Lösungen: Amann, Escher - Analysis

Kapitel I.

Grundlagen

- 1. Logische Grundbegriffe
- 2. Mengen
- 3. Abbildungen
- 4. Relationen und Verknüpfungen
- 5. Die natürlichen Zahlen

Aufgabe 5.2. Folgende Identitäten sind durch vollständige Induktion zu verifizieren:

(a)
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}, n \in \mathbb{N}$$

(b)
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, n \in \mathbb{N}$$

Beweis. (a) Für n = 0 ist die Behauptung klar. Nach Induktionsannahme gelte

$$\sum_{k=0}^{n-1} k = \frac{(n-1)n}{2} \ .$$

Also folgt

$$\sum_{k=0}^{n} k = \sum_{k=0}^{n-1} k + n = \frac{(n-1)n}{2} + n = \frac{n^2 - n + 2n}{2} = \frac{n^2 + n}{2} = \frac{n(n+1)}{2}.$$

(b) Für n = 0 ist die Behauptung wieder klar. Sei nach Induktionsannahme

$$\sum_{k=0}^{n-1} k^2 = \frac{(n-1)n(2(n-1)+1)}{6} = \frac{(n-1)n(2n-1)}{6}$$

Also folgt

$$\sum_{k=0}^{n} k^2 = \sum_{k=0}^{n-1} + n^2 = \frac{(n-1)n(2n-1)}{6} + \frac{6n^2}{6} = \frac{(n^2-n)(2n-1) + 6n^2}{6}$$
$$= \frac{2n^3 - n^2 - 2n^2 + n + 6n^2}{6} = \frac{2n^3 + 3n^2 + n}{6} = \frac{n(2n^2 + 3n + 1)}{6}$$
$$= \frac{n(n+1)(2n+1)}{6}.$$

Aufgabe 5.5. (a) Man verifiziere, dass für $n, m \in \mathbb{N}$ mit $m \leq n$ gilt:

$$[m!(n-m)!] | n!$$

(b) Für $m, n \in \mathbb{N}$ werden die Binomialkoeffizienten $\binom{n}{m} \in \mathbb{N}$ definiert durch

$$\binom{n}{m} := \begin{cases} \frac{n!}{m!(n-m)!} \ , & n \leq m \\ 0 \ , & m > n \end{cases}$$

Man beweise folgende Rechenregeln:

(i)
$$\binom{n}{m} = \binom{n}{n-m}$$

(ii)
$$\binom{n}{m-1} + \binom{n}{m} = \binom{n+1}{m}, \ 1 \le m \le n$$

(iii)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

(iv)
$$\sum_{k=0}^{m} {n+k \choose n} = {n+m+1 \choose n+1}$$

Beweis. (a) Seien $n, m \in \mathbb{N}, m \leq n$.

$$\frac{n!}{m!(n-m)!} = \frac{n(n-1)\cdots(n-m+1)}{m!}$$

Im Zähler haben wir m Faktoren. Also gibt es einen Faktor $(n-i_1)$, so dass $m \mid (n-i_1)$. Setzen wir dieses Verfahren fort, so finden wir $m! \mid n(n-1)\cdots(n-m+1)$, also $m!(n-m)! \mid n!$.

$$\binom{n}{n-m} = \frac{n!}{(n-m)! (n-(n-m))!} = \frac{n!}{(n-m)!m!} = \binom{n}{m}$$

(ii)

$$\binom{n}{m-1} + \binom{n}{m} = \frac{n!}{(m-1)!(n-m+1)!} + \frac{n!}{m!(n-m)!}$$

$$= \frac{n! \cdot m}{m!(n-m+1)!} + \frac{n! \cdot (n-m+1)}{m!(n-m+1)!}$$

$$= \frac{n!(n+1)}{m!(n-m+1)!} = \frac{(n+1)!}{m!(n+1-m)!} = \binom{n+1}{m}$$

3

(iii) Wir beweisen die Behauptung mit vollständiger Induktion über n. Für n=0 haben wir

$$\binom{0}{0} = \frac{0!}{0! \cdot 0!} = 1 = 2^0$$

Nehmen wir an, es gelte $\sum_{k=0}^{n-1} \binom{n-1}{k} = 2^{n-1}$, dann folgt mit (ii):

$$\sum_{k=0}^{n} \binom{n}{k} = 1 + \sum_{k=1}^{n} \left[\binom{n-1}{k-1} + \binom{n-1}{k} \right] = 1 + \sum_{k=0}^{n-1} \binom{n-1}{k} + \sum_{k=1}^{n} \binom{n-1}{k}$$
$$= 1 + 2^{n-1} + \sum_{k=1}^{n-1} \binom{n-1}{k} = 2^{n-1} + \sum_{k=0}^{n-1} \binom{n-1}{k} = 2^{n-1} + 2^{n-1} = 2^{n}$$

(iv) Wiederum verwenden wir Induktion über n. Für n=0 haben wir $\binom{0}{0}=1=\binom{n+1}{n+1}$. Sei nach Induktionsannahme $\sum_{k=0}^{m-1} \binom{n+k}{n} = \binom{n+m}{n+1}$. Dann folgt

$$\sum_{k=0}^{m} \binom{n+k}{n} = \sum_{k=0}^{m-1} \binom{n+k}{n} + \binom{n+m}{n} = \binom{n+m}{n+1} + \binom{n+m}{n} = \binom{n+m+1}{n+1}.$$

П

6. Abzählbarkeit

7. Gruppen und Homomorphismen

8. Ringe, Körper und Polynome

Aufgabe 8.1. Es seien a und b kommutierende Elemente eines Ringes mit Eins und $n \in \mathbb{N}$. Man beweise:

(a)
$$a^{n+1} - b^{n+1} = (a-b) \sum_{j=0}^{n} a^j b^{n-j}$$

(b)
$$a^{n+1} - 1 = (a-1) \sum_{j=0}^{n} a^j$$

Beweis. (a)

$$(a-b)\sum_{j=0}^{n}a^{j}b^{n-1} = \sum_{j=0}^{n}a^{j+1}b^{n-j} - \sum_{j=0}^{n}a^{j}b^{n+1-j}$$

$$= a^{n+1} + \sum_{j=0}^{n-1}a^{j+1}b^{n-j} - \sum_{j=1}^{n}a^{j}b^{n+1-j} - b^{n+1}$$

$$= a^{n+1} + \left(\sum_{j=0}^{n-1}a^{j+1}b^{n-j} - \sum_{j=0}^{n-1}a^{j+1}b^{n-j}\right) - b^{n+1}$$

$$= a^{n+1} - b^{n+1}$$

(b) Setze b = 1 in (a).

Aufgabe 8.3. Sei K ein Körper. Dann ist K[X] nullteilerfrei.

