Final Year Project Titles for DMAS (May 2021)

Contents

1	Ms Aida Adha Binti Mohd Jamil	3
2	Dr Avik De	3
3	Puan Azimah Binti Mohd	4
4	Dr Chen Huey Voon	5
5	Mr Chew Chun Yong	6
6	Prof. Dr Chia Gek Ling	7
7	Dr Denis Wong Chee Keong	7
8	Dr Goh Yong Kheng	9
9	Dr Goh Yann Ling	10
10	Ms Hii Siew Chen	10
11	Mr Kuang Kee Seng	11
12	Dr Koh Siew Khew	12
13	Ms Lee Yap Jia	13
14	Dr Liew How Hui	14
15	Dr Ng Kooi Huat	15
16	Dr Ng Wei Shean	16
17	Dr Ong Poh Hwa	16
18	Dr Pang Sook Theng	17
19	Dr Pan Wei Yeing	17
20	Mr. Phoon Sheong Wei	18

21 Dr Qua Kiat Tat	18
22 Ms. Seoh Yee Kam	19
23 Dr Sim Hong Seng	19
24 Dr Sim Shin Zhu	20
25 Dr Tan Sin Leng	21
26 Dr Tan Wei Lun	22
27 Mr Tan Zong Ming	23
28 Dr Teoh Lay Eng	24
29 Ms Wong Kuan Wai	2 5
30 Dr Wong Wai Kuan	2 5
31 Dr Wong Voon Hee	2 5
32 Dr Yap Lee Ken	27
33 Dr Yeo Heng Giap Ivan	28
34 Dr Yong Chin Khian	28

1 Ms Aida Adha Binti Mohd Jamil

Lecturer:	Ms Aida Adha Binti Mohd Jamil
	(aidaadha@utar.edu.my)
Areas of Interest:	Statistics, Data Analysis
Project Title 1:	Survival Analysis on Clinical Data
Supplement Knowl-	Applied Statistical Models
edge:	
Outline:	This project is to analyze clinical data in order to de-
	scribe factors associated with trends over time in the
	persistence and survival rates. The suitable hazard
	model has to be fitted and clinical outcomes are deter-
	mined to be used to monitor the efficiency of treatments.
Preparation:	R programming
Project Title 2:	Missing Data Imputation on Environmental Data
Supplement Knowl-	Applied Statistical Models
edge:	
Outline:	The pattern of missing data and techniques will be de-
	termined to estimate the missing observation. The find-
	ing of this study will propose a feasible method of im-
	puting missing values in any real dataset.
Preparation:	R programming, or Python

2 Dr Avik De

Lecturer:	Dr Avik De (avikde@utar.edu.my)
Areas of Interest:	Differential Geometry, Mathematical Physics
Project Title 1:	General Relativity using Matlab
Supplement Knowl-	Calculus I and II, Fundamentals of Linear Algebra
edge:	
Outline:	Introduction to Tensors and find exact solutions of Ein-
	stein's Field Equations
Preparation:	Read any "Linear Algebra" book to know about vector
	space and its dual.
Project Title 2:	Derivatives and their significances
Supplement Knowl-	Calculus I and II
edge:	
Outline:	We discuss about various type of derivatives in litera-
	ture.
Preparation:	Be familiar with several variable calculus.

3 Puan Azimah Binti Mohd

Lecturer:	Puan Azimah Binti Mohd (azimah@utar.edu.my)
Areas of Interest:	Process Control and Quality Improvement & Opera-
	tional Research
Project Title 1:	Internal Complaints System using Quality Function De-
	ployment (Qfd)
Supplement Knowl-	Statistical Quality Control
edge:	
Outline:	This research was applied to improve the quality of ser-
	vices in company in order to help the services to be
	delivered more effectively and efficiently by translating
	customer requirements into operational requirements of
	the organization.
Preparation:	Basic Microsoft Excel coding
Project Title 2:	An insertion heuristic algorithm for solving the bi-
	objective transportation problem
Supplement Knowl-	Operational Research I & Operational Research II
edge:	
Outline:	The findings of this study are significant to help in dis-
	tribution management to identify a set of routes that
	service all the demand points within their time windows
	at the minimum cost and risk using an insertion heuris-
	tic algorithm.
Preparation:	Basic Microsoft Excel coding

4 Dr Chen Huey Voon

Lecturer:	Dr Chen Huey Voon(chenhv@utar.edu.my)
Areas of Interest:	Algebra and Combinatorics
Project Title 1:	Non-negative Matrix Factorization and its applications
Supplement Knowl-	Linear algebra
edge:	
Outline:	There are many different ways to calculate the non-
	negative matrix factorization. In this project, we study
	the various calculation methods and the applications of
	non-negative matrix factorization.
Preparation:	Some background in linear algebra and programming
	skill
Project Title 2:	Exhaustion Numbers of subsets of finite groups
Supplement Knowl-	Algebra and Combinatorics
edge:	
Outline:	We shall generate the numerical data that satisfied the
	conditions of exhaustion number of subsets of finite
	groups. After that, we need to prove some results in
	this area.
Preparation:	Some background in algebra and programming skill
Project Title 3:	Total Labelling of graphs
Supplement Knowl-	Discrete Mathematics and Combinatorics
edge:	
Outline:	We shall generate the numerical data that satisfied the
	conditions of total labelling. After that, we need to
	prove some results in this area.
Preparation:	Some background in graph theory and programming
	skill

