của dao đông ⁿ trùng với	phi côna
đô trễ đáp ứng của hệ thống điều khiển.	Cũng như vậy, ở điều kiện bay cao 4
tình trang cung cấp	khí đông học
khả năngy cho hỏngg huyếg bạy t	
dao đông.	
Nếu xảy ra dao động do phi công gây ı	a ı găp phải
phi công phải dưa vào tính ổn	
tính ổn định	1
thả các bộ điều khiển. Nếu sự kíc	ch thích không ổn định
tiếp diễn, dao đông nguy hiệ	ểm ₁ biên đô
sẽ phát triển trọng một thời gian rất r	- •

ROLL COUPLING 5

Sư xuất hiện của "quán tính a coupling" ' problems trong máy bay hiện đại là kết quả tư nhiện của sự thay đổi liên tục về khí đông học và đặc tính quán tính để đáp ứng các yêu cầu của chuyến bay tốc đô cao. - Các vấn đề về liên kết quán tính bất ngờ chỉ khi phân tích ổn định đông phân tích không tính đến đầy đủ thay đổi về khí đông học và quán tính đặc tính của cấu hình máy bay. The term of "intertia a coupling" is somewhat sai lêch vì toàn bô vấn đề là một trong những sự kết hợp khí đông học cũng như quán tính. "Sự liên kết", '' xảy ra khi có một nhiễu loạn về một trục của máy bay gây ra nhiễu loạn về một trục khác. Một ví dụ về chuyển động không liên kết chuyển đông là sư nhiễu loan do máy bay cung cấp khi chiu tác đông của đô lệch bánh lái. resulting chuyển động bi giới han motion without t sự nhiễu loạn theo hướng vaw hoặc roll. Một ví dụ về chuyển động kết hợp có thể là disturbance provided an airplane when subđược tác động bởi độ lệch bánh lái. The ensuing motion có thể là một sự kết hợph của sự nhạo và chuyển đông lăn. Do đó, chuyển đông lăn là liên kết với chuyển động hướng lái để xác định resulting motion. Loại tương tác này xuất phát từ đặc tính khí động học và được được gọi là "tương tác khí động học." Một loại liên kết riêng biệt là kết quả từ

Một loại liên kết riêng biệt là kết quả từ inertia characteristics of the airplane conliguration. Đặc tính quán tính của toàn bộ plete airplane can be divided into the roll, yaw,

và quán tính nhào và mỗi quán tính là một thước đo	
của lưc cản đối với gia tốc lăp, phao hoặc ngầng s	
gia tốc của máy bay. The long.slender.	
mật độ cao y thân máy bay với cánh ngắn, mỏng	
tao ra quán tính lăn khá nhỏ trong	
so sánh với đô ngầng và quán tính hướng trục.	
Những đặc điểm này là điển hình của máy bay hiện đại.	
cấu hình máy bay. Thông thường hơn 1	
thấp máy bay tốc đô có thể có sải cánh	
lớn hơn chiều dài thân máv bay. Loại	
cấu hình tao ra một tương đối y lăn lớn	
guán tính. So sánh các cấu hình này	
được thể hiện trong hình 4.34.	
Sư kết hợp quán tính có thể được minh hoa 🗓 🌡 🍇 ng cách xem xét	
sidering the mass of the airplane to be con-	
tâp trung vào hai vếu tố, một vếu tố đai diên cho	
khối lượng phía trước c.g. và một khối lượng đại diện cho	
khối lượng phía sau trọng tâm. Có hai truc chính	
các hệ trục để xem xét: (1) khí đông học.	
hoặc trục gió đi qua trọng tâm trong tương đối	
aió hướna. , và (2) quán tính truc là	
qua trong tâm trong lưc theo hướng của hai	
các khối lượng phần tử. Hệ trục này được minh họa trong hình 4.34.	
minh hoa trong hình 4.34.	
Nếu máy bay được hiển thị trong hình 4.34 ở trạng thái	
môt số điều kiên bayı nơi truc quán tính	
và truc khí động học được liên kết, không có quán tính	
Coupling Se do kết quả từ việc lộn vòng g chuyển động.	
Tuy nhiên, nếu trục quán tính nghiêng so với	
truc khí đông học, sư quay 🕟 về khí đông học	
trục đồng lực học sẽ tạo ra lực lỵ tâm và	
gây ra một sự thay đối về góc chúi 🙎 mô men. Trong trường hợp này, một	
chuyển động lăn của máy bay gây ra một lực nghiêng	
ing moment through hành đông mô men quán tính	
lưc. Đây là "quán tính a coupling," và là	
minh họa bằng phần B của hình 4.34.	
Khi máy bay dược xoay về	
trục quán tính, sẽ không có sự liên kết quán tính nào tồn tại, nhựng	
sự kết hợp khí động học sẽ l sẽ hiện diện. Phần	
C của hình 4.34 cho thấy máy bay sau khi lộn vòng	
90" quanh trục quán tính. Dộ nghiêng n	
ban đầu là y góc tấp (a) là	
bây giờ là góc trượt ngang (-6).). Cũng vậy.	
nguyên bản zero góc trượt ngang đã trở thành zero	
góc tấn công. Sự trượt hông do điều này gây rạ	
chuyển dịch 90° sẽ l ánh hưởng đến tốc độ lộn tốc độ	