Primer parcial de Lógica

29 de abril 2019

Indicaciones generales

- Apagar los celulares
- La duración del parcial es de **tres** (3) horas.
- En esta prueba **no** se permite consultar material alguno.
- Puntaje: 40 puntos.
- Toda respuesta debe estar fundamentada. Pueden usarse los resultados que aparecen en el texto del curso, en esos casos debe describirse con precisión el enunciado que se utiliza.
- Numerar todas las hojas e incluir en cada una su nombre y cédula de identidad, utilizar las hojas de un solo lado, escribir con lápiz, iniciar cada ejercicio en hoja nueva y poner en la primera hoja la cantidad de hojas entregadas.

Ejercicio 1 (12 puntos)

- a. I. Dar una definición inductiva del conjunto \mathcal{A} de todas las fórmulas de PROP que se pueden construir usando los conectivos $\{\neg, \land\}$ y que cumplan las siguientes condiciones:
 - Las letras proposicionales sólo aparecen negadas.
 - No aparecen otras negaciones que las que afectan a las letras proposicionales.

Ejemplos:
$$\neg p_5, (\neg p_0 \land \neg p_3), ((\neg p_3 \land \neg p_8) \land (\neg p_3 \land \neg p_2)), (\neg p_1 \land (\neg p_1 \land \neg p_9)), ((\neg p_1 \land \neg p_1) \land \neg p_9)$$

- II. Definir de acuerdo con el ERP, una función: $f: \mathcal{A} \to \mathtt{PROP}$ de tal forma que $f(\alpha)$ sea el resultado de cambiar todos los conectivos \wedge por \vee y eliminar todas las negaciones de α . Ejemplos:
 - $f((\neg p_0 \land \neg p_3)) = (p_0 \lor p_3)$
 - $f(((\neg p_3 \land \neg p_8) \land (\neg p_3 \land \neg p_2))) = ((p_3 \lor p_8) \lor (p_3 \lor p_2))$
- b. Probar que para toda $\alpha \in \mathcal{A}$ se cumple que:
 - I. $f(\alpha) \vdash \neg \alpha$.
 - II. $\neg \alpha \models f(\alpha)$

II.

III. Deduzca de las partes anteriores que: α eq $\neg f(\alpha)$

Bosquejo de solución

a. I. $\neg p_i \in \mathcal{A} \text{ con } i \in \mathbb{N}$ II Si $\alpha \in \mathcal{A} \text{ y } \beta \in \mathcal{A} \text{ entonces } (\alpha \wedge \beta) \in \mathcal{A}$

$$\begin{array}{ll} f: \mathcal{A} \to \mathtt{PROP} \\ f(\neg p_i) &= p_i \\ f((\alpha \land \beta)) = (f(\alpha) \lor f(\beta)) \end{array}$$

2

b. I. Quiero probar $\bar{\forall} \alpha \in \mathcal{A}, (f(\alpha) \vdash \neg \alpha)$

Demostración por PIP en
$$\mathcal{A}$$
.
Sea $P(\alpha) := f(\alpha) \vdash \neg \alpha$

Paso Base

T)
$$P(\neg p_i) := f(\neg p_i) \vdash \neg \neg p_i$$

Demo.
 $f(\neg p_i) \vdash \neg \neg p_i$
 $\Leftrightarrow (\text{def. de f})$
 $p_i \vdash \neg \neg p_i$
 $\Leftrightarrow (\text{corrección y completitud})$
 $p_i \models \neg \neg p_i$
 $\Leftrightarrow (\text{equivalentes})$

 $p_i \models p_i$

Paso Inductivo

HI)
$$P(\alpha) := f(\alpha) \vdash \neg \alpha$$

 $P(\beta) := f(\beta) \vdash \neg \beta$
TI) $P((\alpha \land \beta)) := f((\alpha \land \beta)) \vdash \neg(\alpha \land \beta)$
Demo.
 $f((\alpha \land \beta)) \vdash \neg(\alpha \land \beta)$

$$f((\alpha \land \beta)) \vdash \neg(\alpha \land \beta)$$

$$\Leftrightarrow (\text{def. de f})$$

$$f(\alpha) \lor f(\beta) \vdash \neg(\alpha \land \beta)$$

Vamos a probar que $f(\alpha) \vee f(\beta) \vdash \neg(\alpha \wedge \beta)$.

