Europäisches Patentamt **European Patent Office** Office européen des brevets

(2)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92119105.2

2 Anmeldetag: 07.11.92

(a) Int. Cl.5: C07D 213/82, C07D 231/14, C07D 277/56, C07D 263/34, C07D 307/68, C07D 309/28, C07D 327/06, C07C 233/64, A01N 37/22, A01N 43/00

Priorität: 22.11.91 DE 4138387

18.02.92 DE 4204764 18.02.92 DE 4204766

18.02.92 DE 4204767 18.02.92 DE 4204768

Veröffentlichungstag der Anmeldung: 09.06.93 Patentblatt 93/23

Benannte Vertragsstaaten:

AT BE CH DE DK ES FR GB GR IE IT LI NL PT

SE

(71) Anmelder: BASF Aktiengesellschaft

Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

2 Erfinder: Eicken, Karl, Dr.

Am Huettenwingert 12

W-6706 Wachenheim(DE)

Erfinder: Goetz, Norbert, Dr.

Schoefferstrasse 25 W-6520 Worms 1(DE)

Erfinder: Harreus, Albrecht, Dr.

Teichgasse 13

W-6700 Ludwigshafen(DE)

Erfinder: Ammermann, Eberhard, Dr.

Von Gagern-Strasse 2 W-6148 Heppenheim(DE)

Erfinder: Lorenz, Gisela, Dr.

Erlenweg 13

W-6730 Neustadt(DE)

Erfinder: Rang, Harald, Dr.

Maximillianstrasse 30

W-6700 Ludwigshafen(DE)

Säureanilid-Derivate und ihre Verwendung zur Bekämpfung von Botrytis.

(5) Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel

I,

in der die Substituenten folgende Bedeutung haben:

Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl

 \mathbb{R}^2 gegebenenfalls durch Halogen substituiertes Alkyl, gegebenenfalls durch Halogen substituiertes Alkenyl, Alkinyl, gegebenenfalls durch Halogen substituiertes Alkoxi, gegebenenfalls durch Halogen substituiertes Alkenyloxi, Alkinyloxi, Cycloalkyl, Cycloalkenyl, Cycloalkyloxi, Cycloalkenyloxi zur Bekämpfung von Botrytis und Nicotinsäureanilide der Formel I.

Die vorliegende Erfindung betrifft die Verwendung von Säureanilid-Derivaten der allgemeinen Formel

in der A die folgenden Bedeutungen hat

5

Pyridin-3-yl, substituiert in 2-Stellung durch Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfonyl, Methylsulfonyl,

Phenyl, substituiert in 2-Stellung durch Methyl, Trifluormethyl, Chlor, Brom, lod,

2-Methyl-5,6-dihydropyran-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4,4-dioxid; 2-Methyl-furan-3-yl, substituiert in 4- und 5-Stellung durch Wasserstoff oder Methyl; Thiazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; Thiazol-4-yl, substituiert in 2- und 5-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; 1-Methylpyrazol-4-yl, substituiert in 3- und 5-Stellung durch Methyl, Chlor, Trifluormethyl; Oxazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor und

R die folgenden Bedeutungen hat, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkenyloxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxy, C₃-C₁₂-Alkinyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxy, gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen, substituiertes Phenyl,

zur Bekämpfung von Bortrytis.

Ferner betrifft die vorliegende Erfindung neue Ssäureanilid-Derivate.

Es ist bekannt, Nicotinsäureanilide, z.B. das 2-Chlornicotinsäure-2'-ethylanilid (US 4 001 416) oder das 2-Chlornicotinsäure-3'-isopropylanilid (DE 26 11 601) als Fungizide zu verwenden.

Es wurde nun gefunden, daß die eingangs definierten Säureanilid-Derivate eine gute Wirkung gegen Botrytis besitzen.

Im Hinblick auf ihre Wirksamkeit sind Verbindungen bevorzugt, in denen die Substituenten folgende Bedeutung haben:

35 Halogen z.B. Fluor, Chlor, Brom,

Alkyl wie insbesondere Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 1-

Methylhexyl, 1-Ethylpentyl, 2-Ethylpentyl, 1-Propylbutyl, Octyl, Decyl, Dodecyl wobei das Alkyl ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,
Alkenyl, wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-

Pentenyl, 4-Pentenyl 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,2-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-3-pentenyl, 3-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 1,1-

Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-3-butenyl, 1-Ethyl-3-butenyl, 1-Ethyl-3-butenyl, 1-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl, 2-Butenyl, 3-Methyl-2-butenyl und 3-Methyl-2-pentenyl;

wobei das Alkenyl ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,

Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Alkinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-

nyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,2-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl,

Alkoxi wie insbesondere Ethoxi, Propoxi, 1-Methylethoxi, Butoxi, 1-Methylpropoxi, 2-Methylpropoxi, 1,1-Dimethylethoxi, n-Pentyloxi, 1-Methylbutoxi, 2-Methylbutoxi, 3-Methylbutoxi, 1,2-Dimethylpropoxi, 1,1-Dimethylpropoxi, 2,2-Dimethylpropoxi, 1-Ethylpropoxi, n-Hexyloxi, 1-Methylpentyloxi, 2-Methylpentyloxi, 3-Methylpentyloxi, 4-Methylpentyloxi, 1,2-Dimethylbutoxi, 1,3-Dimethylbutoxi, 2,3-Dimethylbutoxi, 1,1-Dimethylbutoxi, 2,2-Dimethylbutoxi, 3,3-Dimethylbutoxi, 1,1,2-Trimethylpropoxi, 1,2,2-Trimethylpropoxi, 1-Ethylbutoxi, 2-Ethylbutoxi, 1-Ethyl-2-methylpropoxi, n-Heptyloxi, 1-Methylhexyloxi, 2-Methylhexyloxi, 3-Methylhexyloxi, 4-Methylhexyloxi, 5-Methylhexyloxi, 1-Ethylpentyloxi, 2-Ethylpentyloxi, 1-Propylbutoxi, Octyloxi, Dodecyloxi, wobei das Alkoxy ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann.

Alkenyloxi wie 2-Propenyloxi, 2-Butenyloxi, 3-Butenyloxi, 1-Methyl-2-propenyloxi, 2-Methyl-2-propenyloxi, 2-Pentenyloxi, 3-Pentenyloxi, 4-Pentenyloxi, 1-Methyl-2-butenyloxi, 2-Methyl-2-butenyloxi, 3-Methyl-2-butenyloxi, 3-Methyl-2-propenyloxi, 1,2-Dimethyl-2-propenyloxi, 1-Ethyl-2-propenyloxi, 2-Hexenyloxi, 3-Hexenyloxi, 4-Hexenyloxi, 5-Hexenyloxi, 1-Methyl-2-pentenyloxi, 2-Methyl-2-pentenyloxi, 3-Methyl-2-pentenyloxi, 4-Methyl-2-pentenyloxi, 1-Methyl-3-pentenyloxi, 2-Methyl-3-pentenyloxi, 3-Methyl-3-pentenyloxi, 4-Methyl-3-pentenyloxi, 1-Methyl-4-pentenyloxi, 2-Methyl-4-pentenyloxi, 3-Methyl-4-pentenyloxi, 4-Methyl-4-pentenyloxi, 1,1-Dimethyl-2-butenyloxi, 1,2-Dimethyl-3-butenyloxi, 1,3-Dimethyl-3-butenyloxi, 1,3-Dimethyl-3-butenyloxi, 2,2-Dimethyl-3-butenyloxi, 2,3-Dimethyl-3-butenyloxi, 1-Ethyl-3-butenyloxi, 1-Ethyl-3-butenyloxi, 2-Ethyl-2-butenyloxi, 2-Ethyl-3-butenyloxi, 1,1-2-Trimethyl-2-propenyloxi, 1-Ethyl-1-methyl-2-propenyloxi, und 3-Methyl-2-pentenyloxi; 3-Methyl-2-butenyloxi, 2-Butenyloxi, 3-Methyl-2-butenyloxi, und 3-Methyl-2-pentenyloxi;

wobei das Alkenyloxy ein bis drei der vorstehend genannte Halogenatome, insbesondere Fluor und Chlor tragen kann.

Alkinyloxi wie 2-Propinyloxi, 2-Butinyloxi, 3-Butinyloxi, 1-Methyl-2-propinyloxi, 2-Pentinyloxi, 3-Pentinyloxi, 4-Pentinyloxi, 1-Methyl-3-butinyloxi, 2-Methyl-3-butinyloxi, 1-Methyl-2-propinyloxi, 1-Ethyl-2-propinyloxi, 2-Hexinyloxi, 3-Hexinyloxi, 4-Alkinyloxi, 5-Hexinyloxi, 1-Methyl-2-pentinyloxi, 1-Methyl-3-pentinyloxi, 2-Methyl-3-pentinyloxi, 2-Methyl-4-pentinyloxi, 3-Methyl-4-pentinyloxi, 4-Methyl-3-pentinyloxi, 1,1-Dimethyl-2-butinyloxi, 1,1-Dimethyl-3-butinyloxi, 1,2-Dimethyl-3-butinyloxi, 1,2-Dimethyl-3-butinyloxi, 1-Ethyl-3-butinyloxi, 2-Ethyl-3-butinyloxi und 1-Ethyl-1-methyl-2-propinyloxi, vorzugsweise 2-Propinyloxi, 2-Butinyloxi, 1-Methyl-2-propinyloxi und 1-Methyl-2-butinyloxi,

C₃-C₆-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, wobei das Cycloalkyl gegebenenfalls durch ein bis drei C₁-C₄-Alkylreste substituiert ist;

 C_4 - C_6 -Cycloalkenyl, wie Cyclobutenyl, Cyclopentenyl, Cyclohexenyl, das gegebenenfalls durch ein bis drei C_1 - C_4 -Alkylreste substituiert ist.

 C_5 - C_6 -Cycloalkoxi wie Cyclopentyloxi oder Cyclohexyloxi, das durch ein bis drei C_1 - C_4 -Alkylreste substituiert sein kann.

 C_5 - C_6 -Cycloalkenyloxi wie Cyclopentyloxi oder Cyclohexaryloxi, das durch ein bis drei C_1 - C_4 -Alkylreste substituiert sein kann.

Bevorzugt wird die Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel I,

$$\bigcap_{N} \bigcap_{R^1 R^2} \bigcap_{R^2}$$

in der die Substituenten folgende Bedeutung haben:

R1 Halogen, Methyl, Trifluormethyl, Methyxi, Methylthio, Methylsulfinyl, Methylsulfonyl

R² gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyloxi
Ryl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

45

50

Die Verbindungen der Formel I erhält man beispielsweise, in dem man ein entsprechend substituiertes Nicotinsäurehalogenid der Formel 2

5
$$R^2$$
 R^2 R^2 R^2 R^2 R^2

Hal ist Chlor oder Brom, mit einem ortho-substituierten Anilin der Formel 3 in Gegenwart einer Base umsetzt. Die Nicotinsäuren bzw. derenHalogenide der Formel 2 sind bekannt. Die Aniline der Formel 3 sind bekannt oder können nach bekannten Verfahren hergestellt werden (Helv. Chim. Acta 60, 978 (1977); Zh. Org. Khim 26, 1527(1990); Heterocyclus 26, 1885 (1987); Izv. Akad. Nauk. SSSR Ser.Khim 1982, 2160).

Insbesondere bevorzugt sind Verbindungen, der Formel I in denen der Rest R¹ für Chlor steht und der Rest R² die eingangs erwähnte Bedeutung hat.

Tabelle 1 Verbindungen der Formel I

$$\begin{array}{c|c}
 & CO-NH \\
 & R^1 R^2
\end{array}$$

00	Nr.	R1	R2	phys. Dat. FP [°C]	
30	1.1	F	n-C ₃ H ₇		
	1.2	F	i-C ₃ H ₇		
35	1.3	F	secC ₄ H ₉	52 - 54	
	1.4	F	i-C ₄ H ₉	87 - 89	
	1.5	Cl	n-C ₃ H ₇	103 - 104	
	1.6	Cl	n-C ₄ H ₉		
i	1.7	Cl	secC ₄ H ₉	94 - 96	
40	1.8	Cl	i-C ₄ H ₉	99 - 101	

45

20

50

			1	
	Nr.	R1	R2	phys. Dat. FP [°C]
	1.9	Cl	tertC ₄ H ₉	118 - 120
5	1.10	Cl	n-C ₅ H ₁₁	
	1.11	C1	secC ₅ H ₁₁	
	1.12	Cl	n-C ₆ H ₁₃	
	1.13	Cl	n-C ₇ H ₁₅	
10	1.14	C1	secC7H15	
	1.15	Cl	n-C ₈ H ₁₇	
	1.16	Cl	n-C ₁₀ H ₂₃	
15	1.17	Cl	n-C ₁₂ H ₂₅	_
75	1.18	Cl	1-Methylvinyl	90 - 91
	1.19	Cl	2-Methylvinyl	
	1.20	Cl	Allyl	
20	1.21	Cl	2-Methylallyl	
	1.22	Cl	2-Ethylallyl	
	1.23	C1	1-Methylallyl	
	1.24	Cl	1-Ethylallyl	
25	1.25	Cl	1-Methyl-2-butenyl	
	1.26	C1	1-Ethyl-2-butenyl	
	1.27	Cl	1-Isopropyl-2-butenyl	
	1.28	Cl	1-n-Butyl-2-butenyl	
30	1.29	Cl	1-Methyl-2-pentenyl	
	1.30	Cl	1,4-Dimethyl-2-pentenyl	
	1.31	Cl	Propargyl	
35	1.32	Cl	2-Butinyl	
33	1.33	Cl	3-Butinyl	
	1.34	Cl	Ethoxi	131 - 132
	1.35	Cl	Propoxi	
40	1.36	Cl	1-Methylethoxi	65 - 67
	1.37	Cl	n-Butoxi	84 - 85
	1.38	Cl	1-Methylpropoxi	72 - 74
45	1.39	Cl	2-Methylpropoxi	81 - 84
	1.40	Cl	1,1-Dimethylethoxi	
	1.41	Cl	n-Pentyloxi	
	1.42	Cl	n-Hexyloxi	
0.	1.43	Cl	n-Hepyloxi	
50				

	122-	ln1	T _{no}	To a Si
	Nr.	R1	R2	phys. Dat. FP [°C]
5	1.44	Cl	n-Octyloxi	
	1.45	Cl	2-Ethylhexyloxi	
	1.46	Cl	n-Decyloxi	
	1.47	Cl	2-Propenyloxi	86 - 88
10	1.48	C1	2-Butentyloxi	92 - 95
	1.49	Cl	2-Methyl-2-propenyloxi	75 - 76
	1.50	Cl	2-Pentenyloxi	
	1.51	Cl	3-Pentenyloxi	
15	1.52	Cl	3-Chlor-2-propenyloxi	
	1.53	C1	2,3-Dichlor-2-propenyloxi	
	1.54	Cl	2,3,3-Trichlor-propenyloxi	
	1.55	Cl	2-Propinyloxi	79 - 84
20	1.56	Cl	2-Butinyl-oxi	
	1.57	Cl	3-Butinyl-oxi	
	1.58	Cl	1-Methyl-2-propinyloxi	
25	1.59	Cl	Cyclopropyl	144 - 145
25	1.60	Cl	Cyclobutyl	
	1.61	C1	Cyclopentyl	112 - 114
	1.62	Cl	Cyclohexyl	141 - 142
30	1.63	Cl	2-Cyclopentenyl	123 - 124
	1.64	Cl	1-Cyclopentenyl	
	1.65	Cl	2-Cyclohexenyl	92 - 93
	1.66	Cl	1-Cyclohexenyl	
35	1.67	Cl	Cyclopentyloxi	80 - 82
	1.68	Cl	Cyclohexyloxi	
	1.69	Cl	2-Cyclopentenyloxi	,
	1.70	Cl	2-Cyclohexenyloxi	Ö1
40	1.71	Br	secButyl	
	1.72	Br	i-Butyl	
45	1.73	CH ₃	secButyl	
	1.74	CH ₃	i-Butyl	
	1.75	CF ₃	i-Propyl	***
	1.76	CF ₃	secButyl	
	1.77	CF ₃	i-Butyl	
50	1.78	OCH ₃	i-Propyl	
ου (

	Nr.	R1	R2	phys. Dat. FP [°C]
5	1.79	OCH ₃	secButyl	Öl NMR 0,8t (3H); 1,2d (3H); 1,6m (2H); 3,0q (1H); 4,1s (3H); 7,2m (3H); 7,3m (1H); 8,3m (1H); 8,4m (1H), 9,8s (1H)
10	1.80	OCH ₃	i-Butyl	Öl NMR 0,8d (6H); 1,9m (1H); 2,5d (2H), 4,05s (3H), 7,2m (4H); 7,8d (1H); 8,3d (1H); 8,4m (1H); 9,8s (1H)
	1.81	SCH ₃	i-Propyl	
	1.82	SCH ₃	secButyl	89 - 91
15	1.83	SCH ₃	i-Butyl	140 - 141
	1.84	SO ₂ CH ₃	secButyl	191 - 192
	1.85	SO ₂ CH ₃	i-Butyl	150 - 153
20	1.86	Cl	2-Ethylpropoxy	65 - 66
	1.87	Cl	3-Methyl-3-butenyloxy	83 - 84

25 Herstellungsbeispiele

Beispiel 1

Zu einer Lösung von 2,7 g 2-n-Propylanilin und 2,0 g Triethylamin in 30 ml Tetrahydrofuran tropft man bei 0°C 3,5 g 2-Chlornicotinsäurechlorid und rührt noch 2 Stdn. bei 0°C. Nach Verdünnen mit 300 ml Wasser isoliert man 3,2 g 2-Chlornicotinsäure-2-n-propylanilid von Fp.: 103 - 104°C (Nr. 1.5).

