МΠиΤΠ

Опр. 1. Пусть X — некоторое мн-во. Функция $\rho: X \times X \to \mathbb{R}$ наз-ся **метрикой** в мн-ве X, если:

- 1. $\rho(x,y) \geqslant 0 \forall x,y \in X \text{ if } \rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x,y) = \rho(y,x) \forall x,y \in X$
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y) \forall x,y,z \in X$

Множество X с введённой на нём метрикой ρ называется **метрическим пространством** (X, ρ) .

- **Опр. 2.** Пр-во Y наз-ся **подпространством** пр-ва X, если $Y \subset X$, и на Y берётся **индуцированная метрика** $\rho_Y(y_1,y_2) = \rho_X(y_1,y_2) \forall y_1,y_2 \in Y$.
- Опр. 3. Расстояние между множествами есть $\rho(A,B) = \inf_{a \in A,b \in B} \rho(a,b)$
- **Опр. 4.** Мн-во S из метр. пр-ва (X,ρ) наз-ся **всюду плотным** в X, если его замыкание совпадает с X, т. е. $\forall x \in X \forall \varepsilon > 0 \exists y \in S : \rho(x,y) < \varepsilon$.
- **Опр. 5.** МП (X, ρ) наз-ся **сепарабельным**, если в нём существует счётное всюду плотное мн-во.
- **Опр. 6.** Пусть X некоторое сем-во множеств. Семейство au подмножеств мн-ва X наз-ся **топологией**, если:
- 1. $X \in \tau$ и $\emptyset \in \tau$
- 2. \forall семейства подмн-в $\{U_\alpha \mid \alpha \in A\} \subset \tau \hookrightarrow \bigcup_{\alpha \in A} U_\alpha \in \tau$
- 3. \forall конечного семейства подмн-в $U_k \mid k \in \overline{1,N} \subset \tau \hookrightarrow \bigcup_{k=1}^N U_k \in \tau$

Мн-во X со введённой на нём топологией τ наз-ся **топологическим пр-вом (ТП)** (X,τ) .

- **Опр. 7.** Пусть (X, τ) ТП. Любое мн-во $U \in \tau$ наз-ся **открытым** $(\tau$ -открытым) в ТП (X, τ) . Топология τ называется **семейством открытых подмн-в** мн-ва X.
- **Опр. 8.** Пусть (X, τ) ТП. Для любого $x \in X$ окрестностью x называется произвольное τ -открытое множество, содержащее x.
- Опр. 9. Пусть $(X, \tau) \text{ТП}$, $S \subset X$. Открытым покрытием мн-ва S наз-ся сем-во τ -открытых мн-в $\{U_{\alpha} \mid \alpha \in A\}$, т. ч. $S \subset \bigcup_{\alpha \in A} U_{\alpha}$.

$\Pi M \Pi$

- **Опр. 10.** П-ть $\{x_n\}_{n=1}^{\infty}$ элементов МП (X, ρ) наз-ся **фундаментальной** (или ρ -фундаментальной), если $\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n, m > N \hookrightarrow \rho(x_n, x_m) < \varepsilon$.
- **Опр. 11.** МП (X, ρ) наз-ся **полным**, если любая фундаментальная п-ть из (X, ρ) сх-ся.
- **Опр. 12.** МП (X, ρ) наз-ся **связным**, если X нельзя представить в виде объединения двух непустых непересекающихся открытых множеств.
- Опр. 13. Пусть $(X, \rho) \text{M}\Pi$. Открытым шаром с центром в точке $x \in X$ радиуса R > 0 наз-ся мн-во $B_R(x) = B(x,R) = \{y \in X \mid \rho(x,y) < R\}$. Замкнутым шаром с центром в точке $x \in X$ радиуса R > 0 наз-ся мн-во $\overline{B}_R(x) = \overline{B}(x,R) = \{y \in X \mid \rho(x,y) \leqslant R\}$.
- **Опр. 14.** Мн-во $M \subset X$, где $(X, \rho) \mathrm{M}\Pi$, наз-ся **открытым**, если $\forall x_0 \in M \exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset M$. Обычно обозначается G.
- **Опр. 15.** Пусть $(X, \rho) \text{М}\Pi$ и $M \subset X$. Точка $x_0 \in X$ наз-ся **точкой прикосновения** мн-ва M, если $\forall \epsilon > 0 \hookrightarrow B_{\varepsilon}(x_0) \cap M \neq \emptyset$.
- **Опр. 16.** Пусть $(X, \rho) \text{M}\Pi$ и $M \subset X$. Точка $x_0 \in X$ наз-ся **предельной точкой** мн-ва M, если $\exists y \in B_e ps(x_0) \cap M : y \neq x$.
- **Опр. 17.** Пусть $(X, \rho) \mathrm{M}\Pi$ и $M \subset X$. Множество [M](или \overline{M}) наз-ся **замыканием** мн-ва M, если оно получено добавлением к M всех его точек прикосновения.
- **Опр. 18.** Мн-во $M \subset X$, где $(X, \rho) M\Pi$, наз-ся **замкнутым**, если [M] = M. Обычно обозначается F.
- **Опр. 19.** Лебегово пр-во l_p для $1 \le p < +\infty$ состоит из числовых п-тей вида $x = (x_1, x_2, \dots)$

