To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader®.

Example 3 Sin Wot uolt) \rightleftharpoons IT $\begin{bmatrix} 8(w-w_0) - S(w+w_0) \\ 12 \end{bmatrix}$ $+ \omega$ $- \omega_0^2 + \omega^2$ Sin Wot = $e^{-j\omega_0 t}$ = e jwot -jwot = e vo(t) -e vo(1-) = T8(w-wo) + T8(w+wo) + 75 $\frac{1}{2j}$ $\omega_0 - \omega_0$ ω_0 $= \frac{\pi}{32} \left[\frac{3(\omega - \omega_0) - 3(\omega + \omega_0)}{4(\omega + \omega_0)} + \frac{1}{2(\omega + \omega_0)} \right]$ $= \frac{\pi}{32} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega - \omega_0} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$ $= \frac{1}{2(\omega + \omega_0)} \left[\frac{1}{\omega + \omega_0} - \frac{1}{\omega} \right]$