baselines model with ctgan

May 18, 2025

1 Comparing performance of models using synthetic data

This notebook is used to test the performance of baseline models by applying synthetic data generated from CTGAN model

```
[65]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.model_selection import train_test_split, cross_val_score, __

→StratifiedKFold

      from sklearn.preprocessing import MinMaxScaler, LabelEncoder
      from sklearn.metrics import accuracy_score, confusion_matrix,_
       Glassification_report, roc_auc_score, roc_curve, auc
      from sklearn.linear model import LogisticRegression
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier,
       GradientBoostingClassifier
      from xgboost import XGBClassifier
      from lightgbm import LGBMClassifier
      from catboost import CatBoostClassifier
      from sklearn.neural_network import MLPClassifier
      import warnings
      warnings.filterwarnings("ignore")
```

```
[66]: data = pd.read_csv('/home/nhat/projectcuoiky/data/pdf_features.csv')
    data.info()
    data.head()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11101 entries, 0 to 11100
Data columns (total 25 columns):
# Column Non-Null Count Dtype
```

```
0
           Page
                           11101 non-null
                                             int64
       1
           Encrypt
                           11101 non-null
                                             int64
       2
           ObjStm
                           11101 non-null
                                             int64
       3
           JS
                           11101 non-null
                                             int64
       4
           JavaScript
                           11101 non-null
                                             int64
       5
                           11101 non-null
                                             int64
       6
           OpenAction
                           11101 non-null
                                             int64
       7
           AcroForm
                           11101 non-null
                                             int64
           JBIG2Decode
       8
                           11101 non-null
                                             int64
       9
           RichMedia
                           11101 non-null
                                             int64
           Launch
                           11101 non-null
       10
                                             int64
       11
           EmbeddedFile
                           11101 non-null
                                             int64
                           11101 non-null
       12
           XFA
                                             int64
       13
           Colors_gt_224
                           11101 non-null
                                             int64
       14
           obj
                           11101 non-null
                                             int64
       15
           endobj
                           11101 non-null
                                             int64
       16
           stream
                           11101 non-null
                                             int64
       17
                           11101 non-null
           endstream
                                             int64
       18
           xref
                           11101 non-null
                                             int64
       19
           trailer
                           11101 non-null
                                             int64
       20
           startxref
                           11101 non-null
                                             int64
       21
           filepath
                           11101 non-null
                                             object
       22
           filename
                           11101 non-null
                                             object
       23
          filesize_kb
                           11101 non-null
                                             float64
      24 label
                           11101 non-null
                                             object
     dtypes: float64(1), int64(21), object(3)
     memory usage: 2.1+ MB
[66]:
         Page
                Encrypt
                          ObjStm
                                   JS
                                       JavaScript
                                                    AA
                                                         OpenAction
                                                                      AcroForm
      0
             1
                       0
                                    0
                                                     0
                                                                  0
                                                                             0
                               0
                                                 0
      1
                      0
                                    0
                                                 0
                                                     0
                                                                  0
                                                                             0
             1
                               0
      2
             4
                      0
                               6
                                                 0
                                                     0
