Probability for Statistics

Kexing Ying

May 15, 2020

Contents

1	Intr	ntroduction .1 Probability Measures		
	1.1			
		1.1.1	Some Properties of the Probability Measure	2
		1.1.2	The Lebesgue Measure	3
	1.2	2 Random variables		3

1 Introduction

1.1 Probability Measures

Last year we saw briefly constructions and definitions relevant to working with probabilities such as σ -algebras, random variables and more. We will revisit them here with a more general (and more technical) approach.

Definition 1.1 (σ -algebra). Let X be a set. A σ -algebra on X, \mathcal{A} is a collection of subsets of X such that

- $\varnothing \in \mathcal{A}$
- for all $A \in \mathcal{A}, A^C \in \mathcal{A}$
- for all $(A_n)_{n=1}^{\infty} \subseteq \mathcal{A}, \bigcup_n A_n \in \mathcal{A}$.

Proposition 0.1. Let X be a set and I a non-empty collection of σ -algebras on X. Then $\bigcap I$ is also a σ -algebra on X.

This proposition is easy to check and thus, it makes sense to consider the σ -algebra generated by some set.

Definition 1.2 (Generator of σ -algebra). Let X be a set and $S \subseteq \mathcal{P}(X)$ a collection of subsets of X. Then the σ -algebra generated by S is

$$\sigma(S) := \bigcap \{ \mathcal{A} \supseteq S \mid \mathcal{A} \text{ is a } \sigma\text{-algebra on } X \}$$

By the fact that the power set of X is a σ -algebra containing S, we see that $\{A \supseteq S \mid A \text{ is a } \sigma\text{-algebra on } X\}$ is non-empty and so for all $S \subseteq \mathcal{P}(X)$, $\sigma(S)$ a (and the smallest) σ -algebra on X.

With this, we can construct a commonly seen σ -algebra, the Borel σ -algebra. Given some topological space X, the Borel σ -algebra on X is the σ -algebra generated by \mathcal{T}_X , i.e. $\mathcal{B}(X) = \sigma(\mathcal{T}_X)$. We will most commonly work with the Borel σ -algebra on the real numbers $\mathcal{B}(\mathbb{R})$.

We call the ordered pair (X, A) where A is a σ -algebra n X a measurable space.

Definition 1.3 (Measure). Given a measurable space (X, \mathcal{A}) , a measure on this measurable space $\mu : \mathcal{A} \to [0, \infty]$ is a function such that

- $\mu(\varnothing) = 0$
- for all disjoint sequence $(A_n)_{n=1}^{\infty} \subseteq \mathcal{A}, \, \mu(\bigsqcup_n A_n) = \sum_n \mu(A_n)$

With measures defined, we can add an additional restriction to create a probability space.

Definition 1.4 (Probability Measure). Let μ be a measure on the measurable space (X, \mathcal{A}) , then μ is a probability measure if and only if $\mu(X) = 1$. We then call the order triplet (X, \mathcal{A}, μ) a probability space.

To distinguish probability space from normal measure spaces, we will often write $(\Omega, \mathcal{F}, \mathbb{P})$ to denote a probability space. We will call Ω the *sample space*, \mathcal{F} the *events* and for all $A \in \mathcal{F}$, $\mathbb{P}(A)$ the *probability* of the event A.

1.1.1 Some Properties of the Probability Measure

Theorem 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with $(A_i)_{i=1}^{\infty}$ an increasing sequence in \mathcal{F} , then

$$\mathbb{P}\left(\bigcup_{i} A_{i}\right) = \lim_{i \to \infty} \mathbb{P}(A_{i}).$$

Proof. Follows from additivity of the probability measure by writing $\bigcup_i A_i$ as the disjoint union $A_1 \sqcup \bigsqcup_i (A_{i+1} \setminus A_i)$.

A corollary of the above is immediately deduced by considering the complement of a decreasing function.

