MATH 217 - LINEAR ALGEBRA HOMEWORK 6, SOLUTIONS

Part A (10 points)

Solve the following problems from the book:

Section 3.4: 50, 66 Section 4.1: 58 Section 4.2: 26, 68

Solution.

3.4.50: It is helpful to note that the 'third direction' is $\vec{v} + \vec{w}$:

(a) We have $\overrightarrow{OP} = 2\vec{v} + \vec{w}$ and $\overrightarrow{OQ} = \vec{v} + 2\vec{w}$:

Therefore

$$\left[\overrightarrow{OP}\right]_{\mathfrak{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}, \qquad \left[\overrightarrow{OQ}\right]_{\mathfrak{B}} = \begin{bmatrix} 1\\2 \end{bmatrix}.$$

(b) Note that

$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = (3\vec{v} + 2\vec{w}) - (2\vec{v} + \vec{w}) = \vec{v} + \vec{w},$$

so we have the following picture:

Thus R is the center of a tile.

- (c) Note that every vertex looks locally either like Y or λ . Starting at a λ vertex and adding either $2\vec{v} + \vec{w}$ or $\vec{v} + 2\vec{w}$ takes us to another λ vertex. Since O is a λ vertex and $17\vec{v} + 13\vec{w} = 7(2\vec{v} + \vec{w}) + 3(\vec{v} + 2\vec{w})$, we see that S is a λ vertex.
- **3.4.66** We have that

$$T\left(\begin{bmatrix}b\\1-a\end{bmatrix}\right) = \begin{bmatrix}b\\1-a\end{bmatrix}$$

and

$$T\left(\begin{bmatrix} a-1\\b\end{bmatrix}\right) = \begin{bmatrix} 1-a\\-b\end{bmatrix}.$$

Hence,

$$B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Therefore, T is the reflection over the line $\ell = \operatorname{Span}\left(\begin{bmatrix} b \\ 1-a \end{bmatrix}\right)$.

- **4.1.58**: First observe that V is a subspace of vector space of functions from \mathbb{R} to \mathbb{R} :
 - the zero function $\vec{0}$ is in V;
 - if $f, g \in V$, then (f+g)'' = f'' + g'' = -f + (-g) = -(f+g), so $f+g \in V$;
 - if $f \in V$ and $c \in \mathbb{R}$, then (cf)'' = cf'' = c(-f) = -(cf), so $cf \in V$.
 - (a) Let $g \in V$, so that g'' = -g. In order to show that $g^2 + (g')^2$ is constant, it suffices to show that its derivative is the zero function $\vec{0}$. We have

$$(g^2 + (g')^2)' = 2gg' + 2g'g'' = 2gg' + 2g'(-g) = \vec{0},$$

as desired.

- (b) Suppose that $g \in V$ such that g(0) = g'(0) = 0. By part (a), the function $g^2 + (g')^2$ is constant, and by assumption, it equals 0 when x = 0. Therefore $g^2 + (g')^2 = \vec{0}$. Since the square of any function is everywhere nonnegative, we conclude that both g and g' are identically zero.
- (c) Let $f \in V$. Observe that $\sin(x)$ and $\cos(x)$ are both in V, since

$$(\sin(x))'' = -\sin(x), \qquad (\cos(x))'' = -\cos(x).$$

Since V is closed under addition and scalar multiplication, get that $g \in V$, where by definition $g(x) := f(x) - f(0)\cos(x) - f'(0)\sin(x)$ for all $x \in \mathbb{R}$. We have

$$g(0) = f(0) - f(0)\cos(0) - f'(0)\sin(0) = f(0) - f(0) - 0 = 0,$$

and since $g'(x) = f'(x) + f(0)\sin(x) - f'(0)\cos(x)$, we have

$$g'(0) = f'(0) + f(0)\sin(0) - f'(0)\cos(0) = f'(0) + 0 - f'(0) = 0.$$

Thus by part (b), we get $g = \vec{0}$, i.e. $f(x) = f(0)\cos(x) + f'(0)\sin(x)$ for all $x \in \mathbb{R}$.

