

AD-A172 579

LABORATORY EVALUATION OF COMMERCIAL ANTIFREEZES(U) ARMY 1/1
BELVOIR RESEARCH DEVELOPMENT AND ENGINEERING CENTER
FORT BELVOIR VA J H CONLEY ET AL. SEP 86 BRDEC-2429

F/G 13/6

NL

UNCLASSIFIED

AD-A172 579

Report 2429

(2)

LABORATORY EVALUATION OF COMMERCIAL ANTIFREEZES

By
James H. Conley
Robert G. Jamison

Approved for public release; distribution unlimited.

United States Army
Belvoir Research, Development & Engineering Center
Fort Belvoir, Virginia 22060-5606

AMC FILE COPY

OCT 6 1986

(2)

86 10 7 084

**Destroy this report when no longer needed.
Do not return it to the originator.**

**The citation in this report of trade names of
commercially available products does not
constitute official endorsement or approval
of the use of such products.**

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

AD-A172571

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited.	
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Materials, Fuels & Lubricants Laboratory	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION	
6c. ADDRESS (City, State, and ZIP Code) Fuels and Lubricants Division, STRBE-VF Belvoir Research & Development Center Fort Belvoir, VA 22060-5000	7b. ADDRESS (City, State, and ZIP Code)		
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
9c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO.	PROJECT NO.
		TASK NO.	WORK UNIT ACCESSION NO.

11. TITLE (Include Security Classification)
LABORATORY EVALUATION OF COMMERCIAL ANTIFREEZES

12. PERSONAL AUTHOR(S) James H. Conley Robert G. Jamison			
13a. TYPE OF REPORT Final	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) September 1986	15. PAGE COUNT
16. SUPPLEMENTARY NOTATION			

17. COSATI CODES			18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)	
FIELD	GROUP	SUB-GROUP	Commercial Antifreeze MIL-A-46153 Antifreeze Antifreeze Compatibility, Composition & Specifications Corrosion Inhibition, Performance Specifications	

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The object of this study was to investigate the potential corrosion problems when commercial antifreezes are mixed with each other and with the military antifreeze MIL-A-46153. Results show that corrosion-inhibiting properties of commercial antifreezes have been improved. Mixtures of commercial antifreezes, however, are still less than adequate.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTC USEFS	21. ABSTRACT SECURITY CLASSIFICATION
22. NAME OF RESPONSIBLE INDIVIDUAL	23. TELEPHONE (Include Area Code) 24. OFFICE SYMBOL

CONTENTS

Section	Title	Page
	TABLES	ii
I	INTRODUCTION	1
II	DETAILS OF TEST	1
III	DISCUSSION OF RESULTS	2
IV	CONCLUSIONS	7

W. A. A. 1

TABLES

Table	Title	Page
1	ANALYSIS OF PACKAGED PRODUCTS	3
2	ASTM D 1384 CORROSION TEST RESULTS -- PACKAGED PRODUCTS	4
3	ASTM D 1384 CORROSION TEST RESULTS -- 50-50 MIXTURES OF MIL-A-46153	5
4	ASTM D 1384 CORROSION TEST RESULTS -- 50-50 MIXTURES OF ALL COMMERCIAL PRODUCTS	6, 8-10

LABORATORY EVALUATION OF COMMERCIAL ANTIFREEZES

I. INTRODUCTION

There has been a continuing trend for the Army to purchase commercial vehicles/equipment. These vehicles/equipment are covered by the manufacturers' warranties which require the use of specified, expendable materials. One such material is antifreeze.

Each vehicle manufacturer recommends the use of a particular product which is usually covered by the manufacturer's own specification. Equipment failure resulting from the use of a product not recommended by the manufacturer will negate the warranty. In every case, the judgment is made by the vehicle manufacturer.

Most current commercial antifreezes are compatible with each other from the standpoint of solubility (i.e., there is no precipitation of inhibitors when two different antifreezes are mixed). Occasionally, there are materials that visibly interact and form precipitates, but this is only one aspect of antifreeze compatibility. Mixtures which show no precipitation may still react with one another and form soluble compounds that are corrosive to the cooling system metals.

True compatibility only can be verified by a corrosion test such as the American Society for Testing and Materials (ASTM) Method D 1384, Corrosion Test for Engine Coolants in Glassware. Obviously, the number of possible combinations of two or more antifreeze fluids is infinite, and actual tests have to be limited to a reasonable number of mixtures.

