

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
- 4.实验报告文件以 PDF 格式提交。

专业	软化	软件工程		19 级软件工程		组长	冼子婷
学号	<u>183</u>	18338072		<u>19</u>	18322043		
学生	<u>冼</u>	<u>冼子婷</u>			廖雨轩		
	实验分工						
冼子婷	į.	进行实验,截图,编写	<u>和分析</u> 9	实验报告	廖雨轩	进行实验,截图,组	高写和分析实验报
<u>胡文浩</u>		进行实验, 截图, 编写	<u>和分析</u> 多	实验报告			

【实验题目】OSPF 路由协议实验

【实验目的】

掌握 OSPF 协议单区域的配置和使用方法。

【实验内容】

- (1) 完成路由器配置实验实例 7-3 (P252) 的"OSPF 单区域配置",回答步骤 1、步骤 9 问题。
- (2) 在(1)的基础上每台路由器上各加入一台电脑, 画出新拓扑, 然后:
 - (a) 检查任意两个 PC 之间是否可以 Ping 通,对一台主机 ping 其它主机的结果进行截屏。
 - (b) 采用#depug ip ospf 显示上面 OSPF 协议的运行情况,观察并保存 R1 发送和接收的 Update 分组(可以改变链路状态来触发),注意其中 LSA 类型;观察有无 224.0.0.5、224.0.0.6 IP 地址,如有说明这两地址的作用。
 - (c) 显示并记录路由器 R1 数据库的 Router LSA, Network LSA, LS 数据库信息汇总

show ip ospf database router

show ip ospf database network

show ip ospf database database

- ! 显示 router LSA
 - ! 显示 network LSA
- ! 显示 OSPF 链路状态数据库信息。

- (d) 显示并记录邻居状态。
 - # show ip ospf neighbor
- (e) 显示并记录 R1 的所有接口信息 #show ip ospf interface [接口名]

【实验要求】

重要信息需给出截图,注意实验步骤的前后对比。

【实验记录】(如有实验拓扑请自行画出)

实验内容 1

【实验目的】

掌握在路由器上配置 OSPF 单区域。

【技术原理】

OSPF 协议是目前网络中应用最广泛的路由协议之一,属于内部网关路由协议,能够适应各种规模的网络环境,是典型的链路状态协议。

OSPF 协议通过全网扩散本设备的链路状态信息,使网路中的每台设备最终同步到具有全网链路状态的数据库;然后路由器采用 SPF 算法,以自己为根,计算到达其他网络的最短路径,最终形成全网路由信息。

OSPF 属于无类别路由协议,支持 VLSM,以组播形式进行链路状态通告。

在大规模的网络环境中,OSPF 支持区域的划分以将网络进行合理规划。划分以将网络进行合理规划。划分区域时必须存在骨干区域。其他区域和骨干区域直接相连或者通过虚拟链路方式连接。

【实验设备】

交换机1台,路由器2台。

【实验拓扑】

本实验以 2 台路由器和 1 台三层交换机为例。交换机 S5750 上划分有 VLAN 10 和 VLAN50, 其中 VLAN10 用于连接路由器 R1, VLAN 50 用于连接校园网主机。

将路由器分别命名为 R1 和 R2,路由器之间的串口采用 V35 DCE / DTE 电缆连接。DCE 段连接到路由器 R1(RSR20)。路由器和主机直连时既可以使用交叉线,也可以使用直通线。路由器 R1 的端口 S 2 / 0 为 DCE 端口。

本实验的拓扑结构如图所示。

图中 PC1 的 IP 地址和默认网关分别为 192.168.5.11 和 192.168.5.1, PC2 的 IP 地址和默认网关分别为 192.168.3.22 和 192.168.3.1, 子网掩码都是 255.255.255.0

【实验步骤】

分析:本实验的预期目标是通过配置动态路由协议 OSPF,自动学习网段的路由信息,在区域内实现网络的互连互通。

步骤 1:

(1) 按照拓扑图配置 PC1 和 PC2 的 IP 地址、子网掩码、网关, 并测试它们的连通性。

图 1: PC1、PC2 的 IP 地址、子网掩码、网关设置图

此时未设置路由协议, PC1 ping PC2及 PC2 ping PC1 无法连通。


```
C:\Windows\system32>ping 192.168.5.11

正在 Ping 192.168.5.11 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。

请求超时。
PC2 ping PC1

192.168.5.11 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
```

图 2: PC1 ping PC2、PC2 ping PC1

(2) 在路由器 R1(或 R2) 上执行 show ip route 命令,记录路由表信息。 此时路由表信息为空。

步骤 2: 三层交换机的基本配置。

```
S5750(config)#vlan 10
S5750(config-vlan)#exit
S5750(config)#vlan 50
S5750(config)#vlan 50
S5750(config-vlan)#exit
S5750(config-vlan)#exit
S5750(config-if-GigabitEthernet 0/1)#switchport access vlan 10
S5750(config-if-GigabitEthernet 0/1)#exit
S5750(config-if-GigabitEthernet 0/5)#switchport access vlan 50
S5750(config-if-GigabitEthernet 0/5)#switchport access vlan 50
S5750(config-if-GigabitEthernet 0/5)#exit
S5750(config-if-GigabitEthernet 0/5)#exit
S5750(config-if-VLAN 10)#ip address 192.168.1.2 255.255.255.0
S5750(config-if-VLAN 10)#no shutdown
S5750(config-if-VLAN 10)#exit
S5750(config-if-VLAN 10)#exit
S5750(config-if-VLAN 50)#ip address 192.168.5.1 255.255.255.0
S5750(config-if-VLAN 50)#ip address 192.168.5.1 255.255.255.0
```

