Atividade PT 5.5.2: Protocolo spanning tree avançado

Diagrama de topologia

Tabela de endereçamento

Dispositivo	Interface	Endereço IP	Máscara de sub-rede	Gateway padrão
S1	VLAN 99	172.17.99.11	255.255.255.0	N/A
S2	VLAN 99	172.17.99.12	255.255.255.0	N/A
S3	VLAN 99	172.17.99.13	255.255.255.0	N/A
PC1	Placa de rede	172.17.10.21	255.255.255.0	172.17.10.12
PC2	Placa de rede	172.17.20.22	255.255.255.0	172.17.20.12
PC3	Placa de rede	172.17.30.23	255.255.255.0	172.17.30.12

Designações de porta - S2

Portas	Atribuição	Rede
Fa0/1 - 0/5	802.1q Troncos (VLAN 99 nativa)	172.17.99.0 /24
Fa0/6 - 0/10	VLAN 30 – Convidado (padrão)	172.17.30.0 /24
Fa0/11 – 0/17	VLAN 10 – Corpo docente/administração	172.17.10.0 /24
Fa0/18 - 0/24	VLAN 20 - Alunos	172.17.20.0 /24

Objetivos de aprendizagem

- Executar as configurações básicas de switch.
- Configurar as interfaces Ethernet nos PCs de host.
- Configurar VLANs.
- · Configurar spanning tree.
- Otimizar STP.

Introdução

Nesta atividade, você irá realizar configurações de switch básicas, configurar endereçamento em PCs, configurar VLANs, examinar o Spanning Tree Protocol e aprender como otimizá-lo.

Tarefa 1: Realizar configurações básicas de switch

Configure os switches S1, S2 e S3 de acordo com as seguintes diretrizes e salve todas as suas configurações:

Configure o nome de host do switch conforme indicado na topologia.

- Desabilite a pesquisa DNS.
- Configure uma senha criptografada class no modo EXEC privilegiado.
- Configure uma senha cisco para as conexões de console.
- Configure uma senha cisco para as conexões vtv.

```
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch (config) #hostname S1
S1(config) #enable secret class
S1(config) #no ip domain-lookup
S1(config) #line console 0
S1 (config-line) #password cisco
S1 (config-line) #login
S1(config-line) #line vty 0 15
S1 (config-line) #password cisco
S1 (config-line) #login
S1(config-line)#end
%SYS-5-CONFIG I: Configured from console by console
S1#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
```

Seus resultados de conclusão devem ser 18%. Do contrário, veja se não faltam instruções de configuração.

Tarefa 2: Configurar as interfaces Ethernet nos PCs de host.

Na guia **Desktop**, utilize a janela **IP Configuration** para configurar as interfaces Ethernet de PC1, PC2 e PC3 com o endereço IP, a máscara de sub-rede e o gateway indicado na tabela de endereçamento.

Seus resultados de conclusão devem ser 26%. Do contrário, veja se não faltam etapas de configuração.

Tarefa 3: Configurar VLANs

Etapa 1. Habilitar as portas de usuário em S2 no modo de acesso.

Consulte o diagrama de topologia para determinar que portas do switch em S2 estão ativadas para o acesso ao dispositivo de usuário final. Essas três portas serão configuradas para o modo de acesso e habilitadas com o comando no shutdown.

```
S2 (config) #interface fa0/6
S2 (config-if) #switchport mode access
S2 (config-if) #no shutdown
S2 (config-if) #interface fa0/11
S2 (config-if) #switchport mode access
S2 (config-if) #no shutdown
S2 (config-if) #interface fa0/18
S2 (config-if) #switchport mode access
S2 (config-if) #switchport mode access
S2 (config-if) #no shutdown
```

Etapa 2. Configurar VTP.

Configure VTP nos três switches usando a tabela a seguir. Lembre-se de que os nomes de domínio e senhas VTP diferenciam maiúsculas de minúsculas. O modo operacional padrão é servidor.

