# COUPLINGS ORM-FLEX





## **INTRODUCTION**

In all areas of industry, the demand for machinery and equipment of greater performance has ever increased. Couplings, serving as vital transmission parts, are no exception to meet higher and more stringent quality requirements.

Daido Precision Industries Ltd. (DPI) was established in September 1995 after a merger of Tokushu Seiko and Daido Sprag Ltd., two affiliated companies of Daido Steel, one of a leading specialty steel producers in Japan., and makes various model of couplings together with compressor valve components and details of high precision.

The origin of DPI's coupling dates back to a license agreement between then Turbo-Flex Corp in England and Tokushu Seiko in 1973, Leading to the foundation of a joint venture named Daido Sprag Ltd., in 1976. Since then, our couplings have been widely accepted in Japanese Market under the bland name of FORM-FLEX COUPLING and have acquired a high reputation

for their superior performance and quality among our customers covering every field of industries in Japan.

## **CONTENTS**

| NTRODUCTION                                  |   |
|----------------------------------------------|---|
| CHARACTERISTICS                              |   |
| CONSTRUCTION OF FORM-FLEX COUPLINGS          |   |
| ERFORMANCE                                   |   |
| RODUCT LINE AND USAGE                        |   |
| ELECTION PROCEDURE AND LOAD COEFFICIENT      |   |
| YPES OF COUPLINGS                            | 1 |
| IMENSIONS OF HUB TYPE A                      | 1 |
| YPE A - SINGLE FLEXING COUPLING              | 1 |
| YPE A - DOUBLE FLEXING COUPLING              | 1 |
| YPE A - FLOATING SHAFT COUPLING              | 1 |
| YPE E - DOUBLE FLEXING COUPLING AND FLOATING |   |
| OUPLING                                      | 1 |
| YPE G - DOUBLE FLEXING COUPLING AND FLOATING |   |
| OUPLING                                      |   |
| YPE S - DOUBLE FLEXING COUPLING              | 2 |
| YPE U - DOUBLE FLEXING COUPLING              | 2 |
| LUG-IN COUPLINGS                             |   |
| INGLE-END PLUG-IN COUPLING                   |   |
| OUBLE-END PLUG-IN COUPLING                   |   |
| YPICAL APPLICATIONS                          |   |
| OUPLING FOR SPECIAL PURPOSES                 | 2 |
| ESIGN STANDARDS FOR SPANNELEMENTE HUB AND    |   |
| HRUST FLANGE                                 | 2 |
| ESIGN STANDARDS FOR TAPERED-SHAFT BORE AND   |   |
| APERED SHAFT                                 |   |
| NSTRUCTIONS FOR INSTALLATION AND MAINTENANCE | 3 |
|                                              |   |



CHARACTERISTICS



Lubricating oil is unnecessary because the FORM-FLEX COUPLING has no sliding, frictional, or moving parts. Therefore, there is no friction or noise, and energy loss is low, with no dirty oil to cope with. For most high-speed gear couplings, an expensive filter and guard are needed for forced lubrication and oil recovery, but these are not required for FORM-FLEX COUPLINGS.

Higher and No

For equipment indexing system rotation and phrough suited because

## Higher Torsional Stiffness and No Backlash

For equipment such as machine tools with numerical controllers, indexing systems, and printing machines requiring accurate shaft rotation and phase control, FORM-FLEX COUPLINGS are best suited because of their high torsional stiffness.

2

## **Fit and Forget**

When properly installed and if initial conditions remain unchanged, FORM-FLEX COUPLINGS have an unlimited service life. Required maintenance consists of a visual inspection of the condition of the element (flexible plate) and of the bolts and nuts when operation is stopped.



Since no lubricating oil is required, FORM-FLEX COUPLINGS made of standard materials operate satisfactorily, even at high ambient temperatures. Further, the use of special materials and/or coatings makes operation under any environmental condition possible

3

## **Light Weight with High Torque**

FORM-FLEX COUPLINGS are available in a wide range of specifications to meet various operating conditions. Requirements for lighter weight can be met by using a type whose main body is made of a light material such as alloyed aluminum.

Rugged Construction and Small Load Stress

Load stress on FORM-FLEX COUPLINGS is maintained at very low levels, except in special cases. Therefore, the service life of these couplings is practically unlimited when operated within the acceptable range of allowable misalignment.

4

## **Great Range of Misalignment Allowable**

These couplings are applicable for a wide variety of systems because of their great range of allowable misalignment. Special designs for even larger allowances are possible.

Easy Mounting and Dismounting

Couplings can be mounted and unmounted quickly and easily due to their compactness and small number of parts. Excellent reassembly characteristics provide superior speed. The use of spacers with the coupling permits easy mounting and dismounting without the necessity of moving heavy machinery. This is helpful in the replacement of seals and bearings in pumps and other equipment.

Lower Thrust Load and Bending Moment

Flexible couplings prevent problems by absorbing shaft misalignment while transmitting torque; this puts an opposing load on the shaft. With FORM-FLEX COUPLINGS, however, this load is much lower than with other types of couplings.

10

## Fail-Safe Mechanism

Should the element be damaged due to overload or accident, a fail-safe mechanism transmitting rotation via washers becomes operational.

## CONSTRUCTION OF FORM-FLEX COUPLINGS

## Construction



#### Simple construction ensures good durability

FORM-FLEX double flexing couplings are made of three principal components: hubs, spacer, and flexible elements. Their very simple construction results in extrahigh torque capability and practically unlimited durability.

#### Power transmission mechanism produces high torque

A significant feature of the FORM-FLEX COUPLINGS is its flexible element, which is laminated with thin square stainless steel sheets. The holes A, C and B, D in the diagram are bolted at the hub and spacer, respectively. The torque is directly transmitted as tension from A to B and C to D through the straight side of the flexible element. Complex stress is not generated at the square flexible element, and the torque transmission capacity of FORM-FLEX COUPLINGS therefore increases.

#### Driving mechanism with less occurrence of bending stress

The arrangement of the minimum of four driving and driven reamer bolts on a common radius minimizes the bending stress on the flexible element when operated under axial and/or angular misalignment. Cyclic stress is also reduced.

## Types of Flexible Elements

| Performance                                                          | Performance                                                              | Performance                                                                                                   |
|----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Max. angular misalignment: 1°<br>Allowable torque: 33-6,370 N·m      | Max. angular misalignment: 0.5°<br>Allowable torque: 3,840-178,000 N•m   | Max. angular misalignment: 0.25°<br>Allowable torque: 16,400-313,000 N·m                                      |
| Shape                                                                | Shape                                                                    | Shape                                                                                                         |
| Type A                                                               | Type G                                                                   | Type U                                                                                                        |
| Performance                                                          | Performance                                                              | Performance                                                                                                   |
| Max. angular misalignment: 0.7°<br>Allowable torque: 569-128,000 N·m | Max. angular misalignment: 0.35°<br>Allowable torque: 13,500-256,000 N•m | Number of bolts: 10-20. Number is determined based on service conditions. Consult us for further information. |
|                                                                      |                                                                          | Max. torque: 1,962×10 <sup>3</sup> N·m                                                                        |
| Shape                                                                | Shape                                                                    | Max. torque: 1,962×10 <sup>3</sup> N·m  Shape                                                                 |

## **Design features of 4-bolt coupling**



Standard materials are shown in parentheses.

## Design features of 6-12-bolt coupling



Install bolts in an easy-to-insert direction.

Standard materials are shown in parentheses.

## **PERFORMANCE**

Allowances for axial and parallel misalignment of couplings depend on the number of bolts in the flexible element and operating speed. Axial and parallel misalignment are in inverse proportion; in other words, when one increases, the other decreases. Therefore, the two should be taken into consideration concurrently. The parallel misalignment between the driving and driven shafts is absorbed by the angle ( ) of the flexible element, as shown in the following diagram.



Maximum parallel misalignment=L x tan L: distance between element centers

## **End Float**



Most driving equipment requires the absorption of axial misalignment (end float). FORM-FLEX COUPLINGS permit great axial misalignment with minimum end thrust. The graphs show the degrees of maximum allowable axial misalignment in relation to various amounts of angular misalignment. Good durability of the couplings is secured by working within the indicated limits. FORM-FLEX COUPLINGS can satisfy NEMA Standards MG1-14.37 without the use of a button or shoulder, which restricts axial misalignment. (FORM-FLEX COUPLINGS do not require any accessory equipment to correct misalignment in the thrust direction when the motor starts.)





## PRODUCT LINE AND USAGE

Single Flexing Couplings



The single flexing coupling is for use in the case where shafts are supported by three bearings. The coupling shown in the diagram on the right above is suitable for use in cases subject to great radial loads. To connect the servo-motor used in NC machine tools with the ball screw, an exceptional usage of the coupling as shown in the diagram below on the right is possible.

In this case, parallel misalignment is controlled by fitting the motor in a line with the casing; the coupling is used mainly for the absorption of angular and axial misalignment. This may overload the element; therefore, in this case, it is necessary to use a square element which absorbs misalignment, such as that in the FORM-FLEX COUPLING.





These are required for mounting between two pieces of equipment having two bearings each. The two inner bearings must be positioned at an appropriate distance from the hub.

Full Floating Shaft Couplings



These couplings are preferred in cases where power is transmitted between machines separated by some distance.

Semi-floating Shaft Couplings

A 7 E 7 G 7

A reference for the usage of these couplings is shown in the left illustraion. In this case, the shaft of the coupling is supported with a single bearing, arranged as closely as possible to the outer sprocket or pulley. The flex elements permit radial loads as does A3.

#### Twin Shaft Coupling

A semi-floating shaft coupling is combined with a floating shaft coupling to make the twin shaft coupling, which is suitable for a long-span connection between two pieces of equipment.













 $^{\prime}$ 

## METHOD OF SELECTION

Determine the length of the spacer and select the most suitable type for this length.

Check for the existence of space limitations.

Precisely determine the load torque (refer to the equation below).

Check the end-float.

Determine the load coefficient (refer to Table 1.)

For floating-type couplings, verify that the distance between the shaft ends is less than D-max. (maximum distance between shafts) at dangerous rotation speeds.

- Calculate the design torque by multiplying the load torque by the load coefficient.
- Check whether dynamic balancing is necessary.
- Select a coupling size equal to or greater than the design torque.
  - Verify that the shaft diameter is within the E-max. (maximum shaft bore diameter) limits.

Torque: T Power: KW

Equation: T = 9550  $\cdot \frac{KW}{min^{-1}}$  (N·m) Speed: min-1

## LOAD COEFFICIENT

Load coefficient is an important consideration when selecting a coupling. Standard load coefficients for comparatively smoothly operating drives such as electric motors, and steam and gas turbines are as given below. These load coefficients may change depending on the application and/or conditions under which the equipment is operated. Therefore, the load coefficients should be used strictly as general criteria.

#### Table 1. Load coefficient according to type of machinery

| Application Load coe           | fficient | Agitator                  |     | Table conveyor        |          |
|--------------------------------|----------|---------------------------|-----|-----------------------|----------|
|                                |          | Pure liquid               | 1.0 | Non-reversing         | 3.0      |
|                                |          | Liquid with variable      |     | Reversing             | 4.0      |
|                                |          | concentration             | 1.5 | Wire-drawing machine  | 3.0      |
|                                |          | Canning machine           | 1.0 | Wire-winding machine  | 2.5      |
|                                |          | Metal-working machine     |     | Conveyor              |          |
| Compressor                     |          | Bending roll              | 2.0 | Apron                 | 2.0      |
| Centrifugal                    | 1.5      | Planer                    | 2.0 | Belt                  | 2.0      |
| Reciprocating (multi-cylinder) | 3.0      | Punch press (gear-driven) | 3.0 | Disk                  | 2.0      |
| Printing machin                | 2.0      | Machine tool              |     | Bucket (on floor)     | 1.5      |
| Elevator                       |          | Main drive                | 2.0 | Chain                 | 2.0      |
| Escalator                      | 1.5      | Auxiliary drive           | 1.5 | Reciprocating         | 3.0      |
| Freight                        | 2.0      | Draw bench (carriage)     | 3.0 | Screw                 | 2.0      |
| Extrusion press                |          | Draw bench (main drive)   | 3.0 | Water supply & sewage | disposal |
| For plastic                    | 2.0      | Forming machine           | 3.0 | equipment             |          |
| For metal                      | 2.5      | Slitter                   | 2.0 | Pump                  | 1.5      |

| Tractor                  | 1.5 | Beater and pulper              | 2.0 | Dry can                   |      |
|--------------------------|-----|--------------------------------|-----|---------------------------|------|
| Rubber industry          |     | Bleacher                       | 1.5 | Dryer                     |      |
| Mixer (Banbury)          | 3.0 | Calender                       | 2.0 | Washing machine           |      |
| Rubber calender          | 2.0 | Couch                          | 2.5 | Reversing type            |      |
| Rubber mill              | 3.0 | Cylinder                       | 2.5 | Crusher                   |      |
| Sheeter                  | 2.0 | Dryer                          | 2.5 | Ore                       |      |
| Tire-building machine    | 3.0 | Felt stretcher                 | 1.5 | Stone                     |      |
| Tire-tube press opener   | 1.0 | Felt whipper                   | 2.5 | Generator (for general u  | se)  |
| Tuber and strainer       | 2.0 | Jordan                         | 2.0 | Hammer mill               |      |
| Dredge                   |     | Press                          | 2.5 | Fan and blower            |      |
| Cable reel               | 2.0 | Reel                           | 2.0 | Centrifugal               | 1.0  |
| Conveyor                 | 2.0 | Stock chest                    | 2.0 | Cooling tower (forced dra | aft) |
| Cutter-head drive        | 3.0 | Suction roll                   | 2.5 | Induced draft             |      |
| Jig drive                | 3.0 | Washer and thickener           | 2.0 | Lobe                      |      |
| Maneuvering winch        | 2.0 | Winder                         | 2.0 | Vane                      |      |
| Pump                     | 2.0 | Iron and steel making equipme  | ent | Briquetting machine       |      |
| Screen drive             | 2.0 | Bloom or slab shear            | 3.0 | Crusher (powder)          |      |
| Stacker                  | 2.0 | Chain transfer                 | 2.0 | Ball mill                 |      |
| Utility winch            | 2.0 | Cold rolling mill (tandem)     | 3.0 | Cement kiln               |      |
| Food industry            |     | Continuous casting oscillation | 3.0 | Dryer and cooler          |      |
| Beet slicer              | 2.0 | Cooling bed                    | 2.0 | Kiln                      |      |
| Cereal cooker            | 1.5 | Crop shear                     | 3.0 | Pebble                    |      |
| Dough mixer              | 2.0 | Descaler                       | 3.0 | Rod mill                  |      |
| Meat grinder             | 2.0 | Medium & small-size rolling    |     | Tumbling barrel           |      |
| Screen                   |     | mill (tandem)                  | 3.0 | Pump                      |      |
| Air washing              | 1.0 | Manipulator                    | 3.0 | Centrifugal               | 1.0  |
| Rotary (stone or gravel) | 1.5 | Roller table (high load)       | 3.0 | Reciprocating             |      |
| Vibrating                | 3.0 | Roller table (low load)        | 2.0 | Double-action             |      |
| Lumber industry          |     | Pipe welding machine           | 3.0 | Single-action             |      |
| Barker (drum type)       | 2.5 | Oil industry                   |     | 1 or 2 cylinders          |      |
| Edger feed               | 2.0 | Chiller                        | 1.5 | 3 or more cylinders       |      |
| Live roll                | 2.0 | Oil well pump                  | 2.0 | Rotary (gear, lobe, vane) |      |
| Log conveyor             | 2.0 | Paraffin filter press          | 2.0 | Winch                     |      |
| Off-bearing roll         | 2.0 | Rotary kiln                    | 2.0 | Mixer                     |      |
| Planer                   | 2.0 | Cutter (for plant stems)       | 2.0 | Concrete mixer            |      |
| Slab conveyor            | 2.0 | Textile industry               |     | Drum                      |      |
| Sorting table            | 1.5 | Batcher                        | 1.5 |                           |      |
| Deburring machine        | 2.0 | Calender                       | 2.0 |                           |      |
| Paper mill               |     | Carding machine                | 1.5 |                           |      |
| Barker                   | 2.5 | Cloth finishing machine        | 1.5 |                           |      |
|                          |     |                                |     |                           |      |

2.0

2.0

2.0

3.5 3.5

1.5

3.0

2.0 2.0 1.5

1.5

2.0

2.5

2.0 2.0 2.0

2.0

2.0

2.0

2.5

3.0

2.5

1.5

2.0

2.0

2.0

1.0 - 2.0

1.0 - 1.5

#### Table 2. Coefficient for fluctuating loads

For machines with fluctuating torques, add the values shown below to the appropriate load coefficient given in Table 1.

| Medium fluctuating load | Torque fluctuates frequently during operation (motor starts and stops are frequent).  | 0.5         |
|-------------------------|---------------------------------------------------------------------------------------|-------------|
| Heavy fluctuating load  | Shock loads and heavy torque fluctuations occur frequently.                           | 1.0         |
| Impact load             | Impact loads are frequently imposed (gap between torque and counter-torque is large). | 1.5 or more |

## TYPES OF COUPLINGS

| Usage<br>Type of hub an | Number of bolts d spacer    | 4             | 6                | 8                  | 10                  | 12                  | 10 ~ 20                       |
|-------------------------|-----------------------------|---------------|------------------|--------------------|---------------------|---------------------|-------------------------------|
| Single flexing          |                             | A 3           | E 3              | G 3                | S 3                 | U 3                 | W 3                           |
| Double flexing          | With minimum length spacer  | ΑX            |                  |                    |                     |                     |                               |
| Double flexing          | With standard length spacer | A 4           | E 4              | G 4                | S 4                 | U 4                 | W 4                           |
|                         | With custom length spacer   | АВ            | ΕB               | G B                | SB                  | U B                 | WB                            |
| Floating shoft          | Horizontal use              | A 5           | E 5              | G 5                | S 5                 | U 5                 | W 5                           |
| Floating shaft          | Vertical use                | A 6           | E 6              | G 6                | S 6                 | U 6                 | W 6                           |
| Semi-floating sl        | haft                        | A 7           | E 7              | G 7                | S 7                 | U 7                 | W 7                           |
| Range of torqu          | e (N∙m)                     | 33 ~<br>6,370 | 569 ~<br>128,000 | 3,840 ~<br>178,000 | 13,500 ~<br>256,000 | 16,400 ~<br>313,000 | Max.<br>1,962×10 <sup>3</sup> |

#### AB 45 ZN 100K / 60S68 275

Type symbol (refer to above table)

Size

#### Type of hub

N: Standard P: Elongated boss Z: Enlarged boss diameter K: Combination of P and Z S: Specially designed The above items are indicated in order of driving side followed by driven side.

