MÉTODO SIMPLEX

ACTIVIDAD

Objetivo— Al finalizar esta actividad, el estudiante debe hacer estar en capacidad de aplicar el método simplex para resolver problemas de programación lineal.

Tipo de actividad— Grupo de Trabajo.

Formato - Parejas.

Duración— 40 minutos.

Descripción— A continuación se presentan los elementos teóricos y luego la descripción de la actividad.

Sistema canónico.

- x₄, x₅, x₆ son llamadas variables básicas o dependientes y están asociadas al vector b.
- x₁, x₂, x₃ son las variables no básicas o independientes.
- El valor de las variables básicas se obtiene al asignar valores a las variables no básicas.
- Si las variables no básicas son cero y $b_i \ge 0$, para i = 1, ..., m, los valores de las variables básicas forman una solución básica factible.

Método Simplex.

 $\max z = x_1 + 3x_2$ s/a: $-x_1 + x_2 \le 1 + x_1 + x_2 \le 2$ $x_i \ge 0, \quad i = 1, 2$

Forma estándar. (Se convierte en un problema de minimización: $\min z = -x_1 - 3x_2$)

SBF: $x_1 = x_2 = 0$, $x_3 = 1$, $x_4 = 2$, z = 0

Note que las variables básicas tienen coeficiente cero en la función objetivo.

Defina cuál variable $(x_1 \circ x_2)$ debe entrar a la base tal que la solución siga siendo factible.

Recuerde que $x_1, x_2, x_3, x_4 \ge 0$ por definición.

Si x_1 se hace diferente de cero, entonces z decrece en: $z = 0 - x_1$

Si x_2 se hace diferente de cero, entonces z decrece en: $z = 0 - 3x_2$

Conclusión: se consigue disminuir más z si x_2 ingresa a la base.

Nota. Si no hay coeficientes negativos la solución es óptima.

Defina cuál variable $(x_3 \ o \ x_4)$ debe salir de la base. ¿Qué tan grande puede hacerse x_2 ? Recuerde que $x_3, x_4 \ge 0$

De la restricción 1: $x_3 = 1 - x_2$

De la restricción 2: $x_4 = 2 - x_2$

Conclusión: El máximo valor que puede tomar x_2 es 1 debido a la restricción 1. Esto es, x_2 reemplaza a x_3 en la base.

Solución para la nueva base (se obtiene mediante la realización de operaciones elementales, tal como en la actividad anterior):

SBF:
$$x_1 = x_3 = 0$$
, $x_2 = x_4 = 1$, $z = -3$

El proceso se repite nuevamente y se encuentra que x_1 reemplaza a x_4 debido a la restricción 2. Solución para la nueva base:

$$+x_{2} + \frac{1}{2}x_{3} + \frac{1}{2}x_{4} = \frac{3}{2}$$

$$+x_{1} - \frac{1}{2}x_{3} + \frac{1}{2}x_{4} = \frac{1}{2}$$

$$+x_{3} + 2x_{4} - z = 5$$

SBF:
$$x_1 = \frac{1}{2}$$
, $x_2 = \frac{3}{2}$, $x_3 = x_4 = 0$, $z = -5$ (Solución óptima)

Actividad.

Resuelva los siguientes problemas usando el método simplex. Ayuda: realice los cálculos usando el lenguaje R, tal como en la actividad anterior.

Problema 1.

$$\max z = 40x_1 + 60x_2$$

s/a:

$$2 x_1 + x_2 \le 70$$

$$x_1 + x_2 \le 40$$

$$x_1 + 3x_2 \le 90$$

$$x_1, x_2 \ge 0$$

Problema 2.

$$\max z = 3x_1 + 2x_2$$

s/a:

$$6x_1 + 4 x_2 \le 24$$
$$x_1 \le 3$$

$$x_1, x_2 \ge 0$$