HW1 Suggested Answer

Problem 1

(a)

No. The variance of y_t is

$$Var(y_t) = \begin{cases} \sigma_1^2, & t < t' \\ \sigma_2^2, & t \ge t' \end{cases}.$$

Since $Var(y_t)$ depends on t, it is not weakly stationary.

(b)

No. The time series is not weakly stationary unless $\beta_0=0.$ If $\beta_0\neq 0$,

$$E(y_t) = \beta_0 t$$

It depends on t when $\beta_0 \neq 0$, thus, the time series is not weakly stationary when $\beta_0 \neq 0$. If $\beta_0 = 0$, $y_t = \varepsilon_t$, it is apparent that the series is weakly stationary.

(c)

Yes.

$$\begin{split} E(y_t^i) &= E[E[\varepsilon_t^i | \sigma_i^2 = \eta_i^2]] = 0 \\ Var(y_t^i) &= E[E[(\varepsilon_t^i)^2 | \sigma_i^2 = \eta_i^2]] = E[\eta_i^2] = 1 \\ E[y_t^i, y_{t-j}^i] &= E[E[\varepsilon_t^i \varepsilon_{t-j}^i | \sigma_i^2 = \eta_i^2]] = 0 \quad \text{for } j \geq 1 \end{split}$$

All of them does not depend on t, thus, the series is weakly stationary.

Problem 2

(a)

Below is ACF of raw growth rates with lag 48. There is a clear seasonal pattern in the ACF. For instance, Lag 12 and Lag 24 have large correlation.

Date: 01/14/24 Time: 09:59 Sample: 2000M01 2023M10 Included observations: 285

		1 2 3 4 5 6 7 8	0.913 0.726 0.514 0.331 0.203 0.141 0.150	0.913 -0.640 0.117 0.080 0.042 0.130	239.89 392.24 468.94 500.85 512.83 518.64	0.000 0.000 0.000 0.000 0.000
		3 4 5 6 7	0.514 0.331 0.203 0.141	0.117 0.080 0.042	468.94 500.85 512.83	0.000
		4 5 6 7	0.331 0.203 0.141	0.080 0.042	500.85 512.83	0.000
		5 6 7	0.203 0.141	0.042	512.83	
	' .	6 7	0.141			0.000
		7		0.130	519 G1	
	1 🔳	i	0 150			0.000
		Q		0.181	525.24	0.000
	1 🔟		0.220	0.155	539.57	0.000
		9	0.333	0.169	572.38	0.000
	' <u>_</u>	10	0.466	0.217	637.00	0.000
	1 1	11		-0.078	735.45	0.000
	1	12		-0.328	841.84	0.000
	<u> </u>	13		-0.222	918.95	0.000
	1 🖟	14	0.349	0.122	955.78	0.000
! ₽	1 11	15	0.183	0.046	965.87	0.000
	11 1	16		-0.040	966.47	0.000
<u>"</u>	1 1	1	-0.046		967.12	0.000
<u>"</u>	111		-0.080		969.10	0.000
! ¶!	111		-0.058	0.012	970.12	0.000
	1 11	20	0.013	0.030	970.17	0.000
	1 11	21	0.119	0.051	974.55	0.000
	111	22	0.237	0.014	992.08	0.000
	1 1	23		-0.005	1025.6	0.000
	<u>.</u>	24		-0.072	1062.1	0.000
		25		-0.166	1083.0	0.000
	:	26	0.123	0.124	1087.8	0.000
30	100	i	-0.012	0.033	1087.8	0.000
!	1 10	i	-0.116		1092.1	0.000
	111	i	-0.169 -0.166	0.101	1101.2	0.000
			-0.110		1110.0 1113.9	0.000
7	ul i		-0.021		1114.1	0.000
		33		-0.033	1116.4	0.000
		34		-0.020	1127.4	0.000
	ili	35	0.164	0.033	1147.9	0.000
	illi.	36		-0.044	1167.1	0.000
	111	37		-0.037	1175.0	0.000
il 1	ili	38	0.031	0.021	1175.3	0.000
	ı ı	1000	-0.091		1178.0	0.000
	i i		-0.188		1189.8	0.000
	111	i	-0.243		1209.6	0.000
	1 1		-0.242	0.098	1229.4	0.000
	ıΓ		-0.192		1241.8	0.000
	101	i	-0.105	0.078	1245.6	0.000
7, 1	ıΓι	i	-0.002		1245.6	0.000
	1 1	46		-0.049	1248.6	0.000
	1 1	47		-0.038	1256.1	0.000
	1]1	48	0.133	0.011	1262.3	0.000

