

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-355584
 (43)Date of publication of application : 26.12.2001

(51)Int.CI. F04C 18/02
 F04C 27/00

(21)Application number : 2000-180279 (71)Applicant : MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing : 15.06.2000

(72)Inventor : SAKUTA ATSUSHI
 IIDA NOBORU
 SAWAI KIYOSHI
 YAMAMOTO SHUICHI
 YAMADA SADAYUKI
 MORIMOTO TAKASHI
 KONO HIROYUKI
 ASHITANI HIROMASA

(54) SCROLL COMPRESSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To secure sealing between the back pressure side and the low pressure side of a compression chamber by restraining a sliding loss and the increase in driving force generated by stir of back pressure fluid without the problem of the enlargement of a suction chamber and the suction overheat.

SOLUTION: An annular seal part 13 extended outward from the inner wall surfaces 15a to 15d on the outermost periphery of a spiral lap 21a so as to have the outer wall surface along the inner wall surfaces 15a to 15d and to be brought into slide-contact with an end plate 22 of a turning scroll part 4, and an annular recessed part 14 positioned outside the seal part 13 are formed on the surface 12 faced to the end plate 22 of the turning scroll part 4 positioned around the spiral lap 21a on the end plate 21 of a fixed scroll part 2.

LEGAL STATUS

[Date of request for examination] 16.05.2002
 [Date of sending the examiner's decision of rejection]
 [Kind of final disposal of application other than

the examiner's decision of rejection or
application converted registration]

[Date of final disposal for application]

[Patent number] 3560901

[Date of registration] 04.06.2004

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号
特開2001-355584
(P2001-355584A)

(43)公開日 平成13年12月26日(2001.12.26)

(51)Int.Cl'	識別記号	F I	テ-73-1*(参考)
F 04 C 18/02	3 1 1	F 04 C 18/02	3 1 1 Q 3 H 0 2 9
27/00	3 2 1	27/00	3 1 1 J 3 H 0 3 9

審査請求 未請求 請求項の数 5 O L (全 7 頁)

(21)出願番号	特願2000-180279(P2000-180279)	(71)出願人	000005821 松下電器産業株式会社 大阪府門真市大字門真1006番地
(22)出願日	平成12年6月15日(2000.6.15)	(72)発明者	作田 淳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(72)発明者	飯田 登 大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(74)代理人	100080827 弁理士 石原 勝

最終頁に続く

(54)【発明の名稱】スクロール圧縮機

(57)【要約】

【課題】 吸入室の増大とそれによる吸入過熱の問題なく、また、駆動損失や背圧流体の漏れによる駆動力の増大を抑えて、背圧側と圧縮室の低圧側との間のシールが確保できるようとする。

【解決手段】 固定スクロール部品2の鏡板21における渦巻ラップ21a外まわりにある、旋回スクロール部品4の鏡板22との対向面12に、渦巻ラップ21aの最外層の内壁面15a～15dから外方へ内壁面15a～15dにはば沿った外壁面を持つように広がり旋回スクロール部品4の鏡板22と接する環状のシール部13と、このシール部13の外側に位置する環状の凹部14とを形成することにより、上記の目的を達成する。

(2) 特開2001-355584

2

触面で摩擦が生じ、これが摺動損失となって駆動力増大の原因となっている。これに対処するのに特公平01-34313号公報は、図4に示すようなスクロール圧縮機を提案している。

【0004】このものは、固定スクロール部品101の旋回スクロールとの摺動面102を、固定スクロール部品101の外縁101aに沿ったリング状に形成して、背圧側から圧縮室の低圧側へのオイル、つまり背圧流体の漏れを防止するのに必要な旋回スクロール部品との接触によるシールを確保しながら、摺動面102の外まわりに設けた凹部103により摺動面102のリング形状を一定幅以下に抑えることにより摺動面102での旋回スクロールとの接触面積が小さくなつて、摺動損失が低減するようにしている。

