Data Bootcamp Final Project

Data Analysis of NBA Statistics

Topics Covered:

- · Historical Trends
- Relationships Between Statistics/Correlation with Win Shares
- A look into Undervalued, Underplayed, and Strong Performing Players
- Valuation Model and Evaluating Players

Summary:

The purpose of this project is to analyze different NBA statistics to better understand players' values. We downloaded our data from Kaggle at the links below, which were originally extracted from ESPN. This data came out very raw, and we filtered our data for 2017, eliminated duplicates due to trades and salary changes and using the most updated version of each player. We also deleted two empty columns to allow ourselves to more readily manipulate the data. Additionally, we filtered for different positions, minutes, and salaries to look even more closely at the numbers and better compare players.

Before conducting our player analysis, we were curious to see how the NBA has changed over time. We decided to examine how points per season has changed with respect to time and increase of 3-point shots attempted. People tend to believe there is more "isolation" plays now than before, when a player attempts to take on his defender one-on-one, so to assess the validity of this claim we took the 97th percentile Usage Rating for each year and observed how it changed. Contrarily, we saw that the usage rates are actually about the same, suggesting this hypothesis was incorrect.

Next, we examined how different key statistics correlate to win shares. We used this stat because we believe that at the end of the day, a player's value is determined by how he influences his team and delivers them wins. However, players on the same team or with fewer minutes played will inherantly have a lower value of win shares, so we therefore used the correlation coefficients of the key statistics to determine the values of players, using the numbers to weigh the importance of each stat since win shares alone can be biased.

Throughout the project, we adjusted our dataframes to only include players who played an average of at least 2 minutes per game, as we saw players who played minimal minutes sometimes saw extremely high usage rates and efficiency ratings if they happened to accumulate stats during these minutes. We believe that this increased the reliability of our results by eliminating those numbers which were skewed. In analyzing player performances, we took into account the minutes played and salaries earned by each player to find the players who may be undervalued or deserve more minutes.

Finally, we created a valuation model for evaluating players, using our correlation coefficients of the key statistics vs. win shares. We multiplied each statistic by their coefficient and divided it by the number of stats we used in order to get our own version of the wins they bring their team using the average of multiple statistics. This method proved to be effective, as the top players were the all-stars, with the highest valued player also being named Most Valuable Player (MVP) of the NBA for both 2016 and 2017. After looking at the top 20 valued players, we examined the top players at each position and at a low salary mark for each position as well. We believe our findings would be useful for an NBA GM in deciding which players to target and carrying out different transactions.

Team: James Haag and David Chou

Sources:

https://www.kaggle.com/drgilermo/nba-players-stats#Seasons_Stats.cs v
https://www.kaggle.com/whitefero/nba-player-salary-19902017#Player%20-%20Salaries%20per%20Year%20(1990%20-%202017).xlsx.

```
In [1]:
           %matplotlib inline
         1
           import pandas as pd
            pd.set option('display.max columns', 60)
           import matplotlib.pyplot as plt
           import datetime as dt
           import os
           import requests, io
            import zipfile as zf
            import shutil
        10
            import numpy as np
        11 import statsmodels.formula.api as smf
        12 from sklearn.linear model import LinearRegression as reg
        13
            from patsy import dmatrices
           from sklearn.model selection import train test split
            from sklearn.model selection import cross val score
        15
        16 from sklearn.ensemble import RandomForestRegressor as rf
        17
            from sklearn.neighbors import KNeighborsRegressor as knn
        18 plt.style.use('seaborn')
```

```
In [2]: 1 stats = pd.read_csv('Seasons_Stats.csv')
2 stats = stats.drop(columns = ['blanl','blank2','Unnamed: 0'])
```

//anaconda3/lib/python3.7/site-packages/pandas/util/_decorators.py:188: F utureWarning: The `sheetname` keyword is deprecated, use `sheet_name` ins tead

return func(*args, **kwargs)

```
In [4]: 1 stats17 = stats.loc[stats['Year'] == 2017]
2 salary17['Year'] = salary17['Year'].astype(float)
3 # We first had to change salary17's years to float values to merge the
4 stats17 = stats17.merge(salary17[['Player', 'Salary']],on='Player',how='
5 stats17 = stats17.drop_duplicates(subset = 'Player', keep = 'first')
6 # Players who were traded or signed a new salary were counted multiple
7 # most recent values
```

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

```
In [5]:
            stats82gms = stats.loc[stats['Year'] > 1967]
            #We will use this dataframe to accurately compare pt spreads over years
           stats3p = stats.loc[stats['Year'] > 1979]
           #It was not until after 1979 when the 3 point line was introduced in the
           #This will be used in our regression to find the relationship between 3
           statsUSG = stats.loc[stats['Year'] > 1977]
            #When the usage percentages started being recorded
         8 statsBPM = stats.loc[stats['Year'] > 1974]
            #When the Box Plus Minus began being recorded
        10 statsPG = stats.loc[stats['Pos'] == 'PG']
        11 stats17PG = stats17.loc[stats17['Pos'] == 'PG']
        12 statsSG = stats.loc[stats['Pos'] == 'SG']
        13 stats17SG = stats17.loc[stats17['Pos'] == 'SG']
        14 statsSF = stats.loc[stats['Pos'] == 'SF']
        15 | stats17SF = stats17.loc[stats17['Pos'] == 'SF']
        16 statsPF = stats.loc[stats['Pos'] == 'PF']
        17 | stats17PF = stats17.loc[stats17['Pos'] == 'PF']
        18 statsC = stats.loc[stats['Pos'] == 'C']
            stats17C = stats17.loc[stats17['Pos'] == 'C']
        20 #created datasets for each positon, first including all years, then onl
            stats16 = stats.loc[stats['Year'] == 2016]
```

Abbreviation Key:

Year: Season Player: name Pos: Position

Age: Age
Tm: Team
G: Games

GS: Games Started MP: Minutes Played

PER: Player Efficiency Rating

TS%: True Shooting %

3PAr: 3-Point Attempt Rate

FTr: Free Throw Rate

ORB%: Offensive Rebound Percentage
DRB%: Defensive Rebound Percentage

TRB%: Total Rebound Percentage

AST%: Assist Percentage STL%: Steal Percentage BLK%: Block Percentage

TOV%: Turnover Percentage

USG%: Usage Percentage
OWS: Offensive Win Shares

DWS: Defensive Win Shares

WS: Win Shares

WS/48: Win Shares Per 48 Minutes OBPM: Offensive Box Plus/Minus DBPM: Defensive Box Plus/Minus

BPM: Box Plus/Minus

VORP: Value Over Replacement

FG: Field Goals

FGA: Field Goal Attempts
FG%: Field Goal Percentage
3P: 3-Point Field Goals

3PA: 3-Point Field Goal Attempts
3P%: 3-Point Field Goal Percentage

2P: 2-Point Field Goals

2PA: 2-Point Field Goal Attempts
2P%: 2-Point Field Goal Percentage
eFG%: Effective Field Goal Percentage

erds: Effective rieta doar refeentage

FT: Free Throws

FTA: Free Throw Attempts
FT%: Free Throw Percentage
ORB: Offensive Rebounds

DRB: Defensive Rebounds
TRB: Total Rebounds

AST: Assists
STL: Steals
BLK: Blocks
TOV: Turnovers

PF: Personal Fouls

PTS: Points

Looking into Historical League Trends

To better understand the NBA as whole, we examined historical trend s to see how the league has changed over

time. We looked at points scored, its association with 3 pointers a ttempted, and the spread of player roles

over time measured by examining the 97th percentile of Usage Rate f or players in the league for each year

Out[6]: Text(0, 0.5, 'Points Scored')

NOTES: Besides in 1999 and 2012, you can see an overall increase in points over time since the incorporation of the 82 game season in the 1967-1968 season. The drastic declines in 1999 and 2012 were due to lockouts, where players refused to play and only ended up playing 50 and 66

games respectively. We were curious to see if the increase in points per season had to do with the installation of a three point line. Therefore, we found the numbers for three pointers attempted and ran a regression between points and three pointers attempted. Additionally, in 1995, the league decided to move the three point line closer, likely causing the point total to increase as a result, before dmoving it farther from the basket in 1998, leading to a slight decrease in total points.

```
In [7]:
            threes = stats3p.groupby(['Year'])['3PA'].sum().reset_index()
          1
          2
          3
            fig,ax = plt.subplots()
            threes.plot(x='Year', y='3PA', figsize = (12,8), ax=ax)
            #ax.set ylim(100000,300000)
            ax.set_title('3 Pointers Attempted Per Year',size=24)
            ax.set_xlabel('Year', size = 17)
            ax.set_ylabel('3 Pointers Attempted', size = 17)
```

Out[7]: Text(0, 0.5, '3 Pointers Attempted')


```
In [8]:
            pts_and_threes = sumpts.merge(threes)
          1
            pts_and_threes.columns = [['Year','PTS','ThreesAttempted']]
          2
          3
            pts to threes = smf.ols('PTS ~ ThreesAttempted',data=pts and threes).fi
            pts_to_threes.rsquared
In [9]:
```

Out[9]: 0.5157084644243529

```
In [10]: 1 print(pts_to_threes.summary())
```

		OLS Regression Results						
=======================================		=======		=======				
Dep. Variable: 0.516		PTS	R-squared:					
Model:		OLS	Adj. R-squa	red:				
0.502		025	ilaji k bqua					
Method:	Leas	st Squares	F-statistic	:				
38.34								
Date:	Thu, 19	9 Dec 2019	Prob (F-sta	tistic):	3.8			
6e-07								
Time:		19:02:40	Log-Likelih	ood:	-4			
28.06								
No. Observations: 860.1	1	38	AIC:					
Df Residuals:		36	BIC:					
863.4		30	2101					
Df Model:		1						
Covariance Type:		nonrobust						
=======================================								
=======								
	coef	std err	t	P> t	[0.025			
0.975]								
	2 104-105	6007 036	25 020	0.000	1 00-105			
Intercept 2.23e+05	2.104e+05	6007.836	35.020	0.000	1.986+05			
ThreesAttempted	1.0003	0.162	6.192	0.000	0.673			
1.328		0.1.0.2	0.122					
===========				=======				
=====								
Omnibus:		51.723	Durbin-Wats	on:				
1.828								
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	29			
1.294								
Skew:		-3.129	Prob(JB):		5.5			
8e-64								
Kurtosis:		15.034	Cond. No.		7.1			
0e+04								
=======================================		=======	========	=======				

=====

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.1e+04. This might indicate that ther e are

strong multicollinearity or other numerical problems.

```
In [11]: 1 pts_and_threes['yhat'] = pts_to_threes.predict()
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1b5c24e0>

NOTES: There is a positive correlation between three pointers attempted and points scored. This shows that the extra point earned makes up for the lower probability of success, and that shooting more three pointers will potentially lead to scoring more points.

