3C945 U.S. PTO 09/746065

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

2000年 3月29日

出願番号

Application Number:

特願2000-092303

出願、人

Applicant (s):

三洋電機株式会社

2000年11月 6日

特 許 庁 長 官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

NBA0991063

【提出日】

平成12年 3月29日

【あて先】

特許庁長官殿

【国際特許分類】

H01S 3/18

【発明者】

【住所又は居所】

大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】

畑 雅幸

【発明者】

【住所又は居所】

大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】

井上 大二朗

【発明者】

【住所又は居所】

大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】

野村 康彦

【特許出願人】

【識別番号】

000001889

【氏名又は名称】

三洋電機株式会社

【代理人】

【識別番号】

100098305

【弁理士】

【氏名又は名称】

福島 祥人

【電話番号】

06-6330-5625

【手数料の表示】

【予納台帳番号】

032920

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書

【物件名】 図面

【物件名】 要約書 1

【包括委任状番号】 9403774

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 半導体レーザ素子

【特許請求の範囲】

【請求項1】 活性層上に第1導電型の第1のクラッド層が設けられ、電流 注入領域を除いて前記第1のクラッド層上に低キャリア濃度の第1の電流ブロッ ク層が設けられた半導体レーザ素子において、前記第1のクラッド層と前記第1 の電流ブロック層との間に前記第1の電流ブロック層へのキャリアの蓄積を阻止 するキャリア蓄積防止層が形成され、前記キャリア蓄積防止層は、変調ドープ効 果により前記第1のクラッド層から供給される第1導電型のキャリアを補償する ように第2導電型のキャリアを供給するバンド間準位を有することを特徴とする 半導体レーザ素子。

【請求項2】 前記第1の電流ブロック層は前記第1のクラッド層よりもバンドギャップが小さいことを特徴とする請求項1記載の半導体レーザ素子。

【請求項3】 前記バンド間準位は、バイアスを印加しない条件で実質的にすべての前記バンド間準位がイオン化する密度を有することを特徴とする請求項1または2記載の半導体レーザ素子。

【請求項4】 前記バンド間準位は、第2導電型の不純物のドーピングにより形成されることを特徴とする請求項1~3のいずれかに記載の半導体レーザ素子。

【請求項5】 前記キャリア蓄積防止層の組成は、前記第1の電流ブロック層の組成と同一であることを特徴とする請求項1~4のいずれかに記載の半導体レーザ素子。

【請求項6】 前記第1のクラッド層は前記キャリア蓄積防止層よりも大きなバンドギャップを有し、前記第1のクラッド層と前記キャリア蓄積防止層との間に、前記第1のクラッド層のバンドギャップよりも小さくかつ前記キャリア蓄積防止層のバンドギャップよりも大きなバンドギャップを有する中間バンドギャップ層がさらに設けられたことを特徴とする請求項1~5のいずれかに記載の半導体レーザ素子。

【請求項7】 前記キャリア蓄積防止層は、前記第1のクラッド層のバンド

ギャップよりも小さくかつ前記第1の電流ブロック層のバンドギャップよりも大きなバンドギャップを有することを特徴とする請求項1~4のいずれかに記載の 半導体レーザ素子。

【請求項8】 前記第1のクラッド層は、前記活性層上に形成された平坦部と、前記電流注入領域における前記平坦部上に形成されたリッジ部を有し、前記キャリア蓄積防止層は、前記リッジ部の両側における前記平坦部上および前記リッジ部の側面上に形成され、前記第1の電流ブロック層は、前記キャリア蓄積防止層上に形成されたことを特徴とする請求項1~7のいずれかに記載の半導体レーザ素子。

【請求項9】 前記キャリア蓄積防止層および前記第1の電流ブロック層はは前記電流注入領域を除いて前記第1のクラッド層上に順に形成され、前記電流注入領域において前記キャリア蓄積防止層および前記第1の電流ブロック層の側面と前記第1のクラッド層の上面とで囲まれた空間を埋め込むように第1導電型の第2のクラッド層が設けられたことを特徴とする請求項1~7のいずれかに記載の半導体レーザ素子。

【請求項10】 前記キャリア蓄積防止層は、前記電流注入領域を除く領域に形成されたことを特徴とする請求項1~9のいずれかに記載の半導体レーザ素子。

【請求項11】 前記第1の電流ブロック層上に第2導電型の第2の電流ブロック層が設けられたことを特徴とする請求項1~10のいずれかに記載の半導体レーザ素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、電流ブロック層を有する半導体レーザ素子に関するものである。 【0002】

【従来の技術】

従来より、光導波路を形成するために活性層に平行な方向に屈折率差が与えられた屈折率導波構造の半導体レーザ素子が開発されている。図12は、特開平8

-222801号公報に記載された従来の半導体レーザ素子の模式的断面図である。

[0003]

図12の半導体レーザ素子120においては、n型基板121上にn型クラッド層122、活性層123、p型クラッド層124およびp型コンタクト層127が順に形成され、p型コンタクト層127およびp型クラッド層124がエッチングされてリッジ部およびそのリッジ部両側に平坦部が形成されている。

[0004]

さらに、p型クラッド層124のリッジ部の両側の平坦部上に低キャリア濃度の第1の電流ブロック層125が形成され、低キャリア濃度の第1の電流ブロック層125上にn型電流ブロック層126が形成されている。p型コンタクト層127上およびn型電流ブロック層126上にp型コンタクト層128が形成されている。

[0005]

半導体レーザ素子120の駆動時に、n型電流ブロック層126とp型クラッド層124との間におけるpn接合部に逆バイアスが印加される。それにより、n型電流ブロック層126により電流が遮断され、リッジ部に電流が狭窄されて注入される。

[0006]

一般に、n型電流ブロック層とp型クラッド層との間に形成されるpn接合部は大きな電気容量を有するので、半導体レーザ素子の高速動作を阻害する要因になっている。pn接合部の電気容量は、そのpn接合部におけるキャリア濃度が高い程大きくなる。

[0007]

そこで、図12の半導体レーザ素子120においては、n型電流ブロック層126とp型クラッド層124との間のpn接合部における電気容量を低減するために、低キャリア濃度の電流ブロック層125が設けられている。

[0008]

この低キャリア濃度の電流ブロック層125は、n型電流ブロック層126よ

り低いキャリア濃度を有する。そのため、この低キャリア濃度の電流ブロック層 125によりn型電流ブロック層126とp型クラッド層124との間のpn接 合部に空乏領域が形成され、電気容量が低減する。それにより、半導体レーザ素 子120の高速動作が可能となる。

[0009]

【発明が解決しようとする課題】

しかしながら、p型クラッド層124のバンドギャップよりも小さいバンドギャップを有する低キャリア濃度の電流ブロック層125を有する半導体レーザ素子120では、p型クラッド層124および低キャリア濃度の電流ブロック層125の価電子帯のエネルギーバンド構造が図13に示すような構造となる。

[0010]

図13はp型クラッド層および低キャリア濃度の電流ブロック層の価電子帯のエネルギーバンド構造を示す模式図である。図13に示すように、低キャリア濃度の電流ブロック層125のバンドギャップがp型クラッド層124のバンドギャップよりも十分小さいため、p型クラッド層124から低キャリア濃度の電流ブロック層125にキャリアが注入されて蓄積されやすくなる。その結果、低キャリア濃度の電流ブロック層125とp型クラッド層124の間に電気容量が新たに発生する。このため、半導体レーザ素子120において高速動作化が十分に図れない。

[0011]

本発明の目的は、高速動作化が十分に図られた半導体レーザ素子を提供することである。

[0012]

【課題を解決するための手段および発明の効果】

本発明に係る半導体レーザ素子は、活性層上に第1導電型の第1のクラッド層が設けられ、電流注入領域を除いて第1のクラッド層上に低キャリア濃度の第1の電流ブロック層が設けられた半導体レーザ素子であって、第1のクラッド層と第1の電流ブロック層との間に第1の電流ブロック層へのキャリアの蓄積を阻止するキャリア蓄積防止層が形成され、キャリア蓄積防止層は、変調ドープ効果に

より第1のクラッド層から供給される第1導電型のキャリアを補償するように第2導電型のキャリアを供給するバンド間準位を有するものである。

[0013]

なお、低キャリア濃度の第1の電流ブロック層とは、アンドープの層、もしく は電流を阻止することが可能な範囲で少量に不純物がドープされた層である。

[0014]

