Toward an Algorithmic Theory of Polynomials

Alperen A. Ergür

Carnegie Mellon University School of Computer Science

Dec 02, 2019

Examples from a variety of subjects with connections to polynomials

- Examples from a variety of subjects with connections to polynomials
- Basic Algebraic Geometry with a computational lens

- Examples from a variety of subjects with connections to polynomials
- Basic Algebraic Geometry with a computational lens
- Revisiting the introductory examples with an algebra-geometric perspective

Part I Examples

Extremal Combinatorics

Extremal Combinatorics

Example

Let P be a set of points in the real plane, and let L be set of lines. How many incidences can happen between the elements of P and L?

Extremal Combinatorics

Example

Let P be a set of points in the real plane, and let L be set of lines. How many incidences can happen between the elements of P and L?

Incidence geometry is tightly connected to randomness extraction in computer science, and also to harmonic analysis and number theory.

Probabilistic Combinatorics

Probabilistic Combinatorics

Example

Define a random bipartite graph with m check nodes and n variable nodes as follows

- ullet each check node has degree k, and each variable node has degree $\frac{km}{n}$
- ullet edges have weights from an arbitrary distribution over \mathbb{F}^* for a field \mathbb{F}

Let A be the $m \times n$ random matrix defined by this graph. What is the rank of A?

Probabilistic Combinatorics

Example

Define a random bipartite graph with m check nodes and n variable nodes as follows

- ullet each check node has degree k, and each variable node has degree $\frac{km}{n}$
- ullet edges have weights from an arbitrary distribution over \mathbb{F}^* for a field \mathbb{F} Let A be the $m \times n$ random matrix defined by this graph. What is the rank of A?

The rank is the rate of ldpc codes that you probabaly have in your pocket.

 $A \succ 0$ means A is a PSD matrix.

A map $\phi: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is positive if $\phi(A) \succ 0$ for all $A \succ 0$.

Positive maps are used to detect entanglement.

 $A \succ 0$ means A is a PSD matrix.

A map $\phi : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is positive if $\phi(A) \succ 0$ for all $A \succ 0$.

Positive maps are used to detect entanglement.

Completely positive maps are "nice" positive maps.

 $A \succ 0$ means A is a PSD matrix.

A map $\phi : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is positive if $\phi(A) \succ 0$ for all $A \succ 0$.

Positive maps are used to detect entanglement.

Completely positive maps are "nice" positive maps. ϕ is k-positive if the map

$$\phi^{k}: \mathbb{R}^{k \times k} \otimes \mathbb{R}^{n \times n} \to \mathbb{R}^{k \times k} \otimes \mathbb{R}^{n \times n}$$
$$\phi^{k}(M \otimes A) = M \otimes \phi(A)$$

is positive. ϕ is completely positive if it is positive for all k.

Send ϕ to a biquadratic polynomial by $p_{\phi}(x, y) = y^{T}\phi(xx^{T})y$. Then,

- ϕ is positive if $p_{\phi}(x, y) \geq 0$ for all x, y.
- ϕ is completely positive if $p_{\phi}(x,y) = \sum h_i(x,y)^2$ for some h_i .

Send ϕ to a biquadratic polynomial by $p_{\phi}(x, y) = y^{T}\phi(xx^{T})y$. Then,

- ϕ is positive if $p_{\phi}(x, y) \geq 0$ for all x, y.
- ϕ is completely positive if $p_{\phi}(x,y) = \sum h_i(x,y)^2$ for some h_i .

We can optimize over completely positive maps (sum of squares) using semidefinite programming.

Send ϕ to a biquadratic polynomial by $p_{\phi}(x, y) = y^{T}\phi(xx^{T})y$. Then,

- ϕ is positive if $p_{\phi}(x, y) \geq 0$ for all x, y.
- ϕ is completely positive if $p_{\phi}(x,y) = \sum h_i(x,y)^2$ for some h_i .

We can optimize over completely positive maps (sum of squares) using semidefinite programming.

What percentage of positive maps are completely positive?

