

Genauigkeitsklassen

Die MINIRAIL Führungen sind in zwei Genauigkeitsklassen erhältlich

Genauigkeits- klasse	Toleranzen ¹ A und B ₂	2 Δ A und ΔB_2						
G1	\pm 10 μ m	7 μm						
G3	± 20 µm	15 µm						
Messung bezogen auf Wagenzentrum								
² Massunterschied zwischen den Wagen eines								

 Messung bezogen auf Wagenzentrum
 Massunterschied zwischen den Wagen eines MINIRAIL gemessen in Wagenmitte (Mittelwert der beiden Auflagen) und an gleicher Schienenposition

Ablaufgenauigkeiten der Wagen auf den Schienen

Vorspannklassen V0 und V1

Grundsätzlich erhöht die Vorspannung die Steifigkeit der Führung, beeinflusst aber auch die Lebensdauer und den Verschiebewiderstand. Um den unterschiedlichen Bedürfnissen gerecht zu werden, sind die MINIRAIL in zwei Vorspannklassen verfügbar. Die Schiene gibt die Vorspannung vor.

Vorspannklasse	Vorspannung	bei Genauigkeitsklasse
V0	leichtes Spiel bis 0.01 · C	G3
V1	0 bis 0.03 · C	G1, G3

C = Dynamische Tragzahl (siehe Seite 13)

Schienenlängen

Stand	Standardschienenlängen L ₃ (Längen in mm)									
Gröss	se L ₄	L ₅ , L ₁₀	L ₈	L_3	L ₃ maximal					
7	15	5	_	40, 55, 70, 85,	1000					
9	20	7.5	-	55, 75, 95, 115,	995					
12	25	10	-	70, 95, 120, 145,	995					
15	40	15	-	70, 110, 150, 190,	990					
14	30	10	-	80, 110, 140, 170,	980					
18	30	10	-	80, 110, 140, 170,	980					
24	40	15	-	110, 150, 190, 230,	990					
42	40	15	23	110. 150. 190, 230,	990					

Schienen in Speziallängen

Spezial-Schienenlängen sind bis zur max. Schienenlänge gemäss obiger Tabelle, nach folgender Formel erhältlich:

$$L_3 = (n-1) \cdot L_4 + L_5 + L_{10}$$
 $n = Anzahl Befestigungslöcher$

Hierbei gelten für den Lochanfangsabstand L_5 und Lochendabstand L_{10} folgende Minimal- und Maximalwerte:

Minimaler und max (Längen in mm)	imaler l	Lochan	ıfangs-	und e	ndabst	and L ₅	, L ₁₀		
Grösse	7	9	12	15	14	18	24	42	
L ₅ , L ₁₀ minimal L ₅ , L ₁₀ maximal	4 11	5 15	5 20	5 35	5 25	5 25	6 34	6 34	

Toleranzen von Schienenlänge und Befestigungsbohrungen

Die Positionstoleranz der Befestigungslöcher und die Längentoleranz beträgt:

Schiene	L_3 , $X_n \le 300$ mm	L ₃ , X _n > 300 mm
t (mm)	0.3	0.001 · X _n
L ₃	±0.3	±0.001 · L ₃

Schmierung

Die Stirnplatten besitzen je zwei Schmierbohrungen, damit der linke und rechte Umlauf getrennt geschmiert werden kann. So ist sichergestellt, dass die Laufbahnen des Wagens, unabhängig von ihrer Einbaulage, mit Schmierstoff versorgt werden.

Bei der Auslieferung sind die Wagen leicht eingeölt. Vor Inbetriebnahme sind diese zu schmieren! Die Nachschmierung hängt von Umgebungseinflüssen, Belastung und Belastungsart ab. Sicherheit über die Nachschmierintervalle können nur anwendereigene Versuche geben. Es sind in jedem Fall die Hinweise des Schmiermittelherstellers zu beachten.

Für die Schmierung mit Öl empfiehlt SCHNEEBERGER Mineralöl CLP (DIN 51517) oder HLP (DIN 51524) im Viskositätsbereich ISO VG32 bis ISO VG150 nach DIN 51519. Für die Schmierung mit Fett empfiehlt SCHNEEBERGER Schmierfett KP2K oder KP1K nach DIN 51825.

Ein Nachschmierset mit einem geeigneten Öl kann bei SCHNEEBERGER mit der Typenbezeichnung MNW bezogen werden.

