ii. Solve
$$9pqz^4 = 4(1+z^3)$$
.

b. Solve the equation
$$\left(D^2 + 2DD' + D^{2}\right)z = x^2y + e^{x-y}$$
.

29. a. Obtain the Fourier series of period 21 for the function f(x) = l - x, in $0 < x \le l$

= 0, in
$$l \le x < 2l$$

Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \infty = \frac{\pi^2}{8}$.

b. Find the Fourier series of y = f(x) in $(0,2\pi)$ upto the third harmonic using the definition of ν given by the following table.

x	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
v	1.98	1.30	1.05	1.30	-0.88	- 0.25	1.98

30. a. A tightly stretched string of length π is fastened at both ends. The midpoint of the string is displaced by a distance d transversely and the string is released from rest in this position. Find the displacement of any point of the string at any subsequent time.

(OR)

- b. A uniform bar of length l through which heat flows is insulted at its sides. The ends are kept at zero temperature. If the initial temperature at the interior points of the bar is given by $k(lx-x^2)$ for 0 < x < l, find the temperature distribution in the bar after time t.
- 31. a. Find the Fourier transform of $f(x) = \begin{cases} 1 |x|, & \text{for } |x| \le 1 \\ 0, & \text{for } |x| > 1 \end{cases}$ hence deduce $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{4} dx = \frac{\pi}{3}$.

- b. Find Fourier sine and cosine transforms of e^{-x} . Hence evaluate $\int_{0}^{\infty} \frac{x^2}{(x^2+1)^2} dx$.
- 32. a.i. Find the Z transform of $(n+1)^2$ and $\sin(3n+5)$.
 - Find the inverse Z-transform of $\frac{z^2}{(z-4)(z-3)}$.
 - b. Solve the equation y(k+2)+y(k)=1, y(0)=y(1)=0, using Z-transform.

Reg. No.

B.Tech. DEGREE EXAMINATION, MAY 2019

3rd to 8th Semester

15MA201 – TRANSFORMS AND BOUNDARY VALUE PROBLEMS (For the candidates admitted during the academic year 2015 - 2016 to 2017-2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

- 1. The complete integral of pq = 1 is
 - (A) $az = a^2x + y + ac$

(C) az = x + y + c

- (D) z = x + y + c
- 2. The partial differential equation formed by eliminating the arbitrary function from $z = f\left(x^2 + y^2\right)$ is
 - (A) xp = yq

(C) py = qx

- 3. solve $(D^3 7DD^{12} 6D^{13})z = 0$
 - (A) $z = f_1(y-x) + f_2(y-2x) + f_3(y+3x)$ (B) $z = f_1(y-x) + f_2(y+2x) + f_3(y-3x)$
 - (C) $z = f_1(y+x) + f_2(y-2x) + f_3(y+3x)$ (D) $z = f_1(y-x) + f_2(y-2x) + f_3(y-3x)$
- 4. The particular integral of $(D^3 2D^2D^1)z = e^{x+2y}$ is

- 5. The constant a_0 of the Fourier series for the function $f(x) = x^2$ in (0, 2l)

- (D) $_{1}2$
- 6. The sum of the Fourier series of $f(x) = x + x^2$, in $-\pi < x < \pi$ at $x = \pi$ is
 - (A) π

 $\pi/2$

- 7. If f(x) = x in $-l \le x \le l$, then a_n
- (A) $-2l(-1)^n$

(B) 0

(C) l

20MF3-8/15MA201

- 8. The RMS value of f(x) = x in $-1 \le x \le 1$ is
- (A) 1

(C) 1

- (B) 0 (D) -1
- 9. Classify the partial differential equation $4u_{xx} + 4u_{xy} + u_{yy} = 0$
 - (A) Elliptic

(B) Parabolic

(C) Hyperbolic

- (D) Circular
- 10. The string is stretched between two fixed points x = 0 and x = l, the boundary conditions are (t being positive)
 - (A) y(0, t) = 0, y(x, t) = 0
- (B) $y(x, 0) = 0, \left(\frac{\partial y}{\partial t}\right)(x, 0) = 0$
- (C) y(0, t) = 0, y(l, t) = 0
- (D) $\left(\frac{\partial y}{\partial t}\right)(0, t) = 0, \left(\frac{\partial y}{\partial t}\right)(l, t) = 0$
- 11. The steady state temperature of a rod of length l whose ends are kept at 30°C and 40°C is

 $u = \frac{20x}{1} + 30$

- 12. One dimensional wave equation is used to find
 - (A) Temperature

(B) Displacement

(C) Time

- (D) Mass
- 13. If $F\{f(x)\}=F(s)$, then $F(e^{-i\alpha x}f(x))$ is
 - (A) F(s+a)

(B) F(s-a)

(C) F(as)

(D) F(a/s)

- 14. $F_c(x.f(x))$ is
 - (A) $_{i} dFs(s)$

- (D) dFs(s)
- 15. The Fourier cosine transform of $e^{-\alpha x}$ is

- 16. F(f(ax)) is

- 17. Z-transform of $\frac{1}{n!}$
 - (A)

(C) $e^{2/z}$

(D)

- 18. $Z(n^2)$ is

- 19. $z\left(\sin\frac{n\pi}{2}\right)$ is

- 20. Poles of $\phi(z) = -$
 - (A) z = 1, z = 0(C) z = 0, z = 2

- (B) z = 1, z = 2
- (D) z = 0

$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Solve $p-q = \log(x+y)$
- 22. Find the Fourier series of $f(x) = x^2$ in $-\pi \le x \le \pi$.
- 23. Classify the PDE $(x+1) f_{xx} + 2(x+2) f_{xy} + (x+3) f_{yy} = 0$.
- 24. Find the Fourier transform of f(x) given by $f(x) = \begin{cases} x & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$
- 25. Find $z(na^n)$
- 26. Solve $(D^2 DD')z = \cos x \cos 2y$.
- 27. Find Z(f(n)) where $f(n) = an^2 + bn + c$.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a.i. Find the partial differential equation of all planes which are at a constant distance k from the origin.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

Solve (i) $z = px + qy + \sqrt{1 + p^2 + q^2}$ (ii) $x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$. Find also singular integral.

