

Can we use catch declarations data to map fish spatial distribution?

Speaker: Baptiste Alglave

Supervisors/Contributors: Etienne Rivot, Youen Vermard, Marie-Pierre Etienne, Mathieu Woillez, James T. Thorson, Kasper Kristensen

Spatial data in ecology

	Survey data	Citizen science data	Declaration data
+	Standardized sampling plan	Inexpensive data	Mandatory data
	High quality data	Exact locations available	Massive data
	Small sample size		Same as citizen science data
	Partial temporal coverage	Opportunistic (or even preferential) sampling	Aggregated at the scale
	Expensive data		of rough administrative units
Examples	EVHOE data, Bay of Biscay (marine ecology)	Ebird application (Ornithology) eBird	Harvest data, Wisconsin (hunting)

How to integrate all these datasources?

2 main issues:

Preferential sampling (PS)

When sampling agents preferentially target areas of higher species density

Change of support (COS)

When predicting species distribution at a specific scale while data sources are defined at different scales (either fine or rough scale)

Conceptual framework

Ycom:

Xcom:

(preferential sampling)

(sampling design)

Modeling PS and COS in a spatial context

Preferential sampling

Change of support

Rough approach
$$Y_i|S(x_i), x_i \sim \mathcal{L}_Y(S(x_i), \xi, \sigma^2)$$

$$Y_i = \frac{D_k}{n(\mathcal{P}_k)} = Y_i^r \qquad \begin{array}{c} \text{Statistical approach} \\ D_k = \sum\limits_{i \in \mathcal{P}_k} Y_i \\ D_k|S_{\mathcal{P}_k}, \mathcal{P}_k \sim \mathcal{L}_D(S_{\mathcal{P}_k}, \xi, \sigma^2) \end{array}$$

Modeling PS and COS in a spatial context

Change of support

Applications

Preferential sampling

Change of support

5°W 4°W 3°W 2°W 1°W

5°W 4°W 3°W 2°W 1°W

Applications

Preferential sampling

Change of support

Parameters estimates

Applications

Preferential sampling

Change of support

Discussion

Not accounting for:

Preferential sampling

⇒ Positively biased predictions

Change of support

⇒ Loss of the species-habitat relationship, smoothed maps

- We provide a framework that potentially deals with both issues (at least separately)
 ⇒ How do they interact?
- For more details:

Alglave, B., Rivot, E., Etienne, M. P., Woillez, M., Thorson, J. T., & Vermard, Y. (2022). Combining scientific survey and commercial catch data to map fish distribution. *ICES Journal of Marine Science*, 79(4), 1133-1149.

Alglave, B., Vermard, Y., Kristensen, K., Rivot, E., Woillez, M., & Etienne, M. P. (*In prep*). Inferring fine-scale wild species distribution from spatially aggregated data.

Discussion

Applications and perspectives

Marine ecology

Providing fine-scale information for marine spatial planning

Movement ecology

Potential to extend the framework to include movement

Other potential fields of appli.

Many cases where (complex) data are aggregated over rough scale and/or face preferential sampling

Identifying essential habitats (e.g. spawning grounds)

Movement of fishermen

Sampling process

Movement of fish

Biomass field

Terrestrial ecology

Air pollution

Epidemiology

And possibly others...

