Math 440 – Real Analysis II Homework 5

Amandeep Gill

March 24, 2015

Problem 29 Find the radius of convergence of each of the following powerseries

(a)
$$\sum_{k=1}^{\infty} \frac{3^k}{k^3} x^k$$

Proof: Since $\frac{3^k}{k^3}x^k = \frac{(3x)^k}{k^3}$, if $|x| \leqslant 1/3$ then $|3x| \leqslant 1$ and $\frac{|3x|^k}{k^3} \leqslant \frac{1}{k^3}$ for all k. The series is thus uniformly convergent for $x \in [-\frac{1}{3}, \frac{1}{3}]$ by the Weierstrass M-test. For $x \notin [-\frac{1}{3}, \frac{1}{3}]$, |3x| > 1 which leads to $\lim_{k \to \infty} \frac{|3x|^k}{k^3}$ being unbounded and the series being divergent by the Limit Test.

(b)
$$\sum_{k=0}^{\infty} \frac{1}{4^k} (x+1)^{2k}$$

Proof: As with part (a), using the product rule gives $\frac{1}{4^k}(x+1)^{2k} = \left(\frac{x+1}{2}\right)^{2k}$. Because this is geometric, for the series to be convergent $\left|\frac{x+1}{2}\right|$ must be strictly less than 1. Therefore, the series converges for $x \in (-3,1)$ and is otherwise divergent.

(c)
$$\sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^k x^k$$

Proof: By algebra, $\left(1-\frac{1}{k}\right)^k x^k = \left(x-\frac{x}{k}\right)^k$. Since $\lim_{k\to\infty}\left(x-\frac{x}{k}\right)=x$, then $\lim_{k\to\infty}\left(x-\frac{x}{k}\right)^k\neq 0$ if $x\geqslant 1$ and the series is divergent. Given that $\left|x-\frac{x}{k}\right|^k\leqslant |x|^k$ for all $k\in\mathbb{N}$, and $\sum_{k=1}^\infty x^k<\infty$ for all $x\in(-1,1)$, the series $\sum_{k=1}^\infty\left(1-\frac{1}{k}\right)^kx^k$ is uniformly convergent on $x\in(-1,1)$ by the Weierstrass M-test.

- **Problem 30** Show that $|\sqrt[3]{1+x} (1 + \frac{1}{3}x \frac{1}{9}x^2)| < \frac{5}{81}x^3$ for all x > 0, and approximate $\sqrt[3]{1.2}$ and $\sqrt[3]{2}$.
 - **Proof:** Let $f(x) = \sqrt[3]{1+x}$. Then the n^{th} -order Taylor Polynomial at 0 is $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x-0)^k$. Thus, $T_2(f,0)(x) = 1 + \frac{x}{3} \frac{x^2}{9}$ with the remainder $R_2(f,0)(x) = \frac{f^{(3)}(\xi)}{3!} x^3 = \frac{5x^3}{81(1+\xi)^{\frac{8}{3}}} < \frac{5}{81} x^3$ for all $\xi \in (0,\infty)$. From $f(x) = T_2(f,0)(x) + R_2(f,0)(x)$ we have that $f T_2 = R_2 < \frac{5}{81} x^3$.
 - 1. $\sqrt[3]{1.2} \approx 1.24$ with an error less than 0.1067
 - 2. $\sqrt[3]{2} \approx 1.22$ with an error less than 0.4938

Problem 31 Determine all values of $p \in \mathbb{R}$ such that the given sequence in l^2

(a)
$$\{p^k\}_{k=1}^{\infty}$$
 for $p \in (-1,1)$

- **Proof:** $\{p^k\}_{k=1}^{\infty} \in l^2 \text{ if and only if } \sum_{k=1}^{\infty} p^{2k} < \infty.$ Since this is a geometric series, it converges when $p^2 \in (-1,1)$, which is equivalent to $p \in (-1,1)$.
 - (a) $\left\{\frac{k^p}{p^k}\right\}_{k=1}^{\infty}$ for $p \in (-\infty, -1] \cup (1, \infty)$
- **Proof:** $\left\{\frac{k^p}{p^k}\right\}_{k=1}^{\infty} \in l^2$ if and only if $\sum_{k=1}^{\infty} \left(\frac{k^p}{p^k}\right)^2 = \sum_{k=1}^{\infty} \frac{k^{2p}}{p^{2k}} < \infty$. Using the Ratio Test yields $\lim_{k \to \infty} \left(\frac{(k+1)^{2p}}{p^{2(k+1)}}\right) \left(\frac{p^{2k}}{k^{2p}}\right) = \frac{1}{p^2}$, so the series converges when |p| > 1. Adding in the special case where p = -1 and $\sum_{k=1}^{\infty} \frac{k^{2p}}{p^{2k}} = \sum_{k=1}^{\infty} \frac{1}{k^2}$, the sequence is in l^2 when $p \in (-\infty, -1] \cup (1, \infty)$

Problem 32 For each $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, define $||\vec{x}|| = \max\{|x_1|, |x_2|, \dots, |x_n|\}$. Prove $||\cdot||$ satisfies the a norm on \mathbb{R}^n .