Beispiel 2

4,4 g 2-Chlornicotinsäure-2-sec.-butylanilid (Tabelle 1, Nr. 7) werden in einer Lösung von 5,5 g 30 % Natriummethylat-Lösung in 20 ml Methanol 2 Stdn. am Rückfluß gekocht. Nach Verdünnen mit 250 ml Wasser wird zweimal mit je 100 ml Essigester extrahiert. Aus den vereinigten organ. Phasen isoliert man nach Trocknen und Verdampfen des Lösungsmittels 3,8 g 2-Methoxi-nicotinsäure-2-sec.-butylanilid als Öl. (Nr. 1.79).

Beispiel 3

Aus 5,7 g 2-Methylthionicotinsäurechlorid, 4,6 g 2-sec-Butylanilin und 3,1 g Triethylamin erhält man in analoger wie Beispiel 1 6,6 g 2-Methylthionicotinsäure-2-sec.-butylanilid vom Fp.: 89 - 91 °C (Nr. 1.82).

Beispiel 4

In eine Mischung aus 2,00 g des obigen Produkts (Beispiel 3) in 5 ml Eisessig und 0,13 g Natriumwolframat tropft man unter Rühren bei 35 °C 2,20 g 30 % Wasserstoffperoxid zu und rührt 3 Stdn. bei 35 °C nach. Nach Verdünnen mit 15 ml Wasser, Absaugen der Kristalle, Waschen mit Wasser und Trocknen erhält man 1,7 g 2-Methylsulfonylnicotinsäure-2-sec.-butylanilid vom FP.: 191 - 192 °C (Nr. 1.84). Die Erfindung betrifft ferner die Verwendung von Anilid-Derivaten der Formel II,

55

in der die Substituenten folgende Bedeutung haben:

A CH_3 CH_3 (A2)

- X Methylen oder Schwefel
- R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

Die Verbindungen der Formel 2 erhält man beispielsweise, in dem man ein entsprechend substituiertes Carbonsäurehalogenid der Formel 4 mit einem ortho-substituierten Anilin der Formel 3 in Gegenwart einer Base umsetzt.

A-CO-Hal + H_2N \longrightarrow II

R

4 3

40 Hal ist Chlor oder Brom.

Die Carbonsäuren bzw. deren Halogenid ACO₂H bzw. A-CO-Hal (4) sind bekannt.

50

45

5

20

25

30

Tabelle 2 Verbindungen der Formel II

A-CO-NH

Nr.	A	R	Х	phys. Dat. Fp [°C]
2.1	A ₁	i-C ₃ H ₇	-	108 - 109
2.2	A ₁	n-C ₃ H ₇	-	112 - 114
2.3	A ₁	n-C ₄ H ₉	-	
2.4	A ₁	secC ₄ H ₉	-	89 - 90
2.5	A ₁	i-C ₄ H ₉	-	118 - 11
2.6	A ₁	tertC ₄ H ₉	<u> </u> -	

5		Nr.	А	R	х	phys. Dat. Fp [°C]
2.9 A ₁ n-C ₆ H ₁₃ - 2.10 A ₁ n-C ₇ H ₁₅ - 2.11 A ₁ secC ₇ H ₁₅ - 2.12 A ₁ 1-Methylvinyl - 2.13 A ₁ 2-Methylvinyl - 2.13 A ₁ 2-Methylallyl - 2.15 A ₁ 2-Ethylallyl - 2.16 A ₁ 2-Ethylallyl - 2.17 A ₁ 1-Methylallyl - 2.18 A ₁ 1-Ethylallyl - 2.19 A ₁ 1-Methylallyl - 2.19 A ₁ 1-Methylallyl - 2.20 A ₁ 1-Ethylallyl - 2.21 A ₁ 1-Ingoropyl-2-butenyl - 2.22 A ₁ 1-Ingoropyl-2-butenyl - 2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.29 A ₁ 1-Methylethoxi - 2.29 A ₁ 1-Methylethoxi - 2.21 A ₁ 1-Methylethoxi - 2.22 A ₁ 1-Methylethoxi - 2.23 A ₁ 1-Methylethoxi - 2.33 A ₁ 2-Methylethoxi - 2.34 A ₁ 1-Methylethoxi - 2.35 A ₁ 1-Methylethoxi - 2.36 A ₁ 1-Methylethoxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Methylethoxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Methylethoxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Methylethylethoxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Methylethylethoxi - 2.39 A ₁ 2-Methylethylethoxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Methylethylethoxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Methylethylethoxi - 2.39 A ₁ 2-Methylethylethoxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Methylethylethoxi - 2.39 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Methylethylethoxi - 2.39 A ₁ 2-Methylethylethylethoxi - 2.39 A ₁ 2-Methylethylethylethylethylethylethylethyl	5	2.7	A ₁	n-C ₅ H ₁₁	-	
2.10 A ₁ n-C ₇ H ₁₅ - 2.11 A ₁ secC ₇ H ₁₅ - 2.12 A ₁ 1-Methylvinyl - 2.13 A ₁ 2-Methylvinyl - 2.14 A ₁ Allyl - 2.15 A ₁ 2-Methylallyl - 2.16 A ₁ 2-Ethylallyl - 2.17 A ₁ 1-Methylallyl - 2.18 A ₁ 1-Ethylallyl - 2.19 A ₁ 1-Methylallyl - 2.20 A ₁ 1-Ethylallyl - 2.21 A ₁ 1-Methylallyl - 2.22 A ₁ 1-Isopropyl-2-butenyl - 2.23 A ₁ 1-Methyl-2-butenyl - 2.24 A ₁ 1,-Dimethyl-2-pentenyl - 2.25 A ₁ 2-Butinyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ 2-Butinyl - 2.29 A ₁ 1-Methyl-2-pentenyl - 2.29 A ₁ 1-Methyl-2-pentenyl - 2.21 A ₁ 1-Methyl-2-pentenyl - 2.22 A ₁ 1-Methyl-2-pentenyl - 2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,-Dimethyl-2-pentenyl - 2.25 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Pentyloxi - 2.37 A ₁ 2-Sthylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.40 A ₁ 2-Methyl-2-propenyloxi - 62 - 66	5	2.8	A ₁	secC ₅ H ₁₁	-	
2.10 A1 Sec C ₇ H ₁₅ -		2.9	A_1	n-C ₆ H ₁₃	-	
2.12 A ₁ 1-Methylvinyl - 2.13 A ₁ 2-Methylvinyl - 2.14 A ₁ Allyl - 2.15 A ₁ 2-Methylallyl - 2.16 A ₁ 2-Ethylallyl - 2.17 A ₁ 1-Methylallyl - 2.18 A ₁ 1-Ethylallyl - 2.19 A ₁ 1-Methyl-2-butenyl - 2.20 A ₁ 1-Ethyl-2-butenyl - 2.21 A ₁ 1-Inspropyl-2-butenyl - 2.22 A ₁ 1-Inspropyl-2-butenyl - 2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ 2-Butinyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ 1-Methyl-butoxi - 2.30 A ₁ 1-Methyl-butoxi - 2.31 A ₁ 1-Methyl-butoxi - 2.32 A ₁ 1-Methyl-butoxi - 2.33 A ₁ 1-Methyl-butoxi - 2.34 A ₁ 1-Methyl-butoxi - 2.35 A ₁ 1-Methyl-butoxi - 2.36 A ₁ 1-Methyl-butoxi - 2.37 A ₁ 1-Methyl-butoxi - 2.38 A ₁ 2-Methyl-butoxi - 2.39 A ₁ 1-Dimethylethoxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 50		2.10	A ₁	n-C ₇ H ₁₅	-	
2.13	10	2.11	Aı	secC ₇ H ₁₅	-	
2.14 A ₁ Allyl -		2.12	A ₁	1-Methylvinyl	-	
15		2.13	A ₁	2-Methylvinyl	-	
2.15 A ₁ 2-Methylallyl - 2.16 A ₁ 2-Ethylallyl - 2.17 A ₁ 1-Methylallyl - 2.18 A ₁ 1-Ethylallyl - 2.18 A ₁ 1-Ethylallyl - 2.19 A ₁ 1-Methyl-2-butenyl - 2.20 A ₁ 1-Ethyl-2-butenyl - 2.21 A ₁ 1-Isopropyl-2-butenyl - 2.22 A ₁ 1-In-Butyl-2-butenyl - 2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Pentyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.40 A ₁ 2-Methyl-2-propenyloxi - 62 - 66		2.14	A ₁	Allyl	-	
2.17 A ₁ 1-Methylallyl - 2.18 A ₁ 1-Ethylallyl - 2.19 A ₁ 1-Methylallyl - 2.20 A ₁ 1-Ethylallyl - 2.21 A ₁ 1-Stylallyl - 2.22 A ₁ 1-Stylallyl - 2.23 A ₁ 1-Methylallyl - 2.24 A ₁ 1-Inspropylallyl - 2.25 A ₁ 1-Methylallyl - 2.25 A ₁ 1-Methylallyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ 2-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Pentyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.40 A ₁ 2-Methyl-2-Pr	15	2.15	A ₁	2-Methylallyl	-	
2.18 A ₁ 1-Ethylallyl - 2.19 A ₁ 1-Methyl-2-butenyl - 2.20 A ₁ 1-Isopropyl-2-butenyl - 2.21 A ₁ 1-Isopropyl-2-butenyl - 2.22 A ₁ 1-n-Butyl-2-butenyl - 2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 46 - 84 40 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.40 A ₁ 2-Methyl-2-propenyloxi - 62 - 66		2.16	A ₁	2-Ethylallyl	-	
2.19 A ₁ 1-Methyl-2-butenyl - 2.20 A ₁ 1-Ethyl-2-butenyl - 2.21 A ₁ 1-Isopropyl-2-butenyl - 2.22 A ₁ 1-n-Butyl-2-butenyl - 2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 46 - 84 40 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.40 A ₁ 2-Methyl-2-propenyloxi - 62 - 66		2.17	A ₁	1-Methylallyl	-	
2.19 A ₁ 1-Methyl-2-butenyl - 2.20 A ₁ 1-Ethyl-2-butenyl - 2.21 A ₁ 1-Isopropyl-2-butenyl - 2.22 A ₁ 1-n-Butyl-2-butenyl - 2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 40 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.40 A ₁ 2-Methyl-2-propenyloxi - 2.62 - 66	20	2.18	A ₁	1-Ethylallyl	-	
2.21 A ₁ 1-Isopropyl-2-butenyl - 2.22 A ₁ 1-n-Butyl-2-butenyl - 2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 46 - 84 40 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.40 A ₁ 2-Methyloxi - 2.40 A ₁ 2-Methyl-2-propenyloxi - 2.40 A ₁ 2-Methyl-2-p	20	2.19	A_1	1-Methyl-2-butenyl	-	
2.21 A ₁		2.20	A_1	1-Ethyl-2-butenyl	-	
2.23 A ₁ 1-Methyl-2-pentenyl - 2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 46 - 84 2.33 A ₁ 2-Methylpropoxi - 46 - 84 2.35 A ₁ n-Pentyloxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.38 A ₁ 2-Propenyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi - 50		2.21	A ₁	1-Isopropyl-2-butenyl	-	
2.24 A ₁ 1,4-Dimethyl-2-pentenyl - 2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.30 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 46 - 84 2.33 A ₁ 2-Methylpropoxi - 46 - 84 2.33 A ₁ 1,1-Dimethylethoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi - Öl	25	2.22	A_1	1-n-Butyl-2-butenyl	-	
2.25 A ₁ Propargyl - 2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 46 - 84 40 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.40 A ₁ 2-Methyl-2-propenyloxi - 62 - 66		2.23	A_1	1-Methyl-2-pentenyl	-	
2.26		2.24	A ₁	1,4-Dimethyl-2-pentenyl	-	
2.26 A ₁ 2-Butinyl - 2.27 A ₁ 3-Butinyl - 2.28 A ₁ Ethoxi - 2.29 A ₁ Propoxi - 2.30 A ₁ 1-Methylethoxi - 2.31 A ₁ n-Butoxi - 2.32 A ₁ 1-Methylpropoxi - 46 - 84 40 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Butentyloxi - 2.39 A ₁ 2-Methyl-2-propenyloxi - 2.40 A ₁ 2-Methyl-2-propenyloxi - 30		2.25	A ₁	Propargyl	-	
2.28 A ₁ Ethoxi -	30	2.26	A ₁	2-Butinyl	-	
2.29 A ₁ Propoxi — 2.30 A ₁ 1-Methylethoxi — 2.31 A ₁ n-Butoxi — 2.32 A ₁ 1-Methylpropoxi — 46 - 84 40 2.33 A ₁ 2-Methylpropoxi — 2.34 A ₁ 1,1-Dimethylethoxi — 2.35 A ₁ n-Pentyloxi — 2.36 A ₁ n-Hexyloxi — 2.37 A ₁ 2-Ethylhexyloxi — 2.38 A ₁ 2-Propenyloxi — 2.39 A ₁ 2-Butentyloxi — 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi — Öl		2.27	Aı	3-Butinyl	-	
2.30 A ₁ 1-Methylethoxi -		2.28	A ₁	Ethoxi	-	
2.30 A ₁ 1-Methylethoxi -	25	2.29	A ₁	Propoxi	-	
2.32 A ₁ 1-Methylpropoxi - 46 - 84 2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi - Öl	33	2.30	A ₁	1-Methylethoxi	-	
2.33 A ₁ 2-Methylpropoxi - 2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi - Öl		2.31	A_1	n-Butoxi	-	
2.34 A ₁ 1,1-Dimethylethoxi - 2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi - Öl		2.32	A_1	1-Methylpropoxi	-	46 - 84
2.35 A ₁ n-Pentyloxi - 2.36 A ₁ n-Hexyloxi - 2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi - Öl	40	2.33	A_1	2-Methylpropoxi	-	
2.36 A ₁ n-Hexyloxi -		2.34	\mathtt{A}_1	1,1-Dimethylethoxi	-	
2.37 A ₁ 2-Ethylhexyloxi - 2.38 A ₁ 2-Propenyloxi - 2.39 A ₁ 2-Butentyloxi - 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi - Öl		2.35	A ₁	n-Pentyloxi	-	
2.38 A ₁ 2-Propenyloxi -	45	2.36	A ₁	n-Hexyloxi	-	
2.39 A ₁ 2-Butentyloxi - 62 - 66 2.40 A ₁ 2-Methyl-2-propenyloxi - Öl		2.37	A ₁	2-Ethylhexyloxi	-	
2.40 A ₁ 2-Methyl-2-propenyloxi - Öl		2.38	A ₁	2-Propenyloxi	_	
50		2.39	A_1	2-Butentyloxi	-	62 - 66
2.41 A ₁ 2-Pentenyloxi -	50	2.40	Aı	2-Methyl-2-propenyloxi	-	Ö1
	อบ	2.41	A ₁	2-Pentenyloxi	-	

	Nr.	A	R	х	phys. Dat.
					Fp [°C]
5	2.42	A ₁	3-Pentenyloxi		
	2.43	A ₁	3-Chlor-2-propenyloxi	-	
	2.44	A ₁	2,3-Dichlor-2-propenyloxi		
	2.45	A ₁	2,3,3-Trichlor-propenyloxi	-	
10	2.46	A ₁	2-Propinyloxi	<u> -</u>	
	2.47	A ₁	2-Butinyl-oxi	-	
	2.48	A ₁	3-Butinyl-oxi	<u>-</u>	
	2.49	A_1	1-Methyl-2-propinyloxi		
15	2.50	A_1	Cyclopropyl	-	
	2.51	A ₁	Cyclobutyl	-	
	2.52	A ₁	Cyclopentyl	-	112 - 113
20	2.53	A ₁	Cyclohexyl	-	120 - 121
	2.54	A ₁	2-Cyclopentenyl	-	128 - 129
	2.55	A ₁	1-Cyclopentenyl	-	
	2.56	A_1	2-Cyclohexenyl	-	95 - 96
25	2.57	A ₁	1-Cyclohexenyl	-	
	2.58	A_1	Cyclopentyloxi	-	
	2.59	Aı	Cyclohexyloxi	-	
	2.60	A ₁	2-Cyclopentenyloxi	-	
30	2.61	A ₁	2-Cyclohexenyloxi	-	Öl
	2.62	A ₂	i-C ₃ H ₇	CH ₂	99 - 101
	2.63	A ₂	n-C ₃ H ₇	CH ₂	
35	2.64	A ₂	n-C ₄ H ₉	CH ₂	
	2.65	A ₂	secC ₄ H ₉	CH ₂	81 - 82
	2.66	A ₂	i-C ₄ H ₉	CH ₂	81 - 83
	2.67	A ₂	tertC ₄ H ₉	CH ₂	
40	2.68	A ₂	n-C ₅ H ₁₁	CH ₂	
	2.69	A ₂	secC ₅ H ₁₁	CH ₂	
	2.70	A ₂	n-C ₆ H ₁₃	CH ₂	
	2.71	A ₂	n-C ₇ H ₁₅	CH ₂	
45	2.72	A ₂	secC7H15	CH ₂	
	2.73	A ₂	1-Methylvinyl	CH ₂	
	2.74	A ₂	2-Methylvinyl	CH ₂	
50	2.75	A ₂	Allyl	CH ₂	
50	2.76	A ₂	2-Methylallyl	CH ₂	
					<u></u>

2.77		Nr.	A	R	х	phys. Dat. Fp [°C]
2.79 A2 1-Ethylallyl CH2	5	2.77	A ₂	2-Ethylallyl	CH ₂	
2.80 A2 1-Methyl-2-butenyl CH2	5	2.78	A ₂	1-Methylallyl	CH ₂	
10		2.79	A ₂	1-Ethylallyl	CH ₂	
2.82 A2		2.80	A ₂	1-Methyl-2-butenyl	CH ₂	
2.83 A2 1-n-Butyl-2-butenyl CH2	10	2.81	A ₂	1-Ethyl-2-butenyl	CH ₂	
2.84		2.82	A ₂	1-Isopropyl-2-butenyl	CH ₂ ·	
2.85		2.83	A ₂	1-n-Butyl-2-butenyl	CH ₂	
2.85 A ₂ 1,4-Dimethyl-2-pentenyl CH ₂ 2.86 A ₂ Propargyl CH ₂ 2.87 A ₂ 2-Butinyl CH ₂ 2.88 A ₂ 3-Butinyl CH ₂ 2.89 A ₂ Ethoxi CH ₂ 2.90 A ₂ Propoxi CH ₂ 2.91 A ₂ 1-Methylethoxi CH ₂ 2.93 A ₂ 1-Methylpropoxi CH ₂ 2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Putentyloxi CH ₂ 2.101 A ₂ 3-Pentenyloxi CH ₂ 2.102 A ₂ 3-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3-Trichlor-propenyloxi CH ₂ 2.106 A ₂ 2,3-Trichlor-propenyloxi CH ₂		2.84	A ₂	1-Methyl-2-pentenyl	CH ₂	
2.87 A ₂ 2-Butinyl CH ₂ 2.88 A ₂ 3-Butinyl CH ₂ 2.89 A ₂ Ethoxi CH ₂ 2.90 A ₂ Propoxi CH ₂ 2.91 A ₂ 1-Methylethoxi CH ₂ 2.93 A ₂ 1-Methylpropoxi CH ₂ 2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂	15	2.85	A ₂	1,4-Dimethyl-2-pentenyl	CH ₂	
2.88 A ₂ 3-Butinyl CH ₂ 2.89 A ₂ Ethoxi CH ₂ 2.90 A ₂ Propoxi CH ₂ 2.91 A ₂ 1-Methylethoxi CH ₂ 2.92 A ₂ n-Butoxi CH ₂ 2.93 A ₂ 1-Methylpropoxi CH ₂ 2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.86	A ₂	Propargyl	CH ₂	
2.89 A ₂ Ethoxi CH ₂ 2.90 A ₂ Propoxi CH ₂ 2.91 A ₂ 1-Methylethoxi CH ₂ 2.92 A ₂ n-Butoxi CH ₂ 2.93 A ₂ 1-Methylpropoxi CH ₂ 2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.107 CH ₂ CH ₂ 2.108 CH ₂ CH ₂ CH ₂ 2.109 CH ₂ CH ₂ CH ₂ CH ₂ 2.100 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ 2.100 CH ₂		2.87	A ₂	2-Butinyl	CH ₂	
2.90 A ₂ Propoxi CH ₂ 2.91 A ₂ 1-Methylethoxi CH ₂ 2.92 A ₂ n-Butoxi CH ₂ 2.93 A ₂ 1-Methylpropoxi CH ₂ 2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂	20 .	2.88	A ₂	3-Butinyl	CH ₂	
2.91 A ₂ 1-Methylethoxi CH ₂ 2.92 A ₂ n-Butoxi CH ₂ 2.93 A ₂ 1-Methylpropoxi CH ₂ 2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.89	A ₂	Ethoxi	CH ₂	
2.92 A ₂ n-Butoxi CH ₂ 2.93 A ₂ 1-Methylpropoxi CH ₂ 2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3-Trichlor-propenyloxi CH ₂		2.90	A ₂	Propoxi	CH ₂	
2.93 A ₂ 1-Methylpropoxi CH ₂ 2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.91	A ₂	1-Methylethoxi	CH ₂	
2.94 A ₂ 2-Methylpropoxi CH ₂ 2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂	25	2.92	A ₂	n-Butoxi	CH ₂	
2.95 A ₂ 1,1-Dimethylethoxi CH ₂ 2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.93	A ₂	1-Methylpropoxi	CH ₂	
2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.94	A ₂	2-Methylpropoxi	CH ₂	
2.96 A ₂ n-Pentyloxi CH ₂ 2.97 A ₂ n-Hexyloxi CH ₂ 2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.95	A ₂	1,1-Dimethylethoxi	CH ₂	
2.98 A ₂ 2-Ethylhexyloxi CH ₂ 2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 67 - 69 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂	30	2.96	A ₂	n-Pentyloxi	CH ₂	
2.99 A ₂ 2-Propenyloxi CH ₂ 2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 67 - 69 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.97	A ₂	n-Hexyloxi	CH ₂	
2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 67 - 69 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.98	A ₂	2-Ethylhexyloxi	CH ₂	
2.100 A ₂ 2-Butentyloxi CH ₂ 2.101 A ₂ 1-Methyl-2-propenyloxi CH ₂ 67 - 69 2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂	35 .	2.99	A ₂	2-Propenyloxi	CH ₂	
2.102 A ₂ 2-Pentenyloxi CH ₂ 2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂	00	2.100	A ₂	2-Butentyloxi	CH ₂	
2.103 A ₂ 3-Pentenyloxi CH ₂ 2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.101	A ₂	1-Methyl-2-propenyloxi	CH ₂	67 - 69
2.104 A ₂ 3-Chlor-2-propenyloxi CH ₂ 2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.102	A ₂	2-Pentenyloxi	CH ₂	
2.105 A ₂ 2,3-Dichlor-2-propenyloxi CH ₂ 2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂	40	2.103	A ₂	3-Pentenyloxi	CH ₂	
2.106 A ₂ 2,3,3-Trichlor-propenyloxi CH ₂		2.104	A ₂	3-Chlor-2-propenyloxi	CH ₂	
		2.105	A ₂	2,3-Dichlor-2-propenyloxi	CH ₂	
45 2 107 A2 2-Propinyloxi CH2	45	2.106	A ₂	2,3,3-Trichlor-propenyloxi	CH ₂	
[2.10, 1.7]		2.107	A ₂	2-Propinyloxi	CH ₂	
2.108 A ₂ 2-Butinyl-oxi CH ₂		2.108	A ₂	2-Butinyl-oxi	CH ₂	
2.109 A ₂ 3-Butinyl-oxi CH ₂		2.109	A ₂	3-Butinyl-oxi	CH ₂	
2.110 A ₂ 1-Methyl-2-propinyloxi CH ₂	50	2.110	A ₂	1-Methyl-2-propinyloxi	CH ₂	
2.111 A ₂ Cyclopropyl CH ₂	50	2.111	A ₂	Cyclopropyl	CH ₂	

	Nr.	A	R	x	phys. Dat. Fp [°C]
5	2.112	A ₂	Cyclobutyl	CH ₂	
5	2.113	A ₂	Cyclopentyl	CH ₂	109 - 111
	2.114	A ₂	Cyclohexyl	CH ₂	118 - 123
	2.115	A ₂	2-Cyclopentenyl	CH ₂	87 - 89
10	2.116	A ₂	1-Cyclopentenyl	CH ₂	
	2.117	A ₂	2-Cyclohexenyl	CH ₂	85 - 87
	2.118	A ₂	1-Cyclohexenyl	CH ₂	
**	2.119	A ₂	Cyclopentyloxi	CH ₂	60 - 91
15	2.120	A ₂	Cyclohexyloxi	CH ₂	
	2.121	A ₂	2-Cyclopentenyloxi	CH ₂	
	2.122	A ₂	2-Cyclohexenyloxi	CH ₂	Öl
20	2.123	A ₂	i-C ₃ H ₇	S	
	2.124	A ₂	n-C ₃ H ₇	S	
	2.125	A ₂	n-C ₄ H ₉	S	
	2.126*	A ₂	secC ₄ H ₉	S	Öl
25	2.127	A ₂	i-C ₄ H ₉	S	Öl
	2.128	A ₂	tertC ₄ H ₉	S	
	2.129	A ₂	n-C ₅ H ₁₁	S	
0_	2.130	A ₂	secC ₅ H ₁₁	S	
30	2.131	A ₂	n-C ₆ H ₁₃	S	
	2.132	A ₂	n-C ₇ H ₁₅	S	
	2.133	A ₂	secC7H15	S	
35	2.134	A ₂	1-Methylvinyl	S	
	2.135	A ₂	2-Methylvinyl	S	
	2.136	A ₂	Allyl	S	
	2.137	A ₂	2-Methylallyl	S	
40	2.138	A ₂	2-Ethylallyl	S	
	2.139	A ₂	1-Methylallyl	S	
45	2.140	A ₂	1-Ethylallyl	S	
	2.141	A ₂	1-Methyl-2-butenyl	S	
	2.142	A ₂	1-Ethyl-2-butenyl	S	
	2.143	A ₂	1-Isopropyl-2-butenyl	S	
	2.144	A ₂	1-n-Butyl-2-butenyl	S	
50	2.145	A ₂	1-Methyl-2-pentenyl	s	
- -	2.146	A ₂	1,4-Dimethyl-2-pentenyl	S	

	Nr.	A	R	х	phys. Dat.
					Fp [°C]
5	2.147	A ₂	Propargyl	S	
	2.148	A ₂	2-Butinyl	S	
	2.149	A ₂	3-Butinyl	S	
	2.150	A ₂	Ethoxi	S	
10	2.151	A ₂	Propoxi	s	
	2.152	A ₂	1-Methylethoxi	S	
	2.153	A ₂	n-Butoxi	S	
15	2.154	A ₂	1-Methylpropoxi	S	Öl
,,	2.155	A ₂	2-Methylpropoxi	S	
	2.156	A ₂	1,1-Dimethylethoxi	S	
	2.157	A ₂	n-Pentyloxi	S	
20	2.158	A ₂	n-Hexyloxi	S	
	2.159	A ₂	2-Ethylhexyloxi	S	
	2.160	A ₂	2-Propenyloxi	S	
	2.161	A ₂	2-Butentyloxi	S	
25	2.162	A ₂	1-Methyl-2-propenyloxi	S	65 - 67
	2.163	A ₂	2-Pentenyloxi	S	
	2.164	A ₂	3-Pentenyloxi	S	
	2.165	A ₂	3-Chlor-2-propenyloxi	S	
30	2.166	A ₂	2,3-Dichlor-2-propenyloxi	S	
	2.167	A ₂	2,3,3-Trichlor-propenyloxi	S	
	2.168	A ₂	2-Propinyloxi	S	
35	2.169	A ₂	2-Butinyl-oxi	S	
00	2.170	A ₂	3-Butinyl-oxi	S	
	2.171	A ₂	1-Methyl-2-propinyloxi	S	
	2.172	A ₂	Cyclopropyl	S	
40	2.173	A ₂	Cyclobutyl	S	
	2.174	A ₂	Cyclopentyl	S	62 - 64
45	2.175	A ₂	Cyclohexyl	S	120 - 122
	2.176	A ₂	2-Cyclopentenyl	S	76 - 78
	2.177	A ₂	1-Cyclopentenyl	S	
	2.178	A ₂	2-Cyclohexenyl	S	70 - 72
	2.179	A ₂	1-Cyclohexenyl	s	
50	2.180	A ₂	Cyclopentyloxi	S	88 - 90
50	2.181	A ₂	Cyclohexyloxi	S	
			<u> </u>		

	Nr.	A	R .	х	phys. Dat. Fp [°C]
5	2.182	A ₂	2-Cyclopentenyloxi	S	
	2.183	A ₂	2-Cyclohexenyloxi	s	Öl
	2.184	A ₁	1-Ethylpropoxy	-	65 - 66
10	2.185	A ₁	3-Methyl-2-butenyloxy	_	Öl
	2.186	A ₂	1-Ethylpropoxy	CH ₂	Öl
	2.187	A ₂	1-Ethylpropoxy	S	Öl

15

Herstellungsbeispiele

Beispiel 5

20 Zuei

Zu einer Lösung von 3,0 g sec.-Butyl-anilin und 2,0 g Triethylamin in 30 ml Tetrahydrofuran tropft man bei 0°C 3,1 g 2-Methylbenzoesäurechlorid und rührt noch 2 Stdn. bei 0°C. Nach Verdünnen mit 500 ml Wasser, Extraktion mit Essigester und Verdampfen des Lösungsmittels, isoliert man 2-Methylbenzoesäure-2-sec.-butylanilid vom Fp: 89 - 90°C (Verbindung Nr. 2.4).

25 Beispiel 6

Zu einer Lösung von 3,0 g 2-Methyl-5,6-dihydropyran-3-carbonsäure in 20 ml Pyridin tropft man bei 0 °C 2,5 g Thionylchlorid, nach 1 Stunde Nachrühren setzt man 2,8 g 2-Isopropylanilin zu und rührt 12 Stunden bei Raumtemperatur (20 °C) nach. Nach Verdampfen des Pyridins wird mit 50 ml Wasser aufgerührt mit verd. Salzsäure auf pH 3 eingestellt und mit Essigester extrahiert. Nach Verdampfen des Lösungsmittels und Mischen des Rückstandes mit Diisopropylether isoliert man 3,3 g 2-Methyl-5,6-dihydropyran-3-carbonsäure-2-isopropylanilid vom Fp: 99 - 101 °C (Verbindung Nr. 2.62).

Die Erfindung betrifft ferner die Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel II,

35

40

in der die Substituenten folgende Bedeutung haben:

45

50

- X Methylen, Schwefel, Sulfinyl, Sulfonyl (SO₂),
- R1 Methyl, Trifluormethyl, Chlor, Brom, Jod
- 30 R² Trifluormethyl, Chlor
 - R³ Wasserstoff oder Methyl
 - R4 Methyl, Trifluormethyl, Chlor
 - R⁵ Wasserstoff, Methyl, Chlor
 - R⁶ Methyl, Trifluormethyl
 - R⁷ Methyl, Chlor
 - R⁸ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen

zur Bekämpfung von Botrytis.

Die Verbindungen der Formel III erhält man beispielsweise, indem man ein entsprechend substituiertes Carbonsäurehalogenid der Formel 4

40

45

35

A — CO — Hal
$$NH_2$$
 R^8 III

Hal ist Chlor oder Brom, mit einem ortho-substituierten Anilin der Formel 5 in Gegenwart einer Base umsetzt. Die Carbonsäuren bzw. deren Halogenide der Formel 4 sind bekannt. Die Aniline der Formel 5 sind z. Teil bekannt oder können nach bekannten Verfahren hergestellt werden (Tetra hedron Letters, Vol.

28 S. 5093 (1987); THL Vol 29 5463 (1988)).

.

Tabelle 3

¹	R3 1 1 1	R4	1 RS	84 I I I	R7 	R8 2-F 4-F 2-F	× 1 1 1	phys. Daten [°C]
	1 1		1 1	1 1		4-F 2-F	1 1	
, - -	1			1	1	2-CH ₃	,	71 - 73
1	-		1	1		2-c1	,	
1	-	1	-	ı	ı	2-осн ₃	1	
ï	ì		1		,	3-F	1	
-	1		1	1	,	3-c1	1	95 - 98
1	ł		1	1	-	3-сн3	-	
1	ı		_	-	1	3-осн ₃	_	
1	I		-	1	1	3-01C3H7	_	
	l		l	-	1	3-Br	1	
1	ı		1	1	_	4-F	ı	156 - 157
1	ı		-	1	1	4-C1	-	
-	-		ı	ļ.	ı	4-CH ₃	-	
	-		_	-	-	4-0CH ₃	-	
-	1	ŀ	1	-	-	4-SCH3	ı	

		_					_			_		_									_	_
5	77								•													
10	s. Daten [°C]																					
15	phys.																					
	×	CH2	CH2	CH2	CH2	CH ₂	s	S	S	S	S	SO2	SO2	208	SO2	SO_2	,	1	-	-	_	
20			· .	ن	21	3-сн ₃	F9.	£ .	61	cı	3-сн ₃	Ēs.	£	F	cı	3-сн ₃	64	Ĺtu.	Ea .	£	F	(bu
25	R _B	2-F	3-F	4-F	3-C1	3-(2-F	3-E	4-F	3-C1	3–(2-F	3-F	4-F	3-c1) - E	2-F	3-F	4-F	2-F	3-F	4-F
	R.7	1		١.	-	_	_	-	-		_	_	,	-	_	1	ı	,	ì	СJ	C1	ប
30	R6	i	,	-	<u>.</u>	_	_		_	,	-	-	1	1	_	-		_	ţ	CH ₃	СН3	CH3
	R5	,	1	-	_	_	_	,		-	-	-	ı	*	-	_	CH3	СН3	СН3	-	-	_
35	R4	ļ	_		_	-	1	-	_	-	ŧ	-	ı	1	-	-	CF_3	CF3	CF3	1	-	-
	R3	1	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	_	-	_
40	R ²	_	_	1	-	-	-	-			1	_	_	_	1	+	1		-	-	-	,
45	R1	_	_	_	-	_	-	_	-	-			-	_	_	_	-	-	-	1	-	1
	A	A3	A ₃	A3	A3	A3	A3	A ₃	A3	A3	A3	A3	A3	A3	A3	A3	As	As	As	Α7	A7	A7
50	Nr.	3.20	3.21	3.22	3.23	3.24	3.25	3.26	3.27	3.28	3.29	3.30	3.31	3.32	3.33	3.34	3.35	3.36	3.37	3.38	3.39	3.40

30 ,

Ra	ъ R′	R ⁵ R ⁶ R ⁷ R ⁸	6 R ⁷	2 R3 R4 R5 R6 R7	3 R4 R5 R6 R7
	CF3 C1	CF3 C1		-	
	CF3 C1	- CF3 C1		-	-

Die Erfindung betrifft ferner die Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel IV,

in der die Substituenten folgende Bedeutung haben:

X Methylen, Sulfinyl, Sulfonyl (SO₂),

R1 Methyl, Trifluormethyl, Chlor, Brom, Jod

R² Trifluormethyl, Chlor

R³ Wasserstoff oder Methyl

R⁴ Methyl, Trifluormethyl, Chlor

R⁵ Wasserstoff, Methyl, Chlor

R⁶ Methyl, Trifluormethyl

R⁷ Methyl, Chlor,

40

45

zur Bekämpfung von Botrytis.

Die Verbindung der Formel IV erhält man beispielsweise, indem man ein entsprechendes aromatisches oder heterocyclisches Säurehalogenid 4 mit 2-Aminobiphenyl 6 in Gegenwart einer Base umsetzt.

Hal ist Chlor oder Brom.

Die Säuren der Formel A-CO₂H bzw. deren Halogenide II sind bekannt.

EP 0 545 099 A2

Nr.	Ą	\mathtt{R}^1	R2	R ³	R ⁴	R5	R6	R ⁷	×	phys. Daten [°C]
4.1	A ₁	СН3	_	1	1	ı				87 - 88
4.2	A_1	Br	-	1	1	,	1		,	113 - 115
4.3	A2	1	τɔ	ı	-	ı	,	ı		151 - 152
4.4	A3	1	_	-	1	,		,	CH ₂	76 - 77
4.5	Aq	_	1	СН3	1	-	,	1	,	104 - 106
4.6	As	1	-	,	CH3	CH3	-			136 - 137

EP 0 545 099 A2

5		PS-Nr.												
10		phys. Daten [°C]	138-139	129-132				116-118		-	108-109			100-103
20		×				SO	SO ₂	-	,				_	
20		R7				-	-		,		C1	Cl	СН3	
25		R6	,				,	1	,		СН3	CF3	СН3	1
30		RS				-		СН3	СН3	C1	-	,	_	-
		R4	,	-	-		_	CF3	CH3	C1	_	ı		1
35		R ³		1		,	1	1	1	1	1	1	-	ı
40		R2	-	_	CF_3	ı	_	ı	1	-	-	1	_	1
		\mathbb{R}^1	CF_3	J	ı	-	-	_	l	1	1	-	_	CI
45	S	A	A ₁	${\sf A}_1$	A2	A ₃	A3	As	A ₆	A6	A7	A ₇	A7	Aı
50	Tabelle 5	Nr.	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	5.10	5.11	5.11

Die Erfindung betrifft ferner die Verwendung von Carbonsäureanilid-Derivaten der allg. Formel V,

55

$$A-CO-NH \longrightarrow V$$
,

in der die Substituenten folgende Bedeutung haben:

n 1 oder 2

30

35

40

45

50

55

R1 Trifluormethyl, Chlor, Brom, Jod

R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R⁴ Wasserstoff, Methyl, Chlor

R5 Methyl, Trifluormethyl

R⁶ Methyl, Chlor

R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₅-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi

zur Bekämpfung von Botrytis.

Tabelle 6 $\begin{tabular}{lll} Verbindungen der Formel I mit A in der Bedeutung A_1 \\ \end{tabular}$

A₁ CO-NH

10

5

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
15	6.1	CF ₃	i-C ₃ H ₇	160-162
	6.2	CF ₃	n-C ₃ H ₇	151-152
	6.3	CF ₃	n-C ₄ H ₉	·
20	6.4	CF ₃	secC ₄ H ₉	83- 84
	6.5	CF ₃	i-C ₄ H ₉	133-135
	6.6	CF ₃	tertC ₄ H ₉	
	6.7	CF ₃	n-C ₅ H ₁₁	
25	6.8	CF ₃	secC ₅ H ₁₁	
	6.9	CF ₃	n-C ₆ H ₁₃	
	6.10	CF ₃	n-C ₇ H ₁₅	
30	6.11	CF ₃	secC ₇ H ₁₅	
	6.12	CF ₃	1-Methylvinyl	
	6.13	CF ₃	2-Methylvinyl	
	6.14	CF ₃	Allyl	
35	6 15	CE	2-Mothylallyl	1

..

45

50

	Nr.	R^1	R ⁷	phys.Dat. Fp [°C]
5	6.16	CF ₃	2-Ethylallyl	
	6.17	CF ₃	1-Methylallyl	
	6.18	CF ₃	1-Ethylallyl	
	6.19	CF ₃	1-Methyl-2-butenyl	
10	6.20	CF ₃	1-Ethyl-2-butenyl	
	6.21	CF ₃	1-Isopropyl-2-butenyl	
	6.22	CF ₃	1-n-Butyl-2-butenyl	
45	6.23	CF ₃	1-Methyl-2-pentenyl	
15	6.24	CF ₃	1,4-Dimethyl-2-pentenyl	
	6.25	CF ₃	Propargyl	
	6.26	CF ₃	2-Butinyl	
20	6.27	CF ₃	3-Butinyl	
	6.28	CF ₃	Ethoxi	
	6.29	CF ₃	Propoxi	
	6.30	CF ₃	1-Methylethoxi	
25	6.31	CF ₃	n-Butoxi	
	6.32	CF ₃	1-Methylpropoxi	
	6.33	CF ₃	2-Methylpropoxi	
	6.34	CF ₃	1,1-Dimethylethoxi	
30	6.35	CF ₃	n-Pentyloxi	
	6.36	CF ₃	n-Hexyloxi	
	6.37	CF ₃	2-Ethylhexyloxi	
35 .	6.38	CF ₃	2-Propenyloxi	
	6.39	CF ₃	2-Butentyloxi	
	6.40	CF ₃	2-Methyl-2-propenyloxi	
	6.41	CF ₃	2-Pentenyloxi	
40	6.42	CF ₃	3-Pentenyloxi	
	6.43	CF ₃	3-Chlor-2-propenyloxi	
	6.44	CF ₃	2,3-Dichlor-2-propenyloxi	
	6.45	CF ₃	2,3,3-Trichlor-propenyloxi	
45	6.46	CF ₃	2-Propinyloxi	
	6.47	CF ₃	2-Butinyl-oxi	
	6.48	CF ₃	3-Butinyl-oxi	
50	6.49	CF ₃	1-Methyl-2-propinyloxi	
	6.50	CF ₃	Cyclopropyl	

 \mathbb{R}^1 R7 phys.Dat. Nr. Fp [°C] Cyclobutyl 6.51 CF₃ 5 Cyclopentyl 150-152 6.52 CF₃ 130-132 6.53 CF₃ Cyclohexyl 2-Cyclopentenyl 160-161 6.54 CF₃ 6.55 CF₃ 1-Cyclopentenyl 10 103-105 6.56 CF₃ 2-Cyclohexenyl 6.57 CF₃ 1-Cyclohexenyl Cyclopentyloxi 6.58 CF₃ 15 6.59 Cyclohexyloxi CF₃ CF₃ 2-Cyclopentenyloxi 6.60 CF₃ 2-Cyclohexenyloxi 6.61

20

Tabelle 7 $\begin{tabular}{lll} Verbindungen der Formel V mit A in der Bedeutung A_1 \\ \end{tabular}$

25

30

35

40

45

50

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
7.1	Cl	i-C ₃ H ₇	125-127
7.2	Cl	n-C ₃ H ₇	108-110
7.3	Cl	n-C ₄ H ₉	
7.4	Cl	secC ₄ H ₉	73- 74
7.5	-C1	i-C ₄ H ₉	90- 92
7.6	Cl	tertC ₄ H ₉	
7.7	Cl	n-C ₅ H ₁₁	
7.8	Cl	secC ₅ H ₁₁	
7.9	Cl	n-C ₆ H ₁₃	
7.10	Cl	n-C ₇ H ₁₅	
7.11	Cl	secC7H15	
7.12	C1	1-Methylvinyl	
7.13	Cl	2-Methylvinyl	

	Nr.	R ¹	R ⁷ .	phys.Dat. Fp [°C]
5	7.14	Cl	Allyl	
	7.15	C1	2-Methylallyl	
	7.16	Cl	2-Ethylallyl	
	7.17	Cl	1-Methylallyl	
10	7.18	Cl	1-Ethylallyl	
	7.19	Cl	1-Methyl-2-butenyl	
	7.20	Cl	1-Ethyl-2-butenyl	
	7.21	C1	1-Isopropyl-2-butenyl	
15	7.22	Cl	1-n-Butyl-2-butenyl	
	7.23	C1	1-Methyl-2-pentenyl	
	7.24	Cl	1,4-Dimethyl-2-pentenyl	
20	7.25	Cl	Propargyl	
20	7.26	Cl	2-Butinyl	
	7.27	Cl	3-Butinyl	
	7.28	Cl	Ethoxi	
25	7.29	Cl	Propoxi	
	7.30	C1	1-Methylethoxi	
	7.31	Cl	n-Butoxi	
	7.32	Cl	1-Methylpropoxi	
30	7.33	Cl	2-Methylpropoxi	
	7.34	Cl	1,1-Dimethylethoxi	
	7.35	Cl	n-Pentyloxi	
35	7.36	Cl	n-Hexyloxi	
33	7.37	Cl	2-Ethylhexyloxi	
	7.38	Cl	2-Propenyloxi	
	7.39	Cl	2-Butentyloxi	
40	7.40	Cl	2-Methyl-2-propenyloxi	
	7.41	Cl	2-Pentenyloxi	
	7.42	C1	3-Pentenyloxi	
	7.43	C1	3-Chlor-2-propenyloxi	
45	7.44	Cl	2,3-Dichlor-2-propenyloxi	
	7.45	C1	2,3,3-Trichlor-propenyloxi	
	7.46	Cl	2-Propinyloxi	
50	7.47	Cl	2-Butinyl-oxi	
JJ	7.48	Cl	3-Butinyl-oxi	<u> </u>

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	7.49	C1	1-Methyl-2-propinyloxi	
	7.50	Cl	Cyclopropyl	
	7.51	Cl	Cyclobutyl	
	7.52	Cl	Cyclopentyl	110-111
10	7.53	C1	Cyclohexyl	141-142
	7.54	Cl	2-Cyclopentenyl	110-112
	7.55	C1	1-Cyclopentenyl	
	7.56	Cl	2-Cyclohexenyl	84- 86
15	7.57	C1	1-Cyclohexenyl	
	7.58	Cl	Cyclopentyloxi	
	7.59	C1	Cyclohexyloxi	
20	7.60	Cl	2-Cyclopentenyloxi	
	7.61	C1	2-Cyclohexenyloxi	

Tabelle 8 Verbindungen der Formel V mit A in der Bedeutung A_2

R⁷ phys.Dat. Nr. n 35 Fp [°C] 8.1 2 i-C₃H₇ 2 8.2 n-C₃H₇ 8.3 2 n-C₄H₉ 40 8.4 2 96-98 sec.-C₄H₉ 8.5 2 85-86 i-C4H9 2 8.6 tert.-C4H9 45 8.7 2 n-C5H11 8.8 2 sec.-C5H11 8.9 2 n-C₆H₁₃ 8.10 2 n-C7H15 50 8.11 2 sec.-C7H15

