Verze z 27. listopadu 2024

Základy numerické matematiky - NMNM201

Nelineární algebraické rovnice 1

Budeme se zabývat hledáním kořene x_* dané funkce f v situaci, kdy nejsme schopni jej analyticky spočítat. Existují dva typy metod:

- intervalové; začneme s intervalem [a, b], ve kterém je umístěn kořen, a pak jej postupně zkracujeme; například metoda bisekce, metoda regula falsi, ...;
- $bodov\acute{e}$; začneme v bodě x_0 (nebo více) a postupně konstruujeme další aproximace kořenu; například Newtonova metoda a její modifikace, metoda sečen, metoda pevného bodu.

V tomto cvičení se budeme věnovat pouze bisekci a Newtonově metodě jako zástupcům intervalových a bodových metod. Metodě pevného bodu se budeme věnovat v domácím úkolu.

Anonymní funkce v MATLABu 1.1

Abychom mohli uchopit funkci jako proměnnou, budeme využívat následující syntaxi:

$$f = 0(x) x.^2 - 4*x + 1;$$

$$g = 0(x) \sin(pi*x);$$

kde
$$f = x^2 - 4x + 1$$
 a $g = \sin(\pi x)$.

Potom můžeme tyto funkce použít jako vstupní parametr jiné funkce, například:

[x,iter]=bisection(f,a,b,tol,sol)

[x,iter]=newton(f,fd,x0,tol,sol)

[x,iter]=newton_convergence(f,fd,x0,tol)

kde f je zadaná funkce, fd její derivace a sol je hledaný kořen zadané funkce. Tolerance je určená proměnnou tol.

Je možné také rovnou psát funkce f = Q(x) ... do argumentu, např.:

 $[x, iter] = bisection(@(x) x.^4 - 1,0,10,1e-8,1)$

1.2 Metoda bisekce a Newtonova metoda

V celé této kapitole budeme pracovat s těmito funkcemi:

$$f(x) = x^{2} + x - 6,$$

$$g(x) = x^{3},$$

$$h(x) = 1.2 + 2x^{2} - x - e^{-x}.$$

Naším úkolem je spočítat všechny kořeny pomocí bisekce a Newtonovy metody

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}. (1)$$

Úloha 1. Dříve, než začneme příklady počítat pomocí bisekce nebo Newtonovy metody, je dobré si rozmyslet, jak budeme pro jednotlivé funkce volit počáteční body a intervaly.

Může vést u funkcí f, g, h různá volba intervalů nebo počátečních bodů k různým výsledkům?

 $\check{R}e\check{s}en\acute{i}$. U funkce f Newtonova metoda nezkonverguje pro $x_0=-1/2$. Pokud $x_0>-1/2$, pak Newtonova metoda konverguje ke kořenu 2, pokud $x_0<-1/2$, tak metoda konverguje ke kořenu -3.

Vadí nám nutně u funkce g, že je derivace v kořeni rovna nule? Zkusme napsat Newtonovu formuli. Vyjde: $x_{k+1} = \frac{2}{3}x_k$. Bude metoda konvergovat dobře?

U funkce h záleží na volbě počátečního bodu. Řešení může být ovlivněno lokálním minimem v bodě x=0.

1.3 Asymptotický řád konvergence

Definice 1. Nechť posloupnost bodů $\{x_n\}$ získaná iterační metodou konverguje k x. Pak řekneme, že konverguje s řádem p, pokud pro nějaká $p \in \mathbb{R}$ a $C \in (0, \infty)$ platí

$$\lim_{k \to \infty} \frac{|x - x_{k+1}|}{|x - x_k|^p} = C.$$

Pro p=1 požadujeme navíc $C \in (0,1)$ a poté řekneme, že metoda konverguje lineárně. Pokud p=2, pak metoda konverguje kvadraticky.

Můžete si rozmyslet, že každá metoda může konvergovat jen s jedním řádem p a navíc p > 1.

Linearita metody bisekce. O metodě bisekce víme, že kořen x_* spojité funkce f(x) se nachází někde v intervalu [a,b]. Největší možná chyba v k-tém kroku je proto $e_k = \frac{1}{2}|b_k - a_k|$. Také je okamžitě vidět, že $e_{k+1} = \frac{1}{2}e_k$. Metoda bisekce tedy konverguje lineárně s konstantou $C = \frac{1}{2}$.

Rozdíl mezi lineární a kvadratickou konvergencí ilustruje následující úloha:

Úloha 2. Kolik potřebujeme iterací bisekce na to, abychom odhad chyby e_k zmenšili alespoň o řád? A o 7 řádů?

Newtonova metoda za určitých předpokladů konverguje kvadraticky. Pokud by platilo, že

$$|x - x_{k+1}| = |x - x_k|^2$$

a chyba $|x-x_0|=0.1$, kolik potřebujeme iterací na to, abychom chybu zmenšili o řád? A o 7 řádů?

