BMO AND FAIRNESS ESTIMATES FOR POISSON

Fix an integer N; our goal is to determine an N depending on the dimension d and the associated A_2 weight ν so that if $\varphi \in \text{BMO}_{\nu}$, then we have

$$\int_{\mathbb{R}^d} \frac{|\varphi(x)|}{1+|x|^N} \, dx \lesssim \|\varphi\|_{\mathrm{BMO}_{\nu}}.$$

Rather than applying the doubling property of $\nu \in A_2$, we will use the fairness property: since $\nu \in A_{\infty}$, there exists a $\delta > 0$ for which we have

$$\frac{\nu(A)}{\nu(B)} \lesssim \left(\frac{|A|}{|B|}\right)^{\delta}$$

for sets $A \subseteq B$.

Date: December 9, 2020.