Nome de switch	Modo de operação de VTP	Domínio de VTP	Senha VTP
S1	Servidor	Laboratório5	cisco
S2	Cliente	Laboratório5	cisco
S3	Cliente	Laboratório5	cisco

```
S1(config) #vtp mode server
Device mode already VTP SERVER.
S1(config) #vtp domain Lab5
Changing VTP domain name from NULL to Lab5
S1(config) #vtp password cisco
Setting device VLAN database password to cisco
S1(config)#end
S2 (config) #vtp mode client
Setting device to VTP CLIENT mode
S2 (config) #vtp domain Lab5
Changing VTP domain name from NULL to Lab5
S2 (config) #vtp password cisco
Setting device VLAN database password to cisco
S2(config)#end
S3(config) #vtp mode client
Setting device to VTP CLIENT mode
S3(config) #vtp domain Lab5
Changing VTP domain name from NULL to Lab5
S3(config) #vtp password cisco
Setting device VLAN database password to cisco
S3(config)#end
```

Etapa 3. Configurar links de tronco e VLAN nativa.

Configure as portas de entroncamento e a VLAN nativa. Para cada switch, configure as portas de Fa0/1 a Fa0/5 como portas de entroncamento. Atribua VLAN 99 como a VLAN nativa a todos os troncos. Quando esta atividade foi iniciada, estas portas foram desabilitadas e devem ser reabilitadas agora utilizando o comando **no shutdown**.

Apenas os comandos da interface FastEthernet0/1 em cada switch são mostrados, mas os comandos devem ser aplicados na interface FastEthernet0/5.

```
S1(config) #interface fa0/1
S1(config-if) #switchport mode trunk
S1(config-if) #switchport trunk native vlan 99
S1(config-if) #no shutdown
S1(config) #end

S2(config) #interface fa0/1
S2(config-if) #switchport mode trunk
S2(config-if) #switchport trunk native vlan 99
S2(config-if) #no shutdown
S2(config-if) #end

S3(config-if) #end

S3(config-if) #switchport mode trunk
S3(config-if) #switchport mode trunk
S3(config-if) #switchport trunk native vlan 99
S3(config-if) #no shutdown
S3(config-if) #no shutdown
S3(config-if) #no shutdown
S3(config-if-#end
```

Etapa 4. Configurar o servidor VTP com VLANs.

O VTP permite que você configure as VLANs no servidor VTP e preencha essas VLANs para os clientes VTP do domínio. Desse modo, é possível assegurar a consistência na configuração das VLANs através da rede.

Configure as seguintes VLANs no servidor VTP:

VLAN	Nome da VLAN
VLAN 99	Gerenciamento
VLAN 10	Corpo docente/administração
VLAN 20	Alunos
VLAN 30	Convidado

```
S1(config) #vlan 99
S1(config-vlan) #name gerenciamento
S1(config) #vlan 10
S1(config-vlan) #name corpo docente/administração
S1(config) #vlan 20
S1(config-vlan) #name alunos
S1(config) #vlan 30
S1(config-vlan) #name convidado
S1(config-vlan) #end
```

Etapa 5. Verificar as VLANs.

Use o comando **show vlan brief** em S2 e S3 para verificar se as quatro VLANs foram distribuídas aos switches do cliente.

S2#show vlan brief

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/4, Fa0/5 Fa0/6, Fa0/7, Fa0/8, Fa0/9 Fa0/10, Fa0/11, Fa0/12,Fa0/13 Fa0/14, Fa0/15, Fa0/16,Fa0/17 Fa0/18, Fa0/19, Fa0/20,Fa0/21 Fa0/22, Fa0/23, Fa0/24, Gi0/1 Gi0/2
10 20 30 99	corpo docente/administração alunos convidado gerenciamento	active active active active	
S3# s	how vlan brief		
VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/4, Fa0/5 Fa0/6, Fa0/7, Fa0/8, Fa0/9 Fa0/10, Fa0/11, Fa0/12, Fa0/13 Fa0/14, Fa0/15, Fa0/16, Fa0/17 Fa0/18, Fa0/19, Fa0/20, Fa0/21 Fa0/22, Fa0/23, Fa0/24, Gi0/1 Gi0/2
1003 1004	<pre>fddi-default token-ring-default fddinet-default trnet-default</pre>	active active active	010, 2