【0005】また凹部103は旋回スクロール部品の外周部まわりのオイルで充満した空間を旋回スクロールの摺動面に對向して形成し、ここに運転中の旋回スクロール部品の外周部が出入りしてオイルがよく付着し摺動面102との摺動部に多くのオイルを持ち込めるようするので、摺動面102に十分な給油が行える。また、凹部103による前記環状空間の広がりで旋回スクロール部品がその外周に溜まつたオイルを攪拌するのを緩和するので、オイル攪拌による損失を低減することができる。

【0006】

【発明が解決しようとする課題】しかし、上記従来の技術では、固定スクロール部品101に設ける摺動面102は、固定スクロール部品101の円形な縁101aに沿った円形のリング状とされているため、少なくとも固定スクロール部品101における巻き終わり1周分を円形状としなければならず、その結果圧縮室が吸入を行う吸入室の容積が増えて吸入過熱の原因となり、冷凍能力が低下するといった問題が生じる。また、凹部103は固定スクロール部品101における渦巻ラップ104の巻き終わり径と縁101aとの間に一定の幅でしか設けられないで、固定スクロール部品101を大型化しないで凹部103を設けようすると余り大きくできず、旋回スクロールによる環状空間でのオイルの攪拌を抑制し駆動力を軽減する効果は余り得られない。

【0007】本発明の目的は、吸入室の増大とそれによる吸入過熱の問題なく、また、摺動損失や背圧流体の攪拌による駆動力の増大を抑えて、背圧側と圧縮室の低圧側との間のシールが確保できるスクロール圧縮機を提供することにある。

【0008】

【課題を解決するための手段】上記の目的を達成するために、本発明のスクロール圧縮機は、鏡板から渦巻ラップが立ち上がる固定スクロール部品および旋回スクロール部品を噛み合わせて双方間に圧縮室を形成し、旋回スクロール部品を自転拘束機構による自転の拘束のもとに円軌道に沿って旋回させたとき圧縮室が容積を変えながら移動することで吸入、圧縮、吐出を行い、旋回スクロール部品の外周部に所定の背圧を印加するようにしたスクロール圧縮機において、

【特許請求の範囲】

【請求項1】 鏡板から渦巻ラップが立ち上がる固定スクロール部品および旋回スクロール部品を噛み合わせて双方間に圧縮室を形成し、旋回スクロール部品を自転拘束機構による自転の拘束のもとに円軌道に沿って旋回させたとき圧縮室が容積を変えながら移動することで吸入、圧縮、吐出を行い、旋回スクロール部品の外周部に所定の背圧を印加するようにしたスクロール圧縮機において、固定スクロール部品の鏡板における渦巻ラップ外まわりにある、旋回スクロールの鏡板との対向面に、渦巻ラップの最外周の内壁面から外方へ前記内壁面にはば沿つた外壁面を持つように広がり旋回スクロールの鏡板と摺接する環状のシール部と、このシール部の外側に位置する環状の凹部とを形成したことを特徴とするスクロール圧縮機。

【請求項2】 前記シール部の幅は前記固定スクロール部品の渦巻ラップの厚さの半分以上大きくした請求項1に記載のスクロール圧縮機。

【請求項3】 前記凹部の深さは、前記固定スクロール部品のラップ溝深さをHmmとしたとき、0.1mm以上H/5mm以下とした請求項1、2のいずれか1項に記載のスクロール圧縮機。

【請求項4】 前記凹部の外周は、前記旋回スクロール部品の旋回径よりも外側とした請求項1～3のいずれか1項に記載のスクロール圧縮機。

【請求項5】 固定スクロール部品に設けられた背圧側と圧縮室の低圧側とを繋ぐ連通路の途中に背圧側が所定の圧力を越えたときに前記低圧側に逃がす背圧調整機構を有し、連通路は前記凹部にて背圧側に通じている請求項1～4のいずれか1項に記載のスクロール圧縮機。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、主として冷凍空調機、冷凍機等に使用されるスクロール圧縮機に関するものである。

