Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Messung von großen Widerständen Protokoll:

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer: Björn Klaas

Versuchsdatum: 03.09.2014

Testat:		

In halts verzeichn is

Inhaltsverzeichnis

1	Einleitung							
2	Theorie							
	2.1	Messu	ng mittels einem Kondensator	3				
	2.2		ger Stromintegrator	3				
	2.3		Schwingkreis	3				
3	Dur	chführı	ıng	4				
	3.1	Kalibr	ieren des Ladungsmessgerätes	4				
	3.2	Entlad	lung des Plattenkondensators	4				
	3.3	Schwir	ngkreise	4				
	3.4		ngen mit dem Multimeter	5				
4	Aus	Auswertung						
	4.1	Kalibr	ration des Ladungsmessgerätes	5				
	4.2	Berech	nnung von ε_0	6				
	4.3							
	4.4		ngen mit dem Oszilloskop	7				
		4.4.1	Eingangswiderstand des Oszilloskops und Kapazität des Platten-					
			kondensators	7				
		4.4.2	Bestimmung des unbekannten Widerstandes R_x	10				
		4.4.3	Kapazität des Folienkondensators	10				
		4.4.4	Induktivität und ohmscher Widerstand der Spulen	10				
5	Disk	cussion		11				
	5.1	Vergle	iche	11				
6	Anh	ang		11				

1 Einleitung

Um einen Widerstand zu messen, nutzt man meistens das Ohmsche Gesetz. Ist der Widerstand jedoch hochohmig, stößt dieses Verfahren an seine Grenzen. Man arbeitet mit hohen Spannungen und kleinen Strömen. Außerdem sind die Innenwiderstände der Messgeräte ein großer Störfaktor. Deshalb werden wir in diesem Versuch lernen, wie man das besser machen kann.

2 Theorie

2.1 Messung mittels einem Kondensator

$$Q(t) = Q_0 \exp\left(-\frac{t}{RC}\right) \tag{1}$$

Kennt man die Kapazität C und die Ladung, die sich auf dem Kondensator befindet, zu zwei verschiedenen Zeitpunkten t_1 und t_2 , kann man also den Widerstand R berechnen, über den der Strom abfließt:

$$R = -\frac{t_2 - t_1}{C \cdot \ln \frac{Q(t_2)}{Q(t_1)}} \tag{2}$$

Der hier verwendete Kondenstor hat einen Plattenradius r=0.1 m, einen Plattenabstand d=0.005 m und eine Plattenzahl n=65. Für die Berechnung der Kapazität müssen also Randeffekte betrachtet werden. Dabei wird diese Formel verwendet:

$$C_n = (n-1)\varepsilon_0\varepsilon_r \left[\frac{\pi r^2}{d} + r \left(\ln \frac{16\pi r}{d} - 1 \right) \right]$$
 (3)

2.2 Analoger Stromintegrator

Nach der Kirchhoffschen Knotenregel bei S gilt $I_R + I_C = 0$. Mit den folgenden Beziehungen der Ströme $I_R = U_E/R$ und $I_C = \dot{Q}_C = C\dot{U}_A$ erhält man:

$$U_A = -\frac{1}{RC} \int_{t_0}^t U_E \, \mathrm{d}t \tag{4}$$

2.3 RLC-Schwingkreis

$$\ddot{Q} + 2\beta \dot{Q} + \omega_0^2 Q = 0 \tag{5}$$

$$\beta = \frac{R_L}{2L}$$
 , $\omega_0 = \sqrt{\frac{1}{LC}}$, $\omega = \sqrt{\omega_0^2 - \beta^2}$

Mit dem Logarithmischen Dekrement $\Lambda = \beta T$ ergibt sich für die Induktivität der Spule

$$L = \frac{1}{C\omega_0^2} = \frac{1}{C(\omega^2 + \beta^2)} = \frac{1}{C} \frac{T^2}{4\pi^2 + \Lambda^2}$$
 (6)

$$L = \mu_0 \cdot A \cdot \left(\frac{n}{l}\right)^2 \tag{7}$$

3 Durchführung

3.1 Kalibrieren des Ladungsmessgerätes

Dazu wird der Eichkreis nach Abb. ?? verschaltet. Der Eichgenerator wird in der Stellung Zeitmessung mit dem Oszilloskop auf verschiedene Zeitdauern der Spannungsimpulse eingestellt. Erwartet werden Werte zwischen 50 und 500 Millisekunden. Je eingestellter Zeitdauer wird dann in der Stellung Eichen dreimal der Messwert des Ladungsmessgerätes notiert. Dies geschieht für 5 verschiedene Zeiten.

