THREEFOLD EXTREMAL CONTRACTIONS OF TYPES (IC) AND (IIB)

SHIGEFUMI MORI AND YURI PROKHOROV

ABSTRACT. Let (X,C) be a germ of a threefold X with terminal singularities along an irreducible reduced complete curve C with a contraction $f:(X,C)\to (Z,o)$ such that $C=f^{-1}(o)_{\mathrm{red}}$ and $-K_X$ is ample. Assume that (X,C) contains a point of type (IC) or (IIB). We complete the classification of such germs in terms of a general member $H\in |\mathscr{O}_X|$ containing C.

1. Introduction

1.1. Let (X, C) be a germ of a threefold with terminal singularities along an reduced complete curve. We say that (X, C) is an *extremal* curve germ if there is a contraction $f:(X,C)\to (Z,o)$ such that $C=f^{-1}(o)_{\text{red}}$ and $-K_X$ is f-ample.

If furthermore f is birational, then (X, C) is said to be an extremal neighborhood [Mor88]. In this case f is called flipping if its exceptional locus coincides with C (and then (X, C) is called isolated). Otherwise the exceptional locus of f is two-dimensional and f is called divisorial. If f is not birational, then dim Z = 2 and (X, C) is said to be a \mathbb{Q} -conic bundle germ [MP08].

1.2. In this paper we consider only extremal curve germs with irreducible central fiber C. For each singular point P of X with $P \in C$, consider the germ $(P \in C' \subset X)$. All such germs are classified into types IA, IC, IIA, IIB, IA $^{\vee}$, II $^{\vee}$, ID $^{\vee}$, IE $^{\vee}$, and III, whose definitions we refer the reader to [KM92] and [MP08].

In this paper we complete the classification of extremal curve germs with irreducible central fiber containing points of type IC or IIB. As in [KM92] and [MP11] the classification is done in terms of a general hyperplane section, that is, a general divisor H of $|\mathcal{O}_X|_C$, the linear subsystem of $|\mathcal{O}_X|$ consisting of sections containing C.

The first author's work partially supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (B)(2), No. 20340005.

The second author's work partially supported by RFBR grants No. 11-01-00336-a, 11-01-92613-KO_a, the grant of Leading Scientific Schools No. 4713.2010.1 and AG Laboratory SU-HSE, RF government grant ag. 11.G34.31.0023.

For a normal surface S and a curve $V \subset S$, we use the usual notation of graphs $\Delta(S,V)$ of the minimal resolution of S near V: each \diamond corresponds to an irreducible component of V and each \diamond corresponds to an exceptional divisor on the minimal resolution of S, and we may use \bullet instead of \diamond if we want to emphasize that it is a complete (-1)-curve. A number attached to a vertex denotes the minus self-intersection number. For short, we may omit 2 if the self-intersection is -2.

Recall that if an extremal curve germ $(X, C \simeq \mathbb{P}^1)$ contains a point of type IC, then (X, C) is not divisorial [KM92, Cor. 8.3.3]. For the remaining \mathbb{Q} -conic bundle case we prove the following.

- **1.3. Theorem.** Let (X,C) is a \mathbb{Q} -conic bundle germ of type (IC) with irreducible C and let $f:(X,C)\to (Z,o)$ be the corresponding contraction. Let $P\in X$ be (a unique) singular point. Then we have:
- **1.3.1.** The point $P \in X$ is of index 5. Moreover, the general member $H \in |\mathscr{O}_X|_C$ is normal, smooth outside of P, has only rational singularities, and the following is the only possibility for the dual graph of (H, C):

If an extremal curve germ $(X, C \simeq \mathbb{P}^1)$ contains a point of type (IIB), then it cannot be flipping [KM92, Theorem 4.5]. Remaining cases of divisorial contractions and \mathbb{Q} -conic bundles are covered by the following theorem.

- **1.4. Theorem.** Let (X,C) is an extremal curve germ of type (IIB) with irreducible C and let $f:(X,C)\to (Z,o)$ be the corresponding contraction. Let $P\in X$ be (a unique) singular point. Then the general member $H\in |\mathscr{O}_X|_C$ is normal, smooth outside of P, and has only rational singularities. Moreover, the following are the only possibilities for the dual graph of (H,C).
- (X, P) is a simple cAx/4 point (see 3.1.1):
- **1.4.1.** f is a divisorial contraction, T := f(H) is Du Val of type A_2 ,

1.4.2. f is divisorial contraction, T := f(H) is smooth,

(X, P) is a double cAx/4 point:

1.4.3. f is divisorial contraction, T := f(H) is Du Val of type D_4 ,

1.4.4. f is a \mathbb{Q} -conic bundle,

2. Case (IC)

In this section we prove Theorem 1.3. The techniques of [KM92, ch. 8] will be used freely, sometimes without additional explanations.

2.1. Setup. Let (X, P) be the germ of a three-dimensional terminal singularity and let $C \subset (X, C)$ be a smooth curve. Recall that the triple (X, C, P) is said to be of type (IC) if there are analytic isomorphisms

$$(X,P) \simeq \mathbb{C}^3_{y_1,y_2,y_4}/\mu_m(2,m-2,1), \quad C^{\sharp} \simeq \{y_1^{m-2}-y_2^2=y_4=0\},$$
 where m is odd and $m \geq 5$.

2.1.1. Let (X, C) be a \mathbb{Q} -conic bundle germ and let $f: (X, C) \to (Z, o)$ be the corresponding contraction. In this section we assume that C is irreducible and has a point P of type (IC). Recall that (X, C) is locally primitive at P [Mor88, 4.2]. Moreover, P is the only singular point on C [MP08, Theorem 8.6, Lemma 7.1.2]. Thus the group $\mathrm{Cl}(Z, o)$ has no torsion. Therefore, the base point (Z, o) is smooth.

2.2. We have an ℓ -splitting

$$\operatorname{gr}_{C}^{1}\mathscr{O} = (4P^{\sharp}) \,\widetilde{\oplus} \, (-1 + (m-1)P^{\sharp})$$

by [MP09, §3], [KM92, 2.10.2], and hence the unique $(4P^{\sharp})$ in $\operatorname{gr}_{C}^{1} \mathscr{O}$. Since y_{4} and $y_{1}^{m-2} - y_{2}^{2}$ form an ℓ -free ℓ -basis of $\operatorname{gr}_{C}^{1} \mathscr{O}$ at P, $(4P^{\sharp})$ has an ℓ -free ℓ -basis of the form

(2.2.2)
$$u = \lambda_1 y_1^{(m-5)/2} y_4 + \mu_1 (y_1^{m-2} - y_2^2)$$

for some λ_1 and $\mu_1 \in \mathcal{O}_{C,P}$. It is easy to see that whether $\lambda_1(P) \neq 0$ does not depend on the choice of coordinates.

2.2.3. Remark. We have

$$\mathscr{O}_C = \mathscr{O}_C(-H) \hookrightarrow \operatorname{gr}_C^1 \mathscr{O} = \mathscr{O} \oplus \mathscr{O}(-1)$$

If $m \geq 7$, this implies that the term $y_1^2(y_1^{m-2}-y_2^2)$ appears in the equation of H. If m=5, then either $y_1^2(y_1^3-y_2^2)$ or $y_1^2y_4$ appears in the equation of H.

2.3. According to [MP09, §3] (cf. [KM92, 2.10]) a general member $F \in |-K_X|$ contains C, has only Du Val singularities, and $\Delta(F, C)$ is the following graph of (-2)-curves

$$(2.3.1) \qquad \underbrace{\circ - \circ - \circ}_{m-3} - \circ - \circ$$

where \bullet corresponds to C. We can choose coordinates y_1 , y_2 , y_4 in a neighborhood of P so that $F = \{y_4 = 0\}/\mu_m$. In particular, the ℓ -splitting (2.2.1) has the form

(2.3.2)
$$\operatorname{gr}_C^1 \mathscr{O} = (4P^{\sharp}) \widetilde{\oplus} \mathscr{O}_C(-F).$$

2.4. Lemma. A general member $H \in |\mathcal{O}_X|_C$ is normal, has only rational singularities, and smooth outside of P.

Proof. Similar to 3.4.3. Let T := f(H) and let $\Gamma := H \cap F$. As in 3.3.2 consider the Stein factorization

$$(2.4.1) f_F: (F,C) \xrightarrow{f_1} (F_Z,o_Z) \xrightarrow{f_2} (Z,o).$$

Put $\Gamma_Z := f_1(\Gamma)$. We may assume that, in some coordinate system, the germ (F_Z, o_Z) is given by $z^2 + xy^2 + x^{m-1} = 0$. Then by [Cat87] up to coordinate change the double cover $(F_Z, o_Z) \longrightarrow (Z, o)$ is just the projection to the (x, y)-plane. Hence we may assume that Γ_Z is given by x = y. By 2.3 we see that the graph $\Delta(F, \Gamma)$ has the form

Therefore, Γ is reduced and so H is smooth outside of P. The restriction $f_H: H \to T$ is a rational curve fibration. Hence H has only rational singularities.

