INSTITUTO INFNET

NICOLAS DE SOUSA TEODOSIO E VICTOR HUGO NOVAIS RODRIGUES

ANÁLISE DE SENTIMENTO E MINERAÇÃO DE OPINIÕES APLICADO NO TWITTER

RIO DE JANEIRO

INSTITUTO INFNET

NICOLAS DE SOUSA TEODOSIO E VICTOR HUGO NOVAIS RODRIGUES

ANÁLISE DE SENTIMENTO E MINERAÇÃO DE OPINIÕES APLICADO NO TWITTER

Trabalho de Conclusão de Curso apresentado ao Programa de Graduação em Engenharia da Computação do Instituto Infnet como parte dos requisitos necessários à obtenção do título de Bacharel em Engenharia da Computação.

Orientadora:
CASSIUS FIGUEIREDO

RIO DE JANEIRO

NICOLAS DE SOUSA TEODOSIO E VICTOR HUGO NOVAIS RODRIGUES

ANÁLISE DE SENTIMENTO E MINERAÇÃO DE DADOS APLICADO NO TWITTER

Trabalho de Conclusão de Curso apresentado ao Programa de Graduação em Engenharia da Computação do Instituto Infnet como parte dos requisitos necessários à obtenção do título de Bacharel em Engenharia da Computação

Aprovada em XX agosto de 2016.

BANCA EXAMINADORA

Prof°. Cassius Figueired, M.Sc. - Orientadora Instituto INFNET

> Prof^a. XXXX, titulacao. Universidade

> > Universidade

Prof°. xxx, TITULACAO

Rio de Janeiro 2016

Agradecimentos

Agradeço, inicialmente,

Resumo

Atualmente a internet e micro blogs em geral têm se tornado uma ferramenta de comunicação poderosa entre usuários de Internet. Bilhões de pessoas compartilham informações e opiniões todos os dias, fazendo desse espaço um ótimo campo de pesquisas comercias, acadêmicas e sociológicas. Como o fenômeno é relativamente recente – o Twitter foi criado apenas em 2006 – ainda existem poucas pesquisas destinadas ao tema.

Os principais desafios para aplicação dessa técnica estão relacionados a linguagens naturais sensíveis ao contexto que não trazem resultados satisfatórios quando utilizam-se modelos matemáticos muito simples, sendo necessário um grande investimento de tempo em aperfeiçoar os modelos matemáticos disponíveis e adaptá-los à solução em questão.

Outro desafio interessante é a aplicação de técnicas de mineração de opiniões no português, onde não existem muitos trabalhos relacionados e massas de treino disponíveis para consulta.

O objetivo deste trabalho é explorar o potencial existente em pesquisas de opinião que podem ser feitas através de análises nas comunicações feitas em língua portuguesa nas redes sociais todos os dias.

Palavras-chave: Análise de sentimento, mídias sociais, twitter, mineração de opiniões, processamento de linguagem natural, linguagens sensíveis a contexto, naive bayes.

Abstract

Palavras-chave: xxxxxxxx.

Lista de Figuras

Lista de Tabelas

Lista de Abreviaturas e Siglas

API A	pplication Program Interface	1
C	Conjunto de rotinas estabelecidos por um software para a utilização das suas f	un-
cio	onalidades por aplicativos que não pretendem envolver-se em detalhes da imp	ple-
me	entação.	

Sumário

1	Intr	rodução										
	1.1	Motivação e Objetivos	2									
	1.2	Principais contribuições	2									
	1.3	Recursos utilizados	2									
	1.4	Organização do trabalho	2									
2	Refe	erencial Teórico	3									
	2.1	Twitter	3									
	2.2	API	4									
	2.3	Mineração de dados	4									
	2.4	Processamento de linguagem natural	4									
	2.5	Classificação	4									
	2.6	Naive Bayes	4									
	2.7	Análise de sentimento	5									
3	Proj	posta	6									
	3.1	Trabalhos relacionados	6									
	3.2	Implementação	6									
		3.2.1 Crawler	6									
		3.2.2 Classificação	6									
		3.2.2.1 Algoritmo	6									
		3.2.2.2 Construção da base de dados	6									

<u>Sumário</u> x

			3.2.2.3	Massa de treino		 	 	 •	 			7
			3.2.2.4	Massa de teste		 	 		 	 •		7
		3.2.3	Platafor	na de análise		 	 		 			7
4	Resu	ıltados	e análises									8
	4.1	Cenár	ios e parâ	metros de teste		 	 		 			8
	4.2	Exper	imentos r	ealizados e resultado	s .	 	 		 		 ·	8
5	Con	clusão										9
	5.1	Trabal	lhos Futu	os		 	 	 •	 			10
Re	eferên	cias										11

