

on

Media

Transmission Media

Group: Silent Hunter

Group:

Silent

Hunter Group Member:

• Syed Ahmed Zaki ID:131-15-2169 •

Fatema Khatun ID:131-15-2372

Sumi Basak ID:131-15-2364

• Priangka Kirtania ID:131-15-2385

Afruza Zinnurain

ID:131-15-2345

Acknowledgement

Acknowledgement

Md. Sarwar Jahan

Morshed Assistant Professor

Dept. Of Computer Science and

Engineering

Daffodil International University

Content

- □ Transmission Media
- ☐ Guided Media:
- □ Twisted Pair
- □ UTP
- □ STP
- □ Co-Axial Cable

- ☐ Fibre Optic Cable
- □ Propagartion Modes
 - □ Transmission Impairment
- ☐ Unguided Media:
- Propagation Methods
- □ Radio Waves
- Antenna
- Microwaves
- □ Infrared

4

What is Tranmission Media?

What is Tranmission Media

- ? In data communication,
- **Transmission media** is a pathway that carries the information from sender to receiver.
- We use different types of cables or waves to transmit data.
- Data is transmitted normally through electrical or electromagnetic signals.

Description Description

- Transmission media are located below the physical layer
- Computers use signals to represent data.
- Signals are transmitted in form of electromagnetic energy.

Classification of Transmission media

7

Twisted-pair cable

A twisted pair consists of two conductors

- Basically copper based
- With its own plastic insulation, twisted together.

Twisted Pair Description

 Provide protection against cross talk or interference(noise)

- One wire use to carry signals to the receiver
- Second wire used as a ground reference For

twisting, after receiving the signal remains same.

 Therefore number of twists per unit length, determines the quality of cable.

Twisted Pair

Advantages:

Cheap

Easy to work with

9

Disadvantages:

- Low data rate
- Short range

Twisted Pair - Applications

Very common medium

Can be use in telephone

1 🔿

network

- Connection Within the buildings
- For local area networks (LAN)

Twisted Pair Cables

Twisted Pair cables

Twisted pair (STP)

Unshielded Twisted Pair (UTP)
Shielded

Unshielded Twisted Pair (UTP):

Description

Pair of unshielded wires

wound around each other

Easiest to install

Applications

UTP:

Telephone subscribers connect to the central telephone office

- DSL lines
- LAN 10Mbps or 100Mbps

UTP

Cable Types Cat 1

Cat 7

5

Cat 6 UTP Cat

Cat 2

Cat 5e

Cat 3

Cat 4

Cat means category according to IEEE standards. IEEE is de jure

standard 15

Categories of UTP cables

UTP connector and Tools

RJ45 (RJ stands for registered jack) is a keyed connector, it means that it can be inserted in only one way

Crimper Tool

Advantages of UTP:

- Affordable
- Most compatible cabling
- Major networking system

17

Disadvantages of UTP:

• Suffers from external Electromagnetic

interference 18

Shielded Twisted Pair (STP)

 Pair of wires wound around each other placed inside a protective foil wrap Metal braid or sheath foil that reduces

interference

 Harder to handle (thick, heavy)

STP

Application

- STP is used in IBM token ring networks.
- Higher transmission rates over longer distances. 20

Advantages of STP:

- Shielded
- Faster than UTP

Disadvantages of STP:

- More expensive than UTP
- High attenuation rate

21

Co-axial Cable

Co-axial cable carries signal of higher frequency ranges than twisted pair cable

• Inner conductor is a solid wire

 Outer conductor serves as a shield against noise and a second conductor

Categories of coaxial cables

Coaxial cables are categorized by Radio Government (RG) ratings, RG is De Jure standards

Coaxial Cable Connectors

BNC Connectors – Bayone Neil Concelman

To connect coaxial cable to devices we need coaxial connectors

- BNC Connector is used at the end of the cable to a device Example: TV set conenction
- BNC T connector used to Ethernet networks to branch out connection to computer or other devices
- BNC terminator is used at the end of the cable to prevent the reflection of the signal

Coaxial Cable

Most versatile medium

• Television distribution

 Long distance telephone transmission • Can carry 10,000 voice calls simultaneously • Short distance computer systems links • Local area networks

> COAXIAL CABLE

ADVANTAGES

25

- Easy to wire
- Easy to expand
- Moderate level of Electro Magnetic Interference

DISADVANTAGE

- Single cable failure can take down an entire network
- Cost of installation of a coaxial cable is high due to its thickness and stiffness
- Cost of maintenance is also high

Fiber-Optic Cable

A fiber optic cable is made of glass or plastic and transmit signals in the form of light.

