

UD Nº 8 Modulación y Multiplexación

MODULACION

La modulación es un proceso que consiste en transformar una señal (que representa información) en otro tipo de señal adecuada para su transmisión por un medio de comunicación, sin modificar sustancialmente la información que ella representaba.

SEÑALES INTERVINIENTES

Mediante un **modulador**, una señal llamada **portadora** p(t) (**oficia de transporte**) es transformada por una señal llamada **moduladora** m(t) (**la que contiene la información**), obteniéndose como producto una señal que se conoce como **modulada** M(t).

La operación de recuperación de la señal original es llevada a cabo por un demodulador.

ESQUEMA BÁSICO DE MODULACIÓN

METODOS DE MODULACION

MODULACION POR ONDA CONTINUA

Es aquel proceso por el cual la señal portadora (se caracteriza por ser una señal sinusoidal), va a ser modificado alguno de sus parámetros característicos (A, fr, fase), por medio de la señal moduladora, siendo esta A o D. Según el parámetro a modificar, será el tipo de modulación.

MODULACION POR PULSOS

Es aquel proceso por el cual la señal portadora (se caracteriza por ser un tren de pulsos), va a ser modificado alguno de sus parámetros característicos (A, Duración o Posición), por medio de la señal moduladora, siendo esta A o D. Según el parámetro a modificar, será el tipo de modulación.

Clasificación de las Técnicas de Modulación

TIPOS DE MODULACION

Tipo de modulación	Moduladora	Portadora	Modulada	Nombre de la modulación
Continua	Analógica	Analógica	Analógica	AM FM PM
Continua	Digital	Analógica	Analógica	ASK FSK PSK DPSK M- PSK M-QAM
Por pulsos	Analógica	Digital	Analógica	PAM PDM PPM
Por pulsos	Digital	Digital	Digital	PCM (MIC) DPCM DELTA DELTA ADAPTIVA

MODULACIÓN POR ONDA CONTINUA

PORTADORA
$$p(t) = A_p sen(\omega_p t + \theta_p)$$

$$f_p = \frac{1}{T_p}$$
 = frecuencia de la portadora

 A_p = amplitud máxima de la portadora

 T_p = período de la portadora

 $\omega_{p} = 2\pi f_{p} = \text{pulsación de la portadora}$

 θ_p = fase de la portadora

p(t) = amplitud máxima de la portadora

CON LA MODULACIÓN SE MODIFICAN ALGUNO DE LOS SIGUIENTES PARÁMETROS DE LA MODULADORA:

- AMPLITUD
- FRECUENCIA
- FASE

MODULACION - AM

MODULADORA: $a(t) = A sen(\omega_a t + \theta_a)$

PORTADORA:

$$\mathbf{p}(\mathbf{t}) = \mathbf{P} \operatorname{sen}(\boldsymbol{\varpi}_{\mathbf{p}} \mathbf{t} + \boldsymbol{\theta}_{\mathbf{p}})$$

$$\varpi_a \ll \varpi_p$$

Envolvente de modulación

MODULACION - FM

SEÑAL MODULADA

$$\mathbf{M}(t) = \mathbf{A}_{p} \operatorname{sen} \left(\mathbf{\varpi}_{p} \ t + \beta \operatorname{sen} \ \mathbf{\varpi}_{a} \ t + \boldsymbol{\theta}_{p} \right)$$

$$\beta = \Delta \omega / \omega_a$$
 (índice de modulación)

$$\Delta \omega = k A_a$$
 (desviación de frec)

β = k A (circuito y amplitud de moduladora)

MODULACION DE FASE - SEÑAL 2-PSK / B-PSK

DOS SALTOS DE FASE EN ESTE CASO (0°-180°)

ASIGNACION DE SECUENCIA DE BITS Y DE ESTADOS

DIAGRAMA DE FASES MODULACION 4-PSK / Q-PSK

Cuadro de asignación

Nro	Secuencia	Fase
Secuencia	de Bits	Asignada
1	00	0°
2	01	90°
3	11	180°
4	10	270°

200	2π
θ	$=\frac{ZN}{M}$
	5,000

M-PSK

Se aplica Código Reflejo o de Gray

	Secuencia	
	de Bits	
0	00	
0	01	
	1er espejo	
0	0 1 <mark>1</mark>	
0	1 0	
	2do espejo	
1	10	
1	11	
1	1 01	
1 00		

Diagrama de Estados,

De Fases o Vectorial.

CONSTRUCCIÓN DEL CÓDIGO DE GRAY EJEMPLO CON 3 BITS

MODULACION M-PSK

$$\theta = \frac{2\pi}{M}$$

 $n = log_2 M$

Vtx = Vmod x n

M saltos de fase, con un ángulo θ entre fase y fase

Cada salto lleva "n" bits

Relación entre ambas velocidades a través de "n"

8-PSK

N° de	Dígitos	Fase
Secuencia	binarios	asignada
1	000	O°
2	001	45°
3	011	90°
4	010	135°
5	110	180°
6	111	225°
7	101	270°
8	100	315°

MULTIPLEXACION

Es una técnica que permite agrupar en un mismo medio de com (s) distintos canales de distintos servicios, a fin de aprovechar la totalidad del AB disponible y hacer más eficiente el uso del canal de comunicaciones.

MULTIPLEXACION: VOZ / DATOS

MULTIPLEXOR ⇒ Conmutador Rotativo Electrónico.

MULTIPLEXACION - Distintas TÉCNICAS:

POR DIVISIÓN DE FRECUENCIA (FDM) POR DIVISIÓN DE TIEMPO (TDM) POR DIVISIÓN DE TIEMPO ESTADÍSTICA (STDM) POR DIVISIÓN DE LONGITUD DE ONDA (WDM) POR DIVISIÓN DE CÓDIGO (CDM)

MULTIPLEXACION: FDM

MULTIPLEXACION: TDM

MULTIPLEXACION: STDM

- ASIGNACIÓN ESTADÍSTICA
- APROVECHA TODOS LOS TIEMPOS.
- ASIGNACIÓN POR DEMANDA DE RANURAS.
- TAMBIÉN SE DENOMINA MUX ASINCRÓNICA (ATDM).

COMPARACIÓN TDM STDM

MULTIPLEXACION: FDM-WDM-TDM

Existen tres técnicas básicas

(Forouzan, 2007)

TIPOS DE MULTIPLEXACIÓN

Descripción

- Existen tres técnicas básicas de multiplexación.
- •FDM. Multiplexación por división de frecuencia. Es una técnica analógica que combina combina señales analógicas.
- •WDM. Multiplexación por división de longitud de onda. Es Es una técnica analógica que combina señales ópticas.
- •TDM. Multiplexación por división de tiempo. Es una técnica digital que combina varios canales de baja tasa en uno de alta tasa.

El objetivo de la multiplexación es el buen uso del ancho de banda.