Optimality Conditions for Nonlinear Optimisation

Lecture 7, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

What is a Continuous Optimisation Problem?

Unconstrained minimization:

$$\min_{x \in \mathbb{R}^n} f(x)$$

where the *objective function* $f: \mathbb{R}^n \to \mathbb{R}$ is sufficiently smooth (often C^2 or C^2 with Lipschitz continuous second derivatives).

Equality constrained minimization:

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$,

where the equality constraints $c: \mathbb{R}^n \to \mathbb{R}^m$, are defined by sufficiently smooth functions, and $m \leq n$.

Inequality constrained minimization:

$$\min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $c_I(x) \geq 0$,
$$c_E(x) = 0$$
,

where $c_I: \mathbb{R}^n \to \mathbb{R}^{m_I}$ and $c_E: \mathbb{R}^n \to \mathbb{R}^{m_E}$ are sufficiently smooth functions, $m_E \leq n$, and m_I may be larger than n.

We also write $c = \begin{bmatrix} c_I \\ c_E \end{bmatrix}$.

Application Areas:

- minimum energy problems
- structural design problems
- traffic equilibrium models
- production scheduling problems
- portfolio selection
- parameter determination in financial markets
- hydro-electric power scheduling
- gas production models
- computer tomography (image reconstruction)
- efficient models of alternative energy sources
- etc. etc.

Example 1 (Optimising a Gas Pipeline Network).

• Given is the production rate d_i of gas at each node i ($d_i < 0$ corresponds to consumption).

Decision variables

- $-p_i$ the pressure at node i,
- $-q_{ij}$ the flow rate between nodes i and j,
- $-z_j=1$ if pumping station j is switched on, $z_j=0$ otherwise.

Constraints

- $-\sum_{k\neq i}q_{ki}+d_i=\sum_{j\neq i}q_{ij}$ (conservation of gas),
- $-p_k^2=p_i^2+\kappa_{ki}q_{ki}^{2.8359}$ for all k,i connected via a pipe (pipe equations),

$$A_1^{\mathsf{T}} p^2 + K q^{2.8359} = 0$$

nonlinear, sparse structured system of equations,

 $-q_{ij}-q_{jk}+z_j\cdot c_j(p_i,q_{ij},p_k,q_{jk})\geq 0$ for all nodes i,k connected via compressors j (compressor constraints),

$$A_2^{\mathsf{T}}q + z \cdot c(p,q) \ge 0,$$

nonlinear, sparse structured system of inequalities with binary variables,

 $-p_{\min} \le p \le p_{\max}$, $q_{\min} \le q \le q_{\max}$ (bound constriaints).

Objectives

- minimise sum of pressures,
- or minimise compressor fuel costs,
- Statistics of the British Gas National Transmission System
 - 199 nodes
 - 196 pipes
 - 21 machines
 - for steady state problem, \approx 400 variables,
 - for 24-hour variable demand problem with 10 minute discretization, $\approx 58,000$ variables.

Problem to be solved in real time.

This problem is typical of real-world, large-scale applications

- simple bounds
- linear constraints
- nonlinear constraints
- structure
- global solution "required"
- integer variables
- discretisation

Notation and Basic Tools

$$g(x) = \nabla f(x) = [\mathsf{D}_x f(x)]^\mathsf{T}$$
, the gradient of f , $H(x) = \mathsf{D}_{xx} f(x)$, the Hessian of f , $a_i(x) = \nabla c_i(x)$, the gradient of the i -th constraint function, $H_i(x) = \mathsf{D}_{xx} c_i(x)$, the Hessian of the i -th constraint function, $A(x) = \mathsf{D}_x c(x) = \begin{bmatrix} a_1(x) & \dots & a_m(x) \end{bmatrix}^\mathsf{T}$, the Jacobian of c , $\ell(x,y) = f(x) - y^\mathsf{T} c(x)$, the Lagrangian function, $H(x,y) = \mathsf{D}_{xx} \ell(x,y) = H(x) - \sum_{i=1}^m y_i H_i(x)$, the x -Hessian of ℓ .

The variables y that appear in ℓ and H are called Lagrange multipliers.

Definition 2 (Lipschitz Continuity). Let \mathcal{X} and \mathcal{Y} be open sets in two normed spaces $(N_{\mathcal{X}}, \|\cdot\|_{\mathcal{X}})$ and $(N_{\mathcal{Y}}, \|\cdot\|_{\mathcal{Y}})$. A function $F: \mathcal{X} \to \mathcal{Y}$ is called

i) Lipschitz continuous at $x \in \mathcal{X}$ if there exists a $\gamma(x) > 0$ such that

$$||F(z) - F(x)||_{\mathcal{Y}} \le \gamma(x)||z - x||_{\mathcal{X}}, \quad (z \in \mathcal{X}), \tag{1}$$

ii) uniformly Lipschitz continuous in \mathcal{X} if there exists a $\gamma > 0$ such that (1) holds true with $\gamma(x) = \gamma$ for all $x \in \mathcal{X}$.

Theorem 3. [A Useful Taylor Approximation] Let S be an open subset of \mathbb{R}^n , $x, s \in \mathbb{R}^n$ such that $x + \theta s \in S$ for all $\theta \in [0, 1]$.

i) If $f \in C^1(\mathcal{S}, \mathbb{R})$, and its gradient g(x) is Lipschitz continuous at x with Lipschitz constant $\gamma^{\perp}(x)$, then

$$|f(x+s) - \mathsf{m}^{\mathsf{L}}(x+s)| \le \frac{1}{2} \gamma^{\mathsf{L}}(x) ||s||^2,$$

where $m^{L}(x+s) = f(x) + g(x)^{T}s$ is the first-order Taylor approximation of f at x (a linear model).

ii) (Vectorisation of i)) If $F \in C^1(\mathcal{S}, \mathbb{R}^m)$, and its Jacobian $D_x F(x)$ is Lipschitz continuous at x with Lipschitz constant $\gamma^{L}(x)$ (using the matrix operator norm induced by the norms on \mathbb{R}^n and \mathbb{R}^m), then

$$||F(x+s) - \mathsf{M}^{\mathsf{L}}(x+s)|| \le \frac{1}{2} \gamma^{\mathsf{L}}(x) ||s||^2,$$

where $M^{L}(x+s) = F(x) + D_x F(x)s$ is the first-order Taylor approximation of f at x.

iii) If $f \in C^2(\mathcal{S}, \mathbb{R})$, and its Hessian H(x) is Lipschitz continuous at x with Lipschitz constant $\gamma^{\mathbb{Q}}(x)$, then

$$|f(x+s) - \mathsf{m}^{\mathsf{Q}}(x+s)| \le \frac{1}{6} \gamma^{\mathsf{Q}}(x) ||s||^3,$$

where $m^{\mathbb{Q}}(x+s) = f(x) + s^{\mathsf{T}}g(x) + \frac{1}{2}s^{\mathsf{T}}H(x)s$ is the second-order Taylor approximation of f at x (a quadratic model).

Optimality Conditions for Continuous Optimisation

Optimality conditions are useful for the following reasons:

- They provide a means of guaranteeing that a candidate solution is indeed optimal (\rightarrow sufficient conditions).
- They indicate when a point is not optimal (\rightarrow necessary conditions).
- They form a guide in the design of algorithms, since lack of optimality is an indication of potential for improvement.

We first consider the unconstrained minimisation problem

$$(\mathsf{UCM}) \quad \min_{x \in \mathbb{R}^n} \, f(x),$$

where $f \in C^1(\mathbb{R}^n, \mathbb{R})$.

Definition 4. A *local minimiser* for problem (UCM) is a point $x^* \in \mathbb{R}^n$ for which there exists $\varrho > 0$ such that $f(x) \geq f(x^*)$ for all $x \in B_{\varrho}(x^*)$.

Theorem 5 (Necessary Optimality Conditions for (UCM)). Let x^* be a local minimiser for problem (UCM).

i) Then the following first order necessary condition must hold,

$$g(x^*) = 0.$$

ii) If furthermore $f \in \mathbb{C}^2$, then the following second order necessary condition must also hold,

$$s^{\mathsf{T}}H(x^*)s \ge 0, \quad (s \in \mathbb{R}^n),$$

that is, $H(x^*)$ is positive semidefinite.

.

Theorem 6 (Sufficient Optimality Conditions for (UCM)). Let $f \in C^2$, and let $x^* \in \mathbb{R}^n$ be a point where the following sufficient optimality conditions are satisfied,

$$g(x^*) = 0,$$

$$s^{\mathsf{T}} H(x^*) s > 0 \quad (s \in \mathbb{R}^n \setminus \{0\}),$$

that is, $H(x^*)$ is positive definite. Then x^* is an isolated local minimiser of f.

The situation is more complex in the case of the equality constrained minimisation problem

(ECM)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$,

where $f \in C^1(\mathbb{R}^n, \mathbb{R})$ and $c \in C^1(\mathbb{R}^n, \mathbb{R}^m)$.

Definition 7. A *local minimiser* for problem (ECM) is a point $x^* \in \mathbb{R}^n$ for which there exists $\varrho > 0$ such that $f(x) \geq f(x^*)$ for all $x \in B_{\varrho}(x^*) \cap \{x : c(x) = 0\}$.

Definition 8 (LICQ). The *linear independence constraint qualification* is satisfied at x^* if the set of gradient vectors $\{a_i(x^*): i=1,\ldots,m\}$ defined by the constraint functions is linearly independent.

Theorem 9 (Necessary Optimality Conditions for (ECM)). Let x^* be a local minimiser for problem (ECM) where the LICQ holds.

i) Then the following first order necessary conditions must hold: There exists a vector $y^* \in \mathbb{R}^m$ of Lagrange multipliers such that

$$c(x^*) = 0$$
, (primal feasibility)

$$\nabla_x \ell(x^*, y^*) = g(x^*) - A^{\mathsf{T}}(x^*)y^* = 0$$
 (dual feasibility).

