Лабораторной работе №2. Задача о погоне

Вариант № 39

Хизриева Рисалат Махачевна. НФИбд-03-19

Содержание

1	Цел	ль лабораторной работы:	.1
2	Зад	дача лабораторной работы:	.1
3	Xo	д работы:	.1
		Условие задачи:	
	3.2	Произведение теоретических рассчетов:	.3
	3.3	Код программы:	3
	3.4	Результаты работы программы	.4
	3.5	Результаты работы программы	.4
4	Вы	ІВОДЫ	5

1 Цель лабораторной работы:

Цель работы - разобраться в алгоритме построения математической модели на примере задачи о погоне.

2 Задача лабораторной работы:

- 1. Изучить условия задачи. Провести теоритические рассуждения используя данные из варианта
- 2. Вывести дифференциальное уравнение, соответствующее условиям задачи
- 3. Написать программу для расчета траектории движения катера и лодки.
- 4. Построить модели.
- 5. Определить по моделям точку пересечения катера и лодки.

3 Ход работы:

Начнем с теоритических рассуждений: Принимаем за $t_0=0$, $X_0=0$ - место нахождения лодки браконьеров в момент, когда их обнаруживают катера береговой охраны. Также $X_0=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки браконьеров. После введем полярные координаты. Будем считать, что полюс - это точка обнаружения лодки браконьеров $x_0=0$ ($\theta=x_0=0$), а полярная ось г проходит через точку нахождения катера береговой охраны. Чтобы

найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса, а за это время лодка пройдет x, в то время как катер x-k (или x+k, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{x+k}{v}$ (для второго случая $\frac{x-k}{v}$). Так как время одно и то же, то эти величины одинаковы.

Тогда неизвестное расстояние можно найти из следующего уравнения: $\frac{x}{v} = \frac{x+k}{v}$ - в первом случае, $\frac{x}{v} = \frac{x-k}{v}$ во втором случае. Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев :

•
$$x_1 = \frac{k}{n+1}$$
,при $\theta = 0$

•
$$x_2 = \frac{k}{n-1}$$
,при $\theta = -\pi$

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_t - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $v = \frac{dr}{dt}$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус $r, vr = r\frac{d\theta}{dt}$ Найдем тангенциальную скорость для нашей задачи $v_t = r\frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t = \sqrt{n^2v_r^2 - v^2}$. Поскольку, радиальная скорость равна v, то тангенциальную скорость находим из уравнения $v_t = \sqrt{n^2v^2 - v^2}$. Следовательно, $v_\tau = v\sqrt{n^2 - 1}$.

• Тогда получаем $r \frac{d\theta}{dt} = v \sqrt{n^2 - 1}$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений, которые будут описаны в коде программы.

3.1 Условие задачи:

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 21 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5.5 раза больше скорости браконьерской лодки

3.2 Произведение теоретических рассчетов:

$$K = 21 \text{ km} \quad t_0 = 0 \quad X_0 = 0$$
 $X_{k0} = k$
 $t_1 = \frac{x_1}{3} \quad t_2 = \frac{k - x_1}{5.50}$

1 carried 2 carried $\frac{x_2}{5.50} = \frac{k + x_2}{5.50}$
 $5.50 \times 1 = 5/(k - x_1)$
 $5.50 \times 2 = 5/(k + x_2)$
 $5.5 \times 1 = k - x_1$
 $5.5 \times 1 = k$
 $5.5 \times 1 = k$

3.3 Код программы:

```
n = 5.5; // разница в скорости между катером береговой охраны и лодкой браконьеров
k = 21; // начальное расстояние между катером береговой охраны и лодкой браконьеров
fi=3*%pi/4;
//функция, описывающая движение катера береговой охраны
function dr=f(tetha, r)
dr=r/sgrt(n*n-1);
endfunction;
//начальные условия в первом случае
r0=k/(n+1);
tetha0=0;
tetha=0:0.01:2*%pi;
r=ode(r0,tetha0,tetha,f)
//функция, описывающая движение лодки браконьеров
function xt=f2(t)
   xt=cos(fi)*t:
endfunction
t=0:1:800:
plot2d(t,f2(t),style = color('red'));// движения катера береговой охраны в полярных координатах
polarplot(tetha,r,style = color('green')); //построение траекториибраконьерской лодки в полярных координатах
//начальные условия во втором случае
r0=k/(n-1);
tetha0=-%pi;
figure();
r=ode(r0,tetha0,tetha,f)
plot2d(t,f2(t),style = color('red'));// движения катера береговой охраны в полярных координатах
polarplot(tetha,r,style = color('green'));//построение траекториибраконьерской лодки в полярных координатах
```

3.4 Результаты работы программы

Точка пересечения красного и зеленого графиков является точкой пересечения катера береговой охраны и лодки браконьеров. Исходя из этого графика, мы имеем координаты: Координаты точки пересечения - (7.51, -5.32)

Lab2 pic1: траектории для первого случая

3.5 Результаты работы программы

Точка пересечения красного и зеленого графиков является точкой пересечения катера береговой охраны и лодки браконьеров. Исходя из этого графика, мы имеем координаты: Координаты точки пересечения - (19.424, -13.735)

Lab2 pic2: траектории для второго случая

4 Выводы

Мы рассмотрели задачу о погоне, также провели анализ с помощью данных которые нам были даны, составили и решили дифференциальные уравнения. Смоделировали ситуацию и сделали вывод, что в первом случае погоня завершиться раньше.