SURVIVAL ANALYSIS - TCGA PRAD CANCER

Kelvin Ofori-Minta University of Texas at El Paso (UTEP)

June 20, 2022

Contents

1	Loading and Cleaning Data			
	1.1 Inspecting dataframe for missing values	2		
	1.1.1 Rename long variables	3		
	1.1.2 Re-coding variables	4		
2	Generate Random subsets from entire data	6		
3	M Curve - Survival probability with Radiation Therapy of 100 sampled subcts			
4	KM Curve - Survival probability with Radiation Therapy of 90 sampled subjects			
5	${\rm KM}$ Curve - Survival probability with Radiation Therapy of 90 sampled subjects	11		
6	KM Curve - Survival probability with Radiation Therapy of 80 sampled subjects	13		

1 Loading and Cleaning Data

1.1 Inspecting dataframe for missing values

```
require(inspectdf)
show_plot(inspect_na(data))
```

Prevalence of NAs in df::data

df::data has 28 columns, of which 28 have missing values


```
missing = inspect_na(data)
missing[ , 3] = round(missing[ ,3], 2)
names(missing) = c("variable", "count", "proportion")
require(kableExtra)
# missing<-as.matrix.data.frame(missing)
kable(missing)</pre>
```

variable	count	proportion
Ethnicity.Category	162	90.00
Race.Category	160	88.89
Buffa.Hypoxia.Score	122	67.78
Ragnum.Hypoxia.Score	122	67.78
Winter.Hypoxia.Score	122	67.78
Radiation. Therapy	100	55.56
New_Tumor_event	94	52.22
last_contact_frominitial_diagnosis	91	50.56
Birth.from.Initial.Pathologic.Diagnosis.Date	88	48.89
Neodjuvant_Therapy_type	88	48.89
Aneuploidy.Score	87	48.33
Mutation.Count	87	48.33
Tissue.Prospective.Collection.Indicator	87	48.33
Tissue.Retrospective.Collection.Indicator	87	48.33
Diagnosis.Age	86	47.78
Form.completion.date	86	47.78
Fraction.Genome.Altered	86	47.78
Informed.consent.verified	86	47.78
In.PanCan.Pathway.Analysis	86	47.78
MSI.MANTIS.Score	86	47.78
MSIsensor.Score	86	47.78
Prior.Diagnosis	86	47.78
Sex	86	47.78
tissue_source.site	86	47.78
TMBnonsynonymous.	86	47.78
Neoplasm_status	86	47.78
progression_time	86	47.78
progression_status	86	47.78

as.data.frame.matrix(missing)
kable(as.da(missing))

1.1.1 Rename long variables

"TMB-H means that the tumor has a high number of mutations. Doctors have found that certain immunotherapy drugs are more likely to work against TMB-H cancers. This is because the immune system may be able to find and attack cancer cells with high TMB more easily."

[1] "TMB-H means that the tumor has a high number of mutations. Doctors have found that\nce."

"Person neoplasm status..... You are correct, IMO: tumor free does not mean normal, but rathe

[1] "Person neoplasm status..... You are correct, IMO: tumor free does not mean normal, b

