Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Лабораторная работа № 2 по дисциплине "Теория автоматов"

Минимизация абстрактных автоматов

Вариант: 5

Выполнил: Чебыкин И. Б.

Группа: Р3301

Проверяющий: Ожиганов А. А.

1 Описание работы

Цель — овладение навыками минимизации полностью определенных абстрактных автоматов. Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура — одной отмеченной таблицей переходов. Эквивалентные автоматы могут иметь различное число состояний. В связи с этим возникает задача нахождения минимального (с минимальным числом состояний) автомата в классе эквивалентных между собой автоматов.

Для минимизации абстрактного автомата использовать алгоритм, предложенный Ауфенкампом и Хоном. Основная идея алгоритма состоит в разбиении всех состояний исходного абстрактного автомата на попарно не пересекаемые классы эквивалентных состояний. После разбиения происходит замена каждого класса эквивалентности одним состоянием. Получившийся в результате минимальный абстрактный автомат имеет столько же состояний, на сколько классов эквивалентности разбиваются состояния исходного абстрактного автомата.

2 Порядок выполнения задания

- 1. В соответствии с номером варианта выбрать абстрактный автомат $S = (A, Z, W, \delta, \lambda, a_1)$.
- 2. Найти последовательные разбиения $\pi_1, \pi_2, ..., \pi_k, \pi_k + 1$ множества A на классы одно-, двух-, ... , k+1 эквивалентных между собой состояний.
- 3. Разбиение на классы производить до тех пор, пока на каком-то k+1 шаге не окажется, что $\pi_k+1=\pi_k$.
- 4. В каждом классе эквивалентности разбиения π выбрать по одному элементу, которые образуют множество A' состояний минимального автомата $S' = (A', Z, W, \delta', \lambda', a'_1)$, эквивалентного исходному автомату S.
- 5. Функции переходов и выходов автомата S', определить на множестве A' *Z, то есть δ' : A' *Z \rightarrow A', λ' : A' *Z \rightarrow W.
- 6. В качестве a_1' , выбрать одно из состояний, эквивалентных a_1
- 7. Используя навыки полученные при выполнении практического задания 1, осуществить проверку исходного и минимизированного автоматов на эквивалентность.

3 Выполнение

3.1 Исходный автомат

λ	w_2	w_1	w_1	w_2	w_1	w_3	w_1	w_4	w_4
δ	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9
z_1	a_5	a_6	a_8	a_5	a_1	a_2	a_4	a_7	a_7
z_2	a_2	a_3	a_9	a_7	a_7	a_8	a_8	a_9	a_8

3.2 Минимизация

$$\pi_0 = A_1\{a_1, a_4\}, B_1\{a_2, a_3, a_5, a_7\}, C_1\{a_6\}, E_1\{a_8, a_9\}$$

π	a_1	a_4	a_2	a_3	a_5	a_7	a_6	a_8	a_9
z_1	B_1	B_1	C_1	E_1	A_1	A_1	B_1	B_1	B_1
z_2	B_1	B_1	B_1	E_1	B_1	E_1	E_1	E_1	E_1

$$\pi_1 = A_2\{a_1, a_4\}, B_2\{a_2\}, C_2\{a_3\}, D_2\{a_5\}, E_2\{a_7\}, F_2\{a_6\}, G_2\{a_8, a_9\}$$

π	a_1	a_4	a_2	a_3	a_5	a_7	a_6	a_8	a_9
z_1	D_2	D_2	F_2	G_2	A_2	A_2	B_2	E_2	E_2
z_2	B_2	E_2	C_2	G_2	E_2	G_2	G_2	G_2	G_2

$$\pi_2 = A_3\{a_1\}, B_3\{a_2\}, C_3\{a_3\}, D_3\{a_5\}, E_3\{a_7\}, F_3\{a_6\}, G_3\{a_8, a_9\}, H_3\{a_4\}$$

π	a_1	a_2	a_3	a_5	a_7	a_6	a_8	a_9	a_4
z_1	D_3	F_3	G_3	A_3	H_3	B_3	E_3	E_3	D_3
z_2	B_3	C_3	G_3	E_3	G_3	G_3	G_3	G_3	E_3

$$\pi_3 = A_4\{a_1\}, B_4\{a_2\}, C_4\{a_3\}, D_4\{a_5\}, E_4\{a_7\}, F_4\{a_6\}, G_4\{a_8, a_9\}, H_4\{a_4\}$$

4 Проверка на эквивалентность

Входящий сигнал			z1	z2	z1	z2	z1	z1	z1	z2	z1	z1	z2	z1	z1	z2	z2	z2	z2	z1
Состояние	Исх.	a1	a5	a7	a4	a7	a4	a5	a1	a2	a6	a2	a3	a8	a7	a8	a9	a8	a9	a7
	Мин.	A4	D4	E4	H4	E4	H4	D4	A4	B4	F4	B4	C4	G4	E4	G4	G4	G4	G4	E4
Выходящий сигнал	Исх.	w2	w1	w1	w2	w1	w2	w1	w2	w1	w3	w1	w1	w4	w1	w4	w4	w4	w4	w1
	Мин.	w2	w1	w1	w2	w1	w2	w1	w2	w1	w3	w1	w1	w4	w1	w4	w4	w4	w4	w1

5 Вывод

В ходе данной лабораторной работы была произведена минимизация автомата Мура. Также было доказано, что исходный и получившийся автомат эквивалентны друг другу.