Table of Contents

Preface			хi
1			
Introduction to Data Imbalance	in <i>l</i>	Machine Learning	1
Technical requirements	2	Challenges and considerations when	
Introduction to imbalanced datasets	2	dealing with imbalanced data	19
Machine learning 101	4	When can we have an imbalance	
What happens during model training?	7	in datasets?	20
Types of dataset and splits	8	Why can imbalanced data be a	20
Cross-validation	9	challenge?	20
Common evaluation metrics	10	When to not worry about data imbalance	23
Confusion matrix	10	Introduction to the imbalanced-learn	
ROC	15	library	24
Precision-Recall curve	17	General rules to follow	27
Relation between the ROC curve and PR curve	18	Summary	28
		Questions	29
		References	30
2			
_			
Oversampling Methods			33
Technical requirements	34	SMOTE	39
What is oversampling?	34	How SMOTE works	40
Random oversampling	36	Problems with SMOTE	42
Problems with random oversampling	39	SMOTE variants	43
		Borderline-SMOTE	43

ADASYN Working of ADASYN Categorical features and SMOTE variants (SMOTE-NC and SMOTEN) Model performance comparison of various oversampling methods	47 47 49 54	Guidance for using various oversampling techniques When to avoid oversampling Oversampling in multi-class classification Summary Exercises References	55 56 57 59 60 60
Undersampling Methods			63
Technical requirements Introducing undersampling When to avoid undersampling the majority class Fixed versus cleaning undersampling Undersampling approaches Removing examples uniformly Random UnderSampling ClusterCentroids Strategies for removing noisy observations ENN, RENN, and AllKNN	63 64 65 66 69 70 72 74 74	Tomek links Neighborhood Cleaning Rule Instance hardness threshold Strategies for removing easy observations Condensed Nearest Neighbors One-sided selection Combining undersampling and oversampling Model performance comparison Summary Exercises References	77 78 79 80 80 82 82 83 86 86 87
Ensemble Methods			89
Technical requirements Bagging techniques for imbalanced data UnderBagging OverBagging SMOTEBagging Comparative performance of bagging methods	90 91 96 97 99	Boosting techniques for imbalanced data AdaBoost RUSBoost, SMOTEBoost, and RAMOBoost Ensemble of ensembles EasyEnsemble	102 103 104 106 107

155

159

160

Multi-label classification

Summary

Questions

References

169

172

172

172

Training neural networks

imbalance

Neural Networks

The effect of the learning rate on data

Image processing using Convolutional

vii

7

Data-Level Deep Learning Me	thods		175
Technical requirements	176	Document-level augmentation	202
Preparing the data	176	Character and word-level augmentation	203
Creating the training loop	178	Discussion of other data-level deep	
Sampling techniques for deep		learning methods and their key idea	s 205
learning models	180	Two-phase learning	205
Random oversampling	180	Expansive Over-Sampling	205
Dynamic sampling	182	Using generative models for oversampling	206
Data augmentation techniques for vision	185	DeepSMOTE	207
Data-level techniques for text		Neural style transfer	208
classification	199	Summary	209
Dataset and baseline model	201	Questions	209
		References	210
8			
Algorithm-Level Deep Learnir	ng Tech	nniques	213
Technical requirements	213	Class-dependent temperature Loss	235
Motivation for algorithm-level		Class-wise difficulty-balanced loss	237
techniques	214	Discussing other algorithm-based	
Weighting techniques	215	techniques	239
Using PyTorch's weight parameter	216	Regularization techniques	239
Handling textual data	220	Siamese networks	239
Deferred re-weighting – a minor variant of		Deeper neural networks	240
the class weighting technique	224	Threshold adjustment	240
Explicit loss function modification	227	Summary	241
Focal loss	227	Questions	241
Class-balanced loss	232	References	242

9

Hybrid Deep Learning Method	s		245
Technical requirements	246	Online Hard Example Mining	262
Using graph machine learning for imbalanced data	246	Minority class incremental rectification	264
Understanding graphs Graph machine learning	246 247	Utilizing the hard sample mining technique in minority class incremental rectification	265
Dealing with imbalanced data Case study – the performance of XGBoost,	247	Summary Questions	268 268
MLP, and a GCN on an imbalanced dataset Hard example mining	250261	References	268
10			
Model Calibration			271
Technical requirements	271	The calibration of model scores to account	
Introduction to model calibration	271	for sampling	286
Why bother with model calibration	273	Platt's scaling	288
Models with and without well-calibrated		Isotonic regression	289
probabilities	273	Choosing between Platt's scaling and Isotonic regression	291
Calibration curves or reliability plot	274	Temperature scaling	291
Brier score	276	Label smoothing	291
Expected Calibration Error	277	The impact of calibration on a	
The influence of data balancing		model's performance	294
techniques on model calibration	279	Summary	295
Plotting calibration curves for a		Questions	296
model trained on a real-world dataset		References	
Model calibration techniques	285	References	297
Appendix			
Machine Learning Pipeline in F	rodu	ection	299
Machine learning training pipeline	299	Inferencing (online or batch)	301

Table of Contents

Х

Assessments			303
Chapter 1 – Introduction to Data Imbalance in Machine Learning Chapter 2 – Oversampling Methods Chapter 3 – Undersampling Methods Chapter 4 – Ensemble Methods Chapter 5 – Cost-Sensitive Learning Chapter 6 – Data Imbalance in Deep Learning	303 306 307 307 307	Chapter 7 – Data-Level Deep Learning Methods Chapter 8 – Algorithm-Level Deep Learning Techniques Chapter 9 – Hybrid Deep Learning Methods Chapter 10 – Model Calibration	308 308 309 310
Index			313
Other Books You May Enjoy			322