

EQUAÇÕES DE POISSON E DE LAPLACE

6.1 – IMPORTÂNCIA DAS EQUAÇÕES DE POISSON E LAPLACE

Veja no quadro abaixo uma comparação de 2 procedimentos usados para a determinação da capacitância de um capacitor. Os passos do primeiro são baseados nos conceitos teóricos desenvolvidos até o capítulo V, os quais dependem inicialmente do conhecimento da distribuição de carga, grandeza esta de difícil obtenção prática. Por outro lado, o segundo procedimento apresenta uma situação mais realística, a qual requer primeiramente a obtenção do potencial através das equações de Poisson ou Laplace. Essas equações e esse novo procedimento serão tratados a seguir.

Quadro - Procedimentos para cálculo da CAPACITÂNCIA de um CAPACITOR

Quadro - Procedimentos para cálculo da CAPACITANCIA de um CAPACITOR					
	Procedimento I – Antigo	Procedimento II - Novo			
Passo ou	Considera-se conhecida a (expressão da) densidade	Considera-se <u>conhecida</u> a expressão que fornece o			
	superficial de carga $ ho_S$ de um dos condutores do	potencial V em todos os pontos do capacitor,			
Etapa	capacitor (Nota: Se a carga deste condutor não for	incluindo a diferença de potencial V_0 entre os 2			
	positiva, trabalhar com o módulo de ρ_S).	condutores.			
(i)	Calcula-se a carga do condutor:	Calcula-se o vetor \vec{E} no dielétrico:			
	$Q = \int_{S} \rho_{S} dS$	$\vec{\mathrm{E}} = -\vec{\nabla} \mathrm{V}$			
(ii)	Calcula-se o vetor $\vec{\mathbf{D}}$ no dielétrico:	Calcula-se o vetor $\vec{\mathbf{D}}$ no dielétrico:			
	$\oint_{\mathbf{S}} \vec{\mathbf{D}} \cdot d\vec{\mathbf{S}} = \mathbf{Q} (Gauss)$	$\vec{D} = \varepsilon \vec{E}$			
(iii)	Calcula-se o vetor \vec{E} no dielétrico: $\vec{E} = \vec{D}/\epsilon$	Calcula-se a densidade ρ_S em um condutor (de preferência o condutor positivo): $\rho_S = D_N = \left \vec{D} \right _{na \ superficiecondutora}$			
	Calcula-se a ddp V_0 entre os condutores:	Calcula-se a carga total no condutor escolhido:			
(iv)	$V_0 = V_{AB} = -\int_{B}^{A} \vec{E} \cdot d\vec{L}$	$Q = \int_{S} \rho_{S} dS$			
	Calcula-se, finalmente, a capacitância do capacitor:	Calcula-se, finalmente, a capacitância do capacitor:			
(v)	$C = \frac{Q}{V_0}$	$C = \frac{Q}{V_0}$			

6.1.1 – Equação de Poisson

$$\vec{\nabla} \cdot \vec{D} = \rho_{v}$$

$$\vec{D} = \epsilon \vec{E}$$

$$\vec{E} = -\vec{\nabla} V$$

$$\Rightarrow \vec{\nabla} \cdot \left[\epsilon \left(-\vec{\nabla} V \right) \right] = \rho_{v} \Rightarrow \vec{\nabla} \cdot \left[\epsilon \left(\vec{\nabla} V \right) \right] = -\rho_{v}$$

Se a permissividade for constante, obtemos: $\overline{\nabla} \cdot \overline{\nabla} V = -\frac{\rho_v}{\epsilon}$ ou $\overline{\nabla}^2 V = -\frac{\rho_v}{\epsilon}$ Poisson

6.1.2 – Equação de Laplace

Se ainda a densidade volumétrica ρ_v for nula (dielétrico perfeito), obtemos: $\overline{\nabla}^2 V = 0$ Laplace

Nota: $\nabla^2 = \nabla \cdot \nabla = \text{divergência do gradiente} = (\text{div.})(\text{grad.}) = \text{Laplaciano ou "nabla 2"}$

"Se uma resposta do potencial satisfaz a equação de Laplace ou a equação de Poisson e também satisfaz as condições de contorno, então esta é a única solução possível."

6.3 - EXEMPLOS DE SOLUÇÃO DA EQUAÇÃO DE LAPLACE

A seguir serão mostrados vários exemplos de solução da Equação de Laplace para <u>problemas</u> <u>unidimensionais</u>, isto é, onde V é função somente de uma única variável. Os tipos de exemplos possíveis são:

- 1. V = f(x), sendo x coordenada cartesiana (válido também para V = f(y) e V = f(z))
- 2. $V = f(\rho)$, sendo ρ coordenada cilíndrica
- 3. $V = f(\phi)$, sendo ϕ coordenada cilíndrica (válido também se ϕ é coordenada esférica)
- 4. V = f(r), sendo r coordenada esférica
- 5. $V = f(\theta)$, sendo θ coordenada esférica

Ex.1: Cálculo de V = f(x), sendo x coordenada cartesiana

$$\overline{\nabla}^2 V = 0 \Rightarrow \frac{\partial^2 V}{\partial x^2} = 0 \Rightarrow \frac{d^2 V}{dx^2} = 0$$

Integrando $1^{\underline{a}}$ vez: $\frac{dV}{dx} = A$

Integrando $2^{\underline{a}}$ vez: V = Ax + B

onde A e B são as constantes de integração que são determinadas a partir de condições de contorno (ou de fronteira) estabelecidas para a região em análise.

