Machine Learning HW6

ML TAs mlta-2022spring@googlegroups.com

Outline

- 1. Task introduction
- 2. Dataset & Submit format
- 3. Submission & Grading
- 4. Useful information

Task introduction

Task introduction - GAN

- 1. When you want to project some random variables into specific space
- 2. GAN structure: Generator and Discriminator

Task introduction - Anime face generation

- 1. Input: random number
- 2. Output: Anime face
- 3. Implementation requirement: DCGAN & WGAN & WGAN-GP
- 4. Target: generate 1000 anime face images

Task introduction - Evaluation metrics

FID (Frechet Inception Distance) score

- 1. Use another model to create features for real and fake images
- 2. Calculate the Frechet distance between distribution of two features

Task introduction - Evaluation metrics

AFD (Anime face detection) rate

- 1. To detect how many anime faces in your submission
- 2. The higher, the better

Dataset & Summit format

Dataset & Submit format

Crypko

- 1. Website which can generate anime face by yourself
- 2. Thanks Arvin Liu for collecting the dataset
- 3. Website Link

Dataset & Submit format

Crypko

- 1. Dataset link is in the colab
- 2. Dataset format
- 3. There are 71,314 pictures in the folder
- 4. You can use additional datas to increase the performance*

```
faces
|
|__0.jpg
|__1.jpg
|__2.jpg
...
```

Submission & Grading

Submission & Grading

- 1. You should generate **1000** images, and name each image **<number>.**jpg a. e.g. 1.jpg, 2.jpg, ..., 1000.jpg
- 2. Use **tar** to compress your images, and name the file with **.tgz** as extension.
- 3. The untarred files should not contain the folder.
- 4. The compressing code is provided in the sample code.
- 5. Sample script:
 - cd <the images folder> && tar -zcvf ../images.tgz *.jpg
- 1. The folder containing your generated images **should only contain 1000 images.**

Submission & Grading - JudgeBoi General Rules

- 5 submission quota per day, reset at midnight.
 - Users not in the whitelist will have no quota.
- The countdown timer on the homepage is for reference only.
- We do limit the number of connections and request rate for each IP.
 - o If you cannot access the website temporarily, please wait a moment.
- The system can be very busy as the deadline approaches
 - o If this prevents uploads, we do not offer additional opportunities for remediation
- Please do not attempt to attack JudgeBoi.
- Every Friday from 6:00 to 9:00 is our system maintenance time.
- For any JudgeBoi issues, please post on NTUCOOL discussion
 - o Discussion Link: https://cool.ntu.edu.tw/courses/11666/discussion_topics/91777

Submission & Grading - JudgeBoi HW6-Specific Rules

- Only *.tgz file is allowed, file size should be smaller than 2MB.
- You can only select one submission since there is no private score.
 - o If none of the submissions is selected, we will use the first submission.
- JudgeBoi should complete the evaluation within one minute.
 - You do not need to wait for the progress bar to finish
- Please DO NOT directly upload the anime pictures from internet

Submission & Grading

- Leaderboard: JudgeBoi (4%)
- Code submission: NTU COOL (2%)
- Report submission: Gradescope (4%)

Submission & Grading - Leaderboard

Score	Name	FID score	AFD rate
1%	Simple baseline	FID ≤ 30000	AFD ≥ 0
1%	Medium baseline	FID ≤ 12000	AFD ≥ 0.4
1%	Strong baseline	FID ≤ 10000	AFD ≥ 0.5
1%	Boss baseline	FID ≤ 9000	AFD ≥ 0.6

Deadline: 2022/4/22 23:59

Submission & Grading - Leaderboard

Baseline	Suggestion	Estimated time
Simple baseline	Use sample code(DCGAN)	< 1 hour
Medium baseline	Use DCGAN with more epochs	1 ~ 1.5 hours
Strong baseline	Use WGAN or WGAN-GP	2 ~ 3 hours
Boss baseline	StyleGAN	< 5 hours

Submission & Grading - NTU COOL

1. Compress the code, and submit to NTU COOL, the format is show below

```
Ex: <student_id>_hw6.zip
```

- 1. Only submit the code you use, do not submit other files (model, data...)
- 2. Deadline: 2022/4/22 23:59

Submission & Grading - Gradescope

Report questions:

1. Describe the difference between WGAN* and GAN**, list at least two differences

- 2. Please plot the "Gradient norm" result.
 - a. Use training dataset, set the number of discriminator layer to 4 (minimum requirement)
 - b. Plot two setting:
 - i. weight clipping
 - ii. gradient penalty
 - c. Y-axis: gradient norm(log scale), X-axis: discriminator layer number (from low to high)

Submission & Grading - Gradescope

Report submission:

- 1. Submit the files on gradescope
- 2. Deadline: 2022/4/22 23:59

Regulations

- You should NOT plagiarize, if you use any other resource, you should cite it in the reference.
- You should NOT modify your prediction files manually.
- Do NOT share codes or prediction files with any living creatures.
- Do NOT use any approaches to submit your results more than 5 times a day. Do NOT use additional data or pre-trained models.
- Your assignment will not be graded and your final grade x 0.9 if you violate any of the above rules.
- Prof. Lee & TAs preserve the rights to change the rules & grades.

Useful information

DCGAN

- 1. Sample code implementation
- 2. Use serveral conv layers to generate image

WGAN & WGAN-GP

1. WGAN: Modify from DCGAN

- a. Remove the last sigmoid layer from the discriminator.
- b. Do not take the logarithm when calculating the loss.
- c. Clip the weights of the discriminator to a constant $(1 \sim -1)$.
- d. Use RMSProp or SGD as the optimizer.
- e. Link

2. WGAN-GP: Modify from WGAN

- a. Use gradient penalty to replace weight clipping
- b. Gradient penalty accumulate gradient from an interpolated image
- c. <u>Link</u>

StyleGAN

1. StyleGAN

- a. First transform latent variable z to w
- b. Use w in different stage in generator (Deal with different resolutions)
- c. Useful <u>link</u>

Link

Colab