Integers

Number Representation

Representing Numbers

We, people, have many ways to represent numbers

- They all express the same concept
 - that some collection consists of seven things

Decimal Numbers

This comes from us

having 10 fingers

- The decimal representation is succinct and systematic
 - It uses ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - > each represents a number between 0 and 9
 - > they are the digits
 - o "ten" is the base
- Any number is represented as a sequence of digits
 - the position i of a digit d indicates its importance
 - \triangleright it contributes $d \times 10^i$ to the value of the number
 - the value of the number is the sum of the contribution of each position

Decimal Numbers

It uses ten symbols:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- each represents a number between 0 and 9
- Different languages use other symbols

	0	1	2	3	4	5	6	7	8	9
Arabic	*	١	۲	٣	٤	٥	٦	٧	٨	٩
Bengali	0	১	ર	৩	8	C	৬	9	ь	৯
Chinese (simple)	0	× -		E	四	五	六	七	八	力
Chinese (complex)	零	壹	貢	參	肆	伍	陸	柒	捌	玖
Chinese 花舊 (huā mǎ)	0	I	П	И	Х	8	4	_	=	夕
Devanagari	0	3	२	३	४	ч	દ્	૭	۷	9
Ethiopic		Ď	Ē	Ţ	Q	፭	፲	፲	五	Ð
Gujarati	0	૧	ર	3	8	ц	૬	9	6	e
Gurmukhi	0	٩	ર	ą	8	ч	Ę	2	t	ť
Kannada	0	0	೨	೩	စွ	33	٤	ع	೮	િ
Khmer	0	ഉ	િ	M	Ç	ಜ	Ъ	ก	ផ	E
Lao	0	၈	6	໓	હ	Č	ఏ	໗	ធ្ន	ຄ
Limbu	0	l	٨	S	X	C	Ģ	8	٧	7
Malayalam	6	مے	വ	൩	જ	(3)	൬	9	വ	ď
Mongolian	0	O	U	3	Ú	Л	S	0	2	C
Myanmar	0	၁	J	9	9	9	6	?	၈	6
Oriya	0	6	9	প	8	ક	9	9	Г	0
Tamil	0	க	உ	<i>1</i> 5_	சு	 (5	சூ	எ	अ	æ
Telugu	0	C	၅	3	မွ	%	٤	г	J	٤
Thai	0	စ	ខ	៣	હ	ď	e,	ബ	લ	ec
Tibetan	0	2	٦	3	ت	ų	ی	വ	4	(e
Urdu		١	۲	٣	۴	۵	9	٧	٨	9

Decimal Numbers

We used our

10 fingers for that

- Positional systems make it easy to do calculations
 - addition is done position by position

multiplication is done as iterated additions

5

Binary Numbers

There are two voltages in computer chips: on and off (in reality, it's more complicated)

- Computers have one way to represent information: binary
 - they use two symbols, 0 and 1
 1 = on
 0 = off
- In particular, they represent numbers in positional notation using base 2
 - that's the binary representation

That's what we call the binary digits 0 and 1

- Any number is represented as a sequence of bits
 - the position i of a bit b indicates its importance
 - \rightarrow it contributes $b \times 2^i$ to the value of the number
 - the value of the number is the sum of the contribution of each

```
position
1 \text{ is at position 5} \qquad \dots \text{ 0 is at position 3} \dots
1 \text{ 1 is at position 0}
1 \text{ 1 is at position 0}
2 \text{ is the base}
```

Binary Numbers

- Positional systems make it easy to do calculations
 - o addition is done position by position

o multiplication is done as iterated additions

Converting Binary Numbers to Decimal

 Simply use the positional formula and carry out the calculation in decimal

$$100101_{[2]} = 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 32 + 0 + 0 + 4 + 0 + 1$$

$$= 37_{[10]}$$

• Alternatively, use *Horner's rule*:

```
100101_{[2]} = ((((1 \times 2 + 0) \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1
= (((2 \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1
= ((4 \times 2 + 1) \times 2 + 0) \times 2 + 1
= (9 \times 2 + 0) \times 2 + 1
= 37_{[10]}
That's because
1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = ((((1 \times 2 + 0) \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1
```

