Universidad del Valle EISC

Julio 2020

1 Introducción a las recurrencias

2 Recurrencias lineales homogéneas

Complejidades en \mathcal{O}

Polinomica (+19+96/65)

Complejidad	Terminología			
Q(1)	Complejidad constante			
O(logn)	Complejidad logarítmica			
O(n)	Complejidad lineal			
O(nlogn)	Complejidad n log n			
$O(n^b)$,donde b es un	Complejidad polinómica			
racional, $b \geq 1$				
$O(b^n)$, donde $b>1$	Complejidad exponencial			
O(n!)	Complejidad factorial			

Contenido

1 Introducción a las recurrencias

2 Recurrencias lineales homogéneas

Recurrencias

- Las relaciones de recurrencia juegan un papel importante en el estudio de los algortimos.
- La programación dinámica en la cual el algoritmo parte un problema e varios subproblemas.
- La complejidad de tales algoritmos puede ser analizada usando especiales relaciones de recurrencia.
- También la complejidad de los algoritmos de divide y vencerás pueden ser analizados mediante relaciones de recurrencias.
- Podemos resolver problemas avanzados de conteo usando las funciones generatrices para resolver relaciones de recurrencias.

Recurrencias

Problema bacterias

Suponga que el número de bacterias de una colonia se dobla a cada hora. Si la colonia comienza con 5 bacterias. ¿Cuántas bacterias habrán en n horas?

- 1 Sea a_n el número de bacterias al final de las n horas.
- Como el número de bacterias es el doble cada hora tenemos la relación $a_n=2a_{n-1}$ para $n \in \mathbb{Z}^+$.
- f 3 Por lo tanto al cabo de 5 horas habrán : Sef a $a_0=5$

$$a_1 = 2a_0 = 2 \cdot 5 = 10$$
 $a_2 = 2a_1 = 2 \cdot 10 = 20$
 $a_3 = 2a_2 = 2 \cdot 20 = 40$
 $a_4 = 2a_3 = 2 \cdot 40 = 80$
 $a_5 = 2a_4 = 2 \cdot 80 = 160$

Problema de los conejos ($f_n = f_{n-1} + f_{n-2}$)

Problema conejos

Una pareja de conejos recién nacidos (uno de cada sexo) se sueltan en una isla. Los conejos no pueden tener descendencia hasta que cumplan dos meses, cada pareja tiene como descendencia otra pareja de conejos cada mes. Encuentre el número de conejos una vez transcurridos n meses.

mes	Parejas Repro.	Parejas Jov
1	0	(1 _A) 1
2	0	1
3	1_A	•1 _B 2
4	1_A	$1_B + 1_C$
5	$1_A + 1_{B\zeta}$	$(1_{\hat{B}_1}) + 1_C + (1_D)$ 5
6	$1_A + 1_B + 1_C$	$1_{B_1} + 1_{B_2} + 1_{C_1} + 1_D + 1_E$
7	$1_A + 1_B + 1_C + 1_{B_1} + 1_D$	$1_{B_{1_1}} + 1_{B_2} + 1_{B_3} + 1_{C_1} + 1_{C_2} + 1_{D_1} + 1_E + 1_F$

Problema de los conejos ($f_n = f_{n-1} + f_{n-2}$)

mes	Parejas Repro.	Parejas Jov
1	0	$\langle 1_A \rangle$
2	0	1_A
3	1_A	1_B
4	1_A	$1_B + 1_C$
5	$1_A + 1_B$	$1_{B_1} + 1_C + 1_D$
6	$1_A + 1_B + 1_C$	$1_{B_1} + 1_{B_2} + 1_{C_1} + 1_D + 1_{\overline{E}}$
7	$1_A + 1_B + 1_C + 1_{B_1} + 1_D$	$1_{B_{1_1}} + 1_{B_2} + 1_{B_3} + 1_{C_1} + 1_{C_2} + 1_{D_1} + 1_E + 1_F$

- El primer mes el número de parejas jóvenes de conejos es $f_1 = 1$ si f_n es el número de parejas en n meses.
- 2 Durante el segundo mes $f_2 = 1$ y f_{n-1} el número de parejas que había el mes anterior.
- 3 f_{n-2} es el número de parejas en cada nacimiento par.

