Simulation d'une alimentation des électroaimants d'un accélérateur de particules. (RAF)

Par l'équipe Électrosim

Contexte et problématique

- Le CERN est un laboratoire de recherche multidisciplinaire sur la physique fondamentale
 - Le CERN est situé en Suisse (Genève)
 - Le laboratoire est constitué d'une chaîne complexe d'accélérateurs de particules
 - Le LEEPCI est un laboratoire de recherche de l'université Laval et se concentre sur la
 - simulation de réseaux électriques;
 - modélisation et conception de machines électriques:
 - modélisation et conception de convertisseurs d'électronique de puissance.
- OPAL-RT est une compagnie spécialisée dans la développement de simulateurs temps réel PC/FPGA

Clients du projet

Rappel des objectifs

- Livrer 3 outils de dimensionnement (interrupteurs et régulateurs)
 - Chaque outil doit être convivial et facile d'emploi
 - ► Ils permettent de valider modèles et methodes de simulation employés sur 3 plateformes (SPS, PSIM, OPAL-RT)
- Livrer un simulateur sur 3 plateformes
 - Les 3 simulateurs doivent remplir les fonctionnalités attendues (exemple: alimenter la charge avec une forme de courant trapézoïdale présentant une faible ondulation)
 - ▶ Plateformes: Matlab (SPS), PSIM, Opal-RT (OPA500)
- Livrer une documentation technique de reference décrivant l'utilisation de chacun des simulateurs ainsi que les modèles mathématiques utilisés.
- ▶ Implanter une validation croisée des 3 simulateurs

Système complet

- AFE « Active Front End »
 - Redresseur triphasé 3 niveaux NPC
 - Permet de charger le banc de condensateurs et de maintenir la tension du bus CC
 - Permet de réguler le facteur de puissance côté réseau (régulation d'angle)
 - Permet de réguler le courant côté réseau (régulation de l'amplitude du courant)

- DC_p DC_n
 - Hacheur 4 quadrants formé par l'association de 2 cellules onduleur NPC 3 niveaux triphasées
 - Permet de fournir une forme de courant précise aux électroaimants
 - Fonctionne dans les 4 quadrants (peut redonner de la puissance au banc de condensateur selon la tension appliquée sur les électroaimants)

Outil de contrôle et dimensionnement

- L'outil de dimensionnement est utilisé pour des fins de contrôle des intrants de simulation.
- Permet de lancer la simulation et de dimensionner les différentes composantes du système.
- Il est possible de lancer une simulation sur SPS.
- > L'adaptation sur PSIM est faite, mais requiert tests et ajustements sur la plateforme du client.
- L'outil de dimensionnement fournit les outils nécessaires pour dimensionner les modèles SPS utilisables sur le simulateur temps réel.

Outil de contrôle et dimensionnement (Réglages initiaux)

A	В	С	D	E	F
Options générales					
Simulations disponibles	Nom de la simulation Simulink	Nom de la simulation Psim			Dossier des simulations
AFE					D:\Documents\GitHub\DesignIV\Remise\Simulation\AFE\
AFE 2 niveaux - Hystérésis - Charge Idéale	AFEDT1.slx	AFEDT1.psimsch			
AFE 2 niveaux - Hystérésis - Charge RC	AFEDT1_RC.slx	AFEDT1_RC.psimsch			
AFE 2 niveaux - PWM - Charge RC	AFEDT1_RD_PI.slx	AFEDT1_RD_PI.psimsch			
AFE 3 niveaux - Hystérésis - Charge idéale	AFEDT1_3L.slx	AFEDT1_3L.psimsch			
AFE 3 niveaux - Hystérésis - Charge RC	AFEDT1_3L_RC.slx	AFEDT1_3L_RC.psimsch			
AFE 3 niveaux - PWM - Charge RC	AFEDT1_3L_RC_PI.slx	AFEDT1_3L_RC_PI.psimsch			
DCP-DCN			Mettre à jour les paramètres		paramètres
Hacheur 4 Quadrants - PWM	NPC_1.slx				
DCP-DCN 3 niveaux - Hystérésis	NPC_1_modifs.slx				
DCP-DCN 3 niveaux - PWM	NPC_1_modifs.slx				
Assemblage complet					
Simulation Complète	NPC_1_modifs.slx				

