

Module 3 INTRODUCTORY QUANTUM MECHANICS

(As per Revised Curriculum SVU R-2023)

1.	de' Broglie equations	$\lambda = \frac{h}{p} = \frac{h}{mv}$
		$\lambda = \frac{h}{2mK}$
		$\lambda = \frac{h}{2mqV}$
2.	Uncertainty products	$\Delta x \Delta p_x \ge \frac{h}{4\pi}$ (Also, $\Delta i \Delta p_j = 0$ for $i \ne j$)
		$\Delta E \Delta t \ge \frac{h}{4\pi}$
		$\Delta\theta\Delta L \ge \frac{h}{4\pi}$
3.	Relativistic equation for kinetic	$K = \sqrt{p^2 c^2 + m_0^2 c^4} - m_0 c^2$
	energy	For $V \ll c$, $K \rightarrow \frac{p^2}{2m_0}$
4.	Energy of particle confined to one- dimensional infinite quantum well	$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} = \frac{n^2 h^2}{8mL^2}; n = 1, 2, 3,$
5.	Momentum of particle confined to	$p = \pm \hbar k = \pm \frac{nh}{2L}$
	one-dimensional infinite quantum	ZL
L	well	
6.	Phase velocity/wave velocity	$v_{phase} = \frac{\omega}{k}$
7.	Group velocity	$V_{ m group} = rac{{ m d}\omega}{{ m d}k} = v_{ m particle}$