

JOINT AND CONDITIONAL DISTRIBUTION															
·joi	nt P(X=x,	y= y)	= P (x	=x)P(Y=y)	if i	n depeu	dent						
· mox dist	ginal	P(xi	= x)	= \sum_{x,x_{i,}}	P(X .x.,	λ= X ₁ ,	. Xi= ;	x,	$X_{m} = X_{m}$) or	P(x=	×) = <u>></u> ye:	- Sy P(X	(=x Y=y)	P(Y=y)
· con	dificial	P (2	X=x, Y	/=y)-	P (X=	x, Y=y) Y=y)									
Con	COUNITL	RANI	NOU V	ARIABU	E			14	~						
	P ([a,b]]) = +∞ ×f (;	/bf(x x)dx	od _x V (P([- x)= \int_{-\infty}^{+\infty}[x~E(X	0]) = /)]² f (x	f (x) dx =	1					
DIST	RIBUTIONS • Uniform														
	· gamoia	u	fux)	$\frac{1}{\sqrt{2\pi}\sigma^2}$	e- (x-)	<u>u)²</u>	4 ER 62 E (C	mean Co,co)	ime.						
)=4 lardizatio) = P(<u>k</u>	2-M 2	(-M = D	- <u>M</u>)=	φ (<u>b-4</u>)- \$((A-4)		