The Reeb Transform

Shankha Shubhra Mukherjee 3rd Year Graduate Student

Topological Signatures

 There are many topological signatures which attempt to capture shape information in a compressed form

Some Definitions

- Scalar Field (or ℝ-space)
 - \circ Space X along with a function $f:X o\mathbb{R}$
- Level Sets: $f^{-1}(a), X_a$

Filtrations

- We can use sublevel (or superlevel) sets to build filtrations
- Assuming (X, f) to be "nice" (i.e. Morse, o-minimal, finite, etc.), have a finite number of critical points, where structures changes. We denote these a_0, a_1, \ldots, a_n
 - \circ For Sublevel Sets: $X_{a_0} \subseteq X_{a_1} \subseteq \ldots \subseteq X_{a_n}$
 - \circ For Superlevel Sets: $X_{a_n} \subseteq X_{a_{n-1}} \subseteq \ldots \subseteq X_{a_0}$

Persistent Homology

Persistence Homology (contd.)

Persistence Modules

It is Functor from a Poset to Vector Spaces

$$\circ \hspace{0.2cm} F: (I, \leq)
ightarrow Vect_{\mathbb{K}}$$

- For a feature that is born at a parameter $b \in I$, there exists a vector $v \notin im(F(s \rightarrow b))$ for any s < b
- If the feature dies at $d \in I$, then for all $t \geq d$, the element $\varphi_{b,t}(v)$ becomes trivial in the sense that it either:
 - o Maps to zero, or
 - Is no longer independent (e.g., merges with other generators)

Barcode

Reeb Graphs

Construction

- We define a Morse function $f: M \to \mathbb{R}$ which satisfy:
 - Smoothness
 - Non-Degeneracy (hessian matrix at critical points is non-singular)
- ullet For each value $c\in\mathbb{R}$, we consider the level set $f^{-1}\left(c
 ight)$
- We define an equivalence relation $x\sim y$ if $f\left(x\right)=f\left(y\right)$ and x and y lie in the same connected component of $f^{-1}\left(f\left(x\right)\right)$
- We collapse each connected component into a single point. The resulting space is the Reeb Graph $R\left(f\right)=M/\sim$

Some Examples

S. Biasotti et al. / Theoretical Computer Science 392 (2008) 5-22

S. Biasotti et al. / Theoretical Computer Science 392 (2008) 5-22

Euler Characteristic Curve

Euler Characteristic of a simplicial complex K is:
 χ(K)= #vertices - #edges + #faces - ...

By Poincare duality:
 χ(K)= #connected components - #loops + #voids - ...

• Euler Characteristic Curve of filtered space (X,f) that induces the filtration $X_{a_i} = f^{-1}\left(-\infty, a_i\right]$:

$$\chi\left(X
ight) = \chi\left(X_{a_0}
ight) + \sum_{i=1}^{n}\left[\chi\left(X_{a_i}
ight) - \chi\left(X_{a_{i-1}}
ight)
ight]$$

Example

The shape of things to come: Topological data analysis and biology, from molecules to organisms

EJ Amézquita, MY Quigley, T Ophelders, E Munch... - Developmental Dynamics, 2020

Not totally independent!

- PDs: No connectivity, but contains information of all dims
- Reeb Graphs: Has all H₀ and H₁ information, but loses higher dimensions
- Merge Trees: Some H₀ data and some connectivity
- Euler Characteristics: Extremely compact, but non-injective and loss of information

One Observation!

- The filtration function does not necessarily have to be a height function
 - Any Real valued function will do, if it is "Nice"!

- Examples:
 - Curvature
 - Temperature
 - Wind Velocity

Directional Transforms

- If the space is embedded in \mathbb{R}^n , we consider all possible "height" functions
- ullet In \mathbb{R}^n , we consider \mathbb{S}^{n-1}
- Consider \mathbb{R}^2 , embedded graphs:

Green fluorescent protein

HOW MANY DIRECTIONS DETERMINE A SHAPE AND OTHER SUFFICIENCY RESULTS FOR TWO TOPOLOGICAL TRANSFORMS

JUSTIN CURRY, SAYAN MUKHERJEE, AND KATHARINE TURNER

Euler Characteristic Transform

Definition 3.1. The **Euler Characteristic Transform** takes a constructible function ϕ on \mathbb{R}^d and returns a constructible function on $S^{d-1} \times \mathbb{R}$ whose value at a direction v and real parameter $t \in \mathbb{R}$ is the Euler integral of the restriction of ϕ to the half space $x \cdot v \leq t$. In equational form, we have

$$ECT: CF(\mathbb{R}^d) \to CF(S^{d-1} \times \mathbb{R}) \qquad where \qquad ECT(\phi)(v,t) := \int_{x \cdot v \le t} \phi \, d\chi.$$

- A key technical step uses an inversion theorem of Schapira (originally stated for "constructible" functions under Euler integration). In essence:
 - The ECT is injective on compact definable subsets of
 - \circ Intuitively, if two distinct shapes M and M' gave the same ECT, they would have the same Euler Characteristic across every slice and thus be forced to coincide

Persistence Diagram Space

Definition 4.4. Persistence Diagram Space, written Dgm, is the set of all possible countable multi-sets of $\mathbb{R}^{2+} := \{(b,d) \in (\{-\infty\} \cup \mathbb{R}) \times (\mathbb{R} \cup \{\infty\}) \mid b \leq d\}$ where the number of points of the form (b,∞) and $(-\infty,d)$ are finite and $\sum_{d-b<\infty} d-b < \infty$. Points of the form (b,∞) or $(-\infty,d)$ are called **essential classes** and points of the form (b,d) where neither coordinate is ∞ are called **inessential classes**. For persistence diagrams that encode the sublevel set persistent homology $PH_k(M,h_v)$ of a constructible set M there are no points of the form $(-\infty,d)$.

- ullet A point (b,∞) is called an essential feature (it never dies)
- A point $(-\infty, d)$ is a feature that was born before the filtration
- A point (b,d) is an inessential feature (it is fully captured between finite birth and death times)
- Any diagram $B \in Dgm$ has a finite number of points either of form (b,∞) or $(-\infty,d)$
- $\sum_{(b,d)\in B} (d-b) < \infty$ (for all points with finite coordinates) This ensures that the diagram does not contain infinitely many features

Persistent Homology Transform

Definition 4.6. The **Persistent Homology Transform** PHT of a constructible set $M \in CS(\mathbb{R}^d)$ is the map $PHT(M) : S^{d-1} \to Dgm^d$ that sends a direction $v \in S^{d-1}$ to the persistent diagrams gotten by filtering M in the direction of v, recording one diagram for each homological degree $0 \le k \le d-1$, i.e.

$$PHT(M): v \mapsto (PH_0(M, h_v), PH_1(M, h_v), \dots, PH_{d-1}(M, h_v)).$$

Letting the set M vary gives us the map

$$PHT: CS(\mathbb{R}^d) \to C(S^{d-1}, Dgm^d)$$

where $C(S^{d-1}, Dgm^d)$ is the set of continuous functions from S^{d-1} to Dgm^d , the latter being equipped with some Wasserstein p-distance.

• The Wasserstein-p distance is used to measure the distance between two d-tuples of diagrams. This is typically done by combining the distances of the corresponding diagrams in each coordinate (for example, by taking an l^p norm of the individual W-p distances)

How good are transforms?

- Natural Question: When does a set of signatures completely determine the input shape?
- Theoretical Result: If we have all directions, both PD and ECT completely determine the shape

Theorem 3.5. Let $CS(\mathbb{R}^d)$ be the set of constructible sets, i.e. compact definable sets. The map $ECT: CS(\mathbb{R}^d) \to CF(S^{d-1} \times \mathbb{R})$ is injective. Equivalently, if M and M' are two constructible sets that determined the same association of directions to Euler curves, then they are, in fact, the same set. Said symbolically:

$$ECT(M) = ECT(M') : S^{d-1} \to CF(\mathbb{R}) \Rightarrow M = M'$$

Theorem 4.16. Let $CS(\mathbb{R}^d)$ be the set of constructible sets, i.e. compact definable subsets of \mathbb{R}^d . The Persistent Homology Transform PHT : $CS(\mathbb{R}^d) \to C(S^{d-1}, Dgm^d)$ and Betti Curve Transform BCT : $CS(\mathbb{R}^d) \to C(S^{d-1}, CF(\mathbb{R})^d)$ are both injective.

Reconstructing embedded graphs from persistence diagrams

Robin Lynne Belton ^a ⊠ , Brittany Terese Fasy ^{a b} ⊠ , Rostik Mertz ^b ⊠ , Samuel Micka ^b ⊠ , David L. Millman b 🖂 , Daniel Salinas c 🖂 , Anna Schenfisch a 🖂 , Jordan Schupbach a 🔼 🔀

Do we really need infinite directions?

- Answer: No
 - \circ In \mathbb{R}^2 , we need $O\left(n^2\right)$, where n is the size of the graph
- How many directions are needed in d-dimension?
 - In \mathbb{R}^d , we need exponential no. of directions, i.e., $O(n^d)$

Theorem 9 (Vertex Reconstruction in Higher Dimensions). Let G be a straightline embedded graph in \mathbb{R}^d for d>1. We can can compute the coordinates of all n vertices of G using d+1 directional augmented persistence diagrams in $\Theta(dn^{d+1} + dT_G)$ time, where $\Theta(T_G)$ is the time complexity of computing a persistence diagram.

Reeb Transform [Chambers, Mukherjee, Turner]

Definition 8 (Reeb Transform). Let $A \in Set(d)$ be a compact, definable, smooth manifold of intrinsic dimension (d-1) embedded in \mathbb{R}^d . For every unit vector $v \in S^{d-1}$ define the height function

$$h_v : \mathbb{R}^d \longrightarrow \mathbb{R}, \qquad h_v(x) = v \cdot x.$$

The Reeb graph associated with v is

$$\mathcal{R}_{h_v} := (h_v \upharpoonright_A)/\sim,$$

The Reeb Transform of A is the collection of all these graphs, indexed by direction:

$$RT(A) = \{ \mathcal{R}_{h_v} \mid v \in S^{d-1} \}.$$

Equivalently, one may view RT(A) as the map

$$RT(A): S^{d-1} \longrightarrow \mathcal{G}, \quad v \longmapsto \mathcal{R}_{h_v},$$

where \mathcal{G} denotes the set of finite, connected 1-complexes (Reeb graphs).

Equivalence of reeb transform

Definition 9 (Equivalence Relation $\sim^{\mathcal{RT}}$). We define an equivalence relation $\sim^{\mathcal{RT}}$ on Set(d) as follows: for $A, B \in Set(d)$, $A \sim^{\mathcal{RT}} B \iff \mathcal{RT}(A) \cong \mathcal{RT}(B),$

where \cong denotes an isomorphism of Reeb graphs (with preserved structure) in every unit direction S^{d-1} .

Thus, two spaces are considered equivalent under $\sim^{\mathcal{RT}}$ if and only if their Reeb transforms coincide (up to isomorphism).

- $\sim^{\mathcal{RT}}$ partitions the tame sets by comparing their entire directional data.
- Equivalence is therefore determined by connectivity of all level sets, along all unit vector $v \in S^{d-1}$

Injectivity in 2D

Figure 2: Example of two different surfaces in \mathbb{R}^2 (a disc and an annulus) and a direction where their Reeb graphs differ. Such a direction must exist for any pair of distinct surfaces in \mathbb{R}^2

- For a planar tame set $A\subset\mathbb{R}^2$ each line slice $L\cap A$ is a finite set of points, so its Euler characteristic equals the number of connected components.
- The Reeb transform records exactly that count for every direction $v \in S^1$ and every height t; hence $\mathcal{RT}(A)$ fully determines the function $(v,t) \mapsto \chi(L \cap A)$.
- Scholium ("Curry–Ghrist"): knowing $\chi(L\cap A)$ for all lines uniquely reconstructs any definable subset of \mathbb{R}^2 .
- Therefore, if $\mathcal{RT}(A)=\mathcal{RT}(B)$ then the slice-Euler data coincide, implying A=B ; the Reeb transform is injective on the class $\mathcal{S}(2)$.

Injectivity in 3D

Figure 3: Example of two different surfaces in \mathbb{R}^3 (a sphere and a torus) and a direction where their Reeb graphs differ. Such a direction must exist for any pair of distinct surfaces in \mathbb{R}^3

• For a surface $A\subset\mathbb{R}^3$, each directional graph $\mathcal{RT}(A,v)$ lets us recover the Euler characteristic of every plane slice normal to v:

$$\chi(A\cap\Pi_{v,t})=2C_t-C_{t-arepsilon}-C_{t+arepsilon}.$$

- Collecting these graphs for every $v\in S^2$ yields the complete table $(v,t)\mapsto \chi(A\cap \Pi_{v,t}).$
- Scholium (Curry–Ghrist): knowing slice-Euler values for all planes uniquely determines a compact surface.

