Northwestern University

MATH 291-3 First Midterm Examination Spring Quarter 2022 April 21, 2022

Last name: SOLUTIONS	Email address:
First name:	NetID:

Instructions

- This examination consists of 5 questions.
- Read all problems carefully before answering.
- You have 50 minutes to complete this examination.
- Do not use books, notes, calculators, computers, tablets, phones, smart watches, or similar devices.
- Possession of a digital communication device during a bathroom break will be treated as a *prima facie* violation of Northwestern's academic integrity policy.
- Write legibly and only inside of the boxed region on each page.
- Cross out any work that you do not wish to have scored.
- Show all of your work. Unsupported answers may not earn credit.

- 1. Determine whether each of the following statements is true or false. If true, then explain why. If false, then give a counterexample.
 - (a) (5 points) If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous with global maximum value 1, and if $B \subseteq \mathbb{R}^n$ is a box, then

$$\int_{B} f \, dV_n \le \operatorname{Vol}_n(B).$$

Solution: (a) is true. Because f is continuous on B, f is integrable on B. Because $f(\vec{x}) \leq 1$ for every $\vec{x} \in B$,

$$\int_{B} f \, dV_n \le \int_{B} 1 \, dV_n = \operatorname{Vol}_n(B).$$

(b) (5 points) If $f: \mathbb{R}^n \to \mathbb{R}$ is bounded, if $B \subseteq \mathbb{R}^n$ is a box with $\operatorname{Vol}_n(B) > 0$, and if $R(f, \mathcal{P}, \mathcal{C}) = 0$ for every partition \mathcal{P} of B and every choice of sample points \mathcal{C} , then $f(\vec{x}) = 0$ for every $\vec{x} \in B$.

Solution: (b) is true. Let $\vec{x} \in B$, let $\mathcal{P} = \{B_1\}$ be the partition of B into a single box $B_1 = B$, and let $\mathcal{C} = \{\vec{c}_1\}$ where $\vec{c}_1 = \vec{x}$. Then

$$0 = R(f, \mathcal{P}, \mathcal{C}) = f(\vec{c}_1) \operatorname{Vol}_n(B_1) = f(\vec{x}) \operatorname{Vol}_n(B).$$

Since $\operatorname{Vol}_n(B) \neq 0$, $f(\vec{x}) = 0$.

2. (10 points) Let $f: \mathbb{R}^3 \to \mathbb{R}$ and $g: \mathbb{R}^2 \to \mathbb{R}$ be C^1 functions, and let $\Gamma \stackrel{def}{=} \{(x, y, z) \in \mathbb{R}^3 : z = g(x, y)\}$ be the graph of g. Prove that if $f: \Gamma \to \mathbb{R}$ has a constrained local extreme value at $\vec{p_0} = (x_0, y_0, z_0)$, then

$$\begin{bmatrix} f_x(\vec{p}_0) \\ f_y(\vec{p}_0) \end{bmatrix} = -f_z(\vec{p}_0) \nabla g(x_0, y_0).$$

(Hint: Γ is a level set of $G: \mathbb{R}^3 \to \mathbb{R}, G(x,y,z) \stackrel{def}{=} g(x,y) - z$.)

Solution: Note that G is C^1 on \mathbb{R}^3 , and that $\nabla G(\vec{p_0}) = \begin{bmatrix} g_x(x_0, y_0) \\ g_y(x_0, y_0) \\ -1 \end{bmatrix} \neq \vec{0}$, so the Lagrange Multiplier

Theorem implies that there is $\lambda \in \mathbb{R}$ such that

$$\begin{cases} \nabla f(\vec{p_0}) = \lambda \nabla G(\vec{p_0}), \\ G(\vec{p_0}) = 0, \end{cases}$$

or rather

$$\begin{cases} f_x(\vec{p}_0) = \lambda g_x(x_0, y_0), \\ f_y(\vec{p}_0) = \lambda g_y(x_0, y_0), \\ f_z(\vec{p}_0) = -\lambda, \\ g(x_0, y_0) = z_0. \end{cases}$$

Making the substitution $\lambda = -f_z(\vec{p_0})$ in the first two equations implies that

$$\begin{cases} f_x(\vec{p}_0) = -f_z(\vec{p}_0)g_x(x_0, y_0), \\ f_y(\vec{p}_0) = -f_z(\vec{p}_0)g_y(x_0, y_0), \end{cases}$$

which gives the result.

3. (10 points) Find and classify the critical points of $f:\{(x,y): x+y>0\} \to \mathbb{R}, f(x,y)=\ln(x+y)-x^2-y$.

