Correction de l'exercice 5.5

On admet le résultat (légèrement généralisé) de l'exercice 5.4, que l'on rappelle ici. La preuve de cette extension est identique.

Exercice 5.4. Soit $(Z_t)_{t\geq 0}$ un processus de poisson composé. Soit $(V_n)_n$ la suite de va iid définissant $(Z_t)_{t\geq 0}$. Montrer que pour tout réel $p\geq 1, Z_1\in L^p$ si et seulement si $V_1 \in L^p$.

On veut montrer le résultat suivant (extension de l'exercice 5.5).

Exercice 5.5. Soit $(X_t)_{t>0}$ un processus de Lévy issu de 0 et N la mesure de poisson associée d'intensité $\lambda \otimes \mu$. Pour tout $p \geq 1$, montrer que $X_1 \in L^p$ si et seulement si $\int_{\{\|x\|\geq 1\}} \|x\|^p \mu(dx) < \infty$ si et seulement si $X_t \in L^p$, pour tout t > 0.

Lemma 1. Soit X et Y deux variables aléatoires indépendantes. Alors pour tout $p>0, X+Y\in L^p$ si et seulement si $X,Y\in L^p$.

Preuve du lemme. Une direction est évidente. Montrons l'autre. Supposons donc que $X + Y \in L^p$. Soit μ_X et μ_Y les lois de X et Y respectivement. Par indépendance on a :

$$\mathbb{E}(|X+Y|^p) = \int_{\mathbb{R}^2} |x+y| \mu_X \otimes \mu_Y(dx, dy) < \infty.$$

Par Tonnelli, l'intégrande étant positive, on a pour μ_X -presque tout $x \in \mathbb{R}$,

$$\int_{\mathbb{R}} |x+y|^p \mu_Y(dy) = \mathbb{E}(|x+Y|^p) < \infty$$

d'où $Y \in L^p$, puis $X \in L^p$.

Preuve de l'exercice 5.5. D'après le théorème de Lévy-Ito, il existe trois processus indépendants $(B_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ et $(Z_t)_{t\geq 0}$, tels que pour tout $t\geq 0$, $X_t = B_t + Y_t + Z_t$, et $(B_t)_{t>0}$ est un mouvement brownien, $(Y_t)_{t>0}$ est un PAIS de sauts bornés (en norme) \mathbb{P} -p.s. par 1 et $(Z_t)_{t>0}$ est un PAIS dont les sauts sont P-p.s. de norme plus grande que 1.

Un mouvement brownien admet des moments de tout ordre. D'après la Proposition 5.17, un PAIS à sauts bornés admet des moments de tout ordre également. Donc, dans les équivalences à établir, on peut remplacer X_1 et X_t par Z_1 et Z_t respectivement.

On va montrer que $(Z_t)_{t\geq 0}$ est un processus de Poisson composé d'intensité proportionnelle à $\mathbf{1}_{\{||x||>1\}}\mu(dx)$. On passe par les fonctions caractéristiques. On rappelle que l'on note N_t la mesure aléatoire de Poisson, sur $\mathbb{R}^d - \{0\}$ définie par

$$N_t(\cdot, A) = N \cot, [0, t] \times A \qquad \forall A \in \mathcal{B}(\mathbb{R}^d).$$

D'après le théorème de Lévy-Ito, $Z_t = \int_{\mathbb{R}^d - \{0\}} x \mathbf{1}_{\{\|x>1\|\}} N_t(\cdot, dx)$. Donc pour tout $u \in \mathbb{R}^d$, $i\langle u, Z_t \rangle = N_t(f_u)$, où $f_u(x) = i\langle u, x \rangle \mathbf{1}_{\{\|x>1\|\}}$.

Comme μ est une mesure de Lévy, $\mathbf{1}_{\{\|x>1\|\}} \in L^1(\mu)$. Par ailleurs, $\min(1, |f_u|) \leq \mathbf{1}_{\{\|x>1\|\}}$. On peut donc appliquer le point (ii) du lemme 5.8. On en déduit que

$$\mathbb{E}(e^{i\langle u, Z_1 \rangle}) = \exp\left(\int_{\mathbb{R}^{d} - \{0\}} (e^{i\langle u, x \rangle} - 1) \mathbf{1}_{\{\|x > 1\|\}} \mu(dx) \right).$$

Soit $\lambda := \mu(\mathbf{1}_{\{\|x>1\|\}})$. On peut supposer $\lambda > 0$, sinon $(Z_t)_{t\geq 0}$ est le processus nul et on a fini. Posons aussi $\nu := \frac{1}{\lambda} \mathbf{1}_{\{\|x>1\|\}} \mu$. Alors ν est une mesure de probabilité et on constate (par identifications des lois) que Z_1 suit une loi de Poisson composé de paramètres (λ, ν) et donc (on rappelle que la loi d'un PAIS $(U_t)_{t\geq 0}$ est caractérisée par la loi de U_1) que $(Z_t)_{t\geq 0}$ est un processus de Poisson composé de paramètres (λ, μ) .

Il suffit alors d'appliqué l'exercice 5.4 en remarquant que V_1 adme ν pour loi. \square

Notons que l'équivalence de " $X_1 \in L^p$ " et " $X_t \in L^p$ pour tout $t \ge 0$ ", peut se montrer entre autre à l'aide de l'inégalité maximale de Doob.