Câu 2:

- Minpoint (minpts): minPts tối thiểu có thể được tính theo số chiều D trong tập dữ liệu là minPts ≥ D+1, là một ngưỡng số điểm dữ liệu tối thiểu được nhóm lại với nhau nhằm xác định một vùng lân cận epsilon có mật độ cao. Số lượng minpoint không bao gồm điểm ở tâm.
- Radius (Epsilon): một giá trị khaongr cách được sử dụng để xác định cùng lân cận radius của bất kỳ điểm nào.
- Nếu chỉ số radius hoặc minPts quá lớn, dữ liệu được phân thành cụm lớn (số lượng cụm ít) => có thể dẫn tới phân tách không tốt; Thậm chí các điểm sẽ nằm trong một cụm.
- Nếu chỉ số radius hoặc MinPits càng nhỏ, dữ liệu được chia thành các cụm nhỏ (độ chính xác phân cụm không cao).

Câu 3:

1. Kmeans: bài toán giảm chiều dữ liệu. Chia các datapoints thành các cụm dựa vào đặc tính của nó nhưng dữ liệu không có nhãn

Xét bài toán: Dataset $\{x_1, x_2, ..., x_n\}$, mỗi dữ liệu có D features => muốn chia thành K cụm.

Ý tưởng: Dữ liệu nào có đặc tính gần giống nhau thì cho thành 1 cụm, xa nhau cho vào cum khác.

Có n samples, k clusters:

$$+ r_{nk} = 1 \text{ n\'eu } x_n \in C_K: ||x_n - \mu_k||^2 \le ||x_t - \mu_t||^2$$

 $+r_{nk}=0$ nếu ngược lại.

Bài toán: Tìm centroid sao cho khoảng cách từ centroid đến các điểm dữ liệu trong từng cụm là nhỏ nhất.

$$L = \sum_{i=1}^{n} \sum_{j=1}^{K} r_{ij} ||x_i - \mu_j||^2 => \text{minimize L tim } r_{ij}, \mu_j.$$

3 steps:

B1: chọn centroid bất kỳ => minize L.

B2: fix μ_k , tìm r_{nk} .

B3: fix r_{nk} , tìm μ_k .

Lặp lại bước 2 và 3 đến khi các cluster không thay đổi.

2. Gaussian Mixture Model.

Bài toán: Có các điểm dữ liệu, tìm $\theta = \{\pi_k, \mu_k, \Sigma_k\}$ tham số sinh ra dữ liệu.

3. DBSCAN: DSCAN không dựa vào khoảng cách, sử dụng density để phân tách các cụm (dựa vào mật độ)

Thuật toán: 2 bước.

- Bước 1: Lựa chọn một điểm dữ liệu bất kỳ. Sau đó xác định các corepoint và border point thông qua epsilon.

- Bước 2: Cụm hoàn toàn được xác định không thể mở rộng thêm. Khi đó lặp lại đệ quy toàn bộ quá trình với điểm khởi tạo trong số các điểm dữ liệu còn lại để xác định cụm mới.

*** So sánh:

K-means	GMM	DBSCAN
Các cụm được hình	Xử lý nhiều hình dạng	Các cụm hình thành có
thành có dạng hình cầu	hơn, chủ yếu là các cụm	dạng tùy ý và có thể
hoặc lồi và phải cùng	tạo thành hình elip.	không cùng kích thước
kích thước, đặc điểm.	Các điểm dữ liệu được	đối tượng.
	tạo ra từ sự kết hợp tuyến	
	tính của các phận phối	
	Gaussian đa biến với	
	tham số chưa biết.	,
Phân cụm K-mean sẽ	Soft-assigment. Phân	Số lượng cụm không cần
tuân theo số cụm được	cụm dựa trên xác suất	khai báo trước.
chỉ định.	hoặc khả năng điểm dữ	
Hard-assigment (môi	liệu tồn tại cụm đó.	
điểm dữ liệu chỉ ở một		
cụm).		
K-mean hiệu quả hơn	Phù hợp với dữ liệu	DBSCAN clustering
cho tập dữ liệu lớn.	mång.	không xử lý hiệu quả với
		các tập dữ liệu có nhiều
110 16 16	77. 17. 6. 7. 1.2	chiều.
K-mean không tốt đối	Xử lý tốt với cụm nhiễu,	DBSCAN xử lý hiệu quả
với bộ dữ liệu nhiều	chồng chéo, kéo dài.	outlier và noise.
outliers và noises (Do		
xác định cụm liên quan		
đến khoảng cách của		
centroid và datapoint của		
cụm đó).	2 41-2 22	2 tham số: Radius và
1 tham số: k cụm	2 tham số: r_{nk} v à μ_k	
M24 #2 41 are #2: -2/	II. at #2 a a t2 (.) - (-	minpoint
Mật độ thay đổi của các	Hoạt động tốt với các	Không hoạt động tốt với
điểm không ảnh hưởng	phân bố hình học phi	bộ dữ liệu thưa thớt hoặc
đến thuật toán phân cụm.	tuyển tính.	điểm dữ liệu có mật độ
		thay đổi.