Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 3, zadanie nr 2

Eva Reszka, Mateusz Roszkowski, Dominika Zając

Spis treści

1.	Proj	${ m ekt}$
	1.1.	Sprawdzenie poprawności punktu pracy
	1.2.	Wyznaczenie odpowiedzi skokowych procesu
	1.3.	Algorytmy PID i DMC
	1.4.	Rozmyty algorytm PID
	1.5.	Rozmyty algorytm DMC
2.	Ćwie	zenie laboratoryjne
	2.1.	Przygotowanie do wykonania ćwiczenia
	2.2.	Przebiegi sygnałów wyjściowych
	2.3.	Regulator PID z laboratorium 1
	2.4.	Regulator DMC z laboratorium 1
	2.5.	Rozmyty algorytm PID
	2.6.	Rozmyty algorytm DMC

1.1. Sprawdzenie poprawności punktu pracy

Implementacja zadania znajduje się w pliku $\mathtt{zad1_2.m}$. Punkt pracy równy jest $U_{pp}=0,~Y_{pp}=0,$ co zostało przedstawione na wykresach 1.1 i 1.2.

Rys. 1.1. Wejście układu w punkcie pracy

Rys. 1.2. Wyjście układu w punkcie pracy

1.2. Wyznaczenie odpowiedzi skokowych procesu

Układ został pobudzony sygnałami o wartościach U = [-0, 8; -0, 3; 0, 2; 0, 6; 1, 0]. Otrzymane zostały w ten sposób odpowiedzi skokowe:

Rys. 1.3. Otrzymane odpowiedzi skokowe

Na wykresie 1.4 widoczna jest charakterystyka statyczna obiektu.

Rys. 1.4. Charakterystyka statyczna

Właściwości dynamiczne oraz statyczne nie są liniowe. Do charakterystyki statycznej nie może zostać dopasowana prosta.

1.3. Algorytmy PID i DMC

Obiekt został poddany regulacji za pomocą algorytmów PID i DMC z Projektu 2. Jakość sterowania zależy od wartości Y_{zad} . Różni się intensywność oscylacji oraz wartość przeregulowania. Wynika to z nieliniowości charakterystyki statycznej.

Rys. 1.5. Wejście układu - algorytm PID

Rys. 1.6. Wyjście układu - algorytm PID

Wskaźnik jakości wyniosi E = 388.88.

Rys. 1.7. Wejście układu - algorytm PID

Rys. 1.8. Wyjście układu - algorytm PID

Wskaźnik jakości wyniosi E=515.34. Jego wartość jest większa, niż dla PID. Regulator DMC sprawdził się gorzej od pierwszego algorytmu. Wstępuje znacznie większe przeregulowanie oraz oscylacje. Dla $Y_{zad}=4.5$ sygnał wyjściowy nie osiąga tej wartości.

1.4. Rozmyty algorytm PID

Zaimplementowany został rozmyty algorytm PID dla różnej ilości regulatorów lokalnych (2, 3, 4, 5). Dla każdego z regulatorów nastawy zostały dobrane oddzielnie za pomocą optymalizacji znajdującej się w pliku Dobieranie_PID.m

W wyniku optymalizacji otrzymano następujące przebiegi:

— Dla dwóch regulatorów:

Rys. 1.9. Przebiegi dla rozmytego regulatora PID. Liczba regulatorów = $2\,$

Wskaźnik jakości regulacji E=217,6670

— Dla trzech regulatorów

Rys. 1.10. Przebiegi dla rozmytego regulatora PID. Liczba regulatorów = $3\,$

Wskaźnik jakości regulacji $E=210,1798\,$

— Dla czterech regulatorów

Rys. 1.11. Przebiegi dla rozmytego regulatora PID. Liczba regulatorów = $4\,$

Wskaźnik jakości regulacji E=133,1467

Dla pięciu regulatorów

Rys. 1.12. Przebiegi dla rozmytego regulatora PID. Liczba regulatorów = 5

Wskaźnik jakości regulacji E = 1,6366e + 03

Jakość regulacji była najlepsza w przypadku regulatora rozmytego z czterema regulatorami lokalnymi. Wraz ze wzrostem ilości regulatorów lokalnych rosła jakość regulacji, jednak coraz trudniejsze stawało się również odpowiednie dobranie parametrów regulatorów, przez co regulator z pięcioma regulatorami lokalnymi charakteryzuje się najgorszą jakością regulacji.

