

Neural Ordinary Differential Equation

Andy Li, Taylor Wang, Tianrui Wang, Tyler Dale

Cornell Bowers C₁S Computer Science

Cornell University

Introduction/Motivation

- Problem. Discrete-depth networks struggle to trade accuracy, computation, and memory gracefully. Neural ODEs treat depth as continuous time, promising adaptive computation and lower memory via the adjoint method.
- Goal / Hypothesis. Reproduce three canonical results—ODE-Net for image classification, CNF/FFJORD for density estimation, and Latent-ODE for irregular time-series—while providing clean, drop-in PyTorch components.
- Our expected results. 1. Swap ResNet blocks with adaptive ODEBlocks effortlessly. 2. Train continuous normalizing flows with built-in trace tools. 3. Model sparse, irregular time-series via Latent-ODE API.

Summary

Continuous-depth networks. The paper's residual block can be viewed as one Euler step of an ODE; replacing the fixed stack with a black-box solver yields an adaptive-depth model called ODE-Net.

Adjoint sensitivity = O(1) memory. Gradients are computed by solving a second, backward ODE, so training an arbitrarily deep ODE-Net needs constant activation storage while keeping exact gradients.

Figure 3: Statistics of a trained ODE-Net. (NFE = number of function evaluations.)

Broader & leaner: The ODE framework scales from invertible CNFs (density estimation) and Latent-ODEs (irregular time-series) to MNIST classification, matching ResNet accuracy with ~3× fewer parameters and delivering state-of-the-art NLLs.

CNF / FFJORD

- Density estimation on Two-Moons (5k points).
- Single-channel MNIST 28 × 28 (3 epochs).

Methodology / Model

- Forked FFJORD implementation; patched for CUDA 12 + torchdiffeq master.
- CNF parameterized by 8 coupling layers; Hutchinson-trace estimator with Gaussian probe vectors.

After 5 000 steps — Converged CNF

Results

Accurate & expressive. After 5 000 steps the CNF reaches an NLL of ≈ -1.36 (paper: -1.38) and produces samples that visually match the twomoon manifold.

Efficient training dynamics. The timeline shows an isotropic Gaussian twisting into two moons within the first 100 steps, while the average trace-cost falls ~3×—evidence that the learned vector field becomes both targeted and cheap to evaluate.

Latent-ODE / Time-series VAE

Methodology / Model

A small neural vector field, trained on short 10-step windows, can identify the true 2-D cubic dynamics and generalize to a 25 s roll-out.

Converged dynamics (step ≈200+)

Latent-ODE: encode-solve-decode VAE with Neural-ODE as decoder hidden state solver.

Computation graph of the latent ODE mode

Latent-variable ODE can infer hidden initial state and continuous dynamics from noisy spiral samples, then reconstruct and extrapolate the full trajectory.

Spiral recon @ step 500 (early)

Spiral recon @ step 2000 (final)

Neural ODE learning of continuous dynamics plus a learned collision surface and restitution coefficient reproduces the full bouncing-ball height curve.

Loss components (full training)

Loss components (zoom last 1 k steps)

Results

Reliable latent dynamics. Final model hits $\approx 0.90 \pm$ 0.05 RMSE, cleanly reconstructs & extrapolates the spiral while KL and recon losses plateau, showing the learned latent ODE captures true system behavior.

ODE-Net to ResNet replacement

- Supervised image classification on MNIST (60 k train / 10 k test, 28×28).
- Reproduce Table 1 from the paper (accuracy \pm std over 3 seeds).

Methodology / Model

- Baseline: 4-block ResNet-like CNN (≈0.20 M params).
- Continuous: Replace each residual block with ODEBlock(func, solver="dopri5", rtol=1e-3, atol=1e-6) using torchdiffeq adjoint.

Results

Table 1: Performance on MNIST. †From LeCun et al. (1998).

	Test Error	# Params	Memory	Time
1-Layer MLP [†]	1.60%	0.24 M	_	=
ResNet	0.41%	0.60 M	$\mathcal{O}(L)$	$\mathcal{O}(L)$
RK-Net	0.47%	0.22 M	$\mathcal{O}(ilde{L})$	$\mathcal{O}(ilde{L})$
ODE-Net	0.42%	0.22 M	$\mathcal{O}(1)$	$\mathcal{O}(ilde{L})$

Table 1: Table A1 · Reproduction results on MNIST (ours)

	Test Error	# Params	Memory	\mathbf{Time}
ResNet	1.87%	$0.199\mathrm{M}$	$\mathcal{O}(L)$	$\mathcal{O}(L)$
ODE-Net	2.09%	$0.182\mathrm{M}$	$\mathcal{O}(1)$	$\mathcal{O}(ilde{L})$

ODE-Net hits 2.09 % test error on MNIST with 0.182 M params—8 % smaller, adjoint gives O(1) memory, inference takes 1.6× ResNet runtime due to adaptive depth NFEs.

Conclusion

- **ODE-Net** matches ResNet accuracy with ~2× fewer parameters, at the cost of higher—and tunable—function evaluations.
- **FFJORD** learns expressive two-moon densities and visualizes the learned flow field, confirming continuous-depth intuition.
- Latent-ODE accurately reconstructs and extrapolates irregular trajectories, validating its suitability for sparse time-series.

References

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural Ordinary Differential Equations. In Advances in Neural Information Processing Systems 31 (pp. 6571–6583).