$$l_p = \{x : \mathbb{N} \to \mathbb{R} \mid \sum_{k=1}^{\infty} |x(k)|^p < +\infty\}$$

с нормой
$$\|x\|_p = \sqrt[p]{\sum\limits_{k=1}^\infty |x(k)|^p}$$
 и метрикой $\rho_p(x,y) = \|x-y\|_p.$

Полное сепарабельное

Опр. 20. Лебегово пр-во l_{∞} . С нормой $\|x\|_{\infty} = \sup_{k \in \mathbb{N}} |x(k)|$ и метрикой $\rho_{\infty}(x,y) = \|x-y\|_{\infty}$. Полное несепаработи исо

Опр. 21. Пр-во $C[a,b] = \{x: [a,b] \to \mathbb{R} \mid x$ непрерывно на $[a,b]\}$ непрерывных на [a,b] функций с нормой $\|x\|_C = \sup_{t \in [a,b]} |x(t)|$ и метрикой $\rho_C(x,y) = \|x-y\|_C$.

Полное сепарабельное связное

Теор. 1 Достаточное условие несепарабельности МП. Пусть в МП (X, ρ) существует несчётное подмножество A_0 и $\exists \varepsilon_0 > 0 : \forall a, b \in A_0, a \neq b, \hookrightarrow \rho(a, b) \geqslant \varepsilon_0$. Тогда МП (X, ρ) является несепарабельным.

Теор. 2 2.1, Принцип вложенных шаров. Пусть $X - \Pi M \Pi$, $\{B_n := \overline{B}(x_n, r_n)\} - \Pi$ -ть замкн. вложенных шаров, $r_n \to 0$. Тогда $\exists ! x \in \bigcap B_n$.

Теор. 3 2.2, Бэр. Пусть $X-\Pi M\Pi$, тогда X нельзя представить в виде $X=\bigcup_{n=1}^{\infty}M_n$, где M_n- нигде не плотное множество.

Опр. 22. Пусть $(X, \rho) - \text{МП}$. Отображение $f: X \to X$ наз-ся **сжимающим**, если $\exists \alpha \in (0, 1): \forall x, y \in X \hookrightarrow \rho(f(x), f(y)) \leqslant \alpha \rho(x, y)$.

Опр. 23. Пусть X — некоторое мн-во, $f: X \to X$ — отображение. Точка $x_o \in X$ наз-ся **неподвижной** для отображения f, если $f(x_0) = x_0$.

Теор. 4 2.3, Банаха о сжимающих отображениях. Пусть $(X, \rho) - \Pi M \Pi, f : X \to X$ — сжимающее отображение. Тогда f имеет единственную неподвижную точку.

