ECE M116C / CS 151B: Week 3 Section

Instruction Latency

Datapath + Controller

*Images were taken from Hennessy Patterson Book [1].

Latency, Clock Cycle Example

Question: What is the latency for the "beq" instruction?

Mem (I and D) (read)	Reg. File (read)	Reg. File (write)	Mux (any size)	ALU	Gate (any)
300 ps	180 ps	10 ps	20 ps	220 ps	5 ps

Imm Gen	PC (read)	Adder	PC (write)	Mem (D) (write)	Control
40 ps	20 ps	150 ps	20 ps	15 ps	60 ps

Datapath + Controller

*Images were taken from Hennessy Patterson Book [1].

*Images were taken from Hennessy Patterson Book [1].

Performance Metrics

Iron Law: CPU Time

 $CPU\ Time = InstructionCount \times CyclePerInstruction \times CycleTime$

Question: If the CPU time is 2 seconds, the processor clock speed is 1 GHz, and Cycles Per Instruction is 4, what is the Instruction Count?

 $CPU\ Time = InstructionCount \times CyclePerInstruction \times CycleTime$

Question: If the CPU time is 2 seconds, the processor clock speed is 1 GHz, and Cycles Per Instruction is 4, what is the Instruction Count?

$CPU\ Time = InstructionCount \times CyclePerInstruction \times CycleTime$

Answer:
$$2 \sec = InstructionCount * \left(4 \frac{cycles}{instruction}\right) * \left(\frac{1}{1 GHz} * \frac{1 GHz}{10^9 Hz}\right)$$

InstructionCount = 500 million instructions

Question: If the processor clock speed is 1 GHz, and 40% of the instructions take 1 cycle and 60% of the instructions take 2 cycles, and the instruction count is 500 million instructions, what is the CPU time?

 $CPU\ Time = InstructionCount \times CyclePerInstruction \times CycleTime$

Question: If the processor clock speed is 1 GHz, and 40% of the instructions take 1 cycle and 60% of the instructions take 2 cycles, and the instruction count is 500 million instructions, what is the CPU time?

$CPU\ Time = InstructionCount \times CyclePerInstruction \times CycleTime$

Answer:
$$(500 \ mil \ * \frac{10^6}{1 \ mil}) * (0.4 \ * 1 + 0.6 \ * 2) \ cycles \ * (\frac{1}{1 \ GHz} \ * \frac{1 \ GHz}{10^9 \ Hz})$$

0.8 seconds

Project 1: Single Cycle CPU

Pipelining

Thought Experiment

Approach 1:

Time

Approach 2:

Time

Time (in clock cycles)

Program execution order (in instructions)

What is between stages?

- -Flip Flop
 - -Value out (Q) updates on next clock cycle

-Note: for this course, doesn't matter actual implementation. As long as we are

synchronizing data between stages

- -Values that go into Flip Flop?
 - -Data
 - -Control signals

Half Cycle?

-Data stored in register file in the writeback stage of one instruction will be ready in time for the decode stage of another instruction