(b)

No. AR(1) model cannot be a good fit for the raw data because of the clear seasonal pattern of the data. The ACF of stationary AR(1) model should decreases exponentially.

(c)

Below is the ACF of adjusted rates. The seasonal pattern disappears since this data is seasonally adjusted. The season factor is excluded in the data.

Date: 01/14/24 Time: 09:59 Sample: 2000M01 2023M10 Included observations: 285

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	1	1	0.943	0.943	256.14	0.000
	- III -	2	0.880	-0.085	479.95	0.000
		3	0.802	-0.163	666.68	0.000
	1 11	4	0.732	0.033	822.55	0.000
	1 11	5	0.667	0.021	952.41	0.000
	1 🗓	6	0.617	0.080	1064.0	0.000
	1 1	7	0.574	0.013	1161.0	0.000
	1 1	8	0.544	0.059	1248.5	0.000
	10 1	9	0.511	-0.064	1325.8	0.000
	1 [1	10	0.483	0.026	1395.1	0.000
i 📰	Щi	11	0.449	-0.051	1455.2	0.000
Ü	3 🖟	12	0.425	0.085	1509.4	0.000
9	-	13	0.375	-0.248	1551.7	0.000
1	1 🔳	14	0.351	0.241	1588.9	0.000
Ü ,	1 11	15	0.329	0.028	1621.8	0.000
Ü	10 1	16	0.313	-0.055	1651.5	0.000
	II (17	0.288	-0.091	1676.8	0.000
· 🔚	II 1	18	0.256	-0.095	1697.0	0.000
i 🗐	1[1	19	0.216	-0.028	1711.4	0.000
i 🔳	1 11	20	0.183	0.037	1721.7	0.000
0	1 🗓	21	0.151	0.067	1728.8	0.000
	1 1	22	0.131	0.001	1734.1	0.000
	1 [] i	23	0.109	-0.044	1737.8	0.000
i ji	1 🔟	24	0.107	0.085	1741.4	0.000
ı D ı		25	0.080	-0.177	1743.4	0.000
ı D ı	1 🔟	26	0.075	0.108	1745.2	0.000
i ji li	1 🔳	27	0.073	0.122	1746.9	0.000
i ju r	1 1	28	0.077	0.004	1748.8	0.000
0 🗓 0	1 11	29	0.081	0.037	1750.9	0.000
ı ji li	1[1	30	0.086	-0.022	1753.3	0.000
' J D'	1[[1	31	0.086	-0.042	1755.7	0.000
	10 1	32	0.087	-0.061	1758.1	0.000
1 01	101	33	0.074	-0.053	1759.9	0.000
1 🗓 1	101	34	0.055	-0.060	1760.9	0.000
i j i	1 1	35	0.026	0.016	1761.1	0.000
1 1	1 1	36	0.007	0.016	1761.1	0.000
11/2	111		-0.024		1761.3	0.000
1 1	1 1		-0.032	0.011	1761.6	0.000
111	3 1		-0.036		1762.1	0.000
1 1	1 1		-0.038		1762.5	0.000
1∮ 1	10 1		-0.045		1763.2	0.000
' <u>¶</u> '	1]]1		-0.051	0.048	1764.1	0.000
<u>'</u>	1 1			-0.025	1765.4	0.000
91	1 1		-0.068	0.010	1767.0	0.000
<u>"</u> "	1 1		-0.080		1769.2	0.000
<u>"</u>	'	200	-0.092		1772.1	0.000
<u> </u>	1 1		-0.113		1776.5	0.000
1	1[1	48	-0.125	0.004	1781.9	0.000

(d)

Below is the summary of AR(1) model.

