

"Data comes in many formats, but R prefers just one: tidy data."

- Garrett Grolemund

Tidy data

A data set is **tidy** iff:

- 1. Each variable is in its own column
- 2. Each **observation** is in its own **row**
- 3. Each value is in its own cell

Also see these papers, in your "other resources" folder:

Wickham, 2014: Tidy Data

Broman and Woo, 2017: Data Organization in Spreadsheets

Quiz

What are the variables in this data set?

				<i>a</i> . ∧ ×
country <ch>></ch>	y ar <irt></irt>	cates <nt></nt>	population <int></int>	
Afglanistan	1999	45	19987071	
Afglanistan	2000	2866	205)5360	
Brazil	1999	37'37	1720)6362	
Brazil	2000	80-88	1745)4898	
Chira	1999	212 58	12729.5272	
Chita	2000	213 66	12804 8583	

Tidy data

A data set is **tidy** iff:

- 1. Each variable is in its own column
- 2. Each observation is in its own row
- 3. Each value is in its own cell

variable: all values that measure the same underlying attribute

observation: all values measured on the same unit

value: belongs to one variable and one observation

Quiz

What are the variables in this data set?

able2				
country <<	year <i <="" th=""><th>type <chr></chr></th><th>count <int></int></th><th>a x</th></i>	type <chr></chr>	count <int></int>	a x
Af	1909	cases	745	
Af	1909	population	19987041	
Af	2000	cases	2666	
Af	2000	population	2(59534)	
Brazil	1909	cases	7737	
Brazil	1909	population	1720063(2	
Brazil	2000	cases	3488	
Brazil	2000	population	1745048	
China	1909	cases	2-258	
China	1979	population	1277915262	

CC BY-SA RStudio

Tidy data

A data set is **tidy** iff:

- 1. Each variable is in its own column
- 2. Each observation is in its own row
- 3. Each value is in its own cell

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>	
Afghanistan	1999	745	19987071	
Afghanistan	2000	2666	20595360	
Brazil	1999	37737	172006362	
Brazil	2000	80488	174504898	
China	1999	212258	1272915272	
China	2000	213766	1280428583	

6 rows

table1\$country
table1\$year
table1\$cases
table1\$population

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>	rate <dbl></dbl>
Afghanistan	1999	745	19987071	0.0000372741
Afghanistan	2000	2666	20595360	0.0001294466
Brazil	1999	37737	172006362	0.0002193930
Brazil	2000	80488	174504898	0.0004612363
China	1999	212258	1272915272	0.0001667495
China	2000	213766	1280428583	0.0001669488

6 rows

"Tidy data sets are all alike; but every messy data set is messy in its own way."

- Hadley Wickham

ticly/r

tidyr

A package that reshapes the layout of tabular data.

pivot_longer()

Toy data

```
2 03-Tidy-Data.Rmd *
                                                   🖅 🔒 🥕 🖳 Preview 🕶 🌼 🗝 🔃 Insert 🔻 🔐 🕁 Run 🔻 💁 🖚
  2 title: "Tidy Data"
  3 output: html_notebook
  6 * ```{r setup}
                              cases <- tribble(</pre>
  7 library(tidyverse)
  8 library(babynames)
                                  ~Country, ~"2011", ~"2012", ~"2013",
 10 # Toy data
 11 cases <- tribble(</pre>
      ~Country, ~"2011", ~"2012", ~
  12
                                                       7000,
                                          "FR",
                                                                            6900,
                                                                                              7000,
  13
         "FR", 7000,
                      6900,
         "DE", 5800,
                      6000,
  14
                                          "DE",
                                                                                              6200,
                                                           5800, 6000,
         "US", 15000, 14000,
  15
  16
  17
                                          "US",
                                                         15000,
                                                                           14000,
                                                                                            13000
     pollution <- tribble(</pre>
          ~city, ~size, ~amount,
      "New York", "large",
                          23,
      "New York", "small",
       "London", "large",
       "London", "small",
                         16,
       "Beijing", "large",
                         121,
       "Beijing", "small",
  25
                         121
 26 )
  27
  28 x <- tribble(
      \simx1, \simx2,
      "A", 1,
      "E", NA
 35
 1:1 E Tidy Data ‡
                                              R Markdown $
```


Quiz

What are the variables in cases?

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Quiz

What are the variables in cases?

