Soluções da Ficha 10B

1. Estudo de séries através da análise da sucessão geradora.

(a)
$$\frac{1}{3} + \frac{\sqrt{2}}{4} + \frac{\sqrt{3}}{5} + \frac{2}{6} + \dots = \sum_{n=1}^{+\infty} \frac{\sqrt{n}}{n+2}$$
.

A sucessão geradora é $u_n = \frac{\sqrt{n}}{n+2}$, $n \in \mathbb{N}$.

Como $\lim_{n} u_n = 0$, nada se pode concluir sobre a natureza da série dada.

Mais adiante, não será difícil concluir que se trata de uma série divergente.

(b)
$$\frac{1}{3} + \frac{4}{5} + \frac{9}{7} + \frac{16}{9} + \dots = \sum_{n=1}^{+\infty} \frac{n^2}{2n+1}$$
.

A sucessão geradora é $u_n = \frac{n^2}{2n+1}$, $n \in \mathbb{N}$.

Como $\lim_{n} u_n = +\infty$, conclui-se que a série dada é divergente.

(c)
$$1 \operatorname{sen} 1 + 2 \operatorname{sen} \frac{1}{2} + 3 \operatorname{sen} \frac{1}{3} + 4 \operatorname{sen} \frac{1}{4} + \dots = \sum_{n=1}^{+\infty} n \operatorname{sen} \frac{1}{n}.$$

A sucessão geradora é $u_n = n \operatorname{sen} \frac{1}{n}, n \in \mathbb{N}.$

Mas $\lim_n u_n = \lim_n \frac{\text{sen}(1/n)}{1/n} \stackrel{(*)}{=} 1$, uma vez que se $n \to +\infty$ então $\frac{1}{n} \to 0$. Logo a série dada é divergente.

(*) Este limite é um caso particular (porque $n \in \mathbb{N}$) de $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

(d)
$$\left(\frac{1}{2}+1\right)+\left(\frac{1}{4}+1\right)+\left(\frac{1}{8}+1\right)+\dots=\sum_{n=1}^{+\infty}\left(\frac{1}{2^n}+1\right).$$

A sucessão geradora é $u_n = \frac{1}{2^n} + 1$, $n \in \mathbb{N}$.

Como $\lim_{n} \frac{1}{2^n} = 0$, vem $\lim_{n} u_n = 1$, pelo que a série dada é divergente.

2. Estudo de séries de termos não negativos, recorrendo a critérios.

Vamos representar $u_n, n \in \mathbb{N}$ o termo geral de cada série.

- (a) Convergente. Critério da razão ($\ell = 2/e$).
- (b) Divergente. Comparar com $\sum \frac{1}{n}$, através do primeiro ou do segundo critério.
- (c) Convergente. Critério da razão ($\ell=1/4$).
- (d) Convergente. Critério da razão ($\ell = 1/1001$).
- (e) Convergente. Critério da razão $\left(\ell = \lim_{n} \frac{2n+3}{3n+6} = \frac{2}{3}\right)$.
- (f) Divergente. Comparar com $\sum \frac{1}{n}$, através do segundo critério.
- (g) Convergente. Comparar com $\sum \frac{1}{n^{4/3}}$, através do segundo critério (notar que $\frac{4}{3} = \frac{7}{3} 1$).
- (h) Divergente. Comparar com $\sum \frac{1}{n}$, através do segundo critério.
- (i) Congente. Comparar com $\sum \frac{1}{n^2}$, através do segundo critério. Notar que

$$\lim_{n} \frac{u_n}{v_n} = \lim_{n} \frac{n^2 \ln n}{2n^3 - 1} = \lim_{n} \frac{n^2 \ln n}{n^2 (2n - \frac{1}{n^2})} = \lim_{n} \frac{\ln n}{2n - \frac{1}{n^2}} = 0.$$

- (j) Convergente. Critério da razão ($\ell = 1/3$).
- (k) Congente. Comparar com $\sum \frac{1}{n^2}$, através do segundo critério. Notar que

$$\lim_{n} \frac{u_n}{v_n} = \lim_{n} n^2 \ln \left(1 + \frac{4}{n^2} \right) = \lim_{n} \ln \left(1 + \frac{4}{n^2} \right)^{n^2} = \ln e^4 = 4.$$