In a previous study,¹ the corrosion test results indicated serious corrosion problems with mixtures. Because of the continuing thrust within DOD to use commercial products, this follow-on study was conducted. As stated earlier, the potential for admixture is very high, and the impact on vehicle warranties is significant. Further, there has been a push within NATO on development of a Guided Specification for *performance-type* antifreeze, and the type of data generated in this study is very important to support or challenge this effort. Most commercial antifreezes are based upon performance testing, whereas MIL-A-46153 is based strictly on a composition of proven satisfactory performance.

Eleven commonly-used antifreeze compounds (five factory-fill and six aftermarket) were selected to determine compatibility with each other and with the Army's MIL-A-46153² antifreeze in terms of corrosiveness, changes in reserve alkalinity (RA), and changes in acidity (pH factor), because these are the more important property aspects of antifreeze mixtures.

II. DETAILS OF TEST

All 11 commercial antifreezes and the MIL-A-46153 were analyzed by gas chromatography to identify the freeze point depressant and the approximate concentration. Identification of the major components of the inhibitor systems was accomplished by atomic absorption spectroscopy. No attempt was made to identify minor components.

¹ Conley, James H. and Jamison, Robert G., "Evaluation of Commercial Antifreezes," MERADCOM Report 2248, May 1978.

² Military Specification MIL-A-46153, Antifreeze, Ethylene Glycol, Inhibited, Heavy Duty, Single Package.

All corrosion tests were conducted according to ASTM Method D 1384, Corrosion Test for Engine Coolants in Glassware. This method describes a simple beaker test for evaluating the corrosive effects of engine coolants on metal specimens. Metal specimens typical of those present in automotive cooling systems are totally immersed in the test antifreeze solution using ASTM corrosive water with aeration for 336 hours at 88 °C (190 °F). The corrosion inhibitive properties of the test solution are evaluated on the basis of the weight changes incurred by the specimens. Each test was run in duplicate, and the average weight change was determined for each metal.

Tests on mixed antifreezes used two components in equal parts by volume diluted to 33 1/3 percent by volume with ASTM corrosive water containing 100 p/m each of chloride, sulfate, and bicarbonate.

Values for reserve alkalinity (RA) and acidity (pH) were measured on the packaged products and, also, measured on all other solutions before and after the corrosion tests. Reserve alkalinity of new antifreeze is used in production quality control and in specifications to indicate the amount of alkaline (basic) inhibitors present in the product. Similarly, the RA of used solutions is a measurement that indicates the amount of remaining alkaline inhibitors in coolant performance testing. The pH of a solution is commonly considered to be the negative logarithm (to the base 10) of the hydrogen ion concentration and, alone, is not a dependable indication of either effectiveness or remaining life of a solution. Both RA and pH measurements are effective in determining the presence of a buffer. A buffer is any substance or combination of substances which, when dissolved in water, produces a solution that resists a change in its hydrogen ion concentration upon the addition of acid or base. A considerable number of antifreezes, including MIL-A-46153, rely upon a buffer-type inhibitor for corrosion protection.

III. DISCUSSION OF RESULTS

Table 1 shows the comparative analysis of the 11 commercial antifreezes and MIL-A-46153. The gas chromatographic analysis shows that all products used ethylene glycol as the major freeze point depressant. Analysis by atomic absorption spectroscopy shows that all products, except Antifreeze G, contain boron. All 11 commercial products contain silicon. Antifreezes A, B, D, F, G, and MIL-A-46153 contain phosphorous. Antifreeze A contains a significant amount of molybdenum, and Antifreezes D and E contain 10 p/m of molybdenum. The pH values range from 6.36 to 11.01, and the RA values range from 6.0 to 18.2. The pH and RA values for MIL-A-46153 are 6.35 and 26.6, respectively.

The corrosion test results of the commercial products and the MIL-A-46153 are shown in Table 2. None of the products exceeded the recommended weight loss limit on any of the six metals. Four of the commercial products showed attack of one metal, and one showed attack of three metals. The MIL-A-46153 showed slight etching of the copper specimen. None of the 11 commercial antifreezes tested *good* with the Army's reserve alkalinity test strip. Reserve alkalinity values from 8 to 10 indicate *good*, 6 to 8 indicate *borderline*, and 4 to 6 indicate *poor; change coolant*. Four of the 11 commercial products showed *borderline* and seven showed *poor; change coolant*. The use of the test kit is detailed in TB-750-651³ and is based on the MIL-A-46153 formulation.

Table 3 shows the corrosion test results of 1:1 mixtures of MIL-A-46153 (Antifreeze M) with each of the 11 commercial products. All metal specimens passed the ASTM weight loss limit, but the aluminum specimen in Antifreezes M-D and M-K showed high weight losses and corrosion. Antifreeze M-L showed heavy etching of the

³ Technical Bulletin TB-750-651, Use of Antifreeze Solutions and Cleaning Compounds in Engine Cooling Systems.

