10月6日NOIP的欢乐AK赛

	T1	T2	Т3	T4
题目名称	能秒的题	能切的题	能过的题	能做的题
英文文件名	sum	miracle	arr	seque
时空限制	1s/512MB	2s/512MB	2s/512MB	2.5s/512MB
评测方式	文本比较	文本比较	文本比较	文本比较
源程序名	sum.cpp	miracle.cpp	arr.cpp	seque.cpp
输入文件名	sum.in	miracle.in	arr.in	seque.in
输出文件名	sum.out	miracle.out	arr.out	seque.out

T1 能秒的题

题目描述

给定整数 n,a,b,你需要找到一个长度为 n 的整数序列 c_1,c_2,\ldots,c_n ,满足其恰好有 a 个**连续子段** 的和为偶数,恰好有 b 个**连续子段**的和为奇数。

不难发现,长度为 n 的序列共有 $\frac{n(n+1)}{2}$ 个连续子段,所以我保证 $a+b=\frac{n(n+1)}{2}$ 。

另外,由于我不认识很大的数,你需要保证对任意 i , $0 \leq c_i \leq 100$ 。

输入格式

第一行一个整数 n。

第二行两个整数 a, b。

输出格式

如果你认为无法找到这样的整数序列,则输出一行一个整数 -1。

如果你找到了这样的整数序列,则输出一行 n 个整数表示你找到的答案。

样例 #1

样例输入#1

5 6 9

样例输出#1

2 4 3 0 6

提示

对于 20% 的数据, $n \leq 10$ 。

对于 40% 的数据, $n \leq 20$ 。

对于 70% 的数据, $n \leq 1000$ 。

对于 100% 的数据, $2\leq n\leq 2 imes 10^5$, $0\leq a,b\leq rac{n(n+1)}{2}$, $a+b=rac{n(n+1)}{2}$ 。

T2 能切的题

题目描述

我最近正在研究一种神奇的整数。

对于一个**不含前导 0 的**正整数 a,如果能将 a 的数位按照某种顺序排列以后,恰好变成 $2 \cdot a$,那 a 就是神奇的整数。例如,27489105 是神奇的整数,而 154147 不是。

我现在要问你很多个问题,每个问题会给你一个区间 [l,r],你要告诉我 [l,r] 内有多少个神奇的整数。

输入格式

第一行一个整数 T 表示询问组数。

接下来 T 行,每行两个正整数 l,r 表示询问区间。

输出格式

共T行,每行一个非负整数表示答案。

样例 #1

样例输入#1

10

1 10

1 100

1 1000
1 10000

1 100000

1 1000000

1 10000000

1 100000000

1 1000000000

1 10000000000

样例输出#1

0

0

0

0

12

300

4332

52236

450972

提示

对于前 20% 的数据, $r \leq 10^6$.

对于前 40% 的数据, $r \leq 10^8$ 。

对于前 60% 的数据, $r \leq 10^9$.

对于前 80% 的数据, $r \leq 10^{10}$, $T \leq 5$ 。

对于 100% 的数据, $1 \le l \le r \le 10^{12}$, $1 \le T \le 10^5$.

T3 能过的题

题目描述

我手里现在有两个长度为 n 的**排列** $A_1, A_2, ..., A_n$ 和 $B_1, B_2, ..., B_n$.

我定义一个函数 $\mathrm{dis}(i)$,我们找到 x,y 满足 $A_x=B_y=i$,那么有 $\mathrm{dis}(i)=|x-y|$ 。

我现在要对两个排列进行一些操作,每次操作完后,你需要告诉我 $\sum\limits_{i=1}^n \operatorname{dis}(i)$ 的值。

我的第一种操作是,选择一个整数 z,将 A 的前 z 个元素移到最后面,其他元素往前移。

我的第二种操作是,选择两个不同的整数 x,y,交换 B_x 和 B_y 。

输入格式

第一行两个整数 n, m,表示排列的长度,和操作的个数。

第二行 n 个正整数 A_1, A_2, \ldots, A_n 。

第三行 n 个正整数 B_1, B_2, \ldots, B_n 。

接下来 m 行,每行 $2\sim 3$ 个整数。其中第一个整数 op 表示操作类型。若 op=1,则后面跟着一个整数 z,表示我执行了操作一。若 op=2,则后面跟着两个整数 x,y,表示我执行了操作二。

