Modeling Mobile Web Characteristics for Energy Optimized Delivery

Troy Johnson

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

Department of Computer Science

Central Michigan University Mount Pleasant, Michigan September 2014

ACKNOWLEDGMENTS

This work was sponsored by an Early Career Grant from the Office of Research and Sponsored Programs at Central Michigan University. I wish thanks to A. Sampson and R. Kohvakka for assistance in the development of the testbed measurement environment.

ABSTRACT

Modeling Mobile Web Characteristics for Energy Optimized Delivery

by Troy Johnson

As mobile traffic and data consumption continue to rise, there is a growing need to investigate increased energy efficiency and optimizations to reduce the bandwidth when browsing the mobile web. Use cisco figure citations here???? To determine the reduction in energy consumption of mobile devices, there is also a need for a way to measure the energy consumption of mobile devices. By investigating the composition and characteristics of mobile web pages, statistical models can be derived for describing the characteristics of a typical mobile web page, such as the individual response sizes and expiration ages of responses that mobile browsers request for web pages.HTTP Archive will be a great source of data that may be utilized to derive models for describing the mobile web. Additionally, this pool of data is updated on a bimonthly basis, providing a constantly updated pool of data to update the developed models with and validate them. These models can then in turn be used to provide more accurate results when estimating the possible energy and bandwidth savings by using these models for generating artificial web pages that will contain characteristics that closely resemble those characteristics often found on the actual mobile web. Investigating the models and data further, they can be extended to create prediction models that will describe the growing mobile web for future years. With these models in place, they can be applied to projects for optimizing energy and bandwidth consumption on mobile devices, such as the possible energy and bandwidth savings that can result from cache forwarding between desktop computers and mobile devices. To measure the possible energy consumption savings from these projects, a low cost test bed for measuring the power consumption of mobile devices can be employed as a baseline

TABLE OF CONTENTS

LIST	IST OF FIGURES					
CHA	PTER					
I.	INTRODUCTION					
II.	An Inexpensive Testbed for Mobile Device Power Measurement Introduction Hardware Configuration Software Configuration Demonstration Description	2 2 2 3 3				
III.	Power Consumption Overhead for Proxy Services on Mobile Device Platforms Introduction Methodology and Metrics Measurement Setup Mobile SOCKSv5 Proxy Server Performance Metrics Performance Evaluation For Web Requests Fixed Network Wireless Network Impact of Web Request Variations Power Consumption	5 5 6 7 8 9 11				
IV.	CONCLUSION					
REFE	ERENCES	13				

LIST OF FIGURES

FIG	URE PA	GE
1.	Illustration of measurement testbed.	3
2.	Workflow of mobile application tested on testbed	4
3.	Overview of the measurement setup	8
4.	Energy consumption while performing 100 web requests directly or through a mobile	
	SOCKSv5 service, smoothed over time.	10
5.	Compounded energy consumption for performing 100 web requests directly or through a	
	mobile SOCKSv5 service.	10

CHAPTER I

INTRODUCTION

HTTP Archive

HTTP Archive is an online repository of web performance information containing information on both desktop and mobile versions of websites. Information gather includes all the details about the responses each webpage makes such as the response sizes, expiration age, HTTP Archive gathers their data using a private instance of WebPageTest [CITATION????].

CHAPTER II

An Inexpensive Testbed for Mobile Device Power Measurement

Introduction

Over the last few decades, there has been an enormous increase in the ubiquity of mobile devices. With this increase, has also come the increase in demand for data-driven services and this demand is predicted to continue [1]. The battery consumption of mobile devices represents a limiting bottleneck and thus power optimizations suggestions have been suggested [2]. Software-based energy profilers do exist [3], however they are not always feasible for implementing in a straightforward manner or desirable due to rapid development cycles. To overcome these barriers, a real world test bed that can be implemented which to perform measurement of power consumptions on mobile devices.

