

TECHNICAL REPORT 87-1

ASPHALT CEMENT MONITOR PROGRAM

FALL 1986

MARCH 1987

M.A.P. CODE 7.42-6-87-1

NEW YORK STATE DEPARTMENT OF TRANSPORTATION MARIO M. CUOMO, Governor FRANKLIN E. WHITE, Commissioner

TECHNICAL REPORT 87-1

out the Surane in accordance with standard AASATO cast procedures. This remove measurises the results of the 1986 program?

ASPHALT CEMENT MONITOR PROGRAM FALL 1986

Prepared by

Ronald L. Zack Senior Engineering Materials Chemist

Justin L. Brennan Engineering Materials Technician

March 1987

MATERIALS BUREAU
JAMES J. MURPHY, DIRECTOR

NEW YORK STATE DEPARTMENT OF TRANSPORTATION 1220 WASHINGTON AVENUE, ALBANY, N.Y. 12232

Preface

Each year the Materials Bureau conducts a monitor testing program in cooperation with various suppliers of asphalt cement. Samples are obtained by Bureau personnel and split for testing by both the supplier and the Bureau in accordance with standard AASHTO test procedures. This report summarizes the results of the 1986 program.

NYSDOT Library 50 Wolf Road, POD 34 Albany, New York 12232

95-7-11

THE PARTY OF THE PARTY NAMED IN THE PARTY OF THE PARTY OF

NYSDOT Library Wolf Road, POD 34 Library, New York 12232

TABLE OF CONTENTS

I.	Introduction	Page	1
II.	Sample Information	Page	2
III.	Tests Performed	Page	3
IV.	Test Data and Sample Identification Forms	Page	4
V.	New York State Department of Transportation Specification for Asphalt Cement	Page	11
VI.	Summary of Test Results	Page	19
VII.	Test Results	Page	20
III.	Statistical Analysis of Test Results	Page	32
IX.	Graphs and Charts of Related Material Information	Page	46
	A. Comparison TFOT Data B. Asphaltene Dispersion Data	Page Page	47 69

NUMBER OF BUILDING

I. Introduction

During July and August 1986, personnel from the Materials Bureau Chemistry Laboratory Section obtained twenty-eight samples from eighteen suppliers of asphalt cement. These samples represented many of the sources which had supplied material to the Department during the 1986 construction season including Boscan, Maya, Mid-Continent, Canadian, Arab, Venezuelan and other various crude sources.

At the time of sampling, the twenty-eight samples were split into two parts. One part was given to the asphalt supplier while the other was returned to the Bureau's Laboratory. All tests were conducted in accordance with the applicable AASHTO test procedures.

Two standard test report forms and one sample identification form were provided by the Bureau for recording sample information and all test results. Each supplier submitted the test results to the Bureau for review and incorporation into this report.

Perchas Margarate of Service Figures rinding four roll Assert and test

II. Sample Information

A. The distribution of the samples by grade was as follows:

Grade	Number	of	Samples
Flux		3	
AC-5		2	
AC-10		2	
AC-15		6	
AC-20		11	
85/100		4	

B. The supplier, location, crude source and lot numbers are tabulated below.

Flux					
Supplier	Location	Lot	Crude Source		
Chevron	Perth Amboy, NJ	18	Mexico Mayan		
Cibro	Albany, NY	35	Boscan		
Marathon	Tonawanda, NY	16	Mid-Continent and Canadian		
	201200000000000000000000000000000000000				
	AC-S	5			
Supplier	Location	Lot	Crude Source		
Parco	Athens, NY	-	Meni-Mota		
Petro-Canada	Oakville, Ont.	220	Western Canadian		
	AC-				
Supplier	Location	Lot	Crude Source		
Parco	Athens, NY	16	Meni-Mota		
Petro-Canada	Montreal, Que	12	Venezuelan Canadian		
	AC-				
Supplier	Location	Lot	Crude Source		
Marathon	Tonawanda, NY	14	Mid-Continent and Canadian		
NoCo Energy	Tonwanada, NY	6	Western Canadian		
Petro-Canada	Oakville, Ont.	240	Western Canadian		
Shell Canada	Hamilton, Ont.	1	Venezuelan		
United Refining	Warren, PA	8	Canadian		
Warden	Pittsford, NY	34	Canadian		
	AC-2	20			
Supplier	Location	Lot	Crude Source		
Atlantic Refining	Philadelphia, PA	60	Merey, Bachaquero		
Chevron	Perth Amboy, NJ	19	Mayan Boscan		
Cibro	Albany, NY	36	Boscan		
Exxon	Linden, NJ	21	Mayan		
Mantua	Paulsboro, NJ	28	Western Venezuelan		
Marathon	Tonawanda, NY	15	Mid-Continent and Canadian		
Parco	Athens, NY	17	Meni-Mota, Tijuana Pesada		
Peckham Materials	Stamford, CT	28	Venezuelan		
United Refining	Warren, PA	14	Canadian		
Warden	Pittsford, NY	27	Canadian		
West Bank Oil	Perth, Amboy, NJ	8	Venezuelan		

85/100

Supplier	Location	Lot	Crude Source
Esso-Canada	Montreal, Que.	1	Venezuelan, Canadian
Petro Canada	Montreal, Que.	13	Venezuelan, Canadian
Shell Canada	Montreal, Que.	9	Canadian, Mexican
Ultramar	Montreal, Que.	3	Venezuelan

III. Test Performed

- A. Tests required by Department of Transportation Specification: (all tests not required on all items of asphalt cement)
 - 1. Viscosity @ 140°F, Absolute, (AASHTO T202)
 - 2. Viscosity @ 275°F, Kinematic, (AASHTO T201)
 - 3. Penetration @77°F, (AASHTO T49)
 - 4. Ductility @ 39.2°F, (AASHTO T51) √
 - 5. Flash Point, Cleveland Open Cup, (AASHTO T48)
 - 6. Solubility in Trichloroethylene, (AASHTO T44)
 - 7. % Loss on Thin Film Oven Test Residue, (AASHTO T179)
 - 8. Penetration @77°F on Thin Film Oven Test Residue (AASHTO T49)
 - 9. Penetration @ 77°F Ratio (% of Original) between the Thin Film Oven Test Residue and the Penetration @ 77°F on the original sample.
 - 10. Viscosity @ 140°F, Absolute on Thin Film Oven Test Residue (AASHTO T202)
 - 11. Ductility @ 77°F on Thin Film Oven Test Residue (AASHTO T51)
- B. Additional tests not required by Department of Transportation Specifications:
 - 1. Penetration @ 39.2°F (AASHTO T49)
 - 2. Penetration Ratio: 39.2°F/77°F
 - 3. Ductility @ 77°F, (AASHTO T51)
 - 4. Specific Gravity @ 77°F (AASHTO T228)
 - 5. Softening Point, Ethylene Glycol (AASHTO T53)
 - 6. Viscosity @ 275°F, Kinematic, on Thin Film Oven Test Residue (AASHTO T201)
 - 7. Ductility @ 60°F on Thin Film Oven Test Residue (AASHTO T51)
 - 8. Viscosity @ 140°F, Absolute, Ratio, between viscosity @ 140°F, Absolute on Thin Film Oven Test Residue Sample and the original sample.
 - 9. A Settling Test to Evaluate the Relative Degree of Dispersion of Asphaltenes.
 - 10. Separation of Asphalt into Four Fractions, (Modified Method of ASTM D 4124-84).
- C. A Penetration Viscosity Number (PVN) and a Penetration Index Number (PIN) has been computed for each asphalt cement sample.

IV. Test Data and Sample Identification Forms

On the following pages are the Standard Test Report and Sample Identification Forms used for this project.