5 Mr Chew Chun Yong

Lecturer:	Mr Chew Chun Yong (chewcy@utar.edu.my)
Areas of Interest:	Actuarial Science/Finance, Mathematical Physics
Project Title 1:	Reserving and PRAD
Supplement Knowl-	N/A
edge:	
Outline:	Reserving is an important task in Actuarial industry,
	there are many approaches in estimating the best esti-
	mate of reserves. Student will need to perform reserving
	calculation using various methods for general insurance.
	Student will also need to study different methods on
	estimating actuarial reserves and Provision for Adverse
	Deviation (PRAD).
Preparation:	R Programming, Excel/VBA, Basic financial knowledge
Project Title 2:	Casimir Effect of Elliptic Cylinders
Supplement Knowl-	Partial Differential Equations, Numerical Analysis
edge:	
Outline:	Casimir effect is a phenomena observed when two con-
	ducting plates are being placed into vacuum. Forces
	appear in between these plates. In this project, stu-
	dent will have to study the effect of elliptic cylinders to
	Casimir effect and compute the interaction energy by
	using numerical methods.
Preparation:	Programming language, and basic information about
	Casimir effect.

6 Prof. Dr Chia Gek Ling

Lecturer:	Prof. Dr Chia Gek Ling (chiagl@utar.edu.my)
Areas of Interest:	Graph Theory and Combinatorial Designs
Project Title 1:	The Game of Nim and its Mathematics
Supplement Knowledge:	UECM1084 Basic Mathematics
Outline:	The game of Nim is a 2-person game. It consists of k piles of objects where the players take turns to choose a pile and remove from it at least one object, $k \geq 2$. The player who removes the last object is the winner. The topics to be explored include: winning strategy of the game, some variations of the game of Nim, Sprague-Grundy Theorem, game of Nim on graphs.
Preparation:	Analytical reasoning.
Project Title 2:	Domination in Graphs and Monitoring Devices in Electric Power Network
Supplement Knowledge:	UECM2313 Graph Theory
Outline:	Given an electric power system S , one wishes to place as few number of measuring devices as possible (for economic reason) to S and at the same time keeping the system under monitored. This problem, known as the <i>Power Dominating Set Problem</i> , can be formulated as a variation of the well-known dominating set problem in graph theory. This project involves the investigation on the power dominating set with minimum cardinality for several well-known families of graphs.
Preparation:	Analytical reasoning and basic knowledge in graph theory.

7 Dr Denis Wong Chee Keong

Lecturer:	Dr Denis Wong Chee Keong (deniswong@utar.edu.my)
Areas of Interest:	Cryptography
Project Title 1:	Investigation of polynomial time algorithm to approxi-
	mate Lattice Problems
Supplement Knowl-	UECM 3383 Cryptology
edge:	
Outline:	Study various types of lattice problems – SVP, CVP,
	LWE, RLWE, MLWE, LWR, etc and investigate algo-
	rithms that might approximate these problems in poly-
	nomial time.

Preparation:	UECM 3383 Cryptology
Project Title 2:	Investigation of Rounded Normal Distribution in Learning-With-Errors Schemes
Supplement Knowledge:	UECM 3383 Cryptology
Outline:	Study probability distributions in lattice-based cryptography constructed based on LWE problems.
Preparation:	UECM3383 Cryptology
Project Title 3:	Cryptographic Primitives in E-Voting System based on Blockchain Technology
Supplement Knowledge:	UECM3383 Cryptology, UECM3373 Introduction to Coding Theory
Outline:	Study and construct cryptographic primitives such as PKE, DSA, ZKP, etc use in E-Voting system based on blockchain technology.
Preparation:	UECM3383 Cryptology, UECM3373 Introduction to Coding Theory
Project Title 4:	Heritage Building Preservation with Blockchain Technology
Supplement Knowledge:	UECM3383 Cryptology
Outline:	Preform a thorough survey on Malaysia heritage building preservation's works and propose a system to improve current practice.
Preparation:	UECM3383 Cryptology
Project Title 5:	Graph-, Lattice- and Code – Based Cryptography
Supplement Knowledge:	UECM3373 Introduction to Coding Theory, UECM3383 Cryptology, UECM3393 Combinatorics
Outline:	Investigate the relation between graph theory, lattice and error correcting codes in applications to modern cryptography.
Preparation:	Coding, Crytography and Combinatorial theories
Project Title 6:	Modular Group Algebra with application to cryptography
Supplement Knowledge:	UECM3363 Modern Algebra
Outline:	Investigate various algebraic properties for modular group algebra and hence seek for possible applications in cryptography.
Preparation:	UECM3363 Modern Algebra

