

## Exam #2

Monday, November 13 2017

| Duration: 1H20                        |                               |
|---------------------------------------|-------------------------------|
| NAME:                                 |                               |
| Please write clearly and properly. Ju | stify your answers carefully. |

| Problem | Grade |
|---------|-------|
| 1       |       |
| 2       |       |
| 3       |       |
| Total   |       |

**Problem 1** ( $\sim$  8 points).

Let  $S_{10}$  denote the symmetric group on 10 letters. Consider the following permutation  $\sigma \in S_{10}$ :

| (1) | What | are the | orbits | of $\alpha$ | r? |
|-----|------|---------|--------|-------------|----|

| (0) | D: 1.1   | 1            | C           | 11.        | .1         | C                 |
|-----|----------|--------------|-------------|------------|------------|-------------------|
| (2) | Find the | discriminant | of $\sigma$ | and derive | the signat | ure of $\sigma$ . |



(3) Write  $\sigma$  as a product of 2 disjoint cycles:  $\sigma = C_1C_2$ .



|     | Show that for any $k \in \mathbb{N}$ , $\sigma^k = C_1^k C_2^k$ .                                                          |
|-----|----------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
|     |                                                                                                                            |
| (5) | Derive from the two previous questions that $\sigma^k$ is the identity permutation if and                                  |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |
|     | only if $k \in m_1 \mathbb{Z} \cap m_2 \mathbb{Z}$ , where $m_1$ is the length of $C_1$ and $m_2$ is the length of $C_2$ . |

| We recall                | om the previous that the order of that $x^k = e$ , where $x^k = e$ , where $x^k = e$ is the state of the $x^k = e$ is the state of the $x^k = e$ in the state of $x^k = e$ . | f an element | x in a group | G is the smal | lest positive in | ite <sub></sub> |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|------------------|-----------------|
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
| (7) Find $\sigma^{18}$ . |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |
|                          |                                                                                                                                                                              |              |              |               |                  |                 |

| (8) Fin | nd $\sigma^{2017}$ . |                   |  |  |
|---------|----------------------|-------------------|--|--|
| Hir     | nt: 2017 = 12        | $\times$ 168 + 1. |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |
|         |                      |                   |  |  |

| Problem 2 (~ 6 points).                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Let $G$ be a finite group with identity element $e$ . Denote by $N$ the cardinality of $G$ .                                                                       |
| We recall that the order of an element $x \in G$ is the smallest positive integer $k \in \mathbb{N}$ such that $x^k = e$ .                                         |
| NB: If you get stuck on a question, you may skip it and still use the result in the nex questions.                                                                 |
| (1) Show that the order of any element $x \in G$ exists and is a divisor of $N$ .<br>Hint: Consider the subgroup generated by $x$ and use the theorem of Lagrange. |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
| (2) Show that if there exists an element of order $N$ , then $G$ is a cyclic group.                                                                                |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |

| (3) Show that if $N$ is a prime number, then $G$ is a cyclic group.                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
| <ul> <li>(4) Show that if G is a cyclic group, then:</li> <li>If N is odd, there exists no element of order 2.</li> <li>If N is even, there exists exactly one element of order 2.</li> </ul> |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |
|                                                                                                                                                                                               |  |

| eleme    |                       |                  |            | that any transpositer elements of orde |  |
|----------|-----------------------|------------------|------------|----------------------------------------|--|
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
| (6) Show | that $S_n$ is not a c | yclic group unle | ess n = 2. |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |
|          |                       |                  |            |                                        |  |

| <b>Problem 3</b> (~ 2 points).                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------|
| Consider the group $\mathbb{Z}=(\mathbb{Z},+)$ and the direct product $\mathbb{Z}^2=\mathbb{Z}\oplus\mathbb{Z}$ . Consider the map |
| $\varphi\colon \mathbb{Z}^2 \to \mathbb{Z}$                                                                                        |
| $(x,y)\mapsto 2x-3y$ .                                                                                                             |
| Show that $\varphi$ is a group homomorphism. Bonus question: is $\varphi$ a group isomorphism?                                     |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |