Ravi Raju MA 521 Homework #2 2/6/2019

Chapter 1: 4.18, 4.19, 4.22; Chapter 2: 1.6, 1.7, 2.3, 2.4, 2.5, 3.3, 4.6, 4.8, 4.9, 4.10

Exercise 4.18. Let *A* and *B* be sets. Assume *A* is infinite, *B* is countable, and *A* and *B* are disjoint. Prove $A \sim A \cup B$. Hint: The strategy of Theorem 4.16 may be useful.

If *A* is infinite, we have $C \subset A$, a countably infinite set. By Proposition 4.21, the union of two countable sets is still countable, $B \cup C$, which is countably infinite. Since $((A \cup B) \setminus B \cup C) \cap C$ and $((A \cup B) \setminus B \cup C) \cap (B \cup C)$ are both empty, $A \cup B = ((A \cup B) \setminus B \cup C) \cup (B \cup C) \sim ((A \cup B) \setminus B \cup C) \cup C = A$.

Exercise 4.19. Let X and Y be sets. Assume Y is countable and $X \setminus Y$ is infinite. Prove that $X \sim X \cup Y \sim X \setminus Y$. Hint: Each of the equivalences can be done extremely quickly if you use the previous exercise and some set manipulations.

If $X \setminus Y$ is infinite, $X \setminus Y$ must have a countably infinite subset. This means that X must be infinite. We can use Exercise 4.18 but we need to prove that X and Y are disjoint sets. Let's solve by contradiction.

Assume $a_1 \in X$, Y s.t. $X \cap Y = \{a_1\}$. This means that $X \setminus Y$ will be a proper subset of X. We can apply Theorem 4.16 to say $X \sim X \setminus Y$. But then, $X \cap Y \sim (X \cap Y) \cap Y = \emptyset$, which is a contradicts our assumption. This suggest that X and Y are disjoint and apply Exercise 4.18 directly to say $X \sim X \cup Y \sim X \setminus Y$.

Exercise 4.22. Let *X* be a countable set.

- 1. Prove inductively that $X^n \sim X^{n-1} \times X$ for any $n \in \mathbb{N}$.
- 2. Prove inductively that X^n is countable for any $n \in \mathbb{N}$.
- 1. WLOG, let n=2. For the base case, by definition of n-tuples, $X^2=X\times X\sim X^1\times X$. For the inductive step, assume statement is true for n, $X^{n+1}=(X\times X\times \dots)\times X=X^n\times X=X^{(n+1)-1}\times X$.
- 2. WLOG, let n = 2. $X^2 = X \times X = \{(a,b) : a \in X \text{ and } b \in X\}$. If $X \cup X$ is countable by Proposition 4.21, then $X \times X$ should also be countable. For the inductive step, let n = k+1 assume X^k is countable. $X^{k+1} = X \times X^k \implies X$ is countable and X^k is countable by assumption so by Proposition 4.21, X^{k+1} should be countable.

Exercise 1.6. Let E, F, and G be nonempty subsets of an ordered set (S, \leq) . Prove the following statements.

- 1. If $\alpha \in S$ is a lower bound for E and $\beta \in S$ is an upper bound for E, then $\alpha \leq \beta$.
- 2. $\sup E \leq \inf F$ if and only if $x \leq y$ for any $x \in E, y \in F$.
- 3. If $E \subset G$, then $\sup E \leq \sup G$.
- 1. By definition of upper bound, $\forall x \in E : x \leq \beta$. By definition of lower bound, $\forall x \in E : x \geq \alpha$. So, $\alpha \leq x \leq \beta \implies \alpha \leq E \leq \beta \implies \alpha \leq \beta$.
- 2. (a) Let us prove this \rightarrow direction first. Given $\sup E \leq \inf F$. Let's solve by contradiction. Assume x > y for any $x \in E, y \in F$. Say $\beta_1 = \sup E$, implying β_1 is an upper bound for E. So by definition, $x < \beta_1 \, \forall x \in E$. Say $\alpha_1 = \inf F$, implying α_1 is a lower bound for F. So by definition, $\alpha_1 \leq y \, \forall y \in F$. By the given statement, $\beta_1 \leq \alpha_1 \implies x \leq \beta_1 \leq \alpha_1 \leq y$. This establishes a contradiction so $x \leq y$.
 - (b) Now the other direction, \leftarrow . Given $x \le y$ for any $x \in E, y \in F$. Let β_2 be the upper bound for E. Let α_2 be the upper bound for F. $x \le \beta_2 \le \alpha_2 \le y$; the tightest bounds for this expression would be if $\beta_2 = \sup E$ and $\alpha_2 = \inf F$. $x \le \sup E \le \inf F \le y \Longrightarrow \sup E \le \inf F$.
- 3. Let $a = \sup G$ and $b = \sup E$. Assume b > a. If b is larger than a, a could not be the upper bound of G since $E \subset G$. So, this establishes a contradiction and $\sup E \leq \sup G$.

