (b) 有 6 条边; 有 3 个面, 各面次数之和为 12.

Theorem 5.7 (欧拉公式)

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2.$$

Theorem 5.7 (欧拉公式)

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2$$
.

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2$$
.

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2$$
.

证: 对边数用归纳法证明.

• 若 G 为平凡图 (孤立结点), 则 v=1, e=0, r=1 公式成立.

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2$$
.

- 若 G 为平凡图 (孤立结点), 则 v=1, e=0, r=1 公式成立.
- 若 G 仅有一条边,则 v=2, e=1, r=1 公式成立;或 v=1, e=1, r=2 公式仍然成立.

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2$$
.

- 若 G 为平凡图 (孤立结点), 则 v=1, e=0, r=1 公式成立.
- 若 G 仅有一条边,则 v=2, e=1, r=1 公式成立;或 v=1, e=1, r=2 公式仍然成立.
- 设 G 有 k 条边时, 欧拉公式成立. 当 G 有 k+1 条边时, 设其结点数为 v, 面数为 r, 可分两种情况讨论:

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2$$
.

- 若 G 为平凡图 (孤立结点), 则 v=1, e=0, r=1 公式成立.
- 若 G 仅有一条边,则 v=2, e=1, r=1 公式成立;或 v=1, e=1, r=2 公式仍然成立.
- 设 G 有 k 条边时, 欧拉公式成立. 当 G 有 k+1 条边时, 设其结点数为 v, 面数为 r, 可分两种情况讨论:
 - 如 G 中有度数为 1 的结点,删除该结点及其关联的一条边得图 G'. 显然,G' 也是连通平面图,设 G' 的结点数,边数和面数依次为 v', e'=k, r', 按归纳假设应满足欧拉公式,即 v'-e'+r'=2, 亦即 (v-1)-(e-1)+r=2, 从而有 v-e+r=2.

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2$$
.

- 若 G 为平凡图 (孤立结点), 则 v=1, e=0, r=1 公式成立.
- 若 G 仅有一条边,则 v=2, e=1, r=1 公式成立;或 v=1, e=1, r=2 公式仍然成立.
- 设 G 有 k 条边时, 欧拉公式成立. 当 G 有 k+1 条边时, 设其结点数为 v, 面数为 r, 可分两种情况讨论:
 - 如 G 中没有度数为 1 的结点,则在有限面的边界中删除一条边得图 G'. G' 也是连通平面图且边数等于 k, 按归纳假设应满足欧拉公式,即 v'-e'+r'=2, 亦即 v-(e-1)+(r-1)=2, 从而有 v-e+r=2.

设 G 是连通平面图, 有 v 个结点, e 条边, r 个面, 则

$$v - e + r = 2$$
.

证: 对边数用归纳法证明.

- 若 G 为平凡图 (孤立结点), 则 v=1, e=0, r=1 公式成立.
- 若 G 仅有一条边,则 v=2, e=1, r=1 公式成立;或 v=1, e=1, r=2 公式仍然成立.
- 设 G 有 k 条边时, 欧拉公式成立. 当 G 有 k+1 条边时, 设其结点数为 v, 面数为 r, 可分两种情况讨论:
 - 如 G 中没有度数为 1 的结点,则在有限面的边界中删除一条边得图 G'. G' 也是连通平面图且边数等于 k, 按归纳假设应满足欧拉公式,即 v'-e'+r'=2, 亦即 v-(e-1)+(r-1)=2, 从而有 v-e+r=2.

综上所述, 当边数为 k+1 时公式成立. 定理得证.

设 G 是有 v 个结点, e 条边的连通简单平面图, 且 $v \ge 3$, 则

$$e \leqslant 3v - 6$$
.

设 G 是有 v 个结点, e 条边的连通简单平面图, 且 $v \ge 3$, 则

$$e \leq 3v - 6$$
.

 $\overline{\mathbf{u}}$: 设 G 的面数为 r, 当 v = 3, e = 2 时, 公式成立.

设 G 是有 v 个结点, e 条边的连通简单平面图, 且 $v \ge 3$, 则

$$e \leq 3v - 6$$
.

证: 设 G 的面数为 r, 当 v=3, e=2 时, 公式成立.

当 $e \geqslant 3$ 时,因 G 为简单图,每面的次数不小于 3

设 G 是有 v 个结点, e 条边的连通简单平面图, 且 $v \ge 3$, 则

$$e \leq 3v - 6$$
.

证: 设 G 的面数为 r, 当 v = 3, e = 2 时, 公式成立.