(Because it hasn't yet come up, recall that $\ln:(0,+\infty)\to\mathbb{R}$ is differentiable and $(\ln)'(t)=\frac{1}{t}$ for $t\in(0,+\infty)$.)

Solution: Note that f is C^2 on its domain $\{(x,y): x+y>0\}$, and therefore every critical point (x,y) of f will satisfy

$$\begin{bmatrix} 0 & 0 \end{bmatrix} = Df(x,y) = \begin{bmatrix} \frac{1}{x+y} - 2x & \frac{1}{x+y} - 1 \end{bmatrix},$$

so that $0 = \frac{1}{x+y} - 2x$ and $0 = \frac{1}{x+y} - 1$. Therefore x+y=1 and so 2x=1, so that $x = \frac{1}{2}$ and $y = 1 - \frac{1}{2} = \frac{1}{2}$. One can quickly verify that $(\frac{1}{2}, \frac{1}{2})$ is indeed a (and therefore, by the above arugment, the only) critical point of f.

To classify this critical point, note that

$$D^{2}f(x,y) = \begin{bmatrix} -\frac{1}{(x+y)^{2}} - 2 & -\frac{1}{(x+y)^{2}} \\ -\frac{1}{(x+y)^{2}} & -\frac{1}{(x+y)^{2}} \end{bmatrix}, \quad \text{so that} \quad D^{2}f\left(\frac{1}{2}, \frac{1}{2}\right) = \begin{bmatrix} -3 & -1 \\ -1 & -1 \end{bmatrix}.$$

Because $\begin{bmatrix} -3 & -1 \\ -1 & -1 \end{bmatrix}$ has determinant 2 > 0, $\begin{bmatrix} -3 & -1 \\ -1 & -1 \end{bmatrix}$ is invertible and the two eigenvalues of $\begin{bmatrix} -3 & -1 \\ -1 & -1 \end{bmatrix}$ have the same sign. Because $\operatorname{tr} \begin{bmatrix} -3 & -1 \\ -1 & -1 \end{bmatrix} = -4 < 0$, we see that both eigenvalues of $\begin{bmatrix} -3 & -1 \\ -1 & -1 \end{bmatrix}$ are negative and therefore the Second Derivative Test implies that f has a local maximum value at $(\frac{1}{2}, \frac{1}{2})$.

4. (10 points) Let $E = \{(x,y) : -1 \le x \le 1 \text{ and } 0 \le y \le 1 - x^2\}$ be the region in \mathbb{R}^2 bounded below by the x-axis and above by the parabola $y = 1 - x^2$. Show that

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \begin{cases} -3 & \text{if } (x,y) \in E, \\ 2 & \text{if } (x,y) \notin E \end{cases}$$

is integrable over the box $B = [-2, 2] \times [-2, 2]$.

Solution: Note that f is continuous on B except at points that lie on ∂E . Since ∂E is the union of the two curves $\{(x,0): x \in [-1,1]\}$ and $\{(x,1-x^2): x \in [-1,1]\}$ (parametrized respectively by the C^1 functions $\vec{r}_1, \vec{r}_2: [-1,1] \to \mathbb{R}^2$, $\vec{r}_1(t)=(t,0)$ and $\vec{r}_2(t)=(t,1-t^2)$), the Measure Zero Theorem implies that these two curves have measure zero and therefore ∂E has measure zero. Since f is bounded on B ($|f(x,y)| \le 3$ for every $(x,y) \in B$), Lebesgue's Criterion for Riemann Integrability implies that f is integrable on B.

5. (10 points) Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is continuous. Rewrite the following as an iterated integral with respect to the order $dy \, dz \, dx$:

$$\int_0^1 \int_{x^2}^{2-x} \int_0^{2-x-y} f(x, y, z) \, dz \, dy \, dx$$

Solution: Note that the given iterated integral is equal to $\iiint_E f \, dV$, where E is the subset of \mathbb{R}^3 in the first octant bounded by the xz- and xy-coordinate planes, the plane z = 2 - x - y, and the parabolic cylinder $y = x^2$ (pictured below):

The shadow of E in the xz-plane is $\{(x,0,z): 0 \le x \le 1 \text{ and } 0 \le z \le 2-x-x^2\}$, and for each choice of x and z satisfying these inequalities, y will run from its smallest value x^2 to its largest value 2-x-z. Therefore we can express this triple integral as an iterated integral in the order dy dz dx as

$$\int_0^1 \int_0^{2-x-x^2} \int_{x^2}^{2-x-z} f(x, y, z) \, dy \, dz \, dx.$$