Глава 1

Основные понятия

- 1.1 Алгоритмы
- 1.2 Математическое введение
- 1.2.1 Математическая индукция
- 1.2.2 Числа, степени и логарифмы
- 1.2.3 Суммы и произведения
- 1.2.4 Целочисленные функции и элементарная теория чисел
- 1.2.5 Перестановки и факториалы
- 1.2.6 Биномиальные коэффициенты

10.

Пусть p — простое число. Покажите:

e.

$$\binom{n}{k} \equiv \binom{\lfloor n/p \rfloor}{\lfloor k/p \rfloor} \binom{n \bmod p}{k \bmod p}$$
 (по модулю p)

Основная формула биномиального коэффициента:

$$\binom{n}{k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k(k-1)(k-2)\dots 1}$$

Рассмотрим $k \bmod p$ первых сомножителей в знаменателе. Все они делятся на p с остатком. Если $k \bmod p > 0$, то

$$\prod_{i=0}^{(k \bmod p)-1} k-i \equiv \prod_{i=1}^{k \bmod p} i$$
 (по модулю p)
$$k \equiv k \bmod p$$
 (по модулю p)

$$k \equiv k \bmod p$$
 (по модулю p)

$$k-1 \equiv (k \bmod p) - 1$$
 (по модулю p)

... ≣ ...

$$k - (k \bmod p) + 2 \equiv 2$$
 (по модулю p)

$$k - (k \bmod p) + 1 \equiv 1$$
 (по модулю p)

Например, для k = 17, p = 7:

$$17 \bmod 7 = 3$$

$$(17 \bmod 7) - 1 = 2$$

$$\prod_{i=0}^2 17 - i \equiv \prod_{i=1}^3 i$$
 (по модулю 7)
$$17 \cdot 16 \cdot 15 \equiv 3 \cdot 2 \cdot 1$$
 (по модулю 7)
$$4080 \equiv 6$$
 (по модулю 7)
$$4080 \bmod 7 = 6$$

Эта формула также справедлива для случая, когда k делится на p без остатка. Например, для k = 14, p = 7:

$$14 \bmod 7 = 0$$
 $(14 \bmod 7) - 1 = -1$ $\prod_{i=0}^{-1} 14 - i \equiv \prod_{i=1}^{0} i$ (по модулю 7) $1 \equiv 1$ (по модулю 7)

Теперь рассмотрим $k \mod p$ первых сомножителей в числителе n(n-1) $1)\dots(n-(k \bmod p)+1)$. Среди них может не оказаться сомножителя кратного p. Тогда:

$$\prod_{i=0}^{(k \bmod p)-1} n-i \equiv (n \bmod p)((n \bmod p)-1)\dots((n \bmod p)-(k \bmod p)+1) \qquad \text{(по модулю } p)$$

$$n \equiv n \bmod p \qquad \qquad \text{(по модулю } p)$$

$$n-1 \equiv (n \bmod p)-1 \qquad \qquad \text{(по модулю } p)$$

$$\dots \equiv \dots$$

$$n-(k \bmod p)+2 \equiv (n \bmod p)-(k \bmod p)+2 \qquad \qquad \text{(по модулю } p)$$

$$n-(k \bmod p)+1 \equiv (n \bmod p)-(k \bmod p)+1 \qquad \qquad \text{(по модулю } p)$$

Например, для n = 20, k = 17, p = 7:

$$20 \bmod 7 = 6$$
 $(20 \bmod 7) - 1 = 5$
$$\prod_{i=0}^2 20 - i \equiv 6 \cdot 5 \cdot 4 \qquad \qquad \text{(по модулю 7)}$$
 $20 \cdot 19 \cdot 18 \equiv 6 \cdot 5 \cdot 4 \qquad \qquad \text{(по модулю 7)}$ $6840 \equiv 120 \qquad \qquad \text{(по модулю 7)}$ $6840 \bmod 7 = 1120 \bmod 7 \qquad \qquad = 1$

Для случая $k \mod p = 0$ произведение в числителе, также как и в знаменателе, обращается в 1. Если среди первых $k \mod p$ сомножителей в числителе встретится число, кратное p, то

$$\prod_{i=0}^{(k \bmod p)-1} n-i \equiv 0 \tag{$\tt по Mодулю} \ p)$$

Подставим получившиеся соотношения в дробь

$$\frac{\prod_{i=0}^{(k \bmod p)-1} n - i}{\prod_{i=0}^{(k \bmod p)-1} k - i} \equiv \frac{(n \bmod p)((n \bmod p) - 1) \dots ((n \bmod p) - (k \bmod p) + 1)}{\prod_{i=1}^{k \bmod p} i} \qquad \text{(по модулю } p)$$

$$\frac{\prod_{i=0}^{(k \bmod p)-1} n - i}{\prod_{i=0}^{(k \bmod p)-1} k - i} \equiv \binom{n \bmod p}{k \bmod p} \qquad \text{(по модулю } p)$$

Для случая $\prod_{i=0}^{(k \bmod p)-1} n - i \equiv 0$ (по модулю p) соотношения также справедливы, т.к. $\binom{0}{k} = \begin{cases} 0 \text{ при } k > 0 \\ 1 \text{ при } k = 0 \end{cases}$.