Beweis. Angenommen, es existieren $0 \neq p = \sum_{k=0}^n p_k X^k \in K[X]$ und $0 \neq q = \sum_{k=0}^m q_k X^k \in K[X]$ mit pq = 0, d.h.

$$pq = \left(\sum_{k=0}^{n} p_k X^k\right) \left(\sum_{k=0}^{m} q_k X^k\right) = \sum_{k=0}^{n+m} \underbrace{\left(\sum_{\ell=0}^{k} p_{\ell} q_{k-\ell}\right)}_{(pq)_k} X^k = 0$$

Seien i und j die kleinsten Indizes mit $p_i \neq 0$ und $q_j \neq 0$. Dann ist aber

$$(pq)_{i+j} = \sum_{\ell=0}^{i+j} p_{\ell} q_{(i+j)-\ell}$$

$$= \underbrace{p_0}_{=0} q_{i+j} + \dots + \underbrace{p_{i-1}}_{=0} q_{j+1} + \underbrace{p_i q_j}_{\neq 0} + p_{i+1} \underbrace{q_{j-1}}_{=0} + \dots + p_n \underbrace{q_0}_{=0} \neq 0$$

ein Widerspruch.

Aufgabe 8.4. Man zeige, dass ein endlicher Körper nicht angeordnet werden kann.

Beweis. Sei K ein endlicher Körper. Dann gibt es ein $n \in \mathbb{N}$ so, dass

$$\underbrace{1+\cdots+1}_{n \text{ mal}} = 0.$$

Angenommen, K kann angeordnet werden, dann ist

$$0 < 1 < 1 + 1 < \cdots < 1 + \cdots + 1 = 0$$

ein Widerspruch.

Aufgabe 8.10. Es seien K ein angeordneter Körper und $a, b, c, d \in K$.

(a) Man beweise die Ungleichung

$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|} \ .$$

(b) Gelten b > 0, d > 0 und $\frac{a}{b} < \frac{c}{d}$, so folgt

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

(c) Für $a, b \in K^{\times}$ gilt

$$\left| \frac{a}{b} + \frac{b}{a} \right| \ge 2$$

Beweis. (a) Todo.

(b) • Wegen b, d > 0 ist die erste Ungleichung äquivalent zu

$$a(b+d) = ab + ad < ab + bc = b(a+c)$$
.

Nach Abziehen von ab haben wir ad < bc. Das ist wiederum äquivalent zur Voraussetzung $\frac{a}{b} < \frac{c}{d}$.

• Auch hier ist die Ungleichung äquivalent zu

$$d(a+c) = ad + cd < bc + cd = c(b+d).$$

Abziehen von cd führt wiederum auf ad < bc.

(c) Wegen $(a - b)^2 = a^2 + b^2 - 2ab$ ist

$$a^2 + b^2 = \underbrace{(a-b)^2}_{>0} + 2ab \ge 2ab$$
.

Also folgt

$$\left|\frac{a}{b} + \frac{b}{a}\right| = \left|\frac{a^2 + b^2}{ab}\right| \ge \left|\frac{2ab}{ab}\right| = 2 \ .$$

Aufgabe 8.12. Sei R ein angeordneter Ring und für $a, b \in R$ gelten $a \ge 0$ und $b \ge 0$. Es gebe ein $n \in \mathbb{N}^{\times}$ mit $a^n = b^n$. Dann ist a = b.

Beweis. Falls a=0, dann ist $0=a^n=b^n$ und da ein angeordneter Ring immer unendlich viele Elemente hat, folgt b=0. Genauso folgt wenn b=0, dass a=0 gelten muss.

Seien a, b > 0 vorausgesetzt. Dann folgt aus

$$0 = a^{n} - b^{n} = (a - b) \sum_{j=0}^{n-1} a^{j} b^{n-j},$$

dass a - b = 0 gelten muss, also a = b.

9. Die rationalen Zahlen

10. Die reellen Zahlen

Aufgabe 10.6. Man beweise die Bernoullische Ungleichung: Für $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1+x)^n \ge 1 + nx .$$

Beweis. Wir verwenden vollständige Induktion. Für n = 0 ist $(1+x)^0 = 1 \ge 1 = 1+0 \cdot x$. Sei nach Induktionsannahme $(1+x)^{n-1} \ge 1 + (n-1)x$. Dann folgt:

$$(1+x)^{n-1} = (1+x)(1+x)^{n-1} \ge (1+x)(1+(n-1)x)$$
$$= 1 + \underbrace{(n-1)x + x}_{=nx} + \underbrace{(n-1)x^2}_{\ge 0} \ge 1 + nx$$

Aufgabe 10.10. Es seien $n \in \mathbb{N}^{\times}$ und $x = (x_1, \dots, x_n) \in [\mathbb{R}^+]^n$. Dann heisst $g(x) := \sqrt[n]{\prod_{j=1}^n x_j}$ bzw. $a(x) := \frac{1}{n} \sum_{j=1}^n x_j$ geometrisches bzw. arithmetisches Mittel der x_1, \dots, x_n . Zu beweisen ist die Ungleichung zwischen dem geometrischen und arithmetischen Mittel, d.h. $g(x) \le a(x)$.

Beweis. Wir beweisen die Ungleichung per vollständige Induktion über n. Für n=1 gilt $g(x)=x_1\leq \frac{1}{1}x_1=a(x)$.

Sei die Behauptung wahr für ein $n \in \mathbb{N}$. Wir können $x_i > 0$ annehmen für $i = 1, \ldots n + 1$, da sonst die Behauptung trivial ist. Seien also $x_1, \ldots, x_{n+1} \in \mathbb{R}_{>0}$ und ohne Einschränkung sei $x_{n+1} \geq x_i$ für $i = 1, \ldots, n$. Dann ist

$$a(x_1, \dots, x_n) = \frac{x_1, \dots, x_n}{n} \le \frac{nx_{n+1}}{n} = x_{n+1}$$
.

Also ist

$$y := \frac{x_{n+1} - a(x_1, \dots, x_n)}{(n+1)a(x_1, \dots, x_n)} \ge 0$$

und wegen

$$1 + y = \frac{(n+1)a(x_1, \dots, x_n) + x_{n+1} - a(x_1, \dots, x_n)}{(n+1)a(x_1, \dots, x_n)} = \frac{na(x_1, \dots, x_n) + x_{n+1}}{(n+1)a(x_1, \dots, x_n)}$$
$$= \frac{n}{n+1} + \frac{x_{n+1}}{(n+1)a(x_1, \dots, x_n)}$$

folgt aus der Bernoulli-Ungleichung

$$\left(\frac{x_1+\ldots+x_{n+1}}{(n+1)a(x_1,\ldots,x_n)}\right)^{n+1}=(1+y)^{n+1}\geq 1+(n+1)y=\frac{x_{n+1}}{a(x_1,\ldots,x_n)}.$$

Nun folgt mit der Induktionsannahme die Behauptung:

$$\frac{1}{n+1} \sum_{j=1}^{n+1} x_j \ge a(x_1, \dots, x_n)^{n+1} \frac{x_{n+1}}{a(x_1, \dots, x_n)} = a(x_1, \dots, x_n)^n x_{n+1}$$

$$\ge g(x_1, \dots, x_n)^n x_{n+1} = \prod_{j=1}^{n+1} x_j$$

Aufgabe 10.11. Für $x = (x_1, \ldots, x_n)$ und $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ sei $x \cdot y := \sum_{j=1}^n x_j y_j$. Man beweise folgende Ungleichung zwischen dem **gewichteten** geometrischen und dem **gewichteten** arithmetischen Mittel:

$$\sqrt[|\alpha|]{x^{\alpha}} \le \frac{x \cdot \alpha}{|\alpha|}, \quad x \in [\mathbb{R}^+]^n, \ \alpha \in \mathbb{N}^n.$$

