REAL-TIME WATER QUALITY MONITORING AND CONTROL

A PROJECT REPORT

Submitted by

K.ARTHI	(Team Member)	(950619106001)
C. DEEPA	(Team Member)	(950619106003)
K. KARTHIKA	(Team Lead)	(950619106006)
M. SELVAPRIYA	(Team Member)	(950619106025)

TEAM ID: PNT2022TMID49915

For the project

HX8001 PROFESSIONAL READYINESS FOR INNOVATION EMPLOYABLITY AND ENTREPRENEURSHIP

In the department of

ELECTRONICS AND COMMUNICATION ENGINEEING

EINSTEIN COLLEGE OF ENGINEEING, TIUNELVELI-627 012

ANNA UNIVERSITY: CHENNAI 600 025

NOVEMBER:2022

BONAFIED CERTIFICATE

Certified this Report "REAL-TIME WATER QUALITY MONITORING AND CONTROL SYSTEM", for the project, is the bonafied work of "K.ARTHI (Team Member) (950619106001), C. DEEPA (Team Member) (950619106003), K. KARTHIKA (Team Lead) (950619106006), M. SELVA PRIYA (Team Member) (950619106025)" who carried out the project work under my supervision. Certified further that to the best of my knowledge the work reported here in does not form part of any other thesis or any other candidate.

SIGNATURE

Dr. P. REVATHY

HOD/ECE

EVALUATOR

Mrs. T. Viji

AP/ECE

SIGNATURE

Dr. P. REVATHY

MENTOR

SPOC

Mr. S. Arun singh

AP/ECE

ACKNOWLEDGEMENT

We have successfully completed the project with blessings showered on us by the almighty, a project of this nature needs co-operation and support from many for successful completion.

We express our heartfelt thanks to **Mr.A.MATHIVANAN**, **M.sc.**,(**Agri**), Managing Trustee of Einstein college of Engineering, Tirunelveli, for his mortal support and device.

Our tljahanks to **Prof.A. AMUDHAVANAN**, **M.S** (**USA**).**B.L**, Chairman of our college for making necessary arrangements to do this project.

Our hearty thanks to **Prof. A. EZHILVANAN, MBA.,** Secretary of our college for making necessary arrangements to do this project.

We wish to express our gratitude to **Dr.R.VELAYUTHAM**, **M.E**, **Ph.D**., **FIE.** Principal for the support he provided us to carry out this project successfully.

We are very much thankful to **Dr.P.REVATHY**, **M.E.**, **Ph.D.**, Head of the Department & Mentor, Electronics and Communication Engineering who is always a constant of inspiring us.

We are extended our sincere thanks to our Evaluator **Mrs. T.VIJI**, M.E., AP/ECE and SPOC **Mr. S. Arun Singh**, M.Tech., AP/ECE for their help in completing this project.

A PROJECT REPORT ON

REAL TIME WATER QUALITY MONITORING AND CONTROL SYSTEM

Domain : Internet Of Things **Team ID** : PNT2022TMID49915

College Name: Einstein College Of Engineering

1.K.Arthi

(950619106001)

Department of Electronics and Communication Engineering

2.C.Deepa

(950619106003)

Department of Electronics and Communication Engineering

3.K.Karthika

(950619106006)

Department of Electronics and Communication Engineering

4.M.Selva Priya

(950619106025)

Department of Electronics and Communication Engineering

TABLE OF CONTENTS

1. IN	NTRODUCTION	7
	1.1. Project Overview	7
	1.2. Purpose	8
2 1 1	ITERATURE SURVEY	0
2. LI	2.1. Existing problem	
	2.2. References	
	2.3. Problem Statement Definition	
	2.3. 1 Tobiciii Statement Definition	13
3. ID	DEATION & PROPOSED SOLUTION	
	3.1. Empathy Map Canvas	
	3.2. Ideation & Brainstorming	
	3.3. Proposed Solution	
	3.4. Problem Solution fit	21
4. RI	EQUIREMENT ANALYSIS	22
	4.1. Functional requirement	22
	4.2. Non-Functional requirements	23
5. PI	ROJECT DESIGN	24
	5.1. Data Flow Diagrams	
	5.2. Solution & Technical Architecture	
	5.3. User Stories	
6. PI	ROJECT PLANNING & SCHEDULIN	29
U. 11	6.1. Sprint Planning & Estimation	
	6.2. Sprint Delivery Schedule	
	6.3. Reports from JI	
7 CO	ODING & SOLUTIONING	22
7. CC	7.1. Feature 1	
	7.2. Feature 2	
8. TI	ESTING	
	8.1. Test Cases	
	8.2. User Acceptance Testing	50
9. RI	ESULTS	52
	9.1. Performance Metrics	52
10. A	ADVANTAGES & DISADVANTAGES	53
	CONCLUSION	
	FUTURE SCOPE	
	APPENDIX	
	13.1. Source Code	
	13.2. GitHub & Project Demo Link	58

