Software Requirements and Architecture (SENG404)

Matthias Galster

Lecture 7 – Requirements validation

March 22, 2023

Schedule 2023

Lecture	Week	Date	Topic	
1	1	February 22	Kick-off; Introduction	
2	1	February 23	Instead of May 3; Requirements and requirements engineering processes	
3	2	March 1	Requirements elicitation (part 1)	
4	2	March 2	Instead of May 17; Requirements elicitation (part 1); Requirements elicitation (part 2)	
5	3	March 8	Requirements elicitation (part 2); Requirements documentation	
6	3	March 9	Matthias away	
7	4	March 15	Requirements documentation	
8	4	March 16	Requirements documentation; Requirements analysis	
9	5	March 22	Assignment 1; Requirements analysis, Requirements validation	
10	6	March 29		
Term break				
11	7	April 26		
12	8	May 3	Matthias away	
13	9	May 10		
14	10	May 17	Matthias away	
15	11	May 24	Assignment 2: presentations + report	
16	12	May 31		
		TBD	Final exam	

Assignment 1

Student(s)	Topic
Saskia van der Peet	Use of design thinking in requirements engineering
April Clarke	Influence of social factors on requirements engineering
Jonathan Tomlinson + Danish Jahangir	Software requirements elicitation techniques
Michael Wilson	Architecture recovery and recovery techniques
Jamie Thomas	Usefulness in requirements prioritization techniques
Lisa Lu + Joshua Egan	Towards Understanding Software Architectural Patterns
Andrew Cook	Security requirements engineering

Previous lecture

1. Requirements analysis – overview

2. Effort estimation

3. Requirements prioritization

Reading for this session

• L. Montgomery, D. Fucci, A. Bouaffa, L. Scholz, and W. Maalej. Empirical research on requirements quality: a systematic mapping study. Requirements Engineering, 2022, pp. 183-209, https://doi.org/10.1007/s00766-021-00367-z

Questions and lessons

 https://jamboard.google.com/d/1Hn9QmwqDMsqWBr_4FI47Uz OtA02smqwH6-Dy1A6Ju2g/edit?usp=sharing

Reading for next session

• S. Jayatilleke and R. Lai. *A systematic review of requirements change management*. Information and Software Technology, 2018, pp. 163-185, doi: 10.1016/j.infsof.2017.09.004

Agenda

1. Requirements validation – overview

2. Requirements validation techniques

Agenda

1. Requirements validation – overview

2. Requirements validation techniques

Generic RE process activities

Requirements validation

- Process and activities related to
 - ensuring that "requirements" are
 - [complete,] clear, correct, consistent, realistic

What to validate

What to validate

- Content
- Documentation
- Agreement

Validation of content

- Identify requirements that have "quality defects"
 - See previous lectures (e.g., on requirements documentation)
- Noise
 - No information relevant to any feature
- Silence
 - Feature that is not covered by any text
- Over-specification
 - Feature of solution, rather than the problem
- Contradiction
 - Feature defined in various incompatible ways
- Ambiguity
 - Interpreted in at least two different ways
- Forward reference
 - Text that refers to a feature yet to be defined
- Wishful thinking
 - Feature that cannot possibly be validated

- Jigsaw puzzles
 - Requirements distributed/cross-referenced across document
- Duckspeak requirements
 - Only there to conform to standards
- Unnecessary invention of terminology
 - E.g., 'the user input presentation function'
- Inconsistent terminology
 - Inventing and then changing terminology
- Problems for the development staff
 - Making reader work hard to decipher intent
- Writing for the hostile reader
 - There are fewer of these than friendly readers

What to validate

Content

Documentation

the way they are documented, is it thorough, does it capture details

Agreement

Validation of documentation

- Non-conforming to documentation rules, structure, format
 - Not traceable
 - Incomplete acceptance tests
 - Missing DoD
 - Missing meta-information
 - Etc.

What to validate

- Content
- Documentation
- Agreement

Validation of agreement

- Consensus among different stakeholders?
 - Check whether agreement has actually been achieved
 - Are known conflicts resolved

Conflicts

- Multiple stakeholders have different goals and requirements
- Strong conflicts (e.g., in meeting scheduler)
 - Meeting participant

"R1: The constraint of a participant may not be disclosed to anyone else."

Meeting initiator

"R2: The meeting initiator should know the participants' constraints."

- Weak conflicts (e.g., in library system)
 - Library staff

"R1: A borrower should return a borrowed book copy within two weeks."

