Building SUSY models II: using superfields

Seminar on Supersymmetry and its breaking

Matteo Zortea

Universität Heidelberg, May 19, 2022

Coordinated by prof. Joerg Jäckel

Main points of the talk

 Apply the superspace formalism and show why it is useful to build SUSY theories

• Principles to construct SUSY lagrangians

• SUSY gauge theories: QED and QCD

• SUSY predictions: particles, interaction, masses, ...

D and F terms of the superfields

Chiral superfields $\bar{D}_{\dot{\alpha}}\Phi = 0$ or $D_{\alpha}\Phi^* = 0$

$$\Phi(x,\theta,\bar{\theta}) = \phi(x) + i\bar{\theta}\bar{\sigma}^{\mu}\theta\partial_{\mu}\phi(x) + \frac{1}{4}\theta\theta\theta\dagger\bar{\theta}\partial_{\mu}\partial^{\mu}\phi(x) + \sqrt{2}\theta\psi(x)$$
$$-\frac{i}{\sqrt{2}}\theta\theta\bar{\theta}\bar{\sigma}^{\mu}\partial_{\mu}\psi(x) + \theta\theta F(x)$$
$$\Phi^* = blablabla$$

A priori Φ and Φ^* (hence the components) are independent.

Vector superfields

$$V(x, \theta, \bar{\theta}) = longstuff$$

Remember that

$$\delta_{\epsilon}F, \delta_{\epsilon}F', \delta_{\epsilon}D$$

are total derivatives!

 \Rightarrow Use F terms of chiral superfields and D terms of vector superfields to build SUSY invariant lagrangians!

$$\mathcal{L}[\Phi, V] = [V]_D + [\Phi]_F + [\Phi^*]_F$$

How can we "pick" only the terms we need? \rightarrow Grassman integration

$$[V]_D = \int d^2\theta \ d^2\bar{\theta} V(\theta, \bar{\theta})$$
$$[\Phi]_D = \int d^2\theta \ \Phi(\theta, \bar{\theta})_{|_{\bar{\theta}=0}}$$

Thus, our lagrangian will be of the form

$$\mathcal{L}[\Phi, V] = \int d^2\theta \ d^2\bar{\theta} V(\theta, \bar{\theta}) + \int d^2\theta \ \Phi(\theta, \bar{\theta})|_{\bar{\theta}=0} + \int d^2\bar{\theta} \ \Phi^*(\theta, \bar{\theta})|_{\theta=0}$$

4

noname

Let us focus for a moment on the first term Our building blocks are the chiral superfields and a vector field can be obtained by taking the product $\Phi^*\Phi$

$$\Phi(x,\theta,\bar{\theta}) = \phi(x) + i\bar{\theta}\bar{\sigma}^{\mu}\theta\partial_{\mu}\phi(x) + \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial_{\mu}\partial^{\mu}\phi(x) + \sqrt{2}\theta\psi(x) - \frac{i}{\sqrt{2}}\theta\theta\bar{\theta}\bar{\sigma}^{\mu}\partial_{\mu}\psi(x) + \theta\theta F(x)$$

$$\Phi^{*}\Phi = \dots$$

Now "select" the SUSY invariant component

$$\begin{split} [\Phi^*\Phi]_D &= \int d^2\theta d^2\bar{\theta} \,\, \Phi^*(x,\theta,\bar{\theta}) \Phi(x,\theta,\bar{\theta}) \\ &= \boxed{-\partial^\mu \phi^* \partial_\mu \phi + i \psi^\dagger \bar{\sigma}^\mu \partial_\mu \psi + F^* F} + \text{total derivative} \end{split}$$

→ Free Wess-Zumino model!

Let us introduce again the F-terms and let us try to generalize a bit. Remembering the definitions of chiral superfields

$$\bar{D}_{\dot{\alpha}}\Phi=0$$
 $D_{\alpha}\Phi^*=0$

we note that any analytic function of chiral superfields is in turn a chiral superfield (power series expansion and product rule).

