MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Fakulteta za matematiko in fiziko, Univerza v Ljubljani

21. marec 2024

Vsebina

- 1 Naravna in cela števila, izrazi, enačbe in neenačbe
- Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- 5 Pravokotni koordinatni sistem, linearna funkcija

2/71

Section 1

Naravna in cela števila, izrazi, enačbe in neenačbe

3/71

- Naravna in cela števila, izrazi, enačbe in neenačbe
 - Naravna in cela števila
 - Računanje z naravnimi in celimi števili
 - Izraz, enačba, neenačba
 - Računanje s potencami z naravnimi eksponenti
 - Razčlenjevanje izrazov
 - ullet Razstavljanje izrazov v množici $\mathbb Z$
 - ullet Reševanje linearnih in razcepnih enačb v množici ${\mathbb Z}$
 - Reševanje linearnih neenačb v množici Z
- Deljivost, izjave, množice
- Racionalna števila

4 / 71

Naravna števila

Množica naravnih števil:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Naravna števila so števila s katerimi štejemo.

Naravna števila lahko predstavimo s točko na številski premici.

5 / 71

Množico naravnih števil definirajo Peanovi aksiomi:

- Vsako naravno število (n) ima svojega naslednika (n+1).
- Število 1 ni naslednik nobenega naravnega števila.
- Različni naravni števili imata različna naslednika: $(n+1 \neq m+1; n \neq m)$.
- Če neka trditev velja za vsako naravno število in tudi za njegovega naslednika, velja za vsa naravna števila princip popolne indukcije.

V množici $\mathbb N$ sta definirani notranji operaciji: **seštevanje** in **množenje**.

6/71

Seštevanje

Poljubnima naravnima številoma a in b priredimo **vsoto** a + b.

Vsota naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a + b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** členov/zakon o zamenjavi členov: a + b = b + a.
- asociativnost členov/zakon o združevanju členov: (a + b) + c = a + (b + c).

7 / 71

Množenje

Poljubnima naravnima številoma a in b priredimo **produkt** $a \cdot b$.

Produkt naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a \cdot b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** faktorjev/zakon o zamenjavi faktorjev: $a \cdot b = b \cdot a$.
- asociativnost faktorjev/zakon o združevanju faktorjev: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **distributivnost**/zakon o razčlenjevanju: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- zakon o nevtralnem elementu: $a \cdot 1 = a$.

8 / 71

Cela števila

Množica celih števil:

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$$

Množica celih števil je definirana kot unija treh množic:

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

- množica **pozitivnih celih števil** (\mathbb{Z}^+) naravna števila;
- število 0:
- ullet množica **negativnih celih števil** (\mathbb{Z}^-) nasprotna števila vseh naravnih števil.

Nasprotno število število a je -a.

Jan Kastelic (FMF) MATEMATIKA 21. marec 2024 9 / 71

Poleg seštevanja in množenja je kot notranja operacija množice celih števil definirano še **odštevanje**.

Odštevanje

Poljubnima naravnima številoma a in b priredimo razliko a - b.

Odštevanje definiramo kot prištevanje nasprotne vrednosti: a-b=a+(-b)

Za odštevanje velja zakon **distributivnosti**: $a \cdot (b - c) = a \cdot b - a \cdot c$.

10 / 71

Računski zakoni

• Komutativnostni zakon:

$$a + b = b + a$$
 in $a \cdot b = b \cdot a$

Asociativnostni zakon:

$$a + (b + c) = (a + b) + c$$
 in $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Zakon o nevtralnem elementu:

$$a+0=a$$
 in $a\cdot 1=a$

Zakon o inverznem/nasprotnem elementu:

$$a + (-a) = 0$$

Distributivnostni zakon:

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

11 / 71

Pravila za računanje s celimi števili

•
$$-(-a) = a$$

- $0 \cdot a = 0$
- \bullet $-1 \cdot a = -a$
- (-a) + (-b) = -(a+b)
- $\bullet (-a) \cdot b = -(a \cdot b) = a \cdot (-b)$
- $(-a) \cdot (-b) = a \cdot b$

12 / 71

MATEMATIKA

Računanje z naravnimi in celimi števili

14 / 71

Izraz, enačba, neenačba

Računanje s potencami z naravnimi eksponenti

Potenca $\mathbf{a}^{\mathbf{n}}$, pri čemer je $n \in \mathbb{N}$, je produkt n faktorjev enakih a.

