House Prices: Advanced Regression Techniques. Un analisis de modelos predictivos para detectar el precio de las casas.

• Autores: Daniel Barillas Moreno y Mathew Cordero Aquino

• Institución / Empresa: InmoValor S.A

• Fecha: 6 de Mayo del 2025

Introducción

Contexto del problema

En el dinámico y competitivo mercado inmobiliario actual, la precisión en la valoración de propiedades se ha convertido en un factor crítico para el éxito de las empresas del sector. InmoValor S.A., consciente de esta realidad, ha decidido dar un paso adelante en su transformación digital mediante la implementación de técnicas avanzadas de análisis de datos y modelos predictivos. El mercado inmobiliario se caracteriza por su complejidad, con múltiples variables interrelacionadas que influyen en el precio final de una propiedad, desde factores intrínsecos como la calidad constructiva o el tamaño, hasta elementos externos como la ubicación o las tendencias socioeconómicas del entorno. Esta complejidad dificulta las valoraciones tradicionales y genera oportunidades para enfoques basados en datos que puedan capturar estas relaciones de manera más objetiva y precisa.

Justificación

La incorporación de modelos de regresión avanzados para la valoración inmobiliaria responde a diversas necesidades estratégicas de InmoValor S.A.:

- Precisión en las valoraciones: Los métodos tradicionales basados en comparativas de mercado o valoraciones subjetivas presentan un margen de error significativo que puede traducirse en oportunidades perdidas o riesgos financieros.
- Agilidad en la toma de decisiones: La automatización parcial del proceso de valoración permitirá a InmoValor S.A. responder con mayor rapidez a las condiciones cambiantes del mercado y a las necesidades de sus clientes.
- 3. Ventaja competitiva: La utilización de herramientas analíticas avanzadas posicionará a la empresa como un referente tecnológico en el sector

- inmobiliario, diferenciándola de competidores que mantienen métodos más tradicionales.
- 4. Escalabilidad: Un modelo predictivo robusto permitirá procesar un volumen mayor de propiedades sin comprometer la calidad de las valoraciones, facilitando el crecimiento sostenible de la empresa.
- 5. **Objetividad**: La implementación de un enfoque basado en datos reduce el componente subjetivo en las valoraciones, ofreciendo resultados más consistentes y defendibles ante clientes e inversores.

Objetivos generales y específicos

Objetivo General

Desarrollar e implementar un modelo predictivo de regresión avanzada utilizando el dataset "House Prices: Advanced Regression Techniques" que permita a InmoValor S.A. estimar con precisión el valor de mercado de propiedades inmobiliarias, optimizando así sus procesos de valoración y mejorando su posicionamiento competitivo en el sector.

Objetivos Específicos

- 1. Analizar exhaustivamente el conjunto de datos disponible para identificar patrones, relaciones y variables determinantes en la formación del precio de las viviendas.
- 2. **Preparar y transformar** los datos para su óptimo aprovechamiento en la construcción de modelos predictivos, abordando problemas como valores faltantes, outliers y la necesaria codificación de variables categóricas.
- 3. **Desarrollar y comparar** diferentes modelos de regresión avanzada, evaluando su rendimiento mediante métricas objetivas como RMSE, MAE y R².
- 4. Seleccionar e implementar el modelo predictivo más adecuado en función de su precisión, interpretabilidad y aplicabilidad práctica para el negocio de InmoValor S.A.
- 5. **Identificar y cuantificar** la importancia relativa de las diferentes características de las propiedades en la determinación de su valor de mercado.
- Proporcionar recomendaciones estratégicas basadas en los hallazgos del análisis para la mejora de los procesos de valoración inmobiliaria de la empresa.
- 7. Establecer directrices para la implementación del modelo en los sistemas operativos de InmoValor S.A., garantizando su correcta integración y uso efectivo por parte del equipo de analistas.

Este proyecto representa una oportunidad única para InmoValor S.A. de transformar su enfoque hacia la valoración inmobiliaria, aprovechando el potencial de los datos y las técnicas avanzadas de análisis para ofrecer un servicio diferencial en un mercado cada vez más competitivo y tecnificado.

Descripción de los Datos

Fuentes de las variables

Se obtuvieron los datos del sitio web: House Prices - Advanced Regression Techniques, la data de entrenamiento y la data de prueba, ambos extraídos desde la carpeta "house_prices_data/" en data frames llamados train_data (data de entrenamiento) y test_data (data de prueba)

Descripcion de Variables

De una cantidad de (1460 filas, 81 columnas) se encontraron de todo el dataset de la pagina. Se conoce que

Variable Objetivo

La variable objetivo es SalePrice, esta variable es el precio de las casas.