1.5. Rozmyty algorytm DMC

Następnie zaimplementowano algorytm rozmytego regulatora DMC dla różnej liczby regulatorów lokalnych (2, 3, lub 4). Dla każdego regulatora z inną liczbą regulatorów lokalnych dobrano parametry oddzielnie.

Zestaw liczb s_1, s_2, s_3 obliczany jest oddzielnie dla każdego z regulatorów lokalnych poprzez wykorzystanie funkcji licz_s.m.

Przyjmuje ona jako parametry wartości u1 i u2. Parametr u1 przekazywany jest następnie funkcji wynik_y, która przeprowadza symulację dla wartości sterowania u=u1 i zwraca ostatnią wartość odpowiedzi skokową y_temp .

Wartość ta została następnie wykorzystana do przeprowadzenia kolejnej symulacji, dla skoku wartości sterowania z u1 do u2. Otrzymana odpowiedź skokowa została przeskalowana, w celu wyliczenia zestawu liczb s_1, s_2, s_3 Przekształcenie to przebiegło zgodnie ze wzorem 1.1, gdzie $Y_{pp} = y_temp$. Zamiast Y_i użyto Y_{i+10} , ponieważ zmiana wartości sterowania z u1 na u2 wystąpiła w chwili k=10.

$$S_i = \frac{Y_{i+10} - Y_{pp}}{\Delta U}, i = 1, 2, 3, \dots$$
 (1.1)

Po otrzymaniu przekształconych odpowiedzi skokowych dla każdego z regulatorów lokalnych przystąpiono do liczenia macierzy M, M^PiK . Wartości horyzontów dynamiki D zostały dobrane oddzielnie dla każdego z regulatorów. Dla ułatwienia przyjęto, że $N=N_u=D$. $\lambda=1$ w przypadku każdego regulatora.

Współczynniki przynależności (wagi) każdego z regulatorów obliczone zostały w funkcji rozklad. Wykorzystana została funkcja przynależności dzwonowej gbellmf.

Regulator przetestowano dla kilku skoków wartości zadanej y_{zad} . Przebiegi dla różnej ilości regulatorów lokalnych, przy wartości parametru $\lambda=1$ przedstawiono poniżej.

Rys. 1.13. Wartość sterowania udla rozmytego regulatora DMC przy $\lambda=1.$ Liczba regulatorów = 2

Rys. 1.14. Sygnał wyjściowy ydla rozmytego regulatora DMC przy $\lambda=1.$ Liczba regulatorów = 2

Dla dwóch regulatorów lokalnych wskaźnik jakości regulacji wyniósł E=258,7427.

Rys. 1.15. Wartość sterowania udla rozmytego regulatora DMC przy $\lambda=1.$ Liczba regulatorów = 3

Rys. 1.16. Sygnał wyjściowy ydla rozmytego regulatora DMC przy $\lambda=1.$ Liczba regulatorów = 3

Dla trzech regulatorów lokalnych wskaźnik jakości regulacji wyniósł E=221,1660.

Rys. 1.17. Wartość sterowania u dla rozmytego regulatora DMC przy $\lambda=1$. Liczba regulatorów = 4

Rys. 1.18. Sygnał wyjściowy ydla rozmytego regulatora DMC przy $\lambda=1.$ Liczba regulatorów = 4

Dla czterech regulatorów lokalnych wskaźnik jakości regulacji wyniósł E=186,8891 Następnie dobrano wartości parametrów λ dla każdego z regulatorów metodą eksperymentalną.