LIST OF FIGURES

Figure No Title		Page No
1	Problem statement	11
2	Empathy map	12
3	Brainstorming	13
4	Problem solution fit	19
5	Problem Design	22
6	Project architecture	23
7	Report from Jira	29
8	Test Case1	37
9	Test Case 2	37
10	Final Output	38
11	Html Output	40
12	Html Output	45
13	Test Cases	49
14	Performance Metrics	52

LIST OF TABLES

TABLE NO	TABLES NAME	PAGE NO
1	Proposed Solution	21
2	Functional Required	23
3	Non-Functional Requirement	24
4	Components & Technologies	27
5	Application Characteristics	28
6	User Stories	29
7	Sprint Planning and Requirement	30
8	Sprint delivery Schedule	31
9	Defect Analysis	51
10	Test Case Analysis	52

REAL-TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

CHAPTER 1

INTRODUCTION:

1.1Project Overview

Water pollution is one of the biggest fears for the green globalization. In order to ensure the safe supply of the drinking water the quality needs to be monitor in real time. In this paper we present a design and development of a low cost system for real time monitoring of the water quality in IOT(internet of things). The system consist of several sensors is used to measuring physical and chemical parameters of the water. The parameters such as temperature, PH, turbidity, flow sensor of the water can be measured. The measured values from the sensors can be processed by the core controller. The Arduino model can be used as a core controller. Finally, the sensor data can be viewed on internet using WI-FI system.

1.2 Purpose

Water is one of the most essential natural resource that has been gifted to the mankind. But the rapid development of the society and numerous human activities speeded up the contamination and deteriorated the water resources. For above water quality monitoring is necessary to identify any changes in water quality parameters from time-to-time to make sure its safety in real time. The Central Pollution Control Board (CPCB) has established a series of monitoring stations on water bodies across the country which monitor the water quality on either monthly or yearly basis. This is done to ensure that the water quality is being maintained or restored at desired level. It is important that it is monitored on regular basis. Water quality monitoring helps in evaluating the nature and extent of pollution control required, and effectiveness of pollution control measures. CPCB has plans to establish water quality monitoring network across Ganga river basin. All the stations will operate in real time and central station can access data from any of the above stations using GPRS/GSM or 3G cellular services. State pollution boards and CPCB zonal offices can also access data from central station. Large amount of data can help to take right decisions and also to implement in time accordingly. Cost of the system depends on number of parameters to be measured. Water quality monitoring systems need to quickly identify any changes in the quality of water and report the same to the officials for immediate action. The system is designed for continuous on-site sensing and real time reporting of water quality data where the officials can access the data on the smart phone/PC through Internet. Our proposed system employs use of multiple sensors to measure the parameters, measures the quality of water in realtime for effective action, and is economical, accurate, and required less manpower.

LITERATURE SURVEY

2.1 Existing method:

Current water quality monitoring system is a manual system with a monotonous process and is very time-consuming. This paper proposes a sensor-based water quality monitoring system. The main components of Wireless Sensor Network (WSN) include a microcontroller for processing the system, communication system for inter and intra node communication and several sensors. Real-time data access can be done by using remote monitoring and Internet of Things (IoT) technology. Data collected at the apart site can be displayed in a visual format on a server PC with the help of Spark streaming analysis through Spark MLlib, Deep learning neural network models, Belief Rule Based (BRB) system and is also compared with standard values. If the acquired value is above the threshold value automated warning SMS alert will be sent to the agent. The uniqueness of our proposed paper is to obtain the water monitoring system with high frequency, high mobility, and low powered. Therefore, our proposed system will immensely help Bangladeshi populations to become conscious against contaminated water as well as to stop polluting the water.

2.2 References:

- 1 K.S. Adu-Manu, C. Tapparello, W. Heinzelman, F.A. Katsriku, J.-D. Abdulai Water quality monitoring using wireless sensor networks: Current trends and future research directions ACM Transactions on Sensor Networks (TOSN),vol., 13 (2017), p. 4 View Record in ScopusGoogle Scholar
- 2 B. Chen, Y. Song, T. Jiang, Z. Chen, B. Huang, B. Xu. Real-time estimation of population exposure to PM2.5 using mobile- and station-based big data Int J Environ Res Public Health, 15 (2018) Mar 23. Google Scholar
- 3 B. Paul, "Sensor based water quality monitoring system," BRAC University, 2018. Google Scholar

