Real-time estimation of the effective reproduction number CNVAC 2022 Seminar series

Sam Abbott @seabbs samabbott.co.uk

Case studies

- Who am I
- Overview
- Challenges
- Tools for estimation
- Uses
- What is left to do?
- Summary

Real-time estimation of the effective reproduction number?
Real-time analysis case studies

Who am I?

Sam Abbott @seabbs samabbott.co.uk

I'm an infectious disease researcher interested in real-time analysis, forecasting, semi-mechanistic modelling, and open source tool development.

- Research Fellow at the London School of Hygiene and Tropical Medicine
- Member of epiforecasts.io
- PhD in modelling Tuberculosis and the optimal use of the BCG vaccine
- Background in Mathematical modelling and mathematics

Sam Abbott

Sam Abbott

I'm an infectious disease researcher interested in real-time analysis, forecasting, semi-mechanistic modelling, and open source tool development. More on my research interests here.

Hi there 🁋

- . Working at the London School of Hygiene and Tropical Medicine in the Epiforecasts group;
- Crafting extensions to forecast vocs
- 14 Crafted last epinowcast . Currently working on:
- · Estimation of the test to test distribution as a proxy for generation interval distribution for the Omicron variant in England
- · Real-time estimation of the time-varying transmission advantage of Omicron in England using S-Gene Target Status as a Proxy
- · Evaluating the use of real-time sequences for short-term forecasting · Evaluating a new method for nowcasting right truncated count data

- . I'm currently working at London School of Hygiene and Tropical Medicine
- . I did my PhD at the University of Bristol
- . I use daily: R, stan
- III like to perform analysis using novel models on interesting data and generalise those approaches into software . Of m mostly active within the R Community
- Learning all about Julia and Turing.jl
- Reading all of China Miéville's work.
- Ping me about statistical modelling of infectious diseases, real-time analysis of infectious diseases, estimating transmission dynamics in realtime, and team science opportunities
- ■Reach me: sam.abbott@lshtm.ac.uk

samabbott.co.uk

Real-time estimation of the effective reproduction number?
Real-time analysis case studies

Overview

Sam Abbott @seabbs samabbott.co.uk

An 80% right paper before a policy decision is made is worth ten 95% right papers afterwards, provided the methodological limitations imposed by doing it fast are made clear.

The average number of secondary infections produced by a single infected person.

- A helpful metric to track transmission.
- Difficult to estimate as depends on unobserved infections and on the interval between primary and secondary infections.
- Estimating using various methodologies since February 2020.
- Estimates submitted as part of the SPI-M consensus estimate each week.
- Estimates were also published each day for over 1000 locations since April 2020 on epiforecasts.io/covid.

Key Challenges

- We care about linking policy changes with changes in transmission but only observe delayed proxies like reported cases and deaths.
- Surveillance data subject to a range of difficult to account for biases.
- Estimation at scale in real-time is computationally challenging.

Sherratt et al. Phil Trans B, 2021, DOI: 10.1098/rstb.2020.0283

Objectives

- Develop a model that can be used for real-time surveillance, nowcasting, and short-term forecasting.
- Include known epidemiological structure of the infection and reporting process.
- The model should include a parameter that is referenced to the infection process and that can be used to compare disparate surveillance data sources (here the effective reproduction number).
- The model should ideally capture changes in trend as quickly as possible to make it useful for situational awareness.

Sherratt et al. Phil Trans B, 2021, DOI: 10.1098/rstb.2020.0283

EpiNow2 1.3.3.10 Home News 🖟 Functions

EpiNow2: Estimate real-time case counts and timevarying epidemiological parameters

License MIT contributors 12 PRs welcome commits since v1.3.2 85 DOI 10.5281/zenodo.5036949

This package estimates the time-varying reproduction number, growth rate, and doubling time using a range of open-source tools (Abbott et al.), and current best practices (Gostic et al.). It aims to help users avoid some of the limitations of naive implementations in a framework that is informed by community feedback and is under active development.

How do we define the reproduction number?

$$R_t^{\text{inst}} = \beta(t)S(t)D$$

$$R_t = \frac{I_t}{\sum_{s=1}^t I_{t-s} w_s},$$

$$R_t^{\text{case}} = \int_{u=t}^{\infty} R_u^{\text{inst}} w(u-t) du$$

$$p_{ij} = \frac{w(t_i - t_j)}{\sum_{i \neq k} w(t_i - t_k)}$$

$$R_j = \sum_i p_{ij}$$

Practical considerations for measuring the effective reproductive number, R_t

Katelyn M. Gostic , Lauren McGough, Edward B. Baskerville, Sam Abbott, Keya Joshi, Christine Tedijanto, Rebecca Kahn, Rene Niehus, James A. Hay, Pablo M. De Salazar, Joel Hellewell, Sophie Meakin, James D. Munday, [...], Sarah Cobey [view all]

General approach

- Bayesian approach combining nowcasting and *R* estimation
- Uncertain generation interval estimates allowing for negative serial interval
- Latent process for estimating I_{t}
- Negative binomial reporting with multiplicative day-of-the-week effect
- R_t estimates with correlation between R_{t+1} and R_t based on Gaussian Process prior

Confirmed cases, their estimated date of report, date of infection, and time-varying reproduction number estimates

The model

$$egin{aligned} \log R_t &= \log R_{t-1} + \mathrm{GP}_t \ I_t &= R_t \sum_{ au=1}^{15} w(au | \mu_w, \sigma_w) I_{t- au} \ O_t &= \sum_{ au=0}^{15} \xi_O(au | \mu_{\xi_O}, \sigma_{\xi_O}) I_{t- au} \ D_t &= lpha \sum_{ au=0}^{15} \xi_D(au | \mu_{\xi_D}, \sigma_{\xi_D}) O_{t- au} \ C_t &\sim \mathrm{NB}\left(\omega_{(t \mod 7)} D_t, \phi
ight) \end{aligned}$$

Method: doi.org/10.12688/wellcomeopenres.16006.2 Stan code: git.io/JUxRt

Type + Estimated + Truth

The model

$$egin{aligned} I_t &= I_0 \exp(rt) \ I_0 &\sim \mathcal{LN}(\log I_{obs}, 0.2) \ r &\sim \mathcal{LN}(r_{obs}, 0.2) \end{aligned}$$

20000

Seported cases 150000

5000

Mar

Apr

$$egin{aligned} w &\sim \mathcal{G}(\mu_w, \sigma_w) \ \xi_O &\sim \mathcal{LN}(\mu_{\xi_O}, \sigma_{\xi_O}) \ \xi_D &\sim \mathcal{LN}(\mu_{\xi_D}, \sigma_{\xi_D}) \end{aligned}$$

May

Jun

Method: doi.org/10.12688/wellcomeopenres.16006.2

Stan code: git.io/JUxRt

Real-time estimation of the effective reproduction number?
Real-time analysis case studies

Challenges

Sam Abbott @seabbs samabbott.co.uk

What are we actually trying to do?

- What kind of reproduction number are we estimating (case, instantaneous etc).
- Are we trying to estimate the reproduction number for the true latent infection process or using observed data as a proxy?
- Do we want a non-parametric estimate, a forecast of future transmission, or an understanding of the impact of NPIs etc.
- What do we a priori believe about how the reproduction number and generation time evolve over time.

Practical considerations for measuring the effective reproductive number, R_t

Katelyn M. Gostic , Lauren McGough, Edward B. Baskerville, Sam Abbott, Keya Joshi, Christine Tedijanto, Rebecca Kahn, Rene Niehus, James A. Hay, Pablo M. De Salazar, Joel Hellewell, Sophie Meakin, James D. Munday, [...]. Sarah Cobey [view all]

Generation interval misspecification

Practical considerations for measuring the effective reproductive number, R_t

Katelyn M. Gostic , Lauren McGough, Edward B. Baskerville, Sam Abbott, Keya Joshi, Christine Tedijanto, Rebecca Kahn, Rene Niehus, James A. Hay, Pablo M. De Salazar, Joel Hellewell, Sophie Meakin, James D. Munday, [...]. Sarah Cobey [view all]

Adjusting for delays

We observe some later proxy for infections blurred by a delay distribution.

Practical considerations for measuring the effective reproductive number, R_t

Katelyn M. Gostic , Lauren McGough, Edward B. Baskerville, Sam Abbott, Keya Joshi, Christine Tedijanto, Rebecca Kahn, Rene Niehus, James A. Hay, Pablo M. De Salazar, Joel Hellewell, Sophie Meakin, James D. Munday, [...], Sarah Cobey [view all]

Adjusting for right truncation

Incoming data can be delayed meaning what we currently observed isn't what we will observe.

Equally as infections are observed via a delay after reconstructing them they are also not fully observed.

Practical considerations for measuring the effective reproductive number, R_t

Katelyn M. Gostic , Lauren McGough, Edward B. Baskerville, Sam Abbott, Keya Joshi, Christine Tedijanto, Rebecca Kahn, Rene Niehus, James A. Hay, Pablo M. De Salazar, Joel Hellewell, Sophie Meakin, James D. Munday, [...]. Sarah Cobey [view all]

How to smooth

How does the reproduction number evolve over time and how much of that do we want to include in our estimates?

Practical considerations for measuring the effective reproductive number, R_t

Katelyn M. Gostic , Lauren McGough, Edward B. Baskerville, Sam Abbott, Keya Joshi, Christine Tedijanto, Rebecca Kahn, Rene Niehus, James A. Hay, Pablo M. De Salazar, Joel Hellewell, Sophie Meakin, James D. Munday, [...]. Sarah Cobey [view all]

Retrospective or real-time?

Real-time = Orange. This is expensive to care about.

$$egin{aligned} \log R_t &= \log R_{t-1} + \operatorname{GP}_t \ I_t &= R_t \sum_{ au=1}^{15} w(au | \mu_w, \sigma_w) I_{t- au} \ O_t &= \sum_{ au=0}^{15} \xi_O(au | \mu_{\xi_O}, \sigma_{\xi_O}) I_{t- au} \ D_t &= lpha \sum_{ au=0}^{15} \xi_D(au | \mu_{\xi_D}, \sigma_{\xi_D}) O_{t- au} \ C_t &\sim \operatorname{NB}\left(\omega_{(t \mod 7)} D_t, \phi
ight) \end{aligned}$$

Method: doi.org/10.12688/wellcomeopenres.16006.2

Stan code: git.io/JUxRt

Real-time estimation of the effective reproduction number?
Real-time analysis case studies

Tools for estimation

Sam Abbott @seabbs samabbott.co.uk

EpiNow2 - Real-time non-parametric estimation

EpiNow2 1.3.3.10 Home News 🖟 Functions

EpiNow2: Estimate real-time case counts and timevarying epidemiological parameters

License MIT contributors 12 PRs welcome commits since v1.3.2 85 DOI 10.5281/zenodo.5036949

This package estimates the time-varying reproduction number, growth rate, and doubling time using a range of open-source tools (Abbott et al.), and current best practices (Gostic et al.). It aims to help users avoid some of the limitations of naive implementations in a framework that is informed by community feedback and is under active development.

Epidemia - Hierarchical regression + flexible model options

0

EpiEstim - The core model, well implemented

EpiEstim: Estimate Time Varying Reproduction Numbers from Epidemic Curves

Tools to quantify transmissibility throughout an epidemic from the analysis of time series of incidence as described in Cori et al. (2013) < doi:10.1093/aje/kwt133> and Wallinga and Teunis (2004) < doi:10.1093/aje/kwh255>.

Version: 2.2-4 Depends: R (≥ 2.10)

Imports: coarseDataTools (≥ 0.6-4), stats, graphics, reshape2, ggplot2, gridExtra, fitdistrplus, coda, incidence (≥ 1.7.0), scales, grDevices

Suggests: testthat, utils, vdiffr, covr, knitr, rmarkdown

Published: 2021-01-07

Published: 2021-01-

Author: Anne Cori 👩 [aut, cre], Simon Cauchemez [ctb], Neil M. Ferguson 👩 [ctb], Christophe Fraser 👩 [ctb], Elisabeth Dahlqwist 👩 [ctb], P. Alex Demarsh [ctb], Thibaut Jombart 👩 [ctb], Zhian N. Kamvar 👩 [ctb], Justin Lessler 👩 [ctb], Shikun Li [ctb], Jonathan A.

