Specyfikacja funkcjonalna programu WireWorld

Danuta Stawiarz, Katarzyna Stankiewicz

3 maja 2019 r.

Spis treści

1	Cel projektu	2
2	Opis zasad programu	2
3	Wygląd interfejsu użytkownika	3
4	Opis działania programu 4.1 Ustawienia początkowe	3 4 4 4
5	Wyniki działania programu	4
6	Komunikaty błędów	4

1 Cel projektu

Celem projektu jest napisanie programu WireWorld. Program zaimplementowany zostanie w języku java z użyciem biblioteki graficznej JavaFX. Po ukończeniu program będzie w stanie przeprowadzać proste symulacje, poprzez generowanie kolejnych planszy od ustawionej na początku przez użytkownika, podanej jako plik wejściowy lub losową w przypadku braku działań użytkownika. Ponadto możliwa będzie również interakcja użytkownika z programem poprzez interfejs graficzny i odpowiednie przyciski. Użytkownik będzie miał możliwość edycji danej planszy.

2 Opis zasad programu

Automat komórkowy WireWorld ma za zadanie wykonać symulację, w której przekształca podaną planszę na podstawie kilku podstawowych zasad.

Komórka może znajdować się w jednym z czterech stanów:

- 1. Pusta,
- 2. Głowa elektronu,
- 3. Ogon elektrony,
- 4. Przewodnik.

W zaimplementowanym automacie przyjmuje się następujące kolory stanów:

- czarny pusta
- niebieski głowa elektronu
- czerwony ogon elektronu
- biały przewodnik

Kolejne generacje budowane są z wykorzystaniem zestawu pięciu zasad:

- 1. Komórka pozostaje Pusta, jeśli była Pusta.
- 2. Komórka staje się Ogonem elektronu, jeśli była Głową elektronu.
- 3. Komórka staje się Przewodnikiem, jeśli była Ogonem elektronu.
- 4. Komórka staje się Głową elektronu tylko wtedy, gdy dokładnie 1 lub 2 sąsiadujące komórki są Głowami Elektronu.
- 5. Komórka staje się Przewodnikiem w każdym innym wypadku.

W WireWorld stosuje się sąsiedztwo Moore'a.

3 Wygląd interfejsu użytkownika

4 Opis działania programu

W momencie uruchomienia programu pojawia się menu umożliwiające użytkownikowi wybór symulacji, którą chce przeprowadzić. W zależności od wyboru WireWorld lub Game of Life wyświetlone zostanie okno pozwalające na przeprowadzenie symulacji adekwatnej do wybranej opcji.

4.1 Ustawienia początkowe

Na wejściu użytkownik może podać plik zawierający dane do wczytania planszy lub podać wymiary planszy która ma zostać wczytana. W podania wymiarów użytkownik zostanie poproszony również o wybranie stanu w jakim ma zostać wczytana plansza.

- wypełnij losowo plansza ma zostać wypełniona losowo
- pusta plansza wszystkie komórki są martwe (dla Game of Life) lub puste (dla WireWorld)

Obok planszy będą wyświetlane następujące opcje:

- wczytaj plik za pomocą tego przycisku użytkownik będzie mógł wczytać wybrany przez siebie plik
- start/stop umożliwia wstrzymanie lub uruchomienie symulacji
- wymiary dwa okienka: x szerokość planszy y wysokość planszy
- generacje wyświetla ile generacji upłynęło od czasu działania programu,
- strzałki obok generacji umożliwiają manualne przejście do kolejnej generacji lub powrót do poprzedniej (aktywne tylko w przypadku zatrzymanej symulacji)
- zapisz umożliwia zapisanie planszy do pliku

Obok planszy będzie się znajdowało również okno pozwalające na edycję aktualnej planszy. Będzie ono aktywne tylko w przypadku zatrzymanej symulacji. W przypadku zatrzymanej symulacji istnieje możliwość wyboru komórki na planszy i zmianę jej stanu.

- 4.2 Przykładowy plik wejściowy
- 4.2.1 WireWorld
- 4.2.2 Game of Life
- 5 Wyniki działania programu
- 6 Komunikaty błędów