Linear Equations And Inequalities

DXERCISE

Solve the following equations.

(i)
$$\frac{2}{3}x - \frac{1}{2}x = x + \frac{1}{6}$$

Solution;

Multiplying both sides by 6 we get

$$4x - 3x = 6x + 1$$

$$x = 6x + 1$$

$$-5x = -\frac{1}{5}$$

Solution set =
$$\left\{-\frac{5}{5}\right\}$$

(ii)
$$\frac{x-3}{3} - \frac{x-2}{2} = -1$$

Solution:

 \Rightarrow

MPK.COM Multiplying both sides by 6 we get

$$2(x-3) - 3(x-2) = -6$$

$$2x - 6 - 3x + 6 = -6$$

$$-x = -6$$

Solution set = 6

(iii)
$$\frac{1}{2}\left(x-\frac{1}{6}\right)+\frac{2}{3}=\frac{5}{6}+\frac{1}{3}\left(\frac{1}{2}-3x\right)$$

Solution

$$\frac{1}{2} \left(\frac{6x-1}{6} \right) + \frac{2}{3} = \frac{5}{6} + \frac{1}{3} \left(\frac{1-6x}{2} \right)$$
Or
$$\frac{6x-1}{12} + \frac{2}{3} = \frac{5}{6} + \frac{1-6x}{6}$$
Multiplying both sides by 12
$$6x - 1 + 8 = 10 + 2 - 12x$$

$$6x + 12x = 10 + 2 + 1 - 8$$

$$18x = 5$$

$$x = \frac{5}{18}$$
Solution set = $\left\{ \frac{5}{18} \right\}$

SEDINFO.NET

(iv)
$$x + \frac{1}{3} = 2\left(x - \frac{2}{3}\right) - 6x$$

Solution:

$$\frac{3x+1}{3} = 2\left(\frac{3x-2}{3}\right) - 6x$$

$$3x+1 = 2(3x-2) - 18x$$

$$3x+1 = 6x-4-18x$$

$$3x-6x+18x = -4-1$$

$$15x = -5$$

$$15x = -5$$

$$x = \frac{-5}{15} = -\frac{1}{3}$$

Solution set = $\left\{-\frac{1}{3}\right\}$

(v)
$$\frac{5(x-3)}{6} - x = 1 - \frac{x}{9}$$

Solution:

Or

Multiplying both sides by 18 we get

$$15(x-3) - 18x = 18 - 2x$$

$$15x - 45 - 18x = 18 - 2x$$

$$15x - 18x + 2x = 18 + 45$$

$$-x = 63$$

$$x = -63$$

Multiplying both sides by 18 we get
$$15(x-3) - 18x = 18 - 2x$$

$$15x - 45 - 18x = 18 - 2x$$

$$15x - 18x + 2x = 18 + 45$$

$$-x = 63$$

$$x = -63$$
Solution set = $\{-63\}$

(vi) $\frac{x}{3x-6} = 2 - \frac{2x}{x-2}$ $x \neq 2$

Solution:

Multiplying both sides by $3x - 6 = 3(x - 2)$, we get

Solution

Multiplying both sides by 3x - 6 = 3(x - 2), we get

 $x \neq -\frac{5}{2}$

$$x = 2(3x - 6) - 3(2x)$$

$$x = 6x - 12 - 6x$$

$$x = -12$$

Solution set = $\{-12\}$

(vii)
$$\frac{2x}{2x+5} = \frac{2}{3} - \frac{5}{4x+10}$$

Solution:

$$\frac{2x}{2x+5} = \frac{2}{3} - \frac{5}{2(2x+5)}$$

Multiplying both sides by $6(2x \pm 5)$ we get

$$6(2x) = 4(2x+5) - 15$$

$$12x = 8x + 20 - 15$$

$$x = \frac{5}{4}$$

Or

So solution set =
$$\left\{\frac{5}{4}\right\}$$

(viii) $\frac{2x}{x-1} + \frac{1}{3} = \frac{5}{6} + \frac{2}{x-1}$ $x \neq 1$

Solution:

Multiplying both sides by $6(x-1)$ we get

 $6(2x) + 2(x-1) = 5(x-1) + 2(6)$

or $12x + 12 - 2 = 5x - 5 + 12$
 $14x - 5x = -5 + ^{\circ}12 + 2$
 $9x = \theta$
 $x = 1$