What percentage of biquadratic nonnegative polynomials are sum of squares?

| □ ▶ ◀畵 ▶ ◀돌 ▶ ◀돌 ▶ · 돌 · 쒸익()

We have two input data: $A = \{a_1, a_2, \dots, a_t\} \subset \mathbb{Z}^n$, $n \times t$ matrix κ . The pair (κ, A) models a system of equations:

We have two input data: $A = \{a_1, a_2, \dots, a_t\} \subset \mathbb{Z}^n$, $n \times t$ matrix κ . The pair (κ, A) models a system of equations:

$$f_1(x) = \sum_{i=1}^t \kappa_{1i} x^{a_i}, f_2(x) = \sum_{i=1}^t \kappa_{2i} x^{a_i}, \dots, f_n(x) = \sum_{i=1}^t \kappa_{ni} x^{a_i}$$

We have two input data: $A = \{a_1, a_2, \dots, a_t\} \subset \mathbb{Z}^n$, $n \times t$ matrix κ . The pair (κ, A) models a system of equations:

$$f_1(x) = \sum_{i=1}^t \kappa_{1i} x^{a_i}, f_2(x) = \sum_{i=1}^t \kappa_{2i} x^{a_i}, \dots, f_n(x) = \sum_{i=1}^t \kappa_{ni} x^{a_i}$$

How many $x \in \mathbb{R}^n_+$ are there with $f_1(x) = f_2(x) = \ldots = f_n(x) = 0$?

We have two input data: $A = \{a_1, a_2, \dots, a_t\} \subset \mathbb{Z}^n$, $n \times t$ matrix κ . The pair (κ, A) models a system of equations:

$$f_1(x) = \sum_{i=1}^t \kappa_{1i} x^{a_i}, f_2(x) = \sum_{i=1}^t \kappa_{2i} x^{a_i}, \dots, f_n(x) = \sum_{i=1}^t \kappa_{ni} x^{a_i}$$

How many $x \in \mathbb{R}^n_+$ are there with $f_1(x) = f_2(x) = \ldots = f_n(x) = 0$?

$$\frac{\mathrm{d}x}{\mathrm{d}t}=(f_1(x),f_2(x),\ldots,f_n(x))$$

Mass kinematics equation models the dynamical system, we want to count equlibrium (steady) states.

(ロト 4回 ト 4 巨 ト 4 巨 ト) 巨) りへの

 Translates to a problem of solving, optimizing, or counting zeros of polynomials

- Translates to a problem of solving, optimizing, or counting zeros of polynomials
- Corresponding polynomials are structured (e.g. sparse)

- Translates to a problem of solving, optimizing, or counting zeros of polynomials
- Corresponding polynomials are structured (e.g. sparse)
- Examples are mostly about real zeros, not complex

- Translates to a problem of solving, optimizing, or counting zeros of polynomials
- Corresponding polynomials are structured (e.g. sparse)
- Examples are mostly about real zeros, not complex
- In the worst case all these problems are NP-Hard

- Translates to a problem of solving, optimizing, or counting zeros of polynomials
- Corresponding polynomials are structured (e.g. sparse)
- Examples are mostly about real zeros, not complex
- In the worst case all these problems are NP-Hard

What needs to be done then?

- Translates to a problem of solving, optimizing, or counting zeros of polynomials
- Corresponding polynomials are structured (e.g. sparse)
- Examples are mostly about real zeros, not complex
- In the worst case all these problems are NP-Hard

What needs to be done then?

Develop structure aware theorems and algorithms

- Translates to a problem of solving, optimizing, or counting zeros of polynomials
- Corresponding polynomials are structured (e.g. sparse)
- Examples are mostly about real zeros, not complex
- In the worst case all these problems are NP-Hard

What needs to be done then?

- Develop structure aware theorems and algorithms
- Distinguish between the real and complex geometry

- Translates to a problem of solving, optimizing, or counting zeros of polynomials
- Corresponding polynomials are structured (e.g. sparse)
- Examples are mostly about real zeros, not complex
- In the worst case all these problems are NP-Hard

What needs to be done then?

- Develop structure aware theorems and algorithms
- Distinguish between the real and complex geometry
- Go beyond the worst case and understand typical instances

Part II

Basic Algebraic Geometry with a Computational Lens

Going back to the beginnings

We go back to univariate polynomials: Let $0 < a_1 < \ldots < a_t$ be a sequence of integers, and consider the following univariate polynomial

$$p(x) = c_0 + c_1 x^{a_1} + \ldots + c_t x^{a_t}$$

where c_i are real numbers. How many zeros does p have?

Going back to the beginnings

We go back to univariate polynomials: Let $0 < a_1 < \ldots < a_t$ be a sequence of integers, and consider the following univariate polynomial

$$p(x) = c_0 + c_1 x^{a_1} + \ldots + c_t x^{a_t}$$

where c_i are real numbers. How many zeros does p have?

