Notes for Undergraduate Algebra by Serge Lang

Zhao Wenchuan

April 9, 2021

Chapter 1

The Integers

1.1 Terminology of Sets

1.2 Basic Properties

Theorem 1.2.1 (Induction: First Form). Suppose that for each integer $n \ge 1$ we are given an assertion A(n), and that we can prove the following two properties:

- (1) The assertion A(1) is true.
- (2) For each integer $n \ge 1$, if A(n) is true, then A(n+1) is true.

Then for all integers $n \geq 1$, the assertion A(n) is true.

Theorem 1.2.2 (Induction: Second Form). Suppose that for each integer $n \ge 0$ we are given an assertion A(n), and that we can prove the following two properties:

- (i') The assertion A(0) is true;
- (ii') For each integer n > 0, if A(k) is true for every integer k with $0 \le k < n$, then A(n) is true.

Then the assertion A(n) is true for all integers $n \geq 0$.

Theorem 1.2.3 (Euclidean Algorithm). Let m, n be integers and m > 0. Then there exists integers q, r with $0 \le r < m$ such that

$$n=qm+r.$$

The integers q, r are uniquely determined by these conditions.

Proof. For m = n, then q = 1 and r = 0 are unique.

For m < n, there is a greatest integer q such that

$$0 \le n - qm < m.$$

Because if q is not the greatest, then there must be q+1 such that the inequality holds. But

$$0 \le n - (q+1)m \iff m \le n - qm,$$

which is impossible. Thus q must be the greatest one.

Secondly, there is a smallest integer q such that

$$0 \le n - qm < m$$
.

Because if it is not, then q-1 makes the inequality holds. But

$$n - (q - 1)m < m \iff n - qm < 0,$$

which is impossible. Thus q must be the smallest one.

As q is the greatest as well as the smallest one, then q is unique.

Suppose r is not unique, then there must be $s \in \mathbb{Z}_{[0,m)}$ with $s \neq r$ such that

$$n = qm + r$$
, and $n = qm + s$.

then, we have

$$0 = r - s \neq 0,$$

a contradiction. So r is unique.

Exercises

1. If m, n are integers ≥ 1 and $n \geq m$, define the **binomial coefficient**

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}.$$

As usual, $n! = n \cdot (n-1) \cdots 1$ is the product of the first n integers. We define 0! = 1 and $\binom{n}{0} = 1$. Prove that

$$\binom{n}{m-1} + \binom{n}{m} = \binom{n+1}{m}.$$

Proof. This one can be straightly proved by the definition of binomial coef-

ficient as following.

$$\binom{n}{m-1} + \binom{n}{m} = \frac{n!}{(m-1)!(n-m+1)!} + \frac{n!}{m!(n-m)!}$$

$$= \frac{n!m}{m!(n-m+1)!} + \frac{n!(n-m+1)}{m!(n-m+1)!}$$

$$= \frac{n!}{m!(n-m+1)!}(m+n-m+1)$$

$$= \frac{(n+1)!}{m!(n+1-m)!}$$

$$= \binom{n+1}{m}.$$

2. Prove by induction that for any integers x, y we have

$$(x+y)^n = \sum_{i=1}^n \binom{n}{i} x^i y^{n-i} = y^n + \binom{n}{1} x y^{n-1} + \binom{n}{2} x^2 y^{n-2} + \dots + x^n.$$

Proof. The equation holds for n = 1, because

$$(x+y)^1 = x + y.$$

Assume the equation holds for any integer $n \geq 1$, then

$$(x+y)^{n+1} = (x+y) \sum_{i=0}^{n} \binom{n}{i} x^{i} y^{n-i}$$
$$= \sum_{i=0}^{n} \left[\binom{n}{i} x^{i} y^{n+i} + \binom{n}{i} x^{i+1} y^{n-i-1} \right].$$

By Exercise 1, it is easy to prove that

$$\binom{n}{k} = \binom{n+1}{k+1} - \binom{n}{k+1}.$$

Then the equation is

$$\sum_{i=0}^{n+1} \left[\binom{n+1}{i} x^{i} y^{n+1-i} - \binom{n}{i} x^{i} y^{n+1-i} + \binom{n}{i} x^{i} y^{n+1-i} \right]$$

$$= \sum_{i=0}^{n+1} \binom{n+1}{i} x^{i} y^{n+1-i} \Big|_{\text{let } k = n+1}$$

$$= \sum_{i=0}^{k} \binom{k}{i} x^{i} y^{k-i}.$$

- 3. Prove the following statements for all positive integers:
 - (a) $1+3+5+\cdots+(2n-1)=n^2$;
 - (b) $1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6$:
 - (c) $1^3 + 2^3 + 3^3 + \dots + n^3 = [n(n+1)/2]^2$.