Outil de contrôle et dimensionnement (Paramètres de simulation)

res des simulations					
1.00E-05	Tpas	Type de simulation			
0.90	Timer	DCP-DCN			
50.00	Freq				
3000	ech	Choix de la simulation			
1.00E-05	Lcoup	Test ♦			
1.00E-02	Ron				
450	hys	Logiciels de simulation			
0.28	R				
0.1	L				
	_				
		Similation			
100000	Rs				
		Affichage des résultats			
	-				
2000	Vac				
		Courant de la source			
		Tension sur la charge			
8.15E-04	Lac				
		Tension sur T1			
		Courant dans T1			
9.28	Rch				
0.3	Cbus				
25.72.422					
9.26	IV				
	1.00E-05	1.00E-05 Tpas 0.90 Timer 50.00 Freq 3000 ech 1.00E-05 Lcoup 1.00E-02 Ron 450 hys 1000 fmod4Q 0.28 R 0.1 L 100000 Rs Inf Cs 2000 Vac 5000 Vdc 1469.7 Satv 8.15E-04 Lac 9.28 Rch 0.3 Cbus	1.00E-05 Tpas Type de s 0.90 Timer DCP-DCN 50.00 Freq 3000 ech Choix de la 1.00E-05 Lcoup Test 1.00E-02 Ron 450 hys Logiciels de simula 1000 fmod4Q Psim 0.28 R 0.1 L Si 100000 Rs Inf Cs Affichage des résu Nom Puissance dans la charge 2000 Vac Tension de la source 5000 Vdc Courant de la source 1469.7 Satv Tension sur la charge 8.15E-04 Lac Courant dans la charge Tension sur T1 Courant dans T1 9.28 Rch 0.3 Cbus	1.00E-05 Tpas	1.00E-05 Tpas

Outil de contrôle - Démonstration

- Réglages des paramètres initiaux
- Réglages des paramètres de simulation
- ► Lancement de la simulation SPS (H4Q)
- Lancement de la simulation Psim (H4Q)
- Affichage de résultats

Simulation complète (SPS)

AFE (SPS)

DCP-DCN (SPS)

Affichages personalisés (SPS)

Simulation complète (PSim)

Validation croisée (Courant d'entrée AFE)

Validation croisée (Tension ligne-ligne AFE)

Validation croisée (Courant IGBT AFE)

Validation croisée (Tension IGBT AFE)

Validation croisée (Tension bus CC)

Validation croisée (Courant Charge)

Validation croisée (Courant IGBT DCP-DCN)

Opal-RT - Présentation

Plan de test du système intégré					
Niveau	Sous-niveau	Méthode de vérification	Méthode d'analyse	Spécification	
Phase 1: Modélisation convertisseur 4 quadrants de base	Commander un convertisseur CC-CC à 4 quadrants	Test sur 3 plateformes	Comparaison du courant dans la charge par rapport au courant de référence	Δl≤25A	
	Accepter des paramètres de modélisation	Test sur SPS et Psim	Injecter un paramètre de modélisation et vérifier que la variation a lieu		
Phase 2: Alimentation des électroaimants	Commander un onduleur triphasé de type NPC	Test en boucle ouverte et en boucle fermée	Comparaison du courant dans la charge par rapport au courant de référence	ΔI≤25A	
avec une forme de courant précise au moyen d'un convertisseur CC- CC formé de 2 cellules NPC 3 niveaux	Alimenter les électroaimants de l'accélérateur de particules	Test en boucle fermée du système avec charge RL équivalente	Comparaison du courant dans la charge par rapport au courant de référence et comparaison de la tension moyenne avec courbe de référence	ΔI≤25A	
	Afficher des résultats de simulation personnalisés	Test	Oui/Non le critère est-il rempli?		
Phase 3: Redresser le signal d'entrée avec un redresseur actif et régler le facteur de puissance vu à l'entrée	Charger un banc de condensateur	Test sur SPS et Psim	Courbe de charge stable avec temps de charge minimal	t≤2s, Pmax≤3.6MW, Pmoy = 2.7MW	
	Redresser le signal d'entrée à la sortie du transformateur	Test sur SPS et Psim	Vérification angle de charge par rapport à l'angle de charge imposé, Vérification de la tension moyenne à la charge par rapport à celle imposée en régime permanent	ΔVmax≤50V, ΔΦ≤2°	
Phase 4: Outil de	Accepter des paramètres de dimensionnement usuels	Test sur Excel	Oui/Non le criètre est-il rempli?		