- (OR) b. Solve (i) $(D^2 2DD' + D'^2)z = \cos(x 3y)$ (ii) $(D^2 DD'^2)z = e^{x + 2y}$.
- 29. a. Find the Fourier series of $f(x) = x + x^2 \operatorname{in}(-\pi, \pi)$ of periodicity 2π . Hence deduce $\sum \frac{1}{2} = \frac{\pi^2}{6}.$

(OR)

b. Compute the first two harmonics of the fourier series f(x) given by the following table.

х	0	π/3	$2\pi/3$	π	$4\pi/3$	5π/3	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1

30. a. A tightly stretched string with fixed end point x = 0 and x = l is initially at rest in its equilibrium position. If it is set vibrating giving each point a velocity 3x(l-x). Find the displacement.

(OR)

- b. A rod of length l has its ends A and B kept at 0°C and 100°C respectively unit steady state conditions prevail. If the temperature at B is reduced suddenly to 0°C and kept so, while that of A is maintained. Find the temperature u(x, t).
- 31. a. Find the Fourier transform of f(x) if $f(x) = \begin{cases} 1 |x| & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ hence prove that $\int_{0}^{\infty} \frac{\sin^4 x}{x^4} dx = \frac{\pi}{3}.$

- b. Use transform method to evaluate $\int_{0}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx$
- 32. a.i. Find $Z(a^n)$ and $Z(n^2)$.
 - ii. Using residues find the inverse Z-transform of $\frac{z}{(z-1)(z-2)}$.

(OR)

b. Solve the equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, given $y_0 = y_1 = 0$ by using Z-transform.

Reg. No.	
----------	--

B.Tech. DEGREE EXAMINATION, NOVEMBER 2018

3rd to 7th Semester

15MA201 - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted during the academic year 2015 - 2016 to 2017-2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1. The partial differential equation formed by eliminating arbitrary constant a, b is z = (x+a)(y+b)

(A)
$$z = p + q$$

(B)
$$z = p - q$$

(D) $z = pq$

(C)
$$z = p/q$$

(D)
$$z = pq$$

2. The complementary function of $(D^2 + 2DD' + D'^2)z = 0$ is

(A)
$$\phi_1(y-x) + \phi_2(y-x)$$

(B)
$$\phi_1(y-x) + x\phi_2(y-x)$$

(A)
$$\phi_1(y-x) + \phi_2(y-x)$$
 (B) $\phi_1(y-x) + x\phi_2(y-x)$ (C) $\phi_1(y-x) + \phi_2(y+x)$ (D) $\phi_1(y-x) + x\phi_2(y+x)$

(D)
$$\phi_1(y-x) + x\phi_2(y+x)$$

3. The particular integral of $(D^2 - 2DD')z = e^{2x}$

(A)
$$e^{2x}/4$$

(A)
$$e^{2x}/4$$
 (B) $e^{2x+y}/4$ (C) e^{2x} (D) $e^{2x}/2$

(C)
$$e^{2x}$$

(D)
$$e^{2x/2}$$

4. The complete solution of $z = px + qy + p^2q^2$ is

(A)
$$z = ax + by^2 + ab^2$$

(B)
$$z = ax^2 + by + ab^2$$

(C)
$$z = ax + by + a^2b^2$$

(D)
$$z = ax + by + c$$

5. sinx is a periodic function with period

(B)
$$\pi/2$$

(D)
$$4\pi$$

- 6. The constant a_0 of the Fourier series for the function f(x) = k, $0 \le x \le 2\pi$ is
 - (A) k

$$(C)$$
 0

7. The RMS value of f(x) = x in $-1 \le x \le 1$ is

(C)
$$1/\sqrt{3}$$

$$(D)$$
 -1

8. Half range cosine series for f(x) is $(0, \pi)$ is

(A)
$$\sum_{n=1}^{\infty} a_n \cos nx$$

(B)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

(C)
$$\sum_{n=1}^{\infty} b_n \sin n$$

(D)
$$\frac{a_0}{2} - \sum a_n \cos nx$$

9. The proper solution of the problems of vibration of string is

(A)
$$y(x,t) = (Ae^{\lambda x} + Be^{-\lambda x})(ce^{\lambda at} + De^{\lambda at})$$
 (B) $y(x,t) = (Ax + B)(ct + 1)$

(C)
$$y(x,t) = (A\cos\lambda x + B\sin\lambda x)$$

(D)
$$y(x,t) = Ax + B$$

$$(C\cos\lambda at + D\sin\lambda at)$$

10. The one dimensional wave equation is

(A)
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$

(B)
$$\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$$

(C)
$$\frac{\partial y}{\partial t} = a \frac{\partial^2 y}{\partial x^2}$$

(D)
$$\frac{\partial^2 y}{\partial x^2} = a \frac{\partial^2 y}{\partial t^2}$$

11. One dimensional heat equation is used to find

(A) Density

(B) Temperature distribution

(C) Time

(D) Displacement

12. A rod of length *l* has its ends A and B kept at 0° and 100° respectively, until steady state conditions prevail. Then the initial condition is given by

