Devoir surveillé n° 03

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Montrer que pour tout $(a, b, c, d) \in \mathbb{Z}^4$, il existe $(m, n) \in \mathbb{Z}^2$ tel que

$$(a^2 + b^2)(c^2 + d^2) = m^2 + n^2.$$

II. Études des racines d'un trinôme.

- 1) Résultats préliminaires :
 - a) Soit Z, un complexe non nul. Prouver l'équivalence

$$\left(Z + \frac{1}{Z} \text{ est un réel }\right) \Leftrightarrow \left(Z \text{ est un réel ou } |Z| = 1\right).$$

b) On considère la fonction (réelle) f définie par $f: x \mapsto x + \frac{1}{x}$. Préciser son domaine de définition et y étudier ses variations. En conclure que la quantité $\left|x + \frac{1}{x}\right|$ possède, pour $x \in \mathbb{R}^*$, un minimum que l'on calculera.

Dans la suite de l'exercice, a et b désignent deux nombres complexes non-nuls et (E) désigne l'équation

$$z^2 - 2az + b = 0.$$

On note z_1 et z_2 les racines complexes (éventuellement égales) de (E).

- 2) Une condition nécessaire et suffisante pour que $|z_1|=|z_2|$:
 - a) Rappeler et démontrer les liens existants entre les quantités $z_1 + z_2$ et $z_1 z_2$, et les coefficients a et b.
 - b) On suppose que $|z_1| = |z_2|$. Écrire z_1 et z_2 sous forme exponentielle puis en déduire la forme exponentielle de $\frac{a^2}{b}$.

- c) Conclure que, si $|z_1| = |z_2|$, alors la quantité $\frac{a^2}{b}$ est réelle et appartient à l'intervalle]0,1].
- d) Montrer que, si la quantité $\frac{a^2}{b}$ est réelle, alors avec $Z=\frac{z_1}{z_2}$, la quantité $Z+\frac{1}{Z}$ existe et est réelle.
- e) En conclure que, si $\frac{a^2}{b} \in]0,1]$, alors $|z_1| = |z_2|$.
- 3) Une condition nécessaire et suffisante pour que $arg(z_1) = arg(z_2)$ [2π]:
 - a) Démontrer l'inégalité suivante, appelée inégalité arithmético-géométrique

$$\forall x, y \in \mathbb{R}_+^*, \ \sqrt{xy} \leqslant \frac{x+y}{2}.$$

- b) On suppose que $\arg(z_1) = \arg(z_2)$ [2π]. Écrire z_1 et z_2 sous forme exponentielle puis en déduire la forme exponentielle de $\frac{b}{a^2}$.
- c) Montrer que, si $\arg(z_1) = \arg(z_2)$ [2π], alors la quantité $\frac{b}{a^2}$ est réelle et appartient à l'intervalle]0,1].
- **d)** Montrer réciproquement que si $\frac{b}{a^2} \in]0,1]$, alors $\arg(z_1) = \arg(z_2) [2\pi]$.

III. Systèmes d'équations différentielles.

L'objet de ce problème est l'étude de quelques systèmes d'équations différentielles. Les deux parties sont indépendantes.

1) On cherche à déterminer dans cette question quelles sont les fonctions réelles f_1 et g_1 , définies et dérivables sur \mathbb{R} , qui vérifient pour tout $t \in \mathbb{R}$ le système suivant :

$$\begin{cases}
f_1'(t) = 2g_1(t) \\
g_1'(t) = -f_1(t) + te^t
\end{cases}$$

Considérons deux fonctions f_1 et g_1 qui conviennent.

- a) Montrer que f_1 est deux fois dérivable et calculer f_1'' .
- b) En déduire que f_1 est solution de l'équation différentielle $y'' + 2y = 2te^t$ et résoudre cette équation différentielle.

- c) En déduire g_1 puis les solutions du système (S_1) .
- d) Montrer qu'il existe une unique solution (que l'on déterminera) de ce système telle que $f_1(0) = g_1(0) = 0$.
- 2) On cherche à déterminer dans cette question quelles sont les fonctions réelles f_2 et g_2 , définies et dérivables sur \mathbb{R} , qui vérifient pour tout $t \in \mathbb{R}$ le système suivant :

$$\begin{cases} f_2'(t) = 7f_2(t) - 5g_2(t) + \operatorname{sh}(t) \\ g_2'(t) = 10f_2(t) - 8g_2(t) + \operatorname{ch}(t) \end{cases}$$

Considérons deux fonctions f_2 et g_2 qui conviennent.

- a) On pose $u = 2f_2 g_2$. Montrer que u est solution d'une équation différentielle du premier ordre que l'on résoudra.
- b) On pose $v = -f_2 + g_2$. Montrer que v est solution d'une équation différentielle du premier ordre que l'on résoudra.
- c) En déduire f_2 et g_2 puis les solutions du système (S_2) .
- d) Montrer qu'il existe une unique solution (que l'on déterminera) de ce système telle que $f_2(0) = g_2(0) = 0$.

IV. Différence symétrique.

Soient A et B deux parties d'un ensemble E. On appelle différence symétrique de A et B l'ensemble

$$A\Delta B = (A\backslash B) \cup (B\backslash A).$$

- 1) Représenter $A\Delta B$ schématiquement, et en toute généralité.
- 2) Montrer que

$$A\Delta B = (A \cup B) \backslash (A \cap B).$$

3) Montrer que, pour toute partie $C ext{ de } E$,

$$A\Delta B = A\Delta C \iff B = C.$$

4) En déduire que

$$A \backslash B = A \iff A \cap B = \emptyset.$$

5) Montrer que

$$A\Delta B = A \cap B \iff A = B = \emptyset.$$
— FIN —