

Cross-domain Ultrasound Classification

Dr Qingjie Meng
School of Computer Science
University of Birmingham

Outline

- Ultrasound imaging
- Fetal ultrasound classification
- Domain shift in fetal ultrasound screening
- Cross-domain fetal ultrasound classification

Ultrasound imaging

Advantages:

- Portability
- Low cost
- Real-time imaging capability
- No radiation exposure
- ...

Disadvantages:

- Low image quality and details
- •

Ultrasound imaging

Fetal ultrasound classification

Area	Anatomies	
Head	Brain (cb.) Brain (tv.)	Brain view at the level of the cerebellum Brain view at posterior horn of the ventricle
Facial Features	Lips	Coronal view of lips and nasal tip
Heart	4CH 3VV RVOT LVOT	Four chamber view Three vessel view Right ventricular outflow tract Left ventricular outflow tract
Abdominal content	Abdominal Kidneys	Standard abdominal view at stomach level Axial kidneys view
Spine	Spine (sag.) Spine (cor.)	Sagittal spine view Coronal spine view
Limb	Femur	Standard femur view
Others	Profile	Median facial profile

Categories of scan planes required by NHS

- a) Baumgartner, et al. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound. https://ieeexplore.ieee.org/abstract/document/7974824
- b) Sarker, et al. COMFormer:
 Classification of Maternal–Fetal and
 Brain Anatomy Using a Residual
 Cross-Covariance Attention Guided
 Transformer in Ultrasound.
 https://ieeexplore.ieee.org/abstract/document/10239175
- c) Burgos-Artizzu, et al. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes.

https://www.nature.com/articles/s41 598-020-67076-5

Domain shift in ultrasound imaging

Different data distribution with artifacts versus without artefacts

Different acquisition device

Cross-device fetal ultrasound classification

Domain shift

Performance degradation

Cross-device fetal ultrasound classification (model training)

Cross-device fetal ultrasound classification (model test)

Results

Method -	Source domain: Device A			Target domain: Device B		
	F1-score	Recall	Precision	F1-score	Recall	Precision
Source only	0.8782	0.8800	0.8786	0.2455	0.3400	0.3070
ADDA	0.8841	0.8850	0.8860	0.1377	0.2050	0.1623
DANN	0.8321	0.8350	0.8564	0.3390	0.3650	0.3756
MME	0.8876	0.8900	0.8914	0.4398	0.5133	0.4565
Ours	0.8990	0.9000	0.9027	0.7713	0.7717	0.7874

$$F1 = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

TP: True positives

FP: False positives

FN: False negatives

Predicted label

One step further

How about different categories in different domains?

Model training

Results

Methods	T_{Target}^{New}				
	F1-score	Recall	Precision		
Source only	0.6742	0.7050	0.6899		
VGG [84]	0.7039	0.7250	0.7011		
Res-VGG [84, 10]	0.6880	0.6300	0.8728		
Two-step-fair [23]	0.7491	0.7400	0.7644		
Two-step-Unfair [23]	0.6069	0.6150	0.6013		
Multi-task [254]	0.7522	0.7800	0.7955		
DANN [19]	0.5611	0.5050	0.7784		
MME [25]	0.4293	0.3600	0.9595		
MIDNet	0.8383	0.8600	0.8497		