]:	from sklearn.linear_model import LogisticRegression import warnings from sklearn.metrics import accuracy_score warnings.filterwarnings('ignore') #Loading the dataset df = pd.read_csv('/Users/SAURABH/Saurabh patil/DATA SCIENCE/KNN/zoo.csv') df animal name hair feathers eggs milk airborne aquatic predator toothed backbone breathes venomous fins legs tail domestic catsize type arrow arrow a control of the dataset of the dataset of a control of the dataset of the datas
	3 bear 1 0 0 1 0 0 1 1 1 1 1 1 0 0 4 0 0 1 1 4 boar 1 0 0 1 0 0 1 1 1 1 1 1 0 0 4 1 0 1 1
]:	100 wren 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 2 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 0
	0 animal name 101 non-null object 1 hair 101 non-null int64 2 feathers 101 non-null int64 3 eggs 101 non-null int64 4 milk 101 non-null int64 5 airborne 101 non-null int64 6 aquatic 101 non-null int64 7 predator 101 non-null int64 8 toothed 101 non-null int64 9 backbone 101 non-null int64
	10 breathes 101 non-null int64 11 venomous 101 non-null int64 12 fins 101 non-null int64 13 legs 101 non-null int64 14 tail 101 non-null int64 15 domestic 101 non-null int64 16 catsize 101 non-null int64 17 type 101 non-null int64 dtypes: int64(17), object(1) memory usage: 13.9+ KB
:	Since number of columns are more, let's use PCA #Scaling the data (leaving out the target variable, and the taking only the numerical data for input) df1= df.iloc[:,1:17] from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(df1)
:	<pre>df_norm = sc.transform(df1)</pre>
:	[-0.86103386, -0.49690399, 0.84372057,, -1.69841555,
	array([[-2.53525586, -0.26027764, 1.24184209,, 0.46003753, 0.13353213, 0.09036509], [-2.87735435, -0.40154709, -0.1000181,, -0.01872462, -0.02855448, -0.06995038], [1.76100295, 3.70559205, -0.18010521,, 0.24519814, -0.00710216, 0.03432821],, [-2.81897453, 0.10708083, 0.13685166,, -0.03421561, -0.04553159, -0.02909899], [2.01881534, -1.25779288, 1.40920411,, -0.50614542, -0.22293974, 0.0170063], [2.04997054, -1.90737976, -2.49732162,, 0.23108799,
:	0.13215847, -0.03497545]]) # The amount of variance that each PCA explains is var = pca.explained_variance_ratio_ var array([0.29191091, 0.20882904, 0.14778223, 0.07693359, 0.05962114,
:	# Cumulative variance var1 = np.cumsum(np.round(var,decimals = 4)*100) var1 array([29.19, 50.07, 64.85, 72.54, 78.5 , 83.16, 86.68, 89.88, 92.68,
	100 - 90 - 80 - 70 - 60 - 50 -
:	40
:	pc1 pc2 pc3 pc4 pc5 pc6 pc7 pc8 pc9 pc10 pc11 pc12 pc13 pc14 type 0 -2.535256 -0.260278 1.241842 -1.065734 -0.296433 0.261767 -0.041032 -0.301902 1.287573 0.250864 -0.137726 -0.725658 -0.534541 0.460038 1 1 -2.877354 -0.401547 -0.100018 -0.014988 -0.38969 -0.627116 0.796777 0.345511 -0.552024 0.192473 0.211313 -0.145765 -0.087887 -0.018725 1 2 1.761003 3.705592 -0.180105 0.578327 -0.327066 -0.379035 -0.560420 -0.200556 -0.158270 -0.511661 -0.282661 -0.108516 0.090267 0.245198 4 3 -2.535256 -0.260278 1.241842 -1.065734 -0.296433 0.261767 -0.041032 -0.301902 1.287573 0.250864 -0.137726 -0.725658 -0.534541 0.460038 1
	m
:	array = finalDf.values X = array[:,0:14] Y = array[:,14] Selecting the model validation technique
:	<pre>Trial 1 : Train Test split approach from sklearn.model_selection import train_test_split import numpy as np test_size = 0.3 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) model = LogisticRegression() model.fit(X_train, Y_train) result = model.score(X_test, Y_test) np.round(result, 4)</pre>
	0.9677 Trial 2: Cross Validation approach from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score import numpy as np num_folds = 10 seed = 7
:	<pre>kfold = KFold(n_splits=num_folds, random_state=seed) model = LogisticRegression(max_iter=400) results = cross_val_score(model, X, Y, cv=kfold) print('Result:',np.round(results.mean(),4),'\n','\n','Standard dev:',np.round(results.std(),4)) Result: 0.96 Standard dev: 0.0663 from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import cross_val_score</pre>
	locov = LeaveOneOut() model = LogisticRegression(max_iter=400) results = cross_val_score(model, X, Y, cv=locov) print('Result:',np.round(results.mean(),4),'\n','\n','standard dev:',np.round(results.std(),4)) Result: 0.9604 Standard dev: 0.195 Hence, Train Test Split is the best model vaidation technique here, so we'll proceed with that
	KNN Classification Let's use Grid search CV to find out best value for K # Grid Search for Algorithm Tuning import numpy from pandas import read_csv from sklearn.neighbors import KNeighborsClassifier
	<pre>from sklearn.model_selection import GridSearchCV n_neighbors = numpy.array(range(1,40)) param_grid = dict(n_neighbors=n_neighbors) model = KNeighborsClassifier() grid = GridSearchCV(estimator=model, param_grid=param_grid) grid.fit(X, Y) print(grid.best_score_) print(grid.best_params_)</pre>
:	<pre>0.9504761904761905 {'n_neighbors': 1} import matplotlib.pyplot as plt %matplotlib inline # choose k between 1 to 40 k_range = range(1, 40) k_scores = [] # use iteration to caclulator different k in models, then return the average accuracy based on the cross validation for k in k_range:</pre>
