GroupMate

Padma Pooja Chandran,
Aarthy Kesavan Padmanaban,
Krishnaveni Unnikrishnan,
Jocelyn Xu

Introduction & Motivation

Problem: Traditional team formation (manual or self-selected) often leads to mismatched skills, low motivation, and inefficient collaboration.

Motivation: Instructors spend hours forming teams, and students often end up in groups driven by convenience—not compatibility.

Our Solution: Group Mate

- Passion alignment (from vision essays)
- Skill complementarity
- Course and project history

Key Features:

- Fine-tuned transformer model to score student engagement
- Role-aware categorization: Visionary, Collaborator, Enabler
- LLM-powered skill inference and project matching

Vision Scoring Model

What makes a great team?

Visionary forward-thinking, original ideas

Collaborator bridge between ideas & skills

Enabler strong implementers

Quantifying a visionary idea

- LLMs?
 - Inconsistency and Non-Determinism
 - Lack of Domain Sensitivity
 - Surface-Level Understanding of Novelty
- Our approach: Finetuned SciBERT Model
 - Trained on 50k+ CS papers in arxiv (2023+)
 - Heuristics:
 - Semantic Distance: how original the topic is
 - Categorical Entropy: interdisciplinary depth via author history
 - Lexical Similarity: trend alignment via TF-IDF

Group Formation Algorithm

Tiering:

students_sorted ← sort_desc(students, by=score)
split into Visionaries, Collaborators and Enablers.

Group Initialization:

one Visionary per group; track current_skills + empty needed_skills.

• Skill inference:

picks ← llm.select_skills(essays, total_skills, k=5-7)
ensures each group targets complementary skills.

Collaborator assignment:

round-robin over groups; match on skill gaps, then fill smallest if needed.

Enabler fill:

sort groups by size; fill the smaller teams to balance out numbers.

• Project suggestion:

g.projects ← llm.suggest_projects(essays, skills, k=2)
two custom ideas per group.

Evaluation & Results (vision scoring)

Student ID	Model Label	Suggested Label	√/ X	Justification
stu_3000	Visionary	Visionary	1	Proposes an original "Contextualizer" system to combat dis- information using semantic AI; highly interdisciplinary and forward-thinking.
stu_3001	Collaborator	Collaborator	1	Proposes a cultural context-aware translator; while innovative, it's more an application of existing ideas with moderate novelty.
stu_3002	Enabler	Enabler	1	Practical AI assistant for healthcare documentation; domain- specific, implementation-focused rather than novel.
stu_3003	Enabler	Enabler	1	"Personal Knowledge Curator" is useful but mainly a productivity tool that assembles known concepts; does not propose frontier innovation.
stu_3004	Collaborator	Collaborator	1	Focuses on AI-powered productivity and personal organization; bridges existing technologies for daily use.
stu_3005	Visionary	Visionary	1	Invents an immersive VR/AR knowledge universe (IIKU); highly original and interdisciplinary, transforming how humans interact with knowledge.
stu_3006	Collaborator	Collaborator	1	Designs an AI "Data Life Optimizer" to filter noise and manage time; a supportive assistant, not fundamentally novel.
stu_3007	Collaborator	Collaborator	1	Proposes immersive cognition systems; while conceptually ambitious, the framing lacks specificity or technical feasibility for visionary classification.
stu_3008	Enabler	Visionary	×	Invents an emotional feedback navigator blending psychology and AI; highly novel and crosses into new affective computing territory.
stu_3009	Collaborator	Collaborator	1	Real-time AR + AI analytics in sports is a compelling application but firmly domain-specific, hence collaborative not visionary.
stu_3010	Visionary	Visionary	1	Introduces a general-purpose AI situational assistant for optimized decision-making across domains; broad, impactful vision with interdisciplinary flavor.
stu_3011	Enabler	Collaborator	×	Suggests improving how information is filtered and delivered based on goals and cognition; not novel enough for Visionary, not narrow enough for Enabler.
stu_3012	Visionary	Visionary	1	Proposes AR MindSpace for cognitive augmentation through visualized overlays; visionary use of AR and LLMs for knowledge interaction.

Evaluation & Results (group matching)

Tested on 13 students with fake PII info & real vision essays from CS510 textdata

Greedy Approach

- Focused on maximizing pairwise similarity using fixed weights (80% vision, 10% skill, 10% course diversity).
- Formed 4 strong, thematically aligned teams but left 1 student ungrouped.
- Best at clustering clearly similar visions, but less flexible with outliers or unique profiles.

LLM-Based Grouping

- Used semantic understanding to form 4 balanced teams based on essay content, skillset, and course history.
- No ungrouped students. Captured interdisciplinary themes and latent connections across essays.
- Weaker in strict similarity metrics, but stronger in creative and contextual group fit.

Our Method: GroupMate Optimized Matching (GOM)

- Combines the structure of greedy matching with LLM-informed scoring and role-aware classification (Visionary / Collaborator / Enabler).
- Balanced team size, high thematic alignment, and strong skill coverage across all groups.
- Avoids outliers, supports role diversity, and encourages both passion and feasibility.

Implementation

- Implemented as a web-application that can be used across courses
- Authentication and Authorization pipeline uses Django authentication system
- API-driven for clear distinction of operations

Student View

Instructor View

Flow diagram

Demonstration

Conclusion/ Future Work

Future Work

- We plan to incorporate additional inputs like resumes, GitHub links, and working style surveys to improve team matching accuracy.
- Future versions will gather student and instructor feedback to evaluate and refine LLM-generated project suggestions.
- We also aim to scale GroupMate to support multiple courses and enable dynamic regrouping during the semester.

Conclusion

- GroupMate intelligently forms balanced, passion-aligned teams by combining vision scoring, skill matching, and LLM-driven project analysis.
- It shows clear advantages over random assignment, greedy baselines, and fully LLM-based grouping methods.
- With broader data and real-world feedback, GroupMate has strong potential to enhance collaboration in classrooms at scale.