Wykład X

Zadanie 1.

Sprzedawca zanotował w ciągu 5 losowo wybranych dni ilości (w kg) sprzedanego towaru: 20, 12, 11, 9, 8. Dla uzyskanych danych sprzedawca policzył wariancję równą 22,5. Można założyć, że ilości towaru sprzedawanego w losowo wybranych dniach są niezależnymi zmiennymi losowymi o rozkładach normalnych. Wyznacz 90% przedział ufności dla wartości oczekiwanej dziennej ilości sprzedaży tego towaru.

Zadanie 2.

Wśród 125-ciu losowo wybranych kierowców 25-ciu miało co najmniej jedną kolizję w ciągu ostatnich pięciu lat. Wyznacz 95% przedział ufności dla proporcji kierowców, którzy nie mieli kolizji w ciągu ostatnich pięciu lat.

Zadanie 3.

Miesięczny dochód losowo wybranej osoby w firmie KLAPA jest zmienną losową o rozkładzie normalnym o wariancji 90000 (zł.²). Dla 9-ciu losowo wybranych miesięcznych dochodów różnych osób obliczono średni dochód 2400 zł. Wyznacz przedział ufności na poziomie ufności 0,9 dla wartości oczekiwanej miesięcznego dochodu losowo wybranego pracownika firmy.

Zadanie 4.

Trener porównuje starty swoich pływaków. Są oni podzieleni na 2 grupy: w grupie A jest 5 zawodników, a w grypie B – 6 zawodników. Trener sporządził tabelę średnich czasów w stylu klasycznym na 50 metrów osiągniętych przez jego zawodników.

Gr. A

Zawodnik	1	2	3	4	5
Średni czas w roku 2004	22,5	23,5	23	24,5	25

Gr.B

Zawodnik	1	2	3	4	5	6
Średni czas w roku 2004	28,5	27,5	26	25,5	24	23,5

Można przyjąć, że średnie czasy zawodników w obu grupach są zmiennymi losowymi o rozkładach normalnych o tym samym odchyleniu standardowym = 1,5 (sek.). Wyznacz 99% przedział ufności dla różnicy wartości średnich czasów w obu grupach.