Classical Planning in a Deep Latent Space

(WIP project idea)

1 Classical Planning

Scalable, Highly-optimized solver for complex combinatorial problems

Guided by domain-independent heuristics

Requires an explicit encoding of the real world, written by human

2 Reinforcement Learning

Policy function $\pi(s)$: $S \to A$ — returns action a for state s

Optimal Policy $\pi^*(s)$

Goal: Find the best approximation of π^*

3 Reinforcement Learning in Latent Space

4 Deep Reinforcement Learning

5 Comparison

Classical Planning Scalable, Highly-optimized solver for complex combinatorial problems

by **independent** heuristics Requires an explicit encoding of the real world, written by human

domain-

FLUID

Guided

Deep Reinforcement Learning

Works on the implicit en**coding** of the real world Reasoning is limited to the **1-step future** of the current state guided by instance-specific

learned knowledge (specific

object, situation, goal)

Deep Reinforcement Learning

Works on the implicit en**coding** of the real world Reasoning is limited to the **1-step future** of the current state guided by instance-specific learned knowledge (specific object, situation, goal)

#+END_{ROW}