What is a Neuron (in Deep Learning)?

A **neuron** in deep learning is a **computational unit** that:

- 1. Takes inputs
- 2. Applies weights
- 3. Adds bias
- 4. Passes the result through an activation function
- 5. Produces an output

Just like a biological neuron processes signals, this artificial neuron processes numbers.

Formula of a Neuron:

Output= Activation(w1x1+w2x2+.....+wnxn+b)

Where:

- x1,x2,...,xn: Inputs
- w1,w2,...,wn: Weights
- b: Bias
- Activation: Function like sigmoid, ReLU

Example: Let's say you have a single neuron

Inputs:

• x1=2, x2=3

Weights:

• w1=0.4, w2=0.6

Bias:

• b=0.5

Activation Function:

• Sigmoid:

$$\sigma(z) = 1/1 + e - z$$

Step-by-Step Calculation:

1. Weighted sum:

$$Z = (0.4 \times 2) + (0.6 \times 3) + 0.5 = 0.8 + 1.8 + 0.5 = 3.1$$

2. Apply activation (sigmoid):

Output = $1/1 + e-3.1 \approx 0.957$

✓ The neuron outputs 0.957.

© Purpose of Neuron:

Each neuron **extracts patterns** from the data. In a network:

- First layer might detect simple features (edges in image)
- Next layers detect complex features (shapes, objects)

Real-World Analogy:

Imagine a restaurant chef:

- Inputs: Ingredients (like flour, veggies)
- Weights: How much of each ingredient
- Bias: A secret spice for adjustment
- Activation: Cooking method (bake/fry)
- Output: Final dish (prediction)

In a Neural Network:

A neuron is one brick.

Many neurons = one layer Many layers = a deep network

What is a Perceptron?

A perceptron is the simplest type of neural network.

It consists of a single neuron that:

- Takes multiple inputs
- Applies weights and bias
- Passes the result through an activation function
- Produces binary output (like 0 or 1)

Mathematical Formula:

This is also known as a threshold function (like a yes/no decision).

© Purpose:

The perceptron is used for **binary classification** — like:

- Email: spam or not spam
- Image: cat or not cat
- Disease: yes or no

Simple Manual Example:

Let's say we want to build a perceptron that decides whether a student **passes** or **fails** based on:

- x_1 = hours studied
- x_2 = number of classes attended

Let's assume:

- w1=0.6
- w2=0.5
- b=−0.7

Now we give an input:

- x1 =1 (studied 1 hour)
- x2 =1 (attended 1 class)

Step-by-step:

$$Z = w1x1 + w2x2 + b$$

$$= (0.6)(1) + (0.5)(1) - 0.7$$

$$= 0.4$$
Since $z > 0$,

Output = $1 \rightarrow$ The student passes.

Perceptron Learning Rule (Weight Update):

If the output is wrong:

 $Wi = wi + \Delta wi$

 $\Delta wi = \eta (y-y^*) xi$

Where:

- η\eta = learning rate
- y = true label
- y^ = predicted output
- xi = input value

Key Points:

Term Meaning

Inputs (x) Features of the data

Weights (w) Importance of each feature

Bias (b) Shifts the decision boundary

Activation Step function (output 0 or 1)

Output Prediction based on threshold

\(\) Limitation:

- A single-layer perceptron can only solve linearly separable problems.
- Can't solve **XOR problem**, for example.

That's why multi-layer perceptron (MLPs) or deep networks are used in modern deep learning.

Real-World Analogy:

Imagine a gatekeeper checking two things:

- Did the person bring a ticket?
- Is the person on time?

If both are true (weighted sum exceeds a threshold), entry is allowed. Else, not.

Neights and Bias — in simple language with examples.

1. What is a Weight (w)?

A weight is a number that determines how important a particular input is to the neuron's output.

Think of it like:

"How much attention should the neuron pay to this input?"

- A high positive weight means strong influence.
- A negative weight means the input has a negative effect.
- A weight of zero means the input is ignored.

📌 2. What is a Bias (b)?

Bias is a **constant value added** to the weighted sum of inputs **before** applying the activation function.

Think of it like:

"Even if all inputs are 0, should the neuron still be activated?"

Bias **shifts the output** of the activation function — helping the model **fit the data better**.

Real Meuron Output Formula:

Output = Activation (w1x1 + w2x2 + ... + wnxn + b)

Where:

- xi: Inputs
- wi: Weights
- b: Bias
- Activation: Sigmoid, ReLU, etc.

