Example Scenario

Imagine you are a data analyst and you want to predict the score a student will get on an exam based on the number of hours they studied.

Step 1: Collect Data

Suppose you have collected the following data:

Hours Studied (x)	Exam Score (y)	
1	50	
2	55	
3	65	
4	70	
5	75	

Step 2: Plot the Data

First, plot the data points on a scatter plot to visualize the relationship between hours studied and exam scores.

Step 3: Calculate the Means

Calculate the mean (average) of the independent variable (hours studied) and the dependent variable (exam score).

$$egin{aligned} ar{x} &= rac{1+2+3+4+5}{5} = 3 \ ar{y} &= rac{50+55+65+70+75}{5} = 63 \end{aligned}$$

Step 4: Calculate the Slope (β_1)

The slope (β_1) of the regression line can be calculated using the formula:

$$\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Calculating the numerator:

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = (1-3)(50-63) + (2-3)(55-63) + (3-3)(65-63) + (4-3)(70-63) + (5-3)(75-63)$$

$$= (-2)(-13) + (-1)(-8) + (0)(2) + (1)(7) + (2)(12)$$

$$= 26 + 8 + 0 + 7 + 24$$

$$= 65$$

Calculating the denominator:

$$\begin{split} &\sum_{i=1}^n (x_i - \bar{x})^2 = (1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \\ &= (-2)^2 + (-1)^2 + (0)^2 + (1)^2 + (2)^2 \\ &= 4+1+0+1+4 \\ &= 10 \end{split}$$

Thus, the slope (β_1) is:

$$eta_1 = rac{65}{10} = 6.5$$

Step 5: Calculate the Intercept (β_0)

The intercept (β_0) can be calculated using the formula:

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

Substituting the values:

$$eta_0 = 63 - 6.5 imes 3 \ eta_0 = 63 - 19.5 \ eta_0 = 43.5$$

Step 6: Formulate the Regression Equation

Now that we have the slope and intercept, we can write the equation of the regression line:

$$y = \beta_0 + \beta_1 x$$
$$y = 43.5 + 6.5x$$

Step 7: Make Predictions

Using the regression equation, you can predict the exam score for a given number of hours studied. For example, to predict the score for a student who studies for 4 hours:

$$y = 43.5 + 6.5 \times 4$$

 $y = 43.5 + 26$
 $y = 69.5$

So, a student who studies for 4 hours is predicted to score 69.5 on the exam.

Step 8: Evaluate the Model

To evaluate the model, you can calculate metrics such as the coefficient of determination (R-squared), which measures how well the independent variable explains the variability of the dependent variable. However, this typically requires more extensive calculations or tools.