- Fundamental Theorem of Algebra: p has a_t many zeros over the complex numbers.
- 2 Descartes Rule of Signs: The number of real zeros of *p* depends on the coefficients, but it is at most 2*t*.

Alperen A. Ergür (Carnegie Mellon UniversityToward an Algorithmic Theory of Polynomials

Going back to the beginnings

We go back to univariate polynomials: Let $0 < a_1 < \ldots < a_t$ be a sequence of integers, and consider the following univariate polynomial

$$p(x) = c_0 + c_1 x^{a_1} + \ldots + c_t x^{a_t}$$

where c_i are real numbers. How many zeros does p have?

- Fundamental Theorem of Algebra: p has a_t many zeros over the complex numbers.
- 2 Descartes Rule of Signs: The number of real zeros of *p* depends on the coefficients, but it is at most 2*t*.

Example

Consider $p(x) = 3 + 5x + 7x^{100}$. It has at most 4 real zeros, and 100 complex zeros.

4□ > 4□ > 4□ > 4□ > 4□ > 9

Theorem (Bézout)

Let $p = (p_1, \ldots, p_{n-1})$ be a system of homogenous polynomials with n variables where p_i have degree d. Then the polynomial system p has at most d^{n-1} many non-degenerate zeros, and this bound is generically exact.

Theorem (Bézout)

Let $p = (p_1, \dots, p_{n-1})$ be a system of homogenous polynomials with n variables where pi have degree d. Then the polynomial system p has at most d^{n-1} many non-degenerate zeros, and this bound is generically exact.

Example

Let A be a $n \times n$ matrix, and consider the eigenpair problem:

$$(A - \lambda)x = 0$$

This is a quadratic system of equations in (λ, x) . Bézout's theorem gives the bound 2^n .

Theorem (Kushnirenko, 70's)

Let $A = \{a_1, a_2, \dots, a_m\} \subset \mathbb{Z}^n$ be set of lattice points. Consider the following polynomial equations

$$p_1(x) = \sum_{i=1}^m c_{1i}x^{a_i}, \dots, p_n(x) = \sum_{i=1}^m c_{ni}x^{a_i}$$

Then the system of equations $p = (p_1, p_2, ..., p_n)$ has at most |conv(A)| many non-degenerate zeros (where |.| denotes volume), and this bound is generically exact.

Theorem (Kushnirenko, 70's)

Let $A = \{a_1, a_2, \dots, a_m\} \subset \mathbb{Z}^n$ be set of lattice points. Consider the following polynomial equations

$$p_1(x) = \sum_{i=1}^m c_{1i}x^{a_i}, \dots, p_n(x) = \sum_{i=1}^m c_{ni}x^{a_i}$$

Then the system of equations $p = (p_1, p_2, ..., p_n)$ has at most |conv(A)| many non-degenerate zeros (where |.| denotes volume), and this bound is generically exact.

This theorem gives the bound 2n for the eigenpair problem.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○○

Theorem (Kushnirenko, 70's)

Let $A = \{a_1, a_2, \dots, a_m\} \subset \mathbb{Z}^n$ be set of lattice points. Consider the following polynomial equations

$$p_1(x) = \sum_{i=1}^m c_{1i}x^{a_i}, \dots, p_n(x) = \sum_{i=1}^m c_{ni}x^{a_i}$$

Then the system of equations $p = (p_1, p_2, ..., p_n)$ has at most |conv(A)| many non-degenerate zeros (where |.| denotes volume), and this bound is generically exact.

This theorem gives the bound 2n for the eigenpair problem.

There is a series of papers titled complexity of Bézout's theorem, but there is no paper (yet) titled complexity of Kushnirenko's theorem.

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

An example

Example

$$f_1 = 10500t - t^2u^{492} - 3500u^{463}v^5w^5$$

$$f_2 = 10500t - t^2 - 3500u^{691}v^5w^5$$

$$f_3 = 14000 - 2t + tu^{492} - 2500v$$

$$f_4 = 14000 + 2t - tu^{492} - 3500w$$

How many zeros are there?