 \Rightarrow Write our chiral term of N fields as

$$W(\lbrace \Phi_k \rbrace) = \sum_{i}^{N} M_i \Phi_i + \sum_{i,j}^{N} \frac{1}{2!} M_{ij} \Phi_i \Phi_j + \sum_{i,j,k}^{N} \frac{1}{3!} M_{ijk} \Phi_i \Phi_j \Phi_k$$

Higher order terms are non-renormalisable

Full Wess-Zumino model

$$\mathcal{L}_{WZ}(\{\Phi_{i}\}, \{\Phi_{i}^{*}\}) = \mathcal{L}_{WZ,D} + \mathcal{L}_{WZ,F} =$$

$$= \left[\Phi^{*i}\Phi^{i}\right]_{D} + \left[W(\{\Phi_{i}\})\right]_{F} + \left[W^{*}(\{\Phi_{i}^{*}\})\right]_{F} =$$

$$= \int d^{2}\theta - \frac{1}{4}\overline{DD}\Phi^{*i}\Phi_{i} + \left[W(\{\Phi_{i}\})\right]_{F} + \int d^{2}\bar{\theta} \left[W^{*}(\{\Phi_{i}^{*}\})\right]_{F}$$

Equations of motion varying w.r.t. Φ_i and Φ_i^*

$$0 = -\frac{1}{4}\overline{DD}\Phi^{*i} + \frac{\delta W}{\delta\Phi_i}$$
$$0 = -\frac{1}{4}DD\Phi_i + \frac{\delta W^*}{\delta\Phi^{*i}}$$

7

Let us introduce (abelian) gauge interactions.

Let us start with U(1) global symmetry

$$\Phi_i \rightarrow e^{iq_i\Lambda_i}\Phi_i$$

The kinetic part of the lagrangian is always invariant

$$\mathcal{L}_{K}=\mathcal{L}_{WZ,D}=\int d^{2} heta d^{2}ar{ heta}\Phi^{*}\Phi=\int d^{2} heta-rac{1}{4}\overline{DD}\Phi^{*}\Phi$$

The interaction part

$$\mathcal{L}_{\mathit{int}} = \mathcal{L}_{\mathit{WZ},\mathit{F}} = \int d^2\theta \frac{1}{2} \sum_{ij} \phi_i \phi_j + \frac{1}{3!} \sum_{ijk} \phi_i \phi_j \phi_k + \text{complex. conj.}$$

requires

$$m_{ij} = 0$$
 or $y_{ijk} = 0$

whenever

$$q_i + q_j \neq 0$$
 or $q_i + q_j + q_k \neq 0$

Promote to a local gauge symmetry

$$\Lambda \to \Lambda(x, \theta, \bar{\theta})$$

- Gauge parameter is now a supergauge field $\Lambda = \Lambda(x, \theta, \bar{\theta})$
- Promote derivatives to covariant derivatives $\partial_{\mu} o D_{\mu} = \partial_{\mu} + \textit{ieA}_{\mu}$
- We need $\Lambda(x, \theta, \bar{\theta})$ to be a left-chiral superfield if we want Φ' to be a left-chiral superfield (chain rule).
- Thus this causes a problem in the kinetic term because Λ^* is a right-chiral superfield hence obviously $\Phi'^*\Phi' \neq \Phi^*\Phi$
- The problem is analogous to the kinetc term in "normal" when $\partial_u\phi^*\partial^\mu\phi$ was not gauge invariant
- Solution: add a term that compensate the gauge for the non invariant terms

$$\Phi^+\Phi \rightarrow \Phi^* e^{-i\Lambda^*(x)} e^{i\Lambda(x)} \Phi$$

 \Rightarrow need an object A such that $A'=e^{i\Lambda*}Ae^{-i\Lambda}$ and the quantity $\Phi^*A\Phi*$ is then gauge invariant.

Remember that a vector superfield V transforms according to

$$V \rightarrow V' = V + i\Lambda * -\Lambda$$

$$\Rightarrow$$
 $A = e^V$ is what we need.

Now we are just left with finding the gauge-invariant strength field term (euivalent of $F_{\mu\nu}F^{\mu\nu}$)

Let us start by defining the two chiral fields

$$W_{\alpha} = -\frac{1}{4}\overline{D}\overline{D}D_{\alpha}V, \quad \overline{W}_{\dot{\alpha}} = -\frac{1}{4}DD\bar{D}_{\dot{\alpha}}V$$

where V is a vector field.

