Escuela Técnica Superior de Ingeniería Informática

Estructuras Algebraicas para la Computación

16 de abril de 2015

Apellidos y Nombre:	Grupo:
DNI: Titulación:	

1. Considere los siguientes subconjuntos de \mathbb{R}

$$\mathbb{Q}; \ \mathbb{R}; \ A = \{x \in \mathbb{R} \mid 1 \le x \le 3\} \quad B = \{b_n = \frac{3n}{n+8} \mid n \in \mathbb{N}\}$$

y determine los cardinales de los siguientes conjuntos:

a)
$$A \cap B$$
; b) $B - A$; c) $A \times B$; d) $\mathbb{Q}^- - A$; e) $\mathbb{R}^- \cup A$

- 2. Conteste razonadamente si los siguientes enunciados son verdaderos o falsos.
 - a) Si A y B son conjuntos no numerables, entonces A B es no numerable.
 - b) Existe un conjunto X tal que $|2^X| = 10$
 - c) Existe un conjunto X tal que $|2^X| = \aleph_1$
- 3. Para cada uno de los siguientes ítems, de un ejemplo de un conjunto ordenado (A, \leq) satisfaciendo la propiedad indicada:
 - a) (A, \leq) sin elementos maximales
 - $b) \quad (A, \leq) \quad \text{tiene más de un elemento maximal}$
 - c) (A,\leq) tiene un único elemento maximal, $\ x_0$, pero no es máximo de $\ A$.
- 4. Consideremos el contexto (O, A, R_I) con $O = \{o_1, o_2, o_3, o_4, o_5\}$, $A = \{a_1, a_2, a_3, a_4\}$ y $R_I \subseteq O \times A$ la relación de incidencia dada por la tabla

R_I	a_1	a_2	a_3	a_4
o_1	×	×	×	×
o_2	×		×	×
03		×	×	×
o_4		×	×	×
o_5	×			

Conteste razonadamente si los siguientes pares son conceptos del contexto descrito por la tabla:

$$a)\left(\{o_1\},A\right);\ b)\left(\{o_1,o_2\},\{a_1,a_3,a_4\}\right);\ c\right)\left(\{o_1,o_2,o_3,o_4\},\{a_3,a_4\}\right);\ d\right)\left(\{o_1,o_3,o_4\},\{a_2,a_3\}\right)$$

- 5. Sea $(D_{490}, |)$ el conjunto de todos los divisores de 490 con la relación divisibilidad
 - a) Dibuje el diagrama de Hasse de $(D_{490}, |)$.
 - b) De una lista de los átomos y otra lista de los elementos $\ \sqcup$ -irreducibles.
 - c) Exprese 10 y 245 mediante elementos $\ \sqcup$ -irreducibles (en más de una forma si es posible).
 - d) Determine los elementos que tienen complemento.

6. Define una función booleana de \mathbb{B}^3 en \mathbb{B} y halla su forma normal disyuntiva y su forma normal conjuntiva.

- 7. Se define en el conjunto $G=\{1,3,5,7,9\}$ la siguiente operación asociativa a*b=c siendo c la cifra de las unidades del producto usual $a\cdot b$
 - a) ¿Es (G,*) un grupo?
 - b) Halle un subconjunto G' de G que con la operación inducida * sea un grupo.
 - c) Resolver en $\,G\,$, si es posible, la ecuación $\,5*x=3\,$

8. Sea la función de codificación $\mathcal{C}_{\mathcal{G}}: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ dada por la matriz generadora

$$\mathcal{G} = \left(\begin{array}{cccccc} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{array}\right)$$

- a) Determine los elementos del código $\,C\,\,$ y hasta cuántos errores se pueden detectar y corregir.
- b) Determine la clase lateral del elemento 100111. Sin hallarlas, razones cuántas clases laterales hay.
- c) Calcule la tabla de los síndromes y úsela para corregir y decodificar las palabras 011011 y 100010.