

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 0 697 403 A1**

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 21.02.1996 Bulletin 1996/08

(21) Numéro de dépôt: 95401912.1

(22) Date de dépôt: 18.08.1995

(51) Int CI.6: **C07D 209/42**, A61K 31/395, C07D 405/04, C07D 215/54, C07D 215/48, C07D 217/26, C07D 487/06, C07C 237/22

(84) Etats contractants désignés:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(30) Priorité: 19.08.1994 FR 9410165

(71) Demandeur: SANOFI F-75008 Paris (FR)

(72) Inventeurs:

Bras, Jean-Pierre
 F-31500 Toulouse (FR)

 de Cointet, Paul F-31400 Toulouse (FR)

 Despeyroux, Pierre F-31120 Portet/Garonne (FR)

 Frehel, Daniel, Résidence de l'Autan F-31100 Toulouse (FR)

Gully, Danielle
 F-31600 Muret (FR)

Maffrand, Jean-Pierre
 F-31120 Portet/Garonne (FR)

Bignon, Eric
 F-31120 Pinsaguel (FR)

(74) Mandataire: Le Guen, Gérard et al F-75441 Paris Cédex 09 (FR)

- (54) Dérivés de glycinamide comme agonistes des récepteurs de la cholecystokinine
- (57) La présente invention concerne des composés de formule :

$$R_{I} - N - CO - CH - NH - CO - R_{III}$$

$$Ar$$
(I)

qui sont des agonistes des récepteurs de la cholecystokinine et compositions pharmaceutiques les contenant.

EP 0 697 403 A1

Description

5

10

15

20

25

30

35

40

45

50

55

La présente invention concerne des dérivés du glycinamide, un procédé pour leur préparation et les médicaments les contenant.

Plus particulièrement, la présente invention a pour objet de nouveaux agonistes non peptidiques des récepteurs de la cholécystokinine (CCK).

La CCK est un peptide, qui en réponse à une ingestion d'aliment, est secrétée au niveau périphérique et participe à la régulation de nombreux processus digestifs (CRAWLEY J.N. et al., Peptides, 1994, 15 (4), 731-735).

La CCK a été identifiée par la suite dans le cerveau et pourrait être le neuropeptide le plus abondant agissant comme neuromodulateur des fonctions cérébrales par stimulation des récepteurs de type CCK-B (CRAWLEY J.N. et al., Peptides, 1994, 15 (4), 731-735). Dans le système nerveux central, la CCK interagit avec la transmission neuronale médiée par la dopamine (CRAWLEY J.N. et al., ISIS Atlas of Sci., Pharmac., 1988, 84-90). Elle intervient également dans des mécanismes impliquant l'acétylcholine, le gaba (acide 4-aminobutyrique), la sérotonine, les opioïdes, la somatostatine, la substance P et dans les canaux ioniques.

Son administration provoque des modifications physiologiques : ptose palpébrale, hypothermie, hyperglycémie, catalepsie, et comportementales : hypolocomotricité, diminution de l'exploration, analgésie, modification de la faculté d'apprentissage, modification du comportement sexuel et satiété.

La CCK exerce son activité biologique par l'intermédiaire d'au moins deux types de récepteurs : les récepteurs CCK-A localisés principalement en périphérie, et les récepteurs CCK-B présents essentiellement dans le cortex cérébral. Les récepteurs CCK-A de type périphérique sont aussi présents dans certaines zones du système nerveux central incluant l'area postrema, le noyau du tractus solitaire et le noyau interpédonculaire (MORAN T.H. et al., Bran Research, 1986, 362, 175-179; HILL D.R. et al., J. Neurosci.,1990, 10, 1070-1081); avec cependant des différences d'espèce (HILL D.R. et al., J. Neurosci.,1990, 10, 1070-1081; MAILLEUX P. et al., Neurosci. Lett., 1990, 117, 243-247; BARRETT R.W. et al., Mol. Pharmacol., 1989, 36, 285-290; MERCER J. G. et al., Neurosci. Lett., 1992, 137, 229-231; MORAN T.H. et al., TIPS, 1991, 12, 232-236).

A la périphérie, par l'intermédiaire des récepteurs CCK-A (MORAN T.H. et al., Brain Research, 1986, *362*, 175-179), la CCK retarde la vidange gastrique, module la motilité intestinale, stimule la contraction vésiculaire, augmente la sécrétion biliaire, contrôle la sécrétion pancréatique (McHUGH P.R. et al., Fed. Proc., 1986, *45*, 1384-1390 ; PENDLETON R.G. et al., J. Pharmacol. Exp. Ther., 1987, *241*, 110-116).

La CCK pourrait agir dans certains cas sur la pression artérielle et influencer les systèmes immunitaires.

Le rôle de la CCK dans le signal de satiété est supporté par le fait que les concentrations plasmatiques de CCK, dépendantes de la composition des repas (fortes concentrations de protéines ou de lipides), sont, après les repas supérieures à celles observées avant les repas (IZZO R.S. et al., Regul. Pept., 1984, *9*, 21-34; PFEIFFER A. et al., Eur. J. Clin. Invest., 1993, *23*, 57-62; LIEVERSE R.J., Gut 35 501,1994). Des taux plasmatiques de CCK significativement élevés ont été décrits chez des patients anorexiques et/ou boulimiques (PHILIPP E. et al., Life Sci., 1991, *48*, 2442-2450; GERACIOTTI T.D. Jr. et al., N. Engl. J. Med., 1988, *319*, 683-688). Chez les boulimiques, il y a une diminution de la sécrétion de la CCK induite par un repas et une baisse des concentrations de CCK dans le liquide cérébrospinal (GERACIOTTI T.D. Jr. et al., N. Engl. J. Med., 1988, *319*, 683-688).

Basé sur ces évidences du rôle clé de la CCK dans le signal de satiété périphérique, l'utilité d'agonistes et d'antagonistes de la CCK comme médicament dans le traitement de certains troubles du comportement alimentaire, de l'obésité, et du diabète est indiscutable. Un agoniste des récepteurs de la CCK peut aussi être utilisé en thérapeutique dans le traitement des troubles du comportement émotionnel, sexuel et mnésique (ITOH S. et al., Drug. Develop. Res., 1990, 21, 257-276), de la schizophrénie, des psychoses (CRAWLEY J.N. et al., ISIS Atlas of Sci., Pharmac., 1988, 84-90 et CRAWLEY J.N., TIPS, 1991, 12, 232-265), de la maladie de Parkinson, des dyskinésies tardives et de divers troubles de la sphère gastrointestinale (Drugs of the Future, 1992, 17 (3), 197-206).

Des agonistes du récepteur de la CCK sont décrits dans la littérature. Par exemple, certains produits ayant de telles propriétés sont décrits dans EP-A-0383690 et WO 90/06937.

La plupart des agonistes CCK-A décrits à ce jour sont de nature peptidique. Ainsi, le FPL 14294 dérivé de la CCK-7, un puissant agoniste CCK-A non sélectif vis-à-vis des récepteurs CCK-B, possède une puissante activité inhibitrice de la prise de nourriture chez le rat et chez le chien après administration intranasale (SIMMONS R.D. et al., Pharmacol. Biochem. Behav., 1994, 47 (3), 701-708; KAISER E.F. et al., FASEB, 1991, 5, A864). De même, il a été montré que, le A-71623, un tétrapeptide agoniste sélectif des récepteurs CCK-A, est efficace dans des modèles d'anorexie sur une période de 11 jours et entraîne une réduction significative de la prise de poids par rapport au contrôle chez les rongeurs et les singes cynomologues (ASIN K.E. et al., Pharmacol. Biochem. Behav., 1992, 42, 699-704). De la même façon, des analogues structuraux du A 71623, possédant une bonne efficacité et sélectivité pour les récepteurs CCK-A sont dotés d'une puissante activité anorexigène chez le rat (ELLIOTT R.L. et al., J. Med. Chem., 1994, 37, 309-313; ELLIOTT R.L. et al., J. Med. Chem., 1994, 37, 1562-1568).

La demande de brevet WO 91/13874 décrit une série de dérivés de la glycinamide possédant une affinité pour les

récepteurs CCK. Plus particulièrement, ces composés sont décrits comme des antagonistes sélectifs du récepteur CCK-B/gastrine, (XIIth Int. Symp. Med. Chem., Bâle, 1992).

On a maintenant trouvé de façon surprenante qu'une série de dérivés de glycinamide possède une puissante activité agoniste des récepteurs CCK-A.

Les composés selon l'invention ont fait l'objet d'études systématiques pour caractériser :

- leur potentialité pour déplacer la [1251]-CCK de ses sites de liaison présents sur des membranes pancréatiques de rat (récepteur CCK-A) ou de cellules 3T3 exprimant le récepteur recombinant CCK-A humain,
- leur sélectivité vis-à-vis du récepteur CCK-B présent sur des membranes de cortex de cobaye, les composés étant des ligands sélectifs ou non des récepteurs CCK-A,
 - leur propriété agoniste des récepteurs CCK-A à travers leur capacité à induire in vitro la sécrétion d'amylase par des cellules pancréatiques chez le rat, ou à provoquer in vivo la vidange de la vésicule biliaire chez la souris, ou à bloquer toujours in vivo la vidange gastrique chez la souris,
 - leur effet sur la consommation alimentaire chez le rat.

Ainsi, la présente invention concerne des composés de formule :

 $\begin{array}{c} R_{I} - N - CO - CH - NH - CO - R_{III} \\ \downarrow \\ Ar \end{array} \tag{I)}$

dans laquelle

2 ou 3;

15

20

25

30

35

40

45

- R_I représente un alkyle en C₃ à C₈; un arylalkyle -Alk-Ar₁ où Alk représente un alkylène de 1 à 4 atomes de carbone et Ar₁ représente un groupe phényle ou un hétérocycle éventuellement substitué par un halogène, un alkyle en C₁-C₃, un alcoxy en C₁-C₃, un trifluorométhyle ou un hydroxyle; un cycloalkylalkyle dans lequel l'alkyle est en C₁-C₄ et le cycloalkyle en C₃-C₁₀; un cycloalkyle en C₃-C₁₀ éventuellement substitué par un hydroxyle, un alcoxy en C₁-C₃ ou un alkyle en C₁-C₃ ledit alkyle pouvant substituer deux fois le même atome de carbone; un alcoxyalkyle dans lequel l'alcoxy est en C₁-C₄ et l'alkyle est en C₂-C₅; ou un groupe (AB)N-CO-(CH₂)_r-, où A est un alkyle en C₁-C₃, B est un alkyle en C₁-C₃ ou un phényle ou bien A et B forment, avec l'atome d'azote auquel ils sont liés, un hétérocycle choisi parmi pyrrolidine, pipéridine et morpholine, r est 1,
- R_{II} représente l'hydrogène; un alkyle en C₁-C₆; un hydroxyalkyle en C₁-C₅; un groupe -(CH₂)_m-COR₂ dans lequel m est un entier de 1 à 3 et R₂ représente un hydroxyle, un groupe alcoxy en C₁-C₄, un groupe benzyloxy, un groupe -NR₃R₄ dans lequel R₃ ou R₄ représentent indépendamment l'hydrogène, un alkyle en C₁-C₄ ou constituent avec l'atome d'azote auquel ils sont liés un hétérocycle choisi parmi pyrrolidine, pipéridine et morpholine; un groupe aralkyle -(CH₂)_n-Ar₂ dans lequel n est égal à 0 ou représente un entier de 1 à 4 et Ar₂ représente un phényle ou un hétérocycle éventuellement substitué par un halogène, un alkyle en C₁-C₃, un alcoxy en C₁-C₃, un trifluorométhyle, un hydroxyle ou par un benzyloxy; un cycloalkylalkyle dans lequel l'alkyle est en C₁-C₄ et le cycloalkyle en C₃-C₁₀; un aminoalkyle en C₁-C₄; un groupe R-CO-NH-(CH₂)_x- dans lequel x représente un nombre entier de 1 à 4 et R représente un alkyle en C₁-C₄, un phényle, un benzyle, un 2-phényléthényle ou un benzyloxy, les noyaux aromatiques étant éventuellement substitués par un halogène, un alkyle en C₁-C₃, un trifluo
 - rométhyle, un hydroxyle, un groupe sulfonique ou carboxylique ; un guanidinoalkyle en C_1 - C_4 ; un imidazolylalkyle en C_1 - C_3 ; un alkylthioalkyle dans lequel les alkyles sont en C_1 - C_3 ; un aralkylthioalkyle dans lequel la partie aryle est éventuellement hétérocyclique et les parties alkyle sont en C_1 - C_3 , l'aryle étant éventuellement substitué par un halogène, un alkyle en C_1 - C_3 , un alcoxy en C_1 - C_3 , un trifluorométhyle, un hydroxyle; un benzyloxyalkyle dans lequel l'alkyle est en C_1 - C_3 et le phényle éventuellement substitué par un halogène, un hydroxyle, un alcoxy en C_1 - C_3 , un alkyle en C_1 - C_3 , un trifluorométhyle, un nitrile, un nitro;
- R_{III} représente un groupe naphtyle; un groupe quinoléinyle; un groupe isoquinoléinyle; un groupe indolyle non substitué, substitué sur un carbone, ou substitué sur l'azote par un groupe alkylcarbonyle en C₁-C₄, par un groupe -(CH₂)_p-COR₅, p étant un entier de 0 à 4 et R₅ représentant OR'₅ ou NR'₅R"₅ avec R'₅ et R"₅ identiques ou non représentant l'hydrogène ou un alkyle en C₁-C₄ ou bien R'₅ et R"₅ formant ensemble avec l'atome d'azote auquel

ils sont liés une pipéridine, par un hydroxyalkyle en C_1 - C_4 , par un alcoxyalkyle en C_2 - C_6 , par un cyanoalkyle en C_2 - C_4 , par un tétrahydropyranyle, par un adamantylaminocarbonylalkyle en C_{1} - $_4$ ou par une chaîne - $(CH_2)_q$ -, q étant un entier de 2 à 4 dont un des carbones substitue le noyau phényle du groupe indolyle pour constituer un cycle ;

- Ar représente un groupe 2-méthoxy-3-pyridinyle, 4-méthoxy-5-pyrimidinyle ou 2-méthoxyphényle contenant au moins deux autres substituants choisis parmi un alkyle en C₁-C₃, un alcoxy en C₁-C₃, un atome d'halogène et un trifluorométhyle; ou Ar représente un groupe naphtyle;
 - ou bien R_I et R_{II} constituent ensemble un groupe

10

15

20

25

30

35

40

45

50

55

dans lequel g représente 0, 1 ou 2 et Z représente un alkyle en C₁-C₄, un alcoxy en C₁-C₃ ou un halogène ; ou éventuellement un de leurs sels.

Une classe de produits avantageux est représentée par la formule suivante:

$$R_{Ia}$$
 R_{Ia}
 $-N$
 $-CO$
 $-CH$
 $-NH$
 $-CO$
 $-R_{III}$
 $-CO$
 $-CH$
 $-NH$
 $-CO$
 $-R_{III}$
 $-CH$
 $-CO$
 $-R_{III}$
 $-CH$
 $-CO$
 $-R_{III}$
 $-CH$
 $-CO$
 $-R_{III}$
 $-CO$

dans laquelle $R_{\rm II}$ et $R_{\rm III}$ sont tels que définis ci-dessus pour (I) et $R_{\rm Ia}$ représente un alkyle en C_5 - C_8 ; un arylalkyle -Alk-Ar $_1$ où Alk représente un alkylène de 1 à 4 atomes de carbone et Ar $_1$ représente un groupe phényle ou un hétérocycle éventuellement substitué par un halogène, un alkyle en C_1 - C_3 , un alcoxy en C_1 - C_3 , un trifluorométhyle ou un hydroxyle; un cycloalkylalkyle dans lequel l'alkyle est en C_1 - C_4 et le cycloalkyle en C_3 - C_{10} ; un cycloalkyle en C_3 - C_{10} éventuellement substitué par un alcoxy en C_1 - C_3 , un hydroxyle ou un alkyle en C_1 - C_3 ; ledit alkyle pouvant substituer deux fois le même atome de carbone; un alcoxyalkyle dans lequel l'alcoxy est en C_1 - C_4 et l'alkyle est en C_2 - C_5 ; ou un groupe (AB)N-CO-(CH $_2$)_r-, où A est un alkyle en C_1 - C_3 , B est un alkyle en C_1 - C_3 ou un phényle ou bien A et B forment, avec l'atome d'azote auquel ils sont liés, un hétérocycle choisi parmi pyrrolidine, pipéridine et morpholine, et r est 1, 2 ou 3 ou éventuellement un de leur sels.

Les sels d'addition de ces composés sont ceux obtenus le cas échéant, avec des acides et des bases minérales ou organiques : les sels non toxiques pharmaceutiquement acceptables sont préférés mais d'autres sels utilisables pour isoler ou purifier les composés de formule (I) sont aussi un objet de l'invention.

Dans les définitions qui précèdent et celles qui suivent, les radicaux alkyles sont en chaînes droites ou ramifiées. Lorsque Ar₁ ou Ar₂ représente un hétérocycle, celui-ci est choisi de préférence parmi pyridine, pyrimidine, pyrazine ou pyridazine.

