Dependências funcionais e normalização

- ▶ 1^a Forma Normal
- ▶ 2ª Forma Normal
- ▶ Objectivos na Concepção de Bases de Dados
- ► Dependências funcionais
- ► Decomposição
- ► Forma Normal de Boyce-Codd
- ► 3^a Forma Normal
- Dependências multi-valor
- ▶ 4^a Forma Normal
- ► Visão geral sobre o processo de concepção

2012/11/07 (v68 221 / 299

223/299

1^a Forma Normal

- ► Um esquema R diz-se na 1ª forma normal se:
 - os domínios de todos os seus atributos são atómicos;
 - não pode haver repetição de registos.
- Um domínio é atómico se os seus elementos forem unidades indivisíveis.

Exemplo de domínios não atómicos:

- Atributos "naturalmente" compostos: Nomes, Endereços, etc.
- Atributos com várias partes: Números de telefones com indicativos; B.I. com o número de validação.
- Os valores não atómicos complicam o armazenamento e encorajam repetições desnecessárias de dados.

Daqui para a frente, assume-se que todas os esquemas de relações estão já na 1ª Forma Normal.

2012/11/07 (v68 222 / 299

2^a Forma Normal

- ► Um esquema R diz-se na 2ª forma normal se:
 - está na 1^a forma normal;
 - cada atributo não chave tem de depender da chave da tabela na totalidade, e não apenas de uma parte dessa chave.
 - se a chave primária é simples (um só atributo), então a relação está na 2ª forma normal.
 - se a chave primária é composta (mais do que um atributo) e existe um atributo que depende somente de parte da chave primária, então a relação não está na 2ª forma normal.

Por exemplo:

Daqui para a frente, assume-se que todas os esquemas de relações estão já na 2ª Forma Normal.

Objectivos na Concepção de Bases de Dados

Pretendem-se encontrar "bons" conjuntos de esquemas de relações para armazenar os dados.

Um "má" concepção pode levar a:

- Repetição de dados.
- Inconsistências devidas às operações de introdução, alteração, apagar de dados.
- ► Impossibilidade de representar certos tipos de informação.
- ► Dificuldade nas verificações de restrições de integridade.

Objectivos na Concepção:

- Evitar dados redundantes.
- Garantir que as relações relevantes sobre dados podem ser representadas.
- ► Facilitar a verificação de restrições de integridade.

2012/11/07 (v68 224 / 299

Exemplo

Considere o esquema simples:

N.S.S.	Nome	Classificação	Vencimento/h	Horas Trab.
123-22	Abel	8	10	40
231-31	Silva	8	10	30
131-24	Sousa	5	7	30
434-26	Guiomar	5	7	32
612-67	Miguel	8	10	40

Vencimento/h depende de Classificação: este tipo de dependências (funcionais) entre atributos levanta problemas de:

- ▶ redundância:
 - Desperdiça-se espaço de armazenamento.
 - Dá azo a inconsistências.
 - ► Complica bastante a verificação da integridade dos dados.
- ► Dificuldade de representar certa informação
 - Não se pode armazenar informação de uma nova categoria de Classificação/Vencimento sem que haja um funcionário nessa categoria.

Problemas com a Decomposição de Esquemas de Relações

Ao fazer-se uma decomposição é necessário analisar se:

- ▶ a decomposição é necessária?
- ▶ a decomposição cria novos problemas?
- Formas normais
- ▶ Decomposição sem perdas
- Preservação das relações:
 - as restrições mantêm-se sem que seja necessário fazer junções entre relações;
 - ▶ as restrições verificam-se nas relações "menores".

Decomposição de Esquemas de Relações

As dependências funcionais podem servir para identificar, e para indicar o caminho para uma melhor concepção global

Substituir uma (ou mais) relações por um conjunto de relações "mais pequenas"

N.S.S.	Nome	Classificação	Horas Trab.
123-22	Abel	8	40
231-31	Silva	8	30
131-24	Sousa	5	30
434-26	Guiomar	5	32
612-67	Miguel	8	40

Classificação	Vencimento/h
8	10
5	7

menos redundância; mais fácil manter a consistência dos dados; é possível acrescentar novos pares Classificação/Vencimento.