The gauge-invariant dynamical term (equivalent to $F_{\mu\nu}F^{\mu\nu}$) is

$$[W]_F + [\bar{W}]_F = \int d^2\theta W_\alpha W^\alpha + \int d^2\bar{\theta} \bar{W}_{\dot{\alpha}} \bar{W}^{\dot{\alpha}}$$

The explicit derivation is quite long (it will be put in the report appendix) but we can make two checks to get more convinced

- Check that it is indeed gauge invariant
- Check that it contains the "normal" gauge strength field $F_{\mu\nu}F^{\mu\nu}$ after integrating out θ and $\bar{\theta}$

To see that it is gauge invariant:

$$\begin{split} \mathcal{W}_{\alpha} \to -\frac{1}{4}\overline{DD}D_{\alpha}\left[V + i\left(\Omega^* - \Omega\right)\right] &= \mathcal{W}_{\alpha} + \frac{i}{4}\overline{DD}D_{\alpha}\Omega \\ &= \mathcal{W}_{\alpha} - \frac{i}{4}\bar{D}^{\dot{\beta}}\left\{\bar{D}_{\dot{\beta}}, D_{\alpha}\right\}\Omega \\ &= \mathcal{W}_{\alpha} + \frac{1}{2}\sigma^{\mu}_{\alpha\dot{\beta}}\partial_{\mu}\bar{D}^{\dot{\beta}}\Omega \\ &= \mathcal{W}_{\alpha} \end{split}$$

Remember that in the Wess-Zumino gauge the field expansion takes the form

$$\begin{split} V(y,\theta,\bar{\theta}) &= \theta^{\dagger} \bar{\sigma}^{\mu} \theta A_{\mu}(y) + \theta^{\dagger} \theta^{\dagger} \theta \lambda(y) + \theta \theta \theta^{\dagger} \lambda^{\dagger}(y) + \\ &\frac{1}{2} \theta \theta \theta \theta^{\dagger} \theta^{\dagger} \left[D(y) + i \theta_{\mu} A^{\mu}(y) \right] \end{split}$$

Hence

$$W = \dots$$

Finally

$$\frac{1}{4} \left[\mathcal{W} \mathcal{W} \right]_F + \frac{1}{4} \left[\overline{\mathcal{W} \mathcal{W}} \right]_F = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \lambda^\dagger \bar{\sigma}^\mu \partial_\mu \lambda + \frac{1}{2} D^2$$

We recovered the desired term $F_{\mu\nu}F^{\mu\nu}$, but what are the other two terms?

The term

$$i\lambda^*\bar{\sigma}^\mu\partial_\mu\lambda$$

is just the superpartner of the photon, the *photino*! For the other term, we can show that it palys no physical role (as the F term in the chiral fields). To do this we need to spot all the D dependence in our lagrangian.

Remembering that up to now our lagrangian is

$$\mathcal{L} = \frac{1}{4} \left[\mathcal{W} \mathcal{W} \right]_F + \frac{1}{4} \left[\overline{\mathcal{W} \mathcal{W}} \right]_F + \left[\Phi^* e^V \Phi \right]_D + \left[W(\Phi) \right]_F + \left[\overline{W}(\Phi^*) \right]_F$$

once can note that the only other dependence on D is in $\left[\Phi^*e^V\Phi\right]_D=\Phi^*\Phi D.$ Hence the equation of motions for D are

$$0 = \frac{\partial \mathcal{L}}{\partial D} = D + \Phi * \Phi$$

Putting all together we get the SUSY QED lagrangian

$$\mathcal{L} = \dots$$

To this we add another SUSY and supergauge invariant term $2[kV]_D = 2kD$ (e.o.m. is still algebraic) This term is called Fayet-Iliopoulos and it will play an important role in the spontaneous SUSY breaking (next talks)

$$\mathcal{L}_{SQED} = \dots$$

Non abelian gauge theories

Now extend to generic gauge theories, in particular SU(n). In spacetime:

- $n^2 1$ generators $T_1, \ldots, T_{n^2 1}$ (gauge fields)
- for n = 3 we have 8 fields (gluons)
- $[T_a, T_b] = i f_{abc} T_c$ where f_{abc} are called structure constants
- $U \in SU(n) \Rightarrow U = \exp(igA^aT^a)$
- Covariant derivatives in spacetime are

$$D_{\mu}=\partial_{\mu}-i{
m g}{
m A}_{\mu}=\partial_{\mu}-i{
m g}{
m A}_{u}^{
m a}{
m T}^{
m a}$$

In spacetime, guided by the fact that for U(1) we had

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \frac{i}{e} \left[D_{\mu}, D_{\nu} \right]$$

we define our field strength tensor for a general gauge symmetry via

$$F_{\mu\nu} \equiv \frac{i}{g} \left[D_{\mu}, D_{\nu} \right] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ig \left[A_{\mu}, A_{\nu} \right]$$

⇒ how to extend to superspace?

Non abelian gauge theories

Our starting point is again a term like

$$\Phi^* e^A \Phi$$

ightarrow we need to figure out how to set A