AP Calculus BC

Squeeze Theorem: Let l be an open interval such that $a \in l$, if $g(x) \leq f(x) \leq h(x)$ for all $x \in l \setminus \{a\}$ and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} f(x) = L$.

Intermediate Value Theorem: If f is continuous on a closed interval [a,b], and $k \in \mathbb{R}$ where f(a) < k < f(b), then there exist $c \in (a,b)$ such that f(c) = k.

Extreme Value Theorem: If a function f is continuous on a closed interval [a,b], then f has both an absolute maximum and absolute minimum value on [a,b].

First Derivative Test: Let (c, f(c)) be a critical point of f. If f is continuous at x = c, and differentiable on some open interval containing c (except possibly at c). (i) If f' changes sign from negative to positive at c, then (c, f(c)) is a local minimum point.

(ii) If f' changes sign from positive to negative at c, then (c,f(c)) is a local maximum point.

Inverse Functions: $\left(f^{-1}\right)'(b) = \frac{1}{f'\left[f^{-1}(b)\right]}$

Second Derivative Test: Suppose that f'(c) = 0,

- (i) if f''(c) > 0, then f has a relative minimum at c.
- (i) if f''(c) > 0, then f has a relative maximum at c.
- (i) if f''(c) = 0, then the test is inconclusive.

Concavity of a Function: for an open interval l,

- (i) If $f'' > 0 \ \forall x \in l$, then f concave upwards on l.
- (i) If $f'' < 0 \ \forall x \in l$, then f concave downwards on l.

Inflection Points: If f is continuous at x=a, and changes concavity in the vicinty of x=a, then (a,f(a)) is a point of inflection.

Rolle's Theorem: If f is continuous on the closed bounded interval [a,b], differentiable on the open interval (a,b), and f(a)=f(b), then there exist at least one point $c\in(a,b)$ such that f'(c)=0.

Mean Value Theorem: If f is continuous on the closed bounded interval [a,b] and differentiable on the open interval (a,b), then there exist at least one point $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

First Fundamental Theorem of Calculus:

If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

Mean Value Theorem If f is continuous on [a,b], then (i) $m(b-a) \leq \int_a^b f(x) \ dx \leq M(b-a)$, where m and M are the absolute minimum and absolute maximum values of f on [a,b] respectively.

(ii) By Mean Value Theorem, there is at least one point $c \in [a,b]$ such that

$$\int_{a}^{b} f(x) \ dx = f(c)(b-a)$$

The average value of f on [a,b] is: $\dfrac{1}{b-a}\int_a^b f(x)\ dx$ The average rate of change of f over [a,b]: $\dfrac{f(b)-f(a)}{b-a}$

Second Fundamental Theorem of Calculus:

If f is continuous on an interval l, then

$$\frac{d}{dx}\left(\int_{a}^{g(x)} f(t) dt\right) = f(g(x)) \cdot g'(x)$$

Exponential growth: $\frac{dy}{dx} = ky \rightarrow y(t) = y_o e^{kt}$

Arc lengths:

$$L = \int \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
$$= \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
$$= \int \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

Polar coordinates:

$$A = \frac{1}{2} \int r^2 d\theta$$

$$\frac{dy}{dx} = \frac{\frac{d}{d\theta} (r \sin \theta)}{\frac{d}{d\theta} (r \cos \theta)} = \frac{r \cos \theta + \sin \theta \frac{dr}{d\theta}}{-r \sin \theta + \cos \frac{dr}{d\theta}}$$

Improper Integrals

A definite integral $\int_{a}^{b} f(x) dx$ is an improper integral if at least one of the conditions is true

- (a) either $\lim_{x\to a^+} f(x)$ or $\lim_{x\to b^-} f(x)$ does not exist • the improper integral of f over the interval [a,b] is defined by

$$\int_a^b f(x) \ dx = \lim_{m \to a^+} \int_m^b f(x) \ dx \quad \text{or} \quad \lim_{k \to b^-} \int_a^k f(x) \ dx$$

