

Introdução

Com a crescente demanda por conectividade e a expansão do uso de dispositivos móveis e IoT, o desenvolvimento de sistemas de comunicação sem fio robustos e eficientes tornou-se essencial. No entanto, o planejamento e a implementação de redes sem fio eficazes nem sempre acompanharam a rápida evolução tecnológica. O surgimento de plataformas como o ESP32 e Arduino, capazes de operar com diferentes tecnologias como Wi-Fi e Bluetooth, destaca a necessidade de uma análise comparativa detalhada dessas tecnologias sob diversas condições de uso.

Na prática, a transferência de arquivos em ambientes sem fio pode ser desafiadora, enfrentando problemas de latência, taxa de erro e limitações de alcance, especialmente em ambientes urbanos densos onde o espectro de RF é frequentemente saturado. Neste contexto, nosso software é desenvolvido com o objetivo de maximizar a eficiência das transferências de arquivos através de diferentes tecnologias sem fio, permitindo uma avaliação precisa da viabilidade técnica e prática de cada uma delas em variadas condições ambientais.

Objetivos

1 Desenvolvimento de um sistema de avaliação

Criar uma aplicação integrada utilizando ESP32 para Wi-Fi e Bluetooth, que permita o envio e recebimento de arquivos de diversos formatos e tamanhos sob diferentes condições de teste.

2 Análise comparativa das tecnologias

Comparar as taxas de transferência, a latência e as taxas de erro das diferentes tecnologias em diversos ambientes, para determinar qual tecnologia é mais adequada para aplicativos específicos baseados em eficiência e confiabilidade.

Bluetooth

Prazo Estimado

O prazo estimado para o desenvolvimento completo e a finalização deste protótipo é de 10 (dez) semanas. Esse período inclui planejamento, desenvolvimento, testes intensivos e análise dos resultados.

Cronograma:

- 1. Fase de Planejamento e Design: 2 semanas.
- 2. Desenvolvimento de Software e Testes Iniciais: 5 semanas.
- 3. Testes Intensivos e Coleta de Dados: 1 semana.
- 4. **Análise dos Resultados e Preparação do Relatório Final:** 2 semanas.

Benefícios Esperados

1)—— Melhoria na Eficiência de Transmissão de Dados

A implementação deste protótipo espera identificar as soluções mais eficazes, reduzindo a latência e as taxas de erro em transferências de arquivos.

2 — Adaptação às Diferentes Condições Ambientais

O desenvolvimento de sistemas mais resilientes e adaptáveis, capazes de operar eficientemente em ambientes urbanos densos e outras condições desafiadoras, é um dos benefícios esperados.

3 — Contribuição para o Avanço da IoT

A melhoria da confiabilidade das redes sem fio contribuirá para o crescimento e a eficácia da Internet das Coisas, apoiando o desenvolvimento de novas aplicações e serviços em um ambiente urbano cada vez mais digitalizado e conectado.

Premissas

Compatibilidade de Tecnologias

O sistema será capaz de operar com Wi-Fi e Bluetooth utilizando plataformas como ESP32.

Dispositivos de Teste

Todos os dispositivos utilizados para testar a transferência de arquivos deverão ter capacidades de comunicação compatíveis com as tecnologias testadas.

Presença de Especialistas

Durante os testes, técnicos especializados estarão disponíveis para resolver qualquer problema técnico que possa surgir.

Condições Ambientais Controladas

Os testes serão realizados em uma variedade de ambientes para garantir resultados consistentes e confiáveis.

Capacitação Técnica

Os usuários envolvidos nos testes deverão ter conhecimento técnico suficiente para operar os sistemas e analisar os resultados.

Restrições

Infraestrutura de Hardware

Serão necessários dispositivos específicos como ESP32, além de computadores para coleta e análise de dados.

Orçamento do Projeto

Vamos utilizar os módulos de ESP32 disponíveis no laboratório, eliminando a necessidade de aquisição adicional de componentes de hardware e software.

Proteção de Dados

Todos os dados
coletados durante os
testes devem ser
acessíveis apenas aos
gestores do projeto e
protegidos conforme
as normas de
privacidade e
segurança de dados.

Limitações Técnicas

Devido à natureza
experimental do
projeto, algumas
tecnologias de
comunicação podem
não alcançar a
eficiência máxima
esperada
inicialmente.

Escopo

O projeto focará no desenvolvimento de um sistema de avaliação para testar a performance das tecnologias Wi-Fi e Bluetooth usando dispositivos ESP32. A análise será baseada em códigos de teste executados na Arduino IDE, sem interfaces de usuário complexas além das necessárias para configurar e executar os testes.

A configuração dos dispositivos envolverá o uso de dois ESP32 para cada tecnologia (Wi-Fi e Bluetooth), sendo um atuando como cliente (remetente) e outro como servidor (receptor). Cada ESP32 deverá estar conectado a uma fonte de alimentação estável e utilizar o SPIFFS (SPI Flash File System) para armazenar os arquivos a serem enviados.

Cenários de Teste

Distância

Configure os dispositivos ESP32 a diferentes distâncias (por exemplo, 1m, 5m, 10m) para testar a influência da distância na performance.

Obstáculos

Realize testes em linha de visão direta e com obstáculos (paredes, móveis) para simular diferentes condições ambientais.

Ambiente Urbano e Rural

Realize testes em áreas com alta densidade de dispositivos (urbano) e áreas com menor interferência de sinal (rural).

Tipos e Tamanhos de Arquivos

Pequeno

Médio

Grande

- Texto: 10KB, 500 KB, 5MB (ex: .pdf, .docx)
- Imagem: 100 KB, 1MB, 10MB (ex: .jpg, .png)
- Áudio: 250KB, 2MB, 10MB (ex: .mp3, .wav)
- Vídeo: 5MB, 20MB (ex: .mp4, .avi)

Procedimento de Envio de Arquivos

1

Preparação dos Dispositivos

Primeiro, carregue o código no ESP32 cliente e servidor. Em seguida, certifique-se de que ambos os dispositivos estão configurados corretamente para a rede Wi-Fi ou conexão Bluetooth.

2

Inicialização

Inicie o servidor ESP32 e, em seguida, conecte o cliente ESP32 ao servidor.

3

Envio de Arquivos

No cliente, selecione o arquivo a ser enviado (pequeno, médio ou grande) e inicie o envio. No servidor, receba o arquivo e salve no SPIFFS.

4

Coleta de Dados

Registre o tempo de início e término da transferência para calcular a latência e a taxa de transferência. Compare checksums ou hashes dos arquivos enviados e recebidos para calcular a taxa de erro.

5

Repetição do Teste

Repita o processo para diferentes tamanhos de arquivos e diferentes distâncias. Realize múltiplos testes para garantir consistência e confiabilidade dos dados.

6

Análise dos Resultados

Compile os dados de todas as transferências, analise as métricas (taxa de transferência, latência, taxa de erro, consumo de energia, estabilidade da conexão) e compare os resultados entre Wi-Fi e Bluetooth.

Estrutura do Código

Código do Cliente

O código do cliente, ou remetente, é responsável por iniciar a conexão com o servidor e enviar os arquivos armazenados no sistema de arquivos SPIFFS do ESP32. Ele estabelece a conexão (via Wi-Fi ou Bluetooth), lê o arquivo a ser enviado e o transmite ao servidor, enquanto mede o tempo total de transferência.

Código do Servidor

O código do servidor, ou receptor, aguarda conexões de clientes e recebe os arquivos enviados. Ele se conecta à rede (Wi-Fi ou Bluetooth), escuta por dados de entrada e grava os dados recebidos no SPIFFS, registrando o tempo total de recepção. O servidor assegura que os dados sejam armazenados corretamente para análise posterior.

Todos os códigos estão disponíveis no repositório GitHub https://github.com/VCapis/esp32_wifi_bt.git.

Encerramento

(1) Conclusão do Projeto

O projeto será encerrado quando todos os requisitos forem atingidos e a entrega efetuada, bem como a validação do projeto por parte do cliente. Todos os objetivos específicos devem ser cumpridos, incluindo o desenvolvimento do sistema de avaliação, a realização dos testes de transferência de arquivos via Wi-Fi e Bluetooth, e a análise comparativa das tecnologias.

Validação Final

A validação final incluirá a verificação dos dados coletados e a confirmação de que os resultados atendem às expectativas delineadas no início do projeto. Também envolverá a entrega de toda a documentação necessária, incluindo os relatórios de análise e os códigos desenvolvidos.