McMaster University

Electrical and Computer Engineering Department

EE3EJ4 Electronic Devices and Circuits II - Fall 2020

Lab. 2 Single-Stage Amplifiers Lab Report Due on Oct. 18, 2020

<u>Objective</u>: To design and characterize the individual performance of an emitter-coupled BJT pair (a differential amplifier), a common-emitter (CE) amplifier, and a common-collector (CC) amplifier for their future combination to build an operational amplifier.

Attributes Evaluated: These are the attributes you need to demonstrate in your solutions.

- Competence in specialized engineering knowledge.
- Ability to obtain substantiated conclusions resulting from a problem solution, including recognizing the limitations of the approach and solutions.
- Ability to assess the accuracy and precision of results.

Test Equipment:

- Analog Discovery 2 (AD2)
- WaveForms from Digilent Link
- Analog Discovery 2 Quick Start Series Videos
- WaveForms Reference Manual

Components:

• Transistors: $6 \times \text{NPN-BJT 2N3904}$ $1 \times \text{PNP-BJT 2N3906}$

• Resistors: $2 \times 8.25 \text{ k}\Omega \text{ resistor}$ $3 \times 76.8 \text{ k}\Omega \text{ resistor}$ $3 \times 57.6 \text{ k}\Omega \text{ resistor}$

 $3 \times 8.06 \text{ k}\Omega$ resistor

Transistors in the circuit:

For a detailed description of these transistors, please check the following websites:

https://www.onsemi.com/products/discretes-drivers/general-purpose-and-low-vcesat-transistors/2n3904 or https://www.onsemi.com/pub/Collateral/2N3903-D.PDF

https://www.onsemi.com/products/discretes-drivers/general-purpose-and-low-vcesat-transistors/2n3906 or https://www.onsemi.com/pub/Collateral/2N3906-D.PDF

Reminder: Switch off the DC power suppliers first whenever you need to change the circuit configurations. Switch on the DC power suppliers only when you do not have to change the circuit connection anymore.

Part 1: Common-Emitter (CE) Amplifier

Description of the CE Amplifier

In this lab, we design a CE amplifier using a PNP-BJT 2N3094 with a constant current sink connected between its collector and the lowest power supply V_{EE} . Due to the Early effect (as shown in Figure 6.18) of the transistor, the output current of the current sink changes with its collector voltage, which results in a finite output resistance R_0 . Therefore, we usually model the current sink by an ideal current sink I_0 in parallel with its output resistance R_0 . This output resistance R_0 also serves as the AC load resistance for the signal from the transistor. This lab starts with the characterization of the output resistance R_0 of a current sink, followed by the design of the CE amplifier.

A. Pre-lab Simulation - Constant Current Sink

- 1.1 To characterize the output resistance of a current sink, construct the current sink in PartSim with resistance values and supply voltages, as shown in Fig. 1.
- 1.2 Sweep V_{CC} from -3.9V to -0.6V with 0.3V step, and measure the emitter voltage V_E and the collector I_C . Enter the simulated I_C and V_E in the sheet "Step 1.2" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx".
- 1.3 For V_{CC} higher than $V_{o,min}$, calculate the output resistance by $R_o = \frac{\partial V_{CE}}{\partial I_C}$.