Test sur Excel

Test de la méthode

sur les plateformes

Test de la méthode

sur les plateformes

Test sur les

plateformes

dimensionnement Fournir les paramètres de modélisation utilisés par le simulateur

Présenter les procédures de validation croisées de chacun des simulateurs Présenter l'utilisation de chacun des Documentation simulateurs

Présenter les modèles mathématiques

utilisés dans chacun des simulateurs

Phase 5:

technique

Oui/Non le criètre est-il rempli?

Matrice de vérification des exigences

Niveau	Sous-niveau	Méthode d'analyse	Spécification	Performance	Marge	Commentaires
Phase 1: Modélisation convertisseur 4 quadrants de base	Commander un convertisseur CC-CC à 4 quadrants	Comparaison du courant dans la charge par rapport au courant de référence	ΔI≤25A	±10A	±15A	Superposition du courant à la charge sur SPS et PSIM, amplitude et fréquence
	Accepter des paramètres de modélisation	Injecter un paramètre de modélisation et vérifier que la variation a lieu		La variation demandée se produit		Des changements ne compromettant pas la stabilité du système ont été testés
Phase 2: Alimentation des électroaimants avec une forme de courant précise au moyen d'un convertisseur CC-CC formé de 2 cellules NPC 3 niveaux	Commander un onduleur triphasé de type NPC	Comparaison du courant dans la charge par rapport au courant de référence	ΔI≤25A	±10A	±15A	
	Alimenter les électroaimants de l'accélérateur de particules	Comparaison du courant dans la charge par rapport au courant de référence et comparaison de la tension moyenne avec courbe de référence	ΔI≤25A	±15A	±10A	
	Afficher des résultats de simulation personnalisés	Oui/Non le critère est-il rempli?		Oui		
Phase 3: Redresser le signal d'entrée avec un redresseur actif et régler le facteur de puissance vu à l'entrée	Charger un banc de condensateur	Courbe de charge stable avec temps de charge minimal	t≤2s, Pmax≤3.6MW, Pmoy ≤2.7MW	t=0.31s, Pmoy = 2.53MW et Pmax=3.55MW pour PSIM, Pmoy=2.58MW et Pmax=3.56MW pour SPS	Δt = 1.69s, ΔPmoy = -0.17MW, ΔPmax = -0.04MW	Temps de recharge de 0.31s calculé à x partir du point bas de la tension du bus CC (variation de 1700V)
		Vérification angle de charge par rapport à l'angle de charge imposé, Vérification de la tension moyenne à la charge par rapport à celle imposée en régime permanent		Δ Vmax = 0.2, Δ φ = 0.3	49.8V, 1.7°	
Phase 4: Outil de dimensionnement	Accepter des paramètres de dimensionnement usuels	Oui/Non le criètre est-il rempli?		Oui		
	Fournir les paramètres de modélisation utilisés par le simulateur	Oui/Non le criètre est-il rempli?		Oui		
Phase 5: Documentation technique	Présenter les procédures de validation croisées de chacun des simulateurs	Oui/Non le criètre est-il rempli?		Oui		
	Présenter l'utilisation de chacun des simulateurs	Oui/Non le criètre est-il rempli?		Oui		
	Présenter les modèles mathématiques utilisés dans chacun des simulateurs	Oui/Non le criètre est-il rempli?		Oui		

Gantt

WBS

Améliorations proposées

- Méthode de contrôle RST à investiguer pour obtenir une précision similaire au CERN
- Optimisation de la commande pour l'AFE 3 niveaux (contrôle du courant maximal et contrôle de phase)
- ► Intégration du convertisseur (CA/CC) au niveau charge

