CHAPTER 10

Affine transformations in the Euclidean spaces

Contents

10.1 Affine transformations in dimension 3	 1
10.2 Classification of isometries in dimension 3	 3
10.3 Homogeneous coordinates	 6
10.4 Exercises	 6

10.1 Affine transformations in dimension 3

Theorem 10.1 (Euler). All displacements in $AGL(\mathbb{E}^3)$ which fix a point are either the identity or a rotation through an axis containing that point.

Remark 10.2. Recall that the *trace* of a matrix is the sum of the diagonal entries of the matrix. It is a linear algebra fact that the trace of a matrix does not change when performing a base change. In other words the trace is a property of the corresponding linear map.

The next proposition follows directly from the proof of the above theorem.

Proposition 10.3. The angle θ of a rotation $A \in SO(3)$ is given by the equation

$$trace(A) = 1 + 2cos(\theta)$$
.

Remark 10.4. Rotations around the coordinate axes are standard examples

$$[\operatorname{Rot}_{x}(\theta)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$[\operatorname{Rot}_{x}(\theta)] = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$
$$[\operatorname{Rot}_{x}(\theta)] = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The composition of these maps is $Rot_x(\psi) \circ Rot_y(\theta) \circ Rot_z(\phi) =$

$$\begin{bmatrix} \cos\psi\cos\theta\cos\psi - \sin\psi\sin\phi & -\cos\psi\cos\theta\sin\phi - \sin\psi\cos\phi & \cos\psi\sin\theta\\ \sin\psi\cos\theta\cos\phi + \cos\psi\sin\phi & -\sin\psi\cos\theta\sin\phi + \cos\psi\cos\phi & \sin\psi\sin\theta\\ -\sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \end{bmatrix}.$$

All orientation preserving rotations are of this form, i.e. any matrix in SO(3) can be written in this form for some $\psi \in [0, 2\pi[$, $\theta \in [0, \pi[$ and $\phi \in [0, 2\pi[$. The angles ψ , θ and ϕ are called *Euler's angles*. We will see later, in Chapter **??**, that there is a better way of dealing with rotations in \mathbb{E}^3 .

Proposition 10.5 (Euler-Rodrigues). Let $\mathbf{v} \in D(\mathbb{E}^3)$ be a unit vector and $\theta \in \mathbb{R}$. The rotation of angle θ and axis $\mathbb{R}\mathbf{v}$ (here $||\mathbf{v}|| = 1$) is given by

$$Rot_{\mathbf{v},\theta}(x) = \cos(\theta)x + \sin(\theta)(\mathbf{v} \times x) + (1 - \cos(\theta))\langle \mathbf{v}, x \rangle \mathbf{v}. \tag{10.1}$$

Proof.

10.2 Classification of isometries in dimension 3

Definition. A *helical displacement* is the composition of a rotation and a translation in the direction of the rotation axis.

Example 10.6. We can construct obvious examples if we use rotations around the coordinate axes:

Theorem 10.7 (Chasles). If φ is a displacement of \mathbb{E}^3 then exactly one of the following holds

- 1. φ is the identity
- 2. φ is a translation
- 3. φ is a rotation
- 4. φ is a helical displacement

Proof. \Box

Remark 10.8. If $\varphi : x \mapsto Ax + b$ is a helical displacement, then b need not be parallel to the direction of the axis of the helical displacement.

Definition. The decomposition

$$\varphi: x \mapsto (Ax + b_2) + b_1 \tag{10.2}$$

with $Ax + b_2$ a rotation and b_1 parallel to the axis of rotation is called *Chasles' decomposition of* φ .

The unique line left invariant by a rotation or helical displacement is called axis. In case of a helical displacement (10.3), the points on the axis are translated by

$$\delta_{\varphi} = ||b_1||$$

which we call the pace of φ .

Proposition 10.9. Let $x \to Ax + b$ be a rotation or a helical displacement. The axis of this transformation is

$$\left\{ a(t) = \frac{1}{2}b + \frac{\tau}{2}\mathbf{v} \times b + t\mathbf{v} : t \in \mathbb{R} \right\}$$

where **v** is an eigenvector of unit length of A for the eigenvalue 1 and $\tau = \cot(\frac{\theta}{2})$ where the angle θ is given by $\operatorname{trace}(A) = 1 + 2\cos(\theta)$.

Proof.

