Московский государственный университет имени М. В. Ломоносова механико-математический факультет кафедра математической статистики и случайных процессов

Курсовая работа студентки 403 группы Страховой Надежды Олеговны

Оценка ширины светового луча по времени пребывания случайного блуждания

Научный руководитель: н.с., к.ф.-м.н. Дмитрущенков Дмитрий Валерьевич

Содержание

1	Постановка задачи.	2
2	Первый этап — до попадания в луч. 2.1 Теория для дальнейших рассуждений	2
3	Оценка эксцесса на первом этапе.	4
4	Второй этап — движение в луче.	5
5	Асимптотическая нормальность оценки и доверительный интервал.	5
6	Молелирование эксперимента на Python.	6

1 Постановка задачи.

Проводится эксперимент: частица совершает случайное блуждание, где приращение имеет нормальное распределение.

В некоторый момент мы фиксируем ее попадание в луч и начинаем замерять время t ее пребывания в нем.

Необходимо оценить ширину луча d, если известны t и σ^2 .

2 Первый этап — до попадания в луч.

До попадания частицы в луч, она совершает случайное блуждание. Введем обозначения:

$$S_0 = 0, \ S_n = \sum_{i=1}^n X_i,$$

где X_i имеет нормальное распределение $N(0, \sigma^2)$.

Пусть a — координата начала луча, которую мы задаем сами. Определим

$$N(a) = \max\{n \ge 1 : S_n \le a\}$$

Таким образом, координата, с которой наша частица начинает блуждать в луче, будет обозначаться $X_0 = S_{N(a)+1} - a$.

Введем понятия первого лестничного индекса и первой лестничной высоты, которые взяты из [2]

$$\eta_{+} = \max\{n \ge 1 : S_n \ge 0\}, \ \chi_{+} = S_{\eta_{+}}$$

Понятно, что мы можем представить $S_{N(a)+1}=\chi_1+\cdots+\chi_k$, где χ_i распределены как χ_+ .

2.1 Теория для дальнейших рассуждений.

Теперь, когда мы ввели случайные величины $\chi_i \geq 0$ и переписали наши суммы с помощью них, воспользуемся некоторыми результатами из теории восстановления.

Определение 2.1. Пусть X_i — случайные величины и $P(X_i \ge 0) = 1$, а обозначения $S_0 = 0$, $S_n = \sum_{i=1}^n X_i$ и N(a) такие, как определяли раньше. Тогда следующие случайные величины будут называться:

$$\Delta_2 = (S_{N(a)+1} - a)$$
 — эксцесс, $\Delta_1 = (a - S_{N(a)})$ — дефект.

Для эксцесса и дефекта в теории восстановления у нас есть следующая теорема:

Теорема 2.1. Пусть X_i случайные величины с одинаковой непрерывной функцией распределения и $P(X_i \ge 0) = 1$. Тогда имеем $\forall u, v \ge 0$

$$\lim_{a \to \infty} P\left(\Delta_1 > u, \Delta_2 > v\right) = \frac{1}{EX} \int_{u+v}^{\infty} P(X > x) dx$$

Также, для решения нашей задачи, нам будут полезны следующие факты, поученные в статье [3]. Благодаря Теореме 2 в [3] мы можем вычислить следующие моменты для случайной величины χ_+ :

$$E\chi_+ = \frac{\sigma}{\sqrt{2}}$$

$$E\chi_+^2 = \frac{K\sigma^2}{\sqrt{\pi}}$$

$$E\chi_{+}^{3} = \frac{3\sigma^{3}}{4\sqrt{2}} + \frac{3K^{2}\sigma^{3}}{2\sqrt{2}\pi}$$

где $K=1.460\dots$, взята из равенства $\sum_{m=1}^n \frac{1}{\sqrt{m}} = 2\sqrt{n} - K + O\Big(\frac{1}{\sqrt{n}}\Big)$

3 Оценка эксцесса на первом этапе.

Оценим, к чему стремятся $E(S_{N(a)+1}-a)$ и $E(S_{N(a)+1}-a)^2$ при $a\to\infty$. Воспользуемся следующим фактом для математического ожидания случайной величины $X\ge 0$:

$$EX = \int_0^\infty x dP(X \le x) = -\int_0^\infty x dP(X > x) = \int_0^\infty P(X > x) dx$$

$$\lim_{a \to \infty} E(S_{N(a)+1} - a) = \int_0^\infty \lim_{a \to \infty} P(\Delta_2 > u) du = \frac{1}{E\chi_+} \int_0^\infty \int_u^\infty P(\chi_+ > x) dx du =$$

$$= \frac{1}{E\chi_+} \int_0^\infty \int_0^x P(\chi_+ > x) du dx =$$

$$= \frac{1}{E\chi_+} \int_0^\infty x P(\chi_+ > x) dx$$

Если мы рассмотрим следующее математическое ожидание

$$E\chi_{+}^{2} = \int_{0}^{\infty} x^{2} dP(\chi_{+} \le x) = -\int_{0}^{\infty} x^{2} dP(\chi_{+} > x) = 2\int_{0}^{\infty} x P(\chi_{+} > x) dx$$

