

Afonso Santos | Carolina Jesus | Rafael Santos || EIACD || 2024/25

Space Block: Roll The Block

O objetivo do jogo é levar um bloco retangular até um ponto específico (meta) no tabuleiro, utilizando o menor número de movimentos possível.

No percurso também há obstáculos como buracos, chãos de vidro e obrigatoriedade de apanhar gemas.

WASD: Mover | Q: Sair Movimentos:

Fig.1 – Comandos

Fig.2 – Tabuleiro do jogo

O jogo como um problema de pesquisa

Estado inicial: começa sempre standing.

Estado objetivo: chegar ao quadrado dourado e acabar nele *standing*.

operadores: o horizontal_x, o horizontal_y e o standing.

Precondições: as precondições para todos os movimentos é a necessidade de os quadrados para onde o bloco se vai mover terem de existir.

Custo: 1 (que é o movimento do bloco).

Fig.13 – objetivo

Níveis, dificuldades e jogabilidade

À medida que os níveis avançam, a dificuldade e a complexidade dos níveis aumenta.

Nível 1 → Nível 6: níveis que podem ser resolvidos pelo computador com diferentes algoritmos ou com o modo Humano.

Nível 7 → Nível 9: níveis que só têm o modo Humano.

Interface Gráfica

Elementos da interface gráfica foram criados com IA, como a música de fundo do jogo através da plataforma Sondraw.

Fig.15 - Soundraw

Código Implementado

Implementação do código através de classes, dividindo o jogo por ficheiros, facilitando assim a separação dos componentes

Implementação de todos os níveis em pygame.

Usamos ainda algumas bibliotecas fundamentais, como a biblioteca copy(deepcopy), pygame, collections e sys.

Algoritmos e Heurística

Implementação de 4 algoritmos de pesquisa dos níveis $1 \rightarrow 6$:

- o BFS (Breadth First Search);
- o DFS (Depth First Search);
- o Greedy search;
- o A* search.

Em relação ao Greedy search e ao A* search, usamos uma heurística, a distância de Manhattan, que é calculada através da soma das distâncias das coordenadas x e y entre a posição atual do bloco e a meta.

Comparação dos resultados

Algoritmos (nós)

	BFS	DFS	Greedy	A *
nível 1	57	21	36	27
nível 2	7	242	4	4
nível 3	120	409	28	25
nível 4	292	1834	28	42
nível 5	387	3184	24	113
nível 6	399	8868	72	72

Discussão dos resultados

Obtenção dos resultados experimentais: média de 5 testes para cada algoritmo de pesquisa em cada nível.

Elaboração da tabela (células a verde → solução ótima de cada nível) e gráficos.

Considerações:

- DFS: algoritmo de pesquisa menos eficiente para este jogo (visita bastantes nós antes de chegar à solução ótima).
- Greedy: não é muito eficiente neste jogo (encontrou apenas a solução ótima 2 vezes).
- BFS: demora um pouco mais que o A* (porque os níveis não são muito complexos), mas encontrou bastante rápido a solução → é uma opção viável para este jogo.
- A*: não é tão rápido como o Greedy, no geral, mas encontra sempre a solução ótima.

Algoritmos (tempo de execução/ ms)

	BFS	DFS	Greedy	A *
nível 1	4,23	1,417	2,601	2,007
nível 2	3,505	3,357	0,401	0,301
nível 3	5,025	6,117	1,499	1,305
nível 4	11,808	29,607	2,308	2,6
nível 5	18,758	46,089	1,496	6,95
nível 6	20,498	50	4,206	4,05

Conclusão

Em suma, o jogo "Space Block: Roll The Block" foi explorado como um problema de pesquisa e foram aplicados diferentes algoritmos de pesquisa (o BFS, o DFS, o Greedy e o A*) para encontrar soluções eficientes para o jogo.

Os resultados indicam que o algoritmo A* obteve o melhor desempenho em termos de qualidade das soluções encontradas, enquanto que o DFS teve o pior desempenho.

Além disso, este estudo também mostrou que a distância de Manhattan (para este jogo) melhora o desempenho, eficácia e rapidez do algoritmo A*.

Assim sendo, com este trabalho é possível inferir que o uso de algoritmos de pesquisa pode ser uma ferramenta valiosa para a resolução de problemas de jogos, fornecendo soluções eficientes e otimizadas, sendo, no entanto, também premente considerar as limitações de cada algoritmo e escolher o que melhor se adapta.

Pesquisa Bibliográfica

- https://play.google.com/store/apps/details
 ?id=com.zawor.spaceblock&hl=en&gl=US
- https://www.mathplayground.com/logic_bl oxorz.htm
- Ficheiros disponibilizados no moodle
- · **Opilot**
- · W deepseek
- · MSOUNDRAW