Polynésie 2018. Enseignement spécifique. Corrigé

EXERCICE 1

Partie A

1) L'énoncé fournit $P(D)=0,06,\ P_D(R)=0,98$ et $P_{\overline{D}}(\overline{R})=0,92$. Représentons la situation par un arbre de probabilités.

La probabilité demandée est P(R). D'après la formule des probabilités totales,

$$p(R) = P(D) \times P_D(R) + P(\overline{D}) \times P_{\overline{D}}(R) = 0,06 \times 0,98 + (1 - 0,06) \times (1 - 0,92) = 0,134.$$

2) On veut calculer $P_R(D)$.

$$P_R(D) = \frac{P(R \cap D)}{P(R)} = \frac{P(D) \times P_D(R)}{P(R)} = \frac{0,06 \times 0,98}{0,134} = 0,44 \; \mathrm{arrondi} \; \mathrm{\grave{a}} \; 10^{-2}.$$

La proportion de DVD défectueux dans le stock de DVD retirés est strictement inférieure à la moitié. L'affirmation est donc fausse.

Partie B

Ici, n=150 et on veut tester l'hypothèse p=0,06. On note que $n\geqslant 30,$ $np=9\geqslant 5$ et $n(1-p)=141\geqslant 5$. Un intervalle de fluctuation asymptotique au seuil 95 % est

$$\left[p-1,96\sqrt{\frac{p(1-p)}{n}};p+1,96\sqrt{\frac{p(1-p)}{n}}\right] = \left[0,06-1,96\sqrt{\frac{0,06\times0,94}{150}};0,06+1,96\sqrt{\frac{0,06\times0,94}{150}}\right] = [0,021;0,099].$$

en arrondissant de manière à élargir un peu l'intervalle. La fréquence observée est $f = \frac{14}{150} = 0,093...$ Cette fréquence appartient à l'intervalle de fluctuation et on ne peut donc pas rejeter l'hypothèse.

Partie C

1) $P(X \le 92) = 1 - P(X > 92) = 1 - P(X \ge 92) = 0$, 9. Ensuite, $P(X \le 92) = P(X - 80 \le 12) = P\left(\frac{X - 80}{\sigma} \le \frac{12}{\sigma}\right)$ où cette fois-ci la variable $Z = \frac{X - 80}{\sigma}$ suit la loi normale centrée réduite.

On veut $P\left(Z \leqslant \frac{12}{\sigma}\right) = 0, 9$. La calculatrice fournit $\frac{12}{\sigma} = 1, 281 \dots$ puis $\sigma = 9.36$ à 0,01 près.

2) La probabilité demandée est

$$P_{X \geqslant 90} (X \leqslant 95) = \frac{P((X \geqslant 90) \cap (X \leqslant 95))}{P(X \geqslant 90)} = \frac{P(90 \leqslant X \leqslant 95)}{P(X \geqslant 90)}.$$

La calculatrice fournit $P_{X\geqslant 90}\left(X\leqslant 95\right)=0,618$ arrondi au millième.

EXERCICE 2

Partie A

1) a) La fonction f est dérivable sur [0,4] et pour $x \in [0,4]$, $f'(x) = 0 + b \times \frac{\pi}{4} \times \cos\left(c + \frac{\pi}{4}x\right) = \frac{b\pi}{4}\cos\left(c + \frac{\pi}{4}x\right)$.

 $\mathbf{b)} \text{ On veut } \mathbf{f}'(0) = 0 \text{ et } \mathbf{f}'(4) = 0 \text{ ce qui fournit } \frac{b\pi}{4}\cos(c) = 0 \text{ et } \frac{b\pi}{4}\cos(c + \pi) = 0 \text{ puis } \cos(c) = \cos(c + \pi) = 0.$ Puisque $\mathbf{c} \in \left[0, \frac{\pi}{2}\right]$ et que $\cos(c) = 0$, on en déduit que $\mathbf{c} = \frac{\pi}{2}$.

2) Puisque $f(x_B) = y_B$, on a f(0) = 1 avec $f(0) = \alpha + b \sin\left(\frac{\pi}{2}\right) = \alpha + b$. Donc, $\alpha + b = 1$.

Puisque
$$f(x_C) = y_C$$
, on a $f(4) = 3$ avec $f(4) = a + b \sin\left(\frac{\pi}{2} + \pi\right) = a + b \sin\left(\frac{3\pi}{2}\right) = a - b$. Donc, $a - b = 3$. Enfin,
$$\begin{cases} a + b = 1 \\ a - b = 3 \end{cases} \Rightarrow \begin{cases} 2a = 1 + 3 \\ 2b = 1 - 3 \end{cases} \Rightarrow \begin{cases} a = 2 \\ b = -1 \end{cases}.$$

Ainsi, nécessairement, pour tout réel x de [0,4], $f(x)=2-\sin\left(\frac{\pi}{2}+\frac{\pi}{4}x\right)$. L'énoncé semble nous dispenser de vérifier que réciproquement, la fonction ci-dessus convient.

