

Jundi Shapur

University of Technology-Dezful

پردازش تصاویر رقومی جلسه سوم: پردازش هیستوگرام

Nurollah Tatar Digital Image Processing Semester 2021

- نمودار هیستوگرام (یا بافتنگار) نمایشی از توزیع دادههای کمی پیوستهاست که میتواند تخمینی از توزیع احتمال باشد.
- تفاوت هیستوگرام با نمودار میلهای در آن است که نمودار میلهای مربوط به توزیع دو متغیر تصادفی است ولی بافتنگار مربوط به یک متغیر است.

- هیستوگرام یک تصویر از روی فراوانی درجات خاکستری بدست می آید.
- به طور مثال اگر در یک تصویر ۱۰۰ پیکسل با درجه خاکستری ۱ وجود داشته باشد فراوانی درجه خاکستری ۱ مقدار ۱۰۰ خواهد بود.
- چنانچه برای همه درجات خاکستری فراوانی آنها محاسبه شود، نموداری بدست می آید که به آن هیستوگرام می گویند.

"cameraman.tif" هیستوگرام تصویر

• هیستوگرام coins.png

- انتخاب حدآستانه از روی هیستوگرام:
- یکی از کاربردهای مهم هیستوگرام، انتخاب حدآستانه بهینه برای تفکیک شی از پس زمینه است.
- برای انتخاب حدآستانه بهینه تاکنون روشهای متعددی ارائه شده؛ اما در این میان روش Otsu یکی از بهینه ترین و پرکاربرد ترین روشهای تعیین حد آستانه به شمار می آید.

- انتخاب حدآستانه از روی هیستوگرام:
- تولید تصویر باینری با روش آستانه گذاری اتوماتیک Otsu.

نرمال کردن هیستوگرام

- تصاویر بسته به شرایط بیرونی و داخلی سنجنده ممکن است یک هیستوگرام نامتقارن داشته باشند.
- معمولا زمانی که عمده درجات خاکستری یک تصویر در یک محدوده خاصی قرار گرفته باشند، چنین اتفاقی می افتد.
 - یکی از روشهای بهبود کنتراست تصویر نرمالیزاسیون هیستوگرام آنهاست.

دانشحاه صنعتی جندی شابور دز فول

نرمال کردن هیستوگرام

• در این روش از فرمول زیر استفاده می شود.

$$I_{\text{output}}(i,j) = (I_{\text{input}}(i,j)-c)\left(\frac{a-b}{c-d}\right) + a$$

- a,b با توجه به Λ بیتی بودن تصویر به ترتیب \cdot و ۲۵۵ هستند.
 - C, d برابرند با بزرگترین و کوچکترین فراوانی غیر صفر.
 - کد دستوری imadjust به صورت اتوماتیک مقادیر فوق را محاسبه می کند.

نرمال کردن هیستوگرام:

The Original pout.tif image

The pout tif image after histogram stretching

Digital Image Processing – Histogram N. Tatar **Jundi Shapur**

نرمال کردن هیستوگرام

• هیستوگرام تصاویر فوق بعد از نرمالیزاسیون هیستوگرامها.

Histogram equalization theory

تئوری متعادلسازی هیستوگرام

- یکی از روشهای رایج بهبود کنتراست در پردازش تصویر روش متعادلسازی هیستوگرام است.
- در این روش تابع انتقال به نحوی بدست می آید که هیستوگرام تصویر خروجی از یک توزیع متعادل بهره میبرد.

تئوری متعادلسازی هیستوگرام

- فرض کنید تصویر خاکستری-مقیاس ورودی $I_{input}(x)$ است.
- اگر متغییر X پیوسته و بین ۰ تا ۱ نرمالیزه شده باشد، آنگاه می توان فرض کرد هیستوگرام نرمالیزه تصویر ورودی $(I_{input}(x))$ همان تابع چگالی احتمال $(P_x(x))$ خواهد بود.
 - برای تصویر خروجی $I_{output}(y)$ نیز به همین منوال تابع چگالی احتمال $P_y(y)$ را در نظر می گیریم.

