ELG5255 Applied Machine Learning

Group Assignment #4

Group 4:

Yomna Mohamed Sayed Ahmed
 Khaled Mohamed Mohamed Mahmoud
 Marwa Hamdi Boraie Mahmoud
 300327217
 300327242
 300327267

Part 1: Numerical Questions

→Let's assume that TAs would go hiking every weekend, and we would make final decisions (i.e., Yes/No) according to weather, temperature, humidity, and wind. Please create a decision tree to predict our decisions based on <u>Table 1</u>.

Table 1:						
Weather	Temperature	Humidty	Wind	Hiking		
(F1)	(F2)	(F3)	(F4)	(Labels)		
Cloudy	Cool	Normal	Weak	No		
Sunny	Hot	High	Weak	Yes		
Rainy	Mild	Normal	Strong	Yes		
Cloudy	Mild	High	Strong	No		
Sunny	Mild	High	Strong	No		
Rainy	Cool	Normal	Strong	No		
Cloudy	Mild	High	Weak	Yes		
Sunny	Hot	High	Strong	No		
Rainy	Cool	Normal	Weak	No		
Sunny	Hot	High	Strong	No		

(a) Please build a decision tree by using <u>Gini Index</u> (i.e., Gini = $1-\sum_{i=1}^{NC} (Pi)^2$, where NC is the number of classes).

(1) build a Decision free by using Gini Index
Gini = 1 - Zie (P;)2, No > number of classes
. Compute the Bini Index for the overall Collection of training
Examples., . there are two Possible out put variables ses, No.
. the data has 3 instances of (ses), and 7 instances of (No)
(dotoset)
· Gini (s) = 1-[3/10)2+(7/10)2] = 1-0-58=0.42
· Computation of Gini Index for (weather) Attribute.
It has been Descilled
OSCAR (4 examples) and Rainy (3 examples), sum

for weather = cloudy, there are 2 examples with "No"
and Lexample with "yes"
Gioi (S) = $1 - [(2/3)^2 + (1/3)^2] = [4/9]$
for weather = sunny, there are 3 examples with "No"
and 1 example with yes"
Gini(S) = $1 - [(3/4)^2 + (1/4)^2] - [3/8]$
for weather = Rainy, there are 2 examples with "No"
and lexampe with "yes"
Gini (S) = $1 - [(2/3)^2 + (1/3)^2] = 9/9$
· weighted Average (weather) = (4/9 * 3/10) + (3/8 * 4/10) +
(4/9 * 3/10) = (5/12)
. Computation of Gini Index for (Pemperature) Attribute.
. It has three Possible values of cool (3 examples), Hot
(3 examples) and Hild (4 examples).
for Temp= cool, there are 3 examples, all with Nor
· Gini (S) = 1 - (3/3)2 = 0
for Temp = Hot, there are 2 examples "No" and
1 example yes"
Gini(s)= 1- [(2/3)2+(1/3)2]=[9/9]
for Temp - Hild, there are 2 examples "No" and
2 examples yes!
· Gini (S) = 1- [(2/4)2+ (2/4)2]= 1/2]

(1/9 + 3/10)
· weighted Average (Pemp) = (0 x 3/10) + (4/9 x 3/10)
+ (1/2 * 4/0) - 1/3
100 11: 1 Dis Today Car (Hamidity) Attribute.
. It has two Possible values of Normal (4 examples) and
11:01 (C 0N0m008)
for Humidity = Normal, there are 3 examples with No
and I example with "yes"
· Gioi (S) = 1- [(3/4)2+(1/4)6] = (3/8)
for Humidity = High, there are 9 examples with "No"
and a examples with "yes"
. Gim (S)= 1- [(4/6)2+(2/6)2]=[4/9]
· weighted Average (Humidity) = (3/8 * 9/10) + (9/9 * 6/16)
= (5/12)
· Computation of Gini Index for (wind) Attribute.
. It has two Possible values of strong (6 examples) and
weak (y examples)
for wind = strong, there are 5 examples with "No" and
1 example with yes"
Gini(s) = 1- [5/6)2+1/6)2]=[5/18]
o for wind = work these
for wind = weak there are 2 examples > "yes" and 231
OSCAR · Gini (S) = 1-[(2/4)2 + (2/4)2] = [1/2]

