Gabarito do exercício do dia 6 de Janeiro de 2015

Abel Soares Siqueira

Teorema 1. Sejam V e W espaços vetoriais e $T \in \mathcal{L}(V, W)$ um isomorfismo. Seja $S \subset V$. Então,

- (i) Se S gera V, então T(S) gera W.
- (ii) Se S é linearmente independente em V, então, T(S) é linearmente independente em W.
- (iii) Se S é base de V, então T(S) é base de W.

Demonstração. Note que T isomorfismo quer dizer que T é injetora e sobrejetora. Note também que S não necessariamente é finito, nem que V necessariamente tem dimensão finita.

(i) (\Rightarrow) Tome $w \in W$. Como T é sobrejetora, existe $v \in V$ tal que Tv = w. Daí, como S gera V, existem $v_1, \ldots, v_n \in S$ e $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tal que

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

Daí

$$w = Tv$$

$$= T(\alpha_1 v_1 + \dots + \alpha_n v_n)$$

$$= \alpha_1 T v_1 + \dots + \alpha_n T v_n.$$

Como $Tv_j \in T(S), j = 1, ..., n$, então $w \in T(S)$. Como $w \in W$ foi arbitrário, temos $W \subset T(S)$.

 (\Leftarrow) Tome $v \in V$. Seja w = Tv. Como $Tv \in W = [T(S)]$, existem $w_1, \ldots, w_n \in T(S)$ e $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tais que

$$Tv = \alpha_1 w_1 + \cdots + \alpha_n w_n$$
.

Como $w_j \in T(S)$, existem $v_j \in S$ tais que $Tv_j = w_j$, daí

$$Tv = \alpha_1 T v_1 + \dots + \alpha_n T v_n$$

= $T(\alpha_1 v_1 + \dots + \alpha_n v_n)$.

Como T é injetora, temos

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n,$$

isto é, $v \in [S]$. Como $v \in V$ foi arbitrário, temos $V \subset [S]$.

(ii) (\Rightarrow) Tome $w_1, \ldots, w_n \in T(S)$ distintos, e sejam $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tais que

$$\alpha_1 w_1 + \dots + \alpha_n w_n = 0.$$

Para cada w_j existe $v_j \in S$ tal que $w_j = Tv_j$.

$$\alpha_1 T v_1 + \dots + \alpha_n T v_n = 0.$$

Logo,

$$T(\alpha_1 v_1 + \dots + \alpha_n v_n) = 0.$$

Como T é injetora e T(0) = 0, temos

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0.$$

Como T é injetora, e $w_j \neq w_i, j \neq i$, então $v_j \neq v_i, j \neq i$. Logo, v_1, \ldots, v_n são distintos. Como $v_j \in S$, e por hipótese, S é linearmente independente, então toda combinação linear nula de elemtos de S deve ter os coeficientes nulos, ou seja, $\alpha_1 = \cdots = \alpha_n = 0$. Portanto, os vetores w_1, \ldots, w_n são linearmente independentes. Como a escolha desses vetores foi arbitrária, toda escolha finita de vetores de T(S) é linearmente independente, de modo que T(S) é linearmente independente.

 (\Leftarrow) Tome $v_1,\dots,v_n\in S$ distintos, e sejam $\alpha_1,\dots,\alpha_n\in\mathbb{K}$ tais que

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0.$$

Daí,

$$T(\alpha_1 v_1 + \dots + \alpha_n v_n) = T(0) = 0,$$

isto é,

$$\alpha_1 T v_1 + \dots + \alpha_n T v_n = 0,$$

e como T é injetora, Tv_1, \ldots, Tv_n são distintos. Mas $Tv_j \in T(S), j=1,\ldots,n$, e por hipótese, T(S) é linearmente independente, de modo que toda combinação linear nula deve ter os coeficientes nulos, ou seja, $\alpha_1 = \cdots = \alpha_n = 0$. Portanto, os vetores v_1, \ldots, v_n são linearmente independentes. Como a escolha desses vetores foi arbitrária, toda escolha finita de vetores de S é linearmente independente, de modo que S é linearmente independente.

(iii) Um conjunto é base se gera o espaço e é linearmente independente, então o resultado segue diretamente de (i) e (ii).