autogluon_each_location

October 16, 2023

```
[1]: # config
     label = 'y'
     metric = 'mean_absolute_error'
     time_limit = 60*30
     presets = 'best_quality'
     do_drop_ds = True
     # hour, dayofweek, dayofmonth, month, year
     use_dt_attrs = []#["hour", "year"]
     use_estimated_diff_attr = False
     use_is_estimated_attr = True
     use_groups = False
     n_groups = 8
     auto_stack = True
     num_stack_levels = 1
     num_bag_folds = 8
     use_tune_data = False
     use_test_data = True
     tune_and_test_length = 24*30*3 # 3 months from end
     holdout_frac = None
     use_bag_holdout = False # Enable this if there is a large gap between score_val_
     →and score_test in stack models.
     sample_weight = 'sample_weight' #None
     weight_evaluation = True
     sample_weight_estimated = 3
     run_analysis = True
```

```
[2]: import pandas as pd import numpy as np
```

```
import warnings
warnings.filterwarnings("ignore")
def feature_engineering(X):
    # shift all columns with "1h" in them by 1 hour, so that for index 16:00, u
 we have the values from 17:00
    # but only for the columns with "1h" in the name
   \#X\_shifted = X.filter(regex="\dh").shift(-1, axis=1)
    #print(f"Number of columns with 1h in name: {X_shifted.columns}")
    columns = ['clear_sky_energy_1h:J', 'diffuse_rad_1h:J', 'direct_rad_1h:J',
       'fresh_snow_12h:cm', 'fresh_snow_1h:cm', 'fresh_snow_24h:cm',
       'fresh_snow_3h:cm', 'fresh_snow_6h:cm']
   X shifted = X[X.index.minute==0][columns].copy()
    # loop through all rows and check if index + 1 hour is in the index, if so_{\square}
 ⇔get that value, else nan
   count1 = 0
    count2 = 0
   for i in range(len(X_shifted)):
        if X_shifted.index[i] + pd.Timedelta('1 hour') in X.index:
            count1 += 1
            X shifted.iloc[i] = X.loc[X shifted.index[i] + pd.Timedelta('1, )
 →hour')][columns]
       else:
            count2 += 1
            X_shifted.iloc[i] = np.nan
   print("COUNT1", count1)
   print("COUNT2", count2)
   X_old_unshifted = X[X.index.minute==0][columns]
    # rename X_old_unshifted columns to have _not_shifted at the end
   X_old_unshifted.columns = [f"{col}_not_shifted" for col in X_old_unshifted.
 # put the shifted columns back into the original dataframe
    \#X[columns] = X_shifted[columns]
   date_calc = None
    if "date_calc" in X.columns:
```

```
date_calc = X[X.index.minute == 0]['date_calc']
    # resample to hourly
   X = X.resample('H').mean()
   X[columns] = X_shifted[columns]
    \#X[X\_old\_unshifted.columns] = X\_old\_unshifted
   if date calc is not None:
       X['date_calc'] = date_calc
   return X
def fix_X(X, name):
    \# Convert 'date_forecast' to datetime format and replace original columnu
 ⇔with 'ds'
   X['ds'] = pd.to_datetime(X['date_forecast'])
   X.drop(columns=['date forecast'], inplace=True, errors='ignore')
   X.sort_values(by='ds', inplace=True)
   X.set_index('ds', inplace=True)
   X = feature_engineering(X)
   return X
def handle_features(X_train_observed, X_train_estimated, X_test, y_train):
   X_train_observed = fix_X(X_train_observed, "X_train_observed")
   X_train_estimated = fix_X(X_train_estimated, "X_train_estimated")
   X_test = fix_X(X_test, "X_test")
    # add sample weights, which are 1 for observed and 3 for estimated
   X_train_observed["sample_weight"] = 1
   X_train_estimated["sample_weight"] = sample_weight_estimated
   X_test["sample_weight"] = sample_weight_estimated
   y_train['ds'] = pd.to_datetime(y_train['time'])
   y_train.drop(columns=['time'], inplace=True)
   y_train.sort_values(by='ds', inplace=True)
   y_train.set_index('ds', inplace=True)
```

```
return X_train_observed, X_train_estimated, X_test, y_train
def preprocess_data(X_train_observed, X_train_estimated, X_test, y_train,_
 →location):
    # convert to datetime
   X_train_observed, X_train_estimated, X_test, y_train =_
 whandle_features(X_train_observed, X_train_estimated, X_test, y_train)
   if use estimated diff attr:
        X_train_observed["estimated_diff_hours"] = 0
       X_train_estimated["estimated_diff_hours"] = (X_train_estimated.index -__
 upd.to_datetime(X_train_estimated["date_calc"])).dt.total_seconds() / 3600
        X_test["estimated_diff_hours"] = (X_test.index - pd.
 sto_datetime(X_test["date_calc"])).dt.total_seconds() / 3600
        X train estimated["estimated diff hours"] = 
 →X_train_estimated["estimated_diff_hours"].astype('int64')
        # the filled once will get dropped later anyways, when we drop y nans
        X_test["estimated_diff_hours"] = X_test["estimated_diff_hours"].

→fillna(-50).astype('int64')
    if use_is_estimated_attr:
       X_train_observed["is_estimated"] = 0
       X train estimated["is estimated"] = 1
       X_test["is_estimated"] = 1
    # drop date calc
   X_train_estimated.drop(columns=['date_calc'], inplace=True)
   X_test.drop(columns=['date_calc'], inplace=True)
   y_train["y"] = y_train["pv_measurement"].astype('float64')
   y train.drop(columns=['pv measurement'], inplace=True)
   X_train = pd.concat([X_train_observed, X_train_estimated])
    # clip all y values to 0 if negative
   y_train["y"] = y_train["y"].clip(lower=0)
   X_train = pd.merge(X_train, y_train, how="inner", left_index=True,_
 →right index=True)
```

```
# print number of nans in sample_weight
    print(f"Number of nans in sample_weight: {X_train['sample_weight'].isna().
  →sum()}")
    # print number of nans in y
    print(f"Number of nans in y: {X_train['y'].isna().sum()}")
    X_train["location"] = location
    X_test["location"] = location
    return X_train, X_test
# Define locations
locations = ['A', 'B', 'C']
X_trains = []
X_{\text{tests}} = []
# Loop through locations
for loc in locations:
    print(f"Processing location {loc}...")
    # Read target training data
    y_train = pd.read_parquet(f'{loc}/train_targets.parquet')
    # Read estimated training data and add location feature
    X_train_estimated = pd.read_parquet(f'{loc}/X_train_estimated.parquet')
    # Read observed training data and add location feature
    X_train_observed= pd.read_parquet(f'{loc}/X_train_observed.parquet')
    # Read estimated test data and add location feature
    X_test_estimated = pd.read_parquet(f'{loc}/X_test_estimated.parquet')
    # Preprocess data
    X_train, X_test = preprocess_data(X_train_observed, X_train_estimated,__
  →X_test_estimated, y_train, loc)
    X_trains.append(X_train)
    X_tests.append(X_test)
# Concatenate all data and save to csv
X_train = pd.concat(X_trains)
X_test = pd.concat(X_tests)
Processing location A...
COUNT1 29667
COUNT2 1
COUNT1 4392
```

COUNT2 2

```
COUNT1 702
COUNT2 18
Number of nans in sample_weight: 0
Number of nans in y: 0
Processing location B...
COUNT1 29232
COUNT2 1
COUNT1 4392
COUNT2 2
COUNT1 702
COUNT2 18
Number of nans in sample_weight: 0
Number of nans in y: 4
Processing location C...
COUNT1 29206
COUNT2 1
COUNT1 4392
COUNT2 2
COUNT1 702
COUNT2 18
Number of nans in sample_weight: 0
Number of nans in y: 6059
```

