Problem (Problem 1): Prove that if $f: M \to N$ is smooth, and L is a k-codimensional submanifold of N that is transverse to f, then $f^{-1}(L)$ is either empty or a submanifold of M with codimension k.

Solution: If L is not contained in f(M), then $f^{-1}(L)$ is clearly empty. Therefore, we focus on the case where $f^{-1}(L)$ is not empty.

Let L be transverse to f, $q \in L$, and $p \in M$ such that f(p) = q. We observe that $T_qL + D_pF(T_pM) = T_qN$, so any vector in T_qN can be written (not necessarily uniquely) as an element of $D_pF(T_pM)$ and T_qL . Next, we observe that, if we take a coordinate chart for q in U such that $\phi(U) \cong \mathbb{R}^k$, then by the Regular Value Theorem, we may select ϕ such that $L \cap U = \phi^{-1}(0)$. This follows from the assumption that L has codimension k.

Now, if we can show that 0 is a regular value for $\varphi \circ f$, then $(\varphi \circ f)^{-1}(0) = f^{-1}(L) \cap f^{-1}(U)$, meaning that $f^{-1}(L)$ is a submanifold of M with codimension k. First, since 0 is a regular value for φ , it follows that if $v \in T_0\mathbb{R}^k$, then there is some $w \in T_q\mathbb{N}$ such that $D_q\varphi(w) = v$. Since f is transverse to L, there is $w_1 \in T_qL$ and $w_2 \in T_p\mathbb{N}$ such that $w = w_1 + D_pF(w_2)$. We observe that, since φ is constant on L, we have $D_q\varphi(w_1) = 0$, so that

$$D_{p}(\varphi \circ f)(w_{2}) = D_{q}\varphi \circ D_{p}F(w_{2})$$

$$= D_{q}\varphi(w_{1} + D_{p}F(w_{2}))$$

$$= D_{q}\varphi(w)$$

$$= v,$$

so 0 is a regular value for $\phi \circ F$.

Problem (Problem 2): Let $GL_n(\mathbb{R})$ denote the space of invertible $n \times n$ matrices over \mathbb{R} , let $SL_n(\mathbb{R})$ denote the matrices of determinant one, and let O(n) be the orthogonal group.

- (a) Prove that we may identify the tangent space of $GL_n(\mathbb{R})$ at the identity with $n \times n$ matrices over \mathbb{R} .
- (b) Prove that the tangent space of $SL_n(\mathbb{R})$ at the identity consists of matrices of trace zero.
- (c) Prove that the tangent space of O(n) at the identity consists of skew-symmetric matrices. What is the dimension of O(n)?
- (d) Show that $SL_n(\mathbb{R})$ and O(n) do not intersect transversely at the identity.

Solution:

- (a) Let $A \in Mat_n(\mathbb{R})$, and consider a path through the identity given by $\gamma(t) = I + tA$. Since the determinant is a smooth function, and det(I) = 1, we have that for a small $\epsilon > 0$ there is δ , such that $|det(I + tA) 1| < \epsilon$ whenever $|t| < \delta$. In particular, this means that the tangent space at the identity of $GL_n(\mathbb{R})$ consists of all matrices.
- (b) We let $\gamma(t) = I + tA$ be a curve in $SL_n(\mathbb{R})$, so that $\gamma'(0) = A$ is an element of the tangent space of $SL_n(\mathbb{R})$ at the identity. We observe that $det(\gamma(t)) = 1$ for all (sufficiently small) t, so by chain rule, we find that

$$0 = \frac{d}{dt} \Big|_{t=0} \det(\gamma(t))$$
$$= D_{\gamma(0)} \det(\gamma'(0))$$
$$= D_{I} \det(A).$$

Therefore, we must evaluate what det'(I)(A) yields. Toward this end, we see that

$$D_{I} \det(A) = \lim_{t \to 0} \frac{\det(I - tA) - 1}{t}$$

$$= \lim_{t \to 0} \frac{t^n \det(\frac{1}{t}I - A) - 1}{t}.$$

Observe that the expression $\det(\frac{1}{t}I - A)$ is the characteristic polynomial of A in $\frac{1}{t}$. This means that the $\left(\frac{1}{t}\right)^{n-1}$ term is equal to $\operatorname{tr}(A)$, so that $D_I \det(A) = \operatorname{tr}(A)$. Thus, we find that A is traceless.