图 4: 三层交换机的基本配置

步骤 3: 路由器 R1 的基本配置。

```
Routerl(config)#
Routerl(config)#interface gigabitethernet 0/1
Routerl(config)#interface gigabitethernet 0/1
Routerl(config-if-GigabitEthernet 0/1)#ip address 192.168.1.1 255.255.255.0
Routerl(config-if-GigabitEthernet 0/1)#no shutdown
Routerl(config-if-GigabitEthernet 0/1)#exit
Routerl(config)#interface serial 2/0
Routerl(config-if-Serial 2/0)#ip address 192.168.2.1 255.255.255.0
Routerl(config-if-Serial 2/0)#no shutdown
Routerl(config-if-Serial 2/0)#exit
```

图 5: 路由器 R1 的基本配置

步骤 4: 路由器 R2 的基本配置。

```
Router2(config)#
Router2(config)#interface gigabitethernet 0/1
Router2(config-if-GigabitEthernet 0/1)#ip address 192.168.3.1 255.255.255.0
Router2(config-if-GigabitEthernet 0/1)#no shutdown
Router2(config-if-GigabitEthernet 0/1)#exit
Router2(config)#
Router2(config)#
Router2(config)#interface serial 2/0
Router2(config-if-Serial 2/0)#ip address 192.168.2.2 255.255.255.0
Router2(config-if-Serial 2/0)#no shutdown
Router2(config-if-Serial 2/0)#exit
```

图 6: 路由器 R2 的基本配置

步骤 5: 配置 OSPF 路由协议。交换机 S5750 配置 OSPF。

```
S5750(config)#router ospf 1
S5750(config-router)#network 192.168.5.0 0.0.0.255 area 0
S5750(config-router)#network 192.168.1.0 0.0.0.255 area 0
S5750(config-router)#end
```

图 7: 交换机 S5750 配置 OSPF

步骤 6: 路由器 R1 配置 OSPF。

```
Routerl(config)#router ospf 1
Routerl(config-router)#network 192.168.1.0 0.0.0.255 area 0
Routerl(config-router)#network 192.168.2.0 0.0.0.255 area 0 路由器R1配置OSPF
Routerl(config-router)#end
```

图 8: 路由器 R1 配置 OSPF

- 算机网络实验报告

步骤 7: 路由器 R2 配置 OSPF。

Router2(config)#router ospf 1 Router2(config-router)#network 192.168.2.0 0.0.0.255 area 0路由器R2配置OSPF Router2(config-router)#network 192.168.3.0 0.0.0.255 area 0路由器R2配置OSPF Router2(config-router)#end

图 9: 路由器 R2 配置 OSPF

步骤 8: 查看验证 3 台路由设备的路由表是否自动学习了其他网段的路由信息,请注意 路由条目0项。

在 show ip route 命令的输出中,会列出关于路由类型的简写代码,包括: I, R, O, C, S, E, B, i 等。它们的含义分别为:

- I,指从内部网关协议(IGRP)中学到的路由。
- R,从RIP协议中学到的路由。
- 0,从 OSPF(开放式最短路径优先)协议学到。
- C, 直连路由。
- S, 静态配置的路由, 请注意, 静态路由的管理距离为 0。
- E, 从外部网关协议(EGP)学到的路由。
- B,指从BGP协议、
- I,指 IS-IS 协议学到的路由信息。

使用 show ip route 查看交换机 S5750 的路由表,表中有 0 条目,内容为:

0 192.168.2.0/24 [110/51] via 192.168.1.1, 00:02:12, VLAN 10

0 192.168.3.0/24 [110/52] via 192.168.1.1, 00:01:49, VLAN 10

其中 0 是 OSPF 协议,通过**开放式最短路径优先协议 OSPF** 学到的路由,192.168.2.0/24 和 192.168.3.0/24 就是学到的路由。

[110/51] 表示[管理距离/度量值],其中:管理距离表明了该条路由的可信度,数值越低可信度越 高。直连的管理距离为 0,静态的管理距离为 1,RIP 为 120 ,EIGRP 为 5(汇总)、90(内部)、170 (外部)、**OSPF 为 110**、BGP 为 20(EGPG)、200(IBGP)。**度量值**是通过优先权评价路由的一种手 段, 度量越低, 该条路由越理想。

via 192.168.1.1 via 有"经由"的意思,一般路由表中理解为"下一跳",数据包通过下一跳地 址转发到目的网段,下一跳经过 VLAN 10 端口。

时间表示为该路由器最近一次得知路由到现在的时间。

```
S5750 show ip route
               C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
C 192.168.1.0/24 is directly connected, VLAN 10
C 192.168.1.2/32 is local host.
                                                                                                                                                 交换机中有〇条目
           192.168.2.0/24 [110/51] via 192.168.1.1, 00:02:11, VLAN 10
           192.168.5.0/24 is directly connected, VLAN 50
192.168.5.1/32 is local host.
```

图 10:交换机的路由表

使用 show ip route 查看路由器 R1 的路由表,表中有 0 条目,内容为:

0 192.168.3.0/24 [110/51] via 192.168.2.2, 00:01:23, Serial 2/0

0 192.168.5.0/24 [110/2] via 192.168.1.2, 00:01:44, GigabitEthernet 0/1

·算机网络实验报告

其中 0 是 OSPF 协议,通过**开放式最短路径优先协议 OSPF** 学到的路由,192.168.3.0/24 和 192.168.5.0/24 就是学到的路由。

