Adapter-directed display systems

Fig. 1

KO7kpn phage Screening by ELISA

Fig. 2

KO7kpn helper phage Vector

Fig. 3A

Gene III leader sequence in KO7 helper phage

GTG AAA AAA TTA TTC GCA ATT CCT TTA GTT GTT CCT TTC TAT TCT CAC TCC GCT V K K L L F A I P L V V P F Y S H S A

Gene III leader sequence in KO7kpn helper phage

GTG AAA AAA TTA TTC GCA ATT CCT TTA GTG GTA CCT TTC TAT TCT CAC TCC GCT V K K L L F A I P L V V P F Y S H S A Kpnl

Map of phagemid vector pABMC6

Fig. 4

Helper phage with engineered gene III fused to adaptor 2

Fig. 5A

GR2-Myc domain coding sequence in GM-UltraHelper phage genome

---TTAGTGGTACCTTTCTATTCTCACTCCGCT ACATCCCGCCTGGAGGGCCTACAGTCAGAAAACCATCGCCTGCGA 凶 Ø J U 闰 ᆸ ĸ ಬ Ø ß H Gene III leader F. L V V ATGAAGATCACAGAGCTGGATAAAGACTTGGAAGAGGTCACCATGCAGCTGCAGGACGTCGGAGGTTGC GCGGCCGCA A A A ט Ö D Q Ø н α Σ H > 闰 团 Ы Ω ĸ L D 闰

NotI

GAACAAAAACTCTCAGAAGAGGATCTG AGATCTGGAGGCGGT ACTGTTGAAAGTTGTTTAGCAAAA---Ц บ മ Gene III T V ט ט BgIII R S Ы Д Myc-tag ಬ Г

Trypsin cleavage sites at GR2-Myc domain on GM-UltraHelper phage

E TSRLEGLQSENHRLRMKITELDKDLE GR2 domain

TMQLQDVGGCAAA*EQK_LISEEDLR*SGGG Myc-tag

Fig. 5C

GR2-Myc-pIII fusions assembly into GM phage particles

Fig. 6

Detection of GR2-Myc domain on GM-UltraHelper phage

Phage binding to anti-Myc antibody

Fig. 7

Cleavage of GR2-Myc domains on GM phages by trypsin

KO7 phage
GM phage
GM phage + 1 ug/ml Tryp

4) GM phage + 5ug/ml Tryp 5) GM phage + 10ug/ml Tryp 6) GM phage + 50ug/ml Tryp

Phage binding to anti-Myc antibody

Phagemid vector for protein-GR1 expression

Fig. 9A

Complete vector sequence of pABMX14

atctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagat ITGGACTCAAGACGATAGTTACCGGGATAAGGCGCAGCGGTCGGACGGGGGTTCGTGCACACACCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATG GCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTACCGGTTCTTAAGGAGGA ATTAAAAAATGGAAATACCTATGCCTACGCCGGCGGGGGGTGATTACTCGCGGCCCAGCCGGCCATGGCGGCCCTGCAGGCCGTCTAGAGCGGCCGCTGGAGGTGAGGAAGTCCCGGCTG ITGGAGAAGGAGAACCGTGAAAAAAAAATCATTGCTGAGAAAGGAGGGGGGTGTCTCTGAACTGCGCCATCAACTCCAGTCGTAGGAGGTTGTAGATCTTATCCATACGACGTACCAGACTA CGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTTTGATTTTAAAGGGATTTTGCCGATTTCGGCCTATTG GCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGC TCCTICIAGIGIAGCCGIAGITAGGCCCACCACTICAAGAACICIGIAGCACCGCCIACAIACCICGCICGCIAAICCIGITACCAGIGGCIGCIGCCAGIGGCGAIAAGICGIGICIIACCGGG AGAAAGCGCCACGCTTCCCGAAGGGAGAAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGAGCGACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTTCT CGCAGGAGGTCATCATCATCATCATTAATGAGTCGACCTCGACCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTT ACAITCAAATAIGIAICCGCTCAIGAGACAATAACCCTGATAAATGCTTCAATAATATTGGAAAGGAAGAGTATGAGTATTCAACAITTCCGTGTCGCCCTTATTCCCTTTTTGCGGCATTTT SCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGGGCAGGTTTCCCGACTGGAAAGCGGGCAGTGA

