

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $({\rm M}\Gamma{\rm T}{\rm Y}\ {\rm им.}\ {\rm H.}{\rm Э.}\ {\rm Баумана})$

ФАКУЛЬТЕТ "Фундаментальные науки"

КАФЕДРА "Вычислительная математика и математическая физика" (ФН-11)

ОТЧЕТ

к домашниему заданию №1 на тему

Марковская цепь

Дисциплина: Теория случайных процессов

Вариант: 7

Студент группы ФН11-61Б	(Подпись, дата)	А.Е. Каргополов (И.О. Фамилия)
Преподаватель, канд. физмат. наук, доцент	(Подпись, дата)	Т.В. Облакова (И.О. Фамилия)
Оценка:		

Москва, 2023 г.

Задание

Дана однородная Марковская цепь с данным числом состояний $\{S_1, S_2, ..., S_m\}$. Ненулевые переходные вероятности $p_{ij}, i \neq j$, заданы в таблице.

$$m=6$$
 $k=25$ $n=130$ $p_{12}=0.3$ $p_{21}=0.2$ $p_{23}=0.2$ $p_{34}=0.1$ $p_{45}=0.3$ $p_{56}=0.2$ $p_{61}=0.4$

- 1. Выпишите матрицу переходных вероятностей
- 2. Изобразите размеченный граф Марковской цепи
- 3. Докажите, что цепь эргодическая
- 4. Смоделируйте вектор начальных вероятностей p(0) согласно приложенному алгоритму
- 5. Вычислите безусловные вероятности состояний смоделированной цепи на k шаге по формуле из лекции 1 для полученного p(0)
- 6. Смоделируйте n траекторий полученной цепи за k шагов (см алгоритм ниже). Несколько траекторий выведите на печать
- 7. По полученным реализациям траекторий найдите вектор эмпирических безусловных вероятностей состояний цепи на k шаге
- 8. Сравните найденные эмпирические вероятности с теоретическими для k шага
- 9. Вычислите финальные вероятности для рассматриваемой Марковской цепи (лекция 2) и сравните их с вероятностями состояний на k шаге
- 10. Сформулируйте выводы

Решение

```
In [ ]: import numpy as np
    import pandas as pd
    import seaborn as sns

In [ ]: pd.set_option('display.max_columns', 100)

In [ ]: np.random.seed(42)

In [ ]: m = 6
    k = 25
    n = 130
```

1. Матрица переходных вероятностей

$$P = \begin{pmatrix} 0.7 & 0.3 & 0 & 0 & 0 & 0 \\ 0.2 & 0.6 & 0.2 & 0 & 0 & 0 \\ 0 & 0 & 0.9 & 0.1 & 0 & 0 \\ 0 & 0 & 0 & 0.7 & 0.3 & 0 \\ 0 & 0 & 0 & 0 & 0.8 & 0.2 \\ 0.4 & 0 & 0 & 0 & 0 & 0.6 \end{pmatrix}$$

```
In []: P = np.array([[0.7, 0.3, 0, 0, 0, 0],
                      [0.2, 0.6, 0.2, 0, 0, 0],
                      [0, 0, 0.9, 0.1, 0, 0],
                      [0, 0, 0, 0.7, 0.3, 0],
                      [0, 0, 0, 0, 0.8, 0.2],
                      [0.4, 0, 0, 0, 0, 0.6]])
        print(P)
        print(f'Pasмephocть полученной матрицы: {P.shape}')
        print(f'Проверим, является ли полученная матрица стохастической: {(P.sum(axis=1)
        [[0.7 0.3 0. 0. 0. 0. ]
         [0.2 0.6 0.2 0. 0. 0. ]
         [0. 0. 0.9 0.1 0. 0.]
         [0. 0. 0. 0.7 0.3 0. ]
         [0. 0. 0. 0. 0.8 0.2]
         [0.4 0. 0. 0. 0. 0.6]]
        Размерность полученной матрицы: (6, 6)
        Проверим, является ли полученная матрица стохастической: True
```

2. Размеченный граф Марковской цепи

3. Доказательство эргодичности

```
In []: def count_zeros(pow : int) -> np.int32:
    return (np.linalg.matrix_power(P, pow).ravel() == 0).sum()

count_zeros = np.vectorize(count_zeros)

In []: df = pd.DataFrame()
    df['Степень матрицы'] = np.arange(1, 10)
    df['Количество нулевых элементов'] = count_zeros(df['Степень матрицы'])
    df
```

Out[]:		Степень матрицы	Количество нулевых элементов
	0	1	23
	1	2	17
	2	3	11
	3	4	5
	4	5	0
	5	6	0
	6	7	0
	7	8	0
	8	9	0

```
In []: sns.lineplot(df, x='Степень матрицы', y='Количество нулевых элементов')
```

Out[]: <AxesSubplot: xlabel='Степень матрицы', ylabel='Количество нулевых элементов'>

Так как существует $n_0=5$ такое, что $\min_{i,j} p_{ij}^{(n_0)}>0$, цепь является эргодической.