Distance between shaft ends (mm)

#### State of shaft bore

Numbers denote shaft bore diameter (mm)
K: With key groove
S: Spannelement used

S: Spannelement used
The above items are indicated in order of driving side followed by driven side.

When the rough bore is of the standard size shown in the brochure, this item is omitted.

## **DIMENSIONS OF HUB TYPE A**

Hubs are available in several different types for various applications. Hub designations are indicated as "H"(hub), "Z", "P", "K", or "Y" (denoting hub type), and part number (i.e. HY04, HK10).

#### Features:

- HN: standard hub
- HZ: enlarged boss diameter H for enlarged shaft bore
- HP: longer boss length F
- HK: combination of HP and HZ
- HY: enlarged shaft bore and particularly large hub clearance angle for easy handling; convenient for installation in small spaces.

## **Dimensions of HN and HP**



## Dimensions of HZ, HK, and HY



| Size | Part | Α    | F (r  | nm) | Н    | E max. | Rough<br>Bore Size |
|------|------|------|-------|-----|------|--------|--------------------|
| No.  | No.  | (mm) | HN    | HP  | (mm) | (mm)   | (mm)               |
| 05   | 01   | 67   | 25.4  | 40  | 33   | 23     | 8                  |
| 10   | 02   | 81   | 25.4  | 40  | 46   | 32     | 10                 |
| 15   | 03   | 93   | 28.7  | 45  | 51   | 35     | 10                 |
| 20   | 04   | 104  | 33.5  | 50  | 61   | 42     | 10                 |
| 25   | 05   | 126  | 41.1  | 60  | 71   | 50     | 16                 |
| 30   | 06   | 143  | 47.8  | 70  | 84   | 58     | 16                 |
| 35   | 07   | 168  | 57.2  | 85  | 106  | 74     | 25                 |
| 40   | 08   | 194  | 63.5  | 100 | 119  | 83     | 25                 |
| 45   | 09   | 214  | 76.2  | 115 | 137  | 95     | 45                 |
| 50   | 10   | 246  | 88.9  | 135 | 157  | 109    | 50                 |
| 55   | 11   | 276  | 101.6 | 150 | 170  | 118    | 50                 |

| Size | Part | А    | F (r  | nm) | H (r   | mm) | E max  | Rough |                   |
|------|------|------|-------|-----|--------|-----|--------|-------|-------------------|
| No.  | No.  | (mm) | HZ    | НК  | HZ, HK | HY  | HZ, HK | HY    | Bore Size<br>(mm) |
| 05   | 01   | 67   | 25.4  | 40  | 47     |     | 28     |       | 10                |
| 10   | 02   | 81   | 25.4  | 40  | 58     |     | 40     |       | 10                |
| 15   | 03   | 93   | 28.7  | 45  | 66     | 66  | HK-42  | 40    | 13                |
| 20   | 04   | 104  | 33.5  | 50  | 77     | 73  | 48     | 44    | 16                |
| 25   | 05   | 126  | 41.1  | 60  | 92     |     | 60     |       | 16                |
| 30   | 06   | 143  | 47.8  | 70  | 104    |     | 70     |       | 16                |
| 35   | 07   | 168  | 57.2  | 85  | 129    |     | 85     |       | 25                |
| 40   | 08   | 194  | 63.5  | 100 | 147    |     | 95     |       | 25                |
| 45   | 09   | 214  | 76.2  | 115 | 166    |     | 110    |       | 50                |
| 50   | 10   | 246  | 88.9  | 135 | 191    |     | 120    |       | 50                |
| 55   | 11   | 276  | 101.6 | 150 | 209    |     | 130    |       | 50                |

- Notes) 1. HY is available in sizes 15 and 20 only.
  - 2. HZ size 15 is out of production; it has been superseded by HY size

## SINGLE FLEXING COUPLING



The single flexing coupling is designed to compensate for an angular misalignment of up to 1° maximum. It can operate at high speeds and under heavy loads while supporting radial loads. Typical installations include coupling of shafts, one of which is suppoted by bearings at two points and the other supported by only one bearing, as seen in motor generator sets.





#### Size (standard hub)

| Size<br>No. | Part<br>No. | A<br>(mm) | B<br>(mm) | Emax<br>(mm) | F<br>(mm) | G<br>(mm) | H<br>(mm) | V<br>(mm) | Rough<br>Bore Size<br>(mm) |
|-------------|-------------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|----------------------------|
| 05          | 01          | 67        | 56.9      | 23           | 25.4      | 6.1       | 6.1 33    |           | 8                          |
| 10          | 02          | 81        | 57.4      | 32           | 25.4      | 6.6       | 46        | 16        | 10                         |
| 15          | 03          | 93        | 65.8      | 35           | 28.7      | 8.4       | 51        | 22        | 10                         |
| 20          | 04          | 104       | 78.2      | 42           | 33.5      | 11.2      | 61        | 20        | 10                         |
| 25          | 05          | 126       | 93.9      | 50           | 41.1 11.7 |           | 71        | 25        | 16                         |
| 30          | 06          | 143       | 107.3     | 58           | 47.8      | 11.7      | 84        | 28        | 16                         |
| 35          | 07          | 168       | 131.2     | 74           | 57.2      | 16.8      | 106       | 23        | 25                         |
| 40          | 08          | 194       | 144.0     | 83           | 63.5      | 17.0      | 119       | 30        | 25                         |
| 45          | 09          | 214       | 174.0     | 95           | 76.2      | 21.6      | 137       | 22        | 45                         |
| 50          | 10          | 246       | 201.7     | 109          | 88.9      | 23.9      | 157       | 23        | 50                         |
| 55          | 11          | 276       | 230.4     | 118          | 101.6     | 27.2      | 170       | 40        | 50                         |

- (1) Maximum rotation speeds are based on rim stress with no consideration given to requirements for dynamic balancing.
- (2) Values become linear when torque changes while within the zone of maximum allowable torque specified in this catalogue.

## Specifications (standard hub)

|             | ,                    | Allowable To          | orque (N·m            | 1)                        | Maximum                            | (1)                     | Mass |                                       | T                                   | (2)                                   |
|-------------|----------------------|-----------------------|-----------------------|---------------------------|------------------------------------|-------------------------|------|---------------------------------------|-------------------------------------|---------------------------------------|
| Size<br>No. | No<br>Radial<br>Load | 1/2<br>Radial<br>Load | 2/2<br>Radial<br>Load | Maximum<br>Radial<br>Load | Allowable<br>Radial<br>Load<br>(N) | Radial Rotation<br>Load |      | Morment<br>of Inertia<br>J<br>(kg·m²) | Torsional<br>Stiffness<br>(N·m/rad) | Axial<br>Spring<br>Constant<br>(N/mm) |
| 05          | 33                   | 15                    | 12                    | 8                         | 147                                | 47,000                  | 0.6  | 0.0002                                | 2.2 <b>×</b> 10⁴                    | 40                                    |
| 10          | 90                   | 40                    | 31                    | 23                        | 245                                | 39,000                  | 1.1  | 0.0006                                | 6.2 <b>×</b> 10⁴                    | 59                                    |
| 15          | 177                  | 79                    | 62                    | 44                        | 549                                | 34,000                  | 1.7  | 0.0012                                | 14.7 <b>×</b> 10⁴                   | 141                                   |
| 20          | 245                  | 111                   | 85                    | 59                        | 814                                | 30,000                  | 2.5  | 0.0020                                | 23.5 <b>×</b> 10⁴                   | 168                                   |
| 25          | 422                  | 189                   | 157                   | 108                       | 1180                               | 25,000                  | 4.3  | 0.0056                                | 42.2 × 10 <sup>4</sup>              | 219                                   |
| 30          | 775                  | 348                   | 271                   | 196                       | 1770                               | 22,000                  | 6.9  | 0.0110                                | 68.6 <b>×</b> 10⁴                   | 307                                   |
| 35          | 1270                 | 574                   | 446                   | 319                       | 2650                               | 19,000                  | 11.3 | 0.0270                                | 127.5 <b>x</b> 10⁴                  | 355                                   |
| 40          | 2060                 | 927                   | 720                   | 515                       | 3730                               | 16,000                  | 16.7 | 0.0520                                | 205.9 <b>x</b> 10⁴                  | 440                                   |
| 45          | 3330                 | 1500                  | 1170                  | 834                       | 4410                               | 15,000                  | 22.7 | 0.0880                                | 294.2 <b>×</b> 10⁴                  | 470                                   |
| 50          | 4900                 | 2210                  | 1680                  | 1230                      | 5980                               | 13,000                  | 35.4 | 0.1800                                | 431.5 <b>x</b> 10⁴                  | 537                                   |
| 55          | 6370                 | 2860                  | 2230                  | 1600                      | 7550                               | 11,000                  | 52.0 | 0.3200                                | 578.6 <b>×</b> 10⁴                  | 561                                   |

## **Bolt fastening torque**

| Size No.                   | 05 | 10 | 15 | 20 | 25 | 30 | 35 | 40  | 45  | 50  | 55  |
|----------------------------|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Bolt Head<br>Diameter (mm) | 10 | 10 | 13 | 13 | 17 | 19 | 19 | 24  | 24  | 27  | 36  |
| Fastening Torque (N·m)     | 9  | 9  | 22 | 22 | 41 | 72 | 72 | 160 | 160 | 220 | 570 |

## TYPE A 4-Bolt

## **DOUBLE FLEXING COUPLING**



(with standard length spacer)



Angular misalignment of up to 1° on one side is allowable.





The standard dynamic balance of this coupling is in accordance with JIS G-6.3 (1,800 rpm).

Sizes are the same as those shown on the previous page.

## **Specifications**

|             | Common Factors AX, A4, AB |                            |                           |        | AX   |                    |                                |        | A4   |                    |                        |        | AB       |       |  |  |
|-------------|---------------------------|----------------------------|---------------------------|--------|------|--------------------|--------------------------------|--------|------|--------------------|------------------------|--------|----------|-------|--|--|
| Size<br>No. | Torque                    | (1)<br>Maximum<br>Rotation | (2) Axial Spring Constant | D (mm) | Mass | Morment of Inertia | Torsional<br>Stiffness         | D (mm) | Mass | Morment of Inertia | Torsional<br>Stiffness | B      | (3)<br>D | D max |  |  |
|             | (N·m)                     | (min <sup>-1</sup> )       | (N/mm)                    | (mm)   | (kg) | (kg·m²)            | (N·m/rad)                      | (mm)   | (kg) | (kg·m²)            | (N·m/rad)              | (mm)   | (mm)     | (mm)  |  |  |
| 05          | 33                        | 47,000                     | 21                        | 36     | 1.1  | 0.00045            | 1.1 × 10 <sup>4</sup>          | 88.9   | 1.2  | 0.00045            | 0.9                    |        |          | 200   |  |  |
| 10          | 90                        | 39,000                     | 29                        | 39     | 1.7  | 0.00103            | 3.0 <b>x</b> 10 <sup>4</sup>   | 88.9   | 1.9  | 0.00110            | 2.7                    |        |          | 200   |  |  |
| 15          | 177                       | 34,000                     | 71                        | 47     | 2.7  | 0.00198            | 7.1 <b>×</b> 10⁴               | 101.6  | 2.9  | 0.00210            | 6.1                    |        | t ends   | 250   |  |  |
| 20          | 245                       | 30,000                     | 83                        | 53     | 3.7  | 0.00340            | 11.4 × 10 <sup>4</sup>         | 127.0  | 4.1  | 0.00370            | 9.3                    |        | shaft    | 250   |  |  |
| 25          | 422                       | 25,000                     | 109                       | 62     | 6.6  | 0.00943            | 20.2 × 10 <sup>4</sup>         | 127.0  | 7.1  | 0.00990            | 17.1                   |        | between  | 250   |  |  |
| 30          | 775                       | 22,000                     | 153                       | 69     | 10.3 | 0.01938            | 32.5 <b>x</b> 10⁴              | 127.0  | 10.8 | 0.02000            | 27.7                   | 2F + [ |          | 300   |  |  |
| 35          | 1270                      | 19,000                     | 178                       | 78     | 15.6 | 0.04070            | 61.4 <b>×</b> 10⁴              | 127.0  | 16.3 | 0.04200            | 55.1                   | - 2    | Distance | 300   |  |  |
| 40          | 2060                      | 16,000                     | 220                       | 89     | 24.0 | 0.08293            | 97.7 <b>×</b> 10⁴              | 139.7  | 24.7 | 0.08500            | 87.2                   |        | od Dis   | 350   |  |  |
| 45          | 3330                      | 15,000                     | 234                       | 97     | 31.5 | 0.13570            | 141.6 × 10 <sup>4</sup>        | 152.4  | 32.5 | 0.14000            | 128.8                  |        | Desired  | 350   |  |  |
| 50          | 4900                      | 13,000                     | 269                       | 109    | 48.4 | 0.27163            | 207.5 <b>x</b> 10⁴             | 177.8  | 50.0 | 0.28000            | 185.9                  |        |          | 350   |  |  |
| 55          | 6370                      | 11,000                     | 280                       | 134    | 73.9 | 0.50318            | 274.9 <b>x</b> 10 <sup>4</sup> | 177.8  | 75.0 | 0.51000            | 255.5                  |        |          | 400   |  |  |

- (1) Maximum rotation speeds are based on rim stress.
- (2) Values become linear when torque changes while within the zone of maximum allowable torque specified in this catalog.
- (3) Spacers in accordance with ISO standards are available; extra-short spacers under the minimum length spacer are also available.

#### **AB-type spacer availability**

|          |     | ISO T | ype Spacer D | (mm) |     |    | Special Sto | ock D (mm) |     |
|----------|-----|-------|--------------|------|-----|----|-------------|------------|-----|
| Size No. | 100 | 140   | 180          | 200  | 250 | 80 | 110         | 127        | 130 |
| 10       |     |       |              |      |     |    |             |            |     |
| 15       |     |       |              |      |     |    |             |            |     |
| 20       |     |       |              |      |     |    |             |            |     |
| 25       |     |       |              |      |     |    |             |            |     |
| 30       |     |       |              |      |     |    |             |            |     |
| 35       |     |       |              |      |     |    |             |            |     |
| 40       |     |       |              |      |     |    |             |            |     |
| 45       |     |       |              |      |     |    |             |            |     |

: standard stock

# TYPE A 4-Bolt

## FLOATING SHAFT COUPLING

A5 A7

The floating shaft coupling transmits power between widely separated machines or where large parallel misalignment exists. Allowable rotation speed is determined according to the span and balance of the couplings. Balancing is necessary for high-speed operation and/or for long shafts. Floating shaft couplings are available in the following type designations for various applications.

| Application                        | Type<br>Designaion |
|------------------------------------|--------------------|
| Horizontal floating shaft coupling | 5                  |
| Vertical floating shaft coupling   | 6                  |
| Semi-floating shaft coupling       | 7                  |



## A 6

## Vertical floating shaft coupling



Basically the same as A5, but a thrust-absorbing mechanism (thrust button) which bears the floating shaft weight may be required.

# A 5 Horizontal floating shaft coupling



This is a long-span coupling welded to a hollow shaft. The hub should be positioned appropriately close to the bearing. The intermediate floating shaft must not be supported by the bearing.

## A 5 / A 7

## Twin shaft coupling



This type is a combination of the semi-floating shaft coupling and A5 or A6. When it is necessary to install an intermediate bearing because of rotation speed and span, use of this type eliminates the need for a design using large sizes.

## Semi-floating shaft coupling



This coupling is joined with one solid shaft end and one hollow shaft end mounted with a single flexing unit. The use of this coupling for a line drive having multiple shaft spans allows a reduced number of bearings. Moreover, the flexibility of the flexible element minimizes the load on the bearings. For a multiple-shaft span system, at least one A5 or one A6 should be used. Let us know complete size requirements when placing your order.

#### Specifications for floating coupling

|      | роо   | <u> </u> |                |         |                            | •         |                           |
|------|-------|----------|----------------|---------|----------------------------|-----------|---------------------------|
| Size | S     |          | 1)<br>s (kg)   | Morment | 2)<br>of Inertia<br>J·m²)  | Torsional | 3)<br>Stiffness<br>icient |
| No.  | (cm)  | M₁S      | M₂<br>Addition | J₁S     | J <sub>2</sub><br>Addition | К         | Y                         |
| 10   | 7.22  | 1.9      | 0.029          | 12.5    | 0.00001                    | 0.3       | 11.0                      |
| 15   | 7.58  | 3.0      | 0.032          | 24.5    | 0.00001                    | 0.8       | 14.8                      |
| 20   | 8.84  | 4.3      | 0.039          | 42.0    | 0.00003                    | 1.2       | 28.1                      |
| 25   | 9.94  | 7.5      | 0.075          | 110.5   | 0.00007                    | 2.2       | 70.3                      |
| 30   | 11.14 | 11.7     | 0.110          | 230.5   | 0.00015                    | 3.4       | 151.0                     |
| 35   | 14.16 | 18.7     | 0.139          | 508.0   | 0.00031                    | 6.4       | 307.9                     |
| 40   | 15.40 | 28.3     | 0.161          | 959.8   | 0.00048                    | 10.3      | 479.5                     |
| 45   | 18.32 | 38.3     | 0.186          | 1714.3  | 0.00074                    | 14.7      | 740.4                     |
| 50   | 21.18 | 58.2     | 0.250          | 3409.8  | 0.00132                    | 21.6      | 1316.1                    |
| 55   | 23.44 | 81.9     | 0.310          | 6388.0  | 0.00191                    | 28.9      | 1909.4                    |

(1) Total mass M (kg) should be calculated using the following equation:

 $M = M_1S + L \times (M_2 \text{ Addition})$ L: D - S (cm)

(2) Total morment of inertia J (kg• m²) should be calculated using the following equation:  $J = J_1S + L \times (J_2 \text{ Addition})$ 

(3) Total torsional stiffness of the coupling T/ (N• m/rad) should be calculated using the following equation:

T/ = 
$$\left(\frac{K \times Y}{L \times K + Y}\right) \times 10^5$$

## Rotation limitations for standard floating shaft coupling

| Size | Maximu<br>Diamete |              |                              | Мах                          | kimum Sp                     | an D max                     | (mm) fo                     | r Various                   | Speed (m                    | nin <sup>-1</sup> )         |                             |
|------|-------------------|--------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| No.  | Standard<br>Hub   | Z (K)<br>Hub | 1800<br>(min <sup>-1</sup> ) | 1500<br>(min <sup>-1</sup> ) | 1200<br>(min <sup>-1</sup> ) | 1000<br>(min <sup>-1</sup> ) | 900<br>(min <sup>-1</sup> ) | 750<br>(min <sup>-1</sup> ) | 720<br>(min <sup>-1</sup> ) | 600<br>(min <sup>-1</sup> ) | 500<br>(min <sup>-1</sup> ) |
| 10   | 32                | 40           | 1610                         | 1760                         | 1970                         | 2160                         | 2280                        | 2500                        | 2550                        | 2790                        | 3060                        |
| 15   | 35                | 40           | 1690                         | 1850                         | 2070                         | 2270                         | 2390                        | 2620                        | 2670                        | 2930                        | 3210                        |
| 20   | 42                | 48           | 1880                         | 2050                         | 2300                         | 2520                         | 2650                        | 2910                        | 2970                        | 3250                        | 3560                        |
| 25   | 50                | 60           | 2010                         | 2210                         | 2470                         | 2700                         | 2850                        | 3120                        | 3190                        | 3490                        | 3830                        |
| 30   | 58                | 70           | 2220                         | 2430                         | 2720                         | 2980                         | 3140                        | 3440                        | 3510                        | 3850                        | 4210                        |
| 35   | 74                | 85           | 2500                         | 2740                         | 3060                         | 3350                         | 3540                        | 3870                        | 3950                        | 4330                        | 4750                        |
| 40   | 83                | 95           | 2690                         | 2950                         | 3300                         | 3610                         | 3800                        | 4180                        | 4250                        | 4660                        | 5120                        |
| 45   | 95                | 110          | 2890                         | 3170                         | 3540                         | 3880                         | 4090                        | 4490                        | 4570                        | 5010                        | 5500                        |
| 50   | 109               | 120          | 3100                         | 3400                         | 3800                         | 4160                         | 4390                        | 4820                        | 4910                        | 5370                        | 5900                        |
| 55   | 118               | 130          | 3230                         | 3540                         | 3960                         | 4330                         | 4560                        | 5010                        | 5100                        | 5590                        |                             |

#### Notes

- 1. Do not use floating shaft couplings with long, overhanging shafts. Please consult us when D dimension exceeds 6,000 mm.
- 2. Rotation speed limits shown in the table refer to couplings using our standard pipe. For rotation speeds over this limit, please consult us.

#### Dynamic balance



2500 Distance between shaft ends (mm)



# DOUBLE FLEXING COUPLING AND

# **EB** FLOATING SHAFT COUPLING

E 6

Angular misalignment of up to 0.7° on one side is allowable.

with standard length spacer)

(with custom length spacer)



(horizontal floating shaft type)

E 6 (vertical floating shaft type)



#### Size data for standard length spacer coupling (with standard hub)

| Size<br>No. | Part<br>No. | Torque | А    | В    | С    | (1)<br>D | E max | F    | G    | н    | Max                  | Mass | Morment<br>of Inertia | Torsional<br>Stiffness        | (2)<br>Allowable<br>End Float |        |
|-------------|-------------|--------|------|------|------|----------|-------|------|------|------|----------------------|------|-----------------------|-------------------------------|-------------------------------|--------|
|             |             | (N·m)  | (mm) | (mm) | (mm) | (mm)     | (mm)  | (mm) | (mm) | (mm) | (min <sup>-1</sup> ) | (kg) | (kg·m²)               | (N·m/rad)                     | ( ± mm)                       | (N/mm) |
| 00          | 12          | 569    | 119  | 168  | 39.4 | 60       | 51    | 54   | 10.3 | 74   | 26000                | 6.0  | 0.01                  | 4.4 × 10 <sup>5</sup>         | 3.0                           | 162    |
| 01          | 13          | 922    | 137  | 198  | 50.0 | 72       | 55    | 63   | 11.0 | 81   | 23000                | 9.1  | 0.02                  | 6.8 <b>x</b> 10 <sup>5</sup>  | 3.4                           | 207    |
| 02          | 14          | 1710   | 161  | 238  | 67.2 | 90       | 67    | 74   | 11.4 | 97   | 19000                | 16.9 | 0.04                  | 9.2 <b>x</b> 10 <sup>5</sup>  | 3.6                           | 275    |
| 03          | 16          | 3340   | 180  | 269  | 82.4 | 109      | 72    | 80   | 13.3 | 104  | 17000                | 21.6 | 0.07                  | 15.8 <b>x</b> 10 <sup>5</sup> | 4.2                           | 448    |
| 04          | 18          | 6210   | 212  | 308  | 87.6 | 118      | 85    | 95   | 15.2 | 124  | 15000                | 35.1 | 0.15                  | 30.8 <b>x</b> 10 <sup>5</sup> | 4.5                           | 594    |

| 05 | 21 | 6080   | 276 | 377 | 118 | 153 | 111 | 112 | 17.5 | 161 | 11600 | 65.1   | 0.5  | 39.0 <b>x</b> 10⁵             | 3.9 | 414  |
|----|----|--------|-----|-----|-----|-----|-----|-----|------|-----|-------|--------|------|-------------------------------|-----|------|
| 10 | 22 | 8240   | 276 | 377 | 115 | 153 | 111 | 112 | 19.0 | 161 | 11600 | 66.1   | 0.5  | 48.5 <b>x</b> 10⁵             | 3.9 | 583  |
| 15 | 23 | 10700  | 308 | 440 | 134 | 172 | 133 | 134 | 19.0 | 193 | 10300 | 107.8  | 0.9  | 72.0 <b>x</b> 10 <sup>5</sup> | 4.2 | 559  |
| 20 | 24 | 17800  | 346 | 497 | 148 | 191 | 152 | 153 | 21.5 | 218 | 9200  | 156.1  | 1.7  | 119.6 <b>×</b> 10⁵            | 4.9 | 747  |
| 25 | 25 | 26400  | 375 | 553 | 175 | 223 | 165 | 165 | 24.0 | 240 | 8500  | 211.8  | 2.7  | 166.7 <b>x</b> 10⁵            | 5.2 | 840  |
| 30 | 26 | 33400  | 410 | 610 | 195 | 254 | 178 | 178 | 29.5 | 258 | 7800  | 274.5  | 4.1  | 212.8 × 10 <sup>5</sup>       | 5.4 | 973  |
| 35 | 27 | 39900  | 445 | 646 | 211 | 270 | 187 | 188 | 29.5 | 272 | 7200  | 333.3  | 6.0  | 239.3 <b>x</b> 10⁵            | 5.6 | 1010 |
| 40 | 28 | 46300  | 470 | 686 | 212 | 274 | 205 | 206 | 31.0 | 297 | 6800  | 399.2  | 7.7  | 293.2 <b>x</b> 10⁵            | 6.3 | 1000 |
| 45 | 29 | 59800  | 511 | 749 | 223 | 287 | 231 | 231 | 32.0 | 334 | 6200  | 525.3  | 12.0 | 378.5 <b>x</b> 10⁵            | 6.7 | 986  |
| 50 | 30 | 74700  | 556 | 800 | 227 | 292 | 254 | 254 | 32.5 | 364 | 5700  | 676.3  | 18.2 | 470.7 <b>x</b> 10⁵            | 7.3 | 1110 |
| 55 | 31 | 92600  | 587 | 839 | 243 | 311 | 263 | 264 | 34.0 | 382 | 5400  | 803.4  | 25.2 | 597.2 <b>x</b> 10⁵            | 7.8 | 1210 |
| 60 | 32 | 107000 | 629 | 895 | 274 | 343 | 275 | 276 | 34.5 | 399 | 5000  | 954.1  | 34.4 | 647.2 <b>×</b> 10⁵            | 8.7 | 1280 |
| 65 | 33 | 128000 | 654 | 934 | 285 | 356 | 289 | 289 | 35.5 | 419 | 4800  | 1095.3 | 44.2 | 782.6 <b>×</b> 10⁵            | 8.9 | 1360 |

- (1) D is available in optional lengths upon request (Type EB).
- (2) Figures in the table indicate conditions of maximum rotation speed and a parallel misalignment of 2/1,000.
- (3) Values given are for maximum torque conditions.

## Specifications for floating coupling

| Size<br>No. | S    | ( <sup>·</sup><br>Mass | 1)<br>s (kg)   | Morment | 2)<br>of Inertia<br>y·m²) | Torsiona | 3)<br>Stiffness<br>ficient |
|-------------|------|------------------------|----------------|---------|---------------------------|----------|----------------------------|
|             | (cm) | M₁S                    | M₂<br>Addition | J₁S     | J₂<br>Addition            | К        | Y                          |
| 00          | 9.7  | 5.0                    | 0.075          | 0.01    | 0.0001                    | 5.0      | 70.6                       |
| 01          | 11.0 | 8.1                    | 0.110          | 0.02    | 0.0002                    | 8.1      | 151.0                      |
| 02          | 12.9 | 14.5                   | 0.139          | 0.04    | 0.0003                    | 13.1     | 307.9                      |
| 03          | 14.1 | 19.5                   | 0.161          | 0.07    | 0.0005                    | 25.1     | 479.5                      |
| 04          | 15.0 | 29.5                   | 0.161          | 0.15    | 0.0005                    | 38.8     | 479.5                      |
|             |      |                        |                |         | •                         | •        |                            |
| 05          | 25.5 | 81                     | 0.25           | 0.5     | 0.001                     | 33.6     | 1316.1                     |
| 10          | 25.8 | 82                     | 0.25           | 0.5     | 0.001                     | 40.5     | 1316.1                     |
| 15          | 27.8 | 128                    | 0.31           | 1.1     | 0.002                     | 56.7     | 1909.4                     |
| 20          | 28.3 | 200                    | 0.42           | 2.0     | 0.005                     | 148.2    | 4552.2                     |
| 25          | 30.8 | 254                    | 0.42           | 3.1     | 0.005                     | 193.9    | 4552.2                     |
| 30          | 31.9 | 300                    | 0.64           | 4.7     | 0.007                     | 164.6    | 6618.5                     |
| 35          | 33.9 | 395                    | 0.59           | 6.7     | 0.010                     | 223.4    | 9847.8                     |
| 40          | 34.2 | 463                    | 0.59           | 8.5     | 0.010                     | 263.4    | 9847.8                     |
| 45          | 36.4 | 643                    | 0.78           | 13.0    | 0.019                     | 341.3    | 18566.9                    |
| 50          | 36.5 | 788                    | 0.94           | 19.6    | 0.029                     | 412.9    | 27943.1                    |
| 55          | 40.8 | 910                    | 0.94           | 26.9    | 0.029                     | 495.4    | 27943.1                    |
| 60          | 40.9 | 1,049                  | 0.94           | 36.1    | 0.029                     | 531.4    | 27943.1                    |
| 65          | 43.1 | 1,307                  | 1.23           | 45.6    | 0.048                     | 712.9    | 47717.2                    |

| THE STATE OF THE PARTY OF THE P |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

- (1) Total mass M (kg) should be calculated using the following equation:  $M = M_1S + L \times (M_2 \text{ Addition})$ L: D - S (cm)
- (2) Total morment of inertia J (kg· m²) should be calculated using the following equation:  $J = J_1S + L \times (J_2 \text{ Addition})$
- (3) Total torsional stiffness of the coupling T/ (N·m/rad) should be calculated using the following equation:

T/ = 
$$\left(\frac{K \times Y}{L \times K + Y}\right) \times 10^5$$

#### Rotation limitations for standard floating shaft coupling

| Size No. | Maximum Shaft<br>Diameter |                           |                           | Maximum distar            | nce between sh            | aft ends D max           | (mm) for variou          | s speeds (min-1)         |                          |                          |
|----------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Size No. | (mm)                      | 1800 (min <sup>-1</sup> ) | 1500 (min <sup>-1</sup> ) | 1200 (min <sup>-1</sup> ) | 1000 (min <sup>-1</sup> ) | 900 (min <sup>-1</sup> ) | 750 (min <sup>-1</sup> ) | 720 (min <sup>-1</sup> ) | 600 (min <sup>-1</sup> ) | 500 (min <sup>-1</sup> ) |
| 00       | 51                        | 2010                      | 2210                      | 2470                      | 2700                      | 2850                     | 3120                     | 3190                     | 3490                     | 3830                     |
| 01       | 55                        | 2220                      | 2430                      | 2720                      | 2980                      | 3140                     | 3440                     | 3510                     | 3850                     | 4210                     |
| 02       | 67                        | 2500                      | 2740                      | 3060                      | 3350                      | 3540                     | 3870                     | 3950                     | 4330                     | 4750                     |
| 03       | 72                        | 2890                      | 3170                      | 3540                      | 3880                      | 4090                     | 4490                     | 4570                     | 5010                     | 5500                     |
| 04       | 85                        | 3100                      | 3400                      | 3800                      | 4160                      | 4390                     | 4820                     | 4910                     | 5370                     | 5900                     |

| 05 | 111 | 3100 | 3400 | 3800 | 4160 | 4390 | 4820  | 4910          | 5370        | 5900  |
|----|-----|------|------|------|------|------|-------|---------------|-------------|-------|
| 10 | 111 | 3100 | 3400 | 3800 | 4160 | 4390 | 4820  | 4910          | 5370        | 5900  |
| 15 | 133 | 3230 | 3540 | 3960 | 4330 | 4560 | 5010  | 5100          | 5590        |       |
| 20 | 152 | 3720 | 4070 | 4560 | 4990 | 5250 | 5770  | 5880          |             |       |
| 25 | 165 | 3720 | 4070 | 4560 | 4990 | 5250 | 5770  | 5880          |             |       |
| 30 | 178 | 3680 | 4030 | 4510 | 4940 | 5200 | 5710  | 5810          |             |       |
| 35 | 187 | 4140 | 4540 | 5070 | 5560 | 5850 |       |               |             |       |
| 40 | 205 | 4140 | 4540 | 5070 | 5560 | 5850 |       |               |             |       |
| 45 | 231 | 4530 | 4960 | 5540 |      |      |       |               |             |       |
| 50 | 254 | 4790 | 5240 | 5860 |      |      | Pleas | se consult us | when D dime | nsion |
| 55 | 263 | 4790 | 5240 | 5860 |      |      | exce  | eds 6,000 mn  | n.          |       |
| 60 | 275 | 4790 | 5240 | 5860 |      |      |       |               |             |       |
| 65 | 289 | 5120 | 5600 |      |      |      |       |               |             |       |

Notes: 1. Do not use floating shaft couplings with long,

overhanging shafts. Please consult us when D

2. Rotation speed limits shown in the table refer to couplings using our standard pipe. For rotation speeds over this limit, please consult us.

## **Bolt fastening torque**

|   | Size No.                | 00 | 01 | 02 | 03  | 04  | 05  | 10  | 15  | 20  | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   | 65   |
|---|-------------------------|----|----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| E | Bolt-head Diameter (mm) | 13 | 17 | 19 | 24  | 27  | 27  | 27  | 32  | 36  | 46   | 50   | 55   | 55   | 60   | 65   | 70   | 75   | 80   |
|   | Fastening Torque (N·m)  | 22 | 41 | 72 | 160 | 220 | 220 | 220 | 440 | 570 | 1100 | 1500 | 1700 | 1700 | 1700 | 3000 | 3500 | 3700 | 4000 |

# DOUBLE FLEXING COUPLING AND

## G4 GB FLOATING COUPLING



Angular misalignment of up to 0.5° on one side are allowable.

