

Universidad Autónoma de Baja California

MECÁNICA AEROESPACIAL DE MATERIALES PRÁCTICA #5

Análisis de Flexión

Alumno
VÁSQUEZ CASTAÑEDA
CARLOS ANTONIO

Profesor Carlos Fabián González León

Grupo 390

Matrícula: 1155057

Marzo 14, 2019

Práctica #4: Análisis de Flexión

Carlos Vásquez 1155057

March 15, 2019

Introducción

En esta práctica analizaremos las deformaciones que producen las fuerzas que aplicaremos a una barra hueca con un corte en ella. Esto nos permitirá observar las fuerzas que actúan sobre ella y cómo se deforma. Además también podremos observar que cuando aplicamos la fuerza en una arista, es posible obtener una deformación llamada flexión, la cual es de interés en nuestros análisis.

Desarrollo

La pieza a realizar en CATIA será la siguiente:

Figure 1: Dimensiones del objeto a modelar.

Como podemos observar, la fuerza que se proporcionará a la pieza será de 200 N, pero la dirección de aplicación variará coo veremos a continuación en los anexos de la práctica. Primeramente se analizará la fuerza en una cara de la pieza a compresión, después a tensión y finalmente en la arista, creando la flexión hablada al inicio.

Figure 2: Barra a compresión.

(a)

Figure 3: Barra a tensión.

XTZ

XVZ

(b) 4

Figure 4: Barra con flexión.

Conclusión

En esta práctica fue sencillo visualizar cómo las fuerzas deforman al cuerpo e incluso los puntos que sufren más estrés gracias a la geometría de la figura. Es de gran ayuda entender y utilizar prorgamas coo CATIA y SOLIDWORKS para realizar estos análisis rápidamente y así comprender las propiedades de los materiales en cuestión, al igual que la geometría más conveniente para éstos.