

		USN										_
School	of Computer	Scienc	e	an	d	E	ng	in	ee	ri	ng	5

B.Tech (Hons.)

CP-2 Answer Scheme (Set B) Academic Year 2024-2025

Course: PSN	Course Code: CS2801	Semester: III
Time: 2 hours	Max Marks: 25	Date: 22/09/2024

Notes/Instructions:

- a) Answer all the questions.
- b) Any use of laptops, phones or smartwatches and unfair means will be considered as malpractice and results in ZERO marks.

Sl. No.	Answers and Mark distribution	Marks	L1-L 6	со
1. `	The correct answer is: d) strong positive correlation This is a linear relationship with a slope of 3. The slope indicates how much Y changes for a given change in X. • Since the slope is positive (3), it means that as X increases, Y also increases. • A positive slope represents a positive correlation.	1	L2	CO3
2.	The correct answer is: a) -3 To find the y-coordinate of the vertex of a parabola, we first need to find the x-coordinate of the vertex using the formula: For a parabola in the form $y = ax^2 + bx + c$, the x-coordinate of the vertex is given by: $x = -b/2a$ In this case, $a = 2$ and $b = 4$, so: $x = -4/2(2) = -1$ Now, substitute $x = -1$ into the equation to find the corresponding y -coordinate: $y = 2(-1)^2 + 4(-1) - 1 = 2 - 4 - 1 = -3$ Thus, the y -coordinate of the vertex is -3.	1	L2	CO3
3.	The correct answer is: c) $\sum y = a \sum x + nb$ and $\sum xy = a \sum x^2 + b \sum x$.	1	L2	соз

	Line of regression of x on y : $b_{xy} = 1/5$	0.5	L2	соз
	Line of regression of y on x : $b_{yx} = 2/3$			
	$ an heta = \left \left(rac{1-r^2}{r} ight)rac{\sigma_x\sigma_y}{\sigma_x^2+\sigma_y^2} ight $			
	$\Rightarrow an heta = \left \left(rac{1-r^2}{r} ight) rac{1}{rac{\sigma_x^2 + \sigma_y^2}{\sigma_x \sigma_y}} ight $			
	$\Rightarrow an heta = \left \left(rac{1-r^2}{r} ight) rac{1}{rac{\sigma_x^2}{\sigma_x \sigma_y} + rac{\sigma_y^2}{\sigma_x \sigma_y}} ight $			
	$\Rightarrow an heta = \left \left(rac{1-r^2}{r} ight) rac{1}{rac{\sigma_x}{\sigma_y} + rac{\sigma_y}{\sigma_x}} ight $	0.5		
	$\therefore an heta = \left rac{1-r^2}{rrac{\sigma_x}{\sigma_y} + rrac{\sigma_y}{\sigma_x}} ight $	0.5		
	$rrac{\sigma_x}{\sigma_y}=b_{xy}$			
4.	$rrac{\sigma_y}{\sigma_x}=b_{yx}$			
	$r^2=b_{xy}b_{yx}$			
	$\therefore an heta = \left rac{1 - b_{xy} b_{yx}}{b_{xy} + b_{yx}} ight $	0.5		
	Angle between the two lines of regression,			
	$ heta = an^{-1} \left rac{1 - (0.2) \left(rac{2}{3} ight)}{0.2 + rac{2}{3}} ight $			
	$\Rightarrow heta = an^{-1} \left rac{rac{3-0.4}{3}}{rac{0.6+2}{3}} ight $			
	$\Rightarrow heta = an^{-1} \left rac{3-0.4}{0.6+2} ight $	0.5		
	$\Rightarrow heta = an^{-1} \left rac{2.6}{2.6} ight $			
	$\Rightarrow heta = an^{-1} 1 $			
	$\therefore heta = rac{\pi}{4}$			
			L3	CO2
5.				
	a)			

Marginal Density of X , $f_X($	(x):	0.5	
$f_X($	$f(x) = \int_0^\infty f(x,y) dy = \int_0^\infty 2 e^{-x} e^{-2y} dy.$		
The integral of e^{-2y} over $0 < \infty$	$< y < \infty$ is:		
	$\int_0^\infty e^{-2y}dy=rac{1}{2}.$		
Therefore,			
f	$f_X(x) = 2e^{-x} \cdot rac{1}{2} = e^{-x}, 0 < x < \infty.$		
So,		1	
	$f_X(x) = e^{-x}, 0 < x < \infty.$		
Marginal Density of Y , $f_Y(y)$):		
Similarly, integrate $f(x,y)$ over	er x:		
$f_Y(y)$	$)=\int_{0}^{\infty}f(x,y)dx=\int_{0}^{\infty}2e^{-x}e^{-2y}dx.$		
The integral of e^{-x} over 0	$x<\infty$ is:		
	$\int_0^\infty e^{-x}dx=1.$	0.5	
Therefore,			
$f_Y($	$y) = 2e^{-2y} \cdot 1 = 2e^{-2y}, 0 < y < \infty.$		
So,			
	$f_Y(y) = 2e^{-2y}, 0 < y < \infty.$		
b)		1	
	$f(x,y) = f_X(x) \cdot f_Y(y).$		
From the above, we have:			
$f_X(x)$	$=e^{-x} ext{and} f_Y(y)=2e^{-2y}.$		
So,			
$f_X(x)\cdot$	$f_Y(y) = e^{-x} \cdot 2e^{-2y} = 2e^{-x}e^{-2y}.$		
This is exactly the joint density func	tion $f(x,y).$ Therefore, X and Y are independent.	1	
!			

