Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Wektory związane z krzywa

# Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba<sup>1</sup>

2013

<sup>&</sup>lt;sup>1</sup>Uniwersytet im. Adama Mickiewicza, kalmar@amu.edu.pl 📳 👢 🕫 🚓

# Wykład 2

Wektory związane z krzywą

#### Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Wektory związane z krzywą

Wektor Styczny i normani,

Wektor binormalny

Irojnog Freneta

# Wektory związane z krzywą

Wektor styczny i normalny Wektor binormalny Trójnóg Freneta

#### Elementarna Geometria Różniczkowa

#### Opracowanie: Marek Kaluba

### Wektory związane z krzywą

Wektor binormalny

Irojnog Freneta

### Definicja

Niech  $\alpha$ :  $(a, b) \to \mathbb{R}^3$  będzie regularną krzywą gładką. Definiujemy **jednostkowy wektor styczny** do krzywej  $\alpha$  w punkcie t jako

$$T_{\alpha}(t) = T(t) \stackrel{\text{def.}}{=} \frac{\alpha'(t)}{\|\alpha'(t)\|}.$$



#### Flementarna Geometria Różniczkowa

#### Opracowanie: Marek Kaluba

Wektor styczny i normalny

### Zadanie

Niech v(t) i w(t) będą dowolnymi wektorami w  $\mathbb{R}^3$ , zależnymi od zmiennej t. Sprawdzić, że zachodzi **wzór Leibniza** na różniczkowanie iloczynu skalarnego:

$$\langle v(t), w(t) \rangle' = \langle v(t)', w(t) \rangle + \langle v(t), w(t)' \rangle.$$

### Lemat

Niech  $\alpha(t)$  będzie unormowaną krzywą regularną. Wówczas dla każdego t zachodzi

$$\langle T(t), T'(t) \rangle = 0.$$

### Dowód:

Zauważmy, że T(t) jest funkcją gładką. Mamy

$$1 = ||T(t)|| = \langle T(t), T(t) \rangle,$$

a więc korzystając powyższego wzoru na różniczkowanie iloczynu skalarnego otrzymujemy:

$$0 = ||T(t)||' = \langle T'(t), T(t) \rangle + \langle T(t), T'(t) \rangle = 2\langle T(t), T'(t) \rangle.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywą

Wektor styczny i normalny

Wektor binormalny

Irojnog Freneta



#### Lemat

Niech  $\alpha(t)$  będzie unormowaną krzywą regularną. Wówczas dla każdego t zachodzi

$$\langle T(t), T'(t) \rangle = 0.$$

### Dowód:

Zauważmy, że T(t) jest funkcją gładką. Mamy

$$1 = ||T(t)|| = \langle T(t), T(t) \rangle,$$

$$0 = ||T(t)||' = \langle T'(t), T(t) \rangle + \langle T(t), T'(t) \rangle = 2\langle T(t), T'(t) \rangle.$$

Marek Kaluba

#### Lemat

Niech  $\alpha(t)$  będzie unormowaną krzywą regularną. Wówczas dla każdego t zachodzi

$$\langle T(t), T'(t) \rangle = 0.$$

### Dowód:

Zauważmy, że T(t) jest funkcją gładką. Mamy

$$1 = ||T(t)|| = \langle T(t), T(t) \rangle,$$

a więc korzystając powyższego wzoru na różniczkowanie iloczynu skalarnego otrzymujemy:

$$0 = ||T(t)||' = \langle T'(t), T(t) \rangle + \langle T(t), T'(t) \rangle = 2\langle T(t), T'(t) \rangle.$$

#### Lemat

Niech  $\alpha(t)$  będzie unormowaną krzywą regularną. Wówczas dla każdego t zachodzi

$$\langle T(t), T'(t) \rangle = 0.$$

### Dowód:

Zauważmy, że T(t) jest funkcją gładką. Mamy

$$1 = ||T(t)|| = \langle T(t), T(t) \rangle,$$

a więc korzystając powyższego wzoru na różniczkowanie iloczynu skalarnego otrzymujemy:

$$0 = ||T(t)||' = \langle T'(t), T(t) \rangle + \langle T(t), T'(t) \rangle = 2\langle T(t), T'(t) \rangle.$$