2.5. Let J be the C-laminal ideal such that $I_C \supset J \supset F_C^2 \mathscr{O}$ and $J/F_C^2 \mathscr{O} = (4P^{\sharp})$ in (2.3.2). Since J is locally a nested c.i. on $C \setminus \{P\}$ and (y_4, u) is a (1,2)-monomializing ℓ -basis of $I_C \supset J$ at P with u as in (2.2.2). We have an ℓ -exact sequence

$$(2.5.1) 0 \to \mathscr{O}_C(-2F) \longrightarrow \operatorname{gr}_C^0 J \longrightarrow (4P^{\sharp}) \to 0$$

and an ℓ -isomorphism $\mathscr{O}_C(-2F) \simeq (-1 + (m-2)P^{\sharp})$. Thus we have $\operatorname{gr}_C^0 J \simeq \mathscr{O} \oplus \mathscr{O}(-1)$ as \mathscr{O}_C -modules. The unique \mathscr{O} in $\operatorname{gr}_C^0 J$ is generated near P by

(2.5.2)
$$y_1^2 u + \alpha y_2 y_4^2 \mod F^3(\mathcal{O}, J)$$

for some $\alpha \in \mathcal{O}_{C.P.}$

Proofs of the following two lemmas given in [KM92] work in our situation without any changes.

2.6. Lemma ([KM92, Lemma 8.5.3]).

$$F^{3}(\mathscr{O},J)^{\sharp} \subset \left((y_{1}^{m-2} - y_{2}^{2})^{2}, (y_{1}^{m-2} - y_{2}^{2})y_{4}, \lambda_{1}y_{1}^{(m-5)/2}y_{4}^{2}, y_{4}^{3} \right).$$

- **2.7. Lemma (**[KM92, Lemma 8.6]**).** The ℓ -exact sequence (2.5.1) is ℓ -split if and only if $\alpha(P) = 0$.
- **2.8. Proposition.** If m > 7, then $\alpha(P) \neq 0$.

Proof. Assume that $\alpha(P) = 0$, that is, (2.5.1) is ℓ -split. Then $\operatorname{gr}_C^0 J$ contains a unique $(4P^\sharp)$. Let $\mathscr K$ be the C-laminal ideal such that $J \supset \mathscr K \supset \operatorname{F}^1(\mathscr O, J)$ and $\mathscr K/\operatorname{F}^1(\mathscr O, J) = (4P^\sharp)$. By [Mor88, 8.14], $\mathscr K$ is locally a nested c.i. on $C \setminus \{P\}$ and (1,3)-monomializable at P, and we have ℓ -isomorphisms

(2.8.1)
$$\operatorname{gr}_{C}^{i}(\mathscr{O},\mathscr{K}) \simeq (-1 + (m-i)P^{\sharp}), \qquad i = 1, 2$$

and an ℓ -exact sequence

$$(2.8.2) 0 \to (-1 + (m-3)P^{\sharp}) \longrightarrow \operatorname{gr}_{\mathcal{C}}^{3}(\mathscr{O}, \mathscr{K}) \longrightarrow (4P^{\sharp}) \to 0.$$

By $(2.8.1)\tilde{\otimes}\omega_X$, we see $\operatorname{gr}_C^i(\omega_X, \mathscr{K}) \simeq (-1 + (m-i-1)P^{\sharp})$ and so $H^j(\operatorname{gr}_C^i(\omega_X, \mathscr{K})) = 0$ for i = 1, 2, j = 0, 1 because

$$m-2, m-3 \in 2\mathbb{Z}_{+} + (m-2)\mathbb{Z}_{+}$$
.

Now using (2.8.2) $\tilde{\otimes}\omega_X$, we obtain

$$0 \to (-2 + (2m - 4)P^{\sharp}) \longrightarrow \operatorname{gr}_{C}^{3}(\omega_{X}, \mathscr{K}) \longrightarrow (-1 + (m + 3)P^{\sharp}) \to 0.$$

We note $(-1 + (m+3)P^{\sharp}) \simeq \mathscr{O}(-1)$ as \mathscr{O}_{C} -modules because $3 \notin 2\mathbb{Z}_{+} + (m-2)\mathbb{Z}_{+}$ for $m \geq 7$. We similarly note that $(-2 + (2m-4)P^{\sharp}) \simeq \mathscr{O}(-2)$ because $m-4 \notin 2\mathbb{Z}_{+} + (m-2)\mathbb{Z}_{+}$. Hence, $H^{1}(\operatorname{gr}_{C}^{3}(\omega_{X}, \mathscr{K})) \neq 0$. Note that $\omega_{X}/\operatorname{F}^{1}(\omega_{X}, \mathscr{K}) = \operatorname{gr}_{C}^{0}\omega \simeq \mathscr{O}(-1)$. Using the standard exact sequences

$$0 \to \operatorname{gr}_C^i(\omega_X, \mathscr{K}) \longrightarrow \omega_X/\operatorname{F}^{i+1}(\omega_X, \mathscr{K}) \longrightarrow \omega_X/\operatorname{F}^i(\omega_X, \mathscr{K}) \to 0,$$

we obtain $H^1(\omega_X/\mathcal{F}^4(\omega_X,\mathcal{K})) \neq 0$. By [MP08, 4.4] we have

$$-K_X \cdot C = 5/m \ge -K_X \cdot f^{-1}(o) = 2,$$

a contradiction.

2.9. Proposition.

(i) $\mathscr{O}_F(-C)$ is an ℓ -invertible \mathscr{O}_F -module with an ℓ -free ℓ -basis $y_1^{m-2}-y_2^2$ at P and an ℓ -isomorphism.

$$\mathscr{O}_C \otimes \mathscr{O}_F(-C) \simeq (4P^{\sharp}).$$

- (ii) $H^0(\mathscr{O}_F(-\nu C)) \twoheadrightarrow H^0(\mathscr{O}_C \otimes \mathscr{O}_F(-\nu C))$ for all $\nu \geq 0$.
- (iii) There are sections $s_1, s_2 \in H^0(I_C)$ such that

$$s_1 \equiv (\text{unit}) \cdot (y_1 + \xi_1 y_2^{m-1})^2 (y_1^{m-2} - y_2^2) \mod y_4 \text{ near } P,$$

$$s_2 \equiv (\text{unit}) \cdot (y_2 + \xi_2 y_1^{m-1}) (y_1^{m-2} - y_2^2)^{(m-1)/2} \mod y_4 \text{ near } P,$$

 $where \ \xi_1, \ \xi_2 \in \mathscr{O}_{X^{\sharp}} \ are \ invariants.$

(iv)
$$H^0(I_C) \rightarrow H^0(\operatorname{gr}_C^0 J) = H^0(I_C/\operatorname{F}^3(\mathscr{O}, J)) \simeq \mathbb{C}$$
.

Proof. (i) follows from the construction of F. Hence, $H^1(\mathcal{O}_C \otimes \mathcal{O}_C)$ $\mathscr{O}_F(-\nu C) = 0$ for all $\nu \geq 0$, and $H^1(\mathscr{O}_F(-\nu C)) = 0$ since C is a fiber of proper f. Thus we have (ii).

To prove (iii) consider the Stein factorization (2.4.1) and as in the proof of Lemma 2.4 we take an embedding $(F_Z, o_Z) \subset \mathbb{C}^3_{x,y,z}$ so that (F_Z, o_Z) is given by the equation $z^2 + xy^2 + x^{m-1}$ and the map f_2 : $(F_Z, o_Z) \to (Z, o)$ is just the projection to the (x, y)-plane. Take $s_1 =$ f^*x and $s_2 = f^*y$. The weighted blowup of (F_Z, o_Z) with weights (2, m-2, m-1) extracts the central vertex of the D_m -diagram (2.3.1). The multiplicity of the corresponding exceptional curve in f_2^*x and f_2^*y is equal to 2 and m-2, respectively. Using this one can easily show that multiplicities of all exceptional curves in f_2^*x and f_2^*y , respectively, are given by the following diagrams

where the vertex \bullet , as usual, corresponds to C and vertices \diamond correspond to components of the proper transforms of $\{f_2^*x=0\}$ and $\{f_2^*y=0\}$. The multiplicity of C is exactly the exponent of $y_1^{m-2} - y_2^2$ in $s_i \mod y_4$. Therefore,

$$s_1 \equiv \gamma_1 (y_1^{m-2} - y_2^2)$$
 $s_2 \equiv \gamma_2 (y_1^{m-2} - y_2^2)^{(m-1)/2}$ mod y_4 ,

where $\gamma_i \in \mathscr{O}_{X^{\sharp}}$ are semi-invariants. Using the above diagrams, we see $(\{\gamma_1 = 0\} \cdot C)_F = -4/m \text{ and } (\{\gamma_2 = 0\} \cdot C)_F = (m-2)/m \text{ because}$ $(C^2)_F = 4/m$ by (i). Since y_1y_2 is of weight 0, we have

$$\gamma_1 = (\text{unit}) \cdot (y_1 + y_2^{m-1} \xi_1)^2 \mod y_4$$

for some $\xi_1 \in \mathcal{O}_X$. Indeed, since $\gamma_1 = 0$ defines a double curve on F, one has $\gamma_1 = (\text{unit}) \cdot \delta^2 \mod y_4$ for some $\delta \in \mathcal{O}_{X^{\sharp}}$ with weight $\equiv 2$ such that $\delta|_C = y_1|_C$.

Similarly, we have $\gamma_2|_C = y_2|_C$. Hence,

$$\gamma_2 = (\text{unit}) \cdot (y_2 + y_1^{m-1} \xi_2) \mod y_4.$$

Finally, (iv) follows from (iii) because $H^0(\operatorname{gr}_C^0 J) \simeq \mathbb{C}$.

- **2.10.** By Proposition 2.8 there are four cases to treat.
- **2.10.1.** Case $m \geq 7$, $\alpha(P) \neq 0$.
- **2.10.2.** Case m = 5, $\lambda_1(P) \neq 0$.
- **2.10.3.** Case m = 5, $\lambda_1(P) = 0$, $\alpha(P) \neq 0$.
- **2.10.4.** Case m = 5, $\lambda_1(P) = 0$, $\alpha(P) = 0$.

We shall show that cases 2.10.1, 2.10.2, 2.10.3 do not occur and 2.10.4 implies 1.3.1.

2.11. Proof of 1.3; cases 2.10.1 and 2.10.3. By (2.5.2) and Proposition 2.9, a general section $s \in H^0(I_C)$ satisfies

$$s \equiv (\text{unit}) \cdot (y_1^2 u + \alpha y_2 y_4^2) \mod F^3(\mathcal{O}, J)$$
 at P ,

where $\alpha(P) \neq 0$ by assumption. Let us take s_2 given in (iii) of Proposition 2.9. We claim that s_2 belongs to $H^0(\mathbb{F}^3(\mathcal{O},J))$. Indeed, it is obvious that $s \notin \mathbb{C} \cdot s_2 + \mathbb{F}^3(\mathcal{O}, J)$ near P. Hence by $H^0(I_C / \mathbb{F}^3(\mathcal{O}, J)) = \mathbb{C} \cdot s$, we have $s_2 \in H^0(\mathcal{F}^3(\mathcal{O}, J))$ as claimed. By Lemma 2.6, we see that the coefficient of $y_2y_4^2$ (resp. y_2^m) in the Taylor expansion of s_2 at P^{\sharp} is 0 (resp. non-zero) because $m \geq 7$ or $\lambda_1(P) = 0$. We now analyze the set $H = \{s = 0\}$. By Bertini's theorem, H is smooth outside of C. Since $\mathscr{O} \cdot s$ is the unique \mathscr{O} in $\operatorname{gr}_C^1 \mathscr{O} \simeq \mathscr{O} \oplus \mathscr{O}(-1)$, H is smooth on $C \setminus \{P\}$. To study (H, P), we can apply [KM92, 10.7]. Indeed, if $\lambda_1(P) = 0$, then $\mu_1(P) \neq 0$ by the construction 2.2. Thus [KM92, 10.7.1] holds by Lemma 2.6. Replacing s with a general linear combination of s and s_2 we see that [KM92, 10.7.2] is satisfied. Since $m \geq 7$ or $\lambda_1(P) = 0$, we can now apply [KM92, 10.7]. One can see that the contraction $f_H: H \to T$ must be birational in this case, which is a contradiction.

2.12. Proof of 1.3; case 2.10.2. The argument is the same as 2.11 except that we need to check the conditions of [KM92, 10.7]. Note that (2.2.2) has the form $u = \lambda_1 y_4 + \mu_1 (y_1^3 - y_2^2)$. Since $\lambda_1(P) \neq 0$, by a coordinate change we can make $\mu_1(P) \neq 0$. Let $D := \{y_1 = 0\} / \mu_m \in$ $|-2K_X|$ and let

$$\phi_D := \frac{u - \lambda_1(P)y_4}{\mathrm{d}\,y_1 \wedge \mathrm{d}\,y_2 \wedge \mathrm{d}\,y_4} = \frac{(\lambda_1 - \lambda_1(P))y_4 + \mu_1(y_1^3 - y_2^2)}{\mathrm{d}\,y_1 \wedge \mathrm{d}\,y_2 \wedge \mathrm{d}\,y_4} \in \mathscr{O}_D(-K_X).$$

Arguments in [MP09, 3.1] show that there exists a section $\phi \in$ $H^0(\mathscr{O}(-K_X))$ sent to ϕ_D modulo ω_Z . Thus the image of ϕ under the homomorphism

$$I_C \otimes \mathscr{O}_X(-K_X) \twoheadrightarrow \operatorname{gr}_C^1 \mathscr{O}_X(-K_X) = (1) \oplus (0) \twoheadrightarrow (0)$$

is non-zero because $\lambda_1(P) \neq 0$. Hence $F' = \{\phi = 0\} \in |-K_X|$ is smooth outside of P and we may choose ϕ so that F' is furthermore normal by Bertini's theorem. We have an ℓ -splitting

$$\operatorname{gr}_C^1 \mathscr{O} = (4P^{\sharp}) \, \widetilde{\oplus} \, \mathscr{O}_C(-F').$$

By the construction of F', we see that $(F', P) = \{v = 0\}/\mu_m$, where $v = y_1^3 - y_2^2 + \lambda_1' y_4$ for some $\lambda_1' \in \mathcal{O}_{C,P}$ such that $\lambda_1'(P) = 0$. As in Proposition 2.9, we see that $\mathscr{O}_{F'}(-C)$ is an ℓ -invertible $\mathscr{O}_{F'}$ -module with an ℓ -free ℓ -basis u at P and there exists an ℓ -isomorphism

$$\mathscr{O}_C \otimes \mathscr{O}_{F'}(-C) \simeq (4P^{\sharp}).$$

We similarly see

$$H^0(\mathscr{O}_{F'}(-\nu C)) \twoheadrightarrow H^0(\mathscr{O}_C \otimes \mathscr{O}_{F'}(-\nu C))$$
 for all $\nu \geq 0$.

We note that y_1^2u and y_2u^2 are bases of $\mathscr{O}_C \otimes \mathscr{O}_{F'}(-\nu C)$ at P for $\nu=1$ and 2, respectively. Thus, for arbitrary $a_1, a_2 \in \mathbb{C}$, there exist a section $s'_0 \in H^0(\mathscr{O}_{F'}(-C))$ such that

$$s_0' \equiv a_1 y_1^2 u + a_2 y_2 u^2 \mod(v, u^3).$$

Recall that the map $H^0(\mathscr{O}_X) \to H^0(\mathscr{O}_{F'})$ is surjective modulo $f^*\omega_Z$ [MP09, Proposition 2.1]. In our situation, sections of $f^*\omega_Z$ lifted to $\mathbb{C}^3_{y_1,y_2,y_4}$ are contained into $\wedge^2\Omega^1_X$. We claim

(2.12.1)
$$\bigwedge^{2} \Omega_{X}^{1} \subset (y_{1}, y_{2}, y_{4})^{3} \cdot \Omega_{X^{\sharp}}^{2} \subset (y_{1}, y_{2}, y_{4})^{4} \cdot \omega_{F^{\sharp}}.$$

on the index-one cover $F'^{\sharp} \subset X^{\sharp}$ of $F' \subset X$.

