I savemus, and $\lim_{x\to +\infty} \operatorname{arctg} x = \frac{\pi}{2}$, normoug $\forall \varepsilon > 0 \exists R > 0, m \in \forall x > R \ (|\operatorname{arctg} x - \frac{\pi}{2}| < \frac{\varepsilon}{4})$

3ronum, gue $x_1, x_2 > R$ compabegueba $\left| \operatorname{arctg} x_1 - \operatorname{arctg} x_2 \right| = \left| \left(\operatorname{arctg} x_1 - \frac{\pi}{2} \right) + \left(\frac{\pi}{2} - \operatorname{arctg} x_2 \right) \right| \le$

 $\leq \left| \operatorname{arctg} x_1 - \frac{\pi}{2} \right| + \left| \operatorname{arctg} x_2 - \frac{\pi}{2} \right| < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{4}$

Dix $\varepsilon > 0$ npegcmabuu $[a; +\infty) = [a; R] \cup [R; +\infty)$

Яо теорене Кантора arctgx равномерно непрерывна на [a;R] $[x_1-x_2]<\delta$ выпомяетах

 $\left|\operatorname{arctg} x_1 - \operatorname{arctg} x_2\right| < \frac{\varepsilon}{d}$

Umak, ecu $x_1, x_2 \in [a_j + \infty)$, mo

1) $npu \quad x_1, x_2 \in [a; R], m. v. \quad |x_1 - x_2| < \delta,$ $\left| arctg x_1 - arctg x_2 \right| < \frac{\varepsilon}{\varepsilon} < \varepsilon;$

2) npu $x_1, x_2 \in [R; +\infty)$ | $arctg x_1 - arctg x_2$ | $< \frac{\varepsilon}{d} < \varepsilon$;

3) $npu \quad x_1 \in [a; R] \quad x_2 \in [R, +\infty), \quad m \in |x_1 - x_2| < \delta, \quad uueeu$ $\left| \operatorname{arctg} x_1 - \operatorname{arctg} x_2 \right| = \left| \left(\operatorname{arctg} x_1 - R \right) + \left(R - \operatorname{arctg} x_2 \right) \right| \le$

Таким образом, функуих arctgz равномерна непрерпвна на [a; +∞), где a ∈ R.

 $\leq \left| \operatorname{arctg} x_1 - R \right| + \left| R - \operatorname{arctg} x_2 \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$

Аналошено можно показать, что функция равномерно непрерыва ка поминтервале $(-\omega; a]$. Но тогда она равномерно и на

οδεεдинении (-∞; a]v[a;+∞) = /R