Plasma-Strahlungsquelle und Anordnung zur Erzeugung eines Gasvorhangs für Plasma-Strahlungsquellen

Die Erfindung bezieht sich auf eine Plasma-Strahlungsquelle, die von einem Quellbereich in einer Vakuumkammer ausgehende Strahlung in einen definierten Raumwinkel durch einen zur Debris-Unterdrückung vorgesehenen Gasvorhang hindurch entlang einer Achse der mittleren Ausbreitungsrichtung der Strahlung abstrahlt.

10

15

20

25

30

5

Ferner bezieht sich die Erfindung auf eine Anordnung zur Erzeugung eines Gasvorhangs als Filter für Teilchen in einer Strahlung, deren mittlere Ausbreitungsrichtung in einer Vakuumkammer entlang einer durch den Gasvorhang gerichteten Achse verläuft.

Plasma-Strahlungsquellen werden zur Erzeugung kurzwelliger elektromagnetischer Strahlung (λ < 110 nm) eingesetzt. Als Beispiel sei die Lithographie im extremen Ultraviolett (EUV, 5 nm $< \lambda <$ 50 nm) genannt. Die Leistungsfähigkeit von Plasma-Strahlungsquellen hängt davon ab, wie viel Strahlung im gewünschten Wellenlängenintervall nutzbaren Raumwinkel abgestrahlt wird und wie groß der nutzbare Raumwinkel ist. Die Effizienz der Umwandlung von der dem Plasma zugeführten Energie in nutzbare Strahlung des gewünschten Wellenlängenintervalls bezeichnet man als Konversionseffizienz (CE). Diese hängt sowohl von den Plasmabedingungen (Druck, Temperatur, Dichte Einschlusszeit, stoffliche Zusammensetzung) ab als auch von dem nutzbaren Raumwinkel. Das Plasma kann entweder durch eine elektrische Gasentladung oder durch Teilchenbeschuß erzeugt beziehungsweise durch intensive Laserstrahlung angeregt sein.

2

Zur Nutzung der erzeugten Strahlung werden häufig optische Komponenten zur Strahlformung benötigt. Aus Ermangelung hinreichend transparenter Materialien in oben genanntem Wellenlängenbereich handelt es sich hierbei um Spiegel 5 oder Beugungsoptiken mehr oder weniger hoher Komplexität. Aus demselben Grund ist die Evakuierung des Strahlführungssystems auf einen zur Vermeidung von Gasabsorption hinreichend niedrigen Druck notwendig. Dadurch werden die Optiken jedoch direkt dem schädigenden Einfluß des Plasmas, der sogenannten Debris, ausgesetzt. 10 Unter Debris versteht man schnelle Partikel, die aus dem Plasma entweichen, sowie verdampftes oder abgesputtertes Material aus der Umgebung des Plasmas. Durch diesen benötigten Optiken Einfluß wird die Lebensdauer der 15 begrenzt. Um eine hinreichende Lebensdauer der Optiken zu gewährleisten müssen geeignete Maßnahmen ergriffen werden.

Letzteres kann prinzipiell auf zwei verschiedene Weisen geschehen.

20

25

30

einen Zum kann die Plasma-Strahlungsquelle aufgebaut sein, dass sie möglichst wenig Debris erzeugt. Das kann beispielsweise durch die Art der Plasmaanregung (Gasentladung, Partikelbeschuss Laseranregung), durch das Design der Plasmaumgebung sowie die Wahl der stofflichen Zusammensetzung des Plasmas beeinflußt werden. Derartige Maßnahmen erzeugen zusätzliche Randbedingungen, die einer Konversionseffizienz der häufig Optimierung entgegenstehen. So werden in Plasma-Strahlungsquellen für die EUV Lithographie häufig Xenonplasmen erzeugt, da Xenon als Edelgas keinen chemischen Änderungen unterliegt und nicht auf Oberflächen abgeschieden wird. Xenon ist jedoch Sicht der Konversionseffizienz im für die Lithographie geforderten Wellenlängenbereich suboptimal.

PCT/DE2004/001802

Zinn und Lithium wären günstiger, finden jedoch aufgrund ihres niedrigen Schmelzpunktes und der damit verbundenen hohen Debrislast bisher kaum Verwendung.

3

5 Zum andere können aktiv Maßnahmen ergriffen werden, um die Optiken vor dem schädlichen Einfluß von Debris so gut wie möglich zu schützen.

