КОНСПЕКТ ЛЕКЦИЙ ПО АЛГЕБРЕ

СП6ГУ, МКН, СП ЛЕКТОР: ЧЕПУРКИН КОНТСТАНТИН МИХАЙЛОВИЧ

Оглавление

1	Лекци	я 1
	1.1	Умножение матриц
	1.2	Свойства произведения
	1.3	Линейность
	1.4	Векторные пространства
2	Лекци	я 2
	2.1	Свойства линейной зависимости
	2.2	Базис
	2.3	Размерность
	2.4	Алгебраические и трансцендентные числа
	2.5	Связь с теорией множеств

1 Лекция 1

1.1 Умножение матриц

Замечание. Пусть есть $a_1 \cdot x_1 + a_2 \cdot x_2 + ... + a_n \cdot x_n = b$ и мы хотим записать это выражение

компактно. Тогда удобно было бы, чтобы
$$(a_1,...,a_n)\cdot \begin{pmatrix} x_1\\ ...\\ x_n \end{pmatrix}=a_1\cdot x_1+a_2\cdot x_2+...+a_n\cdot x_n=b.$$

Определение:

$$R$$
 - кольцо, $A \in M_{m \times n}(R), x \in M_{n \times 1}(R) = R^n \Longrightarrow \begin{pmatrix} a_{1*} \\ \dots \\ a_{m*} \end{pmatrix} \cdot x = \begin{pmatrix} a_{1*} \cdot x \\ \dots \\ a_{m*} \cdot x \end{pmatrix} \in R^m = M_{m \times 1}$

Замечание. Ax = b - yдобная запись системы уравнений.

Определение:
$$A \in M_{m \times n}(R), B \in M_{n \times k}(R) \Longrightarrow A \cdot B = A \cdot \left(\left(x_1\right) \dots \left(x_n\right)\right) =$$

$$= \left(A \cdot x_1 \mid \dots \mid A \cdot x_n\right) = C \in M_{m \times k}(R) \text{ или более явно } C_{i,j} = \sum_{k=1}^n A_{i,k} \cdot B_{k,j}$$

Замечание. $\forall A, B \not\Rightarrow A \cdot B = B \cdot A$

Примеры:

1.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$
, Ho $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$

2. Ax = b – как уже говорилось, удобная запись системы линейных уравнений

3.
$$a=\begin{pmatrix}a_1\\\dots\\a_n\end{pmatrix} \leadsto a^T=(a_1,\cdots,a_n)$$
 , тогда $a^T\cdot x$ – скалярное произведение векторов a,x

4. G - граф $\leadsto A(G)$ — матрица смежности. Граф с петлями, ориентированный, (с кратными ребрами)

$$A(G)_{i,j} = \begin{cases} 1, \text{ если есть ребро из } i \text{ в } j \text{ (если граф с кратными ребрами, то меняем на количество)} \\ 0, \text{ если ребра нет} \end{cases}$$

Задача: посчитать число путей из вершины i в вершину j длины $k-a^k_{i,j}$

Решение:
$$k=1:a_{i,j}^1=A(G)_{i,j};\ a_{i,j}^k=(A(G))_{i,j}^k,$$
 т.к $a_{i,j}^k=\sum_{l=1}^n a_{i,l}^{(k-1)}\cdot a_{l,j}$

5. G - ориентированный граф, W(e) — вероятность переезда человека по ребру e, $W(L) = \prod_{e \in L} W(e)$ — вероятность проехать по такому пути.

 $A(G)_{i,j} = W_{i,j}$ (вес ребра из i в j) \Longrightarrow по аналогии $A(G)^k$ - матрица вероятностей после k переездов.

Общая интерпретация (${\it Mapkockas uenb}$) : Сумма весов всех путей длины k.

1.2 Свойства произведения

1. Ассоциативность: (AB)C = A(BC), где $A \in M_{m \times n}, B \in M_{n \times l}, C \in M_{l \times k}$

2.
$$E_n = \begin{pmatrix} 1 & \dots & 0 \\ & \ddots & \\ 0 & \dots & 1 \end{pmatrix}$$
 — единичная матрица

$$A \in M_{m \times n}, E_m \cdot A = A = A * E_n$$

3. Обратный элемент есть не всегда!

