

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE COMPUTAÇÃO BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

PLANO DE DISCIPLINA	
DISCIPLINA*: <u>Algoritmos e Estruturas de Dados 2</u>	(X) SEMESTRAL - () ANUAL
CÓDIGO*: GBC024	PERÍODO*: 3º período (2017-1)
CARGA HORÁRIA*: 60 horas-aula / semestre (4 horas-aula / semana)	(X) OBRIGATÓRIA - () OPTATIVA
PRÉ-REQUISITOS*: Não há pré-requisito	
PROFESSOR: Luiz Gustavo Almeida Martins	UNIDADE ACADÊMICA: FACOM
CURSO: <u>CIÊNCIA DA COMPUTAÇÃO</u>	

EMENTA RESUMIDA

Recursividade; programação dinâmica; princípios de análise de algoritmos: análise empírica, análise matemática, análise assintótica, notação 0; ordenação; grafos; árvores; busca; árvore de busca binária (ABB), balanceamento de ABB, hashing.

JUSTIFICATIVA

O conhecimento da disciplina confere ao aluno a capacidade de desenvolver soluções computacionais eficientes para problemas que necessitam de algoritmos e/ou estruturas de dados avançadas.

OBJETIVOS GERAIS DA DISCIPLINA

Discutir o custo computacional de algoritmos, utilizar adequadamente soluções iterativas e recursivas, aplicar apropriadamente soluções para problemas de busca e de ordenação, e utilizar árvores e grafos.

PROGRAMA DA DISCIPLINA

O quadro abaixo apresenta o conteúdo ministrado na disciplina e sua distribuição em dias (2 aulas-hora/dia) durante o semestre letivo:

ASSUNTO	DIA
Apresentação do plano de curso	1
Análise de algoritmos: introdução e conceitos básicos	
Análise de algoritmos: tipos de análise e notação O	3
Recursividade	
Algoritmos de ordenação: conceitos e algoritmos básicos	5
Algoritmos de ordenação: algoritmos básicos	6
Algoritmos de ordenação: quicksort e mergesort	
Grafos: conceitos e definições	8
Grafos: tipo abstrato de dados (TAD)	9
Grafos: matriz de adjacências	10
Grafos: listas de adjacências	11
Grafos: busca em largura	12
Grafos: busca em profundidade	13
Grafos: menor caminho entre 2 vértices	14
Exercícios de fixação	15
Revisão para a prova	16
1a prova	17
Busca em texto	18
Dicionário: conceitos e especificação do TAD	19
Busca em um dicionário: sequencial	20
Busca em um dicionário: pesquisa binária	
Árvores: conceitos e tipos de árvores	22
Árvore genérica	23
Árvore binária	24
Árvore Binária de Busca (ABB)	25
Árvore Binária de Busca (ABB)	26
Balanceamento de ABB	27
Balanceamento de ABB	28
Balanceamento de ABB	29
Hashing: introdução e conceitos básicos	30
Hashing: funções e tratamento de colisões	
Hashing: funções e tratamento de colisões	
Revisão para a prova	33
2a prova	
Entrega de trabalho e fechamento do semestre	35

METODOLOGIA

O curso será composto por aulas expositivas, nas quais o sistema de áudio-visual e o quadro negro serão utilizados como principais instrumentos para a disseminação do conteúdo da matéria. Eventualmente, algumas aulas serão ministradas em laboratório, visando facilitar a aprendizagem referente à implementação das estruturas. O conhecimento teórico será complementado através da realização de exercícios.

AVALIAÇÃO

O método de avaliação proposto prevê a realização de duas provas individuais (35 pontos cada), conforme cronograma apresentado. Além das provas teóricas, serão realizados dois trabalhos práticos (15 pontos cada), envolvendo a implementação dos algoritmos e estruturas de dados estudadas, bem sua utilização em aplicações da área de computação.

ATENDIMENTO

O professor disponibilizará um horário de atendimento fixo extra classe para esclarecimento de dúvidas que possam surgir durante a realização dos trabalhos ou em qualquer outro momento. Além disso, a disciplina também contará com o serviço de monitoria, onde uma das atividades previstas refere-se ao atendimento dos alunos em horários previamente estabelecidos.

RECUPERAÇÃO

A recuperação de aprendizagem, caso seja necessária, se dará através da implementação de exercícios referentes ao conteúdo que o aluno necessita de reforço. Tais implementações deverão ocorrer em horários extra classe e, de preferência, com o acompanhamento do professor e/ou monitor.

BIBLIOGRAFIA

Bibliografia Básica:

- SEDGEWICK, R. & WAYNE, K. Algorithms, 4a ed., Ed. Addison Wesley, 2011.
- CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L. et al. Algoritmos: teoria e prática. 2ª ed., Editora Campus, 2002.
- AHO, A.V., ULLMAN, J.D. & HOPCROFT, J.E. Data Structures and Algorithms. 3^a ed., Ed. Addison Wesley, 1983.

Bibliografia Complementar:

- ZIVIANI, N. Projeto de Algoritmos com implementações em Pascal e C. 3a ed., Ed. Cengage Learning, 2010.
- TENENBAUM, A. M., LANGSAM, Y. & AUGENSTEIN, M. J. Estrutura de Dados Usando C. Ed. Makron Books, 1995.
- MORAES, C. R. Estruturas de Dados e Algoritmos: uma abordagem didática. 2ª ed., Ed. Futura, 2003
- CELES, W., CERQUEIRA, R. & RANGEL, J. L. Introdução a Estruturas de Dados. Ed. Elsevier, 2004
- BACKES, A. Linguagem C Descomplicada: portal de vídeo-aulas (curso de estrutura de dados). Disponível em: https://programacaodescomplicada.wordpress.com/indice/estrutura-de-dados/

Entregue em 31/03/2017.	Aprovado pelo colegiado do curso em/
Assinatura do professor	Assinatura do coordenador