Por HI tenemos que

Luego, podemos construir la siguiente derivación:

$$\frac{f(\alpha) \vee f(\beta)}{\frac{\vdots}{\neg \alpha}} \frac{[f(\alpha)]^{(1)}}{\frac{(\alpha \wedge \beta)^{(2)}}{\neg \alpha}} E \wedge \frac{[f(\beta)]^{(1)}}{\frac{\vdots}{\neg \beta}} \frac{[\alpha \wedge \beta]^{(2)}}{\beta} E \wedge \frac{f(\alpha) \vee f(\beta)}{\frac{\bot}{\neg (\alpha \wedge \beta)}} I \neg (2)$$

Por tanto, $f(\alpha) \vee f(\beta) \vdash \neg(\alpha \wedge \beta)$.

Entonces, por PIP en \mathcal{A} ,

$$\bar{\forall} \alpha \in \mathcal{A}, \ (f(\alpha) \vdash \neg \alpha)$$

29 de abril 2019

II. Quiero probar $\bar{\forall} \alpha \in \mathcal{A}, \ (\neg \alpha \models f(\alpha))$

Demostración por PIP en
$$\mathcal{A}$$
.
Sea $P(\alpha) := \neg \alpha \models f(\alpha)$

Paso Base

T)
$$P(\neg p_i) := \neg \neg p_i \models f(\neg p_i)$$

Demo.
 $\neg \neg p_i \models f(\neg p_i)$
 $\Leftrightarrow (\text{def. de f})$
 $\neg \neg p_i \models p_i$
 $\Leftrightarrow (\text{equivalentes})$
 $p_i \models p_i$

Paso Inductivo

HI)
$$P(\alpha) := \neg \alpha \models f(\alpha) \ P(\beta) := \neg \beta \models f(\beta)$$

TI) $P((\alpha \land \beta)) := \neg (\alpha \land \beta) \models f(\alpha \land \beta)$

Demo.

$$\neg(\alpha \land \beta) \models f(\alpha \land \beta)$$

$$\Leftrightarrow (\text{def. de } f)$$

$$\neg(\alpha \land \beta) \models f(\alpha) \lor f(\beta)$$

$$\Leftrightarrow (\text{de Morgan})$$

$$\neg\alpha \lor \neg\beta \models f(\alpha) \lor f(\beta)$$

$$\Leftrightarrow (\text{corrección y completitud})$$

$$\neg\alpha \lor \neg\beta \vdash f(\alpha) \lor f(\beta)$$
Vamos a probar $\neg\alpha \lor \neg\beta \vdash f(\alpha) \lor f(\beta)$
Por **HI** tenemos que,
$$\exists D \in DER, \ H(D) \subseteq \{\neg\alpha\} \ y \ C(D) = f(\alpha) \ y$$

$$\exists D \in DER, \ H(D) \subseteq \{\neg\beta\} \ y \ C(D) = f(\beta)$$

Luego, podemos construir la siguiente derivación,

$$\begin{array}{cccc}
 & [\neg \alpha]^{(1)} & [\neg \beta]^{(1)} \\
 & \vdots & \vdots \\
 & f(\alpha) & f(\alpha) & f(\beta) \\
\hline
 & f(\alpha) \lor f(\beta) & f(\alpha) \lor f(\beta) \\
\hline
 & f(\alpha) \lor f(\beta) \\
 & For tanto, \neg \alpha \lor \neg \beta \vdash f(\alpha) \lor f(\beta).
\end{array}$$
| IV | For tanto, \(\neg \alpha \lor \neg \beta \vdash f(\alpha) \lor f(\beta).