Condições de contorno: $x = \text{constante} \Rightarrow \text{superfície plana}$

Sejam:
$$\begin{cases} V = V_1 & \text{em} \quad x = x_1 \\ V = V_2 & \text{em} \quad x = x_2 \end{cases}$$

Substituindo acima, obtemos A e B como:

$$A = \frac{V_2 - V_1}{x_2 - x_1}$$

e

B =
$$\frac{V_1 x_2 - V_2 x_1}{x_2 - x_1}$$

Logo: $V = \frac{V_2 - V_1}{x_2 - x_1} x + \frac{V_1 x_2 - V_2 x_1}{x_2 - x_1}$

Suponha agora que as condições de contorno sejam estabelecidas da seguinte maneira:

$$\begin{cases} V = V_1 = 0 & \text{em } x = x_1 = 0 \\ V = V_2 = V_0 & \text{em } x = x_2 = d \end{cases}$$

Assim, temos:
$$A = \frac{V_o}{d} e \quad B = 0 \Rightarrow V = \frac{V_o}{d} x$$
 $(0 \le x \le d)$

Etapas de cálculo da capacitância C do capacitor de placas // formado:

(i)
$$\vec{E} = -\vec{\nabla}V = -\frac{V_o}{d}\vec{a}_x$$

(ii)
$$\vec{D} = \epsilon \vec{E} = -\frac{\epsilon V_o}{d} \vec{a}_x$$

(iii)
$$\rho_s = |\vec{D}_n| = |\vec{D}|_{x=0} = |\vec{D}|_{x=d} = \frac{\varepsilon V_o}{d}$$

(iv)
$$Q = \int_{S} \rho_s dS = \rho_s S = \frac{\varepsilon V_o}{d} S$$

(v)
$$C = \frac{Q}{V_0} = \frac{\varepsilon V_0 \text{ S/d}}{V_0} \Rightarrow \boxed{C = \frac{\varepsilon \text{S}}{d}}$$
 (Mesmo resultado obtido na seção 5.8)

Ex.2: Cálculo de $V = f(\rho)$, sendo ρ coordenada cilíndrica

$$\overline{\nabla}^2 V = 0 \Rightarrow \frac{1}{\rho} \frac{d}{d\rho} \left(\rho \frac{dV}{d\rho} \right) = 0 \quad (\rho \neq 0)$$

Integrando $1^{\underline{a}}$ vez: $\rho \frac{dV}{d\rho} = A$

Rearranjando e integrando $2^{\underline{a}}$ vez: $V = A \ln \rho + B$

Condições de contorno:p = constante ⇒ superfície cilíndrica

$$\begin{cases} V = 0 \text{ em } \rho = b \text{ (refer.)} \\ V = V_o \text{ em } \rho = a \end{cases}$$
 (b > a)

Daí, obtém-se A e B e substituindo acima:

$$V = V_o \frac{\ln(b/\rho)}{\ln(b/a)}$$
 (a < \rho < b)

Etapas de cálculo da capacitância C do capacitor coaxial formado:

$$(i) \qquad \overline{E} = -\overline{\nabla}V = -\frac{\partial V}{\partial \rho}\overline{a}_{\rho} = \frac{-V_o\overline{a}_{\rho}}{\ln(b/a)} \frac{-b/\rho^2}{b/\rho} = \frac{V_o}{\ln(b/a)} \frac{1}{\rho}\overline{a}_{\rho}$$

(ii)
$$\overline{D} = \varepsilon \overline{E} = \frac{\varepsilon V_o}{\ln(b/a)} \frac{1}{\rho} \overline{a}_{\rho}$$

(iii)
$$\rho_s = D_n \Big|_{\rho=a} = \frac{\epsilon V_o}{a \ln(b/a)}$$
 (= densidade superficial no condutor interno c/ carga +Q)

(iv)
$$Q = \int_{S} \rho_{s} dS = \rho_{s} S = \frac{\varepsilon V_{o}}{a \ln(b/a)} 2\pi a L$$

(v)
$$C = \frac{Q}{V_o} = \frac{2\pi\epsilon L}{\ln(b/a)}$$
 (Mesmo resultado obtido na seção 5.8, Ex. 2)