1.1.2 Re-coding variables

```
# newdata$Neodjuvant_Therapy_type <- factor(newdata$Neodjuvant_Therapy_type,
                                      levels=c("No","Yes"),
#
                                      labels=c("No", "Yes")) all were "no"
data$In.PanCan.Pathway.Analysis<-factor(data$In.PanCan.Pathway.Analysis,
                                           levels=c("No","Yes"),
                                           labels=c("No","Yes"))
data$Prior.Diagnosis<-factor(data$Prior.Diagnosis,
                                levels=c("No","Yes"),
                                labels=c("No","Yes"))
data$tissue_source.site<-factor(data$tissue_source.site,</pre>
                                   levels = c("university", "Biotech & Pharma", "Hospital", "Rese
                                                          labels=c("university","biotech_pharm
data$New_Tumor_event <- factor(data$New_Tumor_event,</pre>
                                    levels=c("No","Yes"),
                                    labels=c("No","Yes"))
data$Radiation.Therapy <- factor(data$Radiation.Therapy,</pre>
                                    levels=c("No","Yes"),
                                    labels=c("No","Yes"))
#all white , no adjuvant therapy
str(data)
## 'data.frame': 180 obs. of 28 variables:
## $ Diagnosis.Age
                                                  : int NA 64 65 48 NA 57 65 66 57 67 ...
                                                  : int NA 0 3 0 NA 0 2 1 0 5 ...
## $ Aneuploidy.Score
## $ Buffa.Hypoxia.Score
                                                  : int NA -31 -17 -13 NA -37 -29 -33 -31 -29
## $ last_contact_from_.initial_diagnosis
                                                 : int NA 31 62 62 NA 91 1427 2118 1882 1115
## $ Birth.from.Initial.Pathologic.Diagnosis.Date: int NA -23649 -23803 -17807 NA -21002 -24
## $ Ethnicity.Category
                                                  : chr NA "Not Hispanic Or Latino" "Not Hispanic"
## $ Form.completion.date
                                                  : chr NA "3/21/2012" "3/21/2012" "3/16/2012
## $ Fraction.Genome.Altered
                                                  : num NA 0.0125 0.2071 0.0284 NA ...
## $ Neodjuvant_Therapy_type
                                                  : chr NA "No" "No" "No" ...
## $ Informed.consent.verified
                                                  : chr NA "Yes" "Yes" "Yes" ...
                                                  : Factor w/ 2 levels "No", "Yes": NA 2 2 2 NA
## $ In.PanCan.Pathway.Analysis
## $ MSI.MANTIS.Score
                                                  : num NA 0.266 0.272 0.34 NA ...
## $ MSIsensor.Score
                                                  : num NA 0 0.01 0.2 NA 0 0.01 0 0 0.31 ...
```

```
## $ Mutation.Count
                                                 : int NA 33 78 108 NA 34 40 31 37 59 ...
## $ New_Tumor_event
                                                 : Factor w/ 2 levels "No", "Yes": NA NA NA
## $ Prior.Diagnosis
                                                 : Factor w/ 2 levels "No", "Yes": NA 1 1 1 NA
                                                 : chr NA "white" "white" "white" ...
## $ Race.Category
## $ Radiation. Therapy
                                                 : Factor w/ 2 levels "No", "Yes": NA NA NA
                                                 : int NA -20 -2 6 NA -20 -20 -20 -12 -8 ...
## $ Ragnum.Hypoxia.Score
                                                 : chr NA "Male" "Male" "Male" ...
## $ Sex
## $ Tissue.Prospective.Collection.Indicator
                                                 : chr NA "Yes" "Yes" "Yes" ...
## $ Tissue.Retrospective.Collection.Indicator
                                                 : chr NA "No" "No" "No" ...
## $ tissue_source.site
                                                 : Factor w/ 4 levels "university", "biotech_p
                                                 : num NA 1.1 2.6 3.57 NA ...
## $ TMB..nonsynonymous.
## $ Winter.Hypoxia.Score
                                                 : int NA -28 -16 -24 NA -40 -30 -26 -40 -32
## $ Neoplasm_status
                                                 : chr NA "with_tumor" "with_tumor" "with_tumor"
                                                 : num NA 1.02 2.04 2.04 NA ...
## $ progression_time
                                                 : int NA 1 1 1 NA 1 1 2 2 2 ...
## $ progression_status
```

2 Generate Random subsets from entire data

```
ndata<-data
set.seed(1)
library(dplyr)
# Generate different random rows as subsets to be used for analysis
sample_data1<-sample_n(ndata, 100) #100
sample_data2<-sample_n(ndata, 90) #90
sample_data3<-sample_n(ndata, 90) #90
sample_data4<-sample_n(ndata, 80) #80</pre>
```