Пример:
$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ b_1 & b_2 & \cdots & b_n \end{pmatrix} \neq E$$

1.3 Линейность

Замечание. Логично предположить, что
$$\begin{pmatrix} a_1 \\ \cdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \cdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \cdots \\ a_n + b_n \end{pmatrix}$$

Определение: $A, B \in M_{m \times n}(R) \Longrightarrow (A+B)_{i,j} = A_{i,j} + B_{i,j}$

Свойства:

1.
$$A + B = B + A$$

2.
$$(A+B) + C = A + (B+C)$$

3.
$$0_{m \times n} = \begin{pmatrix} 0 & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & 0 \end{pmatrix} : 0 + A = A + 0 = A$$

4.
$$(-A)_{i,j} = -A_{i,j}$$
; $A + (-A) = -A + A = 0$

5.
$$(A + B) \cdot C = AC + BC$$
 и $C(A + B) = CA + CB$

Замечание. $\lambda(AB) = (\lambda A)B = A(\lambda B)$

Замечание.
$$\begin{cases} A\cdot x=b\\ A\cdot y=c \end{cases} \implies A\cdot (x+y)=b+c$$

Замечание. Решения систем уравнений похожи на диафантовые уравнения:

$$\begin{cases} A \cdot x = b \\ A \cdot x_0 = 0 \ (o \partial \text{нородная}) \end{cases} \implies A \cdot (x + x_0) = b - \text{новое решение}$$

$$\begin{cases} A \cdot x = b \\ A \cdot y = b \end{cases} \implies A \cdot (x - y) = 0$$

Tогда можно попытаться угадать какой-то x и свести задачу κ поиску x_0

Замечание. Рассмотрим $X = \{x \mid A \cdot x = 0\}$ и $x_1, x_2 \in X \Longrightarrow x_1 + x_2 \in X, -x_1 \in X$ и $\lambda \cdot x_1 \in X$. Это похоже на определение подгруппы или идела в R^n .

1.4 Векторные пространства

Определение:

 $V=K^n, K$ - поле и операции:

- 1. $(\lambda, v) \in K \times V \mapsto \lambda v \in V$ умножение на скаляр
- 2. $(v_1, v_2) \in V \times V \mapsto v_1 + v_2 \in V$

А также следующие аксиомы:

- 1. (V, +) абелева группа
- $2. \ \lambda \cdot (v_1 + v_2) = \lambda v_1 + \lambda v_2$
- 3. $(\lambda_1 + \lambda_2) \cdot v = \lambda_1 v + \lambda_2 v$
- 4. $1 \cdot v = v$
- 5. $(\lambda \mu) \cdot v = \lambda(\mu v)$

Векторное (линейное) пространство над полем K — $(V,+,\cdot)/K$

$\underline{\mathit{Примеры:}}$

- 1. K^n векторое пространство над над К
- 2. $M_{m \times n}(K)$ векторное над K
- 3. $\mathbb C$ над $\mathbb R$ или более общая ситуация $K\subseteq L$ (подполе), тогда L векторное над K
- 4. $c([a,b])/\mathbb{R}$
- 5. $c'([a,b]) \subseteq c([a,b])/\mathbb{R}$

Определение: Подпространство $W\subseteq V$ — в.п. над K, если

1.
$$v, u \in W \Longrightarrow (u+v) \in W$$

- 2. $\lambda \in K, v \in W \Longrightarrow \lambda v \in W$
- 3. $0 \in W$ (т.к. иначе $W = \emptyset$ подходит)

 $\ensuremath{\varPipumep}$: $\{x\,|\,A\cdot x=0\}$ — подпространство в K^n

Определение: $\lambda_1,...,\lambda_n\in K; v_1,v_2,...,v_n\in V$ – в.п. $\Longrightarrow \lambda_1v_1+...+\lambda_nv_n$ – линейная комбинация $v_1,v_2,...,v_n$ с коэффициентами $\lambda_1,...,\lambda_n$