But it is given that $x \neq 1$

So the equation has no solution = $\left\{\frac{1}{2}\right\}$

(ix) $\frac{2}{x^2-1} - \frac{1}{x+1} = \frac{1}{x+1}$, $x \neq \pm 1$

Solution:

Multiplying both sides by $x^2 - 1$
 $2 - (x - 1) = x - 1$
 $2 - x + 1 = x - 1$
 $-2x = -4$
 $x = 2$

So solution set = $\left\{\frac{2}{2}\right\}$

(x) $\frac{2}{3x+6} = \frac{1}{6} - \frac{1}{2(x+2)}$

Multiplying both sides by $6(x + 2)$ we get $2(2) = (x + 2) - 3$
 $4 = x + 2 - 3$
 $4 = x - 1$
 $x = 5$

Solution set = $\left\{5\right\}$

Q2. Solve each equation and check for extraneous solution, if any.

Extraneous solution:

When raising each side of the equation to a certain power may produce a nonequivalent equation that has more solutions than the original equation. These additional solutions

are called extraneous solutions. We must check our answer(s) for such solutions when working with radical equations.

$$(i) \qquad \sqrt{3x+4}=2$$

Solution:

Taking square of both sides

$$3x + 4 = 4$$

$$3x = 4 - 4$$

$$3x = 0$$

Or

$$x = 0$$

Solution set = $\{0\}$

(ii)
$$\sqrt[3]{2x-4}-2=0$$

Solution:

$$\sqrt[3]{3x-4} = 2$$

JdyNowPK.COM Taking cube of both sides

$$2x - 4 = 2^3 = 8$$

Or
$$2x = 8 + 4$$

$$2x = 12$$

Or

$$x = 6$$

$$\therefore \quad \text{Solution set} = \{6\}$$

(iii)
$$\sqrt{x-3} - 7 = 0$$

Solution:

$$\sqrt{x-3}=7$$

Taking square of both sides

$$x - 3 = 49$$

$$x = 49 + 3$$

Or

$$x = 52$$

Solution set = $\{52\}$:

$$(iv) 2\sqrt{t+4} = 5$$

Solution:

Taking square of both sides

$$4(t+4) = 25$$

$$4t + 16 = 25$$

$$4t = 25 - 16 = 9$$

$$t = \left\{\frac{9}{4}\right\}$$

Solution set =
$$\left\{\frac{9}{4}\right\}$$

(v)
$$\sqrt[3]{2x+3} = \sqrt[3]{x-2}$$

Solution:

Taking cube of both sides

$$2x+3 = x-2$$

$$2x - x = -2 - 3$$

$$x = -5$$

$$\therefore$$
 Solution set = $\{-5\}$

(vi)
$$\sqrt[3]{2-t} = \sqrt[3]{2t-28}$$

Solution:

Taking cube on both sides

$$2 - t = 2t - 28$$

$$-t-2t=-28-2$$

$$-3t = -30$$

$$t = 10$$

(vii)
$$\sqrt{2t+6} - \sqrt{2t-5} = 0$$

Solution:

$$\Rightarrow \qquad \sqrt{2t+6} = \sqrt{2t-5}$$

WPK.COM Taking Square of both sides

$$2t + 6 = 2t + 5$$

Solution set =
$$\{ \} or \phi$$

(viii)
$$\sqrt{\frac{x+1}{2x+5}} = 2 \qquad x \neq \frac{5}{2}$$

Solution:

Squaring both sides

$$\frac{x+1}{2x+5}=4$$

$$x + 1 = 4(2x + 5)$$

$$\Rightarrow$$
 $x-1=8x+20$

$$\Rightarrow \qquad x - 8x = 20 - 1$$

$$-7x = 19$$

$$\Rightarrow x = -\frac{19}{7}$$

$$Solution set = \left\{-\frac{19}{7}\right\}$$

EXERCISE

Q1. Identify the following statements as True or False.

- (i) |x| = 0 has only one solution.
- (ii) All absolute value equations have two solutions.
- (iii) The equation |x|=2 is equivalent to x=2 or x=-2.
- The equation |x-4| = -4 has no solution. (iv)
- The equation |2x-3|=5 is equivalent to 2x-3=5 or **(v)** 2x + 3 = 5.

Answers:

(i) T (ii) F	(iii) T	(iv) T	(v) F

Q2.

