Problem (Problem 1):

- (a) Determine every holomorphic function $f: \mathbb{C} \to \mathbb{C}$ satisfying $\text{Re}(f(z)) = \text{Re}(z)^2 \text{Im}(z)^2$.
- (b) Let $f: \mathbb{C} \to \mathbb{C}$ be given by

$$f(z) := \sqrt{|Re(z) Im(z)|}$$
.

Show that the Cauchy–Riemann equations are satisfied for f at z = 0, but f is not differentiable at z = 0.

Solution:

(a) We want to determine $f: \mathbb{C} \to \mathbb{C}$ such that

$$f(x + iy) = u(x, y) + iv(x, y)$$

satisfies

$$u(x, y) = x^2 - y^2,$$

and the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

First, we must verify that u is indeed harmonic. This follows from the fact that

$$\frac{\partial^2 u}{\partial x^2} = 2$$
$$\frac{\partial^2 u}{\partial y^2} = -2.$$

Furthermore, we see that u is C^3 , as all of the third partial derivatives are equal to zero. Therefore, a harmonic conjugate of u exists and ensures that f is holomorphic on \mathbb{C} . By evaluating the Cauchy–Riemann equations separately, we find that

$$\frac{\partial v}{\partial y} = 2x$$
,

or v = 2xy + K(x), and

$$-\frac{\partial v}{\partial x} = -2y$$

or v = 2xy + L(y). These are only in harmony when v = 2xy + c, where $c \in \mathbb{C}$ is a constant. Thus, we find that

$$f(x + iy) = (x^2 - y^2) + i(2xy) + c$$

is necessarily (up to a constant) unique.

(b) We write f as

$$f(x + iy) = \sqrt{|xy|}.$$

In particular, we see that f(x + iy) = u(x, y) where $u(x, y) = \sqrt{|xy|}$. Evaluating the Cauchy–Riemann equations for f at 0, we have

$$\left. \frac{\partial u}{\partial x} \right|_{(0,0)} = \lim_{h \to 0} \frac{\sqrt{|0+h||0|} - \sqrt{|0||0|}}{h}$$

$$= 0$$

$$= \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y}\Big|_{(0,0)} = \lim_{h \to 0} \frac{\sqrt{|0||0 + h|} - \sqrt{|0||0|}}{h}$$

$$= 0$$

$$= -\frac{\partial v}{\partial x}.$$

Yet, we observe that if we let $h \rightarrow 0$ along the line h + ih with h > 0, then

$$f'(0,0) = \lim_{h \to 0} \frac{\sqrt{|h|^2} - \sqrt{|0|}}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} 1$$
$$= 1.$$

meaning that, while the partial derivatives $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$ and $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial y}$ exist and satisfy the Cauchy–Riemann equations at (0,0), the limit defining the complex derivative doesn't exist at (0,0).

Problem (Problem 2): Let $U \subseteq \mathbb{C}$ be a region, and let $f: U \to \mathbb{C}$ be a function.

- (a) Suppose that f and \bar{f} are both holomorphic. Show that f is constant.
- (b) Suppose that f is holomorphic and Re(f) is constant. Show that f is constant.

Solution

(a) Write f(x + iy) = u(x, y) + iv(x, y). Since f is holomorphic, we thus get

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Now, since \bar{f} is also holomorphic, we have

$$\overline{f(x+iy)} = u(x,y) - iv(x,y),$$

meaning that

$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$$

or that

$$\frac{\partial u}{\partial x} = \pm \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = \pm \frac{\partial v}{\partial x}.$$

Considering the first equation, we then get that $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$, or that

$$u = c_1(y)$$

$$v = d_1(x),$$

while in the second equation, we get that $\frac{\partial v}{\partial x} = 0$ and $\frac{\partial u}{\partial y} = 0$, meaning that u and v are thus constant. Therefore, f is constant.

(b) If f is holomorphic and Re(f) is constant, then $i \operatorname{Im}(f) = f - \operatorname{Re}(f)$ is holomorphic as it is the difference of two holomorphic functions, so $-i \operatorname{Im}(f)$ is holomorphic as it is a constant multiple of a holomorphic function, and thus Re(f) $-i \operatorname{Im}(f)$ is holomorphic as it is the sum of two holomorphic functions. This gives \overline{f} is holomorphic, so f is constant.

Problem (Problem 3): Let $U, V \subseteq \mathbb{C}$ be open sets, $f: V \to U$ holomorphic for which Re(f), $Im(f) \in C^2(V)$, and $u: U \to \mathbb{R}$ harmonic and $u \in C^2(U)$. Show that $u \circ f: V \to \mathbb{R}$ is a harmonic function.

