

Machine Learning for Scientists and Engineers ${\bf August~2024}$

Name	ID	Email
João Felipe Gueiros	941200164	joao.g@campus.technion.ac.il

1 Theory

1st Problem

Problem 2.1 To walk "downhill" on the loss function (equation 2.5), we measure its gradient with respect to the parameters ϕ_0 and ϕ_1 . Calculate expressions for the slopes $\partial L/\partial \phi_0$ and $\partial L/\partial \phi_1$.

Solution:

$$\frac{\partial L}{\partial \phi_0} = \frac{\partial \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2}{\partial \phi_0} = \frac{\sum_{i=1}^{I} \partial (\phi_0 + \phi_1 x_i - y_i)^2}{\partial \phi_0} = \sum_{i=1}^{I} (2\phi_0 + 2\phi_1 x_i - 2y_i)$$

$$\frac{\partial L}{\partial \phi_1} = \frac{\partial \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2}{\partial \phi_1} = \frac{\sum_{i=1}^{I} \partial (\phi_0 + \phi_1 x_i - y_i)^2}{\partial \phi_1} = \sum_{i=1}^{I} (2\phi_0 x_i + 2\phi_1 x_i^2 - 2y_i x_i)$$

2nd Problem

Problem 2.2 Show that we can find the minimum of the loss function in closed form by setting the expression for the derivatives from problem 2.1 to zero and solving for ϕ_0 and ϕ_1 . Note that this works for linear regression but not for more complex models; this is why we use iterative model fitting methods like gradient descent (figure 2.4).

Solution:

Let's set equate the expressions to 0:

$$\frac{\partial L}{\partial \phi_0} = \sum_{i=1}^{I} (2\phi_0 + 2\phi_1 x_i - 2y_i) = 0 \tag{1}$$

$$\frac{\partial L}{\partial \phi_1} = \sum_{i=1}^{I} (2\phi_0 x_i + 2\phi_1 x_i^2 - 2y_i x_i) = 0$$
 (2)

Remark: I'll just set the $\sum_{i=1}^{I}$ to \sum to shorten my typing. Back to equation (1)

$$\sum (y_i) = \sum \phi_0 + \sum \phi_1 x_i \Rightarrow \sum \phi_0 = \sum y_i - \phi_1 \sum x_i \Rightarrow I \cdot \phi_0 = \sum y_i - \phi_1 \sum x_i$$
$$\phi_0 = \frac{\sum y_i - \phi_1 \sum x_i}{I}$$

Now, we must find ϕ_1 Reorganizing equation (2), we get:

$$\phi_1 = \frac{\sum y_i x_i - \phi_0 \sum x_i}{\sum x_i^2}$$

Substituting ϕ_0 from before we get:

$$\phi_1 = \frac{\sum y_i x_i - \frac{\sum y_i - \phi_1 \sum x_i}{I} \sum x_i}{\sum x_i^2}$$

Reorganizing for ϕ_1

$$\phi_1 = \frac{I \sum y_i x_i - \sum x_i \sum y_i}{I \sum x_i^2 - (\sum x_i)^2}$$

2 Computation

Question 1.

```
HW2 > ♠ hw_2_question_1.py > ...

import numpy as np

import matplotlib.pyplot as plt

# Getting data

x = np.array([1 , 2, 3, 4, 5, 6])

y = np.array([1 , 3, 2, 5, 4, 6])

data = np.concatenate((x[np.newaxis, :], y[np.newaxis, :]), axis=0)

## Calculating stuff

x_avg = np.mean(x)

y_avg = np.mean(x)

y_avg = np.mean(y)

beta_1_num = np.sum((x - x_avg) * (y - y_avg))

beta_1_den = np.sum((x - x_avg) ** 2)

beta_1 = beta_1_num / beta_1_den

beta_0 = y_avg - beta_1*x_avg

x_line = np.linspace(1,6,100)

y_line = beta_1*x_line + beta_0

plt.plot(x_line,y_line,"-r",label = "Best line")

plt.plot()

plt.scatter(x, y, color='blue', label='Points')

plt.grid()

plt.xlabel('x')

plt.ylabel('y')

plt.show()
```

