What is claimed is:

1. An acylsulfimide of the formula (I) and salts thereof,

$$R^{2}$$
 $N=S-R^{4}$
 R^{5}
 (I)
 R^{2}
 $(O)_{m}$
 R^{5}

where the symbols and indices are as defined below:

X is CH or N;

Y is O or S;

n is 0 or 1;

m is 0 or 1;

R¹ is C₁-C₆-haloalkyl;

 R^2 , R^3 are identical or different and are H, halogen or a branched or unbranched (C_1-C_6) -alkyl group, where one or two CH_2 groups may be replaced by -O-or -S- or -N(C_1 -C₆)-alkyl, with the proviso that heteroatoms may not be adjacent to one another;

 R^4 , R^5 are identical or different and are R^6 , $-C(LW)R^7$, $-C(=NOR^7)R^7$, $-C(=NNR^7_2)R^7$, $-C(=W)OR^7$, $-C(=W)NR^7_2$, $-OC(=W)R^7$, $-OC(=W)OR^7$,

 $-NR^{7}C(=W)R^{7}$, $-N[C(=W)R^{7}]_{2}$, $-NR^{7}C(=W)OR^{7}$, $-C(=W)NR^{7}-NR^{7}_{2}$,

 $-C(=W)NR^{7}-NR^{7}[C(=W)R^{7}], -NR^{7}-C(=W)NR^{7}_{2}, -NR^{7}-NR^{7}C(=W)R^{7},$

 $-NR^{7}-N[C(=W)R^{7}]_{2}$, $-N[(C=W)R^{7}]-NR^{7}_{2}$, $-NR^{7}-NR^{7}[(C=W)WR^{7}]$.

 $-NR^{7}[(C=W)NR^{7}_{2}], -NR^{7}(C=NR^{7})R^{7}, -NR^{7}(C=NR^{7})NR^{7}_{2}, -O-NR^{7}_{2},$

-O-NR⁷(C=W)R⁷, -SO₂NR⁷₂, -NR⁷SO₂R⁷, -SO₂OR⁷, -OSO₂R⁷,

 $-OR^7$, $-NR^7$ ₂, $-SR^7$, $-SiR^7$ ₃, $-PR^7$ ₂, $-P(=W)R^7$, $-SOR^7$, $-SO_2R^7$, $-PW_2R^7$ ₂,

-PW₃R⁷₂;

or

R⁴ and R⁵ together with the sulfur to which they are attached form a three- to eight-membered saturated or unsaturated ring system which is optionally mono- or polysubstituted, and which optionally contains 1 to 4 further heteroatoms, where two or more of the substituents optionally form one or more further ring systems;

W is O or S;

are identical or different and are (C₁-C₂₀)-alkyl, (C₂-C₂₀)-alkenyl, (C₂-C₂₀)-alkynyl, (C₃-C₈)-cycloalkyl, (C₄-C₈)-cycloalkenyl, (C₈-C₁₀)-cycloalkynyl, aryl or heterocyclyl, where the radicals mentioned may optionally be mono- or polysubstituted, and

R⁷ is identical or different and is H or R⁶.

- 2. An acylsulfimide as claimed in claim 1, where
- X is CH.
- 3. An acylsulfimide as claimed in claim 1, where
- Y is O.
- 4. An acylsulfimide as claimed in claim 1, where
- n is 0.
- 5. An acylsulfimide as claimed in claim 1, where
- R¹ is (C₁-C₆)-alkyl which is mono- or polysubstituted by F and/or Cl.
- 6. An acylsulfimide as claimed in claim 1, where the radicals R⁴, R⁵ are substituted by one or more radicals R⁸ and where R⁸ has the following meaning:
- R⁸ are identical or different and are R⁹, or two radicals R⁸ together with the atoms to which they are attached form a three- to eight-membered saturated or unsaturated ring system, optionally substituted by one or more radicals R⁹, which optionally also contains further heteroatoms;
- R⁹ are identical or different and are R¹⁰, R¹¹, -C(W)R¹⁰, -C(=NOR¹⁰)R¹⁰, -C(=NNR¹⁰₂)R¹⁰, -C(=W)OR¹⁰, -C(=W)NR¹⁰₂, -OC(=W)R¹⁰,
 - $-OC(=W)OR^{10}$, $-NR^{10}C(=W)R^{10}$, $-N[C(=W)R^{10}]_2$, $-NR^{10}C(=W)OR^{10}$,

```
 -C(=W)NR^{10}-NR^{10}{}_2, -C(=W)NR^{10}-NR^{10}[C(=W)R^{10}], -NR^{10}-C(=W)NR^{10}{}_2, \\ -NR^{10}-NR^{10}C(=W)R^{10}, -NR^{10}-N[C(=W)R^{10}]{}_2, -N[(C=W)R^{10}]-NR^{10}{}_2, \\ -NR^{10}-N[(C=W)WR^{10}], -NR^{10}[(C=W)NR^{10}{}_2], -NR^{10}(C=NR^{10})R^{10}, \\ -NR^{10}(C=NR^{10})NR^{10}{}_2, -O-NR^{10}{}_2, -O-NR^{10}(C=W)R^{10}, -SO_2NR^{10}{}_2, \\ -NR^{10}SO_2R^{10}, -SO_2OR^{10}, -OSO_2R^{10}, -OR^{10}, -NR^{10}{}_2, -SR^{10}, -SiR^{10}{}_3, \\ -PR^{10}{}_2, -P(=W)R^{10}{}_2, -SOR^{10}, -SO_2R^{10}, -PW_2R^{10}{}_2, -PW_3R^{10}{}_2; \text{ or two radicals } R^9 \\ \text{together form } (=W), (=NR^{10}), (=CR_2^{10}), (=CHR^{10}) \text{ or } (=CH_2); \\ \end{aligned}
```