PRIMARY SOURCE	LOCATION
CRUDE SOURCE	SAMPLED AT
SAMPLED BY	DATE SAMPLED
ITEM NO.	GRADE TYPE
LOT NO.	DATE OF CERTIFICATION

REMARKS:

DEPARTMENT OF TRANSPORTATION MATERIALS BUREAU 1986 ASPHALT MONITOR PROGRAM

					TEST	NO.	
	PRIMARY SOURCE				CATION		
					•		
	LOT NO.	ITEM NO.			GRADI	E TYPE	
	•		-				
	CRUDE SOURCE		AAS	SHTO		RESULTS	
1.	Viscosity Ratio	@ 140°F f Original Sample,					
	(poises)			202			
2.	Viscosity @ 275°	F, Centistokes F, 100g., 5 sec.		202			
4.		.2°F, 200g., 60 sec.		49			
5.		o (39.2°F/77°F) 100					
6. 7.	Ductility @ 39.2 Ductility @ 77°F	°F, 1 cm/min., cm.	T				
8.	Flash Point C.O.		T				
9.	Solubility in Tr	· · · · · · · · · · · · · · · · · · ·	T	44			
10.	Loss on Heating 325F @ 5 Hrs.	T.F.O.T., Percent,	T.	179			
11.	Specific Gravity	@ 77°F	_	228			
12.	Ductility @ 60°F	, T.F.O.T., 5cm/min.,					
13.	Cm.	, T.F.O.T., 5cm/min.,	T	51			
13.	cm.	, I.F.O.I., Jen/min.,	T	51			
14.		°F, T.F.O.T., 100g.,					
	5 sec. a.) Percent of 0	rioinal	T	49			
15.		F After T.O.F.T. (cst)	T	201			
	Penetration Visc	osity Number, PVN					
	Softening Point, Penetration Inde	Ethylene Glycol, °F	T	53			
10.	renetration inde	A Number, FIN					

NEW YORK STATE

DEPARTMENT OF TRANSPORTATION

MATERIALS BUREAU

1986 ASPHALT MONITOR PROGRAM

			TEST NO.
PRIMARY SOURCE		LOCA	TION
LOT NO.	ITEM NO.	1	GRADE TYPE
Lot No.	IIIII NO.		GRADE IIIE
		1	
CRUDE SOURCE			
OKODE BOOKOE			
	ASPHALT COMPOSITION	ANALYSIS	
ASPHALTENES, %			
SATURATES, %			
NAPHTHENE AROMATIC			
IIIII IIII IIII IIIOIIII II	, o ,		
DOT ID IDOMINACE OF			
POLAR AROMATICS, %			
			•
A Settling Test to Eval	uate the Relative Deg	ree of Dis	spersion of Asphaltenes
SETTLEMENT TIME, M	INUTES		

NEW YORK STATE DEPARTMENT OF TRANSPORTATION SPECIFICATIONS FOR ASPHALT CEMENT

` >

TABLE 702-1

ASPHALT CEMENTS FOR PAVING

702-0500 AC-20	Min. Max.	1600 2400 300 — 60 100 450(232) 99.0	50 –	Hot plant mix moderate climate. Sheet mixes. Open graded surface course mixes.
702-0400 AC-15	Min. Max.	1200 1800 275 — 60 100 435(225) 99.0	0052 —	Hot plant mix moderate climate.
702-0300 AC-10	Min. Max.	800 1200 250 — 70 120 425(219)	- 5000	Hot plant mix cold climate. Recycle Mix.
702-0200 AC -5	Min. Max.	400 600 175 — 120 200 350(177) 99.0	100 —	Hot plant mix very cold climate. Re- cycle Mix.
702-0100 AC-2,5	Min. Max.	200 300 125 — 200 325 325(163) 99.0	100 —	Recycle Mix
MATERIAL DESIGNATION VISCOSITY GRADE	Test Requirements	Viscosity 140°F (60 C), P Viscosity 275F(135 C), cSt Penetration 77F (25C),100g, 5s Flash Point COC, °F(C) Solubility in Trichloroethylene, Z	Tests on Residue from Thin Film Oven Test Viscosity, 140°F(60C), P Ductility, 77°F(25C) 5 cm/min., cm	TYPICAL USES (intended only as a general information guide)

TABLE 702-2

MISCELLANEOUS ASPHALT CEMENTS

702-0600 85/100 Min Max	85 100 280 — 450 — 99.5 —	85 47 - 75	Hot plant mix moderate climate
MATERIAL DESIGNATION GRADE TEST REQUIREMENTS	Penetration,77F(25C), 100g, 5s Viscosity,275F(135C), cSt Flash Point, COC, F Solubility in trichloroethylene, % Ductility, 39.2F(4C), 1cm/min., cm	Tests on residue from Thin-film Oven Test (AASHTO T179) Loss on Heating, 325F, 5h, % Penetration, % original Ductility, 77F(25C), 5cm/min., cm	Typical Uses

SPECIFICATION CHEVRON ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	600	800
Viscosity, 275F(135C), cst	200	-
Penetration, 77F(25C), 100g., 5 sec.	140	190
Flash Point, C.O.C., F	350	-
Solubility in Trichloroethylene, %	99.0	-
Tests on Residue from Thin Film Oven Test:		
Viscosity, 140F(60C), Poises	-	3200
Ductility, 77F(25C), 5cm/min., cm.	100	-

SPECIFICATION CIBRO ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	800	1200
Viscosity, 275F(135F), cst	175	-
Penetration, 77F(25C), 100g., 5 sec.	125	175
Flash Point, C.O.C., F	400	
Solubility in Trichloroethylene, %	99.0	-
Test on Residue from Thin Film Oven Test:		
Viscosity, 140F(60C), Poises	-	4000
Ductility, 77F(25C), 5cm/min., cm.	75	-

SPECIFICATION MARATHON ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	450	650
Viscosity, 275F(135C), cst	175	200
Penetration, 77F(25C), 100g., 5 sec.	150	200
Flash Point, C.O.C., F	350	-
Solubility in Trichloroethylene, %	99.0	-
Tests on Residue from Thin Film Oven Test:		
Viscosity, 140F(60C), Poises		2500
Ductility, 77F(25C), 5cm/min., cm.	100	-

VI. Summary of Test Results

Test results for all twenty-eight asphalt cement samples met New York State Department of Transportation Specification requirements. The following exceptions are noted below:

A. Parco, Athens, NY #702-0200, AC-5 Lot - Meni-Mota

Viscosity @ 140°F, Absolute 624 poises Specification: 460 to 600 poises

B. United Refining, Warren, PA #702-0400, AC-15 Lot 8 Canadian

Penetration @ 77°F, 57
Specification: 60 to 100

C. United Refining, Warren, PA #702-0500, AC-20 Lot 14 Canadian

Penetration @ 77°F, 59 Specification 60 to 100

Warden Asphalt, Pittsford, NY #702-0500, AC-20, Lot 27 Canadian

Penetration @ 77°F, 59
Specification 60 to 100

Esso Canada, Montreal, Que. #702-0600, 85/100 Lot 1

Venezuelan Canadian

Penetration @ 77°F, 76
Specification 85 to 100

VII. Test Results

On the following pages is a tabulation of all test results. The column headed by the name of the test contains the test result determined by the Materials Bureau. The column headed by "Comparative Results" contains the test result provided by the supplier for the test indicated in the column immediately to the left.

					PENETRATION	
_	1986	ASP	TRATION	COMPARATIVE	RATIO	COMPARATIVE
-	1700 M	WITTO		RESULTS	39.2°/77°F	RESULTS
	AC	SUPPLI	5 3	*	38.2	*
	FWX	CHEVRO	52	47	39.6	34.6
	FLUX	CIBRO	49	49	30.8	29.3
-	=mX	MARATI				
			56	48	36.2	32.0
			3.3	1.4	4.7	3.7
-						
-			53	*	32.1	*
\vdash	_	PARCO		*	28.3	*
-	5				~0.0	7
-	5	PETRO	9		702	
				30.2		
			5.7		2.7	
L						
		3	8	*	33.0	*
	10	PARC	2	40	33.7	43.0
	10	PETRO				
+		2	55		33.4	
1			.2		0.5	
-		·				
+			28	29	30.8	32.2
-				*	32.5	*
	15	MARI	2 (*
	15	Noce	.6	-*	30.6	7
	15	PETRE-	30	*	34.9	*
	15		18	16	31.6	25.4
	15	ודו אט	8	*	28.1	*
	15	WAR				
			25	23 9.2	31.4	28.8
			5.2	9.2	2.3	4.8
		-	28	32	35.9	39.0
		-	34	*	38.2	*
	20	ATLA:	21	34		35.8
	20	CHE	21		. 36.2	33.0
	20	CIE	20	*	30.9	*
	20	EXY	27	* 21	37.2	*
	20	MA 2	23 29 23 23 23	- 21	32.9 36.4	29.2
	20	MAL	28	-36-	36.4	* * 26.2
	20	PAL	29	*	37.7	*
	20.	PEC!	23	17	39.0	26.2
-	20	UN	23	*	39.0	-*
	20	WA	32	30	42.7	37.0
	20	MES	09	0.7	770	37.1
=	-	-4 ₂	28	27	37.0	33.4
			4.6	7.4	3.1	5.5
			26	34	34.2	41.0
	85/100	ESS	29	43	33.7	48.3
	85/100	PET	29	30	34.1	35.3
	85/100	SHI	30	33	35.3	36.7
	85/100					
	1.00		29	35	74.7	40.3
		-	.7	5.6	34.3 0.7	5.8
		1	• (2.0	0.1	5.0

