

WPO Rec'd PCT/PHQ 16 DEC 2003

SEQUENCE LISTING

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA

<120> A fucose transporter

<130> PH-2205-PCT

<140>

<141>

<150> JP 2003/174006

<151> 2003-06-18

<150> JP 2003/174010

<151> 2003-06-18

<150> JP 2003/282081

<151> 2003-07-29

<150> JP 2003/282102

<151> 2003-07-29

<160> 10

<170> PatentIn Ver. 2.1

<210> 1

<211> 8160

<212> DNA

<213> Cricetulus griseus

<400> 1

ccggggtaa ccgccccacc acgcctggag cccgacgtgg cgagcgatgg ggacagcgag 60
caggaagtcg tactggggag ggccgcgtag cagatgcagc cgagggcgcc gctgccaggt 120
acacccgagg gcaccgcggg ggtgagcgcc aggtccctga accagccagg cctccagagc 180
cgagtccggc ggaccgacgg tacgttctgg aatggaaagg gatccggac accgaattgc 240
tgcattgagg ggctcagagg ttctgtatgtg ggagtccaga aagggtttta tctaccggag 300
gtgatgtgac ttccggcctc tggaaagtgtc gttggagtct ctggacaccc ttccctctc 360
gactaggttt ggaaggggtg aaataggggt agggagaaag gagaggactg cagcaatgtc 420
ttcccgaacg acctgggttc gggaggggtc gaaggacaag gggctgttgtt ggggggtctt 480
cagacgcgga ggggtggtat tctatccctt gggaaagatgg tgtcgatgca cttgaccaag 540
tctagtcgat ctgaagaggc tagggaaaca gacagtgaga gaggatggg gaggaggtgg 600
cagaaccctt ccagaaactg ggagaggctc tagcacctgc aacccttcc ctggcctccg 660
gggagtccca gaagagggca ggaccatgga cacaggtgca ttctgtccgg cgccgtccgg 720
cctggcgaag gtgcgcgctc ttggaggccg cgggagggcc agacgcgcgc ccggagagct 780
ggccctttaa ggctaccctgg aggctgtca ggaaatgcgc cctgagcccg cccctccgg 840
aacgcggccc gagacctggc aagctgagac ggaactcgga actagcactc ggctcgccgc 900
ctcggtgagg ctttgcgcgc gcatgcctc tgtcattgcc cctcggccgc ctccttgc 960
cctccgtgac cggccctgcag tcctccctcc ccccttcga ctggcggggc gcttccggc 1020
gctcccgcag cccgcctcc acgtagccca cacccctc tcggcgctcc gcttccacg 1080
cggtccccga cctgttctt cctccctcac cctgccttc tgtcccttc cttcccttc 1140
tcccctcgac tcgtccctat taggcaacag cccctgtggt ccagccggcc atggctgtca 1200
aggctcacac ctttagctag gcccctctc cttccctgg gtctgtctc atgacccct 1260
gccccgcccgg ggagcgagcg cgatgtggag cagtgcctt ggcaagcaga acttcaccca 1320
agccatgtga caattgaagg ctgtacccccc agaccctaacc atcttgagac cctgttagacc 1380
agggagtgct tctggccgtg gggtgaccta gctttctac caccatgaac agggccctc 1440
tgaagcggtc caggatcctg cgcatggcgc tgactggagg ctccactgccc tctgaggagg 1500
cagatgaaga cagcaggaac aagccgtttc tgctgcggc gctgcagatc gcgctggc 1560
tctctctcta ctgggtcacc tccatctcca tggtattcct caacaagtac ctgctggaca 1620