- R¹⁰ are identical or different and are (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkyl, (C_4-C_8) -cycloalkyl- (C_2-C_4) -alkenyl, (C_4-C_8) -cycloalkyl- (C_2-C_4) -alkenyl, (C_4-C_8) -cycloalkyl, (C_2-C_6) -alkenyl- (C_3-C_8) -cycloalkyl, (C_2-C_6) -alkenyl- (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_4-C_8) -cycloalkenyl, (C_4-C_8) -cycloalkenyl, aryl, heterocyclyl; where the radicals mentioned are optionally substituted by one or more radicals R^{11} ; and
- R¹¹ are identical or different and are halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C₁-C₆)-alkanoyl, (C₁-C₆)-alkoxy, (C₃-C₆)-alkenyloxy, (C₃-C₆)-alkynyloxy, (C₁-C₆)-haloalkyloxy, (C₃-C₆)-haloalkynyloxy, (C₃-C₆)-haloalkynyloxy, (C₃-C₈)-cycloalkoxy, (C₄-C₈)-cycloalkenyloxy, (C₃-C₈)-halocycloalkoxy, (C₄-C₈)-halocycloalkenyloxy, (C₃-C₈)-cycloalkyl-(C₁-C₄)-alkoxy, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkoxy, (C₃-C₈)-cycloalkyl-(C₂-C₄)-alkenyloxy, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkenyloxy, (C₁-C₆)-alkyl-(C₃-C₈)-cycloalkoxy, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkoxy, (C₂-C₆)-alkynyl-(C₃-C₈)-cycloalkoxy, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenyloxy, (C₁-C₄)-alkoxy-(C₁-C₆)-alkoxy, (C₁-C₄)-alkoxy-(C₁-C₆)-alkoxy, (C₁-C₄)-alkoxy-(C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy-(C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy-(C₁-C₆)-

 (C_3-C_8) -mono- or dicycloalkylcarbamoyl, (C_1-C_6) -alkoxycarbonyl, (C_3-C_8) -cycloalkoxycarbonyl, (C_1-C_6) -alkanoyloxy, (C_3-C_8) -cycloalkanoyloxy, (C_1-C_6) -haloalkoxycarbonyl, (C_1-C_6) -haloalkanoyloxy, (C_1-C_6) -alkanamido, (C_1-C_6) -haloalkanamido, (C_2-C_6) -alkenamido, (C_3-C_8) -cycloalkanamido, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkanamido, (C_1-C_6) -alkylthio, (C_3-C_6) -alkylthio, (C_3-C_6) -haloalkylthio, (C_3-C_6) -haloalkynylthio, (C_3-C_8) -cycloalkylthio, (C_3-C_8) -cycloalkylthio, (C_4-C_8) -cycloalkenylthio, (C_3-C_8) -halocycloalkylthio, (C_4-C_8) -cycloalkenylthio, (C_3-C_8) -halocycloalkylthio, (C_4-C_8) -