Bisher bekannte aktive Maßnahmen, um Debris zu unterdrücken, betreffen die Ablenkung durch elektrische und/oder magnetische Felder (z. B. US 5 991 360), die Adsorption auf Oberflächen in Form einer rotierenden Folienstruktur oder von Foil Traps sowie mechanische Shutter.

15

20

25

Während letztere bei Kurzzeit gepulsten Plasma-Strahlungsquellen nur auf sehr geringe Öffnungsflächen beschränkt sind, da sich sonst schnelle Verschlusszeiten nicht mehr realisieren lassen, wirken elektrische und/oder magnetische Felder nicht auf ungeladene oder quasineutrale Teilchenensembles.

Bei rotierenden Folienstrukturen bestehen aufgrund der zum Abfang sehr schneller Teilchen notwendigen hohen Umlaufgeschwindigkeiten in der Größenordnung von 1000 m / s Probleme bezüglich vakuumtauglicher Lager, mechanischer Stabilität gegen die auftretenden Fliehkräfte und eine hochgenaue Auswuchtung.

Die Foil Traps bestehen aus (Metall-)Folien, deren Zwischenräume mit einem Gasstrom beaufschlagt werden und die zur Vermeidung eines Leistungsverlustes exakt längs zur Strahlrichtung angeordnet sein müssen. Bedingt durch Justage- und Fertigungstoleranzen sowie durch thermische

4

Beanspruchung lässt sich diese Forderung in der Praxis oft nicht in der ausreichenden Präzision erreichen. Zum anderen wird eine hinreichende Debris-Unterdrückung nur bei hohen Gasströmen erreicht, welches zu Problemen im Vakuumsystem sowie Strahlungsleistungsverlust durch Gasabsorption führt.

5

10

25

30

Ähnliche Probleme können auch bei einer Vorrichtung zur Röntgenbestrahlung gemäß der EP 0 174 877 B1 auftreten, die als Partikelschutz für eine Maske eine flache fließende Gasschicht vor einem Austrittsfenster einer evakuierten Kammer vorsieht.

Ausgehend hiervon ist es Aufgabe der Erfindung, die 15 eingangs genannten Plasma-Strahlungsquellen zu verbessern, dass die durch den Einfluss von begrenzte Lebensdauer der Optiken deutlich erhöht wird. Die zu treffenden Maßnahmen sollen der Ausbreitung von Debris entgegenwirken und Einsatz so den Quellkonzepten mit optimaler Konversionseffizienz, deren 20 Nutzung sich bisher aus Gründen der Optiklebensdauer verbot, ermöglichen.

Diese Aufgabe wird bei einer Plasma-Strahlungsquelle der eingangs genannten Art dadurch gelöst, dass ein radial gerichteter Überschall-Gasstrahl von einer auf der Achse mittleren der Ausbreitungsrichtung der Strahlung Treibdüse angeordneten einer Gasstrahl-Vakuumpumpe ausgeht, auf eine zu der Achse koaxial angeordnete ringförmige Mischdüse der Gasstrahl-Vakuumpumpe gerichtet über einen Diffuser und aus der Vakuumkammer herausgeführt ist.

Obwohl die Anordnung allein eine hinreichende Debris-Unterdrückung erreichen sollte, lässt sie sich mit anderen Methoden zur Debris-Unterdrückung kombinieren.

5

5 Vorteilhafte Ausgestaltungen sind in den Unteransprüchen enthalten.

Die erfindungsgemäße Plasma-Strahlungsquelle kann besonders vorteilhaft dadurch weitergebildet werden, dass zur Plasmaanregung eine Gasentladung dient, für die eine Elektrodenanordnung mit entlang der Achse der mittleren Ausbreitungsrichtung der Strahlung nebeneinander angeordneter Anode und Kathode vorgesehen ist.

10

25

15 Besonders vorteilhaft sind die Elektroden als Flüssigmetallelektrode ausgebildet, die einen, von einem Zufuhrkanal für einen flüssigen Emitter durchzogenen Träger aufweist, der an seinem dem Plasma zugewandten Ende mit einem hochschmelzenden, porösen Material beschichtet 20 ist, in das der Zufuhrkanal mündet.

Die in der Plasma-Strahlungsquelle zum Einsatz kommende Einrichtung zur Debris-Unterdrückung arbeitet in einer Weise effektiv, so dass auch "schmutzige" Konzepte für Plasma-Strahlungsquellen mit hoher Konversionseffizienz Verwendung finden können. Beispielsweise könnten für die EUV Lithographie Zinn- oder Lithiumplasmen nutzbar werden.

