Automatic differentiation

Brooks Paige

Week 4

Those optimization routines required gradients!

Computing gradients by hand is tedious and prone to error. There are a few different ways to compute gradients **automatically**:

- Finite differences (inexact and slow)
- Symbolic differentiation
- Automatic differentiation (autodiff):
 - ► Forward mode (fast when functions have few inputs, many outputs)
 - ▶ Reverse mode (fast when functions have many inputs, few outputs)
 - ▶ ...

Symbolic differentiation

You might think this is the gold standard: an approach which replicates the "by hand" technique, but done by a computer. However, symbolic expressions for gradients can actually be inefficient.

Example: to compute the gradient of $f(x_1, x_2) = (x_1^2 + x_2^2)^2$, symbolically we find

$$\frac{\partial f}{\partial x_1} = 2(x_1^2 + x_2^2)2x_1 \qquad \frac{\partial f}{\partial x_2} = 2(x_1^2 + x_2^2)2x_2$$

Computationally, evaluating this as-is would be inefficient. It would be better to first evaluate an intermediate value $\kappa = 4(x_1^2 + x_2^2)$, and then compute

$$\frac{\partial f}{\partial x_1} = \kappa x_1 \qquad \qquad \frac{\partial f}{\partial x_2} = \kappa x_2.$$

This would require either a magic simplify() function, or maybe clever caching.

Example: David Barber

Symbolic differentiation problems

More broadly, this will never work well in cases with control flow (if or loop statements), particularly if random choices are involved.

```
def f(theta):
    y = theta + dist.Normal(0, 1).sample()
    if v > 2.0:
        return v
    else:
        return theta + f(theta + 0.5*theta**2)
theta = -2.0
L = f(theta)
```

What is $\frac{\partial}{\partial \theta} \mathbb{E}[f]$, evaluated at $\theta = -2$?

Autodiff

• Autodiff takes a function $f(\theta)$, $f \mathbb{R}^D \to \mathbb{R}$, and returns an **exact** value of the gradient $\mathbf{g} \in \mathbb{R}^D$, with $g_i(\theta) = \frac{\partial}{\partial \theta_i} f|_{\boldsymbol{\theta}}$.

Autodiff

- Autodiff takes a function $f(\boldsymbol{\theta})$, $f \mathbb{R}^D \to \mathbb{R}$, and returns an **exact** value of the gradient $\mathbf{g} \in \mathbb{R}^D$, with $g_i(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_i} f|_{\boldsymbol{\theta}}$.
- Forward mode calculates a derivative along a single direction (e.g. a single partial derivative or directional derivative).
 - ▶ Low memory requirements; easy to implement
 - ▶ Computing the full gradient has cost $\mathcal{O}(Df)$
 - ▶ Not straightforward to apply to conditional statements or loops

Autodiff

- Autodiff takes a function $f(\theta)$, $f \mathbb{R}^D \to \mathbb{R}$, and returns an **exact** value of the gradient $\mathbf{g} \in \mathbb{R}^D$, with $g_i(\theta) = \frac{\partial}{\partial \theta_i} f|_{\theta}$.
- Forward mode calculates a derivative along a single direction (e.g. a single partial derivative or directional derivative).
 - ► Low memory requirements; easy to implement
 - ▶ Computing the full gradient has cost $\mathcal{O}(Df)$
 - ▶ Not straightforward to apply to conditional statements or loops
- Reverse mode computes a full gradient by running the function forward, then tracing the computation graph "backward" to compute the gradient
 - ► Requires keeping around pointers from every computed value to its parents
 - Memory intensive (can't free any intermediate computed values...), but runtime is $\mathcal{O}(f)$ the same as the original function
 - ▶ The "backprop" algorithm is a special case of reverse-mode autodiff

Forward-mode autodiff

Dual numbers

Forward mode is ingenious in its simplicity. It uses **dual arithmetic**, which resembles complex numbers.

- Define an idempotent infintesimal variable ϵ , such that $\epsilon^2 = 0$
- Define a function DualPart (\cdot) , which returns the "dual" component (i.e. the coefficient of ϵ)
- For any function f(x), we have $f'(x) = \mathsf{DualPart}(f(x))$.