2012/11/07 (v68 226 / 299

Exemplo

Considere o esquema simples:

Amigos = (nome, telefone, codigoPostal, localidade)

nome	telefone	codigoPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

- Redundância: os valores de codigoPostal e localidade são repetidos para cada amigo com um mesmo código postal.
 - ► Desperdiça-se espaço de armazenamento.
 - Dá azo a inconsistências.
 - ► Complica bastante a verificação da integridade dos dados.
- ► Dificuldade de representar certa informação.
 - Não se pode armazenar informação do código postal de uma localidade sem que hajam amigos dessa localidade. Podem usar-se valores nulos, mas estes são difíceis de gerir.

Decomposição

Decompor o esquema Amigos em:

Amigos1 = (nome, telefone, codigoPostal)
CPs = (codigoPostal, localidade)

Todos os atributos do esquema original (R) devem aparecer na decomposição em (R_1 , R_2):

$$R = R_1 \cup R_2$$

Definição (Decomposição sem perdas)

Para todas as (instâncias de) relações r que "façam sentido" sobre o esquema R:

$$r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r)$$

Note-se que o "façam sentido" depende do problema concreto.

2012/11/07 (v68 229 / 299

Exemplo de decomposição sem perdas

Decomposição de Amigos em Amigos1 e CPs:

		r	
nome	telef.	CPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

$\Pi_{\text{Amigos}1}(r)$				
nome	telef.	CPostal		
Maria 1111 2815				
João	2222	1000		
Pedro	1112	1100		
Ana	3333	2815		

$\Pi_{\mathrm{CPs}}(r)$			
CPostal	localidade		
2815	Caparica		
1000	Lisboa		
1100	Lisboa		

$$\Pi_{\text{Amigos 1}}(r) \bowtie \Pi_{\text{CPs}}(r) = r$$

2012/11/07 (v68 230 / 299

Exemplo de decomposição com perdas

Decomposição de CPs em: CP1 = (CPostal) e Locs = (localidade)

	r
CPostal	localidade
2815	Caparica
1000	Lisboa
1100	Lisboa

	$\Pi_{\mathrm{CP1}}(r) \bowtie \Pi_{\mathrm{Locs}}(r)$				
	CPostal	localidade			
	2815	Caparica			
<u> </u>	2815	Lisboa			
	1000	Caparica			
	1000	Lisboa			
	1100	Caparica			
	1100	Lisboa			

$\Pi_{\text{CP1}}(r)$	
CPostal	
2815	
1000	
1100	

$\Pi_{\text{Locs}}(r)$
localidade
Caparica
Lisboa

- ▶ Perdeu-se a informação de qual os CPs das localidades!
- Decompor parecia bom para evitar redundâncias.
- ► Mas decompor demais pode levar à perda de informação.

Outro exemplo com perdas

Decomposição de Amigos em: Amigos2 = (nome,telefone,localidade) e Loc = (localidade,CPostal).

		r	
nome	telef.	CPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

	$\Pi_{\text{Amigos2}}(r) \bowtie \Pi_{\text{Loc}}(r)$				
	nome	telef.	CPostal	localidade	
	Maria	1111	2815	Caparica	
≠	João	2222	1000	Lisboa	
7	João	2222	1100	Lisboa	
	Pedro	1112	1000	Lisboa	
	Pedro	1112	1100	Lisboa	
	Ana	3333	2815	Caparica	

$\Pi_{\text{Amigos}2}(r)$			
nome	telef.	localidade	
Maria	1111	Caparica	
João	2222	Lisboa	
Pedro	1112	Lisboa	
Ana	3333	Caparica	

$\Pi_{\mathrm{Loc}}(r)$		
localidade	CPostal	
Caparica	2815	
Lisboa	1000	
Lisboa	1100	

- ▶ Perdeu-se a informação de qual é o CP do João (e do Pedro)!
- ► O que torna esta decomposição diferente da primeira?

Temos de ter critérios que nos permitam decompor uma relação, sem perda de informação.

Objectivo: um bom conjunto de relações

Este objectivo pode ser atingido utilizando o seguinte "algoritmo".

