STAT 214 Spring 2025 Week 5

Austin Zane

Lab 1 Reminders

Make sure Lab 1 submission is formatted correctly (see announcement)

 Do not push /data/ folder (a lot of students pushed the data for lab 0 to their repo)

Lab reports are anonymous (no name, student id, email, etc.)

Download, update, and push info.txt

Lab 2: Remote Sensing & Cloud Detection

Overview of Lab 2

Goal: Develop a cloud detection model using remote sensing images from NASA's Terra satellite.

Key Concepts: Transfer Learning, Autoencoders, Feature Engineering, Classification Models.

Submission Deadline: March 21st, 23:59 via GitHub.

Why is Cloud Detection Important?

Climate Models: Clouds affect global temperature by both trapping heat and reflecting sunlight.

Challenge: Clouds and ice in polar regions appear visually similar (both white and cold).

Solution: Use Multi-angle Imaging SpectroRadiometer (MISR) data to distinguish clouds based on altitude differences.

Dataset Overview

164 images from the MISR sensor (stored in .npz format).

Features include:

- X, Y coordinates
- Radiance at multiple angles
- Precomputed features: NDAI, SD, CORR (derived from domain knowledge)
- Only 3 images have expert-labeled cloud masks (Images: 13257, 13490, 18616)
- Labels: +1 (Cloud), -1 (No Cloud), 0 (Unlabeled)

Lab Structure - Part 1: Exploratory Data Analysis (EDA)

- Visualize cloud labels in the 3 labeled images.
- Examine feature relationships (e.g., radiance vs. cloud presence).
- Split data into training, validation, and test sets.

Lab Structure - Part 2: Feature Engineering

- Identify most informative features using statistics & visualizations.
- Create new features (e.g., using neighborhood pixels).
- Introduce Transfer Learning via autoencoders.

Lab Structure - Part 3: Predictive Modeling

- Train and compare at least three classifiers.
- Justify with visualizations and performance metrics (ROC, AIC, etc.).
- Conduct error analysis & evaluate real-world applicability.

What is Transfer Learning?

Definition: Training a model on one task and adapting it to another.

Our approach:

- Pre-train an autoencoder on unlabeled data.
- Fine-tune it on labeled data to extract meaningful representations.

Implementation: Modify **autoencoder.py**, tune hyperparameters, and test latent feature representations.

Classification Models

Train multiple models (e.g., Logistic Regression, Random Forest, Neural Networks).

Evaluate using:

- Cross-validation or data splits
- Feature importance analysis
- Error distribution & model stability tests

Peer Grading Process (subject to change)

Each student will peer-review two reports.

Feedback Criteria:

- Clarity & communication
- Data cleaning & preprocessing
- Visualization quality
- Reproducibility of results

Submission: Complete the Google questionnaire after grading.

Key Takeaways

Objective: Build a cloud classification model from remote sensing data.

Steps: EDA → Feature Engineering → Transfer Learning → Classification.

Emphasis: Careful data analysis, reproducibility, and scientific reasoning.

Final Submission Deadline: March 21st, 23:59 (No Late Submissions!)

Working with PSC Bridges-2

stat-214-gsi/computing/psc-instructions.md

Connecting to Bridges-2

- SSH Connection:
 - o ssh psc username@bridges2.psc.edu
- Web Interface:
 - Use Open OnDemand: ondemand.bridges2.psc.edu
- Reminder:
 - Login nodes are for file management, environment setup, and job submission only—do not run research code on them.

Setting Up Your Bridges-2 Environment

- 1. SSH to a login node:
 - o ssh psc_username@bridges2.psc.edu
- 2. Load Conda
 - module load anaconda3
- 3. Create your environment:
 - o conda env create -f /ocean/projects/mth240012p/shared/214/environment.yaml
- 4. Activate the environment:
 - o conda activate env 214
- 5. Install the IPython kernel:
 - o python -m ipykernel install --user --name env_214 --display-name env_214
- 6. Clean up Conda files:
 - o conda clean --all

Testing Your Environment – Command Line

- 1. Start an interactive GPU job:
 - o interact -gpu -t 00:10:00
- 2. Check GPU details:
 - o nvidia-smi
- 3. Test PyTorch
 - Load Conda and activate your environment:
 - module load anaconda3
 - conda activate env 214
 - Start Python:
 - python
 - o In the Python shell, run:
 - import torch
 - print(torch.version.cuda)
 - print(torch.cuda.is_available())

Testing Your Environment – JupyterLab

- 1. Launch Jupyter Lab via Bridges-2 Web Interface:
 - a. Go to https://ondemand.bridges2.psc.edu
 - b. Select "Jupyter Lab: Bridges2"
- 2. Set Parameters:
 - a. Number of hours: 1
 - b. Number of nodes: 1
 - c. Account: mth240012p
 - d. Partition: GPU-shared
 - e. Extra Slurm Args: --gpus=1

Testing Your Environment – JupyterLab

- Verify:
 - In JupyterLab, create a notebook using the "env_214" kernel.
 - o In a notebook cell, run:
 - import sys
 - print(sys.executable)
 - import torch
 - print(torch.version.cuda)
 - print(torch.cuda.is available())
- Open a terminal in JupyterLab and run:
 - o nvidia-smi

Avoiding Wasted GPU Resources

Development Workflow:

- Develop and test code locally.
- Use small datasets and shorter runs for debugging.
- Transfer code to Bridges-2 for production runs.

Resource Management:

- Use short time limits on jobs.
- Ensure jobs terminate when complete.
- Shut down idle interactive sessions.

Always shut down your Jupyter Lab server when finished (via File \rightarrow Shut Down or through the web dashboard).

Only use for interactive experimentation, not for production runs.

Final Reminders

- Use the Right Partition:
 - GPU-shared for 1 GPU; reserve GPU for jobs that truly need 8 GPUs.
- Monitor Usage:
 - Check job status with squeue -u your username and GPU usage with nvidia-smi.
- Class-Related Work Only:
 - Bridges-2 is for work directly related to this class.
- Need Help?
 - Contact a GSI if issues arise.