CFA II Notes Runmin Zhang

Contents

1	Rea	ding 9: Correlation and Regressions	1
	1.1	Sample covar and sample correlation coefficients	1
	1.2	Limitations to correlations analysis	1
	1.3	Hypothesis: determine if the population correlation coefficient is zero	1
	1.4	Determine dependent/indepedent variables in a linear regression	1
	1.5	Assumptions in linear regression and interpret regression coeff	1
	1.6	Standard error of estimate, the coeff. of determination and a confidence interval for a regres-	
		sion coefficient.	2
	1.7	Hypothesis: Determine if $\hat{b}_1 = b_1 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	2
	1.8	Calculate the predicted value for the depedent variable	2
	1.9	Calculate and interpret a confidence interval for the predicted value of the depedent variable	3

1 Reading 9: Correlation and Regressions

1.1 Sample covar and sample correlation coefficients

Sample covariance: $cov_{x,y} = \sum_i \frac{(X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$ Sample correlation coeff: $r_{x,y} = \frac{cov_{x,y}}{s_x s_y}$, where s_x is the sample dev of X.

1.2 Limitations to correlations analysis

Outliers: The results will be affected by extreme data points. (outliers)

Spurious correlation: There might be some non-zero corrlation coeff, but acutally they have no correlation at all.

Nonlinear relationships: Correlation only describe the linear relations.

1.3 Hypothesis: determine if the population correlation coefficient is zero

Two-tailed hypothesis test:

$$H_0: \rho = 0, H_a: \rho \neq 0$$

Assume that the two populations are **normally** distrubited, then we can use t-test:

$$t = \frac{r\sqrt{n-2}}{1-r^2}$$

: Reject H_0 if $t > +t_{critical}$ or $t < -t_{critical}$. Here, r is the sample correlation. Remember, you need to check t-table to find the t-value.

1.4 Determine dependent/indepedent variables in a linear regression

Simple linear regression: Explain the variation in a dependent variable in terms of the variabltion in a single indepedent variable. **Independent variables** are called explanatory variable, the exogenous variable, or the predicting variable. **Dependent variable** is also called the explained variable, the endogenous variable, or the predicted variable.

1.5 Assumptions in linear regression and interpret regression coeff.

- 1. Assumptions of linear regression:
 - (a) Linear relationship must exist.
 - (b) The indepedent variable is uncorrelated with residuals.

CFA II Notes Runmin Zhang

- (c) Expected Residual term is value. $E(\epsilon) = 0$
- (d) variance of the residual term is const. $E(\epsilon_i^2) = \sigma_{\epsilon}^2$
- (e) The residual term is independently distributed. $E(\epsilon_i \epsilon_j) = 1$
- (f) The residual term is normally distributed.
- 2. Simple Linear Regression Model
 - (a) Model: $Y_i = b_0 + b_1 X_i + \epsilon_i$, where i = 1...n, and Y_i is the actual observed data.
 - (b) The fitted line, the line of best fit : $\hat{Y} = \hat{b_0} + \hat{b_1}X_i$. Where $\hat{b_0}$ is the estimated parameter of the model.
 - (c) How to choose the best fitted line? Sum of squared errors is minimum.

$$\hat{b_1} = \frac{cov_{x,y}}{sigma_x^2}$$

where X is the indepdent variable. $\hat{b_1}$ is "regression coeffcient".

$$\hat{b_0} = \bar{Y} - \hat{b_1}\bar{X}$$

where \bar{X}, \bar{Y} are the mean.

3. Interpreting a regression coefficient: Similar to basic ideas of "slope". Keep in mind: any conclusion regarding this parameter needs the statistical significance of the slope coefficient.

1.6 Standard error of estimate, the coeff. of determination and a confidence interval for a regression coefficient.

- 1. Standard error of estimate (SEE): Standard deviation between $Y_{estimate}$ and Y_{actual} . Smaller: better
- 2. Coefficient of Determination (R^2) The percentage of the total variance in the dependent variable that is predictable from the indepedent variable. One indepedent variable: $R^2 = r^2$, where r^2 is the square of correlation coefficient.
- 3. Regression Coefficient confidence interval
 - (a) Hypothesis: $H_0: b_1 = 0 \Leftrightarrow H_a: b_1 \neq 0$
 - (b) Confidence interval: $\hat{b_1} (t_c s_{\hat{b_1}}) < b_1 < \hat{b_1} + (t_c s_{\hat{b_1}}) s_{\hat{b_1}}$ is the standard error of the regression coeffi.

1.7 Hypothesis: Determine if $\hat{b}_1 = b_1$

- 1. t-test statistic: $t_{b_1} = \frac{\hat{b}_1 b_1}{s_{\hat{b}_1}}$
- 2. Reject: if $t > +t_{critical}$ or $t < -t_{critical}$

1.8 Calculate the predicted value for the depedent variable

If an estimated regression model is known, $\hat{Y} = \hat{b}_0 + \hat{b}_1 X_p$

CFA II Notes Runmin Zhang

1.9 Calculate and interpret a confidence interval for the predicted value of the depedent variable

- 1. Eq: $\hat{Y} \pm (t_c s_f)$, where s_f is the std error of the forecast.
- 2. $s_f^2 = SEE^2 \left[1 + \frac{1}{n} + \frac{(X \bar{X})^2}{(n-1)s_x^2} \right]$
 - (a) SEE^2 = variance of the residuals
 - (b) s_x^2 = variance of the independent variable
 - (c) X = value of the independent variable where the forecast was made.

1.10 ANOVA in regression.