Sequence alignment

杨建益

Email: yangjy@nankai.edu.cn

Webpage: http://yanglab.nankai.edu.cn/

Course: http://yanglab.nankai.edu.cn/teaching/bioinformatics/

Office: 数学科学学院, 419室

Content

- 1. Why to make sequence alignment?
 - 2. What is a sequence alignment?
 - 3. How to derive a mutation matrix-PAM
 - 4. How to derive a mutation matrix-BLOSUM
 - 5. Gap penalty
 - 6. Dynamic programming
 - Global alignment: Needleman-Wunsch
 - Local alignment: Smith-Waterman
 - 7. Heuristic algorithms

Why to make sequence alignment?

>Protein a

MVLSEGEWQLVLHVWAKVEADVAGHGQD ILIRLFKSHPETLEKFDRVKHLKTEAEMKAS EDLKKHGVTVLTALGAILKKKGHHEAELKP LAQSHATKHKIPIKY

>Protein b

MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPS LNAAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDA AVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGET GVAGFTNSLRMLQ

Do they have similar structure and function?

I. Sequence alignment can help establish relationship of two proteins (roughly speaking, sequences having higher sequence identity usually come from the same ancestor and therefore have similar structure and function). These proteins are called homology.

Why to make sequence alignment?

>Query sequence

MVLSEGEWQLVLHVWAKVEADVAGHGQD ILIRLFKSHPETLEKFDRVKHLKTEAEMKAS EDLKKHGVTVLTALGAILKKKGHHEAELKP LAQSHATKHKIPIKY

(GeneBank for DNA sequences) (UniProt for protein sequences) (PDB for protein structures)

II. Sequence alignment can help identify homologies from known databases, to generate structure and function predictions for the unknown proteins.

Why to make sequence alignment?

Many bioinformatics databases:

- 1. GeneBank: contains ~950M DNA sequences
- 2. UniProt Swiss-Prot/trEMBL: ~100M protein sequences (~550K with known function)
- 3. Protein Data Bank (PDB): contains ~140k protein structures

Summary

Purposes:

- Study the relationship between two proteins
- Scan a database with a query sequence and identify possible structure and function of the query protein

If two sequences are simiar, the following may be true

- The proteins may share a common evolutionary origin
- The proteins may have a similar 3-dimensional structure
- The proteins may have the same or related function

Content

- 1. Why to make sequence alignment?
- 2. What is a sequence alignment?
 - 3. How to derive a mutation matrix-PAM
 - 4. How to derive a mutation matrix-BLOSUM
 - 5. Gap penalty
 - 6. Dynamic programming
 - a. Global alignment: Needleman-Wunsch
 - b. Local alignment: Smith-Waterman
 - 7. Heuristic algorithms

What is a sequence alignment?

Identical Example 1: Sequence identity=78% residue pair -MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRVKHLKTEAEMKASEDLKKHGVTVL G--LSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKHKHLKTEAEMKASEDLKKTGTVVL Insertions Example 2: Sequence identity=22% -LRLKIYKDTEGYYTIGIGHLLTKSPSLNAAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDA : ::: -MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE——TLEKFDRVKHL-KTEAEMKAS-Gaps

Sequence identity = Number of identical residue pairs/Length of query sequence

The principle of an alignment

- We want to align as many as possible THE SAME or THE SIMILAR residues
- We do not want gaps/insertions

The principle of an alignment

Mathematically, the goal is to maximize the following score:

$$Score = \sum_{i=1}^{N_{ali}} M(A_i, B_i) - GapPenalty$$

Residues of similar property should match together

Score for adding gap is always negative

N_{ali}: number of aligned residue pairs

 A_i : amino acid identity of the i-th aligned resideu at the first sequence B_i : amino acid identity of the i-th aligned resideu at the second sequence $M(A_i, B_i)$: preference score of matching between amino acids A_i and B_i

Scoring matrix

$$Score = \sum_{i=1}^{N_{ali}} M(A_i, B_i) - GapPenalty$$

The simplest scoring matrix is the unit matrix:

$$\boldsymbol{M} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{20 \times 20}$$

Question: What will be the problem if we use this simple solution?

Answer: All the similarity due to the evolutionary mutation has been neglected.