· weighted Average (Temp = Mild I weather) = (0 × 1/4) + (0 × 1/4) + (0.5 × 2/4) = 0.25 computation of Gin Index for Temp = Mild | Humidity has for temp = Hild | Humidity = Normal, there 1 1 Normal (1 example) example with "yes" · Gini(S) = 1 - (1/1)2 = (0) High (3 example) hs for Temp = Mild | Humidity = high, there is I examp with yes and 2 example with Non · GIAICS) = 1- [(1/3)2+(2/3)2] = 4/9 · weighted Average (Temp = Mild | Humidity) = (0 × 1/4) + (419 × 3/4) = 1/3) Computation of Gini Index for temp- Mild wind weak (lexample) ho for temp - Mild I wind = weak, there is I instance sty · Gini(S)= 1- (1/1)2 (0) Strong (3 examples) hs for temp = Mild | wind = strong there is I instance eyes" & 2 instance on8 Gini(s)=1-[(1/3)2+(2/3)2]=(1/9) · Weighted Average (Temp = Mild / wind) $=(0 \times 1/4) + (9/9 \times 3/4) = (1/3)$

Gipi Sadax (Temp= Mild | weather) = 0.25 M Gin Index (Temp= Hild | Humidity) = 0.333 Gini Index (Temp = Mild I wind) = 0.333 Consideration of Gini Index for Temp = Hot I weather feature Suny of 3 instances for temp= hot | weater = sunny, there is 1 > yes and 2 -> No · Giai (S) = 1 - [(1/3)2 + (2/3)2] = (9/9) Computation of Gini Index for Temp = Hot 1 Humidity feature. . High (3 examples) 1 > yes, 2 > No · Caini (S) = 1- [(1/3)2 + (2/3)2] = (4/9) · Computation of Gini Index for Jemps Hot wind feature weak > 0 -> ges , Giniss)= 1- [(11)]= 0 strong -> 2) -> No (Gini(S)=1-[(2/2)]=0 Gini (Temp = Hot | Humidity = weak, strong) = 0 => Gini Index (Temp= Hot) weather) = 0.444 > Gini Index (Temp= Hot | Humidity)= 0.444 Simi Index (temp= Hot | wind) = 0

(b) Please build a decision tree by using <u>Information Gain</u> (i.e., IG(T, a) = Entropy(T) - Entropy(T|a).

a build	a decision tree by using Information Gain
(2) 1010	Care > The OVER Sentropy (T/a)
	IG (T, a) = Entropy (T) - Entropy (T/a)
step 1.	we will calculate the Entropy of data set 3. (3)
(label) S	- [2 , (No.) 7 (No.)]
	· Entropy (5) = -3/10 hog (3/10) - 7/10 log (7/10) = 0.881
Step 2: (0	advalate the IG for 4 features)
Fentino	wantha-151
-1	lalues (weather) = cloudy, Sunny, Rainy
Black	
	Sunny < [1+(yes), 3-(NO)]
	Entropy (Sonny) = -1/4 log_2(1/4) - 3/4 log_2(3/4)
	Sunny)
-	=0.811
-	Cloudy = [1+ (400), 2-(NO)] OSCAR 018
-	Cloudy [1+ 1300), commy
123	· Entropy (Schardy) = -1(3 log2 (1/3) - 2/3 log2 (2/3) = 0.918
	[] () claudy) = - 113 10)2 (13)