当 $e \geqslant 3$ 时,因 G 为简单图,每面的次数不小于 3(否则意味着有平行边或环,就不是简单图了).

设 G 是有 v 个结点, e 条边的连通简单平面图, 且 $v \ge 3$, 则

$$e \leqslant 3v - 6$$
.

证: 设 G 的面数为 r, 当 v=3, e=2 时, 公式成立.

当 $e \geqslant 3$ 时,因 G 为简单图,每面的次数不小于 3(否则意味着有平行边或环,就不是简单图了).

又由各面次数之和为 2e, 因此

$$2e \geqslant 3r$$
,

设 G 是有 v 个结点, e 条边的连通简单平面图, 且 $v \ge 3$, 则

$$e \leqslant 3v - 6$$
.

证: 设 G 的面数为 r, 当 v=3, e=2 时, 公式成立.

当 $e \geqslant 3$ 时,因 G 为简单图,每面的次数不小于 3(否则意味着有平行边或环,就不是简单图了).

又由各面次数之和为 2e, 因此

$$2e \geqslant 3r$$
,

再由欧拉公式 v - e + r = 2, 有 r = 2 + e - v,

设 G 是有 v 个结点, e 条边的连通简单平面图, 且 $v \ge 3$, 则

$$e \leqslant 3v - 6$$
.

证: 设 G 的面数为 r, 当 v=3, e=2 时, 公式成立.

当 $e \geqslant 3$ 时,因 G 为简单图,每面的次数不小于 3(否则意味着有平行边或环,就不是简单图了).

又由各面次数之和为 2e, 因此

$$2e \geqslant 3r$$
,

再由欧拉公式 v-e+r=2, 有 r=2+e-v, 带入上式得:

$$2e \geqslant 3(2+e-v),$$

设 G 是有 v 个结点, e 条边的连通简单平面图, 且 $v \ge 3$, 则

$$e \leqslant 3v - 6$$
.

证: 设 G 的面数为 r, 当 v=3, e=2 时, 公式成立.

当 $e \ge 3$ 时,因 G 为简单图,每面的次数不小于 3(否则意味着有平行边或环,就不是简单图了).

又由各面次数之和为 2e, 因此

$$2e \geqslant 3r$$
,

再由欧拉公式 v-e+r=2, 有 r=2+e-v, 带入上式得:

$$2e \geqslant 3(2+e-v),$$

即

$$e \leqslant 3v - 6$$
.

定理给出了结点数大于等于 3的连通简单平面图应满足的必要条件, 可用来判断某些图不是平面图.

定理给出了结点数大于等于 3的连通简单平面图应满足的必要条件, 可用来判断某些图不是平面图.

Example 5.9

例如, 应用定理可知 K_5 不是平面图.

125 / 152

定理给出了结点数大于等于 3的连通简单平面图应满足的必要条件, 可用来判断某些图不是平面图.

Example 5.9

例如, 应用定理可知 K_5 不是平面图.

因 K₅ 是连通简单图,

$$v = 5$$
, $3v - 6 = 9$, $\overrightarrow{m} e = 10$,

不满足定理给出的条件 $e \leq 3v - 6$.

黄正华 (武汉大学)

设 G 是 v 个结点, e 条边的连通平面图, 且 G 的各面的次数大于等于 4, 则 $e \leq 2v-4$.

设 $G \neq v$ 个结点, e 条边的连通平面图, 且 G 的各面的次数大于等于 4, 则 $e \leq 2v-4$.

 $\overline{\mathbf{u}}$: 由所设, G 的各面次数之和大于等于 4r, 这里 r 为 G 的面数.

设 $G \neq v$ 个结点, e 条边的连通平面图, 且 G 的各面的次数大于等于 4, 则 $e \leq 2v - 4$.

证: 由所设, G 的各面次数之和大于等于 4r, 这里 r 为 G 的面数. 所以

 $2e \geqslant 4r$, $\qquad \mathbb{P} e \geqslant 2r$.

设 $G \neq v$ 个结点, e 条边的连通平面图, 且 G 的各面的次数大于等于 4, 则 $e \leq 2v - 4$.

 $\overline{\mathbf{u}}$: 由所设, G 的各面次数之和大于等于 4r, 这里 r 为 G 的面数. 所以

$$2e \geqslant 4r$$
, $\qquad \mathbb{P} e \geqslant 2r$.

再由欧拉公式 v - e + r = 2, 有 r = 2 + e - v,

设 G 是 v 个结点, e 条边的连通平面图, 且 G 的各面的次数大于等于 4, 则 $e \leq 2v-4$.

