Measuring DNA methylation using high-throughput sequencing

Mackenzie Gavery 11/10/16

DNA methylation analysis

- Library prep
- Sequencing
- Bioinformatics (DNA methylation)
 - -QC/Trimming
 - Mapping
 - Extracting Methylation Data
 - Interpretation (e.g. differential methylation)

Sequencing

- Indexed libraries are pooled together
- Illumina HiSeq (single read 100bp)
- ~200 million reads

Fastq Files

@SN747:551:C99B9ACXX:7:1110:1855:1151 1:N:0:CAGATC

CGGGTGATGTAGATGGTGGGGGTGGTTGGATCGATTGTGGGGAGTTGGGAAGGTGGTGTAATTTGTAGTTGGCGTACGATTTGAGATCGGAAGAGCACA

+

@@C?A@?4CFFFFG@EEGG@AGHA?CAD=FHDFB;;FHF=FEBHFD?C;>CAC==CAB8<<ACCDDCEDCDD:A@09<9<@B?B>@<8@:(087&+2<@A<

Fastq Files

@SN747:551:C99B9ACXX:7:1110:1855:1151 1:N:0:CAGATC

CGGGTGATGTAGATGGTGGTGGTGGTTGGATCGATTGTGGGGAGTTGGGAAGGTGGTGTAATTTGTAGTTGGCGTACGATTTGAGATCGGAAGAGCACA

+

@@C?A@?4CFFFFG@EEGG@AGHA?CAD=FHDFB;;FHF=FEBHFD?C;>CAC==CAB8<<ACCDDCEDCDD:A@09<9<@B?B>@<8@:(087&+2<@A<

How do you analyze 200 million reads!?

Bioinformatics (DNA methylation)

Bioinformatics (DNA methylation)

FastQC Quality Control & Trimming TrimGalore! Mapping RRBS reads to the genome Extracting count data from mapped reads Interpreting methylation data (e.g. differential methylation)

Per base sequence quality

Position in read (bp)

Per base sequence quality

Position in read (bp)

Adapter Content

Position in read (bp)

Per base sequence quality

Position in read (bp)

Adapter Content

Position in read (bp)

Per base sequence quality

Adapter Content

QC

Position in read (bp)

QC

Position in read (bp)

Bioinformatics (DNA methylation)

FastQC Quality Control & Trimming TrimGalore! Mapping RRBS reads to the genome Extracting count data from mapped reads Interpreting methylation data (e.g. differential methylation)

Bioinformatics (DNA methylation)

SN747:551:C99B9ACXX:8:2315:19986:99910_1:N:0:ACAGTG 16
ATCACAAAACGCGCTAACCAAAATTACCAAATACACGATATTTCCTCCAACACATTAACGCGACTAACTTCCG
EDDDDDDDFGHGIEHCJJJJIGHFFJJJIIFDHGJJJJJIIGGJJJJJIIJHDFHHFDFFFCCC NM:i:18 MD:Z:
0G0G4G1G12G0G2G3G0G1G4G1G8G7G0G4G2G0G6XM:Z:xx.h.Z.Zhhhxh.hZx.hzhh.Z.ZxxhZ XR:Z:CT
XG:Z:GA
SN747:551:C99B9ACXX:8:2315:19801:99933_1:N:0:ACAGTG 0 scaffold_2861 36547 42 97M * 0 0
CGGAAGGTGTTATAGAGGGTAGTGCGTACGGTTTAGTATATTATTGGGGTAAATTTTTTTGATATTTAGGGGAAGGTTTAAAAAA
@@@DDDDBB:CFA22AGE6+<:FFH8FFE@ <fffea0bffcecbd4bfb;;@cf>FCEFDDCCEDB@@@B?B==?<>@BB>@>@@BBAA@>>>:3A@</fffea0bffcecbd4bfb;;@cf>
NM:i:17 MD:Z:9C2C18C0C0C4C2C1C10C2C0C3C3C9C0C0C16C1
XM:Z:ZhxZZhhxhh.xhhxhxhhh
SN747:551:C99B9ACXX:8:2315:20190:99881_1:N:0:ACAGTG 16
CAAATACAAAAAATCAAAACAAATAAATACCCACCCAAAACCTCAAACCATAAAACAAACAAAAAA
>EEDA?5BBBDA>1595BB@EB@;@5;(,89,,"FFFE@3D=52FBFFIIFFFFF??9G:FFGD?F>@FFFCE9HCAEA?CCIIIFF <c2)db@b;a@?: nm:i:24<="" td=""></c2)db@b;a@?:>
MD:Z:
2G0G1G3G7G15A6A5G2G8G1G0G0G4G9G3G0G2G0G0G3G2G2G2G0XM:Z:xh.hhhhzxhzhzxhzxhz
Xzz XR:Z:CT XG:Z:GA
SN747:551:C99B9ACXX:8:2315:20074:99951 1:N:0:ACAGTG 16 scaffold 1684 42005 3 98M * 0 0
CATTAAACGACGAATTAATCTTCGTCACCGAACTCGTAAAAAAAA
CDDBDB@BBCDDEEDDDDDB? <c??8dddd@dbdddddddbcc@>D@<7DDDDDDDDDDBDBBIGIGIGJIJJIJGHHFHGCJHFADDBGFFDBDBB?</c??8dddd@dbdddddddbcc@>
NM:i:15 MD:Z:4G1G5G0G2G14G5G0G3G0G1G3G2T7T33G3
XM:Z:h.h.Z.ZxhhZZ.hZ.hhhh.hz.ZZ.HxZ XR:Z:CT XG:Z:GA

"Looking" at data using IGV

O. mykiss scaffold 13

"Looking" at data using IGV

O. mykiss scaffold 13

Quality Control & Trimming

FastQC TrimGalore!

Mapping RRBS reads to the genome

Bismark

Extracting count data from mapped reads

Bismark/Giles

Interpreting methylation data (e.g. differential methylation)

Quality Control & Trimming

FastQC TrimGalore!

Mapping RRBS reads to the genome

Bismark

Extracting count data from mapped reads

Bismark/Giles

chr	base	coverage	freqC freqT
scaffold_1	5941	20	1.00 0.00
scaffold_1	5973	20	0.95 0.05
scaffold_1	5982	20	0.95 0.05
scaffold_1	5994	20	0.95 0.05
scaffold_1	5998	8	0.88 0.12
scaffold_1	6012	20	1.00 0.00
scaffold_1	6101	2	1.00 0.00
scaffold_1	6103	2	1.00 0.00
scaffold_1	6278	9	0.89 0.11
scaffold_1	6285	42	0.98 0.02
scaffold_1 scaffold_1	6103 6278	2	1.00 0.00 0.89 0.11

Interpreting methylation data (e.g. differential methylation)

Differential Methylation Analysis

Differential Methylation Analysis

MethylKit

- R package
- Logistic regression
- Single variable (e.g. treatment v. control)

MACAU

- Beta-binomial mixed model
- Multiple variables including relatedness

Differential Methylation Analysis

Descriptive Methylome Data

Descriptive Methylome Data

Summary

- It can be hard to work with data that you can't see
 - Moving data takes a lot of time and space
 - Formatting data is a constant challenge
 - Software packages are great, but it's always important to understand what they are doing
 - Bisulfite sequencing has unique challenges