Commencer par définir réécriture parallèle: \twoheadrightarrow est une relation de réécriture sur V telle que $u \twoheadrightarrow u'$ et $v \twoheadrightarrow v'$ impliquent $u + \lambda v \twoheadrightarrow u' + \lambda v'$. Étant donnée une basis \mathscr{B} de V, il y a correspondance entre réécritures parallèles et les fonctions $r: \mathscr{B} \to V$.

Maintenant on fixe un système de réécriture classique R. Si $S \subseteq R$ a pairwise left-hand sides, on définit r_S et on note \twoheadrightarrow_S la réécriture parallèle induite par r_S . Soit $<_S$ le preorder qui correspond à \twoheadrightarrow_S : $e <_S e'$ si il $e \in \text{supp}(v)$ avec $e' \stackrel{*}{\twoheadrightarrow}_S v$ (i.e., il existe n tel que $e \in \text{supp}(r_S^n(e'))$).

Definition 0.1. S est une pré-stratégie si pairwise lhs et $<_S$ termine. Si de plus \twoheadrightarrow_S termine, alors stratégie.

Proposition 0.2. Si S est une pre-stratégie, alors $v \stackrel{*}{\to}_S r_S(v)$ et donc $v \stackrel{*}{\to}_R r_S(v)$.

Proof. Soit v est une S-normale forme: OK. Sinon, on écrit $v = \sum \lambda_i e^i + v'$ où les e_i sont les éléments $<_S$ -maximaux de $\mathrm{supp}(v)$. Par HR, $v' \stackrel{*}{\to}_S r_S(v')$ et donc $v \stackrel{*}{\to}_S \sum \lambda_i e_i + r_S(v')$ (il faudra le justifier, mais ça doit être facile). En réérivant les e_i un par un et en utilisant la maximalité on conclut.