Grammars

Due on 11/13

The work has to be done alone or in a group of 2 students.

A hard copy is required. Professional presentation is important.

100 points

Exercise 1:

We consider the BNF grammar below:

```
Sentence ::= Subject Verb Object .

Subject ::= I | a Noun | the Noun

Object ::= me | a Noun | the Noun

Noun ::= cat | mat | rat

Verb ::= like | is | see | sees
```

a. Show that **I like the cat.** is recognized by this BNF grammar using a rightmost derivation and, then, a parse tree.

Sentence \to Subject Verb Object . \to Subject Verb the noun . \to Subject Verb the cat . \to Subject like the cat .

- b. Provide an expression that is NOT recognized by the grammar.
 - a. She hates my dog

Exercise 2:

We consider the following grammar:

```
EXPRESSION ::= NUMERAL | ( EXPRESSION OPERATOR EXPRESSION )

NUMERAL ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

OPERATORS ::= + | -
```

Show that (4 - (3 + 2)) is a legal EXPRESSION using a leftmost derivation, and, then, a parse tree.

Expression \rightarrow (Expression Operator Expression) \rightarrow (Numeral Operator Expression) \rightarrow (4 Operator Expression) \rightarrow (4 - Expression) \rightarrow (4 - (Expression Operator Expression)) \rightarrow (4 - (3 Operator Expression)) \rightarrow (4 - (3 + Expression) \rightarrow (4 - (3 + Expression)) \rightarrow (4 - (3 + Expression) \rightarrow (4 - (3 + Expression) \rightarrow (4 - (3 + Expression) \rightarrow (4 - (3 + Expression) \rightarrow (4 - (3 + Expression) \rightarrow (4 - (3 + Expression) \rightarrow (4 - (3 + Expression) \rightarrow (4

Exercise 3:

Show that the following grammar is ambiguous:

This is ambiguous because you can have more than a single parse tree with bXcX. bX and bXcX are also essentially infinite because there are no cases defined for only "b" or "c" as there are with "a".

Exercise 4:

a. Design a BNF grammar that recognizes expressions of the form Ai where A is in {a,b,c} and i is a digit.

List
$$\rightarrow$$
 Ai
A \rightarrow a | b | c
i \rightarrow Digit

b. Design a BNF grammar that recognizes lists of the form A1, A2, A3, ..., An. Use question a).

List
$$\rightarrow$$
 Ai
A \rightarrow a | b | c
i \rightarrow Digit | i Digit

Digit \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 **Exercise 5:**

1. Write a JAY program that computes the sum of the *n* first numbers with a loop.

```
void main(){
int x;
int n;
int result;
x = 1;

if ( x <= n) {
        result = result + x;
        x = x + 1;
}
</pre>
```

2. Write a JAY program that assigns the minimum of two numbers in a variable called min.

```
void main() {
int a;
int b;
if (a < b) {
  min = a;
}
else {
  min = b;
}</pre>
```

- 3. Provide 2 examples of lexical errors in JAY.
 - a. A lexical error could be inputting an unaccepted character such as & or .
- 4. Provide 2 examples of JAY programs with 2 different syntax errors.

Nick Krawczeniuk & Gianna Sorrentino

5. Provide 2 examples of JAY programs with errors that are neither detected during the lexical analysis nor during the syntactic analysis.

```
void main(){
void main(){
boolean x;
x <=< 4;
x + 2;
}</pre>
```