HB Model

M. Vaz

2020-12-17 20:19:39

Methods

Statistical Analysis

Leaf level

In order to model leaf size variation within plants, we model each leaf k form plant i and species j as a random sample from a lognormal distribution centered at a_{ij} (mean leaf size for plant i), as follows:

$$\log_e A_{kij} \sim \mathcal{N}(a_{ij}, \sigma_A^2)$$

where σ_A^2 is the leaf size variation within plant i. The estimate a_{ij} was later used as a predictor of the total leaf surface area for each of the sampled plants.

Individual level

In order to model intraspecific variation in the total number of leaves per plant $(N_{ij}; log\text{-transformed})$, we assumed N_{ij} to be a random sample of a normal distribution as follows:

$$N_{ij} \sim \mathcal{N}(\beta_j + \delta_j * D_{ij} + \phi_j * L_{ij} + \mu_j * M_{ij} + \theta_j * SLA_{ij}, \sigma_N^2)$$

where σ_N^2 is the intra-specific residual variation of N and β , δ , ϕ , and μ are species-specific parameters that estimate, respectively: the number of leaves of an average-sized sapling growing in the shade (L=1); the effect of sapling size (D; centered and log-transformed) on N; the effect of light on N; the effect of leaf mean dry mass (M; log-transformed) on N; and finally the effect of SLA on N.

Now, to model the relationship between mean leaf mass (M) and mean leaf area (a) per plant we modeled a_{ij} as a function of m_{ij} as $a_{ij} \sim \mathcal{N}(SLA_{ij} + M_{ij}, \sigma_a^2)$, where SLA_{ij} is the log-transformed specific leaf area for species j and σ_a^2 is the intraspecific variance in mean leaf area. Additionally, to estimate species average leaf mass we modeled M_{ij} as $M_{ij} \sim \mathcal{N}(m_j, \sigma_M^2)$, where m_j is the species-specific mean leaf mass and σ_M^2 is the intraspecific variance in mean leaf mass. Finally, to estimate species-specific SLA, we modeled SLA_{ij} as $SLA_{ij} \sim \mathcal{N}(sla_j, \sigma_{SLA}^2)$. Of course, to estimate species-specific mean leaf area we can just sum SLA_j and m_j .

Species level

Finally, to model the interspecific variation in N we modeled all species-specific parameters $(\beta_j, \delta_j, \phi_j, \mu_j,$ and θ_j , or simply Γ_j) as samples from a multivariate normal distribution as follows:

$$\Gamma_i \sim \mathcal{N}_5(\gamma, \Sigma_{\Gamma})$$

where γ is the vector with the means of the hyperparameter distributions for each species-specific parameter and Σ_{Γ} is the variance-covariance matrix containing the interspecific variations and correlations among these parameters.

We also modeled the across-species distribution of leaf sizes (m_j) and specific leaf area (sla_j) respectively as $m_j \sim \mathcal{N}(\bar{m}, \sigma_m^2)$ and $sla_j \sim \mathcal{N}(s\bar{l}a, \sigma_{sla}^2)$.

Posterior predictions

Finally, to compare the growth strategies of large- and small-leafed saplings, we estimated total leaf surface area per plant $(A_T; log\text{-transformed})$ for standardized plants (i.e., medium-sized [D=0], grown in the shade [L=0]) of species mean leaf mass (m_j) and specific leaf area (sla_j) as follows:

$$A_{T_j} = \hat{N}_j + \hat{a}_j = (\beta_j + \mu_j * m_j + \theta_j * sla_j) + (sla_j + m_j)$$

thus
$$A_{T_j} = \beta_j + (1 + \mu_j) * m_j + (1 + \theta_j) * sla_j$$
.