Electricity and Magnetism

- Physics 259 L02
 - •Lecture 18

Chapter 23

Last time

• Chapter 23.2 and 23.3

This time

• Chapter 23.5 and 23.5

Summary of Conductors and Electric Fields

(a) The electric field inside the conductor is zero.

All excess charge is on the surface.

(b) The electric field at the surface is perpendicular to the surface.

A void completely enclosed by the conductor $\vec{E} = \vec{0}$

The electric field inside the enclosed void is zero.

$$E = \frac{\sigma}{\varepsilon_0}$$
 (conducting surface).

23-4 to 23-6

23-4: Electric field of a long, charged wire

Infinitely long plastic wire

L

$$\Phi_e = \oint \vec{E}.d\vec{A} = \frac{Q_{in}}{\mathcal{E}_0}$$

$$E_{wire} = \frac{\lambda}{2\pi\varepsilon_0 r}$$

23-5: Electric field of a plane of charge Nonconduction infinite sheet
$$\Phi_e = \oint \vec{E}.d\vec{A} = \frac{Q_{in}}{\mathcal{E}_0}$$

$$E_{plane} = \frac{\sigma}{2\varepsilon_0}$$

Two conducting Plates

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

$$E=\frac{2\sigma_1}{\varepsilon_0}=\frac{\sigma}{\varepsilon_0}.$$

Field of a line charge

Consider an infinitely long, positively charged rod of linear charge density λ . How large is the flux through side A of the box? Suppose the values for l, a and λ are given.

Field of a line charge

- Consider an infinitely long, positively charged rod of linear charge density λ. How large is the flux through side A of the box? Suppose the values for l, a and λ are given.
- Gauss' law tells us that the total electric flux only depends on the enclosed charge – not the shape of the (closed) Gaussian surface:

$$\Phi_{tot} = Q_{encl}/\epsilon_0 = \lambda l/\epsilon_0$$

