Propositions and related concepts Logical equivalences and De Morgan's laws Conditional statements

Lecture 3: Logics

Table of contents

- Propositions and related concepts
- 2 Logical equivalences and De Morgan's laws
- Conditional statements

Propositions

- A proposition (more precisely simple proposition), or a statement, is a declarative sentence that is either true or false, but not both.
- Small letters p, q, r, \ldots are used to denote propositions. These letters are called **propositional variables**.
- 1 (or T) = truth value of a true statement,
 0 (or F) = truth value of a false statement.

Which of the following are propositions? Give their truth values.

(a) 2+4=7.

(b) Julius Caesar was a president of the United States.

(c) What time is it?

- (d) Be quiet.
- (e) 2+2=4.

(f) x + y = z.

- (g) x + 2 = 5.
- (h) x + 2 = 5 when x = 3.

Negation

- The **negation** of proposition p, denoted by $\neg p$ (read "not p"), is the proposition "it is not the case that p".
- $\neg p$ is true when p is false, and $\neg p$ is false when p is true.

$$\neg p = \begin{cases} 0 \text{ if } p = 1, \\ 1 \text{ if } p = 0. \end{cases}$$

Let p be the proposition " $\sqrt{2}$ is an irrational number". Which of the following is $\neg p$?

- (a) $\sqrt{3}$ is irrational.
- (b) Every number is irrational except $\sqrt{2}$.
- (c) $\sqrt{2}$ is not an irrational number.
- (d) $\sqrt{2}$ is a rational number.

Let p be the proposition "there are six stones on the book cover". Which of the following is $\neg p$?

- (a) There are seven birds on the book cover.
- (b) There are no stones on the book cover.
- (c) There are six stones on the table.

Conjunction, disjunction

• The **conjunction** of p and q, denoted by $p \wedge q$, is the proposition "**p** and **q**".

$$p \wedge q \text{ is } \begin{cases} \text{ true when both p and q are true,} \\ \text{false otherwise.} \end{cases}$$

Conjunction, disjunction

• The **conjunction** of p and q, denoted by $p \wedge q$, is the proposition "**p** and **q**".

$$p \wedge q \text{ is } \begin{cases} \text{ true when both p and q are true,} \\ \text{false otherwise.} \end{cases}$$

• The **disjunction** of p and q, denoted $p \lor q$, is "p or q".

$$p \vee q \text{ is } \begin{cases} \text{ true if either p or q is true,} \\ \text{false otherwise.} \end{cases}$$

Exclusive-or

• The **exclusive-or** (read "ex-or") of p and q, denoted by $p \oplus q$, is the proposition "exactly one of p or q".

```
p\oplus q \text{ is } \begin{cases} \text{ true if exactly one of p or q is true,} \\ \text{false otherwise.} \end{cases}
```

Exclusive-or

• The **exclusive-or** (read "ex-or") of p and q, denoted by $p \oplus q$, is the proposition "exactly one of p or q".

$$p\oplus q$$
 is
$$\left\{ egin{array}{l} {
m true \ if \ exactly \ one \ of \ p \ or \ q \ is \ true,} \\ {
m false \ otherwise.} \end{array} \right.$$

ullet Another way to remember $p\oplus q$

$$p \oplus q = (p+q) \mod 2$$

In particular,

$$0\oplus 0 = 1\oplus 1 = 0,$$

$$0 \oplus 1 = 1 \oplus 0 = 1$$

Operations and names

Notation	Name/Read	Example
_	negation/not	$\neg p$
٨	conjunction/and	$p \wedge q$
V	disjunction/or	$p \lor q$
\oplus	exclusive or/ex-or	$p\oplus q$

Compound propositions

• The statements which are formed by *connectives* $\neg, \lor, \land, \oplus$ and propositional variables p, q, \ldots are called **compound propositions**:

$$\neg p, \ p \lor q, \ p \land q, \ p \oplus q$$

Compound propositions

• The statements which are formed by *connectives* \neg , \lor , \land , \oplus and propositional variables p, q, \ldots are called **compound propositions**:

$$\neg p, \ p \lor q, \ p \land q, \ p \oplus q$$

- The propositions which make up a compound proposition are called propositional variables. For examples,
 - p is a propositional variable of $\neg p$.
 - p and q are propositional variables of $p \lor q, p \land q, p \oplus q$.

