Chapter 15: Enolate Anions

15.1 Acidity of α-Hydrogens and Enolate Formation

a) Acidity of α-Hydrogens

$$H_3C$$
 CH_3 CH_3

15.1

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 15: Enolate Anions

b) Formation of enolate anions

c) Use of Enolates to Form New C-C Bonds

Enolate anions can act as nucleophiles in carbonyl addition reactions (Aldol reaction).

Enolate anions can act as nucleophiles in nucleophilic acyl substitution reactions (Claisen condensation).

15.3

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 15: Enolate Anions

15.2 Aldol Reaction and Aldol Condensation

a) Aldol Reaction

Enolate anions of aldehydes and ketones act as nucleophiles in carbonyl addition reactions.

Examples:

$$\downarrow_{\mathsf{H}} \longrightarrow \downarrow_{\mathsf{B}} \stackrel{\mathsf{OH}}{\longrightarrow} 0$$

15.5

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 15: Enolate Anions

b) Crossed Aldol Reaction

c) Intramolecular Aldol Reaction

d) Dehydration of Aldol Product (Aldol Condensation)

Dehydration of the aldol product is either acid or base catalyzed and generally requires heating. The result is an α,β -unsaturated carbonyl compound.

Acid catalyzed mechanism:

$$\begin{array}{c|c} H & OH & O \\ \hline & & \\ \end{array}$$

Base catalyzed mechanism:

15.7

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 15: Enolate Anions

15.3 Claisen Condensation and Dieckmann Condensation

<u>a) Claisen Self-Condensation</u>
In the Claisen condensation two esters react under basic conditions to form a new C-C-bond.

2 H OEt
$$\frac{1. \text{ NaOEt, EtOH}}{2. \text{ H}_3\text{O}^+}$$
 H OE

2 ester β -ketoester

Note: Aqueous base such as NaOH cannot be used. Why not?

15.9

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 15: Enolate Anions

b) Crossed Claisen Condensation

c) Dieckmann Condensation

The Dieckmann Condensation is an intramolecular Claisen condensation. 5- or 6-membered rings are formed preferentially.

EtO OEt
$$\frac{1. \text{ EtO} \cdot \text{Na}^+}{2. \text{ H}_2\text{O}, \text{ HCI}}$$

d) Hydrolysis and Decarboxylation of β-Ketoesters

Claisen condensation gives a β-ketoester:	
Hydrolysis (Saponification) of the $\beta\text{-ketoester}$ followed by acidification results in a $\beta\text{-ketoacid}$	
β-Ketoacids undergo decarboxylation upon heating:	
15.11	

 $CHEM\ 3013-Bolliger-OSU\ Stillwater$

Chapter 15: Enolate Anions

15.4 Michael Addition Reaction

Michael addition reactions are conjugate additions to α,β -unsaturated carbonyl compounds. They are also called 1,4-additions to α,β -unsaturated carbonyl compounds.

a) 1,4-Additions versus 1,2-Additions to α,β-Unsaturated Carbonyl Compounds

b) Michael Addition (1,4-Addition) of Enolate Anions to α,β-Unsaturated Carbonyl Compounds

EtO₂C CO₂Et +
$$O$$
 1. NaOEt, EtOH EtO₂C O CO₂Et

15.13

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 15: Enolate Anions

c) Michael Addition (1,4-Addition) of Amines to α,β-Unsaturated Carbonyl Compounds