RESUMEN LAMINE YAMAL. NEW GEN.

Formulas Teorías de conjuntos.

Regla aditiva unión de eventos:

$$P(C) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(D) = P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Eventos mutuamente excluyentes:

$$P(A \cap B) = (\emptyset) = 0$$

$$P(C) = P(A \cup B) = P(A) + P(B)$$

$$P(D) = P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

Eventos Complementarios:

$$P(B) = P(\overline{A})$$

$$P(A) + P(\overline{A}) = P(S) = 1$$

$$P(A) = 1 - P(\overline{A}) = 1 - P(B)$$

Eventos Condicionales:

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

Eventos Independientes:

$$P(B/A) = P(B); P(A/B) = P(A)$$

Probabilidad Total:

$$P(A) = \sum_{i=1}^{k} P(B_i \cap A) = \sum_{i=1}^{k} [P(B_i).P(A/B_i)]$$

Resumen de fórmulas de Tema 2

Datos sin agrupar	$NIC = log_{10} n$ o $NIC = \sqrt{n}$, $5 \le NIC \le 15$ Datos $A = \frac{R}{NIC}$ agrupados			
Ancho del IC: Medidas de posición o tendencia central				
Media: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	k			
*Se puede obtener con Alcula.	$X = \sum_{i=1} (X_{PMi}. fr_i)$			
	$ \frac{1}{i=1} $ Se determina a cuál intervalo de pertenece el cuartil. Es el $\geq \frac{k}{4}$ primero			
Mediana/cuartiles: n impar: Q_k =	pertenece el cuartil. Es el			
$X_{4}^{\underline{k}(n+1)}$ con k=1,2,3.	que tenga Fr .			
n par: $Q_k = \frac{1}{2} \left[X_{\left(\frac{k}{4}n\right)} + X_{\left(\frac{k}{4}n+1\right)} \right] $ con k=1,2,3	$Q_k = L_i + \frac{\frac{k}{4} - Fr_{(i-1)}}{Fr_i - Fr_{(i-1)}}.A$ $con k=1,2,3$			
	Se determina a cuál intervalo de clase pertenece la			
Moda: Valor de mayor frecuencia.	$Mo = L_i + rac{A}{rac{f_i - f_{(i+1)}}{f_i - f_{(i-1)}} + 1}$ moda. Es aquél con mayor fr.			
$P_k = X_{\left(\frac{k}{100}n\right)}$ Percentiles: con k=1,,99	Se determina a cuál intervalo de clase $\geq \frac{k}{100}$ $P_k = L_i + \frac{\frac{k}{100} - Fr_{(i-1)}}{Fr_i - Fr_{(i-1)}}.A$ pertenece el percentil. Es el primero que tenga Fr . $ \text{con k=1,,99} $			
Medidas de	e dispersión			
Varianza: $n \sum_{i=1}^{n} X^2 - (\sum_{i=1}^{n} X_i)^2$ $\frac{S_2 = \frac{n(n-1)}{i}}{\frac{Desvío estándar: } S = \sqrt{S^2}}$	$S^{2} = \frac{n \sum_{i=1}^{k} X_{PM_{i}}^{2} \cdot f a_{i} - \left[\sum_{i=1}^{k} (X_{PM_{i}} \cdot f a_{i})\right]^{2}}{n (n-1)}$ $S = \sqrt{S^{2}}$			
*Se puede obtener con Alcula.				
Rango:	$R = X_m$ á $x - X_m$ ín			
$R = X_m \triangle x - X_m \triangle n$	$\Lambda = \Lambda_{Hla} \Lambda_{Hl}$			
Rango intercuartil: $IQ = Q_3 - Q_1$	$IQ = Q_3 - Q_1$			
Coeficiente de variación: $CV = S/X$	CV = S/X			

Medidas de forma			
Asimetría:			
	$SK = \frac{3(X - X)}{S}$	$SK = \frac{3(X - X)}{S}$	
Curtosis:	$Cu = \frac{1}{n} \frac{\sum_{i=1}^{n} (x_i - X)^4}{S^4} - 3$		

<u>Teorema de Chebyshev</u>: en relación a un conjunto de datos cualquiera (poblacional o muestral) y una constante k > 1 cuando menos $(1 - 1/k^2)$ de los datos debe estar dentro de k desvíos estándar a uno y otro lado de la media para que la dispersión se considere pequeña.

Ejemplo: si elegimos k=2 entonces $1-\frac{1}{k^2}=\frac{3}{4}=0,75$. El 75% de los datos debe estar a $\overline{X}+2S$ y $\overline{X}-2S$ para que la desviación se considere pequeña.

