Adivinar un número - Algoritmo recursivo

Moisés Quintero* Santiago Hernández[†]

February 21, 2024

Abstract

Este documento presenta el diseño e implementación de un algoritmo basado en la estrategia dividir-y-vencer para el juego de "adivinar un número". Se detalla la implementación del algoritmo y se presenta un documento de diseño que respalda la lógica subyacente.

Algoritmo, escritura formal, dividir y vencer, aleatorio, rangos.

1 Dividir y Vencer

La estrategia de "Dividir y Vencer" es un enfoque fundamental en el diseño de algoritmos que busca resolver problemas complejos dividiéndolos en subproblemas más pequeños, resolviendo cada subproblema de manera independiente y combinando sus soluciones para obtener la solución final del problema original. Este paradigma se caracteriza por tres pasos fundamentales: dividir, conquistar y combinar.

- La primera fase implica dividir el problema original en subproblemas más pequeños e independientes.
- La segunda fase consiste en resolver cada uno de los subproblemas de manera independiente. Se aplica la misma estrategia de "Dividir y Vencer" a cada subproblema, ya que, al ser más pequeños, son más manejables y su solución es más directa.
- La fase final implica combinar las soluciones de los subproblemas para obtener la solución completa del problema original. Este paso es esencial para garantizar que la solución global esté correctamente integrada a partir de las soluciones parciales.

La eficacia de la estrategia de "Dividir y Vencer" se evalúa mediante el análisis de la complejidad temporal y espacial del algoritmo resultante. La complejidad

^{*}moisesd.quintero@javeriana.edu.co

[†]santiagoa_hernandez@javeriana.edu.co

temporal se expresa en función del tamaño del problema original n y la complejidad temporal de cada subproblema. Si denotamos T(n) como la complejidad temporal total, la relación recurrente típica se expresa como:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

donde a es el número de subproblemas, b es el factor de división, y f(n) es el tiempo necesario para dividir, conquistar y combinar.

2 Análisis de Algoritmo

2.1 Entradas y Salidas

El algoritmo de adivinanza de números mediante recursividad toma dos parámetros de entrada: b, el límite inferior del rango (inicializado en 0); e, el límite superior del rango definido por el usuario; y n, que es la cantidad de números a adivinar por turno. La salida del algoritmo es el número adivinado. El código principal interactúa con el usuario para obtener los límites superiores e inferiores del rango (e) y (b). Esto lo hace con la pregunta: "es Mayor(1), Menor(2) o Igual(otro) a tu numero?".

2.2 Funcionamiento

Este algoritmo emplea una estrategia de "Dividir y Vencer" basada en la recursividad. En cada llamada recursiva, le pregunta al "pensador" si el número pensado es mayor, menor o igual a mid. En el caso de que sea mayor, determina un nuevo límite inferior, y en el caso de que sea menor, determina un nuevo límite superior.

2.3 Complejidad

La complejidad temporal de este algoritmo recursivo puede ser analizada utilizando el Teorema Maestro. La relación recurrente que describe la complejidad es:

$$T(n) = T\left(\frac{n}{usu}\right) + O(n)$$

donde n = e - b. Aquí, a = 1 (el número de subproblemas); f(n) = O(n) representa el tiempo necesario para dividir y comparar; y usu = depende de la cantidad de números a adivinar por turno (parámetro ingresado por el usuario).

Aplicando el Teorema Maestro, identificamos un comportamiento generalizado. El algoritmo, siendo d el grado de O(n), siempre seguirá este patrón:

$$a < usu^d$$

Por lo tanto, la complejidad temporal del algoritmo de adivinanza de números mediante recursividad es O(n)

2.4 Notas de Implementación

- El algoritmo requiere constante interacción del usuario.
- Los valores de número máximo y cantidad de números a adivinar por turno, que son ingresados por el usuario, deben ser mayor a 0.
- Todos los valores de entradas serán números naturales (mayores a 0).
- \bullet La cantidad de partes a dividir el rango (La generacion del numero n) deber ser menor o igual a (e-b)

2.5 Pseudocódigo

Algorithm 1 Adivinar Número - "Dividir y Vencer"

```
procedure ADIVINADOR(b, e, n)
   arreglo \leftarrow []
   if b = e then
       return b
   end if
   for i \leftarrow 1 to n do
       arreglo[i] \leftarrow b + ((e-b))//n) * (i+1)
   end for
   print arreglo
   for i \leftarrow 1 to n do
       print "El numero", arreglo[i], "es Mayor(1), Menor(2) o Igual(otro)
a tu numero?"
       respuesta \leftarrow input()
       \mathbf{if}\ respuesta = 1\ \mathbf{then}
           if arreglo[i] < e then
              e \leftarrow arreglo[i]
           end if
       else if respuesta = 2 then
           if arreglo[i] > b then
              b \leftarrow arreglo[i]
           end if
       else
           return arreglo[i]
       end if
   end for
   return ADIVINADOR(b, e, n)
end procedure
procedure ADIVINAR_NUMERO
   while True do
       print "Hasta qué número quieres que se elija?"
       e \leftarrow \text{input}()
       print "Cuantos números quieres que adivine cada vez?"
       n \leftarrow \text{input}()
       if e \ge 0 and n \ge 0 then
           if n > e then
              print "No puedo dividir en más partes que el numero de ele-
mentos"
           \mathbf{print} "Piensa un número del 0 al", e
           print ADIVINADOR(0, e, n), "es tu número!"
           break
       else
           print "No puedes y no puedo pensar en números negativos"
       end if
                                       4
   end while
end procedure
```