370 2								
0	1	2	3					
_	1							

Número de Fibonacci

Problemas de conejos como una relación de recurrencia

Sea $f_1=1$ y $f_2=1$ entonces

$$f_n = f_{n-1} + f_{n-2}$$

 $para \ n \geq 3$

Problema bancario

Problema bancario

Supongamos que una persona deposita 10000 pesos en una cuenta bancaria que le proporciona un interés anual del 11%. Si los intereses se abonan a la misma cuenta. ¿Cuanto dinero habrá en la cuenta al cabo de 30 años?

Sea P_n : saldo de la cuenta la cabo de n años. P_{n-1} : saldo de la cuenta transcurridos n-1 años. $0.11P_{n-1}$ es el interés y P_{n-1} es el saldo. Por lo tanto, para $P_0=10000$

$$P_n = P_{n-1} + 0.11P_{n-1} = 1.11P_{n-1}$$

Calculamos P_1, P_2, \ldots, P_n

Problema bancario

$$P_n = P_{n-1} + 0.11P_{n-1} = 1.11P_{n-1}$$
 Calculamos P_1, P_2, \dots, P_n
$$P_1 = 1.11P_0$$

$$P_2 = 1.11 \text{ (MT)} P_1 = (1, 11)^2 P_0$$

$$P_3 = 1.11P_2 = (1, 11)^3 P_0$$

$$\vdots$$

$$P_n = (1.11)^n P_0$$

Problema bacterias

Suponga que el número de bacterias de una colonia se triplica a cada hora.

1 Determinar una relación de recurrencia para el número de bacterias después de transcurridas n horas

$$a_n = 3a_{n-1}$$

Problema bacterias

2 Si se utilizan 100 bacterias para empezar una nueva colonia ¿Cuántas bacterias habrá en la colonia después de diez horas? $a_0=100$

$$a_1 = 3a_0$$
 $a_1 = 3(100)$
 $a_2 = 3 \cdot 3(100)$
 $a_3 = 3 \cdot 3 \cdot 3(100)$
 \vdots
 $a_n = 3^n(100)$

Si n = 10 tenemos $a_{10} = 3^{10}(100)$ bacterias.

Torres de Hanoi

Se componen tres barras montadas sobre una base cada una junto con discos de diferentes tamaños. Reglas del juego:

- 1. Los discos se mueven de uno en uno.
- 2. Un disco no se puede colocar encima de otro más pequeño.
- 3. Los discos colocados en la primera barra se deben colocar en la segunda barra ordenados con el de mayor base.

Solución de Torres de Hanoi

Sea H_n número de movimientos necesarios para resolver el problema con n discos. Sea H_1 el movimiento de tener un disco.

$$H_n = 2H_{n-1} + 1$$

- 1 Los n-1 discos de encima se pueden llevar a cualquier torre, realizando ${\cal H}_{n-1}$ movimientos.
- Siempre se realizan H_{n-1} para mover el disco a una torre y H_{n-1} a la otra

$$H_n = 2H_{n-1} + 1$$

$$\begin{array}{l} \begin{array}{l} \text{H}_{5} : 2 \times |\, \text{S} + 1 = 3 \, \\ \text{H}_{3} = 2 H_{1} + 1 = 3 \end{array} \\ \text{H}_{3} = 2 H_{2} + 1 = 2 (3) + 1 = 7 \\ \text{H}_{4} = 2 H_{3} + 1 = 2 (7) + 1 = 15 \end{array}$$

Problemas de cadenas con relación de recurrencia

Definición

Encuentre una relación de recurrencia y condiciones iniciales para el número de cadenas de n bits que **NO** contienen dos ceros consecutivos. ¿Cuántas cadenas de longitud 4 hay?

Inicialmente, a_n : Cadenas de n bits que inician en 1 + Cadenas de n bits que inician en 0.

Si n = 1, 0 y 1, $a_1 = 2$ (cadenas de longitud 1)

Si n=2, 01, 10, 11, $a_2=3$ (cadenas de longitud 2)

 $\mathrm{Si}\; n=3$

Problemas de cadenas con relación de recurrencia

- 1 Tomamos las cadenas de n-1 bits y le añadimos un 1 al principio, sea n-1=2, es decir, 01,10,11 y le agregamos 1, 011,101,111
- 2 Tomamos las cadenas de n-2=1 bits y le añadimos un 10 al principio, entonces 010,110. Por lo tanto tenemos que $a_3=5$, es decir, $a_3=a_2+a_1=3+2=5$

En general,

$$a_n = a_{n-1} + a_{n-2} \quad \text{para} \quad n \ge 3$$

 a_{n-1} : cadenas de n-1 bits que inician en 1. a_{n-2} : cadenas de n-2 bits que inician en 0.

Cadenas de bits que no tienen dos ceros consecutivos

Contenido

1 Introducción a las recurrencias

2 Recurrencias lineales homogéneas

Recurrencias lineales y homogéneas con coeficientes constantes

Una relación lineal, homogénea con coeficientes constantes es de la forma:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$
 Homogénea de orden k

donde c_1, c_2, \ldots, c_k son constantes reales y $c_k \neq 0$

Recurrencias lineales y homogéneas con coeficientes constantes

Para resolver la R.R suponemos una solución $a_n = r^n$ constante.

$$a_n=r^n$$
 es solución de $a_n=c_1a_{n-1}+c_2a_{n-2}+\ldots+c_ka_{n-k}$ sii

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \ldots + c_{k}r^{n-k}$$
 (1)

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \ldots + c_{k}r^{n-k}$$
 (2)

Dividimos por r^{n-k}

$$\frac{r^n}{r^{n-k}} = \frac{c_1 r^{n-1}}{r^{n-k}} + \frac{c_2 r^{n-2}}{r^{n-k}} + \ldots + \frac{c_k r^{n-k}}{r^{n-k}}$$

Planteamos la ecuación característica:

$$r^k = c_1 r^{k-1} + c_2 r^{k-2} + \ldots + c_{k-1} r + c_k$$
 (3)

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0$$
 (4)

 $a_n = r^n$ es solución **sii** r es solución de (4)

Teorema

Sean c_1 y c_2 reales, supongamos que $r^2-c_1r-c_2=0$ tiene dos raices reales distintas r_1 y r_2 . Entonces la suceción $\{a_n\}$ es una solución de la recurrencia $a_n=c_1a_{n-1}+c_2a_{n-2}$ sii $a_n=\alpha_1r_1^n+\alpha_2r_2^n$, para n=0,1,2 donde α_1 y α_2 son constantes.

$$Q_{n} = 7 Q_{n-1} - 3Q_{n-2}$$

$$Q_{n} = 9$$

$$Q_0 = \gamma^0$$

$$\gamma^0 = \overline{\gamma} \gamma^{0-2} - 3\gamma^{0-2}$$

$$\gamma^2 = \overline{\gamma} \gamma^{0-2} - 3\gamma^{0-2} \Rightarrow \gamma^2 = \overline{\gamma} \gamma - 3$$

$$\gamma^2 - \overline{\gamma} \gamma + 3 = 0$$

$$Q_0 = \gamma^0$$

$$Q_0 = \gamma^0$$

$$Q_1 = \gamma^0$$

$$Q_1 = \gamma^0$$

$$Q_2 = \gamma^0$$

$$Q_3 = \gamma^0$$

$$Q_4 =$$

 $Y_{1,1} = \frac{7 \pm \sqrt{37}}{2} = \frac{7 \pm \sqrt{37}}{2} = \frac{7 \pm \sqrt{37}}{2}$

8 = (4-B) (7+ 137) + B (7= 137)

8 14+2 V37 +B(- V37)

 $= \frac{8 - 14 - 2\sqrt{37}}{-\sqrt{37}}$

 $8 = 4\left(\frac{1+134}{5}\right) + B\left(\frac{4-134}{5}\right) - \left(\frac{4+134}{5}\right)$

 $Q_0 = A\left(\frac{7+\sqrt{37}}{2}\right) + B\left(7-\frac{\sqrt{37}}{2}\right)$

 $A\left(\frac{7+\sqrt{37}}{2}\right)+B\left(\frac{7-\sqrt{37}}{2}\right)$

 $\frac{-6 - 2\sqrt{3.7}}{-\sqrt{3.7}} = \boxed{B = \frac{-6}{\sqrt{3.7}} + 2}$

= 4 - 6 - Z

Obtener la ecuación característica y solución de la recurrencia $a_n = a_{n-1} + 2a_{n-2}$ para $a_0 = 2$ y $a_1 = 7$