Exercise 1.7. Let (S, \leq) be an ordered set, let f and g be functions from X to S and let A be a subset of X. Assume that $f(x) \leq g(x)$ for all $x \in A$, and that furthermore $\sup_A f$ and $\sup_A g$ exist in S. Prove that $\sup_A f \leq \sup_A g$.

Given $\sup_A f = \sup\{f(x) : x \in A\} = \beta, \sup_A g = \sup\{g(x) : x \in A\} = \alpha$, and $f(x) \le g(x) \ \forall x \in A$. Clearly, since β is an upper bound for f, $f(x) \le \beta \le g(x) \ \forall x \in A$. Since α is an upper bound for g, $f(x) \le \beta \le g(x) \le \alpha \ \forall x \in A \implies \beta \le \alpha = \sup_A f \le \sup_A g$.

Exercise 2.3. Let *A* be a nonempty subset of an ordered field $(F, +, \cdot, \leq)$. Assume that $\sup A$ and $\inf A$ exist in *F*, and let *c* be any element of *F*. Define the set $cA := \{ca : a \in A\}$.

- 1. Prove that $c \ge 0$, then $\sup(cA) = c \sup A$.
- 2. What is $\sup(cA)$ if $c \le 0$? Prove your answer is correct.
- 1. WLOG, let c > 0. Let B_1 be an upper bound for A. $\sup cA = \sup(\{ca : a \in A\}) = C_1 = cB_1 = c\sup A$.
- 2. Prove $\sup(cA) = c\inf(A)$. Let $\inf A = C_2$ and $cC_2 = B_2$. So, $\{B_2 \ge ca : a \in A\}$ since A is an ordered field. $\{ca : a \in A\} \le B_2 \implies \text{tightest upper bound is } \sup(cA)$.

2

Exercise 2.4 Let A be a nonempty subset of an ordered field $(F, +, \cdot, \leq)$. Assume that $\sup A$ and $\inf A$ exist in F. Define $A + B := \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup A + \sup B$ by filling in the details of the following outline:

- Denote $s = \sup A$, $t = \sup B$. Then s + t is an upper bound for A + B.
- Let *u* be any upper bound for A + B, and let *a* be any element of *A*. Then $t \le u a$.
- We have $s + t \le u$. Consequently, $\sup(A + B)$ exists in F and is equal to $s + t = \sup A + \sup B$.

Let $s = \sup A$, $t = \sup B$. By definition of supremum, no element in A + B is greater than s + t so it must be an upper bound. Let u be any upper bound for A + B, and let a be any element of A. Then $t \le u - a$. Let's choose u = s + t + 1 and plugging that into the later expression yields $t \le s + t + 1 - a \implies a - 1 \le s$, which will always be true since s is an upper bound on A. If u is an upper bound on A + B, $\sup(A + B)$ is the tightest bound which is s + t so $\sup(A + B) = \sup A + \sup B$.

Exercise 2.5. Let f and g be functions from a set X to an ordered field $(F, +, \cdot, \leq)$. Let A be a subset of X.

• Prove that the following inequality holds, assuming the relevant suprema all exist.

$$(*)\sup_{x\in A}(f(x)+g(x))\leq \sup_{x\in A}f(x)+\sup_{x\in A}g(x).$$

- Show by way of an example that equality might not hold in (*), even if the suprema all exist. (Hint: This is probably easiest if you choose X to be a set with two elements, and $F = \mathbb{Q}$.)
- $\forall x_0 \in A, f(x_0) + g(x_0) \le f(x_0) + g(x_0). \forall x_0, \exists x_1, x_2 \in A : f(x_0) + g(x_0) \le f(x_1) + g(x_2).$ Let $f(x_1) = \sup_{x \in A} f(x)$ and $g(x_2) = \sup_{x \in A} g(x). \sup_{x \in A} g(x) + g(x) \le \sup_{x \in A} g(x).$
- Let $X = \{a, b\}$, $f : a \to 4, b \to 5$, and $g : a \to -1, b \to -2$. Clearly, $\sup f = 5$ and $\sup g = -1$ but $\sup f(x) + g(x) = \sup\{3,3\} = 3$. This proves that equality doesn't hold.