Note first that the local coordinates of X at P are

$$y_1y_2, y_1^5, y_2^5, y_1^2y_4, y_2^3y_4, y_2y_4^2$$

Since y_1y_2 is the only term of degree 2, and the rest are of degree ≥ 3 ,

we see that $\wedge^2 \Omega^1_X \subset (y_1, y_2, y_4)^3 \cdot \Omega^2_{X^{\sharp}}$, the first inclusion. Since $\phi = \beta_1(y_1^3 - y_2^2) + \beta_2 y_4$ with $\beta_1, \beta_2 \in \mathscr{O}_X$ such that $\beta_2(P) = 0$, we have $\Omega^2_{X^{\sharp}}|_{F'^{\sharp}} \subset (y_1, y_2, y_4) \cdot \omega_{F'^{\sharp}}$ because

$$\Omega := \frac{\mathrm{d} y_2 \wedge \mathrm{d} y_4}{\partial \phi / \partial y_1} \bigg|_{F'^{\sharp}} = \pm \frac{\mathrm{d} y_1 \wedge \mathrm{d} y_4}{\partial \phi / \partial y_2} \bigg|_{F'^{\sharp}} = \pm \frac{\mathrm{d} y_1 \wedge \mathrm{d} y_2}{\partial \phi / \partial y_4} \bigg|_{F'^{\sharp}} \in \omega_{F'^{\sharp}},$$

which settles the second inclusion.

From (2.12.1) and $(v, u^3) \subset (y_1^3, y_2^2, y_4^3)$ we see that there exists $s' \in$ $H^0(I_C)$ such that

$$s' \equiv a_1 y_2 y_4 + a_2 y_2 y_4^2 \mod (y_1, y_2, y_4)^4 + (y_1^3, y_2^2, y_4^3).$$

By this, we obtain non-vanishing of the coefficient of $x_2x_3^2$ in [KM92, 10.7]. Note that [KM92, 10.7.1] is satisfied because $\lambda_1(P) \neq 0$ and [KM92, 10.7.3] is satisfied because the term y_2^5 appears and $y_1^2y_2^2$ does not appear in s_2 . The rest is the same as 2.11.

- **2.12.2.** Remark. In [KM92], the explanation at the beginning of [KM92, 8.11] was not appropriate; the non-vanishing of the coefficient of $x_2x_3^2$ of [KM92, 10.7] as well as [KM92, 10.7.3] should have been verified. The last three lines of our 2.12 supplements the insufficient treatment in [KM92, 8.11].
- **2.13.** Case 2.10.4. Then m = 5 and $\lambda_1(P) = \alpha(P) = 0$. Since $\lambda_1(P) = 0$, we have $\mu_1(P) \neq 0$ because u is an ℓ -basis (see (2.2.2)). Since $\alpha(P) = 0$, we have $\alpha y_2 = \lambda_2 y_1^4$ for some $\lambda_2 \in \mathcal{O}_{C,P}$ as in Lemma 2.7. Thus a general section $s \in H^0(I_C)$ satisfies the following relation near P:

(2.13.1)
$$s \equiv (\text{unit}) \cdot y_1^2 (u + \lambda_2 y_1^2 y_4^2) \mod F^3(\mathcal{O}, J).$$

Hence s does not contain any of the terms y_1y_2 , $y_1^2y_4$, $y_2y_4^2$ and contains terms y_1^5 , $y_1^2y_2^2$. By the lemma below s contains also $y_2^3y_4$.

2.13.2. Lemma. Let τ be the weight $\tau = \frac{1}{5}(4,1,2)$ and let $(H,P) \subset \mathbb{C}^3/\mu_5(2,3,1)$ be a normal surface singularity given by $\phi(x_1,x_2,x_3) = 0$, where ϕ is a μ_5 -invariant that does not contain any terms of τ -weight < 2. Then (H,P) is not a rational singularity.

Proof. According to [Elk78] we may assume that the coefficients of ϕ are general under the assumption $\phi_{\tau=1}=0$. Consider the weighted blowup with weight τ . The exceptional divisor Υ is given in $\mathbb{P}(4,1,2)$ by the equation $\phi_{\tau=2}(x_1,x_2,x_3)=0$ or, equivalently, in $\mathbb{P}(2,1,1)$ by $\phi_{\tau=2}(x_1,x_2^{1/2},x_3)=0$. Thus, $\Upsilon\in |\mathscr{O}_{\mathbb{P}(2,1,1)}(5)|$ is a general member. By Bertini's theorem Υ is smooth and the pair $(\mathbb{P}(2,1,1),\Upsilon)$ is PLT. By the subadjunction formula

$$2p_a(\Upsilon) - 2 = (K_{\mathbb{P}(2,1,1)} + \Upsilon) \cdot \Upsilon - \frac{1}{2} = 2.$$

Hence, Υ is not rational.

2.13.3. Lemma. The equation s contains the term $y_1y_4^3$.

Proof. Since $\alpha(P) = 0$, we can write $\alpha = y_1 y_2 \beta$ for some $\beta \in \mathcal{O}_{C,P}$. The unique $\mathcal{O} \subset \operatorname{gr}_C^0 J$ is generated near P by

$$y_1^2u + (y_1y_2\beta)y_2y_4^2 = y_1^2u + y_1^4\beta y_4^2 = y_1^2(u + y_1\beta y_4^2) \in F^3(\mathcal{O}, J).$$

By Lemma 2.7 the sequence (2.5.1) splits and we have

$$\operatorname{gr}_C^0 J \simeq (4P^{\sharp}) \tilde{\oplus} \mathscr{O}_C(-2F)$$

$$(-1 + (3P^{\sharp})).$$

Let \mathscr{K} be the C-laminal ideal such that $J\supset \mathscr{K}\supset F^3(\mathscr{O}_C,J)$ and $\mathscr{K}/F^3(\mathscr{O},J)=(4P^\sharp)$. Then \mathscr{K} is locally a nested c.i. on $C\setminus\{P\}$ and (y_4,u) is a (1,3)-monomializable ℓ -basis of $I_C\supset \mathscr{K}$ at P (where u is given by (2.2.2)). We have

$$0 \to \begin{array}{cc} (-1+2P^{\sharp}) & \longrightarrow \operatorname{gr}_{C}^{0} \mathscr{K} \longrightarrow (4P^{\sharp}) \to 0 \\ & \parallel \\ \mathscr{O}_{C}(-3F) \end{array}$$

Since $H^1(\mathscr{O}_C(-3F) \otimes \omega) \neq 0$, as in the proof of Proposition 2.8 the sequence does not split. So, locally near P, the sheaf $\operatorname{gr}_C^0 \mathscr{K}$ has a section $y_1^2 u + \gamma y_1 y_4^3$ with $\gamma(P) \neq 0$.

Thus, by the two lemmas 2.13.2 and 2.13.3 above, s does not contain any of the terms y_1y_2 , $y_1^2y_4$, $y_2y_4^2$ and contains terms y_1^5 , $y_1^2y_2^2$, $y_2^3y_4$, $y_1y_4^3$. Therefore, [KM92, 10.8] can be applied to (H, P). It is easy to see that the whole configuration contracts to a curve. We get 1.3.1. This completes the proof of Theorem 1.3.

3.1. Setup. Let (X, P) be the germ of a three-dimensional terminal singularity and let $C \subset (X, C)$ be a smooth curve. Recall that the triple (X, C, P) is said to be of type (IIB) if (X, P) is a terminal singularity of type cAx/4 and there are analytic isomorphisms

$$(X,P) \simeq \{y_1^2 - y_2^3 + \alpha = 0\} / \boldsymbol{\mu}_4(3,2,1,1) \subset \mathbb{C}^4_{y_1,\dots,y_4} / \boldsymbol{\mu}_4(3,2,1,1),$$
$$C \simeq \{y_1^2 - y_2^3 = y_3 = y_4 = 0\} / \boldsymbol{\mu}_4(3,2,1,1),$$

where $\alpha = \alpha(y_1, \dots, y_4) \in (y_3, y_4)$ is a semi-invariant with wt $\alpha \equiv 2 \mod 4$ and $\alpha_2(0, 0, y_3, y_4) \neq 0$ (see [Mor88, A.3]).

- **3.1.1. Definition.** We say that (X, P) is a *simple* (resp. *double*) cAx/4-point if $rk \alpha_2(0, 0, y_3, y_4) = 2$ (resp. $rk \alpha_2(0, 0, y_3, y_4) = 1$).
- **3.1.2.** Let (X,C) be an extremal curve germ and let $f:(X,C) \to (Z,o)$ be the corresponding contraction. In this section we assume that C is irreducible and has a point P of type (IIB). According to [KM92, Theorem 4.5] the germ (X,C) is not flipping. Recall that (X,C) is locally primitive at P [Mor88, 4.2]. Moreover, P is the only singular point on [Mor88, Theorem 6.7], [MP08, Theorem 8.6, Lemma 7.1.2]. Thus the group Cl(Z,o) has no torsion. Therefore, f is either a divisorial contraction to a cDV point or a conic bundle over a smooth base.
- **3.2.** According to [KM92, Theorem 2.2] and [MP09] a general member $F \in |-K_X|$ contains C, has only Du Val singularities, and the graph $\Delta(F, C)$ has the form

where all the vertices correspond to (-2)-curves and \bullet corresponds to C. Under the identifications of 3.1, a general member $F \in |-K_X|$ near P is given by $\lambda y_3 + \mu y_4 = 0$ for some λ , $\mu \in \mathscr{O}_X$ such that $\lambda(0)$, $\mu(0)$ are general in \mathbb{C}^* [KM92, 2.11], [MP09, §4].

- **3.3.** Let H be a general member of $|\mathscr{O}_X|_C$, let T:=f(H), and let $\Gamma:=H\cap F$.
- **3.3.1.** If f is divisorial, we put $F_Z := f(F)$ and $\Gamma_Z := f(\Gamma)$. Then $F_Z \in |-K_Z|$, T is a general hyperplane section of (Z, o) and Γ_Z is a general hyperplane section of F_Z .
- **3.3.2.** If f is a \mathbb{Q} -conic bundle, we consider the Stein factorization

$$f_F: (F,C) \xrightarrow{f_1} (F_Z,o_Z) \xrightarrow{f_2} (Z,o).$$

Here we put $\Gamma_Z := f_1(\Gamma)$.

In both cases F_Z is a Du Val singularity of type E_6 by 3.2.

3.4. Lemma.

- (i) H is normal, has only rational singularities, and smooth outside of P;
- (ii) $\Gamma = C + \Gamma_1$ (as a scheme), where Γ_1 is a reduced irreducible curve;
- (iii) if f is birational, then T = f(H) is Du Val singularity of type $E_6, D_5, D_4, A_4, \ldots, A_1$ (or smooth).

Proof. Consider two cases:

3.4.1. Case: f is divisorial. Since the point (Z, o) is terminal of index 1, the germ (T, o) is a Du Val singularity. Since Γ_Z is a general hyperplane section of F_Z , we that the graph $\Delta(F, \Gamma)$ has the form

where, as usual, \diamond corresponds to the proper transform of Γ_Z and numbers attached to vertices are coefficients of corresponding exceptional curves in the pull-back of Γ_Z . By Bertini's theorem H is smooth outside of C. Since the coefficient of C equals to 1, $F \cap H = C + \Gamma$ (as a scheme), so H is smooth outside of P. In particular, H is normal. Since $f_H: H \to T$ is a birational contraction and (T, o) is a Du Val singularity, the singularities of H are rational.

- **3.4.3. Case:** f is a \mathbb{Q} -conic bundle. We may assume that, in some coordinate system, the germ (F_Z, o_Z) is given by $x^2 + y^3 + z^4 = 0$. Then by [Cat87] up to coordinate change the double cover $(F_Z, o_Z) \longrightarrow (Z, o)$ is just the projection to the (y, z)-plane. Hence we may assume that Γ_Z is given by z = 0. As in the case 3.4.1 we see that the graph $\Delta(F, \Gamma)$ has the form (3.4.2). Therefore, H is smooth outside of P. The restriction $f_H: H \to T$ is a rational curve fibration. Hence H has only rational singularities.
- (iii) follows by the fact that there is a hyperplane section F_Z of (Z, o) which is Du Val of type E_6 (see e.g. [Arn72]).

We need a more detailed description of (H, C) near P.

3.4.4. Lemma. In the notation of 3.1 the surface $H \subset X$ is locally near P given by the equation $y_3v_3 + y_4v_4 = 0$, where $v_3, v_4 \in \mathcal{O}_{P^{\sharp},X^{\sharp}}$ are semi-invariants with wt $v_i \equiv 3$ and at least one of v_3 or v_4 contains a linear term in y_1 .

Proof. Since H is normal and $\operatorname{gr}_C^1 \mathscr{O} \simeq \mathscr{O}_{\mathbb{P}^1} \oplus \mathscr{O}_{\mathbb{P}^1}(-1)$, we have $\mathscr{O}_C(-H) = \mathscr{O} \subset \operatorname{gr}_C^1 \mathscr{O}$, i.e. the local equation of H must be a generator of $\mathscr{O} \subset \operatorname{gr}_C^1 \mathscr{O}$.

3.5. Let σ be the weight $\frac{1}{4}(3,2,1,1)$. By Lemma 3.4.4 the surface germ (H,P) can be given in $\mathbb{C}^4/\mu_4(3,2,1,1)$ by two equations:

(3.5.1)
$$\begin{cases} y_1^2 - y_2^3 + \eta(y_3, y_4) + \phi(y_1, y_2, y_3, y_4) = 0, \\ y_1 l(y_3, y_4) + y_2 q(y_3, y_4) + \xi(y_3, y_4) + \psi(y_1, y_2, y_3, y_4) = 0, \end{cases}$$

where η , l, q and ξ are homogeneous polynomials of degree 2, 1, 2 and 4, respectively, $\eta \neq 0$, $l \neq 0$, ϕ , $\psi \in (y_3, y_4)$, σ - ord $\phi \geq 3/2$, σ - ord $\psi \geq 2$. Moreover, $\operatorname{rk} \eta = 2$ (resp. $\operatorname{rk} \eta = 1$) if (X, P) is a simple (resp. double) $\operatorname{cAx}/4$ -point.

3.5.2. Consider the weighted blowup

$$g: (W \supset \tilde{X} \supset \tilde{H}) \longrightarrow (\mathbb{C}^4/\mu_4(3,2,1,1) \supset X \supset H)$$

with weight σ . Let E be the g-exceptional divisor, let $\Xi := E \cap \tilde{H}$ be the exceptional divisor of $g_H := g|_{\tilde{H}}$, and let \tilde{C} be the proper transform of C. Denote

$$\Xi_0 := \{ y_3 = y_4 = 0 \} \subset E.$$

If \tilde{H} is normal, let $g_1: \hat{H} \to \tilde{H}$ be the minimal resolution. Thus, in this case, we have the following morphisms

$$h: \hat{H} \xrightarrow{g_1} \tilde{H} \xrightarrow{g_H} H \xrightarrow{f_H} T.$$

3.5.3. Lemma.

- (i) $E \simeq \mathbb{P}(3, 2, 1, 1)$ and Ξ is given in this $\mathbb{P}(3, 2, 1, 1)$ by $\eta(y_3, y_4) = y_1 l(y_3, y_4) + y_2 q(y_3, y_4) + \xi(y_3, y_4) = 0;$
- (ii) \tilde{C} of C meets E at $Q := (1:1:0:0) \in \Xi_0$;
- (iii) Ξ_0 is a component of Ξ and $(\Xi_0 \cdot \Xi)_{\tilde{H}} = -2/3$;
- (iv) If \tilde{H} is normal, then $K_{\tilde{H}} = g^* K_H \frac{3}{4} \Xi$.

Proof. Statements (i) and (ii) are obvious, (iii) follows from

$$(\Xi_0 \cdot \Xi)_{\tilde{H}} = (\Xi_0 \cdot E)_W = (\Xi_0 \cdot \mathscr{O}_E(E))_E = (\Xi_0 \cdot \mathscr{O}_E(-4))_E = -\frac{2}{3},$$

and (iv) follows from $K_W = g^* K_{\mathbb{C}^4/\mu_4} + \frac{3}{4} E$.

3.6. Case of simple cAx/4-point. After a coordinate change we may assume that $\eta = y_3y_4$. We also may assume that the term y_3 appears in $l(y_3, y_4)$ with coefficient 1, that is, $l(y_3, y_4) = y_3 + cy_4$, $c \in \mathbb{C}$. Thus the equations (3.5.1) for (H, P) have the form:

(3.6.1)
$$\begin{cases} y_1^2 - y_2^3 + y_3 y_4 + \phi = 0, \\ y_1(y_3 + c y_4) + y_2 q(y_3, y_4) + \xi(y_3, y_4) + \psi = 0. \end{cases}$$

It is easy to see that in this case \tilde{X} has only isolated (terminal) singularities. Indeed, $\tilde{X} \cap E$ is given by $y_3y_4 = 0$ in $E \simeq \mathbb{P}(3, 2, 1, 1)$. Hence, $\operatorname{Sing}(\tilde{X}) \subset \Xi_0 \cup \operatorname{Sing}(E)$. There are the following subcases.