Pravila za računanje s potencami:

- $\mathbf{a^n} \cdot \mathbf{b^n} = (\mathbf{ab})^\mathbf{n}$ potenci z enakima eksponentoma zmnožimo tako, da zmnožimo osnovi in prepišemo eksponent
- $oldsymbol{a^m}\cdot oldsymbol{a^n}=oldsymbol{a^{m+n}}$ potenci z enako osnovo zmnožimo tako, da osnovo prepišemo in seštejemo eksponenta
- $(a^n)^m = a^{nm}$ potenco potenciramo tako, da osnovo prepišemo in zmnožimo eksponenta

Jan Kastelic (FMF) MATEMATIKA 21. marec 2024 16 / 71

Razčlenjevanje izrazov

17 / 71

Razstavljanje izrazov v množici $\mathbb Z$

4□ > 4□ > 4□ > 4 = > 4 = > 4 = 900

18 / 71

Reševanje linearnih in razcepnih enačb v množici Z

4日 > 4周 > 4 厘 > 4 厘 > 厘 の 9 9 9

19 / 71

Reševanje linearnih neenačb v množici Z

4日 → 4団 → 4 三 → 4 三 → 9 Q ©

20 / 71

Section 2

Deljivost, izjave, množice

21 / 71

- 1 Naravna in cela števila, izrazi, enačbe in neenačbe
- Deljivost, izjave, množice
 - Relacija deljivosti
 - Pravila za deljivost
 - Praštevila in sestavljena števila
 - Največji skupni delitelj in najmanjši skupni večkratnik
 - Osnovni izrek o deljenju
 - Evklidov algoritem in zveza Dv = ab
 - Številski sestavi
 - Izjave
 - Množice
- Racionalna števila

Relacija deljivosti

23 / 71

Pravila za deljivost

◆ロ → ← 荷 → ← き → ← ● ・ り へ ○

Praštevila in sestavljena števila

◆ロ → ← 荷 → ← き → ← ● ・ り へ ○

25 / 71

Največji skupni delitelj in najmanjši skupni večkratnik

4日 > 4周 > 4 厘 > 4 厘 > 厘 の 9 9 9

26 / 71

Osnovni izrek o deljenju

27 / 71

Evklidov algoritem in zveza Dv = ab

28 / 71

Številski sestavi

Izjave

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Jan Kastelic (FMF)

Množice

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Section 3

Racionalna števila

32 / 71

- Naravna in cela števila, izrazi, enačbe in neenačbe
- Deljivost, izjave, množice
- Racionalna števila
 - Številski ulomki
 - Racionalna števila
 - Algebrski ulomki
 - Računanje z ulomki
 - Potence s celimi eksponenti
 - Pravila za računanje s potencami s celimi eksponenti
 - Premo in obratno sorazmerje
 - Odstotki

Jan Kastelic (FMF) MATEMATIKA 21. marec 2024 33 / 71

Številski ulomki

34 / 71

Racionalna števila

イロト イ団ト イヨト イヨト ヨー りなべ

35 / 71

Glede na predznak razdelimo racionalna števila v tri množice:

- lacksquare množico negativnih racionalnih števil \mathbb{Q}^+ ,
- $oldsymbol{0}$ množico števila nič: $\{oldsymbol{0}\}$ in
- \odot množico negativnih racionalnih števil: \mathbb{Q}^- .

$$\mathbb{Q}=\mathbb{Q}^-\cup\{0\}\cup\mathbb{Q}^+$$

36 / 71

21. marec 2024

- lacksquare množico negativnih racionalnih števil \mathbb{Q}^+ ,
- $oldsymbol{0}$ množico števila nič: $\{oldsymbol{0}\}$ in
- $oldsymbol{0}$ množico negativnih racionalnih števil: \mathbb{Q}^- .

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

- lacksquare množico negativnih racionalnih števil \mathbb{Q}^+ ,
- $oldsymbol{0}$ množico števila nič: $\{oldsymbol{0}\}$ in
- $oldsymbol{0}$ množico negativnih racionalnih števil: \mathbb{Q}^- .

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

- lacksquare množico negativnih racionalnih števil \mathbb{Q}^+ ,
- $oldsymbol{0}$ množico števila nič: $\{oldsymbol{0}\}$ in
- $oldsymbol{0}$ množico negativnih racionalnih števil: \mathbb{Q}^- .

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

- lacksquare množico negativnih racionalnih števil \mathbb{Q}^+ ,
- $oldsymbol{0}$ množico števila nič: $\{oldsymbol{0}\}$ in
- $oldsymbol{0}$ množico negativnih racionalnih števil: \mathbb{Q}^- .

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

- lacksquare množico negativnih racionalnih števil \mathbb{Q}^+ ,
- $oldsymbol{0}$ množico števila nič: $\{oldsymbol{0}\}$ in
- $oldsymbol{0}$ množico negativnih racionalnih števil: \mathbb{Q}^- .

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

- lacksquare množico negativnih racionalnih števil \mathbb{Q}^+ ,
- $oldsymbol{0}$ množico števila nič: $\{oldsymbol{0}\}$ in
- $oldsymbol{0}$ množico negativnih racionalnih števil: \mathbb{Q}^- .

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

- lacktriangle množico negativnih racionalnih števil \mathbb{Q}^+ ,
- množico števila nič: {0} in
- **1** množico negativnih racionalnih števil: \mathbb{Q}^- .

