Breast Cancer: Wisconsin

Jose Tamez

2023-05-02

Contents

1 Showcasing RRPlots	1
1.1 Exploring Raw Features with RRPlot	2
1.2 Reporting the Metrics	17
1.3 Modeling	20
1.4 Cox Model Performance	21
1 Showcasing RRPlots	
1.0.1 Libraries	
library(survival)	
library(FRESA.CAD)	
## Loading required package: Rcpp	
## Loading required package: stringr	
## Loading required package: miscTools	
## Loading required package: Hmisc	
##	
## Attaching package: 'Hmisc'	
<pre>## The following objects are masked from 'package:base': ##</pre>	
## format.pval, units	
## Loading required package: pROC	
<pre>## Type 'citation("pROC")' for a citation.</pre>	
##	
## Attaching package: 'pROC'	
<pre>## The following objects are masked from 'package:stats': ##</pre>	
## cov, smooth, var	
#source("~/GitHub/FRESA.CAD/R/RRPlot.R") #source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")	
<pre>op <- par(no.readonly = TRUE)</pre>	
<pre>pander::panderOptions('digits', 3)</pre>	
<pre>#pander::panderOptions('table.split.table', 400)</pre>	

```
pander::panderOptions('keep.trailing.zeros',TRUE)
layout(matrix(1:1, nrow=1))
```

1.0.2 Wisconsin Data Set

```
dataBreast <- read.csv("~/GitHub/RISKPLOTS/DATA/wpbc.data", header=FALSE)</pre>
table(dataBreast$V2)
##
##
        R
   N
## 151 47
rownames(dataBreast) <- dataBreast$V1</pre>
dataBreast$V1 <- NULL</pre>
dataBreast$status <- 1*(dataBreast$V2=="R")</pre>
dataBreast$V2 <- NULL
dataBreast$time <- dataBreast$V3</pre>
dataBreast$V3 <- NULL
dataBreast <- sapply(dataBreast,as.numeric)</pre>
## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
dataBreast <- as.data.frame(dataBreast[complete.cases(dataBreast),])</pre>
table(dataBreast$status)
##
     0
## 148 46
```

1.1 Exploring Raw Features with RRPlot

```
convar <- colnames(dataBreast)[lapply(apply(dataBreast,2,unique),length) > 10]
convar <- convar[convar != "time"]
topvar <- univariate_BinEnsemble(dataBreast[,c("status",convar)],"status")
pander::pander(topvar)</pre>
```

V35	V24	V34	V7	V16	V14	V17
0.0261	0.0261	0.0261	0.0623	0.126	0.126	0.126

```
idx <- idx + 1 }
```


Kaplan-Meier: V35

Number at risk

Low Risk < 3.000	142	98	68	38	19	1
3.000 <= Risk < 10.300	30	18	10	2	0	0
High Risk >= 10.300	22	11	8	4	1	Ó

Kaplan-Meier: V24

Number at risk

Low Risk < 23.942	148	104	69	41	19	1
23.942 <= Risk < 25.519	20	11	- 8	1	1	0
High Risk >= 25.519	-	12	9	2	Ó	ŏ

Kaplan-Meier: V34

Number at risk

Low Risk < 1226.600	151	106	73	41	19	1
1226.600 <= Risk < 1376.300	21	13	9	2	1	0
High Risk >= 1376.300	22	8	<u> </u>	<u> </u>	Ó	ŏ

Survival probability

Kaplan-Meier: V16

Number at risk

Low Risk < 5.373	148	102	74	39	19	1
5.373 <= Risk < 7.308	26	15	6	3	1	0
High Risk >= 7.308	20	10	6	2	0	Ó

names(RRanalysis) <- topFive</pre>

Survival probability

1.2 Reporting the Metrics

pander::pander(RRanalysis[[1]]\$keyPoints,caption=topFive[1])

Table 2: V35

	Thr	RR	SEN	SPE	BACC
@:0.9	1.00e+01	1.33	0.152	0.8919	0.522
@:0.8	3.00e+00	2.50	0.478	0.7973	0.638
@MAX_BACC	4.00e+00	2.71	0.478	0.8176	0.648
$@MAX_RR$	4.00e+00	2.71	0.478	0.8176	0.648
@SPE100	-8.41e-09	7.23	1.000	0.0203	0.510

pander::pander(RRanalysis[[2]]\$keyPoints,caption=topFive[2])

Table 3: V24

	Thr	RR	SEN	SPE	BACC
@:0.9	25.4	1.94	0.239	0.8919	0.566
@:0.8	24.0	1.72	0.348	0.7973	0.573
@MAX_BACC	20.3	2.45	0.739	0.5270	0.633

	Thr	RR	SEN	SPE	BACC
@MAX_RR	16.6	3.87	0.957	0.1824	0.569
@SPE100	15.5	30.33	1.000	0.0811	0.541

RRanalysis[[2]] \$keyPoints["@MAX_BACC",c("BACC","RR")]

BACC RR

@MAX BACC 0.6330787 2.451923

```
ROCAUC <- NULL
CstatCI <- NULL
RRatios <- NULL
LogRangp <- NULL
Sensitivity <- NULL
Specificity <- NULL
MAXBACC <- NULL
for (topf in topFive)
  CstatCI <- rbind(CstatCI,RRanalysis[[topf]]$c.index$cstatCI)</pre>
  RRatios <- rbind(RRatios,RRanalysis[[topf]]$RR_atP)</pre>
  LogRangp <- rbind(LogRangp,RRanalysis[[topf]]$surdif$pvalue)</pre>
  Sensitivity <- rbind(Sensitivity,RRanalysis[[topf]]$ROCAnalysis$sensitivity)</pre>
  Specificity <- rbind(Specificity,RRanalysis[[topf]]$ROCAnalysis$specificity)</pre>
  ROCAUC <- rbind(ROCAUC,RRanalysis[[topf]]$ROCAnalysis$aucs)</pre>
  MAXBACC <- rbind(MAXBACC,RRanalysis[[topf]]$keyPoints["@MAX_BACC",c("BACC")])
rownames(CstatCI) <- topFive</pre>
rownames(RRatios) <- topFive</pre>
rownames(LogRangp) <- topFive</pre>
rownames(Sensitivity) <- topFive</pre>
rownames(Specificity) <- topFive</pre>
rownames(ROCAUC) <- topFive</pre>
rownames(MAXBACC) <- topFive</pre>
pander::pander(ROCAUC)
```

est	lower	upper
0.640	0.544	0.736
0.633	0.542	0.725
0.650	0.563	0.736
0.610	0.515	0.705
0.598	0.504	0.692
	0.640 0.633 0.650 0.610	0.640 0.544 0.633 0.542 0.650 0.563 0.610 0.515

pander::pander(CstatCI)

	mean.C Index	median	lower	upper
V35	0.623	0.623	0.525	0.709
V24	0.677	0.676	0.597	0.753
V34	0.651	0.650	0.578	0.718

	mean.C Index	median	lower	upper
V7	0.667	0.664	0.579	0.740
V16	0.614	0.615	0.527	0.702

pander::pander(RRatios)

	est	lower	upper
V35	1.41	0.719	2.75
V24	1.93	1.122	3.31
V34	1.44	0.741	2.82
V7	1.37	0.700	2.69
V16	1.04	0.462	2.32

pander::pander(LogRangp)

V35	0.000128
V24	0.009376
V34	0.055324
V7	0.073322
V16	0.021345

pander::pander(Sensitivity)

	est	lower	upper
V35	0.152	0.0634	0.289
V24	0.239	0.1259	0.388
V34	0.152	0.0634	0.289
V7	0.152	0.0634	0.289
V16	0.109	0.0362	0.236

pander::pander(Specificity)

	est	lower	upper
V35	0.899	0.838	0.942
V24	0.899	0.838	0.942
V34	0.899	0.838	0.942
V7	0.899	0.838	0.942
V16	0.899	0.838	0.942

pander::pander(MAXBACC)

7/05	0.649
V35	0.648
V24	0.633
V34	0.643
V7	0.621

V16	0.614
-----	-------

meanMatrix <- cbind(ROCAUC[,1],CstatCI[,1],Sensitivity[,1],Specificity[,1],RRatios[,1],MAXBACC)
colnames(meanMatrix) <- c("ROCAUC","C-Stat","Sen","Spe","RR","MAX_BACC")
pander::pander(meanMatrix)</pre>

	ROCAUC	C-Stat	Sen	Spe	RR	MAX_BACC
V35	0.640	0.623	0.152	0.899	1.41	0.648
V24	0.633	0.677	0.239	0.899	1.93	0.633
V34	0.650	0.651	0.152	0.899	1.44	0.643
V7	0.610	0.667	0.152	0.899	1.37	0.621
V16	0.598	0.614	0.109	0.899	1.04	0.614

1.3 Modeling

ml <- BSWiMS.model(Surv(time, status)~1, data=dataBreast, NumberofRepeats = 10)</pre>

sm <- summary(ml)</pre>

pander::pander(sm\$coefficients)

