Optimized Integrated Task and Motion Planning

Grigoriy Dubrovskiy

University of Notre Dame

May 2, 2017

Outline for Section 1

- 1 Optimized ITMP
 - Problem at glance
 - CLTLB(D) as MILP
 - Results
 - Possible extensions for Optimized ITMP
- 2 Related papers to Safe Autonomous Flight
- 3 Future Work

Problem at glance Optimized ITMP

- Integrated Task and Motion Planning
- Minimization of Manhattan norm
- Minimization of waypoints' number
- Automatic generation of local-level plan (as waypoints) from a specification, which lead to accomplishment of a Global Mission

Specification for a robot *i*, formulated using Counter Linear Temporal Logic Over Constraint System CLTLB(D):

 $\phi_i \equiv PickUp_1 \ \mathcal{U} \ DropOff_1(-4000, 4000) \ \mathcal{U} \ GoHome$

Optimized Motion Primitives

Primitive GoTo

$$\begin{split} \phi_{GoTo}^{\mathcal{O}} &\equiv \forall j \in \mathcal{N}_{\mathcal{O}} : \Box \Big[(\pi = GoTo) \longrightarrow \\ r_{left,o}^{j} \vee r_{right,o}^{j} \vee r_{below,o}^{j} \vee r_{above,o}^{j} \Big], \end{split}$$

Whole specification for the primitive GoTo can be formulated as follows:

$$\phi_{GoTo} \equiv \Box \Big[\pi = GoTo \longrightarrow rin_X \wedge rin_Y \wedge \phi_{GoTo}^{\mathcal{O}} \Big],$$

where π is a variable with a symbol of currently applied motion primitive; rin_x and rin_y are conditions to be inside the workspace.

Optimized Motion Primitives

Primitives' specifications

Specification for the primitive PickUp will look as follows:

$$\phi_{\textit{PickUp}} \equiv \forall j \in \mathcal{N}_{\mathcal{B}} : \Box \Big[\pi = \textit{PickUp}_{j} \longrightarrow \bigwedge_{\forall l \in N_{\mathcal{B}}} \Big(\neg q_{b}^{l}.p \land \bigcirc p_{\textit{carry}}^{i,l} \Big) \land r_{\textit{static}} \land r_{\textit{object}}^{i} \Big],$$

where $\neg q_b^l.p$ states that currently robot does not carrying any object from the set of objects $N_{\mathcal{B}}$; $\bigcirc p_{carry}^{j,l}$ means that robot will carry the object j; r_{static} - states of the robot will not change; r_{object}^j robot is posing in front of object j.

Using the same approach, we can formulate specifications for a primitive DropOff.

Optimized Motion Primitives

Primitive GoTo

Constraints:

$$\begin{split} r_{left,o}^{j} &\equiv \left(\max(\bigcirc q_r.x, q_r.x) \leq \min(o_j.x_i, o_j.x_f) - \frac{a.l}{2} \right), \\ r_{light,o}^{j} &\equiv \left(\max(\bigcirc q_r.x, q_r.x) \geq \max(o_j.y_i, o_j.y_f) + \frac{a.l}{2} \right), \\ r_{below,o}^{j} &\equiv \left(\max(\bigcirc q_r.y, q_r.y) \leq \min(o_j.y_i, o_j.y_f) - \frac{a.l}{2} \right), \\ r_{above,o}^{j} &\equiv \left(\max(\bigcirc q_r.y, q_r.y) \geq \max(o_j.y_i, o_j.y_f) + \frac{a.l}{2} \right), \\ \phi_{GoTo}^{\mathcal{O}} &\equiv \forall j \in \mathcal{N}_{\mathcal{O}} : \Box \Big[\left(\pi = GoTo \right) \longrightarrow \\ r_{left,o}^{j} &\vee r_{right,o}^{j} \vee r_{below,o}^{j} \vee r_{above,o}^{j} \Big], \end{split}$$

$$\mathbf{Cost} = \text{Min } \sum_{k=1}^{n} \| \Delta d_{i,i+1} \|$$

Minimization of Manhattan norm for GoTo (for each step):

$$\operatorname{Min} \ \|\Delta \mathsf{d}_{i,i+1}\| = \operatorname{Min} \sum_{m \in \{X,Y\}} |\Delta m_{i,i+1}| = \operatorname{Min} \left(|\Delta X|_{i,i+1} + |\Delta Y|_{i,i+1} \right)$$

CLTLB(D) = Counter Linear Temporal Logic over Constraint System

Each state variable defined in the CLTLB(D) specifications are encoded as a vector of variables in the CPLEX solver.

For example, a robot's state is encoded as 3 vectors, corresponding to coordinates X, Y and to Angle theta (i.e. q_rx , q_rx , q_rx , q_rx , for all time instances before K, which is a planning horizon).

Objects states' are encoded as a two dimensional array such that each element $q_b[j].x$ is $q_b[j].x[k]$, where j is an index of an object and k is a time instance.

Each motion primitives $\pi(k) \in Q_{\pi}$ is represented as an array such that each element is $\pi[k]$, because the values of which primitive to use should be determined during solving Optimization problem.

Specifications as MILP

Encoding specification of primitives as linear constraints.

Time operator \bigcirc is encoded by adding or subtracting an array index, e.g.

$$\bigcirc q_r.x[k] \equiv q_r.x[k+1]$$

Logical AND (y1): can be encoded using linear constraints*:

- ▶ $y1 \ge x1+x2-1$
- y1≤x1
- y1≤x2
- 0≤y1≤1

where y1 is constrained to be an integer.

Logical NOT (y3): Use y3=1-x1, where y3 is constrained to be a binary integer.

Logical OR (y2): Use the linear constraints $y2 \le x1 + x2$, $y2 \ge x1$, $y2 \ge x2$, $0 \le y2 \le 1$, where y2 is constrained to be an integer.

Logical implication (y4): To express y4=(x1 \Longrightarrow x2) (i.e., y4= \neg x1 \lor x2), we can adapt the construction for logical OR. In particular, use the linear constraints y4 \le 1-x1+x2, y4 \ge 1-x1, y4 \ge x2, 0 \le y4 \le 1, where y4 is constrained to be an integer.

^{*}https://cs.stackexchange.com/questions/12102/express-boolean-logic-operations-in-zero-one-integer-linear-progra

Encoding specification of primitives as linear constraints

Encoding temporal logic quantifiers to first order logic requires quantifiers \forall and \exists in relation to the time instants.

The quantifier $\forall k \in N_p : \Psi[k]$ can be implemented using **for** loop.

The quantifier $\exists k \in N_p : \Psi[k]$ can be encoded by using an auxiliary variable j such as $\forall k \in N_p : (k = j) \implies \Psi[k] \land j \in N_p$ and, then, also implemented using a **for** loop.

Therefore, we can encode CLTLB(D) quantifiers as linear constraints to CPLEX:

•
$$\bigcirc^{j} \psi \Leftrightarrow j \in N_{p} \land \Psi[j]$$

$$\blacktriangleright \ \psi_1 \, \mathcal{U} \, \psi_2 \Leftrightarrow \bigwedge_{\forall k \in N} \left[\left(k < j \to \Psi_1[k] \right) \land \left(k = j \to \Psi_2[k] \right) \right] \land j \in N_p$$

$$\psi_1 \, \mathcal{U}(\psi_2 \dots \mathcal{U} \psi_N) \Leftrightarrow \left\{ \begin{array}{l} \bigwedge_{\forall k \in N_p} \left[(k < j_1 \rightarrow \Psi[k]) \land \\ (j_1 \leq k < j_2 \rightarrow \Psi_2[k]) \land \\ \dots \land (k = j_N \rightarrow \Psi_N[k]) \right] \land \\ j_1, \dots, j_N \in N_p \land j_1 < j_2 < \dots < j_N \end{array} \right.$$

Satisfiable solution from CPLEX

Objective = 0

```
Wavpoints:
0.Initial
              (-4000,-2000,0)
1.GoTo
               (3700, -1000, 0)
2.PickUp [1]
              (3700, -1000,0)
3.GoTo
               (3250,350.0)
4.GoTo
               (-4300,4000,0)
5.DropOff [1] (-4300,4000,0)
6.GoTo
               (5000,4000,-0)
7.GoTo
               (5000, -2000,0)
8.GoTo
               (-4000, -2000, 0)
9.GoTo
               (-2464.-2000.0)
Other data:
0.0bjects(0,0,0)
1.0bjects(0.0.0)
2.0bjects(1,0,0)
3.0bjects(1,0,0)
4.0bjects(1,0,0)
5.0bjects(0,0,0)
6.0bjects(0,0,0)
7.0bjects(0,0,0)
8.0bjects(0,0,0)
9.0bjects(0,0,0)
```

