Espaces métriques, notions de topologie

Ivan Lejeune*

13 mars 2024

1 Connexité

Remarque 1.1 Idée. Un espace topologique est convexe s'il est "en un seul morceau"

Exemple 1.1. \mathbb{R} usuel est connexe,

 \mathbb{R}^* n'est pas connexe, en "deux morceaux" : $\mathbb{R}^* = \mathbb{R}^+ \cup \mathbb{R}^-$

 $X = [0,1] \cup [2,3]$ n'est pas connexe, en "deux morceaux"

 $X = \{0\} \cup [0,1]$ est connexe, en "un seul morceau" : X = [0,1]

1.1 Introduction

On a envie de dire que X (espace topologique) est constitué de "deux morceaux" A et B si

$$X = A \cup B,$$

$$A \neq \emptyset, B \neq \emptyset,$$

$$A \cap B = \emptyset,$$

$$\overline{A} \cap B = \emptyset, A \cap \overline{B} = \emptyset$$

Si c'est la cas, alors nécessairement A et B sont des **fermés** de X:

$$A \subset \overline{A} \subset X \setminus B = A$$

Donc $A = \overline{A}$ et A est un fermé de X.

De même :

$$B \subset \overline{B} \subset X \smallsetminus A = B$$

Donc $B = \overline{B}$ et B est un fermé de X.

 $X = A \sqcup B$ est une union disjointe avec A et B fermés. Alors,

$$\begin{cases} A = X \setminus B \\ B = X \setminus A \end{cases}$$

ouverts de X

Donc une décomposition topologique de X peut se voir comme :

$$X = A \sqcup (X \setminus A)$$

avec $A \neq \emptyset$, $A \neq X$, A ouvert et fermé de X.

1.2 Espaces topologiques connexes

^{*}Cours inspiré de M. Charlier et M. Akrout

Definition 1.1. Un espace topologique X est **connexe** si X et \emptyset sont les seuls ouverts et fermés de X. Une partie de (X, \mathcal{T}) est dite **connexe** si elle est connexe pour la topologie induite par \mathcal{T} .

Exemple 1.2. X muni de la topologie grossière est connexe.

Exemple 1.3. X muni de la topologie discrète est connexe si et seulement si X est vide ou à un seul élément.

Exemple 1.4. \mathbb{N}, \mathbb{Z} muni de la topologie usuelle.

Remarque 1.2. Les propositions suivantes sont équivalentes :

- (i) (X, \mathcal{T}) est connexe
- (ii) Il n'existe pas d'ouverts disjoints A et B de X tels que X = $A \cup B$
- (iii) Il n'existe pas de fermés disjoints A et B de X tels que X = $A \sqcup B$

Théorème 1.1. \mathbb{R} usuel ainsi que tous ses intervalles, est connexe.

Preuve. Soit I un intervalle de \mathbb{R} .

Si I est vide, c'est évident.

Si I est non vide, on suppose que I est la réunion de deux ouverts disjoints A et B de I avec $A \neq \emptyset$, $B \neq \emptyset$.

On cherche une contradiction.

Soit $a \in A, b \in B$.

Sans perte de généralité, on suppose que a < b.

Comme I est un intervalle, on a $[a,b] \subset I$.

$$(a,b] \subset I \longrightarrow A$$

$$a \in A \qquad b \in B$$

Considérons $\{X \in [a,b] \mid x \in A\}$.

C'est une partie non vide de \mathbb{R} (car $a \in A$) et majorée par b.

Donc elle admet une borne supérieure $m = \sup\{x \in [a,b] \mid x \in A\}$.

Alors $m \in [a, b] \subset I$ donc $m \in A \cup B$.

- Si $m \in A$, alors A est voisinage de m donc il existe $\varepsilon > 0$ tel que $]m \varepsilon, m + \varepsilon[\subset A$. Ceci contredit la définition de m comme borne supérieure de $\{x \in [a,b] \mid x \in A\}$.
- Si $m \in B$, alors B est voisinage de m donc il existe $\varepsilon > 0$ tel que $]m \varepsilon, m + \varepsilon[\subset B$. Ceci contredit la définition de m comme borne supérieure de $\{x \in [a,b] \mid x \in A\}$.

