Exercice 1. 1 (**)

Un circuit série comporte un conducteur ohmique d résistance R, un condensateur de capacité $C=5.74\,\mu\text{F}$, une bobine d'inductance L et de résistance r et un ampèremètre de résistance négligeable.

Un générateur de basse fréquence impose au bornes de cette association une tension $u(t) = U_m \sin(2\pi Nt)$ de fréquence N réglable et d'amplitude U_m constante.

Un oscilloscope bicourbe convenablement branché permet de visualiser simultanément la tension u(t) et la tension $u_1(t)$ aux bornes de l'ensemble {résistor, condensateur}.

- 1. (a) Représenter le schéma du circuit en précisant les branchements à l'oscilloscope.
 - (b) Etablir l'équation différentielle vérifiée par l'intensité du courant i(t).
- 2. Pour $N=N_1,$ l'ampèremètre indique $I_1=25\sqrt{2}\mathrm{mA}$ et on obtient l'oscillogramme présenté.
 - (a) Déterminer les expressions de u(t) et de $u_1(t)$.
 - (b) Faire une construcion de Fresnel en représentant les vecteurs associés à $u_b(t)$, $u_1(t)$ et à u(t) et déduire l'expression de la tension $u_b(t)$.
 - (c) Calculer U_{cm} puis montrer que

$$\phi_i - \phi_u = \frac{\pi}{3} \text{rad.}$$

- (d) Déduire les valeurs de R, r et L.
- 3. Dans la suite de l'exercice on prendra $R=80\,\Omega, r=24\,\Omega$ et $L=0.16\,\mathrm{H}.$ En faisant varier la fréquence, l'ampèremètre indique la plus grande valeur de I pour une fréquence $N=N_2.$
 - (a) A-t-on diminué ou augmenté la fréquence?
 - (b) Quelle la valeur indiquée par l'ampèremètre?
 - (c) Déterminer l'expression de $u_C(t)$. Y a-t-il un phénomène de surtension?
 - (d) Calculer la puissance moyenne absorbée par le dipôle.

FIGURE 1 – Courbes de u(t) et $u_1(t)$.

^{1.} Devoir de contrôle II, lycée pilote Sfax du 23 janvier 2014.