Content

- 1. Why to make sequence alignment?
- 2. What is a sequence alignment?
- 3. How to derive a mutation matrix-PAM
 - 4. How to derive a mutation matrix-BLOSUM
 - 5. Gap penalty
 - 6. Dynamic programming
 - Global alignment: Needleman-Wunsch
 - Local alignment: Smith-Waterman
 - 7. Heuristic algorithms

The most often-used scoring matrices

DAYHOFF et al, 1978

Henikoff and Henikoff, PNAS, 1992

Questions:

- 1. How these matrices are obtained?
- 2. What are the differences between PAM and BLOSUM?

Margaret Dayhoff (1925 - 1983, US)

1945 - BA in Mathematics at NYU

1948 - PhD in Quantum Chemistry

1965 - Protein Atlas (65 proteins) (PIR)

the first public comprehensive, computerised and publicly available database of protein sequences. It is the model for GenBank and many other molecular databases.

1980 - President of Biophysical Society

one of the founders in the field of Bioinformatics

Margaret Oakley Dayhoff Award

PAM (Percent Accepted Mutation) Matrix (by Dayhoff et al 1978):

- Reference: DAYHOFF, M., R. SCHWARTZ, AND B. ORCUTT. 1978. A model of evolutionary change in proteins. Pages 345--352 in Atlas of protein sequence and structure, Volume 5 (M. Dayhoff, ed.). National Biomedical Research Foundation, Washington, D.C.
- Database: 1,572 mutations, 71 homologous sequence groups (trees), 34 superfamilies, minimum sequence identity is 85%
- Purpose: to derive the mutation probability between amino acids

Three steps for building the PAM matrix:

Step 1: Counting the number of mutations

Step 2: Relative mutability of amino acid

Step 3: Probability of mutations between amino acids (M_{ij})

Step 1: Counting the number of mutations

Figure 79. Matrix of accepted point mutations derived from the tree of Figure 78.

Figure 80. Numbers of accepted point mutations (X10) accumulated from closely related sequences. Fifteen hundred and seventy-

two exchanges are shown. Fractional exchanges result when ancestral sequences are ambiguous,

Two factors may influence the mutation numbers:

- Codon reason: mutation between Glu (=GAA, GAG) and Asp (=GAC, GAU) is the most frequent
- Physical reason: due to the volume difference, mutation between Gly (=GGG)
 and Trp (=UGG) never happens

Step 2: Relative mutability of amino acid

$$m_i = \frac{N_{mut}(i)}{N_{comp}(i)}, i = 1, 2, \dots, 20$$

Example:

Aligned	A D	Α	
sequences	A D	В	
Amino acids	Α	В	D
Changes	1	1	0
Frequency of occurrence (total composition)	3	1	2
Relative mutability	.33	1	0

Figure 81. Sample computation of relative mutability. The two aligned sequences may be two experimentally observed sequences or an observed sequence and its inferred ancestor.

Table 21
Relative Mutabilities of the Amino Acids^a

Asn	134	His	66	
Ser	120	Arg	65	
Asp	106	Lys	56	
Glu	102	Pro	56	
Ala	100	Gly	49	
Thr	97	Tyr	41	
lle	96	Phe	41	
Met	94	Leu	40	
Gln	93	Cys	20	
Val	74	Trp	18	

^aThe value for Ala has been arbitrarily set at 100.

Step 3: Probability of mutations between amino acids (M_{ij}) : probability of j being replaced by i

$$\boldsymbol{M}_{ij} = \begin{cases} \lambda \frac{\boldsymbol{m}_{j} A_{ij}}{\sum_{k \neq i} A_{kj}}, & 1 \leq i, j \leq 20; & i \neq j \\ 1 - \lambda \boldsymbol{m}_{j}, & i = j \end{cases}$$

 A_{ij} : Observed number of mutations between a_i and a_j m_j : Relative mutate probability of a_j to all other amino acids λ : A constant to decide the evolution distance