Injectivity in 3-D (contd.)

Theorem 5. Let $A \in Surface(3)$ be a dividing surface. Let A^{int} denote the A union the interior of A and A^{ext} denote A union the exterior of A. A as a subset of \mathbb{R}^3 is uniquely determined by the combination of $\mathcal{RT}(A^{int})$ and $\mathcal{RT}(A^{ext})$.

- A closed surface in \mathbb{R}^3 splits space into an "inside" and an "outside." If we extend the surface by filling in its interior (A^{int}) or its exterior (A^{ext}), we can compute a Reeb Transform for each filled region.
- Taken together, these two transforms contain all the slice-connectivity information of the surface itself, so knowing $\mathcal{RT}(A^{\mathrm{int}})$ and $\mathcal{RT}(A^{\mathrm{ext}})$ lets us reconstruct A uniquely.

Properties

Proposition 6 (Characterisation via Height Functions). Let $h_{\hat{n}}(x) = \hat{n} \cdot x$ and let $y \in Y$.

- (a) y satisfies (C_-) \iff y is a strict local minimum of $h_{\hat{n}}$ on Y.
- (b) y satisfies (C₋₊) ⇐⇒ y is a strict local maximum of h_{n̂} on Y.

- Pick a direction \hat{n} ; the dot-product height $h_{\hat{n}}(x) = \hat{n} \cdot x$ measures how far a point lies along that direction.
- A point y on the set Y is **concave** in direction \hat{n} exactly when $h_{\hat{n}}$ attains a strict local minimum at y; all nearby points of Y sit at the same or higher "height."
- Dually, y is **convex** in direction \hat{n} precisely when $h_{\hat{n}}$ reaches a strict local maximum there—nearby points lie at equal or lower height.

Properties [contd.]

Proposition 7. Let $A \in Set(d)$ for $d \ge 3$, and let $X \subseteq A$ be an open, simply connected subset. Then $\mathcal{RT}(A \setminus X) = \mathcal{RT}(A) \iff$ the closure of X contains no concave points of X.

- Concave points drive change. If the open region X contains even one concave point (a strict directional minimum/maximum), deleting X removes that extremum, so the Reeb transform must change.
- No concave points \Rightarrow no change. Conversely, if every point of X sits "flat" in every direction—that is, the closure of X holds no concave extremes—then slicing connectivity is unaffected, and $\mathcal{RT}(A \backslash X)$ remains identical to $\mathcal{RT}(A)$.

Stability of Reeb Transform

Proposition 2 (Directional stability of Reeb graphs). Let $A \in Set(d)$ be non-empty, and let D > 0 such that $A \subset B(0,D)$ (the ball of radius D). Fix a unit direction $v \in S^{d-1}$ and perturb it to a second direction $w \in S^{d-1}$. Then

$$d_{\text{FD}}(\mathcal{R}_v(A), \mathcal{R}_w(A)) \leq D \|v - w\|_2 = D \sqrt{2 - 2\langle v, w \rangle},$$

where $d_{\rm FD}$ is the functional-distortion distance [7]. In particular, if the angle $\theta = \arccos\langle v, w \rangle$ is small, the graph moves by at most $D \sin(\frac{\theta}{2})$.

- Rotating the slicing direction from v to w by a small angle θ shifts every point's height by at most $D\sin(\theta/2)$, so the Reeb graph changes no more than that in functional–distortion distance.
- The inequality

$$d_{ ext{FD}}ig(\mathcal{R}_v(A),\mathcal{R}_w(A)ig) \leq D\sqrt{2-2\langle v,w
angle}$$

shows the deformation is Lipschitz with constant D.

Because the bound applies for every pair of nearby directions, the whole Reeb
 Transform varies continuously over the sphere; neighbouring directions yield nearly identical graphs.

Future Work

- Reeb Spaces
- Developing algorithms for faster calculation of Reeb Transform
- Adding decorations within the Reeb Transform

Thank You!