(a) $||\vec{x}|| \ge 0$ for all $\vec{x} \in \mathbb{R}^n$.

Proof: For all i, $|x_i| \ge 0$ and by definition $||\vec{x}|| \ge |x_i|$, so $||\vec{x}|| \ge 0$.

(b) $||\vec{x}|| = 0$ if and only if $\vec{x} = \vec{0}$.

Proof: $||\vec{x}|| = 0 \Leftrightarrow \text{ for all } i, |x_i| \leq 0, \text{ so } |x_i| = 0 \text{ and } \vec{x} = \vec{0}.$

(c) $||c \cdot \vec{x}|| = |c| \cdot ||\vec{x}||$ for all $c \in \mathbb{R}$ and all $\vec{x} \in \mathbb{R}^n$.

Proof: $||c \cdot \vec{x}|| = ||(cx_1, cx_2, \dots, cx)|| = \max\{|cx_1|, |cx_2|, \dots, |cx_n|\} = |cx_i| = |c| \cdot ||\vec{x}||$

(d) $||\vec{x} + \vec{y}|| \leq ||\vec{x}|| + ||\vec{y}||$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$

Proof: $||\vec{x} + \vec{y}|| = |x_i + y_i| \le |x_i| + |y_i| \le ||\vec{x}|| + ||\vec{y}||$ since $|x_i| \le ||\vec{x}||$ and $|y_i| \le ||\vec{y}||$.

Problem 33 Let $(X, ||\cdot||)$ be a normed linear space.

(a) A sequence $\{\vec{x_n}\}_{n=1}^{\infty}$ of vectors converges to $\vec{x} \in X$ if for all $\epsilon > 0$, there exists $n_{\circ} \in \mathbb{N}$ and $m > n_{\circ}$ such that $||\vec{x_m} - \vec{x}|| < \epsilon$. A sequence $\{\vec{x_n}\}_{n=1}^{\infty}$ of vectors is Cauchy if for all $\epsilon > 0$, there exists $n_{\circ} \in \mathbb{N}$ and $m, n > n_{\circ}$ such that $||\vec{x_m} - \vec{x_n}|| < \epsilon$.

(b) If a sequence $\{\vec{x_n}\}_{n=1}^{\infty}$ of vectors converges to $\vec{x} \in X$, then it is Cauchy.

Proof: Let $\{\vec{x_n}\}_{n=1}^{\infty}$ sequence of vectors that converges to $\vec{x} \in X$. Then there exists $\epsilon > 0$ and $n_{\circ} \in N$ such that for all $n_1, n_2 > n_{\circ}$, $||\vec{x_{n_1}} - \vec{x}|| < \frac{\epsilon}{2}$ and $||\vec{x_{n_2}} - \vec{x}|| < \frac{\epsilon}{2}$. This gives $||\vec{x_{n_1}} - \vec{x}|| + ||\vec{x_{n_2}} - \vec{x}|| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$. Since $||\vec{x_{n_2}} - \vec{x}|| = |-1| \cdot ||\vec{x} - \vec{x_{n_2}}||$, we have $\epsilon > ||\vec{x_{n_1}} - \vec{x}|| + ||\vec{x} - \vec{x_{n_2}}|| \ge ||\vec{x_{n_1}} - \vec{x_{n_2}}||$

Problem 34 For each $n \in \mathbb{N}$, let $\vec{e_n}$ be the sequence in l^2 defined such that

$$\vec{e_n}(k) = \begin{cases} 0 & \text{if } k \neq n \\ 1 & \text{if } k = n \end{cases}$$

Show that the Bolzano-Weierstrass theorem fails in l^2

Proof: Let bounded in l^2 be defined as $||\vec{x_n}||_2 \leq c$ for some $c \geq 0$ and all $n \in \mathbb{N}$. By this definition of bounded, since $||\vec{e_n}||_2 = 1$ for all n then $\{\vec{e_n}\}$ is bounded and monotone.

Let $\epsilon = \sqrt{2}$ and $n_o \in \mathbb{N}$ with $n_o < n < m$, then $||\vec{e_n} - \vec{e_m}||_2 = \sqrt{0+0+\cdots+1+\cdots+1+\cdots+0} = \sqrt{2} = \epsilon$. Thus the sequence $\{\vec{e_n}\}$ is not Cauchy and therefore does not converge. Because it this sequence is both bounded and monotone, but not convergent, the Bolzano-Weierstrass Theorem does not hold true in l^2 .