- ► Decidir se o esquema R já está num "bom" formato.
- ► Se não estiver, decompor R num conjunto de esquemas $\{R_1, R_2, \dots, R_n\}$ tal que:
 - ► cada um deles está num "bom" formato:
 - ► A decomposição é sem perdas.
- ► A teoria é baseada em:
 - ► Dependências funcionais;
 - Dependências multi-valor

2012/11/07 (v68 233 / 299

Dependências Funcionais (continuação)

▶ De forma equivalente. A dependência funcional $\alpha \rightarrow \beta$ é verdadeira em R sse

$$\forall_{a \in \text{dom}(\alpha)} \Pi_{\beta}(\sigma_{\alpha=a}(r))$$

tem no máximo 1 tuplo.

► Exemplo: Seja r(A, B):

Α	В
1	4
1	5
3	7

Nesta instância, $A \rightarrow B$ não é verdadeira, mas $B \rightarrow A$ é.

Dependências funcionais

- ► Restrições sobre o conjunto de relações possíveis.
- Exige que os valores num conjunto de atributos determinem univocamente os valores noutro conjunto de atributos.
- ► São uma generalização da noção de chave.

Definição (Dependência Funcional)

Seja R o esquema duma relação e $\alpha \subseteq R$ e $\beta \subseteq R$. A dependência funcional:

$$\alpha \to \beta$$

é verdadeira em R sse, para toda a relação possível (i.e. "que faça sentido") r(R), sempre que dois tuplos t_1 e t_2 de r têm os mesmos valores em α , também têm os mesmos valores em β :

$$\forall_{t_1,t_2\in r(R)}$$
 $t_1[\alpha]=t_2[\alpha]\Rightarrow t_1[\beta]=t_2[\beta]$

2012/11/07 (v68 234 / 299

Dependências Funcionais

	Α	В	С	D
	a ₁	<i>b</i> ₁	C ₁	d ₁
	a ₁	<i>b</i> ₁	C ₁	d_2
ſ	a ₁	<i>b</i> ₂	<i>C</i> ₂	d_1
	a ₂	<i>b</i> ₁	<i>C</i> ₃	d_2

$$AB \rightarrow C$$
 $AB \not\rightarrow D$

- ► AB não é uma chave
- A verificação para uma dada instância da relação não valida uma dependência funcional
- ► As dependências funcionais são restrições de integridade que tem de ser satisfeitas por todos os valores possíveis no esquema de relações.

Dependências Funcionais

Casos extremos

► {} → α

Só se verifica se na relação r todos os tuplos têm o mesmo valor em α (nunca deve ser)

permitido).

 $\bullet \ \alpha \rightarrow \{\}$

Verifica-se para toda a relação r e conjunto de atributos α .

Dependência Trivial Diz-se que uma dependência é <u>trivial</u> se é satisfeita por todas as relações (quer façam sentido ou não) sobre um esquema.

Por exemplo:

 $\begin{array}{ll} nomeCliente, numEmprestimo \ \rightarrow \ nomeCliente \\ nomeCliente \ \rightarrow \ nomeCliente \end{array}$

Em geral, $\alpha \to \beta$ é trivial se $\beta \subseteq \alpha$.

2012/11/07 (v68) 237 / 299

Uso de Dependências Funcionais

Usam-se dependências funcionais para:

► testar (instâncias de) relações, para verificar se "fazem sentido" de acordo com as dependências funcionais.

Definição (Satisfação de Dependência Funcional)

Se uma relação r torna verdadeiras todas as dependências dum conjunto F, então diz-se que r satisfaz F.

Especificar restrições sobre as relações.

Definição (Dependência Funcional Verdadeira)

Diz-se que F é verdadeira em R se todas as relações (possíveis) sobre R satisfazem as dependências em F.

Nota: Uma instância particular duma relação pode satisfazer uma dependência funcional mesmo que a dependência não seja verdadeira no esquema. Por exemplo, uma instância particular (em que, por acaso, nenhum empréstimo tenha mais que um cliente) satisfaz: numEmprestimo → nomeCliente.

Dependências Funcionais

Chaves, são dependências funcionais.

- ► K é uma super-chave no esquema R sse $K \rightarrow R$.
- ► K é uma chave candidata em R sse $K \to R$, e para nenhum $\alpha \subset K$, $\alpha \to R$.

