Deep Generative Models: Hidden Markov Models

Fall Semester 2025

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),
Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Taxonomy of Generative Models

Hidden Markov Models (Pictorial Definition)

Latent Variable Models

- Z: Latent variable
- *X*: Observation

Read it: X depends on Z

Example: Speech Recognition

Goal: Given observations (audio), discover the hidden states (words)

State Space and Observation Space

- In Markov models, we had state space Ω with K different states
 - So we labeled them as $\Omega = \{1, ..., K\}$ without loss of generality
- In HMMs, we need to distinguish state space Ω and observation space Σ
 - So we define:

```
State Space \Omega = \{\omega_1, ..., \omega_K\}:
Each Z_t takes values in \Omega
```

Observation Space $\Sigma = \{\sigma_1, ..., \sigma_V\}$: Each X_t takes values in Σ

- But in words we might say:
 - "state i" for ω_i (simpler than saying "state omega i")
 - "observation j" for σ_j (simpler than saying "observation sigma j")

Formal Definition of Hidden Markov Models

State Space $\Omega = \{\omega_1, \dots, \omega_K\}$: Each Z_t takes values in Ω

Observation Space $\Sigma = \{\sigma_1, ..., \sigma_V\}$: Each X_t takes values in Σ

- Initial Probability: $\pi_i = \mathbb{P}(Z_0 = \omega_i), i = 1, ..., K$.
- Transition Probability: $a_{ij} \coloneqq \mathbb{P}(Z_t = \omega_i \mid Z_{t-1} = \omega_i), i, j = 1, ... K.$
- Emission Probability: $c_{jr}\coloneqq \mathbb{P}(X_t=\sigma_r\mid Z_t=\omega_j), j=1,\ldots,K, r=1,\ldots,V.$

Matrix Notation: Transition Matrix $A \in \mathbb{R}^{K \times K}$, Emission Matrix $C \in \mathbb{R}^{K \times V}$, Initial distribution $\pi \in \mathbb{R}^K$

A hidden Markov model is fully specified by its parameters $\theta := (\pi, A, C)$

Notations

• Studying HMMs need a lot of notations. We review some of them here and spell out the convention that we follow

•
$$\mathbf{x} := [x_0, \dots, x_T]^{\mathsf{T}}$$
 and similarly for $\mathbf{z} := [z_0, \dots, z_T]^{\mathsf{T}}$

•
$$n$$
-th observation $\boldsymbol{x}^{(n)} := \left[x_0^{(n)}, \dots, x_T^{(n)}\right]^{\top}$

- $\mathbb{P}(Z_0=z_0,Z_1=z_1)$: probability that $Z_0=z_0$ and $Z_1=z_1$
 - We might write $p(z_0, z_1)$ or $\mathbb{P}(z_0, Z_1 = z_1)$ for $\mathbb{P}(Z_0 = z_0, Z_1 = z_1)$ when there is no confusion
 - $\mathbb{P}_{\theta}(Z_0 = z_0, Z_1 = z_1)$ or $p_{\theta}(z_0, z_1)$ means the underlying probability distribution is parameterized by θ

Assumptions

"Markov" Property:

$$p_{\theta}(z_t \mid z_0, ..., z_{t-1}) = p_{\theta}(z_t \mid z_{t-1})$$

Output Independence Assumption:

$$p_{\theta}(x_t \mid z_0, ..., z_T, x_0, ..., x_{t-1}) = p_{\theta}(x_t \mid z_t)$$

Consequences

- Emission Probability Factorization (proof: factorize w.r.t. $x_0, ..., x_T$):
 - $p_{\theta}(x_0, ..., x_T \mid z_0, ..., z_T) = \prod_{t=0}^T p_{\theta}(x_t \mid z_t)$
- Transition Probability Factorization (proof: factorize w.r.t. z_0, \dots, z_T):
 - $p_{\theta}(z_0, ..., z_T) = p_{\theta}(z_0) \prod_{t=1}^T p_{\theta}(z_t \mid z_{t-1})$
- Joint Probability Factorization (proof: use the above factorizations):

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x} \mid \mathbf{z}) \cdot p_{\theta}(\mathbf{z}) = \prod_{t=0}^{T} p_{\theta}(x_{t} \mid z_{t}) \ p_{\theta}(z_{0}) \prod_{t=1}^{T} p_{\theta}(z_{t} \mid z_{t-1})$$

Inference, Decoding, and Learning

- Inference. Given θ , compute the likelihood $p_{\theta}(x)$ of observing x
- Decoding. Given observation x and parameters θ , find best states:

$$\mathbf{z}^* \in \underset{\mathbf{z}}{\operatorname{argmax}} p_{\theta}(\mathbf{z} \mid \mathbf{x}) = \underset{\mathbf{z}}{\operatorname{argmax}} p_{\theta}(\mathbf{x}, \mathbf{z}) / p_{\theta}(\mathbf{x}) = \underset{\mathbf{z}}{\operatorname{argmax}} p_{\theta}(\mathbf{x}, \mathbf{z})$$

• Learning. Given N observations $\{x^{(n)}\}_{n=1}^N$, find best θ :

$$\max_{\theta} \prod_{n=1}^{N} p_{\theta}(\boldsymbol{x}^{(n)})$$

- Example (Speech Recognition):
 - During training, we learn an HMM (i.e., parameter θ) from audio data $x^{(1)}$, ..., $x^{(N)}$
 - At test time, we get an audio x. We need to use θ and decode x into words z^* (states)

Decoding and Inference via "Brute-Force"

Exponential Time Complexity: $O(K^{T+1})$

• Inference. Given θ , x, compute $p_{\theta}(x)$:

$$p_{\theta}(\mathbf{x}) = \sum_{\mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} \prod_{t=0}^{T} p_{\theta}(x_t \mid z_t) \ p_{\theta}(z_0) \prod_{t=1}^{T} p_{\theta}(z_t \mid z_{t-1})$$

• Decoding. Given θ , x, compute:

$$\mathbf{z}^* \in \operatorname*{argmax} p_{\theta}(\mathbf{x}, \mathbf{z})$$

- 1. For all possible states z, compute the likelihood $p_{\theta}(x, z)$
- 2. Output the state that gives the maximum likelihood

