Lecture Notes for

Neural Networks and Machine Learning

Introduction to Reinforcement Learning

Logistics and Agenda

- Logistics
 - Grading Update
- Agenda
 - Basics of Reinforcement Learning (4 slides)
 - Markov Processes and Markov Rewards
 - Reinforcement Learning Categorization
 - OpenAl Gym
 - The Cross Entropy Method

Reinforcement Learning Basics

History of RL from Two Paths

Optimal Control

- Model processes via Markov property
- Optimal paths through states calculated through dynamic programming

- Animals learn by trial and error
- Formalized by Thorndike, 1911. Strengthen through pleasure and weaken through pain
- Paylov and B.F. Skinner would conduct experiments proving that behavior could be influenced with RL

Claude Shannon, J. Deutsch, Marvin Minsky, F. Rosenblatt, Widrow, Hoff

Edward Thorndike

B.F. Skinner

Bernard Widrow

Marvin Minsky

Ted Hoff

Ivan Pavlov

Claude Shannon

Conditioning, Skinner and Pavlov

Continuous Reinforcement

Partial Reinforcement

Desired behavior is reinforced every time it occurs

Most effective once a behavior has been established

Most effective when teaching a new behavior

New behavior is less likely to disappear

Creates a strong association between behavior and response

Various partial reinforcement schedules available to suit individual needs

verywell

How to condition a machine learning model?

- Hybrid of Supervised and Unsupervised Learning
- Reinforcement Learning
 - Possibly "specific" labels given, but not necessarily with supervision for how labels are achieved
 - labels can also be probabilistic
 - Uses many techniques from supervised learning, but applied towards a different objective function
 - Rewards (positive and negative) are possible to assess behavior in an environment
 - Not specific to Machine Learning community, is a major part of optimization, control, and psychology

Generic RL Landscape

Agent

Interacts with the environment. Your model guides the Agent's decisions

Environment

Anything that is not the agent, defines rules of the game

Observations

What the agent knows about the environment (usually a numeric state)

Actions

What an agent can perform with the given environment (possibly stochastic)

Rewards

- Time local measure of success
- Can compound local rewards over time

OpenAl Gym

Object Oriented Agent and Environment

- Basics:
 - Define object instance for Agent() and the Env()
 - Define what observations will return
 - Run env_sstep(action)
 - Get new observations and reward from env
- action_space and observation_space
 - Possible actions to execute, Observations to get
 - Discrete or continuous?
 - Can multiple actions be given simultaneously?

Basics of Cartpole

```
import gym
if name == " main ":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()
    while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break
```


Action Space: One input, [0, 1] pull left or pull right

Obs Space: Dynamic state variables (continuous and four dimensional)

End: When more than 15 degrees off or too far from center

Reward: +1 for each time step

Wrapping the Environment

- When you want some extra action, observation, reward processing
- Expose function with ActionWrapper,
 RewardWrapper, ObservationWrapper

```
class RandomActionWrapper(gym.ActionWrapper):
                                                           if __name__ == "__main__":
    def init (self, env, epsilon=0.1):
                                                               env = RandomActionWrapper(gym.make("CartPole-v0"))
        super(RandomActionWrapper, self).__init__(env)
        self.epsilon = epsilon
                                                               obs = env.reset()
                                                               total_reward = 0.0
    def action(self, action):
        if random.random() < self.epsilon:</pre>
                                                               while True:
            print("Random!")
                                                                   obs, reward, done, _ = env.step(0)
            return self.env.action_space.sample()
                                                                   total_reward += reward
        return action
                                                                   if done:
                                                                        break
```

Might return different action than user supplied with small probability

OpenAl Gym

https://gym.openai.com

We provide the environment; you provide the algorithm. You can write your agent using your existing numerical computation library,

RL Categorization

RL Categorizations

- On-Policy, Off-Policy
 - On-policy
 - We must interact with environment to learn a policy
 - Off-policy
 - Can learn also from historical data or humans
- Model-based versus Model-free
- Policy-based versus Value-based

Model-based versus Model-free

Model Based

- Predict the next observation and reward based on an understanding (model) of the rules in environment
- Often look a number of moves ahead (like in chess or similar game)
- Hard to construct in complex environments
- NOT what we will be studying... needs domain expertise

Model Free

- Don't care what the environment is
- Directly try to connect observations to actions (or values from which an action can be inferred)
- Just use a neural network! Perhaps better generalization?
- Mixed: Many examples, yes (Alpha-Go)

Policy Based versus Value Based

Policy Based Learning

- Directly approximate the policy of the agent
- Policy is typically a probability distribution of actions that we sample from for next action
- Could also be a "see this, do that" configuration

Value Based

- Calculate an intermediate value function for all possible actions
- Iterate over possible action values to choose action
- Policy becomes choosing the best action based on value function

$$a^{(t)} \leftarrow f(S_{env}^{(t)})$$

$$v^{(t)} \leftarrow f(S_{env}^{(t)})$$

 $a^{(t)} \leftarrow \arg\max_{v} v^{(t)}$

Cross Entropy Method

Direct Policy Exploration and Optimization

- Instead of defining what is optimal, just setup a comparison of different actions we might take (policy)
- A **policy** is defined as $\pi(a, s) = P(a_t = a \mid s_t = s)$
 - Given the current state, we have a certain probability of selecting each action
 - Action selection is **probabilistic**, but easy to discover deterministic actions (set one action to 1.0, all others to 0.0)
- Try different policies, select one with best average reward
- First try: Cross Entropy Method

Cross Entropy Method

- Create a random neural network, with output p(a|s)
- Let it **interact** with the **environment** (randomly) for set of episodes (*e.g.*, 20)
 - Use network output to sample from possible actions
 - Run episode to completion
 - Repeat
- Calculate reward for each episode
- Keep best episodes (some percentile, e.g., best five)
- For the given best episodes, develop loss function incentivizing the actions taken based upon the input observations

Repeat until desired performance!

Cross Entropy Method

- Model based or Model Free?
 - Model Free (no assumptions of problem)
- Value or Policy Based?
 - Policy Based (randomly sample actions based on policy)
- On-policy or Off-Policy?
 - On-Policy (need to interact with environment to get better)

Loss Function

 If we have the optimal policy p(x) and a reward function H(x), then maximize

$$\max \mathbf{E}_{x \leftarrow p(x)}[H(x)] \approx \max \mathbf{E}_{x \leftarrow q(x)}[\frac{p(x)}{q(x)}H(x)]$$

- We can approximate the distribution by: $\frac{1}{N} \sum_{i} \frac{p(x_i)}{q(x_i)} H(x_i)$
- Proven that this is optimized when $D_{KL}\left(q(x)\|p(x)\right)$ is minimized. But its intractable, so we can only optimize upper bound ... minimizing (neg) cross entropy of samples

$$\pi_{k+1}(a \mid s) = \underset{\pi_k}{\operatorname{arg max}} \mathbf{E}_{z \leftarrow \pi_k} [\mathbf{1}_{R(z) > \psi}^{\text{Performance}} \log \pi_k(a \mid s)]$$

min CrossEntropy(neural_net_actions, best_actions)

Review: Basics of Cartpole

```
import gym
if name == " main ":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()
    while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break
```


Action Space: One input, [0, 1] pull left or pull right

Obs Space: Dynamic state variables (continuous and four dimensional)

End: When more than 15 degrees off or too far from center

Reward: +1 for each time step

Another Example: Frozen Lake

- State: Every square in grid
- Action: Move I,r,u,d with probability in 3 axes
- Reward: Goal, Death
- Policy: Given state, where should we move?
- Optimal Policy:

$$\pi^* = \arg \max_{\pi} \mathbf{E} \left[\sum_{k} \gamma^k R_{t+k+1} | \pi \right]$$

Random Policy

Another Policy

Another Policy

Cross Entropy Reinforcement Learning

M. Lapan Implementation for CartPole and Frozen Lake

Follow Along: 08a_Basics_Of_Reinforcement_Learning.ipynb