Table 12: Table continues below

	Estimate	lower	HR	upper	u.Accuracy	r.Accuracy
V24	5.85 e-02	1.02	1.06	1.10	0.598	0.237
V27	2.06e-04	1.00	1.00	1.00	0.608	0.293
V26	4.16e-03	1.00	1.00	1.01	0.593	0.376
V34	1.07e-02	1.00	1.01	1.02	0.634	0.305
V7	5.28e-08	1.00	1.00	1.00	0.588	0.237
V35	4.63e-03	1.00	1.00	1.01	0.727	0.597
V6	1.07e-07	1.00	1.00	1.00	0.577	0.237

Table 13: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI	NRI	z.IDI
V24	0.598	0.609	0.500	0.609	0.0619	0.437	2.87
V27	0.609	0.608	0.516	0.607	0.0561	0.434	2.75
V26	0.600	0.598	0.540	0.603	0.0621	0.400	2.75
V34	0.630	0.618	0.519	0.615	0.0307	0.463	2.38
V7	0.588	0.595	0.500	0.595	0.0487	0.380	2.30
V35	0.617	0.641	0.601	0.610	0.0279	0.551	2.25
V6	0.577	0.588	0.500	0.588	0.0459	0.353	2.19

	z.NRI	Delta.AUC	Frequency
V24	2.67	0.10914	1.0
V27	2.63	0.09082	1.0

	z.NRI	Delta.AUC	Frequency
V26	2.43	0.06298	1.0
V34	2.80	0.09612	0.9
V7	2.30	0.09489	0.7
V35	3.41	0.00877	0.9
V6	2.13	0.08813	0.1

1.4 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.4.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

```
index <- predict(ml,dataBreast)
timeinterval <- 2*mean(subset(dataBreast,status==1)$time)

h0 <- sum(dataBreast$status & dataBreast$time <= timeinterval)
h0 <- h0/sum((dataBreast$time > timeinterval) | (dataBreast$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 15: Initial Parameters

h0	timeinterval
0.323	51.1

Cumulative vs. Observed: Raw Train: Breast Cancer

Decision Curve Analysis: Raw Train: Breast Cancer

Relative Risk: Raw Train: Breast Cancer

Time vs. Events: Raw Train: Breast Cancer

Kaplan-Meier: Raw Train: Breast Cancer

1.4.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$keyPoints), caption="Threshold values")

Table 16: Threshold values

	@:0.9	@:0.8	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.430	0.361	0.252	0.176	0.1598	0.504
$\mathbf{R}\mathbf{R}$	1.944	1.833	2.402	3.557	30.3297	2.308
\mathbf{SEN}	0.239	0.370	0.739	0.957	1.0000	0.152
\mathbf{SPE}	0.892	0.797	0.520	0.169	0.0811	0.953
\mathbf{BACC}	0.566	0.583	0.630	0.563	0.5405	0.552

pander::pander(t(rrAnalysisTrain\$OERatio\$estimate),caption="0/E Test")

Table 17: O/E Test

O/E	Low	Upper	p.value
0.842	0.617	1.12	0.278

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 18: O/E Mean

mean	50%	2.5%	97.5%
1.02	1.02	0.969	1.07

pander::pander(t(rrAnalysisTrain\$OARatio\$estimate), caption="0/Acum Test")

Table 19: O/Acum Test

O/A	Low	Upper	p.value
0.809	0.592	1.08	0.163

pander::pander(t(rrAnalysisTrain\$OAcum95ci),caption="0/Acum Mean")

Table 20: O/Acum Mean

mean	50%	2.5%	97.5%
0.793	0.793	0.787	0.799

pander::pander(t(rrAnalysisTrain\$c.index\$cstatCI),caption="C. Index")

Table 21: C. Index

mean.C Index	median	lower	upper
0.684	0.685	0.605	0.76

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 22: ROC AUC

est	lower	upper
0.642	0.551	0.733

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 23: Sensitivity

est	lower	upper
0.239	0.126	0.388

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 24: Specificity

est	lower	upper
0.899	0.838	0.942

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 25: Probability Thresholds

90%	80%	at_max_BACC	at_max_RR	atSPE100	at_0.5
0.431	0.361	0.252	0.176	0.16	0.5

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 26: Risk Ratio

est	lower	upper
2.08	1.22	3.55

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 27: Logrank test Chisq = 11.441480 on 2 degrees of freedom, p = 0.003277

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	147	29	37.05	1.75	9.173
class=1	21	6	4.35	0.63	0.706
class=2	26	11	4.60	8.90	9.982