 $\overline{\mathbf{u}}$: 由所设, G 的各面次数之和大于等于 4r, 这里 r 为 G 的面数. 所以

$$2e \geqslant 4r$$
, $\qquad \mathbb{P} e \geqslant 2r$.

再由欧拉公式 v-e+r=2, 有 r=2+e-v, 带入上式得:

$$e \geqslant 2(2+e-v),$$

设 G 是 v 个结点, e 条边的连通平面图, 且 G 的各面的次数大于等于 4, 则 $e \leq 2v-4$.

证: 由所设, G 的各面次数之和大于等于 4r, 这里 r 为 G 的面数. 所以

$$2e \geqslant 4r$$
, $\qquad \mathbb{P} e \geqslant 2r$.

再由欧拉公式 v-e+r=2, 有 r=2+e-v, 带入上式得:

$$e \geqslant 2(2 + e - v),$$

得

$$e \leqslant 2v - 4$$
.

设 G 是 v 个结点, e 条边的连通平面图, 且 G 的各面的次数大于等于 4, 则 $e \leq 2v-4$.

 $\overline{\mathbf{u}}$: 由所设, G 的各面次数之和大于等于 4r, 这里 r 为 G 的面数. 所以

$$2e \geqslant 4r$$
, $\qquad \mathbb{P} e \geqslant 2r$.

再由欧拉公式 v-e+r=2, 有 r=2+e-v, 带入上式得:

$$e \geqslant 2(2 + e - v),$$

得

$$e \leqslant 2v - 4$$
.

☞ 推论给出了各面次数大于等于 4 的连通平面图应满足的必要条件, 所以可用来判断某些图不是平面图.

Example 5.10

例如, 应用推论可知 $K_{3,3}$ 不是平面图.

Figure : $K_{3,3}$

Example 5.10

例如,应用推论可知 K_{3,3} 不是平面图.

Figure : $K_{3,3}$

如果 $K_{3,3}$ 是连通平面图, 由每个面的次数都不小于 4 (因为在 $K_{3,3}$ 中任取三个结点, 其中必有两个结点不相邻). 又

Example 5.10

例如,应用推论可知 K_{3,3} 不是平面图.

Figure : $K_{3,3}$

如果 $K_{3,3}$ 是连通平面图, 由每个面的次数都不小于 4 (因为在 $K_{3,3}$ 中任取三个结点, 其中必有两个结点不相邻). 又

$$v = 6, \quad 2v - 4 = 8, \quad \coprod e = 9,$$

不满足推论给出的条件 $e \leq 2v - 4$.

欧拉公式可用来判断某些图不是平面图. 但不能用来判断某图是平面图.

欧拉公式可用来判断某些图不是平面图. 但不能用来判断某图是平面图.

Kuratowski ³给出了一个判断平面图的充分必要条件.为此,先介绍"在二度结点内同构"的定义.

黄正华 (武汉大学)

³库拉托夫斯基 (Kazimierz Kuratowski, 1896 – 1980) 波兰人, 华沙大学教授.

Definition 5.11

给定图 G_1 , G_2 , 如果它们同构, 或通过反复插入或删除度数为 2 的结点之后它们同构, 则称 G_1 与 G_2 在二度结点内同构.

插入或删除 2 度结点示意图:

(a) 插入结点

(b) 删除结点

Theorem 5.12

一个图是平面图, 当且仅当它不包含与 $K_{3,3}$ 或 K_5 在二度结点内同构的子图.

(b) K_5

 $(K_{3,3}$ 和 K_5 常称为库拉托夫斯基图.)

Theorem 5.12

一个图是平面图, 当且仅当它不包含与 $K_{3,3}$ 或 K_5 在二度结点内同构的子图.

(b) K_5

 $(K_{3,3}$ 和 K_5 常称为库拉托夫斯基图.)

(证明略.)

注意 $K_{3,3}$ 的不同表示, 下面两个图都是 $K_{3,3}$:

(a) $K_{3,3}$

(b) $K_{3,3}$

注意 $K_{3,3}$ 的不同表示, 下面两个图都是 $K_{3,3}$:

注意 $K_{3,3}$ 的不同表示, 下面两个图都是 $K_{3,3}$:

Kuratowski 定理

注意 $K_{3,3}$ 的不同表示, 下面两个图都是 $K_{3,3}$:

(a) Petersen 图

(a) Petersen 图

(b) 取 Petersen 图子图

(a) Petersen 图

(b) 取 Petersen 图子图

(c) 子图的变形

(a) Petersen 图

(b) 取 Petersen 图子图

(c) 子图的变形

(a) Petersen 图

(b) 取 Petersen 图子图

(c) 子图的变形

(a) Petersen 图

(b) 取 Petersen 图子图

(c) 子图的变形

(d) 删除二度结 点 *C*, *D*, *G*, *J* 得 *K*_{3,3}

假定连通平面性简单图有 20 个结点,每个结点的度数都是 3. 这个平面图有多少个区域?

