COMP9313: Big Data Management

Lecturer: Xin Cao

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 12: Revision and Exam

Revision of Chapters Required in Exam

Topic 1: MapReduce (Chapters 2-4)

Map and Reduce Functions

- n Programmers specify two functions:
 - **map** $(k_1, v_1) \rightarrow \text{list} [\langle k_2, v_2 \rangle]$
 - Map transforms the input into key-value pairs to process
 - | reduce $(k_2, [v_2]) \rightarrow [\langle k_3, v_3 \rangle]$
 - Reduce aggregates the list of values for each key
 - All values with the same key are sent to the same reducer
- n Optionally, also:
 - combine $(k_2, [v_2]) \rightarrow [\langle k_3, v_3 \rangle]$
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic
 - partition (k_2 , number of partitions) \rightarrow partition for k_2
 - ▶ Often a simple hash of the key, e.g., hash(k₂) mod n
 - Divides up key space for parallel reduce operations
 - Grouping comparator: controls which keys are grouped together for a single call to Reducer.reduce() function
- The execution framework handles everything else...

Combiners

- n Often a Map task will produce many pairs of the form (k, v_1) , (k, v_2) , ... for the same key k
 - E.g., popular words in the word count example
- Combiners are a general mechanism to reduce the amount of intermediate data, thus saving network time
 - They could be thought of as "mini-reducers"
- n Warning!
 - The use of combiners must be thought carefully
 - Optional in Hadoop: the correctness of the algorithm cannot depend on computation (or even execution) of the combiners
 - A combiner operates on each map output key. It must have the same output key-value types as the Mapper class.
 - A combiner can produce summary information from a large dataset because it replaces the original Map output
 - Works only if reduce function is commutative and associative
 - In general, reducer and combiner are not interchangeable

Partitioner

- n Partitioner controls the partitioning of the keys of the intermediate map-outputs.
 - The key (or a subset of the key) is used to derive the partition, typically by a *hash function*.
 - The total number of partitions is the same as the number of reduce tasks for the job.
 - This controls which of the m reduce tasks the intermediate key (and hence the record) is sent to for reduction.
- n System uses HashPartitioner by default:
 - hash(key) mod R
- n Sometimes useful to override the hash function:
 - E.g., *hash(hostname(URL)) mod R* ensures URLs from a host end up in the same output file
- n Job sets Partitioner implementation (in Main)

A Brief View of MapReduce

MapReduce Data Flow

MapReduce Data Flow

MapReduce Algorithm Design Patterns

- n In-mapper combining, where the functionality of the combiner is moved into the mapper.
 - Scalability issue (not suitable for huge data): More memory required for a mapper to store intermediate results
- n The related patterns "pairs" and "stripes" for keeping track of joint events from a large number of observations.
- n "Order inversion", where the main idea is to convert the sequencing of computations into a sorting problem.
 - You need to guarantee that all key-value pairs relevant to the same term are sent to the same reducer
- "Value-to-key conversion", which provides a scalable solution for secondary sorting.
 - Grouping comparator

Topic 2: Spark Core and GraphX (Chapters 6 and 7)

Data Sharing in MapReduce

Slow due to replication, serialization, and disk IO

n Complex apps, streaming, and interactive queries all need one thing that MapReduce lacks:

Efficient primitives for data sharing

Data Sharing in Spark Using RDD

10-100× faster than network and disk

What is RDD

- n Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei Zaharia, et al. NSDI'12
 - RDD is a **distributed** memory abstraction that lets programmers perform **in-memory** computations on large clusters in a **fault-tolerant** manner.

n Resilient

Fault-tolerant, is able to recompute missing or damaged partitions due to node failures.

n Distributed

Data residing on multiple nodes in a cluster.

n Dataset

- A collection of partitioned elements, e.g. tuples or other objects (that represent records of the data you work with).
- n RDD is the primary data abstraction in Apache Spark and the core of Spark. It enables operations on collection of elements in parallel.

RDD Operations

- n Transformation: returns a new RDD.
 - Nothing gets evaluated when you call a Transformation function, it just takes an RDD and return a new RDD.
 - Transformation functions include map, filter, flatMap, groupByKey, reduceByKey, aggregateByKey, filter, join, etc.
- n Action: evaluates and returns a new value.
 - When an Action function is called on a RDD object, all the data processing queries are computed at that time and the result value is returned.
 - Action operations include reduce, collect, count, first, take, countByKey, foreach, saveAsTextFile, etc.

RDD Operations

	$map(f: T \Rightarrow U)$: $RDD[T] \Rightarrow RDD[U]$
	$filter(f: T \Rightarrow Bool)$: $RDD[T] \Rightarrow RDD[T]$
	$flatMap(f: T \Rightarrow Seq[U])$: $RDD[T] \Rightarrow RDD[U]$
	sample(fraction : Float)	: RDD[T] ⇒ RDD[T] (Deterministic sampling)
	groupByKey()	: $RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$
	$reduceByKey(f:(V,V) \Rightarrow V)$: $RDD[(K, V)] \Rightarrow RDD[(K, V)]$
Transformations	union()	: $(RDD[T], RDD[T]) \Rightarrow RDD[T]$
	join()	: $(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$
	cogroup()	: $(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$
	crossProduct()	: $(RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$
	$mapValues(f : V \Rightarrow W)$: $RDD[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserves partitioning)
	sort(c: Comparator[K])	: $RDD[(K, V)] \Rightarrow RDD[(K, V)]$
\	<pre>partitionBy(p : Partitioner[K])</pre>	: $RDD[(K, V)] \Rightarrow RDD[(K, V)]$
	count() :	$RDD[T] \Rightarrow Long$
	collect() :	$RDD[T] \Rightarrow Seq[T]$
Actions	$reduce(f:(T,T)\Rightarrow T)$:	$RDD[T] \Rightarrow T$
	lookup(k:K):	$RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs)
	save(path: String):	Outputs RDD to a storage system, e.g., HDFS

GraphX Motivation

n Tables and Graphs are composable views of the same physical data

Each view has its own operators that exploit the semantics of the view to achieve efficient execution

Pregel Operators

like Showerest Harh

```
def pregel[A]
    (initialMsg: A,
    maxIter: Int = Int.MaxValue,
    activeDir: EdgeDirection = EdgeDirection.Out)
    (vprog: (VertexId, VD, A) => VD,
    sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
    mergeMsg: (A, A) => A)
    : Graph[VD, ED] = {
        .......
}
```

- n The first argument list contains configuration parameters including the initial message, the maximum number of iterations, and the edge direction in which to send messages (by default along out edges).
- The second argument list contains the user defined functions for receiving messages (the vertex program vprog), computing messages (sendMsg), and combining messages mergeMsg.

Topic 3: Mining Data Streams (Chapter 8)

- n Types of queries one wants on answer on a data stream: (we'll learn these today)
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last *k* elements of the stream
 - Filtering a data stream
 - Select elements with property x from the stream

Sampling Data Streams

Since we can not store the entire stream, one obvious approach is to store a sample

- n Two different problems:
 - (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - As the stream grows the sample also gets bigger
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - As the stream grows, the sample is of fixed size
 - At any "time" *t* we would like a random sample of *s* elements
 - What is the property of the sample we want to maintain?
 For all time steps t, each of t elements seen so far has equal probability of being sampled

Fixup: DGIM Algorithm

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block sizes (number of 1s) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

- Timestamps:
 - Each bit in the stream has a timestamp, starting from 1, 2, ...
 - Record timestamps modulo N (the window size), so we can represent any relevant timestamp in O(log₂N) bits
 - ▶ E.g., given the windows size 40 (*N*), timestamp 123 will be recorded as 3, and thus the encoding is on 3 rather than 123

Example: Updating Buckets

Current state of the stream: Bit of value 1 arrives Two white buckets get merged into a yellow bucket Next bit 1 arrives, new orange white is created, then 0 comes, then 1: Buckets get merged... State of the buckets after merging

Bloom Filter

- n Consider: ISI = m, IBI = n
- n Use k independent hash functions h_1, \ldots, h_k
- n Initialization:
 - Set **B** to all **0s**
 - Hash each element $s \in S$ using each hash function h_i , set $B[h_i(s)] = 1$ (for each i = 1,..., k)

n Run-time:

- When a stream element with key **x** arrives
 - If $B[h_i(x)] = 1$ for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x

Bloom Filter Example

- n Consider a Bloom filter of size m=10 and number of hash functions k=3. Let H(x) denote the result of the three hash functions.
- n The 10-bit array is initialized as below

0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0

n Insert x_0 with $H(x_0) = \{1, 4, 9\}$

				4					
0	1	0	0	1	0	0	0	0	1

n Insert x_1 with $H(x_1) = \{4, 5, 8\}$

									9
0	1	0	0	1	1	0	0	1	1

n Query y_0 with $H(y_0) = \{0, 4, 8\} = > ???$

n Query y_1 with $H(y_1) = \{1, 5, 8\} => ???$ False positive!

Mek formla in province 5 WME

n Another Example: https://llimllib.github.io/bloomfilter-tutorial/

Topic 4: Finding Similar Items (Chapter 9)

The Big Picture

those pairs of signatures that we need to test for

Shingling

- n A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- n Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
- n Documents that are intuitively similar will have many shingles in common.
 - Example: k=3, "The dog which chased the cat" versus "The dog that chased the cat".
 - Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and h_c.

Min-Hash Signatures

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document C is small ~100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Partition M into b Bands

Hashing Bands

b bands, r rows/band

- n The probability that the minhash signatures for the documents agree in any one particular row of the signature matrix is t ($sim(C_1, C_2)$)
- n Pick any band (*r* rows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = 1 tr
- n Prob. that no band identical = $(1 t^r)^b$
- n Prob. that at least 1 band identical = $1 (1 t^r)^b$

What b Bands of r Rows Gives You

Topic 5: Recommender Systems (Chapter 11)

- n Recommender systems
 - Content-based recommendation
 - Collaborative recommendation
 - User-user collaborative filtering
 - Item-item collaborative filtering
 - BellKor Recommender System (the idea)
 - Matrix Factorization

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Final exam

- n Final written exam (100 pts)
- n Five questions in total on five topics
- n Two hours
- n Closed book exam
- n If you are ill on the day of the exam, do not attend the exam I will not accept any medical special consideration claims from people who already attempted the exam.

Exam Questions

- n Question 1 MapReduce
 - Part A: MapReduce concepts
 - Part B: MapReduce algorithm design
- n Question 2 Spark
 - Part A: Spark concepts
 - Part B: Show output of the given code
 - Part C: Spark algorithm design
 - Spark Core
 - Spark GraphX
- n Question 3 Finding Similar Items
 - Shingling, Min Hashing, LSH
- n Question 4 Mining Data Streams
 - Sampling, DGIM, Bloom filter
- n Question 5 Recommender Systems

myExperience Survey

Give us a grade

UNSW has a new student course survey – myExperience

Look out for your email invitation and for links in Moodle

Fill out the survey to help us improve your courses and teaching at UNSW

Thank you!