Unsupervised learning

Ушаков Роман

April, 2018

Сегодня в программе

- Мластеризация
 - Что такое кластеризация?
 - С чем это едят?
- Методы кластеризации
 - kMeans
 - Affinity Propagation
 - Агломеративная кластеризация

План

- Мластеризация
 - Что такое кластеризация?
 - С чем это едят?
- Методы кластеризации
 - kMeans
 - Affinity Propagation
 - Агломеративная кластеризация

Кластеризация

• Входные данные:

- Признаковое описание: $X = \{x_1, \dots, x_l\}$ объекты из \mathbb{R}^n ;
- ullet Матрица попарных расстояний: $D = \{d_1, \dots, d_l\}$ объекты из \mathbb{R}^l .

Кластеризация

- Входные данные:
 - Признаковое описание: $X = \{x_1, \dots, x_l\}$ объекты из \mathbb{R}^n ;
 - ullet Матрица попарных расстояний: $D = \{d_1, \dots, d_l\}$ объекты из \mathbb{R}^l .
- Задача разделить объекты на кластеры:
 - (а) объекты в одном кластере похожи друг на друга
 - (b) объекты в разных кластерах существенно отличаются

Кластеризация

• Входные данные:

- Признаковое описание: $X = \{x_1, \dots, x_l\}$ объекты из \mathbb{R}^n ;
- ullet Матрица попарных расстояний: $D = \{d_1, \dots, d_l\}$ объекты из \mathbb{R}^l .
- Задача разделить объекты на кластеры:
 - (а) объекты в одном кластере похожи друг на друга
 - (b) объекты в разных кластерах существенно отличаются
- Цели кластеризации:
 - Понимание данных (разбиение на группы схожых объектов);
 - Сжатие данных (выбор представителей кластеров);
 - Обнаружение новизны

План

- По Кластеризация
 - Что такое кластеризация?
 - С чем это едят?
- Методы кластеризации
 - kMeans
 - Affinity Propagation
 - Агломеративная кластеризация

Сегментация пользователей

Поиск аномалий

Определение тематики текста

Сегментация изображений

План

- Кластеризация
 - Что такое кластеризация?
 - С чем это едят?

- Методы кластеризации
 - kMeans
 - Affinity Propagation
 - Агломеративная кластеризация

5 простых шагов:

• Выбраем количество кластеров k, которое нам кажется оптимальным для наших данных;

- Выбраем количество кластеров k, которое нам кажется оптимальным для наших данных;
- Раскидываем случайным образом в пространство наших данных k точек (центроидов);

- Выбраем количество кластеров k, которое нам кажется оптимальным для наших данных;
- Раскидываем случайным образом в пространство наших данных k точек (центроидов);
- Для каждой точки нашего набора данных посчитать, к какому центроиду она ближе;

- Выбраем количество кластеров k, которое нам кажется оптимальным для наших данных;
- Раскидываем случайным образом в пространство наших данных k точек (центроидов);
- Для каждой точки нашего набора данных посчитать, к какому центроиду она ближе;
- Переместить каждый центроид в центр выборки, которую мы отнесли к этому центроиду;

- Выбраем количество кластеров k, которое нам кажется оптимальным для наших данных;
- Раскидываем случайным образом в пространство наших данных k точек (центроидов);
- Для каждой точки нашего набора данных посчитать, к какому центроиду она ближе;
- Переместить каждый центроид в центр выборки, которую мы отнесли к этому центроиду;
- Повторять последние два шага фиксированное число раз, либо до тех пор пока центроиды не "сойдутся".

Пошаговая визуализация алгоритма

Сложность алгоритма: $O(I^{nk+1})$, где n – размерность пространств, k – количество кластеров и I – количество объектов.

MiniBatch kMeans:

Korga egonan Kmire Knaerenisalun

План

- Кластеризация
 - Что такое кластеризация?
 - С чем это едят?
- Методы кластеризации
 - kMeans
 - Affinity Propagation
 - Агломеративная кластеризация

• $s(x_i, x_j)$ – правило «похожести», $S = (s(x_i, x_j))$ – матрица «схожести».

- $s(x_i, x_j)$ правило «похожести», $S = (s(x_i, x_j))$ матрица «схожести».
- $r(x_i, x_k)$ насколько x_i хочет видеть x_k своим представителем, $R = (r(x_i, x_i))$ матрица «ответственности» (responsibility).

