Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals

- Get an intuition of additive feature attributions
- Understand the concept of Kernel SHAP
- Ability to interpret SHAP plots
- Global SHAP methods

Question: How much does a feat. *j* contribute to the prediction of a single obs.

Idea: Use Shapley values from cooperative game theory

Question: How much does a feat. *j* contribute to the prediction of a single obs.

Idea: Use Shapley values from cooperative game theory

Procedure:

- ullet Compare "reduced prediction function" of feature coalition S with $S \cup \{j\}$
- ullet Iterate over possible coalitions to calculate marginal contribution of feature j to sample ${\bf x}$

$$\phi_j = \frac{1}{p!} \sum_{\tau \in \Pi} \hat{\underline{f}}_{S_j^\tau \cup \{j\}} (\mathbf{x}_{S_j^\tau \cup \{j\}}) - \hat{f}_{S_j^\tau} (\mathbf{x}_{S_j^\tau})$$
marginal contribution of feature j

Question: How much does a feat. *j* contribute to the prediction of a single obs.

Idea: Use Shapley values from cooperative game theory

Procedure:

- ullet Compare "reduced prediction function" of feature coalition S with $S \cup \{j\}$
- ullet Iterate over possible coalitions to calculate marginal contribution of feature j to sample ${\bf x}$

$$\phi_j = \frac{1}{p!} \sum_{\tau \in \Pi} \hat{f}_{\mathcal{S}_j^{\tau} \cup \{j\}}(\mathbf{x}_{\mathcal{S}_j^{\tau} \cup \{j\}}) - \hat{f}_{\mathcal{S}_j^{\tau}}(\mathbf{x}_{\mathcal{S}_j^{\tau}})$$
marginal contribution of feature j

Remember:

- \hat{f} is the prediction function, p denotes the number of features
- Non-existent feat. in a coalition are replaced by values of random feat. values
- ullet Recall $S_j^ au$ defines the coalition as the set of players before player j in order

$$\tau = (\tau^{(1)}, \dots, \tau^{(p)})$$

$$\boxed{\tau^{(1)} \mid \dots \mid \tau^{(|S|)} \mid \tau^{(|S|+1)} \mid \tau^{(|S|+2)} \mid \dots \mid \tau^{(p)}}$$

 S_i^{τ} : Players before player j

player j

Players after player j

Example:

- Train a random forest on bike sharing data only using features humidity (hum), temperature (temp) and windspeed (ws)
- Calculate Shapley value for an observation \mathbf{x} with $\hat{f}(\mathbf{x}) = 2573$
- Mean prediction is $\mathbb{E}(\hat{t}) = 4515$

Example:

- Train a random forest on bike sharing data only using features humidity (hum), temperature (temp) and windspeed (ws)
- Calculate Shapley value for an observation \mathbf{x} with $\hat{f}(\mathbf{x}) = 2573$
- Mean prediction is $\mathbb{E}(\hat{t}) = 4515$

Exact Shapley calculation for humidity:

S	$\mathcal{S} \cup \{j\}$	$\hat{f}_{\mathcal{S}}$	$\mid \hat{\mathit{f}}_{\mathcal{S} \cup \{j\}} \mid$	weight
Ø	hum	4515	4635	2/6
temp	temp, hum	3087	3060	1/6
ws	ws, hum	4359	4450	1/6
temp, ws	hum, temp, ws	2623	2573	2/6

$$\phi_{\textit{hum}} = \frac{2}{6}(4635 - 4515) + \frac{1}{6}(3060 - 3087) + \frac{1}{6}(4450 - 4359) + \frac{2}{6}(2573 - 2623) = 34$$

FROM SHAPLEY TO SHAP

Example continued: Same calculation can be done for temperature and windspeed:

•
$$\phi_{temp} = ... = -1654$$

•
$$\phi_{ws} = ... = -323$$

Remember: Shapley values explain difference between actual and average pred.:

$$\begin{array}{lll} {\bf 2573-4515} & = 34-1654-323 & = -1942 \\ \hat{\bf f}({\bf x}) - \mathbb{E}(\hat{\bf f}) & = \phi_{hum} + \phi_{temp} + \phi_{ws} \end{array}$$

$$\hat{f}(\mathbf{x}) = \underbrace{\mathbb{E}(\hat{f})}_{\phi_0} + \phi_{hum} + \phi_{temp} + \phi_{ws}$$

Definition

- Simplified (binary) coalition feat. space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p cols.
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_n'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Cols are referred to as \mathbf{z}_i with $j \in \{1, \dots, p\}$ being the index of the original feat.