Solution: We write $f(x + iy) = k(x,y) + \ell(x,y)$, so that $u \circ f(x + iy) = u(k(x,y), \ell(x,y))$. Observe then that this means $u \circ f$ is in $C^2(V)$, and that u is harmonic as a function of k and ℓ .

Using the fact that $u \circ f$ is in $C^2(V)$, we use the chain rule by taking

$$\begin{split} \frac{\partial^2 (u \circ f)}{\partial x^2} + \frac{\partial^2 (u \circ f)}{\partial y^2} &= \frac{\partial}{\partial x} \left(\frac{\partial (u \circ f)}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial (u \circ f)}{\partial y} \right) \\ &= \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial k} \frac{\partial k}{\partial x} + \frac{\partial u}{\partial \ell} \frac{\partial \ell}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial k} \frac{\partial k}{\partial y} + \frac{\partial u}{\partial \ell} \frac{\partial \ell}{\partial y} \right) \\ &= \frac{\partial u}{\partial k} \frac{\partial^2 k}{\partial x^2} + \frac{\partial u}{\partial \ell} \frac{\partial^2 \ell}{\partial x^2} + \frac{\partial u}{\partial k} \frac{\partial^2 k}{\partial y^2} + \frac{\partial u}{\partial \ell} \frac{\partial^2 \ell}{\partial y^2} \\ &+ \frac{\partial k}{\partial x} \left(\frac{\partial k}{\partial x} \frac{\partial}{\partial k} + \frac{\partial \ell}{\partial x} \frac{\partial}{\partial \ell} \right) \left(\frac{\partial u}{\partial k} \right) + \frac{\partial \ell}{\partial x} \left(\frac{\partial k}{\partial x} \frac{\partial}{\partial k} + \frac{\partial \ell}{\partial y} \frac{\partial}{\partial \ell} \right) \left(\frac{\partial u}{\partial \ell} \right) \\ &+ \frac{\partial k}{\partial y} \left(\frac{\partial k}{\partial y} \frac{\partial}{\partial k} + \frac{\partial \ell}{\partial y} \frac{\partial}{\partial \ell} \right) \left(\frac{\partial u}{\partial k} \right) + \frac{\partial \ell}{\partial y} \left(\frac{\partial k}{\partial y} \frac{\partial}{\partial k} + \frac{\partial \ell}{\partial y} \frac{\partial}{\partial \ell} \right) \left(\frac{\partial u}{\partial \ell} \right) \\ &+ \frac{\partial k}{\partial y} \left(\frac{\partial k}{\partial y} \frac{\partial}{\partial k} + \frac{\partial \ell}{\partial y} \frac{\partial}{\partial \ell} \right) \left(\frac{\partial u}{\partial k} \right) + \frac{\partial \ell}{\partial y} \left(\frac{\partial k}{\partial y} \frac{\partial}{\partial k} + \frac{\partial \ell}{\partial y} \frac{\partial}{\partial \ell} \right) \left(\frac{\partial u}{\partial \ell} \right) \\ &= \frac{\partial u}{\partial k} \frac{\partial^2 k}{\partial x^2} + \frac{\partial u}{\partial \ell} \frac{\partial^2 \ell}{\partial x^2} + 2 \frac{\partial^2 u}{\partial k \partial \ell} \frac{\partial k}{\partial x} \frac{\partial \ell}{\partial x} + \frac{\partial u}{\partial k} \frac{\partial^2 k}{\partial y^2} + \frac{\partial u}{\partial \ell} \frac{\partial^2 \ell}{\partial y^2} + 2 \frac{\partial^2 u}{\partial k \partial \ell} \frac{\partial k}{\partial y} \frac{\partial \ell}{\partial y} \\ &+ \frac{\partial^2 u}{\partial k^2} \left(\frac{\partial k}{\partial x} \right)^2 + \frac{\partial^2 u}{\partial \ell^2} \left(\frac{\partial \ell}{\partial x} \right)^2 + \frac{\partial^2 u}{\partial \ell^2} \left(\frac{\partial k}{\partial y} \right)^2 + \frac{\partial^2 u}{\partial \ell^2} \left(\frac{\partial k}{\partial y} \right)^2 + \frac{\partial^2 u}{\partial \ell^2} \left(\frac{\partial \ell}{\partial y} \right)^2, \end{split}$$

where we first used the fact that the mixed partials of u are equal by Clairaut's Theorem as u is in C^2 . Since k and ℓ are C^2 real/imaginary components of a holomorphic function, they are harmonic, so by reducing via the Cauchy–Riemann equations, we find