* RESULTS NOT GIVEN

VII. Test Results

On the following pages is a tabulation of all test results. The column headed by the name of the test contains the test result determined by the Materials Bureau. The column headed by "Comparative Results" contains the test result provided by the supplier for the test indicated in the column immediately to the left.

PENETRATION

T. F.O.T. ASPH OF COMPARATIVE COMPARATIVE YISCOSITY 1986 RESULTS RATIO RESULTS MONITOR SUPPLIE 4 2431 3.31 3.18 DA 3035 2.72 2.76 CHEVRON 6 FLUX CIBRO \$3 2.11 1263 2.00 FLUX FWX MARATH 2.67 81 2243 2.69 0.2 900.8 0.54 0.66 3 1442 2.52 2.19 2.09 PARCO 8 1.94 1202 5 5 PETRO-1322 2.23 2.14 2.9 169.7 0.41 0.07 2.28 21 2636 2.39 2685 2.52 2.32 PARCO 66 10 PETRO-10 2661 2.46 2.30 144 3.2 34.6 0.09 0.03 2.27 87 2.31 3278 GIVEN MARATE 19 * 米 2.38 15 2.17 1.98 NOCO 175 3055 15 X * 2.58 PETRO-114 15 LON 2.46 2.48 SHELL-04 3620 15 * * 2.75 UNITEC60 15 15 WARDE RESULTB 2.41 93 3318 2.30 0.26 37.6 284.6 0.15 191 4749 2.41 2.62 3.06 ATLANDO3 6014 3.08 20 2.84 .2.83 5053 CHEVE 89 20 2.03 2.37 3683 20 CIBROO6 2.17 EXX283 4585 2.47 20 2.04 4247 2.34 MANT74 20 2.41 2.50 MARA49 4484 20 2.64 * * 20 PARO87 4056 2.35 2.46 20 PECK 02 * * UN 17275 2.44 20 2.87 5858 WARD 66 3.07 20 20 WES 130 4748 2.59 2,50 0.28 0.38 45.5 781.7 910 * 2.51 * 85/100 ESS(415 3578 2.68 2.75 85/100 PETR228 2998 2.58 2.70 85/100 SHEU603 255 1.83 2557 85/100 ULTR 2.39 \$539 3044 2.61 0.09 0.49 290.9 512.1

					F		T.F.O.T.		T.F.O.T.		T. F.O.T.	
1986			T.F.O.T.	COMPARATIVE	T.F.O.T.	COMPARATIVE		COMPARATIVE	VISCOSITY	COMPARATIVE	YISCOSTY	COMPARATIVE
	ONITOR PROGRAM	CRUDE	L055	RESULTS	C 60°F	RESULTS	C77°F	RESULTS	C 140°F	RESULTS	RATIO	RESULTS
DA	SUPPLIER - LOCATION - LOT	SOURCE		*	99	*	150+	110+	2464	2431	3.18	3.31
FLUX	CHEVRON, PERTH AMBOY 18	MAYAN	0.757	0.730	150+	150+	150+	150+	3096	3035	2.72	2.76
FLUX	CIBRO, ALBANY 35	BOSCAN	0,687			150+	150+	150+	1283	1263	2.11	2.00
FLUX	MARATHON, TONAWANDA 16	MD CONTINENT CANADIAN	0.131	0.160	150+	150+	1901	150.				
							1501		2281	2243	2.67	2.69
	X		0.525	0.445	133	150+	150+				0.54	0.66
	6		0.343	0.403	29.4				920.2	900.8	0.54	0.00
											2.50	0.10
-	PARCO ATLIDIS	MENI-MOTA	0.234	0.190	150+	*	150+	150+	1573	1442	2.52	2.19
5	PARCO, ATHENS -			+0.030	150+	*	150+	150+	1088	1202	1.94	2.09
5	PETRO-CAN., OAKVILE 220	CANADIAN	+0.055	10.030	1301							
				2 22-	150+		150+	150+	1331	1322	2.23	2.14
	\overline{x}		0.117	0.095	-		1501	1501	342.9	169.7	0.41	0.07
	6		0.165	0.134					542.7	107.1		
	-									0171	0.70	2.28
10	PARCO, ATHENS 16	MENI-MOTA	0.168	0.130	150+	*	150+	150+	2721	2636	2.39	
	PETRO-CAN, MONTREAL 12	VENEZUELAN CANADIAN	0.030	0.070	109	140+	150+	140+	2966	2685	2.52	2.32
10	TEIKO-CHA, MONTHENE 12	CANADIAN	3.030									
			0.000	0.100	130		150+		2844	2661	2.46	2.30
	X		0.099	0.100	29.0				. 173.2	34.6	0.09	0.03
	ල _		0.098	0.042	27.0			-	, , , , , ,			
7							1 = 0 1	1=01	7207	7279	2.31	2.27
ス リ フ 15 15	MARATHON, TONAWANDA 14	MID-CONTINENT CAHADIAN	0.141	0.110	150+	150+	150+	150+	3287	3278		*
15	NOCO ENERGY, TOHAWANDA 6	CANADIAN	0.118	*	110	*	150+	*	3419	*	2.38	
15	PETRO-CAN, OAKVILLE 240	WESTERN	+0.040	+0.025	150+	*	150+	150+	2875	3055	1.98	2.17
F 10		VENEZUELAN		*	78.75	*	150+	-*	4514	*	2.58	*
15	SHELL- CAN, HAMILTON 1	CANADIAN	+0.010	+0.020	15.50	19	150+	120+	3904	3620	2.48	2.46
15	UNITED REF. WARREN, PA. 8			*	14.25	*	150+	*	4160	*	2.75	*
a 15	WARDEN, PITTSFORD 34	CANADIAN	0.364	71	17.25		100		1100			
RESULTS						016	1EO1		3693	3318	2.41	2.30
5	\overline{x}		0.147	0.037	86.4	84.5	150+			284.6	0.26	0.15
3 H	6		0.144	0.064	61.5	92.6			607.6	204.6	0.20	0.15
* 20	ATLANTIC, PHILADELPHIA, PA. 60	MEREY BACHAQUERO	0.019 .	0.025	31.50	58	150+	*	4491	4749	2.41	2.62
		MAYAN BOSCAN	0.329	*	66	*	150+	100+	6603	6014	3.08	3.06
20		BOSCAN	0.551	0.610	150+	148	150+	150+	5289	5053	-2.83	2.84
20	Ciotto (71-21-11)	NORTHSLOPE		0.090	34-	66	150+	150+	4806	3683	2.37	2.03
20		MAYA, MEX.	0.097		136	*	150+	110+	5283	4585	2.47	2.17
20			0.174	0.200					4774	4247	2.34	2.04
20	MARATHON, TONAWANDA 15	CAHADIAN	0.110	0.110	92.50	150+	150+	150+			2.50	2.41
20		MENI-MOTA	0.080	0.080	135	*	150+	150+	4649	4484		*
20		VENEZUELAN		*	75.25	*	150+	*	5587	*	2.64	
20			0.018	+0.020	50.25	45	150+	120+	4102	4056	2.35	2.46
20		CANADIAN		*	26.50	*	150+	*	4275	*	2.44	*
	S MARKETT THE TELESTICAL	VENEZUELAN		0.128	24.25	23	150+	100+	6566	5858	3.07	2.87
20	WEST BANK, PERTH AMBOY 8	1E4EEEEAN	0.144	0.120								
			1	10155	7.4.7	1 01 =	1 1501	-	T 5130	1 1719	2.59	2.50
	X 6		0.159	0.155	74.7	81.7	150+		5130	4748		
			0.157	0.194	47.4	54.2			845.5	781.7	0.28	0.38
												1
85/1	O ESSO REF., MONTREAL . I	CAHADIAN	0.073	0.070	63.25	150+	150+	150+	3910	*	2.51	*
	O PETRO- CAN., MONTREAL 13		0.026	0.040	76.50	95	150+	140+)	3415	3578	2.68	2.75
	SHELL-CAN, MONTREAL 9		+0.041	+0.050	47.25	35	150+	80	3228	2998	2.70	2.58
	~				98.75	120	150+	150+	3603	2557	2.55	1.83
85/10	00 ULTRAMAR, MONTREAL 3	VENERVELAN	0.033	0.029	76, 13	120	1507	1307	1 2002	2331	- 200	1.05
									7.570	7011	10/1	2.39
	X X		0.033		71.4	100.0) 150+		3539	3044	2.61	
	5		0.030	0.029	21.8	48.8			290.9	512.1	0.09	0.49

