

제 4 장 변수와 데이터 유형 **2**부

(Number System)

밑수(base) 변환

- □ 컴퓨터에서 모든 정보는 2진수로 표현된다
- □ C 프로그램에서는 10진수, 8진수, 16진수 사용 가능
- □ 밑수 변환이 필요 Euclid 호제법
- □ 밑이 r인 수의 의미
 - □ 예를 들어, $687_{10} = 6*10^2 + 8*10^1 + 7*10^0$

정수의 변환

□ 10진수를 다른 진수(예를 들면 2진수)로 변환 : Euclid 호제법

2	687	1
2	343	1
2	171	1
2	85	1
2	42	0
2	21	1
2	10	0
2	5	1
2	2	0
	1 _	

```
687 = b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + ... b_1 \times 2^1 + b_0 \times 2^0
에서 b_{n-1}, b_{n-2},... b_1, b_0 와 n을 구해야 한다
1) 양변을 2로 나눈다
2) 687/2 =
3) 343 \times 2 + 1  // b0 = 1
4) (171 \times 2 + 1) \times 2 + 1  // b1 = 1
5) ((85 \times 2 + 1) \times 2 + 1) \times 2 + 1  // b2 = 1
6) .
```


s 진수를 d 진수로 변환

- □ STEP-1: s진수를 먼저 10진 수로 변환
- □ STEP-2: 변환된 10진수를 d진수로 변환
- □ 예) 687, **를 2**진수로 변환 : 먼저 10진수로 변환하고, 2진수로 변환

$$687_9 \rightarrow D_{10} \rightarrow B_2$$

$$D_{10} = 6 \times 9^2 + 8 \times 9^1 + 7 \times 9^0 = 565_{10} \rightarrow 2^{-0.0}$$
 변환은 앞에서 한 것과 동일한 방법

9	***.	565 < - 7
9	X	62 < 8
	X	+

$$D_{10} = 6 \times 9^{2} + 8 \times 9^{1} + 7 \times 9^{0}$$

$$= \{6 \times 9 + 8\} \times 9 + 7$$

$$62$$

$$565$$

소수의 변환

- □ 소수의 진법 변환은 어떻게 ?
- □ 예) 0.6875₁₀을 2진수로 변환하면 ? 8진수로 변환하면?
- **0.1011**₂

2	X	0.6875	1
2	X	0.3750	0
2	X	0.7500	1
2	X	0.5000	1
		0	

- 1) 0.6875에 2를 곱하면 1.3750 --
- 2) 정수 부분 1을 오른쪽 칸에, 나머지 0.3750을 아래칸에 쓰고
- 3) 0.3750에 대해서 동일한 방법으로 2를 곱하여 정수 부분을 오른쪽 칸에, 나머지를 아래칸에 쓰고

٠

이러한 과정을 나머지 부분이 0 이 될 때까지 한다.

그리고 위부터 2진수를 소수점을 붙여 기술한다 → 0.1011

□ 그러면 0.0101₂를 10진수로 변환하면?

2	0.3125	0
2	0.625	1
2	0.25	0
2	0.5	1
	0	

- 1) 먼저 0.0101₂를 위에서부터 소수부분을 기록한다
- 2) 맨 아래부터 시작하여.... 오른쪽 수와 아래쪽 수를 더해서 2로 나눈 결과를 위칸에 적는다 (즉, (1+0)/2 = 0.5)
- 3) 다시 오른쪽 수와 아래쪽 수를 더해 2로 나는 결과를 위칸에 적는다 (즉, (0+0.5)/2 = 0.25)

오른쪽 칸에 수가 없을 때까지 반복한다

- 1) 1과 0을 더해서 2로 나눈 나머지 0.5를 위칸에 적는다
- 2) 0과 0.5를 더해서 2로 나눈 결과 0.25를 위칸에 적는다
- 3) 1과 0.25를 더해서 2로 나눈 결과 0.625를 위칸에 적는다
- 4) 0과 0.625를 더해서 2로 나눈 결과 0.3125를 위칸에 적는다
- 5) 최종 결과는 0.312510 이다