- (A) u(x,0) = ax + b + 100l
- (B) $u(x,0) = \frac{100x}{1}$

(C) u(x,0) = 100xl

(D) u(x,0) = (x+l)100

13. $F\left[e^{iax}f(x)\right]$

(A) F(s+a)

(B) F(s-a)

(C) F(sa)

(D) F(s/a)

 $14. \quad F[xf'(x)] =$

(A) dF(s)

(B) $i \frac{dF(s)}{ds}$

(C) $-i\frac{dF(s)}{ds}$

(D) $-\frac{dF(s)}{ds}$

15. The fourier cosine transform of $Fc\left[e^{-4x}\right]$

(A) $\sqrt{\frac{2}{\pi}} \frac{4}{16 + s^2}$

(B) $\sqrt{\frac{2}{\pi}} \frac{4}{4+s^2}$

(C) $\sqrt{\frac{\pi}{2}} \frac{4}{16+s^2}$

(D) $\sqrt{\frac{\pi}{2}} \frac{4}{4+s^2}$

16.
$$F[f(x)*g(x)] =$$

(A) F(s)+G(s)(C) F(s)G(s)

- (B) F(s) G(s)
- (D) F(s)/G(s)

17. What is Z(7)

 $(A) \quad \frac{z}{z-1}$

(B) $7\frac{z}{z-1}$

(C) $\frac{1}{7} \frac{z}{z-1}$

(D) $\frac{z-1}{z}$

18. What is $Z \lceil na^n \rceil$

A) $\frac{az}{(z-a)^2}$

 $\frac{z}{(z-a)^2}$

(C) $\frac{a}{(z-a)^2}$

 $(D) \quad \frac{z}{(z-a)^3}$

19. If z[f(t)] = F(z) then $\lim_{z \to \infty} F(z) =$

(A) f(0)

(B) f(1)

(C) $\lim_{x \to \infty} f(t)$

(D) $f(\infty)$

20. $\phi(z) = \frac{z^n(2z+4)}{(z-2)^3}$ has a pole of order

(A) 2 (C) 3 (B) 1 (D) 4

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Form the Partial differential equation by eliminating f from $z = xy + f(x^2 + y^2 + z^2)$.
- 22. Find the half range Fourier sine series for f(x) = x in $0 < x < \pi$.
- 23. Write the one dimensional heat flow equation and all the possible solutions.
- 24. Find the Fourier sine transform of e^{-ax} a > 0.
- 25. Find Z-transform of rⁿcosn0.
- 26. Find $z^{-1}\left(\frac{1}{(z-1)(z-2)}\right)$ by convolution.
- 27. Solve $p^2 + q^2 = x + y$.

29. a. Express $f(x) = (\pi - x)^2$ as a Fourier series of periodicity 2π in $0 < x < 2\pi$ and hence deduce the sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

b. Compute the first three harmonics of the Fourier series of f(x) given by the following table.

x	0	π/3	$2\pi/3$	π	4π/3	5π/3	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

30. a. If a string of length l is initially at rest in equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = v_0 \sin^3 \frac{\pi x}{l}, \ 0 < x < l, \ determine the transverse displacement <math>y(x,t)$.

- b. Solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ subject to (i) u(0,t) = 0 for $t \ge 0$ (ii) u(l,t) = 0 for $t \ge 0$ (iii) $u(x, 0) = \begin{cases} x & \text{for } 0 \le x \le l/2 \\ l - x & \text{for } l/2 \le x \le l \end{cases}$
- 31. a. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ $\int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^3} \right) \cos \frac{x}{2} dx.$

(OR)

- b. Find Fourier cosine and sine transforms of e^{-ax} , a > 0 and evaluate $\int_{0}^{\infty} \frac{dx}{\left(a^2 + x^2\right)^2}$ and $\int_{0}^{\infty} \frac{x^2}{\left(a^2 + x^2\right)^2} dx \text{ if } a > 0.$
- 32.a.i. Find the Z-transform of $\left\{\frac{1}{n(n+1)}\right\}, n \ge 1$.
 - ii. Find the inverse Z-transform of $x(z) = \frac{z^2}{(z-1/2)(z-1/4)}$ using Convolution theorem.

b. Solve $y_{n+2} - 7y_{n+1} + 12y_n = 2^n$ given that $y_0 = 0$, $y_1 = 0$ using Z-transforms.

* * * * *

Reg. No.

B.Tech. DEGREE EXAMINATION, NOVEMBER 2019

Third to Seventh Semester

15MA201 - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted during the academic year 2015 - 2016 to 2017-2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

1. The complete integral of p = 2qx

(A)
$$z = ax^2 + ay + c$$

(B)
$$z = ax + ay^2 + c$$

(D) $z = ax + by + c$

(C)
$$z = ax^2 - ay + c$$

(D)
$$z = ax + by + a$$

2. The partial differential equation formed by eliminating arbitrary function in $z = f(x^2 + y^2)$ is

(A)
$$xp = yq$$

(B)
$$xy = pq$$

(C)
$$xq = yp$$

$$(D) \quad x+p=y+q$$

3. Solve
$$(D^3 - 7DD^{12} - 6D^{12})z = 0$$

(A)
$$z = \phi_1(y-x) + \phi_2(y-2x) + \phi_3(y+3x)$$
 (B) $z = \phi_1(y-x) + \phi_2(y+2x) + \phi_3(y-3x)$