- Country
- Year
- Count

Your Turn 1

On a sheet of paper, draw how the cases data set would look if it had the same values grouped into three columns: country, year, n

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
---------	------	---

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Coxtry	Yar	
FR	2011	7000
DE	2011	58)0
US	2011	15000
FR	2012	69)0
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pivot_longer()

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Countr	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

4		
1		

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country FR DE US

names_to (former column names)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

values_to (former cells)

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n	
FR	2011	7000	
DE	2011	5800	
US	2011	15000	
FR	2012	6900	
DE	2012	6000	
US	2012	14000	
FR	2013	7000	
DE	2013	6200	
US	2013	13000	

pivot_longer()

```
cases %>% pivot_longer(cols = 2:4, names_to = "year", values_to = "n")
```

data frame to reshape

numeric indices of columns to collapse (or names)

name of the new key column (a character string) name of the new value column (a character string)

pivot_longer()

cases %>% pivot_longer(2:4, "year", "n")

numeric indices

	2	3	4
Country <chr></chr>	2011 <dbl></dbl>	2012 <dbl></dbl>	2013 <dbl></dbl>
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pivot_longer()

cases %>% pivot_longer(c("2011", "2012", "2013"), "year", "n")

names

	2011	2012	2013
Country <chr></chr>	2011 <dbl></dbl>	2012 <dbl></dbl>	2013 <dbl></dbl>
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pivot_longer()

cases %>% pivot_longer(-Country, "year","n")

Everything except...

Not Country Not Country Not Country

Country <chr></chr>	2011 <dbl></dbl>	2012 <dbl></dbl>	2013 <dbl></dbl>
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Your Turn 2

Use pivot_longer() to reorganize table4a into three columns: country, year, and cases.

	country <chr></chr>	1999 <int></int>	2000 <int></int>
1	Afghanistan	745	2666
2	Brazil	37737	80488
3	China	212258	213766

table4a %>%
pivot_longer(cols = 2:3, names_to = "year", values_to = "n")

country <chr></chr>	year <chr></chr>	n <int></int>	
Afghanistan	1999	745	
Brazil	1999	37737	
China	1999	212258	
Afghanistan	2000	2666	
Brazil	2000	80488	

213766

2000

6 rows

China

pivot_wider()

Toy data

```
2 03-Tidy-Data.Rmd
    💷 🔚 🧚 🔍 🔃 Preview 🕶 💮 🛨 Insert 🕶 🔐 🕁 🔛 Run 🕶 🥌 🖚
  2 title: "Tidy Data"
  3 output: html_notebook
  6 - ```{r setup}
  7 library(tidyverse)
  8 library(babynames)
                        pollution <- tribble(</pre>
 10 # Toy data
                                    ~city, ~size, ~amount,
 11 cases <- tribble(</pre>
      ~Country, ~"2011",
         "FR", 7000,
                            "New York", "large",
                                                                       23,
         "DE", 5800,
 14
         "US", 15000,
 15
                            "New York", "small",
                                                                       14,
 16
 17
                               "London", "large",
     pollution <- tribble(</pre>
                                                                       22,
 19
         ~city, ~size,
      "New York", "large"
                               "London", "small",
                                                                       16,
      "New York", "small"
       "London", "large"
                             "Beijing", "large",
       "London", "small"
                                                                       121,
       "Beijing", "large"
 25
       "Beijing", "small",
                             "Beijing", "small",
                                                                        56
 26
 28 x <- tribble(
      ~x1, ~x2,
     "E", NA
 35
1:1 E Tidy Data ‡
                                            R Markdown $
```


Quiz

What are the variables in pollution?

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

Quiz

What are the variables in pollution?

CKY	particle size	amount (µg/m³)
NewYork	large	> 23 A
NewYork	small	14
Lordon	large	>22
Lordon	small	16
Being	large	121
Being	small	56

- City
- Amount of large particulate
- Amount of small particulate

Your Turn 3

On a sheet of paper, draw how this data set would look if it had the same values grouped into three columns: city, large, small

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
------	-------	-------

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

pivot_wider()

city	large	small
New York	23	14
London	22	16
Beijing	121	56

1 2

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New Yor	23	14
London	22	16
Beijing	121	56

names_from (new column names)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

values_from (new cells)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

pivot_wider()

pollution %>% pivot_wider(names_from = size, values_from = amount)

data frame to reshape

column to use for keys (becomes new column names)

column to use for values (becomes new column cells)

pollution %>% pivot_wider(names_from = size, values_from = amount)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

Your Turn 4

Use pivot_wider() to reorganize table2 into four columns: country, year, cases, and population.

				Æ ∧ ×
country <chr></chr>	-	type <chr></chr>	count <int></int>	
Afghanistan	1999	cases	745	
Afghanistan	1999	population	19987071	
Afghanistan	2000	cases	2666	
Afghanistan	2000	population	20595360	
Brazil	1999	cases	37737	
Brazil	1999	population	172006362	

table2 %>%
pivot_wider(names_from = type, values_from = count)

	country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
1	Afghanistan	1999	745	19987071
2	Afghanistan	2000	2666	20595360
3	Brazil	1999	37737	172006362
4	Brazil	2000	80488	174504898
5	China	1999	212258	1272915272
6	China	2000	213766	1280428583

6 rows

Tidy Data with

