09/Pnn29PCI/JP99/02554

07.06.99

EKU

7775/668E 日 PATENT OFFICE

RECT 3 0 JUL 1999 WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

1998年 9月 4 日

出願番

Application Number:

平成10年特許顯第251083号

出 Applicant (s):

東洋紡績株式会社

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1999年 7月 5日

特許庁長官 Commissioner, Patent Office

保佐山文

特平10-251083

【書類名】 特許願

【整理番号】 CN98-0455

【提出日】 平成10年 9月 4日

【あて先】 特許庁長官 殿

【国際特許分類】 G02B 5/22

G02B 1/00

【発明の名称】 赤外線吸収フィルタ

【請求項の数】 15

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】 下村 哲生

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】 小林 正典

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】 尾道 晋哉

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】 山田 陽三

【特許出願人】

【識別番号】 000003160

【郵便番号】 530

【氏名又は名称】 東洋紡績株式会社

【代表者】 柴田 稔

特平10-251083

【電話番号】

06-348-3399

【手数料の表示】

【予納台帳番号】

000619

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 赤外線吸収フィルタ

【特許請求の範囲】

【請求項1】透明高分子フィルムの少なくとも片面に赤外線吸収層を形成してなる赤外線吸収フィルムにおいて、前記透明高分子フィルムの全光線透過率が89%以上で且つ、ヘイズが1.6以下であり、更に、静摩擦係数及び動摩擦係数が0.6以下であることを特徴とする赤外線吸収フィルム。

【請求項2】請求項1記載の赤外線吸収層が波長800nm から1100nmの近赤外線領域の透過率が30%以下で、且つ、波長450nm から650nm の可視領域での透過率の最大値と最小値の差が10%以内であり、波長550nm での透過率が50%以上であることを特徴とする赤外線吸収フィルタ。

【請求項3】請求項1乃至2記載のいずれかの赤外線吸収フィルタの赤外線 吸収層と同一面、ないしは、反対面に透明導電層を有している事を特徴とする赤 外線吸収フィルタ。

【請求項4】請求項1乃至2記載のいずれかの赤外線吸収フィルタの赤外線 吸収層と同一面、ないしは、反対面に金属メッシュ層を有している事を特徴とす る赤外線吸収フィルタ。

【請求項5】請求項1乃至4記載のいずれかの赤外線吸収層に、赤外線吸収色素として、少なくともジイモニウム塩化合物、含フッ素フタロシアニン化合物及び、ニッケル錯体のうちいずれか2種類を含有することとする赤外線吸収フィルタ。

【請求項6】請求項3記載の透明導電層が金属酸化物であることを特徴とする赤外線吸収フィルタ。

【請求項7】請求項5記載の色素の配合比が、ジイモニウム塩化合物を1重 量部当たり、含フッ素フタロシアニン化合物の場合0.5~0.01重量部、ニッケル錯体系化合物の場合1~0重量部であることを特徴とする赤外線吸収フィルタ。

【請求項8】請求項7記載のいずれかの赤外線吸収層の分散媒がポリエステル樹脂であることを特徴とする赤外線吸収フィルタ。

【請求項9】請求項1から8記載のいずれかの透明基材がポリエステルフィルムであることを特徴とする赤外線吸収フィルタ。

【請求項10】請求項1から9記載のいずれかの赤外線吸収層の色素を分散する分散媒として用いるポリマーのガラス転移温度が、前記フィルタを利用する機器の使用保証温度以上であることを特徴とする赤外線吸収フィルタ。

【請求項11】請求項10記載の透明導電層が金属酸化物/金属/金属酸化物の3層以上の繰り返し構造であることを特徴とする赤外線吸収フィルタ。

【請求項12】請求項11記載の透明導電層の金属層が銀または金及びそれらを含む化合物であることを特徴とする赤外線吸収フィルタ。

【請求項13】請求項1から12記載のいずれかの赤外線吸収フィルタの最外層に反射防止層を有することを特徴とする赤外線吸収フィルム。

【請求項14】請求項1から13記載のいずれかの赤外線吸収フィルタの最外層に防眩処理層を有することを特徴とする赤外線吸収フィルム。

【請求項15】請求項1から14記載のいずれかの赤外線吸収フィルタを用いたことを特徴とするプラズマディスプレー用フィルタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、光学フィルタに関するもので、特に可視光線領域に透過率が高く、赤外線を遮断する光学フィルタに関するものである。