(C)
$$z = \phi_1(y+x) + \phi_2(y-2x) + \phi_3(y+3x)$$
 (D) $z = \phi_1(y+x) + \phi_2(y+2x) + \phi_3(y+3x)$

4. The general integral of z = xp + yq is

(A)
$$\phi\left(\frac{x}{y}, \frac{y}{z}\right) = 0$$

(B)
$$\phi(x+y, y+z) = 0$$

(C)
$$\phi\left(x-y,\frac{x}{2}\right)=0$$

(D)
$$\phi\left(\frac{x}{y}, y+z\right) = 0$$

- 5. The constant a_0 of the Fourier series for the function f(x) = k, $0 \le x \le 2\pi$

(C) 0

- (D) k/2
- 6. The RMS value of f(x) = x in $-1 \le x \le 1$ is
 - (A) 1

(B) 0

(C) $1/\sqrt{3}$

- (D) -1
- 7. Find half-range cosine series of $f(x) = \cos x$ in $(0, \pi)$ the value of a_0 is
 - (A) 4

(C) $4/\pi$

(D) 0

26NF3-7/15MA201

(A) $2 \int x dx$

(B) 0

(C) $2\int (-x)dx$

(D) $4\int x dx$

9. In wave equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, a^2 stands for

(A) T/m

(C) m/T

(D) k/m

10. One dimensional heat equation is used to find

(A) Temperature

(B) Displacement

(C) Time

(D) Mass

11. How many initial and boundary conditions are required to solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$

(A) Two

(B) Three

(C) Four

(D) Five

12. A rod of length l has its ends A and B are kept at 0°C and 100°C respectively, until steady state conditions prevail. Then the initial condition is given by

(A) u(x,0) = ax + b + 100l

(B) $u(x,0) = \frac{100x}{1}$

(C) u(x,0) = 100lx

(D) u(x,0)=(x+l)100

13. If $F\{f(x)\} = F(s)$, then $F\{f(x-a)\}$

(A) $e^{ias}F(s)$

(B) $e^{ias}F(a)$

(C) $e^{iax}F(a)$

(D) $e^{ias}F(x)$

14. The Fourier transform of $f(x) = e^{-x^2/2}$ is

(A) e^{-s^2}

(D) $e^{-s^2/2}$

15. $F\{f(x)*g(x)\}=$

(A) F(s)+G(s)

(B) F(s)-G(s)

(C) F(s).G(s)

(D) F(s)/G(s)

16. Under Fourier cosine transform of $f(x) = 1/\sqrt{x}$ is

(A) Self-reciprocal function

Cosine function

(C) Inverse function

(D) Complex function

17. $Z | (-1)^n$

18. If Z[f(t)] = F(z), then $\lim_{z \to \infty} F(z)$

(A) f(0)

(B) f(1)

(C) $\lim_{t\to\infty} f(t)$

(D) $f(\infty)$

19. Find
$$Z^{-1}\left(\frac{z}{(z-1)^2}\right)$$
 is

(A) n+1(C) n-1

(B) n (D) 1/n

20. The poles of $\phi(z) = \frac{z''}{(z-1)(z-2)}$ are

(A) z = 1, z = 2

(B) z = -1, z = -2

(C) z=1, z=-2

(D) z = 0, z = 2

$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Form the partial differential equation by eliminating the arbitrary constants a and b from $z = \left(x^2 + a\right)\left(y^2 + b\right).$
- 22. Solve $(D^2 2DD' + D^{12})z = e^{x+2y}$.
- 23. Express f(x) = x in half range sine series of periodicity 2l in the range 0 < x < l
- 24. Write the possible solutions and correct solution of one dimensional heat equation.
- 25. Classify the equation $(1+x^2) f_{xx} + (5+2x^2) f_{xy} + (4+x^2) f_{yy} = 2\sin(x+y)$.
- 26. If $F\{f(x)\} = F(s)$ then $F\{f(x)\cos x\} = \frac{1}{2}[F(s-a)+(s+a)]$.
- 27. Find $Z\{\sin n\theta\}$.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a. Solve (i) $9(p^2z+q^2)=4$ (ii) x(y-z)p+y(z-x)q=z(x-y)

b. Solve $(D^3 - 2D^2D^1)z = \sin(x+2y) + 3x^2y$.

29.a. Find the half-range cosine series for $f(x) = x, 0 \le x \le \pi$. Hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

b. Find the Fourier sine series upto third harmonic for the function y=f(x) in $(0,\pi)$ from the table.

x	0.	$\pi/6$	$2\pi/6$	3π/6	4π/6	5π/6	π
y	2.34	2.2	1.6	0.83	0.51	0.88	2.34

30.a. A tightly stretched string of length l has its end fastened at x=0, x=l. At t=0, the string is in the form $f(x) = \lambda x(1-x)$ and then released. Find the displacement y at any time and at any distance from the end x=0.

- b. Find the solution of the equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ that satisfies the conditions.
 - u(0,t)=0(i)
- (ii) u(l,t)=0 for t>0
- (iii) $u(x,0) = \begin{cases} x, 0 \le x \le l/2 \\ l-x, l/2 \le x \le l \end{cases}$
- 31.a. Find the Fourier transform of f(x) given by $f(x) = \begin{cases} a^2 x^2; & \text{if } |x| < a \\ 0; & \text{if } |x| > a > 0 \end{cases}$ hence prove that

$$\int_{0}^{\alpha} \left(\frac{\sin x - x \cos x}{x^3} \right) dx = \frac{\pi}{4}.$$

- b.i. Find the Fourier transform of $e^{-a|x|}$ and hence evaluate $\int_{0}^{\infty} \frac{1}{(x^2 + a^2)^2} dx$, a > 0. (8 Marks)
- ii. If F[f(x)] = F(s), then $F(f(x)\cos ax) = \frac{1}{2}[F(s+a) + F(s-a)]$. (4 Marks)
- 32.a.i. Find $Z^{-1} \left| \frac{z^2}{(z-a)(z-b)} \right|$ using convolution theorem.
 - ii. Find $Z^{-1} \left| \frac{z^2}{(z+2)(z^2+4)} \right|$ by method of partial fraction.

b. Using Z-transform solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0, u_1 = 1$.