T = 4377 42 ms

◆ロト→園ト→重ト→重 めの@

Results

Satisfiable solution from Z3

```
Objective = 0
```

```
GOTO(3700,-1000,0)
PickUp(3700,-1000,0)
GOTO(3250,250,0)
GOTO(-4300,4000,0)
DropOff(-4300,4000,0)
GOTO(-4301,3450,0)
GOTO(3250,3450,0)
GOTO(3251,-1999,0)
GOTO(-4000,-2000,0)
```


T = 699.384ms

Optimized solution wtih CPLEX

Objective = Min $\|\Delta d_{12}\|$

```
Wavpoints:
Initial
              (-4000,-2000,0)
1.GoTo
              (3700, -1000,0)
2.PickUp [1] (3700,-1000,0)
3.GoTo
              (3250,4000,0)
4.GoTo
              (-4300,4000,0)
5.DropOff [1] (-4300,4000,0)
6.GoTo
              (3250.350.0)
7.GoTo
              (3250, -2000,0)
8.GoTo
              (-4000, -2000, 0)
9.GoTo
              (-4000, -2000, 0)
Other data:
0.0bjects(0,0,0)
1.0bjects(0,0,0)
2.0bjects(1,0,0)
3.0bjects(1,0,0)
4.0bjects(1,0,0)
5.0bjects(0.0.0)
6.0bjects(0,0,0)
7.0bjects(0,0,0)
8.0bjects(0,0,0)
9.0bjects(0,0,0)
```

T = 5246.05ms

Results

Optimized solution with Z3?

Objective = Min
$$\|\Delta d_{12}\|$$

$$T = ?? ms$$

CLTLB(D) = Counter Linear Temporal Logic over Constraint System

Definition (Semantics). The semantics of a CLTLB(\mathcal{D}) formula ϕ at an instant $k \in \mathcal{N}_{\rho}$ is as follows:

•
$$\rho(k) \vDash p \iff p \vdash \rho(k)$$
.

•
$$\rho(k) \vDash R(\varphi_1, ..., \varphi_n) \iff R(\varphi_1, ..., \varphi_n) \vdash \rho(k)$$
.

•
$$\rho(k) \vDash \neg \phi \iff \rho(k) \nvDash \phi$$
.

•
$$\rho(k) \vDash \phi_1 \land \phi_2 \iff \rho(k) \vDash \phi_1 \land \rho(k) \vDash \phi_2$$
.

•
$$\rho(k) \vDash \bigcirc \phi \iff \rho(k+1) \vDash \phi$$
.

•
$$\rho(k) \vDash \bigcirc^{-1} \phi \iff \rho(k-1) \vDash \phi$$
.

•
$$\rho(k) \vDash \bigcirc^{-1} \phi \iff \rho(k-1) \vDash \phi$$
.
• $\rho(k) \vDash \phi_1 \mathbf{U} \phi_2 \iff \begin{cases} \exists i \in [k, K] : \rho(i) \vDash \phi_2 \land \\ \forall j \in [k, i-1] : \rho(j) \vDash \phi_1 \end{cases}$
• $\rho(k) \vDash \phi_1 \mathbf{S} \phi_2 \iff \begin{cases} \exists i \in [0, k] : \rho(i) \vDash \phi_2 \land \\ \forall j \in [i+1, k] : \rho(j) \vDash \phi_1 \end{cases}$

•
$$\rho(k) \vDash \phi_1 \mathbf{S} \phi_2 \iff \begin{cases} \exists i \in [0, k] : \rho(i) \vDash \phi_2 \land \\ \forall j \in [i+1, k] : \rho(j) \vDash \phi_2 \end{cases}$$

 $\phi_i = PickUp[1]\mathbf{U} DropOff[1, (-4000, 4000)]\mathbf{U} GoHome$

Here variables i were equal to 2, 5 and 9 (the robot PickUp at k=2, DropOff at k=5 and Home at k=9). ◆ロト→部ト→重ト→重・釣り@・

Possible extensions for Optimized ITMP

Possible future work:

- Compare with results from ["Scalable lazy SMT-based motion planning." CDC 2016.];
- Compare with performance of SMT in optimization;
- Optimize Euclidean distance;
- Working on implementing more general specifications.

