Data Understanding

Rita P. Ribeiro Machine Learning - 2022/2023

From previous class ...

Shearer C.: The CRISP-DM model: the new blueprint for data mining, J Data Warehousing (2000)

Today

References

- Aggarwal, Charu C. 2015. Data Mining, the Texbook. Ch 1.1, 1.2, 1.3.
- Moreira, João, et al. 2018. Data Analytics: A General Introduction. Ch 2, Ch 3
- Gama, João, et al. 2015. Data Mining -3rd Ed. Ch 2.
- Wilke, Claus O. 2022. Fundamentals of Data Visualization.

Today

- Data Understanding
 - Data
 - Summarization
 - Visualization

Collection of data objects (cases) described by attributes (features)

- Attribute: a property or characteristic of an object
 - · date, country, temperature, precipitation
- Object: described by a collection of attributes
- It can be structured (e.g. data table) or non-structured (e.g. text)
- It can have non-dependency or dependency between objects (e.g. time, space)

Examples of data sets

- Data tables
 - tabular data, document data, transactional data
- Ordered data
 - · time series, data streams, genetic sequences
- Graphs and networks
 - social networks, transportation networks, molecular structures
- Multimedia
 - · images, audio, maps, video

Types of data sets

- · Nondependency-oriented data
 - the cases do not have any dependencies between them
 - examples: simple data tables, transactions
- Dependency-oriented data
 - implicit or explicit relationships between cases
 - examples: time series, discrete sequences, spatialtemporal data, network and graph data.

A tidy data table with 15 cases described by 4 attributes.

country	year	sex	age	cases
AD	2000	\mathbf{m}	0-14	0
AD	2000	\mathbf{m}	15-24	0
AD	2000	\mathbf{m}	25 - 34	1
AD	2000	\mathbf{m}	35-44	0
AD	2000	\mathbf{m}	45-54	0
$^{\mathrm{AD}}$	2000	\mathbf{m}	55-64	0
AD	2000	\mathbf{m}	65 +	0
AE	2000	\mathbf{m}	0-14	2
\mathbf{AE}	2000	\mathbf{m}	15-24	4
AE	2000	\mathbf{m}	25 - 34	4
AE	2000	\mathbf{m}	35-44	6
AE	2000	\mathbf{m}	45-54	5
AE	2000	\mathbf{m}	55-64	12
AE	2000	\mathbf{m}	65 +	10
AE	2000	\mathbf{f}	0-14	3

Data: Attributes

- Type of Attributes
 - Categorical
 - Numeric
- · Scale of Attributes
 - Nominal
 - Ordinal
 - Interval
 - Ratio

Data: Type of Attributes

Categorical Attributes

- finite number of symbols or names
- if represented by numbers, they don't represent quantities
- no arithmetic operation can be performed on them
- e.g.eye color, t-shirt size

Data: Type of Attributes

Numeric Attributes

- Discrete
 - finite or countably infinite set of values
 - it can take only distinct or separate values
 - e.g. number of students in a class
- Continuous
 - · infinite set of values, real numbers
 - · measurable data
 - e.g. distance, income

Data: Scale of Attributes

Scale of Categorical Attributes

- Nominal
 - there is no relationship between the values
 - only equality is meaningful
 - · e.g. eye color
- Ordinal
 - · there is an order between the values
 - both equality and inequality is meaningful
 - e.g. size ∈ {small, medium, large}

Data: Scale of Attributes

Scale of Numeric Attributes

- Interval
 - · values vary within an interval
 - · equality, inequality and differences are meaningful
 - · the value 0 or scale origin, is defined arbitrarily
 - · there is no absolute zero
 - e.g. calendar year, temperature (°C)

Data: Scale of Attributes

Scale of Numeric Attributes

- Ratio
 - · numbers have an absolute meaning
 - · equality, inequality, differences and ratios are meaningful
 - · there is an absolute zero
 - e.g. number of visits to a hospital, distance, income

Data: Type and Scale of Attributes

In summary

Amount of Information

Attributes		Operations				
Type	Scale	=, ≠	<, ≤, >, ≥	+, -	×, ÷	
Numeric	Ratio	✓	✓	✓	✓	
	Interval	✓	✓	✓		
Categorical	Ordinal	✓	✓			
	Nominal	✓				

Data: Transformation of Attributes

Transformation of attributes

... changing the scale type

- more informative → less informative
 - · loss of information from the original scale
 - e.g. age \rightarrow age group
- less informative → more informative
 - · information limited by the original scale
 - e.g. birth date \rightarrow age at current date

Data: Transformation of Attributes

Transformation of attributes

... maintaining the scale type

- the scale type defines
- summarization and visualization operations
- admissible transformations that yield to equally legitimate representations
- so that genuine patterns from data are discovered

Data: Transformation of Attributes

Examples of transformations maintaining the scale:

- · nominal: any permutation
 - eyecolor: {green, blue, brown} ≡ {blue, brown, green}
- ordinal: monotonic function that preserves the order
 - size: $\{small, medium, large\} \equiv \{36, 38, 40\}$
- · interval: change the origin and the unit
 - temperature: $\{0^{\circ}C, 5^{\circ}C, 10^{\circ}C\} \equiv \{32^{\circ}F, 41^{\circ}F, 50^{\circ}F\}$
- ratio: change the unit
 - distance: $\{0 \text{ km}, 5 \text{ km}, 10 \text{ km}\} \simeq \{0 \text{ mi}, 3 \text{ mi}, 6 \text{ mi}\}$

Data: Important Characteristics

- Dimensionality (i.e. number of attributes)
 - · high dimensional data brings several challenges
- Sparsity
 - only presence counts
- Resolution
 - patterns depend on the scale
- Size
 - type of analysis may depend on size of data

Data: Exploratory Analysis

"First things, first"

- · For any data mining task to succeed,
 - · analyzing and exploring data is essential!
- Summarization and visualization techniques
 - play a crucial role in data understanding and data preparation.

Motivation

- With big data sets it is hard to have an idea of what is going on in the data
- · Data summaries provide overviews of key properties of the data
- · Help selecting the most suitable tool for the analysis
- Describe important properties of the distribution of the values

Common questions in data analysis

- What is the most common value?
- · What is the variability in the values?
- Are there strange values?

Choosing the appropriate data analysis dependends on

- · number of variables: univariate or multivariate
- type of variables: categorical or numeric

Descriptive Statistics

- Frequency
- Location or central tendency
- Dispersion
- Distribution

Frequency

- Absolute (or relative) occurrence of each value
- e.g. nr. of water samples by season

autumn	spring	summer	winter
40	53	45	62
20%	26.5%	22.5%	31%

e.g. exam grades

8	10	11	13	15	17	18
	_	3	-	-	-	_
4%	8%	12%	16%	32%	20%	8%

^{*}For both categorical and numeric variables

Univariate analysis of location

- · Minimum: the lowest value
- · Maximum: the highest value
- Mode*: the most frequent value
- Mean: the average value (sensitive to extremes)

$$\mu_X = \frac{1}{n} \sum_{i=1}^n x_i$$

*For both categorical and numeric variables

Univariate analysis of location

- 1st Quartile (Q₁):
 - the value that is larger than 25% of the values
- Median / 2nd Quartile (Q₂):
 - the value above (below) which there are 50% of the values
- 3rd Quartile (Q₃):
 - the value that is larger than 25% of the values

Univariate analysis of variability or dispersion

- Range: max_x min_x
- Standard Deviation sensitive to extreme values

$$\sigma_X = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_X)^2}$$

- Variance σ_x^2 sensitive to extreme values
- Inter-quartile Range (IQR)
 - It is the difference between the 3rd (Q_3) and 1st (Q_1) quartiles

Frequency

- Contingency tables: cross-frequency of values for two variables
 - · season and size

	autumn	spring	summer	winter
large	11	12	10	12
medium	16	21	21	26
small	13	20	14	24

Multivariate analysis of variability or dispersion

 Covariance Matrix: variance between every pair of numeric variables, i.e. how they vary together;

$$cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

the value depends on the magnitude of the variable.

 Correlation Matrix: correlation between every pair of numeric variables, i.e. how a change in one variable will impact the other;

$$cor(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y}$$

the influence of the magnitude is removed

Multivariate analysis of variability or dispersion

- Pearson Correlation Coefficient (ρ):
 - measures the linear correlation between two variables;
 - it has a value between +1 and -1.

Multivariate analysis of variability or dispersion

· Pearson Correlation Coefficient - cont.

For a given sample of two variables x and y, $\{(x_1, y_1), ..., (x_n, y_n)\}$, the correlation coefficient is defined as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}}$$

where *n* is the sample size, x_i and y_i are the individual sample points and $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the sample mean, the same for \bar{y}

Multivariate analysis of variability or dispersion

- Spearman Rank-Order Correlation Coefficient:
 - measures the strength and direction of monotonic association between two variables;
 - two variables can be related according to a type of non-linear but still monotonic relationship.

Multivariate analysis of variability or dispersion

- Spearman Rank-Order Correlation Coefficient: cont.
 - a rank-based, and non-parametric, version of *Pearson* correlation coefficient;
 - it has a value between +1 and -1;

$$rs_{xy} = r_{rank_x rank_y}$$

 if all n ranks are distinct integers, it can be computed using the popular formula

$$rs_{xy} = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

where $d_i = rank_{x_i} - rank_{y_i}$ is the difference between the two ranks of each observation.

