1

AI1110 ASSIGNMENT-8

DASARI SRINITH (CS21BTECH11015)

Abstract—This document contains the solution for Assignment 8 (NCERT GRADE 12 CHAPTER 13 Example 9)

EXAMPLE 9:

Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and the third card drawn is an ace?

SOLUTION:

In a deck of 52 cards there are 4 King cards and 4 Ace cards in total. Let us take three random variables X,Y,Z for three trials of drawing a card each of which takes values from the set of real numbers 0,1,2. Let us define those events in Table I, Table II, Table III.

Event	Description of event
X = 0	The drawn card is a King
X = 1	The drawn card is an ace
X=2	The drawn card is neither an ace nor a King

TABLE I DEFINING THE EVENTS FOR FIRST DRAW

Event	Description of event
Y = 0	The drawn card is a King
Y = 1	The drawn card is an ace
Y=2	The drawn card is neither an ace nor a King

TABLE II
DEFINING THE EVENTS FOR SECOND DRAW

Event	Description of event
Z = 0	The drawn card is a King
Z=1	The drawn card is an ace
Z=2	The drawn card is neither an ace nor a King

TABLE III
DEFINING THE EVENTS FOR THIRD DRAW

We have to find Pr((X = 0)(Y = 0)(Z = 1)).

We know that,

$$Pr((X = 0)) = \frac{\text{Number of Kings}}{\text{Total number of cards}}$$
 (1)

$$\Pr((X=0)) = \frac{4}{52} \tag{2}$$

and , also $\Pr\left((Y=0)|(X=0)\right)$ is the probability of second king with the condition that one king has already been drawn . As now ,there are 3 Kings in 51 cards .

$$\Pr\left((Y=0)|(X=0)\right) = \frac{3}{51} \tag{3}$$

Lastly , $\Pr\left((Z=1)|(Y=0)(X=0)\right)$ is the probability of third drawn card to be an ace ,with the condition that two kings have already been drawn . As now , there are 4 aces in 50 cards .

$$\Pr\left((Z=1)|(Y=0)(X=0)\right) = \frac{4}{50} \tag{4}$$

By multiplication law of probability, we have

$$\Pr((X=0)(Y=0)(Z=1)) = \Pr((X=0)) \Pr((Y=0)|(X=0)) \Pr((Z=1)|(X=0)(Y=0))$$
(5)

$$\Pr\left((X=0)(Y=0)(Z=1)\right) = \frac{4}{52} \frac{3}{51} \frac{4}{50} \tag{6}$$

$$=\frac{2}{5525}$$
 (7)