Ceci contredit l'hypothèse que A et B sont disjoints. Soit A une partie de \mathbb{R} qui n'est pas un intervalle.

Alors il existe $a, a' \in A$ et $b \in \mathbb{R} \setminus A$ tels que a < b < a'.

Mais alors

$$A = \underbrace{A \cap [-\infty, b]}_{\text{ouvert} \neq \emptyset} \sqcup \underbrace{A \cap [b, +\infty]}_{\text{ouvert} \neq \emptyset}$$

Donc A n'est pas connexe.

Théorème 1.2. Les parties connexes de \mathbb{R} sont exactement les intervalles de \mathbb{R} .

Exercice 1.1. \mathbb{Q} usuel, est-il connexe? Non, ce n'est pas un intervalle de \mathbb{R} . Il suffit de vérifier que $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ est un point de séparation.

Théorème 1.3. Soit (X, \mathcal{T}) un espace topologique. Alors X est connexe si et seulement si toute application continue de X dans $\{0,1\}$ est constante.

Remarque 1.3. On considère $f: X \to \{0, 1\}$. A quelle condition f est-elle continue? Les ouverts de $\{0, 1\}$ discret sont $\emptyset, \{0\}, \{1\}, \{0, 1\}$.

$$f^{-1}(\varnothing) = \varnothing$$
$$f^{-1}(\{0,1\}) = X$$

Une telle fonction est continue si et seulement si $f^{-1}(\{0\})$ et $f^{-1}(\{1\})$ sont ouverts de X.

Preuve.

 (\Rightarrow) Supposons que X est connexe.

Soit $f: X \to \{0, 1\}$ continue.

Alors $f^{-1}(\{0\})$ et $f^{-1}(\{1\})$ sont des ouverts de X.

Comme $f^{-1}(\{0\})\sqcup f^{-1}(\{1\})=X$ et X connexe, alors soit :

- $f^{-1}(\{0\}) = \emptyset$, donc f est constante égale à 1.
- $f^{-1}(\{1\}) = \emptyset$, donc f est constante égale à 0.

Donc f est constante.

(\Leftarrow) Supposons que toute application continue de X dans $\{0,1\}$ est constante. Supposons que X n'est pas connexe.

Alors il existe A et B ouverts de X tels que $X = A \sqcup B$ avec $A \neq \emptyset, B \neq \emptyset$.

Considérons l'application caractéristique

$$\chi \colon X \to \{0, 1\}$$

$$x \mapsto \begin{cases} 0 & \text{si } x \in A \\ 1 & \text{si } x \in B \end{cases}$$

 χ est continue et non constante, donc contradiction.

Proposition 1.1. Soit (X, \mathcal{T}) un espace topologique. Alors :

- (1) Si A, B sont deux parties connexes de X et $A \cap B \neq \emptyset$, alors $A \cup B$ est connexe.
- (2) Si A, B sont deux parties de X telles que

$$A \subset B \subset \overline{A}$$

A connexe

Alors B est connexe.

(3) En particulier:

 $A \text{ connexe} \Rightarrow \overline{A} \text{ connexe pour toute partie } A \text{ de } X.$

Preuve

(1) On suppose A, B connexes et $A \cap B \neq \emptyset$.

Soit $f: A \cup B \rightarrow \{0, 1\}$ continue.

Alors $f_{|A}$ et $f_{|B}$ sont continues.

Or A et B sont connexes, donc $f_{|A}$ et $f_{|B}$ sont constantes.

Comme $A \cap B \neq \emptyset$, alors $f_{|A}(A \cap B) = f_{|B}(A \cap B)$.

Donc $f_{|A \cup B}$ est constante.

Donc $A \cup B$ est connexe.

(2) On suppose $A \subset B \subset \overline{A}$ et A connexe.

Soit $f: B \to \{0, 1\}$ continue.

Alors $f_{|A}$ est continue donc constante car A est connexe.

Donc $f_{|B}$ est constante :

Soit $x \in B$. Soit $(x_n)_n$ une suite de A qui converge vers x.

Alors $\underbrace{f(x_n)}_{\text{constante}} \to f(x)$ par continuité de f.

Donc f(x) est constante.

(3) On applique (2) à A et \overline{A} .