

Integrity Constraints

DEFAULT
UNIQUE
PRIMARY KEY
CHECK
Affinity
Constraints
Pseudocode

Primary Keys

AgentsDB

Bond, James

Consider this

Introduction to Database Systems: CS312 Constraints and Integrity Constraints

Oliver Bonham-Carter

16 Sept 2020

Integrity Constraints

Integrity Constraints

DEFAULT
UNIQUE
PRIMARY KEY
CHECK
Affinity
Constraints
Pseudocode

Primary Keys

AgentsDB

Bond, James

Bond

- The CONSTRAINTS enforce conditions to restrict attributes to contain a *correct* type of data while inserting or updating or deleting.
- Integrity constraints provide a mechanism for ensuring that data conforms to guidelines specified by the database administrator.

Integrity Constraints

Integrity Constraints

NULL
DEFAULT
UNIQUE
PRIMARY KEY
CHECK
Affinity
Constraints
Pseudocode

Primary Keys

AgentsDB

Bond, James

Bond

Consider this

Common Constraints

- NOT NULL: To ensure that no NULL values are allowed
- DEFAULT: When none is specified, this constraint provides a default value for a column.
- UNIQUE: To ensure that all values of an attribute are different
- PRIMARY KEY: Uniquely identifies each row/record in a database table.
 - Ensure that a link exists between two tables.
- CHECK: Ensures that all attribute values satisfy specified conditions

Simple NULL constraint demo

Integrity Constraints

NULL
DEFAULT
UNIQUE
PRIMARY KEY
CHECK
Affinity
Constraints
Pseudocode

Primary Keys

AgentsDB

Bond, James Bond

Consider this

Spot the integrity constraint's influence

```
drop table company;
create table company(
   Id text NOT NULL,
   Name text NOT NULL);
```

```
/*Good insert command: complete tuple allowed*/
INSERT INTO company VALUES("COM1","T S LTD.");
SELECT * FROM company;
```

```
/*Good insert command: Empty spaces are allowed*/
INSERT INTO company VALUES("COM1","");
```

```
/*Bad insert command: NULL is not allowed*/
INSERT INTO company VALUES("COM1", NULL);
```


Simple DEFAULT constraint demo

Place predetermined value to a column when no value given

Integrity Constraints NULL

DEFAULT
UNIQUE
PRIMARY KEY
CHECK
Affinity
Constraints

Pseudocode Primary Keys

AgentsDB

Bond, James Bond

```
Spot the integrity constraint's influence drop table COMPANY;
```

```
CREATE TABLE COMPANY(

ID INT PRIMARY KEY NOT NULL,

NAME TEXT NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR(50),

SALARY REAL DEFAULT 50000.00);
```

```
/*Good insert command: complete tuple allowed*/
INSERT INTO COMPANY
VALUES (12, "JAMES", 25, "10, bd Rue du fleur",100000);
```

```
/* Missing entry for SALARY*/
INSERT INTO COMPANY (ID, Name, AGE, ADDRESS)
VALUES (221, "Sherlock", 25, "10, bd Rue du fleur");
```


Integrity

UNIQUE PRIMARY KEY

CHECK

Affinity Constraints

Pseudocode

Primary Keys

Bond, James

AgentsDB

Bond Consider this

Constraints NULL DEFAULT

Simple UNIQUE constraint demo

Prevents two records from having identical values in columns

Spot the integrity constraint's influence

```
/*Create table*/
drop table COMPANY;
CREATE TABLE COMPANY(
    ID INT PRIMARY KEY NOT NULL,
    NAME TEXT NOT NULL,
    AGE INT NOT NULL UNIQUE,
    ADDRESS CHAR(50),
    SALARY REAL DEFAULT 50000.00 );
```

```
/*Good insert command: complete tuple allowed*/
INSERT INTO COMPANY
VALUES (221, "Sherlock", 25, "10, bd Rue du fleur",100000);
```

Age is not unique

```
SELECT * FROM company;
/* try to reinsert same values again.*/
```