(i)
$$|3x-5|=4$$

Solution:

$$3x - 5 = 4$$

$$3x - 5 = -4$$

$$3x = 9$$

$$3x = 1$$

$$x = 3$$

Solution set = $\begin{cases} 3, \frac{1}{3} \\ \frac{1}{2} |3x + 2| - 4 = 11 \end{cases}$

(ii)
$$\frac{1}{2}|3x+2|-4=11$$

Solution:

$$\frac{1}{2}|3x + 2| = 15$$
$$|3x + 3| = 30$$

The equation is equivalent to

$$3x + 2 = 30$$

or
$$3x + 2$$

$$x = 30 - 2$$

$$3x = -30 - 2$$

$$3x = 28$$

or
$$3x = -32$$

$$x=\frac{28}{3}$$

or
$$x = \frac{-32}{3}$$

Solution set =
$$\left\{\frac{28}{3}, -\frac{32}{3}\right\}$$

(iii)
$$|3x+5|=11$$

Solution:

The given equation is equivalent to

$$2x + 5 = \pm 11$$

i.e.
$$2x + 5 = 11$$

or
$$2x + 5 = -11$$

$$2x = 6$$
 or
$$2x = -16$$
 or
$$x = -8$$

Solution set = $\{-8, 3\}$

(iv)
$$|3+2x|=|6x-7|$$

Solution:

The given equation is equivalent to

$$3+2x=\pm(6x-7)$$

i.e.
$$3 + 2x = 6x - 7$$
 or $3 + 2x = -6(6x - 7)$

i.e.
$$2x - 6x = -7$$
 or $2x + 6x = 7 - 3$

i.e.
$$-4x = -10$$
 or $8x = 4$
 $x = \frac{5}{2}$ or $x = \frac{1}{2}$

Solution set $\left\{\frac{5}{2}, \frac{1}{2}\right\}$

(v)
$$|x+2|-3=5-|x+2|$$

Solution:

Solution:

$$|x+2|-3=5-|x+2|$$

 $|x+2|+|x+2|=5+3$
 $|x+2|=8$
 $|x+2|=4$
This equation is equivalent to
 $|x+2|=4$ or $|x+2|=-4$
 $|x+2|=4$ or $|x+2|=-4$
 $|x+2|=4$ or $|x+2|=-4$
 $|x+2|=4$ or $|x+2|=-4$
Solution set = $\{2,-6\}$

$$x + 2 = 4$$
 or $x + 2 = -4$
 $x = 2$ or $x = -6$
Solution set = $\{2, -6\}$

(vi)
$$\frac{1}{2}|x+3|+21=9$$

Solution:

$$\frac{1}{2}|x+3| = 9 - 21 = -12$$

$$|x+3|=-6$$

Which is not possible

Since the absolute value of non-zero integer is always positive.

Solution set = $\{ \} or \phi$

(vii)
$$\left| \frac{3x-5}{4} \right| - \frac{1}{3} = \frac{2}{3}$$

Solution:

$$\left|\frac{3-5x}{4}\right| = \frac{2}{3} + \frac{1}{8} = 1$$

The given equation is equivalent to

$$\left|\frac{3-5x}{4}\right| = \pm 1$$

or
$$3 - 5x = \pm 4$$

i.e.
$$3-5x = 4$$
 or $3-5x = -4$
 $-5x = 4$ or $-5x = -4-3$
 $-5x = 1$ or $-5x = -7$
 $x = -\frac{1}{5}$ or $x = \frac{7}{5}$
Solution set $= \{-\frac{1}{5}, \frac{7}{5}\}$

Solution set =
$$\left\{-\frac{1}{7}, \frac{7}{5}\right\}$$

(viii)
$$\left|\frac{x+5}{2-x}\right|=6$$

Solution:

The given equation is equivalent to

$$\frac{x+5}{2-x} = \pm 6$$

i.e.
$$x + 5 = \pm 6(2 - x)$$

i.e.
$$x + 5 = 6(2 - x)$$

or
$$x + 5 = -6(2 - x)$$

$$x + 5 = 12 - 6x$$
 or

$$x + 6x = 12 - 5$$
 or

$$x = 7$$

$$x = 1$$

$$x + 5 = -12 - 5$$

$$x - 6x = -12 - 5$$

$$-5x = -17$$

$$x = \frac{17}{5}$$

$$x - 6x = -12 - 5$$

or
$$\chi = \frac{17}{5}$$

Solution set =
$$\left\{1, \frac{17}{5}\right\}$$

or

Solve the following inequalities.

