





## Mini Lecture Course: Accelerator Design for a Multi-TeV Muon Collider

**Lecture 1: Overview of Muon Collider** 

Katsuya Yonehara 4/21/2025

### My profile

## Katsuya Yonehara Senior Scientist at Fermilab

- Experimental physicist
- Accelerator and Particle Physics
- Currently working on high power targetry for neutrino facilities like NuMI and LBNF



- During the lecture
- Email to <u>yonehara@fnal.gov</u>
- USMCC Slack chat





#### Scope of the lecture series

- My goal is to convey our past studies and accumulated knowledges related to muon colliders to the new generation
- Target audience: Lecture materials are being prepared for graduate students, engineers, and researchers who do not have a background in accelerator physics, however, the lecture are open to all interested participants!
- Tentative agenda (1-2 hours per session):
  - 1. Overview of the muon collider
  - 2. Emittance evolution and stability conditions in phase space
  - 3. Review of ionization cooling channels
  - 4. RF cavities in ionization cooling channels
  - 5. (TBD) Interactions and kinematics
  - 6. (TBD) Review of the MICE experiment & demo channel



#### Recommended paper and textbook

- G. Dugan, PRSTAB 4,104001 (2001) for expert level
- "Theory and Design of Charged Particle Beams", Martin Reiser, Print ISBN:9783527407415 |Online ISBN:9783527622047 |DOI:10.1002/9783527622047 for entry level reader
- "Particle Accelerator Physics", Helmut Wiedemann, <a href="https://link.springer.com/book/10.1007/978-3-319-18317-6">https://link.springer.com/book/10.1007/978-3-319-18317-6</a> for entry and advanced level reader
- "Accelerator Physics", SY
  Lee, <a href="https://library.oapen.org/handle/20.500.12657/50490">https://library.oapen.org/handle/20.500.12657/50490</a> for advanced level reader



## **Overview of Muon Collider Design**

Quickly go through the design concept of muon colliders



#### Overview of Muon Collider

#### Proton beam-based muon collider



Our story starts from luminosity...

Number of particles cross at an Interaction Point (IP) per second

$$\mathcal{L} = \frac{N_{\mu} + \cdot N_{\mu} - \cdot f \cdot n_{b}}{4\pi \cdot \sigma_{\chi} \cdot \sigma_{y}} > 10^{34} \quad \text{cm}^{-2} \text{ s}^{-1} \quad \text{$n_{b}$: Repetition rate ($\sim$5 Hz)} \\ \frac{N: \text{Num of } \mu \text{ per bunch ($\sim$10^{12})}}{f: \text{Bunch revolution ($\sim$1000)}} \\ \frac{n_{b}: \text{Repetition rate ($\sim$5 Hz)}}{\sigma: \text{RMS Beam spot size at collision ($\sim$10^{-4} cm)}}$$

Beam crossing area at IP



#### **Collider Luminosities**

$$\mathcal{L} = \frac{N_{\mu^+} \cdot N_{\mu^-} \cdot f \cdot n_b}{4\pi \cdot \sigma_{\chi} \cdot \sigma_{y}}$$

At the present time

| Facility  | Ops yr    | Beam                | СОМ           | $\sigma$ ( $\mu$ m)              | $m{n}_b$ (kHz) | $\mathcal{L}(cm^{-2}s^{-1})$ |
|-----------|-----------|---------------------|---------------|----------------------------------|----------------|------------------------------|
| Tevatron  | 1983-2011 | $p\cdot ar{p}$      | 1.96 TeV      | ~30                              | 47.7           | $4 \cdot 10^{32}$            |
| LHC       | 2009-     | $p \cdot p$         | 13-14 TeV     | ~17                              | 11.2           | $2.1\cdot10^{34}$            |
| HL-LHC    | 2029-     | $p \cdot p$         | 14 TeV        | ~7                               | 11.2           | $> 10^{35}$                  |
| EIC       | 2031-     | $e^- \cdot p$       | 20-140<br>GeV | <i>e</i> : 10~20 <i>p</i> : 5~10 | > 10,000       | ~10 <sup>34</sup>            |
| Suer KEKB | 2016-     | $e^+ \cdot e^-$     | 10.58 GeV     | <i>x</i> : 10 <i>y</i> : 0.06    | 0.05           | $2.4 \cdot 10^{34}$          |
| HERA      | 1992-2007 | $e^{\pm}\cdot p$    | 318 GeV       | omit                             | 0.01           | $7\cdot 10^{31}$             |
| MC        | ?         | $\mu^+ \cdot \mu^-$ | 3, 10 TeV     | ~1                               | 0.005          | > 10 <sup>34</sup>           |
| ILC       | ?         | $e^+ \cdot e^-$     | 1 TeV         | <i>x</i> : 0.33 <i>y</i> : 0.005 | 5 Hz           | $4.9 \cdot 10^{34}$          |
| FCC-hh    | ?         | $p \cdot p$         | 100 TeV       | ~7                               | ?              | $3\cdot 10^{35}$             |

