

Communication Theory (5ETB0) Module 8.1

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Module 8.1

Presentation Outline

Part I Motivation and Problem Statement

 $\textbf{Part II} \ \, \textbf{Bit-by-Bit Signaling}$

Motivation: A Stream of Messages

Preliminaries

- lacktriangledown Previously: considered transmission of a single randomly-chosen message $m \in \mathcal{M}$ over a waveform channel
- Now: Transmission of a **stream** of messages over the AWGN waveform channel
- \blacksquare Assumption 1: The signals $s_m(t)$ are only non-zero inside the time-interval $0 \le t < T$
- Assumption 2: Equally likely messages (i.e., $\Pr\{M=m\}=1/|\mathcal{M}|$ for all $m \in \mathcal{M}$)

Definitions and Problem Statement

Definitions

- Transmit Power is P_s ([Joule/sec] or [Watt])
- Average Energy is $E_s = P_sT$ [Joule]
- \blacksquare Transmission rate R is defined as

$$R \stackrel{\Delta}{=} \frac{\log_2 |\mathcal{M}|}{T} \quad \left[\frac{\mathsf{bits}}{\mathsf{second}} \right]$$

■ Energy per transmitted bit is

$$E_b \stackrel{\Delta}{=} \frac{E_s}{\log_2 |\mathcal{M}|} = \frac{E_s}{T} \frac{T}{\log_2 |\mathcal{M}|} = \frac{P_s}{R} \ \left[\frac{\mathsf{Joule}}{\mathsf{bit}} \right]$$

Questions to be Answered

- What is the maximum rate at which we can communicate reliably over a waveform channel when the available power is P_s ?
- What are the signals that are to be used to achieve this maximum rate?
- Two systems considered: bit-by-bit and block-orthogonal signaling

Module 8.1

Presentation Outline

Part I Motivation and Problem Statement

Part II Bit-by-Bit Signaling

Bit-by-Bit Signaling: Definitions

Rate and Transmitted Waveform

Transmit K binary digits $b_1b_2\cdots b_K$ in T seconds. Then

$$|\mathcal{M}| = 2^K, \quad R = \frac{\log_2 |\mathcal{M}|}{T} = \frac{K}{T}$$

Transmit signal s(t), composed of K pulses p(t) that are time shifted:

$$s(t) = \sum_{i=1}^{K} (-1)^{b_i + 1} p(t - (i-1)\tau)$$

Signal set is: $\mathcal{S} = \{s_1(t), s_2(t), \dots, s_{2^K}(t)\}$

Message to be transmitted: 11010

Bit-by-Bit Signaling: Building-block Waveform

Building-block Waveforms

The building-block waveforms are time-shifts over multiples of au of the normalized pulse $p(t)/\sqrt{E_b}$

$$\varphi_i(t) \stackrel{\Delta}{=} \frac{p(t - (i - 1)\tau)}{\sqrt{E_h}}, \quad i = 1, 2, \dots, K$$

Questions...

Q1: Can the messages $s_m(t)$ be written as a linear combination of $\varphi_i(t)$? Yes!

$$s(t) = \sum_{i=1}^{K} (-1)^{b_i + 1} p(t - (i - 1)\tau) = \sum_{i=1}^{K} (-1)^{b_i + 1} \sqrt{E_b} \varphi_i(t)$$

Q2: Are $\varphi_i(t)$ orthonormal? Yes!

$$\int_{-\infty}^{\infty} \varphi_i(t)\varphi_j(t)dt = \frac{1}{E_b} \int_{-\infty}^{\infty} p(t - (i - 1)\tau)p(t - (j - 1)\tau)dt = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Q3: What is the dimensionality of the signal space? N=K

Bit-by-Bit Signaling: Geometry

Geometric Representation

The signals are

$$s(t) = \sum_{i=1}^{K} (-1)^{b_i + 1} \sqrt{E_b} \varphi_i(t)$$

The vectorial representation is $\underline{s}_m=\sqrt{E_b}((-1)^{b_1+1},(-1)^{b_2+1},\dots,(-1)^{b_N+1})$

$$K = N = 3, |\mathcal{M}| = 8$$

Bit-by-Bit Signaling: Reception

Optimum Receiver

The optimum receiver decides $\hat{m}=1$ if

$$r_i < 0$$
, for all $i = 1, ..., K$

Geometric Interpretation

If m=1 is transmitted: $\underline{s}_1 = \left(-\sqrt{E_b}, -\sqrt{E_b}\dots, -\sqrt{E_b}\right)$

Note: To estimate b_i with i = 1, 2, ..., K, only r_i in dimension i is needed.

Bit-by-Bit Signaling: Error Probability (1/2)

Correct and Error Probabilities

- The signal hypercube is symmetrical
- \blacksquare Assume that \underline{s}_1 was transmitted
- No error occurs if $r_i = -\sqrt{E_b} + n_i < 0$ for all i = 1, ..., K:

$$n_i < \sqrt{E_b}$$
 for all $i=1,...,K$

■ Correct Probability

$$P_{\mathsf{c}} = \left(1 - Q(\sqrt{2E_b/N_0})\right)^K$$

■ Error Probability

$$P_{\rm e} = 1 - \left(1 - Q(\sqrt{2E_b/N_0})\right)^K$$

Bit-by-Bit Signaling: Error Probability (2/2)

Error Probabilities Considerations

■ Using K = RT and $E_b = P_s/R$

$$P_{\mathsf{e}} = 1 - \left(1 - Q\left(\sqrt{\frac{2P_s}{RN_0}}\right)\right)^{RT}$$

- Fix P_s and R and consider two extreme cases for T:
 - $T = 1/R \Rightarrow K = 1 \Rightarrow$

$$P_{\rm e} = Q\left(\sqrt{\frac{2P_s}{RN_0}}\right)$$

Conclusion: P_{e} can be decreased by increasing P_s or by decreasing R

- $T \to \infty \Rightarrow P_e \to 1$
 - Conclusion: Reliability cannot be increased by increasing T

Is this the end of the story?

Can we increase reliability by increasing T? Yes! With block-orthogonal signaling

Summary Module 8.1

Take Home Messages

- Introduced the problem of serial transmission
- Bit-by-bit signalling model and analysis
- Increasing dimensionality in bit-by-bit signalling does not help

Communication Theory (5ETB0) Module 8.1

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/