Algoritmos y Estructuras de Datos III

Segundo cuatrimestre 2022

Problema de flujo máximo

#### Datos de entrada:

- 1. Un grafo dirigido G = (N, A).
- 2. Nodos  $s, t \in N$  de origen y destino.
- 3. Una función de capacidad  $u: A \to \mathbb{Z}_+$  asociada con los arcos.

#### Datos de entrada:

- 1. Un grafo dirigido G = (N, A).
- 2. Nodos  $s, t \in N$  de origen y destino.
- 3. Una función de capacidad  $u: A \to \mathbb{Z}_+$  asociada con los arcos.
- ▶ **Problema:** Encontrar un flujo (cantidad a enviar por cada arco) entre s y t de mayor valor posible.

#### Datos de entrada:

- 1. Un grafo dirigido G = (N, A).
- 2. Nodos  $s, t \in N$  de origen y destino.
- 3. Una función de capacidad  $u: A \to \mathbb{Z}_+$  asociada con los arcos.
- ▶ **Problema:** Encontrar un flujo (cantidad a enviar por cada arco) entre *s* y *t* de mayor valor posible.
  - 1. Salvo s y t, en cada nodo la cantidad de flujo que entra al nodo debe ser igual a la cantidad de flujo que sale del nodo.
  - 2. La cantidad  $x_{ij}$  enviada por el arco  $ij \in A$  debe cumplir  $0 \le x_{ij} \le u_{ij}$ .
  - 3. El valor de un flujo es la cantidad de flujo neto que sale de s.









▶ Un corte en la red G = (N, A) es un subconjunto  $S \subseteq N \setminus \{t\}$  tal que  $s \in S$ .

- ▶ Un corte en la red G = (N, A) es un subconjunto  $S \subseteq N \setminus \{t\}$  tal que  $s \in S$ .
- ▶ Dados  $S, T \subseteq N$ , definimos  $ST = \{ij : i \in S \text{ y } j \in T\}$

- ▶ Un corte en la red G = (N, A) es un subconjunto  $S \subseteq N \setminus \{t\}$  tal que  $s \in S$ .
- ▶ Dados  $S, T \subseteq N$ , definimos  $ST = \{ij : i \in S \text{ y } j \in T\}$
- **Proposición:** Sea x un flujo definido en una red G = (N, A) y sea S un corte. Entonces

$$F = \sum_{ij \in S\bar{S}} x_{ij} - \sum_{ij \in \bar{S}S} x_{ij}$$

donde  $\bar{S} = N \setminus S$ .













► La capacidad de un corte S se define como

$$u(S) = \sum_{ij \in S\bar{S}} u_{ij}.$$

► La capacidad de un corte S se define como

$$u(S) = \sum_{ii \in S\bar{S}} u_{ij}.$$

**Proposición:** Si x es un flujo con valor F y S es un corte en N, entonces  $F \le u(S)$ .

La capacidad de un corte S se define como

$$u(S) = \sum_{ij \in S\bar{S}} u_{ij}.$$

- **Proposición:** Si x es un flujo con valor F y S es un corte en N, entonces  $F \le u(S)$ .
- **Corolario (certificado de optimalidad):** Si F es el valor de un flujo x y S un corte en G tal que F = u(S) entonces x define un flujo máximo y S un corte de capacidad mínima.

$$U = 30$$



$$U = 62$$



$$U = 28$$







- ▶ Dada una red G = (N, A) con función de capacidad u y un flujo factible x, definimos la red residual  $R(G, x) = (N, A_R)$ , donde:
  - 1.  $ij \in A_R$  si  $x_{ij} < u_{ij}$ ,
  - 2.  $ji \in A_R \text{ si } x_{ij} > 0.$

- ▶ Dada una red G = (N, A) con función de capacidad u y un flujo factible x, definimos la red residual  $R(G, x) = (N, A_R)$ , donde:
  - 1.  $ij \in A_R$  si  $x_{ij} < u_{ij}$ ,
  - 2.  $ji \in A_R \text{ si } x_{ij} > 0.$
- Un camino de aumento es un camino orientado de s a t en R(G,x).





