本発明に係る半導体レーザ素子においては、第1のクラッド層と第1の電流ブロック層との間に、第2導電型のキャリアを供給するバンド間準位が形成されたキャリア蓄積防止層が形成されている。

[0015]

この場合、第1のクラッド層から供給された第1導電型のキャリアは、キャリア蓄積防止層のバンド間準位から供給される第2導電型のキャリアにより補償される。このため、低キャリア濃度の第1の電流ブロック層におけるキャリアの蓄積を阻止することができる。それにより、第1の電流ブロック層の空乏状態が保たれる。したがって、第1の電流ブロック層と第1のクラッド層との間に発生する電気容量を小さくでき、半導体レーザ素子の高速動作化が十分に図られる。

[0016]

ここで、第1の電流ブロック層は第1のクラッド層よりもバンドギャップが小さい。第1の電流ブロック層が第1のクラッド層よりも小さなバンドギャップを有すると、第1のクラッド層から第1の電流ブロック層にキャリアが注入されて蓄積されやすくなる。しかしながら、この場合においては、第1のクラッド層と第1の電流ブロック層との間にキャリア蓄積防止層が形成されているため、第1の電流ブロック層におけるキャリアの蓄積を阻止することができる。

[0017]

バンド間準位は、バイアスを印加しない条件で実質的にすべてのバンド間準位がイオン化する密度を有することが好ましい。この場合、第1のクラッド層から供給された第1導電型のキャリアを効果的に補償することが可能となる。したがって、低キャリア濃度の第1の電流ブロック層におけるキャリアの蓄積をより効果的に阻止することが可能となる。

[0018]

バンド間準位は、第2導電型の不純物のドーピングにより形成されてもよい。 この場合、バンド間準位が形成されたキャリア蓄積防止層を容易に形成すること が可能となる。

[0019]

キャリア蓄積防止層の組成は、第1の電流ブロック層の組成と同一であってもよい。この場合、キャリア蓄積防止層のバンドギャップと第1の電流ブロック層のバンドギャップとが同じ大きさとなる。

[0020]

また、第1のクラッド層はキャリア蓄積防止層よりも大きなバンドギャップを有し、第1のクラッド層とキャリア蓄積防止層との間に、第1のクラッド層のバンドギャップよりも小さくかつキャリア蓄積防止層のバンドギャップよりも大きなバンドギャップを有する中間バンドギャップ層がさらに設けられてもよい。

[0021]

この場合、第1のクラッド層とキャリア蓄積防止層との間に中間バンドギャップ層が設けられているため、第1のクラッド層からnーキャリア蓄積防止層へキャリアが注入されにくくなり、さらに低キャリア濃度の第1の電流ブロック層へも注入されにくくなる。また、この場合においては、キャリアがキャリア蓄積防止層と中間バンドギャップ層との両方に分かれて注入されるので、キャリアが第1の電流ブロック層に注入されにくくなる。

[0022]

以上のことから、第1の電流ブロック層におけるキャリアの蓄積がさらに阻止 される。

[0023]

また、このように中間バンドギャップ層を設けることにより、半導体レーザ素子の高速動作化を図ることが可能なキャリア蓄積防止層の膜厚およびキャリア濃度の範囲が広がる。このため、キャリア蓄積防止層の膜厚およびキャリア濃度の設定が容易となり、キャリア蓄積防止層の作製が容易となる。

[0024]

また、キャリア蓄積防止層は、第1のクラッド層のバンドギャップよりも小さくかつ第1の電流ブロック層のバンドギャップよりも大きなバンドギャップを有してもよい。この場合においては、キャリア蓄積防止層が上記の中間バンドギャップ層としての機能を有するため、第1の電流ブロック層におけるキャリアの蓄積がさらに阻止される。

[0025]

また、この場合においても、半導体レーザ素子の高速動作化を図ることが可能なキャリア蓄積防止層の膜厚およびキャリア濃度の範囲が広くなる。それにより、キャリア蓄積防止層の膜厚およびキャリア濃度の設定が容易となり、キャリア蓄積防止層の作製が容易となる。

[0026]

第1のクラッド層は、活性層上に形成された平坦部と、電流注入領域における 平坦部上に形成されたリッジ部を有し、キャリア蓄積防止層は、リッジ部の両側 における平坦部上およびリッジ部の側面上に形成され、第1の電流ブロック層は 、キャリア蓄積防止層上に形成されてもよい。この場合においては、高速動作化 が図られたリッジ導波型構造の半導体レーザ素子が実現される。

[0027]

また、キャリア蓄積防止層および第1の電流ブロック層は電流注入領域を除いて第1のクラッド層上に順に形成され、電流注入領域においてキャリア蓄積防止層および第1の電流ブロック層の側面と第1のクラッド層の上面とで囲まれた空間を埋め込むように第1導電型の第2のクラッド層が設けられてもよい。この場合においては、高速動作化が図られたセルフアライン型構造の半導体レーザ素子が実現される。

[0028]

キャリア蓄積防止層は、電流注入領域を除く領域に形成されてもよい。この場合においては、電流注入領域に逆導電型のキャリア蓄積防止層が形成されていないため、電流が速やかに電流注入領域に注入される。

[0029]

また、第1の電流ブロック層上に第2導電型の第2の電流ブロック層が設けら

れてもよい。

[0030]

【発明の実施の形態】

図1は本発明の第1の実施例における半導体レーザ素子の模式的断面図である

[0031]

図1に示す半導体レーザ素子においては、n-GaAs基板1上に、 $n-(Al_{0.7}Ga_{0.3})$ 0.5 $In_{0.5}$ Pからなる厚さ1500nmのn-クラッド層2 、および後述する発光層14が順に形成されている。発光層14上に、 $p-(Al_{0.7}Ga_{0.3})$ 0.5 $In_{0.5}$ Pからなる厚さ1500nmのp-クラッド層6 および $p-Ga_{0.5}$ $In_{0.5}$ Pからなる厚さ200nmのp-コンタクト層7が順に形成されている。これらのp-クラッド層6およびp-コンタクト層7がエッチングされてリッジ部が形成されている。

[0032]

n-GaAs基板1のキャリア濃度は 1×10^{18} cm $^{-3}$ 、n-クラッド層2のキャリア濃度は 3×10^{17} cm $^{-3}$ 、p-クラッド層6のキャリア濃度は 3×10^{17} cm $^{-3}$ 、p-コンタクト層7のキャリア濃度は 2×10^{18} cm $^{-3}$ である。

[0033]

さらに、リッジ部の上面にストライプ状開口部を有する厚さtのn-GaAsからなるn-キャリア蓄積防止層8が、p-クラッド層6上に形成されている。また、リッジ部の上面にストライプ状開口部を有するアンドープのGaAsからなる厚さ1000nmの低キャリア濃度の第1の電流ブロック層9がn-キャリア蓄積防止層8上に形成されている。リッジ部の上面にストライプ状開口部を有するn-GaAsからなる厚さ500nmの逆導電型の第2の電流ブロック層10が低キャリア濃度の第1の電流ブロック層9上に形成されている。n-キャリア蓄積防止層8のキャリア濃度は5×10¹⁷cm⁻³である。逆導電型の第2の電流ブロック層10のキャリア濃度は8×10¹⁷cm⁻³である。

[0034]

逆導電型の第2の電流ブロック層10のストライプ状開口部内のp-コンタク

ト層7上および逆導電型の第2の電流ブロック層10上に、p-GaAsからなる厚さ3000nmのp-コンタクト層11が形成されている。p-コンタクト層11のキャリア濃度は3×10¹⁹cm⁻³である。p-コンタクト層11上に厚さ300nmのp側電極12が形成される。n-GaAs基板1の裏面に厚さ300nmのn側電極13が形成されている。このように、図1の半導体レーザ素子はリッジ導波型構造を有する。

[0035]

[0036]

量子井戸活性層 4 は、 $Ga_{0.5}$ I $n_{0.5}$ Pからなる厚さ 5 n mの複数の量子井戸層 1 5 と($A1_{0.5}$ $Ga_{0.5}$) $_{0.5}$ I $n_{0.5}$ Pからなる厚さ 5 n mの複数の障壁層 1 6 とが交互に積層されてなる超格子構造を有する。例えば、障壁層 1 6 の数は 2 であり、量子井戸層 1 5 の数は 3 である。

