

WE CLAIM:

1. A copolymer prepared by copolymerization of a first monomer having the structure of formula (I)

(I)

wherein

R¹ is H, F, CN, CH₃, CF₃, CF₂H, or CFH₂;

R^{2a} and R^{2b} are independently H or F; and

R³ is CN or COOR, wherein R is selected from the group consisting of H, C₁₋₁₂ alkyl and C₁₋₁₂ fluoroalkyl, or is selected so as to render R³ acid-cleavable; and

a second monomer having the structure of formula (II)

(II)

wherein

R⁴ is H, C₁₋₁₂ alkyl, or C₃₋₁₅ alicyclic,

R⁵ is C₁₋₁₂ alkyl, C₁₋₁₂ alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C₃₋₁₅ alicyclic, or R⁴ and R⁵ together form a five-, six-, or seven-membered ring,

R⁶ is H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or R⁴ and R⁶ together form a five-, six-, or seven-membered ring, and

R⁷ is H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or R⁷ and R⁵ together represent -X-(CR⁸R⁹)_n-, in which case R⁴ and R⁶ are H, X is O or CH₂, n is 1 or 2, R⁸ and R⁹ are H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R⁸ and R⁹ together form =O, n is 1.

2. The copolymer of Claim 1, wherein R¹ is CF₃.
3. The copolymer of Claim 2, wherein R³ is COOR.
4. The copolymer of Claim 2, wherein R³ is CN.
5. The copolymer of Claim 1, wherein R¹ and R² are F and R³ is COOR.
6. The copolymer of Claim 1, wherein R¹ is CN and R² is H.
7. The copolymer of Claim 3, wherein R is C₁₋₁₂ alkyl.
8. The copolymer of Claim 5, wherein R is C₁₋₁₂ alkyl.
9. The copolymer of Claim 3, wherein R is selected to render R³ acid-cleavable.

10. The copolymer of Claim 5, wherein R is selected to render R³ acid-cleavable.
11. The copolymer of Claim 10, wherein R is a tertiary alkyl substituent.
12. The copolymer of Claim 11, wherein R is *t*-butyl.
13. The copolymer of Claim 11, wherein R is a C₅-C₁₂ cyclic or alicyclic substituent with a tertiary attachment point.
14. The copolymer of Claim 13, wherein R is selected from the group consisting of 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecanyl, 1-methylcyclopentyl, and 1-methylcyclohexyl.
15. The copolymer of Claim 1, wherein the second monomer has the structure of formula (III)

wherein

R⁴ is H, C₁₋₁₂ alkyl, or C₃₋₁₅ alicyclic; and

R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic.

16. The copolymer of Claim 1, wherein the second monomer has a structure selected from the group consisting of (IV), (V), and (VI)

(IV)

(V)

(VI)

wherein

R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic,

R^7 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl,

X is O or CH_2 ,

m is an integer between 1 and 3, and

R^8 and R^9 are H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl.

17. The copolymer of Claim 1, wherein the copolymer is substantially transparent to radiation having a wavelength of less than about 250 nm.
18. The copolymer of Claim 17, wherein the copolymer is substantially transparent to radiation having a wavelength of less than about 193 nm.
19. The copolymer of Claim 18, wherein the copolymer is substantially transparent to radiation having a wavelength of 157 nm.
20. The copolymer of Claim 1, further comprising at least one additional monomer having a structure that is different than the first and second monomers.
21. A lithographic photoresist composition comprising the copolymer of Claim 1 and a radiation-sensitive acid generator.
22. The lithographic photoresist composition of Claim 18, further comprising a second polymer.
23. A process for generating a resist image on a substrate, comprising the steps of:
 - (a) coating a substrate with a film of a photoresist comprised of a radiation-sensitive acid generator and a copolymer synthesized from a first monomer having the structure of formula (I)

(I)

wherein

R¹ is H, F, CN, CH₃, CF₃, CF₂H, or CFH₂;

R^{2a} and R^{2b} are independently H or F; and

R³ is CN or COOR, wherein R is selected from the group consisting of H, C₁₋₁₂ alkyl and C₁₋₁₂ fluoroalkyl, or is selected so as to render R³ acid-cleavable, with the proviso that when R³ is CN, then R¹ is CF₃ and R^{2a} and R^{2b} are H; and

a second monomer having the structure of formula (II)

(II)

wherein

R⁴ is H, C₁₋₁₂ alkyl, or C₃₋₁₅ alicyclic,

R⁵ is C₁₋₁₂ alkyl, C₁₋₁₂ alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C₃₋₁₅ alicyclic, or R⁴ and R⁵ together form a five-, six-, or seven-membered ring,

R⁶ is H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or R⁴ and R⁶ together form a five-, six-, or seven-membered ring,

R⁷ is H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or R⁷ and R⁵ together represent

-X-(CR⁸R⁹)_n-, in which case R⁴ and R⁶ are H, X is O or CH₂, n is 1 or 2, R⁸ and R⁹ are H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R⁸ and R⁹ together form =O, n is 1

(b) exposing the film selectively to a predetermined pattern of radiation so as to form a latent, patterned image in the film; and
(c) developing the latent image with a developer.

24. In a lithographic photoresist composition comprised of a polymer transparent to deep ultraviolet radiation and a radiation-sensitive acid generator, the improvement comprising employing as the polymer a copolymer synthesized from a first monomer having the structure of formula (I)

wherein

R¹ is H, F, CN, CH₃, CF₃, CF₂H, or CFH₂;

R^{2a} and R^{2b} are independently H or F; and

R³ is CN or COOR, wherein R is selected from the group consisting of H, C₁₋₁₂ alkyl and C₁₋₁₂ fluoroalkyl, or is selected so as to render R³ acid-cleavable, with the proviso that when R³ is CN, then R¹ is CF₃ and R² is H; and

a second monomer having the structure of formula (II)

wherein

R⁴ is H, C₁₋₁₂ alkyl, or C₃₋₁₅ alicyclic,

R⁵ is C₁₋₁₂ alkyl, C₁₋₁₂ alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C₃₋₁₅ alicyclic, or R⁴ and R⁵ together form a five-, six-, or seven-membered ring,

R⁶ is H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or R⁴ and R⁶ together form a five-, six-, or seven-membered ring;

R⁷ is H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or R⁷ and R⁵ together represent -X-(CR⁸R⁹)_n-, in which case R⁴ and R⁶ are H, X is O or CH₂, n is 1 or 2, R⁸ and R⁹ are H, C₁₋₁₂ alkyl, or C₁₋₁₂ fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R⁸ and R⁹ together form =O, n is 1.

25. The lithographic photoresist composition of Claim 24, wherein the photoresist composition is a positive resist and further comprises a photoacid-cleavable monomeric or polymeric dissolution inhibitor.

26. The lithographic photoresist composition of Claim 24, wherein the photoresist composition is a negative resist and further comprises a crosslinking agent.

27. The lithographic photoresist composition of Claim 26, wherein the crosslinking agent is a glycoluril compound.
28. The lithographic photoresist composition of Claim 27, wherein the glycoluril compound is selected from the group consisting of tetramethoxymethyl glycoluril, methylpropyltetramethoxymethyl glycoluril, methylphenyltetramethoxymethyl glycoluril, and mixtures thereof.