Question 1

We first prove a more simple inequality, $\forall a, b \in \mathbb{R} : a^2 - ab + b^2 \ge 0$, with equality iff a = b = 0. If a and b have different signs, then $-ab \ge 0$, and so $a^2 - ab + b^2 \ge 0$. So suppose a and b have the same sign, note the following,

$$(a-b)^2 \ge 0$$

$$a^2 - 2ab + b^2 \ge 0$$

$$a^2 - ab + b^2 \ge ab$$
(1)

If a and b have the same sign, then $ab \ge 0$, so (1) implies that $a^2 - ab + b^2 \ge 0$.

We now show that $a^2-ab+b^2=0$ iff a=b=0. The reverse direction is clear, so suppose that $a^2-ab+b^2=0$. Now it cannot be the case that a>0 and b<0, since if that were the case, then -ab>0, implying that $a^2-ab+b^2>0$. By symmetric argument, it cannot be that a<0 and b>0. Hence either $a,b\geq 0$ or $a,b\leq 0$, then it follows that $ab\geq 0$, also (1) implies that $ab\leq a^2-ab+b^2=0$. So it must be that ab=0, hence a=0 or b=0, without loss of generality, assume a=0, then $a^2-ab+b^2=0$ implies that $b^2=0$ so b=0.

With this inequality established, let a = x - 1 and b = y - 1, then,

$$(x-1)^{2} - (x-1)(y-1) + (y-1)^{2} \ge 0$$

$$(x^{2} - 2x + 1) - (xy - x - y + 1) + (y^{2} - 2y + 1) \ge 0$$

$$x^{2} + y^{2} - xy - x - y + 1 \ge 0$$

$$x^{2} + y^{2} + 2 - (xy + x + y + 1) \ge 0$$

$$x^{2} + y^{2} + 2 - (x + 1)(y + 1) \ge 0$$

Which implies that $x^2 + y^2 + 2 \ge (x+1)(y+1)$, as required. We have equality iff a = x - 1 = 0 and b = y - 1 = 0. ie iff x = y = 1