NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lau Tze Siong

MA3201Algebra II AY 2007/2008 Sem 2

Question 1

(a) False.

 \mathbb{Z} is a integral domain but $\mathbb{Z} \times \mathbb{Z}$ is not a integral domain since (1,0)*(0,1)=(0,0).

(b) True.

Since n is prime if and only if $n\mathbb{Z}$ is a prime ideal. Since \mathbb{Z} is a PID, $n\mathbb{Z}$ is a maximal ideal. Hence n is prime if and only if $\mathbb{Z}/n\mathbb{Z}$ is a field. Since $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n , n is prime if and only if \mathbb{Z}_n is a field.

(c) False.

Let $R=\mathbb{Z}_6$. 3x+3 is a zero-divisor in R[x] since (3x+3).(2)=0 but $3x+3\notin R$.

(d) True.

Suppose $\{q_1, q_2, q_3, ..., q_n\}$ is the finite set of generaters that generate \mathbb{Q} . We may assume that $q_i = \frac{a_i}{b_i}$ such that $gcd(a_i, b_i) = 1$. Let $\{p_1, p_2, ..., p_m\}$ be the list of prime factors of $\{b_1, b_2, ..., b_n\}$, note that this list is finite since there are only finitely many b_i . Since there are infinitely many primes, we can choose p_{m+1} such that $p_{m+1} \notin \{p_1, p_2, ..., p_m\}$.

Claim: $\{q_1, q_2, ..., q_n\}$ does not generate $\frac{1}{p_{m+1}}$

Proof: Suppose not. There exist $k_1, k_2, ..., k_n$ such that $\sum_{i=1}^n k_i \frac{a_i}{b_i} = \frac{1}{p_{m+1}}$. Hence we have $p_{m+1}\left(\sum_{i=1}^n a_i b_1 b_2 b_3 ... \hat{b_i} ... b_n\right) = b_1 b_2 b_3 ... b_n$. Hence $p_{m+1} \mid b_1 b_2 b_3 ... b_n$. Therefore we have $p_{m+1} \mid b_i$ for some $i \in \{1, ..., n\}$ (Contradiction, since p_{m+1} is not a prime factor of any of b_i !).

(e) False.

Since \mathbb{Z}_4 is a free module over \mathbb{Z}_4 . But the submodule $\{0,2\}$ over \mathbb{Z}_4 is not free. Since the cardinality of \mathbb{Z}_4^n is 4^n and is never equals to the cardinality of $\{0,2\}$, it cannot be isomorphic to $(\mathbb{Z}_4)^n$ for all $n \in \mathbb{Z}$.

Question 2

Let I be an ideal in S. Since ϕ is surjective, $\phi^{-1}(S)$ is a ideal in R. Since R is a PID, $\phi^{-1}(S) = \langle j \rangle$. Therefore for all $x \in I$, $x = \phi(r)$ for some $r \in \langle j \rangle$. Since $r \in \langle j \rangle$, r = jy for some $y \in R$. Hence for all $x \in I$, $x = \phi(jy) = \phi(j)\phi(y)$ for some $y \in R$. Therefore I is a principal ideal generated by

S need not be a principal ideal domain since it may not be a integral domain. An example would be $R = \mathbb{Z}$ and $S = \mathbb{Z}_4$. Where ϕ maps $x \in \mathbb{Z}$ onto its equivalent class modulo 4. It is easy to check that this map is surjective and Z is a principal ideals domain. However, \mathbb{Z}_4 is not a integral domain, hence not a principal ideal domain.

Page: 1 of 5

Question 3

Suppose $x^2 + y^3$ is reducible, then it can be expressed as a product of 2 non-units in $\mathbb{Q}[x,y] = (\mathbb{Q}[y])[x]$.

Case 1)

 $x^2 + y^3 = (fx^2 + g)(h)$ where $f, g, h \in \mathbb{Q}[y]$ such that $\deg(h) \geq 1$. Comparing coefficients of x^2 , we have fh = 1. Therefore $\deg(h) = 0$ (Contradiction!).