【0002】

【従来の技術】冷凍空調機や冷凍機に用いられるスクロール圧縮機は、一般に、鏡板から渦巻ラップが立ち上がる固定スクロール部品および旋回スクロール部品を噛み合わせて双方間に圧縮室を形成し、旋回スクロール部品を自転拘束機構による自転の拘束のもとに円軌道に沿って旋回させたとき圧縮室が容積を変えながら移動することで吸入、圧縮、吐出を行い、旋回スクロール部品の外周部に所定の背圧を潤滑用のオイルにより印加し、旋回スクロール部品が固定スクロール部品から離れて転覆するようなことがないようにしている。

【0003】しかし、運転中の固定スクロール部品と旋回スクロール部品は、前記背圧が中央部に印加するさらに高い背圧によって常に接触摺動しているため、その接

10

20

30

40

50

(3) 特開2001-355584

4

3
 円軌道に沿って旋回させたとき圧縮室が容積を変えながら移動することで吸入、圧縮、吐出を行い、旋回スクロール部品の外周部に所定の背圧を印加したものにおいて、固定スクロール部品の鏡板における鶴巻ラップ外まわりにある、旋回スクロールの鏡板との対向面に、鶴巻ラップの最外周の内壁面から外方へ前記内壁面にはば沿った外壁面を持つように広がり旋回スクロールの鏡板と接続する環状のシール部と、このシール部の外側に位置する環状の凹部とを形成したことを主たる特徴としている。

【0009】このような構成では、旋回スクロール部品は自転拘束機構により自転を拘束されて円軌道に沿って旋回駆動されながら外周部への背圧の印加によって固定スクロール部品から浮いて転覆するようなことなく、それらの鏡板から立ち上がり噛み合っている鶴巻ラップ間の圧縮室により吸入、圧縮、吐出を行い、同時に、固定スクロール部品における鏡板の鶴巻ラップの外まわりにある環状のシール部が、旋回スクロールの鏡板に接続して固定スクロール部品における鶴巻ラップ形成領域を連続に囲って前記背圧側と圧縮室の低圧側とを仕切るので、背圧流体が圧縮室の低圧側に不用意に漏れるのを防止して前記背圧を保証し、圧縮機能を安定させる。

【0010】特に、環状のシール部は固定スクロール部品の鶴巻ラップと一緒に、その内壁面から外方へ広がったもので、鶴巻ラップとの間に遊びがない上その厚さを前記シールに活かして前記内壁面にはば沿った非円形な外壁面を持つように形成するので、前記シール確保のために圧縮室が吸入を行う部分の容積が従来のように大きくなることはなく吸入過熱による能力低下の問題が解消する。また、シール部は鶴巻ラップ最外周部との協働によりシール確保のために単独の厚さをもつ必要がなく前記外方への広がりは少なくてよいので、旋回スクロールとの接動面積が小さくなつて接動損失が従来のものよりも低減するし、シール部の外側にある凹部は通常の鶴巻ラップの最外周部近くから固定スクロール部品の取り付け部などを持つた外周部近くまで広く設けることができ、これにより、旋回スクロール部品の外周まわりの背圧のための環状空間を平面的に大きくして旋回スクロール部品が背圧流体を緩慢するのを十分に抑制し、前記接動損失の低減と相まって駆動力を従来のものよりも低減することができる。

【0011】前記シール部の幅は前記固定スクロール部品の鶴巻ラップの厚さの半分以上大きくしたものとすると、シール部の幅を可能な限り小さく抑えて接動摩擦による接動損失を極力低減しながら、必要なシールを確実に満足することができる。

【0012】前記凹部の深さは、前記固定スクロール部品のラップ溝深さを1mmとしたとき、0.1mm以上H/5mm以下に設定するのが好適であり、0.1mm以上にて旋回スクロール部品の接動面において、背圧流

体によって生じる粘性損失を防ぐことができ、H/5mm以下に抑えて強度や加工性の低下の問題を回避することができる。

【0013】前記凹部の外周は、前記旋回スクロール部品の旋回径よりも外側とするのが好適であり、固定スクロール部品と旋回スクロール部品との接動部に噛み込んだ異物が凹部を通過して環状空間に排出されるので、接動部の密着性が高まり、背圧側から圧縮室の低圧側に背圧流体が不用意に漏れるのを防止することができる。