### Definicja

Załóżmy, że  $\alpha$ :  $(a, b) \to \mathbb{R}^3$  jest krzywą regularną. Dla każdego  $t \in (a, b)$  dla którego  $\|T'(t)\| \neq 0$  definiujemy **jednostkowy wektor normalny** jako

$$N(t) \stackrel{\text{def.}}{=} \frac{T'(t)}{\|T'(t)\|}.$$

Jeśli T(t) oraz N(t) są dobrze określone (tj.  $T'(t) \neq 0$ ), płaszczyznę rozpiętą przez te dwa wektory nazywamy płaszczyzną ściśle styczną.

Płaszczyzna ściśle styczna jest w pewnym sensie płaszczyzną najlepiej przybliżającą naszą krzywą, tak jak prosta styczna jest prostą która najlepiej przybliża krzywą α.

## Definicja

Załóżmy, że  $\alpha$ : $(a,b) \to \mathbb{R}^3$  jest krzywą regularną. Dla każdego  $t \in (a,b)$  dla którego  $\|T'(t)\| \neq 0$  definiujemy jednostkowy wektor normalny jako

$$N(t) \stackrel{\text{def.}}{=} \frac{T'(t)}{\|T'(t)\|}.$$

Jeśli T(t) oraz N(t) są dobrze określone (tj.  $T'(t) \neq 0$ ), płaszczyznę rozpiętą przez te dwa wektory nazywamy **płaszczyzną ściśle styczną**.

Płaszczyzna ściśle styczna jest w pewnym sensie płaszczyzną najlepiej przybliżającą naszą krzywą, tak jak prosta styczna jest prosta która najlepiej przybliża krzywą α.

Załóżmy, że  $\alpha$ :  $(a, b) \to \mathbb{R}^3$  jest krzywą regularną. Dla każdego  $t \in (a, b)$  dla którego  $||T'(t)|| \neq 0$  definiujemy jednostkowy wektor normalny jako

$$N(t) \stackrel{\text{def.}}{=} \frac{T'(t)}{\|T'(t)\|}.$$

Jeśli T(t) oraz N(t) są dobrze określone (tj.  $T'(t) \neq 0$ ), płaszczyzne rozpiętą przez te dwa wektory nazywamy płaszczyzną ściśle styczną.

Płaszczyzna ściśle styczna jest w pewnym sensie płaszczyzna najlepiej przybliżającą naszą krzywą, tak jak prosta styczna jest prostą która najlepiej przybliża krzywą α.

### Lemat

Niech  $\alpha$ :  $(a, b) \to \mathbb{R}^3$  będzie krzywą regularną. Następujące warunki sa równoważne dla każdego  $t \in (a, b)$ :

### Lemat

Niech  $\alpha$ : $(a,b) \to \mathbb{R}^3$  będzie krzywą regularną. Następujące warunki są równoważne dla każdego  $t \in (a,b)$ :

- 1.  $||T'(t)|| \neq 0$ ,
- 2. wektory  $\alpha'(t)$  oraz  $\alpha''(t)$  są liniowo niezależne,
- 3. lpha'(t) imeslpha''(t)
  eq 0, gdzieimes oznacza iloczyn wektorowy

Niech  $\alpha$ :  $(a, b) \to \mathbb{R}^3$  będzie krzywą regularną. Następujące warunki sa równoważne dla każdego  $t \in (a, b)$ :

- 1.  $||T'(t)|| \neq 0$ ,
- 2. wektory  $\alpha'(t)$  oraz  $\alpha''(t)$  są liniowo niezależne,

### Lemat

Niech  $\alpha$ :  $(a, b) \to \mathbb{R}^3$  będzie krzywą regularną. Następujące warunki sa równoważne dla każdego  $t \in (a, b)$ :

- 1.  $||T'(t)|| \neq 0$ ,
- 2. wektory  $\alpha'(t)$  oraz  $\alpha''(t)$  są liniowo niezależne,
- 3.  $\alpha'(t) \times \alpha''(t) \neq 0$ , gdzie × oznacza iloczyn wektorowy.

- ► Implikacje (2 ⇔ 3) wynikają z definicji i własności iloczynu wektorowego.
- Implikacja  $(1 \Rightarrow 2)$ . Załóżmy, że istnieje  $t_0$  dla którego wektory  $\alpha'(t_0)$  i  $\alpha''(t_0)$  są liniowo zależne, tj.  $\alpha''(t_0) = k\alpha'(t_0)$  dla pewnego  $k \in \mathbb{R}$ . Pokażemy (bezpośrednim rachunkiem), że wówczas  $T(t_0)$  jest wektorem zerowym. Oznaczmy  $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$  i zauważmy, że  $v = \sqrt{(\alpha'_1)^2 + (\alpha'_2)^2 + (\alpha'_3)^2}$ , więc
  - $v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}$

- ► Implikacje (2 ⇔ 3) wynikają z definicji i własności iloczynu wektorowego.
- Implikacja  $(1 \Rightarrow 2)$ . Załóżmy, że istnieje  $t_0$  dla którego wektory  $\alpha'(t_0)$  i  $\alpha''(t_0)$  są liniowo zależne, tj.  $\alpha''(t_0) = k\alpha'(t_0)$  dla pewnego  $k \in \mathbb{R}$ . Pokażemy (bezpośrednim rachunkiem), że wówczas  $T(t_0)$  jest wektorem zerowym. Oznaczmy  $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$  i zauważmy, że  $v = \sqrt{(\alpha'_1)^2 + (\alpha'_2)^2 + (\alpha'_3)^2}$ , więc

$$v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}$$

- ► Implikacje (2 ⇔ 3) wynikają z definicji i własności iloczynu wektorowego.
- Implikacja  $(1 \Rightarrow 2)$ . Załóżmy, że istnieje  $t_0$  dla którego wektory  $\alpha'(t_0)$  i  $\alpha''(t_0)$  są liniowo zależne, tj.  $\alpha''(t_0) = k\alpha'(t_0)$  dla pewnego  $k \in \mathbb{R}$ . Pokażemy (bezpośrednim rachunkiem), że wówczas  $T(t_0)$  jest wektorem zerowym. Oznaczmy  $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$  i zauważmy, że  $v = \sqrt{(\alpha'_1)^2 + (\alpha'_2)^2 + (\alpha'_3)^2}$ , więc
  - $v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}$

- ► Implikacje (2 ⇔ 3) wynikają z definicji i własności iloczynu wektorowego.
- ▶ Implikacja (1  $\Rightarrow$  2). Załóżmy, że istnieje  $t_0$  dla którego wektory  $\alpha'(t_0)$  i  $\alpha''(t_0)$  są liniowo zależne, tj.  $\alpha''(t_0) = k\alpha'(t_0)$  dla pewnego  $k \in \mathbb{R}$ . Pokażemy (bezpośrednim rachunkiem), że wówczas  $T(t_0)$  jest wektorem zerowym. Oznaczmy  $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$  i

$$v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}$$

- ► Implikacje (2 ⇔ 3) wynikają z definicji i własności iloczynu wektorowego.
- Implikacja  $(1\Rightarrow 2)$ . Załóżmy, że istnieje  $t_0$  dla którego wektory  $\alpha'(t_0)$  i  $\alpha''(t_0)$  są liniowo zależne, tj.  $\alpha''(t_0) = k\alpha'(t_0)$  dla pewnego  $k \in \mathbb{R}$ . Pokażemy (bezpośrednim rachunkiem), że wówczas  $T(t_0)$  jest wektorem zerowym. Oznaczmy  $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$  i zauważmy, że  $v = \sqrt{(\alpha'_1)^2 + (\alpha'_2)^2 + (\alpha'_3)^2}$ , więc
  - $v' = \frac{2(\alpha_1'\alpha_1'' + \alpha_2'\alpha_2'' + \alpha_3'\alpha_3'')}{2\sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}} = \frac{\langle \alpha', \alpha'' \rangle}{v}$

- ► Implikacje (2 ⇔ 3) wynikają z definicji i własności iloczynu wektorowego.
- ▶ Implikacja (1  $\Rightarrow$  2). Załóżmy, że istnieje  $t_0$  dla którego wektory  $\alpha'(t_0)$  i  $\alpha''(t_0)$  są liniowo zależne, tj.  $\alpha''(t_0) = k\alpha'(t_0)$  dla pewnego  $k \in \mathbb{R}$ . Pokażemy (bezpośrednim rachunkiem), że wówczas  $T(t_0)$  jest wektorem zerowym. Oznaczmy  $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$  i zauważmy, że  $v = \sqrt{(\alpha_1')^2 + (\alpha_2')^2 + (\alpha_3')^2}$ , więc

$$v^{\,\prime} = \frac{2(\alpha_1^{\prime}\alpha_1^{\prime\prime} + \alpha_2^{\prime}\alpha_2^{\prime\prime} + \alpha_3^{\prime}\alpha_3^{\prime\prime})}{2\sqrt{(\alpha_1^{\prime})^2 + (\alpha_2^{\prime})^2 + (\alpha_3^{\prime})^2}} = \frac{\langle \alpha^{\prime}, \alpha^{\prime\prime} \rangle}{v}.$$

$$T'(t_0) = \left(\frac{\alpha'(t_0)}{v(t_0)}\right)' = \frac{\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0)}{v^2(t_0)},$$

więc przy podstawieniu  $lpha''(t_0)=klpha'(t_0)$  otrzymujemy

$$\frac{k\alpha'(t_0)v(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)v(t_0) - k\alpha'(t_0)\frac{v(t_0)^2}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)(v(t_0) - v(t_0))}{v^2(t_0)} = (0, 0, 0).$$

#### Elementarna Geometria Różniczkowa

#### Opracowanie: Marek Kaluba

krzywą

Wektor styczny i normalny

Wektor binormalny

Trójnóg Freneta

$$T'(t_0) = \left(\frac{\alpha'(t_0)}{v(t_0)}\right)' = \frac{\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0)}{v^2(t_0)},$$

więc przy podstawieniu  $\alpha''(t_0)=k\alpha'(t_0)$  otrzymujemy

$$\frac{k\alpha'(t_0)v(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)v(t_0) - k\alpha'(t_0)\frac{v(t_0)^2}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)(v(t_0) - v(t_0))}{v^2(t_0)} = (0, 0, 0).$$

#### Elementarna Geometria Różniczkowa

#### Opracowanie: Marek Kaluba

wektory związane z krzywą

Wektor styczny i normalny

Wektor binormalny

Frójnóg Freneta

$$T'(t_0) = \left(\frac{\alpha'(t_0)}{v(t_0)}\right)' = \frac{\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0)}{v^2(t_0)},$$

więc przy podstawieniu  $\alpha''(t_0)=k\alpha'(t_0)$  otrzymujemy

$$\frac{k\alpha'(t_0)\nu(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)\nu(t_0) - k\alpha'(t_0)\frac{\nu(t_0)^2}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)(\nu(t_0) - \nu(t_0))}{\nu^2(t_0)} = (0, 0, 0).$$

#### Elementarna Geometria Różniczkowa

#### Opracowanie: Marek Kaluba

Wektory związane z krzywą

Wektor styczny i normalny

Wektor binormalny

Irojnog Frenet



$$T'(t_0) = \left(\frac{\alpha'(t_0)}{v(t_0)}\right)' = \frac{\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0)}{v^2(t_0)},$$

więc przy podstawieniu  $\alpha''(t_0) = k\alpha'(t_0)$  otrzymujemy

$$\frac{k\alpha'(t_0)\nu(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)\nu(t_0) - k\alpha'(t_0)\frac{\nu(t_0)^2}{\nu(t_0)}}{\nu^2(t_0)} = \frac{k\alpha'(t_0)(\nu(t_0) - \nu(t_0))}{\nu^2(t_0)} = (0, 0, 0).$$

