Methods of Applied Math: Assignment 5

Due Date: December 27, 2019

Read 10.1 and 10.2, 11.1 and 11.2 in the textbook "Advanced Mathematical Methods for Scientists and Engineers"; read 3.2 and 3.3, 4.2 and 4.3, in Holmes' book.

 \bigcirc (Exercise 1) Use the boundary layer theory to find the uniform approximation of the solution to the following ODE up to $O(\epsilon)$:

$$\begin{cases} \epsilon y''(x) + xy'(x) - xy(x) = 0, \\ y(0) = 0, \quad y(1) = e. \end{cases}$$

You need to determine the location and the thickness of the boundary layer, find the outer and inner solutions up to $O(\epsilon)$, and do matching.

(Exercise 2) Find the WKB approximation correct up to $O(\epsilon^{\frac{1}{2}})$ to the general solution of the problem

$$\epsilon y'' + \frac{1}{8}(2x^2 + \epsilon x)y = 0, \quad x > 0,$$

where $\epsilon > 0$.

(Exercise 3) Use the WKB method to find an approximate solution to the problem:

$$\begin{cases} \epsilon y'' + (x + \frac{1}{2})y' + y = 0, & 0 \le x \le 1, \\ y(0) = 2, y(1) = 3. \end{cases}$$

Compare your answer with the composite expansion obtained using matched asymptotic expansions.

 \bigcirc (Exercise 4) Use the WKB method to find the leading order asymptotic behavior of the large eigenvalue E^2 and the corresponding eigenfunction of the boundary value problem:

$$\begin{cases} y'' + E^2 e^{2x} y = 0, & 1 \le x \le 2, \\ y(1) = 0, y(2) = 0. \end{cases}$$

(Exercise 5) (Slender body approximation) Consider the vertical displacement of an elastic membrane:

$$\epsilon^2 u_{xx} + u_{yy} = \mu^2(x) u_{tt}$$
, for $0 < x < +\infty, |y| < G(x), t > 0$,

where u(x, y, t) at $y = \pm G(x)$, $u(0, y, t) = f(y)\cos(\omega t)$. Use the WKB method to construct a traveling wave solution for small $\epsilon \ll 1$ (Note that ω is not a small parameter). Find the leading order approximation to the solution so that it is a convergent approximation. Note that the leading order equation is an eigenvalue problem. You need to find the general solution in terms of the combination of all the eigenvalues and eigenfunctions.