halocycloalkenylthio, (C3-C8)-cycloalkyl-(C1-C4)-alkylthio, (C4-C8)-cycloalkenyl-(C1- C_4)-alkylthio, (C_3-C_8) -cycloalkyl- (C_3-C_4) -alkenylthio, (C_4-C_8) -cycloalkenyl- (C_3-C_4) alkenylthio, (C₁-C₆)-alkyl-(C₃-C₈)-cycloalkylthio, (C₂-C₆)-alkenyl-(C₃-C₈)cycloalkylthio, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkylthio, (C_1-C_6) -alkyl- (C_4-C_8) cycloalkenylthio, (C₂-C₆)-alkenyl-(C₄-C₈)-cycloalkenylthio, (C₁-C₆)-alkylsulfinyl, (C₃- C_6)-alkenylsulfinyl, (C_3 - C_6)-alkynylsulfinyl, (C_1 - C_6)-haloalkylsulfinyl, (C_3 - C_6)haloalkenylsulfinyl, (C₃-C₆)-haloalkynylsulfinyl, (C₃-C₈)-cycloalkylsulfinyl, (C₄-C₈)cycloalkenylsulfinyl, (C₃-C₈)-halocycloalkylsulfinyl, (C₄-C₈)-halocycloalkenylsulfinyl, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkylsulfinyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkylsulfinyl, (C_3-C_8) -cycloalkyl- (C_3-C_4) -alkenylsulfinyl, (C_4-C_8) -cycloalkenyl- (C_3-C_4) -alkenylsulfinyl, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkylsulfinyl, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkylsulfinyl, (C₂-C₆)-alkynyl-(C₃-C₈)-cycloalkylsulfinyl, (C_1-C_6) -alkyl- (C_4-C_8) -cycloalkenylsulfinyl, (C_2-C_6) -alkenyl- (C_4-C_8) cycloalkenylsulfinyl, (C₁-C₆)-alkylsulfonyl, (C₃-C₆)-alkenylsulfonyl, (C₃-C₆)alkynylsulfonyl, (C₁-C₆)-haloalkylsulfonyl, (C₃-C₆)-haloalkenylsulfonyl, (C₃-C₆)haloalkynylsulfonyl, (C₃-C₈)-cycloalkylsulfonyl, (C₄-C₈)-cycloalkenylsulfonyl, (C₃-C₈)-halocycloalkylsulfonyl, (C₄-C₈)-halocycloalkenylsulfonyl, (C₃-C₈)-cycloalkyl- (C_1-C_4) -alkylsulfonyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkylsulfonyl, (C_3-C_8) -cycloalkyl- (C_3-C_4) -alkenylsulfonyl, (C_4-C_8) -cycloalkenyl- (C_3-C_4) -alkenylsulfonyl, (C_1-C_6) -alkyl-(C₃-C₈)-cycloalkylsulfonyl, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkylsulfonyl, (C₂-C₆)alkynyl-(C₃-C₈)-cycloalkylsulfonyl, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenylsulfonyl, (C₂- C_6)-alkenyl-(C_4 - C_8)-cycloalkenylsulfonyl, (C_1 - C_6)-dialkylamino, (C_1 - C_6)-alkylamino, (C₃-C₆)-alkenylamino, (C₃-C₆)-alkynylamino, (C₁-C₆)-haloalkylamino, (C₃-C₆)haloalkenylamino, (C₃-C₆)-haloalkynylamino, (C₃-C₈)-cycloalkylamino, (C₄-C₈)cycloalkenylamino, (C₃-C₈)-halocycloalkylamino, (C₄-C₈)-halocycloalkenylamino, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkylamino, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkylamino, (C_3-C_8) -cycloalkyl- (C_3-C_4) -alkenylamino, (C_4-C_8) -cycloalkenyl- (C_3-C_4) alkenylamino, (C₁-C₆)-alkyl-(C₃-C₈)-cycloalkylamino, (C₂-C₆)-alkenyl-(C₃-C₈)cycloalkylamino, (C₂-C₆)-alkynyl-(C₃-C₈)-cycloalkylamino, (C₁-C₆)-alkyl-(C₄-C₈)cycloalkenylamino, (C₂-C₆)-alkenyl-(C₄-C₈)-cycloalkenylamino, (C₁-C₆)-trialkylsilyl, aryl, aryloxy, arylthio, arylamino, aryl-(C₁-C₄)-alkoxy, aryl-(C₃-C₄)-alkenyloxy, aryl- (C_1-C_4) -alkylthio, aryl- (C_2-C_4) -alkenylthio, aryl- (C_1-C_4) -alkylamino, aryl- (C_3-C_4) alkenylamino, aryl-(C₁-C₆)-dialkylsilyl, diaryl-(C₁-C₆)-alkylsilyl, triarylsilyl and 5- or 6-membered heterocyclyl, the cyclic moiety of the fourteen last-mentioned radicals being optionally substituted by one or more radicals selected from the group consisting of halogen, cyano, nitro, amino, hydroxyl, thio, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkylthio, (C_1-C_4) -haloalkylthio, (C_1-C_4) -haloalkylthio, formyl and (C_1-C_4) -alkanoyl.

