Optimization algorithms

Quiz, 10 questions

1.		notation would you use to denote the 3rd layer's activations when the input is the ample from the 8th minibatch?
		$a^{[8]\{7\}(3)}$
		$a^{[8]\{3\}(7)}$
		$a^{[3]\{7\}(8)}$
		$a^{[3]\{8\}(7)}$
	Corre	ect
2.	Which	of these statements about mini-batch gradient descent do you agree with?
		You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).
		Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.
		One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.
	Corr	

3.	Why is the best mini-batch size usually not 1 and not m, but instead something inbetween?			
		If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.		
	Corr	ect		
		If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.		
	Un-s	elected is correct		
		If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.		
	Corr	ect		
		If the mini-batch size is 1, you end up having to process the entire training set before making any progress.		
	Un-s	elected is correct		

4. Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

5. Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1 = 10^o C$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $v_2=7.5$, $v_2^{corrected}=7.5$
- $v_2=10$, $v_2^{corrected}=7.5$
- $v_2=7.5$, $v_2^{corrected}=10$

- $v_2=10$, $v_2^{corrected}=10$
- 6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.
 - $lpha=rac{1}{\sqrt{t}}lpha_0$
 - $lpha = 0.95^t lpha_0$
 - $lpha=rac{1}{1+2*t}lpha_0$

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing β will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

9.	value of $\mathcal{J}(W^{[1]}$	be batch gradient descent in a deep network is taking excessively long to find a the parameters that achieves a small value for the cost function $[a,b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find ter values that attain a small value for \mathcal{J} ? (Check all that apply)
		Try using Adam
	Correc	ct
		Try mini-batch gradient descent
	Corre	ct
		Try initializing all the weights to zero
	Un-se	lected is correct
		Try better random initialization for the weights
	Correc	ct
		Try tuning the learning rate $lpha$
	Corre	ct

IU.	. Which of the following statements about Adam is False?		
		The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	
		Adam combines the advantages of RMSProp and momentum	
		We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)	
		Adam should be used with batch gradient computations, not with mini-batches.	