Penrose のグラフ記法によるベクトル解析 およびテンソル解析の公式の表現

低音

電磁気学以来、ベクトル解析の公式は決して暗記できるものではないと筆者が考えていたように、ベクトルの公式を覚えられない物理学徒は多いだろう。Levi-Civita 記号の縮約公式がわかれば暗記は不要であると世に言われるが、Levi-Civita 記号をいちいち使って計算していては非効率極まりない。効率が悪いだけならまだしも、本来自然なはずの計算が技巧的に見えてしまい、ベクトル解析を自在に操ることが難しくなってしまう。

しかし、Penrose のグラフ記法 (Penrose graphical notation; tensor diagram notation) という強力なツールを使えば、以下に示す基本的なベクトル解析の公式を暗記することなく、暗算で求められるようになる。

また本来 Penrose のグラフ記法はテンソル解析のために考案されたものである。ここでは物理学のテンソル解析に頻繁に現れる完全反対称 Levi-Civita テンソルの公式、およびそれを駆使した微分形式の公式を扱っていく。物理におけるテンソル計算の難易度が格段に下がると同時に、計算を直観的に捉えることができるようになるだろう。

誤植の報告や質問などは https://note.com/teion_burns/n/n5f486f83dd81 のコメント機能もしくは https://twitter.com/teion_burns のダイレクトメッセージに気軽に寄せていただきたい。

変更履歴

2021年5月22日 初版

2022 **年** 2 **月** 5 **日** 2 「完全反対称 Levi-Civita 記号の公式の表現」を追加

2023年4月3日 4「微分形式の公式の表現」を追加

2023 年 5 月 15 日 3.3「行列式と逆行列」を追加

2024 **年 1 月 17 日** 3 を 2 から分離、3.2「Penrose のグラフ記法を用いた行列の表記」及び 3.4「行列式の性質」を追記

目次

1	ベクトル解析の公式の表現					
	1.1	前提知識	4			
	1.2	スカラーとベクトルおよび演算の定義	4			
		1.2.1 スカラーとベクトルの表示	4			
		1.2.2 スカラー倍	4			
		1.2.3 ベクトルの内積	4			

	1.2.4 3 成分の Levi-Civita 記号	5
	1.2.5 ベクトルの外積	5
1.3	ベクトルの内積と外積にまつわる公式	5
	1.3.1 Levi-Civita 記号の縮約公式	5
	1.3.2 スカラー三重積	5
	1.3.3 ベクトル三重積	5
	1.3.4 ベクトル四重積	6
1.4	スカラー・ベクトルの微分作用素	6
	1.4.1 勾配 grad	6
	1.4.2 発散 div	6
	1.4.3 回転 rot	7
	1.4.4 ラプラシアン \triangle	7
	1.4.5 積の微分 (Leibnitz rule)	7
	1.4.6 微分順序交換	7
1.5	ベクトルの微分作用素にまつわる公式	7
	1.5.1 rot grad = 0	8
	1.5.2 div rot = $0 \dots $	8
	1.5.3 div grad = \triangle	8
	1.5.4 $\operatorname{grad}(fg) = g \operatorname{grad} f + f \operatorname{grad} g \dots $	8
	1.5.5 $\operatorname{div}(fv) = \operatorname{grad} f \cdot v + f \operatorname{div} v$	9
	1.5.6 $\operatorname{div}(u \times v) = \operatorname{rot} u \cdot v - u \cdot \operatorname{rot} v$	9
	1.5.7 $\operatorname{rot}(fv) = \operatorname{grad} f \times v + f \operatorname{rot} v \dots $	9
	1.5.8 $\operatorname{rot}(u \times v) = (v \cdot \operatorname{grad})u + u \operatorname{div} v - v \operatorname{div} u - (u \cdot \operatorname{grad})v \dots \dots \dots \dots$	10
	1.5.9 rot rot = grad div $-\triangle$	10
	1.5.10 $\operatorname{grad}(u \cdot v) = v \times \operatorname{rot} u + (v \cdot \operatorname{grad})u + u \times \operatorname{rot} v + (u \cdot \operatorname{grad})v \cdot \dots \dots \dots$	10
	1.5.11 $\triangle(fg) = (\triangle f)g + 2 \operatorname{grad} f \cdot \operatorname{grad} g + f(\triangle g) \dots \dots \dots \dots \dots \dots$	11
1.6	位置ベクトルの微分にまつわる公式	11
	1.6.1 $\operatorname{div} r = 3 \dots \dots$	11
	1.6.2 rot $r = 0 \dots \dots$	12
∸ ∧	도착화 다 나 있다. 그 글모죠 사람 ㅎ 보면	10
	反対称 Levi-Civita 記号の公式の表現	13
2.1	前提知識・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.2	Penrose のグラフ記法におけるテンソルの表記	
	2.2.1 Kronecker \mathcal{O} δ	
	2.2.2 完全反対称 Levi-Civita テンソル	
0.0	2.2.3 計量テンソル	
2.3	Levi-Civita テンソルの縮約公式	
	2.3.1 3 次元での縮約	
	2.3.2 4 次元での縮約	15

 $\mathbf{2}$

3	行列	と行列記	代の表現	18				
	3.1	前提知	識	18				
	3.2	Penros	se のグラフ記法を用いた行列の表記	18				
		3.2.1	行列・ベクトル	18				
		3.2.2	行列積	19				
		3.2.3	トレース	19				
		3.2.4	転置	19				
		3.2.5	和とスカラー倍	19				
	3.3	行列式	と逆行列	19				
		3.3.1	行列式	20				
		3.3.2	余因子展開	20				
		3.3.3	逆行列	22				
	3.4	行列式	の性質	23				
		3.4.1	定数倍の行列式	23				
		3.4.2	行列積の行列式	23				
		3.4.3	逆行列の行列式	24				
		3.4.4	余因子行列の行列式	24				
		3.4.5	転置行列の行列式	25				
4	微分形式の公式の表現 2							
	4.1	前提知	識・表記上の注意....................................	26				
	4.2		式及び各種演算					
		4.2.1	k-form					
		4.2.2	Lie 微分					
		4.2.3	wedge 積					
		4.2.4	外微分					
		4.2.5	内部積					
	4.3		式の公式					
	1.0	4.3.1	Poincaré の補題 $d^2 = 0$					
		4.3.2	内部積の別表現					
		4.3.3	Cartan の公式 $(\mathrm{d}\iota_V + \iota_V \mathrm{d})\omega = \mathcal{L}_V \omega$					
		1.0.0	$-carvarres - size (av) + vv \cdot av = size - $	20				

1 ベクトル解析の公式の表現

1.1 前提知識

本節では

- スカラーとベクトルの区別
- ベクトルの内積と外積の定義
- grad, div, rot, \triangle
- Einstein の縮約記法
- Kronecker \mathcal{O} δ
- Levi-Civita 記号とその縮約公式
- 外積の Levi-Civita 記号による表示

の知識を前提とする。

基本的に添字を使う場合は Einstein の縮約記法に従って表す。また、本節では共変・反変の区別をせず、 Einstein の縮約記法の添字は全て下付きとする。

1.2 スカラーとベクトルおよび演算の定義

1.2.1 スカラーとベクトルの表示

グラフ記法においてスカラーは文字を四角く囲って表される。

$$\operatorname{scalar} f = \boxed{f}$$

ベクトルは脚つきで表現される。

$$\text{vector } \boldsymbol{v} = \boxed{\boldsymbol{v}}$$

この脚は 2.2.1 に示すように Kronecker の δ を表す。

1.2.2 スカラー倍

文字式と同様、スカラーとベクトルを並べてスカラー倍を表せる。

$$fg\mathbf{v} = \boxed{f} \boxed{g} \boxed{\mathbf{v}}$$

1.2.3 ベクトルの内積

ベクトルの脚を繋ぎ合わせると内積を表す。

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_i \delta_{ij} v_j = \boldsymbol{u} - \boldsymbol{v}$$

