Module G12 : Contrôle continu nº 2.

Exercice 1. Préciser si les affirmations suivantes sont exactes ou pas ; donner une démonstration si le résultat est correct, un contre-exemple dans le cas contraire.

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles.

- 1. $A = \{\sup_{n \geq 1} X_n < +\infty\}$ est un événement asymptotique de $(X_n)_{n \geq 1}$.
- **2.** $B = \{\sup_{n \geq 1} X_n \leq c\}$ où $c \in \mathbb{R}$ est un événement asymptotique de la suite $(X_n)_{n \geq 1}$.
- **3.** Si $(X_n)_{n\geq 1}$ converge vers 0 dans L¹ alors elle converge vers 0 en probabilité.
- **4.** Si $(X_n)_{n\geq 1}$ converge vers 0 dans L¹ alors elle converge vers 0 dans L².

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de v.a. positives indépendantes ; pour tout $n\in\mathbb{N}^*$, X_n suit la loi de Bernoulli de paramètre $1/\sqrt{n}$:

$$\mathbb{P}(X_n = 1) = \frac{1}{\sqrt{n}}, \quad \mathbb{P}(X_n = 0) = 1 - \frac{1}{\sqrt{n}}.$$

On note, pour $n \in \mathbb{N}^*$, $S_n = X_1 + \ldots + X_n$ et $Y_n = S_n / \mathbb{E}[S_n]$.

- **1.** Calculer, pour tout $n \in \mathbb{N}^*$, $\mathbb{E}[S_n]$ et $\mathbb{V}(S_n)$ puis vérifier que $\mathbb{V}(S_n) \leq \mathbb{E}[S_n]$.
- **2.** Soit $\varepsilon > 0$. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\mathbb{P}(|Y_n - 1| > \varepsilon) = \mathbb{P}(|S_n - \mathbb{E}[S_n]| > \varepsilon \mathbb{E}[S_n]) \le \frac{1}{\varepsilon^2 \mathbb{E}[S_n]}.$$

En déduire que $(Y_n)_{n\geq 1}$ converge vers 1 en probabilité.

On rappelle que, pour $n \in \mathbb{N}^*$, $2\sqrt{n} - 2 \le \sum_{k=1}^n \frac{1}{\sqrt{k}} \le 2\sqrt{n}$.

3. En utilisant la majoration de la question précédente, montrer que, pour tout $\varepsilon > 0$,

$$\sum_{n\geq 1} \mathbb{P}\left(|Y_{n^4} - 1| > \varepsilon\right) < +\infty,$$

et en déduire que la sous-suite $(Y_{n^4})_{n\geq 1}$ converge presque sûrement vers 1.

- 4. On désigne par p_n la partie entière de $n^{1/4}$.
 - (a) Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\frac{S_{p_n^4}}{\mathbb{E}[S_{(p_n+1)^4}]} \le Y_n \le \frac{S_{(p_n+1)^4}}{\mathbb{E}[S_{p_n^4}]}.$$

- (b) Montrer que $\lim_{n\to+\infty} \mathbb{E}[S_{(n+1)^4}]/\mathbb{E}[S_{n^4}] = 1.$
- (c) En déduire que $(Y_n)_{n\geq 1}$ converge presque sûrement vers 1.