Lycée Berthollet MPSI² 2023-24

DM4 de mathématiques en autocorrection (entraînement au raisonnement)

Les documents, téléphones portables, ordinateurs et calculatrices sont interdits.

Sauf mention explicite, toute réponse à une question devra être argumentée.

Barème sur 125 points avec $\pm 15\%$ pour les "croix rédactionnelles", puis ± 1 pt de présentation sur la note sur 20 :

- Exercice 1 (5 pts): 1 (résultat) + 1 (analyse) +3 (synthèse, dont 2 points pour les justifications "par positivité")
- Exercice 2 (10 pts):
 - 1. 5 = 1 (supposer h injective) + 1 (prendre x, x' tels que f(x) = f(x')) + 1 (composer avec g) + 1 (utiliser l'inj de h) + 1 (rédaction globale)
 - 2. 5 = 1 (supposer h surjective) + 1 (prendre $z \in G$) + 1 (utiliser la surj de $h \to x$) + 1 (prendre y = f(x)) + 1 (rédaction globale)
- Problème 1 (40 pts)
 - 1. $1 (\text{Re} z = \rho \cos \theta \text{ et Im} z = \rho \sin \theta)$
 - 2. $2 = 1 (|z'\overline{z}| = |z'||z|) + 1 (\operatorname{Arg} z'\overline{z} = \operatorname{Arg} z'/z)$
 - 3. (a) 2 = 1 $(\overrightarrow{u} \cdot \overrightarrow{v}) = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos(\widehat{\overrightarrow{u}, \overrightarrow{v}}) + 1$ $(\|\overrightarrow{AM}\| = |z|, \|\overrightarrow{AM'}\| = |z'|)$ et $(|\overrightarrow{AM}, \overrightarrow{AM'}|) \equiv \operatorname{Arg}(z'/z)[2\pi]$)
 Bonus +1 pour les cas dégénérés.
 - (b) 5 = [2] (cas dégénérés) + 1 (signe de l'aire = signe de $\sin\left(\overrightarrow{AM}, \overrightarrow{AM'}\right)$) + 1 ("base" = $\left\|\overrightarrow{AM}\right\|$ et "hauteur" = $\left\|\overrightarrow{AM'}\right\| \sin\left(\overrightarrow{AM}, \overrightarrow{AM'}\right)$) + 1 (aire = $\frac{1}{2}$ base × hauteur)
 - 4. 3 = 1 $(Aff(N) = Aff(M) + \widetilde{Aff(MN)}) + 1 = (Aff(M) + \frac{1}{3}\widetilde{Aff(MN')}) + 1 = \frac{2z+z'}{3}$ et $Aff(P) = \frac{z+2z'}{3}$
 - 5. 5 = 1 (dessin quadrilatère "général") + 1 (bien orienté (direct)) + 1 (Pts I_i, J_i, K_i, L_i) + [2] (construction E, F, G, H (plus loin))
 - 6. 1 (affixes des huit points)
 - 7. $4 = 1 \left(\frac{(2Aff(I_1) + Aff(K_2))}{3} = \dots \right) + 1 \left(\frac{(2Aff(L_2) + Aff(J_1))}{3} = \dots \right) + [2]$ (égalité à $\frac{1}{9}(4a + 2b + c + 2d)$ donc c'est l'affixe e de E)
 - 8. 2(f,g,h=...)
 - 9. $15 = 1 \left(\mathcal{A}(EFGH) = \mathcal{A}(EFH) + \mathcal{A}(GHF) \right) + 1 \left(\mathcal{A}(EFH) = \frac{1}{2} \text{Im} \left(\widetilde{Aff}(\overrightarrow{EH}) \overrightarrow{Aff}(\overrightarrow{EF}) \right) = \frac{1}{2} \text{Im} \left((h-e)(\overline{f}-\overline{e}) \right)$ $+ 1 \left(= \frac{1}{2} \text{Im} \left(\frac{1}{9}(\cdot) \frac{1}{9}(\cdot) \right) \right) + [2] \left(= \frac{1}{162} \text{Im} \left(\cdot \right) \right) + 1 \left(\mathcal{A}(GHF) = \frac{1}{162} \text{Im} \left(\cdot \right) \right) + [2] \left(\sum \mathcal{A} = \frac{1}{162} \text{Im} \left(\cdot \right) \right) + 1 \left(\text{suppression des } a\overline{a}, b\overline{b}, \ldots \right) + [2] \left(\text{regroupement des } a\overline{b} \text{ et } b\overline{a}, \ldots \right) + [2] \left(\mathcal{A}(EFH) = \frac{1}{18} (a\overline{d} + b\overline{a} + c\overline{b} + d\overline{c}) \right) + 1 \left(\mathcal{A}(ABD) = \frac{1}{2} \text{Im} \left(d\overline{b} d\overline{a} a\overline{b} \right) \text{ et } \mathcal{A}(CDB) = \frac{1}{2} \text{Im} \left(b\overline{d} b\overline{c} c\overline{d} \right) + 1 \left(\mathcal{A}(ABCD) = \frac{1}{2} \text{Im} \left(a\overline{d} + b\overline{a} + c\overline{b} + d\overline{c} \right) \right)$
- Problème 2 (40 pts):
 - 1. (a) 4 = 1 (description réc) + 1 (résol (C) et forme TG) + [2] (calcul coef)
 - (b) 2 = 1 (idée) + 1 (réc immédiate)
 - (c) 2 (regroupement des deux "binômes" et simplif)
 - 2. 4 = 1 (départ inj) + [2] (b = b' par l'absurde) + 1 (fin raist)
 - 3. 2 = 1 (existence par binôme) + 1 (unicité par Q précédente)
 - 4. 2 (deux formules de réc)
 - 5. $8 = [3]((x_n, y_n) \text{ sol}) + [5] \text{ (infinité de tels couples)}$
 - 6. $8 = [3]((x_n) \text{ vérifie la réc double}) + 1 (cond init de <math>(u_n)$) + 1 (dire (y_n) vérif aussi rec double) + [3] (calcul coefs)
 - 7. 5 (φ non surj)
 - 8. 3
- Exercice (30 pts)

