Introdução à Análise de Dados com Linguagem R

Aula 3

1. Matriz

Matriz é uma estrutura de dados semelhante a vetor, exceto que na matriz temos 2 dimensões, uma para as linhas e outra para as colunas. O código a seguir mostra a criação de uma matriz 3x3.

```
In [113... matriz <- matrix(1:9, nrow = 3, ncol = 3)
    print(matriz)

1  4  7
2  5  8
3  6  9</pre>
```

Somar linhas e Colunas de uma Matriz

A função apply , parte do pacote base do R, pode ser usada para aplicar uma determinada função a uma matriz, e recebe 3 argumentos como parâmetro: a matriz contendo os dados, a indicação do sentido de aplicação da função, representado pelos números 1 (linha) ou 2 (coluna) e a função a ser aplicada.

Somar as linhas de uma matriz:

```
In [64]: print(apply(matriz, 1, sum))
[1] 12 15 18
```

Somar os valores das colunas de uma matriz:

```
In [65]: print(apply(matriz, 2, sum))
[1] 6 15 24
```

Somar os Elementos da Diagonal de uma Matriz

15

Sentido de Preenchimento dos Dados em uma Matriz

A função matrix() tem por padrão o preenchimento no sentido das colunas, porém, em alguns casos podemos necessitar preencher uma matriz no sentido das linhas, para isso devemos definir o valor do argumento byrow = TRUE

Atribuir Nomes as Linhas e Colunas de uma Matriz

```
In [135... | matriz <- matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE)
        print(matriz)
            [,1] [,2] [,3]
         [1,] 1 2 3
         [2,] 4 5 6
        [3,] 7 8 9
In [137...  # Atribuir Nomes as Linhas da matriz
         rownames(matriz) <- c('Linha 1', 'Linha 2', 'Linha 3')</pre>
In [139... print(matriz)
               [,1] [,2] [,3]
        Linha 1 1 2 3
Linha 2 4 5 6
                   4
        Linha 3 7 8 9
In [140...  # Atribuir Nomes as colunas da matriz
         colnames(matriz) <- c('Coluna 1', 'Coluna 2', 'Coluna 3')</pre>
In [141... matriz
```

	Coluna 1	Coluna 2	Coluna 3
Linha 1	1	2	3
Linha 2	4	5	6
Linha 3	7	8	9

Obter os nomes das Linhas e Colunas de uma Matriz

Somente os Nomes das Linhas

```
In [128... rownames (matriz)

1. 'Linha 1'
2. 'Linha 2'
3. 'Linha 3'
```

Somente os Nomes das Colunas

```
In [129... colnames (matriz)
```

- 1. 'Coluna 1'
- 2. 'Coluna 2'
- 3. 'Coluna 3'

Nomes das Linhas e Colunas

```
In [142... dimnames(matriz)
```

- 1. A. 'Linha 1'
 - B. 'Linha 2'
 - C. 'Linha 3'
- 2. A. 'Coluna 1'
 - B. 'Coluna 2'
 - C. 'Coluna 3'

Acessar Linhas e Colunas da Matriz

```
In [81]: # mostrar a primeira linha da matriz
print(matriz[1, ])

[1] 1 2 3

In [82]: # mostrar a segunda Coluna da matriz
print(matriz[, 2])

[1] 2 5 8
```

Acessar Elementos da Matriz

```
In [84]: # Mostrar o elemento pertencente a segunda linha e segunda coluna
print(matriz[2, 2])
[1] 5
```

Alterar os Elementos de uma Matriz

```
In [87]: # alterar o elemento da linha 2 coluna 2, número 5, para 0
matriz[2, 2] <- 0
print(matriz)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 0 6
[3,] 7 8 9</pre>
```

Operações com Matrizes

• Maior e menor valor entre os elementos da matriz

```
In [104... # maior valor entre os elementos da matriz max(matriz)
```

```
9
In [105... # menor valor entre os elementos da matriz
         min(matriz)
        0
            Maior e menor valor de uma linha ou coluna da matriz
In [99]: # maior valor entre os elementos da primeira linha
         max(matriz[1,])
        3
In [102... # menor valor entre os elementos da terceira coluna
         min(matriz[,3])
        3

    Média dos elementos da matriz

In [103... mean(matriz)
        4.44444444444444

    Somar os valores das linhas e colunas

    Soma de elementos da matriz

In [106... # somar os valores da primeira linha
         sum(matriz[1, ])
        6
In [107... # somar os valores da terceira coluna
         sum(matriz[, 3])
        18
In [88]: # somar os elementos da segunda linha da matriz
         sum(matriz[2, ])
        10
           • Diagonal da matriz
```

Obter a diagonal da matriz

Obter a soma entre os elementos da diagonal da matriz

diag(matriz)

sum(diag(matriz))

1. 1
 2. 0
 3. 9

In [89]:

In [90]:

• Transposição de Matriz

```
In [91]: # Transpor a matriz t (matriz)

1 4 7
2 0 8
3 6 9
```

Soma entre matrizes

```
In [95]: # Definição das matrizes "a" e "b"
        a <- matrix(1:6, nrow = 3, byrow = TRUE)
        b <- matrix(1:6, nrow = 3, byrow = TRUE)
        print(a)
        print(b)
           [,1] [,2]
        [1,] 1 2
        [2,]
              3
        [3,] 5
          [,1] [,2]
        [1,] 1 2
        [2,]
              3
        [3,]
                   6
        # soma das matrizes a e b
In [97]:
        a + b
        2 4
         6 8
        10 12
```

Combinar Vetores em Matriz

Em R podemos combinar vetores para formar uma matriz em que cada vetor fará parte de uma coluna ou linha da matriz. Para combinar vetores em linhas matriciais usamos a função rbind(), e para combinar vetores em colunas da matriz usamos a função cbind(). O exemplo a seguir mostra como combinas três vetores com orientação nas linhas de uma matriz.

```
In [30]: # Vetor referente a uma amostra de valores de ações da Apple apple <- c(109.49, 109.90, 109.11, 109.95, 111.03)

# Vetor referente a uma amostra de valores de ações da IBM ibm <- c(159.82, 160.02, 159.84, 160.35, 164.79)

# Vetor referente a uma amostra de valores de ações da Microsoft microsoft <- c(59.20, 59.25, 60.22, 59.95, 61.37)

# combinar os vetores em uma matriz onde cada linha receberá os valores dos vetores rbind(apple, ibm, microsoft)
```

```
      apple
      109.49
      109.90
      109.11
      109.95
      111.03

      ibm
      159.82
      160.02
      159.84
      160.35
      164.79

      microsoft
      59.20
      59.25
      60.22
      59.95
      61.37
```

A seguir é demonstrado como combinar os elementos de vetores em colunas de uma matriz.

In [31]: # combinar os vetores em uma matriz onde cada coluna receberá os valores dos vetores
 cbind(apple, ibm, microsoft)

apple	ibm	microsoft
109.49	159.82	59.20
109.90	160.02	59.25
109.11	159.84	60.22
109.95	160.35	59.95
111.03	164.79	61.37

Matriz de Correlação

Como exemplo prático para demonstrar o uso de matriz para cálcular a correlação entre variáveis, usaremos os dados referente a publicação:

Ramsey, F.L. and Schafer, D.W. (2013). *The Statistical Sleuth*: A Course in Methods of Data Analysis (3rd ed), Cengage Learning.

Os dados são os valores médios de peso cerebral (g), peso corporal (g), duração da gestação (dias) e tamanho da prole de 96 espécies de mamíferos.

```
In [1]: # Carregar os dados vetoriais
load('./data/dados_modulo_1_aula_3.rda')

# listar os objetos no ambiente R
ls()
```

- 1. 'cerebro'
- 2. 'corpo'
- 3. 'especies'
- 4. 'gestacao'
- 5. 'prole'

```
In [2]: # Combinar os vetores em uma matriz
m <- cbind(cerebro, corpo, gestacao, prole)

# Mostrar as primeiras 6 linhas da matriz
head(m)

# Mostrar as últimas 6 linhas da matriz
tail(m)</pre>
```

cerebro	corpo	gestacao	prole
9.6	2.20	31	5.0

9.9	0.78	98	1.2
4480.0	2800.00	655	1.0
20.3	2.80	104	1.3
219.0	89.00	218	1.0
53.0	6.00	60	2.2

	cerebro	corpo	gestacao	prole
[91,]	198	45.0	300	1.1
[92,]	550	400.0	310	1.0
[93,]	179	32.0	180	1.0
[94,]	102	5.5	210	1.0
[95,]	185	150.0	120	4.0
[96,]	334	250.0	255	1.0

