1、实验名称及目的

基础实验:在自稳模式的基础上改成定点模式。根据实验分析,与自稳模式相比,多旋翼在定点模式下姿态和位置输出值的变化;利用三段拨码开关实现三种模式的自由切换,完成硬件在环仿真实验和实飞实验。

2、实验效果

解锁多旋翼,实现手动控制。当拨动 CH5 拨码开关切换到自稳模式时,四旋翼的响应与基 础实验中的一致;当切换到定高模式时,四旋翼的表现与设计实验时一致;当切换到定点模式时,摇杆全部回中,四旋翼经过调整后定在空中保持不动,向前拨动 CH1 并保持不动,四旋翼沿 o_ex_e 方向匀速飞行。

3、文件目录

	文件夹/文件名称		说明
HIL	icon	FlightGear.png	FlightGear 硬件图片。
		pixhawk.png	Pixhawk 硬件图片。
		vehicle_local_position.mat	原数据
		F450.png	F450飞机模型图片。
	ModeSwitch_HIL.slx		Simulink 仿真模型文件。
	Init_control.m		控制器初始化参数文件。
Sim	icon	UE_Logo.jpg	UE 软件的 Logo
		Init.m	模型初始化参数文件。
		FlightGear.png	FlightGear 硬件图片。
		pixhawk.png	Pixhawk 硬件图片。
		SupportedVehicleTypes.pdf	机架类型修改说明文件。
		F450.png	F450 飞机模型图片。
	PosControl_Sim.slx		Simulink 仿真模型文件。
	Init_control.m		控制器初始化参数文件。

4、运行环境

序号	软件要求	硬件要求	
777	私什女 水	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上	遥控器 [®]	1
		遥控器接收器	1

数据线、	杜邦线等	若干

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他配套飞控请见: http://doc.rflysim.com/hardware.html
- ③: 本实验演示所使用的遥控器为: 福斯 FS-i6S、配套接收器为: FS-iA6B。遥控器相关配置见: http://doc.rflysim.com/hardware.html

5、软件仿真实验步骤

Step 1:

在 MATLAB 中, 打开 e7-SemiAutoCtrl\e7.3\Sim\Init_control.m 文件, 点击运行初始化参数,"PosControl Sim.slx"文件将会自动打开。

Step 2:

打开"*\桌面\RflyTools\RflySim3D.lnk"的 RflySim3D。

Step 3:

在 Simulink 中运行 PosControl Sim.slx 文件。

Step 4:

运行"e7/e7.3/Sim/PosControl_Sim.slx"文件。高度输出与高度控制模式相同,即高度能保持稳定,如下图所示。

当"ch1"和"ch2"(对应遥控器的 CH1、CH2) 输入在 1460~1540 之间时,水平位置输出和水平速度输出如下图所示。

可以看到,尽管滚转、俯仰通道上固定干扰,但是在定点模式下,这种干扰被很好地抑制了。 当"ch2"输入为 1600 时,观测的 $o_e x_e$ 轴的速度如图 11.32 所示。

速度输出能够比较好的跟随期望速度。此时水平位置如下图所示。

6、硬件在环仿真实验步骤

Step 1:

在 MATLAB 中运行 e7-SemiAutoCtrl\e7.3\HIL\Init_control.m 文件,将自动打开 ModeS witch_HIL.slx 文件,在 Simulink 中,点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中,等待上传成功。

Step 4:

上传成功后, 打开 QGroundControl 软件。确认无人机机架及遥控器通设置如下:

Step 5:

遥控器的设置如下图。注:遥控器设置中, CH5 通道需设置为二段式开关, CH6 通道设置为三段式开关。

Step 6:

通过遥控器给定四旋翼一个期望的姿态,可以看到四旋翼能够快速跟踪上期望的姿态, 当遥控器摇杆全部回中时,四旋翼姿态基本保持水平,在 RflySim3D 中按下快捷键 "T", 即可显示飞机的轨迹线,可以看到四旋翼轨迹仍在移动,说明四旋翼位置在漂移。

6、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社,2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020.