	<pre>knn = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn, X, Y, cv=5) k_scores.append(scores.mean()) # plot to see clearly plt.figure(figsize=(15,7)) plt.plot(k_range, k_scores) plt.axhline(y=0.9504761904761905, color='r', linestyle='') plt.axvline(x=1, color='r', linestyle='') plt.xlabel('Value of K for KNN') plt.ylabel('Cross-Validated Accuracy') plt.show()</pre>
	0.95 0.90 - Vg 0.85 -
	0.80 - 0.75 - 0.70 -
:	#KNN Classification model = KNeighborsClassifier(n_neighbors=1) #making the model model.fit(X_train, Y_train) #training the model
:	<pre>y_pred = model.predict(X_test) #predicting on the test dataset acc = accuracy_score(Y_test, y_pred) * 100 print("Accuracy =", acc) Accuracy = 93.54838709677419 SVM Classification # SVM Classification import pandas as pd</pre>
	<pre>import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn import svm from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score, confusion_matrix</pre>
:	<pre>from sklearn.model_selection import train_test_split, cross_val_score Let's use Grid search CV to find out best value for params clf = SVC() param_grid = [{'kernel':['rbf'], 'gamma':[0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1], 'C':[1,10,100,1000] },</pre>
: :	<pre>({'C': 1, 'kernel': 'linear'}, 0.97) #SVM Clasification clf = SVC(C= 1, kernel='linear') #building the model clf.fit(X_train , Y_train) #training the model y_pred = clf.predict(X_test) #predicting on test dataset acc = accuracy_score(Y_test, y_pred) * 100 print("Accuracy =", acc)</pre>
	Now, let's try some Ensemble methods to see if we can further increase the accuracy of the model Trial-1: Bagging # Bagged Decision Trees for Classification from sklearn.model_selection import KFold
	<pre>from sklearn.model_selection import cross_val_score from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier seed = 7 cart = DecisionTreeClassifier() num_trees = 100 model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=seed) model.fit(X_train,Y_train) y_pred = model.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100</pre>
:	<pre>print('Accuracy:',acc) Accuracy: 96.7741935483871 Trial-2: Random Forest # Random Forest Classification from sklearn.ensemble import RandomForestClassifier num_trees = 100 max_features = 3</pre>
:	<pre>model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) model.fit(X_train, Y_train) y_pred = model.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc) Accuracy: 96.7741935483871 Trial-3: Boosting # AdaBoost Classification</pre>
	<pre>from sklearn.ensemble import AdaBoostClassifier num_trees = 100 seed=7 model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) model.fit(X_train,Y_train) y_pred = model.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc)</pre> Accuracy: 87.09677419354838
	Accuracy: 87.09677419354838 Trial-4: Stacking # Stacking Ensemble for Classification from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import VotingClassifier # create the sub models estimators = [] model = LogisticRegression(max_iter=500)
	<pre>estimators.append(('logistic', model)) model = DecisionTreeClassifier() estimators.append(('cart', model)) model = SVC() estimators.append(('svm', model)) # create the ensemble model ensemble = VotingClassifier(estimators) ensemble.fit(X_train,Y_train) y_pred = ensemble.predict(X_test)</pre>
:	<pre>estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = DecisionTreeClassifier() estimators.append(('cart', model)) model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)</pre>
	<pre>estimators.append(('Boosting', model)) # create the ensemble model ensemble = VotingClassifier(estimators) ensemble.fit(X_train, Y_train) y_pred = ensemble.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc)</pre> Accuracy: 96.7741935483871
:	<pre># create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) estimators.append(('boosting', model)) model = SVC() estimators.append(('svm', model)) # create the ensemble model ensemble = VotingClassifier(estimators)</pre>
:	<pre>ensemble.fit(X_train,Y_train) y_pred = ensemble.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc) Accuracy: 96.7741935483871 # create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model))</pre>
	<pre>model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) estimators.append(('boosting', model)) # create the ensemble model ensemble = VotingClassifier(estimators) ensemble.fit(X_train,Y_train) y_pred = ensemble.predict(X_test) acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy:',acc)</pre>
:	<pre># create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = SVC() estimators.append(('svm', model)) # create the ensemble model ensemble = VotingClassifier(estimators) ensemble = fit(X train X train)</pre>
	<pre>ensemble = VotingClassifier(estimators) ensemble.fit(X_train,Y_train) y_pred = ensemble.predict(X_test)</pre>
:	acc = accuracy_score(Y_test, y_pred)*100 print('Accuracy: ',acc) Accuracy: 90.32258064516128 Hence, we can say that SVM is the best predicting model for this dataset