3 KM Curve - Survival probability with Radiation Therapy of 100 sampled subjects

```
library("survival")
library("survminer")
fit2a<-survfit(Surv(sample_data1$progression_time, sample_data1$progression_status==2)~</pre>
                   sample_data1$Radiation.Therapy, data=sample_data1)
print(fit2a)
## Call: survfit(formula = Surv(sample_data1$progression_time, sample_data1$progression_status
       2) ~ sample_data1$Radiation.Therapy, data = sample_data1)
##
##
##
      53 observations deleted due to missingness
##
                                       n events median 0.95LCL 0.95UCL
## sample_data1$Radiation.Therapy=No 33
                                             20
                                                  30.4
                                                          22.3
                                                                     NΑ
## sample_data1$Radiation.Therapy=Yes 14
                                                  48.5
                                                          24.3
                                                                     ΝA
summary(fit2a)$table
##
                                      records n.max n.start events
                                                                       rmean
## sample_data1$Radiation.Therapy=No
                                                                20 47.76400
                                           33
                                                 33
                                                         33
## sample_data1$Radiation.Therapy=Yes
                                           14
                                                 14
                                                         14
                                                                 6 32.67909
##
                                      se(rmean)
                                                  median 0.95LCL 0.95UCL
## sample_data1$Radiation.Therapy=No 10.165516 30.41063 22.32304
                                                                        NA
## sample_data1$Radiation.Therapy=Yes 5.631744 48.52550 24.32850
                                                                        NA
ggsurvplot(fit2a,
          #legend.labs=c("tumor_free", "with_tumor"),
          pval = TRUE, conf.int = F,
          risk.table = TRUE, # Add risk table
          risk.table.col = "strata", # Change risk table color by groups
          linetype = "strata", # Change line type by groups
          surv.median.line = "hv", # Specify median survival
          ggtheme = theme_bw(), # Change ggplot2 theme
          palette = c("#E7B800", "#2E9FDF"))
```


#1 - censored & 2- progression #1 - tumor_free & 2 with tumorneoplasm status #1 - NO & 2-YESTREATMENT CODE

4 KM Curve - Survival probability with Radiation Therapy of 90 sampled subjects

```
fit2b <- survfit(Surv(sample_data2$progression_time,sample_data2$progression_status==2) ~</pre>
                   sample_data2$Radiation.Therapy, data=sample_data2)
print(fit2b)
## Call: survfit(formula = Surv(sample_data2$progression_time, sample_data2$progression_status
##
       2) ~ sample_data2$Radiation.Therapy, data = sample_data2)
##
      48 observations deleted due to missingness
##
##
                                       n events median 0.95LCL 0.95UCL
## sample_data2$Radiation.Therapy=No 31
                                                  22.8
                                                                  43.7
                                             22
                                                          14.5
## sample_data2$Radiation.Therapy=Yes 11
                                                  48.5
                                                          24.3
                                                                    NA
summary(fit2b)$table
##
                                      records n.max n.start events
                                                                      rmean
## sample_data2$Radiation.Therapy=No
                                           31
                                                 31
                                                         31
                                                                22 28.95121
## sample_data2$Radiation.Therapy=Yes
                                           11
                                                 11
                                                         11
                                                                 5 33.41254
##
                                      se(rmean)
                                                  median 0.95LCL 0.95UCL
## sample_data2$Radiation.Therapy=No 4.046563 22.75044 14.53135 43.69267
## sample_data2$Radiation.Therapy=Yes 6.022552 48.52550 24.32850
ggsurvplot(fit2b,
          #legend.labs=c("tumor_free", "with_tumor"),
          pval = TRUE, conf.int = F,
          risk.table = TRUE, # Add risk table
          risk.table.col = "strata", # Change risk table color by groups
          linetype = "strata", # Change line type by groups
          surv.median.line = "hv", # Specify median survival
          ggtheme = theme_bw(), # Change ggplot2 theme
          palette = c("#E7B800", "#2E9FDF"))
```


#1 - censored & 2- progression #1 - tumor_free & 2 with tumorneoplasm status #1 - NO & 2-YESTREATMENT CODE

