

شبکه های عصبی

استاد: محمد باقر منهاج

موضوعات

• فصل چهارم

- فرایند یادگیری
- شبکه های عصبی به عنوان سیستمهای دینامیکی آموزش پذیر
 - ادگیری شبکه –
 - انواع یادگیری: با ناظر، بدون ناظر و تشدیدی
 - قانون یادگیری پرسپترون

فصل ۴ پرسپترون تک لایه

فرایند یادگیری

"مار گزیده از ریسمان سیاه و سفید می ترسد" "از علل مشابه انتظار عواقب مشابه را داریم"

- سیستمهای یادگیر صرفا با مشاهده عملکردشان رفتار خود را جهت رسیدن به هدفی
 خاص بهبود می بخشند.
 - اگر مقاصد و اهداف به طور کامل تعریف شده باشد، دیگر احتیاجی به فرایند یادگیری نیست.
 - یادگیری به علت عدم قطعیت در شرایط محیطی لازم می گردد.
 - رفتار سیستمهای یادگیر توسط الگوریتمهای بازگشتی بیان می شود.
 - با این الگوریتمها شاخص اجرایی مشخص شده ای بهینه می گردد.
 - در حالت کلی دو نوع یادگیری داریم: با ناظر بدون ناظر

یادگیری با ناظر

- در این حالت در هر تکرار الگوریتم یادگیری جواب مطلوب سیستم یادگیرنده از قبل آماده است.
 - به عبارت دیگر الگوریتم به جواب مطلوب دسترسی دارد.
- مثلا اگر هدف یادگیری تابع $y=x^2$ باشد، پاسخ مطلوب به ورودی ۰.۵ برابر ۰.۲۵ می باشد.
- به طور کل جوابی را که سیستم یادگیر با وضعیت فعلی پارامترهایش می دهد، جواب واقعی در نظر می گیریم.

بنابر این الگوریتم هم به جواب مطلوب و هم به جواب واقعی دسترسی دارد. یعنی خطای یادگیری که تفاوت این دو مقدار می باشد، در دسترس است.

یادگیری بدون ناظر

- در این حالت جواب مطلوب برای سیستم یادگیرنده موجود نیست.
 - یعنی : عدم دسترسی به خطای یادگیری

• سوال

- چگونه می توان یک سیستم یادگیرنده را آموزش داد، اگر ندانیم که این سیستم
 قرار است چه کاری انجام دهد؟
- خواهیم دید که بیشتر الگوریتمهای بدون ناظر عمل خوشه بندی را انجام می دهند.
 - یعنی می آموزند که الگوهای ورودی را به تعداد متناهی از گروهها تقسیم کنند.
- دقت شود که در این حالت فرد معلم یا طراح است که مقصد نهایی را معلوم میکند.

یادگیری بدون معلم مفهوم غلطی است

خلاصه فرایند یادگیری

- سیستم یادگیرنده توسط محیط تحریک شود.
- قانون یادگیری با رجوع به نتیجه تحریک، پارامترهای سیستم یادگیری را تغییر دهد.
- سیستم یادگیرنده به خاطر تغییراتی که در ساختار داخلی آن اتفاق افتاده است، پاسخ مناسبتری به محیط بدهد.

شبکه های عصبی: سیستمهای دینامیکی آموزش پذیر

- شبکه عصبی توانایی تجربه اندوزی از گذشته و بهبود رفتار خود را داراست
 بهبود یادگیری در طول زمان باید بر اساس معیاری سنجیده شود.
 - معیار بهبود، هدف یادگیری را مدل می کند.
- قانون یادگیری، روندی است که در آن ماتریس وزنها و بردارهای بایاس شبکه عصبی تنظیم میشوند.
- این قوانین توسط روابط بازگشتی و عموما به صورت معادلات تفاضلی بیان می شوند.
 - نوع یادگیری در چگونگی این روند دخالت دارد.

معادله یادگیری در حالت کلی

• یک نرون با یک بردار پارامتر $\underline{\mathbf{w}}$ و بردار ورودی $\underline{\mathbf{p}}$ قابل نمایش است.

$$\underline{w} = [w_1, w_2, ..., w_R, b]^T$$

 $\underline{p} = [p_1, p_2, ..., p_R, 1]^T$

- هر نرون توانایی تنظیم بردار پارامتر خود بر اساس ورودی و یک سیگنال معلم را داراست
 - در یادگیری با ناظر: سیگنال معلم همان سیگنال خطا است
 - در یادگیری بدون ناظر: سیگنال معلم تغییر بردار حالت خود نرون است
 - قانون کلی یادگیری برای یک نرون

$$\underline{\dot{w}}(t) = -\alpha w(t) + \eta . l. \underline{p}(t)$$
 عالت پیوسته:

$$\underline{w}(k+1) = (1-\alpha)w(k) + \eta . l.\underline{p}(k)$$

معادله یادگیری در حالت کلی

- . نشان دهنده تاثیر از گذشته و η نرخ یادگیری می باشد lpha
- L سیگنال یادگیری بوده و در حالت کلی تابعی از p, w, t (برای حالت با ناظر) می باشد.
 - خواهیم دید که همه انواع قوانین یادگیری شبکه در این فرم کلی قرار دارند.
- و سیگنال معلم همان سیگنال خطا و lpha=0 مثلا در قانون یادگیری پرسپترون lpha=0 برابر اور است.

