Introduction to Data Structure (Data Management) Lecture 8

Felipe P. Vista IV

DB Management Systems

Reminder

- Everybody, make sure that your name in ZOOM is in the following format:
 - Ex: 202054321 Juan Dela Cruz

Not changing your name to this format

* you might be marked Absent * → absent?

• Our class will still be online/Zoom starting Monday 19 Oct 2020

INTRO TO DATA STRUCTURE

RELATIONAL ALGEBRA (CH 2.4 & 5.1)

Where are we now

- Motivation in using DBMS for managing data
- SQL:
 - Declaring schema for data (CREATE TABLE)
 - Insert data one record at a time (INSERT) or in bulk (.import)
 - Modify schema (ALTER TABLE) and updating data (UPDATE)
 - Query data (SELECT)
- Next-steps: More knowledge on how DBMSs works
 - Client-server architecture
 - Relational algebra and query execution

WHAT and HOW

- SQL = WHAT we want to get from the data

 →
- Relational Algebra = HOW to get the data we want

- Moving from WHAT → HOW is query optimization
 - SQL ~> Relational Algebra ~> Physical Plan
 - Relational Algebra = Logical Plan

Sets vs Bags

Relational Algebra Operators

Sets vs Bags

- Sets : {a,b,c}, {a,d,e,f},{},...
 - unordered collection of elements without duplicates
- Bags: {a, a, b, c}, {b, b, b, b, b}, ...
 - unordered collection of elements with duplicate

Relational Algebra has two semantics

- Set semantics = standard Relational Algebra
 - Bag semantics = extended Relational Algebra

Relational Algebra Operators

- union (∪), intersection (∩), difference (−)
- selection (σ) –
- projection (π, \prod)
- cartesian product (x), join (⋈)
- 👱 rename (ho)
- duplicate elimination (δ)
- grouping and aggregation (y)
- sorting (*t*),

Extended RA

Union and Difference

$$R = TABLEI$$

$$R = TABLEZ$$

$$Sod \times R = \{a,b,c,d,d\}$$

$$R_1 = \{e,\delta,a,b\}$$

What does these mean over bags?

What about Intersection?

Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

Derived operator using join (explain more later)

$$R1 \cap R2 = R1 \bowtie R2$$

Selection

Return all tuples that satisfy given condition "c"

- Examples
 - $-\sigma_{\text{salary}} > 40000$ (Employee)
 - $-\sigma_{\text{name} = \text{"Mikki"}}$ (Employee)
- The condition "c" can be =, <, \leq , >, \geq , <> combined with AND, OR, NOT

Selection

Employee

EmpID	Name	Salary	
1234567	Mikki	20000	7
2345678	Nwabisa	60000	
3456789	Patricia	50000	١.
4567890	Janin	40000	

• $\sigma_{\text{salary} > 40000}$ (Employee)

EmpID	Name	Salary
2345678	Nwabisa	60000
3456789	Patricia	50000

Projection

• Eliminate column(s)

$$\pi_{A1,...,An}(R)$$

- Example: project Employee ID num and names
 - ∏ _{EmpID, Name} (Employee)
 - Answer(EmpID, Name)

Different semantics over sets or bags! Why?

Projection

Employee

Emp(D	Name	Salary
1284567	Divan-	20000 -
2345678	Divan _	60000 —
3456789	Divan-	20000 _

∏_{Name, Salary} (Employee)

Name	Salary	
Divan	20000	_
Divan	60000	
Divan	20000	-

Name	Salary
Divan	60000
Divan	50000

→ Bag semantics Dup

Set semantics $\mathcal{D}_{\mathcal{P}} \times$

Which is more efficient?