Haciendo un analisis de distribucioin de la variable se encontro que

El precio de las casas (SalePrice) no tiene una distribución normal. La mayoría de los precios se concentran en valores bajos y hay algunas casas extremadamente caras que podrían ser outliers.

- SalePrice presenta sesgo positivo (distribución asimétrica a la derecha), lo que indica que hay casas con precios extremadamente altos.
- Posibles valores atípicos en precios muy elevados que podrían afectar el modelo.
- Será útil aplicar una transformación logarítmica para normalizar la distribución.

Variables del Dataset

Variable	Descripción
SalePrice	Precio de venta de la propiedad (variable objetivo)
MSSubClass	Clase del edificio
MSZoning	Clasificación general de zonificación
LotFrontage	Metros lineales de calle conectados a la propiedad
LotArea	Tamaño del terreno en pies cuadrados

Variable	Descripción
Street	Tipo de acceso vial
Alley	Tipo de acceso por callejón
LotShape	Forma general del terreno
LandContour	Nivel de planicie del terreno
Utilities	Tipo de servicios públicos disponibles
LotConfig	Configuración del lote
LandSlope	Inclinación del terreno
Neighborhood	Ubicación física dentro de los límites de Ames
Condition1	Proximidad a carreteras principales o vías férreas
Condition2	Proximidad secundaria a carreteras o vías férreas (si existe)
BldgType	Tipo de vivienda
HouseStyle	Estilo de la vivienda
OverallQual	Calidad general de materiales y acabados
OverallCond	Condición general
YearBuilt	Año de construcción original
YearRemodAdd	Año de remodelación
RoofStyle	Tipo de techo
RoofMatl	Material del techo
Exterior1st	Revestimiento exterior principal
Exterior2nd	Revestimiento exterior secundario
MasVnrType	Tipo de revestimiento de mampostería
MasVnrArea	Área de revestimiento de mampostería en pies cuadrados
ExterQual	Calidad del material exterior
ExterCond	Condición del material exterior
Foundation	Tipo de cimiento
BsmtQual	Altura del sótano
BsmtCond	Condición general del sótano
BsmtExposure	Exposición del sótano (nivel jardín/salida)
BsmtFinType1	Calidad del área terminada del sótano tipo 1
BsmtFinSF1	Metros cuadrados terminados tipo 1 en el sótano
BsmtFinType2	Calidad del área terminada del sótano tipo 2
BsmtFinSF2	Metros cuadrados terminados tipo 2 en el sótano
BsmtUnfSF	Metros cuadrados no terminados del sótano
TotalBsmtSF	Total de metros cuadrados del sótano
Heating	Tipo de calefacción
HeatingQC	Calidad y condición de la calefacción
CentralAir	Aire acondicionado central (Sí/No)
Electrical	Sistema eléctrico
1stFlrSF	Metros cuadrados del primer piso
2ndFlrSF	Metros cuadrados del segundo piso
LowQualFinSF	Área de baja calidad terminada (todos los pisos)
GrLivArea	Área habitable sobre el nivel del suelo
BsmtFullBath	Baños completos en el sótano
BsmtHalfBath	Medios baños en el sótano

Variable	Descripción
FullBath	Baños completos sobre el nivel del suelo
HalfBath	Medios baños sobre el nivel del suelo
Bedroom	Dormitorios (sin incluir el sótano)
Kitchen	Número de cocinas
KitchenQual	Calidad de la cocina
-	Total de habitaciones sobre el nivel del suelo (sin incluir
	baños)
Functional	Funcionalidad de la casa
Fireplaces	Número de chimeneas
FireplaceQu	Calidad de las chimeneas
GarageType	Ubicación del garaje
GarageYrBlt	Año de construcción del garaje
GarageFinish	Acabado interior del garaje
GarageCars	Capacidad del garaje (número de autos)
GarageArea	Área del garaje en pies cuadrados
GarageQual	Calidad del garaje
GarageCond	Condición del garaje
PavedDrive	Entrada pavimentada
WoodDeckSF	Área de terraza de madera
OpenPorchSF	Área de porche abierto
EnclosedPorch	Área de porche cerrado
3SsnPorch	Área de porche de tres estaciones
ScreenPorch	Área de porche con malla
PoolArea	Área de la piscina
PoolQC	Calidad de la piscina
Fence	Calidad de la cerca
MiscFeature	Característica miscelánea no cubierta por otras categorías
MiscVal	Valor en \$ de la característica miscelánea
MoSold	Mes de la venta
YrSold	Año de la venta
SaleType	Tipo de venta
SaleCondition	Condición de la venta

Análisis Exploratorio

Variables con Mayor correlacion con la variable Objetivo

Se hizo un analisis de correlacion de las variables con el precio de la casa y dio este resultado $\,$

Las variables con mayor correlación positiva con el precio son:

Figure 1: alt text

Figure 2: alt text

- OverallQual (0.79): Calidad de materiales y acabados.
- GrLivArea (0.70): Área habitable total.
- TotalBsmtSF (0.61): Área del sótano.
- GarageCars (0.64): Cantidad de autos que caben en el garaje.

