CSC320: Visual Computing Term Test 1 March 9th, 2007 9:10-10:00

Student Number:		_	
Last Name:		First Name:	
This exam consist Aids allowed: N		ngle-sided pages (including cover pa	ıge).
Total Marks: 50 Minutes: 50)		
Question 1a _	Marks/5		

Question	Marks
1a	/5
1b	/10
2a	
2b	/5
2c	/5
2d	/5
3a	/5
3b	/5
3c	/5
Total	/50

1. 2D Curves [15 Marks]

Consider the 2D curve $\gamma(t)=(\alpha e^{\beta t}\cos t,\alpha e^{\beta t}\sin t)$ with $\alpha>0,\ \beta<0,$ and $t\in[0,\infty).$

(a) [5 Marks] Draw the curve in the grid provided below. Be as precise as possible.

(b) [10 Marks] Prove that if t is the arc-length parameter of a curve $\gamma(t)$, then

$$\left\| \frac{d\gamma}{dt}(t) \right\| = 1 \text{ for all } t.$$

2. Laplacian extrema & zero crossings [20 Marks]

Consider the image I shown on the left, along with the zoomed-in portion shown on the right.

- (a) [5 Marks] Draw on the zoomed-in image the location(s) of the Laplacian zero crossings, if any.
- (b) [5 Marks] Draw on the zoomed-in image the location(s) of the local extrema of the image Laplacian.
- (c) [5 Marks] Will the extrema in (b) be elliptical, hyperbolic, or cylindrical? Explain your choice.
- (d) [5 Marks] Give the definition of the Laplacian of an image using standard calculus notation.

3. RANSAC-based 2D Curve Estimation [15 Marks]

Suppose we are given 61 points, $\gamma_1, \gamma_2, \ldots, \gamma_{61}$ along a 2D curve, shown below as dots with their index next to them. We want to estimate the 2D position, $\gamma(t)$, and unit tangent vector, $\mathbf{T}(t)$, using the sliding window algorithm with RANSAC fitting. Assume that t is in the range [1,61], corresponding to the points' index, that the window has size 2*5+1, the fit threshold is 1, and the number of RANSAC iterations is large enough to ensure success with a very high probability.

(a) [5 Marks] Draw the estimated position of $\gamma(t)$ for $t \in \{6, 7, ..., 55\}$ obtained by first-order RANSAC fitting. You can draw invididual dots or, for convenience, a continuous curve that contains them. Be as precise as possible.

(b) [5 Marks] Now plot the function

$$F(t) = \frac{180}{\pi} \arccos\left(\mathbf{v} \cdot \mathbf{T}(t)\right)$$

where $t \in \{6,7,\ldots,55\}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $\mathbf{T}(t)$ is estimated by the RANSAC fitting in (a).

(c) [5 Marks] For comparison, draw the estimated position of $\gamma(t)$ for $t \in \{6,7,\ldots,55\}$ obtained by first-order weighted least-squares fitting, rather than RANSAC, with the sliding window algorithm. Assume a Gaussian weight function

$$\Omega(q) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{q^2}{2\sigma^2}}$$

with $\sigma = 2$, and be as precise as possible.