#### **Examine Luminosity in Muon Collider**



I am, particularly interested in three Higgs productions

- Self coupling
- Possibly coupling with SUSY particles (BSM), or find internal structure of Higgs
- Analogous to a glue-ball (pomeron)

Ex) 
$$\mu\mu \rightarrow WW \rightarrow HHH$$
, VBF at 14 TeV

$$\sigma=7.1\cdot 10^{-3}$$
 femto barns =  $7.1\cdot 10^{-18}$  barns =  $7.1\cdot 10^{-42}$  cm<sup>-2</sup>

$$1 \ barn = 10^{-24} \ cm^{-2}$$

6 months full time beam operation

$$\rightarrow t_{operation} \sim 1.56 \cdot 10^7 \text{ s}$$

$$f_{\mu\mu\to HHH} \sim 7.1 \cdot 10^{-42} \times 1.56 \cdot 10^7 \times 10^{34} \sim 0.1$$
 event/year



#### Overview of Muon Collider

#### Proton beam based muon collider



- Required muons after cooling,  $N \sim 10^{12}$ ,  $\varepsilon_{t,n} \sim 20$  mrad
  - Start from proton beam intensity:  $\sim 10^{15}$  protons/spill
  - Required  $\mu/proton$  yield:  $\sim 0.1 \ \mu/p$
  - Acceptable  $\mu$  loss in cooling (and acceleration): **0.01**

$$\mathcal{L} \propto \frac{N_{\mu^{+}} \cdot N_{\mu^{-}} \cdot f}{\sigma_{\chi} \cdot \sigma_{y}}$$

- We claim that the luminosity gains at higher muon collision energy because muon lifetime longer thus num of rev. (f) also higher
- Besides, if either transmission or final achievable emittance is improved, the luminosity is increased by square of them!



## Low EMittance Muon Accelerator (LEMMA)

 In the LEMMA scheme, muons are produced via electronpositron annihilation just above the energy threshold:

$$-e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$$

- The size of muon flux after the process is extremely small (possibly a sub micro-meter scale).
- However, the cross section of the process is  $\sim 1~\mu bars = 10^{-30}~cm^{-2}$  at 45 GeV, the expected muon yield is approximately six orders of magnitude smaller than protonbased scheme
- Currently, we hold this scheme as a backup scenario



#### **Overview of Muon Collider**

Intense proton beam strikes pion production target

$$p + A \rightarrow \pi^{\pm} + A'$$

Pions are eventually decayed

$$\pi^+ \to \mu^+ + \nu_{\mu}$$

$$\pi^- \to \mu^- + \bar{\nu}_{\mu}$$

Pion lifetime

$$\tau = 26\gamma$$
 ns  $\rightarrow \tau \cdot c = 7.8$  m ( $\gamma = 1$ )

Muons are eventually decayed as well

$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$$
$$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$$

Muon lifetime

$$\tau = 2.2 \gamma \,\mu s$$
  $\rightarrow \tau \cdot c = 659.5 \,\mathrm{m} \,(\gamma = 1)$ 



### Challenge in producing low emittance muon beam

- Initial muon phase space is too large to achieve the goal luminosity
  - Phase space cooling is required
    - Initial muon phase space is similar as basketball
    - Required muon phase space after cooling is sub-millimeter
- Muons have a finite lifetime
  - Need fast cooling scheme
    - Ionization cooling



## Intuitive picture of beam cooling

Interpret of the beam cooling: Similar as refrigerator!



