PROGRAMME DE COLLES

SUP MPSI 2

Semaine 17

Du 5 au 9 février 2024.

MECANIQUE 1:

Mécanique 2 DYNAMIQUE DU POINT EN REFERENTIEL GALILEEN

EN TD UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.2. Lois de Newton	
Quantité de mouvement Masse d'un système. Conservation de la masse pour système fermé.	Exploiter la conservation de la masse pour un système fermé.
Quantité de mouvement d'un point et d'un système de points. Lien avec la vitesse du centre de masse d'un système fermé.	Établir l'expression de la quantité de mouvement pour un système de deux points sous la forme : p=mv(G).
Première loi de Newton : principe d'inertie. Référentiels galiléens.	Décrire le mouvement relatif de deux référentiels galiléens.
Notion de force. Troisième loi de Newton.	Établir un bilan des forces sur un système ou sur plusieurs systèmes en interaction et en rendre compte sur un schéma.
Deuxième loi de Newton.	Déterminer les équations du mouvement d'un point matériel ou du centre de masse d'un système fermé dans un référentiel galiléen. Mettre en œuvre un protocole expérimental
	permettant d'étudier une loi de force par exemple à l'aide d'un microcontrôleur.
Force de gravitation. Modèle du champ de pesanteur uniforme au voisinage de la surface d'une planète. Mouvement dans le champ de pesanteur uniforme.	Etudier le mouvement d'un système modélisé par un point matériel dans un champ de pesanteur uniforme en l'absence de frottement.
Modèles d'une force de frottement fluide. Influence de la résistance de l'air sur un mouvement de chute.	Exploiter, sans la résoudre analytiquement, une équation différentielle : analyse en ordres de grandeur, détermination de la vitesse limite, utilisation des résultats obtenus par simulation numérique. Écrire une équation adimensionnée.
	Mettre en œuvre un protocole expérimental de mesure de frottements fluides.
Tension d'un fil. Pendule simple.	Établir l'équation du mouvement du pendule simple. Justifier l'analogie avec l'oscillateur harmonique dans le cadre de l'approximation linéaire.

Mécanique 3 APPROCHE ENERGETIQUE DU MOUVEMENT D'UN POINT MATERIEL

EN COURS ET TD.

Notions et contenus	Capacités exigibles
2.3. Approche énergétique du mouvement d'ui	n point matériel
Puissance, travail et énergie cinétique Puissance et travail d'une force dans un référentiel.	Reconnaître le caractère moteur ou résistant d'une force.
Théorèmes de l'énergie cinétique et de la puissance cinétique dans un référentiel galiléen, dans le cas d'un système modélisé par un point matériel.	Utiliser le théorème approprié en fonction du contexte.
Champ de force conservative et énergie	
potentielle Énergie potentielle. Lien entre un champ de force conservative et l'énergie potentielle. Gradient.	Établir et citer les expressions de l'énergie potentielle de pesanteur (champ uniforme), de l'énergie potentielle gravitationnelle (champ créé par un astre ponctuel), de l'énergie potentielle élastique. Déterminer l'expression d'une force à partir de l'énergie potentielle, l'expression du gradient étant fournie. Déduire qualitativement, en un point du graphe d'une fonction énergie potentielle, le sens et l'intensité de la force associée.
Énergie mécanique	
Énergie mécanique. Théorème de l'énergie	Distinguer force conservative et force non conservative.
mécanique. Mouvement conservatif.	Reconnaître les cas de conservation de l'énergie mécanique. Utiliser les conditions initiales.
Mouvement conservatif à une dimension.	Identifier sur un graphe d'énergie potentielle une barrière et un puits de potentiel. Déduire d'un graphe d'énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.
Positions d'équilibre. Stabilité.	Déduire d'un graphe d'énergie potentielle l'existence de positions d'équilibre. Analyser qualitativement la nature, stable ou instable, de ces positions.
Petits mouvements au voisinage d'une position d'équilibre stable, approximation locale par un puits de potentiel harmonique.	Établir l'équation différentielle du mouvement au voisinage d'une position d'équilibre.
	Capacité numérique : à l'aide d'un langage de programmation, résoudre numériquement une équation différentielle du deuxième ordre non-linéaire et faire apparaître l'effet des termes non-linéaires.

Mécanique 4 MOUVEMENTS DE PARTICULES CHARGEES DANS DES HAMPS ELECTRIQUES ET MAGNETIQUES UNIFORMES ET STATIONNAIRES

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.4. Mouvement de particules chargées de uniformes et stationnaires	ans des champs électrique et magnétostatique,
Force de Lorentz exercée sur une charge ponctuelle ; champs électrique et magnétique.	Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant. Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.
Mouvement d'une particule chargée dans un champ magnétostatique uniforme dans le cas où le vecteur vitesse initial est perpendiculaire au champ magnétostatique.	Déterminer le rayon de la trajectoire et le sens de parcours.

Questions de cours à choisir parmi les suivantes :

- ✓ Q1 : Savoir énoncer et démontrer le théorème de la puissance cinétique et de l'énergie cinétique (§ II).
- ✓ Q2 : Savoir retrouver les exemples des énergies potentielles usuelles $(E_{pp}$ et $E_{pe})$ et retrouver une expression de force à partir de l' E_p (§ III.3).
- ✓ Q3 : Savoir énoncer et démontrer les théorèmes de l'énergie mécanique et de la puissance mécanique (§ IV.1 & 2).
- ✓ Q4 : Savoir retrouver l'équation différentielle du mouvement du pendule simple à partir d'une étude énergétique (§ IV.4).
- ✓ Q5 : Savoir discuter le mouvement d'une particule selon que l'énergie potentielle a une forme « barrière » ou « cuvette » selon son E_m ; Etat lié ou de diffusion (§ V.1 & 2).
- ✓ Q6 : Connaitre la méthode et savoir justifier de l'étude des positions d'équilibre et stabilité à partir de l'énergie potentielle (§ V.3).
- ✓ Q7 : Savoir étudier les mouvements au voisinage d'une position d'équilibre stable, par un développement de Taylor. Savoir retrouver l'équation différentielle du mvt (§ V.4).
- ✓ Q8: Force de Lorentz; Comparaison entre les ordres de grandeurs des force électrique et/ou magnétique et la force gravitationnelle; Puissance de la force de Lorentz et conséquence (§ II.1, 2 & 3).
- ✓ Q9 : Action d'un champ électrostatique uniforme sur une particule chargée ; Mvt à vecteur acc cst. Cas général d'une trajectoire parabolique (§ III.1).
- ✓ Q10 : Action d'un champ électrostatique uniforme sur une particule chargée dans le cas où \vec{E} // $\vec{v_0}$; Savoir effectuer un bilan énergétique pour calculer la vitesse de la particule accélérée par une ddp U (§ III.2).
- ✓ Q11 : Action d'un champ magnétique uniforme sur une particule chargée dans le cas où $\overrightarrow{v_0} \perp \overrightarrow{B}$; Savoir retrouver l'équation cartésienne du cercle (avec coordonnées du centre) et le rayon de la trajectoire par la méthode intégration/substitution.
- \checkmark Q12 : Action d'un champ magnétique uniforme sur une particule chargée dans le cas où $\overrightarrow{v_0} \perp \overrightarrow{B}$; Savoir déterminer le rayon de la trajectoire en utilisant la base de Frenet. (§ IV.3).