Lorsque R_{II} représente aralkylthioalkyle, le groupe aryle est choisi de préférence parmi phényle pyridine, pyrimidine, pyrazine ou pyridazine.

Dans la formule (I), les atomes d'halogène sont de préférence des atomes de chlore, de brome ou de fluor.

Les composés de formule (I) comportant un ou plusieurs centres asymétriques présentent des formes isomères. Les racémiques et les énantiomères ou stéréoisomères de ces composés font également partie de l'invention.

Lorsque le substituant R_{II} est autre que l'hydrogène, les énantiomères dans lesquels le carbone portant R_{II} est en configuration R sont préférés.

Lorsque R_I et R_{II} constituent ensemble un groupe

dans lequel Z et g sont tels que définis pour (I), les énantiomères dans lesquels le carbone portant R_{II} est en

configuration S sont préférés.

10

15

40

55

Un groupe de composés possédant une meilleure activité agoniste des récepteurs CCK-A est celui pour lequel R_l représente un alkyle en C_3 à C_8 , encore meilleur est celui pour lequel R_l représente un alkyle en C_4 - C_8 et préféré est celui pour lequel R_l représente un alkyle en C_5 - C_8 , particulièrement préféré est celui pour lequel R_l est un cycloalkyle en C_5 - C_7 .

Les composés de formule (I) dans lesquels Ar représente un groupe naphtyle et R_I est R_{Ia} tel que défini ci-dessus forment un autre groupe de composés préférés.

Les composés de formule (I) dans lesquels Ar représente un radical 2-méthoxyphényle substitué par au moins deux substituants, choisis parmi alkyle en C_1 - C_4 , alcoxy en C_1 - C_3 , un atome d'halogène ou un groupe trifluorométhyle sont des composés avantageux.

Les composés de formule (I) dans lesquels Ar représente un radical 2-méthoxyphényle substitué sur le noyau aromatique par un méthyle et un second méthoxy sont des composés très avantageux.

Les composés de formule (I) dans lesquels R_{III} représente un 2-indolyle N-substitué ou non sont particulièrement avantageux.

Les composés de formule (I) dans lesquels R_I représente un alkyle en C_5 ou un cycloalkyle en C_6 , R_{II} représente un benzyloxyalkyle ou un cycloalkylalkyle, R_{III} représente un 2-indolyle substitué et Ar représente un 2,6-diméthoxy-4-méthylphényle sont plus particulièrement préférés.

Encore plus particulièrement préférés sont les composés suivants :

EXEMPLE 3: (R)-N-[1-[(2,6-diméthoxy-4-méthylphényl)-pentylcarbamoyl]éthyl]-1*H*-indole-2-carboxamide.

EXEMPLE 6: Acide 3-[2-[[(cyclohexylméthyl) (2,6-diméthoxy-4-méthylphényl)carbamoyl]méthylcarbamoyl] indol-1-yl]propionique

25 EXEMPLE 8: N-{[(2,6-diméthoxy-4-méthylphényl)pentylcarbamoyl]méthylcarbamoyl}-1*H*-indole-2-carboxamide.

EXEMPLE 9: {2-[[(2,6-diméthoxy-4-méthylphényl)pentylcarbamoyl]méthylcarbamoyl]indol-1-yl}-acétate de méthyle.

EXEMPLE 10 : Acide {2-[[(2,6-diméthoxy-4-méthylphényl)pentyl carbamoyl]méthylcarbamoyl]indol-1-yl}-acétique.

EXEMPLE 13 : Acide (R) -[2-{1-[(2,6-diméthoxy-4-méthylphényl)pentyl]carbamoyl]éthyl}carbamoyl]indol-1-yl]acétique.

35 EXEMPLE 16: Acide (R) -4-{(2,6-diméthoxy-4-méthylphényl) pentylcarbamoyl}-4-[(1*H*-indole-2-carbonyl)amino] butyrique.

EXEMPLE 19: (R)-N-{1-1(2,6-diméthoxy-4-méthylphényl)pentylcarbamoyl]-2-(4-hydroxyphényl)éthyl} -1*H*-indole-2-carboxamide.

EXEMPLE 28: Acide (R)-4-[(1-carboxyméthyl-1*H*-indole-2-carbonyl)amino]4-[[(2,6-diméthoxy-4-méthylphényl) pentyl]carbamoyl]butyrique.

EXEMPLE 30 : Acide (R){2-[{1-{(2,6-diméthoxy-4-méthylphényl) pentyl-carbamoyl}-2-phényléthyl}carbamoyl] indol-1-yl}acétique.

EXEMPLE 31 : Acide (R)[2-{[1-{(2,6-diméthoxy-4-méthylphényl) pentyl-carbamoyl}-2-(4-hydroxyphényl))éthyl]carbamoyl}indol-1-yl]acétique.

50 EXEMPLE 32 : Acide (R)[2-{[2-(carbamoyl)-1-{(2,6-diméthoxy-4-méthylphényl)pentylcarbamoyl}éthyl]-carbamoyl}indol-1-yl]acétique.

EXEMPLE 33: Acide (R)[2-{[3-(carbamoyl)-1-{(2,6-diméthoxy-4-méthylphényl)pentylcarbamoyl}propyl]carbamoyl}indol-1-yl]-acétique.

EXEMPLE 44: (R)[2-{[1-{(2,6-diméthoxy-4-méthylphényl) pentylcarbamoyl}-2-(benzyloxy)}éthyl]carbamoyl} indol-1-yl]acétate de sodium.

- EXEMPLE 51: (R)-{2-[{1-[[N-(2,6-diméthoxy-4-méthylphényl)pentyl]-carbamoyl]-2-(cyclohexyl)éthyl}-carbamoyl]-indol-1-yl}acétate de sodium.
- EXEMPLE 81 : Acide (R)-{2-[{1-[N-(2,6-diméthoxy-4-méthylphényl) pentylcarbamoyl]-2-(benzylthio)éthyl}-carbamoyl]-indol-1-yl}acétique.
 - EXEMPLE 82 : Acide (R)-{2-[{1-[N-(2,6-diméthoxy-4-méthylphényl) pentylcarbamoyl]-3-(phényl)propyl}carbamoyl] indol-1-yl}acétique.
- EXEMPLE 85 : Acide [2-{[(6-chloro-2,4-diméthoxy-5-méthylphényl)pentylcarbamoyl]méthylcarbamoyl}indol-1-yl] acétique.
 - EXEMPLE 94 : [2-{[(5-chloro-2-méthoxy-4-méthylphényl)pentyl-carbamoyl]méthylcarbamoyl}indol-1-yl]acétate de sodium.
 - EXEMPLE 103: Acide [2-{[(2,5-diméthoxy-4-méthylphényl)pentyl carbamoyl]méthylcarbamoyl}indol-1-yl]acétique.
 - EXEMPLE 109: N-{[(isopentyl)(2,4,6-triméthoxyphényl)carbamoyl] méthyl}-1*H*-indole-2-carboxamide.

15

25

- EXEMPLE 112: [2-{[(benzyl) (2,6-diméthoxy-4-méthylphényl) carbamoyl]méthylcarbamoyl}indol-1-yl]acétate de sodium.
 - EXEMPLE 118: Acide [2-{[(cyclohexylméthyl) (2,6-diméthoxy-4-méthylphényl)carbamoyl]méthylcarbamoyl}-indol-1-yl]acétique.
 - EXEMPLE 126: N-{[(2,6-diméthoxy-4-méthylphényl)pentyl-carbamoyl]méthyl}-2-naphtalènecarboxamide.
 - EXEMPLE 127: N-{[(2,6-diméthoxy-4-méthylphényl)pentyl-carbamoyl]méthyl}-3-quinoléinecarboxamide.
- EXEMPLE 137: 8-{[(2,6-diméthoxy-4-méthylphényl) (3méthoxypropyl)]-carbamoylméthylcarbamoyl} -5,6-dihydro-4*H* -pyrrolo[3,2,1-ij]-2-quinoléinecarboxamide.
 - EXEMPLE 138 : {2-[[(1-naphtyl)pentylcarbamoyl]méthylcarbamoyl]-indol-1-yl}-acétate de méthyle.
- 35 EXEMPLE 139 : Acide {2-[[(1-naphtyl)pentylcarbamoyl]méthylcarbamoyl]-indol-1-yl}-acétique.
 - EXEMPLE 141: Acide (R)-[2{1-[N-(2,6-diméthoxy-4-méthylphényl)N-cyclohexylcarbamoyl] éthylcarbamoyl} indol-1-yl]acétique.
- 40 EXEMPLE 155: Acide (R)-[2{[1-{N-(2,6-diméthoxy-4-méthylphényl)N-cyclohexyl-carbamoyl}-2-(benzyloxy)éthyl] -carbamoyl}indol-1-yl]acétique.
 - EXEMPLE 168: Acide (R)-[2{[1-{N-(2,6-diméthoxy-4-méthylphényl)N-cyclohexylcarbamoyl}-2-(cyclohexyl)éthyl] -carbamoyl}indol-1-yl]acétique.
 - EXEMPLE 171 : Acide (R)-[2{[1-{N-(2,6-diméthoxy-4-méthylphényl)N-cyclohexylméthylcarbamoyl}-2-(cyclohexyl) éthyl]-carbamoyl}indol-1-yl]acétique.
- EXEMPLE 172 : Acide (R)-{2-[{1-[N-(2,6-diméthoxy-4-méthylphényl) butylcarbamoyl]-2-(benzyloxy)éthyl}-carbamoyl]-indol-1-yl}acétique.
 - EXEMPLE 192 : Acide (R)-{2-[N-{1-[(2,6-diméthoxy-4-méthylphényl) pentyl-carbamoyl]-5-(cinnamoylamino)pentyl}-carbamoyl]-indole-1-yl}acétique.
- Les composés selon l'invention sont préparés selon le SCHEMA réactionnel suivant :

SCHEMA 1

BocNHCH-COOH $R_{II} \quad (III)$ $R_{I} - N - H \xrightarrow{\text{sous forme activée}} \qquad R_{I} - N - CO - CH - NH - Boc$ $Ar \quad (IV)$ $déprotection \\ H^{+} \qquad (IV)$ $R_{I} - N - CO - CH - NH - CO - R_{III} \xrightarrow{\text{sous forme activée}} \qquad R_{I} - N - CO - CH - NH_{2}$ $Ar \quad (I)$

Selon un autre de ses aspects, la présente invention concerne un procédé pour la préparation des composés de formule (I) caractérisé en ce que l'on traite une amine de formule :

H---N----R_I

dans laquelle Ar et R_I sont tels que définis ci-dessus, avec un aminoacide N-protégé de formule :

R_{II} | | Boc — NH — CH — COOH (IIII)

dans laquelle R_{II} est tel que défini pour (I) et dans laquelle, le cas échéant, les fonctions réactives de R_{II} ont été protégées pour conduire à un composé de formule :

R_I — N — CO — CH — NHBoc | | Ar (IV)

25

30

35

40

45

50

55

dans laquelle R_I , Ar et R_{II} sont tels que définis ci-dessus, pour conduire à un composé (I) selon l'invention ou un de ses sels.

Les composés de départ de formules (II) sont soit disponibles commercialement soit préparés selon des méthodes connues, par exemple:

- pour la 2,6-diméthoxy-4-méthylaniline selon une adaptation du procédé décrit par Mori S. et al., Tet. Lett., 1984, 25, 429;
 - pour la 2,4-diméthoxy-5-méthylaniline selon Sargent M.V., J. Chem. Soc. Perkin Trans I, 1982, 1095;

- pour la 2,4,6-triméthoxyaniline selon EP-A-088849 ;
- pour la 2,5-diméthoxy-4-méthylaniline selon Shaikh Y.A., J. Heterocyclic Chem., 1977, 14, 1049;
- pour la 2,6-diméthoxy-4-trifluorométhylaniline selon une adaptation de procédé décrit par Mori S. et al., Tet. Lett., 1984, 25, 429 à partir du 1,5-diméthoxy-3-trifluorométhylbenzène préparé selon Robertson A. et al., J. Chem. Soc., 1951,2013;
 - pour la 4-chloro-2,6-diméthoxyaniline selon Hodgson H. et al., J. Chem. Soc., 1934, 1433;
 - pour la 1-amino-2,6-diméthoxy-4-méthylpyrimidine selon Urban R. et al., Helv. Chim. Acta., 1958, 41, 1806;
 - pour le composé de formule :

Z (CH₂)_g NH₂

selon EP-0572235.

10

15

20

25

30

40

45

50

Lorsque R_I est autre qu'un cycloalkyle, les anilines de formule (II) ou les composés de formule (IV) dans lesquelles Ar est tel que défini pour (I) peuvent être préparées selon des méthodes connues selon le SCHEMA 2 suivant :

SCHEMA 2

COOH

(III)

• soit par acylation d'un composé de formule :

Ar-NH₂ (VI)

dans laquelle Ar est tel que défini pour (I) avec un halogénure d'acide de formule R'-CO-X dans lequel X représente un atome de chlore ou de brome et R' est tel que R'-CH₂- représente R_I tel que défini pour (I), ou avec l'un de ses esters activés en présence d'une base organique telle que la triéthylamine, la N-éthylmorpholine, dans des solvants organiques tels que l'éther diéthylique, le dichlorométhane, le chloroforme, le diméthylformamide ou le tétrahydrofurane pour conduire à un composé de formule :

Ar

(VIII)

55 H—N—COR' | Ar (VII)

BocNHCH

RII

dans laquelle R' et Ar sont tels que définis ci-dessus pour le réduire ensuite par un hydrure alcalin tel que l'hydrure de lithium et d'aluminium, dans un solvant organique inerte tel que l'éther diéthylique ou diisopropylique ou le tétrahydrofurane, pour conduire à un composé de formule (II),

 soit par couplage du composé (VI) avec un amino-acide N - protégé préalablement activé de formule (III) pour conduire à un composé de formule :

5

10

15

20

25

35

40

45

50

55

dans laquelle R_{II} et Ar sont tels que définis pour (I) lequel est ensuite N-alkylé après génération de l'anion par une base forte pour obtenir un composé de formule :

$$\begin{array}{c} R_{\parallel} \\ R_{\parallel} - N - CO - CH - NH - Boc \\ | \\ Ar \end{array}$$
 (IV)

dans laquelle R_l , R_{ll} et Ar sont tels que définis pour (l), ce composé étant alors traité en milieu acide anhydre pour fournir un composé (V) sous forme de sel de formule :

$$R_{1}-N-CO-CH-NH_{2}$$

$$Ar$$
(V)

lequel est alors acylé avec un acide de formule R_{III}COOH préalablement activé pour conduire à un composé (I) selon l'invention ou l'un de ses sels éventuels.

Lorsque R_I représente un cycloalkyle, les anilines de formule (II) sont originales et peuvent être préparées indépendamment selon l'un des SCHEMAS 3, 4 ou 5 ci-après.

SCHEMA 3

$$Ar \xrightarrow{NH_2} Ar \xrightarrow{Réduction} Ar \xrightarrow{Reduction} Ar \xrightarrow{NH} W$$

La condensation de l'aniline (A) dans laquelle Ar est tel que défini pour (I) avec la cycloalcanone conduit à la base de Schiff (B) qui est ensuite réduite selon les conditions habituelles, par exemple par action d'un borohydrure de sodium dans l'éthanol ou par action de l'acide formique à reflux.

SCHEMA 4

Ar
$$\xrightarrow{\text{BuLi}} \text{Ar} \xrightarrow{\text{O}} \text{Li} \xrightarrow{\text{1)} B(\text{OCH}_3)_3} \text{ArB(OH)}_2 \xrightarrow{\text{Pb(OAc)}_4} \text{ArPb(OAc)}_3$$

Ar $\xrightarrow{\text{IO}} \text{Ar} \xrightarrow{\text{IO}} \text{IO} \xrightarrow{\text{IO}} \text{ArPb} \xrightarrow{\text{IO}} \text{IO} \xrightarrow{\text{IO}} \xrightarrow{\text{IO}} \text{IO} \xrightarrow{\text{IO}} \text{IO} \xrightarrow{\text{IO}} \xrightarrow{\text$

Cette synthèse est une adaptation du procédé décrit par J.T. Pinkey et al., J. Chem. Soc. Perkin Trans I, 1990, 715 pour la préparation des composés (D) et (E) et du procédé décrit par D.H.R. Barton et al., Tet. Lett., 1987, 28 (27), 3111.

SCHEMA 5

 $Ar - NH_2 \xrightarrow{HCOOH \Delta} Ar - NH - C$

15

20

25

30

35

40

45

50

55

Les acides aminés utilisés sont activés par les réactifs de couplage utilisés couramment en chimie peptidique par exemple, dans le cas d'aminoacides racémiques ou dépourvus de centre d'asymétrie : BOP/NEt₃, BOP-CI/NEt₃, DCC/HOBT/NEt₃, anhydride mixte avec CICOOiBu en présence de triéthylamine et dans le cas d'énantiomères R ou S d'aminoacides en présence de BOP/N-éthylmorpholine, ou Boc₂O/pyridine.

