§1. Lineárni závislost a nezávislost

- Def: Nechť = $S = \{\overrightarrow{u_1}, \overrightarrow{u_1}, \dots, \overrightarrow{u_1}\}$ je konečná množina vektorů vektorového prostoru V. Řekneme, že $množina\ vektorů\ S$ je:
 - 1. lineárně nezávislá, jestliže platrí:

$$p_1 \cdot \overrightarrow{u_1} + p_1 \cdot \overrightarrow{u_1} + \dots + p_1 \cdot \overrightarrow{u_1} = \overrightarrow{0} \quad \Leftrightarrow \quad p_1 = p_2 = \dots = p_k = 0$$

2. lineárně závislá, jestliže platrí:

$$\exists p_i \neq 0 : p_1 \cdot \overrightarrow{u_1} + p_1 \cdot \overrightarrow{u_1} + \cdots + p_1 \cdot \overrightarrow{u_1} = \overrightarrow{0} (i \in \{1, 2, \dots, k\})$$

V.1.1.: Obsahuje li S vektorr $\overrightarrow{0}$, pak je lineárně závislá.

Když $S = \{\overrightarrow{u}\}$, pak S je závislá $\Leftrightarrow \overrightarrow{u} = \overrightarrow{0}$.

V.1.2.: Vektoru jsou lineárně závislé právě tehdy, když alespon 1 z nich lze vyjádřit jako lineární kombinaci ostatních.

Pozn: Ne každý z lineárně závislych vektorů může být vyjádřen jako lin. kombinace ostatních.