Condizionamento di sistemi lineari

Data $A \in \mathbb{R}^{n \times n}$ invertibile e $b \in \mathbb{R}^n$, cerchiamo x tale che Ax = b. Calcolare l'errore inerente di $f(A, b) = A^{-1}b$ considerando tutte le operazioni svolte è difficile, perciò:

- anziché calcolare l'errore su ciascuna componente di x, ovvero $\left|\frac{\tilde{x}_i x_i}{x_i}\right|$, usiamo una norma: $\frac{\|\tilde{x} x\|}{\|x\|}$.
- usiamo il seguente risultato:

$$\frac{\|\tilde{x} - x\|}{\|x\|} \le \mu(A) \frac{\|\tilde{b} - b\|}{\|b\|} \qquad \mu(A) = \|A\| \|A^{-1}\|,$$

dove A è una matrice di numeri di macchina, $\tilde{x} = f(A, \tilde{b})$, la norma matriciale è quella indotta dalla norma vettoriale usata.

 $\mu(A)$ è detto numero di condizionamento ed è l'equivalente del coefficiente di amplificazione (con \leq perché usiamo norme).

Vale
$$\mu(A) \ge 1$$
, visto che $||A|| ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| = 1$.

Dimostrazione

$$||\tilde{x} - x|| = A^{-1}\tilde{b} - A^{-1}b$$
 $||\tilde{x} - x|| = ||A^{-1}(\tilde{b} - b)||$
= $A^{-1}(\tilde{b} - b)$ $\leq ||A^{-1}|| ||\tilde{b} - b||$

e

$$\|b\| = \|Ax\| \leq \|A\| \, \|x\| \qquad \frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|},$$

quindi

$$\frac{\|\tilde{x} - x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\tilde{b} - b\|}{\|b\|}.$$

Norma ∞

Se
$$\tilde{b}_i = b_i(1 + \epsilon_i), |\epsilon| \le u,$$

$$\begin{split} \tilde{b}_i - b_i &= b_i \epsilon_i \\ \|\tilde{b}_i - b_i\|_{\infty} &= \max |b_i \epsilon_i| \leq \max |\epsilon_i| \max |b_i| \\ &= \max |\epsilon_i| \, \|b_i\|_{\infty} < u \, \|b\|_{\infty} \,, \end{split}$$

quindi

$$\frac{\|\tilde{x} - x\|_{\infty}}{\|x\|_{\infty}} \le \mu_{\infty}(A)u.$$