```
statsUSG = statsUSG.sort_values('USG%', ascending = False)
In [13]:
             USG = (statsBPM.loc[statsBPM['USG%'] >= statsBPM['USG%'].quantile(0.97)
           2
           3
                     [['Year','USG%','BPM']])
           4
             # Adjust Minutes Played because some players barely played and saw a hi
           5
             USG = USG.groupby(['Year'])['USG%'].min().reset_index()
             # By taking the minimum of the dataframe for each year, we are getting
             # We could not simply do == statsBPM['USG%'].quantile(0.97) because the
           7
             # percentile cut off, but by using the minimum we are getting the value
             fig,ax = plt.subplots()
             USG.plot(x = 'Year', y = 'USG%', ax=ax, figsize = (12,8))
          10
          11
             ax.set ylim(25,35)
          12
             ax.set_title('Top 3% Usage Percentile Per Year', size=24)
          13
             ax.set_xlabel('Year', size = 17)
          14
             ax.set ylabel('Top 3% Usage Percentage', size = 17)
          15
```

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[13]: Text(0, 0.5, 'Top 3% Usage Percentage')

NOTES: We found this data extremely interesting. It is a popularly thought idea that the usage of the top players has grown over the years, as we often see players have "isolation" plays called for them where they try to beat the defender on their own. However, in reality the usage has actually not changed much over time and has remained relatively constant.

Relationships Between Key Statistics

In this section, we will look into the key statistics and how they correlate with one another. We will look at USG% to BPM, PER to BP M, BPM to Win Share, PER to Win Share, Assists to Win Share, Points to Win Share, Rebound to Win Share, Steals to Win Share, and Blocks to Win Share, comparing the correlations we find to determine which statistics make the largest positive impact on a player's team wins.

USG% to BPM

```
In [16]: 1 print(USG_to_BPM.summary())
```

```
OLS Regression Results
=====
Dep. Variable:
                            BPM
                                R-squared:
0.137
Model:
                            OLS
                                Adj. R-squared:
0.135
Method:
                   Least Squares
                                F-statistic:
64.63
Date:
                 Thu, 19 Dec 2019
                                Prob (F-statistic):
                                                         9.9
6e-15
Time:
                       19:02:46
                                Log-Likelihood:
                                                          -1
000.2
No. Observations:
                            408
                                AIC:
2004.
Df Residuals:
                            406
                                BIC:
2012.
Df Model:
                             1
Covariance Type:
                       nonrobust
______
=====
                                       P>|t|
              coef
                    std err
                                  t
                                                 [0.025
0.975]
Intercept
         -4.9690
                      0.523 -9.505
                                        0.000
                                                 -5.997
3.941
USG
            0.2146
                      0.027
                              8.039
                                        0.000
                                                  0.162
0.267
______
                         16.927
Omnibus:
                                Durbin-Watson:
1.951
Prob(Omnibus):
                          0.000
                                Jarque-Bera (JB):
                                                           1
9.550
Skew:
                          0.418
                                Prob(JB):
                                                         5.6
8e-05
Kurtosis:
                          3.671
                                Cond. No.
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [17]: 1 USGvBPM['yhat'] = USG_to_BPM.predict()
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1b49ef60>

NOTES: We were very curious to see whether the amount a player was used (Usage Percentage) would correlate to whether or not they had a positive impact on the score of the game for their team (Box Plus Minus). We hypothesized that the more a player was used, the higher their BPM would be, as the best players are usually the ones with the highest usage percentage. However, there is also the argument that a player who shoots too much or is used too much may negatively affect their team as well, and the legitamacy of this argument is backed up be the lower correlation between the two variables. However, there was a slight positive correlation, so the higher the usage, the more likely a player was to have a positive BPM.

PER to BPM

```
In [19]: 1 PERvBPM = stats17.loc[stats17['MP'] > 164][['Player','BPM','PER']]
2 PER_to_BPM = smf.ols('BPM ~ PER', data=PERvBPM).fit()
```

In [20]:

1 PER to BPM.rsquared

```
Out[20]: 0.6158725222128675
In [21]:
           print(PER_to_BPM.summary())
                                 OLS Regression Results
        ______
        Dep. Variable:
                                      BPM
                                           R-squared:
        0.616
        Model:
                                      OLS
                                           Adj. R-squared:
        0.615
        Method:
                             Least Squares
                                           F-statistic:
        650.9
        Date:
                          Thu, 19 Dec 2019
                                           Prob (F-statistic):
                                                                      2.2
        4e-86
        Time:
                                           Log-Likelihood:
                                  19:02:50
                                                                       -8
        35.15
        No. Observations:
                                      408
                                           AIC:
        1674.
        Df Residuals:
                                      406
                                           BIC:
        1682.
        Df Model:
                                        1
        Covariance Type:
                                 nonrobust
        ______
        =====
                                                   P>|t|
                       coef
                              std err
                                             t
                                                             [0.025
        0.9751
                                0.284 -27.340
                                                   0.000
        Intercept
                    -7.7516
                                                             -8.309
        7.194
        PER
                     0.4937
                                0.019
                                         25.514
                                                   0.000
                                                              0.456
        0.532
        Omnibus:
                                           Durbin-Watson:
                                    9.896
        1.822
        Prob(Omnibus):
                                    0.007
                                           Jarque-Bera (JB):
                                                                        1
        7.597
                                                                      0.0
        Skew:
                                    0.043
                                           Prob(JB):
        00151
        Kurtosis:
                                    4.014
                                           Cond. No.
        ____
        Warnings:
        [1] Standard Errors assume that the covariance matrix of the errors is co
        rrectly specified.
```

PERvBPM['yhat'] = PER to BPM.predict()

```
localhost:8889/notebooks/Haag_Final_Project.ipynb#
```

In [22]:

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1b5e12e8>

NOTES: As expected, we found there to be a strong positive correlation between PER and BPM. This makes sense as a player with an "efficient" rating should be having a positive impact on their team. More interesting perhaps is our next calculations where we will be seeing how each statistic correlates to wins.

BPM to Win Share

```
In [26]: 1 print(BPM_to_WS.summary())
```

	OLS Regression Results						
=======================================	=======	========	===	======	========	======	=====
-			S	R-squa	ared:		
0.721		O.T.	-	7.J. T			
Model: 0.720		OL	5	Adj. F	R-squared:		
Method:		Least Square	s	F-stat	cistic:		
1049.							
Date:	Th	u, 19 Dec 201	9	Prob ((F-statistic):		1.29
e-114 Time:		19:02:5	3	T.og-T.i	ikelihood:		-7
57.70		17.02.3	•	под-п	rkerinood.		-,
No. Observatio	ns:	40	8	AIC:			
1519.			_				
Df Residuals: 1527.		40	6	BIC:			
Df Model:			1				
Covariance Typ	e :	nonrobus	t				
	======	========		:======		======	=====
====	coef	std err		+	P> t	10 025	
0.975]	COCI	scu ell		C	17 0	[0.023	
	2 7072	0.080	17	.113	0.000	3.629	
Intercept 3.945	3.7073	0.080	4/	•113	0.000	3.029	
BPM	0.8242	0.025	32	.395	0.000	0.774	
0.874							
=====	======	========	===	:======	========	======	=====
Omnibus:		27.58	4	Durbir	n-Watson:		
1.911							
Prob(Omnibus):		0.00	0	Jarque	e-Bera (JB):		5
7.213 Skew:		0.37	5	Prob(3	TD)•		3.7
7e-13		0.37	,	1100(, _D , •		J•/
Kurtosis:		4.67	4	Cond.	No.		
3.33							
=======================================	======	========	===	======	========	======	=====

[1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.

```
In [27]: 1 BPMvWS['yhat'] = BPM_to_WS.predict()
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1b403160>

NOTES: There is a very strong correlation between Bow Plus Minus and Win Shares. This shows that the more positive the point differential while a player is on the court, the more wins he will add for his team. This further shows the importance of the statistic BPM, as it has a high correlation with wins, which at the end of the day is what counts in the NBA.

PER to Win Share

```
In [31]: 1 print(PER_to_WS.summary())
```

	OLS Regression Results						
======	======	=======	:====:	=====	========	======	=====
Dep. Variable:			WS	R-squ	ared:		
0.632				_			
Model:		C	LS	Adj.	R-squared:		
0.631							
Method:		Least Squar	es	F-sta	tistic:		
696.3							
Date:	Th	u, 19 Dec 20	19	Prob	(F-statistic):		4.3
6e-90							
Time:		19:02:	58	Log-L	ikelihood:		-8
14.40							
No. Observatio	ns:	4	80	AIC:			
1633.							
Df Residuals:		4	06	BIC:			
1641.			_				
Df Model:			1				
Covariance Typ		nonrobu	ıst				
=======================================	=======	========	:====:	=====	========	=======	=====
	goof	std err		+	P> t	10 025	
0.975]	COGI	stu eli		L	F / C	[0.023	
Intercept	-3.6864	0.269	-13	.681	0.000	-4.216	_
3.157							
PER	0.4853	0.018	26	.388	0.000	0.449	
0.521							
			====	=====		======	=====
=====							
Omnibus:		34.9	00	Durbi	n-Watson:		
2.006							
<pre>Prob(Omnibus):</pre>		0.0	00	Jarqu	e-Bera (JB):		12
3.049							
Skew:		-0.2	72	Prob(JB):		1.9
1e-27							
Kurtosis:		5.6	35	Cond.	No.		
44.9							
	=======	========	:====	=====	========	======	=====
=====							

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [32]: 1 PERvWS['yhat'] = PER_to_WS.predict()
```

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1b6be5f8>

NOTES: There is a high correlation between PER and win shares, showing PER to be an extremely important statistic in determining a player's value. However, this correlation is lower than the correlation between BPM and Win shares, showing BPM to be a more valuable statistic in determining value.

USG to Win Shares

```
In [36]: 1 print(USG_to_WS.summary())
```

```
OLS Regression Results
=====
Dep. Variable:
                            WS
                                R-squared:
0.219
Model:
                           OLS
                                Adj. R-squared:
0.217
Method:
                   Least Squares
                                F-statistic:
113.9
Date:
                 Thu, 19 Dec 2019
                                Prob (F-statistic):
                                                         1.3
2e-23
Time:
                       19:03:02
                                Log-Likelihood:
                                                          -9
67.70
No. Observations:
                           408
                                AIC:
1939.
Df Residuals:
                           406
                                BIC:
1947.
Df Model:
                             1
Covariance Type:
                      nonrobust
______
=====
                                      P>|t|
             coef
                    std err
                                  t
0.975]
Intercept -1.9355 0.483
                              -4.009
                                        0.000
                                                -2.885
0.986
USG
           0.2630
                     0.025 10.673
                                       0.000
                                                 0.215
0.311
______
                         69.208
Omnibus:
                                Durbin-Watson:
2.130
Prob(Omnibus):
                          0.000
                                Jarque-Bera (JB):
                                                          11
2.773
Skew:
                          1.021
                                Prob(JB):
                                                         3.2
5e-25
Kurtosis:
                          4.569
                                Cond. No.
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [37]: 1 USGvWS['yhat'] = USG_to_WS.predict()
```

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1b69bba8>

NOTES: We found there was a positive correlation between Usage and Win Shares in 2017. However, its correlation was lower than both that of BPM and PER, showing it to be an inferior statistic in determining a player's value. Nevertheless, a player with a high usage rate does carry a higher value than a player with a low usage rate due to the positive correlation.

Assists to Win Share

```
In [41]: 1 print(AST_to_WS.summary())
```

OLS Regression Results								
=====	:======	=========	==	======	========	=======	=====	
Dep. Variable:		W	S	R-sq	R-squared:			
0.372								
Model:		OL	S	Adj.	R-squared:			
0.370								
Method:		Least Square	s	F-sta	atistic:			
240.3								
Date:	Т	hu, 19 Dec 201	9	Prob	(F-statistic)	:	6.6	
5e-43								
Time:		19:03:0	5	Log-l	Likelihood:		- 9	
23.31								
No. Observatio	ns:	40	8	AIC:				
1851.		4.0	_	5.7.0				
Df Residuals:		40	6	BIC:				
1859.			1					
Df Model: Covariance Typ		nonrobus						
====								
	coef	std err		t	P> t	[0.025		
0.975]					!!	·		
Intercept	1.2854	0.161		7.972	0.000	0.968		
1.602								
AST	0.0131	0.001	1	5.502	0.000	0.011		
0.015								
	======	========	==		=========	======	=====	
===== Omnibus:		99.09	۵	Durh	in-Watson:			
2.005		99.09	9	Durb.	III-watson:			
Prob(Omnibus):		0.00	٥	Jaron	ue-Bera (JB):		24	
4.790		0.00	U	varq	de-bera (UD).		24	
Skew:		1.19	5	Prob	(JB):		6.9	
9e-54		1.17	-		(,-		3.3	
Kurtosis:		5.94	8	Cond	. No.			
267.		- 1-						
=========	======	========	==	-=====		=======	=====	
====								

[1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.

```
In [42]: 1 ASTvWS['yhat'] = AST_to_WS.predict()
```

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1a99f978>

NOTES: Out of rebounds, points, and assists, assists had the lowest correlation to win shares, showing it to be the least valuable of the 3 statistics. Nevertheless, its positive correlation does show that it carries some value in a player's contribution, but not as high a value as rebounds and points.

Points to Win Share

```
In [46]: 1 print(PTS_to_WS.summary())
```

	OLS Regression Results						
=====							
Dep. Variable:		1	WS	R-squ	ared:		
0.702							
Model:		0	LS	Adj.	R-squared:		
0.701							
Method:		Least Square	es	F-sta	tistic:		
954.3							
Date:	Thu	ı, 19 Dec 20	19	Prob	(F-statistic):		1.19
e-108							
Time:		19:03:	09	Log-I	ikelihood:		-7
71.50							
No. Observation	ıs:	4	8 0	AIC:			
1547.							
Df Residuals:		4	06	BIC:			
1555.							
Df Model:			1				
Covariance Type		nonrobu	_				
=====							
	coef	std err		t	P> t	[0.025	
0.975]					- 1-1	[• • • • •	
Intercept -	0.1904	0.131	-1	.452	0.147	-0.448	
0.067							
PTS	0.0052	0.000	30	.892	0.000	0.005	
0.005							
=====		========	====	=====	=========	======	=====
Omnibus:		60. 2	92	Durhi	n-Watson:		
2.119		00.2	<i>)</i>	Duibi	II-Wacsoll.		
Prob(Omnibus):		0.0	0.0	Jargu	e-Bera (JB):		25
9.814		0.0	00	oarqu	e-bera (ob).		23
Skew:		0.5	49	Prob(JB):		3.8
2e-57		0. 5		(~-,·		J.0
Kurtosis:		6.7	52	Cond.	No.		1.3
0e+03		J • 7 ·			. - -		
==========	-======	-=======			=========	======	=====

=====

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.3e+03. This might indicate that ther e are $\frac{1}{2}$

strong multicollinearity or other numerical problems.

```
In [47]: 1 PTSvWS['yhat'] = PTS_to_WS.predict()
```

```
In [48]: 1 fig,ax = plt.subplots()
2 PTSvWS.plot.scatter(y='WS',x='PTS',ax=ax,alpha=1, figsize = (15,8))
3 ax.set_ylim(-2,18)
4 ax.set_title('Points to Win Shares',size=24)
5 ax.set_ylabel('Win Shares',size = 17)
6 ax.set_xlabel('Points',size = 17)
7 PTSvWS.set_index('PTS')['yhat'].plot(ax=ax,color='red',lw=2, legend=Fal)
```

Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1a9984e0>

NOTES: Points had the highest correlation out of assists, rebounds, and points, showing that players with high point totals carry a higher value than players with high assist and rebound values. This is to be expected, as wins are determined by the team with more points, not necessarily more assists or rebounds.

Rebounds to Win Share

```
In [51]: 1 print(TRB_to_WS.summary())
```

OLS Regression Results							
=====		:=======:	===	======	=======	======	=====
Dep. Variable:	:	7	MS	R-squared:			
0.549							
Model:		O1	LS	Adj. R	-squared:		
0.548							
Method:		Least Square	es	F-stat	istic:		
494.5							
Date:	Th	nu, 19 Dec 201	19	Prob (F-statistic)	:	3.1
3e-72							_
Time:		19:03:	12	Log-Li	kelihood:		-8
55.64		4	0.0	7.T.C.			
No. Observation 1715.	ons:	40	8 0	AIC:			
Df Residuals:		1	06	BIC:			
1723.		4,	00	BIC:			
Df Model:			1				
Covariance Typ	ne:	nonrobus					
		.========		======			=====
=====							
	coef	std err		t	P> t	[0.025	
0.975]							
	0 1672	0.160		1 024	0 202	0 151	
Intercept 0.485	0.16/3	0.162		1.034	0.302	-0.151	
TRB	0.0112	0.001	2	2.238	0.000	0.010	
0.012	0.0112	0.001	2	2.230	0.000	0.010	
0.012 =========	=======	:========	===	======	:========	=======	=====
====							
Omnibus:		165.50	60	Durbin	-Watson:		
2.048							
Prob(Omnibus)	:	0.0	00	Jarque	-Bera (JB):		73
9.943							
Skew:		1.7	43	Prob(J	В):		2.11
e-161							
Kurtosis:		8.60	01	Cond.	No.		
532.							
=========	=======		===	======	:=======	=======	=====
====							

[1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.

```
In [52]: 1 TRBvWS['yhat'] = TRB_to_WS.predict()
```

Out[53]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1aa7d588>

NOTES: We found that Rebounds had a stronger correlation to Win Shares than Assists, supporting an argument that it is a more important statistic than Assists. Therefore, one can conclude that rebounds should carry over more value than assists, and players who have a higher number of rebounds should be valued higher than players who have the same relative number of assists.

Steals to Win Share

```
In [56]: 1 print(STL_to_WS.summary())
```

```
OLS Regression Results
=====
Dep. Variable:
                            WS
                                R-squared:
0.457
Model:
                           OLS
                                Adj. R-squared:
0.455
Method:
                   Least Squares
                                F-statistic:
341.3
Date:
                 Thu, 19 Dec 2019
                                Prob (F-statistic):
                                                         9.4
8e-56
Time:
                       19:03:16
                                Log-Likelihood:
                                                         -8
93.69
No. Observations:
                           408
                                AIC:
1791.
Df Residuals:
                           406
                                BIC:
1799.
Df Model:
                             1
Covariance Type:
                      nonrobust
______
=====
                                  t
                                      P>|t|
             coef
                    std err
0.975]
Intercept
          0.1571
                     0.189
                             0.831
                                       0.406
                                                -0.214
0.529
STL
            0.0635
                     0.003 18.475
                                       0.000
                                                 0.057
0.070
______
                        112.332
Omnibus:
                                Durbin-Watson:
2.150
Prob(Omnibus):
                          0.000
                                Jarque-Bera (JB):
                                                         32
1.327
Skew:
                          1.291
                                Prob(JB):
                                                         1.6
8e-70
Kurtosis:
                          6.499
                                Cond. No.
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [57]: 1 STLvWS['yhat'] = STL_to_WS.predict()
```

Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1a9af400>

NOTES: Out of our defensive statistics, we found that Steals had a stronger correlation to Win Shares than blocks. This makes sense because a steal translates to possession and a scoring opportunity for the team causing the steal, while blocks often do not change possession. (see next graph)

Blocks to Win Share

```
In [61]: 1 print(BLK_to_WS.summary())
```

OLS Regression Results								
=====			====				=====	
Dep. Variable:			WS	R-squa	R-squared:			
0.317								
Model:		C	DLS	Adj. R	-squared:			
0.315								
Method:		Least Squar	ces	F-stat	istic:			
188.6								
Date:	T)	nu, 19 Dec 20)19	Prob (F-statistic)	:	1.6	
3e-35							_	
Time:		19:03:	20	Log-Li	kelihood:		-9	
40.33		,		3.7.0				
No. Observatio	ons:	4	108	AIC:				
1885. Df Residuals:		,	106	BIC:				
1893.		4	100	BIC:				
Df Model:			1					
Covariance Typ	ne •	nonrobu						
				======	=========	:=======	=====	
====								
	coef	std err		t	P> t	[0.025		
0.975]								
Intercept	1.5008	0.164		9.151	0.000	1.178		
1.823								
BLK	0.0552	0.004	1	.3.732	0.000	0.047		
0.063								
=======================================	:======	========		======	========	:======	=====	
Omnibus:		17/ (0.7	Durbin	Watcon.			
2.127		1/4.3	, 0 ,	Dulbin	-watson:			
Prob(Omnibus):		0 (000	Jarque	-Bera (JB):		67	
4.561		0.0	,00	varque	-Dela (0D).		07	
Skew:		1.0	934	Prob(J	B):		3.32	
e-147		1.0		1100(0	2,.		0.02	
Kurtosis:		7.9	72	Cond.	No.			
55.6								
=========	=======				========	:======:	=====	
=====								

[1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.

```
In [62]: 1 BLKvWS['yhat'] = BLK_to_WS.predict()
```

Out[63]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1f9ae978>

Calculations Regarding Special Performers and Player Values

In this section, we will look at the statistics of players who are not receiving many minutes but are still putting up large numbers, players who are young but effective, and players with high BPM, USG%, and PER statistics. We will adjust for players who have high BPM, USG%, and PER due to low minutes played by ensuring all players average at least 2 minutes per game. We will compare pl ayers as a whole, as well as by position, eventually taking into account a player's salary.

Low Minutes, High Assists

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

Out[64]:

	Player	Pos	Age	AST	MP	Salary
606	Tyler Ulis	PG	21.0	226.0	1123.0	918369
33	J.J. Barea	PG	32.0	193.0	771.0	4096950
378	Jeremy Lin	PG	28.0	184.0	883.0	11483254
193	Yogi Ferrell	PG	23.0	172.0	1197.0	239767
344	Tyus Jones	PG	20.0	156.0	774.0	1339680
635	David West	С	36.0	151.0	854.0	1551659
257	Devin Harris	PG	33.0	136.0	1087.0	4228000
605	Beno Udrih	PG	34.0	131.0	560.0	1551659
123	Semaj Christon	PG	24.0	130.0	973.0	543471
352	Brandon Knight	SG	25.0	130.0	1140.0	12606250

NOTES: This shows high value players who are potentially underplayed in terms of their production of Assists. Tyler Ullis, Yogi Ferrell, and Tyus Jones seem to be excellent potential targets, as they are under 24 years old and already putting up great numbers despite inexperience, low minutes, and low salary. These attributes make them extremely valuable, as they offer a high, long-term reward for a low cost.

Out[65]: Text(0.5, 0, 'Players')

Low Salary, High Assists

```
In [66]: 1 LowSALHiAST = stats17.loc[stats17['Salary'] < stats17['Salary'].median(
2   Top10LowSALHiAST = LowSALHiAST.sort_values('AST', ascending = False).he
3   Top10LowSALHiAST</pre>
```

Out[66]:

	Player	Pos	Age	AST	Salary
397	T.J. McConnell	PG	24.0	534.0	874636
476	Elfrid Payton	PG	22.0	529.0	2613600
529	Dennis Schroder	PG	23.0	499.0	2708582
22	Giannis Antetokounmpo	SF	22.0	434.0	2995421
333	Nikola Jokic	С	21.0	359.0	1358500
365	Ty Lawson	PG	29.0	335.0	1315448
203	Tim Frazier	PG	26.0	335.0	2090000
79	Malcolm Brogdon	SG	24.0	317.0	925000
396	C.J. McCollum	SG	25.0	285.0	3219579
481	Mason Plumlee	С	26.0	284.0	2328530

NOTES: This shows the assist numbers for low cost players which is extremely valuable to GMs because it provides a high performance for a minimal salary expense. T.J. McConnell and Malcolm Brogdon are very appealing to teams, as they put up high assist totals while costing under \$1 million, and being under 25 years old, they offer an additional long-term value to their teams.

Out[67]: Text(0.5, 0, 'Players')

Assists per Minute (Assist Efficiency)

Out[68]:

	Player	Pos	Age	AST	MP	ASTperMP	Salary
253	James Harden	PG	27.0	906.0	2947.0	0.307431	26540100
636	Russell Westbrook	PG	28.0	840.0	2802.0	0.299786	26540100
471	Chris Paul	PG	31.0	563.0	1921.0	0.293077	22868827
622	John Wall	PG	26.0	831.0	2836.0	0.293018	16957900
521	Ricky Rubio	PG	26.0	682.0	2469.0	0.276225	13550000
397	T.J. McConnell	PG	24.0	534.0	2133.0	0.250352	874636
33	J.J. Barea	PG	32.0	193.0	771.0	0.250324	4096950
515	Rajon Rondo	PG	30.0	461.0	1843.0	0.250136	14000000
576	Jeff Teague	PG	28.0	639.0	2657.0	0.240497	8800000
605	Beno Udrih	PG	34.0	131.0	560.0	0.233929	1551659

NOTES: TJ McConnell appears to be highly undervalued, as he is in the top ten for Assists per minute, but does not even make 1 million dollars. There is a low cost, high return value for teams to go for this type of player. Additionally, TJ McConnell is only 24, adding to his value by the possibility of long term availability.


```
In [70]: 'AST perMP'] = stats17['AST']/stats17['MP']

122 (stats17.loc[stats17['MP'] > 164][stats17['Salary'] < stats17['Salary'].

3 [['Player','Pos','Age','AST','MP','AST perMP','Salary']])

12 perMin2 = AST perMin2.sort_values('AST perMP', ascending = False).head(10)

13 perMin2

14 tefed our data to only include players with more than 2 minutes played per contents.
```

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[70]:

	Player	Pos	Age	AST	MP	ASTperMP	Salary
397	T.J. McConnell	PG	24.0	534.0	2133.0	0.250352	874636
605	Beno Udrih	PG	34.0	131.0	560.0	0.233929	1551659
203	Tim Frazier	PG	26.0	335.0	1525.0	0.219672	2090000
293	Marcelo Huertas	PG	33.0	52.0	237.0	0.219409	1500000
476	Elfrid Payton	PG	22.0	529.0	2412.0	0.219320	2613600
344	Tyus Jones	PG	20.0	156.0	774.0	0.201550	1339680
606	Tyler Ulis	PG	21.0	226.0	1123.0	0.201247	918369
529	Dennis Schroder	PG	23.0	499.0	2485.0	0.200805	2708582
	- ·						

NOTES: This shows the players who cost less than the median salary who provide the most efficiency in dishing out assists. Once again, TJ McConnell looks to be an undervalued asset, and Elfrid Payton, Tyus Jones, and Tyler Ulis are also highly valuable due to their youth and low salaries.

