DEEP LEARNING AND INVERSE PROBLEMS SUMMER 2021

Lecturer: Reinhard Heckel

Problem Set 2

Issued: Wednesday April 21, 2021, Due: Friday April 30 2021.

We covered much of what is necessary for this exercise already on April 21, but will cover a bit more on incoherence on April 28, therefore this is due on Friday, April 30.

Problem 1 (Compressive sensing with spikes and random vectors). In this problem we consider recovery of a signal that is sparse in the concatenation of the identity basis and a random basis, i.e., in the dictionary

$$\mathbf{D} = [\mathbf{B}, \mathbf{I}] \in \mathbb{R}^{n \times 2n}$$
.

Here, $\mathbf{B} \in \mathbb{R}^{n \times n}$ is random Gaussian matrix, with entries iid $\mathcal{N}(0, 1/n)$, and $\mathbf{I} \in \mathbb{R}^{n \times n}$ contains the standard basis vectors, i.e., the k-th column of \mathbf{I} is the unit vector \mathbf{e}_k with k-th entry equal to one.

1. First, we are given the measurement

$$\mathbf{y} = [\mathbf{b}_0, \mathbf{e}_0, \dots, \mathbf{e}_{n-1}]\mathbf{x},$$

where \mathbf{x} is s-sparse. Furthermore, suppose the support set of \mathbf{x} , i.e., the position of the non-zeros is known. How large can s be such that recovery of every s-sparse vector from the corresponding measurement \mathbf{y} is possible, with probability one, and why?

Next, we study recovery of \mathbf{x} from the measurement

$$\mathbf{v} = \mathbf{D}\mathbf{x}$$
.

Towards this goal, we first study the incoherence of the matrix **D**. Recall from class, that a matrix **A** with unit norm columns is μ -incoherent if μ is the largest number such that for all pairs of columns $\mathbf{a}_i, \mathbf{a}_j, i \neq j$ of **A**,

$$|\langle \mathbf{a}_i, \mathbf{a}_j \rangle| \leq \mu.$$

Also recall that for a Gaussian random variable $x \sim \mathcal{N}(0,1)$, we have that, for $\beta \geq \frac{1}{2\pi}$ that

$$P[x \ge \beta] \le e^{-\beta^2/2}.$$

- 2. What is the distribution of $\langle \mathbf{e}_i, \mathbf{b}_j \rangle$, and given this result, what is bound on the probability that the absolute values of this random variable exceeds a constant β' ?
- 3. Building on the result from the previous part, what is the coherence parameter of the matrix \mathbf{D} , with high probability (say with probability at least 1δ , where $\delta > 0$ is a parameter)? Since $\|\mathbf{b}_i\|_2 \approx 1$, with high probability, you can assume $\|\mathbf{b}_i\|_2 = 1$ for simplicity.
- 4. Recall from class that provided a matrix \mathbf{A} is μ -incoherent, and \mathbf{x} is s-sparse with $s < \frac{1}{2\mu}$, then ℓ_1 -minimization provably recovers the vector \mathbf{x} from the measurements $\mathbf{y} = \mathbf{A}\mathbf{x}$. Based on this result, what is the maximum sparsity under which recovery with ℓ_1 -minimization provably succeeds? Is this result pessimistic, i.e., is there a matrix that allows the sparsity s to be significantly larger, if yes, specify that matrix and specify what the allowed level of sparsity is.