FreeFem++, New Finite Elements, New Graphics, ...

F. Hecht

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris, France

with O. Pironneau, J. Morice

http://www.freefem.org

With the support of ANR (French gov.)

http://www.freefem.org/ff2a3/

mailto:hecht@ann.jussieu.fr

ANR-07-CIS7-002-01

http://www-anr-ci.cea.fr/

PLAN

- Introduction Freefem++
- 3d Finite element
- 3d intégration
- 3d plot
- Matrix
- Array operator

http://www.freefem.org/


```
Currently FreeFem++ implements the following elements in 3d:
P03d piecewise constant,
P13d continuous piecewise linear,
P23d continuous piecewise quadratic,
RT03d Raviart-Thomas piecewise constant,
Edge03d The Nedelec Edge element
P1b3d piecewise linear continuous plus bubble,
```


P0,P03d piecewise constante discontinuous finite element (2d, 3d), the degres of freedom are the barycenter element value.

$$P0_h = \left\{ v \in L^2(\Omega) \,\middle|\, \text{for all } K \in \mathcal{T}_h \text{ there is } \alpha_K \in \mathbb{R} : v_{|K} = \alpha_K \right\}$$
 (1)

The degree of freedom is the value at the barycenter

P1,P13d piecewise linear continuous finite element (2d, 3d), the degres of freedom are the vertices values.

$$P1_h = \left\{ v \in H^1(\Omega) \mid \forall K \in \mathcal{T}_h \quad v_{|K} \in P_1 \right\}$$
 (2)

The degree of freedom are the value at the vertices

P1b,P1b3d piecewise linear continuous finite element plus bubble (2d, 3d)

$$P1b_h = \left\{ v \in H^1(\Omega) \mid \forall K \in \mathcal{T}_h \quad v_{|K} \in P_1 \oplus \operatorname{Span}\{\lambda_0^K \lambda_1^K \lambda_2^K \lambda_3^K\} \right\}$$
 (3)

where λ_i^K , i=0,..,d are the d+1 barycentric coordinate functions of the element K (triangle or tetrahedron).

The degree of freedom are the value at the vertices and at the barycenter **P2,P23d** piecewise P_2 continuous finite element (2d, 3d),

$$P2_h = \left\{ v \in H^1(\Omega) \mid \forall K \in \mathcal{T}_h \quad v_{|K} \in P_2 \right\} \tag{4}$$

where P_2 is the set of polynomials of \mathbb{R}^2 of degrees ≤ 2 .

The degree of freedom are the value at the vertices and at the middle of edges

RT03d Raviart-Thomas finite element of degree 0. The 3d case :

$$RT0_{h} = \left\{ \mathbf{v} \in H(\mathsf{div}) \middle| \forall K \in \mathcal{T}_{h} \quad \mathbf{v}_{|K}(x, y, z) = \middle| \begin{array}{c} \alpha_{K}^{1} \\ \alpha_{K}^{2} \\ \alpha_{K}^{3} \end{array} + \beta_{K} \middle| \begin{array}{c} x \\ y \\ z \end{array} \right\}$$
 (5)

where by writing div $\mathbf{w} = \sum_{i=1}^{d} \partial w_i / \partial x_i$ with $\mathbf{w} = (w_i)_{i=1}^{d}$,

$$H(\operatorname{div}) = \left\{ \mathbf{w} \in L^2(\Omega)^d \middle| \operatorname{div} \mathbf{w} \in L^2(\Omega) \right\}$$

and where $\alpha_K^1, \alpha_K^2, \alpha_K^3, \beta_K$ are real numbers. The degree of freedom is the integral of the normal componante on each triangulare face, computer the by formula with the 3 points middle of edges. The sign of the normal is choose the face numbering.

Edge03d Nedelec finite element or Edge Element of degree 0.

$$N0_{h} = \left\{ \mathbf{v} \in H(\mathsf{Curl}) \middle| \forall K \in \mathcal{T}_{h} \quad \mathbf{v}_{|K}(x, y, z) = \middle| \begin{array}{c} \alpha_{K}^{1} \\ \alpha_{K}^{2} \\ \alpha_{K}^{3} \end{array} + \middle| \begin{array}{c} \beta_{K}^{1} \\ \beta_{K}^{2} \\ \beta_{K}^{3} \end{array} \times \middle| \begin{array}{c} x \\ y \\ z \end{array} \right\}$$
(6)

where by writing
$$\operatorname{curl} \mathbf{w} = \begin{vmatrix} \partial w_2/\partial x_3 - \partial w_3/\partial x_2 \\ \partial w_3/\partial x_1 - \partial w_1/\partial x_3 \\ \partial w_1/\partial x_2 - \partial w_2/\partial x_1 \end{vmatrix}$$
 with $\mathbf{w} = (w_i)_{i=1}^d$,

$$H(\operatorname{curl}) = \left\{ \mathbf{w} \in L^2(\Omega)^d \middle| \operatorname{curl} \mathbf{w} \in L^2(\Omega)^d \right\}$$

and $\alpha_K^1, \alpha_K^2, \alpha_K^3, \beta_K^1, \beta_K^2, \beta_K^3$ are real numbers.

The degree of freedom are the integral of the tangent componante on each edge, computer the by Gauus formula with the 2 points. The sign of the edge is choose the the face numbering.

Array of Mesh, Finite element

Bug in array of vectorial FE function

3d quadrature

For a three dimensional domain $\Omega_h = \sum_{k=1}^{n_t} T_k$, $\mathcal{T}_h = \{T_k\}$, we can calculate the integral over Ω_h by

$$\int_{\Omega_h} f(x,y) = \text{int3d(Th)(f)}$$

$$= \text{int3d(Th,qfV=*)(f)}$$

$$= \text{int3d(Th,qforder=*)(f)}$$

where * stands for the name of quadrature formula or the order of the Gauss formula.

Quadature formula on a tetraedron					
N	qfV=	qforder=	point in $T_k \in \mathbb{R}^3$	ω_ℓ	exct. P_k
1	qfV1	2	$\left(\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)$	$ T_k $	1
4	qfV2	3	G4(0.58,0.13,0.13)	$ T_k /4$	2
14	qf V 5	6	G4(0.72,0.092,0.092)	$0.073 T_k $	5
			G4(0.067,0.31,0.31)	$ \hspace{.06cm} 0.11\ldots T_k $	
			G6(0.45,0.045,0.45)	$ 0.042 T_k $	
4	qfV1lump		G4(1,0,0)	$ T_k /4$	1

Where G4(a,b,b) such that a+3b=1 is the set of the four point in barycentric coordinate

$$\{(a,b,b,b),(b,a,b,b),(b,b,a,b),(b,b,b,a)\}$$

and where G6(a, b, b) such that 2a + 2b = 1 is the set of the six points in barycentric coordinate

$$\{(a, a, b, b), (a, b, a, b), (a, b, b, a), (b, b, a, a), (b, a, b, a), (b, a, a, b)\}.$$

Remark, all this tetraedral quadrature formula come from http://www.cs.kuleuven.be/~nines/research/ecf/mtables.html

3d plot / via ffglut

The parameters of the plot command can be, meshes, real FE functions, array of meshes, array of FE functions, arrays of 2 real FE functions, arrays of two arrays of double, to plot respectively a mesh, a function, a vector field, or a curve defined by the two arrays of double.

The parameters are

wait= boolean expression to wait or not (by default no wait). If true we wait for a keyboard up event or mouse event, they respond to an event by the following characters

enter) wait next plot

p) previous plot (10 plots saved)

ESC) exit from ffglut

- ?) show this help window
- +) -) zoom in/out around the cursor 3/2 times


```
=) reset vue
r) refresh plot
up, down, left, right) special keys to tanslate
3) switch 3d/2d plot (in test) keys:
     z) Z) (focal zoom unzoom)
     H) h) switch increase or decrease the Z scale of the plot
mouse motion)
     - left button) rotate
     - right button) zoom (ctrl+button on mac)
     - right button +alt) tanslate (alt+ctrl+button on mac)
a) A) increase or decrease the arrow size
B) switch between show border meshes or not
```

n) N) decrease or increase the number of iso value array

i) I) update or not: the min/max bound of the functions to the window

- b) switch between black and white or color plotting
- g) switch between grey or color plotting
- f) switch between filling iso or iso line
- 1) switch between lighting or not
- v) switch between show or not the numerical value of colors
- m) switch between show or not meshes
- w) window dump in file ffglutXXXX.ppm

any other key do nothing : nothing

ps= string expression to save the plot on postscript file

coef= the vector arrow coef between arrow unit and domain unit.

fill= to fill between isovalues.

cmm= string expression to write in the graphic window

value = to plot the value of isoline and the value of vector arrow.

aspectratio= boolean to be sure that the aspect ratio of plot is preserved or not.

```
and specify a partial view where the box defined by the two corner points
   [0.1,0.2] and [0.5,0.6].
nbiso= (int) sets the number of isovalues (20 by default)
nbarrow= (int) sets the number of colors of arrow values (20 by default)
viso= sets the array value of isovalues (an array real[int] of increasing values)
varrow= sets the array value of color arrows (an array real[int])
bw= (bool) sets or not the plot in black and white color.
grey= (bool) sets or not the plot in grey color.
hsv= (array of float) to defined color of 3*n value in HSV color model declare
   with for example
      real[int] colors = [h1,s1,v1,..., hn,vn,vn];
```

bb= array of 2 array (like [[0.1,0.2],[0.5,0.6]]), to set the bounding box

boundary= (bool) to plot or not the boundary of the domain (true by default).
dim= (int) sets dim of the plot 2d or 3d (2 by default)

where hi, si, vi is the ith color to defined the color table.

ffglut tools

ffglut is new program freefem++ graphic server base on GLUT/OpenGL libary

The graphic architecture is client/server, freefem is the graphics cleint

if the freefem++ program do not containt '-' character then the graphic server is launch trough a pipe. All the graphical data are send with is pipe.

so you can save all the graphics in batch mode

FreeFem++ -fglut /tmp/ff-graphics my.edp ffglut /tmp/ff-graphics

So new FreeFem++-nw

Under Window I a had a small fflaunch.exe

Remaks on formal Array operator

I have add lot of formal operator on array or matrices of type [...].

- *,+,- product,sum, difference
- .*,./ product, division term to term
- ' transpose
- get a value element

All this operation are done at compilation time, so when you write

$$([dx(u),dy(u)]*[dx(v),dy(v)]')[0][0])$$

So this is completly equivalent to with no extra computation at exec time

$$dx(u)*dx(v)$$

Init Problem

FreeFem++ reads a user's init file named freefem++.pref to initialize global variables: verbosity, includepath, loadpath.

Remark: the variable verbosity changes the level of internal printing (0, nothing (except mistake), 1 few, 10 lots, etc. ...), the default value is 2. The include files are searched from the includepath list and the load files are searched from loadpath list.

The syntax of the file is:

```
verbosity= 5
loadpath += "/Library/FreeFem++/lib"
loadpath += "/Users/hecht/Library/FreeFem++/lib"
includepath += "/Library/FreeFem++/edp"
includepath += "/Users/hecht/Library/FreeFem++/edp"
# comment
```



```
load += "funcTemplate"
load += "myfunction"
```

The possible paths for this file are

under unix and MacOs

```
/etc/freefem++.pref
$(HOME)/.freefem++.pref
freefem++.pref
```

under windows

freefem++.pref

We can also use shell environment variable to change verbosity and the search rule before the init files.

```
export FF_VERBOSITY=50
export FF_INCLUDEPATH="dir;;dir2"
export FF_LOADPATH="dir;;dir3""
```

Remark: the separator between directories must be ";" and not ":" because ":" is used under Windows.

```
Brochet$ export FF_VERBOSITY=100; ./FreeFem++-nw
-- verbosity is set to 100
insert init-files /etc/freefem++.pref $
```

Remark, to show the list of init of freefem++, do

load facily problem, find

```
load("msh3");
try to load file msh3.so,msh3.dll ,msh3.dylib (depend of OS)
To see the initial process:
Brochet-2: hecht$ (export FF_VERBOSITY=1000;FreeFem++)
 insert init-files /etc/freefem++.pref $
 insert init-files /Applications/FreeFem++.app/Contents//etc/freefem++.pref $
 insert init-files /usr/local/lib/ff++/3.5/etc/freefem++.pref $
 insert init-files /Users/hecht/.freefem++.pref $
 insert init-files freefem++.pref $
 try initfile : /etc/freefem++.pref
error opening init file: /etc/freefem++.pref
 try initfile : /Applications/FreeFem++.app/Contents//etc/freefem++.pref
/Applications/FreeFem++.app/Contents//etc/freefem++.pref:loadpath = /usr/local/lib/ff++/3.0
 insert loadpath /usr/local/lib/ff++/3.0-4/lib/ $
/Applications/FreeFem++.app/Contents//etc/freefem++.pref:includepath = /usr/local/lib/ff++/
 insert includepath /usr/local/lib/ff++/3.0-4/edp/ $
 try initfile : /usr/local/lib/ff++/3.5/etc/freefem++.pref
/usr/local/lib/ff++/3.5/etc/freefem++.pref:loadpath = ./
 insert loadpath ./ $
```



```
/usr/local/lib/ff++/3.5/etc/freefem++.pref:loadpath = /usr/local/lib/ff++/3.5/lib
 insert loadpath /usr/local/lib/ff++/3.5/lib/ $
/usr/local/lib/ff++/3.5/etc/freefem++.pref:includepath = /usr/local/lib/ff++/3.5/edp
 insert includepath /usr/local/lib/ff++/3.5/edp/ $
 try initfile : /Users/hecht/.freefem++.pref
/Users/hecht/.freefem++.pref:loadpath = ./
 insert loadpath ./ $
/Users/hecht/.freefem++.pref:loadpath = /Users/hecht/Library/FreeFem++/lib
 insert loadpath /Users/hecht/Library/FreeFem++/lib/ $
/Users/hecht/.freefem++.pref:includepath = /Users/hecht/Library/FreeFem++/edp
 insert includepath /Users/hecht/Library/FreeFem++/edp/ $
try initfile : freefem++.pref
error opening init file: freefem++.pref
load path:
/usr/local/lib/ff++/3.0-4/lib/
/usr/local/lib/ff++/3.5/lib/
./
/Users/hecht/Library/FreeFem++/lib/
(.)
include path:
/usr/local/lib/ff++/3.0-4/edp/
/usr/local/lib/ff++/3.5/edp/
/Users/hecht/Library/FreeFem++/edp/
(.)
```

```
verbosity is set to 1000
EXEC of the plot : ffglut
Syntaxe = FreeFem++ [ -v verbosity ] [ -fglut filepath ] [ -glut command ] [ -nw] [ -f] fi
              verbosity: 0 -- 1000000 level of freefem output
       -v
      -fglut filepath : the file name of save all plots (replot with ffglut command )
      -glut command: the command name of ffglut
      -nowait
                        : nowait at the end on window
      -wait
                        : wait at the end on window
                        : no ffglut (=> no graphics windows)
      -nw
           default ffglut : ffglut
```

with