#### **Beam cooling**

Heat flows from warm object to cold object



$$\frac{dQ}{dt} = \dot{Q} = h \cdot A \cdot (T_b - T_{abs})$$

Heat transfer rate

$$\rightarrow \frac{dQ}{ds} = Q' = h \cdot A \cdot (T_b - T_{abs})$$

s is a path length

Since  $h \cdot A$  is constant, if  $\Delta T$  is large,  $\dot{Q}$  should be proportionally large



If  $\Delta T$  is near zero (temperature reaches equilibrium),  $\dot{Q}$  is small



## **Beam cooling**

Beam temperature flows into absorber temperature



 $\Delta p$ : Momentum in CM frame

How to effectively generate high transverse momentum in a beam?



Transverse momentum is maximized at cooling region



#### **Beam cooling**

Beam temperature flows into absorber temperature





Transverse phase space is rotated along beam path



## **Energy transfer process**



Energy transfer in an elastic scattering:

$$\frac{1}{2}m_b v_1^2 = \frac{1}{2}m_b v_3^2 + \frac{1}{2}m_t v_4^2 \to E_1 - E_3 = \Delta E = E_4$$

This is a transferred energy

The phase space is cooled by:  $\Delta E/E$ 

Inelastic case: 
$$E_1 - E_3 = \Delta E = E_4 + Q$$

Q can be used as excitation of target particle or ionization



## **Energy transfer in ionization cooling** (intuitive approach)



Total mean energy loss per unit length:

$$\frac{\overline{dE}}{dx} \sim K \frac{Z}{A} \frac{1}{\beta^2} \left[ \frac{1}{2} ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2} - \beta^2 \right] \sim n_c \cdot \overline{\Delta E} \sim n_c \cdot W$$

Bethe equation

*W*: electron-ion pair production energy



#### Pure cooling rate

- As an example, in liquid H2 (LH2),  $\frac{dE}{dx}$  ~320 keV/cm at  $p_{\mu}$  ~200 MeV/c
- It is known from measurements,  $W_{LH2} \sim 20$  eV, thus  $n_c \sim \frac{^{320\cdot 10^3}}{^{20}} = 16,000 \text{ /cm}$
- Cooling rate is given,
  - $\lambda_{6D}^{-1} = \frac{\left(\frac{dE}{dx}\right)}{\beta^2 \cdot E}$  (we will derive this later)
  - In the case of LH2,
    - $\lambda_{6D}^{-1} \sim 320 \cdot 10^3 / 177 \cdot 10^6 \sim 1.8 \cdot 10^{-3} / \text{cm}$
    - $\frac{\varepsilon_{6D,initial}}{\varepsilon_{6D,final}} = exp(-L \cdot \lambda_{6D}^{-1})$ , if L = 100 meter,  $\frac{\varepsilon_{6D,initial}}{\varepsilon_{6D,final}} = 1.5 \cdot 10^{-8}$  (our goal is  $10^{-6}$ !)
  - In reality, there is a heating term due to multiple scattering which will be discussed later



## Beam cooling in thermodynamics

- Solving Fokker-Planck Equation (FPE) to describe the cooling with stochastic processes (Expert level! See Dugan's PRSTAB paper to find his beautiful work!)
- Let us assume the probability function  $f(\vec{x})$ , then the entropy is  $S = -\int f(\vec{x}) \cdot ln[f(\vec{x})]d\vec{x}$
- If  $f(\vec{x})$  is a multiple gaussian form,

$$- f(\vec{x}) = \frac{1}{(2\pi)^{n/2} \cdot det(\Sigma)^{1/2}} exp\left[ -\frac{1}{2} (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu}) \right]$$

- Then  $S = \frac{1}{2}ln[(2\pi e)^n det(\Sigma)]$
- Indeed,  $det(\Sigma) \propto \varepsilon_n^2$
- $-S = ln(\varepsilon_n) + constant$
- If  $\varepsilon_n$  becomes small, S value is reduced



## Our first approach to beam dynamics

Interpret the beam dynamics:
We apply a concept of harmonic oscillation to
evaluate the beam dynamics equations