State Space $\Omega = \{\omega_1, ..., \omega_K\}$: Each Z_t takes values in Ω

- Inference. Given θ , x, compute $p_{\theta}(x)$
- If T=0, then $p_{\theta}(\textbf{\textit{x}})=\sum_{z_0}p_{\theta}(x_0,z_0)=\sum_{z_0}p_{\theta}(x_0\mid z_0)\cdot p_{\theta}(z_0)$
 - This is a sum of K terms, so we can compute $p_{\theta}(x)$ in O(K) time
- If T=1, then $p_{\theta}(x)=\sum_{z_0}\sum_{z_1}p_{\theta}(x_0,x_1,z_0,z_1)$
 - Update $p_{\theta}(x_0, x_1, z_1)$ from $p_{\theta}(x_0, z_0)$:

$$p_{\theta}(x_0, x_1, z_1) = \sum_{z_0} p_{\theta}(x_0, x_1, z_1 \mid z_0) \cdot p_{\theta}(z_0)$$

$$= \sum_{z_0} p_{\theta}(x_1 \mid z_1) \cdot p_{\theta}(x_0 \mid z_0) \cdot p_{\theta}(z_0) \cdot p_{\theta}(z_1 \mid z_0)$$

$$= p_{\theta}(x_1 \mid z_1) \cdot \sum_{z_0} p_{\theta}(x_0, z_0) \cdot p_{\theta}(z_1 \mid z_0)$$

• We can compute $p_{\theta}(x)$ in $O(K^2)$ time (need to sum over all possible z_1 and z_0) Intuition. More generally, can we update $p_{\theta}(x_0, ..., x_t, z_t)$ from $p_{\theta}(x_0, ..., x_{t-1}, z_{t-1})$? If so, then we might be able to derive a faster algorithm for inference.

• Inference. Given θ , x, compute $p_{\theta}(x)$

Intuition. More generally, can we update $p_{\theta}(x_0, ..., x_t, z_t)$ from $p_{\theta}(x_0, ..., x_{t-1}, z_{t-1})$? If so, then we might be able to derive a faster algorithm for inference.

Forward Probability:

$$\alpha_j(t) \coloneqq \mathbb{P}_{\theta}(x_0, ..., x_t, Z_t = \omega_j)$$

• By definition, we have

$$p_{\theta}(x_0, ..., x_T) = \sum_{j=1}^K \mathbb{P}_{\theta}(x_0, ..., x_T, Z_T = \omega_j) = \sum_{j=1}^K \alpha_j(T)$$

• It remains to derive an update formula for $\alpha_i(t)$ for t=0,...,T

Formalize the Intuition

State Space $\Omega = \{\omega_1, ..., \omega_K\}$: Each Z_t takes values in Ω

$$c_j(x_t) \coloneqq \mathbb{P}_{\theta}\big(x_t \big| Z_t = \omega_j\big)$$

- Inference. Given θ , x, compute $p_{\theta}(x)$
- Forward Probability:

$$\alpha_j(t) \coloneqq \mathbb{P}_{\theta}(x_0, ..., x_t, Z_t = \omega_j)$$

Recurrence Relation:

$$\alpha_{j}(t) = \mathbb{P}_{\theta}(x_{t} \mid x_{0}, ..., x_{t-1}, Z_{t} = \omega_{j}) \cdot \mathbb{P}_{\theta}(x_{0}, ..., x_{t-1}, Z_{t} = \omega_{j})$$

$$= \mathbb{P}_{\theta}(x_{t} \mid Z_{t} = \omega_{j}) \sum_{i=1,...,K} \mathbb{P}_{\theta}(x_{0}, ..., x_{t-1}, Z_{t} = \omega_{j}, Z_{t-1} = \omega_{i})$$

$$= c_{j}(x_{t}) \sum_{i=1}^{K} \mathbb{P}_{\theta}(x_{0}, ..., x_{t-1}, Z_{t-1} = \omega_{i}) \cdot \mathbb{P}_{\theta}(Z_{t} = \omega_{j} \mid x_{0}, ..., x_{t-1}, Z_{t-1} = \omega_{i})$$

$$= c_{j}(x_{t}) \sum_{i=1}^{K} \alpha_{i}(t-1) \cdot \alpha_{ij}$$

Faster Algorithm for Inference

State Space $\Omega = \{\omega_1, ..., \omega_K\}$: Each Z_t takes values in Ω

Each
$$Z_t$$
 takes values in Ω

$$c_j(x_t) \coloneqq \mathbb{P}_{\theta}\big(x_t \big| Z_t = \omega_j\big)$$

Time Complexity: $O(TK^2)$

- Inference. Given θ , x, compute $p_{\theta}(x)$
- Forward Probability: $\alpha_i(t) \coloneqq \mathbb{P}_{\theta}(x_0, ..., x_t, Z_t = \omega_i)$
- Recurrence Relation: $\alpha_i(t) = c_i(x_t) \sum_{i=1}^K \alpha_i(t-1) \cdot a_{ij}$

- Algorithm:
 - Initialization: $\alpha_j(0) = \pi_j \cdot c_j(x_0)$

$$\forall j = 1, ..., K$$

• Recursion: $\alpha_j(t) = c_j(x_t) \sum_{i=1}^K \alpha_i(t-1) \cdot a_{ij}$

$$\forall j = 1, ..., K, \forall t = 1, ..., T$$

• Termination: Output $\sum_{j=1}^{K} \alpha_j(T)$

What About Decoding?

• Decoding. Given θ , x, compute:

$$z^* \in \underset{z}{\operatorname{argmax}} p_{\theta}(x, z)$$

• We know how to decode in $O(K^{T+1})$ time

- Can we do it in $O(TK^2)$ time (similarly to inference)?
 - During inference, we need to calculate $\sum_{\mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z})$
- Two differences from inference:
 - Need to calculate the maximum of $p_{\theta}(x, z)$ over z rather than sum
 - Need to find states z^* attaining the maximum

Inference Versus Decoding

State Space $\Omega = \{\omega_1, ..., \omega_K\}$: Each Z_t takes values in Ω

• Inference. Given θ , x, compute:

$$p_{\theta}(\mathbf{x}) = \sum_{\mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z})$$

• Decoding. Given θ , x, compute:

$$\mathbf{z}^* \in \operatorname*{argmax} p_{\theta}(\mathbf{x}, \mathbf{z})$$

Recurrence Term:

$$\alpha_j(t) \coloneqq \mathbb{P}_{\theta}(x_0, \dots, x_t, Z_t = \omega_j)$$

• Recurrence Term:

$$\nu_j(t) \coloneqq \max_{z_0,\dots,z_{t-1} \in \Omega} \mathbb{P}_{\theta}(x_0,\dots,x_t,z_0,\dots,z_{t-1},Z_t = \omega_j)$$