- (b) there exist a number $c \in (a,b)$ such that either $\lim_{x \to c^+} f(x)$ or $\lim_{x \to c^-} f(x)$ does not exist
 - $\int_a^b f(x) dx$ converges only if both improper integrals $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ converges

$$\int_{a}^{b} f(x) \ dx = \int_{a}^{c} f(x) \ dx + \int_{c}^{b} f(x) \ dx$$

(c) either $a=-\infty$ or $b=\infty$

$$\int_a^b f(x) \; dx = \lim_{a \to -\infty} \int_a^b f(x) \; dx \quad \text{or} \quad \lim_{b \to \infty} \int_a^b f(x) \; dx$$

Definitions and results

- 1. The improper integral $\int_{-\infty}^{\infty} f(x) dx$ diverges if either $\int_{-\infty}^{p} f(x) dx$ or $\int_{x}^{\infty} f(x) dx$ diverges.
- 2. $\int_{-\infty}^{\infty} \frac{1}{r^p}$ is convergent if p > 1 and divergent if $p \le 1$
- 3. **Linearity**: let $\int_a^b f(x) dx$ and $\int_a^b g(x) dx$ be improper integrals, then
 - if $\int_a^b f(x) \ dx$ and $\int_a^b g(x) \ dx$ are both convergent, then $\int_a^b [f(x) \pm g(x)] \ dx$ is convergent
 - if $\int_a^b f(x) dx$ is convergent, then $\int_a^b k \cdot f(x) dx$ is convergent
- 4. Comparison Theorem: suppose f and g are continuous functions with $f(x) \geq g(x) \geq 0$ on (a,b), then
 - if $\int_a^b f(x) \ dx$ is convergent, then $\int_a^b g(x) \ dx$ is convergent

2 Limits

- 1. If $\lim_{x\to\infty} f(x) = L$, then $\lim_{n\to\infty} f(n) = L$
- if $\lim_{n\to\infty}|a_n|=0$, then $\lim_{n\to\infty}a_n=0$ 2. If $\lim_{n\to\infty}a_n=L$ and f is continuous at L, then $\lim_{n\to\infty}f(a_n)=f\left(\lim_{n\to\infty}a_n\right)$
- 3. The sequence $(a_n)_{n=1}^{\infty}$ converges to L if and only if $(a_{2n})_{n=1}^{\infty}$ and $(a_{2n-1})_{n=1}^{\infty}$ both converge to L

2

- 4. If $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$, and $a_n\leq b_n\leq c_n$ for all integers $n\geq N$, then $\lim_{n\to\infty}b_n=L$
- 5. If -1 < r < 1, then $\lim_{n \to \infty} r^n = 0$
- 6. The number e is defined to be the value of $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$

3 Infinite Series

Telescoping series: $S = \lim_{n \to \infty} s_n$, where the n^{th} partial sum $s_n = \sum_{k=1}^n (a_{k+1} - a_k)$

Geometric series: $\sum_{k=1}^{\infty} ar^{k-1}$ converges to $\frac{a}{1-r}$ if |r|<1 and diverges if $|r|\geq 1$

3.1 Convergence Tests

- (a) Divergence Test If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then the series $\sum_{k=1}^{\infty} a_k$ diverges
- (b) Integral Test: Let f be a continuous, positive, decreasing function on $[N,\infty)$ such that $a_k=f(k)$ for all integers $k\geq N$. Then $\sum_{k=1}^\infty a_k$ and $\int_N^\infty f(x)\ dx$ either both converge or both diverge
 - Let $f(x)=\frac{1}{x}$. Then f is continuous and positive on the interval $[1,\infty)$. Since $f'(x)=-\frac{1}{x^2}<0$, the function f is decreasing for all $x\geq 1$. Finally, since

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \left(\int_{1}^{b} \frac{1}{x} dx \right) = \lim_{b \to \infty} \left[\ln x \right]_{1}^{b} = \lim_{b \to \infty} \left(\ln b - \ln 1 \right) = \infty$$

the series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges by the Integral Test