8 Dr Goh Yong Kheng

Lecturer:
Project Title 1: Numerical simulation of Swift-Hohenberg equation Supplement Knowl- edge: Python Outline: The Swift-Hohenberg is a 2D partial differential equations, Python The Swift-Hohenberg is a 2D partial differential equation that exhibit patterns formation under different parameters. In this project, student are expected to review the equation and solve it numerically by using psedo-spectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- edge: Numerical analysis, partial differential equations, Python
Supplement Knowledge: Outline: The Swift-Hohenberg is a 2D partial differential equations, Python The Swift-Hohenberg is a 2D partial differential equation that exhibit patterns formation under different parameters. In this project, student are expected to review the equation and solve it numerically by using psedo-spectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowledge: Numerical analysis, partial differential equations, Python
Supplement Knowledge: Outline: The Swift-Hohenberg is a 2D partial differential equations, Python The Swift-Hohenberg is a 2D partial differential equation that exhibit patterns formation under different parameters. In this project, student are expected to review the equation and solve it numerically by using psedo-spectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowledge: Numerical analysis, partial differential equations, Python
Outline: The Swift-Hohenberg is a 2D partial differential equation that exhibit patterns formation under different parameters. In this project, student are expected to review the equation and solve it numerically by using psedospectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, Python
Outline: The Swift-Hohenberg is a 2D partial differential equation that exhibit patterns formation under different parameters. In this project, student are expected to review the equation and solve it numerically by using psedo-spectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, Python
tion that exhibit patterns formation under different parameters. In this project, student are expected to review the equation and solve it numerically by using psedo-spectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, Python
rameters. In this project, student are expected to review the equation and solve it numerically by using psedo-spectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, Python
the equation and solve it numerically by using psedo-spectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, edge: Python
spectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, edge: Python
patterns formed by changing different parameters and non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, edge: Python
non-linear noise. Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, edge: Python
Preparation: try out some Python tutorials, find and read information on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, edge: Python
on Swift-Hohenberg equations. Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, edge: Python
Project Title 2: Feymann-Kac Theorem Supplement Knowl- Numerical analysis, partial differential equations, edge: Python
Supplement Knowl- Numerical analysis, partial differential equations, edge: Python
edge: Python
Outline: The Black-Schole equation is a typical example of appli-
1 05
cation of Feynman-Kac theorem to the pricing function of
a financial product under risk free rate. In this project,
student will explore the relationship between a stochas-
tic differential equation and a related PDE obtained un-
der Feymann-Kac formula via computer simulation
Preparation: try out some Python tutorials, find and read information
on Feynmann-Kac theorem.
Project Title 3: Probability distribution construction via Deep Learning
Supplement Knowl- Python, taken predictive modelling or data mining
edge:
Outline: The idea is to use Generative Adversarial Network
(GAN) to construct the marginal and conditional proba-
bility of some events from data. GAN is a deep learning
algorithm. When given a set of sample data, GAN will
be able to generate data that is similar to the input sam-
ple. In recent years there were operations in cyberspace
to crackdown media generated from the DeepFake algo-
rithm. This DeepFake is an example of a GAN appli-
cation. Other applications of GAN are in recommender
systems and artist styles classification. The idea of the
algorithm is the competition between two AI entities:
a generator and a discriminator. One tries to generate
artificial data, and one tries to uncover the imposters.
Once the algorithm is trained, the generator will be able
to generate artificial samples that are similar enough to
the input data. In this project we would like to try
out if this method if it can help to construct probability
distributions from sample data non-parametrically.
Preparation: Be familiarize scikit-learn and tensorflow. Revision on

9 Dr Goh Yann Ling

Lecturer:	Dr Goh Yann Ling (gohyl@utar.edu.my)
Areas of Interest:	Applied Statistics, Applied Mathematics
Project Title 1:	Curve Fitting
Supplement Knowl-	probability and statistics, linear regression
edge:	
Outline:	The research project requires some understanding in
	least squares regression. Student will learn how to fit
	the "best" polynomial through a set of uncertain data
	points and evaluate the validity of the results.
Preparation:	Strong background in linear regression, good program-
	ming skill.
Project Title 2:	Numerical Differentiation and Integration
Supplement Knowl-	calculus
edge:	
Outline:	We will normally evaluate the derivative or integral of
	a simple function by using calculus. When the func-
	tions are complicated, we have to apply some numerical
	techniques to obtain the approximate values for their
	derivatives and integrals.
Preparation:	Strong background in differential and integral calculus,
	good programming skill.
Project Title 3:	Big Data Analysis
Supplement Knowl-	probability and statistics
edge:	
Outline:	In the project, the student will conduct the data analysis
	and provide interpretations for the final conclusions.
Preparation:	Good programming skill

10 Ms Hii Siew Chen

Lecturer:	Ms Hii Siew Chen (hiisc@utar.edu.my)
Areas of Interest:	Statistical Quality Control, Applied Statistics
Project Title 1:	A study of robust statistics in analyzing data.
Supplement Knowl-	Students must have strong robust statistics knowledge.
edge:	
Outline:	An introduction to robust statistics and will study some
	methods in analyzing data. Meeting with supervisor for
	further discussion.
Preparation:	Good R-programming skill.
Project Title 2:	A study of a specific control chart in various areas.
Supplement Knowl-	Students must have strong statistical quality control
edge:	knowledge.

Out	tline:	An introduction to a specific control chart and a study
		of its application. The details will be discussed when
		meeting with supervisor.
Pre	paration:	Good R-programming skill.

11 Mr Kuang Kee Seng

Lecturer:	Mr Kuang Kee Seng (kuangks@utar.edu.my)
Areas of Interest:	Mathematical Theory of Investment, Universal Portfolio
Project Title 1:	Universal Portfolio generated by some positive definite
	matrices
Supplement Knowl-	None
edge:	
Outline:	The student will be introduce with basic theory of uni-
	versal portfolio and some basic stock trading investment
	strategies. Meet supervisor for more detail.
Preparation:	Basic Microsoft Excel coding. Matlab would be helpful.
Project Title 2:	Universal Portfolio generated by some probability dis-
	tribution functions
Supplement Knowl-	None
edge:	
Outline:	The student will be introduce with basic theory of uni-
	versal portfolio and some basic stock trading investment
	strategies. Meet supervisor for more detail. Meet super-
	visor for more detail.
Preparation:	Basic Microsoft Excel coding. Matlab would be helpful.

