Knowledge-based Agents

Inference: deriving new sentences from existing ones

Declarative approach to system building: TELLing the agent what it needs to know

Implementation level: data structures inside the KB and algorithms that work on them • **Procedural** approach:

encode behaviors directly as program code

Performance measure: Give a value to a task (+1 or -1)

Environment: Grid itself, spawns of things Actuators: Movement, grab, shoot... etc

Sensors: Breeze near a pit, bump when hitting a wall... etc

Entailment: $\alpha \models \beta$, β follows logically from $\alpha \Rightarrow$ derive conclusions: **logical inference**

Properties of inference algorithms: • Soundness (or truth preserving): derive only entailed sentences •

Completeness: derive any sentence that is entailed ullet If KB is true in the real world, then any sentence lpha derived

from **KB** by a sound inference procedure is also true in the real world.

WUMPUS World

Observable? Partially/local perception.

Deterministic? Yes for the actions at hand.

Episodic? Sequential, rewards only come after the actions.

Static? Yes, Wumpus doesn't move, nor the pits.

Discrete or Continuous? Discrete, the map doesn't get bigger/smaller.

Single-agent? Yes, Wumpus doesn't move, and it is single-player.

Forward Chaining: Data-driven reasoning, Prognostics \Rightarrow start from the known data, deriving conclusions from incoming percepts. (Start from **P** to achieve **Q**, in **P** \Rightarrow **Q**)

Backward Chaining: Goal-directed reasoning, Diagnosis \Rightarrow derive answers to specific goals, starting from a query, instead of the known data (P). (Start from Q until satisfies P, in P \Rightarrow Q)

Expert Systems

Advantages: Availability, Reliability, Explainability

Main Tasks: Knowledge acquisition, knowledge representation, reasoning control and explanation

Probability Theory: What exists in the world? Facts; What an agent believes about facts? Degree of belief ∈ [0,1]

Bayes' Rule: $P(b \mid a) = P(a \mid b) * P(b) / P(a)$

Naïve Bayes: Assumes variables are conditionally independent, even when they are not.

Machine Learning

Machine Learning: Give \Rightarrow Data and Output; Receive \Rightarrow Program.

Artificial Intelligence < Machine Learning < Deep Learning;

Machine learning cycle ⇒ Gather Data > Prepare it > Analyse > Train > Test > Deploy

Supervised: inputs and outputs are given; **Classification**, **Regression**

Unsupervised: outputs aren't given; **Clustering, Dimensionality Reduction Reinforcement**: Data given as feedback/rewards/punishment; **Robot, Game AI**

Knowledge Extraction Methodologies:

- KDD (Knowledge Discovery in Databases)
- SEMMA (Sample, Explore, Modify, Model and Access)
- CRISP-DM (Cross-Industry Standard for Data Mining)

Types of attributes:

• Nominal ⇒ ID numbers, eye color, zip codes. (=, ≠)

- Ordinal ⇒ rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}. (<,>)
- Interval ⇒ calendar dates, temperatures in Celsius or Fahrenheit. (+, -)
- Ratio ⇒ temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race). (*, /)

Discrete Attribute: Binary

Continuous Attribute: numbers (rating 1-100)

Data quality problems: • Noise and outliers • Wrong data • Fake data • Missing values • Duplicate data

Data Preprocessing: Aggregation vars • Sampling • Discretization(put values in few categories) and Binarization • Attribute Transformation • Dimensionality Reduction • Feature subset selection • Feature creation;