Out[71]: Text(0.5, 0, 'Players')

Points

Low Minutes, High Points

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

Out[72]:

	Player	Pos	Age	PTS	MP	Salary
177	Joel Embiid	С	22.0	627.0	786.0	4826160
280	Nene Hilario	С	34.0	609.0	1198.0	2898000
359	Jeremy Lamb	SG	24.0	603.0	1143.0	6511628
352	Brandon Knight	SG	25.0	595.0	1140.0	12606250
457	Jahlil Okafor	С	21.0	590.0	1134.0	4788840
213	Rudy Gay	SF	30.0	562.0	1013.0	13333333
288	Richaun Holmes	С	23.0	559.0	1193.0	1025831
148	Troy Daniels	SG	25.0	551.0	1183.0	3332940
316	Al Jefferson	С	32.0	535.0	931.0	10230179
49	Michael Beasley	PF	28.0	528.0	935.0	1403611

NOTES: This shows the players who receive less than the median minutes played who produce the most points. Joel Embiid, Jahlil Okafor, and Richaun Holmes seem to be very valuable players who are on low cost salaries and putting up high numbers despite fewer minutes and young ages. Perhaps the best target in this group is Richaun Holmes, who is only 23 years old and costs less than \$1 million.

```
In [73]: 1 fig,ax = plt.subplots()
2 Top10LowMinHiPTS.plot.bar(x='Player',y='PTS',ax=ax,figsize=(12,8), lege
3 ax.set_ylim(0,750)
4 ax.set_title('Top Points for Players Under Median Minutes',size=24)
5 ax.set_ylabel('Points',size = 17)
6 ax.set_xlabel('Players',size = 17)
```

Out[73]: Text(0.5, 0, 'Players')

Low Salary, High Points

```
In [74]: 1 LowSALHiPTS = stats17.loc[stats17['Salary'] < stats17['Salary'].median(
2 Top10LowSALHiPTS = LowSALHiPTS.sort_values('PTS', ascending = False).he
3 Top10LowSALHiPTS</pre>
```

Out[74]:

	Player	Pos	Age	PTS	Salary
396	C.J. McCollum	SG	25.0	1837.0	3219579
22	Giannis Antetokounmpo	SF	22.0	1832.0	2995421
73	Devin Booker	SG	20.0	1726.0	2223600
529	Dennis Schroder	PG	23.0	1414.0	2708582
333	Nikola Jokic	С	21.0	1221.0	1358500
604	Myles Turner	С	20.0	1173.0	2463840
252	Tim Hardaway	SG	24.0	1143.0	2281605
226	Rudy Gobert	С	24.0	1137.0	2121288
476	Elfrid Payton	PG	22.0	1046.0	2613600
527	Dario Saric	PF	22.0	1040.0	2318280

NOTES: Each of these players show immensely high values to teams, as they are low cost, all under the age of 26, and very effective scorers. Devin Booker is extremely impressive, as he is scoring at an impressive rate at the age of 20. If a team could get Devin Booker, they should attempt to at even a high cost.

Out[75]: Text(0.5, 0, 'Players')

Points per Minute (Scoring Efficiency)

Out[76]:

	Player	Pos	Age	PTS	MP	PTSperMP	Salary
636	Russell Westbrook	PG	28.0	2558.0	2802.0	0.912919	26540100
580	Isaiah Thomas	PG	27.0	2199.0	2569.0	0.855975	6587132
253	James Harden	PG	27.0	2356.0	2947.0	0.799457	26540100
177	Joel Embiid	С	22.0	627.0	786.0	0.797710	4826160
137	DeMarcus Cousins	С	26.0	1942.0	2465.0	0.787830	16957900
149	Anthony Davis	С	23.0	2099.0	2708.0	0.775111	22116750
157	DeMar DeRozan	SG	27.0	2020.0	2620.0	0.770992	26540100
370	Kawhi Leonard	SF	25.0	1888.0	2474.0	0.763137	17638063
147	Stephen Curry	PG	28.0	1999.0	2638.0	0.757771	12112359
377	Damian Lillard	PG	26.0	2024.0	2694.0	0.751299	24328425

NOTES: This shows the players who score most efficiently. Isaiah Thomas and Joel Embiid are in the top 10, but make less than 10 million, showing that they may be undervalued and more valuable to a team than what appears. Joel Embiid also adds future value, as he is only 22 years old.

```
In [77]: 1 fig,ax = plt.subplots()
2 Top10PTSperMin.plot.bar(x='Player',y='PTSperMP',ax=ax,figsize=(12,8), 1
3 ax.set_ylim(0,1)
4 ax.set_title('Top 10 Players in Points per Minute',size=24)
5 ax.set_ylabel('Points per Minute',size = 17)
6 ax.set_xlabel('Players',size = 17)
```


//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[78]:

	Player	Pos	Age	PTS	MP	PTSperMP	Salary
396	C.J. McCollum	SG	25.0	1837.0	2796.0	0.657010	3219579
22	Giannis Antetokounmpo	SF	22.0	1832.0	2845.0	0.643937	2995421
407	JaVale McGee	С	29.0	472.0	739.0	0.638701	1403611
380	Shawn Long	С	24.0	148.0	234.0	0.632479	96969
73	Devin Booker	SG	20.0	1726.0	2730.0	0.632234	2223600
143	Jordan Crawford	SG	28.0	267.0	442.0	0.604072	234915
333	Nikola Jokic	С	21.0	1221.0	2038.0	0.599117	1358500
529	Dennis Schroder	PG	23.0	1414.0	2485.0	0.569014	2708582
49	Michael Beasley	PF	28.0	528.0	935.0	0.564706	1403611
550	Marreese Speights	С	29.0	711.0	1286.0	0.552877	1403611

NOTES: Shawn Long and Jordan Crawford both play less than 500 minutes but average more than .6 points per minute. This shows that they might deserve to be played more minutes. Shawn Long is 24 and does not even cost \$100,000, so he is a high value player at an unbelievably low cost, who could be good option if a team was looking for role player at Center.

Out[79]: Text(0.5, 0, 'Players')

Rebounds

Low Minutes, High Rebounds

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

Out[80]:

	Player	Pos	Age	Tm	TRB	MP	Salary
445	Joakim Noah	С	31.0	NYK	402.0	1015.0	17000000
61	Tarik Black	С	25.0	LAL	342.0	1091.0	6191000
45	Aron Baynes	С	30.0	DET	333.0	1163.0	6500000
506	Willie Reed	С	26.0	MIA	332.0	1031.0	1015696
288	Richaun Holmes	С	23.0	PHI	311.0	1193.0	1025831
191	Cristiano Felicio	С	24.0	CHI	311.0	1040.0	874636
413	Salah Mejri	С	30.0	DAL	308.0	905.0	874636
189	Derrick Favors	PF	25.0	UTA	305.0	1186.0	11050000
489	Bobby Portis	PF	21.0	CHI	296.0	1000.0	1453680
270	John Henson	С	26.0	MIL	295.0	1123.0	12517606

NOTES: Richaun Holmes, Christiano Fellicio, and Bobby Portis seem to be undervalued and underplayed, as they put up high rebounding numbers despite few minutes and low salaries. Additionally, they are all under 25 years old, adding to their value by promising a potential future return.

Out[81]: Text(0.5, 0, 'Players')

Low Salary, High Rebounds

Out[82]:

	Player	Pos	Age	TRB	Salary
226	Rudy Gobert	С	24.0	1035.0	2121288
333	Nikola Jokic	С	21.0	718.0	1358500
22	Giannis Antetokounmpo	SF	22.0	700.0	2995421
160	Gorgui Dieng	PF	27.0	647.0	2348783
7	Steven Adams	С	23.0	615.0	3140517
481	Mason Plumlee	С	26.0	606.0	2328530
604	Myles Turner	С	20.0	587.0	2463840
247	JaMychal Green	PF	26.0	544.0	980431
106	Clint Capela	С	22.0	526.0	1296240
527	Dario Saric	PF	22.0	513.0	2318280

NOTES: Rudy Gobert, Nikola Jokic, Giannis Antetokounmpo, and Myles Turner are very impressive in this chart, as they are all under 25, cost less than \$3 million, and are some of the best rebounders in the league. Therefore, teams should target these players and the others on the list to get high, long-term value for a low cost. Rudy Gobert had by far the highest numbers, and is likely the most valuable on the chart.

Out[83]: Text(0.5, 0, 'Players')

Rebounds per Minute (Rebounding Efficiency)

```
In [84]: 1 stats17['TRBperMP'] = stats17['TRB']/stats17['MP']
2 TRBperMin= stats17.loc[stats17['MP'] > 164][['Player','Pos','Age','Tm',
3 Top10TRBperMin = TRBperMin.sort_values('TRBperMP', ascending = False).h
4 Top10TRBperMin
5 # We filtered our data to only include players with more than 2 minutes
```

Out[84]:

	Player	Pos	Age	Tm	TRB	MP	TRBperMP	Salary
164	Andre Drummond	С	23.0	DET	1116.0	2409.0	0.463263	22116750
391	Boban Marjanovic	С	28.0	DET	130.0	293.0	0.443686	7000000
345	DeAndre Jordan	С	28.0	LAC	1114.0	2570.0	0.433463	21165675
639	Hassan Whiteside	С	27.0	MIA	1088.0	2513.0	0.432949	22116750
292	Dwight Howard	С	31.0	ATL	940.0	2199.0	0.427467	23180275
119	Tyson Chandler	С	34.0	РНО	539.0	1298.0	0.415254	12415000
642	Alan Williams	С	24.0	РНО	292.0	708.0	0.412429	874636
513	Thomas Robinson	PF	25.0	LAL	223.0	560.0	0.398214	1050961
445	Joakim Noah	С	31.0	NYK	402.0	1015.0	0.396059	17000000
272	Willy Hernangomez	С	22.0	NYK	502.0	1324.0	0.379154	1375000

NOTES: Alan Williams and Willy Hernangomez are very high value players, as they are top 10 in rebounds per minute while being under 25 years old and costing less than \$1.5 million. Willy Hernangomez proved he could perform at this rate even playing 1324 minutes, further emphasizing the idea that he is undervalued.

```
In [85]: 1 fig,ax = plt.subplots()
2 Top10TRBperMin.plot.bar(x='Player',y='TRBperMP',ax=ax,figsize=(12,8), 1
3 ax.set_ylim(0,0.55)
4 ax.set_title('Top 10 Players in Rebounds per Minute',size=24)
5 ax.set_ylabel('Rebounds per Minute',size = 17)
6 ax.set_xlabel('Players',size = 17)
```

Out[85]: Text(0.5, 0, 'Players')

Low Salary, High Rebounds per Minute

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn ing: Boolean Series key will be reindexed to match DataFrame index.