Les anions des composés (VIII) sont générés par des bases fortes telles que par exemple l'hydrure de sodium ou le tertiobutylate de potassium dans un solvant anhydre aprotique tel que le tétrahydrofurane.

Les composés (V) sont obtenus à partir des acétanilides (IV) en milieu acide anhydre tel que l'acide trifluoroacétique dans le dichlorométhane ou l'acide chlorhydrique gazeux en solution dans l'acétate d'éthyle par exemple.

Les composés (V) sont alors isolés sous forme de chlorhydrate ou de trifluoroacétate, par exemple.

Les composés (I) sont obtenus par les méthodes de couplage peptidiques classiques entre les composés (V) et les acides R_{III}COOH préalablement activés sous forme d'halogénure d'acide, sous forme d'anhydride mixte avec par exemple, CICOOiBu, sous forme d'ester activé avec BOP/NEt₃, BOP/N-éthylmorpholine, BOP-CI/NEt₃, DCC/HO-BT/NEt₃, Boc₂O/pyridine, selon les méthodes bien connues de l'homme de l'art.

Les sels éventuels des composés de formule (I) avec des acides ou des bases organiques ou minérales sont préparés de la façon habituelle par introduction de l'acide, ou de la base dans une solution du composé de formule (I).

Le sel est isolé, selon ses caractéristiques de solubilité, après évaporation du solvant ou addition d'un non-solvant.

Les composés de formule (V) dans laquelle R_{II} , Ar et R_{II} sont tels que définis ci-dessus pour (I) sont nouveaux et constituent un des objets de l'invention.

L'invention a également pour objet selon un autre de ses aspects des compositions pharmaceutiques comprenant les composés (I) ci-dessus.

Plus généralement, les composés de formule (I) ont fait l'objet d'études de liaison *in vitro* concernant les récepteurs CCK.

Une étude de l'effet agoniste des composés sur la sécrétion d'amylase a été réalisée comme suit. Les acini pancréatiques sont obtenus par digestion enzymatique (collagénase) de pancréas de rat soumis à un jeûne de 18 heures. Des aliquotes (485 µl) sont incubées à 37°C pendant 30 minutes en présence de concentrations croissantes d'agoniste selon Jensen et al., J. Biol. Chem., 1982, 257 (10), 5554. L'incubation est arrêtée par une centrifugation de 15 secondes. Le surnageant est conservé dans un bain de glace pour mesurer, le taux d'amylase selon la technique de Ceska et al., Clin. Chim. Acta., 1969, *26*, 437 (réactif phadebas® : test amylase commercialisé par Pharmacia Diagnostic). Les composés à tester sont dissous dans du diméthylsulfoxyde puis dans un tampon d'incubation.

Les composés de formule (I) se comportent comme des agonistes des récepteurs CCK-A avec des CE_{50} (concentration efficace induisant 50 % de la sécrétion d'amylase comparé à l'effet maximum produit en présence de CCK) de l'ordre de 10^{-7} à 10^{-9} M.

Une étude de l'effet agoniste des composés sur la contraction de la vésicule biliaire a été réalisée comme suit. Les

souris femelles Swiss albinos CD1 (20-25 g) sont mises à jeûn solide pendant 24 heures. Le jour de l'expérience, les produits (en suspension dans une solution de carboxyméthyl cellulose à 1 % ou de méthyl cellulose à 0,6 %) ou le véhicule correspondant sont administrés par voie orale. Les souris sont sacrifiées par dislocation cervicale une heure après l'administration des produits et les vésicules biliaires sont prélevées et pesées. Les résultats sont exprimés en mg/kg de poids corporel (Europ. J. Pharmacol., 1993, 232, 13-19).

Les composés de formule (I) contractent totalement la vésicule biliaire, comme la CCK elle-même, et se comportent donc comme des agonistes des récepteurs CCK-A. Certains d'entre eux ont des DE₅₀ (dose efficace induisant 50 % de la diminution du poids des vésicules observée avec la CCK) inférieure à 3 mg/kg par la voie orale.

Une étude de l'effet agoniste des composés sur la vidange gastrique a été réalisée comme suit. Les souris femelles Swiss albino CD1 (20-25 g) sont mises à jeun solide pendant 18 heures. Le jour de l'expérience, les produits (en suspension dans une solution de carboxyméthyl cellulose à 1 % ou de méthyl cellulose à 0,6 %) ou le véhicule correspondant sont administrés par voie intrapéritonéale 30 minutes avant l'administration d'un repas de charbon (0,3 ml par souris d'une suspension dans l'eau de 10 % de poudre de charbon, 5 % de gomme arabique et 1 % de carboxylméthyl cellulose). Les souris sont sacrifiées 5 minutes plus tard par dislocation cervicale et la vidange gastrique est définie comme la présence de charbon dans l'intestin au delà du sphincter pylorique (Europ. J. Pharmacol., 1993, *232*, 13-19).

10

15

20

25

30

35

40

45

50

55

Les composés de formule (I) bloquent complètement la vidange gastrique, comme la CCK elle-même, et se comportent donc comme des agonistes des récepteurs CCK. Certains d'entre eux ont des DE₅₀ (dose efficace induisant 50 % de l'effet de la CCK) inférieures à 1 mg/kg par la voie intrapéritonéale.

Une étude de l'effet agoniste CCK des composés sur la consommation alimentaire a été réalisée comme suit. Les rats mâles (200-240 g) Sprague Dawley (Charles River, France), sont isolés 10 jours avant l'expérience, et soumis chaque jour successivement à 18 heures de jeûne et 6 heures d'alimentation : la nourriture est disponible de 10 heures à 16 heures, l'eau est disponible *ad libitum*. Le jour de l'expérience, les produits (en suspension dans une solution de méthylcellulose à 0,6 %) ou le véhicule sont administrés par voie intra-péritonéale.

Trente minutes après le traitement (à 10 heures) une quantité connue de nourriture est introduite dans la cage : on mesure la consommation alimentaire 1 heure et 3 heures après.

Les composés de formule (I) diminuent la prise de nourriture et se comportent donc comme des agonistes des récepteurs CCK-A (Gibbs J. et al., J. Comp. Physiol. Psychol., 1973, 84, 488-495).

Certains d'entre eux sont actifs à la dose de 3 mg/kg, par voie orale, dose à laquelle ils réduisent la consommation alimentaire de 30 à 40 % par rapport à un animal témoin.

Par conséquent, les composés de formule (I) sont utilisés, en tant qu'agonistes des récepteurs de la CCK-A, pour la préparation de médicaments destinés à combattre les maladies dont le traitement nécessite une stimulation par agonisme total ou partiel des récepteurs de la cholécystokinine, plus particulièrement pour la fabrication de médicaments destinés au traitement de certains troubles du comportement alimentaire, de l'obésité, du diabète, des troubles du comportement émotionnel, sexuel et mnésique, des psychoses et notamment la schizophrénie, de la maladie de Parkinson, de la dyskinésie tardive et de divers troubles de la sphère gastrointestinale.

Les composés de formule (I) sont peu toxiques ; leur toxicité est compatible avec leur utilisation comme médicament pour le traitement des troubles et des maladies ci-dessus.

Les composés de formule (I), peuvent être formulés dans des compositions pharmaceutiques pour l'administration aux mammifères, y compris l'homme, pour le traitement des maladies susdites.

Les composés de formule (I) ci-dessus et leurs sels pharmaceutiquement acceptables peuvent être utilisés à des doses journalières de 0,01 à 100 mg par kilo de poids corporel du mammifère à traiter, de préférence à des doses journalières de 0,1 à 50 mg/kg.

Chez l'être humain, la dose peut varier de préférence de 0,5 à 4000 mg par jour, plus particulièrement de 2,5 à 1000 mg selon l'âge du sujet à traiter ou le type de traitement : prophylactique ou curatif.

Dans les compositions pharmaceutiques de la présente invention, le principe actif est généralement formulé en unités de dosage contenant de 0,5 à 1000 mg, avantageusement de 1 à 500 mg, de préférence de 2 à 200 mg dudit principe actif par unité de dosage.

La présente invention a donc également pour objet les compositions pharmaceutiques qui contiennent à titre de principe actif un des composés ci-dessus. Ces compositions sont réalisées de façon à pouvoir être administrées par la voie digestive ou parentérale.

Dans les compositions pharmaceutiques de la présente invention pour l'administration orale, sublinguale, sous-cutanée, intramusculaire, intraveineuse, transdermique, locale ou rectale, l'ingrédient actif peut être administré sous formes unitaires d'administration, en mélange avec des supports pharmaceutiques classiques, aux animaux et aux êtres humains. Les formes unitaires d'administration appropriées comprennent les formes par voie orale telles que les comprimés, les gélules, les poudres, les granules et les solutions ou suspensions orales, les formes d'administration sublinguale et buccale, les formes d'administration sous-cutanée, intramusculaire, intraveineuse, intranasale ou intraoculaire et les formes d'administration rectale.

Lorsque l'on prépare une composition solide sous forme de comprimés, on mélange l'ingrédient actif principal avec

un véhicule pharmaceutique tel que la gélatine, l'amidon, le lactose, le stéarate de magnésium, le talc, la gomme arabique ou analogues. On peut enrober les comprimés de saccharose ou d'autres matières appropriées ou encore on peut les traiter de telle sorte qu'ils aient une activité prolongée ou retardée et qu'ils libèrent d'une façon continue une quantité prédéterminée de principe actif.

On obtient une préparation en gélules en mélangeant l'ingrédient actif avec un diluant et en versant le mélange obtenu dans des gélules molles ou dures.

Une préparation sous forme de sirop ou d'élixir peut contenir l'ingrédient actif conjointement avec un édulcorant, acalorique de préférence, du méthylparaben et du propylparaben comme antiseptique, ainsi qu'un agent donnant du goût et un colorant approprié.

Les poudres ou les granules dispersibles dans l'eau peuvent contenir l'ingrédient actif en mélange avec des agents de dispersion ou des agents mouillants, ou des agents de mise en suspension, comme la polyvinylpyrrolidone, de même qu'avec des édulcorants ou des correcteurs du goût.

Pour une administration rectale, on recourt à des suppositoires qui sont préparés avec des liants fondant à la température rectale, par exemple du beurre de cacao ou des polyéthylèneglycols.

Pour une administration parentérale, intranasale ou intraoculaire, on utilise des suspensions aqueuses, des solutions salines isotoniques ou des solutions stériles et injectables qui contiennent des agents de dispersion et/ou des agents mouillants pharmacologiquement compatibles, par exemple le propylèneglycol ou le butylèneglycol.

Le principe actif peut être formulé également sous forme de microcapsules, éventuellement avec un ou plusieurs supports ou additifs.

Le principe actif peut être également présenté sous forme de complexe avec une cyclodextrine, par exemple α , β ou γ cyclodextrine, 2-hydroxypropyl- β -cyclodextrine ou méthyl- β -cyclodextrine.

Dans ce qui suit, on décrit des EXEMPLES de mise en oeuvre de l'invention, ainsi que les préparations de certains intermédiaires de synthèse de formule (II), (IV), (VII) et (VIII). Les points de fusion, indiqués ont été déterminés en capillaire.

PREPARATION I : Composé 1 - Intermédiaire de formule (II)

(II) : Ar =
$$\begin{array}{c} H_3CO \\ \hline \\ CH_3 \end{array}$$
 ; R_I =

Etape 1

5

10

15

20

25

30

35

40

45

50

55

On dissout 4,2 g de (2,6-diméthoxy-4-méthyl)aniline dans 50 ml de toluène puis on ajoute 2,45 g de cyclohexanone et chauffe le mélange réactionnel à reflux pendant 18 heures. L'eau qui se forme est éliminée à mesure de sa formation dans le mélange réactionnel au moyen d'un appareillage de Dean-Stark. On évapore le toluène et le résidu huileux obtenu de N-cyclohexylidène (2,6-diméthoxy-4-méthyl)aniline est utilisé sans autre purification dans l'étape suivante.

Etape 2

a) Réduction de l'alkylidène par l'acide formique :

On dissout l'alkylidène obtenu précédemment dans 50 ml de toluène et y ajoute 1,15 g d'acide formique goutte à goutte, sous atmosphère inerte. On chauffe le mélange réactionnel à reflux sous atmosphère inerte pendant 4 heures. Après refroidissement on verse le mélange réactionnel dans 100 ml d'une solution aqueuse 2N d'hydroxyde de sodium puis on extrait par de l'acétate d'éthyle. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés à sec. L'huile résiduelle est purifiée par chromatographie-flash sur colonne de gel de silice, éluant : dichlorométhane/méthanol 98/2 (v/v) pour fournir une huile, Rendement : 80 %. L'huile est transformée en chlorhydrate par addition d'une solution de gaz chlorhydrique 5N dans l'éther diéthylique, cristaux blancs, F = 199°C (chlorhydrate).

b) Réduction de l'alkylidène par NaBH₄

On dissout l'alkylidène obtenu dans l'étape 1 dans 50 ml d'éthanol et y ajoute par petites portions, sous atmosphère inerte, 0,95 g de borohydrure de sodium, et abandonne le mélange réactionnel à température ambiante pendant 2 heures. On ajoute 20 ml d'acétone au mélange réactionnel et évapore à sec. On reprend le résidu par de l'eau et extrait la phase aqueuse par le dichlorométhane. Les extraits organiques sont séchés sur du sulfate de sodium anhydre et évaporés à sec. Le résidu huileux est chromatographié sur colonne de gel de silice, éluant : dichlorométhane / méthanol 98/2 (v/v). On transforme l'huile obtenue en chlorhydrate de N-cyclohexyl (2,6-diméthoxy-4-méthyl)aniline, cristaux blancs, F = 199°C (chlorhydrate), Rendement : 85 %.

Composé 2 - Intermédiaire de formule (II)

Etape 1

5

10

15

20

25

30

35

40

45

A une solution de 73 g de 3,5-diméthoxytoluène dans 450 ml d'éther diéthylique, on ajoute goutte à goutte à température ambiante 300 ml d'une solution (1,6 M) de butyl lithium dans l'hexane. On chauffe le mélange réactionnel au reflux pendant 3 heures sous atmosphère inerte puis on refroidit le mélange réactionnel à -60°C et ajoute goutte à goutte en 60 minutes, 99,7 g de borate de méthyle. On laisse le mélange réactionnel à -60°C pendant 3 heures et laisse remonter à température ambiante. On agite le mélange réactionnel à température ambiante pendant 16 heures puis on ajoute au mélange réactionnel de l'acide chlorhydrique 6N (pH = 1), et laisse décanter. On récupère la phase organique. La phase aqueuse est extraite avec de l'éther diéthylique. Les phases organiques jointes sont séchées sur sulfate de sodium anhydre. L'évaporation du solvant laisse une huile jaune qui cristallise par refroidissement à 0°C. Après séchage on récupère des cristaux blancs de l'acide (2,6-diméthoxy-4-méthylphényl)boronique, F = 108°C, Rendement 80 %.

On met en suspension dans 150 ml de chloroforme anhydre 45,4 g de tétraacétate de plomb et 3,2 g d'acétate mercurique et chauffe le mélange à 40°C sous atmosphère d'argon. On ajoute goutte à goutte, au mélange réactionnel, à 40°C, une solution de 20 g de l'acide (2,6-diméthoxy-4-méthyl)phénylboronique (préparé ci-dessus) dans 100 ml de chloroforme. On laisse 75 minutes à 40°C puis laisse revenir à température ambiante sous bonne agitation. On agite à température ambiante pendant 18 heures puis on dilue le mélange réactionnel avec 800 ml de dichlorométhane. On filtre la solution sur un lit de célite puis on évapore à sec le solvant pour obtenir des cristaux jaunes de (2,6-diméthoxy-4-méthyl)phényl plomb triacétate, F = 172°C, Rendement : 90%.

Etape 2

On dissout 10,56 g de cyclooctylamine dans 500 ml de dichlorométhane anhydre et y ajoute 1,5 g d'acétate cuivrique. Au mélange réactionnel, on ajoute, sous atmosphère inerte, goutte à goutte une solution de 44,2 g de (2,6-diméthoxy-4-méthyl)phényl plomb triacétate, préparé ci-dessus, dans 250 ml de dichlorométhane anhydre. On abandonne à température ambiante pendant 18 heures puis on filtre le mélange hétérogène sur un lit de célite et concentre le filtrat à 450 ml. On lave la phase organique avec de l'eau (3 fois). On extrait la phase organique par 3 x 300 ml d'acide chlorhydrique 1N. La phase aqueuse acide est alcalinisée par une solution aqueuse 2N d'hydroxyde de sodium (pH = 11). On extrait la phase aqueuse alcaline par le dichlorométhane et les extraits organiques sont séchés sur sulfate de sodium anhydre. L'évaporation laisse une huile que l'on purifie par chromatographie-flash sur colonne de gel de silice, éluant : dichlorométhane / méthanol : 99/1 (v/v) pour obtenir la N-cyclooctyl(2,6-diméthoxy-4-méthyl)aniline sous forme d'une huile. Rendement 52%.

