Отношения порядка

Бинарное отношение $ho \subseteq extit{A}^2$ называется отношением порядка, если оно

- рефлексивно
 - ullet a
 ho a для любого $a \in A$
- транзитивно
 - $a \rho b, b \rho c \Rightarrow a \rho c$ для любых $a, b, c \in A$
- антисимметрично
 - $a \rho b, b \rho a \Rightarrow a = b$ для любых $a, b \in A$
 - антисимметричность совсем не то же самое, что отсутствие симметричности!
- Для отношений порядка обычно используется инфиксная запись
 - и значки, похожие на $\leqslant:\subseteq,\preccurlyeq,\unlhd,\sqsubseteq,\ldots$
 - ullet для записи условия $(a \preccurlyeq \overline{b}$ и $a \neq \overline{b})$ часто «стирают палочку» и пишут $a \prec b$
- Упорядоченное множество (ЧУМ) это пара (A, \preccurlyeq) , состоящая из множества и отношения порядка на нем
- Эту структуру удобно рисовать, используя отношение покрытия
 - ullet а \triangleleft b (b покрывает a), если $a \preccurlyeq b$; $a \not= b$; $a \preccurlyeq c \preccurlyeq b \Longrightarrow (c = a$ или c = b)
- ullet Диаграмма Хассе ЧУМа (A,\preccurlyeq) это (op) граф отношения покрытия
 - стрелки на ребрах диаграммы Хассе не рисуют
 - ориентация ребра определяется расположением вершин ниже/выше
 - ⋆ это можно сделать, потому что граф ациклический
- В бесконечных множествах отношение покрытия не всегда отражает порядок. . . ! Докажите, что отношения покрытия для ЧУМов $(\mathbb{R},\leqslant), (\mathbb{Q},\leqslant)$ пусты_

Примеры диаграмм Хассе

$$(2^{\{k,y,b\}},\subseteq)$$

$$(\{1,2,\ldots,12\},|)$$

Какое-то дерево

Изоморфизм ЧУМов

- ullet Изоморфизм упорядоченных множеств (A_1,\preccurlyeq_1) и (A_2,\preccurlyeq_2) это биекция $f:A_1 o A_2$ такая, что
 - ullet $a \preccurlyeq_1 b \Longleftrightarrow f(a) \preccurlyeq_2 f(b)$ для любых $a,b \in A_1$
 - говорят, что f сохраняет порядок
- \star Упорядоченные множества (A_1,\preccurlyeq_1) и (A_2,\preccurlyeq_2) в этом случае называются изоморфными
- Изоморфность ЧУМов это отношение эквивалентности:
 - тождественная функция изоморфизм ЧУМа с самим собой (рефлексивность)
 - ullet если $f:A_1 o A_2$ изоморфизм, то и $f^{-1}:A_2 o A_1$ изоморфизм (симметричность)
 - ullet композиция $f\circ g$ изоморфизмов $f:A_1\to A_2$ и $g:A_2\to A_3$ изоморфизм (транзитивность)
- Значит, все ЧУМы разбиваются на классы изоморфных ЧУМов
- ★ С математической точки зрения изоморфные ЧУМы ничем не отличаются: это множества одинакового размера с одинаковой структурой, представленной отношением порядка
 - мы изучаем ЧУМы (и другие структуры) с точностью до изоморфизма
- ullet Пример: ЧУМы (\mathbb{R},\leqslant) и (\mathbb{R}^+,\leqslant) изоморфны, в качестве изоморфизма можно взять $f(x)=e^{\mathrm{x}}$

Изоморфизм: лирическое отступление

- ★ Изоморфизм и изоморфность универсальные понятия, используемые для любых структур, заданных отношениями и/или операциями на множествах
 - например, для групп, линейных пространств или графов
 - ullet Пример (линейные пространства): $\mathbb{F}_n[x]$ vs \mathbb{F}^{n+1}
 - многочлены степени $\leqslant n$ и векторы длины (n+1) над тем же полем

Изоморфизм:
$$f(a_0 + a_1x + \cdots + a_nx^n) = (a_0, a_1, \dots, a_n)$$

•
$$f(p(x) + q(x)) = f(p(x)) + f(q(x)); f(c \cdot p(x)) = c \cdot f(p(x))$$

- Пример (группы): \mathbb{C}_n vs \mathbb{Z}_n
 - ullet комплексные корни n-й степени из единицы и классы вычетов по $mod \, n$