Composing RA Operators

Patient

					_
	Num	Name	Zip	Disease	
_	1	p1	54896 -	Flu	X ′
_	2	p2	54896	Heart	1
_	3	р3	54001_	Lung	χ
_	4	р4	54001	Heart	V

 $\prod_{\text{Zip, Disease}}$ (Patient)

Zip	Disease
54896	Flu
54896	Heart
54001	Lung
54001	Heart

N	Jam	Name	Zip	Disease
_	2	p2	54896	Hea <u>rt</u>
	4	р4	54001	Heart)
		UPC	1	

	Oper 1
7in Disassa	$(\sigma_{\text{disease="Heart"}}(Patient))$
Lap, Discase	C discase - ficare C

Zip	Disease	
54896	Heart	
54001	Heart	

Cartesian Product

• Each tuple on R1 with each tuple in R2

Rare in practice; mainly used to express joins

Cross-Product Examples

Employee -

Dependent -

Name	EmpID	DepEmpID
Khan	222222	222222
Matt	444444.	444444

Employee × Dependent

NamedemEm	EmpID	DepEmpID	DepName
Khan —	2222222 —	2222222 —	Emily
Khan	2222222	4444444 -	Davis
Matt	444444	222222	Emily
Matt	444444	444444	Davis

Renaming

Change the schema, not the instance

$$\rho_{B1,...,Bn}(R)$$

- Example:
 - $-\rho_{N, S}(Employee) \rightarrow Answer(N, S)$

Not really used by systems, but needed on paper

Natural Join

R1 ⋈ R2

• Meaning: R1 \bowtie R2 = $\prod_{A} (\sigma_{\theta}(R1 \times R2))$

- Where:
 - Selection σchecks equality of all common attributes (attributes with the same names)
 - Projection ∏ eliminates duplicate common attributes

removes

A B B C

6. (RXS)

	A	В	С	1 66 (FAS)
D M C -	X	Z	U ——	4 B B C
$R \bowtie S$ $= \prod_{A} (\sigma_{\theta}(R \times S))$	X	Z	V	.1
$= \prod_{A} (\sigma_{\theta}(R \times S))$	Y	Z	U	_
, _	Y	Z	V	- TIA (66 (RX)
	Z	V	W	+
				3

Natural Join Example #2

Anonymous Patient P

age	Zip	Disease
56	54896	Heart
23	54001	Flu

Voters V

Name	Age	Zip
P1	56	54896
P2	23	54001

Natural Join Example #2

Anonymous Patient P

age	Zip	Disease
56	54896	Heart
23	54001	Flu

Voters V

Name	Age	Zip
P1	56	54896
P2	23	54001

Age	Zip	Disease	Name
56	54896	Heart	P1
23	54001	Flu	P2

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E); what is the schema of $R \bowtie S$?

- Given schemas R(A, B, C, D), S(A, C, E); what is the schema of $R \bowtie S$?
 - (A, B, C, D, E) through join on (A, C)
- Given R(A, B, C), S(D, E); what is R \bowtie S?
 - (A, B, C, D, E) through cross product
- Given R(A, B), S(A, B); what is $R \bowtie S$?
 - (A, B) through cross intersection

- Given schemas R(A, B, C, D), S(A, C, E); what is the schema of $R \bowtie S$?
 - (A, B, C, D, E) through join on (A, C)
- Given R(A, B, C), S(D, E); what is $R \bowtie S$?

- Given schemas R(A, B, C, D), S(A, C, E); what is the schema of $R \bowtie S$?
 - (A, B, C, D, E) through join on (A, C)
- Given R(A, B, C), S(D, E); what is $R \bowtie S$?
 - (A, B, C, D, E) through cross product
- Given R(A, B), S(A, B); what is $R \bowtie S$?
 - (A, B) through cross intersection

- Given schemas R(A, B, C, D), S(A, C, E); what is the schema of $R \bowtie S$?
 - (A, B, C, D, E) through join on (A, C)
- Given R(A, B, C), S(D, E); what is $R \bowtie S$?
 - (A, B, C, D, E) through cross product
- Given R(A, B), S(A, B); what is $\mathbb{R} \setminus \mathbb{S}$?

