

รายงานโครงงาน เรื่อง

โครงงานเครื่องจ่ายยาอัตโนมัติตามเวลา

จัดทำโดย

1640900393 กฤตินี อรรถเวชกุล1640902142 อรพรรณ หนองเทา1640902191 กฤติญาณี ครองสัตย์

นำเสนอ ผศ.ดร.สุพจน์ สุขโพธารมณ์ รายงานวิชา Introduction to Sensors and Actuators ปีการศึกษา 2565 มหาวิทยาลัยกรุงเทพ วิทยาเขตรังสิต

คำนำ

รายงานฉบับนี้เป็นส่วนนึงของชิ้นงาน Project ของรายวิชา EL325 การค้นคว้าและ เขียน รายงานชิ้นนี้โดยมีวัตถุประสงค์เพื่อให้ผู้อ่านได้ทราบและเข้าใจถึงตัวงานที่พวกเราทำและ นำมา นำเสนอ โดยคณะผู้จัดทำได้ทำการศึกษาข้อมูลจากการเรียนและข้อมูลอื่นๆเพิ่มเติมจาก ช่องทาง ออนไลน์ มาทำเป็นผลงานชิ้นนี้ขึ้น

คณะผู้จัดทำ

สารบัญ

	หน้า
บทที่ 1 ทฤษฎีที่เกี่ยวข้อง	1
1.1 ที่มาของปัญหา	
1.2 แนวคิดในการแก้ไขปัญหา	
1.3 ขอบเขต Product	
1.4 Servo motor	2
1.5 Arduino Uno	3
1.6 IR Sensor	
1.7 Real Time Clock (RTC)	4
บทที่ 2 การดำเนินและวิธีการสร้าง	6
1.1 อุปกรณ์ที่ใช้	
1.2 ขั้นตอนการทำ	
2.2.1 ส่วนที่ 1: ตัวจ่ายยา	
2.2.2 ส่วนที่ 2: ตัวเครื่อง	
1.3 วิธีการใช้งาน	7
บทที่ 3 การทดลองและผลการทดลอง	8

บทที่ 1 แนวคิด ทฤษฎีที่เกี่ยวข้อง

1.1 ที่มาของปัญหา

ยาเป็นปัจจัยสำคัญอย่างหนึ่งในการรักษาอาการเจ็บป่วย โดยทั้งการบำบัด บรรเทาอาการทุกข์ ทรมาน ซึ่ง การรับประทานยาด้วยปริมาณที่ถูกต้องและตรงเวลา เป็นสิ่งสำคัญในการรักษาผู้ป่วย เมื่อผู้ป่วย ได้รับยาจากทาง โรงพยาบาลเพื่อมารักษาตนเองที่บ้านในบางครั้ง อาจเกิดปัญหาการรับประทานยาที่ความ คลาดเคลื่อนเกิดขึ้น หรือการทานยาผิดชนิด อันเนื่องมาจากปริมาณยาที่มาก หรือการที่ยามีลักษณะหรือสี คล้ายคลึงกัน ซึ่งส่งผลต่อ การรักษาและการจ่ายยาของแพทย์ จึงทำให้เกิดปัญหาการรับประทานยาไม่ตรง ขนาดและไม่ตรงต่อเวลา เป็นผล ทำให้เกิดภาวะแทรกซ้อนตามมา และอาจรักษาไม่ได้ประสิทธิภาพตามที่ ต้องการอีกด้วย

ทั้งนี้เพื่อเป็นการพัฒนาคุณภาพชีวิตให้ดียิ่งขึ้น เราจึงได้คิดค้นระบบเครื่องจ่ายยาอัตโนมัติ มาใช้ในการจ่าย ยาให้แก่ ผู้ป่วยสูงอายุหรือผู้ที่มีโรคประจำตัวที่อยู่บ้านคนเดียวหรือผู้ดูแลที่ไม่มีเวลา จัดยารักษาผู้ป่วย เราจึงคิดค้น ระบบเครื่องจ่ายยาอัตโนมัติที่ช่วยในการจ่ายยาภายในบ้าน เพื่อช่วย เรื่องความสะดวก ตรงต่อเวลาช่วยส่งเสริมการ รับประทานยาให้กับผู้ป่วยป้องกันการรับประทานยา ผิด รับประทานยาเกินขนาด ทั้งเป็นการประหยัดเวลาของ ผู้ดูแลในการดูแลการรับประทานยาของ ผู้ป่วย

1.2 แนวคิดในการแก้ไขปัญหา

คิดค้นเครื่องจ่ายยาอัตโนมัติที่ช่วยในการจัดเก็บยา 2 ชนิด เพื่อลดการรับประทานยาที่ผิดชนิดและ ได้ รับประทานยาที่ตรงต่อเวลา โดยที่กำหนดให้ผู้ป่วยได้รับยาก็ต่อเมื่อมีแก้วมาวางในตำแหน่งที่กำหนดและ เวลาที่ กำหนด

ทางผู้จัดได้กำหนดเวลากินยา ดังนี้

• มื้อเช้า ยาก่อนอาหาร 7.00 น ยาหลังอาหาร 8.00 น

• มื้อกลางวัน ยาก่อนอาหาร 11.00 น ยาหลังอาหาร 12.00 น

• มื้อเย็น ยาก่อนอาหาร 16.00 น ยาหลังอาหาร 17.00 น

• ก่อนนอน ยาก่อนนอน 20.00 น

1.3 ขอบเขต Product

1. เครื่องจ่ายยาอัตโนมัติที่ช่วยในการจัดเก็บยา 2 ชนิด เพื่อลดการรับประทานยาที่ผิดชนิดและได้ รับประทานยาที่ตรงต่อเวลา

- 2. ทำให้ผู้ป่วยสามารถรักษาตัวเองที่บ้านได้
- 3. ใช้ Board Arduino UNO และอุปกรณ์ วัสดุ ที่หาได้ทั่วไปในการประดิษฐ์

1.4 Servo motor 180 degree

Servo Motor เป็นอุปกรณ์ที่สามารถควบคุมเครื่องจักรกล หรือระบบการทำงานนั้นๆ ให้ เป็นไปตามความต้องการ เช่น ควบคุมความเร็ว (Speed), ควบคุมแรงบิด (Torque) , ควบคุม แรง ตำแหน่ง (Position) โดยให้ผลลัพธ์ตามความต้องการที่มีความแม่นยำสูง

Servo motor 180 degree เป็นเซอร์โวมอเตอร์ที่นิยมใช้งานทั่วไป มีหลายรุ่น หลาย ขนาด และหลายราคา สามารถควบคุมให้หมุนได้ตามองศาที่ต้องการ โดยหมุนได้ 0 ถึง 180 องศา (ในบางรุ่นหมุนได้สุดที่ประมาณ 360 องศา)

ภาพที่ 1.4 Servo motor 180 degree

1.4.1 จุดประสงค์ของ Servo motor 180 degree

ในผลงานชิ้นนี้ คือ เพื่อใช้ในการหมุนตัวฐานให้ยาลงตรงช่องที่กำหนดไว้

1.4.2 หลักการทำงานของ Servo motor 180 degree เริ่มที่วงจรควบคุม เมื่อ วงจร ควบคุมได้รับข้อมูลองศาที่ต้องการมาแล้ว วงจรควบคุมจะคำนวณว่ามอเตอร์จะต้องหมุนใน ทิศทางตามเข็มนาฬิกา หรือทวนเข็มนาฬิกา เพื่อให้ไปสู่องศาที่ต้องการได้ เมื่อมอเตอร์เริ่มหมุน ตัว วอลุ่มที่ติดอยู่กับชุดเฟืองมอเตอร์จะตรวจสอบตำแหน่งที่มอเตอร์หมุนไป โดยหากวอลุ่มตรวจ พบว่า ตำแหน่งที่มอเตอร์หมุนเริ่มใกล้กับองศาที่ผู้ใช้กำหนด วงจรส่วนควบคุมจะเริ่มสั่งให้มอเตอร์ หมุนช้า ลงเพื่อให้หมุนเข้าใกล้องศาที่กำหนดได้มากที่สุด เมื่อมอเตอร์หมุนได้ตำแหน่งองศาที่ ถูกต้องแล้ว วงจรส่วนควบคุมจะตรวจสอบตำแหน่งของมอเตอร์เป็นระยะ ๆ โดยอ่านค่าจากวอลุ่ม หากตรวจ พบว่าตำแหน่งผิดเพี้ยนไปจากค่าที่ตั้งไว้ (อันอาจเกิดจากผู้ใช้เอามือไปหมุนเล่น หรือ ภาระส่งผลให้ ตำแหน่งเคลื่อน) วงจรควบคุมก็จะสั่งให้มอเตอร์หมุนกลับมาให้ได้ตำแหน่งเป็นระยะ ๆ

1.4.3 ข้อจำกัดของ Servo motor 180 degree

- 1. เนื่องจากมันเป็นเพื่องพลาสติกจึงทำให้ใช้งานหนักๆไม่ค่อยได้
- 2. ร้อนง่าย

1.5 Arduino Uno

Arduino Uno R3 เป็นบอร์ด Arduino ที่ได้รับความนิยมสูงสุดและมี Library ต่างๆ ที่พัฒนาขึ้นมา Support จะอ้างอิงกับบอร์ดนี้เป็นหลัก

ภาพที่ 1.5 Arduino Uno

1.5.1 จุดประสงค์ของ Arduino Uno

ในผลงานชิ้นนี้ คือ เพื่อใช้ในการควบคุมตัว IR Sensor, Real Time Clock

1.5.2 หลักการทำงานของ Arduino Uno

ใช้ติดต่อสื่อสารและควบคุมอุปกรณ์ไฟฟ้าอื่นๆด้วยการเขียนโปรแกรมให้กับ MCU เพื่อควบคุมการ รับส่งสัญญาณทางไฟฟ้าตามเงื่อนไขต่างๆ

1.5.3 ข้อจำกัดของ Arduino Uno

- 1.ไม่สามารถต่อ Wi-Fi ได้ทำให้ต้องซื้อ module เพิ่ม
- 2.ไม่สามารถตัดไฟได้ทันทีต้องซื้อ module เพิ่ม

1.6 IR Sensor

เซ็นเซอร์อินฟราเรดเป็นอุปกรณ์อิเล็กทรอนิกส์ที่ปล่อยออกมาเพื่อรับรู้บางแง่มุมของ สภาพแวดล้อม เซ็นเซอร์ IR สามารถวัดความร้อนของวัตถุและตรวจจับการเคลื่อนไหวได้ เซ็นเซอร์ ประเภทนี้จะวัดเฉพาะรังสีอินฟราเรดแทนที่จะปล่อยออกมาที่เรียกว่า เซ็นเซอร์อินฟราเรดแบบพาส ซีฟ โดยปกติในสเปกตรัมอินฟราเรดวัตถุทั้งหมดจะแผ่รังสีความร้อนบางรูปแบบออกมาการแผ่รังสี ประเภทนี้มองไม่เห็นด้วยตาของเราซึ่งสามารถตรวจจับได้ด้วยเซ็นเซอร์อินฟราเรด ตัวปล่อยเป็น เพียง LED IR (ไดโอดเปล่งแสง) และเครื่องตรวจจับเป็นเพียงโฟโตไดโอด IR ที่ไวต่อแสง IR ที่มี ความยาวคลื่นเดียวกับที่ปล่อยออกมาจาก IR LED เมื่อแสง IR ตกบนโฟโตไดโอดความต้านทานและ แรงดันไฟฟ้าขาออกจะเปลี่ยนไปตามขนาดของแสง IR ที่ได้รับ

ภาพที่ 1.5 IR Sensor

1.6.1 จุดประสงค์ของ IR Sensor

ในผลงานชิ้นนี้ คือ เพื่อใช้ในการตรวจจับการวางแก้วโดยระบบจะตรวจสอบว่ามีแก้วหรือไม่ ถ้ามี แก้วระบบจะทำงานแต่ถ้าหากว่าไม่มีแก้วระบบจะไม่ทำงาน

1.6.2 หลักการทำงานของ IR Sensor

หลักการทำงานของเซ็นเซอร์อินฟราเรดคล้ายกับเซ็นเซอร์ตรวจจับวัตถุ เซ็นเซอร์นี้ประกอบด้วย IR LED และโฟโตไดโอด IR ดังนั้นการรวมทั้งสองอย่างนี้สามารถสร้างเป็นตัวเชื่อมต่อภาพถ่ายหรือออป โตคัปเปลอร์ได้ กฎทางฟิสิกส์ที่ใช้ในเซ็นเซอร์นี้ ได้แก่ การแผ่รังสีของแผ่นไม้ Stephan Boltzmann และการกระจัดของ Weins

1.6.3 ข้อจำกัดของ IR Sensor

- 1.ต้องมีเส้นนำสายตา สิ่งเหล่านี้อาจได้รับผลกระทบจากหมอกฝนฝุ่นละออง ฯลฯ
- 2.อัตราการส่งข้อมูลน้อยลง

1.7 Real Time Clock (RTC)

Real Time Clock (RTC) คือ อุปกรณ์ที่ให้ค่าเวลาตามจริง ซึ่งทำงานโดยการจับสัญญานนาฬิกาที่ได้มาจาก Crystal บางรุ่นก็จะมีถ่านสำรองมาให้ ทำหน้าที่ในการบันทึกเวลาอย่างต่อเนื่องถึงแม้ว่าจะไม่มีไฟเลี้ยงมาที่ตัว บอร์ด ตัวเวลาก็ยังคงนับได้ต่อ ทำให้ไม่ต้องเสียเวลามาตั้งเวลาใหม่หลังจากที่หยุดจ่ายไฟเลี้ยง โมดูล RTC นี้ จำเป็นอย่างยิ่งกับการใช้งานที่ต้องมีการบันทึกเวลา (Time Stamp) เช่น อุปกรณ์ Data logger

ภาพที่ 1.7 Real Time Clock (RTC)

1.7.1 จุดประสงค์ของ Real Time Clock (RTC)

ในผลงานชิ้นนี้ คือ เพื่อใช้ในการตั้งเวลาในการรับประทานยาเพื่อได้รับยาที่ถูกต้อง

1.7.2 หลักการทำงานของ Real Time Clock (RTC)

Module นาฬิกา หรือมีอีกชื่อหนึ่งว่า Real time clock (RTC) ถ้านึกถึง Arduino เมื่อไม่มีการ จ่ายไฟโปรแกรมของ Arduino ก็จะหยุดทำงานจึงมี RTC เพื่อทำการเก็บเวลาไว้เมื่อจ่ายไฟให้กับ วงจร Arduino ก็จะดึงเวลามาใช้งานได้ทันทีหรือการตั้งค่าคำนวนเวลาของ Arduino อาจจะมี ปัญหา ความแม่นยำไม่ตรงบ้าง Library มีการ delay ทำให้เวลาไม่ตรงบ้างสามารถใช้ Module อ้างอิงเวลาได้อย่างชัดเจนแน่นอนหรือจะนำไปใช้ในการบอกเวลาเพื่อลดน้ำต้นไม้เปิด/ปิดไฟตาม เวลาก็ได้เช่นกัน