(c) If $\gamma(t) = I + tA$ is a curve in O(n), then then we have that

$$(I + tA)^{T}(I + tA) = I$$

 $I + t(A^{T} + A) + t^{2}(A^{T}A) = I$,

meaning that by taking an equivalence class of this tangent curve, we have

$$I + t(A^{\mathsf{T}} + A) = I,$$

so that $A^{T} = -A$.

We observe that the function $f: \operatorname{Mat}_n(\mathbb{R}) \to \operatorname{Mat}_n(\mathbb{R})_{s.a.}$, given by

$$f(A) = A^{\mathsf{T}}A,$$

has I_n as a regular value. To see this, observe that curves in T_I $Mat_n(\mathbb{R})_{s.a.}$ are of the form $\gamma(t)=I+tK$, where K is a self-adjoint(/symmetric) matrix. Similarly, T_A $Mat_n(\mathbb{R})$ is of the form $\epsilon(t)=A+tB$, where $B\in Mat_n(\mathbb{R})$ and $t\in \mathbb{R}$. Both of these follow from the fact that $Mat_n(\mathbb{R})$ and $Mat_n(\mathbb{R})_{s.a.}$ are isomorphic to Euclidean spaces. Therefore, we see that the image of $\delta(t)$ is of the form $A^TA+t(A^TB+B^TA)$; if A satisfies $A^TA=I$, we can put this in the form of I+tK by taking $\delta(t)=A+\frac{1}{2}tAK$. Therefore, by the Regular Value Theorem, the dimension of O(n) is $n^2-\frac{n(n-1)}{2}=\frac{n(n+1)}{2}$

(d) Since both skew-symmetric and traceless matrices have trace zero, it follows that the tangent spaces of $SL_n(\mathbb{R})$ and O(n) cannot span the tangent space of $GL_n(\mathbb{R})$, as there are matrices with nonzero trace.

Problem (Problem 4): Let D be a distribution on a smooth manifold of dimension n. We write I(D) for the ideal of D, which consists of graded pieces $I^k(D) \subseteq \mathcal{A}^k(M)$, where $I^k(D)$ consists of forms ω such that $\omega(X_1,\ldots,X_k)=0$ for all $X_i\in D$, and

$$I(D) = \bigoplus_{k=0}^{n} I^{k}(D).$$

The Frobenius Theorem says that D is involutive if and only if I is *differential* — i.e., $d(I) \subseteq I$, where d is the exterior derivative.

- (a) Prove that I(D) is an ideal i.e., if $\omega \in I(D)$ and η is arbitrary, then $\omega \wedge \eta \in I(D)$.
- (b) Prove that I(D) is locally generated by s = n r linearly independent 1-forms $\omega_1, \ldots, \omega_s$, in the sense that for every point $p \in M$, there is a neighborhood U of p such that for any $\omega \in I^k(D)$ with k arbitrary, we may write

$$\omega = \sum_{i=1}^{s} \theta_i \wedge \omega_i$$

for suitable forms $\theta_1, \ldots, \theta_s$.

(c) Prove that if D is involutive, then for all $\omega \in I(D)$, we have $d\omega \in I(D)$.

(d) Use this to show that if ω is a 1-form, and X, Y are vector fields, then

$$d\omega(X,Y) = \frac{1}{2}(X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y])).$$

Conclude that if $\omega \in I^1(D)$, and $X, Y \in D$, then $\omega([X, Y]) = 0$. Thus, if I is a differential ideal, then D is involutive.