Schmierung mit Fett

Während der Schmierung ist der Wagen auf der Schiene zu verfahren, damit sich der Schmierstoff auf dieser verteilt.

Fettmen	Fettmenge pro Wagen in cm³												
MNNS 7	MNNS 9	MNNS 12	MNNS 15										
0.03	0.05	0.09	0.16										
MNN 7	MNN 9	MNN12	MNN 15	MNN 14	MNN 18	MNN 24	MNN 42						
0.04	0.09	0.15	0.25	0.05	0.11	0.20	0.33						
MNNL 7	MNNL 9	MNNL 12	MNNL 15	MNNL 14	MNNL 18	MNNL 24	MNNL 42						
0.05	0.11	0.20	0.35	0.07	0.14	0.26	0.45						
MNNXL 7	MNNXL 9	MNNXL 12	MNNXL 15	5									
0.07	0.14	0.26	0.45										

Schmierung mit Öl

Während der Schmierung ist der Wagen auf der Schiene zu verfahren, damit sich der Schmierstoff auf dieser verteilt.

Nachschmierintervall

Richtwerte unter folgender Annahme:

- Belastungsverhältnis C/P* = 10
- Geschwindigkeit von 1 m/s
- Hub von 150 mm

Nachschmierintervall = 3000 km

*C = dynamische Tragzahl / P = äquivalente Kraft

Zulässige Geschwindigkeiten und Beschleunigungen

Allgemeiner Einsatzbereich unter normalen Betriebsbedingungen:

Geschwindigkeiten bis	5 m/s
Beschleunigungen bis	300 m/s ²

Zulässige Betriebstemperaturen

MINIRAIL Führungen können bei Betriebstemperaturen von -40°C bis +80°C eingesetzt werden. Kurzzeitig sind Temperaturen bis +120°C zulässig.

Werkstoffe

Alle Stahlteile sind aus durchgehärtetem, korrosionsbeständigem Stahl gefertigt. Kunststoffteile werden im Spritzgiessverfahren aus POM und TPE geformt.

Typen: 7, 9, 12, 15, 14, 18, 24

Masstabelle, Tragzahlen

	Тур										М	asse	(mm)													
Schiene	Wagen	А	В	B ₁	B ₂	J	J ₁	L	L₁	L ₂	L ₄	L ₅ /L ₁₀	L ₆	L ₈	N	е	f ₁	f ₂	g	92	m ₁	0				
	MNNS 7							18.6	-	-			16.1										Ì			
MN 7	MNN 7	8	17	7	5	6.5	4.5	24.6	8	-	15	5	22.1	_	12	M2	2.4	4.2	2.5	2.2	3.1	2.5	ı			
IVII 7	MNNL 7		' '	'		0.0	4.0	32.1	13	-			29.6		12	IVIZ	2.4	4.2	2.0	2.2	3.1	2.5	İ			
	MNNXL 7							41.1	20	10			38.6													
	MNNS 9							22	-	-			19													
MN 9	MNN 9	10	20	9	5.5	8	5.5	32	10	-	20	7.5	29	_	15	M3	3.5	6	3	2	3.8	3.1				
IVII 3	MNNL 9	10	20		0.0		0.0	40	16	-	20	7.0	37		10	IVIO	0.0				3.0	3.1				
	MNNXL 9							50	26	13			47													
	MNNS 12 MNN 12							23.9	-	-			20.9										İ			
MN 12		1.3	27	12	7.5	10	7.5	36.4	15	-	25	10	33.4	_	20	M3	3.5	6	3.5	3	4.75	3.9	İ			
	MNNL 12				1.0		' .0	46.4	20	-			43.4	.] _		1110							ı			
	MNNXL 12							58.9	30	15			55.9													
	MNNS 15							31.7	-	-			28.7													
MN 15	MNN 15	16 32	32	32	32	32	15	8.5	12	9.5	43.7	20	-	40	15 40	40.7	_	- 25	25 M3	3.5	6	4	5	5.55	4.9	
	MNNL 15		02		0.0	'-	0.0	58.7	25	-		10	55.7		20	1010	0.0		l '		0.00	1.0				
	MNNXL 15							73.7	40	20			70.7													
MN 14	MNN 14	9	25	14	5.5	6.8	5.2	32.1	10	-	30	10	29.6	_	19	M3	3.5	6	2.8	2	3.3	2.2	ı			
	MNNL 14				0.0	0.0	0.2	41.1	19	-	00	10	38.6				0.0			_	0.0					
MN 18	MNN 18	12	30	18	6	8.5	7	40	12	-	30	10	37	_	21	M3	3.5	6	3	2.5	4.3	3.1				
	MNNL 18	12		10		0.0	ľ	50	24	-	00	10	47		۷'	1010	0.0			2.0	1.0	0.1				
MN 24	MNN 24	14	40	24	8	10	8.5	46.4	15	-	40	40 15	43.4	_	28	M3	4.5	8	3.5	4	4.75	3.9	Ī			
	MNNL 24	17	70				0.0	58.9	28	-	70		55.9		20	1410	7.0		0.0		7.70	0.0				
MN 42	MNN 42	16	60	42	9	12	9.5	55.7	20	-	40	15	52.7	23	45	M4	4.5	8	4.5	5	5.5	4.9				
72	MNNL 42	10		74		12	0.0	73.7	35	-	70	10	70.7	20	70	IVI	7.0		7.0		0.0	7.0				

