Spin-Orbit Misalignment Dynamics in Black Hole Triples Group Meeting?

Yubo Su

Apr. 4, 2020?

Equations:

$$\frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t} = \Omega_{SL}\hat{\mathbf{L}} \times \hat{\mathbf{S}},\tag{1}$$

$$\Omega_{SL} = \frac{3Gn(m_2 + \mu/3)}{2c^2a(1 - e^2)},$$
 (2)

$$\frac{{\rm d}I}{{\rm d}t} = -\frac{15}{16t_{LK}} \frac{e^2 \sin(2\omega) \sin(2I)}{\sqrt{1-e^2}}, \eqno(3)$$

$$\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{3}{4t_{LK}} \frac{\cos i \left(5e^2 \cos^2 \omega - 4e^2 - 1\right)}{\sqrt{1 - e^2}}, \qquad (4)$$

$$\frac{1}{t_{LK}} = n \left(\frac{m_3}{m_1 + m_2} \right) \left(\frac{a}{\bar{a}_{3,\text{eff}}} \right)^3. \tag{5}$$

GW radiation narrows range of e oscillations.

$$\theta_{\rm sl}^f = \cos^{-1}(\hat{\mathbf{L}} \cdot \hat{\mathbf{S}})$$
?

• Go to corotating frame with $\dot{\Omega}$, so that $\hat{\mathbf{L}}$ nutates and $\hat{\mathbf{L}}_3 = \hat{\mathbf{z}}$:

$$\frac{d\hat{\mathbf{S}}}{dt} = (\Omega_{SL}\hat{\mathbf{L}} - \dot{\Omega}\hat{\mathbf{L}}_3) \times \hat{\mathbf{S}} \equiv \hat{\mathbf{\Omega}}_{\text{eff}} \times \hat{\mathbf{S}}.$$
 (6)

- Intuition: If no LK, Ω_{SL} , $\dot{\Omega}$ slowly vary, $\theta_{\rm sl}^f=\theta_{\rm s3}^i$.
- $\Omega_{SL}\hat{\mathbf{L}}$ and $\dot{\Omega}\hat{\mathbf{L}}_3$ periodic with T_{LK} (varying), so decompose about the mean value:

$$\frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t} = \langle \hat{\mathbf{\Omega}}_{\mathrm{eff}} \rangle_{LK} \times \hat{\mathbf{S}}$$
$$-\mathbf{S} \times \sum_{N=1}^{\infty} \hat{\mathbf{A}}_{N} \cos\left(\frac{2\pi Nt}{T_{LK}}\right). \tag{7}$$

• Formally, can average (or WKBJ) unless $\Omega_{\rm efff} = \frac{2\pi (N'/2)}{T_{LK}}$.

 What are these linear resonances? Consider toy model, ε → 0:

$$\frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t} = \left[\omega_0 \hat{\mathbf{z}} + \epsilon (\cos \omega t \hat{\mathbf{x}} + \sin \omega t \hat{\mathbf{y}})\right] \times \hat{\mathbf{S}},\tag{8}$$

$$\left(\frac{d\mathbf{S}}{dt}\right)_{\text{rot}} = \left[(\omega_0 - \omega)\hat{\mathbf{z}} + \epsilon\hat{\mathbf{x}} \right] \times \hat{\mathbf{S}}.$$
 (9)

- In resonances, the precession axis tilts away from $\hat{\mathbf{z}}$ plane when $\omega_0 \omega \sim \epsilon$. Then $\dot{\theta} \simeq \epsilon$.
- Thus, when crossing:
 - If slow, adiabatic invariance, $\theta^f = \theta^i$.
 - If fast, no time to rotate, $\theta^f \approx \theta^i$.
 - Only when $\frac{\mathrm{d} \ln \omega}{\mathrm{d} t} \simeq \epsilon$ will $\theta^f \neq \theta^i$.

• If resonance $\Omega_{\mathrm{eff}} = \pi N'/T_{LK}$:

$$\frac{d\hat{\mathbf{S}}}{dt} = \langle \hat{\mathbf{\Omega}}_{\text{eff}} \rangle_{LK} \times \hat{\mathbf{S}}$$

$$- \frac{\hat{\mathbf{S}}}{2} \times \sum_{N=1}^{N'} \hat{\mathbf{A}}_{N} \cos \left(\frac{2\pi Nt}{T_{LK}} \right)$$

$$- \frac{\hat{\mathbf{S}}}{2} \times \sum_{N=1}^{\infty} \hat{\mathbf{B}}_{N} \cos \left(\Omega_{\text{eff}} t \right) - \hat{\mathbf{C}}_{N} \sin \left(\Omega_{\text{eff}} t \right),$$
(10)

$$\hat{\mathbf{B}}_{N}(t) = \left(\hat{\mathbf{A}}_{N} + \hat{\mathbf{A}}_{N+N'}\right) \cos\left(\frac{\pi \left(N+N'\right)t}{T_{LK}}\right), \quad (11)$$

$$\hat{\mathbf{C}}_{N}(t) = \left(\hat{\mathbf{A}}_{N} - \hat{\mathbf{A}}_{N+N'}\right) \sin\left(\frac{\pi \left(N+N'\right)t}{T_{LK}}\right). \quad (12)$$

• Equivalently, consider using Hamiltonian and going to coordinates (sum every N and N+N' term to generate multiples of N'/2). Note $\sin\left(\phi-\frac{\pi N't}{T_{LK}}\right)$ dependencies.