- 4 K. Andersson and M. S. Hossain, "Smart Risk Assessment Systems using Belief-rule-based DSS and WSN Technologies", in 2014 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace and Electronic Systems, VITAE 2014: Co-located with Global Wireless Summit, Aalborg, Denmark 11-14 May 2014, 2014. Google Scholar
- 5 S. Thombre, R.U. Islam, K. Andersson, M.S. Hossain IP based Wireless Sensor Networks: performance Analysis using Simulations and Experiments Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 7 (3) (2016), pp. 53-76 View Record in ScopusGoogle Scholar
- 6 K. Andersson and M. S. Hossain, "Heterogeneous Wireless Sensor Networks for Flood Prediction Decision Support Systems", in 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): 6th IEEE INFOCOM International Workshop on Mobility Management in the Networks of the Future World, 2015, pp. 133–137. Google Scholar
- 7 S. Thombre, R. U. Islam, K. Andersson, and M. S. Hossain, "Performance Analysis of an IP based Protocol Stack for WSNs", in Proceedings of the 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2016, pp. 691–696. Google Scholar
- 8 M. Z. Abedin, A. S. Chowdhury, M. S. Hossain, K. Andersson, and R. Karim, "An Interoperable IP based WSN for Smart Irrigation Systems", presented at the 14th Annual IEEE Consumer Communications & Networking Conference, Las Vegas, 8-11 January 2017, 2017. Google Scholar
- 9 M. Z. Abedin, S. Paul, S. Akhter, K. N. E. A. Siddiquee, M. S. Hossain, and K. Andersson, "Selection of Energy Efficient Routing Protocol for Irrigation Enabled by Wireless Sensor Networks", in Proceedings of 2017 IEEE 42nd Conference on Local Computer Networks Workshops, 2017, pp. 75–81. Google Scholar
- 10 R. Ul Islam, K. Andersson, and M. S. Hossain, "Heterogeneous Wireless Sensor Networks Using CoAP and SMS to Predict Natural Disasters", in Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): The 8th IEEE INFOCOM International Workshop on Mobility Management in the Networks of the Future World (MobiWorld'17), 2017, pp. 30–35. Google Scholar

- 11 K. N. E. A. Siddiquee, F. F. Khan, K. Andersson, and M. S. Hossain, "Optimal Dynamic Routing Protocols for Agro-Sensor Communication in MANETs", in Proceedings of the 14th Annual IEEE Consumer Communications & Networking Conference, Las Vegas, 8-11 January 2017. Google Scholar
- 12 M. E. Alam, M. S. Kaiser, M. S. Hossain, and K. Andersson, "An IoT-Belief Rule Base Smart System to Assess Autism", in Proceedings of the 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT 2018), 2018, pp. 671–675. Google Scholar
- 13 P.W. Rundel, E.A. Graham, M.F. Allen, J.C. Fisher, T.C. Harmon Environmental sensor networks in ecological research New Phytologist, 182 (2009), pp. 589-607 View PDFCrossRefGoogle Scholar
- 14 N. Chilamkurti, S. Zeadally, A. Vasilakos, V. Sharma Cross-layer support for energy efficient routing in wireless sensor networks Journal of Sensors (2009), p. 2009 Google Scholar
- 15 H.R. Maier, G.C. Dandy. The use of artificial neural networks for the prediction of water quality parameters. Water resources Research, 32 (1996), pp. 1013-1022 View Record in ScopusGoogle Scholar
- 16 N. Vijayakumar and R. Ramya, "The real time monitoring of water quality in IoT environment," in 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIECS), 2015, pp. 1-5. Google Scholar
- 17 T. White, Hadoop: The definitive guide: "O'Reilly Media, Inc.", 2012. Google Scholar
- 18 A. K. Jain, J. Mao, and K. Mohiuddin, "Artificial neural networks: A tutorial," Computer, pp. 31–44, 1996. Google Scholar
- 19 H.R. Maier, G.C. Dandy The use of artificial neural networks for the prediction of water quality parameters Water resources Research, 32 (1996), pp. 1013-1022 View Record in ScopusGoogle Scholar
- 20 M.S. Hossain, S. Rahaman, R. Mustafa, K. Andersson. A belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty Soft

- Computing A Fusion of Foundations, Methodologies and Applications, 22 (22) (2018), pp. 7571-7586 View PDFCrossRefView Record in ScopusGoogle Scholar
- 21 T. Mahmud, K.N. Rahman, M.S. Hossain Evaluation of Job Offers Using Evidential Reasoning Global Journal of Computer Science and Technology, 13 (6) (2013), pp. 41-50 Google Scholar
- 22 M. S. Hossain, K. Andersson, and S. Naznin, "A Belief Rule Based Expert System to Diagnose Measles under Uncertainty", in Proceedings of the 2015 International Conference on Health Informatics and Medical Systems (HIMS'15), 2015, pp. 17–23. Google Scholar
- 23 M.S. Hossain, PO. Zander, S. Kamal, L. Chowdhury "Belief Rule Based Expert Systems to Evaluate E-Government" Expert Systems, The Journal of Knowledge Engineering, Jhon Wiley & Sons Ltd. (2015) vol. 32, No. 5 Google Scholar
- 24 M.S. Hossain, F. Ahmed, F. Tuj-Johora, K. Andersson. A Belief Rule Based Expert System to Assess Tuberculosis under Uncertainty Journal of medical systems, 41 (3) (2017) Google Scholar
- 25 M.S. Hossain, S. Rahaman, A.-L. Kor, K. Andersson, C. Pattison. A Belief Rule Based Expert System for Datacenter PUE Prediction under Uncertainty IEEE Transactions on Sustainable Computing, 2 (2) (2017), pp. 140-153 Google Scholar
- 26 R. Ul Islam, M.S. Hossain, K. Andersson. A Novel Anomaly Detection Algorithm for Sensor Data Under Uncertainty Soft Computing A Fusion of Foundations, Methodologies and Applications, 22 (5) (2018), pp. 1623-1639

View PDFCrossRefView Record in ScopusGoogle Scholar

27 M. Z. Abedin, N. A. Chandra, D. Prashengit, D. Kaushik, and M. S. Hossain, "License Plate Recognition System Based On Contour Properties and Deep Learning Model" in Proceedings of the IEEE Region 10 Humanitarian Technology Conference, 2017, pp. 590-593.

