Block Ciphers

Taxonomy of Cryptology

Concept: Stream vs Block Cipher

Stream Cipher vs Block Cipher

- Stream ciphers
 - Encrypt bits individually
 - Usually small and inline with I/O and transmission
 - Examples: OTP, A5/1 (GSM), RC4 (WEP, TLS, PPTP)
 - Advantages
 - Encryption/Decryption errors do not propagate
 - Small and Fast
 - Disadvantages
 - Low diffusion
 - Susceptible to bit flips, insertions, modification

Stream Cipher vs Block Cipher

- Block ciphers
 - Encrypt bits as a block of bits (64, 128)
 - Generally slower, larger programs
 - Examples: DES, 3DES, AES
 - Advantages
 - High diffusion
 - Robust to bit flips, insertions, modification
 - Disadvantages
 - Encryption/Decryption errors do propagate
 - Generally Slower

Block Ciphers

- Almost all are product ciphers
 - Feistel
 - Generalized Feistel
 - Sub-Perm Network (shown)
- Key schedule
 - 1 key per round
 - Sometimes key whitening step (shown)

Key Whitening

Most modern ciphers offer a key whitening step

- Pure key addition to hide internal encryption
- Can also strengthen ciphers with short key space

Block Ciphers

- Let X_i be blocks of data, strings of X_i of length b
- $X_i = \{x_0...x_j...x_b\}$ where b is a block length
- Then $Y_i = \{y_0...y_j...y_b\}$ is the output of $e_k(X_i)$

Can be used in several ways: "modes of operation"

Block Cipher Modes of Operation

Electronic Codebook (ECB)

- Let x_i , y_i be blocks and e_k () be a block cipher of size b
- Then
 - Encryption: $y_i = e_k(x_i)$, $i \ge 1$
 - Decryption: $x_i = e^{-1}_k(y_i) = e^{-1}_k(e_k(x_i))$, $i \ge 1$

Electronic Codebook (ECB)

Advantages

- Asynchronous Block synchronization is not necessary to decode all received blocks
- Bit errors in noisy transmission affects isolated to a block
- Encryption and Decryption are Parallelizable operations

Electronic Codebook (ECB)

Disadvantages

- Determinism creates predictable cipher: Identical blocks always encrypt the same with same key
- Statistical properties in plaintext may be preserved in ciphertext
- Attacks Subject to reordering, substitution and impersonation

ECB Workarounds

- Add integrity mechanisms
 - Digital signatures
 - Message Authentication Codes
- Randomize or refresh the key frequently
 - Build a 'key selector' layer above the crypto system
- Alter the input before encryption
 - Encoding reduce redundancy
 - Randomize XOR with a nonce (next mode)

Block Cipher Modes of Operation

- Chaining: Ciphertext (y_{i-1}) XOR'd with plaintext (x_i)
- Encryption randomized with initialization vector (IV)

- Let x_i , y_i be blocks, $e_k()$, a block cipher & IV, a nonce of size b
 - (first) Encryption: $y_1 = e_k(x_1 \oplus IV)$
 - (general) Encryption: $y_i = e_k(x_i \oplus y_{i-1})$, $i \ge 2$
 - (first) Decryption: $x_1 = e^{-1} (y_1) \oplus IV$
 - (general) Decryption: $x_i = e^{-1} (y_i) \oplus y_{i-1}$, $i \ge 2$

- Consider the sending of two identical files, f_1 and f_2
- What happens if f_1 and f_2 are sent with $k_1 = k_2$ and $IV_1 = IV_2$?
- What happens if f_1 and f_2 are sent with $k_1 = k_2$ and $IV_1 = IV_2 + 1$?

Advantages

- Non deterministic encryption if IV is new
- Robust to reordering, better with substitution attacks
- Helps prevent impersonation (replay) attacks
- Reduced statistical relationship in plaintext-ciphertext

Disadvantages

- Not parallelizable for a single message transmission
- Block synchronization needed to decode received blocks
- Noisy transmission results in cascading failures
- Still susceptible to substitution and integrity attacks

CBC Workarounds

- Add integrity mechanisms
 - Digital signatures
 - Message Authentication Codes
- Ensure synchronization and reliability
 - Reliable transmission protocol TCP
 - Message queuing and QoS middleware
- Parallelize groups of messages break a message into groups to increase parallelization

Block Cipher Modes of Operation

Block Modes for Stream Ciphers

- Streaming: Moves plaintext (x_i) outside of block encryption function
 - Encrypt: Plaintext (x_i) XOR'd with enciphered input (s_i) $y_i = s_i \oplus x_i$
 - Decrypt: Ciphertext (y_i) XOR'd with enciphered input (s_i) $x_i = s_i \oplus y_i$
- 3 (+1) Types
 - Output Feedback Mode (OFB)
 - Cipher Feedback Mode (CFB)
 - Counter Mode (CTR)
 - +1 Galois Counter Mode (GCM)

Block Modes for Stream Ciphers Cipher Feedback Mode (CFB)

- Let x_i , y_i be blocks, $e_k()$, a block cipher & IV, a nonce of size b
 - (first) Encryption: $y_1 = e_k(IV) \oplus x_1$
 - (general) Encryption: $y_i = e_k(y_{i-1}) \oplus x_i$, $i \ge 2$
 - (first) Decryption: $x_1 = e_k(IV) \oplus y_1$
 - (general) Decryption: $x_i = e_k(y_{i-1}) \oplus y_i$, $i \ge 2$

Alice

Bob

Block Modes for Stream Ciphers Output Feedback Mode (OFB)

- Let x_i , y_i be blocks, $e_k()$, a block cipher & IV, a nonce of size b
 - (first) Encryption: $y_1 = e_k(IV) \oplus x_1$
 - (general) Encryption: $y_i = e_k(s_{i-1}) \oplus x_i$, $i \ge 2$
 - (first) Decryption: $x_1 = e_k(IV) \oplus y_1$
 - (general) Decryption: $x_i = e_k(s_{i-1}) \oplus y_i$, $i \ge 2$

Alice

Bob

Block Modes for Stream Ciphers Counter Mode (CTR)

- Let x_i , y_i be blocks, $e_k()$, a block cipher of size b
 - IV (nonce) and CTR (counter) are concatenated (||) string
 - CTR initialized to 0, IV||CTR of size b
 - Encryption: $y_i = e_k(IV||CTR) \oplus x_i$, $i \ge 1$
 - Decryption: $x_i = e_k(IV||CTR) \oplus y_i$, $i \ge 1$

Alice

Bob

Block Modes for Stream Ciphers

CFB

- Robust to reordering attacks
- Faster than CBC (bitwise XOR)

OFB

- Eliminates error propagation (rely on s_i)
- Increases parallelism with independence from cipher
- Lacks integrity mechanism

CTR

- Can share (IV || CTR) in the clear
- Parallelizable (encrypt for next n time steps)
- Can provide message integrity (Galois Counter Mode)

Block Cipher Modes of Operation

Block Ciphers

- Most common symmetric encryption
- Most are based on product ciphers
 - Confusion (substitution)
 - Diffusion (permutation)
- 5 modes of operation
 - ECB, CBC, CFB, OFB, CTR
- Many types: (i.e. DES, 3DES, AES)