Fig. 1 The schematic diagram for the constant current sink

B. Pre-lab Simulation – Common-Emitter (CE) Amplifier

1.4 Construct the CE amplifier, as shown in Fig. 2, using a PNP-BJT 2N3906 and the current sink

- that we characterized in Fig. 1. Here V_{sig} provides the required DC bias for Q_2 and the AC signal applied to the CE amplifier.
- 1.5 Set the DC voltage of $V_{sig} = 4.39$ V, measure the resulting DC voltage at V_o as V_{o1} . Set the DC voltage of $V_{sig} = 4.41$ V, measure the resulting DC voltage at V_o as V_{o2} .
- 1.6 Sweep the DC voltage of V_{sig} , from 4.39 V to 4.41 V with 0.1 mV step. Measure the collector current I_{C2} and the voltage V_o at the collector of Q_2 . Find the $V_{sig} = V_{BQ2}$ that results in $V_o \approx 0$ V.
- 1.7 Set the DC value of $V_{sig} = V_{BQ2}$ and the AC amplitude of $V_{sig} = 1$ mV, conduct AC analysis for V_o in DEC with start frequency = 100 Hz, stop frequency = 1 MHz, and 101 frequency points per decade. Choose REAL for magnitude unit and degree (DEG) for phase unit.

Fig. 2 Schematic diagram of the common emitter (CE) amplifier

C. In-lab Measurement – Constant Current Sink

- 1.8 Use the port definition diagram of AD2 shown in Fig. 3 when setting up your experiments.
- 1.9 Based on Fig. 1, construct the measurement setup for the constant current sink. Use Wavegen 1 (W1) for VCC and V- for VEE. Connect Scope Ch. 1 Positive (1+) to V_B (the base of Q₁) and Scope Ch. 2 Positive (2+) to V_E (the emitter of Q_1). Connect GNDV+, GNDV-, Scope Ch. 1 Negative (1-), and Scope Ch. 2 Negative (2-) to a common ground
- 1.10 In WaveForms, choose Wavegen and set the type of Wavegen 1 (W1) to DC. Here we use Wavegen 1 (W1) as a DC voltage source. Sweep Wavegen 1 (W1) from -3.9V to -1.8V with 0.3V voltage step, and measure the base voltage V_B and the emitter voltage V_E of Q1. Enter the

measured V_B and V_E in the sheet "Step 1.10" of the Excel file "Lab 2 - Single-Stage Amplifier.xlsx", which calculates the output current I_o , which equals the collector current I_{C1} of Q1 as follows.

$$I_{R1} = \frac{0 \text{ V} - V_B}{R_1} = -\frac{V_B}{R_1}, \tag{1}$$

$$I_{R2} = \frac{V_B - V_{EE}}{R_2} = \frac{V_B - (-5 \text{ V})}{R_2} = \frac{V_B + 5 \text{ V}}{R_2},$$
 (2)

$$I_{B1} = I_{R1} - I_{R2} \,, \tag{3}$$

$$I_{E1} = \frac{V_E - V_{EE}}{R_3} = \frac{V_E - (-5 \text{ V})}{R_3} = \frac{V_E + 5 \text{ V}}{R_3},$$
(4)

and

$$I_o = I_{C1} = I_{E1} - I_{B1}. (5)$$

1.11 Keep the constant current sink connected. We will use it again in Part C when we design the common-emitter (CE) amplifier.

Fig. 3 Diagram for the port definition of an Analog Discovery 2 (AD2)