Compare with results from[†]

Number	SMT-Based,Motion,Planner, [s]			RRT	LTL
of passages	Discrete	Dis-Plan	Con-Plan	[s]	OPT
	abstraction	DIS-FIAII	Con-Fian		[s]
1	1.9975	0.1360	0.2542	10.4381	>7200
2	7.1461	1.1290	0.9294	122.3017	time out
3	19.3267	3.6495	1.0053	423.6957	time out
4	43.0985	4.0913	1.9204	1002.4193	time out

[†]Shoukry, Yasser, et al. "Scalable lazy SMT-based motion planning." Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE, 2016..

Compare performance of CPLEX with SMT optimization - joint work with Rafael

- SMT is using SAT to solve problems;
- CPLEX is using convex programming and solve via interior point methods.

Figure: Symbolic Execution in SMT solvers

Figure: Linear Programming using barrier functions

Picture of SMT is from[‡]

Picture of Interior point method demonstration is from§

[‡]http://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec13-SymExec.pdf.

[§]https://www.youtube.com/watch?v=MsqpSl5JRbl.

Compare performance of CPLEX with SMT optimization

In MILP the "bottleneck" is the logical constraints (e.g. AND, OR, Implication).

Logical AND (y1): Use the linear constraints[¶]:

- y1 ≥ x1+x2-1
- y1≤x1
- y1≤x2
- 0≤y1≤1

where y1 is constrained to be an integer. This enforces the desired relationship.

Logical OR (y2): Use the linear constraints $y2 \le x1 + x2$, $y2 \ge x1$, $y2 \ge x2$, $0 \le y2 \le 1$, where y2 is constrained to be an integer.

Logical NOT (y3): Use y3=1-x1.

Logical implication (y4): To express y4=(x1 \implies x2) (i.e., y4= \neg x1 \lor x2), we can adapt the construction for logical OR. In particular, use the linear constraints y4 \le 1-x1+x2, y4 \ge 1-x1, y4 \ge x2, 0 \le y4 \le 1, where y4 is constrained to be an integer.

https://cs.stackexchange.com/questions/12102/express-boolean-logic-operations-in-zero-one-integer-linear-progra

Compare performance of CPLEX with SMT optimization

In SMT optimization the "bottleneck" should be optimization of non-binary integer variables, because it doesn't solve relaxation of the MILP, but search a satisfiable solution (and then try to improve the cost function by search?).

Are there guarantees on optimization solution? Can it return a local optimum for a centralized problem?

Max-SAT as Integer Programming

 Max-SAT can be easily translated to 0-1 Integer Programming

$$F = \left\{ (\neg l_1, 3), (l_2, 4), (\neg l_3, 1), (l_2 \lor l_3, 10), (l_1 \lor \neg l_2, \infty) \right\}$$

$$\min \sum_{i} b_i w_i \qquad (1 - l_1) + b_1 \ge 1 \qquad l_i, b_i \in \{0, 1\}$$

$$l_2 + b_2 \ge 1 \qquad (1 - l_3) + b_3 \ge 1$$

$$l_2 + l_3 + b_4 \ge 1$$

Optimize Euclidean distance

- Formulate objective as a convex quadratic function?
- Solve iteratively?

Working on implementing more general specifications

Implement the following operators (via using already implemented operators $\bigcirc, \mathcal{U}, \neg$):

 $\textit{Last}[\phi]$ Last , which stands for $\Diamond(\neg \bigcirc \textit{true}) \land \phi$, where $\neg \textit{true}$

on finite trace is only true at last instant

Probabilistic ITMP

Maximize (Prob of satisfying constraints)

s.t.

$$\phi_{\mathcal{G}}^{Clean} \equiv PickUp_1 \ \mathcal{U} \ DropOff_1(-4000, 4000) \ \mathcal{U} \ GoHome$$

(Prob of satisfying constraints) $\geq 90\%$

$$P(Door1_{open} == true) = 20\%$$

$$P(Door2_{open} == true) = 80\%$$

$$P(Door3_{open} == true) = 80\%$$

Probabilistic ITMP

- Maximize (probability) p of fulfilling all tasks before a deadline (e.g. P>90%)
- Wind is a big deal: the speed of the drone is probabilistic (the real speed might be 2-7m/s, instead of nominal)