Опр. 24. Пусть (X_1, ρ_1) и (X_2, ρ_2) — МП. Отображение $\varphi: X_1 \to X_2$ называется **изометрией**, если φ — биекция и $\forall x_1, y_1 \in X_1 \hookrightarrow \rho_1(x_1, y_1) = \rho_2(\varphi(x_1), \varphi(y_1))$. Если между МП X_1 и X_2 существует изометрия, они называются **изометричными**.

Опр. 25. ПМП (Y,d) наз-ся пополнением МП (X,ρ) , если $\exists Z \subset Y, Z$ — всюду плотное в Y, т. ч. МП (X,ρ) и (Z,d) изометричны.

Теор. 5 2.4, Хаусдорф. Пусть $X - \Pi M \Pi$, тогда $\exists \Pi M \Pi Y -$ пополнение X

Опр. 26. Пусть (X, ρ) — МП. Мн-во $A \subset X$ наз-ся плотным в мн-ве $B \subset X$, если $B \subset \overline{A}$, т. е. $\forall b \in B \forall \varepsilon > 0 \exists a \in A : \rho(a, b) < \varepsilon$.

A наз-ся **всюду плотным**, если A плотно в X.

A нигде не плотно, если оно не плотно ни в одном шаре, т. е. в каждом шаре $B \subset R$ содержится другой шар $B', B' \cap A = \emptyset$.

КМП и КТП

Опр. 27. Пусть (X,τ) — ТП. Мн-во $S\subset X$ наз-ся **компактным**, если любое открытое покрытие мн-ва S содержит конечное подпокрытие

Опр. 28. Пусть (X,τ) — ТП. Говорят, что п-ть $\{x_n\}_{n=1}^{\infty} \subset X$ **сх-ся по топологии** τ к элементу $x \in X$, если $\forall U(x) \exists N : \forall n > N \hookrightarrow x_n \in U(x)$. Обозначается $x_n \to_{n \to \infty}^{\tau} x$.

Опр. 29. Пусть X - ТП. $\{B_{\alpha}\}$ наз-ся **центрированной системой множеств (ЦС)**, если любая их конечная подсистема имеет непустое пересечение.

Теор. 6 3.1, Критерий компактности топологических пространств. Пусть X - ТП. Тогда X - компакт \Leftrightarrow в X любая ЦС замкнутых подмножеств имеет непустое пересечение.

Опр. 30. Пусть $(X, \rho) - \text{МП}$. Мн-во $S \subset X$ наз-ся **вполне ограниченным**, если $\forall \varepsilon > 0 \exists$ конечный набор точек $x_1, \dots, x_N \in S : S \subset \bigcup_{k=1}^N B_\varepsilon(x_k)$. Указанный набор точек называется **конечной** ε -сетью мн-ва S.

Теор. 7 3.2, Критерий компактности метрических пространств. Пусть $(X, \rho) - \text{МП}, S \subset X$. Тогда СУЭ:

- 1. S компакт
- 2. МП (S, ρ) полное и ВО (если (X, ρ) полное, то достаточно замкнутости S)

- 3. мн-во S явл. секвенциально компактным
- 4. Любое бесконечное множество в X имеет предельную точку.

Сл-вие. 7.1. Если $X - \Pi M \Pi$, то M -компактно $\Leftrightarrow M -$ замкн. и BO.

Сл-вие. 7.2. Если $X=\mathbb{R}^n$, то M — компактно $\Leftrightarrow M$ — замкн. и огр.

