

Recurrence Relations

by

Dr. Meera H. Chudasama

P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Changa, Anand-388 421, Gujarat, India

September 15, 2020

Outline

Introduction

Linear recurrence relations with constant coefficients

Solution of Linear Homogeneous Recurrence Relation using the Method of Characteristic Roots

Distinct Roots Multiple Roots Mixed Roots

Linear Non-homogeneous Recurrence Relations with Constant Coefficients

Generating functions and solutions of recurrence relation

Subject: MA253 Discrete Mathematics and Algebra

- Solutions of recurrence relation by direct methods
- Generating functions and solutions of recurrence relation.

Consider the sequence 0,1,1,2,3,5,8,13,..... This sequence of numbers is called Fibonacci sequence.

Let $a_0 = 1$ and $a_1 = 1$. Then $a_0 + a_1 = a_2 = 2$. In general, we have

$$a_{n+2} = a_{n+1} + a_n$$
.

We get relation

$$a_{n+2} - a_{n+1} - a_n = 0, n \in \mathbb{N} \cup \{0\},$$

which is recurrence relation of Fibonacci sequence. Now consider general expression,

$$a_n = 3^n, n \ge 0.$$

Suppose, we have relation

$$a_n = 3a_{n-1}, a_0 = 1.$$

Taking n = 1, 2, 3, ..., we get $a_1 = 3a_0 = 3, a_2 = 3a_1 = 9, a_3 = 3a_2 = 27, ..., a_n = 3^n$. Hence 3^n is a solution of recurrence relation $a_n = 3a_{n-1}$.

Linear recurrence relations with constant coefficients

A recurrence relation of the form

$$c_0 a_n + c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} = F(n),$$
 (2.1)

where c_i 's $(1 \le i \le k)$ are constants is called a linear recurrence relation with constant coefficients. The recurrence relation (2.1) is known as k^{th} -order(or degree k) recurrence relation, provided that both c_0 and c_k are non-zero. For example

$$2a_n + 3a_{n-1} = 2^n$$
,

which is first order recurrence relation and

$$3a_r - 5a_{r-1} + 2a_{r-2} = r^2 + 5$$

is second order recurrence relation.

We try to find solution of the form $a_n = r^n$, where r is constant.

 $a_n = r^n$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$$
 if and only if

$$r^n = c_1 r^{n-2} + c_2 r^{n-2} + \dots + c_k r^{n-k}.$$

Divide both side by r^{n-k} and subtract the right-hand side from the left, we have

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0,$$

which is called the characteristics equation of the recurrence relation.

Distinct Roots

Theorem 1.

Let c_1 and c_2 be real numbers. Suppose that $r^2-c_1r-c_2=0$ have two distinct roots r_1 and r_2 . Then the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n=c_1a_{n-1}+c_2a_{n-2}$ if and only if $a_n=\alpha_1r_1^n+\alpha_2r_2^n, n=0,1,2,...$, where α_1 and α_2 are constants.

Example 2.

What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$?

Solution: The characteristic equation of the recurrence relation is

$$r^2 - r - 2 = 0$$
.

Its roots are r=2 and r=-1. Hence the sequence $\{a_n\}$ is a solution of the recurrence relation if and only if

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n,$$

Given that $a_0 = 2$ and $a_1 = 7$. Hence

$$a_0=2=\alpha_1+\alpha_2,$$

and

$$a_1 = 7 = 2\alpha_1 - \alpha_2$$
.

Solving these equations, we get $\alpha_1 = 3$ and $\alpha_2 = -1$. Therefore, the solution of the given recurrence solution is

$$a_n = 3 \times 2^n - (-1)^n$$
.

Multiple Roots

Theorem 3.

Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that $r^2 - c_1 r - c_2 = 0$ has only one root r_0 which is repeated. Then the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$, n = 0, 1, 2, ..., where α_1 and α_2 are constants.

Example 4.