gcccctccct gcagcgtggat accccttatct tcgtcacttt ctaccaatgc ctggtgacct 1680
ctctgctgtg caagggcctc agcactctgg ccacccgtctg ccctggcacc gttgacttcc 1740
ccaccctgaa cctggacctt aagggtggccc gcagcgtgct gccactgtcg gtagtcttca 1800
ttggcatgat aagttcaat aacctctgcc tcaagtacgt aggggtggcc ttctacaacg 1860
tggggcgctc gtcaccacc gtgttcaatg tgcttctgtc ctacccgtctg ctcaaacaga 1920
ccacttcctt ctatgccctg ctcacatgtg gcatcatcat tggtgagtgg ggcccgaaaa 1980
ctgtgggagc agatggca tcgaactgaa gcccataagg tcaacactgt aggtacctt 2040
acttactgtc ccaggtccct tgcattcagca gttacaggaa gagccctgtt gaaaacaaat 2100
aacttcctta tggcattca acaagttagg gaccagcca gggtaaaaaat aatgttagca 2160
gcaactacag caaagatggc tctcgccact tgcattgatta aatgtgcca ggtactcaga 2220
tctaaggcatt ggatccacat taactcaact aatccctatt acaaggtaaa atatatccga 2280
atttacaga gggaaaaacca aggacacagag aggcttaagta gttgaccag gtcacacag 2340
ctaataatca ctgacatagc tgggatttaa acataagcag ttacccat agatcacact 2400
atgaccacca tgccactgtt cttctcaag agttccagga tcctgtctgt ccagttctct 2460
ttaaagagga caacacatct gacattgcta ctttgaggta acatttggaaa tagtggtag 2520
acatatgttt taagtttat tcttacttt tatgtgtgt tgtttggggg gccaccacag 2580
tgtatgggtg gagataaggg gacaacttaa gaattggtcc tttctccac cacatgggtg 2640
ctgaggctcg aactcagggtc atcaggattt gcacaaatcc ctttacccac tgagccattt 2700
cactggtcca atatatgtgt gcttttaaga ggcttaact atttcccgat atgtaatgt 2760
cctgctgatc attatcccct tttacccggaa agccctctgg gaggtgccat ccctgtggtc 2820
gtctgcatac aaatgggaa actgcaactc agagaaacaa ggctacttgc cagggcccc 2880
caagtaagat aggctggat gccatcccag actggccaca ctccctggcc tgtgcttcaa 2940
gccagttac tttgttcctg cccattggaa gtttagcatgt tgcagtcaaa cacaataact 3000
acaggccaaa agtgccttta aattaaagtc agatgaactt ttaaacatcc agagctcctc 3060
aactgcagga gttacaacct gattctgcaa ccatcttgc agtgcgggt agtcatatgt 3120
agcttagggc tcttggctag gacagcatgt gtttagaaac atctggccct gagatcattt 3180
aattgagtga ctgctgggtg acaaagacca aggcatccgt tccctgagag tcctggcaaa 3240
gcagcaatgt gacccattt tgcattact caggttcttt atctgtcctg tttgacctac 3300
ttagtctcct ctgggtgtc agaggccag gctgggtact ctggatgtca ggatcaggcc 3360
aatgcgcaca tctgccttag aaatgtcccc ctgggtgagc agctcctgaa tccatcggtt 3420