Integrity

UNIQUE PRIMARY KEY

Affinity Constraints

Pseudocode

Primary Keys

Bond, James

AgentsDB

Bond Consider this

Constraints NULL DEFAULT

Simple PRIMARY KEY constraint demo

Only one primary key in a table; UNIQUE Identifiers

Spot the integrity constraint's influence

```
/*Create table*/
drop table COMPANY;
CREATE TABLE COMPANY(
    ID INT PRIMARY KEY NOT NULL,
    NAME TEXT NOT NULL,
    AGE INT NOT NULL ,
    ADDRESS CHAR(50),
    SALARY REAL DEFAULT 50000.00 );
```

```
/*Good insert command: complete tuple allowed*/
INSERT INTO COMPANY
VALUES (221, "Sherlock", 25, "10, bd Rue du fleur",100000);
```

Key not unique failure

```
SELECT * FROM company;
/* try to reinsert same values again.*/
```


PRIMARY KEY CHECK

Integrity

Affinity Constraints

Pseudocode

Primary Keys

Bond, James Bond Consider this

AgentsDB

Simple CHECK constraint demo

Only one primary key in a table; UNIQUE Identifiers

Constraints DEFAULT UNIQUE

Spot the integrity constraint's influence

```
CREATE TABLE COMPANY(
  ID INT PRIMARY KEY NOT NULL,
  NAME TEXT NOT NULL,
  AGE INT NOT NULL,
  ADDRESS CHAR(50),
  SALARY REAL CHECK(SALARY > 0)):
```

```
/*Good insert command: complete tuple allowed*/
INSERT INTO COMPANY VALUES
(221, "Sherlock", 25, "10, bd Rue du fleur", 100000);
```

CHECK failure

```
INSERT INTO COMPANY VALUES
(2211, "Sherlock", 25, "10, bd Rue du fleur",-10);
```


Other Types of Constraints

Define variables by data type!

Constraints
NULL
DEFAULT
UNIQUE
PRIMARY KEY
CHECK
Affinity

Constraints

Integrity

Pseudocode

Primary Keys

AgentsDB

Bond, James Bond

- **INT**: Integer (a finite subset of the integers that is machine dependent).
- **TEXT**: String
- **CHAR**(n): String of length n (more below on this)
- numeric(p,n): Fixed point number, with user-specified precision of p digits, with n digits to the right of decimal point. (This allows for number comparisons using operators.)
- real, double precision: Floating point and double precision floating point numbers, with machine dependent precision.
- float(n): Floating point number, with user specified precision of at least n digits.
- NOT NULL: Ensure that a value is placed here or reject the insertion.

Constraints Define variables by data type!

Integrity Constraints NULL DEFAULT UNIQUE PRIMARY KEY

Affinity Constraints

Pseudocode

Primary Keys AgentsDB

Bond. James

Bond Bond

- **char**(*n*): Fixed length character string, with user-specified length *n*.
 - Used to store character string value of fixed length
 - The maximum num of chars (not important to SQLite3)
 - About 50 per cent faster than VARCHAR
- varchar(n): Variable length character strings, with user specified maximum length n.
 - Used to store variable length alphanumeric data
 - The maximum num of chars (not important to SQLite3)
 - Slower than CHAR

Affinity Constraints

A small subset of accepted data types that SQLite will accept

Integrity
Constraints
NULL
DEFAULT
UNIQUE
PRIMARY KEY
CHECK

Affinity Constraints

Pseudocode

Primary Keys

AgentsDB

Bond, James Bond

Consider this

Example Typenames From The CREATE TABLE Statement or CAST Expression	Resulting Affinity	Rule Used To Determine Affinity
INT INTEGER TINYINT SMALLINT MEDIUMINT BIGINT UNSIGNED BIG INT INT2 INT8	INTEGER	1
CHARACTER(20) VARCHAR(255) VARYING CHARACTER(255) NCHAR(55) NATIVE CHARACTER(70) NVARCHAR(100) TEXT CLOB	TEXT	2
BLOB no datatype specified	BLOB	3
REAL DOUBLE DOUBLE PRECISION FLOAT	REAL	4
NUMERIC DECIMAL(10,5) BOOLEAN DATE DATETIME	NUMERIC	5

https://www.sqlite.org/datatype3.html#affinity

Adding Constraints to Create

Integrity Constraints

NULL
DEFAULT
UNIQUE
PRIMARY KEY
CHECK
Affinity
Constraints

Pseudocode

Primary Keys

AgentsDB

Bond, James Bond

```
CREATE TABLE relationshipTable (
A1 D1,
A2 D2,
...,
An Dn,
(integrity-constraint1),
...,
(integrity-constraintk));
```