Hardware Configuration

The main component in this testbed is the mobile device. This can be realized by using a smartphone and replacing the battery with connectors to the power supply; alternatively one of the common development board packages, such as Pandaboard (see www.pandaboard.org) or Wandboard (see www.wandboard.org) packages. Development boards and smartphones were utilized together with the Android operating system, which provides log output via USB to the measurement control device, which can be a regular PC or another development board with Android debugging support. The mobile device is then networked with a wireless access point, which allows for wired and wireless evaluations. The switchable power supply has an external serial or USB port to communicate the current and power in small time intervals to the control device. A BK Precision 1696 switchable power supply is utilized, as it offers fine granularity in power, current, and time intervals. While other equipment, such as Arduino with custom circuits, were used in other measurement approaches, these

Figure 1. Illustration of measurement testbed.

power supplies are common lab equipment and offer overall robust features.

Software Configuration

The software components are comprised of several Python scripts that execute the Android Debugging Bridge (ADB) and capture the output either to a local file or allow sending the output to a remote receiver, as illustrated in Figure 1. The scripts allow for easy customization on the locally connected control device or at a remote location, e.g., filtering by specific events in the log. Similarly, a locally executing script captures the output from the power supply and is enabled to forward the data to a remote location as well.

Figure 2. Workflow of mobile application tested on testbed.

Demonstration Description

To demonstrate the usefulness of the testbed, two different aspects of the measurement setup were utilized using an example Android application that performs web requests. This application makes requests to a local proxy server either serially or in parallel and the proxy server goes out and fetches what the phone requested. The workflow for the application ca be seen in figure 2. Both, wired and wireless access scenarios were exhibited for accessing a remote web service and retrieving results in order to demonstrate the functionality of the testbed. With these demonstrations, real time visualizations of the data about power consumption were created and stored on log files on a remote computer where they can be readily parsed for automatic evaluation of application power consumption.

CHAPTER III

Power Consumption Overhead for Proxy Services on Mobile Device Platforms

Introduction

Current predictions by Cisco show that the amount of data that users consume has increased significantly and will continue to increase into the foreseeable future [1]. Previous studies show that the network interfaces of mobile devices consume much of the limited battery life [4]. Thus, heavy research efforts have been poured into studying the possibilities of energy efficient mobile data delivery. Some research avenues have middleware that acts as an on-device proxy service to realize benefits or enable new interaction paradigms, such as display networks [5] or mobile content sharing [6],[7]. To determine whether or not local proxy servers result in a large overhead in terms of power consumption and time delays, the measurement framework testbed described in Chapter II can be implemented to determine what kind of overheads can be expected from local proxy servers.

Methodology and Metrics

Measurement Setup

At the core of the setup, a Pandaboard ES mobile software development platform is utilized, which features a Texas Instruments OMAP 4460 dual core ARM Cortex-A9 processor with 1 GB of DDR2 RAM, SMSC 10/100 Mbps Ethernet port, and LS Research WLAN/Bluetooth wireless module, next to other components. (Please refer to http://www.pandaboard.org for more details. The open-source Android distribution (version 4.1.2, åÄŸJelly BeanåĂŹ) is used as the operating system software for the mobile device. The overall measurement setup in can be seen in Figure 3. The Pandaboard is powered by a BK Precision 1696 switchable power supply, which features serial port access to read out voltage and ampere values over time. The power supply is connected to a Linux desktop com-

puter serial port which timestamps the values obtained over time to measure the power consumption incurred by the Pandaboard. The Pandaboard is connected through a 1 Gbps maximum speed Ethernet campus network, which eliminates potential bottlenecks. For wireless measurements, an externally connected WLAN antenna is utilized to connect to the campus network through a dedicated WLAN access point, again eliminating bottlenecks for the amounts of data considered throughout. It's also important to note that a combination of input devices and an external monitor were connected as well. On the server side, a locally hosted virtual machine next to Internet-routed web requests is utilized. The local server employs the Debian Linux distribution as its' operating system with the Apache2 HTTP server and the popular Video Lan Client (VLC) as media streaming application. A preencoded video sequence of the popular open-source movie Tears of Steel (see http://www.tearsofsteel.org for more information) is streamed utilizing HTML5 video streaming. The video-only sequence was transcoded offline into a resolution of 864 ÃŮ 480 at 24 frames per second in the Theora video codec and encapsulated using the OGG container format, both commonly utilized for HTTP video streaming âĂIJon the webâĂİ and suitable for mobile playout. The resulting video bit stream has a duration of 12 minutes, 14 seconds and an average bit rate of 1.42 Mbps. The bit rate in turn falls well within range of the network bandwidth capacity.