Ex. 3: Cálculo de $V = f(\phi)$, sendo ϕ coordenada cilíndrica

$$\overline{\nabla}^2 V = 0 \Rightarrow \frac{1}{\rho^2} \frac{d^2 V}{d\phi^2} = 0 \qquad (\rho \neq 0)$$

Fazendo
$$\rho \neq 0 \implies \frac{d^2V}{d\phi^2} = 0$$

Integrando
$$1^{\underline{a}}$$
 vez: $\frac{dV}{d\phi} = A$

Rearranjando e integrando $2^{\underline{a}}$ vez: $V = A \phi + B$

<u>Condições de contorno</u>: ϕ = constante \Rightarrow superfície semi-plana radial nascendo em z

$$\begin{cases} V=0 & em & \phi=0 \\ V=V_o & em & \phi=\alpha \end{cases}$$

Daí, obtém-se A e B e substituindo acima:

$$V = \frac{V_o}{\alpha} \phi$$

Capacitor formado por dois planos condutores radiais

Nota: Calcular a capacitância do capacitor formado por dois planos finitos definidos por:

$$\phi = 0, a < \rho < b, \ 0 < z < h \ (Adotar \ V = 0)$$

$$\phi = \alpha, a < \rho < b, \ 0 < z < h \ (Adotar \ V = V_o)$$

Desprezar os efeitos das bordas.

$$(\underline{\mathbf{Resposta:}} \mathbf{C} = \frac{\varepsilon \mathbf{h}}{\alpha} ln \frac{b}{a})$$

Ex. 4: Cálculo de V = f(r), sendo r coordenada esférica

$$\overline{\nabla}^2 V = 0 \Rightarrow \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dV}{dr} \right) = 0 \quad (r \neq 0)$$

Integrando
$$1^{\underline{a}}$$
 vez: $r^2 \frac{dV}{dr} = A$

Re-arranjando e integrando 2ª vez:

$$V = -\frac{A}{r} + B$$

Condições de contorno:r = constante ⇒ superfície esférica

$$\begin{cases} V = 0 \text{ em } r = b & \text{(refer.)} \\ V = V_0 \text{ em } r = a \end{cases}$$
 (b > a)

Daí, obtém-se A e B e substituindo acima:

$$V = V_o \frac{\frac{1}{r} - \frac{1}{b}}{\frac{1}{a} - \frac{1}{b}}$$

Etapas de cálculo da capacitância C do capacitor esférico formado:

(i)
$$\overline{E} = -\overline{\nabla}V = -\frac{\partial V}{\partial r}\overline{a}_r = \frac{-V_o}{\frac{1}{a} - \frac{1}{b}} \left(-\frac{1}{r^2}\right)\overline{a}_r$$

(ii)
$$\overline{D} = \varepsilon \overline{E} = \frac{\varepsilon V_o}{\frac{1}{a} - \frac{1}{b}} \frac{1}{r^2} \overline{a}_r$$

(iii)
$$\rho_s = D_n \Big|_{(r=a)} = \frac{\epsilon V_o}{\frac{1}{a} - \frac{1}{b}} \frac{1}{a^2}$$
 (= densidade superficial no condutor interno c/ carga +Q)

(iv)
$$Q = \int_{s} \rho_{s} ds = \frac{\epsilon V_{o}}{\frac{1}{2} - \frac{1}{4}} \frac{1}{a^{2}} 4\pi a^{2}$$

(v)
$$C = \frac{Q}{V_o} = \frac{4\pi\epsilon}{\frac{1}{a} - \frac{1}{b}}$$
 (Mesmo resultado obtido na seção 5.8, Ex. 3)

Ex. 5: Cálculo de $V = f(\theta)$, sendo θ coordenada esférica

$$\overline{\nabla}^2 V = 0 \Rightarrow \frac{1}{r^2 \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dV}{d\theta} \right) = 0 \qquad (r \neq 0, \theta \neq 0, \ \theta \neq \pi)$$

Fazendor $\neq 0$, $\theta \neq 0$ e $\theta \neq \pi$:

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\operatorname{sen} \theta \frac{\mathrm{d}V}{\mathrm{d}\theta} \right) = 0$$

Integrando $1^{\underline{a}}$ vez: $sen \theta \frac{dV}{d\theta} = A$

Rearranjando e integrando $2^{\underline{a}}$ vez: $V = A \ln[tg(\theta/2)] + B$

Condições de contorno: θ = constante ⇒ superfície cônica V = 0 em $\theta = \pi/2$

$$\begin{cases} V = 0 & \text{em} \quad \theta = \pi/2 \\ V = V_o & \text{em} \quad \theta = \alpha \end{cases} \quad (\alpha < \pi/2)$$

Daí, obtém-se A e B e substituindo acima:

$$V = \frac{V_o \ln[tg(\theta/2)]}{\ln[tg(\alpha/2)]}$$

Capacitor formado por dois cones condutores coaxiais

Nota: Calcular a capacitância do capacitor formado por dois cones finitos definidos por:

$$\theta = \pi/2, 0 < r < r_1, \ 0 < \phi < 2\pi \ (Adotar \ V = 0)$$

$$\theta = \alpha$$
, $0 < r < r_1$, $0 < \phi < 2\pi$ (Adotar $V = V_0$)

Desprezar os efeitos das bordas.