Otrzymano następujące nastawy i przebiegi

— Dla dwóch regulatorów: $\lambda_1 = 9.3 \ \lambda_2 = 21.2$

Rys. 1.19. Wartość sterowania u dla rozmytego regulatora DMC. Liczba regulatorów = 2

Rys. 1.20. Sygnał wyjściowy y dla rozmytego regulatora DMC. Liczba regulatorów = 2

Wskaźnik jakości regulacji E=103,9025

Dla trzech regulatorów

$$\lambda_1 = 4.1 \ \lambda_2 = 9.5 \ \lambda_3 = 17$$

Rys. 1.21. Wartość sterowania u dla rozmytego regulatora DMC. Liczba regulatorów = 3

Rys. 1.22. Sygnał wyjściowy ydla rozmytego regulatora DMC. Liczba regulatorów = $3\,$

Wskaźnik jakości regulacji E = 109,2374

Dla czterech regulatorów

$$\lambda_1 = 2.1 \ \lambda_2 = 2.2 \ \lambda_3 = 7.2 \ \lambda_4 = 1.1$$

Rys. 1.23. Wartość sterowania u dla rozmytego regulatora DMC. Liczba regulatorów = 4

Rys. 1.24. Sygnał wyjściowy y dla rozmytego regulatora DMC. Liczba regulatorów = 4

Wskaźnik jakości regulacji $E=136,2552\,$

Wraz ze wzrostem ilości regulatorów lokalnych w regulatorze rozmytym, rosła jakość regulacji. Wskaźnik jakości regulacji E był coraz mniejszy, zauważalne były również coraz mniejsze oscylacje.

2. Ćwiczenie laboratoryjne

Podczas tego zadania laboratoryjnego wykorzystano:

- grzałkę G1 (sygnał sterujący U),
- wentylator W1 (wartość zadana Y_{zad}),
- czujnik temperatury T1 (sygnał wyjściowy Y)

2.1. Przygotowanie do wykonania ćwiczenia

Przed rozpoczęciem pomiarów sprawdzono możliwość sterowania i pomiaru w komunikacji ze stanowiskiem. Punkt pracy grzałki G1 dla zespołu obliczony został wg. wzoru 2.1:

$$G1 = 25 + Z (2.1)$$

gdzie Z to numer zespołu, zatem dla grupy Z02 punkt pracy wynosi:

$$G1 = 25 + 2 = 27 \tag{2.2}$$

Następnie określono wartość pomiaru temperatury T1 dla obliczonego punktu pracy. W tym celu moc wentylatora W1 ustawiono na 50% za pomocą funkcji sendControls(1, W1). Wartości mocy grzałki zadawane są poprzez funkcję sendNonlinearControls(G1). Wartość G1 została ustawiona na 27%. Temperaturę odczytano korzystając z funkcji readMeasurements(1). Temperatura T1 ustabilizowała się na wartości 31,81°C

2.2. Przebiegi sygnałów wyjściowych

Do realizacji zadania wykorzystano podstawowy plik do komunikacji ze stanowiskiem grzejąco - chłodzącym MinimalWorkingExample.m.

Zarejestrowano przebieg temperatury T1 dla trzech różnych zmian wartości sterowania G1, rozpoczynając z punktu pracy 27 do kolejno 20, 40, 60 i 80. Otrzymane przebiegi zmian przedstawiono na Rys. 2.1.

Rys. 2.1. Odpowiedź układu na wartości sterowania: 20, 40, 60 i 80

Punkty charakterystyki statycznej Y(U) odbiegają lekko od dopasowanej prostej (Rys. 2.2. Oznacza to, że właściwości statyczne obiektu są minimalnie nieliniowe.

Rys. 2.2. Charakterystyka statyczna obiektu

2.3. Regulator PID z laboratorium 1

Następnie przetestowano regulatory z laboratorium 1, w celu porównania ich zaimplementowanymi później regulatorami rozmytymi. Testy przeprowadzone zostały dla trajektorii zmian sygnału zadanego y_{zad} : T_{pp} , T_{pp} +5, T_{pp} +15, T_{pp} . Dla wartości punktu pracy $T_{pp}=T1=31,81$ zmiany te wynosiły kolejno: $y_{zad}=31,81,y_{zad}=36,81,y_{zad}=46,81,y_{zad}=31,81$. Przebiegi przedstawione zostały na Rys. 2.3. Implementacja algorytmu dla regulatora PID znajduje się w pliku zad3_PID.mat.

Rys. 2.3. Odpowiedź układu przy regulacji regulatorem PID z laboratorium 1

Wskaźnik jakości wyniósł E = 24241

2.4. Regulator DMC z laboratorium 1

Analogicznie przetestowany został regulator DMC z laboratorium 1. Testy przeprowadzono dla tej samej trajektorii zmian sygnału zadanego. Przebiegi widoczne sa na Rys. 2.4. Implementacja algorytmu dla regulatora DMC znajduje się w pliku zad3_DMC.mat.

