# Funções - Imagem Direta e Inversa

José Antônio O. Freitas

MAT-UnB

Seja  $\underline{f}: \underline{A} \to \underline{B}$ 





Seja  $f: A \rightarrow B$  uma função.



Seja  $f: \underline{A} \to B$  uma função. i) Dado $P \subseteq A$ ,



Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** 



Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de  $\underline{P}$ 



Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f



Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P)



Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B



Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$\underline{f(P)} =$$

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x)\}$$



Seja  $f: A \rightarrow B$  uma função.

i) Dado $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é,

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto  $\acute{e}$ , f(P)

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

Seja  $f: \underline{A} \rightarrow (B)$ uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado 
$$Q \subseteq B$$
,

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem** inversa

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f e indica-se por

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f e indica-se  $por(f^{-1}Q)$ 

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

$$f^{-1}(Q)$$



Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

$$f^{-1}(Q) = \{ x \in A \mid$$

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

$$f^{-1}(\underline{Q}) = \{x \in A \mid f(\underline{Q}) \in \underline{Q}\},\$$

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f e indica-se por  $f^{-1}(Q)$  o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é.



Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f e indica-se por  $f^{-1}(Q)$  o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é,  $f^{-1}(Q)$ 

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f e indica-se por  $f^{-1}(Q)$  o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é,  $f^{-1}(Q)$  é o conjunto dos elementos de A

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f e indica-se por  $f^{-1}(Q)$  o subconjunto de A dado por

$$f^{-1}(Q) = \{ x \in A \mid f(x) \in Q \},$$

isto é,  $f^{-1}(Q)$  é o conjunto dos elementos de A que tem imagem em

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f e indica-se por  $f^{-1}(Q)$  o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é,  $f^{-1}(Q)$  é o conjunto dos elementos de A que tem imagem em Q através de f.

Seja  $f: A \rightarrow B$  uma função.

i) Dado  $P \subseteq A$ , chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado  $Q \subseteq B$ , chama-se **imagem inversa** de Q **segundo** f e indica-se por  $f^{-1}(Q)$  o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é,  $f^{-1}(Q)$  é o conjunto dos elementos de A que tem imagem em Q através de f.



$$f(x) = \tan(x)$$

$$f(x) = \tan(x)$$







1) Seja 
$$\underline{A} = \{\underline{1}, \underline{3}, \underline{5}, \underline{7}, 9\}$$



1) Seja 
$$A = \{1, 3, 5, 7, 9\}$$
 e  $B = \{0, 1, 2, 3, \dots, 10\}$ 



1) Seja 
$$A = \{1, 3, 5, 7, 9\}$$
 e  $B = \{0, 1, 2, 3, \dots, 10\}$  e  $f: A \to B$ 

$$f(\{1\}) = \{ f(\chi) \mid \chi_{\varepsilon}(J) \} = \{ f(J) \} - \{2\}$$

$$f(\{1\}) = \{f(1)\}$$

$$\mathit{f}(\{\underline{1}\}) = \{\underline{\mathit{f}(1)}\} = \{\underline{2}\}$$



$$f(\{1\}) = \{f(1)\} = \{2\}$$
  
 $f(\{3,5,7\}) = \{f(1) \mid \chi_{\mathcal{E}} \mid 3,5,7\} \}$ 

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {\underline{f(3)}},$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {f(3), f(5),$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {f(3), f(5), f(7)}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\underbrace{3,5,7}) = \{f(3), f(5), f(7)\} = \{4,\underline{6,8}\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$
  
 $f(\{3, 5, 7\}) = \{f(3), f(5), f(7)\} = \{4, 6, 8\}$   
 $f(A)$ 

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {f(3), f(5), f(7)} = {4,6,8}$$

$$f(A) = \{f(1), f(3), \}$$

$$f({1}) = {f(1)} = {2}$$

$$f({3,5,7}) = {f(3), f(5), f(7)} = {4,6,8}$$

$$f(A) = \{f(1), f(3), f(5), f($$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {f(3), f(5), f(7)} = {4,6,8}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} =$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset)$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \underline{\emptyset}$$



$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x)\}$$



$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\})$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x)$$



$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x) \in \{0,1,3,5,7,9\}\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x) \in \{0,1,3,5,7,9\}\} = \emptyset$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x) \in \{0,1,3,5,7,9\}\} = \emptyset$$



2) Sejam  $A = B = \mathbb{R}$ 





2) Sejam 
$$A = B = \mathbb{R}$$
 e  $f : \mathbb{R} \to \mathbb{R}$ 





2) Sejam  $A = B = \mathbb{R}$  e  $f : \mathbb{R} \to \mathbb{R}$  dada por  $f(x) = \underline{x}^2$ .





$$f(\{1,2,3\}) = \langle f(\pi) \mid \chi \in \langle 1, \overline{2}, \overline{2} \rangle \rangle$$



2) Sejam 
$$A = B = \mathbb{R}$$
 e  $f : \mathbb{R} \to \mathbb{R}$  dada por  $f(x) = x^2$ . Temos:

$$f(\{1,2,3\}) = \{\underline{1},\underline{4},\underline{9}\}$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \left\{ f(\Lambda) \mid \chi \in [0,2] \right\} = \left\{ \chi^2 \mid 0 \leqslant \chi \leq 2 \right\}$$



$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x)\}$$



$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R}$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$\mathit{f}([0,2]) = \{\mathit{f}(x) \in \mathbb{R} \mid 0 \leq x$$



2) Sejam 
$$A = B = \mathbb{R}$$
 e  $f : \mathbb{R} \to \mathbb{R}$  dada por  $f(x) = x^2$ . Temos:

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\}$$



$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{\underline{x}^2\}$$



2) Sejam 
$$A = B = \mathbb{R}$$
 e  $f : \mathbb{R} \to \mathbb{R}$  dada por  $f(x) = x^2$ . Temos:

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\}$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \begin{cases} \chi \in \mathbb{R} \mid f(\chi) \in [1,3] \end{cases}$$

$$\downarrow \in f(\chi) \in [1,2] \quad \downarrow \in [1,2]$$

$$\chi^{2}$$
  $_{3}$   $_{5}$   $_{5}$   $_{7}$   $_{7}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{7}$   $_{7}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$ 





$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R}$$



$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]$$



$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid f(x) \in [1,9]\}$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\}$$



$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R}$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2\}$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\}$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\} = [-3,-1]$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\} = [-3,-1] \cup [1,3]$$



$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\} = [-3,-1] \cup [1,3]$$



Seja  $f: A \rightarrow B$  uma função



Seja  $f: A \rightarrow B$  uma função e sejam P,



Seja f: $\overline{A} \rightarrow B$  uma função e sejam $P, Q \subseteq \underline{A}$ ,



Seja  $f: A \rightarrow B$  uma função e sejam  $P, Q \subseteq A, R,$ 





i) Se 
$$P \subseteq Q$$
,



i) Se 
$$P \subseteq Q$$
, então  $f(P) \subseteq f(Q)$ .



- i) Se  $P \subseteq Q$ , então  $f(P) \subseteq f(Q)$ .
- ii)  $\underline{f}^{-1}(R \cup S)$



i) Se 
$$P \subseteq Q$$
, então  $f(P) \subseteq f(Q)$ .

ii) 
$$f^{-1}(R \cup S) = f^{-1}(R)$$



i) Se 
$$P \subseteq Q$$
, então  $f(P) \subseteq f(Q)$ .

ii) 
$$f^{-1}(R \cup S) = f^{-1}(R) \cup f^{-1}(S)$$
.



Seja  $f: A \to B$  uma função e sejam  $P, Q \subseteq A, R, S \subseteq B$ 

- i) Se  $P \subseteq Q$ , então  $f(P) \subseteq f(Q)$ .
- ii)  $f^{-1}(R \cup S) = f^{-1}(R) \cup f^{-1}(S)$ .

tef'(r) uf'(s) » te f'(r) ou tef'(s)

>> f(t) ell ou f(t) e S. » f(t) e (lus)

>> te f'(rus).

ProvA: (i) SEJA 
$$y \in f(P)$$
. DAI EXISTE  $x \in P$ 

TAL QUE
$$f(x) = y.$$

MAS COR HIBÓTESE PEQ. LOGO, XEQ

f(7) = y.

ASSIM,  $y \in p(Q)$ . Lobo,  $p(P) \leq p(Q)$ . (i) SETA  $\chi \in f^{-1}(RUS)$  DAÍ  $f(\chi) \in RUS$ 

ASSim flaje R ou flaje S. JSTO e',

 $\chi \in f^{-1}(R)$  ou  $\chi \in f^{-1}(S)$ . LD60,

 $\chi \in f^{-1}(R) \cup f^{-1}(S)$ . ENTÃO  $f^{-1}(R \cup S) \subseteq f^{-1}(R) \cup f^{-1}(S)$ AGONA SEGA teft(R) uf'(S). ASSIN tefter ou tefter. Iso d,

flt ell or flt es dai

PONTA WO

600, f(R) ufts) = f (Rus).

 $f^{-5}(R \cup S) = f^{-5}(R) \cup f^{-5}(S).$