Example:

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws
Ø	$z'^{(1)}$	0	0	0
hum	$z'^{(2)}$	1	0	0
temp	z ′ ⁽³⁾	0	1	0
WS	z ′ ⁽⁴⁾	0	0	1
hum, temp	$z'^{(5)}$	1	1	0
temp, ws	$z'^{(6)}$	0	1	1
hum, ws	z ′ ⁽⁷⁾	1	0	1
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1

Definition

- Simplified (binary) coalition feat. space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p cols.
- Rows are referred to as $\mathbf{z}^{\prime(k)} = \{z_1^{\prime(k)}, \dots, z_n^{\prime(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Cols are referred to as z_i with $j \in \{1, ..., p\}$ being the index of the original feat.

$$\mathbf{z}'^{(k)}$$
: **Coalition** simplified features

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{i=1}^{p} \phi_i z_j^{\prime(k)}$$

Definition

- Simplified (binary) coalition feat. space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p cols.
- Rows are referred to as $\mathbf{z}^{\prime(k)} = \{z_1^{\prime(k)}, \dots, z_n^{\prime(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Cols are referred to as \mathbf{z}_i with $j \in \{1, \dots, p\}$ being the index of the original feat.

$$g\left(\mathbf{z}'^{(k)} \colon \mathbf{Coalition}\right) = \phi_0 + \sum_{j=1}^p \phi_j z_j'^{(k)}$$

$$\phi_0 \colon \mathbf{Null\ Output}$$
 Average Model Baseline $(\mathbb{E}(\hat{t}))$

Definition

- Simplified (binary) coalition feat. space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p cols.
- Rows are referred to as $\mathbf{z}^{\prime(k)} = \{z_1^{\prime(k)}, \dots, z_n^{\prime(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Cols are referred to as \mathbf{z}_i with $j \in \{1, \dots, p\}$ being the index of the original feat.

SHAP DEFINITION > Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation **x** by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

$$g(\mathbf{z}'^{(k)})$$
: Marginal Contribution Contribution of coalition $\mathbf{z}'^{(k)}$ to the prediction Additive Feature Attribution

Problem

How do we estimate the Shapley values ϕ_i ?

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Intuition: If the coalition includes all features $(\mathbf{x}' \in \{1\}^p)$, the attributions ϕ_j and the null output ϕ_0 sum up to the original model output $f(\mathbf{x})$

Local accuracy corresponds to the **axiom of efficiency** in Shapley game theory

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^p \phi_j x_j'$$

Missingness

$$x_j'=0\Longrightarrow \phi_j=0$$

Intution: A missing feature gets an attribution of zero

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

$$x_j'=0\Longrightarrow \phi_j=0$$

Consistency

 $\hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) = \hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}\right)\right)$ and $\mathbf{z}^{\prime(k)}_{-j}$ denote setting $z^{\prime(k)}_{j} = 0$. For any two models \hat{f} and \hat{f}^{\prime} , if

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}^{\prime(k)}\right)$$

for all inputs $\mathbf{z}^{\prime(k)} \in \{0,1\}^p$, then

$$\phi_j\left(\hat{f}',\mathbf{x}\right) \geq \phi_j(\hat{f},\mathbf{x})$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

$$x_j'=0\Longrightarrow \phi_j=0$$

Consistency

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}^{\prime(k)}\right) \Longrightarrow \phi_{j}\left(\hat{f}',\mathbf{x}\right) \geq \phi_{j}(\hat{f},\mathbf{x})$$

Intution: If a model changes so that the marginal contribution of a feature value increases or stays the same, the Shapley value also increases or stays the same

From consistency the Shapley axioms of additivity, dummy and symmetry follow