3.2 Entladung des Plattenkondensators

Der Plattenkondensator wir mit 220V aufgeladen und sofort durch den Messkreis entladen. Dabei wird die geflossene Ladung gemessen. Dies geschieht fünfmal.

Nun wird der Kondensator wieder aufgeladen und nach bestimmten Zeiten (t=0, 1,2,3,5 Minuten) über das Ladungsmessgerät entladen. Die verbleibende Ladung wird notiert. In der Zwischenzeit ist Ladung über den Isolationswiderstand des Kondensators abgeflossen. Mit dieser Methode kann man eben diesen bestimmen.

Parallel wird der unbekannte Widerstand R_x geschaltet und vorige Messung für folgende Zeiten wiederholt: 0, 2, 4, 6, 8, 10, 20, 30 und 60 Sekunden. Für jede Zeitspanne werden zwei Werte aufgenommen.

3.3 Schwingkreise

Man tauscht im Messkreis das Ladungsmessgerät durch das Oszilloskop. Dieses soll den Spannungsverlauf U(t) am Kondensator zeigen.

- 1. Plattenkondensator alleine
- 2. Kondensator und $2M\Omega$ -Widerstand parallel dazu
- 3. Kondensator und Widerstand R_x parallel dazu

- 4. Kondensator und Drosselspule parallel
- 5. Kondensator und Luftspule parallel
- 6. Kommerzieller Kondensator (Folienkondensator) und 2M Ω -Widerstand parallel dazu

Die vom Oszilloskop angezeigten Spannungsverläufe werden mit dem zugehörigen Drucker ausgedruckt. Bei Messungen von einem RC-Kreis sollte man die Abfallzeit vom Oszilloskop berechnen lassen, also die Zeit, die zwischen 90% und 10% der Maximalspannung vergeht¹. Dies vereinfacht die Auswertung. Bei den RLC-Kreisen benötigt man die Periode der abklingenden Schwingung. Zur Erzielung guter Ergebnisse mussten wir am Oszilloskop die Einstellung Tastknopf auf 50x stellen.

3.4 Messungen mit dem Multimeter

Mit dem Multimeter werden folgende Größen gemessen:

- \bullet ohmsche Widerstände R_L der beiden Spulen
- ohmscher Widerstand R_2 (2M Ω)
- Isolationswiderstand $R_{\rm iso}$ des Plattenkondenstaors
- unbekannter Widerstand R_x
- Kapazitäten C der beiden Kondensatoren

Außerdem werden die Daten der Luftspule an deren Ende abgelesen.

4 Auswertung

4.1 Kalibration des Ladungsmessgerätes

Um das Ladungsmessgerät zu eichen, lässt man einen konstanten Strom I für eine bestimmte Zeit t fließen. Es fließt also insgesamt die Ladung $Q = I \cdot t$. Trägt man also die abgelesen Skalenteile gegen die tatsächliche Ladung auf - wie in Abb.1 - kann man nun Skalenteile in Coulomb über die Geradensteigung m umrechnen. Es ergibt sich:

$$m = 0.8729 \pm 0.0017 \text{ Skt./}\mu\text{C}$$

Da der Fehler sehr klein ist, wird er bei den nun folgenden Umrechnungen weggelassen.

¹aus der Anleitung (S. 29) des verwendeten Oszilloskops TDS 2001C, abgerufen am 09.09.2014: http://www.praktikum.physik.uni-goettingen.de/allgemeines/anleitung/downloads/TDS200E_71048501.pdf

Abbildung 1: Skalenteile des Messgeräts in Abhängigkeit der geflossenen Ladung

4.2 Berechnung von ε_0

Wir legen an den Kondensator eine Spannung an und lassen danach die aufgebrachte Ladung über das Ladungsmessgerät abfließen. Mit folgender Formel kann dann die Kapazität berechnet werden.

$$C = \frac{Q}{U}$$

$$\sigma_C = \frac{1}{U^2} \cdot \sqrt{Q^2 \cdot \sigma_U^2 + \sigma_Q^2 \cdot U^2}$$