•
$$\mathbb{C}_n = (\{\varepsilon_k = e^{\frac{2\pi k}{n}i} \mid k = 0, \dots, n-1\}, \cdot); \mathbb{Z}_n = (\{0, \dots, n-1\}, \oplus)$$

Изоморфизм: $f(\varepsilon_k) = k$

•
$$f(\varepsilon_k \cdot \varepsilon_m) = f(\varepsilon_{k+m})$$
; $f(\varepsilon_k^{-1}) = f(\varepsilon_{n-k}) = n - k$

.,,

- Изоморфизм: придумайте сами
 - ullet есть ребро (u,v) в левом графе \Longleftrightarrow есть ребро (f(u),f(v)) в правом графе

• Пример (графы):

Что сохраняет изоморфизм ЧУМов?

- Минимальные элементы:
 - ullet а минимальный в ЧУМе (A, \preccurlyeq) , если $\forall b \in A : (b \preccurlyeq a \Rightarrow b = a)$
 - ullet для изоморфизма $f, f(b) \preccurlyeq f(a) \Leftrightarrow b \preccurlyeq a,$ откуда b=a, f(b)=f(a), т.е. f(a) минимальный по определению
- ★ Наименьший элемент:
 - ullet а наименьший в ЧУМе (A, \preccurlyeq) , если $\forall b \in A: a \preccurlyeq b$
 - ullet для изоморфизма $f,\ f(a)\stackrel{.}{
 ightarrow} f(b)\Leftrightarrow a \leqslant b$ правая часть верна $\forall b,\ f$ биекция, т.е. f(a) наименьший по определению
- .. Такие же рассуждения работают для максимальных и наибольшего элементов
 - ⋆ Отношение покрытия:
 - пусть а ⊲ b
 - $f(a) \leq f(b)$ u $f(a) \neq f(b)$
 - ullet если $\exists c: f(a) \preccurlyeq f(c) \preccurlyeq f(b)$, то $a \preccurlyeq c \preccurlyeq b \Rightarrow c \in \{a,b\} \Rightarrow f(c) \in \{f(a),f(b)\}$
 - f(a) ⊲ f(b) по определению
- ★ Из сохранения покрытия следует, что ЧУМы изоморфны как орграфы

Дискретная математика

? Сколькими способами можно изоморфно отобразить на себя ЧУМ

Двойственный ЧУМ и подЧУМ

- \star Если \preccurlyeq отношение порядка, то и \preccurlyeq^{-1} , обозначаемое \succcurlyeq , отношение порядка
- ullet ЧУМ (A,\succcurlyeq) называется двойственным к ЧУМу (A,\preccurlyeq)
 - \star диаграмма Хассе для (A,\succcurlyeq) получается переворачиванием диаграммы для (A,\preccurlyeq)
 - иначе говоря, надо переориентировать все ребра этого графа
- ullet Если (A,\succcurlyeq) и (A,\preccurlyeq) изоморфны, то это самодвойственный ЧУМ
- ! Найдите все (с точностью до изоморфизма) трехэлементные самодвойственные ЧУМы
- ullet Пусть \preccurlyeq отношение порядка на A и $arnothing
 eq B\subseteq A$
- ullet Пусть $\preccurlyeq_{\mid \mathcal{B}} = \{(a,b) \in \mathcal{B}^2 \mid a \preccurlyeq b\}$ ограничение \preccurlyeq на \mathcal{B}
 - ullet Тогда $(B,\preccurlyeq_{|B})$ ЧУМ (почему?); он называется подЧУМом ЧУМа (A,\preccurlyeq)

Операции над ЧУМами

Из одних ЧУМов можно получать другие (более сложные) при помощи различных операций. Пусть (A_1,\preccurlyeq_1) и (A_2,\preccurlyeq_2) — ЧУМы, $A_1\cap A_2=arnothing$.

