REMARQUES

1. Théorème 3.1

Soit n un entier naturel.

Lemme 1. Soit p un nombre premier. Notons $G = (\mathbb{Z}/p\mathbb{Z})^*$. Supposons que p ne divise pas n. Soit d l'ordre de n modulo p. Supposons de plus

$$\operatorname{pgcd}\left(\frac{p-1}{d},d\right) = 1.$$

Soit H le sous-groupe de G d'ordre (p-1)/d. Alors, nH est un générateur de G/H.

Démonstration. Soit g un générateur de G. L'élément g^d est d'ordre $(p-1)/\operatorname{pgcd}(d, p-1) = (p-1)/d$. Par suite, on a $H = \langle g^d \rangle$. Par ailleurs, G possède $\varphi(d)$ eléments d'ordre d. Ce sont les éléments (au nombre de $\varphi(d)$)

$$g^{a(p-1)/d}$$
 avec $1 \le a \le d$, $\operatorname{pgcd}(a, d) = 1$.

En effet, $g^{(p-1)/d}$ est d'ordre d, donc engendre l'unique sous-groupe de G d'ordre d et les générateurs de ce sous-groupe sont exactement les éléments ci-dessus. Parce que n est d'ordre d, il existe donc a tel que $1 \le a \le d$, $\operatorname{pgcd}(a,d) = 1$ et que l'on ait dans G

$$n = q^{a(p-1)/d}.$$

Le groupe G/H est d'ordre d. Il s'agit donc de montrer que d est le plus petit entier $k \ge 1$ tel que n^k appartienne à H. Soit k l'ordre de n dans G/H. On a

$$n^k = g^{ak(p-1)/d} \in H.$$

On a $H = \langle g^d \rangle$, donc il existe un entier s tel que l'on ait

$$q^{ak(p-1)/d} = (q^d)^s = q^{ds}.$$

On obtient la congruence

$$ak(p-1)/d \equiv ds \pmod{p-1}$$
.

L'entier d divise p-1 donc d divise ak(p-1)/d. Par ailleurs, a est premier avec d et $\operatorname{pgcd}\left(\frac{p-1}{d},d\right)=1$, donc d divise k. On a $n^d\in H$, d'où k=d et le résultat. \square

Lemme 2. Soit $m \in \mathbb{N}$ un entier divisible par au moins deux nombres premiers distincts, p et q. Il existe d_0 tel que pour tout $d > d_0$, $p^d - 1$ ne divise pas $m^d - 1$.

Démonstration. Voir la référence [2].

Lemme 3. Il existe une infinité de nombres premiers p tels que p-1 soit sans facteurs carrés.

Démonstration. Voir la référence [5].

Date: 7 mai 2020.

Remarque 1.1. Soit H un sous-groupe de $G = (\mathbb{Z}/p\mathbb{Z})^*$ d'ordre n. Notons d = |G/H|. Il existe un unique sous-groupe H' de $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ d'ordre n (avec $\zeta = \zeta_p$). Soit K le corps laissé fixe par ce sous-groupe. On a $[K : \mathbb{Q}] = d$. Vérifions que l'application

$$f: G/H \to \operatorname{Gal}(K/\mathbb{Q})$$

définie par

$$f(aH) = \sigma_a|_K$$
 où $\sigma_a(\zeta) = \zeta^a$,

est un isomorphisme. D'abord si on a aH = bH, alors $\sigma_{ab^{-1}}$ appartient à H' donc la restriction de $\sigma_{ab^{-1}}$ à K est l'identité, et on a donc $\sigma_a|_K = \sigma_b|_K$. Par ailleurs, si $\sigma_a|_K = 1$, cela signifie que $a \in H$, donc f est injective, d'où l'assertion. (En fait, a est dans H si et seulement si σ_a est dans H' car $a \mapsto \sigma_a$ est un isomorphisme de G sur $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ et G (donc aussi $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$)possède un unique sous-groupe d'ordre d.) Ainsi, pour tout nombre premier $q \neq p$, le Frobenius en q restreint à K est l'image de qH. Le Frobenius en q restreint à K étant le Frobenius en q de l'extension K/\mathbb{Q} , on en déduit que si qH est un générateur de G/H, alors le Frobenius en q de l'extension K/\mathbb{Q} est un générateur de $Gal(K/\mathbb{Q})$, autrement dit q est inerte dans K.

1.1. Preuve du théorème 3.1. On suppose n composé. Soit p un diviseur premier de n. Si n est une puissance d'un nombre premier, pour tout K l'idéal nO_K n'est pas de Carmichael. On peut donc supposer que n n'est pas la puissance d'un nombre premier. Parce que n est composé, n est donc divisible par au moins deux nombres premiers distincts. D'après le lemme ci-dessus, il existe d_0 tel que pour tout $d > d_0$, $p^d - 1$ ne divise pas $n^d - 1$.

Remarque 1.2. Soit K un corps de nombres tel que $[K:\mathbb{Q}] = d > d_0$. Supposons p inerte dans K. On a

$$Norm(p) - 1 = p^d - 1,$$

qui ne divise pas $n^d - 1 = \text{Norm}(nO_K) - 1$. Dans ce cas, nO_K n'est donc pas un idéal de Carmichael dans K.

Il y a une infinité de nombres premiers q tels que q-1 soit sans facteurs carrés. Choisissons un tel nombre premier q tel que

$$q > p^{d_0} - 1.$$

Soit d l'ordre de p modulo q. On a

$$d > d_0$$
.

Par ailleurs, d divise q-1. Parce que q-1 est sans facteurs carrés, on a

$$\operatorname{pgcd}\left(\frac{q-1}{d},d\right) = 1.$$

Posons

$$E = \mathbb{Q}(\zeta_q).$$

Le groupe $\operatorname{Gal}(E/\mathbb{Q})$ est isomorphe à $G = (\mathbb{Z}/q\mathbb{Z})^*$. Soit H le sous-groupe de G d'ordre (q-1)/d. Soit K le sous-corps de E laissé fixe par H. On utilise le lemme 2 avec le nombre premier q et n=p (ce sont les notations du lemme 2). On en déduit que p est un générateur de G/H donc que p est inerte dans K. On a $[K:\mathbb{Q}] = d > d_0$, donc nO_K n'est pas un idéal Carmichael dans O_K (d'après la remarque ci-dessus), d'où le résultat.

Résumé de la preuve : Soit p un diviseur premier fixé de n. Soit d_0 tel que pour tout $d > d_0$, $p^d - 1$ ne divise pas $n^d - 1$. Soit S l'ensemble des nombres premiers q tels que q - 1 soit sans facteurs carrés et que $q > p^{d_0} - 1$. L'ensemble S est infini. Pour chaque $q \in S$, soit d_q l'ordre de p modulo q. Il existe un unique sous-corps K_q de $\mathbb{Q}(\zeta_q)$ de degré d_q sur \mathbb{Q} . Dans chacun des corps K_q , q est inerte donc nO_K n'est pas un idéal Carmichael dans O_{K_q} . Il y a une infinité de tels corps K_q . Le discriminant de K_q est une puissance q, donc si q ne divise pas n, la condition $\operatorname{pgcd}(D_{K_q}, n) = 1$ est remplie. Cela prouve le résultat.