양수와 음수의 표현 - 보수

- □ 보수(complement)의 개념을 이용하여 양수와 음수를 표현
- □ r 진법에서의 보수 유형은 2가지가 존재
 - r's complement (r의 보수)
 - □ (r-1)'s complement ((r-1)의 보수)
 - □ 예) 2진법에서는 2's complement와 1's complement가 존재
 - □ 예) 10진법에서는 10's complement와 9's complement가 존재
- r's complement = (r-1)'s complement + 1
- □ (r-1)'s complement
 - □ 같은 자리의 수끼리 합이 (r-1)이 되는 두 수의 서로 관계
 - □ 예) 10진수 687의 9's complement인 687' 는 312이다
- r's complement
 - □ (r-1)'s complement + 1
 - □ LSB로부터 시작하여 처음 0이 아닌 자리 수에 대해서만 합이 r이 되도록 하고 그 다음 자리 부터는 합이 (r-1)이 되도록 만든 수

2진 정수의 표현

- □ 부호와 절대값 (Signed-Magnitude Notation)
- □ 부호화 1의 보수 (Signed 1's Complement Notation)
- □ 부호화 2의 보수 (Signed 2's Complement Notation)
- 초과 표기 (Excess Notation) 등

9

(1) 부호와 절대값으로 정수 표현

- □ Most Significant Bit(MSB, 최상위 유효비트)를 부호(sign) 비트로 간 주하고 나머지 비트들은 절대값으로 표시
 - MSB = 1 : 음수
 - MSB = 0:양수
- 예를 들어, 8-비트로 정수를 표현한다고 가정하면(보통 컴퓨터에서 는 32-비트로 표현하지만 너무 길어서...)
 - □ 10001101 = ? 일단 음수다 => 10진수로 말하면 -11
 - □ 00000011 = ? 일단 양수다 => 10진수로 말하면 +3
- □ 8-비트로 정수를 표현한다고 가정할 때,표현할 수 있는 정수의 범위는?
 - □ 최대 수 : 01111111 (10진수로 말하면 127)
 - □ 최소 수 : 11111111 (10진수로 말하면 -127)
 - □ n 비트로 표현 가능한 정수의 범위는 -(2ⁿ⁻¹ -1)부터 +(2ⁿ⁻¹ 1)
- □ 그러면 0은? 00000000 인가? 10000000 인가?
 - □ 둘 모두 0으로 0 표현이 2개가 존재
- 덧셈 결과가 부정확하다

- □ 양수와 음수의 덧셈 연산을 하였을 경우, 결과가 부정확하다.
 - □ (예) +3 + (-3) = 0 이 도출되어야 한다
 - □ 그런데...

(2) 2's Complement로 정수 표현

- □ 양수이면 그대로 표현하고, 그 **양수의 2의 보수를 음수로 정의**하는 표기법
 - □ 8-비트로 정수를 표현한다고 가정할 때,
 - □ +5 = 00000101 인데, 그러면 -5는 어떻게 표현하는가?
 - □ -5는 +5의 2's complement, 즉 00000101(+5)의 2's complement 인 11111011 이 -5가 되는 것이다
- 8-비트로 정수를 표현한다고 가정할 때, 표현할 수 있는 정수의 범위는?
 - □ 최대 수 : 01111111 (10진수로 말하면 127)
 - □ 최소 수 : 10000000 (10진수로 말하면 -128)
 - □ 그러므로 n 비트로 표현 가능한 정수의 범위는 -(2ⁿ⁻¹)부터 +(2ⁿ⁻¹ 1)
- □ 0은 00000000 으로 하나만 존재, 그러면 1000000은?
 - □ 10000000 은 -128로 간주 (왜? MSB가 1이므로...)
- 두수의 합 연산이 정확하게 도출된다

음수를 2의 보수 로 표현하면 양수 와 음수를 더할때 각각의 비트들을 더하면 됩니다.

예제

```
/* 2의 보수 프로그램*/
#include <stdio.h>
                                           음수가 2의 보수로
int main(void)
                                           표현되는지를 알아보자.
    int x = 3;
   int y = -3;
    printf("x = %08X\n", x); // 8자리의 16진수로 출력한다.
    printf("y = %08X\n", y); // 8자리의 16진수로 출력한다.
    printf("x+y = %08X\n", x+y); // 8자리의 16진수로 출력한다.
    return 0;
x = 00000003
y = FFFFFFD
x+y = 00000000
```


(3) 초과표기법(Excess Notation)

- 표현 비트 길이가 n이라면 → <u>n-bit excess notation</u>이라고 한다
- □ 0의 설정 : MSB=1이고 나머지는 모두 0인 수를 0으로 정의
 - □ 그러므로 4-비트 초과표기법으로 정수를 표현한다고 할 때, 1000 을 0으로 간주하고 그보다 1만큼 크면 +1, 작으면 -1, 2만큼 크면 +2, 작으면 -2, ... 이러한 방식의 정수 표현 방식

