Preprocessing data

SUPERVISED LEARNING WITH SCIKIT-LEARN

Andreas Müller
Core developer, scikit-learn

Dealing with categorical features

- Scikit-learn will not accept categorical features by default
- Need to encode categorical features numerically
- Convert to 'dummy variables'
 - 0: Observation was NOT that category
 - 1: Observation was that category

Dummy variables

Origin

US

Europe

Asia

Dummy variables

Origin	
US	
Europe	
Asia	

origin_Asia	origin_Europe	origin_US
0	0	1
0	1	0
1	0	0

Dummy variables

Origin	origin_Asia	origin_US
US	0	1
Europe	0	0
Asia	1	0

Dealing with categorical features in Python

- scikit-learn: OneHotEncoder()
- pandas: get_dummies()

Automobile dataset

• mpg: Target Variable

• Origin: Categorical Feature

	mpg	displ	hp	weight	accel	origin	size
0	18.0	250.0	88	3139	14.5	US	15.0
1	9.0	304.0	193	4732	18.5	US	20.0
2	36.1	91.0	60	1800	16.4	Asia	10.0
3	18.5	250.0	98	3525	19.0	US	15.0
4	34.3	97.0	78	2188	15.8	Europe	10.0

EDA w/ categorical feature

Encoding dummy variables

```
import pandas as pd

df = pd.read_csv('auto.csv')

df_origin = pd.get_dummies(df)

print(df_origin.head())
```

```
hp weight accel size origin_Asia origin_Europe \\
       displ
  18.0
       250.0
                    3139
                           14.5 15.0
       304.0 193
                    4732
                           18.5 20.0
  36.1
        91.0
                    1800
                          16.4 10.0
  18.5
       250.0
                   3525
                           19.0 15.0
4 34.3
        97.0
                    2188
                          15.8 10.0
  origin_US
          0
```


Encoding dummy variables

```
df_origin = df_origin.drop('origin_Asia', axis=1)
print(df_origin.head())
```

```
weight accel size origin_Europe origin_US
        displ
   mpq
        250.0
                     3139
  18.0
              88
                           14.5
                                15.0
       304.0
   9.0
                     4732
                           18.5
                                20.0
        91.0
  36.1
                     1800
                           16.4 10.0
                                                             0
       250.0
                           19.0 15.0
  18.5
                     3525
       97.0
                            15.8 10.0
4 34.3
               78
                     2188
                                                             0
```


Linear regression with dummy variables

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
```

```
ridge.score(X_test, y_test)
```

0.719064519022

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Handling missing data

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hugo Bowne-AndersonData Scientist, DataCamp

PIMA Indians dataset

```
df = pd.read_csv('diabetes.csv')
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
pregnancies
            768 non-null int64
glucose
       768 non-null int64
diastolic
            768 non-null int64
        768 non-null int64
triceps
insulin
        768 non-null int64
             768 non-null float64
bmi
dpf
             768 non-null float64
         768 non-null int64
age
diabetes
             768 non-null int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
None
```


PIMA Indians dataset

```
print(df.head())
```

```
pregnancies glucose diastolic triceps insulin bmi dpf age \\
0 6 148 72 35 0 33.6 0.627 50
1 1 85 66 29 0 26.6 0.351 31
2 8 183 64 0 0 23.3 0.672 32
3 1 89 66 23 94 28.1 0.167 21
4 0 137 40 35 168 43.1 2.288 33
diabetes
0 1
1 0
2 1
3 0
4 1
```


Dropping missing data

```
df.insulin.replace(0, np.nan, inplace=True)
df.triceps.replace(0, np.nan, inplace=True)
df.bmi.replace(0, np.nan, inplace=True)
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
pregnancies
              768 non-null int64
             768 non-null int64
qlucose
diastolic
              768 non-null int64
triceps
              541 non-null float64
insulin
              394 non-null float64
              757 non-null float64
bmi
              768 non-null float64
dpf
              768 non-null int64
age
              768 non-null int64
diabetes
dtypes: float64(4), int64(5)
memory usage: 54.1 KB
```


Dropping missing data

```
df = df.dropna()
df.shape
```

(393, 9)

Imputing missing data

- Making an educated guess about the missing values
- Example: Using the mean of the non-missing entries

```
from sklearn.preprocessing import Imputer
imp = Imputer(missing_values='NaN', strategy='mean', axis=6
imp.fit(X)
X = imp.transform(X)
```

Imputing within a pipeline

Imputing within a pipeline

```
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
pipeline.score(X_test, y_test)
```

0.75324675324675328

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Centering and scaling

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hugo Bowne-AndersonData Scientist, DataCamp

Why scale your data?

print(df.describe())

	fived esidify	fnoo oulfur	diovide	+++-1	oulfum dioxide	donoitu	١
	fixed acidity			totat	sulfur dioxide	•	
count	1599.000000	1599.000000			1599.000000	1599.000000	
mean	8.319637	15.874922			46.467792	0.996747	
std	1.741096	10.460157			32.895324	0.001887	
min	4.600000	1	.000000		6.000000	0.990070	
25%	7.100000	7	.000000		22.000000	0.995600	
50%	7.900000	14	.000000		38.000000	0.996750	
75%	9.200000	21	.000000		62.000000	0.997835	
max	15.900000	72	.000000		289.000000	1.003690	
	рН	sulphates	alcoh	nol	quality		
count	1599.000000	1599.000000	1599.0000	000 1	599.000000		
mean	3.311113	0.658149	10.4229	983	0.465291		
std	0.154386	0.169507	1.0656	668	0.498950		
min	2.740000	0.330000	8.4000	000	0.000000		
25%	3.210000	0.550000	9.5000	000	0.000000		
50%	3.310000	0.620000	10.2000	000	0.000000		
75%	3.400000	0.730000	11.1000	000	1.000000		
max	4.010000	2.000000	14.9000	000	1.000000		

Why scale your data?

- Many models use some form of distance to inform them
- Features on larger scales can unduly influence the model
- Example: k-NN uses distance explicitly when making predictions
- We want features to be on a similar scale
- Normalizing (or scaling and centering)

Ways to normalize your data

- Standardization: Subtract the mean and divide by variance
- All features are centered around zero and have variance one
- Can also subtract the minimum and divide by the range
- Minimum zero and maximum one
- Can also normalize so the data ranges from -1 to +1
- See scikit-learn docs for further details

Scaling in scikit-learn

(2.54662653149e-15, 1.0)

```
from sklearn.preprocessing import scale
X_{scaled} = scale(X)
np.mean(X), np.std(X)
(8.13421922452, 16.7265339794)
np.mean(X_scaled), np.std(X_scaled)
```

Scaling in a pipeline

0.956

```
knn_unscaled = KNeighborsClassifier().fit(X_train, y_train)
knn_unscaled.score(X_test, y_test)
```

0.928

CV and scaling in a pipeline

Scaling and CV in a pipeline

```
print(cv.best_params_)
{'knn__n_neighbors': 41}
print(cv.score(X_test, y_test))
0.956
print(classification_report(y_test, y_pred))
                        recall f1-score
            precision
                                         support
         0
                0.97
                        0.90
                                   0.93
                                              39
                                  0.97
                0.95
                       0.99
avg / total
                0.96
                       0.96
                                   0.96
                                          114
```


Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Final thoughts

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hugo and Andy
Data Scientists

What you've learned

- Using machine learning techniques to build predictive models
- For both regression and classification problems
- With real-world data
- Underfitting and overfitting
- Test-train split
- Cross-validation
- Grid search

What you've learned

- Regularization, lasso and ridge regression
- Data preprocessing
- For more: Check out the scikit-learn documentation

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

