Attention is all you need

Author: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., ... & Polosukhin, I...

Publish: Advances in Neural Information Processing Systems

Pp: 5998 - 6008.

Presenter: WENWEI KANG

Introduction

• Encoder - Decoder

Mechanism

Evaluation

Introduction

Neural Machine Translation(NMT):

- Statistical based: Phrase-based + large LM (Moses)
- NN based: Encoder Decoder (Seq2seq, ConvS2S, ensemble ...)

Encoder - Decoder (1/2)

Encoder - Decoder (1/2)

$$c = a_1 E_1 + a_2 E_2 + a_3 E_3 + \dots + a_n E_n$$
Value

Mechanism(2/9)

Positional Encoding

Embedding

Mechanism(4/9)

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Multi-heads attention

Scale

MatMul

Scaled Dot-Product Attention

Divided by $\sqrt{d_k}$

 $\in \mathbb{R}^{n \times n}$

Self-attention

Mechanism(5/9)

Mechanism(6/9)

Mechanism(7/9)

Mechanism(9/9)

Evaluation(1/5)

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

n: Sequence length

d: representation dimension(d_{model})

k: kernel size of convolutions

r: size of the neighborhood in restricted self attention

Why Self-Attention

- 1. The total computational complexity per layer.
- 2. The amount of computation that can be parallelized.
- 3. The path length between long-range dependencies.

Evaluation(2/5)

Hardware and Schedule

- 8 Nvidia P100 GPUS.
- 6 layers.
- Base model: training 100,000 steps(12 hours), 0.4 seconds per steps.
- **Big model:** training 300,000 steps(3.5 days), 1.0 seconds per steps.

Optimizer

- Adam with $\beta_1 = 0.9$, $\beta_2 = 0.98$, $\epsilon = 10^{-9}$
- Learning rate $lrate = d_{model}^{-0.5} \cdot min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$ $warmup_steps = 4000$

Regularization

- Apply **dropout** to the output of each sub-layer, before it is added to the sub-layer input and normalized.
- Apply **dropout** to the sum of the embeddings and the positional encodings.
- Residual connection
- Label smoothing

$$q'(y|x) = (1 - \epsilon) \cdot q(y|x) + \frac{\epsilon}{K}$$
, K is target vocabulary size

Dataset

- Training set: WMT'14 English German: 4.5M sentence pairs.
- Training set: WMT'14 English French: 36M sentence pairs.
- Sentence pairs were batched together by approximate sequence length.
- Testing set: newstest2014.

Evaluation(3/5)

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	Р,	61	train	PPL	BLEU	params
	<i>1</i> v	amodel	a_{ff}	16	α_k	a_v	P_{drop} ϵ_{ls}	ϵ_{ls}	steps	(dev)	(dev)	$\times 10^6$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids						4.92	25.7				
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Evaluation(4/5)

Madal	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}		
Transformer (big)	28.4	41.8	2.3 ·	10^{19}		

- ByteNet: 2 convolution layers
- **Deep-Att** + **PosUnk:** 2 Bi-LSTM layers(Encoder) + 1 LSTM layer (Decoder)
- **GNMT** + **RL**: 7 LSTM layers + 1 Bi-LSTM layer(Encoder) + 8 LSTM layers(Decoder)
- Transformer(base): training 100,000 steps(12 hours), 0.4 seconds per steps
- Transformer(big): training 300,000 steps(3.5 days), 1.0 seconds per steps

Evaluation(5/5)

Encoder Input Embedding + scaled($\sqrt{d_{model}}$) **Positional Encoding** Dropout (rate=0.1) Multi-head Dense Dense Dense Split Split Split head head head Matmul Scaled $(\sqrt{d_k})$ Softmax Dropout (rate=0.1) Matmul

Attention

Masked Multi-head Attention

Residual Connection

Residual connection:
$$\frac{\partial C}{\partial z_1} = \frac{\partial C}{\partial a_3} \frac{\partial a_3}{\partial z_3} \frac{\partial a_2}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial a_1}{\partial a_1} \frac{\partial a_1}{\partial z_1}$$

$$= \frac{\partial C}{\partial a_3} [\sigma'(z_3) + \frac{1}{w_3}] w_3 [\sigma'(z_2) + \frac{1}{w_2}] w_2 [\sigma'(z_1) + \frac{1}{w_1}]$$

$$= \frac{\partial C}{\partial a_3} [w_3 \sigma'(z_3) + 1] [w_2 \sigma'(z_2) + 1] [\sigma'(z_1) + \frac{1}{w_1}]$$

$$\geqslant 1$$