#### **Outline**

- GPU history
- A short introduction to CUDA

## **HPC Energy consumption**

- At ~\$1M per MW, energy costs are substantial
  - 1 petaflop in 2008 used 3 MW
  - 1 exaflop was projected for 2018 at 200 MW "usual chip scaling" so the goal was 20 MW
  - Reality will probably be close to 50 MW in 2022
- Example machines:
  - Tihanhe-2 at 18MW (2013)
  - TaihuLight at 15 MW (2016)
  - Fugaku at 28 MW (2020)

# **Brief history**

- Late 80s-early 90s: "golden age" for supercomputing
  - Companies: Thinking Machines, MasPar, Cray
  - Relatively fast processors (vs memory)
  - Lots of academic interest and development
  - But got hard to compete with commodity hardware
    - Scientific computing is not a market driver!
- 90s-early 2000s: age of the cluster
  - Beowulf, grid computing, etc.
  - "Big iron" also uses commodity chips (better interconnect)
- Past few years
  - CPU producers move to multicore
  - High-end graphics becomes commodity HW
    - Gaming is a market driver!
  - GPU producers realize their many-core designs can apply to general purpose computing

## **GPU Programmable Shaders**



Traditional Approach: Fixed function pipeline (state machine) New Development (2003-): Programmable pipeline

## Warps and Warp-Level Fine-Grain Multithreaded Execution

- Warp: A set of threads that execute the same instruction (on different data elements)
- All threads run the same code
  - Warp: The threads that run lengthwise in a woven fabric ...



## **High-Level View of a GPU**



# Latency Hiding via Warp-Level Fine Grain Multithreading

 Warp: A set of threads that execute the same instruction (on different data elements)

#### Fine-grained multithreading

- One instruction per thread in pipeline at a time (No interlocking)
- Interleave warp execution to hide latencies
- Register values of all threads stay in register file
- Fine-Grain multithreading enables long latency tolerance
  - Millions of pixels



#### **Threads**

- Threads on desktop CPUs
  - Implemented via lightweight processes (for example)
  - General system scheduler
  - Thrashing when more active threads than processors
- An alternative approach
  - Hardware support for many threads / CPU
    - Modest example: hyperthreading
    - More extreme: Cray MTA-2 and XMT
  - Hide memory latency by thread switching
  - Want many more independent threads than cores
- GPU programming
  - Thread creation / context switching are basically free
  - Want lots of threads (thousands for efficiency?!)

## **Throughput vs. Latency**

- GPU goal: maximum throughput
  - massively-multithreaded architecture, use very large register file
- CPU goal: minimum latency
  - use tiny register file and much larger caches to optimize latency

| Specifications                    | Ivy Bridge EX<br>(Xeon E7-8890v2)                    |  |
|-----------------------------------|------------------------------------------------------|--|
| Processing Elements               | 15 cores, 2 issue,<br>8 way SIMD<br>@ <b>2.8</b> GHz |  |
| Resident<br>Strands/Threads (max) | 15 cores, 2 threads, 8 way SIMD:  240 strands        |  |
| SP GFLOP/s                        | 672                                                  |  |

15 SMs, 6 issue, 32 way SIMD @745 MHz

15 SMs, 64 SIMD vectors, 32 way SIMD: **30720** threads

Kepler

(Tesla K40)

**Memory Bandwidth** 

Register File

Local Store/L1 Cache

L2 Cache

4291

288 GB/s

672 85 GB/s

3.75 MB

xx kB (?)