Vorteilhaft ist es auch, wenn ein durch den Stromfluss 30 entlang der Achse erzeugter Pinch-Effekt zusätzlich durch ein um das Plasma gelegtes externes statisches oder dynamisches Magnetfeld unterstützt ist.

6

Der Einsatz der erfindungsgemäßen Einrichtung zur Debris-Unterdrückung beschränkt sich selbstverständlich nicht auf Entladungsplasmen, so dass das Plasma auch laserinduziert beziehungsweise durch Teilchenbeschuß erzeugt sein kann.

PCT/DE2004/001802

5

10

15

20

25

30

effektive Ausnutzung der vom Plasma besonders wird erreicht, wenn dem Strahlung emittierten der der Achse mittleren entlang Quellbereich der Strahlung ein Reflektor Ausbreitungsrichtung benachbart ist, mit dem eine Refokussierung der Strahlung durch das Plasma erfolgt. Auf diese Weise kann der verdoppelt werden. Die dadurch Raumwinkel nutzbare erreichbare Steigerung der nutzbaren Strahlleistung wird Reflektors sowie Reflektivität des die Absorptionsverluste begrenzt. Auch für diesen Reflektor erfindungsgemäße Einrichtung die Unterdrückung als Schutz dienen, indem der Gasvorhang dem mittleren Achse der Quellbereich entlang der Ausbreitungsrichtung der Strahlung beidseitig benachbart ist.

Die obenstehende Aufgabe wird ferner erfindungsgemäß durch genannte Anordnung zur Erzeugung eingangs Gasvorhangs dadurch gelöst, dass zur Erzeugung eines Überschall-Gasstrahls für den Gasvorhang eine Gasstrahl-Vakuumpumpe mit einer auf der Achse angeordneten Treibdüse dient, die den Überschall-Gasstrahls radial auf eine zu der Achse koaxial angeordnete ringförmige Mischdüse der Gasstrahl-Vakuumpumpe richtet, und dass zum Herausführen der Vakuumkammer Überschall-Gasstrahls aus Diffuser vorgesehen ist.

Gegenstand der Erfindung ist auch die Gasstrahl-Vakuumpumpe selbst, mit einer ringförmigen Mischdüse,

7

deren Gaseintrittsöffnung zum Ringzentrum weist, einer in dem Ringzentrum angeordneten Treibdüse zur Erzeugung eines von der Treibdüse radial ausgehenden und auf die Gaseintrittsöffnung gerichteten Überschall-Gasstrahls und einem vom Ringzentrum weggerichtet arbeitenden ringförmigen Diffusor(10).

Die Erfindung soll nachstehend anhand der schematischen Zeichnung näher erläutert werden. Es zeigen:

10

5

Fig. 1 einen Ausschnitt aus einer Plasma-Strahlungsquelle mit einer ersten Ausführung einer erfindungsgemäßen Einrichtung zur Debris-Unterdrückung

15

Fig. 2 eine als Entladungsplasma ausgebildete Plasma-Strahlungsquelle

20

Fig. 3 die Plasma-Strahlungsquelle gemäß Fig. 2 mit einem zusätzlich vorgesehenen Magneten

Fig. 4 eine Plasma-Strahlungsquelle zur Nutzung der in entgegengesetzte Richtungen abgestrahlten Strahlung

25

Fig. 5 einen Schnitt durch eine Flüssigmetall-Elektrode

Bei der in Fig. 1 dargestellten Plasma-Strahlungsquelle
30 ist in einer Vakuumkammer 1 eine als Treibdüse 2 einer
Gasstrahl-Vakuumpumpe 3 dienende Lavaldüse auf der Achse
X-X der mittleren Ausbreitungsrichtung einer von einem
Plasma 4 erzeugten Strahlung 5 montiert.