• هدف متعادلسازی هیستوگرام این است که تابع y=f(x) را به گونهای تعیین کند که رابطه ی بین تابع توزیع احتمال تصویر ورودی و خروجی به صورت زیر باشد:

$$P_{y}(y) = P_{x}(x) \left| \frac{dx}{dy} \right|$$

- رابطه ی فوق بیانگر این است که تابع توزیع تصویر خروجی با نرخ تغییرات $\left| \frac{dx}{dy} \right|$ از روی تابع توزیع تصویر ورودی بدست آید.
 - $P_{y}(y)$ به عبارتی نگاشت $P_{x}(x)$ به عبارتی

تئوری متعادلسازی هیستوگرام

- از طرفی چنانچه از تابع تبدیل $y(x) = \int_{0}^{x} P_{x}(x')dx'$ برای بهبود $\left|\frac{1}{P_{x}(x)}\right|$ برابر خواهد شد با: $\left|\frac{dx}{dy}\right|$ برابر خواهد شد با:
- ورودی تصویر ورودی تجمعی تصویر ورودی $\int_{0}^{x} P_{x}(x')$ همان تابع توزیع تجمعی تصویر ورودی بین \bullet تا X است.
- لذا چنانچه از تابع تبدیل $y(x) = \int_{0}^{x} P_{x}(x') dx'$ استفاده شود، آنگاه تابع توزیع تصویر خروجی یکنواخت خواهد بود. زیرا

$$P_{y}(y) = P_{x}(x) \left| \frac{dx}{dy} \right| \Rightarrow P_{y}(y) = P_{x}(x) \left| \frac{1}{P_{x}(x)} \right| \Rightarrow P_{y}(y) = \frac{P_{x}(x)}{P_{x}(x)} = 1 \quad 0 \le y \le 1$$

Histogram equalization in practice

پنانچه برای تصویر ورودی $I_{input}(x)$ هیستوگرام تجمعی آن \bullet

باشد؛ آنگاه تصویر خروجی با روش متعادل سازی $\mathbf{C}(\mathbf{x})$

هیستوگرام برابر است با:

$$I_{output}(c,r) = \left[\frac{L-1}{N}C(I_{input}(c,r))\right]$$

• که در آن L ماکزییم درجه خاکستری ممکن (در تصاویر N بیتی مقدار آن ۲۵۶ است) و N تعداد پیکسلهای تصویر است.

- هیستوگرام تجمعی عبارتست از جمع فراوانی های ماقبل.
- فرض کنید هیستوگرام یک تصویر ۳ بیتی به صورت زیر باشد

$$h(x) = [10 \quad 18 \quad 25 \quad 63 \quad 54 \quad 2 \quad 15 \quad 47]$$

• آنگاه هیستوگرام تجمعی آن برابر است با:

 $C(x) = [10 \ 28 \ 53 \ 116 \ 170 \ 172 \ 187 \ 234]$

• مثال ۱: فرض یک تصویر ۳ بیتی به ابعاد ۶۴×۶۴ پیکسل وجود دارد که هیستوگرام آن به صورت زیر است.

• ادامه مثال ۱: براساس روابط روش متعادل سازی هیستوگرام

خروجی نهایی به صورت زیر خواهد بود.

درجه خاکستری	فراوانی	فراوانی تجمعی	خروجی روش متعادلسازی هیستوگرام	فراوانی خروجی
0	790	790	1	0
1	1023	1813	3	790
2	850	2663	5	0
3	656	3319	6	1023
4	329	3648	6	0
5	245	3893	7	850
6	122	4015	7	985
7	81	4096	7	448

$$\underbrace{}_{output}(0) = \left[\frac{7}{4096} \times 790\right] = 1$$

$$\mathbf{1}_{output}(5) = \left[\frac{7}{4096} \times 3893\right] = 7$$

- ادامه مثال ۱:
- باتوجه به خروجیهای فوق؛ درجات خاکستری تصویر ورودی
 که مقدار ۰ دارند به مقدار ۱، درجه خاکستری با مقدار ۱ به مقدار ۳، درجه خاکستری ۲ به مقدار ۵، درجات خاکستری ۳ و
 ۴ به مقدار ۶ و درجات خاکستری ۵ و ۶ و ۷ تصویر ورودی به مقدار ۷ در تصویر خروجی تبدیل میشوند.

- ادامه مثال ۱:
- هیستوگرام تصویر ورودی و خروجی به صورت زیر هستند:

• هیستوگرام خروجی تقریبا نرخ تغییرات یکسانی دارد.

The Original pout.tif image

The pout.tif image after histogram equalization

Digital intege Frocessing Thistogram

N. Tatar

24

Jundi Shapur

• هیستوگرام تصاویر فوق بعد از متعادلسازی هیستوگرام.

- معایب روش متعادلسازی هیستوگرام:
 - 1. افزایش کنتراست بیش از اندازه
 - 2. عدم حفظ میانگین روشنایی
 - 3. حذف جزئيات ريز تصاوير
 - 4. غیر طبیعی کردن تصویر خروجی
- نکته اضافی: برای حل مشکلات فوق روشهایی مبتنی بر شکستن هیستوگرام توسعه داده شده است.