(Resposta:
$$C = \frac{-2\pi\varepsilon r_l}{ln[tg(\alpha/2)]}$$
)

6.4 – EXEMPLO DE SOLUÇÃO DA EQUAÇÃO DE POISSON

Exemplo: A região entre dois cilindros condutores coaxiais com raios a e b, conforme mostrado na figura abaixo, contém uma densidade volumétrica de carga uniforme ρ_V . Se o campo

elétrico \vec{E} e o potencial V são ambos nulos no cilindro interno, determinar a expressão matemática que fornece o potencial V na região, entre os condutores assumindo que sua permissividade seja igual à do vácuo.

2 cilindros condutores coaxiais (vista frontal)

Solução:

Equação de Poisson: $\nabla^2 V = \frac{1}{\rho} \cdot \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) = -\frac{\rho_v}{\epsilon_o}$

Integrando pela 1^a vez:

$$\rho \frac{\partial V}{\partial \rho} = -\frac{\rho_{v}}{\varepsilon_{o}} \cdot \frac{\rho^{2}}{2} + A \Rightarrow \frac{\partial V}{\partial \rho} = -\frac{\rho_{v}}{2\varepsilon_{o}} \cdot \rho + \frac{A}{\rho}$$
(01)

Porém, sabe-se que:
$$\vec{\mathbf{E}} = -\vec{\nabla}V \Rightarrow \vec{\mathbf{E}} = -\frac{\partial V}{\partial \rho} \vec{\mathbf{a}}_{\rho} \Rightarrow |\vec{\mathbf{E}}| = E = -\frac{\partial V}{\partial \rho} \Rightarrow \frac{\partial V}{\partial \rho} = -E$$
 (02)

Substituindo (02) em (01), temos:

$$\frac{\partial V}{\partial \rho} = -E = -\frac{\rho_{v}}{2\varepsilon_{o}} \cdot \rho + \frac{A}{\rho} \tag{03}$$

1^a Condição de Contorno (Obtenção de A):
$$E = 0$$
 para $\rho = a$. (04)

Substituindo (04) em (03), temos:

$$0 = \frac{\rho_{v}}{2\varepsilon_{o}} \cdot a - \frac{A}{a} \Rightarrow A = \frac{\rho_{v}}{2\varepsilon_{o}} \cdot a^{2}$$
 (05)

Substituindo (05) em (01), temos:

$$\frac{\partial V}{\partial \rho} = -\frac{\rho_{v}}{2\varepsilon_{o}} \cdot \rho + \frac{\rho_{v}}{2\varepsilon_{o}} \cdot \frac{a^{2}}{\rho}$$
 (06)

Integrando pela 2^a vez:

$$V = -\frac{\rho_{v}}{2\varepsilon_{o}} \cdot \frac{\rho^{2}}{2} + \frac{\rho_{v}}{2\varepsilon_{o}} \cdot a^{2} \ln \rho + B$$
 (07)

(08)

$$2^{a}$$
 Condição de Contorno (Obtenção de B): $V = 0$ para $\rho = a$.

Substituindo (08) em (07), temos:

$$0 = -\frac{\rho_{v}}{2\varepsilon_{o}} \cdot \frac{a^{2}}{2} + \frac{\rho_{v}}{2\varepsilon_{o}} \cdot a^{2} \ln a + B \Rightarrow B = \frac{\rho_{v}}{4\varepsilon_{o}} \cdot a^{2} - \frac{\rho_{v}}{2\varepsilon_{o}} \cdot a^{2} \ln a$$
 (09)

Substituindo (09) em (07), temos:

$$V = -\frac{\rho_{v}}{4\varepsilon_{o}} \cdot \rho^{2} + \frac{\rho_{v}}{2\varepsilon_{o}} \cdot a^{2} \ln \rho + \frac{\rho_{v}}{4\varepsilon_{o}} \cdot a^{2} - \frac{\rho_{v}}{2\varepsilon_{o}} \cdot a^{2} \ln a$$

$$V = \frac{\rho_{v}}{4\varepsilon_{o}} \cdot \left(a^{2} - \rho^{2}\right) + \frac{\rho_{v}}{2\varepsilon_{o}} \cdot a^{2} \ln\left(\frac{\rho}{a}\right) \quad [V]$$
(10)

6.5 - SOLUÇÃO PRODUTO DA EQUAÇÃO DE LAPLACE

Suponha o potencial seja função das variáveis x e yde acordo com a seguinte expressão:

$$V = f(x)f(y) = XY \text{ onde } X = f(x) \quad e \quad Y = f(y)$$

$$(01)$$

Aplicando a equação de Laplace, obtemos:

$$\overline{\nabla}^2 V = 0 \Rightarrow \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0 \tag{02}$$

