Math 591 Lecture 2

Thomas Cohn

9/2/20

Quotient Spaces

Defn: Let X be a tangent space, \sim an equivalence relation on X. Then X/\sim is the set of equivalence classes of \sim , and

$$\pi: X \to X/\sim \\ x \mapsto [x]$$

The quotient topology is defined by $W \subseteq X/\sim$ is open iff $\pi^{-1}(W)\subseteq X$ is open.

We just assume that this is a topology – is it?

Observe: π is continuous by definiion of the quotient topology. And the quotient topology is he finest topology on X/\sim for which π is continuous.

Prop: Let Y be a topological space, $f: X/\sim Y$. Then f is continuous iff $f\circ \pi: X\to Y$ is continuous.

Proof: \Rightarrow is trivial, because π is continuous.

 \Leftarrow is the real content of the proof (left as an exercise).

Observe: it's not true that X being Hausdorff implies X/\sim being Hausdorff.

And it's not true that X being second countable implies X/\sim being second countable.

Defn: An equivalence relation \sim on a tangent space X is <u>open</u> iff $\pi: X \to X/\sim$ is an open map (i.e. $\forall U \subseteq X$ open, $\pi(U)$ is open).

Let's investigate: $\pi(U)$ is open, by definition, if $\pi^{-1}(\pi(U)) \subseteq X$ is open. So let $\hat{U} = \pi^{-1}(\pi(U)) = \{x \in X \mid \exists y \in U \text{ s.t. } x \sim y\}$. To recap, \sim is open $\Leftrightarrow \forall U \subseteq X \text{ open, } \hat{U} \text{ is open.}$

Thm: Let \sim be an equivalence relation. Assume it is open, then

- 1) If X is second countable, then so is X/\sim .
- 2) X/\sim is Hausdorff iff the graph of the relation, Γ , is closed in $X\times X$. $\Gamma=\{(x,y)\in X\times X\mid x\sim y\}\subseteq X\times X$.

Proof:

- 1) If \sim is open, then for any basis $\mathscr{B} = \{B_j\}_{j \in J}$ of X, $\{\pi(B_j)\}_{j \in J}$ is a basis for X / \sim . \square
- 2) Γ is closed iff $\forall (x,y) \in (X \times X) \setminus \Gamma$, $\exists U, V \subseteq X$ open with $x \in U$, $y \in V$ s.t. $(U \times V) \cap \Gamma = \emptyset$. And this is true iff $\forall (u,v) \in U \times V$, $\pi(u) \neq \pi(v)$, which is true iff $\pi(U) \cap \pi(V) = \emptyset$. And $\pi(U)$ is a neighborhood of $\pi(x)$, $\pi(V)$ is a neighborhood of $\pi(y)$, because π is an open map.

Some remarks:

- 1. In general, if X/\sim is Hausdorff, then for any point $p\in X/\sim$, $\{p\}$ is closed. Thus, $\pi^{-1}(p)$ (an equivalence class of \sim) is closed, because set complements ork nicely. So we conclude that a necessary condition for X/\sim to be T_2 is all equivalence classes $[x]\subseteq X$ are closed. But this isn't sufficient!
- 2. If $P: X \to S$ is a surjective map...

Defn: $\forall x, y \in X, \ x \sim_P y \stackrel{\text{def}}{\Leftrightarrow} P(x) = P(y) \ (\star)$ is an equivalence relation. If P is surjective, there's a natural idenification of $S \cong X/\sim_P$. If X, S are tangent spaces, P is called a quotient map iff \star is a homeomorphism, i.e., iff $\forall W \subseteq S, W$ is

open iff $P^{-1}(W)$ is open.

Ex: $X = S^n \subseteq \mathbb{R}^{n+1}$, the *n*-dimensional sphere. Consider $\tau: S^n \to S^n$, where $x \mapsto -x$.

Observe that τ is continuous, and $\tau^2 = \operatorname{Id}$ (so $\tau = \tau^{-1}$).

Define the following equivalence relation: $\forall x,y \in S^n, \ x \sim y \Leftrightarrow x=y \text{ or } y=\tau(x).$

Claim: \sim is open.

Proof: Let $U\subseteq S^n$ be open. $\hat{U}=\pi^{-1}(\pi(U))=U\cup\tau(U)$. So \hat{U} is open because $\tau(U)$ is open because τ is a homeomorphism because τ is continuous and $\tau=\tau^{-1}$. Thus, S^n/\sim is second-countable (because we know S^n is second-countable). Write

$$\begin{split} \Gamma &\subseteq S^n \times S^n \\ &= \{(x,y) \in S^n \times S^n \mid x \sim y\} \\ &= \{(x,y) \in S^n \times S^n \mid x = y \text{ or } y = \tau(x)\} \\ &= \underbrace{\{(x,x) \mid x \in S^n\}}_{\text{diagonal}} \cup \underbrace{\{(x,\tau(x)) \mid x \in S^n\}}_{\text{graph of } \tau} \end{split}$$

The graph of τ is closed.

Consider $F: S^n \times \{0,1\} \to S^n$ (note: $\{0,1\} = \mathbb{Z}_2$), where $(x,0) \mapsto x$ and $(x,1) \mapsto \tau(x)$. This is a group action.

So the graph of τ is the iamge of the map $S^n \to S^n \times S^n$, where $x \mapsto (x, \tau(x))$. This is a continuous map, and S^n is compact, so its image is compact, so its image is closed.

Thus, Γ is the finite union of closed sets, so Γ is closed, so S^n/\sim is Hausdorff.

Note: $S^n/\sim = \mathbb{RP}^n$, the *n*-dimensional real projective space. This is isomorphic to the set of 1-dimensional subspaces of \mathbb{R}^{n+1} .