 $\check{R}e\check{s}en\acute{i}$. Bisekce: $\left(\frac{1}{2}\right)^k \leq 10^{-n}$, $\lceil \log_2 10^n \rceil = k$, pro 1 řád potřebujeme $\lceil \log_2 10 \rceil = 4$ iterace, pro 7 řádů $\lceil \log_2 10^7 \rceil = 24$ iterací, tj. přibližně 7krát více.

Newtonova metoda: chyba $|x - x_0| = 0.1$, $|x - x_1| = 0.01$, $|x - x_2| = 0.0001$, $|x - x_3| = 10^{-8}$. Tedy pro jeden řád potřebujeme jednu iteraci, pro 7 řádů 3 iterace.

Úloha 3. Porovnejme rychlost konvergence bisekce a Newtonovy metody na všech třech příkladech. Využijte funkce bisection a newton. Toleranci zvolte 1e-8. Pokud vás zajímá průběh a jednotlivé aproximace řešení Newtonovou metodou, použijte funkci newton_convergence

 $\check{R}e\check{s}en\acute{i}$. Pro f a h platí, že pokud začneme ve vhodných bodech, Newtonova metoda konverguje výrazně rychleji než bisekce. Pro g Newtonova metoda konverguje pomaleji, navíc zastavuje daleko od kořene. Brzké zastavení lze odstranit volbou nižší tolerance (problém je v tom, že je testujeme funkční hodnotu v x_k a funkce g má v okolí kořene malé funkční hodnoty).

```
f = 0(x) x.^2 + x - 6;
fd = 0(x) 2*x + 1;
g = 0(x) x.^3;
gd = @(x) 3*x.^2;
h = 0(x) 1.2 + 2*x.^2 - x - exp(-x);
hd = 0(x) 4*x - 1 + exp(-x);
% hezka kvadraticka konvergence Newtona
figure; newton(f,fd,5,1e-8,2);
% priklad kdy Newton konverquje napred linearne a az pozdeji kvadraticky
figure; newton(f,fd,1000,1e-8,2);
% Newton konverguje linearne a navic zastavi daleko od korenu, kdy je sice
% f(x_k)  dost mala, ale /x^* - x_k/ velke
figure; newton(g,gd,5,1e-8,0);
% bisekci to nevadi
figure; bisection (g, -4, 3, 1e-8, 0);
% priklad kdy "skoro koren" h na chvili splete Newtona
figure; newton(h,hd,5,1e-8,-3.231419196649482);
% stepping through iterations by keypress in the command window
figure; newton_convergence(h,hd,5,1e-8);
```

1.4 Podrobněji k Newtonově metodě

Nyní si odvodíme i nějaké postačující podmínky pro konvergenci Newtonovy metody.

Úloha 4. Ukažte, zda bude Newtonova metoda konvergovat v následujících případech:

(a) Nechť $f \in \mathcal{C}^{\infty}$ je ryze konvexní rostoucí spojitě diferencovatelná funkce, nechť má nějaký kořen x_* .

- (b) Co by se změnilo pro $f \in \mathcal{C}^{\infty}$ rostoucí a ryze konkávní, klesající a ryze konvexní, klesající a ryze konkávní.
- (c) Co by se v jednotlivých případech změnilo, kdyby $f \in C^{\infty}$ byla rostoucí či klesající a konvexní či konkávní místo na \mathbb{R} jen na intervalu $[x_*, x_0]$ (resp. $[x_0, x_*]$)?

Řešení. Vše stačí ukázat pomocí náčrtku dané situace anebo použít Fourierovu větu z přednášky:

- (a) Konverguje.
- (b) Opět konverguje pro všechny kombinace.
- (c) Pokud by x_1 bylo na opačné straně od x_* (tj. $f(x_0)f''(x_0) < 0$), nevíme, jak bude posloupnost pokračovat.

Úloha 5 (Navíc). Umíte zdůvodnit, proč někdy a za jakých podmínek konverguje Newtonova metoda pomaleji než kvadraticky?

Nápověda. Vratte se k případu funkce g.

Rešení. Kvadratická konvergence nastává pro $f'(x_*) \neq 0$. Pokud $f'(x_*) = 0$ a $f''(x_*) \neq 0$, pišme $f(x) = c(x - x_*)^2 + O((x - x_*)^3)$, pak $x_{k+1} = x_k - \frac{c(x_k - x_*)^2 + O((x_k - x_*)^3)}{2c(x_k - x_*) + O((x_k - x_*)^2)} = \frac{1}{2}(x_k + x_*) + O((x_k - x_*)^2)$. Další potíže s konvergencí mohou nastat, když f není hladká.

Úloha 6. Newtonova metoda občas selhává. Odhalte problémy, které nastanou, zvolíme-li $x_0=1$ pro funkce definované následujícími předpisy

(a)
$$f(x) = 2x - x^2$$
;

(b)
$$f(x) = \begin{cases} -(-x)^{1/2} & x < 0, \\ x^{1/2} & x \ge 0. \end{cases}$$

 $\check{R}e\check{s}en\acute{\imath}.$

- (a) f'(1)=0a tedy x_1 nelze definovat. Numericky může vyjít řádově $x_1\approx\frac{1}{\varepsilon}.$
- (b) Střídají se hodnoty ± 1 .