Minimal Proof System of Matching Logic

Formal Systems Laboratory

November 13, 2017

The following inference rules are shown to constitute a sound and complete proof system of matching logic. We conjecture that all rules marked with "*" are derivable from the rest plus the axiom (Definedness). In other words, we conjecture that all rules that are *not* marked with "*" constitute a sound and complete proof system of matching logic.

 $\begin{array}{ll} \text{Propositional}_1 & \varphi_1 \to (\varphi_2 \to \varphi_1) \\ \\ \text{Propositional}_2 & (\varphi_1 \to (\varphi_2 \to \varphi_3)) \to ((\varphi_1 \to \varphi_2) \to (\varphi_1 \to \varphi_3)) \\ \\ \text{Propositional}_3 & (\neg \varphi_1 \to \neg \varphi_2) \to (\varphi_2 \to \varphi_1) \\ \\ \text{Variable Substitution} & \forall x. \varphi \to \varphi[y/x] \end{array}$

 $\forall x. (\varphi_1 \to \varphi_2) \to (\varphi_1 \to \forall x. \varphi_2)$ if x does not occur free in φ_1

BARCAN $\sigma(\ldots, \exists x.\varphi, \ldots) \leftrightarrow \exists x.\sigma(\ldots, \varphi, \ldots)$

if x does not occur free

in the left-hand side of the double implication

*Membership Symbol $x \in \sigma(\dots, \varphi_i, \dots) \to \exists y. y \in \varphi_i \land x \in \sigma(\dots, y, \dots)$

*Membership \neg $x \in \neg \varphi \to \neg (x \in \varphi)$ *Membership \exists $x \in \forall y. \varphi \to \forall y. (x \in \varphi)$

where x is distinct from y

*Definedness [x]

N From φ deduce $\neg \sigma(\neg \varphi)$

Modus Ponens From φ_1 and $\varphi_1 \rightarrow \varphi_2$ deduce φ_2

Universal Generalization – From φ deduce $\forall x. \varphi$

Equational Substitution From $\varphi_1 \leftrightarrow \varphi_2$ deduce $\varphi_3[\varphi_1/x] \leftrightarrow \varphi_3[\varphi_2/x]$

Framing From $\varphi_1 \to \varphi_2$ deduce $\sigma(\varphi_1) \to \sigma(\varphi_2)$

*Introduction \in From φ deduce $x \in \varphi$

If x does not occur free in φ

*ELIMINATION \in From $x \in \varphi$ deduce φ

If x does not occur free in φ