Exercice 1 Analysons, synthétisons...

Déterminer **soigneusement** l'ensemble S des réels x tels que $\frac{1}{1+x} \le \frac{1}{\sqrt{1+x^2}} \le \frac{1}{x}$.

Raisonnons par analyse-synthèse. Soit $x \in \mathbb{R}$.

Analyse : Supposons que $\frac{1}{1+x} \le \frac{1}{\sqrt{1+x^2}} \le \frac{1}{x}$. Alors en particulier $\sqrt{1+x^2} \ne 0$ et comme une racine carrée est toujours positive, $\sqrt{1+x^2} > 0$, donc $\frac{1}{x} \ge \frac{1}{\sqrt{1+x^2}} > 0$. En prenant l'inverse du nombre strictement positif $\frac{1}{x}$, on obtient x > 0. **Synthèse :** Supposons x > 0. Alors $x^2 > 0$ et 2x > 0, donc

$$0 < x^2 < x^2 + 1 < x^2 + 2x + 1 = (x+1)^2$$
.

Comme la fonction racine carrée est strictement croissante sur \mathbb{R}_+ ,

$$0 < \sqrt{x^2} \le \sqrt{x^2 + 1} \le \sqrt{(x+1)^2}$$

ce qui donne, puisque $x \ge 0$ et $x + 1 \ge 0$,

$$0 < x \le \sqrt{x^2 + 1} \le x + 1.$$

En prenant l'inverse de ces quantités strictement positives, $\frac{1}{1+x} \le \frac{1}{\sqrt{1+x^2}} \le \frac{1}{x}$.

On a donc montré que $\left\{x \in \mathbb{R} \mid \frac{1}{1+x} \le \frac{1}{\sqrt{1+x^2}} \le \frac{1}{x}\right\} = \mathbb{R}_+^{\star}$.

Exercice 2 Besoin d'une injection... ou d'une surjection, voire d'une bonne correction Soient E, F, G trois ensembles, f une application de E vers F et g une application de F vers G. On définit en outre l'application h de E vers G par : $\forall x \in E, \ h(x) = g(f(x))$. Montrer que

1. si h est injective, alors f est injective;

Supposons que *h* soit injective.

Soient $x, x' \in E$ tels que f(x) = f(x'). On a alors h(x) = g(f(x)) = g(f(x')) = h(x'). Comme h est injective, x = x'. On vient de montrer que

$$\forall x, x' \in E, \quad (f(x) = f(x') \Longrightarrow x = x'),$$

i.e. f est injective.

2. si h est surjective, alors g est surjective.

Supposons que *h* soit surjective.

Soit alors $z \in G$. Comme h est surjective, il existe $x \in E$ tel que z = h(x) = g(f(x)). En posant y = f(x), on a z = g(y). On vient de montrer que

$$\forall z \in G, \ \exists y \in F, \ g(y) = z,$$

i.e. g est surjective.

Problème 1 La fenêtre tordue

On note \mathcal{P} le plan euclidien orienté usuel muni d'un ROND, ce qui permet de faire la correspondance habituelle avec \mathbb{C} .