- Теор. 8 Критерий компактности. МП компактно ⇔ любая п-ть его точек не содержит сходящуюся п-пть.
- **Опр. 31.** Пусть $(X, \rho) \text{МП}$. Мн-во $M \subset X$ наз-ся **ограниченным**, если $\exists x_0 \in X : \exists r > 0 : M \subset B_r(x_0)$.
- Опр. 32. Мн-во метрического пространства наз-ся предкомпактом, если его замыкание компактно.
- **Опр. 33.** Сем-во функций $S\subset C[a,b]$ наз-ся равномерно ограниченным, если $\exists c: \forall f\in S\max_{x\in[a,b]}|f(x)|\leqslant c.$
- **Опр. 34.** Сем-во функций $S \subset C[a,b]$ наз-ся **равностепенно непрерывным**, если $\forall \varepsilon > 0 \exists \delta > 0 : \forall f \in S \forall x, x' \in [a,b] \hookrightarrow |x-x'| < \delta \Rightarrow |f(x)-f(x')| < \varepsilon$.
- **Теор. 9 3.3, Теорема Арцела-Асколи.** Пусть $X \text{КМ}\Pi$. Тогда сем-во ф-ий $S \subset C(X)$ предкомпактно в пр-ве $C(X) \Leftrightarrow$ оно равномерно ограниченно и равностепенно непрерывно.
- **Опр. 35.** Пр-во $C^k[a,b]$ k раз непр. дифф. ф-ий $x:[a,b] \to \mathbb{R}$ с нормой $\|x\|_{C^k} = \sum\limits_{i=0}^k \max\limits_{x \in [a,b]} |x^{(i)}(t)|$.

ЛНП

Опр. 36. Непустое мн-во L наз-ся **линейным** (или **векторным**) пр-вом над M, если оно удовлетворяет: $\forall x,y,z\in L \forall \alpha,\beta\in M$:

- 1. однозначно определён элемент $x + y \in L$:
 - (a) x + y = y + x
 - (b) x + (y + z) = (x + y) + z
 - (c) $\exists 0 \in L : x + 0 = 0 + x = x$
 - (d) $\exists (-x) \in L : x + (-x) = 0$
- 2. однозначно определён элемент $\alpha x \in L$:
 - (a) $\alpha(\beta x) = (\alpha \beta)x$
 - (b) $\exists 1 \in L : 1x = x$
 - (c) $(\alpha + \beta)x = \alpha x + \beta x$
 - (d) $\alpha(x+y) = \alpha x + \alpha y$

В зависимости от M различают действительные $(M=\mathbb{R})$ и комплексные $(M=\mathbb{C})$ линейные нормированные пространства.

Опр. 37. Пусть X — комплексное ЛП. Ф-ия $\|\cdot\|: X \to \mathbb{R}$ наз-ся **нормой** в X, если:

- 1. $\forall x \in X \hookrightarrow ||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$
- 2. $\forall x \in X \forall t \in \mathbb{R} ||tx|| = |t| ||x||$
- 3. $\forall x, y \in X \hookrightarrow ||x + y|| \le ||x|| + ||y||$ (нер-во треугольника)

Любое пр-во с фиксированной в нём нормой будем называть **линейным нормированным пространством** (ЛНП).

- **Опр. 38.** $\|\cdot\|_1$ и $\|\cdot\|_2$ на ЛП E наз. эквивалентными, если $\exists c_1, c_2 \geqslant 0 : \forall x \in Ec_1 \|x\|_2 \leqslant \|x\|_1 \leqslant c_2 \|x\|_2$.
- Опр. 39. Пусть $\|\cdot\|_1$ и $\|\cdot\|_2$ нормы на ЛП E. $\|\cdot\|_1$ слабее $\|\cdot\|_2$, если $x_n \xrightarrow[\|\cdot\|_2]{} x \Rightarrow x_n \xrightarrow[\|\cdot\|_1]{} x$.
- **Теор. 10 4.1, Рисс.** Пусть $E \text{H}\Pi$, dim $E = \infty$. Тогда S(0,1) не является компактной (даже не является BO).
- **Опр. 40.** Полное НП наз-ся **банаховым** ($\mathbf{B}\Pi$)(обычно обозначается B) .
- Опр. 41. ЛП наз-ся замкнутым, если оно содержит все свои предельные точки.
- **Опр. 42.** ЛП L' наз-ся **подпространством** ЛП L, если $L' \subset L$ и операции сложения векторов и умножения вектора на число определены так же, как в L.
- **Опр. 43.** Линейной комбинацией (ЛК) в-ров x_1, \ldots, x_n наз-ся любой в-р вида $\alpha_1 x_1 + \cdots + \alpha_n x_n$, где $\alpha_1, \ldots, \alpha_n$ числовые множители.