1 Feature enginering

```
import numpy as np
import pandas as pd

X_train.dropna(subset=['y'], inplace=True)

for attr in use_dt_attrs:
    X_train[attr] = getattr(X_train.index, attr)
    X_test[attr] = getattr(X_test.index, attr)

print(X_train.head())

if use_groups:
    # fix groups for cross validation
    locations = X_train['location'].unique() # Assuming 'location' is the name_u

of the column representing locations

grouped_dfs = [] # To store data frames split by location
```

```
# Loop through each unique location
    for loc in locations:
        loc_df = X_train[X_train['location'] == loc]
        # Sort the DataFrame for this location by the time column
        loc_df = loc_df.sort_index()
        # Calculate the size of each group for this location
        group_size = len(loc_df) // n_groups
        # Create a new 'group' column for this location
        loc_df['group'] = np.repeat(range(n_groups),__
  →repeats=[group_size]*(n_groups-1) + [len(loc_df) - group_size*(n_groups-1)])
        # Append to list of grouped DataFrames
        grouped_dfs.append(loc_df)
    # Concatenate all the grouped DataFrames back together
    X_train = pd.concat(grouped_dfs)
    X_train.sort_index(inplace=True)
    print(X train["group"].head())
to_drop = ["snow_drift:idx", "snow_density:kgm3", "wind_speed_w_1000hPa:ms", __

¬"dew_or_rime:idx", "prob_rime:p", "fresh_snow_12h:cm", "fresh_snow_24h:cm"]

X_train.drop(columns=to_drop, inplace=True)
X_test.drop(columns=to_drop, inplace=True)
X_train.to_csv('X_train_raw.csv', index=True)
X_test.to_csv('X_test_raw.csv', index=True)
                     absolute_humidity_2m:gm3 air_density_2m:kgm3 \
ds
2019-06-02 22:00:00
                                        7.700
                                                           1.22825
2019-06-02 23:00:00
                                        7.700
                                                           1.22350
2019-06-03 00:00:00
                                                           1.21975
                                        7.875
2019-06-03 01:00:00
                                        8.425
                                                           1.21800
2019-06-03 02:00:00
                                        8.950
                                                           1.21800
                     ceiling_height_agl:m clear_sky_energy_1h:J \
ds
2019-06-02 22:00:00
                              1728.949951
                                                        0.000000
2019-06-02 23:00:00
                              1689.824951
                                                        0.000000
```

```
2019-06-03 00:00:00
                              1563.224976
                                                         0.000000
2019-06-03 01:00:00
                              1283.425049
                                                      6546.899902
2019-06-03 02:00:00
                              1003.500000
                                                    102225.898438
                     clear_sky_rad:W cloud_base_agl:m dew_or_rime:idx \
ds
2019-06-02 22:00:00
                                0.00
                                            1728.949951
                                                                      0.0
                                0.00
2019-06-02 23:00:00
                                            1689.824951
                                                                      0.0
2019-06-03 00:00:00
                                0.00
                                            1563.224976
                                                                      0.0
2019-06-03 01:00:00
                                0.75
                                            1283.425049
                                                                      0.0
2019-06-03 02:00:00
                               23.10
                                            1003.500000
                                                                      0.0
                     dew_point_2m:K diffuse_rad:W diffuse_rad_1h:J
ds
2019-06-02 22:00:00
                         280.299988
                                              0.000
                                                             0.000000
2019-06-02 23:00:00
                         280.299988
                                              0.000
                                                             0.000000
2019-06-03 00:00:00
                         280.649994
                                              0.000
                                                             0.000000
2019-06-03 01:00:00
                         281.674988
                                              0.300
                                                          7743.299805
2019-06-03 02:00:00
                         282.500000
                                             11.975
                                                         60137.601562
                     total_cloud_cover:p visibility:m wind_speed_10m:ms
ds
2019-06-02 22:00:00
                              100.000000 40386.476562
                                                                      3.600
2019-06-02 23:00:00
                              100.000000
                                                                      3.350
                                           33770.648438
2019-06-03 00:00:00
                              100.000000
                                          13595.500000
                                                                      3.050
2019-06-03 01:00:00
                              100.000000
                                            2321.850098
                                                                      2.725
2019-06-03 02:00:00
                               99.224998
                                          11634.799805
                                                                      2.550
                     wind_speed_u_10m:ms
                                          wind_speed_v_10m:ms \
ds
2019-06-02 22:00:00
                                  -3.575
                                                        -0.500
2019-06-02 23:00:00
                                  -3.350
                                                         0.275
2019-06-03 00:00:00
                                  -2.950
                                                         0.750
2019-06-03 01:00:00
                                  -2.600
                                                         0.875
2019-06-03 02:00:00
                                  -2.350
                                                         0.925
                     wind_speed_w_1000hPa:ms sample_weight is_estimated \
2019-06-02 22:00:00
                                          0.0
                                                                          0
                                                           1
2019-06-02 23:00:00
                                          0.0
                                                           1
                                                                          0
2019-06-03 00:00:00
                                          0.0
                                                           1
                                                                          0
2019-06-03 01:00:00
                                                           1
                                          0.0
                                                                          0
2019-06-03 02:00:00
                                          0.0
                                                                          0
                           location
ds
2019-06-02 22:00:00
                      0.00
                                    Α
2019-06-02 23:00:00
                      0.00
                                    Α
```

```
2019-06-03 00:00:00 0.00 A
2019-06-03 01:00:00 0.00 A
2019-06-03 02:00:00 19.36 A
```

[5 rows x 49 columns]

```
[4]: from autogluon.tabular import TabularDataset, TabularPredictor
     from autogluon.timeseries import TimeSeriesDataFrame
     import numpy as np
     train_data = TabularDataset('X_train_raw.csv')
     # set group column of train data be increasing from 0 to 7 based on time, the
     of treat 1/8 of the data is group 0, the second 1/8 of the data is group 1, etc.
     train_data['ds'] = pd.to_datetime(train_data['ds'])
     train_data = train_data.sort_values(by='ds')
     # # print size of the group for each location
     # for loc in locations:
         print(f"Location {loc}:")
          print(train data[train data["location"] == loc].groupby('group').size())
     # get end date of train data and subtract 3 months
     split_time = pd.to_datetime(train_data["ds"]).max() - pd.
     →Timedelta(hours=tune_and_test_length)
     train_set = TabularDataset(train_data[train_data["ds"] < split_time])</pre>
     test_set = TabularDataset(train_data[train_data["ds"] >= split_time])
     if use_groups:
         test_set = test_set.drop(columns=['group'])
     if do_drop_ds:
         train_set = train_set.drop(columns=['ds'])
         test set = test set.drop(columns=['ds'])
         train_data = train_data.drop(columns=['ds'])
     def normalize_sample_weights_per_location(df):
         for loc in locations:
             loc_df = df[df["location"] == loc]
             loc_df["sample_weight"] = loc_df["sample_weight"] /_
      →loc_df["sample_weight"].sum() * loc_df.shape[0]
             df[df["location"] == loc] = loc df
         return df
     tuning_data = None
     if use_tune_data:
        train_data = train_set
         if use_test_data:
```

```
# split test_set in half, use first half for tuning
        tuning_data, test_data = [], []
        for loc in locations:
            loc_test_set = test_set[test_set["location"] == loc]
            loc_tuning_data = loc_test_set.iloc[:len(loc_test_set)//2]
            loc_test_data = loc_test_set.iloc[len(loc_test_set)//2:]
            tuning_data.append(loc_tuning_data)
            test_data.append(loc_test_data)
        tuning data = pd.concat(tuning data)
        test_data = pd.concat(test_data)
        print("Shapes of tuning and test", tuning_data.shape[0], test_data.
 ⇒shape[0], tuning_data.shape[0] + test_data.shape[0])
    else:
        tuning_data = test_set
        print("Shape of tuning", tuning_data.shape[0])
    \# ensure sample weights for your tuning data sum to the number of rows in
 ⇔the tuning data.
    tuning_data = normalize_sample_weights_per_location(tuning_data)
else:
    if use_test_data:
       train_data = train_set
        test_data = test_set
        print("Shape of test", test data.shape[0])
# ensure sample weights for your training (or tuning) data sum to the number of \Box
→rows in the training (or tuning) data.
train_data = normalize_sample_weights_per_location(train_data)
if use_test_data:
    test_data = normalize_sample_weights_per_location(test_data)
```

Shape of test 5791

train_data dataset summary

	count	unique top	freq	mean	\
absolute_humidity_2m:gm3	87160	757		6.138632	
air_density_2m:kgm3	87160	1370		1.253802	
<pre>ceiling_height_agl:m</pre>	72139	59833		2864.542561	
clear_sky_energy_1h:J	87157	45557	Į.	518241.825283	

cloom also modeld	87160	19511		143.951884
<pre>clear_sky_rad:W cloud_base_agl:m</pre>	81279	61233		1736.160546
dew_point_2m:K	87160	2001		275.537267
diffuse_rad:W	87160	10980		39.210491
diffuse_rad_1h:J	87157	45515		141514.615214
direct_rad:W	87160	13914		50.139922
direct_rad_1h:J	87157	39280		180360.846534
effective_cloud_cover:p	87160	5652		67.118857
elevation:m	87160	3		11.411014
fresh_snow_1h:cm	87157	39		0.008136
fresh_snow_3h:cm	87157	68		0.024312
fresh_snow_6h:cm	87157	94		0.048424
is_day:idx	87160	5		0.482965
is_estimated	87232	2		0.05968
is_in_shadow:idx	87160	5		0.564895
location	87232	3	A 3192	
msl_pressure:hPa	87160	3693		1009.291473
precip_5min:mm	87160	270		0.005788
<pre>precip_type_5min:idx</pre>	87160	15		0.084236
pressure_100m:hPa	87160	3705		995.621975
pressure_50m:hPa	87160	3758		1001.745166
rain_water:kgm2	87160	39		0.010136
relative_humidity_1000hPa:p	87160	3787		73.860635
sample_weight	87232	6		1.0
sfc_pressure:hPa	87160	3780		1007.89561
snow_depth:cm	87160	483		0.197251
<pre>snow_melt_10min:mm</pre>	87160	63		0.000245
snow_water:kgm2	87160	161		0.09109
sun_azimuth:d	87160	82801		179.660078
sun_elevation:d	87160	71854		-1.225457
<pre>super_cooled_liquid_water:kgm2</pre>	87160	53		0.058341
t_1000hPa:K	87160	1986		279.712685
total_cloud_cover:p	87160	5546		73.819247
visibility:m	87160	85645		33233.674454
wind_speed_10m:ms	87160	594		3.025581
wind_speed_u_10m:ms	87160	988		0.664335
wind_speed_v_10m:ms	87160	848		0.694845
У	87232	10750		287.954185
		. 1		٥٢٧ ١
1 1 1 1 1 1 1 1 0 0		std	min	
absolute_humidity_2m:gm3		2.73761	0.5	
air_density_2m:kgm3		.036657	1.13925	
ceiling_height_agl:m		.428872	27.8 0.0	
clear_sky_energy_1h:J		.074463		
<pre>clear_sky_rad:W cloud_base_agl:m</pre>		.149085	0.0 27.8	
dew_point_2m:K		.846723	247.425	
diffuse_rad:W		.603659	0.0	
arrrase_rau.w	00	.000003	0.0	0.0