Nature of light:

- Light travels in a straight line
- If light goes from one substance to another then the ray of light changes direction
- Ray of light changes direction when goes from more dense to a less dence substance

Bending of light ray

- Angle of Incidence (I): the angle the ray makes with the line perpendicular to the interface between the two substances
- Critical Angle: the angle of incidence which provides an angle of refraction of 90-degrees.

Optical fiber

dense glass or plastic

 Uses reflection to guide light through a channel

Iacket

 Core is of glass or plastic surrounded by Cladding

Cladding is of less

An optical fiber cable has a cylindrical shape and consists of three concentric sections: the core, the cladding, and the jacket(outer part of the cable).

Fiber Construction

Fiber – Optic cable

Subscriber Channel (SC) Connecter

Same szie as RJ45 connector Straight-Tip (ST) Connecter

Areas of Application -

Telecommunications

- Local Area Networks
- Cable TV

A

CCTV

Medical Education

32

Greater

capacity

Example: Data rates at 100 Gbps

- Smaller size & light weight
- Lower attenuation
- Electromagnetic isolation
- More resistance to corrosive materials
- Greater repeater spacing facility

Example: After every 10s of km at least

- Only Unidirectional light propagation
- Much more expensive

Propagation Modes

When signal goes from one point to another there are need for

34

Propagation Modes

Step -Index Graded -

Index

35

Propagation Modes

Transmission Impairment • The

Imperfection in transmission media causes signal impairment

 What is sent is not what is received due to impairment impairement are

1) Attenuation,

2) Distortion

• Three causes of

Transmission

Impairment · Attenuation means a

loss of energy.

 Distortion means that the signal changes its form or shape. Noise is another cause of impairement.

Several types of noise

Example: thermal noise, induced noise, crosstalk

38

Unguided Media: Wireless Transmission

Unguided media transport electromagnetic waves without using

a physical conductor it is known as wireless communication.

Signals broadcast through free space and available to capable receiver

Electro magnetic spectrum for wireless communication: Radio

wave & Micro wave Infrared

3 kHz 300GHz 400THz 900THz 39

Propagation methods

Unguided signals travels from the source to destination in several ways it is known as propagation.

They are three types:

- Ground propagation
- Sky propagation
- Line-of-Sight Propagation

Ground propagation:

 Radio waves travel through the

lowest portion of the atmosphere

Touching the earth.

Sky propagation:

 Radio waves radiate to the ionosphere then they are reflected back to earth.

Line-of-Sight Propagation:

 In straight lines directly from antenna to antenna.

41

Media

Wireless transmission waves

Unguided Media – Radio

Omnidirectional Antenna

- Frequencies between 3KHz and 1 GHz.
- Used for multicasts (multiple way) communications, such as radio and television, and paging system.
- Radio waves can penetrate buildings easily,

so that widely use for indoors & outdoors communication.

44

Antennas

An Antenna is a structure that is generally a metallic object may be a wire or group of wires, used to convert high frequency current into electromagnetic waves.

Antenna are two types:

- Transmission antenna
- Transmit radio frequency from transmitter
- Radio frequency then
 Convert to electromagnetic energy by antenna

- Then, radiate into surrounding environment
- Reception antenna
- Electromagnetic energy get in antenna
- Then Antenna convert radio frequency to electrical energy Then,
 Goes to receiver

same antenna can be used for both purposes 45

Microwaves

large areas meed to be covered and there are no obstacles in the path

Micro waves Transmission

- Microwaves are unidirectional
- Micro waves electromagnetic waves having frequency between 1 GHZ and 300 GHZ.
- There are two types of micro waves data communication system:

terrestrial and satellite

 Micro waves are widely used for one to one communication between sender and receiver,

example: cellular phone, satellite networks and in wireless

LANs(wifi), WiMAX,GPS

Infrared

Frequencies between 300 GHz to 400

THz.

- Used for short-range communication
- Example: Night Vision Camera, Remote control,
 File sharing between two phones,
 Communication between a PC and peripheral device,

References

 Data communication and Networking, fourth edition

By: BEHROUZ A FOROUZAN

And various relevant websites

Any Question ?

Thank You