UNIVERSITE DE FARHAT ABBES SETIF

FACULTE DE MEDECINE

DEPARTEMENT DE MEDECINE

EMD1 bio-statistique « 2021/2022 » /07-02-2022

			0.00
* 1			-
\sim	~	27	-

... Prénom :.

groupe: /__/

01- Indiquer la (les) affirmation(s) fausse(s):

- A. La variabilité d'une mesure n'est due qu'à la variabilité interindividuelle.
- B. La variabilité de la mesure est liée notamment à l'appareil de mesure.
- C. La variabilité en biologie est toujours très faible
- D. Les différentes sources de variabilité se neutralisent toujours.

02-Indiquer la (les) affirmation(s) juste(s):

- A. Les variables qualitatives peuvent être continues ou discrètes
- B. Les variables qualitatives binaires permettent de calculer une moyenne
- C. Dans une variable quantitative continue les données sont sauvent mises en classes.
- D. Les variables ordinales permettent de calculer une moyenne et un écart type
- Soit les variables suivantes :
- 1. la couleur des cheveux : noirs,....
- le mode d'entrée a l'hôpital : transfert, provenance du domicile....
- 3. Les taux d'enzymes sanguines en unité/ml
- 4. La masse d'une tumeur en grammes
- 5. Le nombre de comprimés avalés par jours
- 6. L'autonomie de la personne : autonome, a besoins d'une aide partielle, a besoins d'une aide totale
- 7. L'intensité de la douleur : +, ++,+++

03- Sont des variables qualitatives :

- A. 1;2;5
- B. 1;3;4
- C. 1;2;6
- D. 1;3;7

04- Indiquer la (les) affirmation(s) juste(s):

- A. 3; 4 sont des variables quantitatives continues
- B. 6; 7 sont des variables qualitatives
- C. 5 est une variable discontinue
- D. Les données des 3;4 ;5 permettent de calculer une moyenne

05- Quelles sont les indications exactes :

- A. Une variable qualitative peut être transformée en variables quantitative
- B. Une variable de N modalités peut être ramenée à N variables qualitatives binaires
- C. Une variable quantitative peut être transformée en variables qualitative
- D. Une variable ordinale peut être transformée en variable nominale.

06- Une variable qualitative peut étre representé par:

- A. un diagramme en batonnets
- B. Par un secteur (cercle)
- C. Histogramme
- D. Nuage de point

07- Les paramètres de tendance centrale :

- A. Estiment de la variabilité de la série au tour de la moyenne
- B. Mesures d'étalement des observations autour des paramètres de tendance centrale
- C. Sont liées au degré d'étalement de la série statistique
- D. La médiane fait partie des ces paramètres

10: sed

EXERCICE 1:

On s'intéresse a la durée de rémission exprimée en mois chez 11 malades après diagnostic d'un cancer. On obtient le tableau suivant:

Numéro du malade	1	2	3	4	5	6	7	8	9	10	11
Durće	17	36	26	20	60	32	24	42	12	20	25

086 La durée de la rémission est une variable

- A. Qualitative ordinale
- B. Quantitative discrète
- C. Quantitative continue
- D. Quantitative discrète et continue

09- La durée moyenne de rémission est de :

A. 32 mois

B. 35 mois

C. 30 mois

D. 31 mois

10- La médiane de la rémission est de :

A. 28 mois

B. 32 mois

C. 36 mois

D. 60 mois

11- On suppose que le malade numéro 11 ait en réalité une durée de rémission de 80 mois :

- A. La moyenne de la rémission devient 30 mois
- B. La moyenne de la rémission devient 34 mois
- C. La médiane de la rémission devient 30 mois
- D. Même si on modifiait toutes les durées de rémission, la médiane serait inferieur ou égale à la

Exercice 2 :L'institut national des statistiques s'est intéressé au nombre d'accident de la route, il démontre qu'en moyenne on observe 2 accidents par quart d'heure (15 minutes) en plein heure de

12- Quelle est la probabilité de n'observer aucun accident en un quart d'heure?

13- Quelle est la probabilité d'observer moins de 2 accidents en un quart d'heure ?

A. 0.135

B. 0.125

C. 0.140

D. 0.129

A. 0.445

B. 0.300

C. 0.405

D. 0.440

14- Quelle est la probabilité de n'observer aucun accident en une heure ?