- **1** Bezout bound: 82 billion in \mathbb{C}^4
- 2 Volume (Kushnirenko) bound: 7663 in $(\mathbb{C}^*)^4$
- 3 Number of positive real zeros: 6 in $(\mathbb{R}_+)^4$

Theorem (Khovanskii, 1988)

Let $A = \{a_1, a_2, \dots, a_t\} \subset \mathbb{Z}^n$ be set of lattice points. Consider the following polynomial equations

$$p_1(x) = \sum_{i=1}^t c_{1i}x^{a_i}, \dots, p_n(x) = \sum_{i=1}^t c_{ni}x^{a_i}$$

Then the system of equations $p = (p_1, p_2, \dots, p_n)$ has at most

$$2^{\binom{t-1}{2}}(n+1)^{t-1}$$

non-degenerate real zeros.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○○

Alperen A. Ergür (Carnegie Mellon UniversityToward an Algorithmic Theory of Polynomials

Kushnirenko's Conjecture, 70's

Fix the number of variables n. The number non-degenerate real solutions to a system of polynomials with t terms is bounded by t^n .

Kushnirenko's Conjecture, 70's

Fix the number of variables n. The number non-degenerate real solutions to a system of polynomials with t terms is bounded by t^n .

Example

Consider a system of two polynomials, two variables, with 8 terms in each. Khovanskii says $2^{21}\times 3^7$, Kushnirenko claims 64.

Kushnirenko's Conjecture, 70's

Fix the number of variables n. The number non-degenerate real solutions to a system of polynomials with t terms is bounded by t^n .

Example

Consider a system of two polynomials, two variables, with 8 terms in each. Khovanskii says $2^{21}\times 3^7$, Kushnirenko claims 64.

In general, this conjecture is open for any fixed $n \ge 2$. Descartes solved n = 1 in 1636.

Let $A \subset \mathbb{Z}^n$ be a set of cardinality t, and let $\sigma : A \to \mathbb{R}_+$ be a function. We consider the following system of random polynomials:

$$f_1(x) = \sum_{\alpha \in A} \sigma(\alpha) \xi_{1\alpha} x^{\alpha}, \dots, f_n(x) = \sum_{\alpha \in A} \sigma(\alpha) \xi_{n\alpha} x^{\alpha}$$

where $\xi_{i\alpha}$ are i.i.d. standard Gaussian random variables.

Alperen A. Ergür (Carnegie Mellon UniversityToward an Algorithmic Theory of Polynomials

Dec 02, 2019

Let $A \subset \mathbb{Z}^n$ be a set of cardinality t, and let $\sigma : A \to \mathbb{R}_+$ be a function. We consider the following system of random polynomials:

$$f_1(x) = \sum_{\alpha \in A} \sigma(\alpha) \xi_{1\alpha} x^{\alpha}, \dots, f_n(x) = \sum_{\alpha \in A} \sigma(\alpha) \xi_{n\alpha} x^{\alpha}$$

where $\xi_{i\alpha}$ are i.i.d. standard Gaussian random variables.

Theorem (Bürgisser, Ergür, Tonelli-Cueto, 19)

Let $E(A, \sigma)$ denote the expected number of non-degenerate real zeros of $f = (f_1, f_2, \dots, f_n)$. Then, we have

$$E(A, \sigma) \leq 2 \binom{t}{n} \leq 2t^n.$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Let $A \subset \mathbb{Z}^n$ be a set of cardinality t, and let $\sigma : A \to \mathbb{R}_+$ be a function. We consider the following system of random polynomials:

$$f_1(x) = \sum_{\alpha \in A} \sigma(\alpha) \xi_{1\alpha} x^{\alpha}, \dots, f_n(x) = \sum_{\alpha \in A} \sigma(\alpha) \xi_{n\alpha} x^{\alpha}$$

where $\xi_{i\alpha}$ are i.i.d. standard Gaussian random variables.

Theorem (Bürgisser, Ergür, Tonelli-Cueto, 19)

Let $E(A, \sigma)$ denote the expected number of non-degenerate real zeros of $f = (f_1, f_2, \dots, f_n)$. Then, we have

$$E(A,\sigma) \leq 2 {t \choose n} \leq 2t^n.$$

This confirms Kushnirenko's conjecture for average instances.

Smale's 17th Problem

Can a zero of a system of n complex polynomial equatins in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?

Smale's 17th Problem

Can a zero of a system of n complex polynomial equatins in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?

Smale adds: Similar but harder questions can be asked over the reals.

