

ADVERSARIAL MACHINE LEARNING

ATTACK MODEL : JSMA ALGORITHM

Algorithm 1 Crafting adversarial samples

 \mathbf{x} is the benign sample, ℓ is the target network output, \mathcal{F} is the function learned by the network during training, Υ is the maximum distortion, and θ is the change made to features.

Input: \mathbf{x} , ℓ , \mathcal{F} , Υ , θ

- 1: $\mathbf{x}^* \leftarrow \mathbf{x}$
- 2: $\Gamma = \{1 \dots |\mathbf{x}|\}$
- 3: while $\mathcal{F}(\mathbf{x}^*) \neq l$ and $||\delta_{\mathbf{x}}|| < \Upsilon \ \mathbf{do}$
- 4: Compute forward derivative $\nabla \mathcal{P}(\mathbf{x}^*)$
- 5: $S = \mathtt{saliency_map}\left(\nabla \mathcal{P}(\mathbf{x}^*), \Gamma, l\right)$
- 6: Modify $\mathbf{x}_{i_{max}}^*$ by θ s.t. $i_{max} = \arg \max_i S(\mathbf{x}, l)[i]$
- 7: $\delta_{\mathbf{x}} \leftarrow \mathbf{x}^* \mathbf{x}$
- 8: end while
- 9: $\mathbf{return} \ \mathbf{x}^*$

ATTACK MODELS: CARLINI WAGNER ATTACKS

- ▶ Nicholas Carlini and David Wagner proposer three attack models with L_0 , L_2 and L_∞ distance
- L2 attack is most optimal and broke all the existing defences
- The defined the problem as following:

minimize
$$\mathcal{D}(x, x + \delta)$$

such that $\mathcal{C}(x + \delta) = \ell$
 $x + \delta \in [0, 1]^n$

 \mathcal{D} can be L_0, L_2, L_{∞} distance

ATTACK MODEL: JSMA ALGORITHM

Algorithm 1 Crafting adversarial samples

x is the benign sample, ℓ is the target network output, \mathcal{F} is the function learned by the network during training, Υ is the maximum distortion, and θ is the change made to features.

```
Input: \mathbf{x}, \ell, \mathcal{F}, \Upsilon, \theta
```

- 1: $\mathbf{x}^* \leftarrow \mathbf{x}$
- 2: $\Gamma = \{1 ... |\mathbf{x}|\}$
- 3: while $\mathcal{F}(\mathbf{x}^*) \neq l$ and $||\delta_{\mathbf{x}}|| < \Upsilon \mathbf{do}$
- 4: Compute forward derivative $\nabla \mathcal{P}(\mathbf{x}^*)$
- 5: $S = \mathtt{saliency_map}(\nabla \mathcal{P}(\mathbf{x}^*), \Gamma, l)$
- 6: Modify $\mathbf{x}_{i_{max}}^*$ by θ s.t. $i_{max} = \arg \max_i S(\mathbf{x}, l)[i]$
- 7: $\delta_{\mathbf{x}} \leftarrow \mathbf{x}^* \mathbf{x}$
- 8: end while
- 9: $\mathbf{return} \ \mathbf{x}^*$