A Quality Control Procedure Specialized for Incremental Sampling

Deana Crumbling
USEPA Office of Superfund Remediation &
Technology Innovation
crumbling.deana@epa.gov
EMDQ 2011

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 30 MAR 2011		2. REPORT TYPE		3. DATES COVERED 00-00-2011 to 00-00-2011			
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
A Quality Control	Procedure Specializ	ed for Incremental	Sampling	5b. GRANT NUMBER			
				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER		
				5e. TASK NUMB	ER		
				5f. WORK UNIT	NUMBER		
U.S. Environmenta	ZATION NAME(S) AND AE all Protection Agency ovation,1200 Pennsy DC,20460	,Office of Superfun	d Remediation	8. PERFORMING REPORT NUMBI	GORGANIZATION ER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
13. SUPPLEMENTARY NO Presented at the 20 1 Apr, Arlington, V	11 DoD Environme	ntal Monitoring & I	Data Quality Wo	rkshop (EMD	OQ 2011), 28 Mar ?		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF					19a. NAME OF		
a. REPORT unclassified			Same as Report (SAR)	OF PAGES 16	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Quality Assurance for Incremental Sampling Designs

- QA should be an IMPORTANT facet of IS designs
- 3 replicates (triplicates) are commonly used to calculate a UCL; they also provides a metric enabling assessment of overall quality
- If all other sources of data variability have been controlled, but triplicates do not agree well enough to make a decision, the problem is probably too few increments to sufficiently control the within-DU heterogeneity

DU

Triplicate incremental samples taken over a single DU

DU-IS DU-IS

3 replicate DU-ISs of 30 increments each

Rep 1

DU-IS Rep 2

Rep 3

Evaluating Sources of Data Variability

- Measuring the strengths of different sources as a QC mechanism for sampling design & sample handling
 - Based on a series of triplicates that isolate and measure the performance of each major step in the sample handling sequence
- If data uncertainty is too great to support decisionmaking, shows where to target corrective action
 - All for the cost of 4 additional analyses

Definitive Data Include Error Measurement

The definition of "definitive data" in the "DQOs for Superfund" 1993 guidance (p. 43) includes this statement:

"For the data to be definitive, either analytical or total measurement error must be determined."

Replication QC Procedure

Calculations

Theoretical equation:

$$SD_{Total}^2 = SD_{LCS-instrument}^2 + SD_{analytical subsample}^2 + SD_{IS prep}^2 + SD_{bet-IS samples}^2$$

- In actual projects, likely will not get all the information needed to partition variability to 4 sources
- Actual data example to illustrate

Example from Actual Data

- 3 replicate IS samples collected
- 3 replicate analytical subsamples
- For Sb, As & Pb, field heterogeneity was dominant error

	Total	Total	Analytical +	Analytical +	Field-scale	Field-scale
	measurement	measurement	sample proces-	sample proces-	(between-IS)	(between-IS)
	error (SD)	error (%RSD)	sing error (SD)	sing error	error (SD)	error
ANALYTE		(SD/mean*100)		(%RSD)		(%RSD)
ANTIMONY	0.43	37	0.038	5	0.43	27
ARSENIC	0.76	19	0.39	11	0.66	14
LEAD	67	22	17	7	65	17

Calculation

- Total Error (as Std Dev) obtained from field IS replicates
- Sample Prep/Subsampling Error (as Std Dev) obtained from subsampling replicates
- Field-scale between-IS Error (as Std Dev):

Field-scale Error = sqrt(Total Error² - Subsampling Error²)

	Total	Total	Analytical +	Analytical +	Field-scale	Field-scale
	measurement	measurement	sample proces-	sample proces-	(between-IS)	(between-IS)
	error (SD)	error (%RSD)	sing error (SD)	sing error	error (SD)	error
ANALYTE		(SD/mean*100)		(%RSD)		(%RSD)
ANTIMONY	0.43	37	0.038	5	0.43	27
ARSENIC	0.76	19	0.39	11	0.66	14
LEAD	67	22	17	7	65	17

Is Variability Within Acceptable Limits?

Depends

- If determining UCL to use as EPC for RA, is there a significant difference in risk if mean vs UCL used?
 Is it worth it to reduce variability to bring UCL closer to mean? (e.g., go back & collect add'l IS reps)
- If comparing to an action level, do mean & UCL straddle AL? Does critical decision hinge on the UCL?

	MIS Field Replicate 1	MIS Field Replicate 2	MIS Field Replicate 3			
	- ground	- ground	- ground			
Sample Number :	MIS-DU6-01-06	MIS-DU6-02	MIS-DU6-03			
Sampling Location	MIS-DU6-01	MIS-DU6-02	MIS-DU6-03			
ANALYTE	Result	Result	Result	DU6 average	DU6 total SD	95% UCL(t)
ANTIMONY	0.75	1.6	1.1	1.2	0.4	1.9
ARSENIC	3.1	4.6	4.1	3.9	0.8	5.2
LEAD	244	377	298	306	67	419

Component Can Exceed Total

- Happens when IS field replicates agree better than subsample replicates
- Could be chance or indication that subsampling needs CA

	MIS Field Replicate 1	MIS Field Replicate 2	MIS Field Replicate 3		3
	ground	ground	Triplicate Lab Post-grind Subsamples		
Sample Number :	MIS-DU3-01	MIS-DU3-02	MIS-DU3-03-01	MIS-DU3-03-02	MIS-DU3-03-03
Sampling Location :	MIS-DU3-01	MIS-DU3-02	MIS-DU3-03	MIS-DU3-03	MIS-DU3-03
ANTIMONY	0.89	1.3	1.3	1.9	1.4
ARSENIC	4.2	4.6	4.6	5.1	4.8
LEAD	177	177	213	290	273

	Total	Total	Analytical +	Analytical +	Field-scale	Field-scale
	measurement	measurement	sample proces-	sample proces-	(between-IS)	(between-IS)
	error (SD)	error (%RSD)	sing error (SD)	sing error	error (SD)	error (%RSD)
Analyte	use 1st subsmpl rep	(SD/mean*100)		(%RSD)		
ANTIMONY	0.24	19	0.32	21	analytical > total	analytical > total
ARSENIC	0.23	5	0.25	5	analytical > total	analytical > total
LEAD	21	10	40	16	analytical > total	analytical > total

Do As Part of Pilot Study

- A pilot study can provide many benefits
 - Assess sources of data variability
 - If necessary, select corrective actions to reduce largest source
 - Use opportunity to fill CSM gaps or test critical assumptions underlying the sampling design
 - Determine optimal number of increments and/or number of IS field replicates
 - Use as readiness review for field & lab staff

Potential Corrective Actions

- Increase mass of increments
- Increase mass of analytical subsamples
- Improve rigor of analytical subsampling
 - Use more Gy "correct" sampling tool
 - Increase number of increments in subsample
- Improve sample handling/homogenization prior to subsampling
 - Break up clods better
 - More "correct" sample volume reduction (e.g., "correct" tool with 1-D slabcake; sectorial splitter)
 - More careful, stringent sieving so particles more uniform
 - Milling
- Increase # of increments and/or IS replicates

Statistically, How Many Increments?

- Field variability study as part of pilot study
- Need enough discrete samples to run good statistics: ~10
- Must use same discrete sample support as the increment support expected during main study
- Determine field-scale & subsampling error for that matrix and that increment support

Using VSP MIS Module for # Increments

10 discrete samples

Sample #	LEAD
FE-DS-DU4-05	840
FE-DS-DU4-10	8260
FE-DS-DU4-15	28.6
FE-DS-DU4-20	31.5
FE-DS-DU4-25	1040
FE-DS-DU4-30	3020
FE-DS-DU4-35	648
FE-DS-DU4-40	15500
FE-DS-DU4-45	5260
FE-DS-DU4-50	6720
mean =	4135
Total std dev =	4963
RSD=	1.20
1-side Cl 1/2-wdth (50%)	2067
subsample SD	526
increment SD = field SD	4935
target 95% UCL (+50%)	6202 <

Any Questions?

11Mar2011