1.2.4 3成分の Levi-Civita 記号

以上ではスカラーやベクトルは四角で囲って表してきたが、ベクトルの添字については四角で囲わずに表すこととする。この約束のもと、3 成分の Levi-Civita 記号は次のように表す。

$$\epsilon_{ijk} = \begin{bmatrix} 1 & 1 \\ i & j & k \end{bmatrix}$$

太線は反対称性を表し、脚の奇置換で符号が変わる。

$$\begin{bmatrix} i & k & j \end{bmatrix} = -\begin{bmatrix} i & j & k \end{bmatrix}$$

1.2.5 ベクトルの外積

ベクトルの外積は次のように表せる。

$$oldsymbol{u} imesoldsymbol{v}=oldsymbol{oldsymbol{oldsymbol{u}}}oldsymbol{oldsymbol{v}}$$

一番左に脚が1本残っていることからベクトルであることが一瞥できる。

1.3 ベクトルの内積と外積にまつわる公式

1.3.1 Levi-Civita 記号の縮約公式

$$\epsilon_{ijm}\epsilon_{klm} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}$$

Levi-Civita 記号の縮約公式は 2.3 で詳細を取り扱うが、ここでは公式的に用いることにする。

$$\begin{bmatrix} i & j \\ \vdots & j \\ k & l \end{bmatrix} = \begin{bmatrix} i & j \\ \vdots & - \\ k & l \end{bmatrix} - \begin{bmatrix} i & j \\ k & l \end{bmatrix}$$

1.3.2 スカラー三重積

$$A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B) = -B \cdot (A \times C)$$

外積の脚にベクトルの脚をつなげればスカラー三重積を表せる。

$$\begin{array}{c}
A & B & C
\end{array} =
\begin{array}{c}
B & C & A
\end{array} =
\begin{array}{c}
C & A & B
\end{array} =
\begin{array}{c}
B & A & C
\end{array}$$

偶置換で値が変わらず奇置換で符号が変わることが一目瞭然である。

1.3.3 ベクトル三重積

$$A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$$

外積の脚を外積に繋げばベクトル三重積となる。Levi-Civita 記号の縮約公式に合わせて、はじめに偶置換しておくと見やすい。

$$\begin{array}{c}
A \\
B \\
C
\end{array} =
\begin{array}{c}
A \\
B \\
C
\end{array} =
\begin{array}{c}
A \\
B \\
C
\end{array} =
\begin{array}{c}
A \\
B \\
C
\end{array}$$

1.3.4 ベクトル四重積

$$(A \times B) \cdot (C \times D) = \det \begin{pmatrix} A \cdot C & B \cdot C \\ A \cdot D & B \cdot D \end{pmatrix}$$

行列式を使って表すことが多い。行列式による表式が見やすいわけではないが、Levi-Civita 記号の縮約公式が

$$\epsilon_{ijm}\epsilon_{klm} = \det \begin{pmatrix} \delta_{ik} & \delta_{il} \\ \delta_{jk} & \delta_{jl} \end{pmatrix}$$

と表されることを考慮すると自明であろう。

$$\begin{array}{c|c}
\hline
A & B \\
\hline
C & D
\end{array} =
\begin{array}{c|c}
\hline
A & B \\
\hline
C & D
\end{array} -
\begin{array}{c|c}
\hline
C & D
\end{array}$$

1.4 スカラー・ベクトルの微分作用素

Penrose のグラフ記法で扱う微分演算子は ∇ (ナブラ) である。微分対象を円で囲い、円から脚を伸ばすことで表現する。これもまた図形的に表すことが可能である。

$$\nabla =$$

1.4.1 **勾配** grad

スカラーを円で囲って脚を伸ばす。

$$\operatorname{grad} f = \nabla f = \boxed{f}$$

1.4.2 **発散** div

ベクトルの脚と微分演算子の脚をつなげる。

$$\operatorname{div} oldsymbol{v} =
abla \cdot oldsymbol{v} = oldsymbol{v}$$

脚は Kronecker の δ を表すので $\partial_i \delta_{ij} v_j$ を意味する。

1.4.3 回転 rot

単純な外積と表示は大きく変わらない。ただし微分対象は演算子のすぐ右の脚に配置する。*1

$$\operatorname{rot} oldsymbol{v} =
abla imes oldsymbol{v} =
abla oldsymbol{v}$$

1.4.4 ラプラシアン △

2つの微分演算子の脚をつなぎ合わせる。微分対象はスカラー・ベクトルを問わない。

 $\partial_i \delta_{ij} \partial_j A$ を表す。特に微分対象がスカラーの場合、直ちに div grad $f = \triangle f$ が得られる。

1.4.5 積の微分 (Leibnitz rule)

$$\nabla(AB) = \nabla(A)B + A\nabla(B)$$

微分作用素は Leibnitz rule に従って展開可能である。

1.4.6 微分順序交換

 C^2 級関数 (2 階導関数が連続な関数) では微分順序の交換が可能である。グラフ記法では円の内外を入れ替えることにほかならない。

$$\begin{array}{c}
i \quad j \\
\hline
A
\end{array} =
\begin{array}{c}
A
\end{array}$$

以降、特に断りのない限り全ての量は C^2 級であるとする。

1.5 ベクトルの微分作用素にまつわる公式

本節の公式は以下に示す5つの変形のみを用いて導出が可能である。

- Levi-Civita 記号の反対称性 (奇置換)
- Levi-Civita 記号での偶置換
- Levi-Civita 記号の縮約公式

^{*1} この追加ルールについては 1.5.6 を参照。

- Leibnitz rule
- 微分順序交換

全ての導出は Einstein の縮約記法を用いた方法と全く同じ手順である。

1.5.1 rot grad = 0

rot grad
$$f = \nabla \times \nabla f = 0$$

微分順序の交換と反対称性を用いる。

第 1 に微分順序交換、第 2 に反対称。左辺と右辺で A=-A の形になっているので値は 0 である。

1.5.2 $\operatorname{div} \operatorname{rot} = 0$

$$\operatorname{div}\operatorname{rot}\boldsymbol{v} = \nabla\cdot(\nabla\times\boldsymbol{v}) = 0$$

1.5.1 と同様に示せる。

第 1 に微分順序交換、第 2 に反対称。やはり左辺と右辺で A=-A の形になっているので値は 0 となる。

1.5.3 div grad = \triangle

$$\operatorname{div}\operatorname{grad} f = \nabla \cdot \nabla f = \triangle f$$

1.4.4 で紹介したが、公式として再掲する。

$$\triangle f = \nabla^2 f = \boxed{f}$$

1.5.4 $\operatorname{grad}(fg) = g \operatorname{grad} f + f \operatorname{grad} g$

$$\operatorname{grad}(fg) = (\operatorname{grad} f)g + f(\operatorname{grad} g)$$

$$\nabla(fg) = (\nabla f)g + f(\nabla g)$$

Leibnitz rule で展開する。

物理学においては、数式でも然りだが、誤解を生む形でなければベクトルのスカラー倍を表すのに必ずしもスカラー・ベクトルの順で配する必要はない。グラフ記法でも同様である。

1.5.5 $\operatorname{div}(fv) = \operatorname{grad} f \cdot v + f \operatorname{div} v$

$$div(f\mathbf{v}) = \operatorname{grad} f \cdot \mathbf{v} + f \operatorname{div} \mathbf{v}$$
$$\nabla (f\mathbf{v}) = \nabla f \cdot \mathbf{v} + f \nabla \cdot \mathbf{v}$$

これもまた Leibnitz rule で展開する。

1.5.6 $\operatorname{div}(u \times v) = \operatorname{rot} u \cdot v - u \cdot \operatorname{rot} v$

$$div(\boldsymbol{u} \times \boldsymbol{v}) = rot \, \boldsymbol{u} \cdot \boldsymbol{v} - \boldsymbol{u} \cdot rot \, \boldsymbol{v}$$
$$\nabla \cdot (\boldsymbol{u} \times \boldsymbol{v}) = (\nabla \times \boldsymbol{u})\boldsymbol{v} - \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v})$$

Leibnitz rule に加えて反対称性を用いる。

1.4.3 で示した「rot において微分対象は微分作用素のすぐ右の脚につなげる」ルールに従うようにする。

1.5.7 $\operatorname{rot}(fv) = \operatorname{grad} f \times v + f \operatorname{rot} v$

$$rot (fv) = grad f \times v + f rot v$$
$$\nabla \times (fv) = \nabla f \times v + f \nabla \times v$$

