Mapeos proyectivos en sistemas de qubits

José Alfredo de León¹, Carlos Pineda², David Dávalos², Alejandro Fonseca²

¹Escuela de Ciencias Físicas y Matemáticas, USAC ²Instituto de Física, UNAM

I Congreso Guatemalteco de Física 09 de julio de 2021

Outline

Sistemas cuánticos abiertos

Qubits

Operaciones PCE

Qubits

Operaciones PCE

Sistemas cuánticos abiertos ¿Qué son?

Considerar a los sistemas cuánticos como aislados de su entorno es una buena aproximación...

Sistemas cuánticos abiertos ¿Qué son?

.. no obstante, los sistemas cuánticos reales están abiertos a interacciones con su entorno.

Matriz de densidad ρ

Matriz de densidad ρ

Si un sistema se encuentra en alguno de los estados $|\psi_i\rangle$ con probabilidad p_i , la matriz de densidad del sistema se define como

$$\rho \equiv \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|.$$

Matriz de densidad ρ

Si un sistema se encuentra en alguno de los estados $|\psi_i\rangle$ con probabilidad p_i , la matriz de densidad del sistema se define como

$$\rho \equiv \sum_{i} p_{i} |\psi_{i}\rangle\!\langle\psi_{i}|.$$

Una matriz ρ es una matriz de densidad asociada a un ensamble de estados $\{p_i, |\psi_i\rangle\}$ si y sólo si

- 1. $Tr(\rho) = 1$,
- 2. $\rho \ge 0$.

Canales cuánticos

Canales cuánticos

Una operación lineal ${\mathcal E}$ que actúa sobre la matriz de densidad ρ como

$$\mathcal{E}(\rho) = \rho'$$

es un canal cuántico si

- 1. Preserva las características de la matriz de densidad,
- 2. Es una operación completamente positiva.

¿Para qué o qué?

¿Para qué o qué?

No es suficiente que $\mathcal{E}(\rho_A) \geq 0$.

¿Para qué o qué?

No es suficiente que $\mathcal{E}(\rho_A) \geq 0$. También se tiene que cumplir $\mathcal{E} \otimes \mathbb{1}(\rho_{total}) \geq 0$.

Una operación ${\mathcal E}$ es completamente positiva si y sólo si

$$\mathcal{E} \otimes \mathbb{1}(\rho_{\mathcal{E}}) \geq 0$$
,

con $\rho_{\mathcal{E}}$ el estado maximamente entrelazado de un sistema compuesto por dos copias del sistema sobre el que actúa \mathcal{E} .

Para recordar: $\mathcal{E} \otimes \mathbb{1}(\rho_{\mathcal{E}})$ recibe el nombre de la matriz de Choi de \mathcal{E} .

Qubits

Operaciones PCE

Qubits

Un qubit es un sistema cuántico de dos niveles.

Qubits

Un qubit es un sistema cuántico de dos niveles.

$$\rho = \frac{1}{2} \sum_{i=0}^{3} r_i \sigma_i$$

$$\rho = \frac{1 + r_1 \sigma_x + r_2 \sigma_y + r_3 \sigma_z}{2},$$

donde (r_1, r_2, r_3) se conoce como el vector de Bloch.

Canal cuántico de 1 qubit Bit-flip

Geométricamente,

Canal cuántico de 1 qubit Bit-flip

Geométricamente,

El canal cuántico de bit-flip actúa sobre las componentes de Pauli de la matriz de densidad de 1 qubit como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, (1-p)r_2, (1-p)r_3).$$

Qubits n qubits

En general, la matriz de densidad de n qubits puede escribirse en la base de productos tensoriales de las matrices de Pauli como

$$\rho = \frac{1}{2^n} \sum_{j_1, \dots, j_n = 0}^3 r_{j_1, \dots, j_n} \sigma_{j_1} \otimes \dots \otimes \sigma_{j_n},$$

con
$$r_{0,...,0} = 1$$
 (Tr $\rho = 1$).

Qubits n qubits

En general, la matriz de densidad de n qubits puede escribirse en la base de productos tensoriales de las matrices de Pauli como

$$\rho = \frac{1}{2^n} \sum_{j_1, \dots, j_n = 0}^3 r_{j_1, \dots, j_n} \sigma_{j_1} \otimes \dots \otimes \sigma_{j_n},$$

con $r_{0,\dots,0}=1$ (Tr $\rho=1$). Llamaremos componentes de Pauli a las r_{j_1,\dots,j_n} .

Qubits

Operaciones PCE

$Motivación\ (1/2)$

Bit-flip con p = 0.5

Motivación (1/2)

Bit-flip con p = 0.5

Geométricamente, actúa como

En términos de las componentes de Pauli, el bit-flip para p=0.5 actúa como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, 0, 0).$$

Motivación (2/2)

Mapeo de la esfera de Bloch a un disco

Motivación (2/2)

Mapeo de la esfera de Bloch a un disco

Consideremos la operación ${\mathcal E}$ que deforma la esfera de Bloch como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, r_2, 0).$$

Motivación (2/2)

Mapeo de la esfera de Bloch a un disco

Consideremos la operación ${\mathcal E}$ que deforma la esfera de Bloch como

$$(1, r_1, r_2, r_3) \longmapsto (1, r_1, r_2, 0).$$

 $\mathcal{E}\otimes\mathbb{1}(
ho_{\mathcal{E}})$ no es una matriz positiva (i.e. \mathcal{E} no es completamente positiva), entonces \mathcal{E} no es un canal cuántico .