Theorem (Shub, Smale, Beltran, Pardo, Bürgisser, Cucker, Lairez)

There exists an algorithm that computes a zero of a system of equations (p_1, p_2, \ldots, p_n) with degrees d_1, d_2, \ldots, d_n on average time

$$O(nd^{\frac{3}{2}}N^2)$$
 where $N = \sum_{i=1}^n \binom{n+d_i}{d_i}, d = \max_i d_i$

and average is with respect to Kostlan-Shub-Smale ensemble.

| □ ▶ ◀畵 ▶ ◀돌 ▶ ◀돌 ▶ · 돌 · 쒸익()

Theorem (Shub, Smale, Beltran, Pardo, Bürgisser, Cucker, Lairez)

There exists an algorithm that computes a zero of a system of equations $(p_1, p_2, ..., p_n)$ with degrees $d_1, d_2, ..., d_n$ on average time

$$O(nd^{\frac{3}{2}}N^2)$$
 where $N = \sum_{i=1}^n \binom{n+d_i}{d_i}, d = \max_i d_i$

and average is with respect to Kostlan-Shub-Smale ensemble.

Complexity of Bézout series started in Berkeley, 1992, and the solution of Smale's 17th problem was completed in Berlin, 2015.

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | 夕 Q ()*

Main idea behind the solution of Smale's 17th problem: Homotopy continuation.

Main idea behind the solution of Smale's 17th problem: Homotopy continuation.

- 1 Pick an "easy" polynomial system g that you know how to solve
- Deform "easy" g into your target system f
- **3** Track the change in the zeros of (1-t)g+tf for $t\in[0,1]$ by Newton's method

Main idea behind the solution of Smale's 17th problem: Homotopy continuation.

- 1 Pick an "easy" polynomial system g that you know how to solve
- Deform "easy" g into your target system f
- **3** Track the change in the zeros of (1-t)g+tf for $t \in [0,1]$ by Newton's method

- The solution of Smale's 17th takes a random polynomial system g with a very specific distribution which has special algebraic properties.
- These special properties obstruct solving structured polynomials.

Main idea behind the solution of Smale's 17th problem: Homotopy continuation.

- 1 Pick an "easy" polynomial system g that you know how to solve
- Deform "easy" g into your target system f
- **3** Track the change in the zeros of (1-t)g+tf for $t\in[0,1]$ by Newton's method

- The solution of Smale's 17th takes a random polynomial system g with a very specific distribution which has special algebraic properties.
- These special properties obstruct solving structured polynomials.
- $N = \sum_{i=1}^{n} \binom{n+d_i}{d_i}$ is huge!

Main idea behind the solution of Smale's 17th problem: Homotopy continuation.

- 1 Pick an "easy" polynomial system g that you know how to solve
- Deform "easy" g into your target system f
- **3** Track the change in the zeros of (1-t)g+tf for $t\in [0,1]$ by Newton's method

- The solution of Smale's 17th takes a random polynomial system g with a very specific distribution which has special algebraic properties.
- These special properties obstruct solving structured polynomials.
- $N = \sum_{i=1}^{n} \binom{n+d_i}{d_i}$ is huge!
- Practically works well for finding all complex zeros: Bertini, PSS5, PHCPack, JuliaHomotopy

Complexity of Kushnirenko's Theorem

Sparse Smale's 17th Problem

Let $A \subset \mathbb{Z}^n$ be a set of t lattice points with bounded degree d. Is there an algorithm that finds a complex zero of a of system of n polynomial equations with support set A on average time $poly(t, n, \log(d))$?

Complexity of Kushnirenko's Theorem

Sparse Smale's 17th Problem

Let $A \subset \mathbb{Z}^n$ be a set of t lattice points with bounded degree d. Is there an algorithm that finds a complex zero of a of system of n polynomial equations with support set A on average time $poly(t, n, \log(d))$?

Necessary tool box under development: Ergür, Rojas, Paouris (18 and 19), Malajovich (17 and 19), Ergür and Malajovich (ongoing work).

Smale's Question over the Reals

How many real zeros does $x^2 + bx + c$ have? It is determined by the equation $b^2 - 4c$.

Smale's Question over the Reals

How many real zeros does $x^2 + bx + c$ have? It is determined by the equation $b^2 - 4c$.

How many real zeros does the following simple system of equations have?

$$p_1(x, y) = x^6 + by^3 - y$$
, $p_2(x, y) = y^6 + cx^3 - x$

Smale's Question over the Reals

How many real zeros does $x^2 + bx + c$ have? It is determined by the equation $b^2 - 4c$.

