VISÃO COMPUTACIONAL Lista de Exercícios 02 — Detector Harris e Casamento de Características

I Detector Harris

O detector Harris é amplamente usado para detectar pontos característicos em imagens. Ele se baseia na detecção de bordas. Os passos para sua implementação são os seguintes:

- a. Calcule as derivadas d_x e d_y nas direções x e y da imagem (por exemplo, usando o operador Sobel de dimensão W_d);
- b. Calcule a matriz de covariância C para cada pixel da imagem considerando uma vizinhança W_C do pixel (tipicamente, $W_C = 5W_d$):

$$C = \begin{bmatrix} \sum_{W_C} d_x^2 & \sum_{W_C} d_x d_y \\ \sum_{W_C} d_x d_y & \sum_{W_C} d_y^2 \end{bmatrix}$$

- c. Para cada pixel na imagem, calcule a resposta de Harris $R = \lambda_1 \lambda_2 k(\lambda_1 + \lambda_2)^2$, onde λ_1 e λ_2 são os autovalores de C e k é uma constante (tipicamente, k = 0.04).
- d. Considere como pontos característicos aqueles para os quais $R > T_R$ dentro de uma janela de dimensão W_H , onde T_R é um limiar escolhido;

Para cada par de imagens dado (building e goi), implemente o detector Harris e mostre as imagens com os pontos detectados destacados. Como calcular R de forma eficiente? Escolha valores de W_H e T_R apropriados, levando em conta que os pontos encontrados serão usados no casamento de características entre os pares de imagens. Comente seus resultados.

II Casamento de Características

Para encontrar pontos característicos correspondentes em duas imagens, comparamos os tons de cinza em uma janela ao redor dos pontos encontrados. Uma métrica típica usada nesta comparação é o SSD (Sum of Squared Differences)

$$SSD = \sum_{(x,y) \in W_{SSD}} |f_1(x,y) - f_2(x,y)|^2$$

onde W_{SSD} é tamanho da janela ao redor do ponto característico e $f_1(x,y)$ e $f_2(x,y)$ são os valores dos pixels nas coordenadas x e y para as janelas extraídas das imagens 1 e 2, respectivamente.

Dois pontos característicos são considerados correspondentes quando:

- a. Os pontos possuem um valor mínimo da SSD (entre todos os pontos possíveis) inferior a um limiar T_{SSD} ; e
- b. Falsas correspondências são eliminadas. Isso é conseguido garantindo que:

$$\frac{\text{minimoSSD}}{\text{segundominimoSSD}} < T_{razaoSSD}$$

onde $T_{razaoSSD}$ é um limiar escolhido, minimoSSD é o valor da SSD para o ponto com o menor valor de SSD encontrado, e segundominimoSSD é o valor da SSD para o ponto com o segundo menor valor de SSD encontrado.

Para cada par de imagens dado (building e goi) com pontos característicos encontrados na Parte I:

- 1. Encontre os pares de características correspondentes. Escolha valores de $W_{SSD},\,T_{SSD}$ e $T_{razaoSSD}$ apropriados.
- 2. Gere uma imagem composta, colocando cada imagem de um par lado a lado, destacando os pontos encontrados e conectando os pontos correspondentes com uma reta.

Comente seus resultados.