[110/51] 即[管理距离/度量值(此数为路由跳数)],其中: **管理距离**表明了该条路由的可信度,数值 越低可信度越高。直连的管理距离为 0,静态的管理距离为 1,RIP 为 120 ,EIGRP 为 5(汇总)、90 (内部)、170(外部)、**0SPF 为 110**、BGP 为 20(EGPG)、200(IBGP):**度量值**是通过优先权评价 路由的一种手段,度量越低,该条路由越理想。

via 192.168.2.2 和 via 192.168.1.2 via 有"经由"的意思,一般路由表中理解为"下一跳", 指下一跳的接口 IP 地址分别为 192. 168. 2. 2 和 192. 168. 1. 2,数据包通过下一跳地址转发到目的网 段。下一跳经过端口 Serial 2/0 和 GigabitEthernet 0/1。

时间表示为该路由器最近一次得知路由到现在的时间。

```
Routerl#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
0 - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
                                                                                                                                   路由器R1有O条目
Gateway of last resort is no set
           192.168.1.0/24 is directly connected, GigabitEthernet 0/1 192.168.1.1/32 is local host.
           192.168.2.0/24 is directly connected, Serial 2/0 192.168.2.1/32 is local host.
           192.168.3.0/24 [110/51] via 192.168.2.2, 00:01:23, Serial 2/0
192.168.5.0/24 [110/2] via 192.168.1.2, 00:01:44, GigabitEthernet 0/1
```

图 11: 路由器 R1 的路由表

使用 show ip route 查看路由器 R2 的路由表,表中有 0 条目,内容为:

0 192.168.1.0/24 [110/51] via 192.168.2.1, 00:01:48, Serial 2/0 0 192.168.5.0/24 [110/52] via 192.168.2.1, 00:01:48, Serial 2/0

其中 0 是 OSPF 协议,通过**开放式最短路径优先协议 OSPF** 学到的路由,192.168.1.0/24 和 192.168.5.0/24 就是学到的路由。

[110/51] 即[管理距离/度量值(此数为路由跳数)],其中:管理距离表明了该条路由的可信度,数值 越低可信度越高。直连的管理距离为 0,静态的管理距离为 1,RIP 为 120 ,EIGRP 为 5(汇总)、90 (内部)、170(外部)、**0SPF 为 110**、BGP 为 20(EGPG)、200(IBGP)**; 度量值**是通过优先权评价 路由的一种手段,度量越低,该条路由越理想。

via 192.168.2.1 via 有"经由"的意思,一般路由表中理解为"下一跳", 指下一跳的接口 IP 地 址分别为 192. 168. 2. 1,数据包通过下一跳地址转发到目的网段。下一跳经过端口 Serial 2/0。

```
Router2#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
           O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
 ateway of last resort is no set
       192.168.1.0/24 [110/51] via 192.168.2.1, 00:01:48, Serial 2/0
       192.168.2.2/32 is local host.
                                                                                                              路由器R2有O条目
       192.168.3.0/24 is directly connected, GigabitEthernet 0/1 192.168.3.1/32 is local host.
      192.168.5.0/24 [110/52] via 192.168.2.1, 00:01:48, Serial 2/0
```

图 12: 路由器 R2 的路由表

OSPF 协议是一种**链路状态协议**。每个路由器负责发现、维护与邻居的关系,并将已知的邻居列表和链路费用 LSU(Link State Update)报文描述,通过可靠的泛洪与自治系统 AS(Autonomous System)内的其他路由器周期性交互,学习到整个自治系统的网络拓扑结构;并通过自治系统边界的路由器注入其他 AS 的路由信息,从而得到整个 Internet 的路由信息。每隔一个特定时间或当链路状态发生变化时,重新生成 LSA,路由器通过泛洪机制将新 LSA 通告出去,以便实现路由的实时更新。

步骤 9: 测试网络的连通性。

(1) 将此时的路由表与步骤 0 的路由表进行比较,有什么结论?

与步骤 1 的路由表对比,发现**多了 0 条目和 C 条目**,即直连网段和路由网段,此时网络拓扑结构中的主机是连通的,由于配置了 0SPF 协议,路由器自动采用 SPF 算法,以自己为根,计算到达其他网络的最短路径,最终形成全网路由信息。

(2) 分析 traceroute PC1 (或 PC2) 的执行结果。

在 PC2 上使用指令 **tracert 192. 168. 5. 11** 通过 tracert PC1 的地址,查看网络中的路由信息,结果如下:

到 [192.168.3.1] 的路由:

- 1 〈1 毫秒 〈1 毫秒 〈1 毫秒 192.168.3.1
- 2 37 ms 38 ms 37 ms 192.168.2.1
- 3 48 ms 45 ms 46 ms 192.168.1.2
- 4 45 ms 46 ms 42 ms 192.168.5.11

路径如下所示:

C:\Windows\system32>tracert 192.168.5.11 tracert PC1 通过最多 30 个跃点跟踪 DESKTOP-BVAQLT3 [192.168.5.11] 的路由: <1 臺秒 <1 臺秒 <1 毫秒 192.168.3.1 23 192. 168. 2. 1 38 ms 37 ms 37 ms 48 ms 192. 168. 1. 2 45 ms 46 ms 45 ms 42 ms DESKTOP-BVAQLT3 [192.168.5.11] 46 ms 跟踪完成。

图 13: traceroute PC1

在 PC1 上使用指令 **tracert 192.168.3.22** 通过 tracert PC2 的地址,查看网络中的路由信息,结果如下:

到 [192.168.3.1] 的路由:

C:\Users\Administrator>tracert 192.168.3.22

诵过最多 30 个跃点跟踪

到 DESKTOP-BVAQLT3 [192.168.3.22] 的路由: tracert PC2

- 1 <1 臺秒 <1 臺秒 <1 臺秒 192.168.5.1
- 2 <1 毫秒 <1 毫秒 <1 毫秒 192.168.1.1
- 3 41 ms 41 ms 42 ms 192.168.2.2
- 4 43 ms 45 ms 45 ms DESKTOP-BVAQLT3 [192.168.3.22]