Converting Decimal Numbers to Binary

- Repeatedly divide the number by 2, harvesting the remainder, until we reach 0
 - > the remainder is either 0 or 1
 - the binary representation comes out from right to left

Hexadecimal Numbers

 Binary is fine for computers, but unwieldy for people 1100000011111111111101110

- > hard to remember
- > hard to communicate

> they are the hex digits

- The hexadecimal representation makes things simpler
 - o it uses 16 symbols: the numbers 0 to 9 and the letters A to F
 - > each represents a number between 0 and 15

	1	
The		•
decimal to binary to hexadecimal		4
conversion table		
(0 to 15)		

O _[16]	$0000_{[2]}$	<mark>0</mark> [10]	<mark>8</mark> [16]	1000[2]	8 _[10]
1 _[16]	0001 _[2]	1 _[10]	9 _[16]	1001 _[2]	9 _[10]
<mark>2</mark> [16]	0010[2]	2 _[10]	A _[16]	1010[2]	10 _[10]
<mark>3</mark> [16]	0011 _[2]	3 _[10]	B _[16]	1011 _[2]	11 _[10]
<mark>4</mark> [16]	0100[2]	4 _[10]	C _[16]	1100 _[2]	12 _[10]
5 _[16]	0101 _[2]	5 _[10]	D _[16]	1101 _[2]	13 _[10]
6 _[16]	0110[2]	6 _[10]	E _[16]	1110 _[2]	14 _[10]
7 _[16]	0111 _[2]	7 _[10]	F _[16]	1111 _[2]	15 _[10]

Hexadecimal Numbers

- 1 hex digit corresponds to 4 bits
 > and vice versa
- This makes converting between hex and binary very simple
- 0000[2] <mark>8</mark>[16] 1000[2] 8_[10] 0_[10] 0[16] 1001_[2] 0001_[2] **1**_[16] 9[16] 9[10] 1_[10] **10**_[10] 2_[16] 0010[2] 1010[2] **2**_[10] A_[16] 0011_[2] 1011[2] 3_[16] 3_[10] B_[16] **11**_[10] 1100[2] 0100[2] 12_[10] C_[16] **4**_[16] **4**_[10] 0101_[2] 5[10] 1101_[2] 13[10] **5**[16] D_[16] 1110[2] 0110[2] 6_[10] E_[16] **14**_[10] **6**_[16] 0111_[2] 1111_[2] **15**_[10] F_[16] **7**_[16] **7**_[10]
- hex to binary: replace each hex digit with the corresponding 4 bits
- binary to hex: replace each group of 4 bits with the corresponding hex digit

```
1100 0000 1111 1111 1110 1110
C 0 F F E E
```

- ➤ People find it a lot simpler to remember and communicate binary information in hexadecimal
 - and not just numbers

Not all hex words are this cute, though!

Hexadecimal Numbers

- Any number has a positional representation in hex as a sequence of hex digits
 - the position i of a hex digit h indicates its importance
 - \rightarrow it contributes $h \times 16^i$ to the value of the number
 - the value of the number is the sum of the contribution of each position

COFFEE =
$$C \times 16^5 + 0 \times 16^4 + F \times 16^3 + F \times 16^2 + E \times 16^1 + E \times 16^0$$

We can also do arithmetic in hex

After plugging in 12 for C, etc, that's 12648430 in decimal

- but hex is primarily used to represent two types of non-numerical data
 - > memory addresses _____next lecture
 - bit patterns ______later in this lecture

Numbers in C0

When we enter

COFFEE in hex ..

12648430 in decimal

- All numbers in C0 have type int
- We can enter numbers in C0
 - o in decimal
 - in hexadecimal
 - ➤ by prefixing them with 0x
- Internally, it stores them in binary
 - but there is no way to enternumbers in binary... coin responds it's

 C0 always prints numbers back to us in decimal # coin
C0 interpreter (coin) ...

