Markov Decision Processes (MDP)

Prof. Subrahmanya Swamy

User - State

Multi-Arm

- one State

- one State

Confex tual Bandits

Viserty

News article

RL Framework

Action (A_t)

Agent

Environment

State (S_t)

- 1. Agent observes the state ~
- 2. Takes an action
- 3. Environment puts the agent in a new state &
- 4. Also gives a reward based on taken action

Goal:

Learn policy to maximize the cumulative reward $\sum_t R_t$

How do we mathematically model the State transitions and Rewards?

Independent Random Variables

- A sequence of coin tosses $X_1, X_2, X_3, ...$
- Head: 1, Tail: 0, Bias of coin: $p_h \rightarrow p_{(+1)} = p_h$
- Knowledge of X_1 does not help in predicting X_2
- $\mathbb{P}(X_2 = 1 \mid X_1 = 0) = p_h$ $\mathbb{P}(X_2 = 1 \mid X_1 = 1) = p_h$

Markov Chain

- A sequence of coin tosses $X_1, X_2, X_3, ...$
- If coin lands in
- coin lands in

 Head: Win 1 rupee

 Tail: Lose 1 rupee

 Yo=0

 Yo
- Define Y_t = total money accumulated till time t
- Y_1, Y_2, Y_3, \dots are dependent RVs
 - $\mathbb{P}(Y_5 = 1 | Y_4 = 3) = 0$
 - $\mathbb{P}(Y_5 = 1 | Y_4 = 0) = \frac{1}{2}$

Markov Chain

- $y_{1/1} ... y_{t}$ Status = { $0_{1/1}, 2_{1}, ...$ }
- Y_1, Y_2, Y_3, \dots satisfy Markov property!
- Markov Property: Given the present, the future is independent of the

past!

• $\mathbb{P}(Y_5 \neq 1 \mid Y_4 = 2, Y_3 \neq 3) = \frac{1}{2} \checkmark P(\text{Toil})$ • $\mathbb{P}(Y_5 = 1 \mid Y_4 = 2, Y_3 = 1) = \frac{1}{2} \checkmark Y_3 = 3$ • $\mathbb{P}(Y_5 = 1 \mid Y_4 = 2, Y_3 = 1) = \frac{1}{2} \checkmark Y_3 = 3$ • $\mathbb{P}(Y_5 = 1 \mid Y_4 = 2, Y_3 = 1) = \frac{1}{2} \checkmark Y_3 = 3$

Markov Chain Specification (S, P_{SS})

• $S \rightarrow State space \{E, A\}$

• $(P_{SS'}) \rightarrow Transition probabilty$

Markov Decision Process (MDP)

- Introduce action to convert Markov Chain into MDP
- Actions: How much money to bet (A_t) in the game when I have Y_t money?
- If $Y_t=3$, then possible actions are $\{1,2,3\}$. $A=\{$

Episodic and Continuing MDPs

· Episodic / Task.

- → So, A10, R1,S1,... ST
- There exists a special state called the terminal state
- The episode ends at the terminal state
- Eg: Board games

So, S1, S2, S3,

- · Continuous" Tak
 - No terminal state exists
 - The task continues forever
 - Eg: Portfolio management
 - Every day, decide which shares to buy/sell

Terminal state in Tic-Tac-Toe

Discount Factor in MDP

- Episodic task:
- Total Reward (Return): $G_t = R_{t+1} + R_{t+2} + ... + R_T$
- Bounded Returns if each $R_i \leq M$
- Continuing task: √
- $G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots$
- $G_t = \sum_{i=t+1}^{\infty} R_i$ could become unbounded even if each $R_i \leq M$
- Solution: Discount factor $\gamma \in (0,1)$
- $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$
- G_t = $\sum_{i=0}^{\infty} \gamma^i R_{t+1+i} \le \frac{M}{1-\gamma}$ (Bounded)
- High $\gamma \sim 1 \Rightarrow$ Long-term planning \checkmark
- Low $\gamma \sim 0 \Rightarrow$ Short-term planning

0.9 $+7^{2}$ $+2^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{2}$ $+7^{2}$ $+3^{$

MDP Specification $(S, \underline{A}, R_s^a, P_{ss'}^a, \gamma)$

- $(S) \rightarrow State space$ (incl. terminal states if any)

- $A \rightarrow Action space$
- $(R_s^a) \rightarrow Expected Rewards$
- $\mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$

- \rightarrow Transition probabilties \nearrow
- $\mathbb{P}(S_{t+1} = s' \mid S_t = s, A_t = a)$
- $\gamma \in (0,1) \rightarrow Discount\ factor$

Optimal Policy

- Policy:
 - (Deterministic: $\pi(s): S \to A$ Which action to take in state s
 - Stochastic: $\pi(a \mid s)$ In state s, with what probability to take action a
- Why stochastic policies?
 - Partially observed states
 - Exploration

- Optimal Policy:
 - π that maximizes the expected return $\mathbb{E}_{\pi}[G_t \mid S_t = s]$ from any state s

How to model your problem as an MDP?

Maze Solving Problem: To reach the goal in the shortest path!

How to formulate this maze-solving problem as an MDP?

- States?
 Actions?
 Rewards?
- Transition Probabilities ? \(\frac{\cappa}{\lambda_{\substitutes}} \)
- Discount factor?

How to model your problem as an MDP?

16 States

Rewards

$$R_t = -1$$
 on all transitions

Discount Factor

$$\gamma = 1$$

Deterministic State transitions: $\mathbb{P}(S_{t+1} = 2 \mid S_t = 6, A_t = Up) = 1$

Exercise

Alternate MDP formulation for the Maze problem

• Instead of giving -1 reward per each step, can we give 0 reward for every action except for the final action that leads us to the Goal State?

Does the optimal policy of this alternate MDP learn the shortest path?

• Hint: What discount factor will help here?