4.2.26: We prove that this function is an isomorphism. Let's start by proving that it is linear. For every $a, b, c, a', b', c', k \in \mathbb{R}$

$$T(a+bt+ct^{2}+a'+b't+c't^{2}) = T((a+a')+(b+b')t+(c+c')t^{2})$$

$$= (a+a')-(b+b')t+(c+c')t^{2} = a-bt+ct^{2}+a'-b't+c't^{2}$$

$$= T(a+bt+ct^{2})+T(a'+b't+c't^{2})$$

and

 $T(k(a+bt+ct^2)) = T(ka+kbt+kct^2) = ka-kbt+kct^2 = k(a-bt+ct^2) = kT(a-bt+ct^2).$ Note that it will suffice to prove that T is surjective. For every $a+bt+ct^2 \in P_2$, $a+bt+ct^2 = T(a-bt+ct^2)$

therefore T is surjective.

4.2.68: We claim that T is an isomorphism if and only if $k \neq 1, 5$. To prove this, we first observe that since T is a linear transformation from a finite-dimensional vector space to itself, it is injective if and only if it is surjective (this follows from the rank-nullity theorem). Therefore, T is an isomorphism if and only if it is injective, if and only if $\ker(T) = \{\vec{0}\}$. Thus we must show that $\ker(T) = \{\vec{0}\}$ if and only if $k \neq 1, 5$. Note that

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 3a & -b \\ (5-k)c & (1-k)d \end{bmatrix} \quad \text{ for all } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2\times 2}.$$

We see that if $k \neq 1, 5$, then $\ker(T) = \{\vec{0}\}$. Conversely, if k = 1, then $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is in $\ker(T)$, while if k = 5, then $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ is in $\ker(T)$.

Part B (25 points)

Problem 1. Let V be a vector space, and let $(\vec{v}_1, \ldots, \vec{v}_n)$ be a list of vectors in V. Define the function $T: \mathbb{R}^n \to V$ by

$$T\left(\begin{bmatrix}c_1\\\vdots\\c_n\end{bmatrix}\right) = c_1\vec{v}_1 + \dots + c_n\vec{v}_n \text{ for all } \begin{bmatrix}c_1\\\vdots\\c_n\end{bmatrix} \in \mathbb{R}^n.$$

- (a) Prove that T is a linear transformation.
- (b) Prove that if $(\vec{v}_1, \dots, \vec{v}_n)$ is an ordered basis of V, then T is an isomorphism.
- (c) Prove that if $(\vec{v}_1, \ldots, \vec{v}_n)$ does not span V, then T is not surjective.
- (d) Prove that if $(\vec{v}_1, \dots, \vec{v}_n)$ is not linearly independent, then T is not injective.
- (e) Prove that if T is an isomorphism, then $(\vec{v}_1, \ldots, \vec{v}_n)$ is an ordered basis of V.

Solution.

(a) For every
$$\vec{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
, $\vec{d} = \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} \in \mathbb{R}^n$ and $k \in \mathbb{R}$, we have

 $T(\vec{c} + \vec{d}) = (c_1 + d_1)\vec{v}_1 + \dots + (c_n + d_n)\vec{v}_n = c_1\vec{v}_1 + \dots + c_n\vec{v}_n + d_1\vec{v}_1 + \dots + d_n\vec{v}_n = T(\vec{c}) + T(\vec{d}).$ and

$$T(k\vec{c}) = (kc_1)\vec{v}_1 + \dots + (kc_n)\vec{v}_n = k(c_1\vec{v}_1 + \dots + c_n\vec{v}_n) = kT(\vec{c}).$$

