EECS 325: Assignment 4

Shaochen (Henry) ZHONG, sxz517

Due and submitted on 04/30/2020 EECS 325, Dr. WANG

Question 1

(a)

The second best path from E to F is via neighbor B ($E \to B \to E \to F$, with a cost of 5). (If reused of "banned" route $E \to F$ is not allowed, then the second best path is $E \to D \to F$ with a cost of 6. However, it is not explicitly restricted by the question so I guess B is still the best neighbor to go with. I am providing this alternative solution just in case.)

(b)

E's advertised distance to F is 6.

Route	After E's update
	(distance, next-hop)
A to F	5, D
B to F	5, C
D to F	3, F

(c)

B's advertised distance to F is 5.

Route	After B's update (distance, next-hop)
A to F	5, D
C to F	5, F
E to F	6, D

(d)

C's advertised distance to F is 5.

Route After C's update (distance, next-hop)
B to F 6, C

Now all routers are following the correct shortest path, as in the next iteration (4th) the table will not update anymore.

(e)

- (1) 1st iteration, update E to F as 6, F.
- (2) 2nd iteration, fill in A to F, B to F, update C to F as 5, F, update E to F as 6, D.
- (3) 3rd iteration, update B to F as 6, C.
- (4) 4th iteration, no more update.

Thus the tables will **NOT** converge faster with *poisoned reverse*, as either implemented or not, both approaches took 4 iterations to converge.

Question 2

- (a) eBGP
- (b) iBGP
- (c) eBGP
- (d) iBGP
- (i) [A], [A-C], [A-D], [A-C-F], [A-D-G]
- (ii) [C], [C-F]
- (iii) [E]
- (iv) [F]