                                                                  0
                                                                             0
                                    0
      3
             1
                      0
                               0
                                    0
                                                 0
                                                     0
                                                                  0
                                                                             1
                                                                             2
      4
             6
                       0
                                                     0
                                                                  0
                              25
                                    0
          JBIG2Decode
                       RichMedia
                                       endobj
                                                stream
                                                         endstream
                                                                    xref
      0
                    0
                                0
                                           11
                                                     3
                                                                 3
                                                                        2
      1
                    0
                                0
                                            6
                                                     2
                                                                 2
                                                                        1
                                                                                  1
      2
                                                                41
                    0
                                0
                                           56
                                                    41
                                                                        0
                                                                                  0
      3
                    0
                                                    17
                                                                17
                                                                        2
                                                                                  2
                                0
                                           29
      4
                    0
                                          156
                                                   146
                                                               146
                                                                        0
                                                                                  0
                                                                  filepath \
         startxref
      0
                     /home/remnux/Desktop/extraction/data/Benign/as...
                     /home/remnux/Desktop/extraction/data/Benign/ar...
      1
      2
                     /home/remnux/Desktop/extraction/data/Benign/p4...
```

```
4 /home/remnux/Desktop/extraction/data/Benign/f9...
                filename filesize_kb
                                        label
      0
              assehc.pdf
                            23.120117 benign
      1
           artauthor.pdf
                            69.544922 benign
      2
            p4894_ru.pdf
                          180.786133 benign
      3 artisticwall.pdf
                           85.124023 benign
              f990sn.pdf
                           126.099609 benign
      [5 rows x 25 columns]
[67]: import pandas as pd
      import numpy as np
      # --- Configuration ---
      SYNTHETIC_DATA_PATH = '/home/nhat/projectcuoiky/output/
       →new_synthetic_malicious_data_8000_samples.csv'
      ORIGINAL_TARGET_COL = 'label' # The target column name in the original data_
       → (after any initial renaming)
      SYNTHETIC TARGET COL RAW = 'label' # The raw target column name in the
      ⇔synthetic CSV
      FINAL TARGET COL = 'label'
                                      # The consistent target column name to be used
       ⇔after processing both datasets
      print("--- Augmenting Data with CTGAN Synthetic Samples ---")
      # --- 1. Load Original Data (variable 'data' should exist from the previous_
      ⇔cell) ---
      print("\n--- Original Data (from previous cell) ---")
      if 'data' in locals() or 'data' in globals():
         print(f"Shape of original data: {data.shape}")
         print(f"Original data columns: {data.columns.tolist()}")
          # If original data has a different target column name initially, rename it_{\sqcup}
       \hookrightarrow to FINAL_TARGET_COL
          if ORIGINAL_TARGET_COL != FINAL_TARGET_COL and ORIGINAL_TARGET_COL in data.
       ⇔columns:
              print(f"Renaming original data target column '{ORIGINAL_TARGET_COL}' tou
       data.rename(columns={ORIGINAL_TARGET_COL: FINAL_TARGET_COL},_
       →inplace=True)
          elif ORIGINAL_TARGET_COL not in data.columns and FINAL_TARGET_COL not in_
       ⇔data.columns:
              print(f"ERROR: Neither '{ORIGINAL_TARGET_COL}' nor '{FINAL_TARGET_COL}'
       →found in original data. Please check column names.")
              # Potentially raise an error or handle this state
```