[0037]

上記の構成をまとめて表1に示す。

[0038]

【表1】

層の名称		組成と層の名称	層厚 (nm)	キャリア濃度 (cm ⁻³)	符号
		n-GaAs基板		1 × 10 ¹⁸	1
		n-(AI _{0.7} Ga _{0.3}) _{0.5} In _{0.5} Pクラッド層	1500	3×10 ¹⁷	2
		(Al _{0.5} Ga _{0.5}) _{0.5} In _{0.5} Pが イド層	30		3
発光層	量子井戸	Ga _{0.5} In _{0.5} P井戸層	5		15
)U)U/B	活性層	(AI _{0.5} Ga _{0.5}) _{0.5} In _{0.5} P障壁層	5		16
		(Al _{0.5} Ga _{0.5}) _{0.5} In _{0.5} Pが イド層	30		5
		p-(Al _{0.7} Ga _{0.3}) _{0.5} In _{0.5} Pクラット*層	1500	3×10 ¹⁷	6
		p-Ga _{0.5} In _{0.5} Pコンタクト層	200	2×10 ¹⁸	7
		n-GaAsキャリア蓄積防止層	t	5×10 ¹⁷	8
		GaAs低キャリア濃度の第1の 電流プロック層	1000		9
		n-GaAs逆導電型の第2の 電流プロック層	500	8×10 ¹⁷	10
		pーGaAsコンタクト層	3000	3×10 ¹⁹	11
		p側電極	300		12
		n側電極	300		13

[0039]

図2は図1の半導体レーザ素子におけるp-クラッド層6、n-キャリア蓄積 防止層8および低キャリア濃度の第1の電流ブロック層9のエネルギーバンド図 を模式的に表したものである。

[0040]

図2(a)に示すように、図1の半導体レーザ素子においては、p-クラッド層6と低キャリア濃度の第1の電流ブロック層9との間に、p-クラッド層6と逆導電型の不純物準位、すなわちドナー準位が形成されたn-キャリア蓄積防止層8が形成されている。

[0041]

なお、この場合においては、n-キャリア蓄積防止層8のバンドギャップと低キャリア濃度の第1の電流ブロック層9とのバンドギャップとは等しく、これらの層8,9のバンドギャップは、p-クラッド層6のバンドギャップよりも小さい。

[0042]

図2(b)に示すように、n-キャリア蓄積防止層8に形成されたドナー準位から供給されるキャリアがp-クラッド層6から供給されるキャリアを補償する。このため、低キャリア濃度の第1の電流ブロック層9へ蓄積されるキャリアの量が少なくなる。

[0043]

低キャリア濃度の第1の電流ブロック層9へ蓄積されるキャリアの量が少なくなることにより、低キャリア濃度の第1の電流ブロック層9の空乏状態が保たれるので、低キャリア濃度の第1の電流ブロック層9とpークラッド層6との間に発生する電気容量を小さくでき、半導体レーザ素子の高速動作化が十分に図られる。このように、pークラッド層6と低キャリア濃度の第1の電流ブロック層9との間に、pークラッド層6と逆導電型の不純物準位が形成されたnーキャリア蓄積防止層8を形成することにより、容易に図1の半導体レーザ素子の高周波特性が改善される。

[0044]

図3、図4および図5は図1に示した半導体レーザ素子の製造方法を示す模式 的工程断面図である。

[0045]

図3に示すように、MOC V D (有機金属化学的気相成長) 法により、n-G a A s 基板 1 上に、 $n-(A 1_{0.7} G a_{0.3})_{0.5} I n_{0.5} P$ からなるn-Dラッド層 2、 $(A 1_{0.5} G a_{0.5})_{0.5} I n_{0.5} P$ からなるガイド層 3、量子井戸活性層 4、 $(A 1_{0.5} G a_{0.5})_{0.5} I n_{0.5} P$ からなるガイド層 5、 $(A 1_{0.5} G a_{0.5})_{0.5} I n_{0.5} P$ からなるガイド層 5、 $(A 1_{0.5} G a_{0.5})_{0.5} I n_{0.5} P$ からなるn-D0.5 n0.5 n0.5

[0046]

図4に示すように、p-コンタクト層 7上に SiO_2 膜を形成してパターニングし、ストライプ状の SiO_2 膜 1 7を形成する。その後、 SiO_2 膜 1 7をマスクとしてp-コンタクト層 7 および p-クラッド層 6 の一部をエッチングにより除去し、リッジ部を形成する。

[0047]

さらに、図5に示すように、SiO₂ 膜17を選択成長マスクとして、MOC VD法によりpークラッド層6上にn-GaAsからなる逆導電型のpーキャリア蓄積防止層8、アンドープのGaAsからなる低キャリア濃度の第1の電流ブロック層9およびn-GaAsからなる逆導電型の第2の電流ブロック層10を順に成長させる。

[0048]

SiO₂ 膜17を除去した後、図1に示したように、逆導電型の第2の電流ブロック層10上およびp-コンタクト層7上にp-GaAsからなるp-コンタクト層11をMOCVD法により形成し、p-コンタクト層11の表面にCr/Auからなるp側電極12を形成し、n-GaAs基板1の裏面にAuGe/Ni/Auからなるn側電極13を形成する。

[0049]

ここで、図1の半導体レーザ素子において、キャリア濃度が 5×10^{17} c m $^{-3}$ のn ーキャリア蓄積防止層8 の膜厚 t を変化させ、各膜厚 t における半導体レーザ素子の遮断周波数を測定した。その結果、n ーキャリア蓄積防止層8 の膜厚 t が $20\sim35$ n m の場合に、遮断周波数が顕著に向上することが明らかとなった

[0050]

なお、遮断周波数とは、測定対象の半導体レーザ素子から出力された正弦波を 重畳したレーザ光の振幅が低周波重畳時(本例では重畳周波数が10MHz以下 のとき)に比べて3dB低下する周波数である。

[0051]

さらに、nーキャリア蓄積防止層8の膜厚を30nmとしてnーキャリア蓄積

防止層 8 のキャリア濃度を変化させ、各キャリア濃度における半導体レーザ素子の遮断周波数を測定した。その結果、n-キャリア蓄積防止層 8 のキャリア濃度が $3\times10^{17}\sim6\times10^{17}$ c m^{-3} の場合に、遮断周波数が顕著に向上することが明らかとなった。

[0052]

次に、本発明の第2の実施例における半導体レーザ素子について説明する。 第2の実施例の半導体レーザ素子の構成は、図1に示した構成と同様であり、 各層の材料、膜厚およびキャリア濃度が異なる。本実施例の半導体レーザ素子の 各層の材料、膜厚およびキャリア濃度を表2に示す。

[0053]

層の名称		組成と層の名称	層厚 (nm)	キャリア濃度 (cm ⁻³)	符号
		n-GaAs基板		1×10 ¹⁸	1
		n-Al _{0.45} Ga _{0.55} Asクラット 層	1500	3×10 ¹⁷	2
		Al _{0.35} Ga _{0.65} Asガイド層	30		3
		Al _{0.1} Ga _{0.9} As井戸層	5		15
Joyona	活性層	Al _{0.35} Ga _{0.65} As障壁層	5		16
	1 <i>1</i> L	Al _{0.35} Ga _{0.65} Asガイド層	30		5
		p-Al _{0. 45} Ga _{0. 55} Asクラッド層	1500	1×10 ¹⁸	6
		p-GaAsコンタクト層	200	4×10 ¹⁸	7
		n-Al _{0. 25} Ga _{0. 75} Asキャリ7蓄積防止層	t	5×10 ¹⁷	8
		GaAs低キャリア濃度の第1の 電流プロック層	1000		9
		n-GaAs逆導電型の第2の 電流プロック層	500	5×10 ¹⁷	10
		p-GaAsコンタクト層	3000	3×10 ¹⁹	11
		p側電極	300		12
		n側電極	300		13

[0054]

表2に示すように、本実施例の半導体レーザ素子においては、p-クラッド層6と低キャリア濃度の第1の電流ブロック層9との間に、p-クラッド層6と逆導電型の不純物準位(ドナー準位)が形成されたn-キャリア蓄積防止層8が形成されている。このため、本実施例においては、第1の実施例と同様、n-キャリア蓄積防止層8に形成されたドナー準位から供給されるキャリアがp-クラッド層6から供給されるキャリアを補償する。このため、低キャリア濃度の第1の電流ブロック層9へ蓄積されるキャリアの量が少なくなる。