Beweis. Sei $\alpha := (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, $m := |\alpha| = \alpha_1 + \dots + \alpha_n$ und $x = (x_1, \dots, x_n) \in [\mathbb{R}^+]$. Es folgt mit der Ungleichung zwischen dem geometrischen und arithmetischen Mittel:

$$\sqrt[|\alpha|]{x^{\alpha}} = \sqrt[m]{x_1^{\alpha_1} \cdots x_n^{\alpha_n}} \le \frac{1}{m} \sum_{j=1}^n \alpha_j x_j = \frac{x \cdot \alpha}{|\alpha|}$$

Aufgabe 10.16. Für jedes $n \in \mathbb{N}$ sei I_n ein nichtleeres abgeschlossenes Intervall in \mathbb{R} . Die Familie $\{I_n ; n \in \mathbb{N}\}$ heisse **Intervallschachtelung**, falls folgende Eigenschaften erfüllt sind:

- (a) $I_{n+1} \subset I_n$ für $n \in \mathbb{N}$.
- (b) Zu jedem $\epsilon > 0$ gibt es ein $n \in \mathbb{N}$ mit $|I_n| < \epsilon$.

Man beweise:

- (i) Zu jeder Intervallschachtelung $\{I_n ; n \in \mathbb{N}\}$ gibt es genau ein $x \in \mathbb{R}$ mit $x \in \bigcap_n I_n$.
- (ii) Zu jedem $x \in \mathbb{R}$ gibt es eine Intervallschachtelung $\{I_n ; n \in \mathbb{N}\}$ mit rationalen Endpunkten und $\{x\} = \bigcap_n I_n$.

Beweis. (i) Da die $I_n \neq \emptyset$ für alle $n \in \mathbb{N}$ und $I_1 \supset I_2 \supset I_3 \supset \dots$ ist $\bigcap_n I_n \neq \emptyset$.

Angenommen es gäbe zwei verschiedene Punkte $x, y \in \mathbb{R}$ mit $x, y \in \bigcap_n I_n$. Sei $\epsilon := \frac{|x-y|}{2}$. Nach (b) gibt es ein $N \in \mathbb{N}$ mit

$$|I_N| < \epsilon = \frac{|x-y|}{2} .$$

Da $x, y \in I_N$ gilt daher

$$|x-y| \le |I_N| < \frac{|x-y|}{2} ,$$

ein Widerspruch.

(ii) Es ist klar, dass es eine Intervallschachtelung gibt mit mit $\{x\} = \bigcap_n I_n$, man nehme z.B. $I_n := \left[x - \frac{1}{n}, x + \frac{1}{n}\right]$. Wir müssen zeigen, dass wir diese so wählen können, dass alle Endpunkte der Intervalle I_n rational sind. Sei $\{I_n = [a_n, b_n] \; ; \; n \in \mathbb{N}\}$ eine Intervallschachtelung mit $\{x\} = \bigcap_n I_n$. Nach Satz 10.8 gibt es zu jedem $n \in \mathbb{N}$ ein $\tilde{a}_n \in \mathbb{Q}$ und ein $\tilde{b}_n \in \mathbb{Q}$ mit $a_n < \tilde{a}_n < x$ und $x < \tilde{b}_n < b_n$. Nun haben wir mit $\tilde{I}_n := \{[\tilde{a}_n, \tilde{b}_n] \; ; \; n \in \mathbb{N}\}$ eine Intervallschachtelung mit rationalen Endpunkten gefunden, welche $\{x\} = \bigcap_n \tilde{I}_n$ erfüllt.

11. Die komplexen Zahlen

Aufgabe 11.8. Man zeige, dass es ausser der Identität und $z \mapsto \bar{z}$ keinen Körperautomorphismus von \mathbb{C} gibt, der die Elemente von \mathbb{R} festlässt.

Beweis. Man prüft leicht nach, dass die Konjugationsabbildung $\sigma: \mathbb{C} \to \mathbb{C}, z \mapsto \bar{z}$ ein Körperautomorphismus ist, der die Elemente von \mathbb{R} festlässt.

Sei $\varphi: \mathbb{C} \to \mathbb{C}$ ein beliebiger Körperautomorphismus, der die Elemente von \mathbb{R} festlässt. Dann gilt:

$$\varphi(i) \cdot \varphi(i) = \varphi(i^2) = \varphi(-1) = -1 \cdot \varphi(1) = -1$$

Also ist $\varphi(i) = i$ oder $\varphi(i) = -i$. Im ersten Fall haben wir

$$\varphi(x+iy) = \varphi(x) + \varphi(iy) = x\varphi(1) + y\varphi(i) = x + iy ,$$

also ist φ die Identität.

Im zweiten Fall haben wir

$$\varphi(x+iy) = \varphi(x) + \varphi(iy) = x\varphi(1) + y\varphi(i) = x - iy,$$

also ist φ die Konjugationsabbildung.

Aufgabe 11.11. Man beweise die Parallelogrammidentität in C:

$$|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2), \quad z, w \in \mathbb{C}$$

Beweis. Seien $z, w \in \mathbb{C}$.

$$|z+w|^{2} + |z-w|^{2} = (z+w)\overline{(z+w)} + (z-w)\overline{(z-w)}$$

$$= (z+w)(\bar{z}+\bar{w}) + (z-w)(\bar{z}-\bar{w})$$

$$= z\bar{z} + z\bar{w} + w\bar{z} + w\bar{w} + z\bar{z} - z\bar{w} - w\bar{z} + w\bar{w}$$

$$= 2z\bar{z} + 2w\bar{w}$$

$$= 2(|z|^{2} + |w|^{2})$$

12. Vektorräume, affine Räume und Algebren

Kapitel II.

Konvergenz

- 1. Konvergenz von Folgen
- 2. Das Rechnen mit Zahlenfolgen
- 3. Normierte Vektorräume

Aufgabe 3.4. Man beweise, dass in jedem Innenproduktraum $(E, (\cdot|\cdot))$ folgende **Parallelogrammidentität** gilt:

$$2(||x||^2 + ||y||^2) = ||x + y||^2 + ||x - y||^2, \quad x, y \in E$$

Beweis.

$$||x + y||^2 + ||x - y||^2 = (x + y|x + y) + (x - y|x - y)$$

$$= (x|x + y) + (y|x + y) + (x|x - y) - (y|x - y)$$

$$= (x|x) + (x|y) + (y|x) + (y|y) + (x|x) - (x|y) - (y|x) + (y|y)$$

$$= 2(x|x) + 2(y|y)$$

$$= 2(||x||^2 + ||y||^2)$$

Aufgabe 3.6. Es sei $(E,(\cdot|\cdot))$ ein reeller Innenproduktraum. Man beweise die Ungleichung

$$(\|x\| + \|y\|) \frac{(x|y)}{\|x\| \|y\|} \le \|x + y\| \le \|x\| + \|y\|, \quad x, y \in E \setminus \{0\}$$

Wann gilt Gleichheit?

