THLR 2016–2017 TD 2 – page 1/2

TD 2 Expressions rationnelles

Version du 26 septembre 2016

Exercice 1 – Opérateurs basiques

Dans cet exercice nous ne considérons que les opérateurs basiques suivants :

- le choix $(e_1 + e_2)$
- la concaténation (e_1e_2)
- la répétition (e*)

On pourra omettre les parenthèses superflues en respectant les priorités classiques de ces opérateurs (répétition plus prioritaire que la concaténation elle-même plus prioritaire que le choix).

Soit $\Sigma = \{-,0,1,2,3,4,5,6,7,8,9,.\}$. Proposez des expressions rationnelles reconnaissant les sous-langages de Σ^* qui suivent.

- 1. Les entiers signés en base 10. C'est-à-dire avec le « » en première position s'il apparaît, et pas de 0 en tête (sauf pour représenter 0).
- 2. Les nombres à virgule.
- 3. Les développements décimaux d'un nombre réel, comme 3.141592, -318.29 ou 42. Trois contraintes pour corser :
 - on n'acceptera pas un point qui n'est pas suivi de chiffre,
 - à nouveau la partie entière ne peut pas commencer par 0 sauf pour les nombres compris entre −1 et 1,
 - on n'acceptera pas −0.
- 4. Tous les entiers naturels multiples de 20.

Exercice 2 – Sucre syntaxique

Autorisons-nous les opérateurs suivants en plus des opérateurs basiques.

- Pour une expression rationnelle e, e? est l'abréviation de ($\varepsilon + e$).
- Pour une expression rationnelle e, e^+ est l'abréviation de ee^* .
- Pour des symboles $s_1, s_2, \dots s_n$, $[s_1s_2 \dots s_n]$ désigne l'un de ces symboles. Cet opérateur peut facilement se réécrire avec l'opérateur +. Par exemple si $\Sigma = \{a, b, \dots, z\}$, on a [aeiou] = (a + e + i + o + u).
- Si les symboles de Σ sont ordonnés (par exemple les chiffres ou notre alphabet latin) $[s_1-s_2]$ représente un symbole parmi tous ceux compris entre le symbole s_1 et le symbole s_2 (inclus). Cet opérateur peut lui aussi se réécrire, par exemple si $\Sigma = \{a, b, \dots, z\}$, on a [a-e] = (a+b+c+d+e).
- 1. Simplifiez toutes les expressions de l'exercice précédent avec ces opérateurs.
- 2. Avec $\Sigma = \{-,0,1,2,3,4,5,6,7,8,9,...e\}$, proposez une expression rationnelle reconnaissant un nombre décimal en notation scientifique, c'est-à-dire de la forme -1.234e56 où
 - « » est le signe, il peut être absent
 - « 1.234 » est la mantisse, comprise entre 0 et 9.99999 . . .
 - « e56 » est l'exposant, il est facultatif et s'interprète comme 10^{56} . L'exposant est un nombre entier qui peut être signé, par exemple 2e-3 représente 0.002.

On s'autorise les 0 superflus, ainsi que -0, vous avez compris que c'était suffisamment pénible à gérer.

THLR 2016–2017 TD 2 – page 2/2

Exercice 3 – Simplification et équivalences

Pour chaque entrée de la liste suivante, dites si le langage dénoté par l'expression rationnelle e est égal, inclus, contenant, ou incomparable à celui dénoté par l'expression rationnelle f pour l'alphabet $\Sigma = \{a, b, c\}$. Proposez des contre-exemples quand les langages sont différents.

e	f
$a^*b(ab)^*$	a*(bab)*
$a(bb)^*$	ab*
$a(a+b)^*b$	$a^*(a+b)^*b^*$
abc + acb	a(b+c)(c+b)
$a^{\star}bc + a^{\star}cb$	$a^{\star}(bc + a^{\star}cb)$
$(abc + acb)^*$	$((abc)^*(acb)^*)^*$
$(abc + acb)^+$	$((abc)^*(acb)^*)^+$
$(abc + acb)^*$	$(abc(acb)^*)^*$
$(abc + acb)^*$	$(a(bc)^*(cb)^*)^*$

Exercice 4 – Intersection de langages

- 1. L'intersection de deux langages rationnels est-elle un langage rationnel?
- 2. Soient L_1 et L_2 les langages respectivement dénotés par $ab + bc^+$ et $a^*b^*c^*$. Proposez une expression rationnelle dénotant le langage $L_1L_2 \cap L_2L_1$.

Exercice 5

Parmi les langages suivants, déterminez ceux qui sont égaux.

$$(L \cup M)^*$$
 $(LM)^*L$ $L(LM)^*$ $(L^* \cup M)^*$ $(M^* \cup L)^*$ $(L^*M^*)^*$ $(M^*L^*)^*$ $(L^* \cup M^*)^*$