MLPdf: An Effective Machine Learning Based Approach for PDF Malware Detection

Dr Jason Zhang

Senior Threat Researcher

SOPHOS

Agenda

- PDF File Format and Associated Attacks
- MLPdf Model
- Data Labelling
- Feature Engineering
- Underfitting & Overfitting
- Demo
- Conclusion
- QA

PDF File Format & Associated Attacks

PDF File Format

PDF Based Attacks

PDF Based Attacks: Exploits

Film Chip Capacitors

PEN DIELECTRIC - CB Series

%PROFILE%\Local Settings\Temp\A9RDC52.tmp\tmp.pdf

PDF Based Attacks: Exploits (cont.)

PDF Based Attacks: Phish

PDF Based Attacks: Spam

можно на сайте

MLPdf Model

MLPdf Model

MLP neural network model

BP based MLP weights update via SGD

8857 parameters (weights + bias terms) to be updated

Data Labelling

Data Labelling

Know your **enemy**

It is critical to accurately label clean and malicious files to train ML algorithms.

Data Labelling

A file is labelled as MALWARE if detected by

- >=3 reliable AV scanners, OR
- >=1 trustable SAV identities

A file is labelled as **CLEAN** if

- not detected by any scanner, OR
- confirmed as FP

Feature Engineering

Feature Engineering

PART OF THE EXTRACTED FEATURES

Feature name	Description
F_SIZE	PDF file size
F_JS	PDF with JavaScript or not
F_PGC	Page count
F_OBJC	Number of objects
F_FILT	Stream filtering
F_ENTRP1	Entropy of some content
F_ENTRP2	Entropy of some content

In-house & 3rd party tools to extract 48 features

Underfitting & Overfitting

Underfitting & Overfitting

- Make the training error small
- Make the gap between training and test error small

a) Validation b) Batch normalization c) Dropout

Demo

Demo

• Demo-1: clean (13101) & malware (1946) files

Source: Sophos filesDB & URL logs prior to March 31, 2018

• *Demo-2*: clean files (35599)

Source: Sophos URL logs for May 9-24, 2018

• Demo-3: a case study with a zero-day attack

Source: Sophos filesDB - July 2018

Demo: Dataset-1 – Clean (13101) & Malware (1946) Files

Source: Sophos filesDB & wild collections prior to March 31, 2018

	FPR	TPR
MLPdf	0.12%	95.38%

Demo: Dataset-1 (cont.) – Compared with 8 AV Scanners

Source: Sophos filesDB & wild collections prior to March 31, 2018

	FPR	TPR
MLPdf	0.12%	95.38%
	(0.08%)	(95.12%)

Demo: Dataset-2 - Clean Files (35599)

Source: SXL3 URL logs for May 9-24, 2018

	FP	FPR
MLPdf	311	0.87%

Demo: Dataset-3 – A Case Study with a Zero-Day Attack

Source: Sophos filesDB – July, 2018

	FN	TPR
MLPdf	1	93.75%

Summary

- Overview of PDF file format and typical attacks
- Introduction to MLPdf model
- Feature engineering & general challenges in ML
- MLPdf demo with various datasets, including analysis for a zero-day attack
- Pros & Cons of MLPdf vs traditional AV scanners

SOPHOS

Thank You

Git: https://github.com/cyberML/MLPdf

E: jason.zhang@sophos.com

IN: https://uk.linkedin.com/in/jasonzhanguk

SOPHOS Security made simple.