EA044A - Planejamento e Análise de Sistemas de Produção

20. Semestre de 2009 - Prova 2 - Prof. Vinícius A.Armentano

Questão 1

a)

$$\begin{array}{lll} \min w = & 15u_1 & +20u_2 \\ & u_1 & +u_2 & \geq 4 \\ \text{Problema dual} & & 3u_1 & +5u_2 & \geq 15 \\ & 2u_1 & +u_2 & \geq 2 \\ & u_1 \geq 0 & u_2 \geq 0 \end{array}$$

b)

c) Solução do dual: $w=67,5,\ u_1=\frac{5}{2},\ u_2=\frac{3}{3}$. Isto implica que as restrições do problema primal estão ativas. Como a terceira restrição do dual não está ativa, tem-se $x_3=0$. Portanto, a solução ótima do primal é dada pela solução do sistema

$$x_1 +3x_2 = 15$$

 $x_1 +5x_2 = 20$

que fornece
$$x_1 = \frac{15}{2}$$
, $x_2 = \frac{5}{2}$, $z = 67, 5$.

Questão 2

a)

Para que o lucro de x_3 seja competitivo, $\bar{c}_3^{'}=\bar{c}_3-\delta\leq 0$, e portanto, $\delta\geq 2$. Daí, $c_3^{'}=c_3+\delta\geq c_3+2=15$.

b)

$$\mathbf{a}_{1}^{'} = \mathbf{B}^{-1}\mathbf{a}_{1} = \left[egin{array}{cc} 1 & 0 \ -4 & 1 \end{array} \right] \left[egin{array}{cc} 2 \ 5 \end{array} \right] = \left[egin{array}{cc} 2 \ -3 \end{array} \right]$$

$$\bar{c}_{1}^{'}=c_{1}^{'}-\mathbf{c_{B}B^{-1}a_{1}}=24-\begin{bmatrix}5&0\end{bmatrix}\begin{bmatrix}1&0\\-4&1\end{bmatrix}\begin{bmatrix}2\\5\end{bmatrix}=14$$

z	x_1	x_2	x_3	s_1	s_2	LD	VB
1	-14		2	5		100	z
	2	1	3	1		20	x_2
	-3		-2	-4	1	10	s_2

 x_1 entra na base e $\min\{20/2\}=10 \rightarrow x_2$ sai da base.

ſ	z	x_1	x_2	x_3	s_1	s_2	LD	VB
	1		7	24	12		240	z
		1	1/2	3/2	1/2		10	x_1
			3/2	-5/2	-5/2	1	40	s_2

c)

$$\bar{c}_{4}' = c_{4}' - \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{a}_{4} = 20 - \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 5 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = -5$$

$$\mathbf{a}_{4}' = \mathbf{B}^{-1} \mathbf{a}_{4} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ -15 \end{bmatrix}$$

z	x_1	x_2	x_3	x_4	s_1	s_2	LD	
1	10		2	5	5		100	z
	1	1	3	5	1		20	x_2
	8		-2	-15	-4	1	100 20 10	s_2

d)

$$\mathbf{c_B}\mathbf{B}^{-1} = \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 \end{bmatrix}$$

$$\bar{c}_{1} = c_{1} - \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{a}_{1} = -5 - \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 12 \end{bmatrix} = -15$$

$$\bar{c}_{2} = c_{2} - \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{a}_{2} = 10 - \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 0$$

$$\bar{c}_{3} = 13 - \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} = -17$$

$$\bar{c}_{s_{1}} = 0 - \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = -10$$

$$\bar{c}_{s_{2}} = 0 - \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$

$$\mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{b} = 200$$

z	x_1	x_2	x_3	s_1	s_2	LD	VB
1	15		17	10		200	z
	1	1	3	1		20	x_2
	8		-2	-4	1	10	s_2

e)

 $2x_1 + 2x_2 + 5x_3 + s_3 = 30$

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10	0	2	5	0	0	100	z
	1	1	3	1	0	0	20	x_2
	8	0	-2	-4	1	0	10	s_2
	2	2	5	0	0	1	100 20 10 30	s_3

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10	0	2	5	0	0	100	z
	1	1	3	1	0	0	100 20 10	x_2
	8	0	-2	-4	1	0	10	s_2
	2	0	-1	-2	0	1	-10	s_3

 s_3 sai da base. $\max\{-2/1,-5/2\}=-2 o x_3$ entra na base.

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10			1		2	80	z
	1	1		-5		3	$-10 \\ 30$	x_2
	8			0	1	-2	30	x_2 s_2
	2		1	2		-1	10	x_3

 x_2 sai da base. $\max\{-1/5\} = -1/5 \rightarrow s_1$ entra na base.

z	x_1	x_2	x_3	s_1	s_2		LD	
1	51/5	1/5				13/5	78	z
	-1/5	-1/5		1		$ \begin{array}{r} 13/5 \\ -3/5 \\ -2 \\ 1/5 \end{array} $	2	s_1
	8	0			1	-2	30	s_2
	2/5	2/5	1			1/5	6	x_3

Questão 3

a)

Canalização das variáveis, por exemplo, $250 \leq x_{36} \leq 300$.

Solução ótima:

$$x_{15} = 200, \ x_{17} = 100, \ x_{23} = 300, \ x_{24} = 200, \ x_{55'} = 200, \ x_{5'4} = 200, \ x_{36} = 300, \ x_{46} = 400$$

Modelo Correto

Solução ótima:

$$x_{13} = 0$$
, $x_{14} = 0$, $x_{15} = 200$, $x_{18} = 100$, $x_{23} = 250$, $x_{24} = 100$, $x_{25} = 0$, $x_{28} = 150$
 $x_{55'} = 200$, $x_{5'3} = 0$, $x_{5'4} = 200$, $x_{36} = 250$, $x_{68} = 0$, $x_{47} = 300$, $x_{78} = 0$

Valor da solução ótima = 78000