Project_Solution

June 2, 2021

1 Project - 1: Mercedes-Benz Greener Manufacturing

```
[1]: # Importing the required libraries
     import numpy as np
     import pandas as pd
     from sklearn.decomposition import PCA
[2]: # Importing the data
     train = pd.read_csv('train.csv')
     test = pd.read_csv('test.csv')
    train.head()
[3]:
                      XO X1
                              X2 X3 X4 X5 X6 X8
                                                       X375
                                                              X376
                                                                     X377
                                                                            X378
                                                                                  X379
                                                                                         \
             130.81
                                                                 0
                                                                               0
     0
          0
                       k
                              at
                                      d
                                                           0
                                                                        1
                                                                                      0
     1
          6
              88.53
                                      d
                                             1
                                                           1
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
                       k
                          t
                                   е
                                         у
                              av
                                                0
     2
          7
              76.26
                                      d
                                                           0
                                                                 0
                                                                                      0
                      az
                               n
                                         X
     3
              80.62
                                  f
                                         х
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
                      az
                          t
                               n
                                      d
                                             1
                                                           0
        13
              78.02
                                   f
                                      d
                                         h
                                                           0
                                                                 0
                                                                                      0
                      az
        X380
               X382
                      X383
                             X384
                                    X385
     0
            0
                   0
                         0
                                0
                                       0
     1
            0
                   0
                         0
                                0
                                       0
     2
            0
                         0
                                0
                                       0
                   1
     3
            0
                   0
                         0
                                0
                                       0
            0
                          0
                   0
                                0
                                       0
     [5 rows x 378 columns]
[4]: test.head()
[4]:
             XO X1
         ID
                     X2 X3 X4 X5 X6 X8
                                           X10
                                                    X375
                                                          X376
                                                                 X377
                                                                        X378
                                                                               X379
                                                                                      X380
                                                       0
                                                              0
                                                                     0
                                                                            1
                                                                                  0
     0
          1
             az
                      n
                         f
                                             0
                                                                                         0
          2
                                                       0
                                                              0
                                                                            0
                                             0
                                                                     1
                                                                                  0
                                                                                         0
     1
              t
                 b
                     ai
                         а
                             d
                                b
                                    g
                                       У
     2
                         f
                             d
                                             0
                                                       0
                                                              0
                                                                     0
                                                                                         0
             az
                     as
                                    j
                                       j
                         f
                                             0
                                                       0
                                                              0
                                                                     0
                                                                                         0
             az
                      n
```

```
5 wsascdyim 0 ... 1
                                                       0
                                                                               0
       X382 X383
                   X384
                         X385
                0
                       0
     0
          0
                             0
     1
           0
                 0
                      0
                             0
     2
                      0
           0
                0
                            0
     3
          0
                0
                      0
                            0
     4
           0
                0
                       0
                             0
     [5 rows x 377 columns]
[5]: print('Size of training set: {} rows and {} columns'.format(*train.shape))
     print('Size of testing set: {} rows and {} columns'.format(*test.shape))
    Size of training set: 4209 rows and 378 columns
    Size of testing set: 4209 rows and 377 columns
[6]: # Collect the Y values into an array
     y_train = train['y'].values
[7]: y_train
[7]: array([130.81, 88.53, 76.26, ..., 109.22, 87.48, 110.85])
[8]: # Understand the data types
     cols = [c for c in train.columns if 'X' in c]
     print('Number of features: {}'.format(len(cols)))
     print('Feature types:')
     train[cols].dtypes.value_counts()
    Number of features: 376
    Feature types:
[8]: int64
               368
     object
                8
     dtype: int64
[9]: # Count the data in each of the columns
     counts = [[], [], []]
     for c in cols:
        typ = train[c].dtype
        uniq = len(np.unique(train[c]))
        if uniq == 1:
             counts[0].append(c)
        elif uniq == 2 and typ == np.int64:
             counts[1].append(c)
```

```
else:
              counts[2].append(c)
      print('Constant features: {} Binary features: {} Categorical features: {}\n'
       .format(*[len(c) for c in counts]))
      print('Constant features:', counts[0])
      print('Categorical features:', counts[2])
     Constant features: 12 Binary features: 356 Categorical features: 8
     Constant features: ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289',
     'X290', 'X293', 'X297', 'X330', 'X347']
     Categorical features: ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
[10]: # Splitting the data
      usable_columns = list(set(train.columns) - set(['ID', 'y']))
      y train = train['y'].values
      id test = test['ID'].values
      x_train = train[usable_columns]
      x_test = test[usable_columns]
     Check for null values and unique values for train & test data
[11]: def check_missing_values(df):
          if df.isnull().any().any():
              print('There are missing values in the dataframe')
          else:
              print('There are no missing values in the dataframe')
[12]: check_missing_values(x_train)
      check_missing_values(x_test)
     There are no missing values in the dataframe
     There are no missing values in the dataframe
     Label Encoding the categorical values
[13]: for column in usable columns:
          cardinality = len(np.unique(x_train[column]))
          if cardinality == 1:
              x_train.drop(column, axis=1) # Column with only one
              # value is useless so we drop it
              x_test.drop(column, axis=1)
          if cardinality > 2: # Column is categorical
```