Esto indicaria de que

- OverallQual (Calidad de la construcción): Es una de las variables más correlacionadas con SalePrice, lo - que confirma que las casas con mejor calidad de construcción tienen precios más altos.
- GrLivArea (Área habitable sobre el nivel del suelo): También tiene una correlación alta con SalePrice, lo que significa que las casas más grandes suelen costar más.
- TotalBsmtSF (Área total del sótano): Muestra una correlación fuerte con SalePrice, lo que implica que un - sótano más grande puede aumentar el valor de la vivienda.
- GarageCars (Capacidad del garaje en número de autos): Tiene una buena correlación con SalePrice, lo que sugiere que tener más espacio de garaje incrementa el valor de la casa.

Exploracion de las variables

Se hizo un analisis mas a profundo de las variables a usar en la variable respuesta

- Algunas variables categóricas pueden influir en SalePrice:
- Neighborhood tiene variaciones significativas en los precios.
- Exterior1st y Exterior2nd pueden influir según la calidad de los materiales.
- SaleCondition indica si la venta fue "Normal" o una subasta, lo que puede afectar el precio.
- Solución Propuesta: Convertir variables categóricas a numéricas mediante codificación dummy (One-Hot Encoding).

Tambien se hizo un analisis de los grupos de los precios para las casas y su tamaño que:

- Las casas de calidad alta (OverallQual 8) tienen un precio significativamente mayor.
- Las casas de calidad media (OverallQual 5-7) forman la mayoría del dataset y muestran mayor variabilidad en los precios.
- Las casas de calidad baja (OverallQual 4) tienen precios considerablemente menores.

Precios de Casas por Vecindario

Figure 3: alt text

QualityGroup

Alta
Baja

Media

6e+05 -

Distribución de Precios por Calidad de Construcción

Precio de Venta

2e+05 -

0e+00 -

Alta

Figure 4: alt text

Media

Baja Grupo de Calidad

Figure 5: alt text

Lugo se realizo un analisis sobre el precio de las casas sobre su calidad Como podemos ver OverallQual es la variable a predecir SalePrice.

Como ultimo detectamos los valores atipicos

Se observan dos puntos con Gr Liv
Area $>4000~{\rm y}$ precios muy bajos

Datos Encontrados

Ingenieria de Caracteristicas:

Clustering Aplicamos un método de clustering automático (K-Means) para descubrir patrones en los datos y segmentar las casas en grupos con características similares.

Los colores indican los diferentes grupos de casas detectados automáticamente.

• Cluster 1 - Casas económicas

Baja calidad de construcción (OverallQual bajo). Tamaño reducido (GrLivArea y TotalBsmtSF pequeños). Garaje pequeño o inexistente (GarageCars). Bajo SalePrice, generalmente en vecindarios más baratos.

Figure 6: alt text

Figure 7: alt text

• Cluster 2 - Casas de precio medio

Calidad media-alta (OverallQual entre 5 y 7). Tamaño intermedio, con un área habitable moderada. Garaje con espacio para 1-2 autos. Precio en el rango medio del dataset.

• Cluster 3 - Casas de lujo

Alta calidad de construcción (OverallQual > 7). Casas grandes con mucho espacio (GrLivArea alto). Garajes amplios (2-3 autos). SalePrice alto, típicamente en vecindarios premium.

Al final se aplico una agrupacion distinta con clustering

Figure 8: alt text

El gráfico de clustering muestra tres grupos diferenciados en el dataset de precios de casas. Basándonos en la distribución y separación de los clusters, se pueden hacer las siguientes observaciones:

- Este grupo representa casas con menor calidad de construcción (OverallQual baja), menor área habitable (GrLivArea pequeña) y sótanos más pequeños.
- Muchas de estas casas tienen valores atípicos y precios significativamente más bajos en comparación con el resto del dataset.
- Posible ubicación en vecindarios menos costosos.