D. In-lab Measurement – Common-Emitter (CE) Amplifier

- 1.12 Based on Fig. 2, construct the measurement setup for the common-emitter (CE) amplifier. Use V+=5V for V_{CC} , V-=-5V for V_{EE} , and Wavegen 1 (W1) for V_{sig} . Connect GNDV+, GNDV-, and GNDW1 to a common ground line.
- 1.13 Connect Scope Ch. 1 Positive (1+) to Wavegen 1 (W1), Scope Ch. 2 Positive (2+) to V_o (the collector of Q_2). Connect the Scope Ch. 1 Negative (1-) and Scope Ch. 2 Negative (2-) to the common ground.
- 1.14 In WaveForms, choose Wavegen and set the type of Wavegen 1 (W1) to DC. Here we use Wavegen 1 (W1) as a DC voltage source.
- 1.15 Sweep the DC voltage of Wavegen 1 (W1) from 4.38 V to 4.40V with 1 mV step, and use Voltmeter in WaveForms to measure the output voltage from W1 and the corresponding voltage V_o at the collector of Q_2 . Enter the measured W1 and V_o in the sheet "Step 1.15" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx". Find the DC voltage V_{BQ2} of Wavegen 1 (W1), which results in $V_o \approx 0$ V.
- 1.16 Connect Scope Ch. 1 Positive (1+) to V_B (the base of Q_1) and Scope Ch. 2 Positive (2+) to V_E (the emitter of Q_1). Set W1 to the V_{BQ2} obtained in Step 1.15. Use Voltmeter in WaveForms to measure the base voltage V_B and the collector voltage V_E of Q1. Enter the measured V_B and V_E in the sheet "Step 1.16" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx", which calculates the collector current $I_{C2} = I_{C1}$ using (1) to (5).
- 1.17 Connect Scope Ch. 1 Positive (1+) to Wavegen 1 (W1), Scope Ch. 2 Positive (2+) to V_o (the collector of Q_2). In WaveForms, Channel 1 (W1) window, set Type = Sine, Frequency = 100 Hz, Amplitude = 1 mV, Offset = V_{BQ2} from Step 1.15, Symmetry = 50% and Phase = 0°.
- 1.18 Display the measurement results using the Scope function in WaveForms. In Scope 1, set Channel 1 with Offset = $-V_{BQ2}$ and Range = 1 mV/div to see the input waveform. For Channel 2, set Offset = 0 V and Range = 1 V/div. Use Y Cursors to set their upper and lower peak values, and use the Ref function to calculate the difference. Enter the measured amplitude of Scope Ch. 1 Positive (1+) and Scope Ch. 2 Positive (2+) in the sheet "Step 1.18" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx" to calculate the voltage gain in dB.
- 1.19 Disconnect the circuit from the power supply V_{CC} , but keep the rest of the CE amplifier circuit connected. We will use it again in Lab 3 when we design a direct-coupled multi-stage amplifier.

E. Questions for Part 1

For the common emitter amplifier designed, answer the following questions with simulated and measured data, and discuss any discrepancy between the simulation and measurement results.

- **Q1.** Based on the simulation data obtained in Step 1.2, what are the $V_{o,min}$, and I_o of the current sink? Use the measurement data obtained in Step 1.10 to verify the $V_{o,min}$ and I_o .
- **Q2.** What are the values of V_{o1} and V_{o2} obtained in Step 1.5? Explain/Justify the values obtained.
- Q3. Based on the simulation data obtained in Step 1.6, (1) plot the simulated DC V_o vs. V_{sig} characteristics. Discuss/justify the simulated characteristics. (2) For the circuit to work as an amplifier,

find the DC input range for V_{sig} and the output voltage range for V_o . (3) Find the V_{sig} value and its corresponding collector current I_{C2} that results in $V_o \approx 0$ V. (4) Based on the measurement data obtained in Step 1.15, plot the measured DC V_o vs. V_{sig} characteristics.

Q4. (1) Based on the simulation data obtained in Step 1.7, what are the magnitude (in dB) and phase of intrinsic voltage gain A_{vo} at low frequency (i.e., 100 Hz) and the upper 3-dB frequency f_{3dB} (i.e., the frequency at which the amplitude become $1/\sqrt{2} = 0.707$ of its low-frequency value, or the phase changes 45°) of this CE amplifier? (2) Verify the voltage gain A_{vo} using the measurement data obtained in Steps 1.17 and 1.18. (3) Increase the frequency of W1 to the upper 3-dB frequency f_{3dB} obtained from the simulation, check the value of A_{vo} , and see if it is about 0.707 of its low-frequency value obtained at 100 Hz. Provide WaveForms screenshots of your measurement results.