 $(01) \to (02)$:

$$Y\frac{\partial^2 X}{\partial x^2} + X\frac{\partial^2 Y}{\partial y^2} = 0 \tag{03}$$

Dividindo (03) por XY:

$$\frac{1}{X}\frac{\partial^2 X}{\partial x^2} + \frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} = 0$$

Separando os termos somente dependentes de *x* dos termos somente dependentes de *y*, escrevemos:

$$\frac{1}{X}\frac{d^2X}{dx^2} = -\frac{1}{Y}\frac{d^2Y}{dy^2}$$
 (04)

Como X = f(x) e Y = f(y), então para que a equação (04) seja verdadeira, cada um dos membros de (04) deve resultar em uma mesma constante. Chamando esta constante de α^2 , temos:

$$\frac{1}{X}\frac{\mathrm{d}^2X}{\mathrm{dx}^2} = \alpha^2 \tag{05}$$

$$\frac{1}{Y}\frac{d^2Y}{dy^2} = -\alpha^2 \tag{06}$$

U

Re-escrevendo (05) e (06) temos:

$$\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} = \alpha^2 X \tag{07}$$

$$\frac{\mathrm{d}^2 Y}{\mathrm{d} y^2} = -\alpha^2 Y \tag{08}$$

Solução da equação (07) pelo Método de Dedução Lógica:Basta responder a seguinte pergunta: "Qual é a função cuja segunda derivada é igual a própria função multiplicada por uma constante positiva?"

Solução 1: Função trigonométrica hiperbólica em seno ou co-seno. Assim:

$$X = A\cos h\alpha x + B\sin h\alpha x \tag{09}$$

Solução 2: Função exponencial. Assim:

$$X = A'e^{\alpha x} + B'e^{-\alpha x}$$
 (10)

Solução da equação (08) pelo Método de Dedução Lógica:Basta responder a seguinte pergunta: "Qual é a função cuja segunda derivada é igual a própria função multiplicada por uma constante negativa?"

Solução 1: Função trigonométrica em seno ou co-seno. Assim:

$$Y = C\cos\alpha y + D\sin\alpha y \tag{11}$$

Solução 2: Função exponencial complexa. Assim:

$$Y = C'e^{j\alpha y} + D'e^{-j\alpha y}$$
 (12)

Nota: Veja no Anexo I a solução da equação diferencial (07) por série infinita de potências.

Solução final da equação (01):

Substituindo (09) e (11) em (01), obtemos finalmente:

$$V = XY = (A\cos h\alpha x + B\sin h\alpha x)(C\cos \alpha y + D\sin \alpha y)$$
(13)

sendo que as constantes A, B, C e D são determinadas pelas condições de contorno do problema.

Exemplo: Calcule o potencial na região interna da calha retangular da figura. São conhecidos todos os potenciais nos contornos metálicos da calha. Observe que temos, neste caso, V = f(x) f(y). Partir da expressão (13) obtida acima.

Solução:

Pela figura temos as condições de contorno:

- (i) V = 0 em x = 0,
- (ii) V = 0 em y = 0,
- (iii) V = 0 em y = d, 0 < x < c
- (iv) $V = V_0 em x = c$, 0 < y < d

Aplicando as condições (i) e (ii) em (13) obtemos A = C = 0 e chamando $BD = V_1$, chegamos a:

$$V = XY = BD sen hax sen ay = V_1 sen hax sen ay$$
 (14)

e aplicando a condição (iii), V = 0 em y = d, temos:

$$0 = V_1 \operatorname{sen} h\alpha x \operatorname{sen} \alpha d \Rightarrow \alpha = \frac{n\pi}{d} \qquad (n = 0, 1, 2, ...)$$
 (15)

Substituindo \(\alpha\)de (15) em (14):

$$V = V_1 \, sen \, h \, \frac{n\pi x}{d} \, sen \, \frac{n\pi y}{d} \tag{16}$$

Para a condição (iv) é impossível escolher um \underline{n} ou V_1 de modo que $V = V_0$ em x = c, para cada 0 < y < d. Portanto, deve-se combinar um número infinito de campos de potenciais com valores diferentes de \underline{n} e valores correspondentes de V_1 , isto é, V_{1n} . Assim, genericamente devemos ter:

$$V = \sum_{n=0}^{\infty} V_{1n} sen h \frac{n\pi x}{d} sen \frac{n\pi y}{d} \qquad 0 < y < d$$
 (17)

Aplicando agora a última condição de contorno (iv), $V = V_0 em x = c$, 0 < y < d, obtemos:

$$V_{o} = \sum_{n=0}^{\infty} V_{ln} sen h \frac{n\pi c}{d} sen \frac{n\pi y}{d} \qquad 0 < y < d$$
 (18)

ou

$$V_{o} = \sum_{n=0}^{\infty} b_{n} \operatorname{sen} \frac{n\pi y}{d} \qquad 0 < y < d$$
 (19)

onde,

$$b_{n} = V_{ln} \, senh \frac{n\pi c}{d} \tag{20}$$

A equação (19) pode representar uma série de Fourier em seno para $f(y) = V(y) = V_0$ em 0 < y < d (região de interesse) e $f(y) = V(y) = -V_0$ em d < y < 2d, repetindo a cada período T = 2d. O gráfico desta função é mostrado na figura abaixo.