Introdução

Através do fenômeno da popularização da Internet vivemos hoje um período conhecido como "Era da conhecimento"[1]. A diminuição das distâncias entre bilhões de pessoas por todo o mundo criou um verdadeiro boom em nossas vidas. A sociedade em que vivemos possui hoje uma facilidade ao acesso da informação nunca antes visto. Nesse contexto, redes sociais conhecidas, como Facebook e Twitter se tornaram bastante populares por permitirem a seus usuários acesso à um ambiente onde todos possuem voz e vez para se expressar e por consequência, para se informar sobre tudo que acontece no mundo. Através de Application Program Interface (API) disponibilizadas por essas redes sociais, possuímos fácil acesso à um grande volume de opiniões catalogadas - através de hashtags - que podem ser utilizadas em pesquisas de opinião sobre um tema ou assunto específico. Tal cenário apresenta-se como uma grande oportunidade de pesquisa em áreas acadêmicas, sociais e comerciais. Porém, quando o objeto de estudo é a língua portuguesa, nota-se que a mesma carece de trabalhos e implementações na área de mineração de opiniões e análise de sentimento. Alguns motivos explicam essa carência: poucos investimentos na área de ciência e engenharia da computação em nosso país e a grande dificuldade que a língua portuguesa apresenta ao ser interpretada através de processamento de linguagem natural. [2]

1.1 Motivação e Objetivos

1.2 Principais contribuições

1.3 Recursos utilizados

1.4 Organização do trabalho

Este trabalho está estruturado em 5 capítulos da seguinte forma: no Capítulo 1, para embasamento teórico, são apresentados os conceitos de ... Neste capítulo, os conceitos relacionados a ..., dentre outros, são descritos. Em seguida, no Capítulo XX , é feita uma análise sobre os principais trabalhos relacionados ao uso dos ... No Capítulo ??, os conceitos do arcabouço utilizado ... , são descritos. Nesse capítulo são mostrados os motivos para a escolha desse arcabouço, A proposta XXX é apresentada no Capitulo ??, onde a arquitetura da proposta é detalhada, assim como seus componentes e algoritmos. Em seguida, o Capítulo ?? apresenta as ferramentas utilizadas para implementação da proposta, o ambiente implementação, a descrição dos experimentos e os principais resultados obtidos com o XXX, assim como a análise dos valores encontrados. Por fim, o Capítulo ?? conclui este trabalho, ressaltando os objetivos alcançados com as propostas. As principais vantagens e desvantagens da proposta são discutidas, assim como alguns trabalhos futuros que podem ser desenvolvidos.

Referencial Teórico

Normalmente o Capítulo ?? é parte do referencial teórico/estudo da arte/histórico... Aqui você precisa dar conhecimento para o leitor entender a sua proposta, deixando claro qual o problema. Pode ter mais de um capítulo no caso.

Continue usando citações como esta de exemplo [?, ?].

Para itens estrangeiros como feedback não esqueça de colocar em itálico. Afirmações como essa: são os mesmos de 40 anos atrás [?], precisam de referencia.

2.1 Twitter

 * Como começou * Do que é feito , 140 caracteres * Marcadores, hashtag * Identificação de idioma * Relevância na internet

O twitter é conhecido como um microblog fundado em março de 2006 por Jack Dorsey, Evan Williams e Biz Stone. Ele consiste em pequenos pedaços de informação de até 140 caracteres, que muitas vezes são utilizados pelos usuário para passar um sentimento com o intuito de expressas o seu status naquele momento. O twitter faz uso de marcadores conhecidos como hashtag e os usuário fazem o uso desse marcador da seguinte forma, hashtag-palavra, com isso palavra se torna um marcador e o twitter começa a agregar qualquer usuário que faça a mesma ação. Esse uso massivo de marcadores e agregação foi criado os trending topics, onde é mostrado o qual relevante aquele marcador está em determinado lugar, de escolha do usuário, como: Brasil, Mundo, Rio de Janeiro ou outra qualquer localidade. O twitter de acordo com [3] faz uso de machine learning para identificar e classificar o idioma da mensagem escrita pelo usuário.

2.2 API 4

2.2 API

* O que é uma api * Diferença de api x crawler * Apis mais utilizadas

2.3 Mineração de dados

* O que é mineração de dados * Como é feita * Dificuldades * Exemplos no mercado

2.4 Processamento de linguagem natural

- $\ ^*$ O que é processamento de linguagem natural $\ ^*$ O que é linguagem e linguagem natural
- * Maiores dificuldades

2.5 Classificação

* O que é classificar * Contexto histórico

2.6 Naive Bayes

* O que é o Naive Bayes * Demonstração matemática do algoritmo * Uso dele em analise de sentimento/classificação

Naive Bayes é um algoritmo probabilístico. Baseado no teorema de bayes.

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

onde se infere qual é a probabilidade de um evento A dado um evento B. Porém nesse trabalho é utilizado o *Naive Bayes* e sua diferença para o teorema de Bayes é assumir que a posição das palavras que aparecem no texto não importa, daí é acrescentado o *naive* (ingênuo) ao teorema.

