PROJECT NO. -3

<u>AIM</u>: To design a half adder and full adder using basic gate and to verify its truth table .

<u>APPARATUS</u>: Input and output switches; wires for connection; OR, AND, NOR Gates; DEEDS simulator

TRUTH TABLE FOR HALF ADDER:

INF	rUT	OUTPUT		
А	В	SUM (A+B)	CARRY	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	1	1	

Verilog code:

1. Using continuous assignment

```
//Developed by: Aashi Srivastava
// TITLE: Half Adder using continuous assignment
// Date: 10.10.23, 9:44 IST

module half_adder_CA(
    sum,carry,in1,in2
);
input in1,in2;
output sum, carry;

assign sum=in1^in2; //Sum of half adder is given by xor of the two inputs assign carry=in1 & in2; // carry of the two half adder is given by the and of the two inputs
endmodule
```

2. <u>Using Module instantiation</u>

```
//Developed by: Aashi Srivastava
// TITLE: Half Adder using module instantiation
// Date: 10.10.23, 9:44 IST

module half_adder_ins(
    sum,carry,in1,in2
);
input in1,in2;
output sum, carry;

xor n1(sum,in1,in2); //Sum of half adder is given by xor of the two inputs and n2(carry,in1,in2); // carry of the two half adder is given by theand of the two inputs endmodule
```

TEST BENCH:

```
module half_adder_tb (
);
    reg in1, in2;
    wire carry, out;
    half_adder_CA h(sum,carry,in1,in2);
    initial begin
        in1=0;
        in2=1;
        #2 in2=0;
    initial begin
        repeat(10)
        #4 in1= ~in1;
     initial begin
        repeat(10)
        #3 in2= ~in2;
    initial begin
        $dumpfile("half_adder_CA.vcd");
        $dumpvars(0,half_adder_tb);
        $monitor($time, "in1=%b in2=%b sum=%b carry=%b", in1, in2, sum, carry);
        #50 $finish;
endmodule
```


TRUTH TABLE FOR FULL ADDER

INPUT			OUTPUT		
Α	В	С	SUM	CARRY	
			(A+B+C)		
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

	B'*(C)'	B'*(C)	B*(C)	B*(C)'	
A'	0	1	0	1	
Α	1	0	1	0	

SIMPLIFING K MAP

SUM =
$$(A ')*(B'*(C)+B*(C)')+A*(B'*(C)'+B*(C))$$
.
= $A \oplus B \oplus C$

KMAP FOR FULL SUBTRACTOR (CARRY)

	B'*(C)'	B'*C	B*C	B*(C)'	
A'	0	0	1	0	
A	0	1	1	1	

Verilog code:

1. Using continuous assignment

```
//Developed by: Aashi Srivastava
// TITLE: Full Adder using continuous assignment
// Date: 10.10.23, 9:44 IST

module full_adder_ins(
    sum,carry_out,in1,in2,carry_in
);
input in1,in2, carry_in;
output sum, carry_out;
wire wire1, wire2, wire3;
assign sum=(in1^in2)^carry_in;
assign carry_out=(in1 & in2)|(in2 & carry_in)|(carry_in & in1);
endmodule
```

2. <u>Using Module instantiation</u>

```
//Developed by: Aashi Srivastava
// TITLE: Full Adder using module instantiation
// Date: 10.10.23, 9:44 IST
module full_adder_ins(
    sum, carry_out, in1, in2, carry_in
);
input in1,in2, carry_in;
output sum, carry_out;
wire wire1, wire2, wire3;
xor n1(wire1,in1,in2);
xor n2(sum, wire1,carry_in);//Sum of half adder is given by xor of the
two inputs
and n3(wire2,carry_in,wire1); // carry of the two half adder is given by
the and of the two inputs
and n4(wire3, in1, in2);
or n5(carry out,wire2,wire3);
endmodule
```

TEST BENCH:

```
//Developed by: Aashi Srivastava
// TITLE: Full adder test bench
// Date: 10.10.23, 9:44 IST
module full_adder_tb (
);
    reg in1,in2,carry_in;
    wire sum, carry_out;
    full_adder_ins s(sum,carry_out,in1,in2,carry_in);
    initial begin
        $dumpfile("full adder CA.vcd");
        $dumpvars(0,full_adder_tb);
        $monitor($time, "sum=%b carry_out=%b in1=%b in2=%b
carry_in=%b",sum,carry_out,in1,in2,carry_in);
        #40 $finish;
    initial begin
        in1=0;
        #20 in1=~in1;
    initial begin
        in2=0;
        repeat(3)
        #10 in2=~in2;
    initial begin
        carry_in=0;
        repeat(7)
        #5 carry_in=~carry_in;
endmodule
```