(i)
$$3x+1 < 5x-4$$

Solution:

$$3x - 5x < -4 - 1$$

$$-2x < -5$$

$$-2x > 5$$

$$x > \frac{5}{2}$$

Solution set is
$$\left\{x \mid x > \frac{5}{2}\right\}$$

(ii)
$$4x - 10.3 \le 21x - 1.8$$

Solution:

$$4x - 21x \le -1.8 + 10.3$$

$$17x \le 8.5$$

$$x \ge -0.5$$

Solution set is $\{x \mid x \ge -0.5\}$

(iii)
$$4 - \frac{1}{2}x \ge -7 + \frac{1}{4}x$$

Solution: $-\frac{1}{2}x - \frac{1}{4}x \ge -7 - 4$
 $-\frac{3}{4}x \ge -11$
Or $x \le \frac{44}{3}$

Solution set is $\left\{x \mid x \leq \frac{44}{3}\right\}$

(iv)
$$x-2(5-2x) \ge 6x-3\frac{1}{2}$$

Solution:

on:

$$x - 0 + 4x \ge 10 - \frac{7}{2}$$

 $5x - 6x \ge 10 - \frac{7}{2}$
 $-x \ge \frac{13}{2}$
 $-x \ge 6.5$
 $x \le -6.5$
Solution set is $\{x | x \le -6.5\}$
 $\frac{3x+2}{9}$ $\frac{2x+1}{3} > -1$

(v)

Solution: Multiplying both sides by 9

$$3x + 2 - 3(2x + 1) > -9$$

$$3x + 2 - 6x - 3 > -9$$

$$3x - 6x > -9 - 2 + 3$$

-3x < -8

$$3x < 8$$

$$x < \frac{8}{3}$$

Solution set $\left\{x \mid x < \frac{8}{3}\right\}$

(vi)
$$3(2x+1)-2(2x+5)<5(3x-2)$$

Solution:

$$6x + 3 - 4x - 10 < 15x - 10$$

$$2x - 7 < 15x - 10$$

$$2x - 15x < -10 + 7$$

$$-13x < -3$$

Solution set
$$\left\{x \mid x > \frac{3}{13}\right\}$$

(vii) $3(x-1) - (x-2) > -2(x+4)$
Solution:
 $3x - 3 - x + 2 > -2x - 8$
 $2x - 1 > -2x - 8$
 $2x + 2x < -8 + 1$
 $4x > -\frac{7}{4}$
Solution set is $\left\{x \mid x > -\frac{7}{4}\right\}$
(viii) $2\frac{2}{3}x + \frac{2}{3}(5x - 4) > -\frac{1}{3}(8x + 7)$
Solution:

$$\frac{8}{3}x + \frac{10}{3}x - \frac{8}{3} > -\frac{8}{3}x - \frac{7}{3}$$
Multiplying by 3
 $8x + 10x - 8 > -8x - 7$
 $18x - 8 > -8x - 7$
 $18x + 8x > -7 + 8$
 $26x > 1$
 $x > \frac{1}{26}$
Solution set is $\left\{x \mid x > \frac{1}{26}\right\}$
Solution set is $\left\{x \mid x > \frac{1}{26}\right\}$
Solve the following inequalities.
(i) $-4 < 3x + 5 < 8$

Solution:

The given equality represents two inequalities

$$-4 < 3x + 5$$

and

Or

$$3x + 5 < 8$$

The first inequality -4 < 3x + 5 gives

$$-3x < 5 + 4$$

$$3x > -9$$

$$x > -\frac{9}{3}$$

$$x > -3$$

$$-3 < x \tag{i}$$
and inequality $3x + 5 < 8$ gives

The second inequality 3x + 5 < 8 gives 3x < 8 - 5

Or
$$x < 1$$
 (ii) Combining (i) and (ii), we have $-3 < x < 1$ Solution set is $\{x \mid -3 < x < 1\}$ (ii) $-5 \le \frac{4-3x}{2} < 1$

Solution:

