

NLP is all about?

Natural Language Processing or NLP is a field of Artificial Intelligence that gives the machines the ability to read, understand and derive meaning from human languages.

- 1. Natural Language Processing
- 2. Natural Language Understanding
- 3. Natural language Generation

"Hey Google, how did the stock market do today?"

Challenges

- 1. treating the word "board" as noun or verb?
- 1. "He lifted the beetle with red cap." Did he use cap to lift the beetle or he lifted a beetle that had red cap?
- 1. Rima went to Gauri. She said, "I am tired." Exactly who is tired?
- 1. Unstructured data

Key Terms

- **1. Syntactic features:** Focus on arrangement of words matter (e.g. computer virus)
- **2.** <u>Semantic features:</u> Focus on meaning of words (e.r. Strong coffee, strong muscles)
- 3. Corpus: Collection of text data
- 4. Vocabulary: Set of unique tokens in the corpus
- 5. Lexicon: Vocabulary which include words and expression
- **6.** Morphological Analysis: Analysis, identification, description of structure of words

- 1. NLTK
- 2. Gensim
- 3. CoreNLP
- 4. Spacy

Understand text data

- a. Linguistics, technical terms
- b. Linguistics databases

Roadmap for learning NLP

- a. Encoder, Decoder,
- b. Attention models,
- c. Transformers, BERT

- a. Parsing the data (web scraping)
- b. Tokenization
- c. Stemming, Lemmatization
- d. Regex expression
- e. Stop words removal

Deep Learning

- a. Deep Learning basics
- b. RNN, LSTM, GRU
- c. Seq2seq modelling

Feature Extraction

- a. Vocabulary
- Feature extraction
 based on frequency
- c. Dimensionality reduction
- d. POS tagging, NER
- e. Word embedding

Domain based concepts

- a. Spelling similarity
- b. Semantic similarity
- c. Topic modelling
- d. Latent drichilet allocation

Machine Learning

- a. Classification based approach
- b. Clustering based approach

https://www.letthedataconfess.com/

Step 1: Data Normalization

- 1. Punctuation removal
- 2. Stop words removal
- 3. Convert into lower case
- 4. Contraction removal
- 5. Spelling correction
- 6. Special character removal
- 7. Emoji removal

Step2: Tokenization

- 1. Bag of words
- 2. Bag of N-grams

Step3: Feature Selection

Stemming vs Lemmatization

Step4: Word Embedding (Feature Extraction)

Learnt representation of words into Vectors

Why do we need it?

How to generate Word embedding

- 1. Frequency Based
 - a. Count based
 - b. Tf-Idf Based
- 2. Prediction based
 - a. Word2vec
 - b. Glove
 - c. Elmo
 - d. BERT

Document1 = 'He is a lazy boy. She is also lazy.'

Document2 = 'Neeraj is a lazy person.'

Dictionary: ['He','She','lazy','boy','Neeraj','person']

He	She	lazy	boy	Neeraj	person
1	1	2	1	0	0
0	0	1	0	1	1

Tf-idf

- term frequency(TF) of word 'this' in Document 1 is 1/8
- TF of word 'This in Document 2 is 1/5
- IDF = log(N/n), where, N is the total number of documents and n is the number of documents a term t has appeared in.
- IDF(This) = log(2/2) = 0.
 If a word appears in each document of given corpus then idf of that word = 0
- IDF(Messi) = log(2/1) = 0.301.

Combine TF and IDF together:

- TF-IDF(This,Document1) = (1/8) * (0) = 0
- TF-IDF(This, Document2) = (1/5) * (0) = 0
- TF-IDF(Messi, Document1) = (4/8)*0.301 = 0.15

Docu	ment 1	Document 2		
Term	Count	Term	Count	
This	1	This	1	
is	1	is	2	
about	2	about	1	
Messi	4	Tf-idf	1	

King -man +woman = Queen

How will you solve such problems??

Using Prediction Based Embedding

How does it work?

Still is there any problem?

Step 5: Building the model

Questions to be asked?

- Why Deep Learning?
 Which model to use?

Artificial Neural Network

Isn't it good enough?

Recurrent Neural Network

Without tanh function

With tanh function

What is the problem now?

sigmoid

Sigmoid Function

Input Gate

- G₁₁ previous cell state
- forget gate output
- input gate output
- candidate

Cell State

input gate output

new cell state