10 【0014】固定スクロール部品に設けられた背圧側と圧縮室の低圧側とを繋ぐ追道路の途中に背圧側が所定の圧力を越えたとき前記低圧側に逃がす背圧調整機構を有し、前記追道路が前記凹部にて背圧側に開口していると、追道路は背圧側に対して凹部を介し寛時通じるので、背圧調整機構による背圧の調整が中断しないし、背圧流体は所定より高圧となる都度圧縮室の低圧側に逃がされるので、背圧流体がオイルであると圧縮室まわりの接動部の潤滑とシールに役立ち、圧縮機の性能が向上しかつ安定する。

20 【0015】本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面の記載によって明らかになる。本発明の各特徴は、可能な限りにおいてそれ单独で、あるいは種々な組み合わせで複合して用いることができる。

【0016】

【発明の実施の形態】以下、本発明の実施の形態に係るスクロール圧縮機につき、図1～図3を参照して詳細に説明し、本発明の理解に供する。

【0017】本実施の形態のスクロール圧縮機は図1～30図3に符号31を付して示してある。このスクロール圧縮機31は図1、図2に示すように、鏡板21、22から鶴巻ラップ21a、22aが立ち上がる固定スクロール部品2および旋回スクロール部品4を噛み合わせて双方間に圧縮室5を形成し、旋回スクロール部品4を図3に示す自転拘束機構24による自転の拘束のもとに円軌道に沿って旋回させたとき圧縮室5が容積を変えながら移動することで吸入、圧縮、吐出を行う。このとき、旋回スクロール部品4はその背面、特に外周部に所定の背圧が印加されて、固定スクロール部品2から離れて転覆するようなことなく、前記吸入、圧縮、吐出を安定に行う。

【0018】圧縮室5は図示の場合、複数形成され固定、旋回各スクロール部品2、4の外周側から中央に移動しながら容積が小さくなり、固定スクロール部品2の外周部に設けられている図3に示す吸入口3から冷媒を吸入して中央に移動しながら次第に圧縮し、固定スクロール部品2の中央部に設けられた吐出口6を通じて吐出する。

【0019】吐出口6にはリード弁28が設けられ、圧縮される冷媒が所定の圧力以上になる都度開いて吐出さ

50

(4)

特開2001-355584

5

せることにより冷媒の吐出圧を保証している。

【0020】背圧は、冷凍空調機や冷凍機にスクロール圧縮機31を用いる場合の一例として、旋回スクロール部品4の中央部背面に設けた背圧室29に供給する潤滑用のオイルの供給圧によって印加するようしている。しかし、本発明はこれに限られることはない。スクロール圧縮機31の用途や動作形式などの違いによって他の背圧流体を用いることができる。

【0021】上記背圧を保証するため、図1、図2に示すように、固定スクロール部品2における銛板21の渦巻ラップ21a外まわりにある、旋回スクロール部品4の銛板22との対向面12に、渦巻ラップ21aの最外周の内壁面21bから外方へ渦巻ラップ21aの前記内壁面21bにほぼ沿った外壁面21cを持つように広がり旋回スクロール部品4の銛板22と接する環状のシール部13と、このシール部13の外側に位置する環状の凹部14とを形成してある。

【0022】このようにすると、スクロール圧縮機31が前記吸入、圧縮、吐出を行うのに伴い、環状のシール部13は図1に示すように固定スクロール部品2の渦巻ラップ21aと、特に最外周部分と一体で、その内壁面21bの最外周の図1に符号15a～15dを付して示す一周分の内壁面から外方へ広がったもので、渦巻ラップ21aとの間に遊びがない上その厚さを前記シールに活かして前記内壁面15a～15dにほぼ沿った非円形な外壁面21cを持つように形成するので、前記シール確保のために圧縮室5が吸入を行う部分の容積、例えば図1、図2に示す吸入室の容積が従来のように大きくなることはなく吸入過熱による能力低下の問題が解消する。