aagggtctgg accagggagg agtcagataa aaagctgaca gcactgggg actccatgg 3480
gaactcccac ctgccccac acatccatcc taagagaact ggtattcctt gttcctctt 3540
tgtcctacaa ggcaccctgg gatcccactt cagtctccca gccttgccag ggtagaggg 3600
catgagcctc cttgtgggaa atttagatgc aagaaggtac agtcactaga gaacctgagc 3660
tcagatcccc aaagtaacca gtacctgata gtgaggcagc tgagaaccgc agcagcctgc 3720
ctgagtggct gaactctgcg gcctccggaa ctggcccaa ctgttgggtc tcctttcct 3780
tcctcctgtg agggagggcc catctctgat aagtgtgtg gggactctag agtagggagg 3840
aggaggagca atctaagcag gccttactga gaagtccttgc tggcatgtg gtcgcctgag 3900
gagtagacac tgggaacacc catttgaatg agtaaggttt ttcctgaagg ccatggggag 3960
ccacggagga aaatcatttt agttacaaga caaagagtag attggtaac atggagcaa 4020
ggacatggcc ccaatttca tagatgaagg aaatttgaac tcagagaggta agttaactt 4080
ctcccaaata gtcagcttc aaaatcacag aacagtcaga gtctagatct ctctgatgcc 4140
tgtgatggtc ctgccattcc atgttgctga tccctgtggc atcagtaagc ctctacctt 4200
tggaaatgca ggtatcaaataat gaagagagga agtgctggcc ccatgctgtg gtctggaaag 4260
ctatgcaggc tcttgagca gagagtgacc cacaagtcaa tagactccta tgagactcaa 4320
agcaacatcc acccttaagc agctctaacc aaatgctcac actgagggag ccaaagccaa 4380
gttagagtcc tgtgcttgcc caaggtcaact ttgcctggcc ctcccttat agcacccgtg 4440
ttatcttata gccctcatta cagtgattac aattataatt agagaggtaa cagggccaca 4500
ctgtccttac acattccct gctagattgt agctggaga gggggagatg taggtggctg 4560
ggggagtgaaa agggaaagatg cagatttca ttctggctc tactccctca gccattttt 4620
gggtgtggag ttagactttg gatatgttga ttagtggta agggccacag aacagtctga 4680
actgtggat cagaatcctg tccctctccc tctccctca tccctttca cttgtcaact 4740
cctctgtctg ctacaggtgg tttctggctg ggtatagacc aagagggagc tgagggcacc 4800
ctgtccctca taggcaccat cttcgggtg ctggccagcc tctgcgtctc cctcaatgcc 4860
atctatacca agaagggtct cccagcagtg gacaacagca tggcgccct aacttctat 4920
aacaatgtca atgcctgtgt gctttcttgc cccctgatgg ttctgctgg tgagctccgt 4980
gccctccttgc actttgctca tctgtacagt gcccacttct ggctcatgtat gacgctgggt 5040
ggcctcttcg gctttgccat tggctatgtg acaggactgc agatcaaatt caccagtccc 5100
ctgacccaca atgtatcagg cacagccaaag gcctgtgcgc agacagtgt ggcctgtctc 5160
tactatgaag agactaagag cttcctgtgg tggacaagca acctgtatggt gctgggtggc 5220

