Вариант #10

Часть 1

Ответами к заданиям 1-23 являются число или последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

На графике представлен график зависимости проекции скорости тела на ось x от времени. Определите максимальное значение проекции ускорения тела на ось x за первые три секунды движения.

Ответ: M/c^2

2

Кубик массой 1 кг покоится на гладком горизонтальном столе, сжатый с боков пружинами (см. рисунок). Первая пружина сжата на 4 см, а вторая сжата на 3 см. Жесткость второй пружины $k_2=600~{\rm H/m}$. Чему равна жесткость первой пружины k_1 ?

Ответ: ____ Н/м

3

Деревянный брусок имеет высоту 0.1 м, ширину 20 см и длину 40 см. Какое максимальное давление может он оказывать на горизонтальную плоскость?

Ответ: _____ Па

Две частицы в момент времени t=0 вышли из одной v, м/с точки и стали двигаться вдоль одной прямой. По графикам зависимости скорости от времени определите время новой встречи частиц.

Ответ: _____ с

5

Космический исследовательский зонд обращается по круговой орбите вокруг Меркурия. В результате перехода на другую круговую орбиту центростремительное ускорение зонда уменьшается. Как изменяются в результате этого перехода скорость зонда и период обращения зонда вокруг Меркурия?

Для каждой величины определите соответствующий характер изменения:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Скорость зонда	Период обращения зонда

6

Шайбе придали начальную скорость v_0 , и она стала скользить по шероховатой поверхности, двигаясь поступательно вдоль оси Ox. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) количество теплоты, выделяющееся из-за трения
- 2) кинетическая энергия E_{κ} тела
- 3) проекция ${\it F_{\rm x}}$ равнодействующей сил, действующих на тело
- 4) проекция s_x перемещения тела

Ответ:

Давление 1 моль водорода в сосуде при абсолютной температуре T_0 равно $100~\rm k\Pi a$. Сколько моль кислорода в этом сосуде создадут давление $300~\rm k\Pi a$ при вдвое большей абсолютной температуре?

Ответ: моль

8

Суммарная масса молекул воды, находящихся в сосуде с относительной влажностью 50%, составляет $200~\Gamma$. Чему станет равна установившаяся относительная влажность, если в сосуд налить $200~\Gamma$ воды, а его объем изотермически увеличить в два раза?

Ответ: ______ %

9

Идеальная тепловая машина с КПД $\eta=50\%$ за цикл совершает работу A'=100 Дж. Какое количество теплоты отдается холодильнику за цикл?

Ответ: _____ Дж

10

Медную кастрюлю наполнили на 2/3 водой, закрыли лёгкой крышкой и спустя несколько часов поставили на огонь. Воду в кастрюле довели до кипения и кипятили в течение некоторого времени. Атмосферное давление составляло 760 мм рт. ст.

Выберите все верные утверждения, описывающие характеристики воды, водяного пара и кастрюли.

- 1. Относительная влажность воздуха под крышкой в процессе нагревания воды оставалась постоянной.
- 2. В ходе кипения воды средняя потенциальная энергия взаимодействия молекул воды, переходящих из жидкости в пар, увеличивается.
- 3. Давление водяных паров под крышкой в ходе процесса нагревания воды увеличивалось.
- 4. Температура медного дна кастрюли с водой при кипении была немного меньше 100 °C.
- Плотность насыщенных водяных паров над поверхностью воды при нагревании до кипения оставалась постоянной.

Ответ: _____

11

В сосуде под поршнем находится водяной пар с относительной влажностью 50%. Объем сосуда уменьшили, а температура внутри повысилась, при этом плотность пара не изменилась. Как изменились относительная и абсолютная влажность воздуха в этом процессе?

Для каждой величины определите соответствующий характер изменения:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Относительная влажность	Абсолютная влажность

12

Измерительная шкала амперметра, имеющего сопротивление $0.1~\rm OM$, рассчитана на $5~\rm A$. Какой максимальный ток можно будет измерять этим прибором, если подключить параллельно ему резистор с таким же сопротивлением?