960 kB

1.5 MB

960 kB 3.75 MB

# GPU vs. CPU masks

Kepler



Ivy Bridge



## **Throughput vs. Latency**

- Different goals produce different designs
  - Throughput cores: assume work load is highly parallel
  - Latency cores: assume workload is mostly sequential
- Latency goal: minimize latency experienced by 1 thread
  - lots of big on-chip caches
  - extremely sophisticated control
- Throughput goal: maximize throughput of all threads

#### **SIMD: Parallel data**

- OpenMP / Pthreads / MPI all neglect SIMD parallelism
- Because it is difficult for a compiler to exploit SIMD
- How do you deal with sparse data & branches?
  - Many languages (like C) are difficult to vectorize
- Most common solution:
  - Either forget about SIMD (And maybe the autovectorizer likes you)
  - Or instantiate intrinsics (assembly language)
  - Requires a new code version for every SIMD extension

## **General-purpose GPU programming**

- Old GPGPU model: use texture mapping interfaces
  - People got good performance!
  - But too clever by half
- CUDA (Compute Unified Device Architecture)
  - More natural general-purpose programming model
  - Initial release in 2007; now in version 11.7
- OpenCL
  - Relatively new (late 2009); in Apple's Snow Leopard
  - Open standard

#### **CUDA**

- CUDA is a programming model designed for:
  - Heterogeneous architectures
  - Wide SIMD parallelism
  - Scalability
- CUDA provides:
  - A thread abstraction to deal with SIMD
  - Synchronization & data sharing between small thread groups
- CUDA programs are written in C++ with minimal extensions
- OpenCL is inspired by CUDA, but HW & SW vendor neutral

## **Hierarchy of Concurrent Threads**

- Parallel kernels composed of many threads
  - all threads execute the same sequential program
- Threads are grouped into thread blocks
  - threads in the same block can cooperate
- Threads/blocks have unique IDs

#### **CUDA Threads**

- Independent thread of execution
  - has its own program counter, variables (registers), processor state, etc.
  - no implication about how threads are scheduled
- CUDA threads might be physical threads
  - as mapped onto GPUs
- CUDA threads might be virtual threads
  - might pick 1 block = 1 physical thread on multicore CPU

#### **CUDA Thread block**

- Thread block = a (data) parallel task
  - all blocks in kernel have the same entry point
  - but may execute any code they want
- Thread blocks of kernel must be independent tasks
  - program valid for any interleaving of block executions

#### **CUDA Thread blocks**

- A 1D Grid of 1D Blocks:
  - int threadId = blockIdx.x \*blockDim.x +
     threadIdx.x;
- A 2D Grid of 1D Blocks:
  - int blockId = blockIdx.y \* gridDim.x + blockIdx.x;
  - int threadId = blockId \* blockDim.x + threadIdx.x;
- A 2D Grid of 2D Blocks:
  - int blockId = blockIdx.x + blockIdx.y \* gridDim.x;
  - int threadId = blockId \* (blockDim.x \* blockDim.y) + (threadIdx.y \* blockDim.x) + threadIdx.x;

#### **CUDA** parallelism

- Thread parallelism
  - each thread is an independent thread of execution
- Data parallelism
  - across threads in a block
  - across blocks in a kernel
- Task parallelism
  - different blocks are independent
  - independent kernels executing in separate streams

# **Synchronization**

Threads within a block may synchronize with barriers

```
... Step 1 ...
__syncthreads();
... Step 2 ...
```

- Blocks coordinate via atomic memory operations
  - e.g., increment shared queue pointer with atomicInc()
- Implicit barrier between dependent kernels

```
vec_minus<<<nblocks, blksize>>>(a, b, c);
vec_dot<<<nblocks, blksize>>>(c, c);
```

## Independence

- Any possible interleaving of blocks should be valid
  - presumed to run to completion without pre-emption
  - can run in any order
  - can run concurrently OR sequentially
- Blocks may coordinate but not synchronize
  - shared queue pointer: OK
  - shared lock: BAD ... can easily deadlock
- Independence requirement gives scalability