Data Summarization: Outliers

"An outlier is a point that deviates so much from the other data points as to arouse suspicions that it was generated by a different mechanism" (Hawkins, 1980)

- Outliers can be univariate or multivariate
- Statistical Parametric Techniques:
 - univariate case: boxplot definition (Tukey, 1977) is the most used one; any value outside the interval [Q₁ - 1.5 × IQR, Q₃ + 1.5 × IQR]
 - multivariate case: Mahalanobis distance (Mahalanobis, 1936).
- Statistical Non-parametric Techniques
 - · Kernel functions
 - ...

Motivation

- Humans are outstanding at detecting patterns and structures
- Data visualization methods try to explore these capabilities
- · Help detecting patterns and unusual patterns

Main Types of Visualization

- amounts
- distributions
- proportions
- associations

- trends
- · time series
- geospatial data
- uncertainty

Some Graphs

- Barplots
- Piecharts
- Histograms
- · Density Plots
- QQ Plots
- Boxplots
- Scatterplots
- Heatmaps
- Correlograms
- etc.

Consider the people in this room.

- What graph would you choose for plotting
 - · the distribution of ages?
 - the number of individuals by gender?
 - the proportion of individuals by gender?
 - the height and weight of each individual?
 - the height and weight of each individual by gender?

Data Visualization: Amounts

Piecharts

 Display the relative frequency of different values of a categorical variable in the form of a pie.

They are not a good option for comparison purposes

Data Visualization: Amounts

Barplots

- The main purpose is to display a set of values as heights of bars
- It can be used to display the frequency of occurrence of different values of a categorical variable

Data Visualization: Amounts

Barplot with two variables

- dodge
- stacked
- · stacked (percent)

Histograms

- The main purpose is to display how the values of a continuous variable are distributed
- It is obtained as follows:
 - divide the range of the variable into a set of bins (intervals of values)
 - · count the number of occurrences of values on each bin
 - display this number as a bar

Problems with Histograms

- · Histograms may be misleading in small data sets
- The shape of the histogram depends on the number of bins
- How are the limits of the bins chosen? There are several algorithms for this.

- Some of the problems of histograms can be tackled by smoothing the estimates of the distribution of the values. That is the purpose of kernel density estimates
- Kernel estimates calculate the estimate of the distribution at a certain point by smoothly averaging over the neighboring points
- Namely, the density is estimated by

$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

 where K(.) is the kernel — a non-negative function — and h > 0 is a smoothing parameter called the bandwidth.

· Histograms with density estimate

Cumulative Distribution Function (CDF)

• CDF of a random variable X: $F_X(x) = P(X \le x)$

QQ Plots

- Graphs that can be used to compare the observed distribution against the Normal distribution
- Can be used to visually check the hypothesis that the variable under study follows a normal distribution
- · Obviously, more formal tests also exist

Data Visualization: Distributions (cont.)

Boxplots

- · An interesting summary of a variable distribution
- It inform us of the interquartile range and of the outliers (if any)

Scatterplots

 The natural graph for showing the relationship between two numeric variables

 The scatterplot can plot the relationship between two numeric variables and with respect to a categorical variable

Parallel Sets

Plots attributes values for each case (represented as a line)

The order might be important to help identifying groups

Correlograms

· visualization of correlation coefficients by a heatmap

Data Visualization: Trends

Scatterplots

 numerous functions exist to approximate the relationship between two numeric variables; scatter plot helps to perceive the trends

Data Visualization: Trends

Time Series Plots

 moving average and other smoothing functions can be drawn on top of the original time series to perceive trends

Data Visualization: Grouped Data

Graphs with grouped data

- Data sets frequently have categorical variables, which values can be used to create sub-groups of the data.
 - · e.g. the sub-group of male/female clients of a company
- Conditioned plots allow the simultaneous presentation of these sub-group graphs to better allow finding eventual differences between the sub-groups

Data Visualization: Grouped Data

Graphs with grouped data

· groups on one categorical variable

Data Visualization: Grouped Data

Graphs with grouped data

· groups formed by cross-referencing of two categorical variables

Important Notes

- The purpose of data visualization is to convey meaningful information
- Is is very important to give it the right context providing appropriate
 - title
 - axis labels
 - · legends
 - legend titles
 - · other annotations

References

References

- Aggarwal, Charu C. 2015. Data Mining, the Texbook. Springer.
- Gama, João, André Carlos Ponce de Leon Ferreira de Carvalho, Katti Faceli, Ana Carolina Lorena, and Márcia Oliveira. 2015. *Extração de Conhecimento de Dados: Data Mining -3rd Edition*. Edições Sílabo.
- Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. *Data Mining: Concepts and Techniques*. 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
- Moreira, João, Andre Carvalho, and Tomás Horvath. 2018. *Data Analytics: A General Introduction*. Wiley.
- Tan, Pang-Ning, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. Introduction to Data Mining. 2nd ed. Pearson.