TD - Arithmétique linéaire

Exercices

Question 1

$$3x_1+2x_2 \leq 5x_3 \wedge 2x_1-2x_2 = 0$$

Forme générale:

$$egin{aligned} 3x_1 + 2x_2 - 5x_3 - s_1 &= 0 \land \ 2x_1 - 2x_2 - s_2 &= 0 \land \ 0 &\geq s_1 \land \ 0 &\leq s_2 \land \ s_2 &\leq 0 \end{aligned}$$

Application du simplexe :

$$egin{aligned} N &= \{x_1, x_2, x_3\} \ B &= \{s_1, s_2\} \ lpha(x_1) &= 0, lpha(x_2) = 0, lpha(x_3) = 0, lpha(s_1) = 0, lpha(s_2) = 0 \end{aligned}$$

Tableau:

	x_1	$egin{array}{c c} x_1 & x_2 \end{array}$	x_3
s_1	3	3 2	-5
s_2	2	2 -2	0

$$egin{aligned} s_1 &\leq 0 \land \ 0 &\leq s_2 \land \ s_2 &\leq 0 \land \end{aligned}$$

La solution est : $lpha(x_1)=0, lpha(x_3)=0, lpha(x_3)=0$

Question 2

$$3x+y \leq 3 \land x+y \geq 1 \land x-y \geq -2$$

Forme générale:

$$egin{aligned} 3x + y - s_1 &= 0 \land \ x + y - s_2 &= 0 \land \ x - y - s_3 &= 0 \land \ s_1 &\leq 3 \land \ s_2 &\geq 1 \land \ s_3 &> -2 \end{aligned}$$

Application du simplexe:

$$egin{aligned} N &= \{x,y\} \ B &= \{s_1,s_2,s_3\} \ lpha(x) &= 0, lpha(y) = 0, lpha(s_1) = 0, lpha(s_2) = 0, lpha(s_3) = 0 \end{aligned}$$

Tableau:

 s_2 n'est pas dans sa borne. s_2 doit être augmenté de 1 pour être dans sa borne (inférieure).

Pivot avec x:

$$egin{aligned} heta &= rac{(1-(0))}{1} \, ext{donc} \, 1 \ s_2 &= x+y \Rightarrow x = s_2 - y \ s_1 &= 3(s_2-y) + y = 3s_2 - 2y \ s_3 &= s_2 - 2_y \end{aligned}$$

	s_2	y
s_1	3	-2
\boldsymbol{x}	1	-1
s_3	1	-2

$$lpha(x)=1, lpha(y)=0, lpha(s_1)=3, lpha(s_2)=1, lpha(s_3)=1$$

La solution est : lpha(x)=1, lpha(y)=0

Question 3

$$3x+y \leq 3 \land x+2y \geq 2 \land x-y \geq -2$$

Forme générale :

$$egin{aligned} 3x + y - s_1 &= 0 \land \ x + 2y - s_2 &= 0 \land \ x - y - s_3 &= 0 \land \ s_1 &\leq 3 \land \ s_2 &\geq 2 \land \ s_3 &> -2 \end{aligned}$$

Application du simplexe:

$$egin{aligned} N &= \{x,y\} \ B &= \{s_1,s_2,s_3\} \ lpha(x) &= 0, lpha(y) = 0, lpha(s_1) = 0, lpha(s_2) = 0, lpha(s_3) = 0 \end{aligned}$$

Tableau:

 s_2 n'est pas dans sa borne. Il doit être augmenté de 2.

Pivot avec x:x doit être gmenté de 2.

$$egin{align} s_2 &= x + 2y \Leftrightarrow x = s_2 - 2_y \ s_1 &= 3(s_2 - 2y) + y = 3s_2 - 5y \ s_3 &= s_2 - 2y - y = s_2 - 3y \ \end{pmatrix}$$

Tableau:

$$egin{array}{c|cccc} s_2 & y & & & & & \\ s_1 & 3 & -5 & & & & \\ x & 1 & -2 & & & \\ s_3 & 1 & -3 & & & \end{array}$$

$$lpha(x)=2, lpha(s_2)=2, lpha(y)=0, lpha(s_1)=6, lpha(s_3)=2$$

 s_1 n'est pas dans sa borne. Il doit être diminué de 3.

pivot avec y : on doit augmenter y de ? (calcul de θ)

$$egin{align*} heta &= rac{(3-6)}{-5} = rac{3}{5} \ s_1 &= 3s_2 - 5y \Leftrightarrow y = rac{3}{5}s_2 - rac{1}{5}s_1 \ x &= s_2 - 2_y \Leftrightarrow x = s_2 - 2(rac{6}{5}s_2 + rac{2}{5}s_1) = -rac{1}{5}s_2 + rac{2}{5}s_1 \ s_3 &= s_2 - 3y \Leftrightarrow s_3 = s_2 - rac{9}{5}s_2 + rac{3}{5}s_1 = -rac{4}{5}s_2 + rac{3}{5}s_1 \ \end{array}$$

Tableau:

	s_2	s_1
\boldsymbol{y}	<u>3</u> 5	$-\frac{1}{5}$
x	$-\frac{1}{5}$	$\frac{2}{5}$
s_3	$-\frac{4}{5}$	$\frac{3}{5}$

$$lpha(s_1)=3, lpha(y)=rac{3}{5}, lpha(s_2)=2, lpha(x)=rac{4}{5}, lpha(s_3)=rac{1}{5}$$

Tout le monde est dans ses bornes.

La solution est :
$$lpha(x)=rac{4}{5}, lpha(y)=rac{3}{5}$$