Exercício 4

Variables Entered/Removed^b

Ī	Variables	Variables	
Model	Entered	Removed	Method
1	<mark>log10d^a</mark>		Enter

- a. All requested variables entered.
- b. Dependent Variable: log10h

Modelo hi = k1 di^k2 ui Linearizando através do log10 log10(hi)=log10(k1 di^k2 ui) log10(hi)=log10(k1)+log10(di^k2)+log10(ui) log10(hi)=log10(k1)+k2 log10(di)+log10(ui) y = b0 + b1 x + ei

Indica:

- variável dependente y = log10 (hi)

com b0 = log10(k1)

com b1 = k2

- variável independente x = log10 (di)

Model Summary^b

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	,994ª	,988	,985	,01544

a. Predictors: (Constant), log10d

b. Dependent Variable: log10h

Coeficiente de correlação - mede a associação linear (0.994 é positiva e forte).

Coeficiente de determinação, indica que 98,8% da variável dependente pode ser explicada pela variação da variável independente

Nesta tabela ANOVA é

df Mean Square F Sig.

testada a H0: O modelo em estudo não é válido

a. Predictors: (Constant), log10d

b. Dependent Variable: log10h

Como Sig=0.001 < 0.05 então leva à rejeição de H0, pelo que o modelo é estatisticamente significativo

Coefficients^a

Coefficients^a

		95,0% Confidence Interval for B				
Model		Lower Bound	Upper Bound			
1	(Constant)	4,577	5,358			
	log10d	-2,149	-1,582			

a. Dependent Variable: log10h

Teste de H0: b0 = 0 Como IC a 95% não inclui 0 então Rej H0, pelo que b0 dif 0

Teste de H0: b1 = 0 Como IC a 95% não inclui 0 então Rej H0, pelo que b1 dif 0

Explore

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Studentized Residual	6	100,0%	0	,0%	6	100,0%

ESTUDO DAS CONDIÇÕES DE APLICABILIDADE DOS PRESSUPOSTOS

Descriptives

	Descrip	TH V CS		
	-		Statistic	Std. Error
Studentized Residual	-	Mean	-,0567132	45801918
	95% Confidence Interval for	Lower Bound	-1,2340890	,
	Mean	Upper Bound	1,1206626	K
		5% Trimmed Mean	-,0242651	
		Median	-,1038435	
		Variance	1,259	
		Std. Deviation	1,12191328	
		Minimum	-1,91378	
		Maximum	1,21629	
		Range	3,13007	
		Interquartile Range	1,79655	
		Skewness	-,710	,845
		Kurtosis	,642	1,741

Estimativa pontual para o valor médio dos resíduos

IC a 95% permite avaliar que o valor médio dos resíduos pode ser zero (verifica o pressuposto de que os resíduos têm média zero)

Pressupostos para a análise dos resíduos ei ~N(0,signa^2):

- independentes
- são normalmente distribuídos
- média zero
- variância (sigma^2) constante
- não existem outliers

Testa a H0: Os resíduos seguem uma distribuição Normal (teste KS para a Normal com a correção de Lilliefors). Como Sig=0.2 > 0.05 então não Rej H0

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Studentized Residual	,215	6	,200 [*]	,935	6	,623

a. Lilliefors Significance Correction

Studentized Residual

Normal Q-Q Plot of Studentized Residual

Confirma-se graficamente o teste à normalidade, porque os dados estão em torno da diagonal, pelo que podemos afirmar que os dados seguem uma distribuição normal.

^{*.} This is a lower bound of the true significance.