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

Množica racionalnih števil je povsod gosta, saj lahko med poljubnima racionalnima številoma vedno najdemo racionalno število (posledično je med dvema racionalnima številoma neskončno mnogo racionalnih števil).

36 / 71

37 / 71

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b, d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

37 / 71

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

• prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;

37 / 71

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti* $ve\check{c}ji$ (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;

37 / 71

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

37 / 71

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

Enaka ulomka predstavljata isto racionalno število.

37 / 71

Racionalna števila

38 / 71

21. marec 2024

Jan Kastelic (FMF) MATEMATIKA

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

38 / 71

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
negativna števila pozitivna števila

38 / 71

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
negativna števila pozitivna števila

V množci ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

38 / 71

Jan Kastelic (FMF) MATEMATIKA

39 / 71

Monotonost vsote

39 / 71

21. marec 2024

Jan Kastelic (FMF) MATEMATIKA

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

39 / 71

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

39 / 71

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

39 / 71

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

39 / 71

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{c}{d} < \frac{e}{f} \quad \Rightarrow \quad \frac{a}{b} < \frac{e}{f}$$

39 / 71

Racionalna števila

21. marec 2024

40 / 71

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

21. marec 2024

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

21. marec 2024

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad -\frac{a}{b} > -\frac{c}{d}$$

Jan Kastelic (FMF)

40 / 71

Racionalna števila

(ロト 4回 ト 4 恵 ト 4 恵 ト) 恵 | かくの

41 / 71

• prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;

(ロト 4回 ト 4 差 ト 4 差 ト) 差 | 釣りの

41 / 71

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

41 / 71

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za zgornjo relacijo delne urejenosti veljajo naslednje lastnosti:

41 / 71

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za zgornjo relacijo delne urejenosti veljajo naslednje lastnosti:

• $\frac{a}{b} \leq \frac{a}{b}$ - refleksivnost;

41 / 71

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za zgornjo relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in

41 / 71

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za zgornjo relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{e}{f} \Rightarrow \frac{a}{b} \le \frac{e}{f}$ tranzitivnost.

41 / 71

Algebrski ulomki

21. marec 2024

Računanje z ulomki

イロト イ団ト イヨト イヨト ヨー りなべ

43 / 71

21. marec 2024

Potence s celimi eksponenti

◆ロト ◆問 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q Q

44 / 71

Pravila za računanje s celimi eksponenti

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

45 / 71

Premo in obratno sorazmerje

46 / 71

Odstotki

Section 4

Realna števila, statistika

48 / 71

- 1 Naravna in cela števila, izrazi, enačbe in neenačbe
- 2 Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
 - Realna števila
 - Kvadratni in kubični koren
 - Intervali
 - Absolutna vrednost
 - Sistem linearnih enačb
 - Obravnavanje linearnih enačb, neenačb, sistemov
 - Absolutna in relativna napaka

21 marec 2024

Jan Kastelic (FMF)

Realna števila

Jan Kastelic (FMF) MATEMATIKA 50 / 71

Kvadratni in kubični koren

◆ロ → ← 荷 → ← き → ← ● ・ り へ ○

51 / 71

Intervali

21. marec 2024

Absolutna vrednost

21. marec 2024

Sistem linearnih enačb

21. marec 2024

54 / 71

Obravnavanje linearnih enačb, neenačb, sistemov

55 / 71

Absolutna in relativna napaka

56 / 71

Sredine

Razpršenost podatkov

イロト イ団ト イヨト イヨト ヨー りなべ

58 / 71

Prikazi

Section 5

Pravokotni koordinatni sistem, linearna funkcija

60 / 71

- Naravna in cela števila, izrazi, enačbe in neenačbe
- 2 Deljivost, izjave, množice
- Racionalna števila
- 4 Realna števila, statistika
- 🏮 Pravokotni koordinatni sistem, linearna funkcija
 - Pravokotni koordinatni sistem
 - Razdalja med točkama in razpolovišče daljice
 - Ploščina trikotnika
 - Osnovno o funkcijah
 - Linearna funkcija in premica

21 marec 2024

Jan Kastelic (FMF)

Pravokotni koordinatni sistem

62 / 71

Razdalja med točkama in razpolovišče daljice

63 / 71

Ploščina trikotnika

4 □ ト 4 □ ト 4 亘 ト 4 亘 り Q ○

64 / 71

Osnovno o funkcijah

65 / 71

Linearna funkcija in premica

4 □ ト 4 □ ト 4 亘 ト 4 亘 り Q ○

66 / 71

Oblike enačbe premice

67 / 71

Presešišče premic

Sistem linearnih neenačb

Jan Kastelic (FMF) MATEMATIKA 21. marec 2024 69/71

Modeliranje z linearno funkcijo

4□ > 4□ > 4 = > 4 = > = 900

70 / 71

(i) Linearno programiranje

◆ロト ◆個ト ◆差ト ◆差ト 差 めなの

71 / 71