PRÁCTICA 1:

Posición y orientación espacial y cinemática directa

1. Rotaciones en el espacio

Considere 2 tramas en el espacio, $\{A\}$ y $\{B\}$, que inicialmente coinciden. Considere además una serie de puntos, $(p_1, p_2, ..., p_{35})$, como los mostrados en la Figura 1. Las coordenadas p_{i_x} , p_{i_y} y p_{i_z} de cada punto, expresadas respecto a la trama $\{B\}$, están descritas por los vectores p_{x_B} , p_{y_B} y p_{z_B} (donde el elemento en la *i*-ésima posición se corresponde con p_i) que se muestran a continuación:

```
import numpy as np
pxB = np.array([0,
                 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10,
             10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13,
             pyB = np.array([0,
                     Θ,
                        Θ,
                           0.
                               Θ,
                                   Θ.
                                      Θ,
                                         0, 0, 0, 1,
                        5,
                            6.
                               7,
                                   8.
                                      9, 10, 10, 10, 10,
             10,
                            6,
                               5,
                                      3,
                                         2,
                                             1,
pzB = np.array([0,
                     Θ,
                        Θ,
                            Θ,
                               Θ,
                                   Θ,
                                      Θ,
                                          Θ,
                                             0,
                 Θ,
                     Θ,
                        Θ,
                           Θ,
                               Θ,
                                   Θ,
                                      Θ,
                                             0, 0,
                                         Θ,
                           Θ,
                               0, 0,
                                      Θ,
              0, 0,
                     0, 0,
                                         0,
pB = np.array([pxB, pyB, pzB])
```


Figura 1: Representación en 3D de los puntos del ejercicio 1

Ejercicio 1

Represente las posiciones de los puntos respecto de la trama $\{A\}$ cuando:

- a. La trama $\{B\}$ se gira un ángulo $\alpha = 90^{\circ}$ alrededor del eje X_A .
- b. La trama $\{B\}$ se gira un ángulo $\alpha = 90^{\circ}$ alrededor del eje Y_A .
- c. La trama $\{B\}$ se gira un ángulo $\alpha = 90^{\circ}$ alrededor del eje Z_A .

Interprete el resultado.

Ejercicio 2

Represente las posiciones de los puntos respecto de la trama $\{A\}$ cuando la trama $\{B\}$ del ejercicio anterior se rota desde la posición original (superpuesta a la trama $\{A\}$) en torno al eje X_B un ángulo $\gamma = 60^{\circ}$, a continuación se gira en torno al eje Y_B un ángulo $\beta = 90^{\circ}$, y después se gira en torno al eje Z_B un ángulo $\alpha = 30^{\circ}$.

Compruebe como afecta el orden de las rotaciones en las coordenadas respecto de la trama $\{A\}$. Comente el resultado.

2. Algoritmo de Denavit-Hartenberg

El algoritmo de Denavit-Hartenberg nos indica cómo debemos colocar los sistemas de coordenadas solidarios a cada eslabón de un brazo robótico. Una vez hecho esto, debemos calcular una tabla de parámetros, que tendrá 4 columnas y tantas filas como articulaciones tenga el robot que estamos analizando. A partir de dicha tabla podemos construir fácilmente la matriz de transformación homogénea que nos permite pasar del sistema de coordenadas de la base al del extremo del brazo robótico.

Ejercicio 3

Diseñe e implemente una función en Python que reciba como entrada una matriz de dimensión $n \times 4$ con los parámetros de Denavit-Hartenberg de un manipulador cualquiera, y devuelva como salida la matriz de transformación homogénea (como un array de dimensión 4×4) que relaciona el sistema de coordenadas de la base y el sistema de coordenadas del extremo del robot. Contemple la posibilidad de que los ángulos de rotación y los desplazamientos sean variables simbólicas (use el paquete sympy). Compruebe el correcto funcionamiento de la función con algunos ejemplos.