(e) Show that if D is defined by the vanishing of linearly independent forms $\omega_1, \dots, \omega_s$ near a point p, then D is involutive if and only if for each i there are 1-forms $\omega_{i,i}$ such that

$$d\omega_{i} = \sum_{j=1}^{s} \omega_{i,j} \wedge \omega_{j}.$$

Solution:

(a) Write

$$\omega = \alpha_1 \wedge \cdots \wedge \alpha_k$$

so that

$$\omega(X_1, \dots, X_k) = \det((\alpha_i(X_j))_{i,j})$$
$$= 0.$$

for $X_1, \ldots, X_k \in D$. Then, if

$$\eta = \beta_1 \wedge \cdots \wedge \beta_\ell$$

we have the determinant of the block matrices

$$\omega \wedge \eta(X_1, \dots, X_k, \dots, X_{k+\ell}) = \det \begin{pmatrix} \alpha_i(X_j) & \alpha_i(X_{\ell+j}) \\ \beta_i(X_j) & \beta_i(X_{\ell+j}) \end{pmatrix}$$
$$= 0,$$

so that $\omega \wedge \eta$ is contained in I(D).

(b) Let $p \in U \subseteq M$ be such that T_pM is spanned by $\left\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\right\}$. Without loss of generality, the distribution may be defined to be the subset of T_pM spanned by $\left\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_r}\right\}$. Then, we observe that the ideal $I^1(D)$ is then spanned by the differential forms dx_{r+1}, \ldots, dx_n . Since I(D) is an ideal, we observe that an arbitrary element of $I^k(D)$ can then be written as

$$\omega = \sum_{j=r+1}^{s} \theta_j \wedge dx_j,$$

where the θ_i are elements of $\mathcal{A}^{k-1}(M)$.

(c) Let D be involutive.

The evaluation of $d\omega$ on vector fields (X_1, \ldots, X_{k+1}) is given by

$$d\omega(X_1,...,X_{k+1}) = \frac{1}{k+1} \sum_{i=1}^{k+1} (-1)^{i+1} X_i \Big(\omega \Big(X_1,...,\widehat{X_i},...,X_{k+1} \Big) \Big)$$

$$+\frac{1}{k+1}\sum_{j=1}^{n}\sum_{i=1}^{j-1}(-1)^{i+j}\omega\Big(\big[X_{i},X_{j}\big],X_{1},\ldots,\widehat{X_{i}},\ldots,\widehat{X_{j}},\ldots,X_{k+1}\Big).$$

We verify this for the case that D is involutive, so that D may be assumed to locally be given by $(X_1,\ldots,X_r)=\left(\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_r}\right)$. Writing $\omega\in I(D)$ as

$$\omega = \sum_{i=r+1}^{n} \theta_i \wedge dx_i,$$

where the θ_i are (k-1)-forms, we may then find that, by using the formula for evaluation of the derivative on k-forms that

$$d\omega(X_1,\ldots,X_{k+1}) = \frac{1}{k+1} \sum_{i=1}^{k+1} (-1)^{i+1} \frac{\partial}{\partial x_i} \left(\omega \left(X_1,\ldots,\widehat{X_i},\ldots,X_{k+1} \right) \right)$$
$$= 0,$$

where we see that ω evaluates to zero on each of the X_i when $1 \le i \le r$, and $k, k+1 \le r$.

(d) If we write $X = \frac{\partial}{\partial x}$ and $Y = \frac{\partial}{\partial y}$, and

$$\omega = f dx + g dy$$

then

$$d\omega = \frac{\partial f}{\partial x} dx \wedge dx + \frac{\partial f}{\partial y} dy \wedge dx + \frac{\partial g}{\partial x} dx \wedge dy + \frac{\partial g}{\partial y} dy \wedge dy$$
$$= \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy.$$

Then, we see that

$$d\omega(X,Y) = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$

$$= \frac{1}{2} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$

$$= \frac{1}{2} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right)$$

$$= \frac{1}{2} \left(\frac{\partial}{\partial x} \left(\omega\left(\frac{\partial}{\partial y}\right)\right) - \frac{\partial}{\partial y} \left(\omega\left(\frac{\partial}{\partial x}\right)\right) - \omega\left(\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right]\right)\right).$$

In particular, we observe that if $\omega \in I^1(D)$, and $d\omega \in I^2(D)$, then since we may locally write $X, Y \in D$ such that $X = \frac{\partial}{\partial x}$ and $Y = \frac{\partial}{\partial y}$, we find that $\omega([X,Y]) = 0$, so that if I is differential, then D is involutive.