Terminology Systems and Protege

Ameen Abu-Hanna Ronald Cornet Medical Informatics University of Amsterdam

Monica Crubezy
Samson Tu
Stanford Medical Informatics
Stanford University

Outline

- Understanding Terminology Systems
- Protege counter–parts

Terminology Systems

Many T systems

- ICD
- NHS Clinical Terms
- SNOMED

•

Desiderata

- Concept oriented
- Explicit Rels
- Composition Rules

- Domain Completeness
- Multiple classification
- Use of definitions
- Synonyms
- Multilingual
- Non redundant
- Unique codes
- Non ambiguous
- Non vague
- Context–free codes

Desiderata

- Concept oriented
- Explicit Rels
- Composition Rules

- Domain Completeness
- Multiple classification
- Use of definitions
- |Synonyms
- Multilingual
- Non redundant
- Unique codes
- Non ambiguous
- Non vague
- Context–free codes

Meta Model

FOL constraint on meta-model

For every language there is exactly one preferred term per concept

FOL constraints on meta-model

Different concepts cannot have the same preferred term

How to specify a new TS?

Intensive Care

Intensive Care Knowledge Base

± 2500 concepts: Diseases

Anatomy, Systems, Abnormalities, Etiologies

- Hepatitis: isa Disease, location Liver, abnormality Inflammation
- Infective Hepatitis: isa Hepatitis, cause Micro-organism

Knowledge Components in DICE

Domain Model in DICE

Nomenclature/Defs in DICE

Disease	Anatomical Component	Abnormality	Aetiology
Hepatitis	Def: Liver	Def: Infection	OR: (HepV, E-BV, CytomegaloV)

Protege?

Knowledge model in Protege

- Concept oriented
- Explicit Rels
- Composition Rules

- Domain Completeness
- Multiple classification
- Use of definitions
- Synonyms
- Multilingual
- Non redundant
- Unique codes
- Non ambiguous
- Non vague
- Context–free codes

Knowledge model in Protege

- Concept oriented
- Explicit Rels
- Composition Rules

- Domain Completeness
- Multiple classification
- Use of definitions
- Synonyms
- Multilingual
- Non redundant
- Unique codes
- Non ambiguous
- Non vague
- Context–free codes

Meta Model

Meta Model in Protege: Using Meta Classes

Standard class

- -Description
- -Language
- -Model concept
 - -Model term

Meta Classes

```
Classes

©:THINGA

©:SYSTEM-CLASSA

©:CLASSA

©:STANDARD-CLASS (28)

C Description (5)

C Language (3)

C Model_Term (5)

Model_Concept (14)

SEC:SLOTA
```

Meta Classes

Description

Instance Classes

•••

Instances of Meta Classes

PAL: Codes are unique

PAL: 1 preferred term per concept

```
(forall ?language
    (forall ?description1
         (forall ?description2
              (=> (and (language.description ?language ?description1)
                    (language.description ?language ?description2)
                    (/= ?description1 ?description2)
                    (= (description.modelconcept ?description1)
                      (description.modelconcept ?description2))
                    (synonym_type ?description1 (coerce—to—symbol "preferred")))
                 (and (not (synonym_type ?description2 (coerce—to—symbol "preferred")))
                    (exists ?term1
                         (and (description.modelterm?description1?term1)
                            (modelterm.description?term1?description1)
                            (not (exists ?term2
                                (and (/= ?term2 ?term1))
                                     (description.modelterm?description1?term2)
                                     (modelterm.description?term2?description1))))))))))
```

PAL: 1 concept per preferred term

```
(forall ?desc1
    (forall ?desc2
         (=> (and
               (/= ?desc1 ?desc2)
               (synonym_type ?desc1 (coerce—to—symbol "preferred"))
               (synonym_type ?desc2 (coerce—to—symbol "preferred"))
               (= (description.language ?desc1)
                 (description.language ?desc2))
               (/= (description.modelconcept ?desc1)
                 (description.modelconcept ?desc2)))
            (/= (description.modelterm ?desc1)
               (description.modelterm ?desc2)))))
```

Knowledge model in Protege

- Concept oriented
- Explicit Rels
- Composition Rules

- Domain Completeness
- Multiple classification
- Use of definitions
- Synonyms
- Multilingual
- Non redundant
- Unique codes
- Non ambiguous
- Non vague
- Context–free codes

Knowledge model in Protege

- Concept oriented
- Explicit Rels
- Composition Rules

- Domain Completeness
- Multiple classification
- Use of definitions
- Synonyms
- Multilingual
- Non redundant
- Unique codes
- Non ambiguous
- Non vague
- Context–free codes

Nomenclature/Defs in DICE

Disease	Anatomi	Abnormality	Aetiology
Hepatitis	Def: Liver	Def: Infection	OR: (HepV, E–BV,
			CytomegaloV)

Meta Slots

Nomenclature

```
XOR_OR_Slot Meta slot

slot.type {definition, ...}

only.descendands {T, F}
```

Gen Disease

System

Componet

Dysfunction

Etiology

Meta slot: XOR_OR_Slot

Slot instances used to specify legal combinations

Specification of etiology within combination rule of Viral Hepatitis

Refinement at instantiation of Gen Disease

Knowledge model in Protege

- Concept oriented
- Explicit Rels
- Composition Rules

- Domain Completeness
- Multiple classification
- Use of definitions
- Synonyms
- Multilingual
- Non redundant
- Unique codes
- Non ambiguous
- Non vague
- Context–free codes

Conclusions

- Knowledge model of Protege forms a good basis for terminology systems.
- Meta model of Concept-Language-Term can be naturally specified by Meta Classes and enforced by PAL constraints.
- Nomenclature can be specified by **Meta Slots** but is not enforced *within* Protege.