[0002]

【従来の技術】

従来、熱線吸収フィルタや、ビデオカメラ視感度補正用フィルター、等には次 に示されるような物が広く使われてきた。

- (1) 燐酸系ガラスに、銅や鉄などの金属イオンを含有したフィルター(特開昭 60-235740、特開昭62-153144など)
- (2) 基板上に屈折率の異なる層を積層し、透過光を干渉させることで特定の波長を透過させる干渉フィルター(特開昭55-21091、特開昭59-184745など)

- (3) 共重合体に銅イオンを含有するアクリル系樹脂フィルター (特開平6-3 24213)
- (4)バインダー樹脂に色素を分散した構成のフィルター(特開昭57-21458、特開昭57-198413、特開昭60-43605など)

[0003]

【発明が解決しようとする課題】

上記の従来使用されてきた赤外線吸収フィルタには、それぞれ以下に示すよう な問題点がある。

前述(1)の方式では近赤外領域に急峻に吸収が有り、赤外線遮断率は非常に 良好であるが、可視領域の赤色の一部も大きく吸収してしまい、透過色は青色に 見える。ディスプレー用途では色バランスを重視され、このような場合、使用す るのに困難である。また、ガラスであるために加工性にも問題がある。

前述(2)の方式の場合、光学特性は自由に設計でき、ほぼ設計と同等のフィルタを製造することが可能であるが、その為には、屈折率差のある層の積層枚数が非常に多くなり、製造コストが高くなる欠点がある。また、大面積を必要とする場合、全面積にわたって高い精度の膜厚均一性が要求され、製造が困難である

前記(3)の方式の場合、(1)の方式の加工性は改善される。しかし(1)方式と同様に、急峻な吸収特性が有るが、やはり、赤色部分にも吸収が有りフィルタが青く見えてしまう問題点は変わらない。

前記(4)の方式は、赤外線吸収色素として、フタロシアニン系、ニッケル錯体系、アゾ化合物、ポリメチン系、ジフェニルメタン系、トリフェニルメタン系、キノン系、など多くの色素が持ちいられている。しかし、それぞれ単独では、吸収が不十分であったり、可視領域で特定の波長の吸収が有るなどの問題点を有している。さらに、同フィルターを高温下、や加湿下に長時間放置すると、色素の分解や、酸化が起こり可視領域での吸収が発生したり、赤外領域での吸収が無くなってしまうなどの問題がある。

[0004]

【課題を解決するための手段】

本発明は、近赤外領域に吸収があり、可視領域の光透過性が高く、且つ、可視 領域に特定波長の大きな吸収を持つことがなく、更に、加工性及び生産性の良好 である近赤外線吸収フィルタを提供する物である。

即ち本発明は、透明高分子フィルムの少なくとも片面に赤外線吸収層を形成してなる赤外線吸収フィルムにおいて、該透明高分子フィルムの全光線透過率が89%以上で且つ、ヘイズが1.6以下であり、更に、静摩擦係数及び動摩擦係数が0.6以下であることを特徴とする赤外線吸収フィルムである。

本発明は、ディスプレー用途に用いられる場合が多い為、全光線透過率が高いものが好まれるまた、ヘイズも小さいほうが良い。しかし、全光線透過率が高く、ヘイズを低くすると、一般に、摩擦係数が高くなり滑り性が悪化し、巻き取りなどの作業がし難くなる。本発明の全光線透過率、及びヘイズ及び摩擦係数の範囲であれば、巻き取り性と全光線透過率を両立することが可能である。更に、本発明での赤外線吸収層は、透明高分子フィルム上の少なくとも片面に、波長800mmから1100nmの近赤外線領域の透過率が30%以下で、かつ、波長450nmから650nmの可視領域での透過率の最大値と最小値の差が10%以内であり、波長550nmでの透過率が50%以上である赤外線吸収層を有しているものが良く、該赤外線吸収層と同一面、ないしは、反対面に透明導電層を有している物が良い。