$$\begin{split} &= \frac{\partial u}{\partial k} \left(\frac{\partial^2 k}{\partial x^2} + \frac{\partial^2 k}{\partial y^2} \right) + \frac{\partial u}{\partial \ell} \left(\frac{\partial^2 \ell}{\partial x^2} + \frac{\partial^2 \ell}{\partial y^2} \right) \\ &+ \frac{\partial^2 u}{\partial k \partial \ell} \left(\frac{\partial \ell}{\partial y} \right) \frac{\partial \ell}{\partial x} + \frac{\partial^2 u}{\partial k \partial \ell} \left(-\frac{\partial \ell}{\partial x} \right) \frac{\partial \ell}{\partial y} \\ &+ \left(\frac{\partial k}{\partial x} \right)^2 \left(\frac{\partial^2 u}{\partial k^2} + \frac{\partial^2 u}{\partial \ell^2} \right) + \left(\frac{\partial k}{\partial y} \right)^2 \left(\frac{\partial^2 u}{\partial k^2} + \frac{\partial^2 u}{\partial \ell^2} \right) \\ &= 0, \end{split}$$

so $\mathfrak{u} \circ \mathfrak{f}$ is harmonic.

Problem (Problem 4): Define $g: \mathbb{C} \setminus \{1\} \to \mathbb{C}$ by $g(z) = \frac{z+1}{z-1}$ and $f(z) = e^{g(z)}$.

- (a) Prove that f is bounded in D.
- (b) Compute $\lim_{t \searrow 0} f(t + (1 t)a)$ for all $a \in \partial \mathbb{D} \setminus \{1\}$.

- (c) Compute $\lim_{\theta \searrow 0} f(e^{i\theta})$.
- (d) Compute $\lim_{\theta \nearrow 0} f(e^{i\theta})$.

Solution:

(a) We start by observing that

$$|f(z)| = |e^{g(z)}|$$
$$= e^{\operatorname{Re}(g(z))}.$$

Therefore, to establish that f(z) is bounded, we must establish an upper bound on Re(g(z)) when $z \in \mathbb{D}$. To this end, we establish that g maps \mathbb{D} to the left half-plane, $\{z \in \mathbb{C} \mid Re(z) < 0\}$.

We start with the Cayley transform,

$$h_1(z) = \frac{z - i}{z + i},$$

which bijectively maps the upper half-plane to the unit disc. Therefore, the inverse of the Cayley transform, given by

$$h_2(z) = \frac{iz + i}{-z + 1}$$
$$= \frac{i(z + 1)}{-(z - 1)}$$
$$= -i\frac{z + 1}{z - 1}$$

bijectively maps the unit disc to the upper half-plane (since Möbius transformations are holomorphic bijections where defined, as follows from computing the derivative). Since

$$q(z) = ih_2(z),$$

it follows that g(z) bijectively maps $\mathbb D$ to the left half-plane, as if x + iy is such that y > 0, then ix - y is in the left half-plane, meaning that Re(g(z)) < 0 for all $z \in \mathbb D$, so f is bounded on $\mathbb D$.

(b) Since e^w is defined for all $w \in \mathbb{C}$, we may evaluate the limit in g, then apply the exponential to obtain our desired result. Additionally, g is continuous whenever $a \neq 1$, so it follows that

$$\lim_{t\to 0} g(t+(1-t)a) = \frac{a+1}{a-1},$$

and

$$\lim_{t\to 0} f(t+(1-t)a) = e^{\frac{\alpha+1}{\alpha-1}}.$$

(c) By computing $g(e^{i\theta})$, we find that we get

$$\begin{split} g\big(e^{\mathrm{i}\theta}\big) &= \frac{(\cos(\theta)+1)+\mathrm{i}\sin(\theta)}{(\cos(\theta)-1+\mathrm{i}\sin(\theta))} \\ &= \frac{(\cos(\theta)+1+\mathrm{i}\sin(\theta))(\cos(\theta)-1-\mathrm{i}\sin(\theta))}{2-2\cos(\theta)} \\ &= \frac{\cos^2(\theta)-1+\sin^2(\theta)-2\mathrm{i}\sin(\theta)}{2-2\cos(\theta)} \\ &= -\mathrm{i}\frac{\sin(\theta)}{1-\cos(\theta)} \end{split}$$

$$= -i \cot(\theta/2)$$
.

Therefore,

$$\lim_{\theta \searrow 0} f(e^{i\theta}) = \lim_{\theta \searrow 0} e^{-i\cot(\theta/2)}$$
$$= DNE,$$

as $e^{i \cot(\theta/2)}$ is periodic, and $\lim_{\theta \searrow 0} \cot(\theta/2) = -\infty$.

