Irréductibilité des polynômes cyclotomiques sur $\mathbb{Q}[X]$:

I Le développement

Le but de ce développement est de montrer que les polynômes cyclotomiques sont irréductibles sur $\mathbb{Q}[X]$ dans le but d'obtenir le degré d'une extension particulière.

Théorème 1 : [Perrin, p.82]

Le polynôme $\Phi_n(X)$ est irréductible dans $\mathbb{Q}[X]$.

Preuve:

* Comme l'anneau \mathbb{Z} est factoriel et que Φ_n est unitaire, par le théorème de transfert de Gauss il existe des polynômes irréductibles unitaires et irréductibles

$$F_1, ..., F_r \in \mathbb{Z}[X]$$
 tels que $\Phi = \prod_{i=1}^r F_i^{\alpha_i}$ (*).

* Soient $z \in \mathbb{C}$ une racine de F_1 et p un nombre premier qui est premier avec n. Le nombre z^p est encore une racine de Φ_n (car c'est encore une racine primitive de l'unité). On raisonne désormais par l'absurde en supposant que z^p n'est pas racine de F_1 .

Il existe alors $i \in [\![2;r]\!]$ tel que $F_i(z^p)=0$. Le nombre $z \in \mathbb{C}$ est alors racine du polynôme $F_i(X^p)$ et par minimalité de F_1 , on a alors F_1 qui divise $F_i(X^p)$ dans l'anneau $\mathbb{Q}[X]$ et donc dans $\mathbb{Z}[X]$ car $F_1 \in \mathbb{Z}[X]$ est unitaire (on peut faire la division euclidienne de $F_i(X^p)$ par F_1 dans $\mathbb{Z}[X]$). Il existe donc $H \in \mathbb{Z}[X]$ tel que $F_i(X^p) = F_1(X)H(X)$.

* On réduit cette égalité dans $\mathbb{F}_p[X]$:

Comme $\mathbb{F}_p[X]$ est de caractéristique p, on a :

$$\overline{F_i(X)^p} = \overline{F_i}(X^p) = \overline{H}(X)\overline{F_1}(X)$$

On a ainsi $\overline{F_1}$ qui divise $\overline{F_i}^p$. De plus, si $\overline{P} \in \mathbb{F}_p[X]$ est un facteur irréductible de $\overline{F_1}$, on en déduit que l'on a \overline{P} qui divise $\overline{F_1}$ et \overline{P} qui divise $\overline{F_i}$ (car $\mathbb{F}_p[X]$ est factoriel), donc :

$$\overline{P}^2$$
 divise $\overline{F_1}...\overline{F_r}$ qui divise $\overline{\Phi_n}$ qui divise $X^n-\overline{1}$

On en déduit en dérivant que \overline{P} divise $\overline{n}X^{n-1}$, donc par combinaison linéaire, le polynôme \overline{P} divise $\overline{n} = \overline{n}X^{n-1}X - \overline{n}\left(X^n - \overline{1}\right)$. Or, on aboutit à une contradiction car p est premier avec n, donc \overline{n} est non nul et ainsi \overline{P} serait constant, mais P est irréductible sur $\mathbb{F}_p[X]$ avec \mathbb{F}_p un corps, donc $\deg(P) \geq 1$.

Ainsi, on obtient que z^p est racine de F_1 .

* Par une récurrence immédiate qui découle de ce qui précède, on en déduit que pour tout $s\in \mathbb{N}^*$, on a la propriété suivante :

"Si $z \in \mathbb{C}$ est racine de F_1 et que $p_1,...,p_s \in \mathbb{N}$ sont des nombres premiers ne divisant pas n alors $F_1(z^{p_1...p_s}) = 0$ ".

Finalement, puisque les racines de Φ_n sont exactement les z^m avec $m \in [1; n]$ premier avec n et z une racine de F_1 , on en déduit que $\Phi_n = F_1$ (par divisibilité et degré) et donc que Φ_n est irréductible sur $\mathbb{Z}[X]$.

* De plus, on a Φ_n de contenu égal à 1 (car unitaire) et également irréductible sur $\mathbb{Q}[X]$ (car irréductible sur $\mathbb{Z}[X]$).

Finalement, les polynômes cyclotomiques Φ_n sont irréductibles dans $\mathbb{Q}[X]$.