Case 2)

 $x^2+y^3=(fx+g)(hx+k)$, where $f,g,h,k\in\mathbb{Q}[y]$. Comparing the coefficients of x^2 we have fh=1, since the units of $\mathbb{Q}[x]$ are exactly the units of $Q,f,h\in\mathbb{Q}$. We may assume that f=j=1, therefore $x^2+y^3=(x+g)(x+k)$. Comparing coefficients of x and x^0 we have g=-k and $gk=y^3$ respectively. Solving this two equations gives us, $-k^2=y^3$ (Contradiction, since the degree of k^2 is always even but the degree of y^3 is odd!).

Hence $x^3 + y^3$ is not reducible in $\mathbb{Q}[x, y]$.

Question 4

(a) Claim: If $b' \neq 0$ then $b + b' \neq b$

Proof:

Suppose not the b + b' = b then we have b' = 0 which is a contradiction!

Claim:R has no zero divisors.

Proof:

Suppose R has a left zero divisor a then there exist $b' \in R \setminus \{0\}$ such that ab' = 0,in particular ab'a = 0. By assumption, since $a \in R \setminus \{0\}$, there exist a unique b such that aba = a (Note that $b \neq b'$ since $aba \neq 0$). Hence we have aba + ab'a = a + 0 = a. Therefore a(b+b')a = a (Contradiction! Since $b \neq b + b'$). The same conclusion can be drawn from assuming R has a right zero divisor. Hence R has no zero divisors.

(b) Fix $a \in R \setminus \{0\}$, then there exist a unique b such that a = aba. For any $r \in R \setminus \{0\}$, since ar - ar = 0 and a = aba, we have ar - abar = 0. Hence a(r - (ba)r) = 0. Since $a \neq \setminus \{0\}$ and R has no zero divisors, one has r - (ba)r = 0. Therefore r = (ba)r for any $r \in R$. Similarly for any $r \in R \setminus \{0\}$, r - (ba)r = 0. Therefore $r^2 - r(ba)r = 0$. Factorizing, we obtain (r - r(ba))r = 0. Since $r \neq 0$ and R has no zero divisors, r = r(ba).

Claim: ba is the unique element in R such that (ba)r = r = r(ba) for all $r \in R$.

Proof:

Suppose there exist k such that kr = r = rk for all $r \in R$ in particular $r \in R \setminus \{0\}$, then we have kr = r = (ba)r. Therefore (k - ba)r = 0. Since $r \neq 0$, we have k = ba.

Hence ba is the unique element such that (ba)r = r = r(ba) for all $r \in R$. Therefore ba is the identity in R. Since R is a ring with identity without zero divisors, R is a division ring.

Question 5

(a) Suppose $a_1+a_2 \in I_1 \cup I_2$, then $a_1+a_2 \in I_1$ or $a_1+a_2 \in I_2$. If $a_1+a_2 \in I_1$ then $a_1+a_2-a_1=a_2 \in I_1$ which contradicts $a_2 \notin I_1$. Similarly, if $a_1+a_2 \in I_2$ then $a_1+a_2-a_2=a_1 \in I_2$ which contradicts $a_1 \notin I_2$.

Page: 2 of 5

Hence $a_1 + a_2 \notin I_1 \cup I_2$.

Claim: If $I_1 \subseteq I_2$ or $I_2 \subseteq I_1$ then $I_1 \cup I_2$ is an ideal.

Proof:

WLOG suppose $I_1 \subseteq I_2$ then $I_1 \cup I_2 = I_2$. Hence $I_1 \cup I_2$ is an ideal.

Claim: If $I_1 \cup I_2$ is a ideal, then either $I_1 \subseteq I_2$ or $I_2 \subseteq I_1$.

Proof:

By previous part, one of $I_1 \setminus I_2$ or $a_2 \in I_2 \setminus I_2$ must be empty. If not we can choose $a_1 \in I_1 \setminus I_2$ and $a_2 \in I_2 \setminus I_1$ but $a_1 + a_2 \notin I_1 \cup I_2$. WLOG suppose $I_1 \setminus I_2$ is empty, then $I_1 \subseteq I_2$.

Hence $I_1 \subseteq I_2$ or $I_2 \subseteq I_1$ if and only if $I_1 \cup I_2$ is an ideal.

