

KARADENİZ TEKNİK ÜNİVERSİTESİ ELEKTİRİK-ELEKTRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS İLERİ GÖRÜNTÜ İŞLEME

Ders Sorumlusu	Dr.Öğr.Üyesi Mehmet ÖZTÜRK
Öğrenci	Murat Can VARER
Öğrenci No	379438
Proje Konusu	Anisotropic Gaussian türevi ile kenar belirleme
Tarih	04.11.2019

Projenin kodları

```
Editor - /home/mcv/MATLAB/AIP/hm6/hm6.m
: hm6.m × +
      %Anisotropic Gaussian türevi ile kenar belirleme%
1
       %Homework 6
 3 -
       clear,clc% degiskenler sifirlama ve bellegi temizleme
       fileName = 'Fig0338(a)(blurry moon).tif';
       I = imread(fileName);
 5 -
       %figure,imshow(I); title('First Image');
 7 -
       if size(I,3)>1
 8 -
           I=rgb2gray(I);
 9 -
10
11 -
       im = im2double(I);
12
13 -
       smoothed = imfilter(im, ones(3)./9, 'symmetric', 'same');
14 -
        sigmax = 0.5;
15 -
       sigmay = 0.5;
16 -
        sgm = 2;
17
        [x, y] = \text{meshgrid}(-1*sgm:1:1*sgm, -1*sgm:1:1*sqm);
18 -
        [x, y] = meshgrid(-3*sigmax:0.5:3*sigmax, -3*sigmay:0.5:3*sigmay);
        % hdx = -(sqrt(2)*x.*exp(-(x.^2 + y.^2)./(2*sgm^2)))./(2*sgm^3*pi^(1/2)); % gaus türev x
        % hdy = -(sqrt(2)*y.*exp(-(x.^2 + y.^2)./(2*sgm^2)))./(2*sgm^3*pi^(1/2));
20
21
22 -
        hdx = -(x.*exp(-x.^2./(2*sigmax^2) - y.^2./(2*sigmay^2)))./(2*sigmax^3*sigmay*pi);
        hdy = -(y.*exp(-x.^2./(2*sigmax^2) - y.^2./(2*sigmay^2)))./(2*sigmax*sigmay^3*pi);
       dx = imfilter(smoothed, hdx, 'symmetric', 'same');
dy = imfilter(smoothed, hdy, 'symmetric', 'same');
24 -
25 -
       mag = sqrt(dx.^2 + dy.^2);
26 -
27 -
       ang = atan2(dy,dx);
       imshowpair(im, mag, 'montage', 'Scaling', 'none');
28 -
```

Anisotropic Gaussian nedir?

Anizotropik Gauss filtreleme yöntemi, yüksek uzaysal ve açısal doğrulukla kenar ve dairesel çıkıntı haritalarının hızlı bir şekilde hesaplanmasını sağlar. İzleme uygulamaları için, normal anizotropik evrişim şeması mühendislik çizimlerinde kesikli çizgiler tespitindeki uygulamalarla daha avantajlıdır.

$$g_{\perp}(x, y; \sigma_x, \sigma_y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)\right\}$$

Çıktılar

SigmaX = 0.25, SigmaY = 0.75 SigmaX = 0.75, SigmaY = 0.25 SigmaX = 0.5, SigmaY = 0.5

Sonuç

Bu projede Anisotropic Gaussian türevi ile kenar belirleme yöntemini kullandık. Gözlemdiğimiz sonuçlara göre, sigmaX'i büyük seçtiğimiz zamanda yataydaki kenarların daha net belirgin olduğunu, sigmaY'yi seçtiğimiz zaman dikeydeki kenarların daha net olduğunu gördük. Bunun nedeni ise türev

Anisotropic Gaussian'in X ve Y'ye türev grafiği

fonksiyonlarının şekillerinden kaynaklanmaktadır.