Question	Scheme	Marks	
10(a)	$\cos(A-B) = \cos A \cos B + \sin A \sin B$		
	$\cos(A+B) = \cos A \cos B - \sin A \sin B$		
	$\cos(A-B) - \cos(A+B) = \sin A \sin B - (-\sin A \sin B) = 2 \sin A \sin B *$	M1A1cso	
(b)	$[A - B = 5\theta, A + B = 9\theta \Rightarrow A = 7\theta, B = 2\theta]$	[2]	
	$\cos 5\theta - \cos 9\theta = 2\sin 7\theta \sin 2\theta *$	B1 cso [1]	
(c)	$\sqrt{3}\sin 7\theta = 2\sin 7\theta \sin 2\theta \Rightarrow 0 = 2\sin 7\theta \sin 2\theta - \sqrt{3}\sin 7\theta$	M1A1	
	$0 = \sin 7\theta \left(2\sin 2\theta - \sqrt{3}\right) \Rightarrow \sin 7\theta = 0, \ 2\sin 2\theta - \sqrt{3} = 0$	M1	
	$\sin 7\theta = 0 \Rightarrow 7\theta = 0, \ \pi, \ 2\pi \Rightarrow \theta = \frac{\pi}{7}, \ \frac{2\pi}{7}$	M1A1	
	$2\sin 2\theta - \sqrt{3} = 0 \Rightarrow \sin 2\theta = \frac{\sqrt{3}}{2} \Rightarrow 2\theta = \frac{\pi}{3}, \ \frac{2\pi}{3} \Rightarrow \theta = \frac{\pi}{6}, \ \frac{\pi}{3}$	M1A1	
		[7]	
(d)	$\tan 2x = \frac{\sin 2x}{\cos 2x} \Rightarrow \tan 2x \cos 2x = \sin 2x$	M1	
	$\int_0^{\frac{\pi}{7}} 8\sin 7x \sin 2x dx = \left[\int_0^{\frac{\pi}{7}} 4 \times (2\sin 7x \sin 2x) dx \right]$	M1	
	$\int_0^{\frac{\pi}{7}} 4(\cos 5x - \cos 9x) dx = 4 \left[\frac{\sin 5x}{5} - \frac{\sin 9x}{9} \right]_0^{\frac{\pi}{7}}$	M1M1	
	$4\left[\frac{\sin 5x}{5} - \frac{\sin 9x}{9}\right]_{0}^{\frac{\pi}{7}} = 4\left[\left(\frac{\sin 5 \times \frac{\pi}{7}}{5} - \frac{\sin 9 \times \frac{\pi}{7}}{9}\right) - \left(\frac{\sin 0}{5} - \frac{\sin 0}{9}\right)\right] \#$ $= 0.9729 \approx 0.973$	M1A1 [6]	
	Total 16 mar		

Question	Notes	Marks
10(a)	From the formula sheet	
	$\cos(A-B) = \cos A \cos B + \sin A \sin B$	
	$\cos(A+B) = \cos A \cos B - \sin A \sin B$	
	Subtracts the two equations to give:	
	$\cos(A-B)-\cos(A+B) = \sin A \sin B - (-\sin A \sin B)$	M1
	For the correct identity as shown with no errors,	
	$\cos(A-B)-\cos(A+B) = 2\sin A\sin B *$	A1 cso [2]
(b)	For finding the value of A and the value of B	
	$A - B = 5\theta, A + B = 9\theta$	B1cso [1]
	$\Rightarrow A = 7\theta, B = 2\theta$	[1]
	Or as a minimum: $\cos(7\theta - 2\theta) - \cos(7\theta + 2\theta) = 2\sin 7\theta \sin 2\theta$ *	
(c)	Sets $\sqrt{3}\sin 7\theta = 2\sin 7\theta \sin 2\theta$	M1
	Achieves the correct equation allow the terms in any order.	A 1
	$0 = 2\sin 7\theta \sin 2\theta - \sqrt{3}\sin 7\theta$	A1
	Factorises their equation	M1
	$0 = \sin 7\theta \left(2\sin 2\theta - \sqrt{3}\right) \Rightarrow \sin 7\theta = 0, \ 2\sin 2\theta - \sqrt{3} = 0$	M1
	For finding at least one correct value for θ using $\sin 7\theta = 0$	
	$\sin 7\theta = 0 \Rightarrow 7\theta = 0, \ \pi, \ 2\pi \Rightarrow \theta = \frac{\pi}{7}, \ \frac{2\pi}{7}$	M1
	For both correct values $\theta = \frac{\pi}{7}, \frac{2\pi}{7}$	A1
	For finding one correct value of θ using $2\sin 2\theta - \sqrt{3} = 0$	
	$2\sin 2\theta - \sqrt{3} = 0 \Rightarrow \sin 2\theta = \frac{\sqrt{3}}{2} \Rightarrow 2\theta = \frac{\pi}{3}, \ \frac{2\pi}{3} \Rightarrow \theta = \frac{\pi}{6}, \ \frac{\pi}{3}$	M1
	For both correct values $\theta = \frac{\pi}{6}, \frac{\pi}{3}$	A1 [7]
(d)	Uses the identity for $\tan 2x = \frac{\sin 2x}{\cos 2x} \Rightarrow \tan 2x \cos 2x = \sin 2x$	M1
	Substitutes the above into $8\sin 7x\cos 2x\tan 2x$ to give	
	$\int_0^{\frac{\pi}{7}} 8\sin 7x \sin 2x dx = \left[\int_0^{\frac{\pi}{7}} 4 \times (2\sin 7x \sin 2x) dx \right]$	M1
	Ignore integral sign and limits for this mark.	
	For substituting $\cos 5x - \cos 9x$ for $2\sin 7x \sin 2x$ to give	2.51
	$\int_0^{\frac{\pi}{7}} 4(\cos 5x - \cos 9x) \mathrm{d}x$	M1
	Ignore integral sign and limits for this mark.	

Integrates $\int_0^{\frac{\pi}{7}} 4(\cos 5x - \cos 9x) dx = 4 \left[\frac{\sin 5x}{5} - \frac{\sin 9x}{9} \right]_0^{\frac{\pi}{7}}$ Ignore limits for this mark.	M1	
As a minimum they must obtain: $\left(\pm \frac{\sin 5x}{5} \pm \frac{\sin 9x}{9}\right)$ for the integration.		
Substitutes the limits the correct way around		
$4\left[\frac{\sin 5x}{5} - \frac{\sin 9x}{9}\right]_0^{\frac{\pi}{7}} = 4\left[\left(\frac{\sin 5 \times \frac{\pi}{7}}{5} - \frac{\sin 9 \times \frac{\pi}{7}}{9}\right) - \left(\frac{\sin 0}{5} - \frac{\sin 0}{9}\right)\right]$	M1	
= (0.9729)		
For the correct value of $\int_0^{\frac{\pi}{7}} 8\sin 7x \cos 2x \tan 2x dx = 0.973$	A1 [6]	
Total 16		