补充题 1: 图 1 所示电路中,二极管导通电压 U_D =0.6V。根据以下条件分别求解 V_O 、I、 I_{D1} 、 I_{D2} 、 I_{D3} 。(1) V_1 = V_2 =0; (2) V_1 =5V, V_2 =2V。

补充题 2: 电路如图 2 所示,已知晶体管的 $U_{\rm BE}$ =0.7V, β =200, $r_{\rm bb}$ '=100Ω。

- (1) 求解静态工作点 I_{BQ} 、 I_{CQ} 和 U_{CEQ} ;
- (2) 求解 \mathbf{A}_{u} 、 R_{i} 、 R_{o} 。

补充题 3: 图 3 所示电路中,已知 $V_{\rm CC}$ =10V,晶体管的 $U_{\rm BE}$ =0.7V, β =80, $r_{\rm bb}$:=0, $R_{\rm L}$ =500Ω, $R_{\rm E}$ =500Ω,两个耦合电容对交流信号可视为短路。已知静态时 $U_{\rm CEQ}$ =5V。为使电流放大倍数

$$\mathbf{A}_{i} = \frac{\dot{I}_{o}}{\dot{I}_{s}}$$
 =8, 试求 R_{1} , R_{2} , 以及输出电阻 R_{o} 。

补充题 4: 电路如图 4 所示,已知晶体管的 $U_{\rm BE}$ =0.7V, β =300, $r_{\rm bb}$ '=200Ω。

- (1) 当开关 K 位于 1 位置时,求解静态工作点 I_{BQ} 、 I_{CQ} 和 U_{CEQ} ;
- (2) 分别求解开关 K 位于 1、2、3 位置时的电压放大倍数 A_u ,比较这三个电压放大倍数,并说明发射极电阻是如何影响电压放大倍数的。

补充题 5: 以下三题任选一个

(1) 图 5 所示电路中,增强型 PMOS 管参数为 $U_{\rm GS(th)}$ = -1.5V, $k'_{\rm p}$ =25 μ A/V²,L=4 μ m。 求使 $I_{\rm D}$ =0.1mA 同时 $U_{\rm SD}$ =2.5V 的沟道宽度 W 和电阻 R。

(2) 图 6 所示电路中,耗尽型 PMOS 管参数为 $U_{GS(off)}$ =1.5V, K_p =0.5mA/V²。设计电路 使得静态时 U_{SD} =2.5V,求 R_1 、 R_2 的阻值,要求偏置电阻 R_1 、 R_2 中的电流不能超过漏极电流的 10%。

(3)图 7 电路中,已知 P 沟道 JFET 参数 $U_{\rm GS(off)}$ =2.5V。(1)确定使 P 沟道 JFET 工作 在恒流区的 $V_{\rm DD}$ 的范围。(2)若 $I_{\rm DSS}$ =6mA,求 $V_{\rm S}$ 。

补充题7:基本放大电路如图9(a)(b)所示,图(a)方框内为共射放大电路I,图

(b)方框内为共集放大电路 II ,其开路(不带负载)电压放大倍数 A_{uo} 及输入电阻 R_i 、输出电阻 R_o 如图中所示。由电路 I 、II 组成的多级放大电路如图(c)、

(d)、(e)所示,它们均正常工作。试说明通常情况下图(c)、(d)、

(e) 所示电路中

- (1) 哪些电路的输入电阻比较大;
- (2) 哪些电路的输出电阻比较小;

(3) 哪个电路的
$$\begin{vmatrix} \dot{\mathbf{a}}_{us} \\ \dot{U}_{o} \end{vmatrix} = \begin{vmatrix} \dot{\mathbf{c}}_{o} / \dot{\mathbf{c}}_{s} \\ \mathbf{d}_{s} \end{vmatrix}$$
 最大。

(说明:以上三问不需要计算即可判断出来结果)

