Two Sample Mood Test

Ryan Honea

10/11/2017

Two Sample Mood Test

Intro To Two Sample Mood Test

Intro To Two Sample Mood Test

Scenario

The Two Sample Mood Test can be used to determine whether or not a variable is widely dispersed. So in this case,

$$X$$
 X X Y Y Y Y X X

it seems clear that \boldsymbol{X} is far more dispersed than \boldsymbol{Y} as opposed to the following case

$$X$$
 Y X Y X Y X Y

where the observations seem to be of similar scale.

Mood Statistic

The mood statistic is

$$M_n = \sum_{i=1}^{N} \left(i - \frac{N-1}{2} \right)^2 Z_i$$

where high values of M_n would lead us to reject the null hypothesis that the scale of X and Y are equal. The code below will do just that.

R Code for Mood Statistic

```
mood statistic <- function(X, Y) {
  X <- cbind(X, rep(1, length(X)))</pre>
  Y <- cbind(Y, rep(0, length(Y)))
  seq <- rbind(X, Y)
  seq <- seq[order(seq[,1]),]</pre>
  N \leftarrow length(seq[,2])
  sum <- 0
  for (i in 1:N) {
    sum <- sum + (i-(N+1)/2)^2 * seq[i,2]
  return(sum)
```

Two Sample Mood Test

Issues with Mood Test

Issues with Mood Test

Low power for high n

```
N \leftarrow seq(2,100, by = 2)
Mn \leftarrow (N/2)*(N^2 - 1)/12
Mn0 < -c()
Mna <- c()
for (i in 1:length(N)) {
  sim 0 <- rnorm(N[i])
  sim a \leftarrow rnorm(N[i], 0, 3)
  Mn0[i] <- mood statistic(sim 0,sim 0)</pre>
  Mna[i] <- mood statistic(sim a, sim 0)</pre>
}
plot(N, Mn, main = "Expected Value of Mn versus N", type =
lines(N, MnO, col = "red")
lines(N, Mna, col = "blue")
```

Low power for high n

```
N \leftarrow seq(2,100, by = 2)
Mn \leftarrow (N/2)*(N^2 - 1)/12
Mn0 < -c()
Mna < - c()
for (i in 1:length(N)) {
  sim_0 <- rnorm(N[i])</pre>
  sim a \leftarrow rnorm(N[i], 0, 3)
  Mn0[i] <- mood statistic(sim 0,sim 0)</pre>
  Mna[i] <- mood statistic(sim a, sim 0)</pre>
plot(N, Mn, main = "Expected Value of Mn versus N", type =
lines(N, MnO, col = "red")
lines(N, Mna, col = "blue")
```

Difficult to Compute Exact P-Value

- So difficult, not even listed in book as far as I could find
- No function availale to compute it exactly unless someone tells me
- Thank goodness for R

```
sim_0 <- rnorm(25)
sim_01 <- rnorm(25)
sim_a <- rnorm(25,0,2)
mood.test(sim_0,sim_a)</pre>
```

```
##
## Mood two-sample test of scale
##
## data: sim_0 and sim_a
## Z = -2.9541, p-value = 0.003135
## alternative hypothesis: two.sided
```

```
mood.test(sim_0,sim_01)
```

```
##
## Mood two-sample test of scale
##
## data: sim_0 and sim_01
## Z = 1.4771, p-value = 0.1397
## alternative hypothesis: two.sided
```

```
sim_0 <- rnorm(20000)
sim_01 <- rnorm(20000)
sim_a <- rnorm(20000, 0, 2)
mood.test(sim_0, sim_a)</pre>
```

```
##
## Mood two-sample test of scale
##
## data: sim_0 and sim_a
## Z = -77.422, p-value < 2.2e-16
## alternative hypothesis: two.sided</pre>
```

```
mood.test(sim_0, sim_01)
```

```
##
## Mood two-sample test of scale
##
## data: sim_0 and sim_01
## Z = -0.27441, p-value = 0.7838
## alternative hypothesis: two.sided
```