# Tarea # 4 enviar viernes 7 marzo.

#### Problema 1

La barra conductora ab de la figura está en contacto con los rieles metálicos ca y db. El aparato se localiza en un campo magnético uniforme de 0.8 T, perpendicular al plano de la figura.



- a Encuentra la magnitud de la fem (fuerza electromotriz) inducida en la barra cuando ésta se desplaza hacia la derecha con una rapidez de  $v=7.5~{\rm m/s}$
- b) ¿En qué sentido fluye la corriente en la barra?
- c) Si la resistencia del circuito abdc es de 1.5  $\Omega$  (se supone constante), proporcione la fuerza en dirección y magnitud que se necesita para que la barra siga desplazándose hacia la derecha con una rapidez constante de 7.5 m/s. No tenga en cuenta la fricción.
- d) Compare la rapidez con que la fuerza (Fv) realiza trabajo, con la rapidez con la que se desprende energía térmica en el circuito  $(I^2R)$ .

#### Problema 2

En el sistema de poleas mostrado en la figura, la masa del cuerpo 1 es 4 veces mayor que la del cuerpo 2. La altura h=20 cm. Las masas de las poleas y de los hilos, así como el rozamiento son despreciables (los radio de las poleas son despreciables). En cierto momento el cuerpo 2 se soltó y el sistema se pone en movimiento. ¿Cuál es la altura máxima desde el suelo a la que subirá el cuerpo 2?



### Problema 3

Considera un sistema donde en la dirección del eje z existe un campo magnético, el suelo está en el plano xy. El campo magnético varía con la altura según la ecuación  $B(z) = B_0(1 - \alpha z)$ , siendo  $\alpha$  un número positivo y z es la altura contada desde el suelo. Un anillo metálico de masa m, diámetro d y resistencia R se deja en libertad desde una altura muy grande y se observa que a partir de cierta altura h desciende con movimiento uniforme.

Calcular la velocidad constante del anillo (velocidad terminal). Se supone que en su caída el plano del anillo es paralelo al plano xy.

### Problema 4

Tratemos de analizar de manera general el movimiento en una dimensión de una partícula de masa m. La segunda ley de Newton establece lo siguiente:

$$m\frac{d^2x}{dt^2} = F\left(x, t, \frac{dx}{dt}\right) \tag{1}$$

donde, por definición, la aceleración de la partícula es la segunda derivada respecto del tiempo de la posición de la partícula x(t). En la ecuación (1), la fuerza F en general pude depender de la posición misma de la partícula, del tiempo t y de la velocidad de la partícula v = dx/dt.

Veamos como integrar la ecuación (1) para los siguientes casos:

**4.1** Supongamos que la fuerza solo depende del tiempo F = F(t), entonces la ecuación (1) se puede escribir como:

$$\frac{dv}{dt} = \frac{F(t)}{m} \tag{2}$$

donde hemos utilizado que la velocidad de la partícula es por definición  $\frac{dx}{dt} = v$ . La forma de escribir de esta manera la ecuación (1) permite integrar directamente ya que la fuerza depende solo del tiempo:

$$dv = \frac{F(t)}{m}dt, \qquad \Rightarrow \quad v(t) = v_0 + \int_0^t \frac{F(t)}{m}dt \qquad \text{donde} \quad v(t=0) = v_0$$
 (3)

conociendo F(t) e integrando se encuentra v(t). Escribiendo que  $v(t) = \frac{dx}{dt}$  e integrando nuevamente, se obtiene finalmente x(t).

i) Considera el siguiente ejemplo: se tiene un electrón libre de moverse en la dirección del eje x sujeto a un campo eléctrico que oscila en el tiempo como:

$$E_r = E_0 \cos\left(\omega t + \theta\right) \tag{4}$$

donde  $E_0$  es una amplitud constante y  $\theta$  es una fase inicial también constante.

Suponiendo que el electrón esta inicialmente en el origen x(t=0)=0, determina entonces la posición del electrón como función del tiempo x(t), haz una descripción cualitativa del movimiento del electrón. Qué sucede cuando la frecuencia  $\omega$  del campo externo es muy grande.

