Jack Ha

title

We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure key between two partners in an environment of unknown and slowly varying reference frame. A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed. The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios such as earth-to-satellite links and the use of integrated photonic waveguides.

sub title

A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed.

title

Project 2017.6–2017.9

Specific Place

We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure key between two partners in an environment of unknown and slowly varying reference frame. A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed. The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios such as earth-to-satellite links and the use of integrated photonic waveguides.

Project 2017.6–2017.9

Specific Place

- We describe a quantum key distribution protocol based on pairs of entangled qubits
- We describe a quantum key distribution protocol based on pairs of entangled qubits
- We describe a quantum key distribution protocol based on pairs of entangled qubits
- We describe a quantum key distribution protocol based on pairs of entangled qubits

title

CFA contant, what happend here

1999

- We describe a quantum key distribution protocol

CFA contant, what happend here

1999

We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure key between two partners in an environment of unknown and slowly varying reference frame. A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed. The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios such as earth-to-satellite links and the use of integrated photonic waveguides.

CFA contant, what happend here

1999

CFA contant, what happend here

1999

title	
title of Paper	2018.11
Details of the paper	Physics Review Letter
title of Paper	2018.11
Details of the paper	Physics Review Letter
title of Paper	2018.11
Details of the paper	Physics Review Letter

2018.11

title of Paper