▶ Dado un camino de aumento P, para cada arco ij ∈ P definimos

$$\Delta(ij) = \begin{cases} u_{ij} - x_{ij} & \text{si } ij \in A \\ x_{ji} & \text{si } ji \in A \end{cases}$$

▶ Dado un camino de aumento P, para cada arco  $ij \in P$  definimos

$$\Delta(ij) = \begin{cases} u_{ij} - x_{ij} & \text{si } ij \in A \\ x_{ji} & \text{si } ji \in A \end{cases}$$

▶ Definimos además  $\Delta(P) = \min_{ij \in P} \{\Delta(ij)\}.$ 

▶ Dado un camino de aumento P, para cada arco ij ∈ P definimos

$$\Delta(ij) = \begin{cases} u_{ij} - x_{ij} & \text{si } ij \in A \\ x_{ji} & \text{si } ji \in A \end{cases}$$

- ▶ Definimos además  $\Delta(P) = \min_{ij \in P} \{\Delta(ij)\}.$
- Podemos encontrar un camino de aumento P en la red residual en O(m), y calculamos  $\Delta(P)$  en O(n).









**Proposición:** Sea x un flujo definido sobre una red N con valor F y sea P un camino de aumento en R(G,x). Entonces el flujo  $\bar{x}$ , definido por

$$ar{x}(ij) = egin{cases} x_{ij} & ext{si } ij \notin P \ x_{ij} + \Delta(P) & ext{si } ij \in P \ x_{ij} - \Delta(P) & ext{si } ji \in P \end{cases}$$

es un flujo factible sobre N con valor  $\bar{F} = F + \Delta(P)$ .

**Proposición:** Sea x un flujo definido sobre una red N con valor F y sea P un camino de aumento en R(G,x). Entonces el flujo  $\bar{x}$ , definido por

$$ar{x}(ij) = egin{cases} x_{ij} & ext{si } ij 
otin P \ x_{ij} + \Delta(P) & ext{si } ij 
otin P \ x_{ij} - \Delta(P) & ext{si } ji 
otin P \end{cases}$$

es un flujo factible sobre N con valor  $\bar{F} = F + \Delta(P)$ .

▶ **Teorema:** Sea x un flujo definido sobre una red N. Entonces x es un flujo máximo  $\iff$  no existe camino de aumento en R(G,x).

▶ **Proposición:** Sea x un flujo definido sobre una red N con valor F y sea P un camino de aumento en R(G,x). Entonces el flujo  $\bar{x}$ , definido por

$$ar{x}(ij) = egin{cases} x_{ij} & ext{si } ij 
otin P \ x_{ij} + \Delta(P) & ext{si } ij \in P \ x_{ij} - \Delta(P) & ext{si } ji \in P \end{cases}$$

es un flujo factible sobre N con valor  $\bar{F} = F + \Delta(P)$ .

- ▶ **Teorema:** Sea x un flujo definido sobre una red N. Entonces x es un flujo máximo  $\iff$  no existe camino de aumento en R(G,x).
- ► Teorema (max flow-min cut): Dada una red N, el valor del flujo máximo es igual a la capacidad del corte mínimo.



Lester Ford (1927–2017)



Delbert Fulkerson (1924–1976)

El algoritmo de Ford y Fulkerson (1956) obtiene un flujo máximo con complejidad O(nmU), donde  $U = máx_{ij \in A} u_{ij}$ .

```
Definir un flujo inicial en N (por ejemplo, x=0)

mientras exista P:= camino de aumento en R(G,x) hacer

para cada arco ij \in P hacer

si ij \in A entonces

x_{ij} := x_{ij} + \Delta(P)

si no (ji \in A)

x_{ji} := x_{ji} - \Delta(P)

fin si

fin para

fin mientras
```



























► **Teorema:** Si las capacidades de los arcos de la red son enteras, entonces el problema de flujo máximo tiene un flujo máximo entero.

- ► Teorema: Si las capacidades de los arcos de la red son enteras, entonces el problema de flujo máximo tiene un flujo máximo entero.
- ► Teorema: Si los valores del flujo inicial y las capacidades de los arcos de la red son enteras, entonces el método de Ford y Fulkerson realiza a lo sumo nU iteraciones, donde U es una cota superior finita para el valor de las capacidades.