Beweis. Die 2. Ungleichung ist gerade die Dreiecksungleichung. Hier ist also nichts zu beweisen. Die 1. Ungleichung ist trivial, falls $(x|y) \leq 0$, also können wir $(x|y) \geq 0$ annehmen. Nach dem Quadrieren der 1. Ungleichung erhalten wir

$$(\|x\| + \|y\|)^2 \frac{(x|y)^2}{\|x\|^2 \|y\|^2} \le \|x + y\|^2$$
,

was zu zeigen ist. Nach der Cauchy-Schwarz-Ungleichung ist $\frac{(x|y)^2}{\|x\|^2\|y\|^2} \leq 1$ und es folgt:

$$(\|x\| + \|y\|)^{2} \frac{(x|y)^{2}}{\|x\|^{2}\|y\|^{2}} = (\|x\|^{2} + 2\|x\|\|y\| + \|y\|^{2}) \frac{(x|y)^{2}}{\|x\|^{2}\|y\|^{2}}$$

$$\leq \|x\|^{2} + \|y\|^{2} + 2\frac{(x|y)}{\|x\|\|y\|}(x|y)$$

$$\leq \|x\|^{2} + \|y\|^{2} + 2\frac{\|x\|\|y\|}{\|x\|\|y\|}(x|y)$$

$$= \|x\|^{2} + \|y\|^{2} + 2(x|y)$$

$$= (x|x) + (y|y) + 2(x|y)$$

$$= (x + y|x + y) = \|x + y\|^{2}$$

Aufgabe 3.10. Es sei $(E, (\cdot|\cdot))$ ein Innenproduktraum. Zwei Elemente $x, y \in E$ heissen **orthogonal**, wenn (x|y) = 0 gilt, man schreibt $x \perp y$. Eine Teilmenge $M \subset E$ heisst **Orthogonalsystem**, wenn $x \perp y$ für alle $x, y \in M$ mit $x \neq y$ gilt. M heisst **Orthogonalsystem**, falls M ein Orthogonalsystem ist mit ||x|| = 1 für $x \in M$. Es sei $\{x_0, \ldots, x_m\} \subset E$ ein Orthogonalsystem mit $x_j \neq 0$ für $0 \leq j \leq m$. Man beweise:

(a) $\{x_0, \ldots, x_m\}$ ist linear unabhängig.

(b)
$$\left\| \sum_{k=0}^{m} x_k \right\|^2 = \sum_{k=0}^{m} \|x_k\|^2$$
 (Satz des Pythagoras)

Beweis. (a) Angenommen $\{x_0, \ldots, x_m\}$ ist linear abhängig. Dann gibt es ein $j \in \{0, \ldots, m\}$ so, dass $x_j = \sum_{\substack{i=0 \ i \neq j}}^m \alpha_i x_i$ mit $\alpha_i \in \mathbb{K}$, also ist $x_j - \sum_{\substack{i=0 \ i \neq j}}^m \alpha_i x_i = 0$. Es folgt

$$0 = (0|x_j) = \left(x_j - \sum_{\substack{i=0\\i\neq j}}^m \alpha_i x_i \middle| x_j\right)$$
$$= (x_j|x_j) - \sum_{\substack{i=0\\i\neq j}}^m \alpha_i \underbrace{(x_i|x_j)}_{=0} = (x_j|x_j) ,$$

was bedeutet, dass $x_j = 0$ sein muss. Das ist ein Widerspruch zur Voraussetzung.

(b)

$$\left\| \sum_{k=0}^{m} x_k \right\|^2 = \left(\sum_{k=0}^{m} x_k \middle| \sum_{j=0}^{m} x_j \right) = \sum_{k=0}^{m} \left(x_k \middle| \sum_{j=0}^{m} x_j \right)$$
$$= \sum_{k=0}^{m} \sum_{j=0}^{m} \underbrace{\left(x_k \middle| x_j \right)}_{-0 \text{ für } k \neq j} = \sum_{k=0}^{m} (x_k \middle| x_k) = \sum_{k=0}^{m} \|x_k\|^2$$

Aufgabe 3.11. Es sei F ein Untervektorraum eines Innenproduktraumes E. Man beweise, dass das **orthogonale Komplement** von F, d.h.

$$F^{\perp} := \{ x \in E \; ; \; x \perp y, \; y \in F \} \; ,$$

ein abgeschlossener Untervektorraum von E ist.

Beweis. Wir zeigen zuerst, dass F^{\perp} ein Untervektorraum von E ist.

- Da (0|y) = 0 für jedes $y \in F$, ist $0 \in F^{\perp}$.
- Seien $x_1, x_2 \in F^{\perp}$. Dann ist $(x_1|y) = (x_2|y) = 0$ für $y \in F$. Also ist auch $(x_1 + x_2|y) = (x_1|y) + (x_2|y) = 0$ für $y \in F$ und somit ist $x_1 + x_2 \in F^{\perp}$.
- Seien $\lambda \in \mathbb{K}$ und $x \in F^{\perp}$, dann ist (x|y) = 0 für $y \in F$. Also ist auch $(\lambda x|y) = \lambda(x|y) = 0$ für $y \in F$ und somit ist $\lambda x \in F^{\perp}$.

Es bleibt zu zeigen, dass F^{\perp} abgeschlossen ist. Sei (x_n) eine Folge in F^{\perp} , die in E konvergiert, d.h. $\lim x_n = x \in E$. Es gilt also $(x_n|y) = 0$ für jedes $n \in \mathbb{N}$ und $y \in F$. Für $y \in F$ ist

$$(x|y) = (x - x_n|y) + \underbrace{(x_n|y)}_{=0} = (x - x_n|y).$$

Mit der Cauchy-Schwarz-Ungleichung folgt

$$|(x|y)| = |(x - x_n|y)| \le ||x - x_n|| ||y||,$$

und da $||x_n - x|| \to 0$ für $n \to \infty$ ist (x|y) = 0 und somit $x \in F^{\perp}$, d.h. F^{\perp} ist abgeschlossen.

Aufgabe 3.12. Es seien $B = \{u_0, \dots, u_m\}$ ein Orthonormalsystem im Innenproduktraum $(E, (\cdot | \cdot))$ und $F := \operatorname{span}(B)$. Ferner sei

$$p_F: E \to F, \quad x \to \sum_{k=0}^m (x|u_k)u_k$$
.

Man beweise:

(a)
$$x - p_F(x) \in F^{\perp}, x \in E$$

Beweis. (a) Sei $y \in F$, $x \in E$. Wegen $F = \operatorname{span}(B)$ kann y geschrieben werden als $y = \sum_{i=0}^{m} \alpha_i u_i$ für geeignete $\alpha_i \in \mathbb{K}$. Es folgt:

$$(x - p_F(x)|y) = \left(x - \sum_{k=0}^{m} (x|u_k)u_k | y\right)$$

$$= \sum_{i=0}^{m} \alpha_i(x|u_i) - \sum_{k=0}^{m} (x|u_k) \left(u_k | \sum_{i=0}^{m} \alpha_i u_i\right)$$

$$= \sum_{i=0}^{m} \alpha_i(x|u_i) - \sum_{k=0}^{m} (x|u_k) \sum_{j=0}^{m} \alpha_j(u_k|u_j)$$

$$= \sum_{i=0}^{m} \alpha_i(x|u_i) - \sum_{k=0}^{m} \alpha_k(x|u_k) = 0$$

4. Monotone Folgen

Aufgabe 4.4. Für $a \in (0, \infty)$ definiere man die reelle Folge (x_n) rekursiv durch $x_0 \ge a$ und

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) , n \in \mathbb{N}$$

Man beweise, dass (x_n) monoton fallend gegen \sqrt{a} konvergiert.