--> 0xC0FFEE;
12648430 (int)
--> 0xC0FFEE == 12648430;
true (bool)

C0FFEE and 12648430 are
two different ways of entering
the same number

Numbers in C0

- C0 always prints numbers back in decimal
- Use the function int2hex in the <util> library to display a number in hexadecimal
 - o as a string, not an int

```
There is no int2bin

You can write your own!
```

```
Loads the <uti>library when starting coin

Linux Terminal

# coir -l util
C0 interpreter (coin) ...

--> int2hex(0xC0FFEE);
"00C0FFEE" (string)

--> int2hex(12648430);
"00C0FFEE" (string)
```

Fixed-size Number Representation

Machine Words

- Computers store and manipulate binary data
 - everything is a bit in a computer
- Computer hardware processes batches of k bits in parallel
 - o a batch of k bits is called a machine word
 - nowadays, a typical value of k is 32
- Computation is very efficient on whole words
 - but less so on parts of words
- Most programming languages use a word to represent an int
 - o in C0, an int is always 32 bits long

32 bits

Fixed-size Numbers

A k-bit computer uses exactly k bits to represent an int

That's a computer whose words are k bits long

This will simplify our examples

4 bits

- In our discussion, we will assume that k = 4
 - ▶ but in C0, an int is always 32 bits long
- In a 4-bit computer, 6 is not represented as 110 but as 0110
 - ➤ Numbers have a *fixed-size* in a computer

Numbers in Math vs. in a Computer

- In math, there are infinitely many numbers
 - we visualize them as an infinite number line

- In a 4-bit computer, there are finitely many numbers
 - \circ exactly $16 = 2^4$
 - o the line is finite

4 bits

- On a k-bit computer,
 we can represent only
 2^k distinct numbers
 - ➤ C0 can represent only 2³² distinct numbers

Numbers in a Computer

● In a 4-bit computer, we can represent only 2⁴ distinct numbers

4 bits

- We cannot represent numbers larger than what fits in 4 bits
 - e.g., 21
 - ➤ in binary it's 10101, but that requires 5 bits
- Even if we avoid writing larger numbers in a program, they may emerge during computation
 - o intermediate results need to be stored in a word in memory!

Overflow

- The result of adding two int's may not fit into a k bits word
 - > it may be a k+1 bit number!
 - > the result may be even longer when multiplying two int's

- We have an overflow when the result of an operation doesn't fit in a machine word
 - \triangleright k bit operands, but the result has more than k bits

How to Deal with Overflow?

The result of an operation does not fit into a k-bit word

- Two common approaches to handling overflow
 - 1. Raise an error or an exception
 - > an error aborts the program
 - > an exception is an error that can be handled to continue computation
 - 2. Continue execution in some meaningful way

Handling Overflow as Error

- Signaling an error is not always the right thing to do
 - The Ariane 5 rocket exploded on its first launch because an unexpected overflow raised an unhandled exception

```
L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) *
if L_M_BV_32 > 32767 then
   P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;
elsif L_M_BV_32 < -32768 then
   P_M_DERIVE(T_ALG.E_BV) := 16#8000#;
else
   P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB end if;
P_M_DERIVE(T_ALG.E_BH) :=
   UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LS
```


Handling Overflow as Error

- Treating overflows as errors makes it hard to write correct code involving ints
 - hard to debug
 - hard to reason about
- Example
 - $\circ n + (n n)$ and (n + n) n are equal in math
 - but with fixed size numbers, they may yield different outcomes
 - $\rightarrow n + (n n)$ is **always** equal to n
 - (n + n) n may overflow

Writing one or the other is **not** the same; although it feels like it is

Writing one or the

other is the same

- People instinctively use math when writing code
 - o we want the laws of arithmetic to hold
 - whenever possible

Modular Arithmetic

Continuing Computation on Overflow

Instead of aborting execution, just ignore the overflow bits

The result of the operation is what fits in the word

- This is **not** the correct mathematical value
 - > but does it relate to it in any way?

Ignoring the Overflow Bits

- Throwing out the overflow bit amounts to subtracting 10000 from the result
 - > that's 16 in decimal

- O Note that 16 is 24
 - > 4 is how many bits our words have

Ignoring the Overflow Bits

- In general, we subtract as many multiples of 16 (= 24) as necessary so that the result fits in 4 bits
- Ignoring the overflow bits computes the result modulo 16

Computing Modulo n

n > 1

 Evaluate an expression normally but return the remainder of dividing it by n

> a number between 0 and n-1

$$0.12 + 9 =_{\text{mod } 16} 5$$

 $0.9 * 6 =_{\text{mod } 16} 6$

- This is called modular arithmetic
- Modular arithmetic works just like traditional arithmetic