1. Soit $z \in \mathbb{C}^*$. Exprimer Re z et Im z en fonction de |z| et Arg z.

$$\begin{cases} \operatorname{Re} z &= |z| \cos(\operatorname{Arg} z) \\ \operatorname{Im} z &= |z| \sin(\operatorname{Arg} z). \end{cases}$$

2. Soient $z, z' \in \mathbb{C}^*$. Montrer que

$$\begin{cases} \operatorname{Re}(z'\overline{z}) &= |z||z'|\cos\left(\operatorname{Arg}\left(\frac{z'}{z}\right)\right) \\ \operatorname{Im}(z'\overline{z}) &= |z||z'|\sin\left(\operatorname{Arg}\left(\frac{z'}{z}\right)\right). \end{cases}$$

Par la question précédente, comme le module d'un produit est le produit des modules et l'argument d'un produit est congru à la somme des arguments modulo 2π ,

$$\begin{cases} \operatorname{Re}(z'\overline{z}) &= |z'| |\overline{z}| \cos(\operatorname{Arg} z' + \operatorname{Arg} \overline{z}) \\ \operatorname{Im}(z'\overline{z}) &= |z'| |\overline{z}| \sin(\operatorname{Arg} z' + \operatorname{Arg} \overline{z}). \end{cases}$$

Or $|\bar{z}| = |z|$ et Arg $\bar{z} \equiv -\text{Arg } z \equiv \text{Arg } \frac{1}{z}$ [2 π], donc

$$\begin{cases}
\operatorname{Re}(z'\overline{z}) &= |z||z'|\cos\left(\operatorname{Arg}\left(\frac{z'}{z}\right)\right) \\
\operatorname{Im}(z'\overline{z}) &= |z||z'|\sin\left(\operatorname{Arg}\left(\frac{z'}{z}\right)\right).
\end{cases}$$

3. En déduire que pour tous points A, M et M' de \mathcal{P} , si on note z l'affixe de \overrightarrow{AM} et z' l'affixe de $\overrightarrow{AM'}$:

(a)
$$\overrightarrow{AM} \cdot \overrightarrow{AM'} = \operatorname{Re}(z'\overline{z})$$
;

Soient $A, M, M' \in \mathcal{P}$, z l'affixe de \overrightarrow{AM} et z' l'affixe de $\overrightarrow{AM'}$.

Si A = M ou A = M', la formule est vraie car 0 = 0.

Dans le cas contraire,

$$\overrightarrow{AM} \cdot \overrightarrow{AM'} = \left\| \overrightarrow{AM} \right\| \cdot \left\| \overrightarrow{AM'} \right\| \cdot \cos \left(\widehat{\overrightarrow{AM}}, \widehat{\overrightarrow{AM'}} \right) = |z| \left| z' \right| \cos \left(\operatorname{Arg} \left(\frac{z'}{z} \right) \right).$$

Par la question 2,

$$\overrightarrow{AM} \cdot \overrightarrow{AM'} = \operatorname{Re}(z'\overline{z}).$$

(b) L'aire algébrique du triangle AMM' (*i.e.* comptée positivement si le triangle est direct et négativement sinon) vaut $\frac{1}{2}\text{Im}(z'\bar{z})$.

Dans le cas où deux au moins des trois points A, M et M' sont égaux, le triangle est <u>dégénéré</u> et <u>son aire</u> <u>est nulle</u>. Cela correspond à l'un au moins des trois cas : z = 0, z' = 0 ou z = z'. Dans les deux premiers cas $z'\bar{z} = 0$ et dans le troisième, $z'\bar{z} = z\bar{z} \in \mathbb{R}$, donc dans tous les cas $\frac{1}{2}$ Im $(z'\bar{z}) = 0$.

On peut maintenant supposer que A, M et M' sont <u>deux à deux distincts</u>. Dans ce cas, l'aire algébrique (du triangle) est non nulle et son signe est celui de $\sin\left(\overrightarrow{AM},\overrightarrow{AM'}\right)$. Par ailleurs, la hauteur issue de M' a comme longueur $\left\|\overrightarrow{AM'}\right\| \left|\sin\left(\overrightarrow{AM},\overrightarrow{AM'}\right)\right|$. Comme l'aire absolue est la moitié du produit de la base par la hauteur, elle vaut $\frac{1}{2} \left\|\overrightarrow{AM}\right\| \left\|\overrightarrow{AM'}\right\| \left|\sin\left(\overrightarrow{AM},\overrightarrow{AM'}\right)\right|$, et l'aire algébrique vaut donc

$$\frac{1}{2}\left\|\overrightarrow{AM}\right\|\left\|\overrightarrow{AM'}\right\|\sin\widehat{\left(\overrightarrow{AM},\overrightarrow{AM'}\right)} = \frac{1}{2}\left|z\right|\left|z'\right|\sin\left(\operatorname{Arg}\left(\frac{z'}{z}\right)\right).$$

Par la question 2,

l'aire algébrique du triangle AMM' vaut $\frac{1}{2}\text{Im}(z'\overline{z})$.