- A. 0.003
- B. 0.0032
- C. 0.0003
- D. 0.03

EXERCICE 2:

Dans une commune le nombre moyen d'accouchement par mois (30 jours) = 500 ; la fréquence

15- Les expressions justes des lois de probabilité est :

- A. Loi binomiale: B (500; 0,004)
- B. Loi de poisson: P(2)
- C. Loi binomiale: B (500; 0,04)
- D. Loi de poisson: P(1)

16- Les expressions justes des lois de probabilité dans une période de 3 mois (90 jours) est :

- B. Loi de poisson: P(4)
- C. Loi binomiale: B (500; 0,006)
- D. Loi de poisson: P (6)

EXERCICE 3:

Dans un laboratoire d'analyse médicale, la glycémie moyenne observée sur les prélèvements hebdomadaire est m=1,06g/dl avec un écart type S=0,2

17 .Les 2.5 et 97.5 percentiles correspondent respectivement dans une distribution normale à :

- A. m S et m + S
- B. m-2S et m+2S
- C. m-3S et m+3S
- D. aucune réponse n'est juste.

18-Les valeurs de la glycémie qui correspondent aux déciles D2, D8 sont :

- A. D2= 0,93 ,D8= 1,19
- B. D2= 0,89 ,D8=1,23
- C. D2= 0.95 ,D8= 1.14
- D. D2= 0,85 ,D8=1,25

19- Sachant que la valeur seuil d'une glycémie normale est de 1,26 g/dl, la probabilité d'avoir un sujet non diabétique est :

- A. P= 90 %
- B. P= 84 %
- C. P=68 %
- D. P=75 %

20- Soit les deux séries statistique qui correspondent à la tension artérielle moyenne dans deux populations : I (m1= 10; s1= 2) et Π (m2=10; s2=1), sachant que les 2 séries suivent la loi normale :

- A. Le quartile Q2 de la série I est plus petit à ceux de la série II
- B. Le quartile Q1 de la série I est plus petit à ceux de la série II
- C. La série II a un coefficient de variation CV= 5%
- D. Les deux séries peuvent avoir le même mode et doivent avoir la même médiane (Me).

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée c, c'est-à-dire la probabilité extérieure à l'intervalle (-c, +c).

							-	- 5		
•	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07		+6
.00 .10 .20 .30 .40	00 1,645 1,282 1,036 0,842	2,576 1,598 1,254 1,015	2,326 1,555 1,227 0,994	2,170 1,514 1,200 0,974	2,054 1,476 1,175	1,960 1,440 1,150	1,881	1,812	1,751 1,341	1,695
.50 .60 .70 .50	0,674 0,524 0,385 0,253	0,824 0,659 0,510 0,372 0,240	0,806 0,643 0,496 0,358 0,228	0,789 0,628 0,482 0,345	0,954 0,772 0,613 0,468 0,332	0,935 0,755 0,598 0,454	0,915 0,739 0,583 0,440	1,103 0,896 0,722 0,568 0,426	1,080 0,878 0,706 0,553	1,311 1,058 0,860 0,690 0,539
- 1	0,126	0,113	0,100	0,215	0,202 0,075	0,319 0,189 0,063	0,305 0,176 0,050	0,292 0,164 0,038	0,412 0,279 0,151 0,025	0,399 0,266 0,138 0,013

La probabilité α s'obtient par addition des nombres inscrits en marge. Exemple : Pour $\epsilon = 1.960$ la probabilité est $\alpha = 0.00 \pm 0.05 = 0.05$.

Table pour les petites valeurs de la probabilité

1 0	0,001	0.000				probabilité	
5	3,29053	3,89059	4,41717	0,000 001 4,89164	0,000 000 1	00 1 0,000 000 01 0,000 000	0.000
rese:	arch (Oliv	s Fisher e	et Yates, Si	100104	5,32672	5,73073	6,10941

(°) D'après Fisher et Yates, Statistical tables for biological, agricultural, and medical editeurs. (Oliver and Boyd, Edinburgh) avec l'aimable autorisation des auteurs et des

Corrigé Type

Barême par question: 1,000000

N°	Rép.
1	ACD
2	BC
3	С
4	ABCD
5	BC
6	AB
7	D
8	С
9	С
10	Α
11	В
12	Α
13	С
14	С
15	AB
16	AD
17	В
18	В
19	В
20	BD