(d) Similarly as above, we see that

$$\lim_{\theta \nearrow 0} f(e^{i\theta}) = \lim_{\theta \nearrow 0} e^{-i\cot(\theta/2)}$$
= DNE,

as $\lim_{\theta \nearrow 0} \cot(\theta/2) = \infty$.

Problem (Problem 5): Define $f: \mathbb{C} \setminus 0 \to \mathbb{C}$ by

$$f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

- (a) Let C_r denote the circle of radius r > 0 centered at the origin.
 - (i) Show that $f(C_r)$ is an ellipse if $r \neq 1$.
 - (ii) Find the center and equation of this ellipse.
 - (iii) Show that $f(C_1) = [-1, 1]$.
- (b) Show that $f|_{\mathbb{C}\setminus\overline{\mathbb{D}}}$ is injective, and $f(\mathbb{C}\setminus\overline{\mathbb{D}})=\mathbb{C}\setminus[-1,1]$.
- (c) Use f to find a conformal map from $\mathbb{C} \setminus [-1, 1]$ to $\mathbb{D} \setminus \{0\}$.
- (d) Show that $f(\{re^{i\theta} \mid r > 0\})$ is a hyperbola for each $\theta \in \mathbb{R} \setminus \frac{\pi}{2}\mathbb{Z}$, and $f(\{re^{i\theta} \mid r > 0\})$ is a ray for each $\theta \in \frac{\pi}{2}\mathbb{Z}$.

Solution:

(a) We write

$$C_r = \{x + iy \mid x^2 + y^2 = r^2\}.$$

(i) Letting z = x + iy where $z \in C_r$ with $\neq 1$, we find that

$$f(z) = f(x + iy)$$

$$= \frac{1}{2} \left(x + iy + \frac{1}{x + iy} \right)$$

$$= \frac{1}{2} \left(x + iy + \frac{x - iy}{r^2} \right)$$

$$= \frac{1}{2} \left(\frac{(r^2 + 1)x + (r^2 - 1)iy}{r^2} \right)$$

$$= \frac{1}{2r^2} \left((r^1 + 1)x + (r^2 - 1)iy \right),$$

meaning that if we write a scaling transformation $g: \mathbb{R}^2 \to \mathbb{R}^2$ by g(x, y) =

 $(\text{Re}(f(x+iy)), \text{Im}(f(x+iy))) \text{ if } (x,y) \neq (0,0) \text{ and } (0,0) \text{ otherwise, we find that}$

$$g(z) = \left(\frac{r^2 + 1}{2r^2}x, \frac{r^2 - 1}{2r^2}y\right)$$
$$= (s_1(r)x, s_2(r)y),$$

where s_1 and s_2 are nonzero scaling factors (constants that depend on r) for x and y. Thus, $f(C_r)$ is an ellipse.

(ii) Since there are no translations in the transformation $\mathbb{R}^2 \to \mathbb{R}^2$ that g defines, the center of $f(C_r)$ is zero. Therefore, the transformations $x \mapsto \frac{r^2+1}{2r^2}x$ and $y \mapsto \frac{r^2-1}{2r^2}y$ induce the transformation on the ellipse given by

$$x^2 + y^2 = r^2$$

maps to

$$\left(\frac{2r^2}{r^2+1}x\right)^2 + \left(\frac{2r^2}{r^2-1}y\right)^2 = r^2$$

which equals

$$\frac{x^2}{(r^2+1)^2} + \frac{y^2}{(r^2-1)^2} = \frac{1}{4r^2}.$$

(iii) We observe that in the transformation that, if $x^2 + y^2 = 1$, that since $r^2 - 1 = 0$, we have that for z = x + iy contained on S^1 ,

$$g(z) = (x, 0).$$

Since the x coordinate in x + iy ranges from -1 to 1 inclusive, we have that f(z) = [-1, 1].

(b) Consider a circle C_r with r > 1. From above, we know that $g(C_r)$ is an ellipse in \mathbb{R}^2 defined by the equation

$$\frac{x^2}{(r^2+1)^2} + \frac{y^2}{(r^2-1)^2} = \frac{1}{4r^2}.$$

In particular, since r > 1, the maps $r \mapsto r^2 - 1$ and $r \mapsto r^2 + 1$ are injective, so the ellipse defined $f(C_r) \subseteq \mathbb{C}$ is uniquely defined. It remains to be shown that if there is $w \in \mathbb{C} \setminus [-1,1]$, there is a unique $z \in \mathbb{C} \setminus \overline{\mathbb{D}}$ such that f(z) = w. Toward this end, we simply compute z, yielding

$$w = \frac{1}{2} \left(z + \frac{1}{z} \right)$$
$$z^2 - 2wz = -1$$
$$(z - w)^2 = w^2 - 1$$
$$z = w + \sqrt{w^2 - 1}.$$

Notice that the square root has branch points at -1 and 1, meaning that it is not well-defined along the line [-1,1]. Else, we may take the standard branch of the logarithm that defines the square root function, so that the square root is well-defined.