4. Soient $M,M' \in \mathcal{P}$ d'affixes z,z'. On note N le point situé au tiers du segment [MM'] (*i.e.* tel que $\overrightarrow{MN} = \frac{1}{3}\overrightarrow{MM'}$) et P le point situé au deux tiers de ce même segment.

Montrer que l'affixe de N est $\frac{2z+z'}{3}$ et celui de P est $\frac{z+2z'}{3}$.

$$\underbrace{\frac{\operatorname{Aff}(N)}{\operatorname{Aff}(M) + \operatorname{Aff}\left(\overrightarrow{MN}\right) = \operatorname{Aff}(M) + \frac{1}{3}\operatorname{Aff}\left(\overrightarrow{MM'}\right) = z + \frac{1}{3}(z' - z)}_{\text{et de même}} = \underbrace{\operatorname{Aff}(P)}_{\text{et de même}} = \underbrace{\operatorname{Aff}(P)}_{\text{otherwise}} = \underbrace{\operatorname{Aff}(M) + \frac{2}{3}\operatorname{Aff}\left(\overrightarrow{MM'}\right)}_{\text{et de meme}} = \underbrace{\frac{z + 2z'}{3}}_{\text{otherwise}}.$$

Dans la suite de l'exercice, on considère un quadrilatère quelconque de sommets A, B, C, D (énumérés dans le sens direct) et on note pour $i \in \{1, 2\}$, I_i (resp. J_i , K_i , L_i) le point tel que $\overrightarrow{AI_i} = \frac{i}{3}\overrightarrow{AB}$ (resp. $\overrightarrow{BJ_i} = \frac{i}{3}\overrightarrow{BC}$, $\overrightarrow{CK_i} = \frac{i}{3}\overrightarrow{CD}$, $\overrightarrow{DL_i} = \frac{i}{3}\overrightarrow{DA}$).

5. Faire une figure dans le cas le plus général possible.

6. Calculer les affixes des huit points ci-dessus en fonction des affixes a, b, c, d des points A, B, C, D.

D'après la question 4, on a

$$\begin{cases}
Aff(I_1) &= \frac{2a+b}{3}, & Aff(I_2) &= \frac{a+2b}{3} \\
Aff(J_1) &= \frac{2b+c}{3}, & Aff(J_2) &= \frac{b+2c}{3} \\
Aff(K_1) &= \frac{2c+d}{3}, & Aff(K_2) &= \frac{c+2d}{3} \\
Aff(L_1) &= \frac{2d+a}{3}, & Aff(L_2) &= \frac{d+2a}{3}
\end{cases}$$

7. Calculer l'affixe du point situé au tiers du segment $[I_1K_2]$ et celui du point situé au tiers du segment $[L_2J_1]$. En déduire que l'affixe du point d'intersection E de ces deux segments est $e = \frac{1}{9}(4a + 2b + c + 2d)$.

Les deux affixes demandés sont

$$\frac{2Aff(I_1) + Aff(K_2)}{3} = \frac{1}{9}(4a + 2b + c + 2d)$$

et

$$\frac{2\mathrm{Aff}(L_2) + \mathrm{Aff}(J_1)}{3} = \frac{1}{9}(2d + 4a + 2b + c).$$

Comme ils sont égaux, les deux points coïncident en un point qui est donc à l'intersection des deux segments.

L'affixe du point E est donc
$$e = \frac{1}{9}(4a + 2b + c + 2d)$$
.

8. Sans écrire sur la copie de démonstration ni de calcul, donner l'affixe f (resp. g, h) de F (resp. G, H), le point d'intersection de $[J_1L_2]$ et $[I_2K_1]$ (resp. de $[K_1I_2]$ et $[J_2L_1]$, de $[L_1J_2]$ et $[K_2I_1]$).

