

Classification - 01

OF BUSINESS

Supervised Learning

The problem: Bank telemarketing¹

Attribute		Type	Description/Values				
Personal	age	num	Age of the potential client				
	job	cat	admin., blue- collar, entrepreneur, housemaid, ,unknown				
	marital_status	cat	divorced, married, single, unknown				
	education	cat	basic.4y, basic.6y, basic.9y, high.school, unknown				
Bank	default	cat	The client has credit in default: no,yes,unknown				
	housing	cat	The client has a housing loan contract: no,yes,unknown				
	loan	cat	The client has a personal loan: no,yes,unknown				
Campain	contact	cat	Communication type: cellular,telephone				
	month	cat	Last month contacted: jan, feb ,, dec				
	day_of_week	cat	Last contact day : mon, tue,, fri				
	duration	num	Last contact duration (in seconds)				
	campain	num	Number of contacts performed during this campaign				
	pdays	num	Number of days that passed by after last contact				
	previous	num	Number of contacts performed before this campaign				
	poutcome	cat	Outcome of the previous marketing campaign: fail-				
			ure,nonexistent,success				
Economical	emp.var.rate	num	Employment variation rate in the last quarter				
	cons.price.idx	num	Consumer price index in the last month				
	cons.conf.idx	num	Monthly consumer confidence index				
	euribor3m	num	Dayly Euro Interbank Offered Rate				
	nr.employed	num	Number of employed citizens in the last quarter (thousands)				
Target	success	target	0: no, 1: yes				

 $^{^1}$ A data-driven approach to predict the success of bank telemarketing. S. Moroa, P. Cortez, P. Rita.Decision Support Systems, 62:22-31, 2014.

Classification problem

Area Pothers Pmob ... NumSMS Class 2 0.14 0.59 ... 18 1 3 0.26 0.35 ... 9 -1 1 0.37 0.23 ... 1 1 : : : : : : : 4 0.41 0.27 ... 64 -1

Area	Pothers	\mathbf{Pmob}		\mathbf{NumSMS}	Class
1	0.27	0.67		36	?
4	0.44	0.22		50	?
4	0.31	0.47		14	?
:	:	:	:	:	:
2	0.31	0.14		49	?

Classification formulation

$$\mathcal{S}_m=\{(\mathbf{x}_i,y_i),\ i\in\mathcal{M}\}$$
 : training set, where $\ \mathbf{x}_i\in\Re^n\$ and $\ y_i\in\mathcal{D}$

 ${\mathcal H}$ denotes a set of functions $f({f x})\,:\, \Re^n\,\mapsto\, {\mathcal D}$

Classification problem: define a hypotheses space $\,\mathcal{H}\,$ and a function $\,f^*\in\mathcal{H}\,$ which optimally describes the relationship between $\,\mathbf{x}_i\,$ and $\,y_i$

Multi-class classification

1. **One-vs-Rest** We perform |H| different binary classifications: one for every class.

We decide based on a majority vote.

2. **One-vs-One** We perform |H|(|H-1|)/2 binary classifications: one for every pair of classes. We decide based on a majority vote.

BABD

Classification Models

Classification Models

- Heuristics Methods
 - Nearest Neighbours
 - Classification Trees
- Probabilistic Methods
 - Bayesian Methods
- Regression Methods
 - Logistic regression
- Separation Methods
 - Support vector machine
 - Perceptron
 - Neural Networks

Evaluation Dimensions

- ► Prediction accuracy
- Speed
- Robustness
- Scalability
- Intepretability
- Rules effectiveness

Classification - Quality measures - Confusion Matrix

- Precision = ^{TP}/_{TP+FP} "proportion of true positives among positive predictions"
- ► False Positive rate= FP "proportion of false positives among actual negatives"
- ► Recall (True Positive rate)= TP "proportion of true positives among actual positive"
- ► Geom. mean= $\sqrt{\text{Precision} \times \text{Recall}}$
- F-score= $\frac{(\beta^2+1)}{\beta^2}\frac{1}{\frac{1}{\text{Precision}}+\frac{1}{\text{Recall}}}$

Classification - Quality measures - ROC curve & AUC

- If we accepting even with small probability then TPR = FPR = 1
- If we accepting just with high probability then TPR = FPR = 0
- ► The perfect classificator is the the point (0,1)
- ► AUC ∈ [0.5, 1] area under the curve is a quality measure of our algorithm.

Workflow

Under/Over-fitting

Cross validation

KNN K-nearest Neighbours

Main Parameters

- k : number of neighbours
- neighbour weights
- distances

Tree types

- ► Binary tree (zero/two descendants)
- General trees
- ▶ Uni-variate tree $(X_j < b)$
- Multi-variate tree $(\sum_{j=1}^{n} w_j x_j = b)$

classification by an axis parallel tree

classification by an oblique tree

Split criteria

- ▶ Gini index: $1 \sum_{h=1}^{H} f_h^2$
- **Entropy index:** $-\sum_{h=1}^{H} f_h \log_2 f_h$
- Miss-classification index: $1 \max_h f_h$

Impurity of a splitting rule

$$I(q_1, q_2, \dots, q_K) = \sum_{k=1}^K \frac{Q_k}{Q} I(q_k).$$

 At each node select the rule minimizing the impurity or, equivalently,

maximizing the information gain

$$\Delta(q, q_1, q_2, \dots, q_K) = I(q) - I(q_1, q_2, \dots, q_K)$$
$$= I(q) - \sum_{k=1}^K \frac{Q_k}{Q} I(q_k).$$