Etapa 6. Configurar o endereço da interface de gerenciamento em todos os três switches.

```
S1(config) #interface vlan99
S1(config-if) #ip address 172.17.99.11 255.255.255.0
S2(config) #interface vlan99
S2(config-if) #ip address 172.17.99.12 255.255.255.0
S3(config) #interface vlan99
S3(config-if) #ip address 172.17.99.13 255.255.255.0
```

Verificar se os switches estão configurados corretamente executando ping entre si. Em S1, execute ping na interface de gerenciamento em S2 e S3. Em S2, execute ping na interface de gerenciamento em S3.

Os pings obtiveram sucesso? Do contrário, solucione problemas nas configurações do switch e tente novamente.

Etapa 7. Atribuir portas de switch a VLANs.

As designações de porta são listadas na tabela no começo da atividade. No entanto, como o Packet Tracer 4.11 não oferece suporte ao comando **interface range**, só atribua a primeira porta a cada intervalo.

```
S2(config) #interface fa0/6
S2(config-if) #switchport access vlan 30
S2(config-if) #interface fa0/11
S2(config-if) #switchport access vlan 10
S2(config-if) #interface fa0/18
S2(config-if) #switchport access vlan 20
S2(config-if) #end
S2#copy running-config startup-config
Destination filename [startup-config]? [enter]
Building configuration...
[OK]
S2#
```

Seus resultados de conclusão devem ser 99%. Do contrário, veja se não faltam instruções de configuração.

Tarefa 4: Configurar spanning tree

Etapa 1. Examinar a configuração padrão do STP (Spanning Tree Protocol) 802.1D.

Em cada switch, exiba a tabela de spanning tree usando o comando **show spanning-tree**. A saída de dados é mostrada somente para o S1. A seleção de raiz varia de acordo com o BID padrão de cada switch. Nesta atividade, S3 é atualmente a raiz.

S1#show spanning-tree

```
VLAN0001
 Spanning tree enabled protocol ieee
          Priority 32769
 Root ID
          Address
                   0030.F20D.D6B1
          Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
                   0050.0F68.146E
          Address
          Aging Time 300
Interface
                            Prio.Nbr Type.
            Role Sts Cost
Fa0/1
            Root FWD 19
                            128.3
                                     Shr
Fa0/2
                            128.3
             Altn BLK 19
                                    Shr
             Desg FWD 19
                            128.3
Fa0/3
                                    Shr
                            128.3
Fa0/4
            Desa FWD 19
VLAN0010
 Spanning tree enabled protocol ieee
          Priority 32778
 Root ID
                   0030.F20D.D6B1
          Address
          Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32778 (priority 32768 sys-id-ext 10)
                   0050.0F68.146E
          Address
          Aging Time 300
```

Interface	Role Sts	Cost	Prio.Nbr	Type.		
Fa0/1 Fa0/2 Fa0/3 Fa0/4	Root FWD Altn BLK Desg FWD Desg FWD	19 19	128.3 128.3 128.3 128.3	Shr Shr Shr Shr		
VLAN0020 Spanning tree enabled protocol ieee Root ID Priority 32788 Address 0030.F20D.D6B1						

Hello Time 2 sec Max Age 20 sec Forward Delay 15 Bridge ID Priority 32788 (priority 32768 sys-id-ext 20)

Address 0050.0F68.146E

Aging Time 300

Interface	Role	Sts	Cost	Prio.Nbr	Type.
Fa0/1	Root :	FWD	19	128.3	Shr
Fa0/2	Altn 1	BLK	19	128.3	Shr
Fa0/3	Desg :	FWD	19	128.3	Shr
Fa0/4	Desg :	FWD	19	128.3	Shr