假定连通平面性简单图有 20 个结点,每个结点的度数都是 3. 这个平面图有多少个区域?

解: 由题知, v = 20. 则所有结点的度数之和为 $20 \times 3 = 60$.

假定连通平面性简单图有 20 个结点,每个结点的度数都是 3. 这个平面图有多少个区域?

 \mathbf{p} : 由题知, v = 20. 则所有结点的度数之和为 $20 \times 3 = 60$. 而

$$\sum_{v \in V} \deg(v) = 2e,$$

所以 e = 30.

假定连通平面性简单图有 20 个结点,每个结点的度数都是 3. 这个平面图有多少个区域?

解: 由题知, v = 20. 则所有结点的度数之和为 $20 \times 3 = 60$. 而

$$\sum_{v \in V} \deg(v) = 2e,$$

所以 e=30. 由欧拉公式得

$$r = e - v + 2$$

= $30 - 20 + 2$
= 12 .

应用欧拉公式证明 Petersen 图不是平面图.

应用欧拉公式证明 Petersen 图不是平面图.

证: Petersen 图中, v = 10, e = 15, 从图上可以看出, 每个面由 5 条边围成.

应用欧拉公式证明 Petersen 图不是平面图.

证: Petersen 图中, v = 10, e = 15, 从图上可以看出, 每个面由 5 条边围成. 根据定理 7-5.1, 如果 Petersen 图是平面图, 则 2e = 5r.

应用欧拉公式证明 Petersen 图不是平面图.

证: Petersen 图中, v = 10, e = 15, 从图上可以看出, 每个面由 5 条边围成. 根据定理 7-5.1, 如果 Petersen 图是平面图, 则 2e = 5r. 所以

$$r = \frac{2}{5}e = 6$$

$$\Rightarrow v - e + r = 10 - 15 + 6 = 1 \neq 2$$

应用欧拉公式证明 Petersen 图不是平面图.

证: Petersen 图中, v = 10, e = 15, 从图上可以看出, 每个面由 5 条边围成. 根据定理 7-5.1, 如果 Petersen 图是平面图, 则 2e = 5r. 所以

$$r = \frac{2}{5}e = 6$$

$$\Rightarrow v - e + r = 10 - 15 + 6 = 1 \neq 2$$

这说明 Petersen 图不满足欧拉公式, 故它不是平面图.

November 18, 2012

- 1 图的基本概念
- 2 路与回路
- ③ 图的矩阵表示
- 4 欧拉图与汉密尔顿图
- 5 平面图
- 6 对偶图与着色

对偶图与着色

本节主要内容:

- 着色问题
- ② 对偶图的概念
- ◎ 正常着色
- Welch Powell 着色法
- ⑤ 四色定理 (The Four-Color Theorem)

Four Color Conjecture ⁴

The concept of the Four Coloring Theorem was born in 1852 when Francis Guthrie noticed that he only needed four different colors to color in a map of England.

Through his brother, Frederick, Francis communicated his discovery to De Morgan. Francis wondered if De Morgan would be able to tell him if it was true or not. De Morgan was unsure, so he asked the same question to Hamilton in Dublin. Hamilton was unable to help, so De Morgan continued to ask other prominent mathematicians.

⁴Available at: http://www.facstaff.bucknell.edu/udaepp/090/w3/ryanp.htm

Four Color Conjecture

In the US, Charles Peirce attempted to prove the Four Color Conjecture in the 1860's and continued to for the remainder of his life.

In 1879, Cayley wrote a paper to the Royal Geographical Society explaining the difficulties in attempting to prove the Conjecture.

On July 17, 1879, a mathematician by the name of Kempe announced a proof for the Four Color Conjecture. However, eleven years later Heawood, a lecturer at Durham England, pointed out that Kempe's proof was incorrect. Along with proving Kempe wrong, Heawood was able to prove that every planar map is five colorable. In 1898, Heawood also proved that if the number of edges around a region is divisible by three then the region is four colorable.