- Объединение ЧУМов это ЧУМ $(A_1 \cup A_2, \preccurlyeq) = (A_1, \preccurlyeq_1) \cup (A_2, \preccurlyeq_2)$ такой, что $(a \preccurlyeq b) \Leftrightarrow (a \preccurlyeq_1 b \text{ или } a \preccurlyeq_2 b)$
- ullet Сумма ЧУМов это ЧУМ $(A_1 \cup A_2, \preccurlyeq) = (A_1, \preccurlyeq_1) \oplus (A_2, \preccurlyeq_2)$ такой, что ullet $(a \preccurlyeq b) \Leftrightarrow (a \preccurlyeq_1 b$ или $a \preccurlyeq_2 b$ или $(a \in A_1$ и $b \in A_2))$
- ullet Произведение ЧУМов это ЧУМ $(A_1 \times A_2, \preccurlyeq) = (A_1, \preccurlyeq_1) \times (A_2, \preccurlyeq_2)$ такой, что ullet $(a,b) \preccurlyeq (c,d) \Leftrightarrow (a \preccurlyeq_1 c \text{ in } b \preccurlyeq_2 d)$
- Пример:

Линейный порядок

- ullet Бинарное отношение $ho \in A^2$ называется линейным, если
 - $a \neq b \Rightarrow (a \rho b)$ или $b \rho a$ для любых $a, b \in A$
- Отношение порядка, являющееся линейным, называют линейным порядком
 - множество с линейным порядком называют линейно упорядоченным (ЛУМ)
- Примеры:
 - обычный порядок \leqslant на любом числовом множестве
 - лексикографический («словарный») порядок на множестве Σ^* конечных слов над линейно упорядоченным алфавитом Σ
 - радиксный порядок на Σ*: упорядочиваем слова по длине, а слова одной длины
 — лексикографически

Теорема о линейном порядке

Теорема

Произвольное отношение порядка \leq на произвольном множестве A можно дополнить до отношения линейного порядка на A.

- ullet Иными словами, для порядка \preccurlyeq на множестве A существует линейный порядок \Box на A такой, что \preccurlyeq \subset \Box
- В общем случае сложное доказательство, опирается на аксиому выбора
- Доказательство для конечных множеств: алгоритм топологической сортировки
 - рассмотрим диаграмму Хассе ЧУМа (A, ≼) как орграф
 - возьмем любой минимальный элемент (исток в ографе), присвоим ему номер 1 и удалим из орграфа
 - продолжим процедуру в цикле, присваивая наименьший незанятый номер любому истоку оставшегося орграфа
 - нумерация вершин задает линейный порядок, содержащий исходный

Условие минимальности и другие

Пусть \preccurlyeq — отношение порядка на множестве A; \preccurlyeq удовлетворяет

- условию минимальности, если
 - для любого непустого подмножества $B\subseteq A$ в ЧУМе $(B,\preccurlyeq_{|B})$ есть минимальный элемент
- условию индуктивности, если
 - ullet любое свойство P=P(a) элементов множества A, такое что
 - \star P(a) для любого минимального элемента A (база)
 - * если P(b) для любого элемента b такого, что $b \prec a$, то P(a) (шаг) выполнено для всех элементов A
- условию обрыва убывающих цепей, если
 - любая последовательность элементов А с условием
 - $\cdots \prec a_n \prec \cdots \prec a_2 \prec a_1$ конечна

Теорема

Условия минимальности, индуктивности и обрыва убывающих цепей эквивалентны.

Доказательство ⇒

Доказательство теоремы об эквивалентных условиях

- Минимальность ⇒ индуктивность (от противного)
 - * Пусть P свойство, для которого не выполняется индуктивность, т.е. выполнены база и шаг индукции, но есть хотя бы один элемент a такой, что $\neg P(a)$
 - \star Пусть $B=\{a\mid \neg P(a)\}$; в B есть минимальный элемент, назовем его b
 - \star b не минимален в A, потому что $\neg P(b)$ противоречит базе
 - \Rightarrow тогда P(a) для всех $a \prec b$, и $\neg P(b)$ противоречит шагу
- Индуктивность \Rightarrow обрыв убывающих цепей (по индукции)
 - \star Пусть P(a) означает, что все убывающие цепи, такие что $a_1 = a$, конечны
 - ⋆ для минимального а цепь одна и состоит из а база выполнена
 - \star если для всех элементов, меньших a, цепи конечны, то a увеличивает длину каждой из таких цепей на 1, т.е. цепи, начинающиеся с a, тоже конечны шаг выполнен
 - \Rightarrow по индукции P(a) выполнено для всех a, a это и есть условие обрыва
- Обрыв убывающих цепей ⇒ минимальность (в лоб)
 - \star Найдем минимальный элемент в произвольном непустом $B \subseteq A$
 - \star возьмем произвольный $a_1 \in B$; если он минимальный ОК
 - \star иначе существует $a_2 \in B$ такой, что $a_2 \prec a_1$; если он минимальный ОК
 - \star иначе существует $a_3 \in B$ такой, что $a_3 \prec a_2 \prec a_1 \ldots$
 - \star процесс будет конечным, так как бесконечных убывающих цепей нет
 - ⇒ минимальный элемент будет найден за конечное число шагов