1111 → 7	8- ← 0000	** 이 코드를 살펴보면 원래의 2진수 값보다 8만큼
1110 → 6	0001 → -7	초과한 코드를 사용하고 있음을 알 수 있다.
1101 → 5	0010 → -6	
1100 → 4	0011 → -5	** 그래서 이 표기 방법을 <u>4-bit 초과표기</u> (excess
1011 → 3	0100 → -4	notation) 혹은 8초과 코드 (Excess-8 code)라고 한다.
1010 → 2	0101 → -3	** n-bit를 사용하여 표현한다면, n-bit excess
1001 → 1	0110 → -2	"" N-bit를 자중하여 표현한다던, N-bit excess
1000 → 0	0111 → -1	notation 혹은 Excess-2 ⁿ⁻¹ code 라고 한다

- □ 2진수로 표현한 정수 1011 에 대하여,
 - □ 부호와 절대값으로 표현한 것이라면 = -3
 - □ 1의 보수 표기법으로 표현한 것이라면 = -4
 - □ 2의 보수 표기법으로 표현한 것이라면 = -5
 - □ 초과표기로 표현한 것이라면 = +3
- □ 8-bit 초과 표기를 사용한다고 할 때, 10110110 은 10진수로 얼마인가?

(4) 4-bit BCD(Binary Coded Decimal) 코드

- □ 2진화 10진 코드 혹은 8421 가중치 코드
- □ 10진의 각 자리를 0000부터 1001까지의 4-비트 2진수로 표기
- □ 1010, 1011, 1100, 1101, 1110, 1111의 6개 코드는 사용하지 않음
- □ 그 외는 16진수 표기와 동일하다
- **미** 예) 953₁₀ = 1001 0101 0011
- **의** 예) 64.31₁₀ = 0110 0100 . 0011 0001
- □ 2진수보다 비트 사용이 비효율적인 반면 10진수로의 변환이 용이
- □ 정수의 표현 : 음수는 10의 보수를 BCD로 표현
 - □ 양수: 0000 (0)
 - □ 음수 : 1001 (9)
 - **+375**: 0000 0011 0111 0101
 - **-240 = 9760 : 1001 0111 0110 0000**
 - □ (0240의 10의 보수는 9760이다)

9

- □ 예)
- +375 240 =
- +375 + (-240) =
- **0375 + 9760 =**
- \bigcirc 0135 = +135
- □ 이때 발생하는 캐리는 무시한다
- □ 예)
- -240 240 =
- **9760 + 9760 =**
- **9520 = -480**
- □ 발생하는 캐리는 무시
- □ 9520은 -480 이다

(5) BCD 코드의 변형

- 3초과 코드(Excess-3 code)
 - □ BCD 코드(8421 코드)로 표현된 값에 3을 더해준 값으로 나타내 는 코드: 그러므로 가중치 코드가 아니다
 - □ 자기 보수(self complementary) 특성
 - □ 모든 비트가 0인

코드는 존재하지 않는다	10 진 수	BCD코 드	3초과코드
	0	0000	0011
	1	0001	0100
	2	0010	0101
	3	0011	0110
1's complement	4	0100	0111
	5	0101	1000
	- 6	0110	1001
	. 7	0111	1010
	8	1000	1011
	9	1001	1100

다양한 10진 코드들

- BCD 코드로 정수 표현 → packed decimal
- □ 가장 우측에 4-bit를 추가하여 부호로 사용한다
 - □ 양수 C, F : 음수 D
 - **1** +123 = 0001 0010 0011 **1100**
 - **-456 = 0100 0101 0110 1101**
- □ 기타 가중치 코드들
 - □ 2421 코드
 - □ 5421 코드
 - □ 84-2-1 코드
 - □ 51111 코드
 - □ Biquinary 코드 (5043210)
 - Ring Counter (9876543210)

기타 가중치 코드

10진수	8421코드 (BCD)	2421 코드	5421 코드	84-2-1 코드	51111 코드	바이퀴너리코드 (Biquinary Code) 5043210	링 카운터 (ring counter) 9876543210
0	0000	0000	0000	0000	00000	0100001	000000001
1	0001	0001	0001	0111	00001	0100010	000000010
2	0010	0010	0010	0110	00011	0100100	000000100
3	0011	0011	0011	0101	00111	0101000	000001000
4	0100	0100	0100	0100	01111	0110000	0000010000
5	0101	1011	1000	1011	10000	1000001	0000100000
6	0110	1100	1001	1010	11000	1000010	0001000000
7	0111	1101	1010	1001	11100	1000100	0010000000
8	1000	1110	1011	1000	11110	1001000	0100000000
9	1001	1111	1100	1111	11111	1010000	1000000000