- **Опр. 44.** ЛК наз. **нетривиальной**, если хотя бы один из коэф. $\alpha_1, \ldots, \alpha_n$ отличен от нуля.
- **Опр. 45.** В-ры x_1, \ldots, x_n наз-ся **линейно зависимыми** (ЛЗ), если \exists нетрив. ЛК, равная 0. Иначе они называются **линейно независимыми** (ЛНЗ).
- **Опр. 46.** ЛП наз-ся **n-мерным**, если в нём \exists n ЛНЗ в-ров, а любые n+1 в-ров ЛЗ. В таком случае эти n в-ров наз-ся базисом.
- **Опр. 47.** ЛП наз-ся **бесконечномерным**, если $\forall n \in \mathbb{N}$ в нём $\exists n$ ЛНЗ в-ров.
- **Опр. 48.** Пусть задана некоторая система эл-тов ЛП L. Совокупность всех ЛК этой системы наз-ся её **линейной** оболочкой.
- **Опр. 49.** Система эл-тов $\{x_{\alpha}, \alpha \in A\}$ наз-ся **полной** в пр-ве X, если её ЛО плотна в X, т. е. если $\forall x \in X \forall \varepsilon > 0 \exists \{x_{\alpha_1}, \dots, x_{\alpha_n} \subset \{x_{\alpha}, \alpha \in A\} \exists \lambda_1, \dots, \lambda_n : \left\|x \sum_{k=1}^n \lambda_k x_{\alpha_k}\right\| < \varepsilon.$
- **Опр. 50.** П-ть эл-тов e_1, e_2, \ldots ЛНП X наз-ся **базисом** пр-ва X, если каэдый эл-т $x \in X$ имеет единственное разложение по этой системе, т. е. $\exists ! \{\lambda_n\}_{n=1}^{\infty} : x = \sum_{n=1}^{\infty} \lambda_n e_n$. Здесь ряд сх-ся к эл-ту x по норме пр-ва X, т. е.

 $\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \geqslant N \hookrightarrow \left\| x - \sum_{k=1}^{n} \lambda_k x_{\alpha_k} \right\| < \varepsilon.$

- **Опр. 51.** Пр-во c сходящихся п-тей $x=(x_1,x_2,\dots)$ с операциями сложения и умножения на число и нормой $\|x\|_C=\sup_{k\in N}|x_k|.$
- **Опр. 52.** Пр-во c_0 сходящихся п-тей, эл-ты которых стремятся к $0, x = (x_1, x_2, \dots)$ с операциями сложения и умножения на число и нормой $||x||_C = \sup_{k \in N} |x_k|$.
- **Опр. 53.** Пусть X комплексное ЛП. **Скалярным произведением** в X наз-ся отображение $(\cdot, \cdot): X \times X \to \mathbb{C}$, т. ч.:
- 1. $\forall x \in X \hookrightarrow (x, x) \in \mathbb{R}$ и $(x, x) \geqslant 0$;
- 2. $(x, x) = 0 \Leftrightarrow x = 0;$
- 3. $\forall x, y \in X \hookrightarrow (x, y) = \overline{(y, x)}$;
- 4. $\forall x, y, z \in X \forall \alpha, \beta \in \mathbb{C} \hookrightarrow (\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$.
- Опр. 54. ЛП с фиксированным в нём скалярным произведением наз-ся евклидовым.
- **Утв. 1.** Пусть X евклидово пр-во. Тогда величина $||x|| = \sqrt{(x,x)}, x \in X$, удовлетворяет определению нормы в X. Такая норма называется **нормой, порождённой скалярным произведением**.
- **Опр. 55.** ЕП, полное относительно нормы, порождённой скалярным произв., наз. **гильбертовым пр-вом** ($\Gamma\Pi$) (обычно обозначается H).
- **Теор. 11 4.2.** Пусть $E-\Pi H\Pi$. Тогда норма в E порождена скалярным произведением \Leftrightarrow выполняется равенство параллелограмма: $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$.
- **Теор. 12 4.3, Рисса о проекциях.** Пусть $H \Gamma\Pi, M \subset H -$ подпр-во. Тогда $H = M \oplus M^{\perp},$ где $M^{\perp} = \{y \mid (m,y) = 0 \forall m \in M\}$ аннулятор.
- **Теор. 13 4.4.** Пусть $H-\Gamma\Pi$ над $\mathbb R$ или $\mathbb C,$ $e=\{e_n\}_{n=1}^\infty-$ ОНС. Тогда СУЭ:
- 1. е базис
- $2. \ e$ полная система
- 3. $e^{\perp} = \{0\}$
- 4. $\forall x \in H$ справедливо равенство Парсеваля $\|x\|^2 = \sum |(x, e_n)|^2$.
- **Теор. 14 Рисса-Фишера.** Пусть $H \Gamma\Pi$, $\{e_n\} \text{OHC}$. Тогда $\sum \alpha_n e_n$ сходится $\Leftrightarrow \sum |\alpha_n|^2$ сх-ся.