Solve the recurrence relation

$$a_n = 6a_{n-1} - 9a_{n-2}, a_0 = 1, a_1 = 6.$$

Solution: The characteristic equation is

$$r^2 - 6r + 9 = 0.$$

Its roots are $r_1 = r_2 = r_0 = 3$. Hence, the solution of the recurrence relation is

$$a_n = \alpha_1 3^n + \alpha_2 n 3^n,$$

for some constants α_1 and α_2 .

Since $a_0 = 1$, $a_1 = 6$, we have $a_0 = 1 = \alpha_1$ and $a_1 = 6 = 3\alpha_1 + 3\alpha_2$, which yields $\alpha_1 = 1$ and $\alpha_2 = 1$.

The solution of the given recurrence relation is

$$a_n = 3^n + n3^n.$$

Example 5.

Solve the recurrence relation

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}, a_0 = 1, a_1 = -2, a_2 = -1.$$

Solution: The characteristic equation is

$$r^3 + 3r^2 + 3r + 1 = 0.$$

Its roots are $r_1 = r_2 = r_3 = r_0 = -1$. Hence, the solution of the recurrence relation is

$$a_n = \alpha_1(-1)^n + \alpha_2 n(-1)^n + \alpha_3 n^2(-1)^n$$

The given initial conditions are $a_0 = 1$, $a_1 = -2$, $a_2 = -1$, from which we obtain

$$a_0 = \alpha_1 = 1,$$

 $a_1 = (\alpha_1 + \alpha_2 + \alpha_3)(-1) = -2,$
 $a_2 = \alpha_1 + 2\alpha_2 + 4\alpha_3 = -1.$

Hence

$$\alpha_1 = 1, \alpha_2 = 3, \alpha_3 = -2.$$

The solution of the given recurrence relation is

$$a_n = (-1)^n (1 + 3n - 2n^2).$$

Example 6.

Find an explicit formula for the Fibonacci numbers.

Solution: The Fibonacci numbers satisfy the recurrence relation

$$a_n = a_{n-1} + a_{n-2}$$

with initial conditions $a_0=0$ and $a_1=1$. The characteristic equation is

$$r^2-r-1=0,$$

which has two distinct roots

$$r_1 = \frac{1+\sqrt{5}}{2}, r_2 = \frac{1-\sqrt{5}}{2}.$$

Hence, the solution of the recurrence relation

$$a_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

for some constants α_1 and α_2 .

Given that $a_0 = 0$ and $a_1 = 1$. Hence

$$a_0=0=\alpha_1+\alpha_2,$$

and

$$a_1 = 1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right) + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right).$$

Solving these equations, we get $\alpha_1 = \frac{1}{\sqrt{5}}$ and $\alpha_2 = -\frac{1}{\sqrt{5}}$. Therefore, the solution of the given recurrence solution is

$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

Exercise.

Solve the following recurrence relations.

1.
$$a_n + 5a_{n-1} + 6a_{n-2} = 0$$
, $a_0 = 1$, $a_1 = 2$

2.
$$a_n - 7a_{n-1} + 10a_{n-2} = 0$$
, $a_0 = 0$, $a_1 = 3$

3.
$$a_n - 13a_{n-1} + 36a_{n-2} = 0$$
, $a_0 = 2$, $a_1 = 1$

Mixed Roots

Example 7.

Suppose that the roots of the characteristic equation of a linear homogeneous recurrence relation are 2, 2, 5, 5, and 9. What is the form of the general solution?

Solution:

$$a_n = (\alpha_1 2^n + \alpha_2 n 2^n + \alpha_2 n^2 2^n) + (\alpha_3 5^n + \alpha_4 n 5^n) + \alpha_5 9^n$$

for some constants $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and α_5 .

Exercise.