2 /home/remnux/Desktop/extraction/data/Benign/ar...

3

```
else:
   print("ERROR: Original data DataFrame 'data' not found. Please ensure it's_{\sqcup}
 ⇔loaded in the preceding cell.")
    # Potentially raise an error
# --- 2. Load Synthetic Data ---
print("\n--- Synthetic Data ---")
try:
   synthetic_df = pd.read_csv(SYNTHETIC_DATA_PATH)
   print(f"Synthetic data loaded successfully from: {SYNTHETIC DATA PATH}")
   print(f"Shape of synthetic data: {synthetic_df.shape}")
   print(f"Synthetic data columns: {synthetic_df.columns.tolist()}")
   # --- 3. Prepare Synthetic Data Target Column ---
   if SYNTHETIC_TARGET_COL_RAW in synthetic_df.columns:
       if SYNTHETIC_TARGET_COL_RAW != FINAL_TARGET_COL:
           print(f"Renaming synthetic data target column
 synthetic_df.rename(columns={SYNTHETIC_TARGET_COL_RAW:__
 →FINAL_TARGET_COL}, inplace=True)
        # Ensure the target column is of a compatible type if it needs to be (e.
 →g., if it was numeric and original is string before LE)
        # For now, we assume it's ready for concatenation or will be handled by \Box
 \hookrightarrow Label Encoder later.
   else:
       print(f"ERROR: Raw target column '{SYNTHETIC_TARGET_COL_RAW}' not found
 # Handle error: maybe skip augmentation or raise error
    # --- 4. Align Columns (Crucial Step) ---
    # Ensure both DataFrames have the same columns in the same order before
 \hookrightarrow concatenation.
    # We'll use the original data's columns as the reference, excluding any \Box
 ⇔columns in synthetic that aren't in original.
    if 'data' in locals() or 'data' in globals():
       original_cols = data.columns
       synthetic_df = synthetic_df[original_cols.intersection(synthetic_df.
 →columns)] # Keep only common columns
        # Reorder synthetic_df columns to match original_df, and add missing_
 ⇔columns with NaN if any
        # (though intersection should prevent needing to add NaNs for missing_
 → feature columns from original)
       synthetic_df = synthetic_df.reindex(columns=original_cols)
```

```
print(f"Synthetic data columns after alignment: {synthetic_df.columns.
  →tolist()}")
         # --- 5. Concatenate Data ---
        # The original 'data' DataFrame is now updated to be the augmented
  \rightarrow version
        data = pd.concat([data, synthetic_df], ignore_index=True)
        print("\n--- Data Augmentation Complete ---")
        print(f"Shape of combined (augmented) data: {data.shape}")
        print(f"'{FINAL_TARGET_COL}' column in combined data:

¬\n{data[FINAL_TARGET_COL].value_counts(dropna=False)}")

    else:
        print("Skipping column alignment and concatenation as original 'data'⊔
  ⇔is not available.")
except FileNotFoundError:
    print(f"ERROR: Synthetic data file not found at {SYNTHETIC_DATA_PATH}.
 →Proceeding with original data only.")
    # No change to 'data' DataFrame in this case
except Exception as e:
    print(f"An error occurred during synthetic data loading or processing: {e}")
    print("Proceeding with original data only.")
    # No change to 'data' DataFrame in this case
# Display info of the potentially augmented 'data' DataFrame
print("\n--- Info for 'data' DataFrame (potentially augmented) ---")
if 'data' in locals() or 'data' in globals():
    data.info()
    print(data.head())
else:
    print("DataFrame 'data' is not defined.")
--- Augmenting Data with CTGAN Synthetic Samples ---
--- Original Data (from previous cell) ---
Shape of original data: (11101, 25)
Original data columns: ['Page', 'Encrypt', 'ObjStm', 'JS', 'JavaScript', 'AA',
'OpenAction', 'AcroForm', 'JBIG2Decode', 'RichMedia', 'Launch', 'EmbeddedFile',
'XFA', 'Colors_gt_224', 'obj', 'endobj', 'stream', 'endstream', 'xref',
'trailer', 'startxref', 'filepath', 'filename', 'filesize_kb', 'label']
--- Synthetic Data ---
Synthetic data loaded successfully from:
/home/nhat/projectcuoiky/output/new_synthetic_malicious_data_8000_samples.csv
Shape of synthetic data: (8000, 22)
Synthetic data columns: ['Page', 'Encrypt', 'ObjStm', 'JS', 'JavaScript', 'AA',
'OpenAction', 'AcroForm', 'JBIG2Decode', 'RichMedia', 'Launch', 'EmbeddedFile',
```

```
'XFA', 'Colors_gt_224', 'obj', 'stream', 'xref', 'trailer', 'startxref',
'filesize_kb', 'label_numeric', 'label']
Synthetic data columns after alignment: ['Page', 'Encrypt', 'ObjStm', 'JS',
'JavaScript', 'AA', 'OpenAction', 'AcroForm', 'JBIG2Decode', 'RichMedia',
'Launch', 'EmbeddedFile', 'XFA', 'Colors_gt_224', 'obj', 'endobj', 'stream',
'endstream', 'xref', 'trailer', 'startxref', 'filepath', 'filename',
'filesize kb', 'label']
--- Data Augmentation Complete ---
Shape of combined (augmented) data: (19101, 25)
'label' column in combined data:
label
malicious
            9994
            9107
benign
Name: count, dtype: int64
--- Info for 'data' DataFrame (potentially augmented) ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19101 entries, 0 to 19100
Data columns (total 25 columns):
                   Non-Null Count Dtype
    Column
    ----
                   _____
 0
    Page
                   19101 non-null int64
 1
    Encrypt
                   19101 non-null int64
 2
    ObjStm
                   19101 non-null int64
 3
                   19101 non-null int64
    JS
 4
                   19101 non-null int64
    JavaScript
 5
    AA
                   19101 non-null int64
 6
    OpenAction
                   19101 non-null int64
 7
    AcroForm
                   19101 non-null int64
 8
    JBIG2Decode
                   19101 non-null int64
 9
    RichMedia
                   19101 non-null int64
 10 Launch
                   19101 non-null
                                   int64
 11 EmbeddedFile
                   19101 non-null int64
 12 XFA
                   19101 non-null int64
 13 Colors_gt_224 19101 non-null
                                   int64
 14
    obj
                   19101 non-null int64
 15
    endobj
                   11101 non-null float64
 16 stream
                   19101 non-null int64
 17
    endstream
                   11101 non-null float64
 18 xref