Table I. ANALYSIS OF PACKAGED PRODUCTS

Test No.	Antifreeze	Gas Chromatography						Atomic Absorption Spectroscopy					
		% Ethylene	% Propylene	% Cis-1,3- Butene	% Methyl Carbitol	As Packaged		= ppm Silicon		= ppm Phosphorous		= ppm Molybdenum	
						pH	RA						
1	A	89.6	—	—	—	10.2	10.52	14.4	500	700	2000	—	—
2	B	91.7	—	—	8.1	—	10.4	16.0	600	600	1000	0	0
3	C	83.9	2.9	—	—	12.5	7.02	11.8	1400	1000	0	0	0
4	D	95.1	1.5	—	—	—	6.36	6.0	2500	3000	75	10	10
5	E	92.4	—	—	5.6	—	9.88	12.6	600	500	0	10	10
6	F	85.8	—	—	—	14.0	10.56	12.8	3000	600	50	0	0
7	G	96.1	2.5	—	—	—	11.01	17.2	0	400	100	0	0
8	H	90.8	—	6.5	—	2.1	11.01	12.00	600	3000	0	0	0
9	I	—	—	—	4.1	—	10.6	18.2	1800	500	0	0	0
10	K	93.0	—	—	4.0	—	10.77	12.8	1100	1000	0	0	0
11	L	95.0	—	—	—	—	4.8	7.09	10.17	800	500	0	0
12	M	89.0	6.5	—	—	—	6.35	26.6	4700	0	1000	0	0

Table 2. ASIM D 1384 CORROSION TEST RESULTS - PACKAGED PRODUCTS

Weight Loss Per Coupon in Milligrams

Test No.	Antirust	Copper	Solder	Brass	Steel	Cast Iron	Cast Aluminum	Before Test pH	RA	After Test pH	RA
1	A	4.28	8.86	5.45	1.01	2.33 ^b	0.98	10.59	4.6	10.15	4.8
2	B	1.97	11.53	4.00	1.21	1.34	0.68	10.69	5.6	10.07	5.6
3	C	3.83	6.86	4.41	0.58	0.02	1.94	8.34	4.8	7.87	3.2
4	D	3.25	6.93	3.65	1.17	0.73	5.42 ^c	7.98	6.4	7.95	5.2
5	E	2.41	7.74	4.37	0.63	1.10 ^d	1.19	10.38	4.8	9.42	4.2
6	F	3.83	13.25	4.87	0.62	1.76	0.93	10.71	5.0	9.93	4.4
7	G	3.69	5.00	5.05	0.73	2.44	2.81	10.94	6.0	10.27	5.4
8	H	3.10	7.90	4.60	0.25	2.30 ^e	2.79	10.61	4.0	9.86	4.6
9	I	3.15	11.45	5.40	0.50	0.27	1.39	10.21	6.4	9.39	6.4
10	K	3.43	0.51	3.34	0.27	0.27	0.02	10.68	4.4	9.73	4.4
11	L	3.72	8.79	4.43	0.79 ^d	1.36 ^d	7.09 ^f	10.20	7.2	9.35	8.0
12	M	3.86 ^a	18.86	7.58	0.74	2.36	0.85	7.95	8.2	7.78	10.2
ASIM Weight Loss Limit (maximum)		10	40	10	10	10	10	10	30		

NOTE: Appearance of Test Coupon:

a - Slight Pitting

b - Moderate Pitting

c - Heavy Pitting

d - Electrolytic Stain

e - Heavy Pitting

f - Moderate Stain

g - Moderate Corrosion

Table 3. ASTM D 1384 CORROSION TEST RESULTS
50/50 MIXTURES OF MIL-A-46153/COMMERCIAL PRODUCT

Test No.	Antifreeze Mixture	Weight Loss mg Specimen						After Test		
		Copper	Solder	Brass	Steel	Cast Iron	Cast Aluminum	pH	RA	pH
1	M1-A	5.97	8.86	9.34	1.30	3.15	1.62	8.09	6.4	8.12
2	M1-B	4.74	8.85	5.33	1.20	1.10	5.37	8.13	6.8	8.19
3	M1-C	4.55	11.11	4.75	2.32	1.13	2.82	7.96	6.0	7.90
4	M1-D	3.18	10.46	4.59	0.77	0.48	27.35 ^c	7.96	7.2	7.91
5	M1-E	2.42	7.67	5.94	1.57	1.28	1.44	8.12	7.2	8.16
6	M1-F	5.48	11.00	4.99	1.01	2.01	1.13	8.09	6.4	8.10
7	M1-G	2.93	9.30	5.72	1.24	1.08	1.47	8.13	7.6	8.00
8	M1-H	4.27	7.06	7.60	1.18	1.37	3.10	8.00	6.4	8.05
9	M1-I	3.14	9.72	5.70	1.32	2.08	3.87	8.03	6.4	8.02
10	M1-K	7.56	8.35	8.54	0.93	1.43 ^d	21.53 ^d	8.02	6.4	7.97
11	M1-L	4.30	10.27	5.62 ^e	0.98	1.04	4.77	8.12	7.4	8.19
ASTM Weight loss limit (maximum)		10	30	10	10	10	30			