- Beam dynamics is analogous to the dynamics of a simple harmonic motion
  - Solving harmonic oscillator via canonical transformation

$$\begin{pmatrix} H = E = \frac{p^2}{2m} + \frac{1}{2}kq^2 \\ \dot{p} = -\frac{dH}{dq} = -kq \end{pmatrix} \rightarrow \begin{pmatrix} q = \sqrt{\frac{2E}{m\omega^2}}\cos(\omega t + \varphi_0) \\ p = \sqrt{2mE}\sin(\omega t + \varphi_0) \end{pmatrix}$$

$$\text{Or } \mathcal{H}(P,Q) = E = \omega \cdot P, \dot{Q} = \omega = \sqrt{\frac{k}{m}}$$

$$\begin{pmatrix} q = \sqrt{\frac{2E}{m\omega^2}}\cos(\omega t + \varphi_0) \\ p = \sqrt{2mE}\sin(\omega t + \varphi_0) \end{pmatrix} \rightarrow \begin{pmatrix} q = \sqrt{\frac{2P}{m\dot{Q}}}\cos(\omega t + \varphi_0) \\ p = \sqrt{2mE}\sin(\omega t + \varphi_0) \end{pmatrix}$$

$$p = \sqrt{2m\dot{Q}}\sin(\omega t + \varphi_0)$$

 Harmonic motion → Hill's equation (translate the differentiation from t to s)

$$\dot{p} = -\frac{dH}{dq} = -kq \to x'' + Kx = 0$$

Let us use following general solution for x

Non-linear & coupling beam dynamics can be investigated through non-linear harmonic oscillators, which most likely uses a perturbation theory

$$x = \sqrt{2\hat{\beta}_{x}(s)J_{x}}\cos[\hat{\mu}_{x}(s) + \phi_{x}]$$

Comparing 
$$q = \sqrt{\frac{2P}{m\dot{Q}}}\cos(\omega t + \phi_0)$$

$$P \to \frac{J_x}{m}, \dot{Q} \to \frac{1}{\hat{\beta}_x} = \hat{\mu}_x' \leftarrow (\hat{\mu}_x \to \omega t), \phi_x \to \phi_0,$$



- Let us confirm
  - Differentiate x and x''

$$x' = \frac{dx}{ds}$$

$$= \sqrt{\frac{J_x}{2\hat{\beta}_x(s)}} \hat{\beta}_x'(s) \cos[\hat{\mu}_x(s) + \phi_x] + \sqrt{2\hat{\beta}_x(s)J_x} \sin[\hat{\mu}_x(s) + \phi_x] \cdot \hat{\mu}_x'(s),$$

$$x'' = \frac{d^2x}{ds^2} = \sqrt{2\hat{\beta}_{x}(s)J_{x}} \left\{ \hat{\mu}_{x}''(s) + \frac{\hat{\beta}_{x}'(s)}{\hat{\beta}_{x}(s)} \hat{\mu}_{x}'(s) \right\} \sin[\hat{\mu}_{x}(s) + \phi_{x}]$$

$$+\sqrt{2\hat{\beta}_{x}(s)J_{x}}\left\{-\frac{1}{4}\frac{\left(\hat{\beta}_{x}'(s)\right)^{2}}{\hat{\beta}_{x}^{2}}+\frac{1}{2}\frac{\hat{\beta}_{x}''(s)}{\hat{\beta}_{x}(s)}-(\hat{\mu}_{x}')^{2}\right\}\cos[\hat{\mu}_{x}(s)+\phi_{x}].$$



- Substitute into Hill's equation
  - Since right-handed-side of Hill's equation is zero, the coefficient of trigonal functions should be zero

$$\mu_{x}^{\prime\prime} + \frac{\hat{\beta}_{x}^{\prime}}{\hat{\beta}_{x}} \hat{\mu}_{x}^{\prime} = 0 \rightarrow (\hat{\beta}_{x} \cdot \hat{\mu}_{x}^{\prime})^{\prime} = 0 \rightarrow \hat{\mu}_{x}^{\prime} = \frac{1}{\hat{\beta}_{x}(s)},$$

This is what we look into!

