D.M n° 12 pour le 01/04/2011

Les calculatrices sont interdites

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il la signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Notations

Soit n et p des entiers supérieurs ou égaux à 1. On note $\mathcal{M}_{n,p}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices à coefficients dans \mathbb{R} ayant n lignes et p colonnes. Lorsque p=n, $\mathcal{M}_{n,n}(\mathbb{R})$ est noté plus simplement $\mathcal{M}_n(\mathbb{R})$ et est muni de sa structure d'algèbre, I_n représentant la matrice identité.

 $GL_n(\mathbb{R})$ désigne l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$.

Tout vecteur $x=(x_i)_{1\leq i\leq n}$ de \mathbb{R}^n est identifié à un élément X de $\mathcal{M}_{n,1}(\mathbb{R})$ tel que l'élément de la $i^{\text{ème}}$ ligne de X soit x_i . Dans toute la suite, nous noterons indifféremment $X=(x_i)_{1\leq i\leq n}$ un élément de $\mathcal{M}_{n,1}(\mathbb{R})$ aussi bien que le vecteur de \mathbb{R}^n qui lui est associé.

Pour $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ dans $\mathcal{M}_{n,p}(\mathbb{R})$ et $X = (x_i)_{\substack{1 \leq i \leq p \\ 1 \leq j \leq p}}$ dans \mathbb{R}^p , on note $(AX)_i$ le coefficient de la $i^{\text{ème}}$ ligne de AX.

Selon le contexte, 0 désigne soit le réel nul, soit la matrice nulle de $\mathcal{M}_n(\mathbb{R})$, soit encore la matrice nulle de $\mathcal{M}_{n;1}(\mathbb{R})$.

 \mathbb{R}^n est muni de son produit scalaire canonique noté $\langle \cdot | \cdot \rangle$ et de la norme associée notée $|| \cdot ||$. Une matrice symétrique S de $\mathcal{S}_n(\mathbb{R})$ est dite positive si et seulement si :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ ^tXSX \geq 0$$

et définie positive si et seulement si :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\} , {}^{t}XSX > 0$$

On note $S_n^+(\mathbb{R})$ l'ensemble des matrices symétriques réelles positives et $S_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques réelles définies positives.

Partie I

- I.1 Soit $(X,Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2$ et $S \in \mathcal{S}_n(\mathbb{R})$. Etablir les égalités :
 - a) ${}^{t}XY = {}^{t}YX$.
 - b) $({}^{t}XY)^{2} = {}^{t}X(Y^{t}Y)X = {}^{t}Y(X^{t}X)Y.$
 - c) ${}^{t}XSY = \langle X \mid SY \rangle = \langle SX \mid Y \rangle$.
- I.2 Démontrer les propriétés suivantes :
 - a) $\forall (S_1, S_2) \in (\hat{S}_n^+(\mathbb{R}))^2, S_1 + S_2 \in S_n^+(\mathbb{R}).$
 - b) $\forall (S_1, S_2) \in \mathcal{S}_n^+(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}), S_1 + S_2 \in \mathcal{S}_n^{++}(\mathbb{R}).$
 - c) $\forall A \in \mathcal{M}_n(\mathbb{R}), tAA \in \mathcal{S}_n^+(\mathbb{R}).$
- 1.3 a) Soit $S \in \mathcal{S}_n(\mathbb{R})$ vérifiant : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^tXSX = 0$. Montrer que toute valeur propre de S est nulle et en déduire S = 0.
 - b) Donner un exemple de matrice carrée M d'ordre 3, non nulle et vérifiant :

$$\forall X \in \mathcal{M}_{3,1}(\mathbb{R}) , {}^t X M X = 0$$

- **I.4** a) Soit $S \in \mathcal{S}_n(\mathbb{R})$. Montrer que S appartient à $\mathcal{S}_n^+(\mathbb{R})$ si et seulement si toutes ses valeurs propres sont positives.
- b) Que peut-on dire d'une matrice symétrique réelle semblable à une matrice symétrique réelle positive ?
 - **I.5** On munit $S_n(\mathbb{R})$ des relations notées \geq et >, définies respectivement par :

$$\forall (S_1, S_2) \in (\mathcal{S}_n(\mathbb{R}))^2, (S_1 \geq S_2 \iff S_1 - S_2 \in \mathcal{S}_n^+(\mathbb{R}))$$

et

$$\forall (S_1, S_2) \in (\mathcal{S}_n(\mathbb{R}))^2, (S_1 > S_2 \iff S_1 - S_2 \in \mathcal{S}_n^{++}(\mathbb{R}))$$

- a) Montrer que la relation \geq est une relation d'ordre sur $\mathcal{S}_n(\mathbb{R})$.
- b) Montrer que pour $n \geq 2$, cet ordre n'est pas total sur $\mathcal{S}_n(\mathbb{R})$.
- c) La relation > est-elle une relation d'ordre?
- d) Trouver un exemple dans $S_2(\mathbb{R})$ montrant que $S_1 \geq S_2$ et $S_1 \neq S_2$ n'implique pas nécessairement $S_1 > S_2$.
 - **I.6** Soit u et v deux endomorphismes de \mathbb{R}^n diagonalisables et vérifiant $u \circ v = v \circ u$.
 - a) Démontrer que tout sous-espace propre de u est stable par v.
- b) Soit $\lambda_1, \lambda_2, \ldots, \lambda_p$ les valeurs propres distinctes de u et $E_{\lambda_1}, E_{\lambda_2}, \ldots, E_{\lambda_p}$ les sousespaces propres de u respectivement associés. Pour tout $i \in \{1, 2, \ldots, p\}$, on note v_i l'endomorphisme de E_{λ_i} induit par v. Montrer que pour tout $i \in \{1, 2, \ldots, p\}$ il existe une base \mathcal{B}_i de E_{λ_i} formée de vecteurs propres de v. En déduire qu'il existe une base \mathcal{B} de \mathbb{R}^n telle que les matrices de u et v dans cette base soient toutes deux diagonales.

- I.7 a) Soit A et B deux matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$. Montrer que les matrices A et B commutent si et seulement si elles sont diagonalisables au moyen d'une même matrice de passage.
 - b) On donne les matrices A et B suivantes :

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \qquad ; \qquad B = \begin{pmatrix} 2 & 1 & -1 \\ -2 & 5 & -1 \\ -4 & 2 & 2 \end{pmatrix}$$

Montrer que A et B sont diagonalisables au moyen d'une même matrice de passage et déterminer explicitement une telle matrice de passage.

- **I.8** Soit $(S_1, S_2) \in (\mathcal{S}_n^+(\mathbb{R}))^2$ tel que $S_1S_2 = S_2S_1$. Montrer que $S_1S_2 \in \mathcal{S}_n^+(\mathbb{R})$.
- **I.9** a) Soit $(S_1, S_2) \in (\mathcal{S}_n(\mathbb{R}))^2$ tel que $S_1S_2 = S_2S_1$. Montrer que :

$$S_2 \ge S_1 \ge 0 \Longrightarrow S_2^2 \ge S_1^2$$

b) Montrer que les matrices $S_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $S_2 = \begin{pmatrix} \frac{3}{2} & 0 \\ 0 & 3 \end{pmatrix}$ vérifient $S_2 \geq S_1 \geq 0$. Vérifient-elles $S_2^2 \geq S_1^2$?

Partie II

On se propose dans cette partie de caractériser de diverses manières la définie positivité d'une matrice symétrique réelle.

- II.1 Soit $S \in \mathcal{S}_n(\mathbb{R})$. Montrer que les quatre propositions suivantes sont équivalentes :
 - a) S est définie positive.
 - b) Toutes les valeurs propres de S sont strictement positives.
 - c) Il existe $M \in GL_n(\mathbb{R})$ telle que $S = {}^tMM$.
 - d) S est positive et inversible.
- II.2 Soit A_n et B_n les matrices de $\mathcal{S}_n(\mathbb{R})$ données par :

$$B_{n} = \begin{pmatrix} 0 & 1 & 0 & \dots & \dots & 0 \\ 1 & 0 & 1 & \ddots & & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 & 0 \\ \vdots & & \ddots & \ddots & 0 & 1 \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix} , A_{n} = 2I_{n} - B_{n}$$

a) Montrer que pour tout vecteur $X=(x_i)_{1\leq i\leq n}$ de \mathbb{R}^n :

$${}^{t}XA_{n}X = x_{1}^{2} + \sum_{i=1}^{n-1} (x_{i} - x_{i+1})^{2} + x_{n}^{2}$$

- b) En déduire que A_n est définie positive.
- c) En cherchant une matrice M_n de la forme :

$$M_{n} = \begin{pmatrix} u_{1} & v_{1} & 0 & \dots & 0 \\ 0 & u_{2} & v_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & u_{n-1} & v_{n-1} \\ 0 & \dots & \dots & 0 & u_{n} \end{pmatrix} , u_{i}, v_{i} \in \mathbb{R}$$

déterminer explicitement une matrice M_n inversible telle que $A_n = {}^t M_n M_n$.

II.3 Soit $S \in \mathcal{S}_n^{++}(\mathbb{R})$ et $M \in GL_n(\mathbb{R})$ telles que $S = {}^tMM$. On note $\mathcal{U} = (U_1, U_2, \ldots, U_n)$ la famille des vecteurs colonnes de M. Pour $i \in \{1, 2, \ldots, n\}$ et $x \in \mathbb{R}^n$, on note $p_i(x)$ la projection orthogonale de x sur $\text{Vect}(U_1, U_2, \ldots, U_i)$.

- a) Justifier que \mathcal{U} est une base de \mathbb{R}^n .
- **b)** On définit la famille de vecteurs $\mathcal{V} = (V_1, V_2, \dots, V_n)$ par les relations :

$$V_1 = U_1$$
 et $\forall i \in \{2, ..., n\}$, $V_i = U_i - p_{i-1}(U_i)$

Montrer que la famille \mathcal{V} est orthogonale et que c'est une base de \mathbb{R}^n .

- c) Soit $\mathcal{W} = (W_1, W_2, \dots, W_n)$ la famille de vecteurs définie par $W_i = \frac{1}{||V_i||} V_i$ pour tout $i \in \{1, 2, \dots, n\}$. \mathcal{W} est alors une base orthonormale de \mathbb{R}^n . Montrer que la matrice de passage de la base \mathcal{W} à la base \mathcal{U} est triangulaire supérieure.
- d) Soit P la matrice de passage de la base canonique de \mathbb{R}^n à la la base W. Montrer que M peut s'écrire sous la forme M = PT où T est une matrice triangulaire supérieure inversible et qu'alors $S = {}^tTT$.
 - e) Montrer que la matrice $S = \begin{pmatrix} 4 & -2 & -2 \\ -2 & 2 & 0 \\ -2 & 0 & 3 \end{pmatrix}$ admet une décomposition de la forme

 $S={}^tTT$ où T est une matrice triangulaire supérieure inversible et en déduire que S est symétrique définie positive.

II.4 a) Soit $A_0 = \begin{pmatrix} 0 & c \\ c & b \end{pmatrix} \in \mathcal{S}_2(\mathbb{R})$. Déterminer $X \in \mathcal{M}_{2,1}(\mathbb{R}) \setminus \{0\}$ tel que ${}^tXA_0X = 0$.

- b) Soit $A = \begin{pmatrix} a & c \\ c & b \end{pmatrix} \in \mathcal{S}_2(\mathbb{R})$. Montrer que A est définie positive si et seulement si $(\operatorname{Tr} A > 0 \text{ et } \det A > 0)$ ce qui équivaut encore à $(a > 0 \text{ et } ab c^2 > 0)$.
 - c) Soit $S \in \mathcal{S}_n(\mathbb{R})$, $n \geq 2$. On décompose S sous la forme

$$S = \begin{pmatrix} a & {}^tV \\ V & S' \end{pmatrix} , a \in \mathbb{R} , V \in \mathcal{M}_{n-1,1}(\mathbb{R}) , S' \in \mathcal{S}_{n-1}(\mathbb{R})$$

En écrivant $X \in \mathcal{M}_{n,1}(\mathbb{R})$ sous la forme $\begin{pmatrix} x \\ X' \end{pmatrix}$, $x \in \mathbb{R}$, $X' \in \mathcal{M}_{n-1,1}(\mathbb{R})$, montrer que pour $a \neq 0$:

 ${}^{t}XSX = a\left[\left(x + \frac{1}{a}{}^{t}VX'\right)^{2} + \frac{1}{a^{2}}{}^{t}X'(aS' - V^{t}V)X'\right]$ (1)

et en déduire que S est définie positive si et seulement si (a > 0) et $aS' - V^tV$ est définie positive).

d) En gardant les notations de la question II.4 c) précédente, on peut alors construire par récurrence une suite de nombres réels $(a_i)_{1 \le i \le n}$ et une suite de matrices $(S_i)_{1 \le i \le n}$ comme suit. On pose d'abord :

$$S_1 = S$$
 , $a_1 = a$, $V_1 = V$, $S_1' = S'$, $S_2 = a_1 S_1' - V_1^{\ t} V_1$

Si $n \geq 3$, on décompose S_2 sous la forme

$$S_2 = \begin{pmatrix} a_2 & {}^tV_2 \\ V_2 & S_2' \end{pmatrix} , \ a_2 \in \mathbb{R} , \ V_2 \in \mathcal{M}_{n-2,1}(\mathbb{R}) , \ S_2' \in \mathcal{S}_{n-2}(\mathbb{R})$$

On pose à nouveau $S_3 = a_2 S_2' - V_2^t V_2$ et on itère le processus précédent. On obtient ainsi une suite de matrices symétriques réelles $(S_i)_{1 \leq i \leq n}$ où S_i est d'ordre n-i+1 et une suites de réels $(a_i)_{1 \leq i \leq n}$ liés par les relations :

$$\forall i \in \{1, 2, \dots, n-1\}, S_i = \begin{pmatrix} a_i & {}^tV_i \\ V_i & S_i' \end{pmatrix}, S_{i+1} = a_i S_i' - V_i^t V_i$$

Le processus s'arrête pour i = n car S_n est alors d'ordre 1 et on note $S_n = (a_n)$.

Montrer que S est définie positive si et seulement si tous les réels de la suite $(a_i)_{1 \le i \le n}$ sont strictement positifs.

e) Soit $S = \begin{pmatrix} a & d & e \\ d & b & f \\ e & f & c \end{pmatrix} \in \mathcal{S}_3(\mathbb{R})$. Selon les notations précédentes, déterminer explici-

tement les réels a_1, a_2, a_3 associés à cette matrice S et en déduire que S est définie positive si et seulement si :

$$a > 0$$
, $\begin{vmatrix} a & d \\ d & b \end{vmatrix} > 0$ et $\begin{vmatrix} a & d & e \\ d & b & f \\ e & f & c \end{vmatrix} > 0$

Fin de l'énoncé