<u>Página Principal</u> / Mis cursos / <u>22-630411</u> / Tests de evaluación contínua / <u>Test 1 (21/10/22): costes y especificaciones</u>

Comenzado el viernes, 21 de octubre de 2022, 15:07

Estado Finalizado

Finalizado en viernes, 21 de octubre de 2022, 15:27

**Tiempo** 19 minutos 40 segundos

empleado

**Calificación 5,00** de 10,00 (**50**%)

#### Pregunta 1

Correcta

Se puntúa 1,00 sobre 1,00

## Dada la siguiente especificación:

$$\{0 \le n \le long(v)\}$$

void f(int v[], int n, int x, int &r);

$$\{r = \max i, j : 0 \leq i < n \land 0 \leq j < n \land (\forall k : i \leq k \leq j : v[k] = x) : j - i + 1\}$$

cuál de las siguientes afirmaciones explica mejor lo que hace la función.

### Seleccione una:

- lacktriangle a. Calcula la posición de la x más a la derecha del vector.
- $\odot$  b. Calcula la longitud de la mayor secuencia de valores x consecutivos en el vector.
- $\bigcirc$  d. Calcula la longitud de la secuencia de valores x consecutivos más a la derecha del vector.

Las variables i y j delimitan una secuencia máxima de valores x consecutivos.

La respuesta correcta es: Calcula la longitud de la mayor secuencia de valores  $\boldsymbol{x}$  consecutivos en el vector.



### Pregunta 4

Incorrecta

Se puntúa -0,33 sobre 1,00

Dado un vector a de n enteros, ¿cuáles de los siguientes predicados son equivalentes?

$$\begin{split} &1.\,\forall u:1 \leq u < n:a[u-1] \leq a[u] \\ &2.\,\forall u:0 \leq u < n-1:a[u] \leq a[u+1] \\ &3.\,\forall i,j:0 \leq i < j < n:a[i] \leq a[j] \\ &4.\,\forall i,j:0 \leq i \leq j < n:a[i] \leq a[j] \end{split}$$

#### Seleccione una:

- a. Solo 1 y 2.
- b. Todos son equivalentes.
- oc. No hay dos equivalentes.
- d. Ninguna de las anteriores.

- Falso. La respuesta correcta es: Todos son equivalentes. Por las propiedades reflexiva y transitiva de la relación de orden <.
- a. Falso. 1 y 2 son equivalentes a 3 por la propiedad transitiva de  $\leq$  y a 4 por la reflexiva.
- b. Cierto. Todos son equivalentes a causa de las propiedades reflexiva y transitiva de la relación de orden  $\leq$ .
- c. Falso. Todas son equivalentes a causa de las propiedades reflexiva y transitiva de la relación de orden  $\leq$ .
- d. Falso. La respuesta correcta es: Todos son equivalentes. Por las propiedades reflexiva y transitiva de la relación de orden  $\leq$ .

La respuesta correcta es: Todos son equivalentes.

Pregunta **5**Incorrecta
Se puntúa -0,33 sobre 1,00

# Dada la siguiente especificación

 $\{0 \le n \le longitud(v)\}$ 

fun xxx (int v[], int n, int k) dev int r

$$\{ r = \# p,q : 0 \le p < q < n : v[p] + v[q] = k \}$$

y teniendo en cuenta que estamos considerando los n primeros elementos del vector, indica qué afirmación es correcta con respecto a ella.

#### Seleccione una:

- a. La postcondición está mal definida cuando n=0.
- b. El valor de r es el número de parejas de posiciones distintas que contienen elementos cuya suma es k.
- Falso. Puesto que se exige p < q, si una pareja (i,j) cumple que v[i]+v[j]=k, también lo cumple la pareja (j,i) pero sólo una de ellas se contabiliza. Por tanto solo se cuentan la mitad de las parejas que cumplen la condición.
- o c. El valor de r es la mitad del número de parejas de posiciones distintas que contienen elementos cuya suma es k.
- d. Ninguna de las anteriores.
  - a. Falso. Cuando n=0 el predicado está bien definido y r vale 0.
  - b. Falso. Puesto que se exige p<q, si una pareja (i,j) cumple que v[i]+v[j]= k, también lo cumple la pareja (j,i) pero sólo una de ellas se contabiliza. Por tanto solo se cuentan la mitad de las parejas que cumplen la condición.
  - c. Cierto. Puesto que se exige p<q, si una pareja (i,j) cumple que v[i]+v[j]= k, también lo cumple la pareja (j,i) pero sólo una de ellas se contabiliza. Por tanto solo se cuentan la mitad de las parejas que cumplen la condición.
  - d. Falso. La respuesta correcta es: El valor de r es la mitad del número de parejas de posiciones distintas que contienen elementos cuya suma es k.

La respuesta correcta es: El valor de r es la mitad del número de parejas de posiciones distintas que contienen elementos cuya suma es k.

Pregunta 6

Correcta

Se puntúa 1,00 sobre 1,00

Indica la complejidad del siguiente algoritmo

## Seleccione una:

- $\bigcirc$  a.  $\Theta(1)$
- $\bigcirc$  b.  $\Theta(n+m)$
- $\bigcirc$  c.  $\Theta(n*m)$
- d. Ninguna de las anteriores.

 $\checkmark$  Cierto. La respuesta correcta es  $\Theta(\min(n,m))$ .

- a. Falso. El número de vueltas del bucle no es constante.
- b. Falso. El número de vueltas no es proporcional a la suma de ambos límites.
- c. Falso. El número de vueltas no es proporcional al producto de ambos límites.
- d. Cierto. La respuesta correcta es  $\Theta(\mathbf{min}(n,m))$  .