G 4 (with standard length spacer)

G B (with custom length spacer)



G 5 (horizontal floating shaft type)

G 6 (vertical floating shaft type)



## Size data for standard length spacer coupling (with standard hub)

| Size<br>No. | Part<br>No. | Torque | A    | В    | С    | (1)<br>D | E max | F    | G    | Н    | Max                  | Mass   | Morment of Inertia | Torsional<br>Stiffness   | (2)<br>Allowable<br>End Float | (3)<br>Axial<br>Spring<br>Constant |
|-------------|-------------|--------|------|------|------|----------|-------|------|------|------|----------------------|--------|--------------------|--------------------------|-------------------------------|------------------------------------|
|             |             | (N·m)  | (mm) | (mm) | (mm) | (mm)     | (mm)  | (mm) | (mm) | (mm) | (min <sup>-1</sup> ) | (kg)   | (kg·m²)            | (N·m/rad)                | (±mm)                         | (N/mm)                             |
| 01          | 37          | 3840   | 214  | 333  | 92.6 | 117      | 95    | 108  | 12.2 | 137  | 15000                | 38.0   | 0.16               | 34.4 × 10 <sup>5</sup>   | 2.1                           | 421                                |
| 03          | 39          | 7120   | 246  | 369  | 99.6 | 127      | 108   | 121  | 13.7 | 156  | 13000                | 55.5   | 0.31               | 60.9 <b>x</b> 10⁵        | 2.1                           | 578                                |
| 05          | 41          | 8970   | 276  | 421  | 118  | 153      | 111   | 134  | 17.5 | 161  | 11600                | 72.2   | 0.45               | 55.5 <b>×</b> 10⁵        | 2.1                           | 840                                |
| 10          | 42          | 11800  | 276  | 421  | 115  | 153      | 111   | 134  | 19.0 | 161  | 11600                | 73.3   | 0.45               | 69.8 <b>×</b> 10⁵        | 2.1                           | 1140                               |
| 15          | 43          | 15400  | 308  | 492  | 134  | 172      | 133   | 160  | 19.0 | 193  | 10300                | 119.7  | 0.93               | 108.9 <b>x</b> 10⁵       | 2.4                           | 1130                               |
| 20          | 44          | 25600  | 346  | 557  | 148  | 191      | 152   | 183  | 21.5 | 218  | 9200                 | 174.3  | 1.70               | 178.5 <b>×</b> 10⁵       | 2.9                           | 1490                               |
| 25          | 45          | 37800  | 375  | 619  | 175  | 223      | 165   | 198  | 24.0 | 240  | 8500                 | 233.8  | 2.70               | 249.1 × 10 <sup>5</sup>  | 3.1                           | 1830                               |
| 30          | 46          | 47800  | 410  | 682  | 195  | 254      | 178   | 214  | 29.5 | 258  | 7800                 | 305.3  | 4.18               | 309.9 <b>x</b> 10⁵       | 3.3                           | 1960                               |
| 35          | 47          | 57100  | 445  | 720  | 211  | 270      | 187   | 225  | 29.5 | 272  | 7200                 | 367.4  | 6.25               | 353.0 <b>x</b> 10⁵       | 3.6                           | 2090                               |
| 40          | 48          | 64400  | 470  | 768  | 212  | 274      | 205   | 247  | 31.0 | 297  | 6800                 | 447.5  | 7.78               | 447.2 <b>x</b> 10⁵       | 4.0                           | 1930                               |
| 45          | 49          | 83700  | 511  | 843  | 223  | 287      | 231   | 278  | 32.0 | 334  | 6200                 | 591.6  | 12.00              | 582.5 <b>x</b> 10⁵       | 4.5                           | 2080                               |
| 50          | 50          | 103000 | 556  | 902  | 227  | 292      | 254   | 305  | 32.5 | 364  | 5700                 | 761.4  | 18.68              | 738.4 × 10 <sup>5</sup>  | 5.0                           | 2040                               |
| 55          | 51          | 128000 | 587  | 945  | 243  | 311      | 263   | 317  | 34.0 | 382  | 5400                 | 901.9  | 25.40              | 946.3 × 10 <sup>5</sup>  | 5.2                           | 2260                               |
| 60          | 52          | 149000 | 629  | 1005 | 274  | 343      | 275   | 331  | 34.5 | 399  | 5000                 | 1067.6 | 34.65              | 1000.3 × 10 <sup>5</sup> | 5.6                           | 2450                               |
| 65          | 53          | 178000 | 654  | 1050 | 285  | 356      | 289   | 347  | 35.5 | 419  | 4800                 | 1230.7 | 44.60              | 1216.0 × 10 <sup>5</sup> | 5.7                           | 2670                               |

- (1) D is available in optional lengths upon request (Type GB).
- (2) Figures in the table indicate conditions of maximum rotation speed and a parallel misalignment of 2/1,000.
- (3) Values given are for maximum torque conditions.

## Specifications for floating coupling

| •           |      |       |                |         | <b>-</b>                   | •         | •                          |
|-------------|------|-------|----------------|---------|----------------------------|-----------|----------------------------|
| Size<br>No. | S    |       | 1)<br>s (kg)   | Morment | 2)<br>of Inertia<br>g·m²)  | Torsional | 3)<br>Stiffness<br>ficient |
|             | (cm) | M₁S   | M₂<br>Addition | J₁S     | J <sub>2</sub><br>Addition | К         | Y                          |
| 01          | 24.0 | 47    | 0.19           | 0.19    | 0.001                      | 28.8      | 740.4                      |
| 03          | 26.9 | 65    | 0.25           | 0.38    | 0.001                      | 48.7      | 1316.1                     |
| 05          | 25.5 | 88    | 0.25           | 0.50    | 0.001                      | 45.2      | 1316.1                     |
| 10          | 25.8 | 89    | 0.25           | 0.50    | 0.001                      | 54.2      | 1316.1                     |
| 15          | 27.8 | 140   | 0.31           | 1.05    | 0.002                      | 77.4      | 1909.4                     |
| 20          | 28.3 | 217   | 0.42           | 2.00    | 0.005                      | 105.2     | 4552.2                     |
| 25          | 30.8 | 279   | 0.64           | 3.13    | 0.007                      | 185.4     | 6618.5                     |
| 30          | 31.9 | 330   | 0.64           | 4.73    | 0.007                      | 217.2     | 6618.5                     |
| 35          | 33.9 | 432   | 0.94           | 6.73    | 0.029                      | 319.7     | 14969.9                    |
| 40          | 34.2 | 511   | 0.94           | 8.65    | 0.029                      | 394.8     | 14969.9                    |
| 45          | 36.4 | 700   | 1.30           | 12.95   | 0.030                      | 498.7     | 29313.1                    |
| 50          | 36.5 | 872   | 1.58           | 20.05   | 0.045                      | 605.5     | 44906.6                    |
| 55          | 40.8 | 1,005 | 1.58           | 27.15   | 0.045                      | 714.0     | 44906.6                    |
| 60          | 40.9 | 1,160 | 1.58           | 36.35   | 0.045                      | 760.5     | 44906.6                    |
| 65          | 43.1 | 1,435 | 2.03           | 45.93   | 0.075                      | 1055.7    | 75346.5                    |

| · · |  |
|-----|--|

- (1) Total mass M (kg) should be calculated using the following equation:

  M = M<sub>1</sub>S + L × (M<sub>2</sub> Addition)

  L: D S (cm)
- (2) Total morment of inertia J (kg· m<sup>2</sup>) should be calculated using the following equation:  $J = J_1S + L \times (J_2 \text{ Addition})$
- (3) Total torsional stiffness of the coupling T/
  (N• m/rad) should be calculated using the following equation:

T/ =  $\left(\frac{K \times Y}{L \times K + Y}\right) \times 10^5$ 

## Rotation limitations for standard floating shaft coupling

| Oi N-    | Maximum             |                           |                           | Maximum dista             | ance between sh           | aft ends D max           | (mm) for various         | speeds (min <sup>-1</sup> ) |                          |                          |
|----------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|--------------------------|
| Size No. | Shaft Diameter (mm) | 1800 (min <sup>-1</sup> ) | 1500 (min <sup>-1</sup> ) | 1200 (min <sup>-1</sup> ) | 1000 (min <sup>-1</sup> ) | 900 (min <sup>-1</sup> ) | 750 (min <sup>-1</sup> ) | 720 (min <sup>-1</sup> )    | 600 (min <sup>-1</sup> ) | 500 (min <sup>-1</sup> ) |
| 01       | 95                  | 2890                      | 3170                      | 3540                      | 3880                      | 4090                     | 4490                     | 4570                        | 5010                     | 5500                     |
| 03       | 108                 | 3100                      | 3400                      | 3800                      | 4160                      | 4390                     | 4820                     | 4910                        | 5370                     | 5900                     |
| 05       | 111                 | 3100                      | 3400                      | 3800                      | 4160                      | 4390                     | 4820                     | 4910                        | 5370                     | 5900                     |
| 10       | 111                 | 3100                      | 3400                      | 3800                      | 4160                      | 4390                     | 4820                     | 4910                        | 5370                     | 5900                     |
| 15       | 133                 | 3230                      | 3540                      | 3960                      | 4330                      | 4560                     | 5010                     | 5100                        | 5590                     |                          |
| 20       | 152                 | 3720                      | 4070                      | 4560                      | 4990                      | 5250                     | 5770                     | 5880                        |                          |                          |
| 25       | 165                 | 3680                      | 4030                      | 4510                      | 4940                      | 5200                     | 5710                     | 5810                        |                          |                          |
| 30       | 178                 | 3680                      | 4030                      | 4510                      | 4940                      | 5200                     | 5710                     | 5810                        |                          |                          |
| 35       | 187                 | 4100                      | 4490                      | 5020                      | 5500                      | 5790                     |                          |                             |                          |                          |
| 40       | 205                 | 4100                      | 4490                      | 5020                      | 5500                      | 5790                     |                          |                             |                          |                          |
| 45       | 231                 | 4480                      | 4900                      | 5480                      | 6010                      |                          |                          |                             |                          |                          |
| 50       | 254                 | 4730                      | 5180                      | 5800                      |                           |                          |                          |                             |                          |                          |
| 55       | 263                 | 4730                      | 5180                      | 5800                      |                           |                          |                          | Please cons                 | sult us when [           | D dimension              |
| 60       | 275                 | 4730                      | 5180                      | 5800                      |                           |                          |                          | exceeds 6,0                 | 000 mm.                  |                          |
| 65       | 289                 | 5060                      | 5540                      |                           |                           |                          |                          |                             |                          |                          |

Notes: 1. Do not use floating shaft couplings with long, overhanging shafts.

2. Rotation speed limits shown in the table refer to couplings using our standard pipe. For rotation speeds over this limit, please consult us.

## **Bolt fastening torque**

| Size No.                | 01 | 03  | 05  | 10  | 15  | 20  | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   | 65   |
|-------------------------|----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| Bolt-head Diameter (mm) | 19 | 24  | 27  | 27  | 32  | 36  | 46   | 50   | 55   | 55   | 60   | 65   | 70   | 75   | 80   |
| Fastening Torque (N·m)  | 72 | 160 | 220 | 220 | 440 | 570 | 1100 | 1500 | 1700 | 1700 | 1700 | 3000 | 3500 | 3700 | 4000 |



## DOUBLE FLEXING COUPLING

S 4 (with standard length spacer)

Angular misalignments of up to 0.35° on one side are allowable.

## Size data for standard length spacer coupling (with standard hub)

| Size No. | Allowable<br>Torque | А    | В      | С     | (1)<br>D | E max | F    | G    | Н    | Maximum<br>Rotation<br>Speed | Mass   | Morment<br>of Inertia | Torsional<br>Stiffness        | Allowable<br>End Float | Axial<br>Spring<br>Constant |
|----------|---------------------|------|--------|-------|----------|-------|------|------|------|------------------------------|--------|-----------------------|-------------------------------|------------------------|-----------------------------|
|          | (N·m)               | (mm) | (mm)   | (mm)  | (mm)     | (mm)  | (mm) | (mm) | (mm) | (min <sup>-1</sup> )         | (kg)   | (kg·m²)               | (N·m/rad)                     | (2) ( ± mm)            | (3) (N/mm)                  |
| 05       | 13500               | 276  | 452.4  | 117.6 | 152.4    | 111   | 150  | 17.4 | 161  | 11,600                       | 83.6   | 0.54                  | 7.6 × 10 <sup>6</sup>         | 3.2                    | 1160                        |
| 10       | 17800               | 276  | 452.4  | 114.6 | 152.4    | 111   | 150  | 18.9 | 161  | 11,600                       | 85.9   | 0.55                  | 10.5 <b>x</b> 10 <sup>6</sup> | 3.1                    | 1560                        |
| 15       | 22800               | 308  | 531.5  | 133.6 | 171.5    | 133   | 180  | 18.9 | 193  | 10,300                       | 139.0  | 1.15                  | 13.9 × 10 <sup>6</sup>        | 3.5                    | 1490                        |
| 20       | 32700               | 346  | 602.5  | 151.9 | 190.5    | 152   | 206  | 19.3 | 218  | 9,200                        | 196.0  | 2.05                  | 21.4 × 10 <sup>6</sup>        | 4.0                    | 1670                        |
| 25       | 48400               | 375  | 668.3  | 179.1 | 222.3    | 165   | 223  | 21.6 | 240  | 8,500                        | 260.0  | 3.27                  | 29.6 × 10 <sup>6</sup>        | 4.5                    | 2050                        |
| 30       | 64100               | 410  | 734.0  | 198.4 | 254.0    | 178   | 240  | 27.8 | 258  | 7,800                        | 336.0  | 5.10                  | 34.2 × 10 <sup>6</sup>        | 4.6                    | 2340                        |
| 35       | 81900               | 445  | 775.2  | 210.6 | 269.2    | 187   | 253  | 29.3 | 272  | 7,200                        | 406.0  | 7.32                  | 44.0 × 10 <sup>6</sup>        | 5.5                    | 2530                        |
| 40       | 99700               | 470  | 827.8  | 209.3 | 271.8    | 206   | 278  | 31.2 | 297  | 6,800                        | 501.0  | 9.84                  | 59.1 × 10 <sup>6</sup>        | 6.1                    | 2660                        |
| 45       | 120000              | 511  | 911.0  | 224.5 | 287.0    | 231   | 312  | 31.2 | 334  | 6,200                        | 676.0  | 15.70                 | 74.5 <b>×</b> 10 <sup>6</sup> | 6.7                    | 2600                        |
| 50       | 140000              | 556  | 978.1  | 229.6 | 292.1    | 254   | 343  | 31.2 | 364  | 5,700                        | 866.0  | 23.60                 | 93.9 × 10 <sup>6</sup>        | 7.2                    | 2590                        |
| 55       | 169000              | 587  | 1021.9 | 245.1 | 309.9    | 264   | 356  | 32.4 | 382  | 5,400                        | 1011.0 | 31.30                 | 114.1 × 10 <sup>6</sup>       | 7.6                    | 2790                        |
| 60       | 221000              | 629  | 1086.9 | 272.8 | 342.9    | 276   | 372  | 35.1 | 399  | 5,000                        | 1195.0 | 42.10                 | 133.9 × 10 <sup>6</sup>       | 8.0                    | 3280                        |
| 65       | 256000              | 654  | 1135.6 | 284.0 | 355.6    | 289   | 390  | 35.8 | 419  | 4,800                        | 1385.0 | 53.20                 | 159.6 × 10 <sup>6</sup>       | 8.5                    | 3470                        |

Floating shaft type is also availabe.



## DOUBLE FLEXING COUPLING



Angular misalignments of up to 0.25° on one side are allowable.

## Size data for standard length spacer coupling (with standard hub)

| Size No. | Allowable<br>Torque<br>(N·m) | A<br>(mm) | B<br>(mm) | C<br>(mm) | (1)<br>D<br>(mm) | E max | F<br>(mm) | G<br>(mm) | H<br>(mm) | Maximum<br>Rotation<br>Speed<br>(min <sup>-1</sup> ) | Mass<br>(kg) | Morment<br>of Inertia<br>J<br>(kg·m²) | Torsional<br>Stiffness<br>(N·m/rad) | Allowable<br>End Float<br>(2) (±mm) | Axial<br>Spring<br>Constant<br>(3) (N/mm) |
|----------|------------------------------|-----------|-----------|-----------|------------------|-------|-----------|-----------|-----------|------------------------------------------------------|--------------|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------|
| 05       | 16400                        | 276       | 452.4     | 117.6     | 152.4            | 111   | 150       | 17.4      | 161       | 11,600                                               | 85.0         | 0.54                                  | 9.6 × 10 <sup>6</sup>               | 2.2                                 | 1720                                      |
| 10       | 22100                        | 276       | 452.4     | 114.6     | 152.4            | 111   | 150       | 18.9      | 161       | 11,600                                               | 87.7         | 0.56                                  | 13.4 × 10 <sup>6</sup>              | 2.3                                 | 2310                                      |
| 15       | 28500                        | 308       | 531.5     | 133.6     | 171.5            | 133   | 180       | 18.9      | 193       | 10,300                                               | 141.0        | 1.17                                  | 17.9 × 10 <sup>6</sup>              | 2.5                                 | 2230                                      |
| 20       | 39900                        | 346       | 602.5     | 147.3     | 190.5            | 152   | 206       | 19.3      | 218       | 9,200                                                | 198.0        | 2.07                                  | 25.9 × 10 <sup>6</sup>              | 2.9                                 | 2450                                      |
| 25       | 59100                        | 375       | 668.3     | 174.5     | 222.3            | 165   | 223       | 21.6      | 240       | 8,500                                                | 263.0        | 3.30                                  | 35.9 × 10 <sup>6</sup>              | 3.3                                 | 3020                                      |
| 30       | 78300                        | 410       | 734.0     | 198.4     | 254.0            | 178   | 240       | 27.8      | 258       | 7,800                                                | 343.0        | 5.04                                  | 45.5 × 10 <sup>6</sup>              | 3.1                                 | 3470                                      |
| 35       | 99700                        | 445       | 775.2     | 210.6     | 269.2            | 187   | 253       | 29.3      | 272       | 7,200                                                | 416.0        | 7.46                                  | 59.0 <b>x</b> 10 <sup>6</sup>       | 4.0                                 | 3740                                      |
| 40       | 122000                       | 470       | 827.8     | 209.3     | 271.8            | 206   | 278       | 31.2      | 297       | 6,800                                                | 510.0        | 10.00                                 | 76.7 <b>x</b> 10 <sup>6</sup>       | 4.6                                 | 3920                                      |
| 45       | 142000                       | 511       | 911.0     | 244.5     | 287.0            | 231   | 312       | 31.2      | 334       | 6,200                                                | 683.0        | 15.80                                 | 92.5 <b>x</b> 10 <sup>6</sup>       | 5.1                                 | 3840                                      |
| 50       | 171000                       | 556       | 978.1     | 229.6     | 292.1            | 254   | 343       | 31.2      | 364       | 5,700                                                | 874.0        | 23.80                                 | 117.7 × 10 <sup>6</sup>             | 5.4                                 | 3800                                      |
| 55       | 206000                       | 587       | 1021.9    | 245.1     | 309.9            | 264   | 356       | 32.4      | 382       | 5,400                                                | 1021.0       | 31.60                                 | 143.0 × 10 <sup>6</sup>             | 5.7                                 | 4140                                      |
| 60       | 268000                       | 629       | 1086.9    | 272.8     | 342.9            | 276   | 372       | 35.1      | 399       | 5,000                                                | 1211.0       | 42.60                                 | 172.4 × 10 <sup>6</sup>             | 5.9                                 | 4830                                      |
| 65       | 313000                       | 654       | 1135.6    | 284.0     | 355.6            | 289   | 390       | 35.8      | 419       | 4,800                                                | 1402.0       | 53.90                                 | 202.1 × 10 <sup>6</sup>             | 6.0                                 | 5110                                      |

Floating shaft type is also availabe.

