- 5.2.8 (a) If a derivative function is not constant, then the derivative must take on some irrational values.
 - True. Suppose $f: A \to \mathbb{R}$, f'(x) exists, $f'(x) \neq c$. Since A by definition is an interval for f' to be well defined then if A is a closed interval [a, b] then by the darboux theorem f' attains all values between f'(a) and f'(b). Since f'(a) and f'(b) are real numbers then by the density of the irrationals in \mathbb{R} there exists i such that (WLOG) f'(a) < i < f'(b). Therefore f' always attains an irrational. If the interval is open, then we can find the midpoint, $m = \frac{a+b}{2}$, take the open ball around $m, V_{\epsilon}(m)$ guaranteed by it's entry in an open set, then take take the set $[m \epsilon/2, m + \epsilon/2]$, which we know contain the end points as $m \epsilon < m \epsilon/2$ and $m + \epsilon/2 > m + \epsilon/2$, thus constructing a closed interval on which f' is defined.
 - (b) If f' exists on an open interval, and there is some point c where f'(c) > 0, then there exists a δ -neighborhood $V_{\delta}(c)$ around c in which f'(x) > 0 for all $x \in V_{\delta}(c)$). False, consider the function

$$f(x) = \begin{cases} x + x^2 \sin(e^{1/|x|}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- at 0. If we evaluate the derivative manually we find $\lim_{x\to 0} 1 + x \sin(e^{1/|x|})$, which similar to evaluating $1 + x \sin(1/x)$ converges to 1 by the squeeze theorem. However with the actual evaluation of $f'(x) = 1 + 2x \sin(e^{1/|x|}) e^{1/|x|} \cos(e^{1/|x|})$ clearly the $e^{1/|x|} \cos(e^{1/|x|})$ term will fluctuate wildly when approaching 0, contradicting that an open neighborhood around 0 will be purely positive.
- (c) If f is differentiable on an interval containing zero and if $\lim_{x\to 0} f'(x) = L$, then it must be that L = f'(0)True. Suppose for contradiction that $f'(0) \neq L$. Then there exists $\epsilon_0 > 0$ such that $|f'(0) - L| > \epsilon_0$. Since f' converges to L, then there exists $\delta_0 > 0$ such that $x \in V_{\delta_0}(0)$ implies $|f(x) - L| < \epsilon_0/2$. Since f is differentiable on $[-\delta_0/2, 0]$, then by darboux's theorem f' attains all values between $f'(-\delta_0/2)$ and f'(0). This is a contradiction as for every x value in $(-\delta_0/2, 0)$, |f'(x) - L| < |f'(0) - L|/2, however all values between $f'(-\delta_0/2)$ and f'(0) must be attained.
- (d) The question above without the requirement of the limit existing False, take $f(x) = \frac{x^2 x}{x}$. Clearly $\lim_{x \to 0} \frac{x^2 x}{x} = \lim_{x \to 0} \frac{x(x-1)}{x} = -1$, however directly evaluating f(0) is undefined.