Problem statement:

To predict the best model for the given Rainfall dataset based on accuracy.

1.Data Collection

In [9]:

```
#Importing all necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [12]:
```

df=pd.read_csv(r"C:\Users\chila\Downloads\Rainfall.csv")
df

Out[12]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	38
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	19 ⁻
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	18
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	22
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	26
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	11
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	14
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	7:
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	16
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	16
4116 rows × 19 columns												

2.Data Cleaning and Preprocessing

In [13]:

df.head()

Out[13]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	3
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	3
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	
4												ı	

In [14]:

df.tail()

Out[14]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OC.
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4
. —												

In [15]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
#
    Column
                 Non-Null Count Dtype
                 -----
0
    SUBDIVISION 4116 non-null
                                object
                                int64
1
    YEAR
                 4116 non-null
2
    JAN
                 4112 non-null
                                float64
                                float64
3
    FEB
                 4113 non-null
```

4 4110 non-null float64 MAR 5 APR 4112 non-null float64 6 MAY 4113 non-null float64 7 JUN 4111 non-null float64 8 JUL 4109 non-null float64 9 AUG 4112 non-null float64 10 SEP 4110 non-null float64 0CT 4109 non-null float64 11 NOV 4105 non-null float64 12 13 DEC 4106 non-null float64

13 DEC 4106 non-null float64
14 ANNUAL 4090 non-null float64
15 Jan-Feb 4110 non-null float64
16 Mar-May 4107 non-null float64
17 Jun-Sep 4106 non-null float64

18 Oct-Dec 4103 non-null float64 dtypes: float64(17), int64(1), object(1)

memory usage: 611.1+ KB

In [16]:

df.shape

Out[16]:

(4116, 19)

In [17]:

df.describe

Out[17]:

<pre><bound method="" ndframe.describe="" of<="" th=""></bound></pre>											
0	ANDAMA				1901	49.2	87.1	29.2	2.3	528.8	51
1 7.1	•				1902	0.0	159.8	12.2	0.0	446.1	53
2	ANDAMA	N & NIC	OBAR IS	LANDS	1903	12.7	144.0	0.0	1.0	235.1	47
3 5.1	ANDAMA	N & NIC	OBAR IS	LANDS	1904	9.4	14.7	0.0	202.4	304.5	49
4 8.7	ANDAMA	N & NIC	OBAR IS	LANDS	1905	1.3	0.0	3.3	26.9	279.5	62
• • •				•••	•••	•••	•••	•••	• • •	• • •	
4111 3.6			LAKSHA	DWEEP	2011	5.1	2.8	3.1	85.9	107.2	15
4112 7.0		LAKSHADWEEP				19.2	0.1	1.6	76.8	21.2	32
4113 6.2	LAKSHADWEEP				2013	26.2	34.4	37.5	5.3	88.3	42
4114 4.1	LAKSHADWEEP				2014	53.2	16.1	4.4	14.9	57.4	24
4115 6.6			LAKSHA	DWEEP	2015	2.2	0.5	3.7	87.1	133.1	29
	JUL	AUG	SEP	ОСТ	NO	V D	EC ANN	UAL 3	Jan-Feb	Mar-Ma	y
0 \	365.1	481.1	332.6	388.5	558.2	2 33	.6 337	3.2	136.3	560.	3
1	228.9		666.2	197.2				0.7			
2	728.4		339.0	181.2		4 225		7.4			
3 4	502.0		820.4	222.2		7 40			24.1	506.	
	368.7	330.5	297.0		25.4			6.7	1.3	309.	
 4111	350.2	254.0	255.2	 117.4		· · · 3 14		· · ·	 7.9	 196.	
									19.3		
4113		154.4									
	116.1										
4115		146.4			231.0			2.9	2.7		
		p Oct-									
0	1696.	•	0.3								
1	2185.		6.7								
2	1874.										
3		1977.6 571.0									
4	1624.		0.8								
		•									
4111	1013.	0 31	6.6								
4112	1119.		7.1								
4113	1057.		7.6								
4114	958.		0.5								
4115	860.	9 55	5.4								

[4116 rows x 19 columns]>

In [18]: df.isnull().any() Out[18]: SUBDIVISION False YEAR False JAN True

JAN True **FEB** True MAR True APR True MAY True JUN True JUL True True AUG SEP True OCT True NOV True DEC True ANNUAL True True Jan-Feb Mar-May True True Jun-Sep Oct-Dec True

dtype: bool

In [24]:

```
df.fillna(method="ffill",inplace=True)
```

In [25]:

```
df.isnull().sum()
```

Out[25]:

SUBDIVISION 0 YEAR 0 0 JAN FEB 0 0 MAR 0 **APR** 0 MAY 0 JUN JUL 0 0 AUG SEP 0 0 0CT NOV 0 0 DEC ANNUAL 0 0 Jan-Feb Mar-May 0 Jun-Sep 0 0 Oct-Dec dtype: int64

In [27]:

```
df['YEAR'].value_counts()
Out[27]:
YEAR
1963
        36
2002
        36
1976
        36
        36
1975
1974
        36
1915
        35
1918
        35
        35
1954
        35
1955
        34
1909
Name: count, Length: 115, dtype: int64
```

3. Exploratory data analysis

In [31]:

```
sns.lmplot(x='NOV',y='DEC',order=2,data=df,ci=None)
plt.show()
```


In [34]:

```
df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


In [36]:

sns.pairplot(df)

Out[36]:

<seaborn.axisgrid.PairGrid at 0x2204a1fafe0>

Splitting the dataset into training data and test data

In [37]:

```
x=np.array(df['FEB']).reshape(-1,1)
y=x=np.array(df['JAN']).reshape(-1,1)
```

In [38]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)
```

In [39]:

```
lrg=LinearRegression()
lrg.fit(x_train,y_train)
print(lrg.score(x_train,y_train))
```

1.0

In [43]:

```
y_pred=lrg.predict(x_test)
plt.scatter(x_test,y_test,color='cyan')
plt.plot(x_test,y_pred,color='black')
plt.show()
```


In [44]:

```
df700=df[:][:700]
sns.lmplot(x='FEB',y='JAN',order=2,ci=None,data=df700)
plt.show()
```


In [45]:

```
df700.fillna(method='ffill',inplace=True)
```

In [46]:

```
x=np.array(df700['FEB']).reshape(-1,1)
y=x=np.array(df700['JAN']).reshape(-1,1)
```

In [47]:

```
df700.dropna(inplace=True)
```

In [49]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.03)
lrg=LinearRegression()
lrg.fit(x_train,y_train)
print(lrg.score(x_test,y_test))
```

In [50]:

```
y_pred=lrg.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [51]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

In [55]:

```
lrg=LinearRegression()
lrg.fit(x_train,y_train)
y_pred=lrg.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 1.0

Ridge Regression

In [57]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

In [58]:

```
plt.figure(figsize=(10,10))
sns.heatmap(df.corr(),annot=True)
plt.show()
```


In [59]:

```
features=df.columns[0:5]
target=df.columns[-5]
```

In [60]:

```
x=df[features].values
y=df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=1)
print("The dimension of X_train is {}".format(x_train.shape))
print("The dimension of X_test is {}".format(x_test.shape))
```

```
The dimension of X_train is (2881, 5) The dimension of X_test is (1235, 5)
```

In [62]:

```
lrg= LinearRegression()
#Fit model
lrg.fit(x_train, y_train)
actual = y_test
train_score_lrg = lrg.score(x_train, y_train)
test_score_lrg = lrg.score(x_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lrg))
print("The test score for lr model is {}".format(test_score_lrg))
```

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

In [64]:

```
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge = ridgeReg.score(x_train, y_train)
test_score_ridge = ridgeReg.score(x_test, y_test)
print("\nRidge Model:\n")
print("The train score for ridge model is {}".format(train_score_ridge))
print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.999999999856335 The test score for ridge model is 0.999999999840021

In [70]:

```
plt.figure(figsize=(10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,colo
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker="o",markersize=7,color='gre
plt.xticks(rotation=90)
plt.legend()
plt.show()
```


Lasso Regression

```
In [71]:
```

```
lasso= Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls = lasso.score(x_train, y_train)
test_score_ls= lasso.score(x_test, y_test)
print("\nLasso Model:\n")
print("The train score for lasso model is {}".format(train_score_ls))
print("The test score for lasso model is {}".format(test_score_ls))
```

Lasso Model:

The train score for lasso model is 0.9999147271297208 The test score for lasso model is 0.9999147248375002

In [72]:

```
plt.figure(figsize=(10,10))
```

Out[72]:

<Figure size 1000x1000 with 0 Axes>
<Figure size 1000x1000 with 0 Axes>

In [73]:

from sklearn.linear_model import LassoCV

In [75]:

```
from sklearn.linear_model import RidgeCV
ridge_cv=RidgeCV(alphas =[0.0001,0.001,0.01,1,10]).fit(x_train,y_train)
print(ridge_cv.score(x_train,y_train))
print(ridge_cv.score(x_test,y_test))
```

0.9999999982836236

0.9999999986591067

Elastic Net

In [76]:

from sklearn.linear_model import ElasticNet

```
In [90]:
```

```
e=ElasticNet()
e.fit(x_train,y_train)
print(e.coef_)
print(e.intercept_)
print(e.score(x,y))
```

- [9.99044548e-01 1.38835344e-05 4.58897515e-05 0.00000000e+00
- 0.00000000e+00]
- 0.016565679683701262
- 0.9999991435191248

In [91]:

```
y_pred_elastic=e.predict(x_train)
```

In [93]:

```
mean_sqaured_error=np.mean((y_pred_elastic-y_train)**2)
print(mean_squared_error)
```

0.0009226812593710402

Conclusion:

we conclude that "Ridge model" is the best model for Rainfall Prediction dat aset, because it got highest accuracy compared to other models.