12 Dr Koh Siew Khew

Lecturer:	Dr Koh Siew Khew (kohsk@utar.edu.my)
Areas of Interest:	Queueing Theory
Project Title 1:	Queue Length and Waiting Time Distributions in a $\mathrm{GI}/\mathrm{G}/1$ queue
Supplement Knowledge:	Fundamental of Queueing Theory
Outline:	This project aims to find the stationary queue length distribution and waiting time distribution of a customer who arrives when the queue is in the stationary state. The interarrival time and service time distributions are assumed to have a constant asymptotic rate.
Preparation:	Strong knowledge in Java.
Project Title 2:	Maintenance of a Deteriorating Queue with Random Shocks
Supplement Knowledge:	Fundamental of Queueing Theory
Outline:	This project will study a system in which the server would deteriorate due to random shocks and hence find the specified maintenance level such that the long run average cost is minimized.
Preparation:	Strong knowledge in Java.

13 Ms Lee Yap Jia

Lecturer:	Ms Lee Yap Jia (yjlee@utar.edu.my)
Areas of Interest:	Universal Portfolio
Project Title 1:	Investment Strategies by Universal Portfolios
Supplement Knowl-	None
edge:	
Outline:	This project aims to produce good investment strate-
	gies by studying the empirical performane in the real
	stock market of universal portfolios generated by differ-
	ent methods.
Preparation:	Microsoft Excel
Project Title 2:	Universal Portfolio generated by Some Distance Mea-
	sures
Supplement Knowl-	None
edge:	
Outline:	This project aims to explore and discuss more applica-
	tions of minimum distance methods in generating uni-
	versal portfolio.
Preparation:	Microsoft Excel

14 Dr Liew How Hui

Lecturer:	Dr Liew How Hui (liewhh@utar.edu.my)
Areas of Interest:	Computers and Mathematics
Project Title 1:	Python Data Visualisation
Supplement Knowledge:	UECM1703 Introduction to Scientific Computing
Outline:	This project will explore the data visualisation libraries in Python and techniques to build dashboards.
Preparation:	Software: For Windows user, Anaconda Python; For others, standard Python
Project Title 2:	Computer Proving in Elementary Real Analysis
Supplement Knowledge:	Discrete Mathematics, C Programming, Real Analysis
Outline:	Logic is the foundation of mathematics. Logic is supposed to be coded in symbols. In this project, we will investigate how to encode real analysis in a computer program called Coq. Coq is a computer program that allows us to prove mathematics using intuinistic (and classical) logic.
Preparation:	Study Coq (the book "Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions" by Yves Bertot, Pierre Castéran can be found in the library and also look at https://coq.inria.fr/)
Project Title 3:	Python Computer Algebra System
Supplement Knowledge:	UECM1703 Introduction to Scientific Computing
Outline:	Study the algorithms used in the Symbolic Python library (https://www.sympy.org/en/index.html) to perform symbolic manipulation for simple algebra and calculus.
Preparation:	Python and reading books on computer algebra.
Project Title 4:	Lisp-Based Computer Algebra System
Supplement Knowledge:	Willingness to learn new programming language
Outline:	Investigate and extend the algorithms used in Lisp-based computer algebra system such as Maxima (https://maxima.sourceforge.io/), Jacal (http://people.csail.mit.edu/jaffer/JACAL.html), etc.
Preparation:	Scheme / Common Lisp and reading books on computer algebra.
Project Title 5:	Computer Algebra System based on C-like Language
Supplement Knowledge:	Willingness to learn modern C++ language
Outline:	Investigate and extend the algorithms used in C++-based computer algebra system such as Mathomatic (https://github.com/mfillpot/mathomatic), Yacas (http://www.yacas.org/), Xcas (http://www-fourier.ujf-grenoble.fr/ parisse/giac.html) etc.

15 Dr Ng Kooi Huat

Lecturer:	Dr Ng Kooi Huat (khng@utar.edu.my)
Areas of Interest:	Statistical Process Control, Time Series Forecasting,
	Applied Statistical Modelling, Data Analysis etc.
Project Title 1:	Change Point Detection in Financial Time Series Fore-
	casting.
Supplement Knowl-	Elementary Statistics, Time Series Analysis, Applied
edge:	Statistical Model etc.
Outline:	Change point analysis prevents the omission of relevant
	data as well as the forecasting that may be based on ir-
	relevant data. The project demonstrates that the change
	point techniques may increase the accuracy of forecasts.
Preparation:	Knowledge of R Programming.
Software:	R Programming or Other Statistical Softwares.
Project Title 2:	Monitoring of Contaminated Data Using Robust Con-
	trol Charts
Supplement Knowl-	Elementary Statistics, Statistical Process Control etc.
edge:	
Outline:	In this project, we investigate the advantage of using
	control charts based on robust statistics. Through the
	use of Monte Carlo simulations, we compare these charts
	in terms of its robustness and performance.
Preparation:	Knowledge of R Programming.
Software:	R Programming or Other Statistical Softwares.