Die Treibdüse 2 wird über einen Versorgungskanal 6 mit einem inerten Gas unter einem Treibdruck Pr beaufschlagt und erzeugt einen kreisförmigen, radial nach außen auf die Kammerwand der Vakuumkammer 1 gerichteten Überschall-7. Der Überschall-Gasstrahl 7, 5 Gasstrahl der sowohl senkrecht als auch unter einem anderen Winkel zur Achse X-X verlaufen oder sich auch konisch ausbreiten kann, mündet in eine ringförmige Mischdüse 8, welche sich zu einem ringförmigen Hals 9 verjüngt und schließlich in den 10 der Gasstrahl-Vakuumpumpe 10 ringförmigen Diffusor übergeht. Der Diffusor 10 wird durch eine oder mehrere geeignete, als Vorpumpen arbeitende Vakuumpumpen auf einen Gegendruck P_G evakuiert. Die Gasstrahl-Vakuumpumpe die übernimmt zwei für erfindungsgemäße Plasma-15 Strahlungsquelle wesentliche Funktionen. Zum einen führt sie den Überschall-Gasstrahl 7 über den Diffusor 10 aus der Vakuumkammer 1 heraus und verhindert so, dass der Überschall-Gasstrahl 7 die Vakuumkammer flutet, zum sie diese anderen evakuiert zusätzlich (ganz oder auf 20 Betriebsdruck teilweise) einen Po. Das Kompressionsverhältnis P_G / P₀ der Gasstrahl-Vakuumpumpe 3 steigt mit wachsendem Expansionsverhältnis P_T / P₀, hängt aber auch stark vom Design der Pumpe ab. Günstig ist stets ein hoher Treibdruck PT und ein geringer Gegendruck PG. 25 Üblicherweise gilt ein Verhältnis zwischen den Drücken von P_T >> P_G > P₀. Beispielsweise können Wälzkolbenpumpen als leistungsstarke Vorpumpen eingesetzt werden. Geeignete Druckbereiche bzw. Druckverhältnisse sind zum Beispiel:

30

 $P_G = 10^{-3} \text{ mbar} - 10 \text{ mbar}$

 $P_T = 100 \text{ mbar} - 20 \text{ bar}$

 $P_G / P_0 > 10 \Rightarrow P_0 < 10^{-4} \text{ mbar} - 1 \text{ mbar}$

9

Die erfindungsgemäße Einrichtung zur Debris-Unterdrückung eine Gasstrahl-Vakuumpumpe dar, die mit 8 Mischdüse ausgestattet, ringförmigen Gaseintrittsöffnung zum Ringzentrum weist, in dem eine Treibdüse zur Erzeugung eines von der Treibdüse radial ausgehenden und auf die Gaseintrittsöffnung gerichteten Überschall-Gasstrahls 7 angeordnet ist. Der ringförmig Diffusor 10 ausgebildete arbeitet vom Ringzentrum weggerichtet.

10

15

20

25

30

5

Der Überschall-Gasstrahl 7 bildet einen Gasvorhang, der die Vakuumkammer 1 in einen Anwendungsbereich A und in einen Quellbereich B trennt, so dass jedweder Austausch zwischen den Bereichen A und B durch den Gasvorhang hindurch erfolgen muss. Das gilt sowohl für die von dem Plasma 4 emittierte Strahlung 5, die den Gasvorhang ringförmig zwischen der Treibdüse 2 und Mischdüse 8 passiert, als auch für von der Quelle emittierte Debris. Anders als Strahlung wird Debris jedoch von den Teilchen des Gasvorhangs gebremst und ist dem vom Überschall-Gasstrahl 7 ausgehenden Impulsübertrag ausgesetzt, welcher die Debristeilchen in die Mischdüse 8 treibt. Ist die Teilchenzahl pro Flächeneinheit und der Impulsübertrag den des Weges durch Gasvorhang Debristeilchen hinreichend groß, so wird es für diese unmöglich in den Anwendungsbereich A zu gelangen. Impulsübertrag auf die Debristeilchen lässt sich konstanter Weglänge durch den Gasvorhang steigern, indem dessen Teilchenzahldichte (Druck im Überschall-Gasstrahl 7) und Geschwindigkeit in Richtung Mischdüse 8 erhöht wird. Ersteres lässt sich durch Erhöhung des Treibdruckes P_T erreichen, was für die oben beschriebene Funktion der Gasstrahl-Vakuumpumpe 3 ebenfalls günstig ist. Die sich durch Teilchengeschwindigkeit lässt

10

Temperaturerhöhung des Treibgases vor der Treibdüse 2 erhöhen.

PCT/DE2004/001802

Als Treibmittel für den Überschall-Gasstrahl 7 wird ein Inertgas mit geringem Absorptionskoeffizienten bei der interessierenden Wellenlänge der Strahlung 5 verwendet, um die Absorption der vom Plasma 4 emittierten Strahlung 5 gering zu halten.

