Package

September 1, 2025
Version 1.1.0
Date 2025-09-01
Title A Fast Tool for Single-Cell Spatially Variable Genes Identifications on Large-Scale Data
Description Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package utilizes a granularity-based dimension-agnostic tool, single-cell big-small patch (scBSP), implementing sparse matrix operation and KD tree methods for distance calculation, for the identification of spatially variable genes on large-scale data. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038 s41467-023-43256-5="">).</doi:10.1038>
License GPL (>= 2)
Encoding UTF-8
Imports Matrix, sparseMatrixStats, fitdistrplus, RANN, spam
Suggests knitr,
rmarkdown
RoxygenNote 7.3.2
Contents
CombinePvalues 1 LoadSpatial 2 scBSP 3 SpFilter 4
Index 5
CombinePvalues Combine p-values across multiple samples from scBSP

Description

Given the results from multiple samples with gene names and p-values, this function merges them by gene and computes a combined p-value for each gene. Fisher's method or Stouffer's method can be used.

2 LoadSpatial

Usage

```
CombinePvalues(list_of_pvalues, method = c("fisher", "stouffer"))
```

Arguments

method

list_of_pvalues

A list of data.frames, each with columns: GeneNames, P_values. Combination method. One of "fisher" (default) or "stouffer".

Value

A data frame with columns:

- GeneNames
- Number_Samples: number of datasets contributing to this gene
- Calibrated_P_values: the combined p-value

Examples

```
 \begin{array}{lll} df1 <- \ data.frame(GeneNames = c("A","B","C"), \\ & P_values = c(0.01,\ 0.20,\ 0.03)) \\ df2 <- \ data.frame(GeneNames = c("A","C","D"), \\ & P_values = c(0.04,\ 0.10,\ 0.50)) \\ df3 <- \ data.frame(GeneNames = c("B","C","E"), \\ & P_values = c(0.05,\ 0.02,\ 0.80)) \\ \\ \\ CombinePvalues(list(df1,\ df2,\ df3),\ method = "fisher") \\ \end{array}
```

LoadSpatial

Loading data from a Seurat object or a data frame.

Description

A function to load and filter data from a Seurat object or a data frame.

Usage

```
LoadSpatial(InputData, Dimension = 2)
```

Arguments

InputData A Seurat spatial object or a $M \times (D + N)$ data matrix representing the D-dimensional

coordinates and expressions of N genes on M spots. The coordinates should be

placed at the first D columns

Dimension The dimension of coordinates

Value

A list of two data frame:

Coords A M x D matrix representing D-dimensional coordinates for M spots

ExpMatrix A sparse, N x M expression matrix in dgCMatrix class with N genes and M

spots

scBSP 3

scBSP	A Granularity-Based Approach to identify Spatially Variable Genes
30031	11 Granularly Based Approach to taching Spatially variable Genes

Description

This function is designed to identify spatially variable genes through a granularity-based approach.

Usage

```
scBSP(Coords, ExpMat_Sp, D_1 = 1.0, D_2 = 3.0, Exp_Norm = TRUE, Coords_Norm_Method = c("Sliced", "Overall", "None"), K_NN = 100, treetype = "kd")
```

Arguments

Coords	A M x D matrix representing D-dimensional coordinates for M spots
ExpMat_Sp	A sparse, N x M expression matrix in dgCMatrix class with N genes and M spots
D_1	Size of the small patch
D_2	Size of the big patch
Exp_Norm	A Boolean value indicating whether the expression matrix should be normalized
Coords_Norm_Met	hod
	Normalization method for the coordinates matrix, which can be "None", "Sliced", or "Overall".
K_NN	The maximum number of nearest neighbours to compute.
treetype	Character vector specifying the standard 'kd' tree or a 'bd' (box-decomposition, AMNSW98) tree which may perform better for larger point sets.

Details

This function utilizes a MxD matrix (Coords) representing D-dimensional coordinates with M spots and a sparse, NxM expression matrix (ExpMat_Sp) with N genes and M spots.

Value

A data frame with the name of genes and corresponding p-values.

Examples

```
Coords <- expand.grid(1:100,1:100, 1:3)

RandFunc <- function(n) floor(10 * stats::rbeta(n, 1, 5))

Raw_Exp <- Matrix::rsparsematrix(nrow = 10^4, ncol = 3*10^4, density = 0.0001, rand.x = RandFunc)

Filtered_ExpMat <- SpFilter(Raw_Exp)

rownames(Filtered_ExpMat) <- paste0("Gene_", 1:nrow(Filtered_ExpMat))

P_values <- scBSP(Coords, Filtered_ExpMat)
```

SpFilter SpFilter

C	_	•	п.	_	_	
50	-	1		т	$\boldsymbol{\mathcal{L}}$	r

A function for filtering low expressed genes

Description

A function for filtering low expressed genes

Usage

```
SpFilter(ExpMat_Sp, Threshold = 5)
```

Arguments

ExpMat_Sp A sparse, N x M expression matrix in dgCMatrix class with N genes and M

spots

Threshold A threshold set to filter out genes with a total read count below this specified

value

Value

A sparse expression matrix in dgCMatrix class

Examples

```
# create a sparse expression matrix
Raw_ExpMat <- Matrix::rsparsematrix(nrow = 10000, ncol = 2000,
density = 0.01, rand.x = function(n) rpois(n, 15))
Filtered_ExpMat <- SpFilter(Raw_ExpMat)</pre>
```

Index

```
CombinePvalues, 1
LoadSpatial, 2
scBSP, 3
SpFilter, 4
```