Borrower

"R2: A borrower should keep a borrowed book copy as long as she needs it."

Conflict analysis: reasons for conflicts

Subject matter conflict

Divergent factual needs
dfferent understanding of the domain, may misinterpret facts. eg.
response time of 1s, or finacnce want response time of 1ms, but
have disvissions to solve

different view points, different goals, and different understanding of the domain, d

Conflict of interest or values

Divergent interests, values and preferences, e.g., cost versus function

hidden agenda clients

- Organizational conflict
 - Between stakeholders on different hierarchy and decision power levels
- Relationship conflict
 - Emotional problems in personal relationship between stakeholders

Conflict resolution

- Win-win techniques
 - Agreement by compromise / variants
 - Identify (win) goals, capture + reconcile differences

- Win-lose techniques
 - Overruling
 - Voting
 - Prioritizing stakeholders

- Often negotiation-based
 - Delphi, facilitator + mediator techniques, etc.

Agenda

1. Requirements validation - overview

2. Requirements validation techniques

Requirements validation techniques

Quantitative validation techniques

- Model checking (specification validation)
 - Requirement models verified using formal methods
 - Formal proof of critical properties
- Simulation and prototyping
 - Investigates dynamic system behavior
 - Simulation: specification validation
 - Simulate execution of specification, may visualize animated models
 - Prototyping: product validation
 - Partial implementation of requirements
 - Judge practical usefulness of specified system in real application context

Quantitative

Inspection (review)

- Most common, simple and pragmatic method
 - Most evident errors can be detected
 - On average detect 60% to 80% of requirements errors
- Basic types
 - Walkthrough
 - Author guides experts through specification
 - Retrospective view on requirements
 - Expert review
 - Experts check specification
 - External and neutral view on requirements

Pre-inspection activities

Define

- Checking rules (checklist)
 - Guides and structures review process
 - Unambiguous, clear enough to test
- Defect (violation of a rule)
 - E.g., if there are 10 ambiguous terms in one requirement: we have 10 defects
- When to exit from inspection
 - Exit condition (e.g., maximum 1 major defect / page)

Example

NASA software requirements specification review checklist templates

Perspective-based reading (PBR)

- Read and analyze requirements from different perspectives
 - E.g., end user, tester, architect, maintainer

- Why
 - Inspectors often do not know how to read the document
 - Different perspectives: requirements more reliability reflect actual needs
 - Developers learn how to write document but not how to read them

Steps

- Select perspectives for reading
 - E.g.,
 - Designer: uses requirements to produce a system design
 - Tester: produces a test plan to ensure that the system can meet requirements
 - Customer: wants to make sure requirements have been adequately captured
- Define procedure (instructions / scenario) for reading
 - Can include checklist (questions) for reading
- Conduct review
 - Include paraphrasing: explain requirements in the reviewer's own words
- Provide feedback

Requirements and acceptance testing

- RE and acceptance testing are naturally intertwined
 - Acceptance: process of assessing whether system satisfies requirements
 - Acceptance test: test that assesses whether system satisfies requirements
- When writing requirements
 - Can acceptance tests be written to validate them?
 - Mentally execute acceptance test cases

Process of writing ATs helps identify ambiguous requirements

Choosing acceptance test cases

- Potential coverage criteria
 - Requirements coverage: at least one case per requirement
 - Function coverage: at least one case per function
 - Scenario coverage: for every type scenario / use case
 - All actions covered
 - All branches covered
- Consider the usage profile
 - Not all functions / scenarios are equally frequent and important

Qualitative

Improves understanding of Relies on input from personally all participants involved stakeholders Deeper insights **Experienced reviewers** required As soon as high-level requirements + design No "hard facts" available

Review costs – thought experiment (1)

Assumption

- Random requirements specification: 100 pages
- 2 hours for checking two random pages (page a, page b)
- Total time: 100 hours

Count all major defects

Findings

- Page a: 40 defects; page b: 30
- Average: 35 defects / page * 100 pages = 3,500 defects in total

Review costs – thought experiment (2)

More assumptions

- Defect has 1/3 chance of causing loss
- Each loss requires on average 10 person-hours to correct
- Rework cost is 1/3 *3,500 * 10 = 11667 person-hours for rework

Final comparison

- 100 hours for inspection
- 11667 hours for rework

Summary

1. Requirements validation – overview

2. Requirements validation techniques

Validation

