

Contents

Alte	ernating Current	2
1.1	AC Signals	2
1.2	Sine Wave	2
1.3	Amplitude of an AC wave	2
1.4	Phase Shifting	3
	1.1 1.2 1.3	Alternating Current 1.1 AC Signals

Chapter 1

Alternating Current

1.1 AC Signals

- Direct Current: DC has polarity (direction) which stays the same. Amplitude may vary, but charge always flows in the same direction
- Alternating Current: Voltage polarity and current direction reverses periodically
- Period: Length of time (seconds) for one repetition of a cycle
- Frequency: $f = \frac{1}{T}$ [Hz]

1.2 Sine Wave

In its purest form, AC signals are sine waves, for example: $v(t) = V_o \sin{(2\pi f t)} = V_o \sin{(\omega t)}$ Any AC wave that consists of only one frequency is sinusoidal Utility AC is a sine wave with frequency 50Hz

1.3 Amplitude of an AC wave

- Peak Amplitude (V_p) : Maximum positive deviation
- Peak-to-Peak Amplitude (V_{p-p}) : Net difference between positive and negative peak amplitude

$$V_{p-p} = 2 \times V_p \tag{1.1}$$

Figure 1.1: Peak to Peak Amplitude

• Root-Mean-Square Amplitude (V_{rms}) : Effective amplitude of a sinusoidal AC wave. Average power dissipated in a resistor with an AC voltage = power dissipated with DC voltage of V_{rms} $V_{rms} \leq V_p \forall$ AC Waves

$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T v^2(t)dt} = \sqrt{\frac{1}{T} \int_\alpha^{T+\alpha} v^2(t)dt}$$

$$\tag{1.2}$$

Figure 1.2: RMS Amplitude

Sinusoidal AC Wave	$V_{rms} = \frac{V_o}{\sqrt{2}} \approx 0.707 V_o$
Square Ac Wave	$V_{rms} = V_p$
Triangular Wave	$V_{rms} = \frac{V_o}{\sqrt{3}} \approx 0.577 V_o$

Figure 1.3: AC RMS Values

Phase Shifting 1.4

 $f(x + \alpha)$ is a horizontal translation of f(x)Where:

> If a > 0, f(x) is shifted to the left If a < 0, f(x) is shifted to the right

If $v_1(t) = V_o \sin(\omega t)$, then $v_2 = V_o \sin(\omega t + \phi) = V_o \sin\left[\omega\left(t + \frac{\phi}{\omega}\right)\right]$ is a shifted version of $v_1(t)$ by $\frac{\phi}{\omega}$ seconds to the left (where ϕ is in radians and positive)

 $v_2(t)$ leads $v_1(t)$ by ϕ radians $(180 \times \frac{\phi}{\pi})$ degrees) $v_1(t)$ lags $v_2(t)$ by ϕ radians $(180 \times \frac{\phi}{\pi})$ degrees)

Jacob Coetzee Page 3 of 4

List of Figures

1.1	Peak to Peak Amplitude	2
1.2	RMS Amplitude	2
1.3	AC RMS Values	3