Beweis. Man weist einfach nach, dass $x_n > 0$ für $n \in \mathbb{N}$. Für $n \in \mathbb{N}$ gilt:

$$x_{n+1}^{2} = \left(\frac{1}{2}\left(x_{n} + \frac{a}{x_{n}}\right)\right)^{2} = \frac{1}{4}\left(x_{n}^{2} + 2a + \frac{a^{2}}{x_{n}^{2}}\right)$$
$$= \frac{1}{4}\left(x_{n}^{2} - 2a + \frac{a^{2}}{x_{n}^{2}}\right) + a = \frac{1}{4}\left(x_{n} - \frac{a}{x_{n}}\right)^{2} + a \ge a$$

Wir weisen nach, dass (x_n) monoton fallend ist:

$$x_{n+1} - x_n = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - x_n = \frac{a}{2x_n} - \frac{1}{2} x_n = \frac{a - x_n^2}{2x_n} \le 0$$

Also ist die Folge (x_n) nach unten beschränkt, monoton fallend und konvergiert somit. Es bleibt noch zu zeigen, dass $\lim x_n = \sqrt{a}$. Aus

$$x_{n+1} - \sqrt{a} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - \sqrt{a} = \frac{1}{2} \left(x_n - \sqrt{a} + \frac{a}{x_n} - \sqrt{a} \right) = \frac{1}{2} \left(1 - \frac{\sqrt{a}}{x_n} \right) \left(x_n - \sqrt{a} \right)$$

folgt

$$|x_{n+1} - \sqrt{a}| = \frac{1}{2} \underbrace{\left| 1 - \frac{\sqrt{a}}{x_n} \right|}_{\leq 1} |x_n - \sqrt{a}| \leq \frac{1}{2} |x_n - \sqrt{a}| \leq \dots \leq \left(\frac{1}{2}\right)^{n+1} |x_0 - \sqrt{a}|,$$

woraus folgt, dass $x_n \to \sqrt{a}$ für $n \to \infty$.

Aufgabe 4.7. (a) Man beweise folgende Fehlerabschätzung für $n \in \mathbb{N}^{\times}$:

$$0 < e - \sum_{k=0}^{n} \frac{1}{k!} < \frac{1}{nn!}$$

(b) Man beweise, dass e eine irrationale Zahl ist.

Beweis. (a) Da $e = \sum_{k=0}^{\infty} \frac{1}{k!}$ ist die erste Ungleichung klar.

Sei $y_m := \sum_{k=n+1}^{n+m} \frac{1}{k!}$. Es gilt $y_m \to e - \sum_{k=0}^n$ für $m \to \infty$.

$$y_{m} = \sum_{k=n+1}^{n+m} \frac{1}{k!} = \frac{1}{(n+1)!} \left[1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots + \frac{1}{(n+2)\cdots(n+m)} \right]$$

$$< \frac{1}{(n+1)!} \left[1 + \frac{1}{n+1} + \left(\frac{1}{n+1}\right)^{2} + \dots + \left(\frac{1}{n+1}\right)^{m-2} \right]$$

$$< \frac{1}{(n+1)!} \sum_{k=0}^{\infty} \left(\frac{1}{n+1}\right)^{k} = \frac{1}{(n+1)!} \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{(n+1)!} \frac{n+1}{n} = \frac{1}{nn!}$$

Also gilt auch die zweite Ungleichung.

(b) Angenommen e ist rational, dann gibt es $p, n \in \mathbb{N}^{\times}$ mit $e = \frac{p}{n}$. Nach (a) gilt dann:

$$0 < \frac{p}{n} - \sum_{k=0}^{n} \frac{1}{k!} < \frac{1}{nn!}$$

Also ist

$$0 < \underbrace{n!p - n \sum_{k=0}^{n} \frac{n!}{k!}}_{\in \mathbb{Z}} < 1.$$

Das ist aber nicht möglich, da es keine ganze Zahl zwischen 0 und 1 gibt.

Aufgabe 4.8. Es sei (x_n) rekursiv definiert durch

$$x_0 := 1, \quad x_{n+1} := 1 + \frac{1}{x_n}, \qquad n \in \mathbb{N}.$$

Man zeige, dass die Folge (x_n) konvergiert und bestimme ihren Grenzwert.

Beweis. Wir zeigen zuerst, dass $x_n > 1$ für $n \ge 1$. Für n = 1 haben wir $x_1 = 1 + \frac{1}{1} = 2$. Nehmen wir an, es gilt $x_n > 1$, so folgt $x_{n+1} = 1 + \frac{1}{x_n} > 1$. Unmittelbar aus der rekursiven Definition $x_{n+1} = 1 + \frac{1}{x_n}$ und aus $x_n > 1$ für $n \ge 1$ folgt $x_n < 2$ für $n \ge 2$. Für $n \ge 1$ gilt sogar $x_n \in [1.5, 2]$, da

$$1.5 = 1 + \frac{1}{2} \le x_{n+1} = 1 + \frac{1}{x_n} \le 1 + \frac{1}{1} = 2.$$

Insbesondere ist die Folge beschränkt.

Als nächstes zeigen wir, dass die Teilfolge (x_{2n}) monoton wachsend ist. Da $x_2 = 1 + \frac{1}{x_1} = 1 + \frac{1}{2} = \frac{3}{2}$ ist $x_2 > x_0 = 1$. Nun sei nach Induktionsannahme $x_{2n} \ge x_{2(n-1)}$.

$$x_{2(n+1)} - x_{2n} = 1 + \frac{1}{x_{2n+1}} - \left(1 + \frac{1}{x_{2n-1}}\right) = \frac{1}{1 + \frac{1}{x_{2n}}} - \frac{1}{1 + \frac{1}{x_{2(n-1)}}} = \frac{x_{2n}}{x_{2n} + 1} - \frac{x_{2(n-1)}}{x_{2(n-1)} + 1}$$
$$= \frac{x_{2n}(x_{2(n-1)} + 1) - x_{2(n-1)}(x_{2n} + 1)}{(x_{2n} + 1)(x_{2(n-1)} + 1)} = \frac{x_{2n} - x_{2(n-1)}}{(x_{2n} + 1)(x_{2(n-1)} + 1)} \ge 0$$

Also ist (x_{2n}) eine konvergente Teilfolge von (x_n) .