Exercise 3.3. Using the strategies similar to those proofs in this section, prove the following statements.

- 1. There is no rational whose square is 20.
- 2. The set $A := \{r \in \mathbb{Q} : r^2 < 20\}$ has no least upper bound in \mathbb{Q} .
- 1. Assume p is a rational number s.t. $p^2 = 20$. Since $p \in \mathbb{Q}$, we can write $p = \frac{m}{n}$, where m and n are integers with no common factors. So, $p^2 = 20 \rightarrow m^2 = 20n^2$. This shows that 5 divides m^2 , and hence, that 5 divides m, so that 25 divides m^2 . It then follows that n^2 is divisible by 5, so that n is a multiple of 5. This is clearly a contradiction.

- 2. First, we want to break the proof into two steps:
 - (a) $p \in \mathbb{Q}$ is an upper bound for A if and only if $p^2 > 20$ and $p \ge 0$.
 - (b) If $p^2 > 20$ and p > 0, then there exists $q \in \mathbb{Q}$ such that $0 \le q \le p$ and $q^2 > 20$.

If p is not an upper bound for A, then $\exists r \in A$ s.t. r > p. But then $20 > r^2 > rp > p^2$, which contradicts initial definition of p in (a). So now we prove $p^2 > 20$. So if $0 \le p^2 \le 20$, then $p^2 < 20$. This implies $q = p + \frac{20 - p^2}{p + 20}$. So, $q \in A > p$ because $20 - p^2$ is positive. To see this, we need to prove that $20 - q^2 > 0$.

$$q = p \frac{(p+20)}{(p+20)} + \frac{20-p^2}{p+20} = \frac{20p+20}{p+20},$$

so

$$20 - q^2 = 20\left(\frac{(p+20)^2}{(p+20)^2}\right) - \left(\frac{(20p+20)^2}{(p+20)^2}\right) = \frac{20(p^2 + 40p + 400) - 400p^2 + 800p + 400}{(p+20)^2}$$
$$= \frac{-380p^2 + 7600}{(p+20)^2} = \frac{380(20 - p^2)}{(p+20)^2} > 0.$$

So, $q^2 < 20$ meaning that p is not an upper bound for A. This leaves that the upper bounds of A in \mathbb{Q} are the numbers $p \in \mathbb{Q}$ such that $p^2 > 20$ and $p \ge 0$. Now, for last part, we need to prove that p is not the least upper bound for A in \mathbb{Q} . So, recall that $q = p - \frac{p^2 - 20}{p + 20}$ is an upper bound for A which is less than p. This is because of the positivity of $p^2 - 20$. $q \ge 0$ follows from

$$\frac{p^2 - 20}{p + 20} \le \frac{p^2 + 20p}{p + 20} = p.$$

This leads us to the conclusion

$$q^2 - 2 = \frac{380(p^2 - 20)}{(p+20)^2} > 0.$$

So $q^2 > 20$. Thus, q is an upper bound for A which is less than p; that is, p is not the least upper bound for A in \mathbb{Q} . But, p is just an arbitrary upper bound so there is no least upper bound for A in \mathbb{Q} . So it follows that A doesn't have the least upper bound property in \mathbb{Q} and it follows that \mathbb{Q} doesn't have the least upper bound property.

Exercise 4.6. Elements of $\mathbb{R} \setminus \mathbb{Q}$ are called *irrational numbers*.

- 1. Assume r is rational and x is irrational. Show that r + x is irrational. Show that rx is irrational unless r = 0.
- 2. Use the Archimedean property of $\mathbb R$ to prove that the set of irrational numbers is dense in $\mathbb R$. (Hint: First prove if x and y are real numbers with $y-x>\sqrt{2}$, then there exists an integer m such that $x< m\sqrt{2} < y$.)

