

Simon Hirländer

Tutorial RL4AA

Direct policy search

RL as derivative free optimization:

→ $\max_{z \in \mathbb{R}^d} R(z) \Rightarrow \max_{p(z)} \mathbb{E}_p[R(z)]$

⇒ Parametrise a distribution $p(z;\theta)$ ⇒ maximise $_{p(\theta)} \mathbb{E}_{p(z;\theta)}[R(z)]$

Likelihood trick - estimate the derivative:

 $\nabla_{\theta} J(\theta) = \int R(z) \nabla_{\theta} p(z; \theta) dz = \int R(z) \frac{\nabla_{\theta} p(z; \theta)}{p(z; \theta)} p(z; \theta) dz$

 $= \int R(z) \nabla_{\theta} \log p(z; \theta) p(z|\theta) dz = \mathbb{E}_{p(z; \theta)} [R(z) \nabla_{\theta} \log p(z; \theta)]$

Unbiased gradient estimate of J, if sample efficiently from $p(z;\theta)$ and $\log p(z;\theta)$

High variance

Direct policy search

- RL as derivative free optimization:
 - → $\max_{z \in \mathbb{R}^d} R(z) \Rightarrow \max_{p(z)} \mathbb{E}_p[R(z)]$
 - ⇒ Parametrise a distribution $p(z;\theta)$ ⇒ maximise $_{p(\theta)} \mathbb{E}_{p(z;\theta)}[R(z)]$
 - Likelihood trick estimate the derivative:

$$\nabla_{\theta} J(\theta) = \int R(z) \, \nabla_{\theta} p(z;\theta) dz = \int R(z) \frac{\nabla_{\theta} p(z;\theta)}{p(z;\theta)} p(z|\theta) dz$$

•
$$= \int R(z) \nabla_{\theta} \log p(z;\theta) p(z|\theta) dz = \mathbb{E}_{p(z;\theta)} [R(z) \nabla_{\theta} \log p(z;\theta)]$$

- Unbiased gradient estimate of J, if sample efficiently from $p(z;\theta)$ and $\log p(z;\theta)$
- High variance

Simon Hirländer

Probabilistic trajectories