Wir weisen nun nach, dass (x_n) eine Cauchyfolge ist. Sei dazu $n \geq 1$ beliebig.

$$|x_{n+1} - x_n| = \left| 1 + \frac{1}{x_n} - \left(1 + \frac{1}{x_{n-1}} \right) \right| = \left| \frac{x_{n-1} - x_n}{x_n \cdot x_{n-1}} \right| \le \frac{1}{2} |x_{n-1} - x_n|$$

$$\le \dots \le \left(\frac{1}{2} \right)^{n-1} \cdot |x_2 - x_1| = \left(\frac{1}{2} \right)^n$$

Für $m \ge n \ge 1$ erhalten wir

$$|x_{m} - x_{n}| = |x_{m} - x_{m-1} + x_{m-1} - x_{m-2} \pm \dots - x_{n}|$$

$$\leq |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_{n}|$$

$$\leq \left(\frac{1}{2}\right)^{m-1} + \left(\frac{1}{2}\right)^{m-2} + \dots + \left(\frac{1}{2}\right)^{n}$$

$$= \left(\frac{1}{2}\right)^{n} \cdot \sum_{k=0}^{m-1} \left(\frac{1}{2}\right)^{k} \leq \left(\frac{1}{2}\right)^{n} \cdot 2 = \left(\frac{1}{2}\right)^{n-1}$$

Somit finden wir zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ so, dass

$$|x_m - x_n| < \epsilon$$
, für $m \ge n \ge N$,

und (x_n) ist eine Cauchyfolge, die eine konvergente Teilfolge besitzt, also selbst konver-

Sei $g \in [1.5, 2]$ der Grenzwert von (x_n) . Mit den Grenzwertsätzen folgt nun

$$g = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} 1 + \frac{1}{x_n} = 1 + \frac{1}{g}$$

Diese Gleichung hat die positive Lösung $g = \frac{1+\sqrt{5}}{2}$.

Alternativer Beweis. Wir zeigen per Induktion $|x_n - g| \leq \frac{1}{g^{n+1}}$, wobei g die positive Lösung der Gleichung $g=1+\frac{1}{g}$ bezeichnet.

Für n=0 haben wir $|x_0-g|=|1-g|=\left|-\frac{1}{g}\right|\leq \frac{1}{g^1}$. Sei nach Induktionsannahme $|x_{n-1}-g|\leq \frac{1}{g^n}$. Dann folgt wegen $x_n\geq 1$ für alle $n\in\mathbb{N}$:

$$|x_n - g| = \left| 1 + \frac{1}{x_{n-1}} - \left(1 + \frac{1}{g} \right) \right| = \left| \frac{1}{x_{n-1}} - \frac{1}{g} \right|$$
$$= \left| \frac{g - x_{n-1}}{x_{n-1} \cdot g} \right| \le \frac{1}{g} \cdot |x_{n-1} - g| \le \frac{1}{g} \cdot \frac{1}{g^n} = \frac{1}{g^{n+1}}$$

Da g > 1, folgt $x_n \to g$.

Aufgabe 4.9. Die Fibonacci-Zahlen f_n sind rekursiv definiert durch

$$f_0 := 0$$
, $f_1 := 1$, $f_{n+1} := f_n + f_{n-1}$, $n \in \mathbb{N}^{\times}$

Man beweise, dass $\lim \left(\frac{f_{n+1}}{f_n}\right) = g$, wobei g der Grenzwert aus Aufgabe 8 bezeichne.

Beweis. Die Folge der Fibonacci-Zahlen ist monoton wachsend und für $n \ge 1$ gilt $f_n \ge 1$. Sei g der Grenzwert aus Aufgabe 8, also die positive Lösung der quadratischen Gleichung $g = 1 + \frac{1}{g}$. Sei $F_n := \frac{f_{n+1}}{f_n}$, $n \in \mathbb{N}^{\times}$. Wir wollen beweisen, dass die Folge $(F_n)_{n \ge 1}$ den Grenzwert g hat:

$$|F_n - g| = \left| \frac{f_{n+1}}{f_n} - g \right| = \left| \frac{f_n + f_{n-1}}{f_n} - g \right| = \left| 1 + \frac{1}{F_{n-1}} - \left(1 + \frac{1}{g} \right) \right|$$

$$= \left| \frac{1}{F_{n-1}} - \frac{1}{g} \right| = \left| \frac{g - F_{n-1}}{F_{n-1} \cdot g} \right| \le \frac{1}{g} |F_{n-1} - g| \le \dots \le \left(\frac{1}{g} \right)^{n-1} |F_1 - g|$$

Da
$$0 < \frac{1}{g} = g - 1 < 1$$
 folgt $\left(\frac{1}{g}\right)^n \to 0$ für $n \to \infty$ und damit $\lim F_n = g$.

Aufgabe 4.10. Es seien

$$x_0 := 5$$
, $x_1 := 1$, $x_{n+1} := \frac{3}{2}x_n + \frac{1}{3}x_{n-1}$, $n \in \mathbb{N}^{\times}$.

Man verifiziere, dass (x_n) konvergiert und bestimme $\lim x_n$.

Beweis. Für $n \ge 1$ gilt:

$$|x_n - x_{n-1}| = \left| \frac{2}{3} x_{n-1} + \frac{1}{3} x_{n-2} - x_{n-1} \right| = \frac{1}{3} |x_{n-1} - x_{n-2}| = \dots = \left(\frac{1}{3} \right)^{n-1} \underbrace{|x_1 - x_0|}_{-4}$$

Und für $m \ge n \ge 1$ folgt mit der Dreiecksungleichung:

$$|x_{m} - x_{n}| = |x_{m} - x_{m-1} + x_{m-1} - x_{m-2} \pm \dots + x_{n+1} - x_{n}|$$

$$\leq |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_{n}|$$

$$= 4 \left(\frac{1}{3}\right)^{m-1} + 4 \left(\frac{1}{3}\right)^{m-2} + \dots + 4 \left(\frac{1}{3}\right)^{n}$$

$$= 4 \left(\frac{1}{3}\right)^{n} \left[1 + \frac{1}{3} + \dots + \left(\frac{1}{3}\right)^{m-n-1}\right]$$

$$\leq 4 \left(\frac{1}{3}\right)^{n} \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^{k} = 4 \left(\frac{1}{3}\right)^{n} \cdot \frac{1}{1 - \frac{1}{3}} = 4 \cdot \left(\frac{1}{3}\right)^{n} \cdot \frac{3}{2} = 6 \left(\frac{1}{3}\right)^{n}$$

Also bildet (x_n) eine Cauchyfolge und da \mathbb{R} vollständig ist, konvergiert sie. Wir bestimmen nun ihren Grenzwert. Für $n \geq 1$ haben wir

$$x_n - x_{n-1} = \frac{2}{3}x_{n-1} + \frac{1}{3}x_{n-2} - x_{n-1} = -\frac{1}{3}(x_{n-1} - x_{n-2}) = \left(-\frac{1}{3}\right)^2(x_{n-2} - x_{n-3})$$
$$= \dots = \left(-\frac{1}{3}\right)^{n-1}(x_1 - x_0) = (-4) \cdot \left(-\frac{1}{3}\right)^{n-1}.$$

Daraus folgt

$$x_n = x_{n-1} + (-4) \cdot \left(-\frac{1}{3}\right)^{n-1}$$

$$= x_{n-2} + (-4) \cdot \left(-\frac{1}{3}\right)^{n-2} + (-4) \cdot \left(-\frac{1}{3}\right)^{n-1}$$

$$= \dots = x_0 + (-4) \cdot \sum_{k=0}^{n-1} \left(-\frac{1}{3}\right)^k = 5 - 4 \sum_{k=0}^{n-1} \left(-\frac{1}{3}\right)^k.$$

Der Grenzübergang $n \to \infty$ liefert nun

$$\lim_{n \to \infty} x_n = 5 - 4 \sum_{k=0}^{\infty} \left(-\frac{1}{3} \right)^k = 5 - 4 \cdot \frac{1}{1 - \left(-\frac{1}{3} \right)} = 5 - 4 \cdot \frac{1}{\frac{4}{3}} = 5 - 4 \cdot \frac{3}{4} = 2$$

5. Uneigentliche Konvergenz

- 6. Vollständigkeit
- 7. Reihen
- 8. Absolute Konvergenz
- 9. Potenzreihen

Aufgabe 9.2. Die Potenzreihe $a = \sum_{k} (1+k)X^k$ hat Konvergenzradius 1 und für die durch a dargestellte Funktion \underline{a} gilt: $\underline{a}(z) = (1-z)^{-2}$ für |z| < 1.