• Cluster 2 (Azul - Centro): Casas de Precio Medio y Tamaño Promedio

PCA Se aplico PCA sobre las variables y se encontro que

Figure 9: alt text

Podemos ver que en el grafico despues de los primeros 15 PCA se estabiliza el codo. Estos primeros 14 PCA pertenecen al 63% de la descripcion de los datos. Asi que despues de hacer el analisis podemos notar que la regla del Kaiser si aplico de manera correcta

Variables Finales

Al final las variables que se utilizaron despues de realizar el analisis de PCA y Clustering, son:

- OverallQual
- \bullet GrLivArea
- GarageCars
- \bullet TotalBsmtSF
- YearBuilt

Modelos para detectar SalePrice

Modelos de Clasificacion

Acontinuacion se muestra una lista del rendimiento de los modelos de clasificacion. Se uso accurancy , mientras mas accurrancy mejor rendimiento del modelo

Figure 10: alt text

Podemos ver que de todos los modelos RNA en realidad es solo mejor que el Arbol de Desicion, la Regresion Logistica y KNN porque para SVM no es tan bueno y con Random Forest pero con Naive Bayes tienen el mismo rendimiento

En conclusion es muy bueno en tiempo de repidez de SVM y de hecho si tienen casi el mismo rendimiento seria mejor usarlo en lugar de ese y Naive Bayes . Pero flaquece con respecto al random forest , aunque el problema del random forest es su tiempo de ejecucion, un problema tambien que tiene es que nuestro modelo su complejidad en espacio es mucho mayor que todos los demas por lo que no se recomienda usar en grandes cantidades de datos sin apoyo de equipo necesario $\frac{1}{2}$

Modelos de Regresion

Podemos ver que el rendimiento para predecir el valor de la casa usando modelos de regresion es el siguiente. Ojo mientras menor sea el MSE mejor el modelo

Figure 11: alt text

De todos el pero es el de Arbol de regresion. Y no podemos comparar el RNA con el de regresion lineal, knn o naive bayes porque es peor que esos.

El unico en que puede haber una comparacion clara es con SVM lineal, que de hecho es peor que ese. Lo que indica que nuestro RNA no es tan bueno al momento de realizar regresiones. Pero el lado positivo es que podemos cambiar la funcion y esto mismo puede ayudar a que mejore un poco.

En conclusion para poder realizar una regresion no es tan bueno el RNA a menos que sean datos mas complejos que una simple regresion lineal , y existan una gran cantidad de variables que podemos usar.

Modelo Final

Podemos ver un resumen siendo el siguiente

Nombre del Modelo	Clasificacion (Accurancy)	$\begin{array}{c} {\rm Regresion} \\ {\rm (MSE)} \end{array}$	Observaciones
Regresion Lineal	No Aplica	9.157e-18	El tiempo de ejecucion mas rapido
Regresion	0.7013	No aplico	Es el que menos tiempo
Logistica			toma de clas
KNN	0.67	0.1600	
Naive Bayes	0.8041237	0.0504431	
Arboles de	0.7414188	1658823049	Es el que peor le va en
Desicion			regresion
Random	0.9816934	No aplico	Toma mas tiempo de
Forest			ejecucion
SVM	0.8707	133.76	
RNA	0.8025	174	Es el que mas espacio toma de todos

El mejor modelo para predecir una variable continua es regresion lineal, esto porque es el que de todos toma menos tiempo, tiene mas ajuste de R^2. El unico problema es que si se tienen una gran cantidad de variables categoricas y se quiere usar con one encode no rinde tan bien.

El siguiente mejor modelo para clasificacion es SVM, Esto porque aunque se tarda mucho en tiempo de ejecucion no es tanto a comparacion de Random Forest.

Ademas esta muy bien ajustado sin sobreajuste ni subajuste. Y es el que mejor llega a predecir la variable. Solo en caso que no sea tan bueno en clasificar se recomienda random forest pero este ultimo tambien crece mucho en tiempo.

Pero si tomamos en consideracion un modelo que sirve para ambos casos seria el de **Naive Bayes**. Ya que es el que rinde en promedio en ambos . Es mucho mejor que SVM en clasificacion y mucho mejor que KNN en regresion. Por lo que seria un modelo definitivo para ambo usos.

En conclusion, el mejor modelo de todos es **Naive Bayes**, pero si solo se quiere usar exclusivamente para clasificacion lo mejor seria usar SVM, y si solo se quiere usar para Regresion optar por regresion lineal.

Conclusiones

- El precio de las casas SalesPrice se puede dividir en 3 grupos donde el precio es bajo, media alto.

• El precio de las casas tiene una alta correlacion con las variables de OverallQual: (Calidad de materiales y acabados.), GrLivArea: (Área habitable total.), TotalBsmtSF: (Área del sótano.), GarageCars: (Cantidad de autos que caben en el garaje.).

16