Лабораторная работа №2

Компьютерный практикум по статистическому анализу данных

Николаев Дмитрий Иванович

Содержание

1	1 Цель работы	6
2	2 Выполнение лабораторной работы 2.1 Повторение примеров 2.2 Самостоятельная работа	
3	3 Выводы	55
Сп	Список литературы	56

Список иллюстраций

2.1	Работа с кортежами 1	7
2.2	Работа с кортежами 2	8
2.3	Работа со словарями 1	9
2.4	Работа со словарями 2	9
2.5	Работа с множествами 1	10
2.6	Работа с множествами 2	11
2.7	Работа с множествами 3	12
2.8	Работа с массивами 1	13
2.9	Работа с массивами 2	14
2.10	Работа с массивами 3	14
2.11	Работа с массивами 4	15
2.12	Работа с массивами 5	16
2.13	Работа с массивами 6	17
2.14	Работа с массивами 7	18
2.15	Работа с массивами 8	19
2.16	Работа с массивами 9	20
2.17	Работа с массивами 10	21
2.18	Работа с массивами 11	22
		23
2.20	Задание 2. Примеры операций с множествами разных типов 1	23
2.21	Задание 2. Примеры операций с множествами разных типов 2	24
2.22	Задание 3. Пункт 1 (1)	25
2.23	Задание 3. Пункт 1 (2)	26
2.24	Задание 3. Пункт 2	27
		28
2.26	Задание 3. Пункт 5	28
2.27		29
	Задание 3. Пункт 7 (1)	29
2.29	Задание 3. Пункт 7 (2)	30
2.30	Задание 3. Пункт 8 (1)	31
2.31	Задание 3. Пункт 8 (2)	32
2.32	Задание 3. Пункт 9	33
		33
		34
	· · · · · · · · · · · · · · · · · · ·	35
	· · ·	36
		37 37

2.38	Задание З. Пункт 14. Подпункт 1 (2)	38
	Задание 3. Пункт 14. Подпункт 2	39
	Задание 3. Пункт 14. Подпункт 3	40
	Задание 3. Пункт 14. Подпункт 4	41
2.42	Задание 3. Пункт 14. Подпункт 5	42
2.43	Задание 3. Пункт 14. Подпункт 6 (1)	43
2.44	Задание З. Пункт 14. Подпункт 6 (2)	44
2.45	Задание 3. Пункт 14. Подпункт 7	45
	Задание 3. Пункт 14. Подпункт 8	45
		46
2.48	Задание З. Пункт 14. Подпункт 9 (2)	46
2.49	Задание З. Пункт 14. Подпункт 10	46
2.50	Задание З. Пункт 14. Подпункт 11	47
2.51		47
2.52	Задание З. Пункт 14. Подпункт 12 (2)	48
	Задание 3. Пункт 14. Подпункт 13	48
	Задание З. Пункт 14. Подпункт 14	49
	Задание 4. Квадраты чисел от 1 до 100	49
	Задание 5. Подключение пакета Primes	50
	Задание 5. Печать первых 168 простых чисел	51
2.58	Задание 5. 89 наименьшее простое число и срез с 89 по 99 наи-	
	меньших простых	52
2.59	Задание 6. Пункт 1	52
2.60	Задание 6. Пункт 2	53
	Задание 6. Пункт 3 (1)	53
	Задание 6. Пункт 3 (2)	54

Список таблиц

1 Цель работы

Основная цель работы — изучить несколько структур данных, реализованных в Julia, научиться применять их и операции над ними для решения задач.

2 Выполнение лабораторной работы

Выполняем задания согласно указаниям [1].

2.1 Повторение примеров

Повторим примеры, представленные в лабораторной работе. Работа с кортежами ([2.1,2.2]), словарями ([2.3,2.4]), множествами ([2.5-2.7]) и массивами ([2.8-2.18]).

Рис. 2.1: Работа с кортежами 1

Примеры операций над кортежами:

```
[9]: # длина кортежа х2:
      length(x2)
 [9]: 3
[10]: # обратиться к элементам кортежа х2:
      x2[1], x2[2], x2[3]
[10]: (1, 2.0, "tmp")
[11]: # произвести какую-либо операцию (сложение)
      # с вторым и третьим элементами кортежа х1:
      c = x1[2] + x1[3]
[11]: 5
[12]: # обращение к элементам именованного кортежа х3:
      x3.a, x3.b, x3[2]
[12]: (2, 3, 3)
[14]: # проверка вхождения элементов tmp и 0 в кортеж х2
      # (два способа обращения к методу in()):
      in("tmp", x2), 0 \in x2
[14]: (true, false)
```

Рис. 2.2: Работа с кортежами 2

▼ Словари

Примеры словарей и операций над ними:

```
[15]: # создать словарь с именем phonebook: phonebook = Dict("Иванов И.И." => ("867-5309","333-5544"), "Бухгалтерия" => "555-2368")
[15]\colon Dict{String, Any} with 2 entries:
          "Бухгалтерия" => "555-2368"
"Иванов И.И." => ("867-5309", "333-5544")
       keys(phonebook)
[16]: KeySet for a Dict{String, Any} with 2 entries. Keys:
           "Бухгалтерия"
          "Иванов И.И."
[17]: # вывести значения элементов словаря:
       values(phonebook)
[\,17\,]\colon ValueIterator for a Dict{String, Any} with 2 entries. Values:
           "555-2368"
          ("867-5309", "333-5544")
[18]: # вывести заданные в словаре пары "ключ - значение":
       pairs(phonebook)
[18]: Dict{String, Any} with 2 entries:
"Бухгалтерия" => "555-2368"
"Иванов И.И." => ("867-5309", "333-5544")
       haskey(phonebook, "Иванов И.И."), haskey(phonebook, "Иванов И.Д.")
[21]: (true, false)
```

Рис. 2.3: Работа со словарями 1

```
[21]: # προδερκα δκοκθειμα κπενα 6 cnodaps:
haskey(phonebook, "Meanos M.M."), haskey(phonebook, "Meanos M.A.")

[21]: (true, false)

[23]: # ∂οδαθματω »πενεικα 6 cnoθaps:
phonebook("Cuaposa N.C.") = "555-3344"

[23]: "555-3344"

[25]: # γθαπιατω κπενα α cθεπαιεικα ε κινα πιανεικα με cnoθaps
popt(phonebook, "Meanos M.M.")

[25]: ("867-5309", "333-5544")

[26]: # δοδεθαμιαιεια cnoθapeŭ (φγικιμα merge()):
a = Dict("foo" => 0.0, "bar" => 42.0);
b = Dict("foo" => 1.7, "bar" => 13.0);
merge(a, b), merge(a, b), merge(a, b), merge(a, b), merge(a, b), merge(b, a)
```

Рис. 2.4: Работа со словарями 2

Множества ¶

```
[27]: # создать множество из четырёх целочисленных значений:
      A = Set([1, 3, 4, 5])
[27]: Set{Int64} with 4 elements:
        5
        4
        3
        1
[28]: # создать множество из 11 символьных значений:
      B = Set("abrakadabra")
[28]: Set{Char} with 5 elements:
        'a'
        'd'
        'r'
        'k'
        'b'
[29]: # проверка эквивалентности двух множеств:
      S1 = Set([1,2]);
      S2 = Set([3,4]);
      issetequal(S1,S2)
[29]: false
[30]: S3 = Set([1,2,2,3,1,2,3,2,1]);
      S4 = Set([2,3,1]);
      issetequal(S3,S4)
[30]: true
```

Рис. 2.5: Работа с множествами 1

```
[31]: # объединение множеств:
      C=union(S1,S2)
[31]: Set{Int64} with 4 elements:
        4
        2
        3
        1
[32]: # пересечение множеств:
      D = intersect(S1,S3)
[32]: Set{Int64} with 2 elements:
        2
        1
[33]: # разность множеств:
      E = setdiff(S3,S1)
[33]: Set{Int64} with 1 element:
        3
[34]: # проверка вхождения элементов одного множества в другое:
      issubset(S1,S4)
[34]: true
[35]: # добавление элемента в множество:
      push!(S4, 99)
[35]: Set{Int64} with 4 elements:
        2
        99
        3
        1
```

Рис. 2.6: Работа с множествами 2

```
[35]: # добавление элемента в множество:
push!(S4, 99)

[35]: Set{Int64} with 4 elements:
2
99
3
1

[36]: # удаление последнего элемента множества:
pop!(S4)
```

Рис. 2.7: Работа с множествами 3

Массивы [37]: # создание пустого массива с абстрактным типом: empty_array_1 = [] [37]: Any[] [40]: # создание пустого массива с конкретным типом: $empty_array_2 = (Int64)[]$ $empty_array_3 = (Float64)[]$ [40]: Float64[] [41]: # вектор-столбец: a = [1, 2, 3] [41]: 3-element Vector{Int64}: 2 3 [42]: # вектор-строка: b = [1 2 3] [42]: 1x3 Matrix{Int64}: 1 2 3 [45]: # многомерные массивы (матрицы): A = [[1, 2, 3] [4, 5, 6] [7, 8, 9]][45]: 3x3 Matrix{Int64}: 1 4 7 2 5 8 3 6 9

Рис. 2.8: Работа с массивами 1

Рис. 2.9: Работа с массивами 2

```
[53]: # трёхмерный массив:
      D = rand(4, 3, 2)
[53]: 4x3x2 Array{Float64, 3}:
      [:, :, 1] =
       0.209757 0.148723 0.945074
       0.371645 0.298075 0.576505
       0.272831 0.610135 0.891197
       0.911689 0.798986 0.378871
      [:,:,2] =
       0.874182 0.992663 0.486733
       0.074272 0.106636 0.441866
       0.615368 0.453661 0.41649
       0.431464 0.24774 0.572056
      Примеры массивов, заданных некоторыми функциями через включение:
[54]: # массив из квадратных корней всех целых чисел от 1 до 10:
      roots = [sqrt(i) for i in 1:10]
[54]: 10-element Vector{Float64}:
      1.0
       1.4142135623730951
       1.7320508075688772
       2.0
       2.23606797749979
       2.449489742783178
       2.6457513110645907
       2.8284271247461903
       3.0
       3.1622776601683795
```