tcctcagcct atacctgggt caggggctgg gagatgcaga agacccaaga ggaccccagc 5280
tccaaagagg gtgagaagag tgctattggg gtgtgagctt cttcagggac ctgggactga 5340
acccaagtgg ggcctacaca gcactgaagg cttccatgg agctagccag tgtgccctg 5400
agcaatactg tttacatcct ctttggaaa tgatctaaga ggagccaggg tctttcctgg 5460
taatgtcaga aagctgccaatctcctgtc tgccccatct tgaaaaaaacccctacc 5520
aggaatggca cccctacctg ctcctccta gagcctgtct acctccatat catctctggg 5580
gttgggacca gctcagcct taagggctg gattgatgaa gtgatgtctt ctacacaagg 5640
gagatgggtt gtgatcccac taatttgaagg gatgggggtg accccacacc tctggatcc 5700
agggcaggtt gagtagtagc tttagtgcta ttaacatcag gaacacctca gcctgcctt 5760
gaagggaaagt gggagcttgg ccaagggagg aaatggccat tctggctct tcagtggttga 5820
ttagtatggc agacctgttc atggcagctg caccctgggg tggctgataa gaaaacattc 5880
acctctgcat ttcatatttgcagctctaga acgggggaga gccacacatc ttttacgggt 5940
taagtaggggtt gatgagctcc tccgcagtc ctaacccctt ctttacctgc ctggcttccc 6000
ttggcccccac tacctagctg tactccctt ctgtactctt ctcttctccg tcatggcctc 6060
cccccaacacc tccatctgca ggcaggaagt ggagtcact tgtaacctct gttccatga 6120
cagagccctt tgaataacctg aaccctcat gacagtaaga gacatttatg ttctctgggg 6180
ctggggctga aggagccac tgggtctcac tttagcttac tggctcctgt cacaaaaaaaa 6240
aaaaaaagaaaa aaaaaaaaaagc ataaaccaag ttactaagaa cagaagttgg tttataacgt 6300
tctggggcag caaagccac atgaagggac ccatcgaccc tctctgtcca tatcctcatg 6360
ctgcagaagt acaggcaagc tccttaagc ctcatatagg aacactagcc tcactcatga 6420
gggttttact ccatgacctg tcaacctcaa agccttcaac atgaggactc caacgtaaat 6480
ttggggacag aagcactcag accataccccc agcaccacac cctcctaacc tcaggtagc 6540
tgtcattctc ctagtctctt ctcttggcc tttagaaccc ccatttcctt gggtaatgt 6600
ctgatgtttt tgtccctgtc ataaaaagat ggagagactg tgtccagcct ttgattccta 6660
cttcctacaa tcccaggttc taatgaagtt tgtgggcct gatgccctga gttgtatgt 6720
attnataataat aaaaaagcaa gatacagcat gtgtgtggac tgagtgggg ccacaggat 6780
ctaaaagcca agtgtgaggg gacccagcta cagcaggcag catcctgagc ctggaatctc 6840
ttcaggacaa gaattctcca tatacctacc tactctgggg agtaggtggc cagagttcaa 6900
gcttcctta gtaccaacta ccactggctg tgctctact gaaggcagac atggcactga 6960
tgtctgtcca tctgtcactc atctccacag ccattcctaa tgtgtgggtt gggagccatc 7020

accaaaccgg atttcagat aaggcacacag gctcagagag gcttgtgtgg agaaaagtag 7080
cagcagaatt cagagagctg ggtctcctgc agcacccctgg actgccagca gccacagtgc 7140
ttgtcacaca gcacatactc aaaagaatgc cagccccctc agcctagagt gcctggcctt 7200
tcttcagat gaggaagagg gtcaaagctg ttagcttgcc caccatatga ccacatacat 7260
gaccaacagc ttgagggagg gaggattact gtggctccca gcctgagagg tgggacaccc 7320
aaatgtatta ggtccttcaa tcagggctga ccttgtgatt cagtcactcc taccagaatg 7380
ctgggaatg gggatgcca aggcaaaagg ggcttctaa ggtgtgggt aagataggca 7440
tttctgcttc catgtacacc tgtgagcaga gtaggaaggc cctgtggaga atatatccca 7500
caaaccagta gccttcctg gcagtgggtg aatactgcca ccctataccc ctatgcaagg 7560
ccagtagaac caccaaccc acaacatcta gagaaattac aggtcatctt agcctctaa 7620
attgtggaga aactcgacat ggcacgatt cctaacctgc tagcctaggg tgccgggtgg 7680
ataatttaag gaaactgggg tttcttatag aatcgaggc tccatgaagt caccctgaca 7740
agaggtcagc aatagccagc agcagtggct actcctaagc ctccagacag agcaccctgt 7800
aatgtaccc tatttcaca tctgggtgtc tataggtgtg actgggtcag atgtcacccca 7860
ggccattgca atggccctt agccccatgg ggtgtggga tagcagccaa gcagctccca 7920
tgctgagata ctgcctgcag tagactgatg gataagaaaa caaggccaa aatgtttct 7980
ttccagactt gatcttctt tgttcaaaaa tgctgtttc ccttaaactt gcccaaaccc 8040
attgtttgc agttgaggaa aataaggcat agaaagatta aaggaagttt ctgaggttac 8100
agagcaaagt actggcttca cctgaaatag acaggtgtgc cctgatcctg atttgagctc 8160