* All anodizer non-tubes had to be changed due to clogging.

NOTE Appearance of Test Coupon:

a Slight Etching

b Moderate Etching

c Heavy Etching

d Phenoxide Stain

e Heavy Pitting

f Moderate Stain

g Moderate Corrosion

Table 4. ASTM D 1384 CORROSION TEST RESULTS -
50/50 MIXTURES OF ALL COMMERCIAL PRODUCTS*

(cont on pp 8-10)

Weight Loss mg/Specimen

Test No.	Antifreeze Mixture	Copper	Solder	Brass	Steel	Cast Iron	Cast Aluminum	Before Test pH	RA	After Test pH	RA
1	A-B	17.82	14.38	8.13	2.28	4.97 ^a	5.12	10.69	6.6	10.23	4.0
2	A-C	7.27	17.09	10.59	2.14	3.97	1.45	8.80	4.2	8.47	3.2
3	A-D	6.92	11.43	8.07	1.82	6.02	2.08	8.45	5.0	8.60	4.6
4	A-E	8.52	19.44	6.76	0.97	3.12 ^a	4.72	10.60	4.2	10.00	5.0
5	A-F	5.26	12.20	5.75	1.16	1.59	0.07	10.51	4.0	10.00	4.2
6	A-G	5.16	17.60	6.94	2.04	2.66	4.10	10.79	5.2	10.18	3.2
7	A-H	6.17	11.75	8.07	1.81	4.63 ^a	8.06	10.72	4.4	10.02	4.0
8	A-I	4.73	12.02	7.05	2.29	3.05	4.48	10.52	4.2	10.06	5.2
9	A-K	6.45	11.66	7.20	1.75	3.46 ^a	3.78	10.71	4.4	10.15	4.0
10	A-L	7.06	15.03	9.84	2.05	2.85	4.72	10.44	6.0	9.92	5.6
11	B-C	4.12	15.95	5.63	1.97	2.77	1.73	8.91	4.2	8.58	4.0
12	B-D	8.51	15.16	9.66	1.57	2.59	2.67	8.46	5.4	8.49	4.4
13	B-F	5.81	16.25	5.79	1.35	3.61	3.27	10.31	4.6	9.84	4.2

* All *an* dispersion tubes had to be changed due to clogging.

NOTE

Appearance of Test Coupon

a Slight Itching
b Moderate Itching
c Heavy Itching

d Electrolytic Stain
e Heavy Pitting

f Moderate Stain
g Moderate Corrosion

brass specimen. All mixtures showed *borderline* with the Army's RA test strip. During the 14-day test, the air-dispersion tubes were replaced once a day or more because of clogging. The clogging was most likely caused by the silicate which undergoes a change during aeration, forming insoluble compounds.

Table 4 shows the corrosion test results of 1:1 mixtures of all commercial products. Test Numbers 1, 44, 50, and 54 failed the ASTM weight loss limit on one metal; and Test Numbers 52, 53, and 54 failed the ASTM weight loss limit on two metals. In addition, 15 of the 55 tests showed attack on one or more metal specimens. Test Numbers 1, 10, 34, 40, 47, 49, and 54 showed *borderline* with the Army's RA test strip. All of the remaining 48 tests showed *poor; change coolant*. Again, all air dispersion tubes had to be replaced at least once a day or more due to clogging.

IV. CONCLUSIONS

From the results listed in this study (as compared to a similar study conducted in 1978), it is evident that commercial antifreezes have been improved significantly. It is also noted that the use of silicate inhibitors has become more prevalent and has improved the corrosion protection of cooling system metals. Admixing of products that are not identical in composition will always present serious corrosion problems. Twenty-seven percent of the mixtures tested produced corrosion on one or more of the cooling system metals. It is also clear that the use of these mixtures will render the RA test kit unusable, leaving the troops in the field with no method of adequately maintaining vehicle cooling systems. Use of the MIL-A-53009⁴ is questionable since it was designed specifically for rehibiting MIL-A-46153.