- ► **Teorema:** Si las capacidades de los arcos de la red son enteras, entonces el problema de flujo máximo tiene un flujo máximo entero.
- ► Teorema: Si los valores del flujo inicial y las capacidades de los arcos de la red son enteras, entonces el método de Ford y Fulkerson realiza a lo sumo nU iteraciones, donde U es una cota superior finita para el valor de las capacidades.
- Si las capacidades o el flujo inicial son números irracionales, el método de Ford y Fulkerson puede no parar (es decir, realizar un número infinito de pasos).

$$\sigma = (\sqrt{5} - 1)/2$$



| Iteración      | Camino de aument    |
|----------------|---------------------|
| 6k + 1         | s, 1, 2, 3, 6, t    |
| 6k + 2         | s, 2, 1, 3, 6, 5, t |
| 6 <i>k</i> + 3 | s, 1, 2, 4, 6, t    |
| 6 <i>k</i> + 4 | s, 2, 1, 4, 6, 3, t |
| 6 <i>k</i> + 5 | s, 1, 2, 5, 6, t    |
| 6 <i>k</i> + 6 | s, 2, 1, 5, 6, 4, t |

# Algoritmo de Edmonds y Karp



Jack Edmonds (1934–)



Richard Karp (1935–)

- ▶ La modificación de Edmonds y Karp (1972) a este algoritmo consiste en usar BFS para buscar caminos de aumento.
- Resuelve el problema con complejidad O(nm²).

▶ Un matching o correspondencia entre los vértices de G, es un conjunto  $M \subseteq E$  de aristas de G tal que para todo  $v \in V$ , v es incidente a lo sumo a una arista de M.

- ▶ Un matching o correspondencia entre los vértices de G, es un conjunto  $M \subseteq E$  de aristas de G tal que para todo  $v \in V$ , v es incidente a lo sumo a una arista de M.
- ► El problema de matching máximo consiste en encontrar un matching de cardinal máximo entre todos los matchings de *G*.

- ▶ Un matching o correspondencia entre los vértices de G, es un conjunto  $M \subseteq E$  de aristas de G tal que para todo  $v \in V$ , v es incidente a lo sumo a una arista de M.
- ► El problema de matching máximo consiste en encontrar un matching de cardinal máximo entre todos los matchings de G.
- ► El problema de matching máximo es resoluble en tiempo polinomial para grafos en general (Edmonds, 1961–1965).

- ▶ Un matching o correspondencia entre los vértices de G, es un conjunto  $M \subseteq E$  de aristas de G tal que para todo  $v \in V$ , v es incidente a lo sumo a una arista de M.
- ► El problema de matching máximo consiste en encontrar un matching de cardinal máximo entre todos los matchings de G.
- ► El problema de matching máximo es resoluble en tiempo polinomial para grafos en general (Edmonds, 1961–1965).
- Pero en el caso de grafo bipartitos, podemos enunciar un algoritmo más simple transformándolo en un problema de flujo máximo en una red.

Dado el grafo bipartito  $G = (V_1 \cup V_2, E)$  definimos la siguiente red N = (V', E'):

Dado el grafo bipartito  $G = (V_1 \cup V_2, E)$  definimos la siguiente red N = (V', E'):

▶  $V' = V_1 \cup V_2 \cup \{s, t\}$ , con s y t dos vértices ficticios representando la fuente y el sumidero de la red.

Dado el grafo bipartito  $G = (V_1 \cup V_2, E)$  definimos la siguiente red N = (V', E'):

- ▶  $V' = V_1 \cup V_2 \cup \{s, t\}$ , con s y t dos vértices ficticios representando la fuente y el sumidero de la red.
- ►  $E' = \{(i,j) : i \in V_1, j \in V_2, ij \in E\}$   $\cup \{(s,i) : i \in V_1\}$  $\cup \{(j,t) : j \in V_2\}.$

Dado el grafo bipartito  $G = (V_1 \cup V_2, E)$  definimos la siguiente red N = (V', E'):

- ▶  $V' = V_1 \cup V_2 \cup \{s, t\}$ , con s y t dos vértices ficticios representando la fuente y el sumidero de la red.
- ►  $E' = \{(i,j) : i \in V_1, j \in V_2, ij \in E\}$   $\cup \{(s,i) : i \in V_1\}$  $\cup \{(j,t) : j \in V_2\}.$
- $ightharpoonup u_{ij}=1$  para todo  $ij\in E$ .

Dado el grafo bipartito  $G = (V_1 \cup V_2, E)$  definimos la siguiente red N = (V', E'):

- ▶  $V' = V_1 \cup V_2 \cup \{s, t\}$ , con s y t dos vértices ficticios representando la fuente y el sumidero de la red.
- ►  $E' = \{(i,j) : i \in V_1, j \in V_2, ij \in E\}$   $\cup \{(s,i) : i \in V_1\}$  $\cup \{(j,t) : j \in V_2\}.$
- $ightharpoonup u_{ij} = 1$  para todo  $ij \in E$ .

El cardinal del matching máximo de G será igual al valor del flujo máximo en la red N.