Progetto di calcolo della probabilità e statistica matematica

Docente: Gabriele Gianini

Indice

Indice	pag.1
Introduzione	pag.2
Topologia della rete	pag.3
La rete	pag.3
Tabella del collegamento dei nodi	pag.4
Esempi di percorsi	pag.5
Istogramma	pag.7
Risultati	pag.8

Introduzione

Il progetto consiste nel determinare empiricamente il TTL adeguato per una rete data in cui il routing dei pacchetti sia effettuato tramite gossiping. Quando la topologia della rete è particolarmente semplice tale determinazione può essere effettuata analiticamente, non appena la topologia diventa complessa diventa opportuno effettuare tale determinazione per mezzo di una simulazione.

Durante lo svolgimento del progetto si richiede di effettuare i passi seguenti:

- 1. scelta della topologia di rete.
- 2. scegliere due nodi che fungano rispettivamente da sorgente e da destinazione.
- 3. simulare 100,000 cammini di un pacchetto dalla sorgente alla determinazione.
- 4. prendere nota per ciascun cammino del numero di hop totali.
- 5. creare un istogramma con la distribuzione di tali lunghezze di percorrenza.
- 6. calcolare empiricamente la cumulativa e determinare empiricamente il numero di hop che comprende il 95% dei pacchetti (ossia il 95-simo percentile di tale distribuzione empirica).
- 7. creare un deliverable di alcune pagine che documenti il lavoro effettuato.

Topologia della rete

La rete presa in esame è di tipo non orientato, ciò vuol dire che i pacchetti possono percorrere i cammini sia in un senso che nell'altro.

È composta da 15 nodi, dove il numero 1 è il nodo sorgente e il numero 15 è il nodo di destinazione.

Il numero minimo di hop per arrivare a destinazione è 4.

Ogni nodo è collegato con un minimo di 2 e un massimo di 4 nodi.

Il numero massimo di hop che un pacchetto può effettuare è 100000.

il numero massimo di passi è 120.

La rete

La rete presa in esame:

Tabella del collegamento dei nodi:

Nodo	Arco 1	Arco 2	Arco 3	Arco 4
Nodo 1	2	3	4	5
Nodo 2	1	3	6	-
Nodo 3	1	2	6	7
Nodo 4	1	5	7	8
Nodo 5	1	4	8	-
Nodo 6	2	3	9	10
Nodo 7	3	4	8	11
Nodo 8	4	5	7	12
Nodo 9	6	10	13	15
Nodo 10	6	9	13	-
Nodo 11	7	14	-	-
Nodo 12	8	14	-	-
Nodo 13	9	10	14	15
Nodo 14	11	12	13	15
Nodo 15	9	13	14	-

Esempi di percorsi

Esempi di percorsi:

1. Percorso di 4 hop.

Нор	Nodo di partenza	Nodo d'arrivo
1	1	2
2	2	6
3	6	9
4	9	15

2. Percorso di 6 hop.

Нор	Nodo di partenza	Nodo d'arrivo
1	1	3
2	3	7
3	7	8
4	8	12
5	12	14
6	14	15

Istogramma

Come possiamo vedere dal grafico sopra riportato, sull'asse y vediamo i pacchetti arrivati e dull'asse x il numero di hops impiegati per arrivare a destinazione.

Risultati

Come possiamo vedere dalla tabella sotto riportata, il 95° percentile si trova in corrispondenza del 54° pacchetto (evidenziato in giallo). Il 95° percentile è il valore ottimale per il corretto funzionamento della rete.

Нор	Pacchetti arrivati	Cumulativa	Percentuali
1	0	0	0
2	0	0	0
3	0	0	0
4	2128	2128	0,0213
5	7202	9330	0,0933
46	559	92029	0,9203
47	446	92475	0,9248
48	432	92907	0,9291
49	424	93331	0,9333
50	398	93729	0,9373
51	357	94086	0,9409
52	343	94429	0,9443
53	316	94745	0,9475
54	312	95057	0,9506
55	282	95339	0,9534
56	261	95600	0,9560
57	260	95860	0,9586
58	242	96102	0,9610
59	217	96319	0,9632
60	195	96514	0,9651
117	7	99880	0,9988
118	10	99890	0,9989
119	6	99896	0,9990
120	5	99901	0,9990
121	99	100000	1