Яндекс Такси

Что под капотом у платформы данных Яндекс.Такси?

Евгений Ермаков, архитектор DMP

250

Уникальных пользователей BIсистемы в день

900

Отчетов по различным тематикам

3

Крупных бизнес-юнита: Такси, Еда и Лавка

1 Пб

Накопленных данных по трем бизнес-юнитам

- У Какие инструменты обработки и хранения данных используются в Я.Такси?
- У Какие Архитектурные принципы заложены в Хранилище?

- У Как организована команда?
- У Какую роль выполняют инженеры данных?

01. Технологии

Инструменты работы с данными и архитектура

- > Архитектура слоев
- > Инструменты
- > Детальный слой
- > Гибридная модель

Цель

Захватить сигналы источника

Задачи

- > собрать данные с источника **as-is**
- преобразовать их в объекты с понятным описанием и методом доступа

> Хранить операционные данные источника

Задачи

- сформировать набор сущностей источника
- разложить данные сущностям
- предоставить стандартный интерфейс доступа к данным

отчеты

Захват данных

Устойчив к изменению данных на источнике

- У Инкремент поступает через сервис репликации данных
- > Полносрезные данные поступают напрямую в YT
- Формат данных в RAW изолирован от структуры источника
- > ODS нормализован и содержит только нужную информацию

Представление данных

Витрины и отчеты доступны в разных источниках

- > Строятся по инкременту
- > Могут быть историзированы как по бизнес-дате, так и по технической дате
- > Денормализованы и оптимизированы под чтение

Детальный слой

Детальный слой – ключевой для построения доменной модели

- > Хранить историю изменений сущностей
- > Отвечает за консолидацию данных между источниками
- > Устойчив к изменению в бизнесе
- > Модульный и масштабируемый

Greenplum

Подходы к проектированию

сложность эксплуатации, простота внесения изменений

Никакого	Звезда и снежинка	Data Vault	Anchor modeling
ДенормализацияМожно использовать без подготовки	НормализацияМожно использовать с минимальной подготовкой	 Строгая нормализация Нельзя использовать без подготовки Не надо перестраивать 	 Ультра нормализация Нельзя использовать без подготовки Не надо перестраивать
Неустойчиво к изменениям	Неудобно перестраивать		
Дублирование информации	> Минимальное дублирование информации	Нет дублирования информации	Нет дублирования информации
> Heт join	> Приемлемое количество join	> Большое количество join	Ультра количество join

легкость эксплуатации, сложность внесения изменений

Highly Normalized Hybrid Model (hNhM)

Выбирать оптимальный формат хранения для каждого конкретного случая

- > Высокая нормализация
- > Параллельная загрузка из разных источников
- > Устойчив к изменению в бизнесе
- > Идемпотентный к повторной загрузке
- > Модульный и масштабируемый

Highly Normalized Hybrid Model (hNhM)

Выбирать оптимальный формат хранения для каждого конкретного случая

- > Высокая нормализация
- > Параллельная загрузка из разных источников
- > Устойчив к изменению в бизнесе
- > Идемпотентный к повторной загрузке

Автоматизация

- Захват данных происходит через сервис репликации, гарантирующий доставку
- Изменение структуры данных не влияет на процесс (кроме первичного ключа и поля партицирования)
- Витрины строятся по инкременту, который формируется автоматизированно
- Манипуляции с сущностями в детальном слое стандартизованы
- Заказчик может выбрать удобный для себя интерфейс доступа к данным
- > Мониторинг проблем стандартными средствами

02. Организация

Процессы и роли в команде

- > Разделение на команды
- > Роли и ответственность
- > Цели и задачи
- У Инженеры данных

Организация процесса

Продуктовые

- > Построение витрин
- Добавление новых источников
- > Развитие домена

Задачи платформы данных

Инфраструктурные

- Внедрение новых инструмеетов
-) Повышение качества работы с данными
- > Оптимизация

Организация процесса

Организация процесса

Стандартная задача проходит следующие этапы:

- 1.Заказчик формирует запрос на новые данные или новую витрину
- 2.Выделенный партнер по данным структурирует мысль и вносит изменения в модель данных с помощью платформы
- 3.Инженер данных реализует расчет объекта с помощью платформы
- 4.Заказчик с парнером по данным проверяют объект
- 5.Заказчик доволен

Архитектор Партнер по Заказчик Инженер данных данным Продвинутый Разработчик платформы заказчик Системный инженер Администраторы Я.Такси

Руководитель / Проектный менеджер /

Роли

Менеджер проектов

Архитектор

Разработчик платформы

- Курирует взаимодействие между подразделениями
- > Ведет крупные проекты

- > Отвечает за системность
- > Контролирует корректное использование инструментов
- Повышает качество работы ETL-платформы
- > Автоматизирует работу

Партнер по данным

Инженер данных

Системный инженер

- Отвечает за данные как за продукт
- Повышает качество работы с данными

- Разрабатывает сложные ETL-процессы
- Стандартизирует подходы к работе с однотипными источниками

- > Поддерживает сервисы и системы
- Отвечает за интеграцию с внешними системами

Взаимодействие DP и DE

Автоматизация

- Вся артефакты работы (в том числе и по анализу данных: метаданные объектов, маппинги) фиксируется в репозитории
- > Ревью проходит стандартными способами git (с автоматизацией распределения ревьюеров)
- Документация, data lineage и зависимости строятся из кода
- Все процессы логируются и доступны для последующего анализа в MetaDWH

Инструменты

- > YT->GP->CH\MS SSAS
- hNhM как модель данных в DDS

Архитектура

- **У** Системность
- > Строгость
- > Прозрачность

- Разделение на инфраструктурное и продуктовое направления
- Борьба и единство противоположностей

Процессы

- Отдельные продуктовые команды на области данных
- > Автоматизация на всех этапах работы

Яндекс Такси

Спасибо

Евгений Ермаков

архитектор

jkermakov@yandex-team.ru

@iJKos