Рис. 2.10: Работа с массивами 3

```
[55]: # массив с элементами вида 3*x^2,
      # где х - нечётное число от 1 до 9 (включительно)
     ar_1 = [3*i^2 for i in 1:2:9]
[55]: 5-element Vector{Int64}:
        3
        27
       75
       147
       243
[56]: # массив квадратов элементов, если квадрат не делится на 5 или 4:
      ar_2=[i^2 for i=1:10 if (i^2%5!=0 && i^2%4!=0)]
[56]: 4-element Vector{Int64}:
       1
        9
       49
       81
[57]: # одномерный массив из пяти единиц:
[57]: 5-element Vector{Float64}:
      1.0
       1.0
       1.0
       1.0
       1.0
[58]: # двумерный массив 2х3 из единиц:
     ones(2,3)
[58]: 2x3 Matrix{Float64}:
      1.0 1.0 1.0
       1.0 1.0 1.0
```

Рис. 2.11: Работа с массивами 4

```
# одномерный массив из 4 нулей:
zeros(4)
4-element Vector{Float64}:
0.0
0.0
 0.0
 0.0
# заполнить массив 3х2 цифрами 3.5
fill(3.5,(3,2))
3x2 Matrix{Float64}:
 3.5 3.5
 3.5 3.5
 3.5 3.5
# заполнение массива посредством функции repeat():
repeat([1,2],3,3)
6x3 Matrix{Int64}:
1 1 1
 2 2 2
 1 1 1
 2 2 2
 1 1 1
 2 2 2
repeat([1 2],3,3)
3x6 Matrix{Int64}:
1 2 1 2 1 2
 1 2 1 2 1 2
 1 2 1 2 1 2
```

Рис. 2.12: Работа с массивами 5

```
[64]: # преобразование одномерного массива из целых чисел от 1 до 12
      # в двумерный массив 2х6
      a = collect(1:12)
b = reshape(a,(2,6))
[64]: 2x6 Matrix{Int64}:
       1 3 5 7 9 11
2 4 6 8 10 12
[65]: # транспонирование
      b'
[65]: 6\times2 adjoint(::Matrix{Int64}) with eltype Int64:
        1 2
        3
            4
        5
            6
        7 8
        9 10
       11 12
[66]: # транспонирование
      c = transpose(b)
\hbox{ [66]: 6x2 transpose(::Matrix{Int64}) with eltype Int64:}\\
        1 2
        3 4
        5 6
7 8
        9 10
       11 12
```

Рис. 2.13: Работа с массивами 6

```
[67]: # массив 10х5 целых чисел в диапазоне [10, 20]:
     ar = rand(10:20, 10, 5)
[67]: 10×5 Matrix{Int64}:
      18 19 11 16 15
      12 16 11 17 12
      12 19 20
                 12 14
      11 16 20 15 12
      14 18 10 15 18
      17 18 16 17 12
      19 13 18 10 13
      18 11 12 12 18
      12 20 17
                 20 11
      16 19 10 20 19
[68]: # выбор всех значений строки в столбце 2:
     ar[:, 2]
[68]: 10-element Vector{Int64}:
      19
      16
      19
      16
      18
      18
      13
      11
      20
      19
```

Рис. 2.14: Работа с массивами 7

```
[69]: # выбор всех значений в столбцах 2 и 5:
     ar[:, [2, 5]]
[69]: 10x2 Matrix{Int64}:
      19 15
      16 12
      19 14
      16 12
      18 18
      18 12
      13 13
      11 18
      20 11
      19 19
[70]: # все значения строк в столбцах 2, 3 и 4:
     ar[:, 2:4]
[70]: 10×3 Matrix{Int64}:
      19 11 16
      16 11 17
      19 20 12
      16 20 15
      18 10 15
      18 16 17
      13 18 10
      11 12 12
      20 17 20
      19 10 20
```

Рис. 2.15: Работа с массивами 8

```
[71]: # значения в строках 2, 4, 6 и в столбцах 1 и 5:
     ar[[2, 4, 6], [1, 5]]
[71]: 3x2 Matrix{Int64}:
      12 12
      11 12
      17 12
[72]: # значения в строке 1 от столбца 3 до последнего столбца:
     ar[1, 3:end]
[72]: 3-element Vector{Int64}:
      11
      16
      15
[73]: # сортировка по столбцам:
     sort(ar,dims=1)
[73]: 10×5 Matrix{Int64}:
      11 11 10 10 11
      12 13 10 12 12
      12 16 11 12 12
      14 18 12 15 13
      16 18 16 16 14
      17
         19 17 17
                    15
      18 19 18 17 18
      18 19 20 20 18
      19 20 20 20 19
```