Four Color Conjecture

In 1880 a man by the name of Tait came up with his own proof for the Four Color Conjecture. Once again the proof was proved false, this time by Petersen in 1891.

In the midst of these two failed attempts at finding a proof for the Four Color Conjecture, Kempe and Tait both made other major contributions to the world of mathematics. Kempe discovered what would later become known as Kempe chains and Tait devised a equivalent form of the Four Color Theorem for three-edge-coloring.

The next major contribution was the concept of reducibility by Birkoff. Using Birkoff's work, Franklin proved that any map with up to 25 regions can be four colorable in 1922.

Four Color Conjecture

In 1926 Reynolds increased the number of regions to 27. Winn increased it to 35 in 1940, Ore and Stemple to 39 in 1970, and Mayer to 95 in 1976. Heesch later developed the two main concepts that eventually led to the final proof. They were reducibility and discharging.

Finally, in 1976, Kenneth Appel and Wolfgang Haken at the University of Illinois with the aid of a computer program that was thousands of lines long and took over 1200 hours to run, basing their methods on reducibility using Kempe chains.

The Four Color Theorem was the first major theorem to be proved using a computer.

对偶图的概念

Definition 6.1

给定平面图 $G = \langle V, E \rangle$, 设它有 n 个面 F_1, F_2, \dots, F_n . 若图 $G^* = \langle V^*, E^* \rangle$ 满足下列条件:

- 对图 G 的任意一个面 F_i , 其内部有且仅有一个结点 v_i^* 属于 V^* ;
- ② 对图 G 的任意两个面 F_i , F_j 的公共边界 e_k 有且仅有一条边 e_k^* 属于 E^* , 使 $e_k^* = (v_i^*, v_i^*)$, 且 e_k^* 与 e_k 相交;
- 当且仅当 e_k 只是一个面 F_i 的边界时, v_i^\star 有一个环 e_k^\star 与 e_k 相交.

则称图 G^* 是图 G 的对偶图.

对偶图的概念

Definition 6.1

给定平面图 $G = \langle V, E \rangle$, 设它有 n 个面 F_1, F_2, \dots, F_n . 若图 $G^* = \langle V^*, E^* \rangle$ 满足下列条件:

- 对图 G 的任意一个面 F_i , 其内部有且仅有一个结点 v_i^* 属于 V^* ;
- ② 对图 G 的任意两个面 F_i , F_j 的公共边界 e_k 有且仅有一条边 e_k^* 属于 E^* , 使 $e_k^* = (v_i^*, v_j^*)$, 且 e_k^* 与 e_k 相交;
- 当且仅当 e_k 只是一个面 F_i 的边界时, v_i^* 有一个环 e_k^* 与 e_k 相交. 则称图 G^* 是图 G 的对偶图.

☞ 对偶图显然是相互的. G^* 是 G 的对偶图, 则 G^* 也是 G 的对偶图. 特别是连通平面图的对偶图也是平面图.

图 G 的对偶图 G^* 同构于 G, 则称图 G 是自对偶图.

图 G 的对偶图 G^* 同构于 G, 则称图 G 是自对偶图.

Example 6.3

- "面"演化为"点";
- "面的公共边界"演化为 "点 的邻接边".

图 G 的对偶图 G^* 同构于 G, 则称图 G 是自对偶图.

Example 6.3

- "面" 演化为 "点";
- "面的公共边界" 演化为 "点 的邻接边".

图 G 的对偶图 G^* 同构于 G, 则称图 G 是自对偶图.

Example 6.3

- "面" 演化为 "点";
- "面的公共边界"演化为 "点 的邻接边".

图 G 的对偶图 G^* 同构于 G, 则称图 G 是自对偶图.

Example 6.3

- "面" 演化为 "点";
- "面的公共边界" 演化为 "点 的邻接边".

图 G 的对偶图 G^* 同构于 G, 则称图 G 是自对偶图.

Example 6.3

- "面" 演化为 "点";
- "面的公共边界"演化为 "点 的邻接边".

图 G 的对偶图 G^* 同构于 G, 则称图 G 是自对偶图.

Example 6.3

- "面" 演化为 "点";
- "面的公共边界" 演化为 "点 的邻接边".

• 由对偶图的概念, 可以将"地图的着色"转化为对"平面图结点的着色".

- 由对偶图的概念, 可以将"地图的着色"转化为对"平面图结点的着色".
- 因而四色问题归结为:证明对任何一个平面图,可用四种颜色对其结点实施 着色,使邻接的结点有不同的颜色.