difference and the I	016005 0614	00 0 0	0	. ^	
diffuse_rad_1h:J	216225.9614			0.0	
direct_rad:W	113.078			0.0	
direct_rad_1h:J	402277.999			7.0	
<pre>effective_cloud_cover:p elevation:m</pre>	34.0379			5.0	
	7.8815			0.0	
fresh_snow_1h:cm	0.1075				
fresh_snow_3h:cm	0.2677			0.0	
fresh_snow_6h:cm	0.4577			0.0	
is_day:idx	0.4859			.0	
is_estimated	0.2368			.0	
is_in_shadow:idx	0.4831	31 0.0	0	.0	
location	40.0005		4004		
msl_pressure:hPa	12.9985				
precip_5min:mm	0.0297			.0	
<pre>precip_type_5min:idx</pre>	0.3253			.0	
pressure_100m:hPa	12.9246				
pressure_50m:hPa	12.9825				
rain_water:kgm2	0.0423			.0	
relative_humidity_1000hPa:p	14.1602				
sample_weight	0.4222	69 0.876118	0.8761	18	
sfc_pressure:hPa	13.0425	92 941.55	999.	85	
<pre>snow_depth:cm</pre>	1.2843	95 0.0	0	.0	
<pre>snow_melt_10min:mm</pre>	0.0039	58 0.0	0	.0	
<pre>snow_water:kgm2</pre>	0.2407	12 0.0	0	.0	
sun_azimuth:d	97.3089	71 6.983	94.724	.75	
sun_elevation:d	24.1680	08 -49.932	-18.7375	63	
<pre>super_cooled_liquid_water:kgm2</pre>	0.1068	82 0.0	0	.0	
t_1000hPa:K	6.5594	38 258.025	275.	15	
total_cloud_cover:p	33.7688	18 0.0	53.7	25	
visibility:m	18089.7240	83 132.375	16688.618	75	
wind_speed_10m:ms	1.7521	14 0.025	1.	65	
wind_speed_u_10m:ms	2.7792	36 -7.225	-1.	35	
wind_speed_v_10m:ms	1.8810	59 -8.4	-0.	55	
у	766.1116	97 0.0	0	.0	
•					
	50%	75%	max	dtypes	\
absolute_humidity_2m:gm3	5.6	8.0	17.35	float64	
air_density_2m:kgm3	1.2525	1.27675	1.441	float64	
ceiling_height_agl:m	1859.4751	3925.32485	12285.775	float64	
clear_sky_energy_1h:J	4312.0	777195.2	3006697.2	float64	
clear_sky_rad:W	1.6	216.2	835.65	float64	
cloud_base_agl:m	1178.425	2081.0375	11673.725	float64	
dew_point_2m:K	275.4	280.8	293.625	float64	
diffuse_rad:W	0.875	64.325	334.75	float64	
diffuse_rad_1h:J	9534.0	233004.8	1182265.4	float64	
direct_rad:W	0.0	28.925	683.4	float64	
direct_rad_1h:J	0.0	111408.5	2445897.0	float64	
effective_cloud_cover:p	79.675	98.475	100.0	float64	
· I					

alamatian .m	7.0	24.0	04.0	£7 + <i>C</i> /
elevation:m	7.0 0.0	24.0 0.0	24.0 7.1	float64 float64
fresh_snow_1h:cm			20.6	
fresh_snow_3h:cm	0.0	0.0		float64 float64
fresh_snow_6h:cm	0.0	1.0	34.0	
is_day:idx	0.25		1.0 1.0	float64
is_estimated	1.0	0.0 1.0	1.0	int64 float64
<pre>is_in_shadow:idx location</pre>	1.0	1.0	1.0	object
msl_pressure:hPa	1010.275	1018.35	1044.1	float64
precip_5min:mm	0.0	0.0	0.6225	float64
	0.0	0.0	5.0	float64
<pre>precip_type_5min:idx pressure_100m:hPa</pre>	996.7	1004.7	1030.875	float64
-	1002.8	1010.825	1030.875	float64
pressure_50m:hPa	0.0	0.0	1.1	float64
<pre>rain_water:kgm2 relative_humidity_1000hPa:p</pre>	76.2	85.25	100.0	float64
sample_weight	0.899142	0.907248	2.721744	float64
sfc_pressure:hPa	1008.925	1017.0	1043.725	float64
snow_depth:cm	0.0	0.0	18.2	float64
-	0.0	0.0	0.18	float64
<pre>snow_melt_10min:mm snow_water:kgm2</pre>	0.0	0.0	5.65	float64
sun_azimuth:d	180.007	264.513	348.48752	float64
sun_elevation:d	-0.8645	15.234063	49.94375	float64
_	0.0	0.1	1.375	float64
<pre>super_cooled_liquid_water:kgm2 t_1000hPa:K</pre>	279.075	284.25	303.25	float64
total_cloud_cover:p	92.85	99.9	100.0	float64
-	37320.0515	48663.7615	75489.33	float64
<pre>visibility:m wind_speed_10m:ms</pre>	2.7	4.05	13.275	float64
wind_speed_10m.ms wind_speed_u_10m:ms	0.3	2.475	13.273	float64
-	0.725	1.875	8.825	float64
wind_speed_v_10m:ms	0.725	176.4	5733.42	float64
У	0.0	170.4	5733.42	1104104
	missing_coun	t missing ra	tio raw two	e \
absolute_humidity_2m:gm3	7:	_	825 floa	
air_density_2m:kgm3	7:			
ceiling_height_agl:m	15093			
clear_sky_energy_1h:J	7!			
clear_sky_rad:W	7:			
cloud_base_agl:m	595			
dew_point_2m:K	7:			
diffuse_rad:W	7:			
diffuse_rad_1h:J	7!			
direct_rad:W	7:			
direct_rad_1h:J	7!			
effective_cloud_cover:p	7:			
elevation:m	7:			
fresh_snow_1h:cm	7. 7!			
fresh_snow_3h:cm	7 : 7 !			
fresh_snow_6h:cm	7 : 7 !			
TICOH DHOM OH CH	7 :	0.00	086 floa	· U

is_day:idx	72	0.000825	float
is_estimated			int
is_in_shadow:idx	72	0.000825	float
location			object
msl_pressure:hPa	72	0.000825	float
<pre>precip_5min:mm</pre>	72	0.000825	float
<pre>precip_type_5min:idx</pre>	72	0.000825	float
pressure_100m:hPa	72	0.000825	float
pressure_50m:hPa	72	0.000825	float
rain_water:kgm2	72	0.000825	float
relative_humidity_1000hPa:p	72	0.000825	float
sample_weight			float
sfc_pressure:hPa	72	0.000825	float
<pre>snow_depth:cm</pre>	72	0.000825	float
<pre>snow_melt_10min:mm</pre>	72	0.000825	float
snow_water:kgm2	72	0.000825	float
sun_azimuth:d	72	0.000825	float
sun_elevation:d	72	0.000825	float
<pre>super_cooled_liquid_water:kgm2</pre>	72	0.000825	float
t_1000hPa:K	72	0.000825	float
total_cloud_cover:p	72	0.000825	float
visibility:m	72	0.000825	float
wind_speed_10m:ms	72	0.000825	float
wind_speed_u_10m:ms	72	0.000825	float
wind_speed_v_10m:ms	72	0.000825	float
у			float

${\tt variable_type\ special_types}$

absolute_humidity_2m:gm3	numeric
air_density_2m:kgm3	numeric
ceiling_height_agl:m	numeric
clear_sky_energy_1h:J	numeric
clear_sky_rad:W	numeric
cloud_base_agl:m	numeric
dew_point_2m:K	numeric
diffuse_rad:W	numeric
diffuse_rad_1h:J	numeric
direct_rad:W	numeric
direct_rad_1h:J	numeric
effective_cloud_cover:p	numeric
elevation:m	category
fresh_snow_1h:cm	numeric
fresh_snow_3h:cm	numeric
fresh_snow_6h:cm	numeric
is_day:idx	category
is_estimated	category
is_in_shadow:idx	category
location	category

msl_pressure:hPa	numeric
<pre>precip_5min:mm</pre>	numeric
<pre>precip_type_5min:idx</pre>	category
pressure_100m:hPa	numeric
pressure_50m:hPa	numeric
rain_water:kgm2	numeric
relative_humidity_1000hPa:p	numeric
sample_weight	category
sfc_pressure:hPa	numeric
<pre>snow_depth:cm</pre>	numeric
<pre>snow_melt_10min:mm</pre>	numeric
<pre>snow_water:kgm2</pre>	numeric
sun_azimuth:d	numeric
sun_elevation:d	numeric
<pre>super_cooled_liquid_water:kgm2</pre>	numeric
t_1000hPa:K	numeric
total_cloud_cover:p	numeric
visibility:m	numeric
wind_speed_10m:ms	numeric
wind_speed_u_10m:ms	numeric
wind_speed_v_10m:ms	numeric
У	numeric

${\tt test_data}\ {\tt dataset}\ {\tt summary}$

	count	unique	top	freq	mean	\
absolute_humidity_2m:gm3	5791	289			4.192639	
air_density_2m:kgm3	5791	640			1.280018	
ceiling_height_agl:m	4395	4247			3278.267059	
clear_sky_energy_1h:J	5788	3059			469132.824948	
<pre>clear_sky_rad:W</pre>	5791	2046			130.246477	
cloud_base_agl:m	4934	4719			1733.271034	
dew_point_2m:K	5791	948			270.733081	
diffuse_rad:W	5791	2237			42.175259	
diffuse_rad_1h:J	5788	3065			152461.828645	
direct_rad:W	5791	1829			51.829421	
direct_rad_1h:J	5788	2676			186526.762509	
effective_cloud_cover:p	5791	2100			66.598541	
elevation:m	5791	3			11.262131	
fresh_snow_1h:cm	5788	23			0.032308	
fresh_snow_3h:cm	5788	42			0.100259	
fresh_snow_6h:cm	5788	60			0.204492	
is_day:idx	5791	5			0.488387	
is_estimated	5791	1			1.0	
is_in_shadow:idx	5791	5			0.555085	
location	5791	3	Α	2161		
msl_pressure:hPa	5791	2040			1012.678587	
precip_5min:mm	5791	63			0.003687	
<pre>precip_type_5min:idx</pre>	5791	12			0.086039	

nmoggume 100m.hDs	E701	0104		000 701620
pressure_100m:hPa	5791 5791	2124 2134		998.781639
pressure_50m:hPa				1005.02648
rain_water:kgm2	5791	7		0.000984
relative_humidity_1000hPa:p	5791	2051		70.810205
sample_weight	5791	1		1.0
sfc_pressure:hPa	5791	2148		1011.29959
snow_depth:cm	5791	78		0.131661
snow_melt_10min:mm	5791	38		0.000695
snow_water:kgm2	5791	68		0.078393
sun_azimuth:d	5791	5681		179.475343
sun_elevation:d	5791	5093		-0.927197
<pre>super_cooled_liquid_water:kgm2</pre>	5791	31		0.035175
t_1000hPa:K	5791	825		275.185991
total_cloud_cover:p	5791	1838		71.785616
visibility:m	5791	5784		29884.461577
wind_speed_10m:ms	5791	424		3.227599
wind_speed_u_10m:ms	5791	672		0.668019
wind_speed_v_10m:ms	5791	483		0.538344
у	5791	2304		272.991992
		std	min	25% \
absolute_humidity_2m:gm3	1.	300644	1.1	3.35
air_density_2m:kgm3	0.	024372	1.219	1.26375
ceiling_height_agl:m	2590.	751931	27.925	1149.0625
clear_sky_energy_1h:J	689638	596662	0.0	0.0
clear_sky_rad:W	191.	578221	0.0	0.0
cloud_base_agl:m	1987	046511	27.5	525.4375
dew_point_2m:K	4.	634046	255.05	268.33749
diffuse_rad:W	59.	158733	0.0	0.0
diffuse_rad_1h:J	211011.	771342	0.0	0.0
direct_rad:W	110.	450287	0.0	0.0
direct_rad_1h:J	393513	3.65175	0.0	0.0
effective_cloud_cover:p		.583548	0.0	33.6375
elevation:m		7.8114	6.0	6.0
fresh_snow_1h:cm	0.	170919	0.0	0.0
fresh_snow_3h:cm		425766	0.0	0.0
fresh_snow_6h:cm		738932	0.0	0.0
is_day:idx		486436	0.0	0.0
is_estimated	0.	0.0	1.0	1.0
is_in_shadow:idx	0	483636	0.0	0.0
location	0.	100000	0.0	0.0
msl_pressure:hPa	13	.953847	975.3	1003.875
precip_5min:mm		.017701	0.0	0.0
precip_type_5min:idx		.393918	0.0	0.0
		.825369	962.4	989.9
pressure_100m:hPa				
pressure_50m:hPa		.873049	968.45	996.087475
rain_water:kgm2		.009596	0.0	0.0
relative_humidity_1000hPa:p	14.	940249	21.325	60.75