本発明は、波長800nm から1100nmの近赤外線領域の透過率が30%以下が必須である。この領域の透過率が低い事によって、プラズマディスプレー等に用いた場合、ディスプレーから放射される、不要赤外線を吸収し、赤外線を使ったリモコンの誤動作を防ぐ事が出来る。また、本発明は、波長450nm から650nm の可視領域での透過率の最大値と最小値の差が10%以内であるが必須である。波長450nm から650nm の透過率差がこの範囲にあると、色調がグレーとなり、ディスプレー前面においた場合、ディスプレーから発せられる色調が変らずに表現する事が出来る。

更に本発明では、波長550nm での透過率が50%以上が必要である。該波長域での透過率が、50%以下であると、ディスプレー前面に設置された場合、非常に暗いディスプレーとなってしまう。

[0005]

前記特性を満たす為に本発明に用いる色素は、少なくともジイモニウム塩化合物、含フッ素フタロシアニン化合物及び、ニッケル錯体のうちいずれか2種類を含有することが好ましい。該色素配合比は、ジイモニウム塩化合物を1重量部当たり、含フッ素フタロシアニン化合物の場合0.5~0.01重量部、ニッケル錯体系化合物の場合1~0重量部の範囲が好ましい。

本発明では、赤外線吸収色素をポリマー中に分散し、更にこれを透明な基板上 にコーティングした構成が好ましい。このような構成とする事によって、製作が 簡単になり、小ロットの生産にも対応可能となる。

また、本発明での色素を分散するポリマーは、そのガラス転移温度が、本発明 フィルタを使用する想定保証温度以上の温度である事が好ましい。これにより、 色素の安定性が向上する。

本発明に使用する赤外線吸収色素は特に限定されるものではないが、一例を挙げるとすれば、以下のようなものが挙げられる。

日本化薬社製Kayasorb IRG-022、IRG-023、日本触媒社製 Excolor IR 1、IR2、IR3、IR4、三井化学社製SIR-128、SIR-130、SIR-132、SIR-159 などが挙げられるが、

上記赤外吸収色素は一例であり、特に限定される物ではない。

[0006]

また、本発明において、赤外線吸収色素を分散したポリマーを基材にコーティングする場合に用いる透明基材としても、特に限定される物ではないが、ポリエステル系、アクリル系、セルロース系、ポリエチレン系、ポリプロピレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリカーボネート、フェノール系、ウレタン系樹脂などが挙げられるが、特に好ましくは、分散安定性、環境負荷などの観点から、ポリエステル系樹脂が好ましい。

[0007]

また、本発明赤外線吸収フィルターでは耐光性を向上させる目的で、UV吸収剤を添加したものが好ましい。さらに、本発明では、耐候性、耐溶剤性を付与させるために、赤外線吸収色素を分散するポリマーを、架橋剤を用いて架橋させても良い。

[0008]

本発明は、該赤外線吸収層と同一面、ないしは、反対面に透明導電層を有している事を必須とする。これにより、ディスプレーから放出される有害電磁波を除去することが可能となる。

本発明に用いられる、透明導電層はいかなる導電膜でも良いが、好ましくは、 金属酸化物であることが望ましい。これによって、より高い可視光線透過率を得 ることが出来る。また、本発明において透明導電層の導電率を向上させたい場合 は、金属酸化物/金属/金属酸化物の3層以上の繰り返し構造であることが好ま しい。金属を多層化することで、高い可視光線透過率を維持しながら、電導性を 得ることができる。

本発明に用いられる。金属酸化物は、電導性と可視光線透過性が有していれば如何なる金属酸化物でも良い。一例として、酸化錫、インジウム酸化物 t、インジウム錫酸化物、酸化亜鉛、酸化チタン、酸化ビスマスなどがある。以上は一例であり、特に限定されるものではない。また、本発明に用いられる金属層は、導電性の観点より、金、銀及びそれらを含む化合物が好ましい。

更に、本発明の導電層を多層化した場合、くり返し層数が3層の場合、銀層の厚さは好ましくは50から200Å、より好ましくは50から100Åである。これよりも膜厚が厚い場合は、光線透過率が低下し、薄い場合は抵抗値が上がってしまう。また、金属酸化物層の厚さとしては、好ましくは、100から1000Å、より好ましくは、100から500Åである。この厚さより厚い場合には着色して色調が変ってしまい、薄い場合には抵抗値が上がってしまう。さらに、3層以上多層化する場合、例えば、金属酸化物/銀/金属酸化物/銀/金属酸化物のように5層とした場合、中心の金属酸化物の厚さは、それ以外の金属酸化物層の厚さよりも厚いことが好ましい。この様にすることで、多層膜全体の光線透過率が向上する。