It is concluded, therefore, that the use of commercial antifreezes in military vehicles is not recommended. In instances where a vehicle warranty includes the use of a proprietary factory-fill antifreeze other than MIL-A-46153, only the manufacturer's recommended antifreeze should be used during the warranty period. Immediately after expiration of the warranty period, the cooling system should be drained, flushed, and refilled with MIL-A-46153 antifreeze, only.

⁴ Military Specification MIL-A-53009, Additive, Antifreeze Extender, Liquid Cooling System.

Table 4 (cont.). **ASTM D 1384 CORROSION TEST RESULTS:
50/50 MIXTURES OF ALL COMMERCIAL PRODUCTS***

Weight Loss mg/Specimen

Test No.	Antifreeze Mixture	Weight Loss mg/Specimen						Before Test			After Test		
		Copper	Solder	Brass	Steel	Cast Iron	Cast Aluminum	pH	RA	pH	RA	pH	RA
14	B-1	3.06	8.77	5.85	1.81	0.58	1.96	10.54	4.4	10.01	5.0		
15	B-6	5.19	16.11	7.03	2.04	1.80	4.47	10.58	5.2	10.15	5.0		
16	B-11	3.72	9.60	7.50	1.44	3.00	1.81	10.40	4.6	10.03	4.6		
17	B-1	3.36	11.63	5.37	1.01	2.47	3.09	10.23	5.6	10.00	6.2		
18	B-K	4.80	11.10	6.16	1.93	1.53	3.42	10.44	4.8	9.96	4.8		
19	B-1	2.84	10.68	7.13	1.16	3.66	5.22	10.26	6.2	9.97	6.4		
20	C-D	9.65	4.49	8.67	0.86	7.27	2.12	8.24	4.4	8.03	4.06		
21	C-1	5.37	23.30	6.18	0.57	1.95	1.35	8.72	3.8	8.54	3.6		
22	C-1	3.27	7.59	3.30	0.82	0.12	0.71	8.79	3.8	8.24	4.2		
23	C-O	4.41	13.47	4.97	1.51	1.86	4.19	9.12	4.4	9.01	2.4		
24	C-H	4.31	9.47	4.39	1.08	1.39	Nil	8.84	3.6	8.55	3.8		
25	C-1	3.73	13.98	5.42	0.75	5.36	2.41	8.87	4.9	8.54	5.2		
26	C-K	4.06	10.58	4.09	0.82	1.27	2.76	8.80	3.9	8.52	4.0		
27	C-1	2.92	13.11	6.14	1.28	5.23	3.29	8.79	5.2	8.74	5.6		
28	D-1	3.81	12.31	4.92	1.78	3.62	2.70	8.35	5.0	8.36	6.0		

* All air dispersion tubes had to be changed due to chipping.

Table 4 (cont.). ASTM D 1384 CORROSION TEST RESULTS:
50/50 MIXTURES OF ALL COMMERCIAL PRODUCTS*

Test No.	Antifreeze Mixture	Copper	Brass	Steel	Cast Iron	Cast Aluminum	Weight Loss mg/Specimen		Before Test		After Test	
							pH	RA	pH	RA	pH	RA
29	D-4	5.06	9.44	6.11	2.27	1.03	5.16 ^b	8.32	4.8	8.16	5.4	
30	D-G	5.91	11.09	6.11	1.26	5.25	4.40	8.48	5.4	8.51	6.4	
31	D-H	4.62	Nil	5.04	1.12	2.83	2.69	8.37	5.0	8.42	6.0	
32	D-J	5.15	9.16	5.73	1.57	3.18	6.20	8.44	5.8	8.40	7.0	
33	D-K	4.54	14.05	4.98	1.33	2.90	7.68 ^f	8.34	5.0	8.42	5.6	
34	D-L	5.09	13.87	5.07	1.64	1.46	4.99	8.42	6.2	8.69	7.6	
35	E-F	3.08	8.14	4.19	1.61	0.95 ^d	3.35 ^c	10.49	4.0	9.71	4.0	
36	E-G	3.14	12.39	3.12	0.68	2.33	3.97	10.67	4.8	10.07	4.6	
37	E-H	3.92	9.07	3.83	3.39	1.87	0.48	10.45	4.6	9.85	4.4	
38	E-J	4.22	11.53	5.87	1.38	0.80	2.25	10.12	5.4	9.70	5.8	
39	E-K	5.63	15.73	5.37	1.31	1.09	4.60 ^e	10.39	4.2	9.62	4.4	
40	E-L	3.02	9.74	5.48	1.79	0.79	4.09	10.23	6.0	9.76	6.6	
41	E-G	3.55	8.25	4.27	1.16	0.98	5.72 ^c	10.68	4.4	10.07	4.6	
ASTM Weight Loss 1 mm (maximum)		10	30	10	10	10	30					

*All air dispersion tubes had to be changed due to clogging.

