

32 位微控制器

DAC 模块

适用对象

色门门外					
系列	产品型号	系列	产品型号		
HC32L17	HC32L176PATA	HC32F17	HC32F176PATA		
	HC32L176MATA		HC32F176MATA		
	HC32L176KATA		HC32F176KATA		
	HC32L176JATA		HC32F176JATA		
	HC32L170JATA		HC32F170JATA		
	HC32L170FAUA		HC32F170FAUA		
HC32L19	HC32L196PCTA	HC32F19	HC32F196PCTA		
	HC32L196MCTA		HC32F196MCTA		
	HC32L196KCTA		HC32F196KCTA		
	HC32L196JCTA		HC32F196JCTA		
	HC32L190JCTA		HC32F190JCTA		
	HC32L190FCUA		HC32F190FCUA		

目 录

2 功能介绍 3 3 DAC 模块 4 3.1 DAC 电压输出 4 3.2 DAC 触发选择 4 3.3 DMA 请求 4 3.4 DAC 三角波生成 4 3.5 DAC 噪声生成 5 总结 5 6 其他信息 5 7 版本信息 & 联系方式 6	1	摘要		. 3			
3 DAC 模块 4 3.1 DAC 电压输出 4 3.2 DAC 触发选择 4 3.3 DMA 请求 4 3.4 DAC 三角波生成 4 3.5 DAC 噪声生成 5 4 参考样例及驱动 5 5 总结 5 6 其他信息 5							
3.1 DAC 电压输出 4 3.2 DAC 触发选择 4 3.3 DMA 请求 4 3.4 DAC 三角波生成 4 3.5 DAC 噪声生成 5 4 参考样例及驱动 5 5 总结 5 6 其他信息 5							
3.2 DAC 触发选择 4 3.3 DMA 请求 4 3.4 DAC 三角波生成 4 3.5 DAC 噪声生成 5 4 参考样例及驱动 5 6 其他信息 5							
3.3 DMA 请求 4 3.4 DAC 三角波生成 4 3.5 DAC 噪声生成 5 4 参考样例及驱动 5 6 其他信息 5							
3.4 DAC 三角波生成 4 3.5 DAC 噪声生成 5 4 参考样例及驱动 5 5 总结 5 6 其他信息 5							
4 参考样例及驱动							
5 总结		3.5	DAC 噪声生成	. 5			
6 其他信息5	4	参考	样例及驱动	. 5			
6 其他信息5	5	总结		. 5			
7 版本信息 & 联系方式6							
	7	版本	信息 & 联系方式	. 6			

1 摘要

本篇应用笔记主要介绍华大半导体 MCU*的 DAC 模块的使用。

注意:

一本应用笔记为华大半导体 MCU*的应用补充材料,不能代替用户手册,具体功能及寄存器的操作等相关事项请以用户手册为准。

2 功能介绍

通过本篇可以了解到华大半导体 MCU*的 DAC 模块的应用和使用注意事项。该模块集成一个 DAC 12 位转换器,具有一个输出通道 DAC_OUT,该输出可以到外部端口,或者作为 OPA 的正端输入信号,或者作为 ADC 的模拟输入。DAC 可以提供 4 种参考源: AVCC 电压、ExRef 引脚、内置 1.5V 参考电压和内置 2.5V 参考电压。

* 支持型号见封面。

应用笔记 Page 3 of 6

3 DAC 模块

3.1 DAC 电压输出

DAC 模块数字输入转为0到 VREF+之间的输出电压。

DAC 通道输出模拟电压通过以下公式确定:

$DAC_{out} = V_{ref} * DOR/4096$

3.2 DAC 触发选择

如果 TEN0 控制位置 1,可通过外部事件或者软件来触发转换。TSEL[2:0]控制位决定选择的触发转换。触发源参考图 1。当 DAC 选择定时器 TRGO 输出或者外部端口上升沿时,DAC 模块经过三个 APB1 周期,DAC 寄存器得到更新。

如果软件触发,转换即会开始。

TSEL	000	001	010	011	100	101	110	111
触发源	TIM0_	TIM1_	TIM2_	TIM3_	TIM4_	TIM5_	SW	EXTI
	TRADC	TRADC	TRADC	TRADC	TRADC	TRADC	TRIG	

图 1 触发源图

3.3 DMA 请求

当 DAMEN0 置 1 时,如果发送触发,则产生 DAC DMA 请求。DAC_DHR0 寄存器的值传递到 DAC DOR0 寄存器。

由于 DAC DMA 请求没有缓冲队列,有可能产生 DAM 通道下溢相应标志 DAMUDR0 置 1, DAM 数据传输停止,DAC 通道仍继续旧有数据转换。软件写"1"来将 DMAUDR0 标志清零,将所用 DMA 数据流的 DMAEN 位清零,并重新初始化 DMA 和 DAC 通道,开始正确重新 DMA 传输。

3.4 DAC 三角波生成

在直流信号上叠加一个小幅三角波。将 WAVE0[1:0]置为"10",振幅通过 DAC_CR 寄存器 MAP0[3:0]位进行配置。每次触发事件后,经过三个 APB 时钟周期,内部三角波计数器将会 递增。一旦达到配置的振幅,计数器将递减至零,然后再递增。

应用笔记 Page 4 of 6

3.5 DAC 噪声生成

为了产生可变振幅的伪噪声,可使用 LFSR,将 WAVE0[1:0]置为"01"。LFSR 中预加载值 为 0xAAA。每次发生触发事件后,经过三个 APB 时钟周期,该寄存器会按照特定算法完成 更新。

4 参考样例及驱动

通过上述介绍,配合相应系列的用户手册,我们对华大半导体 MCU*的 DAC 模块功能及操作方法有了进一步的掌握。

华大半导体(HDSC)官方同时提供了该模块的驱动库,用户可通过打开样例的工程进一步 直观地熟悉该模块以及驱动库的应用,在实际开发中也可以直接参考样例和使用驱动库来快 速实现对该模块的操作。

5 总结

以上章节简要介绍了华大半导体 MCU*的 DAC 模块,详细说明了 DAC 模块的使用。用户在实际的应用开发过程中,如果需要更深一步了解该模块的使用方法及操作事项,应以相应的用户手册为准。本篇中提到的驱动库,既可以作为用户进一步的实验与学习,也可以在实际开发中直接应用。

6 其他信息

技术支持信息: www.hdsc.com.cn

* 支持型号见封面。

应用笔记 Page 5 of 6

7 版本信息 & 联系方式

日期	版本	修改记录
2019/6/24	Rev1.0	初版发布。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

应用笔记 AN0150001C