Part 2: Common-Collector (CC) Amplifier/Emitter Follower

A. Pre-lab Simulation

- 2.1 Construct the CC amplifier, as shown in Fig. 4, using an NPN-BJT 2N3904 and the current sink characterized in Fig. 1. Here V_{sig} provides the required DC bias for Q_2 and the AC signal for the CC amplifier.
- Sweep the DC voltage of V_{sig} , from -5 V to 5V with 0.5 V step, and measure the output voltage V_o at the emitter of Q_2 and the emitter current I_{E2} of Q_2 , respectively. Enter the simulated V_o and I_{E2} in the sheet "Step 2.2" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx". Mark the DC value of $V_{sig} = V_{BO2}$ which results in $V_o \approx 0$ V.
- 2.3 Set the DC value of $V_{sig} = V_{BQ2}$ and the AC amplitude of $V_{sig} = 1$ mV, conduct AC analysis for V_o in DEC with start frequency = 100 Hz, stop frequency = 1 MHz, and 101 frequency points per decade. Choose REAL for magnitude unit and degree (DEG) for phase unit.

B. In-lab Measurement

- Based on Fig. 4, construct the measurement setup for the common-collector (CC) amplifier. Use V+ for V_{CC} , V- for V_{EE} , and Wavegen 1 (W1) for V_{sig} . Connect GNDV+, GNDV-, and GNDW1 to a common ground line.
- 2.5 Connect Scope Ch. 1 Positive (1+) to V_o at the emitter of Q_2 and Scope Ch. 1 Negative (1-) to the common ground.
- 2.6 In WaveForms, choose Wavegen and set the type of Wavegen 1 (W1) to DC. Here we use Wavegen 1 (W1) as a DC voltage source. Sweep the DC voltage of Wavegen 1 (W1) from -5 V to 5 V with a 0.5 V step, and measure the output voltage V_o at the emitter of Q_2 . Enter the measured V_o in the sheet "Step 2.6" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx". Find the value of $V_{sig} = V_{BQ2}$ which results in $V_o \approx 0$ V.

Fig. 4 Schematic diagram of the common-collector (CC) amplifier

- 2.7 Connect Scope Ch. 1 Positive (1+) to Wavegen 1 (W1), Scope Ch. 2 Positive (2+) to V_o (the collector of Q_2) and Scope Ch. 2 Negative (2-) to the common ground. In WaveForms, Wavegen Window, enable Channel 1 (W1). Set the Type = Sine, Frequency = 100 Hz, Amplitude = 1 mV (Note: in theory, the amplitude cannot exceed $0.2V_T = 5$ mV), Offset = V_{BQ2} found in Step 2.6, Symmetry = 50%, and Channel 1 (W1) Phase = 0°.
- 2.8 Display the measurement results using the Scope function in WaveForms. In Scope 1, set Channel 1 with Offset = -*V*_{BQ2} V and Range = 1 mV/div in order to see the input waveform. For Channel 2, set Offset = 0 V and Range = 1 mV/div. Use Y Cursors to set their upper and lower peak values, and use the Ref function to calculate the difference. Enter the measured amplitude of Scope Ch. 1 Positive (1+) and Scope Ch. 2 Positive (2+) in the sheet "Step 2.8" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx" to calculate the voltage gain in dB.
- 2.9 Disconnect the circuit from the power supply V_{CC} , but keep the rest of the CC amplifier circuit connected. We will use it again in Lab 3 when we design a direct-coupled multi-stage amplifier.

C. Questions for Part 2

For the common collector (CC) amplifier characterized, answer the following questions with simulated and measured data, and discuss any discrepancy between the simulation and measurement results.

- **Q5.** Based on the simulation and measurement data obtained in Steps 2.2 and 2.6, (1) plot the simulated and measured V_o vs. V_{sig} characteristics, and discuss/justify the characteristics. (2) To ensure the circuit work as a common-collector (CC) amplifier, find the DC input range for V_{sig} and the output voltage range for V_o . (3) Find the V_{sig} value that results in $V_o \approx 0$ V.
- **Q6.** Based on the simulation and measurement data obtained in Steps 2.3 and 2.8, what are the simulated and measured intrinsic voltage gain A_{vo} at low frequency (i.e., 100 Hz) of this CC amplifier? Report its magnitude in dB and phase in degree.