mapper = lambda x: sum([ord(digit) for digit in x])
x_train[column] = x_train[column].apply(mapper)
x_test[column] = x_test[column].apply(mapper)

x_train.head()

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:9:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy if __name__ == '__main__':

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # Remove the CWD from sys.path while we load stuff.

[13]:		X39	X265	X246	X237	X373	X308	X62	X143	X296	X267	•••	X15	X243	\
	0	0	0	0	1	0	0	0	0	0	0	•••	0	0	
	1	0	1	0	0	0	0	0	0	0	0		0	0	
	2	0	0	1	0	0	0	0	0	0	0		0	0	
	3	0	0	1	0	0	0	0	0	0	0		0	0	
	4	0	0	1	0	0	0	0	0	0	0		0	0	

	X311	X200	X37	X78	X97	X179	X174	X371
0	0	0	1	0	0	1	0	0
1	1	0	1	0	0	0	0	0
2	0	0	1	0	0	1	0	0
3	0	0	1	0	0	1	1	0
4	0	0	1	0	0	1	0	1

[5 rows x 376 columns]

```
[14]: # Make sure the data is changed into numerical values

print('Feature types:')
x_train[cols].dtypes.value_counts()
```

Feature types:

[14]: int64 376 dtype: int64

1.0.1 Perform Dimensionality reduction

```
[15]: n_{comp} = 12
      pca = PCA(n components = n comp,random state = 420)
      pca2_results_train = pca.fit_transform(x_train)
      pca2 results test = pca.transform(x test)
     Training using XGBoost
[16]: # Training using XGBoost
      import xgboost as xgb
      from sklearn.metrics import r2_score
      from sklearn.model_selection import train_test_split
[17]: x_train,x_val,y_train,y_val = train_test_split(pca2_results_train, y_train,__
       →test size=0.2, random state=4242)
[18]: d_train = xgb.DMatrix(x_train, label = y_train)
      d_val = xgb.DMatrix(x_val,label = y_val)
      \# dtest = xqb.DMatrix(x_test)
      d_test = xgb.DMatrix(pca2_results_test)
[19]: params = {}
      params['objective'] = 'reg:linear'
      params['eta'] = 0.02
      params['max_depth'] = 4
      def xgb_r2_score(preds, dtrain):
          labels = dtrain.get_label()
          return 'r2', r2_score(labels, preds)
      watchlist = [(d_train, 'train'), (d_val, 'valid')]
      clf = xgb.train(params, d_train, 1000, watchlist, early_stopping_rounds=50,
       feval=xgb_r2_score, maximize=True, verbose_eval=10)
     [15:03:21] WARNING: /workspace/src/objective/regression obj.cu:167: reg:linear
     is now deprecated in favor of reg:squarederror.
             train-rmse:99.14835
                                     valid-rmse:98.26297 train-r2:-58.35295
     [0]
     valid-r2:-67.63754
     Multiple eval metrics have been passed: 'valid-r2' will be used for early
     stopping.
```

train-r2:-38.88428

Will train until valid-r2 hasn't improved in 50 rounds.