- $s(x_i, x_j)$ правило «похожести», $S = (s(x_i, x_j))$ матрица «схожести».
- $r(x_i, x_k)$ насколько x_i хочет видеть x_k своим представителем, $R = (r(x_i, x_i))$ матрица «ответственности» (responsibility).
- $a(x_i, x_k)$ насколько хорошо x_k готова представлять интересы x_i , $A = (a(x_i, x_j))$ матрица «достпуности» (availability).

Матрицы R и A обновляются по очереди:

•
$$r_{i,k} \leftarrow s_{i,k} - \max_{k' \neq k} (a_{i,k'} + s_{i,k'})$$

•
$$a_{i,k} \leftarrow min(0, r_{k,k} + \sum_{i' \notin i,k} max(0, r_{i',k}))$$

•
$$a_{k,k} \leftarrow \sum_{i' \neq k} \max(0, r_{i',k})$$

$$c_i \leftarrow argmax_k(r_{i,k} + a_{i,k})$$

План

- Кластеризация
 - Что такое кластеризация?
 - С чем это едят?
- Методы кластеризации
 - kMeans
 - Affinity Propagation
 - Агломеративная кластеризация

- 4 простых шага
 - Присваиваем каждой точке свой кластер;

- 4 простых шага
 - Присваиваем каждой точке свой кластер;
 - Сортируем попарные расстояния между кластерами по возрастанию;

- 4 простых шага
 - Присваиваем каждой точке свой кластер;
 - Сортируем попарные расстояния между кластерами по возрастанию;
 - Берём пару ближайших кластеров, склеиваем их в один и пересчитываем центр кластера;

4 простых шага

- Присваиваем каждой точке свой кластер;
- Сортируем попарные расстояния между кластерами по возрастанию;
- Берём пару ближайших кластеров, склеиваем их в один и пересчитываем центр кластера;
- Повторяем два последних пункта до тех пор, пока все данные не склеятся в один кластер.

Расстояния между кластерами

• Single linkage — минимум попарных расстояний между точками из двух кластеров $d(C_i, C_j) = min_{x_i \in C_i, x_i \in C_i} ||x_i - x_j||$

Расстояния между кластерами

• Single linkage — минимум попарных расстояний между точками из двух кластеров

$$d(C_i, C_j) = min_{x_i \in C_i, x_j \in C_j} ||x_i - x_j||$$

• Complete linkage — максимум попарных расстояний между точками из двух кластеров $d(C_i, C_i) = \max_{x_i \in C_i, x_i \in C_i} ||x_i - x_i||$

Расстояния между кластерами

• Single linkage — минимум попарных расстояний между точками из двух кластеров $d(C_i, C_i) = min_{x_i \in C_i, x_i \in C_i} ||x_i - x_i||$

• Complete linkage — максимум попарных расстояний между точками из двух кластеров

 $d(C_i, C_j) = \max_{x_i \in C_i, x_j \in C_j} ||x_i - x_j||$

• Average linkage — среднее попарных расстояний между точками из двух кластеров

$$d(C_i, C_j) = \frac{1}{n_i n_j} \sum_{x_i \in C_i} \sum_{x_j \in C_j} ||x_i - x_j||$$

Расстояния между кластерами

- Single linkage минимум попарных расстояний между точками из двух кластеров $d(C_i, C_j) = min_{x_i \in C_i, x_i \in C_i} ||x_i x_j||$
- Complete linkage максимум попарных расстояний между точками из двух кластеров $d(C_i, C_i) = \max_{x_i \in C_i, x_i \in C_i} ||x_i x_i||$
- Average linkage среднее попарных расстояний между точками из двух кластеров $d(C_i,C_j)=rac{1}{n_in_i}\sum_{x_i\in C_i}\sum_{x_i\in C_i}||x_i-x_j||$
- Centroid linkage расстояние между центроидами двух кластеров $d(C_i, C_i) = ||\mu_i \mu_i||$

Сравнение алгоритмов

Итог

- Кластеризация разбиение множества объектов по "сообществам"
- kMeans подходит для большого числа задач, начинать проводить анализ нужно с него
- Чаще всего, количество кластеров гиперпараметр