5

$$\begin{cases} f = \frac{1}{9}(2a+4b+2c+d) \\ g = \frac{1}{9}(a+2b+4c+2d) \\ h = \frac{1}{9}(2a+b+2c+4d) \end{cases}$$

9. Représenter le quadrilatère *EFGH* sur le dessin et montrer que son aire est le neuvième de l'aire de *ABCD*.

On calcule l'aire de chaque quadrilatère en le découpant en deux triangles orientés dans le sens direct et en calculant leurs aires à l'aide de la formule démontrée dans la question 3b.

$$\begin{split} \mathcal{A}(EFH) &= \frac{1}{2} \mathrm{Im} \left(\widetilde{\mathrm{Aff}} \left(\overline{EH} \right) \widetilde{\widetilde{\mathrm{Aff}}} \left(\overline{EF} \right) \right) \\ &= \frac{1}{2} \mathrm{Im} \left((h-e) \overline{(f-e)} \right) \\ &= \frac{1}{2} \mathrm{Im} \left(\frac{1}{9} (-2a-b+c+2d) \cdot \frac{1}{9} (-2\overline{a} + 2\overline{b} + \overline{c} - \overline{d}) \right) \\ &= \frac{1}{162} \mathrm{Im} \quad (4a\overline{a} \quad -4a\overline{b} \quad -2a\overline{c} \quad +2a\overline{d} \\ &\quad +2b\overline{a} \quad -2b\overline{b} \quad -b\overline{c} \quad +b\overline{d} \\ &\quad -2c\overline{a} \quad +2c\overline{b} \quad +c\overline{c} \quad -c\overline{d} \\ &\quad -4d\overline{a} \quad +4d\overline{b} \quad +2d\overline{c} \quad -2d\overline{d}) \end{split}$$

Comme on prend la partie imaginaire, tous les termes réels, comme $4a\overline{a},...$ n'ont aucune contribution. On peut aussi regrouper les termes ainsi : $-4a\overline{b}+2b\overline{a}=-6a\overline{b}+(2a\overline{b}+2b\overline{a})$ a même partie imaginaire que $-6a\overline{b}$. Cela donne

$$\mathcal{A}(EFH) = \frac{1}{162} \text{Im} \left(-6a\overline{b} + 6a\overline{d} - 3b\overline{c} - 3b\overline{d} - 3c\overline{d} \right).$$

De la même manière,

$$\mathcal{A}(GHF) = \frac{1}{2} \operatorname{Im} \left((f-g)\overline{(h-g)} \right)$$

$$= \frac{1}{162} \operatorname{Im} \left((a+2b-2c-d)(\overline{a}-\overline{b}-2\overline{c}+2\overline{d}) \right)$$

$$= \frac{1}{162} \operatorname{Im} \left(-3a\overline{b}+3a\overline{d}-6b\overline{c}+3b\overline{d}-6c\overline{d} \right)$$

En faisant la somme

$$\mathcal{A}(EFGH) = \frac{1}{162} \text{Im} \left(-9a\overline{b} + 9a\overline{d} - 9b\overline{c} - 9c\overline{d} \right)$$

et comme $\operatorname{Im}(-a\overline{b}) = \operatorname{Im}(b\overline{a}),...,$ on obtient

$$\mathcal{A}(EFGH) = \frac{1}{18} \operatorname{Im} \left(\overline{a}b + \overline{b}c + \overline{c}d + \overline{d}a \right)$$

Par ailleurs,

$$\mathcal{A}(ABD) = \frac{1}{2} \mathrm{Im} \left((d-a) \overline{(b-a)} \right) = \frac{1}{2} \mathrm{Im} \left(d\overline{b} - d\overline{a} - a\overline{b} \right)$$

et

$$\mathcal{A}(CDB) = \frac{1}{2} \text{Im} \left((b-c) \overline{(d-c)} \right) = \frac{1}{2} \text{Im} \left(b \overline{d} - b \overline{c} - c \overline{d} \right)$$

donc

$$\mathcal{A}(ABCD) = \frac{1}{2} \operatorname{Im} \left(-d\overline{a} - a\overline{b} - b\overline{c} - c\overline{d} \right)$$

donc

$$\mathcal{A}(ABCD) = \frac{1}{2} \text{Im} \left(\overline{a}b + \overline{b}c + \overline{c}d + \overline{d}a \right)$$

On en conclut que

$$\mathcal{A}(EFGH) = \frac{1}{9}\mathcal{A}(ABCD)$$

On peut noter au passage que l'aire du quadrilatère ABCD s'exprime très simplement en fonction des affixes de ses sommets. Cela correspond géométriquement à 4 triangles dont on calcule les aires algébriques à l'aide de la formule de la question 3b et dont les aires se compensent sauf pour la partie intérieure du quadrilatère. Cela se généralise d'ailleurs à tout polygone, convexe ou non (en particulier aux triangles : $\mathcal{A}(ABC) = \frac{1}{2} \text{Im} \left(\overline{a}b + \overline{b}c + \overline{c}a \right)$)

Problème 2 Points entiers d'une hyperbole

1. (a) Déterminer le terme général de la suite définie par $u_0 = 1$, $u_1 = 3$ et $(\forall n \in \mathbb{N}, u_{n+2} = 6u_{n+1} - u_n)$.