(b) Claim: $a_2 a_3 a_4 ... a_n \notin P_1$

Proof:

Suppose not. Since P_1 is a prime ideal. $a_2a_3a_4..a_n \in P_1$ implies $a_i \in P_1$ for some $i \in \{2, 3, 4, 5, ..., n\}$ which is a contradiction!

Claim: $a_1 + a_2 a_3 ... a_n \notin \bigcup_{i=1}^n P_i$.

Proof:

Since for all $j \in \{2, ..., n\}$, $a_1 \in P_1 \setminus P_j$ and $a_2 a_3 ... a_n \in P_j \setminus P_1$, we have $a_1 + a_2 a_3 ... a_n \notin P_1 \cup P_j$ for all $j \in \{2, 3, ..., n\}$. Therefore $a_1 + a_2 a_3 ... a_n \notin \bigcup_{i=1}^n P_i$.

Claim: If I is an ideal such that $I \subseteq \bigcup_{i=1}^n P_i$ then $I \subseteq P_i$ for some i = 1, ..., n.

Proof

Suppose not. Then there exist a collection of $P_{m_{\alpha}}$, $\alpha = 1,...,q$ such that $I \subseteq \bigcup_{i=1}^{q} P_{m_i}$ and $I \cap (P_{m_{\alpha}} \setminus \bigcup_{\alpha \neq \beta} P_{m_{\beta}}) \neq \emptyset$ for all $\alpha \neq \beta$, $\alpha, \beta = 1,...,q$. with $q \in \mathbb{N}_{\geq 2}$.

Now choose, $a_i \in I \cap \left(P_{m_i} \setminus \bigcup_{i \neq \beta} P_{m_\beta}\right) \subseteq \left(P_{m_i} \setminus \bigcup_{i \neq \beta} P_{m_\beta}\right)$ for i = 1, ..., q.

By previous parts, we have $a_1 + a_2 a_3 ... a_q \notin \bigcup_{i=1}^q P_{m_i}$.

Now suppose $a_1 + a_2a_3...a_q \in P_j \cap I$ such that $j \neq m_1,...,m_q$. Since $j \neq m_1,...,m_q$, $I \cap (P_j \setminus \bigcup_{i=1}^q P_{m_i}) = \emptyset$. Hence $I \cap P_j \subseteq I \cap \bigcup_{i=1}^q P_{m_i}$. (Contradiction! Since $a_1 + a_2a_3...a_q \notin \bigcup_{i=1}^q P_{m_i}$). Hence $a_1 + a_2a_3...a_q \notin \bigcup_{i=1}^n P_i$. (Contradiction! Since $I \subseteq \bigcup_{i=1}^n P_i$.)

Question 6

- (a) Since F is a field F[x] is a Euclidean Domain with the Euclidean function being the degree of the polynomial. Suppose f(x) = p(x)q(x), then $\deg(f(x)) = \deg(p(x)) + \deg(q(x))$. Since $\deg(f(x)) = 1$, $\deg(p(x)) + \deg(q(x)) = 1$. Therefore one of p(x), q(x) is of degree 0. Hence is a element of F and is a unit in F[x]. Therefore f(x) is irreducible.
- (b) Claim: If f(a) = 0 for some $a \in F$ then f is reducible.

Proof:

Since F[x] is a Euclidean Domain, there exists p(x), r(x) such that f(x) = p(x)(x - a) + r(x). Since f(a) = 0, we have r(a) = 0 and since $\deg(r) = 0$, r(x) = 0. Hence f(x) = p(x)(x - a). Since $\deg(f) = 2$, $\deg(p) = 1$. Hence f is reducible.

Claim: If f is reducible then f(a) = 0 for some $a \in F$. Proof:

Suppose f is reducible. Then f(x) = p(x)q(x) such that $\deg(p) = \deg(q) = 1$. Hence p(x) = (ax+b) for some $a, b \in F$. It is then clear that $f\left(\frac{-b}{a}\right) = 0$ and $\frac{-b}{a} \in F$ since F is a field.

