

Devoir surveillé 9 - 15/04/25

Exercice 1 (\sim 3,5): Soient E un espace euclidien, muni du produit scalaire (.|.) et $f \in \mathcal{L}(E)$. On note

(i) $f \in \mathcal{O}(E)$

(ii) $f^2 = -Id_E$

(iii) $\forall x \in E, (f(x)|x) = 0$

- 1. Démontrer que (i) et (ii) impliquent (iii).
- 2. On suppose (i) et (iii) 11.5
 - (a) Soient $x, y \in E$, donner une expression de (f(x+y)|x+y) et en déduire que $f^2(x) + x \in (f(E))^{\perp y}$
 - (b) En déduire que (i) et (iii) impliquent (ii).
- 3. On suppose (ii) et (iii) /A
 - (a) Soit $x \in E$, exprimer (f(x) + x|f(x) x) en fonction de $||f(x)||^2$ et $||x||^2$.
 - (b) En déduire que (ii) et (iii) impliquent (i).

Exercice 2 (\sim 7.5) (Pourra être utilisé dans l'exercice 3): Soit E un espace euclidien muni du produit scalaire

- $(.|.). \text{ Pour tous } e_1,..,e_n \in E, \text{ on note } M_{e_1,..,e_n} \in \mathcal{M}_n(\mathbb{R}) \text{ telle que pour tous } i,j \in [|1,n|], (M_{e_1,..,e_n})_{i,j} = (e_i|e_j)$
 - 1. On note \mathcal{B} une base de E, soient $x, y \in E$ et $X = Mat_{\mathcal{B}}(x), Y = Mat_{\mathcal{B}}(y)$, démontrer que $(x|y) = X^T M_{\mathcal{B}} Y$.
 - 2. Soit $(u_1,...,u_p) \in (\mathbb{R}^n)^p$, démontrer que $(u_1,...,u_p)$ est libre si et seulement si $M_{u_1,...,u_p}$ est inversible.
 - 3. Soient $(u_1,...,u_p)$ une famille libre de vecteurs de E et $(v_1,...,v_p)$ une famille de vecteurs de E telles que $M_{u_1,...,u_p}=M_{v_1,...,v_p}$.
 - (a) Démontrer qu'il existe $f \in \mathcal{O}(E)$ telle que pour tout $i \in [|1,p|], f(u_i) = v_i$.
 - (b) En déduire que $(v_1, ..., v_p)$ est aussi une famille libre.

Exercice 3 (~9) : Soient $E = \mathcal{C}([0,1],\mathbb{R})$ muni du produit scalaire $(f|g) = \int_0^1 f(t)g(t)dt$, $\|.\|$ la norme euclidienne associée et $f \in E$.

Pour tout $n \in \mathbb{N}^*$, on définit $H_n \in \mathcal{M}_n(\mathbb{R})$ telle que pour tous $i, j \in [|1, n|], (H_n)_{i,j} = \frac{1}{i+j-1}$

- 1. (a) Démontrer qu'il existe une famille de polynômes $(K_n)_{n\in\mathbb{N}}$ vérifiant les deux conditions :
 - Pour tout $n \in \mathbb{N}, K_n$ est de degré n et son coefficient dominant est strictement positif
 - Pour tout $N \in \mathbb{N}, (K_n)_{0 \le n \le N}$ est une base orthonormale de $R_N[X]$.
 - (b) Calculer explicitement K_0, K_1 et K_2 .
 - (c) Justifier l'unicité de la famille (K_n) . \times /1.5
- 2. (a) Soit $n \in \mathbb{N}^*$, déterminer une famille $(e_1,...,e_n)$ de $\mathbb{R}_{n-1}[X]$ pour laquelle $H_n = M_{e_1,...,e_n}$ (Notation exercice 2).
 - (b) En déduire que H_n est inversible.
- 3. Soit $n \in \mathbb{N}$, justifier qu'il existe un unique polynôme $P_n \in \mathbb{R}_n[X]$ tel que $\|P_n f\| = \min_{Q \in \mathbb{R}_n[X]} \|Q f\|$.
- 4. Soit \mathcal{B} la base canonique de $\mathbb{R}_n[X]$, exprimer $Mat_{\mathcal{B}}(P_n)$ à l'aide de H_{n+1}^{-1} et de $(f|X^i)$ pour $i \in [[0,n]]$.
- 5. Déterminer explicitement P_1 avec f définie par : $f(t) = \frac{1}{1+t^2}$ pour tout $t \in [0,1]$.