On est en présence d'une <u>récurrence double linéaire homogène à oefficients constants.</u> On résout d'abord l'<u>équation caractéristique</u> (C): $r^2 - 6r + 1 = 0$. Son discriminant est $(4\sqrt{2})^2 > 0$, donc ses racines sont $\frac{6\pm 4\sqrt{2}}{2}$, *i.e.* $3 - 2\sqrt{2}$ et $3 + 2\sqrt{2}$. On sait alors qu'il existe $\lambda, \mu \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda (3 - 2\sqrt{2})^n + \mu (3 + 2\sqrt{2})^n$$

Comme $u_0 = 1$ et $u_1 = 3$, les coefficients λ et μ vérifient le système

$$\begin{cases} \lambda + \mu = 1 & (L_1) \\ (3-2\sqrt{2})\lambda + (3+2\sqrt{2})\mu = 3 & (L_2). \end{cases}$$

En calculant $(2\sqrt{2}-3)L_1+L_2$, on obtient $4\sqrt{2}\mu=2\sqrt{2}$, soit $\mu=\frac{1}{2}$. On en déduit alors, par L_1 , $\lambda=\frac{1}{2}$. Ainsi,

$$\forall n \in \mathbb{N}, \quad u_n = \frac{1}{2} \left((3 - 2\sqrt{2})^n + (3 + 2\sqrt{2})^n \right).$$

(b) En déduire que, pour tout $n \in \mathbb{N}$, $\left(3 - 2\sqrt{2}\right)^n + \left(3 + 2\sqrt{2}\right)^n$ est un entier pair.

Par récurrence double immédiate, la suite (u_n) est à valeurs dans \mathbb{N} . Ainsi,

pour tout
$$n \in \mathbb{N}$$
, $\left(3 - 2\sqrt{2}\right)^n + \left(3 + 2\sqrt{2}\right)^n = 2u_n$ est un entier pair.

(c) Redémontrer le résultat précédent en utilisant la formule du binôme de Newton.

Soint $n \in \mathbb{N}$. On a alors, en appliquant deux fois la formule du binôme, en regroupant les sommes et en factorisant,

$$\left(3 - 2\sqrt{2}\right)^n + \left(3 + 2\sqrt{2}\right)^n = \sum_{k=0}^n \binom{n}{k} 3^{n-k} (\sqrt{2})^{3k} \left((-1)^k + 1\right) = 2\sum_{\substack{k=0\\k \text{ pair}}}^n \binom{n}{k} 3^{n-k} (\sqrt{2})^{3k}$$

7

qui est une somme d'entiers, donc un entier elle-même.

2. Montrer que l'application $\varphi: \left\{ \begin{array}{ccc} \mathbb{Z} \times \mathbb{Z} & \longrightarrow & \mathbb{R} \\ (a,b) & \longmapsto & a+b\sqrt{2} \end{array} \right.$ est injective.

Soient $(a,b), (a',b') \in \mathbb{Z} \times \mathbb{Z}$ tels que $\underline{\varphi((a,b))} = \underline{\varphi((a',b'))}$, i.e. $a+b\sqrt{2}=a'+b'\sqrt{2}$.

On a alors $a - a' = (b' - b)\sqrt{2}$.

Montrons par l'absurde que b=b': sinon, on aurait $\sqrt{2}=\frac{a-a'}{b'-b}\in\mathbb{Q}$, ce qui est faux.

Ainsi b = b', et donc a - a' = 0, *i.e.* a = a', donc (a,b) = (a',b').

On vient de montrer que ϕ est injective.

3. Ce qui précède permet de définir de manière unique les suites $(x_n),(y_n)\in\mathbb{N}^{\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \ (3+2\sqrt{2})^n = x_n + y_n \sqrt{2}.$$

Expliquer pourquoi.

Soit $n \in \mathbb{N}$. En développant $(3 + 2\sqrt{2})^n$ par la formule du binôme de Newton et en regroupant les termes entiers et ceux comportant $\sqrt{2}$, ce nombre s'écrit clairement comme combinaison linéaire à coefficients entiers naturels de 1 et $\sqrt{2}$. Ces coefficients sont déterminés de manière unique par injectivité de φ (question précédente), ce qui permet de les noter x_n et y_n .

Les suites $(x_n), (y_n) \in \mathbb{N}^{\mathbb{N}}$ sont donc bien définies et uniquement déterminées.

