CS 224 - Multivariate Gaussian Distribution

Fall 2024

Goal

- Basics about multivariate Gaussian distribution.
- Visualizations for better understanding.

Univariate Gaussian Distribution

 $x \in \mathbb{R}$, the density function is given by

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

• μ : mean; σ^2 : variance

 μ represents the **mean** of the data.

 μ represents the **mean** of the data.

 μ represents the **mean** of the data.

Examples: Effect of σ

 σ represents the **spread** of data from the mean.

Examples: Effect of σ

 σ represents the **spread** of data from the mean.

$$\mu = 0, \ \sigma = 0.5$$

Examples: Effect of σ

 σ represents the **spread** of data from the mean.

Covariance

The covariance of two random variable X and Y is defined as

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

• It measures the degree to which X and Y are (linearly) related.

Covariance Matrix

If x is a D-dimensional random vector, its covariance matrix is defined as

$$\mathsf{Cov}[\mathbf{x}] = \mathbf{\Sigma} = \begin{pmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_D] \\ \mathsf{Cov}[X_2, X_1] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_D] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_D, X_1] & \mathsf{Cov}[X_D, X_2] & \cdots & \mathsf{Var}[X_D] \end{pmatrix}$$

Alternatively, For any random vector \mathbf{x} with mean μ and covariance matrix Σ ,

$$\Sigma = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu)] = E[(\mathbf{x}\mathbf{x}^{\top}] - \mu\mu^{\top})$$

• Σ is symmetric, positive semi definite matrix.

Multivariate Gaussian Distribution

$$p(\mathbf{x}) = rac{1}{(2\pi)^{rac{k}{2}} |\mathbf{\Sigma}|^{rac{1}{2}}} \exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{ op} \mathbf{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)$$

- μ : mean; Σ^2 : covariance matrix
- Restriction: Σ must be symmetric positive definite (in order for Σ^{-1} to exist).

 μ : the **mean** of the data.

$$\mu = egin{bmatrix} oldsymbol{0} \ oldsymbol{0} \end{bmatrix}, \ oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{1} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{1} \end{bmatrix}$$

 μ : the **mean** of the data.

$$\mu = egin{bmatrix} 2 \ 0 \end{bmatrix}, \ \Sigma = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

 μ : the **mean** of the data.

$$\mu = \begin{bmatrix} 2 \\ -2 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Examples: Effect of Σ

 Σ represents the **spread** of data from the mean.

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Examples: Effect of Σ

 Σ represents the **spread** of data from the mean.

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

Examples: Effect of Σ

 Σ represents the **spread** of data from the mean.

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 2 & 1.8 \\ 1.8 & 2 \end{bmatrix}$$

CS 224 Covariance 17 / 19

Conditioning a 2d Gaussian

The conditional $p(x_1|x_2)$ is obtained by "slicing" the joint distribution through the $X_2 = x_2$ line.

Resources

- Chuong B. Do. The Multivariate Gaussian Distribution. Lecture Notes. 2008
- Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022