16 Dr Ng Wei Shean

Lecturer:	Dr Ng Wei Shean (ngws@utar.edu.my)
Areas of Interest:	Linear Algebra
Project Title 1:	Factorizations of matrices in information extraction
Supplement Knowl-	Linear Algebra, some programming skill
edge:	
Outline:	Study various types of matrix factorization used in in-
	formation extraction. Investigate and/or improvised the
	algorithms used.
Preparation:	Strengten the background of Linear Algebra by exten-
	sive reading and learn at least one programming lan-
	guage.
Project Title 2:	Compound-commuting mappings on skew-Hermitian
	matrices
Supplement Knowl-	Linear Algebra
edge:	
Outline:	Classify compound commuting mappings on skew-
	Hermitian matrices
Preparation:	Strengten the background of Linear Algebra by exten-
	sive reading

17 Dr Ong Poh Hwa

Lecturer:	Dr Ong Poh Hwa (ongph@utar.edu.my)
Areas of Interest:	Graph Theory
Project Title 1:	Self-clique Graphs
Supplement Knowl-	Discrete Mathematics, Graph Theory
edge:	
Outline:	This project will study the characterization of all con-
	nected self-clique graphs with given clique sizes. After
	that, we need to find some graphs with certain clique
	sizes.
Preparation:	None.
Project Title 2:	On Isomorphisms of Cayley Graphs
Supplement Knowl-	Discrete Mathematics, Graph Theory
edge:	
Outline:	This project will study the isomorphism problems of
	Cayley graphs and some enumeration results on Cay-
	ley graphs. After that, we need to prove some results in
	this area.
Preparation:	None.

18 Dr Pang Sook Theng

Lecturer:	Dr Pang Sook Theng (pangst@utar.edu.my)
Areas of Interest:	Universal Portfolio , Mathematics Education
Project Title 1:	Universal Portfolio Investment
Supplement Knowl-	Have knowledge in investment strategy
edge:	
Outline:	Using different investment strategy in maximizing the
	return
Preparation:	knowledge in Matlab, Excel or Python.
Project Title 2:	Using statistical method to analyze the student mathe-
	matics achievement.
Supplement Knowl-	Knowledge in statistics.
edge:	
Outline:	Differential the method in analyzing the data.
Preparation:	knowledge in any statistical software

19 Dr Pan Wei Yeing

Lecturer:	Dr Pan Wei Yeing (panwy@utar.edu.my)
Areas of Interest:	Computers and Mathematics
Project Title 1:	An investigation of mathematical models on the
	COVID-19 pandemic: the case of Malaysia
Supplement Knowl-	Probability and Statistics
edge:	
Outline:	This project will use mathematical forecasting models
	and the curve fitting method with the least-squares as a
	standard approach in regression analysis and compares
	the Covid-19 outbreak data in Malaysia.
Preparation:	Knowledge in programming, i.e. R, Python or Matlab
Project Title 2:	An analysis of the discrete model for stock price
Supplement Knowl-	Mathematics of Finance, Black-Scholes formula
edge:	
Outline:	The discrete model for stock price contains two param-
	eters. In this project, we will investigate how these pa-
	rameters influence a stock price.
Preparation:	Knowledge in programming, i.e. R, Python, or Matlab

20 Mr. Phoon Sheong Wei

Lecturer:	Mr. Phoon Sheong Wei (swphoon@utar.edu.my)
Areas of Interest:	Universal Portfolio
Project Title 1:	Nonparametric Investment by Universal Portfolio which
	using strategies generated from positive definite matri-
	ces.
Supplement Knowl-	None
edge:	
Outline:	This project will study the empirical stock performance
	which using the Universal Portfolio generated by differ-
	ent positive definite matrices. Please meet supervisor
	for more detail.
Preparation:	Microsoft Excel (VBA)
Project Title 2:	Low Order Universal Portfolios generated by special dis-
	tributions.
Supplement Knowl-	None
edge:	
Outline:	This project will study how different distributions will
	affect the performance of the low order Universal Port-
	folio. Please meet supervisor for more detail.
Preparation:	Microsoft Excel (VBA)

21 Dr Qua Kiat Tat

Lecturer:	Dr Qua Kiat Tat (quakt@utar.edu.my)
Areas of Interest:	Ring theory
Project Title 1:	On fine clean rings
Supplement Knowl-	Fundamentals of Linear Algebra
edge:	
Outline:	The main purpose of this study is to investigate proper-
	ties of fine clean rings.
Preparation:	Good algebra background
Project Title 2:	On fine clean graph rings
Supplement Knowl-	Fundamentals of linear algebra, graph theory
edge:	
Outline:	The main purpose of this study is to investigate proper-
	ties of fine clean rings and its graph representation.
Preparation:	Moderate algebra and graph theory background and
	able to do some simple programming.

