

Digital Geometry -Introduction

Junjie Cao @ DLUT Spring 2018

http://jjcao.github.io/DigitalGeometry/

Pleasure may come from illusion, but happiness can come only of reality.

Contents

- Motivations
- Pipeline
- About the course

What is CG?

- The <u>study of computer graphics</u> is a sub-field of <u>computer</u> <u>science</u> which studies methods for digitally synthesizing and manipulating visual content.
 - 3D
 - Image processing

 CG studies the manipulation of visual & geometric information using mathematical & computational techniques.

CG vs. <u>Visualization</u>

Vector

Bitmap

er ice

nts

Computer Graphics The big picture

• 3D graphics programming in 1979

approx. 25 triangles

approx. 50 x 100 pixels

About the course

Target Audience

• PhD students, MSc students, Advanced undergraduates

• Computer Science, Computer Engineering, Mathematics, Physics, Game Program, Biomedicine, Bioengineering, etc.

 Computer Graphics, Computer Vision, Robotics, Machine Learning, Signal and Image Processing, Medical Imaging

Prerequisites

- Differential Geometry
- Liner algebra: transformations, spectral decomposition, PCA, SVD
- Graph theory

• ...

- Combined with a lot of intuition ...
- Work on real data = Write/use a lot of code!

Prerequisites

- Familiarity with a graphics API (e.g. OpenGL)
 - If not, learn quickly (for the sake of visualization)
 - http://jjcao.github.io/ComputerGraphics/
- C++/Matlab coding skills
 - If Java is preferred, you will be on your own
- Capability to search Google and forums for useful information

Coding

Coding is very import in this areal

If you can not program, you will study nothing in this subject!

Recommented Textbooks

 Botsch, Kobbelt, Pauly, Alliez, Levy: Polygon Mesh Processing, AK Peters, 2010, http://www.pmp-book.org/

 A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing, 2015

Exercises

- 1. Introduction to **OpenMesh** (display mesh)
- 2. Registration
- 3. Implicit Surface Reconstruction
- 4. Surface Smoothing
- 5. Mesh Decimation
- 6. Remeshing

Grading

- Homework
 - Contribute to 40% of the final grade:
 - Document 20 + Compilable code 10 + Executable file 10
 - 2-registration,3-reconstruction,5-decimation,6-remeshing to 8 groups
- Oral Reports:
 - 10%(Paper)+10%(HW)
- Class performance
 - 20%
- Two students a team

Document in A4 & electronic: functions (required + optional)

RF1

Text description;
Code segment for the function
Image illustration;

. . .

OF₁

Text description;
Code segment for the function
Image illustration;

Code in electronic:

- I can open *.sln and build it successfully and without modify setting and anything outside the folder.
- Compress whole folder into a zip
- Run packing.bat before compression
- Good function name and proper comments

Exe in electronic:

- A folder with exe, dll, and input data.
- Compress whole folder into a zip.

Oral Reports:

- 10%(Paper)
 - Problem solved
 - Contribution
 - Pros & cons
 - Core ideas

- 10%(HW)
 - Show results (run software > show video > show pictures)
 - Report pipeline, main algorithms, main theory behind

Related courses @ dlut math

- C++ http://jjcao.github.io/cPlusPlus/
- Computer Graphics http://jjcao.github.io/ComputerGraphics/
- 2120040081, Digital Media Processing, 数字媒体处理方法选讲
- 3120033010, New Topics in Computational Geometry, 计算几何新专题

Course Objectives

 Relate the basic concept, tools, and algorithms in geometric modeling and digital geometry processing

 Design and implement individual components of geometric modeling system

• Apply the proposed methods in your own work

Video demos

Thanks

Acknowledgement

- Course material taught at:
 - University of Southern California, Hao Li