Tragzahlen sind gerechnete Werte nach DIN 636-2 C_0 = statische Tragzahl C = dynamische Tragzahl (100 km) M_0 = statisches Moment M = dynamisches Moment (100 km)

Typ: 42

Trac	zahlen		Mor	Gewichte			
					T	Wagen	Schiene
Co (N)	C (N)	M _{oq} (Nm)	M _{oL} (Nm)	M _Q (Nm)	M _L (Nm)	(g)	(g/m)
935	645	3.4	1.6	2.3	1.1	9	
1560	925	5.6	4.3	3.3	2.5	13	216
2340	1230	8.4	9.3	4.4	4.9	18	210
3275	1550	11.8	17.4	5.6	8.2	23	
1385	1040	6.5	2.8	2.8	4.8	16	
2770	1690	12.9	10.2	7.9	6.2	24	309
3880	2140	18.1	19.4	9.9	10.7	31	309
5270	2645	24.5	34.5	12.3	17.3	40	
1735	1420	10.6	3.6	8.7	3	29	
3900	2510	23.8	16.3	15.3	10.4	47	598
5630	3240	34.4	32.9	19.8	18.9	63	396
7800	4070	47.6	61.1	24.8	31.9	81	
3120	2435	23.7	9.4	18.5	7.3	56	
5620	3680	42.7	28.1	27.9	18.4	81	996
8740	5000	66.4	65.5	38.1	37.6	114	996
11855	6200	90.1	116.5	47.1	60.9	146	
2340	1230	16.6	9.3	8.7	4.9	25	518
3275	1550	23.3	17.4	11	8.2	33	516
3880	2140	35.5	19.4	19.6	10.7	47	015
5270	2645	48.2	34.5	24.2	17.3	60	915
5630	3240	68.2	32.9	39.2	18.9	84	1470
7800	4070	94.4	61.1	49.3	31.9	109	1473
8110	4750	171.2	56.8	100.3	33.3	169	2020
11855	6200	250.2	116.5	130.8	60.9	231	- 2828

Parallelitätstoleranzen der Anschlagflächen

Zulässige Toleranzen für die Parallelität

Toleranzen für Vorspannklasse (mm)											
	7 / 14	9 / 18	12 / 24	15 / 42							
V0	0.003	0.005	0.008	0.01							
V1	0.002	0.003	0.004	0.005							

Montageanleitung

Die Montage der MINIRAIL Führung ist in der separaten **Montageanleitung MINIRAIL** beschrieben. Diese kann über **www.schneeberger.com** im Downloadbereich abgerufen werden.

Lieferzustand

Die MINIRAIL werden in sachgemässer Verpackung geliefert. Die Wagen sind auf einer Plastikschiene aufgeschoben und für einen unmittelbaren Einsatz leicht eingeölt.

Transport und Zwischenlagerung

MINIRAIL sind hochpräzise Bauteile, die entsprechend sorgfältig zu behandeln sind. Zum Schutz vor Beschädigungen sind daher folgende Anweisungen zu befolgen:

- MINIRAIL stets in der Originalverpackung transportieren und lagern.
- Führungen vor Stössen und Feuchtigkeit schützen.