Histogram matching theory

تئوری تناظریابی هیستوگرام

- هدف از تناظریابی هیستوگرام این است که هیستوگرام یک تصویر با تصویر با کنتراست پایین را به کمک هیستوگرام یک تصویر با کنتراست بالا بهبود دهیم.
- در این روش از هیستوگرام تعدادی تصویر مبنا یا هیستوگرام متعادل شده همان تصویر ورودی برای بهبود کنتراست استفاده می شود.
 - در این روش، مسئله اصلی انتخاب هیستوگرام هدف است.

تئوری تناظریابی هیستوگرام

- فرض کنید تصویر خاکستری-مقیاس ورودی $I_{input}(x)$ است.
- اگر متغییر X پیوسته و بین تا ۱ نرمالیزه شده باشد، آنگاه می توان فرض کرد هیستوگرام نرمالیزه تصویر ورودی $(I_{input}(x))$ همان تابع چگالی احتمال $(P_x(x))$ خواهد بود.
 - برای تصویر هدف $I_{output}(z)$ نیز به همین منوال تابع چگالی احتمال $P_z(z)$ را در نظر می گیریم.
 - متغییر Z نیز پیوسته و بین ۰ تا ۱ نرمالیزه خواهد بود.

تئوری تناظریابی هیستوگرام

هدف روش تناظریابی هیستوگرام این است که تابع y=f(x) را به گونهای تعیین کند که رابطهی بین تابع تجمعی تصویر ورودی و هدف به صورت زیر باشد:

$$C_z[f(x)] = C_x(x) \Rightarrow f(x) = C_z^{-1}[C_x(x)]$$

- Cz و Cx به ترتیب توابع تجمعی هدف و ورودی هستند.
- تابع تجمعی از روی تابع توزیع احتمال محاسبه می شود و معکوس پذیر است.

Histogram matching In practice

الگوريتم تناظريابي هيستوگرام

- 1. هیستوگرام تصویر ورودی و تصویر تارگت را محاسبه کنید.
 - 2. تابع توزیع احتمال آنها را محاسبه کنید.
- 3. از روی تابع توزیع احتمال، تابع تجمعی آنها را محاسبه کنید.
- 4. محوردرجات خاکستری تابع تجمعی تصویر ورودی را ثابت و محور درجات خاکستری تابع تجمعی تصویر هدف را محور جستجو در نظر بگیرید.

الگوریتم تناظریابی هیستوگرام

- 5. سپس موقعیت مقادیر تابع تجمعی نزدیک به هم را پیدا کنید. برای این کار قدر مطلق اختلاف مقادیر تجمعی را حساب کنید.
- 6. چنانچه در تابع تجمعی تصویر هدف چند موقعیت متناظر وجود داشت، موقعیتی که نزدیکتر است متناظر در نظر گرفته می شود.

الگوريتم تناظريابي هيستوگرام

- نحوه جستجو:
- فرض کنید Cz و Cx به ترتیب توابع تجمعی هدف و ورودی هستند و تصویر ورودی هم ۲ بیتی است.
 - c_1 c_2 c_3 c_4 c_5 $c_$
 - کمترین مقدار موقعیت درجات خاکستری نظیر را میدهد.

الكوريتم تناظريابي هيستوكرام

• مثال: همان تصویری ۳ بیتی ۶۴×۶۴ پیکسلی که در مثال متعادلسازی هیستوگرام ارائه شد را در نظر بگیرید. به عنوان تصویر هدف نیز تصویر متعادلسازی شدهاش را در نظر بگیرید.

الگوريتم تناظريابي هيستوگرام

• ادامه مثال: تابع توزیع تصویر ورودی و هدف به صورت زیر

خواهند بود.

 $P_{X(x)} = \frac{h(x)}{M \times N}$ مقدار احتمال برابر است با فراوانی تقسیم بر تعداد کل $P_{X(x)} = \frac{h(x)}{M \times N}$

الگوريتم تناظريابي هيستوگرام

• ادامه مثال: تابع تجمعی تصویر ورودی و هدف به صورت زیر خواهند بود.

الگوريتم تناظريابي هيستوگرام

ادامه مثال: بنابراین تابع انتقال جدولی خواهد بود که مقادیر درجات خاکستری تصویر ورودی را به مقادیر جدید زیر تبدیل خواهد کرد.