La respuesta correcta es: Ninguna de las anteriores.



Dada la siguiente especificación:

$$\mathsf{P}: \{0 \leq n \leq N \land 0 \leq m \leq M \land 0 < l1 \leq n \land 0 < l2 \leq m\}$$

fun xxx (int v[N][M], int n, int m, int l1, int l2) dev int r

$$\mathsf{Q}: \{r = \#i, j: 0 \leq i \leq n - l1 \land 0 \leq j \leq m - l2: \forall k1, k2: i \leq k1 < i + l1 \land j \leq k2 < j + l2: v[k1][k2] = 0\}$$

y teniendo en cuenta que estamos considerando n filas y m columnas de la matriz v, indica qué afirmación es correcta con respecto a ella.

### Seleccione una:

- a. El valor de r es el número de rectángulos no vacíos de dimensión l1 × l2 de la matriz cuyos elementos son todos ceros.
- b. Si n=0 o m=0 la función devuelve 0.
- oc. El valor de r es la dimensión del mayor rectángulo cuyos elementos son todos cero.
- d. Ninguna de las anteriores.
  - a. Cierto. El operador cuenta cuantas posiciones (i,j) de la matriz son el extremo superior izquierdo de un rectángulo de I1 filas y I2 columnas lleno de ceros.
  - b. Falso. Si n=0 o m=0, la precondición impide que se pueda llamar a la función porque no hay ningún l1 (resp. l2) que cumpla 0<l1<=0 (resp para l2).
  - c. Falso. El operador cuenta cuantas posiciones (i,j) de la matriz son el extremo superior izquierdo de un rectángulo de 11 filas y 12 columnas lleno de ceros.
  - d. Falso. La respuesta correcta es: El valor de r es el número de rectángulos no vacíos de dimensión I1 × I2 de la matriz cuyos elementos son todos ceros.

La respuesta correcta es: El valor de r es el número de rectángulos no vacíos de dimensión l1 × l2 de la matriz cuyos elementos son todos ceros.

Pregunta 8

Incorrecta

Se puntúa -0,33 sobre 1,00

Indica cuál de las siguientes afirmaciones es correcta

# Seleccione una:

- igorplus a.  $\Theta(\log n) \nsubseteq \Theta(n)$
- $\bigcirc$  b.  $\Theta(\log n) \supset \Theta(n)$
- $\bigcirc$  c.  $\Theta(\log n) = \Theta(n)$
- lacksquare d.  $n \in \Theta(\mathbf{log}\ n)$

- $\text{Afirmación incorrecta. Por el teorema del límite,} \\ \operatorname{como} \lim_{n \to \infty} \frac{n}{\log n} = \infty \text{, } n \not\in \Theta(\log n) \text{.}$
- a. Afirmación correcta. Por el teorema del límite, como  $\lim_{n \to \infty} \frac{\log n}{n} = 0$  ,  $\log n \notin \Theta(n)$  , pero  $\log n \in \Theta(\log n)$  .
- b. Afirmación incorrecta. Por el teorema del límite, como  $\lim_{n \to \infty} \frac{n}{\log n} = \infty$  ,  $n \notin \Theta(\log n)$  .
- c. Afirmación incorrecta. Por el teorema del límite, como  $\lim_{n \to \infty} rac{\log n}{n} = 0$  ,  $\log n 
  ot \in \Theta(n)$  .
- d. Afirmación incorrecta. Por el teorema del límite, como  $\lim_{n \to \infty} \frac{n}{\log n} = \infty$  ,  $n \notin \Theta(\log n)$  .

La respuesta correcta es:  $\Theta(\log n) \nsubseteq \Theta(n)$ 

| Pregunta <b>9</b> Correcta                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Se puntúa 1,00 sobre 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Dado un vector de $n$ enteros $a$ , con $n \geq 1$ y una variable booleana $b$ , el siguiente predicado $b=\exists w:0\leq w< n:(\exists k:0\leq k:a[w]=2*k+1)$ significa que la variable $b$ toma el valor cierto si y solo si:                                                                                                                                                                                                                                                                         |                           |
| Seleccione una:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| o. Todas las posiciones del vector son impares .                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
| Od. Ninguna de las anteriores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| a. Falso. El impar es el valor contenido en el vector, no la posición. b. Cierto. Hay al menos una posición en el vector que contiene un número impar (>0) c. Falso. El cuantificador es existencial, no universal. Los impares son los valores contenidos en el vector, no las posici d. Falso. La respuesta correcta es: Hay al menos una posición en el vector que contiene un número impar (>0).  La respuesta correcta es: Hay al menos una posición en el vector que contiene un número impar (>0) | ones.                     |
| Pregunta 10 Correcta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Se puntúa 1,00 sobre 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| ¿De qué depende la complejidad de un algoritmo?                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| Seleccione una:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| O b. Del lenguaje de programación y su compilador.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| c. De la velocidad y capacidad del computador donde se ejecute.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| od. De las líneas de código que tenga.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| e. Ninguno de los factores anteriores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul><li>Cierto.</li></ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| <ul> <li>a. Falso.</li> <li>b. Falso.</li> <li>c. Falso.</li> <li>d. Falso.</li> <li>e. Cierto.</li> </ul> La respuesta correcta es: Ninguno de los factores anteriores.                                                                                                                                                                                                                                                                                                                                 |                           |
| → Avisos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| lr a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |