Language Processing Systems

Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu
Japan

Syntax Analysis (Parsing)

Some Basic Definitions

syntax: the way in which words are put together to form phrases, clauses, or sentences. The rules governing the formation of statements in a programming language.

syntax analysis: the task concerned with fitting a sequence of tokens into a specified syntax.

parsing: To break a sentence down into its component parts of speech with an explanation of the form, function, and syntactical relationship of each part.

Some Basic Definitions

parsing = lexical analysis + syntax analysis

semantic analysis: the task concerned with calculating the program's meaning.

Some Basic Definitions

Syntactic structure: the syntactic structure of programming languages can be informally expressed by the following diagram.

- 1. Uses Regular Expressions to define tokens
- 2. Uses Finite Automata to recognize tokens

Uses Top-down parsing or Bottom-up parsing

To construct a Parse tree

Syntax errors

Parsing errors include:

- 1. misspelling of identifier, keyword, or operator
- 2. arithmetic expression with unbalanced parentheses
- 3. punctuation errors such as using comma in place of semicolon
- 4. missing brackets, semicolons, etc.

Error recovery

The error handler in a parser has the following jobs:

- 1. report the presence of errors clearly and accurately
- 2. quick recovery of errors
- 3. not to slow the processing of programs

Example:

The following C code shows some examples of syntax errors:

```
#include<stdio.h>
int max(int I; int j)
if(i>j) return(i)
return(j);
void main()
int x, y,
scanf("%d %d", x, y);
printf("%d", max(x,y) ;
```

Example:

A typical compilation of this erroneous program gives the following list of errors:

- 1. error C2235: ';' in formal parameter list
- 2. error C2059: syntax error: ')'
- 3. error C2239: unexpected token 'f' following declaration of 'j'
- 4. error C2078: too many initializers
- 5. error C2660: 'max': function does not take 2 parameters
- 6. error C2143: syntax error : missing ')' before ';'

Example:

The correct version of this program is

```
#include<stdio.h>
int max(int i, int j)
if(i>j) return(i);
return(j);
void main()
int x, y;
scanf("%d %d", x, y);
printf("%d", max(x,y));
```

Definition of Context-Free Grammars

A context-free grammar G = (T, N, S, P) consists of:

- 1. *T*, a set of *terminals* (scanner tokens).
- 2. N, a set of nonterminals (syntactic variables generated by productions).
- 3. *s*, a designated *start* nonterminal.
- 4. P, a set of *productions*. Each production has the form, $A::=\alpha$, where A is a nonterminal and α is a *sentential form*, i.e., a string of zero or more grammar symbols (terminals/nonterminals).

Definition of Context-Free Grammars

Grammars offer several significant advantages:

- 1. Easy to understand and construct programs
- 2. Easy parsing
- 3. Easy error detection and handling
- 4. Easy language extension

Syntax Analysis

Syntax Analysis Problem Statement: To find a derivation sequence in a grammar *G* for the input token stream (or say that none exists).

Left Factoring

Top-down parsers: starts constructing the parse tree at the top (root) of the tree and move down towards the leaves.

Easy to implement by hand, but work with restricted grammars.

Example: predictive parsers

Consider the grammar:
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

A top-down parser might loop forever when parsing an expression using this grammar

A grammar that has at least one production of the form $A \Rightarrow A\alpha$ is a left recursive grammar.

Top-down parsers do not work with left-recursive grammars.

Left-recursion can often be eliminated by rewriting the grammar.

This left-recursive grammar:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

Can be re-written to eliminate the immediate left recursion:

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \lambda$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \lambda$$

$$F \rightarrow (E) \mid id$$

Predictive Parsing

Consider the grammar:

```
stm → if expr then stmt else stmt

| while expr do stmt

| begin stmt_list end
```

A parser for this grammar can be written with the

following simple structure:

Based only on the first token, the parser knows which rule to use to derive a statement.

Therefore this is called a predictive parser.

```
switch(gettoken())
{
    case if:
        ....
        break;
    case while:
        ....
        break;
    case begin:
        ....
        break;
    default:
        reject input;
}
```

Left Factoring

The following grammar:

```
stmt → if expr then stmt else stmt
| if expr then stmt
```

Cannot be parsed by a predictive parser that looks one element ahead.

But the grammar can be re-written:

```
stmt \rightarrow if expr then stmt stmt' stmt' \rightarrow else stmt | \lambda
```

Where λ is the empty string.

Rewriting a grammar to eliminate multiple productions starting with the same token is called **left factoring**.

Left Factoring

The basic idea is, in general, as follows:

- 1. let A $\rightarrow \alpha\beta_1 \mid \alpha\beta_2$ be two production rules for the nonterminal symbol A
- 2. if the input begins with a nonempty string derived from α
- 3. and we do not know whether to expand A to $\alpha\beta_1$ or $\alpha\beta_2$
- 4. then we may defer the decision by expanding A to $\alpha A'$
- 5. after seeing the input derived from α , we expand A' to β_1 or to β_2
- 6. this means, left-factored, the original productions become

$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta_1 \mid \beta_2$

A Predictive Parser

How it works?

- 1. Construct the *parsing table* from the given grammar
- 2. Apply the predictive parsing algorithm to construct the parse tree

A Predictive Parser

1. Construct the parsing table from the given grammar

The following algorithm shows how we can construct the *parsing table*:

Input: a grammar G

Output: the corresponding parsing table M

Method: For each production A $\rightarrow \alpha$ of the grammar do the following steps:

- 1. For each terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A,a].
- 2. If λ in FIRST(α), add $A \rightarrow \alpha$ to M[A,b] for each terminal b in FOLLOW(A).
- 3. If λ FIRST(α) and \$ in FOLLOW(A), add A $\rightarrow \alpha$ to M[A,\$]

How to construct FIRST and FOLLOW operations?

The Parsing Table

How to construct FIRST and FOLLOW operations?

Example

Given this grammar: T → FT'

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \lambda$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \lambda$$

$$F \rightarrow (E) \mid id$$

How is this parsing table built?

NON-		INPUT SYMBOL						
TERMINAL	id	+	*	()	\$		
E	$E \rightarrow TE'$			$E \rightarrow TE'$				
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$		
T	$T \rightarrow FT'$			$T \rightarrow FT'$				
T'		T′→ λ	T′ → *FT′		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$		
F	$F \rightarrow id$			F → (E)				

FIRST and FOLLOW

We need to build a FIRST set and a FOLLOW set for each symbol in the grammar.

The elements of FIRST and FOLLOW are terminal symbols.

FIRST(α) is the set of <u>terminal symbols</u> that can begin any string derived from α .

 $FOLLOW(\alpha)$ is the set of <u>terminal symbols</u> that can follow α :

 $t \in FOLLOW(\alpha) \Leftrightarrow \exists$ derivation containing αt

Rules to Create FIRST

GRAMMAR:

```
E \rightarrow TE'
E' \rightarrow +TE' \mid \lambda
T \rightarrow FT'
T' \rightarrow *FT' \mid \lambda
F \rightarrow (E) \mid id
```

SETS:

```
FIRST(id) = {id}

FIRST(*) = {*}

FIRST(+) = {+}

FIRST(() = {(}

FIRST()) = {}

FIRST(E') = {\epsilon} {+, \lambda}

FIRST(T') = {\epsilon} {*, \lambda}

FIRST(F) = {(, id}

FIRST(E) = FIRST(F) = {(, id}
```

FIRST rules:

```
1. If X is a <u>terminal</u>, FIRST(X) = {X}
2. If X \to \lambda, then \varepsilon \in FIRST(X)
3. If X \to Y_1Y_2 \dashrightarrow Y_k
and Y_1 \dashrightarrow Y_{i-1} \stackrel{*}{\Longrightarrow} \lambda
and a \in FIRST(Y_i)
then a \in FIRST(X)
```

```
FIRST(E') = \{+, \lambda\}

FIRST(T') = \{*, \lambda\}

FIRST(F) = \{(. id)\}

FIRST(T) = \{(. id)\}

FIRST(E) = \{(. id)\}
```

FIRST(F) = {(. id) | Create FOLLOW

GRAMMAR:

SETS:

```
FOLLOW(E) = {$} { ), $}
FOLLOW(E') = { ), $}
FOLLOW(T) = { ), $}
```

FOLLOW rules:

```
    If S is the start symbol, then $ ∈ FOLLOW(S)
    If A → αBβ,
and a ∈ FIRST(β)
and a ≠ λ
then a ∈ FOLLOW(B)
    If A → αB
and a ∈ FOLLOW(A)
then a ∈ FOLLOW(B)
    If A → αBβ
and β ♣ λ
and a ∈ FOLLOW(A)
then a ∈ FOLLOW(B)
```

```
FIRST(E') = \{+, \lambda\}

FIRST(T') = \{*, \lambda\}

FIRST(F) = \{(. id)\}

FIRST(E) = \{(. id)\}
```

FIRST(F) = {(. id) to Create FOLLOW

GRAMMAR:

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \lambda$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \lambda$$

$$F \rightarrow (E) \mid id$$

SETS:

```
FOLLOW(E) = {), $}
FOLLOW(E') = { ), $}
FOLLOW(T) = { }, $} {+, }, $}
```

FOLLOW rules:

```
    If S is the start symbol, then $ ∈ FOLLOW(S)
    If A → αBβ, and a ∈ FIRST(β) and a ≠ λ then a ∈ FOLLOW(B)
    If A → αB and a ∈ FOLLOW(A) then a ∈ FOLLOW(B)
    If A → αBβ and β ♣ λ and a ∈ FOLLOW(A) then a ∈ FOLLOW(B)
```

```
FIRST(E') = \{+, \lambda\}

FIRST(T') = \{*, \lambda\}

FIRST(F) = \{(. id)\}

FIRST(T) = \{(. id)\}

FIRST(E) = \{(. id)\}
```

FIRST(F) = {(. id) | Create FOLLOW

GRAMMAR:

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \lambda$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \lambda$$

$$F \rightarrow (E) \mid id$$

SETS:

```
FOLLOW(E) = {), $}

FOLLOW(E') = { ), $}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}
```

FOLLOW rules:

```
    If S is the start symbol, then $ ∈ FOLLOW(S)
    If A → αBβ,
and a ∈ FIRST(β)
and a ≠ λ
then a ∈ FOLLOW(B)
    If A → αB
and a ∈ FOLLOW(A)
then a ∈ FOLLOW(B)
    If A → αBβ
and β ♣ λ
and a ∈ FOLLOW(A)
then a ∈ FOLLOW(B)
```

```
FIRST(E') = \{+, \lambda\}

FIRST(T') = \{*, \lambda\}

FIRST(F) = \{(. id)\}

FIRST(T) = \{(. id)\}

FIRST(E) = \{(. id)\}
```

FIRST(F) = {(. id) | Create FOLLOW

GRAMMAR:

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \lambda$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \lambda$
 $F \rightarrow (E) \mid id$

SETS:

```
FOLLOW(E) = {), $}

FOLLOW(E') = { ), $}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}

FOLLOW(F) = {+, ), $}
```

FOLLOW rules:

```
    If S is the start symbol, then $ ∈ FOLLOW(S)
    If A → αBβ, and a ∈ FIRST(β) and a ≠ λ then a ∈ FOLLOW(B)
    If A → αB and a ∈ FOLLOW(A) then a ∈ FOLLOW(B)
    If A → αBβ and β ♣ λ and a ∈ FOLLOW(A) then a ∈ FOLLOW(B)
```

```
FIRST(E') = \{+, \lambda\}

FIRST(T') = \{*, \lambda\}

FIRST(F) = \{(. id)\}

FIRST(E) = \{(. id)\}
```

FIRST(F) = ?(. id): O Create FOLLOW

GRAMMAR:

```
E \rightarrow TE'
E' \rightarrow +TE' \mid \lambda
T \rightarrow FT'
T' \rightarrow *FT' \mid \lambda
F \rightarrow (E) \mid id
```

SETS:

```
FOLLOW(E) = {), $}

FOLLOW(E') = { ), $}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}

FOLLOW(F) = {+, }, $} {+, *, }, $}
```

