Complemento de Cálculos (MAT. 521234)

Guía de Ejercicios No 1.

 Construir la serie de Fourier asociadas a las siguientes funciones, las cuales son extendidas periódicamente de la manera usual. Esboce la función a la cual la función converge, represente dos periodos. Fundamente su respuesta:

$$a) \ f(t) = \begin{cases} -1 & \text{si} & -1 < x < 0 \\ 1 & \text{si} & 0 < x < 1 \end{cases}$$

$$d) \ f(t) = \begin{cases} 0 & \text{si} & -1 < t < 0 \\ t^2 & \text{si} & 0 < t < 1 \end{cases}$$

$$b) \ f(t) = \begin{cases} 1 & \text{si} & 0 < x < a \\ 0 & \text{si} & a < x < 2 - a \\ 1 & \text{si} & 2 - a < x < 2 \end{cases}$$

$$c) \ f(t) = \begin{cases} 0 & \text{si} & -1 < t < 0 \\ t^2 & \text{si} & 0 < t < 1 \end{cases}$$

$$e) \ f(t) = \begin{cases} 1 - t & \text{si} & 0 < t < 1 \\ -1 + t & \text{si} & 1 < t < 2 \end{cases}$$

$$f) \ f(x) = \sin^2(x), -\pi \le x \le \pi$$

2. Construir las Series de Fourier asociadas a las siguientes funciones:

$$a) \ f(t) = \begin{cases} 1 & \text{si} & 0 < t < 1 \\ 0 & \text{si} & 1 < t < 2 \end{cases}$$

$$\text{SFC 4-peri\'odica.}$$

$$c) \ f(t) = \begin{cases} t & \text{si} & 0 < t < 1 \\ 1 & \text{si} & 1 < t < 2 \end{cases}$$

$$\text{SFC, 8-peri\'odica c/s } \frac{1}{4} \text{ onda.}$$

$$d) \ f(t) = \begin{cases} t & \text{si} & 0 < t < 1 \\ 1 & \text{si} & 1 < t < 2 \end{cases}$$

$$\text{SFS 4-peri\'odica.}$$

$$d) \ f(t) = \begin{cases} t & \text{si} & 0 < t < 1 \\ 1 & \text{si} & 1 < t < 2 \end{cases}$$

$$\text{SFS, 8-peri\'odica c/s } \frac{1}{4} \text{ onda.}$$

3. La serie de Fourier Compleja corresponde a la serie de Fourier generalizada asociada al sistema ortonormal completo $\{e^{int}\}_{n\in\mathbb{Z}}$ de $L^2[0,2\pi]$ (o $L^2[-\pi,\pi]$). Encontrar la serie de Fourier Compleja de las funciones 2π -periódicas:

a)
$$f(t) = \operatorname{sen}(\frac{t}{2})$$
 b) $g(t) = t$

4. Una función 2π periódica está definida por $f(x) = e^x$, $-\pi < x < \pi$. Dibuje dos ciclos de la gráfica de f, y demuestre que:

$$f(x) = \frac{2\sinh(\pi)}{\pi} \left[\frac{1}{2} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos(nx) - n \sin(nx)}{1 + n^2} \right].$$

Establecer la identidad de Parseval asociada.

5. Resolver el Problema de Valores de contorno

$$y'' + 7y = \begin{cases} \frac{t}{\pi} & \text{si } 0 \le t \le \pi \\ \frac{2\pi - t}{\pi} & \text{si } \pi \le t \le 2\pi \end{cases}$$

donde $y'(0) = y'(2\pi) = 0$.

6. Determinar la parte par e impar de la función:

$$f(t+2\pi) = f(t), \quad f(t) = (t^2 + t), \ -\pi < t < \pi$$

y el comportamiento asintótico de los coeficientes de Fourier asociados a dichas funciones. Demostrar que la serie de Fourier asociada a la parte par converge uniformemente y establecer la función límite de la serie de Fourier asociada a la parte impar. En cada caso establecer la respectiva identidad de Parseval.

- 7. Verifique que la serie de Fourier de $f(t) = \begin{cases} x & \text{si } 0 \le x \le \pi \\ 0 & \text{si } \pi < x \le 2\pi \end{cases}$ es $\frac{\pi}{4} + \left(\frac{\sin(x)}{1} \frac{\sin(2x)}{2} + \frac{\sin(3x)}{3} \frac{\sin(4x)}{4} + \cdots\right) \frac{2}{\pi} \left(\frac{\cos(x)}{1^2} + \frac{\cos(3x)}{3^2} + \frac{\cos(5x)}{5^2} + \frac{\cos(7x)}{7^2} + \cdots\right)$
- 8. Verifique que la serie de Fourier de $f(t) = \begin{cases} \sin(x) & \text{si } 0 \le x \le \pi \\ 0 & \text{si } \pi < x \le 2\pi \end{cases}$ es $\frac{1}{\pi} + \frac{1}{2}\sin(x) \frac{2}{\pi} \sum_{i=1}^{\infty} \frac{\cos(2nx)}{4n^2 1}$
- 9. Utilice los dos ejercicios anteriores y los teoremas de Convergencia de Series de Fourier para establecer las siguientes identidades numéricas:

a)
$$\frac{\pi^2}{8} = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

b) $\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$
c) $\frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$
d) $\frac{\pi}{2} = 1 + \frac{2}{1 \cdot 3} - \frac{2}{3 \cdot 5} + \frac{2}{5 \cdot 7} - \frac{2}{7 \cdot 9} + \cdots$

- 10. Una función 2π -periódica f se dice alternante, si y solamente si, $f(x+\pi) = -f(x)$ para $-\pi < x < 0$. Demuestre que si f es alternante, entonces su serie de Fourier sobre $]-\pi,\pi[$ contiene solamente términos de la forma $a_n \cos(nx) + b_n \sin(nx)$, donde n es impar. Definir a_{2n+1} y b_{2n+1} .
- 11. ¿Existe una función integrable Riemann cuya serie de Fourier sobre] $-\pi,\pi$ [sea $\frac{1}{2} + \sum_{n=1}^{\infty} \cos(nx) + \sin(nx)$?
- 12. Establecer, como consecuencia de la Identidad de Parseval que ninguna función de cuadrado integrable 2π periódica puede tener por serie de Fourier:

$$\cos(x) + \frac{\cos(2x)}{\sqrt{2}} + \dots + \frac{\cos(nx)}{\sqrt{n}} + \dots$$

HMM/FPV/fpv.

14 de Agosto de 2007.