ゼミノート#3

七条彰紀

2018年5月23日

以下では主に $g \ge 1$ の場合を考える. また、考えるのは $\mathbb C$ 上の scheme のみである.

問題 0.1 -

What properties \mathcal{M}_g and $\bar{\mathcal{M}}_g$ does have?

1 Basic Properties

- $\blacksquare \dim \mathcal{M}_g = 3g 3$. \mathcal{M}_g は Hilbert scheme の開集合の $PGL(N+1,\mathbb{C})$ による作用での商であった。そこで, $\dim \mathcal{M}_g$ を用いて Hilbert scheme の次元を記述し,
- $\blacksquare \mathcal{M}_g :: Irreducible.$

2 Local Properties.

2.1 Singular Locus.

singular locus of $\overline{\mathcal{M}}_g$ を Sing \mathcal{M}_g と書く. smooth locus of \mathcal{M}_g を Sm \mathcal{M}_g (= \mathcal{M}_g – Sing \mathcal{M}_g) と書く.

- $\blacksquare g \ge 4$. Sm \mathcal{M}_g は non-trivial automorphism を持たない curve の locus に一致する.
- $\blacksquare g = 2.$
- $\blacksquare q = 3.$

2.2 Local Looks.

 $[C] \in \operatorname{Sing} \mathcal{M}_g$ の解析的近傍は, \mathbb{C}^{3g-3} の開集合を有限群の線形作用で割ったようなものに成る.

2.3 $\Delta = \overline{\mathcal{M}}_g - \mathcal{M}_g$.

node を δ 個持つ stable curve が成す locus を考える.

主張 2.1

node を δ 個持つ stable curve が成す locus を $N_\delta \subset \bar{\mathcal{M}}_g$ とする. この時,

$$\dim N_{\delta} = 3g - 3 - \delta \quad (\implies \operatorname{codim} N_{\delta} = \delta).$$

また、 $\operatorname{cl}_{\bar{\mathcal{M}}_a}(N_{\delta})$ は node を δ 個以上持つ stable curve が成す locus に一致する.

このことは [1] Thm3.150 直後の段落でも触れられている.

node を 1 個以上持つ curve の locus :: $\Delta = \overline{\mathcal{M}}_g - \mathcal{M}_g$ は, \mathcal{M}_g が $\overline{\mathcal{M}}_g$ の開集合であるから,これは closed in $\overline{\mathcal{M}}_g$. 上の主張から, Δ は node を丁度 1 つ持つ curve の locus の closure である.そこで Δ_0 と Δ_i $(i=1,\ldots,|g/2|)$ を次のように定める.

- $\Delta_0 = \operatorname{cl}_{\overline{\mathcal{M}}_o}(\{[C] \in \overline{\mathcal{M}}_g \mid C :: \text{ irreducible curve with 1 node }\}).$
- $\Delta_0 = \operatorname{cl}_{\overline{\mathcal{M}}_g}(\{[C] \in \overline{\mathcal{M}}_g \mid C :: \text{ union of two smooth curves of genus } i \text{ and } g i, \text{ meeting at 1 pt }\})$ for $i = 1, \ldots, \lfloor g/2 \rfloor$.

(TODO: なぜ Δ_0 は smooth curves の和でないのか?)

 $\Delta_0,\ldots,\Delta_{\lfloor g/2\rfloor}$ は irreducible である.これは以下のように証明する.まず Δ_0 を考える.C:: irreducible curve with 1 node とする.これの normalization を \tilde{C} とすると,C の node は \tilde{C} の 2 点に対応する.そこで \tilde{C} とこの 2 点を組にして $M_{g-1,2}$ の点とする.こうして $\phi_0:M_{g-1,2}\to\Delta_0$ が得られる. $\Delta_i(i>0)$ の場合,C の normalization は genus i, genus g-i の component からなる.交点に対応する点をそれぞれ一つずつ持つから,これを distinguished point として $\phi_i:M_{i,1}\times_k M_{g-i,1}\to\Delta_i$ が得られる.こうして得られる $\Delta_0,\ldots,\Delta_{\lfloor g/2\rfloor}$ は連続である (FACT).

 $\overline{\mathcal{M}}_{g,n}$ は irreducible である (Thm2.15). したがってその開集合 $\mathcal{M}_{g,n}$ も irreducible である (Δ :: closed より). $\mathcal{M}_{g,n}$ は代数閉体上の scheme (実際には variety, Thm2.15) なので,これらの fiber product も irreducible. 連続写像で写す操作と閉包をとる操作で irreducibility が保たれるので, $\Delta_i = \operatorname{cl}(\operatorname{im}\phi_i)$ ($i = 0, \ldots, \lfloor g/2 \rfloor$) は irreducible である.

- 3 How Close is \mathcal{M}_q to Projective ?
- 4 Cohomology of \mathcal{M}_q .
- 5 Cohomology of $\mathcal{C}_g := \mathcal{M}_{g,1}$.

参考文献

[1] Joe Harris and Ian Morrison. Moduli of Curves (Graduate Texts in Mathematics). Springer, 1998 edition, 8 1998.