Constructive Formalization of Regular Languages

Jan-Oliver Kaiser

September 5, 2012

Contents

1	Int r 1.1	Recent work				
1	Coqand SSReflect 2					
	1.1	Coq	2			
	1.2	SSReflect	2			
		1.2.1 Finite Types and Ordinals	2			
		1.2.2 Boolean Reflection	2			
		1.2.3 Boolean Predicates	2			
1	Decidable Languages 2					
	1.1	Definition	2			
		1.1.1 Operation on languages	2			
	1.2	Regular Languages	4			
		1.2.1 Regular Expressions	4			
		1.2.2 Deciding Language Membership	5			
1	Finite Automata 2					
	1.1	Definition	2			
		1.1.1 Determinism and Non-Determinism	2			
	1.2	Connected Components	4			
	1.3	Emptiness				
	1.4	Deciding Equivalence of Finite Automata	5			
	1.5	Regular Expressions and Finite Automata	6			
		1.5.1 Regular Expressions to Finite Automata	6			
		1.5.2 Deciding Equivalence of Regular Expressions	6			
		1.5.3 Finite Automata to Regular Expressions	6			
1	Myhill-Nerode 2					
	1.1	Definition	2			
	1.2	Finite Partitionings and Equivalence Classes	3			
	1.3	Minimizing Equivalence Classes	4			
	1.4	Finite Automata and Myhill-Nerode	5			
		1.4.1 Finite Automata to Myhill-Nerode	5			

C(ONTENTS		3
	1.4.2	Myhill-Nerode to Finite Automata	5
1	Conclusion		
2	Reference	s	3

Chapter 4

Conclusion

Chapter 5

References