

Two Speed Portal Gearbox Design Project

Ray Baker

Brad Newby

Matt Tomblin

ME-541 Design II Fall 2017

Dr. Yimesker Yihun

What is a 'Portal' Hub Gearbox and what does it do for vehicles?

High mobility!

Portal hub application and layout

Alternate Existing designs.

Alternate Existing Designs (cont)

Basic Principle of Operation

"Dog Clutch"

Compiled Input Parameters

Total Input Power =	250	kW
Number of Gearboxes =	4	
Input Power to each Gearbox =	62.5	kW
Shaft Speed =	700	rpm
Gear Ratio 1 =	1	
Gear Ratio 2 =	2.75	
Arrangement =	Straight with Offset	
Application =	Heavy Equipment	
Drive =	Internal Combustion	
Housing =	Welding	
Desired Life =	10000.00	Hours

Assumptions

- Input power of 250 kW is divided into 4 separate gearboxes (62.5 kW each)
- Output speed desired to operate the vehicle at 70 mph, requires input speed ~700 rpm
- Gearcase will replace existing wheel bearing assy
- Spur gears used due to low shaft speeds
- Design life of 10,000 hours based on competitive gearboxes

Assumptions

- Input power of 250 kW is divided into 4 separate gearboxes (62.5 kW each)
- Output speed desired to operate the vehicle at 70 mph, requires input speed ~700 rpm
- Gearcase will replace existing wheel bearing assy
- Spur gears used due to low shaft speeds
- Design life of 10,000 hours based on competitive gearboxes

Geometry Layout

- Basic Portal Box layout with a customized offset
- Red = Input
- Yellow = Middle
- Green = Output

Geometry Layout – Cont.

 We designed a VBA function that created the layout of the gearbox for you in excel, for visual purposes Draw Gear Box

Geometry Layout - Cont.

Gear Dimensions

- Reduction per stage
 - Sqrt(2.75) = 1.658
- Minimum teeth on Pinion (14 teeth)
- Diameters and teeth counts maintain 1.658:1 ratio

- G2 = G4 = G5
 - 90 mm dia. 18 teeth
- G3 = G6
 - 150 mm dia. 30 teeth
- Face width 76.2 mm

	Ge	ear 2			Gear 3			
	Pitch Diameter	d =	90.000	mm	Pitch Diameter	d =	149.220	mm
Input	Number of Teeth	N =	18.000	#	Number of Teeth	N =	29.844	#
Parameters	Pressure Angle	φ=	20.000	deg	Pressure Angle	φ=	20.000	deg
	Diametral Pitch	P =	0.200	mm	Diametral Pitch	P =	0.200	mm
	Module	m =	5.000	#	Module	m =	5.000	#
	Circular Pitch	p =	15.708	mm	Circular Pitch	p =	15.708	mm
Calculated	Addendum Diameter	a =	95.000	mm	Addendum Diameter	a =	154.220	mm
Parameters	Dedendum Diameter	b =	83.750	mm	Dedendum Diameter	b =	142.970	mm
· didilicters	Clearance Diameter	c =	85.000	mm	Clearance Diameter	c =	144.220	mm
	Tooth Thickness	t =	7.854	mm	Tooth Thickness	t =	7.854	mm
	Base Pitch	p _b =	6.410	mm	Base Pitch	P _b =	6.410	mm