7. An acylsulfimide as claimed in claim 1, where the unit SR⁴R⁵ is represented through the following structures from the group A to E:

wherein the symbols and indices have the following meanings:

r is 0, 1;

D is a direct bond, (C_1-C_4) -alkylene, branched or unbranched, O, S(O)_{0,1,2}, or NR¹¹;

R⁹ is a substituent as defined in claim 6;

is H, (C₁-C₄)-alkyl, branched or unbranched, (C₁-C₄)-alkanoyl, (C₁-C₄)-alkoxycarbonyl, (C₁-C₄)-alkyl- or -dialkylaminocarbonyl or (C₁-C₄)-alkylsulfonyl;

wherein the symbols and indices have the following meanings:

 R^{12} is (C_1-C_8) -alkyl, optionally substituted by an optionally substituted phenyl radical or (C_3-C_6) -cycloalkyl radical, (C_3-C_6) -cycloalkyl, optionally substituted by or condensed with an optionally substituted phenyl radical;

R⁹ is a substituent as defined in claim 6;

a is 0, 1, 2, 3, 4, or 5, preferably 0, 1 or 2;

wherein the symbols and indices have the following meanings:

R⁹ is a substituent as defined in claim 6;

a is 0, 1, 2, 3 or 4, preferably 0, 1 or 2;

R¹³ is a straight chain or branched (C₂-C₈)-alkanediyl group, optionally substituted by one or two or condensed with an optionally substituted phenyl radical;

D.
$$R^{15}_{S} R^{14}$$

wherein the symbols and indices have the following meanings:

R¹⁴, R¹⁵ are identical or different and are in each case (C₁-C₈)-alkyl, optionally substituted by or condensed with an optionally substituted phenyl radical or (C₃-C₈)-cycloalkyl radical, (C₃-C₆)-cycloalkyl, optionally substituted by or condensed with an optionally substituted phenyl radical;

and

wherein the symbol has the following meaning:

R¹⁶ is a straight chain or branched (C₂-C₈)-alkanediyl group, optionally substituted by one or two or condensed with an optionally substituted phenyl radical.

8. A process for preparing a compound of formula (I) as claimed in claim 1, wherein Y is oxygen, where a carboxylic acid of the formula (V),

$$R^{2}$$
 $(O)_{n}$
 (V)

in which R^1 , R^2 , R^3 , X and n are as defined under formula (I) in the form of an activated derivative of this acid is reacted in the presence of a base with a compound of the formula (VI), in which R^4 , R^5 and m are as defined under formula (I)

- 9. A composition having insecticidal, acaricidal and/or nematicidal action, which comprises at least one compound of the formula (I) as claimed in claim 1.
- 10. A composition having insecticidal, acaricidal and/or nematicidal action as claimed in claim 9 in a mixture with carriers and/or surfactants.
- 11. The composition as claimed in claim 9, which comprises a further active compound selected from the group consisting of acaricides, fungicides, herbicides, insecticides, nematicides or growth-regulating substances.
- 12. A veterinary medicament comprising a compound as claimed in claim 1.
- 13. A method for controlling harmful insects, acarids and nematodes, which comprises applying an effective amount of a compound as claimed in claim 1 to the site where the action is desired.
- 14. A method for controlling harmful insects, acarids and nematodes, which comprises applying an effective amount of a composition as claimed in claim 9 to the site where the action is desired.

- 15. A method for protecting useful plants against the undesirable action of harmful insects, acarids and nematodes, which comprises using at least one of the compounds as claimed in claim 1 for treating the seed of the useful plants.
- 16. A method for protecting useful plants against the undesirable action of harmful insects, acarids and nematodes, which comprises using at least one of the composition as claimed in claim 9 for treating the seed of the useful plants.
- 17. A process for preparing N-chloro-4-trifluoromethylnicotinamide and salts thereof of the formula (IIIa)

in which A is a non-oxidizable, organic or inorganic anion

by chlorination of 4-trifluoromethylnicotinamide with Cl₂ in aqueous acid and, if appropriate, subsequent anion exchange and/or, if appropriate, reaction with a base, to give N-chloro-4-trifluoromethylnicotinamide.

18. A salt of N-chloro-4-trifluoromethylnicotinamide of the formula (IIIa)

in which A is a non-oxidizable, organic or inorganic anion

19. A salt as claimed in claim 18, wherin A is F, HF₂, CI, BF₄, PF₆, HSO₄, ½ SO₄, CH₃COO, CF₃COO, CF₃SO₃, CH₃SO₃, p-CH₃-C₆H₅SO₃ or H₂PO₄.