A Closer Look at Assumptions

ROBUSTNESS OF T-TOOLS

Assumptions for T-Tools: Equal Variances

Looking at Histograms & Test for Equal Variances

*	0		200 Score	400 — Kernel	600
		Equality	of Varia	nces	
Me	thod	Num DF	Den DF	F Value	Pr > F
Fol	ded F	29	29	9.08	<.0001

	Equality of Variances									
Method Num DF Den DF F Value Pr										
Folded F	22	23	1.40	0.4289						

Assumptions of Two sample T-Tools

- 1. Samples are drawn from a Normally distributed population.
- 2. If it is a two sample test, both populations are assumed to have the same standard deviation (same shape).
- 3. The observations in the sample are independent of one another.

Assumptions for T-Tools: Independence

Independence

A major assumption underlying the Central Limit Theorem and/or the T-tools is **INDEPENDENCE**

<u>INDEPENDENCE</u>: "Whenever knowledge about one observation gives information about another observation"

 Example: If I measure your parents' height, that would give me information about your height without even measuring you.

Two common types of independence

- CLUSTER EFFECTS: Observations are naturally in subgroups
- Serial Effects: Observations are collected over time/space.

Independence: Cluster Effects

Two common types of independence

- <u>Cluster Effects</u>: Observations are naturally in subgroups
- Serial Effects: Observations are collected over time/space.

Examples:

- •Genetic Similarity: If we sample from all cattle at a ranch, some of the cattle could be dependent due to genetics
- •Sociodemographic: People tend to spend their days with people of the same race/income/...

Independence: Serial Effects

Two common types of independence

- <u>Cluster Effects</u>: Observations are naturally in subgroups
- <u>Serial Effects</u>: Observations are collected over time/space.

Examples:

- Suppose we are testing the effect of new software on productivity. For all the subjects, we have them perform a task using old software and then the same task with new software
- We grow 10 different bacterial colonies on a single culture medium.
 The size of bacterial colonies near each other with be negatively associated due to resource competition

Independence: Serial Effects

Two common types of independence

- <u>Cluster Effects</u>: Observations are naturally in subgroups
- SERIAL EFFECTS: Observations are collected over time/space.

How to diagnose?

- There are statistical techniques for estimating/testing/accounting for these effects.
- Some of these methods will be discussed later in the class/the next class.

For now, just be aware of these types of assumption violations

Outliers and Resistance

Outliers

A common issue in data analysis is the presence of **outliers**

OUTLIERS: Observations that are judged to be "far" from "typical"

What is far? What is typical?

Sample averages are not resistant to outliers → neither are t-tools

(Caveat: outlier is a bit pejorative/misleading. An alternative term would be "extreme" or "influential" observation)

Strategy For Data Sets with Outliers

Example: Age by Promotion Status

```
proc boxplot data = promotion;
plot age*outcome / boxstyle = schematic;
run;
```


SAS procedure: The "schematic" option

Figure 28.8: Schematic Box-and-Whiskers Plot

Re-check Assumptions

	Equality of Variances									
Method	Num DF	Den DF	F Value	Pr > F						
Folded F	29	22	4.27	0.0008						

Results with Outliers

```
proc ttest data = promotion sides = I alpha = .05;
class outcome;
var age;
run;
```


Statistical Conclusion:

The data provide no evidence against the null hypothesis that the mean age of the "successful" group is lower than the mean age of the "unsuccessful" group (one sided, two sample pooled test p-value = 0.4621). The assumptions about normality and equal variances seem suspect, however.

Strategy For Data Sets with Outliers

New Box Plot Without Outliers

```
data promotion_no_outlier;
set promotion;
if outcome eq "s" and age > 66 then delete;
run;
proc boxplot data = promotion_no_outlier;
plot age*outcome / boxstyle = schematic;
run;
```


Re-check Assumptions

	Equality of Variances									
Method	Method Num DF Den DF F Value Pr > F									
Folded F	22	24	1.07	0.8736						

Results Excluding the Suspects

outcome	N	Mean	Std Dev	Std Err	Minimum	Maximum
s	25	40.7200	6.9912	1.3982	30.0000	55.0000
u	23	46.9565	7.2204	1.5056	34.0000	60.0000
Diff (1-2)		-6.2365	7.1017	2.0519		

Variable: age

outcome Method		Mean	Mean 95% CL Mean			Std Dev 95% CL Std De			
s		40.7200	37.8342	43.6058	6.9912	5.4589	9.7258		
u		46.9565	43.8342	50.0789	7.2204	5.5842	10.2194		
Diff (1-2)	Pooled	-6.2365	-Infty	-2.7921	7.1017	5.9014	8.9197		
Diff (1-2)	Satterthwaite	-6.2365	-Infty	-2.7864					

Method	Variances	DF	t Value	Pr < t	
Pooled	Equal	46	-3.04	0.0020	
Satterthwaite	Unequal	45.375	-3.04	0.0020	

	Equality of Variances									
Method Num DF Den DF F Value Pr >										
Folded F	22	24	1.07	0.8736						

Statistical Conclusion:

There is strong evidence against the null hypothesis that the mean age of the "successful" group is lower than the mean age of the "unsuccessful" group (one sided, two sample pooled t-test p-value =0.002). We estimate that the mean difference is -6.2365 years, with up to -2.7921 years a plausible value (95% one-tailed pooled t-dist. confidence interval).

