编译原理

正规式与有限自动机的等价性

编译原理

正规式与有限自动机的等价性

——回顾

词法分析

- ▶ 词法分析器的设计
- ▶ 正规表达式与有限自动机
- ▶ 词法分析器的自动产生--LEX

单词符号	种别编码	助忆符	内码值
DIM	1	\$DIM	-
IF	2	\$IF	-

```
正规式、正 curState = 初态 GetChar();
   while( stateTrans[curState][ch]有定义){
      //存在后继状态,读入、拼接
     Concat();
      //转换入下一状态,读入下一字符
     curState= stateTrans[curState][ch];
      if curState是终态 then 返回strToken中的单词
     GetChar();
```

DIM, IF, DO, STOP, END number, name, age 125, 2169

DIM IF DO **STOP END** letter(letter|digit)* digit(digit)*

DFA

正规式与有限自动机的等价性

- ▶ 一个正规式r与一个有限自动机M等价
 - ightharpoonup L(r) = L(M)
- ► FA ->正规式
 - ▶ 对任何FA M, 都存在一个正规式r, 使得L(r)=L(M)。
- ▶ 正规式 -> FA
 - ▶ 对任何正规式r, 都存在一个FA M, 使得L(M)=L(r)。

编译原理

正规式与有限自动机的等价性 ——为NFA构造正规式

- ▶ 对转换图概念拓广,令每条弧可用一个正规式作标记。
- ▶ 证明: 对Σ上任─NFA M, 都存在─个Σ上的正规式r, 使得L(r)=L(M)。

- ▶ 假定NFA M= < S, Σ, δ, S₀, F> , 我们对M的状态转换图进行以下改造:
 - 在M的转换图上加进两个状态X和Y,从X用ε弧连接 到M的所有初态结点,从M的所有终态结点用ε弧连 接到Y,从而形成一个新的NFA,记为M',它只有一 个初态X和一个终态Y,显然L(M)=L(M')。

- ▶ 假定NFA M= < S, Σ, δ, S₀, F> , 我们对M的状态转换图进行以下改造:
 - ► 在M的转换图上加进两个状态X和Y,从X用ε弧连接 到M的所有初态结点,从M的所有终态结点用ε弧连 接到Y,从而形成一个新的NFA,记为M',它只有一 个初态X和一个终态Y,显然L(M)=L(M')。

- ▶ 假定NFA M= <S, Σ, δ, S₀, F> , 我们对M的状态转换图进行以下改造:
 - ► 在M的转换图上加进两个状态X和Y,从X用ε弧连接 到M的所有初态结点,从M的所有终态结点用ε弧连 接到Y,从而形成一个新的NFA,记为M',它只有一 个初态X和一个终态Y,显然L(M)=L(M')。
 - ▶ 然后,反复使用下面的三条规则,逐步消去结点, 直到只剩下X和Y为止。

▶ 最后,X到Y的弧上标记的正规式即为所构造的 正规式r

 \Rightarrow X Y

- ▶ 显然L(r)=L(M')=L(M)
- ▶ 得证: 对Σ上任—NFA M, 都存在—个Σ上的 正规式r, 使得L(r)=L(M)。
 - 1. 对任何FA M,都存在一个正规式r,使得L(r)=L(M)。
 - 2. 对任何正规式r,都存在一个FA M,使得L(M)=L(r)。

编译原理

正规式与有限自动机的等价性 ——为正规式构造NFA

- ▶ 定理: 对任何正规式r, 都存在一个FA M, 使得L(M)=L(r)。
- ▶ 定理: 对于Σ上的正规式r,都存在一个NFA M, 使L(M)=L(r),并且M只有一个初态和一个终态, 而且没有从终态出发的箭弧。

- ▶ 对给定正规式r中的运算符数目进行归纳
 - ▶验证r中的运算符数目为0时,结论成立。
 - ▶ 假设结论对于运算符数目少于k(k≥1)的正规式成立
 - ▶ 基于该假设,证明结论对于运算符数目为k的正规式成立。

- ightharpoonup 若r具有零个运算符,则r=ε或r=φ或r=a,其中 a∈ Σ 。
- ▶ 针对上述3类正规式r,分别按照下图构造NFAM,M只有一个初态和一个终态,而且没有从终态出发的箭弧,而且使L(M)和对应的L(r)相等。

- ▶假设对于运算符数目少于k(k≥1)的正规式成立。
- ▶ 当r中含有k个运算符时,r有三 种情形:
 - ▶情形1: $r=r_1|r_2$, r_1 和 r_2 中运算符数目少于k。从而,由归纳假设,对 r_i 存在 M_i =<S $_i$, Σ_i , δ_i , q_i , $\{f_i\}$ >,使得 $L(M_i)$ = $L(r_i)$,并且 M_i 没有从终态出发的箭弧(i=1,2)。不妨设S $_1$ \cap S $_2$ = ϕ ,在S $_1$ \cup S $_2$ 中加入两个新状态 q_0 , f_0 。