$$-\frac{1}{4} \frac{(\hat{\beta}_{x}')^{2}}{\hat{\beta}_{x}^{2}} + \frac{1}{2} \frac{\hat{\beta}_{x}''}{\hat{\beta}_{x}} - (\hat{\mu}_{x}')^{2} + K_{x} = 0$$

$$\rightarrow 2\hat{\beta}_{x}\hat{\beta}_{x}'' - (\hat{\beta}_{x}')^{2} + 4K_{x}\hat{\beta}_{x}^{2} = 4.$$

The second equation is often called envelop equation



Proposing further transformations

$$\hat{\alpha}_{x} = -\frac{1}{2}\hat{\beta}_{x}', \hat{\gamma}_{x} = \frac{1 + \hat{\alpha}_{x}^{2}}{\hat{\beta}_{x}} \rightarrow \hat{\beta}_{x}\hat{\gamma}_{x} - \hat{\alpha}_{x}^{2} = 1,$$

• Surprisingly (or expectedly), x and x' becomes much simple

$$x = \sqrt{2\hat{\beta}_x J_x} \cos \psi_x,$$

$$x' = \frac{\hat{\beta}_x'}{2\beta_x} \cdot \sqrt{2\hat{\beta}_x J_x} \cos \psi_x - \frac{\sqrt{2\hat{\beta}_x J_x}}{\hat{\beta}_x} \sin \psi_x = -\sqrt{\frac{2J_x}{\hat{\beta}_x}} (\sin \psi_x + \hat{\alpha}_x \cos \psi_x)$$

$$\left( = -\frac{x}{\hat{\beta}_x} \left[ \tan \psi_x - \frac{\hat{\beta}_x'}{2} \right] \right).$$

Envelop equation is also simplified

$$2\hat{\beta}_{x}\hat{\beta}_{x}^{"} - (\hat{\beta}_{x}^{"})^{2} + 4K_{x}\hat{\beta}_{x}^{2} = 4 \to \hat{\alpha}_{x}^{"} = K_{x}\hat{\beta}_{x} - \frac{1}{\beta_{x}}[1 + \hat{\alpha}_{x}^{2}]$$

$$= K_{x}\hat{\beta}_{x} - \hat{\gamma}_{x}$$

**Fermilab** 

We introduce a (new) canonical momentum

$$p_x \equiv \hat{\beta}_x x' + \hat{\alpha}_x x = -\sqrt{2\hat{\beta}_x J_x} \sin \psi_x.$$

$$x = \sqrt{2\hat{\beta}_x J_x} \cos \psi_x,$$

Then,

$$\frac{1}{\hat{\beta}_{x}}(x^{2} + p_{x}^{2}) \qquad \hat{\gamma}_{x} = \frac{1}{\hat{\beta}_{x}}[1 + \hat{\alpha}_{x}^{2}]$$

$$= \frac{1}{\hat{\beta}_{x}} \left\{ (1 + \hat{\alpha}_{x}^{2})x^{2} + 2\hat{\alpha}_{x}\hat{\beta}_{x}xx' + \hat{\beta}_{x}^{2}(x')^{2} \right\}$$

$$= \hat{\gamma}_{x}x^{2} + 2\hat{\alpha}_{x}xx' + \hat{\beta}_{x}(x')^{2} = 2J_{x} \equiv \varepsilon_{x}.$$

 $\varepsilon_{x}$  is called the Courant-Snyder invariant, or emittance



#### **Courant-Snyder invariant (phase ellipse)**



x and  $p_x$  form a circle with radius  $\sqrt{\hat{\beta}_x \cdot \varepsilon_x}$ 



## Summary

We have a solution for particle motion using analogous to the simple harmonic motion





- Smaller  $\beta_x$  makes amplitude of x' larger while amplitude of xsmaller
- How do we find  $\beta$ ?
  - Can we solve  $\beta$  from envelop equation?