3.6.2. Subcase: (X, P) is simple cAx/4-point and $c \neq 0$. We shall show that only the case 1.4.1 occurs. We may assume that in (3.6.1) $l(y_3,y_4)=y_3+y_4$. In this case, $\Xi=2\Xi_0+\Xi'+\Xi''$, where Ξ' and Ξ'' are given in $E \simeq \mathbb{P}(3, 2, 1, 1)$ as follows:

$$\Xi' := \{ y_3 = y_1 + y_2 q(0, y_4) / y_4 + \xi(0, y_4) / y_4 = 0 \},$$

$$\Xi'' := \{ y_4 = y_1 + y_2 q(y_3, 0) / y_3 + \xi(y_3, 0) / y_3 = 0 \}.$$

All the components of Ξ pass through (0:1:0:0) and do not meet each other elsewhere.

- **3.6.2.1.** Claim. The surface H is normal and has the following singularities (in natural weighted coordinates on $E \simeq \mathbb{P}(3,2,1,1)$):
 - $O_1 := (1:0:0:0)$ which is of type A_2 ,

 - Q := Ξ₀ ∩ C̃ = (1 : 1 : 0 : 0) which is of type A₁,
 O₂ := Ξ₀ ∩ Ξ' ∩ Ξ'' = (0 : 1 : 0 : 0) which is a log terminal point of index 2 (a cyclic quotient singularity of type $\frac{1}{4k}(1, 2k-1)$).

Pairs $(\tilde{H}, \Xi_0 + \Xi' + \tilde{C})$ and $(\tilde{H}, \Xi_0 + \Xi'' + \tilde{C})$ are log canonical (LC). Moreover, they are purely log terminal (PLT) at all points of Ξ_0 $\{O_2, Q\}$. Thus the surface H looks as follows:

Proof. Since $\Xi = H \cap E$ is reduced along Ξ' and Ξ'' , the singular locus of H is contained in $\Xi_0 = \{y_3 = y_4 = 0\}$.

Consider the chart $U_1 = \{y_1 \neq 0\} \subset W$, $U_1 \simeq \mathbb{C}^4/\mu_3(2,2,1,1)$. The equations of H have the form

$$\begin{cases} y_1 - y_1 y_2^3 + y_3 y_4 + y_1 \phi_{3/2}(1, y_2, y_3, y_4) + y_1^2(\cdots) = 0, \\ y_3 + y_4 + y_2 q(y_3, y_4) + \xi(y_3, y_4) + y_1 \psi_2(1, y_2, y_3, y_4) + y_1^2(\cdots) = 0. \end{cases}$$

and \hat{C} is cut out on \hat{H} by $y_3 = y_4 = 0$. Using the condition $y_1 = y_3 =$ $y_4 = 0$ one can obtain that the surface $\tilde{H} \cap U_1$ has on the exceptional divisor $\{y_1 = 0\}$ two singular points: $Q = \{y_1 = y_3 = y_4 = 1 - y_2^3 = 0\}$ and the origin O_1 . It is easy to see that (H, Q) is a Du Val singularity of type A_1 and (H, O_1) is a Du Val singularity of type A_2 . Since Ξ_0 and \tilde{C} are smooth curves meeting each other transversely, the pair $K_{\tilde{H}} + \Xi_0 + \tilde{C}$ is LC at Q.

Consider the chart $U_2 = \{y_2 \neq 0\} \subset W$, $U_2 \simeq \mathbb{C}^4/\mu_2(1,0,1,1)$. The equations of \tilde{H} have the form

$$\begin{cases} y_1^2 y_2 - y_2 + y_3 y_4 + y_2 \phi_{3/2}(y_1, 1, y_3, y_4) + y_2^2(\dots) = 0, \\ y_1(y_3 + y_4) + q(y_3, y_4) + \xi(y_3, y_4) + y_2 \psi_2(y_1, 1, y_3, y_4) + y_2^2(\dots) = 0. \end{cases}$$

Then we get only one new singular point: the origin O_2 where the singularity of \tilde{H} is analytically isomorphic to a singularity in $\mathbb{C}^3_{y_1,y_3,y_4}/\boldsymbol{\mu}_2(1,1,1)$ given by

$$(3.6.3) \{y_1(y_3 + y_4) + q(y_3, y_4) + (\text{terms of degree } \ge 3) = 0\}.$$

Hence, (H, O_2) is a log terminal singularity of index 2.

Therefore, for the graph $\Delta(\hat{H}, \Gamma + \hat{C})$ we have only the following two possibilities:

where the vertex marked by a_0 (resp. a', a'') corresponds to Ξ_0 (resp. Ξ' , Ξ'') and \bullet corresponds to \hat{C} .

Using Lemma 3.5.3, (iii) one can easily obtain that $a_0 = 2$. Similarly,

$$(\Xi' \cdot \Xi)_{\tilde{H}} = (\Xi'' \cdot \Xi)_{\tilde{H}} = -2.$$

This gives us a' = a'' = 3. However the second of the above configurations is not contractible. We get the case 1.4.1.

3.6.4. Corollary. $q(0, y_4) \neq 0$.

Proof. Assume that $q(0, y_4) = 0$. Take H so that, in (3.5.1), functions η , ϕ , l, q, ξ , and ψ are sufficiently general under this assumption. Let X' be a general one-parameter deformation family of H. According to [KM92, Prop. 11.4] there is a contraction $f': X' \to Z'$, so (X', C) is an extremal curve germ. Moreover, (X', C') is of type IIB. By 3.6.2 we get a contradiction (otherwise (3.6.3) is not a point of type $\frac{1}{4}(1,1)$). \square

3.6.5. Subcase: (X, P) is simple cAx/4-point and c = 0. We shall show that only the case 1.4.2 occurs. Equations (3.6.1) have the form

$$\begin{cases} y_1^2 - y_2^3 + y_3 y_4 + \phi = 0, \\ y_1 y_3 + y_2 q(y_3, y_4) + \xi(y_3, y_4) + \psi = 0. \end{cases}$$

In this case, $\Xi = 3\Xi_0 + \Xi' + \Xi''$, where Ξ' and Ξ'' are given in $E \simeq \mathbb{P}(3,2,1,1)$ as follows:

$$\Xi' = \{ y_4 = y_1 + y_2 q(y_3, 0) / y_3 + \xi(y_3, 0) / y_3 = 0 \},$$

$$\Xi'' = \{ y_3 = y_2 q(0, y_4) / y_4^2 + \xi(0, y_4) / y_4^2 = 0 \}.$$

3.6.5.1. Claim. The surface H is normal and has the following singularities (in natural weighted coordinates on $E \simeq \mathbb{P}(3,2,1,1)$):

- O₁ := Ξ₀ ∩ Ξ" = (1 : 0 : 0) which is of type A₂,
 Q := Ξ₀ ∩ Č = (1 : 1 : 0 : 0) which is of type A₂,
 O₂ := Ξ₀ ∩ Ξ' = (0 : 1 : 0 : 0) which is of type ¼(1, 1).

The pair $(\tilde{H}, \Xi_0 + \Xi' + \Xi'' + \tilde{C})$ is LC. Thus \tilde{H} looks as follows:

The proof is similar to the proof of Claim 3.6.2.1, so we omit it. By the above claim $\Delta(H, C)$ has the form

Since

$$(\Xi' \cdot \Xi)_{\tilde{H}} = -2, \quad (\Xi'' \cdot \Xi)_{\tilde{H}} = -\frac{4}{3}.$$

(cf. Lemma 3.5.3, (iii)), we have $a_0 = 2$ and a' = a'' = 3. Thus we get the case 1.4.2.

3.7. Case of double cAx/4-point. We may assume that $\eta = y_3^2$. By Corollary 3.6.4 $q(0, y_4) \neq 0$, so we also may assume that $q(0, y_4) = y_4^2$. Thus the equations (3.5.1) for (H, P) have the form:

$$\begin{cases} y_1^2 - y_2^3 + y_3^2 + \phi = 0, \\ y_1 l(y_3, y_4) + y_2 q(y_3, y_4) + \xi(y_3, y_4) + \psi = 0. \end{cases}$$

where ϕ does not contain any terms of degree ≤ 2 . This case is more complicated because X has non-isolated singularities:

3.7.1. Remark. Sing(\tilde{X}) has exactly one one-dimensional irreducible component

$$\Lambda := \{ y_3 = y_1^2 - y_2^3 + \phi_{\sigma=3/2}(y_1, y_2, 0, y_4) = 0 \} \subset E \simeq \mathbb{P}(3, 2, 1, 1).$$

There are the following subcases.

