Chapter 1. The Role of Algorithms in Computing

1.1-2.

Memory usage is a significant factor of consideration in a real-world setting.

1.1-4.

Shortest path problem finds a shortest path between two nodes. Traveling salesman problem finds a shortest path that visits each city and returns to the origin city.

1.1-5.

The longest increasing subsequence problem is the problem in which only the best solution will do. The A* algorithm is the problem in which the heuristic solution will be enough.

1.2-2.

For n < 44, insertion sort beat merge sort.

1.2-3.

n = 15 is the smallest value such that $100n^2 < 2^n$.

1-1.

For $n = 10^10000$, algorithm with $\log n$ complexity solves in 0.033 seconds.

For $n = 10^10000$, algorithm with \sqrt{n} complexity solves in 10^{4985} centuries.

For $n = 10^30$, algorithm with $\log n$ complexity solves in 0.0001 seconds.

For $n=10^30$, algorithm with \sqrt{n} complexity solves in 0.315 centuries.

For $n = 10^30$, algorithm with n complexity solves in $3.170 \cdot 10^{14}$ centuries.

For $n = 10^15$, algorithm with \sqrt{n} complexity solves in 31.62 seconds.

For $n = 10^15$, algorithm with n complexity solves in 0.317 centuries.

```
For n = 10^15, algorithm with n \log n complexity solves in 15.798 centuries.
```

For $n = 10^{13}$, algorithm with \sqrt{n} complexity solves in 3.162 seconds.

For $n = 10^{13}$, algorithm with n complexity solves in 4 months.

For $n = 10^{13}$, algorithm with $n \log n$ complexity solves in 0.1371 centuries.

For $n = 10^{10}$, algorithm with \sqrt{n} complexity solves in 0.1 seconds.

For $n = 10^{10}$, algorithm with n complexity solves in 3 hours.

For $n = 10^10$, algorithm with $n \log n$ complexity solves in 4 days.

For $n = 10^8$, algorithm with n complexity solves in 2 minutes.

For $n = 10^8$, algorithm with $n \log n$ complexity solves in 1 hours.

For $n = 10^8$, algorithm with n^2 complexity solves in 3.2 centuries.

For $n = 10^7$, algorithm with n complexity solves in 10 seconds.

For $n = 10^7$, algorithm with $n \log n$ complexity solves in 3.9 minutes.

For $n = 10^7$, algorithm with n^2 complexity solves in 3.2 years.

For $n = 10^6$, algorithm with n complexity solves in 1 seconds.

For $n = 10^6$, algorithm with $n \log n$ complexity solves in 0.33 minutes.

For $n = 10^6$, algorithm with n^2 complexity solves in 11.6 days.

For $n = 10^5$, algorithm with $n \log n$ complexity solves in 1.66 seconds.

For $n = 10^5$, algorithm with n^2 complexity solves in 3 hours.

For $n = 10^5$, algorithm with n^3 complexity solves in 0.317 centuries.

For $n = 10^4$, algorithm with $n \log n$ complexity solves in 0.13 seconds.

For $n = 10^4$, algorithm with n^2 complexity solves in 2 minutes.

For $n = 10^4$, algorithm with n^3 complexity solves in 11.6 days.

For $n = 10^3$, algorithm with n^2 complexity solves in 1 seconds.

For $n = 10^3$, algorithm with n^3 complexity solves in 17 minutes.

For $n = 10^2$, algorithm with n^3 complexity solves in 1 seconds.

For $n = 10^2$, algorithm with 2^n complexity solves in 42000000000000 centuries.

For n = 50, algorithm with 2^n complexity solves in 36 years.

For n = 40, algorithm with 2^n complexity solves in 13 days.

For n = 30, algorithm with 2^n complexity solves in 18 minutes.

For n = 20, algorithm with 2^n complexity solves in 1.1 seconds.

For n = 20, algorithm with n! complexity solves in 771 centuries.

For n = 18, algorithm with n! complexity solves in 2.03 centuries.

For n = 17, algorithm with n! complexity solves in 11.3 years.

For n = 16, algorithm with n! complexity solves in 243 days.

For n = 15, algorithm with n! complexity solves in 16 days.

For n = 14, algorithm with n! complexity solves in 25 hours.

For n = 13, algorithm with n! complexity solves in 2 hours.

For n=12, algorithm with n! complexity solves in 8 minutes. For n=11, algorithm with n! complexity solves in 40 seconds. For n=10, algorithm with n! complexity solves in 4 seconds.