- 1. Let us solve by proof of contridiction. Suppose r+x and rx is rational. Since r is rational, -r and $\frac{1}{r}$ are also rational for $r \neq 0$. Thus, (r+x)-r=x which implies x is rational. Similarly, $rx \cdot (\frac{1}{r}) = x$ which suggests x is also rational. These are both clearly contridictions. Thus, r+x and rx are irrational.
- 2. We need to prove that if $y-x>\sqrt{2}$, \exists an integer m s.t. $x< m\sqrt{2}< y$. Let m be the smallest positive integer such that $m\sqrt{2}>nx$, $n\in\mathbb{N}$. $x<\frac{m\sqrt{2}}{n}< y$; since $nx< m\sqrt{2}$ by definition of m, $(m-1)\sqrt{2}< nx$. On the other hand, $nx< ny-\sqrt{2}$ so $(m-1)\sqrt{2}< nx< ny-\sqrt{2}$. This reduces to $\sqrt{2}m< nx< ny\implies \sqrt{2}m< ny$. This finishes the proof.

Exercise 4.8. Assume $a, b \in \mathbb{R}$. Prove that $a \leq b$ if and only if $a \leq b + \epsilon$ for every $\epsilon > 0$.

- 1. Let us prove this \rightarrow direction first. Given $a \le b$. By the definition of a well-ordered field, it's obvious to see that for any $\epsilon > 0$, $a + 0 \le b + \epsilon$.
- 2. Now the other direction, \leftarrow . Given $a \le b + \epsilon$ for every $\epsilon > 0$. Assume a > b. This implies a b > 0. So we can choose an appropriate ϵ from which we can derive a contradiction. Setting $\epsilon = \frac{a-b}{n}$, $n \in \mathbb{N}$ and n > 1. $a \le b + \frac{a-b}{n} \implies \frac{a}{n} \le \frac{b}{n} \implies a \le b$. This is clearly a contradiction so $a \le b$.

Exercise 4.9. Let *E* be a set of real numbers, let *s* be an upper bound for *E*. Prove that $s = \sup E$ if and only if for every $\epsilon > 0$ there exists $x \in E$ such that $x > s - \epsilon$.

 $E \subset \mathbb{R}$ and s is an upper bound for E. Because E is a nonempty set in \mathbb{R} and it is bounded above, it has the least upper bound property, implying that sup E exists.

- 1. Let us prove this \rightarrow direction first. Given $s = \sup E$. It is easiest to do this via contradiction. This means that $\exists x \in E \text{ s.t. } x < s \epsilon$. This would suggest that this particular $x + \epsilon$ would be a tighter bound for E than s. We know that is cannot be the case since $s = \sup E$, which is the least upper bound by definition.
- 2. Now the other direction, \leftarrow . The main property we need to demonstrate is that s is actually the least upper bound. Given for every $\varepsilon>0$ there exists $x\in E$ such that $x>s-\varepsilon$.. Assume that there is an upper bound for E called d s.t. s>d. If $x>s-\varepsilon$, then $d>x>s-\varepsilon$. Let's look at $x>s-\varepsilon$ which is the same as $x+\varepsilon>s$. Using our definition of d from above, $x+\varepsilon>d$ so $x>d-\varepsilon$. So our inequality expression becomes $d>x>d-\varepsilon>s-\varepsilon$. Looking at the last part, $d-\varepsilon>s-\varepsilon\implies d>s$, which violates the above definition of d. This shows there is no d s.t. s>d so s is the least upper bound for E. It necessarily follows then $s=\sup E$.

Exercise 4.10. Let *A* and *B* be nonempty sets of real numbers. Decide whether the following statements are true or false. If true, give a proof; if false, give a counterexample.

- 1. If sup $A < \inf B$, then there exists a $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$.
- 2. If there exists a $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$, then sup $A < \inf B$.
- 1. True. Let $x = \sup A$ and $y = \inf B$. Clearly, $a < x < y < b \ \forall a \in A, b \in B$. We need to prove that if $y x > \varepsilon, \varepsilon \in \mathbb{R}$, \exists an integer m s.t. $x < m\varepsilon < y$. Let m be the smallest positive integer such that $m\varepsilon > nx, n \in \mathbb{N}$. $x < \frac{m\varepsilon}{n} < y$; since $nx < m\varepsilon$ by definition of m, $(m-1)\varepsilon < nx$. On the other hand, $nx < ny \varepsilon$ so $(m-1)\varepsilon < nx < ny \varepsilon$. This reduces to $m\varepsilon < nx < ny \implies m\varepsilon < ny$. This quantity is the c we are looking for since $\frac{m}{n}$ is a rational number and ε is real. This concludes the proof.
- 2. False. Let *A* be the set of all negative \mathbb{R} and *B* be the set of all positive \mathbb{R} . Clearly, c = 0 so sup $A = \inf B$, disproving the claim.