

CS 405/605 Data Science

Dr. Qianqian Tong

Course Schedule

Week 13: April 3 topic: Random Forest
April 5 topic: Validation

Project stage IV and V released, and the ddl will be April 28.

Week 14: April 10 topic: PCA

April 12 topic: Clustering-Kmeans

Week 15: April 17 topic: Visualization

April 19 topic: Visualization

HW3 will be released, and the ddl will be April 28.

Week 16: April 24 Project Presentation (4 groups, each will have 15-20 min)

April 26 Project Presentation (4 groups, each will have 15-20 min)

All reports and homework must be submitted by April 28, and graded by the final week.

Clustering:

- What is clustering?
- Types of clustering
- Clustering algorithm ---- k-means
- How can you do this efficiently?

Clustering:

What is clustering?

Clustering:

Task 1: Group These Set of Document into 3 Groups based on meaning

Doc1: Health, Medicine, Doctor

Doc 2 : Machine Learning, Computer

Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5 : Covid, Health, Doctor

Clustering:

Task 1: Group These Set of Document into 3 Groups.

Doc1: Health, Medicine, Doctor

Doc 2: Machine Learning, Computer

Doc 3: Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5 : Covid, Health , Doctor

Clustering:

Task 1: Group These Set of Document into 3 Groups.

Doc1: Health, Medicine, Doctor

Doc 5: Covid, Health, Doctor

Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 2 : Machine Learning, Computer

Clustering:

What is clustering?

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups.

Clustering:

What is clustering?

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups.

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

Clustering:

- Types of clustering
- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical Tree
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

Clustering:

Types of clustering

Hierarchical clustering

Nested Clusters

Dendrogram

Clustering:

Types of clustering

Partitional Clustering

A Partitional Clustering

Clustering:

Types of clustering

Partitional Clustering

Notion of a Cluster can be Ambiguous!

Clustering:

- Clustering Algorithms
 - K-means and its variants
 - Hierarchical clustering
 - Density-based clustering
 - Spectral clustering

Clustering:

Clustering Algorithms

K-means

1.Ask user how many clusters they'd like. (e.g. k=5)

Clustering:

- Clustering Algorithms
 - K-means
- 1.Ask user how many clusters they'd like. (e.g. k=5)
- 2.Randomly guess k cluster Center locations

Clustering:

Clustering Algorithms

- 1.Ask user how many clusters they'd like. (e.g. k=5)
- 2.Randomly guess k cluster Center locations
- 3.Each datapoint finds out which Center it's closest to.

 (Thus each Center "owns" a set of datapoints)

Clustering:

Clustering Algorithms

- 1.Ask user how many clusters they'd like. (e.g. k=5)
- 2.Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

Clustering:

Clustering Algorithms

- 1.Ask user how many clusters they'd like. (e.g. k=5)
- 2.Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns
- 5....and jumps there
- 6....Repeat until terminated!

Clustering:

Clustering Algorithms

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Clustering:

Clustering Algorithms

- 1. Partitional clustering approach
- 2. Each cluster is associated with a centroid (center point)
- 3. Each point is assigned to the cluster with the closest centroid
- 4. Number of clusters, K, must be specified
- 5. The basic algorithm is very simple

Clustering:

- Clustering Algorithms
 - K-means
 - Strengths
 - Simple iterative method
 - User provides "K"
 - Weaknesses
 - Often too simple → bad results
 - Difficult to guess the correct "K"

- Clusters produced vary from one run to another.
- ☐ The centroid is (typically) the mean of the points in the cluster.
- ☐ 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- ☐ Iterate:
 - Calculate distance from objects to cluster centroids.
 - Assign objects to closest cluster
 - Recalculate new centroids
- ☐ Stop based on convergence criteria
 - No change in clusters
 - Max iterations
- ☐ Complexity is O(n * K * I * d)

 n = number of points, K = number of clusters,

 I = number of iterations, d = number of attributes

Objective function in K-means

Sum of Squared Errors (SSE)

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

x is a data point in cluster C_i and m_i is the centroid of cluster C_i

Convergence Curve

Determine numbers of clusters

Determine numbers of clusters

How can you do this efficiently?

- Idea 1: Be careful about where you start
- Idea 2: Do many runs of k-means, each from a different random start configuration
- Many other ideas floating around.

How can you do this efficiently?

- Idea 1: Be careful about where you start
- Idea 2: Do diff Neat trick:
- Ma
 Place first center on top of randomly chosen datapoint.

 Place second center on datapoint that's as far away as possible from first center

Place j'th center on datapoint that's as far away as possible from the closest of Centers 1 through j-1

Codes available on github:

https://github.com/q-tong/CS405-605-Data-Science/blob/main/lecture/4.%20Clustering-KMeans.ipynb