Como visto em [4] o algoritmo computa qual a probabilidade de uma frase, denominada de documento pertencer a uma determinada classe(polaridade) P(c/d), a partir da probabilidade a priori de P(c) do documento pertencer a esta classe e da probabilidades condicionais de cada termo tk ocorrer em um documento da mesma classe. O algoritmo tem como objetivo encontrar a melhor classe para um documento maximizando a probabilidade a posteriori conforme a equação abaixo, onde n_d é o número de termos no

documento d.

$$C_{map} = argmax_{c\epsilon C}P(c|d) = argmax_{c\epsilon C}P(c)\prod 1sksn_dP(t_k/d)$$

2.7 Análise de sentimento

 $\ ^*$ O que é sentimento $\ ^*$ Como fazer a análise $\ ^*$ Como tirar insumo $\ ^*$ Exemplos

Proposta

Definição da sua proposta.

Se for apresentar os algoritmos use por exemplo:

3.1 Trabalhos relacionados

3.2 Implementação

- 3.2.1 Crawler
- 3.2.2 Classificação
- 3.2.2.1 Algoritmo

3.2.2.2 Construção da base de dados

A construção da base de dados foi feita com o intuito de melhor expressar um sentimento de uma palavra ou texto, para a utilização do algoritmo. Para isso a base foi dividida em dois arquivos, positivos e negativos. Além dessa divisão foi utilizada outas bases criadas como: Re-li(referencia), SentiLex-PT(referencia), base da puc(referencia), emoticons(referencia). Todas usando a língua portuguesa ou um linguajar universal, no caso dos emoticons e já estarem polarizadas. Essas bases têm em comum é serem feitas apenas de palavras, então ficou-se a dúvida de como a classificação funcionaria posteriormente quando aplicadas a um texto que as palavras podem não estar no mesmo contexto. Ex: "O flamengo jogou muito mal, mas fico feliz pela vitória", onde tem a palavra mal que já dá um tom negativo a frase, porém ao terminar de ler a frase encontrasse as palavras feliz

3.2 Implementação 7

e vitória que tem um contexto positivo. Com essas bases já citadas foi compreendida a necessidade de uma base mais específica para o linguajar utilizado na internet, constituído de gírias, abreviação e até erros de português, para isso foi criada uma base utilizando dados pegos do twitter a partir da marcação hashtagoscar2016.

- 3.2.2.3 Massa de treino
- 3.2.2.4 Massa de teste
- 3.2.3 Plataforma de análise

Resultados e análises

Descreva os resultados encontrados e análises propostas

- 4.1 Cenários e parâmetros de teste
- 4.2 Experimentos realizados e resultados

Conclusão

Um paragrágo relembrando a importancia do cenário

Esse trabalho identificou e abordou alguns desses problemas, assim como propôs, desenvolveu e avaliou um serviço de gerenciamento eXXXXX Relembrar o que o trabalho fez.

A proposta, XXX, se destacou pelo XXXX que apresentou quando comparada XXXX.

A proposta atingiu os seguintes objetivos, exemplo:

- permitiu que sejam usados IEDs mais simples pois a solução não precisa ser implementada nesses dispositivos;
- reduziu o tempo de convergência dos algoritmos, o atraso na entrega de dados e o tráfego na rede;
- atendeu aos requisitos da Norma IEC 61850;
- implementou e testou um encaminhamento *multicast* independente de camadas e transparente aos dispositivos finais;
- permitiu uma configuração da rede facilitada;
- usou o arquivo SCD da norma para autoconfiguração da rede de Telecomunicações;
- tornou a rede menos sujeita à erros por ser automático;
- permitiu o uso mais inteligente de recuperação de falhas;
- permitiu o alcance de tempos de resposta menores por possuir uma característica proativa.

5.1 Trabalhos Futuros 10

Os experimentos e as análises realizadas mostraramXXXXXX

Falar de todos os resultados encontrados de forma sumarizada, máximo de uma folha.

Os testes mostraram, também, que

Outro ganho relacionado ao uso da técnica....

A análise realizada mostra que ...

5.1 Trabalhos Futuros

Como trabalhos futuros, pretende-se ...

Uma outra questão é o estudo, desenvolvimento e implementação ...

Por fim, pretende-se fazer ...

Referências

- [1] H. M. M. Lastres, S. Albagli, and C. A. K. Passos, *Informação e globalização na era do conhecimento*. Campus Rio de Janeiro, 1999.
- [2] D. Santos, "O projecto processamento computacional do português: Balanço e perspectivas," quot; In Maria das Graças Volpe Nunes (ed) V Encontro para o processamento computacional da língua portuguesa escrita e falada (PROPOR 2000)(Atibaia SP 19-22 de Novembro de 2000) São Paulo: ICMC/USP, 2000.
- [3] A. Romann-Kurrik". ("2013", "Fevereiro") "introducing new metadata for tweets". [Online]. Available: "https://blog.twitter.com/2013/introducing-new-metadata-for-tweets"
- [4] G. Lucca, I. A. Pereira, A. Prisco, and E. N. Borges, "Uma implementação do algoritmo naïve bayes para classificação de texto," 2013.