Die Absorption der Strahlung 5 sowie die Unterdrückung von 10 Debris durch den Gasvorhang sind allerdings nicht homogen. Beides nimmt quadratisch mit dem Abstand zur Achse X-X ab, da sich die Teilchenzahldichte in dieser Richtung aufgrund abzudeckenden Fläche bei der wachsenden konstanter Teilchengeschwindigkeit verringert. Folglich werden die 15 Bedingungen in der Einrichtung so eingestellt sein, dass äußeren Bereichen des Gasvorhangs eine in den ausreichende Teilchenzahldichte zur hinreichenden Debris-Unterdrückung gegeben ist.

20

25

30

5

Ein wesentliches Kriterium einer Einrichtung zur Debris-Unterdrückung ist die Größe des erschließbaren Raumwinkels um das Plasma 4. Dieser sollte so groß wie möglich sein, um Strahlungsleistungen des Plasmas Anwendungsbereich A nutzen zu können. In der beschriebenen Anordnung ist dieser durch die Fläche zwischen Treib- und Mischdüse 2, 10 und den Abstand zum Plasma 4 gegeben. Diese Fläche kann nicht beliebig vergrößert werden, da der Treibzu Mischdüse 2 bzw. 10 zur Abstand von Aufrechterhaltung der Funktion der Gasstrahl-Vakuumpumpe 3 der hinreichenden Debris-Unterdrückung bleiben muss. Folglich ist es sinnvoll, den Abstand der Einrichtung zum Plasma 4 zu minimieren. Dabei ist zu berücksichtigen, dass die Fläche der Treibdüse 2 mit

5

10

15

20

11

abnehmendem Abstand zum Plasma 4 einen immer größeren Raumwinkel der Strahlung 5 abschattet. Je nach Größe der Fläche zwischen Treib- und Mischdüse 2, 10 und der Fläche der Treibdüse 2 ergibt sich ein optimaler Abstand der Einrichtung zur Erschließung des maximalen Raumwinkels. gegebenenfalls auftretende kurze zwischen dem Plasma 4 und Treibdüse 2 ist relativ unkritisch, da die Treibdüse 2 durch die in ihr ablaufende Expansion sehr effektiv (adiabatische) gekühlt Vorteilhaft kann diese Kühlung für Komponenten (z. B. Elektroden) der Plasma-Strahlungsquelle genutzt werden Eine dabei auftretende Erhitzung des Treibgases ist aus genannten Gründen einer Erhöhung bereits den Teilchengeschwindigkeit im Überschall-Gasstrahl 7 sogar wünschenswert.

Mit der erfindungsgemäßen Einrichtung kann Debris bei gleichzeitig geringem Nutzlichtverlust hocheffektiv unterdrückt werden, so dass auch besonders "schmutzige", aber effiziente Konzepte für Plasma-Strahlungsquellen praktikabel werden. Das gilt für laserinduzierte Plasmen, durch Teilchenbeschuß erzeugte Plasmen und für Entladungsplasmen.

25 Bei der in Fig. 2 dargestellten Ausbildung einer Anode 11 Entladungs-Plasma-Strahlungsquelle sind und Kathode 12, anders als beispielsweise bei den bisher üblichen Entladungs-Plasma-Strahlungsquellen zur Erzeugung von EUV-Strahlung, längs der Achse X-X der mittleren 30 Ausbreitungsrichtung der Strahlung nebeneinander derartige Anordnung besitzt angeordnet. Eine qunstige Eigenschaften, insbesondere verursacht sie nur eine geringe Einschränkung des nutzbaren Raumwinkels, da ein Kegel von einigen Grad um die Achse X-X von den hier

12

PCT/DE2004/001802

nicht dargestellten Kollektoroptiken ohnehin nicht genutzt werden kann. Der Rest des Raumwinkels um das Plasma 4 ist Prinzip genutzt werden. frei und kann im Außerdem unterstützt diese Anordnung durch ihre Symmetrie die Ausbildung des Pinch-Effektes, welcher zur Erzeugung von Plasmen hoher Temperatur und Dichte notwendig ist. Dieser komprimiert das unter elektrischem Stromfluss stehende Plasma 4 durch das bei hohen elektrischen Stromdichten selbst induzierte Magnetfeld. Die Versorgung des Plasmas 4 mit elektrischer Leistung kann mittels Wechselströmen, Gleichströmen oder gepulsten Gleichströmen erfolgen. Wichtig ist nur, dass die zur Ausbildung des Pinch-Effektes notwendigen Stromdichten zumindest kurzzeitig erreicht werden.

