Example document to recreate with beamer in LATEX

Cassandra Bunschoten

FALL 2019
Markup Languages and Reproducible Programming in Statistics

Outline

Working with equations
Aligning the same equations
Omit equation numbering
Ugly alignment

Discussion

Working with equations

We define a set of equations as

$$a=b+c^2, (1)$$

(2)

(3)

(4)

$$a-c^2=b,$$

$${\sf left\ side}\ -\ {\sf right\ side},$$

$$\mathsf{left} \; \mathsf{side} \; + \; \mathsf{something} \; \geq \; \mathsf{right} \; \mathsf{side},$$

for all something > 0.

Aligning the same equations

Aligning the equations by the equal sign gives a much better view into the placements of the separate equation components.

$$a = b + c^2$$

$$a - c^2 = b$$

$$(5)$$

$$a - c^2 = b (6)$$

left side
$$+$$
 something \geq right side (8)

Omit equation numbering

Alternatively, the equation numbering can be omitted.

$$a = b + c^2$$
 $a - c^2 = b$
 $ext{left side} - ext{right side}$
 $ext{left side} + something} \ge ext{right side}$

Ugly alignment

Some components do not look well, when aligned. Especially equations with different heights and spacing. For example,

$$E = mc^2, (9)$$

$$E = mc^{2},$$

$$m = \frac{E}{c^{2}},$$
(9)

$$c = \sqrt{\frac{E}{m}}. (11)$$

Take that into account.

Discussion

This is where you'd normally give your audience a recap of your talk, where you could discuss e.g. the following

- Your main findings
- ► The consequences of your main findings
- ► Things to do
- ▶ Any other business not currently investigated, but related to your talk