Biomaterials HW 7

Nikhil Menon

October 29th, 2016

1. From the given parameters, we can calculate the total volume of the cell to be $9.33*10^{-23}cm^3$. Then, since there are $4~CH_2$ groups, the total mass is

$$\frac{4*14(g/mol)}{6.022*10^{23}atoms/mol} = 9.29*10^{-23}g$$

Therefore, the density of crystalline polyethylene is $0.996g/cm^3$ If the fraction of the material that is crystal is f,

$$0.996f + 0.866(1 - f) = 0.983g/cm^3, f = 0.89$$

2a. We know that

$$T_g = T_{\infty} - \frac{K}{M}$$

After performing a linear fit with the given T_G against the inverse of the molecular weight using data,

$$T_{\infty} = 379K, K = 2.1 * 10^5 Kgmol^{-1}$$

2b. For a polydisperse polymer,

$$T_q = w_1 T_{q,1} + w_2 T_{q,2} + w_3 T_{q,3} + w_4 T_{q,4} = 377K$$

3. The T_g should be about 246 K. The plotted data with the equation of best fit is shown below. The data is approximately quadratic, and this modal is a good fit as seen in the high R^2 value.

