

VE230 HW2

Due: Tuesday 4th June, 2019

- **P.3–8** A line charge of uniform density ρ_{ℓ} in free space forms a semicircle of radius b. Determine the magnitude and direction of the electric field intensity at the center of the semicircle.
- P.3-9 Three uniform line charges— $\rho_{\ell 1}$, $\rho_{\ell 2}$, and $\rho_{\ell 3}$, each of length L—form an equilateral triangle. Assuming that $\rho_{\ell 1}=2\rho_{\ell 2}=2\rho_{\ell 3}$, determine the electric field intensity at the center of the triangle.
- P.3-12 Two infinitely long coaxial cylindrical surfaces, r = a and r = b (b > a), carry surface charge densities ρ_{sa} and ρ_{sb} , respectively.
 - a) Determine E everywhere.
 - b) What must be the relation between a and b in order that E vanishes for r > b?
- **P.3-13** Determine the work done in carrying $a 2 (\mu C)$ charge from $P_1(2, 1, -1)$ to $P_2(8, 2, -1)$ in the field $E = a_x y + a_y x$
 - a) along the parabola $x = 2y^2$,
 - **b)** along the straight line joining P_1 and P_2 .
- **P.3-16** A finite line charge of length L carrying uniform line charge density ρ_{ℓ} is coincident with the x-axis.
 - a) Determine V in the plane bisecting the line charge.
 - **b)** Determine E from ρ_{ℓ} directly by applying Coulomb's law.
 - c) Check the answer in part (b) with $-\nabla V$.
- **P.3-19** A charge Q is distributed uniformly over the wall of a circular tube of radius b and height h. Determine V and E on its axis
 - a) at a point outside the tube, then
 - b) at a point inside the tube.