Solve the following recurrence relations

1.
$$a_r - 4a_{r-1} + 4a_{r-2} = 0$$
, $a_0 = 1$, $a_1 = 6$

2.
$$a_r - 10a_{r-1} + 25a_{r-2} = 0$$
, $a_0 = 2$, $a_1 = 3$

3.
$$a_n - 8a_{n-1} + 21a_{n-2} - 18a_{n-3} = 0$$

Linear Non-homogeneous Recurrence Relations with Constant Coefficients

The general form of linear non homogeneous recurrence relation with constant coefficients is

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + F(n).$$
 (3.1)

For example,

$$a_n = 3a_{n-1} + 3n^2$$
.

Theorem 8.

If $\{a_n^p\}$ is a particular solution of (3.1), then every solution of the form $\{a_n^p+a_n^h\}$, where a_n^h is solution of the associated homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$$

is a general solution of (3.1).

Note 3.1.

We can solve equation (3.1) for special cases. In particular, if F(n) is

- a polynomial function
- exponential function
- the product of a polynomial and exponential functions

Example 9.

Solve the recurrence relation $a_n = 3a_{n-1} + 2n$, $a_1 = 3$.

Solution: The characteristic equation is

$$r - 3 = 0$$
.

Its root is r = 3. The solution of the associated homogeneous recurrence relation is

$$a_n^h = \alpha \times 3^n$$
,

for some constant α .

$$cn + d = 3(c(n-1) + d) + 2n,$$

from which

$$(2c+2)n + (2d-3c) = 0n + 0.$$

We get

$$c=-1, d=-\frac{3}{2}.$$

Hence

$$a_n^p=-n-\frac{3}{2}.$$

So

$$a_n = a_n^h + a_n^p = \alpha \times 3^n - n - \frac{3}{2}.$$

Given that $a_1 = 3$, we obtain

$$a_1 = 3\alpha - 1 - \frac{3}{2} = 3,$$

therefore

$$\alpha = \frac{11}{6}.$$

Finally, the general solution of the given recurrence relation is

$$a_n = \frac{11}{6}3^n - n - \frac{3}{2}.$$

Example 10.

Solve the recurrence relation

$$a_n = 5a_{n-1} - 6a_{n-2} + 7^n$$
.

Solution: The characteristic equation is

$$r^2 - 5r + 6 = 0.$$

Its roots are $r_1 = 3$ and $r_2 = 2$. The solution of the associated homogeneous recurrence relation is

$$a_n^h = \alpha_1 3^n + \alpha_2 2^n,$$

for some constants α_1 and α_2 .

$$c7^n = 5c7^{n-1} - 6c7^{n-2} + 7^n,$$

form which

$$c7^2 = 5c7 - 6c + 7^2.$$

We obtain $c = \frac{49}{20}$. Hence

$$a_n^p = \frac{49}{20}7^n$$

Finally, the general solution of the given recurrence relation is

$$a_n = a_n^h + a_n^p = \alpha_1 3^n + \alpha_2 2^n + \frac{49}{20} 7^n.$$

Example 11.

What form does a particular solution of the linear non-homogeneous recurrence relation

$$a_n = 6a_{n-1} - 9a_{n-2} + F(n)$$

have when $F(n) = 3^n$, $F(n) = n3^n$, $F(n) = n^22^n$ and $F(n) = (n^2 + 1)3^n$?

Solution: The characteristic equation is

$$r^2 - 6r + 9 = 0.$$

Its roots are $r_1 = 3$ and $r_2 = 3$.

If $F(n) = 3^n$ and 3 is a root, then particular solution is

$$a_n^p = \alpha n^2 3^n$$

for some constant α .

If $F(n) = n3^n$ and 3 is a root, then particular solution is

$$a_n^p = n^2(\alpha_1 n + \alpha_2)3^n,$$

for some constants α_1 and α_2 .

If $F(n) = n^2 2^n$ and 2 is not a root, then particular solution is

$$a_n^p = (\alpha_2 n^2 + \alpha_1 n + \alpha_0) 2^n,$$

for some constants α_0, α_1 and α_2 .

If $F(n) = (n^2 + 1)3^n$ and 3 is a root, then particular solution is

$$a_n^p = n^2(\alpha_2 n^2 + \alpha_1 n + \alpha_0)3^n,$$

for some constants α_0 , α_1 and α_2 .