22 Ms. Seoh Yee Kam

Lecturer:	Ms. Seoh Yee Kam (seohyk@utar.edu.my)
Areas of Interest:	Statistical Quality Control
Project Title 1:	Application of Control Chart in Servicing Industry
Supplement Knowl-	None
edge:	
Outline:	The project aims to study and discuss the application
	of control chart in servicing industry.
Preparation:	Microsoft Excel/Minitab
Project Title 2:	Application of Control Chart in Supply Chain
Supplement Knowl-	None
edge:	
Outline:	The project aims to study and discuss the application
	of control chart in supply chain.
Preparation:	Microsoft Excel/Minitab

23 Dr Sim Hong Seng

Lecturer:	Dr Sim Hong Seng (simhs@utar.edu.my)
Areas of Interest:	Optimization Techniques and Applications
Project Title 1:	Physics Informed Neural Network for Solving Nonlinear
	Partial Differential Equations
Supplement Knowl-	Calculus I and II, Linear Algebra, Numerical Methods,
edge:	Ordinary Differential Equations.
Outline:	Optimization techniques will be incorporated in the
	Physics Informed Neural Network in solving nonlinear
	partial differential equations. The efficiency of the mod-
	ified method will be compared with some existing meth-
	ods in terms of number of iterations and computational
	time.
Preparation:	MATLAB / Python
Project Title 2:	Solving of Linear System using Optimization Techniques
Supplement Knowl-	Calculus I and II, Linear Algebra, Numerical Methods
edge:	
Outline:	Optimization techniques will be modified in order to
	solve linear system of equations. The efficiency of the
	modified method will be compared with some existing
	methods in terms of number of iterations and computa-
	tional time.
Preparation:	MATLAB / Python

24 Dr Sim Shin Zhu

Lecturer:	Dr Sim Shin Zhu (simsz@utar.edu.my)
Areas of Interest:	Statistical Modelling and Inference, Data visualization
Project Title 1:	A study of the parameter estimation in count data based
	on optimization algorithm
Supplement Knowl-	Statistical inference
edge:	
Outline:	Maximum likelihood estimation (MLE) is a very popu-
	lar statistical estimation method which provides consis-
	tent and efficient estimators. One of the methodology to
	solve for unknown parameters under MLE is through the
	numerical optimization of the log-likelihood function. A
	study on the performance of some chosen optimization
	algorithms will be carried out.
Preparation:	Parameter estimation methods; programming skill; ba-
	sic knowledge in simulation
Project Title 2:	Data visualization on housing prices
Supplement Knowl-	Strong Excel skills and basic data visualization knowl-
edge:	edge
Outline:	Presenting the housing price data in a visual form (a
	dashboard) to showcase and communicate the findings
	of the research. Microsoft Excel will be used. Besides
	that, some skills in data sorting and filtering are essen-
	tial to make sure the data is with the highest quality
	information.
Preparation:	data visualization; Microsoft Excel; basic statistics
	knowledge

25 Dr Tan Sin Leng

Lecturer:	Dr Tan Sin Leng (tslen@utar.edu.my)
Areas of Interest:	Differential Geometry, Real and Complex Analysis
Project Title 1:	From Euclidean Geometry to Non-Euclidean Geometry
Supplement Knowl-	None
edge:	
Outline:	An introduction to Euclidean and non-Euclidean Ge-
	ometries, and a study of transformation Geometry.
Preparation:	Read some books on geometry.
Project Title 2:	Univalent Functions
Supplement Knowl-	UECM2033 Elementary Real Analysis and UECM3013
edge:	Complex Analysis
Outline:	Holomorphic functions and Riemann mapping theorem.
	Survey of univalent functions, and entering into new do-
	main of univalent functions.
Preparation:	Read some books on Complex and Real Analysis.
Project Title 3:	Analysis on Manifolds
Supplement Knowl-	UECM2033 Elementary Real Analysis and UECM3013
edge: Outline:	Complex Analysis, Calculus III This is an advanced course in analysis, extending top-
Outiline:	ics in Calculus to Riemannian Geometry. The first part
	of the project is to familiarize the basic theory in Rie-
	mannian Geometry. The second part of the project will
	be on the structure of some examples of Riemannian
	manifolds.
Preparation:	Real some books on Complex and Real Analysis.
Project Title 4:	Mathematics Education: An analytical study on teach-
	ing high school mathematics.
Supplement Knowl-	None
edge:	
Outline:	This project aims to make a survey and an analytical
	study on local high school mathematics materials and
	teaching method. Quantitative survey will be conducted
	to study the approach and method practiced in local
D	high schools.
Preparation:	Understanding of current high school text-
	books/teaching materials.

26 Dr Tan Wei Lun

Lecturer:	Dr Tan Wei Lun(tanwl@utar.edu.my)
Areas of Interest:	Rainfall Modeling, Environmental Statistics, Markov
	Chain, Hidden 'Markov Chain
Project Title 1:	Autonomous language processing for business solutions
Supplement Knowl-	Willingness to learn new knowledge
edge:	
Outline:	Sun Life Malaysia is looking for the speech analytics
	solutions to boost customer engagement, offer better
	customer service and enhance business outcomes. To
	achieve a "bionic" model that seamlessly combines hu-
	man advisors and automated solutions.
Preparation:	Software
Project Title 2:	Parameter Estimation for Generalized Extreme Value in
	extreme rainfall analysis.
Supplement Knowl-	Knowledge in Statistics
edge:	
Outline:	In this project, we will determine the best method to es-
	timate parameters of Generalized Extreme Value (GEV)
	distribution on extreme rainfall data.
Preparation:	Matlab or R-programming
Project Title 3:	Markov chain model for daily rainfall
Supplement Knowl-	Stochastic Processes
edge:	
Outline:	In this project, we will demonstrates the application
	of Markov chain model to study the rainfall pattern in
	Malaysia.
Preparation:	Matlab or R-programming

