Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №5.2.2

Изучение спектров водорода и йода

Маршрут VII

14 ноября 2019 г. 21 ноября 2019 г. Работу выполнил Ринат Валиев, 715 гр.

Под руководством А.И. Миланича

Постановка эксперимента

Цель работы: откалибровать спектрометр по линиям неона и ртути, определить координаты линий серии Бальмера атомарного водорода, рассчитать постоянную Ридберга. Вычислить энергию колебательного кванта молекулы йода и энергию ее диссоциации в основном и возбужденном состоянии.

Экспериментальная установка

Длины волн спектральных линий водородоподобного атома:

$$\frac{1}{\lambda_{nm}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

Энергия кванта в возбужденном состоянии:

$$h\nu_2 = \frac{h(\nu_{1.5} - \nu_{1.0})}{5}$$

Энергия диссоциации:

$$D_1 = h\nu_{\rm rp} - E_A$$

Выполнение работы

1. Калибровка барабана спектрометра линиями неона и ртути:

Неон	λ,\mathring{A}	7032	6402	6164	6030	5852	5401
		2586					
Ртуть	λ , hm	623.4	579.1	577	546.1	491.6	404.7
	φ , °	2302	2094	2084	1902	1486	822

2. Определение длин волн водорода с помощью калибровочного графика (графики приведены ниже) и проверка формулы сериальной закономерности:

φ , °	λ , HM	n	$1/\lambda$, hm^2	$1/4 - 1/n^2$
114	393	6	0.00253	0.2222
530	401	5	0.00249	0.2100
1166	458	4	0.00218	0.1875
2160	662	3	0.00151	0.1389

3. Из зависимости $1/\lambda$ от $1/4-1/n^2$ (коэффициент наклона \cdot 10^4 см $^{-1}$) находим постоянную Ридберга: $R=(11.5\pm0.2)\cdot10^4$ см $^{-1}$.

4. Приведем графики градуировок:

Рис. 1: $y = 0.0012x^2 - 3.0077x + 6883.5$

Рис. 2: $y = 5 \cdot 10^{-5}x^2 + 0.0003x + 375.75$

5. Используя калибровку, определим длины волн в спектре йода:

6. Теперь расчеты:

$$h\nu_2 = (h\nu_{1.5} - h\nu_{1.0})/5 = 0.0133 \pm 0.0003 \text{ 9B}$$

$$h\nu_{1.0} = (E_2 - E_1) + h\nu_2 \left(1 + \frac{1}{2}\right) - \frac{3}{2}h\nu_1$$

$$h\nu_{1.0} = h\nu_{el} + \frac{3}{2}(h\nu_2 - h\nu_1) \implies h\nu_{el} = 2.02 \pm 0.04 \text{ 9B}$$

$$h\nu_{rp} = h\nu_{el} + D_2 = D_1 + E_A$$

Энергия диссоциации в возбужденном состоянии: $D_2=0.30\pm0.01$ эВ. Энергия диссоциации в основном состоянии: $D_1=1.08\pm0.04$ эВ.

Итоги

Водородные длины волн соответствуют сериальной закономерности. Найдена постоянная Ридберга: $R=(11.5\pm0.2)\cdot 10^4~{\rm cm}^{-1}$. Табличное значение: $R=109677.5~{\rm cm}^{-1}$. Для йода найдены: энергия электронного перехода $h\nu_{el}=2.02\pm0.04~{\rm sB}$, энергии диссоциации в основном состоянии $D_1=1.08\pm0.04~{\rm sB}$ и возбужденном $D_2=0.30\pm0.01~{\rm sB}$.