The given inequality represents two inequalities

$$-5 \le \frac{4-3x^2}{2}$$
And
$$\frac{4-3x}{2} < 1$$

The first inequality gives

$$-5 \le \frac{4-3x}{2}$$

$$-10 \le 4-3x$$

$$-10-4 \le -3x$$

$$14 \ge 3x$$

$$\frac{14}{3} \ge x$$

Or

K.COM The second inequality gives $\frac{4-3x}{2} < 1$

$$\Rightarrow 4 - 3x < 2$$

$$4 - 2 < 3x$$

$$\Rightarrow \frac{2}{3} < x$$

Combining (i) and (ii) $\frac{2}{2} < x \le \frac{14}{3}$

Solution set is $\left\{x \mid \frac{2}{3} < x < \frac{14}{3}\right\}$

(iii)
$$-6 < \frac{x-2}{4} < 6$$

Solution:

This inequality is equivalent to two inequalities

$$-6 < \frac{x-2}{4}$$

$$\frac{x-2}{4} < 6$$

And

The first inequality gives

$$-24 < x - 2$$

 $-24 + 2 < x$

The second inequality gives
$$x-2 < 24$$

$$x < 24 + 2$$
Or
$$x < 26$$

$$\cos \sin (ii) = (ii)$$
Combining (i) and (ii) we have
$$-22 < x < 26$$
Solution set is $\{x \mid -22 < x < 26\}$
(iv)
$$3 \ge \frac{7-x}{2} \ge 1$$
Solution:

This inequality represents two inequalities $3 \ge \frac{7-x}{2}$ and
$$\frac{7-x}{2} \ge 1$$
. The first inequality gives
$$6 \ge 7 - x$$

$$6 \le 7 - x$$

$$7 \le 2$$

$$-1 \ge -x$$
Or
$$1 \le x$$
The second inequality gives
$$7 - x \ge 2$$

$$-x \ge 2 - x$$

$$x \ge 5$$

$$x \ge 5$$
The Solution set is $\{x \mid 1 \le x \le 5\}$
(v)
$$3x - 10 \le 5 \le x + 3$$
Solution:

The inequality is equivalent to
$$3x - 10 \le 5$$
And
$$5 < x \pm 3$$
The first inequality gives
$$3x - 10 \le 5$$

$$3x \le 5 + 10$$
Or
$$3x \le 15$$
Or
$$x \le 5$$
The second inequality gives
$$5 < x + 3$$
Or
$$5 \le x + 3$$
Or
$$5 \le x + 3$$
Or

Or
$$2 < x$$
 (ii)

Combining (i) and (ii) we have
 $2 < x \le 5$
the solution set is $\{x \mid 2 < x \le 5\}$

(vi) $-3 \le \frac{x-4}{-5} < .4$

Solution:

This equation is equivalent to
$$-3 \le \frac{x-4}{-5}$$
And
$$\frac{x-4}{-5} < 4$$
The first inequality gives
$$-3 \le \frac{x-4}{-5}$$

$$\Rightarrow 15 \ge x - 4$$
Or $15 + 4 \ge x$

$$\Rightarrow 19 \ge x$$
Or $x \le 19$
This second inequality gives
$$\frac{x-4}{-5} < 4$$
Or $x \le 4$
Or $x \le 19$
This second inequality gives
$$\frac{x-4}{-5} < 4$$
Or $x \le 19$
This second inequality gives
$$\frac{x-4}{-5} < 4$$
Or $x \le 19$

$$x \ge -20 + 4$$
Or $x \ge -16 < x \le 19$

$$x \ge -16 < x \le 19$$

$$x \ge -16 < x \le 19$$
The solution set is $\{x \mid -16 < x \le 19\}$
(vii) $1 - 2x < 5 - x \le 25 - 6x$
Solution:

This inequality is equivalent to
$$1 - 2x < 5 - x$$

$$5 - x \le 25 - 6x$$
The first inequality gives
$$1 - 2x < 5 - x$$
Or
$$-2x + x < 5 - 1$$
Or
$$-x < 4$$
or
$$-4 < x$$
The second inequality gives
$$5 - x \le 25 - 6x$$

```
-x + 6X \le 25 - 5
\Rightarrow
Or
               5x \leq 20
                                             (ii)
⇒
               x \leq 4
       Combining (i) and (ii) we have
               -4 < x \le 4
       the solution set is \{x \mid -4 < x \le 4\}
(viii)
       3x-2 < 2x+1 < 4x+17
Solution:
        This is equivalent to
               3x - 2 < 2x + 1
And
               2x + 1 < 4x + 17
        The first inequality gives
                3x - 2 < 2x + 1
                                  10NPK.COM
                3x - 2x < 1 + 2
 or
                x < 3
 or
        The second inequality gives
                2x + 1 < 4x + 17
                2x - 4x < 17 - 1
                -2x > 16
 or
                2x > -16
 or
                x > -8
 or
                                              (ii) '
                +8 < x
 or
         Combining (i) and (ii) we have
                 -8 < x < 3
         solution set is \{x \mid -8 < x < 3\}
```