跟踪完成。

图 14: traceroute PC2

(3) 捕获数据包,分析 OSPF 头部结构。OSPF 包在 PC1 或 PC2 上能捕获到吗?如果希望 2 台主机都能捕获到,请描述方法。

OSPF 包的头部结构如图所示,包含了以下信息。同时,该数据包中还包含了一条 Hello 报文。

Version Number: OSPF 版本号

Type: OSPF 数据包类型

Packet Length: 数据包长度

Router ID: 源 OSPF 路由器的 IP 地址

Area ID: 区域 ID

Check-Sum: 校验和

Authentication Type: 认证类型

Data: 数据。

在 PC1 和 PC2 上都能捕获到 OSPF 包:

图 15: Wireshark-PC1 捕获数据包图

PC2捕获到 OSPF 数据包								
No.	ospt	Source	Destination	Protocol	Length	Info		
	1234 305.443165	192.168.3.1	224.0.0.5	OSPF	82	Hello Packet		
	1298 315.440221	192.168.3.1	224.0.0.5	OSPF	82	Hello Packet		
	1354 325.440376	192.168.3.1	224.0.0.5	OSPF	82	Hello Packet		
	1412 335.440673	192.168.3.1	224.0.0.5	OSPF	82	Hello Packet		
	1468 345.440929	192.168.3.1	224.0.0.5	OSPF	82	Hello Packet		
	1525 355.440998	192.168.3.1	224.0.0.5	OSPF	82	Hello Packet		
	1579 365.441097	192.168.3.1	224.0.0.5	OSPF	82	Hello Packet		
	1629 375.441578	192.168.3.1	224.0.0.5	OSPF	82	Hello Packet		

图 16: Wireshark-PC2 捕获数据包图

(4) 使用 #debug ip ospf 命令显示上述 OSPF 协议的运行情况,观察并保存路由器 R1 发送和接收到 Update 分组(可以通过改变链路状态触发),注意其中 LSA 类型;观察有无 224. 0. 0. 5、224. 0. 0. 6 的 IP 地址,如有请说明这两个地址的作用。

路由器 R1 发送和接收到 Update 分组如下图所示:

其中 LSA 类型为: router-LSA。Router-LSA 每一个路由器都会生成。这种 LSA 描述某区域内路由器端口链路状态的集合。只在所描述的区域内泛洪。

能观察到**有 224. 0. 0. 5 的 IP 地址,但无 224. 0. 0. 6 的 IP 地址**,224. 0. 0. 5 是组播地址,称为 AllSPFRouters,DR/BDR 的发送的 OSPF 包的目标地址为 224. 0. 0. 5,而除了 DR/BDR 以外的 OSPF 包的目标地址为 224. 0. 0. 6

DRother 非指派路由器向 DR 指派路由器, BDR 备份指派路由器, 发送 DD, LSA request 或者 LSA Update 时目标地址是 AllDRouter (224.0.0.6), 或者理解为: DR 侦听 224.0.0.6

由于在实验时,只能收到 He11o、ASBR 汇总 LSA 和 AS 扩展 LSA 即类型 1、4、5 三种数据包,仅使用了 224. 0. 0. 5 组播地址,且非指派路由器没有向 DR 指派路由器发送 DD 等数据报,所以没有使用 224. 0. 0. 6 组播地址。

```
Routerl#show ip ospf database router

OSPF Router with ID (192.168.2.1) (Process ID 1)

Router Link States (Area 0.0.0.0)

LS age: 1605
Options: 0x2 (-|-|-|-|-|E|-)
Flags: 0x0
LS Type: router-LSA
Link State ID: 192.108.2.1
Advertising Router: 192.168.2.1
LS Seq Number: 800000005
Checksum: 0x9e38
Length: 60
```


S5750#

算机网络实验报告

图 17: #debug ip ospf 命令显示上述 OSPF 协议的运行情况

(5) 本实验有没有 DR / BDR (指派路由器/备份指派路由器)? 如果有,请指出 DR 与 BDR 分别是哪 个设备,讨论 DR / BDR 的选举规则和更新方法(通过拔线改变拓扑,观察 DR / BDR 的变化情况); 如没有,请说明原因。

本实验有 DR / BDR (指派路由器/备份指派路由器),通过 debug ip ospf 与 Wireshark 抓到的 ospf 包中可以发现: DRouter 192.168.1.2, BDRouter 192.168.1.1。

```
SEND[Hello]: To 224.0.0.5 via GigabitEthernet 0/1:192.168.1.1, length 48
Header
  Version 2
  Type 1 (Hello)
  Packet Len 48
  Router ID 192.168.2.1 DRouter:192.168.1.2
  Area ID 0.0.0.0
                                  BDRouter:192.168.1.1
  Checksum 0xf0f2
  AuType 0
Hello
  NetworkMask 255.255.255.0
  HelloInterval 10
  Options 0x2 (-|-|-|-|-|E|-)
  RtrPriority 1
  RtrDeadInterval
  DRouter 192.168.1.2
  BDRouter 192.168.1.1
  # Neighbors l
    Neighbor 192.168.5.1
       OSPF process 1, 1 Neighbors, 1 is Full:
                                                    Address
192.168.1.1
       Neighbor ID
                         State
Full/BDR
                                          Dead Time
                                                                 Interface
       192.168.2.1
                                                                 VLAN 10
                                          00:00:37
       S5750#show ip ospf neighbor
       OSPF process 1, 1 Neighbors, 1 is Full:
       Neighbor ID
192.168.2.1
                                          Dead Time
                                                   Address
192.168.1.1
                                                                 Interface
                         State
Full/BDR
                                          00:00:33
                                                                 VLAN 10
```