Заключительные замечания

- Наличие свойств минимальности/индуктивности/ обрыва убывающих цепей это хорошо
 - ⋆ главная ценность можно доказывать по индукции
- Все конечные ЧУМы обладают этими свойствами
- Есть важные бесконечные ЧУМы, которые ими не обладают
 - \star например, (\mathbb{Z}, \leqslant) и $([0, 1], \leqslant)$
 - \star есть и положительные примеры: (\mathbb{N}, \leqslant) , $(\mathbb{N}, |)$
 - \star но есть и отрицательные: лексикографический порядок на Σ^* $(|\Sigma|>1)$
 - \star но есть и положительные: радиксный порядок на Σ^* (например, для конечных Σ)
- ! Используя лексикографический порядок, приведите «доказательство» по индукции, что все слова из $\{0,1\}^*$ состоят только из нулей

Инфимум и супремум

Пусть (A,\preccurlyeq) — произвольное упорядоченное множество (ЧУМ), $B\subseteq A$

- Элемент $a \in A$ нижняя грань множества B, если $a \preccurlyeq b$ для любого $b \in B$ $\bot(B) = \{a \in A \mid a$ нижняя грань $B\}$
- Элемент $a \in A$ верхняя грань множества B, если $b \preccurlyeq a$ для любого $b \in B$ $\top(B) = \{a \in A \mid a$ верхняя грань $B\}$
- Пример:

- $\bot(\{a,c,d\}) = \varnothing$; $\top(\{a,c,d\}) = \{d,e,f,g\}$ • $\bot(\{d,e\}) = \{a,b,c,d\}$; $\top(\{d,e\}) = \{e,g\}$
- ullet Инфимум подмножества $B\subseteq A-$ это его наибольшая нижняя грань
 - $(\bot(B), \preccurlyeq_{|\bot(B)})$ это подЧУМ в (A, \preccurlyeq)
 - если он имеет наибольший элемент это $\inf(B)$
 - если нет inf(B) не определен
 - \star в примере $\inf(\{d,e\})=d$, $\inf(\{a,c,d\})$ не определен
- Супремум подмножества $B \subseteq A$ это его наименьшая верхняя грань \star в примере $\sup(\{d,e\}) = e$, $\sup(\{a,c,d\}) = d$
- \star Инфимум и супремум двойственные понятия; в двойственном ЧУМе (A,\succcurlyeq) они поменяются ролями

Полурешетки

- Если в ЧУМе (A, \preccurlyeq) для любой пары элементов существует супремум, то (A, \preccurlyeq) называется верхней полурешеткой
 - \star в этом случае часто вместо $\sup(a,b)$ пишут $a\vee b$ и говорят «объединение a и b»
 - англоязычный термин join
- объединение бинарная алгебраическая операция

Теорема

Операция ∨ в ЧУМе ассоциативна, коммутативна и идемпотентна.