Figure 1: Python program to implement linear regression

Figure 2: Plot of linear regression

Question 2.

```
import numpy as np
2 import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4, 5, 6])
y = np.array([1, 3, 2, 5, 4, 6])
def cost_function(beta_0,beta_1,x,y):
      h = beta_0*1 + beta_1*x
      J = 1/(2*len(x)) * np.sum((h - y)**2)
9
      return J
10
11
def gradient_descent(alpha,iter,beta_0,beta_1,x,y,x0):
      cost = np.zeros(iter)
13
      for i in range(iter):
14
           h = beta_0*1 + beta_1*x
15
           gradient_0 = 1/(len(x)) * np.sum(h-y) * x0
16
           beta_0 = beta_0 - alpha*gradient_0
17
18
           gradient_1 = 1/(len(x)) * np.sum((h-y)*x)
           beta_1 = beta_1 - alpha*gradient_1
19
           cost[i] = cost_function(beta_0,beta_1,x,y)
20
21
      return [cost,beta_0,beta_1]
22
23
^{24} alpha = 0.01
_{25} iter = 1000
lins = np.linspace(1,iter,iter)
27 \times 0 = 1
28 \text{ beta}_0 = 1
29 beta_1 = 1
30 [cost, beta_0, beta_1] = gradient_descent(alpha, iter, beta_0, beta_1, x, y, x0)
x_{line} = np.linspace(1,6,100)
y_line = beta_1*x_line + beta_0
33
34 # Figure 1: Plot of cost
35 plt.figure(1) # Start a new figure
plt.plot(lins, cost, label="Cost")
37 plt.grid()
plt.xlabel('Iterations')
39 plt.ylabel('Cost')
40 plt.title('Cost Convergence')
41 plt.legend()
42 plt.show()
# Figure 2: Linear regression fit
45 plt.figure(2) # Start a new figure
plt.plot(x_line, y_line, "-r", label="Best Line") # Best-fit line plt.scatter(x, y, color="blue", label="Data Points") # Data points
48 plt.grid()
49 plt.xlabel("x")
50 plt.ylabel("y")
plt.title("Linear Regression for Blue Points")
52 plt.legend()
53 plt.show()
```


Figure 3: Cost convergence plot with $\alpha = 0.01$

Figure 4: Linear regression with gradient descent plot

Question 4.

```
# Initialize weights and biases for the first layer
13
           self.output[0].weight.data = torch.tensor([[0.1, 0.3], [0.2, 0.4]]) # W1
14
          self.output[0].bias.data = torch.tensor([0.5, 0.6]) # B1
16
          # Initialize weights and biases for the second layer
17
          self.output[2].weight.data = torch.tensor([[0.7, 0.8]]) # W2
18
          self.output[2].bias.data = torch.tensor([0.9]) # B2
19
20
      def forward(self, x):
21
          return self.output(x)
22
23
24 # Input tensor
x = torch.tensor([[0.3, 0.7]])
26
27 # Target value
target = torch.tensor([[1.0]]) # Expected output
30 # Define model
31 model = Question4()
33 # Perform forward pass
34 output = model(x)
_{\rm 36} # Compute error using the given formula
37 error = 0.5 * ((output - target) ** 2).sum() # Squared error
# Print output and error
print(f"Output: {output.item()}")
print(f"Error: {error.item()}")
```

Figure 5: Result of error

I obtained a very similar result to the hand calculation, probably this slight difference is due to my approximations in the hand calculation.

Question 3.

Written solution in the following 2 pages

Figure 6: Question 3 solution part 1

So,
$$h_1 = \alpha L b_1 + \omega_1 x_1 + \omega_2 x_2$$
]

 $h_2 = \alpha [b_2 + \omega_3 x_1 + \omega_4 x_2]$
 $h_3 = \alpha [0.5 + 0.1 \cdot 0.3 + 0.3 \cdot 0.7] = \alpha [0.74]$
 $\Rightarrow h_2 = \alpha [0.6 + 0.2 \cdot 0.3 + 0.4 \cdot 0.7] = \alpha [0.94]$
 $\Rightarrow h_1 = \frac{1}{1 + e^{-0.94}} \approx 0.677$
 $h_2 = \frac{1}{1 + e^{-0.94}} \approx 0.719$
 $\Rightarrow \lambda_1 = \frac{1}{1 + e^{-0.94}} \approx 0.719$
 $\Rightarrow \lambda_2 = b_3 + \omega_5 h_1 + \omega_6 \cdot h_2 = 0.9 + 0.7 \cdot (0.677) + 0.8(0.719)$
 $\Rightarrow \lambda_2 = a [y] = a [y] + y h_1 + y h_2$
 $\Rightarrow \lambda_3 = b_3 + \omega_5 h_1 + \omega_6 \cdot h_2 = 0.9 + 0.7 \cdot (0.677) + 0.8(0.719)$
 $\Rightarrow \lambda_3 = a [0.5 + 0.1 \cdot 0.3 + 0.3 \cdot 0.7] = \alpha [0.94]$
 $\Rightarrow \lambda_4 = a [0.5 + 0.1 \cdot 0.3 + 0.3 \cdot 0.7] = \alpha [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [y] + y h_1 + y h_2$
 $\Rightarrow \lambda_5 = b_3 + \omega_5 h_1 + \omega_6 \cdot h_2 = 0.9 + 0.7 \cdot (0.677) + 0.8(0.719)$
 $\Rightarrow \lambda_5 = b_3 + \omega_5 h_1 + \omega_6 \cdot h_2 = 0.9 + 0.7 \cdot (0.677) + 0.8(0.719)$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$
 $\Rightarrow \lambda_5 = a [0.94] = a [0.94] = a [0.94]$

Figure 7: Question 3 solution part 2