• Decomposition:

$$p_{\theta}(x_0, \dots, x_T) = \sum_{j=1}^K \alpha_j(T)$$

• Decomposition:

$$\max_{z_0, \dots, z_T \in \Omega} p_{\theta}(x_0, \dots, x_T, z_0, \dots, z_T) = \max_{j=1, \dots, K} \nu_j(T)$$

Recurrence Relation:

$$\alpha_j(t) = c_j(x_t) \cdot \sum_{i=1}^K \alpha_i(t-1) \cdot a_{ij}$$

Recurrence Relation: (proof omitted)

$$v_j(t) = c_j(x_t) \cdot \max_{i=1,\dots,K} v_i(t-1) \cdot a_{ij}$$

Intuition. For decoding, just replace sum of inference with max

• Summation over z_0, \dots, z_{t-1} is implicit in the definition of $\alpha_j(t)$, and $\nu_j(t)$ is indeed obtained by replacing sum with max

$$c_j(x_t) \coloneqq \mathbb{P}_{\theta}(x_t \mid Z_t = \omega_j)$$

• Inference. Given θ , x, compute:

$$p_{\theta}(\mathbf{x}) = \sum_{\mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z})$$

• Initialization:
$$(\forall j = 1, ..., K)$$

 $\alpha_j(0) = \pi_j \cdot c_j(x_0)$

• Recursion: $(\forall j = 1, ..., K, \forall t = 1, ..., T)$ $\alpha_j(t) = c_j(x_t) \cdot \sum_{i=1}^K \alpha_i(t-1) \cdot a_{ij}$

• Output:

optimal value =
$$\sum_{j=1}^{K} \alpha_j(T)$$

$$c_j(x_t) \coloneqq \mathbb{P}_{\theta}(x_t \mid Z_t = \omega_j)$$

• Decoding. Given θ , x, compute: $z^* \in \operatorname{argmax} p_{\theta}(x, z)$

• Initialization: $(\forall j = 1, ..., K)$ $v_i(0) = \pi_i \cdot c_i(x_0)$

• Recursion: $(\forall j = 1, ..., K, \forall t = 1, ..., T)$ $v_j(t) = c_j(x_t) \cdot \max_{i=1,...,K} v_i(t-1) \cdot a_{ij}$

Output:

optimal value =
$$\max_{j=1,...,K} v_j(T)$$

One more step needed: find z^* that attains the optimum Solution: "backtracking" (next page)

- Understanding Backtracking:
 - $i^*(T)$: optimal state index at time T
 - $prev_j(t)$: "optimal" state index at time t-1 to arrive at state j at time t
 - Question: What is $prev_{i^*(T)}(T)$?
 - Answer:
 - it is the optimal state index at time T-1
 - thus, we assign it to $i^*(T-1)$
 - Therefore $(\forall t = T, ..., 1)$: $i^*(t-1) = prev_{i^*(t)}(t)$

Algorithm (Viterbi)

• Initialization: $(\forall j = 1, ..., K)$

$$v_j(0) = \pi_j \cdot c_j(x_0)$$

- Recursion: $(\forall j = 1, ..., K, \forall t = 1, ..., T)$ $v_{j}(t) = c_{j}(x_{t}) \cdot \max_{i=1,...,K} \{v_{i}(t-1) \cdot a_{ij}\}$ $prev_{j}(t) = \underset{i=1,...,K}{\operatorname{argmax}} \{v_{i}(t-1) \cdot a_{ij}\}$
- Output:

optimal value =
$$\max_{j=1,...,K} v_j(T)$$

$$i^*(T) = \underset{j=1,\dots,K}{\operatorname{argmax}} v_j(T)$$

• Backtracking: $(\forall t = T, ..., 1)$ $i^*(t-1) = prev_{i^*(t)}(t)$

Inference, Decoding, and Learning

- Inference. Given θ , x, compute $p_{\theta}(x)$
- Decoding. Given θ , x, compute:

$$\mathbf{z}^* \in \operatorname*{argmax} p_{\theta}(\mathbf{x}, \mathbf{z})$$

• Learning. Given N observations $\{x^{(n)}\}_{n=1}^{N}$, find best θ :

$$\max_{\theta} \prod_{n=1}^{N} p_{\theta}(\boldsymbol{x}^{(n)})$$

- We've seen how to perform inference and decoding in $O(TK^2)$ time
 - sum vs. max, dynamic programming, backtracing
- We can perform learning via the EM algorithm
 - derivations are algebraically involved and are given at the end of the slides.

Conclusion

- We have studied HMMs
 - Inference, Decoding, and Learning
 - Viterbi algorithm for decoding

- Further Study: Probabilistic Graphical Models (PGMs)
 - Graph can model more complicated dependency:
 - nodes denote random variables
 - edges denote the dependency between random variables
 - HMMs are examples of PGMs
 - We can extend the notions of inference and learning for PGMs

Appendix (Optional)

• In the subsequent slides, we derive EM for learning the parameters of HMMs.

Learning Hidden Markov Models

$$\mathbf{x}^{(n)} \coloneqq \left(x_0^{(n)}, \dots, x_T^{(n)}\right)$$
 $\mathbf{z} \coloneqq \left(z_0, \dots, z_T\right)$

• Learning. Given N observations $\{x^{(n)}\}_{n=1}^{N}$, find best θ :

$$\max_{\theta} \prod_{n=1}^{N} p_{\theta}(\boldsymbol{x}^{(n)})$$

• EM Algorithm. Initialize θ^0 and alternate: (k= iteration counter)

- We next instantiate the EM algorithm based on the hidden Markov model
 - Caution: This involves multiple pages of derivations

EM for Mixture Models: A Basic Fact

To proceed, we recall a basic fact we've seen multiple times

Fact. Consider the following optimization problem:

$$p^* = \operatorname{argmax}_p \sum_{i=1}^K s_i \log(p_i)$$

subject to
$$p_1 + \dots + p_K = 1$$

This problem admits a closed-form solution for $p^* = [p_1^*, ..., p_K^*]$:

$$p_i^* = \frac{s_i}{\sum_{i=1}^K s_i}$$

• In the sequel, we will use this fact often. When we use it, we write (concisely):

Fact: $\sum_{i=1}^{K} s_i \log(p_i)$ is maximized at $p_i = s_i / (\sum_{i=1}^{K} s_i)$