また、本発明赤外線吸収フィルタは、最外層に傷つき防止のために、ハードコート処理層(HC)を設けてもよい。このハードコート処理層(HC)としては、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリイミド系樹脂などの硬化性樹脂を単体もしくは

混合した架橋性樹脂硬化物層が好ましい。

[0009]

このハードコート処理層 (HC) の厚さは、1~50μmの範囲が好ましく、さらに好ましくは、2~30μmの範囲である。1μmより薄い場合は、ハードコート処理の機能が十分発現せず、50μmをこえる厚さでは、樹脂コーティングの速度が著しく遅くなり、生産性の面で好結果を得にくい。

[0010]

ハードコート処理層(HC)を積層する方法としては、透明導電性フィルムの透明導電性薄膜を設けた面の反対側の面に、上記の樹脂をグラビア方式、リバース方式、ダイ方式などでコーティングした後、熱、紫外線、電子線等のエネルギーを印加することで、硬化させる。

[0011]

また、本発明赤外線吸収フィルタは、ディスプレー等に用いた場合の視認性向上のために、最外層に、防眩処理層(AG)を設けてもよい。

防眩処理層(AG)は、硬化性樹脂をコーティング、乾燥後にエンボスロールで表面に凹凸を形成し、この後熱、紫外線、電子線等のエネルギーを印加することで、硬化させる。硬化性樹脂としては、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリイミド系樹脂などの単体もしくは混合したものが好ましい。

[0012]

さらに、本発明赤外線吸収フィルタをディスプレーに用いた際に可視光線の透過率をさらに向上させるために、最外層に反射防止処理層(AR)を設けてもよい。この反射防止処理層(AR)には、プラスチックフィルムの屈折率とは異なる屈折率を有する材料を単層もしくは2層以上の積層するのが好ましい。単層構造の場合、プラスチックフィルムよりも小さな屈折率を有する材料を用いるのがよい。また、2層以上の多層構造とする場合は、プラスチックフィルムと隣接する層は、プラスチックフィルムよりも大きな屈折率を有する材料を用い、この上の層にはこれよりも小さな屈折率を有する材料を選ぶのがよい。このような反射防止処理層(AR)を構成する材料としては、有機材料でも無機材料でも上記の屈折率

の関係を満足すれば特に限定されないが、例えば、 CaF_2 , MgF_2 , $NaAlF_4$, SiO_2 , ThF_4 , ZrO_2 , Nd_2O_3 , SnO_2 , TiO_2 , CeO_2 , ZnS, In_2O_3 などの誘電体を用いるのが好ましい。

[0013]

この反射防止処理層(AR)は、真空蒸着法、スパッタリング法、 CVD法、イオンプレーティング法などのドライコーティングプロセスでも、グラビア方式、リバース方式、ダイ方式などのウェットコーティングプロセスでもよい。

[0014]

さらに、このハードコート処理層(HC)、防眩処理層(AG)、反射防止処理層 (AR)の積層に先立って、前処理として、コロナ放電処理、プラズマ処理、スパッタエッチング処理、電子線照射処理、紫外線照射処理、プライマ処理、易接着 処理などの公知の処理を施してもよい。

[0015]

実施例1

分散媒となるベースポリエステルを以下の要領で製作した。

温度計、撹拌機を備えたオートクレーブ中に、

テレフタル酸ジメチル

136重量部、

イソフタル酸ジメチル

58重量部

エチレングリコール

96重量部、

トリシクロデカンジメタノール

137重量部

三酸化アンチモン

0.09重量部

を仕込み170~220℃で180分間加熱してエステル交換反応を行った。次いで反応系の温度を245℃まで昇温し、系の圧力1~10mmHgとして18 0分間反応を続けた結果、共重合ポリエステル樹脂(A1)を得た。共重合ポリ エステル樹脂(A1)の固有粘度は、0.4、ガラス転移温度は90℃であった。またNMR分析による共重合組成比は