PAM1

									•		ORIGI!	NAL A	MINO .	ACID								
			A	R	N	D	С	Q		G	Н	I	L	к	М	F	Р	S	T	W	Y	٧
Į			sIA	Arg	Asn	Asp	Cys	. Gln	g u	Gly	His	IJe	Fen	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val
	A	A1 a	9867	2	9	10	3	8	17	21	2	6	4	2	6	2	22	35	32	0	2	18
	R	Arg	1	9913	1	0	1	10	0	0	10	3	1	19	4	1	4	6	1	8	0	1
	N	Asn	4	1	9822	36	0	4	6	6	21	3	1	13	0	1	2	20	9	1	4	1
	D	Asp	6	0	42		0	6	53	6	4	1	0	3	0	0	1	5	3	0	0	1
	С	Cys	1	1	0		9973	0	0	0	1	1	0	0	0	0	1	5	1	0	31	2
	Q	Gin	3	9	. 4	5	0		27	ا ا	23	1	3	6	4	0	6	2	2	0	0	1
	3	Glu'	10	0	7	56	0		9865	993/	2	0	,	4	1	_ 1	3		2	0	1	2
ACID	G H	Gly His	21	1	12 18			3 20	,	993	9912	7	1	2	1.	1	3			0	0)	5
MINO	n I	lle	2	ع 2	10			20	• •		0	0 2	9	2	12	7	0		+	0	1	33
NT A	Ĺ	Leu	3		3	0	0	,		1	Š	22	9947	2	45	13	3	1	3	4	2	15
REPLACEMENT AMINO ACLD	K	Lys	2	[25	6	0	12		2	2	4	1		20	0	3	8	11	0	1	1
REPLA	м	Met	1	1		0	٥		0		0	5	8	4	9874	1	0	1	2	o	o	4
_	F	Phe	1	1	1	٥	0	0	0	1	2	8	6	0	4	9946	0	2	1	3	28	0
	p	Pro	13	5	2	1	1	8	3	2	5	1	2	2	1	1	9926	12	4	0	٥	2
	s	Ser	28	11.	34	7	11	4	6	16	2	2	1	7	4	3	17	9840	38	5	2	2
	Ţ	Thr	22	2	13	4	1	3	2	2	1	11	2	8	6	1	5	· 32	9871	0	2	9
Asymn	W	Jrp	- 12	2	?	0	0	0	0	0	0	0	0	0	0	1	0	1	0	9976	1	0
7 (3 y i i i i	,	yr	1	پ ا	3	0	3	0	1	0	4	1	1	0	0	21	0	1	1	2	9945	1
	V	Val	13	2	1	1	3	2	2	3	3	57	11	1	17	1	3	2	10	0	2	9901

For clarity, the values have been multiplied by 10000

From PAM1 to PAM2, PAM100, PAM250, etc...

Remark (from graph theory)

	а	b	С	d
a	1	1	1	0
b	0	0	1	0
С	0	0	0	1
d	0	1	0	0

Matrix **Q** indicates the number of paths going from one node to another in 1 step

	a	b	С	d
а	1	1	2	1
b	0	0	0	1
С	0	1	0	1
d	0	1	1	1

Matrix **Q**² indicates the number of paths going from one node to another in 2 steps

	а	b	С	d
а		•••		
b				
С				
d				

Matrix **Q**ⁿ indicates the number of paths going from one node to another in *n* steps

Source: J. van Helden

From PAM1 to PAM2, PAM100, PAM250, etc...