55

25

	Nr.	n	R ⁷	phys.Dat. Fp [°C]
5	8.12	2	1-Methylvinyl	
	8.13	2	2-Methylvinyl	
	8.14	2	Allyl	
	8.15	2	2-Methylallyl	
10	8.16	2	2-Ethylallyl	
	8.17	2	1-Methylallyl	
	8.18	2	1-Ethylallyl	
	8.19	2	1-Methyl-2-butenyl	
15	8.20	2	1-Ethyl-2-butenyl	
	8.21	2	1-Isopropyl-2-butenyl	
	8.22	2	1-n-Butyl-2-butenyl	
20	8.23	2	1-Methyl-2-pentenyl	
	8.24	2	1,4-Dimethyl-2-pentenyl	
	8.25	2	Propargyl	
	8.26	2	2-Butinyl	
25	8.27	2	3-Butinyl	
	8.28	2	Ethoxi	
	8.29	2	Propoxi	
	8.30	2	1-Methylethoxi	
30	8.31	2	n-Butoxi	
	8.32	2	1-Methylpropoxi	100-102
	8.33	2	2-Methylpropoxi	
35	8.34	2	1,1-Dimethylethoxi	
	8.35	2	n-Pentyloxi	
	8.36	2	n-Hexyloxi	
	8.37	2	2-Ethylhexyloxi	
40	8.38	2	2-Propenyloxi	
	8.39	2	2-Butentyloxi	
	8.40	2	2-Methyl-2-propenyloxi	
	8.41	2	2-Pentenyloxi	
45	8.42	2	3-Pentenyloxi	
	8.43	2	3-Chlor-2-propenyloxi	
	8.44	2	2,3-Dichlor-2-propenyloxi	
50	8.45	2	2,3,3-Trichlor-propenyloxi	
	8.46	2	2-Propinyloxi	

	Nr.	n	R ⁷	phys.Dat. Fp [°C]
_	8.47	2	2-Butinyl-oxi	
5	8.48	2	3-Butinyl-oxi	
	8.49	2	1-Methyl-2-propinyloxi	
	8.50	2	Cyclopropyl	
10	8.51	2	Cyclobutyl	
	8.52	2	Cyclopentyl	128-130
	8.53	2	Cyclohexyl	134-135
	8.54	2	2-Cyclopentenyl	
15	8.55	2	1-Cyclopentenyl	
	8.56	2	2-Cyclohexenyl	
	8.57	2	1-Cyclohexenyl	
20	8.58	2	Cyclopentyloxi	
	8.59	2	Cyclohexyloxi	
	8.60	2	2-Cyclopentenyloxi	
	8.61	2	2-Cyclohexenyloxi	
25	8.62	1	i-C ₃ H ₇	
	8.63	1	n-C ₃ H ₇	
	8.64	1	n-C ₄ H ₉	
	8.65	1	secC ₄ H ₉	Ö1
30	8.66	1	i-C4H9	Öl
	8.67	1	tertC ₄ H ₉	
	8.68	1	n-C ₅ H ₁₁	
35	8.69	1	secC ₅ H ₁₁	
	8.70	1	n-C ₆ H ₁₃	
	8.71	1	n-C ₇ H ₁₅	
	8.72	1	secC7H15	
40	8.73	1	Ethoxi	
	8.74	1	Propoxi	
	8.75	1	1-Methylethoxi	
4-	8.76	1	n-Butoxi	
45	8.77	1	1-Methylpropoxi	
	8.78	1	2-Methylpropoxi	
	8.79	1	1,1-Dimethylethoxi	
50	8.80	1	n-Pentyloxi	

	Nr.	n	R ⁷	phys.Dat. Fp [°C]
5	8.81	1	n-Hexyloxi	
	8.82	1	Cyclopentyl	

Tabelle 9

Verbindungen der Formel V mit A in der Bedeutung \mathtt{A}_4

15

10

20	Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
	9.1	CF ₃	CH ₃	i-C ₃ H ₇	115-116
	9.2	CF ₃	CH ₃	n-C ₃ H ₇	114-116
	9.3	CF ₃	CH ₃	n-C ₄ H ₉	
25	9.4	CF ₃	CH ₃	secC ₄ H ₉	73- 75
	9.5	CF ₃	CH ₃	i-C ₄ H ₉	100-102
	9.6	CF ₃	CH ₃	tertC ₄ H ₉	
	9.7	CF ₃	CH ₃	n-C ₅ H ₁₁	
30	9.8	CF ₃	CH ₃	secC ₅ H ₁₁	
	9.9	CF ₃	CH ₃	n-C ₆ H ₁₃	
	9.10	CF ₃	CH ₃	n-C7H15	
35	9.11	CF ₃	CH ₃	secC7H ₁₅	·
	9.12	CF ₃	CH ₃	1-Methylvinyl	
	9.13	CF ₃	CH ₃	2-Methylvinyl	
	9.14	CF ₃	CH ₃	Allyl	
40	9.15	CF ₃	CH₃	2-Methylallyl	
	9.16	CF ₃	CH ₃	2-Ethylallyl	
	9.17	CF ₃	CH ₃	1-Methylallyl	
45	9.18	CF ₃	CH ₃	1-Ethylallyl	
45	9.19	CF ₃	CH ₃	1-Methyl-2-butenyl	
	9.20	CF ₃	CH ₃	1-Ethyl-2-butenyl	
	9.21	CF ₃	CH ₃	1-Isopropyl-2-butenyl	
50	9.22	CF ₃	CH ₃	1-n-Butyl-2-butenyl	
	9.23	CF ₃	CH ₃	1-Methyl-2-pentenyl	

	Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
5	9.24	CF ₃	CH ₃	1,4-Dimethyl-2-pentenyl	
	9.25	CF ₃	CH ₃	Propargyl	
	9.26	CF ₃	CH ₃	2-Butinyl	
	9.27	CF ₃	CH ₃	3-Butinyl	
10	9.28	CF ₃	CH ₃	Ethoxi	
	9.29	CF ₃	CH ₃	Propoxi	
	9.30	CF ₃	CH ₃	1-Methylethoxi	
	9.31	CF ₃	CH ₃	n-Butoxi	
15	9.32	CF ₃	CH ₃	1-Methylpropoxi	
	9.33	CF ₃	CH ₃	2-Methylpropoxi	
	9.34	CF ₃	CH ₃	1,1-Dimethylethoxi	
00	9.35	CF ₃	CH ₃	n-Pentyloxi	
20	9.36	CF ₃	CH ₃	n-Hexyloxi	
	9.37	CF ₃	CH ₃	2-Ethylhexyloxi	
	9.38	CF ₃	CH ₃	2-Propenyloxi	
25	9.39	CF ₃	CH ₃	2-Butentyloxi	
	9.40	CF ₃	CH ₃	2-Methyl-2-propenyloxi	
	9.41	CF ₃	CH ₃	2-Pentenyloxi	
	9.42	CF ₃	CH ₃	3-Pentenyloxi	
30	9.43	CF ₃	CH ₃	3-Chlor-2-propenyloxi	
	9.44	CF ₃	CH ₃	2,3-Dichlor-2-propenyloxi	
	9.45	CF ₃	CH ₃	2,3,3-Trichlor-propenyloxi	
	9.46	CF ₃	CH ₃	2-Propinyloxi	
35	9.47	CF ₃	CH ₃	2-Butinyl-oxi	
	9.48	CF ₃	CH ₃	3-Butinyl-oxi	
	9.49	CF ₃	CH ₃	1-Methyl-2-propinyloxi	
	9.50	CF ₃	CH ₃	Cyclopropyl	
40	9.51	CF ₃	CH ₃	Cyclobutyl	
	9.52	CF ₃	CH ₃	Cyclopentyl	114-118
	9.53	CF ₃	CH ₃	Cyclohexyl	100-104
45	9.54	CF ₃	CH ₃	2-Cyclopentenyl	116-120
	9.55	CF ₃	CH ₃	1-Cyclopentenyl	
	9.56	CF ₃	CH ₃	2-Cyclohexenyl	96-98
	9.57	CF ₃	CH ₃	1-Cyclohexenyl	
50	9.58	CF ₃	CH ₃	Cyclopentyloxi	

	Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
5	9.59	CF ₃	CH ₃	Cyclohexyloxi	
	9.60	CF ₃	CH ₃	2-Cyclopentenyloxi	
	9.61	CF ₃	CH ₃	2-Cyclohexenyloxi	
	9.62	CH ₃	CH ₃	i-C ₃ H ₇	
10	9.63	СН3	CH ₃	n-C ₃ H ₇	
	9.64	CH ₃	CH ₃	n-C ₄ H ₉	
	9.65	CH ₃	CH ₃	secC ₄ H ₉	136
	9.66	CH ₃	CH ₃	i-C ₄ H ₉	96- 97
15	9.67	CH ₃	CH ₃	tertC ₄ H ₉	
	9.68	CH ₃	CH ₃	n-C ₅ H ₁₁	
	9.69	CH ₃	CH ₃	secC ₅ H ₁₁	
••	9.70	CH ₃	CH ₃	n-C ₆ H ₁₃	
20	9.71	CH ₃	CH ₃	n-C ₇ H ₁₅	
	9.72	CH ₃	CH ₃	secC ₇ H ₁₅	
	9.73	CH ₃	CH ₃	Ethoxi	
25	9.74	CH ₃	CH ₃	Propoxi	
	9.75	CH ₃	CH ₃	1-Methylethoxi	
	9.76	CH ₃	CH ₃	n-Butoxi	
	9.77	CH ₃	CH ₃	1-Methylpropoxi	
30	9.78	CH ₃	CH ₃	2-Methylpropoxi	
	9.79	CH ₃	CH ₃	1,1-Dimethylethoxi	
	9.80	CH ₃	CH ₃	n-Pentyloxi	
	9.81	CH ₃	CH ₃	n-Hexyloxi	
35	9.82	CH ₃	CH ₃	Cyclopentyl	128-130
	9.83	CH ₃	CH ₃	Cyclopentenyl	128-129
	9.84	CH ₃	CH ₃	Cyclohexyl	128-129
40	9.85	CH ₃	CH ₃	1-Ethyl-propoxy	45-47
	9.86	CH ₃	CH ₃	Cyclopentyloxy	97-99
	9.87	CH ₃	CH ₃	2-Cyclohexenyloxy	87-89
	9.88	CH ₃	CH ₃	2-Methyl-2-propenyloxy	103-105

A₆ CO-NH

Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]
10.1	CH ₃	C1	i-C ₃ H ₇	108-110
10.2	CH ₃	Cl	n-C ₃ H ₇	129-130
10.3	CH ₃	Cl	n-C ₄ H ₉	
10.4	CH ₃	C1 ·	secC ₄ H ₉	71- 73
10.5	CH ₃	Cl	i-C ₄ H ₉	119-120
10.6	CH ₃	C1	tertC ₄ H ₉	
10.7	CH ₃	Cl	n-C ₅ H ₁₁	
10.8	CH ₃	C1	secC ₅ H ₁₁	
10.9	CH ₃	Cl	n-C ₆ H ₁₃	
10.10	CH ₃	Cl	n-C7H15	
10.11	CH ₃	Cl	secC ₇ H ₁₅	
10.12	CH ₃	Cl	1-Methylvinyl	
10.13	CH ₃	Cl	2-Methylvinyl	
10.14	CH ₃	C1	Allyl	
10.15	CH ₃	Cl	2-Methylallyl	
10.16	CH ₃	Cl	2-Ethylallyl	
10.17	CH ₃	Cl	1-Methylallyl	
10.18	CH ₃	Cl	1-Ethylallyl	
10.19	CH ₃	C1	1-Methyl-2-butenyl	
10.20	CH ₃	C1	1-Ethyl-2-butenyl	
10.21	CH ₃	Cl	1-Isopropyl-2-butenyl	
10.22	CH ₃	Cl	1-n-Butyl-2-butenyl	
10.23	CH ₃	Cl	1-Methyl-2-pentenyl	
10.24	CH ₃	Cl	1,4-Dimethyl-2-pentenyl	
10.25	CH ₃	C1	Propargyl	
10.26	CH ₃	Cl	2-Butinyl	
10.27	CH ₃	Cl	3-Butinyl	

	Nr.	R ⁵	R ⁶	R ⁷	Jahre Dat
	INT.	l R	I R	K.	phys.Dat. Fp [°C]
	10.28	СН3	C1	Ethoxi	<u> </u>
5	10.29	СН3	C1	Propoxi	
	10.30	CH ₃	Cl	1-Methylethoxi	
	10.31	CH ₃	Cl	n-Butoxi	
10	10.32	CH ₃	C1	1-Methylpropoxi	
10	10.33	CH ₃	C1	2-Methylpropoxi	
	10.34	CH ₃	C1	1,1-Dimethylethoxi	
	10.35	CH ₃	C1	n-Pentyloxi	
15	10.36	CH ₃	Cl	n-Hexyloxi	
	10.37	CH ₃	Ci	2-Ethylhexyloxi	
	10.38	CH ₃	Cl	2-Propenyloxi	
	10.39	CH ₃	C1	2-Butentyloxi	
20	10.40	CH ₃	Cl	2-Methyl-2-propenyloxi	
	10.41	CH ₃	Cl	2-Pentenyloxi	
	10.42	CH ₃	Cl	3-Pentenyloxi	
	10.43	CH ₃	Cl	3-Chlor-2-propenyloxi	
25	10.44	CH ₃	Cl	2,3-Dichlor-2-propenyloxi	
	10.45	CH ₃	C1	2,3,3-Trichlor-propenyloxi	
	10.46	CH ₃	Cl	2-Propinyloxi	
30	10.47	CH ₃	Cl	2-Butinyl-oxi	
	10.48	CH ₃	Cl	3-Butinyl-oxi	
	10.49	CH ₃	Cl	1-Methyl-2-propinyloxi	
•	10.50	CH ₃	Cl	Cyclopropyl	
35	10.51	CH ₃	Cl	Cyclobutyl	
	10.52	CH ₃	Cl	Cyclopentyl	122-123
	10.53	CH ₃	Cl	Cyclohexyl	143-144
	10.54	CH ₃	Cl	2-Cyclopentenyl	123-125
40	10.55	CH ₃	Cl	1-Cyclopentenyl	
	10.56	CH ₃	C1	2-Cyclohexenyl	114-116
	10.57	CH ₃	Cl	1-Cyclohexenyl	
4E	10.58	CH ₃	C1	Cyclopentyloxi	
45	10.59	CH ₃	Cl	Cyclohexyloxi	
	10.60	CH ₃	C1	2-Cyclopentenyloxi	
	10.61	CH ₃	Cl	2-Cyclohexenyloxi	
50	10.62	CF ₃	Cl	i-C ₃ H ₇	

	Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]
5	10.63	CF ₃	Cl	n-C ₃ H ₇	
	10.64	CF ₃	Cl	n-C ₄ H ₉	
	10.65	CF ₃	Cl	secC ₄ H ₉	108-110
	10.66	CF ₃	Cl	i-C ₄ H ₉	122-124
10	10.67	CF ₃	Cl	tertC ₄ H ₉	
	10.68	CF ₃	Cl	n-C ₅ H ₁₁	
	10.69	CF ₃	Cl	secC ₅ H ₁₁	
	10.70	CF ₃	Cl	n-C ₆ H ₁₃	
15	10.71	CF ₃	Cl	n-C ₇ H ₁₅	
	10.72	CF ₃	Cl	secC ₇ H ₁₅	
	10.73	CF ₃	C1	Ethoxi	
20	10.74	CF ₃	Cl	Propoxi	
	10.75	CF3	C1	1-Methylethoxi	
	10.76	CF ₃	C1	n-Butoxi	
	10.77	CF ₃	Cl	1-Methylpropoxi	
25	10.78	CF ₃	Cl	2-Methylpropoxi	
	10.79	CF ₃	Cl	1,1-Dimethylethoxi	
	10.80	CF ₃	Cl	n-Pentyloxi	
	10.81	CF ₃	Cl	n-Hexyloxi	
30	10.82	CF ₃	Cl	Cyclopentyl	113-115
	10.83	CF ₃	Cl	Cyclopentenyl	132-133