#### Elementarna Geometria Różniczkowa

#### Opracowanie: Marek Kaluba

Wektory związane z krzywą

Wektor styczny i normalny

Wektor binormalny

Trójnóg Freneta



więc przy podstawieniu  $lpha''(t_0)=klpha'(t_0)$  otrzymujemy

$$\frac{k\alpha'(t_0)v(t_0) - \alpha'(t_0)\frac{\langle \alpha'(t_0), k\alpha'(t_0)\rangle}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)v(t_0) - k\alpha'(t_0)\frac{v(t_0)^2}{v(t_0)}}{v^2(t_0)} = \frac{k\alpha'(t_0)(v(t_0) - v(t_0))}{v^2(t_0)} = (0, 0, 0).$$

#### Elementarna Geometria Różniczkowa

#### Opracowanie: Marek Kaluba

krzywą

Wektor styczny i normalny

Wektor binormalny

Trójnóg Freneta



# ▶ Podobnie udowodnimy implikację $(2 \Rightarrow 1)$ .

Załóżmy, że istnieje  $t_0$  dla którego  $\|T'(t_0)\| = 0$ . Wtedy sam  $T'(t_0)$  jest wektorem zerowym. Oznaczmy  $v(t) \stackrel{\text{def.}}{=} \|\alpha'(t)\|$ . Mamy wtedy

$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu^2(t_0)}$$

Zatem  $\alpha''(t_0)v(t_0) - \alpha'(t_0)v'(t_0) = 0$ , więc albo oba współczynniki (tj.  $v(t_0)$  i  $v'(t_0)$ ) są zerowe, albo wektory  $\alpha'(t_0)$  i  $\alpha''(t_0)$  są liniowo zależne. Z regularności krzywej wiemy, że może zachodzić tylko druga sytuacja.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

krzywą

Wektor styczny i normalny

wektor binormainy



$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu^2(t_0)}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

krzywą

Wektor styczny i normalny

Wektor binormalny

rrojnog rreneta

$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu^2(t_0)}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

krzywą

Wektor styczny i normalny

Wektor binormalny

Irojnog Freneta



$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu^2(t_0)}.$$

Elementarna Geometria Różniczkowa

### Opracowanie: Marek Kaluba

Wektory związane z krzywą

Wektor styczny i normalny

Wektor binormalny

Trojnog Freneta



$$0 = T'(t)\big|_{t=t_0} = \left(\frac{\alpha'(t_0)}{\nu(t_0)}\right)' = \frac{\alpha''(t_0)\nu(t_0) - \alpha'(t_0)\nu'(t_0)}{\nu^2(t_0)}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Wektory związane z krzywą

Wektor styczny i normalny

Wektor binormalny

Irojnog Freneti



# Definicja

Niech  $\alpha:(a,b)\to\mathbb{R}^3$  będzie krzywą regularną. Dla każdego  $t \in (a, b)$  takiego, że  $||T'(t)|| \neq 0$  definiujemy **jednostkowy** wektor binormalny jako

$$B(t) \stackrel{\text{def.}}{=} T(t) \times N(t).$$

Trójnóg Freneta

## Definicja

Niech  $\alpha$ : $(a,b) \to \mathbb{R}^3$  będzie krzywą regularną. Dla każdego  $t \in (a,b)$  takiego, że  $\|T'(t)\| \neq 0$  definiujemy **jednostkowy wektor binormalny** jako

$$B(t) \stackrel{\text{def.}}{=} T(t) \times N(t).$$

Płaszczyznę rozpiętą przez wektory N(t) i B(t) nazywamy **płaszczyzną normalną**, lub **płaszczyzą prostopadłą** do krzywej.

## Definicja

Układ ortonormalny  $\{T(t), N(t), B(t)\}$  nazywać będziemy **trójnogiem** (lub **reperem**) Freneta.



Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

krzywą

Wektor styczny i normalny

Wektor binormal

Trójnóg Freneta