International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia

wombats

Italian — 1.0

La metropoli di Brisbane è stata conquistata da enormi vombati mutanti, e tu devi condurre il popolo alla salvezza.

Le strade di Brisbane sono disposte secondo una griglia: R strade orizzontali, numerate 0, ..., (R - 1) nell'ordine da nord a sud, e C strade verticali, numerate 0, ..., (C - 1) nell'ordine da ovest a est, come nella figura sottostante.

I vombati procedono da nord, e la popolazione sta scappando verso sud. La popolazione scappa lungo le strade orizzontali in qualunque direzione, ma lungo le strade verticali si muove *unicamente verso sud*, ossia verso la salvezza.

L'incrocio tra la strada orizzontale P e la strada verticale Q è denotato (P,Q). Ogni segmento di strada tra due incroci contiene un certo numero di vombati che potrebbe cambiare nel tempo. Il tuo compito è guidare ogni persona da un incrocio a nord assegnato (lungo la strada orizzontale 0) a un incrocio a sud assegnato (lungo la strada orizzontale R-1), guidandola lungo un tragitto che incontri il minor numero possibile di vombati.

Viene fornita la dimensione della griglia e il numero di vombati iniziale in ogni segmento di strada. Successivamente viene fornita una serie di E eventi, ciascuno dei quali può essere:

- un *change*, che modifica il numero di vombati in un segmento di strada; oppure
- un *escape*, in cui devi guidare una persona da un incrocio assegnato lungo la strada orizzontale 0 a un incrocio assegnato lungo la strada orizzontale R-1, di modo che incontri il minor numero possibile di vombati.

Devi gestire questi eventi implementando le routines (init(), changeH(), changeV() and escape(), descritte sotto.

Esempio

Il disegno soprastante mostra una griglia iniziale con R = 3 strade orizzontali e C = 4 strade verticali, con indicato su ogni segmento il numero di vombati. Consideriamo la seguente successione di eventi:

- Una persona nell'incrocio A = (0, 2) intende fuggire verso l'incrocio B = (2, 1). Il minor numero di vombati che deve incontrare è 2, come indicato dalla linea tratteggiata.
- Un'altra persona nell'incrocio X = (0, 3) intende fuggire verso l'incrocio Y = (2, 3). Il minor numero di vombati che deve incontrare è [7], nuovamente indicato da una linea tratteggiata.
- Accadono due eventi *change*: il numero di vombati nel segmento più in alto della strada verticale 0 diventa 5, e il numero di vombati nel segmento intermedio della strada orizzontale 1 diventa 6 (vedi i numeri cerchiati nella figura sottostante).

Una terza persona intende fuggire dall'incrocio A = (0, 2) all'incrocio B = (2, 1). Ora il minimo numero di vombati che deve incontrare è 5, come indicato dalla nuova linea tratteggiata.

Implementazione

Devi sottoporre un file che implementi le procedure (init(), changeH() e changeV() e la funzione (escape()), come segue:

Procedura: init()

```
C/C++
  void init(int R, int C, int H[5000][200], int V[5000][200]);

type wombatsArrayType = array[0..4999, 0..199] of LongInt;
procedure init(R, C : LongInt; var H, V : wombatsArrayType);
```

Descrizione

Questa procedura fornisce la configurazione iniziale della griglia, e consente di inizializzare variabili globali e strutture di dati se necessario. Questa procedura viene chiamata un'unica volta, prima di ogni chiamata a changeH(), changeV() o escape().

Parametri

- R : Il numero di strade orizzontali.
- C: Il numero di strade verticali.
- H: Un array bidimensionale di dimensioni R × (C 1), dove H[P][Q] è il numero di vombati sul segmento di strada orizzontale tra gli incroci (P, Q) e (P, Q + 1).
- V: Un array bidimensionale di dimensioni $(R-1) \times C$, dove V[P][Q] è il numero di vombati lungo il segmento di strada verticale tra gli incroci (P,Q) and (P+1,Q).

Procedura: changeH()

```
C/C++ void changeH(int P, int Q, int W);
Pascal procedure changeH(P, Q, W: LongInt);
```

Descrizione

Questa procedura viene chiamata quando cambia il numero di vombati lungo il segmento di strada orizzontale tra gli incroci (P, Q) and (P, Q + 1).