Diameter Selection Optimization

Diameter Selection

Gear Ratio (per stage)	1.658312395
kfull	1
kstub	0.8

Pressure Angle	Np	Minimum Number of Teeth on Pinon (full)	p2stub 💂	Np(stub)	Minimum Number of Teeth on Pinon (Stub)
20.000	13.714	14	3.462	10.971	11
20,100	13.589	14	3.464	10.871	11
20.200	13.465	14	3.465	10.772	11
20.300	13.344	14	3.467	10.675	11
20.400	13.224	14	3.468	10.579	11
20.500	13.106	14	3,469	10.485	11
20,600	12.990	13	3.471	10.392	11
20.700	12.875	13	3.472	10.300	11
20.800	12.762	13	3.473	10.210	11
20.900	12.650	13	3.475	10.120	11
21.000	12.541	13	3.476	10.033	11
21.100	12.432	13	3.477	9.946	10
21,200	12.326	13	3.479	9.861	10
21.300	12.220	13	3.480	9,776	10
21.400	12.117	13	3.482	9.693	10
21.500	12.014	13	3.483	9.611	10
21.600	11.913	12	3.485	9.531	10
21.700	11.814	12	3.486	9.451	10
21.800	11.716	12	3.487	9.373	10
21.900	11.619	12	3.489	9.295	10
22.000	11.523	12	3.490	9.219	10
22.100	11.429	12	3.492	9.143	10
22.200	11.336	12	3.493	9.069	10
22.300	11.336	12	3.494	8.996	9
		12	3.496	8.923	9
22.400	11.154 11.065	12	3.496	8.923	9
		11	3.499	8.781	9
22.600	10.977	11	3.500	8.712	9
22.700	10.890	11		8.643	9
22.800	10.804	11	3.502		9
22.900	10.720		3.503	8.576	
23.000	10.636	11 11	3.505 3.506	8.509	9
23.100	10.553			8.443	
23.200	10.472	11	3.508	8.378	9
23.300	10.392	11	3.509	8.313	
23.400	10.312	11	3.511	8.250	9
23.500	10.234	11	3.512	8.187	9
23.600	10.157	11	3.514	8.125	9
23.700	10.080	11	3.515	8.064	9
23.800	10.005	11	3.517	8.004	9
23.900	9.930	10	3.518	7.944	8
24.000	9.857	10	3.520	7.886	8
24.100	9.784	10	3.521	7.827	8
24.200	9.713	10	3.523	7.770	8
24.300	9.642	10	3.524	7.713	8
24.400	9.572	10	3.526	7.657	8
24.500	9.503	10	3.527	7.602	8
24.600	9.434	10	3.529	7.548	8
24.700	9.367	10	3.530	7.494	8
24.800	9.300	10	3.532	7.440	8
24.900	9.235	10	3.533	7.388	8
25.000	9.170	10	3.535	7.336	8
25.100	9.105	10	3.536	7.284	8

Gear Design

- CAD models for the gears were generated as well
- A rim thickness was also added to reduce weight
- Extra teeth were added to Gear 4 and 6 for the clutch assembly

Gear Design – Cont.

Shaft Design - Input

- Integrated Gear
- Step to hold the outer bearing
- Splined attachment for axle input
- 25mm in diameter
- 51mm in diameter for the splined attachment

Shaft Design - Input

Shaft Design - Intermediate

- Solid shaft with 2 holes on the end
- 2 spots for snap rings
- No steps are needed
- Fixed Shaft