NOTE: Appearance of Test Coupon:

a - Slight Etching

b - Moderate Etching

c - Heavy Etching

d - Electrolytic Stain

e - Heavy Pitting

f - Moderate Stain

g - Moderate Corrosion

Table 4 (cont). ASTM D 1384 CORROSION TEST RESULTS -
50/50 MIXTURES OF ALL COMMERCIAL PRODUCTS*

Weight Loss mg/Specimen

Test No.	Antifreeze Mixture	Copper	Solder	Brass	Steel	Cast Iron	Aluminum	Cast	Before Test pH	RA	After Test pH	RA
42	F-14	3.10	11.27	4.89	0.80	2.76 ^b	3.27 ^b	10.61	4.0	9.80	4.0	
43	F-14	2.92	7.30	3.43	0.61	0.87	8.64 ^b	10.38	5.2	9.54	5.2	
44	F-K	3.46	8.90	5.26	0.70	1.18 ^b	36.30 ^b	10.58	4.0	9.67	4.0	
45	F-14	3.77	8.60	4.57	0.97	1.10	6.37 ^b	10.40	5.6	9.90	5.8	
46	G-11	3.47	9.25	5.92	1.55	5.32	4.76	10.69	4.6	10.07	4.0	
47	G-1	3.73	7.72	7.71	2.10	1.74	3.41	10.43	6.4	9.98	4.9	
48	G-K	3.30	7.84	4.15	1.47	3.38	8.08	10.46	5.2	10.22	4.1	
49	G-1	1.72	5.38	3.06	0.99	1.94	5.62	10.58	6.2	9.99	5.7	
50	H-1	6.69	36.64	8.99	2.26	4.15 ^d	9.34	10.26	5.2	9.96	5.4	
51	H-K	8.13	4.73	6.61	3.00	1.84	7.48	10.51	4.0	9.80	3.8	
52	H-1	8.44	43.57	11.79	3.78	4.77	15.19	10.37	4.4	9.71	5.6	
53	J-K	5.82	35.19	7.53	2.86	3.91	66.33 ^e	10.35	5.0	9.73	5.4	
54	J-1	8.54	39.18	10.13	3.17	4.23	19.09	10.15	6.6	9.88	7.2	
55	K-1	11.72	48.14	13.01	3.61	7.93	21.10	10.40	5.6	9.99	5.5	
ASTM Weight Loss Limit (maximum)		10	30	10	10	10	30					

*All air dispersion tubes had to be changed due to clogging.

No. 11 - Appearance of Test Coupon:

- a - Slight Etching
- b - Moderate Etching
- c - Heavy Pitting
- d - Electrolytic Stain
- e - Heavy Pitting

f - Moderate Stain
g - Moderate Corrosion

DISTRIBUTION FOR REPORT 2429

No. Copies	Addressee	No. Copies	Addressee
	Department of Defense		
1	Director, Technical Information Defense Advanced Research Projects Agency 1400 Wilson Blvd Arlington, VA 22209	1	Commander U.S. Army Materiel Command ATTN: AMCDE-SS ATTN: AMCSM-WST (LTC Dacey) 5001 Eisenhower Avenue Alexandria, VA 22333-0001
1	Director Defense Nuclear Agency ATTN: TITL Washington, DC 20305	1	Commander U.S. Army Tank-Automotive Command ATTN: DRSTA-RG (Mr. Wheelock) ATTN: DRSTA-TSL (Mr. Burg) ATTN: DRSTA-UB (Mr. Raggio) (Mr. McCartney)
2	Defense Technical Information Center Cameron Station ATTN: DTIC-FDAC Alexandria, VA 22304-6145		ATTN: DRSTA-MTC (Mr. Gaglio), DRSTA-MV ATTN: DRSTA-MLF (Mr. Keller) Warren, MI 48090-5000
1	Defense General Supply Center ATTN: DGSC-SSM (Mr. Reynolds) ATTN: DGSC-STC (Mr. Doyle) Richmond, VA 23297-5000	1	Commander U.S. Army Laboratory Command ATTN: AMSLC-TP (Dr. Gonano) Adelphi, MD 20783-1145
1	Defense Standardization Office ATTN: Dr. S. Miller 5203 Leesburg Pike, Suite 1403 Falls Church, VA 22041	1	Director U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-CM (Mr. Niemeyer) Aberdeen Proving Ground, MD 21005-5006
	Department of the Army		
1	HQDA ATTN: DAMA-AOA-M ATTN: DALO-TSM Washington, DC 20310	1	Commander U.S. Army Development & Employment Agency ATTN: MODE-FDD-CSSB (MAJ Grossman)
1	HQDA ATTN: DAEN-DRM DAEN-RDL DAEN-MPE-T Washington, DC 20314	1	Commander U.S. Army Research Office ATTN: SLCRO-EG (Dr. Mann) P.O. Box 12211 Research Triangle Park, NC 27709-2211