【0023】また、シール部13は渦巻ラップ21aの最外周部との協働によりシール確保のために卓抜の厚さを持つ必要がなく前記外方への広がり量は少なくてよいので、旋回スクロール部品4との相動面積が従来のものよりも小さくなつて相動損失が従来のものよりも低減するし、シール部13の外側にある凹部14は通常の渦巻ラップ21aの最外周部近くから固定スクロール部品2の取り付け部などを除いた外周部2c近くまで広く設けることができ、これにより、旋回スクロール部品4の外周まわりの背圧のための環状空間8を平面的に大きくして旋回スクロール部品4が背圧流体を攪拌するのを十分に抑制し、前記相動損失の低減と相まって駆動力を従来のものよりも低減することができる。

【0024】前記シール部13の幅13tは前記固定スクロール部品2の渦巻ラップ21aの厚さtの半分以上大きくしたものとすると、つまり、 $13t = t/2$ 以上に設定すると、シール部13の幅を可能な限り小さく抑えて相動摩擦による相動損失を極力低減しながら、必要なシールを確実に満足することができる。

【0025】前記凹部14の深さ14tは、前記固定ス

クロール部品2のラップ溝深さ12tをHmmとしたとき、 0.1mm 以上H/ 5mm 以下とするのが好適である。 0.1mm 以上とすることにより旋回スクロール部品4の相動面4a1において、背圧流体であるオイルなどによって生じる粘性損失を防ぐことができ、H/ 5mm 以下とすることにより強度や彫り込みの加工性が低下するのを回避することができる。

【0026】前記凹部14の外周14aは、図1に示すように前記旋回スクロール部品4の旋回径4aよりも外側とすると、固定スクロール部品2のシール部13と旋回スクロール部品4の相動面4a1との相動部の間に噛み込んだ異物が凹部14を這つて環状空間8に排出されるので、前記相動面の密着性が高まり、前記背圧側から圧縮室5の低圧側に背圧流体であるオイルなどが不用意に漏れるのを防止することができる。

【0027】固定スクロール部品2に設けられた前記背圧側と圧縮室5の低圧側との間を繋ぐ追路路10の途中に、背圧側が所定の中間圧を越えたときに前記低圧側に逃がす背圧調整機構9を有し、連通路10は前記凹部14にて背圧側に開口している。16はその開口を示す。これにより、追路路10は背圧側に対して凹部14を介し常時通じるので、背圧調整機構9による背圧の調整が中断しないし、背圧流体は所定より高圧になる都度圧縮室5の低圧側に逃がされるので、背圧流体がオイルであると圧縮室5まわりの相動部の潤滑とシールに役立ち、スクロール圧縮機31の性能が向上しあつ安定する。

【0028】本実施の形態の図示するスクロール圧縮機31はさらに、冷凍サイクル機器と接続されて密閉状態になる容器41内に設けたいわゆる密閉型スクロール圧縮機の場合の一例であり、主としてメンテナンスフリーな使用がなされる。また、横向きに設置される場合を示しているが、横向きに設置される場合もある。

【0029】スクロール圧縮機31は図3に示すように容器41内の上部に設けられ、駆動軸42の上向きな一端部を支持する主軸受部材7によって固定されている。主軸受部材7は容器41の内周に焼き嵌めや溶接によって取り付けられ、これに固定スクロール部品2がボルト止めなどして固定されている。旋回スクロール部品4は主軸受部材7と固定スクロール部品2との間に挟み込まれて固定スクロール部品2と噛み合い、相互間に圧縮室5を形成している。旋回スクロール部品4と主軸受部材7との間にオルタムリングが自転拘束機構24として設けられ、主軸受部材7との間で旋回スクロール部品4の自転を拘束する。しかし、自転拘束機構24は既に知られまた以降提供される他の形式の部材や機構を採用することができる。

【0030】容器41内には電動機45も設けられ、スクロール圧縮機31を駆動するようしている。電動機45は容器41の内周に焼き嵌めや溶接などして固定された固定子45aと、固定子45aの内側に位置する回

(5)