                   19101 non-null int64
 19 trailer
                   19101 non-null int64
 20 startxref
                   19101 non-null
                                   int64
 21 filepath
                   11101 non-null object
 22 filename
                   11101 non-null
                                   object
23 filesize_kb
                   19101 non-null float64
 24 label
                   19101 non-null object
dtypes: float64(3), int64(19), object(3)
```

```
JavaScript
                                                     OpenAction
        Page
              Encrypt
                        ObjStm
                                JS
                                                 AA
                                                                 AcroForm
     0
           1
                     0
                                 0
                                                                         0
                                              0
     1
           1
                     0
                             0
                                 0
                                              0
                                                  0
                                                               0
                                                                         0
     2
           4
                     0
                                                               0
                                                                         0
                             6
                                 0
                                              0
                                                  0
     3
                     0
                             0
                                 0
                                                               0
                                                                         1
           1
                                              0
                                                                         2
     4
           6
                     0
                            25
                                  0
                                              0
                                                  0
                                                               0
        JBIG2Decode RichMedia ...
                                     endobj
                                                     endstream xref
                                                                       trailer
                                             stream
     0
                                       11.0
                                                            3.0
                                                  3
                                                                    2
                   0
                              0
                                        6.0
                                                  2
                                                            2.0
     1
                                                                    1
                                                                              1
     2
                   0
                              0
                                       56.0
                                                           41.0
                                                                    0
                                                                              0
                                                 41
                                                                    2
                                                                              2
     3
                   0
                              0
                                       29.0
                                                           17.0
                                                 17
     4
                   0
                              0
                                      156.0
                                                          146.0
                                                                    0
                                                                              0
                                                146
        startxref
                                                               filepath \
     0
                   /home/remnux/Desktop/extraction/data/Benign/as...
                   /home/remnux/Desktop/extraction/data/Benign/ar...
     1
     2
                 3 /home/remnux/Desktop/extraction/data/Benign/p4...
                 2 /home/remnux/Desktop/extraction/data/Benign/ar...
     3
                    /home/remnux/Desktop/extraction/data/Benign/f9...
     4
                 filename filesize_kb
                                          label
     0
              assehc.pdf
                             23.120117
                                         benign
     1
           artauthor.pdf
                             69.544922
                                        benign
     2
             p4894_ru.pdf
                                         benign
                            180.786133
        artisticwall.pdf
                             85.124023 benign
     3
     4
               f990sn.pdf
                            126.099609 benign
      [5 rows x 25 columns]
[68]: # Label Encoding
      from sklearn.preprocessing import StandardScaler, LabelEncoder
      from sklearn.model_selection import train_test_split
      from sklearn.impute import SimpleImputer
      # Encode labels
      le = LabelEncoder()
      data["label_encoded"] = le.fit_transform(data["label"])
      # Drop non-numeric columns first
      X = data.drop(columns=['label', 'label_encoded', 'filepath', 'filename'])
      y = data['label_encoded']
      # Handle NaN values using SimpleImputer
      print("Checking for NaN values in the dataset...")
      print(f"Number of NaN values: {X.isna().sum().sum()}")
```

