

Verkabelter Multiplizierer

Labor Digital Design

Inhalt

1 Ziel	1
2 Multiplizierer für natürliche Zahlen	2
2.1 Algorithmus	2
2.2 Analyse	
2.3 Schaltung	
2.4 Erstellung	
3 Multiplizierer für Arithmetische Zahlen	
3.1 Algorithmus	
3.2 Analyse	4
3.3 Erstellung	
4 Analyse	5

1 | Ziel

In diesem Labor wird der Entwurf von iterativen arithmetischen Schaltungen anhand von kombinatorischen Logikgattern geübt. Das Labor zeigt die Realisierungstechnik von Multiplizierern für natürliche wie auch für ganze Zahlen.

2 | Multiplizierer für natürliche Zahlen

2.1 Algorithmus

Abbildung 1 stellt den Algorithmus zur Multiplikation von 2 Zahlen von je 4 Ziffern dar. Das Produkt ist gegeben durch die Summe von Teilprodukten. Die Teilprodukte werden erstellt durch die Multiplikation von einer der Zahlen durch eine Ziffer der anderen Zahl.

				a_3	a_2	a_1	a_0
				\times b ₃	b_2	b_1	b_0
				b _{0*} a ₃	b ₀ *a ₂	b ₀ *a ₁	b ₀ *a ₀
			b_1*a_3	b_1*a_2	$b_{1}*a_{1}$	b_1*a_0	
		b_2*a_3	b_2*a_2	b_2*a_1	b_2*a_0		
	b_3*a_3	$b_{3}*a_{2}$	b _{3*} a ₁	b_3*a_0			
p ₇	p_6	p_5	p ₄	p_3	p_2	p_1	p_0
Abbildung 1: Multiplikationsalgorithmus							

2.2 Analyse

Für die Multiplikation von 2 mit 4 Bits codierten natürlichen Zahlen (unsigned), bestimmen Sie den Binärwert des grösstmöglichen Resultates. Schliessen Sie daraus die Anzahl benötigter Bits für das Produkt von 2 natürlichen Zahlen, welche mit n_1 , respektiv mit n_2 Bits codiert sind.

2.3 Schaltung

Abbildung 2 zeigt die Schaltung eines Multiplizierers, welcher nach dem oben angegebenen Algorithmus arbeitet.

Abbildung 2: Architektur des Multiplizierers

2.4 Erstellung

Mit Hilfe von INV, UND, ODER und XOR Gattern, ergänzen Sie das hierarchische Schema des Multiplizierers der Abbildung 2 und überprüfen Sie seine Funktionalität.

3 | Multiplizierer für Arithmetische Zahlen

3.1 Algorithmus

Abbildung 3 stellt den Algorithmus von Baugh-Wooley zur Multiplikation von zwei im Zweier-Komplement codierten arithmetischen Zahlen (signed) mit derselben Anzahl an Bits dar.

				\mathbf{a}_3	a_2	a_1	a_0
				\times b ₃	b_2	b_1	b_0
			1	b _{0*} a ₃	b ₀ *a ₂	b _{0*} a ₁	b ₀ *a ₀
			b _{1*} a ₃	b_1*a_2	$b_{1}*a_{1}$	b_1*a_0	
		b_2*a_3	b_2*a_2	b_2*a_1	b_2*a_0		
1	b _{3*} a ₃	b _{3*} a ₂	b _{3*} a ₁	b _{3*} a ₀			
p ₇	p_6	p_5	p_4	p ₃	p_2	p_1	p_0

Abbildung 3: Multiplikationsalgorithmus für Zahlen im Zweier-Komplement

3.2 Analyse

Für die Multiplikation von 2 mit 4 Bits codierten ganzen Zahlen, bestimmen Sie den minimalen und den maximalen Wert des Resultates. Schliessen Sie daraus die Anzahl benötigter Bits für das Produkt von 2 natürlichen Zahlen, welche mit n_1 , respektiv mit n_2 Bits codiert sind.

3.3 Erstellung

Ergänzen Sie das hierarchische Schema des Multiplizierers der Abbildung 2 mit Hilfe von kombinatorischen Logikgattern und überprüfen Sie seine Funktionalität.

4 | Analyse

Unter der Annahme, dass alle Logikgatter dieselbe Verzögerung von 1 ns vorweisen, bestimmen Sie die maximale Berechnungsverzögerung der erstellten Operatoren.

Schlagen Sie eine andere Struktur vor, um die Geschwindigkeit dieser Operatoren zu vergrössern.