- (1) D is available in optional lengths upon request.
- (2) Figures in the table indicate conditions of maximum rotation speed and a parallel misalignment of 2/1,000.
- (3) Values given are for maximum torque conditions.

## PLUG-IN COUPLINGS

## 4 - Bolt

Please request approval drawings when placing your order.

S d

The plug-in coupling offers excellent high-speed performance and is designed for easy, rational maintenance. It comprises two hubs and one spacer permitting quick and accurate installation.



#### Size data

| Size No. | Allowable Torque<br>(N·m) | Maximum<br>Rotation Speed<br>(min <sup>-1</sup> ) | (2) Mass<br>(kg) | (2) Morment of Inertia<br>J (kg·m²) | Torsional Stiffness<br>(N·m/rad) | Axial Spring Constant<br>(N/mm) | (1) Allowable End<br>Float<br>(±mm) | Allowable Parallel<br>Misalignment<br>(mm) |
|----------|---------------------------|---------------------------------------------------|------------------|-------------------------------------|----------------------------------|---------------------------------|-------------------------------------|--------------------------------------------|
| 05       | 33                        | 47,000                                            | 1.7              | 0.00078                             | 0.9 × 10 <sup>4</sup>            | 21                              | 1.6                                 | 1.4                                        |
| 10       | 90                        | 39,000                                            | 2.7              | 0.00185                             | 2.7 <b>x</b> 10⁴                 | 29                              | 2.2                                 | 1.4                                        |
| 15       | 177                       | 34,000                                            | 4.1              | 0.00363                             | 6.1 × 10 <sup>4</sup>            | 71                              | 2.5                                 | 1.6                                        |
| 20       | 245                       | 30,000                                            | 5.1              | 0.00608                             | 9.3 <b>x</b> 10⁴                 | 83                              | 2.8                                 | 2.0                                        |
| 25       | 422                       | 25,000                                            | 9.8              | 0.01575                             | 17.1 <b>x</b> 10⁴                | 109                             | 3.4                                 | 2.0                                        |
| 30       | 775                       | 22,000                                            | 14.4             | 0.03250                             | 27.7 <b>x</b> 10⁴                | 153                             | 3.6                                 | 2.0                                        |
| 35       | 1270                      | 19,000                                            | 21.9             | 0.06500                             | 55.1 <b>x</b> 10⁴                | 178                             | 5.0                                 | 1.9                                        |
| 40       | 2060                      | 16,000                                            | 33.4             | 0.13250                             | 87.2 <b>x</b> 10⁴                | 220                             | 5.6                                 | 2.1                                        |
| 45       | 3330                      | 15,000                                            | 44.2             | 0.21250                             | 128.5 <b>x</b> 10⁴               | 234                             | 6.6                                 | 2.2                                        |
| 50       | 4900                      | 13,000                                            | 65.6             | 0.43250                             | 186.3 <b>x</b> 10 <sup>4</sup>   | 269                             | 7.6                                 | 2.6                                        |

- (1) Figures in the table indicate conditions of maximum rotation speed and a parallel misalignment of 2/1,000.
- (2) Values given are for cases in which both ends are plug-in type.

#### Size data

| Size |     |                |       |       |      |       |                | Size (mm | )              |      |     |     |                    |               |
|------|-----|----------------|-------|-------|------|-------|----------------|----------|----------------|------|-----|-----|--------------------|---------------|
| No.  | Α   | B <sub>1</sub> | В     | D     | G    | С     | L <sub>1</sub> | S        | F <sub>1</sub> | F    | H₁  | Н   | E <sub>1</sub> max | E max (Z hub) |
| 05   | 67  | 168.9          | 154.3 | 88.9  | 6.1  | 76.7  | 112.9          | 12       | 28             | 25.4 | 41  | 33  | 28                 | 23 ( 32)      |
| 10   | 81  | 190.9          | 165.3 | 88.9  | 6.6  | 75.7  | 114.9          | 13       | 38             | 25.4 | 55  | 46  | 38                 | 32 ( 40)      |
| 15   | 93  | 213.6          | 186.3 | 101.6 | 8.4  | 84.8  | 133.6          | 16       | 40             | 28.7 | 59  | 51  | 40                 | 35 (40) Y hub |
| 20   | 104 | 255.0          | 224.5 | 127.0 | 11.2 | 104.6 | 159.0          | 16       | 48             | 33.5 | 71  | 61  | 48                 | 42 ( 48)      |
| 25   | 126 | 295.0          | 252.1 | 127.0 | 11.7 | 103.6 | 167.0          | 20       | 64             | 41.1 | 92  | 71  | 64                 | 50 ( 60)      |
| 30   | 143 | 309.0          | 265.8 | 127.0 | 11.7 | 103.6 | 173.0          | 23       | 68             | 47.8 | 100 | 84  | 68                 | 58 ( 70)      |
| 35   | 168 | 345.0          | 293.2 | 127.0 | 16.8 | 93.5  | 173.0          | 23       | 86             | 57.2 | 126 | 106 | 86                 | 74 ( 85)      |
| 40   | 194 | 395.7          | 331.2 | 139.7 | 17.0 | 105.7 | 195.7          | 28       | 100            | 63.5 | 144 | 119 | 100                | 83 ( 95)      |
| 45   | 214 | 436.4          | 370.6 | 152.4 | 21.6 | 109.2 | 208.4          | 28       | 114            | 76.2 | 164 | 137 | 114                | 95 (110)      |
| 50   | 246 | 489.8          | 422.7 | 177.8 | 23.9 | 130.0 | 241.8          | 32       | 124            | 88.9 | 180 | 157 | 124                | 109 (120)     |

- 1. This coupling permits dismounting and assembling of the spacer without disassembling the element section.
- 2. Adapters and spacers in different lengths are available. Indicate required length taking face pressure of key into consideration.
- 3. Daido Precision's exclusive design permits easy dismounting of spacer assembly from shafts.
- 4. A larger-diameter flange permits use of an enlarged adaptor/boss diameter (H1), allowing for use of a larger shaft diameter.
- 5. Fastening torque for coupling bolt (fastening spacer with flange) is in accordance with the table on page 15.

## PLUG-IN COUPLINGS

Please request approval drawings when placing your order.

# H E L H A



## 6-Bolt

| Size No. | Allowable<br>Torque | Maximum<br>Rotation Speed | (2)<br>Mass | (2) Morment of Inertia | Torsional Stiffness            | Axial Spring<br>Constant | (1) Allowable End Float | Allowable Parallel Misalignment |     |                |       |       |      |       | Dir   | mensions (m | ım)            |     |                |     |        |                 |
|----------|---------------------|---------------------------|-------------|------------------------|--------------------------------|--------------------------|-------------------------|---------------------------------|-----|----------------|-------|-------|------|-------|-------|-------------|----------------|-----|----------------|-----|--------|-----------------|
|          | (N•m)               | (min <sup>-1</sup> )      | (kg)        | J<br>(kg·m²)           | (N·m/rad)                      | (N/mm)                   | ( ± mm)                 | (mm)                            | А   | B <sub>1</sub> | В     | D     | G    | С     | L,    | S           | F <sub>1</sub> | F   | H <sub>1</sub> | Н   | E₁ max | E max ( Z hub ) |
| 00       | 569                 | 26,000                    | 8.4         | 0.00018                | 4.4 × 10 <sup>5</sup>          | 162                      | 3.0                     | 0.6                             | 124 | 225.7          | 196.7 | 59.7  | 10.3 | 39.1  | 89.7  | 15          | 68             | 54  | 100            | 74  | 68     | 51 ( 60)        |
| 01       | 922                 | 23,000                    | 11.5        | 0.00032                | 6.8 <b>×</b> 10⁵               | 207                      | 3.4                     | 0.7                             | 144 | 264.0          | 231.0 | 72.0  | 11.0 | 50.0  | 108.0 | 18          | 78             | 63  | 112            | 81  | 78     | 55 ( 65)        |
| 02       | 1710                | 19,000                    | 21.4        | 0.00085                | 9.2 <b>x</b> 10⁵               | 275                      | 3.6                     | 0.9                             | 170 | 324.0          | 281.0 | 90.0  | 11.4 | 67.2  | 132.0 | 21          | 96             | 74  | 138            | 97  | 96     | 67 ( 78)        |
| 03       | 3340                | 17,000                    | 33.7        | 0.00171                | 15.8 <b>×</b> 10⁵              | 448                      | 4.2                     | 1.1                             | 198 | 368.6          | 318.6 | 108.6 | 13.3 | 82.0  | 160.6 | 26          | 104            | 80  | 150            | 104 | 104    | 72 ( 84)        |
| 04       | 6210                | 15,000                    | 51.7        | 0.00355                | 30.8 <b>×</b> 10⁵              | 594                      | 4.5                     | 1.2                             | 226 | 423.6          | 365.6 | 117.6 | 15.2 | 87.2  | 177.6 | 30          | 123            | 95  | 178            | 124 | 123    | 85 ( 98)        |
| 05       | 6080                | 11,600                    | 96.8        | 0.01023                | 39.0 <b>×</b> 10⁵              | 414                      | 3.9                     | 1.6                             | 282 | 535.0          | 456.0 | 153.0 | 17.5 | 118.0 | 215.0 | 31          | 160            | 112 | 232            | 161 | 160    | 111 (130)       |
| 10       | 8240                | 11,600                    | 100.0       | 0.01220                | 48.5 <b>×</b> 10⁵              | 583                      | 3.9                     | 1.6                             | 294 | 535.0          | 456.0 | 153.0 | 19.0 | 115.0 | 215.0 | 31          | 160            | 112 | 228            | 161 | 158    | 111 (130)       |
| 15       | 10700               | 10,300                    | 152.9       | 0.02238                | 72.0 <b>x</b> 10 <sup>5</sup>  | 559                      | 4.2                     | 1.8                             | 330 | 612.0          | 526.0 | 172.0 | 19.0 | 134.0 | 248.0 | 38          | 182            | 134 | 264            | 193 | 182    | 133 (148)       |
| 20       | 17800               | 9,200                     | 215.9       | 0.03810                | 119.6 <b>×</b> 10⁵             | 747                      | 4.9                     | 2.0                             | 366 | 685.0          | 591.0 | 191.0 | 21.5 | 148.0 | 273.0 | 41          | 206            | 153 | 300            | 218 | 206    | 152 (166)       |
| 25       | 26400               | 8,500                     | 308.6       | 0.07668                | 166.7 <b>×</b> 10⁵             | 840                      | 5.2                     | 2.4                             | 422 | 769.0          | 661.0 | 223.0 | 24.0 | 175.0 | 321.0 | 49          | 224            | 165 | 324            | 240 | 224    | 165 (180)       |
| 30       | 33400               | 7,800                     | 395.2       | 0.10883                | 212.8 <b>x</b> 10 <sup>5</sup> | 973                      | 5.4                     | 2.7                             | 452 | 852.0          | 731.0 | 254.0 | 29.5 | 195.0 | 364.0 | 55          | 244            | 178 | 354            | 258 | 244    | 178 (194)       |
| 35       | 39900               | 7,200                     | 504.7       | 0.17538                | 239.3 <b>x</b> 10⁵             | 1010                     | 5.6                     | 2.9                             | 498 | 910.0          | 777.8 | 270.0 | 29.5 | 211.0 | 390.0 | 60          | 260            | 188 | 376            | 272 | 260    | 187 (206)       |
| 40       | 46300               | 6,800                     | 576.2       | 0.22078                | 293.2 <b>x</b> 10⁵             | 1000                     | 6.3                     | 2.9                             | 522 | 946.0          | 816.0 | 274.0 | 31.0 | 212.0 | 394.0 | 60          | 276            | 206 | 400            | 297 | 276    | 205 (222)       |
| 45       | 59800               | 6,200                     | 748.7       | 0.32975                | 378.5 × 10 <sup>s</sup>        | 986                      | 6.7                     | 3.1                             | 564 | 1025.0         | 887.0 | 287.0 | 32.0 | 223.0 | 417.0 | 65          | 304            | 231 | 442            | 334 | 304    | 231 (249)       |

## 8-Bolt

| Size No. | Allowable<br>Torque<br>(N·m) | Maximum<br>Rotation Speed<br>(min <sup>-1</sup> ) | (2)<br>Mass<br>(kg) | (2) Morment<br>of Inertia<br>J<br>(kg·m²) | Torsional Stiffness<br>(N∙m/rad) | Axial Spring<br>Constant<br>(N/mm) | (1)<br>Allowable End Float<br>( ± mm) | Allowable Parallel<br>Misalignment<br>(mm) |
|----------|------------------------------|---------------------------------------------------|---------------------|-------------------------------------------|----------------------------------|------------------------------------|---------------------------------------|--------------------------------------------|
| 03       | 7120                         | 13,000                                            | 69.9                | 0.00648                                   | 60.9                             | 578                                | 2.1                                   | 1.0                                        |
| 05       | 8970                         | 11,600                                            | 96.8                | 0.01023                                   | 55.5                             | 840                                | 2.1                                   | 1.1                                        |
| 10       | 11800                        | 11,600                                            | 100.0               | 0.01220                                   | 69.8                             | 1140                               | 2.1                                   | 1.1                                        |
| 15       | 15400                        | 10,300                                            | 152.9               | 0.02238                                   | 108.9                            | 1130                               | 2.4                                   | 1.3                                        |
| 20       | 25600                        | 9,200                                             | 215.9               | 0.03810                                   | 178.5                            | 1490                               | 2.9                                   | 1.4                                        |
| 25       | 37800                        | 8,500                                             | 308.6               | 0.07668                                   | 249.1                            | 1830                               | 3.1                                   | 1.7                                        |
| 30       | 47800                        | 7,800                                             | 395.2               | 0.10883                                   | 309.9                            | 1960                               | 3.3                                   | 1.9                                        |
| 35       | 57100                        | 7,200                                             | 504.7               | 0.17538                                   | 353.0                            | 2090                               | 3.6                                   | 2.1                                        |
| 40       | 64400                        | 6,800                                             | 576.2               | 0.22078                                   | 447.2                            | 1930                               | 4.0                                   | 2.1                                        |
| 45       | 83700                        | 6,200                                             | 748.7               | 0.32975                                   | 582.5                            | 2080                               | 4.5                                   | 2.2                                        |

- 1. This coupling permits dismounting and assembling of the spacer without disassembling the element section.
- 2. Adapters and spacers in different lengths are available. Indicate required length taking face pressure of key into consideration.
- 3. Daido Precision's exclusive design permits easy dismounting of spacer assembly from shafts.
- 4. A larger-diameter flange permits use of an enlarged adaptor/boss diameter (H1), allowing for use of a larger shaft diameter.
- 5. Fastening torque for coupling bolt (fastening spacer with flange) is in accordance with the table on page 26.
- (1) Figures in the table indicate conditions of maximum rotation speed and a parallel misalignment of 2/1,000.
- (2) Values given are for cases in which both ends are plug-in type.

|     |                |     |       |      |       | Dim            | ensions (mn | 1)             |     |     |     |        |       |
|-----|----------------|-----|-------|------|-------|----------------|-------------|----------------|-----|-----|-----|--------|-------|
| А   | B <sub>1</sub> | В   | D     | G    | С     | L <sub>1</sub> | S           | F <sub>1</sub> | F   | H₁  | Н   | E₁ max | E max |
| 258 | 467            | 418 | 127.0 | 13.7 | 99.6  | 179            | 26          | 144            | 121 | 208 | 156 | 144    | 108   |
| 282 | 535            | 478 | 153.0 | 17.5 | 118.0 | 215            | 31          | 160            | 134 | 232 | 161 | 160    | 111   |
| 294 | 535            | 478 | 153.0 | 19.0 | 115.0 | 215            | 31          | 160            | 134 | 228 | 161 | 158    | 111   |
| 330 | 612            | 526 | 172.0 | 19.0 | 134.0 | 248            | 38          | 182            | 160 | 264 | 193 | 182    | 133   |
| 366 | 685            | 598 | 191.0 | 21.5 | 148.0 | 273            | 41          | 206            | 183 | 300 | 218 | 206    | 152   |
| 422 | 769            | 679 | 223.0 | 24.0 | 175.0 | 321            | 49          | 224            | 198 | 324 | 240 | 224    | 165   |
| 452 | 852            | 751 | 254.0 | 29.5 | 195.0 | 364            | 55          | 244            | 214 | 354 | 258 | 244    | 178   |
| 498 | 910            | 804 | 270.0 | 29.5 | 211.0 | 390            | 60          | 260            | 225 | 376 | 272 | 260    | 187   |
| 522 | 946            | 835 | 274.0 | 31.0 | 212.0 | 394            | 60          | 276            | 247 | 400 | 297 | 276    | 205   |
| 564 | 1025           | 903 | 287.0 | 32.0 | 223.0 | 417            | 65          | 304            | 278 | 442 | 334 | 304    | 231   |

## **Bolt fastening torque**

| Size No.                | 00 | 01 | 02 | 03  | 04  | 05  | 10  | 15  | 20  | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   | 65   |
|-------------------------|----|----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| Bolt-head Diameter (mm) | 13 | 17 | 19 | 24  | 27  | 27  | 27  | 32  | 36  | 46   | 50   | 55   | 55   | 60   | 65   | 70   | 75   | 80   |
| Fastening Torque (N·m)  | 22 | 41 | 72 | 160 | 220 | 220 | 220 | 440 | 570 | 1100 | 1500 | 1700 | 1700 | 1700 | 3000 | 3500 | 3700 | 4000 |

## SINGLE-END PLUG-IN COUPLINGS

## 6-Bolt. 8-Bolt

Please request approval drawings when placing your order.