Sainy = $[1+(yes), 2-(No)]$ • Entropy = $-1/3 \log_2(1/3) - 2/3 \log_2(2/3) = 0.918$ • Entropy (Selwdy) - $\frac{3}{10}$ Entropy (Sel
$IG(S, F_1) = 0.881 - (9/10 \times 0.811) - (3/10 \times 0.918) - (3/10 \times 0.918) = 0.0058$
Feature: Temperature (FZ) Values (Temperature) = Cool, Hot, Wild
$S_{COOI} \in [0+(4es), 3-(NO)]$ $Entropy(S_{COOI}) = -9/3 log_2(9/3) - 3/3 log_2(3/3)$ = 0
Shot < [1+ (yes), 2-(No)] • Entropy (Shot) = -1/3 log2 (1/3) - 2/3 log2 (2/3) = 0.918
Sund = [2+ (yes) , 2 (NO)] • Entropy = -2/4 log_2(2/4) - 2/4 log_2(2/4) = 1
:- I Gr (S/Fz) = Entropy (S) - 3 Entropy (Scot) - 3/10 Entropy (SHOT) - 4/10 Entropy (SHOT)
316 0 = (212) - 1212 - (21) - [2] (15) - 2(2) = (46125) 104463-

	$IG_1(S_1F_2) = 0.881 - ((3/10) * 0) - (3/10 * 0.918) - (4/10 * 1) = 0.2056$
Seature:	Humidty (F3) Values & Humidty) = Normal, High
	Snormal = [1+ (Yes), 3-(NO)] • Entropy (Snormal) = -1/4 logz (1/4)-3/4 logz (3/4) = 0.811
F 13.6	5 High = [2+ (Yes), 4-(NO)] • Entropy (SHigh) = -2/6 log2 (2/6) - 4/6 log2 (4/6) - = 0.918
	: IG = Entropy (S) - 9/10 Entropy (SNOrmal) - 6/10 Entropy (S High)
(S, F3)	IG=0.881-(9/10 x 0.811)-(6/10 x 0.918)=0.0058
Feature.	wind(Fy) Values (wind) = Strong, weak
	Sstrong = [1+ 19es), 5-(NO)] • Entropy (Sstrong) = -1/6 log_(1/6) - 5/6 log_(5/6) = 0.650

		- F 3170	10-15	1	270	d.
	W.C.21/A	(F3)	(F4)	(labels)		7.8
	1/(F2)	High	weak	yes		
Sunny	Hot	Normal	strong	Jes /	me lest	
Rainy	wid	High	strong	No		
dudy	Mild	High	strong	No		
sunny	11.11	High	weak	yes)	L ce 4	
cloudy	11	High	Strong	NO	Tables 4	
sunny	11 1	High	Strong	No		-
Sunny					.11	- 1001
. calculte the IG for (F1), (F3) 2 (F4) features with F2=Hild Feature: weather (F1) . values (weather) = Sunny , Rainy, Cloudy Shild = [2+(Hest = 2-(No)]] Shild = [2+(Hest = 2-(No)]] Sunny = [0+(Yest) = 1+(No)] = (2/4) log_2(2/4) Entropy (Sunny) = -0/1 log_2(0/1) = 1/1 log_2(1/1) = 0 Sainy = [1+(Yest), 0-(No)] Shiropy (Spainy) = -1/1 log(11-0/1 log_2(0/1) = 0 Sainy = [1+(Yest), 0-(No)] Shiropy (Spainy) = -1/1 log(11-0/1 log_2(0/1) = 0 Shiropy (School) = -1/1 log(11-0/1 log_2(0/1) = 0 Shiropy (School) = -1/2 log_2(16) -1/2 log_2(16)						