Mobile SOCKSv5 Proxy Server

Several implementations of the SOCKSv5 standard exist to date [8], which allow utilization of a remotely hosted standard-conforming SOCKSv5 proxy server (typically from a desktop computer through an organizational server). Mobile implementations, however, are less frequent. One example of an implementation for the Android operating system is the anonymity generating Orbot application (see http://www. torproject.us for more details), which routes traffic into the TOR network and con-

tains âĂIJproxificationâĂİ methods for applications as well (i.e., transparently forcing the usage of the proxy through, e.g., modifications of the iptables firewall). A basic Android service application was generated that is based on the jSOCKS proxy server implementation [9], which is open source (entirely written in JAVA) and does not require any privileges, such as root level system access. As the service is executed within the Dalvik VM utilized on Android devices, it incurs a minimal computational overhead when compared to native applications. This approach, however, is commonplace to allow broadest application compatibility and encouraged for developers of the platform.

Performance Metrics

In the following, we briefly outline the metrics used to evaluate the performance of either scheme. Initially, we capture the reported voltage level v(tl) [V] and the current i(tl) [A] as reported by the power supply and timestamped at time tl on the connected desktop computer. We similarly calculate the instant power consumption as p(tl) = v(tl) $\hat{A}u$ i(tl) [W]. As the reported values are instantaneous snapshots in time from l=0 at t(l)=0 (denoting the first measurement) to l=L, which happened at t(l)=T (whereby T denotes the last measurement), we calculate the time passed between consecutive measurement instances as t(l)=tl alpha L S alpha L S. To determine the energy that was used in the l-th measurement period, we calculate e(l)=t(l) alpha u

Need to add in equations.

Figure 3. Overview of the measurement setup

Performance Evaluation For Web Request

To perform a representative evaluation of frequent HTTP web requests, web requests for GoogleâĂŹs home page were utilized. The goal of this particular measurement scenario is to evaluate the performance impact of frequent requests through the local proxy server, which has to perform the additional connection tasks each time a request is made. A direct measurement application for Android was developed, which will request http://www.google.com without further resolving any HTTP objects within. Individual requests are followed by a sleep period of 2 seconds for both, direct requests and requests through the mobile SOCKSv5 proxy service. As requests are made without utilizing a browser, no caching is involved client-side.

Fixed Network

In the fixed network scenario, the Pandaboard is connected through wired Ethernet to the campus network while performing the web requests. The requests typically coincide with high power consumption levels, as illustrated in Figure 4 for an exemplary 100 web requests with both configurations. We observe that both approaches exhibit an initial âĂIJspikeâĂİ behavior and an otherwise

low level (with some general noise due to overall device activities). There is no immediately visible trend for the momentary power consumptions, as in both approaches, there are several bursty periods of slightly elevated consumptions on top of the actual web requests. Next, we evaluate the total (compounded) energy consumption that is observed when performing these requests for a certain period of time. We illustrate 100 subsequent requests directly and through the mobile proxy server in Figure 5. Initially, it is observed that despite the short-term fluctuations, there is a linear increase in the energy consumed while using either approach. More significantly, there is no immediately noticeable significant difference between the approaches, which is indicated by the almost indistinguishable values in the plot. Lastly, comparing the overhead between the approaches numerically in Table III.1, where the 300 highest levels of energy consumption measured for periods of placing 300 requests were analyzed. It's also notable that the direct approach results in a higher average level of energy consumption (albeit with a larger variability), whereas the proxy-based approach yields a lower average and variability of energy usage values determined. Overall, this results in an overhead of $o = \hat{a} \hat{L} \hat{S} 0.0563$, which presents an initially counter-intuitive result. (Differently worded, by utilizing the mobile proxy server consuming additional CPU cycles, potential energy savings of 5.6% could be realized without requiring any additional modifications.) Taking into account that partially significant variability exists due to some outliers in the total duration (as some measurement points can exhibit significant delays or coincide with other unrelated system activities), both approaches are very similar.