Part 3: Differential Amplifier

A. Pre-lab Simulation: Common-mode Signal

- 3.1 Construct the differential amplifier, as shown in Fig. 5 using two NPN-BJT 2N3904, two 8.25 k Ω resistors, and the current sink characterized in Fig. 1. We first analyze its characteristics for DC common-mode signal V_{CM} , followed by the AC common-mode signal v_{cm} . Here the source V_{cm} in Fig. 5 provides both V_{CM} and v_{cm} to the differential amplifier.
- 3.2 Sweep the DC voltage V_{CM} of V_{cm} , from -5 V to 5V with 0.1V step. Measure the voltages V_o and V_E at the collector and the emitter of Q_2 . Besides, measure the collector current I_{C2} of Q_2 .
- 3.3 Set the DC value V_{CM} of $V_{cm} = 0$ V and its AC amplitude $v_{cm} = 1$ mV, conduct AC analysis for V_0 in DEC with start frequency = 0.1 Hz, stop frequency = 1 MHz, and 100 frequency points per decade. Choose REAL for magnitude unit and degree (DEG) for phase unit.

Fig. 5 Schematic diagram of the differential amplifier for common-mode analysis

B. Pre-lab Simulation – Differential-mode Signal

- 3.4 We want to analyze its characteristics for DC differential-mode signal V_{DM} , followed by the AC common-mode signal v_d . Here the voltage sources V_1 and V_2 in Fig. 6 provide both DC and AC voltages to the inputs of the differential amplifier.
- 3.5 Sweep the DC voltage V_1 from -0.25 V to 0.25V with 1 mV step, and simulate the collector currents I_{C1} and I_{C2} of Q_1 and Q_2 , respectively. Enter the simulated I_{C1} and I_{C2} in the sheet "Step 3.5" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx".
- 3.6 Set the DC values of V₁ and V₂ = 0 V, and their AC amplitude 1 mV. For differential mode signal, set the phases of the AC signal V₁ and V₂ to be 0° and 180°, respectively, as shown in Fig. 6. In this setting, the differential-model signal v_{id} = V₁ V₂ = 1 mV (-1 mV) = 2 mV. Conduct AC analysis for V₀ in DEC with start frequency = 100 Hz, stop frequency = 1 MHz, and 101 frequency points per decade. Choose REAL for magnitude unit and degree (DEG) for phase unit.

Fig. 6 Schematic diagram of the differential amplifier for differential-mode analysis

C. In-lab Measurement – Common-mode Signal

3.7 Based on Fig. 5, construct the measurement setup for the differential amplifier. Use V+ = 5V for V_{CC} , V- = -5V for V_{EE} , and Wavegen 1 (W1) for V_{cm} . Connect GNDV+, GNDV-, and GNDW1 to a common ground line.

- 3.8 Connect Scope Ch. 1 Positive (1+) to V_E (the emitter of Q_2), Scope Ch. 2 Positive (2+) to V_o (the collector of Q_2). Connect Scope Ch. 1 Negative (1-) and Scope Ch. 2 Negative (2-) to the common ground.
- 3.9 In WaveForms, choose Wavegen and set the type of Wavegen 1 (W1) to DC. Here we use Wavegen 1 (W1) as a DC voltage source.
- 3.10 (1) Set the DC voltage of Wavegen 1 (W1) to 0 V, and use the Voltmeter in WaveForms to measure the voltage V_{EQ2} at the emitter of Q_2) and V_{oQ2} at the collector of Q_2 , respectively. (2) Sweep the DC voltage of Wavegen 1 (W1) from 4 V to 5 V with 0.1 V step, and use the Voltmeter in WaveForms to measure the voltages at V_E (the emitter of Q_2) and V_o (the collector of Q_2), respectively. Enter the measured V_E and V_o in the sheet "Step 3.10" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx".
- 3.11 Sweep the DC voltage of Wavegen 1 (W1) from -2 V to -3 V with -0.1 V step, and use Voltmeter in WaveForms to measure the voltages at V_E (the emitter of Q_2) and V_o (the collector of Q_2), respectively. Enter the measured V_E and V_o in the sheet "Step 3.11" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx".