Theorem 10.10. Let φ be an indirect isometry of \mathbb{E}^3 . Then φ leaves a plane Π invariant. Moreover, exactly one of the following holds

- 1. φ is a reflection in Π
- 2. φ is a gliding reflection in Π , i.e. a reflection in the plane Π composed with a translation parallel to Π
- 3. φ is a reflection in Π composed with a rotation with axis orthogonal to Π .

Proof.

10.3 Homogeneous coordinates

An affine map $\varphi : x \mapsto Ax + v$ can be represented as follows

$$\begin{bmatrix} A & v \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} Ax + b \\ 1 \end{bmatrix}.$$

For this to make sense, we view $\mathbb{A}(\mathbb{R}^n)$ as a hyperplane in $\mathbb{A}(\mathbb{R}^{n+1})$ with

$$\mathbb{R}^n \ni \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{bmatrix} \in \mathbb{R}^{n+1}$$

The matrix

$$\begin{bmatrix} A & v \\ 0 & 1 \end{bmatrix}$$

is then called the homogeneous matrix of the affine map φ w.r.t. the standard basis.

10.4 Exercises

Exercise 1. Show that

$$\langle v \times w, v \times w \rangle = \langle v, v \rangle \langle w, w \rangle - \langle v, w \rangle \langle w, v \rangle.$$

Exercise 2. Show that if $A \in O(3)$ has determinant -1 then it has -1 as eigenvalue.

Exercise 3. Let $A \in SO(3)$ and $x, y \in \mathbb{R}^3$. Show that

$$A(x \times y) = (Ax) \times (Ay).$$

Show by means of examples that if $A \notin SO(3)$ then the above equality doesn't hold.

Exercise 4. Calculate the matrix of a rotation with angle $\theta = \frac{\pi}{4}$ around the axis passing through the origin and having direction (1,0,1). Verify that the matrix is orthogonal.

Exercise 5. Let $\varphi, \psi \in AGL(\mathbb{R}^3)$ be the rotations obtained by composing a rotation by $\frac{\pi}{4}$ around the *z*-axis with a rotation by $\frac{\pi}{6}$ around the *y* axis in the two possible ways. Find the axes of these isometries.

Exercise 6. Verify that the matrices

$$A = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -\frac{9}{11} & -\frac{2}{11} & \frac{6}{11} \\ \frac{6}{11} & -\frac{6}{11} & \frac{7}{11} \\ \frac{2}{11} & \frac{9}{11} & \frac{6}{11} \end{bmatrix}$$

are in SO(3) and find their angles of rotation.

Exercise 7. Find Chasles' decomposition for $x \mapsto Ax + b$ with A as in the previous exercise and

$$b = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

In particular, indicate the angle and the pace.

Exercise 8. Consider the displacement of \mathbb{E}^2 given by the homogeneous matrix

$$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1+\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{1-\sqrt{3}}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

what is its center?

Exercise 9. For two affine maps $\varphi : x \mapsto Ax + b$ and $\psi : x \mapsto Cx + d$ give $\varphi \circ \psi$ in homogeneous coordinates. Assume that φ is an affine transformation and give φ^{-1} in homogeneous coordinates as well as $\varphi \circ \psi \circ \varphi^{-1}$ (the *conjugate of* ψ *by* φ).

Exercise 10. For an affine transformation φ , let $[\varphi]_h$ denote the homogeneous matrix of φ with respect to the standard basis.

Is $AGL(\mathbb{R}^n) \ni \varphi \mapsto [\varphi]_h \in GL_{n+1}(\mathbb{R})$ a homomorphism of groups?

Bibliography

- [1] D. Andrica, Geometrie, Cluj-Napoca, 2017.
- [2] P.A. Blaga, Geometrie și grafică pe calculator note de curs, Cluj-Napoca, 2016.
- [3] M. Craioveanu, I.D. Albu, Geometrie afină și euclidiană, Timișoara, 1982.
- [4] GH. Galbură, F. Radó, Geometrie, București, 1979.
- [5] P. Michele, Géométrie notes de cours, Lausanne, 2016.
- [6] A. Paffenholz, Polyhedral Geometry and Linear Optimization, Darmstadt, 2013.
- [7] C.S. Pintea, Geometrie afină note de curs, Cluj-Napoca, 2017.
- [8] I.P. Popescu, Geometrie afină si euclidiană, Timișoara, 1984.
- [9] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culegere de probleme de geometrie, Cluj-Napoca, 1979.
- [10] M. Troyanov, Cours de géométrie, Lausanne, 2011.