

二重积分变量替换公式

定理 设 $T \subset \mathbb{R}^2$ 是有界闭区域,该区域的边界 ∂T 由有限条分段光滑曲线所组成,

变换
$$\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$$
, $(u,v) \in T$ 是 T 到有界闭区域 D 上连续可导的——映射,且满足,

 $\frac{\partial(x,y)}{\partial(u,v)} \neq 0$, 如果 f 在有界闭区域 D 上可积 , 则

$$\iint_{D} f(x, y) dx dy = \iint_{D'} f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv.$$

例: 对于极坐标变换 $x = r\cos\theta$, $y = r\sin\theta$, 易知 $\left| \frac{\partial(x,y)}{\partial(r,\theta)} \right| = \left| \det \left| \frac{\cos\theta - r\sin\theta}{\sin\theta - r\cos\theta} \right| = r$,

从而得极坐标系下二重积分的计算公式: $\iint_D f(x,y)dxdy = \iint_T f(r\cos\theta,r\sin\theta)rdrd\theta$.

二重积分变量替换举例

例1: 设
$$D = \{(x, y) | 1 \le x^2 + y^2 \le 4\}$$
, 计算 $\iint \sqrt{x^2 + y^2} dxdy$.

解: 极坐标变换将
$$T = \{(r,\theta) | 1 \le r \le 2, 0 \le \theta \le 2\pi\}$$
映到 D 上,所以

$$\iint_{D} \sqrt{x^{2} + y^{2}} dxdy = \iint_{T} r \cdot r drd\theta = \int_{0}^{2\pi} d\theta \int_{1}^{2} r \cdot r dr = \int_{0}^{2\pi} \frac{7}{3} d\theta = \frac{14}{3} \pi.$$

例 2: 计算
$$\iint_{x^2+y^2 \le x+y} (x+y) \, dx dy$$
.

解: 如图所示,积分区域为
$$T = \left\{ (r, \theta) \middle| 0 \le r \le \cos \theta + \sin \theta, -\frac{\pi}{4} \le \theta \le \frac{3\pi}{4} \right\}$$
,

所以
$$\iint_{x^2+y^2 \le x+y} (x+y) \, dxdy = \int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} d\theta \int_{0}^{\cos\theta+\sin\theta} r(\cos\theta+\sin\theta) \cdot rd\theta = \frac{\pi}{2}.$$

二重积分变量替换举例

例3: 计算 $\iint e^{\frac{y-x}{y+x}} dxdy$, 其中D 由 x 轴, y 轴和 x+y=2 围成.

解: 作变换
$$u = y - x, v = y + x$$
, 则 $x = \frac{v - u}{2}, y = \frac{v + u}{2}$,

所以
$$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{1}{2}$$
,因此 $\iint_D e^{\frac{y-x}{y+x}} dxdy = \int_0^2 dv \int_{-v}^v e^{\frac{u}{v}} \cdot \frac{1}{2} du = e - e^{-1}$. \overline{O}

例 4: 计算
$$\iint_D \left(\ln \frac{y}{x} \right)^2 dxdy$$
,其中 $D \oplus \left| \ln x \right| + \left| \ln y \right| = 1$ 围成.

解: 作变换
$$xy = u$$
, $\frac{y}{x} = v$, 即 $x = \sqrt{\frac{u}{v}}$, $y = \sqrt{uv}$, 可得 $\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{1}{2v}$, $\left| \frac{y}{v} \right| = \frac{1}{2v}$, $\left|$

因此
$$\iint_{D} \left(\ln \frac{y}{x} \right)^{2} dxdy = \int_{\frac{1}{e}}^{e} du \int_{\frac{1}{e}}^{e} \frac{1}{2v} \ln^{2} v dv = \frac{1}{3} \left(e - \frac{1}{e} \right).$$

