## Overview

 The puzzle: How do recurrent neural networks (RNNs) use continuous vectors to represent discrete symbolic structures?

#### · Findings:

- RNNs trained on structure-dependent tasks learn to implicitly implement tensor product representations.
- Several popular tasks for training sentence encoders are not structure-sensitive enough to induce RNNs to capture sentence structure.

### 2 Tensor Product Representations

- A principled method for representing compositional symbolic structures in vector space (Smolensky 1990)
- Represent the input with pairs of fillers and roles:
  Cats chase dogs = cats:subject + chase:verb + dogs:object
- Each filler  $f_i$  and role  $r_i$  has a vector embedding.
- The representation of the input is the sum of the outer products of each  $f_i$  and  $r_i$ :  $\sum_i f_i \otimes r_i$

#### Tensor Product Decomposition



- Goal: Approximate an RNN's learned encodings (such as E above) with a tensor product representation.
- Approach: (right, top) Train a model to generate tensor product representations that are close to the RNN's encodings.
  - Loss: Mean squared error between E' and E
- **Evaluation:** (right, bottom) Pass this model's output, E', to the RNN's decoder.



### (4) Role Schemes

|               | 3     | I     | - 1   | 6     |
|---------------|-------|-------|-------|-------|
| Left-to-right | 0     | - 1   | 2     | 3     |
| Right-to-left | 3     | 2     | I     | 0     |
| Bidirectional | (0,3) | (1,2) | (2,1) | (3,0) |
| Wickelroles   | #_I   | 3_I   | I_6   | I_#   |
| Tree          | L     | RLL   | RLR   | RR    |
| Bag-of-words  | $r_0$ | $r_0$ | $r_0$ | $r_0$ |



Tree used for tree roles

# Tensor Product Decomposition Networks: Uncovering representations of structure learned by neural networks

#### R. Thomas McCoy, Tal Linzen, Ewan Dunbar, and Paul Smolensky<sup>3,1</sup>

<sup>1</sup>Johns Hopkins University, <sup>2</sup>CNRS - Université Paris Diderot - Sorbonne Paris Cité, <sup>3</sup>Microsoft Research Al

### 5 Structure-Based Digit Sequence Tasks

- RNNs trained to copy can be approximated almost perfectly:
- Models being approximated: Sequential RNN and tree-based RNN trained to copy digit sequences.



#### Different tasks lead to different roles:

- Reversal favors right-to-left where copying favors left-to-right
- With sorting, a non-structural task, bag-of-words roles work.



#### 6 Sentence Encoder Experiments

 Test how often classifiers give the same output for a sentence encoding model and its tensor product approximation.

|              | Model Type | Training task                     |
|--------------|------------|-----------------------------------|
| InferSent    | BiLSTM     | Natural Language Inference        |
| Skip-thought | LSTM       | Previous/next sentence prediction |
| SST          | Tree       | Sentiment prediction              |
| SPINN        | Tree       | Natural Language Inference        |
| -            |            |                                   |

 All 4 models are reasonably well approximated with nonstructure-sensitive bag-of-words roles, suggesting they do not have robust representations of structure:



# 7 Related and ongoing work

#### • Role learning (Soulos et al. 2019; arXiv:1910.09113):

- Instead of using a role scheme generated by hand, add a module that automatically learns a role scheme.
- Analyzing a model trained on SCAN (Lake and Baroni 2018), a task of mapping a command to a sequence of actions:
- jump twice → JUMP JUMP
- walk after jump opposite right → RTURN RTURN JUMP WALK



- When applied to the sentence encoders, the role learner still does not outperform bag-of-words roles.
- Using tensor product representations to solve tasks:
  - Math problem solving: Schlag et al. 2019: arXiv:1910.06611;
    Chen et al. 2019: arXiv:1910.02339
  - Question answering: Palangi et al. 2017: arXiv:1705.08432
  - Image-caption generation: Huang et al. 2017: arXiv:1709.09118

## 8 Conclusion

- 3 important puzzles about neural networks:
  - I. How do neural networks represent structured information?
  - 2. How do they learn these representations?
  - 3. How do they use these representations to perform so well?
- Our work suggests an answer to puzzle 1: When trained on sufficiently structure-sensitive tasks, RNNs implicitly implement tensor product representations.
- Puzzles 2 and 3 remain for future work.

#### Links and Acknowledgments

- Paper: https://openreview.net/pdf?id=BJx0sjC5FX
- Demo: http://rtmccoy.com/tpdn/tpr demo.html
- This material is based upon work supported by the NSF GRFP, an NSF INSPIRE grant, an ERC grant (BOOTPHON), and ANR grants IEC, PSL\*, GEOMPHON, USPC, and EFL.All opinions are our own.