- 由对偶图的概念, 可以将"地图的着色"转化为对"平面图结点的着色".
- 因而四色问题归结为: 证明对任何一个平面图, 可用四种颜色对其结点实施 着色, 使邻接的结点有不同的颜色.

着色

图 G 的正常着色(简称"着色") 指对 G 的每个结点指定一种颜色, 使邻接的结点具有不同的颜色.

- 由对偶图的概念, 可以将"地图的着色"转化为对"平面图结点的着色".
- 因而四色问题归结为: 证明对任何一个平面图, 可用四种颜色对其结点实施 着色, 使邻接的结点有不同的颜色.

着色

图 G 的正常着色(简称"着色") 指对 G 的每个结点指定一种颜色, 使邻接的结点具有不同的颜色.

• 如果图 G 着色用了 n 种颜色, 则称图 G 是 n-色的.

- 由对偶图的概念, 可以将"地图的着色"转化为对"平面图结点的着色".
- 因而四色问题归结为: 证明对任何一个平面图, 可用四种颜色对其结点实施 着色, 使邻接的结点有不同的颜色.

着色

图 G 的正常着色(简称"着色") 指对 G 的每个结点指定一种颜色, 使邻接的结点具有不同的颜色.

- 如果图 G 着色用了 n 种颜色, 则称图 G 是 n-色的.
- 图 G 着色所需的最少颜色数称为 G 的<mark>着色数</mark>, 记作 $\chi(G)$.

正常着色

- 由对偶图的概念, 可以将"地图的着色"转化为对"平面图结点的着色".
- 因而四色问题归结为: 证明对任何一个平面图, 可用四种颜色对其结点实施 着色, 使邻接的结点有不同的颜色.

着色

图 G 的正常着色(简称"着色") 指对 G 的每个结点指定一种颜色, 使邻接的结点具有不同的颜色.

- 如果图 G 着色用了 n 种颜色, 则称图 G 是 n-色的.
- 图 G 着色所需的最少颜色数称为 G 的<mark>着色数</mark>, 记作 $\chi(G)$.

正常着色

Example 6.4

下图中,

- 图 (a) 着色所需的最少颜色数为 4, 因此它是 4-色的.
- 图 (b) 着色所需的最少颜色数为 5, 因此它是 5-色的.

Welch Powell 着色法

用 Welch Powell 方法对图 G 实施着色, 可以确定某个图 G 是否是 n-色的. 步骤如下:

- 将图 G 的所有结点按度数递减的次序排列 (度数相同的结点次序随意);
- 用第一种颜色对度数最大的结点着色,并按排列次序,依次对与前面已着色点不相邻的结点着上同样的颜色;
- 用第二种颜色对未着色结点按步骤(2)着色;用第三种颜色继续如法着色, …,直到所有结点全部着色为止.

对下图着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

对下图着色.

- 用红色对 E 及不相邻的结点 A 着色;
- 用蓝色对 C 及不相邻的结点 D, H 着色;
- 用黄色对 G 及不相邻的结点 B, F 着色.

四色定理

Theorem 6.6

 $\chi(K_n) = n, K_n$ 是有 n 个结点的完全图.

四色定理

Theorem 6.6

 $\chi(K_n) = n, K_n$ 是有 n 个结点的完全图.

证: 因完全图 K_n 的每个结点与其它的 n-1 个结点都邻接, 所以每个结点必须着不同的颜色, 才能使邻接结点有不同的颜色, 故 K_n 的着色数不少于 n.

四色定理

Theorem 6.6

 $\chi(K_n) = n, K_n$ 是有 n 个结点的完全图.

证: 因完全图 K_n 的每个结点与其它的 n-1 个结点都邻接, 所以每个结点必须着不同的颜色, 才能使邻接结点有不同的颜色, 故 K_n 的着色数不少于 n.

又因 n 个结点的着色数至多为 n, 因而 $\chi(K_n) = n$.

Theorem 6.7 (四色定理)

任意平面图最多是 4-色的.

(证明略)

六人在一起,或者三人互相认识,或者三人彼此不认识.

六人在一起,或者三人互相认识,或者三人彼此不认识.

解: 将 6 个人分别用平面上 a, b, c, d, e, f 六点表示.

六人在一起,或者三人互相认识,或者三人彼此不认识.

解: 将 6 个人分别用平面上 a, b, c, d, e, f 六点表示. 从任一人出发, 该人与其它五人或认识, 或不认识.

六人在一起,或者三人互相认识,或者三人彼此不认识.

解: 将 6 个人分别用平面上 a, b, c, d, e, f 六点表示. 从任一人出发, 该人与其它五人或认识, 或不认识.