3.7.2. Subcase: (X, P) is double cAx/4-point and $l(0, y_4) \neq 0$. We shall show that only the case 1.4.3 occurs. After a coordinate change, we may assume that $l(y_3, y_4) = y_4$, so the equations (3.5.1) for

(H, P) have the form:

(3.7.3)
$$\begin{cases} y_1^2 - y_2^3 + y_3^2 + \phi = 0, \\ y_1 y_4 + y_2 q(y_3, y_4) + \xi(y_3, y_4) + \psi = 0. \end{cases}$$

In this case, $\Xi = 2\Xi_0 + 2\Xi'$, where

$$\Xi' = \{y_3 = y_1 + y_2 q(0, y_4) / y_4 + \xi(0, y_4) / y_4 = 0\} \subset E \simeq \mathbb{P}(3, 2, 1, 1).$$

- **3.7.3.1.** Claim. The surface \tilde{H} is normal and has the following singularities on Ξ_0 (in natural weighted coordinates on $E \simeq \mathbb{P}(3,2,1,1)$):
 - $O_1 := (1:0:0:0)$ which is of type A_2 ,

 - O₁ := (1:0:0:0) which is of type A₂,
 Q := Ξ₀ ∩ C̃ = (1:1:0:0) which is of type A₁,
 O₂ := Ξ₀ ∩ Ξ' = (0:1:0:0) which is a log terminal point of

The pair $(\tilde{H}, \Xi_0 + \Xi' + \tilde{C})$ is LC along Ξ_0 . Moreover, it is PLT at all points of $\Xi_0 \setminus \{O_2, Q\}$. Thus H looks as follows:

where there are more singular points sitting on $\Xi' \setminus \{O_2\}$ which must be Du Val.

3.7.3.2. Remark. For general choice of ξ and ϕ the surface H has exactly three singular points on $\Xi' \setminus \{O_2\}$ and these points are of type A_1 .

Hence the dual graph $\Delta(H,C)$ has one of the following forms:

$$\vdots \stackrel{a'}{-\circ} \stackrel{4}{-\circ} \stackrel{a_0}{-\circ} \stackrel{\circ}{-\circ} \stackrel{\circ}{-\circ}$$

b)
$$\vdots \overset{a'}{\circ} \overset{3}{\circ} \overset{-}{\circ} \overset{-}{\circ$$

where \vdots corresponds to some Du Val singularities sitting on Ξ' . Since the whole configuration is contractible to either a Du Val point or a curve, we have $a_0 = 2$ and the case b) does not occur. In the case a), contracting black vertices successively we get

$$\vdots -\!\!\!-^{a'-1} \circ$$

Hence a' = 2 or 3.

3.7.3.3. Let (S, o) be a normal surface singularity and let $\mu : \hat{S} \to S$ be its resolution. Recall that the *codiscrepancy divisor* is a unique \mathbb{Q} -divisor $\Theta = \sum \theta_i \Theta_i$ on \hat{S} with support in the exceptional locus such that $\mu^* K_S = K_{\hat{S}} + \Theta$. If μ is the minimal resolution, then Θ must be effective. The coefficient θ_i is called the *codiscrepancy* of Θ_i . We denote it by $\operatorname{cdisc}(\Theta_i)$. If (S, o) is a rational singularity, then $\theta_i = \operatorname{cdisc}(\Theta_i)$ can be found from the following system of linear equations:

$$\sum_{i} \theta_{i} \Theta_{i} \cdot \Theta_{j} = -K_{\hat{S}} \cdot \Theta_{j} = 2 + \Theta_{j}^{2}.$$

Let $a_i := -\Theta_i^2$. Then the system can be rewritten as follows:

$$a_j \theta_j = -\Theta_j^2 - 2 + \sum_{i=1}^{j} \theta_i$$

where \sum' runs through all exceptional curves Θ_i meeting Θ_j .

- **3.7.3.4.** Corollary. Let Δ be the dual graph of a resolution of a rational singularity and let Δ' be its subgraph consisting of one vertex of weight $a \geq 2$ and n-1 vertices of weight 2. Assume that the remaining part $\Delta \setminus \Delta'$ is attached to $\overset{a}{\circ}$.
 - (i) If Δ' has the form

$$\circ$$
—···— \circ — \circ

then the codiscrepancies of the corresponding to Δ' exceptional components, indexed from the left to right, are computed by $\alpha_k = k\alpha_1, k \leq n$.

(ii) If Δ' has the form

$$\circ$$
 — \circ —

then the codiscrepancies of the corresponding to Δ' exceptional components are computed by $\alpha_1 = \alpha_2 = 2\alpha_3$ and $\alpha_k = \alpha_3$ for $3 \le k \le n$.

3.7.3.5. By Lemma 3.5.3, (iv) we have $\operatorname{cdisc}(\Xi_0) = \operatorname{cdisc}(\Xi') = 3/2$. Using 3.7.3.3 we compute the codiscrepancies of exceptional divisors over \tilde{H} :

3.7.3.6. If a' = 2, then the configuration := a'-1 is contracted either to a smooth point or to a curve. Therefore we have one of the following

17

possibilities:

a1)
$$\begin{array}{c} \alpha_1 & \cdots & \alpha_n & 3/2 & 5/4 & 3/2 & 1 & 1/2 \\ \circ & \cdots & \circ & -\circ & -\circ & -\circ & -\circ & -\circ \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$

Then we get a contradiction by Corollary 3.7.3.4.

3.7.3.7. Thus, a'=3. Then f is divisorial and the configuration := -a'-1 is exactly the dual graph of the minimal resolution of (T,o) which is a Du Val graph of type E₆, D₅, D₄, A₄, A₃, A₂ or A₁. If the graph $\Delta(H,C)$ has the form a1), then, as above, $3/2 = \alpha_{n+1} = (n+1)\alpha_1$, $3 \cdot 3/2 = 1 + \alpha_n + 5/4$. This gives us $n\alpha_1 = 9/4$, $\alpha_1 = 3/2 - 9/4 < 0$, a contradiction. Similarly, in the case a2) with $n \geq 3$ we obtain $\alpha_n = 3/2$, $3 \cdot 3/2 = 1 + \alpha_n + 5/4$, a contradiction.

If there are three connected components of the exceptional divisor attached to Ξ' , then for corresponding codiscrepancies α_n , β_m , γ_l we have $3 \cdot 3/2 = 1 + \alpha_n + \beta_m + \gamma_l + 5/4$, $\alpha_n + \beta_m + \gamma_l = 9/4$. On the other hand, $2\alpha_n \geq 3/2$, $2\beta_m \geq 3/2$, $2\gamma_l \geq 3/2$. Hence the equalities $\alpha_n = \beta_m = \gamma_l = 3/4$ hold and we the get case 1.4.3.

In the remaining cases, by direct computations we obtain that the exceptional divisors have codiscrepancies whose denominators divide 4 only in cases 3.7.3.8 or 3.7.3.9 below.

3.7.3.8. (T, o) is Du Val of type D_5 and $\Delta(H, C)$ has the form

here \tilde{H} has two singular points on $\Xi' \setminus \Xi_0$ and these points are of types A_1 and A_3 .

3.7.3.9. (T, o) is Du Val of type E_6 and $\Delta(H, C)$ has the form

$$\circ - \circ - \overset{\Xi_0}{\circ} - \overset{4}{\circ} - \overset{3}{\circ} - \circ - \circ - \circ$$

$$\bullet - \circ - \circ - \circ$$

here \tilde{H} has exactly one singular points on $\Xi' \setminus \Xi_0$ and this point is of type A_5 .

3.7.4. Now we show that in cases 3.7.3.8 and 3.7.3.9 the chosen element $H \in |\mathscr{O}_X|_C$ is not general. Consider the case 3.7.3.8. Case 3.7.3.9 can

be treated similarly. Take a divisor D on \hat{H} whose coefficients are as follows:

where \square corresponds to an arbitrary smooth analytic curve \hat{G} meeting Ξ' transversely so that Supp D is a simple normal crossing divisor. It is easy to verify that D is numerically trivial, so $D = h^*G_Z$, where G_Z is a Cartier divisor on T. Since $R^1f_*\mathscr{O}_X = 0$, by the exact sequence

$$0 \longrightarrow \mathscr{O}_X \longrightarrow \mathscr{O}_X(H') \longrightarrow \mathscr{O}_H(H') \longrightarrow 0$$

we get surjectivity of the map $H^0(X, \mathscr{O}_X(H')) \to H^0(H, \mathscr{O}_H(H'))$. Thus there is a member $H' \in |\mathscr{O}_X|_C$ such that $H'|_{H} = f_H^*G_Z$.