Partie B

1) h = AB = 1 et BF = 2 puis $r_1 = \frac{1}{2}BF = 1$. Le volume V_1 , exprimé en unités de volume, du cylindre de section le rectangle ABFG est donc

$$V_1 = \pi r^2 h = \pi$$
.

2) $r_2 = \frac{1}{2}CE = 3$. Donc, le volume V_2 , exprimé en unités de volume, de la demi-sphère de section le disque de diamètre [CE] est

$$V_2 = \frac{1}{2} \times \frac{4}{3} \pi r_2^3 = \frac{1}{2} \times \frac{4}{3} \pi \times 27 = 18\pi.$$

- 3) a) Le volume cherché est $\pi \times \frac{4}{5} \times f\left(\frac{2}{5}\right) = \frac{4\pi}{5}\left(2 \cos\left(\frac{\pi}{10}\right)\right) = 2,64$ arrondi au centième.
- b) Algorithme complété.

1
$$V \leftarrow 0$$

2 Pour k allant de 0 à $n-1$:
3 $V \leftarrow V + \pi \times \frac{4}{n} \times \left(2 - \cos\left(\frac{\pi}{4} \times \frac{k}{n}\right)\right)$

EXERCICE 3

- 1) Une primitive sur $[0, +\infty[$ de la fonction f est la fonction F définie sur $[0, +\infty[$ par : pour tout réel $x, F(x) = -e^{-kx}$.
- 2) Le point B a pour coordonnées (1, ke^{-k}). L'aire du triangle OCB est

$$\frac{\text{CO} \times \text{CB}}{2} = \frac{1}{2} \times 1 \times \text{ke}^{-\text{k}} = \frac{\text{k}}{2} \text{e}^{-\text{k}}.$$

Notons \mathcal{D}' le domaine du plan délimité par l'axe des abscisses et la courbe \mathcal{C}_f d'une part, les droites d'équations respectives x=0 et x=1 d'autre part. Puisque la fonction f est continue et positive sur l'intervalle [0,1], l'aire, exprimée en unités d'aire, du domaine \mathcal{D}' est

$$\int_0^1 f(x) dx = [F(x)]_0^1 = (-e^{-k}) - (-e^0) = 1 - e^{-k}.$$

L'aire de \mathscr{D} est alors l'aire de \mathscr{D}' à laquelle on retranche l'aire du triangle $OCB: 1-e^{-k}-\frac{k}{2}e^{-k}$.

3) Soit k un nombre réel strictement positif. k est solution du problème si et seulement si $1 - e^{-k} - \frac{k}{2}e^{-k} = 2 \times \frac{k}{2}e^{-k}$ ce qui équivaut à $1 - e^{-k} - \frac{3k}{2}e^{-k} = 0$.

Pour $x \ge 0$, posons $g(x) = 1 - e^{-x} - \frac{3}{2}xe^{-x}$. La fonction g est dérivable sur $[0, +\infty[$ et pour $x \ge 0$,

$$g'(x) = -(-1)e^{-x} - \frac{3}{2}\left(e^{-x} + x \times \left((-1)e^{-x}\right)\right) = e^{-x} - \frac{3}{2}e^{-x} + \frac{3}{2}xe^{-x} = \frac{1}{2}\left(3x - 1\right)e^{-x}.$$

Pour tout réel strictement positif x, e^{-x} est strictement positif et donc g'(x) est du signe de 3x-1. On en déduit que la fonction g' est strictement négative sur $\left[0,\frac{1}{3}\right[$ et strictement positive sur $\left[\frac{1}{3},+\infty\right[$ puis la fonction g est strictement décroissante sur $\left[0,\frac{1}{3}\right]$ et strictement croissante sur $\left[\frac{1}{3},+\infty\right[$.

Puisque la fonction g est strictement décroissante sur $\left[0,\frac{1}{3}\right]$, pour $x\in\left]0,\frac{1}{3}\right]$, on a g(x)< g(0) ou encore g(x)<0. En particulier, l'équation g(x)=0 n'a pas de solution dans $\left[0,\frac{1}{3}\right]$. D'autre part, $g(1)=1-e^{-1}-\frac{3}{2}e^{-1}=1-\frac{5}{2e}=0,08\dots$ Donc, g(1)>0 puis g(x)>0 pour $x\geqslant 1$. L'équation g(x)=0 n'a pas non plus de solution dans $\left[1,+\infty\right[$.

Maintenant, la fonction g est continue et strictement croissante sur $\left[\frac{1}{3},1\right]$. On sait alors que pour tout réel α de l'intervalle $\left[g\left(\frac{1}{3}\right),g(1)\right]$, l'équation $g(x)=\alpha$ a une solution et une seule dans $\left[\frac{1}{3},1\right]$. Puisque $g\left(\frac{1}{2}\right)<0$ et g(1)>0, l'équation g(x)=0 a une solution et une seule dans $\left[\frac{1}{3},1\right]$.

