Mo Tu We Th Fr Sa Su	Memo No
LEC1 Introduction	3.13 menhao shany
	Gumi-IT.
Goal: 1. solve compationa	1 pmblems
2 Prove arrectines	
3 argue afficiency	, , , , , , , , , , , , , , , , , , ,
4. communication	
Mgorithm fil-0	
for Brithday publicon! maintais	n reestd, Interieu
stor students in some or	rder
-cheek f birthday in reesed.	-if so returnpair
-add student to	
-return none	
Correctness	
Inductive Hypothesis: if f	irst k students
conteún match aly returns a n	
student k+2	
Base case: 0=R,	

Mo Tu We Th Fr Sa Su	Memo No.	
	Date /	/
Assume Inductive Hyphoth	pesis frue for	k=k'
if k' contains mutch- if k'+1 contains mut	>already veturned	1
11/ K TI anteins mate	ON.	
Efficiency]	(operat	lons)
Don't measure time instead	l wunt ops	······
expect performance to depen	nd on Size	1
our input		
(¹ n)		
(-0(°) upper bounds		
- D. (0) lower bounds		/
1 - Q 2+h		
Ex. 20 (n lgn) O(n) O(n	c) l efficiency	•
(1) $\Rightarrow (0(n))$ $\Rightarrow (1an2)$	(t)	

O((), O((gn), O(n), O(n), O(n2), O(n2)

Mo Tu We Th Fr Sa Su	Memo No.
	Date / /
Model of computents	Memory -
Word-RAM	
integer arithmeth	C
logie ops	
Data Structures	
It is solve on	Algorithms Bullem
	you already know (use dates truct
or apposithm) E	,
Search Problem & Date S	fractures)
Static Array (LOI)	Linked Lists (LOZ)
Dynamic Array (LO 2)	
, ,	coss Array (LO4) Howh Table WO4
Balanced Binary Tree	(106-107) Binary Heap(108)
Sort Algorithms	
Ja See 'm t	he nste [7
	V