Beweis. Sei $a_k = 1 + k$. Dann ist $a = \sum_k a_k X^k$. Es gilt:

$$\lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{1+k}{2+k} \right| = 1$$

Also existiert dieser Grenzwert und nach Satz 9.4 ist

$$\rho_a = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = 1$$

der Konvergenzradius von a.

Seien $b := \sum_k b_k X^k := \sum_k X^k$ und $c := \sum_k c_k X^k := \sum_k k X^k$. Diese Reihen haben ebenfalls Konvergenzradius 1. Also gilt für $z \in \mathbb{K}$, |z| < 1:

$$\underline{a}(z) = \sum_{k=0}^{\infty} (1+k)z^k = \sum_{k=0}^{\infty} z^k + \sum_{k=0}^{\infty} kz^k = \underline{b}(z) + \underline{c}(z)$$

Wir wissen bereits, dass $\underline{b}(z) = \frac{1}{1-z}$. Wir müssen noch $\underline{c}(z)$ berechnen. Sei $s_n := \sum_{k=0}^n kz^k$.

$$(1-z)s_n = (1-z)\sum_{k=0}^n kz^k = \sum_{k=0}^n kz^k - kz^{k+1}$$

$$= \sum_{k=0}^n kz^k - \sum_{k=1}^{n+1} (k-1)z^k = 0 + \sum_{k=1}^n (kz^k - (k-1)z^k) - nz^{n+1}$$

$$= \sum_{k=0}^{n-1} z^{k+1} - nz^{n+1} = z\sum_{k=0}^{n-1} z^k - nz^{n+1}$$

$$= z\left(\frac{1-z^n}{1-z}\right) - \frac{(1-z)nz^{n+1}}{1-z} = \frac{z-z^{n+1}-nz^{n+1}+nz^{n+2}}{1-z}$$

$$= \frac{z-(n+1)z^{n+1}+nz^{n+2}}{1-z}$$

Also haben wir $s_n \to \frac{z}{(1-z)^2}$ für $n \to \infty$ und es folgt

$$\underline{c}(z) = \sum_{k=0}^{\infty} k z^k = \frac{z}{(1-z)^2}.$$

Somit haben wir

$$\underline{a}(z) = \underline{b}(z) + \underline{c}(z) = \frac{1}{1-z} + \frac{z}{(1-z)^2} = \frac{1-z+z}{(1-z)^2} = \frac{1}{(1-z)^2}.$$

Aufgabe 9.10. Es sei $b = \sum b_k X^k \in \mathbb{C}[\![X]\!]$ mit $(1 - X - X^2)b = 1 \in \mathbb{C}[\![X]\!]$

(a) Man verifiziere, dass die Koeffizierten b_k die Rekursionsvorschrift

$$b_0 = 1$$
, $b_1 = 1$, $b_{k+1} = b_k + b_{k-1}$, $k \in \mathbb{N}^{\times}$,

erfüllen, d.h. (b_k) ist die Folge der Fibonacci-Zahlen.

(b) Wie gross ist der Konvergenzradius von b?

Beweis. (a) Sei $a := 1 - X - X^2$ und $c := 1 \in \mathbb{C}[X]$. Aus $1 = c_0 = a_0b_0 = b_0$ folgt $b_0 = 1$ und aus $0 = c_1 = a_0b_1 + a_1b_0 = 1b_1 + (-1)b_0 = b_1 - 1$ folgt $b_1 = 1$. Schliesslich zeigt die Rechnung

$$0 = c_{k+1} = a_0 b_{k+1} + a_1 b_k + a_2 b_{k-1} + \underbrace{a_3 b_{k-2}}_{=0} + \dots + \underbrace{a_{k+1} b_0}_{=0}$$
$$= b_{k+1} - b_k - b_{k-1} ,$$

dass $b_{k+1} = b_k + b_{k-1}$ für $n \in \mathbb{N}^{\times}$ gelten muss.

(b) Die Folge (b_n) ist genau die Folge der Fibonacci-Zahlen. Nach Aufgabe 4.9 gilt $\lim_{n\to\infty}\frac{b_{n+1}}{b_n}=g$, wobei g der goldene Schnitt bezeichnet. Also folgt mit Satz 9.4:

$$\rho_b = \lim_{k \to \infty} \left| \frac{b_k}{b_{k+1}} \right| = \frac{1}{\lim_{k \to \infty} \left| \frac{b_{k+1}}{b_k} \right|} = \frac{1}{g}$$

Kapitel III.

Stetige Funktionen

1. Stetigkeit

Aufgabe 1.11. Man betrachte die Abbildung

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

und setze für ein festes $x_0 \in \mathbb{R}$:

$$f_1: \mathbb{R} \to \mathbb{R}, \quad x \mapsto f(x, x_0), \qquad f_2: \mathbb{R} \to \mathbb{R}, \quad x \mapsto f(x_0, x)$$

Dann gelten:

- (a) f_1 und f_2 sind stetig.
- (b) f ist stetig in $\mathbb{R}^2 \setminus \{(0,0)\}$ und unstetig in (0,0).
- Beweis. (a) Aus Symmetriegründen reicht es die Stetigkeit von f_1 zu beweisen. Nehmen wir zuerst $x_0 \neq 0$ an. Dann ist f_1 gegeben durch $f_1(x) = f(x, x_0) = \frac{xx_0}{x^2 + x_0^2}$. Da der Nenner nie 0 ist, ist diese rationale Funktion auf ganz \mathbb{R} stetig. Im Fall $x_0 = \inf f_1(x) = \frac{0}{x^2} = 0$ für $x \neq 0$ und $f_1(0) = f(0,0) = 0$, also ist f_1 die Nullfunktion und damit ebenfalls stetig auf \mathbb{R} . Es folgt, dass f_1 für jedes feste $x_0 \in \mathbb{R}$ auf ganz \mathbb{R} stetig ist.
- (b) Sei $(z_n) = ((x_n, y_n))$ eine Folge in \mathbb{R}^2 mit $\lim_{n \to \infty} z_n = z = (x, y) \neq (0, 0)$. Also gilt $\lim_{n \to \infty} x_n = x$ und $\lim_{n \to \infty} y_n = y$, also auch $\lim_{n \to \infty} x_n^2 = x^2$, $\lim_{n \to \infty} y_n^2 = y^2$, $\lim_{n \to \infty} x_n y_n = xy$ und $\lim_{n \to \infty} x_n^2 + y_n^2 = x^2 + y^2$. Damit folgt

$$\lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} \frac{x_n y_n}{x_n^2 + y_n^2} = \frac{xy}{x^2 + y^2} ,$$

also ist f stetig in $\mathbb{R}^2 \setminus \{(0,0)\}$

Es sei nun $(z_n) = ((x_n, x_n))$ eine Folge in \mathbb{R}^2 mit $\lim_{n \to \infty} z_n = (0, 0)$. Dann ist

$$f(x_n, x_n) = \frac{x_n x_n}{x_n^2 + x_n^2} = \frac{x_n^2}{2x_n^2} = \frac{1}{2}$$

für jedes $n \in \mathbb{N}$. Wir haben $(x_n, x_n) \to (0, 0)$ aber $f(x_n, x_n) \to \frac{1}{2} \neq 0$ für $n \to \infty$ und somit ist f in (0, 0) nicht stetig.