输出格式

共m行,每行一个非负整数,表示该操作结束后的答案。

样例 #1

样例输入#1

5 5

4 5 3 2 1

5 1 4 3 2

1 3

2 1 5

2 1 5

2 3 5

2 1 4

样例输出#1

8

2

8

8

提示

对于 100% 的数据, $2 \le n \le 2 \times 10^5$, $1 \le op \le 2$, $1 \le z < n$, $1 \le x,y \le n$, $x \ne y$,保证 A,B 均为排列。

测试点	$n,m\leq$	特殊性质
1, 2	5000	
3,4	$5 imes10^4$	z = 1
5,6	$5 imes10^4$	初始的 A 和 B 两个排列相同
7,8	$5 imes10^4$	
9, 10	$2 imes 10^5$	

特别地,对于编号为奇数的测试点,保证 $B_i=i$ 且不会有操作二。

T4 能做的题

题目描述

我整了一道数据结构题,这道题会让你维护一个数列。与众不同的是,你要维护的是一个**实数**数列。

你需要维护一个长度为 n 的实数数列 a_1, a_2, \ldots, a_n 。

我有三个操作需要你来实现。

- 1. 给定 l, r, 对每个 $i \in [l, r]$, 你需要让 $a_i \leftarrow \cos a_i$ (计算时使用弧度制)。
- 2. 给定 l, r,你需要求出 $\sum_{i=1}^{r} a_i$ 的值。
- 3. 给定 l, r, v,对每个 $i \in [l, r]$,你需要让 $a_i \leftarrow v$ 。

实数的运算难免会有精度损失,因此对于我的每个 2 操作,如果你的答案和标准答案的**绝对误差**不超过 10^{-3} ,那么我可以认为你的答案是对的。

输入格式

第一行两个整数 n, m,表示数列长度和询问个数。

第二行 n 个实数,表示 a_1, a_2, \ldots, a_n 。

接下来 m 行,每行三或四个数,第一个整数为 op 表示操作种类。若 op=1 或 op=2,则接下来两个整数 l,r 表示操作区间。若 op=3,则接下来两个整数 l,r 和一个实数 v 表示操作区间和修改后的值。

当 op=1 时,对每个 $i\in [l,r]$,你需要让 $a_i\leftarrow \cos a_i$ (计算时使用弧度制)。

当 op=2 时,你需要求出 $\sum_{i=l}^r a_i$ 的值。

当 op=3 时,对每个 $i\in [l,r]$,你需要让 $a_i\leftarrow v$ 。

输出格式

对于每个 op = 2 的操作,输出一行一个实数表示答案。

如果你输出的答案与标准答案的**绝对误差**不超过 10^{-3} ,则认为你的答案正确。

样例 #1

样例输入#1

5 2

1 2 2 4 3

1 1 5

2 1 5

样例输出#1

-1.9356274846902

提示

本题有多个测试点,对于前 16 个测试点,共 80 分,每个测试点 5 分。对于后面的所有测试点,共 20 分,你只有全部通过这些测试点才能得分。

对于第 $1 \sim 4$ 个测试点, $n, m \leq 1000$ 。

对于第 $1 \sim 8$ 个测试点, $n, m \leq 5 \times 10^4$ 。

对于第 $9\sim 12$ 个测试点,保证 op,l,r 在范围内随机生成。

对于第 $13\sim 16$ 个测试点, $op \neq 3$ 。

对于 100% 的数据, $1\leq n\leq 3\times 10^5$, $1\leq m\leq 3\times 10^5$, $op\in\{1,2,3\}$, $v,|a_i|\leq 10^2$ 且最多有两位小数, $1\leq l\leq r\leq n$ 。