Tabelle 11 Verbindungen der Formel V mit A in der Bedeutung A_7

45	Nr.	R ²	R ⁶	R ⁷	phys.Dat. Fp [°C]
	11.1	Н	CH ₃	i-C ₃ H ₇	
50	11.2	Н	CH ₃	n-C ₃ H ₇ .	
	11.3	Н	CH ₃	n-C ₄ H ₉	

	Nr.	R ²	R ⁶	R ⁷	phys.Dat. Fp [°C]
5	11.4	Н	CH ₃	secC ₄ H ₉	Öl
J	11.5	Н	CH ₃	i-C ₄ H ₉	Ö1
	11.6	Н	CH ₃	tertC ₄ H ₉	
	11.7	н	СН3	n-C ₅ H ₁₁	
10	11.8	Н	CH ₃	secC ₅ H ₁₁	
	11.9	Н	CH ₃	n-C ₆ H ₁₃	
	11.10	Н	CH ₃	n-C ₇ H ₁₅	
	11.11	H	CH ₃	secC ₇ H ₁₅	•
15	11.12	н	CH ₃	Ethoxi	
	11.13	н	CH ₃	Propoxi	
	11.14	Н	CH ₃	1-Methylethoxi	
	11.15	Н	CH ₃	n-Butoxi	
20	11.16	Н	CH ₃	1-Methylpropoxi	
	11.17	Н	CH ₃	2-Methylpropoxi	
	11.18	Н	CH ₃	1,1-Dimethylethoxi	
25	11.19	Н	CH ₃	n-Pentyloxi	
	11.20	н	CH ₃	n-Hexyloxi	
	11.21	н	CH ₃	Cyclopentyl	
	11.22	н	CH ₃	Cyclopentenyl	
30	L				

Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
12.1	Н	i-C ₃ H ₇	147-148
12.2	Н	n-C ₃ H ₇	
12.3	Н	n-C ₄ H ₉	
12.4	Н	secC ₄ H ₉	109-110
12.5	Н	i-C ₄ H ₉	114-115

	Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
	12.6	Н	tertC ₄ H ₉	
5	12.7	Н	n-C ₅ H ₁₁	
	12.8	Н	secC ₅ H ₁₁	
	12.9	Н	n-C ₆ H ₁₃	
10	12.10	Н	n-C7H15	
10	12.11	Н	secC7H15	
	12.12	Н	Ethoxi	
	12.13	Н	Propoxi	
15	12.14	Н	1-Methylethoxi	
	12.15	Н	n-Butoxi	
	12.16	Н	1-Methylpropoxi	
	12.17	Н	2-Methylpropoxi	
20	12.18	Н	1,1-Dimethylethoxi	
	12.19	Н	n-Pentyloxi	
	12.20	Н	n-Hexyloxi	
	12.21	Н	Cyclopentyl	97- 98 ·
25	12.22	Н	Cyclohexyl	125-127
	12.23	Н	2-Cyclopentenyl	98- 99
	12.24	Н	1-Cyclopentenyl	
30	12.25	Н	2-Cyclohexenyl	82- 84
	12.26	Н	1-Cyclohexenyl	
	12.27	Н	Cyclopentyloxi	73 - 75
	12.28	Н	Cyclohexyloxi	
35	12.29	Н	2-Cyclopentenyloxi	
	12.30	CH ₃	i-C ₃ H ₇	
	12.31	CH ₃	n-C ₃ H ₇	
	12.32	CH ₃	n-C ₄ H ₉	
40	12.33	CH ₃	secC ₄ H ₉	80- 82
	12.34	CH ₃	i-C ₄ H ₉	114-116
	12.35	CH ₃	tertC ₄ H ₉	
45	12.36	CH ₃	n-C ₅ H ₁₁	
	12.37	CH ₃	secC ₅ H ₁₁	
	12.38	CH ₃	n-C ₆ H ₁₃	
	12.39	CH ₃	n-C ₇ H ₁₅	
50	12.40	CH ₃	secC ₇ H ₁₅	

	Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
5	12.41	CH ₃	Ethoxi	
	12.42	CH ₃	Propoxi	
	12.43	CH ₃	1-Methylethoxi	
	12.44	CH ₃	n-Butoxi	
10	12.45	CH ₃	1-Methylpropoxi	
	12.46	CH ₃	2-Methylpropoxi	
	12.47	CH ₃	1,1-Dimethylethoxi	
15	12.48	CH ₃	n-Pentyloxi	
	12.49	СН3	n-Hexyloxi	
	12.50	CH ₃	Cyclopentyl	
	12.51	Н	2-Methyl-2-propenyloxy	40 - 41
20	12.52	Н	1-Ethyl-propoxy	Öl
	12.53	H	2-Cyclohexenyloxy	51 - 53

Herstellbeispiele

Beispiel 7

Zu einer Lösung von 1,4 g 2-n-Propylanilin und 1,1 g Triethylamin in 15 ml Tetrahydrofuran tropft man bei 0 ° C 2,3 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäurechlorid und rührt noch 12 Stdn. bei 20 ° C.

Nach Verdünnen mit 300 ml Wasser, Extraktion mit Methyltert.-butylether (2x 70 ml), Verdampfen des Lösungsmittels und Mischen des Rückstandes mit wenig n-Pentan isoliert man 2,8 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäure-2-n-propyl-anilid vom Fp.: 114-116 °C (Tabelle 9, Nr. 2).

Beispiel 8

Zu einer Lösung von 2,7 g 2-i-Propylanilin und 2,2 g Triethylamin in 40 ml Dichlormethan tropft man bei 0°C 3,8 g 1,3-Dimethyl-5-chlor-pyrazol-4-carbonsäurechlorid und rührt noch 2 Stdn. bei 0°C.

Nach Waschen mit 50 ml Wasser, Verdampfen des Lösungsmittels und Umkristallisieren aus Cyclohexan isoliert man 3,3 g 1,3-Dimethyl-5-chlor-pyrazol-4-carbonsäure-2-isopropylanilid vom Fp. 108 - 110 °C (Tabelle 10, Nr. 1).

45

50

Tabelle 13 $\begin{tabular}{lll} Verbindungen der Formel V mit A in der Bedeutung A_1 \\ \end{tabular}$

A₁ CO-NH

. **5**

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
13.1	Br	i-C ₃ H ₇	
13.2	Br	n-C ₃ H ₇	
13.3	Br	n-C ₄ H ₉	
13.4	Br	secC ₄ H ₉	74- 75
13.5	Br	i-C ₄ H ₉	110 - 112
13.6	Br	tertC ₄ H ₉	
13.7	Br	n-C ₅ H ₁₁	
13.8	Br	secC ₅ H ₁₁	
13.9	Br	n-C ₆ H ₁₃	
13.10	Br	n-C ₇ H ₁₅	
13.11	Br	secC ₇ H ₁₅	
13.12	Br	1-Methylvinyl	
13.13	Br	2-Methylvinyl	
13.14	Br	Allyl	
13.15	Br	2-Methylallyl	
13.16	Br	2-Ethylallyl	
13.17	Br	1-Methylallyl	
13.18	Br	1-Ethylallyl	
13.19	Br	1-Methyl-2-butenyl	
13.20	Br	1-Ethyl-2-butenyl	
13.21	Br	1-Isopropyl-2-butenyl	
13.22	Br	1-n-Butyl-2-butenyl	
13.23	Br	1-Methyl-2-pentenyl	

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	13.24	Br	1,4-Dimethyl-2-pentenyl	
	13.25	Br	Propargyl	
	13.26	Br	2-Butinyl	
	13.27	Br	3-Butinyl	
10	13.28	Br	Ethoxi	
	13.29	Br	Propoxi	
	13.30	Br	1-Methylethoxi	
	13.31	Br	n-Butoxi	
15	13.32	Br	1-Methylpropoxi	
	13.33	Br .	2-Methylpropoxi	
	13.34	Br	1,1-Dimethylethoxi	
	13.35	Br	n-Pentyloxi	
20	13.36	Br	n-Hexyloxi	
	13.37	Br	2-Ethylhexyloxi	
	13.38	Br	2-Propenyloxi	
25	13.39	Br	2-Butentyloxi	
	13.40	Br ·	2-Methyl-2-propenyloxi	
	13.41	Br	2-Pentenyloxi	
	13.42	Br	3-Pentenyloxi	
30	13.43	Br	3-Chlor-2-propenyloxi	
	13.44	Br	2,3-Dichlor-2-propenyloxi	
	13.45	Br	2,3,3-Trichlor-propenyloxi	
	13.46	Br	2-Propinyloxi	
35	13.47	Br	2-Butinyl-oxi	
	13.48	Br	3-Butinyl-oxi	
	13.49	Br	1-Methyl-2-propinyloxi	
40	13.50	Br	Cyclopropyl	
	13.51	Br	Cyclobutyl	
	13.52	Br	Cyclopentyl	
	13.53	Br	Cyclohexyl	
45	13.54	Br	2-Cyclopentenyl	
	13.55	Br	1-Cyclopentenyl	
	13.56	Br	2-Cyclohexenyl	
	13.57	Br	1-Cyclohexenyl	
50	13.58	Br	Cyclopentyloxi	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
13.59	Br	Cyclohexyloxi	
13.60	Br	2-Cyclopentenyloxi	·
13.61	Br	2-Cyclohexenyloxi	

Tabelle 14 $\begin{tabular}{lll} Verbindungen der Formel V mit A in der Bedeutung A_1 \\ \end{tabular}$

20 Nr. R^1 R⁷ phys.Dat. Fp [°C] 14.1 J i-C₃H₇ 14.2 J n-C₃H₇ 25 14.3 n-C₄H₉ J J 97 - 98 14.4 sec.-C4H9 148 - 149 14.5 J $i-C_4H_9$ 14.6 J tert.-C4H9 30 14.7 J $n-C_5H_{11}$ 14.8 J $sec.-C_5H_{11}$ 14.9 J n-C₆H₁₃ 35 14.10 J n-C7H15 14.11 J sec.-C7H15 14.12 J 1-Methylvinyl 14.13 J 2-Methylvinyl 40 14.14 Allyl J 2-Methylallyl 14.15 J 14.16 J 2-Ethylallyl 14.17 1-Methylallyl J 45 14.18 J 1-Ethylallyl 14.19 J 1-Methyl-2-butenyl 14.20 1-Ethyl-2-butenyl 50 14.21 J 1-Isopropyl-2-butenyl

55

5

10

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	14.22	J	1-n-Butyl-2-butenyl	
	14.23	J	1-Methyl-2-pentenyl	
	14.24	J	1,4-Dimethyl-2-pentenyl	
	14.25	J	Propargyl	
10	14.26	J	2-Butinyl	
	14.27	J	3-Butinyl	·
	14.28	J	Ethoxi	
45	14.29	J	Propoxi	
15	14.30	J	1-Methylethoxi	
	14.31	J	n-Butoxi	
	14.32	J	1-Methylpropoxi	
20	14.33	J	2-Methylpropoxi	
	14.34	J	1,1-Dimethylethoxi	
	14.35	J	n-Pentyloxi	
	14.36	J	n-Hexyloxi	
25	14.37	J	2-Ethylhexyloxi	
	14.38	J	2-Propenyloxi	
	14.39	J	2-Butentyloxi	
	14.40	J	2-Methyl-2-propenyloxi	
30	14.41	J	2-Pentenyloxi	
	14.42	J	3-Pentenyloxi	
	14.43	J	3-Chlor-2-propenyloxi	
35	14.44	J	2,3-Dichlor-2-propenyloxi	
	14.45	J	2,3,3-Trichlor-propenyloxi	
	14.46	J	2-Propinyloxi	
	14.47	J	2-Butinyl-oxi	
40	14.48	J	3-Butinyl-oxi	
	14.49	J	1-Methyl-2-propinyloxi	
	14.50	J	Cyclopropyl	
	14.51	J	Cyclobutyl	
45	14.52	J	Cyclopentyl	
	14.53	J	Cyclohexyl	
	14.54	J	2-Cyclopentenyl	
50	14.55	J	1-Cyclopentenyl	
	14.56	J	2-Cyclohexenyl	

Nr.	Rl	R ⁷	phys.Dat. Fp [°C]
14.57	J	1-Cyclohexenyl	
14.58	J	Cyclopentyloxi	
14.59	J	Cyclohexyloxi	
14.60	J	2-Cyclopentenyloxi	
14.61	J	2-Cyclohexenyloxi	

Tabelle 15 $\begin{tabular}{lll} Verbindungen der Formel V mit A in der Bedeutung A_3 \\ \end{tabular}$

H CO-NH CH₂ R⁷

Nr. R⁷ phys.Dat. Fp [°C] 15.1 i-C₃H₇ 15.2 n-C₃H₇ 15.3 n-C₄H₉ 15.4 78-80 sec.-C4H9 15.5 106-107 i-C4H9 15.6 tert.-C4H9 15.7 $n-C_5H_{11}$ 15.8 $sec.-C_5H_{11}$ 15.9 n-C₆H₁₃ 15.10 n-C7H15 sec.-C7H15 15.11 15.12 Ethoxi 15.13 Propoxi 15.14 1-Methylethoxi 15.15 n-Butoxi 15.16 1-Methylpropoxi 15.17 2-Methylpropoxi 15.18 1,1-Dimethylethoxi 15.19 n-Pentyloxi

55

5

10

15

20

25

30

35

40

45

	Nr.	R ⁷	phys.Dat. Fp [°C]
	15.20	n-Hexyloxi	
5	15.21	Cyclopentyl	
	15.22	Cyclohexyl	
	15.23	2-Cyclopentenyl	
10	15.24	1-Cyclopentenyl	
10	15.25	2-Cyclohexenyl	
	15.26	1-Cyclohexenyl	
	15.27	Cyclopentyloxi	
15	15.28	Ethoxi	
	15.29	Propoxi	
	15.30	l-Methylethoxi	
	15.31	n-Butoxi	
20	15.32	1-Methylpropoxi	
	15.33	2-Methylpropoxi	
	15.34	1,1-Dimethylethoxi	
	15.35	n-Pentyloxi	
25	15.36	n-Hexyloxi	
	15.37	2-Ethylhexyloxi	
	15.38	2-Propenyloxi	
30	15.39	2-Butentyloxi	
	15.40	2-Methyl-2-propenyloxi	Öl
	15.41	2-Pentenyloxi	
	15.42	3-Pentenyloxi	
35	15.43	3-Chlor-2-propenyloxi	
	15.44	2,3-Dichlor-2-propenyloxi	
•	15.45	2,3,3-Trichlor-propenyloxi	
	15.46	2-Propinyloxi	
40	15.47	2-Butinyl-oxi	
	15.48	3-Butinyl-oxi	
	15.49	1-Methyl-2-propinyloxi	
45	15.50	Cyclopropyl	
	15.51	Cyclobutyl	
	15.52	Cyclopentyl	
	15.53	Cyclohexyl	
50	15.54	2-Cyclopentenyl	

Nr.	R ⁷	phys.Dat. Fp [°C]
15.55	1-Cyclopentenyl	
15.56	2-Cyclohexenyl	
15.57	1-Cyclohexenyl	
15.58	Cyclopentyloxi	Öl
15.59	Cyclohexyloxi	
15.60	2-Cyclopentenyloxi	
15.61	2-Cyclohexenyloxi	Ö1
15.62	1-Ethylpropoxy	Ö1

Die Erfindung betrifft ferner die folgenden neuen Verbindungen. Nicotinsäureanilid-Derivate der allgemeinen Formel I

 $\begin{array}{c|c}
 & CO-NH \\
\hline
 & R^1 & R^2
\end{array}$

25

5 .

10

15

20

in der die Substituenten folgende Bedeutung haben

R1 Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl,

R² gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R² verschieden von Isopropyl ist, wenn R¹ Chlor bedeutet.