$$\begin{split} H &= \langle \hat{\mathbf{\Omega}}_{\text{eff}} \rangle_{LK} \cdot \hat{\mathbf{S}} \\ &+ \sum_{N=1}^{\infty} \left(A_{N,z} \cos \theta + A_{N,x} \sin \theta \cos \phi \right) \cos \left(\frac{2\pi Nt}{T_{LK}} \right), \\ &= \langle \hat{\mathbf{\Omega}}_{\text{eff}} \rangle_{LK} \cdot \hat{\mathbf{S}} \\ &+ \frac{\hat{\mathbf{S}}}{2} \cdot \sum_{N=1}^{N'} \hat{\mathbf{A}}_{N} \cos \left(\frac{2\pi Nt}{T_{LK}} \right) \\ &+ \frac{\hat{\mathbf{S}}}{2} \cdot \sum_{N=1}^{\infty} \left(B_{N,z} \cos \theta + B_{N,x} \sin \theta \cos \phi \right) \cos \left(\frac{\pi N't}{T_{LK}} \right) \\ &- \left(C_{N,z} \cos \theta + C_{N,x} \sin \theta \cos \phi \right) \sin \left(\frac{\pi N't}{T_{LK}} \right). \end{split}$$

- Note: If $\Omega_{SL}\gtrsim\dot{\Omega}$, LK suppressed. Thus, consider primarily $\langle\dot{\Omega}\rangle_{LK}\hat{\mathbf{z}}$ dominating $\hat{\mathbf{\Omega}}_{\mathrm{eff}}$.
- We want $\langle \dot{\Omega} \rangle = \pi N'/T_{LK}$, which is equivalent to:

$$\pi N' = \Delta \Omega = \int_{0}^{T_{LK}} \dot{\Omega} \, \mathrm{d}t. \tag{15}$$

• It turns out that for a wide range of parameters, $|\Delta\Omega| < \pi$, thus, no resonance can be hit.

• As GW radiates, e_0 increases, decreases $\Delta\Omega$ (right; numerical). Never resonance crossing $(\Delta\Omega < -\pi$, black line) when $e_0 = 10^{-3}$ for $I_0 \in [75, 105]$. Seems about right! Fig. 4 from Liu & Lai 2017.

Consider again toy problem

$$\left(\frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t}\right)_{\mathrm{rot}} = \left[(\omega_0 - \omega)\hat{\mathbf{z}} + \epsilon\hat{\mathbf{x}}\right] \times \hat{\mathbf{S}}.\tag{16}$$

• Allow $\omega = \omega_0 + \dot{\omega}t$. What is $\theta_f - \theta_i$? Exact:

$$\Delta\theta = \epsilon \sqrt{\frac{2\pi}{\dot{\omega}}} \sin\left(\phi_0 + \frac{\pi}{4}\right). \tag{17}$$

- Here, $\dot{\omega} \sim 1/T_{GW}$, while $\epsilon \propto 1/T_{LK}$, $\Rightarrow \Delta \theta \gg 1$?
- Caveat: ϵ is Fourier coefficient of Ω , has $1/T_{LK}$ scaling but is probably substantially smaller. So can probably predict width $(\sim \epsilon)$?
 - Might explain why deviations from the blue curve in Bin's figure seem to appear closer to $I_0 = 90^\circ$ than expected $(100^\circ \text{ vs } 105^\circ)$.
 - ullet Might also predict the amplitude of the deviations (which appear bounded closer to 90°).

When no resonances, just

$$\frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t} = \langle \Omega_{SL}\hat{\mathbf{L}} - \dot{\Omega}\hat{\mathbf{L}}_{3} \rangle_{LK} \times \hat{\mathbf{S}}, \qquad (18)$$

$$\frac{1}{\dot{\Omega}} \frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t} \simeq \left[\mathscr{A}_{0} (\sin I\hat{\mathbf{x}} + \cos I\hat{\mathbf{z}}) \mp \hat{\mathbf{z}} \right] \times \hat{\mathbf{S}}. \qquad (19)$$

$$\frac{1}{\dot{\Omega}} \frac{\mathrm{d}\hat{\mathbf{S}}}{\mathrm{d}t} \simeq \left[\mathcal{A}_0 (\sin I \hat{\mathbf{x}} + \cos I \hat{\mathbf{z}}) \mp \hat{\mathbf{z}} \right] \times \hat{\mathbf{S}}. \tag{19}$$

- Here, I is the inclination of $\langle \Omega_{SL} \hat{\mathbf{L}} \rangle$, shouldn't change much, $\sim 120^{\circ}$?
- Crosses resonance at $\mathcal{A} \simeq 1/\cos I \simeq 1$, and the jump in angle is

$$\Delta\theta \simeq \sin I \sqrt{\frac{2\pi}{\dot{A}_0}} \sin(\phi_0 + \pi/4).$$
 (20)

• Explains why for fixed ϕ , $\Delta\theta$ overlaps.

- Sweeped some stuff under the rug, but does this make qualitative sense?
- $T_{\rm m} \sim \cos^6 I_0$, so if $\dot{A_0} \propto 1/T_{\rm m}$ then $\Delta\theta \propto 1/\cos^3 I_0$. Seems to be the right scaling (black is fit by eye, correct power law index):

 (Ignore the nonzero tail at the right, I made a lazy approximation in my code)