Entonces, por PIP $\forall \alpha \in \mathcal{A}, \ (\neg \alpha \models f(\alpha))$

III. Quiero probar α eq $\neg f(\alpha)$

```
\begin{array}{l} \alpha \ \mathsf{eq} \ \neg f(\alpha) \\ \Leftrightarrow \ (\mathsf{def.}\ \mathsf{eq}) \\ \models \alpha \leftrightarrow \neg f(\alpha) \\ \Leftrightarrow \ (\mathsf{def.}\ \mathsf{de}\ \mathsf{tautolog\'(a)} \\ \forall v : val, \ : v(\alpha \leftrightarrow \neg f(\alpha)) = 1 \\ \Leftrightarrow \ (\mathsf{def.}\ \mathsf{de}\ \mathsf{valuaci\'(a)}) \\ \forall v : val, \ : v(\alpha) = 1 - v(f(\alpha)) \\ \Leftrightarrow \ (\mathsf{aritm\'(ca)}) \\ \forall v : val, \ : 1 - v(\alpha) = v(f(\alpha)) \\ \Leftrightarrow \ (\mathsf{def.}\ \mathsf{de}\ \mathsf{valuaci\'(a)}) \\ \forall v : val, \ : v(\neg \alpha \leftrightarrow f(\alpha)) = 1 \\ \Leftrightarrow \ (\mathsf{def.}\ \mathsf{de}\ \mathsf{tautolog\'(a)}) \\ \models \neg \alpha \leftrightarrow f(\alpha) \\ \Leftrightarrow \ (\mathsf{def.}\ \mathsf{de}\ \mathsf{eq}) \\ \neg \alpha \ \mathsf{eq}\ f(\alpha) \end{array}
```

Probaremos entonces el objetivo equivalente: $\neg \alpha$ eq $f(\alpha)$

Por **bi**: $f(\alpha) \vdash \neg \alpha$.

Por bii: $\neg \alpha \models f(\alpha)$. Entonces por completitud: $\neg \alpha \vdash f(\alpha)$.

Aplicando la regla de introducción de \leftrightarrow , podemos componer las dos derivaciones que prueban $f(\alpha) \vdash \neg \alpha$ y $\neg \alpha \vdash f(\alpha)$ obteniendo una derivación para $\vdash \neg \alpha \leftrightarrow f(\alpha)$.

Por correctitud, obtenemos $\models \neg \alpha \leftrightarrow f(\alpha)$. Por lo tanto, $\neg \alpha$ eq $f(\alpha)$ como queríamos probar.

Ejercicio 2 (10 puntos)

a. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique.

I.
$$\models \neg (p_1 \lor \neg p_0) \lor ((p_0 \to \neg p_1) \to \neg p_0)$$

II. $(p_0 \land p_1) \to p_2, p_2 \to p_3 \models p_0 \to p_3$
III. $(\neg p_0 \lor p_1), \neg p_0 \to p_2 \models \neg p_1 \to p_2$
IV. $p_0 \leftrightarrow (p_1 \land (p_2 \land p_3)), p_1 \lor p_0 \models \neg (p_2 \land p_3)$

b. Para cada una de las afirmaciones falsas de la parte anterior, encuentre una letra proposicional o la negación de una letra proposicional, que agregada como hipótesis haga que la afirmación sea verdadera. Justifique su respuesta.

Bosquejo de solución

a. I. Verdadero:

$$\mathbf{F}.\neg(p_{1}\vee\neg p_{0})\vee((p_{0}\rightarrow\neg p_{1})\rightarrow\neg p_{0}) *$$

$$F.\neg(p_{1}\vee\neg p_{0}) *$$

$$\mathbf{F}.\neg(p_{1}\vee\neg p_{0}) *$$

$$\mathbf{F}.(p_{0}\rightarrow\neg p_{1})\rightarrow\neg p_{0}$$

$$\mathbf{F}.(p_{0}\rightarrow\neg p_{1})\rightarrow\neg p_{0} *$$

$$\mathbf{T}.p_{1}\vee\neg p_{0}$$

$$\mathbf{T}.p_{0}\rightarrow\neg p_{1}$$

$$\mathbf{F}.\neg p_{0} *$$

$$\mathbf{T}.p_{0}\rightarrow\neg p_{1}$$

$$\mathbf{T}.p_{0} *$$

$$\mathbf{T}.p_{0}\rightarrow\neg p_{1}$$

II. Falso: La valuación que asigna $v(p_0) = 1$, $v(p_1) = 0$, $v(p_2) = 0$, $v(p_3) = 0$, satisface las hipótesis pero no la tesis:

$$v((p_0 \land p_1) \to p2)$$

= (def. val.)
 $max(1 - v(p_0 \land p_1), v(p2))$
= (def. val.)
 $max(1 - min(v(p_0), v(p_1)), 0)$
= (def. v)
 $1 - min(1, 0)$
= (def. min y arit.)
1
 $v(p_2 \to p_3)$
= (def. val.)
 $max(1 - v(p_2), v(p_3))$
= (def. v)
 $max(1 - 0, 0)$
= (def. max)
1
 $v(p_0 \to p_3)$
= (def. val.)
 $max(1 - v(p_0), v(p_3))$
= (def. v)
 $max(1 - v(p_0), v(p_3))$
= (def. v)
 $max(1 - 1, 0)$
= (arit. y def. max)

III. Verdadero:

$$(\neg p_0 \lor p_1), \neg p_0 \to p_2 \models \neg p_1 \to p_2$$

 \Leftrightarrow (corrección y completitud)
 $(\neg p_0 \lor p_1), \neg p_0 \to p_2 \vdash \neg p_1 \to p_2$

Probamos esto con la siguiente derivación:

$$\frac{\neg p_0 \lor p_1}{-\frac{p_0 \lor p_1}{p_2}} \xrightarrow{p_0 \to p_2} \frac{[\neg p_0]^{(2)}}{p_2} \xrightarrow{E \to \frac{1}{p_2}} \frac{[\neg p_1]^{(1)} \quad [p_1]^{(2)}}{\frac{1}{p_2}} \xrightarrow{E \lor (2)} \frac{p_2}{\neg p_1 \to p_2} \xrightarrow{I \to (1)} I \to (1)$$

IV. **Falso**: La valuación que asigna $v(p_0) = 1$, $v(p_1) = 1$, $v(p_2) = 1$, $v(p_3) = 1$, satisface las hipótesis pero no la tesis:

$$v(p_0 \leftrightarrow (p_1 \land (p_2 \land p_3))) = 1$$

$$\Leftrightarrow (\operatorname{def. val.})$$

$$v(p_0) = v(p_1 \land (p_2 \land p_3))$$

$$\Leftrightarrow (\operatorname{def. val.})$$

$$1 = \min(v(p_1), v(p_2), v(p_3))$$

$$\Leftrightarrow (\operatorname{def. v})$$

$$1 = \min(1, 1, 1)$$

$$\Leftrightarrow (\operatorname{def. min})$$

$$1 = 1$$
(Se cumple por aritmética)
$$v(p_1 \lor p_0)$$

$$= (\operatorname{def. val.})$$

$$\max(v(p_1), v(p_0))$$

$$= (\operatorname{def. v})$$

$$\max(1, 1)$$

$$= (\operatorname{def. max})$$

$$1$$

$$v(\neg(p_1 \land p_3))$$

$$= (\operatorname{def. val.})$$

$$1 - \min(v(p_1), v(p_3))$$

$$= (\operatorname{def. v})$$

$$1 - \min(1, 1)$$

$$= (\operatorname{def. min} y \operatorname{arit.})$$

$$0$$

b. II. Agregamos la letra proposicional p_3 al conjunto de hipótesis y probamos:

$$(p_0 \land p_1) \to p_2, p_2 \to p_3, p_3 \models p_0 \to p_3$$

Por el teorema de corrección, basta con dar la siguiente derivación:

$$\frac{p_3}{p_0 \to p_3} I \to$$

IV. Agregamos la fórmula $\neg p_2$, negación de una letra proposicional, al conjunto de hipótesis y probamos:

$$p_0 \leftrightarrow (p_1 \land (p_2 \land p_3)), p_1 \lor p_0, \neg p_2 \models \neg (p_2 \land p_3)$$

Por el teorema de corrección, basta con dar la siguiente derivación:

$$\frac{\neg p_2 \quad \frac{[p_2 \wedge p_3]^{(1)}}{p_2}}{\frac{\bot}{\neg (p_2 \wedge p_3)}} \stackrel{E \neg}{I \neg (1)} E \wedge$$

Ejercicio 3 (8 puntos)

Construya derivaciones que justifiquen los siguientes juicios.

a.
$$\neg p \lor \neg q, r \lor \neg s \vdash p \land s \rightarrow r \land \neg q$$

b.
$$p \lor q, p \to r, \neg s \to \neg q \vdash r \lor s$$

Nota: En ningún caso se aceptan justificaciones semánticas.