How many real zeros does the following simple system of equations have?

$$p_1(x, y) = x^6 + by^3 - y$$
, $p_2(x, y) = y^6 + cx^3 - x$

The corresponding discriminant equation has degree 36 with very large coefficients, it fills pages.

4□ ▶ 4回 ▶ 4 亘 ▶ 4 亘 ・ りへ@

Handling the Discriminant Variety

X is a complex algebraic variety in $(\mathbb{C}^*)^m$.

$$Log: X \to \mathbb{R}^m, \ Log(z_1, \ldots, z_n) = (log|z_1|, \ldots, log|z_n|)$$

This is called amoeba of a variety.

◆□▶ ◆圖▶ ◆差▶ ◆差▶ ○差 ○夕@@

Let be a set of lattice points $A \subset \mathbb{Z}^n$ with t elements, and let $p = (p_1, p_2, \dots, p_n)$ be a system of equations supported with A.

Let be a set of lattice points $A \subset \mathbb{Z}^n$ with t elements, and let $p = (p_1, p_2, \dots, p_n)$ be a system of equations supported with A.

Theorem (Ergür, de Wolff, 19)

If p is located in the unbounded components of the complement of discriminant amoeba, then p has at most $O(t^n)$ many real zeros. Moreover, there exist a real homotopy algorithm to compute the real zeros of p.

Let be a set of lattice points $A \subset \mathbb{Z}^n$ with t elements, and let $p = (p_1, p_2, \dots, p_n)$ be a system of equations supported with A.

Theorem (Ergür, de Wolff, 19)

If p is located in the unbounded components of the complement of discriminant amoeba, then p has at most $O(t^n)$ many real zeros. Moreover, there exist a real homotopy algorithm to compute the real zeros of p.

The algorithm also provides a certificate of being in the unbounded components of the amoeba complement.

Part III

Revisiting the examples with an algebra-geometric perspective

 $H_{n,2d}$: 2d homogenous in first n variables, and 2d homogenous in the second n variables.

$$p(x) = x_1^2 x_3 x_4 + x_2^2 x_3^2 + x_1 x_2 x_4^2 \ \ p \in H_{2,2}$$

 $H_{n,2d}$: 2d homogenous in first n variables, and 2d homogenous in the second n variables.

$$p(x) = x_1^2 x_3 x_4 + x_2^2 x_3^2 + x_1 x_2 x_4^2 \quad p \in H_{2,2}$$

$$P_{n,2d} := \{ p \in H_{n,2d} : p(x,y) \ge 0 \text{ for every } (x,y) \in \mathbb{R}^{2n} \}$$

$$\Sigma_{n,2d}:=\{p\in H_{n,2d}:p(x,y)=\sum h_i(x,y)^2 \text{ for some } h_i\in H_{n,d}\}$$

 $H_{n,2d}$: 2d homogenous in first n variables, and 2d homogenous in the second n variables.

$$p(x) = x_1^2 x_3 x_4 + x_2^2 x_3^2 + x_1 x_2 x_4^2 \ p \in H_{2,2}$$

$$P_{n,2d} := \{ p \in H_{n,2d} : p(x,y) \ge 0 \text{ for every } (x,y) \in \mathbb{R}^{2n} \}$$

$$\Sigma_{n,2d} := \{ p \in H_{n,2d} : p(x,y) = \sum h_i(x,y)^2 \text{ for some } h_i \in H_{n,d} \}$$

We define the following hyperplane:

$$L := \{ p \in H_{n,2d} : \int_{S^{n-1}} \int_{S^{n-1}} p(x,y) \ \sigma(x) \ \sigma(y) = 1 \}$$

(ㅁ▶◀鬪▶◀돌▶◀돌▶ 돌 쒸٩은

 $H_{n,2d}$: 2d homogenous in first n variables, and 2d homogenous in the second n variables.

$$p(x) = x_1^2 x_3 x_4 + x_2^2 x_3^2 + x_1 x_2 x_4^2 \quad p \in H_{2,2}$$

$$P_{n,2d} := \{ p \in H_{n,2d} : p(x,y) \ge 0 \text{ for every } (x,y) \in \mathbb{R}^{2n} \}$$

$$\Sigma_{n,2d} := \{ p \in H_{n,2d} : p(x,y) = \sum h_i(x,y)^2 \text{ for some } h_i \in H_{n,d} \}$$