[0055]

低キャリア濃度の第1の電流ブロック層9へ蓄積されるキャリアの量が少なくなることにより、低キャリア濃度の第1の電流ブロック層9の空乏状態が保たれるので、低キャリア濃度の第1の電流ブロック層9とpークラッド層6との間に発生する電気容量を小さくでき、半導体レーザ素子の高速動作化が十分に図られる。したがって、本実施例においては、半導体レーザ素子の高周波特性が改善される。

[0056]

ここで、本実施例においては、n-キャリア蓄積防止層8のバンドギャップが、p-クラッド層6のバンドギャップよりも小さく、かつ低キャリア濃度の第1の電流ブロック層9のバンドギャップよりも大きくなるように設定されている。このような本実施例のn-キャリア蓄積防止層8は、第4の実施例において後述する中間バンドギャップ層としての機能も有する。

[0057]

すなわち、この場合においては、p-クラッド層 6、n-キャリア蓄積防止層 8 および低キャリア濃度の第1の電流ブロック層 9 のバンドギャップがこの順で 小さくなる。このため、p-クラッド層 6 と n-キャリア蓄積防止層 8 とのエネルギー差が、p-クラッド層 6 と低キャリア濃度の第1の電流ブロック層 9 とのエネルギー差に比べて小さくなる。それにより、キャリアがp-クラッド層 6 からn-キャリア蓄積防止層 8 へ注入されにくくなり、さらに低キャリア濃度の第1の電流ブロック層 9 へも注入されにくくなる。また、この場合においては、キャリアがn-キャリア蓄積防止層 8 と低キャリア濃度の第1の電流ブロック層 9 との両方に分かれて注入されるので、低キャリア濃度の第1の電流ブロック層 9 に注入されるキャリアが少なくなる。

[0058]

以上のように、p-クラッド層6と低キャリア濃度の第1の電流ブロック層9との中間の大きさのバンドギャップを有するn-キャリア蓄積防止層8を形成することにより、低キャリア濃度の第1の電流ブロック層9に蓄積されるキャリアの量をより少なくすることが可能となる。

[0059]

以上のことから、p-クラッド層6と低キャリア濃度の第1の電流ブロック層9との中間の大きさのバンドギャップを有するn-キャリア蓄積防止層8が形成された本実施例においては、低キャリア濃度の第1の電流ブロック層9とp-クラッド層6との間に発生する電気容量をより小さくできるので、半導体レーザ素子の高速動作化がより図られる。

[0060]

[0061]

さらに、n-キャリア蓄積防止層8の膜厚を25nmとして<math>n-キャリア蓄積防止層8のキャリア濃度を変化させ、各キャリア濃度における半導体レーザ素子の遮断周波数を測定した。その結果、n-キャリア蓄積防止層8のキャリア濃度が2.5×10¹⁷~8.5×10¹⁷ cm⁻³の場合に、遮断周波数が顕著に向上することが明らかとなった。

[0062]

上記の結果に示すように、本実施例においては、n-キャリア蓄積防止層 8 が p-クラッド層 6 と低キャリア濃度の第 1 の電流ブロック層 9 との中間の大きさのバンドギャップを有するため、n-キャリア蓄積防止層 8 および低キャリア濃度の第 1 の電流ブロック層 9 のバンドギャップの大きさが等しい第 1 の実施例に比べて、半導体レーザ素子の遮断周波数を顕著に向上させることが可能なn-キャリア蓄積防止層 8 の膜厚およびキャリア濃度の範囲が広くなる。したがって、n-キャリア蓄積防止層 8 の膜厚およびキャリア濃度の設定を容易に行うことが可能となり、n-キャリア蓄積防止層 8 の作製が容易となる。

[0063]

なお、本実施例の半導体レーザ素子において、n-キャリア蓄積防止層 8 と p - クラッド層 6 との間に、アンドープ層を形成してもよい。あるいは、n-キャリア蓄積防止層 8 と低キャリア濃度の第1の電流ブロック層 9 との間に、アンド

ープ層を形成してもよい。この場合、低キャリア濃度の第1の電流ブロック層9よりもバンドギャップの大きい材料からなるアンドープ層を形成することが好ましい。加えて、アンドープ層の材料は、p-クラッド層6よりも小さくかつ低キャリア濃度の第1の電流ブロック層9よりも大きなバンドギャップを有する材料であることが好ましい。

[0064]

次に、本発明の第3の実施例における半導体レーザ素子について説明する。 第3の実施例の半導体レーザ素子の構成は、図1に示した構成と同様であり、 各層の材料、膜厚およびキャリア濃度が異なる。本実施の形態の半導体レーザ素 子の各層の材料、膜厚およびキャリア濃度を表3に示す。

[0065]

層の名称		組成と層の名称	層厚 (nm)	キャリア濃度 (cm ⁻³)	符号
		n-GaN基板		1 × 10 ¹⁸	1
		n-Al _{0.15} Ga _{0.85} Nクラット* 層	1000	3×10 ¹⁷	2
		GaNガイド層	30		3
	量子井戸	In _{0.15} Ga _{0.85} N井戸層	5		15
70,00	舌性層	In _{0.05} Ga _{0.95} N障壁層	5		16
		GaNガイド層	30		5
1 /		p-Al _{0.15} Ga _{0.85} Nクラット* 層	1000	2×10 ¹⁷	6
		p-GaNコンタクト層	200	3×10 ¹⁷	7
		n-GaNキャリア蓄積防止層	t	5×10 ¹⁷	8
		GaN低キャリア濃度の第1の 電流プロック層	800		9
		n-GaN逆導電型の第2の 電流プロック層	200	5×10 ¹⁷	10
	/	pーGaNコンタクト層	3000	8 × 10 ¹⁷	11
/ ,	/ [p側電極	300		12
		n側電極	300		13

[0066]

表3に示すように、本実施例の半導体レーザ素子においては、p-クラッド層6と低キャリア濃度の第1の電流ブロック層9との間に、p-クラッド層6と逆導電型の不純物準位(ドナー準位)が形成されたn-キャリア蓄積防止層8が形成されている。このため、本実施例においては、第1の実施例と同様、n-キャリア蓄積防止層8に形成されたドナー準位から供給されるキャリアがp-クラッド層6から供給されるキャリアを補償する。このため、低キャリア濃度の第1の電流ブロック層9へ蓄積されるキャリアの量が少なくなる。

[0067]

なお、この場合においては、n-キャリア蓄積防止層8のバンドギャップと低キャリア濃度の第1の電流ブロック層9とのバンドギャップとは等しく、これらの層8,9のバンドギャップは、p-クラッド層6のバンドギャップよりも小さい。

[0068]

低キャリア濃度の第1の電流ブロック層9へ蓄積されるキャリアの量が少なくなることにより、低キャリア濃度の第1の電流ブロック層9の空乏状態が保たれるので、低キャリア濃度の第1の電流ブロック層9とpークラッド層6との間に発生する電気容量を小さくでき、半導体レーザ素子の高速動作化が十分に図られる。したがって、本実施例においては、半導体レーザ素子の高周波特性が改善される。

[0069]

本実施例の半導体レーザ素子において、nキャリア濃度が 5×10^{17} c m $^{-3}$ の n -キャリア蓄積防止層 8 の膜厚 t を変化させ、各膜厚 t における半導体レーザ素子の遮断周波数を測定した。その結果、n - キャリア蓄積防止層 8 の膜厚 t が 3 5 n m o 場合に、遮断周波数が顕著に向上することが明らかとなった。

[0070]

図6は本発明の第4の実施例における半導体レーザ素子を示す模式的断面図である。

[0071]

図6に示す半導体レーザ素子の構成は、以下の点を除いて、図1に示した半導体レーザ素子の構成と同様である。

[0072]

図6に示す半導体レーザ素子においては、p-クラッド層6とn-キャリア蓄積防止層8との間に、p-クラッド層6よりもバンドギャップが小さくかつn-キャリア蓄積防止層8よりもバンドギャップが大きな中間バンドギャップ層80が形成されている。このような図6の半導体レーザ素子の構成をまとめて表4に示す。

[0073]