Parametri

- P: Indica la strada orizzontale influenzata ($0 \le P \le R 1$).
- Q: Indica tra quali due strade verticali giace il segmento ($0 \le Q \le C 2$).
- W: Il nuovo numero di vombati su questo segmento di strada (0 ≤ W ≤ 1,000).

Procedura: changeV()

```
C/C++ void changeV(int P, int Q, int W);
Pascal procedure changeV(P, Q, W: LongInt);
```

Descrizione

Questa procedura viene chiamata quando cambia il numero di vombati lungo il segmento di strada verticale tra gli incroci (P, Q) and (P + 1, Q).

Parametri

- P: Indica tra quali due strade orizzontali giace il segmento ($0 \le P \le R 2$).
- Q: Indica la strada verticale influenzata ($0 \le Q \le C 1$).
- W: Il nuovo numero di vombati su questo segmento di strada (0 ≤ W ≤ 1,000).

Funzione: escape()

```
C/C++ int escape(int V1, int V2);
Pascal function escape(V1, V2 : LongInt) : LongInt;
```

Descrizione

La funzione deve determinare il minimo numero di vombati che una persona è costretta a incontrare spostandosi dall'incrocio (0,V1) a (R-1,V2).

Parametri

- V1: Indica il luogo di partenza sulla riga 0 (0 ≤ V1 ≤ C-1).
- V2 : Indica il luogo di arrivo sulla riga R-1 ($0 \le V2 \le C-1$).
- *Restituisce*: Il minimo numero di vombati che la persona deve incontrare.

Sessione di esempio

La seguente sessione descrive l'esempio precedente:

Function Call	Returns
init(3, 4, [[0,2,5], [7,1,1], [0,4,0]], [[0,0,0,2], [0,3,4,7]])	
escape(2,1)	2
escape(3,3)	7
changeV(0,0,5)	
changeH(1,1,6)	
escape(2,1)	5

Limiti

• Tempo limite: 20 secondi

• Limite di memoria: 256 MiB

■ 2 ≤ R ≤ 5 000

■ 1 ≤ C ≤ 200

Al massimo 500 cambiamenti (chiamate a changeH() o changeV())

Al massimo 200 000 chiamate a escape()

• Al massimo 1 000 vombati su un qualsiasi segmento, in qualsiasi momento

Subtask

Subtask	Punti	Limiti aggiuntivi sull'input
1	9	C = 1
2	12	R,C ≤ 20 , e non ci sono chiamate a changeH() o changeV()
3	16	R,C ≤ 100 , e ci sono al massimo 100 chiamate a (escape())
4	18	C = 2
5	21	C ≤ 100
6	24	(Nessuno)

Testing

Il grader di esempio sul tuo computer legge l'input dal file wombats.in, che deve rispettare il seguente formato:

```
• riga 1: R C
```

• riga 2: H[0][0] ... H[0][C-2]

• ...

• riga (R + 1): H[R-1][0] ... H[R-1][C-2]

• riga (R + 2): V[0][0] ... V[0][C-1]

.

• riga (2R): V[R-2][0] ... V[R-2][C-1]

• riga successiva: E

• le E righe successive: un evento per riga, nell'ordine in cui gli eventi accadono

Se C = 1, le righe vuote che contengono il numero di vombati lungo le strade orizzontali (righe dalla 2 alla R + 1) non sono necessarie.

La riga relativa al singolo evento deve avere uno dei seguenti formati:

- per indicare changeH(P, Q, W): 1 P Q W
- per indicare changeV(P, Q, W): 2 P Q W
- per indicare escape(V1, V2): 3 V1 V2

In particolare, l'esempio precedente viene codificato in questo modo:

```
3 4
0 2 5
7 1 1
0 4 0
0 0 0 2
0 3 4 7
5
3 2 1
3 3 3
2 0 0 5
1 1 1 6
3 2 1
```

Note relative al linguaggio

```
C/C++ Devi inserire #include "wombats.h".

Pascal Devi definire unit Wombats. Tutti gli array sono numerati a partire da 0 (non da 1).
```

Vedi i template delle soluzioni sulla tua macchina per alcuni esempi.