FOLLOW rules:

```
    If S is the start symbol, then $ ∈ FOLLOW(S)
    If A → αBβ, and a ∈ FIRST(β) and a ≠ λ then a ∈ FOLLOW(B)
    If A → αB and a ∈ FOLLOW(B)
    If A → αBβ and β ♣ λ and β ♣ λ and a ∈ FOLLOW(A) then a ∈ FOLLOW(B)
```


FIRST(E') =
$$\{+, \lambda\}$$

FIRST(T') = $\{*, \lambda\}$
FIRST(F) = $\{(. id)\}$
FIRST(E) = $\{(. id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T) = {+, }, \$}

FOLLOW(T') = {+, }, \$}

FOLLOW(F) = {+, *, }, \$}

1. If
$$A \rightarrow \alpha$$
:

if
$$a \in FIRST(\alpha)$$
, add $A \rightarrow \alpha$ to M[A, a]

[NON-		INPUT SYMBOL						
	TERMINAL	id	+)	\$				
	Е	$E \rightarrow TE'$			$E \rightarrow TE'$				
	E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$		
	Т	$T \rightarrow FT'$			$T \rightarrow FT'$				
	T'		$T' \rightarrow \lambda$	$T' \rightarrow *FT'$		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$		
	F	$F \rightarrow id$			F → (E)				

FIRST(E') =
$$\{+, \lambda\}$$

FIRST(T') = $\{*, \lambda\}$
FIRST(F) = $\{(. id)\}$
FIRST(T) = $\{(. id)\}$
FIRST(E) = $\{(. id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T) = {+, }, \$}

FOLLOW(T') = {+, }, \$}

FOLLOW(F) = {+, *, }, \$}

1. If
$$A \rightarrow \alpha$$
:

if
$$a \in FIRST(\alpha)$$
, add $A \rightarrow \alpha$ to M[A, a]

NON-		INPUT SYMBOL						
TERMINAL	id	+	*	()	\$		
E	$E \rightarrow TE'$			$E \rightarrow TE'$				
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$		
Т	$T \rightarrow FT'$			$T \rightarrow FT'$				
T'		T′→ λ	$T' \rightarrow *FT'$		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$		
F	$F \rightarrow id$			F → (E)				

FIRST(E') =
$$\{+, \lambda\}$$

FIRST(T') = $\{*, \lambda\}$
FIRST(F) = $\{(. id)\}$
FIRST(T) = $\{(. id)\}$
FIRST(E) = $\{(. id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T) = {+, }, \$}

FOLLOW(T') = {+, }, \$}

FOLLOW(F) = {+, *, }, \$}

1. If $A \rightarrow \alpha$:

TO

if
$$a \in FIRST(\alpha)$$
, add $A \rightarrow \alpha$ to M[A, a]

NON	INDUT CVMDOL							
NON-		INPUT SYMBOL						
TERMINAL	id	+	*	()	\$		
Ē	$E \rightarrow TE'$			$E \rightarrow TE'$				
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$		
Т	$T \rightarrow FT'$			$T \rightarrow FT'$				
T'		T′→ λ	T' → *FT'		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$		
F	$F \rightarrow id$			F → (E)				

FIRST(E') =
$$\{+, \lambda\}$$

FIRST(T') = $\{*, \lambda\}$
FIRST(F) = $\{(. id)\}$
FIRST(T) = $\{(. id)\}$
FIRST(E) = $\{(. id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T) = {+, }, \$}

FOLLOW(T') = {+, }, \$}

FOLLOW(F) = {+, *, }, \$}

1. If
$$A \rightarrow \alpha$$
:

if
$$a \in FIRST(\alpha)$$
, add $A \rightarrow \alpha$ to M[A, a]

NON-		'MBOL				
TERMINAL	id	+	*	()	\$
Е	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$
Т	T → FT′			$T \rightarrow FT'$		
T'		T′→ λ	T' → *FT'		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$
F	$F \rightarrow id$			F → (E)		

FIRST(E') =
$$\{+, \lambda\}$$

FIRST(T') = $\{*, \lambda\}$
FIRST(F) = $\{(. id)\}$
FIRST(T) = $\{(. id)\}$
FIRST(E) = $\{(. id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T) = {+, }, \$}

FOLLOW(T') = {+, }, \$}

FOLLOW(F) = {+, *, }, \$}

1. If
$$A \rightarrow \alpha$$
:

if
$$a \in FIRST(\alpha)$$
, add $A \rightarrow \alpha$ to M[A, a]