Estadistica Descriptiva Formulas: Medidas de Posición o de Tendencia Central

Media Aritmética:

- de una muestra: $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
- de una población: $\mu = \frac{\sum_{i=1}^{N} X_i}{N}$

Media Ponderada:

- de una muestra: $\overline{X_w} = \frac{\sum_{i=1}^{n} (w.x)}{\sum_{i=1}^{n} (w)}$
- de una población: $\mu_w = \frac{\sum_{i=1}^{N} (w.x)}{\sum_{i=1}^{N} (w)}$

Mediana (centro de los datos):

Divide al conjunto de datos en dos partes iguales (se deben ordenar los datos).

$$\tilde{X} = X_{\frac{n+1}{2}}$$
 n impar

$$\tilde{X} = \frac{1}{2} \left[X_{\frac{n}{2}} + X_{\frac{n}{2}+1} \right]$$
 n par

Cuartiles, Deciles y Percentiles (con datos ordenados):
$$Q_1 = X_{\frac{n+1}{4}} \qquad ; \ Q_2 = X_{\frac{n+1}{2}} = \tilde{X} \qquad ; \ Q_3 = X_{\frac{3.(n+1)}{4}} \qquad \text{con n impar}$$

$$Q_1 = \frac{1}{2} \cdot (X_{\frac{n}{4}} + X_{\frac{n}{4}+1}) \qquad ; \ Q_2 = \frac{1}{2} \cdot (X_{\frac{n}{2}} + X_{\frac{n}{2}+1}) \qquad ; \ Q_3 = \frac{1}{2} \cdot (X_{\frac{3.n}{4}} + X_{\frac{3}{4}\cdot(n+1)}) \qquad \text{con n par}$$

$$Q_1 = \frac{1}{2} \cdot (X_{\frac{n}{4}} + X_{\frac{n}{4}+1}) \qquad ; Q_2 = \frac{1}{2} \cdot (X_{\frac{n}{2}} + X_{\frac{n}{2}+1}) \qquad ; Q_3 = \frac{1}{2} \cdot (X_{\frac{3}{4}} + X_{\frac{3}{4}\cdot(n+1)}) \qquad \text{con n par}$$

$$D_1 = X_{\frac{n+1}{10}}$$
 ; $D_2 = X_{\frac{2}{10}.(n+1)}$... n impar

$$D_1 = \frac{1}{2} \cdot (X_{\frac{n}{10}} + X_{\frac{n}{10}+1}) \quad ; \qquad D_2 = \frac{1}{2} \cdot (X_{\frac{2}{100} \cdot n} + X_{\frac{2}{100} \cdot (n+1)}) \dots \qquad \text{n par}$$

$$P_1 = X_{\frac{n+1}{100}}$$
 ; $P_2 = X_{\frac{2}{100}.(n+1)}$... n impar

$$P_1 = \frac{1}{2} \cdot \left(X_{\frac{n}{100}} + X_{\frac{n}{100}+1} \right)$$
; $P_2 = \frac{1}{2} \cdot \left(X_{\frac{2}{100},n} + X_{\frac{2}{100},(n+1)} \right)$ n par

Medidas de Dispersión

- Varianza
 - Muestra: $S^2 = \frac{\sum_{l=1}^n (X_l \overline{X}\,)^2}{n-1}$ Población: $\sigma^2 = \frac{\sum_{l=1}^N (X_l \mu)^2}{N}$

(n-1 grados de libertad de los datos de la muestra)

- Desvío estándar:
 - $S = \sqrt{S^2}$ Muestra:
 - Población: $\sigma = \sqrt{\sigma^2}$
- $R = X_{max} X_{min}$ Rango:
- Coeficiente de Variación

Un índice de Asimetría muy utilizado es el de Pearson.

$$SK = \frac{3(\overline{X} - \widetilde{X})}{S}$$

Curtosis: Miden la mayor o menor concentración de datos alrededor de la media.

El grado de Curtosis es:

$$Cu = \frac{1}{n} \frac{\sum_{i=1}^{n} (x_i - \overline{X})^4}{S^4} - 3$$

CU=0 (Mesocúrtica). CU>0 (leptocúrtica). CU<0(Platicurtica).

Teorema de Chebyshev

$$1-\frac{1}{k^2}$$

$$\overline{X} + 2S y \overline{X} - 2S$$

Cuartiles Datos agrupados:

- Cuartiles:
$$Q_k = Li + \frac{\frac{n}{4}.k - Fa_{(k-1)}}{fa_k}$$
 . A_{IC}

Moda Datos Agrupados:

- Moda:
$$\hat{x} = Li + \frac{d_1}{d_1 + d_2}$$
 . A_{IC}

con
$$d_1 = fa_k - fa_{k-1}$$
 y $d_2 = fa_k - fa_{k+1}$

Buscamos la clase con mayor frecuencia absoluta o relativa.