Out[86]:

	Player	Pos	Age	PTS	MP	TRBperMP	Salary
642	Alan Williams	С	24.0	346.0	708.0	0.412429	874636
513	Thomas Robinson	PF	25.0	241.0	560.0	0.398214	1050961
272	Willy Hernangomez	С	22.0	587.0	1324.0	0.379154	1375000
226	Rudy Gobert	С	24.0	1137.0	2744.0	0.377187	2121288
152	Dewayne Dedmon	С	27.0	387.0	1330.0	0.372180	2898000
158	Cheick Diallo	PF	20.0	87.0	199.0	0.366834	543471
380	Shawn Long	С	24.0	148.0	234.0	0.363248	96969
333	Nikola Jokic	С	21.0	1221.0	2038.0	0.352306	1358500
413	Salah Mejri	С	30.0	213.0	905.0	0.340331	874636
106	Clint Capela	С	22.0	818.0	1551.0	0.339136	1296240

NOTES: This chart shows very high value players, as they are able to put up impressive numbers while all costing less than \$3 million and most of which are younger than 25 years old. Teams should target these players to boost their rebounding numbers without spending much money and creating a long term value with young players.

Out[87]: Text(0.5, 0, 'Players')

Usage %

Low Minutes, High USG%

```
In [88]:
```

```
LowMinHiUSG = (stats17.loc[stats17['MP'] < stats17['MP'].median()][stat

[stats17['USG%'] > stats17['USG%'].median()][['Player',']

#Adjusted for players who barely played and saw high usage rate as a red
Top10LowMinHiUSG = LowMinHiUSG.sort_values('USG%', ascending = False).h
Top10LowMinHiUSG
```

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[88]:

	Player	Pos	Age	Tm	USG%	MP	Salary
177	Joel Embiid	С	22.0	PHI	36.0	786.0	4826160
182	Tyreke Evans	SF	27.0	TOT	26.7	788.0	10661286
378	Jeremy Lin	PG	28.0	BRK	26.6	883.0	11483254
221	Jonathan Gibson	PG	29.0	DAL	26.3	231.0	680937
33	J.J. Barea	PG	32.0	DAL	26.2	771.0	4096950
316	Al Jefferson	С	32.0	IND	26.1	931.0	10230179
213	Rudy Gay	SF	30.0	SAC	25.8	1013.0	13333333
143	Jordan Crawford	SG	28.0	NOP	25.5	442.0	234915
380	Shawn Long	С	24.0	PHI	25.4	234.0	96969
49	Michael Beasley	PF	28.0	MIL	25.3	935.0	1403611

NOTES: This chart shows the players who played fewer minutes than 50% of the league who were used the most by their respective teams while on the court, suggesting that they may deserve more minutes. Some key players on here are Joel Embiid and Shawn Long, as they produced these numbers while being under age 25. Additionally, Shawn Long, Jordan Crawford, and Jonathan Gibson are all under \$1,000,000, showing that they give a high return on investment on their salaries for their teams.

```
In [89]: 1 fig,ax = plt.subplots()
2 Top10LowMinHiUSG.plot.bar(x='Player',y='USG%',ax=ax,figsize=(12,8),lege
3 ax.set_ylim(0,45)
4 ax.set_title('Top 10 Low Minute Players in Usage Percentage',size=24)
5 ax.set_ylabel('Usage Percantage',size = 17)
6 ax.set_xlabel('Players',size = 17)
```

Out[89]: Text(0.5, 0, 'Players')

Low Salary, High Usage

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

Out[90]:

	Player	Pos	Age	USG%	Salary
73	Devin Booker	SG	20.0	28.6	2223600
22	Giannis Antetokounmpo	SF	22.0	28.3	2995421
529	Dennis Schroder	PG	23.0	27.8	2708582
396	C.J. McCollum	SG	25.0	27.5	3219579
620	Dion Waiters	SG	25.0	26.3	2898000
221	Jonathan Gibson	PG	29.0	26.3	680937
143	Jordan Crawford	SG	28.0	25.5	234915
380	Shawn Long	С	24.0	25.4	96969
49	Michael Beasley	PF	28.0	25.3	1403611
527	Dario Saric	PF	22.0	24.6	2318280

NOTES: This chart shows the usage percentages for players below the median salary. Devon Booker and Giannis Antetokuonmpo are extremely valuable, as they are 20 and 22 respectively and have usage rates above 28%.

Out[91]: Text(0.5, 0, 'Players')

PER

Low Minutes, High PER

```
In [92]:
```

```
LowMinHiPER = (stats17.loc[stats17['MP'] < stats17['MP'].median()][stat

[stats17['PER'] > stats17['PER'].median()][['Player','Pc

#Adjusted for players who barely played and saw high PER as a result

Top10LowMinHiPER = LowMinHiPER.sort_values('PER', ascending = False).he

Top10LowMinHiPER
```

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[92]:

	Player	Pos	Age	Tm	PER	MP	Salary
391	Boban Marjanovic	С	28.0	DET	29.6	293.0	7000000
407	JaVale McGee	С	29.0	GSW	25.2	739.0	1403611
380	Shawn Long	С	24.0	PHI	24.1	234.0	96969
177	Joel Embiid	С	22.0	PHI	24.1	786.0	4826160
446	Nerlens Noel	С	22.0	TOT	20.4	1047.0	4384490
42	Brandon Bass	PF	31.0	LAC	19.7	577.0	1551659
642	Alan Williams	С	24.0	PHO	19.5	708.0	874636
256	Montrezl Harrell	С	23.0	HOU	19.2	1064.0	1045000
378	Jeremy Lin	PG	28.0	BRK	19.2	883.0	11483254
316	Al Jefferson	С	32.0	IND	18.9	931.0	10230179

NOTES: This chart shows players who played less than the median amount of minutes but provided a high PER during their time on the court. Shawn Long, Alan Williams, and Montrezl Harrell are all highly valuable players, as they provide high efficiency ratings while costing less than \$1.5 million and under 25 years old.

Out[93]: Text(0.5, 0, 'Players')

Low Salary, High PER

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.
//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[94]:

	Player	Pos	Age	Tm	PER	MP	Salary
333	Nikola Jokic	С	21.0	DEN	26.4	2038.0	1358500
22	Giannis Antetokounmpo	SF	22.0	MIL	26.1	2845.0	2995421
407	JaVale McGee	С	29.0	GSW	25.2	739.0	1403611
380	Shawn Long	С	24.0	PHI	24.1	234.0	96969
226	Rudy Gobert	С	24.0	UTA	23.3	2744.0	2121288
106	Clint Capela	С	22.0	HOU	21.4	1551.0	1296240
396	C.J. McCollum	SG	25.0	POR	19.9	2796.0	3219579
42	Brandon Bass	PF	31.0	LAC	19.7	577.0	1551659
642	Alan Williams	С	24.0	РНО	19.5	708.0	874636
256	Montrezl Harrell	С	23.0	HOU	19.2	1064.0	1045000

NOTES: This chart shows the players who are inexpensive, but offer a very high PER. The players on this chart are low cost and tend to be young, adding value to a team.

```
In [95]: 1 fig,ax = plt.subplots()
2 Top10LowSALHiPER.plot.bar(x='Player',y='PER',ax=ax,figsize=(12,8), lege
3 ax.set_ylim(0,35)
4 ax.set_title('Top 10 Low Cost Players in PER',size=24)
5 ax.set_ylabel('PER',size = 17)
6 ax.set_xlabel('Players',size = 17)
```

Out[95]: Text(0.5, 0, 'Players')

BPM

Low Minutes, High BPM

```
In [96]:
```

```
LowMinHiBPM = (stats17.loc[stats17['MP'] < stats17['MP'].median()][stat

[stats17['BPM'] > stats17['BPM'].median()][['Player','Pc

#Adjusted for players who barely played and saw high BPM as a result of

Top10LowMinHiBPM = LowMinHiBPM.sort_values('BPM', ascending = False).he

Top10LowMinHiBPM
```

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

"""Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[96]:

	Player	Pos	Age	Tm	ВРМ	MP	Salary
449	Lucas Nogueira	С	24.0	TOR	5.4	1088.0	1921320
380	Shawn Long	С	24.0	PHI	3.4	234.0	96969
446	Nerlens Noel	С	22.0	TOT	3.3	1047.0	4384490
177	Joel Embiid	С	22.0	PHI	3.2	786.0	4826160
635	David West	С	36.0	GSW	2.2	854.0	1551659
445	Joakim Noah	С	31.0	NYK	2.1	1015.0	17000000
378	Jeremy Lin	PG	28.0	BRK	2.0	883.0	11483254
57	Davis Bertans	PF	24.0	SAS	1.7	808.0	543471
288	Richaun Holmes	С	23.0	PHI	1.7	1193.0	1025831
20	Kyle Anderson	SG	23.0	SAS	1.6	1020.0	1192080
635 445 378 57 288	David West Joakim Noah Jeremy Lin Davis Bertans Richaun Holmes	C C PG PF C	36.0 31.0 28.0 24.0 23.0	GSW NYK BRK SAS PHI	2.2 2.1 2.0 1.7	854.0 1015.0 883.0 808.0 1193.0	155165 1700000 1148325 54347 102583

NOTES: Despite low minutes played, Lucas Noguiera, Shawn Long, Nerlens Noel, and Joel Embiid all posted high BPMs, and being under 25 years old, they offer very high value to their teams.