Рис. 2.16: Работа с массивами 9

```
[74]: # сортировка по строкам:
     sort(ar,dims=2)
[74]: 10×5 Matrix{Int64}:
      11 15 16 18 19
      11
         12 12 16 17
      12 12 14 19 20
         12 15 16
      11
                    20
      10
         14
            15 18 18
      12 16 17 17 18
      10 13 13 18 19
      11 12 12 18 18
      11 12 17 20 20
      10 16 19 19 20
[75]: # поэлементное сравнение с числом
     # (результат - массив логических значений):
     ar .> 14
[75]: 10×5 BitMatrix:
        1
          0 1 1
         1 0 1
         1 1 0
                0
         1 1 1
      0
                0
         1
           0 1
                1
      1
        1 1 1 0
      1 0 1 0 0
      1 0 0 0 1
      0 1 1 1 0
      1 1 0 1 1
```

Рис. 2.17: Работа с массивами 10

```
[76]: # возврат индексов элементов массива, удовлетворяющих условию:
      findall(ar .> 14)
[76]: 29-element Vector{CartesianIndex{2}}:
      CartesianIndex(1, 1)
       CartesianIndex(6, 1)
       CartesianIndex(7, 1)
       CartesianIndex(8, 1)
       CartesianIndex(10, 1)
       CartesianIndex(1, 2)
       CartesianIndex(2, 2)
       CartesianIndex(3, 2)
       CartesianIndex(4, 2)
       CartesianIndex(5, 2)
       CartesianIndex(6, 2)
       CartesianIndex(9, 2)
       CartesianIndex(10, 2)
       CartesianIndex(9, 3)
       CartesianIndex(1, 4)
       CartesianIndex(2, 4)
       CartesianIndex(4, 4)
       CartesianIndex(5, 4)
       CartesianIndex(6, 4)
       CartesianIndex(9, 4)
       CartesianIndex(10, 4)
       CartesianIndex(1, 5)
       CartesianIndex(5, 5)
       CartesianIndex(8, 5)
       CartesianIndex(10, 5)
```

Рис. 2.18: Работа с массивами 11

2.2 Самостоятельная работа

1. Выполняем заданные операции с множествами ([2.19])

Рис. 2.19: Задание 1

2. Приведем несколько примером операций с множествами разных типов ([2.20,2.21])

Рис. 2.20: Задание 2. Примеры операций с множествами разных типов 1

```
[98]: Set{Any}()
 [99]: A1 U B1
 [99]: Set{Any} with 15 elements:
          5
          ·w·
          'a'
          'e'
          1
          4
          6
          2
          'j'
          'h'
          'g'
          'k'
          'r'
          '1'
          3
[101]: setdiff(A1, C1)
[101]: Set{Char} with 9 elements:
          ·w·
          'a'
          'e'
          'j'
          'h'
          'k'
          '1'
[102]: issubset(A1, B1)
[102]: false
```

Рис. 2.21: Задание 2. Примеры операций с множествами разных типов 2

- 3. Создадим массивы разными способами (задания написаны на скриншотах).
 - 1) Пункт 1 ([2.22,2.23])
 - 3. Создайте разными способами:

```
[104]: N = 50;

3.1) массив (1, 2, 3, ... N − 1, N), N выберите больше 20;

[126]: В31 = [i for i ∈ range(1, N)];

С31 = collect(1:N);

# Классическим циклом
#=D31 = (Int64)[]
for i ∈ 1:N
    push!(D31, i)
end
print(D31)=#

A31 = [i for i ∈ 1:N]
```

Рис. 2.22: Задание 3. Пункт 1 (1)

```
[126]: 50-element Vector{Int64}:
          2
          3
          4
          5
          6
          7
          8
          9
         10
         11
         12
         13
         39
         40
         41
        42
         43
        44
        45
        46
        47
        48
        49
         50
```

Рис. 2.23: Задание 3. Пункт 1 (2)

2) Пункт 2 ([2.24])

```
[127]: B32 = [i for i ∈ range(N, 1, step=-1)];
       C32 = collect(N:-1:1);
       # Классическим циклом
       #=D32 = (Int64)[]
       for i \in 1:N
           push!(D32, i)
       end
       print(D32)=#
       A32 = [i for i ∈ N:-1:1]
[127]: 50-element Vector{Int64}:
        50
        49
        48
        47
        46
        45
        44
        43
        42
        41
        40
        39
        38
        12
        11
        10
         9
         8
         7
         6
         5
         4
         3
         2
```

Рис. 2.24: Задание 3. Пункт 2

3) Пункт 3 и 4 ([2.25])

```
3.3) MACCUS (1, 2, 3, ..., N - 1, N, N - 1, ..., 2, 1), N BubSeptire Sonsuse 20:

[111]

833_2 = {1 for 1 = range(1, 10);
833_2 = {1 for 1 = range(1-1, 1);
833_2 = {1 for 1 = range(1-1, 1, steps-1)];
823 = cosilect(0:-1, 12);
823 = cosilect(0:-1, 12);
823 = cosilect(0:-1, 12);
824 = cosilect(0:-1, 12);
925 = cosilect(0:-1, 12);
927 = cosilect(0:-1, 12);
928 = cosilect(0:-1, 12);
929 = cosilect(0:-1, 12);
929 = cosilect(0:-1, 12);
929 = cosilect(0:-1, 12);
920 = cosilect(0:-1, 12);
920 = cosilect(0:-1, 12);
921 = cosilect(0:-1, 12);
922 = cosilect(0:-1, 12);
923 = cosilect(0:-1, 12);
924 = cosilect(0:-1, 12);
924 = cosilect(0:-1, 12);
925 = cosilect(0:-1, 12);
```

