Solution to Introduction to the Theory of Computation

Lwins_Lights

Contents

1	Regular Languages	2
2	Context-Free Languages	3
3	The Church–Turing Thesis	4
4	Decidability	5
5	Reducibility	6

1 Regular Languages

2 Context-Free Languages

3 The Church–Turing Thesis

4 Decidability

- 4.10 Refer to the textbook.
- 4.11 By the pumping lemma, L(M) is an infinite language $\iff L(M)$ includes a string of length p. Since $R = \Sigma^p \Sigma^*$ is a regular language, it is easy to design a PDA P recognizing $L(M) \cap R$. Then use E_{PDA} 's decider to decide whether $L(M) \cap R = \emptyset$.
- 4.12 Refer to the textbook.
- $4.13 \ L(R) \subseteq L(S) \iff L(R) \cup L(S) = L(S)$, which can be decided by EQ_{DFA} 's decider.
- 4.14 Refer to the textbook.
- *4.15 By the pumping lemma, $\mathbf{1}^k \in L(G) \implies \mathbf{1}^{k+p!} \in L(G)$ for every $k \geq p$. Therefore $\mathbf{1}^* \subseteq L(G) \iff \{\mathbf{1}^k \mid k \leq p+p!\} \subseteq L(G)$, which can be easily checked by a TM in finite time.
- 4.16 Since $A = \{\langle R \rangle \mid R \text{ is a regular expression, } R \cap \Sigma^* 111\Sigma^* \neq \emptyset \}$, we only need an E_{DFA} 's decider.
- 4.17 Suppose we have two DFAs D_1 and D_2 . Let D be a DFA recognizing $L(D_1) \oplus L(D_2)$, where \oplus means symmetric difference. By the pumping lemma, $L(D) \cap (\Sigma \cup \epsilon)^p = \emptyset \implies L(D) = \emptyset$, thus p can be the required length.
- *4.18 \Leftarrow : It is enough to design a TM, which recognizes C by checking whether $\langle x, y \rangle \in D$ for all possible y one by one.
 - \Rightarrow : Suppose TM M recognizes C. Let $D = \{\langle x, y \rangle \mid x \in C \text{ and } y \text{ is the computation history of } M \text{ on input } x\}$, which is obviously decidable.
- *4.19 Let C be a recognizable but undecidable language, e.g., A_{TM} . Construct D provided by problem 4.18. Letting homomorphism f satisfy $f(\langle x,y\rangle) = x$ for every x,y we obtain f(D) = C.
- 4.20 Let M be a TM which runs both \overline{A} 's recognizer and \overline{B} 's recognizer on its own input. M accepts when \overline{B} 's recognizer accepts and rejects when \overline{A} 's recognizer accepts. Clearly C = L(M) separates A and B.
- 4.21 M is a DFA that accepts $w^{\mathcal{R}}$ whenever it accepts $w \iff L(M) = L(M)^{\mathcal{R}}$, which can be decided by EQ_{DFA} 's decider.
- 4.22 In order to determine whether L(R) is prefix-free, it suffices to check whether the DFA recognizing L(R) has the property that from a reachable accept state we could arrive an accept state again by several transitions.
- *4.23 Refer to the textbook.
- 4.24 A PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,F)$ has an useless state $q\in Q$ if and only if PDA $P'=(Q,\Sigma,\Gamma,\delta,q_0,\{q\})$ recognizes \varnothing . Therefore we can use E_{PDA} 's decider to solve it.
- *4.25 Refer to the textbook.
- *4.26 M is a DFA that accepts some palindrome \iff CFL $\{w \mid w = w^{\mathcal{R}}\} \cap L(M)$ is not empty, which can be decided by E_{PDA} 's decider.
- *4.27 Refer to the solution to problem 4.26.
- 4.28 x is a substring of some $y \in L(G) \iff L(G) \cap \Sigma^* x \Sigma^* \neq \emptyset$, which can be decided by E_{PDA} 's decider.
- 4.29 Need a solution.
- 4.30 Need a solution.
- 4.31 Need a solution.
- 4.32 Need a solution.

5 Reducibility

- 5.9 Reduce to A_{TM} . To determine whether TM M accepts w, construct TM N which always accepts 01 but accepts 10 if and only if M accepts w.
- 5.10 Refer to the textbook.
- 5.11 Refer to the textbook.
- 5.12 Reduce to E_{TM} . To determine whether $\mathsf{TM}\ M$ accepts nothing, construct $\mathsf{TM}\ N$ which simulates M on N's own input w but never writes a blank symbol over a nonblank symbol unless when M accepts.
- 5.13 Reduce to E_{TM} . To determine whether TM M accepts nothing, construct TM N which simulates M on N's own input w and obviously has no useless state except the one q_{accept} .
- 5.14 Need a solution.
- 5.15 Let M' be M after modifying all its transitions $\delta(q_i, a) = (q_{\text{accept}}, b, X)$ to $\delta(q_i, a) = (q_{\text{reject}}, b, X)$, and then modifying all $\delta(q_i, a) = (q_j, b, L)$ to $\delta(q_i, a) = (q_{\text{accept}}, b, R)$. The problem is now reduced to checking whether M', as a TM with stay put instead of left described in problem 3.13, accepts w. It is easy since L(M') is regular by the solution to problem 3.13.
- 5.16 Suppose for the sake of contradiction that BB is computable. Then obviously there exists a TM M having k states, which writes BB(n) + 1 1s on the tape, when given input $\langle n \rangle$. Further, using M we can construct a series of TMs M_n having exactly k + n/2 states, which writes BB(n) + 1 1s on the tape when started with a blank tape. However, then M_{2k} , as a 2k-state TM, would write BB(2k) + 1 1s. Absurd.
- 5.17 Need a solution.
- 5.18 Need a solution.
- 5.19 Need a solution.
- 5.20 Need a solution.
- 5.21 The hint in the textbook is sufficient.
- $5.22 \Leftarrow: Trivial.$
 - \Rightarrow : Let $f(x) = \langle M, x \rangle$, where TM M is A's recognizer.
- 5.23 \Leftarrow : Trivial, since 0^*1^* is surely decidable.
 - \Rightarrow : Suppose there is an A's decider, then f defined as follows is computable.

$$f(x) = \left\{ \begin{array}{ll} \mathtt{01}, & x \in A \\ \mathtt{10}, & x \notin A \end{array} \right.$$

- 5.24 Need a solution.
- 5.25 $\overline{E_{\mathsf{TM}}} \leq_{\mathsf{m}} A_{\mathsf{TM}}$ by problem 5.22 and it is well known that $A_{\mathsf{TM}} \leq_{\mathsf{m}} E_{\mathsf{TM}}$. By the way, it is not difficult to construct an undecidable language B such that $B =_{\mathsf{m}} \overline{B}$.