Conformal Prediction Regression Cheat Sheet

By Gianfrancesco Angelini; v0.2

Main Components of Conformal Prediction

- A predictive model M = M(x)
- Nonconformity function $s(y, \hat{y})$ (e.g., $s(y, \hat{y}) = |y \hat{y}|$).
- A significance level $\alpha \in [0, 1]$.
- A set of candidates for the prediction interval $y_j: s_j < s_\alpha$, where s_α is the $\lceil (1-\alpha)(n+1) \rceil$ -th quantile of the set comprising all the nonconformity scores (calibration scores) computed according to the method used. In the regression case, candidates can come from a grid of y in the prediction's \hat{y} surroundings, which excludes all y outside the calibration quantile.

Validity: Under exchangeability, C.P. methods guarantee a coverage probability of at least $1-\alpha$ for the prediction set.

References

- [1] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*. Vol. 29. Springer, 2005.
- [2] Vladimir Vovk. "Cross-conformal predictors". In: Annals of Mathematics and Artificial Intelligence 74 (2015), pp. 9–28.
- [3] Yaniv Romano, Evan Patterson, and Emmanuel Candes. "Conformalized quantile regression". In: Advances in neural information processing systems 32 (2019).
- [4] Vladimir Vovk et al. "Mondrian confidence machine". In: *Technical Report* (2003).
- [5] Rina Foygel Barber and Emmanuel J. Candès. "Predictive Inference with the Jackknife+". In: Annals of Statistics 49.1 (2021), pp. 486–507.

Full Conformal Prediction [1]

Calibration:

- 1. Choose a nonconformity function $s(y, \hat{y})$ (e.g., $s(y, \hat{y}) = |y \hat{y}|$).
- 2. Train your model M on the full dataset $D = \{(x_i, y_i)\}_{i=1}^n$.
- 3. Compute calibration scores: $s_i = s(y_i, M(x_i))$ for all $(x_i, y_i) \in D$.

Evaluation: For a new instance x_{new} , and for each candidate label y (e.g., all classes or a grid for regression):

1. Form the augmented dataset:

$$D^{(y)} = D \cup \{(x_{\text{new}}, y)\}.$$

- 2. (If needed) Refit the model $M^{(y)}$ on $D^{(y)}$ and compute updated scores $s_i^{(y)} = s(y_i, M^{(y)}(x_i))$.
- 3. Compute the new instance's score:

$$s_{\text{new}}^{(y)} = s(y, M^{(y)}(x_{\text{new}})).$$

4. Calculate the p-value:

$$p(y) = \frac{|\{i : s_i^{(y)} \ge s_{\text{new}}^{(y)}\}| + 1}{|D^{(y)}| + 1}.$$

Prediction Set: For significance level α ,

$$C(x_{\text{new}}) = \{y : p(y) > \alpha\}.$$

Split Conformal Prediction

Core Idea: The dataset is split into a training set to train the model, and a calibration set to determine a quantile threshold for the nonconformity scores.

- 1. Split the available dataset $D = \{X, Y\}$ into a training set D_T and a calibration set D_C .
- 2. Train your predictive model M on the training set D_T .
- 3. Compute non-conformity scores $s_i(y_i, \hat{y}_i)$, on the calibration set D_C , for each x_i . E.g. for each example (x_i, y_i) where $i \in D_C$, calculate

$$s_i = |y_i - \hat{y}_i|,$$

where $\hat{y}_i = M(x_i)$.

4. Determine the quantile \hat{q} of the calibration scores such that

$$\hat{q} = \frac{\lceil (|D_C| + 1)(1 - \alpha) \rceil}{|D_C|},$$

where $|D_C|$ is the number of examples in the calibration set.

5. Finally, for each x_{new} compute the *Confidence Interval* for x_{new} ,

$$C(x_{\text{new}}) = \{ y_i : s_i(y_i, \hat{y_i}) < \hat{q} \}.$$

following the steps below:

- 5.1 Choose a grid of y_j candidates centered on \hat{y}_{new} and such that they recede left and right from \hat{y}_{new} .
- 5.2 Compute $s_j(y_j, \hat{y}_{\text{new}})$.
- 5.3 If $s_j < \hat{q}$, accept y_j in C_j ; otherwise, reject it.

Cross Conformal Prediction [2]

Core Idea: The dataset is partitioned into k folds. For each fold, a model is trained on the remaining folds, and nonconformity scores are computed for the held-out fold. The aggregated scores from all folds produce a robust prediction set that utilizes the full dataset.

- 1. Split the dataset $D = \{(x_1, y_1), ..., (x_n, y_n)\}$ into k disjoint subsets (folds) $D_1, ..., D_k$.
- 2. For each fold k = 1, ..., K:
 - 1. Train a model M_k on the training set $D \setminus D_k$
 - 2. Compute the nonconformity scores for each example $(x_i, y_i) \in D_k$:

$$s_i = |y_i - M_k(x_i)|$$

- 3. Aggregate all nonconformity scores into a single set $S = \{s_1, ..., s_n\}$.
- 4. Compute the empirical quantile \hat{q} as:

 $\hat{q} = \text{the } \lceil (n+1)(1-\alpha) \rceil$ -th smallest value in S where n = |D| and α is the significance level.