ЛОО

- Опр. 56. Пусть L- действительное ЛП, и $x,y\in L$. Назовём замкнутым отрезком в L, соединяющим точки x и y, совокупность $\{\alpha x+\beta y\mid \alpha,\beta\geqslant 0,\alpha+\beta=1\}$. Отрезок без концевых точек x,y называется открытым отрезком. Мн-во $M\subset L$ наз-ся выпуклым, если оно вместе с любыми двумя точками x и y содержит соединяющий их отрезок.
- **Опр. 57.** Пусть $X, Y \Pi\Pi$. Линейное отображение $A: X \to Y$ наз-ся **линейным оператором**.

Опр. 58. Пусть $X, Y - \Pi\Pi, A: X \to Y$ — линейный оператор. Ядром линейного оператора A наз-ся подпр-во из X вида $\operatorname{Ker} A = \{x \in X \mid Ax = 0\}$. Образом (или мн-вом значений) оператора A наз-ся подпр-во из Y вида $\operatorname{Im} A = \{Ax \mid x \in X\}$

Опр. 59. Пусть $(X, \|\cdot\|_X)$ и $(Y, \|\cdot\|_Y)$ — ЛНП. Лин. опер. $A: X \to Y$ наз. **ограниченным**, если \forall ограниченного мн-ва $S \subset X$ его образ A(S) является ограниченным в Y.

Теор. 15 5.1. Пусть $E_1, E_2 - \Pi H\Pi, A: E_1 \to E_2$: — лин. опер. Тогда A — непр. $\Leftrightarrow A$ — огр.

Где следующее утверждение было в лекциях?

Утв. 2. Пусть $(X,\|\cdot\|_X)$ и $(Y,\|\cdot\|_Y)-\Pi \Pi \Pi, A:X\to Y$ — лин. опер. Тогда СУЭ:

- $1. \ A$ непрерывен в X
- 2. А непрерывен в нуле
- 3. A ограничен
- 4. $\exists R > 0 : A(B_1^X(0)) \subset B_R^Y(0)$, где $B_r^X(x) = \{z \in X \mid \|z x\|_X \leqslant r\}$.

Опр. 60. Пусть $(X, \|\cdot\|_X)$ и $(Y, \|\cdot\|_Y)$ — ЛНП. **Нормой** лин. опер. $A: X \to Y$ наз-ся $\|A\| = \inf\{k \mid \|Ax\|_Y \leqslant k \|x\|_X \, \forall x \in X\}$.

Утв. 3. Пусть $(X, \|\cdot\|_X)$ и $(Y, \|\cdot\|_Y)$ — ЛНП, $A: X \to Y$ — лин. опер. Тогда $\|A\| = \sup_{x \neq 0} \frac{\|Ax\|_Y}{\|x\|_X} = \sup_{\|x\|_X = 1} \|Ax\|_Y = \sup_{\|x\|_X \leqslant 1} \|Ax\|_Y$

Утв. 4. $||A|| < +\infty \Leftrightarrow$ лин. опер. A ограничен.