درجه خاکستری ورودی	0	1	2	3	4	5	6	7
درجه خاکستری خروجی	1	3	5	6	6	7	7	7

تناظریابی هیستوگرام

- چنانچه از تصویر متعادلسازی شده به عنوان تصویر هدف استفاده شود، نتیجه روش تناظریابی هیستوگرام با نتیجه روش متعادل سازی هیستوگرام تقریبا به هم شبیه هستند!
 - معمولا از یکسری تصاویر با کنتراست بالا به عنوان تصاویر هدف استفاده می شود.
- برای انتخاب بهینه تصویر هدف روشهای زیادی توسعه داده شده است.

تناظریابی هیستوگرام

The Original pout.tif image

The pout.tif image after histogram matching

Pigital image Flocessing -instugrant **Jundi Shapur**

تناظریابی هیستوگرام

• هیستوگرام تصاویر فوق بعد از تناظریابی هیستوگرام.

• نمونه ای از نتایج تناظریابی هیستوگرام

تصوير اوليه

تصویر خروجی بعد از تناظریابی هیستوگرام

Histogram processing For colour images

- عمده پردازشهایی که در اسلایدهای قبل توضیح داده شد مربوط به تصاویر خاکستری (یا به عبارتی تصاویر تک باند)
- برای بهبود تصاویر رنگی از روی هیستوگرام نیز شبیه تصاویر خاکستری عمل میشود.
 - برای تشریح این روش لازم است تبدیلات فضای رنگی ارائه شوند.

- تبدیل فضای رنگی RGB به فضای HSV:
- فضای رنگی HSV سه مولفه H، S و V دارد.
 - H (یا Hue) طول موج رنگ
 - S (یا saturation) درصد خلوص رنگ
- و V (یا Value) مقدار درجه روشنایی را نشان می دهد.
- برای پردازش فضای رنگی کافی است مقدار V را مورد پردازش قرار داد

' تبدیل فضای رنگی RGB به فضای HSV:

تبدیل فضای رنگی RGB به فضای HSV:

colour cone

- H = hue / colour in degrees ∈ [0,360]
- S = saturation ∈ [0,1]
- $V = value \in [0,1]$

■ conversion RGB → HSV

- V = max = max (R, G, B), min = min (R, G, B)
- S = (max min) / max (or S = 0, if V = 0)

$$\begin{tabular}{l} \blacksquare \ H = 60 \times \\ \end{tabular} \left\{ \begin{array}{ll} 0 + (G-B)/\,(max-min), & \mbox{if } max = R \\ 2 + (B-R)/\,(max-min), & \mbox{if } max = G \\ 4 + (R-G)/\,(max-min), & \mbox{if } max = B \end{array} \right.$$

H = H + 360, if H < 0

' تبدیل فضای رنگی HSV به فضای RGB:

$$C=S$$
 $H'=rac{H}{60}$ $X=C\cdot (1-|H'\mod 2-1|)$ $X=C\cdot$

- برای پردازش هیستوگرام تصاویر رنگی ابتدا باندهای طیفی RGB به HSV تبدیل میشوند.
- سپس شدت روشنایی فضای HSV (یا همان V) با یکی از
 روشهای پردازش هیستوگرام بهبود مییابد.
- و در نهایت V بهبود یافته با سایر باندهای HSV به فضای رنگی RGB انتقال داده می شود.

• نمونه ای از نتایج متعادلسازی هیستوگرام تصاویر رنگی

تصوير اوليه

تصویر خروجی بعد از متعادلسازی هیستوگرام

• نمونه ای از نتایج متعادلسازی هیستوگرام تصاویر رنگی

تصوير اوليه

input output

تصویر خروجی بعد از متعادلسازی هیستوگرام

N. Tatar

Jundi Shapur

• نمونه ای از نتایج تناظریابی هیستوگرام تصاویر رنگی

تصوير اوليه

تصویر خروجی بعد از تناظریابی هیستوگرام

• نمونه ای از نتایج تناظریابی هیستوگرام تصاویر رنگی

تصوير اوليه

تصویر خروجی بعد از تناظریابی هیستوگرام

تمرین شماره ۳-برنامه نویسی

- برنامه های زیر را بنویسد.
- 1. انتقال لگاریتمی، تابع گاما
 - 2. محاسبه هیستوگرام
- 3. روش متعادل سازی هیستوگرام، روش تناظریابی هیستوگرام
- نتیجه را تا دو هفته آینده به آدرس noorollah.tatar@gmail.com با موضوع "تمرین شماره ۳ درس پردازش تصویر" ایمیل کنید.
 - لطفا از کدهای آماده متلب استفاده نکنید.
 - کسانی که با متلب کد مینویسند، کدهایشان را در GUI ارائه دهند.

تمرین شماره ۳

• سعی کنید شکل GUI به صورت زیر باشد.