memory usage: 3.6+ MB

Checking for NaN values in the dataset...

Number of NaN values: 16000

NaN values have been imputed with mean strategy

X_train shape: (15280, 22)

X_test shape: (3821, 22)

y_train shape: (15280,)

y_test shape: (3821,)

1.0.1 Training Models

```
[69]: # Define models (Identical to original notebook)
      models = {
          "Logistic Regression": LogisticRegression(random_state=42,__
       ⇔solver='liblinear'),
          "Decision Tree": DecisionTreeClassifier(random_state=42),
          "Random Forest": RandomForestClassifier(random state=42),
          "AdaBoost": AdaBoostClassifier(random_state=42, algorithm='SAMME'), #_J
       →algorithm='SAMME' for discrete targets
          "Gradient Boosting": GradientBoostingClassifier(random_state=42),
          "XGBoost": XGBClassifier(random_state=42, use_label_encoder=False,__
       ⇔eval_metric='logloss'),
          "LightGBM": LGBMClassifier(random state=42, verbosity=-1),
          "CatBoost": CatBoostClassifier(random_state=42, verbose=0),
          "MLP Classifier": MLPClassifier(random_state=42, max_iter=500)
      }
      # Store results (Identical to original notebook)
```

```
results = {}
```

```
[70]: %%time
      # Train and evaluate each model (Identical to original notebook training loop)
      # This loop will use X_train, y_train, X_test, y_test which are now based on
      \rightarrow augmented data.
      for name, model in models.items():
          # Train the model
         model.fit(X_train, y_train)
         # Make predictions
         y_pred = model.predict(X_test)
         y_pred_proba = model.predict_proba(X_test)[:, 1] # Probabilities for ROC AUC
         # Evaluate the model
         accuracy = accuracy score(y test, y pred)
          cm = confusion_matrix(y_test, y_pred)
          # Ensure target_names are appropriate if the classes are not just 0 and 1_{\sqcup}
       →after label encoding
          # For simplicity, assuming binary classification with labels 0, 1 for report
          class_report_dict = classification_report(y_test, y_pred, output_dict=True)
         class_report_str = classification_report(y_test, y_pred)
         roc_auc_val = roc_auc_score(y_test, y_pred_proba)
          # Store results
         results[name] = {
              "Accuracy": accuracy,
              "Confusion Matrix": cm,
              "Classification Report Dict": class_report_dict,
              "Classification Report Str": class_report_str,
              "ROC AUC": roc auc val,
              "y_pred_proba": y_pred_proba # Store for plotting ROC curve later
         }
         print(f"Results for {name}:")
         print(f" Accuracy: {accuracy:.4f}")
         print(f" ROC AUC: {roc_auc_val:.4f}")
         print(f" Confusion Matrix:\n{cm}")
         print(f" Classification Report:\n{class_report_str}")
         print("-----
      # Example of how to access specific parts of the report if needed later:
      print(results['Logistic Regression']['Classification Report⊔
       →Dict']['1']['precision'])
```

Results for Logistic Regression: Accuracy: 0.9183

ROC AUC: 0.9681 Confusion Matrix:

[[1701 121] [191 1808]]

Classification Report:

precision	recall	f1-score	support
0.90	0.93	0.92	1822 1999
0.01	0.00		
			3821
0.92 0.92	0.92	0.92	3821 3821
	0.90 0.94 0.92	0.90 0.93 0.94 0.90 0.92 0.92	0.90 0.93 0.92 0.94 0.90 0.92 0.92 0.92 0.92

Results for Decision Tree:

Accuracy: 0.9893 ROC AUC: 0.9894 Confusion Matrix:

[[1809 13] [28 1971]]

Classification Report:

	precision	recall	f1-score	support
0	0.98	0.99	0.99	1822
1	0.99	0.99	0.99	1999
			0.00	2001
accuracy			0.99	3821
macro avg	0.99	0.99	0.99	3821
weighted avg	0.99	0.99	0.99	3821

Results for Random Forest:

Accuracy: 0.9916 ROC AUC: 0.9997 Confusion Matrix:

[[1815 7] [25 1974]]

Classification Report:

	precision	recall	f1-score	support
0	0.99	1.00	0.99	1822
1	1.00	0.99	0.99	1999
accuracy			0.99	3821
macro avg	0.99	0.99	0.99	3821
weighted avg	0.99	0.99	0.99	3821

Results for AdaBoost: Accuracy: 0.9791 ROC AUC: 0.9973 Confusion Matrix: [[1803 19] [61 1938]] Classification Report: precision recall f1-score support 0.97 0 0.99 0.98 1822 1 0.99 0.97 0.98 1999 0.98 accuracy 3821 0.98 macro avg 0.98 0.98 3821 weighted avg 0.98 0.98 0.98 3821 Results for Gradient Boosting: Accuracy: 0.9848 ROC AUC: 0.9992 Confusion Matrix: [[1806 167 [42 1957]] Classification Report: precision recall f1-score support 0 0.98 0.99 0.98 1822 0.99 0.98 1 0.99 1999 accuracy 0.98 3821 macro avg 0.98 0.99 0.98 3821 0.98 weighted avg 0.98 0.98 3821 Results for XGBoost: Accuracy: 0.9924 ROC AUC: 0.9997 Confusion Matrix: [[1810 12] [17 1982]] Classification Report: precision recall f1-score support 0 0.99 0.99 0.99 1822 0.99 0.99 0.99 1999

accuracy

0.99

3821

macro avg weighted avg	0.99 0.99	0.99 0.99	0.99	3821 3821
Results for Lig Accuracy: 0.98 ROC AUC: 0.98 Confusion Mat [[1810 12] [17 1982]]	9924 998 crix:			
Classification I	on Keport: orecision	recall	f1-score	support
0 1	0.99 0.99	0.99	0.99	1822 1999
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	3821 3821 3821
Results for Cat Accuracy: 0.9 ROC AUC: 0.99 Confusion Mat [[1808 14] [21 1978]] Classification	9908 997 crix: on Report:			
I	orecision	recall	f1-score	support
0 1	0.99 0.99	0.99	0.99 0.99	1822 1999
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	3821 3821 3821
Results for MLH Accuracy: 0.9 ROC AUC: 0.99 Confusion Mat [[1807 15] [39 1960]] Classification	9859 980 crix:		f1-score	support
0	0.98	0.99	0.99	1822

```
0.99
                              0.98
                                         0.99
                                                    1999
                                         0.99
                                                    3821
    accuracy
                                         0.99
                                                    3821
   macro avg
                    0.99
                              0.99
                                         0.99
weighted avg
                    0.99
                              0.99
                                                    3821
```

0.9372731985484707

CPU times: user 35.3 s, sys: 11.8 s, total: 47.1 s

Wall time: 16.4 s

1.0.2 Compare Models

```
[71]: # Prepare data for plotting (Identical to original notebook)
      accuracy_scores = {name: res["Accuracy"] for name, res in results.items()}
      roc_auc_scores = {name: res["ROC AUC"] for name, res in results.items()}
      # Create a DataFrame for easy plotting
      plot_df_accuracy = pd.DataFrame(list(accuracy_scores.items()),__
       ocolumns=["Model", "Accuracy"]).sort_values(by="Accuracy", ascending=False)
      plot_df_roc_auc = pd.DataFrame(list(roc_auc_scores.items()), columns=["Model", ...

¬"ROC AUC"]).sort_values(by="ROC AUC", ascending=False)

      # Plot Accuracy
      plt.figure(figsize=(12, 6))
      sns.barplot(x="Accuracy", y="Model", data=plot_df_accuracy, palette="viridis")
      plt.title("Model Accuracy Comparison (with CTGAN augmented data)") # Title |
       \hookrightarrowupdated
      plt.xlabel("Accuracy")
      plt.ylabel("Model")
      plt.xlim(min(0.5, plot_df_accuracy["Accuracy"].min() * 0.9 if not_
       →plot_df_accuracy.empty else 0.5), 1.0) # Dynamic xlim
      for index, value in enumerate(plot df accuracy["Accuracy"]):
          plt.text(value + 0.005, index, f'{value:.4f}') # Adjusted text position
      plt.show()
      # Plot ROC AUC
      plt.figure(figsize=(12, 6))
      sns.barplot(x="ROC AUC", y="Model", data=plot_df_roc_auc, palette="plasma") #_1
       → Changed palette for variety
      plt.title("Model ROC AUC Comparison (with CTGAN augmented data)") # Title
       \hookrightarrowupdated
      plt.xlabel("ROC AUC")
      plt.ylabel("Model")
      plt.xlim(min(0.5, plot_df_roc_auc["ROC AUC"].min() * 0.9 if not plot_df_roc_auc.
       →empty else 0.5), 1.0) # Dynamic xlim
      for index, value in enumerate(plot_df_roc_auc["ROC AUC"]):
```

```
plt.text(value + 0.005, index, f'{value:.4f}') # Adjusted text position
plt.show()
# Print Classification Reports from the stored dictionary
print("\n--- Detailed Classification Reports (with CTGAN augmented data) ---")
for name, res in results.items():
    print(f"\nClassification Report for {name}:")
    # Make sure the string report was stored, or re-generate if only dict was \Box
 \hookrightarrowstored
    if "Classification Report Str" in res:
        print(res["Classification Report Str"])
    elif "Classification Report Dict" in res:
        # If only dict is available, print it (it might be less readable_
 \hookrightarrow directly)
        # Dr reconstruct a string version. For now, just printing dict as
 \hookrightarrow fallback.
        print(pd.DataFrame(res["Classification Report Dict"]).transpose())
        print("Report not available.")
```


--- Detailed Classification Reports (with CTGAN augmented data) ---

Classification Report for Logistic Regression:

	precision	recall	f1-score	support
0	0.90	0.93	0.92	1822
1	0.94	0.90	0.92	1999
accuracy			0.92	3821
macro avg	0.92	0.92	0.92	3821
weighted avg	0.92	0.92	0.92	3821

Classification Report for Decision Tree:

	precision	recall	f1-score	support
0	0.98	0.99	0.99	1822
1	0.99	0.99	0.99	1999
accuracy			0.99	3821
macro avg	0.99	0.99	0.99	3821
weighted avg	0.99	0.99	0.99	3821

Classification Report for Random Forest:

precision recall f1-score support

0	0.99	1.00	0.99	1822
1	1.00	0.99	0.99	1999
1	1.00	0.55	0.55	1333
accuracy			0.99	3821
macro avg	0.99	0.99	0.99	3821
weighted avg	0.99	0.99	0.99	3821
Classification	on Report for	AdaBoost	:	
	precision	recall	f1-score	support
0	0.97	0.99	0.98	1822
1	0.99	0.97	0.98	1999
accuracy			0.98	3821
macro avg	0.98	0.98	0.98	3821
weighted avg	0.98	0.98	0.98	3821
01	D £	C 4+	D	
Classificatio	on Report for precision		f1-score	support
	precision	recarr	II-SCOLE	SUDDOLL
				FF
0	0.98		0 98	
0	0.98	0.99	0.98	1822
0	0.98 0.99		0.98 0.99	
1		0.99	0.99	1822 1999
1 accuracy	0.99	0.99 0.98	0.99	1822 1999 3821
accuracy macro avg	0.99	0.99 0.98 0.99	0.99 0.98 0.98	1822 1999 3821 3821
1 accuracy	0.99	0.99 0.98	0.99	1822 1999 3821
accuracy macro avg	0.99	0.99 0.98 0.99	0.99 0.98 0.98	1822 1999 3821 3821
accuracy macro avg	0.99	0.99 0.98 0.99	0.99 0.98 0.98	1822 1999 3821 3821
accuracy macro avg	0.99 0.98 0.98	0.99 0.98 0.99 0.98	0.99 0.98 0.98	1822 1999 3821 3821
accuracy macro avg weighted avg	0.99 0.98 0.98	0.99 0.98 0.99 0.98	0.99 0.98 0.98 0.98	1822 1999 3821 3821
accuracy macro avg weighted avg	0.99 0.98 0.98 on Report for	0.99 0.98 0.99 0.98	0.99 0.98 0.98 0.98	1822 1999 3821 3821 3821
accuracy macro avg weighted avg	0.99 0.98 0.98 on Report for	0.99 0.98 0.99 0.98	0.99 0.98 0.98 0.98	1822 1999 3821 3821 3821
accuracy macro avg weighted avg Classification	0.99 0.98 0.98 on Report for precision	0.99 0.98 0.99 0.98 XGBoost:	0.99 0.98 0.98 0.98	1822 1999 3821 3821 3821
accuracy macro avg weighted avg Classification	0.99 0.98 0.98 on Report for precision 0.99	0.99 0.98 0.99 0.98 XGBoost: recall	0.99 0.98 0.98 0.98 	1822 1999 3821 3821 3821
accuracy macro avg weighted avg Classification	0.99 0.98 0.98 on Report for precision 0.99	0.99 0.98 0.99 0.98 XGBoost: recall	0.99 0.98 0.98 0.98 f1-score 0.99 0.99	1822 1999 3821 3821 3821
accuracy macro avg weighted avg Classification 1	0.99 0.98 0.98 on Report for precision 0.99	0.99 0.98 0.99 0.98 XGBoost: recall	0.99 0.98 0.98 0.98 	1822 1999 3821 3821 3821
accuracy macro avg weighted avg Classification accuracy	0.99 0.98 0.98 on Report for precision 0.99 0.99	0.99 0.98 0.99 0.98 XGBoost: recall 0.99 0.99	0.99 0.98 0.98 0.98 f1-score 0.99 0.99	1822 1999 3821 3821 3821
accuracy macro avg weighted avg Classification 0 1 accuracy macro avg	0.99 0.98 0.98 0.98 on Report for precision 0.99 0.99	0.99 0.98 0.99 0.98 XGBoost: recall 0.99 0.99	0.99 0.98 0.98 0.98 	1822 1999 3821 3821 3821 support 1822 1999 3821 3821

Classification Report for LightGBM:

precision recall f1-score support

0	0.99	0.99	0.99	1822
1	0.99	0.99	0.99	1999
accuracy			0.99	3821
macro avg	0.99	0.99	0.99	3821
weighted avg	0.99	0.99	0.99	3821

Classification Report for CatBoost:

	precision	recall	f1-score	support
0	0.99	0.99	0.99	1822
1	0.99	0.99	0.99	1999
accuracy			0.99	3821
macro avg	0.99	0.99	0.99	3821
weighted avg	0.99	0.99	0.99	3821

Classification Report for MLP Classifier:

	precision	recall	f1-score	support
0	0.98	0.99	0.99	1822
1	0.99	0.98	0.99	1999
accuracy			0.99	3821
macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99	3821 3821

```
[72]: # Plot ROC curves for all models (Identical to original notebook)
plt.figure(figsize=(10, 8))

for name, res in results.items():
    fpr, tpr, _ = roc_curve(y_test, res["y_pred_proba"])
    roc_auc = auc(fpr, tpr)
    plt.plot(fpr, tpr, label=f'{name} (AUC = {roc_auc:.4f})')

plt.plot([0, 1], [0, 1], 'k--', label='Chance (AUC = 0.50)') # Dashed diagonal
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
```



```
[74]: # Display confusion matrices for all models (Identical to original notebook)

num_models = len(models)

# Adjust subplot grid dynamically based on number of models

cols = 2 # Number of columns for subplots

rows = (num_models + cols - 1) // cols # Calculate rows needed

fig, axes = plt.subplots(rows, cols, figsize=(6 * cols, 5 * rows),

squeeze=False) # Ensure axes is always 2D

axes = axes.flatten() # Flatten to 1D array for easy iteration

for i, (name, res) in enumerate(results.items()):
```


[]: