Variables aleatorias continuas

Christian Limbert Paredes Aguilera

9/12/2021

Variables aleatorias continuas definición

Notemos que si X es una v.a. con función de distribución continua se tiene que $P(X = x_0) = F_X(x_0) - F(x_0^-) = 0$ por lo que no tiene sentido definir función de probabilidad

En general tendremos que $P(X < x_0) = P(X \le x_0)$

Propiedades

Los sucesos del tipo $\{X \leq x\}$ y $\{X < x\}$ tendrán la misma probabilidad.

Dada una v.a. continua X se tiene que:

• $P(X \le b) = P(X < b)$

Demostración.- $P(X \le b) = P(X \le b) + P(X = b) = P(X \le b)$

• P(X < b) = P(X < a) + P(a < X < b)

Demostración.- Sea $\{X < a\} \cap \{a < X < b\} = \emptyset$ y $\{X < a\} \cup \{a < X < b\} = \{X < b\}$ entonces,

$$P(X \le b) = P(\{X < a\} \cup \{a < X < b\})$$

= $P(X < a) + P(a < X < b)$

• P(a < X < b) = P(X < b) - P(X < a)

Demostración.- Si reescribimos la igualdad dada nos queda,

$$P(X \le b) = P(X < a) + P(a < X < b),$$

de donde por la primera y segunda propiedad queda demostrada la proposición.

Propiedades de la función de distribución

Dada una variable aleatoria contina se tiene que:

- $F_X(b) = F_X(a) + P(a < X < b)$
- $P(a < X < b) = F_X(b) F_X(a)$
- $P(a \le X \le b) = FX(b) F_X(a)$

Función de densidad

Una función $f: \mathbb{R} \to \mathbb{R}$ es una función de densidad sobre \mathbb{R} si cumple que

- $f_X(x) \ge 0$ para todo $x \in \mathbb{R}$
- f es continua salvo a lo más en una cantidad finita de puntos sobre cada intervalo acotado de \mathbb{R} .

•
$$\int_{-\infty}^{\infty} f_X(x) \ dx = 1$$

Función de densidad de una variable aleatoria

Sea X una v.a. con función de distribución F_X . Sea $f: \mathbb{R} \to \mathbb{R}$ una función de desidad tal que

$$F_X(x) = \int_{-\infty}^{\infty} f_X(t) dt \quad \forall x \in \mathbb{R}.$$

Entonces X es una variable aleatoria continua y f_X es la densidad de v.a. X

Dominio de una variable aleatoria continua

El conjunto $D_X = \{x \in \mathbb{R} | f_X(x) > 0\}$ recibe el nombre de soporte de la variable eleatoria continua y se interpreta su conjunto de resultados posible

Densidad diana

$$f_X(x) \begin{cases} 0 & si \quad x \le 0 \\ = 1 & si \quad 0 < x < 1 \\ 0 & si \quad 1 \le x \end{cases}$$

$$Si \qquad x \le 0 \qquad entonces \qquad \int_{-\infty}^x f_X(t) \ dt = 0$$

$$Si \qquad 0 \le x \le 1 \qquad entonces \qquad \int_{\infty}^x f_X(t) \ dx = \int_0^x 1 \ dt = x$$

$$Si \qquad x \ge 1 \qquad entonces \qquad \int_{-\infty}^x F_X(t) \ dt = \int_0^1 1 \ dt = 1$$

$$Por \ lo \ tanto \qquad \int_{\infty}^x f_X(x) \ para \ todo \ x \in \mathbb{R}$$

```
curve(dunif(x,0,1),xlim = c(-0.5,1.5),col="blue",
main="Densidad de la distribución uniforme en [0,1]")
```

Densidad de la distribución uniforme en [0,1]

Utilidad de la función de densidad

La función de densidad nos permite calcular diversas probabilidades

Propiedades

Sea X una v.a. continua con función de distribución ${\cal F}_X$ y de densidad f_X entonces

•
$$P(a < X < b) = P(a < X \le b) = P(a \le X \le b) = P(a \le X \le b) = \int_a^b f_X(x) dx$$

• Si A es un conjunto adecuado de \mathbb{R} entonces

$$P(X \in A) = \int_A f(X) \ dx = \int_{A \cap D_X} f(x) \ dx$$

Propiedades de la función de densidad

Sea X una v.a. continua con función de distribución ${\cal F}_X$ y de densidad f_X entonces

- Si f_X es continua en un punto x, F_X es derivable en ese punto y $F_X^{'}(x) = f_X(x)$
- $P(X = x) = 0 \ \forall x \in \mathbb{R}$.

Esperanza y varianza para variables aleatorias continuas Esperanza

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) \ dx$$

Su f(x) es una función de la variable X entonces:

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \ dx$$

Varianza

$$Var(X) = \sigma_X^2 = E[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

Desviación típica

$$\sigma_X = +\sqrt{\sigma_X^2}$$

Propiedades

- $\sigma_X^2 \ge 0$
- $Var(cte) = E(cte^2) (E(cte))^2 = cte^2 cte^2 = 0$
- $Var(X) = E(X^2) \mu_X^2 = \int_{-\infty}^{\infty} x^2 f_X(x) \ dx \mu_X^2$
- El mínimo de $E\left[(X-C)^2\right]$ se alcanza cuando C=E(X) y es Var(X)

Proposición

Sea X una v.a. continua con $E(X) = \mu_X$ y $Var(X) = \sigma_X^2$ sea Y = a + bX, donde $a, b \in \mathbb{R}$ es una nueva v.a. continua obtenida mediante una transformación lineal de X. Se verifica las mismas propiedades que en el caso discreto:

- E(Y) = E(a + bX) = a + bE(X)
- $Var(Y) = Var(a + bX) = b^2 Var(X)$
- $\sigma_Y = |b|\sigma_X$
- $Z = \frac{X \mu_X}{\sigma_X}$ es una transformación lineal de X de forma que

$$E(Z) = 0$$
 y $Var(Z) = 1$

Demosrtación.- Para la esperanza:

$$E(Z) = E\left[\frac{X - \mu_X}{\sigma_X}\right] = \frac{E(X) - \mu_X}{\sigma_X} = \frac{\mu_X - \mu_X}{\sigma_X} = 0$$

Luego para la varianza se tiene:

$$Var(Z) = Var\left[\frac{X - \mu_X}{\sigma_X}\right] = \frac{Var(X)}{\sigma_X^2} = -\mu_X + \sigma_X^{-1} \cdot Var(X) = \sigma_X^{-2}Var(X) = \frac{\sigma_X^2}{\sigma_X^2} = 1$$