1 La ecuación característica $r^2-r-2=0$ cuyas raíces son $r_1=2$ y $r_2=-1$. Así **Por teorema**, la secuencia $\{a_n\}$ es la solución de la recurrencia **sii**

$$a_n = \underline{\alpha_1 2^n + \alpha_2 (-1)^n}$$

Resolviendo las ecuaciones:

$$a_0 = 2 = \alpha_1 + \alpha_2$$

$$a_1 = 7 = \alpha_1 \cdot 2 + \alpha_2 \cdot (-1)$$

Obtener la ecuación característica y solución de la recurrencia $a_n = a_{n-1} + 2a_{n-2}$ para $a_0 = 2$ y $a_1 = 7$

Entonces $\alpha_1=3$ y $\alpha_2=-1$ por lo tanto la solución de la recurrencia es la secuencia $\{a_n\}$

$$a_n = 3 \cdot 2^n - (-1)^n$$

$$Q_{n} = 5Q_{n-2} = 4Q_{n-2} \qquad Q_{0} = 4 \qquad Q_{1} = 6$$
1) $Q_{n} = Y^{n}$

1)
$$Q_{n=1}^{n}$$

2) $Y^{n} = 5Y^{n-1} - qY^{n-2}$

3)
$$\frac{\gamma^{n}}{\gamma^{n-2}} = \frac{S\gamma^{n-1}}{\gamma^{n-2}} = \frac{4\gamma^{n-2}}{\gamma^{n-2}} = \frac{\gamma^{2}}{\gamma^{2}} = 5\gamma - 4$$

4)
$$V_{1,2} = 5 \pm \sqrt{25-4\times4}$$

$$Q_0 = A Y_1^0 + B Y_2^0$$
 $Y_{1,2} = 5 \pm \sqrt{25}$

$$(1-4)$$
 $Y_{2}=\frac{5\pm\sqrt{25-4}}{2}$ $Y_{1,2}=\frac{5\pm\sqrt{9}}{2}$

$$Y_{1}=Y$$
 $Y_{2}=1$ $Y_{1,i}=\frac{5\pm\sqrt{9}}{2}$ $\frac{(s+3)^{2}}{2}$

$$Qo = \frac{Y = A + B}{G = 4A + B}$$

$$G = \frac{A + B}{A + B}$$

B = 10

 $\frac{12}{3} = \frac{2}{3} + B$

$$Y_{1-y}$$
 Y_{2-1} $Y_{1,i-5} = \frac{5 \pm \sqrt{9}}{2}$

$$Q_0 = A \left(\frac{3 + \sqrt{61}}{2} \right) + B \left(\frac{3 - \sqrt{61}}{2} \right)^0$$

$$8 = 14 \left(7 + \sqrt{61} \right) + 8 \left(7 - \sqrt{61} \right)$$

$$8 = A \left(\frac{7 + \sqrt{61}}{2} \right) + (4 - A) \left(\frac{7 - \sqrt{61}}{2} \right)$$

$$8 = A \left(\frac{7 + \sqrt{61} - 7 + \sqrt{61}}{2} \right) + 4 \left(\frac{7 - \sqrt{11}}{2} \right)$$

$$A = \frac{8 - 14 + 5\sqrt{61}}{\sqrt{61}} = \frac{-6 + 5\sqrt{61}}{\sqrt{61}$$

Resolver la relación de recurrencia de fibonacci

 $f_n=f_{n-1}+f_{n-2}$, para $f_0=0$ y $f_1=1$ por tanto la ecuación característica $r^2-r-1=0$ cuyas raíces son: $r_1=(1+\sqrt{5})/2$ y $r_2=(1-\sqrt{5})/2$ por lo tanto por teorema:

$$f_n = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

Para algunas constantes α_1 y α_2 y las condiciones iniciales $f_0=0$ y $f_1=1$

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right) = 1$$

Resolver la relación de recurrencia de fibonacci La solución de las ecuación $\alpha_1=1/\sqrt{5}$ y $\alpha_2=-1/\sqrt{5}$, por tanto una **fórmula explicita de Fibonacci**:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Resolver la recurrencia $a_{n+2}=-4a_{n+1}+5a_n$ para $n\geq 0$, $a_0=2$ y $a_1=8$

