

Julien Simon, Principal Technical Evangelist
Amazon Web Services

julsimon@amazon.com @julsimon

The AWS Cloud: 16 Regions, 42 Availability Zones

The AWS Edge: 74 Locations

Ashburn, VA (3), Atlanta GA (3), Chicago, IL, Dallas/Fort Worth, TX (2), Hayward, CA, Jacksonville, FL, Los Angeles, CA (2), Miami, FL, Minneapolis, MN, New York, NY (3), Newark, NJ, Palo Alto, CA, Philadelphia, PA, San Jose, CA, Seattle, WA, South Bend, IN, St. Louis, MO, Montreal, QC, Toronto, ON

Rio de Janeiro, Brazil, São Paulo, Brazil (2)

Amsterdam, The Netherlands (2), Berlin, Germany, Dublin, Ireland, Frankfurt, Germany (5), London, England (4), Madrid, Spain, Marseille, France, Milan, Italy, Munich, Germany, Paris, France (2), Prague, Czech Republic, Stockholm, Sweden, Vienna, Austria, Warsaw, Poland Zurich, Switzerland.

Chennai, India, Hong Kong, China (3), Manila, the Philippines, Melbourne, Australia, Mumbai, India (2), New Delhi, India, Osaka, Japan, Seoul, Korea (3), Singapore (2), Sydney, Australia, Taipei, Taiwan, Tokyo, Japan (3)

Amazon CloudFront delivers ALL types of

NASA's First-Ever 4K Live Stream from Space

Edge Locations help secure your platform

What about code?

Evolution of Compute – Public Cloud

Evolution of Compute – Serverless

Benefits of Serverless

No servers to manage

Continuous scaling

Never pay for idle – no cold servers

AWS Lambda: Serverless computing

- Run code without servers: Node.js, Python, Java, C#
- Triggered by events or called from APIs:
 - PUT to an Amazon S3 bucket
 - Updates to Amazon DynamoDB table
 - Call to an Amazon API Gateway endpoint
 - Mobile app back-end call
 - CloudFront requests
 - And many more...
- Makes it easy to:
 - Perform real-time data processing
 - Build scalable back-end services
 - Glue pieces of AWS infrastructure

Running code at Edge Locations: Lambda@Edge

- Lambda@Edge is an extension of AWS Lambda that allows you to run your Node.js code at AWS Edge Locations.
- Customize your content very close to your users, improving the end-user experience.

No servers to manage

Continuous scaling

Globally distributed

Never pay for idle – no cold servers

CloudFront Triggers for Lambda@Edge Functions

Write Once, Deploy Everywhere

Ashburn, VA (3), Atlanta GA (3), Chicago, IL, Dallas/Fort Worth, TX (2), Hayward, CA, Jacksonville, FL, Los Angeles, CA (2), Miami, FL, Minneapolis, MN, New York, NY (3), Newark, NJ, Palo Alto, CA, Philadelphia, PA, San Jose, CA, Seattle, WA, South Bend, IN, St. Louis, MO, Montreal, QC, Toronto, ON

Rio de Janeiro, Brazil, São Paulo, Brazil (2)

Amsterdam, The Netherlands (2), Berlin, Germany, Dublin, Ireland, Frankfurt, Germany (5), London, England (4), Madrid, Spain, Marseille, France, Milan, Italy, Munich, Germany, Paris, France (2), Prague, Czech Republic, Stockholm, Sweden, Vienna, Austria, Warsaw, Poland Zurich, Switzerland.

Chennai, India, Hong Kong, China (3), Manila, the Philippines, Melbourne, Australia, Mumbai, India (2), New Delhi, India, Osaka, Japan, Seoul, Korea (3), Singapore (2), Sydney, Australia, Taipei, Taiwan, Tokyo, Japan (3)

What about everywhere else?

Most machine-generated data never reaches the cloud

Medical equipment

Industrial machinery

Extreme environments

This problem isn't going away

Law of physics

Law of economics

Law of the land

Our customers need to...

Extend their data center

Write data directly when it's generated

Process data

Encrypted, secure, and embedded compute

Expedite move

A fast and cost effective way to ensure data can be quickly transferred to and from the cloud

Simplify data transfer

Use standard and familiar tools for the data transfer process

AWS Snowball Edge

Petabyte-scale hybrid device with onboard compute and storage

- 100 TB local storage
- Local compute equivalent to an Amazon EC2 m4.4xlarge instance
- 10GBase-T, 10/25Gb SFP28, and 40Gb QSFP+ copper, and optical networking
- Ruggedized and rack-mountable

AWS Snowball Edge use cases

Offline Staging

loT

Local Tiering and Compute

Local Transformation

The Philips IntelliSpace Console relies on Snowball Edge

- Aggregates and stores 1200+
 ICU patient data points per day
- Uses Lambda for data transformation
- Performs real-time analysis
- Keeps running even if hospital faces an IT / network outage

What about constrained devices?

Three pillars of IoT

AWS IoT

Starting in the cloud

AWS Greengrass

Going to the Edge

Benefits of AWS Greengrass

Respond to local events quickly

Operate offline

Simplified device programming

Reduce the cost of IoT applications

What about Al at the Edge?

Amazon Echo

Deep Learning challenges

- Training Deep Learning models requires a lot of resources (compute & storage)
- Robots or autonomous cars can't exclusively rely on the Cloud
- #1 issue: network availability, throughput and latency
- Other issues: memory footprint, power consumption, form factor
- Need the best of both worlds
 - Elasticity and scalability in the Cloud to train models
 - Local, real-time inference on the device

MXNet

OF THE OF

Flexible

Supports both imperative and symbolic programming

Multiple Languages

Supports over 7 programming languages, including C++, Python, R, Scala, Julia, Matlab, and Javascript

Distributed on Cloud

Supports distributed training on multiple CPU/GPU machines, including AWS, GCE, Azure, and Yarn clusters

Portable

Runs on CPUs or GPUs, on clusters, servers, desktops, or mobile phones

Auto-Differentiation

Calculates the gradient automatically for training a model

Performance

Optimized C++ backend engine parallelizes both I/O and computation

Resources

http://mxnet.io/ https://github.com/dmlc/mxnet https://github.com/dmlc/mxnet-notebooks

http://www.allthingsdistributed.com/2016/11/mxnet-default-framework-deep-learning-aws.html

https://github.com/awslabs/deeplearningcfn

Lambda@Edge - Content customization

Snowball Edge - Portable compute and storage

Greengrass - Local compute for IoT

MXNet - Edge-friendly Deep Learning

http://aws.amazon.com