2.3 Problem Statement Definition

Fig1. Problem Statement

Reference:

 $\underline{https://miro.com/app/board/uXjVPTvSbQA} = /$

IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

Fig2. Empathy Map

3.2 Ideation & Brainstorming

Fig3a. Brainstorming

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

☼ 5 minutes

Fig3b. Brainstorming

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

Fig3c. Brainstorming

Fig3d. Brainstorming

Fig3e. Brainstorming

3.3 Proposed Solution

S.No	Parameter	Description		
1	Problem	Implementation problems like missing of data		
	statement(problem to be	and managing large data sets.		
	solved)			
2	Idea / Solution	Proper implementation helps of avoid missing		
	description	of data and large water quality datasets can be		
		monitored by statistical tools.		
3	Novelty / Uniqueness	Detects anomalous events such as intentional		
		contamination of water.		
4	Social Impact /	The water borne diseases can be prevented.		
	Customer Satisfaction			
5	Business Model	This project is profitable because of its		
	(Revenue Model)	efficiency and its importance.		
6	Scalability of the	More no of users can be handled.		
	Solution			

Table 1. Proposed Solution

3.4 PROBLEM SOLUTION FIT:

Customer Segment:

Domestic applications, agriculture, aqua culture and municipal waste recycling.

Customer Constraints:

System hardware need to be handled with care.

Only limited users are added to handle the system

Only the person who authorized to system able to access it.

Available Solution:

The project proposes an IoT.

Based low-cost system to monitor water quality in real time, analyse water quality trends & detects anomalous events such as intentional contamination of water.

<u>Jobs-To-Be-</u> <u>Done/Problems:</u>

Ever increasing pollution due to urbanizations, industrialization & population growth. To sustain quality of life, it is imperative to detect water pollutants causing contamination.

Problem Root Cause:

The main cause of water quality problems are over exploitation of natural resources. The rapid pace of industrialization, fertilizier, and non enforcement of laws led to water pollution to a large extent.

Behaviour:

Our project resemble with the exsisting system that both the systems will collect the water quality parameters and monitors.

Triggers:

The Customers get triggered when they read a more efficient solution in the news

Emotions: Before/After

Water Contamination have severe impact on human health (3.7 million Indians were affected).

Your Solution:

Proper implementation helps to avoid missing of data

Channel of Behaviour:

Mainly our customers are the people who are staying in the coastal areas.

Fig4. Problem Solution Fit

Requirement Analysis

4.1 Functional Requirements

Following are the functional requirements of the proposed solution.

FR	Functional	Sub Requirement (Story / Sub-
No.	Requirement (Epic)	Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Dashboard	Can access the dashboard

Table 2. Functional Requirement

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description
No.	Requirement	
NFR-1	Usability	To determine the drinking water
		standards like PH, Turbidity
NFR-2	Security	Manage the safety and security of
		drinking water services
NFR-3	Reliability	The system is more reliable because
		of its system adequacy and system
		security.
NFR-4	Performance	High performance because of the
		system efficiency
NFR-5	Availability	High availability because it allows
		continuous functioning, even some
		of its components fail.
NFR-6	Scalability	More number of users can be access
		the data

Table 3. Non-Functional Requirement

PROJECT DESIGN:

Fig5. Project design

5.2 SOLUTION AND TECHNICAL ARCHITECTURE:

Technical Architecture:

Fig6. Project Architecture

Table-1:

Components & Technologies:

S.No	Component	Description	Technology	
1.	User Interface	user interacts with	Python ,C	
		application e.g. Mobile App, webapplication.		
2.	Application Logic-1	Developing application	Python	
3.	Application	To add speech	IBM Watson STT service	
	Logic-2	transcriptioncapabilities		
		to application.		
4.	Application Logic-3	To automate interactions withcustomers	IBM Watson Assistant	
5.	Database	To create data base	MySQL, NoSQL, etc.	
6.	Cloud Database	Database Service on Cloud	IBM Cloudant etc.	
7.	File Storage	Storing data	IBM Block Storage or Other Storage Service or Local Filesystem	
8.	External API-1	To deliver accurate and precious data	IBM Weather API	
9.	External API-2	To verify data	Aadhar API	
10.	Machine	To identify and locate	Object Recognition Model	
	LearningModel	objects		
11.	Infrastructure (Server / Cloud)	To compile and run the appslocally	Local, Cloud Foundry, etc.	

Table 4. Components & Technologies

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	For wiring hardware devices,,API and online services	Node RED
2.	Security Implementations	Advanced Encryption standard, Data Encryption standard ,RSA algorithm	Encryption
3.	Scalable Architecture	More number of users can be access the data.	Automated bootstrapping
4.	Availability	Increase the availability	Cloud computing
5.	Performance	High performance	Adaptive ContentionWindow

Table 5. Application characteristics

5.3 USER STORIES

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard					

Table6. User stories

PROJECT PLANNING AND SCHEDULING:

6.1 Sprint Planning and Estimation:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application byentering email & password		High	Sprint-1
	Dashboard		publifica			

Table7. Sprint Planning and Requirement

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	sprint Start Date	Sprint End date(Plann ed)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	06 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	14 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Table8. Sprint Delivery Schedule

6.3 Reports From JIRA

Fig7. Reports from jira

CODING AND SOLUTIONING

7.1 Feature 1

- Languages-Python
- Tools / IDE-Arduino IDE
- Libraries-Recomennded

CODING:

```
#include <OneWire.h>
#include <DallasTemperature.h>
#define ONE_WIRE_BUS 5
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);
float Celcius=0;
float Fahrenheit=0;
float voltage=0;
const int analogInPin = A0;
int sensorValue = 0;
unsigned long int avgValue;
float b;
int buf[10],temp;
void setup(void)
{
Serial.begin(9600);
```

```
sensors.begin();
int sensorValue = analogRead(A1);
voltage = sensorValue * (5.0 / 1024.0);
}
void loop(void)
sensors.requestTemperatures();
Celcius=sensors.getTempCByIndex(0);
Fahrenheit=sensors.toFahrenheit(Celcius);
for(int i=0; i<10; i++)
buf[i] = analogRead(analogInPin);\\
delay(10);
for(int i=0; i<9; i++)
for(int j=i+1; j<10; j++)
if(buf[i]>buf[j])
temp=buf[i];
buf[i]=buf[j];
buf[j]=temp;
}
```

```
for(int i=2;i<8;i++)
avgValue+=buf[i];
float pHVol=(float)avgValue*5.0/1024/6;
Serial.println(phValue); Serial.print("pH");
Serial.print("C");
Serial.print(Celcius);
Serial.print(voltage);
Serial.print("V");
delay(10000);
}</pre>
```

CODE IMPLEMENTATION:

```
import serial
import time
import csv
import numpy as np
import matplotlib.pyplot as plt ser = serial.Serial('/COM6',9600) ser_bytes =
ser.readline(10)
print (ser_bytes) ser.flushInput() while True:
```

```
try:
ser_bytes = ser.readline()
                               float(ser_bytes[0:len(ser_bytes)-2].decode("utf-8"))
decoded_bytes
print(decoded_bytes)
temp = float(decoded_bytes(1:3))
           float(decoded_bytes(4:6)) pH
                                                  float(decoded_bytes(6:8))
turb
                                                                               with
                                             =
open("test_data.csv","a") as f: writer = csv.writer(f,delimiter=",")
writer.writerow([time.time(),decoded_bytes]) except:
print("Keyboard Interrupt") ser.close()
break()
t = np.arange(0.0, 2.0, 0.01) s = 1 + np.sin(2*np.pi*t) plt.plot(t, s)
plt.xlabel('time (s)') plt.ylabel('Celsisus (C)') plt.title('Temperature') plt.grid(True)
plt.savefig("Temperature.png") plt.show()
Serial.begin(9600);
sensors.begin();
int sensorValue = analogRead(A1);
voltage = sensorValue * (5.0 / 1024.0);
void loop(void)
{
sensors.requestTemperatures();
Celcius=sensors.getTempCByIndex(0);
           float(decoded_bytes(4:6)) pH
turb
                                                 float(decoded_bytes(6:8))
                                                                               with
                                            =
open("test_data.csv","a") as f: writer = csv.writer(f,delimiter=",")
writer.writerow([time.time(),decoded_bytes]) except:
```

```
print("Keyboard Interrupt") ser.close()
break()
t = np.arange(0.0, 2.0, 0.01) s = 1 + np.sin(2*np.pi*t) plt.plot(t, s)
plt.xlabel('time (s)') plt.ylabel('Celsisus (C)') plt.title('Temperature') plt.grid(True)
plt.savefig("Temperature.png") plt.show()
Serial.begin(9600);
sensors.begin();
int sensorValue = analogRead(A1);
voltage = sensorValue * (5.0 / 1024.0);
}
void loop(void)
{
sensors.requestTemperatures();
Celcius=sensors.getTempCByIndex(0);
                               float(ser_bytes[0:len(ser_bytes)-2].decode("utf-8"))
decoded_bytes
print(decoded_bytes)
temp = float(decoded_bytes(1:3)) turb = float(decoded_bytes(4:6)) pH =
float(decoded_bytes(6:8))
                            with
                                  open("test_data.csv","a") as
                                                                    f:
                                                                        writer
csv.writer(f,delimiter=",")
writer.writerow([time.time(),decoded_bytes]) except:
print("Keyboard Interrupt") ser.close()
break()
t = np.arange(0.0, 2.0, 0.01) s = 1 + np.sin(2*np.pi*t) plt.plot(t, s);
```

OUTPUT: TEST CASE 1:

Fig8. Test Case1

TEST CASE 2:

Fig9.Test Case2

FINAL OUTPUT:

Fig10. Final output

7.2 Feature 2

CODING:

#importing Random function to generate the value import random as rand for i in range(5):

print("Test case:",i+1)

print("Welcome to Real-Time River Water Quality Monitoring and Control System")

temperature = int(rand.randint(-40,125))

```
pH = int(rand.randint(0,14))
DO = int(rand.randint(0,100))
TSS = int(rand.randint(0,3700))
Manganese = int(rand.randint(0,1000))
Copper = int(rand.randint(0,2000))
ammonia_Nitrate = int(rand.randint(0,100))
Hardness = int(rand.randint(0,1000))
Zinc = int(rand.randint(0,100))
Conductivity = f"{float(rand.uniform(0.001,2000)):.2f}" Chloride =
int(rand.randint(0,200))
Sulphate = int(rand.randint(0,1000))
#These variables store value of ramdom data to be shared to the cloud
#printing the values
print( "Temperature:", temperature, "\npH:", pH,
"\nDO:", DO,
"\nTSS:", TSS,
"\nManganese:", Manganese, "\nCopper:", Copper,
"\nAmmonia & Nitrate:",ammonia_Nitrate, "\nHardness:",Hardness,
"\nZinc:", Zinc, "\nConductivity:", Conductivity, "\nChloride:", Chloride,
"\nSulphate:", Sulphate, "\n"
```

OUTPUT:

```
Welcome to Real-Time River Water Quality Monitoring and Control System
Temperature: 106
pH: 14
DO: 66
TSS: 3671
Manganese: 527
Copper: 897
Ammonia & Nitrate: 36
Hardness: 906
Zinc: 83
Conductivity: 9.31
Chloride: 180
Sulphate: 829
Test case: 2
Welcome to Real-Time River Water Quality Monitoring and Control System
Temperature: 68
pH: 14
00: 9
TSS: 945
Manganese: 664
Copper: 129
Ammonia & Nitrate: 58
Hardness: 299
Zinc: 9
Conductivity: 1396.60
Chloride: 109
Sulphate: 636
Test case: 3
Welcome to Real-Time River Water Quality Monitoring and Control System
Temperature: 96
pH: 3
DO: 12
TSS: 2028
Manganese: 712
Copper: 162
Ammonia & Nitrate: 48
Hardness: 680
Zinc: 86
Conductivity: 1386.56
Chloride: 57
Sulphate: 527
```

Fig11. Output

CODING:

```
<h1> Real time water quality monitoring system</h1>
<metaname="viewport" content="width=device-width, initial-scale=1">
<style>
body {font-family: Arial,Impact, 'Arial Narrow Bold', sans-serif, sans-serif;}
/* Full-width input fields */ input[type=text], input[type=password] {
width: 150; padding: 23px 24px; margin: 8px 0;
display: inline-block; border: 1px solid #ccc; box-sizing: border-box;
}
/* Set a style for all buttons */ button {
background-color: #04AA6D; color:blue;
padding: 15px 21px; margin: 8px 0; border: none; cursor: pointer; width: 102;
button:hover { opacity: 0.7;
}
/* Extra styles for the cancel button */
.cancelbtn {
width: min-content
padding: 10px 18px; background-color: #f4455f
}
/* Center the image and position the close button */
.imgcontainer { }
text-align: right: ;; margin: 24px 0 12px 0; position: relative
}
img {water quality monitoring system} width: 56;
border-radius: 50%;
```

```
.container { padding: 16px;
}
span.psw { float: right;
padding-top: 16px;
/* The Modal (background) */
.modal {
display: none; /* Hidden by default */ position: fixed; /* Stay in place */ z-index:
1; /* Sit on bottom*/
left: 0;
top: 0;
width: 100%; /* full width */ height: 100%; /* medium height */
overflow: auto; /* Enable scroll if needed */ background-color: ybg(0,0,0); /*
Fallback color */
background-color: rgba(0,0,0,0.4); /* Black w/ transprenant */ padding-top: 60px;
}
/* Modal Content/Box */
.modal-content {
background-color: #fefefe;
margin: 5% auto 15% auto; /* 5% from the top, 15% from the bottom and centered
*/
border: 1px solid #888;
width: 65%; /* Could be more or less, depending on screen size */
/* The Close Button (x) */
.close {
```

```
position: absolute; right: 25px;
top: 0;
color: #888; font-size: 35px;
font-weight: initial;
.close:hover,
.close:focus { color: red; cursor: pointer;
}
/* Add Zoom Animation */
.animate {
-webkit-animation: animatezoom 0.6s; animation: animatezoom 0.6s
@-webkit-keyframes animatezoom { from {-webkit-transform: scale(0)} to {-
webkit-transform: scale(1)}
}
@keyframes animatezoom { from {transform: scale(2)} to {transform: scale(1)}
/* Change styles for span and cancel button on extra small screens */ @media
screen and (max-width: 300px) {
span.psw { display: block; float: none;
}
.cancelbtn { width: 100%;
} }
</style>
</head>
<body>
```

```
<h2>Modal Login Form</h2>
<button onclick="document.getElementById('id01').style.display='block"</pre>
style="width:auto;">Login</button>
<div id="id01" class="modal">
<form class="modal-content animate" action="/action_page.php" method="post">
<div class="imgcontainer">
<span onclick="document.getElementById('id01').style.display='none"</pre>
class="close" title="Close Modal">×</span>
</div>
<div class="container">
<label for="uname"><b>Username</b></label>
<input type="text" placeholder="Enter Username" name="uname" required>
<label for="psw"><b>Password</b></label>
<input type="password" placeholder="Enter Password" name="psw" required>
<label for="captch"></label><123gh@><label>
<input type="captcha" 123@g="Enter captcha" name="captcha" 44equired>
<button type="submit">Login</button>
<label>
<input type="checkbox" checked="checked" name="remember"> Remember me
</label>
</div>
<div class="container" style="background-color:#f1f1f1">
<button type="button"
onclick="document.getElementById('id01').style.display='none'"
class="cancelbtn">Cancel</button>
<span class="psw">Forgot <a href="#">password?</a></span>
```

```
</div>
</form>
</div>
<script>
var modal = document.getElementById('id03');

// When the user clicks anywhere outside of the modal, close it window.onclick = function(event) {
  if (event.target == modal) { modal.style.display = "none";
  }
}
</script>
</body>
</html>
```

