Auditório Municipal Augusto Cabrita

Satélites Geoestacionários e GPS

16 de Novembro de 2006

Paulo Crawford

Departamento de Física da FCUL Centro de Astronomia e Astrofísica da UL

http://cosmo.fis.fc.ul.pt/~crawford/

Física: unidade l Movimentos na Terra e no Espaço

- 1. Viagens com GPS
- 2. Da Terra à Lua
- 3. Movimento de Satélites Geoestacionários
- 4. A Física do GPS

Satélites Artificiais

Satélite de comunicação Milstar

Gravity Probe B

Tipos de Satélites e suas órbitas

- O tipo de órbita depende da função.
- Órbitas excêntricas e órbitas circulares.
- Órbitas geoestacionárias: órbitas sincronizadas com a rotação sideral da Terra (1 dia sideral = 23 h, 56 m, 4 s) (órbita geosíncrona)

Órbitas Excêntricas

2 Focos, 2 eixos diferentes

Órbita inclinada

Cálculos das órbitas

$$\frac{v^{2}}{R} = \omega^{2} R = \frac{4\pi R}{T^{2}} = \frac{M_{T}G}{R^{2}}$$

$$R = \left(\frac{M_{T}GT^{2}}{4\pi^{2}}\right)^{1/3}$$

$$M_T = 5.976 \times 10^{24} \, kg$$

$$G = 6.672 \times 10^{-11} N m^2 kg^{-2}$$

$$T = 86164.1s$$

$$\Rightarrow R = 42168 \, km = 6.61 \, R_{\oplus}$$

$$R - R_{\oplus} = 42\ 168\ km - 6378\ km = 35790\ km$$

Satélites e Planetas

- Movimento de satélites
- Leis de Kepler
- Movimento
 Planetário

Lançamento de Satélites

 Montanha de Newton

Descrição do GPS-1

O GPS pode ser descrito em termos de 3
"segmentos": o segmento espacial, o segmento de
controlo e o segmento do utilizador.

Segmento Espacial

• É constituído por 24 satélites com relógios atómicos, com órbitas circulares em torno da Terra com um período orbital de 12 h, distribuídos em 6 planos orbitais igualmente inclinados.

Segmento de controlo e Segmento do utilizador

O controlo é constituído por um conjunto de estações terrestres que recebem continuamente informação dos satélites. Os dados são depois enviados para uma Estação de Controlo em Colorado Springs que analiza a constelação e projecta as efemérides e comportamento dos relógios para as horas seguintes ...

Mais de 9000 receptores GPS foram usados na operação Desert Storm (I Guerra do Golfo)

III Geração de Veículos Espaciais

Funcionamento do GPS-1

- A finalidade do GPS é determinar a posição de um objecto à superfície da Terra em 3 dimensões: longitude, latitude e altitude.
- Sinais provenientes de 3 satélites fornecem esta informação. Cada satélite envia um sinal codificado com a localização do satélite e o tempo de emissão do sinal. O relógio do receptor regista o instante da recepção de cada sinal, depois subtrai o tempo de emissão para determinar o lapso de tempo e portanto a distância viajada pelo sinal.

Funcionamento do GPS-2

- Assim, são construídas 3 esferas a partir destas distâncias, uma esfera centrada em cada satélite. O objecto está localizado no único ponto de intersecção das 3 esferas.
- Uma dificuldade: o relógio do receptor não é tão preciso como os relógios atómicos dos satélites. Por isso, um sinal de um 4º satélite é utilizado para averiguar da precisão do relógio do receptor. Este 4º sinal permite ao receptor processar os sinais GPS com a precisão de um relógio atómico.

Órbitas dos 24 satélites

Determinação das coordenadas

Funcionamento do GPS-3

- Dificuldades a superar: os sinais trocados entre relógios a diferentes altitudes estão sujeitos aos efeitos da Relatividade Geral; por outro lado, o movimento do satélite e a rotação da Terra devem ser tomados em conta.
- Sem a consideração destes efeitos o GPS seria inútil.

Teoria da Relatividade

- 1905 Relatividade Restrita Reconciliar a relatividade do movimento com a teoria do electromagnética de James Clerk Maxwell (1831-1879).
- 1915 Relatividade Geral Reconciliar a teoria da gravidade com os princípios da RR e estender a relatividade de modo a incluir todos os observadores.

Consequências cinemáticas

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - \frac{v^2}{c^2}}}, \ \Delta x' = \Delta x \sqrt{1 - \frac{v^2}{c^2}}$$
$$(\Delta x' = 0) \qquad (\Delta t' = 0)$$

Dilatação do tempo

Contracção dos comprimentos

$$u' = \frac{u - v}{1 - \frac{vu}{c^2}}$$
, se $u = c \Rightarrow u' = c$

Composição de velocidades

Física de Galileu e Newton

$$u' = \frac{u - v}{1 - \frac{vu}{c^2}} \approx u - v, \text{ se } uv \ll c^2$$

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - \frac{v^2}{c^2}}} \approx \Delta t', \ \Delta x' = \Delta x \sqrt{1 - \frac{v^2}{c^2}} \approx$$

Efeito devido à velocidade

$$v_S^2 = \frac{GM_T}{R_S} \Rightarrow v = 3873 \, m/s = 13943 \, km/h$$

$$v_T = \frac{2\pi R_T}{T} = 463 \ m \ / \ s = 1669 \ km \ / \ h$$

$$\frac{\Delta t_S}{\Delta t_T} = \frac{\sqrt{1 - v_S^2 / c^2}}{\sqrt{1 - v_T^2 / c^2}} \cong 1 - \frac{1}{2} (v_S^2 - v_T^2) / c^2$$

$$(\Delta t_T - \Delta t_S)_{mov} \cong 7090 \, ns$$

Discrepância na sincronização

- Num dia há 86 400 segundos. Os relógios da Terra atrasam-se cerca de 45 800 ns por dia devido a esta diferença de altitude, e como 1ns-luz

 20 cm
- Isto origina um erro de localização de cerca de 13,7 km por dia!! A RG é pois necessária para corrigir este erro.

O atraso dos relógios ...

Relação entre o tempo na Terra e no satélite

$$(1+d)^n \approx 1+nd$$
, $com d = 1 - \frac{2M}{r_{Terra}} - v_{Terra}^2$

$$\frac{d\tau_{sat}}{d\tau_{Terra}} \approx 1 - \frac{M}{r_{sat}} + \frac{M}{r_{Terra}} - \frac{1}{2} \left(\frac{v^2}{c^2} + \frac{v^2}{r_{Terra}} \right)$$

Corresponde a um atraso de cerca de 39 000 ns por dia!

Sítios na Rede

- http://cosmo.fis.fc.ul.pt/~crawford/ (Paulo Crawford)
- http://fisica.fc.ul.pt/
- http://www.mcasco.com/p1aso.html (Movimento de satélites)
- http://charmnt.evansville.edu/ visualexp.asp (Montanha de Newton)
- http://galileoandeinstein.phys.virginia.e du/more_stuff/flashlets/kepler6.htm (Leis de Kepler)