* * * * *

Reg. No.

B.Tech. DEGREE EXAMINATION, NOVEMBER 2019

First to Eighth Semester

15MA201 - TRANSFORMS AND BOUNDARY VALUE PROBLEMS (For the candidates admitted during the academic year 2015-2016 to 2017-2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- (ii) Part - B and Part - C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

- 1. Find the complete integral of $p^2 + q^2 = 1$ (A) z = ax + by + c(C) z = a(x + y) + b

(B) z = ax + by

(D) z = ax - by + a

- 2. Solve pq = xv
 - (A) $z = k\frac{x}{2} + \frac{1}{k}y/2 + c$ (B) $z = k\frac{x^2}{2} + \frac{1}{k}\frac{y^2}{2} + c$

- (C) z = k(x + y/2) + c
- (D) z = k(x/2 y) + c
- 3. Solve $(D^3 3DD^2 + 2D^3)z = 0$
 - (A) $z = \phi_1(y+2x) + \phi_2(y-x) + \phi_3(y+x)$ (B) $z = \phi_1(y+6x) + \phi_2(y-x) + x\phi_3(y-2x)$
 - (C) $z = \phi_1(y-2x) + \phi_2(y+x) + x\phi_3(y+x)$ (D) $z = \phi_1(y+3x) + \phi_2(y-2x) + \phi_3(y+4x)$
- 4. Find the particular integral of $(D^2 + 3DD' + 4D'^2)z = e^{x-y}$

- 5. $\int_{-1}^{1} |x| dx$ is equal to

(C) $\int_{2}^{1} (-x) dx$

- 6. The constant a_0 of the Fourier series for the function f(x) = x is $0 \le x \le 2\pi$
 - (A) π

(B) 3π

(C) 2π

(D) 0

- 7. The RMS value of f(x)=x in $-1 \le x \le 1$ is
 - (A) 1

(B) 0

(C) -1

- (D) $1/\sqrt{3}$
- 8. For half range cosine series of $f(x) = \cos x$ in $(0, \pi)$ the value of a_0 is
 - (A) 0

(B) 4

(C) $2/\pi$

- (D) $4/\pi$
- 9. The partial differential equation $u_{xx} + 2u_{xy} + u_{yy} = 0$ of the form.
 - (A) Elliptic

(B) Parabolic

(C) Hyperbolic

- (D) None of these
- 10. The proper solution of $u_t = \alpha^2 u_{xx}$ is
 - (A) u = (Ax + B)C

- (B) $u = (A\cos\lambda x + B\sin\lambda x)e^{-\alpha^2\lambda^2t}$
- (C) $u = \left(Ae^{\lambda x} + Be^{-\lambda x}\right)e^{\alpha^2 \lambda^2 t}$
- (D) u = At + B
- 11. One dimensional wave equation is used to find
 - (A) Temperature

(B) Time

(C) Displacement

- (D) Mass
- 12. The amount of heat required to produce a given temperature change in a body is proportional
 - (A) Weight of the body

(B) Mass of the body

(C) Density of the body

- (D) Tension of the body
- 13. The steady state temperature of a rod of length l whose ends are kept at 30 and 40 is
 - (A) $u = \frac{10x}{1} + 30$

(B) $u = \frac{20x}{l} + 30$

(C) $u = \frac{10x}{l} + 20$

- (D) $u = \frac{10x}{l}$
- 14. The Fourier cosine transform of e^{-ax} is
 - (A) $\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + x^2}$

(B) $\sqrt{\frac{1}{\pi}} \frac{s}{s^2 + a^2}$

(C) $\sqrt{\frac{1}{\pi}} \frac{a}{s^2 - a^2}$

(D) $\sqrt{\frac{2}{\pi}} \frac{a}{\left(s^2 + a^2\right)}$

- 15. F[xf'(x)] =
 - (A) dF(s)

(B) $i \frac{dF(s)}{ds}$

(C) $-i\frac{dF(s)}{ds}$

(D) $-\frac{dF(s)}{ds}$

- 16. F[f(x)*g(x)] =
 - (A) F(s) + G(s)

(B) F(s)-G(s)

(C) F(s)G(s)

(D) F(s) / G(s) 15NA1-8/15MA201

- 17. What is Z-transform of na^n ?
 - (A) $\frac{az}{(z-a)^2}$

B) $\frac{z}{(z-a)^2}$

(C) $\frac{a}{(z-a)^2}$

- (D) $\frac{z}{(z-a)^3}$
- 18. Region of convergence of a $Z [a^n]$ is
 - (A) $|z| \le a$

(B) |z| > a

(C) |z| > |a|

(D) $|z| \le |a|$

- 19. Find $Z^{-1} \left[\frac{z}{z-a} \right]$
 - (A) a^{n+1}

(B) a

(C) a^n

- (D) a^{n-1}
- 20. The difference equation formed by eliminating 'a' in $u_n = a \ 2^{n+1}$ is
 - (A) $u_{n+1} 2u_n = 0$

(B) $u_{n+1} = 0$

(C) $u_{n+1} - u_n = 0$

(D) $u_n = 0$

PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions

- 21. Form a partial differential equation by eliminating arbitrary constants 'a' and 'b' from $z = (x+a)^2 \cdot (y+b)^2$.
- 22. Find the general solution of $(5D^2 12DD' 9D'^2)z = 0$.
- 23. Find a Fourier sine series for the function $f(x) = 1, 0 < x < \pi$.
- 24. Find the RMS value of f(x)=1-x in 0 < x < 1.
- 25. What are all the solutions of one dimensional wave equation?
- 26. Prove that $F(e^{iax}f(x)) = F(s+a)$, where F(f(x) = F(s)).
- 27. Find the Z-transform of (n+1)(n+2).