Mit einer angelegten Spannung $U=(220\pm0.1)\,\mathrm{V}$ und einer gemessenen Ladung $Q=(8.89\pm0.07)\cdot10^{-7}\,\mathrm{C}$ folgt für die Kapazität des Plattenkondensators

$$C = (4.04 \pm 0.03) \text{ nF}$$
 (8)

Stellt man (3) nun nach der elektrischen Feldkonstante ε_0 um und setzt die oben angegebenen Angaben des Plattenkondensators sowie die gemessene Kapazität ein, erhält man

$$\varepsilon_0 = (9.19 \pm 0.07) \cdot 10^{-12} \frac{\text{A s}}{\text{V m}}$$
 (9)

4.3 Entladung des Kondensators

Trägt man die Ladung, die sich auf dem Plattenkondensator befindet und über einen Widerstand R abfließt, logarithmisch gegen die Zeit auf (Abb. 2 und 3), ergibt sich nach (1) eine Gerade. Aus der Geradensteigung m kann mit dem obigen Ergebnis für die Kapazität der Widerstand R berechnet werden.

$$R = -\frac{1}{C \cdot m}$$

$$\sigma_R = \frac{1}{C^2 \cdot m^2} \cdot \sqrt{C^2 \cdot \sigma_m^2 + m^2 \cdot \sigma_C^2}$$

Setzt man nun die Geradensteigung $m_{\rm iso}$ aus Abb.2 ein, erhält man für den Isolationswiderstand $R_{\rm iso}$ des Plattenkondensators folgenden Wert:

$$R_{\rm iso} = (15 \pm 1) \, \mathrm{G}\Omega \tag{10}$$

Analog wird der Gesamtwiderstand $R = (2.4 \pm 0.2) \text{ G}\Omega$ aus der zweiten Messung berechnet. Dieser setzt sich jedoch aus dem eben berechneten Isolationswiderstand und dem unbekannten Widerstand R_x zusammen, die parallel geschaltet sind.

$$R_x = \left(\frac{1}{R} - \frac{1}{R_{\text{iso}}}\right)^{-1}$$

$$\sigma_{R_x} = \frac{1}{\left(R_{\text{iso}} - R\right)^2} \cdot \sqrt{R_{\text{iso}}^4 \cdot \sigma_R^2 + R^4 \cdot \sigma_{R_{\text{iso}}}^2}$$

Es ergibt sich also:

$$R_x = (2.8 \pm 0.4) \text{ G}\Omega$$
 (11)

4.4 Messungen mit dem Oszilloskop

Die ausgedruckten Spannungsverläufe befinden sich im Anhang. Wie erwartet ergibt sich folgendes: Bei RC-Schaltungen ergibt sich eine abfallende Exponentialfunktion. Je größer der Widerstand bzw. die Kapazität, desto größer die Abfallzeit. Bei den RLC-Kreisen ergibt sich eine abfallende Schwingung: Je größer der Widerstand bzw. kleiner die Induktivität, desto schneller fällt die Einhüllende ab. All dies wird in der nachfolgenden Auswertung verifiziert.

4.4.1 Eingangswiderstand des Oszilloskops und Kapazität des Plattenkondensators

Da das Oszilloskop die Abfallzeit t_A zwischen 90% und 10% misst, kann man daraus die Steigung $m=-\frac{1}{RC}$ der Geraden bestimmen, die sich ergeben würde, wenn man die

Abbildung 2: Entladung des Kondesators über den Isolationswiderstand $R_{\rm iso}$

Abbildung 3: Entladung des Kondesators über R_x und $R_{\rm iso}$

Spannung wieder logarithmisch gegen die Zeit aufträgt. Dies folgt - wie oben - aus (1).

$$m = \frac{\ln \frac{1}{9}}{t_A}$$

$$\sigma_m = \left| \ln \frac{1}{9} \cdot \frac{\sigma_{t_A}}{t_A^2} \right|$$

Es ergeben sich die Steigungen aus Tabelle 1. Dabei ergibt sich der zeitliche Fehler σ_{t_A} bei der ersten Messung als statistischer Fehler, da wir dort zwei Messungen gemacht haben. Für die anderen wurde ein Fehler von $0.1\,\mathrm{ms}$ angenommen.

