

INTRO TO DATA SCIENCE REVIEW

INTRODUCTION

ARUN AHUJA MOUNT SINAI MEDICAL CENTER

• @ Icahn Institute for Genetics and Genomic Sciences

Data Scientist @ Integral Ad Science

 Developer @ Morgan Stanley Electronic Trading and Real-Time Systems Group

INTRO TO DATA SCIENCE REVIEW

supervised unsupervised

making predictions discovering patterns

supervised unsupervised

labeled examples no labeled examples

TYPES OF ML SOLUTIONS

supervised
unsupervisedregression
dimension reductionclassification
clustering

INTRO TO DATA SCIENCE

SUPERVISED LEARNING

Q: What steps does a classification problem require?

1) split dataset

model

SUPERVISED LEARNING PROBLEMS

- 1) split dataset
- 2) train model

SUPERVISED LEARNING PROBLEMS

- 1) split dataset
- 2) train model
- 3) test model

SUPERVISED LEARNING PROBLEMS

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

INTRO TO DATA SCIENCE

LINEAR REGRESSION

REGRESSION PROBLEMS

supervised
unsupervisedregression
dimension reductionclassification
clustering

INTRO TO REGRESSION

- Q: What is a regression model?
- A: A functional relationship between input & response variables

The simple linear regression model captures a linear relationship between a single input variable x and a response variable y:

$$y = \alpha + \beta x + \varepsilon$$

Q: What do the terms in this model mean?

$$y = \alpha + \beta x + \varepsilon$$

A: y = response variable (the one we want to predict)

x =input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

 β = regression coefficient (the model "parameter")

 ε = residual (the prediction error)

LEARNING

```
OLS: min(\|y-x\beta\|^2)
L1 regularization: min(\|y-x\beta\|^2+\lambda\|\beta\|)
L2 regularization: min(\|y-x\beta\|^2+\lambda\|\beta\|^2)
```

INTRO TO DATA SCIENCE

LOGISTIC REGRESSION

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

THE LOGISTIC FUNCTION

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

We've already seen what this looks like:

THE LOGISTIC FUNCTION

The **logit function** is an important transformation of the logistic function. Notice that it returns the linear model!

$$g(x) = ln(\frac{\pi(x)}{1-\pi(x)}) = \alpha + \beta x$$

THE LOGISTIC FUNCTION

The **logit function** is an important transformation of the logistic function. Notice that it returns the linear model!

$$g(x) = ln(\frac{\pi(x)}{1-\pi(x)}) = \alpha + \beta x$$

The logit function is also called the log-odds function.

INTRO TO DATA SCIENCE

KNN CLASSIFICATION

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

KNN CLASSIFICATION

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

INTRO TO DATA SCIENCE

NAÏVE BAYES

BAYESIAN INFERENCE

Suppose we have a dataset with features $x_1, ..., x_n$ and a class label C. What can we say about classification using Bayes' theorem?

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Bayes' theorem can help us to determine the probability of a record belonging to a class, given the data we observe.

source: Data Analysis with Open Source Tools, by Philipp K. Janert. O'Reilly Media, 2011.

THE LIKELIHOOD FUNCTION

This term is the likelihood function. It represents the joint probability of observing features $\{x_i\}$ given that that record belongs to class C.

THE PRIOR

This term is the prior probability of C. It represents the probability of a record belonging to class C before the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

THE NORMALIZATION CONSTANT

This term is the normalization constant. It doesn't depend on C, and is generally ignored until the end of the computation.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

THE POSTERIOR

This term is the posterior probability of C. It represents the probability of a record belonging to class C after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the posterior probability of C. It represents the probability of a record belonging to class C after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The goal of any Bayesian computation is to find ("learn") the posterior distribution of a particular variable.

The idea of Bayesian inference, then, is to **update** our beliefs about the distribution of C using the data ("evidence") at our disposal.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Then we can use the posterior for prediction.

CLASSIFICATION

supervised
unsupervisedregression
dimension reductionclassification
clustering

INTRO TO DATA SCIENCE

COMPARISON

CLASSIFICATION

scalability

linear

interpretation configuration feature-select

Wednesday, March 19, 14

overfitting

37

CLASSIFICATION

linear

KNN

Wednesday, March 19, 14

KNN

linear scalability

-/-

linear

KNNN +/-

scalability interpretation

_

	KNN
linear	N
scalability	+/-
interpretation	_
configuration	+

	KNN
linear	N
scalability	+/-
interpretation	-
configuration	+
feature-select	_

<u>KNN</u>

linear scalability interpretation configuration feature-select overfitting

linear scalability

configuration

KNN

Logistic

interpretation feature-select

overfitting

scalability

interpretation

configuration

feature-select

linear

<u>-</u>

KNN

Logistic

overfittingWednesday, March 19, 14

scalability

configuration

linear

interpretation

Logistic

NB

Prior

feature-select

KNN

overfitting Wednesday, March 19, 14

interpretation

configuration

overfitting

Wednesday, March 19, 14

feature-select

KNN

Logistic

NB

Prior

RF

48 **CLASSIFICATION** KNN Logistic NB SVM RF linear

Prior

n tree

scalability

interpretation

configuration

overfitting

Wednesday, March 19, 14

feature-select

QUESTION

HOW DO YOU REPRESENT YOUR DATA?

Wednesday, March 19, 14

RGB-values

{red, blue}

ratings

color

1 — 10 rating

Good / Bad

QUESTION

HOW DO YOU MEASURE

OF QUALITY?

ASSESSING ML PERFORMANCE

supervised unsupervised

test out your predictions

--

ASSESSING ML PERFORMANCE

supervised unsupervised

Accuracy, MAE, AUC