如两人认识,则相应两点用红线相连,否则,用蓝线相连.

六人在一起,或者三人互相认识,或者三人彼此不认识.

解: 将 6 个人分别用平面上 a, b, c, d, e, f 六点表示. 从任一人出发, 该人与其它五人或认识, 或不认识.

如两人认识,则相应两点用红线相连,否则,用蓝线相连.

不失一般性, 考虑从 a 开始, 与其它五点可以有五条线相连.

六人在一起,或者三人互相认识,或者三人彼此不认识.

解: 将 6 个人分别用平面上 a, b, c, d, e, f 六点表示. 从任一人出发, 该人与其它五人或认识, 或不认识.

如两人认识,则相应两点用红线相连,否则,用蓝线相连.

不失一般性, 考虑从 a 开始, 与其它五点可以有五条线相连. 那么五条线中必有 3 条会着上相同的颜色.

六人在一起,或者三人互相认识,或者三人彼此不认识.

解: 将 6 个人分别用平面上 a, b, c, d, e, f 六点表示. 从任一人出发, 该人与其它五人或认识, 或不认识.

如两人认识,则相应两点用红线相连,否则,用蓝线相连.

不失一般性, 考虑从 a 开始, 与其它五点可以有五条线相连. 那么五条线中必有 3 条会着上相同的颜色.

假定 ab, ac, ad 为蓝色,

六人在一起,或者三人互相认识,或者三人彼此不认识.

解: 将 6 个人分别用平面上 a, b, c, d, e, f 六点表示. 从任一人出发, 该人与其它五人或认识, 或不认识.

如两人认识,则相应两点用红线相连,否则,用蓝线相连.

不失一般性, 考虑从 a 开始, 与其它五点可以有五条线相连. 那么五条线中必有 3 条会着上相同的颜色.

假定 ab, ac, ad 为蓝色,

● 如果此时 bc, cd, bd 中有一条边为蓝色 (比如 bd 边为蓝色),则可构成一个蓝色三角形,因而六人中有三人不认识;

六人在一起,或者三人互相认识,或者三人彼此不认识.

解: 将 6 个人分别用平面上 a, b, c, d, e, f 六点表示. 从任一人出发, 该人与其它五人或认识, 或不认识.

如两人认识,则相应两点用红线相连,否则,用蓝线相连.

不失一般性, 考虑从 a 开始, 与其它五点可以有五条线相连. 那么五条线中必有 3 条会着上相同的颜色.

假定 ab, ac, ad 为蓝色,

- 如果此时 bc, cd, bd 中有一条边为蓝色 (比如 bd 边为蓝色),则可构成一个蓝色三角形,因而六人中有三人不认识;
- 如果此时 bc, cd, bd 全为红色,则 b, c, d 彼此认识,因而六人中有三人认识.

如何安排大学的期末考试, 使得没有学生在同一时间有两门考试?

如何安排大学的期末考试, 使得没有学生在同一时间有两门考试?

解: 用结点表示课程, 若在两个结点所表示的课程里有公共的学生, 则在这两个结点之间有边. 用不同颜色来表示期末考试的不同时间段. 考试的安排就对应于所关联的图的着色.

如何安排大学的期末考试, 使得没有学生在同一时间有两门考试?

解: 用结点表示课程, 若在两个结点所表示的课程里有公共的学生, 则在这两个结点之间有边. 用不同颜色来表示期末考试的不同时间段. 考试的安排就对应于所关联的图的着色.

例如, 假定要安排七门课的期末考试, 这七门课程的编号为 1 到 7. 不妨设下列成对的课程有公共的学生: 1 和 2, 1 和 3, 1 和 4, 1 和 7, 2 和 3, 2 和 4, 2 和 5, 2 和 7, 3 和 4, 3 和 6, 3 和 7, 4 和 5, 4 和 6, 5 和 6, 5 和 7, 以及 6 和 7.

如何安排大学的期末考试, 使得没有学生在同一时间有两门考试?

解: 用结点表示课程, 若在两个结点所表示的课程里有公共的学生, 则在这两个结点之间有边. 用不同颜色来表示期末考试的不同时间段. 考试的安排就对应于所关联的图的着色.

例如, 假定要安排七门课的期末考试, 这七门课程的编号为 1 到 7. 不妨设下列成对的课程有公共的学生: 1 和 2, 1 和 3, 1 和 4, 1 和 7, 2 和 3, 2 和 4, 2 和 5, 2 和 7, 3 和 4, 3 和 6, 3 和 7, 4 和 5, 4 和 6, 5 和 6, 5 和 7, 以及 6 和 7.