Picture is from

Krishnakumar, Kalmanje S.,

Outline for Section 2

- 1 Optimized ITMP
 - Problem at glance
 - CLTLB(D) as MILP
 - Results
 - Possible extensions for Optimized ITMP
- 2 Related papers to Safe Autonomous Flight
- 3 Future Work

Unmanned Aerial Systems Applications

[Safe and Autonomous Drones for Urban Flight, presentation from NASA, Oct 2016]

Safe & Autonomous for Urban Flight

[Safe and Autonomous Drones for Urban Flight, presentation from NASA, Oct 2016]

We could improve safety in GPS denied environments and against Dynamic Obstacles. And work optimizing Energy Management through thoughtful planning (in TMP):

"Reinforcement Learning in Robotics: A Survey", (2013, J.Kober (Bielefeld Univ.), J. Andrew Bagnell (CMU), Jan Peters(Max Planck Institute for Intelligent Systems))

From a survey paper in Reinforcement Learning:

"... To apply reinforcement learning in robotics, safe exploration becomes a key issue of the learning process ..., a problem often neglected in the general reinforcement learning community. ..."

Even if we can describe safety or performance in a Temporal Logic formulas, we need guarantees that such a "safe" control signal might always be generated.

"Reducing Conservativeness in Safety Guarantees by Learning Disturbances Online: Iterated Guaranteed Safe Online Learning", (2014, J.H.Gillula and C.J. Tomlin)

They combined Reinforcement Learning with a Hamilton-Jacobi-Isaacs (HJI) reachability analysis to perform altitude tracking, while guaranteeing safety.

"Reducing Conservativeness in Safety Guarantees by Learning Disturbances Online: Iterated Guaranteed Safe Online Learning", (2014, J.H.Gillula and C.J. Tomlin)

Figure: Sample trajectory of the quadrotor's altitude using the hand-tuned controller versus the IGSOLR controller.

"Reducing Conservativeness in Safety Guarantees by Learning Disturbances Online: Iterated Guaranteed Safe Online Learning", (2014, J.H.Gillula and C.J. Tomlin)

"One approach to overcoming this limitation** is to wrap the controller being learned inside another controller that seeks to guarantee safety; this is the approach taken by Gillula and Tomlin [††], in which we proposed a framework known as Guaranteed Safe Online Learning via Reachability (GSOLR). This framework combines machine learning techniques with Hamilton-Jacobi-Isaacs (HJI) reachability analysis in a way that prevents the system being controlled from taking an unsafe action, while avoiding any changes to the machine learning algorithm being used [a paper on GSOLR].

In essence, GSOLR is a least-restrictive safe controller: it allows the machine learning algorithm to control the system (e.g. via RL) except when the state is detected as being near a safety threshold, at which time a safety-guaranteeing control (dictated by HJI reachability analysis) is used instead."

^{**} safety during learning.

^{††}Gillulay, Jeremy H.,

and Claire J. Tomlin. "Guaranteed safe online learning of a bounded system." Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011...

"Preliminary Results of Powerline Reconstruction From Airborne LiDAR for Safe Autonomous Low-Altitude Urban Operations of Small UAS", (2014, C.Ippolito, K. Krishnakumar (NASA Ames Research Center), S.Hening(University of Santa Cruz))

NASA researchers use LiDAR for detecting Powerlines.

Figure: Powerline reconstruction of aircraft LiDAR data. Raw LiDAR point clouds (left), voxel processing (middle), reconstructed powerlines (right), at 20m (top), 40m (middle) and 60m (bottom).

Outline for Section 3

- 1 Optimized ITMP
 - Problem at glance
 - CLTLB(D) as MILP
 - Results
 - Possible extensions for Optimized ITMP
- 2 Related papers to Safe Autonomous Flight
- 3 Future Work

Future Work

- Explore other options for guaranteeing Safe Learning;
- Explore possibility of using Reachability analysis (and other model-based approaches) with LiDAR data for guaranteeing safety during a flight;
- Learn how to use a model-free Reinforcement Learning algorithm: "Policy Gradient with the Signed Derivative";
- Work on extensions for Optimized ITMP?