1 116 \ 11.11.60465
= IGI (Solid, FI) = Entropy (Suild) - 1/4 Entropy (Sound)
- 1/4 Entropy (Spainy) - 214 Entropy (Schools)
(Man)
IG(Suid, F1) = 1- (1/4 × 0) - (1/4 × 0) - (2/4 × 1)
= 0.5
The Part of the Pa
Feature: Humidty (F3)
· values (Humidty) = High, Normal
Shigh = [1+ (9es), 2-(Nu)]
High [1+ Vest 2 - 10]
· Entropy (SHIGH) = -1/3 log_2(1/3) - 2/3 log_2(2/3)
= 0.918
SNormal ([1+ (yes), 0-(No)]
· Entropy (Snormal) = -1/1 log_(1) - 0/1 log_ (0/1) = 0
2 () = () = -11 10)2(1) = 01 20)2 () = 0
= IGI (Sulid, F3) = Entropy (Swild) - 3/4 Entropy (Swign)
- 1/4 Entropy (Snormal)
IG (Sulid, F3) = 1- (3/4 × 0.918) - (1/4 × 0) = 0.3115
Feature: Wind (F4)
· values (wind) = Strong, weak
5, 6 [14/40], 2-14/17
OSCAR Strong = [+ Ues) 12-(No)]
FACE TO THE PROPERTY OF THE PR

· calculate (FI) (F3) & (F4) features with F2 = Hot Stod ([1+ (yes), 2-(No)] · Entropy (SHOt) = -1/3/09, (1/3) - 2/3/09, (2/3) = 0.918 Feature: weather (Fi) · values (weather) = sunny, Rainy, Cloudy Ssunny - [1+ (yes), 2-(No)] · Entropy (Ssung) = -1/3 log2 (1/3) -2/3 log2 (2/3) = 0.918 Spainy ([0+,0-] . Entropy (Spainy) = 0 Schooly = [0+,0-]. Entropy (Schooly) = 0 = IG (SHot, Fi) = Entropy (SHot) - 313 Entropy (Sound)-0/3 Entropy (Spaint) - 0/3 Entropy (Swardy) IG(SHot, F.) = 0.918 - (3/3 +0918) - (0/3 + 0) - (0/8 +0) = 0 Feature: Humidty (F3) · values (Humidty) = High, Normal Shight [1+,2-7 · Entropy (SHigh) = -1/3 log_2(1/3) - 2/3 log_2(2/3) = 0.918 State Lot, O-J. Entropy (SNormal) = 0 OSCAR

in [G (Stot , F3) = Entropy (SHOL) - 3/3 Entropy (SHIBH) - 0/3 Entropy (SNORMAL) IG (SHot, F3) = 0.918-(3/3 × 0.918) - (0/3/+0) Cature: Wind (F4) values (Fu) = Strong, weak Strong (0+ 2-7 Entropy (Sstrong) = -0/2 log2 (0/2) - 2/2 log2 (2/2) Sweak [I+, 0-] . Entropy (Sweak) = 0 : IG (Shot > F4) = Entropy (Shot) - 2/3 Entropy (Sstrong) -1/3 Entropy (Sweak) TG (Snot / Fu) = 0.918 - (2/3 ×0) - (1/3/20) = 0.918 : Gain (SHot, weather) = 0 · Gain (Shot , Humidty) = 0 , Gain (SHot, wind) = 0.918 ~ w So, we will split temperature = Hot with wind (Fu) feature; because it has the maximum value of Information Gain.