Fig. 9B

Functional display of scFv by GM-UltraHelper phage

Fig. 10

Mutivalent display of scFv by GM-UltraHelper phage

Fig. 11

Map of phagemid vector pABMC13

Fig. 12

Helper phage with Cys-Myc-pIII fusion gene

Fig. 13A

Engineered gene III sequence in CM phage

---TTAGT<u>GGTACC</u>TTTCTATTCTCACTCCGCT <u>TAG</u>GCTTGCGGTGGT<u>GCGGCCGC</u>AGAACAAAAACTCATCTCAGAAGAACTCGAGATCTGAGATCT <u>AGAICT</u>GGA Myc-tag α 臼 G A A A NotI ტ KpnI Gene III leader Amber stop S A * A C - г у у р в у з н

GGCGGT ACTGTTGAAAGTTGTTTAGCAAAACCTCATACAGAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCT-----Ц ĸ Д Д × X > z E ഥ വ Z 闰 H Ħ д × LA บ യ 臼 Gene III T ^ ϋ

Fig. 13B

Detection of Myc-tag on CM-UltraHelper phages by ELISA

Fig. 14

Phagemid vector for protein-HA-cys expression

Fig. 15A

Complete vector sequence of pABMX15

GCACACAGCCCAGCTTGGAGCGAACGTACACCGGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCTTCCCGAAGGGAAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAA CTGATAAATCTGGAGCCGGTGAGCTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA CGGIGGITIGITIGCCGGAICAAGAGCIACCAACICTITITCCGAAGGIAACIGGCITCAGCAGAGCGCAGAIACCAAAIACIGICCTITCIAGIGIAGTIAGGCCACCACITCAAGAACICIGIAGCAC CGCCTACATACCTCGGCTCTGCTAATGCCTGTTACCAGTGGCTGTGTGTAAGTCGTGTTTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGGGGGGTTGGGGTTCGT acagcegtaagatccttgagagttttceccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagaagaactcggtcgccgcatacact altaaaaaatgaaattacctacggcagcgctggattgttattactcgcggcccagccggccatgcggccttgcaggcctctaaaggcggccgcttacccgtacgacgttccggactacgcaggtggct GCTGATAAGTCGACCTCGACCTATAGGGGGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTC CTCGACCCCAAAAACTTGATTAGGGTGATGCTTCACGTAGTGGGCCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCTACTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACTC aaccctatctcggtctattcttttgaittataagggaitttcggcctattggttaaaaaatgagctgaittaacaaaaatttaacgaaatttaacaaaatataacgcttacaatttaggtggca CITITCGGGGAAAIGIGCGCGGAACCCCIAITIGITIAITITITCIAAAIACAITCAAAIAIGTAICCGCICAIGAGACAAIAAACCCIGAIAAAIGCTICAAIAAIAITGAAAAAGGAAGAGIAIGAGTAIGAGIAITCAAC ATTICCGIGICGCCTIATICCCTITITIGGGCATTITGCCTTCCTGTTTTTGCTCAGAAACGCTGGTGAAAAGATGAAAGATGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCA AGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAAGAGGGCCCAATACGGCAAACCGCCTCCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGA

Functional display of scFv by CM-UltraHelper phage

Fig. 16

Detection of scFv displayed by CM-UltraHelper phage

1: KO7 phage; 2: CM phage; 3: pABMx15-AM1/KO7; 4: pABMx15-AM1/CM

Fig. 17

Map of phagemid vector pABMC12

Fig. 18

Helper phage with an additional copy of engineered gene III

Fig. 19A

Engineered gene III Sequence in GMCT phage genome

GR2 domain

--TTAGT<u>GGTACC</u>TTTCTATTCTCACTCCGCT ACATCCCGCCTGGAGGGCCTACAGTCAGAAAACCATCGCCTGCGAATGAAGATCACAGAGCTGGATAAA GGTTCCGGTGATTTTGATTATGAAAAAATGGCAAACGCTAATAAGGGGGGCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAA CCTITITGTCTTTGGCGCTGGTAAACCATATGAATTTTTTTTTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTTTTTATATATGCCACC CTTGATTCTGTCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGC GGCTCTGGTGGTTGTTGGTGGCGGCTCTGAGGGTGGCGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGTGGCGGTTCCGGTTCCGGTGGCGGCTG GACTIGGAAGAGGICACCAIGCAGCIGCAGGACGICGGAGGIIGC <u>GCGGCCGC</u>AGAACAAAAACIGAICTCAGAAGAGAGAICIGACGCGIGCI GGCGGC > Н Ø × Д ŋ N A L 闰 Ω 国 Z U 团 Myc-tag д > Ω Ö ט N A D E G L A N T X O ద Н ᅜ ט Q M ტ 田 P L M N N F R CDKHNL 闰 Ø യ M T E ы ט D Q Ø A A A ש Ц NotI ひ F D Y E K M A N A N K G A F I G ש 团 臼 ບ ß ט വ N H ט ט œ ט ט Д G D Ø ш ט Δ Q Q Н ď 闰 闰 Gene III Leader ď × D D Ø ATDYG N P ц Х ტ Ö > CT domain of Gene III ט U M A Q ĭ ø ט ט O. D G ა > ט ט

