CS3012 Formal Languages

Exercises 3: Regular Expressions and Finite State Automata

- 1. Give regular expressions which exactly define the following languages. The alphabet in each case is given at the end.
 - (i). contains exactly one a, besides bs. $\{a, b\}$
 - (ii). no a appears without another a beside it. $\{a, b\}$
 - (iii). has 00 or 11 as a substring. $\{0, 1\}$
 - (iv). has no b occurring anywhere after any a. $\{a, b, c\}$
 - (v). contains exactly two as or exactly two bs. $\{a, b\}$
 - (vi). has a substring abc or bc. $\{a, b, c\}$
 - (vii). $\{a,b\}^* \{a\}$ $\{a,b\}$ [i.e. any string of as and bs, but not the string "a"]
 - (viii). contains an even number of as and an even number of bs. $\{a, b\}$
 - (ix). represents a number divisible by $3.\{0,1\}$

```
Answer:
(i) b^*ab^*
     (ii)
            (b + aaa^*)^*
            (0+1)^*(00+11)(0+1)^*
     (iii)
     (iv)
            (b+c)^*(a+c)^*
            b^*ab^*ab^* + a^*ba^*ba^*
     (v)
            (a + b + c)^*bc(a + b + c)^*
     (vi)
     (vii) \lambda + a(a+b)^{+} + b(a+b)^{*}
     (viii) (aa + bb + (ab + ba)(aa + bb)^*(ba + ab))^*
                (0 + 1(01^*0)^*1)^*
     (ix)
also (0+11+10(1+00)*01)*
```

- 2. Describe in plain English the languages defined by the following regular expressions
 - (i) $(a+b)^*$
 - (ii) $(a+b)^*ab(a+b)^*$
 - (iii) $a^2 + b^2$
 - (iv) $((a+b)^2)^*$
 - (v) a^*b
 - (vi) $1(0+1)^*$
 - (vii) $(0+1)^*011$
 - (viii) $011^* + 100^*$
 - $(ix) (00 + 1)^*$
 - $(x) 0 (1+0)^*0$

Answer:

- (i) strings of a's and b's
- (ii) strings of a's and b's, with a substring ab.
- (iii) aa or bb.
- (iv) strings of even length.
- (v) strings of a's followed by a b.
- (vi) non-zero binary numbers
- (vii) strings of 0's and 1's ending in 011.
- (viii) 0 followed by a non-zero number of 1's, or 1 followed by a non-zero number of 0's
- (ix) strings of 0's and 1's in which 0's only occur in even length substrings.
- (x) strings of 0's and 1's which cannot begin or end with a 1.

3. A certain programming language allows real constants to be written in exponent form - e.g. 3.25E6 (for 3.25x106) or 2.16E-5 (for 2.16x10-5). There must be exactly one digit before the decimal point (preceded by an optional sign), at least one digit after the decimal point, and the exponent can be a positive or negative integer. Write a regular expression specifying the language of such numbers. Define any abbreviations you use.

Answer:

$$S = \lambda + "+" + "-" \\ D = "." \\ N = 0 + 1 + 2 + ... + 9$$

SNDN⁺ESN⁺

4. Give a regular expression for all character strings which contain the word "cat". Assume only letters and spaces occur in the strings, and that words are separated by single spaces.

Answer:

Let
$$X = a + b + ... + z + A + ... + Z$$

Let # be a space

Regular expression = $(X^+\#)^* cat(\#X^+)^*$

5. Convert the FSAs below to regular expressions, using the FSA -> RegExp algorithm (or by inspection).

Answer:

Add states i and f

Remove 2:

Add (1,ba,3)(3,aa,3)

Remove 3:

Add (1,ba(aa)*,f)(1,ba(aa)*b,1)

Remove 1:

(i,(a+ba(aa)*b)*ba(aa)*,f)

you can get different correct answers depending on the order you remove states in