VLAN0030

Spanning tree enabled protocol ieee

Root ID Priority 32798

> Address 0030.F20D.D6B1

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32798 (priority 32798 0050.0F68.146E

32798 (priority 32768 sys-id-ext 30)

Aging Time 300

Interface	Role	Sts	Cost	Prio.Nbr	Type.
Fa0/1	Root	FWD	19	128.3	Shr
Fa0/2	Altn	BLK	19	128.3	Shr
Fa0/3	Desg	FWD	19	128.3	Shr
Fa0/4	Desg	FWD	19	128.3	Shr

VLAN0099

Spanning tree enabled protocol ieee

Root ID Priority 32867

> 0030.F20D.D6B1 Address

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32867 (priority 32768 sys-id-ext 99)

Address 0050.0F68.146E

Aging Time 300

Interface	Role Sts	Cost	Prio.Nbr	Type.
Fa0/1	Root FWI	19	128.3	Shr
Fa0/2	Altn BLK	19	128.3	Shr
Fa0/3	Desg FWI	19	128.3	Shr
Fa0/4	Desg FWI	19	128.3	Shr

Observe que há cinco instâncias de STP em cada switch.

Examine o spanning tree de VLAN 99 de todos os três switches:

S1#show spanning-tree vlan 99

VLAN0099

Spanning tree enabled protocol ieee

Root ID Priority 32867

Address 0030.F20D.D6B1

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32867 (priority 32966 sys-id-ext 99)

Address 0050.0F68.146E

Aging Time 300

Interface	Role	Sts	Cost	Prio.Nbr	Type.
Fa0/1	Root	FWD	19	128.3	Shr
Fa0/2	Altn	BLK	19	128.3	Shr
Fa0/3	Desg	FWD	19	128.3	Shr
Fa0/4	Desg	FWD	19	128.3	Shr

S2#show spanning-tree vlan 99

VLAN0099

Spanning tree enabled protocol ieee

Root ID Priority 32867

Address 0030.F20D.D6B1

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32867 (priority 32966 sys-id-ext 99)

Address 00E0.F7AE.7258

Aging Time 300

Interface	Role	Sts	Cost	Prio.Nbr	Type.
Fa0/1	Root	FWD	19	128.3	Shr
Fa0/2	Altn	BLK	19	128.3	Shr
Fa0/3	Altn	BLK	19	128.3	Shr
Fa0/4	Altn	BLK	19	128.3	Shr

S3#show spanning-tree vlan 99

VLAN0099

Spanning tree enabled protocol ieee

Root ID Priority 32867

Address 0030.F20D.D6B1 This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32867 (priority 32966 sys-id-ext 99)

Address 0030.F20D.D6B1

Aging Time 300

Interface	Role	Sts	Cost	Prio.Nbr	Type.
Fa0/1	Desg	FWD	19	128.3	Shr
Fa0/2	Desg	FWD	19	128.3	Shr
Fa0/3	Desg	FWD	19	128.3	Shr
Fa0/4	Desg	FWD	19	128.3	Shr

Tarefa 5: Otimizar STP

Como há uma instância separada do spanning tree para cada VLAN ativa, uma escolha de raiz separada é realizada para cada instância. Se as prioridades de switch padrão forem usadas na seleção de raiz, a mesma raiz será selecionada para todos os spanning trees, como vimos. Isso pode levar a um design inferior. Entre algumas razões para controlar a seleção do switch raiz estão:

- O switch raiz é responsável por gerar BPDUs em STP 802.1D, sendo o foco do tráfego de controle do spanning tree. O switch raiz deve ser capaz de tratar essa carga adicional.
- A localização da raiz define os caminhos comutados ativos na rede. A colocação aleatória deve acarretar caminhos abaixo do ideal. O ideal é que a raiz permaneça na camada de distribuição.
- Considere a topologia usada nesta atividade. Dos seis troncos configurados, só dois estão transportando tráfego. Embora isto evite loops, é um desperdício de recursos. Como a raiz pode ser definida com base na VLAN, algumas portas podem estar bloqueando uma VLAN e encaminhando outra. Veja uma demonstração a seguir.