Leibnitz rule による展開。

微分の内外を遵守する限り f の位置は問わない。

1.5.8 $\operatorname{rot}(u \times v) = (v \cdot \operatorname{grad})u + u \operatorname{div} v - v \operatorname{div} u - (u \cdot \operatorname{grad})v$

$$rot (u \times v) = (v \cdot grad)u + u \operatorname{div} v - v \operatorname{div} u - (u \cdot grad)v$$
$$\nabla \times (u \times v) = (v \cdot \nabla)u + u(\nabla \cdot v) - v(\nabla \cdot u) - (u \cdot \nabla)v$$

Levi-Civita 記号の縮約公式と Leibnitz rule によって導出。

 $1.5.9 \quad {\rm rot \; rot \; = grad \, div} \, - \triangle$

rot rot
$$\mathbf{v} = \operatorname{grad} \operatorname{div} \mathbf{v} - \triangle \mathbf{v}$$

 $\nabla \times (\nabla \times \mathbf{v}) = \nabla (\nabla \cdot \mathbf{v}) - (\nabla \cdot \nabla) \mathbf{v}$

Levi-Civita 記号の縮約公式と微分順序交換から。

1.5.10 $\operatorname{grad}(u \cdot v) = v \times \operatorname{rot} u + (v \cdot \operatorname{grad})u + u \times \operatorname{rot} v + (u \cdot \operatorname{grad})v$

$$grad(\boldsymbol{u} \cdot \boldsymbol{v}) = \boldsymbol{v} \times rot \, \boldsymbol{u} + (\boldsymbol{v} \cdot grad) \boldsymbol{u} + \boldsymbol{u} \times rot \, \boldsymbol{v} + (\boldsymbol{u} \cdot grad) \boldsymbol{v}$$
$$\nabla (\boldsymbol{u} \cdot \boldsymbol{v}) = \boldsymbol{v} \times (\nabla \times \boldsymbol{u}) + (\boldsymbol{v} \cdot \nabla) \boldsymbol{u} + \boldsymbol{u} \times (\nabla \times \boldsymbol{v}) + (\boldsymbol{u} \cdot \nabla) \boldsymbol{v}$$

初手は順当に Leibnitz rule で展開する。

展開した形に相当する演算がないので、各項 Levi-Civita 記号の縮約公式から得られたものとみて計算する。 右辺第 1 項は次の Levi-Civita 記号の縮約公式から現れる。

$$\begin{array}{c} \hline v \\ \hline u \\ \hline \end{array} = \begin{array}{c} \hline u \\ \hline \end{array} v - \begin{array}{c} \hline u \\ \hline \end{array} v$$

この右辺第 2 項を移項したものが (1) 第 1 項に一致する。(1) 第 2 項は u,v を入れ替えたものに他ならない。 結局以下の図式を得る。

1.5.11 $\triangle(fg) = (\triangle f)g + 2 \operatorname{grad} f \cdot \operatorname{grad} g + f(\triangle g)$

$$\triangle(fg) = (\triangle f)g + 2 \operatorname{grad} f \cdot \operatorname{grad} g + f(\triangle g)$$
$$\nabla \cdot \nabla(fg) = (\nabla \cdot \nabla f)g + 2(\nabla f) \cdot (\nabla g) + f(\nabla \cdot \nabla g)$$

2回にわたって Leibnitz rule を使う。

1.6 位置ベクトルの微分にまつわる公式

位置ベクトルを ∇ で微分する際は次の縮約が可能である。

$$\frac{\partial}{\partial r_i} r_j \boldsymbol{e}_j = \delta_{ij} \boldsymbol{e}_j$$

これを Penrose のグラフ記法で表すと、r とそれを囲う円が消えて両端がつながったように表される。

以下では「公式」とするにふさわしいものを拾っていくことにする。

1.6.1 $\operatorname{div} r = 3$

$$\operatorname{div} \boldsymbol{r} = \nabla \cdot \boldsymbol{r} = \delta_{ii} = 3$$

右辺の3は次元の数で、4次元なら4,n次元ならnとなる。

$$r$$
 = r

右辺の環は Kronecker の δ の両端がつながったものであり δ_{ii} となる。縮約のルールに則って 3 次元なら i=1,2,3 で足し合わせる。

1.6.2 $\operatorname{rot} r = 0$

$$\mathrm{rot}\, \boldsymbol{r} = \nabla \times \boldsymbol{r} = 0$$

位置ベクトルの微分の縮約をとる。

右辺は $\epsilon_{ijk}\delta_{jk}=\epsilon_{ijj}$ を表すので 0 である。

2 完全反対称 Levi-Civita 記号の公式の表現

2.1 前提知識

本節では、

- 添字の上下
- 完全反対称 Levi-Civita 記号
- Einstein の縮約記法

についての知識を前提とする。

2.2 Penrose のグラフ記法におけるテンソルの表記

Penrose のグラフ記法にてテンソルは階数のぶんだけ脚が出ているものとして表現される。共変と反変の区別も可能で、添字の上下に合わせて脚の向きが対応する。

$$T_k^{ij} = \underbrace{\begin{array}{c} i \ j \\ & \downarrow \ \downarrow \\ T \\ & k \end{array}}$$

上向きの脚が反変成分、下向きが共変を表す。

2.2.1 Kronecker $\boldsymbol{\mathcal{O}}$ δ

Kronecker の δ は両端が開いた脚で表す。

2.2.2 完全反対称 Levi-Civita テンソル

横向き太線は反対称性を表し、これによって完全反対称 Levi-Civita テンソルを表現できる。

$$\epsilon_{ij\cdots k} = \overbrace{i \quad j \quad \cdots \quad k} \quad , \qquad \epsilon^{ij\cdots k} = \overbrace{i \quad j \quad \cdots \quad k}$$

Penrose の論文 [1] に合わせて階数が等しい Levi-Civita テンソルの積は以下のように表すこともできる。 *2

$$\epsilon_{pq\cdots r}^{ij\cdots k} = \begin{vmatrix} i & j & \cdots & k \\ \vdots & \vdots & \ddots & \vdots \\ p & q & \cdots & r \end{vmatrix}$$

^{*2} Levi-Civita テンソルの積というよりも「反対称化」の方が言葉は適しているだろう。 $M^iB^j-B^iM^j$ のような反対称テンソルを形成するときにはこの記法が有用である。

この正当性は

$$\epsilon^{i_1...i_n} \epsilon_{j_1...j_n} = \epsilon^{i_1...i_n}_{1...n} \epsilon^{i_1...i_n}_{j_1...j_n} = \epsilon^{i_1...i_n}_{j_1...j_n}$$
(2)

により保証される。

2.2.3 計量テンソル

計量テンソルは反変・共変に合わせて Kronecker の δ を曲げたような格好になる。

$$g^{ij} = \bigcup_{i=j}^{i=j}$$
 , $g_{ij} = \bigcap_{i=j}$

2.3 Levi-Civita テンソルの縮約公式

Levi-Civita テンソルの縮約は Kronecker の δ の行列式を使って表されることが多い。

$$\epsilon^{ij\cdots k}\epsilon_{pq\cdots r} = \begin{vmatrix} \delta^i_p & \delta^i_q & \cdots & \delta^i_r \\ \delta^j_p & \delta^j_q & \cdots & \delta^j_r \\ \vdots & \vdots & \ddots & \ddots \\ \delta^k_p & \delta^k_q & \cdots & \delta^k_r \end{vmatrix}$$

一般次元での展開を Penrose のグラフ記法で表すと煩雑になるので、ここでは相対論で多用する 3 次元、4 次元での縮約公式を取り上げる。当然 3 、4 以外の次元でも同様である。

2.3.1 3 次元での縮約

Kronecker の δ を使って縮約を愚直に書き出すと以下のようになる。

上3本と下3本の端をつなぐ方法を全て列挙し、置換に応じた符号を与えれば良い。

Levi-Civita テンソルのグラフ記法が真価を発揮するのは一部の脚がつながっている場合であろう。

上下 1 組がつながっているときは 1.3.1 で紹介した通りである。縮約によって Levi-Civita テンソルの次数 が減ると捉えられる。i,j,k 及び p,q,r 各組 3 つの中で互いに異なるものだけが値を持つことに注意しなければならない。

$$\epsilon^{ijk}\epsilon_{pqk} = \begin{vmatrix} \delta^i_p & \delta^i_q & 0 \\ \delta^j_p & \delta^j_q & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} \delta^i_p & \delta^i_q \\ \delta^j_p & \delta^j_q \end{vmatrix}$$
$$= \delta^i_p \delta^j_q - \delta^i_q \delta^j_p$$

グラフ記法では縮約をとった部分を消去すれば良い。

2成分が縮約したときは、縮約した2成分の並び方を考慮して2!をかけなければならない。

$$\epsilon^{ijk}\epsilon_{pjk} = 2! \begin{vmatrix} \delta^i_p & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 2\delta^i_p$$

$$\begin{array}{c|c}
i & i \\
p & 1
\end{array}$$

$$= 2! \quad \begin{vmatrix}
i \\
p
\end{vmatrix}$$

2! をかける理由はグラフ記法において直観的に理解できるだろう。例として i,j,k 及び p,q,r の 3 成分のうち、上図のように j,q と k,r が縮約しているとする。図の縮約を表す 2 本の線に対して、内側に j,q を、外側に k,r を当てる場合と、内側に k,r 外側に j,q を当てる場合の両方を足さなければならない。この場合の数のために 2! を要する。

同様にして3成分全てが縮約したときは3!をかけなければならない。

$$\epsilon^{ijk}\epsilon_{ijk} = 3! \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 6$$

やはり $(i,p),\,(j,q),\,(k,r)$ の組をそれぞれどの線に当てるかで 3! 通りあることから、係数も直観的に理解できる。

2.3.2 4次元での縮約

以下では Euclid 計量で記述する。Minkowski 計量では Euclid の 4 つの共変成分全てに計量テンソル

$$g_{ij} = \begin{cases} 1 & i = j = 0 \\ -1 & i = j \neq 0 \\ 0 & i \neq j \end{cases}$$

がかかり、以下全ての結果に負号がつく。

Kronecker の δ を使って愚直に計算すると以下のようになる。

$$\begin{split} \epsilon^{ijkl} \epsilon_{pqrs} &= \begin{vmatrix} \delta^i_p & \delta^i_q & \delta^i_r & \delta^i_s \\ \delta^j_p & \delta^j_q & \delta^j_r & \delta^j_s \\ \delta^k_p & \delta^k_q & \delta^k_r & \delta^k_s \\ \delta^l_p & \delta^l_q & \delta^l_r & \delta^l_s \end{vmatrix} \\ &= \delta^i_p \delta^j_q \delta^k_r \delta^l_s - \delta^i_p \delta^j_q \delta^k_s \delta^l_r - \delta^i_p \delta^j_r \delta^k_q \delta^l_s + \delta^i_p \delta^j_r \delta^k_s \delta^l_q + \delta^i_p \delta^j_s \delta^k_q \delta^l_r - \delta^i_p \delta^j_s \delta^k_r \delta^l_q \\ &- \delta^i_q \delta^j_p \delta^k_r \delta^l_s + \delta^i_q \delta^j_p \delta^k_s \delta^l_r + \delta^i_q \delta^j_r \delta^k_p \delta^l_s - \delta^i_q \delta^j_r \delta^k_s \delta^l_p - \delta^i_q \delta^j_s \delta^k_b \delta^l_r + \delta^i_q \delta^j_s \delta^k_s \delta^l_r + \delta^i_q \delta^j_s \delta^k_s \delta^l_p - \delta^i_q \delta^j_s \delta^k_b \delta^l_r + \delta^i_q \delta^j_s \delta^k_q \delta^l_p \\ &+ \delta^i_r \delta^j_p \delta^k_q \delta^l_s - \delta^i_r \delta^j_p \delta^k_s \delta^l_q - \delta^i_r \delta^j_q \delta^k_p \delta^l_s + \delta^i_r \delta^j_q \delta^k_s \delta^l_p + \delta^i_r \delta^j_s \delta^k_p \delta^l_q - \delta^i_r \delta^j_s \delta^k_q \delta^l_p \\ &- \delta^i_s \delta^j_p \delta^k_q \delta^l_r + \delta^i_s \delta^j_p \delta^k_r \delta^l_q + \delta^i_s \delta^j_q \delta^k_p \delta^l_r - \delta^i_s \delta^j_q \delta^k_r \delta^l_p - \delta^i_s \delta^j_r \delta^k_p \delta^l_q + \delta^i_s \delta^j_j \delta^k_q \delta^l_p \end{aligned}$$

これを図示してもやはり長大になることに変わりない。

$$\begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \vdots & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & j & k & l \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & j & k & l \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} i & k & k & k \\ \vdots & k & k \\ \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix}$$

縮約を受けると次元が下がるのも同じである。3次元の場合と同様、縮約をとった部分は消去する。

$$\epsilon^{ijkl}\epsilon_{pqrl} = \begin{vmatrix} \delta^i_p & \delta^i_q & \delta^i_r & 0 \\ \delta^j_p & \delta^j_q & \delta^j_r & 0 \\ \delta^k_p & \delta^k_q & \delta^k_r & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} \delta^i_p & \delta^i_q & \delta^i_r \\ \delta^j_p & \delta^j_q & \delta^j_r \\ \delta^k_p & \delta^k_q & \delta^k_r \end{vmatrix}; \qquad \begin{vmatrix} i & j & k \\ j & k$$

複数の成分が縮約されれば 2!, 3!, 4! をかける。

$$\epsilon^{ijkl}\epsilon_{pqkl} = 2! \begin{vmatrix} \delta^{i}_{p} & \delta^{i}_{q} & 0 & 0 \\ \delta^{j}_{p} & \delta^{j}_{q} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 2! \begin{vmatrix} \delta^{i}_{p} & \delta^{i}_{q} \\ \delta^{j}_{p} & \delta^{j}_{q} \end{vmatrix}; \qquad \begin{vmatrix} i & j & 0 & 0 \\ j & 0 & 0 & 1 & 0 \\ j & 0 & 0 & 1 & 0 \\ j & 0 & 0 & 0 & 1 \end{vmatrix} = 2! \begin{vmatrix} \delta^{i}_{p} & \delta^{i}_{q} \\ \delta^{j}_{p} & \delta^{j}_{q} \end{vmatrix}; \qquad \begin{vmatrix} i & j & 0 & 0 \\ j & 0 & 0 & 1 & 0 \\ j & 0 & 0 & 0 & 1 & 0 \\ j & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k & 0 & 0 & 0 & 0 & 0 \\ k &$$

$$\epsilon^{ijkl}\epsilon_{pjkl} = 3! \begin{vmatrix} \delta^i_p & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 3!\delta^i_p; \qquad \begin{vmatrix} i & & & & & i \\ p & & & & & p \end{vmatrix}$$

$$\epsilon^{ijkl}\epsilon_{ijkl} = 4!;$$

3 行列と行列式の表現

3.1 前提知識

本節では、

- 学部教養課程の線形代数
- Einstein の縮約記法
- 完全反対称 Levi-Civita 記号とグラフ記法による表記
- Kronecker の δ とグラフ記法による表記

についての知識を前提とする。

3.2 Penrose のグラフ記法を用いた行列の表記

本節での記法は正方行列であればある程度非正則でも使用できる。また一部の記述について、正方行列に限らない任意の行列に拡張可能である。

以降、行列のうち行の添字を上付き、列の添字を下付きで表すことにする。例えば

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Longrightarrow M_2^1 = b$$

である。列ベクトルの成分を u^i 、行ベクトルの成分を v_j で表すことにする。

$$\boldsymbol{u} = \begin{pmatrix} a \\ b \end{pmatrix} \Longrightarrow u^1 = a, \qquad \boldsymbol{v} = \begin{pmatrix} a & b \end{pmatrix} \Longrightarrow v_2 = b.$$

正方行列を扱う場合、n は行列の次元 $n = \dim A$ とする。

3.2.1 行列・ベクトル

グラフ記法で行列 A は上下または左右から脚が生えたものとして表される。

$$A = \overline{A}$$

本節では右左の脚をそれぞれ行、列の添字に対応させる。これに従い A_i^i は

$$A_j^i = i - A - j$$

と書ける。

1階のテンソルであるベクトルは 1 同様に脚が 1 本生えたものとして表すが、列ベクトルと行ベクトルの区別が必要となる。本節では脚が右に生えたら行ベクトル、左に生えたら列ベクトルと約束する。

$$u_i = \boxed{u - i}$$
, $v^j = j - \boxed{v}$.

表記の都合上、脚を上下から生やすことも少なくない。その場合、上の脚を行、下の脚を列に対応させる。

$$A^i_j = \begin{bmatrix} i \\ A \\ j \end{bmatrix}$$

3.2.2 行列積

行列積は脚をつなげて表される。

$$AB = \overline{A} \overline{B}$$

実際、Kronecker の δ が??で表されることを考慮すると、 $(AB)^i_j=A^i_k\delta^k_lB^l_j=A^i_kB^k_j$ になっている。 例えばベクトル u,v と合わせて

$$(egin{array}{ccc} oldsymbol{u} & oldsymbol{u} \end{array}) \left(egin{array}{ccc} oldsymbol{u} & oldsymbol{v} \end{array}
ight) = oldsymbol{u}_i A_j^i v^j = oldsymbol{u} - oldsymbol{A} - oldsymbol{V} \end{array}$$

とできる。脚がないことから0階のテンソルすなわちスカラーであることが一目瞭然である。

3.2.3 トレース

トレースは行列から出た脚をつなげて表される。

$${\rm tr} A = \boxed{ \boxed{ } A } \boxed{ }$$

成分で見ると $A_i^i \delta_i^j = A_i^i$ でたしかに対角和である。脚がないのでスカラーである。

3.2.4 転置

行列の転置は脚の向きを反対側に捻じ曲げて表せる。

$$A^T = A$$

転置を取っていることが自明な場合は転置前と同じダイアグラムにして省略することがある。

3.2.5 和とスカラー倍

行列の和とスカラー倍は文字式同様すれば良い。 $a,b\in\mathbb{C}$ に対して

$$aA + bB = a - A - b - B -$$

である。

3.3 行列式と逆行列

形状が非自明なため説明が長くなる。あらかじめ結論を示しておこう。まず行列式は

$$\det M = \boxed{M} \quad \cdots \quad \boxed{M}$$

で表される。余因子行列は

$$\tilde{M} = \frac{1}{(n-1)!}$$
 M
 M
 M
 M

で、これによって逆行列は

とできる。

3.3.1 行列式

Penrose のグラフ記法で行列式を表そう。 $n \times n$ 行列の行列式は

$$\det M = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) M_{\sigma_1}^1 \cdots M_{\sigma_n}^n$$

で定義された。ここに \mathfrak{S}_n は n 次対称群 (置換の集合) である。置換の符号 $\mathrm{sgn}(\sigma)$ は Levi-Civita 記号の正負 に一致する。すなわち $\mathrm{sgn}(\sigma)=\epsilon_{1...n}^{\sigma_1...\sigma_n}$ である。縮約の際に添字が取りうる値を全て走ることに注意すると、

$$\det M = \epsilon_{1\cdots n}^{\sigma_1\cdots\sigma_n} M_{\sigma_1}^1 \cdots M_{\sigma_n}^n$$

を得る。Einstein の縮約記法に従えば添字は一般に重複するが、Levi-Civita 記号のため σ_k に重複がある項は 0 となる。この形をそのままグラフ記法に落とし込むと行の添字を操作することが難しくなるので、一見冗長だが

$$\det M = \frac{1}{n!} \epsilon_{1\cdots n}^{\sigma_{1}\cdots\sigma_{n}} \epsilon_{\tau_{1}\cdots\tau_{n}}^{1\cdots n} M_{\sigma_{1}}^{\tau_{1}}\cdots M_{\sigma_{n}}^{\tau_{n}}$$

$$\tag{3}$$

とする。先頭の係数は重複を割るために入れた。

これをグラフ記法で描くと以下のようになる。

$$\det M = \frac{1}{n!} \boxed{\frac{1}{M} \cdots \boxed{M}}$$
 (4)

3.3.2 余因子展開

行列式が明示的に表せたので余因子展開も直感的に解釈できると期待される。

$$\det M = \sum_{j} (-1)^{i+j} M_{j}^{i} \det \begin{pmatrix} M_{1}^{1} & \cdots & M_{j-1}^{1} & M_{j+1}^{1} & \cdots & M_{n}^{1} \\ \vdots & & \vdots & & \vdots \\ M_{1}^{i-1} & \cdots & M_{j-1}^{i-1} & M_{j+1}^{i-1} & \cdots & M_{n}^{i-1} \\ M_{1}^{i+1} & \cdots & M_{j-1}^{i+1} & M_{j+1}^{i+1} & \cdots & M_{n}^{i+1} \\ \vdots & & \vdots & & \vdots \\ M_{1}^{n} & \cdots & M_{j-1}^{n} & M_{j+1}^{n} & \cdots & M_{n}^{n} \end{pmatrix}$$
(5)

ここで添字iは固定しているが、iも回した方が見通しが良い。可能な添字の組み合わせ(i,j)全てで和をとるとiの候補としてn個の重複が現れるので、(3)を利用して、

$$\det M = \frac{1}{n} \sum_{i,j} (-1)^{i+j} M_j^i \frac{1}{(n-1)!} \epsilon_{1 \cdots i-1, i+1 \cdots n}^{\sigma_1 \cdots \sigma_{i-1} \sigma_{i+1} \cdots \sigma_n} \epsilon_{\tau_1 \cdots \tau_{j-1} \tau_{j+1} \cdots \tau_n}^{1 \cdots j-1, j+1 \cdots n} M_{\sigma_1}^{\tau_1} \cdots M_{\sigma_n}^{\tau_n}$$

である。なお、 σ_k, τ_k はそれぞれ $\{1, \cdots, i-1, i+1, \cdots, n\}, \{1, \cdots, j-1, j+1, \cdots, n\}$ すなわち i 以外、j 以外を走る。Levi-Civita 記号部分が

$$\epsilon_{\sigma_{1}\cdots\sigma_{i-1}\sigma_{i+1}\cdots\sigma_{n}}^{1\cdots i-1,i+1\cdots n} \epsilon_{1\cdots j-1,j+1\cdots \tau_{n}}^{\tau_{1}\cdots\tau_{j-1}\tau_{j+1}\cdots\tau_{n}} = \epsilon_{\sigma_{1}\cdots\sigma_{i-1},i,\sigma_{i+1}\cdots\sigma_{n}}^{1\cdots i-1,i,i+1\cdots n} \epsilon_{1\cdots j-1,j,j+1\cdots n}^{\tau_{1}\cdots\tau_{j-1},j,\tau_{j+1}\cdots\tau_{n}} \\
= \delta_{i}^{\sigma_{i}} \delta_{\tau_{j}}^{j} \epsilon_{\sigma_{1}\cdots\sigma_{i-1}\sigma_{i}\sigma_{i+1}\cdots\sigma_{n}}^{1\cdots i-1,i,i+1\cdots n} \epsilon_{1\cdots j-1,j,j+1\cdots n}^{\tau_{1}\cdots\tau_{j-1}\tau_{j}\tau_{j+1}\cdots\tau_{n}} \\
= (-1)^{i+j} \delta_{i}^{\sigma_{i}} \delta_{\tau_{j}}^{j} \epsilon_{\sigma_{i}\sigma_{1}\cdots\sigma_{i-1}\sigma_{i+1}\cdots\sigma_{n}}^{1\cdots i-1,i,i+1\cdots n} \epsilon_{1\cdots j-1,j,j+1\cdots n}^{\tau_{j}\tau_{1}\cdots\tau_{j-1}\tau_{j+1}\cdots\tau_{n}} \tag{6}$$

となることに注意して、

$$\det M = \frac{1}{n} M_{\tau_j}^{\sigma_i} \frac{1}{(n-1)!} \epsilon_{\sigma_i \sigma_1 \cdots \sigma_{i-1} \sigma_{i+1} \cdots \sigma_n}^{1 \cdots i-1, i, i+1 \cdots n} \epsilon_{1 \cdots j-1, j, j+1 \cdots n}^{\tau_j \tau_1 \cdots \tau_{j-1} \tau_{j+1} \cdots \tau_n} M_{\tau_1}^{\sigma_1} \cdots M_{\tau_n}^{\sigma_n}$$

である。

行列式の図式 (4) と比べると、 $M_{\tau_j}^{\sigma_i}$ は先頭の記号 M に対応し、残りの n-1 個が余因子とみなせる。係数 1/(n-1)! は余因子の重複を解消し、1/n は先頭の M の添字のうち片方について重複を解消している。

$$\det M = \frac{1}{\dim M!} \quad \boxed{M} \quad \boxed{M} \quad \cdots \quad \boxed{M}$$

もし (5) 同様に片方の添字を回さないのであれば、先頭の M の足が片方切れ、また重複を消す係数 1/n が消える。切れた足の添字は同一である。

$$\det M = \frac{1}{(\dim M - 1)!} \underbrace{M}_{i} \underbrace{M}_{i} \cdots \underbrace{M}_{i}$$

この状態は行列 M と余因子行列 \tilde{M} の行列積の ii 成分になっているはずである。したがって余因子行列は次の形で書けることがわかる。

$$\tilde{M} = \frac{1}{(\dim M - 1)!} \boxed{M} \boxed{M} \cdots \boxed{M}$$

$$(7)$$

この表式を検証しよう。一般に余因子行列の定義は数式で表すと煩雑になるのであった。

$$\tilde{M}_{i}^{j} = (-1)^{i+j} \det \begin{pmatrix} M_{1}^{1} & \cdots & M_{1}^{i-1} & M_{1}^{i+1} & \cdots & M_{1}^{n} \\ \vdots & \ddots & \vdots & & \ddots & \vdots \\ M_{j-1}^{1} & \cdots & M_{j-1}^{i-1} & M_{j-1}^{i+1} & \cdots & M_{j-1}^{n} \\ M_{j+1}^{1} & \cdots & M_{j+1}^{i-1} & M_{j+1}^{i+1} & \cdots & M_{j+1}^{n} \\ \vdots & \ddots & \vdots & & \ddots & \vdots \\ M_{n}^{1} & \cdots & M_{n}^{i-1} & M_{n}^{i+1} & \cdots & M_{n}^{n} \end{pmatrix}$$

一旦 Levi-Civita 記号を用いた表示にすると見通しが良い。整理のため余因子行列の転置を考えると、(3) にしたがって、

$$\tilde{M}_{j}^{i} = \frac{(-1)^{i+j}}{(n-1)!} \epsilon_{1\cdots i-1, i+1\cdots n}^{\sigma_{1}\cdots \sigma_{i-1}\sigma_{i+1}\cdots \sigma_{n}} \epsilon_{\tau_{1}\cdots \tau_{j-1}\tau_{j+1}\cdots \tau_{n}}^{1\cdots j-1, j+1\cdots n} M_{\sigma_{1}}^{\tau_{1}} \cdots M_{\sigma_{i-1}}^{\tau_{i-1}} M_{\sigma_{i+1}}^{\tau_{i}} M_{\sigma_{i+2}}^{\tau_{i+1}} \cdots M_{\sigma_{j}}^{\tau_{j-1}} M_{\sigma_{j+1}}^{\tau_{j+1}} \cdots M_{\sigma_{n}}^{\tau_{n}}$$

という形になる。なお、 σ , τ はそれぞれ $\{1,\cdots,i-1,i+1,\cdots,n\}$, $\{1,\cdots,j-1,j+1,\cdots,n\}$ を走る。 Levi-Civita 記号部分が (6) に一致することに注意して、転置まで取れば

$$\tilde{M}_{i}^{j} = \frac{1}{(n-1)!} \delta_{\sigma_{i}}^{j} \delta_{i}^{\tau_{j}} \epsilon_{1\cdots i-1, i, i+1\cdots n}^{\sigma_{i}\sigma_{1}\cdots\sigma_{i-1}\sigma_{i+1}\cdots\sigma_{n}} \epsilon_{\tau_{j}\tau_{1}\cdots\tau_{j-1}\tau_{j+1}\cdots\tau_{n}}^{1\cdots j-1, j, j+1\cdots n} M_{\sigma_{1}}^{\tau_{1}} \cdots M_{\sigma_{i-1}}^{\tau_{i-1}} M_{\sigma_{i+1}}^{\tau_{i}} \cdots M_{\sigma_{j}}^{\tau_{j-1}} M_{\sigma_{j+1}}^{\tau_{j+1}} \cdots M_{\sigma_{n}}^{\tau_{n}}$$

$$\tilde{C} \tilde{D} \tilde{D}_{\sigma}$$

これほど大量の添字が並ぶと、なおのことグラフ記法の有用性がわかる。各添字が走る領域を考慮すると、図式は (7) が対応する。上の太線が τ_k の置換に、下の太線が σ_k の置換に当たる。係数の (n-1)! は後ろの n-1 個の成分の並べ替えに対応していることが一目でわかるだろう。

3.3.3 逆行列

余因子行列まで求まれば逆行列の計算も難しくない。定義によれば正則行列 M について、 $M^{-1}=\tilde{M}/\det M$ である。したがって直ちに以下を得る。

$$M^{-1} = n \frac{M M \cdots M}{M \cdots M}$$

$$(8)$$

この空いている脚に M をつなぐと単位行列になることを確認しよう。余因子行列に M をつないだ $M\tilde{M}$ の成分は以下のようになる。

$$(M\tilde{M})_{j}^{i} = n \frac{\tilde{J}}{\tilde{M} \cdots \tilde{M}}$$

$$(9)$$

これが単位行列であることを

- 1. 対角行列である
- 2. 対角成分が全て等しい
- 3. 対角和が次元に等しい

の手順で示していこう。

まずは (9) が対角行列であることを示す。すなわち $i\neq j$ で $(M\tilde{M})^i_j=0$ となることを見れば良い。添字を扱いやすくする目的で行成分に付け加えた Levi-Civita 記号だが、ここでは外した方が見通しが良い。 Levi-Civita 記号には各脚 1 本ずつに添字が割り当てられており、それぞれは異なって 1 から n まで全てをとりうる。先頭は j で固定されているので、先頭の M に加えて後ろ n-1 本の中どれかにも i が入っている。

この同じ添字 j をぶら下げた M どうしを奇置換しても等価な形が現れるので、Levi-Civita 記号にぶら下がる図式は値が 0 となる。したがって $M\tilde{M}$ は対角行列であることが示された。

今度は対角成分が等しい、すなわち $(M\tilde{M})_{ii} = (M\tilde{M})_{ij}$ を示す。

$$(M\tilde{M})_{ii} \propto \pm \frac{\overline{M}}{i} \dots \frac{\overline{M}}{n} + \text{(replacements)}$$

ただし符号は下付きの添字に対応する置換に合わせる。どの並び順にしても、下付き添字が1からnに順に並ぶよう置換を繰り返すと全て符号が+で揃うので、値は成分によらない。

最後に (9) で脚をつなげると分母の \det から出た図式と一致するので、 $\det M\tilde{M}=n= \operatorname{tr} 1$ である。 以上より $M\tilde{M}=1$ である。全く同様にして $\tilde{M}M=1$ も示される。M との行列積が単位行列となるので、(8) は逆行列に他ならない。

3.4 行列式の性質

ここまでに求めた行列式などのグラフ記法によって諸々の性質を証明していこう。

3.4.1 定数倍の行列式

$$\det(cA) = c^n \det A$$

Levi-Civita 記号につながる n 個全ての A が c 倍される。

3.4.2 行列積の行列式

$$\det(AB) = \det(A)\det(B)$$

この導出に先立って、添え字が 1 から n の値を取るような Levi-Civita 記号に n 次元正方行列 A が n 個繋 がったときに成り立つ公式

を示す。第二の等号は (2) による。左辺はそれぞれの A の交換について完全反対称なので Levi-Civita 記号に 比例する。あとは脚が $12\dots n$ の順に並んでいるとき値が合致していることを確認すれば良い。便宜上縮約を

とる各線に全単射の置換 $\sigma, \tau: \{1, ..., n\} \to \{1, ..., n\}$ によってインデックスを振ると、右辺は

である。縮約の総和は τ , σ が任意の置換をとることに対応する。 $\{1,\ldots,n\}\to\{1,\ldots,n\}$ の置換は総じて n! 個存在する。総和すると σ , τ それぞれが n! 通りの置換を走って $\tau^{-1}\circ\sigma$ は $(n!)^2$ 通りの作り方ができる。しかし $\tau^{-1}\circ\sigma$ もまた置換であるため、異なるものは n! しかない。つまり

$$\sum_{\sigma \in \mathfrak{S}_n} \sum_{\tau \in \mathfrak{S}_n} \tau^{-1} \circ \sigma = n! \sum_{\sigma \in \mathfrak{S}_n} \sigma$$

なので、(10) が成立する。

(10) を使えば積の行列式は半ば自明に導出できる。n 次元正方行列 A,B の積の行列式は

$$\det(AB) = \begin{array}{c|c} & & & \\ \hline A & \cdots & A \\ \hline B & & \\ \hline \end{array} = \frac{1}{n!} \begin{array}{c|c} \hline A & \cdots & A \\ \hline \hline A & \cdots & A \\ \hline \hline B & \cdots & B \\ \hline \end{array} = \det A \det B$$

なので、積の行列式は行列式の積となる。

3.4.3 逆行列の行列式

$$\det(A^{-1}) = 1/\det(A)$$

 $\det(AA^{-1}) = \det A \det A^{-1} = 1$ から導出される。特にグラフ記法を使う必要はない。余因子行列の行列式が複雑なので、上記の方法から導くのが圧倒的に簡単。

3.4.4 余因子行列の行列式

$$\det \tilde{A} = (\det A)^{n-1}$$

逆行列の定義と行列の定数倍の行列式から

$$\det A^{-1} = \det \left(\frac{\tilde{A}}{\det A} \right) = \frac{\det \tilde{A}}{(\det A)^n}$$

となることから導出可能。これもグラフ記法は不要。

3.4.5 転置行列の行列式

$$\det A^T = \det A$$

脚が全て潰れたグラフは特別な向きを持たないので、 $\det A$ と区別がつかない。

4 微分形式の公式の表現

4.1 前提知識・表記上の注意

本節では

- 微分形式の定義
- 完全反対称 Levi-Civita テンソル
- wedge 積
- 外微分
- 内部積

の知識を前提とする。

基本的に添字を使う場合は Einstein の縮約記法に従って表す。また、微分記号 ∂_i は括弧を使わない限り常に直後の量のみを微分する。すなわち、 $\partial_i A^j B^k = \partial_i (A^j) B^k$.

n 次対称群を \mathfrak{S}_n で表し、 $P \in \mathfrak{S}_n$ の符号を $\mathrm{sgn}(P)$ とする。k 階の完全反対称 Levi-Civita テンソルは以下で定義する。

$$\epsilon_{\nu_1 \cdots \nu_k}^{\mu_1 \cdots \mu_k} \equiv \det \begin{pmatrix} \delta_{\nu_1}^{\mu_1} & \cdots & \delta_{\nu_k}^{\mu_1} \\ \vdots & \ddots & \vdots \\ \delta_{\nu_k}^{\mu_k} & \cdots & \delta_{\nu_k}^{\mu_k} \end{pmatrix} = \sum_{P \in \mathfrak{S}_n} \operatorname{sgn}(P) \delta_{\nu_1}^{P(\mu_1)} \cdots \delta_{\nu_k}^{P(\mu_k)}$$

4.2 微分形式及び各種演算

4.2.1 k-form

k-form の基底は座標基底の双対基底で

$$\mathrm{d} x^{\mu_1} \wedge \dots \wedge \mathrm{d} x^{\mu_k} = \sum_{P \in \mathfrak{S}_k} \mathrm{sgn}(P) \, \mathrm{d} x^{\mu_{P(1)}} \otimes \dots \otimes \mathrm{d} x^{\mu_{P(k)}} = \epsilon_{\mu'_1 \dots \mu'_k}^{\mu_1 \dots \mu_k} \, \mathrm{d} x^{\mu'_1} \otimes \dots \otimes \mathrm{d} x^{\mu'_k}$$

と表せ、成分と合わせると

$$\omega \equiv \omega_{\mu_1 \cdots \mu_k} \, \mathrm{d} x^{\mu_1} \wedge \cdots \wedge \mathrm{d} x^{\mu_k} = \omega_{\mu_1 \cdots \mu_k} \epsilon_{\mu'_1 \cdots \mu'_k}^{\mu_1 \cdots \mu_k} \, \mathrm{d} x^{\mu'_1} \otimes \cdots \otimes \mathrm{d} x^{\mu'_k}$$

である。

Levi-Civita テンソルの表現をもとに k-form は以下のように表される。

$$\omega_{\mu_1 \cdots \mu_n} = \frac{\omega}{\mu_1 \mu_2 \dots \mu_k}$$

太線は Levi-Civita テンソルを表し、 ω とラベリングされている長方形は係数を表す。

グラフ記法では基底を表すのが難しいので、原則として $\mathrm{d}x$ などの記号は書かない。上に開いている脚は座標基底 ∂_μ に、下に開いている脚は双対基底 $\mathrm{d}x^\mu$ に繋がっていると解釈する。

4.2.2 Lie 微分

テンソルに対する Lie 微分は一般に

$$\mathcal{L}_{V}(t_{\nu_{1}\cdots\nu_{k}}^{\mu_{1}\cdots\mu_{l}}\partial_{\mu_{1}}\otimes\cdots\partial_{\mu_{l}}\otimes\mathrm{d}x^{\nu_{1}}\otimes\cdots\otimes\mathrm{d}x^{\nu_{k}})$$

$$=V^{\lambda}\partial_{\lambda}t_{\nu_{1}\cdots\nu_{k}}^{\mu_{1}\cdots\mu_{l}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{l}}\otimes\mathrm{d}x^{\nu_{1}}\otimes\cdots\otimes\mathrm{d}x^{\nu_{k}}$$

$$-t_{\nu_{1}\cdots\nu_{k}}^{\mu_{1}\cdots\mu_{l}}\partial_{\mu_{1}}V^{\lambda}\partial_{\lambda}\otimes\cdots\otimes\partial_{\mu_{l}}\otimes\mathrm{d}x^{\nu_{1}}\otimes\cdots\otimes\mathrm{d}x^{\nu_{k}}$$

$$-\cdots$$

$$-t_{\nu_{1}\cdots\nu_{k}}^{\mu_{1}\cdots\mu_{l}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{l}}V^{\lambda}\partial_{\lambda}\otimes\mathrm{d}x^{\nu_{1}}\otimes\cdots\otimes\mathrm{d}x^{\nu_{k}}$$

$$+t_{\nu_{1}\cdots\nu_{k}}^{\mu_{1}\cdots\mu_{l}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{k}}\otimes\partial_{\lambda}V^{\nu_{1}}\mathrm{d}x^{\lambda}\otimes\cdots\otimes\mathrm{d}x^{\nu_{k}}$$

$$+\cdots$$

$$+t_{\nu_{1}\cdots\nu_{k}}^{\mu_{1}\cdots\mu_{l}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{l}}\otimes\mathrm{d}x^{\nu_{1}}\otimes\cdots\otimes\partial_{\lambda}V^{\nu_{k}}\mathrm{d}x^{\lambda}$$

$$(11)$$

で表される。

これを Penrose のグラフ記法で表すと以下の通り。

(11) の表示でも使える直観的な作用素の付き方の判別法を紹介しよう。微分作用素 $V=V^{\mu}\partial_{\mu}$ は Leibnitz rule に従って各々の要素を微分していく。成分 $t^{\mu_1...\mu_l}_{\nu_1...\nu_k}$ を微分する際は特に何も考えず丸で囲って脚を V に繋げれば良い。座標基底 ∂_{μ} に作用する際は、成分の四角と基底から伸びる脚の間に V^{μ} と ∂_{ν} が差し込まれる。

 V^{μ} を反変で、 ∂_{ν} を共変で差し込める形状は左図の形のみである。同様にして双対基底 $\mathrm{d}x^{\mu}$ に作用する場合を考えると、右の場合だけが許される。

4.2.3 wedge 積

外積 (wedge 積) は $\xi \in \Omega^k(M), \eta \in \Omega^l(M)$ に対して

$$(\xi \wedge \eta)(V_1, \dots, V_{k+l}) = \frac{1}{k!l!} \sum_{P \in \mathfrak{S}_{k+l}} \operatorname{sgn}(P) \xi(V_{P(1)}, \dots V_{P(k)}) \eta(V_{P(k+1)}, \dots V_{P(k+l)})$$

で定義されるが、成分表示してベクトルを除くと

$$(\xi_{\mu_{1}\cdots\mu_{k}} dx^{\mu_{1}} \wedge \cdots \wedge dx^{\mu_{k}}) \wedge (\eta_{\mu_{k+1}\cdots\mu_{k+l}} dx^{\mu_{k+1}} \wedge \cdots \wedge dx^{\mu_{k+l}})$$

$$= \xi_{\mu_{1}\cdots\mu_{k}} \eta_{\mu_{k+1}\cdots\mu_{k+l}} dx^{\mu_{1}} \wedge \cdots \wedge dx^{\mu_{k+l}}$$

$$= \xi_{\mu_{1}\cdots\mu_{k}} \eta_{\mu_{k+1}\cdots\mu_{k+l}} \epsilon^{\mu_{1}\cdots\mu_{k}\mu_{k+1}\cdots\mu_{k+l}}_{\mu'_{1}\cdots\mu'_{k}\mu'_{k+1}\cdots\mu_{k+l}} dx^{\mu'_{1}} \otimes \cdots \otimes dx^{\mu'_{k+l}}$$

となる。

グラフ記法では、2つの微分形式それぞれを貫くLevi-Civita 記号の太線をつなげることで wedge 積を表す。

4.2.4 外微分

外微分は

$$d(\omega_{\mu_1\cdots\mu_k} dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_k}) = \partial_{\mu_0}\omega_{\mu_1\cdots\mu_k} dx^{\mu_0} \wedge dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_k}$$
$$= \partial_{\mu_0}\omega_{\mu_1\cdots\mu_k} \epsilon^{\mu_0\mu_1\cdots\mu_k}_{\mu'_0\mu'_1\cdots\mu'_k} dx^{\mu'_0} \otimes \cdots \otimes dx^{\mu'_k}$$

で表される。

グラフ記法では係数を表す四角を微分記号の丸で囲い、出した脚を太線の先頭に差し込む。

$$d \quad \frac{\omega}{\mu_1 \mu_2 \quad \mu_k} = \frac{\omega}{\mu_0 \mu_1 \mu_2 \quad \mu_k}$$

4.2.5 内部積

内部積は

$$\iota_V \omega(V_1 \cdots V_{k-1}) = \omega(V, V_1 \cdots V_{k-1})$$

で定義されるが、これも成分表示によって

$$\iota_V(\omega_{\mu_1\cdots\mu_k}\,\mathrm{d} x^{\mu_1}\wedge\cdots\wedge\mathrm{d} x^{\mu_k})=\omega_{\mu_1\cdots\mu_k}\epsilon_{\mu'_1\cdots\mu'_k}^{\mu_1\cdots\mu_k}V^{\mu'_1}\,\mathrm{d} x^{\mu'_2}\otimes\cdots\otimes\mathrm{d} x^{\mu'_k}$$

となる。

グラフ記法で表すと、先頭の脚を V で潰す形になる。

$$\iota_V \begin{array}{c|c} \hline \omega \\ \hline \downarrow \\ \mu_1 \mu_2 \end{array} = \begin{array}{c|c} \hline \omega \\ \hline \downarrow \\ \hline V \end{array} \begin{array}{c|c} \mu_2 \\ \mu_2 \end{array} \mu_k$$

4.3 微分形式の公式

上記の表記を応用して微分形式の公式を直観的に導出していこう。なお以下の導出は Einstein の縮約記法を使っても、グラフ記法の流れをそのまま追うことで証明できる。

4.3.1 Poincaré の補題 $d^2=0$

微分順序の交換と反対称性を用いる。

左辺と右辺は符号だけが違うので、0のみが許される。

4.3.2 内部積の別表現

内部積 $\iota_V\omega$ を表す方法として、ベクトル V で潰した ω の先頭の脚を Levi-Civita テンソルから外す表し方がある。

$$\iota_V \omega = k \omega_{\mu_1 \cdots \mu_k} \epsilon_{\mu'_2 \cdots \mu'_k}^{\mu_2 \cdots \mu_k} V^{\mu'_1} \, \mathrm{d} x^{\mu'_2} \otimes \cdots \otimes \mathrm{d} x^{\mu'_k}$$

Levi-Civita テンソルの添字が μ_2, μ_2' から始まることに注意。

これを証明するにはまずVがつながった脚を反対称テンソルから外す。

 $\omega_{\mu_1\cdots\mu_k}$ が添字に対して反対称であることに注意すると、上図 1 段目右辺にて正号がつくものは偶置換で、負号がつくものは奇置換で第 1 項に戻るので、各項全て同じ値となる。全部で k 項あるので 2 段目を得る。

4.3.3 Cartan の公式 $(d\iota_V + \iota_V d)\omega = \mathcal{L}_V \omega$

まずは左辺を書き出してみよう。第 1 項の内部積は 4.3.2 を使うのが良い。下図 1 段目にそれぞれ外微分・内部積を作用させると 2 段目が得られる。

$$(\operatorname{d}\iota_{V} + \iota_{V}\operatorname{d}) \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} = k\operatorname{d} \xrightarrow{\omega} + \iota_{V} \xrightarrow{\omega} + \iota_{V} \xrightarrow{\mu_{0}\mu_{1}\mu_{2} \quad \mu_{k}}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\omega}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\omega}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\omega}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\omega}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\omega}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\omega} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\omega} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\omega} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}}$$

$$= k\operatorname{d} \xrightarrow{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{k}} + \iota_{V} \xrightarrow{\mu_{1}\mu_{2} \quad \mu_{1} \quad \mu_{1} \quad \mu_{2} \quad \mu_{2} \quad \mu_{1} \quad \mu_{2} \quad \mu_$$

第1項は微分を Leibnitz rule によって分解する。

(12) 第 2 項は V を反対称テンソルから外す。

1 段目右辺第 2 項以降で、符号が正の項は偶置換で、負の項は奇置換で全て第 2 項になるので、V が微分に繋がっている初項を除き右辺は全て同じ項である。第 2 項以降は V が ω に繋がる位置を考慮すると全部で k 項あるので、2 段目を得る。

従って (12) は以下の形に等しい。

$$(d \iota_V + \iota_V d) \xrightarrow{\mu_1 \mu_2 \dots \mu_k} = k \xrightarrow{V} \dots + V$$

$$(13)$$

さらにこの右辺第 1 項は $\omega_{\mu_1\cdots\mu_k}$ の添字に対する反対称性から以下のように展開できる。

(13) に戻すと、これは k-form の Lie 微分に等しい。よって Cartan の公式を得る。

$$(\mathrm{d}\iota_V + \iota_V \, \mathrm{d}x)\omega = \mathcal{L}_V \omega$$

参考文献

- $[1] \ \ Roger\ Penrose,\ Applications\ of\ Negative\ Dimensional\ Tensors,\ Academic\ Press,\ 1971.$
- [2] E. ランダウ, E. M. リフシッツ, 恒藤敏彦訳「場の古典論 (原書第 6 版)」東京図書, 1978.
- [3] 中原幹夫「理論物理学のための幾何学とトポロジー 第 2 版」日本評論社, 2021.
- [4] arXiv:1911.00892 [physics.ed-ph]