Instantiate EM for HMMs

$$\mathbf{x}^{(n)} \coloneqq \left(x_0^{(n)}, \dots, x_T^{(n)}\right)$$
 $\mathbf{z} \coloneqq \left(z_0, \dots, z_T\right)$

$$\theta^{k+1} = \operatorname{argmax}_{\theta} \sum_{n=1}^{N} \sum_{\mathbf{z}} p_{\theta^{k}}(\mathbf{z} | \mathbf{x}^{(n)}) \cdot \log p_{\theta}(\mathbf{x}^{(n)}, \mathbf{z})$$

$$p_{\theta}(\mathbf{x}^{(n)}, \mathbf{z}) := \prod_{t=0}^{T} p_{C}(x_{t}^{(n)} | z_{t}) p_{\pi}(z_{0}) \prod_{t=1}^{T} p_{A}(z_{t} | z_{t-1})$$

$$(\pi^{k+1}, A^{k+1}, C^{k+1}) = \operatorname{argmax}_{\pi, A, C} \sum_{n=1}^{N} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \,|\, \mathbf{x}^{(n)}) \left(\log p_{\pi}(z_0) + \sum_{t=0}^{T} \log p_{C} \left(x_t^{(n)} \,|\, z_t \right) + \sum_{t=1}^{T} \log p_{A}(z_t | z_{t-1}) \right)$$

The objective function is separable

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{n=1}^{N} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0)$$

$$C^{k+1} = \operatorname{argmax}_{C} \sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)}) \log p_{C}\left(x_t^{(n)} \mid z_t\right)$$

$$A^{k+1} = \operatorname{argmax}_{A} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{\mathbf{z}} p_{\theta^{k}}(\mathbf{z} | \mathbf{x}^{(n)}) \log p_{A}(z_{t} | z_{t-1})$$

Instantiate EM for HMMs

$$\mathbf{x}^{(n)} \coloneqq \left(x_0^{(n)}, \dots, x_T^{(n)}\right)$$
 $\mathbf{z} \coloneqq \left(z_0, \dots, z_T\right)$

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{n=1}^{N} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0)$$

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{n=1}^{N} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0) \qquad C^{k+1} = \operatorname{argmax}_{C} \sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)}) \log p_{C}\left(x_t^{(n)} \mid z_t\right)$$

$$A^{k+1} = \operatorname{argmax}_{A} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{\mathbf{z}} p_{\theta^{k}}(\mathbf{z} | \mathbf{x}^{(n)}) \log p_{A}(z_{t} | z_{t-1})$$

Observation. The summation over z in the above can be simplified, e.g.,

- In the update of π^{k+1} ,
 - $\log p_{\pi}(z_0)$ depends only on z_0
 - $p_{Ak}(\mathbf{z} | \mathbf{x}^{(n)})$ depends on $\mathbf{z} \coloneqq (z_0, ..., z_T)$
- So we have

$$\sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \,|\, \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0) = \sum_{z_0, \dots, z_T} p_{\theta^k}(\mathbf{z} \,|\, \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0) = \sum_{z_0} p_{\theta^k}(\mathbf{z}_0 \,|\, \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0)$$

• Similarly we can simplify the updates of A^{k+1} and C^{k+1}

Instantiate EM for HMMs

$$\mathbf{x}^{(n)} \coloneqq \left(x_0^{(n)}, \dots, x_T^{(n)}\right)$$
 $\mathbf{z} \coloneqq \left(z_0, \dots, z_T\right)$

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{n=1}^{N} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0)$$

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{n=1}^{N} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0) \qquad C^{k+1} = \operatorname{argmax}_{C} \sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{\mathbf{z}} p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)}) \log p_{C}\left(x_t^{(n)} \mid z_t\right)$$

$$A^{k+1} = \operatorname{argmax}_{A} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{\mathbf{z}} p_{\theta^{k}}(\mathbf{z} | \mathbf{x}^{(n)}) \log p_{A}(z_{t} | z_{t-1})$$

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{n=1}^{N} \sum_{z_0} p_{\theta^k}(z_0 | \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0)$$

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{n=1}^{N} \sum_{z_0} p_{\theta^k}(z_0 \mid \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0) \qquad C^{k+1} = \operatorname{argmax}_{C} \sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{z_t} p_{\theta^k}(z_t \mid \mathbf{x}^{(n)}) \log p_{C} \left(x_t^{(n)} \mid z_t \right)$$

$$A^{k+1} = \operatorname{argmax}_{A} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{z_{t}, z_{t-1}} p_{\theta^{k}}(z_{t}, z_{t-1} | \boldsymbol{x}^{(n)}) \log p_{A}(z_{t} | z_{t-1})$$

We will next handle the update of π^{k+1} , A^{k+1} , and C^{k+1} in succession

State Space $\Omega = \{\omega_1, ..., \omega_K\}$:

Each Z_t takes values in Ω

 $\boldsymbol{x}^{(n)} \coloneqq \left(\boldsymbol{x}_0^{(n)}, \dots, \boldsymbol{x}_T^{(n)}\right)$

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{n=1}^{N} \sum_{z_0} p_{\theta^k}(z_0 | \mathbf{x}^{(n)}) \cdot \log p_{\pi}(z_0)$$

Rewrite the objective using the definition of π_i and add the constraints $\pi_1 + \cdots + \pi_K = 1$

$$\pi^{k+1} = \operatorname{argmax}_{\pi} \sum_{i=1}^{K} \sum_{i=1}^{K} \mathbb{P}_{\theta^k}(Z_0 = \omega_i \mid \boldsymbol{x}^{(n)}) \log(\pi_i) \quad \text{subject to} \quad \pi_1 + \dots + \pi_K = 1$$

Fact: $\sum_{i=1}^{K} s_i \log(p_i)$ is maximized at $p_i = s_i / (\sum_{i=1}^{K} s_i)$. But what is s_i ?

$$\pi_i^{k+1} = \frac{\sum_{n=1}^{N} \mathbb{P}_{\theta^k}(Z_0 = \omega_i \mid \boldsymbol{x}^{(n)})}{\sum_{n=1}^{N} \sum_{i=1}^{K} \mathbb{P}_{\theta^k}(Z_0 = \omega_i \mid \boldsymbol{x}^{(n)})} = \frac{\sum_{n=1}^{N} \mathbb{P}_{\theta^k}(Z_0 = \omega_i \mid \boldsymbol{x}^{(n)})}{N}, \qquad \forall i = 1, ..., K$$

Remark. We will calculate $\mathbb{P}_{\theta^k}(Z_0 = \omega_i \mid \boldsymbol{x}^{(n)})$ later