$$2\hat{\beta}_{x}\hat{\beta}_{x}^{"} - (\hat{\beta}_{x}^{"})^{2} + 4K_{x}\hat{\beta}_{x}^{2} = 4 \rightarrow \hat{\alpha}_{x}^{"} = K_{x}\hat{\beta}_{x} - \frac{1}{\hat{\beta}_{x}}[1 + \hat{\alpha}_{x}^{2}]$$

$$= K_{x}\hat{\beta}_{x} - \hat{\gamma}_{x}$$
Ferm

## Find $\hat{\beta}$ , $\hat{\alpha}$ , $\hat{\gamma}$ (Twiss parameter) from phase space evolution

• Assume the density function is given,  $\rho(x, x')$ 

$$\langle x \rangle = \int x \cdot \rho(x, x') dx dx', \langle x' \rangle = \int x' \cdot \rho(x, x') dx dx',$$

$$\sigma_x^2 = \int (x - \langle x \rangle)^2 \cdot \rho(x, x') dx dx',$$

$$\sigma_{x'}^2 = \int (x' - \langle x' \rangle)^2 \cdot \rho(x, x') dx dx',$$

$$\sigma_{xx'} = \int (x - \langle x \rangle) (x' - \langle x' \rangle) \cdot \rho(x, x') dx dx'.$$

· The rms beam emittance is then,

$$\varepsilon_{x,rms} = \sqrt{Det[\sigma^2]} = \sqrt{\sigma_x^2 \cdot \sigma_{x'}^2 - \sigma_{xx'}^2}.$$



## Find $\hat{\beta}$ , $\hat{\alpha}$ , $\hat{\gamma}$ (Twiss parameter) from phase space evolution

• If the beam distribution function is a function of the Courant-Snyder invariant, the  $\sigma$ -matrix is given

$$\begin{pmatrix} \sigma_{x}^{2} & \sigma_{xx'} \\ \sigma_{xx'} & \sigma_{x'}^{2} \end{pmatrix} = \varepsilon_{rms} \begin{pmatrix} \hat{\beta} & -\hat{\alpha} \\ -\hat{\alpha} & \hat{\gamma} \end{pmatrix}.$$

$$\varepsilon_{x,rms} = \sqrt{Det[\sigma^{2}]} = \sqrt{\sigma_{x}^{2} \cdot \sigma_{x'}^{2} - \sigma_{xx'}^{2}}.$$

$$\hat{\sigma}_{x}^{2} = \sigma_{x}^{2} = \sigma_{xx'}^{2} = \sigma_{xx'$$

$$\hat{\beta}_{\chi} = \frac{\sigma_{\chi}^{2}}{\varepsilon_{rms}} \quad \hat{\alpha}_{\chi} = -\frac{\sigma_{\chi\chi'}^{2}}{\varepsilon_{rms}} \quad \hat{\gamma}_{\chi} = \frac{\sigma_{\chi'}^{2}}{\varepsilon_{rms}}$$



Note:
$$\widetilde{K} = \begin{pmatrix} \widehat{\beta} & -\widehat{\alpha} \\ -\widehat{\alpha} & \widehat{\gamma} \end{pmatrix}$$
 is a symplectic matrix, ie  $\widetilde{K}^T \Omega \widetilde{K} = \Omega$  where using  $\widehat{\beta} \widehat{\gamma} = \widehat{\alpha}^2 + 1$ 



#### **Extra slides**



#### Overview of Muon Collider

#### Proton beam based muon collider



•  $\pi^{\pm}/\mu^{\pm}$  capture magnets



#### Solenoid base

- Massive & expensive
- Most efficient

#### Horn base

- Cheap
- Charge dependence



#### Overview of Muon Collider

#### Proton beam based muon collider



Buncher and Phase rotator



Concept



# Ionization interactions vs frictional interactions

Low energy (< 100 eV) incident particle feels a screened Coulomb potential

$$S_e(E)_{Lindhard-Scharff} = kE^{1/2}$$



Low energy incident particle

High energy (> MeV) incident particle interact individual atom (electrons)  $S_e(E)_{Bethe} = KE^{-1}ln(\gamma_e E/\bar{I})$ 

Electron cloud

Nuclei



potential

#### Wide range of energy loss value in PDG

frictional ionization



Muon momentum range is typically  $100 \sim 300 \text{ MeV/c}$  for ionization cooling (HF solenoid final channel uses p  $\sim 50 \text{ MeV/c}$ )



### Other beam cooling techniques

- Stochastic cooling
- Electron cooling
- Laser cooling