We define the following hyperplane:

$$L := \{ p \in H_{n,2d} : \int_{S^{n-1}} \int_{S^{n-1}} p(x,y) \ \sigma(x) \ \sigma(y) = 1 \}$$

Theorem (Ergür, 2018)

$$c_1 \pi^{-2d} (\frac{n}{2} + 2d)^{-2d} \le \frac{|\Sigma_{n,2d} \cap L|}{|P_{n,2d} \cap L|} \le c_2 n^{\frac{1}{2}} (\frac{n}{d} + 1)^{-2d}$$

Sum of Squares Hierarchy

Sum of Squares Hierarchy

Theorem (Putinar,93)

Consider the following semialgebraic set

$$V := \{x \in \mathbb{R}^n : g_1(x) \ge 0, g_2(x) \ge 0, \dots, g_m(x) \ge 0\}$$

If g_i creates an Archimedean quadratic module (a technical condition a bit stronger then assuming V is compact), then

$$f(x) > 0$$
 for all $x \in \mathcal{V} \Leftrightarrow f(x) = u_o(x) + \sum_{i=1}^{m} g_i(x)u_i(x)$

where ui are sum of squares.

(ロト 4個 ト 4 분 ト 4 분) 이익(C)

Sum of Squares Hierarchy

Theorem (Putinar,93)

Consider the following semialgebraic set

$$V := \{x \in \mathbb{R}^n : g_1(x) \ge 0, g_2(x) \ge 0, \dots, g_m(x) \ge 0\}$$

If g_i creates an Archimedean quadratic module (a technical condition a bit stronger then assuming V is compact), then

$$f(x) > 0$$
 for all $x \in \mathcal{V} \Leftrightarrow f(x) = u_o(x) + \sum_{i=1}^{m} g_i(x)u_i(x)$

where ui are sum of squares.

I am interested in bounds on the degrees of u_i for typical situations.

Grids and Incidence Geometry

Grids and Incidence Geometry

Let $n = \lambda_1 + \lambda_2 + \ldots + \lambda_m$ be an m partition of n. Let $S_i \subseteq \mathbb{C}^{\lambda_i}$ be finite sets.

$$S:=S_1\times S_2\times \ldots \times S_m\subset \mathbb{C}^n$$

be a multigrid.

Grids and Incidence Geometry

Let $n = \lambda_1 + \lambda_2 + \ldots + \lambda_m$ be an m partition of n. Let $S_i \subseteq \mathbb{C}^{\lambda_i}$ be finite sets.

$$S:=S_1\times S_2\times\ldots\times S_m\subset\mathbb{C}^n$$

be a multigrid.

Example

Let $S_1 \subset \mathbb{C}^2$ represent points, let $S_2 \subset \mathbb{C}^2$ represent lines ay + bz + 1 = 0. Define the polynomial $p(x) = x_3x_1 + x_4x_2 + 1$.

 $|Z(p) \cap S_1 \times S_2|$ = number of incidences between points and lines

Alperen A. Ergür (Carnegie Mellon UniversityToward an Algorithmic Theory of Polynomials

The Multivariate Schwartz-Zippel Lemma

Theorem (Dogan, Ergür, Tsigaridas, Mundo, 19)

Let p be a degree d and λ -irreducible polynomial, then for any $\varepsilon>0$ we have

$$|Z(p) \cap S| = O_{d,\varepsilon} \left(\prod_{i=1}^m |S_i|^{1+\varepsilon - \frac{1}{\lambda_i + 1}} + \sum_i \prod_{j \neq i} |S_j| \right)$$

Alperen A. Ergür (Carnegie Mellon UniversityToward an Algorithmic Theory of Polynomials

The Multivariate Schwartz-Zippel Lemma

Theorem (Dogan, Ergür, Tsigaridas, Mundo, 19)

Let p be a degree d and λ -irreducible polynomial, then for any $\varepsilon>0$ we have

$$|Z(p) \cap S| = O_{d,\varepsilon} \left(\prod_{i=1}^m |S_i|^{1+\varepsilon - \frac{1}{\lambda_i+1}} + \sum_i \prod_{j \neq i} |S_j| \right)$$

We have an algorithm to detect λ -reducibility, let's skip the definition for now.