Rys. 2.4. Odpowiedź układu przy regulacji regulatorem DMC z laboratorium 1

Wartość wskaźnika jakości regulacji wyniosła E=19511

2.5. Rozmyty algorytm PID

Zespół nie zdążył zaimplementować algorytmu realizującego regulację PID w czasie trwania laboratorium.

Jeśli dostępne byłoby więcej czasu, algorytm rozmytego regulatora PID zaimplementowany zostałby analogicznie do rozmytego regulatora PID z części projektowej. Dla każdego z trzech regulatorów lokalnych zostałyby dobrane oddzielne nastawy metodą eksperymentalną, tak by zapewnić najlepszą jakość regulacji. Do wyliczenia współczynników przynależności każdego z regulatorów użyta zostałaby funkcja przynależności dzwonowej gbellmf.

2.6. Rozmyty algorytm DMC

Zaimplementowany został algorytm rozmytego regulatora DMC.

Rozpoczęto od wyznaczenia zestawów liczb s_1, s_2, s_3, \dots dla każdego z trzech regulatorów. Zestawy te wyznaczone zostały poprzez przekształcenie odpowiedzi skokowych dla wartości sterowania u=20, u=40 i u=80 przedstawionych na Rys. 2.1. Przekształcenie to przebiegło zgodnie ze wzorem 2.3.

$$S_i = \frac{S_i^0 - Y_{pp}}{\Delta U}, i = 1, 2, 3, \dots$$
 (2.3)

Z przebiegów nieprzekształconej odpowiedzi skokowej odczytano pierwsze i ostatnie skoki sygnału wyjściowego, które wykorzystano do obliczenia horyzontu dynamiki D. Wszelkie obliczenia wykonane zostały w programie MATLAB w pliku ${\tt zad4_s.m.}$

Otrzymano zatem trzy zestawy liczb $s_1, s_2, s_3, ...$, oraz trzy wartości horyzontów dynamiki D - po jednym na każdy z regulatorów: $D_1=252,\, D_2=289,\, D_3=276$.

Wartości te wykorzystane zostały do obliczeń w algorytmie DMC. Macierze M, M^P i K obliczone zostały oddzielnie dla każdego z regulatorów. Następnie wyliczono wagi (współczynniki przynależności) dla każdego z regulatorów, korzystając z funkcji przynależności dzwonowej gbellmf w programie MATLAB. Użyte w naszym algorytmie funkcje przynależności przedstawione zostały na Rys. 2.5

Rys. 2.5. Funkcje przynależności

Wartość sygnału sterowania została wyliczona oddzielnie dla każdego z regulatorów zgodnie ze wzorem 2.4.

$$u^{R}(k) = K^{R}(Y^{zad}(k) - Y(k) - M^{P,r}\Delta u^{P}(k))$$
(2.4)

jeżeli $u(k-1) \in U_2$,

i gdzie R to numer regulatora

Poszczególne wartości sygnału sterowania $u^R(k)$ dla każdego z regulatorów wykorzystane zostały do obliczenia całościowej wartości u(k) według wzoru 2.5.

$$u(k) = \frac{\sum w^i(k)u^i(k)}{\sum w^i(k)}$$
 (2.5)

Implementacja algorytmu znajduje się w pliku zad4_1.m

Horyzont sterowania D dla regulatora DMC został dobrany poprzez wybranie największego z obliczonych wyżej horyzontów dynamiki dla każdego z regulatorów. W tym przypadku jego wartość wynosi D=289. Zgodnie z treścią zadania laboratoryjnego pozostałe parametrom regulatora przypisano wartości $N_u=N=D=289$ i $\lambda=1$.

Regulator przetestowano dla tej samej trajektorii co regulatory z laboratorium 1: y_{zad} : $T_{pp}, T_{pp} + 5, T_{pp} + 15, T_{pp}$. Wyniki przedstawione zostały na Rys. 2.6

Rys. 2.6. Przebiegi dla regulatora rozmytego DMC

Wartość wskaźnika jakości regulacji wyniosła E=15709. Regulator rozmyty wykazuje się zatem lepszą jakością regulacji niż regulator DMC w najprostszej wersji analitycznej z laboratorium 1.