Composé 3 - Intermédiaire de formule (II)

55

On dissout 2,1 g de (2,6-diméthoxy-4-méthyl)aniline dans 10 ml de toluène puis à cette solution on ajoute 0,5 ml d'acide formique et on chauffe le mélange à léger reflux, sous atmosphère inerte et ajoute à cette température 0,93 g de 2-adamantanone dissout dans 10 ml de toluène, goutte à goutte. On chauffe le mélange réactionnel à reflux pendant 48 heures puis on évapore à sec et reprend le résidu par 30 ml d'acide chlorhydrique 2N. Les cristaux blancs insolubles sont filtrés et écartés. On extrait le filtrat acide avec du dichlorométhane. On lave les extraits organiques avec une solution aqueuse à 5 % de bicarbonate de sodium puis à l'eau, puis on sèche les phases organiques sur sulfate de sodium anhydre. L'évaporation laisse un résidu incolore que l'on purifie par chromatographie-flash sur colonne de gel de silice, éluant : toluène / acétate d'éthyle 7/3 (v/v) pour obtenir la N-(2-adamantyl) (2,6-diméthoxy-4-méthyl)aniline ; F = 100°C, Rendement 52 %.

Composé 4 - Intermédiaire de formule (II)

$$H_{3}CO \longrightarrow OCH_{3}$$

$$(II): Ar = CH_{3}$$

$$CH_{3}$$

Etape 1

10

15

20

35

On dissout 3,4 g de (2,6-diméthoxy-4-méthyl)aniline dans 40 ml de toluène. A la solution on ajoute 1,03 g d'acide formique et chauffe le mélange réactionnel à reflux, sous atmosphère inerte, pendant 24 heures. On évapore à sec et reprend le résidu par 40 ml d'acide chlorhydrique 2N puis on agite 30 minutes à température ambiante et filtre le précipité que l'on sèche. On obtient 3,6 g de cristaux blancs de N-formyl(2,6-diméthoxy-4-méthyl)aniline, F = 132°C, Rendement : 90 %.

40 Etape 2

On met en suspension 6 g de N-formyl(2,6-diméthoxy-4-méthyl)aniline dans 100 ml de tétrahydrofurane puis on ajoute goutte à goutte, sous atmosphère inerte, 33 ml d'une solution 1M d'hydrure de lithium et d'aluminium dans le tétrahydrofurane. Le mélange réactionnel devient homogène. On abandonne à température ambiante le mélange réactionnel pendant 2 heures puis après refroidissement à 0°C, on ajoute au mélange réactionnel, goutte à goutte successivement 1 ml d'eau, puis 1 ml d'une solution aqueuse d'hydroxyde de sodium à 15 %, puis 3 ml d'eau. On dilue l'ensemble avec 100 ml d'acétate d'éthyle et filtre le précipité. Le filtrat évaporé à sec laisse un résidu huileux que l'on purifie par chromatographie-flash sur colonne de gel de silice, éluant : toluène/acétate d'éthyle 8/2 (v/v) pour obtenir la N-méthyl (2,6-diméthoxy-4-méthyl)aniline sous forme d'huile, Rendement :85 %.

PREPARATION II Composé 5 - Intermédiaire de formule (VII)

55

50

$$H_3CO$$
 OCH₃ ; $-COR' = -COCH_2CH(CH_3)_2$ CH_3

On dissout 8,2 g de (2,6-diméthoxy-4-méthyl)aniline dans 100 ml d'éther diéthylique à 0°C sous atmosphère inerte, on ajoute 5,96 g de triéthylamine au mélange réactionnel puis, goutte à goutte, 6,51 g de chlorure d'isovaléryle, en maintenant la température à 0°C. On abandonne le mélange à température ambiante pendant 30 minutes puis le verse dans 250 ml d'eau. On extrait la phase aqueuse avec de l'acétate d'éthyle après décantation de la phase éthérée. Les phases organiques sont jointes et lavées à l'eau puis séchées sur du sulfate de sodium anhydre et évaporées à sec. Les cristaux blancs obtenus de N-(2,6-diméthoxy-4-méthyl)phénylisovaleramide sont lavés avec de l'éther diisopropylique ; F = 139°C, Rendement : 92 %.

En procédant selon la PREPARATION II on prépare les *composés intermédiaires* 6 à 25 décrits ci-après dans le TABLEAU A.

TABLEAU A : Intermédiaires de formule (VII)

HN-CO-R'

X₃
OCH₃

1	5	

Composé	R'	X ₁	X ₂	X ₃	F;°C
6	-(CH ₂) ₃ CH ₃	осн _з	осн ₃	Н	72
7	-(CH ₂) ₃ CH ₃	CH ₃	OCH ₃	Н	101
8	-(CH ₂) ₃ CH ₃	осн _з	CH ₃	CI	138
9	-(CH ₂) ₃ CH ₃	CI	CH ₃	Н	90
10	-(CH ₂) ₃ CH ₃	CI	OCH ₃	Н	113
11	-(CH ₂) ₃ CH ₃	CH ₃	CI	Н	80
12	-(CH ₂) ₅ CH ₃	CH ₃	Н	OCH ₃	94
13	-CH ₂ -CH(CH ₃) ₂	OCH ₃	Н	OCH ₃	142
14		CH₃	Н	OCH ₃	210
15	-(CH ₂) ₂ OCH ₃	CH ₃	Н	OCH ₃	116
16		CH ₃	Ħ	OCH ₃	110
17	$-CH_2$	CH ₃	I	OCH ₃	126
18	-(CH ₂) ₃ CH ₃	(VII)	: Ar = 1-nap	htyle	113

TABLEAU A: Suite 1

Composé	R'	X ₁	X ₂	Х3	F;°C
19	-(CH ₂) ₃ CH ₃	OCH ₃	CH ₃	н	91
20	-(CH ₂) ₃ CH ₃	OCH ₃	Н	OCH ₃	125
21	-(CH ₂) ₂ CH ₃	CH ₃	Н	OCH ₃	123
22	$\overline{}$	CH ₃	Н	осн ₃	180
23	CH ₃	CH ₃	Н	OCH ₃	156
24	\longrightarrow	СНЗ	Н	OCH ₃	178
25	Н	CH3	Н	OCH ₃	132

PREPARATION III Composé 26 - Intermédiaire de formule (II)

$$H_3CO$$
 OCH₃ $R_1 = -(CH_2)_2CH(CH_3)_2$ CH_3

On dissout 8,5 g de l'anilide (*composé 5*) préparée précédemment dans 160 ml de tétrahydrofurane sec que l'on refroidit à 0°C. On ajoute, goutte à goutte, 34 ml d'une solution 1M d'hydrure de lithium et d'aluminium dans le tétrahydrofurane puis on laisse revenir le mélange réactionnel à température ambiante et le chauffe à reflux pendant 2h 30. On le laisse revenir à température ambiante puis refroidit à 0°C.

A 0°C on ajoute au mélange réactionnel, successivement, 2,5 ml d'eau glacée, 7 ml d'une solution aqueuse d'hydroxyde de sodium 6N puis 2,5 ml d'eau; on sépare l'insoluble par filtration et le lave sur le filtre būchner avec de l'acétate d'éthyle. Le filtrat est lavé à l'eau salée, séché sur sulfate de sodium anhydre et évaporé sous vide. On récupère une huile jaune qui est purifiée par chromatographie-flash sur colonne de gel de silice, éluant : dichlorométhane/éther diéthylique 98/2 (v/v) pour fournir la N-isopentyl(2,6-diméthoxy-4-méthyl)aniline, sous forme d'huile. Rendement : 89 %.

En procédant selon les PREPARATIONS I et III on prépare *les intermédiaires 27 à 45* décrits ci-après dans le TABLEAU B

TABLEAU B : Intermédiaires de formule (II)

 $X_3 \longrightarrow OCH_3$ $X_2 \longrightarrow X$

Composés	R _I	X ₁	X ₂	Х3	F;°C sel
27	-(CH ₂) ₄ CH ₃	CH ₃	Н	OCH ₃	217, HCI
28	-(CH ₂) ₄ CH ₃	осн ₃	осн ₃	Н	huile
29	-(CH ₂) ₄ CH ₃	CH ₃	OCH ₃	Н	38
30	-(CH ₂) ₄ CH ₃	осн ₃	CH ₃	CI	huile
31	-(CH ₂) ₄ CH ₃	CI	CH ₃	Н	huile
32	-(CH ₂) ₄ CH ₃	CI	осн ₃	Ή	40
33	-(CH ₂) ₄ CH ₃	CH ₃	CI	Н	64
34	-(CH ₂) ₆ -CH ₃	CH ₃	Н	OCH ₃	huile
35	-(CH ₂) ₂ CH(CH ₃) ₂	OCH ₃	Н	OCH ₃	180, HCI
36	-CH ₂	CH ₃	Н	OCH ₃	huile
37	-(CH ₂) ₃ OCH ₃	CH ₃	Н	осн ₃	huile
38	-CH ₂ CH ₂	CH ₃	Н	OCH ₃	huile
39	-(CH ₂) ₄ CH ₃	(II) :Ar	์ = 1-na	aphtyle	huile

TABLEAU B: Suite 1

5	Composés	R _I	X ₁	X ₂	Х3	F ; °C sel
10	40	-(CH ₂) ₄ CH ₃	OCH ₃	CH ₃	Н	huile
	41	-(CH ₂) ₄ CH ₃	осн3	Н	OCH ₃	huile
15	42	-(CH ₂) ₃ CH ₃	СН3	Н	OCH ₃	huile
20	43	CH ₂	CH ₃	Н	осн ₃	huile
	44	-CH ₂	CH ₃	Н	OCH ₃	huile
25	45	CH ₃	CH ₃	Н	осн ₃	huile

PREPARATION IV Composé 46 -Intermédiaire de formule (IV)

$$H_3CO$$
 OCH₃ ; $R_1 = -(CH_2)_2CH(CH_3)_2$;

Synthèse avec un acide aminé non chiral.

 $R_{II} = H$

On dissout 5,5 g de l'aniline (*composé 26*) préparée précédemment dans 60 ml de diméthylformamide. On ajoute successivement au mélange réactionnel 10,8 g de BOP, 4,26 g de N-Boc-glycine, puis goutte à goutte 4,69 g de triéthylamine et on abandonne le mélange réactionnel, sous atmosphère inerte, à température ambiante, pendant 20 heures. On verse le mélange réactionnel dans 200 ml d'eau froide et extrait la phase aqueuse avec de l'acétate d'éthyle. La phase organique est lavée à l'eau et séchée sur sulfate de sodium anhydre. L'évaporation du solvant laisse des cristaux blancs qui sont purifiés par chromatographie-flash sur une colonne de gel de silice, éluant : dichlorométhane/éther diéthylique 95/5 (v/v) pour obtenir des cristaux blancs de N-terbutyloxycarbonyl[(2,6-diméthoxy-4-méthylphényl)isopentyl carbamoyl]méthylamine ; F = 132°C; Rendement : 91 %.

PREPARATION V Composé 47 - Intermédiaire de formule (VIII)

55

45

50

$$(VIII) : Ar = \begin{pmatrix} H_3CO \\ CH_3 \end{pmatrix} \qquad ; R_{II} = H.$$

Synthèse avec un acide aminé non chiral.

10

15

20

25

30

35

40

45

55

A 100 ml de diméthylformamide, on ajoute successivement 6,6 g de N-Boc-glycine, 15,6 g de BOP, puis à 0°C on ajoute, goutte à goutte, 14 ml de triéthylamine. On abandonne le mélange pendant 20 minutes à 0°C et on additionne ensuite par portions, 6,7 g de chlorhydrate de (2,6-diméthoxy-4-méthyl)aniline. On abandonne le mélange réactionnel à température ambiante pendant 15 heures. On additionne 400 ml d'acétate d'éthyle au mélange réactionnel et on lave successivement la phase organique par 3 x 200 ml d'eau, par une solution d'hydroxyde de sodium aqueuse 1N, puis par de l'eau. On séche la phase organique sur sulfate de sodium anhydre. L'évaporation du solvant laisse un résidu semi-cristallin que l'on concrète dans l'éther diisopropylique pour fournir le N-terbutyloxycarbonyl [(2,6-diméthoxy-4-méthylphényl)carbamoylméthylamine], sous forme de cristaux blancs ; F = 146°C ; Rendement : 96%.

PREPARATION VI Composé 48 - Intermédiaire de formule (IV)

(IV) : Ar =
$$H_3CO$$
 OCH_3 ; $R_{II} = -CH_2CO_2CH_2C_6H_5$

$$R_1 = -(CH_2)_4 - CH_3$$
, énantiomère R

Synthèse avec un acide aminé chiral.

On dissout 3,2 g de N-pentyl(2,6-diméthoxy-4-méthyl)aniline (composé 27) (II) dans 50 ml de diméthylformamide et ajoute successivement à 0°C, 5 g de l'acide N-Boc-aspartiqueβ-O-benzylester, 7,2 g de BOP puis goutte à goutte 1,6 g de N-éthylmorpholine et on abandonne le mélange réactionnel à température ambiante pendant 19 heures. On ajoute ensuite 200 ml d'acétate d'éthyle et lave la phase organique successivement avec 2 x 200 ml d'eau, 100 ml d'une solution d'hydroxyde de sodium 0,1N aqueuse, 100 ml d'une solution d'acide chlorhydrique 0,1N aqueuse et deux fois 200 ml d'eau.

La phase organique est séchée sur sulfate de sodium anhydre et évaporée à sec. L'huile orangée obtenue est purifiée par filtration sur un lit de silice, éluant : dichlorométhane, pour obtenir le 3-(N-terbutyloxycarbonyl)amino-3-([(2,6-diméthoxy-4-méthylphényl)pentyl]carbamoyl}propionate de benzyle sous forme d'huile ; Rendement : 98%.

PREPARATION VII Composé 49 - Intermédiaire de formule (IV)

 $R_{ii} = H$.

$$H_3CO$$
 OCH₃ ; $R_1 = -CH_2C_6H_5$

On dissout 3,99 g de N-terbutyloxycarbonyl[(2,6-diméthoxy-4-méthylphényl)carbamoylméthylamine] (composé 47) dans 50 ml de diméthylformamide et ajoute par portions 0,5 g d'hydrure de sodium en suspension à 60 % dans l'huile,

à 0°C. On agite le mélange réactionnel à température ambiante pendant 30 minutes puis on ajoute, goutte à goutte, au mélange réactionnel 2,16 g de bromure de benzyle en solution dans 30 ml de diméthylformamide. On abandonne le mélange réactionnel à température ambiante pendant 2 heures puis on ajoute 300 ml d'acétate d'éthyle. La phase organique est lavée à l'eau et séchée sur sulfate de sodium anhydre. L'évaporation du solvant laisse un résidu semi-cristallin que l'on concrète dans de l'éther diisopropylique pour obtenir : la N-terbutyloxycarbonyl [benzyl(2,6-diméthoxy-4-méthylphényl)carbamoylméthylamine] sous forme de cristaux blancs, F = 163°C; Rendement : 85%.

En procédant selon les PREPARATIONS (IV), (VI) et (VII) on prépare les *composés intermédiaires 50 à 99* décrits dans le TABLEAU C ci-après.

TABLEAU C : Intermédiaires de formule (IV)

 R_{I} R_{I

Composé N°	RĮ	R _{II} et configuration	X ₁	x ₂	х ₃	F;°C
50	-(CH ₂) ₄ CH ₃	Н	CH ₃	Н	OCH ₃	124
51	-(CH ₂) ₄ CH ₃	Н	осн ₃	CH ₃	CI	huile
52	-(CH ₂) ₄ CH ₃	Н	осн _з	осн _з	Н	174
53	-(CH ₂) ₄ CH ₃	Н	CI	CH ₃	Н	huile
54	-(CH ₂) ₄ CH ₃	Н	CI	осн ₃	Н	84
55	-(CH ₂) ₄ CH ₃	Н	CH3	OCH ₃	Н	122
56	-(CH ₂) ₄ CH ₃	CH ₂ CH ₂ CONH ₂ (R)	CH3	н	осн3	huile
57	-(CH ₂) ₄ CH ₃	CH ₂ CONH ₂ (R)	CH ₃	Н	осн3	huile
58	-(CH ₂) ₄ CH ₃	CH ₃ (R)	CH ₃	Н	осн ₃	huile
59	-(CH ₂) ₆ CH ₃	Н	CH ₃	Н	осн3	108
60	-(CH ₂) ₃ OCH ₃	Н	CH ₃	Н	OCH ₃	135
61	-(CH ₂) ₂ CH (CH ₃) ₂	Н	осн ₃	Н	осн3	huile

TABLEAU C : Suite1

5	
10	

Composé N°	Rį	R _{II} et configuration	х1	X ₂	Х3	F;°C
62	-CH ₂	н	CH ₃	Н	OCH ₃	191
63	-CH ₂ CH ₂	Н	CH₃	Н	осн ₃	170
64	-(CH ₂) ₄ CH ₃	-CH ₂ CH ₂ COOCH ₂	CH ₃	Н	OCH ₃	huile
65	-(CH ₂) ₄ CH ₃	-CH ₂ CH ₂ COOCH ₂	CH₃	Н	ocH₃	huile
66	-(CH ₂) ₄ CH ₃	- CH ₂ CH ₂	CH₃	Н	OCH ₃	huile
67	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂	CH ₃	Н	OCH₃	159

TABLEAU C : Suite 2

_
J

Composé	Rį	R _{II} et configuration	X ₁	x ₂	x ₃	F;°C
Ν°		in in the same and in the same	_ ^1	\ \A2	/3	, ,
68	-(CH ₂) ₄ CH ₃	— СН ₂ СООСН ₂	CH ₃	Н	осн ₃	huile
		(R)				
69	-(CH ₂) ₄ CH ₃	$-CH_2 \longrightarrow (R)$	CH ₃	Н	OCH ₃	huile
70	-(CH ₂) ₄ CH ₃	Н	Ar	= 1-naph	tyle	huile
71	\bowtie	-CH ₃ (R)	CH ₃	Н	OCH ₃	huile
72	-(CH ₂) ₄ CH ₃	—CH₂OCH₂ I	осн3	CH3	CI	huile
		(R)				
73	-(CH ₂) ₄ CH ₃	—CH₂OCH₂ 	осн ₃	СНЗ	Н	huile
_		(R)				
74		-CH ₂ OCH ₂	СНЗ	н	осн3	huile
		(R)				
75	-(CH ₂) ₄ CH ₃	CH ₂ OCH ₂	СНЗ	Cl	Н	huile
		(R)				

TABLEAU C: Suite 3

5	
10	
15	
20	
25	
30	
35	
40	
45	

Composé N°	Rį	R _{II} et configuration	Х1	X ₂	х ₃	F;°C
76		-CH ₂ OCH ₂	сн3	Н	осн3	huile
77	-CH ₂ CH ₂ ——	-CH ₂ OCH ₂	CH ₃	Н	осн ₃	huile
78	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂	CI	CH ₃	Н	huile
79	-CH ₂	-CH ₂ OCH ₂ (R)	CH ₃	Н	OCH ₃	huile
80	-(CH ₂) ₃ CH ₃	-CH ₂ OCH ₂	CH ₃	Н	осн ₃	huile
81	-(CH ₂) ₄ CH ₃	—CH ₂ OCH ₂	OCH ₃	Н	осн ₃	huile

55

TABLEAU C : Suite 4

5	
10	
15	
20	
25	
30	
35	
40	

Composé Nº	R _I	R _{II} et configuration	х ₁	x ₂	х3	F;°C
82		-CH ₂ (R)	CH ₃	Н	осн3	huile
83	-CH ₂	-CH ₂ OCH ₂	CH ₃	Н	осн ₃	huile
84	-(CH ₂) ₄ CH ₃	CH ₃ (S)	CH ₃	Н	осн3	huile
85	-(CH ₂) ₄ CH ₃	-CH ₂	CH ₃	Н	OCH ₃	huile
86	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂ (S)	CH ₃	Н	OCH ₃	huile
87	-(CH ₂) ₄ CH ₃	(R, S)	CH ₃	Н	осн ₃	huile
88	-(CH ₂) ₄ CH ₃	-CH(CH ₃) ₂ (R)	СНЗ	Н	осн3	huile
89	-(CH ₂) ₄ CH ₃	-(CH ₂) ₄ NHCOO-CH ₂ (R)	CH ₃	Н	осн ₃	huile

TABLEAU C: Suite 5

50

55

5	Composé Nº	Rį	R _{II} et configuration	X ₁	x ₂	х ₃	F;°C
10	90	-(CH ₂) ₄ CH ₃	-*CH(CH ₃)O-CH ₂ (S) (R)	СН3	Н	осн3	huile
15 20	91	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂	CI	OCH ₃	Н	huile
25	92	-(CH ₂) ₄ CH ₃	-CH ₂ SCH ₂	CH ₃	Н	OCH ₃	huile
30	93	-(CH ₂) ₄ CH ₃	-сн ₂ сн ₂ ——	CH ₃	Н	OCH ₃	huile
<i>35</i> <i>40</i>	94	-CH ₂	-CH ₂ (R)	CH ₃	н	осн ₃	huile
45	95	-СН ₂ СН ₃	-CH ₂ OCH ₂	CH ₃	н	осн ₃	huile
			(R)				

TABLEAU C: Suite 6

Composé Nº	R _I	R _{II} et configuration	x ₁	x ₂	х3	F;°C
96	-CH ₂	-CH ₂ OCH ₂	СНЗ	Н	осн ₃	huile
		(R)				
97	-СН ₃	-CH ₂ OCH ₂	СН3	н	OCH ₃	huile
		(R)				
98	-CH ₂ —	-CH ₂ OCH ₂ (R)	CH ₃	H	OCH ₃	huile
99	-CH ₂ —	-CH ₂ (R)	CH ₃	Н	OCH ₃	huile

PREPARATION VIII Composé 100 - Intermédiaire de formule (V)

40 (V) : Ar =
$$H_3CO$$
 OCH₃ ; $R_1 = -(CH_2)_2CH(CH_3)_2$; CH_3

 $R_{II} = H.$

On dissout 7,8 g d'anilide N-boculé (IV) (composé~46) préparé précédemment selon la PREPARATION IV dans 80 ml d'acétate d'éthyle et on refroidit à 0°C. On ajoute au mélange réactionnel 50 ml d'une solution saturée d'acide chlorhydrique gazeux dans l'acétate d'éthyle puis on laisse revenir à température ambiante pendant 2 heures. On évapore à sec l'acétate d'éthyle et reprend le résidu semi-cristallin par de l'éther diéthylique. Les cristaux blancs obtenus sont filtrés et lavés avec de l'éther diéthylique pour fournir des cristaux blancs de chlorhydrate de [(2,6-diméthoxy-4-méthyl-phényl)isopentyl]carbamoylméthylamine ; F=214°C ; Rendement : 96 %.

En procédant selon la préparation VIII, on prépare les *composés intermédiaires 101 à 151* décrits dans le TABLEAU D ci-après.

TABLEAU D : Intermédiaires de formule (V)

 $^{(1)}: ND: [\alpha]_D$ non déterminé

R _I	-N-CO-CH-NH2
X ₃	OCH ₃
X ₂	× ₁

Composé Nº	Rį	R _{II} et configuration	X ₁	X ₂	х ₃	F; °C [α] _D 20 (c = ; solvant)
101	-(CH ₂) ₄ CH ₃	Н	CH ₃	Н	OCH ₃	192
102	-(CH ₂) ₄ CH ₃	Н	OCH ₃	СН3	CI	huile
103	-(CH ₂) ₄ CH ₃	н	осн ₃	OCH ₃	н	huile
104	-(CH ₂) ₄ CH ₃	н	CI	CH3	н	huile
105	-(CH ₂) ₄ CH ₃	Н	CI	осн ₃	н	huile
106	-(CH ₂) ₄ CH ₃	Н	CH3	OCH ₃	Н	161
107	-(CH ₂) ₄ CH ₃	-CH ₂ CH ₂ CONH ₂ (R)	CH ₃	н	осн _з	212 ND ⁽¹⁾
108	-(CH ₂) ₄ CH ₃	-CH ₂ CONH ₂ (R)	CH ₃	н	OCH ₃	170 ND
109	-(CH ₂) ₄ CH ₃	CH ₃ (R)	CH ₃	Н	OCH ₃	huile ND
110	-(CH ₂) ₆ CH ₃	Н	CH ₃	Н	осн ₃	169

TABLEAU D: Suite 1

5	Composé Nº	Rį	R _{II} et configuration	x ₁	x ₂	х ₃	F; °C [α] _D ²⁰
10							(c = ; solvant)
	111	-(CH ₂) ₃ OCH ₃	Н	CH ₃	Н	OCH ₃	196
15	112	-(CH ₂) ₂ CH (CH ₃) ₂	Н	осн ₃	н	осн ₃	120 HCI
	113	-CH ₂	Н	CH ₃	Н	осн _з	207
20	114	$-CH_2$	Н	CH ₃	Н	OCH ₃	190
25	115	-CH ₂ CH ₂	Н	CH ₃	Н	OCH ₃	215
30	116	-(CH ₂) ₄ CH ₃	-CH ₂ CH ₂ COOCH ₂	CH3	н	осн _з	huile
				:			ND
35			(S)				
	117	-(CH ₂) ₄ CH ₃	- сн ₂ сн ₂ соосн ₂	CH ₃	н	OCH3	huile
40							ND
			(R)				
45	118	-(CH ₂) ₄ CH ₃	- CH ₂	CH ₃	н	OCH ₃	90 ND
50			CH ₂				
			(R)				

30

TABLEAU D : Suite 2

				,			
5	Composé	Rį	R _{II} et configuration	X ₁	X ₂	х ₃	F;°C
	N°						[α] _D ²⁰
	1						(c = ;
10							solvant)
	119	-(CH ₂) ₄ CH ₃	−CH₂OCH₂	CH ₃	н	осн _з	huile
15							ND
			(R)				
20	120	-(CH ₂) ₄ CH ₃	- CH ₂ COOCH ₂	CH ₃	Н	осн ₃	huile ND
25			(R)				
30	121	-(CH ₂) ₄ CH ₃	$-CH_2 \longrightarrow (R)$	CH ₃	Н	OCH ₃	huile ND
	122	-(CH ₂) ₄ CH ₃	Н	Ar =	1-napl	htyle	85
35	123	\approx	-CH ₃ (R)	CH ₃	Н	осн _з	huile ND
40	124	-(CH ₂) ₄ CH ₃	—СН ₂ ОСН ₂	осн3	CH3	CI	huile
40		:					-112,0
45			(R)				(1 ; СН ₃ ОН)
45	125	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂	осн ₃	снз	Н	huile
50							-3,7
			(R)				(0,8 ;
!							сн ₃ он)

31

TABLEAU D: Suite 3

5	
10	
15	
20	
25	
30	
35	
40	
45	

Composé	R _I	R et configuration	X ₁	T v-	V.	F;°C
N°	,	ing et comiguration	^1	X ₂	хз	[α] _D ²⁰
	•					(c = ;
						solvant)
126		— CH₂OCH₂ 	СН3	н	осн ₃	huile
						ND
			1			
		(R)				
127	-(CH ₂) ₄ CH ₃	—CH₂OCH₂	CH ₃	CI	н	huile
						ND
		(R)				
128	\sim	—CH₂OCH₂	СНЗ	Н	OCH ₃	huile
			J			
						-3,0
		(R)				(1 ; СН _З ОН)
129	-CH ₂ CH ₂	CH ₂ OCH ₂	СНЗ	Н	осн _з	huile
			Ŭ			
						-25,7
		(R)				(1,4 ;
						сн ₃ он)
130	-(CH ₂) ₄ CH ₃	— СН ₂ ОСН ₂ 	CI	CH ₃	Н	huile
						+81,0
		<u> </u>				1 01,0
		(R)				(1,65 ; СН _З ОН)

55

1	31	-CH ₂	-CH ₂ OCH ₂	CH ₃	Н	OCH ₃	huile ND
			(R)				

TABLEAU D: Suite 4

_					т—		",
5	Composé	R _I	R et configuration	X ₁	X ₂	Х3	F;°C
	Nº						[a] _D ²⁰
j		1		/			(c = ;
10	 	<u> </u>		├ ——		 	solvant)
	132	-(CH ₂) ₃ CH ₃	— CH₂OCH₂ 	CH ₃	Н	осн _з	huile
		!					ND
15		!					
			(R)				
20	133	-(CH ₂) ₄ CH ₃	−CH ₂ OCH ₂	осн _з	Н	осн _з	huile
20					i l		
					1		-22,1
25			(R)				(1 ; СН ₃ ОН)
	134		-CH ₂	СН3	Н	осн _з	huile
					, !		-10,9
30			(R)		!		-10,9
							(1,15 ; СН ₃ ОН)
35	135	1	−CH ₂ OCH ₂	СНЗ	Н	OCH ₃	huile
		-CH ₂					,,,,,,
		i		1			+16,0
40		i	(R)		. !		(0.05 · CH. OH)
			11-7				(0,65 ; СН _З ОН)
	136	-(CH ₂) ₄ CH ₃	-CH ₃	сн3	н	осн3	huile
45			(S)	.			ND
	137	-(CH ₂) ₄ CH ₃	~_1	CU ₂	Н	224	4-1110
	, , ,	10112/40113	-CH ₂	CH ₃	_	осн ₃	huile
50				i			-33,0
50	ı	i	(D)	1	!		
	.	1	(R)		, !	1 1	(1,17 ; СН ₃ ОН)

TABLEAU D : Suite 5

5	
10	
15	
20	
25	
30	
35	
40	
45	

		1				
Composé	R _I	R _{II} et configuration	x ₁	X ₂	Х3	F;°C
N°						[\alpha]_D^20
						(c = ;
						solvant)
138	-(CH ₂) ₄ CH ₃	−CH₂OCH₂	CH ₃	н	осн _з	huile
						-174,0
		(S)				(1,07 ; сн ₃ он)
139	-(CH ₂) ₄ CH ₃	(R, S)	CH3	Н	осн ₃	huile
140	-(CH ₂) ₄ CH ₃	-CH(CH ₃) ₂ (R)	СН3	Н	осн ₃	huile -28,0 (1 ; CH ₃ OH)
141	-(CH ₂) ₄ CH ₃	-(CH ₂) ₄ NHCOO-CH ₂	СНЗ	Н	OCH ₃	huile
						-32,0
		(R)				(1 ; CH ₂ Cl ₂)
142	-(CH ₂) ₄ CH ₃	-CH(CH ₃)O-CH ₂	CH ₃	Н	OCH ₃	huile ND
143	-(CH ₂) ₄ CH ₃	-CH ₂ SCH ₂	СНЗ	Н	OCH₃	huile -21,2 (1; CH ₃ OH)
		(R)				, , , 53511/

55

TABLEAU D: Suite 6

50

55

5	Composé N°	R _I	R _{II} et configuration	x ₁	x ₂	х ₃	F; °C [α] _D ²⁰
10							(c = ;
	144	-(CH ₂) ₄ CH ₃	-CH ₂ CH ₂	CH ₃	н	оснз	huile ND
15			(R)				
	. 145	-CH ₂	-CH ₂	СНЗ	Н	OCH ₃	148°C (chlorhydrate)
20			(R)				-21,7
							(1,05 ; сн ₃ он)
25	146	-(CH ₂) ₄ CH ₃	—СН ₂ ОСН ₂	CI	осн ₃	Н	huile
30							-5,4
			(R)				(1,45 ; CH ₃ OH)
35	147	-CH ₂ CH ₃	— СН ₂ ОСН ₂	снз	н	осн _з	huile
						:	-25,0
40			(R)				(1,15 ; СН _З ОН)
	148	-CH ₂	—СН ₂ ОСН ₂	снз	н	осн3	huile
45							-47,9
			(R)				(1 ; СН _З ОН)

TABLEAU D: Suite 7

5	Composé N ^O	R _I	R _{II} et configuration	х ₁	x ₂	x ₃	F; °C [α] _D ²⁰ (c = ; solvant)
15	149	-CH ₂	-CH ₂ (R)	CH ₃	Н	OCH ₃	huile - 17,9 (1 ; CH ₃ OH)
20	150	-CH ₃	-CH ₂ OCH ₂	CH ₃	Н	OCH ₃	huile -13,5 (1 ; СН _З ОН)
25	151	-CH ₂	-CH ₂ OCH ₂	CH ₃	Н	OCH ₃	huile -30,8 (1 ; CH ₃ OH)
30			(R)				

35 EXEMPLE 1

55

On dissout 0,8 g du chlorhydrate de [(2,6-diméthoxy-4-méthylphényl)isopentyl]carbamoylméthylamine (*composé 100*) dans 10 ml de diméthylformamide et à température ambiante on ajoute successivement au mélange réactionnel 0,58 g de l'acide 1-(méthoxycarbonylméthyl)-2-indolcarboxylique, 1,12 g de BOP puis, goutte à goutte, 0,74 g de triéthylamine. On abandonne le mélange réactionnel à température ambiante pendant 20 heures puis on le verse dans de l'eau froide et extrait la phase aqueuse avec de l'acétate d'éthyle. Les extraits organiques sont lavés à l'eau puis séchés sur sulfate de sodium anhydre. L'évaporation du solvant laisse une huile jaune que l'on purifie par chromatographie-flash sur une colonne de gel de silice, éluant : dichlorométhane/méthanol 98/2 (v/v) pour obtenir des cristaux blancs de {2-[

[(2,6-diméthoxy-4-méthylphényl)] isopentylcarbamoyl]-méthylcarbamoyl]-1-indolyl]acétate de méthyle; $F=141^{\circ}C$; Rendement: 91 %.

EXEMPLE 2

5

10

15

20

25

30

50

55

(I) : Ar =
$$H_3CO$$
 OCH_3 ; $R_1 = -(CH_2)_2CH(CH_3)_2$; $R_{II} = H$

CH2COOH

On met en suspension 0,6 g de l'ester préparé selon l'EXEMPLE 1 dans 20 ml de méthanol et additionne au mélange réactionnel 1,8 ml d'une solution d'hydroxyde de sodium aqueuse 1N. On ajoute 6 ml de diméthylformamide pour homogénéiser le mélange réactionnel puis abandonne le mélange réactionnel 2 heures à température ambiante. On évapore le méthanol et verse le résidu dans de l'eau froide. La phase aqueuse est acidifiée avec une solution d'acide chlorhydrique 1N aqueux et extraite par le dichlorométhane. Les extraits organiques sont lavés à l'eau et séchés sur sulfate de sodium anhydre. L'évaporation du solvant laisse des cristaux blancs d'acide {2-[[(2,6-diméthoxy-4-méthyl-phényl)isopentylcarbamoyl]méthylcarbamoyl]-1-indolyl}acétique qui sont lavés avec de l'éther diisopropylique, F = 208°C; Rendement : 96 %.

EXEMPLE 3

$$H_{3}CO \longrightarrow OCH_{3}$$

$$R_{III} = -(CH_{2})_{4}CH_{3} \quad ; \quad R_{II} = -CH_{3} \quad ;$$

$$R_{III} = -CH_{3} \quad ;$$

On met en suspension 0,6 g du chlorhydrate de (R)-1-[(2,6-diméthoxy-4-méthylphényl)pentylcarbamoyl]éthylamine (composé~109) dans 10 ml de diméthylformamide. A 0°C, on ajoute 0,286 g d'acide 1H-indole-2-carboxylique, 0,808 g de BOP et, goutte à goutte, 0,6 g de N-éthylmorpholine et on abandonne le mélange réactionnel à température ambiante pendant 18 heures. On verse le mélange réactionnel dans l'eau froide et extrait la phase aqueuse avec de l'acétate d'éthyle. Les extraits organiques sont lavés à l'eau et séchés sur sulfate de sodium anhydre. L'évaporation du solvant laisse un résidu cristallin brun que l'on purifie par chromatographie sur colonne de gel de silice, éluant : dichlorométhane/éthanol 99/1 (V) pour obtenir la (R)-N-{1-[(2,6-diméthoxy-4-méthylphényl)pentylcarbamoyl]éthyl}-1H-indole-2-carboxamide, sous forme de cristaux blancs ; F = 193°C ; Rendement : 84 %,

$$[\alpha]_{D}^{20} = -78^{\circ} (c = 1, CH_{2}CI_{2}).$$

EXEMPLE 4

(I) : Ar = $\begin{pmatrix} H_3CO \\ CH_3 \end{pmatrix}$; $R_1 = -CH_2$; $R_{II} = H$

On dissout 1,5 g du chlorhydrate de [(cyclohexylméthyl)(2,6-diméthoxy-4-méthylphényl)]carbamoylméthylamine (composé 113) dans 10 ml de diméthylformamide puis on ajoute successivement 0,918 g de l'acide 1 -(2-cyanoéthyl) -2-indolecarboxylique, 1,95 g de BOP, puis goutte à goutte 1,28 g de triéthylamine. On abandonne le mélange réactionnel à température ambiante pendant 3 heures puis on le verse dans l'eau froide et extrait la phase aqueuse avec de l'acétate d'éthyle. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés à sec. Le résidu est purifié par chromatographie-flash sur colonne de gel de silice, éluant : dichlorométhane/méthanol 98/2 (v/v) pour obtenir le 3-{2-[(cyclohexylméthyl)(2,6-diméthoxy-4-méthylphényl)carbamoyl]méthylcarbamoyl]-1-indolyl}propionitrile sous forme d'une mousse pâteuse ; Rendement : 91 %.

EXEMPLE 5

(I) : Ar =
$$H_3CO$$
 OCH_3 ; $R_1 = -CH_2$; $R_{II} = H$ CH_3 $R_{III} = H$

On sature à 0°C (durée 30 minutes) 40 ml de méthanol avec de l'acide chlorhydrique gazeux. On y introduit, goutte à goutte, 1,9 g du nitrile préparé selon l'EXEMPLE 4, préalablement dissous dans 10 ml de méthanol et refroidi à -10°C et on abandonne le mélange réactionnel à -5°C pendant 18 heures. On dégaze puis évapore à sec le méthanol. Le résidu est repris par un mélange d'eau et de méthanol et on abandonne le mélange réactionnel à température ambiante pendant 3 heures. On évapore à sec, reprend le résidu par de l'eau. La phase aqueuse est extraite par de l'acétate d'éthyle. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés sous vide à sec. Le résidu huileux est purifié par chromatographie sur colonne de gel de silice, éluant : dichlorométhane/méthanol 98/2 (v/v) pour obtenir des cristaux blancs, de 3-{2-[[(cyclohexylméthyl)(2,6-diméthoxy-4-méthylphényl) carbamoyl]méthylcarbamoyl] -1-indolyl} propionate de méthyle ; F = 68°C. ; Rendement : 92 %.

EXEMPLE 6

5

(I) : Ar =
$$H_3CO$$
 OCH₃

 $R_1 = -CH_2$

 $R_{II} = H$

10

15

20

25

On dissout 1,2 g de l'ester préparé précédemment selon l'EXEMPLE 5 dans 15 ml de méthanol et additionne 3,4 ml d'une solution 1N d'hydroxyde de lithium. On abandonne le mélange réactionnel à température ambiante pendant 18 heures puis on évapore le méthanol et reprend le résidu par de l'eau. La phase aqueuse est extraite par de l'acétate d'éthyle. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés à sec. L'huile incolore est cristallisée dans du pentane pour fournir des cristaux blancs d'acide 3- {2-[[(cyclohexylméthyl)(2,6-diméthoxy-4-méthyl-phényl) carbamoyl]méthylcarbamoyl]-1-indolyl}propionique ; F = 110°C ; Rendement : 98 %.

EXEMPLE 7

30

$$H_3CO OCH_3$$
(I) : Ar =

CH,

 $R_1 = -CH_2$

 $R_{II} = H$

35

45

50

R_{III} = N CH₂CH₂CO

-NH

On dissout 0,6 g de l'acide préparé selon l'EXEMPLE 6 dans 10 ml de diméthylformamide puis on ajoute au mélange réactionnel 0,173 g de 2-adamantanamine, 0,505 g de BOP, puis, goutte à goutte, 0,227 g de triéthylamine. On abandonne le mélange réactionnel à température ambiante pendant 18 heures puis on le verse dans l'eau et extrait la phase aqueuse avec de l'acétate d'éthyle. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés à sec. Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice, éluant dichlorométhane/méthanol 99/1 (v/v).

On obtient des cristaux blancs de N-(2-adamantyl)-3[2-{[(cyclohexylméthyl)(2,6-diméthoxy-4-méthylphényl)carbamoyl]méthylcarbamoyl}-1-indolyl] propionamide; F = 96°C; Rendement: 88%.

En procédant selon les EXEMPLES 1 à 7 et en utilisant les produits de départ appropriés, on prépare les EXEMPLES 8 à 184 décrits dans les TABLEAUX I à VII ci-après.

TABLEAU I

CH ₃ -(CH ₂) ₄ -N-CO-CH-NH-CO N OCH ₃ OCH ₃

Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
8	Н	Н	180	-
9	н	-CH ₂ COOCH ₃	130	_
10	Н	-СН ₂ СООН	188	-
11	Н	-CH ₂ CH ₂ COOH	76	-
12	-CH ₃ (R)	-CH ₂ COOCH ₃	73	ND

TABLEAU I : Suite 1

5	

10	

55	

Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
13	-CH ₃ (R)	-CH ₂ СООН	98	- 99,6 (1 ; CH ₃ OH)
14	-CH ₂ OH (R)	Н	124	- 48,4 (1 ; CH ₂ Cl ₂)
15	-CH ₂ COOH (R)	Н	205	- 76,8 (1 ; CHCl ₃)
16	-CH ₂ CH ₂ COOH (R)	Н	110	- 84,6 (0,9 ; DMF)
17	-CH ₂ CH ₂ COOH (S)	Н	110	+ 67,6 (0,9 ; DMF)
18	$-CH_2$ (R)	Н	252	- 12,7 (1,05 ; CH ₂ Cl ₂)
19	— СН ₂ ————ОН	Н	204	- 8,8 (0,99 ; DMF)
20	-CH ₂ CH ₂ COOCH ₂	Н	124	+ 57,0 (1 ; DMF)

TABLEAU I: Suite 2

5	

Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
21	-CH ₂ CH ₂ COOCH ₂ (R)	Н	128	- 56,2 (1 ; DMF)
22	-CH ₂ OCH ₂	Н	179	- 62,2 (1 ; CH ₂ Cl ₂)
23	-CH ₂ CONH ₂ (R)	Н	206	insoluble
24	-CH ₂ CH ₂ CONH ₂	Н	135	- 99,8 (1,04 ; CH ₂ Cl ₂)
25	- CH ₂ CH ₂ (R)	Н	193	ND
26	-CH ₂ OH (R)	-CH ₂ COOH	192	- 36,6 (1; CH ₃ OH)
27	-CH ₂ COOH (R)	-CH ₂ COOH	115	- 85,0 (1 ; CHCl ₃)

TABLEAU I: Suite 3

5	
10	
15	
20	
25	
30	
35	
40	

Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
28	-CH ₂ CH ₂ COOH (R)	-CH ₂ COOH	100	- 67,7 (0,9 ; DMF)
29	-CH ₂ CH ₂ COOH (S)	-CH ₂ СООН	128	+ 73,3 (0,9 ; DMF)
30	-CH ₂ -(R)	-СН ₂ СООН	115	- 25,6 (1,02 ; сн ₃ он)
31	CH ₂ OH	-CH ₂ СООН	238	- 8,3 (1,02 ; DMF)
	(R)			
32	-CH ₂ CONH ₂	-CH ₂ СООН	150	- 62,7 (1 ; CH3OH)
33	-CH ₂ CH ₂ CONH ₂	CH ₂ СООН	150	- 106,4 (1,17 ; CH ₂ Cl ₂)
34	-CH ₂ OH (R)	-СН ₂ СООСН ₃	87	- 62,2 (1 ; CH ₃ OH)
35	-CH ₂ COOH (R)	-CH ₂ COOCH ₃	104	- 81,0 (0,99 ; CHCl ₃)

TABLEAU I: Suite 4

5	

Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
36	-CH ₂ CH ₂ COOH (R)	-CH ₂ COOCH ₃	80	- 62,4 (0,9 ; DMF)
37	-CH ₂ -(R)	-СН ₂ СООСН ₃	162	- 21,8 (CH ₃ OH)
38	— СН ₂ — ОН	-CH ₂ COOCH ₃	120	- 10,6 (0,98 ; DMF)
39	- CH ₂ CH ₂ COOCH ₂	-CH ₂ COOCH ₃	50	- 47,3 (0,9 ; DMF)
40	-CH ₂ CH ₂ COOCH ₂	-CH ₂ COOCH ₃	48	+ 47,0 (0,9 ; DMF)
41	-CH ₂ CONH ₂ (R)	-CH ₂ COOCH ₃	213	- 115,2 (1 ; CH ₂ Cl ₂)
42	-CH ₂ CH ₂ CONH ₂	-CH ₂ COOCH ₃	152	- 80,8 (1,02 ; CH ₂ Cl ₂)

TABLEAU I: Suite 5

-5	
J	

Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
43	— сн ₂ соосн ₂	Ç	66	-51,8 (1 ; CHCl ₃)
44	-CH ₂ OCH ₂	-CH ₂ COONa	154	-35,8 (0,92 ; сн ₃ он)
45	-СН ₃ (S)	-СН ₂ СООСН ₃	72	+101,5 (1; СН ₃ ОН)
46	-СН _З (S)	-CH ₂ СООН	94	+100,8 (1; сн ₃ он)
47	-СН ₃ (S)	Н	195	+86,3 (1; CH ₂ Cl ₂)
48	-CH ₃ (R)	-CH ₂ CON	86	-81,5 (0,998 ; CH ₃ OH)

TABLEAU I: Suite 6

5	
10	
15	
20	
25	
30	
35	
40	

		T		T
Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
49	-CH ₂ (R)	Н	242	-29,7 (0,96 ; CH ₂ Cl ₂)
50	-CH ₂ (R)	-СН ₂ СООСН ₃	90	-62,2 (1,1 ; CH ₂ Cl ₂)
51	-CH ₂ (R)	-CH ₂ COONa	220	-40,2 (0,96 ; CH ₂ Cl ₂)
52	-CH ₂ OCH ₂	-CH ₂ COOCH ₃	60	+47,2 (0,94 ; сн ₃ он)
53	-CH ₂ OCH ₂ (S)	Н	176	+47,8 (0,93 ; CH ₂ Cl ₂)
54	-CH ₃ (R)	-CH ₂ CH ₂ COOH	67	-102,9 (0,998 ; СН ₃ ОН)
55	-CH ₃ (R)	-СН3	67	-114,0 (1 ; СН _З ОН)

TABLEAU I: Suite 7

5	

Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
56	-CH ₂ OCH ₂	-CH ₂ COOLi	158	+40,0 (1 ; СН ₃ ОН)
57	-CH ₃ (R)	-CH ₂ CH ₂ OH	66	-108,9 (1 ; сн ₃ он)
58	-CH ₃ (R)	-CH ₂ COOCH ₃	60	-46,5 (1,1 ; сн ₃ он)
59		-сн ₂ соосн ₃	75	-
	Racémique			
60		Н	229	-
	Racémique			
61		-CH ₂ СООН	186	-
	Racémique			

TABLEAU I: Suite 8

5	

10	Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
15	62	-CH ₃ (R)	-C ₂ H ₅	48	-116,2 (1,005 ; CH ₃ OH)
. 20	63	-CH(CH ₃) ₂ (R)	Н	231	-148,1 (1; DMF)
	64	-CH(CH ₃) ₂ (R)	-CH ₂ COOCH ₃	76	-102,5 (1 ; СН ₃ ОН)
25	65	-CH(CH ₃) ₂ (R)	-CH ₂ СООН	192	-113,4 (1 ; сн ₃ он)
30	66	-(CH ₂)₄NHCOOCH ₂	-CH ₂ COOCH ₃	68	-44,0 (1 ; CH ₃ OH)
35		(R)			
40	67	-(CH ₂) ₄ NHCOOCH ₂	н	95	-63,3 (0,92 ; СН ₃ ОН)
45					

(R)

50

TABLEAU I: Suite 9

5	

Exemple Numéro	R _{II} et configuration	w	F;°C	$\left[\alpha\right]_D^{20}$ (c = ; solvant)
68	-(CH ₂) ₄ NH ₂ (R)	Н	134	-83,9 (0,9 ; СН ₃ ОН)
69	-(CH ₂) ₄ NHCOOCH ₂	-CH ₂ COOH	118	-46,5 (1 ; СН _З ОН)
70	-CH ₂ OCH ₂ (R)	-CH ₂ CH ₂ COOCH ₃	huile	-46,7 (0,8 ; CH ₃ OH)
71	-CH ₂ OCH ₂	-CH ₂ CH ₂ COOH	84	-45,0 (0,85 ; сн ₃ он)
72	-*CH(CH ₃)O-CH ₂ (S) (R)	-CH ₂ COOCH ₃	117	-95,0 (0,995 ; СН ₃ ОН)
73	-*CH(CH ₃)O-CH ₂ (S) (R)	-CH ₂ COOH	85	-100,7 (1,01 ; сн ₃ он)

TABLEAU I: Suite 10

5	

Exemple Numéro	R _{II} et configuration	w	F;°C	$[\alpha]_D^{20}$ (c = ; solvant)
74	-*CH(CH ₃)O-CH ₂ (S) (R)	Н	195	-92,5 (1 ; CH ₂ Cl ₂)
75	-(CH ₂) ₄ NH ₂ (R)	-CH ₂ COOH	173	-173,0 (0,6 ; сн ₃ он)
76	-сн ₂ осн ₂ (R)	-CH ₂ CH ₃	huile	-48,3 (1 ; сн ₃ он)
77	-CH ₂ OCH ₂	-CH ₃	107	-60,4 (1 ; СН ₃ ОН)
78	-CH ₂ SCH ₂	-CH ₂ COOCH ₃	110	-23,7 (1,007 ; СН ₃ ОН)
79	-CH ₂ CH ₂	-сн ₂ соосн ₃	66	-32,6 (0,995 ; CH ₃ OH)

TABLEAU I : Suite 11

5	

Exemple Numéro	R _{II} et configuration	w	F;°C	$\left[\alpha\right]_{D}^{20}$ (c = ; solvant)
80	-CH ₂ OCH ₂ (R)	-CH ₂ CH ₂ OH	58	-32,4 (1 ; сн ₃ он)
81	-CH ₂ SCH ₂ (R)	-СН ₂ СООН	72	-20,6 (1 ; СН ₃ ОН)
82	-CH ₂ CH ₂	-CH ₂ COOH	101	-3 4, 0 (1 ; СН ₃ ОН)

TABLEAU II

5

CH₃-(CH₂)₄- N -CO-CH₂-NH-CO X_3 X_2 X_3 X_4 X_5 X_5 X_6 X_6 X_7 X_8 X_8

15

20

25

30

35

40

50

45

Exemple X_1 F;°C X_2 X_3 W numéro 83 OCH₃ CH₃ -CH₂COOCH₃ CI 129 84 OCH₃ CH₃ Н CI 178 85 OCH₃ CH₃ CI CH₂COOH 175 86 CI CH₃ CH₂COOCH₃ Н 90 87 CI CH₃ Н Н 189 88 CH₃ CI -CH₂COOH Н 197 89 CI OCH₃ 194 Н Н

TABLEAU II : Suite 1

10		
15		
20		Ì
25		

Exemple numéro	X ₁	X ₂	X ₃	w	F;°C
90	CI	OCH ₃	Н	-CH ₂ COOCH ₃	132
91	CI	OCH ₃	Н	-CH ₂ COOH	118
92	CH ₃	CI	Н	Н	196
93	CH ₃	CI	Н	-CH ₂ COOCH ₃	116
94	CH ₃	CI	Н	-CH ₂ -COO-Na+	115

TABLEAU III

 $CH_3-(CH_2)_4-N-C-CH_2-NH-C$ X_2 X_3 X_4 X_4

Exemple numéro	X ₁	X ₂	w	F;°C
95	OCH₃	СНз	Н	61
96	OCH ₃	СНз	СН₂СООН	130
97	CH ₃	OCH ₃	Н	189
98	OCH ₃	OCH ₃	СН ₂ СООСН ₃	51
99	OCH₃	OCH ₃	сн₂соон	202
100	OCH ₃	OCH ₃	Н	199
101	CH₃	OCH ₃	СН ₂ СООСН ₃	110

TABLEAU III : Suite 1

Exemple numéro	X ₁	X ₂	w	F;°C
102	CH ₃	OCH ₃	Ċ	76
103	CH ₃	OCH ₃	CH₂COOH	166

TABLEAU IV

 $\begin{array}{c} O \\ | \\ | \\ X_2 \end{array} \longrightarrow \begin{array}{c} O \\ | \\ O \\ V \end{array} \longrightarrow \begin{array}{c} O \\ | \\ O \\ V \end{array}$

Exemple numéro	R _I	w	X ₁	X ₂	F;°C
104	-(CH ₂) ₆ CH ₃	Н	CH ₃	OCH ₃	129
105	-(CH ₂) ₆ CH ₃	-CH ₂ COOH	CH ₃	OCH ₃	178
106	-(CH ₂) ₆ CH ₃	-(CH ₂) ₂ COOCH ₃	CH ₃	осн ₃	91
107	-(CH ₂) ₆ CH ₃	-(CH ₂) ₂ СООН	CH ₃	OCH ₃	85
108	-(CH ₂) ₂ CH(CH ₃) ₂	Н	CH ₃	OCH ₃	199
109	-(CH ₂) ₂ CH(CH ₃) ₂	Н	OCH ₃	OCH ₃	188

TABLEAU IV: Suite 1

5	

10	

Exemple numéro	R _I	w	X ₁	X ₂	F;°C
110	-(CH ₂) ₂ CH(CH ₃) ₂	-CH₂COOH	OCH ₃	осн _з	226
111	- CH ₂	Н	CH ₃	OCH ₃	225
112	-CH ₂ -	-CH ₂ COO ⁻ Na+	CH ₃	OCH ₃	235
113	-CH ₂ CH ₂	Н	CH ₃	OCH ₃	238
114	- CH ₂ CH ₂ ——	-CH ₂ COOCH ₃	OCH ₃	Н	163
115	-сн ₂ сн ₂ —	-CH ₂ COOH	OCH ₃	Н	198
116	-CH ₂	Н	CH ₃	OCH ₃	234
117	-CH ₂	-CH ₂ COOCH ₃	CH ₃	OCH ₃	161

W

-CH₂COOH

-CH₂CONH

2 — Áda (1)

Н

-CH₂COOH

-CH₂COOCH₃

-(CH₂)₂COOH

-(CH₂)₂COOCH₃

-CH₂COOH

 X_1

CH₃

 CH_3

CH₃

CH₃

 CH_3

 CH_3

CH₃

OCH₃

F;°C

212

196

198

202

76

103

94

226

 X_2

OCH₃

OCH₃

OCH₃

 OCH_3

 OCH_3

 OCH_3

 OCH_3

OCH₃

TABLEAU IV: Suite 2

 R_{l}

-(CH₂)₃OCH₃

-(CH₂)₃OCH₃

-(CH₂)₃OCH₃

-(CH₂)₃OCH₃

-(CH₂)₃OCH₃

-(CH₂)₂CH(CH₃)₂

-CH;-

-CH₂-

Exemple

numéro

118

119

120

121

122

123

124

125

5	

10

15

20

25

30

35

40

45

50

Note : (1) 2-Ada représente le groupe 2-adamantyle

TABLEAU V

 $R_{1}-N-C-CH_{2}-NH-C-R_{III}$ $H_{3}CO \longrightarrow OCH_{3}$ CH_{2}

Exemple numéro	R _i	R _{III}	F;°C
126	-(CH ₂) ₄ CH ₃		136
127	-(CH ₂) ₄ CH ₃		173
128	-(CH ₂) ₄ CH ₃		173
129	-(CH ₂) ₆ CH ₃		108
130	-(CH ₂) ₆ CH ₃		150
131	-(CH ₂) ₆ CH ₃		98
132	-(CH ₂) ₆ CH ₃		122

TABLEAU V : Suite 1

5	

Exemple numéro	R _I	R _{III}	F;°C
133	-(CH ₂) ₃ OCH ₃		101
134	-(CH ₂) ₃ OCH ₃		134
135	-(CH ₂) ₃ OCH ₃		176
136	-(CH ₂) ₃ OCH ₃		174
137	-(CH ₂) ₃ OCH ₃		167

TABLEAU VI

 $CH_3-(CH_2)_4-\underset{Ar}{\mathsf{N}}-CO-CH_2-\mathsf{NH}-CO$

Exemple numéro	Ar	W	F;°C	
138		-СН ₂ СООСН ₃	71	
139		-СН ₂ СООН	159	

TABLEAU VII

5

10

15

20

25

30

35

40

45

50

Exemple R_{\parallel} R_{II} et x_1 x_2 Х3 W F;°C numéro $[\alpha]_D^{20}$ configuration (c = ; solvant) 140 СН3 OCH₃ -CH3 (R) н -CH₂COOCH₃ 130 -87,4 (1; CH₃OH) 141 OCH₃ -CH3 (R) CH₃ Н -сн₂соон 171 -87,3 (1; CH₃OH) 142 -CH₃ (R) снз OCH₃ Н Н 252 -81,5 (1; CH₂Cl₂) 143 OCH₃ СН3 CI 92 Н -CH2OCH2 -74,4 -(CH₂)₄CH₃ (1,1; снзон)

TABLEAU VII: Suite 1

5				1	<u> </u>	T		
-	Exemple	R _I	R _{II} et	X ₁	X ₂	X3	W	F;°C
	numéro		configuration					$[\alpha]_D^{20}$
40								(c = ;
10		<u></u>						solvant)
	144		—CH₂OCH₂	оснз	снз	н	-сн ₂ соосн ₃	78
		-(CH ₂) ₄ CH ₃						-88,2
15		2-4 0						(1,4;
			(R)					СН ₃ ОН)
								3
20	145		—CH₂OCH₂	OCH ₃	CH ₃	CI	-сн ₂ соон	89
		-(CH ₂) ₄ CH ₃		i				-59,3
								(0,85 ; СН _З ОН)
25			◇ (R)					
	146			осн _з	CH ₃	Н	Н	190
		(011) 011	CH ₂ OCH ₂	00113	0113	••		-104,0
30		-(CH ₂) ₄ CH ₃						(0,75 ; СН ₃ ОН)
			(R)					(0,70,000,300)
<i>35</i>	147		-CH ₂ OCH ₂	OCH ₃	снз	Н	-сн ₂ соон	72
		-(CH ₂) ₄ CH ₃						-66,5
								(1 ; СН _З ОН)
40			(R)	:				
	148			CLI		0011		440
	140		— CH₂OCH₂ I	СНЗ	Н	OCH ₃	-СН ₂ СООН	110
45								-54,0
70			(R)					(1,05 ; CH ₃ OH)
			(17)					
50	149		-CH ₂ OCH ₂	осн _з	CH ₃	CI	-CH ₂ COOCH ₃	55
50		-(CH ₂) ₄ CH ₃	1				_	-88,2
		(0.12/40113						(1,1 ; СН _З ОН)
			(R)					
<i>55</i>				l	L	l		L

TABLEAU VII: Suite 2

5	Exemple			T	Τ	1 _	1	T
	numéro	R _I	R _{II} et	X ₁	X ₂	X ₃	W	F;°C
	, namero		configuration		ļ			[α] _D ²⁰
10								(c = ;
	150							solvant)
	150		CH ₂ OCH ₂	CH ₃	Н	OCH ₃	-CH ₂ CO ₂ CH ₃	78
15								-50,0
			(R)					(0,985 ;
			(1.17					сн ₃ он)
20	151	-(CH ₂) ₄ CH ₃	— СН ₂ ОСН ₂	СН3	CI	н	н	186
								-13,0
						i		(1; DMF)
25			(R)					
	152	-(CH ₂) ₄ CH ₃		CH ₃	CI	Н	-сн ₂ соон	205
		2,4-13	— СН ₂ ОСН ₂ 	0113	0,	* 1	-cn2coon	-6,0
30								(1,1;
			(R)					DMF)
Ī	153	-(CH ₂) ₄ CH ₃		CII	<u> </u>			
35	.00	(0112/40113	—CH₂OCH₂ 	CH ₃	CI	н	-сн ₂ соосн ₃	60 6.0
								-6,0 (1,125 ;
			(R)					сн ₃ он)
40								3
	154	\sim	—CH₂OCH₂	СНЗ	н	OCH3	-сн ₂ соосн ₃	80
								-45,0
45			(D)					(1,07 ; СН ₃ ОН)
			(R)			-		
50	155		-CH ₂ OCH ₂	сн3	н	осн ₃	-сн ₂ соон	112
30			``_					-45,0
								(1 ; сн ₃ он)
55			(R)					

TABLEAU VII: Suite 3

55

5	Exemple numéro	R _I	R _{II} et configuration	X ₁	X ₂	Х3	w	F; °C [α] _D ²⁰ (c = ; solvant)
15	156	\sim	-CH ₂ OCH ₂	CH₃	Н	осн3	Н	185 -70,0 (0,95 ;
20	157	-CH2CH2-	-CH ₂ OCH ₂	СНЗ	Н	OCH ₃	-сн ₂ соосн ₃	68 -31,5
25	158		(R)	CH ₃	Н	OCH ₃	н	(1 ; СН ₃ ОН)
30	100	-сн ₂ сн ₂ ——	-CH ₂ OCH ₂	CH3		осн ₃	п	-33,0 (1 ; сн ₃ он)
35	159	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂ (R)	CI	CH ₃	Н	-сн ₂ соосн ₃	70 -19,0 ^{(1,025} ; сн ₃ он)
40 45	160	-сн₂сн₂—	−CH ₂ OCH ₂ (R)	CH ₃	Н	OCH ₃	-сн ₂ соон	124 -33,0 (1 ; СН ₃ ОН)
50	161	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂	CI	сн3	Н	-сн ₂ соон	135 -19,0 (1,15 ; сн ₃ он)

TABLEAU VII: Suite 4

5	Exemple numéro	R _I	R _{II} et configuration	X ₁	X ₂	х ₃	w	F; °C [α] _D ²⁰ (c = ; solvant)
15	162	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂	CI	CH ₃	Н	н	186 -14,0 (0,95; CH ₂ Cl ₂)
20 25	163	-CH ₂ -	-CH ₂ OCH ₂ (R)	сн3	Н	OCH ₃	-сн ₂ соосн ₃	73 -80,2 (1 ; Сн ₃ он)
30	164	-(CH ₂) ₃ CH ₃	-CH ₂ OCH ₂	СН ₃	Н	OCH ₃	-сн ₂ соосн ₃	60 -35,5 (1 ; сн ₃ он)
<i>35</i> 40	165	- CH ₂ -	-CH ₂ OCH ₂ (R)	CH ₃	Н	OCH ₃	-СН ₂ СООН	112 -79,5 (1 ; СН _З ОН)
45	166	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂	OCH ₃	Н	осн ₃	-сн ₂ соосн ₃	58 -58,3 (1 ; СН _З ОН)
50 55	167	-(CH ₂) ₄ CH ₃	-CH ₂ OCH ₂	осн ₃	Н	OCH ₃	-сн ₂ соон	99 -61,1 (1 ; сн ₃ он)

TABLEAU VII: Suite 5

5	Exemple numéro	R _I	R _{II} et configuration	X ₁	x ₂	х3	w	F; °C [α] _D ²⁰ (c = ; solvant)
15	168	\sim	-CH ₂ (R)	CH ₃	Н	OCH ₃	-сн ₂ соон	165 -52,0 (0,805; сн ₃ он)
20	169	-CH ₂	-CH ₂ OCH ₂ (R)	CH ₃	Н	OCH ₃	-сн ₂ соосн ₃	130 -49,0 (0,9; CH ₃ OH)
30	170	-CH ₂	-CH ₂ (R)	CH ₃	Н	OCH ₃	-сн ₂ соосн ₃	120 -60,0 (0,97 ; СН ₃ ОН)
35	171	-CH ₂	-CH ₂ (R)	CH ₃	Н	OCH ₃	-сн ₂ соон	165 -55,0 (0,925; сн ₃ он)
40 45	172	-(CH ₂)3CH3	-CH ₂ OCH ₂	CH ₃	Н	OCH ₃	-сн ₂ соон	81 -55,1 (1 ; сн ₃ он)
50	173	-CH ₂ CH ₃	-CH ₂ OCH ₂	CH ₃	Н	OCH ₃	-сн ₂ соосн ₃	71 -59,3 (1 ; СН ₃ ОН)

TABLEAU VII: Suite 6

5	Exemple	D.		T .,	T ,,	Γ.,		<u> </u>
	numéro	Rį	R _{II} et configuration	X ₁	X ₂	Х3	w	F; °C
			Comiguation					[α] _D ²⁰
10								(c = ; solvant)
	174				 			
	174	CUECUE	—CH₂OCH₂	CH ₃	H	OCH3	-CH ₂ COOLi	100
15		-CH ₂ CH ₃						-63,0
15								(1 ; СН ₃ ОН)
			(R)					
	·		~	СНЗ	H	OCH ₃	-сн ₂ соосн ₃	107
20	175	-CH ₂	-CH ₂	3		3	01.20003	-73,7
		7	(R)					, с,,, (1 ; СН ₃ ОН)
			17-7		 			(, , 5, ., 5
25	176	\sim		СН3	н	осн ₃	-сн ₂ соосн ₃	150
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-CH ₂					-56,0
			(R)					(0,925;
30								сн ₃ он)
	177		CH ₂ OCH ₂	CI	осн ₃	н	-сн ₂ соосн ₃	70
					١		- Z- 3	-88,2
35		-(CH ₂) ₄ CH ₃						(0,97; СН _З ОН)
			(R)					(4,=-, 43
ŀ								
40	178	1		СНЗ	н	осн _з	-сн ₂ соон	153
		-CH ₂ —	-CH ₂					-78,4
			(R)					(1; СН ₃ ОН)
45	179	-CH ₂	CH₂OCH₂	СНЗ	н	OCH ₃	-сн ₂ соосн ₃	74
				3		5	5253	-53,3
								(1 ; СН ₃ ОН)
50			(R)					. 3

TABLEAU VII: Suite 7

5	Exemple numéro	R _I	R _{II} et configuration	х ₁	X ₂	Х3	w	F; °C [α] _D ²⁰ (c = ;
10 15	180	-CH ₃	-CH ₂ OCH ₂	сн3	Н	осн ₃	-сн ₂ соосн ₃	solvant) 64 -50,0 (1 ; CH ₃ OH)
20	181	-CH ₂	−CH ₂ OCH ₂ (R)	CH ₃	Н	OCH ₃	-сн ₂ соон	110 -36,8 (1 ; сн ₃ он)
30	182	-CH ₂	-CH₂OCH₂ (R)	CH ₃	Н	OCH₃	-СН ₂ СООН	126 -65,0 (1 ; сн ₃ он)
<i>35</i>	183	CH ₃	-CH ₂ OCH ₂	CH ₃	Н	OCH₃	-сн ₂ соон	103 -58,6 (1 ; сн ₃ он)
45	184	-CH ₂ ——	-CH ₂ OCH ₂ (R)	CH ₃	Н	OCH ₃	-сн ₂ соосн ₃	76 -57,8 (1 ; сн ₃ он)

EXEMPLE 185

 $[2-\{[butyl(2,6-dim\acute{e}thoxy-4-m\acute{e}thylph\acute{e}nyl)carbamoyl]\\ m\acute{e}thylcarbamoyl\}-1-indolyl]\\ ac\acute{e}tate\ de\ m\acute{e}thyle.$

(I) : Ar =
$$(CH_3)$$
 (CH_3) (CH_3)

R_{III} = N CH₂COOCH₃

On prépare ce produit selon le procédé décrit à l'EXEMPLE 1 à partir de la butyl(2,6-diméthoxy-4-méthylphényl) carbamoylméthylamine et de l'acide 1-(méthoxycarbonylméthyl)-2-indolecarboxylique ; F = 139°C ; Rendement : 90 %.