$$\dot{w}_{ij}(t) = -\alpha w_{ij}(t) + \Delta w_{ij}(t)$$

$$w_{ij}(k+1) = (1-\alpha)w_{ij}(k) + \Delta w_{ij}(k)$$

• برای هر نرون شبکه عصبی نیز داریم:

– حالت پيوسته:

- حالت گسسته:

. ترم اصلاحی می باشد $\Delta w_{ij}(k)$

یادگیری با ناظر در شبکه عصبی

- $(\underline{p}^i , \underline{t}^i)$ زوج داده های یادگیری i=1,2,...,L
- t پاسخ مطلوب و a خروجی واقعی شبکه
- سیگنالهای خطا پارامترهای شبکه را به نحوی تنظیم می کنند که پاسخ شبکه به سمت پاسخ مطلوب حرکت کند.
 - LMS و پس انتشار خطا از انواع با ناظر
 بوده که در فصلهای ۷ و ۸ آمده است.
- سوال: تفاوت اصلی در یک سیستم فیدبک ما سگاه کا دارای یادگیری با ناظر و سیستمهای تطبیقی
 حبست؟

یادگیری تشدیدی (تقویتی) در شبکه عصبی

اشکال یادگیری با ناظر: بدون معلم نمی تواند مواضع جدیدی را که توسط داده های تجربی پوشانده نشده است، یاد بگیرد.

- یادگیری با ناظر: offline , online
 - یادگیری تشدیدی: online
- در یادگیری Offline به کمک داده های یادگیری طراحی شبکه عصبی و آموزش آن انجام می شود و پس از آن به عنوان یک سیستم استاتیکی عمل می کند. ولی در حالت online مثل یک سیستم دینامیکی همواره در حال انجام کار است.
- یادگیری تشدیدی نوع خاصی از یادگیری با ناظر است زیرا همچنان رفتار شبکه ارزیابی می شود.

یادگیری تشدیدی (تقویتی) در شبکه عصبی

• در یادگیری تشدیدی معمولا مقادیر خروجی مطلوب در دسترس نیست و در آن به شبکه اعلام میشود که مثلا عملکرد آن ۵۰٪ درست است یا اصلا مطلوب نیست.

- در حالت حاد با یک بیت میتوان اعلام کرد که خروجی درست است یا خیر.
- سیگنال برگشتی از نوع نقادی است در صورتیکه در یادگیری با ناظر جنبه دستوری دارد (چون t معلوم است).
- سیگنال نقاد پارامترهای شبکه را تنظیم میکند با این امید که سیگنال نقاد بهتری در آینده جهت تنظیم پارامترها تولید شود.

یادگیری بدون ناظر در شبکه عصبی

- یادگیری خود سازمانده
- در این نوع یادگیری، هیچ سیگنالی که اطلاعاتی در مورد مطلوبیت جواب شبکه به خود شبکه وارد نماید موجود نیست.
 - شبکه در اینجا بایستی تنها با ارائهٔ صرف بردارهای ورودی، ارتباطات موجود بین الگوهای ورودی را پیدا کرده و در خروجی شبکه کُد نماید.

قانون یادگیری پرسپترون تک لایه (SLPR)

- از نوع یادگیری با ناظر
- خطای یادگیری در دسترس
- برای شبکه ای با یک نرون میانی و دو ورودی دیدیم:
- معادل است با خطی که فضای ورودی را به ۲ بخش تقسیم میکند.
- $W_1 = W_1 = W_1 + W_2$ عمود $W_1 = W_1 + W_2$ عمود است.
- برای تمامی نقاط بالای خط مرزی (با توجه به جهت بردار وزن) Wp+b>0 و
 برای تمامی نقاط پایین خط مرزی Wp+b<0 می باشد.
 - در صورت افزایش تعداد نرونهای میانی و R=2، تعداد نواحی قابل تفکیک توسط خطوط متقاطع در فضای R^2 افزایش می یابد.

SLPR

$$V^{n} = V^{n} + \frac{1}{2} \underline{e} \underline{q}^{T} \implies$$

$$W^{n} = W^{n} + \frac{1}{2} \underline{e} \underline{p}^{T} \iff W(k+1) = W(k) + \frac{1}{2} \underline{e}(k) \underline{p}^{T}$$

$$\underline{b}^{n} = \underline{b}^{n} + \frac{1}{2} \underline{e} \iff \underline{b}(k+1) = \underline{b}(k) + \frac{1}{2} \underline{e}(k)$$

$$\underline{e} = \underline{t} - \underline{a}, \left(\underline{t}, \underline{a} \in \{-1, 1\}^{S}\right)$$