# **Memory Model**

#### **Thread**



#### Block



## **Memory Model**

Kernel 0



Sequential Kernels

#### **Vector Addition (CPU)**

```
#include <iostream>
int main(void) {
 int N = 1 << 20; // 1M elements
 float *x = new float[N]; // Allocate memory
 float *y = new float[N];
 // initialize x and y on the CPU
 for (int i = 0; i < N; i++) {
  x[i] = 1.0f; y[i] = 2.0f;
 // Run on 1M elements on the CPU
 add(N, x, y);
 // Free memory
 delete [] x; delete [] y;
 return 0;
```

## Running code on a GPU

- 1)Allocate memory on GPU
- 2)Copy data to GPU
- 3)Execute GPU program
- 4) Wait for completion
- 5)Copy results back to CPU

## Running code on a serial GPU

```
float *x = new float[N];
float *y = new float[N];
int size = N*sizeof(float);
float *d x, *d y; // device copies of x y
cudaMalloc((void **)&d_x, size);
cudaMalloc((void **)&d_y, size);
// Run kernel on GPU
add << \frac{1,1}{>} > (d_x, d_y); // Only 1 thread
// Copy result back to host
cudaMemcpy(y, d y, size, cudaMemcpyDeviceToHost);
// Free memory
cudaFree(d x); cudaFree(d y);
delete [] x; delete [] y;
```

#### Minimal extensions to C++

```
Declaration specifiers to indicate where things live

__global__ void KernelFunc(...); // kernel callable from host
__device_ void DeviceFunc(...); // function callable on device
__device_ int GlobalVar; // variable in device memory
__shared__ int SharedVar; // in per-block shared memory
```

Extend function invocation syntax for parallel kernel launch KernelFunc<<<500, 128>>>(...); // 500 blocks, 128 threads

Special variables for thread identification in kernels dim3 threadIdx; dim3 blockIdx; dim3 blockDim;

Intrinsics that expose specific operations in kernel code \_\_syncthreads(); // barrier synchronization

## Per block shared memory

#### Variables shared across block

```
__shared__ int *begin, *end;
```

#### Scratchpad memory

```
__shared__ int scratch[BLOCKSIZE];
scratch[threadIdx.x] = begin[threadIdx.x];
    // ... compute on scratch values ...
begin[threadIdx.x] = scratch[threadIdx.x];
```

#### Communicating values between threads

```
scratch[threadIdx.x] = begin[threadIdx.x];
__syncthreads();
int left = scratch[threadIdx.x - 1];
```

Per-block shared memory is faster than L1 cache, slower than register file

It is relatively small: register file is 2-4x larger

#### **Runtime functions**

Explicit memory allocation returns pointers to GPU memory

cudaMalloc(), cudaFree()

Explicit memory copy for host ↔ device, device ↔ device cudaMemcpy(), cudaMemcpy2D(), ...

Texture management

cudaBindTexture(), cudaBindTextureToArray(), ...

OpenGL & DirectX interoperability

cudaGLMapBufferObject(), cudaD3D9MapVertexBuffer(),

## Running code on a parallel GPU

```
float *x = new float[N];
 float *y = new float[N];
 int size = N*sizeof(float);
 float *d x, *d y; // device copies of x y
 cudaMalloc((void **)&d x, size);
 cudaMalloc((void **)&d y, size);
 // Run kernel on GPU
 add<<<1,256>>>(d x, d y); // 1 block of 256 threads *** Architecture bound!
 // Copy result back to host
 cudaMemcpy(y, d y, size, cudaMemcpyDeviceToHost);
// Free memory
 cudaFree(d x); cudaFree(d y);
 delete ∏ x; delete ∏ y;
// GPU function to add two vectors
  global
void add(int n, float *x, float *y) {
 int index = threadIdx.x;
 y[index] = x[index] + y[index];
```

## **Hierarchical Parallelism Strategy**

- Use both blocks and threads Why?
- Hardware limit on maximum number of threads/block
- Threads alone won't work for large arrays
- Fast shared memory only between threads
- Blocks alone are slower

