Aufgabenblatt 8

Wenn Sie sich für das Niveau A der Übungen entschieden haben, brauchen Sie nur die ersten drei der folgenden Aufgaben zu bearbeiten.

Aufgabe 1. (Kurvendiskussion) Bestimmen Sie für die folgenden Funktionen jeweils die Nullstellen, die lokalen Extrema oder Sattelpunkte, die Grenzwerte für $x \to \pm \infty$ (und bei (b) zusätzlich für $x \searrow -1$) und skizzieren Sie dann den Verlauf von f.

(a)
$$f(x) = \frac{(x-1)(x+3)}{e^x}$$
 (b) $f(x) = \ln(x^3+1)$ für $x > -1$ (c) $f(x) = \arctan(x^3 - 9x^2)$. (6 Punkte)

Aufgabe 2. (Wendepunkte und Konvexität) Bestimmen Sie für die folgenden Funktionen jeweils die Wendepunkte (soweit vorhanden). Auf welchen Abschnitten ist die Funktion jeweils konvex, auf welchen Abschnitten konkav?

(a)
$$f(x) = \cosh(x) = \frac{1}{2}(e^x + e^{-x})$$
 (b) $f(x) = \ln(x + \sqrt{1 + x^2})$
(c) $f(x) = \frac{1}{\sigma} \exp(-\frac{(x - x_0)^2}{2\sigma^2})$ (x₀, $\sigma > 0$ gegeben) (3 Punkte)

Aufgabe 3. (Newtonverfahren) Zeigen Sie, dass $p(x) = x^7 - \frac{7}{2}x^2 + 2$ genau drei verschiedene Nullstellen hat. (Hinweis: Satz von Rolle und passende Intervalle, auf denen p das Vorzeichen wechselt.) Bestimmen Sie diese Nullstellen nun mithilfe des Newtonverfahrens jeweils auf 3 Kommastellen genau (hier natürlich ausnahmsweise mit Rechner). (4 Punkte)

Aufgabe 4. (l'Hospitalsche Regel) Bestimmen Sie die folgenden Grenzwerte:

(a)
$$\lim_{x\to 0} \frac{\cos^2(x) - 1}{2x^2}$$
 (b) $\lim_{x\to 0} \frac{\tan(x)}{\sqrt{x}}$ (c) $\lim_{x\to \infty} x^{1/x}$ (d) $\lim_{x\to 0} x^x$ (e) $\lim_{n\to \infty} \sqrt[n]{n}$.

Hinweis: Bei (e) ist eine Zahlenfolge gemeint, also $n \in \mathbb{N}$. (4 Punkte)

Aufgabe 5. (Doppelte Nullstellen) Sei p ein Polynom von Grad $n \geq 2$ und $x_0 \in \mathbb{R}$ gegeben. Zeigen Sie:

- (a) $p(x_0) = 0 = p'(x_0) \Leftrightarrow p$ hat an der Stelle x_0 eine mindestens doppelte Nullstelle, d.h. $p(x) = (x x_0)^2 q(x) \ \forall x$, wobei q ein Polynom von Grad n 2 ist.
- (b) Ist x_0 eine doppelte Nullstelle (also genau der Vielfachheit 2), dann hat p an der Stelle x_0 ein lokales Maximum oder Minimum. Ist aber x_0 eine dreifache Nullstelle, dann hat p dort einen Sattelpunkt. (3 Punkte)

Und hier noch zwei Verständnisfragen zur Selbstkontrolle:

Frage 1 . (Polynome von Grad 3) Welche der folgenden Aussagen über ein Polynome $p(x) = x^3 + ax^2 + bx + c$ sind korrekt?	lynom
(a) $\lim_{x\to-\infty} p(x) = -\infty$ und $\lim_{x\to\infty} p(x) = \infty$.	
(b) p hat mindestens eine reelle Nullstelle.	
(c) p hat entweder ein lokales Minimum und ein lokales Maximum oder einen Spunkt.	Sattel-
(d) p hat genau eine Wendetangente.	
Frage 2 . $(Konvexit"at)$ Welche der folgenden Aussagen über eine strikt konvexe tion f auf einem Intervall $[a,b]$ sind korrekt?	Funk-
(a) Die Funktion hat keine Sattelpunkte.	
(b) Sie nimmt ihr Minimum an genau einer Stelle an.	
(c) Sie nimmt ihr Maximum an genau einer Stelle an.	
(d) f nimmt das Maximum am Rand des Intervalls an.	

Abgabe der Aufgaben: Donnerstag, den 11. November 2021, bis 12.30 Uhr als .pdf via ADAM bei Ihrem Tutor bzw. Ihrer Tutorin.