\bigcirc	The formula to compute the work W	done on	a body i	f the	force	F	is
	parallel to the displacement d is:						

$$\boxed{\mathbf{A}} \ W = F \cdot d.$$

$$\boxed{\mathrm{B}} W = 2F.$$

$$\boxed{\mathbf{C}} W = m \cdot v.$$

$$\boxed{\mathbf{D}} \ W = 2d.$$

(3) The formula to compute the work
$$W$$
 done on a body when the force F makes an angle with the displacement d is:

$$\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$$

$$\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$$

$$\boxed{\mathbf{C}} \ W = F \cdot d.$$

(4) The unit for work is J·m.

(5) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

⁽²⁾ The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.

D None of the other answers.

 $\fbox{1}$ When a weight lifter holds a 200 kg barbell above his head for 3 seconds

	before dropping it, the done work is:
	A 0 J.
	B 600 J.
	C None of the other answers.
	D 200 J.
2	If a force of 3 N is applied to an object that moves for 3 m, the work done is:
	A 1 J.
	B 3 J.
	C 0 J.
	D 9 J.
3	The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d .
	A True.
	B False.
4	The unit for work is $J \cdot m$.
	A True.
	B False.
(5)	The formula to compute the work W done on a body if the force F is

parallel to the displacement d is:

 $\begin{array}{|c|c|} \hline \mathbf{A} & W = 2F. \\ \hline \mathbf{B} & W = 2d. \end{array}$

 $\boxed{\mathbf{C}} \ W = F \cdot d.$

 $\boxed{\mathbf{D}} \ W = m \cdot v.$

 \bigodot The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

 $\boxed{\mathbf{A}} \ W = F \cdot d \cdot \sin x.$

B None of the other answers.

 $\boxed{\mathbf{C}} \ W = F \cdot d \cdot \cos x.$

 $\boxed{\mathbf{D}} \ W = F \cdot d.$

\bigcirc	The formula to compute the work W	done on	a body it	the	force	F	is
	parallel to the displacement d is:						

$$\boxed{\mathbf{A}} \ W = 2d.$$

$$\boxed{\mathbf{B}} \ W = 2F.$$

$$\boxed{\mathbf{C}} \ W = m \cdot v.$$

$$\boxed{\mathbf{D}} \ W = F \cdot d.$$

 \bigcirc The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

$$A W = F \cdot d.$$

$$\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$$

$$\boxed{\mathbf{C}} \ W = F \cdot d \cdot \cos x.$$

D None of the other answers.

(3) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.

A True.

B False.

(4) If a force of 3 N is applied to an object that moves for 3 m, the work done is:

A 1 J.

B 3 J.

C 9 J.

D 0 J.

(5) The unit for work is J·m.

A True.

B False.
$\stackrel{\textstyle \frown}{}$ When a weight lifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:
A 200 J.
B 0 J.
C 600 J.
D None of the other answers.

\bigcirc	When a weightlifter holds a 200 kg barbell above his head for 3 seconds
	before dropping it, the done work is:
	A 200 J.
	B 0 J.
	C None of the other answers.

 $\boxed{ D }$ 600 J. $\boxed{ 2 }$ The formula to compute the work W done on a body if the force F is

(3) The unit for work is J·m.

A True.
B False.

 $\overbrace{4}$ The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

 $oxed{A}$ None of the other answers. $oxed{B}$ $W = F \cdot d$.

 $\boxed{\mathbf{C}} \ W = F \cdot d \cdot \cos x.$

 $\boxed{\mathbf{D}} \ W = F \cdot d \cdot \sin x.$

(5) If a force of 3 N is applied to an object that moves for 3 m, the work done is:

A 0 J.

- B 9 J.
- C 1 J.
- D 3 J.
- (6) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.
 - A True.
 - B False.