前景广阔的古老组合学分支—组合设计漫谈—

- 1 Combinatorics and designs
- 2 Topics of Combinatorial designs
- 3 Applications of design theory

Magic square

1	15	14	4
12	6	7	9
8	10	11	5
13	3	2	16

加乘幻方

幻和数= 840

幻积数= 205806823185600

 $=\ 2^{7}3^{8}5^{3}7^{1}13^{1}17^{1}19^{1}23^{1}29^{1}$

Walter W. Horner, 1955

46	81	117	102	15	76	200	203
19	60	232	175	54	69	153	78
216	161	17	52	171	90	58	75
135	114	50	87	184	189	13	68
150	261	45	38	91	136	92	27
119	104	108	23	174	225	57	30
116	25	133	120	51	26	162	207
39	34	138	243	100	29	105	152

2*23	34	32*13	2*3*17	3*5	22*19	23*52	7*29
19	22*3*5	23*29	55*7	2*33	3*23	32*17	2*3*13
23*33	7*23	17	22*13	32*19	2*32*5	2*29	3*52
33*5	2*3*19	2*52	3*29	23*23	33*7	13	22*17
2*3*52	32*29	32*5	2*19	7*13	23*17	22*23	33
7*17	23*13	22*33	23	2*3*29	32*52	3*19	2*3*5
22*29	52	7*19	23*3*5	3*17	2*13	2*34	32*23
3*13	2*17	2*3*23	73	$2^{2*}5^{2}$	29	3*5*7	23*19

3

36 officers (Euler 1779)

腓特烈大帝的阅兵难题 ---- Euler 的困惑

Latin square

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 4 & 3 \\
2 & 3 & 1 & 4 \\
3 & 4 & 2 & 1 \\
4 & 1 & 3 & 2
\end{pmatrix}$$

Orthogonal Latin squares

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

正交拉丁方与正交拉丁方组

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1 \\
2 & 1 & 4 & 3
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2
\end{pmatrix}$$

 $\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
3 & 4 & 5 & 1 & 2 \\
4 & 5 & 1 & 2 & 3 \\
5 & 1 & 2 & 3 & 4
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 1 & 2 \\
5 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 & 1 \\
4 & 5 & 1 & 2 & 3
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 1 & 2 & 3 \\
2 & 3 & 4 & 5 & 1 \\
5 & 1 & 2 & 3 & 4 \\
3 & 4 & 5 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
5 & 1 & 2 \\
4 & 5 & 1 \\
3 & 4 & 5 \\
2 & 3 & 4
\end{pmatrix}$

Euler's conjecture

不存在 6 阶正交拉丁方! 不存在 4k+2 阶正交拉丁方!

现在的结论

对任意正整数 $n \neq 2, 6$,存在n阶正交拉丁方.

 $\exists \ 2-MOLS(n) \ for \ n \neq 2, \ 6;$

 $\exists \ 3-MOLS(n) \ for \ n \neq 2, \ 3, \ 6, \ 10;$

 $\exists 4-MOLS(n) \text{ for } n \neq 2, 3, 4, 6, 10, 14, 18, 22;$

Kirkman's schoolgirl problem

(T. P. Kirkman 1847)

SUN	N	ION		T	UE		V	VEC)	T	HU			FR	1		SAT	Γ
1 2	3 1	4	5	1	6	7	1	8	9	1	10	11	1	12	13	1	14	15
4 8	12 2	8	10	2	9	11	2	12	14	2	13	15	2	4	6	2	5	7
5 10	15 3	13	14	3	12	15	3	5	6	3	4	7	3	9	10	3	8	11
6 11	13 6	9	15	4	10	14	4	11	15	5	9	12	5	11	14	4	9	13
7 9	14 7	11	12	5	8	13	7	10	13	6	8	14	7	8	15	6	10	12

Thomas Penyngton Kirkman (英格兰教会的教区长)

<Lady's and Gentleman's Diary>

KTS(15) {a} \cup ($\mathbb{Z}_7 \times \mathbb{Z}_2$) mod 7

{a, 50, 31}, {01, 41, 51}, {00, 10, 11}, {20, 40, 61}, {30, 60, 21}

LKTS(15) $\{a,b\} \cup Z_{13} \mod 13$

5	SU	N		MO	N	1	ΓUΕ		١	WE	D	7	Ήl	J		FR			SA	Γ
0	a	b	2	8	b	11	12	b	5	7	b	4	9	b	1	10	b	3	6	b
8	9	12	1	6	a	4	10	a	3	12	a	2	5	a	9	11	a	7	8	a
3	7	10	4	7	11	6	7	9	2	9	10	6	8	10	5	6	12	5	10	11
2	6	11	3	5	9	1	2	3	1	8	11	1	7	12	3	4	8	2	4	12
1	4	5	0	10	12	0	5	8	0	4	6	0	3	11	0	2	7	0	1	9

组合设计家族

❖ 区组设计 block design

表阵形组合设计

频率方 有序设计 直交表←・正交表←・正交拉丁方←・拉丁方─・拉丁矩 Tuscan方 Room 方 Youden 方 Hadamard 矩阵 Costas 阵 差矩阵 Howell 设计

有向图设计

Mendelsohn design

directed design

• 其它组合设计

 PBIB
 Skolem 序列

 赛程设计
 差集 有限几何
 图标号

 结合方案
 de Bruijn 序列

• 相关问题

简单的 纯的 可分解的 大集 超大集 不同构计数

区组设计(BIBD)

Balanced Incomplete Block Design

A $BIBD(v,b,r,k,\lambda)$ is a pair (X,β) where X is a v-set and β is a collection of b k-subsets of X (blocks) such that each element of X is contained in exactly r blocks and any 2-subset of X is contained in exactly λ blocks.

$$vr = bk$$
, $r(k-1) = \lambda(v-1)$

$$\exists (v,k,\lambda) - BIBD \Rightarrow k(k-1) \mid \lambda v(v-1) \\ (k-1) \mid \lambda(v-1)$$

Fisher's inequality: $2 \le k < v \implies b \ge v$

Examples for BIBD

```
2-(7, 3, 1): {0, 1, 3} mod 7
              0 1 2 0 3 6 0 4 8 0 5 7
2-(9, 3, 1): <u>3 4 5</u> <u>1 4 7</u> <u>1 5 6</u> <u>1 3 8</u>
              <u>6 7 8 2 5 8 2 3 7 2 4 6</u>
2-(16, 6, 2):
    1 2 7 11 15 0 5 6 7 8 12 1 4 6 7 9 13
              14 3 4 5 6 11 15
               <u>13</u> <u>2 6 8 9 11 14</u> <u>3 7 8 9 10 15</u>
   0 4 8 13 14 15 1 5 9 12 14 15 2 6 10 12 13 15 3 7 11 12 13 14
2-(15, 3, 1): {0, 1, 4}, {0, 7, 13}, {0, 5, 10} mod 15
2-(9, 4, 3): GF(9) 上本原元 x \rightarrow x^2 + x + 2 = 0
   \{1, x^2, x^4, x^6\} + y, \{x, x^3, x^5, x^7\} + y, y \in GF(9).
```

Six types of triples and the corresponding triple sysems

Steiner Mendelsohn Directed

 K_{ν} — complete graph of order ν

 DK_{ν} complete symmetric directed graph of order ν

$$\begin{array}{ccc} STS(v) & K_{v} & C_{3} \\ MTS(v) & DK_{v} & \overrightarrow{C}_{3} \\ DTS(v) & DK_{v} & TT_{3} \\ HTS(v) & DK_{v} & \overrightarrow{C}_{3} \text{ or } TT_{3} \end{array}$$

triangle

cyclic triangle transitive triangle

The existence for triple systems

$$\exists STS(v) \Leftrightarrow v \equiv 1,3 \mod 6$$

$$\exists KTS(v) \Leftrightarrow v \equiv 3 \mod 6$$

$$\exists MTS(v) \Leftrightarrow v \equiv 0,1 \mod 3, v \neq 6$$

$$\exists DTS(v) (HTS(v)) \Leftrightarrow v \equiv 0,1 \mod 3$$

$$\exists T_1(v) (T_2(v)) \Leftrightarrow v \equiv 1 \mod 2$$

$$\exists T_3(v) \Leftrightarrow v \equiv 1 \mod 2, v \neq 3,5$$

17:01:32 17

Three special types of triple systems

Nonisomorphic MTS(7)s

013 124 235 346 450 561 602 310 421 532 643 054 165 206

> 034 135 236 012 025 056 061 430 531 632 465 416 421 452

> > 013 026 032 045 051 064 124 254 143 156 162 346 235 365

Nonisomorphisic MTS(7)

Hadamard Matrix

a (1,-1)-matrix \mathcal{H}_n of order n, satisfying

$$H_n H_n^T = nI_n$$

$$\exists H_n \Rightarrow n = 1, 2 \text{ or } 4 \mid n$$

Hadamard conjecture: $\exists H_n \Leftrightarrow n=1,2 \text{ or } 4 \mid n$

67	14	58		23	
24	57	13		68	
38		47	25		16
15		26	37		48
	28		46	17	35
	36		18	45	27

Howell Design

Room square

of order 7

A0			15		46	23
34	A1			26		50
61	45	A2			30	
	02	56	A3			41
52		13	60	A4		
	63		24	01	A5	
		04		35	12	A6

Golf design of order 7

 $\mathbf{0}$

#			
		#	
			#
	#		

Costas array

#				
		#		
			#	
	#			
				#

		#				
					#	
						#
#						
				#		
	#					
			#			

Skolem sequences

```
A Skolem sequence of order n is a partition of the set \{1, 2, \dots, 2n\} into n
ordered pairs (a_1,b_1), (a_2,b_2),..., (a_n,b_n) such that b_k-a_k=k for 1 \le k \le n.
  n=1: (1,2);
  n = 4: (1,2), (4,6), (5,8), (3,7);
  n = 5: (1,2), (4,6), (7,10), (5,9), (3,8);
  n = 8: (15,16), (5,7), (11,14), (9,13), (1,6), (2,8), (3,10), (4,12);
  n = 9: (3,4), (13,15), (6,9), (12,16), (2,7), (11,17), (1,8), (10,18), (5,14);
  n=12: \cdots;
```

There exists a Skolem sequence of order n if and only if

$$n \equiv 0.1 \mod 4$$

More about Skolem sequences

Skolem

n = 5: (1,2), (7,9), (3,6), (4,8), (5,10).

hooked Skolem

n = 6: (1, 2), (3, 5), (8, 11), (6, 10), (4, 9), (7, 13).

Langford
$$n = 5, d = 3: (3,6), (5,9), (2,7), (4,10), (1,8).$$

hooked

$$n = 5, d = 2$$
: $(1,3), (6,9), (4,8), (2,7), (5,11)$.

Skolem
$$n = 7, m = 4: (1,2), (8,10), (4,7), (6,11), (3,9), (5,12).$$

hooked

$$n = 6, m = 3: (1, 2), (6, 8), (3, 7), (4, 9), (5, 11).$$

经典三元系大集的存在谱

$LSTS(v,\lambda)$	$6 \lambda v(v-1), \lambda (v-2), (v, \lambda) \neq (7,1).$ 1983 Lu Jiaxi, 1989 Luc Teirlinck
$LMTS(v,\lambda)$	$3 \mid \lambda v(v-1), \lambda \mid (v-2), (v, \lambda) \neq (6,1).$ 1994 Kang, Lei & Chang
$LDTS(v,\lambda)$	$3 \mid \lambda v(v-1), \lambda \mid (v-2).$ 1992 Kang & Chang
$LHTS(v,\lambda)$	$3 \mid \lambda v(v-1), \lambda \mid 4(v-2), (v, \lambda) \neq (3,1).$ 1996 Kang & Lei

^{*} A short proof for *LSTS(v)* was given by L. Ji & L. Zhu.

Large Sets of Pure Mendelsohn (Directed) triple systems

LPMTS(v)	$v \equiv 0.1 \mod 3$, $v \ge 4$ and $v \ne 6.7$
	J. Zhou, Y. Chang and L. Ji, 2006
LPDTS(v)	$v \equiv 0.1 \mod 3 \text{ and } v \ge 4$
	J. Zhou, Y. Chang and L. Ji, 2006

* 无遗留问题

在完全图中:Large Sets of Hamilton cycle (path) decompositions

LHCD(v)	$ odd v \ge 3 $	H. Zhao, Q.Kang, 2005
$LHCD_2(v)$	$even v \ge 4$	D. E. Bryant, 1998
LHPD(v)	$even \ v \ge 2$	H. Zhao, Q.Kang, 2005
$LHPD_2(v)$	$odd \ v \ge 3$	D. E. Bryant, 1998

* 无遗留问题

在二分图中: Large Sets of Hamilton cycle (path) decompositions

$\lambda K_{n,n} \to H$ -cycle	$\lambda \mid ((n-1)!)^2$, even $n \ge 2$ for any λ odd $n \ge 3$ for even λ	
$\lambda K_{n,n-1} \to H$ -path		
$\lambda K_{n,n}^* \to \vec{H}$ -cycle	$\lambda \mid ((n-1)!)^2$	
$\lambda K_{n,n-1}^* \to \vec{H}$ -path		
$\lambda K_{n,n} \to H$ -path	$\lambda (2n-1)((n-1)!)^2, (2n-1) \lambda$	
$\lambda K_{n,n}^* \to \vec{H}$ -path		
$K_{2t+1,2t+1} \setminus F \to H$ -cycle $K_{2t+1,2t} \setminus f \to H$ -path		

* 无遗留问题

H. Zhao & Q.Kang, 2006

密码学

古代加密学

墓碑铭文(古埃及、古希腊)

军用密码本(11世纪,"武经总要",40个条目)

拉丁文通信密码(1722,被雍正放逐的康熙第九子与其儿子的通信)

专职密码秘书(16世纪末,文艺复兴时期的欧洲)

黑屋(18世纪,欧洲维也纳—秘密内阁办公室,破译拿破伦信件)

40号房间(一次大战期间,英国曾破译德国 15000份电报)

我国的行帮会话.....

古典密码体制

文字替换体制

用读法改变文字书写顺序(古希腊的天书)

单字符单表代换(凯撒密码)

单字符多表代换 (维吉尼亚密码)

矩阵变换(希尔密码,几何图案改变顺序)

多字符单表代换 (漏格板)

机械密码体制

转轮密码机(美国密码之父,1790)

*M-209*密码机(二次世界大战中美国陆军使用)

符号替换体制,数字替换体制

电报诞生(1845)无线电诞生(1895) 无线电通讯在军事上的加密需求 紫密体系的破译(二战中日本"九七式欧文印字机") 中途岛战役(1942)截击山本五十六(1943.4.18)

组合数学应用的范例

组合数学界的泰斗——

Thomas Tutte

他曾从德军的两条情报密码出发, 用组合数学的方法,重建了敌人的密码机,确定了德军密码的内部结构,从 而获得了极为重要的情报.对提前结束第二次世界大战作出了突出的贡献。

近代密码体制

Shannon 理论——保密系统的通信理论(1949)

- ❖ 数据加密标准体制DES(Data Encryption System)
- ❖ 国际数据加密算法IDEA(International Data Encryption Algorithm)
- ❖ 公钥密码体制PKC (Public Key Cryptosystem)
- ❖ RSA体制 (R.L.Rivest, A.Shamir, L.Adleman 1978)
- * 背包体制 (Merkle, Hellman 1978)
- * 二次剩余系统 (Goldwasser, Micali 1982)
- ◆ 离散对数系统(ElGamal 1985)
- ❖ 椭圆曲线系统, McEliece 系统...

Thank You!

