

Data Structures in Python Chapter 6

- Collision Resolutions Exercises
- Rehashing Exercises

Collision Resolution Exercise - Linear Probing

$$h(k) = k \% 10$$

probe sequence

For example, linear probing for 58

$$h_0(58) = (h(58)+f(0)) \% 10$$

 $= (8+0) \% 10 = 8 \text{ (collision)}$
 $h_1(58) = (h(58)+1) \% 10 = 9 \text{ (collision)}$
 $h_2(58) = (h(58)+2) \% 10 = 0 \text{ (collision)}$
 $h_3(58) = (h(58)+3) \% 10 = 1$

Complete the linear probing for 69
$$h_0(69) =$$

Collision Resolution Exercise - Quadratic Probing이차조사법

Collision Resolution Exercise - Double Hashing이중해신법

	Insert sequence: 89, 18, 49, 58, 69, 23							h(x) = x % 10			
	Empty Table	After 89	After 18	After 49	After 58	After 69	Afte 23	h'(x) = R - (x % R) R is prime number less than TableSize			
0								$h_0(49) = (h(49)+f(0)) \% 10 = 9 $ (collision) $h_1(49) = (h(49)+1*(7-49\%7)) \% 10 = 6$			
2								$h_0(58) = h_1(58) =$			
3 4								$h_0(69) = h_1(69) =$			
5 6				49	49	49	49				
7 8			18	18	18	18	18	$h_0(23) = h_1(23) =$			
9		89	89	89	89	89	89				
	icessful probes	0	0	1	1	1					

Rehashing - Exercise

Rehash the following table into a new hash table below using the hash function:

- Use hash(key) = key % 13 and quadratic probing to resolve the collisions.
- Show your computation, collision and resolution.
- Compute the load factors before and after rehashing.

0			3	4	5	6						
56	43	30	None	None	26	13						
0	1	2	3	4	5	6	7	8	9	10	11	12
							7	8	9		10	10 11