Modular Arithmetic

Modular arithmetic obeys the same laws as traditional

arithmetic

for expressions
involving + and *
so far

$X + y =_{\text{mod } n} y + X$	Commutativity of addition
$(x + y) + z =_{\text{mod } n} x + (y + z)$	Associativity of addition
$X + O =_{\text{mod } n} X$	Additive unit
$x * y =_{\text{mod } n} y * x$	Commutativity of multiplication
$(x * y) * z =_{\text{mod } n} x * (y * z)$	Associativity of multiplication
$x * 1 =_{\text{mod } n} x$	Multiplicative unit
$x * (y + z) =_{\text{mod } n} x * y + x * z$	Distributivity
$x * 0 =_{\text{mod } n} 0$	Annihilation

- We use these laws implicitly every time we do arithmetic
 - in particular when writing programs

Handling Overflow in C0

- C0 discards overflow bits
 - C0 handles overflow using modular arithmetic
 - numerical expressions are computed modulo 2³²
 - > because C0 assumes 32-bit words
- This makes it easy to reason about programs
 - modular arithmetic works like traditional arithmetic
 - > we apply it innately
 - there is no need to consider special cases for overflow
 - for expressions using + and * so far

Overflow does not abort computation in C0

Reasoning about int Code

This function always returns "Good"

(modulo 2³²)

- We don't need to worry about 1+x or x+1 overflowing
 - they may, but that doesn't matter
 - > overflow doesn't abort computation
 - ➤ the laws of (modular) arithmetic tell us they always evaluate to the same value

What does Computing Modulo *n* Mean?

 Rather than viewing the numbers as lying on an infinite line,
 we think of them as

wrapping around a circle with *n*

positions

 values that are equal modulo n share the same position

This position corresponds to 10, 26, 42, 58, 74, 90, 106, ...

What does Computing Modulo *n* Mean?

 We carry out computations normally but return the position of the result on the circle

$$0.12 + 9 =_{\text{mod } 16} 5$$

 $0.9 * 6 =_{\text{mod } 16} 6$

- Then, addition corresponds to moving clockwise around the circle
 - to compute 12 + 9start from 12 andstep 9 times clockwise

What about the Negatives?

 The negative numbers too wrap around the circle

$$\circ$$
 -1 =_{mod 16} 15

$$\circ$$
 -6 = $_{\text{mod } 16}$ 10

24

This position corresponds to ..., -86, -70, -54, -38, -22, -6, 10, 26, 42, 58, 74, 90, 106, ...

Subtraction modulo *n*

 We can then do subtraction modulo n

$$\circ$$
 5 - 7 = $_{\text{mod } 16}$ 14

- ➤ We evaluate it normally but return the remainder of dividing it by *n* 29
- ➤ Equivalently, return the position of the result on the circle

 x - y is stepping y times counter-clockwise from x

to compute 5 - 7 start
 from 5 and step 7 times
 counter-clockwise

Subtraction modulo *n*

- With subtraction, we can define the additive inverse -x of any number x
 - > the number that added to x yields 0

$$-x =_{\text{mod } n} 0 - x$$

 Then, more laws of traditional arithmetic are valid in modular arithmetic

$$x + (-x) =_{\text{mod } n} 0$$
 Additive inverse
 $-(-x) =_{\text{mod } n} x$ Cancelation

- O More programs behave as if we were using normal arithmetic
 - > even in the presence of overflows

Reasoning about int Code

```
string foo(int x) {
  int z = x + x - x;
  if (z == x)
    return "Good";
  else
    return "Bad";
}
```

- This function always returns "Good"
 - \circ x + x x = x in normal arithmetic
 - \circ so x + x x == x in C0
- If the compiler understands x + x x

 - o as (x + x) x, then (x + x) - x = x + (x - x) by associativity of + = x as above

x + x may overflow but it doesn't matter

Two's Complement

Printing Numbers

 Modular arithmetic tells us that many numbers correspond to the same bit sequence

1110 could stand for ..., -82, -66, -50, -34, -18, -2, 14, 30, 46, 62, 78, 94, 110, ...

• But what number should the computer print 1110 as?

0 14?