Una regla para determinar si un dato es anómalo (outlier) es:

- Si un dato es < Q1 1.5(Q3-Q1)
- Si un dato es > Q3 + 1.5(Q3-Q1)

- Mínimo: $x_{min} = 31$
- Primer cuartil: $Q_1 = 61.8$
- Mediana: $\tilde{x} = 71.6$
- Tercer cuartil: $Q_3 = 83,25$
- Máximo: $x_{m\acute{a}x} = 97$

Intervalos de clase	Punto medio PM _i	Frecuencia fa_i	Frecuencia relativa $fr_i = rac{fa_i}{n}$	Frecuencia acumulada Fa_i	relativa	Frec. acumulada porcentual $Fr_{\%} = Fr_i.100\%$
[31,42)	36.5	3	0.075	3	0.075	7.5

Medidas para datos AGRUPADOS

Nro. de intervalos de clase: $k = \sqrt{n}$

$$k = \sqrt{n}$$

Amplitud de intervalos de clase: $A_{IC} = \frac{R}{L}$

Medidas de tendencia central

Media aritmética (\overline{x})

$$\bar{x} = \sum_{i=1}^{k} \frac{x_{PM_i} f a_i}{n}$$

Mediana (\widetilde{x} o Me)

$$\tilde{x} = Li + \frac{\frac{n}{2} - Fa_{(k-1)}}{fa_k} . A_{IC}$$

$$\hat{x} = Li + \frac{d_1}{d_1 + d_2} \cdot A_{IC}$$

$${\rm con} \ d_1 = f a_k - f a_{k-1} \ {\rm y} \ d_2 = f a_k - f a_{k+1}$$

Medida de forma

Coeficiente de asimetría de Pearson (A_P)

$$A_P = \frac{3(\bar{x} - \tilde{x})}{s}$$

Medidas de dispersión

Rango (R)

 $R = x_{m \pm x} - x_{m \pm n}$

Varianza (s^2)

$$s^{2} = \sum_{i=1}^{n} \frac{(x_{PM_{i}} - \bar{x})^{2} f a_{i}}{n-1}$$

Desvío estándar (s)

$$s = \sqrt{\sum_{i=1}^{n} \frac{(x_{PM_i} - \bar{x})^2 f a_i}{n - 1}}$$

Rango intercuartil (RI)
$$RI = Q_3 - Q_1$$

Coeficiente de variación (CV)

$$CV = \frac{s}{\bar{x}}$$

Medidas de posición

Cuartiles (Q_k)

Números que dividen la distribución de lo datos en cuatro partes iguales.

$$Q_{k} = Li + \frac{\frac{n_{4}k - Fa_{(k-1)}}{fa_{k}}}{fa_{k}} . A_{IC}$$

$$con k = 1.2.3$$

Deciles (D_k)

Números que dividen la distribución de lo datos en diez partes iguales.

$$D_k = Li + \frac{\frac{n}{10} \cdot k - Fa_{(k-1)}}{fa_k} \cdot A_{IC}$$

$$\cos k = 1, ..., 9$$

Percentiles (P_k)

Números que dividen la distribución de lo datos en cien partes iguales.

$$p_k = Li + \frac{\frac{n}{100}.k - Fa_{(k-1)}}{fa_k}.A_{IC}$$
$$\cos k = 1, ..., 9$$

Variables Aleatorias Unidimensionales.

Función de distribución: Tabla con los pares (x, f(x))

X	f(x)
0	1/8
1	3/8
2	3/8
3	1/8

Propiedades de una fdp de VAD

1.
$$f(x) \ge 0$$

$$2. \sum_{\forall x} f(x) = 1$$

2.
$$\sum_{\forall x} f(x) = 0$$

3. $P(X = x) = f(x)$

función de probabilidad VAD

Distribución acumulada F(X)

La F(X) de una VAD con distribución de probabilidad f(x) es:

$$F(X) = P(X \le x) = \sum_{t \le x} f(t) \quad para \quad -\infty < X < +\infty$$

Para el ejemplo anterior:

¿Qué probabilidad existe de comprar a lo sumo 1 defectuosa?

$$F(X \le 1) = \sum_{t \le 1} f(t) = f(0) + f(1) = \frac{10}{28} + \frac{15}{28} = \frac{25}{28}$$

¿Qué probabilidad existe de comprar al menos 1 defectuosa?

$$F(X \ge 1) = 1 - \sum_{t \le 0} f(t) = 1 - [f(0)] = \frac{28}{28} - \frac{10}{28} = \frac{18}{28}$$