Ainsi, l'équation g(x) = 0 admet une solution et une seule dans $]0, +\infty[$ (et cette solution est dans $\left[\frac{1}{3}, 1\right]$) ou encore, il existe un réel strictement positif k et un seul tel que l'aire de \mathscr{D} soit le double de l'aire du triangle OCB.

EXERCICE 4.

Partie A

- 1) Dans la case C3, on doit écrire la formule : =2*B2/3+C2/2+2*D3/3.
- 2) Il semble que les trois suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$ soient convergentes de limites approximativement égales à 0,214 0,571 et 0,214 respectivement.

Partie B

1) a) Soit n un entier naturel.

$$u_{n+1} = a_{n+1} - c_{n+1} = \left(\frac{1}{3}a_n + \frac{1}{4}b_n\right) - \left(\frac{1}{4}b_n + \frac{1}{3}c_n\right) = \frac{1}{3}(a_n - c_n) = \frac{1}{3}u_n.$$

b) On a $a_0 = 1$, $b_0 = 0$ et $c_0 = 0$ puis, $u_0 = a_0 - c_0 = 1 - 0 = 1$.

La suite $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme $u_0=1$ et de raison $q=\frac{1}{3}$. Donc, pour tout entier naturel $n,\,u_n=u_0\times q^n=\left(\frac{1}{3}\right)^n$.

2) a) Soit $\mathfrak n$ un entier naturel. On note $A_\mathfrak n$ l'événement : « le lapin est dans la galerie A à l'étape $\mathfrak n$ », $B_\mathfrak n$ l'événement : « le lapin est dans la galerie C à l'étape $\mathfrak n$ ». ($A_\mathfrak n, B_\mathfrak n, C_\mathfrak n$) est un système complet d'événements et donc

$$a_n + b_n + c_n = P(A_n) + P(B_n) + P(C_n) = 1.$$

Par suite,

$$\begin{split} \nu_{n+1} &= b_{n+1} - \frac{4}{7} = \frac{2}{3} \left(a_n + c_n \right) + \frac{1}{2} b_n - \frac{4}{7} = \frac{2}{3} \left(1 - b_n \right) + \frac{1}{2} b_n - \frac{4}{7} = \frac{2}{3} - \frac{2}{3} b_n + \frac{1}{2} b_n - \frac{4}{7} \\ &= -\frac{1}{6} b_n + \frac{2}{21} = -\frac{1}{6} \left(b_n - 6 \times \frac{2}{21} \right) = -\frac{1}{6} \left(b_n - \frac{4}{7} \right) \\ &= -\frac{1}{6} \nu_n \end{split}$$

La suite $(\nu_n)_{n\in\mathbb{N}}$ est donc la suite géométrique de premier terme $\nu_0=-\frac{4}{7}$ et de raison $q=-\frac{1}{6}$.

- **b)** Pour tout entier naturel $n, v_n = -\frac{4}{7} \left(-\frac{1}{6}\right)^n$.
- 3) Soit n un entier naturel.
- D'après la question précédente, $b_n = \frac{4}{7} + v_n = \frac{4}{7} \frac{4}{7} \left(-\frac{1}{6}\right)^n$.
- D'après la question 1)b), $a_n c_n = \left(\frac{1}{3}\right)^n$ (I).

D'autre part, l'égalité $a_n + b_n + c_n = 1$ fournit $a_n + c_n = 1 - \left(\frac{4}{7} - \frac{4}{7} \left(-\frac{1}{6}\right)^n\right) = \frac{3}{7} + \frac{4}{7} \left(-\frac{1}{6}\right)^n$ (II).

En additionnant les égalités (I) et (II), on obtient $2a_n = \frac{3}{7} + \left(\frac{1}{3}\right)^n + \frac{4}{7}\left(-\frac{1}{6}\right)^n$ et donc

$$a_n = \frac{3}{14} + \frac{1}{2} \left(\frac{1}{3}\right)^n + \frac{2}{7} \left(-\frac{1}{6}\right)^n.$$

En retranchant l'égalité (I) à l'égalité (II), on obtient $2c_n = \frac{3}{7} - \left(\frac{1}{3}\right)^n + \frac{4}{7}\left(-\frac{1}{6}\right)^n$ et donc

$$c_n = \frac{3}{14} - \frac{1}{2} \left(\frac{1}{3}\right)^n + \frac{2}{7} \left(-\frac{1}{6}\right)^n.$$

4) Puisque $-1 < \frac{1}{3} < 1$ et $-1 < -\frac{1}{6} < 1$, on a $\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$ et $\lim_{n \to +\infty} \left(-\frac{1}{6}\right)^n = 0$. On en déduit que

$$\lim_{n\to+\infty}\alpha_n=\frac{3}{14}=0,214\ldots\qquad\lim_{n\to+\infty}b_n=\frac{4}{7}=0,571\ldots\qquad\lim_{n\to+\infty}c_n=\frac{3}{14}=0,214\ldots$$

Ceci signifie qu'après un grand nombre d'étapes, le lapin a 3 chances sur 14 d'être dans la galerie A, 3 chances sur 14 d'être dans la galerie C et 8 chances sur 14 d'être dans la galerie B.