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

- 28.a.i. Form the partial differential equation by eliminating f from $xyz = f(x^2 + y^2 z^2)$.
 - ii. Solve (3z-4y)p+(4x-2z)q=2y-3x.

(OR)

b. Solve $\left(D^2 - 6DD' + 5D^2\right)z = e^x \sinh y + xy$.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

Solve (i) $z = px + qy + \sqrt{1 + p^2 + q^2}$ (ii) $x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$. Find also singular integral.

- (OR) b. Solve (i) $(D^2 2DD' + D'^2)z = \cos(x 3y)$ (ii) $(D^2 DD'^2)z = e^{x + 2y}$.
- 29. a. Find the Fourier series of $f(x) = x + x^2 \operatorname{in}(-\pi, \pi)$ of periodicity 2π . Hence deduce $\sum \frac{1}{2} = \frac{\pi^2}{6}.$

(OR)

b. Compute the first two harmonics of the fourier series f(x) given by the following table.

х	0	π/3	$2\pi/3$	π	$4\pi/3$	5π/3	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1

30. a. A tightly stretched string with fixed end point x = 0 and x = l is initially at rest in its equilibrium position. If it is set vibrating giving each point a velocity 3x(l-x). Find the displacement.

(OR)

- b. A rod of length l has its ends A and B kept at 0°C and 100°C respectively unit steady state conditions prevail. If the temperature at B is reduced suddenly to 0°C and kept so, while that of A is maintained. Find the temperature u(x, t).
- 31. a. Find the Fourier transform of f(x) if $f(x) = \begin{cases} 1 |x| & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ hence prove that $\int_{0}^{\infty} \frac{\sin^4 x}{x^4} dx = \frac{\pi}{3}.$

- b. Use transform method to evaluate $\int_{0}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx$
- 32. a.i. Find $Z(a^n)$ and $Z(n^2)$.
 - ii. Using residues find the inverse Z-transform of $\frac{z}{(z-1)(z-2)}$.

(OR)

b. Solve the equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, given $y_0 = y_1 = 0$ by using Z-transform.

Reg. No.	
----------	--

B.Tech. DEGREE EXAMINATION, NOVEMBER 2018

3rd to 7th Semester

15MA201 - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted during the academic year 2015 - 2016 to 2017-2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1. The partial differential equation formed by eliminating arbitrary constant a, b is z = (x+a)(y+b)

(A)
$$z = p + q$$

(B)
$$z = p - q$$

(D) $z = pq$

(C)
$$z = p/q$$

(D)
$$z = pq$$

2. The complementary function of $(D^2 + 2DD' + D'^2)z = 0$ is

(A)
$$\phi_1(y-x) + \phi_2(y-x)$$

(B)
$$\phi_1(y-x) + x\phi_2(y-x)$$

(A)
$$\phi_1(y-x) + \phi_2(y-x)$$
 (B) $\phi_1(y-x) + x\phi_2(y-x)$ (C) $\phi_1(y-x) + \phi_2(y+x)$ (D) $\phi_1(y-x) + x\phi_2(y+x)$

(D)
$$\phi_1(y-x) + x\phi_2(y+x)$$

3. The particular integral of $(D^2 - 2DD')z = e^{2x}$

(A)
$$e^{2x}/4$$

(A)
$$e^{2x}/4$$
 (B) $e^{2x+y}/4$ (C) e^{2x} (D) $e^{2x}/2$

(C)
$$e^{2x}$$

(D)
$$e^{2x/2}$$

4. The complete solution of $z = px + qy + p^2q^2$ is

(A)
$$z = ax + by^2 + ab^2$$

(B)
$$z = ax^2 + by + ab^2$$

(C)
$$z = ax + by + a^2b^2$$

(D)
$$z = ax + by + c$$

5. sinx is a periodic function with period

(B)
$$\pi/2$$

(D)
$$4\pi$$

- 6. The constant a_0 of the Fourier series for the function f(x) = k, $0 \le x \le 2\pi$ is
 - (A) k

$$(C)$$
 0

7. The RMS value of f(x) = x in $-1 \le x \le 1$ is

(C)
$$1/\sqrt{3}$$

$$(D)$$
 -1

8. Half range cosine series for f(x) is $(0, \pi)$ is

(A)
$$\sum_{n=1}^{\infty} a_n \cos nx$$

(B)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

(C)
$$\sum_{n=1}^{\infty} b_n \sin n$$

(D)
$$\frac{a_0}{2} - \sum a_n \cos nx$$

9. The proper solution of the problems of vibration of string is

(A)
$$y(x,t) = (Ae^{\lambda x} + Be^{-\lambda x})(ce^{\lambda at} + De^{\lambda at})$$
 (B) $y(x,t) = (Ax + B)(ct + 1)$