Simple Example:

Suppose you're predicting whether a student passes or fails, based on:

- x1: hours studied
- x2: hours of sleep

Let's use:

• w1 = 0.6 w2 = 0.4, b = -0.7

Inputs:

• x1=2, x2=5

Now compute:

$$Z = (0.6)(2) + (0.4)(5) - 0.7 = 1.2 + 2.0 - 0.7 = 2.5$$

Output = Activation(2.5)

✓ Because the weighted sum is high → neuron activates → student passes.

ii Analogy:

Imagine you're judging whether to go for a **trip**.

- x1: weather (sunny = 1, rainy = 0)
- x2: friends joining (yes = 1, no = 0)
- Weights tell how much you care about each.
 - o weather: weight = 0.8
 - o friends: weight = 0.2
- **Bias** is your personal preference.
 - o Even if weather and friends are bad, you still want to go? That's bias!

© Why are Weights and Bias Important?

Component Purpose

Weight Learns the **importance of each input** during training

Bias Helps the model **fit better by shifting activation** (adds flexibility)

- Weights are like **sliders** that adjust how much each input matters.
- Bias is like a **threshold adjuster** that moves the decision boundary.
- Both are learned during training using optimization techniques like gradient descent.

What is an Activation Function?

An activation function is a mathematical function used in a neuron of a neural network to:

- 1. Decide whether the neuron should be activated (fire) or not
- 2. Introduce non-linearity into the model (which is crucial for learning complex patterns)

Think of it like a decision switch.

If inputs (weighted sum) are good enough, activate the neuron. Else, keep it silent.

Formula Context:

In a neural network:

Z = w1x1 + w2x2 + ... + wnxn + b

Output = Activation(z)

So, the activation function is applied after the weighted sum and bias.

Why Do We Need Activation Functions?

Without an activation function:

- The neural network is just doing linear calculations.
- Can't solve complex tasks like image recognition, language translation, etc.

With activation:

☑ The model becomes **non-linear** and can **learn complex patterns**.

Common Activation Functions:

Function	Formula / Shape	Use Case Example
Step Function	n Output: 0 or 1 (binary)	Simple binary classification (Perceptron)
Sigmoid	$\sigma(z) = 1/1 + e^{-z}$	Probabilities in binary classification
Tanh	Tanh (z) = ez - e-z / ez + e-z	Better zero-centered outputs
ReLU	ReLU(z) = max(0, z)	Deep learning — fast, efficient, widely used
Leaky ReLU	max(0.01z, z)	Solves dead neuron problem in ReLU

Function Formula / Shape Use Case Example

Softmax Converts logits to probabilities Multi-class classification (last layer)

Q Example with ReLU:

Suppose:

• Weighted sum = z = -3

$$ReLU(-3) = max(0,-3) = 0$$

Now, if:

• z=5

$$ReLU(5) = max(0,5) = 5$$

So it "lets through" only **positive values**, and stops negative ones.

Visual Intuition:

- Sigmoid looks like an "S" curve
- **ReLU** is like a ramp (flat at 0, linear after 0)
- Softmax converts scores into percentages (adds up to 100%)

Summary:

Feature	Description
Adds non-linearity	Enables network to learn complex patterns
Determines Firing	Controls whether neuron outputs signal or not

Helps in Classification Maps values to probabilities in some cases

Forward Propagation and Backward Propagation

Step-by-Step Overview

We'll build a tiny neural network:

- 1 input layer (2 neurons)
- 1 hidden layer (2 neurons)
- 1 output layer (1 neuron)
- Use **Sigmoid** as the activation function
- We'll do both **Forward Propagation** and then **Backward Propagation** to **calculate** gradients.

✓ Let's Define the Network

- Inputs:
 - x1 = 0.05
 - x2 = 0.10
- **©** Target Output:
 - y = 0.01
- **6** Initial Weights:

Input to Hidden Weights:

	Hidden1 (h1)	Hidden2 (h2)
x1	0.15	0.25
x2	0.20	0.30

Bias to Hidden:

• bh1 = bh2 = 0.35

Hidden to Output Weight:

	Output (o1)
h1	0.40
h2	0.45

Bias to Output:

• bo = 0.60

Forward Propagation

Step 1: Hidden Layer Inputs

 $neth1 = x1 \cdot w1 + x2 \cdot w2 + bh1$

$$= (0.05)(0.15) + (0.10)(0.20) + 0.35$$

$$= 0.0075 + 0.020 + 0.35$$

= 0.3775

neth2 =
$$(0.05)(0.25) + (0.10)(0.30) + 0.35$$

$$= 0.0125 + 0.030 + 0.35$$

= 0.3925

Step 2: Activation (Sigmoid)

outh1 = $\sigma(0.3775)$

outh2 = $\sigma(0.3925)$

 $= 1/1 + e - 0.3925 \approx 0.59688$

Step 3: Output Layer Input

neto1= outh1 ·w5 + outh2·w6 + bo

$$= (0.59327)(0.40) + (0.59688)(0.45) + 0.60$$

= 0.2373 + 0.2686 + 0.60

= 1.1059

Step 4: Output Layer Activation

outo1 = $\sigma(1.1059)$

 $= 1/1+e-1.1059 \approx 0.75136$

Using Mean Squared Error:

E = 12(target-output) 2

 $= 12 (0.01-0.75136) 2 \approx 0.2748$

What is Backward Propagation?

Backward Propagation (or **Backprop**) is the process of calculating the **gradient of the loss function** with respect to each weight and bias, and **updating them** using **gradient descent** to minimize the error.

We use the **chain rule from calculus** to break down how the error changes with respect to each parameter.

Network Structure (Reminder)

We'll use the same small neural network:

• Inputs: x1 = 0.05, x2 = 0.10

• Target: y = 0.01

• One hidden layer (2 neurons), one output neuron

• Activation: Sigmoid

• Loss Function: Mean Squared Error

Initial weights:

Input → Hidden:

w1 = 0.15, w2 = 0.20

w3 = 0.25, w4 = 0.30

Bias for hidden = 0.35

Hidden → Output:

w5 = 0.40, w6 = 0.45

Bias for output = 0.60

🌀 Goal of Backpropagation

We want to update all weights (w1 to w6) to reduce the error.

This requires:

- 1. Compute the gradient of error w.r.t each weight
- 2. Update weights:

 $W = w - \eta \cdot \partial E / \partial w$

Where η (eta) is the learning rate, say 0.5.

Step-by-Step: Backward Propagation

Let's break this into 2 parts:

PART A: Update weights from Hidden → Output

We're updating w5 and w6, which connect h1 and h2 to output o1.

Let's recall:

- Predicted output out_o1 = 0.75136
- Target y = 0.01
- Output from hidden neurons:
 out_h1 = 0.59327, out_h2 = 0.59688

Step A1: Compute ∂E/∂w5 using Chain Rule

We use:

 $\partial E/\partial w5 = \partial E/\partial outo1 * \partial outo1/\partial neto1 * \partial neto1/\partial w5$

Breakdown:

1. Error derivative:

 $\partial E/\partial outo1 = outo1 - y = 0.75136 - 0.01 = 0.74136$

2. Derivative of sigmoid:

 ∂ outo1/ ∂ neto1= outo1 * (1-outo1) = 0.75136 * 0.24864 \approx 0.1868

3. Net to weight derivative:

 $\partial \text{neto} 1/\partial \text{w5} = \text{outh1} = 0.59327$

Now:

 $\partial E/\partial w5 = 0.74136 * 0.1868 * 0.59327 \approx 0.08216$

Similarly:

 $\partial E/\partial w6 = 0.74136 * 0.1868 \cdot 0.59688 \approx 0.08267$

Step A2: Update Weights

w5 = w5-
$$\eta$$
 * ∂ E/ ∂ w5
= 0.40 - 0.5 * 0.08216 ≈ 0.35892
w6 = 0.45 - 0.5 * 0.08267 ≈ 0.40867

Output layer weights updated!

PART B: Update weights from Input → Hidden

Now we go **deeper** to adjust w1, w2, w3, w4.

Let's do for w1 (from $x1 \rightarrow h1$).

Step B1: Use Chain Rule for w1

∂E/∂w1= ∂E/∂outo1 * ∂outo1/∂neto1 * ∂neto1/∂outh1 * ∂outh1/∂neth1 * ∂neth1/∂w1

- ∂E/∂outo1 = 0.74136
- ∂outo1/∂neto1 = 0.1868
- $\partial \text{neto} 1/\partial \text{outh} 1 = \text{w5} = 0.40$

Now compute:

- ∂outh1/∂neth1 = outh1(1-outh1)
 - $= 0.59327(1-0.59327) \approx 0.2413$
- $\partial \text{neth} 1/\partial w 1 = x 1 = 0.05$

Now multiply:

 $\partial E/\partial w1 = 0.74136 * 0.1868 * 0.40 * 0.2413 * 0.05 \approx 0.00067$

Step B2: Update w1

$$w1 = 0.15 - 0.5 * 0.00067$$

= 0.14967

Repeat this for w2, w3, and w4 in the same way.