Shaft Design - Intermediate

Shaft Design - Output

- 1 Step in the center
- Step contains male splines
- 25mm in diameter

Shaft Design - Output

Shear & Moment Diagrams

- Maximum shear & moment
 - Intermediate Shaft
 - Due to Shafts being offset

			In	termediate Sha	ft			
Tensile Strength	Sut =	570.000		Maximum Moment	M-	646.859	kN-m	
Yield Strength	Sy =	310.000		Reversed Stress	orev =	6589 /d^3		32 <i>M</i>
Endurance Limit Estimate	Se' =	285.000	Mpa	D/d Ratio	D/d=	1.250		$\sigma_{syr} = \frac{32M}{\pi d^3}$
Surface Corre	ction F	actor		r/d Ratio	r/d =	0.100		
Factor A	a =	4.510		Stress Concentration	Kt =	1.700		Figure A-15-9
Exponent B	b=	-0.265		Shear Stress Concentration	Kts =	1.500		Figure A-15-8
Surface Factor	Ka =	0.839		Notch Factor	q =	0.850		ESTIMATE
Size Correct	ion Fac	tor		Shear Notch Factor	qs=	0.850		ESTIMATE
Diameter	d =	4.691	mm	Fatigue Stress Concentration	Kf =	1.595		$K_f = 1 + q(K_t - 1)$
Effective Diameter	de =	1.736	mm	Fatigure Shear Stress	Kfs =	1.425		
Size Factor	Kb =	1.137			ESTI	MATES		
Loading Corre	ction F	actor		Surface Factor	Ka =	0.839		
Bending	kc	1.000		Size Factor	Kb=	1.078		From Table Below
Axial	ke	0.850		Loading Factor	Kc =	1.000		
Torsion	ke	0.590		Temperature Factor	Kd =	1.000		
Loading Factor	Kc	1.000		Reliability Factor	Ke =	1.000		
Temperature Correction Factor		Endurance Limit	Se =	257.868	Mpa	$S_e = k_a k_b k_c k_d k_e S_e$		
Temperature	Tf=	500.000	С	Stress Calculation				
	Tf=	260.000	F	Fatigue Strength Fraction	f=	0.870		Figure 6-18
	Kd =	1.025			a =	953.652		$a = \frac{\left(fS_{\omega}\right)^2}{S_{\sigma}'}$
Reliability Corre	ection	Factor			b =	-0.095		$b = -\frac{1}{3} \log \left(\frac{fS_{st}}{S_{e}} \right)$
Reliability	R=	99	%	Desired Life	L-	10000.000	Hours	
	Ke =	0.814		Shaft Speed at Stage 1	n1 =	422.195	rpm	
Corrected End	urance	Limit		Shaft Speed at Stage 2	n2 =	422.195	rpm	
Endurance Limit	Se =	226.959	Mpa	Number of Cycles at Stage 1	N1 -	2.53E+08	Cycles	
				Number of Cycles at Stage 2	N2 =	2.53E+08	Cycles	
				Fatigue Strength at Stage 1	Sf1 =	152.705	Mpa	$S_f = aN^b$
				Fatigue Strength at Stage 2	Sf2 =	152.705	Mpa	
				Factor of Safety	n =	1.500		$n_f = \frac{S_f}{K_c \sigma_{}}$
				Minimum Diameter	d-	4.691	mm	$H_f = \frac{1}{K_f \sigma_{rev}}$
					Recal	culation		
				Effective Diameter	de =	1.736		
				Size Factor	Kb =	1.2200		

Shear & Moment Diagrams

Optimization for Kb Values

 The iteration table will search for values that equal, highlight them and input them into the usable table

l				J			- 1	1
		lte	ratio	ons To Find Correcte	ed Kk)		
Kbo	Se 🔻	a 🔻	b	Sf	d	de		Kb
0.100		19428.05		0.51		10.78		0.8537
0.110	13.92	17661.86	-0.52	0.61	27.45	10.16	5	0.8617
0.120	15.19	16190.04	-0.50	0.72	25.99	9.62	2	0.8691
0.130	16.46	14944.65	-0.49	0.84	24.73	9.15	5	0.8760
0.140		13877.18	-0.48			8.73		0.8824
0.1500		12952.03	-0.47	1.10		8.37		0.8883
0.1600		12142.53	-0.46			8.04		0.8940
0.170			-0.45	1.38		7.74		0.8993
0.180		10793.36		1.54		7.47		0.9044
0.190		10225.29	-0.44	1.71	19.51	7.22		0.9092
0.200 0.210		9714.02 9251.45	-0.43 -0.42	1.88 2.06		6.99 6.78		0.9138
0.220		8830.93	-0.42	2.06		6.59		0.9182 0.9224
0.230		8446.98	-0.42	2.44		6.41		0.9264
0.240	_	8095.02	-0.40			6.24		0.9303
0.250	_		-0.40		16.43			0.9340
								
1 0600	134.17	1832.83	-0.19	42.78	6.66	2.47		1.0762
1.0700	135.44	1815.71	-0.19	43.54	6.63	2.47		1.0762
1.0800	136.70	1798.89	-0.19	44.30	6.59	2.43	Х	1.0772
1.0900	137.97	1782.39	-0.19	45.08	6.55	2.42		1.0791
1.1000		1766.19	-0.18	45.85	6.51	2.41		1.0801

Bearing Selection

- Minimum Shaft Diam.
 - 28 mm
- Max. Dynamic Load
 - Shaft 20.187 kN
 - Bearing 20.59 kN
- Factor of Safety
 - -1.02

		Inte	rmedia	ite Shaft			
Bearing 1 Force	F1 =	8.235	kN				
Bearing 2 Force	F2 =	10.155	kN				
	Stage 1			St	age 2		
Desired Life	Ld =	10000	Hours	Desired Life	Ld =	10000	Hour
Speed of Input	nd =	420	rpm	Speed of Input	nd =	420	rpm
	Xd =	2.8			Xd =	2.8	
				$x_D = \frac{L_D}{L_{10}} = \frac{60 \pounds_D n_0}{L_{10}}$	D		
Manufacturer	M =	1		$L_{10} = L_{10}$			
	x0 =	0					
	θ=	4.48		Ball bearing	a =	3	
	b =	1.5		Roller Bearing	a =	3.333333333	
Reliability	Rd =	98.00%		Needle Roller Bearing	a =	3.333333333	
Application Factor	af =	1.2					
	Bearing	Needle Roller Bearing					
	N	2.8			N	2.8	
	D	0.520			D	0.520484904	
В	earing 1 S	Stage 1		Bea	ring 1 Stag	e 2	
	C10	16.371	kN		C10	16.371	kN
Double Bearing Used		8.185	kN	Double Bearing Used		8.185	kN
Value from Table		17.9	kN	Value from Table		17.9	kN
Bore for Roller	b =	25	mm	Bore for Roller	b =	25	mm
Outer Diameter	OD =	30	mm	Outer Diameter	Outer Diameter OD =		mm
Width	W =	17	mm	Width	Width W =		mm
Shoulder Diameter	ds =		mm	Shoulder Diameter	ds =		mm
	dh=		mm		dh =		mm
Fillet Radius	r=		mm	Fillet Radius	r=		mm
В	earing 2 S	Stage 1		Bea	ring 2 Stag	e 2	
	C10	20.187	kN		C10	20.187	kN
Double Bearing Used	- 220	10.094		Double Bearing Used		10.094	
Value from Table		20.5	kN	Value from Table		20.5	_
Bore for Roller	b=		mm	Bore for Roller	b =		mm
Outer Diameter	OD =		mm	Outer Diameter	OD =		mm
Width	W=		mm	Width	W =		mm
Shoulder Diameter	ds =		mm	Shoulder Diameter	ds =		mm
	dh =		mm		dh =		mm
Fillet Radius	r=		mm	Fillet Radius	г=		mm
Diameter of Output Shaft	Do =	20	mm				
Diameter of Output Shart	DO =	1.10					
		1.10					
	+ +						

Deflection Analysis – Shafts

Deflection Analysis – Shafts

Deflection Analysis – Gear Teeth

Results

- Gear Failure Analysis indicates failure of gear #5
- Bending stress
 - 51.08 kpsi
- Bending Factor of Safety
 - Sf = 1.350

- Contact stress
 - 22.8 Mpsi
- Contact Factor of Safety
 - -0.0074
- Due to gearbox size constraints
- Gear is undersized

Parameters for a working Gearbox

- The major player in the factors that effected the contact stress was
 - Diameter
 - Number of Teeth
 - Geometry Factor
- Would need almost a 9" diameter

End Result

The final assembly

End Result

Exploded View

Working Gearbox

