Theorem 3.6.1 (Asymptotic behavior of Fourier Coefficients)

If f_T and it's first m derivatives are continuous, but $f_T^{(m+1)}$ is discontinuous then, $|a_K| < \frac{C}{K^{m+2}}, |b_K| < \frac{C}{K^{m+2}}, |C_R| < \frac{C}{K^{m+2}}$

Corollary 3.6.1 (Asymptotic behavior of Fourier Coefficients, Special Cases)

- (a) if I_7 is disontinuous (m=-1), then C_K goes to Zero on the order of V_K .
- (b) if f_T is continuous but f_T is dicontinuous (m=0), then Cx goes to zero on the order of $1/K^2$.
- (c) if f_T and all of its derivatives are continuous, then C_K goes to zero on the order of $1/K^m$

Definition 3.6.1 (Frequency Bluming)

Let I sortisy the directlet conditions,

The frequency domain grouph of f is said to have frequency blurring if there is a clustering of nonzero Fourier Coefficients new the dominant frequencies

Calculating Ck

$$C_{K} = \frac{1}{T} \int_{0}^{T} f(x) e^{iKwt}$$