Доказательство:

- ullet $a \lor a = a$ (идемпотентность) очевидна, т.к. $\{a,a\} = \{a\}$ и $\sup(\{a\}) = a$
- ullet $a \lor b = b \lor a$ (коммутативность) очевидна, т.к. $\{a,b\} = \{b,a\}$
- ullet докажем, что $(a \lor b) \lor c = a \lor (b \lor c)$ (ассоциативность)
 - заметим, что $(a \leq x \text{ и } b \leq x) \Leftrightarrow \sup(\{a,b\}) \leq x$
 - $x \in T(\{\sup(\{a,b\}\},c\}) \Leftrightarrow a \preccurlyeq x,b \preccurlyeq x,c \preccurlyeq x \Leftrightarrow x \in T(\{a,b,c\}) \Rightarrow T(\{\sup(\{a,b\}\},c\}) = T(\{a,b,c\})$

 - аналогично, $\top(\{a, \sup(\{b, c\})\}) = \top(\{a, b, c\})$
 - $\Rightarrow \top(\{\sup(\{a,b\}),c\}) = \top(\{a,\sup(\{b,c\})\})$
 - \Rightarrow sup({sup({a,b}),c}) = sup({a,sup({b,c})})
- \star Итак, (A, \vee) полугруппа
 - ⋆ полурешетка = коммутативная полугруппа идемпот

Полурешетки (2)

- Нижняя полурешетка определяется двойственным условием:
 - для любой пары элементов ЧУМа (A, \preccurlyeq) существует инфимум
 - \bullet обозначение: $a \wedge b$ (пересечение, meet)

Примеры:

 $\langle \cdot \rangle$

Верхняя полурешетка

И верхняя, и нижняя

Ни та, ни другая

- ЧУМ, двойственный к верхней полурешетке, является нижней полурешеткой
- Корневое дерево это всегда полурешетка (например, верхняя)
- ullet В дереве aee b=LCA(a,b)- это ближайший общий предок вершин a и b
 - \star структура данных, построенная по дереву и эффективно отвечающая на запросы «найти LCA(a,b)» важный элемент многих сложных алгоритмов
 - \star простейшее приложение: расстояние между вершинами a,b равно $depth(a) + depth(b) 2 \cdot depth(LCA(a,b))$

Решетки

- ullet Если ЧУМ (A,\preccurlyeq) является и верхней, и нижней полурешеткой, то он называется решеткой
 - ullet эту решетку записывают как (A,ee,\wedge)
- Кроме того, что каждая из операций ∨, ∧ коммутативна, ассоциативна и идемпотентна, они согласованы между собой:
- \bigstar Для любых $a,b\in A$, $a\wedge (a\vee b)=a\vee (a\wedge b)=a$ (тождества поглощения) Доказательство:

 $x \le a \Rightarrow x \le a \lor b$ по транзитивности

- $\Rightarrow \perp (\{a, a \lor b\}) = \perp (\{a\})$
- $\Rightarrow a \land (a \lor b) = \inf(\{a, a \lor b\}) = \inf(\{a\}) = a$
- ! двойственное тождество поглощения докажите самостоятельно
- ★ Можно дать альтернативное определение решетки:

Решетка — это алгебра с двумя бинарными операциями, удовлетворяющими тождествам ассоциативности, коммутативности, идемпотентности и поглощения

- Какое из определений более «правильное»?
- Решетка это что-то типа кольца/поля или частный случай ЧУМа?

Ответы в следующем фрагменте \Longrightarrow

Теорема о решетке

- ullet Пусть (A,ee,\wedge) решетка (алгебра)
- ullet Определим на A бинарное отношение \preccurlyeq условием $a \preccurlyeq b \Leftrightarrow a \land b = a$
- ★ ≼ отношение порядка

Доказательство:

- $a \land a = a$ (идемпотентность) $\Rightarrow a \leq a$ (рефлексивность)
- ullet $a \wedge b = b \wedge a$ (коммутативность) \Rightarrow ($a \preccurlyeq b$ и $b \preccurlyeq a \Rightarrow a = b$) (антисимметричность)
- ullet докажем транзитивность: пусть $a \preccurlyeq b, b \preccurlyeq c$, т.е. $a \land b = a, b \land c = b$; тогда $a \land c = (a \land b) \land c = a \land (b \land c)$ (ассоциативность) $= a \land b = a \Rightarrow a \preccurlyeq c$
- ★ То же самое отношение \preccurlyeq можно определить условием $a \lor b = b$:
 - ullet если $a \wedge b = a$, то $a \vee b = (a \wedge b) \vee b = b$ (поглощение)
 - \bullet если $a \lor b = b$, то $a \land b = a \land (a \lor b) = a$ (снова поглощение)
- \star Итак, получили ЧУМ (A, \preccurlyeq) , порожденный решеткой (A, \lor, \land)