□ ト (個) (重) (重) (で

The Multivariate Schwartz-Zippel Lemma

Theorem (Dogan, Ergür, Tsigaridas, Mundo, 19)

Let p be a degree d and λ -irreducible polynomial, then for any $\varepsilon>0$ we have

$$|Z(p) \cap S| = O_{d,\varepsilon} \left(\prod_{i=1}^m |S_i|^{1+\varepsilon - \frac{1}{\lambda_i+1}} + \sum_i \prod_{j \neq i} |S_j| \right)$$

We have an algorithm to detect λ -reducibility, let's skip the definition for now.

For
$$m=2$$
, $n=4$, and $\lambda=(2,2)$ we have

$$|Z(p) \cap S| = O_{d,\varepsilon} \left(|S_1|^{\frac{2}{3} + \varepsilon} |S_2|^{\frac{2}{3} + \varepsilon} + |S_1| + |S_2| \right)$$

◆ロト→団ト→重ト→重 り9℃

Alperen A. Ergür (Carnegie Mellon UniversityToward an Algorithmic Theory of Polynomials

ullet let $\Bbb F$ be a field and let ${f d},{f k}$ satisfy $\Bbb E[{f d}^2],\Bbb E[{f k}^2]<\infty$

- \bullet let $\mathbb F$ be a field and let d,k satisfy $\mathbb E[d^2],\mathbb E[k^2]<\infty$
- ullet with $d=\mathbb{E}[oldsymbol{d}], \ k=\mathbb{E}[oldsymbol{k}]$ and $m\sim Po(dn/k)$ and given

$$\sum_{i=1}^n \mathbf{d}_i = \sum_{i=1}^m \mathbf{k}_i$$

generate a random bipartite graph G with degrees $\mathbf{d}_i, \mathbf{k}_i$

イロト 4回ト 4 重ト 4 重ト 重 めの(で

- \bullet let $\mathbb F$ be a field and let d,k satisfy $\mathbb E[d^2],\mathbb E[k^2]<\infty$
- ullet with $d=\mathbb{E}[\mathbf{d}],\ k=\mathbb{E}[\mathbf{k}]$ and $m\sim Po(dn/k)$ and given

$$\sum_{i=1}^n \mathbf{d}_i = \sum_{i=1}^m \mathbf{k}_i$$

generate a random bipartite graph G with degrees $\mathbf{d}_i, \mathbf{k}_i$

• insert entries from a distribution on \mathbb{F}^* to obtain A.

イロト 4回ト 4 重ト 4 重ト 重 めの(で

Lots of Work on Different Ground Fields

- full rank: \mathbb{F}_2 , $\mathbf{d} \sim Po(d)$, $\mathbf{k} = k$
- rank for \mathbb{F}_2 , $\mathbf{d} \sim Po(d)$, $\mathbf{k} = k$
- full rank: \mathbb{F}_3 , $\mathbf{d} \sim Po(d)$, $\mathbf{k} = k$
- rank for \mathbb{F}_q , $\mathbf{d} \sim Po(d)$, $\mathbf{k} = k$
- dense matrices

[DM03,DGMMPR10,PS16]

[CFP18]

[FG12]

[ACOGM17]

[K96,BKW97,CV10,...]

The Rank of Sparse Random Matrices

Theorem (Coja-Oghlan, Ergür, Gao, Hettereich, Rolvien, 19)

Let D(x), K(x) the probability generating functions of \mathbf{d}, \mathbf{k} , let

$$\Phi(z) = D(1 - K'(z)/k) + \frac{d}{k}(K(z) + (1-z)K'(z) - 1)$$

Then,

$$\lim_{n\to\infty} \operatorname{rank}(A)/n = 1 - \max_{\alpha\in[0,1]} \Phi(\alpha)$$

This confirms a conjecture of Lelarge(2013), also explains where cavity method produces wrong predictions.

The Rank of Sparse Random Matrices

Theorem (Coja-Oghlan, Ergür, Gao, Hettereich, Rolvien, 19)

Let D(x), K(x) the probability generating functions of \mathbf{d}, \mathbf{k} , let

$$\Phi(z) = D(1 - K'(z)/k) + \frac{d}{k}(K(z) + (1-z)K'(z) - 1)$$

Then,

$$\lim_{n\to\infty} rank(A)/n = 1 - \max_{\alpha\in[0,1]} \Phi(\alpha)$$

This confirms a conjecture of Lelarge(2013), also explains where cavity method produces wrong predictions.

The proof is a combination of algebraic insight with statistical physics techniques.

This is the first step of a long term project on using real algebraic tools for approximating partition functions.

Thank you for your attention!