sample_weight	(0.0 1.0	1.	0	
sfc_pressure:hPa	13.9216				
snow_depth:cm	0.6358				
snow_melt_10min:mm	0.0073				
snow_water:kgm2	0.1890				
sun_azimuth:d	96.8919				
sun_elevation:d		358 -44.28175			
super_cooled_liquid_water:kgm2	0.0848	395 0.0			
t_1000hPa:K	3.8235		272.	8	
total_cloud_cover:p	37.5782	218 0.0	41.	8	
visibility:m	14669.6271	1215.4	18727.0	5	
wind_speed_10m:ms	1.8690	0.05	1.72	5	
wind_speed_u_10m:ms	3.125	501 -7.15	-1.7	5	
wind_speed_v_10m:ms	1.8385	513 -5.3	-0.	8	
у	770.8410	016 -0.0	0.	0	
	50%	75%	max	dtypes	\
absolute_humidity_2m:gm3	4.3	5.05	7.7	float64	
air_density_2m:kgm3	1.279	1.29375	1.37175	float64	
ceiling_height_agl:m	2618.95	4661.025	12294.901	float64	
clear_sky_energy_1h:J	11008.5	791394.0	2554290.5	float64	
clear_sky_rad:W	2.675	221.925	710.5	float64	
cloud_base_agl:m	904.825	2014.962525	10674.3	float64	
dew_point_2m:K	271.6	273.9	280.4	float64	
diffuse_rad:W	1.775	78.4875	311.95	float64	
diffuse_rad_1h:J	18860.9	279202.425	1071799.5	float64	
direct_rad:W	0.0	34.0875	530.15	float64	
direct_rad_1h:J	0.0	129529.5	1895533.0	float64	
effective_cloud_cover:p	85.375	99.975	100.0	float64	
elevation:m	7.0	24.0	24.0	float64	
fresh_snow_1h:cm	0.0	0.0	2.6	float64	
fresh_snow_3h:cm	0.0	0.0	5.2	float64	
fresh_snow_6h:cm	0.0	0.0	7.5	float64	
is_day:idx	0.25	1.0	1.0	float64	
is_estimated	1.0	1.0	1.0	int64	
is_in_shadow:idx	1.0	1.0	1.0	float64	
location				object	
msl_pressure:hPa	1011.625	1023.8125	1041.3501	float64	
<pre>precip_5min:mm</pre>	0.0	0.0	0.2475	float64	
<pre>precip_type_5min:idx</pre>	0.0	0.0	3.0	float64	
pressure_100m:hPa	997.9	1009.875	1028.05	float64	
pressure_50m:hPa	1004.1	1016.1625	1034.45	float64	
rain_water:kgm2	0.0	0.0	0.175	float64	
relative_humidity_1000hPa:p	73.1	82.075	98.0	float64	
sample_weight	1.0	1.0	1.0	int64	
sfc_pressure:hPa	1010.35	1022.5125	1040.8501	float64	
snow_depth:cm	0.0	0.0	4.9	float64	
snow_melt_10min:mm	0.0	0.0	0.14	float64	

		•	0.45	
snow_water:kgm2	0.0	0.1	2.15	float64
sun_azimuth:d	179.52899	263.49875		float64
sun_elevation:d	-0.79825	15.30325	41.13025	
<pre>super_cooled_liquid_water:kgm2</pre>	0.0	0.0	0.75	float64
t_1000hPa:K	275.175	277.525	285.1	float64
total_cloud_cover:p	96.65	100.0	100.0	float64
visibility:m	31311.025	40438.6635	66178.45	float64
wind_speed_10m:ms	2.9	4.45	10.2	float64
wind_speed_u_10m:ms	0.3	2.9	9.95	float64
wind_speed_v_10m:ms	0.625	1.825	7.15	float64
У	0.0	142.906699	5172.64	float64
	missing_cou	nt missing_ra	atio raw_typ	e \
absolute_humidity_2m:gm3			floa	t
air_density_2m:kgm3			floa	.t
ceiling_height_agl:m	13	96 0.243	1064 floa	t
clear_sky_energy_1h:J		3 0.000	0518 floa	t
clear_sky_rad:W			floa	t
cloud_base_agl:m	8	57 0.147	7988 floa	.t
dew_point_2m:K			floa	t
diffuse_rad:W			floa	.t
diffuse_rad_1h:J		3 0.000	0518 floa	t
direct_rad:W			floa	.t
direct_rad_1h:J		3 0.000	0518 floa	t
effective_cloud_cover:p			floa	t
elevation:m			floa	.t
fresh_snow_1h:cm		3 0.000)518 floa	.t
fresh_snow_3h:cm		3 0.000)518 floa	t
fresh_snow_6h:cm		3 0.000		
is_day:idx			floa	t
is_estimated			in	
is_in_shadow:idx			floa	.t
location			objec	
msl_pressure:hPa			floa	
precip_5min:mm			floa	
<pre>precip_type_5min:idx</pre>			floa	
pressure_100m:hPa			floa	
pressure_50m:hPa			floa	
rain_water:kgm2			floa	
relative_humidity_1000hPa:p			floa	
sample_weight			in	
sfc_pressure:hPa			floa	
snow_depth:cm			floa	
snow_melt_10min:mm			floa	
snow_mert_romin.mm snow_water:kgm2			floa	
snow_water.kgmz sun_azimuth:d			floa	
sun_elevation:d			floa	
-			floa	
<pre>super_cooled_liquid_water:kgm2</pre>			110a	. U

```
t_1000hPa:K float
total_cloud_cover:p float
visibility:m float
wind_speed_10m:ms float
wind_speed_u_10m:ms float
wind_speed_v_10m:ms float
y float
```

variable_type special_types

absolute_humidity_2m:gm3 numeric air_density_2m:kgm3 numeric ceiling_height_agl:m numeric clear_sky_energy_1h:J numeric clear_sky_rad:W numeric cloud_base_agl:m numeric dew_point_2m:K numeric diffuse_rad:W numeric diffuse_rad_1h:J numeric direct_rad:W numeric direct rad 1h:J numeric effective_cloud_cover:p numeric elevation:m category fresh_snow_1h:cm numeric fresh_snow_3h:cm numeric fresh_snow_6h:cm numeric is_day:idx category is_estimated category is_in_shadow:idx category location category msl_pressure:hPa numeric precip_5min:mm numeric precip_type_5min:idx category pressure_100m:hPa numeric pressure_50m:hPa numeric rain water:kgm2 category relative_humidity_1000hPa:p numeric sample_weight category sfc_pressure:hPa numeric snow_depth:cm numeric snow_melt_10min:mm numeric snow_water:kgm2 numeric sun_azimuth:d numeric sun_elevation:d numeric super_cooled_liquid_water:kgm2 numeric t_1000hPa:K numeric total_cloud_cover:p numeric visibility:m numeric wind_speed_10m:ms numeric

Types warnings summary

train_data test_data warnings sample_weight float int warning

1.0.1 Feature Distance

[6]: if run_analysis: auto.target_analysis(train_data=train_data, label="y")

1.1 Target variable analysis

1.1.1 Distribution fits for target variable

• none of the attempted distribution fits satisfy specified minimum p-value threshold: 0.01

1.1.2 Target variable correlations

train_data - spearman correlation matrix; focus: absolute correlation for y >= 0.5 (sample size: 10000)

Feature interaction between clear_sky_rad:W/y in train_data (sample size: 10000)

Feature interaction between clear_sky_energy_1h:J/y in train_data (sample size: 10000)

Feature interaction between diffuse_rad:W/y in train_data (sample size: 10000)

Feature interaction between diffuse_rad_1h:J/y in train_data (sample size: 10000)

Feature interaction between ${\tt direct_rad_1h:J/y}$ in ${\tt train_data}$ (sample size: 10000)

Feature interaction between direct_rad:W/y in train_data (sample size: 10000)

Feature interaction between sun_elevation:d/y in train_data (sample size: 10000)

Feature interaction between is_day:idx/y in train_data (sample size: 10000)

Feature interaction between is_in_shadow:idx/y in train_data (sample size: 10000)