## Mapping CUDA to a GPU (1)

- CUDA is designed to be functionally forgiving
  - First priority: make things work. Second: get performance.
- However, to get good performance, one must understand how CUDA is mapped to GPUs
- Threads: each thread is a SIMD vector lane
- Warps: A SIMD instruction acts on a "warp"
  - Warp width is 32 elements: LOGICAL SIMD width
- Thread blocks: Each thread block is scheduled onto an Streaming Multiprocessor (SM)
  - Peak efficiency requires multiple thread blocks per SM

## Mapping CUDA to a GPU (2)

- The GPU is very deeply pipelined to maximize throughput
- This means that performance depends on the number of thread blocks which can be allocated on a processor
- Therefore, resource usage costs performance:
  - More registers => Fewer thread blocks
  - More shared memory usage => Fewer thread blocks
- It is often worth trying to reduce register count in order to get more thread blocks to fit on the chip
  - For Kepler, target 32 registers or less per thread for full occupancy

#### Occupancy (on Kepler)

- The Runtime tries to fit as many thread blocks simultaneously as possible on to an SM
  - The number of simultaneous thread blocks (B) is  $\leq 8$
  - The number of warps per thread block (T) ≤ 32
- Each SM has scheduler space for 64 warps (W)
  - B \* T ≤ W=64
- The number of threads per warp (V) is 32
  - B \* T \* V \* Registers per thread ≤ 65536
  - B \* Shared memory (bytes) per block ≤ 49152/16384
- Depending on Shared memory/L1 cache configuration
- Occupancy is reported as B \* T / W

#### **Nvidia Tesla series**

| Tesla Product                   | Tesla K40            | Tesla M40       | Tesla P100     | Tesla V100                  |
|---------------------------------|----------------------|-----------------|----------------|-----------------------------|
| GPU                             | GK180 (Kepler)       | GM200 (Maxwell) | GP100 (Pascal) | GV100 (Volta)               |
| SMs                             | 15                   | 24              | 56             | 80                          |
| TPCs                            | 15                   | 24              | 28             | 40                          |
| FP32 Cores / SM                 | 192                  | 128             | 64             | 64                          |
| FP32 Cores / GPU                | 2880                 | 3072            | 3584           | 5120                        |
| FP64 Cores / SM                 | 64                   | 4               | 32             | 32                          |
| FP64 Cores / GPU                | 960                  | 96              | 1792           | 2560                        |
| Tensor Cores / SM               | NA                   | NA              | NA             | 8                           |
| Tensor Cores / GPU              | NA                   | NA              | NA             | 640                         |
| GPU Boost Clock                 | 810/875 MHz          | 1114 MHz        | 1480 MHz       | 1530 MHz                    |
| Peak FP32 TFLOPS <sup>1</sup>   | 5                    | 6.8             | 10.6           | 15.7                        |
| Peak FP64 TFLOPS <sup>1</sup>   | 1.7                  | .21             | 5.3            | 7.8                         |
| Peak Tensor TFLOPS <sup>1</sup> | NA                   | NA              | NA             | 125                         |
| Texture Units                   | 240                  | 192             | 224            | 320                         |
| Memory Interface                | 384-bit GDDR5        | 384-bit GDDR5   | 4096-bit HBM2  | 4096-bit HBM2               |
| Memory Size                     | Up to 12 GB          | Up to 24 GB     | 16 GB          | 16 GB                       |
| L2 Cache Size                   | 1536 KB              | 3072 KB         | 4096 KB        | 6144 KB                     |
| Shared Memory Size /<br>SM      | 16 KB/32 KB/48<br>KB | 96 KB           | 64 KB          | Configurable up<br>to 96 KB |
| Register File Size / SM         | 256 KB               | 256 KB          | 256 KB         | 256KB                       |
| Register File Size /<br>GPU     | 3840 KB              | 6144 KB         | 14336 KB       | 20480 KB                    |
| TDP                             | 235 Watts            | 250 Watts       | 300 Watts      | 300 Watts                   |
| Transistors                     | 7.1 billion          | 8 billion       | 15.3 billion   | 21.1 billion                |
| GPU Die Size                    | 551 mm²              | 601 mm²         | 610 mm²        | 815 mm²                     |
| Manufacturing<br>Process        | 28 nm                | 28 nm           | 16 nm FinFET+  | 12 nm FFN                   |