Отсюда следует:

$$\lim_{a \to \infty} E(S_{N(a)+1} - a) = \frac{E\chi_+^2}{2E\chi_+}$$

Теперь рассмотрим:

$$\lim_{a \to \infty} E(S_{N(a)+1} - a)^2 = \lim_{a \to \infty} 2 \int_0^\infty u P(\Delta_2 > u) du = \frac{2}{E\chi_+} \int_0^\infty u \int_u^\infty P(\chi_+ > x) dx du =$$

$$= \frac{2}{E\chi_+} \int_0^\infty \int_0^x u P(\chi_+ > x) du dx =$$

$$= \frac{1}{E\chi_+} \int_0^\infty x^2 P(\chi_+ > x) dx$$

Для дальнейшего вычисления посмотрим на равенство:

$$E\chi_{+}^{3} = \int_{0}^{\infty} x^{3} dP(\chi_{+} \le x) = -\int_{0}^{\infty} x^{3} dP(\chi_{+} > x) = 3\int_{0}^{\infty} x^{2} P(\chi_{+} > x) dx$$

Отсюда получаем:

$$\lim_{a \to \infty} E(S_{N(a)+1} - a)^2 = \frac{E\chi_+^3}{3E\chi_+}$$

4 Второй этап — движение в луче.

Теперь рассмотрим вторую часть нашего эксперимента, где частица попадает в луч. С самого начала сделаем сдвиг на a и будем дальше работать с лучом, чьи границы равны 0 и d.

Частица начинает свое движение из точки $X_0=S_{N(a)+1}-a$ и ее движение описывается так: $\Gamma(t)=W_t+X_0$, где W_t - броуновское движение. Так как, W_t мартингал, то $\Gamma(t)$ тоже будет мартингалом, потому что X_0 случайная константа.

Введем случайную величину τ , равную первому моменту выхода из луча. Это будет марковский момент, и для него в курсе случайных процессов у нас имеется следующая теорема:

Теорема 4.1. Пусть τ - марковский момент $(m.e \ \forall m: \{\tau=m\} \in F_m), E(\sum_{i=1}^{\tau} |X_i-X_{i-1}|) < \infty.$ Тогда $EX_{\tau}=EX_0, \ \forall m \ m., u \ w \in \{\tau \geq n\}: E(X_{\tau}|F_n)=X_n$

Из нее следует $E\Gamma(\tau)=E\Gamma(0)=EX_0$. С другой стороны $E\Gamma(\tau)=dP_1$, где P_1 - вероятность молекулы пересечь верхнюю границу луча.

Рассмотрим еще один процесс: $\Gamma(t)^2 - \sigma^2 t = W_t^2 - \sigma^2 t + 2X_0W_t + X_0^2 - 2$ это тоже мартингал, так как $W_t^2 - \sigma^2 t$ мартингал. По той же самой теореме получим: $E(\Gamma(\tau)^2 - \sigma^2 \tau) = E(\Gamma(0)^2) = EX_0^2$. Тут же по линейности у нас выходит $E(\Gamma(\tau)^2 - \sigma^2 \tau) = E\Gamma(\tau)^2 - \sigma^2 E \tau = d^2 P_1 - \sigma^2 E \tau$. Теперь у нас есть следующая система:

$$dP_1 = EX_0$$

$$d^2P_1 = EX_0^2 + \sigma^2 E\tau$$

$$E\tau = \overline{T}$$

Решая эту систему методом моментов, мы получаем оценку $\hat{d}=\frac{EX_0^2+\sigma^2\overline{T}}{EX_0}$ для равенства $d=\frac{\sigma^2E\tau+EX_0^2}{EX_0}$ А отсюда, при $a\to\infty$ имеем $\hat{d}\to\frac{2(E\chi_+^3+\sigma^23E\chi_+\overline{T})}{3E\chi_+^2}$

5 Асимптотическая нормальность оценки и доверительный интервал.

Теперь мы хотим доказать, что наша оценка асимптотически нормальна, и посторить доверительный интервал для величины d.

Для оценки методом моментов в [1] есть следующая теорема:

Теорема 5.1. Если теоретический момент случайной величины EX^{2k} конечен, то при $n \to \infty$ оценка $X_n^k = \frac{1}{n} \sum_{i=1}^n X_i^k$ для параметра EX^k будет асимптотически нормальная $N\Big(EX^k, \frac{EX^{2k} - (EX^k)^2}{n}\Big)$.

Если теперь предположить, что $E au^2 < \infty$, то оценка \overline{T} будет асимтотичеесли теперь предположить, что $ET < \infty$, то оделка T одел асимтотически нормальна $N\Big(E\tau, \frac{E\tau^2 - (E\tau)^2}{n}\Big)$. Отсюда мы получаем $\hat{d} = \frac{EX_0^2 + \sigma^2\overline{T}}{EX_0}$ асимтотически нормальна $N\Big(\frac{\sigma^2E\tau + EX_0^2}{EX_0}, \frac{\sigma^4E\tau^2 - \sigma^4(E\tau)^2}{n(EX_0)^2}\Big)$.

