Application No. 10/597,853 May 13, 2009 Reply to the Office Action dated March 13, 2009 Page 2 of 5

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claim 1 (currently amended): A method of making a material alloy for an R-T-Q based rare-earth magnet, the method comprising the steps of:

(a) preparing a melt of an R-T-Q based rare-earth alloy, where R is rare-earth elements, T is a transition metal element, Q is at least one element selected from the group consisting of B, C, N, Al, Si and P, and the rare-earth elements R include at least one element R_L selected from the group consisting of Nd, Pr, Y, La, Ce, Pr, Sm, Eu, Gd, Er, Tm, Yb and Lu and at least one element R_H selected from the group consisting of Dy, Tb and Ho;

(b) cooling the melt of the alloy to a temperature of 700 °C to 1,000 °C as first cooling process, thereby making a solidified alloy;

 $\underline{\text{(c)}}$ maintaining the solidified alloy at a temperature within the range of 700 °C to 900 °C for 15 seconds to 600 seconds; and

(d) cooling the solidified alloy of step (c) to a temperature of 400 °C or less as a second cooling process.

Claim 2 (original): The method of claim 1, wherein the step of maintaining the solidified alloy at a temperature within the range includes the step of decreasing the temperature of the solidified alloy at a temperature decrease rate of 10 °C/min or less or the step of increasing the temperature of the solidified alloy at a temperature increase rate of 1 °C/min or less.

Claim 3 (original): The method of claim 1, wherein the first cooling process includes the step of decreasing the temperature of the alloy at a cooling rate of 10^2 °C /s to 10^4 °C /s.

Claim 4 (original): The method of claim 1, wherein the second cooling process includes

Application No. 10/597,853 May 13, 2009 Reply to the Office Action dated March 13, 2009 Page 3 of 5

the step of decreasing the temperature of the alloy at a cooling rate of 10 °C /s or more.

Claim 5 (original): The method of claim 1, wherein the element $R_{\rm H}$ accounts for at least 5 at% of the rare-earth elements included.

Claim 6 (currently amended): The method of claim 1, wherein just after the second cooling process is finished, the atomicity atomic ratio of the element R_H included in the $R_2T_{14}Q$ phase of the solidified alloy is higher than that of the element R_H to the overall rare-earth elements.

Claim 7 (currently amended): The method of claim 1, wherein just after the second cooling process is finished, the atomicity atomic ratio of the element R_H included in the $R_2T_{14}Q$ phase of the solidified alloy is more than 1.1 times as high as that of the element R_H to the overall rare-earth elements.

Claim 8 (original): The method of claim 1, wherein the rare-earth elements R account for 11 at% to 17 at% of the overall alloy, and

wherein the transition metal element T accounts for 75 at% to 84 at% of the overall alloy, and $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}$

wherein the element Q accounts for 5 at% to 8 at% of the overall alloy.

Claim 9 (original): The method of claim 1, wherein the alloy further includes at least one additional element M that is selected from the group consisting of Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, W and Pb.

Claim 10 (original): The method of claim 1, wherein the first cooling process includes the step of cooling the melt of the alloy with a rotating chill roller.

Application No. 10/597,853 May 13, 2009 Reply to the Office Action dated March 13, 2009 Page 4 of 5

Claim 11 (original): The method of claim 1, wherein the step of maintaining includes the step of transferring heat from a member that has been heated to a temperature of 700 °C to 900 °C to the rapidly cooled alloy.

Claim 12 (previously presented): A method of making a material alloy powder for an R-T-Q based rare-earth magnet, the method comprising the steps of:

decrepitating the R-T-Q based rare-earth magnet material alloy, which has been made by the method of claim 1, by a hydrogen decrepitation process; and

pulverizing the R-T-Q based rare-earth magnet material alloy that has been decrepitated.

Claim 13 (original): The method of claim 12, wherein the step of pulverizing the R-T-Q based rare-earth magnet includes finely pulverizing the R-T-Q based rare-earth magnet with a high-speed airflow of an inert gas.

Claim 14 (previously presented): A method for producing a sintered magnet, the method comprising the steps of

preparing the R-T-Q based rare-earth magnet material alloy powder by the method of claim 12 and making a compact of the powder, and

sintering the compact.

Claim 15 (currently amended): The method of claim 14, wherein the step of sintering the compact includes controlling a temperature increase rate at 5 °C/min or more when the compact is heated from a temperature of 800 °C, at which a liquid phase is produced, to a temperature, at which sintered density reaches a true density, after a dehydrogenation process is finished.

Claim 16 (canceled).