Interface	Approach	Average[J]	Standard Deviation [J]	Confidence Interval (99 %)
LAN	Direct	0.0912	0.0139	0.0021
LAN	Proxy	0.0860	0.0062	0.0009
WLAN	Direct	0.0900	0.0125	0.0019
WLAN	Proxy	0.0902	0.0089	0.0013

Table III.1. Summary values for 300 direct and proxy-routed web requests over traditional ethernet and wireless LAN networks.

Figure 4. Energy consumption while performing 100 web requests directly or through a mobile SOCKSv5 service, smoothed over time.

Figure 5. Compounded energy consumption for performing 100 web requests directly or through a mobile SOCKSv5 service.

Wireless Network

Shifting the evaluation to HTTP requests made over the wireless network interface, we present our results in Table III.1. (We note that a graphical evaluation would yield results similar to those presented in Figures 4 and 5.) We initially note that both approaches are very close with respect to their measured average energy consumption, resulting standard deviations, and narrow confidence intervals.

Comparing these results with those obtained for the Ethernet scenario, which outlines the base case without active wireless communications overheads, we do not note a significant difference in the average energy usage for the individual web requests.

Impact of Web Request Variations

Motivated by the closeness of requests, the next step is to more closely evaluate the impact of the web request size over a wireless LAN on the overall power consumption. To limit the impact that external networks can have (such as different delays), the direct performance comparison is performed within the on-campus VM environment illustrated in Figure 3. A dedicated virtual machine uses the Apache2 web server and hosts a Python script that generates a requested number of bytes, additionally eliminating potential caching impacts. 100 repeated measurements are performed for each different web request size and significant outliers are deleted.

Power Consumption

LEFT OFF FROM PAGE 44 IN PROXY PAPER

CHAPTER IV

CONCLUSION

Future Work

REFERENCES

- [1] Cisco, Inc. Cisco visual networking index: Global mobile data traffic forecast update, 2013–2018. Technical report, February 2014.
- [2] Feng Qian, Zhaoguang Wang, Yudong Gao, Junxian Huang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen, and Oliver Spatscheck. Periodic transfers in mobile applications: Networkwide origin, impact, and optimization. In *Proceedings of the 21st International Conference on World Wide Web*, WWW '12, pages 51–60, New York, NY, USA, 2012. ACM.
- [3] Andre Luiz Tinassi DAmato, Linnyer Beatrys Ruiz, Anderson Faustino da Silva, and Jose Camargo da Costa. Eprof: An accurate energy consumption estimation tool. In *Proceedings of the 2011 30th International Conference of the Chilean Computer Science Society*, SCCC '11, pages 210–218, Washington, DC, USA, 2011. IEEE Computer Society.
- [4] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone. In *Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference*, USENIX-ATC'10, pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.
- [5] N. Davies, M. Langheinrich, R. Jose, and A. Schmidt. Open display networks: A communications medium for the 21st century. *Computer*, 45(5):58–64, May 2012.
- [6] Patrick Seeling. An overview of energy savings potentials through mobile forwarding proxy framework. *Int. J. Ad Hoc Ubiquitous Comput.*, 16(4):260–267, September 2014.
- [7] Patrick Seeling. Caching proxying for mobile users. In *Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th*, pages 1–5, June 2013.
- [8] "M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones". Socks protocol version 5. RFC 1928 (Proposed Standard), Mar 1996.
- [9] K. Kouzoubov. Java socks proxy. Available: http://sourceforge.net/projects/jsocks/, 2011.