Gray Code

- □ 비가중치 코드로 연산에는 부적당하지만
- 이웃하는 코드 간에 하나의 비트만 다르다는 특성을 가지므로 여 러가지 하드웨어 제어 코드 등으로 유용하게 사용된다

10진수	2진코드	Gray code	10진수	2진코드	Gray code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

2진 코드 → Gray code 생성

- □ 2진 코드의 MSB는 변경 없이 유지한다
- MSB부터 시작하여 오른쪽으로 이웃한 2비트 끼리 XOR 연산을 하여 Gray code의 나머지 비트를 생성
- □ 예) 2진 코드 0 1 1 1에 해당하는 Gray code를 생성하면
 - MSB 0은 그대로 유지 0
 - 0과 그 다음 비트 1과 XOR 하면 1
 - □ 1과 그 다음 비트 1을 XOR 하면 0
 - □ 1과 그 다음 비트 1을 XOR 하면 0
 - □ 그러므로 2진 코드 0 1 1 1에 대한 Gray code는 0 1 0 0이 된다

Gray code → 2진 코드

기타 비가중치 코드

10진수	3-초과 코드	5중 2코드 (2-out-of-5)	shift counter	그레이코드
0	0011	11000	00000	0000
1	0100	00011	00001	0001
2	0101	00101	00011	0011
3	0110	00110	00111	0010
4	0111	01001	01111	0110
5	1000	01010	11111	0111
6	1001	01100	11110	0101
7	1010	10001	11100	0100
8	1011	10010	11000	1100
9	1100	10100	10000	1101

부동소수점형(Floating Point Expression)

- □ 3개의 부분으로 이루어진다
 - □ 부호(sign) 부분
 - □ 정규화된 가수부분 (normalized fraction part)
 - □ 지수(exponent) 부분

실수	과학적 표기법	지수 표기법
123.45	1.2345×10^{2}	1.2345e2
12345.0	1.2345×10^{5}	1.2345e5
0.000023	2.3×10^{-5}	2.3e-5
2,000,000,000	2.0×10^9	2.0e9

고정 소수점 방식(Fixed Point Expression)

- 정수 부분을 위하여 일정 비트를 할당하고 소수 부분을 위하여 일정 비트를 할당
- 예를 들어, 전체가 32비트이며, 정수 부분 16비트, 소수 부분 16비트 할당
- □ (예) 3.14

□ 과학과 공학에서 필요한 아주 큰 수를 표현할 수 없다

□ 부동 소수점 방식 비트 할당 – 표현 비트 수가 32 비트일 경우

□ 부호 1비트, 지수 7비트, 가수 24비트라면

- □ 표현할 수 있는 범위가 대폭 늘어난다.
- □ 10-38 에서 10+38

자료형	명칭	크기	범위
floot	단일정밀도(single-precision)	ooHI ∈	1 1 1 7 1 0 0 1 0 - 38
float	부동소수점	02015	$\pm 1.17549 \times 10^{-38} \sim \pm 3.40282 \times 10^{+38}$
double	두배정밀도(double-precision)	64HIE	10.00107 × 10-308
double	부동소수점	0441	$\pm 2.22507 \times 10^{-308} \sim \pm 1.79769 \times 10^{+308}$
	두배확장정밀도	64 <u>베트</u>	
long double	(double-extension-precision)	<u></u>	$\pm 2.22507 \times 10^{-308} \sim \pm 1.79769 \times 10^{+308}$
	부동소수점	80비트	

```
/* 부동 소수점 자료형의 크기 계산*/
#include <stdio.h>
int main(void)
     float x = 1.234567890123456789;
     double y = 1.234567890123456789;
     printf("float의 크기=%d\n", sizeof(float));
     printf("double의 크기=%d\n", sizeof(double));
     printf("long double의 크기=%d\n", sizeof(long double));
     printf("x = %30.25f\n", x);
     printf("y = \%30.25f\n",y);
     return 0;
```

```
float의 크기=4
double의 크기=8
long double의 크기=8
x = 1.2345678806304932000000000
y = 1.2345678901234567000000000
```