層の名称		組成と層の名称	層厚 (nm)	キャリア濃度 (cm ⁻³)	符号
7	1 /	n−GaAs基板	(Tany	1 × 10 ¹⁸	1
		n-(AI _{0.7} Ga _{0.3}) _{0.5} In _{0.5} Pクラット・層	1500	3×10 ¹⁷	2
		(Al _{0.5} Ga _{0.5}) _{0.5} In _{0.5} Pが イド層	30		3
発光層	量子井戸	Ga _{0.5} In _{0.5} P井戸層	5		15
	活性層	(AI _{0.5} Ga _{0.5}) _{0.5} In _{0.5} P障壁層	5		16
		(Al _{0.5} Ga _{0.5}) _{0.5} In _{0.5} Pが作層	30		5
		p-(Al _{0.7} Ga _{0.3}) _{0.5} In _{0.5} Pクラッド層	1500	3×10^{17}	6
		p-Ga _{0.5} In _{0.5} Pコンタクト層	200	2×10 ¹⁸	7
		Ga _{0.5} In _{0.5} P中間パント・キ・ャップ。層	20nn		80
		n-GaAsキャリア蓄積防止層	t	5 × 10 ¹⁷	8
1/		GaAs低キャリア濃度の第1の 電流プロック層	1000	•	9
	/	n-GaAs逆導電型の第2の 電流プロック層	500	8×10 ¹⁷	10
		pーGaAsコンタクト層	3000	3×10 ¹⁹	11
		p側電極	300		12
		n側電極	300		13

[0074]

表4に示すように、本実施例の半導体レーザ素子においては、p-クラッド層6と低キャリア濃度の第1の電流ブロック層9との間に、p-クラッド層6と逆導電型の不純物準位(ドナー準位)が形成されたn-キャリア蓄積防止層8が形成されている。このため、本実施例においては、第1の実施例と同様、n-キャリア蓄積防止層8に形成されたドナー準位から供給されるキャリアがp-クラッド層6から供給されるキャリアを補償する。このため、低キャリア濃度の第1の電流ブロック層9へ蓄積されるキャリアの量が少なくなる。

[0075]

低キャリア濃度の第1の電流ブロック層9へ蓄積されるキャリアの量が少なくなることにより、低キャリア濃度の第1の電流ブロック層9の空乏状態が保たれるので、低キャリア濃度の第1の電流ブロック層9とp-クラッド層6との間に発生する電気容量を小さくでき、半導体レーザ素子の高速動作化が十分に図られる。したがって、本実施例においては、半導体レーザ素子の高周波特性が改善される。

[0076]

ここで、本実施例においてnーキャリア蓄積防止層8のバンドギャップと低キャリア濃度の第1の電流ブロック層9のバンドギャップとが等しく、これらの層8,9のバンドギャップは、pークラッド層6のバンドギャップよりも小さい。さらに、pークラッド層6とnーキャリア蓄積防止層8との間には、pークラッド層6およびnーキャリア蓄積防止層8の中間の大きさのバンドギャップを有する中間バンドギャップ層80が形成されている。このような中間バンドギャップ80が形成された本実施例においては、以下のような効果が得られる。

[0077]

すなわち、この場合においては、p-クラッド層 6、中間バンドギャップ層 8 0 および n - キャリア蓄積防止層 8 のバンドギャップがこの順で小さくなるため、p-クラッド層 6 と中間バンドギャップ層 8 0 とのエネルギー差が p-クラッド層 6 と n - キャリア蓄積防止層 8 とのエネルギー差に比べて小さくなる。このため、キャリアが p-クラッド層 6 から中間バンドギャップ層 8 0 へ注入されにくくなり、さらに n - キャリア蓄積防止層 8 へも注入されにくくなる。また、この場合においては、キャリアが中間バンドギャップ層 8 0 と n - キャリア蓄積防止層 8 との両方に分かれて注入されるので、n - キャリア蓄積防止層 8 に注入されるキャリアが少なくなる。

[0078]

以上のことから、中間バンドギャップ層80を形成することにより、n-キャリア蓄積防止層8へ注入されるキャリアを少なくし、さらに低キャリア濃度の第1の電流ブロック層9へ注入されるキャリアを少なくすることが可能になる。そ

れにより、低キャリア濃度の第1の電流ブロック層9に蓄積されるキャリアの量をより少なくすることが可能になる。

[0079]

以上のことから、中間バンドギャップ層80が形成された本実施例においては、低キャリア濃度の第1の電流ブロック層9とp-クラッド層6との間に発生する電気容量をより小さくできるので、半導体レーザ素子の高速動作化がより図られる。

[0080]

本実施例の半導体レーザ素子において、キャリア濃度が $5\times10^{17}\,\mathrm{cm}^{-3}$ のn ーキャリア蓄積防止層 8 の膜厚 t を変化させ、各膜厚 t における半導体レーザ素子の遮断周波数を測定した。その結果、n ーキャリア蓄積防止層 8 の膜厚 t が 1 $5\sim35$ n m の場合に、遮断周波数が顕著に向上することが明らかとなった。

[0081]

さらに、n-キャリア蓄積防止層8の膜厚を30nmとして<math>n-キャリア蓄積防止層8のキャリア濃度を変化させ、各キャリア濃度における半導体レーザ素子の遮断周波数を測定した。その結果、n-キャリア蓄積防止層8のキャリア濃度が2.5×10¹⁷~6×10¹⁷ cm⁻³の場合に、遮断周波数が顕著に向上することが明らかとなった。

[0082]

上記の結果に示すように、中間バンドギャップ層 8 0 が形成された本実施例においては、中間バンドギャップ層が形成されていない第 1 の実施例に比べて、半導体レーザ素子の遮断周波数を顕著に向上させることが可能な n ーキャリア蓄積防止層 8 の膜厚およびキャリア濃度の範囲が広くなる。したがって、 n ーキャリア蓄積防止層 8 の膜厚およびキャリア濃度の設定を容易に行うことが可能となり、 n ーキャリア蓄積防止層 8 の作製が容易となる。

[0083]

図7は本発明の第5の実施例における半導体レーザ素子の模式的断面図である

[0084]

図7に示す半導体レーザ素子においては、図1に示した半導体レーザ素子と同様、n-GaAs基板1上に各層2~5が形成されている。

[0085]

ガイド層 5 上に、 $p-(A_{0.7}^{1}G_{0.3}^{3})_{0.5}^{1}I_{0.5}^{1}P$ からなる厚さ200nmのp-クラッド層 9 1 が形成されている。p-クラッド層 9 1 のキャリア 濃度は 3×10^{17} c m $^{-3}$ である。

[0086]

 $p-クラッド層91上に、<math>n-Ga_{0.5}$ $In_{0.5}$ Pからなるn-キャリア蓄積防止層92、アンドープの<math>GaAsからなる厚さ1000nmの低キャリア濃度の第1の電流ブロック層93およびn-GaAsからなる厚さ500nmの逆導電型の第2の電流ブロック層94が順に形成されている。

[0087]

n-キャリア蓄積防止層 9 2 、低キャリア濃度の第 1 の電流ブロック層 9 3 および逆導電型の第 2 の電流ブロック層 9 4 の中央部の領域が除去されてストライプ状開口部が形成されている。 n-キャリア蓄積防止層 9 2 のキャリア濃度は 5 × 1 0 17 c m -3 である。逆導電型の第 2 の電流ブロック層 9 4 のキャリア濃度は 8 × 1 0 17 c m -3 である。

[0088]

ストライプ状開口部を埋め込むようにp-0ラッド層91上および逆導電型の第2の電流ブロック層94上に $p-(Al_{0.7}Ga_{0.3})_{0.5}In_{0.5}$ Pからなる厚さ1300nmのp-0ラッド層95が形成されている。p-0ラッド層95のキャリア濃度は 3×10^{17} cm $^{-3}$ である。このように、図6の半導体レーザ素子はセルフアライン型構造を有する。

[0089]

 $p-Ga_{0.5}$ $In_{0.5}$ Pからなる厚さ200nmのp-コンタクト層96がp-クラッド層95上に形成されている。p-GaAsからなる厚さ3000nmのp-コンタクト層97がp-コンタクト層96上に形成されている。p-コンタクト層96のキャリア濃度は 2×10^{18} cm^{-3} である。p-コンタクト層97のキャリア濃度は 3×10^{19} cm^{-3} である。

[0090]

上記の構成をまとめて表5に示す。

[0091]