(Recall that $g(x^*) - A^{\mathsf{T}}(x^*)y^* = \nabla f(x^*) - \sum_{i=1}^m y_i^* \nabla c_i(x^*)$, so that dual feasibility says that $\nabla f(x^*)$ is "counterbalanced" by a linear combination of the $\nabla c_i(x^*)$).

ii) Furthermore, if $f, c \in \mathbb{C}^2$, then for all $s \in \mathbb{R}^n$ such that

$$a_i(x^*)^{\mathsf{T}}s = 0, \quad (i = 1, ..., m),$$
 (2)

the following second order necessary condition must also hold,

$$s^{\mathsf{T}}H(x^*, y^*)s \ge 0,\tag{3}$$

that is, $H(x^*)$ is positive semidefinite in the directions that lie in the tangent space of the feasible manifold.

Note that Theorem 5 is merely the special case m=0 of Theorem 9. Let us now further generalise the result so that it applies to minimisation problems with inequality constraints,

$$egin{aligned} ext{(ICM)} & \min_{x \in \mathbb{R}^n} f(x) \ & ext{s.t.} & c_I(x) \geq 0, \ & c_E(x) = 0, \end{aligned}$$

where $f \in C^1(\mathbb{R}^n, \mathbb{R})$, $c_I \in C^1(\mathbb{R}^n, \mathbb{R}^{m_I})$ and $c_E \in C^1(\mathbb{R}^n, \mathbb{R}^{m_E})$.

Definition 10. A *local minimiser* for problem (ICM) is a point $x^* \in \mathbb{R}^n$ for which there exists $\varrho > 0$ such that $f(x) \geq f(x^*)$ for all $x \in \mathsf{B}_\varrho(x^*) \cap \{x : c_E(x) = 0, c_I(x) \geq 0\}$.

Definition 11. Let x^* be feasible for (ICM). The *active set* of constraints at x^* is the set of indices

$$\mathscr{A}(x^*) = E \cup \{i \in I : c_i(x^*) = 0\}.$$

The linear independence constraint qualification is satisfied at x^* if the set of vectors $\{\nabla c_i(x^*): i \in \mathcal{A}(x^*)\}$ is linearly independent.

Theorem 12 (Necessary Optimality Conditions for (ICM)). Let x^* be a local minimiser for problem (ICM) where the LICQ holds.

i) Then the following first order necessary conditions must hold: There exists a vector $y^* \in \mathbb{R}^m$ of Lagrange multipliers such that

$$c_E(x^*) = 0$$
, (primal feasibility 1), $c_I(x^*) \geq 0$, (primal feasibility 2), $\nabla_x \ell(x^*, y^*) = g(x^*) - A^{\mathsf{T}}(x^*) y^* = 0$ (dual feasibility 1), $y_i^* \geq 0$, $(i \in I)$ (dual feasibility 2), $c_i(x^*) y_i^* = 0$, $(i \in E \cup I)$ (complementarity).

(These conditions are also called Karush-Kuhn-Tucker (KKT) conditions. Complementarity guarantees that $y_i^* = 0$ for all $i \notin \mathcal{A}(x^*)$.)

ii) Furthermore, if $f, c \in C^2$, then for all $s \in \mathbb{R}^n$ such that

$$a_i(x^*)^{\mathsf{T}}s = 0, \quad (i \in E \cup \{i \in I : i \in \mathscr{A}(x^*), y_i^* > 0\}),$$

 $a_i(x^*)^{\mathsf{T}}s \ge 0, \quad (i \in \{i \in I : i \in \mathscr{A}(x^*), y_i^* = 0\}),$

the following second order necessary condition must also hold,

$$s^{\mathsf{T}}H(x^*,y^*)s \ge 0.$$

Remark 13. The second order optimality analysis is based on the following observation:

If x^* is a local minimiser of (ICM) and x(t) is a feasible exit path from x^* with tangent s at x^* , then x^* must also be a local minimiser for the univariate constrained optimisation problem

$$\min f(x(t))$$

s.t. $t \ge 0$

Theorem 14 (Sufficient Optimality Conditions for (ICM)). Let x^* be a feasible point for (ICM) at which the LICQ holds, where it is assumed that $f, c \in C^2$. Let $y^* \in \mathbb{R}^m$ be a vector of Lagrange multipliers such that (x^*, y^*) satisfy the KKT conditions (see Theorem 12). If it is furthermore the case that

$$s^{\mathsf{T}}H(x^*,y^*)s > 0$$

for all $s \in \mathbb{R}^n$ that satisfy

$$a_i(x^*)^{\mathsf{T}}s = 0, \quad (i \in E \cup \{i \in I : i \in \mathscr{A}(x^*), y_i^* > 0\}),$$

 $a_i(x^*)^{\mathsf{T}}s \ge 0, \quad (i \in \{i \in I : i \in \mathscr{A}(x^*), y_i^* = 0\}),$

then x^* is a local minimiser for (ICM).