.

			CIFIC		C.O.C.	
_	1986	ASPH	A 7°F	COMPARATIVE	FLASH	COMPARATIVE
	M			RESULTS	POINT, "F	RESULTS
	AC	SUPPLI	027	1.024	495	495
	FLUX	CHEVR	020		535	475
_	FWX		,020	1.022	565	580
	FWX	MARAT	025	1.024	532	E17
-			004			517
			004	0.003	35.1	55.8
-			018		530	505
-				1.018	530	525
-	5	PARCO	, 017	1.019	565	608
-	5	PETRO-	018	1 019	E40	5/7
-				1.019	548 24.7	567
-			.001	0.001	24.1	58.7
-			-01	1001	===	5.40
			.021	1.021	525	540
	10	PARCO	.022	1.022	540	585
	10	PETRO-		1 002	F	5/7
			.022	1.022	533	563
L			1.001	0.001	10.6	31.8
				1 224		
			.026	1.024	550	580
7-	15	MARA	.023	*	580	*
GIVEN	15	NOCO	.023	1.023	590	622
5	15	PETRO	.019	*	545	- *
_	15	SHELL	.024	1.022	620	615
52	15	UNITE	.012	*	615	*
	15	WARE				
S			1.021	1.023	583	606
ESULTS			0.005	0.001	31.6	22.5
ภู						
A			1.024	1.031	545	550
*	20	ATLA	1.032	1.030	500	525
	20	CHE	1.030	1.030	. 485	485
	20	1 0101	1.028	1.026	635	550+
	20	EVV	1.025	1.026	535	555
	20	1	1.028	1.028	605	600+
	20	DAAG	1.024	1.023	535	565
	20	000	1.021	*	540	*
	20	DECV	1.025	1.022	595	600
	20	1 (10)	1.024	*	605.	*
-	20	WAY	1.018	1.016	550	560
	20	WE-				
	-		1.025	1.026	557	
			0.004	0.005	46.9	
			1.017	1.018	610	605
	9=1.0	ESS_	1.022	1.021	560	590
	85/100		1.023	1.022	595	608
	_	7 151-	1.019	1.019	585	618
	85/100					
	85/101	0 017	1.020	1.020	588	605
			0.003	0.002	21.0	11.6
	1					

ं अवस्थितिहरू

100 May 10 May 100 May

Commence of the second second

to proving participation and the second seco

						TE OT		T.F.O.T.		SPECIFIC		C.O.C.	
	1986	ASPHALT CEMENT	0.70.00	T.F.O.T.	COMPARATIVE	T.F.O.T.	COMPARATIVE	PENETRATION	COMPARATIVE	GRAVITY	COMPARATIVE	FLASH	COMPARATIVE
-		NITOR PROGRAM SUPPLIER-LOCATION - LOT	SOURCE	VISCOSITY @ 275°F	RESULTS	@77°F	RESULTS	RATIO	RESULTS	@77°F.	RESULTS	POINT, "F	RESULTS
_			MAYAN BOSCAN	479	*	88	*	51.8	*	1.027	1.024	495	495
		CHEVRON, PERTH AMBOY 18 CIBRO, ALBANY 35		536	528	77	75	57.5	55.1	1.027	1.027	535	475
			BOSCAN NIO-CONTINENT	316	298	96	95	60.4	56.9	1020	1.022	565	580
] FI	nx i	MARATHON, TONAWAHOA 16	CANADIAN	316	270								
				4.4.4	413	87	85	56.6	56.0	1.025	1.024	532	517
		X		444	413	9.5		4.4	1.3	0.004	0.003	35.1	55.8
		б		114.2	162.6	7.5	14.1	4.7	1.0	0.00.	>		
							07	FF 2	570	1.018	1.018	530	525
	5	PARCO, ATHENS -	MENTMOTA	336	333	91	93	55.2	57.8 58.9		1.019	565	608
	5 6	PETRO-CAN., OAKVILLE 220	CANADIAN	296	*	96	96	60.4	58.7	1.017	1.017	303	
		,							A	1.010	1.019	548	567
		X		316		94	95	57.8	58.4	1.018			58.7
		б		28.3		3.5	2.1	3.7	0.8	0.001	0.001	24.7	20.1
								·					- T (0
-	10	PARCO, ATHENS 16	MEN- MOTA	441	455	68	66	59.1	60.0	1.021	1.021	525	540
-			VENEZUELAN CAHADIAN	449	432	58	60	61.1	64.5	1.022	1.022	540	585
-	10	PETRO-CAN, MONTREAL 12	CAHADIAN										
-				445	444	63	63	60.1	62.3	1.022	1.022	533	563
<u> </u>		X			16.3	7.1	4.2	1.4	3.2	0.001	0.001	10.6	31.8
		б		5.7	16.5	1.1	7.2	1 1		0.001			
			AND CONTRACTOR	10=	110			59.3	61.1	1.026	1.024	550	580
ZL	15	MARATHON, TONAWANDA 14	CANADIAN	485	460	54	55 *	61.4	*	1.023	*	580	*
9 L	15	NOCO ENERGY, TONAWANDA 6	CANADIAN	499	*	51			62.1	1.023	1.023	590	622
25	15	PETRO-CAN., OAKVILLE 240	CANADIAN	463	*	55	54	64.7	*	1.019	*	545	- *
٦	15	SHELL - CAN, HAMILTON 1	VENERVELAN		*	52	*	60.5				620	615
5	15	UNITED REF., WARREN, PA. 8	CANADIAN	448	430	37	36	64.9	57.1	1.024	1.022		*
2	15	WARDEN, PITTSFORD 34	CANADIAN	484	*	37	*	57.8	*	1.012	<u> </u>	615	-
is t	.~												101
与上		₹		491	445	48	48	61.4	60.1	1.021	1.023	583	606
RESULTS		G		40.3	21.2	8.4	10.7	2.9	2.6	0.005	0.001	31.6	22.5
쬬ㅏ													
*	20	ATLANTIC, PHILADELPHIA, PA. 60	MEREY	544	552	51	50	65.4	61.0	1.024	1.031	545	550
١ ٠	20		MAYAN BOSCAN	748	*	53	*	59.6	*	1.032	1.030	500	525
-	20	-1		693	662	56	54	59.6	56.8	1.030	1.030	. 485	485
-	20	-10110	NORTH SLOPE		483	42	43	61.8	64.2	1.028	1.026	635	550+
	20	EXXON, LINDEN, NJ. 21	MAYA, MEX WESTERN YENEBUELAN	105	+ + + + + + + + + + + + + + + + + + + +	50	51	64.1	66.2	1.023	1.026	535	555
	20	MANTUA, PAULSBORD, NJ. 28	MID CONTINEN	605	545	44	44	62.9	61.1	1.028	1.028	605	600+
	20	MARATHON, TONAWANDA 15	MENT - MOTA	513		52	51	67.5	62.2	1.024	1.023	535	565
	20	PARCO, ATHENS 17	TUNANA PESADI		538		-*	64.9	*	1.021	*	540	*
	20	PECKHAM, STAMFORD, CT. 28	VENEZUELAN		*	50	38		58.5	1.025	1.022	595	600
	20	UNITED REF., WARREN, PA. 14	CANADIAN	531	539	44		74.6			-*	605	*
-	20	WARDEN, PITTSFORD 27	CANADIAN	532	*	42	*	71.2	-*	1.024			560
	20	WEST BANK, PERTH AMBOY 8	VENEZUELA	N 661	621	48	49	64.0	60.5	1.018	1.016	550	360
										+	1 1 20/	+	+
		X		602	563	48	48	65.1	61.3	1.025	1.026	557	
		6		71.0	59.5	4.7	5.3	4.6	3.0	0.004	0.005	46.9	
	- 1	ESSO REF. MONTREAL I	CANADIAN	528	*	51	50	67.1	60.2	1.017	1.018	610	605
	85/100		IALBUS 3 KOY	101	506	55	52	64.0	58.4	1.022	1.021	560	590
	85/100	PEIRO CHICA	Control		448	56	57	65.9	67.1	1.023	1.022	395	608
		-			444	54	62	63.5	68.9 •		1.019	585	618
	85/100	ULTRAMAR, MONTREAL 3	VENEZUELA	470	ماءة ماء	-	32	- 00.0					
				100	1//	F.4	55	65.1	63.7	1.020	1.020	588	605
		X	,	492	466	54		1.7	5.1	0.003			11.6
		6		25.2	34.7	2.2	5.4	1.1	1.0	0.003	0.002	21.0	11.0