Anilid-Derivate der allgemeinen Formel II,

35

30

40

in der die Substituenten folgende Bedeutung haben:

45

50

55

$$\begin{array}{c} X \\ CH_3 \end{array} \qquad \begin{array}{c} X \\ CH_3 \end{array} \qquad \begin{array}{c} (A2) \end{array}$$

Methylen oder Schwefel

R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes

C₄-C₅-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß

- A nicht A₁ ist, wenn R Ethoxi, Isopropoxi oder Allyloxi ist
- A nicht A₂ mit X in der Bedeutung Schwefel ist, wenn R Ethoxi, Propoxi, n-Butoxi, sec.-Butoxi, n-Pentyloxi ist
 - A nicht A2 mit X in der Bedeutung Methylen ist, wenn R Isopropyl ist.
 - 2-Aminobiphenyl-Derivate der allgemeinen Formel III,

5

10

15

45

50

in der die Substituenten folgende Bedeutung haben:

20
$$R^{3} \qquad (A1) \qquad (A2) \qquad (A3)$$
25
$$R^{3} \qquad (A1) \qquad (A2) \qquad (A3)$$
30
$$R^{3} \qquad (A4) \qquad (A5) \qquad (A6)$$
35
$$R^{7} \qquad (A4) \qquad (A5) \qquad (A6)$$

$$R^{7} \qquad (A7) \qquad (A8)$$

- X Methylen, Schwefel, Sulfinyl, Sulfonyl (SO₂),
- R1 Methyl, Trifluormethyl, Chlor, Brom, Jod
- R² Trifluormethyl, Chlor
- R³ Wasserstoff oder Methyl
- R⁴ Methyl, Trifluormethyl, Chlor
- R⁵ Wasserstoff, Methyl, Chlor
- R⁶ Methyl, Trifluormethyl
- R7 Methyl, Chlor
- R⁸ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen.
- 55 Carbonsäureanilid-Derivate der allg. Formel V,

$$A-CO-NH$$
 V ,

in der die Substituenten folgende Bedeutung haben

A
$$R^{1}$$

$$(O)_{n}$$

$$S$$

$$CH_{3}$$

$$R^{2}$$

$$(A3)$$

$$R^{4}$$

$$N$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$(A5)$$

$$(A6)$$

$$R^{2}$$

$$CH_{3}$$

$$R^{2}$$

$$CH_{3}$$

$$R^{2}$$

$$CH_{3}$$

$$R^{2}$$

$$CH_{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$CH_{3}$$

$$R^{7}$$

$$R^{6}$$

$$CH_{3}$$

$$R^{7}$$

$$R^{7}$$

$$R^{6}$$

$$CH_{3}$$

$$R^{7}$$

$$R^{7}$$

$$R^{8}$$

$$R^{8}$$

$$R^{9}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{7}$$

$$R^{6}$$

$$R^{7}$$

$$R^{7}$$

$$R^{8}$$

$$R^{9}$$

$$R^{$$

n 1 oder 2

5

30

35

40

45

50

R1 Trifluormethyl, Chlor, Brom, Jod

R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R4 Wasserstoff, Methyl, Chlor

R⁵ Methyl, Trifluormethyl

R6 Methyl, Chlor

R7

gegebenenfalls durch Halogen substituiertes C_3 - C_{12} -Alkyl, gegebenenfalls durch Halogen substituiertes C_3 - C_{12} -Alkenyl, C_3 - C_6 -Alkinyl gegebenenfalls durch Halogen substituiertes C_2 - C_{12} -Alkoxi, gegebenenfalls durch Halogen substituiertes C_3 - C_{12} -Alkenyloxi, C_3 - C_{12} -Alkinyloxi, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_3 - C_6 -Cycloalkyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkenyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkenyloxi mit der Maßgabe, daß R^7 verschieden von 3-Methyl-but-2-en-1-yl oder 3-Methyl-but-3-en-1-yl ist, wenn R^1 Trifluormethyl ist.

Die neuen Verbindungen eignen sich als Fungizide.

Die erfindungsgemäßen fungiziden Verbindungen bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Normalerweise werden die Pflanzen mit den Wirkstoffen besprüht oder bestäubt oder die Samen der Pflanzen mit den Wirkstoffen behandelt.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene

und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Ligninsulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Beispiele für solche Zubereitungen sind:

20

25

30

35

40

I. eine Lösung aus 90 Gew.-Teilen der Verbindung Nr. 1.7 und 10 Gew.-Teilen N-Methyl-a-pyrrolidon, die zur Anwendung in Form kleinster Tropfen geeignet ist;

II. eine Mischung aus 20 Gew.-Teilen der Verbindung Nr. 1.8, 80 Gew.Teilen Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl; durch feines Verteilen der Lösung in Wasser erhält man eine Dispersion.

III. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.3, 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;

IV. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.4, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfraktion vom Siedepunkt 210 bis 280'C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;

V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen der Verbindung Nr. 1.5, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphtalin-a-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel; durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe;

VI. eine innige Mischung aus 3 Gew.-Teilen der Verbindung Nr. 1.7 und 97 Gew.-Teilen feinteiligem Kaolin; dieses Stäubemittel enthält 3 Gew.-% Wirkstoff;

VII. eine innige Mischung aus 30 Gew.-Teilen der Verbindung Nr. 1.8, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde; diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;

VIII. eine stabile wäßrige Dispersion aus 40 Gew.-Teilen der Verbindung Nr. 1.9, 10 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann;

IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.33, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehydkondensates und 68 Gew.-Teilen eines paraffinischen Mineralöls.

Die neuen Verbindungen zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites o Spektrum von pflanzenpathogenen Pilzen, insbesondere gegen Botrytis aus. Sie sind zum Teil systemisch wirksam und können als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Die Verbindungen werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Saatgüter, Pflanzen, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt.

Die Anwendung erfolgt vor oder nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze.

Speziell eignen sich die Verbindungen zur Bekämpfung folgender Pflanzenkrankheiten:

Erysiphe graminis (echter Mehltau) in Getreide,

Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,

Podosphaera leucotricha an Äpfeln,

Uncinula necator an Reben,

Venturia inaequalis (Schorf) an Äpfeln,

Helminthosporium-Arten an Getreide,

10 Septoria nodorum an Weizen,

15

20

Botrytis cinerea (Grauschimmel) an Erdbeeren, Reben,

Cercospora arachidicola an Erdnüssen.

Pseudocercosporella herpotrichoides an Weizen, Gerste, Pyricularia oryzae an Reis,

Fusarium- und Verticillium-Arten an verschiedenen Pflanzen, Alternaria-Arten an Gemüse und Obst.

Die Anwendung gegen Botrytis wird bevorzugt.

Die neuen Verbindungen können auch im Materialschutz (Holzschutz) eingesetzt werden, z.B. gegen Paecilomyces variotii.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.% Wirkstoff.

Die Aufwandmengen liegen je nach Art des gewünschten Effektes zwischen 0,02 und 3 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g, vorzugsweise 0,01 bis 10 g je Kilogramm Saatgut benötigt.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln.

Beim Vermischen mit Fungiziden erhält man dabei in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken: Schwefel,

Dithiocarbamate und deren Derivate, wie

Ferridimethyldithiocarbamat,

Zinkdimethyldithiocarbamat,

s Zinkethylenbisdithiocarbamat,

Manganethylenbisdithiocarbamat,

Mangan-Zink-ethylendiamin-bis-dithiocarbamat,

Tetramethylthiuramdisulfide,

Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat),

40 Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat),

Zink-(N,N'-propylen-bis-dithiocarbamat),

N,N'-Polypropylen-bis-(thiocarbamoyl)-disulfid,;

Nitroderivate, wie

Dinitro-(1-methylheptyl)-phenylcrotonat,

45 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat,

2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat,

5-Nitro-isophthalsäure-di-isopropylester;

heterocyclische Substanzen, wie

2-Heptadecyl-2-imidazolin-acetat,

50 2,4-Dichlor-6-(o-chloranilino)-s-triazin,

O,O-Diethyl-phthalimidophosphonothioat,

5-Amino-1-\(\beta\)bis-(dimethylamino)-phosphiny!'-3-phenyl-1,2,4-triazol,

2,3-Dicyano-1,4-dithioanthrachinon,

2-Thio-1,3-dithiolo \$4,5-b'chinoxalin,

5 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester,

2-Methoxycarbonylamino-benzimidazol,

2-(Furyl-(2))-benzimidazol,

2-(Thiazolyl-(4))-benzimidazol,

N-(1,1,2,2-Tetrachlorethylthio)-tetrahydrophthalimid,

```
N-Trichlormethylthio-tetrahydrophthalimid,
    N-Trichlormethylthio-phthalimid,
    N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäurediamid,
    5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol,
    2-Rhodanmethylthiobenzthiazol,
    1,4-Dichlor-2,5-dimethoxybenzol,
    4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon,
    Pyridin-2-thio-1-oxid,
    8-Hydroxychinolin bzw. dessen Kupfersalz,
    2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin,
    2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid,
    2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid,
    2-Methyl-furan-3-carbonsäureanilid,
    2,5-Dimethyl-furan-3-carbonsäureanilid,
    2,4,5-Trimethyl-furan-3-carbonsäureanilid,
    2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid,
    N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid,
    2-Methyl-benzoesäure-anilid.
    2-lod-benzoesäure-anilid,
    N-Formyl-N-morpholin-2,2,2-trichlorethylacetal,
    Piperazin-1,4-diylbis-(1-(2,2,2-trichlor-ethyl)-formamid,
     1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan,
    2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze,
25 2.6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze.
    N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethylmorpholin,
    N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin,
    1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
     1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
    N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff,
     1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon,
     1-(4-Chlorphenyl)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol,
    \alpha-(2-Chlorphenyl)-\alpha-(4-chlorphenyl)-5-pyrimidin-methanol.
     5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin,
35 Bis-(p-chlorphenyl)-3-pyridinmethanol,
    1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol,
    1,2-Bis-83-methoxycarbonyl-2-thioureido)-benzol,
    sowie verschiedene Fungizide, wie
    Dodecylguanidinacetat.
    3-[3-(3,5-Dimethyl-2-oxycyclohexyl)-2-hydroxyethyl)]glutarimid,
    Hexachlorbenzol,
    DL-Methyl-N-(2.6-dimethyl-phenyl)-N-furoyl (2)-alaninat.
    DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methylester.
    N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton,
    DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethylester,
    5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin,
    3-[3,5-Dichlorphenyl(-5-methyl-5-methoxymethyl]-1,3-oxazolidin-2,4-dion,
    3-(3,5-Dichlorhenyl)-1-isopropylcarbamoylhydantoin,
    N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid,
    2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid,
     1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol,
    2,4-Difluor-\alpha-(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol,
    N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-aminopyridin,
     1-((bis-(4-Fluorphenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol.
55
```

Anwendungsbeispiele

Als Vergleichswirkstoffe wurden 2-Chlornicotinsäure-2'-ethylanilid (A) - bekannt aus US 4 001 416 - und 2-Chlornicotinsäure-3'-isopropylanilid (B) - bekannt aus DE 26 11 601 - benutzt.

Anwendungsbeispiel 1

5

10

Wirksamkeit gegen Botrytis cinerea auf Paprikaschoten

Scheiben von grünen Paprikaschoten wurden mit wäßriger Wirkstoffaufbereitung, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, tropfnaß besprüht. 2 Stunden nach dem Antrocknen des Spritzbelages wurden die Fruchtscheiben mit einer Sporensuspension von Botrytis cinerea, die 1,7 x 10⁶ Sporen pro ml einer 2 %igen Biomalzlösung enthielt, behandelt. Die Fruchtscheiben wurden anschließend in feuchten Kammern bei 18 °C für 4 Tage aufbewahrt. Danach erfolgte visuell die Auswertung der Botrytis-Entwicklung auf den befallenen Fruchtscheiben.

Das Ergebnis zeigt, daß die Wirkstoffe 1.5, 1.7 und 1.8 bei der Anwendung als 500 ppm haltige Spritzbrühe eine bessere fungizide Wirkung zeigen (95 %) als die bekannten Vergleichswirkstoffe A (10 %) und B (65 %).

20 Anwendungsbeispiel 2

Wirksamkeit gegen Botrytis cinerea auf Paprikaschoten

Die Innenfläche von aufgeschnittenen Paprikaschoten wurde mit einer wäßrigen Wirkstoffaufbereitung, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, bis zur Tropfnässe besprüht. Nach dem Antrocknen der wäßrigen Wirkstoffaufbereitung wurden die Fruchtstücke mit einer wäßrigen Sporensuspension von Botrytis cinerea, die 1,7 x 10⁵ Sporen/ml enthielt, inokuliert.

Anschließend wurden die Fruchtstücke für 4 Tage in Klimaschränke bei 20 - 22 °C gestellt. Dann wurde das Ausmaß des Pilzbewuchses visuell ausgewertet.

Das Ergebnis des Versuchs zeigt ferner, daß die Verbindungen Nr. 2.4, 4.4, 6.4, 7.4, 7.5, 9.1, 9.2, 9.4, 9.5, 10.1, 10.2, 10.4, 10.5, 12.4, 12.6, 2.65 und 2.66 bei der Anwendung als 1000 ppm Wirkstoff enthaltende wäßrige Spritzbrühen eine gute fungizide Wirkung (100 %) haben.

Patentansprüche

1. Verwendung von Anilid-derivaten der Formel

45

50

55

30

35

40

in der A die folgenden Bedeutungen hat

Pyridin-3-yl, substituiert in 2-Stellung durch Halogen, Methyl, Trifluormethyl, Methoxy, Methylsulfonyl, Methylsulfonyl,

Phenyl, substituiert in 2-Stellung durch Methyl, Trifluormethyl, Chlor, Brom, Iod,

2-Methyl-5,6-dihydropyran-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4,4-dioxid; 2-Methyl-furan-3-yl, substituiert in 4- und 5-Stellung durch Wasserstoff oder Methyl; Thiazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; 1-Methylpyrazol-4-yl, substituiert in 3- und 5-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; 1-Methylpyrazol-4-yl, substituiert in 3- und 5-Stellung durch Methyl, Chlor, Trifluormethyl; Oxazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor und R die folgenden Bedeutungen hat, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkoyy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkoyy, C₃-C₁₂

Alkinyloxy, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_3 - C_6 -Cycloalkyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_4 - C_6 -Cycloalkenyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkyloxy, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkenyloxy, gegebenenfalls durch C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Halogen, substituiertes Phenyl, zur Bekämpfung von Bortrytis.

2. Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel I,

$$\begin{array}{c|c}
 & CO-NH \\
 & R^1 & R^2
\end{array}$$

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl

R² gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi zur Bekämpfung von Botrytis.

3. Verwendung von Anilid-Derivaten der Formel II,

in der die Substituenten folgende Bedeutung haben:

A
$$CH_3$$
 CH_3 $(A2)$

X Methylen oder Schwefel

R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi zur Bekämpfung von Botrytis.

4. Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel III,

55

50

45

5

20

25

in der die Substituenten folgende Bedeutung haben:

5

5. Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel IV,

C1-C4-Alkyl, C1-C4-Alkoxy, C1-C4-Alkylthio, Halogen

in der die Substituenten folgende Bedeutung haben:

R⁷

R8

45

Methyl, Chlor

zur Bekämpfung von Botrytis.

6. Verwendung von Carbonsäureanilid-Derivaten der allg. Formel V,

A-CO-NH
$$\stackrel{\bullet}{\longrightarrow}$$
 V,

in der die Substituenten folgende Bedeutung haben:

45

50

n 1 oder 2

20

25

30

35

40

45

- R1 Trifluormethyl, Chlor, Brom, Jod
- R² Wasserstoff oder Methyl
- R3 Methyl, Trifluormethyl, Chlor
- R⁴ Wasserstoff, Methyl, Chlor
- R⁵ Methyl, Trifluormethyl
- R6 Methyl, Chlor
- gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi zur Bekämpfung von Botrytis.
- 7. Nicotinsäureanilid-Derivate der allgemeinen Formel I

 $\begin{array}{c|c}
 & CO-NH \\
\hline
 & R^1 & R^2
\end{array}$

in der die Substituenten folgende Bedeutung haben

- Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl,
- R² gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R² verschieden von Isopropyl ist, wenn R¹ Chlor bedeutet.
- 50 8. Anilid-Derivate der allg. Formel II,

in der die Substituenten folgende Bedeutung haben:

5 A CH_3 A CH_3 A A A A A A A

10

15

20

- X Methylen oder Schwefel
- R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß
 - A nicht A₁ ist, wenn R Ethoxi, Isopropoxi oder Allyloxi ist
 - A nicht A₂ mit X in der Bedeutung Schwefel ist, wenn R Ethoxi, Propoxi, n-Butoxi, sec.-Butoxi, n-Pentyloxi ist
 - A nicht A₂ mit X in der Bedeutung Methylen ist, wenn R Isopropyl ist.
- 25 9. 2-Aminobiphenyl-Derivate der allgemeinen Formel III,

in der die Substituenten folgende Bedeutung haben:

35

40

45

50

10. 2-Aminobiphenyl-Deriyate der allgemeinen Formel IV,

in der die Substituenten folgende Bedeutung haben:

45

50

55

$$R^{1} \qquad \qquad (A1) \qquad (A2) \qquad (A3)$$

$$R^{3} \qquad \qquad (A1) \qquad (A2) \qquad (A3)$$

$$R^{3} \qquad \qquad (A3) \qquad \qquad R^{5} \qquad \qquad (A3)$$

$$R^{5} \qquad \qquad (A4) \qquad (A5) \qquad (A6)$$

$$R^{7} \qquad \qquad (A4) \qquad (A5) \qquad (A6)$$

$$R^{7} \qquad \qquad (A7) \qquad (A8)$$

$$X \qquad \qquad (A7) \qquad \qquad (A8)$$

$$X \qquad \qquad (A7) \qquad \qquad (A8)$$

$$X \qquad \qquad (A7) \qquad \qquad (A8)$$

$$R^{1} \qquad \qquad (A7) \qquad \qquad (A8)$$

$$R^{2} \qquad \qquad (A7) \qquad \qquad (A8)$$

$$R^{3} \qquad \qquad (A7) \qquad \qquad (A8)$$

$$R^{4} \qquad \qquad (A7) \qquad \qquad (A8)$$

$$R^{5} \qquad \qquad (A7) \qquad \qquad (A8)$$

$$R^{1} \qquad \qquad (A7) \qquad \qquad (A8)$$

$$R^{1} \qquad \qquad (A7) \qquad \qquad (A8)$$

$$R^{2} \qquad \qquad (A7) \qquad \qquad (A8)$$

11. Carbonsäureanilid-Derivate der allg. Formel V,

$$A-CO-NH \longrightarrow V$$
,

in der die Substituenten folgende Bedeutung haben

55

45

n 1 oder 2

20

25

30

35

40

45

50

55

R1 Trifluormethyl, Chlor, Brom, Jod

R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R4 Wasserstoff, Methyl, Chlor

R⁵ Methyl, Trifluormethyl

R⁶ Methyl, Chlor

R7

gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R⁷ verschieden von 3-Methyl-but-2-en-1-yl oder 3-Methyl-but-3-en-1-yl ist, wenn R¹ Trifluormethyl ist.

(1) Veröffentlichungsnummer: 0 545 099 A3

12

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 92119105.2

2 Anmeldetag: 07.11.92

(51) Int. Cl.5: **C07D** 213/82, C07D 231/14, C07D 277/56, C07D 263/34, C07D 307/68, C07D 309/28, C07D 327/06, C07C 233/64, A01N 37/22, A01N 43/00

3 Priorität: 22.11.91 DE 4138387

18.02.92 DE 4204764 18.02.92 DE 4204766 18.02.92 DE 4204767

18.02.92 DE 4204768

Veröffentlichungstag der Anmeldung: 09.06.93 Patentblatt 93/23

 Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

® Veröffentlichungstag des später veröffentlichten Recherchenberichts: 24.11.93 Patentblatt 93/47

71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-67063 Ludwigshafen(DE)

Erfinder: Eicken, Karl, Dr. **Am Huettenwingert 12** W-6706 Wachenheim(DE) Erfinder: Goetz, Norbert, Dr. Schoefferstrasse 25

W-6520 Worms 1(DE) Erfinder: Harreus, Albrecht, Dr.

Teichgasse 13

W-6700 Ludwigshafen(DE)

Erfinder: Ammermann, Eberhard, Dr.

Von Gagern-Strasse 2 W-6148 Heppenheim(DE) Erfinder: Lorenz, Gisela, Dr.

Erlenweg 13

W-6730 Neustadt(DE) Erfinder: Rang, Harald, Dr. Maximillianstrasse 30 W-6700 Ludwigshafen(DE)

Säureanilid-Derivate und Ihre Verwendung zur Bekämpfung von Botrytis.

Verwendung von Anilid-derivaten der Formel

in der A die folgenden Bedeutungen hat

zur Bekämpfung von Botrytis, sowie einige Verbindungen der Formel II

EP 92 11 9105 \cdot \gtrsim Seite 1

	EINSCHLÄGI	GE DOKUMENTE]
Kategorie	2/	nents mit Angabe, soweit erforderlich.	Betrifft	KLASSIFIKATION DER
X	PHYTOPATHOLOGY Bd. 57, Nr. 11, 19 Seiten 1256 - 1257	67, ST. PAUL AL. 'Fungitoxic spectrum	Anspruch	CO7D213/82 CO7D231/14 CO7D277/56 CO7D263/34 CO7D307/68 CO7D309/28
	7. Dezember 1992, abstract no. 22832 M. ODA ET AL. 'Str relations of 2-chl 3-carboxamide fung Seite 303;	ucture-activity oropyridine- icides.'	1,2,7	CO7D327/06 CO7C233/64 AO1N37/22 AO1N43/00
Х,Р	*Zusammenfassung; 144297-64-3* *CAS RN 57842-00-9 *CAS RN 57841-47-1 & NIPPON NOYAKU GAI Bd. 17, Nr. 2, 199 Seiten 91 - 98	* KKAISHI	1,2 1,5,10 1,2,5,7,	
A,D	DE-A-2 611 601 (BA: * das ganze Dokume		1,2	RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
İ	DE-A-2 417 216 (BA *Beispiel 5, 2-Chlornicotinsäure		1,5,10	
X	* Ansprüche 1-3 * *Beispiel 5, 2-Chlompication************************************	2 :	1,2,7	
A	*Beispiel 5, 2-Chlornicotinsäure & US-A-4 001 416	e-2`-isopropylanilid* e-2`-äthylanilid*	1,2	
	EP-A-O 256 503 (MI INDUSTRIES LIMITED; * das ganze Dokumer)	1,2,4,5, 7,9,10	
		-/		
Der vor	diegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
DI	Recherchesort EN HAAG	Abechindentum der Recherche 09 SEPTEMBER 1993	Ţ,	Prefer P. BOSMA

EPO FORM ISOS CA. 82 (POSCS)

- X: woo besonderer Bedeutung allein betrachtet
 Y: won besonderer Bedeutung in Verbindung mit einer
 anderen Veröffentlichung derseiben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch esst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- Mitglied der gleichen Patentfamilie, übereinstimmendes
 Dokument

KATEGORIE DER GENANNTEN DOKUMENTE

	GE	EBÜHRENPFLICHTIGE PATENTANSPRÜCHE					
			_				
Die v	ortiege	ande europäische Patentanmeldung enthielt bei ihrer Einrekchung mehr als zehn Patentansprüche.					
[Alle Anspruchsgebühren wurden innerhalb der vorgeschriebenen Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für alle Patentansprüche erstellt.					
[]	Nur ein Teil der Anspruchsgebühren wurde Innerhalb der vorgeschriebenen Frist entrichtet. Der vortiegende europäische Recherchenbericht wurde für die ersten zehn sowie für jene Patentansprüche erstellt für die Anspruchsgebühren entrichtet wurden.					
		nämlich Patentansprüche:					
[Keine der Anspruchsgebühren wurde innerhalb der vorgeschriebenen Frist entrichtet. Der vorliegende euro- päische Recherchenbericht wurde für die ersten zehn Patentansprüche erstellt.					
_							
Noob		NGELNDE EINHEITLICHKEIT DER ERFINDUNG					
runge nämlic	n an d	ssung der Recherchenabteilung entspricht die vorllegende europäische Patentanmeldung nicht den Anforde- ie Einheitlichkeit der Erfindung; sie enthält mehrere Erfindungen oder Gruppen von Erfindungen,					
		Siehe Blatt -B-					
		Siene Blace -B-	l				
		·	l				
			l				
			l				
]	Alle welteren Recherchengebühren wurden innerhalb der gesetzten Frist entrichtet. Der vorliegende euro- päische Recherchenbericht wurde für alle Patentansprüche erstellt.					
X		Nur ein Teil der weiteren Recherchengebühren wurde Innerhalb der gesetzten Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für die Teile der Anmeldung erstellt, die sich auf Erfindungen beziehen, für die Recherchengebühren entrichtet worden sind,					
	1	nämlich Patentansprüche: siehe Erfindungsgruppe 1,7,8					
]	Keine der weiteren Recherchengebühren wurde innerhalb der gesetzten Frist entrichtet. Der vorliegende euro- päische Recherchenbericht wurde für die Teile der Anmeldung erstellt, die sich auf die zuerst in den Patent- ansprüchen erwähnte Erlindung beziehen,					
		Markish Detectors and the					

EP 92 11 9105 Seite 2

-		E DOKUMENTE			
ategorie	Kennzeichnung des Dokumen der maßgehlich	ts mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Ibt. CL5)	
,	EP-A-0 314 428 (ICI	•	1,2,4,5, 7,9,10		
	* Seite 5, Zeile 15 Ansprüche 1,6,7; Be	- Seite 6, Zeile 34; Ispiele *			
E	WO-A-9 311 117 (MONS 10. Juni 1993	SANTO COMPANY)	1,6,11		
X	FR-A-2 337 997 (COMMAND INDUSTRIAL RESE/ *Tabelle I; Verbinde * Ansprüche 1,10 *	MONWEALTH SCIENTIFIC ARCH ORGANIZATION) Lng 17*	1,6,11		
A	EP-A-0 276 177 (SUM: INDUSTRIES LTD.)	ITOMO CHEMICAL	1,6,11		
X	EP-A-0 371 950 (MON: * Seite 3, Zeile 10 1-4,14,21-24 *	SANTO COMPANY) - Zeile 40; Ansprüche	1,6,11		
X	chemotherapeutic fu activity-chemical s some 4-methyl-5-thi derivatives. Labora Seite 142; *CAS RN 53040-20-3* * Zusammenfassung * & ACTA PHYTOPATHOLO Bd. 8, Nr. 3-4, 197 Seiten 269 - 282	Columbus, Ohio, US; ET AL. 'Systemic and ngicidal tructure relation of azolecarboxylic acid tory screening tests.' GICA 3, BUDAPEST		RECHERCHIERTE SACHGERIETE (Int. Cl.5)	
X	EP-A-0 279 239 (CIB * Seite 9, Zeile 43 1-4,14,15; Beispiel	A-GEIGY) - Zeile 57; Ansprüche 3.5; Tabelle 3.077 *	1		
Der	vorliegende Recherchenbericht wur				
	Rederchand DEN HAAG	Abackinbletzin der Racherchi 09 SEPTEMBER 199	3	P. BOSMA	
Y:w A:to	KATEGORIE DER GENANNTEN nn besonderer Bedeutung alleh betrach on besonderer Bedeutung in verbindtu nnderen Veröffentlichung derselben Kat- schnologischer Hintergrund sichtschriftliche Offenbarung wischenliteratur	E: älteres Pater nach dem A g mit einer D: in der Anne egorie L: aus andern (T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anneddedatum veröffentlicht worden ist D : in der Anneddung angeführtes Dokument L : aus andern Gründen angeführtes Dokument A : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument		

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 92 11 9105 Seite 3

		E DOKUMENTE		etrifft	KLASSIFIKATION DER	
ategorie	Kennzeichnung des Dokumen der maßgeblich	its mit Angabe, soweit erro	A		ANMELDUNG (Int. Cl.5)	
\	WO-A-9 101 311 (MONS * das ganze Dokument	SANTO COMPANY)	1,6	5,11		
`	EP-A-O 296 673 (SHEL RESEARCH MAATSCHAPPI * Beispiele 25,33,44	IJ B.V.)	E 1,6	5,11		
(FR-A-1 546 183 (UNIF * Ansprüche; Tabelle		1,6	5,11		
\	DE-A-1 914 954 (SHEI RESEARCH MAATSCHAPP: *Seiten 10,17,18* * Ansprüche 1-3 *	LL INTERNATIONAL IJ N.V. DEN HAAG	E 1,6	5,11		
					RECHERCHIERTE SACHGEBIETE (Int. Cl.	
	orliegende Recherchenbericht wurd					
	Recherchement	Abecklubistum der			Prefer	
			ER 1993	P	. BOSMA	
KATEGORIE DER GENANNTEN DOKUMENTE X : von besonderer Bedestung allein betrachtet Y : von besonderer Bedestung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund			T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentlokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldedatum angeführtes Dokument L : aus andern Gründen angeführtes Dokument			
O: nd	chtschriftliche Offenbarung wischenliteratur	4 :	Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument			

- X : von besonderer Bedeutung allein betrachtet
 Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A : technologischer Hintergrund
 O : nichtschriftliche Offenbarung
 P : Zwischenliteratur

- E: Elteres Patentiokument, das jedoch erst am oder nach dem Anneidsofatum verbffentlicht worden ist D: in der Anneidung angeführtes Dokument L: aus andern Gründen angeführtes Dokument
- Mitglied der gleichen Patentfamilie, übereinstimmendes
 Dokument

MANGELNDE EINHEITLICHKEIT DER ERFINDUNG A POSTERIORI

Nach Auffassung der Recherchenabseitung entspricht die vorliegende europäisiche Patentanmeldung nicht den Antorderungen an die Eintheitlichtkeit der Erfindung; eie enthält mehrere Erfindungen oder Gruppen von Erfindungen, nämlich:

- Patentansprüche 2 und 7 (vollständig); 1,4,5,9 (teilweise) ;
 Pyridin-3-yl-Derivate.
- 2. Patentansprüche 1,3-6,8-l1 (teilweise) :
 Phenyl-Derivate.
- Patentansprüche 1,3-5,8-10 (teilweise):
 2-Methyl-5,6-dihydropyran-3-yl-Derivate.
- 4. Patentansprüche 1,3,4,8 und 9 (teilweise) :
 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-Derivate.
- 5. Patentansprüche 1,4-6,9-11 (teilweise) :
 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid- und
 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-dioxid-Derivate.
- 6. Patentansprüche 1,4-6,9-11 (teilweise) :
 2-Methylfuran-3-yl-Derivate.
- 7. Patentansprüche 1,4-6,9-11 (teilweise): Thiazol-4-yl-Derivate, Thiazol-5-yl-Derivate und Oxazol-5-yl-Derivate.
- 8. Patentansprüche 1,4-6,9-11 (teilweise) :
 Pyrazol-4-yl-Derivate.

Die der Erfindung zugrunde liegende allgemeine Aufgabe ist nicht neu, sondern bereits gelöst, und sie weist keine erfinderische Tätigkeit auf gegenüber dem Stand der Technik bekannt aus

Phytopathology 57(11), Seiten 1256-1257 (1967) Hieraus ist bekannt dass eine Oxathiin-Verbindung (CAS RN 6577-34-0) benutzt werden kann zur Bekämpfung von Botrytis, welche Verbindung auch beansprucht wird in der zugrundeliegenden Anmeldung zur Bekämpfung von Botrytis.

Die ursprüngliche einzige allgemeine erfinderische Idee ist deshalb nicht mehr zulässig; der technische Zusammenhang oder die technische Wechselwirkung zwischen den einzelnen Lösungen muss somit neu geprüft werden.

Dabei ergibt sich die vorstehende neue Einordnung unter verschiedene Sachverhalte, von denen jeder eine unterschiedliche mögliche erfinderische Idee verwirklicht.