27 Mr Tan Zong Ming

Lecturer:	Mr Tan Zong Ming (tanzm@utar.edu.my)
Areas of Interest:	Applied Statistics, Financial Mathematics
Project Title 1:	Research on Stock Analysis
Supplement Knowl-	Financial Statement Analysis.
edge:	
Outline:	Research analysis on some chosen public listed company
	using technical analysis and fundamental analysis. Eval-
	uate the potential risk and reward profile of the stock
	and determine the target price based on assumptions
Preparation:	Microsoft Excel or any other programming software
Project Title 2:	Research on Trading Strategies
Supplement Knowl-	Economics, Programming
edge:	
Outline:	Trading strategies based on fundamental analysis, tech-
	nical analysis, quantitative methods, or combination of
	decision factors. The strategies involve trading signal
	generated by either technical indicators, mathematical
	algorithms based on market action or combination of
	market factors such as economic indicators.
Preparation:	Microsoft Excel or any other programming software

28 Dr Teoh Lay Eng

Lecturer:	Dr Teoh Lay Eng (teohle@utar.edu.my)
Areas of Interest:	Operations Research (transportation system)
Project Title 1:	Environmental Analysis for Electric Bus Operational System
Supplement Knowl-	Operations Research
edge:	
Outline:	In response to the worldwide environmental concern in particular on climate change and global warming, it is of utmost vital to capture the environmental performance of transportation system. Correspondingly, this project aims to perform environmental analysis in operating electric buses. In order to do this, student is required to determine total energy consumption, emission and noise level of the operating electric buses, by considering heterogeneous bus fleet. By identifying the best performing electric buse, a proper fleet planning can be carried out in determining the required bus size and quantity to support the entire operating system. It is anticipated that the environmental analysis and fleet planning are beneficial not only to the bus operators (in terms of cost
	saving) but also to the environment in reducing total
Preparation:	pollutants. Acquire fundamental skills in performing statistical analysis as well as in applying optimization approaches for the relevant problem-solving.
Project Title 2:	Fleet Planning for Electric Bus under Uncertainty
Supplement Knowledge:	Operations research
Outline:	In response to the global environmental issue and fossil oil dependency concern, electric bus has been proposed as one of the promising transports in green mobility. Correspondingly, a proper-designed fleet planning (in terms of demand and supply analysis) is indeed required to assure an environmental-friendly operation of electric bus. Thus, this project aims to perform demand and supply analysis (for fleet planning purposes) in operating electric buses under uncertainty. To do this, student is required to model the varying demand level appropriately (demand aspect) so that the corresponding fleet planning decision-making (supply aspect) can be made at a desired level for heterogeneous bus fleet. It is anticipated that the fleet planning will reveal useful insights, especially to the bus operators, in providing a sustainable and profitable electric bus operation.

Preparation:	Acquire fundamental skills in performing statistical
	analysis as well as in applying optimization approaches
	for the relevant problem-solving.

29 Ms Wong Kuan Wai

Lecturer:	Ms Wong Kuan Wai (wongkw@utar.edu.my)
Areas of Interest:	Cryptography, information security
Project Title 1:	Dynamical analysis of chaotic systems
Supplement Knowl-	None
edge:	
Outline:	The student will be introduced with some low- and
	high-dimensional chaotic systems and the chaotification
	methods to enhance the chaotic behaviors.
	Meet supervisor for more details.
Preparation:	None
Project Title 2:	Chaotic based Image Encryption Scheme
Supplement Knowl-	None
edge:	
Outline:	The student will be introduced with some basic image
	encryption techniques and the application of chaotic sys-
	tem in the design.
	Meet supervisor for more details.
Preparation:	None

30 Dr Wong Wai Kuan

Lecturer:	Dr Wong Wai Kuan (wongwk@utar.edu.my)
Areas of Interest:	Applied Statistics, Statistical Quality Control
Project Title 1:	Goodness-of-fit tests
Supplement Knowl-	Probability and Statistics II
edge:	
Outline:	This project will study some goodness-of-fit tests.
Preparation:	Knowledge in programming.
Project Title 2:	Statistical control charts
Supplement Knowl-	Probability and Statistics II
edge:	
Outline:	This project will study selected control chart(s) when
	the data is not normally distributed.
Preparation:	Knowledge in programming.

31 Dr Wong Voon Hee

Lecturer:	Dr Wong Voon Hee (wongvh@utar.edu.my)	
-----------	---------------------------------------	--

Areas of Interest:	Statistical Quality Control (SQC), Data Analytics
Project Title 1:	An Improved Voice-to-Text Transcription for Business
	Solutions
Supplement Knowl-	Completed industrial training at SunLife Malaysia As-
edge:	surance Berhad
Outline:	Sun Life Malaysia is looking for the speech analytics
	solutions to boost the customers' engagement, to offer
	better customer services and to enhance the business
	outcomes. To achieve a "bionic" model that seamlessly combines human advisors and automated solutions.
Preparation:	MS Excel / Python / R Programming
Project Title 2:	Customer Lifetime Value Model for Business Solutions
1 Toject Title 2.	Customer Enermie varue woder for Business Solutions
Supplement Knowl-	Completed industrial training at SunLife Malaysia As-
edge:	surance Berhad
Outline:	Sun Life Malaysia has strived to strengthen their clients'
	portfolio by acquiring and retaining the most potential
	profitable clients. In order for this to be happened, cur-
	rent and potential clients had to be clearly classified in
	a way that not only specified how much would a client
	value in the near future, but also in the long run, un-
	til its relationship with the company lasted. Customer
	Lifetime Value (CLV) would be the solution to measure clients according to their potential monetary value
	over various periods of time. The main objective of this
	project was to apply survival model into one of the CLV
	model.
Preparation:	MS Excel / Python / R Programming
Project Title 3:	Operational Research Binary Integer Programming
Supplement Knowl-	Completed industrial training at SunLife Malaysia As-
edge:	surance Berhad
Outline:	Sun Life Malaysia is planning to build a collection op-
	timization engine to maximize the collection effort.
	To make the most of each individual customer contact
	by determining how business variables – e.g., resource
	and budget constraints, contact policies, the likelihood
	that customers will respond and more that will affect
	outcomes. The system / engine can help in choos-
	ing which customers to target to maximize profitability boost response rates etc. while taking into account
	ity, boost response rates, etc., while taking into account customer preferences, propensities, profitability, costs,
	contact policies and other goals.
	contact ponetes and other goals.

