ARM-Prozessoren

Eigenschaften

Archi- tektur	ARM-Design(s) / Familie(n)	Release- Jahr	üblicher CPU- Takt (MHz)	Befehlsdurchsatz (DMIPS/MHz)
ARMv1	ARM1	1985	4	
ARMv2	ARM2, ARM3	1986, 1989	825	0,5
ARMv3	ARM6, ARM7	1991, 1993	1240	0,89
ARMv4	ARM7TDMI, ARM8, StrongARM ARM9TDMI	1995, 1997	16,875 203206 180	0,9
ARMv5	ARM7EJ, ARM9E, ARM10E	2002	104369 1331250	1,25
ARMv6	ARM11 (1176, 11 MPCore, 1136, 1156) ARM Cortex-M (M0, M0+, M1)	2002	427 ¹⁴ 1000+ ¹⁵ bis 200 ¹⁶	0,6. ¹⁴ .1,54 ¹⁷ 0,840,94 ¹⁸
ARMv7	ARM Cortex-A (A8, A9, A5, A15, A7, A12, A17) ARM Cortex-M (M3, M4, M7) ARM Cortex-R (R4, R5, R7, R8)	2004 2005 2011	bis 2500. ¹⁹	1,58 ²⁰ .3,5 ²¹ 1,252,14 ¹⁸
ARMv8	ARM Cortex-A (A32, A53, A57, A72, A35, A73, A55, A75, A76, A77) ²² ARM Cortex-M (M23, M33) ARM Cortex-R (R52)	2012 2016	12003000. ²³	2,3 ²⁴ .4,1 ^{[25}

RISC

3 Befehlskategorien

- Speicherzugriff
- Arithmetisch und Logische Befehle
- Sprünge & Unterprogrammeaufrufe

Können 3-Adress-Code Befehlssatz

- Ziel- und zweiOperandenregister
- bsp. ADD r0, r1, r2
- bsp. ADD r2, r1

Ausführungsmodi

User Mode

Normaler User-Code

Supervisor-Mode (SVC)

Privilegierte
 Betriebssystem-Tasks

Hypervisor-Mode (HYP)

 Priviligierte Tasks zur Erfüllung von Hypervisor Funktionen

Interrupt.Mode((IRQ)

 Tritt durch äußere Interrupt-Request ein

Fast.Interrupt-Mode(FIQ)

 Tritt durch äußere Fast-Interrupt-Requests ein

Memory-Abort(ABT)

 Tritt auf, wenn eine Datenanforderung nicht erfüllt werden kann

Undefined-Instruction-Expert(UND)

 Tritt durch eine unbekannte Instruktion auf

Befehlssätze

ARM-Befehlssatz 32/64 Bit

- If/Else-Abfragen vermeiden Programmsprünge
- CMP r0,r1
- ADDGE r2 ,r2,r3 (if(r0>=r1)
- ADDLT r2, r2, r4 (else)

Thumb 16 Bit

- Weniger
 Leistungsfähig als
 ARM-Befehle
- Langsamer
- Reduzieren Code-Größe

Jazelle DBX

• Java Bytecode

Blockschaltbild

Lizenznehmer

Allwinner	AMCC	AMD ^[35]	Analog Devices	Apple (S5L SoCs)	Atmel	Broadcom
Cirrus Logic	Conexant	Cypress	Dialog Semiconduc tor	Energy Micro	Freescale	Fujitsu Microelectro nics Europe
Globalfound ries Palm		HP	HiSilicon	HTC Corporation	IBM	Infineon und XMC1000 ^[36]
Intel (XScale)	Luminary Micro	Marvell Technology Group	MediaTek	Microsemi	Microsoft ^[37]	Motorola
NEC	NetSilicon	Nintendo	Nokia	Nuvoton	Nvidia ^[38] (Te gra)	NXP
Oki	Qualcomm (Snapdragon)	Renesas	Samsung ^[39] (Exynos)	Siemens	Sony	STMicroelec tronics
TD Micro	Instru	kas ments Tosl 1AP)	<i>W</i>	lA ologie Xili	inx Zil	og

Klausurfragen

- Unterschied: ARM & Thumb Befehlssatz?
 - >ARM: 32 & 64 Bit; Bedingte Ausführung
 - Thumb: 16 Bit; Weniger Speicherbedarf
- Vorteile von ARM-Prozessoren?
 - Geringer Energiebedarf & hohe Optimierbarkeit
 - ➤ Big und Little Endian kompatibel
- Was macht das Unternehmen ARM Ltd.?
 - Entwickelt RISC-Architektur & verkauft Lizenzen