3

....

ASPHALING PVN COMPARATIVE COMPARATIVE 1986 MONITOR PAF RESULTS RESULTS -0.097 0.145 AC SUPPLIER-* -0.148 0.194 CHEVRON, FLUX 113 -0.538 -0.514 CIBRO, A FLUX FLUX MARATHON 113 -0.261 -0.2840.241 0.200 * 0.471 0.552 * 0.598 0.560 PARCO, A 5 5 PETRO-CAN -0.556 -0.535B 0.090 0.006 * -0.495 -0.547115 0.684 -0.732 PARCO. 10 PETRO-CA 10 -0.640 -0.590 0.134 0.131 117 -0.597 -0.576 * MARATHON 6 0.650 * 15 * -0.578 0.637 NOCO END 15 * 来 PETRO-CI9 0.479 15 125 SHELL- 65 - 1.061 - 1.150 15 -0.943 * * UNITED 4 15 WARDEN 15 121 -0.739 -0.745 20 0.274 .0 5.7 0.254 * -0.571 20 -0.605 * -0.232ATLANTIZ 1 -0.152 20 * -0.187 -0.244CHEVROL 9 20 CIBRO 22 * -0.616 -0.672 20 EXXON 22 * -0.531 -0.476 20 MANTU22 120 -0.602 0.624 20 * -0.5830.493 MARAT20 20 * * -0.444 PARCO20 20 0.765 PECKHAI25 -0.871 122 20 UNITE(22 * * -0.868 20 WARDE 22 112 -0.371 -0.45220 20 WEST 21 -0.494118 -0.5371.6 5.3 0.233 0.180 112 0.574 18 0.668 0.735 18 115 -0.72885/100 ESSO -0.827 119 85/100 PETRO 18 -0.750 SHELL 17 0.647 118 -0.677 85/100 85/100 ULTRA -0.696 116 -0.706 118 3.2 0.040 0.109 1.50

102 RESULTS

1986 ASPHALT CEMENT COMPARATIVE SOLUBILITY COMPARATIVE SOFTENING COMPARATIVE DUCTILITY COMPARATIVE DUCTILITY COMPARATIVE CRUDE RESULTS MONITOR PROGRAM RESULTS POINT, F RESULTS RESULTS RESULTS @77°F. SOURCE @ 39.2°F AC SUPPLIER-LOCATION - LOT -0.145 -0.097 * 99.93 114 99.98 * MAYAN BOSCAN 150+ * 150+ CHEVRON, PERTH AMBOY -0.194 18 -0.148 FLUX * 99.99 99.98 111 150+ 150+ * 150+ 35 BOSCAN CIBRO, ALBANY -0.514FLUX -0.538 113 109 99.98 99.98 150+ 150+ CHIADIAN 110+ 16 150+ MARATHON, TONAWANDA -0.2840.261 99.96 113 111 99.98 150+ 150+ 110+ 150+ 0.241 0.200 0.01 0.03 25 5 -0.552* 0.471 99.99 110 99.99 150+ * 150+ 150+ ATOM-INDM PARCO, ATHENS 5 -0.560 * 0.598 99.99 99.95 106 WESTERN 150 + 150+ 150+ 220 5 PETRO-CAN, OAKVILLE -0.556 0.535 99.97 103 99.99 150+ 150+ \overline{X} 0.006 0.090 2.8 0.03 6 -0.5470.495 * 99.99 99.98 115 150+ -* 150+ 150+ 16 PARCO, ATHENS MENI-MOTA 10 -0.7320.684 115 99.99 99.91 115 CAHADIAN 150+ 140+ 30+ 76.50 12 PETRO-CAN., MONTREAL 0.640 -0.590 99.95 115 99.99 150+ 113.3 X 0.131 0.134 0.05 52.0 0 -0.597GIVEN 117 0.576 MID-CONTINENT CANADIAN WESTERN CANADIAN WESTERN CANADIAN 99.98 117 99.98 150+ 110+ 150+ 83.50 MARATHON, TONAWANDA 14 * 15 * 0.650 * 116 99.97 * 150+ * 28.50 NOCO ENERGY, TONAWANDA 6 -0.578 15 * 0.637 99.96 116 * 99.99 150+ 53.75 24.8 PETRO-CAN, OAKVILLE * 15 * -0.479 * 99.99 * 119 * 150+ VENEZUELAN 63.75 SHELL- CAN, HAMILTON 15 -1.061 -1.150 125 125 120+ 99.24 99.50 150+ * 5.25 ž UNITED REF., WARREN, PA. 8 CANADIAN 15 * 0.943 * 99.31 * 124 150+ * 5.50 CANADIAN WARDEN, PITTSFORD 15 RESULT -0.739 -0.745 121 99.81 120 99.75 150+ 40.0 X 0.274 5.7 0.254 0.37 0.27 4.0 32.2 G 0.605 -0.571 ATLANTIC, PHILADELPHA, PA. 60 BACHMODERO
CHEVRON, PERTH AMBOY 19 MAYAN 99.94 120 米 99.99 * 150+ 33.75 20 -0.232* 0.152 * 99.97 99.95 121 * 150+ 21.50 20 0.187 -0.24499.96 119 99.96 150+ * 150+ 150+ 36 BOSCAN 20 CIBRO, ALBANY * -0.616 -0.67299.99 122 NORTH SLAPE MAYA, MEX. WESTERN VENEZUELAN 99.99 * 150+ 150+ 11.25 EXXON, LINDEN, NJ. 20 -0.531 * -0.47699.97 122 99.99 * * 150+ 150+ MANTUA, PAULSBORO, N.J. 28 20 -0.624-0.602 122 120 99.97 99.99 38 150+ MD-CONTINENT CANADIAN 150+ 15.25 MARATHON, TONAWANDA 15 20 -0.493* 0.583 99.98 120 150+ 99.98 MENI-MOTA * 150+ 93.0 PARCO, ATHENS 20 * -0.444120 99.99 * * 150+ 45.25 * PECKHAM, STAMFORD, CT. 28 MABUSTAN 20 -0.765 -0.871 122 99.78 99.50 125 120+ 150+ * 9.25 UNITED REF., WARREN, PA. 14 CANADIAN 20 * * -0.868 * 99.76 * 122 * 150+ 9.50 CANADIAN WARDEN, PITTSFORD -0.452-0371 122 112 99.98 99.95 150+ 100+ 44 17.75 WEST BANK, PERTH AMBOY 8 VENEZUELAN 0.494 99.94 99.91 121 118 -0.537 41 150+ 50.6 0.233 0.180 0.16 1.6 5.3 0.09 4.2 54.8 б 112 0.574 CAMPOIAN 99.98 99.97 118 -0.668 150+ 150+ 11 17.50 85/100 ESSO REF., MONTREAL 0.735 99.96 115 -0.728 CANADIAN CANADIAN 118 99.97 30+ 150+ 140+ 57.25 13 PETRO-CAN., MONTREAL 85/100 -0.827 119 -0.750 99.90 99.70 118 150+ 10 150+ 17.25 9 SHELL- CAN., MONTREAL MEXICAN 118 -0.677 -0.647 99.99 99.99 117 34 150+ 150+ 57.0 ULTRAMAR, MONTREAL 3 VENEZUELAN 85/100 -0.696 116 0.706 99.96 99.91 118 37.3 150+ X 0.109 3.2 0.040 0.50 10.04 0.14 23.0 G

86 ASPILAR
MONITOR MATICS
SUPPLIO.22
X CHEVRO
X CIBRO .70 1986 FLUX FLUX MARATT FLUX 1.32 PARCO 3.62 5 5 7.27 .92 7.76 PARCO 7.35 10 10 PETRO 7.56 5.29 2.87 MAR 1.20 15 GIVEN 15 NOCO 2.10 15 PETRO8.72 15 SHEL 8.57 10N-15 UNITE 9.78 15 WARD RESULTS 0.54 1.79 4.09 ATLANT.75 * 20 CHEYO.92 20 20 C1858.71 EXX 34.69 20 MAN 5.42 20 20 MAR 7.45 20 PAR 7.05 20 PECK 1.88 20 UNIT 2.44 20 WARY9.25 20 -- 59.97 -- 3.27 57.73 85/100 ESSO 7.70 85/100 PETRS 7.16 85/100 SHELLS 9.20 37.95 0.88

Three suppliers submitted Asphalt Composition Analysis Results to the Materials Bureau.

A. Petro-Canada, Montreal, Quebec #702-0300, AC-10 Lot 12

Venezuelan Canadian

Asphalt Composition Analysis

	Materials Bureau	Petro Canada
% Asphaltenes,	14.09	16.5
% Saturates,	12.26	19.1
% Naphthene Aromatics,	31.94	37.7
% Polar Aromatics,	37.35	26.7

Petro-Canada, Montreal, Que *#*702-0600, 85/100

Lot 13

Venezuelan Canadian

Asphalt Composition Analysis

	Materials Bureau	Petro Canada
% Asphaltenes	14.58	16.9
% Saturates	11.43	20.1
% Naphthene Aromatics	28.69	35.4
% Polar Aromatics	37.70	27.6

Shell Canada, Montreal, Que. #702-0600, 85/100

Lot 9

Canadian, Mexican

Asphalt Composition Analysis

	Materials Bureau	Shell-Canada
%Asphaltenes	14.77	14.1
% Saturates	11.71	15.5
% Aromatics	-	50.9
% Resins	<u> </u>	19.5

C. Ultramar, Montreal, Que. *#*702-0600, 85/100

Lot 3

Venezuelan

%	Asphal	tenes

Materials Bureau	Ultramar
12.58	29.02

VIII. Statistical Analysis of Test Results

The mean, range and standard deviation were determined for the number of samples tested in each grade of asphalt cement. For each test, this statistical information has been determined separately for the Materials Bureau results and when applicable, the comparable results submitted by the supplier.

A. ABSOLUTE VISCOSITY @ 140°F (POISES)

1. Materials Bureau

	FLUX	<u>AC-5</u>	AC-10	<u>AC-15</u>	AC-20	85/100
Number of Samples	3	2	2	6	11	4
Mean	840	593	1157	1525	1972	1361
Range	607 to 1138	561 to 624	1139 to 1175	1425 t o 1753	1746 to 2145	1195 to 1560
Standard Deviation	271.5	44.5	25.5	124.1	157.2	160.5

2. Comparative Results

	FLUX	<u>AC-5</u>	AC-10	AC-15	AC-20	85/100
Number of Samples	3	2	2	5	11	4
Mean	823	616	1158	1475	1900	1339
Range	632 to 1101	574 to 658	_	1405 to 1546	1652 to 2114	1161 to 1492
Standard Deviation	246.5	59.4	-	54.6	158.4	141.9

B. KINEMATIC VISCOSITY @ 275°F (CENTISTOKES)

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	284	230	305	344	404	334
Range	232 to 334	224 to 235	302 to 307	316 to 378	373 to 458	318 to 364
Standard Deviation	51.0	7.8	3.5	19.9	26.9	21.2

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	3	9	4
Mean	275	227	302	335	401	326
Range	227 to 321	225 to 228	-	315 to 351	368 to 442	302 to 364
Standard Deviation	47.1	2.1	-	18.2	23.3	27.4

C. PENEIRATION @ 77°F

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	AC-20	85/100
Number of Samples	3	2	2	6	11	4
Mean	154	162	105	78	75	83
Range	134 to 170	159 to 165	95 to 115	57 to 91	59 to 94	76 to 86
Standard Deviation	18.4	4.2	14.1	13.7	10.8	4.7

2. Comparative Results

	FLUX	<u>AC-5</u>	AC-10	AC-15	<u>AC-20</u>	85/100
Number of Samples Mean Range	3 158 136 to 170	2 162 161 to 163	2 102 93 to 110	6 75 63 to 90	11 77 65 to 95	4 87 83 to 90
0		1.4	12.0	12.4	9.4	3.3

D. PENEIRATION @ 39.2°F

1. Materials Bureau

	FLUX	AC-5	AC-10	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	56	49	35	25	28	29
Range	49 to 65	45 to 53	32 to 38	18 to 30	21 to 34	26 to 30
Standard Deviation	8.3	5.7	4.2	5.2	4.6	1.7

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	AC-20	85/100
Number of Samples	2	_	1	2	5	4
Mean	48	_	-	23	27	35
Range	47to 49	-	—	16 to 29	17 to 34	30 to 43
Standard Deviation	1.4	-	-	9.2	7.4	5.6

E. PENETRATION RATIO

(PENETRATION @ 39.2°F divided by PENETRATION @ 77°F) X 100

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11 37.0	4 34.3
Mean	36.2	30.2	33.4	31.4		
Range	30.8 to 39.6	28.3 to 32.1	33.0 to 33.7	28.1 to 34.9	30.9 to 42.7	33.7 to 35.3
Standard Deviation	4.7	2.7	0.5	2.3	3.1	0.7

2. Comparative Results

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	2 32.0	0	1	2 28.8	5 33.4	4
Mean Range	29.3 to 34.6	_	_	25.4 to 32.2	26.2 to 39.0	35.3 to 48.3
Standard Deviation	3.7	-	-	4.8	5.5	5.8

F. THIN FILM OVEN TEST, % LOSS

(SAMPLES WHICH SHOWED WEIGHT CAINS WERE CALCULATED AS 0.000% LOSS)

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	26	6	11	4
Mean	0.525	0.117	0.099	0.147	0.159	0.033
Range	0.131 to 0.757	0.000 to 0.234	0.030 to 0.168	0.000 to 0.364	0.018 to 0.551	0.000 to 0.073
Standard Deviation	0.343	0.165	0.098	0.144	0.157	0.030

	FLUX	<u>ÀC-5</u>	AC-10	AC-15	AC-20	85/100
Number of Samples	2	2	2	3	8	4
Mean	0.445	0.095	0.100	0.037	0.155	0.035
Range	0.160 to 0.730	0.000 to 0.190	0.070 to 0.130	0.000 to 0.110	0.000 to 0.610	0.000 to 0.070
Standard Deviation	0.403	0.134	0.042	0.064	0.194	0.029

G. THIN FILM OVEN TEST, DUCTILITY @ 60°F, 5cm/min. (CENTIMETERS)

1. Materials Bureau

	FLUX	<u>AC-5</u>	AC-10	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	133	150+	130	86.4	74.7	71.4
Range	99 to 150+		109 to 150+	14.25 to 150+	24.25 to 150+	47.25 to 98.75
Standard Deviation	29.4	-	29.0	61.5	47.4	21.8

2. Comparative Results

	FLUX	<u>AC-5</u>	AC-10	AC-15	AC-20	85/100
Number of Samples	2	0	1	2	6	4
Mean	150+	-	saw.	84.5	81.7	100.0
Range	-	-	-	19 to 150+	23.0 to 150+	35 to 150+
Standard Deviation	-	_	-	92.6	54.2	48.8

H. THIN FILM OVEN TEST, DUCTILITY @ 77°F, 5cm/min. (CENTIMETERS)

1. Materials Bureau

	FLUX	<u>AC-5</u>	AC-10	AC-15	AC-20	85/100
Number of Samples	3	2	2	6	11	4
Mean	150+	150+	150+	150.0+	150+	150+
Range	-	-	-		-	-
Standard Deviation		_	-	_	_	-

	FLUX	<u>AC5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	3	8	4
Mean	(un)	150+	-	-	-	
Range	110+ to 150+	April 1	140+ to 150+	120+ to 150+	100+ to 150+	80 to 150+
Standard Deviation	-	-	_	-	_	_

I. THIN FILM OVEN TEST, ABSOLUTE VISCOSITY @ 140°F, (POISES)

1. Materials Bureau

	FLUX	<u>AC-5</u>	AC-10	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	2281	1331	2844	3693	5130	3539
Range	1283 to 3096	1088 to 1573	2721 tp 2966	2875 to 4514	4102 to 6603	3228 to 3910
Standard Deviation	920.2	342.9	173.2	607.6	845.5	290.9

2. Comparative Results

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	3	9	3
Mean	2243	1322	2661	3318	4748	3044
Range	1263 to 3035	1202 to 1442	2636 to 2685	3055 to 3620	3683 to 6014	2557 to 3578
Standard Deviation	900.8	169.7	34.6	284.6	781.7	512.1

J. ABSOLUTE VISCOSITY @140°F RATIO

(AFTER T.F.O.T. VISCOSITY @ 140°F DIVIDED BY ORIGINAL VISCOSITY @ 140°F)

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	AC-20	85/100
Number of Samples	3	2	2	6 .	11	4
Mean	2.67	2.23	2.46	2.41	2.59	2.61
Range Standard Deviation	2.11 to 3.18 0.54	1.94 to 2.52 0.41	2.39 to 2.52 0.09	1.98 to 2.75 0.26	2.34 to 3.08 0.28	2.51 to 2.70 0.09
Statuard Deviation	0.54	0.41	0.09	0.40	0.20	0.09

	FLUX	<u>AC-5</u>	AC-10	AC-15	<u>AC-20</u>	85/100
Number of Samples Mean Range Standard Deviation	3 2.69 2.00 to 3.31	2 2.14 2.09 to 2.19 0.07	2 2.30 2.28 to 2.32 0.03	3 2.30 2.17 to 2.46 0.15	9 2.50 2.04 to 3.06 0.38	3 2.39 1.83 to 2.75 0.49

K. THIN FILM OVEN TEST, KINEMATIC VISCOSITY @ 275°F, (CENTISTOKES)

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	444	316	445	491	602	492
Range	316 to 536	296 to 336	441 to 449	448 to 564	531 to 748	470 to 528
Standard Deviation	114.2	28.3	5.7	40.3	71.0	25.2

2. Comparative Results

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	2	1	2	2	7	3
Mean	413	-	444	445	563	466
Range	298 to 528	-	432 to 455	430 to 460	483 to 662	444 to 506
Standard Deviation	162.6	-	16.3	21.2	59.5	34.7

. THIN FILM OVEN TEST, PENEIRATION @ 77°F

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	87	94	63	48	48	54
Range	77 to 96	91 to 96	58 to 68	37 to 55	42 to 56	51 to 56
Standard Deviation	9.5	3.5	7.1	8.4	4.7	2.2

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples Mean Range Standard Deviation	2 85 75 to 95	2 95 93 to 96	2 63 60 to 66	3 48 36 to 55	8 48 38 to 54	4 55 50 to 62
Standard Deviation	14.1	2.1	4.2	10.7	5.3	5.4

M. PENEIRATION @ 77°F RATIO,

(AFTER T.F.O.T. PENETRATION @77°F DIVIDED BY ORIGINAL PENETRATION @ 77°F) X 100

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	AC-20	85/100
Number of Samples	3	2	2	6	11	4
Mean	56.6	57.8	60.1	61.4	65.1	65.1
Range	51.8 to 60.4	55.2 to 60.4	59.1 to 61.1	57.8 to 64.9	59.6 to 74.6	63.5 to 67.1
Standard Deviation	4.4	3.7	1.4	2.9	4.6	1.7

2. Comparative Results

	FLUX	<u>AC-5</u>	AC-10	AC-15	<u>AC-20</u>	85/100
Number of Samples	2	2	2	3	4	4
Mean	56.0	58.4	62.3	60.1	61.3	63.7
Range	55.1 to 56.9	57.8 to 58.9	60.0 to 64.5	57.1 to 62.1	56.8 to 62.2	58.4 to 68.9
Standard Deviation	1.3	0.8	3.2	2.6	3.0	5.1

SPECIFIC GRAVITY @ 77°F

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	AC-20	85/100
Number of Samples	3	2	2	6	11	4
Mean	1.025	1.018	1.022	1.021	1.025	1.020
Range	1.020 to 1.027	1.017 to 1.018	1.021 to 1.022	1.012 to 1.026	1.018 to 1.032	1.017 to 1.023
Standard Deviation	0.004	0.001	0.001	0.005	0.004	0.003

	FLUX	<u>AC-5</u>	AC-10	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	3	9	4
Mean	1.024	1.019	1.022	1.023	1.026	1.020
Range	1.022 to 1.027	1.018 to 1.019	1.021 to 1.022	1.022 to 1.024	1.016 to 1.031	1.018 to 1.022
Standard Deviation	0.003	0.001	0.001	0.001	0.005	0.002

O. FLASH POINT, CLEVLAND OPEN CUP, °F

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	532	548	533	58 3	557	588
Range	495 to 565	530 to 565	525 to 540	545 to 620	485 to 635	560 to 610
Standard Deviation	35.1	24.7	10.6	31.6	46.9	21.0

2. Comparative Results

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	AC-20	85/100
Number of Samples	3	2	2	3	9	4
Mean	517	567	563	606		605
605 Range	475 to 580	525 to 608	540 to 585	580 to 622	485 to 600+	590 to 618
Standard Deviation	55.8	58.7	31.83	22.5	-	11.6

DUCTILITY @ 39.2°F, 1cm/min., CRIGINAL SAMPLE (CENTIMETERS)

1. Materials Bureau

	FLUX	AC-5	AC-10	AC-15	AC-20	85/100
Number of Samples Mean Range Standard Deviation	3 150.0+ -	2 150+ -	2 113.3 76.5 to 150+ 52.0	6 40.0 5.25 to 83.50 32.2	11 50.6 9.25 to 150+ 54.8	4 37.3 17.25 to 57.25 23.0

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	1	1	1	2	2	4
Mean		-	-	-	41	-
Range	••	-	-	24.8 to 110+	38 to 44	10 to 30+
Standard Deviation	-	-	-	-	4.2-	-

Q. DUCTILITY @ 77°F, 5cm/min., ORIGINAL SAMPLE (CENTIMETERS)

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples Mean Range Standard Deviation	3 150.0+ -	2 150+ -	2 150+ -	6 150,0+ -	11 150.0+ -	4 150.0+ -

2. Comparative Results

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	2	1	2	2	6	4
Mean	150+	_	-	_	_	-
Range	-	_	140+ to 150+	120+ to 150+	100+ to 150+	140+ to 150+
Standard Deviation	dolm	-	_	-	***	-

R. SOLUBILITY IN TRICHLOROETHYLENE, (%)

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	AC-20	85/100
Number of Samples	3	2	2	6	11	4
Mean	99.98	99.99	99.99	99.75	99.94	99.96
Range	99.98 to 99.99		-	99,24 to 99,99	99.76 to 99.99	99.90 to 99.99
Standard Deviation	0.01	-	-	0.37	0.09	0.04

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples Mean Range Standard Deviation	3 99.96 99.93 to 99.98 0.03	2 99.97 99.95 to 99.99 0.03	2 99.95 99.91 to 99.98 0.05	3 99.81 99.50 to 99.98 0.27	9 99.91 99.50 to 99.99 0.16	99.91 99.70 to 99.99 0.14

S. SOFTENING POINT, IN ETHYLENE GLYCOL, (°F)

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	AC-20	85/100
Number of Samples	3	2	2	6	11	4
Mean	111	108	115	120	121	118
Range	109 to 114	106 to 110	-	116 to 125	119 to 125	117 to 118
Standard Deviation	2.5	2.8	-	4.0	1.6	0.50

2. Comparative Results

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	1	_	1	6	3	4
Mean	-	-	-	121	118	116
Range	_		**	117 to 125	112 to 122	112 to 119
Standard Deviation	-	-	-	5.7	5.3	3.2

T. Penetration Viscosity Number, (PVN)

The penetration viscosity number, PVN, is an indicator of the temperature susceptibility of asphalt cements. Lower PVN indicates greater temperature susceptibility. It is suggested that an asphalt cement with a PVN less than -0.5 is temperature susceptible.

$$PVN = \frac{\text{Log A} - \text{Log V}}{\text{Log A} - \text{Log B}} \times (-1.5)$$

Where Log A = 4.25800 - 0.79674 Log (Penetration @ 77° F) Log B = 3.46289 - 0.61094 Log (Penetration @ 77° F)

Log V = Log (Viscosity @ 275°F, Kinematic)

The results indicate that most of these asphalt cements are temperature susceptible by PVN criteria.

1. Mate	erials Bureau <u>FLUX</u>	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	-0.261	-0.535	-0.590	-0.739	-0.537	-0.706
Range	-0.097 to -0.538	-0.471 to -0.598	-0.495 to -0.684	-0.479 to -1.150	-0.152 to -0.871	-0.668 to -0.750
Standard Deviation	0.241	0.090	0.134	0.254	0.233	0.040

2. Comparative results							
	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100	
Number of Samples	3	2	2	3	9	4	
Mean	-0.284	-0.556	-0.640	-0.745	-0.494	-0.696	
Range	-0.145 to -0.514	-0.552 to -0.560	-0.547 to -0.732	-0.578 to -1.061	-0.232 to -0.765	-0.574 to -0.82	
Standard Deviation	0.200	0.006	0.131	0.274	0.180	0.109	

U. Penetration Index Numbers, (PIN)

The penetration Index Number is another indicator of temperature susceptibility of asphalt cements. Large negative values of PIN indicate greater temperature susceptibility. "Typical" asphalts have values between +2 and -2.

$$PIN = \frac{30}{1 + 90 PTS} - 10$$

PTS = Penetration Temperature Susceptibility

PTS =
$$\frac{\text{Log } 800 - \text{Log (Penetration @ 77°F)}}{\text{Softening Point (°F)} - 77°F}$$

1. Materials Bureau

	FLUX	<u>AC-5</u>	AC-10	AC-15	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	0.431	-0.053	-0.292	-0.506	-0.298	-0.548
Range	+1.380 to -0.177	+0.454 to -0.559	+0.016 to -0.600	-0.246 to -0.828	+0.167 to -0.810	-0.404 to -0.
Standard Deviation	0.833	0.716	0.436	0.238	0.267	0.160

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	<u>AC-20</u>	85/100
Number of Samples	1	0	1	2	3	4
Mean	-	-	-	-0.329	-0.909	-0.711
Range		-	-	-0.227 to -0.430	-0.567 to -1.567	-0.269 to -1.
Standard Deviation	-	•••	•	0.144	0.570	0.581

<u>V. A Settling Test to Evaluate The Relative Degree of Dispersion of Asphaltenes</u>

bу

H. Plancher)

Laramie Energy Technology Center

U.S. Department of Energy

P.O. Box 3395

Laramie, Wyoming 82071

A. J. Hoiberg) Johns - Manville Sales Corporation
S. C. Suhaka) R&D Center
Ken - Caryl Ranch
Denver, Colorado 80217

The asphaltene settling test is used to evaluate the relative degree of dispersion of asphaltenes from paving asphalts. This test distinguishes differences in asphaltene settling times of asphalts in their hexane-maltene solutions. The test involves digesting asphalt in n-hexane, transferring the contents into a graduated cylinder and measuring the time required for the asphaltene meniscus to settle to the 25 ml. mark of a 50 ml. cylinder. Slower settling times indicate a greater degree of dispersion of the asphaltenes and thus a more compatible asphalt, which in turn is considered to be an important property that contributes to asphalt durability. The test is extremely sensitive to changes in asphalt composition. Time is reported in minutes.

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	37.3	52.9	61.4	55.1	54.1	53.7
Range	27.3 to 56.3	30.9 to 74.8	43.8 to 79.0	29.7 to 105.9	18.6 to 114.5	22.0 to 84.4
Standard Deviation	16.5	31.0	24.9	28.6	31.5	27.8

W. Separation of Asphalt Into Four Fractions; Modified Method of ASTM D 4124-84, Section 4, Volume 04.03

The purpose is to separate the four generic fractions present in asphalt. These fractions are saturates, naphthene aromatics, polar aromatics, and asphaltenes. The relative amount of each fraction plays a role in determining the physical properties of the asphalt. These properties include viscosity, ductility, softening point and temperature susceptibility.

The procedure follows:

The percent asphaltene is determined by dispersing the asphalt in n-heptane and refluxing. The insolubles are the asphaltenes.

The remaining three fractions are determined by absorbing the deasphaltened n-heptane solution on a calcined alumina chromatography column and eluting (removing) each fraction with a different solvent. Saturates are eluted with n-heptane. Naphthene aromatics are eluted with toluene. Polar Aromatics are eluted with 50/50 toluene - methanol solution, followed by trichloroethylene. The solvents are then evaporated and weight percentages of each fraction with respect to the original asphalt sample are determined.

ASPHALTENES, %

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	14.64	12.24	12.70	11.66	14.08	14.23
Range	10.90 to 17.11	10.84 to 13.63	11.31 to 14.09	9.03 to 12.39	8.36 to 19.50	12.58 to 14
Standard Deviation	3.29	1.97	1.97	1.29	2.76	1.11

SATURATES, %

1. Materials Eureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	9.54	12.71	15.21	9.43	11.33	13.42
Range	8.64 to 10.29	11.98 to 13.44	12.26 to 18.15	8.40 to 11.08	7.64 to 18.43	9.33 to 21.
Standard Deviation	0.84	1.03	4.16	1.01	3.15	5.29

NAPHTHENE - AROMATICS, %

1. Materials Bureau

	FLUX	<u>AC-5</u>	<u>AC-10</u>	AC-15	AC-20	85/100
Number of Samples	3	2	2	6	11	4
Mean	26.55	30.79	27.93	31.15	26.60	25.64
Range	25.03 to 29.30	29.56 to 32.01	23.91 to 31.94	28.61 to 34.15	15.02 to 32.05	17.31 to 29.24
Standard Deviation	2.38	1.73	5.68	2.68	5.15	5.61

POLAR ARCMATICS, %

1. Materials Bureau

	FLUX	<u>AC-5</u>	AC-10	<u>AC-15</u>	<u>AC-20</u>	85/100
Number of Samples	3	2	2	6	11	4
Mean	41.32	37.27	37.56	40.54	39.97	37.95
Range	41.70 to 42.03	35.91 to 38.62	37.35 to 37.76	38.57 to 42.87	34.69 to 45.42	37.16 to 39.20
Standard Deviation	0.96	1.92	0.29	1.79	3.27	0.88

IX. GRAPHS AND CHARTS OF RELATED MATERIAL INFORMATION

On the following pages are found a series of graphs providing a comparison of thin film oven test, before and after, and charts showing asphaltene dispersion settling test.

A SETTLING TEST TO EVALUATE THE RELATIVE DEGREE

A SETTLING TEST TO EVALUATE THE RELATIVE DEGREE

SETTLIZE OF DISPERSION TEST TO EVALUATE OF ASPH ALTENES THE RELATIVE DEGREE