Messung	Abfallzeit [ms]	Steigung
C und R_{oszi}	8.47 ± 0.09	$m_{\text{oszi}} = (-259.4 \pm 2.8) \text{s}^{-1}$
C und R_{oszi} sowie R_2 parallel	5.86 ± 0.10	$m_{\rm ges} = (-375.0 \pm 6.4) \rm s^{-1}$
C und R_{oszi} sowie R_x parallel	8.50 ± 0.10	$m_x = (-258.5 \pm 3.0) \mathrm{s}^{-1}$
C_2 und R_{oszi} sowie R_2 parallel	4.27 ± 0.10	$m_2 = (-514.3 \pm 12.0) \mathrm{s}^{-1}$

Tabelle 1: Abfallzeiten und Steigungen der RC-Messungen mit dem Oszi

Da man bei den ersten beiden Messungen den gleichen Kondensator verwendet, ergeben sich zwei Gleichungen mit zwei Unbekannten: C und $R_{\rm oszi}$.

Stellt man beide Gleichungen nach nach $-\frac{1}{C}$ um, erhält man $m_{\text{oszi}} \cdot R_{\text{oszi}} = m_{\text{ges}} \cdot R_{\text{ges}}$, wobei $R_{\text{ges}} = \left(R_{\text{oszi}}^{-1} + R_{2}^{-1}\right)^{-1}$ gilt. Dies kann nun nach R_{oszi} umgestellt werden.

$$\begin{split} R_{\text{oszi}} &= R_2 \cdot \left(\frac{m_{\text{ges}}}{m_{\text{oszi}}} - 1\right) \\ \sigma_{R_{\text{oszi}}} &= \frac{1}{m_{\text{oszi}}^2} \cdot \sqrt{m_{\text{ges}}^2 \cdot R_2^2 \cdot \sigma_{m_{\text{oszi}}}^2 + m_{\text{oszi}}^2 \cdot \left(R_2^2 \cdot \sigma_{m_{\text{ges}}}^2 + \sigma_{R_2}^2 \cdot (m_{\text{ges}} - m_{\text{oszi}})^2\right)} \end{split}$$

Der Wert $R_2 = (2019 \pm 1) \,\mathrm{k}\Omega$ entstammt der Messung mit dem Multimeter. Setzt man diesen und obige Werte ein, erhält man für den Eingangswiderstand des Oszilloskops folgenden Wert:

$$R_{\text{oszi}} = (900 \pm 60) \text{ k}\Omega \tag{12}$$

Nun kann leicht die Kapazität des Plattenkondensators bestimmt werden.

$$\begin{split} C &= -\frac{1}{m_{\text{oszi}} \cdot R_{\text{oszi}}} \\ \sigma_C &= \frac{1}{m_{\text{oszi}}^2 \cdot R_{\text{oszi}}^2} \cdot \sqrt{m_{\text{oszi}}^2 \cdot \sigma_{R_{\text{oszi}}}^2 + R_{\text{oszi}}^2 \cdot \sigma_{m_{\text{oszi}}}^2} \end{split}$$

Aus unseren Werten ergibt sich:

$$C = (4.3 \pm 0.3) \text{ nF}$$
 (13)

4.4.2 Bestimmung des unbekannten Widerstandes R_x

Analog formen wir nun die Gleichungen um, die aus der ersten und dritten Messung folgen, und lösen nach dem unbekannten Widerstand R_x auf.

$$R_x = \frac{R_{\text{oszi}}}{\frac{m_x}{m_{\text{oszi}}} - 1}$$

$$\sigma_{R_x} = \frac{1}{\left(m_x - m_{\text{oszi}}\right)^2} \cdot \sqrt{m_{\text{oszi}}^2 \cdot \sigma_{R_{\text{oszi}}}^2 \cdot \left(m_x - m_{\text{oszi}}\right)^2 + R_{\text{oszi}}^2 \cdot \left(m_x^2 \cdot \sigma_{m_{\text{oszi}}}^2 + m_{\text{oszi}}^2 \cdot \sigma_{m_x}^2\right)}$$

Wir erhalten folgenden Wert:

$$R_x = (-0.3 \pm 1.2) \text{ G}\Omega$$
 (14)

4.4.3 Kapazität des Folienkondensators

Nimmt man sich die Gleichungen aus der zweiten und der letzten RC-Messung mit dem Oszilloskop (2M Ω -Widerstand parallel), kann nun leicht nach der Kapazität C_2 des herkömmlichen Kondensators aufgelöst werden, da der Gesamtwiderstand $R_{\rm ges}$ beider Messungen gleich ist.

