UDAAN 2025

PHYSICS

DHA: 4

ELECTRICITY

- Q1 What is the lowest total resistance that can be combination of four coils of resistance 4Ω , $8\Omega, 12\Omega$ and 24Ω ?
 - (A) 2Ω
 - (B) 1Ω
 - (C) $\frac{1}{2}\Omega$
 - (D) 0.1Ω
- Q2 An equilateral resistance is formed with each side having a resistance 6Ω , What is he resistance across any side of the triangle?
 - (A) 2Ω
- (B) 6Ω
- (C) 4Ω

- (D) None of these
- Q3 What is the current in the circuit shown (figure)?

- (A) 1.5 A
- (B) 0.5 A
- (C) 2.5 A
- (D) None of these
- Q4 In the circuit shown in figure. The reading of the voltmeter V will be

(A) 4 V

(B) 2 V

(C) 6 V

- (D) 3 V
- Q5 Which of the following networks yields maximum effective resistance between A and B

(D)

Q6 What is the resistance between P and Q?

- (A) $\frac{3}{4}\Omega$
- (B) $\frac{4}{3}\Omega$ (C) $\frac{16}{3}\Omega$
- (D) infinity

Q7 What is the current (I) in the circuit?

- (A) $\frac{1}{2}$ A
- (B) $\overset{2}{2}$ A (C) $\frac{3}{2}$ A
- (D) None of these
- Q8 The resistance of a semiconductor material (germanium of Silicon) ____ with rise in temperature.
 - (A) Increases

- (B) Decreases
- (C) remains the same
- (D) First increases then decreases

Answer Ke	ey
------------------	----

Q1 (A)

Q2 (C)

Q3 (A)

Q4 (A) Q5 (A)

(C) Q6

(B) Q7

(B) Q8

Hints & Solutions

Q1 Text Solution:

In parallel combination equivalent resistance is always less than the individual resistance.

Video Solution:

Q2 Text Solution:

Use concept of series and parallel combination of resistance.

Video Solution:

Q3 Text Solution:

Use concept of series and parallel combination of resistance and then use formula [V = IR]

Video Solution:

Q4 Text Solution:

Find current across 100 Ω resistance and then use formula [V = IR] for finding the voltmeter reading.

Video Solution:

Q5 Text Solution:

Use concept of series and parallel combination of resistance.

Video Solution:

Text Solution:

Use concept of series and parallel combination of resistance.

Video Solution:

Q7 Text Solution:

Use concept of series and parallel combination of resistance and then use formula [V = IR]

Video Solution:

Q8 Text Solution:

The resistance of semiconductor decreases with rise in temperature.

Video Solution:

