1 Introduction to Galois theory assignmens 2, Problem 1

Let $F = \mathbb{Q}(\zeta)$, where $\zeta = e^{2\pi i/9}$.

Problem 1.1 What is the degree $[F : \mathbb{Q}]$? Recall why F is a Galois extension of \mathbb{Q} . What is the Galois group of F over \mathbb{Q} ?

Solution: From $\phi_9 = P_9/(\phi_1 \cdot \phi_3) = X^6 + X^3 + 1$, we know $[F : \mathbb{Q}] = 6$. Because it's splitting field fo P_9 , hence must be Galois. By cyclotomic extension theorem,

$$Gal(F/\mathbb{Q}) \simeq (\mathbb{Z}/9\mathbb{Z})^*$$

. \Box

Problem 1.2 Let $\alpha = \cos(2\pi/9)$. Find the minimal polynomial of ζ over $\mathbb{Q}(\alpha)$ and show that $\mathbb{Q}(\alpha) = F \cap \mathbb{R}$.

Solution: From $\alpha = \zeta + \overline{\zeta} = \zeta + \zeta^{-1}$, we have minimal polynomial is $X^2 - \alpha X + 1$, the Galois group is generated by conjugation, hence $\mathbb{Q}(\alpha) = F^{Gal(F/\mathbb{Q}(\alpha))} = F \cap \mathbb{R}$.

Let γ stand for the (real) 9th root of 5(i.e. $\gamma = \sqrt[9]{5}$), M for the splitting field $X^9 - 5$, and L for $\mathbb{Q}(\gamma)$.

Problem 1.3 What is the degree $[L:\mathbb{Q}]$? Let K be a subfield of L, not equal to L or \mathbb{Q} . What can one say about the degree [L:K]? Prove that $K = \mathbb{Q}(\gamma^3)$ (hint: consider the minimal polynomial of γ over K).

Solution: $X^9 - 5$ is irreducible, hence $[L : \mathbb{Q}] = 9$. Because $[L : K]|[L : \mathbb{Q}]$, it has to be 3.

 $P_{\min}(\gamma, K)|X^9 - 5$, hence it must be as following:

$$X^{3} - \gamma(\zeta^{a} + \zeta^{b} + \zeta^{c})X^{2} + \gamma^{2}(\zeta^{a+b} + \zeta^{b+c} + \zeta^{c+a})X - \gamma^{3}\zeta^{a+b+c}$$

However, L is real, hence K is real, only possible way is a = 0, b = 3, c = 6, i.e. $X^3 - \gamma^3$, hence $K = \mathbb{Q}(\gamma^3)$.

Problem 1.4 Compute $F \cap L$, then $[M : \mathbb{Q}]$.

Solution: $F \cap L \subset F \cap \mathbb{R} = \mathbb{Q}(\alpha)$, however L/\mathbb{Q} can't have sub-extension of order 2, hence $F \cap L = \mathbb{Q}$. (because $\alpha \notin L$).

Hence they are linear disjoint over $F \cap L = \mathbb{Q}$, then $[M : \mathbb{Q}] = 54$.

Problem 1.5 Show that $G = Gal(M/\mathbb{Q})$ has a cyclic normal subgroup H of g elements, and also a cyclic subgroup G which is isomorphic to G/H under the projection map. Is G commutative?

Solution: Let σ be the generator of H, where

$$\sigma: \gamma \mapsto \gamma \cdot \zeta$$

it's well defined, and cyclic of order 9. And $M^H=\mathbb{Q}(\zeta)$ which is normal, hence H is normal.

Let S be generated by following:

$$\tau:\zeta\mapsto\zeta^2$$

hence $S \simeq (\mathbb{Z}/9\mathbb{Z})^*$, if we restrice G on μ_9^* , we have $H \subset \text{Ker}(G \to \mu_9^*)$, but |G| = 54, and |H| = 9 and |S| = 6, it must be the following exact sequence.

$$1 \to H \to G \to S \to 1$$

It's easy to see $\sigma \tau \neq \tau \sigma$, hence not abelian.

Problem 1.6 Describe all subextensions of M which are of degree 2 over \mathbb{Q} .

Solution: Let the subextension be N, where $\mathbb{Q} \hookrightarrow N \hookrightarrow M$, and $[N:\mathbb{Q}]=2$. Because the degree over \mathbb{Q} is 2, it must be galois over \mathbb{Q} . Hence its corresponding group is of order 27.

By Sylow theorem the 3-sylow group of $Gal(M/\mathbb{Q})$ is of order 27, and the number of such 3-sylow groups (call it r) must divide $|Gal(M/\mathbb{Q})|$, and $r \mod 3 = 1$, it can only be r = 1. Hence there is an unique subextension of degree 2.

Consider $\omega = \zeta^3 = e^{2\pi i/3}$, we have $\tau^2(\omega) = \omega$, hence $\mathbb{Q}(\omega)$ is the only subextensions of order 2.

Problem 1.7 Describe all Galois subextensions of M which are of degree 3 over \mathbb{Q} .

Solution: It's easy to verify $\tau^3(\alpha) = 1$, hence $\mathbb{Q}(\alpha)$ is a galois extension of order 3.

Should only be this one.

2 Introduction to Galois theory assignmens 2, Problem 2