(c) Since $(2)^3 - 2(2)^2 + 2 + 5 = 0 \mod 7$. $x^3 - 2x^2 + x + 5 = (x - 2)(x^2 + ax + 1)$ for some $a \in F$. By comparing coefficients of x, we have a = 0. Since the order of $\mathbb{Z}_7 *$ is 6 and the order of any x that satisfy $x^2 + 1 = 0$ is 4. But since $4 \nmid 6$, $x^2 + 1 = 0$ has no solution. Also 0 does not satisfy $x^2 + 1 = 0$. Hence $x^2 + 1$ is irreducible in $\mathbb{Z}_7[x]$.

Page: 3 of 5

Question 7

(a) For $n_1, n_2 \in N$, $n_1 = \sum_{i=1}^k r_i m_i$, $n_2 = \sum_{i=1}^k r_i' m_i$ such that $r_i, r_i' \in I$ and $\alpha \in R$. Closed under addition

$$n_1 + n_2 = \sum_{i=1}^{k} r_i m_i + \sum_{i=1}^{k} r'_i m_i$$
$$= \sum_{i=1}^{k} (r_i + r'_i) m_i$$

. Since I is an ideal, $r_i + r'_i \in I$. Hence $n_1 + n_2 \in N$.

Closed under scalar multiplication

$$\alpha n_1 = \alpha \sum_{i=1}^k r_i m_i$$
$$= \sum_{i=1}^k (\alpha r_i) m_i$$

. Since I is an ideal, $\alpha r_i \in I$. Hence $\alpha n_1 \in N$. Therefore N is a submodule of M.

(b) Claim: $\{m_i + N \mid i = 1...k\}$ is a generating set for M/N

For any $m+N \in M/N$, $m=\sum_{i=1}^k k_i m_i$ for $k_i \in R$ since $\{m_i \mid i=1,...,k\}$ is a basis for M. Hence $m+M=\sum_{i=1}^k (k_i+I)(m_i+N)$. Therefore $\{m_i+N\mid i=1...k\}$ is a generating set for M/N. \square

Claim: $\{m_i + N \mid i = 1...k\}$ is free.

Proof:

Let $(r_i + I) \in R/I$ for i = 1, ..., k.

Suppose we have $(r_1 + I)(m_1 + N) + (r_2 + I)(m_2 + N) + ... + (r_k + I)(m_k + N) = N$. Then we have

$$(r_1m_1 + N) + (r_2m_2 + N) + \dots + (r_km_k + N) = N$$

 $(r_1m_1 + r_2m_2 + \dots + r_km_k) + N = N$

. Hence we have $r_1m_1 + r_2m_2 + ... + r_km_k \in N$. Hence $r_i \in I$ for all i = 1, ..., k.

(c) Let $\{m_1, ..., m_k\}$ and $\{m'_1, ..., m'_l\}$ be bases for M.

Claim: $\{\sum_{i=1}^k r_i m_i \mid r_i \in I \text{ for } i = 1 = 1, ..., k\} = \{\sum_{i=1}^l r_i m_i' \mid r_i \in I \text{ for } i = 1, ..., l\}.$

Since $\{m_1,...,m_k\}$ is a basis for M, we can express each m'_i for i=1,...,l as a linear combination of $\{m_1,...,m_k\}$. Since I is and ideal we would have $\{\sum_{i=1}^k r_i m_i \mid r_i \in I \text{ for } i=1=1,...,k\} \supseteq$ $\{\sum_{i=1}^{l} r_i m_i' \mid r_i \in I \text{ for } i = 1, ..., l\}. \text{ Similarly, since } \{m_1', ..., m_l'\} \text{ is a basis for } M \text{ and } I \text{ is an ideal}, \{\sum_{i=1}^{k} r_i m_i \mid r_i \in I \text{ for } i = 1 = 1, ..., k\} \subseteq \{\sum_{i=1}^{l} r_i m_i' \mid r_i \in I \text{ for } i = 1, ..., l\}.$ Hence we have $\{\sum_{i=1}^{k} r_i m_i \mid r_i \in I \text{ for } i = 1, ..., k\} = \{\sum_{i=1}^{l} r_i m_i' \mid r_i \in I \text{ for } i = 1, ..., l\}.$

Let $N = \{\sum_{i=1}^k r_i m_i \mid r_i \in I \text{ for } i=1=1,...,k\} = \{\sum_{i=1}^l r_i m_i' \mid r_i \in I \text{ for } i=1,...,l\}.$ By the previous part, we know that $\{m_1+N,...,m_k+N\}$ and $\{m_1'+N,...,m_l'+N\}$ are bases for R/I module M/N. Since all finite bases for R/I modules have equal cardinality. We have k=l. Hence any two finite bases for the R module M has equal cardinality.