Dependent Variable: R1 Method: Least Squares Date: 01/14/24 Time: 11:08

Sample (adjusted): 2000M03 2023M10 Included observations: 284 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.000214	0.000179	1.196775	0.2324
R1(-1)	0.943315	0.019567	48.21049	0.0000
R-squared	0.891799	Mean depen	dent var	0.004040
Adjusted R-squared	0.891415	S.D. depend	0.008188	
S.E. of regression	0.002698	Akaike info c	-8.985419	
Sum squared resid	0.002053	Schwarz crite	erion	-8.959722
Log likelihood	1277.929	Hannan-Quir	nn criter.	-8.975116
F-statistic	2324.251	Durbin-Wats	on stat	1.837601
Prob(F-statistic)	0.000000			

(e)Below is the ACF of residuals.

Date: 01/14/24 Time: 11:16 Sample: 2000M01 2023M10 Included observations: 284

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı j ı	1 0	1	0.081	0.081	1.8918	0.169
r jii	1 🛅	2	0.147	0.141	8.1011	0.017
i (i	10 1	3	-0.040	-0.064	8.5705	0.036
i l i	1[1	4	-0.024	-0.039	8.7421	0.068
		5	-0.101	-0.084	11.718	0.039
i l i	1 1	6	-0.042	-0.022	12.236	0.057
(10 1	7	-0.091	-0.064	14.674	0.040
i þ i	1 1	8	0.047	0.061	15.331	0.053
10 1	1[1	9	-0.041	-0.036	15.837	0.070
ı þi	1 1	10	0.069	0.045	17.234	0.069
((11	-0.083	-0.091	19.297	0.056
i 🛅	1	12	0.248	0.246	37.665	0.000
I		13	-0.210	-0.254	50.942	0.000
r r	111	14	-0.001	-0.019	50.943	0.000
i (i	1 1	15	-0.034	0.054	51.296	0.000
i j i	1 1	16	0.068	0.069	52.683	0.000
1 🔃	1 🗓	17	0.061	0.072	53.816	0.000
ı j i	1 1	18	0.072	0.008	55.407	0.000
101	1 1	19	-0.052	-0.060	56.247	0.000
i ji	10 1	20	-0.015	-0.080	56.316	0.000
4	1 1	21	-0.085	0.000	58.548	0.000
r] t	1 1	22	0.025	0.030	58.746	0.000
— 1		23	-0.167	-0.110	67.456	0.000
i 🔳	1	24	0.205	0.164	80.604	0.000
I .		25		-0.136	91.576	0.000
141	<u> </u>		-0.036	-0.119	91.981	0.000
□ 【 1	1 1		-0.048	0.000	92.708	0.000
1 1	111		-0.013		92.760	0.000
E I	1 1	29	-0.000	0.016	92.760	0.000
1]]1	1 🗓 1	30	0.048	0.044	93.493	0.000
I I	1 🖟	31	0.008	0.069	93.514	0.000
	1 11	32	0.114	0.034	97.684	0.000
ı D ı	1 1	33	0.064	0.054	99.012	0.000
<u> </u>	1 1	34		-0.030	101.00	0.000
I	1 1	35		-0.012	103.11	0.000
1 🗦	1 1	36	0.102	-0.014	106.51	0.000

(f)

No. The residuals are possibly correlated. Lag 12 and Lag 13 are highly correlated. Hence, AR(1) model is not a good fit.