- 1. This coupling is suitable for use in cases where the distance between shafts is short, even approaching the "0" level.
- 2. In principle, the HN and HS hubs are used for the driving and driven sides respectively, making independent operation of the driving side possible.
- 3. Elongated hubs and spacers are available. Indicate required length taking face pressure of key into consideration.



#### Size data

|        | Size No. | Allowable<br>Torque | Maximum<br>Rotation           | (2)<br>Mass | (2)<br>Morment             | Torsional<br>Stiffness          | Axial<br>Spring    | (1)<br>Allowable   | Allowable<br>Parallel |     |       |       |      |     | Dir | mensions | (mm) |     |      |       |      |     |
|--------|----------|---------------------|-------------------------------|-------------|----------------------------|---------------------------------|--------------------|--------------------|-----------------------|-----|-------|-------|------|-----|-----|----------|------|-----|------|-------|------|-----|
|        | Size No. | (N·m)               | Speed<br>(min <sup>-1</sup> ) | (kg)        | of Inertia<br>J<br>(kg·m²) | (N·m/rad)                       | Constant<br>(N/mm) | End Float<br>(±mm) | Misalignment<br>(mm)  | А   | В     | D     | G    | F   | HN  | н        | т    | Р   | к    | ENmax | Emax | V   |
|        | 00       | 569                 | 26,000                        | 6.2         | 0.01                       | 4.9 × 10 <sup>5</sup>           | 162                | 3.0                | 0.5                   | 119 | 116.3 | 55.2  | 10.3 | 54  | 74  | 58       | 7.1  | 95  | 5.5  | 51    | 40   | 42  |
|        | 01       | 922                 | 23,000                        | 9.5         | 0.02                       | 7.5 <b>×</b> 10⁵                | 207                | 3.4                | 0.6                   | 137 | 134.0 | 62.1  | 11.0 | 63  | 81  | 67       | 8.9  | 108 | 7.0  | 56    | 46   | 46  |
| E<br>B | 02       | 1710                | 19,000                        | 16.2        | 0.03                       | 9.8 <b>×</b> 10⁵                | 275                | 3.6                | 0.7                   | 161 | 153.4 | 69.0  | 11.4 | 74  | 97  | 76       | 10.4 | 127 | 8.0  | 67    | 52   | 55  |
|        | 03       | 3340                | 17,000                        | 21.6        | 0.07                       | 18.6 <b>×</b> 10⁵               | 448                | 4.2                | 0.9                   | 180 | 183.3 | 89.6  | 13.3 | 80  | 104 | 81       | 13.7 | 140 | 10.0 | 72    | 56   | 72  |
|        | 04       | 6210                | 15,000                        | 35.8        | 0.15                       | 35.3 <b>×</b> 10⁵               | 594                | 4.5                | 1.0                   | 212 | 210.2 | 100.0 | 15.2 | 95  | 124 | 96       | 15.2 | 165 | 12.0 | 85    | 66   | 81  |
|        | 01       | 3840                | 15,000                        | 29.8        | 0.15                       | 38.2 <b>x</b> 10 <sup>5</sup>   | 421                | 2.1                | 0.5                   | 214 | 198.2 | 76.2  | 12.2 | 108 | 137 | 122      | 14.0 | 171 | 8.0  | 95    | 84   | 61  |
|        | 03       | 7120                | 13,000                        | 45.2        | 0.28                       | 66.7 × 10 <sup>5</sup>          | 578                | 2.1                | 0.6                   | 246 | 222.7 | 86.4  | 13.7 | 121 | 156 | 142      | 15.3 | 197 | 10.0 | 108   | 98   | 67  |
|        | 05       | 8970                | 11,600                        | 60.7        | 0.40                       | 60.8 <b>x</b> 10 <sup>5</sup>   | 840                | 2.1                | 0.7                   | 276 | 253.5 | 101.7 | 17.5 | 134 | 161 | 147      | 17.8 | 216 | 12.0 | 111   | 101  | 82  |
|        | 10       | 11800               | 11,600                        | 65.1        | 0.40                       | 76.5 <b>×</b> 10⁵               | 1140               | 2.1                | 0.8                   | 276 | 265.0 | 113.2 | 19.0 | 134 | 161 | 147      | 17.8 | 216 | 12.0 | 111   | 101  | 83  |
|        | 15       | 15400               | 10,300                        | 98.8        | 0.83                       | 117.7 × 10 <sup>5</sup>         | 1130               | 2.4                | 0.8                   | 308 | 301.0 | 118.1 | 19.0 | 160 | 193 | 171      | 22.9 | 247 | 14.0 | 133   | 118  | 97  |
|        | 20       | 25600               | 9,200                         | 141.5       | 1.50                       | 196.1 × 10 <sup>5</sup>         | 1490               | 2.9                | 0.9                   | 346 | 336.5 | 128.1 | 21.5 | 183 | 218 | 197      | 25.4 | 279 | 15.0 | 152   | 136  | 110 |
|        | 25       | 37800               | 8,500                         | 200.6       | 2.48                       | 274.6 × 10 <sup>5</sup>         | 1830               | 3.1                | 1.0                   | 375 | 374.0 | 146.8 | 24.0 | 198 | 240 | 213      | 29.2 | 304 | 19.0 | 165   | 147  | 124 |
| G<br>B | 30       | 47800               | 7,800                         | 259.2       | 3.80                       | 343.2 × 10 <sup>5</sup>         | 1960               | 3.3                | 1.2                   | 410 | 415.5 | 168.5 | 29.5 | 214 | 258 | 231      | 33.0 | 330 | 21.0 | 178   | 159  | 141 |
|        | 35       | 57100               | 7,200                         | 315.4       | 5.78                       | 392.3 <b>x</b> 10⁵              | 2090               | 3.6                | 1.2                   | 445 | 436.5 | 175.9 | 29.5 | 225 | 272 | 245      | 35.6 | 355 | 23.0 | 187   | 170  | 155 |
|        | 40       | 64400               | 6,800                         | 378.3       | 7.23                       | 490.3 × 10 <sup>5</sup>         | 1930               | 4.0                | 1.3                   | 470 | 470.0 | 187.4 | 31.0 | 247 | 297 | 271      | 35.6 | 381 | 23.0 | 205   | 187  | 155 |
|        | 45       | 83700               | 6,200                         | 488.6       | 10.53                      | 637.4 × 10 <sup>5</sup>         | 2080               | 4.5                | 1.4                   | 511 | 510.0 | 192.6 | 32.0 | 278 | 334 | 302      | 39.4 | 419 | 25.0 | 231   | 208  | 165 |
|        | 50       | 103000              | 5,700                         | 614.8       | 16.35                      | 814.0 × 10 <sup>5</sup>         | 2040               | 5.0                | 1.4                   | 556 | 547.5 | 200.6 | 32.5 | 305 | 364 | 338      | 41.9 | 457 | 26.0 | 254   | 233  | 176 |
|        | 55       | 128000              | 5,400                         | 739.3       | 22.53                      | 1078.7 × 10 <sup>5</sup>        | 2260               | 5.2                | 1.6                   | 587 | 581.0 | 217.0 | 34.0 | 317 | 382 | 348      | 47.0 | 482 | 28.0 | 263   | 240  | 193 |
|        | 60       | 149000              | 5,000                         | 882.2       | 31.13                      | 1078.7 × 10 <sup>5</sup>        | 2450               | 5.6                | 1.6                   | 629 | 607.5 | 227.0 | 34.5 | 331 | 399 | 364      | 49.5 | 508 | 30.0 | 275   | 251  | 201 |
|        | 65       | 178000              | 4,800                         | 1022.7      | 40.28                      | 1372.9 <b>x</b> 10 <sup>5</sup> | 2670               | 5.7                | 1.7                   | 654 | 640.5 | 240.2 | 35.5 | 347 | 419 | 382      | 53.3 | 533 | 33.0 | 289   | 263  | 211 |

- (1) Figures in the table indicate conditions of maximum rotation speed and a parallel misalignment of 2/1,000.
- (2) In cases where plugging side hub is the same size as "F".

## DOUBLE-END PLUG-IN COUPLINGS

6-Bolt. 8-Bolt

Please request approval drawings when placing your order.

## EB - Special type (double-end plug-in)



- 1. This coupling is suitable for use in cases where the distance between shafts is short, even approaching the "0" level.
- 2. Elongated hubs and spacers are available. Indicate required length taking face pressure of key into consideration.

| Type/<br>Size | Allowable<br>Torque | Maximum<br>Shaft<br>Diameter |     | Din   | nensions (m | nm)  |    | Mass |
|---------------|---------------------|------------------------------|-----|-------|-------------|------|----|------|
|               | (N·m)               | (mm)                         | A   | В     | DS          | F    | Н  | (kg) |
| EB-00         | 569                 | 40                           | 148 | 105.8 | 8           | 48.9 | 58 | 6    |
| EB-01         | 922                 | 46                           | 176 | 131   | 8           | 61.5 | 67 | 9    |
| EB-02         | 1710                | 52                           | 208 | 146.6 | 8           | 69.3 | 76 | 17   |
| EB-03         | 3340                | 56                           | 232 | 186.8 | 10          | 88.4 | 81 | 22   |

## GB - Special type (double-end plug-in)



| Type/<br>Size | Allowable<br>Torque | Maximum<br>Shaft<br>Diameter |     | Din   | nensions (m | nm)   |     | Mass |
|---------------|---------------------|------------------------------|-----|-------|-------------|-------|-----|------|
|               | (N·m)               | (mm)                         | А   | В     | DS          | F     | Н   | (kg) |
| GB-01         | 3840                | 84                           | 250 | 207.8 | 10          | 98.9  | 122 | 38   |
| GB-03         | 7120                | 98                           | 296 | 234.4 | 12          | 111.2 | 142 | 55   |
| GB-05         | 8970                | 101                          | 334 | 255   | 12          | 121.5 | 147 | 72   |
| GB-15         | 15400               | 118                          | 380 | 289   | 14          | 137.5 | 171 | 120  |
| GB-20         | 25600               | 136                          | 420 | 350.6 | 16          | 167.3 | 197 | 174  |
| GB-25         | 37800               | 147                          | 462 | 388   | 16          | 186.0 | 213 | 234  |
| GB-30         | 47800               | 159                          | 506 | 406.6 | 18          | 194.3 | 231 | 258  |

## TYPICAL APPLICATIONS



#### For machine tools:

Used to couple the servo-motor with the ball screw of NC lathes or machining centers, and the motor shaft with the main shaft



#### or pumps:

The spacer-type coupling is necessary for easy maintenance. For use in heated water and oil pumps, types with larger misalignment absorption capacity are more advantageous.



#### For printing machines:

Used to couple the units of rotary press machines. Shear-pin type couplings are used to protect against overload.



#### For cooling towers:

The motor is isolated from the humid, corrosive atmosphere and is coupled with the gear box below the fan via a floating shaft coupling. If the fan diameter is large, a twin-shaft coupling may be used.

## **COUPLINGS FOR SPECIAL PURPOSES**

#### Spline type coupling:

Absorbs large axial misalignment occurring in turbines and hot-gas fans. The spline is coated to give lower sliding resistance.



#### Coupling with brake drum:

This space-saving type has a built-in brake drum. A type with a built-in brake disk is also available.



#### Coupling with torque relay:

Used with press-forging machines and paper-working machines to prevent overload.



#### Insulating coupling:

Used to protect large-scale generators from damage due to shaft current.



#### Coupling for fly-wheels:

Features construction capable of withstanding the reversal and vibration torques of engine drives and reciprocal compressors.



#### Double-element coupling:

Absorbs large axial misalignment occurring in turbines.



#### Shear-pin type coupling:

Used in press-forging machines, generators, etc. It is backlash-free, resulting in excellent fracture accuracy.



#### Clutch coupling:

Used for dual drive of turbine and motor blowers, etc., and for stand-by drive.



#### Coupling with torque sensor:

A torque meter is built into the coupling; used for testing equipment.



## Combination using highly elastic coupling:

Used in marine engines (from VULKAN catalogue).