Теорема

Пусть ЧУМ (A, \preccurlyeq) порожден решеткой (A, \lor, \land) . Тогда в (A, \preccurlyeq) для любой пары элементов $a,b \in A$ определены супремум и инфимум, причем $\sup(a,b) = a \lor b$ и $\inf(a,b) = a \land b$

- Теорема утверждает, что решетка порождает ЧУМ, который задает эту решетку
- Т.е. решетка (алгебра) и решетка (ЧУМ специального вида) два эквивалентных способа задать один и тот же математический объект

Теорема о решетке — доказательство

- Пусть ЧУМ (A, \preccurlyeq) порожден решеткой (A, \lor, \land)
- Надо доказать, что $\sup(a,b)$ существует и равен $a \lor b$ для любых $a,b \in A$! аналогичную проверку для инфимума провести самостоятельно
- a ∨ b верхняя грань для {a, b}:
 - $a \wedge (a \vee b) = a$ (поглощение) $\Rightarrow a \preccurlyeq (a \vee b)$ по определению
 - аналогично $b \leq (a \vee b)$
- $a \lor b$ наименьшая верхняя грань для $\{a, b\}$:
 - ullet надо показать, что $x \in T\{a,b\} \Rightarrow a \lor b \preccurlyeq x$ для любого $x \in A$
 - ullet по второму определению \preccurlyeq , $x \in T\{a,b\}$ означает $a \lor x = x$ и $b \lor x = x$
 - тогда $(a \lor b) \lor x = a \lor (b \lor x) = a \lor x = x$ т.е. $(a \lor b) \preccurlyeq x$ по второму определению
- Доказав теорему, можно «официально» считать, что в решетке есть две операции и отношение порядка, и пользоваться этим
- ★ Поскольку определение решетки как алгебры симметрично относительно операций \lor и \land , для любой решетки (A, \lor, \land) существует двойственная решетка (A, \land, \lor) , и она порождает ЧУМ (A, \succcurlyeq) , двойственный к ЧУМу (A, \preccurlyeq) , порожденному (A, \lor, \land)

Примеры решеток

- **4** ЧУМ (\mathbb{N},\leqslant) это решетка $(\mathbb{N},\mathsf{max},\mathsf{min})$
 - вообще, любое линейно упорядоченное множество решетка
- ЧУМ (2^A, ⊆) для любого множества A это решетка (2^A, ∪, ∩)
 это самый «регулярный» тип решетки булева алгебра
- $lacksymbol{0}$ ЧУМ $(\mathbb{N}, |)$ это решетка $(\mathbb{N}, \operatorname{lcm}, \operatorname{\mathsf{gcd}})$
 - часто рассматривают решетку делителей фиксированного натурального п
- ЧУМ $(Eqv(A), \subseteq)$ отношений эквивалентности на A- это решетка разбиений в решетке разбиений $\rho \wedge \sigma = \rho \cap \sigma$, $\rho \vee \sigma = \mathsf{C}|_{\mathcal{T}}(\rho \cup \sigma)$ (транзитивное замыкание)
- ullet ЧУМ $(Sub(L),\subseteq)$ подпространств линейного пространства L это решетка подпространств
 - $U_1 \wedge U_2 = U_1 \cap U_2$, $U_1 \vee U_2 = U_1 + U_2$
 - аналогично определяется решетка подгрупп группы, решетка подколец кольца, . . .

