

《组网与运维》

线上实验报告

班级:

姓名:

学号:

日期:

4. IP分析

一、实验目的

- 1. 熟悉 IP 的报文格式及关键字段的含义。
- 2. 掌握 IP 地址的分配方法。
- 3. 理解路由器转发 IP 数据报的流程。

二、实验步骤

1. 给出实验中用到的拓扑图

2. 给出实验中使用的 IP 配置表

设备	接口	IP 地址	掩码	默认网关
PC0	以太网口	10. 1. 1. 1	255. 255. 255. 0	10. 1. 1. 254
PC1	以太网口	10. 1. 2. 1	255. 255. 255. 0	10. 1. 2. 254
PC2	以太网口	10. 1. 3. 1	255. 255. 255. 0	10. 1. 3. 254
Router0	Fa0/0	10. 1. 1. 254	255. 255. 255. 0	_
	Fa0/1	192. 168. 1. 1	255. 255. 255. 0	_
	Eth0/0/0	192. 168. 2. 1	255. 255. 255. 0	_
Router1	Fa0/0	192. 168. 1. 2	255. 255. 255. 0	_
Kouterr	Fa0/1	10. 1. 2. 254	255. 255. 255. 0	_
Router2	Fa0/0	192. 168. 2. 2	255. 255. 255. 0	_
Routerz	Fa0/1	10. 1. 3. 254	255. 255. 255. 0	_

- 3. 仟务一:观察路由表。
 - ◆ 步骤 1:观察 Router0 的路由表。

打开 Router0,单击 CLI 进入命令行模式,输入 en 进人#提示的特权命令模式,输入 show ip route 命令查看路由表,结果如下:

```
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
Gateway of last resort is 192.168.2.2 to network 0.0.0.0
     10.0.0.0/24 is subnetted, 2 subnets
        10.1.1.0 is directly connected, FastEthernet0/0
         10.1.2.0 [1/0] via 192.168.1.2
     192.168.1.0/24 is directly connected, FastEthernet0/1
     192.168.2.0/24 is directly connected, Ethernet0/0/0
S*
     0.0.0.0/0 [1/0] via 192.168.2.2
Router#
                                                                          Сору
                                                                                      Paste
```

其中,标志 S 表示静态路由, C 表示直连路由,*表示默认路由。可以看出,Router0存在三条直接路由,一条通往 10.1.2.0的静态路由,还有一条默认的静态路由。

◆ 步骤 2:观察 Router1 的路由表

主要结果如下:

◆ 步骤 3:观察 Router2 的路由表

主要结果如下:

```
Router>en
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
       10.1.1.1/32 [1/0] via 192.168.2.1
        10.1.2.0/24 [1/0] via 192.168.2.1
        10.1.3.0/24 is directly connected, FastEthernet0/1
C
    192.168.2.0/24 is directly connected, FastEthernet0/0
                                                                   Сору
                                                                               Paste
```

- 4. 任务二: 观察数据包的封装及字段变化。
 - ◆ 步骤 1: 初始化所有设备的 ARP 表信息。

为了便于观察,本实验预设了一个场景 0,其中预定义了从 PCO→PC1, 以及 PCO→PC2 的数据包传输。请在实时模式和模拟模式中来回切 换 3 次,以便仿真系统填写相关设备的 ARP 表,使后续的实验模拟 更清晰、简洁。

单击场景面板中的 Delete 按钮(或者使用 Ctrl+Shift+D 快捷键) 删除所有场景,便于后续实验。

◆ 步骤 2: 观察 IP 数据报的转发。

选择 Simulation (模拟) 选项卡,进入模拟模式。单击 Add Simple PDU (添加简单 PDU) 按钮,然后分别单击 PCO (源站点)和 PC2 (目的站点),此时,PCO 将向 PC2 发送一个携带 ICMP 报文的 IP 数据报。

单击 Auto Capture/Play (自动捕获/播放) 或者 Capture/Forward 按钮以运行模拟,并捕获事件和数据包。此时可观察到 IP 数据报的转发过程。

Vis.	Time(sec)	Last Devic	At Device	Type	Info
	0.000		PC0	ICMP	
	0.001	PC0	Router0	ICMP	
	0.002	Router0	Router2	ICMP	
	0.003	Router2	PC2	ICMP	
	0.004	PC2	Router2	ICMP	
	0.005	Router2	Router0	ICMP	
(9)	0.006	Router0	PC0	ICMP	

在 Event List 中找到 At Device (在设备)显示为 Router0 的第一个事件,单击其彩色正方形,并选择 Inbound PDU Details 选项卡以查看 IP 数据报的内容。

可以观察到 IP 分组中协议类型字段值为 1(PRO:0x1),这指明 IP 分组中封装了 ICMP 报文。再对比 Inbound PDU 和 Outbound PDU,可以发现在 Outbound PDU 中 IP 分组的 TTL 字段值被减 1 了(由 255减成 254)。由于 Packet Tracer 模拟器没有计算校验和,因此,无法观察校验和的变化。另外,也可以观察到,源目 IP 地址字段在转发过程中始终保持不变,但是源目 MAC 地址却发生了相应的变化。

