Total No. of Questions: 6

Total No. of Printed Pages:3

F	Enrollm	ent N	0	•••••	•••••	•••
			_			

Faculty of Engineering End Sem (Odd) Examination Dec-2022 EE3CO30 Analog Electronics

Programme: B.Tech. Branch/Specialisation: EE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.

Q.1 (M	(ICQs)	should be written in full instead of only a, b, c or d.	
Q.1	i.	With respect to base, emitter is always biased.	1
		(a) Backward (b) Forward (c) Reverse (d) Transverse	
	ii.	Three terminals on a FET are	1
		(a) Drain, source and gate	
		(b) Drain, collector and gate	
		(c) Emitter, collector and base	
		(d) Source, emitter and collector	
	iii.	Colpitts oscillator uses feedback for oscillation.	1
		(a) Negative (b) Positive (c) Zero (d) No	
	iv.	The ratio of output current by input voltage is known as	1
		·	
		(a) Voltage amplification (b) Transconductance	
		(c) Current amplification (d) None of these	
	v.	Which of the following is characteristic of ideal Op-Amp?	1
		(a) Infinite open loop gain (b) Zero noise	
		(c) Infinite input impedance (d) All of these	
	vi.	The CMRR of an ideal Op-Amp is	1
		(a) Low (b) Zero (c) High (d) Infinite	
	vii.	Active filter circuits are made up of	1
		(a) Transformer and RL circuit	
		(b) RLC circuit	
		(c) Op-Amp and RLC circuit	
		(d) None of these	

P.T.O.

	viii.	Specific features of an Instrumentation amplifier are	
		(a) Low noise (b) High gain accuracy	
		(c) Low thermal drift (d) All of these	
	ix.	A monostable 555 timer has stable state.	1
		(a) 0 (b) 3 (c) 1 (d) 5	
	х.	The output impedance of the voltage regulator is	1
		(a) Very large (b) Very small (c) High (d) None of these	
Q.2	i.	Define $alpha(\alpha)$ and $beta(\beta)$ of a transistor. Write the relation between them.	2
	ii.	What is transistor biasing? What are the different methods of transistor biasing?	3
	iii.	Write comparison between BJT and FET. Sketch and explain the drain characteristic of MOSFET.	5
OR	iv.	Which configuration among CC, CE, and CB is most used in amplifier Circuits? Draw its circuit diagram. Sketch the input and output characteristics of common emitter configurations. Properly indicate all the regions in the characteristics.	5
Q.3	i.	What is a push pull amplifier? Draw the circuit diagram of class A and class B push pull amplifier.	3
	ii.	What is criterion for oscillator? Explain Colpitts and Hartley oscillator with circuit diagram.	7
OR	iii.	What is power amplifier? Explain class A, class B and class C amplifier.	7
Q.4	i.	Define Op-Amp related terms mentioned below: (a) PSRR (b) CMRR (c) Input offset current (d) Output offset voltage	4
	ii.	What is an Op-Amp? What are the ideal characteristics of an ideal Op-Amp? Draw the equivalent circuit of an ideal Op-Amp mentioning all the terminal names.	6
OR	iii.	Draw the non-inverting and inverting amplifier circuits of an Op- Amp in close loop configuration. Find the expression for closed loop gain in both circuits.	6

Q.5	i.	What is a sample and hold(S/H) circuit? What is the use of S/H circuit?	2
	ii.	What are four main types of filters? Briefly write about band pass and band reject filters.	3
	iii.	Draw integrator and differentiator circuits and derive the expressions for their output voltage. Draw the output waveforms in each case.	5
OR	iv.	Explain Schmitt trigger with suitable circuit diagram and waveforms. Briefly write, how we can use Schmitt trigger circuit as a sine wave to square wave converter.	5
Q.6		Attempt any two:	
	i.	Draw the block diagram of the 3 pin IC voltage regulator with explanation. Write a comparison between LM78XX and LM317 voltage regulators.	5
	ii.	What is a multivibrator? Briefly write about all the three types of multivibrators and their applications.	5
	iii.	What is an SMPS? Draw the block diagram of SMPS and briefly explain it. Mention the advantages and applications of SMPS.	5