2 Starting

```
[7]: import os
     # Get the last submission number
     last_submission_number = int(max([int(filename.split('_')[1].split('.')[0]) for_
     ofilename in os.listdir('submissions') if "submission" in filename]))
     print("Last submission number:", last_submission_number)
     print("Now creating submission number:", last_submission_number + 1)
     # Create the new filename
     new_filename = f'submission_{last_submission_number + 1}'
     hello = os.environ.get('HELLO')
     if hello is not None:
         new_filename += f'_{hello}'
     print("New filename:", new_filename)
    Last submission number: 89
    Now creating submission number: 90
    New filename: submission_90
[8]: predictors = [None, None, None]
```

```
[9]: def fit_predictor_for_location(loc):
         print(f"Training model for location {loc}...")
         # sum of sample weights for this location, and number of rows, for both _{\sqcup}
      \hookrightarrow train and tune data and test data
         print("Train data sample weight sum:", train_data[train_data["location"] ==__
      →loc]["sample_weight"].sum())
         print("Train data number of rows:", train_data[train_data["location"] ==__
      \hookrightarrowloc].shape[0])
         if use_tune_data:
             print("Tune data sample weight sum:", ...
      otuning_data[tuning_data["location"] == loc]["sample_weight"].sum())
             print("Tune data number of rows:", tuning data[tuning_data["location"]
      \Rightarrow = loc].shape[0])
         if use test data:
             print("Test data sample weight sum:", test_data[test_data["location"]_
      ⇒== loc]["sample_weight"].sum())
             print("Test data number of rows:", test data[test_data["location"] ==__
      \hookrightarrowloc].shape[0])
         predictor = TabularPredictor(
             label=label,
             eval_metric=metric,
             path=f"AutogluonModels/{new_filename}_{loc}",
             sample_weight=sample_weight,
             weight_evaluation=weight_evaluation,
             groups="group" if use_groups else None,
         ).fit(
             train_data=train_data[train_data["location"] == loc],
             time_limit=time_limit,
             presets=presets,
             num_stack_levels=num_stack_levels,
             num_bag_folds=num_bag_folds if not use_groups else 2,# just put_
      ⇔somethin, will be overwritten anyways
             tuning_data=tuning_data[tuning_data["location"] == loc] if_
      use tune data else None,
             use_bag_holdout=use_bag_holdout,
             holdout_frac=holdout_frac,
         )
         # evaluate on test data
         if use test data:
             # drop sample_weight column
             t = test_data[test_data["location"] == loc]#.
      →drop(columns=["sample_weight"])
             perf = predictor.evaluate(t)
             print("Evaluation on test data:")
             print(perf[predictor.eval_metric.name])
```

```
return predictor
loc = "A"
predictors[0] = fit_predictor_for_location(loc)
Warning: path already exists! This predictor may overwrite an existing
predictor! path="AutogluonModels/submission_90_A"
Presets specified: ['best_quality']
Stack configuration (auto_stack=True): num_stack_levels=1, num_bag_folds=8,
num_bag_sets=20
Values in column 'sample_weight' used as sample weights instead of predictive
features. Evaluation will report weighted metrics, so ensure same column exists
in test data.
Beginning AutoGluon training ... Time limit = 1800s
AutoGluon will save models to "AutogluonModels/submission_90_A/"
AutoGluon Version: 0.8.2
Python Version:
                    3.10.12
Operating System:
                   Linux
Platform Machine: x86 64
Platform Version: #1 SMP Debian 5.10.197-1 (2023-09-29)
Disk Space Avail: 298.11 GB / 315.93 GB (94.4%)
Train Data Rows:
                    31924
Train Data Columns: 41
Label Column: y
Preprocessing data ...
AutoGluon infers your prediction problem is: 'regression' (because dtype of
label-column == float and many unique label-values observed).
        Label info (max, min, mean, stddev): (5733.42, 0.0, 632.68576,
1165.32372)
        If 'regression' is not the correct problem_type, please manually specify
the problem type parameter during predictor init (You may specify problem type
as one of: ['binary', 'multiclass', 'regression'])
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
                                             131761.1 MB
        Available Memory:
       Train Data (Original) Memory Usage: 11.81 MB (0.0% of available memory)
        Inferring data type of each feature based on column values. Set
feature_metadata_in to manually specify special dtypes of the features.
        Stage 1 Generators:
                Fitting AsTypeFeatureGenerator...
                        Note: Converting 2 features to boolean dtype as they
only contain 2 unique values.
        Stage 2 Generators:
                Fitting FillNaFeatureGenerator...
        Stage 3 Generators:
                Fitting IdentityFeatureGenerator...
        Stage 4 Generators:
```

```
{\tt Fitting\ DropUniqueFeatureGenerator...}
```

```
Training model for location A...
Train data sample weight sum: 31924.00000000007
Train data number of rows: 31924
Test data sample weight sum: 2161
Test data number of rows: 2161
        Stage 5 Generators:
                Fitting DropDuplicatesFeatureGenerator...
       Useless Original Features (Count: 1): ['location']
                These features carry no predictive signal and should be manually
investigated.
                This is typically a feature which has the same value for all
rows.
                These features do not need to be present at inference time.
        Types of features in original data (raw dtype, special dtypes):
                ('float', []) : 38 | ['absolute_humidity_2m:gm3',
'air_density_2m:kgm3', 'ceiling_height_agl:m', 'clear_sky_energy_1h:J',
'clear_sky_rad:W', ...]
                ('int', []) : 1 | ['is_estimated']
        Types of features in processed data (raw dtype, special dtypes):
                ('float', []) : 37 | ['absolute_humidity_2m:gm3',
'air_density_2m:kgm3', 'ceiling_height_agl:m', 'clear_sky_energy_1h:J',
'clear_sky_rad:W', ...]
                ('int', ['bool']) : 2 | ['elevation:m', 'is_estimated']
        0.2s = Fit runtime
        39 features in original data used to generate 39 features in processed
data.
        Train Data (Processed) Memory Usage: 9.51 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.18s ...
AutoGluon will gauge predictive performance using evaluation metric:
'mean_absolute_error'
        This metric's sign has been flipped to adhere to being higher_is_better.
The metric score can be multiplied by -1 to get the metric value.
        To change this, specify the eval metric parameter of Predictor()
User-specified model hyperparameters to be fit:
{
        'NN_TORCH': {},
        'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {},
'GBMLarge'],
        'CAT': {},
        'XGB': {},
        'FASTAI': {},
        'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
```

```
'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem types': ['regression', 'quantile']}}],
        'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}},
{'weights': 'distance', 'ag args': {'name suffix': 'Dist'}}],
AutoGluon will fit 2 stack levels (L1 to L2) ...
Fitting 11 L1 models ...
Fitting model: KNeighborsUnif BAG_L1 ... Training model for up to 1199.58s of
the 1799.81s of remaining time.
        -207.0745
                        = Validation score (-mean_absolute_error)
        0.04s
                = Training
                             runtime
                = Validation runtime
        0.42s
Fitting model: KNeighborsDist_BAG_L1 ... Training model for up to 1198.94s of
the 1799.18s of remaining time.
        -208.1423
                        = Validation score (-mean_absolute_error)
        0.04s = Training
                             runtime
               = Validation runtime
        0.4s
Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 1198.44s of the
1798.68s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -139.7504
                        = Validation score (-mean absolute error)
        38.16s = Training
                             runtime
        21.85s = Validation runtime
Fitting model: LightGBM_BAG_L1 ... Training model for up to 1151.98s of the
1752.21s of remaining time.
        Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -148.2262
                        = Validation score (-mean_absolute_error)
        41.99s = Training
                             runtime
        14.42s
                = Validation runtime
Fitting model: RandomForestMSE BAG L1 ... Training model for up to 1106.75s of
the 1706.98s of remaining time.
        -162.4541
                        = Validation score (-mean absolute error)
        10.04s = Training
                             runtime
                = Validation runtime
Fitting model: CatBoost_BAG_L1 ... Training model for up to 1093.46s of the
1693.7s of remaining time.
        Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -155.3753
                        = Validation score (-mean_absolute_error)
        204.38s = Training
                             runtime
                = Validation runtime
Fitting model: ExtraTreesMSE_BAG_L1 ... Training model for up to 888.02s of the
1488.25s of remaining time.
```

```
-163.5846
                        = Validation score (-mean_absolute_error)
        2.01s = Training
                             runtime
        1.2s
                = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L1 ... Training model for up to 882.7s of the
1482.93s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -169.7354
                        = Validation score (-mean_absolute_error)
       39.32s = Training
                             runtime
                = Validation runtime
       0.64s
Fitting model: XGBoost BAG L1 ... Training model for up to 842.26s of the
1442.5s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -158.1199
       63.81s = Training runtime
       3.27s
                = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 775.1s of the
1375.34s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean absolute error)
       -153.7348
       132.53s = Training
                             runtime
                = Validation runtime
       0.36s
Fitting model: LightGBMLarge_BAG_L1 ... Training model for up to 641.4s of the
1241.64s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -144.4866
                        = Validation score (-mean_absolute_error)
       133.11s = Training runtime
        19.94s = Validation runtime
Completed 1/20 k-fold bagging repeats ...
Fitting model: WeightedEnsemble L2 ... Training model for up to 360.0s of the
1101.5s of remaining time.
       -136.91 = Validation score (-mean absolute error)
                = Training runtime
       0.0s
                = Validation runtime
Fitting 9 L2 models ...
Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 1100.62s of the
1100.6s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -139.2783
                        = Validation score (-mean_absolute_error)
       3.0s
               = Training runtime
       0.17s = Validation runtime
Fitting model: LightGBM_BAG_L2 ... Training model for up to 1096.36s of the
1096.34s of remaining time.
```