○ -2?

o 78?

0 ...

Say our program reaches printint(x);
where x contains 1110
(on a hypothetical 4-bit computer)

28

16

Comparing Numbers

 Modular arithmetic tells us that many numbers correspond to the same bit sequence

1110 could stand for ..., -82, -66, -50, -34, -18, -2, 14, 30, 46, 62, 78, 94, 110, ...

0011 could stand for ..., -77, -61, -45, -29, -13, 3, 19, 35, 51, 67, 83, 99, 115, ...

- But what shouldx > y evaluate to?
 - o true?
 - o false?

16

17

31

The Range of int's

 In both case, the computer needs to decide what number each k-bit word corresponds to

This is the opposite of the earlier problem: what k-bit word does each number correspond do

Common requirements

 successive bit values should correspond to successive numbers

□ 16, 1, -14, ... won't do

O should be one of them

The Range of int's

27

What number does each k-bit word correspond to?

> successive bit values should correspond to successive numbers

> > 0 should be one of them 29

Pick the first 2^k
 integers starting at 0

○ here 0, 1, ... 15

> 1110 is printed as 14

> 1110 > 0011 returns true

 int's that behave this way are called unsigned

This is not how C0's int's work

The Range of int's

12

• What number does each k-bit word correspond to?

> successive bit values should correspond to successive numbers

> 0 should be one of them

We also want some negative numbersabout half

One common option

O Pick the range -2^{k-1} to 2^{k-1} - 1

This choice is called two's complement

Two's Complement

 Each k-bit word corresponds to a number between -2^{k-1} and 2^{k-1} - 1

the negative numbers
 go from -1 to -2^{k-1}

- o the positive numbers go from 1 to 2^{k-1} 1
- o and there is 0

 The leftmost bit tells the sign

O 1 for negative numbers

0 for positive numbers and 0

It is called the sign bit

Efficient way to determine the sign of a number

Two's Complement

 Each k-bit word corresponds to a number in the range

 -2^{k-1} to 2^{k-1} - 1

The smallest number is called int_min

 \rightarrow -2k-1

➤ 100...000 in binary

The *largest number* is called int_max

> 2^{k-1} - 1

> 011...111 in binary

Other notable numbers:

> 0 is 000...000

> -1 is 111...111

Two's Complement Overflow

 An operation overflows if its mathematical result is outside the range

E.g.,
int_max + 1
int_min - 3
2 * int_max
17 * int_min

Reading Two's Complement

Recall binary

- o the **position** *i* of a bit *b* indicates its importance
 - > it contributes bx2ⁱ to the value of the number
- o the value of the number is the sum of the contribution of each position
- In two's complement, the sign big contribution is negative

$$111011 = 1x-2^{5} + 1x2^{4} + 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0}$$

$$= -32 + 16 + 8 + 0 + 2 + 1$$

$$= -5$$

$$000110 = 0 \times -2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$
$$= -0 + 0 + 0 + 4 + 2 + 0$$
$$= 6$$

Writing Two's Complement

- Positive number x
 - Write x in binary on the right
 - Fill in zeros on the left

6 in 2's complement:

$$0 \times 6$$

- Negative number -x
 - Let p be the smallest power of 2≥ x
 - Write p x in binary on the right
 - Fill in ones on the right
- -5 in 2's complement:

$$\begin{array}{c}
0 \text{ X} = 5 \\
0 \text{ p} = 8
\end{array}$$

Sign Extension

• What changes across word lengths?

Copying the sign bit is called sign extension

int's in C0

- C0 represents integers as 32-bit words
- It handles overflow using modular arithmetic
- The range of int's is based on two's complement

```
\circ int_max = 2^{31} - 1 = 2147483647
\circ int min = -2^{31} = -2147483648
```

 Their values are defined as the functions int_max() and int_min() in the <util> system library

```
# coin -l util
C0 interpreter (coin) ...
--> int_max();
2147483647 (int)
--> int_min();
-2147483648 (int)
-->
```

Reasoning about int Code

 Comparing int values in C0 does not work like comparing numbers in normal arithmetic

```
string bar(int x) {
  if (x+1 > x)
    return "Good";
  else
    return "Strange";
}
```

