- 1. Diberikan suatu barisan bilangan bulat $a_1, a_2, ..., a_n$ dengan $n \ge 2$.
 - a. Buatlah algoritma untuk mencari bilangan bulat terbesar kedua dari baris di atas
 - b. Tentukan jumlah operasi perbandingan pada algoritma pada soal (a) sebagai suatu fungsi dalam n, misalnya T(n). Selanjutnya, tentukan big-Oh dari T(n) tersebut.

a. Input:
$$a = a_1, a_2, ..., a_n$$

		T	Jumlah
$Max1 = max(a_1, a_2)$		t1	1
$\max 2 = \min(a_1, a_2)$		t2	1
for $i = 3$ to n		t3	n - 2
if $a_i > \text{Max}2$		t4	n - 2
if $a_i >$	Max1	t5	n - 2
	Max2 = Max1	t6	n - 2
	$Max1 = a_i$	t7	n - 2
else			
	$Max2 = a_i$	t8	n - 2
endif	•		
endif			
endfor			
Output: Max2		t9	1

b. Maka, running time atau T(n) dari algoritma tersebut:

$$T(n) = (t3 + t4 + t5 + t6 + t7 + t8)(n - 2) + (t1 + t2 + t9)$$

Untuk menentukan big-0 dari T(n), perhatikan bahwa terjadi kasus terburuk apabila a_i selalu lebih besar dari Max1, di mana jika itu terjadi maka terjadi 5 proses (n-2). Kemudian jumlahkan itu dengan operasi basic sebanyak 3.

$$O(T(n)) = 5(n-2) + 3 = 5n - 10 + 3 = 5n - 7 = O(n)$$

$$\therefore T(n) \in \mathcal{O}(n)$$

- 2. Trace dari suatu matrix bujur sangkar A didefinisikan sebagai jumlah dari semua elemen diagonal dari A.
 - a. Buatlah suatu algoritma untuk menentukan trace dari suatu matrix bujur sangkar A berukuran nxn.
 - b. Tentukan big-Oh dari algoritma yang anda rancang.

a. Input:
$$A = [[a_{11}, a_{12}, ..., a_{1n}], [a_{21}, a_{22}, ..., a_{2n}], ..., [a_{n1}, a_{n2}, ..., a_{nn}]]$$

	T	Jumlah
Sum = 0	t1	1
for i = 1 to n	t2	n
Sum = Sum + A[i, i]	t3	n
endfor		
Output: Sum	t4	1

b.
$$O(T(n)) = 2(n) + 2 = 2n + 2 = O(n)$$

$$T(n) \in O(n)$$

- 3. Gunakan definisi big-Oh untuk menunjukan bing-Oh dari fungsi-fungsi berikut ini :
 - a. $T(n) = 1^3 + 2^3 + + n^3$ adalah $O(n^4)$
 - b. $T(n) = (6n-4n^5-4)/(7n^2-3)$ adalah $O(n^3)$
 - c. $T(n) = (x+2)^2 \log (x^2+1) + 2 \log (x^3+1)$ adalah $O(x^2 \log x)$

- a. $\exists c, n_0 \ni \forall n > n_0$: $T(n) \le c \cdot n^4$ Perhatikan bahwa $1^3 + 2^3 + \dots + n^3 \le n^3 + n^3 + \dots + n^3 = n(n^3) = n^4$ Ambil $n_0 = 1$ dan c = 1, maka terpenuhi, sehingga $T(n) \in O(n^4)$
- b. $\exists c, n_0 \ni \forall n > n_0$: $T(n) \le c \cdot n^3$ Ambil $n_0 = \frac{1}{4} \operatorname{dan} c = 1$, maka terpenuhi, sehingga $T(n) \in O(n^3)$
- c. Mengasumsikan maksud soal adalah T(x), maka dapat dikerjakan sebagai berikut.

$$(x+2)^{2} \log(x^{2}+1) + {}^{2} \log(x^{3}+1) = (x+2)^{2} \log(x^{2}+1) + \frac{({}^{2} \log 10)}{({}^{2} \log 10)} \times {}^{2} \log(x^{3}+1)$$

$$= (x+2)^{2} \log(x^{2}+1) + {}^{2} \log 10 \times \log(x^{3}+1)$$

$$\leq (x+x)^{2} \log(x^{2}+x^{2}) + {}^{2} \log 10 \times \log(x^{3}+x^{4})$$

$$\leq 4x^{2} (\log 2 + 2 \log x) + 4(\log 2 + 3 \log x)$$

$$\leq 12x^{2} \log x + 16 \log x$$

$$\leq 12x^{2} \log x + 16x^{2} \log x$$

$$\leq 28x^{2} \log x$$

Menggunakan definisi:

$$\exists c, x_0 \ni \forall x > x_0 : T(x) \le c \cdot x^2 \log x$$

Ambil $x_0 = 2$ dan $c = 28$, maka terpenuhi, sehingga $T(x) \in O(x^2 \log x)$

4. Buatlah suatu algoritma untuk menemukan p-norm dari suatu vector x berukuran n yang didefinisikan sbb :

$$\left| |x| \right|_p = \left(\sum_{i=1}^n |x_i|^p \right)^{\frac{1}{p}}$$

Input:

$$-x = [x_1, x_2, ..., x_n]$$

Sum = 0 for i = 1 to n Sum = Sum + $|x_i|^p$ endfor Norm = $(Sum)^{\frac{1}{p}}$

Output: Norm

- 5. Algoritma binary search adalah algoritma pencarian (search) suatu nilai pada suatu barisan bilangan bulat terurut dengan cara membagi dua daerah pencarian pada setiap iterasi.
 - a. Tunjukan bagaimana algoritma binary search mencari nilai 27 dari barisan berikut: 5,6,8,12,15,21,25,31.
 - b. Tentukan jumlah operasi perbandingan pada algoritma binary search sebagai suatu fungsi dari banyaknya bilangan pada barisan, missal T(n). Selanjutnya, tentukan bing-Oh dari T(n) tersebut.

a. Iterasi 1:

Data terbagi menjadi 5, 6, 8, 12 dan 15, 21, 25, 31 Algoritma kemudian melihat nilai terakhir dari barisan pertama Karena 27 > 12, maka barisan yang digunakan adalah 15, 21, 25, 31

Iterasi 2:

Data terbagi menjadi 15, 21 dan 25, 31 Algoritma kemudian melihat nilai terakhir dari barisan pertama Karena 27 > 21, maka barisan yang digunakan adalah 25, 31

Iterasi 3:

Data terbagi menjadi 25 dan 31 Algoritma kemudian melihat nilai terakhir dari barisan pertama Karena 27 > 25, maka barisan yang digunakan adalah 31

Data hanya memiliki 1 elemen dan karena elemen tersebut ≠ 27, maka binary search telah selesai melakukan iterasi dan tidak mengeluarkan output

Output: None

b.
$$T(n) = (t1 + t2 + t3)(\lfloor \log_2 n \rfloor) + t4$$

 $O(T(n)) = O(\log_2 n)$

$$\therefore T(n) \in O(\log_2 n)$$

6. Untuk $x \ge 0$, fungsi sin(x) dapat diaproksimasikan dengan menggunakan:

$$\sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1) * \frac{x^{2n-1}}{(2n-1)!}$$

Terdapat kesalahan dalam approksimasi yang digunakan untuk sin(x) jika (-1) karena itu berarti setiap suku adalah negatif, sehingga dilakukan pengubahan di bawah asumsi menjadi:

$$\sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} * \frac{x^{2n-1}}{(2n-1)!}$$

Input: x, n

Sin = 0

for i = 1 to n

$$Sin = Sin + (-1)^{i-1} \frac{x^{2i-1}}{(2i-1)!}$$

endfor

Output: Sin

7. Diberikan algoritma berikut:

```
Procedure AMAL (A, n)
Integer I,j,n, A[j]
For i \leftarrow 1 to n
J \leftarrow n
While I < j do
If A [j] > A [j-1] \text{ then}
S \leftarrow A [j]
A [j] \leftarrow A [j-1]
A [j-1] \leftarrow S
End if
End while
Next i
End procedure.
```

Telusuri prosedur diatas untuk mendapatkan hasilnya pada iterasi ke 3, jika nilai n = 7 dan array A memuat data sebagai berikut :

|--|

Dalam algoritma ini terjadi infinite looping sehingga tidak bisa dijawab sebagaimana ada, maka dilakukan sedikit modifikasi pada algoritma yang diberikan sebagai asumsi algoritma yang dimaksudkan.

```
Procedure AMAL (A, n)
Integer I,j,n, A[j]
for i \leftarrow 1 to n
J \leftarrow n
while I < j do
If A [j] > A [j-1] \text{ then}
S \leftarrow A [j]
A [j] \leftarrow A [j-1]
A [j-1] \leftarrow S
endif
Next I
endwhile
endfor
endprocedure
```

Proses yang terjadi berlangsung sebagai berikut.

Iterasi 1:

- 2541369
- 2451369
- 2415369
- 2413569

Iterasi 2:

- 2143569
- 2134569

Iterasi 3:

- 1234569

Output: 1234569

8. Buatlah algoritma untuk mengurangi matriks P dan matriks Q yang hasilnya di simpan pada matriks R.

```
Input:
```

```
\begin{array}{ll} - & P = [[p_{11}, p_{12}, \ldots, p_{1n}], [p_{21}, p_{22}, \ldots, p_{2n}], \ldots, [p_{k1}, p_{k2}, \ldots, p_{kn}]] \\ - & Q = [[q_{11}, q_{12}, \ldots, q_{1n}], [q_{21}, q_{22}, \ldots, q_{2n}], \ldots, [q_{k1}, q_{k2}, \ldots, q_{kn}]] \\ \text{for i = 1 to k} \\ & \text{for j = 1 to n} \\ & \qquad \qquad R[i, j] = P[i, j] - Q[i, j] \\ & \text{endfor} \end{array}
```

Output: *R*

Afterword

n 1 .	1 1	1.1	1 1
Pembuatan	aokumen	ini dibantu	olen:

1. Takamori37 (Matematika UI 2016, D4 Akuntansi PKN STAN 2017)