4. Pour $n \in \mathbb{N}$, exprimer x_{n+1} et y_{n+1} en fonction de x_n et y_n .

On a, pour $n \in \mathbb{N}$,

$$x_{n+1} + y_{n+1}\sqrt{2} = (3+2\sqrt{2})\cdot(3+2\sqrt{2})^n = (3+2\sqrt{2})\cdot(x_n + y_n\sqrt{2}) = (3x_n + 4y_n) + (2x_n + 3y_n)\sqrt{2}$$

donc, par injectivité de φ,

$$\begin{cases} x_{n+1} = 3x_n + 4y_n \\ y_{n+1} = 2x_n + 3y_n. \end{cases}$$

On peut aussi remarquer que $x_0 = 1$, $y_0 = 0$, $x_1 = 3$ et $y_1 = 2$, puisque $(3 + 2\sqrt{2})^0 = 1 = 1 + 0 \times \sqrt{2}$ et $(3 + 2\sqrt{2})^1 = 3 + 2\sqrt{2}$.

5. Montrer que l'équation $x^2 - 2y^2 = 1$ admet une infinité de solutions dans $\mathbb{N} \times \mathbb{N}$.

On note (E) l'équation $x^2 - 2y^2 = 1$.

Remarquons que, pour $n \in \mathbb{N}$,

$$x_{n+1}^2 - 2y_{n+1}^2 = (3x_n + 4y_n)^2 - 2(2x_n + 3y_n)^2 = x_n^2 - 2y_n^2$$

8

Comme $x_0^2 - 2y_0^2 = 1^2 - 2 \times 0^2 = 1$, alors, par récurrence évidente,

pour tout $n \in \mathbb{N}$, le couple (x_n, y_n) est solution de l'équation (E).

Il reste à montrer que la suite de couples $((x_n, y_n))_{n \in \mathbb{N}}$ a une image infinie. Pour cela, on montre par récurrence que la suite (x_n) est strictement croissante. On pose, pour $n \in \mathbb{N}$, l'assertion de récurrence $\mathcal{A}_n : x_n < x_{n+1}$.

<u>Initialisation</u>. On a vu précédemment que $x_0 = 1$ et $x_1 = 3$, donc \mathcal{A}_0 est vraie. Hérédité. Supposons que \mathcal{A}_n soit vraie pour un certain $n \in \mathbb{N}$.

Comme $x_n \in \mathbb{N}$ et, par hypothèse de récurrence, $x_{n+1} > x_n$, alors $x_{n+1} > 0$. On en déduit que $3x_{n+1} > x_{n+1}$, puis, en ajoutant $4y_{n+1} \ge 0$, que $x_{n+2} = 3x_{n+1} + 4y_{n+1} > x_{n+1}$, *i.e.* $\boxed{\mathcal{A}_{n+1} \text{ est vraie.}}$

Ainsi, par récurrence, la suite (x_n) est strictement croissante, donc la suite $((x_n, y_n))_{n \in \mathbb{N}}$ est injective, ce qui implique en particulier que

l'équation (E) a une infinité de solutions.

6. Calculer les termes généraux des suites (x_n) et (y_n) à l'aide de la première question.

Pour $n \in \mathbb{N}$,

$$x_{n+2} = 3x_{n+1} + 4y_{n+1} = 3x_{n+1} + 8x_n + 12y_n = 3x_{n+1} + 8x_n + 3(x_{n+1} - 3x_n) = 6x_{n+1} - x_n.$$

Comme de plus, $x_0 = 1 = u_0$ et $x_1 = 3 = u_1$, on en déduit que $(x_n) = (u_n)$, *i.e.*

$$\forall n \in \mathbb{N}, \ x_n = \frac{1}{2} \left((3 - 2\sqrt{2})^n + (3 + 2\sqrt{2})^n \right).$$

Par un calcul analogue, on montre que la suite (y_n) vérifie la même récurrence, avec des termes initiaux différents. Ainsi, il existe $\alpha, \beta \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, \ y_n = \alpha (3 - 2\sqrt{2})^n + \beta (3 + 2\sqrt{2})^n.$$

On déduit $\alpha = -\frac{\sqrt{2}}{4}$ et $\beta = \frac{\sqrt{2}}{4}$ des conditions initiales $y_0 = 0$ et $y_1 = 2$, ce qui donne

$$\forall n \in \mathbb{N}, \ y_n = \frac{\sqrt{2}}{4} \left((3 + 2\sqrt{2})^n - (3 - 2\sqrt{2})^n \right).$$

7. L'application φ est-elle bijective?

Montrons par l'absurde que φ n'est pas surjective.

Supposons qu'elle le soit.

Méthode 1. Alors $\sqrt{3}$ admettrait un antécédent, donc il existerait $a,b\in\mathbb{Z}$ tels que $\sqrt{3}=a+b\sqrt{2}$. Comme $\sqrt{3}$ n'est pas entier, $b\neq 0$. Il est alors impossible que a=0, car, pour $k\leq 0$, $k\sqrt{2}<\sqrt{3}$, $1\times\sqrt{2}=\sqrt{2}\neq\sqrt{3}$ et, pour $k\geq 2$ entier, $k\sqrt{2}\geq 2\sqrt{2}>\sqrt{3}$. Ainsi $ab\neq 0$.