酸成分に対して

テレフタル酸

7 0 mol%

イソフタル酸

3 0 mol%,

アルコール成分に対して

エチレングリコール

2 9 mol%,

トリシクロデカンジメタノール

7 1 mol%

であった。

[0016]

次にこの樹脂を用いて表1に示すような組成で、赤外線吸収色素と製作した樹脂、溶剤を、フラスコにいれ、加熱しながら攪拌し、色素及びバインダー樹脂を溶解した。更に溶解した樹脂を高透明性ポリエステルフィルム基材(東洋紡績社製 コスモシャインA4300 全光線透過率90.9%、ヘイズ0.7、静摩擦係数0.58、動摩擦係数0.42)に、ギャップが100μmのアプリケーターを用いてコーティングし、乾燥温度約90℃で1時間乾燥させた。この時コーティング厚さは約25μmであった。得られた赤外線吸収フィルムは、目視での色目はダークグレーであった。また、図1にその分光特性を示す。図1に示すように、波長400mmから650mmまでの可視領域においては吸収が平らで、波長700mm以上では急峻に吸収があるフィルムが得られた。

得られたフィルムを60℃95%雰囲気中に500hr放置し、再度分光特性を測定したところ図2のようになり、若干の色変化は見られるが、近赤外吸収特性を維持していた。

また、得られたフィルムを、プラズマディスプレー等の前面に配置したところ 、色目の変化はなく、コントラストが向上しかつ、近赤外線の放射も低減された

更に、製作したフィルムを重ねて、その滑り性を見たところ良好であり、ロール状に巻き取りが可能であることが分かった。

[0017]

【表1】

材料	配合量
日本化薬社製 Kayasorb IRG-022	6.6 重量部
日本触媒社製 Excolor IR-1	1.1 重量部
三井化学社製 SIR-159	3.3 重量部
製作した上記ポリエステル樹脂 (A1)	440 重量部
メチルエチルケトン	490 重量部
テトラヒドロフラン	490 重量部
トルエン	490 重量部

[0018]

実施例2

実施例1で製作した樹脂(A1)を用いて表2に示すような組成で、赤外線吸収色素と製作した樹脂、溶剤を、フラスコにいれ、加熱しながら攪拌し、色素及びバインダー樹脂を溶解した。更に溶解した樹脂を高透明性ポリエステルフィルム基材(東洋紡績製 コスモシャインA4300全光線透過率90.9%、ヘイズ0.7、静摩擦係数0.58、動摩擦係数0.42)に、ギャップが100μmのアプリケーターを用いてコーティングし、乾燥温度約90℃で1時間乾燥させた。この時コーティング厚さは約25μmであった。

[0019]

次に、赤外線吸収層の上部に高周波マグネトロンスパッタリング装置を用いて 3 8 0 Åの酸化錫を積層し、続いてDCマグネトロンスパッタ装置を用いて、 2 0 0 Åの銀薄膜を積層し、更に、 4 1 0 Åの酸化錫層を積層して電磁波シールド層 を形成した。この時の表面抵抗は、約 4 Ω/ロであった。

上記の様に、ハードコート、電磁波シールド層を赤外線吸収層と共に作製した フィルタの分光特性を図3に示す。図のように、該フィルタは、近赤外線を吸収 し、色調がグレーで、且つ、電磁波を吸収しながらも高い可視光線透過率を有していることがわかった。

また、得られたフィルムを60℃95%雰囲気中に500hr放置し、再度分光特性を測定したところ、若干の色変化は見られるが、近赤外吸収特性を維持していた。

また、得られたフィルムを、プラズマディスプレー等の前面に配置したところ 、色目の変化はなく、コントラストが向上しかつ、近赤外線の放射及び、電磁波 の放射も低減された。

[0020]

【表2】

材料	配合量
日本化薬社製 Kayasorb IRG-022	5.4 重量部
日本触媒社製 Excolor IR-1	1.9 重量部
三井 BASF 染料社製 PS-red GG	0.14 重量部
三井 BASF 染料社製 PS-orange GG	0.22 重量部
製作した上記ポリエステル樹脂 (A1)	440 重量部
メチルエチルケトン	735 重量部
トルエン	735 重量部

[0021]

