WHAT IS CLAIMED IS:

1	1. A composite magnetic head comprising:
2	a magnetoresistive head comprising:
3	a lower magnetic shield disposed on a substrate;
4	a lower gap layer;
5	a first ferromagnetic layer;
6	a non-magnetic layer;
7	a second ferromagnetic layer;
8	an anti-ferromagnetic layer having non-magnetic regions on both the ends thereof
9	first electrode layers disposed respectively on the non-magnetic regions of the
10	anti-ferromagnetic layer;
11	magnetic domain control layers disposed respectively on the ends of a stack of
12	layers consisting of the lower magnetic shield, the lower gap layer, the first ferromagnetic layer,
13	the non-magnetic layer, the second ferromagnetic layer, the anti-ferromagnetic layer, and the
14	first electrode layers;
15	second electrode layers disposed respectively on the magnetic domain control
16	layers; and
17	an upper magnetic shield disposed on the second electrode layers and the stack of
18	layers by way of an upper gap layer; and
19	an inductive magnetic head disposed on the magnetoresistive head by way of an
20	insulation layer.
1	2. A composite magnetic head as defined in claim 1, wherein the non-magnetic
2	region of the anti-ferromagnetic layer is formed by implanting impurities into the anti-
3	ferromagnetic material.
1	3. A composite magnetic head as defined in claim 1, wherein a width of the first
2	electrode layer is 20 nm or less.
1	4. A composite magnetic head as defined in claim 1, wherein the first and the
2	second electrode layer contain one or more of elements of at least Au, Ta, W, Ru, Rh, Cu, Ti,
3	Ag, Pt, Pd, Cr, In, Ir, Nb and Zr.

1	5. A composite magnetic head as defined in claim 1, wherein a soft magnetic
2	layer is disposed between the domain control layer and the second electrode layer.
1	6. A composite magnetic head as defined in claim 1, wherein a crystal orientation
2	underlying layer is disposed below the magnetic domain control layer.
1	7. A composite magnetic head comprising:
2	a magnetoresistive head comprising:
3	a lower magnetic shield disposed on a substrate;
4	a lower gap layer;
5	a first ferromagnetic layer;
6	a non-magnetic layer;
7	a second ferromagnetic layer;
8	an anti-ferromagnetic layer having both ends whose width is narrower than that of
9	the second ferromagnetic layer;
10	first electrode layers disposed on the second ferromagnetic layer at both the ends
11	of the anti-ferromagnetic layer;
12	magnetic domain control layers disposed respectively on the ends of a stack of
13	layers consisting of the lower magnetic shield, the lower gap layer, the first ferromagnetic layer,
14	the non-magnetic layer, the second ferromagnetic layer, the anti-ferromagnetic layer, and the
15	first electrode layers;
16	second electrode layers disposed respectively on the magnetic domain control
17	layers; and
18	an upper magnetic shield disposed on the second electrode layers and the stack of
19	layers by way of an upper gap layer; and
20	an inductive magnetic head disposed on the magnetoresistive head by way of an
21	insulation layer.
1	8. A composite magnetic head as defined in claim 7, wherein a width of the first
2	electrode laver is 20 nm or less

1	3. A composite magnetic nead as defined in claim 7, wherein the first and the
2	second electrode layer contain one or more of elements of at least Au, Ta, W, Ru, Rh, Cu, Ti,
3	Ag, Pt, Pd, Cr, In, Ir, Nb and Zr.
1	10. A composite magnetic head as defined in claim 7, wherein a soft magnetic
2	layer is disposed between the domain control layer and the second electrode layer.
1	11. A composite magnetic head as defined in claim 7, wherein a crystal
2	orientation underlying layer is disposed below the magnetic domain control layer.
1	12. A composite magnetic head comprising:
2	a magnetoresistive head comprising:
3	a lower magnetic shield disposed on a substrate;
4	a lower gap layer;
5	a first ferromagnetic layer;
6	a non-magnetic layer;
7	a second ferromagnetic layer;
8	an anti-ferromagnetic layer disposed on a central portion other than both ends of
9	the second magnetic layer;
10	first electrode layers disposed respectively on both ends of the second
11	ferromagnetic layer;
12	magnetic domain control layers disposed respectively on the ends of a stack of
13	layers consisting of the lower magnetic shield, the lower gap layer, the first ferromagnetic layer,
14	the non-magnetic layer, the second ferromagnetic layer, the anti-ferromagnetic layer, and the
15	first electrode layers;
16	second electrode layers disposed respectively on the magnetic domain control
17	layers; and
18	an upper magnetic shield disposed on the second electrode layers and the stack of
19	layers by way of an upper gap layer; and
20	an inductive magnetic head disposed on the magnetoresistive head by way of an
21	insulation layer.

- 1 13. A composite magnetic head as defined in claim 12, wherein a width of the
- 2 first electrode layer is 20 nm or less.
- 1 14. A composite magnetic head as defined in claim 12, wherein the first and the
- 2 second electrode layer contain one or more of elements of at least Au, Ta, W, Ru, Rh, Cu, Ti,
- 3 Ag, Pt, Pd, Cr, In, Ir, Nb and Zr.
- 1 15. A composite magnetic head as defined in claim 12, wherein a soft magnetic
- 2 layer is disposed between the domain control layer and the second electrode layer.
- 1 16. A composite magnetic head as defined in claim 12, wherein a crystal
- 2 orientation underlying layer is disposed below the magnetic domain control layer.