Fitting 8 child models (S1F1 - S1F8) | Fitting with

```
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -136.5524
       2.29s = Training
                             runtime
       0.09s
                = Validation runtime
Fitting model: RandomForestMSE BAG L2 ... Training model for up to 1092.84s of
the 1092.82s of remaining time.
       -135.9141
                        = Validation score (-mean absolute error)
       15.92s = Training
                             runtime
       1.27s = Validation runtime
Fitting model: CatBoost_BAG_L2 ... Training model for up to 1073.58s of the
1073.56s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.9547
                        = Validation score (-mean absolute error)
       4.83s
                = Training
                             runtime
       0.06s
                = Validation runtime
Fitting model: ExtraTreesMSE_BAG_L2 ... Training model for up to 1067.58s of the
1067.56s of remaining time.
       -135.6456
                        = Validation score (-mean_absolute_error)
       2.61s
                = Training
                             runtime
       1.25s
                = Validation runtime
Fitting model: NeuralNetFastAI BAG L2 ... Training model for up to 1061.6s of
the 1061.59s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.0584
                        = Validation score (-mean_absolute_error)
       39.72s = Training
                             runtime
       0.67s
                = Validation runtime
Fitting model: XGBoost_BAG_L2 ... Training model for up to 1020.58s of the
1020.57s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -136.1474
       3.02s
                = Training
                             runtime
       0.12s
                = Validation runtime
Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 1016.3s of the
1016.28s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -137.1077
                        = Validation score (-mean_absolute_error)
       53.6s = Training
                            runtime
       0.54s = Validation runtime
Fitting model: LightGBMLarge_BAG_L2 ... Training model for up to 961.31s of the
961.29s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -137.4687
                        = Validation score (-mean_absolute_error)
       7.9s
               = Training runtime
```

```
= Validation runtime
Repeating k-fold bagging: 2/20
Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 952.03s of the
952.01s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -138.7235
                        = Validation score (-mean absolute error)
       6.69s = Training
                             runtime
       0.37s = Validation runtime
Fitting model: LightGBM_BAG_L2 ... Training model for up to 947.09s of the
947.07s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.2762
                        = Validation score (-mean absolute error)
       4.75s
                = Training
                             runtime
       0.19s = Validation runtime
Fitting model: CatBoost_BAG_L2 ... Training model for up to 943.34s of the
943.33s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean absolute error)
       -136.7681
       9.76s
                = Training
                             runtime
       0.12s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L2 ... Training model for up to 936.98s of
the 936.97s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -135.066
                        = Validation score (-mean_absolute_error)
       79.58s
                = Training
                             runtime
                = Validation runtime
Fitting model: XGBoost_BAG_L2 ... Training model for up to 895.67s of the
895.65s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -135.3834
                        = Validation score (-mean absolute error)
       5.99s
                = Training
                             runtime
       0.26s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 891.22s of the
891.21s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.3568
                        = Validation score (-mean_absolute_error)
       112.01s = Training
                             runtime
              = Validation runtime
Fitting model: LightGBMLarge_BAG_L2 ... Training model for up to 831.46s of the
831.44s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
```

ParallelLocalFoldFittingStrategy

```
15.37s = Training runtime
       0.46s
                = Validation runtime
Repeating k-fold bagging: 3/20
Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 822.71s of the
822.69s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -138.6952
                        = Validation score (-mean absolute error)
       10.4s = Training
                             runtime
       0.54s = Validation runtime
Fitting model: LightGBM BAG L2 ... Training model for up to 817.7s of the
817.68s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.1345
                        = Validation score (-mean_absolute_error)
       7.01s = Training
                             runtime
       0.28s
                = Validation runtime
Fitting model: CatBoost_BAG_L2 ... Training model for up to 814.11s of the
814.09s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.6666
                        = Validation score (-mean absolute error)
       14.61s = Training
                             runtime
       0.18s = Validation runtime
Fitting model: NeuralNetFastAI BAG L2 ... Training model for up to 807.97s of
the 807.96s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -134.7458
                        = Validation score (-mean_absolute_error)
       119.65s = Training
                             runtime
                = Validation runtime
Fitting model: XGBoost_BAG_L2 ... Training model for up to 766.57s of the
766.55s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean absolute error)
       -135.2141
       8.89s = Training
                             runtime
       0.39s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 762.35s of the
762.33s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -135.9574
                        = Validation score (-mean absolute error)
       175.66s = Training
                             runtime
                = Validation runtime
Fitting model: LightGBMLarge_BAG_L2 ... Training model for up to 697.32s of the
697.31s of remaining time.
```

= Validation score (-mean_absolute_error)

-136.6957

```
Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.3156
                        = Validation score (-mean_absolute_error)
       23.51s = Training
                             runtime
       0.66s = Validation runtime
Repeating k-fold bagging: 4/20
Fitting model: LightGBMXT BAG L2 ... Training model for up to 687.88s of the
687.87s of remaining time.
       Fitting 8 child models (S4F1 - S4F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -138.5887
       14.25s = Training
                             runtime
                = Validation runtime
       0.73s
Fitting model: LightGBM_BAG_L2 ... Training model for up to 682.66s of the
682.65s of remaining time.
       Fitting 8 child models (S4F1 - S4F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.0618
                        = Validation score (-mean_absolute_error)
       9.28s = Training
                            runtime
       0.37s = Validation runtime
Fitting model: CatBoost_BAG_L2 ... Training model for up to 679.21s of the
679.2s of remaining time.
       Fitting 8 child models (S4F1 - S4F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.5893
                        = Validation score (-mean absolute error)
       19.79s = Training
                             runtime
       0.24s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L2 ... Training model for up to 672.76s of
the 672.74s of remaining time.
       Fitting 8 child models (S4F1 - S4F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -134.5501
                        = Validation score (-mean_absolute_error)
       160.12s = Training
                            runtime
                = Validation runtime
Fitting model: XGBoost BAG L2 ... Training model for up to 630.86s of the
630.85s of remaining time.
       Fitting 8 child models (S4F1 - S4F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -134.9661
                        = Validation score (-mean_absolute_error)
       12.22s = Training
                             runtime
       0.54s
                = Validation runtime
Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 626.23s of the
626.22s of remaining time.
       Fitting 8 child models (S4F1 - S4F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -135.7212
                        = Validation score (-mean_absolute_error)
       239.1s = Training
                             runtime
       2.18s = Validation runtime
```

Fitting model: LightGBMLarge_BAG_L2 ... Training model for up to 561.4s of the 561.39s of remaining time. Fitting 8 child models (S4F1 - S4F8) | Fitting with ParallelLocalFoldFittingStrategy -136.1661 = Validation score (-mean absolute error) 30.73s = Training runtime 0.85s = Validation runtime Repeating k-fold bagging: 5/20 Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 552.9s of the 552.88s of remaining time. Fitting 8 child models (S5F1 - S5F8) | Fitting with ParallelLocalFoldFittingStrategy -138.5468 = Validation score (-mean_absolute_error) 18.09s = Training runtime = Validation runtime 0.92s Fitting model: LightGBM_BAG_L2 ... Training model for up to 547.72s of the 547.7s of remaining time. Fitting 8 child models (S5F1 - S5F8) | Fitting with ParallelLocalFoldFittingStrategy -136.0882 = Validation score (-mean absolute error) 11.64s = Training runtime 0.47s = Validation runtime Fitting model: CatBoost_BAG_L2 ... Training model for up to 544.12s of the 544.1s of remaining time. Fitting 8 child models (S5F1 - S5F8) | Fitting with ParallelLocalFoldFittingStrategy = Validation score (-mean_absolute_error) -136.5497 25.51s = Training runtime = Validation runtime 0.3s Fitting model: NeuralNetFastAI_BAG_L2 ... Training model for up to 537.1s of the 537.08s of remaining time. Fitting 8 child models (S5F1 - S5F8) | Fitting with ParallelLocalFoldFittingStrategy -134.5143 = Validation score (-mean_absolute_error) 200.32s = Training runtime = Validation runtime 3.36s Fitting model: XGBoost BAG L2 ... Training model for up to 495.48s of the 495.46s of remaining time. Fitting 8 child models (S5F1 - S5F8) | Fitting with ParallelLocalFoldFittingStrategy -134.9755 = Validation score (-mean_absolute_error) 15.13s = Training runtime 0.66s = Validation runtime Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 491.1s of the 491.09s of remaining time.

= Validation score (-mean_absolute_error)

Fitting 8 child models (S5F1 - S5F8) | Fitting with

ParallelLocalFoldFittingStrategy

-135.6579

```
300.76s = Training
              = Validation runtime
       2.73s
Fitting model: LightGBMLarge_BAG_L2 ... Training model for up to 428.2s of the
428.18s of remaining time.
       Fitting 8 child models (S5F1 - S5F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.106
                        = Validation score (-mean absolute error)
       38.7s
                = Training
                             runtime
       1.07s
                = Validation runtime
Repeating k-fold bagging: 6/20
Fitting model: LightGBMXT BAG L2 ... Training model for up to 418.88s of the
418.87s of remaining time.
       Fitting 8 child models (S6F1 - S6F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -138.5034
       21.42s = Training runtime
        1.08s
                = Validation runtime
Fitting model: LightGBM_BAG_L2 ... Training model for up to 414.16s of the
414.15s of remaining time.
       Fitting 8 child models (S6F1 - S6F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean absolute error)
       -136.0657
       14.05s = Training
                            runtime
       0.56s
                = Validation runtime
Fitting model: CatBoost_BAG_L2 ... Training model for up to 410.49s of the
410.47s of remaining time.
       Fitting 8 child models (S6F1 - S6F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.5486
                        = Validation score (-mean_absolute_error)
       30.66s = Training runtime
                = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L2 ... Training model for up to 403.95s of
the 403.93s of remaining time.
       Fitting 8 child models (S6F1 - S6F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean absolute error)
       -134.4519
       240.63s = Training runtime
                = Validation runtime
Fitting model: XGBoost_BAG_L2 ... Training model for up to 362.21s of the
362.19s of remaining time.
       Fitting 8 child models (S6F1 - S6F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -134.9381
                        = Validation score (-mean_absolute_error)
       17.98s = Training runtime
                = Validation runtime
Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 357.82s of the
357.8s of remaining time.
       Fitting 8 child models (S6F1 - S6F8) | Fitting with
```

runtime

```
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -135.6084
       366.09s = Training
                             runtime
       3.24s
              = Validation runtime
Fitting model: LightGBMLarge_BAG_L2 ... Training model for up to 291.08s of the
291.06s of remaining time.
       Fitting 8 child models (S6F1 - S6F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.0691
                        = Validation score (-mean absolute error)
       47.02s = Training
                             runtime
        1.3s
                = Validation runtime
Repeating k-fold bagging: 7/20
Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 281.45s of the
281.43s of remaining time.
       Fitting 8 child models (S7F1 - S7F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -138.4553
                        = Validation score (-mean_absolute_error)
       25.67s = Training runtime
       1.29s
                = Validation runtime
Fitting model: LightGBM BAG L2 ... Training model for up to 275.97s of the
275.96s of remaining time.
       Fitting 8 child models (S7F1 - S7F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.0951
                        = Validation score (-mean_absolute_error)
       16.48s = Training
                            runtime
       0.65s
                = Validation runtime
Fitting model: CatBoost_BAG_L2 ... Training model for up to 272.33s of the
272.32s of remaining time.
       Fitting 8 child models (S7F1 - S7F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -136.5204
                        = Validation score (-mean_absolute_error)
       35.88s = Training runtime
       0.42s
                = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L2 ... Training model for up to 265.75s of
the 265.73s of remaining time.
       Fitting 8 child models (S7F1 - S7F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -134.341
                        = Validation score (-mean absolute error)
       281.2s = Training
                            runtime
                = Validation runtime
       4.77s
Fitting model: XGBoost_BAG_L2 ... Training model for up to 223.79s of the
223.78s of remaining time.
       Fitting 8 child models (S7F1 - S7F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
        -135.0242
       21.05s = Training
                            runtime
       0.93s
                = Validation runtime
```

Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 219.29s of the

```
219.27s of remaining time.
            Fitting 8 child models (S7F1 - S7F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -135.5437
                             = Validation score (-mean_absolute_error)
            429.87s = Training
                                  runtime
                     = Validation runtime
    Fitting model: LightGBMLarge BAG L2 ... Training model for up to 154.06s of the
    154.05s of remaining time.
            Fitting 8 child models (S7F1 - S7F8) | Fitting with
    ParallelLocalFoldFittingStrategy
            -136.067
                             = Validation score (-mean_absolute_error)
            54.33s = Training
                                  runtime
            1.48s
                     = Validation runtime
    Completed 7/20 k-fold bagging repeats ...
    Fitting model: WeightedEnsemble_L3 ... Training model for up to 360.0s of the
    145.45s of remaining time.
            -132.8711
                             = Validation score (-mean_absolute_error)
            0.73s
                     = Training
                                  runtime
            0.0s
                     = Validation runtime
    AutoGluon training complete, total runtime = 1655.32s ... Best model:
    "WeightedEnsemble L3"
    TabularPredictor saved. To load, use: predictor =
    TabularPredictor.load("AutogluonModels/submission_90_A/")
    WARNING: eval_metric='pearsonr' does not support sample weights so they will be
    ignored in reported metric.
    Evaluation: mean_absolute_error on test data: -186.24721157826426
            Note: Scores are always higher_is_better. This metric score can be
    multiplied by -1 to get the metric value.
    Evaluations on test data:
    {
        "mean_absolute_error": -186.24721157826426,
        "root_mean_squared_error": -420.62416270646276,
        "mean_squared_error": -176924.68625251285,
        "r2": 0.8716298559177108,
        "pearsonr": 0.9358825898767282,
        "median_absolute_error": -3.769514799118042
    }
    Evaluation on test data:
    -186.24721157826426
[]: loc = "B"
     predictors[1] = fit_predictor_for_location(loc)
    Warning: path already exists! This predictor may overwrite an existing
    predictor! path="AutogluonModels/submission_90_B"
    Presets specified: ['best_quality']
    Stack configuration (auto_stack=True): num_stack_levels=1, num_bag_folds=8,
    num_bag_sets=20
```

Values in column 'sample_weight' used as sample weights instead of predictive features. Evaluation will report weighted metrics, so ensure same column exists in test data.

Beginning AutoGluon training ... Time limit = 1800s

AutoGluon will save models to "AutogluonModels/submission_90_B/"

AutoGluon Version: 0.8.2
Python Version: 3.10.12
Operating System: Linux
Platform Machine: x86_64

Platform Version: #1 SMP Debian 5.10.197-1 (2023-09-29)

Disk Space Avail: 297.94 GB / 315.93 GB (94.3%)

Train Data Rows: 30792
Train Data Columns: 41

Label Column: y
Preprocessing data ...

AutoGluon infers your prediction problem is: 'regression' (because dtype of label-column == float and many unique label-values observed).

Label info (max, min, mean, stddev): (1152.3, -0.0, 97.67477, 195.03642)

If 'regression' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])

Using Feature Generators to preprocess the data ...

Fitting AutoMLPipelineFeatureGenerator...

Available Memory: 130207.91 MB

Train Data (Original) Memory Usage: 11.39 MB (0.0% of available memory) Inferring data type of each feature based on column values. Set

feature_metadata_in to manually specify special dtypes of the features.

Stage 1 Generators:

Fitting AsTypeFeatureGenerator...

Note: Converting 2 features to boolean dtype as they

only contain 2 unique values.

Stage 2 Generators:

Fitting FillNaFeatureGenerator...

Stage 3 Generators:

Fitting IdentityFeatureGenerator...

Stage 4 Generators:

 ${\tt Fitting\ DropUniqueFeatureGenerator...}$

Stage 5 Generators:

Fitting DropDuplicatesFeatureGenerator...

Training model for location B...

Train data sample weight sum: 30792.0

Train data number of rows: 30792
Test data sample weight sum: 2051
Test data number of rows: 2051

Useless Original Features (Count: 1): ['location']

These features carry no predictive signal and should be manually investigated.

```
This is typically a feature which has the same value for all
rows.
                These features do not need to be present at inference time.
        Types of features in original data (raw dtype, special dtypes):
                ('float', []): 38 | ['absolute humidity 2m:gm3',
'air_density_2m:kgm3', 'ceiling_height_agl:m', 'clear_sky_energy_1h:J',
'clear sky rad:W', ...]
                ('int', []) : 1 | ['is_estimated']
        Types of features in processed data (raw dtype, special dtypes):
                ('float', [])
                                : 37 | ['absolute_humidity_2m:gm3',
'air_density_2m:kgm3', 'ceiling_height_agl:m', 'clear_sky_energy_1h:J',
'clear_sky_rad:W', ...]
                ('int', ['bool']) : 2 | ['elevation:m', 'is_estimated']
        0.2s = Fit runtime
        39 features in original data used to generate 39 features in processed
data.
        Train Data (Processed) Memory Usage: 9.18 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.18s ...
AutoGluon will gauge predictive performance using evaluation metric:
'mean absolute error'
       This metric's sign has been flipped to adhere to being higher_is_better.
The metric score can be multiplied by -1 to get the metric value.
        To change this, specify the eval_metric parameter of Predictor()
User-specified model hyperparameters to be fit:
{
        'NN_TORCH': {},
        'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {},
'GBMLarge'],
        'CAT': {},
        'XGB': {},
        'FASTAI': {},
        'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared error', 'ag args': {'name suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini',
'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args':
{'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}},
{'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE',
'problem_types': ['regression', 'quantile']}}],
        'KNN': [{'weights': 'uniform', 'ag args': {'name_suffix': 'Unif'}},
{'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
AutoGluon will fit 2 stack levels (L1 to L2) ...
Fitting 11 L1 models ...
Fitting model: KNeighborsUnif_BAG_L1 ... Training model for up to 1199.58s of
the 1799.81s of remaining time.
```

```
0.03s = Training
                            runtime
       0.43s
                = Validation runtime
Fitting model: KNeighborsDist_BAG_L1 ... Training model for up to 1199.06s of
the 1799.29s of remaining time.
        -44.9883
                        = Validation score (-mean absolute error)
       0.03s = Training runtime
       0.43s
                = Validation runtime
Fitting model: LightGBMXT_BAG_L1 ... Training model for up to 1198.55s of the
1798.78s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -26.235 = Validation score
                                     (-mean_absolute_error)
       38.79s = Training
                             runtime
                = Validation runtime
       20.81s
Fitting model: LightGBM_BAG_L1 ... Training model for up to 1155.96s of the
1756.2s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -27.6872
                        = Validation score (-mean absolute error)
       44.86s = Training
                            runtime
        16.33s
                = Validation runtime
Fitting model: RandomForestMSE_BAG_L1 ... Training model for up to 1107.7s of
the 1707.94s of remaining time.
       -31.8894
                        = Validation score (-mean absolute error)
       11.38s = Training
                            runtime
                = Validation runtime
        1.17s
Fitting model: CatBoost_BAG_L1 ... Training model for up to 1093.5s of the
1693.74s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -29.4372
                        = Validation score (-mean_absolute_error)
       206.59s = Training
                            runtime
              = Validation runtime
Fitting model: ExtraTreesMSE BAG L1 ... Training model for up to 885.71s of the
1485.94s of remaining time.
       -32.6592
                        = Validation score (-mean absolute error)
        1.93s = Training
                             runtime
        1.16s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L1 ... Training model for up to 880.85s of
the 1481.08s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -35.7575
                        = Validation score (-mean absolute error)
        38.29s = Training
                             runtime
                = Validation runtime
Fitting model: XGBoost_BAG_L1 ... Training model for up to 841.26s of the
1441.5s of remaining time.
```

= Validation score (-mean_absolute_error)

-45.0801

```
Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -30.4775
                        = Validation score (-mean_absolute_error)
       105.3s
               = Training
                             runtime
       24.76s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ... Training model for up to 731.93s of the
1332.17s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -28.9112
       198.41s = Training
                             runtime
       0.46s = Validation runtime
Fitting model: LightGBMLarge_BAG_L1 ... Training model for up to 532.27s of the
1132.5s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -26.5707
                        = Validation score (-mean_absolute_error)
       139.44s = Training runtime
       26.82s = Validation runtime
Completed 1/20 k-fold bagging repeats ...
Fitting model: WeightedEnsemble L2 ... Training model for up to 360.0s of the
985.81s of remaining time.
       -25.5137
                        = Validation score (-mean absolute error)
       0.82s = Training runtime
       0.0s = Validation runtime
Fitting 9 L2 models ...
Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 984.97s of the
984.95s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -23.1597
                        = Validation score (-mean_absolute_error)
       10.07s = Training runtime
       0.69s
                = Validation runtime
Fitting model: LightGBM_BAG_L2 ... Training model for up to 973.33s of the
973.31s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
        -22.8809
                        = Validation score (-mean_absolute_error)
       2.81s = Training runtime
                = Validation runtime
       0.12s
Fitting model: RandomForestMSE_BAG_L2 ... Training model for up to 969.32s of
the 969.3s of remaining time.
       -21.959 = Validation score (-mean_absolute_error)
       15.03s = Training runtime
               = Validation runtime
Fitting model: CatBoost_BAG_L2 ... Training model for up to 952.57s of the
952.55s of remaining time.
```