Out[97]: Text(0.5, 0, 'Players')

Low Salary, High BPM

In [98]:

```
LowSALHiBPM = (stats17.loc[stats17['Salary'] < stats17['Salary'].median

[stats17['BPM'] > stats17['BPM'].median()][['Player', 'Po

#Adjusted for players who barely played and saw high BPM as a result of

Top10LowSALHiBPM = LowSALHiBPM.sort_values('BPM', ascending = False).he

Top10LowSALHiBPM
```

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[98]:

	Player	Pos	Age	Tm	BPM	MP	Salary
333	Nikola Jokic	С	21.0	DEN	8.3	2038.0	1358500
22	Giannis Antetokounmpo	SF	22.0	MIL	7.6	2845.0	2995421
226	Rudy Gobert	С	24.0	UTA	5.8	2744.0	2121288
449	Lucas Nogueira	С	24.0	TOR	5.4	1088.0	1921320
380	Shawn Long	С	24.0	PHI	3.4	234.0	96969
368	David Lee	PF	33.0	SAS	3.2	1477.0	1551659
463	Zaza Pachulia	С	32.0	GSW	2.7	1268.0	2898000
306	Joe Ingles	SF	29.0	UTA	2.7	1972.0	2250000
481	Mason Plumlee	С	26.0	TOT	2.6	2148.0	2328530
604	Myles Turner	С	20.0	IND	2.4	2541.0	2463840

NOTES: This chart shows low cost players with the highest BPMs. Nikola Jokic and Giannis Antetokuonmpo posted extremely high numbers, and provide very high value to teams given their young age and low salaries.

```
In [99]: 1 fig,ax = plt.subplots()
2 Top10LowSALHiBPM.plot.bar(x='Player',y='BPM',ax=ax,figsize=(12,8), lege
3 ax.set_ylim(0,10)
4 ax.set_title('Top 10 Low Salary Players in BPM',size=24)
5 ax.set_ylabel('Box Plus Minus',size = 17)
6 ax.set_xlabel('Players',size = 17)
```

Out[99]: Text(0.5, 0, 'Players')

Model for Valuation of Players

Based off the correlation coefficients to win share, we weighted different statistics to determine the most valuable players. We then compared our model with previous years to assess its accuracy, and further compared player values given salaries and positions.

	Player	Pos	Age	Salary	Value
0	Russell Westbrook	PG	28.0	26540100	10.023280
1	James Harden	PG	27.0	26540100	8.604930
2	Giannis Antetokounmpo	SF	22.0	2995421	7.892214
3	Anthony Davis	С	23.0	22116750	7.572340
4	DeMarcus Cousins	С	26.0	16957900	7.521981
5	LeBron James	SF	32.0	30963450	7.480362
6	Karl-Anthony Towns	С	21.0	5960160	7.034812
7	Kawhi Leonard	SF	25.0	17638063	7.032502
8	John Wall	PG	26.0	16957900	7.016052
9	Stephen Curry	PG	28.0	12112359	6.926259
10	Jimmy Butler	SF	27.0	17552209	6.780512
11	Kevin Durant	SF	28.0	26540100	6.655458
12	Rudy Gobert	С	24.0	2121288	6.446824
13	Nikola Jokic	С	21.0	1358500	6.317256
14	Isaiah Thomas	PG	27.0	6587132	6.268412
15	Chris Paul	PG	31.0	22868827	6.176166
16	Damian Lillard	PG	26.0	24328425	6.010350
17	Draymond Green	PF	26.0	15330435	5.867736
18	Andre Drummond	С	23.0	22116750	5.842966
19	Hassan Whiteside	С	27.0	22116750	5.789636

NOTES: We believe our valuation model is very accurate, as our number 1 player was the league MVP, and 11 of the top 12 players were on the All-Star Team. Karl-Anthony Towns was the exception, and he was considered an all star snub and has made the all star team every year since.

Additionally, the 13th and 14th players (Rudy Gobert and Nikola Jokic), who were not selected for the All-Star Team, were selected for the All-Star game in the following years. Therefore, we believe our model helps determine a players value while simultaneously showing underrated players who are on the rise.

```
In [117]: 1 statsVal2 = stats.sort_values('Value', ascending = False)
2 statsVal2.loc[statsVal2['Year'] == 2016].head(20)
```

Out[117]:

	Year	Player	Pos	Age	Tm	G	GS	MP	PER	TS%	3PAr	FTr	ORB%
23633	2016.0	Stephen Curry	PG	27.0	GSW	79.0	79.0	2700.0	31.5	0.669	0.554	0.250	2.9
24070	2016.0	Russell Westbrook	PG	27.0	OKC	80.0	80.0	2750.0	27.6	0.554	0.236	0.397	6.1
23722	2016.0	James Harden	SG	26.0	HOU	82.0	82.0	3125.0	25.3	0.598	0.406	0.518	2.2
23781	2016.0	LeBron James	SF	31.0	CLE	76.0	76.0	2709.0	27.5	0.588	0.199	0.347	4.7
23654	2016.0	Kevin Durant	SF	27.0	OKC	72.0	72.0	2578.0	28.2	0.634	0.348	0.361	2.0
23938	2016.0	Chris Paul	PG	30.0	LAC	74.0	74.0	2420.0	26.2	0.575	0.295	0.294	1.8
23892	2016.0	Paul Millsap	PF	30.0	ATL	81.0	81.0	2647.0	21.3	0.556	0.218	0.383	8.4
23839	2016.0	Kawhi Leonard	SF	24.0	SAS	72.0	72.0	2380.0	26.0	0.616	0.267	0.306	4.7
23623	2016.0	DeMarcus Cousins	С	25.0	SAC	65.0	65.0	2246.0	23.6	0.538	0.158	0.498	7.7
23849	2016.0	Kyle Lowry	PG	29.0	TOR	77.0	77.0	2851.0	22.2	0.578	0.457	0.410	2.2
23705	2016.0	Draymond Green	PF	25.0	GSW	81.0	81.0	2808.0	19.3	0.587	0.315	0.402	5.5
23692	2016.0	Paul George	SF	25.0	IND	81.0	81.0	2819.0	20.9	0.557	0.391	0.364	3.1
24060	2016.0	John Wall	PG	25.0	WAS	77.0	77.0	2784.0	19.8	0.510	0.243	0.255	1.7
24071	2016.0	Hassan Whiteside	С	26.0	MIA	73.0	43.0	2125.0	25.7	0.629	0.000	0.482	13.1
23649	2016.0	Andre Drummond	С	22.0	DET	81.0	81.0	2666.0	21.2	0.499	0.006	0.553	15.6
24040	2016.0	Karl- Anthony Towns	С	20.0	MIN	82.0	82.0	2627.0	22.5	0.590	0.076	0.239	10.2
23635	2016.0	Anthony Davis	С	22.0	NOP	61.0	61.0	2164.0	25.0	0.559	0.095	0.379	6.4
23689	2016.0	Pau Gasol	С	35.0	CHI	72.0	72.0	2291.0	21.7	0.529	0.069	0.290	7.3
24059	2016.0	Kemba Walker	PG	25.0	СНО	81.0	81.0	2885.0	20.8	0.554	0.368	0.329	2.1
23842	2016.0	Damian Lillard	PG	25.0	POR	75.0	75.0	2676.0	22.2	0.560	0.414	0.315	1.8

NOTES: Each of the top 13 rated players were on the 2016 all-star team, with our highest valued player, Stephen Curry, winning league Most Valuable Player in 2016. Therefore, this further supports the accuracy of our model.

Top Players By Position:

This section is designed for an easy view of top players by position for GMs to review and use in making transactional decisions. It a lso looks into low cost players with high value at each position.

Point Guard

Top 10 PG

In [114]: 1 statsVal.loc[statsVal['Pos'] == 'PG'][['Player','Pos','Age','Salary','V
Out[114]:

	Player	Pos	Age	Salary	Value
0	Russell Westbrook	PG	28.0	26540100	10.023280
1	James Harden	PG	27.0	26540100	8.604930
8	John Wall	PG	26.0	16957900	7.016052
9	Stephen Curry	PG	28.0	12112359	6.926259
14	Isaiah Thomas	PG	27.0	6587132	6.268412
15	Chris Paul	PG	31.0	22868827	6.176166
16	Damian Lillard	PG	26.0	24328425	6.010350
23	Kemba Walker	PG	26.0	12000000	5.604974
25	Mike Conley	PG	29.0	26540100	5.552233
26	Kyle Lowry	PG	30.0	12000000	5.548635

NOTES: As the only top 10 PG with a salary under \$10 million, it is very possible that Isaiah Thomas is undervalued, and GMs should look into signing him if possible.