【表5】

層の名称		組成と層の名称	層厚 (nm)	キャリア濃度 (cm ⁻³)	符号
		n-GaAs基板		1×10 ¹⁸	1
		n-(AI _{0.7} Ga _{0.3}) _{0.5} In _{0.5} Pクラット* 層	1500	3×10 ¹⁷	2
		(Al _{0.5} Ga _{0.5}) _{0.5} In _{0.5} Pが作層	30		3
	量子井戸	Ga _{0.5} In _{0.5} P井戸層	5		15
)	活性層	(AI _{0.5} Ga _{0.5}) _{0.5} In _{0.5} P障壁層	5		16
		(Al _{0.5} Ga _{0.5}) _{0.5} In _{0.5} Pが化層	30		5
1 /		p-(Al _{0.7} Ga _{0.3}) _{0.5} In _{0.5} Pクラット*層	200	3×10^{17}	91
		p-(Al _{0.7} Ga _{0.3}) _{0.5} In _{0.5} Pクラット*層	1300	3×10 ¹⁷	95
		n-Ga _{0.5} In _{0.5} Pキャリ7蓄積防止層	t	5×10 ¹⁷	92
		GaAs低キャリア濃度の第1の 電流プロック層	1000		93
		n-GaAs逆導電型の第2の 電流プロック層	500	8×10 ¹⁷	94
		p-Ga _{0.5} In _{0.5} Pコンタクト層	200	2×10 ¹⁸	96
/		p-GaAsコンタクト層	3000	3×10 ¹⁹	97
/ ,		p側電極	300		12
		n側電極	300		13

[0092]

図8および図9は図7に示した半導体レーザ素子の製造方法を示す模式的工程断面図である。

[0093]

図8に示すように、MOCVD法により、n-GaAs基板1上に、 $n-(A^{1}_{0.7}Ga_{0.3})$ 0.5 $In_{0.5}$ Pからなるn-Dラッド層2、 $(A1_{0.5}Ga_{0.5}Ga_{0.5})$ 0.5 $In_{0.5}$ Pからなる厚さ30nmのガイド層3、量子井戸活性層4、 $(A1_{0.5}Ga_{0.5})$ 0.5 $In_{0.5}$ Pからなる厚さ30nmのガイド層5、 $p-(A1_{0.7}Ga_{0.3})$ 0.5 $In_{0.5}$ Pからなp-Dラッド層91、 $n-Ga_{0.5}$ $In_{0.5}$ Pからなるn-4中リア蓄積防止層10、アンドープの10、アンドープの11、11、12、アンドープの13、および13、および14、の電流ブロック層13、および15、および15、なる逆導電型の第10の電流ブロック層14 を順に成長させる。

[0094]

逆導電型の第2の電流ブロック層94上にマスク(図示せず)を形成し、ストライプ状開口部を有するようにパターンニングする。その後、図9に示すように、逆導電型の第2の電流ブロック層94、低キャリア濃度の第1の電流ブロック層93およびキャリア蓄積防止層92の中央部をエッチングにより除去し、ストライプ状開口部を形成する。

[0095]

さらに、図7に示したように、MOCVD法により逆導電型の第2の電流ブロック層94上およびストライプ状開口部内のp-クラッド層91上にp-(A10.7 $Ga_{0.3}$) 0.5 $In_{0.5}$ P からなるp-クラッド層95、p-Ga $_{0.5}$ $In_{0.5}$ P からなるp-クラッド層96、およびp-GaAsからなるp-コンタクト層97を順に形成する。p-コンタクト層97の表面にCr/Auからなるp 側電極12を形成し、n-GaAs基板1の裏面にAuGe/Ni/Auからなるn側電極13を形成する。

[0096]

図9の半導体レーザ素子においては、p-クラッド層91と低キャリア濃度の第1の電流ブロック層93との間に、p-クラッド層91と逆導電型の不純物準位(ドナー準位)が形成されたn-キャリア蓄積防止層92が形成されている。このため、本実施例においては、第1の実施例と同様、n-キャリア蓄積防止層92に形成されたドナー準位から供給されるキャリアがp-クラッド層91から供給されるキャリアを補償する。このため、低キャリア濃度の第1の電流ブロッ

ク層93へ蓄積されるキャリアの量が少なくなる。

[0097]

低キャリア濃度の第1の電流ブロック層93へ蓄積されるキャリアの量が少なくなることにより、低キャリア濃度の第1の電流ブロック層93の空乏状態が保たれるので、低キャリア濃度の第1の電流ブロック層93とpークラッド層91との間に発生する電気容量を小さくでき、半導体レーザ素子の高速動作化が十分に図られる。したがって、本実施例においては、半導体レーザ素子の高周波特性が改善される。

[0098]

図7の半導体レーザ素子において、キャリア濃度が 5×10^{17} c m $^{-3}$ の n - キャリア蓄積防止層 9 2 の膜厚 t を変化させ、各膜厚 t における半導体レーザ素子の遮断周波数を測定した。その結果、n- キャリア蓄積防止層 9 2 の膜厚 t が 2 $0\sim35$ n m の場合に、遮断周波数が顕著に向上することが明らかとなった。

[0099]

さらに、n-キャリア蓄積防止層8の膜厚を30nmとして<math>n-キャリア蓄積防止層8のキャリア濃度を変化させ、各キャリア濃度における半導体レーザ素子の遮断周波数を測定した。その結果、n-キャリア蓄積防止層のキャリア濃度が3×10¹⁷~6×10¹⁷ c m⁻³の場合に、遮断周波数が顕著に向上することが明らかとなった。

[0100]

次に、本発明の第6の実施例における半導体レーザ素子について説明する。

第6の実施例の半導体レーザ素子の構成は、図7に示した構成と同様であり、 各層の材料、膜厚およびキャリア濃度が異なる。本実施の形態の半導体レーザ素 子の各層の材料、膜厚およびキャリア濃度を表6に示す。

[0101]

【表 6】

層の名称		組成と層の名称	層厚 (nm)	キャリア濃度 (cm ⁻³)	符号
		n-GaAs基板		1×10 ¹⁸	1
		n-Al _{0.45} Ga _{0.55} Asクラット・層	1500	3×10^{17}	2
		Al _{0.35} Ga _{0.65} Asか 小 層	30		3
発光層	量子井戸	Al _{0.1} Ga _{0.9} As井戸層	5		15
) b) b/a	活性層	AI _{0.35} Ga _{0.65} As障壁層	5		16
		Al _{0.35} Ga _{0.65} Asかイトを層	30		5
/		p-Al _{0.45} Ga _{0.55} Asクラッド層	200	1×10 ¹⁸	91
		p-Al _{0.45} Ga _{0.55} Asクラット*層	1300	1×10 ¹⁸	95
		n-GaAsキャリア蓄積防止層	t	5×10 ¹⁷	92
		GaAs低キャリア濃度の第1の 電流プロック層	1000	·	93
		n-GaAs逆導電型の第2の 電流ブロック層	500	5×10 ¹⁷	94
		p-GaAsコンタクト層	200	4×10 ¹⁸	96
		pーGaAsコンタクト層	3000	3×10 ¹⁹	97
		p側電極	300		12
		n側電極	300		13

[0102]

表6に示すように、本実施例の半導体レーザ素子においては、p-クラッド層 91と低キャリア濃度の第1の電流ブロック層 93との間に、p-クラッド層 91と逆導電型の不純物準位 (ドナー準位) が形成された n-キャリア蓄積防止層 92が形成されている。このため、本実施例においては、第1の実施例と同様、n-キャリア蓄積防止層 92に形成されたドナー準位から供給されるキャリアが p-クラッド層 91から供給されるキャリアを補償する。このため、低キャリア

濃度の第1の電流ブロック層93へ蓄積されるキャリアの量が少なくなる。

[0103]

低キャリア濃度の第1の電流ブロック層93へ蓄積されるキャリアの量が少なくなることにより、低キャリア濃度の第1の電流ブロック層93の空乏状態が保たれるので、低キャリア濃度の第1の電流ブロック層93とpークラッド層91との間に発生する電気容量を小さくでき、半導体レーザ素子の高速動作化が十分に図られる。したがって、本実施例においては、半導体レーザ素子の高周波特性が改善される。

[0104]

図10は、n-キャリア蓄積防止層92の膜厚 t を変化させたときの表8の半導体レーザ素子の遮断周波数の測定結果を示す図である。なお、この場合のn-キャリア蓄積防止層92のキャリア濃度は $5\times10^{17}\,\mathrm{cm}^{-3}$ である。

