Отчёт по лабораторной работе №6

Дисциплина: архитектура компьютера

Горобцова Арина Романовна

Содержание

1	Цель работы		5
2	Зад	ание	6
3	Выполнение лабораторной работы		7
	3.1	Символьные и численные данные в NASM	7
	3.2	Выполнение арифметических операций в NASM	12
	3.3	Ответы на вопросы по программе	15
	3.4	Выполнение заданий для самостоятельной работы	16
4	Выв	воды	19

Список иллюстраций

3.1	Создание директории и фаила	/
3.2	Редактирование файла	8
3.3	Запуск исполняемого файла	8
3.4	Редактирование файла	8
3.5	Запуск исполняемого файла	9
3.6	Создание файла	9
3.7	Открытие файла для просмотра	9
3.8	Редактирование файла	10
3.9	Запуск исполняемого файла	10
3.10	Редактирование файла	11
3.11	Запуск исполняемого файла	11
3.12	Редактирование файла	12
	Запуск исполняемого файла	12
	Создание файла	12
	Редактирование файла	13
3.16	Запуск исполняемого файла	13
	Изменение программы	14
3.18	Запуск исполняемого файла	14
3.19	Создание файла	14
	Редактирование файла	15
3.21	Запуск исполняемого файла	15
3.22	Создание файла	16
	Написание программы	17
3.24	Запуск исполняемого файла	17

Список таблиц

1 Цель работы

Цель данной лабораторной работы - освоение арифметческих инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Символьные и численные данные в NASM

С помощью утилиты mkdir создаю директорию, в которой буду создавать файлы с программами для лабораторной работы №6. Перехожу в созданный каталог с помощью утилиты cd и создаю файл touch lab6-1.asm

```
argorobcova@dk3n35 ~ $ mkdir ~/work/arch-pc/lab06
argorobcova@dk3n35 ~ $ cd ~/work/arch-pc/lab06
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ touch lab6-1.asm
argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.1: Создание директории и файла

Открываю созданный файл lab6-1.asm, вставляю в него программу вывода значения регистра eax (рис. 3.2).

Рис. 3.2: Редактирование файла

Создаю исполняемый файл программы и запускаю его. Вывод программы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6 (рис. 3.3).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-1
j
argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.3: Запуск исполняемого файла

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. 3.4).

```
lab6-1.asm [-M--] 9 L:[ 1+ 7 8/13] *(104 / 168b) 0010 0x00A [*][X]
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.4: Редактирование файла

Создаю новый исполняемый файл программы и запускаю его. Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран (рис. 3.5).

```
argorobcova@dk3n35 ~ $ cd work/arch-pc/lab06
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-1

argorobcova@dk3n35 ~/work/arch-pc/lab06 $ .
```

Рис. 3.5: Запуск исполняемого файла

Создаю новый файл lab6-2.asm с помощью утилиты touch (рис. 3.6).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ touch ~/work/arch-pc/lab06/lab6-2.asm
argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.6: Создание файла

С помощью функциональной клавиши F3 открываю файл для просмотра, чтобы проверить, содержит ли файл текст программы (рис. 3.7).

Рис. 3.7: Открытие файла для просмотра

Ввожу в файл текст другойпрограммы для вывода значения регистра eax (рис. 3.8).

Рис. 3.8: Редактирование файла

Создаю и запускаю исполняемый файл lab6-2. Теперь вывод число 106, потому что программа позволяет вывести именно число, а не символ, хотя все еще происходит именно сложение кодов символов "6" и "4". (рис. 3.9).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-2
106
argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.9: Запуск исполняемого файла

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4 (рис. 3.10).

```
lab6-2.asm [-M--] 9 L:[ 1+ 5 6/ 9] *(77 / 113b) 0010 0x00A [*][X]
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Рис. 3.10: Редактирование файла

Создаю и запускаю новый исполняемый файл. Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10. (рис. 3.11).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-2 10 argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.11: Запуск исполняемого файла

Заменяю в тексте программы функцию iprintLF на iprint (рис. 3.12).

