Esercitazione Algebra lineare

Marco Gattulli

ESERCIZIO 1. Sia $v = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \in \mathbb{C}^3$. Si determini, se esiste, una trasformazione lineare $f: \mathbb{C}^3 \to \mathbb{C}^3$ tale che sia $Im(f) = \langle v \rangle$ e $N(f) = V_0$ nei seguenti due casi pe V_0 :

$$(a)\ V_0 = \langle \begin{bmatrix} i & -1 & 0 \end{bmatrix}^T \quad \begin{bmatrix} 2 & 0 & i \end{bmatrix}^T \quad \begin{bmatrix} 3 & i & i \end{bmatrix}^T \rangle$$

(b)
$$V_0 = \langle \begin{bmatrix} i & -1 & 0 \end{bmatrix}^T \rangle$$

SVOLGIMENTO.

(a) Innanzitutto bisogna rispettare il teorema nullità più rango che nella fattispecie è:

$$\dim \mathbb{C}^3 = \dim \operatorname{Im}(f) + \dim N(f)$$
$$\dim \mathbb{C}^3 = \dim \langle v \rangle + \dim V_0$$
$$3 = 1 + \dim V_0$$

Quindi V_0 deve avere per forza dimensione 2.

Per tale motivo ci accorgiamo subito che al punto (b) l'applicazione lineare non esiste essendo dim $V_0 = 1$. Quindi ha senso risolvere solo il punto (a).

Calcoliamo la dimensione di V_0 mettendo i suoi vettori generatori in una matrice e applichiamo ad essa l'Eliminazione di Gauss per vedere quali sono linearmente indipendenti:

$$\begin{bmatrix} i & 2 & 3 \\ -1 & 0 & i \\ 0 & i & i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2i & -3i \\ 0 & -2i & -2i \\ 0 & i & i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2i & -3i \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Quindi, avendo due colonne dominanti, capiamo che i primi due vettori di V_0 sono linearmente indipendenti e che formano una base per V_0 :

$$V_0 = \langle \begin{bmatrix} i \\ -1 \\ 0 \end{bmatrix}^T \begin{bmatrix} 2 \\ 0 \\ i \end{bmatrix}^T \rangle$$

Dunque dim $V_0 = 2$. Ricordando che

PROPOSIZIONE 1. Se $\mathscr{B} = \{v_1, \ldots, v_n\}$ è una base dello spazio vettoriale V e $\{w_1, \ldots, w_n\}$ un insieme di vettori nello spazio vettoriale W, allora esiste una e una sola applicazione lineare $f: V \to W$ tale che $f(v_i) = w_i$ con $i = 1, \ldots, n$.

1

Basta definire l'applicazione f in questo modo: mandiamo i due vettori di V_0 nel vettore nullo e dobbiamo definire un'altro vettore da mandare in v, questo vettore, insieme a quelli di V_0 deve formare una base per \mathbb{C}^3 . vediamo se proprio v è linearmente indipendente dai vettori che generano V_0 : mettiamoli tutti e tre in una matrice e applichiamo l'Eliminazione di Gauss:

$$\begin{bmatrix} i & 2 & 1 \\ -1 & 0 & 1 \\ 0 & i & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2i & -i \\ 0 & -2i & 1-i \\ 0 & i & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2i & -i \\ 0 & 1 & \frac{1}{2} - \frac{1}{2}i \\ 0 & 0 & \frac{3}{2} + \frac{1}{2}i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2i & -i \\ 0 & 1 & \frac{1}{2} - \frac{1}{2}i \\ 0 & 0 & 1 \end{bmatrix}$$

Quindi v e i due vettori di base di V_0 formano una base di \mathbb{C}^3 . Definiamo allora l'applicazione lineare $f: \mathbb{C}^3 \to \mathbb{C}^3$ in questo modo:

$$f\left(\begin{bmatrix} i\\ -1\\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix};$$

$$f\left(\begin{bmatrix} 2\\ 0\\ i \end{bmatrix}\right) = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix};$$

$$f\left(\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix};$$

In questo modo abbiamo trovato l'applicazione lineare che cercavamo e abbiamo finito l'esercizio.

Spieghiamo meglio quello che abbiamo fatto: cercavamo un'applicazione lineare $f: \mathbb{C}^3 \to \mathbb{C}^3$ tale che avesse come spazio delle immagini lo spazio generato dal vettore v e spazio nullo V_0 .

Per la proposizione 1, ci bastava trovare una base di \mathbb{C}^3 e dire quali dovevano essere le loro immagini secondo f. Tale proposizione è fondamentale in questa parte del corso, perchè ci dice che quando dobbiamo definire un'applicazione lineare, basta dire come si comporta sugli elementi di base del dominio.

Notiamo (o comunque calcoliamo) che i vettori che generano V_0 e v stesso sono linearmente indipendenti, ed essendo tre vettori, formano una base di \mathbb{C}^3 quindi dobbiamo dire chi sono le immagini di questi secondo f.

A questo punto siamo obbligati a mandare i due vettori di V_0 nel vettore nullo perchè i vettori di V_0 appartengono allo spazio nullo. Mentre v lo mandiamo in se stesso che sicuramente sta nello spazio delle immagini; potevamo mandarlo anche in un suo multiplo, ma per rendere tutto il più facile possibile mandiamolo in se stesso.

Abbiamo preso v per completare i vettori di V_0 ad una base di \mathbb{C}^3 perchè "era già lì", potevamo anche prendere un altro vettore linearmente indipendente con quelli di V_0 e poi dire che la f lo mandava in v.