Изучение поляризованного света

Гончаров Марк

3 марта 2021 г.

1 Теория

Если все направления, преперндикулярные S являются равноправными, то свет называется естественным или неполяризованным

Интенсивность линейно поляризованного света I после прохождения линейного анализатора описывается законом **Малюса**

$$I = I_0 cos^2 \alpha.$$

Получать эллиптически поляризованный свет можно из линейно поляризованного с помощью двоякопреломляющих кристаллических пластинок

Рис. 1: Разложение линейно поляризованного света по главным направлениям двоякопреломляющей пластинки

В частности, для монохроматических волн имеется уравнение плоско-поляризованной волны:

$$\begin{cases} E_x = H_y = A_x \cos(\omega t - kz + \varphi_x) \\ E_y = -H_x = A_y \cos(\omega t - kz + \varphi_y) \end{cases}$$

В общем случае вектор (E_x, E_y) вращается по эллипсу - эллиптическая поляризация. Если эллипс является окружностью, то мы имеем дело с круговой поляризацией, если вырождается в отрезок - линейной поляризацией.

Для получения эллиптически поляризованного света возьмём источник линейно-поляризованного света. С помощью двояко-преломляющей пластины, из него можно получить эллиптически поляризованный свет. Для этого нужно пустить исходные волны по двух взаимо-перпенликулярным главным направлениям пластинки (главные волны), они будут распространяться с разными скоростями и на выходе получится сдвиг фаз. Рассмотрим частные случаи сдвига фаз $\Delta \varphi$:

- 1) $\Delta \varphi = 2\pi$, пластинка в длину волны λ . Получается линейно-поляризованная волна на выходе.
- 2) $\Delta \varphi = \pi$, пластинка в длину волны $\lambda/2$. На выходе снова получается линейно-поляризованная волна, но теперь направление колебаний выходного линейно-поляризованного света является зеркальным отражением направления колебаний входного линейно-поляризованного света относительно одного из главных направлений пластинки.
- 3) $\Delta \varphi = \pi/2$, пластинка в длину волны $\lambda/4$. Получается эллиптически поляризованный свет, причем его главные оси совпадают с главными направлениями кристаллической решетки.

2 Эксперимент

1. Определим направления поляроида методом последовательных приближений. С помощью одного

Рис. 2: Определение разрешённого направления поляроида

поляроида и чёрного зеркала имеем $\psi_1=21^\circ\pm1^\circ$. Скрестив поляроиды ищем разрешённое направление второго поляроида $\psi_2=140^\circ\pm1^\circ$

2. Определяем показатель преломеления эбонита по найденному углу Брюстера

Начальное значение на шкале $\varphi_0=182^\circ\pm1^\circ$, конечное $\varphi_1=239^\circ\pm1^\circ$, то есть **угол Брюстера** $\varphi_{\rm br}=57^\circ\pm2^\circ$. С его помощью рассчитаем показатель преломления

$$n \approx tan(57^{\circ}) \approx 1.54.$$

Операция tan() бралась на калькуляторе. Погрешность $tan(59) - tan(57) \approx 0.11$, поэтому $n = 1.54 \pm 0.1$. Оставил 2 знака для чуть более качественного анализа результата.

Сравним с табличными значениями: согласно лабораторному практикуму $n_{\rm eb}=1.6-1.7$, что немного выше. Учитывая, что $tan(59^\circ)$ уже больше 1.6, мы получили неплохие результаты с помощью данного опыта.

3. Для исследования характера поляризации света в преломлённом и отражённом от стопы лучах поставим вместо эбонитового зеркала стеклянные пластинки под углом Брюстера.

Рис. 3: Исследование стопы

Далее на пути преломлённого света расположим поляроид с горизонтальным разрешённым направлением. В этом случае интенсивность почти не меняется, что свидетельствует о вертикальном направлении преломлённого \vec{E} . Качественно провели аналогичные опыты с "вертикальным" поляроидом и отражённым лучами.

4. Определяем главные направления пластин. Для этого поставим кристаллическую пластину между скрещенными поляроидами. Далее будем вращать пластинку вокруг направления луча.

Было не очень легко определять эти направления - разница часто была не видна.

Как видно, кристллическая решётка совсем неидеальная, что и следовало ожидать.

Рис. 4: Определение главных направлений в пластинках

Таблица 1: Главные направления пластин

	Длина	Максимум	Минимум
	l/4	64 ± 3	107 ± 3
ĺ	l/2	83 ± 3	132 ± 3

- 5. Для определения $\frac{l}{4}$ поставим зелёный фильтр. Пластина $\frac{l}{4}$ будет пропускать волну с эллиптической поляризацией. Это мы можем обнаружить, вращая поляризатор. Увидим, что интенсивность почти не меняется, что и характеризует эллиптическую поляризацию. Для $\frac{l}{2}$ наблюдали линейную поляризация (видели минимумы и максимумы интенсивности).
- 6. Определим быструю и медленую оси в пластинке $\frac{l}{4}$

Рис. 5: Определение напрвлений большей и меньшей скорости

При совпадении главных направлений наблюдали голубой цвет. Это свидетельствует о совпадени быстрых осей пластины. А красно-оранжевый о несовпадении.

Так происходит из-за погашения красной части спектра при совпадении быстрых осей пластины (погашение синей части при медленной).

7. Определяем направление вращения светового вектора - против часовой стрелки.

Рис. 6: Эллиптическая поляризация

Для двух поляроидов поставим две пластинки $\frac{l}{4}$, и зелёный фильтр для создания монохроматический свет. Не умоляя общности, переместим при необходимости тригонометрическую систему координат так, чтобы расположить направление \vec{E} в первом квадранте.

После прохождения света через пластинку $\frac{l}{4}$ вектор $\vec{E_X}$ отстаёт от $\vec{E_Y}$ на $\frac{\pi}{2}$. В зависимости от расположения второй пластинки, разность фаз вышедшего света будет 0 или π . Тогда эллипсы, созданные пластинками, вращаются в разные стороны, если разность фаз 0. То есть \vec{E} останется также в первом квадранте. В противном случае \vec{E} распологается во втором квадранте.

8. Интерференцию наблюдали для мозаичной пластинки. Мы вращали сначала пластинку. Наблюдали изменения цвета в каждом квадратике по-отдельности. Интенсивность света не менялась.

При вращении поляроида, что логично, меняется интенсивность. Наблюдали одновременное тускнение квадратиков.

3 Вывод

Мы научились анализировать поляризацию световой волны. Определять показатель преломления по измеренному экспериментально углу Брюстера. Поняли, как изменять линейно поляризованную волну в эллиптически поляризованную и обратно с помощью пластинок.