Attention-based No-Seg Chinese NER

2018-12-27

1. Background

About named entity recognition...

Background - NER example (character-based 字)

调查范围涉及故宫、古研所、北大清华

- Using BIOES style, b-begin, i-inside, e-end, o-outside, s-single
- Sequence labeling

Background – basic deep learning model (word-based)

• Bi-LSTM: encoding information at each time stamp.

 CRF(conditional random field): learning rules between tags in a sequence.

(B-xx should be followed by I-xx or E-xx)

2. Challenges

With Chinese NER...

Challenges

No natural word boundaries.

南京/市长/江大桥 or 南京市/长江大桥

- If use vanilla character-based bi-LSTM (feed character embeddings):
 - --lack word semantic information
- If use word-based bi-LSTM (feed word embeddings)
 - --word segmentation error propagation, resolve entities

Goal

Better integrate word-level information and character-level information.

Lattice LSTM (SOTA)

Redundant and ineffective
 LSTM cells are costly,
 Forgetting and updating through so many

word cells and character cells.

Loss of info:
 Information of a word only arrives at the ending character of this word, without influence on characters before it.

3. Proposed Model

Inspired by Chinese NER Using Lattice LSTM, 2018 ACL

Proposed Model 1

^{*}the words come from auto segmentation on a huge corpus

Proposed Model 2

attention:

$$score_{t+1}^{i} = f(h'_{t}, x_{t+1}^{i})$$
$$x'_{t+1} = \sum score \cdot x_{t+1}^{i}$$

Proposed Model 2

Self-attention(multi-head):

$$Q = K = V$$

Scaled Dot-Product Attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Possible Attempts

Possible Attempts

1. Transformation from word embedding space to character embedding space (failed)

$$score^c \cdot x_{t+1}^c + \sum_{i} score^{w_i} W_{w \to c} \cdot x_{t+1}^{w_i}$$

- 2. Sentence embedding: shared or separate
- 3. Hidden states from char lstm as sentence embeddings, attention over hidden states.
- 4. Different ways to combine x^s and h_t : concat, sum, mul, ...

Results so far...

Results so far...

This part is deprecated.

The current best F1 for MSRA is:

Model 1 - 93.67

<u>Model 2 – 93.50</u>

Datasets	Models	Р	R	F1
MSRA	Lattice	93.57	92.79	93.18
	Model 1	93.95	92.44	93.20
	Model 2	94.51	92.15	93.33
OntoNotes	Lattice	76.35	71.56	73.88
	Model 2	74.56	73.30	73.93

Thanks.