Distribución acumulada F(X)

La F(X) de una VAD con distribución de probabilidad f(x) es:

$$F(X) = P(X \le x) = \sum_{t \le x} f(t) \quad para \quad -\infty < X < +\infty$$

Para el ejemplo anterior:

¿Qué probabilidad existe de comprar a lo sumo 1 defectuosa?

$$F(X \le 1) = \sum_{t \le 1} f(t) = f(0) + f(1) = \frac{10}{28} + \frac{15}{28} = \frac{25}{28}$$

¿Qué probabilidad existe de comprar al menos 1 defectuosa?

$$F(X \ge 1) = 1 - \sum_{t \le 0} f(t) = 1 - [f(0)] = \frac{28}{28} - \frac{10}{28} = \frac{18}{28}$$

Una función f(x) es una <u>función de densidad de probabilidad</u> para una $VAC \in \mathbb{R}$ si:

Propiedades de una fdp de VAC

1.
$$f(x) \ge 0 \quad \forall x \in \mathbb{R}$$

$$2. \int_{-\infty}^{+\infty} f(x) \, dx = 1$$

3.
$$P(a < x < b) = \int_a^b f(x) dx$$

Función de distribución Acumulada de una VAC

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) \, dx$$

Variables Aleatorias bidimensionales

Propiedades:

- Production			
Discreta	Continua		
$f(x,y) \ge 0$; $\forall (x,y)$	$f(x,y) \ge 0$; $f(x,y)$		
$\sum_{\forall x} \sum_{\forall y} f(x, y) = 1; \forall (x, y)$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$		
P(X = x, Y = y) = f(x, y)	$P(a < x < b, c < y < d) = \int_a^b \int_c^d f(x, y) dx dy$ $si \{a \le x \le b : c \le y \le d\}$		
$P[(x,y) \in A] = \sum_{x} \sum_{y} f(x,y)$			

Distribuciones Marginales

$$g(x) = \sum_{\forall y} f(x, y) \qquad y \qquad h(y) = \sum_{\forall x} f(x, y) \qquad \text{VAD}$$

$$g(x) = \int_{y=-\infty}^{+\infty} f(x, y) dy \qquad y \qquad h(y) = \int_{x=-\infty}^{+\infty} f(x, y) dx \qquad \text{VAC}$$

Distribución Probabilidad Condicional

$$f(^{y}/_{x}) = \frac{f(x,y)}{g(x)}$$

De la misma forma:

$$f(x/y) = \frac{f(x,y)}{h(y)}$$

$$f(x,y) = g(x).h(y)$$

$$f(x,y) = h(y). g(x)$$

CONDICIÓN DE INDEPENDENCIA ESTADÍSTICA

Regla de Bayes (Probabilidad de las causas)

Si los eventos B_1, B_2, \ldots, B_k constituyen una partición del Espacio Muestral S y $P(B_i) \neq 0$ para $i=1,2,\ldots,k$ entonces cualquier evento B_r en S tal que $P(A) \neq 0$ puede expresarse como $P(B_r/A) = P(B_r \cap A) / P(A)$ [$Probabilidad\ Condicional$]. Como $P(A/B_r) = P(B_r \cap A) / P(B_r) \Rightarrow P(B_r \cap A) = P(B_r) \cdot P(A/B_r)$

$$P(B_r/A) \, = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} \, = \, \frac{P(B_r) \, . \, P(A/B_r)}{\sum_{i=1}^k [P(B_i) \, . \, P(A/B_i)]}$$

Ejemplo 21: (Con respecto al caso anterior del Ejemplo 20):

¿Qué probabilidad existe de que lo haya fabricado la máquina 2 (B_2) sabiendo que el producto elegido al azar es defectuoso?

$$P(B_2/A) = \frac{P(B_2 \cap A)}{\sum_{i=1}^{3} P(B_i \cap A)} = \frac{P(B_2) \cdot P(A/B_2)}{\sum_{i=1}^{3} [P(B_i) \cdot P(A/B_i)]}$$

$$P(B_2/A) = \frac{(0.45) \cdot (0.03)}{(0.3) \cdot (0.02) + (0.45) \cdot (0.03) + (0.25) \cdot (0.02)} = \frac{0.0135}{0.006 + 0.0135 + 0.005} = 0.55$$

Teorema de probabilidad total

Dado un evento **A** que puede ser descripto por suma de las intersecciones de éste con eventos mutuamente excluyentes:

 $B_i = \sum_{i=1}^{k} P(B_i) = 1$, formados como una partición del Espacio Muestral **S**.

Entonces, según la fórmula de intersección de eventos:

