Friday
9.1-9.

Homework Review-p. 565

multiply: $(2x^2)(4x)$ $8x^3$ $(3x^3)(11x^3)$ $33x^6$ 3 $x^3 + 11x^3$ $14x^3$

Multiplying polynomials horizontally:

→ this is the technique we've used

Multiplying polynomials vertically:

$$h^{2}+6h+7$$

$$3h+4$$

$$3h+4$$

$$3h^{3}+18h^{3}+3lh+0$$

$$3h^{3}+14h^{3}+3lh+0$$

$$3h^{3}+14h^{3}+3lh+0$$

$$18552$$
Use the same technique as when you multiply numbers with more than one digit:
$$428$$

$$\times 34$$

$$1712$$

$$18840$$

$$18552$$

Section 9.3.notebook

Multiply polynomials using a table:

$$(x+4)(3x^2+3x+2)$$

0	3x2	3×	2
×	3×	3	X
-4	-13/2	-19X	-8

$$-9x^{2}+3x^{3}+-8+-10x$$

$$-3x^{3}+9x^{2}+-10x+-8$$

FOIL method for multiplying two binomials:

$$(3a+4)(a+2)$$
First ...
$$3a^{2}+6a+4a+8$$

$$3a^{3}+2a+8$$

$$1nner ...
$$bx + Last...$$

$$by + Last...$$

$$13w^{3}y^{4}z + 11,000$$$$

Section 9.3.notebook

Find the product.

1.
$$-8y^3(2y^4 - 5y^2 + 3)$$
 (vertical)

$$\frac{2y^{4} + 5y^{2} + 3}{-8y^{3}}$$

$$-16y^{7} + 40y^{5} + -24y^{3}$$

2.
$$(b+3)(3b^2-2b+1)$$
 (table)

Square of a binomial pattern:

$$(a+b)^2 = a^2 + 2ab + b^2$$
Basic pattern:
$$(a+b)(a+b) = a^2 + ab + ab + b^2$$

$$= a^2 + 2ab + b^2$$
Examples:
$$(2x+5)^2 = 4x^2 + 20x + 25$$

Sum and Difference Pattern (binomials only):

$$(a+b)(a-b) = a^2 - b^2$$
Basic pattern:
$$(a+b)(a-b) = a^2 + ab + ab + b^2$$

$$= a^2 + b^2$$
Examples:
$$(3x+4)(3x-4) = 9x^2 - 16$$

(Works with numbers too...)

$$205 \times 195$$

$$(200 - 5) = 40000 - 25$$

$$= 39975$$

$$32 \cdot 32$$

$$(30 + 2)(30 + 2) = 900 + 120 + 4$$

$$= 1024$$

Section 9.3.notebook

Find the product of the square of the binomial. $(x + 7)^2$ 2. $(m + 11)^2$

$$(x + 7)^2$$

$$2 \times m \times 11$$

2. $(m+11)^2$

3.
$$(5s + 2)^2$$

Find the product of the sum and difference.

10.
$$(a-9)(a+9)$$

11.
$$(z-20)(z+20)$$

12.
$$(5r+1)(5r-1)$$

Pea Plants In pea plants, the gene S is for spherical seed shape, and the gene s is for wrinkled seed shape. Any gene combination with an S results in a spherical seed shape. Suppose two pea plants have the same gene combination Ss.

- **a.** Make a Punnett square that shows the possible gene combinations of an offspring pea plant and the resulting seed shape.
- **b.** Write a polynomial that models the possible gene combinations of an offspring pea plant.

c. What percent of the possible gene combinations of the offspring results in a wrinkled seed shape?

$$SS + 2Ss + ss$$

 $3/4 = 7+5\%$

Homework:

p. 572, 4-40 even

p. 574, 1-9 odd