Router1# Router1#show ip ospf neighbor

OSPF process 1, 2 Neighbors, 2 is Full: Neighbor ID Pri State 192.168.5.1 1 Full/DR 192.168.3.1 1 Full/ -

BFD State Dead Time
- 00:00:33
- 00:00:39

Address 192.168.1.2 192.168.2.2 Interface GigabitEthernet 0/1 Serial 2/0

图 18: DR 与 BDR 图

通过使用 show ip ospf neighbor 查看交换机和路由器 R1 的邻居表,对于交换机其邻居只有路由器 R1, Neighbor ID 表示邻居路由器的路由器 ID。路由器 ID 是路由器上的最高 IP 地址或众多环回地址(如果配置了)中最高的 IP 地址,或者可按"router-id x. x. x. x"进行手动配置,而路由器 R1 最高的 IP 地址即串口 S/0 中的 192. 168. 2. 1。

Pri 字段指示邻居路由器的优先级。优先级最高的路由器充当指定路由器(DR)。如果优先级相同,则路由器 ID 最高的路由器充当 DR。默认情况下,优先级设置为 1。优先级为 0 的路由器从不充当 DR 或备用指定路由器(BDR);它总是为 DROTHER,也就是说,该路由器既不是 DR 也不是 BDR。

Dead Time 字段指示路由器在声明邻居断开之前等待从邻居接收 OSPF Hello 数据包的剩余时间。在广播和点对点介质上,默认失效间隔是 40 秒。在非广播和点对多点链路上,默认失效间隔是 120 秒。

Address 字段指示与此邻居直接连接的接口的 IP 地址。对于未编号的链路,此字段显示未编号邻居的接口的 IP 地址。当 OSPF 数据包传输给邻居时,此地址为目标地址。

Interface 字段指示 OSPF 邻居形成邻接关系所使用的接口。

所以**路由器 R1** 在该网络中充当**备份指派路由器**,而由路由器 R1 的邻居表可以看出**交换机**在此网络结构中充当**指派路由器**,也就解释了为什么在 Hello ospf 包中为什么 DRouter 是 192. 168. 1. 2 (交换机的 VLAN 10 端口)而 DBRouter 是 192. 168. 1. 1 (路由器 R1 的以太口 0/1)

DR / BDR 的选举规则为: DR 是具有**最高** OSPF 接口优先级的路由器; BDR 是具有**次高** OSPF 接口优先级的路由器; 若 OSPF **优先级相同**,则**按照路由器 ID 排序**。

DR / BDR 的更新方法 (通过拔线改变拓扑,观察 DR / BDR 的变化情况): 拔了连接路由器与交换机之间的线后,此时 debug if ospf 指令显示内容发生变化,且此时路由器 R1 的邻居只剩下192.168.3.1,此时备份被指派路由器和指派路由器同时 Down 掉。


```
*Jun 22 05:02:48: %7: Distance: 0
*Jun 22 05:02:48: %7: Sub type: 0
*Jun 22 05:02:48: %7: NFSM[192.168.5.1-GigabitEthernet 0/1]: Status change Full -> Down
*Jun 22 05:02:48: %7: NFSM[192.168.5.1-GigabitEthernet 0/1]: Status change Full -> Down
*Jun 22 05:02:48: %7: NFSM[192.168.5.1-GigabitEthernet 0/1]: Status change Full -> Down
*Jun 22 05:02:48: %7: OS[GigabitEthernet 0/1:192.168.1.1]: Leave from AllDRouters Multicast group
*Jun 22 05:02:48: %7: S[GigabitEthernet 0/1:192.168.1.1]: Leave from AllDRouters Multicast group
*Jun 22 05:02:48: %7: IFSM[GigabitEthernet 0/1:192.168.1.1]: SDR (InterfaceDown)
*Jun 22 05:02:48: %7: IFSM[GigabitEthernet 0/1:192.168.1.1]: SDR (InterfaceDown)
*Jun 22 05:02:48: %7: SPF[0.0.0.0]: Calculation timer scheduled (delay 1.000000 secs)
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Isstat frouter-LSA
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Isstat frouter-LSA
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Flooding via interface[GigabitEthernet 0/1:192.168.1.1]
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Flooding via interface[Serial 2/0:192.168.2.1]
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Flooding to neighbor[192.168.3.1]
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Flooding to neighbor[192.168.3.1]
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Flooding update to interface[Serial 2/0:192.168.2.1]
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Flooding update to interface[Serial 2/0:192.168.2.1]
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: router-LSA
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: router-LSA
*Jun 22 05:02:48: %7: LSA[0.0.0.0:Type:192.168.2.1:(self)]: Sending update to interface[Serial 2/0:192.168.2.1]
*Jun 22 05:02:48: 
        Routerl#show ip ospf neighbor
       OSPF process 1, 1 Neighbors, 1 is Full:
Neighbor ID Pri State
                                                                                                              Pri State
1 Full/ -
                                                                                                                                                                                                                                                                                                                                                                                                                                                  Address
                                                                                                                                                                                                                                                                                           BFD State Dead Time
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Interface
                                                                                                                                                                                                                                                                                                                                                                                                                                                  192.168.2.2
          192,168,3,1
                                                                                                                                                                                                                                                                                                                                                                    00:00:37
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Serial 2/0
```

图 19: 拔线改变拓扑

但在实验中,尝试修改路由器或交换机端口的 IP ospf cost 或修改端口的 IP 地址,但都无法改 变指派和备份指派路由器,经过多次实验,我们发现是因为在已经开启 OSPF 路由后,再修改是没有 用的,于是我们换成 Packet Tracer 进行仿真实验,详见实验内容 2.

【实验思考】

(1) 如何查看 OSPF 协议发布的网段?