EXEMPLE 186

5

10

15

20

25

35

 H_3CO OCH₃ $R_1 = CH_3 - (CH_2)_3 - (CH_2)_3 + (CH_3)_3 + (CH$

En procédant selon l'EXEMPLE 2, à partir du {2-[butyl(2,6-diméthoxy-4-méthylphényl)carbamoylméthylcarbamoyl]-1-in-dolyl}acétate de méthyle (EXEMPLE 185), on prépare l'acide {2- [[butyl(2,6-diméthoxy-4-méthylphényl)-carbamoyl]méthylcarbamoyl] 1-indolyl}acétique ; F = 211°C;
Rendement : 92 %.

EXEMPLE 187

55

$$(I) : Ar = \begin{pmatrix} H_3CO & OCH_3 \\ CH_3 & CH_3 \\$$

En procédant selon l'EXEMPLE 3, on prépare le N-{[((méthylphényl carbamoyl)méthyl)-(2,6-diméthoxy-4-méthyl-20 phényl)carbamoyl]méthyl}-1H-indole-2-carboxamide, F = 116°C; Rendement : 90 %.

EXEMPLE 188

15

25

35

40

50

55

 H_3CO OCH₃ ; $R_1 = -- (CH_2)_3 CH_3$; $R_{II} = H$;

En procédant selon l'EXEMPLE 3, on prépare le N-[[butyl(2,6-diméthoxy-4-méthylphényl)carbamoyl]méthyl] -1H-indole-2-carboxamide ; $F=210^{\circ}C$;

45 Rendement : 91 %.

EXEMPLE 189

$$H_3CO$$
 OCH₃

$$; R_1 = - (CH_2)_4 CH_3$$

$$R_{II} = ---(CH_2)_4 NH_2$$
 $R_{III} = ----(CH_2)_4 NH_2$
 $CH_2 COOCH$

On dissout 5,6 g de (R)-{2-[N{1-[[(2,6-diméthoxy-4-méthylphényl)pentyl]-carbamoyl]-5-(benzyloxycarbonylamino)pentyl]-carbamoyl]-indol-1-yl}acétate de méthyle (EXEMPLE 66) dans 170 ml de méthanol et y ajoute 0,56 g de Pd/C à 10 %. On hydrogène sous une pression de 3 bars et abandonne le mélange réactionnel à 30°C en maintenant cette pression pendant 18 heures. Après refroidissement on filtre le catalyseur sur un lit de célite et évapore à sec. L'huile résiduelle est purifiée par chromatographie-flash sur gel de silice, éluant : CH₂Cl₂/CH₃OH/AcOH 90/10/0,5 (v/v/v) pour obtenir des cristaux blancs de (R)-{2-[N-{1-[[(2,6-diméthoxy-4-méthylphényl)pentyl]-carbamoyl]-5-aminopentyl}-carbamoyl]-indol-1-yl}acétate de méthyle, F = 78°C,

 $\left[\alpha\right]_{D}^{20} =$ -47,6° (c = 1, CH₃OH), Rendement : 85 %.

EXEMPLE 190

10

15

30

35

40

50

55

(I) : Ar =
$$\begin{array}{c} H_3CO \\ CH_3 \\ CH_3 \end{array}$$

$$R_{II} = - (CH_2)_4 NH_2$$
 $R_{III} = - N$
 CH_2COOH

On dissout 0,7 g du composé préparé à l'EXEMPLE 189 précédent dans 20 ml de méthanol et ajoute 0,075 g d'hydroxyde de lithium hydraté et abandonne le mélange réactionnel à température ambiante pendant 18 heures. On évapore à sec et reprend le résidu par de l'eau. On acidifie la phase aqueuse par HCl 1N et extrait avec de l'acétate d'éthyle. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés à sec. Les cristaux obtenus sont purifiés par chromatographie-flash sur gel de silice, éluant : CH₂Cl₂/CH₃OH, 9/1 (v/v) pour obtenir des cristaux blancs de l'acide (R)-{2-[N-{1-[[(2,6-diméthoxy-4-méthylphényl)pentyl]-carbamoyl]-5-aminopentyl}-carbamoyl]-indol-1-yl)acétique, F = 173°C.

 $\left[\alpha\right]_{D}^{20}$ = -173,0° (c = 0,6, CH₃OH), Rendement : 87 %.

EXEMPLE 191

(I) : Ar =
$$H_3CO$$
 OCH₃ $R_{II} = --(CH_2)_4NHCO$

$$R_{III} =$$

$$| R_1 = -(CH_2)_4 CH_3$$

$$| CH_2 COOCH_3$$

A 30 ml de diméthylformamide, on ajoute successivement 0,87 g de (R)-{2-[N-{1-[[(2,6-diméthoxy-4-méthylphényl)pentyl]-carbamoyl]-indol-1-yl}acétate de méthyle, 0,645 g de BOP, 0,23 g d'acide cinnamique. Après refroidissement à -5°C, on ajoute sous atmosphère inerte 0,26 g de N-éthylmorpholine, on maintient le mélange réactionnel à 0°C pendant 2 heures puis abandonne à température ambiante pendant 18 heures. On verse le mélange réactionnel dans un grand volume d'eau et extrait avec de l'acétate d'éthyle. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés à sec. L'huile résiduelle est purifiée par chromatographie-flash sur gel de silice, éluant : $\text{CH}_2\text{Cl}_2/\text{CH}_3\text{OH}$ 97/3 (v/v) pour obtenir le (R)-{2-[N-{1-[[(2,6-diméthoxy-4-méthylphényl)pentyl]-carbamoyl]-indol-1-yl}acétate de méthyle sous forme d'huile.

30 EXEMPLE 192

(I) : Ar =
$$\begin{array}{c} H_3CO \\ \hline \\ CH_3 \end{array}$$

$$\begin{array}{c} CH_3 \\ \hline \\ CH_3 \end{array}$$

L'ester précédent est saponifié avec LiOH, H_2O/CH_3OH comme précédemment, pour fournir des cristaux blancs d'acide (R)-{2-[N-{1-[[(2,6-diméthoxy-4-méthylphényl)pentyl]-carbamoyl]-5-(cinnamoylamino)pentyl}-carbamoyl]-indol-1-yl} acétique, F = 172°C,

$$[\alpha]_D^{20} = -21.2^{\circ} \text{ (c = 0.8, CH}_3\text{OH)}.$$

Revendications

1. Composé de formule :

5

10

$$R_{I} - N - CO - CH - NH - CO - R_{III}$$
Ar (I)

dans laquelle

- 15
- R_I représente un alkyle en C₃ à C₈; un arylalkyle -Alk-Ar₁ où Alk représente un alkylène de 1 à 4 atomes de carbone et Ar₁ représente un groupe phényle ou un hétérocycle éventuellement substitué par un halogène, un alkyle en C₁-C₃, un alcoxy en C₁-C₃, un trifluorométhyle ou un hydroxyle; un cycloalkylalkyle dans lequel l'alkyle est en C₁-C₄ et le cycloalkyle en C₃-C₁₀; un cycloalkyle en C₃-C₁₀ éventuellement substitué par un hydroxyle, un alcoxy en C₁-C₃ ou un alkyle en C₁-C₃ ledit alkyle pouvant substituer deux fois le même atome de carbone; un alcoxyalkyle dans lequel l'alcoxy est en C₁-C₄ et l'alkyle est en C₂-C₅; ou un groupe (AB)N-CO-(CH₂)_r-, où A est un alkyle en C₁-C₃, B est un alkyle en C₁-C₃ ou un phényle ou bien A et B forment, avec l'atome d'azote auquel ils sont liés, un hétérocycle choisi parmi pyrrolidine, pipéridine et morpholine, r est 1, 2 ou 3;
- 25

30

20

R_{II} représente l'hydrogèn e; un alkyle en C₁-C₆; un hydroxyalkyle en C₁-C₅; un groupe -(CH₂)_m-COR₂ dans lequel m est un entier de 1 à 3 et $m H_2$ représente un hydroxyle, un groupe alcoxy en $m C_1$ - $m C_4$, un groupe benzyloxy, un groupe -N $\mathsf{R}_3\mathsf{R}_4$ dans lequel R_3 ou R_4 représentent indépendamment l'hydrogène, un alkyle en C_1 - C_4 ou constituent avec l'atome d'azote auquel ils sont liés un hétérocycle choisi parmi pyrrolidine, pipéridine et morpholine ; un groupe aralkyle -(CH₂)_n-Ar₂ dans lequel n est égal à 0 ou représente un entier de 1 à 4 et Ar₂ représente un phényle ou un hétérocycle éventuellement substitué par un halogène, un alkyle en C₁-C₃, un alcoxy en C₁-C₃, un trifluorométhyle, un hydroxyle ou par un benzyloxy; un cycloalkylalkyle dans lequel l'alkyle est en C_1 - C_4 et le cycloalkyle en C_3 - C_{10} ; un aminoalkyle en C_1 - C_4 ; un groupe R-CO-NH- $(CH_2)_x$ - dans lequel x représente un nombre entier de 1 à 4 et R représente un alkyle en C₁-C₄, un phényle, un benzyle, un 2-phényléthényle ou un benzyloxy, les noyaux aromatiques étant éventuellement substitués par un halogène, un alkyle en C₁-C₃, un alcoxy en C₁-C₃, un trifluorométhyle, un hydroxyle, un groupe sulfonique ou carboxylique; un guanidinoalkyle en C_1 - C_4 ; un imidazolylalkyle en C_1 - C_3 ; un alkylthioalkyle dans lequel les alkyles sont en C1-C3; un aralkylthioalkyle dans lequel la partie aryle est éventuellement hétérocyclique et les parties alkyle sont en C_1 - C_3 , l'aryle étant éventuellement substitué par un halogène, un alkyle en C_1 - C_3 , un alcoxy en C_1 - C_3 , un trifluorométhyle, un hydroxyle ; un benzyloxyalkyle dans lequel l'alkyle est en C₁-C₃ et le phényle éventuellement substitué par un halogène, un hydroxyle, un alcoxy en C₁-C₃, un alkyle en C₁-C₃, un trifluorométhyle,

 R_{III} représente un groupe naphtyle ; un groupe quinoléinyle ; un groupe isoquinoléinyle ; un groupe indolyle non substitué, substitué sur un carbone, ou substitué sur l'azote par un groupe alkyle en C_1 - C_3 , alkylcarbonyle

en C_1 - C_4 , par un groupe - $(CH_2)_p$ - COR_5 , p étant un entier de 0 à 4 et R_5 représentant OR'_5 ou $NR'_5R''_5$ avec R'_5 et R''_5 identiques ou non représentant l'hydrogène ou un alkyle en C_1 - C_4 ou bien R'_5 et R''_5 forment ensemble avec l'atome d'azote auquel ils sont liés une pipéridine, par un hydroxyalkyle en C_1 - C_4 , par un alcoxyalkyle en C_2 - C_6 , par un cyanoalkyle en C_2 - C_4 , par un tétrahydropyranyle, par un adamantylaminocarbonylalkyle en C_1 - C_4 , ou par une chaîne - $(CH_2)_q$ -, q étant un entier de 2 à 4 dont un des carbones substitue le noyau phényle

Ar représente un groupe 2-méthoxy-3-pyridinyle, 4-méthoxy-5-pyrimidinyle ou 2-méthoxyphényle contenant au

- 35
- 40 lement substitué pa un nitrile, un nitro ;
- 45
- 50
- *55*
- moins deux autres substituants choisis parmi un alkyle en C_1 - C_3 , un alcoxy en C_1 - C_3 , un atome d'halogène et un trifluorométhyle; ou Ar représente un groupe naphtyle;
- ou bien R_I et R_{II} constituent ensemble un groupe

du groupe indole pour constituer un cycle ;

5

10

15

dans lequel g représente 0, 1 ou 2 et Z représente un alkyle en C_1 - C_4 , un alcoxy en C_1 - C_3 ou un halogène ; ou éventuellement un de leurs sels.

Composé selon la revendication 1, de formule :

$$R_{la}$$
—N—CO—CH—NH—CO- R_{lll} (Ia

20

25

30

dans laquelle R_{II} et R_{III} sont tels que définis dans la revendication 1 pour (I) et R_{Ia} représente un alkyle en C₅-C₈; un arylalkyle -Alk-Ar₁ où Alk représente un alkylène de 1 à 4 atomes de carbone et Ar₁ représente un groupe phényle ou un hétérocycle éventuellement substitué par un halogène, un alkyle en C₁-C₃, un alcoxy en C₁-C₃, un trifluorométhyle ou un hydroxyle; un cycloalkylalkyle dans lequel l'alkyle est en C₁-C₄ et le cycloalkyle en C₃-C₁₀; un cycloalkyle en C₃-C₁₀ éventuellement substitué par un hydroxyle, un alcoxy en C₁-C₃ ou un alkyle en C₁-C₃ le dit alkyle pouvant substitué deux fois le même atome de carbone ; un alcoxyalkyle dans lequel l'alcoxy est en C_1 - C_4 et l'alkyle est en C_2 - C_5 ; ou un groupe (AB)N-CO-(CH₂)_r-, où A est un alkyle en C_1 - C_3 , B est un alkyle en C_1 - C_3 ou un phényle ou bien A et B forment, avec l'atome d'azote auquel ils sont liés, un hétérocycle choisi parmi pyrrolidine, pipéridine et morpholine, r est 1, 2 ou 3; ou éventuellement un de leur sel.

Composé selon la revendication 1 de formule (I) dans laquel Ar représente un groupe naphtyle et R_I est R_{Ia} tel que défini dans la revendication 2 et ses sels éventuels.

35

- Composé selon la revendication 1, de formule (I) dans laquelle R_{II} est autre que de l'hydrogène et dans laquelle le carbone portant le substituant R_{II} est en configuration R et ses sels éventuels.
- Composé selon la revendication 1, de formule (I) dans laquelle R_I et R_{II} constituent ensemble un cycle

40

45

où g et Z sont tels que définis dans la revendication 1 et dans laquelle le carbone portant R_{II} est en configuration S et ses sels éventuels.

Procédé pour la préparation d'un composé selon la revendication 1 de formule (I) caractérisé en ce que l'on traite une amine de formule :

50

55

dans laquelle Ar et R_I sont tels que définis ci-dessus, avec un aminoacide N-protégé de formule :

dans laquelle $R_{||}$ est tel que défini pour (I) et dans laquelle, le cas échéant, les fonctions réactives de $R_{||}$ ont été protégées pour conduire à un composé de formule :

$$\begin{array}{c|c}
R_{\parallel} \\
 \downarrow \\
R_{1} - N - CO - CH - NHBoc \\
 \downarrow \\
Ar
\end{array}$$

dans laquelle R_I , Ar et R_{II} sont tels que définis ci-dessus, lequel après transformation conduit à un composé (I) selon la revendication 1 ou l'un de ses sels éventuels.

7. Composé de formule :

5

10

15

20

25

45

55

dans lequel R_I, Ar et R_{II} sont tels que définis dans la revendication 1.

- 8. Composition pharmaceutique contenant, en tant que principe actif, un composé selon l'une quelconque des revendications 1 à 5.
- 9. Composition pharmaceutique selon la revendication 8, sous forme d'unité de dosage, dans laquelle le principe actif est mélangé à au moins un excipient pharmaceutique.
 - 10. Composition pharmaceutique selon la revendication 9, contenant de 0,5 à 1000 mg de principe actif.
- 40 11. Composé de formule :

$$R_{1}-N-CO-CH-NH_{2}$$

$$Ar$$
(V)

dans lequel $R_{\rm I}$, Ar et $R_{\rm II}$ sont tels que définis dans la revendication 1.

50 12. Composé de formule :

dans lequel Ar est tel que défini à la revendication 1 et R_1 représente un cycloalkyle en C_3 - C_{10} éventuellement substitué par un hydroxyle, un alcoxy en C_1 - C_3 ou un alkykle en C_1 - C_3 ledit alkyle pouvant substituer deux fois le même atome de carbone.

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande EP 95 40 1912

Catégorie	Citation du document avec ind des parties pertin		Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.6)
D,A D,A	WO-A-91 13874 (RHONE- * revendications * JOURNAL OF MEDICINAL vol. 37, no. 5, 4 Mar pages 630-635, M.W.HOLLADAY ET AL.	 CHEMISTRY, rs 1994 WASHINGTON US,	1	C07D209/42 A61K31/395 C07D405/04 C07D215/54 C07D215/48 C07D217/26 C07D487/06
	agonists:'			C07C237/22
				DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)
				C07D A61K C07C
	résent rapport a été établi pour tout	no los payandientions		
Lep	Lien de la recherche	Date d'achèvement de la recherche	<u> </u>	Examinateur
	LA HAYE	21 Novembre 1995	. Var	Bijlen, H
CATEGORIE DES DOCUMENTS CITES T: théorie ou prin E : document de bi		evet antérieur, ma u après cette date nande es raisons	uis publié à la	