- □ 예제
- □ 전체 길이는 16비트
 - □ 부호 부분 : MSB 1 비트
 - □ 지수 부분 : 5 비트 (15초과 표기법으로 표현)
 - □ 가수 부분 : 10 비트
 - 여기서 부동소수점으로 표현된 0 10010 1011110000 은 10진 수로 얼마인가?
 - □ 1) 부호는 0-이므로 양수
 - □ 2) 지수부분 10010 은 15초과표기를 사용하므로 10진수로 3
 - □ 3) 가수부분은 정규화되어 있다는 전제하에서
 - □ 그러므로 이 수는 0.1011110000 x 2³ = 101.1110000 = 5.875

- 8 비트로 부동소수점을 표현한다고 할 때, 01101011 은 얼마인가?
 2진수로 답하라. 단 지수부분 3비트 가수부분 4비트이며, 지수부분
 은 3-비트 초과코드를 사용한다
 - □ 0 110 1011 이므로 부호는 양수, 지수부분은 110 이므로 2이며 가수부분은 1011 이므로 2진수로 표현하면 0.1011 x 2² = 10.11 이된다
- □ 13.25₁₀을 32비트 부동소수점 방식으로 표현하면 얼마인가? 2진수로 표현하라. 단 지수부분은 7-비트 초과표기법을 사용한다
 - □ 일단 양수이므로 부호 비트 = 0
 - □ 그리고 13.25를 2진수로 변환하여야 하는데 13.25₁₀ = 1101.01₂ 가되므로 가수 부분은 0.110101 이 되고, 지수부분은 4가 되어야 한다.
 - □ 그러므로 컴퓨터 내부에서 13.25₁₀ 은
 - □ 0 1000100 110101000000000000000000 이렇게 표현된다

부동 소수점 상수

- □ 일반적인 실수 표기법
 - □ 3.141592(double형)
 - 3.141592F(float형)
- □ 지수 표기법
 - □ 1.23456e4 = 12345.6
 - □ 1.23456e-3 = 0.00123456
- □ 유효한 표기법의 예
 - **1.23456**
 - □ 2. // 소수점만 붙여도 된다.
 - □ .28 // 정수부가 없어도 된다.
 - 0e0
 - □ 2e+10 // +나 -기호를 지수부에 붙일 수 있다.
 - □ 9.26E3 //
 - □ 9.26e3 //

부동 소수점 오버플로우

```
#include <stdio.h>

int main(void)
{
float x = 1e39;
printf("x = %e\n",x);
}
```

C:\CPROGRAM\test\test.c(5) : warning C4056: overflow in floating-point constant arithmetic

부동 소수점 언더플로우

```
#include <stdio.h>
int main(void)
                                                숫자가 작아서
                                                언더플로우 발생
     float x = 1.23456e-38;
    float y = 1.23456e-40;
     float z = 1.23456e-46;
     printf("x = %e\n", x);
     printf("y = %e\n",y);
     printf("z = %e\n",z);
x = 1.234560e-038
y = 1.234558e-040
z = 0.000000e+000
```

부동소수점 연산 오차(truncation error)

□ 오차가 있을 수 있다!

```
#include <stdio.h>

int main(void)
{
    double x;

    x = (1.0e20 + 5.0)-1.0e20;
    printf("%f \n",x);
    return 0;
}
```

0.000000

절단 오차(Truncation Error)

- □ 부동소수점 실수를 표현하는 비트 길이에 따라 달라진다
- □ 예) 8비트 부동 소수점 표현
 - □ 부호 1비트 지수 3비트 초과표기 사용 가수 4비트
 - 2.625 = 10.101₂ 를 표현하려고 하면,...
 - □ 10.101 = 0.10101 x 2² : 부호 0 지수 110 가수 1010 이 된다
- □ 즉, 0 110 1010 이 되어 맨 마지막 1이 잘려 나가게 된다
- □ 이러한 오차를 절단 오차라고 한다
 - □ 그러므로 2.625는 2.5로 되어 연산이 이루어지게 되는 것이다
- □ 2.625의 정확한 표현을 위해서는 5비트의 가수 부분을 필요로 함

- □ 앞에서 언급한 8비트 부동 소수점 표현방식을 사용한다고 가정하고, 다음과 같은 연산 (2.5 + 0.125 + 0.125)을 생각해 보자
- □ 2.5 + 0.125 + 0.125 = 2.5 + 0.125 = 2.5 (절단 오차 발생)

- □ 그러나 이를 (0.125 + 0.125 + 2.5) 처럼 연산 순서를 바꾸면
- □ 0.125 + 0.125 = 0.25 → 0.25 + 2.5 = 2.75가 되어 정확한 값을 도 출한다