Fitting 8 child models (S1F1 - S1F8) | Fitting with

```
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
        -22.9341
       37.75s = Training
                             runtime
       0.06s = Validation runtime
Fitting model: ExtraTreesMSE_BAG_L2 ... Training model for up to 913.65s of the
913.64s of remaining time.
       -21.9244
                        = Validation score (-mean absolute error)
       2.39s
                = Training
                             runtime
       1.22s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L2 ... Training model for up to 909.48s of
the 909.47s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -22.1783
                        = Validation score (-mean absolute error)
       38.24s
                = Training
                             runtime
       0.63s
                = Validation runtime
Fitting model: XGBoost_BAG_L2 ... Training model for up to 869.92s of the
869.91s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean absolute error)
       -22.6477
       3.04s
                = Training
                             runtime
       0.13s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 865.47s of the
865.46s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -22.2668
                        = Validation score (-mean_absolute_error)
       89.3s
                = Training
                             runtime
       0.6s
                = Validation runtime
Fitting model: LightGBMLarge_BAG_L2 ... Training model for up to 774.85s of the
774.84s of remaining time.
       Fitting 8 child models (S1F1 - S1F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean absolute error)
       -22.4653
       98.41s = Training
                            runtime
       1.73s
                = Validation runtime
Repeating k-fold bagging: 2/20
Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 671.26s of the
671.25s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -23.0488
                        = Validation score (-mean_absolute_error)
       17.41s = Training runtime
              = Validation runtime
Fitting model: LightGBM_BAG_L2 ... Training model for up to 662.56s of the
662.55s of remaining time.
```

Fitting 8 child models (S2F1 - S2F8) | Fitting with

```
= Validation score (-mean_absolute_error)
       -22.8141
       5.29s = Training
                             runtime
       0.23s
                = Validation runtime
Fitting model: CatBoost BAG L2 ... Training model for up to 658.7s of the
658.69s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -22.8401
                        = Validation score (-mean absolute error)
       48.76s = Training
                             runtime
       0.12s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L2 ... Training model for up to 646.5s of the
646.48s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -22.0293
                        = Validation score (-mean_absolute_error)
       76.47s = Training
                             runtime
       1.31s
                = Validation runtime
Fitting model: XGBoost_BAG_L2 ... Training model for up to 606.94s of the
606.92s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -22.5148
                        = Validation score (-mean absolute error)
       6.21s = Training
                             runtime
       0.26s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 602.47s of the
602.45s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -22.0278
                        = Validation score (-mean_absolute_error)
       189.07s = Training
                             runtime
                = Validation runtime
Fitting model: LightGBMLarge BAG_L2 ... Training model for up to 501.31s of the
501.3s of remaining time.
       Fitting 8 child models (S2F1 - S2F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean absolute error)
       -22.2095
       204.76s = Training
                             runtime
                = Validation runtime
Repeating k-fold bagging: 3/20
Fitting model: LightGBMXT_BAG_L2 ... Training model for up to 389.89s of the
389.88s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
        -23.0258
       24.06s = Training runtime
        1.58s
                = Validation runtime
Fitting model: LightGBM_BAG_L2 ... Training model for up to 381.85s of the
```

ParallelLocalFoldFittingStrategy

```
381.83s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -22.7665
                        = Validation score (-mean_absolute_error)
       8.3s
              = Training
                            runtime
       0.35s
                = Validation runtime
Fitting model: CatBoost BAG L2 ... Training model for up to 377.65s of the
377.63s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -22.7782
       62.72s = Training
                             runtime
                = Validation runtime
       0.19s
Fitting model: NeuralNetFastAI BAG L2 ... Training model for up to 362.45s of
the 362.43s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -21.9458
                        = Validation score (-mean_absolute_error)
       115.45s = Training
                             runtime
              = Validation runtime
Fitting model: XGBoost_BAG_L2 ... Training model for up to 322.19s of the
322.17s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -22.4749
                        = Validation score (-mean absolute error)
       9.33s = Training
                             runtime
       0.39s
                = Validation runtime
Fitting model: NeuralNetTorch_BAG_L2 ... Training model for up to 317.71s of the
317.69s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
       -21.9414
                        = Validation score (-mean_absolute_error)
       270.03s = Training
                            runtime
              = Validation runtime
Fitting model: LightGBMLarge_BAG_L2 ... Training model for up to 235.42s of the
235.4s of remaining time.
       Fitting 8 child models (S3F1 - S3F8) | Fitting with
ParallelLocalFoldFittingStrategy
                        = Validation score (-mean_absolute_error)
       -22.1519
       296.67s = Training
                             runtime
       6.16s
                = Validation runtime
Completed 3/20 k-fold bagging repeats ...
Fitting model: WeightedEnsemble_L3 ... Training model for up to 360.0s of the
139.58s of remaining time.
        -21.4202
                        = Validation score (-mean_absolute_error)
       0.7s
               = Training
                             runtime
        0.0s
                = Validation runtime
```

AutoGluon training complete, total runtime = 1661.17s ... Best model:

```
"WeightedEnsemble_L3"
   TabularPredictor saved. To load, use: predictor =
   TabularPredictor.load("AutogluonModels/submission_90_B/")

[]: loc = "C"
   predictors[2] = fit_predictor_for_location(loc)
```

3 Submit

```
[]: import pandas as pd
import matplotlib.pyplot as plt

train_data_with_dates = TabularDataset('X_train_raw.csv')
    train_data_with_dates["ds"] = pd.to_datetime(train_data_with_dates["ds"])

test_data = TabularDataset('X_test_raw.csv')
    test_data["ds"] = pd.to_datetime(test_data["ds"])

#test_data
```

```
[]: test_ids = TabularDataset('test.csv')
  test_ids["time"] = pd.to_datetime(test_ids["time"])
  # merge test_data with test_ids
  test_data_merged = pd.merge(test_data, test_ids, how="inner", right_on=["time", usual on on one of the content of the conten
```

```
[]: # predict, grouped by location
     predictions = []
     location_map = {
         "A": 0,
         "B": 1,
         "C": 2
     }
     for loc, group in test_data.groupby('location'):
         i = location_map[loc]
         subset = test_data_merged[test_data_merged["location"] == loc].
      →reset_index(drop=True)
         #print(subset)
         pred = predictors[i].predict(subset)
         subset["prediction"] = pred
         predictions.append(subset)
         # get past predictions
         past_pred = predictors[i].
      spredict(train data_with dates[train data_with dates["location"] == loc])
```

```
¬"prediction"] = past_pred

[]: | # plot predictions for location A, in addition to train data for A
    for loc, idx in location_map.items():
        fig, ax = plt.subplots(figsize=(20, 10))
        # plot train data
        train_data_with_dates[train_data_with_dates["location"] == loc].plot(x='ds',__

y='y', ax=ax, label="train data")
        # plot predictions
        predictions[idx].plot(x='ds', y='prediction', ax=ax, label="predictions")
        # plot past predictions
        train_data_with_dates[train_data_with_dates["location"] == loc].plot(x='ds',__
      # title
        ax.set_title(f"Predictions for location {loc}")
[]: # concatenate predictions
    submissions df = pd.concat(predictions)
    submissions_df = submissions_df[["id", "prediction"]]
    submissions_df
[]: # Save the submission DataFrame to submissions folder, create new name based on
     -last submission, format is submission_<last_submission_number + 1>.csv
    # Save the submission
    print(f"Saving submission to submissions/{new_filename}.csv")
    submissions_df.to_csv(os.path.join('submissions', f"{new_filename}.csv"),__
      →index=False)
    print("jall1a")
[]: # save this running notebook
    from IPython.display import display, Javascript
    import time
    # hei123
    display(Javascript("IPython.notebook.save_checkpoint();"))
    time.sleep(3)
[]: # save this notebook to submissions folder
    import subprocess
```

train_data_with_dates.loc[train_data_with_dates["location"] == loc,__

```
import os
     subprocess.run(["jupyter", "nbconvert", "--to", "pdf", "--output", os.path.
      ⇒join('notebook_pdfs', f"{new_filename}.pdf"), "autogluon_each_location.
      []: # feature importance
     location="A"
     split_time = pd.Timestamp("2022-10-28 22:00:00")
     estimated = train_data_with_dates[train_data_with_dates["ds"] >= split_time]
     estimated = estimated[estimated["location"] == location]
     predictors[0].feature_importance(feature_stage="original", data=estimated,__
      →time limit=60*10)
[]: # feature importance
     observed = train_data_with_dates[train_data_with_dates["ds"] < split_time]</pre>
     observed = observed[observed["location"] == location]
     predictors[0].feature_importance(feature_stage="original", data=observed,__
      →time_limit=60*10)
[]:|display(Javascript("IPython.notebook.save_checkpoint();"))
     time.sleep(3)
     subprocess.run(["jupyter", "nbconvert", "--to", "pdf", "--output", os.path.

→join('notebook_pdfs', f"{new_filename}_with_feature_importance.pdf"),

¬"autogluon each location.ipynb"])
[]: # import subprocess
     # def execute_git_command(directory, command):
           """Execute a Git command in the specified directory."""
     #
     #
               result = subprocess.check_output(['qit', '-C', directory] + command,__
      \hookrightarrow stderr=subprocess.STDOUT)
               return result.decode('utf-8').strip(), True
     #
           except subprocess.CalledProcessError as e:
               print(f"Git\ command\ failed\ with\ message:\ \{e.output.decode('utf-8').
      \hookrightarrow strip()}")
               return e.output.decode('utf-8').strip(), False
     # git_repo_path = "."
     # execute_git_command(git_repo_path, ['config', 'user.email',_
      → 'henrikskog01@gmail.com'])
     # execute_git_command(git_repo_path, ['config', 'user.name', hello if hello is_{\sqcup}]
      ⇔not None else 'Henrik eller Jørgen'])
     # branch_name = new_filename
```

```
# # add datetime to branch name
# branch name += f'' \{pd.Timestamp.now().strftime('%Y-%m-%d %H-%M-%S')\}''
# commit_msq = "run result"
# execute_git_command(git_repo_path, ['checkout', '-b',branch_name])
# # Navigate to your repo and commit changes
# execute_git_command(git_repo_path, ['add', '.'])
# execute_git_command(git_repo_path, ['commit', '-m',commit_msg])
# # Push to remote
# output, success = execute_git_command(git_repo_path, ['push', _
⇔'origin',branch_name])
# # If the push fails, try setting an upstream branch and push again
# if not success and 'upstream' in output:
     print("Attempting to set upstream and push again...")
      execute_git_command(git_repo_path, ['push', '--set-upstream',_
→ 'origin', branch name])
      execute_git_command(git_repo_path, ['push', 'origin', 'henrik_branch'])
# execute_git_command(git_repo_path, ['checkout', 'main'])
```