Problem 5) Consider the unity-feedback control system with the following open-loop transfer function:

$$G(s) = \frac{10}{s(s+1)(3s+2)}$$

Determine if this system is stable or not.

Problem 6) Determine the range of gain K for stability of a unity-feedback control system whose open-loop transfer function is

$$G(s) = \frac{K}{(s+1)(s+2)(s+3)}$$

1. For the unity feedback system shown in Figure P7.1, where

$$G(s) = \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}$$

ind the steady-state errors for the following test inputs: 5u(t), 37tu(t), $47t^2u(t)$. [Section: 7.2]

4. For the system shown in Figure P7.3, what steady-state error can be expected for the following test inputs: 15u(t), 15tu(t), $15t^2u(t)$. [Section: 7.2]

FIGURE P7.3

5)
$$G(s) = \frac{10}{s(s+1)(3s+2)}$$
 $\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)H(s)} = \frac{10}{\frac{s(s+1)(3s+2)}{1+\frac{10}{s(s+1)(3s+2)}}} = \frac{(s^2+s)(3s+2)}{(s^2+s)(3s+2)+10}$
 $\frac{C(s)}{R(s)} = \frac{10}{(s^2+s)(3s+2)+10}$
 $\frac{C(s)}{R(s)} = \frac{10}{(s^2+s)(3s+2)+10}$
 $\frac{3s^3+2s^2+3s^2+2s+10}{3s^3+5s^2+2s+10=0}$
 $\frac{3s^3+5s^2+2s+10=0}{3s^3+5s^2+2s+10=0}$
 $\frac{3s^3+6s^2+2s+10=0}{3s^3+6s^2+2s+10=0}$
 $\frac{3s^3+6s^2+2s+10=0}{3s^3+6s^2+2s+10=0}$

6)
$$G(s) = \frac{K}{(s+1)(s+2)(s+3)}$$

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s) \cdot H(s)} = \frac{K}{(s+1)(s+2)(s+3)}$$

$$\frac{K}{(s+1)(s+2)(s+3)+K} = \frac{K}{s^3+Gs^2+11s+G+K}$$

$$\Rightarrow s^3+Gs^2+11s+G+K=0$$

$$S^3 = \frac{GO-K}{G} \Rightarrow O \Rightarrow K \times GO$$

$$S^3 = \frac{GO-K}{G} \Rightarrow O \Rightarrow K \times GO$$

$$S^3 = \frac{GO-K}{G} \Rightarrow O \Rightarrow K \times GO$$

$$S^3 = \frac{GO-K}{G} \Rightarrow O \Rightarrow K \times GO$$

$$S^3 = \frac{GO-K}{G} \Rightarrow O \Rightarrow K \times GO$$

$$S^3 = \frac{GO-K}{G} \Rightarrow O \Rightarrow K \times GO$$

1.

$$e(\infty) = \lim_{s \to 0} s E(s) = \lim_{s \to 0} \frac{s R(s)}{1 + G(s)}$$

where

$$G(s) = \frac{450(s+12)(s+8)(s+15)}{s(s+38)(s^2+2s+28)}.$$

For step, $e(\infty) = 0$. For 37tu(t), $R(s) = \frac{37}{s^2}$. Thus, $e(\infty) = 6.075 \times 10^{-2}$. For parabolic input, $e(\infty) = \infty$.

4. Reduce the system to an equivalent unity feedback system by first moving 1/s to the left past the summing junction. This move creates a forward path consisting of a parallel pair, $\left(\frac{1}{s}+1\right)$ in cascade with a feedback loop consisting of $G(s)=\frac{2}{s+3}$ and H(s)=7. Thus,

$$G_e(s) = \left(\frac{(s+1)}{s}\right)\left(\frac{2/(s+3)}{1+14/(s+3)}\right) = \frac{2(s+1)}{s(s+17)}$$

Hence, the system is Type 1 and the steady-state errors are as follows:

Steady-state error for 15u(t) = 0.

Steady-state error for
$$15tu(t) = \frac{15}{K_v} = \frac{15}{2/17} = 127.5$$
.

Steady-state error for $15t^2u(t) = \infty$

Input	Steady-state error formula	Type 0		Type 1		Type 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_{\nu} = \text{Constant}$	$\frac{1}{K_{\nu}}$	$K_{v}=\infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = \text{Constant}$	$\frac{1}{K_a}$