12 / 40

Dr. Tai Do

Logics

Construct $p \wedge q$, $p \vee q$ and $p \oplus q$ and find their truth values.

(a)
$$p:5>9$$
, $q:9>7$

(b) p: Today is Wednesday, q: It is raining

Order of operations

 If a compound proposition consists of ¬, ∨ and ∧, the operation ¬ is always performed first. For example,

$$\neg p \lor q = (\neg p) \lor q$$

ullet When \oplus is used, we use brackets to clearly indicate its order of precedence. For example,

$$(p \oplus q) \vee r, \ p \wedge (q \oplus r)$$

 When ∨ and ∧ are used, we use brackets to indicate the order. For example

$$(p \land q) \lor r, \ p \land (q \lor r)$$

Find the truth value of $\neg(p \land q) \lor r$

p: Today is Wednesday.

q: 2+1=3.

 ${\it r}$: There is no Covid-19 infection in Singapore.

Truth table

- The truth table of a compound proposition is the table of all possible truth values for that proposition.
- We can make a single table for many propositions that share the same propositional variables: $\neg p, p \land q, p \lor q, p \oplus q$

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \oplus q$
0	0	1	0	0	0
0	1	1	0	1	1
1	0	0	0	1	1
1	1	0	1	1	0

- The first 2 columns are the propositional variables p and q.
- Starting from the 2nd row, the table contains all possible combinations of p and q (4 in total).

Construct the truth table (one single table) for

$$(p\oplus q)\oplus r, (p\oplus q)\wedge r.$$

p	q	r	$p\oplus q$	$(p\oplus q)\oplus r$	$(p \oplus q) \wedge r$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Tautology, contradiction, contingency

- A tautology is a compound proposition that is always true.
- A contradiction is a compound proposition that is always false.
- A contingency is a compound proposition that is neither a tautology nor a contradiction.
- Notations

T = tautology, F = contradiction.

Tautology

"Today is Sunday or today is not Sunday"

Contradiction

"Today is Sunday and today is not Sunday"

Contingency

"I am going to get an A for CSD2258"

Let p,q be propositions. Using truth table, show that

(a) Using truth table, show that $p \vee \neg p$ is a tautology and $p \wedge \neg p$ is a contradiction.

(b) Construct the truth table for $(p \land q) \lor (\neg p \lor \neg q)$. Determine if this proposition is a tautology, a contradiction or a contingency.

p	q	$\neg p$	$\neg q$	$\neg p \vee \neg q$	$p \wedge q$	$(p \land q) \lor (\neg p \lor \neg q)$
0	0					
0	1					
1	0					
1	1					

Logical equivalence

- Two compound propositions are equivalent if they have exactly the same truth values under all possibilities.
- If p and q are equivalent, we write

$$p \equiv q$$

• If p and q are not equivalent, we write

$$p \not\equiv q$$

Logical equivalence rules

Theorem 1

Let p, q, r be simple propositions. **T**=tautology, **F**=contradiction. The following logical equivalences hold.

(a) Identity laws

$$p \wedge \mathbf{T} \equiv p$$
$$p \vee \mathbf{F} \equiv p$$

(b) Negation laws

$$p \vee \neg p \equiv \mathbf{T}$$
$$p \wedge \neg p \equiv \mathbf{F}$$

Theorem 1 continued

(c) Domination laws

$$p \lor \mathsf{T} \equiv \mathsf{T}$$
 $p \land \mathsf{F} \equiv \mathsf{F}$

(d) Commutative laws

$$p \wedge q \equiv q \wedge p$$
$$p \vee q \equiv q \vee p$$

(e) Associative laws

$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

 $(p \vee q) \vee r \equiv p \vee (q \vee r).$

Theorem 1 continued

(f) Distributive laws

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

 $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

(g) Double negation

$$\neg(\neg p) \equiv p$$

25 / 40

De Morgan's laws

Theorem 2

Let p, q be propositions. Then

$$\neg (p \lor q) \equiv \neg p \land \neg q$$
$$\neg (p \land q) \equiv \neg p \lor \neg q.$$

$$\neg (p \land q) \equiv \neg p \lor \neg q.$$

Proof:
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

We prove by truth table.

p	q	$p \lor q$	$\neg (p \vee q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Dr. Tai Do Logics

Use De Morgan's law to write negations for the following.

(a) I am dreaming or today is Sunday.

(b)
$$-3 \le x \le 5$$
.

Dr. Tai Do

Is
$$\neg (p \lor q) \equiv \neg p \lor \neg q$$
? Justify your answer.

Prove that

$$\neg(\neg p \land q) \land (p \lor q) \equiv p.$$

Prove that the following is a tautology

$$(p \land q) \lor (\neg p \lor \neg q)$$

Conditional statement

The conditional statement $p \rightarrow q$ is the proposition

"if
$$p$$
, then q " or " p implies q " or " p only if q "

• p is called **hypothesis** (or **premise**), q is called **conclusion**.

Conditional statement

The **conditional statement** $p \rightarrow q$ is the proposition

"if
$$p$$
, then q " or " p implies q " or " p only if q "

- p is called **hypothesis** (or **premise**), q is called **conclusion**.
- ullet p o q is false only when "p is true and q is false".

p	q	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Conditional statement

The **conditional statement** $p \rightarrow q$ is the proposition

"if
$$p$$
, then q " or " p implies q " or " p only if q "

- p is called **hypothesis** (or **premise**), q is called **conclusion**.
- $p \rightarrow q$ is false only when "p is true and q is false".
 - True hypothesis \rightarrow true conclusion.
 - False hypothesis → conclusion can be anything: true by default (or vacuously true). For example, "If I am superman, you are spiderman".

p	q	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

(a) Using truth table, prove that $p \to q \equiv \neg p \lor q$.

(b) Using (a), rewrite the following sentence in if-then form. "Either you get to work on time or you are fire".

Exercise 6: Negation of a conditional statement

(a) Prove that $\neg(p \to q) \equiv p \land \neg q$.

(b) Using (a), write negations for the following statements **Caution.** Negation of an if-then statement *does not start with if.*

"If you attend all lectures, then you will get an A".

"If you are caught littering, then you will be fined".

Converse, inverse and contrapositive

- The **converse** of $p \to q$ is $q \to p$.
- The **inverse** of $p \to q$ is $\neg p \to \neg q$.
- The **contrapositive** of $p \to q$ is $\neg q \to \neg p$.

Write the converse, inverse and contrapositive of

"If today is Friday, then I have a test today".

Using a truth table, prove the following

(a)
$$p \to q \not\equiv q \to p$$
.

(b)
$$p \to q \not\equiv \neg p \to \neg q$$
.

(c)
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$
.

Dr. Tai Do

Conditional statement vs converse, inverse, contrapositive

 Neither the converse nor the inverse of a conditional statement is equivalent to the statement itself.

$$\begin{array}{cccc} p \rightarrow q & \not\equiv & q \rightarrow p \\ \\ p \rightarrow q & \not\equiv & \neg p \rightarrow \neg q \end{array}$$

Conditional statement vs converse, inverse, contrapositive

 Neither the converse nor the inverse of a conditional statement is equivalent to the statement itself.

$$p \to q \quad \not\equiv \quad q \to p$$
$$p \to q \quad \not\equiv \quad \neg p \to \neg q$$

• The contrapositive of a conditional statement is equivalent to the statement itself.

$$p \to q \equiv \neg q \to \neg p$$
.

38 / 40

Dr. Tai Do

Biconditional statement

- The **biconditional** statement $p \leftrightarrow q$ is the proposition "p if and only if q"
- It is true if both p and q have the same truth value, and it is false otherwise.

p	q	$p \leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

Using truth table to show that $p\leftrightarrow q$ is logically equivalent to the conjunction of $p\to q$ and $q\to p$, that is,

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p).$$