- (c) **p-series** $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges is p>1 and diverges if $p\leq 1$
- (d) Comparison Test: Suppose there exist an integer N such that $0 \le a_k \le b_k$ for all integers $k \ge N$
 - \bullet If the series $\sum_{k=1}^{\infty}b_k$ converges, then the series $\sum_{k=1}^{\infty}a_k$ converges
 - ullet If the series $\sum_{k=1}^\infty a_k$ diverges, then the series $\sum_{k=1}^\infty b_k$ diverges
 - Since $0 \le \frac{1}{k^2 + 5} \le \frac{1}{k^2}$ for all positive integers k, and the 2-series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, the series $\sum_{k=1}^{\infty} \frac{1}{k^2 + 5}$ converges by the Comparison Test
- (e) **Limit Comparison Test**: Suppose a_k and b_k are positive for all positive integers k. Let $\rho = \lim_{k \to \infty} \frac{a_k}{b_k}$
 - If $0 \le \rho < \infty$ and if the series $\sum_{k=1}^\infty b_k$ converges, then the series $\sum_{k=1}^\infty a_k$ converges
 - If $0<\rho\leq\infty$ and if the series $\sum_{k=1}^\infty b_k$ diverges, then the series $\sum_{k=1}^\infty a_k$ diverges
 - Note that $\frac{1}{\sqrt{k}+2}>0$ and $\frac{1}{\sqrt{k}}>0$ for all positive integers k.

Since $\lim_{k\to\infty}\frac{\frac{1}{\sqrt{k}+2}}{\frac{1}{\sqrt{k}}}=\lim_{k\to\infty}\frac{\sqrt{k}}{\sqrt{k}+2}=1$ (which is a finite positive number) and $\sum_{k=1}^{\infty}\frac{1}{\sqrt{k}}$ is divergent (p-

series with $p=\frac{1}{2}$), the series $\sum_{k=1}^{\infty}\frac{1}{\sqrt{k}+2}$ diverges by the Limit Comparison Test

(f) **Absolute Convergence**: If $\sum_{k=1}^{\infty} a_k$ is absolutely convergent (i.e. $\sum_{k=1}^{\infty} |a_k|$ converges), then it is convergent.

3

- (g) Ratio Test: Let $\sum_{k=1}^{\infty} a_k$ be a series with nonzero terms and suppose that $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$
 - If ho < 1, then the series $\sum_{k=1}^{\infty} a_k$ converges absolutely
 - If $\rho>1$ or $\rho=\infty$, the series $\sum_{k=1}^{\infty}a_k$ diverges
 - If $\rho = 1$ or if the limit does not exist, no conclusion can be drawn
 - Since $\lim_{n \to \infty} \left| \frac{\left(\frac{(-1)^{n+1}2^{n+1}}{(n+1)!}\right)}{\left(\frac{(-1)^n2^n}{n!}\right)} \right| = \lim_{n \to \infty} \frac{2}{n+1} = 0 < 1$, the series $\sum_{n=1}^{\infty} \frac{(-1)^n2^n}{n!}$ converges absolutely by the Ratio Test, hence it converges.
- (h) Root Test: Let $\sum_{k=1}^{\infty} a_k$ be a series and let $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$
 - ullet If ho < 1, then the series $\displaystyle \sum_{k=1}^{\infty} a_k$ converges absolutely
 - If $\rho>1$ or $\rho=\infty$, the series $\sum_{k=1}^{\infty}a_k$ diverges
 - If $\rho = 1$ or if the limit does not exist, no conclusion can be drawn
 - $\bullet \ \ \mathsf{Since} \ \lim_{n \to \infty} \sqrt[n]{\left|\left(\frac{4n-1}{2n-1}\right)^n\right|} = \lim_{n \to \infty} \left(\frac{4n-1}{2n-1}\right) = 2 > 1, \ \sum_{k=1}^{\infty} \left(\frac{4k-1}{2k-1}\right)^k \ \ \mathsf{diverges} \ \ \mathsf{by the Root Test}.$
- (i) Alternating Series Test: If $0 \le a_{n+1} \le a_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = 0$, then the alternating series $\sum_{k=1}^{\infty} (-1)^{k-1} a_k$ converges. Note: inverse/converse may not be true, AST cannot be used to prove divergence.
 - Let $a_n=\frac{1}{3n+1}$ for n=1,2,3,... Since $0\leq a_{n+1}=\frac{1}{3n+4}\leq \frac{1}{3n+1}=a_n$ for all $n\in\mathbb{N}$ and $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{3n+1}=0$, the alternating series $\sum_{k=1}^\infty\frac{(-1)^{k-1}}{3n+1}$ converges by the AST.
 - Error bound: $|S s_n| \le a_{n+1}$. Moreover, if $0 < a_{n+1} < a_n$, $|S s_n| < a_{n+1}$.
 - A conditionally convergent series is convergent but not absolutely convergent
 terms of a conditionally convergent series cannot be rearranged