```
lab6-2.asm [-M--] 11 L:[ 1+ 7 8/ 9] *(101 / 111b) 0010 0х00А [*][X]
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprint
call quit

1Помощь 2Сохран ЗБлок 4Замена 5Копия 6Пер~ть 7Поиск 8Уда~ть 9МенюМС10Выход
```

Рис. 3.12: Редактирование файла

Создаю и запускаю новый исполняемый файл. Вывод не изменился, потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF. (рис. 3.13).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-2 l0argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.13: Запуск исполняемого файла

3.2 Выполнение арифметических операций в NASM

Создаю файл lab6-3.asm с помощью утилиты touch (рис. 3.14).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ touch ~/work/arch-pc/lab06/lab6-3.asm
argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.14: Создание файла

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис. 3.15).

Рис. 3.15: Редактирование файла

Создаю исполняемый файл и запускаю его (рис. 3.16).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-3 Результат: 4 Остаток от деления: 1 argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.16: Запуск исполняемого файла

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4 * 6 + 2)/5 (рис. 3.17).

```
lab6-3.asm [-M--] 19 L:[ 6+12 18/29] *(580 /1365b) 0044 0x02C [*][X]
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
_start:
_start:
_mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx ; oбнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
div ebx ; EAX=EAX/5, EDX=octatok ot деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; cooбщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати
call iprintLF ; из 'edi' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
1Помощь 2Сохран 3Блок 4Замена 5Копия 6Пер~ть 7Поиск 8Уда~ть 9МенюМС10Выход
```

Рис. 3.17: Изменение программы

Создаю и запускаю новый исполняемый файл. Я посчитала для проверки правильности работы программы значение выражения самостоятельно, программа отработала верно (рис. 3.18).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-3 Результат: 5 Остаток от деления: 1 argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.18: Запуск исполняемого файла

Создаю файл variant.asm с помощью утилиты touch (рис. 3.19).

```
\label{lem:argorobcova@dk3n35} $$ $$ \argorobcova@dk3n35 $$ $$ \argorobcova@dk3n35 $$ \argorobcova@dk3n35 $$ $$ $$ $$ $$
```

Рис. 3.19: Создание файла

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. 3.20).

```
variant.asm [-M--] 9 L:[ 1+17 18/ 28] *(402 / 618b) 0032 0x020 [*][X];
; Программа вычисления варианта;
;
%include 'in_out.asm'
SECTION .data
msg: DB 'Baш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax,rem
1Помощь 2Сохран ЗБлок 4Замена 5Копия 6Пер~ть 7Поиск 8Уда~ть 9МенюМС10Выход.
```

Рис. 3.20: Редактирование файла

Создаю и запускаю исполняемый файл. Ввожу номер своего студ. билета с клавиатуры, программа вывела, что мой вариант - 20. (рис. 3.21).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf variant.asm argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o variant.asm variant.asm.o
ld: невозможно найти variant.asm.o: Нет такого файла или каталога argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o variant variant.o argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf variant.asm nasm: fatal: unable to open input file `variant.asm' No such file or directory argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./variant
BBeдите № студенческого билета:
l132246819
Baш вариант: 20
argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.21: Запуск исполняемого файла

3.3 Ответы на вопросы по программе

1. За вывод сообщения "Ваш вариант" отвечают строки кода:

mov eax,rem call sprint

- 2. Инструкция mov ecx, x используется, чтобы положить адрес вводимой строки x в регистр ecx запись в регистр edx длины вводимой строки call sread вызов подпрограммы из внешнего файл
- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует а код символа в целое число и записывает результат в регистр еах
- 4. За вычисления варианта отвечают строки:

```
xor edx,edx ; обнуление edx для корректной работы div mov ebx,20 ; ebx = 20 div ebx ; eax = \frac{eax}{20}, edx - остаток от деления inc edx ; edx = \frac{edx}{1}
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx call iprintLF
```

3.4 Выполнение заданий для самостоятельной работы

Создаю файл lab6-4.asm с помощью утилиты touch (рис. 3.22).

