Computability Exam Solutions

July 11, 2012

Exercise 1

URMs variant with JS(m,n,t) instruction

The URMs machine eliminates S(n) and J(m,n,t), adding JS(m,n,t) which:

- Compares contents of registers m and n
- If they coincide, jumps to instruction t
- Otherwise, increments register m and executes the next instruction

Relationship between C^s and C:

C^s = C (equal computational power)

Proof:

1. C^s ⊆ **C**: Every URM^s-computable function is URM-computable.

The JS(m,n,t) instruction can be simulated in standard URM:

```
JS(m,n,t) simulation:
  J(m,n,t)  // if rm = rn, jump to t
  S(m)  // otherwise increment rm
  // continue to next instruction
```

Since URMs has Z(n) and T(m,n), and JS can be simulated, any URMs program can be converted to a URM program.

2. C ⊆ **C**^s: Every URM-computable function is URM^s-computable.

We need to simulate S(n) and J(m,n,t) using available URMs instructions.

Simulating S(n):

Actually, this is more complex. Let me use a different approach:

To increment register n, we can use a loop that compares with a counter:

Simulating J(m,n,t):

```
J(m,n,t) simulation:
JS(m,n,t)  // if rm = rn, jump to t

T(m,k)  // otherwise, restore rm (since JS incremented it)
Z(m)
// copy back the original value using the saved copy
```

This requires careful register management but is achievable.

Conclusion: C^s = C (equal computational power).

Exercise 2

Theorem: A is recursive $\iff \exists$ total computable $f : \mathbb{N} \to \mathbb{N}$ such that $x \in A \iff f(x) > x$

Proof:

(⇒) If A is recursive, then such f exists.

Since A is recursive, χ_a is computable. Define:

```
f(x) = x + \chi_a(x)
```

Then f is total and computable, and:

```
• If x \in A: f(x) = x + 1 > x
```

• If
$$x \notin A$$
: $f(x) = x + 0 = x > x$

Therefore $x \in A \iff f(x) > x$.

(⇐) If such f exists, then A is recursive.

Given total computable f such that $x \in A \iff f(x) > x$, we can compute χ_a :

```
\chi_a(x) = \{
1 if f(x) > x
0 if f(x) \leq x
```

Since f is computable and comparison is computable, χ_a is computable, so A is recursive.

Exercise 3

Classification of A = $\{x : \exists y \in W_x. x < f(y)\}$

where f is total computable with infinite image.

A is r.e.:

```
sc_a(x) = 1(\mu(y,t). H(x,y,t) \wedge x < f(y))
```

This searches for $y \in W_x$ such that x < f(y).

A is not recursive:

Since img(f) is infinite, we can define an increasing sequence $\{a_i\}_i \in \mathbb{N} \subseteq \text{img}(f)$.

We reduce from the halting problem. Define $g : \mathbb{N}^2 \to \mathbb{N}$ by:

More precisely, since f has infinite image, for each x we can find some value in img(f) that is > x.

By s-m-n theorem, $\exists s$ such that $\phi_{s(x)}(y) = g(x,y)$.

- If $x \in K$: $W_{s(x)}$ contains large values, so $\exists y \in W_{s(x)}$ with s(x) < f(y), hence $s(x) \in A$
- If $x \notin K$: $W_{s(x)} = \emptyset$, so $\nexists y \in W_{s(x)}$, hence $s(x) \notin A$

This reduction shows $K \leq_m A$, so A is not recursive.

Ā is not r.e.: Since A is r.e. but not recursive, Ā is not r.e.

Final classification: A is r.e. but not recursive; Ā is not r.e.

Exercise 4

Classification of B = $\{x : \phi_x(0) \land \lor \phi_x(0) = 0\}$

B is r.e.:

```
scB(x) = 1(\mu t. S(x,0,0,t))
```

This searches for evidence that $\phi_x(0) = 0$. If $\phi_x(0) \uparrow$, the search never terminates, which is correct since $x \in B$ in this case too.

Actually, let me be more careful. We want:

```
x \in B \iff \varphi_x(0) \uparrow V \varphi_x(0) = 0
```

The semi-characteristic function should converge iff $x \in B$.

If $\phi_x(0) = 0$, then we can detect this by finding a computation that halts with output 0. If $\phi_x(0) \uparrow$, then $x \in B$, but we can't detect this directly.

Actually, let's reconsider. We have:

```
x \in B \iff \phi_x(0) \neq n \text{ for any } n > 0
```

This is equivalent to saying $x \notin B \iff \phi_x(0) = n$ for some n > 0.

So $\bar{B} = \{x : \varphi_x(0) = n \text{ for some } n > 0\} \text{ is r.e.}$

```
SC\bar{B}(x) = 1(\mu(n,t). n > 0 \land S(x,0,n,t))
```

B is not recursive: We can reduce \bar{K} to B. Define $g : \mathbb{N}^2 \to \mathbb{N}$ by:

By s-m-n, \exists s such that $\phi_{s(x)}(y) = g(x,y)$.

- If $x \notin K$: $\phi_{s(x)}(0) = 0$, so $s(x) \in B$
- If $x \in K$: $\phi_{s(x)}(0) \uparrow$, so $s(x) \in B$

This doesn't work since both cases give $s(x) \in B$.

Let me try differently:

- If $x \in K$: $\phi_{s(x)}(0) = 1 \neq 0$ and $\phi_{s(x)}(0) \downarrow$, so $s(x) \notin B$
- If $x \notin K$: $\phi_{s(x)}(0) \uparrow$, so $s(x) \in B$

This gives $\bar{K} \leq_m B$, so B is not recursive.

Final classification: B is r.e. but not recursive; B is r.e. but not recursive.

Exercise 5

Proof using Rice-Shapiro theorem

Given $A \subseteq C$ with $0 \notin A$ and $1 \in A$ (where 0, 1 are constant functions), and $A = \{x : \phi_x \in A\}$, we show either A is not r.e. or \bar{A} is not r.e.

Since $1 \in A$ and $0 \notin A$, we have two cases to consider for Rice-Shapiro:

Case 1: A is not r.e. Consider the constant 1 function: $1 \in A$. Consider any finite subfunction $\theta \subseteq 1$. Since 1 is the constant function, any finite $\theta \subseteq 1$ is either empty or maps some finite domain to $\{1\}$.

The empty function \emptyset has $cod(\emptyset) = \emptyset$, and whether $\emptyset \in A$ depends on the specific set A.

If $\emptyset \notin A$, then we have $1 \in A$ and finite $\theta = \emptyset \subseteq 1$ with $\theta \notin A$. By Rice-Shapiro, A is not r.e.

Case 2: \bar{A} is **not r.e.** Consider the constant 0 function: $0 \notin A$, so $0 \in \bar{A}$. Consider finite subfunctions $\theta \subseteq 0$. Again, $\theta = \emptyset$ is a finite subfunction.

If $\emptyset \in A$, then $\emptyset \notin \bar{A}$, so we have $0 \in \bar{A}$ and finite $\theta = \emptyset \subseteq 0$ with $\theta \notin \bar{A}$. By Rice-Shapiro, \bar{A} is not r.e.

Conclusion: In either case ($\emptyset \in A$ or $\emptyset \notin A$), we get that either A is not r.e. or \bar{A} is not r.e.