2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

wall

Language: It-LT

Sienelė

Jian-Jia stato sienelę iš vienodų plytų.

Sienelę sudaro n stulpelių. Stulpelį sudaro viena ant kitos sudėtos plytos. Stulpeliai numeruojami nuo 0 iki n-1 iš kairės į dešinę. Stulpelio aukštis lygus jį sudarančių plytų skaičiui. Stulpeliai gali būti skirtingo aukščio.

Pradiniu momentu nei viename stulpelyje plytų nėra. Jian-Jia atlieka k žingsnių. Žingsniai gali būti dviejų skirtingų tipų: $sienelės\ aukštinimas$, $sienelės\ žeminimas$. Sienelė užbaigiama, kai įvykdomi visi k žingsnių.

Kiekvieno žingsnio metu Jian-Jia nurodomas stulpelių intervalas (uždaras), aukštis h bei žingsnio tipas (sienelės aukštinimas arba sienelės žeminimas).

- Jei tai *sienelės aukštinimo* žingsnis, tai Jian-Jia visus intervalo stulpelius, kurių aukštis žemesnis nei *h*, paaukština iki aukščio *h*, pridėdamas papildomų plytų. Likę stulpeliai neliečiami.
- Jei tai sienelės žeminimo žingsnis, tai Jian-Jia visus intervalo stulpelius, kurių aukštis didesnis nei h, pažemina iki aukščio h, nuimdamas nereikalingas plytas. Likę stulpeliai neliečiami.

Nustatykite, kiek bus plytų kiekviename stulpelyje baigus statyti sienelę.

Pavyzdys

Tarkime, turime 10 plytų stulpelių ir 6 žingsnius (žr. lentelę). Visi intervalai lentelėje yra uždari. Toliau paveikslėliuose parodoma, kaip atrodo siena po kiekvieno žingsnio.

žings nis	tipas	stulp. intervalas	aukštis
0	aukštinimas	nuo 1 iki 8	4
1	žeminimas	nuo 4 iki 9	1
2	žeminimas	nuo 3 iki 6	5
3	aukštinimas	nuo 0 iki 5	3
4	aukštinimas	2	5
5	žeminimas	nuo 6 iki 7	0

Kadangi pradiniu momentu visi stulpeliai yra tušti, po nulinio žingsnio kiekviename stulpelyje iš intervalo [1..8] bus po 4 plytas. 0-inis ir 9-as stulpeliai bus tušti.

Pirmojo žingsnio metu nuo [4..8] stulpelių bus nuimamos plytos tol, kol kiekviename jų liks po 1 plytą, o 9-as stulpelis liks tuščias. Stulpeliai [0..3] liks nepakitę.

Antrojo žingsnio metu niekas nepasikeičia, nes stulpeliai [3..6] turi ne daugiau nei 5 plytas.

Po trečio žingsnio plytų kiekis stulpeliuose 0, 4 ir 5 padidėja iki 3.

Po ketvirto žingsnio 2-ame stulpelyje lieka 5 plytos.

Penktu žingsniu iš 6 ir 7 stulpelių pašalinamos visos plytos.

Užduotis

Duotas k žingsnių aprašymas, suskaičiuokite, kiek bus plytų kiekviename stulpelyje baigus statyti sienelę.

Parašykite funkciją buildWall:

- buildWall(n, k, op, left, right, height, finalHeight)
 - n: sieną sudarančių stulpelių skaičius.
 - k: žingsnių skaičius.
 - op: k ilgio masyvas; op [i] yra i-ojo žingsnio tipas: 1, jei tai sienelės aukštinimas; 2, jei tai sienelės žeminimas; čia $0 \le i \le k-1$.
 - left ir right: k ilgio masyvai; i-asis stulpelių intervalas prasideda stulpeliu left[i] ir baigiasi stulpeliu right[i] (kraštiniai intervalo stulpeliai left[i] ir right[i] priklauso intervalui); čia $0 \le i \le k-1$. Galioja left[i] \le right[i].

- lacktriangledown height: k ilgio masyvas; height[i] i-ojo žingsnio aukščio parametras; čia 0 < i < k-1.
- finalHeight: n ilgio masyvas; grąžinkite rezultatus įrašydami galutinį plytų skaičių stulpelyje i į finalHeight[i], čia $0 \le i \le n-1$.

Dalinės užduotys

Visose dalinėse užduotyse aukštis h yra neneigiamas sveikasis skaičius neviršijantis 100000.

dalinė užd.	taškai	n	k	pastaba
1	8	$1 \le n \le 10000$	$1 \le k \le 5000$	kitų ribojimų nėra
2	24	$1 \leq n \leq 100000$	$1 \le k \le 500000$	pirma eina visi aukštinimo žingsniai, po to - visi žeminimo žingsniai
3	29	$1 \le n \le 100000$	$1 \le k \le 500000$	kitų ribojimų nėra
4	39	$1 \leq n \leq 2000000$	$1 \le k \le 500000$	kitų rribojimų nėra

Reikalavimai

Reikia pateikti vieną failą, pavadintą wall.c, wall.cpp arba wall.pas. Jame turi būti žemiau aprašyta funkcija. Programuojantiems C/C++ reikia pridėti antraštinį failą wall.h.

Programuojantiems C/C++

```
void buildWall(int n, int k, int op[], int left[], int right[],
int height[], int finalHeight[]);
```

Programuojantiems Paskaliu

```
procedure buildWall(n, k : longint; op, left, right, height :
array of longint; var finalHeight : array of longint);
```

Pavyzdinis vertintojas

Pavyzdinis vertintojas skaito duomenis tokiu formatu:

- 1 eilutė: n, k.
- 2+i eilutės kur $(0 \le i \le k-1)$: op [i], left [i], right [i], height [i].