As dependências funcionais permitem expressar restrições, que não podem ser expressas somente através dos conceitos de chave.

Por exemplo, em (nomeCliente, numEmprestimo, nomeBalcao, quantia).

► Espera-se que as seguintes dependências sejam verdadeiras:

 $\begin{array}{ll} \text{numEmprestimo} & \rightarrow & \text{quantia} \\ \text{numEmprestimo} & \rightarrow & \text{nomeBalcao} \end{array}$

Mas não se espera que a dependência abaixo seja verdadeira:

numEmprestimo → nomeCliente

2012/11/07 (v68 238 / 299

Fecho de um Conjunto de Dependências Funcionais

Dado um conjunto F de dependências, há outras dependências que são logicamente implicadas por F. Por exemplo, se $A \to B$ e $B \to C$, então, ter-se-á $A \to C$.

Definição (Fecho de *F*)

Ao conjunto de todas as dependências funcionais implicadas por F chama-se **fecho** de F (denotado por F⁺).

Podem encontrar-se todas as dependências em F^+ por aplicação dos Axiomas de Armstrong.

Definição (Axiomas de Armstrong)

• Se $\beta \subseteq \alpha$, então $\alpha \to \beta$

(reflexividade)

• Se $\alpha \to \beta$, então $\gamma \alpha \to \gamma \beta$

.

(aumento)

• Se $\alpha \to \beta$, e $\beta \to \gamma$, então $\alpha \to \gamma$

(transitividade)

Estes regras são:

- coerentes, isto é, só geram dependências que pertencem a F+
- completas, isto é, geram todas as dependências pertencentes a F⁺

239/299

2012/11/07 (v68) 240 / 299

Exemplo

Sejam

$$R = (A, B, C, G, H, I)$$

е

$$F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}.$$

Podemos obter alguns dos elementos de F^+ , aplicando os axiomas de Armstrong.

- ▶ $A \rightarrow H$, por transitividade a partir de $A \rightarrow B$ e $B \rightarrow H$.
- ▶ $AG \rightarrow I$, por aumento de $A \rightarrow C$ com G, obtendo-se $AG \rightarrow CG$, de seguida, por transitividade com $CG \rightarrow I$.
- ► CG → HI, por aumento de CG → I inferindo CG → CGI, de seguida por aumento de CG → H inferindo CGI → HI, e depois transitividade.

2012/11/07 (v6l 241 / 299

Construção de F⁺

Para calcular o fecho de um conjunto de dependências *F* podemos aplicar o seguinte algoritmo:

$$F^+ := F$$
repete

para cada uma das dependências funcionais $f \in F^+$ faz

aplicar reflexividade e aumento em f

adicionar os resultados a F^+

para cada par de dependências $f_1, f_2 \in F^+$ faz

se f_1 e f_2 podem combinar-se por transitividade

então adicionar a dependência resultante a F^+

até que F^+ não mude mais

NOTA: Veremos, mais tarde, outro procedimento para esta problema

2012/11/07 (v68 242 / 299

Fecho de Dependências

Podemos facilitar a construção de F^+ usando mais algumas regras coerentes:

► Se
$$\alpha \to \beta$$
 e $\alpha \to \gamma$, então $\alpha \to \beta \gamma$ (união)

► Se
$$\alpha \to \beta \gamma$$
, então $\alpha \to \beta$ e $\alpha \to \gamma$ (decomposição)

► Se
$$\alpha \to \beta$$
 e $\gamma\beta \to \delta$, então $\alpha\gamma \to \delta$ (pseudo-transitividade)

Estas regras adicionais podem-se derivar dos Axiomas de Armstrong.

Fecho de um Conjunto de Atributos

Dado um conjunto de atributos α , define-se o fecho de α sobre F.