- 1 Sea $a_{n+2}=r^{n+2}$ para $n\geq 0$ por tanto se obtiene la ecuación característica $r^2+4r-5=(r+5)(r-1)=0$ cuyas raíces $r_1=-5$ y $r_2=1$
- 2 La sucesión $\{a_n\}$ es solución de la recurrencia:

$$a_n = \alpha_1(-5)^n + \alpha_2(1)^n$$

$$a_0 = 2 = \alpha_1 + \alpha_2$$

 $a_1 = 8 = \alpha_1(-5) + \alpha_2$

Entonces
$$\alpha_1 = -1$$
 y $\alpha_2 = 3$ $\alpha_1 = 3(1)^n - (-5)^n$

Teorema 2

Sean c_1 y c_2 reales con $c_2 \neq 0$, supongamos que $r^2-c_1r-c_2=0$ tiene una sola raíz $\underline{r_0}$. Una secuencia $\{a_n\}$ es una solución de la recurrencia $a_n=c_1a_{n-1}+c_2a_{n-2}$ sii $a_n=\alpha_1r_0^n+\alpha_2\underline{n}r_0^n$, para n=0,1,2 donde α_1 y α_2 son constantes.

Solucionar la recurrencia $\underline{a_n=6a_{n-1}-9a_{n-2}}$ y condiciones iniciales $a_0=1$ y $a_1=6$

- Entonces $r^2 6r + 9 = 0$, $(r-3)^2 = 0$ tiene como única raíz r = 3.
- 2 La solución de la recurrencia por teorema 2 es:

$$a_n = \alpha_1 3^n + \alpha_2 n 3^n$$

Usando los valores iniciales calculamos:

$$a_0 = 1 = \alpha_1$$

$$a_1 = 6 = \alpha_1 \cdot 3 + \alpha_2 \cdot 3$$

Entonces $\alpha_1 = 1$ y $\alpha_2 = 1$

Teorema 3

Sean c_1, c_2, \dots, c_k reales. Supongamos la ecuación característica

$$r^k - c_1 r^{k-1} - \ldots - c_k = 0$$

Con k raíces distintas r_1, r_2, \ldots, r_k . Entonces la secuencia $\{a_n\}$ es una solución de la recurrencia

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \ldots + \alpha_k r_k^n$$

Para $n=0,1,2,\cdots$ donde $\alpha_1,\alpha_2,\ldots,\alpha_k$ son constantes.

Encontrar la solución de $a_n=6a_{n-1}-11a_{n-2}+6a_{n-3}$, con condiciones iniciales, $a_0=2, a_1=5$ y $a_2=15$

- 1 La ecuación característica $r^3 6r^2 + 11r 6 = 0$ cuyas raíces son $r_1 = 1, r_2 = 2$ y $r_3 = 3$, porque $r^3 6r^2 + 11r 6 = (r 1)(r 2)(r 3)$
- 2 La solución de la recurrencia:

$$a_n = \alpha_1 \cdot 1^n + \alpha_2 \cdot 2^n + \alpha_3 \cdot 3^n$$

Por tanto las constantes deben ser calculadas

$$a_0 = 2 = \alpha_1 + \alpha_2 + \alpha_3,$$

$$a_1 = 5 = \alpha_1 + \alpha_2 \cdot 2 + \alpha_3 \cdot 3,$$

$$a_2 = 15 = \alpha_1 + \alpha_2 \cdot 4 + \alpha_3 \cdot 9$$

Encontrar la solución de $a_n=6a_{n-1}-11a_{n-2}+6a_{n-3}$, con condiciones iniciales, $a_0=2, a_1=5$ y $a_2=15$

3 Resolviendo el sistema de ecuaciones, $\alpha_1=1,\alpha_2=-1$ y $\alpha_3=2$, Por lo tanto la **única solución** de la recurrencia es la secuencia $\{a_n\}$ con

$$a_n = 1 - 2^n + 2 \cdot 3^n$$

Teorema 4

Sean c_1, c_2, \ldots, c_k reales. Supongamos la ecuación característica

$$r^k - c_1 r^{k-1} - \ldots - c_k = 0$$

Con t raíces distintas r_1, r_2, \ldots, r_t con multiplicidad m_1, m_2, \ldots, m_t respectivamente, así que $m_i \geq 1$, para $i=1,2,\ldots,t$ y $m_1+m_2+\ldots+m_t=k$ Entonces la secuencia $\{a_n\}$ es una solución de la recurrencia

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

sii

$$a_n = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_1-1}n^{\underline{m_1-1}})r_1^n + (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_2-1}n^{m_2-1})r_2^n + \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_t-1}n^{m_t-1})r_t^n$$

Para $n=0,1,2,\cdots$ donde $\alpha_{i,j}$ son constantes para $1 \leq i \leq t$ y

Supongamos que las raíces de la ecuación característica sol(2,2,2,5,5) y (2,2,2,5,5) y (3,2,2,5) que forma tiene la solución general.

