Autocorrelation

Basics

For a given network of nanoparticles (NPs) with an evolving charge distribution $\vec{q}(t)$ and potential landscape $\vec{\phi}(t)$ at time t, we want to calculate the autocorrelation of the potential landscape or resulting electric currents I(t). The electric current of the output electrode is given as

$$I(t) = e \cdot rac{\Gamma_+(t) - \Gamma_-(t)}{t}$$

with t as the time passed during a \mathbf{single} jump. The potential landscape is given as

$$ec{\phi}(t) = C^{-1} \cdot ec{q}(t)$$

We calculate the autocorrelation \$X $\$ at lag τ as

$$(X\star X)(au)=rac{E[(X_t-\mu)(X_{t+ au}-\mu)]}{\sigma^2}$$

with μ and σ for mean and standard deviation.

Potential Landscape

For a simulation of a 7 x 7 network after equilibration, we execute N_{Jumps} Monte Carlo steps resulting in a potential time series $\phi(t)_{i_{NP}}$ for 49 NPs of index i_{NP} . Above we show some example potential series. When calculating the autocorrelation for those potentials and average across the whole network the resulting plot shows a **ns** time scale.

The indicated error results from calculating the autocorrelation for 300 combinations of control electrode voltages.

Electric Currents

As there is no difference in autocorrelation between $\phi(t)$ and I(t) we skip this part and instead measure the time passed $\Delta \tau$ in between occured jumps for a given junction. The plot above shows how often jumps occure at the output electrode junctions. There are always two jumps to be considered: J_- as Output-to-Network and J_+ as Network-to-Output jumps. In the upper case, the resulting electric current is of negative sign.

Here we compare the distribution Δau for an arbitrary junction or the output electrode junction.

Time $\Delta \tau$ between jumps across 300 voltage combinations

System Size

The plots below correspond to networks of $9\ \mbox{NPs}.$ The time scale is shifted to smaller values.

Time $\Delta \tau$ between jumps across 300 voltage combinations