Definição (Fecho de um Conjunto de Atributos)

Dado um conjunto de dependências funcionais F, e $\alpha \subseteq R$, define-se o fecho de α sobre F, denotado por α^+ , como sendo o conjunto de atributos que dependem funcionalmente de α dado F, isto \acute{e} :

$$\alpha \to \beta \in F^+$$
 sse $\beta \subseteq \alpha^+$

Algoritmo para calcular α^+ .

$$\begin{array}{l} \alpha^+:=\alpha \\ \text{repete} \\ \text{para cada } \beta \to \gamma \in F \text{ faz} \\ \text{se } \beta \subseteq \alpha^+ \text{ então } \alpha^+:=\alpha^+ \cup \gamma \\ \text{até que } \alpha^+ \text{ não mude mais} \end{array}$$

Exemplo de fecho de atributos

- Arr R = (A, B, C, G, H, I)
- $ightharpoonup F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- ▶ cálculo de (AG)⁺
 - 1. $(AG)^+ := AG$
 - 2. $(AG)^+ := ABCG$ $(A \rightarrow C e A \rightarrow B)$
 - 3. $(AG)^+ := ABCGH$ $(CG \rightarrow H e CG \subseteq AGBC)$
 - 4. $(AG)^+ := ABCGHI$ $(CG \rightarrow I e CG \subseteq AGBCH)$

 $(AG)^+$ já não muda mais dado que já inclui todos os atributos de R.

2012/11/07 (v68 245 / 299

Uso de fecho de atributos

O cálculo do fecho de atributos pode ser usado para vários fins:

- Testar super-Chaves: para testar se α é super-chave, calcular α⁺, e verificar se α⁺ contém todos os atributos de R.
 - Será AG super-chave?
 - E algum subconjunto próprio de AG é super-chave?
- ► Testar dependências funcionais: para verificar se a dependência $\alpha \to \beta$ é verdadeira (isto é pertence a F^+), basta verificar se $\beta \subseteq \alpha^+$, para um dado α^+ .
- ► Cálculo do fecho de F: para cada $\gamma \subseteq R$, calcular γ^+ . Para cada $S \subseteq \gamma^+$, devolver como resultado a dependência $\gamma \to S$.

2012/11/07 (v68 246 / 299

Cobertura Canónica

Um conjunto de dependências, podem conter algumas delas que são redundantes (por se inferirem das outras). Por exemplo:

 $A \rightarrow C$ é redundante em: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$. Porquê?

- ► Partes de dependências também podem ser redundantes. Por exemplo:
 - ► $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ pode ser simplificado para $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$. Porquê?
 - ► $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ pode ser simplificado para $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$. Porquê?
- ► Intuitivamente, uma cobertura canónica de F é um conjunto "minimal" de dependências, equivalente a F, e em que nenhuma dependência tem partes redundantes.

Atributos dispensáveis

Considere o conjunto de dependências F e a dependência $\alpha \to \beta \in F$.

Definição (Atributo dispensável à esquerda)

O atributo A é <u>dispensável à esquerda</u> em α se A $\in \alpha$ e F implica $(F - \{\alpha \to \beta\}) \cup \{(\alpha - A) \to \beta\}.$

Definição (Atributo dispensável à direita)

O atributo A é <u>dispensável à direita</u> em β se A $\in \beta$, e o conjunto $(F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\}$ implica F.

Nota: a implicação na direcção oposta é trivial em ambos os casos.

Exemplos:

- ▶ Dado $F = \{A \rightarrow C, AB \rightarrow C\}$, B é dispensável em $AB \rightarrow C$ porque $A \rightarrow C$ implica $AB \rightarrow C$.
- ▶ Dado F = {A → C, AB → CD}, C é dispensável em AB → CD pois com A → C, AB → CD pode ser inferido de AB → D.

Teste para atributos dispensáveis

Considere o conjunto F de dependências, e a dependência $\alpha \to \beta \in F$.

- ▶ Para testar se $A \in \alpha$ é dispensável em α , basta:
 - 1. calcular $(\alpha A)^+$ usando as dependências em F;
 - 2. verificar se $(\alpha A)^+$ contém A. Se contém, então A é dispensável.
- ▶ Para testar se $A \in \beta$ é dispensável em β , basta:
 - 1. calcular α^+ usando as dependências em $F' = (F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\};$
 - 2. verificar se α^+ contém A. Se contém, então A é dispensável.