Sendo a função ímpar, o coeficiente $b_{n}\,\acute{e}$ dado por:

$$b_n = \frac{2}{T} \int_{y=0}^{T} f(y) \sin \frac{n\pi y}{d} dy$$
 n=0,1,2,3,...

ou

$$b_n = \frac{1}{d} \int_{y=0}^{d} V_o \operatorname{sen} \frac{n\pi y}{d} dy + \frac{1}{d} \int_{y=d}^{2d} (-V_o) \operatorname{sen} \frac{n\pi y}{d} dy$$

Resolvendo as integrais, obtemos:

$$b_n = \frac{4V_o}{n\pi} \quad \text{para} \quad \text{n impar}$$
 (21)

e

$$b_n = 0$$
 para n par

Substituindo $b_n\,$ de (21) em (20) e isolando $V_{1n}\,$ chegamos a:

$$V_{ln} = \frac{4V_o}{n\pi \, sen \, h \, \frac{n\pi c}{d}}$$
 (22)

Finalmente, substituindo (22) em (17) obtemos a expressão para o potencial como:

$$V = \sum_{\substack{n=1 \text{impar}}}^{\infty} \frac{4V_o}{n\pi \operatorname{senh} \frac{n\pi c}{d}} \operatorname{senh} \frac{n\pi x}{d} \operatorname{senh} \frac{n\pi y}{d} \qquad 0 < x < c, 0 < y < d$$
(23)

ou,

$$V = \frac{4V_o}{\pi} \sum_{\substack{n=1 \text{impar}}}^{\infty} \frac{sen h}{\frac{n\pi x}{d}} \frac{n\pi y}{\frac{n\pi c}{d}}$$

$$0 < x < c, 0 < y < d$$
(24)

6.6 - EXERCÍCIOS PROPOSTOS

6.1) Num meio uniforme de permissividade ε existe uma distribuição de cargas com densidade volumétrica ρ_v(r) = k, ocupando uma <u>região esférica oca</u> definida, em coordenadas esféricas, por a≤ r ≤b. Assumindo que o potencial seja zero em r = a, determinar pela equação de Laplace/Poisson, o campo elétrico E(r) e o potencial V(r) dentro das regiões:

a)
$$0 \le r \le a$$
;

b)
$$a \le r \le b$$
;

c)
$$r \ge b$$
.

Nota: Pode-se usar a Lei de Gauss para obter a segunda condição de contorno para $\vec{\bf E}$.

Respostas: a) $\vec{\mathbf{E}}(\mathbf{r}) = 0$ e $V(\mathbf{r}) = 0$;

b)
$$\vec{\mathbf{E}}(\mathbf{r}) = \frac{\mathbf{k}}{3\varepsilon} \cdot \left(\mathbf{r} - \frac{a^3}{\mathbf{r}^2}\right) \vec{\mathbf{a}}_{\mathbf{r}} \in \mathbf{V}(\mathbf{r}) = \frac{-\mathbf{k}}{3\varepsilon} \cdot \left(\frac{\mathbf{r}^2}{2} + \frac{a^3}{\mathbf{r}} - \frac{3a^2}{2}\right);$$

c)
$$\vec{\mathbf{E}}(\mathbf{r}) = \frac{\mathbf{k}}{3\varepsilon} \cdot \left(\frac{b^3 - a^3}{r^2} \right) \vec{\mathbf{a}}_r \ e \ V(\mathbf{r}) = \frac{\mathbf{k}}{3\varepsilon} \cdot \left(\frac{b^3 - a^3}{r} - \frac{3b^2}{2} + \frac{3a^2}{2} \right).$$

- 6.2) Na região interna entre os planos z = 0 e z = 2a foi colocada uma carga uniformemente distribuída com densidade volumétrica ρ_v . Na região externa aos planos, o meio é somente o vácuo. Determinar a distribuição de potenciais para:
 - a) A região interna entre os planos definida por $0 \le z \le 2a$;

Nota: A primeira condição de contorno é obtida fixando a referência de potencial zero emz = 0. A segunda condição de contorno é obtida verificando onde o campo elétrico é nulo, baseando-se na simetria da configuração de cargas.

b) A região externa entre os planos definida por $z \ge 2a$.

