Sistema de Inferencia Difuso

Alexander A. González Fertel C-412 a.fertel@estudiantes.matcom.uh.cu

Características del Sistema de Inferencia Propuesto

Se presenta la implementación de un sistema de inferencia extensible con la inclusión de varias caracterísitcas interesantes a la hora de resolver un problema real. Como muestra de la capacidad del sistema se implementaron las funciones de pertenencia triangular y trapezoidal, añadir una nueva función de pertencia se logra extendiendo el archivo (membership.py) basado en las funciones que se muestran. También se presentan 2 métodos de agregación, Mamdani y Larsen y todos los métodos de defusificación.

Para utilizar el sistema de inferencia para resolver un problema, se deben definir los siguientes aspectos:

- Variables lingúisticas de entrada con sus respectivos hedges (funciones de pertenencia)
- Variables lingúisticas de salida con sus respectivos hedges (variables.py)
- Operadores, i.e. la t-norma, t-conorma y el complemento a usar (operators.py)
- Reglas de inferencia (rules.py)
- Método de agregación a usar (aggregations.py)
- Método de defusificación a usar (defuzzification.py)

Cada uno de estos aspectos tiene un formato bien definido y toda estructura que se equivalente es intercambiable, es decir, mientras se añada un nuevo método de agregación que tenga la misma interfaz que los otros, podra ser usado como parte del sistema.

Por ejemplo, las reglas basadas en variables lingüísticas tienen la forma:

IF formula THEN output variable IS category

Donde formula representa una fórmula de la lógica booleana, output variable es el nombre de una variable de salida y category es una categoría de dicha variable o un hedge.

Principales ideas seguidas para la implementación del sistema

Veamos progresivamente la implementación desde la definición de la entrada del sistema hasta el significado de la salida del sistema.

Se consta de un problema donde hay varias variables lingúisticas que se pueden dividir en variables de entrada y variables de salida, es decir, el sistema tiene de entrada valores reales para una parte de las variables, estos valores deben ser tuplas donde el primer elemento es el nombre de la variable y el segundo es el valor real que tiene dicha variable.

El resto de las partes del sistema, nombradas en la sección anterior, se configura antes de proveerle los valores para las variables de entrada de la siguiente forma (main.py):

- Cada variable lingúistica se define por un dominio y las funciones de pertenencia de los distintos modificadores o categorías (hedges). Estas funciones de pertenencia se definen en un diccionario que asocia nombres de categorías (strings) con tuplas donde el primer elemento es el objeto que representa la función de Python a usar y el resto de los elementos son los argumentos de dicha función excepto la abscisa que se evalúa. El dominio es el intervalo donde van a estar definidas dichas funciones de pertenencia.
- Los operadores son una instancia de alguna clase que extienda *BaseOperatorSet*, aunque básicamente son funciones.
- Las reglas son una lista de strings de la forma ??.
- El método de agregación a usar es el objeto que contiene la función de Python que representa dicho método.
- El método de defusificación a usar es el objeto que contiene la función de Python que representa dicho método.

El sistema consta de un pequeño parser para expresiones booleanas que aparecen en el antecedente de una regla de la forma ??. Dicho parser se basa en shunting yard (utils.py).

Propuesta de problema a solucionar mediante inferencia difusa

El problema a resolver es: cuánta presión aplicar sobre los frenos de un auto dependiendo de la velocidad de este y de la distancia respecto a una señal de pare. Nuestras variables lingüísticas son:

- Velocidad (speed), con las categorías (hedges):
 - Muy baja (very slow)
 - Baja (slow)
 - Moderada (moderate)
 - Alta (fast)
 - Muy alta (very fast)
- Distancia respecto al pare (distance to stop), con las categorías (hedges):
 - Pequeña (close)
 - Mediana (medium)
 - Grande (far)
- Presión aplicada (break pressure), con las categorías (hedges):
 - Ligera (light)
 - Moderada (moderate)
 - Fuerte (hard)

Las funciones de pertenencia para cada variable lingúistica se pueden ver en las siguientes figuras:

Figura 1: Distancia respecto al pare.

Figura 2: Velocidad.

Figura 3: Presión aplicada.