Polonsky @ [ctb], Jake Stockwin [ctb], Robin Thompson @ [ctb], Rolina van Gaalen [ctb]

Maintainer: Anne Cori ca.cori at imperial.ac.uk>
BugReports: https://github.com/mrc-ide/EpiEstim/issues
License: GPL-2 | GPL-3 | expanded from: GPL (2 2) |
URL: https://github.com/mrc-ide/EpiEstim

NeedsCompilation: no

Materials: README NEWS
In views: Epidemiology
CRAN checks: EpiEstim results

Documentation:

Reference manual: EpiEstim.pdf

Vignettes: <u>EpiEstim demonstration</u>

Downloads:

Package source: <u>EpiEstim 2.2-4.tar.gz</u>

Windows binaries: r-devel: EpiEstim 2.2-4.zip, r-release: EpiEstim 2.2-4.zip, r-oldrel: EpiEstim 2.2-4.zip

 $macOS\ binaries: \ r-release\ (arm64): \underline{EpiEstim\ 2.2-4.tgz}, r-oldrel\ (arm64): \underline{EpiEstim\ 2.2-4.tgz}, r-oldrel\ (x86_64): \underline{EpiEstim\ 2.2-4.tgz}, r-$

Old sources: <u>EpiEstim archive</u>

Reverse dependencies:

Reverse imports: <u>covid19india</u>, <u>earlyR</u>, <u>EpiLPS</u> Reverse suggests: <u>epidemia</u>, <u>projections</u>

Linking:

Please use the canonical form https://cran.r-project.org/package=EpiEstim to link to this page.

Real-time estimation of the effective reproduction number?
Real-time analysis case studies

Case studies

Sam Abbott @seabbs samabbott.co.uk

Short-term forecasts

What do we think will happen to reported metrics over the next 1-4 weeks

- Using the reproduction number model and similar discrete convolutions models.
- Submitting to the ECDC and CDC forecasting hubs weekly as well as to SPI-M 3 times a week until mid 2020.
- Performs well compared to other models but out performed by an all-model ensemble.
- Also outperformed by a human judgement model.
- All forecasts struggle to account for policy changes and behavioural changes.

Bosse et al. medRxiv, 2020, DOI: 10.1101/2021.12.01.21266598

Estimating the transmission advantage of Alpha

How much more transmissible is Alpha than wild-type?

- Part of a multi-method approach by Davies et al.
- Used reproduction number estimates by Lower-Tier local authority as "data" + S-gene target failure status (SGTF) as a proxy for variant status.
- Estimated the transmission advantage using an extended regression model adjusted for confounders
- Work done between December 20th 2020 and January 1st 2021.

Estimating the transmission advantage of Delta

How much more transmissible is Delta than Alpha?

- Repurposed the approach used for Alpha using reproduction number estimates as data.
- Extended the methodology to include uncertainty for the reproduction number estimates and SGTF status.
- Estimates combined with others as apart of the SPI-M consensus statement.

Estimating the generation time of Omicron

Is Omicron's generation time shorter than Delta's?

- Observed reduction in transmission advantage could indicate a shorter generation time.
- This is due to the relationship between the daily growth rate and the reproduction number.
- Used growth rates for Omicron and Delta to explore this and found that a shorter generation time was plausible.
- Findings supported by a study from UKHSA using household contact data.
- Results available in early January and formed part of the SPI-M consensus statement.

$$R = \left(1 + \bar{G}kr\right)^{\frac{1}{k}}$$

Real-time estimation of the effective reproduction number?

Real-time analysis case studies

What is left to do?

Sam Abbott @seabbs samabbott.co.uk

Nowcasting

What is happening now to metrics we partially observe

- International collaboration estimating 7-day hospital admissions by date of positive test in Germany (the key metric used by decision makers).
- Statistical approach is to decompose the model into forecast and reporting delay components.
- Multi-method ensemble outperforms any single model.
- Nowcasting is conceptually difficult to understand and so potentially under used.
- Open access tools, such as epinowcast, make access easier.

Validation - which method works best when

Novel data sources

Estimating epidemiological quantities from repeated cross-sectional prevalence measurements

© Sam Abbott, © Sebastian Funk

doi: https://doi.org/10.1101/2022.03.29.22273101

Estimating epidemiologic dynamics from cross-sectional viral load distributions

Authors Info & Affiliations

SCIENCE · 3 Jun 2021 · Vol 373, Issue 6552 · DOI: 10.1126/science.abh0635

Other

- Documentation, testing, case studies, modularity.
- Joint estimation of the time-varying generation time.
- Estimation and support for time-varying delays.
- Better understanding of how the reproduction number should be modelled to evolve over time.
- Hybrid models producing optimal retrospective and real-time estimates
- Linking stochastic and deterministic models
- Linking to phylodynamic methods

Real-time estimation of the effective reproduction number?
Real-time analysis case studies

Summary

Sam Abbott @seabbs samabbott.co.uk

Summary

Thanks to the epiforecast.io group and my collaborators. Please see individual slides for links containing more details of each case study.