() that
wild CF2
Colol Colol Strong
A E
Touchy Touchy
(F4) (F3) (F4) label -
(FD) Change No
Cloudy will had weak yes
Cloval
· Calculate (F3) & (F4) with F2= Hild & F1 = Cloudy
Salitationary (1+11-7
· Entropy (Swild, cloudy) = 0-1/2 log(0.5) - 1/2 log_(0.5)=1
Feature: Humidty (F3)
· values (Humidty) = high, Normal
Shigh (1+,1-)
La Cain I San Lachter A comment
· Entropy (SHigh) = 1 -1/2 log2 (0.5) - 1/2 log2 (0.5)
2 15 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
Snormal (0+,0-)
· Entropy (Snormay) = 0
- January market and beautiful as
" IG (Suild Cloudy, F3) = Entropy (Swild, cloudy) - 2/2
Take Dy (Small) wild, cloudy) - 21
Entropy (Shigh) - 0/2 Entropy (Swormal)

```
IG (Suild, Cloudy = 1 - (2/2 x1) - (0/2 x0)
Cature wind (F4)
    · values (wind) = Strong, weak
          Strong (0+11-)
     · Entropy (Sstrong) = -0/1 logz (0/1) -1/1 logz (1/1)
       Sunk = (1+,0-)
     · Entropy (Sweak) = - 1/1 log_2 (1) - 0/1 log_2 (0/1)
  : IG (Swild Cloudy , Fy) = Entropy (Swild, cloudy.
      1/2 Entropy (Sstrong) - 1/2 Entropy (Sweak)
    IGI (Swild, Cloudy , Fy) = 1- (1/2 ×0) - (1/2 ×0)
  : Gain (Suite, cloudy , Humidty) = 0
  , Gain (Suild, cloudy, wind) = 1 L
so So, we will split weather = cloudy & Temperature = Mi)d
    with wind (Fy) feature, because it has the maximum
    Value of Information Gain.
```


(c) Please compare the advantages and disadvantages between Gini Index and Information Gain.

	Advantages	Disadvantages	
Gini Index	 favors larger partitions (distributions) and is very easy to implement and interpret. Modification of the information gain that reduces its bias. It deals with inequality, so it can judge the distribution pattern better. 	 Sample Bias, the validity of the Gini index can be dependent on sample size. Data Inaccuracy, the Gini index is sometimes prone to random and systematic data errors; it can create problems with the index value. Degeneracy, in some exceptional cases, the Gini index value can be the same for different distributions. 	
Information Gain	 Information gain ratio biases the decision tree against considering attributes with a large number of distinct values. So, it solves the drawback of information gain namely, information gain applied to attributes that can take on a large number of distinct values might learn the training set too well. It creates a comprehensive analysis of consequences along each branch and identifies decision nodes that need further analysis. 	 A notable problem occurs when information gain is applied to attributes that can take on a large number of distinct values (biased). Subsets are more likely to be pure if there are a large number of values (overfitting). 	

Part 2: Programming Questions

2-

Reading the Pen-Digits dataset

```
[17] import numpy as np
   import pandas as pd
   import re

#=========== Read CSV and apply data preparation ======
   df_train = pd.read_csv("pendigits-tra.csv",header=None)
   df_test=pd.read_csv("pendigits-tes.csv",header=None)

[18] X_train=df_train.iloc[:,:-1]
   y_train=df_train.iloc[:,:-1]
   X_test=df_test.iloc[:,:-1]
   y_test=df_test.iloc[:,:-1]
```

Apply decision tree to classify testing set

```
[5] from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import classification_report
    from sklearn.metrics import accuracy_score

estimator = DecisionTreeClassifier(random_state=2022)
    estimator.fit(X_train, y_train)
    y_pred = estimator.predict(X_test)
    report = classification_report(y_test, y_pred)
    print(report)
    acc = accuracy_score(y_test, y_pred)
    print(acc)
```

And this is the classification report

C→	precision	recall	f1-score	support
0	0.95	0.94	0.94	363
1	0.85	0.87	0.86	364
2	0.86	0.95	0.90	364
3	0.88	0.93	0.90	336
4	0.92	0.96	0.94	364
5	0.94	0.85	0.89	335
6	0.98	0.94	0.96	336
7	0.91	0.85	0.88	364
8	0.94	0.95	0.95	336
9	0.95	0.92	0.93	336
accuracy			0.92	3498
macro avg	0.92	0.92	0.92	3498
weighted avg	0.92	0.92	0.92	3498

0.9159519725557461

This function draw a confusion matrix

```
[8] def draw_cm(y_test, y_pred):
    from sklearn import metrics
    import matplotlib.pyplot as plt
    confusion_matrix = metrics.confusion_matrix(y_test, y_pred)
    cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display_labels = ["0","1", "2", "3","4'
    cm_display.plot()
```

And this is the confusion matrix

3-(a)