Ответ: _____ А

13

Атом гелия и α -частица влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции со скоростями v и 4v соответственно. Определите отношение модулей сил $F_1:F_2$, действующих на них со стороны магнитного поля.

Ответ: _____

14

Какая из точек (1, 2, 3, 4, 5, 6 или 7) является изображением точки S, полученным в тонкой рассеивающей линзе с фокусным расстоянием F (см. рисунок)?

Ответ: _____

15

На рисунке изображены графики зависимости мощности лампы накаливания P=P(T) и сопротивления её спирали R=R(T) от температуры. Выберите все верные утверждения, которые можно сделать, анализируя эти графики.

- 1. Напряжение на спирали лампы при подводимой мощности $P = 200 \; \mathrm{BT}$ больше 150 В.
- 2. Сопротивление спирали лампы при подводимой мощности $P=100~{
 m BT}$ равно $80~{
 m Om}.$
- 3. С уменьшением мощности, подводимой к лампе, напряжение на ней падает.
- 4. Напряжение на лампе возрастает прямо пропорционально подводимой к ней мощности.
- 5. Напряжение на спирали лампы при подводимой мощности $P=100~{
 m BT}$ равно $100~{
 m B}.$

Ответ: _____

16

Неразветвленная электрическая цепь состоит из аккумулятора с постоянными ЭДС и внутренним сопротивлением и внешнего резистора. Как изменятся сила тока в аккумуляторе и напряжение на выводах аккумулятора, если в цепь параллельно включить еще один такой же резистор?

Для каждой величины определите соответствующий характер изменения:

- 1. увеличится
- 2. уменьшится
- 3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Сила тока в аккумуляторе	Напряжение на выводах аккумулятора

В изображенной на схеме цепи конденсатор не заряжен, тока в катушке нет. Ключ замыкают. Установите соответствие между физическими величинами и формулами, по которым их можно определить.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ	ФОРМУЛА
A) максимальное напряжение на конденса- торе	1) 0
•	2) $\mathcal{E}/2$
Б) напряжение на конденсаторе в тот момент, когда сила тока в катушке макси-	3) <i>E</i>
мальна	4) 2 <i>E</i>

Ответ:

18

Одной из термоядерных реакций в массивных звездах на ранних этапах эволюции является слияние ядер углерода $^{12}_{6}\mathrm{C}$ и водорода $^{1}_{1}\mathrm{H}$. При этом рождается гамма-фотон и один из изотопов азота. Назовите массовое число A этого изотопа.

_		
Ответ:		

19

В первом случае электрон в атоме водорода в результате поглощения фотона перешел с энергетического уровня E_1 на уровень E_3 , а во втором случае в этом же атоме электрон перешел с энергетического уровня E_2 на E_4 . Основной уровень соответствует энергии $E_0 = -13.6$ эВ. Как при переходе от первого ко второму случаю изменилась энергия поглощенного фотона и энергия связи электрона с ядром на конечном уровне?

Для каждой величины определите соответствующий характер изменения:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Энергия поглощенного фотона	Энергия связи электрона с ядром на конечном уровне

20

Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

- 1. При совпадении частоты вынуждающей силы и собственной частоты колебательной системы наблюдается резкое затухание амплитуды колебаний.
- 2. Процесс самопроизвольной (без компенсации) передачи положительного количества теплоты от более нагретого тела к менее нагретому является необратимым.
- 3. В электрически изолированной системе алгебраическая сумма зарядов всех частиц всегда остаётся постоянной.
- 4. Дифракция волн лучше всего наблюдается в тех случаях, когда размеры препятствий во много раз больше длины волны.
- 5. В планетарной модели атома вокруг положительно заряженного ядра по круговым орбитам равномерно двигаются протоны.

Ответ:

21

Даны следующие зависимости величин:

- А) зависимость давления от плотности идеального газа в изотермическом процессе:
- Б) зависимость скорости легкого шарика для пинг-понга, падающего при наличии сопротивления воздуха, от времени;
- В) зависимость импульса фотона от его длины волны.