$$\begin{split} C_2 &= \frac{m_2}{m_{\text{ges}}} \cdot C \\ \sigma_{C_2} &= \frac{1}{m_{\text{ges}}^2} \cdot \sqrt{C^2 \cdot m_2^2 \cdot \sigma_{m_{\text{ges}}}^2 + m_{\text{ges}}^2 \cdot \left(C^2 \cdot \sigma_{m_2}^2 + m_2^2 \cdot \sigma_C^2\right)} \end{split}$$

Man erhält:

$$C_2 = (3.1 \pm 0.2) \text{ nF}$$
 (15)

4.4.4 Induktivität und ohmscher Widerstand der Spulen

Nun werden die abklingenden Schwingungen der RLC-Kreise untersucht. Zunächst werden die Extrema abgelesen und logarithmisch aufgetragen (Abb. 4 und 5). Es ergibt sich eine Gerade, deren Steigung $-\beta$ beträgt. Des Weiteren wurde die Periode T der Schwingung vom Oszilloskop gemessen. Dies lieferte jedoch nur bei der Drosselspule einen verlässlichen Wert. Bei der Luftspule misst man die Zeit für eine bestimmte Anzahl an Perioden und teilt durch diese. Wir nehmen dabei eine Ungenauigkeit von 2% an. Mithilfe von (6) können nun die Induktivitäten berechnet werden. Dabei ergibt sich aus der Fehlerfortpflanzung folgende Formel:

$$\sigma_{L} = \frac{T}{C^{2} \left(\beta^{2} T^{2} + 4\pi^{2}\right)^{2}} \sqrt{4\beta^{2} C^{2} \sigma_{\beta}^{2} T^{6} + 64\pi^{4} C^{2} \sigma_{T}^{2} + \sigma_{C}^{2} T^{2} \left(\beta^{2} T^{2} + 4\pi^{2}\right)^{2}}$$

Aus der Definition von β kann nun der Innenwiderstand R_L der Spule bestimmt werden:

$$R_L = 2 \cdot \beta \cdot L$$

$$\sigma_{R_L} = 2 \cdot \sqrt{\beta^2 \cdot \sigma_L^2 + L^2 \cdot \sigma_\beta^2}$$

Für die Drosselspule ergibt sich:

$$L = (9.6 \pm 0.7) \,\mathrm{H} \;,\; R_L = (6.1 \pm 0.5) \,\mathrm{k}\Omega$$
 (16)

Für die Luftspule erhält man:

$$L = (0.018 \pm 0.001) \,\mathrm{H} \,\,,\,\, R_L = (160 \pm 10) \,\,\Omega$$
 (17)

5 Diskussion

5.1 Vergleiche

Zuerst vergleichen wir die beiden Werte für den **unbekannten Widerstand** R_x , die man über die Entladungsmessung (11) sowie aus der Schwingkreismessung (14) erhält, um festzustellen, welche der beiden Messmethoden geeigneter ist. Man stellt fest, dass zumindest beide Wert im $G\Omega$ -Bereich liegen. Der zweite Wert ist jedoch negativ und hat einen sehr großen Fehler. Dies ist dem zu geringen Eingangswiderstand des Oszilloskops (12) geschuldet, der etwas kleiner als $1\,\mathrm{M}\Omega$ ist. Somit sind die Abfallzeiten, die man bei den Schaltungen Kondensator alleine bzw. mit R_x parallel erhält, kaum verschieden. Könnte man einen größeren Eingangswiderstand einstellen, wäre diese Messmethode auch besser geeignet. Trotzdem ergeben sich bei der Kapazitätsmessung passable Werte: Die beiden Werte (8) und (13) für die Kapazität des Plattenkondensators weichen nur um 6% voneinander ab. Außerdem liegt der erste Wert im Fehlerintervall des zweiten. Der Wert $C = (4.07 \pm 0.02)\,\mathrm{nF}$ aus der Multimetermessung liegt in beiden Fehlerintervallen.

 ε_0 C und C_2 Multimeter
Luftspule

6 Anhang

 $\textbf{Abbildung 4:}\ Drosselspule: \ Extrema\ des\ Spannungsverlauf\ logarithmisch\ gegen\ die\ Zeit$

Abbildung 5: Luftspule: Extrema des Spannungsverlauf logarithmisch gegen die Zeit