15

20

25

30

10

5

Durch die Verwendung der in Fig. 1 dargestellten Einrichtung zur Debris-Unterdrückung werden, ohne es als Einschränkung zu verstehen, derartige Entladungsplasmen nunmehr für Strahlungsquellen praktikabel, obwohl der durch hohe Stromdichten auf den Elektrodenoberflächen erzeugte Elektrodenabbrand zu einer starken Debris-Emission führt.

Pinch-Effekt kann zusätzlich durch Der ein externes Magnetfeld unterstützt sein, welches die Kompression des Plasmas 4 weiter erhöht, indem bei gegebener Stromstärke die Stromdichte zunimmt. Dieses Magnetfeld kann statisch oder an den jeweiligen Stromfluss durch das Plasma 4 angepasst sein. Vorteilhaft kann dazu eine Anordnung gemäß Fig. 3 sein, bei der um das Plasma 4 zusätzlich ein Magnet 13 angebracht ist. Die ringförmige Struktur verringert den nutzbaren Raumwinkel der Plasma-Strahlungsquelle und lässt sich in die beschriebene geringfügig Elektrodenanordnung gemäß Fig. 2 leicht integrieren.

5

10

15

Aufgrund einer bei der Entladungs-Anordnung gemäß Fig. 2 vorhandenen Spiegelsymmetrie bezüglich einer senkrecht zur Achse X-X verlaufenden Ebene E-E, können die

13

Achse X-X verlaufenden Ebene E-E, können die Strahlungsemissionen des Plasmas 4 auf beiden Seiten der Ebene E-E genutzt werden, wenn durch einen sphärischen Spiegel 14 als Reflektor eine Refokussierung der Strahlung durch das Plasma 4 erfolgt. Eine entsprechende Anordnung, bei der die Strahlwege beider Seiten in einem Strahlweg vereint werden, ist in Fig. 4 dargestellt.

Ohne zusätzlichen Schutz ist der sphärische Spiegel 14 wie die nicht dargestellten optischen Komponenten auf der gegenüberliegenden Seite des Plasmas 4 der Debris-Emission ausgesetzt. Deshalb wird gemäß Fig. 4 auch für den Spiegel 14 die in Fig. 1 beschriebene Einrichtung zur Debris-Unterdrückung verwendet.

Die Zufuhr eines geeigneten Emitters in das Plasma 4 kann auf vielfältige Weise erfolgen, wie z. B. extern als Gas oder Flüssigkeit beziehungsweise gelöst, suspendiert oder zerstäubt in einem Gas oder einer Flüssigkeit. Besonders einfach ist es, die Elektroden ganz oder teilweise aus dem Emitterelement oder mehreren Emitterelementen auszubilden, so dass durch den Elektrodenabbrand der Emitter in das Plasma 4 geleitet wird. Gegebenenfalls ist es hier zur Aufrechterhaltung der Entladungsgeometrie notwendig, die Elektroden nachzufahren, um den Abbrand auszugleichen.

Das wird bei einer besonders vorteilhaften Ausgestaltung der Elektrode als Flüssigmetallelektrode mit beliebig auszubildender Form nicht mehr der Fall sein. Eine solche Elektrode, bei der auch der Abbrand minimiert ist, zeigt Fig. 5.

PCT/DE2004/001802

Wird eine Flüssigkeit mit einem porösen Material in gebracht, dessen Porosität die Oberflächenspannung der Flüssigkeit abgestimmt so verteilt sich die Flüssigkeit gleichmäßig in dem porösen Material, bis es dessen Oberfläche erreicht. Ist der Druck der Flüssigkeit größer als an der Oberfläche des porösen Materials. so wird die Flüssigkeit, abgesehen Gravitationseffekten, gleichmäßig aus der Oberfläche gedrückt.