- This function does not always return "Good"
 - if x is int_max, it returns "Strange"!
 ➤ but in math x+1 > x for any x!

dealing with sign

- When reasoning about code that uses >, >=, < and <=, we often need to account for overflow
 - by considering special cases
 - Code that only uses +, * and doesn't need a special treatment

Division and Modulus

Operations on int's

So far, we learned how C0 handles

```
== and != too
```

- 0 +, -, *: using modular arithmetic
- \circ >, >=, <, <=: using two's complement
- Oivision is missing!
- We are used to division on real numbers:
 - x/y is the number z such that $z^*y = x$ \Rightarrow if $y \neq 0$
- But this definition doesn't work with integers
 - \circ there is no *integer z* such that 2*z = 3

Integer Division

- With *integers*, there is not always z such that z * y = x
 z is x/y in calculus
- We introduce a new operation, the modulus, to pick up the slack
 - \circ We want to define the operations x/y and x%y so that

- That's not enough!
 - defining x/y to always return 0 and x%y to return x would work
 ➤ we don't want that!

Integer Division and Modulus

$$(x/y) * y + (x%y) = x$$

- We also want the modulus to be between 0 and y-1
 - Also require

We take the absolute value in case y is negative

$$0 \le |x \% y| < |y|$$

- This is still not enough!
 - defining 9/4 to be 3 and 9%4 to be -3 would work

$$\square$$
 (9/4) * 4 + (9%4) = 3*4 - 3 = 9 and $0 \le |-3| < 4$

- > We don't want that!
- We want division to "round down"
 - \circ in a calculator, 9/4 = 2.25
 - \circ so with integer division, we want 9/4 = 2
 - \triangleright and therefore 9%4 = 1

Integer Division and Modulus

$$(x/y) * y + (x%y) = x$$

 $0 \le |x \% y| < |y|$

Division should "round down"

- But what does "rounding down" mean for negative numbers?
- In C0, integer division rounds toward 0

$$>$$
 so -9/4 == -2 in C0

O In other languages, it rounds towards -∞

Division by Zero

- In math, division by zero is undefined
- In a program, division by zero is an error
 - C0 will abort execution
- Any time we have x/y in a program, we must have a reason to believe that y != 0
 - 0 is not a valid value for the denominator of a division

```
# coin
C0 interpreter (coin) ...
--> 5/0;
Error: division by zero.
Last position: <stdio>:1.1-1.4
-->
```

- In C0, we flag invalid values using preconditions
 - some primitive operations come with preconditions
 - > not just user-defined functions

Safety Requirements

Integer division, x/y, has the precondition

```
//@requires y != 0;
```

- There is another invalid input: int_min()/-1 also aborts the program
 - ➤ this is because computer chips raise errors on these values
- Integer division has a second precondition:

```
//@ requires !(x == int_min() && y == -1);
```

- Code that uses / or % must be safe
 - We must prove that these preconditions are satisfied

x%y has the same preconditions

Operations on int's – Summary

• +, -, *: handled using modular arithmetic

== and != too

- >, >=, <, <=: handled using two's complement</p>
- x/y rounds towards 0 always
- x/y and x%y have preconditions

```
//@requires y != 0;
//@requires !(x == int_min() && y == -1);
```

Bit Patterns

Using int Beyond Numbers

- So far, we used the type int to represent <u>integers</u>
 numbers!
- But in C0, an int is always 32 bits
- We can use an int to represent any data we can fit in 32 bits
 pixels, network packets, ...
 Then, an int does not represent a number but a bit pattern
- C0 has a special set of operations to manipulate bit patterns
 they are the bitwise operations and the shifts
 - -, *, / and % are called the arithmetic operations

We *could* use the arithmetic operations to manipulate bit patterns but that's inefficient and error prone

Pixels as 32-bit int's

- A pixel is a dot of color in an image
 - The color of a pixel can be described by specifying
 - > how much red, green and blue it contains
 - ➤ how opaque it is this part is called the **alpha** component
- Pixels are efficiently represented as bit patterns

- bits 0-7 give the intensity of blue
- bits 8-15 give the intensity of green
- bits 16-23 give the intensity of red
- bits 24-31 specify the opacity