- relationshipTable is the name of the relationship
- ullet Each A_i is an attribute name in the schema of relation relationship Table
- D_i is the data type of values in the domain of attribute A_i
 The D_i constrains the particular type of entry

Unique Constraint in the Code

Integrity
Constraints
NULL
DEFAULT
UNIQUE
PRIMARY KEY
CHECK
Affinity

Constraints Pseudocode

Primary Keys

AgentsDB

Bond, James Bond

Consider this

```
/*Two constraints?*/
DROP TABLE instructor;
CREATE TABLE instructor (
    ID CHAR UNIQUE,
    name VARCHAR NOT NULL,
    dept_name VARCHAR,
    salary VARCHAR
);
```

```
/*****PSSST! Now Add some department information *******************/
insert into instructor values ('10211', 'Smith', 'Biology', 66000);

/*Any trouble inserting this next line?*/
insert into instructor values ('10212', null, 'Biology', 66000);
insert into instructor values ('10211', 'Franklin', 'Biology', 66000);
```

• NULL and repeating UNIQUE values are not inserted

Defining a Table with Primary a Key?

Integrity Constraints NULL DEFAULT UNIQUE PRIMARY KEY CHECK Affinity

Constraints Pseudocode

Primary Keys

 ${\sf AgentsDB}$

Bond, James Bond

```
ID is unique, Salary bound by numbers
```

```
/*Two constraints?*/
DROP TABLE Employee;
CREATE TABLE Employee (
    ID CHAR PRIMARY KEY,
    name VARCHAR NOT NULL,
    dept_name VARCHAR,
    salary NUMERIC(8,2)
);
```


Integrity Constraints in CREATE TABLE

Integrity Constraints

Primary Keys

AgentsDB

Bond, James Bond

- NOT NULL (but you already knew that!)
- **Primary Keys**: A primary key is a column or group of columns used to identify the uniqueness of rows in a table.
 - Each table has one and only one primary key.
- Foreign Keys: A column (or columns) that references a column (most often the primary key) of another table.
 - The purpose of the foreign key is to ensure referential integrity of the data. In other words, only values that are supposed to appear in the database are permitted.

AgentsDB: Two Tables, One With a Primary Key

Integrity Constraints

Primary Keys

AgentsDB

Bond, James Bond

Two Tables, One with Primary Key

Super Keys: Using multiple attributes to enforce unique-ness

Integrity Constraints

Primary Keys

AgentsDB

Bond, James Bond

```
/* Accepts no redundancy */
DROP TABLE Agents1;
CREATE TABLE Agents1
( last name VARCHAR NOT NULL.
  first_name VARCHAR NOT NULL,
  address VARCHAR.
  CONSTRAINT agents_pk
  PRIMARY KEY (last_name, first_name)
);
/* Accepts redundancy */
DROP TABLE Agents2;
CREATE TABLE Agents2
( last_name VARCHAR NOT NULL,
  first_name VARCHAR NOT NULL,
  address VARCHAR
```


Try Your Insert Twice Let's try

Integrity Constraints

Primary Keys

 ${\sf AgentsDB}$

Bond, James Bond

Consider this

- Insert agent names into both tables.
- Try the same INSERT commands again!
- Which commands work?

INSERT INTO Agents1 VALUES ("Bond","James","123 abc street");
INSERT INTO Agents2 VALUES ("Bond","James","123 abc street");

Forget-Me-Nots

Integrity Constraints

Primary Keys

AgentsDB

Bond, James Bond

Consider this

How is the database set up?

- .tables (The tables are of the DB)
- schema (How the data is stored in the tables)

What data is stored in each table?

- select * from agentsConst;
- select * from agents;
- (note the '*' for the column wildcard)

Is James the plural form of Jame?

Integrity Constraints

Primary Keys AgentsDB

Bond, James Bond

- There can only be one "James Bond"
- The name "James Bond" could not be inserted more than once in our base
- Constraints were in place to ensure distinguishable rows

Consider this ...

Integrity Constraints

Primary Keys

AgentsDB

Bond, James Bond

Consider this

THINK

- Can you build a new database table with two (or more) types of constraints?
- For instance, try to alter an earlier database for which you have the build file to recreate it (in case anything goes dreadfully wrong)