Programming assignment 7

Assembly line

Input (Standard input)

In first line, the integer N is given, which means the number of station $(1 \le N \le 100)$.

In second line, the two integers e_1 , e_2 are given $(1 \le e_i \le 100)$.

In third line, the two integers x_1, x_2 are given.

In fourth line, the N integers $a_{1,1}, a_{1,2}, \dots, a_{1,n}$ are given $(1 \le a_{1,j} \le 100)$.

In fifth line, the N integers $a_{2,1}, a_{2,2}, \dots, a_{2,n}$ are given $(1 \le a_{2,j} \le 100)$. In

sixth line, the N integers $t_{1,1}, t_{1,2}, \dots, t_{1,n-1}$ are given $(1 \le t_{1,j} \le 100)$. In

seventh line, the N integers $t_{2,1}, t_{2,2}, \dots, t_{2,n-1}$ are given $(1 \le t_{2,j} \le 100)$.

Output (Standard output)

In first line, print the fastest assembly time.

If results of first line and second line are same, the first line must be selected.

In the next N line, print each process. Print with the output form given below:

Print the *i*th line's *j*th station as 'ij', and print as increasing order of the station.

[Example]

Sample Input	Sample Output
6	38
2 4	1 1
3 2	2 2
7 9 3 4 8 4	1 3
8 5 6 4 5 7	2 4
2 3 1 3 4	2 5
2 1 2 2 1	1 6

Description

- 1. File name must be Assembly_line.cpp
- 2. Make a comment of your student ID, name and class in the first line of the source code.
 - ex) 2014601028_Honggildong_A
- 3. Please keep the source code that you have submitted for some unexpected accident.