Updating A^{k+1}

State Space $\Omega = \{\omega_1, ..., \omega_K\}$:

Each Z_t takes values in Ω

 $\mathbf{x}^{(n)} \coloneqq \left(x_0^{(n)}, \dots, x_T^{(n)}\right)$

$$A^{k+1} = \operatorname{argmax}_{A} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{z_{t}, z_{t-1}} p_{\theta^{k}}(z_{t}, z_{t-1} | \boldsymbol{x}^{(n)}) \log p_{A}(z_{t} | z_{t-1})$$

Rewrite the objective using the definition of a_{ij} and add the constraints $\sum_{j=1}^{K} a_{ij} = 1 \ (\forall i)$

$$A^{k+1} = \operatorname{argmax}_{A} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{K} \sum_{i=1}^{K} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j}, Z_{t-1} = \omega_{i} | \mathbf{x}^{(n)}) \log a_{ij} \qquad \text{subject to } \sum_{j=1}^{K} a_{ij} = 1 \ (\forall i)$$

↓ The objective function and constraints are separable

$$(a_{i1}^{k+1}, \dots, a_{iK}^{k+1}) = \operatorname{argmax}_{A} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{K} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j}, Z_{t-1} = \omega_{i} | \mathbf{x}^{(n)}) \log a_{ij} \qquad \text{subject to } \sum_{j=1}^{K} a_{ij} = 1$$

Fact: $\sum_{j=1}^{K} s_j \log(p_j)$ is maximized at $p_j = s_j / (\sum_{j=1}^{K} s_j)$. But what is s_j ?

$$a_{ij}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j}, Z_{t-1} = \omega_{i} | \boldsymbol{x}^{(n)})}{\sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{K} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j}, Z_{t-1} = \omega_{i} | \boldsymbol{x}^{(n)})} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j}, Z_{t-1} = \omega_{i} | \boldsymbol{x}^{(n)})}{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{P}_{\theta^{k}} (Z_{t-1} = \omega_{i} | \boldsymbol{x}^{(n)})}$$
 (\forall i, j)

Remark. We will calculate $\mathbb{P}_{\theta^k}(Z_t = \omega_i, Z_{t-1} = \omega_i | \mathbf{x}^{(n)})$ and $\mathbb{P}_{\theta^k}(Z_{t-1} = \omega_i | \mathbf{x}^{(n)})$ later

Updating C^{k+1}

State Space $\Omega = \{\omega_1, ..., \omega_K\}$:

Each Z_t takes values in Ω

Observation Space $\Sigma = \{\sigma_1, ..., \sigma_V\}$:

Each
$$X_t$$
 takes values in Σ

$$C^{k+1} = \operatorname{argmax}_{C} \sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{z_{t}} \mathbb{P}_{\theta^{k}}(z_{t} | \boldsymbol{x}^{(n)}) \log p_{C}\left(\boldsymbol{x}_{t}^{(n)} \middle| z_{t}\right)$$

$$\mathbf{x}^{(n)} \coloneqq \left(x_0^{(n)}, \dots, x_T^{(n)}\right)$$

Rewrite the objective using the definition of b_{jr} , indicator function $\mathbb{I}(\cdot)$, and add the constraints $\sum_{r=1}^{V} c_{jr} = 1 \ (\forall j)$

$$C^{k+1} = \operatorname{argmax}_{C} \sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{j=1}^{K} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j} | \boldsymbol{x}^{(n)}) \log p_{C} \left(\boldsymbol{x}_{t}^{(n)} | Z_{t} = \omega_{j} \right)$$

$$= \operatorname{argmax}_{C} \sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{j=1}^{K} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j} | \boldsymbol{x}^{(n)}) \sum_{r=1}^{V} \mathbb{I} \left(\boldsymbol{x}_{t}^{(n)} = \sigma_{r} \right) \log c_{jr}$$
s.t. $\sum_{r=1}^{V} c_{jr} = 1 \ (\forall j)$

$$(c_{j1}^{k+1}, \dots, c_{jV}^{k+1}) = \operatorname{argmax}_{C} \sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{r=1}^{V} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j} \mid \mathbf{x}^{(n)}) \mathbb{I} \left(\mathbf{x}_{t}^{(n)} = \sigma_{r} \right) \log c_{jr} \quad \text{s.t. } \sum_{r=1}^{V} c_{jr} = 1$$

Fact: $\sum_{r=1}^{V} s_r \log(p_r)$ is maximized at $p_r = s_r / (\sum_{r=1}^{V} s_r)$. But what is s_r ?

$$c_{jr}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j} \mid \boldsymbol{x}^{(n)}) \mathbb{I} \left(\boldsymbol{x}_{t}^{(n)} = \sigma_{r} \right)}{\sum_{n=1}^{N} \sum_{t=0}^{T} \sum_{r=1}^{V} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j} \mid \boldsymbol{x}^{(n)}) \mathbb{I} \left(\boldsymbol{x}_{t}^{(n)} = \sigma_{r} \right)} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j} \mid \boldsymbol{x}^{(n)}) \mathbb{I} \left(\boldsymbol{x}_{t}^{(n)} = \sigma_{r} \right)}{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{P}_{\theta^{k}} (Z_{t} = \omega_{j} \mid \boldsymbol{x}^{(n)})} \quad (\forall j, r)$$

Remark. We will calculate $\mathbb{P}_{\theta^k}(Z_t = \omega_i | \mathbf{x}^{(n)})$ later

$$\pi_{i}^{k+1} = \frac{\sum_{n=1}^{N} \mathbb{P}_{\theta^{k}}(Z_{0} = \omega_{i} \mid \boldsymbol{x}^{(n)})}{N}$$

$$a_{ij}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{P}_{\theta^{k}}(Z_{t} = \omega_{j}, Z_{t-1} = \omega_{i} \mid \boldsymbol{x}^{(n)})}{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{P}_{\theta^{k}}(Z_{t-1} = \omega_{i} \mid \boldsymbol{x}^{(n)})}$$

$$c_{jr}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{P}_{\theta^{k}}(Z_{t} = \omega_{j} \mid \boldsymbol{x}^{(n)}) \mathbb{I}\left(\boldsymbol{x}_{t}^{(n)} = \sigma_{r}\right)}{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{P}_{\theta^{k}}(Z_{t} = \omega_{j} \mid \boldsymbol{x}^{(n)})}$$

$$(\forall i, j)$$

$$(\forall i, j)$$

$$(\forall j, r)$$

- Question: How to understand and interpret the above update formulas?
- Hint: Probability is expectation of indicator function, that is

$$\sum_{n=1}^{N} \mathbb{P}_{\theta^k}(Z_0 = \omega_i \mid \boldsymbol{x}^{(n)}) = \sum_{n=1}^{N} \mathbb{E}_{\theta^k}[\mathbb{I}(Z_0 = \omega_i) \mid \boldsymbol{x}^{(n)}]$$

Answer:

$$\pi_i^{k+1} = \frac{\text{Expected number of times that } Z_0 = \omega_i \text{ takes place, given } \left\{x^{(n)}\right\}_{n=1}^N \text{ and } \theta^k}{N}$$

We can interpret a_{ij}^{k+1} and c_{jr}^{k+1} similarly (how?)

$$\pi_{i}^{k+1} = \frac{\sum_{n=1}^{N} \mathbb{P}_{\theta^{k}}(Z_{0} = \omega_{i} \mid \boldsymbol{x}^{(n)})}{N}$$

$$\alpha_{ij}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{P}_{\theta^{k}}(Z_{t} = \omega_{j}, Z_{t-1} = \omega_{i} \mid \boldsymbol{x}^{(n)})}{\sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{P}_{\theta^{k}}(Z_{t-1} = \omega_{i} \mid \boldsymbol{x}^{(n)})}$$

$$C_{jr}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{P}_{\theta^{k}}(Z_{t} = \omega_{j} \mid \boldsymbol{x}^{(n)}) \mathbb{I}\left(\boldsymbol{x}_{t}^{(n)} = \sigma_{r}\right)}{\sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{P}_{\theta^{k}}(Z_{t} = \omega_{j} \mid \boldsymbol{x}^{(n)})}$$

$$(\forall i, j)$$

$$(\forall i, j)$$

$$(\forall j, r)$$

- To proceed, it suffices to calculate the following "posteriors" $(\forall i, j)$:
 - $\xi_{ij}^k(t,n) \coloneqq \mathbb{P}_{\theta^k}(Z_t = \omega_j, Z_{t-1} = \omega_i \mid \mathbf{x}^{(n)}) \ (\forall t > 0)$
 - $\gamma_j^k(t,n) \coloneqq \mathbb{P}_{\theta^k}(Z_t = \omega_j \mid \boldsymbol{x}^{(n)}) \ (\forall t \ge 0)$
- Indeed, we have:

Remark. Computing $\xi_{ij}^k(t,n)$ and $\gamma_i^k(t,n)$ is the **E-step!**

- In general, the E-step requires computing the posterior $p_{\theta^k}(\mathbf{z} \mid \mathbf{x}^{(n)})$ for all possible \mathbf{z} .
- For HMMs, computing $\xi_{ij}^k(t,n)$ and $\gamma_i^k(t,n)$ is enough

$$\pi_{i}^{k+1} = \frac{\sum_{n=1}^{N} \gamma_{i}^{k}(0, n)}{N}$$

$$\alpha_{ij}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \xi_{ij}^{k}(t, n)}{\sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{i}^{k}(t-1, n)}$$

$$c_{jr}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \gamma_{j}^{k}(t, n) \mathbb{I}\left(x_{t}^{(n)} = \sigma_{r}\right)}{\sum_{n=1}^{N} \sum_{t=0}^{T} \gamma_{j}^{k}(t, n)}$$

$$(\forall i, j)$$

$$(\forall i, j)$$

$$(\forall j, r)$$

$$\pi_{i}^{k+1} = \frac{\sum_{n=1}^{N} \gamma_{i}^{k}(0, n)}{N}$$

$$a_{ij}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \xi_{ij}^{k}(t, n)}{\sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{i}^{k}(t-1, n)}$$

$$c_{jr}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \gamma_{j}^{k}(t, n) \mathbb{I}\left(x_{t}^{(n)} = \sigma_{r}\right)}{\sum_{n=1}^{N} \sum_{t=0}^{T} \gamma_{j}^{k}(t, n)}$$

$$(\forall i, j)$$

$$(\forall i, j)$$

$$(\forall i, j)$$

$$(\forall j, r)$$

- $\xi_{ij}^k(t,n) \coloneqq \mathbb{P}_{\theta^k}(Z_t = \omega_j, Z_{t-1} = \omega_i \mid \mathbf{x}^{(n)}) \ (\forall t > 0)$
- $\gamma_j^k(t,n) \coloneqq \mathbb{P}_{\theta^k}(Z_t = \omega_j \mid \mathbf{x}^{(n)}) \ (\forall t \ge 0)$
- Question. Wouldn't it be enough to compute $\xi_{ij}^k(t,n)$ only, as we obviously have

$$\gamma_{j}^{k}(t-1,n) = \sum_{i=1}^{K} \xi_{ij}^{k}(t,n)$$
?

- Answer.
 - $\xi_{ij}^k(t,n)$ and $\gamma_j^k(t,n)$ are widely used notations elsewhere: Not possible to uproot them

$$\pi_{i}^{k+1} = \frac{\sum_{n=1}^{N} \gamma_{i}^{k}(0, n)}{N}$$

$$\alpha_{ij}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \xi_{ij}^{k}(t, n)}{\sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{i}^{k}(t-1, n)}$$

$$c_{jr}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \gamma_{j}^{k}(t, n) \mathbb{I}\left(x_{t}^{(n)} = \sigma_{r}\right)}{\sum_{n=1}^{N} \sum_{t=0}^{T} \gamma_{j}^{k}(t, n)}$$

$$(\forall i, j)$$

$$(\forall i, j)$$

$$(\forall j, r)$$

- $\xi_{ij}^{k}(t,n) \coloneqq \mathbb{P}_{\theta^{k}}(Z_{t} = \omega_{i}, Z_{t-1} = \omega_{i} \mid \boldsymbol{x}^{(n)}) \ (\forall t > 0)$
- $\gamma_i^k(t,n) \coloneqq \mathbb{P}_{\theta^k}(Z_t = \omega_i \mid \mathbf{x}^{(n)}) \ (\forall t \ge 0)$
- Dropping indices n, k for clarity, we can reformulate our goal (**E-step**) as follows:

E-step. Given
$$\mathbf{y} = (x_1, ..., x_T)$$
 and θ , compute $(\forall i, j)$
• $\xi_{ij}(t) = \mathbb{P}_{\theta}(Z_t = \omega_i, Z_{t-1} = \omega_i \mid x_0, ..., x_T)$ (t

- (t > 0)
- $\gamma_i(t) = \mathbb{P}_{\theta}(Z_t = \omega_i \mid x_0, ..., x_T)$

Computing $\xi_{ij}(t)$ and $\gamma_j(t)$

$$\begin{aligned} & \alpha_j(t) \coloneqq \mathbb{P}_{\theta}(x_0, \dots, x_t, Z_t = \omega_j) \\ & \beta_j(t) \coloneqq \mathbb{P}_{\theta}(x_{t+1}, \dots, x_T \mid Z_t = \omega_j) \end{aligned}$$

- **E-step.** Given $\mathbf{x} = (x_1, ..., x_T)$ and θ , compute $(\forall i, j)$
- $\xi_{ij}(t) = \mathbb{P}_{\theta}(Z_t = \omega_j, Z_{t-1} = \omega_i \mid x_0, ..., x_T)$ (t > 0)
- $\gamma_j(t) = \mathbb{P}_{\theta}(Z_t = \omega_j \mid x_0, \dots, x_T)$ $(t \ge 0)$
- Intuition: $\xi_{ij}(t)$ and $\gamma_j(t)$ are "posteriors"
 - To compute them, we need to convert them into likelihood via Bayes rule
- Applying the Bayes rule to $\gamma_i(t)$ gives

$$\gamma_{j}(t) = \frac{\mathbb{P}_{\theta}(x_{0},\dots,x_{T},Z_{t}=\omega_{j})}{\mathbb{P}_{\theta}(x_{0},\dots,x_{T})} = \frac{\mathbb{P}_{\theta}(x_{0},\dots,x_{t},Z_{t}=\omega_{j}) \cdot \mathbb{P}_{\theta}(x_{t+1},\dots,x_{T} \mid x_{0},\dots,x_{t},Z_{t}=\omega_{j})}{\mathbb{P}_{\theta}(x_{0},\dots,x_{T})}$$

$$= \frac{\mathbb{P}_{\theta}(x_{0},\dots,x_{t},Z_{t}=\omega_{j}) \cdot \mathbb{P}_{\theta}(x_{t+1},\dots,x_{T} \mid Z_{t}=\omega_{j})}{\mathbb{P}_{\theta}(x_{0},\dots,x_{T})} = \frac{\alpha_{j}(t) \cdot \mathbb{P}_{\theta}(x_{t+1},\dots,x_{T} \mid Z_{t}=\omega_{j})}{\sum_{i=1}^{K} \alpha_{i}(t) \cdot \mathbb{P}_{\theta}(x_{t+1},\dots,x_{T} \mid Z_{t}=\omega_{i})} = \frac{\alpha_{j}(t)\beta_{j}(t)}{\sum_{i=1}^{K} \alpha_{i}(t)\beta_{i}(t)}$$

- $\beta_i(t)$ is called "backward probability"
- To update $\gamma_j(t)$, it suffices to recursively update $\alpha_j(t)$ and $\beta_j(t)$

Computing $\xi_{ij}(t)$ and $\gamma_j(t)$

 $\alpha_{j}(t) \coloneqq \mathbb{P}_{\theta}(x_{0}, \dots, x_{t}, Z_{t} = \omega_{j})$ $\beta_{j}(t) \coloneqq \mathbb{P}_{\theta}(x_{t+1}, \dots, x_{T} \mid Z_{t} = \omega_{j})$

E-step. Given
$$\mathbf{x} = (x_1, ..., x_T)$$
 and θ , compute $(\forall i, j)$

•
$$\xi_{ij}(t) = \mathbb{P}_{\theta}(Z_t = \omega_i, Z_{t-1} = \omega_i \mid x_0, \dots, x_T)$$
 $(t > 0)$

•
$$\gamma_i(t) = \mathbb{P}_{\theta}(Z_t = \omega_i \mid x_0, \dots, x_T)$$
 $(t \ge 0)$

$$c_j(x_t) \coloneqq \mathbb{P}_{\theta}(x_t | Z_t = \omega_j)$$

•
$$\gamma_j(t) = \frac{\mathbb{P}_{\theta}(x_0,...,x_T,Z_t=\omega_j)}{\mathbb{P}_{\theta}(x_0,...,x_T)} = \frac{\alpha_j(t)\beta_j(t)}{\sum_{i=1}^K \alpha_i(t)\beta_i(t)}$$

• Similarly, applying the Bayes rule to $\xi_{ij}(t)$ gives: (details omitted, please verify)

$$\xi_{ij}(t) = \frac{\mathbb{P}_{\theta}(x_0, \dots, x_T, Z_t = \omega_j, Z_{t-1} = \omega_i)}{\mathbb{P}_{\theta}(x_0, \dots, x_T)} = \dots = \frac{\underbrace{c_j(y_t) \cdot a_{ij} \cdot \alpha_i(t-1)\beta_j(t)}}{\sum_{i=1}^K \alpha_i(t)\beta_i(t)}$$

Remark. $\gamma_j(t)$ and $\xi_{ij}(t)$ have the same denominator.

Computing $\xi_{ij}(t)$ and $\gamma_j(t)$

E-step. Given $x = (x_1, ..., x_T)$ and θ , compute $(\forall i, j)$

•
$$\xi_{ij}(t) = \mathbb{P}_{\theta}(Z_t = \omega_i, Z_{t-1} = \omega_i \mid x_0, \dots, x_T)$$
 $(t > 0)$

•
$$\gamma_i(t) = \mathbb{P}_{\theta}(Z_t = \omega_i \mid x_0, \dots, x_T)$$
 $(t \ge 0)$

•
$$\gamma_j(t) = \frac{\mathbb{P}_{\theta}(x_0,...,x_T,Z_t=\omega_j)}{\mathbb{P}_{\theta}(x_0,...,x_T)} = \frac{\alpha_j(t)\beta_j(t)}{\sum_{i=1}^K \alpha_i(t)\beta_i(t)}$$

•
$$\xi_{ij}(t) = \frac{\mathbb{P}_{\theta}(x_0,\dots,x_T,Z_t=\omega_j,Z_{t-1}=\omega_i)}{\mathbb{P}_{\theta}(x_0,\dots,x_T)} = \dots = \frac{c_j(y_t)\cdot a_{ij}\cdot \alpha_i(t-1)\beta_j(t)}{\sum_{i=1}^K \alpha_i(t)\beta_i(t)}$$

$$\alpha_{j}(t) := \mathbb{P}_{\theta}(x_{0}, \dots, x_{t}, Z_{t} = \omega_{j})$$

$$\beta_{j}(t) := \mathbb{P}_{\theta}(x_{t+1}, \dots, x_{T} \mid Z_{t} = \omega_{j})$$

$$c_j(x_t) \coloneqq \mathbb{P}_{\theta}\big(x_t \big| Z_t = \omega_j\big)$$

Remark.