(g)

We fit an AR(13) model. Below is the ACF of residuals. We can see that only Lag 24 has slightly larger correlation. Based on residual diagnostics, AR(13) model fits the data better.

Date: 01/17/20 Time: 07:47 Sample: 2000M02 2019M10 Included observations: 237

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 11	[r]n	1	0.066	0.066	1.0462	0.30
1 1	1 1	2	0.022	0.018	1.1676	0.55
111	1(1)	3	-0.001	-0.003	1.1677	0.76
11/1	1 11		-0.017		1.2360	0.87
111	1 1	1	-0.028		1.4248	0.92
111	1 11		-0.012		1.4601	0.96
	i rir	7	0.009	0.011	1.4797	0.98
n i c	i rh	8	0.014	0.013	1.5307	0.99
111	1 11	9	-0.006		1.5396	0.99
111	i ili		-0.013		1.5837	0.99
1 11	111	11	0.039	0.041	1.9661	0.99
1 6 1	i ngi	A. Committee	-0.067		3.0794	0.99
al I	i di		-0.114		6.3826	0.93
il i	1 7	1 - 3 - 3 - 3	-0.028		6.5767	0.95
a la	1 11	15	0.016	0.024	6.6426	0.96
1 11	r in	16	0.053	0.052	7.3588	0.96
i lin	1 (6)	17	0.094	0.083	9.6230	0.91
151	1 15	18	0.048	0.028	10.217	0.92
i i i	i iii	100	-0.025		10.374	0.94
i d i	i ili		-0.051		11.061	0.94
ili.	1 11		-0.030		11.293	0.95
1 1	1 11	22	0.022	0.029	11.426	0.96
ı ı	l di		-0.050		12.080	0.96
		24	0.215	0.231	24.427	0.43
idi		-25-	-0.068		25.678	0.43
			-0.123		29.764	0.42
		1000	-0.123		30.983	0.27
	1 11	10000			31.262	0.30
111	1 16	29	-0.032 0.034	0.012	31.586	0.30
di	1 16	10000				
1012	4 1ES 3		-0.007	0.027	31.601	0.38
1 <u> </u> 1	1 18	31	0.057	0.069	32.488	0.39
! 만		32	0.089	0.058	34.698	0.34
! 🖪	! ! P!	33	0.130	0.093	39.410	0.20
1 1	112	34	0.032	0.008	39.702	0.23
1 []		35		-0.012	40.014	0.25
11	1 2:	36	0.000	0.031	40.014	0.29
	9		-0.169		48.095	0.10
1 1 1	111	1	-0.039		48.519	0.11
1 11	111	39	0.063	0.036	49.657	0.11
'_ !	الآن ا	40	0.100	0.071	52.551	0.08
10 1	Q 1	41	-0.063		53.704	0.08
111	112	42	0.026	0.049	53.898	0.10
101	1 1		-0.058		54.880	0.10
1 🗓 1	1 11	1	-0.048		55.548	0.11
T.	1.11	1 100	-0.011	0.047	55.585	0.13
1 11	1 11	46	0.069	0.076	56.999	0.12
1 1	131	4 2 3	-0.012		57.040	0.15
1 1 1	100	148	-0.018	-0.100	57.137	0.17

(h)

We plot the fitted value against the real data.

Forecast: R1F Actual: R1 Forecast sample: 2000M01 2023M11 Adjusted sample: 2001M03 2023M11 Included observations: 273 Root Mean Squared Error 0.001831 Mean Absolute Error Mean Abs. Percent Error 64.47299 Theil Inequality Coefficient 0.143578 Bias Proportion 0.000000 Variance Proportion 0.025192 Covariance Proportion 0.974808 Theil U2 Coefficient 0.631151 Symmetric MAPE 39.87664

(i)

One step ahead out of sample forecast is 0.0058 and the 95% prediction interval is [0.0005, 0.0111].