4 Power Series

A **power series** centered at x=a is a series of the form $\sum_{k=0}^{\infty} c_k (x-a)^k$. Then one of the conditions hold

- (a) The power series converges when x = a
- (b) The series converges absolutely when |x-a| < R and diverges when |x-a| > R
 - First, we observe that the power series $\sum_{k=0}^{\infty} \frac{(x-2)^k}{k}$ converges if x=2. Now we suppose $x \neq 2$. Since

$$\lim_{k \to \infty} \left| \frac{\frac{(x-2)^{k+1}}{k+1}}{\frac{(x-2)^k}{k}} \right| = \lim_{k \to \infty} \frac{k|x-2|}{k+1} = |x-2| \lim_{k \to \infty} \frac{k}{k+1} = |x-2|$$

By Ratio Test, the given power series converges if |x-2| < 1 and diverges if |x-2| > 1. Therefore, the radius of convergence is 1.

4

When
$$x=1$$
, we have $\sum_{k=0}^{\infty} \frac{(x-2)^k}{k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k}$, which converges by the Alternating Series Test.

When
$$x=3$$
, we have $\sum_{k=0}^{\infty} \frac{(x-2)^k}{k} = \sum_{k=0}^{\infty} \frac{1}{k}$, which is divergent (Harmonic series).

In conclusion, the interval of convergence of the power series is [1,3).

(c) The series converges for all real values of \boldsymbol{x}

The **Taylor series** for f about x=a is given by $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \qquad x \in \mathbb{R}$$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots \qquad x \in \mathbb{R}$$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
 $x \in \mathbb{R}$

$$\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k-1}x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$
 -1 < x \le 1

$$(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + \dots - 1 < x < 1$$

Taylor's formula with remainder: $f(x) = P_n(x) + R_n(x)$, where $P_n(x)$ is the n^{th} -degree Taylor polynomial. Lagrange error bound: If a function f is (n+1) times differentiable on an open interval containing a and x, and if $\left|f^{(n+1)}(t)\right| \leq M$ for all $t \in [a,x]$, then $|R_n(x)| \leq \frac{M}{(n+1)!}|x-a|^{n+1}$

Suppose a Taylor series $\sum_{k=0}^{\infty} c_k (x-a)^k$ has a nonzero radius of convergence R. Then,

(a) The function
$$f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$$
 is differentiable on the interval $(a-R, a+R)$

$$\text{(b)} \ \frac{d}{dx}[f(x)] = \sum_{k=0}^{\infty} c_k \frac{d}{dx} \left[(x-a)^k \right] = \sum_{k=1}^{\infty} c_k k(x-a)^{k-1} \text{ for } a-R < x < a+R$$

$$\bullet \ \frac{d}{dx} \left(\frac{1}{1-x} \right) = \frac{d}{dx} \left(\sum_{k=0}^{\infty} x^k \right) = \sum_{k=0}^{\infty} \frac{d}{dx} x^k = \frac{d}{dx} (1) + \sum_{k=1}^{\infty} x^k = \sum_{k=1}^{\infty} k x^{k-1}$$

(c)
$$\int f(x) dx = \sum_{k=0}^{\infty} \left[c_k \int (x-a)^k dx \right] \text{ for } a - R < x < a + R$$

$$\bullet \ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \left(\sum_{k=1}^{\infty} (-1)^{k-1} t^{k-1} \right) dt = \sum_{k=1}^{\infty} \left(\int_0^x (-1)^{k-1} t^{k-1} dt \right) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}$$

5 Numerical Methods for Differential Equations

Euler's method:
$$y_{n+1} = y_n + f(x_n, y_n) \Delta x$$
, $f(x, y) = \frac{dy}{dx}$
Percentage error $= \frac{\text{exact value} - \text{approximation}}{|\text{exact value}|}$