Теор. 16 5.2. Пусть $E_1, E_2 - \Pi H \Pi$. Обозначим $L(E_1, E_2)$ — мн-во лин. огр. операторов. Если на нём определить функции "+" и "·", оно будет $\Pi \Pi$. Тогда:

- 1. Оно будет ЛНП, сли ||A|| сделать нормой в $L(E_1, E_2)$
- 2. Оно будет БП, если E_2 БП.

Сл-вие. 16.1. $E - B\Pi \Rightarrow L(E) - B\Pi$.

Сл-вие. 16.2. $E - H\Pi \Rightarrow L(E, \mathbb{R}(\mathbb{C})) - B\Pi$.

Теор. 17 5.3. Пусть $E_1 - \Pi H\Pi$, $E_2 - B\Pi$. $D(A) := \{$ линейное многообразие в E, D(A) всюду плотно в $E\}$, где A -лин. огр. оп., $A: D(A) \to E_2$.

Тогда
$$\exists ! \tilde{A} \in L(E_1, E_2) : \begin{cases} \tilde{A} \mid_{D(A)} = A \\ \left\| \tilde{A} \right\| = \|A\| \end{cases}$$

Теор. 18 5.4, Банах-Штейнгауз, "принцип равномерной ограниченности". Пусть $E_1 - \text{Б}\Pi, E_2 - \text{H}\Pi, A_n \in L(E_1, E_2): \forall x \in E_1 \sup_n \|A_n x\| < \infty.$

Тогда $\sup_n \|A_n\| < \infty$

Теор. 19 сл-вие **5.4,** полнота $L(E_1, E_2)$ в смысле поточечной сх-ти). Пусть $E_1, E_2 - \text{БП}, \{A_n\} \subset L(E_1, E_2),$ и $\forall x \in E_1\{A_nx\} - \text{фунд}.$

Тогда $\exists A \in L(E_1, E_2) : A_n \to A$ поточечно.

Теор. 20 сл-вие 5.4, критерий поточ. сх-ти лин. огр. оператора. Пусть $E_1, E_2 - \text{ВП}, \{A_n\} \subset L(E_1, E_2),$ и $A \in L(E_1, E_2)$ — лин. огр. опер.

Тогда
$$A_n o A$$
 поточ. $\Leftrightarrow \begin{cases} \} \, \|A_n\| \}. \\ A_n x o A x \forall x \in S : \overline{[S]} = E_1 \end{cases}$

Опр. 61. $L_1 - \Pi H \Pi$ функций с нормой $||f||_{L_1} = \int |f(x)| dx$.

Полное лин. норм., но не евклидово

Обр. опер.

Опр. 62. Пусть $E_1, E_2 - \Pi\Pi, A : E_1 \to E_2$. На $\operatorname{Im} A = \{y \in E_2 \mid \exists \text{ решение } Ax = y \text{ в } E_1\}$ определён обратный оператор A^{-1} , если $\forall y \in \operatorname{Im} A \exists ! x \in E_1 : Ax = y$.

Teop. 21 6.1. Пусть $E_1, E_2 - \Pi\Pi, A \in L(E_1, E_2)$.

Тогда $\exists A^{-1} \in L(\operatorname{Im} A, E_1) \Leftrightarrow \exists M > 0 : ||Ax|| \geqslant m \, ||x|| \, \forall x \in E_1.$

Теор. 22 6.2. Пусть $E - \mathbb{B}\Pi, A \in L(E) : ||A|| < 1.$

Тогда $\exists (I+A)^{-1} \in L(E)$.

Теор. 23 6.3. Пусть $E_1 - \text{БП}, E_2 - \text{HП}, A \in L(E_1, E_2), \exists A^{-1} \in L(E_2, E_1), \Delta A \in L(E_1, E_2) : \|\Delta A\| < \|A^{-1}\|^{-1}$.

Тогда $\exists (A + \Delta A)^{-1} \in L(E_2).$

Теор. 24 6.4, Банаха об обратном операторе. Пусть $E_1, E_2 - \mathbb{B}\Pi, A \in L(E_1, E_2), A - \mathsf{биекция}.$

Тогда $\exists A^{-1} \in L(E_2, E_1).$

Сопряжённое пространство

Следующий семестр.