DL Meeting

H&D Group

April 27, 2025

1 REMS Model

1.1 Constants

n - number of people d - number of shifts (2 × number of days in the month) t_j - { 1 isnightshift - 1 isdayshift h_j - is shift j a high demand shift (Thursday, Friday, Saturday nights) (binary) a_{ij} - is person i available at shift j o_i - is person i a member of duty crew (non-observer) c_i - is person i off campus

1.2 Decision Variables

 x_{ij} - is person i assigned to shift j b_j - penalty for if shift j has less than three people m_i - penalty for if person i has less than 2 shifts

1.3 Objective Components

underutilization = $\sum_{i=1}^{n} m_i$ understaffed = $\sum_{j=1}^{d} h_j b_j + .2 \sum_{j=1}^{d} (1-h_j) b_j$ shiftimbalance = $\sum_{i=1}^{n} (\sum_{j=1}^{d} t_j x_{ij})^2$ min $5 \cdot underutilization + 10 \cdot understaffed + shiftimbalance$ $x_{ij} \leq a_{ij}$

$$x_{ij} \leq a_{ij}$$

$$b_j + \sum_{i=1}^n o_i x_{ij} = 2 \quad \forall j \in [d]$$

$$b_j + \sum_{i=1}^n x_{ij} \leq 3 \quad \forall j \in [d]$$

$$m_i + \sum_{j=1}^d x_{ij} = 2 \quad \forall i \in [n]$$

$$\sum_{i=1}^n c_i x_{ij} \leq 2 \quad \forall j \in [d]$$

$$x_{ij} \in \{0, 1\}$$

2 2/9/2025 - Meeting 1

2.1 Basic Model

Define:

Skills $k = 1, \dots, h$

Shift $j = 1, \ldots, m$

Employee $i = 1, \ldots, n$

 s_{ij} : an employee i has skill to work task k

 c_{ij} : an employee i can work shift j

 b_{ik} : the number of employees needed with skill to work task k at time j

 x_{ijk} : decision variable; employee i working shift j on skill k

$\min 0$

s.t. $\sum_{i=1}^{n} x_{ijk} \geq b_{ij} \forall jk$ (all shifts have needed tasks covered) $\sum_{k=1}^{h} x_{ijk} \leq 1 \forall i, j$ (all employees can do one job per shift) $x_{ijk} \leq c_{ij} \forall i, j$ (enforcing availability) $x_{ijk} \leq s_{ik} \forall i, k$ (enforcing skillset) $x_{ijk} \in \{0, 1\}$

2.2 With Penalty

Define: Skills k = 1, ..., hShift j = 1, ..., mEmployee i = 1, ..., n s_{ij} : an employee i has skill to work task k c_{ij} : an employee i can work shift j

 b_{ik} : the number of employees needed with skill to work task k at time j

 p_{jk} : penalty associated with no employee working task k at time j

 x_{ijk} : decision variable; employee i working shift j on skill k

 $\min \sum \sum p_{jk}$ s.t. $\sum_{i=1}^{n} x_{ijk} + p_{jk} \ge b_{ij} \forall jk$ (all shifts have needed tasks covered) $\sum_{k=1}^{h} x_{ijk} \le 1 \forall i, j$ (all employees can do one job per shift) $x_{ijk} \le c_{ij} \forall i, j$ (enforcing availability) $x_{ijk} \le s_{ik} \forall i, k$ (enforcing skillset) $x_{ijk} \in \{0, 1\}$ $p_{jk} \ge 0$

Note: Consider changing 1st constraint to adding a string ≥ 1 later on

2.3 Split Variables

Consider adding:

 y_{ij} : is employee i working shift j z_{ik} : is employee i working task k

3 2/23/2025 - Meeting 2

Quadratic Model

Define:

 x_{ik} : where i is shift i, k is employee k

 a_{ij} : number of chefs needed for shift i of level j

 E_j : subset of employees of level j

min
$$\sum_{k \in K} ((\sum_{i \in I} x_{ik} - 40)^2 + \alpha (\sum_{i \in I} x_{ik} - 40))$$

s.t. $\sum_{x_{ik} \in E_i} x_{ik} \ge a_{ij} \ \forall i, j$

3.1 Linear Version

Let z_{ik} be the overworked hours for employee k, for shift i Let w_k be the decision variable that enforces the underworking constraint.

$$\max 2 \sum x_{ik} + \sum z_{ik} - \sum w_k$$
s.t.
$$\sum z_{ik} + \sum x_{ik} \ge a_{ij} \quad \forall i, j$$

$$\sum_i x_{ik} \le 40$$

$$w_k + \sum_i x_{ik} = 40$$

3.2 Consecutive Shifts Constraint

Sum over 1 day's shifts and night-morning shift is equal to 1.