Corollary 1.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with $(A_i)_{i=1}^{\infty}$ a decreasing sequence in \mathcal{F} , then

$$\mathbb{P}\left(\bigcap_{i} A_{i}\right) = \lim_{i \to \infty} \mathbb{P}(A_{i}).$$

In fact the two above propositions apply to general measures with identical proofs.

Theorem 2. Suppose (Ω, \mathcal{F}) is a measurable space with the finitely additive function \mathbb{P} : $\mathcal{F} \to [0,1]$ such that theorem 1 holds, then \mathbb{P} is a probability measure.

Proof. Let $(A_i)_{i=1}^{\infty}$ be a sequence of disjoint sequence in \mathcal{F} , then, let us define $B_n = \bigcup_{i=1}^n A_i$. As σ -algebras are closed under unions, $B_n \in \mathcal{F}$ for all n. Now, by assumption, as (B_n) is increasing, $\mathbb{P}(\bigcup_i A_i) = \mathbb{P}(\bigcup_n B_n) = \lim_{n \to \infty} \mathbb{P}(B_n) = \lim_{n \to \infty} \mathbb{P}(\bigcup_{i=1}^n A_i) = \lim_{n \to \infty} \sum_{i=1}^n \mathbb{P}(A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ where the second to last equality if true by finite additivity.

1.1.2 The Lebesgue Measure

As the point of measures in general is to assign sets (in the relevant σ -algebra) to some number, it might be useful to take a look at the most famous measure of them all – the Lebesgue measure.

In the easiest terms, the Lebesgue measure is a measure, that maps the interval $[a,b] \subseteq \mathbb{R}$ to the real number b-a. In probability, we can think of this as $\mathbb{P}([a,b])$, or the probability of $X \in [a,b]$ where X is a random variable with uniform distribution, (we will talk more about what this means in the next section).

In this course, we will assume the Lebesgue measure exists (and in fact, is unique which we shall prove from first principle in next term's measure theory course).

It turns out that a lot of sets are Lebesgue measurable, in fact, the set of sets that are Lebesgue measurable is greater than the Borel σ -algebra. However, unfortunately, not all sets a Lebesgue measurable. We will give an example of a non-Lebesgue measurable set here called the Vitali set.

Definition 1.5 (The Vitali Set). Let $\Omega := [0, 2\pi)$, then we can some probability measure \mathbb{P} such that $\mathbb{P}(s) = \frac{\beta - \alpha}{2\pi}$ corresponding to the Lebesgue measure. Now, let \sim be the equivalence relation such that $x \sim y$ if and only if x - y is a rational multiple of 2π . As \sim , is an equivalence relation, it partitions Ω , so there is a set of equivalence classes Ω/\sim . Now, by using the axiom of choice, the Vitali set is defined to be the set A choosing one element from each equivalence classes in Ω/\sim .

Theorem 3. The Vitali Set is not measurable with respect to the measure in theorem 1.5.

Proof. We suppose for contradiction that the Vitali set is measurable. As \mathbb{Q} is countable, let x_1, x_2, \cdots be the enumeration of all rational multiples of 2π in $[0, 2\pi)$. Now, define $A_i := A + x_i = \{a + x_i \mid a \in A\}$. We see that A_i, A_j are disjoint for all $i \neq j$ since if there exists some $a \in A + x_i \cap A + x_j$, so there exists $\alpha, \beta \in A$, $\alpha + x_i = a = \beta + x_j$, so $\alpha \sim \beta$ implying $\alpha = \beta$ by the construction of A and hence, $x_i = x_j$. Now, as $\Omega = \bigsqcup_{i=1}^{\infty} A_i$, we have $1 = \mathbb{P}(\Omega) = \mathbb{P}(\bigsqcup_{i=1}^{\infty} A_i) = \sum \mathbb{P}(A_i)$. However, as the Lebesgue measure is transitional invariant, for all i, j, $\mathbb{P}(A_i) = \mathbb{P}(A_j)$, so $1 = \sum \mathbb{P}(A_i) = \lim_{i \to \infty} i\mathbb{P}(A_1)$ which results in a contradiction by applying excluded middle on $\mathbb{P}(A_1) = 0$.