Nota: As condições de contorno devem ser obtidas partindo dos resultados do item anterior

Respostas:a)
$$V = \frac{-z\rho_V}{\varepsilon_0} \cdot \left(\frac{z}{2} - a\right)$$
; b) $V = \frac{-a\rho_V}{\varepsilon_0} \cdot (z - 2a)$

- 6.3) Dados os campos de potencial V' = 3x y [V] e $V'' = 5(2r^2 7)\cos\theta$ [V], pede-se:
 - a) Verificar se estes campos de potencial satisfazem a Equação de Laplace;
 - b) Determinar, para cada campo de potencial acima, a <u>densidade volumétrica de carga</u> no ponto P(0,5; 1,5; 1,0) no espaço livre.

Respostas: a) V' satisfaz (dielétrico perfeito) e V'' não satisfaz a Equação de Laplace; b) $\rho_v = 0$ (dielétrico perfeito) para V' e $\rho_v = -283,97$ [pC/m³] para V''.

- 6.4) Seja $V = \text{Aln}[tg(\theta/2)] + B$ a expressão algébrica para o cálculo do potencial elétrico no dielétrico entre dois cones condutores coaxiais, sendo θ o ângulo medido a partir do eixo dos cones e A e B duas constantes. Sejam estes cones condutores definidos por $\theta = 60^{\circ} e \theta = 120^{\circ}$, separados por um espaço infinitesimal na origem. O potencial em $P(r=1, \theta = 60^{\circ}, \phi = 90^{\circ})$ é 50 V e o campo elétrico em $Q(r=2, \theta = 90^{\circ}, \phi = 120^{\circ})$ é $50\vec{a}_{\theta}[V/m]$. Determinar:
 - a) O valor do potencial V no ponto Q;
 - b) A diferença de potencial V_o entre os dois cones;
 - c) O ângulo θ no qual o potencial elétrico é nulo.

Respostas:a) $V_Q = -4.93 [V]$; b) $V_o = 109.86 [V]$; c) $\theta = 87.18^\circ$.

- - a) Determinar as expressões matemáticas de V(x) e E(x);
 - b) Completar os valores de V(x) e E(x) no quadro.

x[mm]	V(x)[V]	E(x)[V/m]
0	0	
5		
10		- 1200
15		

	$-kx^3$	kx^2
Respostas:	a) $V(x) = \frac{-kx^3}{6} + 1500x$	e E(x) = $\frac{KX}{1500}$;
1	6	2

b)			
U)	x[mm]	V(x)[V]	E(x)[V/m]
	0	0	-1500
	5	7,375	-1425
	10	14,0	-1200
	15	19,125	-825

- 6.6) A figura mostra um capacitor de placas paralelas, com dois dielétricos (regiões) de permissividades relativas ε_{R1} e ε_{R2} . Pede-se:
 - a) Os valores das diferenças de potenciais
 V₁₀ e V₂₀, nas 2 regiões, em função da tensão da bateria V_o;
 - b) As expressões matemáticas de $V_1(x)$ e $V_2(x)$ nas 2 regiões, determinadas a partir da equação de Laplace e condições de contorno apropriadas.

Respostas: a)
$$V_{10} = \frac{V_o}{3}$$
 e $V_{20} = \frac{2V_o}{3}$; b) $V_1(x) = \frac{V_o}{3d}x$ e $V_2(x) = \frac{V_o}{3d}(2x - d)$

- 6.7) Um capacitor é constituído de duas placas planas condutoras situadas em $\phi = 0$ e $\phi = \alpha$. As placas são limitadas pelos cilindros $\rho = a$ e $\rho = b$ e pelos planos z = 0 e z = h. Se a diferença de potencial entre as placas condutoras for V_0 , pede-se:
 - a) Determinar a expressão matemática do potencial V na região, partindo da equação de Laplace;
 - b) Determinar a expressão matemática da capacitância;
 - c) Dizer se é possível obter a mesma expressão da capacitância do item anterior, partindo da Lei de Gauss empregando uma superfície gaussiana. Justificar sua resposta;
 - d) Determinar a separação que conduz a mesma capacitância do item (b) quando as placas são colocadas numa posição paralela, com o mesmo dielétrico entre elas.

Nota: Assumir a permissividade do dielétrico como sendo a do vácuo.

Respostas:a)
$$V = \frac{V_o}{\alpha} \phi$$
;

b)
$$C = \frac{\varepsilon_0 h}{\alpha} \cdot \ln \frac{b}{a}$$
;

- c) Não é possível obter uma superfície gaussiana para a solução pela Lei de Gauss, pois em qualquer plano radial (ϕ = cte), D não é constante (D = f (ρ)), apesar de ser normal à estes planos;
- d) $d = (b-a)\alpha/[ln(b/a)]$
- 6.8) Num dispositivo o potencial elétrico é função somente da variável z, possuindo uma região com densidade volumétrica de carga $\rho_v = \rho_o(z/z_1)$ e condições de fronteira dadas por E=0 em z=0 e V=0 em $z=z_1$. Determinar para qualquer ponto nesta região:
 - a) O potencial elétrico V,
 - b) O campo elétrico E.

