

3. Associativity
-addition:
$$-addition:
(f+g)+h = (f+g)+h (x)
= (f+g)(x)+h(x)
= f(x)+g(x)+h(x)
= f(x)+(g+h)(x)
= f+(g+h)(x)
= f+(g+h)$$

$$f+0 = (f+0)(x) = f(x) + 0(x) = f(x) + 0 = f(x) - f$$
.

So there exists $0 \in V^2$ ob. $f+0 = f$ $f \in V^2$.

5. Additive inverse

 $4 f \in V^2$, $3 - f : S - 2 V$ ot. $(-f)(x) = -f(x)$, $4 \times eS$.

 $(f_1(-f))(x) = f(x) + (-f)(x)$
 $= f(x) + (-f(x))$
 $= 0$

So there exists $-f \in V^2$ ot. $f + (-f) = 0$, $V = V^2$

C. Multiplicative identity

Around $V = V^2$

Around $V = V^2$

So there exists $V = V^2$

So the exists $V = V^2$

So the exists $V = V^2$

So the exists $V = V^2$

So there exists $V = V^2$

So