**4.2** Consideremos ahora el caso cuando la fuerza solo depende de la velocidad de la partícula F(v), nuevamente escribimos la ecuación (1) de la siguiente manera:

$$m\frac{dv}{dt} = F(v), (5)$$

lo cual permite integrar de la siguiente manera:

$$\Rightarrow \int_{v_0}^{v} \frac{dv}{F(v)} = \frac{t - t_0}{m} \tag{6}$$

conociendo F(v) se puede integrar para hallar v(t). De la misma manera que el inciso anterior, una vez obtenida la expresión de v(t), se puede integrar haciendo uso de dx/dt = v(t), para hallar x(t).

Una aplicación directa es cuando una partícula se mueve en un medio que presenta resistencia, en este caso la fuerza se opone al movimiento de la partícula y puede variar como alguna potencia de la velocidad  $F(v) = -bv^n$ .

i) Considera el caso n = 1:

$$F\left(v\right) = -bv\tag{7}$$

Integra para encontrar v(t) y x(t) de una partícula sujeta a esta fuerza únicamente. ¿Qué le pasa a la velocidad y la posición de la partícula cuando  $t \to \infty$ ?, ¿se llegará a detener la partícula en algún momento?

- ii) Considera ahora una partícula cayendo debido a la fuerza de gravedad, pero que ademas la resistencia del aire ejerce una fuerza F(v) = -bv. Encuentra en este caso v(t) y x(t). Describe cualitativamente el movimiento de la partícula. En este caso, después de cierto tiempo la velocidad de la partícula es prácticamente constante, esta se conoce como velocidad terminal.
- **4.3** Cuando la fuerza depende de la posición F(x) ya no es tan directo integrar la ecuación de Newton (1), para obtener v(t) y x(t). Trata de intentarlo! Sin embargo la conservación de energía y la definición del potencial V(x) nos salvan!.

En general, para una dimensión, si la fuerza depende la posición F(x) entonces se puede definir su energía potencial V(x) como:

$$F(x) = -\frac{dV}{dx}, \qquad \Leftrightarrow \qquad V(x) = -\int F(x) dx$$
 (8)

Así para una partícula sujeta a una fuerza que depende de solamente de la posición su energía se conserva:

$$E = \frac{m}{2} \left(\frac{dx}{dt}\right)^2 + V(x) \tag{9}$$

despejando dx/dt se puede integrar:

$$\frac{dx}{dt} = \sqrt{\frac{2}{m} (E - V(x))}, \qquad \Rightarrow \qquad \int_{x_0}^{x} \frac{dx}{\sqrt{\frac{2}{m} (E - V(x))}} = \int_{t_0}^{t} dt$$
 (10)

Conociendo la la expresión de la fuerza F(x) o del potencial V(x) e integrando se obtiene "directamente" x(t).

Claro, en todos los casos que hemos visto esperamos que las integrales puedan hacerse sin demasiadas complicaciones.

- i) Deriva respecto del tiempo la expresión de la energía (9) y verifica que recuperas la segunda ley de Newton (1).
- ii) Integra la ecuación (10) para la ley de Hooke, F(x) = -kx y obtén x(t). Para realizar la integral realiza un cambio de variable con alguna de las funciones trigonométricas seno o coseno, se cuidadoso con los limites de integración al hacer el cambio de variable y regresar a la variable original.

## Problemas de matemáticas

## Problema 1

Los extremos de una varilla AB resbalan sobre los ejes de coordenadas. El punto M que divide a la varilla en dos partes AM=a y MB=b. Deducir las ecuaciones parámetricas del punto M, tomando por parámetro al ángulo  $t=\angle OBA$ . Eliminar después el parámetro t y hallar la ecuación de la trayectoria del punto M de la forma  $F\left( x,y\right) =0$ 



### Problema 2

Resuelve las siguiente ecuaciones

$$\sin^3 x \, \cos x - \sin x \, \cos^3 x = \frac{1}{4} \tag{11}$$

$$2\sin(17x) + \sqrt{3}\cos(5x) + \sin(5x) = 0 \tag{12}$$