Marking Scheme EE3CO30 Analog Electronics

		-		_
Q.1	i.	(b) Forward	1 Mark	1
	ii.	(a) Drain, source and gate	1 Mark	1
	iii.	(b) Positive	1 Mark	1
	iv.	(b) Transconductance	1 Mark	1
	v.	(d) All of these	1 Mark	1
	vi.	(b) Zero	1 Mark	1
	vii.	(c) Op-Amp and RLC circuit	1 Mark	1
	viii.	(d) All of these	1 Mark	1
	ix.	(c) 1	1 Mark	1
	х.	(b) Very small	1 Mark	1
Q.2	i.	Both definition true	1 Mark	2
		Relation true	1 Mark	
	ii.	Transistor biasing	1 Mark	3
		3 methods of transistor biasing	2 Marks	
	iii.	Comparison of BJT and FET	2 Marks	5
		Sketch of drain characteristic of MOSFET	1 Mark	
		Explanation of drain characteristics	2 Marks	
OR	iv.	CE configuration is most used	1 Mark	5
		CE configuration circuit diagram	1 Mark	
		Draw input characteristics	1 Mark	
		Draw output characteristics	1 Mark	
		Regions mentioned in the characteristics.	1 Mark	
Q.3	i.	Push pull amplifier	1 Mark	3
		Circuit diagram of class A	1 Mark	
		Circuit diagram of class B	1 Mark	
	ii.	Criterion for oscillator	1 Mark	7
		Explain Colpitts oscillator with circuit diagram	3 Marks	
		Explain Hartley oscillator with circuit diagram	3 Marks	
OR	iii.	Power amplifier	1 Mark	7
		Explain class A amplifier	2 Marks	
		Explain Class B amplifier	2 Marks	
		Explain Class C amplifier	2 Marks	
		1		

(Q.4	i.	(a) PSRR	1 Mark	4
			(b) CMRR	1 Mark	
			(c) Input offset current	1 Mark	
			(d) Output offset voltage	1 Mark	
		ii.	Op-Amp definition	1 Mark	6
			Characteristics of an ideal Op-Amp	3 Marks	
			Equivalent circuit of an ideal Op-Amp	2 Marks	
(OR	iii.	Non-inverting amplifier circuits in close loop	1 Mark	6
			Inverting amplifier circuits in close loop	1 Mark	
			Non-inverting gain expression	2 Marks	
			Inverting gain expression	2 Marks	
(Q.5	i.	Definition of sample and hold(S/H) circuit	1 Mark	2
			Use of S/H circuit	1 Mark	
		ii.	Four types of filters	1 Mark	3
			Band pass filters	1 Mark	
			Band reject filters	1 Mark	
		iii.	Integrator and differentiator circuits diagram	2 Marks	5
			Output voltage expressions for both	2 Marks	
			Both output waveforms	1 Mark	
(OR	iv.	Schmitt trigger circuit diagram	1 Mark	5
			Necessary waveforms	1 Mark	
			Explanation of Schmitt trigger	1 Mark	
			Sine wave to square wave converter explanation	2 Marks	
(Q.6		Attempt any two:		
		i.	Block diagram of IC voltage regulator	1 Marks	5
			Its explanation	2 Marks	
			Comparison between LM78XX and LM317	2 Marks	
		ii.	Multivibrator definition	1 Mark	5
			Three types of multivibrators	3 Marks	
			Applications of multivibrators	1 Mark	
		iii.	SMPS definition	1 Mark	5
			Block diagram of SMPS	1 Mark	
			Explanation	1 Mark	
			Advantages of SMP	1 Mark	
			Applications of SMP	1 Mark	
			**		