249/299

Cobertura Canónica

Definição (Cobertura Canónica)

Uma cobertura canónica de F é um conjunto de dependências F_c tal que:

- ► F implica todas as dependências em F_c, e
- ► F_c implica todas as dependências em F, e
- ► Nenhuma dependência em F_c contém atributos dispensáveis,
- ► O lado esquerdo de cada dependência em F_c é único.

Uma cobertura canónica de F é o conjunto de dependências funcionais com o mesmo poder expressivo que F e mínimo, isto é com o menor número de dependências funcionais possível.

250/299

Cálculo da Cobertura Canónica

Para calcular uma cobertura canónica de F:

```
F_c := F
repete
  Usar a regra da união para substituir as dependências em F_c,
    \alpha_1 \to \beta_1 e \alpha_1 \to \beta_2 por \alpha_1 \to \beta_1\beta_2
  enquanto há dependências com atributos dispensáveis faz
    Encontrar dependências \alpha \to \beta com atributos dispensáveis (em \alpha
ou \beta)
    Quando se encontra atributo dispensável, apaga-se de \alpha \to \beta
  fimenquanto
até que F_c não muda.
```

Nota: A regra da união pode tornar-se aplicável depois de retirados alguns atributos dispensáveis. Por isso há que re-aplicá-la.

Exemplo de cálculo de cobertura canónica

- ightharpoonup R = (A, B, C)
- $ightharpoonup F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
- ► cálculo de F_c:
 - 1. Combinar $A \to BC$ e $A \to B$ para obter $A \to BC$;
 - 2. $F_c = \{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\};$
 - 3. A é dispensável em $AB \rightarrow C$ porque $B \rightarrow C$ implica $AB \rightarrow C$;
 - 4. $F_c = \{A \rightarrow BC, B \rightarrow C\}$;
 - 5. C é dispensável em $A \rightarrow BC$ pois $A \rightarrow BC$ é implicado por $A \rightarrow B e B \rightarrow C$:
 - 6. $F_c = \{A \to B, B \to C\};$
 - 7. Não há mais atributos dispensáveis. Verifica-se também que F_c não muda mais
- ▶ A cobertura canónica é: $F_c = \{A \rightarrow B, B \rightarrow C\}$.

Objectivos com a Concepção de BDs Relacionais

- Pretende-se encontrar "bons" conjuntos de esquemas relações, para armazenar os dados.
- ► Uma "má" concepção pode levar a:
 - Repetição de dados;
 - Impossibilidade de representar certos tipos de informação;
 - Dificuldade na verificação da integridade.
- Objectivos da concepção (para atingir um "bom" esquema):
 - Evitar dados redundantes:
 - Garantir que as relações relevantes sobre dados podem ser representadas;
 - Facilitar a verificação de restrições de integridade.

2012/11/07 (v68) 253 / 299

Objectivos da Normalização

Após a concepção (e antes da implementação num dado SGBD), pretende-se obter um "bom" esquema. Temos então que:

- Avaliar: decidir se o um dado esquema R já está num "bom" formato.
- ► Transformar (normalizar): se não estiver, decompor *R* num conjunto de esquemas {*R*₁, *R*₂, ..., *R*_n} tal que:
 - cada um deles está num "bom" formato:
 - a decomposição é sem perdas.
- ► A normalização é baseada em:
 - dependências funcionais;
 - dependências multi-valor.

Exemplo

Concepção de um esquema de base de dados, avaliação do mesmo, e sua (se necessário) transformação num "bom" esquema.

Concepção: Considere o esquema simples: Amigos = (nome, telef, codPostal, localidade). E uma sua instância:

nome	telef	codPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

- Redundância: os valores de (codPostal, localidade) são repetidos para cada amigo com um mesmo código postal;
 - Desperdiça-se espaço de armazenamento;
 - Dá azo a inconsistências;
 - Complica bastante a verificação da integridade dos dados
- Dificuldade de representar certa informação: Não se pode armazenar informação do código postal de uma localidade sem que hajam amigos dessa localidade.
 - Podem usar-se valores nulos, mas estes são difíceis de gerir.

2012/11/07 (v68 254 / 299

Exemplo - Decomposição

► Decompor o esquema Amigos em:

Uma qualquer decomposição tem de preservar a informação, contida no esquema inicial.