特開2001-355584

7

軸子45りとを備え、回転子45りは駆動軸42に固定されている。駆動軸42はその固定子45aを固定した部分の下方に伸びた他端を容器41の内間に密接などして固定された副軸受部材46により軸受されている。

【0031】駆動軸42の上向きの一端にある偏心したクランク軸42aが旋回スクロール部品4の背面にある前記背圧室29を跨った旋回孔47に嵌り合っている。これらにより、駆動軸42が電動機45により駆動されると、自転拘束機構24と協働して、旋回スクロール部品4を所定の円軌道に沿って旋回させる。

【0032】駆動軸42の下向きの他端にはポンプ147が設けられ、スクロール圧縮機31と同時に駆動される。これによりポンプ147は容器41の底部に設けられたオイル溜まり48にあるオイル49を吸い上げて駆動軸42内を通流している道路51を通りて背圧室29に供給する。このときの供給圧は、スクロール圧縮機31の吐出圧とほぼ同等であり、旋回スクロール部品4の外周に対する背圧源ともする。これにより、旋回スクロール部品4は前記圧縮によっても固定スクロール部品2から離れたり転覆したりするようなことはなく、所定の圧縮機能を安定して発揮する。

【0033】背圧室29に供給されたオイル49の一部は、前記供給圧や自重によって、逃げ場を求めるようにしてクランク軸42aと旋回スクロール部品4の旋回孔47との嵌り合い部、駆動軸42と主軸受部材7との間の軸受部53に進入してそれぞれの部分を潤滑した後底面下し、オイル溜まり48へ戻る。背圧室29に供給されたオイル49の別の一部は道路54を通りて固定スクロール部品2と旋回スクロール部品4との噛み合せによる駆動部と、旋回スクロール部品4の外周部まわりにあって自転拘束機構24が位置している環状空間8とに分岐して進入し、前記噛み合せによる駆動部および自転拘束機構24の駆動部を潤滑するに併せ、環状空間8にて旋回スクロール部品4の背圧を印加する。

【0034】前記環状空間8に進入するオイルは絞り57での絞り作用によって前記背圧と圧縮室5の低圧側との圧力の中間となる中圧に設定される。環状空間8は背圧室29の高圧側との間がシール58によってシールされていて、進入してくるオイルが充満するにつれて圧力を増し所定の圧力を越えると、背圧調整機構9の弁11が開いて圧縮室5の低圧側に戻され進入する。このオイルの進入は所定の周期で繰り返され、この繰り返しのタイミングは前記吸収、圧縮、吐出の繰り返しサイクル、絞り57による減圧設定と背圧調整機構9での圧力設定との関係、の組み合わせによって決まり、固定スクロール部品2と旋回スクロール部品4との噛み合せによる駆動部への意図的な潤滑となる。この意図的な潤滑は前記したように連絡路10の凹部14への開口(16)によって常に保証される。吸入室26へと供給されたオイル49は旋回スクロール部品4の旋回運動とともに圧縮室

8

5へと移動し、圧縮室5間の漏れ防止に役立っている。

【0035】スクロール圧縮機31から吐出される冷媒はスクロール圧縮機31上にボルト止めなどされたマフラー62内に入って後、道路63を通りてスクロール圧縮機31の下に回り、電動機45の回転子45り部を通り旋回しながら電動機45の下に至り、オイル49を遠心分離して振り落としオイル溜まり48に戻す。オイル49を分離した冷媒は電動機45の固定子45aを通りて電動機45上に達した後、図示しない道路を通りて

16 スクロール圧縮機31のマフラー62上に至り吐出パイプ163から容器41外に吐出され冷凍サイクルに供給される。冷凍サイクルを経た冷媒は容器41の吸入口パイプ1に戻り吸入口3から圧縮室5に吸入され、以降同じ動作を繰り返す。

【0036】

【発明の効果】本発明によれば、上記の記載から明らかのように、旋回スクロールの外周部に所定の背圧を与えるながら吸入、圧縮、吐出を行うのに、固定スクロールに環状に設けられる旋回スクロールとの間のシール部が、