REVIEW EXERCISE 7

- Q1. Choose the correct answer.
- (i) Which of the following is the solution of the inequality $-4x \le 11$?.....
 - (a) -8
- (b) -2
- (c) -4
- (d) None of these
- (ii) A statement involving any of the symbols <, >, \le or \ge is called
 - (a) equation
- (b) identity
- (c) inequality
- (d) linear equation

(iii) $x = \dots$ is a solution of the inequality $-2 < x < \frac{3}{2}$

- (a) -5
- (b) 3

(c) 0

(d) $\frac{3}{2}$

(iv) If x is no larger than 10, then.....

- (a) x > 8
- (b) x < 10
- (c) x < 10

(d) x > 10

(v) If the capacity c of an elevator is at most 1600 pounds, then.....

- (a)
- c < 1600
- (b) c > 1600
- (c) c < 1600
- (d) c > 1600

(vi) x = 0 is a solution of the inequality.....

- (a) x > 0
- (b) 3x + 5 < 0
- (c) x + 2 < 0 (d)
- (d) x-2<0

Answers:

(I) D	(II) C	(III) C	(IV) D	(V) C	(VI) a

Q2. Identify the following statements as True or False.

- (i) The equation 3x 5 = 7 + x is a linear equation.
- (ii) The equation x = 0.3x = 0.7x is an identity.
- (iii) The equation -2x + 3 = 8 is equivalent to -2x = 11.
- (iv) To eliminate fractions, we multiply each side of an equation by the L.C.M. of denominators.
- (v) $\sqrt[4]{(x+3)} = x+3$ is a conditional equation.
- (vi) The equation 2(3x + 5) = 6x + 12 is ah inconsistent equation.
- (vii) To solve $\frac{2}{3}x = 1.2$, we should multiply each side by $\frac{2}{3}$.
- (viii) Equations having exactly the same solution are called equivalent equations.
- (ix) A solution that does not satisfy the original equation is called extraneous solution.

Answers:

(i) T	(ii) T	(iii) F	(iv) T	(v) T
(vi) T	(vii) F	(viii) T	(ix) T	

- Q3. Answer the following short questions.
- (i) **Define linear** inequality in one variable.

Solution:

A linear inequality in one variable x is an inequality in which the variable x occurs only to the first power and is of the form

$$ax + b < 0$$
 , $a \neq 0$

where a and b are equal real numbers.

(ii) State the Trichotomy and transitive properties of inequalities.

Solution:

Law of Trichotomy

For any $a, b \in R$, one and only of the statements is true.

$$a < b$$
 or $a = b$ or $a > b$

Transitive Property

Let $a, b, c \in R$

- (a) if a > b and b > c then a > c
- (b) if a < and b < c then a < c
- (iii) The formula relating degrees Fahrenheit to degrees Celsius is $F = \frac{9}{5}C + 32$. For what value of C is F < 0?

Solution:

$$F = \frac{9}{5}C + 32$$

$$\Rightarrow \frac{9}{5}C + 32$$

Or
$$9c + 160 < 0$$

Or
$$9c + 160 < 0$$

Or
$$9c < -160$$

Or
$$C < \frac{-160}{9}$$

(iv) Seven times, the sum of an integer and 12 is at least 50 and at most 60. Write and solve the inequality that expresses this relationship.

Solution:

Let x be the integer. So according to the question

$$50 \le 7(x+12) \le 60$$

This is equivalent to two inequalities

And
$$7(x+12) \le 60$$
The first inequality gives
$$50 \le 7(x+12)$$

$$50 \le 7x + 84$$

$$50 - 84 \le 7x$$
Or
$$-34 \le 7x$$

$$\Rightarrow -\frac{34}{7} \le x \qquad (i)$$
The second inequality gives
$$7(x+12) \le 60$$

$$7x + 84 \le 60$$
Or
$$7x \le 60 - 84$$

$$\Rightarrow x \le -\frac{24}{7} \qquad (ii)$$
From (i) and (ii) we get
$$-\frac{34}{7} \le x \le -\frac{24}{7}$$
the required integer is $x|-\frac{34}{2} \le x \le -\frac{24}{7}$
the required integer is $x|-\frac{34}{2} \le x \le -\frac{24}{7}$

$$24. \quad \text{Solve each of the following and check for extraneous solution if any:}$$
(i)
$$\sqrt{2t+4} = \sqrt{t+1}$$
Solution:
$$2t+4=t-1$$
Or
$$t=-5$$
On checking
$$\sqrt{-10+4} = \sqrt{-5-1}$$

$$\sqrt{-6} = \sqrt{-6} = \sqrt{-6}$$
Since
$$\sqrt{-6} = \infty = \text{Imaginary}$$
Therefore solution set = {}
(ii)
$$\sqrt{3x-1} = 2\sqrt{8-2x} = 0$$
Solution:
$$3x-1 = 2\sqrt{8-2x}$$
Squaring both sides
$$3x-1 = 4(8-2x)$$

3x - 1 = 32 - 8x

Or

Or
$$3x + 8x = 32 + 1$$
$$11x = 33$$
$$\Rightarrow x = 3$$

Check:

$$\sqrt{3(3-1} - 2\sqrt{8-2(3)} = 0$$

$$\sqrt{9-1} - 2\sqrt{8-6} = 0$$

$$\sqrt{8} - 2\sqrt{2} = 0$$

$$2\sqrt{2} - 2\sqrt{2} = 0$$

x = 3 satisfies the given equation So the solution set is $\{3\}$

Q5. Solve for x

(i)
$$|3x+14|-2=5x$$

Solution:

Or
$$|3x + 14| = 5x + 2$$

This is equivalent to $3x + 14 = \pm(5x + 2)$

i.e.
$$3x + 14 = \pm(5x + 2)$$

 $3x + 14 = 5x + 2$ or $3x + 14 = -(5x + 2)$
 $3x - 5x = 2 - 14$ or $3x + 14 = -5x - 2$
 $-2x = -12$ or $3x + 5x = -2 - 14$
 $x = 6$ or $x = -16$
 $x = 6$ or $x = -2$

On checking we see that x = 6 satisfies the given equation but x = -12 does not satisfy the given equation. So the solution set is $\{6\}$

(ii)
$$\frac{1}{3}|x-3| = \frac{1}{2}|x+20|$$

Solution:

Multiplying both sides by 6 we get

$$2|x-3|=3|x+2|$$

This is equivalent to

$$2|x+3| = \pm 3(x+2)$$

Which is equivalent to

$$2(x-3) = 3(x+2)$$
 or $2(x-3) = -3(x+2)$
 $2x-6 = 3x+6$ or $2x-6 = -3x-6$
 $2x-3x = 6+6$ or $2x+3x = -6+6$
 $-x = 12$ or $x = 0$

On checking x = -12

On checking we see that x = 0 and x = -12 satisfies the given equation.

solution set is $\{-12,0\}$

Solve the following inequality Q6.

$$(i) \qquad -\frac{1}{3}x + 5 \le 1$$

Solution:

Multiplying by 3

$$-x + 15 \le 3$$

$$-x \le 3 - 15$$

$$-x \le 3 - 15$$

$$x \ge 12$$

So the solution set is $\{x \mid x \ge 12\}$

(ii)
$$-3 < \frac{1-2x}{5} < 1$$

Solution:

NONBK.COM This is equivalent to two inequalities

$$-3 < \frac{1-2x}{5} < 1$$

And

Or

or

 \Rightarrow

The first inequality gives

$$-15 < 1 - 2x$$

$$\Rightarrow 2x < 1 + 15$$
Or $2x < 16$

Or

The second inequality gives

$$1-2x<5$$

$$-2x<5-1$$

$$-2x > 4$$

$$-2x > 4$$

$$x > -2$$

Combining (i) and (ii) we have

$$8 > x > -2$$

Or :.

$$-2 < x < 8$$

solution set is
$$\{x \mid 8 > x > -2\}$$