Aufgabe 1.12. Man zeige, dass jede lineare Abbildung von \mathbb{K}^n nach \mathbb{K}^m Lipschitz-stetig ist

Beweis. Sei $f: \mathbb{K}^n \to \mathbb{K}^m$ linear. Da f linear ist, gibt es eine Matrix $A = [a_{ij}] \in \mathbb{K}^{m \times n}$ so, dass f(x) = Ax für $x \in \mathbb{K}^n$. Seien $x, y \in \mathbb{K}^n$. Mit Satz II.3.12 und der Dreiecksungleichung folgt:

$$||f(x) - f(y)|| \le \sqrt{m} ||f(x) - f(y)||_{\infty} = \sqrt{m} ||f(x - y)||_{\infty} = \sqrt{m} ||A(x - y)||_{\infty}$$

$$= \sqrt{m} \max_{1 \le i \le m} \left| \sum_{j=1}^{n} a_{ij} (x_j - y_j) \right|$$

$$\le \sqrt{m} \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}| |x_j - y_j|$$

$$\le \sqrt{m} \max_{1 \le i \le m \atop 1 \le j \le n} |a_{ij}| \sum_{j=1}^{n} |x_j - y_j|$$

$$\le \sqrt{m} \max_{1 \le i \le m \atop 1 \le j \le n} |a_{ij}| \cdot n ||x - y||_{\infty}$$

$$\le n\sqrt{m} \max_{1 \le i \le m \atop 1 \le j \le n} |a_{ij}| ||x - y||$$

Dies beweist die Lipschitz-Stetigkeit von f.

Aufgabe 1.13. Es seien $(E, (\cdot | \cdot))$ ein Innenproduktraum und $x_0 \in E$. Dann sind die Abbildungen

$$f: E \to \mathbb{K}, \quad x \mapsto (x|x_0), \qquad g: E \to \mathbb{K}, \quad x \mapsto (x_0|x)$$

stetig.

Beweis. Sei $\tilde{x} \in E$, $\epsilon > 0$ und $\delta := \frac{\epsilon}{\|x_0\|}$. Für $x \in E$ mit $\|x - \tilde{x}\| < \delta$ folgt mit der Cauchy-Schwarz-Ungleichung

$$|f(x) - f(\tilde{x})| = |(x|x_0) - (\tilde{x}|x_0)| = |(x - \tilde{x}|x_0)|$$

$$\leq ||x - \tilde{x}|| ||x_0|| < \delta ||x_0|| = \epsilon,$$

also ist f stetig. Analog beweist man die Stetigkeit von g.

Aufgabe 1.16. Es sei $n \in \mathbb{N}^{\times}$ und $A = [a_{jk}] \in \mathbb{K}^{n \times n}$. Die **Determinante** von A, det A, ist gegeben durch

$$\det A = \sum_{\sigma \in S_n} (\operatorname{sign} \sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)} .$$

Man zeige, dass die Abbildung

$$\mathbb{K}^{n \times n} \to \mathbb{K}, \quad A \mapsto \det A$$

stetig ist.

Beweis. Durch die Bijektion

$$\mathbb{K}^{n \times n} \to \mathbb{K}^{n \cdot n}, \quad \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \mapsto (a_{11}, \dots, a_{1n}, a_{21}, \dots a_{nn})$$

lässt sich $\mathbb{K}^{n\times n}$ mit $\mathbb{K}^{n\cdot n}$ identifizieren.

Sei

$$pr_{\sigma}: \mathbb{K}^{n \times n} \to \mathbb{K}^{n}, \quad \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \mapsto (a_{1\sigma(1)}, \dots, a_{n\sigma(n)}).$$

Diese Abbildung ist für jedes $\sigma \in S_n$ linear und somit nach Aufgabe 12 Lipschitz-stetig, also insbesondere stetig.

Sei weiter

$$(\cdot|\mathbb{1}): \mathbb{K}^n \to \mathbb{K}, \quad (x_1, \dots, x_n) \mapsto x_1 \cdots x_n$$

Diese Abbildung ist nach Aufgabe 14 ebenfalls stetig.

Für $A = [a_{jk}] \in \mathbb{K}^{n \times n}$ haben wir nun

$$\det(A) = \sum_{\sigma \in S_n} (\operatorname{sign} \sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)} = \sum_{\sigma \in S_n} (\operatorname{sign} \sigma) (pr_{\sigma}(A)) | \mathbb{1})$$

und da Kompositionen sowie endliche Linearkombinationen von stetigen Abbildungen stetig sind, ist det stetig.

- 2. Topologische Grundbegriffe
- 3. Kompaktheit
- 4. Zusammenhang
- 5. Funktionen in \mathbb{R}
- 6. Die Exponentialfunktion und Verwandte

Kapitel IV.

Differentialrechnung in einer Variablen

- 1. Differenzierbarkeit
- 2. Mittelwertsätze und ihre Anwendung
- 3. Taylorsche Formeln
- 4. Iterationsverfahren

Kapitel V.

Funktionenfolgen

- 1. Gleichmässige Konvergenz
- 2. Stetigkeit und Differenzierbarkeit bei Funktionenfolgen
- 3. Analytische Funktionen
- 4. Polynomiale Approximation

Kapitel VI.

Integralrechnung in einer Variablen

- 1. Sprungstetige Funktionen
- 2. Stetige Erweiterungen
- 3. Das Cauchy-Riemannsche Integral
- 4. Eigenschaften des Integrals
- 5. Die Technik des Integrierens
- 6. Summen und Integrale
- 7. Fourierreihen
- 8. Uneigentliche Integrale
- 9. Die Gammafunktion

Kapitel VII.

Differentialrechnung in mehrerer Variabler

- 1. Stetige lineare Abbildungen
- 2. Differenzierbarkeit
- 3. Rechenregeln
- 4. Multilineare Abbildungen
- 5. Höhere Ableitungen
- 6. Nemytskiioperatoren und Variationsrechnung
- 7. Umkehrabbildungen
- 8. Implizite Funktionen
- 9. Mannigfaltigkeiten
- 10. Tangenten und Normalen

Kapitel VIII.

Kurvenintegrale

- 1. Kurven und ihre Länge
- 2. Kurven in \mathbb{R}^n
- 3. Pfaffsche Formen
- 4. Kurvenintegrale
- 5. Holomorphe Funktionen
- 6. Meromorphe Funktionen