train-rmse:81.27653 valid-rmse:80.36433

Γ10]

valid-r2:-44.91014

[20] train-rmse:66.71610	valid-rmse:65.77334	train-r2:-25.87403				
valid-r2:-29.75260	V4214 1m20.00.11.001	014111 12. 20.07 100				
[30] train-rmse:54.86915	valid-rmse:53.89120	train-r2:-17.17724				
valid-r2:-19.64513						
[40] train-rmse:45.24564	valid-rmse:44.22231	train-r2:-11.36018				
valid-r2:-12.90160						
[50] train-rmse:37.44742	valid-rmse:36.37758	train-r2:-7.46672				
valid-r2:-8.40697						
[60] train-rmse:31.15105	valid-rmse:30.01771	train-r2:-4.85891				
valid-r2:-5.40526						
[70] train-rmse:26.08769	valid-rmse:24.90855	train-r2:-3.10906				
valid-r2:-3.41041						
[80] train-rmse:22.04899	valid-rmse:20.82566	train-r2:-1.93528				
valid-r2:-2.08304						
[90] train-rmse:18.84732	valid-rmse:17.59580	train-r2:-1.14472				
valid-r2:-1.20090						
[100] train-rmse:16.33602	valid-rmse:15.07912	train-r2:-0.61125				
valid-r2:-0.61635						
[110] train-rmse:14.40459	valid-rmse:13.14868	train-r2:-0.25278				
valid-r2:-0.22898						
[120] train-rmse:12.93437	valid-rmse:11.68702	train-r2:-0.01009				
valid-r2:0.02907						
[130] train-rmse:11.81328	valid-rmse:10.60818	train-r2:0.15742				
valid-r2:0.20005						
[140] train-rmse:10.98910	valid-rmse:9.84164	train-r2:0.27089				
valid-r2:0.31148						
[150] train-rmse:10.38670	valid-rmse:9.31149	train-r2:0.34863				
valid-r2:0.38366						
[160] train-rmse:9.93406	valid-rmse:8.95125	train-r2:0.40417				
valid-r2:0.43043						
[170] train-rmse:9.60179	valid-rmse:8.70644	train-r2:0.44336				
valid-r2:0.46116						
[180] train-rmse:9.35700	valid-rmse:8.54541	train-r2:0.47138				
valid-r2:0.48090						
[190] train-rmse:9.17218	valid-rmse:8.44794	train-r2:0.49206				
valid-r2:0.49268						
[200] train-rmse:9.02681	valid-rmse:8.38293	train-r2:0.50803				
valid-r2:0.50046						
[210] train-rmse:8.92066	valid-rmse:8.34528	train-r2:0.51953				
valid-r2:0.50493						
[220] train-rmse:8.83656	valid-rmse:8.32250	train-r2:0.52855				
valid-r2:0.50763						
[230] train-rmse:8.77145	valid-rmse:8.30870	train-r2:0.53547				
valid-r2:0.50926						
[240] train-rmse:8.72003	valid-rmse:8.30321	train-r2:0.54090				
valid-r2:0.50991						
[250] train-rmse:8.67607	valid-rmse:8.29589	train-r2:0.54552				
valid-r2:0.51078						

