ÖVEGES JÓZSEF Fizikaverseny 2016. április 16. III. forduló

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VIII. osztály

I. feladat

1.) Miért felülről lefelé fagynak be télen a tavak/folyók és nem alulról felfelé?	2,5 p
2.) Fagyos délelőttön (-12°C) a gyerekek veszély nélkül korcsolyáznak a tavon.	
Délutánra, a napsütés hatására a hőmérséklet -2°C lesz.	2,5 p
Fennállhat annak a veszélye, hogy beszakad a jég a gyerekek alatt?	
3.) Lehet-e egy áramforrás kapocsfeszültsége nagyobb, mint az elektromotoros feszültsége?	
Magyarázzátok a választ.	2,5 p
4.) Miért nem üti agyon az áram a madarat, ha csupasz, áramjárta vezetékre száll?	2,5 p

II. feladat

Az S₁ = 100 cm² alapterületű hasáb alakú üvegedényben $t_{\rm v}=0$ °C víz található. Az edény aljához rögzített ideális csigán átvetett fonal két végére két azonos, S = 10 cm² keresztmetszetű $l_{\rm B}=18$ cm, illetve $l_{\rm C}=2$ cm hosszú, $t_{\rm j}=0$ °C jéghasábot rögzítünk, amint a mellékelt ábrán látható. A hasábok felső vége és a víz felülete közötti távolság kezdeti pillanatban azonos, $d_{\rm l}=1$ cm. Ismerjük a víz $\rho_{\rm v}=1000\frac{kg}{m^3}$,

illetve a jég $\rho_j = 900 \frac{kg}{m^3}$ sűrűségét. Határozzátok meg:

- a) számszerű adatokkal alátámasztva, hogy melyik test fog felemelkedni a víz felszínére, feltételezve, hogy a fonal elég hosszú. (3 p)
- b) mekkora távolságon mozdul el a C test addig a pillanatig, amikor a mozgás leáll, tudva, hogy a jégnek a vízből kiemelkedő része elolvad. (4 p)
- c) a kezdeti állapotban található rendszer B jégtömbjének tetejéhez egy $l_{\rm D}=3,5$ mm hosszúságú, és vele azonos keresztmetszetű $\rho_{\rm D}{=}5000\frac{kg}{m^3}$ sűrűségű fémdarabot, míg a C test tetejéhez egy $l_{\rm E}$ hosszúságú, és vele azonos

keresztmetszetű ρ_E =500 $\frac{kg}{m^3}$ sűrűségű fadarabot rögzítünk. Tudva, hogy a fadarab is a víz szabad felszíne alatt található teljes egészében, határozzátok meg a fadarab l_E hosszúságát úgy, hogy a rendszer ne mozduljon ki ebből az állapotból! (3 p)

III. feladat

Adott az ábrán feltüntetett áramkör, mely öt kapcsolóból K_1 , K_2 , K_3 , K_4 , K_5 és öt égőből (A, B, C, D, E) áll. Az égők névleges feszültsége és áramerőssége, U_A = 20 V, I_A = 2 A, U_B = 30 V, I_B = 1,5 A, U_C = 15 V, I_C = 0,5 A, U_D = 25 V, I_D = 1 A, U_E = 30 V, I_E .

A rendszerre U = 30 V feszültséget kapcsolunk.

Tanulmányozzuk a következő eseteket:

- a) A K₁, K₂, K₄, K₅ kapcsolók nyitva, míg K₃ kapcsoló zárva található. Melyik égő működik a névleges értékén?
- b) A K₁, K₃, K₅ kapcsolók zárva, míg a K₂ és K₄ kapcsolók nyitva találhatók. Melyik égő működik a névleges értékén? A megmaradt égők közül melyik világít és melyik nem? Magyarázd meg, mi történik mindegyik égő esetében külön-külön!
- c) A K₁, K₃, K₅ kapcsolók nyitva, míg a K₂ és K₄ kapcsolók zárva találhatók. Határozzátok meg az E égő névleges I_E áramerősségét, tudva, hogy a K₃-as kapcsolót bezárva, az egyik égő működésében sem vesszünk észre változást. Működik-e valamelyik égő a névleges értékén, ha a rendszerre U = 2,7 V feszültséget kapcsolunk?