14

10

15

20

25

5

Bei der in Fig. 5 dargestellten Elektrode 15 ist ein Träger 16, von einem Zufuhrkanal 17 zur Versorgung der Elektrode 15 mit einem flüssigen Emitter 18, wie z. B. Zinn oder Lithium durchzogen. An seinem dem Plasma 4 zugewandten Ende ist der Träger 16 mit hochschmelzenden, porösen Material 19 beschichtet, in das Zufuhrkanal 17 mündet, so dass Flüssigmetallemitter 18 aus dem porösen Material 19 austreten und dessen Oberfläche vollständig überziehen kann. Eine plasmaseitig sphärische Form SF des porösen Materials 19 soll zu einer gleichmäßigen Stromdichte auf der Elektroden-Oberfläche führen und damit eine lokale Überhitzung im Betrieb verhindern. Das poröse Material 19 ist auf dem plasmaabgewandten Teil der Elektrode 15 ein zusätzliches Stück auf dem Träger 16 aufgebracht, um die Gesamtoberfläche der Elektrode 15 zu vergrößern und eine bessere mechanische Stabilität auf dem Träger 16 zu gewährleisten.

30 Wesentlich für die Funktion der Elektrode 15 ist eine Betriebstemperatur oberhalb des Schmelzpunktes des metallischen Emitters 18, um dessen Erstarrung zu verhindern. Solange, bis das heiße Plasma 4 die Elektrode 15 auf dieser Temperatur hält, kann zu Betriebsbeginn eine

15

zusätzliche externe Heizung zugeschaltet sein oder das Einschaltregime ist derart gestaltet, dass das Plasma 4 die Elektrode 15 auf die Betriebstemperatur bringt.

Da sich die Elektroden einer Plasma-Strahlungsquelle im Vakuum befinden, ist es leicht möglich, die Dicke des Metallfilms auf der Oberfläche des porösen Materials 19 durch einen leichten Überdruck zu erhöhen. Gegebenenfalls ist es so auch möglich, auf die Anpassung der Porosität an die Oberflächenspannung des flüssigen Metalls zu verzichten.

Der vorgeschlagene Aufbau der Elektrode 15 hat ferner den Vorteil einer langen Lebensdauer, da das poröse Material 19 effektiv gekühlt und dessen Abbrand unterdrückt wird, weil beim Betrieb auf der Oberfläche des porösen Materials 19 ständig flüssiges Metall verdampft. Das gleiche gilt für die gesamte Elektrode 15.

15

30

- 20 Elektrische Leitfähigkeit ist sowohl für den Träger 16 als auch für das poröse Material 19 möglich aber nicht erforderlich, da die Stromzufuhr über den Zufuhrkanal 17 erfolgen kann.
- In einer weiteren Ausführungsform können der Träger 16 und das poröse Material 19 chemisch identisch sein, wodurch mechanische Spannungen an der Grenze zwischen beiden Materialien bei Temperaturänderungen verhindert werden können.

Die Kondensation von verdampftem Emittermaterial auf den Oberflächen der Vakuumkammer kann durch die erfindungsgemäße Einrichtung zur Debris-Unterdrückung verhindert werden, indem das verdampfte Emittermaterial 5

durch die Gasstrahl-Vakuumpumpe 3 entfernt wird. Dieser Prozess kann durch entsprechend hohe Oberflächentemperaturen im Quellbereich B kontinuierlich im Betrieb erfolgen, wobei das sich im Vorvakuumsystem niedergeschlagene Emittermaterial relativ leicht entfernen lässt.

Patentansprüche

WO 2005/015962

- 1. Plasma-Strahlungsquelle, die von einem Quellbereich in einer Vakuumkammer ausgehende Strahlung in 5 definierten Raumwinkel durch einen zur Debris-Unterdrückung vorgesehenen Gasvorhang hindurch entlang Achse der mittleren Ausbreitungsrichtung Strahlung abstrahlt, dadurch gekennzeichnet, dass der Gasvorhang als radial gerichteter Überschall-Gasstrahl 10 von einer auf der Achse (X-X) der mittleren (7) Ausbreitungsrichtung der Strahlung (5) angeordneten Treibdüse (2) einer Gasstrahl-Vakuumpumpe (3) ausgeht, eine zu der Achse (X-X) koaxial angeordnete ringförmige Mischdüse (8) der Gasstrahl-Vakuumpumpe (3) gerichtet ist und über einen Diffuser (10) aus der 15 Vakuumkammer (1) herausgeführt ist.
- Plasma-Strahlungsquelle nach Anspruch 1, dadurch gekennzeichnet, dass zur Plasmaanregung eine Entladung dient, für die eine Elektrodenanordnung mit entlang der Achse (X-X) der mittleren Ausbreitungsrichtung der Strahlung (5) nebeneinander angeordneter Anode (11) und Kathode (12) vorgesehen ist.
- 25 3. Plasma-Strahlungsquelle nach Anspruch 2, dadurch gekennzeichnet, dass als Elektroden Flüssigmetallelektroden verwendet werden.
- 4. Plasma-Strahlungsquelle nach Anspruch 3, dadurch 30 gekennzeichnet, dass die Flüssigmetallelektrode einen, von einem Zufuhrkanal (17) für einen flüssigen Emitter (18) durchzogenen Träger (16) aufweist, der an seinem Plasma (4)zugewandten Ende mit hochschmelzenden, porösen Material (19)beschichtet ist, in das der Zufuhrkanal (17) mündet. 35