[260] train-rmse:8.63885	valid-rmse:8.29111	train-r2:0.54941
valid-r2:0.51134 [270] train-rmse:8.60996	valid-rmse:8.28973	train-r2:0.55242
valid-r2:0.51150		
[280] train-rmse:8.57784	valid-rmse:8.28530	train-r2:0.55575
valid-r2:0.51202 [290] train-rmse:8.54968	valid-rmse:8.28160	train-r2:0.55866
valid-r2:0.51246	valid imse.o.zoroo	train 12.0.00000
[300] train-rmse:8.52080	valid-rmse:8.28095	train-r2:0.56164
valid-r2:0.51254		
[310] train-rmse:8.49303	valid-rmse:8.28140	train-r2:0.56449
valid-r2:0.51248		
[320] train-rmse:8.46923	valid-rmse:8.28174	train-r2:0.56693
valid-r2:0.51244	1:1 0 07054	+
[330] train-rmse:8.45028 valid-r2:0.51282	valid-rmse:8.27854	train-r2:0.56886
[340] train-rmse:8.42114	valid-rmse:8.28089	train-r2:0.57183
valid-r2:0.51254	valia imbe.o.2000	01din 12.0.07100
[350] train-rmse:8.40192	valid-rmse:8.27823	train-r2:0.57379
valid-r2:0.51286		
[360] train-rmse:8.37694	valid-rmse:8.27552	train-r2:0.57632
valid-r2:0.51318		
[370] train-rmse:8.35140	valid-rmse:8.27106	train-r2:0.57890
valid-r2:0.51370		
[380] train-rmse:8.32580	valid-rmse:8.26504	train-r2:0.58147
valid-r2:0.51441	1:1 0.00440	0 0 50005
[390] train-rmse:8.30213 valid-r2:0.51448	valid-rmse:8.26442	train-r2:0.58385
[400] train-rmse:8.27511	valid-rmse:8.26158	train-r2:0.58655
valid-r2:0.51481	valid imse.o.zoiso	train 12.0.50055
[410] train-rmse:8.24606	valid-rmse:8.26197	train-r2:0.58945
valid-r2:0.51477		
[420] train-rmse:8.22087	valid-rmse:8.25998	train-r2:0.59196
valid-r2:0.51500		
[430] train-rmse:8.19967	valid-rmse:8.25700	train-r2:0.59406
valid-r2:0.51535		
[440] train-rmse:8.17517	valid-rmse:8.25513	train-r2:0.59648
valid-r2:0.51557	1.1 0.05447	0 0 50000
[450] train-rmse:8.15067 valid-r2:0.51568	valid-rmse:8.25417	train-r2:0.59889
[460] train-rmse:8.13282	valid-rmse:8.25400	train-r2:0.60065
valid-r2:0.51570	valid imse.0.20400	train 12.0.00000
[470] train-rmse:8.09823	valid-rmse:8.25143	train-r2:0.60404
valid-r2:0.51601		
[480] train-rmse:8.07605	valid-rmse:8.25276	train-r2:0.60621
valid-r2:0.51585		
[490] train-rmse:8.05222	valid-rmse:8.24982	train-r2:0.60853
valid-r2:0.51619		

[500]	train-rmse:8.03193	valid-rmse:8.24989	train-r2:0.61050				
valid-r2:0.51619							
[510]	train-rmse:7.99967	valid-rmse:8.24886	train-r2:0.61362				
valid-r2:0.51631							
[520]	train-rmse:7.98118	valid-rmse:8.24874	train-r2:0.61540				
valid-	2:0.51632						
[530]	train-rmse:7.96085	valid-rmse:8.24718	train-r2:0.61736				
valid-	2:0.51650						
[540]	train-rmse:7.94052	valid-rmse:8.25061	train-r2:0.61931				
valid-r2:0.51610							
[550]	train-rmse:7.91974	valid-rmse:8.24936	train-r2:0.62130				
valid-r2:0.51625							
[560]	train-rmse:7.89511	valid-rmse:8.25098	train-r2:0.62365				
valid-r2:0.51606							
[570]	train-rmse:7.86969	valid-rmse:8.24952	train-r2:0.62607				
valid-r2:0.51623							
[580]	train-rmse:7.84870	valid-rmse:8.25072	train-r2:0.62806				
valid-1	2:0.51609						
Stopping. Best iteration:							
[533]	train-rmse:7.95699	valid-rmse:8.24668	train-r2:0.61773				
valid-r2:0.51656							

$1.1 \quad Predict \ test_df \ using \ XGBoost$

```
[20]: p_test = clf.predict(d_test)
[21]: sub = pd.DataFrame()
      sub['ID'] = id_test
      sub['y'] = p_test
      sub.to_csv('test_df.csv', index = False)
      sub.head()
[21]:
         ID
          1
              82.844788
      0
          2
              97.869873
      1
      2
         3
              82.781380
      3
         4
              77.284958
         5 113.026222
[]:
```