No. Copies	Addressee	No. Copies	Addressee
1	Commander U.S. Army Depot Systems Command ATTN: AMSDS-RM-EFO Chambersburg, PA 17201	1	Commander U.S. Army Troop Support Command ATTN: AMSTR-ME ATTN: AMSTR-E ATTN: AMSTR-S ATTN: AMSTR-WL (Mr. Bardley) 4300 Goodfellow Blvd St. Louis, MO 63130-1798
1	Commander Tobyhanna Army Depot ATTN: SDSTO-TP-S Tobyhanna, PA 18466		
1	Director U.S. Army Materials Technology Laboratory ATTN: SLCMT-M Watertown, MA 02172-2796	1	Commander U.S. Army General Materiel & Petroleum Activity U.S. Army Troop Support Command ATTN: STRGP-F (Mr. Ashbrook) ATTN: STRGP-FT ATTN: STRGP-FE, BLDG 85-3 New Cumberland, PA 17070-5008
1	Commander U.S. Army Watervliet Arsenal ATTN: SARWY-RDD Watervliet, NY 12189		
1	Commander U.S. Army Foreign Science & Technology Center ATTN: AMXST-MT-1 ATTN: AMXST-BA Federal Building Charlottesville, VA 22901	1	Commander U.S. Army General Materiel & Petroleum Activity U.S. Army Troop Support Command ATTN: STRGP-FW (Mr. Price) BLDG 247, Defense Depot Tracy Tracy, CA 95376
1	Commander AMC Materiel Readiness Support Activity (MRSA) ATTN: AMXMD-MO (Mr. Brown) Lexington, KY 40511-5101	1	Commander U.S. Army Cold Region Test Center ATTN: STECR-TA APO Seattle 98733
1	HQ, U.S. Army Test & Evaluation Command ATTN: AMSTE-TO-O ATTN: AMSTE-CM-R-O ATTN: AMSTE-TE-T (Mr. Ritondo) Aberdeen Proving Ground, MD 21005-5006	1	Commander U.S. Army Research & Stdzn Group (Europe) ATTN: AMXSN-UK-RA (Dr. Oertel) Box 65 FPO New York 09510
1	Project Manager, Petroleum & Water Logistics ATTN: AMCPM-PWL 4300 Goodfellow Blvd St. Louis, MO 63120-1798	1	Commander U.S. Army Yuma Proving Ground ATTN: STEYP-MT-TL-M (Mr. Doeblner) Yuma, AZ 85364-9139

No. Copies	Addressee	No. Copies	Addressee
1	Commander Theater Army Materiel Mgmt Center (200th)-DPGM Directorate for Petrol Management ATTN: AEAGD-MMC-PT-Q (Mr. Carbone) APO New York 09052	1	Commander U.S. Army Forces Command ATTN: AFLG-REG ATTN: AFLG-POP Fort McPherson, GA 30330
1	Commander Construction Engineering Research Laboratory ATTN: CERL-ES (Mr. Case) P.O. Box 4005 Champaign, IL 61820	1	TRADOC Liaison Office ATTN: ATFE-LO-AV 4300 Goodfellow Blvd St. Louis, MO 63120-1798
1	HQ, 172d Infantry Brigade (Alaska) ATTN: AFZT-DI-L ATTN: AFZT-DI-M Directorate of Industrial Operations Fort Richardson, AK 99505	1	HQ, U.S. Army Armor & Engineer Board ATTN: ATZK-AE-PD-E Fort Knox, KY 40121
1	Program Manager, Bradley Fighting Vehicle Systems ATTN: AMCPM-FVS-M Warren, MI 48090-5000	1	Commander U.S. Army Quartermaster School ATTN: ATSM-CD ATTN: ATSM-TD ATTN: ATSM-PFS (Mr. Elliott) Fort Lee, VA 23801
1	Program Manager, Tactical Vehicle ATTN: AMCPM-TV Warren, MI 48090-5000	1	Commander U.S. Army Logistics Center ATTN: ATCL-C ATTN: ATCL-MS (Mr. Marshall) Fort Lee, VA 23801-6000
1	Product Manager, M113 Family of Vehicles ATTN: AMCPM-M113-T Warren, MI 48090-5000	1	Commander U.S. Army Transportation School ATTN: ATSP-CD-MS (Mr. Harrel) Fort Eustis, VA 23604-5000
1	DOD Project Manager, Mobile Electric Power U.S. Army Troop Support Command ATTN: AMCPM-MEP-TM 7500 Backlick Road Springfield, VA 22150	1	Commander U.S. Army Infantry School ATTN: ATSH-CD-MS-M Fort Benning, GA 31905-5400
1	Project Manager, Light Combat Vehicles ATTN: AMCPM-LCV-TC Warren, MI 48090-5000	1	Chief, U.S. Army Logistics Assistance Ofc, FORSCOM ATTN: AMXLA-FO (Mr. Pittman) Fort McPherson, GA 30330
1	Project Manager, Light Armored Vehicles ATTN: AMCPM-LA-E Warren, MI 48090-5000	1	Commander TRADOC Combined Arms Test Activity ATTN: ATCT-CA Fort Hood, TX 76544
			Director AMC Materiel Support Activity ATTN: AMXTB-T (Mr. Stolarick) Fort Lewis, WA 98433