Рис. 2.25: Задание 3. Пункт 3,4

4) Пункт 5 ([2.26])

3.5) массив, в котором первый элемент массива tmp повторяется 10 раз;

```
[139]: B35 = fill(tmp[1], 10);
    C35 = repeat([tmp[1]], 10);
    A35 = [tmp[1] for i in 1:10]

[139]: 10-element Vector{Int64}:
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    4
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
    7
```

Рис. 2.26: Задание 3. Пункт 5

5) Пункт 6 ([2.27])

3.6) массив, в котором все элементы массива tmp повторяются 10 раз;

```
[151]: B36 = fill(tmp, 10);
       C36_1 = repeat(tmp, 10); # В один столбец (30 x 1)
[152]: C36_2 = repeat(tmp, 1, 10) # B \ cmpo\kappa u \ (3 \times 10)
[152]: 3×10 Matrix{Int64}:
        4 4 4 4 4 4 4 4 4 4
        6 6 6 6 6 6 6 6 6
        3 3 3 3 3 3 3 3 3
[153]: A36 = [tmp for i in 1:10]
[153]: 10-element Vector{Vector{Int64}}:
        [4, 6, 3]
        [4, 6, 3]
        [4, 6, 3]
        [4, 6, 3]
[4, 6, 3]
        [4, 6, 3]
        [4, 6, 3]
        [4, 6, 3]
        [4, 6, 3]
        [4, 6, 3]
```

Рис. 2.27: Задание 3. Пункт 6

6) Пункт 7 ([2.28,2.29])

Рис. 2.28: Задание 3. Пункт 7 (1)

```
[157]: A37 = [tmp[i \% 3 + 1] for i \in 0:30]
[157]: 31-element Vector{Int64}:
         4
         6
         3
         4
         6
         3
         4
         6
         3
         4
         6
         3
         4
         6
         3
         4
         6
         3
         4
         6
         3
         4
         6
         3
         4
```

Рис. 2.29: Задание 3. Пункт 7 (2)

7) Пункт 8 ([2.30,2.31])

Рис. 2.30: Задание 3. Пункт 8 (1)

```
[169]: A38 = (Int64)[]
for i in 1:10
    push!(A38, tmp[1])
end
for i in 1:20
    push!(A38, tmp[2])
end
for i in 1:30
    push!(A38, tmp[3])
end
A38
```

```
[169]: 60-element Vector{Int64}:
         4
         4
         4
         4
         4
         4
         4
         4
         4
         6
         6
         6
         3
          3
         3
         3
         3
          3
         3
         3
         3
         3
         3
```

Рис. 2.31: Задание 3. Пункт 8 (2)

8) Пункт 9 ([2.32])

```
3.9) массив из элементов вида 2<sup>mol()</sup>, ( = 1, 2, 3, где элемент 2<sup>mol()</sup> встречается 4 разж посчитайте в полученном векторе, сколько раз встречается цифра 6, и выведите это элемение на экраи:

[1899] 12 - element Vector{Inf64}:

[1891] 12 - element Vector{Inf64}:

[1891] 13 - element Vector{Inf64}:

[1891] 14 - element Vector{Inf64}:

[1891] 15 - element Vector{Inf64}:

[1891] 16 - element Vector{Inf64}:

[1892] 17 - element Vector{Inf64}:

[1893] 18 - element Vector{Inf64}:

[1893] 18 - element Vector{Inf64}:

[1894] 18 - element Vector{Inf64}:

[1895] 18 - element Vector{Inf64}:

[1896] 18 - element Vector{Inf64}:

[1897] 18 - element Vector{Inf64}:

[1897] 18 - element Vector{Inf64}:

[1898] 18 - element Vector{Inf64}:

[1898] 18 - element Vector{Inf64}:

[1898] 18 - element Vector{Inf64}:

[1899] 18 - element Vector{Inf64}:

[1890] 18 - ele
```

Рис. 2.32: Задание 3. Пункт 9

9) Пункт 10 ([2.33])

```
3.10) вектор значений y=e^x\cos(x) в точках x=3,3.1,3.2,\ldots,6, найдите среднее значение y;
[203]: A310 = [exp(x)*cos(x) for x \in 3:0.1:6]
[203]: 31-element Vector{Float64}: -19.884530844146987
           -22.178753389342127
           -24.490696732801293
-26.77318244299338
           -28.969237768093574
-31.011186439374516
           -32.819774760338504
           -34.30336011037369
-35.35719361853035
           -35.86283371230767
-35.68773248011913
           -34.68504225166807
           -32.693695428321746
            25.046704998273004
            42.09920106253839
61.99663027669454
          84.92906736250268
111.0615860420258
           140.5250750527875
           173.40577640857734
209.73349424783467
           249.46844055885668
292.4867067371223
           387.36034029093076
[204]: Avg_310 = sum(A310)/length(A310)
[204]: 53.11374594642971
```

Рис. 2.33: Задание 3. Пункт 10

10) Пункт 11 ([2.34])

```
3.11) вектор вида (x^i, y^j), x=0.1, i=3,6,9,\ldots,36, y=0.2, j=1,4,7,\ldots,34;
[209]: x = 0.1
       A311 = [(x^i, y^j) for i ∈ 3:3:36 for j ∈ 1:3:34] # j - внутренний цикл
[209]: 144-element Vector{Tuple{Float64, Float64}}:
        (0.00100000000000000000, 0.00160000000000000000)
         (0.0010000000000000000, 1.28000000000000006e-5)
         (0.0010000000000000000, 1.02400000000000006e-7)
         (0.0010000000000000000, 8.1920000000000005e-10)
         (0.0010000000000000000, 6.5536000000000055e-12)
         (0.001000000000000000000, 5.2428800000000056e-14)
         (0.0010000000000000002, 4.194304000000005e-16)
         (0.00100000000000000000, 3.3554432000000044e-18)
         (0.0010000000000000000, 2.684354560000004e-20)
         (0.0010000000000000000, 2.147483648000004e-22)
         (0.00100000000000000002, 1.7179869184000035e-24)
         (1.00000000000000004e-6, 0.2)
        (1.0000000000000002e-36, 1.2800000000000006e-5)
         (1.0000000000000002e-36, 1.02400000000000006e-7)
         (1.0000000000000002e-36, 8.192000000000005e-10)
         (1.0000000000000002e-36, 6.5536000000000055e-12)
         (1.0000000000000002e-36, 5.2428800000000056e-14)
         (1.0000000000000002e-36, 4.194304000000005e-16)
         (1.000000000000002e-36, 3.3554432000000044e-18)
(1.000000000000002e-36, 2.684354560000004e-20)
         (1.0000000000000002e-36, 2.147483648000004e-22)
         (1.000000000000002e-36, 1.7179869184000035e-24)
```

Рис. 2.34: Задание 3. Пункт 11

11) Пункт 12 ([2.35])

```
3.12) вектор с элементами \frac{2^i}{i}, i=1,2,\ldots,M, M=25;
```

```
[210]: M = 25
       A312 = [2^i / i \text{ for } i \text{ in } 1:M]
[210]: 25-element Vector{Float64}:
              2.0
              2.0
              2.66666666666665
             4.0
              6.4
             10.6666666666666
             18.285714285714285
             32.0
             56.88888888888888
            102.4
            186.1818181818182
            341.33333333333333
           630.1538461538462
          1170.2857142857142
          2184.5333333333333
          4096.0
          7710.117647058823
         14563.55555555555
         27594.105263157893
         52428.8
         99864.38095238095
        190650.18181818182
        364722.0869565217
        699050.666666666
              1.34217728e6
```

Рис. 2.35: Задание 3. Пункт 12

12) Пункт 13 ([2.36])

3.13) вектор вида ("fn1", "fn2", ..., "fnN"), N = 30;

```
[212]: N = 30
       A313 = ["fn$i" for i in 1:N]
[212]: 30-element Vector{String}:
        "fn1"
        "fn2"
        "fn3"
        "fn4"
        "fn5"
        "fn6"
        "fn7"
        "fn8"
        "fn9"
        "fn10"
        "fn11"
        "fn12"
        "fn13"
        "fn19"
        "fn20"
        "fn21"
        "fn22"
        "fn23"
        "fn24"
        "fn25"
        "fn26"
        "fn27"
        "fn28"
        "fn29"
        "fn30"
```

Рис. 2.36: Задание 3. Пункт 13

13) Пункт 14:

• Подпункт 1 ([2.37,2.38])

Рис. 2.37: Задание 3. Пункт 14. Подпункт 1 (1)

```
[224]: y = [rand(0:999) for i in 1:n]
[224]: 250-element Vector{Int64}:
         752
         859
          49
         809
         904
         814
         511
         168
          40
         411
         447
          86
         448
         987
         285
         804
         612
         602
         410
          36
         677
         887
         614
          92
         391
```

Рис. 2.38: Задание 3. Пункт 14. Подпункт 1 (2)

• Подпункт 2 ([2.39])

```
– сформируйте вектор (y_2 - x_1, \dots, y_n - x_{n-1});
[225]: y_{minus_x} = [y[i] - x[i-1] \text{ for } i \in 2:n]
[225]: 249-element Vector{Int64}:
          555
         -854
         -140
          373
          569
         -457
         -785
         -374
         -281
         -270
          40
         -134
          761
           :
          237
         -634
           86
          205
          371
          351
         -210
          -79
          688
          292
         -847
         -107
```

Рис. 2.39: Задание 3. Пункт 14. Подпункт 2

• Подпункт 3 ([2.40])

```
– сформируйте вектор (x_1+2x_2-x_3, x_2+2x_3-x_4, \dots, x_{n-2}+2x_{n-1}-x_n);
[226]: x1_plus_2x2_minus_x3 = [x[i] + 2*x[i+1] - x[i+2]  for i \in 1:n-2]
[226]: 248-element Vector{Int64}:
        1161
        2270
        1766
         53
        1228
        2460
        1089
        1081
        2080
         227
        1064
          28
        1026
        1245
        1870
        1948
        1301
         810
        103
        -205
        1559
         832
         -96
        1702
        1638
```

Рис. 2.40: Задание 3. Пункт 14. Подпункт 3

• Подпункт 4 ([2.41])

```
– сформируйте вектор (\frac{\sin(y_1)}{\cos(x_2)},\frac{\sin(y_2)}{\cos(x_3)},\dots,\frac{\sin(y_{n-1})}{\cos(x_n)})
[227]: siny_divide_cosx = [sin(y[i-1]) / cos(x[i]) for i \in 2:n]
[227]: 249-element Vector{Float64}:
          4.440762796604472
          -1.0031818070105352
           0.9561508827440894
          -1.000182463515962
          -0.7591972657062622
           0.7056098258205616
           1.1435236257292338
          -1.5102475163473301
           0.9883937960184693
          -1.2067373827245433
          -1.1250376112108684
         -10.998864247308298
          -1.5481986411729924
          11.86408519204383
          -3.5315825458429986
          4.747080802129639
          -2.641994690524218
          -0.743544523690401
          -1.606294475559757
          -2.3130027041569248
           2.1028939413502497
         -75.48444446193533
          -0.9296670498176479
          17.096364201961297
           6.538592779718017
```

Рис. 2.41: Задание 3. Пункт 14. Подпункт 4

• Подпункт 5 ([2.42])

```
– вычислите \sum_{i=1}^{n-1} rac{e^{-x_{i+1}}}{x_i+10}
[228]: S314_array = [\exp(-x[i+1])/(x[i]+10) for i \in 1:n-1]
[228]: 249-element Vector{Float64}:
         0.0
         0.0
         2.5574756191608085e-234
         7.322420557008654e-110
         0.0
         0.0
         1.6537056299290693e-183
         6.931906024237895e-304
         5.81459356e-315
         1.448503075316893e-23
         3.1075884977133967e-255
         6.617347406166209e-67
         0.0
         0.0
         1.616390463e-315
         2.3989129343706285e-180
         1.1424537443123088e-103
         9.876624102466392e-29
         2.1120702587699017e-109
         0.0
         4.910993186809479e-90
         6.871167586659815e-143
         0.0
         5.547301870445639e-220
         2.0355190089610133e-132
[229]: S314 = sum(S314_array)
[229]: 0.0029792248348674754
```

Рис. 2.42: Задание 3. Пункт 14. Подпункт 5

• Подпункт 6 ([2.43,2.44])

– выберите элементы вектора у, значения которых больше 600, и выведите на экран; определите индексы этих элементов;

```
[235]: y_blgger_than 600 = [y_ for y_ ∈ y if y_ > 600]

[235]: 113-element Vector{Int64}:

752

859

809

904

814

907

664

629

778

870

690

835

622

...

759

837

852

630

887

987

884

6112

602

677

887

614
```

Рис. 2.43: Задание 3. Пункт 14. Подпункт 6 (1)

```
[236]: indexes_y_bigger_than_600 = findall(y .> 600)
[236]: 113-element Vector{Int64}:
          1
          2
          4
          5
          6
         14
         15
         16
         17
         18
         19
         20
         21
        227
        229
        232
        233
        235
        239
        241
        242
        243
        246
        247
        248
```

Рис. 2.44: Задание 3. Пункт 14. Подпункт 6 (2)

• Подпункт 7 ([2.45])

Рис. 2.45: Задание 3. Пункт 14. Подпункт 7

• Подпункт 8 ([2.46])

Рис. 2.46: Задание 3. Пункт 14. Подпункт 8

• Подпункт 9 ([2.47,2.48])

```
— определите, сколько элементов вектора у отстоят от максимального значения не более, чем на 200;

[241]: y_max = maximum(y)

[242]: y_dist_less_than_maxy_by200 = [y_ for y_ in y if abs(y_ - y_max) <= 200]

[242]: 54-element Vector{Int64}:

859

809

904

814

907

870

835

852

803

924

798

881

866

.:

952

836

934

978

941

950

837

852
```

Рис. 2.47: Задание 3. Пункт 14. Подпункт 9 (1)

```
[243]: number_of_y_dist_less_than_maxy_by200 = length(y_dist_less_than_maxy_by200)
[243]: 54
```

Рис. 2.48: Задание 3. Пункт 14. Подпункт 9 (2)

• Подпункт 10 ([2.49])

– определите, сколько чётных и нечётных элементов вектора x;

```
[246]: number_of_odd_x = count(i->(i % 2 == 1), x)
[246]: 130
[248]: number_of_even_x = length([i for i ∈ x if i % 2 == 0])
[248]: 120
```

Рис. 2.49: Задание 3. Пункт 14. Подпункт 10

• Подпункт 11 ([2.50])

- определите, сколько элементов вектора x кратны 7;

```
[249]: number_of_x_divisible_by_7 = length([x_ for x_ ∈ x if x_ % 7 == 0])

[249]: 39
```

Рис. 2.50: Задание 3. Пункт 14. Подпункт 11

• Подпункт 12 ([2.51,2.52])