Definición y planteamiento del problema

Definición y planteamiento del problema

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que actúa sobre las componentes de $Pauli\ de$ una matriz de densidad ρ de n qubits como

$$r_{j_1,\ldots,j_n} \longrightarrow \tau_{j_1,\ldots,j_n} r_{j_1,\ldots,j_n},$$

con $au_{j_1,\dots,j_n}=0,1$; excepto $au_{0,\dots,0}=1$. Es decir, borra o deja invariantes las componentes de Pauli.

Definición y planteamiento del problema

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que actúa sobre las componentes de $Pauli\ de$ una matriz de densidad ρ de n qubits como

$$r_{j_1,\ldots,j_n} \longrightarrow \tau_{j_1,\ldots,j_n} r_{j_1,\ldots,j_n},$$

con $\tau_{j_1,...,j_n}=0,1$; excepto $\tau_{0,...,0}=1$. Es decir, borra o deja invariantes las componentes de Pauli.

Definición y planteamiento del problema

Una operación PCE ($Pauli\ component\ erasing$) es una operación lineal que actúa sobre las componentes de $Pauli\ de$ una matriz de densidad ρ de n qubits como

$$r_{j_1,\ldots,j_n} \longrightarrow \tau_{j_1,\ldots,j_n} r_{j_1,\ldots,j_n},$$

con $\tau_{j_1,...,j_n}=0,1$; excepto $\tau_{0,...,0}=1$. Es decir, borra o deja invariantes las componentes de Pauli.

¿Cómo es la caracterización del subconjunto de las operaciones PCE que son canales cuánticos?

Diagonalización de la matriz de Choi

Diagonalización de la matriz de Choi

Los eigenvalores de la matriz de Choi de una operación PCE de n qubits son

$$\vec{\lambda} = \underbrace{(a \otimes \ldots \otimes a)}_{n \text{ veces}} \vec{\tau}$$

con

y $\vec{\tau}$ un vector de 4^n componentes.

 2^k , pero también importa el orden

Los canales cuánticos PCE dejan 2^k componentes invariantes. Sin embargo, no sólo importa cuántas componentes de Pauli, sino también cuáles.

2 qubits:

 2^k , pero también importa el orden

Los canales cuánticos PCE dejan 2^k componentes invariantes. Sin embargo, no sólo importa cuántas componentes de Pauli, sino también cuáles.

2 qubits:

No son canales cuánticos:

Canales cuánticos PCE

 2^k , pero también importa el orden

Los canales cuánticos PCE dejan 2^k componentes invariantes. Sin embargo, no sólo importa cuántas componentes de Pauli, sino también cuáles.

2 qubits:

No son canales cuánticos:

Todos los canales cuánticos PCE que borran 15 componentes:

Canales cuánticos PCE ¿Cuántos?

Los canales cuánticos parecen seguir una regla 'espejo' para el número de canales PCE según la cantidad de componentes de Pauli invariantes.

Canales cuánticos PCE ¿Cuántos?

Los canales cuánticos parecen seguir una regla 'espejo' para el número de canales PCE según la cantidad de componentes de Pauli invariantes.

3 qubits:

				1395			
canales PCE			651		651		
		63				63	
	1						1
componentes	1	2	4	8	16	32	64

Canales cuánticos PCE ¿Cuántos?

Los canales cuánticos parecen seguir una regla 'espejo' para el número de canales PCE según la cantidad de componentes de Pauli invariantes.

3 qubits:

Canales cuánticos PCE

Generadores

Un canal cuántico PCE puede descomponerse como concatenación de los elementos de un subconjunto generador.

Canales cuánticos PCE

Generadores

Un canal cuántico PCE puede descomponerse como concatenación de los elementos de un subconjunto generador.

Generadores canales PCE de 2 qubits:

Hipótesis

Sea PCE_n al conjunto de canales cuánticos PCE de n qubits. Existe un conjunto $\Gamma_n \subset PCE_n$ cuyos elementos son necesarios y suficientes para generar al resto de los elementos en PCE_n .

Hipótesis

Sea PCE_n al conjunto de canales cuánticos PCE de n qubits. Existe un conjunto $\Gamma_n \subset PCE_n$ cuyos elementos son necesarios y suficientes para generar al resto de los elementos en PCE_n .

Sea $\mathcal{E}_j \in \Gamma_n$ y $\Phi \in PCE_n$. Un canal PCE de n qubits puede descomponerse como

$$\Phi = \underbrace{\mathcal{E}_{j_1} \circ \mathcal{E}_{j_2} \circ \ldots \circ \mathcal{E}_{j_j}}_{\text{máximo } 2^n}.$$

Hipótesis

Sea PCE_n al conjunto de canales cuánticos PCE de n qubits. Existe un conjunto $\Gamma_n \subset PCE_n$ cuyos elementos son necesarios y suficientes para generar al resto de los elementos en PCE_n .

Sea $\mathcal{E}_j \in \Gamma_n$ y $\Phi \in PCE_n$. Un canal PCE de n qubits puede descomponerse como

$$\Phi = \underbrace{\mathcal{E}_{j_1} \circ \mathcal{E}_{j_2} \circ \ldots \circ \mathcal{E}_{j_j}}_{\text{máximo } 2^n}.$$

Los elementos de Γ_n son los canales PCE que proyectan la matriz de densidad ρ , escrita en la base de Pauli, a un subespacio que tiene la mitad de la dimensión del espacio sobre el cual actúa Φ .

¡Muchas gracias!

Contacto: José Alfredo de León deleongarrido.jose@gmail.com