Мотивация:

$$V = \mathbb{R}^3$$

- 3 вектора не лежат в одной плоскости $\Longleftrightarrow v = v_1\lambda_1 + v_2\lambda_2 + v_3\lambda_3$
- 3 вектора лежат в одной плоскости \iff $v1 = v_2\lambda_2 + v_3\lambda_3 \iff v_1\lambda_1 + v_2\lambda_2 + v_3\lambda_3 = 0,$ где хотя бы один λ не 0

Определение: $v_1, v_2, ..., v_n \in V$, тогда $v_1, v_2, ..., v_n$ — линейно зависимые, если $\exists \lambda_1, \lambda_2, ..., \lambda_n \in K : \lambda_1 v_1 + ... + \lambda_n v_n = 0$ и не все $\lambda_i = 0$

Определение: $v_1, v_2, ..., v_n \in V$, тогда $v_1, v_2, ..., v_n$ — линейно независимые, если $\nexists \lambda_1, \lambda_2, ..., \lambda_n \in K: \lambda_1 v_1 + ... + \lambda_n v_n = 0$ и не все $\lambda_i = 0$

2 Лекция 2

2.1 Свойства линейной зависимости

Определение: Для пространства K^n следующий набор назовём стандартным базисом:

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Замечание. Очевидно, что этот набор линейно независим. Точно так же работает для матриц, один элемент главной диагонали которых единица.

Замечание. Линейная зависимость в случае двух векторов \Leftrightarrow вектора пропорциональны.

Лемма: $v_1, \dots v_n$ — набор линейно независимых векторов, тогда новый набор векторов $v_1, \dots v_i, v_j + \lambda v_i, \dots v_n, i \neq j$ тоже линейно независим $\forall \lambda$.

Доказательство. Обозначим новый набор векторов как v_i' . Рассмотрим $\sum_{k=1}^n \mu_k v_k' = 0$, надо понять существуют ли такие нетривиальные μ_k .

Раскрыв скобки, получим: $(\sum_{k=1}^n \mu_k v_k) + \mu_j \lambda v_i = 0 \Rightarrow \mu_k = 0 \quad \forall k \neq i \text{ и } \mu_i + \mu_j \lambda = 0 \text{ по линейной независимости векторов} (а значит коэффициенты при всех векторах точно 0). Значит <math>\mu_i = 0$, так как $\mu_j \lambda = 0$.

Мотивация: Доказав факт выше мы получили что-то похожее на элементарное преобразование системы первого типа. Теперь давайте будем двигаться в сторону понятия «размерность». **Теорема:** Для произвольного набора векторов $v_1, \ldots v_n \in V$, и $u_1, \ldots, u_m \in V$, где каждый u_i — это линейная комбинация v. Тогда, если m > n, то набор векторов u_1, \ldots, u_m линейно зависим.

Доказательство. Будем доказывать индукцией по n, m.

База индукции:

n=1, m>2, все $u_i=\lambda_i\cdot v_1$, тогда по факту выше u линейно зависимы.

Индукционный переход: $(n-1, m-1) \to (n, m)$:

Определим $\lambda_{i,j}$ следующим образом: $u_i = \sum_{j=0}^n \lambda_{i,j} v_j$. Найдём вектор u_k : $\lambda_{k,n} \neq 0$, если такого нет, тогда оказывается, что v_n не участвует в разложении ни одного u_i , а значит можем воспользоваться предположением индукции.

Перейдём к доказательству случая, где u_k существует. Посмотрим на новый набор векторов $u' = \left\{ u_i - \frac{\lambda_{i,n}}{\lambda_{k,n}} u_k \mid i \neq k \right\}$. Тогда каждый u'_i выражается через v_1, \dots, v_{n-1} . То есть у нас есть m-1 вектор, каждый из которых выражается через n-1 вектор. А это значит, что данный набор v'_1, \dots, v'_{m-1} линейно зависим по предположению индукции.

Расписав по определению, получим $\sum_{i=0}^{m-1} \mu_i u_i' = 0$, где не все $\mu_i = 0$. Распишем то же самое, но через u_i : $\sum_{i=0}^{m-1} \mu_i u_i + (\sum \dots) u_m = 0$. Получается, что в этой линейной комбинации тоже не все коэффициенты равны нулю, а значит мы доказали линейную зависимость $u_1 \dots u_m$.

2.2 Базис

Определение: Подпространством, порождённым набором векторов $v_1, \dots, v_n \in V$, называется

$$\{\lambda_1 v_1 + \dots \lambda_n v_n \mid \lambda_i \in K\} \le V$$

Далее обозначается как $\langle v_1, \ldots, v_n \rangle$.

<u>Замечание</u> Причём это наименьшее подпространство содержащее v_1, \dots, v_n .

Определение: Если $\langle v_1, \dots v_n \rangle = V$, то набор векторов называется порождающей системой.

Определение: $v_1,\ldots,v_n\in V$ — базис, если:

- $1. v_1, \ldots, v_n$ линейно независимы
- $2. \ v_1, \ldots, v_n$ порождающая V

Лемма: $v_1, \ldots v_n \in V$ является базисом $\Leftrightarrow \forall v \in V \exists ! \lambda_1, \ldots, \lambda_n \colon v = \sum_{i=1}^n \lambda_i v_i$.

Доказательство.

- 1. Пусть набор v линейно зависим, тогда: $\exists \mu \colon \sum_{i=1}^n \mu_i v_i = 0, \exists \mu_j \neq 0$. Тогда расписав любой вектор, воспользовавшись условием, получим $v = \sum_{i=1}^n \lambda_i v_i = \sum_{i=1}^n (\lambda_i + \mu_i) v_i$. То есть мы нашли второе разложение v как линейную комбинацию v_i , что противоречит с единственностью λ . Значит v линейно независим.
- 2. v_1, \dots, v_n порождающая V просто так как любой вектор из V выражается линейной комбинацией векторов из v.

 $\exists \lambda_i \sum_{i=1}^n \lambda_i v_i = V$ Пусть есть две линейные комбинации, дающие $v. \sum_{i=1}^n \lambda_i v_i = \sum_{i=1}^n \mu_i v_i = v.$ Можем вычесть одну из другой, тогда $\sum_{i=1}^n (\lambda_i - \mu_i) v_i = 0 \Rightarrow \lambda_i - \mu_i = 0 \forall i \Rightarrow \lambda_i = \mu_i \forall i.$

<u>Пример:</u> $1, x, x^2, \ldots, x^n, \ldots$ — базис K[x]. Проблема бесконечного базиса в том, что многие факты доказываются сильно сложнее. Поэтому полноценно работать с пространствами, которые имеют бесконечный базис, в рамках этого курса мы не будем, но иногда будем приводить примеры таковых.

Теорема: $u_1, \dots, u_m \in V$ — порождающий набор в $V.v_1, \dots, v_n \in V$ — линейно независимый. Тогда v_1, \dots, v_n можно дополнить до базиса добавив какие-то вектора из u_1, \dots, u_m .

Доказательство. Идея банальна: добавляем по одному и в какой-то момент мы достигнем того, что набор линейно независимым, но ни один вектор из u мы не можем добавить, не сделав набор линейно зависимым.

Посмотрим на количество векторов из u_1, \ldots, u_m , которые не лежат в линейной комбинации в пространстве, порождённом $\langle v_1, \ldots, v_n \rangle \ v_1, \ldots, v_n, u_1, \ldots, u_k$ набор векторов в момент остановки. Хотим понять, что мы получили базис. Заметим, что в $\langle v_1, \ldots, v_n, u_1, \ldots, u_k \rangle$ нельзя добавить ни одно $u_i i > k$, а значит любое u_i выражается через вектора из нашего множества (очевидно). Тогда мы получили следующую цепочку:

$$V \supseteq \langle v_1, \dots, v_n, u_1, \dots, u_k \rangle \supseteq \langle u_1, \dots, u_m \rangle = V$$

Следствие: $v_1, ..., v_n$ — пуст \Rightarrow в любом векторном пространстве есть базис.

2.3 Размерность

Теорема: $V = \langle u_1, \dots, u_m \rangle \Rightarrow$ размер любых двух базисов V одинаков и конечен.

Доказательство. $e_1, \ldots, e_n, f_1, \ldots, f_{\alpha}$ — базисы. Знаем, что все f_j выражаются через e_i и все e_i выражаются через f_j . Допустим $\alpha > n$, тогда f_1, \ldots, f_{α} линейно зависимы(по **теореме 2.1**), а значит f не базис. Для случая $\alpha < n$ всё аналогично.

Определение: V — век. пространство dim V = количество векторов в базисе V.

Определение: V — конечномерное, если $V = \langle v_1, \dots, v_m \rangle$.

Лемма: Если V — конечномерное $U \leq V$, более того $\dim U \leq \dim V$, причём $\dim U = \dim V \Leftrightarrow U = V$.

Доказательство. Возьмём u_1, \ldots, u_k — линейно независимый набор из $U, k \leq \dim V$ так как этот же набор линейно независим и в V. Получаем, что размер любой линейно независимого набора в U не превосходит $\dim V$.

Но для доказательства факта, необходимо доказать, что U — конечномерное пространство. Допустим, что это не так. Тогда возьмём некий линейно независимый набор u_1, \ldots, u_m и будем

дополнять его элементами пространства U так, чтобы набор оставался линейно независимым. Если U не конечномерное пространство, то операцию выше можно повторять бесконечное число раз, а значит в какой-то момент $\dim\langle u_1,\ldots,u_m\rangle$ станет больше $\dim V$. Получили противоречие с $\langle u_1,\ldots,u_m\rangle\subset U\subset V$.

2.4 Алгебраические и трансцендентные числа

Определение: $\alpha \in \mathbb{C}, \alpha$ — алгебраическое, если $\exists p(x) \neq 0 \in \mathbb{Q}[x]$: $p(\alpha) = 0$. Иначе α — трансцендентное.

Если α — алгебраическое, $f(\alpha) = a_0 + a_1 \alpha + \dots + a_n \alpha^n$ Вопрос: $f(\alpha)$ — алгебраическое или нет? Ответ: α — алгебраическое \Rightarrow $f(\alpha)$ — алгебраическое.

Доказательство. Определим векторное пространство над \mathbb{Q} , как $V = \langle 1, \alpha, \alpha^2, \dots, \alpha^n, \dots \rangle = \langle 1, \alpha, \alpha^2, \dots, \alpha^n \rangle \leq \mathbb{C}$. Почему выполняется второе равенство? По алгебраичности $\alpha \exists p(\alpha) = b_0 + b_1 \alpha + \dots + b_n \alpha^n = 0, b_n \neq 0$, тогда $\alpha^n = -\frac{b_0}{b_n} - \frac{b_1 \alpha}{b_n} + \dots + \frac{b_{n-1} \alpha^{n-1}}{b_n}$. Обозначим $\beta = f(\alpha)$ и будем пытаться найти $q(\beta) = 0$. Заметим, что $\beta \in V$, $\beta^2 \in V$, ..., $\beta^n \in V$. Тогда найдём минимальную $k: \beta, \beta^2, \dots, \beta^k$ — линейно зависимы, такой k существует, так как k < n. Ну а линейная зависимость этого набора означает существование нетривиальных $c_0, \dots, c_k: c_0 + c_1 \beta + c_2 \beta^2 + \dots + c_n \beta^n = 0$.

2.5 Связь с теорией множеств

Определение: $U_1, U_2 \leq V \Rightarrow U_1 \cap U_2 \leq V$ и $U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1; u_2 \in U_2\} \in V$

Теорема: V — конечномерное. $U_1, U_2 \leq V$. $\dim U_1 + \dim U_2 = \dim(U_1 + U_2) + \dim(U_1 \cap U_2)$

Замечание. Для трёх подпространств и более она **не работает** по аналогии с формулой включений-исключений.