	c)						
	The conditional de	nsity of X given Y =	=1 is given by:				
		f($f(x y=1)=rac{f(x,1)}{f_Y(1)}.$				
	First, compute $f(x)$;,1):					
		0.5					
	Now, compute $f_Y($	(1):			0.3		
		f_Y	$(1)=2e^{-2(1)}=2e^{-2}.$				
	Therefore, the con-	ditional density is:					
	So, the conditional	0.5					
		f(x 1	$(x) = e^{-x}, 0 < x < \infty$) .			
	$\sum x = 30, \sum y$	$y = 183, \sum x^2 =$	$220, \sum x^3 = 1800,$	$\sum x^4 = 15664,$		L4	CO3
		1.5					
	183 = 5a + 30b + 220c,						
6.	1526 = 30a + 220b + 1800c,						
	a = 27/7 = 5.4, b = -241/70 = -3.4428, c = 33/28						
		y = 5.4 - 3.4	$428x + 1.1786x^2$				
						L4	CO3
	Pearson's Correlation Coefficient Step 1. Coloulete the mean of hours studied and even scores						
	Step 1: Calculate the mean of hours studied and exam scores.						
	 Mean of hours studied (x̄) = (2 + 3 + 4 + 5 + 6) / 5 = 4 Mean of exam scores (ȳ) = (65 + 72 + 80 + 85 + 90) / 5 = 78.4 						
7.	Step 2: Calculate the deviations from the mean for each data point.						
	Hours Studied (x)	Exam Score (y)	Deviation from x (x - x)	Deviation from ȳ (y - ȳ)	1		
	2	65	-2	-13.4			
	3	72	-1	-6.4			
	4	80	0	1.6			

	5	85	1	6.6				
	6	90	2	11.6				
	Step 3: Calculate t	the product of t	he deviations for eac	h data point.		1		
	Hours Studied (x)	Exam Score (y)	Deviation from \vec{x} (x - \vec{x})	Deviation from ȳ (y - ȳ)	Product of Deviations			
	2	65	-2	-13.4	26.8			
	3	72	-1	-6.4	6.4			
	4	80	0	1.6	0			
	5	85	1	6.6	6.6			
	6	90	2	11.6	23.2			
	Step 4: Calculate		e products of devi	ations and the sum	of squared	1		
		•	.4 + 0 + 6.6 + 23.2 =	- 62				
	1 '''	• .	$0^2 + 1^2 + 2^2 = 10$	- 05				
	1 ' '		$(.4)^2 + 1.6^2 + 6.6^2 + 1$	$11.6^2 = 401.2$				
	Step 5: Calculate	e Pearson's cor	relation coefficient	t (r).		1		
	$r = \sum (x - x\overline{)}(y - \overline{y})$	$/\sqrt{[\Sigma(x-\bar{x})^2*\Sigma}$	$\Sigma(y - \bar{y})^2$] r = 63 / $\sqrt{(x^2 + y^2)^2}$	10 * 401.2) ≈ 0.99				
	Interpretation: 1	The correlation	coefficient of 0.99	indicates a very str	ong positive			
	Ī -		urs studied and exa	· · · · · · · · · · · · · · · · · · ·				
	a) X~N(10	000, 10000)					L4	CO2
	P(X > 1200)	P((X-))	$\mu)/\sigma > (1200 -$	$(\mu)/\sigma$				
	= .	P((X-1000))/100 > (1200 -	- 1000)/100)				
		P(z > 2)				1		
		1 - P(z < 2)				1		
			= 0.02275 = 2	28%		1		
8.		0. 77728	0.02270 2	. 20 70				
	b \	C 1/2	1 2 2					
		$6 = a/\lambda$, varian				0.5		
	,	$4 = a/\lambda^2$ and 6	$\delta = a/\lambda$, then			1.5		
		a = 9, and $a = 9$	$\lambda = 1.5$ then $\beta =$	= 1/ \lambda = 2/3		1.5		
1								

a) $x \sim B(n, \beta)$ $\sim B(5, +)$ $P(getting 2 lixes) = {}^{n}C_{2} p^{x} (1-\beta)^{n-x}$ $(1 Manks) \longrightarrow = {}^{5}C_{2} (+)^{2} (\frac{5}{6})^{3}$ $= {}^{10} \times \frac{5^{3}}{6^{5}} = \frac{10 \times 125}{7776}$ $(2 Manks) \longrightarrow = \frac{1250}{7776} \approx 0.1607$ $b) p(drawing a black bell in orandraw = \frac{N}{NEN} = \beta$ $p(drawing a white hall) = (-\beta) = \frac{N}{MEN}$ $Manks$ The perblability of needing exactly in chaws to get first black ball = $(1-\beta)^{n+1}$ b $P(first black on it chaw)$ $= (\frac{N}{NEN})^{n+1} \frac{N}{MEN}$ $= (\frac{N}{NEN})^{n+1} \frac{N}{MEN}$	