NON-		INPUT SYMBOL						
TERMINAL	id	+	*	()	\$		
E	$E \rightarrow TE'$			$E \rightarrow TE'$				
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$		
Т	$T \rightarrow FT'$			$T \rightarrow FT'$				
T′		T′→ λ	T' → *FT'		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$		
F	$F \rightarrow id$			F → (E)				

GRAMMAR:

FIRST SETS:

FIRST(E') =
$$\{+, \lambda\}$$

FIRST(T') = $\{*, \lambda\}$
FIRST(F) = $\{(. id)\}$
FIRST(T) = $\{(. id)\}$
FIRST(E) = $\{(. id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T) = {+, }, \$}

FOLLOW(T') = {+, }, \$}

FOLLOW(F) = {+, *, }, \$}

1. If $A \rightarrow \alpha$:

if $a \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a]

2. If $A \rightarrow \alpha$:

if $\lambda \in \mathsf{FIRST}(\alpha)$, add $\mathsf{A} \to \alpha$ to M[A, b] for each terminal $\mathsf{b} \in \mathsf{FOLLOW}(\mathsf{A})$,

NON-		INPUT SYMBOL						
TERMINAL	id	+	*	()	\$		
E	$E \rightarrow TE'$			$E \rightarrow TE'$				
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$		
T	$T \rightarrow FT'$			$T \rightarrow FT'$				
T'		T′→ λ	T′ → *FT′		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$		
F	$F \rightarrow id$			F → (E)				

GRAMMAR:

FIRST SETS:

FIRST(E') =
$$\{+, \lambda\}$$

FIRST(T') = $\{*, \lambda\}$
FIRST(F) = $\{(. id)\}$
FIRST(T) = $\{(. id)\}$
FIRST(E) = $\{(. id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T) = {+, }, \$}

FOLLOW(T') = {+, }, \$}

FOLLOW(F) = {+, *, }, \$}

1. If
$$A \rightarrow \alpha$$
:

if
$$a \in FIRST(\alpha)$$
, add $A \rightarrow \alpha$ to M[A, a]

2. If $A \rightarrow \alpha$:

if
$$\lambda \in \mathsf{FIRST}(\alpha)$$
, add $\mathsf{A} \to \alpha$ to M[A, b] for each terminal $\mathsf{b} \in \mathsf{FOLLOW}(\mathsf{A})$,

NON-	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
E	$E \rightarrow TE'$			$E \rightarrow TE'$			
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$	
Т	$T \rightarrow FT'$			$T \rightarrow FT'$			
T'		T′→ λ	T′ → *FT′		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$	
F	$F \rightarrow id$			F → (E)			

GRAMMAR:

FIRST SETS:

FIRST(E') = $\{+, \lambda\}$ FIRST(T') = $\{*, \lambda\}$ FIRST(F) = $\{(. id)\}$ FIRST(T) = $\{(. id)\}$ FIRST(E) = $\{(. id)\}$ **FOLLOW SETS:**

Jars FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

 $FOLLOW(T) = \{+, \}$

FOLLOW(T') = {+,), \$}

 $FOLLOW(F) = \{+, *,), \}$

1. If $A \rightarrow \alpha$:

if $a \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a]

2. If $A \rightarrow \alpha$:

if $\lambda \in \mathsf{FIRST}(\alpha)$, add $\mathsf{A} \to \alpha$ to M[A, b] for each terminal $\mathsf{b} \in \mathsf{FOLLOW}(\mathsf{A})$,

3. If $A \rightarrow \alpha$:

if $\lambda \in \mathsf{FIRST}(\alpha)$, and $\$ \in \mathsf{FOLLOW}(\mathsf{A})$,

add A $\rightarrow \alpha$ to M[A, \$]

NON-		INPUT SYMBOL						
TERMINAL	id	+	*	()	\$		
E	$E \rightarrow TE'$			$E \rightarrow TE'$				
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$		
Т	$T \rightarrow FT'$			$T \rightarrow FT'$				
T'		T′→ λ	T' → *FT'		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$		
F	$F \rightarrow id$			F → (E)				