SCHOOL OF COMPUTER SCIENCE A ARTIFICIAL INTELLIGENCE			DEPARTMENT OF COMPUTER SCIENC ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name		Dr.Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI(P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00)PM
Duration	2 Hours	Applicable to Batches	23CSBTB37	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Speed Net – Internet Provider	

Context:

Speed Net promotes its broadband plans through door-to-door visits.

Sales	New Connections
Visits (x)	(y)
2	10
4	20
3	15
2	12
5	25

Objective:

Analyze the effect of door-to-door sales visits on new broadband connections for SpeedNet by performing Linear Regression and interpreting SHAP values.

Requirements:

1. Perform Linear Regression Analysis

- Use the given dataset where:
 - Independent Variable (x): Sales Visits
 - **Dependent Variable (y):** New Connections

2. Calculate the Baseline Value

o Compute the mean of all new connection values (y values).

3. Calculate SHAP Values

- For each record, calculate the difference between the predicted value and the baseline.
- This difference is the **SHAP value**, attributed to the number of sales visits.

4. Compute Final Prediction

- Use the linear regression model to calculate predicted new connections for each x value.
- o Confirm that:

Final Prediction=Baseline+SHAP Value\text{Final Prediction} = \text{Baseline}

+ \text{SHAP Value}Final Prediction=Baseline+SHAP Value

5. Interpret the Results

- o Explain how the number of sales visits influenced each predicted value.
- o Compare the predicted value to the actual value for each row.
- o Identify **underprediction** or **overprediction**, and provide reasoning.

Deliverables:

A notebook or document containing:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
 - Accuracy of the model
 - o Trend analysis
 - o SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	FreshBasket – Grocery App Usage Retention Prediction using Multiple Linear Regression and SHAP Analysis	

Objective:

Evaluate how the number of push notifications and average delivery time influence user retention using Multiple Linear Regression, and explain the results through SHAP value interpretation.

Given Dataset:

Notification s (x ₁)	Avg Delivery Time $(min)(x_2)$	Retention (%) (y)
5	30	75
7	25	85
4	35	70
6	20	90
3	40	65

Tasks:

1. Perform Multiple Linear Regression Analysis

- o Use Notifications and Average Delivery Time as independent variables
- Use Retention (%) as the dependent variable

2. Calculate the Baseline Value

o Compute the mean of all retention values

3. Calculate SHAP Values

- o Calculate SHAP Value
- o Distribute SHAP contributions between Notifications and Delivery Time based on model coefficients

4. Compute Final Prediction for Each Record

- Use the regression equation
- Verify: Prediction = Baseline + SHAP (Notifications) + SHAP (Delivery Time)

5. Interpret the Results

- o For each entry, explain how notifications and delivery time influenced the prediction
 - o Compare predicted vs actual retention
 - State whether the model overpredicted or underpredicted and suggest why

Q. No.		Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.

- Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - o Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.

Comment on overprediction or underprediction and possible reasons behind it.