MBA 753 : Causal Inference Methods for Business Analytics

Dr. Nivedita Bhaktha

09.09.2024

Agenda

- Regression Discontinuity Design
- Instrumental Variable

- threshold for X
 - deterministic, Sharp
 - E(Yzi |xi), E(Yoi |xi) confinuous at C
- LATE: Local interval

Regression Discontinuity Design

RDD Regression

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 (X_i - c) + \beta_3 D_i (X_i - c) + \epsilon_i$$

 D_i is the treatment variable; X_i is the running variable; c is the

threshold

Bandwidth Method

Bandwidth = 5

- Idea: Subjects barely to either side of the cutoff are basically the same other than for the cutoff
 - any differences between them are really the fault of treatment $c-h \le X_i \le c+h$
 - h directly affects the properties of the estimation process and empirical findings can be sensitive to the particular value that one chooses for h

Implications of Bandwidth

- Comparing average outcomes in a small neighbourhood to the right and left of the cutoff leads to
 - Estimates of LATE that are less dependent on the functional form specification
 - Decreases the bias that comes from misspecification
 - Leads to a smaller sample size, thus increasing the variance

Bandwidth Approach

- "Optimal" bandwidth selection
 - Use algorithmic bandwidth selection methods
 - Most common → Imbens-Kalyanaraman procedure
 - Choose h to balance bias-variance tradeoff
 - h is chosen to minimise the expected mean-square error of the RD estimator
- Reporting results from multiple bandwidths
 - In practice, it is common to show that how much (if at all) the estimate of $\hat{ au}_{LATE}$ changes as we vary the bandwidth

X = age C = 21Y = mala

Example

- Effect of alcohol consumption on mortality rates - Carpenter and Dobkin (2009)
- Selection in two groups based on their age: young adults who are below the age of 21 are not legally allowed to drink while young adults above the age of 21 are allowed to drink

 Research question: Does alcohol consumption increase mortality rate?

Variable	Description
agecell	Age of individual (the study focuses on adults between 19-22 year)
all	Overall mortality rate
alcohol	Mortality rate for alcohol- related causes
homicide	Mortality rate for homicides
suicide	Mortality rate for suicide
mva	Mortality rate for car accidents
drugs	Mortality rate for drug- related causes (alcohol excluded)
externalother	Mortality rate for other external causes

Instrumental Variables

Instrumental Variables

- Three important threats to internal validity are:
 - **omitted variable bias** from a variable that is correlated with X but is unobserved, so cannot be included in the regression;
 - simultaneous causality bias (X causes Y, Y causes X);
 - errors-in-variables bias (X is measured with error)
- Instrumental variables: provides a solution by introducing a third variable that is correlated with the endogenous variable (X) but not correlated with the error term (ϵ_i)

Instrumental variables scenarios

- Example: X is schooling; Y is wage;
 - "ability" drives both Y and X
- Example: X is number of children; Y is labor force participation;
 - "inclination to remain outside the formal labor force" drives Y down and X up
- Example: X is medical treatment; Y is health;
 - "prior illness" drives Y down and X up
- Problem: biased measure of the causal effect of X on Y
 - Inconsistency of least-squares methods

IV Regression

One regressor and one instrument

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- IV regression breaks X into two parts:
 - a part that might be correlated with ϵ_i , and
 - a part that is not.
 - By isolating the part that is not correlated with ϵ_i , it is possible to estimate $\beta_{\scriptscriptstyle 1}$
- Done using instrumental variable Z_i which is uncorrelated with ϵ_i
 - Z_i detects portion of X_i that is uncorrelated with ϵ_i

Terminology

- Endogenous variable: correlated with ϵ_i
 - Determined within the system jointly determined with Y
 - Simultaneous causality
- Exogenous variable: uncorrelated with ϵ_i
- Instrument relevance: $cor(Z_i, X_i) \neq 0$
- Instrument exogeneity: $cor(Z_i, \epsilon_i) = 0$
 - Instrument relevance and exogeneity are two necessary conditions for a valid instrument

IV Regression - Estimation

- Two Stage Least Squares (TSLS)
- First Stage: regress X on Z using OLS

$$X_i = \alpha_0 + \alpha_1 Z_i + \delta_i$$

- Estimate $\alpha_0 \& \alpha_1$ using OLS
- $\alpha_0 + \alpha_1 Z_i$ is uncorrelated with ϵ_i because ...
- Compute the predicted values of X_i

$$\widehat{X}_i = \widehat{\alpha}_0 + \widehat{\alpha}_1 Z_i$$

IV Regression - Estimation

- Two Stage Least Squares (TSLS)
- Second Stage: regress Y_i on \hat{X}_i using OLS, i.e. replace X_i with \hat{X}_i

$$Y_i = \beta_0 + \beta_1 \hat{X}_i + \epsilon_i$$

- Estimate β_0 & β_1 using OLS as assumptions hold
- $cor(\hat{X}_i, \epsilon_i) = 0$ because ...
- Requires large sample
- The resulting β_1 estimator is called the "Two Stage Least Squares" (TSLS) estimator $\widehat{\beta_1}^{TSLS}$

IV Regression Estimation Summary

• Suppose Z_i is a valid Instrument

• Stage 1: Regress X_i on Z_i , obtain predicted values of \hat{X}_i

• Stage 2: Regress Y_i on \hat{X}_i , the coefficient of \hat{X}_i is the TSLS estimator $\hat{\beta}_1^{TSLS}$

• \hat{eta}_1^{TSLS} is a consistent estimator of eta_1

Recap

Summary

RDD

- Setup: continuous running variable, threshold c, and sharp design
- Can take any functional form
- LATE can be ATE if the treatment effect is homogenous

• IV

- Setup: IV Z is correlated with X but uncorrelated with error term
- Two stage least squares estimation is used

Objectives achieved:

- Can interpret the regression coefficients of RDD
- Can understand the set up of instrumental variables

References

- Scott Cunningham, Causal Inference: The Mix Tape, Yale University Press.
- Cook, T. D., & Campbell, D. T. (2007). Experimental and quasiexperimental designs for generalized causal inference.
- Angrist, J. D., & Pischke, J. S. (2009). *Mostly harmless* econometrics: *An empiricist's companion*. Princeton university press.
- Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.

Thank You ©

BUT IF YOU CONTROL FOR TOO MANY VARIABLES, YOUR CHOICES WILL SHAPE THE DATA, AND YOU'LL MISLEAD YOURSELF.

SOMEWHERE IN THE MIDDLE IS
THE SWEET SPOT WHERE YOU DO
BOTH, MAKING YOU DOUBLY WRONG.
STATS ARE A FARCE AND TRUTH IS
UNKNOWABLE. SEE YOU NEXT WEEK!

