CS311: Homework 4

Spring 2017

Problem 1

(20 points). Determine if the following functions are **onto**, **one-to-one**, or **bijective**. The domain and codomain of the functions is R. Justify your answer.

- a.) $x^2 + 4$
- b.) 3x + 1
- c.) $4x^2 + x + 1$
- d.) $\frac{x^2+2}{x^2+3}$

Problem 2

(15 points). Find the composite functions $g \circ f$ and $f \circ g$. The domain and codomain of the functions is R.

- a.) $f(x) = x^2 + 2x + 1$, $g(x) = \sqrt{2x} + 1$.
- b.) f(x) = 6x + 3, g(x) = 4x + 1.
- c.) $f(x) = x^2 + 2$, g(x) = x + 3.

Problem 3

Part A (5 points): Given the function f where the domain $A = \{a, b, c, d\}$. Determine if f is invertible given the following: f(a) = b, f(b) = a, f(d) = b, f(c) = c.

Part B (5 points): Given $f(x) = x^2 + 3$, $g(x) = \frac{1}{x^2 + 3}$, determine if g is the inverse function of f. Give a counterexample if it is NOT, or show that they are inverses through the composite function $g \circ f$.

Problem 4

(20 points). Determine if f is strictly increasing, strictly decreasing, or none, given the domain of x.

- a.) $f(x) = x + 4, x \in Z$.
- b.) $f(x) = x^2 1, x \in N$.
- c.) $f(x) = x^2 + 2, x \in Z$
- d.) $f(x) = \frac{1}{x+1}, x \in N$.

Problem 5

Suppose S, R, T are sets. Show that:

$$(S-R) \cup (T-R) = (S \cup T) - R.$$

Part A (20 points): Prove this by showing that the left-hand side of the equation is a subset of the right-hand side, and then by showing that the right-hand side is a subset of the left-hand side. *Hint:* assume that $x \in ((S-R) \cup (T-R))$, then show through equivalences, inference rules, and set definitions that $x \in ((S \cup T) - R)$.

Part B (15 points): Prove the same statement again by using set identities. For this problem, you may use an alternative definition of set difference: $A - B = A \cap \overline{B}$.