使用 debug ip ospf 或直接使用 Wireshark 捕获 ospf 包即可获得 OSPF 协议发布的网段:

```
IFSM[Serial 2/0:100.160.0.1]: Hello timer expire
SEND[Hello]: To 224.0.0.5 via Serial 2/0:192.168.2.1, length 48
Header
  Yersion 2
Type 1 (Hello)
Packet Len 48
Router ID 192.168.2.1
Area ID 0.0.0.0
                                                       路由器R1发送的update分组
  Checksum 0x7647
  AuType Θ
Hello
  NetworkMask 255.255.255.0
HelloInterval 10
Options 0x2 (-|-|-|-|-|E|-)
                                                         有224.0.0.5的IP地址
  RtrPriority 1
  RtrDeadInterval 40
  DRouter 0.0.0.0
  BDRouter 0.0.0.0
  # Neighbors 1
Neighbor 192.168.3.1
```


0:	spf PC	2捕获到	ÖSPF数据包			
No.	ospf	Source	Destination	Protocol	Length	Info
	1234 305.443165	192.168.3.1	224.0.0.5	OSPF	82	2 Hello Packet
	1298 315.440221	192.168.3.1	224.0.0.5	OSPF	82	2 Hello Packet
	1354 325.440376	192.168.3.1	224.0.0.5	OSPF	82	2 Hello Packet
	1412 335.440673	192.168.3.1	224.0.0.5	OSPF	82	2 Hello Packet
	1468 345.440929	192.168.3.1	224.0.0.5	OSPF	82	2 Hello Packet
	1525 355.440998	192.168.3.1	224.0.0.5	OSPF	82	2 Hello Packet
	1579 365.441097	192.168.3.1	224.0.0.5	OSPF	82	2 Hello Packet
	1629 375.441578	192.168.3.1	224.0.0.5	OSPF	82	2 Hello Packet

图 20: 查看 OSPF 协议发布的网段

- (2) 关于 0SPF 反掩码: 反掩码可以简单地理解成掩码取反,而且不允许出现不连续的 1 和 0. 例如,可以是 0. 0. 0. 111111111,但不可以是 0. 0. 0. 111110011,也不可以是 0. 0. 0. 111111100。反掩码总是奇数或 0,因为其最后一位总是 1,除非全部为 0。
- (3) 255. 255. 255. 255. 255 减去子网掩码就得出反掩码。例如:子网掩码是 255. 255. 255. 255. 252,则 255. 255. 255. 255. 255. 255. 255. 252 得出反掩码是 0. 0. 0. 3。请问: 192. 168. 2. 0 / 28 的反掩码是 多少?

实验内容 2

在(1)的基础上每台路由器上各加入一台电脑, 画出新拓扑, 然后:

【实验拓扑】

使用 Packet Tracer 再次进行实验,我们发现了与在实验室进行实验时的不同,即此时三层交换机的 Neighbor ID 变为了 192.168.10.1(我们使用交换机端口 10 连入新主机,并为其配置端口 IP 192.168.10.1),这也验证了在路由器优先级相同并且没有配置自环端口的情况下,Router-ID 以该路由器最大的端口 IP 为主,但在线下实验中,由于我们是先实现了实验内容 1(已配置 OSPF 路由)而后开启新的端口连接新主机,Router-ID 并没有发生改变,我们猜测是由于在开启 ospf 前已经配置好了各端口,开启 ospf 之后,已经将先前最大的端口 IP 作为了 Router-ID,后续再添加新的端口 IP 也不会更改其 Router-ID,通过反复验证(将三层交换机端口 0/10 的 IP 修改为 192.168.11.1 后也不会改

变其 Router-ID),也验证了我们的猜测。最后我们进行修改路由器优先级的尝试,也因为在开启 ospf 之后才修改而导致失败。

同时也验证了 DR/BDR 指派与备份指派路由器的选取规则,指派路由器是当前网络中优先级最高的路由器。

但后续实验中,即使重新配置且让 Router2 的 ID 最大并且设置其优先级为 255,此时仍然是交换 机作为指派路由器而路由器 R1 作为备份指派路由器,这与我们的猜测不符。


```
C:\Users\Administrator>ping 192.168.5.11

正在 Ping 192.168.5.11 具有 32 字节的数据:
来自 192.168.5.11 的回复: 字节=32 时间<1ms TTL=62
和自 192.168.5.11 的回复: 字节=32 时间<1ms TTL=62

192.168.5.11 的 Ping 统计信息:
数据包:已发送 = 4.已接收 = 4,丢失 = 0(0%丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

```
C:\Users\Administrator>ping 192.168.3.22

正在 Ping 192.168.3.22 具有 32 字节的数据:
来自 192.168.3.22 的回复:字节=32 时间=38ms TTL=62
来自 192.168.3.22 的回复:字节=32 时间=36ms TTL=62
来自 192.168.3.22 的回复:字节=32 时间=37ms TTL=62
来自 192.168.3.22 的回复:字节=32 时间=38ms TTL=62
来自 192.168.3.22 的回复:字节=32 时间=38ms TTL=62

192.168.3.22 的 Ping 统计信息:数据包:已发送=4,已接收=4,丢失=0(0% 丢失),
往返行程的估计时间(以毫秒为单位):最短=36ms,最长=38ms,平均=37ms
```

图 21: PC3 分别 pingPC1、PC2

(b)采用#debug ip ospf 显示上面 OSPF 协议的运行情况,观察并保存 R1 发送和接收的 Update 分组(可以改变链路状态来触发),注意其中 LSA 类型;观察有无 224.0.0.5、224.0.0.6 IP 地址,如有说明这两地址的作用。

在 Packet Tracer 中 debug 的信息较少,并不会显示 Hello 包或 LSA 包的内容:

```
Router1#debug ip os even
OSPF events debugging is on
01:25:55: OSPF: Rcv hello from 192.168.66.1 area 0 from Serial0/2/0 192.168.2.2
01:25:55: OSPF: End of hello processing
01:25:56: OSPF: Rcv hello from 192.168.11.1 area 0 from FastEthernet0/1 192.168.1.2
01:25:56: OSPF: End of hello processing
01:26:05: OSPF: Rcv hello from 192.168.66.1 area 0 from Serial0/2/0 192.168.2.2
01:26:05: OSPF: End of hello processing
01:26:06: OSPF: Rcv hello from 192.168.11.1 area 0 from FastEthernet0/1 192.168.1.2
01:26:06: OSPF: End of hello processing
debug ip os adi
OSPF adjacency events debugging is on
Router1#
01:26:15: OSPF: Rcv hello from 192.168.66.1 area 0 from Serial0/2/0 192.168.2.2
01:26:15: OSPF: End of hello processing
01:26:16: OSPF: Rcv hello from 192.168.11.1 area 0 from FastEthernet0/1 192.168.1.2
01:26:16: OSPF: End of hello processing
```

图 22: 查看 OSPF 协议的运行情况

(c)显示并记录路由器 R1 数据库的 Router LSA, Network LSA, LS 数据库信息汇总

show ip ospf database router

! 显示 router LSA

左图为上半部分, 右图为下半部分

```
Routerl#show ip ospf database router

OSPF Router with ID (192.168.2.1) (Process ID 1)

Router Link States (Area 0.0.0.0)

LS age: 1605
Options: 0x2 (-|-|-|-|-|-|E|-)
Flags: 0x0
LS Type: router-LSA
Link State ID: 192.168.2.1
Advertising Router: 192.168.2.1
LS Seq Number: 80000005
Checksum: 0x9e38
Length: 60
Number of Links: 3

Link connected to: a Transit Network
((Link ID) Designated Router address: 192.168.1.2
((Link Data) Router Interface address: 192.168.1.1
Number of TOS metrics: 0

TOS 0 Metric: 1

Link connected to: another Router (point-to-point)
((Link ID) Neighboring Router ID: 192.168.3.1
(Link Oata) Router Interface address: 192.168.2.1
Number of TOS metrics: 0

TOS 0 Metric: 50

Link connected to: Stub Network
((Link ID) Network/subnet number: 192.168.2.0
((Link Data) Network Mask: 255.255.255.0
Number of TOS metrics: 0

TOS 0 Metric: 50

LS age: 1576
Options: 0x2 (-|-|-|-|-|-|E|-)
Flags: 0x0
LS Type: router-LSA
Link State ID: 192.168.3.1
Advertising Router: 192.168.3.1
Advertising Router: 192.168.3.1
LS Seq Number: 80000004
Checksum: 0xbb84
Length: 60
Number of Links: 3

Link connected to: another Router (point-to-point)
(Link ID) Neighboring Router ID: 192.168.2.1
(Link Data) Router Interface address: 192.168.2.2
Number of TOS metrics: 0

TOS 0 Metric: 50

Link connected to: Stub Network
(Link ID) Network/subnet number: 192.168.2.0
(Link Data) Network Mask: 255.255.255.0
Number of TOS metrics: 0

TOS 0 Metric: 50

Link connected to: Stub Network
(Link ID) Network/subnet number: 192.168.2.0
(Link Data) Network Mask: 255.255.255.0
```

```
(Link ID) Neighboring Router ID: 192.168.3.1
(Link Data) Router Interface address: 192.168.2.1
Number of TOS metrics: 0
TOS 0 Metric: 50

Link connected to: Stub Network
(Link ID) Network/subnet number: 192.168.2.0
(Link Data) Network Mask: 255.255.255.0
Number of TOS metrics: 0
TOS 0 Metric: 50

LS age: 1576
Options: 0x2 (-|-|-|-|-|E|-)
Flags: 0x0
US Type: router-LSA
Link State ID: 192.168.3.1
Advertising Router: 192.168.3.1
LS Seq Number: 80000004
Checksum: 0xbb84
Length: 60
Number of Links: 3

Link connected to: another Router (point-to-point)
(Link ID) Neighboring Router ID: 192.168.2.1
(Link Data) Router Interface address: 192.168.2.2
Number of TOS metrics: 0
TOS 0 Metric: 50

Link connected to: Stub Network
(Link ID) Network/subnet number: 192.168.2.0
(Link Data) Network Mask: 255.255.255.0
Number of TOS metrics: 0
TOS 0 Metric: 50

Link connected to: Stub Network
(Link ID) Network/subnet number: 192.168.3.0
(Link Data) Network Mask: 255.255.255.0

Number of TOS metrics: 0
TOS 0 Metric: 50

Link connected to: Stub Network
(Link ID) Network/subnet number: 192.168.3.0
(Link Data) Network Mask: 255.255.255.0

Number of TOS metrics: 0
TOS 0 Metric: 1

LS age: 392
Options: 0x2 (-|-|-|-|-|-|E|-)
Flags: 0x0
US Type: router-LSA
Link State ID: 192.168.5.1
Advertising Router: 192.168.5.1
LS Seq Number: 80000000
Checksum: 0x94fd
Length: 36
Number of Links: 1

Link connected to: a Transit Network
(Link ID) Designated Router address: 192.168.1.2
(Link Data) Router Interface address: 192.168.1.2
(Link Data) Router Interface address: 192.168.1.2
(Link Data) Router Interface address: 192.168.1.2
(Number of TOS metrics: 0
TOS 0 Metric: 1
```

图 23: 路由器 R1 数据库的 Router LSA 信息

show ip ospf database network

! 显示 network LSA

```
Routerl#
Routerl#show ip ospf database network

OSPF Router with ID (192.168.2.1) (Process ID 1)