The proper transform \tilde{H}' of H' by g satisfies $\tilde{H}'=g^*H'-E|_{\tilde{X}}$. Since $\Xi=E\cap \tilde{H}$ and $\Xi=2\Xi_0+2\Xi'$, we have $\tilde{H}'|_{\tilde{H}}=4\Xi_0+g_1(\hat{G})$. In particular, Ξ' is not a component of $\tilde{H}'|_{\tilde{H}}$. Note that $|g_1(\hat{G})|$ is a base point free linear system on \tilde{H} (because $H^1(\mathcal{O}_{\tilde{H}})=0$). Thus we can take H' so that \tilde{H}' does not pass through points in $\tilde{H}\cap\Lambda\setminus\Xi_0$. Now let H_ϵ be a general member of the pencil generated by H and H'. Note that $\Lambda\cap\Xi_0=\{Q\}$ and Λ meets \tilde{H} and \tilde{H}_ϵ transversely at Q. By Bertini's theorem the proper transform \tilde{H}_ϵ of H_ϵ on \tilde{X} meets Λ transversely also along Ξ' . Since $(\tilde{H}_\epsilon\cdot\Lambda)_{\tilde{X}}=(\mathcal{O}(4)\cdot\Lambda)_{\mathbb{P}(3,2,1,1)}=4$, the intersection $\tilde{H}_\epsilon\cap\Lambda$ consists of four distinct points. Therefore, \tilde{H}_ϵ has three Du Val points on $\tilde{H}_\epsilon\cap\Lambda\setminus\Xi_0$. This shows that for H_ϵ the situation of 1.4.3 holds, so the chosen H is not general in the case 3.7.3.8.

3.7.5. Subcase: (X, P) is double cAx/4-point and $l(0, y_4) = 0$. We shall show that only the case 1.4.4 occurs. We may assume that $l(y_3, y_4) = y_3$, so the equations (3.5.1) for (H, P) have the form:

(3.7.6)
$$\begin{cases} y_1^2 - y_2^3 + y_3^2 + \phi = 0, \\ y_1 y_3 + y_2 q(y_3, y_4) + \xi(y_3, y_4) + \psi = 0. \end{cases}$$

In this case, $\Xi = 4\Xi_0 + 2\Xi'$, where

$$\Xi' = \{y_3 = y_2 q(0, y_4) / y_4^2 + \xi(0, y_4) / y_4^2 = 0\} \subset E \simeq \mathbb{P}(3, 2, 1, 1).$$

3.7.6.1. Claim. The surface \tilde{H} is normal and has the following singularities on Ξ_0 (in natural weighted coordinates on $E \simeq \mathbb{P}(3,2,1,1)$):

- $O_1 := \Xi_0 \cap \Xi' = (1:0:0:0)$ which is of type A_2 ,
- $Q := \Xi_0 \cap \tilde{C} = (1:1:0:0)$ which is of type A_3 ,
- $O_2 := (0:1:0:0)$ which is a cyclic quotient singularity of type $\frac{1}{4}(1,1)$.

The pair $(\tilde{H}, \Xi_0 + \Xi' + \tilde{C})$ is LC along Ξ_0 . Moreover, it is PLT at all points of $\Xi_0 \setminus \{O_1, Q\}$. Thus \tilde{H} looks as follows:

Hence the dual graph $\Delta(H, C)$ has the following form:

$$\vdots - \overset{a'}{\circ} - \circ - \circ - \circ - \overset{a_0}{\circ} - \circ - \circ - \circ - \bullet$$

where \vdots corresponds to some Du Val singularities sitting on Ξ' . Since the whole configuration is contractible to either a Du Val point or a curve, we have $a_0 = 2$. Contracting black vertices successively on some step we get

$$\vdots$$
— a' -2

Recall that \vdots is not empty. Hence a' = 3 or 4. By Lemma 3.5.3, (iv) we have $\operatorname{cdisc}(\Xi_0) = 3$, $\operatorname{cdisc}(\Xi') = 3/2$. Using 3.7.3.3 we compute the codiscrepancies of exceptional divisors over \tilde{H} :

$$\vdots \quad {\overset{3/2}{\circ}} \quad {\overset{2}{\circ}} \quad {\overset{5/2}{\circ}} \quad {\overset{3}{\circ}} \quad {\overset{9/4}{\circ}} \quad {\overset{3/2}{\circ}} \quad {\overset{3/4}{\circ}} \quad \bullet$$

If a'=4, we get a contradiction as in 3.7.3.7. If a'=3, then the whole configuration contracts to a curve, i.e., f is a \mathbb{Q} -conic bundle. As in 3.7.3.6 we infer that the graph $\Delta(H,C)$ has the following form

where $n \geq 0$.

We show that n=0, that is, the case 1.4.4 holds. As in 3.7.4 take a divisor D on \hat{H} whose coefficients are as follows

Then $D=h^*o$ is a scheme fiber of $h:\hat{H}\to T$. There is a member $H'\in |\mathscr{O}_X|_C$ such that $H'|_H=g_{H*}g_{1*}D=f_H^*o$. Since $\Xi=4\Xi_0+2\Xi'$, we have $\tilde{H}'|_{\tilde{H}}=g_{1*}D-\Xi=4\Xi_0$. In particular, the curve Ξ' is not a component of $\tilde{H}'|_{\tilde{H}}$. Hence the base locus of the pencil generated by \tilde{H} and \tilde{H}' coincides with Ξ_0 . As in 3.7.4 a general member \tilde{H}_ϵ of this pencil meets the curve Λ transversely outside of Ξ_0 . Note that $\Lambda\cap\Xi_0=\{Q\}$ and the local intersection number of Λ and \tilde{H}_ϵ at Q equals to 2. By Bertini's theorem the proper transform \tilde{H}_ϵ of H_ϵ on \tilde{X} meets Λ transversely along Ξ' . Since $(\tilde{H}_\epsilon\cdot\Lambda)_{\tilde{X}}=(\mathscr{O}(4)\cdot\Lambda)_{\mathbb{P}(3,2,1,1)}=4$, the intersection $\tilde{H}_\epsilon\cap\Lambda$ consists of three distinct points. Therefore, \tilde{H}_ϵ has two Du Val points on $\tilde{H}_\epsilon\cap\Lambda\setminus\Xi_0$. This shows that for H_ϵ the situation of 1.4.4 holds, so the chosen H is not general if n>0.

3.7.6.2. Example. Let H be given by the equations

$$\begin{cases} y_1^2 - y_2^3 + y_3^2 = 0, \\ y_1 y_3 + y_2 y_4^2 + y_4^4 = 0. \end{cases}$$

Then a one-parameter deformation of H is a \mathbb{Q} -conic bundle as in 1.4.4.

Acknowledgments. The paper was written during the second author's stay at RIMS, Kyoto University in February-March 2011. The author is very grateful to the institute for the invitation, hospitality and nice working environment.

References

- [Arn72] V.I. Arnold. Normal forms for functions near degenerate critical points, the Weyl groups of A_k , D_k , E_k and lagrangian singularities. Funct. Anal. Appl., 6:254–272, 1972.
- [Cat87] F. Catanese. Automorphisms of rational double points and moduli spaces of surfaces of general type. *Compositio Math.*, 61(1):81–102, 1987.
- [Elk78] R. Elkik. Singularités rationnelles et déformations. Invent. Math., 47(2):139–147, 1978.
- [KM92] J. Kollár and S. Mori. Classification of three-dimensional flips. J. Amer. Math. Soc., 5(3):533-703, 1992.
- [Mor88] S. Mori. Flip theorem and the existence of minimal models for 3-folds. J. Amer. Math. Soc., 1(1):117–253, 1988.
- [MP08] S. Mori and Y. Prokhorov. On Q-conic bundles. Publ. Res. Inst. Math. Sci., 44(2):315–369, 2008.
- [MP09] S. Mori and Y. Prokhorov. On Q-conic bundles, III. Publ. Res. Inst. Math. Sci., 45(3):787–810, 2009.
- [MP11] S. Mori and Y. Prokhorov. Threefold extremal contractions of type IA. Kyoto J. Math., 51(2):393–438, 2011. arXiv: 1004.4188.

SHIGEFUMI MORI: RIMS, KYOTO UNIVERSITY, OIWAKE-CHO, KITASHIRAKAWA, SAKYO-KU, KYOTO 606-8502, JAPAN

 $E\text{-}mail\ address{:}\ \mathtt{mori@kurims.kyoto-u.ac.jp}$

Yuri Prokhorov: Department of Algebra, Faculty of Mathematics, Moscow State University, Moscow 117234, Russia

Laboratory of Algebraic Geometry, SU-HSE, 7 Vavilova Str., Moscow 117312, Russia

 $E\text{-}mail\ address{:}\ \texttt{prokhoro@gmail.com}$