Included v. Excluded

Included Excluded

Strategy For Data Sets with Outliers

Examination of Outliers

Careful review of the outlying observations was conducted and it was found that the data point that was recorded as "80 years" was actually supposed to be recorded as a "30 years"!

The other outliers were found to be recorded correctly.

```
data promotion_correction;
set promotion;
if age = 80 then age = 30;
run;
```

Strategy For Data Sets with Outliers

New Box Plot After Correction

Original

After Correction

Another Look at Assumptions

Equality of Variances										
Method Num DF Den DF F Value Pr										
Folded F	29	22	3.66	0.0026						

Another Look At the Promotion Data

After Correction

Excluding all Outliers (Suspects)

Strategy For Data Sets with Outliers

Examination of Outliers

- We carefully review the remaining outliers
- The >70 years are the heads of the company, and had given themselves a promotion.
- We are interested in age discrimination. Management is not going to discriminate against itself....
 - \rightarrow they are not a part of the population we are interested in.
- Therefore, we will exclude these observations from the study.

```
data promotion_no_outlier_correction;
set promotion_correction;
if outcome eq "s" and age > 66 then delete;
run;
```

Strategy For Data Sets with Outliers

With Correction with no outliers.

Equality of Variances										
Method Num DF Den DF F Value Pr > F										
Folded F	22	25	1.02	0.9637						

Report Results Excluding the Suspects

$$H_0: \mu_s = \mu_u$$

 $H_1: \mu_s < \mu_u$

Statistical Conclusion:

There is strong evidence against the null hypothesis that the mean age of the "successful" group is lower than the mean age of the "unsuccessful" group (one sided, two sample pooled t-test p-value = 0.0011). We estimate that the mean difference is -6.6488 years, with up to -3.1949 years a plausible value (95% one-tailed pooled t-dist. confidence interval).

We excluded workers with age > 66 years due to being be management.

Transformations

Checking Assumptions...

Checking Assumptions...

Original Data

Log Transformed Data

Log Transformation

The logarithmic transformation used to arrive at favorable conditions for the two-sample t-analysis

Example: Cloud Seeding

Does Cloud Seeding Work?

- On days that were deemed suitable for cloud seeding, a random mechanism was used to decide whether to seed the target cloud on that day or to leave it unseeded as a control
- Precipitation was measured as the total rain volume falling from the cloud base following the seeding run (as measured by radar)
- We would like to test whether cloud seeding is effective in increasing precipitation.

Cloud Seeding: Original Data


```
proc ttest data = cloud sides = u alpha = .05;
class treatment;
var rainfall;
run;
```

After Log Transformation


```
Create lograin 

| data cloud; | set cloud; | lograin = log(rainfall); | run; | | proc ttest data = cloud sides = 2 alpha = .05; | class treatment; | var lograin; | run; | run;
```

Hypothesis Test

H₀: Cloud Seeding does not work. H₁: Cloud Seeding does work.

Statistical Conclusion:

There is strong evidence against the null hypothesis that the mean log(precip.) of the "seeded" group is greater than the mean log(precip.) of the "unseeded" group (one sided, two sample pooled t-test p-value = 0.007)...

H₀: Cloud Seeding does not work. H₁: Cloud Seeding does work.

$$H_0$$
: $\mu_{seeded} = \mu_{unseeded}$
 H_1 : $\mu_{seeded} > \mu_{unseeded}$
 H_1 : $\mu_{log(seeded)} = \mu_{log(unseeded)}$
 H_1 : $\mu_{log(seeded)} > \mu_{log(unseeded)}$

Hypothesis Test

						Varia	able:	log	rain						
	Treatment		N	Me	Mean		Std Dev		Std Err		Minimum		Maximum		m
Seeded		26	5.13	42	1.5	995	0.	3137		1.4	110		7.917	8	
	Unse	eded	26	3.99	04	1.6	6418	0.	3220			0		7.092	22
	Diff (1-2)		1.14	38	1.6	208	0.	4495						
Treat	ment	Metho	od		M	ean	95%	CL	Mea	an	Std	Dev	959	6 CL	Std Dev
Seed	ed				5.1	1342	4.48	81	5.78	5.7802		5995	1.2	2544	2.2080
Unse	eded				3.9904		3.32	72	72 4.6536		1.6418		1.2	2876	2.2664
Diff (1	-2)	Pooled			1.1	1438	0.39	04	In	fty	1.	6208	1.3	3562	2.0148
Diff (1	-2)	Satte	rthw	aite	1.1	1438	0.39	04	ln	fty					
		Meth	nod		V	Varianc		es DF		t Value		e F)r > t		
		Pool	led		Equal					50 2		2.54 0.0	0070	0070	
Satterthwaite		U	nequ	al	49	966		2.5	4 0.	0070					
					Eq	ualit	y of \	/ar	iance	es					
		M	etho	d	Nur	n DF	Der	n DF	F	Val	ue	Pr >	F		
	Folded F			d F		25		2	5	1.	05	0.89	71		

Statistical Conclusion (continued):

... We estimate that the median precip. for the "seeded" group is $e^{1.1438}=3.1387$ times the median precip. for the "unseeded" group, with at least a multiplicative effect of $e^{0.3904}=1.4776$ (95% one-tailed pooled t-dist. confidence interval).

Scope of Inference:

As this is a randomized study, we can infer that seeding mechanism caused this difference. We can only extend these results to this location and to "suitable" days.