Astronomy @ UChicago's SO-ED Fall 2018

October 13

Goals:

- Introduction to Galaxies!
- Feel more prepared to study DSOs at home
- Review some of the good resources
- See some basic math

Introduction to Galaxies

- Why are galaxies cool?
 - o They look cool cuz they're easy to see (big) compared to individual stars or exoplanets
 - o They are (by definition) where a ton of stuff goes on
- Hubble Classification (uses the tuning fork diagram) is based on shape:
 - o Spiral: S
 - Barred spiral: SB
 - S(B)a-c: a has tighter and smoother arms, while c has looser arms (more star forming regions)
 - o Lenticular (has the central nuclear bulge but no clear arms): S0
 - o Elliptical: E
- Focus on starburst galaxies -- super high star formation galaxies.
 - o Really dusty gas, lots of high mass stars that create clouds for new stars
 - o Lots of examples are interacting galaxies (like Antennae). Look at elements in these galaxies -- can tell us what kinds of stars are there
- Questions to think about and look up:
 - o First of all: Why are there so many topics this year???
 - Variables and Type Ia supernovae help determine distances
 - Pulsars, ULXs, and central bulges are the most easily observable
 - Stars and stellar formation/evolution help us learn more about our own origins
 - o How do the spiral arms stay together?
 - Density wave theory (hypothesis) suggests arms are areas of high density that slow down stars, which travel through them -- also suggests gas clouds could collapse into stars in the arms
 - o How did (different) galaxies form?
 - o Why do some galaxies have different shapes? (elliptical, lenticular, spiral, ...)
 - o How is the structure of the galaxies related to stellar formation?
 - o How did astronomers determine these properties?
 - Distance is often determined using Cepheids (for closer things) and Type I supernovae for the roughly constant absolute magnitude
 - Think about which wavelengths are relevant for different observations

Miscellaneous:

- Nebulae
 - Molecular Hydrogen: H, like the normal gaseous form
 - H I region: Single Hydrogen atoms
 - H II region: Ionized Hydrogen (H⁺)
 - Ionization can indicate presence of young nearby stars
- Interstellar Medium scatters light (mostly in higher frequencies)
 - Affects what we see and can require correction factors

DSOs:

- Questions to ask:
 - o Why is this particular object important/interesting?
 - o What does it tell us about similar objects?
 - o How does it relate to the theory section/topics?
- Good resources:
 - o Wikipedia
 - o AAVSO for Variable Stars
 - o Chandra (X-ray)
 - o Spitzer Space Telescope (IR)
 - o Research article abstracts (don't waste too much time trying to read the whole article)
 - o Scioly.org
 - o Random slides (that seem legit enough)
 - o APOD!
- Information you should have:
 - o Multiple images, ideally in different wavelengths (and labeled)
 - Memorizing for speed on tests is a good idea
 - Not always applicable, esp for very far or small objects -- get what you can
 - The wikipedia article
 - o Discovery info
 - o Location (pos. on celestial sphere, distance (if possible), galaxy, constellation, etc.)
 - o Names in different catalogs
 - o Facts that make the DSO stand out from other random objects
 - o Facts that make the DSO representative of other objects

Math topics:

- Magnitude
- Distance modulus / K correction
- Parallax
- Redshift (brief) & Hubble's law
- Period-luminosity for Cepheids
 - (How was this reference established in the first place?)
- Tully-Fisher plot