Data Handling:

A practical approach

Lecture 7 Chi-Square Test

Dr Yu Mo, Zoology

moyu@tcd.ie | https://github.com/github-moyu/Teaching

Summary of lecture 5/6

- Moving from comparing 2 means to more than 2 means
- Simple one-way analysis of variance (ANOVA)
- Generation of F ratio (within versus between group variation), p value and 2 types of degrees of freedom
- More complex designs concept of an interaction term

Effect of housing temperature on druginduced bone loss

And now for something a little different

How to interpret, plot and analyse frequency data

Type of data

Type of data

Analysis of frequency data

Type of data

- Frequency
- Categorical

- Independent observations
- Random sampling
- Presentation of data

Doughnuts sold today

Frequency breakdown by type: 4 categories

Category	Frequency	Percent	Cumulative percent
Sugar	221	30.2	30.2
Jam	309	42.3	72.5
Custard	78	10.7	83.2
Chocolate	123	16.8	100
Total	731	100	-

Doughnuts sold today

The relationship between college & doughnut type

College and doughnut type

H₀: There is no association between college & the type of doughnut students like

 Proportion of students that like jam doughnut in zoology is equal to the proportion of students in geography that like jam doughnut

H₁: There is an association between college & the type of doughnut students like

 Proportion of students that like jam doughnut in zoology is NOT equal to the proportion of students in geography that like jam doughnut

College and doughnut type

	Zoology	Geography	Total
Jam	21	36	57
Custard	102	69	171
Total	123	105	228

Calculation of expected values

	Zoology	Geography	Total
Jam	21	36	57
Custard	102	69	171
Total	123	105	228

 What do we expect if the null hypothesis is true?

 Overall 57/228 = 25% students are jam-liking If there is no difference between zoology & geography, we would expect 25% of each

- Zoology:25% of 123 = 30.75
- Geography:25% of 105 = 26.25

Calculation of expected values

	Zoology	Geography	Total
Jam	21	36	57
Custard	102	69	171
Total	123	105	228

Custard-liking zoologists:

123*171/228 = 92.25

Custard-liking geographers:

105*171/228 = 78.75

Similarly we work out the expected values for the other two cells (custard)

Expected values = Column total * Row total/total number of obs.

H₀

Observed values

	Zoology	Geography
Jam	21	36
Custard	102	69

Expected values

	Zoology	Geography
Jam	30.75	26.25
Custard	92.25	78.75

Calculation of Chi-squared statistic

We now need a measure of the difference between the observed and the expected

X² = Sum of (Observed frequency -Expected frequency)²/Expected frequency

Observed

	Zoology	Geography
Jam	21	36
Custard	102	69

Expected

	Zoology	Geography
Jam	30.75	26.25
Custard	92.25	78.75

 X^2 = Sum of (Observed frequency - Expected frequency)²/Expected frequency

$$X^2 = (21-30.75)^2/30.75 + (102-92.25)^2/92.25$$

+ $(36-26.25)^2/26.25 + (69-78.75)^2/78.75$
= $3.09 + 1.03 + 3.02 + 1.21 = 8.35$

df = (number of rows-1) * (number of columns -1)
=
$$(2-1)*(2-1) = 1$$

Critical values of the chi-square distribution

Examine the critical values of the Chisquared distribution

Power of the test 0.05 (95%)

- Critical value at df= 1
 - 3.84

- Any value > 3.84
 Reject null
 hypothesis
- Any value < 3.84 Do not reject null hypothesis
- Since 8.35 > 3.84
 we reject the null
 hypothesis

```
> chisq.test(d, correct=FALSE)

Pearson's Chi-squared test

data: d
X-squared = 8.9505, df = 1, p-value = 0.002774
```

There is an ASSOCIATION between college and doughnut preference

Chi-test
Frequency data (discrete)
+
Categorical

Analysis influence of season on waiting time

Data extremely skewed (not t-test)

Solution: create categories

Status coded: 0 (<5), 1 (<10), 2 (<20) & 3 (rest)

Analysis influence of season on waiting time

Analysis influence of season on waiting time

	0	1	2	3
Summer	68	88	301	199
Winter	161	74	251	106

```
> chisq.test(data_wait$Season,data_wait$cat, correct=FALSE)

Pearson's Chi-squared test

data: data_wait$Season and data_wait$cat
X-squared = 68.764, df = 3, p-value = 7.852e-15
```

df = (number of rows-1) * (number of columns -1) =
$$(2-1)$$
 * $(4-1)$ = 3

Not more than 20% of the cells should have an n less than 5

Solution: combine categories for 2X2 tables can use Fisher's exact test

Review

	Data	df
t-test	Continuous (two means)	n-1
ANOVA	Continuous (more than two means)	num df = denom df=
СНІ	Discrete (frequency)	(# cat1 -1)*(# cat2 -1)