Top 10 Low Cost PG

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

"""Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[118]:

	Player	Pos	Age	Salary	Value
44	Elfrid Payton	PG	22.0	2613600	4.641734
58	Dennis Schroder	PG	23.0	2708582	4.376557
99	T.J. McConnell	PG	24.0	874636	3.560435
109	Seth Curry	PG	26.0	2898000	3.457219
147	Ty Lawson	PG	29.0	1315448	3.168144
198	Raymond Felton	PG	32.0	1551659	2.629550
214	Tim Frazier	PG	26.0	2090000	2.492970
221	Yogi Ferrell	PG	23.0	239767	2.427303
228	Spencer Dinwiddie	PG	23.0	726672	2.364702
242	Jerian Grant	PG	24.0	1643040	2.259975

NOTES: As the third best low cost PG, TJ McConnell deserves a closer look by GMs, as he is priced very low (under 1 million dollars) and is only 24 years old. GMs should also consider Elfrid Payton, as he is highly valued at the age of 22 and a salary less than \$3 million.

Shooting Guard

Top 10 SG

```
In [119]: 1 statsVal.loc[statsVal['Pos'] == 'SG'][['Player', 'Pos', 'Age', 'Salary', 'V
```

Out[119]:

	Player	Pos	Age	Salary	Value
24	DeMar DeRozan	SG	27.0	26540100	5.585201
38	C.J. McCollum	SG	25.0	3219579	4.984344
39	Bradley Beal	SG	23.0	22116750	4.928944
46	Nicolas Batum	SG	28.0	20869566	4.629320
49	Lou Williams	SG	30.0	7000000	4.595277
55	Dwyane Wade	SG	35.0	23200000	4.475196
56	Klay Thompson	SG	26.0	16663575	4.413484
71	Devin Booker	SG	20.0	2223600	4.048096
77	Marcus Smart	SG	22.0	3578880	3.862314
87	Patrick Beverley	SG	28.0	6000000	3.697759

NOTES: Our model's accuracy is further supported by this chart, as each of these players could be considered an elite player in the NBA. GMs should heavily target Devin Booker, a 20 year old stud who's salary costs less than \$2.5 million

Top 10 Low Cost SG

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[120]:

	Player	Pos	Age	Salary	Value
38	C.J. McCollum	SG	25.0	3219579	4.984344
71	Devin Booker	SG	20.0	2223600	4.048096
113	Tim Hardaway	SG	24.0	2281605	3.429769
119	Gary Harris	SG	22.0	1655880	3.384372
120	Malcolm Brogdon	SG	24.0	925000	3.373213
156	Dion Waiters	SG	25.0	2898000	3.040514
165	Zach LaVine	SG	21.0	2240880	2.930149
174	Sean Kilpatrick	SG	27.0	980431	2.822191
186	Justin Holiday	SG	27.0	1015696	2.728635
187	Jamal Murray	SG	19.0	3210840	2.721096

NOTES: Each of these players are extremely valuable, as most are very young, and all are rated excellently. However, once again, Devin Booker is arguably the best pick on this chart. At 20 years old and performing at such a high level for a low cost, it is without question that he should be targeted.

Small Forward

Top 10 SF

```
In [121]: 1 statsVal.loc[statsVal['Pos'] == 'SF'][['Player', 'Pos', 'Age', 'Salary', 'V
```

Out[121]:

	Player	Pos	Age	Salary	Value
2	Giannis Antetokounmpo	SF	22.0	2995421	7.892214
5	LeBron James	SF	32.0	30963450	7.480362
7	Kawhi Leonard	SF	25.0	17638063	7.032502
10	Jimmy Butler	SF	27.0	17552209	6.780512
11	Kevin Durant	SF	28.0	26540100	6.655458
21	Paul George	SF	26.0	18314532	5.660310
28	Gordon Hayward	SF	26.0	16073140	5.302115
45	Otto Porter	SF	23.0	5893981	4.629703
51	Carmelo Anthony	SF	32.0	24559380	4.564890
57	Andrew Wiggins	SF	21.0	6006600	4.400675

NOTES: Not only is Giannis Antetokounmpo the highest ranked SF and 3rd ranked overall player at just the age of 22, but he also has a salary that is under \$3 million. It is a no brainer that all GMs should target this player heavily, but it will be hard to take him away from his team without trading a lot away.

Top 10 Low Cost SF

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn ing: Boolean Series key will be reindexed to match DataFrame index.
"""Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[122]:

	Player	Pos	Age	Salary	Value
2	Giannis Antetokounmpo	SF	22.0	2995421	7.892214
63	Robert Covington	SF	26.0	1015696	4.195305
102	T.J. Warren	SF	23.0	2128920	3.524349
110	Rondae Hollis-Jefferson	SF	22.0	1395600	3.449074
131	Joe Ingles	SF	29.0	2250000	3.293079
157	Andre Roberson	SF	25.0	2183072	3.040015
205	Justin Anderson	SF	23.0	1514160	2.575679
224	Sam Dekker	SF	22.0	1720560	2.392654
235	Caris LeVert	SF	22.0	1562280	2.297921
243	James Ennis	SF	26.0	2898000	2.244500

NOTES: Besides Giannis Antetokounmpo, Rondae Hollis-Jefferson is a player that should be heavily targeted by GMs. At 22 years old and a cost of just \$1.4 million, he provides long term rewards for a low cost, and is already performing at a very high level according to his valuation.

Power Forward

Top 10 PF

```
In [123]: 1 statsVal.loc[statsVal['Pos'] == 'PF'][['Player', 'Pos', 'Age', 'Salary', 'V
```

Out[123]:

	Player	Pos	Age	Salary	Value
17	Draymond Green	PF	26.0	15330435	5.867736
30	Blake Griffin	PF	27.0	20140838	5.286569
36	Paul Millsap	PF	31.0	20072033	5.060954
47	James Johnson	PF	29.0	4000000	4.617744
48	LaMarcus Aldridge	PF	31.0	20575005	4.615131
50	Kevin Love	PF	28.0	21165675	4.566491
53	Kristaps Porzingis	PF	21.0	4317720	4.523570
60	Gorgui Dieng	PF	27.0	2348783	4.304656
61	Serge Ibaka	PF	27.0	12250000	4.245497
65	Tobias Harris	PF	24.0	17200000	4.160936

NOTES: At 21 years old, 5th best PF, and under \$5 million, any GM would desire Kristaps Porzingis and his shooting and blocking abilities for his team.

Top 10 Low Cost PF

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

"""Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[124]:

	Player	Pos	Age	Salary	Value
60	Gorgui Dieng	PF	27.0	2348783	4.304656
92	David Lee	PF	33.0	1551659	3.641047
100	Dario Saric	PF	22.0	2318280	3.538028
144	JaMychal Green	PF	26.0	980431	3.190466
149	Marquese Chriss	PF	19.0	2941440	3.156286
159	Terrence Jones	PF	25.0	1050961	3.027154
193	Michael Beasley	PF	28.0	1403611	2.671564
225	Brandon Bass	PF	31.0	1551659	2.386805
241	Thomas Robinson	PF	25.0	1050961	2.265230
245	Davis Bertans	PF	24.0	543471	2.214530

NOTES: Dario Saric, 22 years old, \$2.3 million salary and high value, along with Marquese Chriss, an already high valued PF at just 19 years old, provide immense potential return both short and long term for a team, while still being low cost. Therefore, GMs should look into adding these players.

Center

Top 10 C

```
In [125]: 1 statsVal.loc[statsVal['Pos'] == 'C'][['Player', 'Pos', 'Age', 'Salary', 'Va
```

Out[125]:

	Player	Pos	Age	Salary	Value
3	Anthony Davis	С	23.0	22116750	7.572340
4	DeMarcus Cousins	С	26.0	16957900	7.521981
6	Karl-Anthony Towns	С	21.0	5960160	7.034812
12	Rudy Gobert	С	24.0	2121288	6.446824
13	Nikola Jokic	С	21.0	1358500	6.317256
18	Andre Drummond	С	23.0	22116750	5.842966
19	Hassan Whiteside	С	27.0	22116750	5.789636
20	DeAndre Jordan	С	28.0	21165675	5.715382
22	Marc Gasol	С	32.0	21165675	5.635523
31	Myles Turner	С	20.0	2463840	5.262169

NOTES: Rudy Gobert and Nikola Jokic, 13th and 14th overall and 4th and 5th ranked centers, provide very high returns for their teams for a low cost, and offer to continue doing this long term as they age. Therefore, they are very attractive players to Gms.

Top 10 Low Cost C

```
In [126]: 1 (statsVal.loc[statsVal['Pos'] == 'C'][statsVal['Salary'] < statsVal['Salary'] > 164][['Player', 'Pos', 'Age', 'Salary', 'Value']].head(1
```

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: UserWarn ing: Boolean Series key will be reindexed to match DataFrame index.
"""Entry point for launching an IPython kernel.

//anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:2: UserWarn
ing: Boolean Series key will be reindexed to match DataFrame index.

Out[126]:

	Player	Pos	Age	Salary	Value
12	Rudy Gobert	С	24.0	2121288	6.446824
13	Nikola Jokic	С	21.0	1358500	6.317256
31	Myles Turner	С	20.0	2463840	5.262169
41	Mason Plumlee	С	26.0	2328530	4.759871
62	Steven Adams	С	23.0	3140517	4.222405
66	Clint Capela	С	22.0	1296240	4.132835
78	Jusuf Nurkic	С	22.0	1921320	3.856104
91	JaVale McGee	С	29.0	1403611	3.651958
101	Willy Hernangomez	С	22.0	1375000	3.536489
111	Richaun Holmes	С	23.0	1025831	3.447846

NOTES: Besides Rudy Gobert and Nikola Jokic, Myles Turner offers a high return to his team and should be targeted by GMs., as he is just 20 years old, \$2.5 million, and the 32nd ranked overal player, 10th best center in the NBA. Jusuf Nurkic and Clint Capela are also attractive prospects, as they are low cost, 22 years old, and already performing at a high level.