Подрешетки

- ullet Пусть (A,\vee,\wedge) решетка. Подмножество $B\subseteq A$ замкнуто, если \bullet $a\vee b\in B$, $a\wedge b\in B$ для любых $a,b\in B$
- ullet Тогда (B,ee,\wedge) решетка, называемая подрешеткой решетки (A,ee,\wedge) ... надо бы писать $(B,ee_{|B},\wedge_{|B})$, но обычно не загромождают обозначения
- \bigstar Любое $B\subseteq A$ образует подЧУМ в ЧУМе (A, \preccurlyeq) , порожденном (A, \lor, \land) ... но этот ЧУМ не всегда решетка! (B может не быть замкнутым)
- \star Замкнутые подмножества из A образуют систему замкнутых подмножеств \bullet см. фрагмент 1-4 про замыкания подмножеств
- \star Чтобы найти наименьшую подрешетку, содержащую заданное $B\subseteq A$, нужно взять наименьшее замкнутое подмножество $\bar{B}\subseteq A$, содержащее B
 - В_— замыкание В (фрагмент 1-4)
 - ullet $(ar{B},ee,\wedge)$ искомая подрешетка
 - ullet подрешетка $(ar{B},ee,\wedge)$ порождена B, а B ее порождающее множество
 - * порождающее множество обычно не единственно
 - ullet Пример: найдем подрешетку в (\mathbb{N}, lcm, gcd) , порожденную множеством $\{6, 10, 15\}$
 - надо добавить $\gcd(6,10)=2$, $\gcd(6,15)=3$, $\gcd(10,15)=5$, $\gcd(2,3)=\gcd(2,5)=\gcd(3,5)=1$ и $\operatorname{lcm}(6,10)=\operatorname{lcm}(6,15)=\operatorname{lcm}(10,15)=30$
 - искомая подрешетка решетка делителей числа 30
 - * Решетка подрешеток заданной решетки вполне себе объект для изучения...

Дистрибутивность

- В других известных нам алгебрах с двумя операциями (кольца, поля) операции связаны тождеством дистрибутивности
 - $a \cdot (b+c) = a \cdot b + a \cdot c$
 - в некоммутативном кольце выполнены левая и правая дистрибутивность
- Как насчет решеток?

Теорема

В произвольной решетке (A,\vee,\wedge) выполнены неравенства $(a\wedge b)\vee(a\wedge c)\preccurlyeq a\wedge(b\vee c)$ и $a\vee(b\wedge c)\preccurlyeq(a\vee b)\wedge(a\vee c).$

Доказательство:

- докажем первое неравенство (второе самостоятельно)
- $(a \wedge b) \preccurlyeq a \wedge (b \vee c)$, потому что
- $(a \wedge b) \wedge (a \wedge (b \vee c)) = ((a \wedge b) \wedge a) \wedge (b \vee c) = a \wedge (b \wedge (b \vee c)) = a \wedge b$
- аналогично $(a \land c) \preccurlyeq a \land (b \lor c)$
- \Rightarrow $(a \land b) \lor (a \land (b \lor c)) = (a \land c) \lor (a \land (b \lor c)) = a \land (b \lor c)$
- \Rightarrow $((a \land b) \lor (a \land c)) \lor (a \land (b \lor c)) = a \land (b \lor c)$
- $\Rightarrow (a \land b) \lor (a \land c) \preceq a \land (b \lor c)$
- \star Если для данной решетки (A, \vee, \wedge) неравенства в теореме можно заменить равенствами, то решетка называется дистрибутивной
 - * за 2-3 слайда выкладок можно доказать, что из одного тождества дистрибутивности в решетке следует второе

Дистрибутивность (2)

Примеры:

Первые три решетки дистрибутивны, последние две — нет

Теорема (без д-ва)

Решетка (A,\vee,\wedge) дистрибутивна тогда и только тогда, когда в ней нет подрешеток

! докажите, что пентагон и диамант не дистрибутивны

Дополнения и булевы алгебры

- Наименьший элемент решетки, если он существует, называется нулем (0)
- Наибольший элемент решетки, если он существует, называется единицей (1)
- ullet В решетке (A,ee,\wedge) с 0 и 1 элемент b называется дополнением элемента a, если aee b=1 и $a\wedge b=0$
- Решетка называется решеткой с дополнениями, если в ней любой элемент имеет единственное дополнение

Теорема

В дистрибутивной решетке (A, \vee , \wedge) любой элемент имеет не более одного дополнения.

Доказательство:

- ullet заметим, что 0 \lor a=a, 0 \land a=0, 1 \lor a=1, 1 \land a=a для любого $a\in A$
- пусть b и b' дополнения a
- $b = b \lor (a \land b') = (b \lor a) \land (b \lor b') = b \lor b' = (a \lor b') \land (b \lor b') = (a \land b) \lor b' = b'$
- Дистрибутивная решетка с дополнениями называется булевой алгеброй

Теорема (без д-ва)

Любая конечная булева алгебра изоморфна булеану некоторого множества.

🛨 Число элементов в конечной булевой алгебре является степенью двойки