- $r=r_1|r_2$
- r=r₁.r₂
- r=r₁*

- >
 - (a) $\delta(q_0, \epsilon) = \{q_1, q_2\}$
 - (b) $\delta(q,a) = \delta_1(q,a)$, $\text{\'a} \in S_1 \{f_1\}$, $a \in \Sigma_1 \cup \{\epsilon\}$
 - (c) δ (q,a)= δ ₂(q,a), \cong q∈ S₂-{f₂}, a∈ Σ ₂ ∪ {ε}
 - (d) $\delta(f_1,\varepsilon) = \delta(f_2,\varepsilon) = \{f_0\}$.
- $ightharpoonup L(M_1) \cup L(M_2)$
- $=L(r_1) \cup L(r_2) = L(r_1 | r_2) = L(r)$

- $r=r_1|r_2|$
- r=r₁.r₂
- r=r₁*

- ▶ 情形1: r=r₁|r₂ 结论成立
- ▶ 情形2: r=r₁.r₂, 设M_i同情形1(i=1,2)
 - ightharpoonup 令 $M = \langle S_1 \cup S_2, \Sigma_1 \cup \Sigma_2, \delta, q_1, \{f_2\} \rangle$, 其中δ定义如下(M的状态转换如右图):

 - (b) $\delta(q,a) = \delta_2(q,a)$, $\exists q \in S_2$, $a \in \Sigma_2 \cup \{\epsilon\}$
 - (c) $\delta(f_1, \varepsilon) = \{q_2\}$
 - ► $L(M)=L(M_1)L(M_2)$ = $L(r_1)L(r_2)=L(r_1.r_2)=L(r)$

- $r=r_1|r_2$
- r=r₁.r₂
- r=r₁*

- 1. 对任何FA M,都存在一 为正规式 个正规式 r, 使得 L(r) = L(M)。 2. 对任何正规式r,都存在-个FA M,使得L(M)=L(r)。
- $r=r_1|r_2$
- $r=r_1.r_2$
- r=r₁*

- ▶ 情形1: r=r₁|r₂ 结论成业
- ▶ 情形2: r=r₁r₂ 结论成立
- ► 情形3: r=r₁*。设M₁同情形1
 - ► \diamondsuit M = <S₁ \cup {q₀, f₀}, Σ ₁, δ , q₀, {f₀}>, 其中q₀, f₀∉S₁, δ定义如 下(M的状态转换如右图):
 - (a) $\delta(q_0, \varepsilon) = \delta(f_1, \varepsilon) = \{q_1, f_0\}$
 - (b) $\delta(q,a) = \delta_1(q, a)$, $\cong q \in S_1 \{f_1\}$, \sqsubseteq $a \in \Sigma_1 \cup \{\epsilon\}$
 - Arr L(M) = L(M₁)* = L(r₁)* = L(r₁*) = L(r)

- ▶ 上述证明过程实质上是一个将正规表达式转换 为有限自动机的算法
- ▶ 构造Σ上的NFA M' 使得 L(r)=L(M')
 - ▶ 首先,把r表示成

▶ 按下面的三条规则对r进行分裂

逐步把这个图转变为每条弧只标记为Σ上的一个字符或ε,最后得到一个NFA M',显然 L(M')=L(r)

► (a|b)*(aa|bb)(a|b)*

I	a	b
0	1	2
1	3	2
2	1	4
2 3	3	5
4	6	4
5 6	6	4
6	3	4 5

I	l _a	I _b
{X, 1, 2}	{1, 5, 2}	{1, 6, 2}
{1, 5, 2}	{1, 3, 5, 2, 4, Y}	{1, 6, 2}
{1, 6, 2}	{1, 5, 2}	{1, 3, 6, 2, 4, Y}
{1, 3, 5, 2, 4, Y}	{1, 3, 5, 2, 4, Y}	{1, 6, 4, 2, Y}
{1, 3, 6, 2, 4, Y}	{1, 5, 4, 2, Y}	[1, 3, 6, 2, 4, Y]
{1, 6, 4, 2, Y}	{1, 5, 4, 2, Y}	{1, 3, 6, 2, 4, Y}
{1, 5, 4, 2, Y}	{1, 3, 5, 2, 4, Y}	{1, 6, 4, 2, Y}

单词符号	种别编码	助忆符	内码值
DIM	1	\$DIM	-
IF	2	\$IF	-

```
正规式、正 curState = 初态 GetChar();
   while( stateTrans[curState][ch]有定义){
      //存在后继状态,读入、拼接
     Concat();
      //转换入下一状态,读入下一字符
     curState= stateTrans[curState][ch];
      if curState是终态 then 返回strToken中的单词
     GetChar();
```

DIM, IF, DO, STOP, END number, name, age 125, 2169

DIM IF DO **STOP END** letter(letter|digit)* digit(digit)*

DFA

小结

- ▶正规式与有限自动机的等价性
 - ▶对任何FA M,都存在一个正规式r,使得 L(r)=L(M)
 - ▶为NFA构造正规式
 - ▶对任何正规式r,都存在一个FAM,使得 L(M)=L(r)
 - ▶为正规式构造NFA