## Take-Home Quiz 1:

## Vectors and vector-valued functions (§11.1-11.7)

**Directions:** This quiz is due on Februrary 3, 2017 at the beginning of lecture. You may use whatever resources you like – e.g., other textbooks, websites, collaboration with classmates – to complete it **but YOU MUST DOCUMENT YOUR SOURCES**. Acceptable documentation is enough information for me to find the source myself. Rote copying another's work is unacceptable, regardless of whether you document it.

- 1. A sum of scalar multiples of two or more vectors (such as  $c_1\mathbf{u} + c_2\mathbf{v} + c_3\mathbf{w}$ , where  $c_i$  are scalars) is called a **linear combination** of the vectors. Express  $\langle 4, -8 \rangle$  as a linear combination of the vectors  $\mathbf{u} = \langle 1, 1 \rangle$  and  $\mathbf{v} = \langle -1, 1 \rangle$ .
- 2. Give a geometric description of the following set of points:

$$x^2 + y^2 + z^2 - 8x + 14y - 18z > 65$$

- 3. Give a geometric description of the set of points (x, y, z) that lie on the intersection of the sphere  $x^2 + y^2 + z^2 = 36$  and the plane z = 6.
- 4. Carry out the following steps to determine the (least) distance between the point P = (0, 2, 6) and the line  $\ell$  that is parallel to the  $\langle 3, 0, -4 \rangle$  and passes through the origin.
  - (a) Find any vector  $\mathbf{v}$  in the direction of  $\ell$ .
  - (b) Find the position vector corresponding to P.
  - (c) Find proj<sub>v</sub> **u**.
  - (d) Show that  $\mathbf{w} = \mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$  is a vector orthogonal to  $\mathbf{v}$  whose length is the distance between P and the line  $\ell$ .
  - (e) Find **w** and  $|\mathbf{w}|$ . Why is  $|\mathbf{w}|$  the least distance between P and  $\ell$ ?
- 5. A particle with a unit negative charge (q = -1) enters a constant magnetic field  $\mathbf{B} = 5\mathbf{k}$  with a velocity  $\mathbf{v} = \mathbf{i} + 2\mathbf{j}$ . Find the magnitude and direction of the force on the particle. Make a sketch of the magnetic field, the velocity, and the force.
- 6. Find the area of the triangle with vertices O = (0,0,0), P = (2,4,6), and Q = (6,5,4).
- 7. Consider the lines

$$\mathbf{r}(t) = \langle 2 + 2t, 8 + t, 10 + 3t \rangle$$
 and  $\mathbf{R}(s) = \langle 6 + s, 10 - 2s, 16 - s \rangle$ .

- (a) Determine whether the lines intersect (have a common point) and if so, find the coordinates of the point.
- (b) If **r** and **R** describe the paths of the two particles, do the particles collide? Assume that  $t \ge 0$  and  $s \ge 0$  measure time in seconds, and that motion starts at s = t = 0.
- 8. Find the unit tangent vector at t = 0 for

$$\mathbf{r}(t) = \langle \sin t, \cos t, e^{-t} \rangle$$
, for  $0 \le t \le \pi$ .

9. Consider the curve

$$\mathbf{r}(t) = \langle \sqrt{t}, 1, t \rangle,$$

for t > 0. Find all points on the curve at which **r** and **r'** are orthogonal.

10. The lip of a ski jump is 8 m above the outrun that is sloped at an angle of 30 degrees to the horizontal (see figure).



- (a) If the initial velocity of a ski jumper at the lip of the jump is  $\langle 40, 0 \rangle$  m/s, what is the length of the jump (distance from the origin to the landing point)? Assume only gravity affects the motion.
- (b) Assume that air resistance produces a constant horizontal acceleration of  $0.15~\rm m/s^2$  opposing the motion. What is the length of the jump?
- (c) Suppose that the takeoff ramp is titlted upward at an angle of  $\theta$ , so that the skier's initial velocity is  $40\langle\cos\theta,\sin\theta\rangle$  m/s. What value of  $\theta$  maximizes the length of the jump? Express your answer in degrees and neglect air resistance.