Exercise.

Solve the following recurrence relations

1.
$$a_r - 7a_{r-1} + 10a_{r-2} = 3^r, a_0 = 0, a_1 = 1$$

2.
$$a_r + 6a_{r-1} + qa_{r-2} = 3$$
, $a_0 = 0$, $a_1 = 1$

3.
$$a_r + 5a_{r-1} + 6_{r-2} = 3r^2 - 2r + 1$$

Generating functions and solutions of recurrence relation

Definition 12.

The generating function for the sequence $a_0, a_1, a_2, ...$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{k=0}^{\infty} a_k x^k$$
 (4.1)

Note 4.1.

1.
$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}, |r| < 1$$

2.
$$\sum_{k=0}^{\infty} (-1)^k r^k = \frac{1}{1+r}, |r| < 1$$

Example 13.

Solve the recurrence relation $a_n = 3a_{n-1}$ for n = 1, 2, 3, ... and the initial condition $a_0 = 2$ using generating function.

Solution: Let

$$G(x) = a_0 + a_1 x + a_2 x^2 + ... = \sum_{k=0}^{\infty} a_k x^k$$

be the generating function for $\{a_k\}$. Note that $a_k = 3a_{k-1}$. We have

$$\sum_{k=1}^{\infty} a_k x^k = 3 \sum_{k=1}^{\infty} a_{k-1} x^k = 3x \sum_{k=1}^{\infty} a_{k-1} x^{k-1} = 3x \sum_{k=0}^{\infty} a_k x^k.$$

We obtain

$$G(x) - a_0 = 3xG(x).$$

Since $a_0 = 2$,

$$G(x) - 3xG(x) = 2,$$

which yield

$$G(x) = \frac{2}{1 - 3x} = 2 \sum_{k=0}^{\infty} (3x)^k = 2 \sum_{k=0}^{\infty} 3^k x^k.$$

Hence $a_n = 2 \times 3^n$.

Example 14.

Solve the recurrence relation $a_n = 8a_{n-1} + 10^{n-1}$, n = 1, 2, 3, ... and $a_0 = 1, a_1 = 9$.

Solution: Let

$$G(x) = a_0 + a_1 x + a_2 x^2 + ... = \sum_{k=0}^{\infty} a_k x^k$$

be the generating function for $\{a_k\}$.

$$G(x) - 1 = \sum_{k=1}^{\infty} a_k x^k = \sum_{k=1}^{\infty} (8a_{k-1} + 10^{k-1}) x^k$$

$$= 8 \sum_{k=1}^{\infty} a_{k-1} x^k + \sum_{k=1}^{\infty} 10^{k-1} x^k$$

$$= 8x \sum_{k=0}^{\infty} a_k x^k + x \sum_{k=0}^{\infty} 10^k x^k$$

$$= 8xG(x) + \frac{x}{1 - 10x},$$

which gives

$$(1-8x)G(x) = 1 + \frac{x}{1-10x} = \frac{1-9x}{1-10x}.$$

Therefore,

$$G(x) = \frac{1 - 9x}{(1 - 10x)(1 - 8x)}$$

(4.2)

Using method of partial fraction, we get

$$G(x) = \frac{1}{2} \left[\frac{1}{1 - 10x} + \frac{1}{1 - 8x} \right]$$

$$= \frac{1}{2} \left(\sum_{k=0}^{\infty} 10^k x^k + \sum_{k=0}^{\infty} 8^k x^k \right)$$

$$= \frac{1}{2} \sum_{k=0}^{\infty} (10^k + 8^k) x^k.$$

Hence, $a_n = \frac{1}{2}(10^n + 8^n)$.

Exercise.

Solve the following recurrence relations.

- 1. $a_n = 3a_{n-1} + 2$, $a_0 = 1$
- 2. $a_n = a_{n-1} + a_{n-2}, a_1 = 2, a_2 = 3$

