Towards some RandNLA Techniques for Determinant Approximation, Sparse PCA and Analysis of Krylov Subspace Methods

Eugenia-Maria Kontopoulou & Petros Drineas

Computer Science, Purdue University

LogDet Problem

Given an SPD matrix $A \in \mathbb{R}^{n \times n}$, compute (exactly or approximately) $\log \det (A)$.

Additive Error Approximation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix. For any α with $\lambda_1(\mathbf{A}) < \alpha$, define $\mathbf{B} = \mathbf{A}/\alpha$ and $\mathbf{C} = \mathbf{I}_n - B$. Then,

$$\log \det(A) = n \log(\alpha) - \sum_{k=1}^{\infty} \frac{\mathbf{Tr} \left(\log \left(\mathbf{C}^{k}\right)\right)}{k}.$$

Algorithm 1

Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon > 0$, integer m > 0.

- Compute an estimate to the largest eigenvalue of $\mathbf{A}, \lambda_1(\mathbf{A})$, using the Power Method.
- $\mathbf{C} = \mathbf{I}_n \mathbf{A}/(7\lambda_1(\mathbf{A}))$
- 3 Create $p = \lceil 20 \log(2/\delta)/\epsilon^2 \rceil$ i.i.d random Gaussian vectors, $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p$.
- Estimate $\sum_{k=1}^{\infty} \frac{\mathbf{Tr}(\log(\mathbf{C}^k))}{k}$ with a truncated Taylor Series type randomized trace estimator that computes $\sum_{k=1}^{m} \left(\frac{1}{p} \sum_{i=1}^{p} \mathbf{g}_{i}^{\top} \mathbf{C}^{k} \mathbf{g}_{i}\right)$

Let $\widehat{\log \det}(\mathbf{A})$ be the $\log \det$ approximation of the above procedure. Then, we **prove** that with probability at least $1-2\delta$,

$$|\widehat{\log \det}(\mathbf{A}) - \log \det(A)| \le 2\epsilon\Gamma$$

where $\Gamma = \sum_{i=1}^{n} \log \left(7 \cdot \frac{\lambda_1(\mathbf{A})}{\lambda_i(\mathbf{A})}\right)$ and $m \geq \lceil 7\kappa(\mathbf{A}) \log(\frac{1}{\epsilon}) \rceil$.

Relative Error Approximation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose eigenvalues lie in the interval $(\theta_1, 1)$, for some $0 < \theta_1 < 1$. Let $\mathbf{C} = \mathbf{I}_n - A$. Then,

$$\log \det(A) = -\sum_{k=1}^{\infty} \frac{\mathbf{Tr}\left(\log\left(\mathbf{C}^{k}\right)\right)}{k}.$$

Algorithm 2

Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon > 0$, integer m > 0.

- $\mathbf{C} = \mathbf{I}_n \mathbf{A}$
- Create $p = \lceil 20 \log(2/\delta)/\epsilon^2 \rceil$ i.i.d random Gaussian vectors, $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p$.
- 3 Estimate $\sum_{k=1}^{\infty} \frac{\mathbf{Tr}(\log(\mathbf{C}^k))}{k}$ with a truncated Taylor Series type randomized trace estimator that computes $\sum_{k=1}^{m} \left(\frac{1}{p} \sum_{i=1}^{p} \mathbf{g}_{i}^{\mathsf{T}} \mathbf{C}^{k} \mathbf{g}_{i}\right)$

Let $\widehat{\log \det}(\mathbf{A})$ be the $\log \det$ approximation of the above procedure on inputs \mathbf{A} and ϵ . Then, we **prove** that with probability at least $1-\delta$,

$$|\widehat{\log \det(\mathbf{A})} - \log \det(A)| \le 2\epsilon \cdot |\log \det(\mathbf{A})|.$$

Citation

C. Boutsidis, P. Drineas, P. Kambadur, E. Kontopoulou, A. Zouzias (2016), A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix, under review at Journal of Linear Algebra and its Applications.

ArXiv: https://arxiv.org/abs/1503.00374

Sparse PCA

Given a centered matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ (the mean of its columns is zero), we seek for a vector \mathbf{w}_{opt} that solves the optimization problem:

maximize
$$\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}$$
 subject to $\|\mathbf{w}\|_{0} \leq k$, $\|\mathbf{w}\|_{2} \leq 1$, $\mathbf{w} \in \mathbb{R}^{n}$.

This problem is NP-hard \rightarrow relax to a problem with convex constraints (but non-convex objective):

maximize
$$\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}$$
 subject to $\|\mathbf{w}\|_1 \leq \sqrt{k}, \ \|\mathbf{w}\|_2 \leq 1, \ \mathbf{w} \in \mathbb{R}^n$.

Algorithm

- **Phase 1:** Compute a stationary point $\tilde{\mathbf{w}}_{opt}$
- 1 Compute the gradient and make a gradient step.
- Project onto the l_1 ball with radius \sqrt{k} ($\|\mathbf{w}\|_1$).
- 3 Repeat until a threshold for the relative error is exceeded.

Phase 2: Invoke a randomized rounding strategy.

- **1** Create a Bernoulli distribution and randomly round the entries of **w**.
- 2 Repeat the experiment 10 times and keep the best sparsification.

We prove the following:

Let \mathbf{w}_{opt} be the optimal solution of the Sparse PCA problem (1) satisfying $\|\mathbf{w}_{opt}\|_2 = 1$ and $\|\mathbf{w}_{opt}\|_0 \leq k$. Let $\hat{\mathbf{w}}_{opt}$ be the vector returned when the rounding sparsification strategy is applied on the optimal solution $\tilde{\mathbf{w}}_{opt}$ of the optimization problem (1), with $s = 200k/\epsilon^2$, where $\epsilon \in (0,1]$ is an accuracy parameter. Then, $\hat{\mathbf{w}}_{opt}$ has the following properties:

- $\mathbf{1} \mathbb{E} \|\hat{\mathbf{w}}_{opt}\|_0 \leq s.$
- With probability at least 3/4,

$$\|\hat{\mathbf{w}}_{opt}\|_2 \le 1 + 0.15\epsilon.$$

 \odot With probability at least 3/4,

$$\hat{\mathbf{w}}_{opt}^{\top} \mathbf{A} \hat{\mathbf{w}}_{opt} \geq \mathbf{w}_{opt}^{\top} \mathbf{A} \mathbf{w}_{opt} - \epsilon.$$

Citation

K. Fountoulakis, A. Kundu, E. Kontopoulou, P. Drineas (2016), A Randomized Rounding Algorithm for Sparse PCA, under review at ACM Transactions on Knowledge Discovery from Data.

ArXiv: https://arxiv.org/abs/1508.03337

Experiments

Krylov Methods

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a starting guess matrix $\mathbf{X} \in \mathbb{R}^{n \times s}$, we want to use the block Krylov space $\mathcal{K}_q(\mathbf{A}\mathbf{A}^\top, \mathbf{A}\mathbf{X})$ to approximate the **left singular vector** space of \mathbf{A} .

We prove:

- Spectral & Frobenius bounds for the distance between the approximate and the actual space.
- Quality measurements of the bounds relative to the best low-rank approximation.

Theorem

Let $\phi(x)$ be a polynomial of degree 2q+1 with odd powers only, such that $\phi(\mathbf{\Sigma}_k)$ is nonsingular. If $\operatorname{rank}(\mathbf{V}_k^{\top}\mathbf{X})=k$ then

$$\|\sin \boldsymbol{\Theta}(\mathcal{K}_q, \mathbf{U}_k)\|_{2,F} \leq \|\phi(\boldsymbol{\Sigma}_{k,\perp})\|_2 \|\phi(\boldsymbol{\Sigma}_k)^{-1}\|_2 \|\mathbf{V}_{k,\perp}^\top \mathbf{X} (\mathbf{V}_k^\top \mathbf{X})^{\dagger}\|_{2,F}.$$

If, in addition, X has orthonormal or linearly independent columns, then

$$\|\mathbf{V}_{k,\perp}^{\mathsf{T}}\mathbf{X}(\mathbf{V}_{k}^{\mathsf{T}}\mathbf{X})^{\dagger}\|_{2,F} = \|\tan\mathbf{\Theta}(\mathbf{X},\mathbf{V}_{k})\|_{2,F}$$

and

$$\|\sin \boldsymbol{\Theta}(\mathcal{K}_q, \mathbf{U}_k)\|_{2,F} \le \|\phi(\boldsymbol{\Sigma}_{k,\perp})\|_2 \|\phi(\boldsymbol{\Sigma}_k)^{-1}\|_2 \|\tan \boldsymbol{\Theta}(\mathbf{X}, \mathbf{V}_k)\|_{2,F}.$$

where $\Theta(\mathcal{K}_q, \mathbf{U}_k) \in \mathbb{R}^{k \times k}$ is the diagonal matrix of principal angles between \mathcal{K}_q and range(\mathbf{U}_k).

Theorem

Let $\phi(x)$ be a polynomial of degree 2q+1 with odd powers only, such that $\phi(\mathbf{\Sigma}_k)$ is nonsingular and $\phi(\sigma_i) \geq \sigma_i$, for $1 \leq i \leq k$. If $\operatorname{rank}(\mathbf{V}_k^{\top}\mathbf{X}) = k$ then for $1 \leq i \leq k$,

$$||A - \hat{\mathbf{U}}_i \hat{\mathbf{U}}_i^{\top} A||_F \leq ||\mathbf{A} - \mathbf{A}_i||_F + \Delta$$
$$||A - \hat{\mathbf{U}}_i \hat{\mathbf{U}}_i^{\top} A||_2 \leq ||\mathbf{A} - \mathbf{A}_i||_2 + \Delta$$
$$\sigma_i - \Delta \leq ||\hat{u}_i^{\top} A||_2 \leq \sigma_i.$$

If, in addition, **X** has orthonormal columns, then:

$$\Delta = \|\phi(\mathbf{\Sigma}_{k,\perp})\|_2 \|\tan \mathbf{\Theta}(\mathbf{X}, \mathbf{V}_k)\|_F$$

Citation

I. Ipsen, P. Drineas, E. Kontopoulou, M. Magdon-Ismail (2016), Structural Convergence Results for Low-Rank Approximations from Block Krylov Spaces, submitted to SIAM Journal on Matrix Analysis and Applications.

LogDet Experiments

name	n	nnz	area of origin	
thermal2	1228045	8580313	Thermal	
ecology2	999999	4995991	2D/3D	
ldoor	952203	42493817	Structural	
thermomech_TC	102158	711558	Thermal	
boneS01	127224	5516602	Model reduction	

$\operatorname{logdet}\left(\mathbf{A}\right)$			time (sec)		
exact	approx		exact	approx	m
	mean	std	Схаст	mean	
1.3869e6	1.3928e6	964.79	31.28	31.24	149
3.3943e6	3.403e6	1212.8	18.5	10.47	125
1.4429e7	1.4445e7	1683.5	117.91	17.60	33
-546787	-546829.4	553.12	57.84	2.58	77
1.1093e6	1.106e6	247.14	130.4	8.48	125