1.2 Random variables

Now that we have the basic notion of a probability space, we would like to play around with it using *random variables*. In the most general sense, random variables are simply functions from the probability space to another measurable space, most commonly the real numbers equipped with $\mathcal{B}(\mathbb{R})$.

Definition 1.6 (Measurable Functions). Let (X, A) and (Y, B) be two measurable spaces and $f: X \to Y$ a mapping between the two. We call f measurable if and only if for all $A \in \mathcal{B}$, $f^{-1}(A) \in \mathcal{A}$.

Definition 1.7 (Random Variables). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and E, \mathcal{A} be a measurable space. Then an E-valued random variable is a measurable function $X : \Omega \to E$.

In general, we will only be working with real valued random variables, so the image measurable space is $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Often, when we have a random variable $X : \Omega \to \mathbb{R}$, we might ask questions such as "what is the probability that $X \in A$ " for some $A \subseteq \operatorname{Im} X$. We now see that this question is asking for exactly $\mathbb{P}(X \in A) = \mathbb{P}(X^{-1}(A))$ (this makes sense as X is measurable).

Another property that is useful for random variables is the notion of independence.

Definition 1.8 (Independence of Events). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $(A_n) \subseteq \mathcal{F}$ a sequence of events. Then (A_n) is said to be independent if and only if for all *finite* index set I,

$$\mathbb{P}\left(\bigcap_{n\in I} A_n\right) = \prod_{n\in I} \mathbb{P}(A_n).$$

Definition 1.9 (Independence of σ -algebras). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (\mathcal{A}_n) be a sequence of sub- σ -algebras of \mathcal{F} . Then (\mathcal{A}_n) is said to be independent if and only if for all $(A_n) \subseteq \mathcal{F}$ a sequence of events such that $A_i \in \mathcal{A}_i$, (A_n) is independent.

Equipped with these two notions of independence, it makes sense to create a notion of some σ -algebra induced by arbitrary measurable functions and with that the notion of independence of random variables is also induced.

Definition 1.10 (σ -algebra Generated by Functions). Let E be a set and $\{f_i : E \to \mathbb{R} \mid i \in I\}$ be an indexed family of real-valued functions. Then the σ -algebra on E generated by these functions is

$$\sigma(\{f_i \mid i \in I\}) := \sigma(\{f_i^{-1}(A) \mid A \in \mathcal{B}(\mathbb{R}), i \in I\}).$$

Note that with this definition, we created the smallest σ -algebra on E such that all f_i are measurable and for a single function f, $\sigma(\{f \mid i \in I\}) = \{f^{-1}(A) \mid A \in \mathcal{B}(\mathbb{R})\}.$

Definition 1.11 (Independence of Random Variables). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (X_n) be a sequence of real-valued random variables. Then (X_n) is said to be independent if and only if the family of σ -algebras $\sigma(X_n)$ is independent.

We will check that this definition of independence of random variables behave as intended, that is $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$.

Theorem 4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X, Y be real-valued random variables. Then X, Y are independent if and only if for all $A, B \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B).$$

Proof. Recall that $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}((X \in A) \cap (Y \in B)) = \mathbb{P}(X^{-1}(A) \cap Y^{-1}(B))$. Now, if $\sigma(X)$ and $\sigma(Y)$ are independent, as $X^{-1}(A) \in \sigma(X)$ and $Y^{-1}(B) \in \sigma(Y)$, by definition, we have $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$.

Similarly, if the equality in question is true for all $A, B \in \mathcal{B}(\mathbb{R})$, then the σ -algebras are independent by definition, and thus, so are the random variables.