Bosquejo de solución

a.
$$\neg p \lor \neg q, r \lor \neg s \vdash p \land s \rightarrow r \land \neg q$$

$$\frac{r\vee\neg s}{\frac{[r]^{(2)}}{r}}\frac{\frac{[p\wedge s]^{(1)}}{s}E\wedge}{\frac{\bot}{r}}\frac{E\wedge}{E\vee(2)}\frac{\frac{[\neg p]^{(3)}}{p}\frac{[p\wedge s]^{(1)}}{p}E\wedge}{\frac{\bot}{\neg q}E\perp}E\wedge}{\frac{\neg p\vee\neg q}{p\wedge s\to r\wedge\neg q}}\frac{\frac{[\neg p]^{(3)}}{p}E}{I\wedge}E\wedge}{\frac{[\neg q]^{(3)}}{r}E\vee(3)}$$

b.
$$p \lor q, p \to r, \neg s \to \neg q \vdash r \lor s$$

$$\underbrace{\frac{p \rightarrow r \quad [p]^{(1)}}{\frac{r}{r \vee s} \, I \vee_1} E \rightarrow \frac{\frac{\neg s \rightarrow \neg q \quad [\neg s]^{(2)}}{\frac{\neg q}{r} \, E \rightarrow \quad [q]^{(1)}}}_{r \vee s} E \rightarrow \underbrace{\frac{\frac{\bot}{s} \, RAA(2)}{\frac{\bot}{r \vee s} \, I \vee_2}}_{r \vee s} E \vee (1)$$

Ejercicio 4 (10 puntos)

Se recuerda que un conjunto $\Delta \subseteq PROP$ es completo si: Δ es consistente y para todo $\varphi \in PROP$ se cumple: $\Delta \vdash \varphi$ o $\Delta \vdash \neg \varphi$.

a. Sea v una valuación cualquiera. Sea v' la valuación que se define como:

- $v'(p_i) = v(p_i) \text{ si } i \neq k.$
- $v'(p_k) = 1 v(p_k)$

Demostrar que para toda $\varphi \in PROP$: si p_k no ocurre en φ entonces $v(\varphi) = v'(\varphi)$.

- b. Demostrar que para todo $\Delta \subseteq PROP$: si $v(\Delta) = 1$ y $v'(\Delta) = 1$ entonces Δ no es completo.
- c. Sea Γ un subconjunto finito de PROP. Demuestre que no es completo.

29 de abril 2019

Bosquejo de solución

a. Se deduce del lema 1.2.3:

Si $v_1(p_i) = v_2(p_i)$ para toda p_i que ocurre en φ , entonces $v_1(\varphi) = v_2(\varphi)$.

También se puede demostrar por inducción en PROP.

b. Según la caracterización semántica de la completitud (Práctico 5, Ejercicio 17):

 Γ es completo si y sólo si existe una única valuación tal que $v(\Gamma) = 1$

En nuestro caso tenemos dos valuaciones distintas tales que: $v(\Delta) = 1$ y $v'(\Delta) = 1$. Por lo tanto Δ no es completo.

Otra forma: probando que $\Delta \not\models p_k$ y $\Delta \not\models \neg p_k$ usando v y v' según corresponda como la valuación que falsea la relación \models .

c. Si Γ es inconsistente no es completo (por definición de completo).

Si Γ es consistente, existe una valuación v tal que $v(\Gamma) = 1$ (caracterización semántica de consistencia).

Como Γ es finito también lo es el conjunto de letras proposicionales que ocurren en las fórmulas de Γ . Entonces existe una letra proposicional p_k que no ocurre en ninguna fórmula de Γ .

Considero v' definida a partir de v como en la parte a). Aplicando lo demostrado en esta parte tendremos que $v'(\Gamma) = 1$.

Usando el resultado de la parte b) concluimos que Γ no es completo.

29 de abril 2019