1.7.3 ข้อจำกัดของ Real Time Clock (RTC)

Library ตัวนี้คือไม่สามารถตั้งเวลาจากการเรียกเวลาของคอมพิวเตอร์มาใส่โดยอัตโนมัติได้จะต้องกำหนดเข้า ไปเอง

บทที่ 2 การดำเนินและวิธีการสร้าง

อุปกรณ์ที่ใช้

1.	Servo Motor	2 ตัว
2.	IR Sensor	1 ตัว
3.	Arduino Uno	1 ตัว
4.	RGB LCD	1 ตัว
5.	Real Time Clock (RTC)	1 ตัว

ขั้นตอนการทำ

ส่วนที่ 1: ตัวจ่ายยา

- 1. ออกแบบตัวจ่ายยา
- 2. ร่างโครงสร้างลงในวัสดุ และ ตัดตามแบบ
- 3. ประกอบชิ้นงานเข้าด้วยกัน
- 4. นำ Servo และ IR มาประกอบเข้าที่

ส่วนที่ 2: ตัวเครื่อง

- 1. ออกแบบตัวเครื่อง
- 2. ร่างโครงสร้างลงในวัสดุ และ ตัดตามแบบ

3.

- 4. ประกอบชิ้นงานเข้าด้วยกัน
- 5. นำ LCD มาประกอบเข้าที่

วิธีการใช้งาน

เมื่อถึงเวลาจ่ายยาตามตาราง LCD จะเป็นสีแดง ให้ผู้ใช้งานนำแก้วมาวางไว้ในจุดที่เรากำหนด IR Sensor ตรวจจับแก้วโดยถ้ามีแก้วระบบจะสามารถทำงาน และ เครื่องจะปล่อยยาออกมา เมื่อถึงเวลาจ่ายยาตัวยาจะตรวจสอบสถานะโดยในการจ่ายยาตามที่ระบบกำหนด RGB LCD จะบอกสถานะการทำงานโดยเรากำหนดให้

- สีขาว คือ สถานะปกติ
- สีเขียว คือ สถานะมีแก้วและกำลังทำงาน
- สีแดง คือ สถานะเมื่อถึงเวลาแต่ไม่มีแก้ว

ตารางการจ่ายยาเป็นดังนี้

	ตารางเวลา	ยาชนิดที่ 1	ยาชนิดที่ 2
มื้อเช้า	ยาก่อนอาหาร 7.00 น		
1 2 DE 0 1	ยาหลังอาหาร 8.00 น		
ู มื้อกลางวัน	ยาก่อนอาหาร 11.00 น		
ทอแย เภ าห	ยาหลังอาหาร 12.00 น		
์ มื้อเย็น	ยาก่อนอาหาร 16.00 น		
1 20.01	ยาหลังอาหาร 17.00 น		
ก่อนนอน	ยาก่อนนอน 20.00 น		

บทที่ 3 การทดลองและผลการทดลอง

การทดลองการปล่อยยาตามเวลาที่กำหนด

ตารางเวลา		ยาชนิดที่ 1	ยาชนิดที่ 2
มื้อเช้า	ยาก่อนอาหาร 7.00 น		
	ยาหลังอาหาร 8.00 น		
มื้อกลางวัน	ยาก่อนอาหาร 11.00 น		
ทอแข เขาห	ยาหลังอาหาร 12.00 น		
์ มื้อเย็น	ยาก่อนอาหาร 16.00 น		
์ พลเดห	ยาหลังอาหาร 17.00 น		
ก่อนนอน	ยาก่อนนอน 20.00 น		

ผลการทดลอง

การปล่อยยาเป็นไปตามตารางเวลาที่กำหนด

สถานะปกติ

สถานะเมื่อถึงเวลาแต่ไม่มีแก้ว

สถานะมีแก้วและกำลังทำงาน