<sup>&</sup>lt;sup>1</sup> Peak TFLOPS rates are based on GPU Boost Clock

## **GPU Memory**

- Registers per thread
- Local cached memory per thread
- Shared memory (shared in block)
  - Declare using \_\_shared\_\_, allocated per block
  - Fast on-chip memory, user-managed
  - Not visible to threads in other blocks
- Global device level shared
- Constant cache shared by threads
- Texture cache shared by all blocks
- CPU access to global, constant and texture

## **Memory bounds**

- "A many core processor 

   = A device for turning a compute bound problem into a memory bound problem"
- Lots of processors, only one socket
- Memory concerns dominate performance tuning
- Cache access patterns matter
  - Sparse access
  - Unaligned access

## **Memory coalescing**

- GPUs and CPUs both perform memory transactions at a larger granularity than the program requests ("cache line")
- GPUs have a "coalescer", which examines memory requests dynamically from different SIMD lanes and coalesces them
- To use bandwidth effectively, when threads load, they should:
  - Present a set of unit strided loads (dense accesses)
  - Keep sets of loads aligned to vector boundaries

#### **Data structures**

- Multidimensional arrays are usually stored as monolithic vectors in memory
- Care should be taken to assure aligned memory accesses for the necessary access pattern
- Different data access patterns may also require transposing data structures (Arrays, structs)
- The cost of a transpose on the data structure is often much less than the cost of uncoalesced memory accesses
- Use shared memory to handle block transposes

## **Another example: 1D stencil**

$$y[i] = x[i] + x[i-2] + x[i-1] + x[i+2] + x[i+1]$$

1D 5-point stencil (with a "radius" of 2)

- Each thread processes one output element
  - blockDim.x elements per block
- Input elements are read several times:
  - Radius of 2, each input element is read 5 times
  - Radius of 3, each input element is read 7 times

## 1D stencil: GPU thread strategy

- Divide output array into blocks, each assigned to a thread block
  - Each element within is assigned to a thread
  - Compute blockDim.x output elements
  - Write blockDim.x output elements to global memory
- Cache (manually) input data in shared memory
  - Have each block read (blockDim.x + 2 \* radius) input elements from global memory to shared memory
  - Each block needs a ghost region of radius elements at each boundary

#### 1D stencil: kernel

```
global void stencil 1d(int *in, int *out) {
   shared int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;
// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) \{ // \text{ fill in ghost regions} \}
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
} // temp avoids using global memory over and over
// Apply the stencil
int result = 0;
for (int offset = -RADIUS; offset <= RADIUS; offset++)
 result += temp[lindex + offset];
// Store the result
out[gindex] = result;
```

## Race conditions: Synchronization

Suppose thread 7 (of 8) reads the ghost region before thread 0 has filled it in?

- Synchronizes all threads within a block void \_\_syncthreads();
- Used to prevent RAW / WAR / WAW hazards
- All threads in the block must reach the barrier
- If used inside a conditional, the condition must be uniform across the block

#### **Additional GPU Functions**

- Double and single precision
- Standard mathematical functions
  - sinf, powf, atanf, ceil, min, sqrtf, etc.
- Atomic memory operations
  - atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.
  - These work on both global and shared memory

#### **GPU Conclusions**

- GPUs gain efficiency from simpler cores and more parallelism
  - Very wide SIMD (SIMT) for parallel arithmetic and latency-hiding
- Heterogeneous programming with manual offload
  - CPU to run OS, etc. GPU for compute
- Massive (mostly data) parallelism required
  - Memmory coalescing helps
- Threads in block share faster memory and barriers
  - Blocks in kernel share slow device memory and atomics