Question 5: Compare Algorithm

Data

Initial State	Misplaced Tile Heuristic	Manhattan Heuristic	Gaschnig Heuristic
123706548	Nodes Expanded: 21	Nodes Expanded: 15	Nodes Expanded:19
	Total Run Time: 0.0	Total Run Time: 0.0	Total Run Time:0.000997
	Length of Solution:6	Length of Solution: 6	Length of Solution:6
138572604	Nodes Expanded: 1273	Nodes Expanded: 189	Nodes Expanded: 749
	Total Run Time: 0.213429	Total Run Time: 0.0089762	Total Run Time: 0.1107
	Length of Solution:17	Length of Solution:17	Length of Solution:17
413068275	Nodes Expanded: 123	Nodes Expanded: 29	Nodes Expanded: 95
	Total Run Time: 0.00399	Total Run Time: 0.000997	Total Run Time: 0.003989
	Length of Solution:11	Length of Solution:11	Length of Solution:11
412680573	Nodes Expanded: 663	Nodes Expanded: 161	Nodes Expanded: 487
	Total Run Time: 0.091754	Total Run Time: 0.00798	Total Run Time: 0.05388
	Length of Solution: 15	Length of Solution:15	Length of Solution:15
123576048	Nodes Expanded: 17	Nodes Expanded: 15	Nodes Expanded: 15
	Total Run Time: 0.0	Total Run Time: 0.0	Total Run Time: 0.0
	Length of Solution:6	Length of Solution:6	Length of Solution:6
013476528	Nodes Expanded: 83	Nodes Expanded: 10	Nodes Expanded: 10
	Total Run Time: 0.002021	Total Run Time: 0.00199	Total Run Time: 0.00197
	Length of Solution:10	Length of Solution:10	Length of Solution:10
123465870	Nodes Expanded: 969	Nodes Expanded: 469	Nodes Expanded: 601
	Total Run Time: 0.15558	Total Run Time:0.0508	Total Run Time: 0.08975
	Length of Solution:16	Length of Solution:16	Length of Solution:16
268713045	Nodes Expanded: 903	Nodes Expanded: 187	Nodes Expanded: 531
	Total Run Time: 0.1426	Total Run Time:0.00797	Total Run Time: 0.0548
	Length of Solution:16	Length of Solution:16	Length of Solution:16
152036784	Nodes Expanded: 313	Nodes Expanded: 117	Nodes Expanded: 243
	Total Run Time: 0.0199	Total Run Time: 0.00598	Total Run Time: 0.0169
	Length of Solution:13	Length of Solution:13	Length of Solution:13
204153786	Nodes Expanded: 57	Nodes Expanded: 49	Nodes Expanded: 43
	Total Run Time: 0.00299	Total Run Time: 0.00398	Total Run Time: 0.00299
	Length of Solution:9	Length of Solution:11	Length of Solution:11

Table 1: Summarizes the data in this table where total run is measured in seconds.

Statistics

Misplaced Tile Heuristic	Length of Solution	Nodes Expanded	Total Run Time
Maximum	17	1273	0.213429
Minimum	6	17	0
Mean	11.9	442.2	0.063226
Median	12	313	0.011945

Manhattan Heuristic	Length of Solution	Nodes Expanded	Total Run Time
Maximum	17	469	0.0508
Minimum	6	10	0
Mean	11.9	124.1	0.008867
Median	12	83	0.00498

Gaschnig Heuristic	Length of Solution	Nodes Expanded	Total Run Time
Maximum	17	1273	0.213429
Minimum	6	17	0
Mean	11.9	309	0.033579
Median	12	169	0.010345

This section shows each heuristic functions' respective statistics

Questions

- (1) Based on your data, can you give a recommendation for what you think is the best algorithm? Explain how you came to your conclusion
 - Based on my data, Manhattan heuristic is the best algorithm out of the 3 because in all of the 10 cases, it had the least number of nodes expanded (except sometimes when the length of the solution was less than 6 and gaschnig has performed equally to Manhattan). Overall, as shown in my table of data, as the length of the solution grew larger, the Manhattan algorithm expanded the least number of nodes out of the 3 algorithms.
- (2) Is it possible to rule out one of the heuristic functions without looking at experimental data, but purely based on theoretical consideration? Hint: We say that an admissible heuristic h1 is at least as accurate as another admissible heuristic h2 iff for every n, h1(n) ≥ h2(n).

We can rule out the misplaced tile heuristic based on theoretical consideration and admissible Gaschnig heuristic is at least as accurate as misplaced tile heuristic. Misplaced tiles can only count the number of tiles that are not in position in one move while Gaschnig will always take at least one move to its goal state position. In addition, Gaschnig also requires two moves for the blank location if the state does not have the blank it in goal state position. Therefore, Gaschnig will return either more or equal numbers compared to the misplaced tile heuristic. This means that Gaschnig will always be closer to the true shortest path cost compared to misplace tile heuristic and also, Gaschnig dominates misplaced tile heuristic.

(3) Can you suggest a heuristic that is always at least as accurate as all 3 heuristic functions discussed here?

h(n) = max(gaschnig(n), manhattan(n))

This h(n) uses whichever function is most accurate on the node n in question. Because the component heuristics are admissible, h(n) is also admissible. h(n) dominates all the heuristic functions that it is composed of.