Dual numbers

Forward mode is ingenious in its simplicity. It uses **dual arithmetic**, which resembles complex numbers.

- Define an idempotent infintesimal variable ϵ , such that $\epsilon^2 = 0$
- Define a function DualPart (\cdot) , which returns the "dual" component (i.e. the coefficient of ϵ)
- For any function f(x), we have f'(x) = DualPart(f(x)).

This requires some primitive operations to be overloaded, in order to compute derivatives:

$$(v_1 + \epsilon) + v_2 = v_1 + v_2 + \epsilon$$

$$(v_1 + \epsilon)v_2 = v_1v_2 + v_2\epsilon$$

$$\sin(v_1 + \epsilon) = \sin(v_1) + \cos(v_1)\epsilon$$

.

Forward-mode examples (1/2)

Let $f(x) = x^2$, and then consider

$$f(x+\epsilon) = (x+\epsilon)^2 = x^2 + 2x\epsilon.$$

Then
$$f'(x) = \mathsf{DualPart}(f(x+\epsilon)) = \mathsf{DualPart}(x^2 + 2x\epsilon) = 2x.$$

Forward-mode examples (2/2)

For functions like $f(v_1, v_2) = v_1v_2 - \sin(v_2)$, we'd have to compute the two partial derivatives separately:

$$f(v_1 + \epsilon, v_2) = \underbrace{v_1 v_2 - \sin(v_2)}_{f(v_1, v_2)} + \underbrace{v_2}_{\frac{\partial f}{\partial v_1}} \epsilon$$

Forward-mode examples (2/2)

For functions like $f(v_1, v_2) = v_1 v_2 - \sin(v_2)$, we'd have to compute the two partial derivatives separately:

$$f(v_1 + \epsilon, v_2) = \underbrace{v_1 v_2 - \sin(v_2)}_{f(v_1, v_2)} + \underbrace{v_2}_{\frac{\partial f}{\partial v_1}} \epsilon$$

$$f(v_1, v_2 + \epsilon) = v_1(v_2 + \epsilon) - \sin(v_2 + \epsilon)$$

$$= v_1v_2 + v_1\epsilon - \sin(v_2) - \cos(v_2)\epsilon$$

$$= \underbrace{v_1v_2 - \sin(v_2)}_{f(v_1, v_2)} + \underbrace{(v_1 - \cos(v_2))}_{\frac{\partial f}{\partial v_2}}\epsilon$$

Forward Pass

 $v_1 \quad v_2$

Forward Pass

$$v_1$$
 v_2 $v_3 = v_1 v_2$
$$\frac{\partial v_3}{\partial v_2} = v_1$$

Forward Pass

$$v_1$$
 v_2 $v_3 = v_1 v_2$ $v_4 = \sin(v_2)$
$$\frac{\partial v_3}{\partial v_2} = v_1$$

$$\frac{\partial v_4}{\partial v_2} = \cos(v_2)$$

Forward Pass

$$v_1 v_2 v_3 = v_1 v_2 v_4 = \sin(v_2) v_5 = v_3 - v_4$$

$$\frac{\partial v_3}{\partial v_2} = v_1 \frac{\partial v_4}{\partial v_2} = \cos(v_2) \frac{\partial v_5}{\partial v_2} = \frac{\partial v_5}{\partial v_3} \frac{\partial v_3}{\partial v_2} + \frac{\partial v_5}{\partial v_4} \frac{\partial v_4}{\partial v_2}$$

$$= (1)(v_1) + (-1)(\cos(v_2))$$

Reverse-mode autodiff

Reverse computation graph

Forward Pass

Reverse Pass

Forward Pass

Reverse Pass

$$\frac{\partial f}{\partial v_5} = 1$$

Forward Pass

Reverse Pass

$$\frac{\partial f}{v_1} = \frac{\partial f}{\partial v_3} \frac{\partial v_3}{\partial v_1} + \frac{\partial f}{v_3} \frac{\partial f}{\partial v_3} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_3}$$

$$\frac{\partial f}{v_2} = \frac{\partial f}{\partial v_3} \frac{\partial v_3}{\partial v_2} + \frac{\partial f}{\partial v_4} \frac{\partial v_4}{\partial v_2} + \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_4}$$