Corollaire 2 : [Perrin, p.83]

Si ζ_n est une racine primitive n-ième de l'unité dans un corps commutatif de caractéristique nulle, son polynôme minimal sur \mathbb{Q} est Φ_n et $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$.

Preuve:

Soit ζ_n une racine primitive n-ième de l'unité dans un corps commutatif de caractéristique nulle.

Puisque Φ_n est unitaire, irréductible sur $\mathbb{Q}[X]$ et annule ζ_n (par définition), on en déduit que Φ_n est le polynôme minimal de ζ_n sur \mathbb{Q} . Ainsi, on a :

$$[\mathbb{Q}(\zeta):\mathbb{Q}] = \deg(\Phi_n) = \varphi(n)$$

_

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans le développement, on a utilisé le théorème du transfert ainsi qu'un résultat sur le contenu que nous rappelons dans le cadre d'un anneau factoriel $(A, +, \times)$:

Définition 3: Contenu d'un polynôme [Perrin, p.51]:

On considère un polynôme $P \in A[X]$.

On appelle **contenu de** P (et on note c(P)) le PGCD (défini modulo A^{\times}) des coefficients de P. De plus, P est dit **primitif** lorsque c(P) = 1.

Lemme 4 : Lemme de Gauss [Perrin, p.51] :

- * Pour tous polynômes P, Q de A[X] non nuls, on a c(PQ) = c(P)c(Q).
- * Le produit de deux polynômes primitifs est primitif.

Théorème 5 : [Perrin, p.51] :

Les polynômes $P \in A[X]$ irréductibles dans A[X] sont exactement :

- * Les constantes $p \in A$ irréductibles dans A.
- * Les polynômes P de degré supérieur ou égal à 1, primitifs et irréductibles dans $\operatorname{Frac}(A)[X].$

Théorème 6: Théorème du transfert [Perrin, p.51]:

Si A est un anneau factoriel, alors A[X] est un anneau factoriel.

II.2 Rappels sur les polynômes cyclotomiques

On donne ici quelques rappels sans démonstration sur les polynômes cyclotomiques :

On suppose que \mathbb{K} est un corps commutatif quelconque de caractéristique p, on note $\mu_n(\mathbb{K}) = \{\zeta \in \mathbb{K} \text{ tq } \zeta^n = 1\}$ l'ensemble des racines n-ièmes de l'unité dans \mathbb{K} et on suppose que $\mathrm{PGCD}(p,n) = 1$.

Définition 7:n-ième polynôme cyclotomique [Perrin, p.80] :

On appelle n-ième polynôme cyclotomique sur $\mathbb K$ le polynôme :

$$\Phi_{n,\mathbb{K}}(X) = \prod_{\zeta \in \mu_n^*(\mathbb{K})} (X - \zeta)$$

Remarque 8: [Perrin, p.80]

 $\overline{\Phi_n(X)}$ est un polynôme unitaire et de degré $\varphi(n)$.

Proposition 9: [Perrin, p.80 + 81]

On a la formule : $X^n - 1 = \prod_{d|n} \Phi_d(X)$ (on peut alors calculer les polynômes cyclotomiques par récurrence plutôt qu'explicitement).

Proposition 10: [Perrin, p.81]

On a $\Phi_n(X) \in \mathbb{Z}[X]$.

II.3 Pour aller plus loin...

Remarque 11:

 $\overline{\Pi}$ faut être prudent car le polynôme Φ_{n,\mathbb{F}_q} n'est pas irréductible dans $\mathbb{F}_q[X]$ en général (en effet, on a l'irréductibilité si, et seulement si, la classe de q engendre le groupe $(\mathbb{Z}/n\mathbb{Z})^{\times}$).

En utilisant le théorème de Wantzel et de la théorie de Galois, on peut également montrer que le polygone régulier à n côtés est constructible si, et seulement si, φ est une puissance de 2. Ainsi, le polygone régulier à n côtés est constructible si, et seulement si, n est le produit d'une puissance de 2 et de nombres premiers de Fermat distincts. Par exemple, on peut construire à la règle et au compas le pentagone et l'heptadécagone, mais on ne peut pas construire l'heptagone!

II.4 Recasages

Recasages: 102 - 125 - 141 - 144.

III Bibliographie

— Daniel Perrin, Cours d'algèbre.