- (b) Since $(\vec{v}_1, \ldots, \vec{v}_n)$ is a basis of V, we know dim V = n. Thus, it suffices to show that T is injective. Suppose $\vec{c} \in \mathbb{R}^n$ is in ker T. Then, $T(\vec{c}) = \vec{0}$, i.e. $c_1\vec{v}_1 + \cdots + c_n\vec{v}_n = \vec{0}$, is a linear relation among the linearly independent vectors $(\vec{v}_1, \ldots, \vec{v}_n)$. By definition, $\vec{c} = \vec{0} \in \mathbb{R}^n$ and we are done as ker $T = {\vec{0}}$.
- (c) By definition, the image of T is the space of all possible linear combinations of $(\vec{v}_1, \ldots, \vec{v}_n)$. It follows that, if $\operatorname{Span}(\vec{v}_1, \ldots, \vec{v}_n) \neq V$, then im $T = \operatorname{Span}(\vec{v}_1, \ldots, \vec{v}_n) \neq V$ and T is not surjective.
- (d) If $(\vec{v}_1, \ldots, \vec{v}_n)$ is linearly dependent, then there exist $c_1, \ldots, c_n \in \mathbb{R}$ not all zero such that $c_1\vec{v}_1 + \ldots + c_nv_n = \vec{0}$. In other words, the nonzero vector $\begin{bmatrix} c_1 & \ldots & c_n \end{bmatrix}^\top$ is in the kernel of T. Thus, T is not injective as $\ker T \neq \{\vec{0}\}$.
- (e) If T is an isomorphism, then T is both injective and surjective. By taking the contrapositive of parts (c) and (d), we have that $(\vec{v}_1, \ldots, \vec{v}_n)$ is linearly independent and spans V. Thus, $(\vec{v}_1, \ldots, \vec{v}_n)$ is a basis of V.

Problem 2. Let \mathbb{C} be the vector space of complex numbers. Consider the lists $\mathcal{B} = (1, i)$ and $\mathcal{C} = (1 + i, 1 - i)$ of vectors in \mathbb{C} .

- (a) Show that \mathcal{B} and \mathcal{C} are bases of \mathbb{C} .
- (b) In each part below, determine whether or not the given function is a linear transformation, with justification.
 - (i) $M: \mathbb{C} \to \mathbb{C}$, defined by M(z) = |z|.
 - (ii) $\sigma \colon \mathbb{C} \to \mathbb{C}$, defined by $\sigma(z) = \bar{z}$.
 - (iii) $T: \mathbb{C} \to \mathbb{C}$, defined by $T(z) = 2i\bar{z}$.
 - (iv) Re: $\mathbb{C} \to \mathbb{C}$ defined by Re $(z) = \frac{z+\bar{z}}{2}$.

Solution.

- (a) Recall that $\mathbb{C} = \{a + ib \mid \text{ for some } a, b \in \mathbb{R}\}$. It follows immediately that $\mathbb{C} = \text{Span}(\mathcal{B})$. Moreover, a + ib = 0 if and only if a = b = 0 therefore \mathcal{B} is also linearly independent. Thus, \mathcal{B} is a basis for the two dimensional vector space \mathbb{C} . In particular, it suffices to show that $\text{Span}(\mathcal{C}) = \mathbb{C}$ since \mathcal{C} consists of two vectors. This follows at once if we observe that $1 = \frac{1}{2}(1+i) + \frac{1}{2}(1-i)$ and $i = \frac{1}{2}(1+i) \frac{1}{2}(1-i)$.
- (b) (i) M is not a linear transformation as $M(-i) = |-i| = 1 \neq -1 = -1 \cdot |i| = -1 \cdot M(i)$.
 - (ii) σ is a linear transformation. Indeed we can check that for all $a, b, c, d, k \in \mathbb{R}$ we have M((a+ib)+(c+id))=M(a+c+i(b+d))=a+c-i(b+d)

$$= a - ib + c - id = M(a + ib) + M(c + id).$$

and

$$M(k(a+ib)) = M(ka+ikb) = ka - ikb = k(a-ib) = kM(a+ib).$$

Note that we just proved that for all $z, w \in \mathbb{C}$ and $k \in \mathbb{R}$

$$\overline{z+w} = \overline{z} + \overline{w}$$
, and $\overline{kz} = \overline{k}\overline{z} = k\overline{z}$.