(C)
$$y(x,t) = (A\cos \lambda x + B\sin \lambda x)$$

(D)
$$y(x,t) = Ax + B$$

$$(C\cos\lambda at + D\sin\lambda at)$$

10. The one dimensional wave equation is

(A)
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$

(B)
$$\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$$

(C)
$$\frac{\partial y}{\partial t} = a \frac{\partial^2 y}{\partial x^2}$$

(D)
$$\frac{\partial^2 y}{\partial x^2} = a \frac{\partial^2 y}{\partial t^2}$$

11. One dimensional heat equation is used to find

(A) Density

(B) Temperature distribution

(C) Time

(D) Displacement

12. A rod of length *l* has its ends A and B kept at 0° and 100° respectively, until steady state conditions prevail. Then the initial condition is given by

- (A) u(x,0) = ax + b + 100l
- (B) $u(x,0) = \frac{100x}{1}$

(C) u(x,0) = 100xl

(D) u(x,0) = (x+l)100

13. $F\left[e^{iax}f(x)\right]$

(A) F(s+a)

(B) F(s-a)

(C) F(sa)

(D) F(s/a)

 $14. \quad F[xf'(x)] =$

(A) dF(s)

(B) $i \frac{dF(s)}{ds}$

(C) $-i\frac{dF(s)}{ds}$

(D) $-\frac{dF(s)}{ds}$

15. The fourier cosine transform of $Fc\left[e^{-4x}\right]$

(A) $\sqrt{\frac{2}{\pi}} \frac{4}{16 + s^2}$

(B) $\sqrt{\frac{2}{\pi}} \frac{4}{4+s^2}$

(C) $\sqrt{\frac{\pi}{2}} \frac{4}{16+s^2}$

(D) $\sqrt{\frac{\pi}{2}} \frac{4}{4+s^2}$

16.
$$F[f(x)*g(x)] =$$

(A) F(s)+G(s)(C) F(s)G(s)

- (B) F(s) G(s)
- (D) F(s)/G(s)

17. What is Z(7)

 $(A) \quad \frac{z}{z-1}$

(B) $7\frac{z}{z-1}$

(C) $\frac{1}{7} \frac{z}{z-1}$

(D) $\frac{z-1}{z}$

18. What is $Z \lceil na^n \rceil$

A) $\frac{az}{(z-a)^2}$

 $\frac{z}{(z-a)^2}$

(C) $\frac{a}{(z-a)^2}$

 $(D) \quad \frac{z}{(z-a)^3}$

19. If z[f(t)] = F(z) then $\lim_{z \to \infty} F(z) =$

(A) f(0)

(B) f(1)

(C) $\lim_{x \to \infty} f(t)$

(D) $f(\infty)$

20. $\phi(z) = \frac{z^n(2z+4)}{(z-2)^3}$ has a pole of order

(A) 2 (C) 3 (B) 1 (D) 4

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Form the Partial differential equation by eliminating f from $z = xy + f(x^2 + y^2 + z^2)$.
- 22. Find the half range Fourier sine series for f(x) = x in $0 < x < \pi$.
- 23. Write the one dimensional heat flow equation and all the possible solutions.
- 24. Find the Fourier sine transform of e^{-ax} a > 0.
- 25. Find Z-transform of rⁿcosn0.
- 26. Find $z^{-1}\left(\frac{1}{(z-1)(z-2)}\right)$ by convolution.
- 27. Solve $p^2 + q^2 = x + y$.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a. Solve (i) $x^2p - y^2q - (x - y)z$ (ii) $p^2 + q^2 = z$.

- b. Solve the equation $\left(D^2 + 4DD' 5D'^2\right)z = xy + \sin(2x + 3y)$.
- 29. a. Find the Fourier series expansion of period 2 for the function $f(x) = \begin{cases} \pi x & \text{in } 0 \le x \le 1 \\ \pi (2 - x) & \text{in } 1 \le x \le 2 \end{cases}$. Deduce the sum $\sum_{n=1,3}^{\infty} \frac{1}{n^2}.$

b. Find the Fourier series upto the second harmonic from the data.

x	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
y	0.8	0.6	0.4	0.7	0.9	1.1	0.8

30. a. The ends of an uniform string of length 21 are fixed. The initial displacement is v(x,0) = kx(2l-x), 0 < x < 2l while the initial velocity is zero. Find the displacement at any distance x from the end x = 0 at any time t.

- b. Find the solution of the equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial r^2}$ that satisfies the condition $u(0,t) = 0 \text{ and } u(l,t) = 0 \text{ for } t \ge 0 \text{ and } u(x,0) = \begin{cases} x, & \text{for } 0 < x < \frac{l}{2} \\ l - x \text{ for } \frac{l}{2} < x < l \end{cases}.$
- 31. a. Find the Fourier transform of f(x) if $f(x) = \begin{cases} 1-|x|, & \text{for } |x| < 1 \\ 0, & \text{for } |x| > 1 \end{cases}$ and hence prove that $\int_{0}^{\infty} \frac{\sin^4 x}{x^4} dx = \frac{\pi}{3}.$

(OR)

- b. Show that $e^{-x^2/2}$ is self-reciprocal under Fourier transform by finding the Fourier transform of $e^{-a^2x^2}$, a > 0.
- 32. a. Find (i) $Z\left(2^n\cos\frac{n\pi}{2}\right)$ (ii) $Z^{-1}\left(\frac{z(z+1)}{(z-1)^3}\right)$ using the method of residues.

b. Solve using Z-transform $y_{n+2} - 3y_{n+1} - 10y_n = 0$, given that $y_0 = y_1 = 0$.