- 5. 任务三:观察路由器转发 IP 数据报的方式。
 - ◆ 步骤 1: 初始化并观察各路由器的路由表。

删除所有场景,并使用 Inspect (检查)工具 (右端的放大镜)分别打开 Router0、Router1和 Router2的路由表,并排列好路由表窗口,以便同时比较三个路由表。

Type	Network	Port	Next Hop IP	
S	0.0.0.0/0	222	192.168.2.2	
C 10.1.1.0/24		FastEthernet0/0		
s 10.1.2.0/24			192.168.1.2	
C 192.168.1.0/24		FastEthernet0/1		
192.168.2.0/24		Ethernet0/0/0		
Routing Tab	le for Router1		2	
Туре	Network	Port	Next Hop IP	
S	10.1.1.0/24		192.168.1.1	
0	10.1.2.0/24	FastEthernet0/1		
С	192.168.1.0/24	FastEthernet0/0		
Routing Tab	le for Router2		x	
Туре	Network	Port	Next Hop IP	
S	10.1.1.1/32		192.168.2.1	
S	10.1.2.0/24		192.168.2.1	
С	10.1.3.0/24	FastEthernet0/1	222	
192.168.2.0/24		FastEthernet0/0		

◆ 步骤 2: 观察 PCO 到 PC2 的往返过程。

产生一个 PCO 到 PC2 的 IP 传输: 单击 Add Simple PDU 按钮, 然后分别单击 PCO 和 PC2。

单击Capture/Forward按钮,传送数据包,通过网络直至其到达PC2。

分别检查在 At Device(在设备)显示为 Router0 和 Router2 的数据包信息。在 Out Layers 中选择第三层,可将 OSI Mode1 (OSI 模型)

选项卡中数据包的处理说明与显示的路由表进行比较。例如,PDU信息表明: The routing table finds a routing entry to the destination IP address, 这是由于 Router0 具有一个朝向 Router2 的默认路由,并且由于 Router2 也具有到 10.1.1.1 的特定主机路由,因此,PCO 到 PC2 的数据报往返可以顺利完成。

- 1. The CEF table has an entry for the destination IP address.
- 2. The device decrements the TTL on the packet.

- 1. The CEF table has an entry for the destination IP address.
- 2. The device decrements the TTL on the packet.

◆ 步骤 3: 观察 PC2 到 PC1 的往返过程。

删除所有场景,并产生一个 PC2 到 PC1 的 IP 传输: 单击 Add Simple PDU 按钮, 然后分别单击 PC2 和 PC1。

单击 Capture/Forward 按钮,传送数据包通过网络,直至转发失败,然后检查每个步骤中的数据包。由于 Router2 具有 10.1.2.0/24 的路由,因此,来自 PC2 的数据报会到达 PC1。但 Router1 没有10.1.3.0/24 的路由,也没有默认路由,因此,PC2 回复的数据报被 Router1 丢弃。

系统提示:路由器回送了一个"主机无法达到"的错误报告。

- 6. 任务四:观察 IP 分片过程。
 - ◆ 步骤 1:产生需要分片的数据报。

删除所有场景, 并切换到模拟模式, 以便执行新任务。

单击 Add Complex PDU 按钮,选择 RouterO 作为数据报的源点。模拟器将会打开 Create Complex PDU 对话框。其中,Select Application 按默认值为 Ping,在 Destination IP Address 字段中输入 10.1.3.1(以 PC2 作为目的地址),将 Size 字段中的值改

为 1500,在 Sequence Number(序列号)字段中输入 1。在 Simulation Settings (模拟设置)下选择 One Shot 选项,并设置其 Time 值为 2。单击 Create PDU 按钮。

◆ 步骤 2: 观察 IP 数据报的分片情况。

单击 Capture/Forward 按钮,启动模拟,可以观察到 Router1 将产生出两个数据报。仔细研究这两个数据报,注意观察总长度、标识、标志、片偏移等字段。由于原 ICMP 报文总长度为 1500 字节,封装它的 IP 数据报超出了以太网帧的负载上限,因此,该 IP 报文被拆分为两个 ID 一样的分片,一个长度为 1500 字节,另一个长度为 48字节。

三、思考与总结

- 1. 一个 IP 分组经路由器转发后,有哪些字段会发生变化? 答: TTL 字段需要减 1, 而 IP 头部的校验和需要重新计算,因此,这两个字段会发生变化。
- 2. 任务二的步骤 2 中,为什么数据单元的源 MAC 地址和目的 MAC 地址在转 发时会发生变化?。
 - 答:因为链路发生变化,所以,源目MAC地址也自然需要改变。
- 3. 路由器如何处理无法继续转发数据包? 答: 丢弃,并使用 ICMP 向源节点报告无法投递消息。
- 4. 任务四为什么将 Size 值改为 1500 就可以产生分片? 答:将 Size 设置为 1500,则整个 IP 分组长度为 1520 (加上 IP 首部),超过了以太网帧的 MTU。
- 5. 为什么任务四种的两个分片的长度分别为 1500 和 48? 答: 原数据长度为 1500+8 (ICMP 报文头长度) =1508,超过以太网帧的最大传输能力,因此,需要分成两片;长度分别为 1480 和 28,封装成 IP 后,每片的长度分别为 1480+20=1500,28+20=48。