Stock Movement Prediction from Tweets and Historical Prices

ACL 2018 - Yumo Xu, Shay B. Cohen

Alumno: Juan Antonio López Rivera

StockNet

Objetivo

Predecir el movimiento de cierta acción en el día ${\cal D}$

Usando datos históricos de Twitter y precio de la acción entre los días

$$[D - \Delta D, D - 1]$$

StockNet

Datos de entrada

Entre las fechas 01/01/2014 a 01/01/2016 se recolectaron datos de 88 compañías.

Para cada compañía se tiene:

- Tweets que mencionan esa acción
- Precio histórico

Salida

- 0: Bajará la acción
- 1: Subirá la acción

Recolección de datos

Historical Price Dataset

Twitter Dataset

Recolección de datos

- 88 compañías de alto volumen de movimientos
 - Top 10 con mayor capital en cada categoría
- ► El movimiento debe ser significativo, ie. <-0.5% o bien >0.55%
 - Descarta 38.72% de los datos, quedando 26,614
 - ▶ Balancea las clases: 49.78% y 50.22%

Subconjuntos de datos

- **Entrenamiento**: 20,399 movimientos entre 01/01/2014 y 01/08/2015
- Validación: 2,555 movimientos entre 01/08/2015 y 01/10/2015
- Prueba: 3,720 movimientos entre 01/10/2015 y 01/01/2016

Codificación de datos

Market Information Encoder (MIE)

- Codifica información de redes sociales y precio histórico para formar la entrada X
- Cada día corresponde a una entrada xt = [ct, pt] donde
 - ct: embedding del corpus
 - pt: vector de precio histórico

Market Information Encoder (MIE)

Market Information Encoder (MIE)

- El vector de precio histórico pt se conforma de 3 valores:
 - Precio al cierre del día
 - Precio más alto del día
 - Precio más bajo del día
- Finalmente se normalizan usando el cierre del día anterior:

$$p_t = \tilde{p}_t / \tilde{p}_{t-1}^c - 1$$

 $\tilde{p}_t = \left[\tilde{p}_t^c, \tilde{p}_t^h, \tilde{p}_t^l \right]$

Variational Movement Decoder (VMD)

El valor Z se conoce como latent driven factor, se aproxima así (cuando no se conoce y) en cada instante de tiempo zt:

$$z_t = \mu_t + \delta_t \odot \epsilon$$
$$\mu'_t = W^{\theta}_{o,\mu} h^{z\prime}_t + b^{\theta}_{\mu}$$
$$\log {\delta'}^2_t = W^{\theta}_{o,\delta} h^{z\prime}_t + b^{\theta}_{\delta}$$

Variational Movement Decoder (VMD)

Training Objective StockNet y_3 07/08 (c) Attentive Temporal y_1 y_2 Auxiliary (ATA) 03/08 06/08 Temporal Attention g_1 g_2 g_3 h_1 h_2 h_3 (a) Variational Movement Decoder (VMD) z_1 z_2 z_3 Historical 06/08 02/08 03/08 (b) Market Information Prices Attention Attention Attention Encoder (MIE) Bi-GRUs Message Embedding Layer 02/08 03/08 - 05/08 06/08 Message Corpora

Attentive Temporal Auxiliary (ATA)

Parámetros

- Trading days: 5
- Batch Size: 32
- Max. tweets per day: 40
- Max. tokens per tweet: 30
- Word embedding size: 50

- Num. of heads: 8
- Dense Layer: 50
- Key dim (Q,K): 16
- Value dim (V): 16

- Message Embedding Layer: 100
- Variational Movement Decoder: 150
- Adam optimizer
- Learning rate: 0.001
- Input dropout rate: 0.3

5 Resultados

Ejecución

	StockNet Original		MultiHeadAttention		Transformer	
Época	Loss	Accuracy	Loss	Accuracy	Loss	Accuracy
1	4.236096	0.594355	3.507428	0.504032	3.778165	0.481855
2	1.935737	0.573387	1.596338	0.506855	1.612628	0.482056
3	1.374547	0.555847	1.045187	0.496774	1.048171	0.486089
4	1.21081	0.542944	0.885669	0.492944	0.890253	0.517944
5	1.139567	0.54254	0.823049	0.487298	0.824322	0.517137
6	1.116311	0.534677	0.789848	0.501008	0.792913	0.517339
7	1.089512	0.551008	0.771544	0.516532	0.778887	0.517137
8	1.074829	0.55121	0.762309	0.518347	0.764101	0.516935
9	1.074176	0.537702	0.756732	0.517944	0.754988	0.517541
10	1.063321	0.546371	0.749721	0.517339	0.749138	0.517541
11	1.057531	0.548387	0.750486	0.517339	0.747233	0.517137
12	1.050444	0.568347	0.750638	0.517137	0.743672	0.518548
13	1.053398	0.556855	0.761624	0.517742	0.742073	0.517137
14	1.042594	0.58246	0.743492	0.516734	0.746247	0.517541
15	1.04298	0.577823	0.739399	0.516734	0.750495	0.517541
Mejor época	1.042594	0.58246	0.762309	0.518347	0.743672	0.518548
Evaluación	1.1229074	0.582301	0.736546278	0.574405	0.731089175	0.574405

Resultados previos

StockNet-Transformer Accuracy = 57.44

Baseline models	Acc.	MCC	ICC StockNet variations		MCC
RAND	50.89	-0.002266	TECHNICALANALYST	54.96	0.016456
ARIMA (Brown, 2004)	51.39	-0.020588	FUNDAMENTALANALYST	58.23	0.071704
RANDFOREST (Pagolu et al., 2016)	53.08	0.012929	INDEPENDENTANALYST	57.54	0.036610
TSLDA (Nguyen and Shirai, 2015)	54.07	0.065382	DISCRIMINATIVEANALYST	56.15	0.056493
HAN (Hu et al., 2018)	57.64	0.051800	HEDGEFUNDANALYST	58.23	0.080796

- **RAND**: Random guesses
- **ARIMA**: Analysis with only historical prices
- **RANDFOREST**: Random forest with word2vec
- **TSLDA**: Generative model that learns topics and sentiments
- **HAN**: State of the art DNN with hierarchical attention

- **Technical Analyst**: only historical prices
- Fundamental Analyst: only tweet information
- Independent Analyst: without ATA
- Discriminative Analyst: without Z (zt = μt)
- Hedge Fund Analyst: full STOCKNET

Posibles modificaciones

- Aumentar número de épocas
- Reducir learning rate
- Reducir batch size
- Reducir dropout
- Modificar alpha

iGracias por su atención!