CprE 288 – Introduction to Embedded Systems (Output Compare and PWM)

Instructors:
Dr. Zhao Zhang (Sections A, B, C, D, E)
Dr. Phillip Jones (Sections F, G, J)

Overview of Today's Lecture

- Announcements
- Output Compare and Pulse Wave Modulation (PWM)

http://class.ece.iastate.edu/cpre288

Announcements

• Homework 7 is due on Thursday

ttp://class.ece.iastate.edu/cpre288

Output Compare and PWD

Generate certain digital waveforms for control purposes

Recall Input Capture: Recognizes digital waveforms

Many applications in microcontroller applications:

- Start analog devices
- Control speed of motors
- Control power output rate
- Communications
- Control servo (lab 8)

Output Capture

Example: Generate a waveform with output events (transitions) at 220, 221, 223, 226, and 227 with initial state as low

The waveform is 1-cycle high, 2-cycle low, 3-cyle high, and 1-cycle low

220 221 222 223 224 225 226 227

Output Compare: Design Principle

Time is important

How could a microcontroller generate events at precise time intervals?

- Use time delay functions?
 - CPU cannot do anything else
 - Not accurate
- · Use interrupts?
 - Not necessarily accurate, because of interrupt overhead and possibly delays by other interrupts

ATmega128 16-bit Timer/Counter ATMega128 has two, multi-purpose 16-bit timer/counter units One input capture unit Three independent output compare units Pulse width modulation output Frequency generator And other features

ATmega128 16-bit Timer/Counter Port Connection: Timer 1, Channels A, B, C => Port B pins 5, 6, 7 SERV1A, SERV1B, SERV1C on board Timer 3, Channels A, B, C => Port E pins 3, 4, 5 SERV3A, SERV3B, SERV3C on board Note: Those pins have to be configured as output pin to be used with OC

WGM: Waveform Generation Modes

Sixteen WGMs, three categories:

- Normal Mode: ISR sets the new value to OCR(s) after a match event
 - Precisely, output compare match event
- CTC Modes and PWM Modes: Hardware sets the new value in OCR(s) after a match event
 - CTC Modes: To generate square waveforms
 - PWM modes: To generate pulse-width-modulation waveforms

Programming Example

```
// Use Normal Mode to generate a square waveform of
// 2M timer cycles, using Timer/Counter 1
unsigned count = 0;

ISR (TIMER1_COMPA_vect)
{
    count += M;
    OCRIA = count;
}

Note:
    - May initialize "count" to a different value, e.g. count = TCNT+100;
    - For this code, WGM must be 0 (0b0000) (Normal Mode)
    - Output compare mode must be toggle on compare match (see TCCRnA)
    - Not really suggested for square waveform because there is a more efficient way (see CTC mode)
```

Programming Example: Normal Mode

To generate a **different waveform**, what's the code in the interrupt handler?

 Generate a periodic waveform repeating the following: 100-cycle low, 100 high, 200 low, 200 high, 300 low, 300 high.

Programming Example: Normal Mode

```
// assume appropriate configuration, and
// the output is initially high

#define SEGS 6
unsigned count[SEGS] = {100, 100, 200, 200,
    300, 300};
int pos = 0;

ISR (TIMER1_COMPA_vect)
{
    OCR1A += count[pos];
    pos = (pos+1) % SEGS;
}
```

Programming Interface: Output Compare

- TCCRnA: Control Register A
- TCCRnB: Control Register B
- TCCRnC: Control Register C
- OCRn: Output Capture Register
- TIMSK: Timer/Counter Interrupt Mask
- ETIMSK: Extended Timer/Counter Interrupt Mask
- TCNTn: Timer/Counter Register

Note

- Only partial interface related to Output Compare is shown
- n can be 1 or 3
- Use Timer/Counter 3 in the following discussions

10

Programming Interface: Output Compare

Inside TCCRs, regarding Output Compare:

COM 1:0 (A): Compare Output Mode

WGM 3:0 (A, B): Waveform Generator Mode

CS 2:0 (B): Clock Select

FOC 2:0: Force Output Compare

7 6 5 4 3 2 1 0

COMSAN COMSBN COMSBN COMSBN COMSCN COMSCN WGMS1 WGMS3 TCCRSA

RW RW

COMINZM bits: Compare Output Mode — what to do when a match event happens

n — timer index, X — channel index, m — bit index

COM code for Normal and CTC Modes

COMNA1/COMNB1/
COMNC0 Description

0 0 Normal port operation, OCnA/OCnB/OCnC disconnected.

0 1 Toggle OCnA/OCnB/OCnC on compare match.

1 0 Clear OCnA/OCnB/OCnC on compare match (set output to high level).

	7	6	5	4	3	2	1	0	
Е	COM3A1	COM3A0	COM3B1	COM3B0	COM3C1	COM3C0	WGM31	WGM30	TCCR3A
_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

WGM31, WGM30: Waveform Generator Mode to select Timer/Counter function. Four bits in total (WGM33 and WGM32 in TCCR3B)

WGM uses 4-bit encoding

- 1. Normal mode
- 2. CTC modes
- 3. Fast PWM modes
- 4. Phase Correct PWM Mode
- 5. Phase and Frequency Correct PWM Mode

Mode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation ⁽¹⁾	ТОР	Update of OCRnx at	TOVn Fla Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	CTC	OCRnA	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	воттом	TOP
6	0	- 1	1	0	Fast PWM, 9-bit	0x01FF	воттом	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM, Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	стс	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	- 1	0	Fast PWM	ICRn	воттом	TOP
15 Vote:	1	1	1	1	Fast PWM are obsolete. Use the WGMn2:	OCRnA	воттом	TOP

CNC3 R/W	ICES3 R/W	R	WGM33 R/W	WGM32 R/W	CS32 R/W	CS31 R/W	CS30 R/W
			et bits (sai				ure)
CSn2	CSn1	CSn0	Description				
0	0	0	No clock source	ce. (Timer/Co	unter stoppe	ed)	
0	0	1	clk _{VO} /1 (No pre	escaling			
0	1	0	clk _{VO} /8 (From	prescaler)			
0	1	1	clk _{I/O} /64 (From	prescaler)			
1	0	0	clk _{VO} /256 (Fro	m prescaler)			
1	0	1	clk _{VO} /1024 (Fr	om prescaler			
	1	0	External clock	source on Tr	pin. Clock	on falling edg	je
1		1			nin Clock	on risina eda	_

7	6	5	4	3	2	1	0	_
FOC3A	FOC3B	FOC3C	-	-	-	-	-	TCCR3C
W	W	W	R	R	R	R	R	
- '	When we compare OC outpoints setti	match is ut is chang.	ogical or s forced nged acc	ne to a long the vector on the vector of the vector on the vector of the vector on the vector of the	FOC bit, waveform to the co	n genera errespon	ntion un ding CO	MC

 $TCCR3B = _BV(CS31)|_BV(CS30);$

ETIMSK = _BV(OCIE3A);

TCCR3C = 0;

CTC Mode: How It Works CTC: Clear Timer on Compare Match In CTC mode, the OCRnA or ICRn Register are used to manipulate the counter resolution (# of steps) The TCNTn counter increments to TOP and then resets to zero, repeatedly - WGM = 4 (0100): Use OCRnA as TOP - WGM = 12 (1100): Use ICRn as TOP What is the trade-off of using OCRnA as TOP? How about ICRn?

CTC Mode: How It Works The OCRnA or ICRn defines the **top value** for the counter. This mode allows greater control of the compare match output frequency.

Generate square waveform continuously

TCNT

TOP

Zero

OC pin

Cycle time: 2 × (TOP + 1)

Why is CTC mode better than Normal mode for this purpose?

CTC Mode: Frequency

Generate periodic square waveform

Time interval: 1 + OCRnA- TCNTn: 0, 1, 2, ..., OCRnA, 0, 1, 2, ...- One pulse is two events $f_{OCnA} = \frac{f_{clk_l/O}}{2 \cdot N \cdot (1 + OCRnA)}$

CTC Mode: Square Waveform

Generate a square waveform: Initialize Timer/Counter 3's OC unit as CTC mode 4 (OCRnA as TOP), 64 prescalar, toggle-on-match, and uses channel A only, with 200-cycle period. No interrupt is needed.

```
timer_init()
{
    DDRE |= _BV(OC3A);
    OCR3A = (100-1);
    //COM3A=01,WGM=0100,FOC3A=0,CS3=011,OCIE3A=0
    TCCR3A = _BV(COM3A0);
    TCCR3B = _BV(CS31)|_BV(CS30)|_BV(WGM32);
    TCCR3C = 0;
```

CTC Mode: Square Waveform

No interrupt processing overhead, which includes

- Save and restore CPU registers
- Save and restore PC and other special registers
- Find out the interrupt source
- Call and execute the Interrupt Service Routine (ISR) function

Overall Interrupt Overhead = Interrupt Frequency × Average Overhead per Interrupt

32

CTC Mode Programming Example

Example: Use CTC mode to generate timer interrupt (lab 4)

```
void timer_init(void)
{
   TCCR1A = 0b00000000; // WGM1[1:0]=00
   TCCR1B = 0b00001101; // WGM1[3:2]=01, CS=101
   TCCR1C = 0b10000000; // FOC1A=1
   OCR1A = CLOCK_COUNT - 1;
   // enable OC interrupt, timer 1, channel A
   TIMSK = _BV(OCIE1A);
}
```

Servo Control

A **servo** is a special motor with built-in position feedback

- Can stop the shaft at a given position
- Relatively precise
- Need calibration

Potentiometer Injury shaft

Potentiometer Grive plate

Final gear

Source: Parallax Robotics Student guide, V1.4

Servo Control

Lab 8 draft

- 1. Send pulses to the servo to make it move
- 2. Make the servo stop at the center position
- 3. Make the servo stop at different degrees of angle, do calibration

0, 45, 90 (center), 135, 180

37

Servo Control

Use digital waveform to inform the servo the target position

1ms pulse - clockwise far end

1.5ms pulse – center position

2ms pulse – counterclockwise far end

20ms interval between pulses (doesn't have to be precise)

Must repeat until shaft arrives the target position

38

Servo Control

Programming tasks: Generate a periodic waveform with a certain pulse width and a fixed period

1.0~2.0ms corresponds to 0~180 degree counterclockwise

NOTE: Suggested by servo's document; calibration IS necessary

39

Servo Control

Programming Approaches

- Use Output Compare normal model
- Use Output Compare CTC model
- Use PWM (to be discussed)

Are the first two good choices?

- Is interrupt overhead acceptable?
- When can overhead be a problem?

40

Pulse Width Modulation

Parameters: Period Length and Pulse Width

Duty Cycle = Pulse width / Period Length

Programming: How to set the two parameters?

Note: Duty cycle is not important to Lab 8, but it is to most applications

41

ATmega128 PWM

Three types of PWM

- Fast mode PWM
- Phase correct PWM
- Phase and Frequency Correct PWM

The other two modes: Waveform is different, the desired duty cycle is the same

- Not required to learn in this course

42

ATMmega128 PWM

Fast PWM:

- TCNTn increments every cycle
- First compare match event occurs when TCNTn is reaches
- Second compare match event occurs when TCNTn is reset (after reaches a TOP and is reset to BOTTOM)

ATmega128 PWM

ATmega128 has WGMs that use fixed TOP In two WGMs, either ICRn or OCRnA is used as the TOP

In lab 8, the *suggestion* is to

- Use WGM 1111
- Use OCRnA to set the TOP (pulse interval − 1)
- Use OCRnB or OCRnC to store (pulse width-1) (depends on whether channel B or C is used)

WGM: Waveform Generation Mode

Programming COM Bits

COM bits: When to generate events, and what event to generate.

Their meanings change with WGM

COM for Fast PWM Table 59. Compare Output Mode, Fast PWM COMnA1/COMnB1/ COMnA0/COMnB0/ COMnC0 Description COMnC1 Normal port operation, OCnA/OCnB/OCnC WGMn3:0 = 15: Toggle OCnA on Compare Match, OCnB/OCnC disconnected (normal port operation). For all other WGMn settings, normal port operation, OCnA/OCnB/OCnC disconnected. Clear OCnA/OCnB/OCnC on compare match, set OCnA/OCnB/OCnC at BOTTOM, (non-inverting mode) Set OCnA/OCnB/OCnC on compare match, clear OCnA/OCnB/OCnC at BOTTOM, (inverting mode)

```
PWM Mode: Programming Example
unsigned\ pulse\_interval = \ldots;
                                       // pulse interval in cycles
void timer3 init()
 OCR3A = pulse_interval-1;
                               // number of cycles in the interval
 OCR3B = mid_point-1;
                               // if you want to move servo to the middle
 TCCR3A = ...;
                               // set COM and WGM (bits 3 and 2)
 TCCR3B = ...;
                               // set WGM (bits 1 and 0) and CS
 TCCR3C = 0
 // it's necessary to set the OC3B (PE4) pin as the output
 DDRE \models BV(4);
                               // set Port E pin 4 (OC3B) as output
```

Other Fast PWM Modes

WGM bits

0101: 8-bit fast PWM (TOP = 256) 0110: 9-bit fast PWM (TOP = 512) 0111: 10-bit fast PWM (TOP = 1024)

What are pros and cons of using any of them in lab 8?

50

Summary of OC Programming

WGM: Decides the timing of events

- All channels shared the same WGM setting

COM: Decides the action upon events

- Each channel has its own COM setting
- The exact meaning of COM setting is dependent on WGM setting

Summary of OC Programming

Other control bits

CS: Clock Select (prescalar)

TIMSK/ETIMSK: Contain interrupt enable/disable bits for Timer/Counter 1 and 3

FOC: Force output compare

- When writing a logical one to a FOC bit, an immediate compare match is forced on the waveform generation unit. The OC output is changed according to the corresponding COM bits setting.
- In other words, writing 1 to a FOC bit causes an artificial match event on that channel.

52

7	6	5	4	3	2	1	0	
COM3A1	COM3A0	COM3B1	COM3B0	COM3C1	COM3C0	WGM31	WGM30	TCCR
RW	R/W	R/W	RW	R/W	R/W	R/W	R/W	
7	6	5	4	3	2	1	0	
ICNC3	ICES3	-	WGM33	WGM32	CS32	CS31	CS30	TCCF
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	•
7	6	5	4	3	2	1	0	_
FOC3A	FOC3B	FOC3C	-	-	-	-	-	TCC
W	W	W	R	R	R	R	R	
7	6	5	4	3	2	1	0	
OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	TIM
R/W	•							
7	6	5	4	3	2	1	0	_
-	-	TICIE3	OCIE3A	OCIE3B	TOIE3	OCIE3C	OCIE1C	ETIN
R	R	R/W	R/W	R/W	R/W	R/W	R/W	•

lode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation ⁽¹⁾	ТОР	Update of OCRnx at	TOVn Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	BOTTOM
4	0	1	0	0	стс	OCRnA	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	воттом	TOP
6	0	- 1	1	0	Fast PWM, 9-bit	0x01FF	воттом	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM, Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	стс	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICRn	воттом	TOP
15	1	1	1	1	Fast PWM	OCRnA	воттом	TOP

7 COM3A1	6 COM3A0	5 COM3B1	4 COM3B0	3 COM3C1	2 COM3C0	1 WGM31	0 WGM30	1 TCCRS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	TOOK
a n – t	match et imer ind	vent hap lex, X –	npare Or opens channel	index,	m – bit		do whe	n
COMn	A1/COMnB OMnC1		InA0/COMni COMnC0	B0/	cription			
COMn	A1/COMnB		InA0/COMni	B0/ Des		eration, O	CnA/OCnB	/OCnC
COMn	A1/COMnB OMnC1		InA0/COMni COMnC0	B0/ Des	cription mal port op connected. gle OCnA/0			
COMn	A1/COMnB OMnC1		InA0/COMnl COMnC0	B0/ Des Nor disc Tog mat	cription mal port op connected. gle OCnA/0	OCnB/OCnC	C on comp	are

COM for Fa	ıst PWM		
Table 59. Compare O	utput Mode, Fast PWN	Л	
COMnA1/COMnB1/ COMnC1	COMnA0/COMnB0/ COMnC0	Description	
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected.	
0	1	WGMn3:0 = 15: Toggle OCnA on Compare Match, OCnB/OCnC disconnected (normal port operation). For all other WGMn settlings, normal port operation, OCnA/OCnB/OCnC disconnected.	
1	0	Clear OCnA/OCnB/OCnC on compare match, set OCnA/OCnB/OCnC at BOTTOM, (non-inverting mode)	
1	1	Set OCnA/OCnB/OCnC on compare match, clear OCnA/OCnB/OCnC at BOTTOM, (Inverting mode)	
			56

Summary of OC Normal Mode

Good for generating waveforms of any shapes

Programming: Use ISR to pre-set the timing of the next event

Cons:

- Interrupt overhead can be high
- Cannot generate high-frequency waveforms
- CPU cannot sleep into deep power-saving modes

Summary of CTC Mode

Good for generating square waveform Programming

- WGM=0100: Put TOP into OCRnA
- WGM=1100: Put TOP into ICRn

Cycle time is $2 \times (TOP + 1)$, one event for every TOP +1 cycles

Caveats:

- Borrow either OCRnA or ICRn to set TOPTCNT reset to zero after reaching TOP

Summary of Fast PWM

Good for generating Pulse Width Modulation

Two parameters: Pulse Width and Period Length (they decide the timing of two events)

Programming with WGM = 1111

- Top is OCRnA, stores Period_Length-1
- OCRnB/OCRnC stores Pulse_Width-1
- Caveats: OCRnA is borrowed to set TOP; TCNT resent to zero after reaching TOP