Preparation:	MS Excel / Python / R Programming

32 Dr Yap Lee Ken

Lecturer:	Ms Yap Lee Ken (lkyap@utar.edu.my)
Areas of Interest:	Numerical Analysis
Project Title 1:	Numerical Solutions for Delay Differential Equations
Supplement Knowl-	Numerical methods, C Programming
edge:	
Outline:	We shall derive numerical methods for solving delay dif-
	ferential equations. The C-program will be compiled to
	test the efficiency of the numerical methods.
Preparation:	Strong background in numerical analysis and good pro-
	gramming skill.
Project Title 2:	Block Hybrid Collocation Methods for the Numerical
	Solution of Fourth Order Ordinary Differential Equa-
	tions
Supplement Knowl-	Numerical methods, C Programming, Matematica
edge:	
Outline:	We shall derive numerical methods for solving fourth
	order ordinary differential equations. The derivation in-
	volves interpolation and collocation of basic polynomial.
	The C-program will be compiled to test the efficiency of
	the numerical methods.
Preparation:	Strong background in numerical analysis and good pro-
	gramming skill.

33 Dr Yeo Heng Giap Ivan

Lecturer:	Dr Yeo Heng Giap Ivan (yeohg@utar.edu.my)
Areas of Interest:	Operations Research
Project Title 1:	A Batch Shipment Inventory Model With Time-varying
	Demand
Supplement Knowl-	Calculus
edge:	
Outline:	This project aims to develop a mathematical model of an
	inventory system that satisfies a time-varying demand
	function over a finite planning horizon by shipping out
	the finished product in batches.
Preparation:	Learn programming skills using Excel or Matlab.
Project Title 2:	Computer Simulation of Truels
Supplement Knowl-	None
edge:	
Outline:	This project aims to develop computer simulation of tru-
	els. Several rules will be consider, i.e. sequential fixed
	order, sequential random order, finite bullets, infinite
	bullets.
Preparation:	Learn programming skills using Excel or Matlab.

34 Dr Yong Chin Khian

Lecturer:	Dr Yong Chin Khian (yongck@utar.edu.my)
Areas of Interest:	Applied Statistics and Financial Economics
Project Title 1:	Analyzing PCFCCE using Bayesian Network
Supplement Knowl-	Probability and Statistics I & II or Statistical Inference,
edge:	Design of Experiments
Outline:	This project will analyze Partially Confounded Factorial
	Conjoint Choice Experiments using Baysian Network.
Project Title 2:	Assessing Consumers' Behavior Using PCFCCE
Supplement Knowl-	Probability and Statistics I & II or Statistical Inference,
edge:	Design of Experiments
Outline:	This project will use Partially Confounded Factorial
	Conjoint Choice Experiments to asses consumers' be-
	havior toward certain products.
Project Title 3:	Valuing Equity-Linked death benefits
Supplement Knowl-	Financial Economics II or Derivative Security and Life
edge:	Contingencies
Outline:	This project use the Option Pricing and Actuarial
	Present Value to price equity-linked death benefits.
Project Title 4:	Parameters Estimation for CIR Model
Supplement Knowl-	Probability and Statistics I & II, Financial Economics
edge:	II or Derivative Security

Outline:	This project will use Kalman Filter to estimate the parameters in CIR Model.
Project Title 5:	Estimating Limited Fluctuation Credibility Using Exact Distribution
Supplement Knowledge:	Probability and Statistics I & II, Credibility Theory
Outline:	This project will use certain non-normal distribution to estimated the expected number of claims for full credibility.
Project Title 6:	Modelling Claims Using MCMC
Supplement Knowl-	Probability and Statistics I & II, Credibility Theory and
edge:	Stochastic Processes.
Outline:	This project will use Markov Chain Monte Carlo simu-
	lation to estimated claims premiums.
Project Title 7:	Using GARCH Models to Estimate CTE
Supplement Knowl-	Probability and Statistics I & II, Applied Stat Models,
edge:	Loss Models
Outline:	This project will evaluate the performance of GARCH
	(genralized Auto Regressive Conditional Hetrocedastic)
	models in modelling daily Conditional Tail Expecta-
	tion(CTE)of certain portfolios.
Project Title 8:	Interval Estimate of Credibility
Supplement Knowledge:	Probability and Statistics I & II, Credibility
Outline:	This project will find the confidence interval of the vari-
	ance hypothetical means of the Buhlmann models.