Problem 3

(a)

From

$$Y_t = 0.1 + 0.99Y_{t-1} + \varepsilon_t$$

we have

$$\mu_Y = 0.1 + 0.99 \mu_Y$$
$$\sigma_Y^2 = 0.99^2 \sigma_Y^2 + 0.5^2$$

Hence

$$\mu_Y = 10, \quad \sigma_Y^2 = \frac{2500}{199}$$

(b)

The histogram is shown below.

Histogram of estimated AR(1) parameter

The red line represents the true value, 0.99.

(c)

The mean value of our estimated parameter is 0.9386, which is smaller than the true value (0.99). We can conclude that the least squares estimator is biased for AR(1) model and the finite sample bias makes the mean of estimator shrinks to zero in this case.

Problem 4

(a)

Take expectation and get

$$\mu = \frac{0.5}{1 - 1.3 + 0.45} = \frac{10}{3}$$

Write Yule–Walker equations

$$\begin{cases} \gamma_0 &= 1.3\gamma_1 - 0.45\gamma_2 + 0.5^2 \\ \gamma_1 &= 1.3\gamma_0 - 0.45\gamma_1 \\ \gamma_2 &= 1.3\gamma_1 - 0.45\gamma_0 \end{cases}$$

The solution is

$$\gamma_0 = \frac{580}{363}, \quad \gamma_1 = \frac{520}{363}, \quad \gamma_2 = \frac{415}{363}$$

(b)

The lag polynomial is

$$\phi(L) = 1 - 1.3L + 0.45L^2$$

The roots are

$$L = \frac{1}{9}(13 \pm \sqrt{11}i)$$

This process is covariance stationary as the inverse of roots lie inside the unit circle.

(c)

Yes. ε_t are Gaussian implies that y_t follows Gaussian distribution. Thus, for any k>0, the joint distribution of (y_t, \cdots, y_{t-k}) follows a multivariate Gaussian distribution with mean $(\mu, \cdots, \mu)^T$ and covariance matrix Σ , where $\Sigma_{ij} = \gamma_{|i-j|}$. Hence, the process is strong stationary.

(d)

Let

$$B = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}, \quad F = \begin{bmatrix} 1.3 & -0.45 \\ 1 & 0 \end{bmatrix}, \quad \nu_t = \begin{bmatrix} \varepsilon_t \\ 0 \end{bmatrix}, \quad \xi_t = \begin{bmatrix} y_t \\ y_{t-1} \end{bmatrix}$$

Then, write companion form vector AR(1) representation

$$\xi_t = B + F\xi_{t-1} + \nu_t$$

(e)

The eigenvalues are roots of

$$\lambda^2 - 1.3\lambda + 0.45 = 0$$

Hence, eigenvalues of F are

$$\lambda_1 = \frac{1}{20}(13 + \sqrt{11}i), \quad \lambda_2 = \frac{1}{20}(13 - \sqrt{11}i)$$
 (1)

Then, we can solve eigenvectors from $F - \lambda_i I = 0$ for i = 1, 2. The result is

$$u_1 = \begin{bmatrix} \frac{1}{20}(13 + \sqrt{11}i) \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} \frac{1}{20}(13 - \sqrt{11}i) \\ 1 \end{bmatrix}$$

(f)

From the result of (e), we have

$$F=U\Lambda U^{-1}$$

where

$$U = \begin{bmatrix} \frac{1}{20}(13 + \sqrt{11}i) & \frac{1}{20}(13 - \sqrt{11}i) \\ 1 & 1 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

The *k*th IRF is determined by the (1,1) element of F^k . Using $F^k = U\Lambda^k U^{-1}$, *k*th IRF is given by

$$F^{k}(1,1) = -\frac{10}{\sqrt{11}}i \times \lambda_{1}^{k+1} + \frac{10}{\sqrt{11}}i \times \lambda_{2}^{k+1}$$

 λ_1 , λ_2 are given in part (e).