We can, and will, use in these equalities in the rest of the problem!

(iii) T is a linear transformation. Indeed we can check that for all $z,w\in\mathbb{C}$ and $k\in\mathbb{R}$ we have

$$T(z+w) = 2i(\overline{z+w}) = 2i(\overline{z}+\overline{w}) = T(z) + T(w).$$

and

$$T(kz) = 2i\overline{kz} = 2i\overline{k}\overline{z} = k(2i\overline{z}) = kT(z).$$

(iv) Re is a linear transformation. Indeed we can check that for all $z, w \in \mathbb{C}$ and $k \in \mathbb{R}$ we have

$$\operatorname{Re}(z+w) = \frac{z+w+\overline{z+w}}{2} = \frac{z+w+\overline{z}+\overline{w}}{2} = \frac{z+\overline{z}}{2} + \frac{w+\overline{w}}{2} = \operatorname{Re}(z) + \operatorname{Re}(w).$$

and

$$\operatorname{Re}(kz) = \frac{kz + \overline{kz}}{2} = \frac{kz + \overline{k}\overline{z}}{2} = \frac{k(z + \overline{z})}{2} = k\operatorname{Re}(z).$$

Problem 3. Let $C^{\infty}(\mathbb{R})$ be the vector space of smooth functions from \mathbb{R} to \mathbb{R} . In other words, every vector $f \in C^{\infty}(\mathbb{R})$ is a function $f : \mathbb{R} \to \mathbb{R}$ that is differentiable k-times for all $k \in \mathbb{N}$. Let f_1, \ldots, f_6 be the six functions in $C^{\infty}(\mathbb{R})$ defined by

$$f_1(x) = 1$$
, $f_2(x) = \sin(2x)$, $f_3(x) = \cos(2x)$,

$$f_4(x) = \sin^2(x), \quad f_5(x) = \cos^2(x), \quad f_6(x) = \sin x \cos x.$$

Let $V = \text{Span}(f_1, f_2, f_3, f_4, f_5, f_6)$, and let $\mathcal{B} = (f_1, f_2, f_4) = (1, \sin 2x, \sin^2 x)$.

- (a) Prove that \mathcal{B} is an ordered basis of V. [Hint: remember (or look up) some trig identities.]
- (b) For each $i \in \{1, ..., 6\}$, find $[f_i]_{\mathcal{B}}$.
- (c) Let $C = (f_4, f_5, f_6)$, so that C is an ordered basis of V (you do not have to prove this). Find a matrix S such that $S[f]_{\mathcal{B}} = [f]_{\mathcal{C}}$ for all $f \in V$.

Solution.

(a) First we show that \mathcal{B} is linearly independent. Let $a, b, c \in \mathbb{R}$, let $\vec{0}_V$ be the zero vector in V, and suppose $af_1 + bf_2 + cf_4 = \vec{0}_V$. Since $\vec{0}_V$ is the constant zero function, this means that

$$a + b\sin 2x + c\sin^2 x = 0$$
 for all $x \in \mathbb{R}$.

In particular, setting x = 0 gives us

$$0 = a + b\sin(2 \cdot 0) + c\sin^2(0) = a + 0 + 0 = a.$$

Then, using a = 0 and setting $x = \frac{\pi}{2}$, we get

$$0 = b\sin(\pi) + c\sin^2(\frac{\pi}{2}) = 0 + c = c.$$

Finally, now that we know a = c = 0, setting $x = \frac{\pi}{4}$ gives us

$$0 = b\sin(2\cdot\frac{\pi}{4}) = b\sin(\frac{\pi}{2}) = b.$$

Thus a = b = c = 0, showing that \mathcal{B} is indeed linearly independent.

