Math 444 - Homework 4

Cameron Dart

July 1, 2017

Claim 3.5.6 There exists a non cauchy sequence that satisfies $\lim_{n\to\infty} |x_{n+1}-x_n| < 0$.

Proof. Consider the sequence x_n defined as follows,

$$x_n = \sum_{n=0}^{\infty} \frac{1}{n}$$

Clearly,

$$\lim_{n\to\infty}\frac{1}{n}\to 0 \text{ and } \lim_{n\to\infty}\frac{1}{n+1}\to 0 \text{ so } \lim_{n\to\infty}|x_{n+1}-x_n|=0$$

But x_n diverges so there must exist a non cauchy sequence that satisfies $\lim_{n\to\infty} |x_{n+1}-x_n| < 0$

Claim 3.5.7 If x_n is a cauchy sequence so that $x_n \in \mathbb{Z}$, then x_n is constant

Proof. Assume to contradiction that x_n is a non constant cauchy sequence contained in \mathbb{Z} . Since x_n is cauchy by definition for all $\epsilon > 0$ there exists $k = k(\epsilon)$ so that if $m, n \geq k$, then $|x_m - x_n| < \epsilon$. Since x_n is contained in \mathbb{Z} , $|x_m - x_n| >= 1$ for all x_m, x_n where $x_m \neq x_n$. This contradicts our previous statement that $|x_m - x_n| < \epsilon$ for all $\epsilon > 0$. Thus, it must be true that $x_m = x_n$ and x_n is constant.

Claim 3.7.3b

$$\sum_{n=0}^{\infty} = \frac{1}{(\alpha + n)(\alpha + n + 1)} = \frac{1}{\alpha} > 0, \text{ if } \alpha > 0.$$

Proof.

$$\sum_{n=0}^{\infty} = \frac{1}{(\alpha+n)(\alpha+n+1)} = \frac{1}{(\alpha+1)} - \frac{1}{(\alpha+n+1)}$$

$$= \frac{1}{\alpha} - \frac{1}{\alpha+1} + \frac{1}{\alpha+1} - \frac{1}{\alpha+2} + \dots + \frac{1}{\alpha+n} - \frac{1}{\alpha+n+1}$$

$$= \frac{1}{\alpha} - \frac{1}{\alpha+n+1}$$

$$\lim_{n \to \infty} \frac{1}{\alpha} - \frac{1}{\alpha+n+1} = \frac{1}{\alpha} \quad \forall \alpha > 0$$

Claim 3.7.8

Proof.

Claim 3.7.11 If Σa_n is convergent, then Σa_n^2 must converge.

Proof. Suppose Σa_n converges to some $L \in \mathbb{R}$. Note,

$$\sum_{n=0}^{\infty} a_n^2 \le \left(\sum_{n=0}^{\infty} a_n\right)^2 = L^2$$

Let $a'_n = \left(\sum_{n=0}^{\infty} a_n\right)^2$ and apply the ratio test to a_n and a'_n

$$\lim_{n\to\infty}\frac{a_n'}{a_n}=\frac{L^2}{L}=L$$

Thus, the ratio test says, a'_n must converge since a_n converges. Lastly, a_n^2 converges when we apply the comparison test to it with a'_n .