- A value of 0 means there is no blue
- A value of 255 means maximally blue

This is called the

ARGB representation

Similar

- 0 means fully transparent
- 255 means fully opaque

Pixels as Bit Patterns

 To describe a pixel, we need to give all its 32 bits > E.g., 10110011011100110101101011111001 This is mind numbing! We are better off using hexadecimal We always use hex > 0xB3735AF9 with bit patterns alpha blue red green 25 24 23 22 21 20 19 18 1011 0011 0111 0011 0101 1010 1111 1001 B F

Here's the color of this pixel

Bitwise Operations

Bitwise Operations

 The bitwise operations manipulate the bits of a bit pattern independently of the other bits nearby

They are

```
- pronounced "not"
& - pronounced "and"
- pronounced "or"
- pronounced "xor"
```

Let's see how they work on an individual bit

Bitwise Operations on One Bit

 Here are the tables that give the output for each input This says that:

• 0 & 0 is 0

• 0 & 1 is 0

• 1 & 0 is 0

• 1 & 1 is 1

and

&	0	1
0	0	0
1	0	1

or

	0	1
0	0	1
1	1	1

xor

r	٨	0	1
	0	0	1
	1	1	0

not

~	0	1
	1	0

Bitwise Operations

- C0's bitwise operations take int's as input and return an int
 there is no type for individual bits in C0
- They apply the tables on each bit of their inputs, position
 by position

 But we know

they are 32 bit

o so, if int's were 6 bits,

000101	010111	010010
& 010101	010101	^ 010101
000111	000111	000111

~ 010101 101010

- & and | are related to && and || but
 - & and | take two int's and return an int
 - && and || take two bool's and return a bool

Bitwise And – &

Let's see how to use the bitwise operations to manipulate bit patterns

- If we "and" any bit b with
 - 0, we always get 0
 - \Box b & 0 = 0
 - 1, we always get b back
 - \Box b & 1 = b

- If the int x is a bit pattern, then x & m is an int that
 - o has the same bits as x where m is 1
 - o and has a zero where m is 0
- The int m is called a mask
 - o it allows us to retain specific bits of interest in x

&: Clearing Bits

- We want to write a function that returns a pixel identical to p but with no red in it
 - > zero out red component of p bits 16-23
 - > preserve the all other bits
- We can use the mask 0xFF00FFFF
 - ▶ bits 16-23 are 0
 - > all other bits are 1

Here's how it looks on our example

&: Isolating Red

- We want to return a pixel with just the red component of p
 - ➤ preserve the red component of p bits 16-23
 - > zero out all other bits
 - o "and" p with the mask 0x00FF0000

The alpha channel is 00 so it is totally transparent

This is 0x00730000

Background

Bitwise Or –

- If we "or" any bit b with
 - 0, we always get b back
 - □ b | 0 = b
 - 1, we always get 1
 - □ b | 1 = 1

- Common uses of | are
 - O setting bits to 1 This is similar to clearing bits with &
 - o constructing a bit pattern from parts

: Opacify

Same color but

fully opaque

- We want to make a pixel fully opaque
 - ➤ set the alpha bits to 1 bits 24-31
 - preserve the other component of p
- We can "or" p with 0xFF000000
 - ➤ bits 24-31 become 1
 - > all other bits stay as in p

```
int opacify(int p) {
  return p | 0xFF0000000;
}
This is 0xFF735AF9
```

This is 0xB3735AF9

Background

Backg

|: Constructing Pixels from Parts

- Return a pixel with the same green component as p and the same alpha, red and blue components as q
 - isolate the green component of pusing the mask 0x0000FF00
 - isolate the other components of q using the mask 0xFFFF00FF
 - o combine them with "or"

if p is 0xB3735AF9, then p_green is 0x00005A00

if q is 0xCDA1E805, then q_others is 0xCDA10005

0x00005A00 | 0xCDA10005 = 0xCDA15A05

int franken_pixel(int p, int q) {

return p_green | q_others;

This is 0xCDA15A05

int $p_green = p & 0x0000FF00$;

int q_others = q & 0xFFFF00FF;