Reg. No.			II	

B.Tech. DEGREE EXAMINATION, MAY 2019

1st to 7th Semester

15MA201 - TRANSFORMS AND BOUNDARY VALUE PROBLEMS (For the candidates admitted during the academic year 2015 - 2016 to 2017-2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Ouestions

- 1. The partial differential equation formed by eliminating the arbitrary function 'f' from
 - (A) qx + py = 0

(B) qx = py

(C) qx = p

- (D) py = q
- 2. The complete integral of $z = px + qy + \sqrt{1 + p^2 + q^2}$ is

 (A) z = ax by(B) z = ax + by(C) $z = ax + by + \sqrt{1 + a^2 + b^2}$ (D) $z = ax + by \sqrt{1 + a^2 + b^2}$

- 3. General solution of $(D^2 + 4DD' 5D')^2 z = 0$
- (A) $z = f_1(y-5x) + f_2(y+x)$ (B) $z = f_1(y+5x) + f_2(y+x)$ (C) $z = f_1(y-5x) + f_2(y-x)$ (D) $z = f_1(y) + f_2(y-x)$
- 4. The particular integral of $(D^2 + 2DD' + D^{2}) = e^{x-y}$ is
 - (A) e^{x-y}

- (B) $\frac{x^2}{2}e^{x-y}$ (D) $\frac{x^2}{2}e^{x+y}$
- 5. If f(x) = |x| in $(-\pi, \pi)$ then the constant term a_0 of the Fourier series is
 - (A) 2π

(B) 0

(C) $\pi/2$

- (D) π
- 6. If $f(x) = |\sin x|$ then its period is
 - (A) π (C) 0

(B) 2π

(D) $\pi/2$

- 7. The root mean square value of f(x) = x in $-1 \le x \le 1$ is (A) 1
 - (B) 0

(C) 1 $\sqrt{3}$

(D) -1

8. Half-Range sine series for f(x) in $(0,\pi)$ is

(A)
$$\sum_{n=1}^{\infty} b_n \sin nx$$

(B) $\sum_{n=1}^{\infty} a_n \cos nx$

$$\frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos nx$$

(D) $\frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2\right)$

9. In wave equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, a^2 stands for

(A)
$$\frac{m}{T}$$

(B) <u>1</u>

(D) T^m

10. The steady state solution of $u_t = \alpha^2 u_{xx}$ is

(A)
$$u = c_1 x$$

(B) $u = c_1 + c_2 t$

(C)
$$u = c_1 x + c_2$$

(D) u = zero

11. Classify
$$u_{xx} + 2u_{xy} + u_{yy} = 0$$

(A) Parabolic

(B) Elliptic

(C) Hyperbolic

(D) Geodesic

12. The number of initial and boundary conditions to solve $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$ are

(A) Three

(B) Two

(C) Four

(D) One

13. If $F\{f(x)\} = F(s)$, then $F\{f(ax)\} =$

(A) $\frac{1}{|a|} F\left(\frac{s}{a}\right)$

(B) aF(s)

(C) $aF\left(\frac{s}{a}\right)$

(D) F(as)

14. The Fourier sine transform of $e^{-ax}(a>0)$ is

(A) $\sqrt{\frac{2}{\pi}} \left(\frac{s}{s^2 + a^2} \right)$

(B) $\sqrt{\frac{2}{\pi}} \left(\frac{a}{s^2 + a^2} \right)$

(C) $\sqrt{\frac{2}{\pi}} \left(\frac{s}{s^2 - a^2} \right)$

(D) $\sqrt{\frac{2}{\pi}} \left(\frac{a}{s^2 - a^2} \right)$

15. $F^{-1}[F(s)G(s)] =$

(A) f(x)g(x)

(B) f(x) * g(x)

(C) f(x) + g(x)

(D) f(x)-g(x)

16. If $F\{f(x)\} = F(s)$ then $\int_{-\infty}^{\infty} |f(x)|^2 dx =$

(A) $\int_{0}^{\infty} |F(s)|^{2} ds$

(B) $\int_{0}^{\infty} |F(x)|^2 dx$

(C) $\int_{-\infty}^{\infty} |F(s)|^2 ds$

(D) $\int_{0}^{\infty} |F(x)|^2 dx$

$$Z\left\{(-1)^n\right\} = \tag{B} \frac{z}{z+1}$$
(C) $z(z+1)$ (D) 1

- 18. $Z[na^n] =$ (A) z $\overline{(z-a)^3}$ (B) a $\overline{(z-a)^2}$ (C) z $\overline{(z-a)^2}$ (D) az $\overline{(z-a)^2}$
- 19. $z \left(\sin \frac{n\pi}{2} \right) =$ (A) $z = z^2 + 1$ (C) $z^2 = z^2 4$ (B) $z = z^2 + 1$ (D) $z^2 = z^2 + 1$
- 20. Poles of $f(z) = \frac{z^n}{(z+1)(z+2)}$ are

 (A) z = 1, 2(B) z = -1, -2(C) z = 1, -2(D) z = -1, 2

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

z+1

- 21. Form a partial differential equation by eliminating arbitrary constants a, b, from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$.
- 22. Find half-range sine series of f(x) = a in (0,l).
- 23. Write down the three mathematically possible solutions of one dimensional heat flow equation.
- 24. Find the Fourier transform of f(x) defined as $f(x) = \begin{cases} 1 & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}$
- 25. Find the Z-transform of $\frac{1}{n(n-1)}$.
- 26. Solve the equation pq + p + q = 0.
- 27. Find the Fourier sine transform of f(x) defined as $f(x) = \begin{cases} \sin x & \text{when } 0 < x < a \\ 0 & \text{when } x > a \end{cases}$