Atribuir um Atributo a uma Matriz

Para inserir um atributo a matriz utilizamos a função attr(), passando como argumentos a matriz e um rótulo para nomear o atributo. Como demonstração iremos inserir um atributo a nossa matriz definida anteriormente, este atributo será a referência bibliográfica dos dados.

```
In [3]: # Obter os atributos da matriz
attributes(m)
```

\$dim

1.96

2. 4

\$dimnames

1. NULL

2. A. 'cerebro'

B. 'corpo'

C. 'gestacao'

D. 'prole'

```
In [4]: # Inserir o atributo
attr(m, 'Fonte') <- 'Ramsey, F.L. and Schafer, D.W. (2013). The Statistical Sleuth: A Co
In [5]: # conferir os atributos da matriz</pre>
```

\$dim

1. 96

2. 4

\$dimnames

attributes (m)

1. NULL

2. A. 'cerebro'

B. 'corpo'

C. 'gestacao'

'Ramsey, F.L. and Schafer, D.W. (2013). The Statistical Sleuth: A Course in Methods of Data Analysis (3rd ed), Cengage Learning.'

Gerar Gráficos a partir dos Dados de uma Matriz

```
In [49]: # gráfico da relação entre as duas primeiras colunas (cerebro e corpo) plot(m)
```



```
In [54]: # gráfico da relação entre as duas primeiras colunas (gestacao e prole)
# plot(m[, 3], m[, 4])
plot(m[,'gestacao'], m[,'prole'])
```


2. Array

Em R array é uma estrutura de dados tridimensional. Criamos um array através da função array(x, dim), onde o parâmetros x é um vetor e dim são as dimensões do array.

```
In [58]:
          a \leftarrow array(c(1:24), dim = c(3, 3, 2))
In [59]:
          print(a)
          , , 1
                [,1] [,2] [,3]
          [1,]
                    1
          [2,]
                    2
                          5
          [3,]
                    3
                          6
                                9
          , , 2
```

```
[1,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18
```

Acessar Elementos do Array

```
In [60]: # Acessar a primeira tabela
        a[, , 1]
         1 4 7
         2 5 8
        3 6 9
In [62]: # Acessar a primeira linha da tabela 1
        print(a[1, , 1])
         [1] 1 4 7
In [69]: # Acessar a primeira coluna da segunda tabela
        print(a[, 1, 2])
         [1] 10 11 12
        Operações com Arrays
In [70]: # Obter o maior valor da primeira tabela
        max(a[, , 1])
        9
In [71]: # Obter a soma da primeira coluna da tabela 1
        sum(a[, 1, 1])
        6
In [72]: # obter a média dos valores da segunda linha da segunda tabela
        mean(a[, 2, 2])
        14
In [75]: # Obter a soma entre os valores da primeira coluna da table 1 com os da
         # primeira coluna da tabela 2
        sum(a[, 1, 1], a[, 1, 2])
        39
```

15

sum(diag(a[, , 1]))

Atribuir Nomes as Dimensões do Array

In [74]: # obter a soma dos valores da diagonal da primeira tabele

Assim como podemos atribuir nomes aos elementos de um vetor e as duas dimensões de uma matriz, também é possível o fazer para arrays. Para tal utilizamos a função dimnames(), passando como parâmetros três vetores com os nomes das linhas da matriz, nomes das colunas e nomes das matrizes.

```
In [76]: a <- array(c(1:24), # Vetor</pre>
                   dim = c(3, 3, 2), # Dimensões do array
                   dimnames = list(c('L1', 'L2', 'L3'), # Nome das linhas das matrizes
                                   c('C1', 'C2', 'C3'), # Nome das colunas das matrizes
                                   c('Matriz 1', 'Matriz 2'))) # Nomes das Matrizes
        print(a)
        , , Matriz 1
         C1 C2 C3
        L1 1 4 7
        L2 2 5 8
        L3 3 6 9
        , , Matriz 2
         C1 C2 C3
        L1 10 13 16
        L2 11 14 17
        L3 12 15 18
```

Inserir Atributo em um Array

```
In [77]: # inserir um atributo ao array "a"
         attr(a, 'Observação') <- 'Meu primeiro array em R!!'
In [79]:
         # checar os atributos do array
         print(attributes(a))
         $dim
         [1] 3 3 2
         $dimnames
         $dimnames[[1]]
         [1] "L1" "L2" "L3"
        $dimnames[[2]]
         [1] "C1" "C2" "C3"
         $dimnames[[3]]
         [1] "Matriz 1" "Matriz 2"
         $Observação
        [1] "Meu primeiro array em R!!"
In [ ]:
```