补充题 9: 图 11 所示差分放大电路中,增强型 NMOS 管参数为 $U_{GS(th)}$ =1V, K_n =0.1mA/V²;增强型 PMOS 管参数为 $U_{GS(th)}$ = -1V, K_p =0.25mA/V²。设静态时 I_1 =0.1mA, I_2 =0.5mA。(1)已知静态时输出电压 U_0 =0,求 R_1 、 R_2 的值。(2)求电压放大倍数 A_u 、输出电阻 R_o 。

***补充题10**(选作): 图 12 所示 BiCMOS 电路中,电路参数 V^+ =10V, $V_{\rm GG}$ = 4.5V, $R_{\rm Dl}$ = $R_{\rm E2}$ =8k Ω , $R_{\rm L}$ =1.8 k Ω 。已知增强型 NMOS 管 $M_{\rm l}$ 参数为 $U_{\rm GS(th)}$ =1V, $K_{\rm n}$ =0.4mA/V²;晶体管 Q_2 参数为 β =100, $U_{\rm BE}$ =0.7V, $r_{\rm bb}$ =0。(1)求静态时 NMOS 管参数 $U_{\rm DSQ}$ 、 $I_{\rm DQ}$,晶体管参数 $I_{\rm CQ}$ 、 $U_{\rm ECQ}$ 。(2)求电压放大倍数 A_u 。

补充题 11: 图 13 所示电流源电路中,JFET 参数为 $U_{GS(off)}$ = - 4V, I_{DSS} =4mA。(1)为使电流 I_0 =2mA,求 R 的阻值。(2)求使 JFET 工作在恒流区的 V_D 的范围。

补充题 12: 图 14 所示电流源电路中,电路参数 V^+ =2.5V,R=15k Ω 。已知增强型 NMOS 管 M_1 、 M_2 参数均为 $U_{\rm GS(th)}$ =0.5V, k'_n =0.08mA/V²,W/L=6。求电流 $I_{\rm REF}$ 、 $I_{\rm O}$ 。

补充题 13: 图 15 所示 电路中,已知 R_1 =10kΩ, R_2 =20kΩ,R=10kΩ,C=0.01μF,稳压管的稳压值为 6V, U_{REF} =0。

- (1) 分别求输出电压 u_0 和电容两端电压 u_C 的最大值和最小值。
- (2)计算输出电压 u_O 的周期,对应画出 u_O 和 u_C 的波形,标明幅值和周期。
 - (3) 若增大 R_1 的阻值, 将如何影响 u_0 的幅值和周期。
 - (4) 若增大 R 的阻值, 将如何影响 uo 的幅值和周期。
 - (5) 若增大 U_Z , 将如何影响 u_O 的幅值和周期。
 - (6) 若 $U_{REF}=3V$, 将如何影响 u_{O} 的幅值和周期。

图 15

补充题 14: 图 16 所示电路中,已知 R_w 的滑动端位于中点。选择填空:

A. 增大

B. 不变

C. 减小

当 R_1 增大时, u_{01} 的占空比将____,振荡频率将____, u_{02} 的幅值将____;当 R_2 增大时, u_{01} 的占空比将____,振荡频率将____, u_{02} 的幅值将____;当 U_z 增大时, u_{01} 的占空比将____,振荡频率将____, u_{02} 的幅值将____;若 R_W 的滑动端向上移动,则 u_{01} 的占空比将____,振荡频率将____, u_{02} 的幅值将____。

图 16

***补充题 15(选作):**图 17 所示由互补 MOSFET 组成的乙类输出级电路中,电路参数 V^+ =10V, V^- = - 10V, R_L =5k Ω 。已知增强型 NMOS 管 M_n 参数为 $U_{GS(th)}$ =0V, K_n =0.4mA/V²,增强型 NMOS 管 M_p 参数为 $U_{GS(th)}$ =0V, K_p =0.4mA/V²。(1)求最大输出电压 U_{om} ,并求此时的 i_L 和 v_i 的值。(2)求最大输出功率和效率。