What Did We Learn?

- Backpropagation is all about using calculus chain rule to move error from output → hidden → input.
- Every weight is updated by seeing how much it contributed to the final error.
- The smaller the contribution, the smaller the update.

• This is repeated for many epochs.

* Summary Table

Step Explanation

 $\partial E/\partial w_5$ Error at output layer and how it flows back

Chain Rule To connect the effect of weight on total error

Update Rule Gradient Descent: New weight = old – $\eta \times gradient$

Repeat Do this for all weights, layer by layer

What is an Optimizer in Neural Networks?

An **optimizer** is an algorithm that **adjusts the weights and biases** of a neural network to **reduce the loss (error)** during training.

It does this by:

- Using gradients calculated during backpropagation.
- Deciding **how much and in which direction** each weight and bias should be updated.

★ Why Optimizer is Important?

Without an optimizer:

- Your neural network won't learn anything.
- You won't know how to update weights after calculating the error.

6 Goal of an Optimizer

Minimize the loss function (for example, MSE or Cross-Entropy):

minθ Loss (ytrue, ypredicted)

Where θ represents all the weights and biases in the network.

How it Works (Conceptual Steps)

- 1. Start with random weights.
- 2. Use **forward propagation** to compute predictions.
- 3. Calculate loss (how wrong the prediction is).
- 4. Use **backpropagation** to get gradients.
- 5. The **optimizer** uses those gradients to **update weights** to reduce the error.
- 6. Repeat steps 2–5 until convergence (or fixed epochs).

Common Optimizers

Optimizer Key Idea Good For

SGD Update weights using the gradient only Small/simple models

Momentum Uses past updates to accelerate learning Faster convergence

RMSprop Scales learning rate for each parameter RNNs, unstable gradients

Adam Combines Momentum + RMSprop Most deep learning models

Example: Using SGD (Stochastic Gradient Descent)

Suppose we are training a network with just **1 weight** w = 0.5, learning rate η = 0.1, and we got gradient of loss:

 $\partial E/\partial w = 0.4$

Then optimizer (SGD) updates:

 $w_{\text{new}} = w - \eta \cdot \partial E / \partial w$

 $= 0.5 - 0.1 \cdot 0.4$

= 0.46

So weight becomes 0.46. The optimizer does this for all weights in the network during training.

reature	Explanation
🌀 Goal	Minimize the loss by adjusting weights
How	Use gradients to take steps towards lower error

Feature	Explanation
Step	Each training step updates weights using optimizer logic
🐪 Examples	SGD, Adam, RMSprop, Momentum
P Best Practice Use Adam for most use cases unless reason to switch	

What is an Epoch in Deep Learning?

An **epoch** is **one complete pass** through the **entire training dataset** by the neural network.

In simple words:

If you have 1000 training samples, and your model sees **all 1000 once**, it has completed **1 epoch**.

Why Do We Use Multiple Epochs?

A single pass (1 epoch) is usually **not enough** for the model to learn the underlying patterns. So we train for **multiple epochs**, allowing the model to:

- Gradually reduce the error
- Improve accuracy by adjusting weights through backpropagation

Related Concepts:

1. Batch size:

Number of samples the model sees before updating weights.

Example:

• Dataset: 1000 samples

• Batch size: 100

• ⇒ 10 batches per epoch

2. Iteration:

One weight update = 1 iteration

So:

Iterations per epoch = Total samples / Batch size

Example:

Assume you have:

 $X_{train.shape} = (1000, 10)$

batch_size = 100

epochs = 10

Result:

- # 10 batches per epoch
- # 100 total batches = 10 epochs × 10 batches

As epochs increase, ideally:

- Loss ↓
- Accuracy ↑

▲ Too Many Epochs?

- If too few > Underfitting
- If too many → Overfitting

Use **Early Stopping** to avoid training too long.

★ Summary

Term Meaning

Epoch 1 full pass-through training data

Batch Size Number of samples seen before update

Iteration One update of weights

Goal Train the model gradually over epochs