

PROBABILIDADE E ESTATÍSTICA (IND2604)

MODELO DE REGRESSÃO MÚLTIPLA PARA A PREVISÃO DO ÍNDICE BOVESPA - IBOV

Grupo 4:
Daiane Oliveira
Fernanda Nucci
Leonardo Domingues

Agenda

- Motivação
- Objetivo
- Contextualização
- Variáveis
- Regressão Múltipla
- Seleção de variáveis
- Análise dos resíduos
- Modelo
- Próximos passos
- Referências

Motivação

• Área: Finanças e Análise de Investimentos.

Objetivo

Mensurar a influência de variáveis macroeconômicas no retorno do Índice Bovespa através da utilização de regressão múltipla, propondo um modelo que possibilite previsões, simulações e uma análise mais assertiva do índice.

Contextualização

Modelos de Regressão Linear

De acordo com Johnston e Dinardo (1998), nos modelos de regressão linear supõe-se que os erros "gerados" pelo modelo possuem algumas características como: média zero, variância constante, distribuição normal e independência, implicando, assim, na inexistência de correlação serial.

Contextualização

Séries Temporais

Segundo Morettin e Toloi (2006), "uma série temporal é qualquer conjunto de observações ordenadas no tempo".

Contextualização

• Conforme Barros e Souza (1995), ao se tentar modelar uma série temporal através de um modelo de regressão, a hipótese de independência dos ruídos não é realista.

 Os estimadores usuais por mínimos quadrados são ainda não tendenciosos, mas não têm variância mínima. Os estimadores da variância e dos erros padrões dos coeficientes da regressão são subestimados, o que levaria à conclusão de que os estimadores são mais precisos do que na realidade.

 Os intervalos de confiança para os parâmetros da regressão e os testes de hipóteses relacionados a estes intervalos perdem a validade.

Variável Resposta

- Principal indicador de desempenho das ações negociadas na B3 e reúne as empresas mais importantes do mercado de capitais brasileiro;
- Criado em 1968 e, ao longo desses 50 anos, consolidou-se como referência para investidores ao redor do mundo;
- Reavaliado a cada quatro meses, o índice é resultado de uma carteira teórica de ativos;
- Composto pelas ações e units de companhias listadas na B3 que atendem aos critérios descritos na sua metodologia, correspondendo a cerca de 80% do número de negócios e do volume financeiro do nosso mercado de capitais.

TOP 20 AÇÕES IBOV (01/07/20)		
Ação	Tipo	Part. (%)
VALE3	ON	10,7
ITUB4	PN	7,006
B3SA3	ON	6,537
PETR4	PN	5,662
BBDC4	PN	5,127
PETR3	ON	3,83
ABEV3	ON	3,579
MGLU3	ON	2,756
BBAS3	ON	2,651
ITSA4	PN	2,505
WEGE3	ON	2,027
JBSS3	ON	1,992
LREN3	ON	1,908
GNDI3	ON	1,812
NTCO3	ON	1,638
SUZB3	ON	1,552
RENT3	ON	1,411
BBDC3	ON	1,381
RAIL3	ON	1,377
EQTL3	ON	1,364

IBOV

Variáveis Explicativas

Variável Resposta: IBOV

Categoria	Variável Explicativa
Bolsas	Dow Jones
	Nasdaq
	SP&500
Índices	EWZ
	EWZS
	VIX
Risco País	Risco País
Moeda	Bitcoin
	Dólar americano
Commodities	Brent
	Milho
	Ouro
Juros	Juros Futuro (Jan22)
	Selic
Inflação	IPCA
Dummy	Covid-19

Premissas e Definições

- Dados diários de 03/06/2019 a 01/06/2020;
- Calculados os retornos de todas as variáveis;
- Retorno: medida de resultado financeiro;
- Retorno e risco são medidas importantes em Finanças pois sintetizam os ganhos e as perdas potenciais de um investimento para o qual existe uma série histórica;
- De acordo com Lima *et al.* (2017), dada a série histórica de preços de uma ação P_t , o **retorno contínuo** (ou log-retorno) dessa ação no dia t é definido por:

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right) = \ln\left(P_t\right) - \ln(P_{t-1})$$

Correlação

A correlação de X e Y é o número definido por:

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}.$$

A correlação é sempre entre -1 e 1, com os valores -1 e 1 indicando uma perfeita relação linear entre X e Y.

Correlações

Passo a Passo

- 1 Seleção de variáveis
- 2 Análise de resíduos
- 3 Modelo

Seleção de Variáveis

Seleção de todos modelos possíveis Seleção automática Forward Backward Stepwise

Seleção de Variáveis

```
1° Modelo: Ibov ~(Risco)+ SP + EWZ +(EWZS) +(Ouro)+ Bitcoin
```

```
Call:
lm(formula = Ibov ~ Risco + SP + EWZ + EWZS + Ouro + Bitcoin,
   data = retornos)
Residuals:
     Min
                     Median
-0.066363 -0.003671 0.000132 0.004055 0.041841
Coefficients:
             Estimate Std. Error t value
                                              Pr(>|t|)
                                               0.46625
(Intercept)
            0.0004454 0.0006104
                                  0.730
Risco
           -0.0001755 0.0000808 -2.172
                                              0.03079
                                                                         Variáveis não
            0.2323800 0.0576377 4.032 0.000073322093 ***
SP
          0.4231707 0.0583523 7.252 0.0000000000005 ***
                                                                          significativas
EWZ
          0.0864677 0.0493099 1.754
                                              0.08072 .
EWZS
                                              0.02147 *
           -0.1234268 0.0533396 -2.314
Ouro
            0.0393210 0.0135955 2.892
                                               0.00416 **
Bitcoin
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Residual standard error: 0.009744 on 253 degrees of freedom
Multiple R-squared: 0.8738, Adjusted R-squared: 0.8708
F-statistic: 292 on 6 and 253 DF, p-value: < 0.000000000000000022
```

Normalidade

- Normalidade
- Shapiro-Wilk
- Kolmogorov-Smirnov

Homocedasticidade

- Homocedasticidade
- Breusch-Page
- Goldfeld-Quandt

Independência

• Durbin-Watson

Análise de Variância

• Lack of fit

Colinearidade

- Colinearidade
- Multicolinearidade

```
Ibov
                          EWZ
                                             Bitcoin
                                                           EWZS
                                     Ouro
        1.00000000 0.9238209
                               0.07449419
                                          0.3144443 0.8756099
Ibov
EWZ
        0.92382095 1.0000000
                              0.10360015
                                         0.2724310
                                                     0.9396088
        0.07449419 0.1036002 1.00000000
Ouro
                                           0.2454893
                                                     0.1332270
Bitcoin 0.31444430 0.2724310 0.24548926
                                          1.0000000
                                                     0.2194541
EWZS
        0.87560989 0.9396088 0.13322697
                                          0.2194541 1.0000000
SP
        0.82873234 0.8353153 0.14718268
                                         0.3121092 0.7507179
       -0.76120957 -0.7711884 -0.10617552 -0.2016273 -0.7710508
Risco
               SP
                       Risco
Ibov
        0.8287323 -0.7612096
EWZ
        0.8353153 -0.7711884
        0.1471827 -0.1061755
Ouro
Bitcoin 0.3121092 -0.2016273
        0.7507179 -0.7710508
EWZS
        1.0000000 -0.7153619
SP
Risco
       -0.7153619 1.0000000
```

Normalidade

- QQplot
- Shapiro-Wilk
- Kolmogorov-Smirnov

Homocedasticidade

- Homocedasticidade
- Breusch-Page
- Goldfeld-Quandt

Independência

• Durbin-Watson

Análise de Variância

• Lack of fit

Colinearidade

- Colinearidade
- Multicolinearidade

Após muitas simulações...

Seleção de Variáveis

Modelo: Ibov ~ Risco + VIX + Dow + Bitcoin

```
Call:
lm(formula = Ibov ~ Risco + VIX + Dow + Bitcoin, data = retornos)
Residuals:
     Min
                10 Median
-0.056266 -0.007110 0.000899 0.008153 0.044546
Coefficients:
              Estimate Std. Error t value
                                                     Pr(>|t|)
(Intercept) -0.00021247 0.00082327 -0.258
                                                      0.79656
Risco
           -0.00074522 0.00009804 -7.601
                                            0.000000000000561 ***
          0.02937683 0.00931592 3.153
VIX
                                                      0.00181 **
          0.68860473 0.05886371 11.698 < 0.00000000000000002 ***
Dow
            0.04069912 0.01791073 2.272
Bitcoin
                                                      0.02390 *
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Residual standard error: 0.01325 on 255 degrees of freedom
Multiple R-squared: 0.765, Adjusted R-squared: 0.7613
F-statistic: 207.5 on 4 and 255 DF, p-value: < 0.000000000000000022
```

Normalidade

- QQplot
- Shapiro-Wilk
- Kolmogorov-Smirnov

Homocedasticidade

- Homocedasticidade
- Breusch-Page
- Goldfeld-Quandt

Independência

• Durbin-Watson

Análise de linearidade

• Lack of fit

Colinearidade

- Colinearidade
- Multicolinearidade

Shapiro-Wilk normality test

data: residuos W = 0.97615, p-value = 0.0002374

One-sample Kolmogorov-Smirnov test

data: residuos

D = 0.061224, p-value = 0.284 alternative hypothesis: two-sided

Normalidade

- QQplot
- Shapiro-Wilk
- Kolmogorov-Smirnov

Homocedasticidade

- Homocedasticidade
- Breusch-Page
- Goldfeld-Quandt

Independência

• Durbin-Watson

Análise de linearidade

Lack of fit

Colinearidade

- Colinearidade
- Multicolinearidade

studentized Breusch-Pagan test

data: fit BP = 4.3366, df = 4, p-value = 0.3624

Goldfeld-Quandt test

Normalidade

- QQplot
- Shapiro-Wilk
- Kolmogorov-Smirnov

Homocedasticidade

- Homocedasticidade
- Breusch-Page
- Goldfeld-Quandt

Independência

Durbin-Watson

Análise de Variância

Lack of fit

Colinearidade

- Colinearidade
- Multicolinearidade

Durbin-Watson test

data: fit

DW = 2.3017, p-value = 0.9929

alternative hypothesis: true autocorrelation is greater than $\boldsymbol{\theta}$

Normalidade

- QQplot
- Shapiro-Wilk
- Kolmogorov-Smirnov

Homocedasticidade

- Homocedasticidade
- Breusch-Page
- Goldfeld-Quandt

Independência

• Durbin-Watson

Análise de Variância

Lack of fit

Colinearidade

- Colinearidade
- Multicolinearidade

```
rstudent unadjusted p-value Bonferroni p
193 -4.457528 0.000012448 0.0032365
```

```
Response: Ibov

Df Sum Sq Mean Sq F value Pr(>F)

Risco 1 0.110308 0.110308 628.7636 < 0.000000000000000022 ***

VIX 1 0.006571 0.006571 37.4565 0.00000000003505 ***

Dow 1 0.027849 0.027849 158.7392 < 0.00000000000000022 ***

Bitcoin 1 0.000906 0.000906 5.1635 0.0239 *

Residuals 255 0.044736 0.000175
```

Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1

Valores Extremos

Lack of fit

Normalidade

- QQplot
- Shapiro-Wilk
- Kolmogorov-Smirnov

Homocedasticidade

- Homocedasticidade
- Breusch-Page
- Goldfeld-Quandt

Independência

• Durbin-Watson

Análise de linearidade

 Teste da falta de ajustes

- Colinearidade
- Multicolinearidade

Risco VIX Dow Bitcoin 2.201015 1.055017 2.398474 1.106133 Colinearidade

Multicolineari dade

Modelo Final

Modelo: Ibov ~ Risco + VIX + Dow + Bitcoin

```
Call:
lm(formula = Ibov ~ Risco + VIX + Dow + Bitcoin, data = retornos)
Residuals:
     Min
                    Median
                                           Max
-0.056266 -0.007110 0.000899 0.008153 0.044546
Coefficients:
              Estimate Std. Error t value
                                                     Pr(>|t|)
(Intercept) -0.00021247 0.00082327 -0.258
                                                      0.79656
Risco
           -0.00074522 0.00009804 -7.601
                                            0.000000000000561 ***
           0.02937683 0.00931592 3.153
VIX
                                                      0.00181 **
Dow
    0.68860473 0.05886371 11.698 < 0.0000000000000000 ***
Bitcoin 0.04069912 0.01791073 2.272
                                                      0.02390 *
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Residual standard error: 0.01325 on 255 degrees of freedom
Multiple R-squared: 0.765, Adjusted R-squared: 0.7613
F-statistic: 207.5 on 4 and 255 DF, p-value: < 0.000000000000000022
```

Próximos Passos

Fatos estilizados: regularidades estatísticas observadas num grande número de séries de *retornos financeiros*, obtidas a partir de estudos empíricos iniciados na década de 60, utilizando séries financeiras dos diversos mercados mundiais:

- estacionariedade;
- fraca dependência linear;
- dependência não linear com aglomerados de volatilidade;
- alta curtose ou não normalidade incondicional e etc.

Necessário utilizar Modelo GARCH

Próximos Passos

- Modelos de Regressão Dinâmica
 - Os modelos de regressão dinâmica combinam a dinâmica de séries temporais e o efeito de variáveis explicativas;
 - Segundo Zanini (2000), nos modelos de regressão dinâmica, a variável dependente é explicada por seus valores defasados e pelos valores atuais e passados de variáveis causais ou exógenas.

Referências

BARROS, M.; SOUZA, R. C. Regressão Dinâmica. Núcleo de Estatística Computacional. PUC-Rio, 1995.

JOHNSTON, J.; DINARDO, J. Econometric Methods. New York, John Wiley, 1998.

LIMA, I. S.; DE LIMA, G. S. F.; PIMENTEL, R. C. *et al.* Curso de Mercado Financeiro. 2ª Edição. São Paulo: Atlas, 2017.

MORETTIN, P. A.; TOLOI, C. M. C. Análise de Séries Temporais. 2ª Edição. São Paulo: Blucher, 2006.

ZANINI, A. Redes Neurais e Regressão Dinâmica: um modelo híbrido para a previsão de curto prazo da demanda de gasolina automotiva no Brasil. Tese de Mestrado, DEE, PUC-Rio, 2000.