## DESIGN STANDARDS FOR SPANNELEMENTE HUB AND THRUST FLANGE

## Design standards (when spectacle wrench is used)

| SE (Transmission                    | Torque) |                                   | SE Hub De                  | esign Dimens | sions |                                  |          |        | Thrus          | t Flange Dim | ensions |      |      |                          |
|-------------------------------------|---------|-----------------------------------|----------------------------|--------------|-------|----------------------------------|----------|--------|----------------|--------------|---------|------|------|--------------------------|
| E×Es                                | Is      | Minimum<br>Applicable<br>Hub Size | Minimum<br>Applicable<br>H | PCD          | Ls    | Minimum Bolt<br>Fastening Torque | А        | E (H7) | ES-0.1<br>-0.2 | PCDs         | F       | Т    | Mb   | Bolt Used                |
|                                     | (mm)    | (mm)                              | (mm)                       | (mm)         | (mm)  | (N·m)                            | (mm)     | (mm)   | (mm)           | (mm)         | (mm)    | (mm) | (mm) |                          |
| 15 × 19                             | 6.3     | HZ 01                             | 41                         | 32           | 14.6  | 10                               | 44       | 15     | 19             | 32           | 13      | 8    | 6.6  | 4-M6 × 20                |
| (64N·m)                             |         | HN 02                             | 41                         | 32           | 14.6  | 10                               | 44       | 15     | 19             | 32           | 13      | 8    | 6.6  | 4-M6 × 20                |
| 16 × 20                             | 6.3     | HZ 01                             | 42                         | 33           | 14.6  | 10                               | 44       | 16     | 20             | 33           | 13      | 8    | 6.6  | 4-M6 × 20                |
| (70N·m)                             |         | HN 02                             | 42                         | 33           | 14.6  | 10                               | 44       | 16     | 20             | 33           | 13      | 8    | 6.6  | 4-M6 × 20                |
| 17 × 21                             | 6.3     | HZ 01                             | 43                         | 34           | 14.6  | 10                               | 44       | 17     | 21             | 34           | 13      | 8    | 6.6  | 4-M6 × 20                |
| (76N·m)                             |         | HN 02                             | 43                         | 34           | 14.6  | 10                               | 44       | 17     | 21             | 34           | 13      | 8    | 6.6  | 4-M6 × 20                |
| 18 <b>x</b> 22                      | 6.3     | HZ 01                             | 44                         | 35           | 14.6  | 10                               | 47       | 18     | 22             | 35           | 13      | 8    | 6.6  | 4-M6 × 20                |
| (81N·m)                             |         | HN 02                             | 44                         | 35           | 14.6  | 10                               | 47       | 18     | 22             | 35           | 13      | 8    | 6.6  | 4-M6 × 20                |
| 19 × 24                             | 6.3     | HZ 01                             | 45                         | 36           | 14.6  | 14                               | 47       | 19     | 24             | 36           | 13      | 8    | 6.6  | 4-M6 × 20                |
| (122 <b>N·m</b> )                   |         | HN 02                             | 45                         | 36           | 14.6  | 14                               | 47       | 19     | 24             | 36           | 13      | 8    | 6.6  | 4-M6 × 20                |
| 20 <b>x</b> 25                      | 6.3     | HZ 01                             | 46                         | 37           | 14.6  | 14                               | 47       | 20     | 25             | 37           | 15      | 10   | 6.6  | 4-M6 × 20                |
| (129N·m)                            |         | HN 02                             | 46                         | 37           | 14.6  | 14                               | 47       | 20     | 25             | 37           | 15      | 10   | 6.6  | 4-M6 × 20                |
|                                     |         | HN 03                             | 46                         | 37           | 15.6  | 14                               | 47       | 20     | 25             | 37           | 16      | 10   | 6.6  | 4-M6 × 20                |
| 22 <b>×</b> 26                      | 6.3     | HZ 02                             | 48                         | 39           | 14.6  | 14                               | 51       | 22     | 26             | 39           | 15      | 10   | 6.6  | 4-M6 × 20                |
| (154 <b>N·m</b> )                   |         | HN 03                             | 48                         | 39           | 15.6  | 14                               | 51       | 22     | 26             | 39           | 16      | 10   | 6.6  | 4-M6 × 20                |
| 24 × 28                             | 6.3     | HZ 02                             | 50                         | 41           | 14.6  | 14                               | 53       | 24     | 28             | 41           | 15      | 10   | 6.6  | 4-M6 × 20                |
| (171N·m)                            |         | HN 03                             | 50                         | 41           | 15.6  | 14                               | 53       | 24     | 28             | 41           | 16      | 10   | 6.6  | 4-M6 × 20                |
|                                     |         | HN 04                             | 50                         | 41           | 15.6  | 14                               | 53       | 24     | 28             | 41           | 16      | 10   | 6.6  | 4-M6 × 20                |
| 25 <b>x</b> 30                      | 6.3     | HZ 02                             | 51                         | 42           | 14.6  | 14                               | 53       | 25     | 30             | 42           | 15      | 10   | 6.6  | 4-M6 × 20                |
| (172N·m)                            |         | HN 03                             | 51                         | 42           | 15.6  | 14                               | 53       | 25     | 30             | 42           | 16      | 10   | 6.6  | 4-M6 × 20                |
|                                     |         | HN 04                             | 51                         | 42           | 15.6  | 14                               | 53       | 25     | 30             | 42           | 16      | 10   | 6.6  | 4-M6 × 20                |
| 28 × 32                             | 6.3     | HZ 02                             | 54                         | 45           | 14.6  | 14                               | 55       | 28     | 32             | 45           | 15      | 10   | 6.6  | 4-M6 × 20                |
| (204N·m)                            |         | HY 03                             | 54                         | 45           | 15.6  | 14                               | 55       | 28     | 32             | 45           | 16      | 10   | 6.6  | 4-M6 × 20                |
| ,                                   |         | HN 04                             | 54                         | 45           | 15.6  | 14                               | 55       | 28     | 32             | 45           | 16      | 10   | 6.6  | 4-M6 × 20                |
| 30 × 35                             | 6.3     | HZ 02                             | 56                         | 47           | 14.6  | 14                               | 59       | 30     | 35             | 47           | 17      | 12   | 6.6  | 4-M6 × 25                |
| (213N·m)                            |         | HY 03                             | 56                         | 47           | 15.6  | 14                               | 59       | 30     | 35             | 47           | 18      | 12   | 6.6  | 4-M6 × 25                |
| ,                                   |         | HN 04                             | 56                         | 47           | 15.6  | 14                               | 59       | 30     | 35             | 47           | 18      | 12   | 6.6  | 4-M6 × 25                |
| 32 × 36                             | 6.3     | HY 03                             | 58                         | 49           | 15.6  | 14                               | 59       | 32     | 36             | 49           | 18      | 12   | 6.6  | 4-M6 × 25                |
| (230N·m)                            |         | HN 04                             | 58                         | 49           | 15.6  | 14                               | 59       | 32     | 36             | 49           | 18      | 12   | 6.6  | 4-M6 × 25                |
| 35 × 40                             | 7       | HY 04                             | 67.7                       | 56           | 17    | 25                               | 71       | 35     | 40             | 56           | 18      | 12   | 9    | 4-M8 × 25                |
| (332N·m)                            |         | HZ 04                             | 67.7                       | 56           | 17    | 25                               | 71       | 35     | 40             | 56           | 18      | 12   | 9    | 4-M8 × 25                |
| (552.11.11.)                        |         | HN 05                             | 67.7                       | 56           | 17    | 25                               | 71       | 35     | 40             | 56           | 18      | 12   | 9    | 4-M8 × 25                |
| 36 × 42                             | 7       | HY 04                             | 68.7                       | 57           | 17    | 25                               | 71       | 36     | 42             | 57           | 18      | 12   | 9    | 4-M8 × 25                |
| (333N·m)                            | ,       | HZ 04                             | 68.7                       | 57           | 17    | 25                               | 71       | 36     | 42             | 57           | 18      | 12   | 9    | 4-M8 × 25                |
| (00011 111)                         |         | HN 05                             | 68.7                       | 57           | 17    | 25                               | 71       | 36     | 42             | 57           | 18      | 12   | 9    | 4-M8 × 25                |
| 38 × 44                             | 7       | HY 04                             | 72.7                       | 59           | 17    | 25                               | 74       | 38     | 44             | 59           | 20      | 14   | 9    | 4-M8 × 30                |
| (356N·m)                            | ,       | HZ 04                             | 72.7                       | 59           | 17    | 25                               | 74       | 38     | 44             | 59           | 20      | 14   | 9    | 4-M8 × 30                |
| (00014 111)                         |         | HN 05                             | 72.7                       | 59           | 17    | 25                               | 74       | 38     | 44             | 59           | 20      | 14   | 9    | 4-M8 × 30                |
| 40 × 45                             | 8       | HZ 04                             | 72.7                       | 61           | 19    | 25                               | 74       | 40     | 45             | 61           | 21      | 14   | 9    | 4-M8 × 30                |
| (355N·m)                            |         | HZ 05                             | 72.7                       | 61           | 19    | 25                               | 74       | 40     | 45             | 61           | 21      | 14   | 9    | 4-M8 × 30                |
| (00014 111)                         |         | HN 06                             | 72.7                       | 61           | 19    | 25                               | 74       | 40     | 45             | 61           | 21      | 14   | 9    | 4-M8 × 30                |
| 42 × 48                             | 8       | HZ 04                             | 74.7                       | 63           | 19    | 29                               | 78       | 40     | 48             | 63           | 21      | 14   | 9    | 4-IVIO <b>x</b> 30       |
| 42 × 48<br>(455N·m)                 | O       | HZ 04<br>HZ 05                    | 74.7                       | 63           | 19    | 29                               | 78       | 42     | 48             | 63           | 21      | 14   | 9    | 4-IVI8 × 30<br>4-M8 × 30 |
| (40014-111)                         |         | HN 06                             | 74.7                       | 63           | 19    | 29                               | 78       | 42     | 48             | 63           | 21      | 14   | 9    | 4-IVIO <b>x</b> 30       |
| 45 × 52                             | 10      | HZ 05                             | 77.7                       | 66           | 23    | 29                               | 81       | 42     | 52             | 66           | 22      | 15   | 9    | 4-IVI8 × 30<br>4-M8 × 30 |
| 45 <b>x</b> 52<br>(492 <b>N·m</b> ) | 10      | HZ 05<br>HN 06                    | 77.7                       |              |       | 29                               | 81       | 45     | 52             |              | 22      |      | 9    | 4-IVI8 × 30<br>4-M8 × 30 |
|                                     | 10      |                                   |                            | 66<br>75     | 23    |                                  |          | 45     |                | 66<br>75     |         | 15   |      |                          |
| 48 × 55<br>(843N·m)                 | 10      | HZ 05                             | 90.3                       | 75<br>75     | 23    | 59                               | 95<br>05 |        | 55             | 75<br>75     | 22      | 15   | 11   | 4-M10 × 35               |
| (04314*111)                         |         | HZ 06                             | 90.3                       | 75<br>75     | 23    | 59<br>59                         | 95<br>95 | 48     | 55<br>55       | 75<br>75     | 22      | 15   | 11   | 4-M10 × 35               |
| F0 + F7                             | 10      | HN 07                             | 90.3                       | 75           | 23    |                                  |          | 48     |                |              | 22      | 15   | 11   | 4-M10 × 35               |
| 50 × 57                             | 10      | HZ 06                             | 92.3                       | 77           | 23    | 59                               | 95       | 50     | 57             | 77           | 22      | 15   | 11   | 4-M10 × 35               |
| (888N·m)                            | 40      | HN 07                             | 92.3                       | 77           | 23    | 59                               | 95       | 50     | 57             | 77           | 22      | 15   | 11   | 4-M10 × 35               |
| 55 × 62                             | 10      | HZ 06                             | 97.3                       | 82           | 23    | 59                               | 100      | 55     | 62             | 82           | 22      | 15   | 11   | 4-M10 × 35               |
| (992N·m)                            |         | HN 07                             | 97.3                       | 82           | 23    | 59                               | 100      | 55     | 62             | 82           | 22      | 15   | 11   | 4-M10 × 35               |

## Use of HN only



#### Use of HZ and HY



| SE (Transmission   | Torque)    |                                           | SE Hub De                          | esign Dimens | ions       |                                              |           |                | Thrus                  | t Flange Dim | ensions   |           |            |            |
|--------------------|------------|-------------------------------------------|------------------------------------|--------------|------------|----------------------------------------------|-----------|----------------|------------------------|--------------|-----------|-----------|------------|------------|
| E×Es               | ls<br>(mm) | Minimum<br>Applicable<br>Hub Size<br>(mm) | Minimum<br>Applicable<br>H<br>(mm) | PCD<br>(mm)  | Ls<br>(mm) | Minimum Bolt<br>Fastening<br>Torque<br>(N·m) | A<br>(mm) | E (H7)<br>(mm) | ES-0.1<br>-0.2<br>(mm) | PCDs<br>(mm) | F<br>(mm) | T<br>(mm) | Mb<br>(mm) | Bolt Used  |
| 56 × 64            | 12         | HZ 06                                     | 98.7                               | 83           | 27         | 59                                           | 100       | 56             | 64                     | 83           | 22        | 15        | 11         | 4-M10 × 35 |
| (938 <b>N·</b> m)  | 12         | HN 07                                     | 98.7                               | 83           | 27         | 59                                           | 100       | 56             | 64                     | 83           | 22        | 15        | 11         | 4-M10 × 35 |
| 60 × 68            | 12         | HZ 07                                     | 111.1                              | 90           | 27         | 98                                           | 117       | 60             | 68                     | 90           | 22        | 15        | 13.5       | 4-M12 × 40 |
| (1551 <b>N·m</b> ) | 12         | HN 08                                     | 111.1                              | 90           | 27         | 98                                           | 117       | 60             | 68                     | 90           | 22        | 15        | 13.5       | 4-M12 × 40 |
| 63 × 71            | 12         | HZ 07                                     | 114.1                              | 93           | 27         | 98                                           | 117       | 63             | 71                     | 93           | 22        | 15        | 13.5       | 4-M12 × 40 |
| (1187 <b>N·m</b> ) | 12         | HN 08                                     | 114.1                              | 93           | 27         | 98                                           | 117       | 63             | 71                     | 93           | 22        | 15        | 13.5       | 4-M12 × 40 |
| 65 × 73            | 12         | HZ 07                                     | 116.1                              | 95           | 27         | 98                                           | 117       | 65             | 73                     | 95           | 22        | 15        | 13.5       | 4-M12 × 40 |
| (1702N·m)          | 12         | HN 08                                     | 116.1                              | 95           | 27         | 98                                           | 117       | 65             | 73                     | 95           | 22        | 15        | 13.5       | 4-M12 × 40 |

Notes: SE denotes Spannelemente.

## Design standards (when wrench is used)

| SE (Transmission  | Torque)    |                                           | SE Hub De                          | esign Dimens | sions      |                                              |           |                | Thrus                  | t Flange Dim | ensions   |           |            |            |
|-------------------|------------|-------------------------------------------|------------------------------------|--------------|------------|----------------------------------------------|-----------|----------------|------------------------|--------------|-----------|-----------|------------|------------|
| E × Es            | Is<br>(mm) | Minimum<br>Applicable<br>Hub Size<br>(mm) | Minimum<br>Applicable<br>H<br>(mm) | PCD<br>(mm)  | Ls<br>(mm) | Minimum Bolt<br>Fastening<br>Torque<br>(N·m) | A<br>(mm) | E (H7)<br>(mm) | ES-0.1<br>-0.2<br>(mm) | PCDs<br>(mm) | F<br>(mm) | T<br>(mm) | Mb<br>(mm) | Bolt Used  |
| 22 × 26           | 6.3        | HZ 01                                     | 45                                 | 37           | 14.6       | 14                                           | 48        | 22             | 26                     | 37           | 15        | 10        | 6.6        | 4-M6 × 20  |
| (154 <b>N·m</b> ) |            | HN 02                                     | 45                                 | 37           | 14.6       | 14                                           | 48        | 22             | 26                     | 37           | 15        | 10        | 6.6        | 4-M6 × 20  |
| 28 × 32           | 6.3        | HN 03                                     | 51                                 | 42           | 15.6       | 14                                           | 53        | 28             | 32                     | 42           | 16        | 10        | 6.6        | 4-M6 × 20  |
| (204N·m)          |            |                                           |                                    |              |            |                                              |           |                |                        |              |           |           |            |            |
| 32 × 36           | 6.3        | HZ 02                                     | 55                                 | 49           | 15.6       | 14                                           | 60        | 32             | 36                     | 49           | 18        | 12        | 6.6        | 4-M6 × 25  |
| (230N·m)          |            |                                           |                                    |              |            |                                              |           |                |                        |              |           |           |            |            |
| 35 × 40           |            |                                           |                                    |              |            |                                              |           |                |                        |              |           |           |            |            |
| (238N·m)          | 7          | HY 03                                     | 59                                 | 52           | 17         | 14                                           | 63        | 35             | 40                     | 52           | 18        | 12        | 6.6        | 4-M6 × 25  |
| (388 <b>N·m</b> ) | 7          | HN 04                                     | 59                                 | 52           | 17         | 14                                           | 63        | 35             | 40                     | 52           | 18        | 12        | 6.6        | 6-M6 × 25  |
| 36 × 42           | 7          | HN 04                                     | 61                                 | 52           | 17         | 14                                           | 63        | 36             | 42                     | 52           | 18        | 12        | 6.6        | 6-M6 × 25  |
| (390N·m)          |            |                                           |                                    |              |            |                                              |           |                |                        |              |           |           |            |            |
| 40 × 45           |            |                                           |                                    |              |            |                                              |           |                |                        |              |           |           |            |            |
| (355 <b>N·m</b> ) | 8          | HY 04                                     | 70                                 | 61           | 19         | 25                                           | 74        | 40             | 45                     | 61           | 21        | 14        | 9          | 4-M8 × 30  |
| (581 <b>N·m</b> ) | 8          | HN 05                                     | 70                                 | 59           | 19         | 25                                           | 74        | 40             | 45                     | 59           | 21        | 14        | 9          | 6-M8 × 30  |
| 48 × 55           | 10         | HN 06                                     | 80                                 | 72           | 23         | 25                                           | 87        | 48             | 55                     | 72           | 22        | 15        | 9          | 8-M8 × 35  |
| (878 <b>N·m</b> ) |            |                                           |                                    |              |            |                                              |           |                |                        |              |           |           |            |            |
| 50 <b>×</b> 57    |            |                                           |                                    |              |            |                                              |           |                |                        |              |           |           |            |            |
| (888N·m)          | 10         | HZ 05                                     | 88                                 | 77           | 23         | 59                                           | 97        | 50             | 57                     | 77           | 22        | 15        | 11         | 4-M10 × 35 |
| (924N·m)          | 10         | HN 06                                     | 82                                 | 72           | 23         | 25                                           | 87        | 50             | 57                     | 72           | 22        | 15        | 9          | 8-M8 × 35  |

Notes: SE denotes Spannelemente.

## DESIGN STANDARDS FOR TAPERED-SHAFT BORES

| Designation     |       |       | D    | imenision | ıs  |    |      |
|-----------------|-------|-------|------|-----------|-----|----|------|
| Designation     | ET/B  | ET/F  | TI   | KW        | KT  | Zd | Zt   |
| HN01-11T04-SI-Z | 11    | 9.4   | 16   | 4H7       | 1.2 | 21 | 9.4  |
| HN02-11T04-SI-Z | 11    | 9.4   | 16   | 4H7       | 1.2 | 21 | 9.4  |
| HP01-16T05-SI-Z | 16    | 13.05 | 29.5 | 5F7       | 1.5 | 25 | 10.5 |
| HP02-16T05-SI-Z | 16    | 13.05 | 29.5 | 5F7       | 1.5 | 25 | 10.5 |
| HN03-16T05-SI-Z | 15.46 | 13.05 | 24.1 | 5F7       | 1.8 | 25 | 4.6  |
| HP03-16T05-SI-Z | 16    | 13.05 | 29.5 | 5F7       | 1.5 | 25 | 15.5 |
| HN04-16T05-SI-Z | 16    | 13.05 | 29.5 | 5F7       | 1.5 | 25 | 4    |
| HN05-16T05-SI-Z | 16    | 13.05 | 29.5 | 5F7       | 1.5 | 25 | 11.6 |



## **SHAFT BORE**

## Shaft bore and tolerance and chamfer standards (according to JIS B-0903, 0401, and 1301)

|                  |                  | Shaft Bore          |                      |                           |
|------------------|------------------|---------------------|----------------------|---------------------------|
|                  |                  | Bore Tolerance      |                      |                           |
| Standard<br>Bore | Interference Fit | Transition Fit (H7) | Toransition Fit (G7) | Chamfering of<br>Boss End |
| 10               |                  |                     |                      |                           |
| 11               |                  |                     |                      |                           |
| 12               |                  | + 0.018             | + 0.024              |                           |
| 14               |                  | - 0                 | + 0.006              |                           |
| 16               |                  |                     |                      |                           |
| 18               |                  |                     |                      | 0.5                       |
| 19               |                  |                     |                      |                           |
| 20               | (M7)             |                     |                      |                           |
| 22               |                  | . 0.001             | . 0.000              |                           |
| 24               | +0               | + 0.021             | + 0.028              |                           |
| 25               | - 0.021          | - 0                 | + 0.007              |                           |
| 28<br>30         |                  |                     |                      |                           |
| 30               |                  |                     |                      |                           |
| 32               | (M7)             |                     |                      |                           |
| 35               | +0               |                     |                      |                           |
| 40               | - 0.025          | + 0.025             | + 0.034              |                           |
| 40               | 1 1 1            |                     |                      |                           |
| 45               | (N7)             | - 0                 | + 0.009              |                           |
| 45               | - 0.008          |                     |                      |                           |
| 50               | - 0.033          |                     |                      |                           |
| 55               |                  |                     |                      |                           |
| 56               |                  |                     |                      | 1.0                       |
| 60               |                  |                     |                      | 1.0                       |
| 63               | (N7)             |                     |                      |                           |
| 65               | - 0.009          | + 0.030             | + 0.040              |                           |
| 70               | -                | - 0                 |                      |                           |
| 71               | - 0.039          | - 0                 | + 0.010              |                           |
| 75               |                  |                     |                      |                           |
| 80               |                  |                     |                      |                           |
| 85               |                  |                     |                      |                           |
| 90               | (D7)             |                     |                      |                           |
| 95               | (P7)             | 0.005               | 0.047                |                           |
| 100              | - 0.024          | + 0.035             | + 0.047              |                           |
| 110              | - 0.059          | - 0                 | + 0.012              |                           |
| 120              |                  |                     |                      |                           |
| 125              |                  |                     |                      |                           |
| 130              |                  |                     |                      |                           |
| 140              | (P7)             |                     |                      | 2.0                       |
| 150              | - 0.028          | + 0.040             | + 0.054              |                           |
| 160              | - 0.068          | - 0                 | + 0.014              |                           |
| 170              | 0.000            |                     | 0.011                |                           |
| 180              |                  |                     |                      |                           |

Note: Flange face should be thread-chamfered.