Network Link States (Area 0.0.0.0)

LS age: 1678
Options: 0x2 (-|-|-|-|-|E|-)
LS Type: network-LSA
Link State ID: 192.168.1.2 (address of Designated Router)
Advertising Router: 192.168.5.1
LS Seq Number: 80000001
Checksum: 0x950d
Length: 32
Network Mask: /24
Attached Router: 192.168.5.1
Attached Router: 192.168.2.1
```

图 24: 路由器 R1 数据库的 Network LSA 信息

show ip ospf database database-summary

! 显示 OSPF 链路状态数据库信息。


```
Routerl#show ip ospf database database-summary

OSPF process 1:

Area 0.0.0.0 database summary:
Router Link States : 3
Network Link States : 1
Summary Link States : 0
ASBR-Summary Link States : 0
NSSA-external Link States : 0
Link-Local Opaque-LSA : 0
Area-Local Opaque-LSA : 0
Total LSA : 4

Process 1 database summary:
Router Link States : 1
Summary Link States : 1
Summary Link States : 0
ASBR-Summary Link States : 0
ASBR-Summary Link States : 0
NSSA-external Link States : 0
NSSA-external Link States : 0
Link-Local Opaque-LSA : 0
Area-Local Opaque-LSA : 0
AS-Global Opaque-LSA : 0
Total LSA : 4
```

图 25: 路由器 R1 数据库的 Router LSA, Network LSA, LS 数据库信息

(d)显示并记录邻居状态。

show ip ospf neighbor

```
Routerl#show ip ospf neighbor
OSPF process 1, 2 Neighbors, 2 is Full:
Neighbor ID Pri State
192.168.5.1 1 Full/DR
192.168.3.1 1 Full/ -
                                  State
Full/DR
Full/ -
                                                                  BFD State Dead Time
                                                                                                      Address
                                                                                                                               Interface
                                                                                                      192.168.1.2
192.168.2.2
                                                                                                                              GigabitEthernet 0/1
                                                                                   00:00:35
                                                                                   00:00:36
                                                                                                                              Serial 2/0
Routerl#show ip ospf neighbor
OSPF process 1, 2 Neighbors, 2 is Full:
Neighbor ID Pri State
192.168.5.1 1 Full/DR
192.168.3.1 1 Full/ -
                                                                                                                              Interface
GigabitEthernet 0/1
                                                                  BFD State Dead Time
                                                                                                      Address
                                                                                                      192.168.1.2
192.168.2.2
                                                                                   00:00:33
00:00:34
                                                                                                                               Serial 2/0
Routerl#show ip ospf neighbor
OSPF process 1, 2 Neighbors, 2 is Full:
Neighbor ID Pri State
                                                                  BFD State Dead Time
                                  State
Full/DR
Full/ -
                                                                                                      Address
                                                                                                                              Interface
                                                                                                      192.168.1.2
192.168.2.2
                                                                                                                              GigabitEthernet 0/1
                                                                                   00:00:30
00:00:38
     .168.5.1
                                                                                                                              Serial 2/0
Router1#show ip ospf neighbor
OSPF process 1, 2 Neighbors, 2 is Full:
Neighbor ID Pri State
192.168.5.1 1 Full/DR
192.168.3.1 1 Full/ -
                                  State
Full/DR
Full/ -
                                                                  BFD State
                                                                                   Dead Time
                                                                                                      Address
                                                                                                                              Interface
                                                                                   00:00:39
00:00:36
                                                                                                      192.168.1.2
192.168.2.2
                                                                                                                              GigabitEthernet 0/1
Serial 2/0
Routerl#
```

图 26: 显示并记录邻居状态

(e) 显示并记录 R1 的所有接口信息 #show ip ospf interface [接口名]


```
Routerl#show ip ospf interface
Serial 2/0 is up, line protocol is up
Internet Address 192.168.2.1/24, Ifindex 2, Area 0.0.0.0, MTU 1500
Matching network config: 192.168.2.0/24
Process ID 1, Router ID 192.168.2.1, Network Type POINTOPOINT, Cost: 50
Transmit Delay is 1 sec, State Point-To-Point
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:09
Neighbor Count is 1, Adjacent neighbor count is 1
Crypt Sequence Number is 0
Hello received 253 sent 258, DD received 3 sent 4
LS-Req received 1 sent 1, LS-Upd received 5 sent 13
LS-Ack received 12 sent 4, Discarded 0
GigabitEthernet 0/1 is down, line protocol is down
Internet Address 192.168.1.1/24, Ifindex 5, Area 0.0.0.0, MTU 1500
Matching network config: 192.168.1.0/24
Process ID 1, Router ID 192.168.2.1, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State Down, Priority 1
No designated router on this network
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
```

图 27: 显示并记录 R1 的所有接口信息

本次实验完成后,请根据组员在实验中的贡献,请实事求是,自评在实验中应得的分数。(按百分制)

学号	学生	自评分
18338072	冼子婷	98
18322043	廖雨轩	98
18346019	胡文浩	98

【交实验报告】

上传实验报告: 截止日期(不迟于):1周之内

上传包括两个文件:

- (1) 小组实验报告。上传文件名格式: 小组号_Ftp 协议分析实验.pdf (由组长负责上传)
- 例如: 文件名"10_Ftp 协议分析实验.pdf"表示第 10 组的 Ftp 协议分析实验报告
- (2) 小组成员实验体会。每个同学单独交一份只填写了实验体会的实验报告。只需填写自己的学号和姓名。

文件名格式: 小组号_学号_姓名_ Ftp 协议分析实验.pdf (由组员自行上传)

例如: 文件名 "10_05373092_张三_ Ftp 协议分析实验.pdf" 表示第 10 组的 Ftp 协议分析实验报告。

注意: 不要打包上传!