Установите соответствие между этими зависимостями и видами графиков, обозначенных цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

Ответ:

22

Саркису понадобилось узнать коэффициент жесткости пружины. Для этого он измерил ее длину в недеформированном состоянии линейкой с миллиметровыми делениями, и получил результат 10 см. Затем он измерил длину этой же пружины, к которой был подвешен груз массой 1000 г, и получил результат 12 см. Чему равен коэффициент жесткости пружины по проведенным измерениям? Рассчитайте коэффициент жесткости как среднее арифметическое между минимально возможным и максимально возможным коэффициентом жесткости для данных измерений. Ответ округлите до сотых. Погрешность измерений примите равной цене деления линейки.

Ответ: Н/сг

В бланк ответов № 1 перенесите только числа, не разделяя их пробелом или другим знаком.

23

Необходимо экспериментально изучить зависимость электроёмкости плоского конденсатора от расстояния между его пластинами. На всех представленных ниже рисунках S — площадь пластин конденсатора, d — расстояние между пластинами конденсатора, ε — диэлектрическая проницаемость среды, заполняющей пространство между пластинами. Какие два конденсатора следует использовать для проведения такого исследования?

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Для записи ответов на задания 24-30 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (24, 25 и т.д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

24

В герметичном сосуде фиксированного объема в начальный момент времени находится вода и влажный воздух. Сосуд начинают нагревать. При температуре T пар становится насыщенным, а при температуре 2T вся вода испаряется. Изобразите схематично график зависимости давления **водяного пара** в сосуде от температуры p(T). Прокомментируйте вид графика на основании физических законов.

Полное правильное решение каждой из задач 25-30 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

25

Импульс одного тела равен p_1 , а его масса m_1 . Второе тело движется вслед за первым, имея кинетическую энергию W_2 и скорость V_2 , причем скорости тел сонаправлены. Между телами происходит центральный абсолютно неупругий удар, в результате которого тела движутся поступательно, а половина механической энергии тел переходит в тепло. Найдите скорость тел после удара.

26

В цепи, изображенной на рисунке, ключ долгое время был замкнут. Все подписанные на схеме величины считать известными. Найдите количество теплоты, выделившееся на резисторе R после размыкания ключа.

27

Один моль одноатомного идеального газа совершает процесс 1-2-3, график которого показан на рисунке в координатах p(T). Известно, что давление газа p в процессе 1-2 увеличилось в 2 раза. Какое количество теплоты было сообщено газу в процессе 1-2-3, если его температура T в состоянии 1 равна 300 K, а в состоянии 3 равна 900 K?

28

Полый шарик массой 5 г имеет положительный заряд 50 нКл. Шар подвешен на нитке в горизонтальном однородном электростатическом поле, направленном слева направо. Шар отводят вправо до тех пор, пока нить не становится горизонтальной, и отпускают. Найти напряженность электростатического поля, если в тот момент, когда нить находится справа от вертикали и составляет с вертикалью угол α ($\cos \alpha = 0.8$), сила натяжения нити равна 112 мН. Сопротивлением воздуха пренебречь.

29

Какой максимальный заряд Q может быть накоплен на конденсаторе емкостью $C_0 = 2 \cdot 10^{-11} \, \Phi$, одна из обкладок которого облучается светом с длиной волны $\lambda = 5 \cdot 10^{-7} \, \mathrm{M}$? Работа выхода электрона составляет $A = 3 \cdot 10^{-19} \, \mathrm{Дж}$.

30

Небольшой шарик массой m бросили с начальной скоростью υ_0 , направленной под углом α к горизонту, при этом сразу после броска ускорение шарика составило a. Шарик приземлился на тот же горизонтальный уровень, с которого был брошен. За время движения потери механической энергии из-за сопротивления воздуха составили ΔW . Найдите величину силы сопротивления воздуха, действующей на шарик за мгновение до удара о землю. Считайте, что сила сопротивления воздуха пропорциональна скорости тела.

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.