(c) We observe that $f|_{\mathbb{C}\setminus\overline{\mathbb{D}}}$ is conformally equivalent to $\mathbb{C}\setminus[-1,1]$, so there is a well-defined holomorphic inverse, which we call g, where $g:\mathbb{C}\setminus[-1,1]\to\mathbb{C}\setminus\overline{\mathbb{D}}$. We observe that, for $re^{i\theta}\in\mathbb{C}\setminus\mathbb{D}$, the function $q(z)=\frac{1}{z}$ is holomorphic, and

$$\frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta},$$

meaning that $\frac{1}{z}$ is a bijection to $\mathbb{D}\setminus\{0\}$. In particular, it has the holomorphic inverse $\frac{1}{z}\colon\mathbb{D}\setminus\{0\}\to\mathbb{C}\setminus\overline{\mathbb{D}}$. Therefore, we have $h\colon\mathbb{C}\setminus[-1,1]\to\mathbb{D}\setminus\{0\}$ given by $\frac{1}{q}$ where g is defined as above.

(d) Let $\theta \in \mathbb{R} \setminus \frac{\pi}{2}\mathbb{Z}$. Then,

$$\begin{split} f \! \left(r e^{i \theta} \right) &= \frac{1}{2} \! \left(r \cos(\theta) + i r \sin(\theta) + \frac{1}{r \cos(\theta) + i r \sin(\theta)} \right) \\ &= \frac{1}{2} \! \left(r \cos(\theta) + i r \sin(\theta) \frac{\cos(\theta) - i \sin(\theta)}{r} \right) \\ &= \frac{1}{2} \! \left(\frac{r^2 \cos(\theta) + i r^2 \sin(\theta) + \cos(\theta) - i \sin(\theta)}{r} \right) \\ &= \frac{1}{2} \! \left(\cos(\theta) \frac{\left(r^2 + 1 \right)}{r} + i \sin(\theta) \frac{r^2 - 1}{r} \right). \end{split}$$

This yields a curve in $\mathbb{C} \cong \mathbb{R}^2$ parametrized by

$$\gamma(r) = \left(\cos(\theta) \frac{r^2 + 1}{2r}, \sin(\theta) \frac{r^2 - 1}{2r}\right).$$

If we let x and y be as in those two coordinates, we desire to find a relationship between x and y in the form of a hyperbola. Toward this end, we examine

$$\begin{split} \cos^2(\theta) \frac{\left(r^2+1\right)^2}{4r^2} - \sin^2(\theta) \frac{\left(r^2-1\right)^2}{4r^2} &= \frac{\cos^2(\theta) \left(r^4+2r^2+1\right) - \sin^2(\theta) \left(r^4-2r^2+1\right)}{4r^4} \\ &= \frac{\left(\cos^2(\theta) - \sin^2(\theta)\right) 4r^2}{4r^2} \\ &= \cos(2\theta) \end{split}$$

meaning that, since θ is fixed and is such that $\cos(2\theta) \neq 0$, these coordinates for $\gamma(r)$ do indeed satisfy

$$x^2 - y^2 = 1,$$

so that $Im(\gamma)$ is a hyperbola.

If $\theta \in \frac{\pi}{2}\mathbb{Z}$, then we have two cases.

• If $\theta = \pi k$ for some $k \in \mathbb{Z}$, then $\cos(\theta) = (-1)^k$ and $\sin(\theta) = 0$, so that

$$f(re^{i\theta}) = \frac{1}{2} \left(r(-1)^k + \frac{1}{r(-1)^k} \right)$$
$$= \frac{(-1)^k}{2} \frac{r^2 + 1}{r}$$

which is a ray in \mathbb{C} so long as r > 0.

• Similarly, if $\theta = \frac{\pi}{2} + \pi k$ for some $k \in \mathbb{Z}$, then $\sin(\theta) = (-1)^k$ and $\cos(\theta) = 0$, so that

$$f(re^{i\theta}) = \frac{1}{2} \left(ir(-1)^k + \frac{1}{ir(-1)^k} \right)$$
$$= i\frac{(-1)^k}{2} \frac{r^2 - 1}{r},$$

which is yet again a ray in \mathbb{C} so long as r > 0.