- Given schemas R(A, B, C, D), S(A, C, E); what is the schema of $R \bowtie S$?
 - (A, B, C, D, E) through join on (A, C)
- Given R(A, B, C), S(D, E); what is R \bowtie S?
 - (A, B, C, D, E) through cross product
- Given R(A, B), S(A, B); what is $R \bowtie S$?
 - (A, B) through cross intersection

```
PanonPatient(age,zip,disease)
Voters(name,age,zip)
```

Theta Join

A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta}(R1 \times R2)$$

- Here θ can be any condition
- For the voters/patients example:

```
P.zip = V.zip AND P.age ≥ V.age - 1 AND P.age ≤ V.age + 1
```

Equijoin

• A theta join where θ is an equality predicate

By far the most used variant of join in practice

Equijoin Example

Anonymous Patient P

age	Zip	Disease
56	54896	Heart
23 -	54001	Flu

Voters V

Name	ı	Age	Zip
P1	2	56	54896
P2	7	23	54001

$$P \bowtie_{P.age=V.age} V$$

Equijoin Example

Anonymous Patient P

age	Zip	Disease
56	54896	Heart
23	54001	Flu

Voters V

Name	Age	Zip
P1	56	54896
P2	23	54001

P.Age	P.Zip -	P.Disease	√.Name	V.Zip	V.Age
56	54896	Heart	P1	54896	56
23	54001	Flu	P2	54001	23

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition θ
 - Cross product followed by selection θ

R(AB,C)S(B,D)

- Equijoin: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join condition θ consists only of equalities
- Natural join: $R \bowtie S = \prod_A (\sigma_\theta(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S
 - Projection drops all redundant attributes

So which join is it?

• When we write $\mathbb{R} \bowtie_{\mathcal{B}} S$, we usually mean an <u>equijoin</u>, but we often omit the equality predicate when it is clear from the context

More Joins

- Outer join
 - Include tuples with no matches in the output
 - Use NULL values for missing attributes
 - Does not eliminate duplicate columns
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

Outer Join Example

Anonymous Patient P

age	Zip	Disease
56 -	54896	Heart
23 –	54001	Flu
34	54001	Lung

Job	Age	Zip
Explorer	56 🕻	54896
Diver	23	54001

Outer Join Example

Anonymous Patient P

age	Zip	Disease		
56 🍃	54896	Heart		
23 💌	54001	Flu		
34-	54001	Lung		

Anonymous Job J

Job	Age	Zip
Explorer	> 56	54896
Diver	• 23	54001
N/w ()	N()	N(~()

P.Age	P.Zip	P.Disease	J.Job	J. Age	J.Zip	
56	54896	Heart	Explorer	56	54896	~>
23	54001	Flu	Diver	23	54001	~
34	54001	Lung	null -	null—	null ~	1

More Examples

```
- Supplier(sno, sname, scity, sstate)
Part(pno, pname, psize, pcolor)
Supply(sno, pno, qty, price)
```

• Name of supplier of parts with size greater than 10:

More Examples

```
Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize, pcolor)
Supply (sno, pno, qty, price)
```

* Name of supplier of parts with size greater than 10:

```
\prod_{\text{sname}} (\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10}(\text{Part}))
```

* Name of supplier of red or parts with size greater than 10:

```
\prod_{\text{sname}} (\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10}(\text{Part}) \cup \sigma_{\text{pcolor}='\text{red'}}(\text{Part})))
```

More Examples

```
Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize, pcolor)
Supply (sno, pno, qty, price)
```

* Name of supplier of parts with size greater than 10:

```
 = \prod_{\text{sname}} (\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10}^{\text{Schot}}(\text{Part})) / 
 = \sum_{\text{supply}, \text{prio}} = P_{\text{aid}} p_{\text{prio}} \bowtie p_{\text{prio}}^{\text{Schot}}(\text{Part})) /
```

* Name of supplier of red or parts with size greater than 10:

More Examples

```
Supplier(<u>sno</u>, sname, scity, sstate)

Part(<u>pno</u>, pname, psize, <u>pcolor</u>)

Supply(<u>sno</u>, <u>pno</u>, qty, price)
```

* Name of supplier of parts with size greater than 10:

```
\prod_{\text{sname}} (\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10}(\text{Part}))
```

* Name of supplier of red or parts with size greater than 10:

```
\prod_{\text{sname}} (\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10}(\text{Part}) \cup \sigma_{\text{pcolor}='\text{red'}}(\text{Part})))
```

Thank you.