Par ailleurs, en élevant l'égalité au carré, $3 = a^2 + 2b^2 + 2ab\sqrt{2}$, et comme $ab \neq 0$, $\sqrt{2} = \frac{3-a^2-2b^2}{2ab}$, ce qui contredit l'irrationalité de $\sqrt{2}$.

Ainsi l'application φ n'est pas surjective, donc φ n'est pas bijective.

Méthode 2 (due à Virgil Pierroz : on se sert de l'injectivité pour montrer la non-surjectivité!). Alors $\frac{1}{2}$ admetrait un antécédent, donc il existerait $a,b\in\mathbb{Z}$ tels que $\frac{1}{2}=a+b\sqrt{2}$. On aurait alors $1+0\sqrt{2}=(2a)+(2b)\sqrt{2}$ avec $1,0,2a,2b\in\mathbb{Z}$ et, par injectivité de φ , 2a=1, donc $a\notin\mathbb{Z}$, contradiction.

8. Que dire de l'injectivité et de la surjectivité de l'application ψ : $\begin{cases} \mathbb{Q} \times \mathbb{Q} & \longrightarrow \mathbb{R} \\ (a,b) & \longmapsto a+b\sqrt{2} \end{cases}$?

L'application ψ est injective avec une démonstration semblable à celle de l'injectivité de ϕ .

En raffinant la démonstration précédente, on peut montrer que l'application ψ n'est pas surjective., mais dans le cas des deux applications, on peut aller plus vite : \mathbb{Z}^2 et \mathbb{Q}^2 sont dénombrables, donc leur image par une quelconque application est au plus dénombrable, ce qui n'est pas le cas de \mathbb{R} , donc φ et ψ ne sont pas surjectives.

Exercice 3 \star *Log-disque*

Déterminer l'ensemble E des complexes $z = x + \mathrm{i} y$ $(x, y \in \mathbb{R})$ tels que le point du plan d'affixe e^z soit dans le disque fermé (*i.e.* y compris le bord) de centre $\Omega(1,0)$ et de rayon 1 en donnant, pour chaque y possible, l'ensemble des x tels que $z \in E$.

Représenter graphiquement E.

Pour une partie \mathcal{A} du plan \mathcal{P} , on note $\widetilde{\mathcal{A}}$ l'ensemble de ses affixes.

On note C le cercle de centre Ω et de rayon 1 et \mathcal{D} le disque fermé de centre Ω et de rayon 1.

Les points de C sont les points ayant des affixes de la forme $1 + e^{i\theta}$, $\theta \in \mathbb{R}$ et, en enlevant l'origine, dont l'affixe n'est pas atteint par l'application exp, on peut se restreindre aux $\theta \in]-\pi,\pi[$:

$$\widetilde{(\mathcal{C}\setminus\{O\})} = \left\{1 + \mathrm{e}^{\mathrm{i}\,\theta}; \theta \in \left] - \pi, \pi\right[\right\}.$$

Or, pour un tel $\theta \in]-\pi,\pi[,|1+e^{i\theta}|=2\cos\frac{\theta}{2}$ et Arg $(1+e^{i\theta})\equiv\frac{\theta}{2}$ $[2\pi]$. On en déduit que

$$\widehat{(\mathcal{D}\setminus\{O\})} = \left\{re^{iy}; y \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[, 0 < r \le 2\cos y\right\} \\
= \left\{e^{x+iy}; y \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[, x \le \ln(2\cos y)\right\},$$

donc

$$E = \left\{ x + \mathrm{i}\, y; \ y \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \left[+ 2\pi \mathbb{Z}, x \in \left] - \infty, \ln(2\cos(y)) \right] \right\}.$$

La fonction $f: y \longmapsto \ln(2\cos(y))$ est paire et 2π -périodique et, sur $\left[0, \frac{\pi}{2}\right[$, elle est clairement décroissante avec $f(0) = \ln(2)$ et $\lim_{\frac{\pi}{2}} f = -\infty$, ce qui donne, pour son graphe d'équation x = f(y), une tangente "verticale" aux points de coordonnées $(\ln(2), 2k\pi)$, $k \in \mathbb{Z}$ et des asymptotes "horizontales" d'équations $y = \frac{\pi}{2} + j\pi$, $j \in \mathbb{Z}$. Sur la figure ciaprès, l'ensemble E correspond à l'intérieur des "dômes", bord compris.