## **SHAFT BORE**

## Standard dimensions of shaft bore, key and key way

|               |                |                |                               |            | Size of ke | y way          |                              |                             |                   |
|---------------|----------------|----------------|-------------------------------|------------|------------|----------------|------------------------------|-----------------------------|-------------------|
|               |                |                | Shaft                         | tolerance  | e (mm)     |                |                              |                             |                   |
| Shaft<br>bore | Nominal size   | Flute<br>width | Precision class               | Ordina     | ry class   | Core<br>R      | Depth<br>of                  |                             | Depth<br>toleranc |
| dia.<br>(mm)  | of<br>key      | (mm)           | Bore side<br>Shaft side<br>P9 | Shaft side | Bore side  | (mm)           | flute<br>on<br>shaft<br>(mm) | flute<br>on<br>bore<br>(mm) | (mm)              |
| 10 ~ 12       | 4 × 4          | 4              |                               |            |            | 0.08<br>~ 0.16 | 2.5                          | 1.8                         |                   |
| 12 ~ 17       | 5×5            | 5              | - 0.012<br>- 0.042            | 0 - 0.030  | ± 0.0150   |                | 3.0                          | 2.3                         | + 0.1<br>0        |
| 17 ~ 22       | 6×6            | 6              | 0.012                         | 0.000      |            | 0.16           | 3.5                          | 2.8                         |                   |
| 20 ~ 25       | (7 × 7)        | 7              |                               |            |            | ~ 0.25         | 4.0                          | 3.0                         |                   |
| 22 ~ 30       | 8 <b>×</b> 7   | 8              | - 0.015<br>- 0.051            | 0 - 0.036  | ± 0.0180   |                | 4.0                          | 3.3                         |                   |
| 30 ~ 38       | 10 × 8         | 10             | 0.001                         | 0.000      |            |                | 5.0                          | 3.3                         |                   |
| 38 ~ 44       | 12 <b>x</b> 8  | 12             |                               |            |            |                | 5.0                          | 3.3                         |                   |
| 44 ~ 50       | 14 × 9         | 14             |                               |            |            | 0.25           | 5.5                          | 3.8                         |                   |
| 50 ~ 55       | (15 × 10)      | 15             | - 0.018                       | 0 - 0.043  | ± 0.0215   | ~ 0.40         | 5.0                          | 5.0                         |                   |
| 50 ~ 58       | 16 × 10        | 16             |                               |            |            |                | 6.0                          | 4.3                         | + 0.2             |
| 58 ~ 65       | 18 × 11        | 18             |                               |            |            |                | 7.0                          | 4.4                         | 0                 |
| 65 ~ 75       | 20 × 12        | 20             |                               |            |            |                | 7.5                          | 4.9                         |                   |
| 75 ~ 85       | 22 <b>x</b> 14 | 22             |                               |            |            |                | 9.0                          | 5.4                         |                   |
| 80 ~ 90       | (24 × 16)      | 24             | - 0.022<br>- 0.074            | 0 - 0.052  | ± 0.0260   | 0.40           | 8.0                          | 8.0                         |                   |
| 85 ~ 95       | 25 <b>x</b> 14 | 25             |                               |            |            | ~ 0.60         | 9.0                          | 5.4                         |                   |
| 95 ~ 110      | 28 <b>x</b> 16 | 28             | 32 - 0.026 0                  |            |            | 10.0           | 6.4                          |                             |                   |
| 110 ~ 130     | 32 <b>x</b> 18 | 32             |                               | 0          | . 0.0210   |                | 11.0                         | 7.4                         |                   |
| 125 ~ 140     | (35 × 22)      | 35             | - 0.088                       | - 0.062    | ± 0.0310   | 0.70<br>~ 1.00 | 11.0                         | 11.0                        | + 0.3             |

| •             | _              |                |                         | _            |            | •              |                      |                     |                    |
|---------------|----------------|----------------|-------------------------|--------------|------------|----------------|----------------------|---------------------|--------------------|
|               |                |                |                         |              | Size of ke | y way          |                      |                     |                    |
|               |                |                | Shaft                   | tolerance    | e (mm)     |                |                      |                     |                    |
| Shaft<br>bore | Nominal size   | Flute<br>width | Precision class         | Ordina       | ry class   | Core<br>R      | Depth<br>of          | Depth<br>of         | Depth<br>tolerance |
| dia.          | of<br>key      |                | Bore side<br>Shaft side | Shaft side   | Bore side  |                | flute<br>on<br>shaft | flute<br>on<br>bore |                    |
| (mm)          |                | (mm)           | P9                      | N9           | Js9        | (mm)           | (mm)                 | (mm)                | (mm)               |
| 130 ~ 150     | 36 <b>×</b> 20 | 36             |                         |              |            |                | 12.0                 | 8.4                 |                    |
| 140 ~ 160     | (38 × 24)      | 38             |                         |              |            |                | 12.0                 | 12.0                |                    |
| 150 ~ 170     | 40 × 22        | 40             | - 0.026                 | 0            | 0.0010     | 0.70           | 13.0                 | 9.4                 |                    |
| 160 ~ 180     | (42 × 26)      | 42             | - 0.088                 | - 0.062      | ± 0.0310   | ~ 1.00         | 13.0                 | 13.0                |                    |
| 170 ~ 200     | 45 <b>x</b> 25 | 45             |                         |              |            |                | 15.0                 | 10.4                | + 0.3              |
| 200 ~ 230     | 50 <b>x</b> 28 | 50             |                         |              |            |                | 17.0                 | 11.4                |                    |
| 230 ~ 260     | 56 <b>x</b> 32 | 56             |                         |              |            |                | 20.0                 | 12.4                |                    |
| 260 ~ 290     | 63 <b>x</b> 32 | 63             | - 0.032<br>- 0.106      | 0<br>- 0.074 | ± 0.0370   | 1.20<br>~ 1.60 | 20.0                 | 12.4                |                    |
| 290 ~ 330     | 70 <b>x</b> 36 | 70             |                         |              |            |                | 22.0                 | 14.4                |                    |

#### Notes:

- 1. Use of keys of sizes in parenthesis is not recommended.
- 2. Key way should be positioned so that the radius passing through the center of the key way is equidistant from the radii passing through the centers of reamer bolt and through holes.

## Standards for set-screw hole (Type A)

| Size     | Type of Hub       |                                   | dard<br>:HZ)                                    |                               | boss type<br>:HK)                               |                                      | l boss type<br>O)                               |
|----------|-------------------|-----------------------------------|-------------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------------------|-------------------------------------------------|
| Hub Size | Set-screw<br>Size | Over Hub<br>Length<br>(F)<br>(mm) | Position of<br>Set-screw<br>Hole<br>(L)<br>(mm) | Overall Hub<br>Length<br>(mm) | Position of<br>Set-screw<br>Hole<br>(L)<br>(mm) | Overall Hub<br>Length<br>(F)<br>(mm) | Position of<br>Set-screw<br>Hole<br>(L)<br>(mm) |
| 01       | M 6               | 25.4                              | 8                                               | 40                            | 14                                              |                                      |                                                 |
| 02       | M 6               | 25.4                              | 8                                               | 40                            | 14                                              | 45                                   | 16                                              |
| 03       | M 8               | 28.7                              | 10                                              | 45                            | 16                                              | 50                                   | 18                                              |
| 04       | M 8               | 33.5                              | 12                                              | 50                            | 18                                              | 60                                   | 20                                              |
| 05       | M 8               | 41.1                              | 14                                              | 60                            | 20                                              | 70                                   | 25                                              |
| 06       | M 10              | 47.8                              | 16                                              | 70                            | 25                                              | 80                                   | 28                                              |
| 07       | M 10              | 57.2                              | 20                                              | 85                            | 30                                              | 100                                  | 35                                              |
| 08       | M 10              | 63.5                              | 22                                              | 100                           | 35                                              | 115                                  | 40                                              |
| 09       | M 12              | 76.2                              | 26                                              | 115                           | 40                                              | 130                                  | 45                                              |
| 10       | M 16              | 88.9                              | 30                                              | 135                           | 48                                              | 150                                  | 53                                              |
| 11       | M 16              | 101.6                             | 36                                              | 150                           | 53                                              | 175                                  | 60                                              |

#### Note

- 1. Set-screw hole position is indicated by distance in mm from boss end of hub.
- 2. Set-screw is a metric coarse-thread screw.
- 3. Set-screw is positioned at a point approx. 35% of the overall hub length away from the boss end L 0.35F.
- 4. Angular position of set-screws is on top of keyway.
- 5. Use of 2 or 3 set screws does not double or triple shaft holding power.

## INSTRUCTIONS FOR INSTALLATION AND MAINTENANCE

#### Initial assembly and centering



Correct, careful assembly and centering at the initial stage enables couplings to provide maximum performance, compensates for misalignment, and increases service life.

## 1. Confirm that shaft and bore have been completely deburred and that key is properly fitted with shaft and hub.

When the distance between shaft ends is less than dimension "D" of the coupling used, adjust shaft to required dimension "D" by making the shaft project (Fig.1). When shaft diameter is larger than the coupling bore, adjust shaft projection to within the range "S" indicated on the chart below.

| S      | ize No.              | 00 | 01  | 02 | 03  | 04 | 05  | 10  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|--------|----------------------|----|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Type A | Element Bore<br>(mm) |    |     |    |     |    | 25  | 30  | 32  | 40  | 45  | 51  | 69  | 76  | 89  | 101 | 108 |     |     |
| Type A | S (mm)               |    |     |    |     |    | 2   | 2   | 2   | 3   | 3   | 3   | 4   | 4   | 5   | 5   | 6   |     |     |
| Type E | Element Bore<br>(mm) | 60 | 69  | 78 | 83  | 98 | 142 | 142 | 163 | 184 | 200 | 216 | 231 | 253 | 280 | 307 | 322 | 338 | 354 |
| Type E | S (mm)               | 2  | 2   | 2  | 2   | 2  | 3   | 3   | 3   | 3   | 3   | 5   | 5   | 5   | 5   | 5   | 5   | 5   | 5   |
| Type G | Element Bore<br>(mm) |    | 124 |    | 143 |    | 155 | 155 | 178 | 201 | 218 | 235 | 252 | 275 | 304 | 343 | 350 | 368 | 384 |
| туре С | S (mm)               |    | 2   |    | 2   |    | 4   | 4   | 4   | 4   | 4   | 6   | 6   | 6   | 6   | 6   | 6   | 3   | 6   |

S: Allowable length of shaft projection when shaft diameter is smaller than element bore at a maximum of 2mm.

Note: When hub has been fabricated by interference fit, heat it in a 90-120 oil bath and fit it to the shaft. Never apply heat locally; it may cause distortion

# Angular misalignment and parallel misalignment



#### 2. Distance between shaft ends

Shift equipment units to permit coupling in the correct position. Set both flange faces (G dimensions) within  $\pm 0.25$  mm, except in special cases.

#### 3. Angular misalignment (Fig.2)

- (a) Fix a dial gauge on one side of hub, rotate hub, find minimum reading on dial gauge, and set gauge at zero.
- (b) Rotate coupling side with dial gauge 360° and readjust dial gauge so it shows smallest deflection reading. Peripheral face deflection for an angular misalignment of 0.1° is as shown in the table below.
- (c) Peripheral section of dial gauge may show abnormal deflection at through-hole area of hub. This is due to flaring of flange during working. Avoid this area when reading gauge.

| s                            | ze No. | 00   | 01   | 02   | 03   | 04   | 05   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   | 65   |
|------------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Gauge<br>Reading<br>(TIR mm) | Type A |      |      |      |      |      | 0.12 | 0.15 | 0.16 | 0.20 | 0.22 | 0.25 | 0.29 | 0.34 | 0.37 | 0.43 | 0.48 |      |      |
|                              | Type E | 0.21 | 0.24 | 0.28 | 0.32 | 0.37 | 0.48 | 0.48 | 0.53 | 0.60 | 0.65 | 0.71 | 0.77 | 0.81 | 0.88 | 0.96 | 1.02 | 1.09 | 1.13 |
|                              | Type G |      | 0.37 |      | 0.43 |      | 0.48 | 0.48 | 0.53 | 0.60 | 0.65 | 0.71 | 0.77 | 0.81 | 0.88 | 0.96 | 1.02 | 1.09 | 1.13 |

#### 4. Parallel misalignment (Fig.3)

- (a) To measure parallel misalignment of shafts, fix a dial gauge on the driving side hub and, while rotating the driving shaft, read the dial gauge at the periphery of the driven hub. A parallel misalignment of 2 mm per 1,000 mm distance between flange faces (D) results in an angular misalignment of 0.1°.
- (b) Recheck angular misalignment and verify that it is sufficiently small.

## 5. Assemble the coupling using the exploded diagrams on page 6 as a guide

Special note: To assure the unlimited service life of the coupling, recheck it for parallel and angular misalignment after a short period (1-2 hours) of actual operation. At that time, refasten bolts and nuts using the rated torque.

Test results indicate that the permissible maximum number of times nylon nuts may be unfastened and refastened is 15, but it is recommended that the number of times not exceed 10. If this process is repeated 10 times or more, spare nuts should be prepared.

For the requirement of replacing all the parts, elements, bolts, nuts and washers are available as a package.

Name: Pack kit
Designation: KN

( : part no.)

#### 6. Emergency repair using spacers in stock (Fig.4).

When coupling sections incur accidental damage during installation, emergency repair is possible using spacers in stock (see Fig.4)

#### Note:

When inserting bolt, do not force it, or the thick washer may intrude into the large hole on the flange. Fasten all nylon nuts using the rated torque. Bolts may be inserted in the direction which makes the job easiest.



P or K hubs are generally used.

## Misalignment



There are many possible causes for misalignment of shafts. Initial alignment may be altered by temperature variations, bearing wear, foundation settling, etc. In general, however, careful initial alignment of shafts increases coupling life. When initial alignment is incorrect and the coupling is heavily stressed due to torque or other forces, it will have little reserve for absorption of misalignment stress; this may result in reduced coupling service life.

The above diagram shows various types of shaft misalignment. In parallel misalignment, two shafts have parallel axes, but are not coaxial. In angular misalignment, the axes of the two shafts intersect. The state occurring due to axial misalignment is called "end float".

In many cases, the misalignment in FORM-FLEX COU-PLINGS is the result of a complex combination of these types of misalignment. The FORM-FLEX COUPLING permits angular misalignment of up to 1 per flexible element (in the case of a four-bolt coupling). The allowance for end float depends on the size of the coupling; however, the FORM-FLEX COU-PLING permits sufficient end float to cause only a small degree of thrust.

When the occurrence of misalignment during operation is inevitable, it may be necessary to offset the coupling.

## MISCELLNEOUS ROTATION-TRANSMITTING UNITS



## **Guarantee**

This brochure was prepared for the purpose of providing you with performance and size data for FORM-FLEX COU-PLINGS in order that you may better select the most appropriate type. We accept requests for consultation regarding application of selected types shown in this brochure, as well as special designs and uses, but it is impossible for us to actually test our couplings with each piece of equipment under actual operating conditions. Therefore, we regret that we are unable to guarantee the performance of our couplings in practical operation after purchase. We do, however, gurantee that our products have been manufactured and shipped under proper quality control. We guarantee our prod-

ucts against defects in manufacture and materials for one year after shipping. If such defect should appear, please return the part in question for inspection, based on which we will determine whether the guarantee is applicable. If we agree that the part is defective, our responsibility is limited to repairing or replacing the part in question. Defects arising from secondary working without our express agreement, replacement of parts with parts other than those designated by us, repairs, improper hahdling, or accidents are excluded from this guarantee. Manufacture of products shown in this brochure may be discontinued and/or the contents of this brochure changed without notice.





3 Fl. Nishi-Ikebukuro TS BLDG.,1-15 Nishi-Ikebukuro 3-Chome, Toshima-ku, Tokyo 171-0021, Japan
Tel. 03-5956-9176 Fax. 03-5956-9177