

8 INPUT NAND/AND GATE

- MEDIUM-SPEED OPERATION t_{PHL}, t_{PLH} = 75ns (Typ.) at 10V
- BUFFERED OUTPUT
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

The HCF4068B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4068B 8 INPUT NAND/AND GATE provide the system designer with direct

ORDER CODES

PACKAGE	TUBE	T&R			
DIP	HCF4068BEY				
SOP	HCF4068BM1	HCF4068M013TR			

implementation of the positive-logic 8-input NAND and AND functions and supplements the existing family of CMOS gates.

PIN CONNECTION

September 2001 1/8

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
2, 3, 4, 5, 9, 10, 11, 12	A, B, C, D, E, F, G, H	Data Inputs
6, 8	NC	Not Connected
1	K	Data Output (AND)
13	J	Data Output (NAND)
7	V_{SS}	Negative Supply Voltage
14	V_{DD}	Positive Supply Voltage

TRUTH TABLES

		OUTPUT						
Α	В	С	D	Е	F	G	Н	J (NAND)
L	Х	Χ	Х	Х	Х	Х	Χ	Н
Х	L	Χ	Χ	Х	Χ	Χ	Χ	Н
Х	Х	L	Х	Х	Χ	Χ	Х	Н
Х	Х	Χ	L	Х	Χ	Χ	Χ	Н
Х	Х	Χ	Х	L	Х	Χ	Χ	Н
Х	Х	Χ	Χ	Х	L	Χ	Χ	Н
Х	Х	Χ	Χ	Х	Χ	L	Χ	Н
Х	Х	Χ	Х	Х	Х	Х	L	Н
Н	Н	Η	Η	Н	Η	Η	Η	Ĺ

			INP	UTS				OUTPUT
Α	В	С	D	Е	F	G	Н	K (AND)
L	Χ	Х	Х	Х	Х	Х	Х	L
Χ	L	Х	Х	Х	Х	Х	Х	L
Χ	Χ	L	Χ	Χ	Х	Х	Χ	L
Χ	Χ	Χ	L	Χ	Х	Х	Χ	L
Χ	Χ	Х	Χ	L	Х	Х	Х	L
Χ	Χ	Χ	Χ	Χ	L	Х	Χ	L
Χ	Χ	Χ	Χ	Х	Х	L	Х	L
Χ	Χ	Х	Χ	Х	Х	Х	L	L
Н	Ι	Н	Ι	Η	Н	Н	Η	Н

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

		Test Condition				Value							
Symbol	Parameter	Vı	v _o	ΙΙ _Ο Ι	V _{DD}	Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.01	0.25		7.5		7.5	
		0/10			10		0.01	0.5		15		15	^
		0/15			15		0.01	1		30		30	μΑ
		0/20			20		0.02	5		150		150	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.15		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mΑ
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		IIIA
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I _{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
lı	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
C _I	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (T_{amb} = 25^{\circ}C, \;\; C_{L} = 50 \text{pF}, \; R_{L} = 200 \text{K}\Omega, \;\; t_{r} = t_{f} = 20 \; \text{ns})$

Cumbal	Davamatar		Test Condition	'	Value (*)			
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.		
t _{PLH} t _{PHL}	Propagation Delay Time	5			150	300		
		10			75	150	ns	
		15			55	110		
t _{TLH} t _{THL}	Output Transition Time	5			100	200		
		10			50	100	ns	
		15			40	80	ĺ	

(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200K Ω R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: PROPAGATION DELAY TIMES FOR K OUTPUT (AND FUNCTION) (f=1MHz; 50% duty cycle)

WAVEFORM 2 : PROPAGATION DELAY TIMES FOR J OUTPUT (NAND FUNCTION)(f=1MHz; 50% duty cycle)

Plastic DIP-14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	1.39		1.65	0.055		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
Е		8.5			0.335			
е		2.54			0.100			
e3		15.24			0.600			
F			7.1			0.280		
1			5.1			0.201		
L		3.3			0.130			
Z	1.27		2.54	0.050		0.100		

SO-14 MECHANICAL DATA

DIM.		mm.		inch				
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)	•			
D	8.55		8.75	0.336		0.344		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S		!	8° (r	nax.)	•	!		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.