[0105]

図10に示すように、n-キャリア蓄積防止層92を形成しない場合には遮断 周波数が200MHzであったものが、n-キャリア蓄積防止層92を厚くする ことにより遮断周波数が徐々に向上し、n-キャリア蓄積防止層92の厚さtが 15~35nmの場合において遮断周波数が顕著に向上する。

[0106]

[0107]

次に、本発明の第7の実施例における半導体レーザ素子について説明する。 第7の実施例の半導体レーザ素子の構成は、図7に示した構成と同様であり、 各層の材料、膜厚およびキャリア濃度が異なる。本実施の形態の半導体レーザ素 子の各層の材料、膜厚およびキャリア濃度を表7に示す。

[0108]

層の名称		組成と層の名称	層厚 (nm)	キャリ7濃度 (cm ⁻³)	符号
		n-GaN基板		1×10 ¹⁸	1
		n-Al _{0. 15} Ga _{0. 85} Nクラット* 層	1000	3×10 ¹⁷	2
	/	GaNガイド層	30		3
発光層	量子井戸	In _{0.15} Ga _{0.85} N井戸層	5		15
70,0,6	活性層	In _{0.05} Ga _{0.95} N障壁層	5		16
		GaNガイド層	30	·	5
/		p-Al _{0.15} Ga _{0.85} Nクラット・層	100	2×10 ¹⁷	91
		p-Al _{0.15} Ga _{0.85} Nクラット* 層	900	2×10 ¹⁷	95
		n-Al _{0.07} Ga _{0.93} Nキャリア蓄積防止層	t	5×10 ¹⁷	92
		GaN低キャリア濃度の第1の 電流プロック層	800		93
		n-GaN逆導電型の第2の 電流プロック層	200	5×10 ¹⁷	94
$ \ /\ $		p-GaN第 1 コンタクト層	200	3×10^{17}	96
		p-GaN第2コンタクト層	3000	8×10 ¹⁷	97
	/ [p側電極	300		12
		n側電極	300		13

[0109]

表7に示すように、本実施例の半導体レーザ素子においては、p-クラッド層91と低キャリア濃度の第1の電流ブロック層93との間に、p-クラッド層6と逆導電型の不純物準位(ドナー準位)が形成されたn-キャリア蓄積防止層92が形成されている。このため、本実施例においては、第1の実施例と同様、n-キャリア蓄積防止層92に形成されたドナー準位から供給されるキャリアがp-クラッド層91から供給されるキャリアを補償する。このため、低キャリア濃

度の第1の電流ブロック層93へ蓄積されるキャリアの量が少なくなる。

[0110]

低キャリア濃度の第1の電流ブロック層93へ蓄積されるキャリアの量が少なくなることにより、低キャリア濃度の第1の電流ブロック層93の空乏状態が保たれるので、低キャリア濃度の第1の電流ブロック層93とpークラッド層91との間に発生する電気容量を小さくでき、半導体レーザ素子の高速動作化が十分に図られる。したがって、本実施例においては、半導体レーザ素子の高周波特性が改善される。

[0111]

ここで、本実施例においては、第2の実施例と同様、nーキャリア蓄積防止層92のバンドギャップが、pークラッド層6のバンドギャップよりも小さく、かつ低キャリア濃度の第1の電流ブロック層93のバンドギャップよりも大きくなるように設定されている。このような本実施例のnーキャリア蓄積防止層92は、第4の実施例の中間バンドギャップ層80としての機能も有する。

[0112]

すなわち、この場合においては、p-クラッド層91、n-キャリア蓄積防止層92および低キャリア濃度の第1の電流ブロック層93のバンドギャップがこの順で小さくなる。このため、p-クラッド層91とn-キャリア蓄積防止層92とのエネルギー差が、p-クラッド層91と低キャリア濃度の第1の電流ブロック層93とのエネルギー差に比べて小さくなる。このため、キャリアがp-クラッド層91からn-キャリア蓄積防止層92へ注入されにくくなり、さらに低キャリア濃度の第1の電流ブロック層93へも注入されにくくなる。また、この場合においては、キャリアがn-キャリア蓄積防止層92と低キャリア濃度の第1の電流ブロック層93との両方に分かれて注入されるので、低キャリア濃度の第1の電流ブロック層93に注入されるキャリアが少なくなる。

[0113]

以上のことから、中間バンドギャップ層としても作用する n ーキャリア蓄積防止層 9 2 を形成することにより、低キャリア濃度の第 1 の電流ブロック層 9 3 に蓄積されるキャリアの量をより少なくすることが可能となる。

[0114]

以上のように、中間バンドギャップ層としての機能も有するnーキャリア蓄積 防止層92が形成された本実施例においては、低キャリア濃度の第1の電流ブロック層93とpークラッド層6との間に発生する電気容量をより小さくできるので、半導体レーザ素子の高速動作化がより図られる。

[0115]

本実施例の半導体レーザ素子において、キャリア濃度が5×10¹⁷ c m⁻³の n ーキャリア蓄積防止層92の膜厚tを変化させ、各膜厚tにおける半導体レーザ素子の遮断周波数を測定した。その結果、nーキャリア蓄積防止層92の膜厚tが40nmの場合に、遮断周波数が顕著に向上することが明らかとなった。

[0116]

なお、本実施例の半導体レーザ素子において、nーキャリア蓄積防止層92とpークラッド層91との間に、アンドープ層を形成してもよい。あるいは、nーキャリア蓄積防止層92と低キャリア濃度の第1の電流ブロック層93との間に、アンドープ層を形成してもよい。この場合、低キャリア濃度の第1の電流ブロック層93よりもバンドギャップの大きい材料からなるアンドープ層を形成することが好ましい。加えて、アンドープ層の材料は、pークラッド層91よりも小さくかつ低キャリア濃度の第1の電流ブロック層93よりも大きなバンドギャップを有する材料であることが好ましい。

[0117]

上記の第1~第7の実施例においては、n型の不純物をドーピングすることにより、キャリア蓄積防止層にドナー準位を形成している。この場合、キャリア蓄積防止層に形成するドナー準位の密度は、バイアスを印加しない状態でドナー準位がほとんどイオン化する密度とすることが好ましい。

[0118]

また、上記の第1~第7の実施例においては、p型のクラッド層の電流注入領域を除く領域上に逆導電型のnーキャリア蓄積防止層を形成する場合について説明したが、p型のクラッド層の電流注入領域上にnーキャリア蓄積防止層が形成されてもよい。ただし、この場合においては、nーキャリア蓄積防止層が電流を

阻害しないようにするため、n-キャリア蓄積防止層の膜厚を小さくする。

[0119]

さらに、上記の第1~第7の実施例においては、低キャリア濃度の第1の電流 ブロック層上に逆導電型の第2の電流ブロック層を有する構造について説明した が、逆導電型の第2の電流ブロック層は本発明において必ずしも必要な層ではな く、電流ブロック層として低キャリア濃度の第1の電流ブロック層のみを形成し てもよい。

[0120]

加えて、上記の第1~第7の実施例においては、半導体として、III 族窒化物 半導体、A1GaInP系半導体、A1GaAs系半導体を用いる半導体レーザ 素子について説明したが、GaInAsを初めとする他のIII - V族半導体、II - VI族半導体、IV族半導体、IV-IV族半導体にも本発明は適用できる。特に、エ ピタキシャル成長中に半絶縁性半導体を形成することが困難な半導体、例えばII I 族窒化物半導体、A1GaInP系半導体、A1GaAs系半導体を用いる半 導体レーザ素子については、効果が大きい。

[0121]

次に、本発明の原理および作用の詳細について説明する。

以下においては、eを素電荷とし、 ε_c をクラッド層の誘電率とし、 ε をキャリア蓄積防止層の誘電率とし、 N_c をクラッド層のキャリア濃度とし、 N_c をクラッド層のバンドギャップとし、 ΔE_v をクラッド層およびキャリア蓄積防止層間の価電子帯のバンド不連続量とし、 ΔE_c をクラッド層およびキャリア蓄積防止層間の伝導帯のバンド不連続量ととする。

[0122]

ここでは、図11に示すように、クラッド層がn型であり、キャリア蓄積防止層にアクセプタ準位が形成されている場合について考える。キャリア蓄積防止層上には低キャリア濃度の電流ブロック層が形成されている。