Neste exemplo, determinou-se que a seleção de raiz utilizando valores padrão acarretou a subutilização dos troncos de switch disponíveis. Portanto, é necessário forçar outro switch para que ele se torne o switch raiz de VLAN 99 para impor o compartilhamento de carga nos troncos.

Na saída de exemplo abaixo, o switch raiz padrão de todas as VLANs é S3.

A seleção do switch raiz é feita, alterando a prioridade de spanning tree para a VLAN. A prioridade padrão, como você observou, é 32768 mais a ID da VLAN. O número mais baixo indica uma prioridade mais alta para a seleção de raiz. Defina a prioridade para a VLAN 99 em S1 como 4096.

```
S1(config)#spanning-tree vlan 99 priority 4096
S1(config)#exit
```

Dê aos switches um tempo mínimo para recalcular o spanning e, em seguida, verifique a árvore da VLAN 99 no switch S3 (a raiz da VLAN 99 original) e no switch S1 (o switch que não seja raiz selecionado para se tornar a nova raiz da VLAN 99).

S3#show spanning-tree vlan 99

VLAN0099

Spanning tree enabled protocol ieee

Root ID Priority 4195

Address 0050.0F68.146E

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32867 (priority 32966 sys-id-ext 99)

Address 0030.F20D.D6B1

Aging Time 300

Interface	Role	Sts	Cost	Prio.Nbr	Type.
Fa0/4	Desg	FWD	19	128.3	Shr
Fa0/1	Root	FWD	19	128.3	Shr
Fa0/2	Altn	BLK	19	128.3	Shr
Fa0/3	Desg	FWD	19	128.3	Shr

S1#show spanning-tree vlan 99

VLAN0099

Spanning tree enabled protocol ieee

Root ID Priority 4195

Address 0050.0F68.146E This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 4195 (priority 4294 sys-id-ext 99)

Address 0050.0F68.146E

Aging Time 300

Interface	Role Sts	Cost	Prio.Nbr	Type.
Fa0/4 Fa0/3 Fa0/2 Fa0/1	Desg FWD Desg FWD Desg FWD	19 19	128.3 128.3 128.3 128.3	Shr Shr Shr Shr

Qual switch é a raiz para a VLAN 99?

Quais portas estão bloqueando o tráfego da VLAN 99 na nova raiz?

Quais portas estão bloqueando agora o tráfego da VLAN 99 na antiga raiz?

Compare o spanning tree da VLAN 99 de S1 acima com o spanning tree da VLAN 10 de S1.

S1#show spanning-tree vlan 10

```
VLAN0010
Spanning tree enabled protocol ieee
Root ID Priority 32778
Address 0030.F20D.D6B1
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32778 (priority 32788 sys-id-ext 10)
Address 0050.0F68.146E
Aging Time 300
```

Interface	Role S	Sts	Cost	Prio.Nbr	Type.
Fa0/4	Desg F	TWD	19	128.3	Shr
Fa0/3	Desg F	FWD	19	128.3	Shr
Fa0/2	Altn B	BLK	19	128.3	Shr
Fa0/1	Root F	TWD	19	128.3	Shr

Observe que S1 agora pode usar todas as quatro portas para o tráfego da VLAN 99, desde que elas não estejam bloqueadas na outra extremidade do tronco. No entanto, a topologia spanning tree original, com uma das quatro portas S1 no modo de bloqueio, continua em vigor para as outras quatro VLANs ativas. Ao configurar grupos de VLANs para usar troncos diferentes como seu caminho de encaminhamento primário, mantemos a redundância dos troncos de recuperação de falhas, sem precisar deixar os troncos totalmente inutilizados.

Seus resultados de conclusão devem ser 100%. Do contrário, utilize **Check Results** para encontrar componentes incompletos.