如何安排大学的期末考试, 使得没有学生在同一时间有两门考试?

解: 用结点表示课程, 若在两个结点所表示的课程里有公共的学生, 则在这两个结点之间有边. 用不同颜色来表示期末考试的不同时间段. 考试的安排就对应于所关联的图的着色.

例如, 假定要安排七门课的期末考试, 这七门课程的编号为 1 到 7. 不妨设下列成对的课程有公共的学生: 1 和 2, 1 和 3, 1 和 4, 1 和 7, 2 和 3, 2 和 4, 2 和 5, 2 和 7, 3 和 4, 3 和 6, 3 和 7, 4 和 5, 4 和 6, 5 和 6, 5 和 7, 以及 6 和 7.

因为这个图的色数为 4, 所以需要 4 个时间段.

Euler (1707~1783)

生于 Basel, 卒于圣彼得堡. 瑞士数学家, 贡献遍及数学各领域, 是数学史上最伟大的数学家之一, 也是最多产的数学家.

据统计他一生共写下了 886 本书籍和 论文, 其中分析、代数、数论占 40%, 几何占 18%, 物理和力 学占 28%, 天文学占 11%, 弹道学、航海学、建筑学等占 3%, 彼得堡科学院为了整理他的著作, 足足忙碌了四十七年.

Euler $(1707 \sim 1783)$

生于 Basel, 卒于圣彼得堡. 瑞士数学家, 贡献遍及数学各领域, 是数学史上最伟大的数学家之一, 也是最多产的数学家.

据统计他一生共写下了 886 本书籍和 论文, 其中分析、代数、数论占 40%, 几何占 18%, 物理和力 学占 28%, 天文学占 11%, 弹道学、航海学、建筑学等占 3%, 彼得堡科学院为了整理他的著作, 足足忙碌了四十七年.

欧拉可以在任何不良的环境中工作.他 顽强的毅力和孜孜不倦的治学精神,使 他在双目失明以后,也没有停止对数学的研究,在失明后的 17 年间,他还口述了几本书和 400 篇左右的论文.

Euler 一生都是在科学院度过. 首先是在俄国的圣彼得堡科学院, 1733 年, 26 岁的欧拉担任了彼得堡科学院数学教授. 1740 年后则在柏林科学院待到 59 岁. 1766 年接受凯瑟琳女皇二世邀请, 离开柏林, 再次前往圣彼得堡, 一直到他过世 (1783 年).

欧拉可以在任何不良的环境中工作.他 顽强的毅力和孜孜不倦的治学精神,使 他在双目失明以后,也没有停止对数学的研究,在失明后的 17 年间,他还口述了几本书和 400 篇左右的论文.

Euler 一生都是在科学院度过. 首先是在俄国的圣彼得堡科学院, 1733 年, 26 岁的欧拉担任了彼得堡科学院数学教授. 1740 年后则在柏林科学院待到 59 岁. 1766 年接受凯瑟琳女皇二世邀请, 离开柏林, 再次前往圣彼得堡, 一直到他过世 (1783 年).

Euler 公式:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

这是关

于三角函数最漂亮的公式之一,同时也是三角函数与复数间的桥梁. 若令 $\theta = \pi$,则有

$$e^{i\pi} + 1 = 0$$

欧拉还创设了许多数学

符号, 例如 π (1736 年), i (1777 年), e (1748 年), \sin 和 \cos (1748 年), \tan (1753 年), Δx (1755 年), Σ (1755 年), f(x) (1734 年) 等.

Euler 公式:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

这是关

于三角函数最漂亮的公式之一,同时也是三 角函数与复数间的桥梁. 若令 $\theta = \pi$,则有

$$e^{i\pi} + 1 = 0$$

欧拉还创设了许多数学

符号, 例如 π (1736 年), i (1777 年), e (1748 年), \sin 和 \cos (1748 年), \tan (1753 年), Δx (1755 年), Σ (1755 年), f(x) (1734 年) 等.

Euler 公式:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

这是关

于三角函数最漂亮的公式之一,同时也是三角函数与复数间的桥梁. 若令 $\theta = \pi$,则有

$$e^{i\pi} + 1 = 0$$

欧拉还创设了许多数学

符号, 例如 π (1736 年), i (1777 年), e (1748 年), \sin 和 \cos (1748 年), \tan (1753 年), Δx (1755 年), Σ (1755 年), f(x) (1734 年) 等.