(Solved) Worksheet 2 for Al61002 Spring 2020 Name: Roll no.:

Calculate the number of parameters and Flops for each layer of AlexNet like network for an input of size $3 \times 227 \times 227$. The network operates in inference mode, i.e., in the software library we set model.eval().

S.No	Layer	#Params	#Flops
1	Conv2d: 64c 11w 4s 2p	23,296	7,30,56,256
2	ReLU	0	4,01,408
3	MaxPool2d: 2w 2s 0p	0	1,50,528
4	Conv2d: 192c 5w 1s 2p	3,07,392	24,09,95,328
5	ReLU	0	3,01,056
6	MaxPool2d: 2w 2s 0p	0	1,12,896
7	Conv2d: 384c 3w 1s 1p	6,63,936	13,01,31,456
8	ReLU	0	1,50,528
9	Conv2d: 256c 3w 1s 1p	8,84,992	17,34,58,432
10	ReLU	0	1,00,352
11	Conv2d: 256c 3w 1s 1p	5,90,080	11,56,55,680
12	ReLU	0	1,00,352
13	MaxPool2d: 4w 2s 0p	0	1,38,240
14	Dropout	0	0
15	Linear: 9216->4096	3,77,52,832	3,77,52,832
16	ReLU	0	8,192
17	Dropout	0	0
18	Linear: 4096->4096	1,67,81,312	1,67,81,312
19	ReLU	0	8,192
20	Linear: 4096->1000	40,97,000	40,97,000
Total		61,100,840	79,34,00,040

2D Convolution Layer (conv) in a network

Width of input tensor = MHeight of input tensor = NNumber of Channels in input tensor = c

Width of 2D convolution kernel = wHeight of 2D convolution kernel = hChannels of 2D convolution kernel = c

Padding on width of input tensor = p_w Padding on height of input tensor = p_h

Stride along width of input tensor = s_w

Stride along height of input tensor = s_h

Number of 2D convolution kernels = k

Width of output tensor =
$$\frac{M-w+2p_w}{s_w} + 1$$

Height of output tensor =
$$\frac{N-h+2p_h}{s_h} + 1$$

Number of channels in output tensor = k

Number of multiplications per output channel per location = cwh

Number of additions per output channel per location (with bias) = cwh

Number of ops. using Multiply-Accumulate (MAC) blocks per channel per location = cwh + 1

Number of operations per output channel =
$$(cwh + 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$$

Total number of operations in layer (with bias) = $k(cwh + 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$

ReLU Transfer Function

Width of input (output) tensor = MHeight of input (output) tensor = NChannels in input (output) tensor = c

Total number of comparison operations = cMN

Total number of assignment operations = cMN

Total number of operations = 2cMN

Fully-connected (Linear) Layer

Number of input nodes = n

Number of output nodes = k

Number of multiplication per output node = nNumber of additions per output node (with

bias) = n + 1

Number of ops. using MAC blocks per output

node (with bias) = n + 1

Total number of operations = (n + 1)k

2D Max-pooling Layer

Width of input (output) tensor = M

Height of input (output) tensor = N

Channels in input (output) tensor = c

Width of 2D pooling kernel = w

Height of 2D pooling kernel = h

Total number of comparison operations per location = wh - 1

Total number of operations in layer = $c(wh-1)\left(\frac{M-w+2p_w}{s_w}+1\right)\left(\frac{N-h+2p_h}{s_h}+1\right)$

Worked out detailed solution

S. No. 1: (Input)
$$3 \times 227 \times 227 \rightarrow$$
 (Conv2d) $64c \ 11w \ 4s \ 2p \rightarrow$ (Output) $64 \times 56 \times 56$

$$M = N = 227, c = 3, w = h = 11, k = 64, p_w = p_h = 2, s_w = s_h = 4$$
Params = $(cwh + 1)k = ((3 \times 11 \times 11) + 1) \times 64 = 23, 296$
Flops = $k(cwh + 1)\left(\frac{M - w + 2p_w}{s_w} + 1\right)\left(\frac{N - h + 2p_h}{s_h} + 1\right)$
= $64 \times \left((3 \times 11 \times 11) + 1\right)\left(\frac{227 - 11 + 2(2)}{4} + 1\right)\left(\frac{227 - 11 + 2(2)}{4} + 1\right) = 7, 30, 56, 256$

S. No. 2: (Input)
$$64 \times 56 \times 56 \rightarrow$$
 (ReLU) \rightarrow (Output) $64 \times 56 \times 56$
 $M = N = 56, c = 64$

$$# Params = 0$$

Flops =
$$2cMN = 2 \times 64 \times 56 \times 56 = 4,01,408$$

S. No. 3: (Input)
$$64 \times 56 \times 56 \rightarrow$$
 (MaxPool2d) $2w \ 2s \ 0p \rightarrow$ (Output) $64 \times 28 \times 28$ $M = N = 56, c = 64, w = h = 2, p_w = p_h = 0, s_w = s_h = 2$

$$# Params = 0$$

Flops =
$$c(wh - 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$$

= $64 \times \left((2 \times 2) - 1 \right) \left(\frac{56 - 2 + 2(0)}{2} + 1 \right) \left(\frac{56 - 2 + 2(0)}{2} + 1 \right) = 1,50,528$

S. No. 4: (Input)
$$64 \times 28 \times 28 \rightarrow$$
 (Conv2d) $192c \ 5w \ 1s \ 2p \rightarrow$ (Output) $192 \times 28 \times 28$ $M = N = 28, c = 64, w = h = 5, k = 192, p_w = p_h = 2, s_w = s_h = 1$

Params =
$$(cwh + 1)k = ((64 \times 5 \times 5) + 1) \times 192 = 3,07,392$$

Flops =
$$k(cwh + 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$$

= $192((64 \times 5 \times 5) + 1) \left(\frac{28 - 5 + 2(2)}{1} + 1 \right) \left(\frac{28 - 5 + 2(2)}{1} + 1 \right) = 24,09,95,328$

S. No. 5: (Input)
$$192 \times 28 \times 28 \rightarrow (ReLU) \rightarrow (Output) 192 \times 28 \times 28$$

 $M = N = 28, c = 192$

$$# Params = 0$$

Flops =
$$2cMN = 2 \times 192 \times 28 \times 28 = 3.01.056$$

S. No. 6: (Input)
$$192 \times 28 \times 28 \rightarrow$$
 (MaxPool2d) $2w \ 2s \ 0p \rightarrow$ (Output) $192 \times 14 \times 14$ $M = N = 28, c = 192, w = h = 2, p_w = p_h = 0, s_w = s_h = 2$

Flops =
$$c(wh - 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$$

= $192 \times \left((2 \times 2) - 1 \right) \left(\frac{28 - 2 + 2(0)}{2} + 1 \right) \left(\frac{28 - 2 + 2(0)}{2} + 1 \right) = 1,12,896$

S. No. 7: (Input)
$$192 \times 14 \times 14 \rightarrow$$
 (Conv2d) $384c\ 3w\ 1s\ 1p \rightarrow$ (Output) $384 \times 14 \times 14$ $M = N = 14, c = 192, w = h = 3, k = 384, p_w = p_h = 1, s_w = s_h = 1$ # Params = $(cwh + 1)k = ((192 \times 3 \times 3) + 1) \times 384 = 6,63,936$

Flops =
$$k(cwh + 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$$

= $384((192 \times 3 \times 3) + 1) \left(\frac{14 - 3 + 2(1)}{1} + 1 \right) \left(\frac{14 - 3 + 2(1)}{1} + 1 \right) = 13,01,31,456$

S. No. 8: (Input)
$$384 \times 14 \times 14 \rightarrow$$
 (ReLU) \rightarrow (Output) $384 \times 14 \times 14$ $M = N = 14, c = 384$

Params = 0

Flops =
$$2cMN = 2 \times 384 \times 14 \times 14 = 1,50,528$$

S. No. 9: (Input)
$$384 \times 14 \times 14 \rightarrow$$
 (Conv2d) $256 \ 3w \ 1s \ 1p \rightarrow$ (Output) $256 \times 14 \times 14$ $M = N = 14, c = 384, w = h = 3, k = 256, p_w = p_h = 1, s_w = s_h = 1$

Params =
$$(cwh + 1)k = ((384 \times 3 \times 3) + 1) \times 256 = 8,84,992$$

Flops =
$$k(cwh + 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$$

= $256((384 \times 3 \times 3) + 1) \left(\frac{14 - 3 + 2(1)}{1} + 1 \right) \left(\frac{14 - 3 + 2(1)}{1} + 1 \right) = 17,34,58,432$

S. No. 10: (Input)
$$256 \times 14 \times 14 \rightarrow$$
 (ReLU) \rightarrow (Output) $256 \times 14 \times 14$ $M = N = 14, c = 256$

Params = 0

Flops =
$$2cMN = 2 \times 256 \times 14 \times 14 = 1,00,352$$

S. No. 11: (Input)
$$256 \times 14 \times 14 \rightarrow$$
 (Conv2d) $256 \ 3w \ 1s \ 1p \rightarrow$ (Output) $256 \times 14 \times 14 \rightarrow$ $M = N = 14, c = 256, w = h = 3, k = 256, p_w = p_h = 1, s_w = s_h = 1$

Params =
$$(cwh + 1)k = ((256 \times 3 \times 3) + 1) \times 256 = 5,90,080$$

Flops =
$$k(cwh + 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$$

= $256((256 \times 3 \times 3) + 1) \left(\frac{14 - 3 + 2(1)}{1} + 1 \right) \left(\frac{14 - 3 + 2(1)}{1} + 1 \right) = 11,56,55,680$

S. No. 12: (Input)
$$256 \times 14 \times 14 \rightarrow$$
 (ReLU) \rightarrow (Output) $256 \times 14 \times 14$ $M = N = 14, c = 256$

Params = 0

Flops =
$$2cMN = 2 \times 256 \times 14 \times 14 = 1,00,352$$

S. No. 13: (Input)
$$256 \times 14 \times 14 \rightarrow$$
 (MaxPool2d) $4w \ 2s \ 0p \rightarrow$ (Output) $256 \times 6 \times 6$ $M = N = 14, c = 256, w = h = 4, p_w = p_h = 0, s_w = s_h = 2$

Params = 0

Flops =
$$c(wh - 1) \left(\frac{M - w + 2p_w}{s_w} + 1 \right) \left(\frac{N - h + 2p_h}{s_h} + 1 \right)$$

= $256 \times \left((4 \times 4) - 1 \right) \left(\frac{14 - 4 + 2(0)}{2} + 1 \right) \left(\frac{14 - 4 + 2(0)}{2} + 1 \right) = 1,38,240$

S. No. 14: (Input)
$$256 \times 6 \times 6 \rightarrow Dropout \rightarrow (Output) 256 \times 6 \times 6$$

Params = 0

S. No. 15: (Input)
$$9216 \rightarrow \text{Linear} \rightarrow 4096$$

$$n = 9216, k = 4096$$

Params =
$$(n + 1) \times k = (9216 + 1) \times 4096 = 3,77,52,832$$

Flops =
$$(n + 1) \times k = (9216 + 1) \times 4096 = 3,77,52,832$$

S. No. 16: (Input)
$$4096 \rightarrow (ReLU) \rightarrow (Output) 4096$$

$$n = 4096$$

$$# Params = 0$$

Flops =
$$2n = 2 \times 4096 = 8,192$$

S. No. 17: (Input)
$$4096 \rightarrow \text{Dropout} \rightarrow \text{(Output)} 4096$$

$$# Params = 0$$

Flops = **0** (model in evaluation mode)

S. No. 18: (Input)
$$4096 \rightarrow \text{Linear} \rightarrow (\text{Output}) 4096$$

$$n = 4096, k = 4096$$

Params =
$$(n + 1) \times k = (4096 + 1) \times 4096 = 1,67,81,312$$

Flops =
$$(n + 1) \times k = (4096 + 1) \times 4096 = 1,67,81,312$$

S. No. 19: (Input)
$$4096 \rightarrow (ReLU) \rightarrow (Output) 4096$$

$$n = 4096$$

$$# Params = 0$$

Flops =
$$2n = 2 \times 4096 = 8,192$$

S. No. 20: (Input)
$$4096 \rightarrow \text{Linear} \rightarrow \text{(Output) } 1000$$

$$n = 4096, k = 1000$$

Params =
$$(n + 1) \times k = (4096 + 1) \times 1000 = 40,97,000$$

Flops =
$$(n + 1) \times k = (4096 + 1) \times 1000 = 40,97,000$$