

Forbidden Posets: Small Posets on Small Lattices

Michael Pilson ¹ Laura Prince ² Georgia Sanders ²

Advisor: Shanise Walker²

¹Carnegie Mellon University ²Clark Atlanta University

Definitions

A relation R defined on a set P is called a **partial** ordering or partial order if it is reflexive, antisymmetric, and transitive.

A partially ordered set or poset $\mathcal{P} = (P, R)$ is a set P together with its partial ordering R.

Example: The poset $\mathcal{P} = (P, R)$ where $P = \{1, 2, 3, 4\}$ and

 $R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,3), (1,3), (4,2)\}.$

The n-dimensional Boolean lattice \mathcal{B}_n is the poset $(2^{[n]}, \subseteq)$ where $2^{[n]}$ denotes the set of all subsets of $[n] := \{1, 2, ..., n\}$ and \subseteq is the subset inclusion relation.

A subposet \mathcal{P} is a subset of a poset that inherits the order relation from the poset.

An **induced subposet** \mathcal{P} is a subposet where the partial order is exactly the same as in the original poset, with no alterations.

Subposet Induced Subposet

Main Research Goal

Investigate the minimum size of an induced-poset-saturated family in the n-dimensional Boolean lattice \mathcal{B}_n .

Background

A family $\mathcal{F} \in \mathcal{B}_n$ is said to be \mathcal{P} -saturated if it does not contain a copy of \mathcal{P} , but every proper superset contains a copy of \mathcal{P} .

An induced family $\mathcal{F} \in \mathcal{B}_n$ is **induced-** \mathcal{P} **-saturated** if it does not contain an *induced* copy of \mathcal{P} , but every proper induced superset of \mathcal{F} contains an induced copy of \mathcal{P} .

Induced- $2C_2$ -saturated family

 $La(n, \mathcal{P})$ denotes the maximum size of a \mathcal{P} -saturated family.

Theorem (Sperner). La $(n, \mathcal{P}_2) = \binom{n}{\lfloor n/2 \rfloor}$ where \mathcal{P}_k is a chain on k vertices.

Theorem (Erdős). La $(n, \mathcal{P}_k) \approx (k-1) \binom{n}{\lfloor n/2 \rfloor}$.

An example of a maximum size \mathcal{P}_3 -saturated family in \mathcal{B}_4 .

 $\mathsf{sat}(n,\mathcal{P})$ denotes the minimum size of a \mathcal{P} -saturated family.

 $\operatorname{sat}^*(n,\mathcal{P})$ denotes the minimum size induced- \mathcal{P} -saturated family.

Theorem (Gerbner et al.). For n sufficiently large, $2^{k/2-1} \le \operatorname{sat}(n, \mathcal{P}_{k+1}) \le 2^{k-1}$.

Theorem (Ferrara et al.). If $n \ge 2$, then $\operatorname{sat}^*(n, \mathcal{V}_2) = n + 1$.

Theorem (Ferrara et al.). If $n \ge 2$, then $\lceil log_2 n \rceil \le \text{sat}^*(n, \mathcal{D}_2) \le n+1$.

Theorem (Keszegh et al.). For any integer $n \leq 3$, $n+2 \leq \operatorname{sat}^*(n, 2\mathcal{C}_2) \leq 2n$.

Subposets of Interest

Results

Lemma: The poset $2C_2$ does not contain \emptyset or [n].

Note: \emptyset and [n] are comparable with every element in the Boolean lattice.

Theorem: For n=3, sat* $(3, 2\mathcal{C}_2) \neq 5$. Therefore, sat* $(3, 2\mathcal{C}_2) = 6$.

Case 1

Theorem: Let n > k and let $\mathcal{P} \in \{\mathcal{V}_k, \Lambda_k, \mathcal{D}_k\}$. If \mathcal{F} is an induced- \mathcal{P} -saturated family in \mathcal{B}_n and \mathcal{F} contains a maximal chain, then $|\mathcal{F}| > n + 1$.

The family \mathcal{F} is comprised of a maximal chain of size n+1 and any element M.

More Results

Theorem: For n=3, if \mathcal{F} is an induced- \mathcal{V}_3 -saturated family in \mathcal{B}_3 and \mathcal{F} contains a maximal chain, then $|\mathcal{F}|=6$.

These cases also apply to its dual Λ_3 .

Theorem: For n=3, if \mathcal{F} is an induced- Λ_3 -saturated family in \mathcal{B}_3 and \mathcal{F} contains a maximal chain, then $|\mathcal{F}|=6$.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants No. 2244348 and No. 2247163.

References

- [1] P. Erdős, On a lemma of Littlewood and Oxford. Bulletin of the American Mathematical Society, 51 (12), (1945), 898–902.
- [2] M. Ferrara, B. Kay, L. Kramer, R. R. Martin, B. Reiniger, H. C. Smith, and E. Sullivan, The saturation number of induced subposets of the Boolean lattice, *Discrete Mathematics* 340 (10), (2017), 2479–2487
- [3] D. Gerbner, B. Keszegh, N. Lemons, C. Palmer, D. Pálvölgyi, and B. Patkós, Saturating sperner families, *Graphs and Combinatorics* 29 (5), (2013), 1355–1364.
- [4] B. Keszegh, N. Lemons, R. R. Martin, D. Pálvölgyi, and B. Patkós, Induced and non-induced poset saturation problems, *Journal of combinatorial theory, series A* 184, (2021), 105497.
- [5] E. Sperner, Ein satz über untermengen einer endlichen menge, *Mathematische Zeitschrift*, 27 (1), (1928), 544–548.