OUTPUT:

Fig12a. Html Output

CODING:

```
<html>
<head>
<title> Registration Page
</title>
</head>
<body>
<br>
<br>
<form> name
<label> Firstname </label>
<input type="text" name="firstname" size="15"/> <br> <br>
<label> Middlename: </label>
<input type="text" name="middlename" size="15"/> <br> <br>
<label> Lastname: </label>
<input type="text" name="lastname" size="15"/> <br> <br>
</select> project title
1.<|abel> cloud computing </label> 2.<|abel> internet of things </label> 3.<|abel>
machine learning </label> 4.<label> data science </label>
5.<a href="fished-">1.<a h
<br>
<br/>br>
<br/>br>
<input type="radio" name="male"/> Male <br>
<input type="radio" name="female"/> Female <br>
<input type="radio" name="other"/> Other
<br>
<br>
<hr>>
< label > Phone :
</label>
<input type="text" name="country code" value="+91" size="2"/>
<input type="text" name="phone" size="10"/> <br> Address
```

```
<br>
<textarea cols="80" rows="5" value="address">
</textarea>
<br/>
<br/>
Email:
<input type="email" id="email" name="email"/> <br>
<br/> <br/> Password:
<input type="Password" id="pass" name="pass"> <br>
<br>> <br>>
Re-type password:
<input type="Password" id="repass" name="repass"> <br> <br/>br>
<input type="button" value="Submit"/>
</form>
</body>
alternte phone number
<input type="text" name="country code" value="+91" size="2"/>
<input type="text" name="phone" size="10"/> <br>  alternate email id
<input type="altrernate email id" name="alternate email"/> <br>
<br>> <br>>
<body>
<html>
```

OUTPUT:

Fig12b. Html Output

TESTING

8.1 Test cases

Feature Type	Compon ent	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status
U	Home Page	Verify user is able to see the Login		1Enter URL and click go 2 Click on My Account dropdown button 3 Verify login/Singup popup displayed or not	https:/127.0.0.14000#	Login/Signup popup should display	Working as expected	Pass
и	Home Page	Verify the UI elements in Login/Signup popup		1.Enter URL and click go 2.Click on My Account dropdown button 3.Verify login/Singup popup with below UI elements: a.email text box b.password text box c.Login button d.New customer? Create account link e.Last password? Recovery password link	https://27.00.1400/	Application should show below UI elements: a email text box b.password text box c.Login button with orange colour d.New customer? Create account link e.Last password? Recovery password link	Working as expected	pass
u	Home page	Verify user is able to log into application with Valid credentials		1Enter URL(https://127.0.0.1400/) and click go 2.Click on My Account dropdown button 3.Enter Valid username/email in Email text box 4.Enter valid password in password text box 5.Click on login button	Username: adks17@gmail.com password: 12345	User should navigate to user account homepage	Working as expected	pass
Functional	Web page	Verify user can able to view the PH and turbicity level of water		1.Enter URL(https://shopenzer.com/) and click go 2.Click on My Account dropdown button 3.Enter InValid username/email in Email text box 4.Enter valid password in password text box 5.Click on login button	a. ph level=6.7 b.Turbidity level= 0.7 NTU c. temperature=38 degree	Application should show that the		
Functional	Web page	Verify user can able to view the PH and turbidity level of water		1.Enter URL(https://shopenzer.com/) and click go 2.Click on My Account dropdown button 3.Enter Valid username/email in Email text box 4.Enter Invalid password in password text box 5.Click on login button	a. PH level= 10.8 b. Turbidity level = 0.9 NTU c. temperature=40 degree	Application should show that the PH level is out of range. The water quality is not good	not working	fail
Functional	Web page	Verify user can able to view the PH and turbidity level of water		1Enter URL(https://shopenzer.com/) and click go 2Click on My Account dropdown button 3.Enter InValid username/email in Email text box 4.Enter Invalid password in password text box 5.Click on login button	a. PH level = 7.5 b.Turbidity level= 6NTU c. Temperature=45 degree	Application should show that the turbidity level is out of range. The water quality is not good	working as expected	pass