- Now we only need to compute $\alpha_i(t)$ and $\beta_i(t)$
 - We've seen how to update $\alpha_i(t)$ via the recursion $\alpha_i(t) = c_i(y_t) \cdot \sum_{i=1}^K a_{ij} \cdot \alpha_i(t-1)$

Updating
$$\alpha_i(t)$$
 and $\beta_i(t)$

$$\alpha_{j}(t) \coloneqq \mathbb{P}_{\theta}(x_{0}, \dots, x_{t}, Z_{t} = \omega_{j})$$
$$\beta_{j}(t) \coloneqq \mathbb{P}_{\theta}(x_{t+1}, \dots, x_{T} \mid Z_{t} = \omega_{j})$$

$$c_j(x_t) \coloneqq \mathbb{P}_{\theta}\big(x_t \big| Z_t = \omega_j\big)$$

• Compute forward probability $\alpha_i(t)$:

• Initialization:
$$\alpha_i(0) = \pi_i \cdot c_i(y_0)$$

• Recursion:
$$\alpha_j(t) = c_j(x_t) \sum_{i=1}^K \alpha_i(t-1) \cdot a_{ij}$$

$$\forall j = 1, ..., K$$

$$\forall i = 1, ..., K, \forall t = 1, ..., T$$

• Compute backward probability $\beta_i(t)$: (details omitted, please verify)

- Initialization: $\beta_i(T) = 1$
- Recursion: $\beta_j(t-1) = \sum_{i=1}^K c_i(x_t) \cdot \beta_i(t) \cdot a_{ji}$

$$\forall j = 1, ..., K$$

$$\forall j = 1, \dots, K, \forall t = T, \dots, 1$$

Summary of the EM Algorithm

- 1. We derived the formula of the EM algorithm for updating π^{k+1} , A^{k+1} , C^{k+1} and showed that their updates depend on posteriors $\xi_{ij}^k(t,n)$ and $\gamma_j^k(t,n)$
- 2. We dropped indices n, k and defined $\xi_{ij}(t)$ and $\gamma_j(t)$

3. We showed that $\xi_{ij}(t)$ and $\gamma_j(t)$ depend on the forward probability and backward probability, $\alpha_j(t)$ and $\beta_j(t)$, which can be updated recursively

Remark. To implement the EM algorithm, we need to **go backwards**:

- 1. Compute $\alpha_i^k(t, n)$ and $\beta_i^k(t, n)$ (indices n, k added back)
- **2. E-Step**: Compute $\xi_{ij}^k(t,n)$ and $\gamma_j^k(t,n)$
- 3. M-Step: Compute π^{k+1} , A^{k+1} , C^{k+1}

Implement EM (Iteration k)

- 1. Compute $\alpha_i^k(t,n)$ and $\beta_i^k(t,n)$ (indices added back)
- **2. E-Step**: Compute $\xi_{ij}^k(t,n)$ and $\gamma_j^k(t,n)$
- **3. M-Step**: Compute π^{k+1} , A^{k+1} , C^{k+1}

$$\alpha_j^k(t,n) \coloneqq \mathbb{P}_{\theta^k} \left(x_0^{(n)}, \dots, x_t^{(n)}, Z_t = \omega_j \right)$$
$$\beta_j^k(t,n) \coloneqq \mathbb{P}_{\theta^k} \left(x_{t+1}^{(n)}, \dots, x_T^{(n)} \mid Z_t = \omega_j \right)$$

$$c_j^k\left(x_t^{(n)}\right) \coloneqq \mathbb{P}_{\theta^k}\left(x_t^{(n)} \middle| Z_t = \omega_j\right)$$

1. Compute forward probability $\alpha_i^k(t,n)$ and backward probability $\beta_i^k(t,n)$ ($\forall n$):

1.1. Initialization
$$(\forall j)$$

$$\alpha_j^k(0,n) = \pi_j^k \cdot c_j^k \left(x_0^{(n)}\right), \qquad \beta_j^k(T,n) = 1$$

1.2. Recursion $(\forall j, t)$

$$\alpha_{j}^{k}(t,n) = c_{j}^{k} \left(x_{t}^{(n)}\right) \sum_{i=1}^{K} \alpha_{i}^{k}(t-1,n) \cdot \alpha_{ij}^{k}$$

$$\beta_{j}^{k}(t-1,n) = \sum_{i=1}^{K} c_{i}^{k} \left(x_{t}^{(n)}\right) \cdot \beta_{i}^{k}(t,n) \cdot \alpha_{ji}^{k}$$

2. E-Step: Compute posteriors $\xi_{ij}^k(t,n)$ and $\gamma_j^k(t,n)$

$$\gamma_{j}^{k}(t,n) = \frac{\alpha_{j}^{k}(t,n)\beta_{j}^{k}(t,n)}{\sum_{i=1}^{K} \alpha_{i}^{k}(t,n)\beta_{i}^{k}(t,n)}$$

$$\xi_{ij}^{k}(t,n) = \frac{c_{j}^{k}(x_{t}^{(n)}) \cdot a_{ij}^{k} \cdot \alpha_{i}^{k}(t-1,n)\beta_{j}^{k}(t,n)}{\sum_{i=1}^{K} \alpha_{i}^{k}(t,n)\beta_{i}^{k}(t,n)}$$

Congrats! You have derived the "Baum-Welch algorithm" (Google search it)

3. M-Step: Compute parameters π^{k+1} , A^{k+1} , C^{k+1}

$$\pi_i^{k+1} = \frac{\sum_{n=1}^{N} \gamma_i^k(0, n)}{N}$$
 (\forall i)

$$a_{ij}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} \xi_{ij}^{k}(t,n)}{\sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{i}^{k}(t-1,n)}$$
 (\forall i,j)

$$c_{jr}^{k+1} = \frac{\sum_{n=1}^{N} \sum_{t=0}^{T} \gamma_{j}^{k}(t, n) \mathbb{I}\left(x_{t}^{(n)} = \sigma_{r}\right)}{\sum_{n=1}^{N} \sum_{t=0}^{T} \gamma_{j}^{k}(t, n)} \tag{\forall j, r}$$