20 固定スクロール部品の福巻ラップと一体で、その内壁面から外方へ広がったもので、福巻ラップとの間に遊びがない上その厚さを前記シールに活かして前記内壁面にはほぼ沿った非円形な外壁面を持つように形成するので、前記シール確保のために圧縮室が吸入を行う部分の容積が従来のように大きくなることはなく吸入過熱による能力低下の問題が解消する。また、シール部は福巻ラップ最外周部との協働によりシール確保のために単独の厚さをもつ必要がなく前記外方への広がりは少なくてよいので、旋回スクロールとの摺動面積が小さくなつて摺動損失が従来のものよりも低減するし、シール部の外側にある凹部は通常の福巻ラップの最外周部近くから固定スクロール部品の取り付け部などを跨った外周部近くまで広く設けることができ、これにより、旋回スクロール部品の外周まわりの背圧のための環状空間を平面的に大きくして旋回スクロール部品が背圧流体を擋拌するのを十分に抑制し、前記摺動損失の低減と相まって駆動力を従来のものよりも低減することができる。

【0037】前記シール部の幅は前記固定スクロール部品の福巻ラップの厚さの半分以上大きくしたものとすることで、シール部の幅を可能な限り小さく抑えて摺動摩擦による摺動損失を極力低減しながら、必要なシールを確実に満足することができる。

【0038】前記凹部の深さは、前記固定スクロール部品のラップ溝深さをHmmとしたとき、0.1mm以上H/5mm以下に設定することで、0.1mm以上にて旋回スクロール部品の駆動面において背圧流体によって生じる粘性損失を防ぐことができ、H/5mm以下に抑えて強度や加工性の低下の問題を回避することができる。

50 【0039】前記凹部の外周は、前記旋回スクロール部

(6)

特開2001-355584

9

10

品の旋回径よりも外側とすることにより、固定スクロール部品と旋回スクロール部品との駆動部に噛み込んだ異物が凹部を通って環状空間に排出されるので、駆動部の密着性が高まり、背圧側から圧縮室の低圧側に背圧流体が不用意に漏れるのを防止することができる。

【0040】固定スクロール部品に設けられた背圧側と圧縮室の低圧側とを繋ぐ通路の途中に背圧側が所定の圧力を越えたとき前記低圧側に逃がす背圧調整機構を有し、前記通路は前記凹部にて背圧側に開口したものとすることにより、通路が背圧側に対して凹部を介し常に通じるので、背圧調整機構による背圧の調整が中断しないし、背圧流体は所定より高圧となる都度圧縮室の低圧側に逃がされるので、背圧流体がオイルであると圧縮室まわりの駆動部の潤滑とシールに役立ち、圧縮機の性能が向上しかつ安定する。

【図面の簡単な説明】

【図1】本発明の1つの実施の形態を示すスクロール圧縮機の要部である固定スクロール部品の平面図である。

【図2】図1の固定スクロール部品を持ったスクロール圧縮機の要部の断面図である。

【図3】図2のスクロール圧縮機の全体構成を示す断面図である。

【図4】従来のスクロール圧縮機の固定スクロールを示す平面図である。

* 【符号の説明】

2 固定スクロール部品	10
3 吸入口	11 弁
4 旋回スクロール部品	12 対向面
5 圧縮室	12h ラップ溝深さ
6 吐出口	13 シール部
8 環状空間	13t シール部厚さ
9 背圧調整機構	14 凹部
10 連絡路	14a 凹部外周
11 弁	14h 凹部深さ
12 対向面	15a～15d 最外周内壁面
12h ラップ溝深さ	16 開口
13 シール部	20 21, 22 銀板
13t シール部厚さ	21a, 22a 漏巻ラップ
14 凹部	21b 内壁面
14a 凹部外周	21c 外壁面
14h 凹部深さ	
15a～15d 最外周内壁面	
16 開口	
20 21, 22 銀板	
21a, 22a 漏巻ラップ	
21b 内壁面	
21c 外壁面	

*

【図1】

【図2】

【図4】

(7)

特開2001-355584

【図3】

This Page is inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLORED OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
- OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images
problems checked, please do not report the
problems to the IFW Image Problem Mailbox**