Universidad Panamericana

ANÁLISIS ESTADÍSTICO DE CALIDAD

Clase: Estadística

Tema: Inferencia estadística acerca de medias y proporciones con dos poblaciones

Una marca de tiendas departamentales tiene una tienda en Guadalajara y la otra en Zapopan. Existen diferencias entre las ventas de las tiendas dada una diferencia en las edades de las personas que las visitan. Por lo que se investiga si esto es verdad.

Estadísticas descriptivas

Muestra	N	Media	Desv.Est.	Error estándar de la media
Muestra 1	36	40.00	9.00	1.5
Muestra 2	49	35.0	10.0	1.4

Estimación de la diferencia

Diferencia	IC de 95% para la diferencia		
5.00	(0.88,	9.12)	

Prueba

Hipótesis nula
$$H_0$$
: $\mu_1 - \mu_2 = 0$
Hipótesis alterna H_1 : $\mu_1 - \mu_2 \neq 0$

Valor T	GL	Valor p
2.41	79	0.018

Dado que el p value, es mayor que .05

Una universidad hace un estudio de aptitudes escolares con base al nivel máximo de estudios de los palos alumnos. La hipótesis es que los padres de estudios mas altos, tienen hijos con mejores calificac continuación, se presentan los datos obtenidos

Calificación de los alumnos			
Padres con Licenciatura		Padres con Preparatoria	
485	487	442	425
534	533	580	485
650	526	479	390
554	410	486	535
550	515	528	
572	578	524	
497	448	492	
592	469	478	

Prueba

Hipótesis nula H_0 : $\mu_1 - \mu_2 = 0$

Hipótesis alterna H_1 : $\mu_1 - \mu_2 > 0$

Valor T	GL	Valor p	
1.80	25	0.042	

En una fábrica se está probando sin un método nuevo de ensamble es mejor que el anterior

Método anterior: El ensamble se hace uniendo piezas con adhesivo

Método nuevo: El ensamble se hace uniendo piezas con ultrasonido

Para esto se arma un experimento pareado.

Se toma una muestra aleatoria simple de trabajadores, cada trabajador usa primero el método anterior y luego el nuevo. Cada trabajador se le asigna de forma aleatoria el método, es decir algunos trabajadores comienzan con el método anterior y otros con el nuevo.

Cada trabajador entonces hace cada ensamble, y se toman los tiempos

IC y Prueba T pareada: C1, C2

Estimación de la diferencia pareada

Media	Desv.Est.	Error estándar de la media	Límite inferior de 95% para la diferencia_µ
0.300	0.335	0.137	0.025

Diferencia_µ: media de población de (C1 - C2)

Prueba

Hipótesis nula H_0 : diferencia_ $\mu = 0$ Hipótesis alterna H_1 : diferencia_ $\mu > 0$

Valor T	Valor p	
2.20	0.040	

El proceso 2 es mejor ya que las medias de la muestra 1 – muestra 2 es menor que 0

Hay una empresa dedicada a la manufactura tiene dos plantas y quiere saber si hay diferencias en su proceso principal en cuanto al porciento de errores

Datos:

$$\overline{p_1} = 0.14$$

$$n = 250$$

$$\bar{p_2} = 0.09$$

$$n = 300$$

Estimación de la diferencia

Diferencia	IC de 95% para l	la diferencia
0.05	(-0.003840,	0.103840)

IC basado en la aproximación a la normal

Prueba

Hipótesis nula	H_0 : $p_1 - p_2 = 0$
Hipótesis alterna	H₁: p₁ - p₂ ≠ 0

Método	Valor Z	Valor p
Aproximación normal	1.82	0.069
Exacta de Fisher		0.078

No hay diferencias estadísticamente representativas en su proceso