This is 0xB3735AF9

Background

73

Background

This is 0xCDA1E805

franken_pixel

Background

Bitwise Not − ~

Bitwise negation flips bits

~	0	1
	1	0

~: Flipping bits

~	0	1
	1	0

- Return the pixel with the same opacity but inverted colors
 - > preserve the alpha channel
 - > change the value of all other channels to 255 minus their original value
 - ☐ that's the same as flipping the bits of all channels

```
int invert(int p) {
  return (p & 0xFF000000) | (~p & 0x00FFFFF);
}
```


Bitwise Xor – ^

- If we "xor" any bit b with
 - 0, we always get b back
 - \Box b \land 0 = b
 - b itself, we always get 0
 - \Box b \wedge b = 0
 - furthermore, "xor" is associative and commutative

- One consequence is that (m ^ k) ^ k = m
 - if m is a message and k is a key
 then x = (m ^ k) is the encryption of m with k
 - o to decrypt x, we do x ^ k, and m pops out
- "xor" is commonly used in cryptography

Shifts

Moving Bits Around

- The bitwise operations manipulate each position independently from all other positions in a bit pattern
 We can't use them to move bits to new positions
- The shift operations enable us to move bits around
 - Oleft shift: x << k moves the bits of x left by k positions</p>
 - o **right shift**: x >> k moves the bits of x right by k positions

Since an int has 32 bits, k must be between 0 and 31
 //@requires 0 <= k && k < 32;

Unsafe otherwise

Left Shift

- x << k shifts the bits of x left by k positions</p>
 - the leftmost k bits of x are dropped
 - the rightmost k bits of the result are set to 0
- So

0101 << 1 evaluates to 1010: 0101</p>

1010

0101 << 3 evaluates to 1000: 0101</p>

1000

Blue Everywhere

- Return a pixel whose red and green components have the same intensity as p's blue component
 - isolate the blue component of p
 - o put it in the red, green and blue positions

Right Shift

- x >> k shifts the bits of x right by k positions
 - the rightmost k bits of x are dropped
 - the leftmost k bits of the result are a copy of the leftmost bit of x
 - > This is called sign extension

That's because in two's complement, the leftmost bit is the sign bit

So

Sign bit

 Return a pixel identical to p, but where the red and alpha channel are swapped

- isolate the channels of p
- shift alpha right by 8 bits

so that its bits are in the alpha position

so that its bits are in the red position

- shift red left by 8 bits -
- combine the parts and return


```
int swap_alpha_red(int p) {
  int new_alpha = (p & 0x00FF0000) << 8;
  int new_red = (p & 0xFF000000) >> 8;
  int old_green = p & 0x0000FF00;
  int old_blue = p & 0x00000FF;
  return new_alpha | new_red | old_green | old_blue;
}
```

- o isolate the channels of p
- shift alpha right by 8 bits
- o shift red left by 8 bits
- combine the parts and return

• We have a bug!

If p is 0xB3735AF9,

```
int swap_alpha_red(int p) {
    int new_alpha = (p & 0x00FF0000) << 8;
    int new_red = (p & 0xFF000000) >> 8;
    int old_green = p & 0x0000FF00;
    int old_blue = p & 0x00000FF;
    return new_alpha | new_red | old_green | old_blue;
}

this is 0x73000000

this is 0x000005A00

this is 0x000000F9
```

- (p & 0xFF000000) >> 8 extends p's sign bit over the 8 leftmost bits
 - Obeware of sign extension!

- To fix the bug, get rid of the sign-extended bits
 - mask after shifting

int Summary

The type int is used to

- represent integers
 - o it uses modular arithmetic and two's complement
 - it manipulates them using the arithmetic operations

- encode bit patterns
 - o it manipulates them using the bitwise operations and the shifts

NEVER mix and match operations

- o it does not make sense to multiply pixels
- o nor to & two numbers

Arithmetic vs. Bitwise Operations

NEVER mix and match arithmetic and bitwise operations

Exceptions

$$0 - x = -x + 1$$

Inside a processor chip,

- this is an efficient way to compute -x
- it avoids the need for circuitry for subtraction

 $\circ x << k = x * 2^k -$

 \Rightarrow in particular, $1 \ll k = 2^k$

x << k is a very efficient way to computer x * 2^k.

You are very likely to use it

 $\circ x >> k = x \text{ divided by } 2^k \text{ (Python division, not C0's)}$

x >> k is a very efficient too, but you are unlikely to use it: it's the "wrong" division