Formule parametriche

Seu(x) =
$$\frac{2t}{1+t^2}$$

Cas(x) = $\frac{1-t^2}{1+t^2}$

then (x) = $\frac{2t}{1+t^2}$

then (x) = $\frac{2t}{1+t^2}$

then (x) = $\frac{2t}{1+t^2}$

Lifegrali di funziani razionali

 $(x) = \frac{1-t^2}{1-t^2}$
 $\frac{3+4x^3}{2x^2+3x-4}$
 $\frac{x^2+3}{x^2+2x+4}$
 $\frac{x^2+4}{2x^2+4x+1}$

Coo 1) $\frac{x^2+4}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$

Coo 1) $\frac{x^2+4}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$
 $\frac{x^2+4x+1}{x^2+4x+1}$

Coo 2) $\frac{x^2+1}{x+4}$
 $\frac{x^2+1}{$

Principio di identito dei policioni		
$\int A + C = 0$		
$\begin{cases} B - A = 0 \\ -B = 1 \end{cases}$		
Escupio: $\int \frac{1}{x^3 - x^2} dx deg(N) = 0 deg(D) = 3$		
$X^3 - X^2 = X^2(x-1)$ fottorizzo il denominatore $Q \times^2 OSSOCIO = \frac{A}{X} + \frac{B}{X^2}$		
\mathbb{Z} \mathbb{X}^2 \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}		
determinare le costouti di modo che:		
$\frac{1}{x^3-x^2} = \frac{(\beta-c)x^2}{(\beta-A)x-B}$		
Semplifico denon, Henzo agraptionse:		
$(\beta + C) x^{2} + (\beta - A) \times -\beta = 1$		
risolvendo il sistema (principio identito polinami A=-1 B=-1 c=1	·) (Heuro:
quindi (1 , -1 , +)		
colcolor l'integrale $\int \left(-\frac{1}{x} + \left(-\frac{1}{x^2}\right) + \frac{1}{x-1}\right) dx =$		
$-\left(\frac{1}{x}dx - \int \frac{1}{x^2}dx + \int \frac{1}{x-1}dx = -\ln x + \frac{1}{x} + \ln x-1 .$	+ C	

Proprieto integrali $\int_{a}^{b} f(x) dx = -\int_{b}^{c} f(x) dx$ $\int_{c}^{b} f(x) dx = \int_{c}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx$ $\int_{a}^{b} [c f(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx$ $\int_{c}^{b} [c f(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx$ $\int_{c}^{b} [c f(x)] dx = \int_{a}^{b} f(x) dx + \int$