LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Tredimensionell vektoranalys 2012–01–12, klockan 14–16

INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.

- 1. Låt 0 < a < 1. Betrakta kroppen som definieras av $x^2 + y^2 + z^2 \le 4$, $x \ge -a$. Låt Y vara kroppens yta. Ytan Y består av en plan del och en icke plan del. Låt Y_1 vara den plana ytan, och Y_2 vara den icke plana ytan.
 - a) Beräkna flödet av vektorfältet $\boldsymbol{u} = \boldsymbol{r}/|\boldsymbol{r}|^3$ genom ytan Y. Ange vilken orientering du använder. (0.4)
 - **b)** Beräkna arean av ytan Y_2 . (0.2)
 - c) Beräkna flödet av vektorfältet $\boldsymbol{u}=\boldsymbol{r}/|\boldsymbol{r}|^3$ genom ytan Y_1 . Ange vilken orientering du använder. (0.4)
- 2. Betrakta planet x + y + z = 1. Låt kurvan γ vara en enhetscirkel i planet med centrum i punkten $\mathbf{p} = (a, b, c)$, och orienterad så att $(\mathbf{r} \mathbf{p}) \times \mathbf{r}'$ har samma riktning som (1, 1, 1). Låt $\mathbf{u} = (y, x, yz)$.
 - a) Formulera Stokes sats för \boldsymbol{u} och kurvan γ med tillhörande yta som du själv väljer. (0.3)
 - **b)** För vilka (a, b, c) blir $\int_{\gamma} \boldsymbol{u} \cdot d\boldsymbol{r} = 0$? (0.3)
 - c) Beräkna $\int_{\gamma} \boldsymbol{u} \cdot d\boldsymbol{r}$ för alla värden på (a, b, c). (0.4)

LYCKA TILL!