【204】声速的测量

【204】声速的测量
实验日期 9.28 实验组号 1 实验地点 204 报告成绩 —
[实验目的]
1.3解超声波的产生,发射,传播和播收。
2. 熟悉低频信号发生器. 数字频率计和示波器的使用
3. 掌握用共振干涉法,相位此较法,测量超声液的传唤
4. 掌握并熟练运用队务活的散据处理方法
[实验仪器]
SV-DH-5A型 声速测量仪
[实验原理摘要]
1. 声波是一种在弹性介质中传播的 加林波。本实验的主要任务是测量超声波在
空气中的传播速度。声速的测量公式 v= 1) 需要测量声波的
和波龙。
2. 压电陶瓷换能器,它可将交变电压转换成
换成电信号。
3. 共振干涉(驻波)法
用共振干涉干涉法测波长时,当移动
示波器上出现了 正法 电信 继续移动 S_L ,当再次出现 正法 电信 时,则两次相
邻干涉共振位置之间的距离(S_1 和 S_2 之间的距离) L 为,发射波和反
射波叠加干涉而形成驻波, 驻波方程
$Y = \frac{1}{1} + \frac{1}{12} = (2A \cos \frac{2\pi 3}{12})$
4. 声速从发射器 S_1 经过
相位差。相位比较法就是将 S ₁ 和 S ₂ 的

 $_{\bf X}$ 轴和 $_{\bf Y}$ 轴输入端,在示波器荧光屏上显示出 $_{\bf X}$ 场 图形来。 当 $_{\bf S}$ 和 $_{\bf S}$ 的间距每变化一个 相 位 $_{\bf X}$,就会重复出现同样 $_{\bf H}$ 等 : $_{\bf S}$ 的直线, 位相差公式为 $_{\bf \Delta}$ $_{\bf Q}$ = $_{\bf Y}$, $_{\bf Y}$ = $_{\bf Z}$ $_{\bf Z}$ + $_{\bf Z}$

5. 实验中注意事项:

测 温时不要用手触摸温度计下端

[实验原理图]

共振干涉:

相位此较:

[实验内容及步骤]

人声测测量对系统 的连接与调试。

2.测定压电陶瓷换能器系统的最佳工作频率。

3. 共振干涉法 (驻波法) 测波长

4. 相位此较洁测量据声波波发。

IP TU

的从位,恢复组

预习遇到的问题:

对 仪器 的操作 不能 相对等握, 需要调解与实践

[数据表格及处理]

1.压电陶瓷换能器系统最佳工作频率 f = 39.058 (kHz)

2.共振干涉法测量波长

n	1	2	3	4	5	6
L_{i} (mm)	6.20	11.10	15.50	20.10	24.20	28.21

$$\overline{\lambda} = 2 \times \frac{1}{2} \frac{3}{2} (\frac{1}{13} - \frac{1}{2})$$
 mm

=
$$2 \times \frac{1}{32} |20.10 - 6.20 + 24.20 - 11.10 + 28.21 - 15.50 |$$
 mm

$$v = \bar{\lambda} - \bar{J} = 8.82 \times 39.058 = 3.344.4916 \text{ m/s}$$

3.相位比较法测量波长

n	1	2	3	4	5	6
$L_{\rm i}({ m mm})$	12.40	21.00	29.98	37. 96	40.96	55.40

$$\overline{\lambda} = \frac{1}{32} \frac{3}{2} \left(\frac{1}{2} + 3 - \frac{1}{2} \right)$$
 mm

$$v = \bar{\lambda} \cdot \bar{f} = 7.88 \times 39.058 = 307.777 \text{ m/s}$$

4.测量结束时测出室温 t° C,实验测得的声速值与公认值比较计算其百分误差.

$$E_2 = \frac{121\sqrt{6} - 1000}{600} = \frac{1340 - 307.771}{340} = 9.47\%$$

5.计算不确定度.
$$u_{A}(\lambda) = \sqrt{\frac{\sum_{i=1}^{n} (\lambda_{i} - \overline{\lambda})^{2}}{n(n-1)}} = \sqrt{\frac{(6.20 - 8.82)^{3} + (11.10 - 8.82)^{3} + (15.50 - 8.82)^{3} + (20.10 + 2.82)^{3} + (24.20 - 8.92)^{3}}{6 \times 5}} + (128.21 - 8.82)^{3}$$

$$u_{\rm B}(\lambda) = \frac{\Delta_{\rm fg}}{\sqrt{3}} = \underbrace{\frac{0.02}{45}}_{\rm F} = \underbrace{0.015}_{\rm F}$$

$$u(\lambda) = \sqrt{u_{\rm A}^2 + u_{\rm B}^2} = \underbrace{\sqrt{(5.15)^2 + (0.015)^2}}_{\rm F} = \underbrace{5.16}_{\rm F}$$

$$u(f) = u_{\rm B}(f) = \frac{\Delta_{\rm fg}}{\sqrt{3}} = \underbrace{\frac{0.001}{45}}_{\rm F} = \underbrace{0.00058}_{\rm F}$$

$$u(\overline{v}) = \overline{v} \cdot \sqrt{\frac{u(\lambda)}{\lambda}^2 + \left(\frac{u(f)}{f}\right)^2}}_{\rm F} = \underbrace{244.4916\sqrt{\frac{(5.16)}{8.82}}}_{\rm F}^2 + \frac{(0.00058)^2}{39.058}^2 = \underbrace{201.639}_{\rm F}$$
结果: $v = \overline{v} \pm u(\overline{v}) = \underbrace{344.492 \pm 201.539}_{\rm F} = \underbrace{0.0058}_{\rm F}$

1.准确测量谐振频率的目的是什么?

在谐振频率时,波形最稳定,能够观察 读散准确测量,以便于调整。

2.系统为什么要在换能器的共振状态下测量空气中的声速? 因力在共振频率下, 反射面声压达到最大值, 这样从示波器 观察到的由压信号幅值 最大,从而有利于观察。

[实验体会与收获]

熟第3示波器的使用方法,掌握3共振干涉法、相位出数法,来测量超声波的传播速度。

[指导教师意见]

声速的测定。

原始数据记录

115,15,7+10.015)=

实验日期 <u>9.30</u> 实验组号 / 实验地点 <u>204</u> 仪器编号 <u>7</u> [数据表格]

室温 = 24 °C (2001) (2001) (2001) (2001)

- 1. 压电陶瓷换能器系统最佳工作频率 $f = __39.058$ (kHz)
- 2. 共振干涉法测量波长

n	1	2	3	4	5	6
$L_{\rm i}$ (mm)	620	11-10	16.50	20./0	24.20	28.21

3. 相位比较法测量波长

n	1	2	3	4	5	6
$L_{\rm i}({\rm mm})$	12.40	21.00	29.98	37.96	40.96	55.40

指导教师签字: 太小

大大的一种明: 4.9.30