Чтобы построить доверительный интервал : $(T_1(X), T_2(X))$ такой, что $P(T_1(X) \le d \le T_2(X)) = \gamma$ возьмем для $E\tau$ оценку \overline{T} , а для $D\tau^2 - S = 1$

$$F(T_1(X) \le d \le T_2(X)) \equiv \gamma$$
 возьмем для $E\tau$ оценку T , а для $D\tau^2 - S = \frac{1}{n} \sum_{i=1}^n (T_i - \overline{T})^2$. Из-за асимптотической нормальности нашей оценки мы можем взять для заданного γ следующий доверительный интервал:
$$\left(\frac{\sigma^2 \overline{T} + EX_0^2}{EX_0} - \frac{c_\gamma \sigma^2 \sqrt{S}}{\sqrt{n} EX_0}, \frac{\sigma^2 \overline{T} + EX_0^2}{EX_0} + \frac{c_\gamma \sigma^2 \sqrt{S}}{\sqrt{n} EX_0} \right), \text{ где величина } c_\gamma = \Phi^{-1}((1+\gamma)/2) \left(\Phi(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x \exp(-\frac{x^2}{2}) dx \right)$$
 является табличной.

Моделирование эксперимента на Python.

При помощи Python я смоделировала эксперимент и проверила полученные теоретическим способом оценки. Для определенности были взяты $\gamma = 0.90$ $c_{\gamma} = 1.645$

В ходе реализации прогаммы мы сравнивали заданную ширину луча dс полученной нами оценкой d, а также строили доверительный интервал $\left(\frac{\sigma^2\overline{T}+EX_0^2}{EX_0}-\frac{c_\gamma\sigma^2\sqrt{S}}{\sqrt{n}EX_0},\frac{\sigma^2\overline{T}+EX_0^2}{EX_0}+\frac{c_\gamma\sigma^2\sqrt{S}}{\sqrt{n}EX_0}\right)$. В таблице ниже представлены результаты: в левом столбце написаны начальные данные, посередине — вычиленная оценка, а справа — доверительный нтервал.

Начальные условия мы задаем сами: d — ширина луча, которую мы оцениваем, a — начало луча, мы его для определенности везде полагаем равным 20, n — количество частиц, которых мы наблюдаем, σ — наша заданная дисперсия.

11 1		
Заданные начальные условия	оценка для d	доверительный интервал для d
$\sigma = 1, d = 1, n = 50$	1.32513	(1.25480, 1.39546)
$\sigma = 1, d = 1, n = 100$	1.38486	(1.32814, 1.44158)
$\sigma = 1, d = 3, n = 30$	3.15268	(2.45199, 3.85336)
$\sigma = 1, d = 3, n = 30$	2.78307	(2.04254, 3.52360)
$\sigma = 1, d = 3, n = 100$	3.48080	(3.05705, 3.90455)
$\sigma = 1, d = 5, n = 100$	5.63596	(4.56687, 6.70504)
$\sigma = 2, d = 6, n = 100$	6.74636	(6.02182, 7.47091)
$\sigma = 2, d = 6, n = 50$	6.55343	(5.58716, 7.51971)
$\sigma = 2, d = 8, n = 50$	9.38143	(7.49846, 11.26440)
$\sigma = 0.3, d = 1, n = 50$	1.15202	(0.95577, 1.34826)

Также по ходу эксперимента мы смогли сравнить наши полученные оценки $E(S_{N(a)+1}-a)$ и $E(S_{N(a)+1}-a)^2$ для эксцесса с их средним $\frac{1}{n}\sum_{i=1}^n X_i$ и средним квадратичным $\frac{1}{n} \sum_{i=1}^{n} X_i^2$

Дисперсия	оценка $E(S_{N(a)+1}-a)$	оценка $E(S_{N(a)+1} - a)^2$	$\frac{1}{n} \sum_{i=1}^{n} X_i$	$ \frac{1}{n} \sum_{i=1}^{n} X_i^2 $
$\sigma = 1, a = 20$	0.58260	0.58943	0.54766	0.50878
$\sigma = 1, a = 30$	0.58260	0.58943	0.58012	0.56458
$\sigma = 0.3, a = 20$	0.17478	0.05305	0.14174	0.03592
$\sigma = 2, a = 50$	1.16521	2.35771	1.44069	3.10703
$\sigma = 2, a = 20$	1.16521	2.35771	1.05644	1.82695
$\sigma = 0.5, a = 20$	0.29130	0.14736	0.24175	0.09689
$\sigma = 0.5, a = 40$	0.29130	0.14736	0.29387	0.15154

Список литературы

- [1] Г.И.Ивченко, Ю.И.Медведев, Введение в математическую статистику, Ленанд, Editorial URSS, 2010
- [2] В.Феллер, Введение в теорию вероятностей и ее приложения, Том 1 и 2
- [3] V. I. Lotov, "On some boundary crossing problems for Gaussian random walks", The Annals of Probability, 1996, 2154-2171