D. In-lab Measurement – Differential-mode Signal

- 3.12 Based on Fig. 6, construct the measurement setup for the differential amplifier. Use V+ = 5V for V_{CC} , V- = -5V for V_{EE} , Wavegen 1 (W1) for V_1 and Wavegen 2 (W2) for V_2 . Connect GNDV+, GNDV-, GNDW1, and GNDW2 to a common ground line.
- 3.13 Connect Scope Ch. 1 Positive (1+) to Wavegen 1 (W1), Scope Ch. 2 Positive (2+) to V_o (the collector of Q_2). In WaveForms, Wavegen Window, enable both Channel 1 (W1) and Channel 2 (W2). Set their Type = Sine, Frequency = 100 Hz, Amplitude = 1 mV, Offset = 0 V, Symmetry = 50%. Set the Channel 1 (W1) Phase = 0° and Channel 2 (W2) Phase = 180°.
- 3.14 Display the measurement results using the Scope function in WaveForms. In Scope 1, set Channel 1 with Offset = 0 V and Range = 1 mV/div in order to see the input waveform. For Channel 2, set Offset = -V_{oQ2} V and Range = 1 mV/div, where V_{oQ2} is obtained from Step 3.10. Use Y Cursors to set their upper and lower peak values, and use the Ref function to calculate the difference. Enter the measured amplitude of Scope Ch. 1 Positive (1+) and Scope Ch. 2 Positive (2+) in the sheet "Step 3.14" of the Excel file "Lab 2 Single-Stage Amplifier.xlsx" to calculate the differential-mode voltage gain in dB.
- 3.15 Disconnect the circuit from the power supply V_{CC} , but keep the rest of the differential amplifier connected. We will use it again in Lab 3 when we design a direct-coupled multi-stage amplifier.

E. Questions for Part 3

For the differential amplifier designed, answer the following questions with simulated and measured data, and discuss any discrepancy between the simulation and measurement results.

- **Q7.** Based on the simulation data obtained in Step 3.2, (1) what are the voltages of V_o and V_E , and I_{C2} of Q_2 when $V_{CM} = 0$ V, (2) what is the input common-mode range (i.e., the voltage range of V_{CM} to maintain the same out voltage), and (3) what determines the upper and lower bounds of the input common-mode range? (5) Based on the measurement data obtained in Steps 3.10 and 3.11, verify the common-mode range by experimental data.
- **Q8.** Based on the simulated data obtained in Step 3.3, what is the low-frequency voltage gain A_{cm} in dB for the common-mode signal?
- **Q9.** Based on the simulation data obtained in Step 3.5 and the description on page 618 of the textbook, (1) what is the input differential-mode range? (2) How do we determine the upper and lower bounds of the input differential-mode range?
- **Q10.** (1) Based on the simulation data obtained in Step 3.6, what is the voltage gain A_d in dB for the differential-mode signal? (2) Estimate its upper 3-dB frequency f_{3dB} (i.e., the frequency at which the amplitude becomes $1/\sqrt{2} = 0.707$ of its low-frequency value or the phase changes 45°). (3) Compare the upper 3-dB frequency f_{3dB} of this differential amplifier with that of the CE amplifier obtained in Q4. (4) Based on the measurement data obtained in Step 3.14, calculate the measured low-frequency differential voltage gain A_d in dB.
- Q11. Based on the simulation data, what is the common-mode rejection ratio (CMRR) in dB?