- Não pode haver perda de atributos: todos os atributos do esquema original (R) têm que aparecer na decomposição (R₁, R₂), isto é, R = R₁ ∪ R₂.
- Decomposição sem perdas: para todas as relações possíveis r sobre o esquema R tem de se verificar que:

$$r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r)$$

A decomposição de R em R_1 e R_2 é sem perdas sse pelo menos uma das dependências abaixo pertence a F^+ :

- $ightharpoonup R_1 \cap R_2 \to R_1$
- $ightharpoonup R_1 \cap R_2 \rightarrow R_2$

012/11/07 (v68) 255/299

Exemplo de decomposição sem perdas

Decomposição de Amigos em:

Amigos1 = (nome, telef, codPostal)
CPs = (codPostal, localidade)

		r	
nome	telef	codPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

$\Pi_{\text{Amigos }1}(r)$					
nome telef codPosta					
Maria	1111	2815			
João	2222	1000			
Pedro	1112	1100			
Ana	3333	2815			

$\Pi_{\mathrm{CPs}}(r)$			
localidade			
Caparica			
Lisboa			
Lisboa			

Verifica-se que:

$$\Pi_{\text{Amigos }1}(r)\bowtie\Pi_{\text{CPS}}(r)=r$$

Notar que é valida a dependência: codPostal \to localidade, isto é, verifica-se $R_1 \cap R_2 \to R_2$.

2012/11/07 (v68) 257 / 299

Normalização por uso de Dependências

Quando se decompõe um esquema R com dependências F, em R_1, R_2, \ldots, R_n quer-se:

- Decomposição sem perdas. Por forma a não se perder informação.
- ▶ Não haja redundância. Ver-se-à mais à frente como ...
- ► Preservação de dependências. Por forma a que verificação das dependências possa ser feita de forma eficiente.

Seja F_i o conjunto de dependências de F^+ que só contêm atributos de R_i .

A decomposição preserva as dependências se

$$(F_1 \cup F_2 \cup \cdots \cup F_n)^+ = F^+$$

Sem preservação de dependências, a garantia de integridade pode obrigar à computação de junções, sempre que se adicionam, apagam ou actualizam relações da base de dados. Tal pode tornar-se bastante ineficiente.

Exemplo de decomposição com perdas

Decomposição de Amigos em:

Amigos2 = (nome, telef, localidade)
Loc = (localidade, codPostal).

		r	
nome	telef	codPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

$\Pi_{\text{Amigos2}}(r) \bowtie \Pi_{\text{Loc}}(r)$				
nome	telef	codPostal	localidade	
Maria	1111	2815	Caparica	
João	2222	1000	Lisboa	
João	2222	1100	Lisboa	
Pedro	1112	1000	Lisboa	
Pedro	1112	1100	Lisboa	
Ana	3333	2815	Caparica	

$\Pi_{\text{Amigos}2}(r)$				
nome telef localidade				
Maria	1111	Caparica		
João	2222	Lisboa		
Pedro	1112	Lisboa		
Ana	3333	Caparica		

$\Pi_{\mathrm{CPs}}(r)$	
localidade	codPostal
Caparica	2815
Lisboa	1000
Lisboa	1100

Note-se que nenhuma das duas dependências seguintes é válida:

- ▶ localidade \rightarrow nome, telefone, isto é, $R_1 \cap R_2 \not\rightarrow R_1$.
- ▶ localidade \rightarrow codPostal, isto é, $R_1 \cap R_2 \not\rightarrow R_2$.

2012/11/07 (v68 258 / 299

Exemplo

- ► Sejam R = (A, B, C) e $F = \{A \rightarrow B, B \rightarrow C\}$.
- ▶ Decomposição 1: $R_1 = (A, B), R_2 = (B, C)$:
 - ▶ Decomposição sem perdas: $R_1 \cap R_2 = \{B\}e\ B \to BC$;
 - Preserva as dependências.
- ▶ Decomposição 2: $R_1 = (A, B), R_2 = (A, C)$:
 - ► Decomposição sem perdas: $R_1 \cap R_2 = \{A\} \ e \ A \rightarrow AB$;
 - Não preserva as dependências. Não se pode verificar B → C sem calcular R₁ ⋈ R₂.

2012/11/07 (v68) 259/299 260/299