5 KM Curve - Survival probability with Radiation Therapy of 90 sampled subjects

```
fit2c <- survfit(Surv(sample_data3$progression_time,sample_data3$progression_status==2) ~</pre>
                   sample_data3$Radiation.Therapy, data=sample_data3)
print(fit2c)
## Call: survfit(formula = Surv(sample_data3$progression_time, sample_data3$progression_status
       2) ~ sample_data3$Radiation.Therapy, data = sample_data3)
##
##
##
      55 observations deleted due to missingness
##
                                       n events median 0.95LCL 0.95UCL
## sample_data3$Radiation.Therapy=No 23
                                                  33.2
                                                           20.6
                                             14
                                                                     NA
## sample_data3$Radiation.Therapy=Yes 12
                                              3
                                                    NA
                                                            NA
                                                                     NA
summary(fit2c)$table
##
                                      records n.max n.start events
                                                                       rmean
## sample_data3$Radiation.Therapy=No
                                           23
                                                 23
                                                         23
                                                                 14 34.92506
## sample_data3$Radiation.Therapy=Yes
                                           12
                                                 12
                                                         12
                                                                  3 51.50902
##
                                      se(rmean)
                                                  median 0.95LCL 0.95UCL
## sample_data3$Radiation.Therapy=No
                                       4.847872 33.17224 20.5806
                                                                       NA
## sample_data3$Radiation.Therapy=Yes 7.624896
                                                                       NA
                                                      NA
                                                               NA
ggsurvplot(fit2c,
          #legend.labs=c("tumor_free", "with_tumor"),
          pval = TRUE, conf.int = F,
          risk.table = TRUE, # Add risk table
          risk.table.col = "strata", # Change risk table color by groups
          linetype = "strata", # Change line type by groups
          surv.median.line = "hv", # Specify median survival
          ggtheme = theme_bw(), # Change ggplot2 theme
          palette = c("#E7B800", "#2E9FDF"))
```


#1 - Censorea & 2- progression

#1 - tumor_free & 2 with tumorneoplasm status

#1 - NO & 2-YESTREATMENT CODE

6 KM Curve - Survival probability with Radiation Therapy of 80 sampled subjects

```
fit2d <- survfit(Surv(sample_data4$progression_time,sample_data4$progression_status==2) ~</pre>
                   sample_data4$Radiation.Therapy, data=sample_data4)
print(fit2d)
## Call: survfit(formula = Surv(sample_data4$progression_time, sample_data4$progression_status
##
       2) ~ sample_data4$Radiation.Therapy, data = sample_data4)
##
      49 observations deleted due to missingness
##
##
                                       n events median 0.95LCL 0.95UCL
## sample_data4$Radiation.Therapy=No 22
                                                  33.2
                                             14
                                                          21.8
                                                                     NA
## sample_data4$Radiation.Therapy=Yes 9
                                              3
                                                  45.2
                                                          24.3
                                                                     NA
summary(fit2d)$table
##
                                      records n.max n.start events
                                                                       rmean
## sample_data4$Radiation.Therapy=No
                                           22
                                                 22
                                                         22
                                                                 14 43.65753
## sample_data4$Radiation.Therapy=Yes
                                            9
                                                  9
                                                          9
                                                                  3 35.85349
##
                                      se(rmean)
                                                  median 0.95LCL 0.95UCL
## sample_data4$Radiation.Therapy=No 10.806475 33.17224 21.8299
                                                                       NA
## sample_data4$Radiation.Therapy=Yes 5.617246 45.23786 24.3285
                                                                       NA
ggsurvplot(fit2d,
          #legend.labs=c("tumor_free", "with_tumor"),
          pval = TRUE, conf.int = F,
          risk.table = TRUE, # Add risk table
          risk.table.col = "strata", # Change risk table color by groups
          linetype = "strata", # Change line type by groups
          surv.median.line = "hv", # Specify median survival
          ggtheme = theme_bw(), # Change ggplot2 theme
          palette = c("#E7B800", "#2E9FDF"))
```


#1 - censored & 2- progression