[0123]

さらに、この場合においては、 $\epsilon_{\rm c}$ N $_{\rm c}$ Δ E $_{\rm c}$ / (ϵ N) < E $_{\rm gc}$ - Δ E $_{\rm c}$ - Δ

 $\mathbf{E}_{\mathbf{v}}$ の関係が成り立つとともに、次の条件(1)または(2)のいずれかを満たす場合について考える。

[0124]

- (1) クラッド層およびキャリア蓄積防止層が歪みを有していない場合
- (2) 各層が閃亜鉛鉱構造の半導体からなり、各層の積層方向が一般式 [0M N] 方向(M、NはM=N=0を除く任意の数、例えば [001] 方向と [00 1] 方向) で表される場合、あるいは、各層がウルツ鉱構造の半導体からなり、各層の積層方向が一般式 [HKL0] 方向、(H、K、LはH+K+L=0であり、かつH=K=L=0を除く任意の数、例えば [1-100] 方向と [11-20] 方向) で表される場合

まず、キャリア蓄積防止層の厚さ t がおよそ $t_A=(2\ \epsilon_c\ N_c\ \Delta E_c)^{1/2}$ / $(e\ N)$ であるときには、クラッド層およびキャリア蓄積防止層のバンド構造は図 $1\ 1$ (a) のようになる。

[0125]

すなわち、図11(a)に示すように、キャリア蓄積防止層の伝導帯の最も低いところ(クラッド層との界面)のエネルギーが、クラッド層の伝導帯のエネルギーの最も低いところのエネルギーと等しくなる。したがって、キャリア蓄積防止層の伝導帯のクラッド層との界面にはキャリアが溜まらない。

[0126]

一方、キャリア蓄積防止層の厚さ t がおよそ $t_B=[2\ \epsilon_c\ \epsilon_c\ \epsilon_c] \epsilon_c$ ϵ_c $\epsilon_$

[0127]

すなわち、図11(b)に示すように、キャリア蓄積防止層の価電子帯の最も高いところ(低キャリア濃度の第1の電流ブロック層との界面)のエネルギーが、クラッド層の伝導帯のエネルギーの最も低いところのエネルギーと等しくなる。したがって、キャリア蓄積防止層のアクセプタ準位は全てイオン化しており、低キャリア濃度の電流ブロック層にキャリアが供給されない。

[0128]

ところで、キャリア蓄積防止層の厚さ t が $t_A \le t \le t_B$ の範囲では、クラッド層とキャリア蓄積防止層との界面にかかる電場の微小な変化に対して、界面に蓄積される電場の量は変化しない。つまり、クラッド層とキャリア蓄積防止層の界面の過渡的な電気容量を0に近くすることができる。このことから、キャリア蓄積防止層の厚さ t を上記の範囲に設定することが特に好ましい。

[0129]

ここで、 ε_{c} N C $^{\Delta}$ E C C

[0130]

通常、半導体レーザ素子に使用されるクラッド層もしくはキャリア蓄積防止層の材料の組み合わせでは、ほぼ $\varepsilon_c = \varepsilon$ であり、キャリア蓄積防止層のバンドギャップ(E_{gc} - ΔE_c - ΔE_v)より ΔE_c の方が小さい。 N_c >>Nの場合には、 ε_c N_c ΔE_c / (ε N) > E_{gc} - ΔE_v - ΔE_c となることがあるが、N>> N_c あるいはほぼ $N=N_c$ とすれば、 ε_c N_c ΔE_c / (ε N) < E_{gc} - Δ E_c の関係を満たすことは容易である。

[0131]

上記の議論では、クラッド層がn型でありキャリア蓄積防止層にアクセプタ準位が形成されている場合について考えたが、上記の実施例のようにクラッド層がp型でありかつキャリア蓄積防止層にドナー準位が形成されている場合においても、同様の効果がある。

[0132]

すなわち、p型クラッド層およびドナー準位が形成されたキャリア蓄積防止層において $\epsilon_{\rm C}$ $N_{\rm C}$ Δ $E_{\rm V}$ / $(\epsilon$ N) < $E_{\rm gc}$ - Δ $E_{\rm C}$ - Δ $E_{\rm V}$ の関係が成り立つ場合、キャリア蓄積防止層の厚さ t が $t_{\rm A}$ \leq t \leq $t_{\rm B}$ の範囲では、クラッド層とキャリア蓄積防止層との界面にかかる電場の微小な変化に対して、界面に蓄積され

る電荷の量が変化しない。つまり、クラッド層とキャリア蓄積防止層との界面の 過渡的な電気容量を0に近くすることができる。したがって、ドナー準位が形成 されたキャリア蓄積防止層の厚さ t を上記の範囲に設定することが特に好ましい 。また、p型のクラッド層のキャリア濃度 N_c およびドナー準位が形成されたキャリア蓄積防止層のキャリア濃度Nは、 N_c $\leq N$ であることがさらに好ましい。

[0133]

ここで、第4の実施例のようにクラッド層とキャリア蓄積防止層との間に中間バンドギャップ層を形成した場合においては、 t_A 側の条件が広くなる。また、第2および第7の実施例のようにキャリア蓄積防止層が中間バンドギャップとしての機能を有する場合においては、 t_A 側および t_B 側の条件が広くなる。このことは、第2、第4および第7の実施例において前述したキャリア蓄積防止層8の最適な膜厚の範囲に現れている。

[0134]

なお、第7の実施例および第9の実施例の半導体レーザ素子においては、前述の条件(1)および(2)のどちらも当てはまらず、歪みによりクラッド層にピエゾ電場による電位勾配が発生する。このため、これらの実施例においては、上記のような関係を容易に導くことはできない。

【図面の簡単な説明】

【図1】

本発明の第1~第3の実施例における半導体レーザ素子の模式的断面図である

【図2】

図1の半導体レーザ素子におけるpークラッド層、nーキャリア蓄積防止層および低キャリア濃度の第1の電流ブロック層のエネルギーバンド図である。

【図3】

図1の半導体レーザ素子の製造方法を示す模式的工程断面図である。

【図4】

図1の半導体レーザ素子の製造方法を示す模式的工程断面図である。

【図5】

図1の半導体レーザ素子の製造方法を示す模式的工程断面図である。

【図6】

本発明の第4の実施例における半導体レーザ素子の模式的断面図である。

【図7】

本発明の第5の実施例における半導体レーザ素子の模式的断面図である。

【図8】

図7の半導体レーザ素子の製造方法を示す模式的工程断面図である。

【図9】

図7の半導体レーザ素子の製造方法を示す模式的工程断面図である。

【図10】

第5の実施例の半導体レーザ素子の遮断周波数とキャリア蓄積防止層の厚さとの関係の測定結果を示す図である。

【図11】

本発明の原理および作用を説明するための図である。

【図12】

従来の半導体レーザ素子の構成を示す模式的断面図である。

【図13】

図12の半導体レーザ素子におけるp型クラッド層および低キャリア濃度の電流ブロック層の価電子帯のエネルギーバンド図である。

【符号の説明】

- 8,62,92 キャリア蓄積防止層
- 9,93 低キャリア濃度の第1の電流ブロック層
- 10,94 逆導電型の第2の電流ブロック層

【書類名】図面【図1】

1

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

7

【図11】

【図12】

【図13】

【書類名】

要約書

【要約】

【課題】 高速動作化が十分に図られた半導体レーザ素子を提供することである

【解決手段】 半導体レーザ素子は、n-GaAs基板1上に、n-クラッド層2、発光層14、p-クラッド層6およびp-コンタクト層7が順に形成されている。p-クラッド層6およびp-コンタクト層7にリッジ部が形成され、リッジ部の上面に開口部を有するn-キャリア蓄積防止層8が形成されている。n-キャリア蓄積防止層8上に低キャリア濃度の第1の電流ブロック層9および逆導電型の第2の電流ブロック層10が形成され、逆導電型の第2の電流ブロック層10が形成され、逆導電型の第2の電流ブロック層10上およびp-コンタクト層7上にp-コンタクト層11が形成されている。

【選択図】 図1

) -

出願人履歴情報

識別番号

[000001889]

1. 変更年月日

1993年10月20日

[変更理由] 住

住所変更

住 前 -

大阪府守口市京阪本通2丁目5番5号

氏 名

三洋電機株式会社