		1100	
		T	тт
		I	II
Name Vorname	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	$\begin{vmatrix} 2 \end{vmatrix}$		
	$\begin{bmatrix} 3 \end{bmatrix}$		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
	-		
Studienbegleitende Fachprüfung	7		
Mathematik für Physik 2			
(Analysis 1)	8		
Prof. Dr. S. Warzel	9		
9. Februar 2009, 9:00 – 10:30 Uhr	10		
Hörsaal: Reihe: Platz:	11		
Hinweise:			
Überprüfen Sie die Vollständigkeit der Angabe: 11 Aufgaben	$ \Sigma $		
Bearbeitungszeit: 90 min Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.	I .		
Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.	E	Erstkorrel	ktur
	JII į		
Nur von der Aufsicht auszufüllen:	Z	weitkorr	ektur
Hörsaal verlassen von bis			
Vorzeitig abgegeben um			

 $Be sondere\ Bemerkungen:$

1.	Vollständige	Induktion
----	--------------	-----------

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}$ die folgende Aussage:

$$\sum_{k=1}^{n} \frac{1}{k^2 + k} = \frac{n}{n+1}$$

2. Komplexe Zahlen

[6 Punkte]

(a) Geben Sie Real- und Imaginärteil von $(a+ib)^{-1}$ an, $a,b\in\mathbb{R}$.

[2]

$$\frac{1}{a+ib} = \boxed{ +i}$$

(b) Geben Sie $(-1+i)^6$ in Polardarstellung, $r\,e^{i\phi},\,r\in\mathbb{R}^+,\,\phi\in(-\pi,\pi],$ an.

[4]

$$r =$$

 $\phi =$

3. Konvergenz von Folgen und Reihen [7 Pu	ınkte]
(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \left(\sqrt{n^2+1}-n\right)$.	[2]
$\square = -\infty$ $\square = 0$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$ \square existient nicht	
(b) Welchen Wert besitzt die Reihe $\sum_{n=1}^{\infty} \left(-\frac{4}{3}\right)^n$?	[2]
$\square -4 \square -3 \square 0 \square \frac{3}{7} \square \frac{4}{7} \square \infty \square \text{ undefiniert}$	
(c) Wo liegt der Grenzwert der Reihe $\sum_{n=1}^{\infty} \frac{1}{(-n)^n}$?	[3]
$\square = -\infty \qquad \square \in (-\infty, 0) \qquad \square = 0 \qquad \square \in (0, \infty) \qquad \square = +\infty \qquad \square \text{ undefin}$	iert

4. Potenzreihen	[6 Punkte]
Bestimmen Sie den Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} \frac{n^3}{2^n} x^n$.	
n=0	

5. Grenzwerte von Funktionen, stetige Fortsetzbarkeit	[4 Punkte]
(a) Welchen Wert hat $\lim_{\substack{x \to 1 \\ x \neq 1}} \frac{\log x}{x^2 - 1}$?	[2]
$\square -\infty \qquad \square -1 \qquad \square -\frac{1}{2} \qquad \square 0 \qquad \square \frac{1}{2} \qquad \square 2 \qquad \square$	∞ \square existiert nicht
(b) Durch welchen Wert ist die Funktion $f:(-\frac{\pi}{2},\frac{\pi}{2})\setminus\{0\}\to\mathbb{R},\ f(x)$ fortsetzbar?	$= \frac{x}{\tan x} \text{ bei } x = 0 \text{ stetig}$ [2]
$\square -1 \square -\frac{1}{2} \square 0 \square \frac{1}{2} \square 1 \square 2 \square$	nicht stetig fortsetzbar

6. Grenzwert eines Integrals	[4 Punkte]
Sei $f: \mathbb{R} \to \mathbb{R}$ stetig. Berechnen Sie $\lim_{h\to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt$.	

7. Maximales Volumen Aus einer Kugel mit Radius R soll ein Zylinder mit maximalem Volumen geschnitten	[10 Punkte] werden.
(a) Welche Beziehung besteht zwischen der Höhe h und dem Radius r des Zylinders von Boden und Deckel des Zylinders jeweils in der Kugeloberfläche liegen?	wenn der Rand
(b) Wie groß ist das Volumen des Zylinders in Abhängigkeit von der Höhe h ?	
(c) Bestimmen Sie, mit Begründung, die Höhe des Zylinders, dessen Volumen maxi	mal ist.

8. Integration	[6 Punkte

(a) Bestimmen Sie [2]

$$\int xe^{-x^2} dx =$$

- (b) Das Integral $\int_{1}^{\infty} \frac{\cos x 1}{x^2} dx$ ist [2]
 - \square konvergent, \square absolut konvergent, \square nicht konvergent.
- (c) Das Integral $\int_{0}^{1} \frac{\sin x}{x} dx$ ist [2]
 - \square konvergent, \square absolut konvergent, \square nicht konvergent.

9. Integration Für welche Werte von $a, \mu \in \mathbb{R}$ konvergiert das Integral $\int_{0}^{\infty} e^{-\mu x-a } dx$?	[6 Punkte]
Bestimmen Sie im Konvergenzfall seinen Wert.	

11. Fo	rierreihen [8	B Punkte

Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und 2π -periodisch, mit den Fourierkoeffizienten \hat{f}_k , wobei $\hat{f}_0 = 0$. Sei F eine Stammfunktion von f. Zeigen Sie, dass für die Fourierkoeffizienten \hat{F}_k von F gilt:

$$\hat{F}_k = \frac{\hat{f}_k}{ik} \quad \text{für } k \neq 0.$$