

Escuela de Ingenierías Industrial, Informática y Aeroespacial GRADO EN INGENIERÍA INFORMÁTICA

Trabajo de Fin de Grado

TÍTULO DEL TRABAJO
TITLE OF THE WORK

Autor: Samuel Castrillo Domínguez Tutor: Eva María Cuervo Fernández

Junio, 2023

UNIVERSIDAD DE LEÓN

Escuela de Ingenierías Industrial, Informática y Aeroespacial

GRADO EN INGENIERÍA INFORMÁTICA

Trabajo de Fin de Grado

ALUMNO: Samuel Castrillo Domínguez

TUTOR: Eva María Cuervo Fernández

TÍTULO: Título del trabajo

TITLE: Title of the work

CONVOCATORIA: Junio, 2023

RESUMEN:

El resumen reflejará las ideas principales de cada una de las partes del trabajo, pudiendo incluir un avance de los resultados obtenidos. Constará de un único párrafo y se recomienda una longitud no superior a 300 palabras. En cualquier caso, no deberá superar una página de longitud.

ABSTRACT:

Abstract will reflect the main ideas of each part of the work, including an advance of the results obtained. It will consist of a single paragraph and it is recommended a length not superior to 300 words. In any case, it should not exceed a page of length.

Palabras clave: Lorem, ipsum, dolor, sit, amet.							
Firma del alumno:	$ m V^{f o}B^{f o}$ Tutor/es:						

Índice de contenidos

Ín	lice de figuras	H
Ín	lice de cuadros y tablas	III
1.	Introducción	1
	Núcleo	2
	2.1. Patrones de diseño utilizados	2
	2.1.1. Builder	2
	2.1.2. Singleton	2
	2.1.3. Strategy	3

Índice de figuras

Índice de cuadros y tablas

2.1.	Relación entre ruta	v clase HTTP											2

1. Introducción

2. Núcleo

2.1. PATRONES DE DISEÑO UTILIZADOS

Definición: Se trata de una solución que se puede aplicar a diferentes contextos y que se puede reutilizar en diferentes proyectos.

En este proyecto se han utilizado varios patrones de diseño, para permitir una mejor escalabilidad, mantenibilidad y reutilización del código. A continuación se detallan los patrones utilizados y su justificación.

2.1.1. **BUILDER**

2.1.2. SINGLETON

Este patrón se utiliza para garantizar que una clase tenga una única instancia y proporciona un punto de acceso global a ella [?]. En el contexto de esta aplicación, se utiliza en ciertas clases de utilidad y en las clases que asocian rutas a un método HTTP (por ejemplo /login con el método POST). Estas últimas son clases internas de Routes. java y los nombres dependen del método HTTP que se debe utilizar para realizar una petición a una ruta específica.

Método HTTP	Clase de la ruta
GET	GetRoute
POST	PostRoute
PUT	PutRoute
DELETE	DeleteRoute

Cuadro 2.1: Relación entre ruta y clase HTTP

```
Código
int main() {
        printf("hello, world");
        return 0;
}
```

2.1.3. **STRATEGY**

C.F. Eva María C.D. Samuel