<210> 2

<211> 352

<212> PRT

<213> Cricetulus griseus

<400> 2

Met Ala Leu Thr Gly Gly Ser Thr Ala Ser Glu Glu Ala Asp Glu Asp

1

5

10

15

Ser Arg Asn Lys Pro Phe Leu Leu Arg Ala Leu Gln Ile Ala Leu Val

20 25 30

Val Ser Leu Tyr Trp Val Thr Ser Ile Ser Met Val Phe Leu Asn Lys

35 40 45

Tyr Leu Leu Asp Ser Pro Ser Leu Gln Leu Asp Thr Pro Ile Phe Val

50 55 60

Thr Phe Tyr Gln Cys Leu Val Thr Ser Leu Leu Cys Lys Gly Leu Ser

65 70 75 80

Thr Leu Ala Thr Cys Cys Pro Gly Thr Val Asp Phe Pro Thr Leu Asn

85 90 95

Leu Asp Leu Lys Val Ala Arg Ser Val Leu Pro Leu Ser Val Val Phe

100 105 110

Ile Gly Met Ile Ser Phe Asn Asn Leu Cys Leu Lys Tyr Val Gly Val

115 120 125

Ala Phe Tyr Asn Val Gly Arg Ser Leu Thr Thr Val Phe Asn Val Leu

130 135 140

Leu Ser Tyr Leu Leu Leu Lys Gln Thr Thr Ser Phe Tyr Ala Leu Leu

145 150 155 160

Thr Cys Gly Ile Ile Gly Gly Phe Trp Leu Gly Ile Asp Gln Glu

165 170 175

Gly Ala Glu Gly Thr Leu Ser Leu Ile Gly Thr Ile Phe Gly Val Leu
180 185 190

Ala Ser Leu Cys Val Ser Leu Asn Ala Ile Tyr Thr Lys Lys Val Leu
195 200 205

Pro Ala Val Asp Asn Ser Ile Trp Arg Leu Thr Phe Tyr Asn Asn Val
210 215 220

Asn Ala Cys Val Leu Phe Leu Pro Leu Met Val Leu Leu Gly Glu Leu
225 230 235 240

Arg Ala Leu Leu Asp Phe Ala His Leu Tyr Ser Ala His Phe Trp Leu
245 250 255

Met Met Thr Leu Gly Gly Leu Phe Gly Phe Ala Ile Gly Tyr Val Thr
260 265 270

Gly Leu Gln Ile Lys Phe Thr Ser Pro Leu Thr His Asn Val Ser Gly
275 280 285

Thr Ala Lys Ala Cys Ala Gln Thr Val Leu Ala Val Leu Tyr Tyr Glu
290 295 300

Glu Thr Lys Ser Phe Leu Trp Trp Thr Ser Asn Leu Met Val Leu Gly
305 310 315 320

Gly Ser Ser Ala Tyr Thr Trp Val Arg Gly Trp Glu Met Gln Lys Thr
325 330 335

Gln Glu Asp Pro Ser Ser Lys Glu Gly Glu Lys Ser Ala Ile Gly Val

340 345 350

<210> 3

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic RNA

<400> 3

uaaccucugc cucaaguaca gc 22

<210> 4

<211> 19

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic RNA

<400> 4

guacuugagg cagagguua 19

<210> 5

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 5

atgcatgcc a ccatgaaaaa gcctgaactc acc 33.

<210> 6

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 6

ggatcccagg cttaacatt tatgcttc 28

<210> 7

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 7

ggaatgcagc ttccctcaagg gactcg 27

<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 8
gcactcgtcc gagggcaaag gaatagc 27

<210> 9
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 9
tgtgctggga attgaaccca ggac 24

<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 10

ctacttgtct gtgctttctt cc

22