比較例1

ベースポリマーとして東洋紡績製バイロンRV200 (比重1.26、ガラス転移温度67℃)を用いて表2に示すような組成で、赤外線吸収色素とバインダー樹脂、溶剤を、フラスコにいれ、加熱しながら攪拌し、色素及びバインダー樹脂を溶解した。次に溶解した樹脂を高透明性ポリエステルフィルム基材(東洋紡績製コスモシャインA4100)のインラインコート面に、ギャップが100μmのアプリケーターを用いてコーティングし、乾燥温度約90℃で1時間乾燥させた。コーティング厚さは約25μmであった。得られた赤外線吸収フィルムは、目視での色目は、褐色に着色してしまっていた。また、図4にその分光特性を示す。図4に示されるように、波長400nmから650nmまでの可視領域において約550nmにピークを持つような山形の特性になる赤外線吸収フィルムがえられた

得られたフィルムを60℃95%雰囲気中に500hr放置し、再度分光特性を測 定したところ近赤外線領域の吸収が無くなってしまっていた。また、見た目が緑 色に変化してしまっていた。

また、得られたフィルムをプラズマディスプレー等の前面に配置したところ、 色バランスが崩れ、緑がかった色調となってしまった。

更に、製作したフィルムを重ねて、その滑り性を見たところフィルム同士が完全に密着してしまい滑らなかった。またロール状に巻き取りも不可能であることが分かった。

[0022]

比較例2

次に、実施例2と同様に酸化錫、銀の多層導電層を設けた。

上記の様に、ハードコート、電磁波シールド層を赤外線吸収層と共に作製した フィルタの分光特性を図5に示す。図のように、該フィルタは、近赤外線おいび 電磁波を吸収を吸収するものの、色調が緑がかった物となってしまった。

また、製作した赤外線吸収フィルタをプラズマディスプレー前面に設置した場合、画像全体が緑がかった色調になってしまった。

[0023]

【表3】

材料	配合量
日本化薬社製 Kayasorb IRG-022	3.2 重量部
東洋紡績社製 バイロン RV200	440 重量部
メチルエチルケトン	490 重量部
テトラヒドロフラン	490 重量部
トルエン	490 重量部

[0024]

【発明の効果】

近赤外線領域に広く吸収を持ち、かつ、可視領域の透過率が高く、特定の可視 領域波長を大きく吸収することのない赤外線吸収フィルターが得られ、ビデオカ メラ、ディスプレーなどに使用しても色ずれが少ない。また、環境安定性に優れ 、長い期間での使用に耐える。

【図面の簡単な説明】

- 【図1】図1は実施例1で得られた赤外線吸収フィルタの分光特性を示す。
- 【図2】図2は実施例1で得られた赤外線吸収スペクトルの耐久テスト後の 分光特性を示す。
 - 【図3】図3は実施例2で得られた赤外線吸収フィルタの分光特性を示す。
- 【図4】図4は比較例1で得られた赤外線吸収フィルタの耐久テスト後の分 光特性を示す。
 - 【図5】図5は比較例2で得られた赤外線吸収フィルタの分光特性を示す。

【書類名】 図面

【図1】

【図2】

【図4】

【書類名】 要約書

【要約】

【課題】 本発明は、電磁波及び近赤外線を吸収し、可視領域の光透過性が高く、且つ、可視領域に特定の吸収を持つことがなく、更に、加工性及び生産性の良好で環境安定性の良好な近赤外線吸収フィルタを提供する物である。

【解決手段】 透明高分子フィルムの少なくとも片面に赤外線吸収層を形成してなる赤外線吸収フィルムにおいて、該透明高分子フィルムの全光線透過率が89%以上で且つ、ヘイズが1.6以下であり、更に、静摩擦係数及び動摩擦係数が0.6以下であることを特徴とする赤外線吸収フィルタ。

特平10-251083

【書類名】

【訂正書類】

職権訂正データ

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000003160

【住所又は居所】

大阪府大阪市北区堂島浜2丁目2番8号

【氏名又は名称】

東洋紡績株式会社

出願人履歴情報

識別番号

[000003160]

1. 変更年月日 1990年 8月10日

[変更理由] 新規登録

住 所 大阪府大阪市北区堂島浜2丁目2番8号

氏 名 東洋紡績株式会社