```
\label{lem:argorobcova@dk3n35} $$ \sim \sqrt{\sqrt{arch-pc/lab06} $ touch ~/\sqrt{arch-pc/lab06/lab6-4.asm}$ $$ argorobcova@dk3n35 ~/\sqrt{arch-pc/lab06} $$ $$ $$ $$
```

Рис. 3.22: Создание файла

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения x^3*1/3+21. Это выражение было под вариантом 20. (рис. 3.23).

```
[-M--] 41 L:[ 1+15 16/28] *(1143/1825b) 1072 0х430 [*][X]
%include 'in_out.asm'; подключение внешнего файла
SECTION .data; секция инициированных данных
msg: DB 'Введите значение переменной х: ',0
rem: DB 'Результат: ',0
SECTION .bss; секция не инициированных данных
x: RESB 80; Переменная, значение к-рой будем вводить с клавиатуры, выделенный г
SECTION .text; Код программы
GLOBAL _start; Начало программы
_start:; Точка входа в программы
_start:; Точка входа в программы
_start:; Точка входа в программы
mov eax, msg; запись адреса выводимиого сообщения в еах
call sprint; вызов подпрограммы печати сообщения
mov ecx, x; запись длины вводимого значения в edx
call sread; вызов подпрограммы ввода сообщения
mov eax,x; вызов подпрограммы ввода сообщения
mov eax,x; вызов подпрограммы преобразов ния
call atoi; ASCII кода в число, 'eax=x'
add eax,11; eax = eax+11 = x + 11
mov ebx,2; запись значения 2 в регистр ebx
mul ebx; EAX=EAX*EBX = (x+11)*2-6
mov edi,eax; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,rem; вызов подпрограммы печати
1Помощь 2Сохран 3Блок 4Замена 5Копия 6Пер~ть 7Поиск 8Уда~ть 9МенюМС 10Выход
```

Рис. 3.23: Написание программы

Создаю и запускаю исполняемый файл. При вводе значения 21, вывод - 48. (рис. 3.24).

```
argorobcova@dk3n35 ~/work/arch-pc/lab06 $ nasm -f elf lab6-4.asm argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-4 lab6-4.o argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-4 Введите значение переменной х: 1 Результат: 21argorobcova@dk3n35 ~/work/arch-pc/lab06 $ ./lab6-4 Введите значение переменной х: 3 Результат: 48argorobcova@dk3n35 ~/work/arch-pc/lab06 $
```

Рис. 3.24: Запуск исполняемого файла

Листинг 4.1. Программа для вычисления значения выражения (11 + x) * 2 – 6.

%include 'in out.asm'; подключение внешнего файла

SECTION .data; секция инициированных данных

msg: DB 'Введите значение переменной х:',0

rem: DB 'Результат:',0

SECTION .bss ; секция не инициированных данных

х: RESB 80 ; Переменная, значение к-рой будем вводить с клавиатуры, выделенный размер - 80 байт

SECTION .text; Код программы

GLOBAL _start; Начало программы

_start: ; Точка входа в программу

; --- Вычисление выражения

mov eax, msg; запись адреса выводимиого сообщения в eax

call sprint; вызов подпрограммы печати сообщения

mov есх, х; запись адреса переменной в есх

mov edx, 80; запись длины вводимого значения в edx

call sread; вызов подпрограммы ввода сообщения

mov eax,x; вызов подпрограммы преобразования

call atoi; ASCII кода в число, eax=x

add eax,11; eax = eax+11 = x + 11

mov ebx,2; запись значения 2 в регистр ebx

mul ebx; EAX=EAXEBX = (x+11)2

add eax,-6; eax = eax-6 = (x+11)*2-6

mov edi,eax ; запись результата вычисления в 'edi'

; — Вывод результата на экран

mov eax,rem; вызов подпрограммы печати

call sprint; сообщения 'Результат:'

mov eax,edi; вызов подпрограммы печати значения

call iprint; из 'edi' в виде символов

call quit; вызов подпрограммы завершения

4 Выводы

При выполнении данной лабораторной работы я освоила арифметические инструкции языка ассемблера NASM.