 $PAM2 = PAM1^2$ $PAM100 = PAM1^{100}$ $PAM200 = PAM1^{250}$

PAM250

	Α	\mathbf{R}	Ν	D	С	Q	Ε	G	Н	Ι	L	Κ	Μ	F	Р	S	Τ	W	Υ	V
Α	13	6	9	9	5	8	9	12	6	8	6	7	7	4	11	11	11	2	4	9
R	3	17	4	3	2	5	3	2	6	3	2	9	4	1	4	4	3	7	2	2
Ν	4	4	6	7	2	5	6	4	6	3	2	5	3	2	4	5	4	2	3	3
D	5	4	8	11	1	7	10	5	6	3	2	5	3	1	4	5	5	1	2	3
С	2	1	1	1	52	1	1	2	2	2	1	1	1	1	2	3	2	1	4	2
Q	3	5	5	6	1	10	7	3	7	2	3	5	3	1	4	3	3	1	2	3
\mathbf{E}	5	4	7	11	1	9	12	5	6	3	2	5	3	1	4	5	5	1	2	3
G	12	5	10	10	4	7	9	27	5	5	4	6	5	3	8	11	9	2	3	7
Н	2	5	5	4	2	7	4	2	15	2	2	3	2	2	3	3	2	2	3	2
Ι	3	2	2	2	2	2	2	2	2	10	6	2	6	5	2	3	4	1	3	9
L	6	4	4	3	2	6	4	3	5	15	34	4	20	13	5	4	6	6	7	13
Κ	6	18	10	8	2	10	8	5	8	5	4	24	9	2	6	8	8	4	3	5
Μ	1	1	1	1	0	1	1	1	1	2	3	2	6	2	1	1	1	1	1	2
F	2	1	2	1	1	1	1	1	3	5	6	1	4	32	1	2	2	4	20	3
Р	7	5	5	4	3	5	4	5	5	3	3	4	3	2	20	6	5	1	2	4
\mathbf{S}	9	6	8	7	7	6	7	9	6	5	4	7	5	3	9	10	9	4	4	6
Τ	8	5	6	6	4	5	5	6	4	6	4	6	5	3	6	8	11	2	3	6
W	0	2	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	55	1	0
Y	1	1	2	1	3	1	1	1	3	2	2	1	2	15	1	2	2	3	31	2
V	7	4	4	4	4	4	4	4	5	4	15	10	4	10	5	5	5	72	4	17

For clarity, the values have been multiplied by 100

Interpretation of the PAM250 matrix

	Α	R	N	D	***
Α	13	6	9	9	
R	3	17	4	3	
N	4	4	6	7	
D	5	4	8	11	
C	2	1	1	1	
Q	3	5	5	6	
Е	5	4	7	11	
G	12	5	10	10	
Н	2	5	5	4	
1	3	2	2	2	
L	6	4	4	3	
K	6	18	10	8	
M	1	1	1	1	
F	2	1	2	1	
Р	7	5	5	4	
S	9	6	8	7	
Т	8	5	6	6	
W	0	2	0	0	
Υ	1	1	2	1	
٧	7	4	4	4	

In comparing 2 sequences at this evolutionary distance (250 PAM), there is:

Log-odds of PAM250

```
S_{ij} = 10 \log_{10} \frac{M_{ij}}{P_i}
                                       P<sub>i</sub>: Probability of a<sub>i</sub> in sequences
-4 1 0 -1 0 0 2
-5 0 0 -1 0 1 2 4
                                       Log-odds matrix backs to symmetric
-8 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 8
-2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2
-4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0
0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2
-8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0
C S T P A G N D E Q H R K M
```

Content

- 1. Why to make sequence alignment?
- 2. What is a sequence alignment?
- 3. How to derive a mutation matrix-PAM
- 4. How to derive a mutation matrix-BLOSUM
 - 5. Gap penalty
 - 6. Dynamic programming
 - a. Global alignment: Needleman-Wunsch
 - b. Local alignment: Smith-Waterman
 - 7. Heuristic algorithms

Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9

Steve Henikoff

Jorja G. Henikoff

HHMI Investigator NAS member

Henikoff

Steven Henikoff

Member in Basic Sciences, <u>Fred Hutchinson Cancer Researc</u> 在 fhcrc.org 的电子邮件经过验证 - <u>首页</u> Genetics

分田//数		旦有王即
	总计	2013 年至今
引用	71761	26214
h 指数	125	76
i10 指数	291	218

本弄스如

出田均数

标题	引用次数	年份
Amino acid substitution matrices from protein blocks S Henikoff, JG Henikoff Proceedings of the National Academy of Sciences 89 (22), 10915-10919	5740	1992
Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing S Henikoff Gene 28 (3), 351-359	4110	1984
Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm P Kumar, S Henikoff, PC Ng Nature protocols 4 (7), 1073	3763	2009
SIFT: Predicting amino acid changes that affect protein function PC Ng, S Henikoff Nucleic acids research 31 (13), 3812-3814	3062	2003

Dataset: >2000 blocks

Four steps for building the BLOSUM matrix:

Step 1: Count frequency table f_{ij}

Step 2: Calculate the observed occurrence probability q_{ij}

Step 3: Calculate the expected occurrence probability eij

Step 4: Calculate the log-odds matrix S_{ij}

Step 1: Count frequency table fij

A block of known conserved sequences (gapless):

LVLHVWAKVEADVAGHGQDILIRLFKSHPETLE
LVLWDWAKVEADVAGHGQDILIRLFKSHPETLE
LDLHVWAKVGGDVAGHGQAALIRLFKSHPETLE
LCLHVWAKVEADVAGGGQGGLIRLFKSHPETLE
DVLHVWAKVEADVAGHGQDILIRLFKSHPETLE
LVLHVWAKVEADVAGHGQDILIRLFKSHPETLE

DD pairs: 6

DA pairs: 4

DG pairs: 4

AG pairs: 1

Total pairs at this column: 6x5/2=15

Total pairs in all columns:

$$w \times s(s-1)/2$$

s: number of sequences, w: number of columns

Step 2: Calculate the observed occurrence probability q_{ij}

Probability of occurrence of each i-j pairs:

$$q_{ij} = \frac{f_{ij}}{\sum_{i=1}^{20} \sum_{j=1}^{i} f_{ij}}, \quad 1 \le j \le i \le 20$$

Comparison with PAM

$$M_{ij} = \begin{cases} \lambda \frac{m_j A_{ij}}{\sum_{k \neq i} A_{kj}}, & 1 \leq i, j \leq 20; \quad i \neq j \\ 1 - \lambda m_j, & i = j \end{cases}$$

Step 3: Calculate the expected occurrence probability eij

1. Probability of occurrence of the i-th amino acid:

$$p_i = q_{ii} + \frac{1}{2} \sum_{j \neq i} q_{ij}, \quad 1 \le i \le 20$$

2. Expected probability of i-j pairs:

$$e_{ij} = \begin{cases} p_i^2, & \text{if } i = j \\ 2p_i p_j, & \text{otherwise} \end{cases}$$

Step 4: Calculate the log-odds matrix S_{ij}

$$S_{ij} = 2\log_2\frac{q_{ij}}{e_{ij}}, \quad 1 \le j \le i \le 20$$

Comparison with PAM

$$S_{ij} = 10 \log_{10} \frac{M_{ij}}{P_i}$$

Sequence identity of the blocks is at least 62%

```
F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0
 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4
```

 S_{ij} <0, probability is less than expected S_{ij} >0, probability is more than expected

A potential research project

One of the major difficulty in the field is to detect remote-homology proteins.

How can we derive a matrix that is more suitable for aligning remote-homology proteins?

One way is probably to use structure alignment to construct blocks for the mutation matrix construction.

Content

- 1. Why to make sequence alignment?
- 2. What is a sequence alignment?
- 3. How to derive a mutation matrix-PAM
- 4. How to derive a mutation matrix-BLOSUM
- 5. Gap penalty
 - 6. Dynamic programming
 - a. Global alignment: Needleman-Wunsch
 - b. Local alignment: Smith-Waterman
 - 7. Heuristic algorithms

Gap penalty

What is alignment gap?

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRVKHLKTEAEMKASEDLK SLEWMVNWAMVNWAAVY————DDFYQELFKAHPEYQNKFGFKGVALG

Gap opening Gap extension

• Gap penalty:

$$w(k) = a + b(k-1)$$

- a: gap-opening penalty
- b: gap-entension penalty (usually $b \le a$)
- k: length of the gaps

Gap penalty

$$Score = \sum_{i=1}^{N_{ali}} M(A_i, B_i) - GapPenalty$$

Question:

For a given score matrix and gap penalty protocol, how to find the best alignment of two protein sequences?

Content

- 1. Why to make sequence alignment?
- 2. What is a sequence alignment?
- 3. How to derive a mutation matrix-PAM
- 4. How to derive a mutation matrix-BLOSUM
- 5. Gap penalty
- 6. Dynamic programming
 - a. Global alignment: Needleman-Wunsch
 - b. Local alignment: Smith-Waterman
 - 7. Heuristic algorithms

Prepare for next class

Please read P19-P23 of the first textbook

