Not on the exam

- determinants
- normal operators
 - -adjoint operators
 - inner products over O

Since LAST exam:

- A= QR
- Spectral Theorem (symmetric matrices)
- 21P
- JCF

Spectral Theorem Part

-A nun symmetric over R

-eigenvalues are real

- eigenvectors Avi= ¬įvi, ¬i+¬; ⇒ vi ⊥ vi

-R = Ez, (A) (+ ... (+ Ez, (A)

- So A is diagonalizable (orthonormally)

5,

A = VDVT

 $V^TV = I$ (V orthogonal)

D = diagonal matrix of eigenvalues

$$V = W \oplus W^{+} \text{ if } \dim W < \infty$$

$$(W^{1})^{\perp} = W \text{ if } \dim V < \infty$$

SVD AEIR^{mxn}

COMPACT SUD

$$A = U, \begin{pmatrix} \sigma_1 \\ \vdots \\ \sigma_r \end{pmatrix} V_1^T = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T$$

JCF

A nan matrix over C.

D Block Diagonal Matrices
$$A = A_1 \oplus A_2 \oplus \cdots \oplus A_r = \begin{bmatrix} A_1 \\ A_2 \\ & A_r \end{bmatrix}$$
dim ker $A = \sum_{i=1}^{r} \underset{\text{Rer}(A_i)}{\text{Rer}(A_i)}$

$$rank(A) = \sum_{i=1}^{r} rank(A_i) = N - dim ker(A)$$

Eigenvalues of A vs those of A,..., Ar

smaller I

$$E_{\lambda}(A) = \ker(A - \lambda I) = \ker(A_1 - \lambda I) \oplus \cdots \oplus \ker(A_r - \lambda I)$$

Eigenvectors of A for 2

(2)
$$G_{\lambda}(A)$$
's: $G_{\lambda}(A) = \ker(A - \lambda I)^n$

key fact $V = C^{2} = G_{2}(A) \oplus \cdots \oplus G_{2m}(A)$

if $\lambda_1, ..., \lambda_m$ are eigenvalues of A

each is A invariant

50

3 Jordan Blocks

$$J(\lambda, n) = \begin{pmatrix} \lambda! \\ \vdots \\ \lambda \end{pmatrix} = J(0, n) = N$$
(ni lpotent matrix)

know: din ker J(OIn)=1

index of nilpotence=n

Char poly = gn(x)=xn

min poly = mn(x)=xn

Theorem: A & Cnxn is similar to a direct sum of Jurdan blocks

Case 1: A has only eigenvalue λ $A \sim J(\lambda, k_1) \oplus \cdots \oplus J(\lambda, k_r)$

where

 $k_1 = k_2 + \cdots + k_r \rightarrow partition of n$

 $J(\lambda,k_1)\oplus\cdots\oplus J(\lambda,k_r)=J(\lambda,k_r,k_r)$

Case 7: General Case: AECnxn, 7,,..., 2m eigenvalues

 $A \sim J(\lambda_1, \underline{k}^{(1)}) \oplus J(\lambda_2, \underline{k}^{(2)}) \oplus \cdots \oplus J(\lambda_m, \underline{k}^{(m)})$

Example: Suppose A is 8*8 with eigenvalues

$$\lambda_1 = 7$$
, dim $E_{\lambda_1} = 1$, dim $G_{\lambda_1} = 3$
 $\lambda_2 = 15$, dim $E_{\lambda_2} = 1$, dim $G_{\lambda_2} = 1$
 $\lambda_3 = -1$, dim $E_{\lambda_3} = 3$, dim $G_{\lambda_3} = 4$

Find all possible JCF's of A

Sol'n

 $A \sim J(\lambda, k^{(2)}) \oplus J(\lambda, k^{(2)}) \oplus J(\lambda, k^{(2)})$

 $\frac{k^{(1)}}{k^{(2)}}$ is a partition of 1 \Rightarrow 1 NOTE $\frac{k^{(2)}}{k^{(3)}}$ is a partition of 4 \Rightarrow 211 \Rightarrow 221 \Rightarrow 221 \Rightarrow 221 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 35 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 39 \Rightarrow 31 \Rightarrow 31 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 35 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 39 \Rightarrow 30 \Rightarrow 30 \Rightarrow 31 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 39 \Rightarrow 30 \Rightarrow 31 \Rightarrow 31 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 39 \Rightarrow 30 \Rightarrow 31 \Rightarrow 31 \Rightarrow 31 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 38 \Rightarrow 39 \Rightarrow 30 \Rightarrow 31 \Rightarrow 31 \Rightarrow 31 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 36 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 39 \Rightarrow 30 \Rightarrow 30 \Rightarrow 31 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 38 \Rightarrow 39 \Rightarrow 30 \Rightarrow 30 \Rightarrow 30 \Rightarrow 31 \Rightarrow 31 \Rightarrow 31 \Rightarrow 32 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 38 \Rightarrow 39 \Rightarrow 30 \Rightarrow 30 \Rightarrow 31 \Rightarrow 31 \Rightarrow 31 \Rightarrow 32 \Rightarrow 33 \Rightarrow 34 \Rightarrow 36 \Rightarrow 37 \Rightarrow 38 \Rightarrow 38 \Rightarrow 38 \Rightarrow 39 \Rightarrow 30 \Rightarrow 30

 $\frac{1}{\sqrt{2}}$

Choose partition 211 to satisfy dim Eng

Thus

us	_				\neg
	J' 1				
	λ, ι				
JCF =	λ,				
		λ_z			
			λ, Ι		
			λ_3		
				λ_3	
				\mathcal{Y}^{3}	
-	•	'	1		٦