TTTATGTATGTATTTTCTACGTTTGCTAACATACTGCGTAATAAGGAGTCTTAATAA <u>GGCGCGCC</u>ACAATTTCACAG<u>TAAGGAGG</u>TTTAATAA ATGAAA AAGACAGCTATTGCGATTGCAGTGGCACTGGCTGTTTCGCTACCGTAGCGCAGGCT <u>AGATCT</u>GGAGGCGGT ACTGTTGAAAGTTGTTTAGCAAAA---Gene III Bglii വ 闰 × z ద Ы Н z Ø Ŀ H ß Ŀ ∧ ⊼

ט > ט Ü Ø ഷ ⋖ α ď > H Ö ø Ы ø ø

Fig. 19B

Functional display of scFv by GMCT-UltraHelper phage

1, pABMx14-AM1/ KO7 MOI = 50

2, pABMx14-AM1/GMCT MOI = 13, pABMx14-AM1/GMCT MOI = 10

4, pABMx15-AM1/GMCT MOI = 50

5, pABMx14-AM1/GMCT MOI = 100

Fig. 20

Detection of scFv displayed by GMCT-UltraHelper phage

Fig. 2]

Fig. 22A

PABMD1 vector: sequence from Agel to Sall

GGAGGCGGT ACTGTTGAAAGTTGTTTAGCAAAA ---- GCTAACATACTGCGTAATAAGGAGTCTTAA GTCGAC AGATCT ATGAAAAAGTCTTTAGTCCTCAAAGCCTCCGTAGCCGTTGCTACCCTCGTTCCGATGCT<u>AAGCTT</u>CGCT <u>ICTAGA</u> Sall Amber stop BgIII AATTGTGAGCGGATAACAATTT ACCGGT TCTT TTAACTTTAG TAAGGAGG AATTAAAAA GCGGCCGCT TATCCATACGACGTACCAGACTACGCA GGAGGT CATCACCATCATCACCAT S V A V A T L V P M L S HH Z нннн His-tag S/D <u>ი</u> YA Y P Y D V P D Gene 3 SLVLKA HA-tag P8 Leader lac promoter/lac O1

PABMD2 vector: sequence from AgeI to Sall

ATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCGGCCCAGCCGG<u>CCATGG</u>CGGCC<u>CTGCAG</u>GCCT<u>GCAG</u>GCCTTACTAGA Xbal AGATCT GGAGGCGGT ACTGTTGAAAGTTGTTTAGCAAAA ---- GCTAACATACTGCGTAATAAGGAGTCTTAA <u>GTCGAC</u> Amber stop BgIII LLPTAAAGLLLLAAQPAMAAL AATTGTGAGCGGATAACAATTT ACCGGT TCTT TTAACTTTAG TAAGGAGG AATTAAAAA GCGGCCGCT TATCCATACGACGTACCAGACTACGCA GGAGGT CATCACCATCATCACCAT Nco I ннннн His-tag S/D ტ EP1 1 1 Y P Y D V P D Gene 3 HA-tag ഗ pelB Leader 闰 lac promoter/lac O1 U Ü