Bagging using Decision Tree

And this is the classification report for Decision Tree

	precision	recall	f1-score	support
0	0.97	0.96	0.97	363
1	0.89	0.93	0.91	364
2	0.92	0.97	0.95	364
3	0.96	0.98	0.97	336
4	0.95	0.98	0.97	364
5	0.99	0.90	0.94	335
6	0.98	0.96	0.97	336
7	0.98	0.91	0.94	364
8	0.92	0.98	0.95	336
9	0.96	0.95	0.96	336
accuracy			0.95	3498
macro avg	0.95	0.95	0.95	3498
weighted avg	0.95	0.95	0.95	3498

0.951114922813036

And this is the confusion matrix for Decision Tree

Bagging using SVM

And this is the classification report for SVM

□ →	р	recision	recall	f1-score	support	
	0	1.00	0.97	0.98	363	
	1	0.95	0.96	0.96	364	
	2	0.96	0.99	0.98	364	
	3	0.99	0.99	0.99	336	
	4	1.00	0.99	0.99	364	
	5	0.98	0.98	0.98	335	
	6	1.00	1.00	1.00	336	
	7	0.99	0.95	0.97	364	
	8	0.97	1.00	0.98	336	
	9	0.98	0.98	0.98	336	
accura	icy			0.98	3498	
macro a	vg	0.98	0.98	0.98	3498	
weighted a	vg	0.98	0.98	0.98	3498	
0.98084619	78273	3		_		

And this is the confusion matrix for SVM

(b) Find the best number of estimators

```
from sklearn.ensemble import BaggingClassifier
from matplotlib import pyplot as plt
def get_best_num_est(n1,n2):
 estimatorts=[]
  accuracys=[]
  max acc=0
  c=0
  for nEst in range(n1, n2):
   clf=DecisionTreeClassifier(random_state=2022)
    estimator = BaggingClassifier(base_estimator=clf,n_estimators=nEst, random_state=2022)
    estimator.fit(X_train, y_train)
    y_pred = estimator.predict(X_test)
    report = classification_report(y_test, y_pred)
    #print(report)
    acc = accuracy_score(y_test, y_pred)
    if acc>max_acc:
      max_acc=acc
      c=nEst
    estimatorts.append(nEst)
    accuracys.append(acc)
    #print(acc)
  plt.plot(estimatorts, accuracys)
  plt.xlabel("Number of estimators")
  plt.ylabel("Accuracy")
  plt.show()
  return(max_acc,c)
```

Get values [20,30] to the Estimators to find the best estimator that give us the highest accuracy

[47] print(get_best_num_est(20,30)) 0.953 0.951 0.950 0.949 20 22 24 Number of estimators (0.9531160663236135, 24)

Get values [50,60] to the Estimators to find the best estimator that give us the highest accuracy

Get values [90,100] to the Estimators to find the best estimator that give us the highest accuracy

Get values [120,130] to the Estimators to find the best estimator that give us the highest accuracy

Get values [180,185] to the Estimators to find the best estimator that give us the highest accuracy

4) Boosting:

A) GradientBoosting classifier tuning number of estimator from [10, 100, 150, 200] then the learning rate from [.1,.3,.6,.9] We found the best accuracy = 0.965 when the number of estimators = 100 and the learning rate = 0.3

```
best_acc = 0
best_nEst= 0
for nEst in [10, 100, 150, 200]:
| estimator = GradientBoostingClassifier(n_estimators=nEst, random_state=2022)
 estimator.fit(X_train, y_train)
 y_pred = estimator.predict(X_test)
   best acc = acc
   best_nEst = nEst
best_acc = 0
best_learning_rate= 0
best_pred = []
for lRate in [.1, .3, .6, .9]:
 estimator = GradientBoostingClassifier(n_estimators=best_nEst, learning_rate=lRate, random_state=2022)
 estimator.fit(X_train, y_train)
 y_pred = estimator.predict(X_test)
 acc = accuracy_score(y_test, y_pred)
  if acc > best_acc:
   best_acc = acc
    best_learning_rate = 1Rate
   best_pred = y_pred
print(f'the best accuracy score is = {best_acc} when number of estimators = {best_nEst} and learning rate ={best_learning_rate}')
report = classification_report(y_test, best_pred)
print(report)
draw_cm(y_test, best_pred)
```