Выведем P^5 .

```
In []: np.round(np.linalg.matrix_power(P, 5), 4).tolist()
Out[]: [[0.3584, 0.3481, 0.2544, 0.032, 0.0067, 0.0004],
        [0.2326, 0.2423, 0.4017, 0.0848, 0.0343, 0.0043],
        [0.0089, 0.0007, 0.5905, 0.2112, 0.1548, 0.0339],
        [0.1193, 0.0245, 0.0014, 0.1681, 0.4788, 0.2079],
        [0.2935, 0.1111, 0.0173, 0.0005, 0.3277, 0.2499],
        [0.4642, 0.3292, 0.1198, 0.0084, 0.0007, 0.0778]]
```

4. Моделирование вектора начальных вероятностей p(0) согласно приложенному алгоритму

а) Генерируем вектор \vec{r} из независимых и равномерно распределенных на отрезке [0,1] случайных величин;

б)Строим вариационный ряд, сортируя сгенерированный вектор; в)Находим длины отрезков, на которые вектор \vec{r} разбивает отрезок [0,1] - получаем вектор начальных вероятностей.

```
In []: r = np.random.random(m-1)
    r_series = np.sort(r)
    p_0 = np.diff(np.insert(r_series, [0, len(r_series)], [0, 1]))
    print(f'Вектор из независимых и равномерно распределенных на отрезке [0,1] случа
    print(f'Вариационный ряд: {np.round(r_series, 4).tolist()}')
    print(f'Вектор начальных вероятностей: {np.round(p_0, 4).tolist()}')
```

Вектор из независимых и равномерно распределенных на отрезке [0,1] случайных ве личин: [0.3745, 0.9507, 0.732, 0.5987, 0.156] Вариационный ряд: [0.156, 0.3745, 0.5987, 0.732, 0.9507] Вектор начальных вероятностей: [0.156, 0.2185, 0.2241, 0.1333, 0.2187, 0.0493]

5. Вычисление безусловных вероятностей состояний цепи через k шагов

```
p(k)^T = p(0)^T \cdot P^k, \ k = 10
```

6. Моделирование n траекторий полученной цепи за k шагов

```
In [ ]: num_states = np.zeros(m)
    trajectories = []
    for i in range(n):
        state = np.argmax(p_0.cumsum()>np.random.random(1))
        trajectory = [state]
        for j in range(k):
            state = np.argmax(P[state].cumsum()>np.random.random(1))
            trajectory.append(state)
        num_states[state]+=1
        trajectories.append(trajectory)
```

Выведем 3 случайных траектории.

```
In [ ]: for i in range(3):
    ind = int(np.random.random(1)*len(trajectories))
    print(f'Homep в списке: {ind}\n{trajectories[ind]}')

Homep в списке: 31
    [4, 4, 5, 5, 5, 5, 6, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1]
    Homep в списке: 72
    [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
    Homep в списке: 5
    [1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 0, 0, 1, 1, 1, 1]

In [ ]: state_df = pd.DataFrame({'Homep состояния':np.arange(1,7), 'Частота на k-ом шаге state_df
```

Out[]:		Номер состояния	Частота на k-ом шаге
	0	1	23.0
	1	2	20.0
	2	3	39.0
	3	4	12.0
	4	5	28.0
	5	6	8.0

```
In [ ]: sns.barplot(state_df, x='Номер состояния', y='Частота на k-ом шаге')
```

Out[]: <AxesSubplot: xlabel='Номер состояния', ylabel='Частота на k-ом шаге'>

7. Вычисление эмпирических вероятностей состояний цепи на k-ом шаге и сравним их с теоретическими

```
In [ ]: state_df['Эмпирическая вероятность'] = state_df['Частота на k-ом шаге']/n
    state_df['Теоретическая вероятность'] = p_k
    state_df
```

Номер состояния	Частота на k-ом шаге	Эмпирическая вероятность	Теоретическая вероятность
1	23.0	0.176923	0.203492
2	20.0	0.153846	0.153479
3	39.0	0.300000	0.310969
4	12.0	0.092308	0.103566
. 5	28.0	0.215385	0.152880
6	8.0	0.061538	0.075614
	состояния 1 2 3 4 5	состоянияшаге123.0220.0339.0412.0528.0	состоянияшагевероятность123.00.176923220.00.153846339.00.300000412.00.092308528.00.215385

8. Вычисление финальных вероятностей состояний цепи

Для того, чтобы найти финальные вероятности состояний цепи, необходимо решить следующую систему:

$$\begin{cases} p_1 = 0.7p_1 + 0.2p_2 + 0.4p_6 \\ p_2 = 0.3p_1 + 0.6p_2 \\ p_3 = 0.2p_2 + 0.9p_3 \\ p_4 = 0.1p_3 + 0.7p_4 \\ p_5 = 0.3p_4 + 0.8p_5 \\ p_6 = 0.2p_5 + 0.6p_6 \\ p_1 + p_2 + p_3 + p_4 + p_5 + p_6 = 1 \end{cases}$$

In []: p_final = np.array([0.205128, 0.15384, 0.307692, 0.102564, 0.153846, 0.0769231]) state_df['Финальная вероятность'] = p_final state_df[['Эмпирическая вероятность', 'Теоретическая вероятность', 'Финальная вє

Out[]:		Эмпирическая вероятность	Теоретическая вероятность	Финальная вероятность
	0	0.176923	0.203492	0.205128
	1	0.153846	0.153479	0.153840
	2	0.300000	0.310969	0.307692
	3	0.092308	0.103566	0.102564
	4	0.215385	0.152880	0.153846
	5	0.061538	0.075614	0.076923

Выводы

При относитнльно большом количестве n=130 смоделированных траекторий, эмпирические вероятности состояний цепи близки к теоретическим. Кроме того, теоретические вероятности слабо отличаются от финальных. Таким образом, мы проверили эргодичность системы.