No. Copies	Addressee	No. Copies	Addressee
1	Director Belvoir Fuels & Lubricants Research Facility (SwRI) ATTN: Mr. S.J. Lestz Post Office Drawer 28510 San Antonio, TX 78284	5	BRDEC
1	HQ, European Command ATTN: J4/7-LJPO (LTC Letterie) Vaihingen, GE APO New York 09128	30	Materials, Fuels & Lubricants Lab, STRBE-V Fuels & Lubricants Div, STRBE-VF
1	Commander 6th Materiel Management Center 19th Support Brigade APO San Francisco 96212-0172	4	Tech Reports Ofc, STRBE-BPG
		5	Security Ofc (for liaison officers), STRBE-S
		2	Tech Lib, STRBE-BT
		1	Public Affairs Ofc, STRBE-I
		1	Ofc of Chief Counsel, STRBE-L
			Department of the Navy
1	BRDEC	1	Commander Naval Sea Systems Command ATTN: Code 05M4 (Mr. Layne) Washington, DC 20362-5101
1	Commander, STRBE-Z Deputy Commander, STRBE-ZD Technical Director, STRBE-ZT Assoc Tech Dir (E&A), STRBE-ZTE Assoc Tech Dir (R&D), STRBE-ZTR Executive Officer, STRBE-ZX Sergeant Major, STRBE-ZM Advanced Systems Concept Dir, STRBE-H Program Planning Div, STRBE-HP Foreign Intelligence Div, STRBE-HF Systems and Concepts Div, STRBE-HC CIRCULATE	1	Commander David Taylor Naval Ship Research & Development Center ATTN: Code 2830 (Mr. Bosmajian) Annapolis, MD 21402
1	Dir, Resource Management Dir, STRBE-C Dir, Information Management Dir, STRBE-B Dir, Facilities and Support Dir, STRBE-W Dir, Product Assurance and Engr Dir, STRBE-T Dir, Combat Engineering Dir, STRBE-J Dir, Logistics Support Dir, STRBE-F Dir, Materials, Fuels & Lubricants Lab, STRBE-V	1	Commander Naval Facilities Engr Center ATTN: Code 1202B (Mr. Burris) 200 Stoval Street Alexandria, VA 22332
1		1	Commander Navy Petroleum Office ATTN: Code 43 (Mr. Long) Cameron Station Alexandria, VA 22304-6180
1		1	Department of the Navy HQ, U.S. Marine Corps ATTN: LMM 2 (MAJ Patterson) Washington, DC 20380
1		1	Commander Naval Ship Engineering Center ATTN: Code 6764 Philadelphia, PA 19112

No. Copies Addressee

Department of the Air Force

1 Commander
ATTN: SAALC/SFT (Mr. Makris)
ATTN: SAALC/MMPRR
Kelly Air Force Base, TX 78241

1 Commander
Warner Robins Air Logistic Center
ATTN: WRALC/MMTV (Mr. Graham)
Robins Air Force Base, GA 31098

1 Commander
USAF 3902 Transportation Squadron
ATTN: LGTVP (Mr. Vaughn)
Offutt Air Force Base, NE 68113

1 Commander
U.S. Readiness Command
ATTN: J4-E
MacDill Air Force Base, FL 33608

Others

1 Professor Raymond R. Fox
School of Engineering and Applied Science
George Washington University
Washington, DC 20052

END

WISB

DTIC