the best a	ccuracy sco	ore is =	0.9651	22927387078	83 when number	of est	imators =	= 100	and	learning	rate	=0.3
	precisi	ion r	ecall	f1-score	support							
	0 1.	.00	0.94	0.97	363							
	1 0.	.91	0.95	0.93	364							
	2 0.	.95	0.99	0.97	364							
	3 0.	.97	0.99	0.98	336							
	4 1.	.00	1.00	1.00	364							
	5 0.	.99	0.93	0.96	335							
	6 1.	.00	0.99	1.00	336							
	7 0.	.99	0.90	0.94	364							
	8 0.	.93	1.00	0.96	336							
	9 0.	.93	0.97	0.95	336							
accura	су			0.97	3498							
macro a	vg 0.	.97	0.97	0.97	3498							
weighted a	vg 0.	.97	0.97	0.97	3498							

B) XGBoos Classifier with the same best hyper parameters (number of estimators =100 and learning rate = 0.3)

The accuracy = 0.9668

```
from xgboost import XGBClassifier
estimator = XGBClassifier(n_estimators=best_nEst, learning_rate=best_learning_rate, random_state=2022)
estimator.fit(X_train, y_train)
y_pred = estimator.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'the XGBClassifier accuracy score is = {acc} with number of estimators = {best_nEst} and learning rate ={best_learning_rate}')
report = classification_report(y_test, y_pred)
print(report)
draw_cm(y_test, y_pred)
```

the XGBClassi	fier accuracy	score i	s = 0.96683	81932532876	with r	number	of e	estimators	= 100	and	learning	rate	=0.3
	precision	recall	f1-score	support									
0	0.99	0.94	0.97	363									
1	0.92	0.95	0.94	364									
2	0.94	1.00	0.97	364									
3	0.97	0.99	0.98	336									
4	0.97	0.99	0.98	364									
5	0.99	0.96	0.97	335									
6	0.99	0.99	0.99	336									
7	0.99	0.90	0.94	364									
8	0.94	0.99	0.96	336									
9	0.98	0.96	0.97	336									
accuracy			0.97	3498									
macro avg	0.97	0.97	0.97	3498									
weighted avg	0.97	0.97	0.97	3498									

C) The accuracy for XGBoost = 96.68 which is slightly higher than the accuracy of the GradientBoosting = 96.51.XGBoost has high predictive power and is almost 10 times faster than GradientBoosting

- → GradientBoosting-> precision: there are more values = 1.0 for classes (1, 4, 6) which are higher than XGBoost but the low values in GradientBoosting = (0.91, 0.93, 0.93), meanwhile the values in XGBoost = (0.92, 0.94, 0.98) respectively for classes 1, 8 and 9.
 On Average, they are equal for the precision, recall, and F1-score.
- → It is much easier to use the accuracy metric for the comparison as here we have many classes (10 classes) to track the performance of the confusion matrix and comparing the performance between GradientBoosting and XGBoost for each class is really hard.
- → Bagging is a parallel homogenous ensemble learning used to solve the high variance problem. Meanwhile, Boosting is a sequential homogeneous used to solve the high bias problem.
- → Comparing the accuracies between Boosting (XGBoost) and bagging (decision tree) as the default base learner for XGBoost is the decision tree.
 - Boosting (XGBoost): 96.68. Number_estimators = 100
 - Bagging (decision tree): 95.56. Number_ estimators = 120 As we can see the boosting technique gives slightly higher accuracy over the test data. But if we could choose the right base learner we would reach a higher accuracy, as when we used the Bagging with SVM model, the accuracy = 0.98