Рис. 2.51: Задание 3. Пункт 14. Подпункт 12 (1)

```
[262]: #x_sorted_by_indexes_of_y_ascending_order = [x[i] for i \in y_ascending_order_indexes]
x_sorted_by_indexes_of_y_ascending_order = x[sortperm(y)]

[262]: 250-element Vector{Int64}:
307
40
330
285
664
756
692
102
96
710
831
733
949
:
:
251
704
350
332
739
593
993
700
294
919
769
884
```

Рис. 2.52: Задание 3. Пункт 14. Подпункт 12 (2)

• Подпункт 13 ([2.53])

```
– выведите элементы вектора x, которые входят в десятку наибольших (top-10)
```

Рис. 2.53: Задание 3. Пункт 14. Подпункт 13

• Подпункт 14 ([2.54])

```
- сформируйте вектор, содержащий только уникальные (неповторяющиеся) элементы вектора x

[259]: x_uunique = unique(x)

[259]: 228-element Vector{Int64}:

304
903
949
531
245
968
953
414
692
717
46
582
146
...
919
718
407
231
59
246
756
199
322
939
498
```

Рис. 2.54: Задание 3. Пункт 14. Подпункт 14

4. Создадим массив квадратов от 1 до 100 ([2.55])

297

Рис. 2.55: Задание 4. Квадраты чисел от 1 до 100

5. Работа с пакетом Primes ([2.56-2.58])

```
5. Подключите пакет Primes (функции для вычисления простых чисел)

Стенерируйте массив myprimes, в котором будут храниться первые 168 простых чисел. Определите 89-е наименьшее простое число. Получите срез массива с 89-го до 99-го заемент включительно, содержащий наименьшие простые числа.

[261] Import Pkg
Pkg. add ("Primes")

using Primes

| Updating registry at "C:\Users\Users\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\under
```

Рис. 2.56: Задание 5. Подключение пакета Primes

```
myprimes = primes(1000)
[264]:
[264]: 168-element Vector{Int64}:
           2
           3
           5
           7
          11
          13
          17
          19
          23
          29
          31
          37
          41
         919
         929
         937
         941
         947
         953
         967
         971
         977
         983
         991
         997
```

Рис. 2.57: Задание 5. Печать первых 168 простых чисел

```
myprimes[89]
[265]:
[265]: 461
       myprimes[89:99]
[266]:
[266]: 11-element Vector{Int64}:
        461
        463
        467
        479
        487
        491
        499
        503
        509
        521
        523
```

Рис. 2.58: Задание 5. 89 наименьшее простое число и срез с 89 по 99 наименьших простых

- 6. Вычислим различные выражения:
 - 1) Пункт 1 ([2.59])
 - 6. Вычислите следующие выражения:

6.1)
$$\sum_{i=10}^{100} (i^3 + 4i^2)$$

```
[267]: S61 = sum([i^3 + 4*i^2 for i ∈ 10:100])

[267]: 26852735
```

Рис. 2.59: Задание 6. Пункт 1

2) Пункт 2 ([2.60])

6.2)
$$\sum_{i=1}^{M} (\frac{2^i}{i} + \frac{3^i}{i^2})$$
, rge $M = 25$ [270]: S62 = reduce(+, [2^i / i + 3^i / i^2 for i \in 1:M])

[270]: 2.1291704368143802e9

Рис. 2.60: Задание 6. Пункт 2

3) Пункт 3 ([2.61,2.62])

6.3)
$$1 + \frac{2}{3} + (\frac{2}{3}\frac{4}{5}) + (\frac{2}{3}\frac{4}{5}\frac{6}{7}) + \dots + (\frac{2}{3}\frac{4}{5}\frac{6}{10}) + \dots + (\frac{2}{3}\frac{4}{5}\frac{6}{10})$$

```
[279]: [1 - 1//i for i ∈ 3:2:39]
[279]: 19-element Vector{Rational{Int64}}:
          2//3
          4//5
          6//7
          8//9
         10//11
         12//13
         14//15
         16//17
         18//19
         20//21
         22//23
         24//25
         26//27
         28//29
         30//31
         32//33
         34//35
         36//37
         38//39
```

Рис. 2.61: Задание 6. Пункт 3 (1)

```
[280]: cumprod([1 - 1//i \text{ for } i \in 3:2:39])
\hbox{\tt [280]: 19-element Vector{Rational{Int64}}:}
                   2//3
                   8//15
                  16//35
                 128//315
                 256//693
                1024//3003
                2048//6435
               32768//109395
               65536//230945
              262144//969969
             524288//2028117
             4194304//16900975
             8388608//35102025
            33554432//145422675
            67108864//300540195
         2147483648//9917826435
         4294967296//20419054425
        17179869184//83945001525
        34359738368//172308161025
[288]: S63 = 1 + reduce(+, cumprod([1 - 1/i for i \in 3:2:39]))
[288]: 6.976346137897621
```

Рис. 2.62: Задание 6. Пункт 3 (2)

3 Выводы

В ходе выполнения лабораторной работы я изучил структуры данных, реализованные в Julia, и операция над ними для решения практических задач.

Список литературы

1. Королькова А. В., Кулябов Д. С. Лабораторная работа № 2. Структуры данных [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/plug infile.php/2231341/mod_resource/content/2/002-lab_data-types.pdf.