ENZYME EFFICIENCY: $\frac{k_{cat}}{K_M}$

- $\frac{k_{cat}}{K_M}$ = number we can use to compare enzyme effectiveness with different substrates
- Chymotrypsin , which has many different substrates , and is responsible for cleaving peptide bonds , is said to prefer hydrophobic residues based on its efficiency calculations

Most Efficient = Phenylalanine

ENZYME EFFICIENCY: $\frac{k_{cat}}{K_M}$

- lacksquare Mutations in the amino acid sequence of an enzyme will affect its K_M and k_{cat}
- In general:
 - Changes that only affect k_{cat} affect only transition state stabilization
 - Changes that only affect K_M are involved in initial substrate binding
- $k_{cat} = speed$
- $ightharpoonup K_{M}$ = how little of the substrate that is required in order for the substrate to do its job
- Many mutations affect both K_M and k_{cat} indicating an amino acid side chain involved in both initial substrate binding and its stabilization upon the proteins conformational change.