Now we show that \mathcal{B} spans V. It will suffice to show $f_3, f_5, f_6 \in \text{Span}(\mathcal{B})$. But this follows from trig identities:

$$f_3 = \cos(2x) = 1 - 2\sin^2 x = 1f_1 - 2f_4$$

 $f_5 = \cos^2 x = 1 - \sin^2 x = 1f_1 - f_4$
 $f_6 = \sin x \cos x = \frac{1}{2}\sin(2x) = \frac{1}{2}f_2$.

(b) Using our calculations in part (a), we see that

$$[f_1]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ [f_2]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ [f_3]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \ [f_4]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ [f_5]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \ [f_6]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1/2 \\ 0 \end{bmatrix}.$$

(c) Using the formula for the change-of-coordinates matrix, we see that

$$S = S_{\mathcal{B} \to \mathcal{C}} = \begin{bmatrix} | & | & | \\ [f_1]_{\mathcal{C}} & [f_2]_{\mathcal{C}} & [f_4]_{\mathcal{C}} \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}.$$

Problem 4. Let $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_n)$ be an ordered basis of \mathbb{R}^n , let $\mathcal{C} = (\vec{w}_1, \dots, \vec{w}_m)$ be an ordered basis of \mathbb{R}^m , and let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

- (a) Prove that there exists a unique $m \times n$ matrix M such that $[T(\vec{x})]_{\mathcal{C}} = M[\vec{x}]_{\mathcal{B}}$ for all $\vec{x} \in \mathbb{R}^n$.
- (b) Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T: \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} x_1 + 5x_2 \\ x_2 + 5x_3 \end{bmatrix}.$$

- (i) Find the standard matrix of T, i.e., the matrix A such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^3$.
- (ii) Find a matrix M such that $[T(\vec{x})]_{\mathcal{C}} = M[\vec{x}]_{\mathcal{B}}$ for $\vec{x} \in \mathbb{R}^3$, where

$$\mathcal{B} = \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 25 \\ -5 \\ 1 \end{bmatrix} \right) \text{ and } \mathcal{C} = \left(\begin{bmatrix} 5 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \end{bmatrix} \right).$$

Solution.

(a) Compare to Theorem 3.4.3 in the book. Let $\vec{x} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n \in \mathbb{R}^n$. We have

$$[T(\vec{x})]_{\mathcal{C}} = [T(c_1\vec{v}_1 + \dots + c_n\vec{v}_n)]_{\mathcal{C}}$$

$$= [c_1T(\vec{v}_1) + \dots + c_nT(\vec{v}_n)]_{\mathcal{C}}$$

$$= c_1[T(\vec{v}_1)]_{\mathcal{C}} + \dots + c_n[T(\vec{v}_n)]_{\mathcal{C}}$$

$$= [[T(\vec{v}_1)]_{\mathcal{C}} \cdots [T(\vec{v}_n)]_{\mathcal{C}}] \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

$$= [[T(\vec{v}_1)]_{\mathcal{C}} \cdots [T(\vec{v}_n)]_{\mathcal{C}}] [\vec{x}]_{\mathcal{B}}$$

Therefore the unique matrix is $M = [[T(\vec{v}_1)]_{\mathcal{C}} \cdots [T(\vec{v}_n)]_{\mathcal{C}}].$

(b) (i) From class, we know that the standard matrix is

$$A = \begin{bmatrix} | & | & | \\ T(\vec{e}_1) & T(\vec{e}_2) & T(\vec{e}_3) \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix}.$$

(ii) Let $(\vec{b}_1, \vec{b}_2, \vec{b}_3) = \mathcal{B}$. From part (a), we know that

$$M = \begin{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix}_{\mathcal{C}} & [T(\vec{b}_2)]_{\mathcal{C}} & [T(\vec{b}_3)]_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix} \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{bmatrix}_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$