Fig. 22B

GR1 Sequence Range: 1 to 146

GR2 Sequence Range: 1 to 140

Fig. 23

Fig. 24

antigen

Ag

Expression vector for Adapter-directed bacterial display

Fig. 25A

Complete vector sequence of pABMX22

GACGCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCAT tactitagatttaaaacttcattttaatttaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcag aactggcttcagcagaggcgagataccaaatactgtccttctagtggtggttaggccaccacttcaagaactctgtagcaccgcctacatacctcggttaatcctgttaccagtggctg gaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggaggcgcacgagggagcttccagggggaaa attgctgagaaagaggagcgtgttctgaactgcgccatcaagtctgtaggcggttgcacgcgttctagagcggccgcttacccgtacgacgtccggactacgcatgataagtcgacctcga actigecagegecetagegecegetetitetetecetitetetegecagetegecggetitegegegetitegeggecatetaaategggggetecetitagggitecgatitagtgtitaegg acticgaccccaaaaaactigaitaaggitgacgtagtgggccatcgcctgatagacggtttttcgccctttgacgttggagtccacgttcttaatagtggactcttgttccaaactgga aaggaagaatatgagtattcaacatttccgtgtcgccctttttttgcggcattttgcccttcctcttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagat CACGAGTGGGTTACATCGAACTGGATCTCAACAGGGGTAAGATCTTTGGCCCCGAAGAACGTTTTCCAATGATGAGGACACTTTTAAAGTTCTGCTATGTGGGCGGGTATTATCCCGTATT aaccatgagtgataacactgcggccaacttacttctgacaacgatcggagcaccgaagcaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctga CTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAACTGACGGATAAGGCGCAGCGGGGTTCGAAACGGGGGGGTTCGTGCACACACGCCAGCTTGGAGCGAACGACCTACACC GCGCAACGCAATTAATGTGAGTTAACTCACTCATTAGGCACCCCAGGCTTTAACACTTTATGCTTCCGGCTCGTATGTGTGGGAATTGTGAGCGGATAACAATTTACCGGTTCTTTAAGGAGGAATT aaaaaatgaaaaagtctttagtcctcaaagcctccgtagccgttgctaccttcgttccgatgcttcgctggtgaggaaaagtcccgtctggtggagaaagagaaaccgtgaaaaaga CCAAITICGCCCTAIAGTGAGTCGTAITTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACAAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCTTTCGCCAGCTGGCGT acaacactcaaccctatctctgttttttttttataagggattttggccgatttcggcctattggttaaaaaatgagctgatttaacaaaatttaacgaaattttaacaaaatattaacgc GTGAGCGAGGAAGGGGGAAGAGCGCCCAATACGCAAACGGCCTCTCCCCGGGGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGGACTGGAAAGCGGGCAGTGA

Fig. 25B

Helper vector for adapter-directed bacterial display

Fig. 26A

Complete vector sequence of pABMXbd-1

CGTIGATATICCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCA CAAGITITATCCGGCCITTATTCACAITCTTGCCCGCCTGATGAATGCTCATCCGGAATTACGTATGAAAGACGGTGAGGTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCA tgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtttat tgagaatatgtttttcgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttcttcgccccgttttcaccatgggcaaatattatacgcaaggcgacaag tciatigctggtttaccggttattgactaccggaagcagtgtgaccgtgtgcttctcaaatgcctgaggccagtttgctcaggctctccccgtggaggtaataattgacgatatgatctttttt gatcaaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgtgtttcgttgcactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcttttt CIGICCITCIAGIGIAGCIGIAGIIAGGCCACCACITCAAGAACICIGIAGCACCGCCIACAIACCICGCICIGCIAAITCCIGIIAACAGGGGCIGCIGCCAGIGGCGAIAAGICGIGICITACCGGGI tgaitacgccaagcgcgttaactttaataaggaggaattaaaaaatgaaatgccgaccgcagccgcgggtttgctgttactggcggcccagccgactatgccgatgaaagctactaaactg gtactgggcaacccgtatgttggctttgaaatgggttacgactggttaggtcgtataaaaggcagcgttgaaaacggtgcatacaaagctcaggggggttcaactgaccgctaaactgggttac ccaatcactgacgacctggacatctacactgggtggcatgggtatggcgtgcagacactaaatccaacgtttatggtaaaaaccacgacgtttctccggtcttcgctggcggtgttgag tacgegatcactectgaaatcgetaceegtetggaataceagtggacgaacaacateggtgacgeacaceateggeactegteeggaggaggtacateeggagggegggestacagaaaaae CATCGCCTGCGAATGAAGATCACAGAGCTGGATAAAGACTTGGAAGTCACCATGCAGCTGCAAGACGTTGGCGGTTGCTAATGAGCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAA aaccetgegettacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaacgcg CGCCCTITGACGTIGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTGGTCTATTGTTTTGAGGGATTTTGCCGATTTCGGCTATTGGTTA atatgtatccgctcatgagacaataaccctgataaatagttgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattctgcggcattttgccttcctgtt GCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTCTGCTTCCGGCTCGTATGTTGTGTGGAAATTGTGAGGAATAACAATTTCACACAGGAAACAGCTATGACCA CCCCGICAAGCICIAAAICGGGGGCICCCIITAGGGIICCGAITTAGIGCITIACGGCACCICGACCCCAAAAAACIITGAITAGGGIGAIGGIICACGIAGIGGGCCAICGCCCIGAIAGACGGIITITI CGCCTCTCCCCGCGCGTTGGCTTCATTAATGCAGCTGGCACGACAGGTTTCCCCGACTGGAAAGCGGGCAGTGA

Fig. 26B