Построение трехмерной сцены объектов

Студент:

• Фролов Евгений ИУ7-55Б

Научный руководитель:

• Романова Т.Н.

Цель работы - разработать программу для построения реалистического изображения из трехмерных геометрических объектов

Реализованное ПО предоставляет возможность:

- а) выбора и добавления в сцену трехмерных объектов;
- б) перемещения, поворота и масштабирования объектов;
- в) изменение текстуры объекта, его цвет, свойств поверхности.

Формализация сцены

Трехмерные геометрические объекты;

источник света;

отражение фигур;

текстуры фигуры.

Простой метод освещения

В простом методе освещения интенсивность рассчитывается по закону Ламберта:

$$I = I_0 * cos(\alpha)$$
, где

- І результирующая интенсивность света в точке
- І_0 интенсивность источника
- α угол между нормалью к поверхности и вектором направления света

Алгоритм Z-буфера

- 1. Всем элементам буфера кадра присвоить фоновое значение
- 2. Инициализировать Z буфер минимальными значениями глубины
- 3. Выполнить растровую развертку каждого многоугольника сцены:
 - а. Для каждого пикселя, связанного с многоугольником вычислить его глубину z(x, y)
 - b. Сравнить глубину пискселя со значением, хранимым в Z буфере.

Если z(x, y) > zбуф(x, y), то zбуф(x,y) = z(x,y), цвет(x, y) = цветПикселя.

4. Отобразить результат

Процесс закраски по методу Фонга

- 1. Определяются нормали к граням.
- 2. По нормалям к граням определяются нормали в вершинах.
- 3. В каждой точке закрашиваемой грани определяется интерполированный вектор нормали.
- 4. По направлению векторов нормали определяется цвет точек грани.

Модель Ламберта

Модель Ламберта моделирует идеальное диффузное освещение. Свет при попадании на поверхность рассеивается равномерно во все стороны.

Учитывается:

- ориентация поверхности (нормаль N)
- направление на источник света (вектор L).

Выбор языка программирования и среды разработки

В качестве языка программирования был выбран язык С++:

• т.к. работал с этим языком во время курса по предмету ООП.

В качестве среды разработки была выбрана QtCreator:

- бесплатный для студентов;
- удобства отладки и написания кода;
- удобное создание интерфейса.

Структура и состав классов

ŀ	<u>()</u>	7	<u>a</u>	C	<u>c</u>	

Camera

Поля

position direction fov zn aspect ratio projectionMatrix x_rot_angle

Методы

Camera viewMatrix shiftX shiftZ shiftY rotateX rotateY rotateOautr Класс Model Методы Поля index buffer rotateX vertex buffer rotateY faces rotate7 rotation matrix shiftX shiftY scale matrix shiftZ texture has_texture scaleX specular scaleY reflective scaleZ refractive obiToWorld transparency setColor getUid color isObject box wrap angle angle x genBox angle y

angle_z

shift x

shift v

shift z

scale x

scale y

scale_z

Класс

SceneManager Методы Поля init camers shift curr camera models rotate height scale moveCamera width shift Camera depthBuffer img rotateCamera |background_color| uploadModel pixel shader removeModel scene setCurrentModel vertex shader setColor geom shader setTexture models index render current model rasterize VW show vh rasterBarTriangle testAndSet threads clip setSpecular setReflective setRefraction setAmbIntensity

Класс

Класс Loader Поля **Positions** TCoords Normals Vertices Indices MeshMatNames listening meshname tempMesh curline LoadedMeshes LoadedVertices LoadedIndices LoadedMaterials Методы LoadFile

Matrix

Поля

elements Matrix

Identity

Методы

Scaling ScaleX ScaleY ScaleZ Rotation7 RotationY RotationX Translation **ProjectionFOV** LookAtLH RotationMatrix Inverse

GenVerticesFromRawOBJ VertexTriangluation LoadMaterials

<u>Класс</u>	<u>Класс</u>
Vec3	Vec4
<u>Поля</u>	<u>Поля</u>
x	W
y z	<u>Методы</u> Vec4
Методы	operator Vec4
Vec3	operator =
normalize	operator +
len	operator += operator-
operator Vec3	operator -=
operator = operator +	operator ==
operator +=	operator !=
operator-	operator /=
operator -=	operator /
operator *	operator *
cross	operator *=
dot	
refract	
hadamard	
saturate	

<u>Класс</u>	<u>Класс</u>
VertexShaderInterface	TextureShader
<u>Методы</u>	Поля
shade	texture
<u>Класс</u>	<u>Методы</u>
GeometryShaderInterface	shade
<u>Методы</u>	
shade	
<u>Класс</u>	
PixelShaderInterface	
<u>Методы</u>	
shade	

<u>Класс</u>	<u>Класс</u>	<u>Класс</u>
Ray	Primitive	BoundingBox
Поля invdirection origin sign direction	<u>Методы</u> intersect	<u>Поля</u> min max bounds
<u>Методы</u> Ray		<u>Методы</u> BoundingBox

<u>Класс</u>	<u>Класс</u>	
Vertex	VertexShader	
<u>Поля</u> pos normal color u	<u>Поля</u> dir light_color ambient intensity	
v invW	<u>Методы</u> VertexShader	
<u>Методы</u> Vertex	shade	

<u>Класс</u>
Light
Поля
t
color_intensity
position
lightning_power
direction
<u>Методы</u>
setType
Light
shiftX
shiftZ
shiftY
rotateX
rotateY
rotateZ
getDirection
isObject
1

Интерфейс программы

1. Выбор объекта - добавление объектов в сцену 2. Выбор источника света 3. Изменение параметра окружающего света 4. Просмотр объектов сцены 5. Изменение положения объекта 6. Добавление текстуры и изменение цвета объекта 7. Изменение параметров отражения, блеска и

прозрачности

На сцену добавили пирамиду и источник света

Наложение текстуры и цвета

Результат рендеринга

Построение реалистического изображения