Proof. (a) Clearly the equation holds for n=1. Suppose it holds for all integer $n \geq 1$, then we have

$$\sum_{i=1}^{n+1} (2n-1) = n^2 + 2n + 1 = (n+1)^2$$

(b) Clearly the equation holds for n=1. Suppose it holds for all integer $n\geq 1$, then we have

$$\sum_{i=1}^{n+1} i^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} \Big|_{\text{let } k = n+1}$$

$$= \frac{k(k+1)(2k+1)}{6}.$$

(c) Clearly the equation holds for n=1. Suppose it holds for all integer $n \geq 1$, then we have

$$\sum_{i=1}^{n+1} i^3 = \left(\frac{n(n+1)}{2}\right)^3 + (n+1)^3$$

$$= \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$$

$$= \frac{(n+1)^2(n+2)^2}{4}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^2 \Big|_{\text{let } k = n+1}$$

$$= \left(\frac{k(k+1)}{2}\right)^2$$

4. Prove that

$$\left(1+\frac{1}{1}\right)^1 \left(1+\frac{1}{2}\right)^2 \cdots \left(1+\frac{1}{n-1}\right)^{n-1} = \frac{n^{n-1}}{(n+1)!}$$

Proof. The equiation holds for n = 2, because

$$\left(1 + \frac{1}{1}\right)^1 = 2 = \frac{2}{1!}.$$

Assume the equation holds for any integer $n \geq 2$, then

$$\begin{split} \prod_{i=1}^{n} \left(1 + \frac{1}{i} \right)^{i} &= \frac{n^{n-1}}{(n-1)!} \left(1 + \frac{1}{n} \right)^{n} \\ &= \frac{n^{n-1}}{(n-1)!} \frac{(n+1)^{n}}{n^{n}} \\ &= \frac{n^{n-1}(n+1)^{n}}{n!n^{n-1}} \\ &= \frac{(n+1)^{n}}{n!} \Big|_{\text{let } k = n+1} \\ &= \frac{k^{k-1}}{(k-1)!}. \end{split}$$

5. Let x be a real number. Prove that there exists an integer q and a real number s with $0 \le s < 1$ such that x = q + s, and that q, s are uniquely determined. Can you deduce the Euclidean algorithm from this result without using induction?

Proof. This is just a straight corollary of Euclidean algorithm. \Box

1.3 Greatest Common Divisor

Definition 1.3.1. Given $n, d \in \mathbb{Z} \setminus \{0\}$, we shall say that d divides n, or d is a divisor of n, denoted d|n, iff

$$\exists q \in \mathbb{Z}, \quad n = dq.$$

The divisors of n is a set

$$\operatorname{div}(n) = \{d \in \mathbb{Z} \setminus \{0\} : d|n\}.$$

For example,

$$\begin{aligned} \operatorname{div}(8) &= \{\pm 1, \pm 2, \pm 4, \pm 8\}, \\ \operatorname{div}(-24) &= \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12\}, \\ \operatorname{div}(35) &= \{\pm 1, \pm 5, \pm 7, \pm 36\}. \end{aligned}$$

Clearly, for all $n \in \mathbb{Z} \setminus \{0\}$, for all $x \in \operatorname{div}(n) \setminus \{\pm n\}$

$$|x| \le \frac{|n|}{2}.$$

Definition 1.3.2. Given $m, n \in \mathbb{Z} \setminus \{0\}$, the *common divisor* is defined to be the set

$$\operatorname{cd}(m,n) = \left\{ d \in \mathbb{Z}_{>0} : d|m \wedge d|n \right\}.$$

Thus,

$$\operatorname{cd}(m,n) = \operatorname{div}(m)_{>0} \cap \operatorname{div}(n)_{>0}$$

For example,

$$cd(18,12) = \{2,3,6\},\$$

$$cd(-18, 12) = \{2, 3, 6\},\$$

$$cd(24, -20) = \{2, 4\},\$$