- 5. For a new observation x_{new} :
 - 5.1 Generate a set of candidates $\{y_1, ..., y_m\}$ around \hat{y}_{new}
 - 5.2 For each candidate y_j :
 - Compute $s_i = |y_i \hat{y}_{\text{new}}|$
 - Include y_j in the confidence interval if $s_j \leq \hat{q}$

Conformalized Quantile Regression [3]

Core Idea: Quantile regression is used to estimate initial prediction intervals, and a correction factor is derived from the calibration residuals to adjust these intervals, ensuring valid coverage.

- 1. Split the dataset $D = \{(x_1, y_1), ..., (x_n, y_n)\}$ into:
 - Training set D_{train}
 - Calibration set $D_{\rm cal}$
- 2. Train two quantile regression models on D_{train} :

$$\hat{q}_{\alpha/2}(x), \ \hat{q}_{1-\alpha/2}(x)$$

where α is the desired error level.

3. Compute the nonconformity scores on the calibration set:

$$E_i = \max \{\hat{q}_{\alpha/2}(x_i) - y_i, \ y_i - \hat{q}_{1-\alpha/2}(x_i)\}$$

Set $E_i = 0$ if both terms are negative.

4. Determine the correction factor δ as:

$$\delta = \text{Quantile}\left(\{E_i\}_{i \in D_{\text{cal}}}, 1 - \alpha\right)$$

using the correctly adjusted empirical formula:

$$\delta = \text{the } [(1 - \alpha)(1 + |D_{\text{cal}}|)] \text{-th value in } \{E_i\}$$

5. Construct the final prediction interval for a new x_{new} :

$$C(x_{\text{new}}) = \left[\hat{q}_{\alpha/2}(x_{\text{new}}) - \delta, \ \hat{q}_{1-\alpha/2}(x_{\text{new}}) + \delta\right]$$

Mondrian Conformal Prediction [4], [1]

Core Idea: Partition the data into homogeneous groups (or categories) and perform conformal prediction within each group.

Procedure:

- **Define Groups:** Use known labels or cluster the feature space to form Mondrian categories.
- Compute Scores: For each group g, compute nonconformity scores

$$s_i^{(g)} = s(y_i, \hat{y}_i), \quad \forall (x_i, y_i) \text{ in group } g,$$

using a chosen nonconformity function (e.g., $s(y, \hat{y}) = |y - \hat{y}|$).

- Group-Specific Quantile: For a significance level α , determine the quantile $s_{\alpha}^{(g)}$ as the $\lceil (|D^{(g)}| + 1)(1 \alpha) \rceil$ -th smallest score within group g.
- **Prediction Set:** For a new instance x_{new} , identify its group g and construct:

$$C(x_{\text{new}}) = \{ y : s(y, \hat{y}) \le s_{\alpha}^{(g)} \}.$$

Jackknife+ [5]

Core Idea: Use leave-one-out predictions to construct valid prediction intervals with finite-sample guarantees.

- 1. **Leave-One-Out Training:** Given a dataset $D = \{(x_1, y_1), \dots, (x_n, y_n)\},$ for each $i = 1, \dots, n$:
 - 1. Train the model M_{-i} on $D \setminus \{(x_i, y_i)\}$.
 - 2. Compute the leave-one-out prediction for training:

$$\hat{y}_{-i}(x_i) = M_{-i}(x_i).$$

3. Compute the residuals:

$$r_i = |y_i - \hat{y}_{-i}(x_i)|$$
.

- 2. Constructing the Prediction Interval for a New Observation x_{new} :
 - 2.1 Compute the leave-one-out predictions using the models trained before:

$$\hat{y}_{-i}(x_{\text{new}}) = M_{-i}(x_{\text{new}}) \text{ for } i = 1, \dots, n.$$

2.2 Compute L and U:

$$L = \{\hat{y}_{-i}(x_{new}) - r_i\}\Big|_{i=1}^n$$

$$U = \{\hat{y}_{-i}(x_{new}) + r_i\}\Big|_{i=1}^n$$

- 2.3 Compute the quantiles:
 - $q_{n,\alpha}^{-}(L) = \lfloor \alpha(n+1) \rfloor$ -th smallest value in

$$q_{n,\alpha}^+(U) = \lceil (1-\alpha)(n+1) \rceil$$
 -th smallest value in U

2.4 Construct the interval bounds using quantiles:

$$L_{\alpha} = q_{n,\alpha}^{-}(L),$$

$$U_{\alpha} = q_{n,\alpha}^+(U).$$

 $2.5\,$ The prediction interval is given by:

$$C(x_{\text{new}}) = [L_{\alpha}, U_{\alpha}].$$