Frühjahr 11 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Seien
$$A := \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 2 \end{pmatrix}, \quad b : \mathbb{R} \to \mathbb{R}^3, \ b(t) := \begin{pmatrix} -t \\ e^{-t} \\ 1+t \end{pmatrix}.$$

- a) Berechnen Sie ein Fundamentalsystem für die Differentialgleichung $\dot{x} = Ax$.
- b) Berechnen Sie die maximale Lösung des Anfangswertproblems

$$\dot{x} = Ax + b(t), \quad x(0) = \begin{pmatrix} 1\\3\\-2 \end{pmatrix}.$$

Lösungsvorschlag:

a) Wir bemerken, dass die Differentialgleichung in zwei kleinere Systeme entkoppelt werden kann, nämlich in $x_2' = -x_2$ und in $\begin{pmatrix} x_1' \\ x_3' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \end{pmatrix}$. Die allgemeine Lösung von $x_2' = -x_2$ ist $x_2(t) = ce^{-t}, c \in \mathbb{R}$. Das andere System lösen wir mit dem Matrixexponential. Die Eigenwerte der Matrix sind die Lösungen von $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 = 0$, also ist 1 der einzige Eigenwert. Als Vektoren für die Jordankette wählen wir (1,0) und (-1,1). Dann ist

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

und

$$\exp\begin{pmatrix} 0 & -t \\ t & 2t \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} t & t \\ 0 & t \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} (1-t)e^t & -te^t \\ te^t & (t+1)e^t \end{pmatrix}.$$

Die Spalten der letzten Matrix bilden ein Fundamentalsystem des zweiten Systems.

Kombination liefert, dass
$$\begin{pmatrix} 0 \\ e^{-t} \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} (1-t)e^t \\ 0 \\ te^t \end{pmatrix}$, $\begin{pmatrix} -te^t \\ 0 \\ (t+1)e^t \end{pmatrix}$ ein Fundamentalsystem zu $x' = Ax$ ist.

b) Wir machen den Ansatz $x(t) = S(t) \begin{pmatrix} (1-t)e^t & 0 & -te^t \\ 0 & e^{-t} & 0 \\ te^t & 0 & (t+1)e^t \end{pmatrix} x(0)$ mit einer Funktion $S \in C^1(\mathbb{R}, \mathbb{R}^{3 \times 3})$, dann muss $S'(t) \begin{pmatrix} (1+t)e^t \\ 3e^{-t} \\ -(t+2)e^t \end{pmatrix} = b(t)$ und S(0) = 1 gelten. Wir finden, dass $S'(t) = \begin{pmatrix} -2e^{-t} & 0 & -e^{-t} \\ 0 & \frac{1}{3} & 0 \\ e^{-t} & 0 & 0 \end{pmatrix}$ eine mögliche Wahl ist und wählen daher $S(t) = \begin{pmatrix} 2e^{-t} - 1 & 0 & e^{-t} - 1 \\ 0 & \frac{t}{3} + 1 & 0 \\ 1 - e^{-t} & 0 & 1 \end{pmatrix}$ und $x(t) = \begin{pmatrix} t + e^t \\ (t+3)e^t \\ -1 - t - e^t \end{pmatrix}$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$