18

- 5. Plasma-Strahlungsquelle nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Flüssigmetallelektrode mit einer Heizung ausgestattet ist.
- 5 6. Plasma-Strahlungsquelle nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Träger (16) und das poröse Material (19) elektrisch leitfähig sind.
- 7. Plasma-Strahlungsquelle nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Träger (16) und das poröse Material (19) nicht elektrisch leitfähig sind.
- 8. Plasma-Strahlungsquelle nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Träger (16) und das poröse
 15 Material (19) chemisch identisch sind.
 - 9. Plasma-Strahlungsquelle nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass ein durch den Stromfluss entlang der Achse (X-X) erzeugter Pinch-Effekt zusätzlich durch ein um das Plasma (4) gelegtes externes Magnetfeld unterstützt ist.

20

25

30

35

- 10. Plasma-Strahlungsquelle nach Anspruch 9, dadurch gekennzeichnet, dass das externe Magnetfeld als statisches Magnetfeld ausgebildet ist.
 - 11. Plasma-Strahlungsquelle nach Anspruch 9, dadurch gekennzeichnet, dass das externe Magnetfeld dem Stromfluss durch das Plasma (4) angepasst ist.
 - 12. Plasma-Strahlungsquelle nach Anspruch 1, dadurch gekennzeichnet, dass zur Plasmaanregung Laserstrahlung dient.

19

- 13. Plasma-Strahlungsquelle nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass einem Quellbereich (B) für das Plasma (4) entlang der Achse (X-X) der mittleren Ausbreitungsrichtung der Strahlung (5) ein Reflektor benachbart ist, mit dem eine Refokussierung der Strahlung (5) durch das Plasma (4) erfolgt.
- 14. Plasma-Strahlungsquelle nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Gasvorhang dem Quellbereich (B) entlang der Achse (X-X) der mittleren Ausbreitungsrichtung der Strahlung (5) ausschließlich auf der Seite eines Anwendungsbereiches (A) benachbart ist.
- 15 15. Plasma-Strahlungsquelle nach Anspruch 13, dadurch gekennzeichnet, dass der Gasvorhang dem Quellbereich (B) entlang der Achse (X-X)der mittleren Ausbreitungsrichtung der Strahlung (5) beidseitig benachbart ist.

20

25

30

35

5

16. Anordnung zur Erzeugung eines Gasvorhangs als Filter Teilchen in einer Strahlung, deren mittlere Ausbreitungsrichtung in einer Vakuumkammer entlang einer durch den Gasvorhang gerichteten Achse verläuft, dadurch gekennzeichnet, dass zur Erzeugung Überschall-Gasstrahls (7) für den Gasvorhang Gasstrahl-Vakuumpumpe (3) mit einer auf der Achse (X-X) angeordneten Treibdüse (2) dient, die den Überschall-Gasstrahl (7) radial auf eine zu der Achse koaxial angeordnete ringförmige Mischdüse (8) der Gasstrahl-Vakuumpumpe (3) richtet, und dass zum Herausführen des Überschall-Gasstrahls (7) aus der Vakuumkammer (1) ein Diffuser (10) vorgesehen ist.

20

17. Gasstrahl-Vakuumpumpe mit einer ringförmigen Mischdüse (8), deren Gaseintrittsöffnung zum Ringzentrum weist, einer in dem Ringzentrum angeordneten Treibdüse (2) zur Erzeugung eines von der Treibdüse (2) radial ausgehenden und auf die Gaseintrittsöffnung gerichteten Überschall-Gasstrahls (7) und einem vom Ringzentrum weggerichtet arbeitenden ringförmigen Diffusor(10).

5

Fig. 1

2/3

Fig. 3