Question 8

- (a) For $n_1, n_2 \in \bigcup_{i=1}^{\infty}$, $n_1 \in M_i$, $n_2 \in M_j$ for some $i, j \in \mathbb{N}$. Therefore, $n_1, n_2 \in M_{\max(i,j)}$. Hence, $n_1 + n_2 \in M_{\max(i,j)} \subseteq \bigcup_{i=1}^{\infty}$. Therefore $\bigcup_{i=1}^{\infty}$ is closed under addition. Since $n_1 \in M_i$ and $\alpha \in R$ and M_i is a module, $\alpha n_1 \in M_i \subseteq \bigcup_{i=1}^{\infty}$. Hence $\bigcup_{i=1}^{\infty}$ is closed under scalar multiplication. Therefore $\bigcup_{i=1}^{\infty}$ is a submodule of M.
- (b) Claim: There exists $g_1, ..., g_r, ...$ such that if $M_i = Rg_1 + Rg_2 + ... + Rg_i$ for $i \in \mathbb{N}$ then $M_1 \subsetneq M_2 \subsetneq ... \subsetneq M_r \subseteq ...$

Pick $g_1 \in M$. Now suppose $g_1, ..., g_n \in M$ have been chosen such that $M_i = Rg_1 + Rg_2 + ... + Rg_i$ for i = 1, ..., n and $M_1 \subsetneq M_2 \subsetneq ... \subsetneq M_n$. Since M is not finitely generated, $M \setminus M_n = M \setminus Rg_1 + Rg_2 + ... + Rg_n \neq \emptyset$. Hence we choose $g_{n+1} \in M \setminus M_n$. Since $g_{n+1} \notin M_n$, $M_{n+1} = Rg_1 + Rg_2 + ... + Rg_{n+1} \supsetneq M_n$. By induction, we are able to choose $g_1, g_2, ..., g_r, ...$ such that if $M_i = Rg_1 + Rg_2 + ... + Rg_i$ for $i \in \mathbb{N}$ then $M_1 \subsetneq M_2 \subsetneq ... \subsetneq M_r \subseteq ...$

(c) Note: This question should read "M is Noetherian if and only if every submodule of M is finitely generated."

Claim: M is Noetherian if every submodule of M is finitely generated. Proof:

Suppose not. Then there exists a ascending chain of submodule $M_1 \subseteq M_2 \subseteq M_3 \subseteq ... \subseteq M_n \subseteq ...$ such that for any $k \in N$ there exists j > k such that $N_j \supseteq N_k$.

Consider the submodule $\bigcup_{i=1}^{\infty} N_i$, since $\bigcup_{i=1}^{\infty} N_i$ is finitely generated. There exists $\{n_1, ..., n_k\}$ that generates $\bigcup_{i=1}^{\infty} N_i$. Let N_p be the submodule that contains all $n_1, ..., n_k$. Hence $N_p = \bigcup_{i=1}^{\infty} N_i$. Also for all $j \geq p$, $N_j = \bigcup_{i=1}^{\infty} N_i = N_p$ (Contradiction!).

Claim: If M is Noetherian then every submodule of M is finitely generated. Proof:

Suppose not. Then there exists a submodule N of M such that N is not finitely generated. By the previous, we are able to generate a ascending sequence $\{P_i \mid i \in \mathbb{N}\}$ of submodules such that $P_i \subseteq P_{i+1}$ (Contradiction! Since M is Noetherian).

Page: 5 of 5

Hence M is Noetherian if and only if every submodule of M is finitely generated.