$$\frac{\partial f}{\partial v_5} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_5} = 1$$

$$\frac{\partial f}{\partial v_5} = 1$$

$$\frac{\partial f}{\partial v_4} = (1)(-1)$$

Forward Pass

Reverse Pass

$$\frac{\partial f}{v_1} = \frac{\partial f}{\partial v_3} \frac{\partial v_3}{\partial v_1} + \frac{\partial f}{v_3} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_3}$$

$$\frac{\partial f}{v_2} = \frac{\partial f}{\partial v_3} \frac{\partial v_3}{\partial v_2} + \frac{\partial f}{\partial v_4} \frac{\partial v_4}{\partial v_2} + \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_4}$$

$$\sin \frac{\partial f}{v_4} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_4}$$

$$\frac{\partial f}{\partial v_5} = 1$$
$$\frac{\partial f}{\partial v_4} = (1)(-1)$$
$$\frac{\partial f}{\partial v_3} = (1)(1)$$

Forward Pass

Reverse Pass

$$\frac{\partial f}{v_1} = \frac{\partial f}{\partial v_3} \frac{\partial v_3}{\partial v_1} + \frac{\partial f}{\partial v_3} \frac{\partial v_4}{\partial v_2} + \frac{\partial f}{\partial v_4} \frac{\partial v_4}{\partial v_2} + \frac{\partial f}{\partial v_4} \frac{\partial v_4}{\partial v_4} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_4} + \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_4} = 1$$

$$\frac{\partial f}{\partial v_5} = 1$$

$$\frac{\partial f}{\partial v_4} = (1)(-1)$$

$$\frac{\partial f}{\partial v_3} = (1)(1)$$

$$\frac{\partial f}{\partial v_2} = (1)(v_1) + (-1)(\cos(v_2))$$

Forward Pass

Reverse Pass

$$\frac{\partial f}{v_1} = \frac{\partial f}{\partial v_3} \frac{\partial v_3}{\partial v_1}$$

$$* \frac{\partial f}{v_3} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_3}$$

$$\frac{\partial f}{v_5} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_5}$$

$$\frac{\partial f}{\partial v_5} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_5}$$

$$\frac{\partial f}{\partial v_5} = \frac{\partial f}{\partial v_5} \frac{\partial v_5}{\partial v_5}$$

$$\frac{\partial f}{\partial v_5} = 1$$

$$\frac{\partial f}{\partial v_4} = (1)(-1)$$

$$\frac{\partial f}{\partial v_3} = (1)(1)$$

$$\frac{\partial f}{\partial v_2} = (1)(v_1) + (-1)(\cos(v_2))$$

$$\frac{\partial f}{\partial v_1} = (1)(v_2)$$

Reverse mode overview

- 1. When running the forward computation, construct a "computation graph" where each node
 - stores a pointer to its parent nodes
 - computes the partial derivatives w.r.t. each input

Reverse mode overview

- 1. When running the forward computation, construct a "computation graph" where each node
 - stores a pointer to its parent nodes
 - computes the partial derivatives w.r.t. each input
- 2. Eventually, the forward computation produces a scalar output. This is the "root" node of the computation graph.

Reverse mode overview

- 1. When running the forward computation, construct a "computation graph" where each node
 - stores a pointer to its parent nodes
 - computes the partial derivatives w.r.t. each input
- 2. Eventually, the forward computation produces a scalar output. This is the "root" node of the computation graph.
- 3. Run a backward computation, rolling backward through the computation graph in reverse order;
 - ► at each intermediate node, accumulate the "incoming" partial derivatives from its parents
 - ▶ at each leaf node, report the entry of the gradient

Reverse mode prevents duplicate computation

Figure: David Barber

Other thoughts

- Reverse mode autodiff computes gradients in a "backwards pass" that has the same order runtime as the forward computation (albeit with increased memory costs)
- In general, differentiating through the graph a second time to compute Hessians is expensive, but there are tricks to compute Hessian-vector products Hv much more efficiently than instantiating the entire Hessian
- AD packages exist for many programming languages mostly, they just require overloading operators, and being careful to avoid in-place operations
- We'll be using Pytorch for the coursework, which is essentially an implementation of reverse-mode AD; I'll also upload a Jupyter notebook with some demos