Respostas:a)
$$V = \frac{-\rho_o}{6\epsilon z_1} (z^3 - z_1^3);$$

b)
$$\overline{E} = \frac{\rho_o}{2\epsilon z_1} z^2 \overline{a}_z$$

- 6.9) a) Desenvolver as equações de Poisson e Laplace para um meio linear, homogêneo e isotrópico.
 - b) Sendo $\overline{v} = \text{campo vetorial qualquer e } f = \text{campo escalar qualquer, demostrar a seguinte identidade vetorial: } \overline{\overline{v}} \bullet (f \overline{v}) = (\overline{\overline{v}} f) \bullet \overline{v} + (\overline{\overline{v}} \bullet \overline{v}) f$

Sugestão: Usar o sistema de coordenadas cartesianas para facilitar sua demonstração.

- c) De que maneira deve a permissividade elétrica (ε) variar em um meio <u>não-homogêneo</u> sem carga, de modo que a equação de Laplace continue válida?
 - Sugestão: Iniciar pelo desenvolvimento do item (a), supondo ε variando espacialmente (com a distância). Usar também a identidade vetorial do item (b).

Respostas:a) Equação de Poisson: $\overline{\nabla}^2 V = -\rho_v/\epsilon$, Equação de Laplace $(\rho_v = 0)$: $\overline{\nabla}^2 V = 0$;

- b) Demonstração;
- c) Fazendo na identidade vetorial acima $f = \varepsilon e \ \overline{v} = \overline{\nabla} V e$ tomando $\overline{\nabla}^2 V = 0$ (Laplace), obtém-se $(\overline{\nabla} \varepsilon) \bullet \overline{E} = 0$, logo $\overline{\nabla} \varepsilon \perp \overline{E}$ e a permissividade elétrica (ε) deve variar somente numa direção perpendicular ao campo elétrico (\overline{E}) .

- 6.10) a) Demonstrar, partindo da equação de Laplace, que a capacitância C de um capacitor esférico formado por 2 superfícies condutoras esféricas de raios a e b (b>a), separadas por um dielétrico de permissividade elétrica ε , é dada por: $C = \frac{4\pi\varepsilon}{1-1}$
 - b) Determinar a capacitância, C_{ESFERA}, de um capacitor esférico isolado formado por uma esfera de cobre de raio 9 cm, no vácuo.
 - c) Se uma camada de um dielétrico uniforme (com $\varepsilon_R = 3$) de espessura d é colocada envolvendo a esfera de raio 9 cm do item (b), determinar d tal que a nova capacitância total equivalente seja $2 \times C_{\rm ESFERA}$.

Atenção: Note que a configuração final é de 2 capacitores esféricos dispostos em série.

Respostas:a) Demonstração; b) $C_{ESFERA} = 4\pi\epsilon_0 a = 10 \text{ pF (b} \rightarrow \infty)$; c) d = 27 cm.

6.11) Dada a equação diferencial de segunda ordem X'' + 2xX' - X = 0, considere uma solução na forma de série infinita de potências, e calcule os valores numéricos dos coeficientes a_2 até a_6 desta série, sendo $a_0 = 1$ e $a_1 = -2$.

<u>Atenção</u>: Como X é função somente de x, fazer $X = \sum_{n=0}^{\infty} a_n x^n$.

Respostas: $a_2 = 1/2$, $a_3 = 1/3$, $a_4 = -1/8$, $a_5 = -1/12$, $a_6 = 7/240$.

- 6.12) Sabendo-se que uma solução produto para a Equação de Laplace em duas dimensões é dada por $V_1 = X_1 Y_1$, onde X_1 e Y_1 são funções somente de x e y, respectivamente, verificar se cada uma das 5 funções dadas a seguir satisfaz ou não à equação de Laplace, justificando sua resposta.
 - a) $V_a = X_1 Y_1$;
 - b) $V_b = Y_1$;
 - c) $V_c = X_1 Y_1 + y$;
 - d) $V_d = 2X_1Y_1$;
 - e) $V_e = X_1Y_1 + x^2 y^2$
 - Respostas: (a) e (b) não satisfazem a Equação de Laplace. Observe que $\overline{\nabla}^2 X_1$ e $\overline{\nabla}^2 Y_1$ não são solucionáveis, já que não se sabe suas expressões matemáticas. Assim, não se pode afirmar que $\overline{\nabla}^2 (X_1 Y_1) = 0$ para (a), e nem que $\overline{\nabla}^2 Y_1 = 0$ para (b); (c), (d)e (e) satisfazem a Equação de Laplace, já que $\overline{\nabla}^2 (X_1 Y_1) = 0$ (dado) e

também $\overline{\nabla}^2(y) = 0$ e $\overline{\nabla}^2(x^2 - y^2) = 2 - 2 = 0$.

Anotações