

## **ECE3700J Introduction to Computer Organization**

## Homework 6

Assigned: July 4, 2023

Due: 4:00pm on July 11, 2023

Submit a PDF file on Canvas

- 1. (10 points) Which levels and concepts of a memory hierarchy are analogous to these frozen food storage mechanisms and events?
  - a. The refrigerator in the kitchen
  - b. Frozen food freezers at a grocery store
  - c. Suppliers of frozen food for the grocery store
  - d. Getting food from the refrigerator to cook
  - e. Time it takes to get food from the refrigerator
  - f. Chances of not finding the desired food in the refrigerator
  - g. Putting cooked food into the refrigerator
  - h. Getting new food from the grocery store to put in the refrigerator
  - i. Time taken to get new food from the grocery store
  - j. Finding a short cut to the grocery store to get new food
- 2. (40 points) Below is a list of memory address references, given as word addresses: 0x03, 0x04, 0x05, 0x03, 0xBE, 0xBF, 0x58, 0x5C, 0xB0, 0x2C, 0xBA, 0xED
  - (1) For each of these references, identify the tag and the cache index given a direct-mapped cache with 8 one-word blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. (10 points)
  - (2) For each of these references, identify the tag and the cache index given a direct-mapped cache with two-word blocks and a total size of 4 blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. (10 pints)
  - (3) You are asked to optimize a cache design for the given references. There are three direct-mapped cache designs possible, all with a total of 8 words of data: design C1 has 1-word blocks, design C2 has 2-word blocks, and design C3 has 4-word blocks. In terms of miss rate, which cache design is the best? If the miss stall time is 45 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is the best cache design? (20 points)



3. (50 points) For a direct-mapped cache design with a 32-bit byte address, the following bits of the address are used to access the cache.

| Tag    | Index | Offset |
|--------|-------|--------|
| 31 - 9 | 8 - 5 | 4 - 0  |

- (1) What is the cache block size (in words)? (5 points)
- (2) How many blocks does the cache have? (5 points)
- (3) What is the ratio between total bits required for such a cache implementation over the data storage bits? (5 points)

Beginning from power on, the following byte addresses for cache references are recorded.

| Address |      |      |      |      |      |       |      |      |       |      |       |
|---------|------|------|------|------|------|-------|------|------|-------|------|-------|
| 0x10    | 0x04 | 0x20 | 0x74 | 0xEC | 0x0A | 0x711 | 0x1D | 0x9C | 0xD1C | 0xF6 | 0x878 |

- (4) (20 points) For each reference, list
  - a) its tag, index, and offset
  - b) whether it is a hit or a miss, and
  - c) How many blocks were replaced (if any)?
- (5) What is the hit ratio? (5 points)
- (6) Show the final state of the cache, with each valid line represented as <index, tag, data>. (10 points)