Fig13. Test Cases

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Real time water quality monitoring and control system project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This reports how the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity1	Severity2	Severity3	Severity4	Subtotal
By Design	7	3	2	3	15
Duplicate	1	0	4	0	5
External	2	2	0	1	5
Fixed	8	2	3	18	31
Not Reproduced	0	0	1	2	3
Skipped	4	4	1	2	11
Won't Fix	6	5	3	1	15
Totals	28	16	14	27	85

Table9. Defect Analysis

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	6	0	0	6
Client Application	45	3	2	40
Security	2	0	1	1
Out source Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	2	0	2
Version Control	2	0	0	2

Table 10. Test Case Analysis

RESULT

9.1 Performance Metrics

iotwqms2019@gmail.com

to me, josiahkotey13, izagyen96 🕶

Data collected...

{'temperature': 26.19, 'turbidity': 2.84, 'ph': 10.09, 'water_level': 8.0}

pH out of range(basic water): 10.09

iotwqms2019@gmail.com

to me, josiahkotey13, izagyen96 -

Data collected...

{'temperature': 26.19, 'turbidity': 3.25, 'ph': 7.89, 'water_level': 3161.0}

Fig14. Performance Metrics

ADVANTAGES AND DISADVANTAGES

Advantages:

- ➤ More user friendly
- > The system is high efficient
- ➤ Accurate level of ph, turbidity, conductivity, temperature
- ➤ Data accuracy
- > Reliability and efficiency.

Disadvantages:

- ➤ It is difficult to collect the water samples from all the area of the water body.
- > The cost of analysis is very high.
- ➤ The lab testing and analysis takes some time and hence the lab results does not reflect real time water quality measurement due to delay in measurement.
- ➤ The process is time consuming due to slow process of manual data collection from different locations of the water body.
- > The method is prone to human errors of various forms.

CONCLUSION

This paper is all about discussing many of the proposed systems to automate the traditional water quality monitoring. One of the major issues faced by the world is water scarcity. Another one is water contamination. Reasons for these two can be increased population, growth of urbanization to its peak and tremendous increase of industrialization. The proposed system can be implemented by including basic parameters checking and can be expanded by incorporating various features associated with water quality. These kinds of quality monitoring systems will help the society to achieve more secured future as water pollution can be controlled to a great extent through continuous monitoring. With minimal features implementation will be much easier.

FUTURE SCOPE

The prototype developed for water quality maintenance is very beneficial for safeguarding public health and also adds to the clean environment. The automation of this water monitoring, cleaning and control process removes the need of manual labor and thus saves time and money. The automation of the system makes the control and monitoring process more efficient and effective. Real time monitoring on mobile phone which is possible through the interface of plc with Arduino and Bluetooth module allows remote controlling of the system. The future scope of this project is monitoring environmental conditions, drinking water quality, treatment and disinfection of waste water etc. This system could also be implemented in various industrial processes. The system can be modified according to the needs of the user and can be implemented along with lab view to monitor data on computers

APPENDIX

13.1.Source code

```
#IBM Watson IOT Platform

#pip install wiotp-sdk

import wiotp.sdk.device

import time

import random

myConfig = {

"identity": {

"orgId": "hj5fmy",

"typeId": "NodeMCU",

"deviceId":"12345"

},

"auth": {

"token": "12345678"

}
```

```
def myCommandCallback(cmd):

print("Message received from IBM IoT Platform: %s" % cmd.data['command'])

m=cmd.data['command']

client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)

client.connect()

while True:

temp=random.randint(-20,125)

hum=random.randint(0,100)

myData={ 'temperature':temp, 'humidity':hum}

client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0,

onPublish=None)

print("Published data Successfully: %s", myData)

client.commandCallback = myCommandCallback

time.sleep(2)

client.disconnect()
```

13.2 GitHub and Project Demo Link

GitHub link: https://github.com/IBM-EPBL/IBM-Project-43825-1660719909

Project demo link:

https://drive.google.com/file/d/1DxbJpjm_j9wHJ10LUBzpjP3yohKc Q_OQ/view?usp=share_link