- Hay tres raíces distintas.
- Raíz 2 con multiplicidad 3, Raíz 5 con multiplicidad 2 y la raíz 9 con multiplicidad 1.
- 3 Solución

$$a_n = (\alpha_{1,0} + \alpha_{1,1}n + \alpha_{1,2}n^2)2^n + (\alpha_{2,0} + \alpha_{2,1}n)5^n + \alpha_{3,0}9^n$$

$$a_{n} = (A + B_{n} + C_{n^{2}}) 2^{n} + (D + E_{n}) 5^{n} + F9^{n}$$

Encontrar la solución la recurrencia

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$

Con $a_0=1, a_1=-2$ y $a_2=-1$, la ecuación característica de la recurrencia es :

$$r^3 + 3r^2 + 3r + 1 = (r+1)^3$$

Hay una sola raíz r=-1 de multiplicidad 3. Por lo tanto la solución de la recurrencia es:

$$a_n = \alpha_{1,0}(-1)^n + \alpha_{1,1}\underline{n(-1)}^n + \alpha_{1,2}\underline{n^2(-1)}^n$$

$$a_0 = 1 = \alpha_{1,0}$$

$$a_1 = -2 = -\alpha_{1,0} - \alpha_{1,1} - \alpha_{1,2},$$

$$a_2 = -1 = \alpha_{1,0} + 2\alpha_{1,1} + 4\alpha_{1,2}$$

Entonces $\alpha_{1,0}=1, \alpha_{1,1}=3$ y $\alpha_{1,2}=-2$, la única solución es la secuencia $\{a_0\}$

$$a_n = (1 + 3n - 2n^2)(-1)^n$$

$$T(n) = 8T(n-2) - |6T(n-2)| \qquad (Y-4)^{\frac{1}{2}} = Y^{\frac{1}{2}} - 8Y + |6|$$

$$\frac{Y^{2} - 8Y + |6| = 0}{2}$$

$$\frac{8 \pm \sqrt{64 - 4X} \cdot 6}{2} = \frac{8 \pm \sqrt{6}}{2}$$

$$T(n) = A(4)^{\frac{1}{2}} + B(4)^{\frac{1}{2}}$$

$$T(n) = A(4)^{\frac{1}{2}} + B(4)^{\frac{1}{2}}$$

$$T(n) = A(4)^{\frac{1}{2}} + B(4)^{\frac{1}{2}}$$

$$T(n) = A(y)^{0} + B(y)^{0}$$

$$T(x) = y$$

$$Y = A \qquad |x| = y$$

$$T(n) = 4T(n-1) + 4T(n-2)$$

$$T(2) = 46$$

$$T(n) = x^{n}$$

$$\frac{y^{n}}{y^{n-2}} = 4y^{n-4} + 4y^{n-2} = \sqrt{\frac{y^{2} = 4y + 4y}{x^{n-2}}}$$

$$\frac{y^{n}}{y^{n-2}} = 4y^{n-4} + 4y^{n-2} = \sqrt{\frac{y^{2} = 4y + 4y}{x^{n-2}}}$$

$$\frac{y^{2} = 4y^{2} + 4y^{2}}{y^{n-2}} = \sqrt{\frac{4+\sqrt{3}z}{2}} = \sqrt{\frac{4+\sqrt{3}z}{2}}$$

 $2\left(1+\frac{1}{\sqrt{c}}\right)$

 $\frac{2}{\sqrt{2}} + 2 = \beta \qquad \boxed{\beta = 2\left(1 - \frac{1}{\sqrt{2}}\right)}$

4 = A +2 (1 -1)

A=4-2+2

A=2+2

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011.

Chapter 8. Advanced Counting Techniques.

Gracias

Próximo tema: Recurrencias no homogéneas

