1. Introduction and the main results

Let G be a real reductive group in the Harish-Chandra class, which may be linear or non-linear. Write \mathfrak{g} for the complexified Lie algebra of G and let \mathfrak{h} denote its universal Cartan subalgebra. Let $\lambda \in \mathfrak{h}^*$ (a superscript * indicates the dual space). By Harish-Chandra isomorphism, it determines an algebraic character $\chi_{\lambda} : \mathcal{Z}(\mathfrak{g}) \to \mathbb{C}$. Here $\mathcal{Z}(\mathfrak{g})$ denotes the center of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$. Denote by $\mathrm{Irr}(G)$ the set of isomorphism classes of irreducible Casselman-Wallach representations of G, and by $\mathrm{Irr}_{\lambda}(G)$ its subset consisting of the representations with infinitesimal character χ_{λ} . The latter set has finite cardinality.

Let $\mathrm{Nil}(\mathfrak{g}^*)$ denote the set of nilpotent elements in \mathfrak{g}^* . It has only finitely many orbits under the coadjoint action of the inner automorphism group $\mathrm{Inn}(\mathfrak{g})$ of \mathfrak{g} . Let S be an $\mathrm{Inn}(\mathfrak{g})$ -stable Zariski closed subset of $\mathrm{Nil}(\mathfrak{g}^*)$. Put

$$\operatorname{Irr}_{\lambda,\mathsf{S}}(G) := \{ \pi \in \operatorname{Irr}_{\lambda}(G) \mid \operatorname{AV}_{\mathbb{C}}(\pi) \subset \mathsf{S} \}.$$

Here $AV_{\mathbb{C}}(\pi)$ denotes the complex associated variety of π , namely the associated variety of the annihilate ideal of π . It is an $Inn(\mathfrak{g})$ -stable Zariski closed subset of $Nil(\mathfrak{g}^*)$. An interesting problem of representation theory is to understand the cardinality of the finite set $Irr_{\lambda,S}(G)$. The coherent continuation representation is a powerful tool for this problem.

1.1. The coherent continuation representation. Consider the category of Cassleman-Wallach representations of G that have generalized infinitesimal character λ and whose complex associated variety is contained in S. Write $\mathcal{K}_{\lambda,S}(G)$ for the Grothendieck group with \mathbb{C} -coefficients of this category. Then

$$\sharp(\operatorname{Irr}_{\lambda,S}(G)) = \dim \mathcal{K}_{\lambda,S}(G)$$
 (# indicates the cardinality of a set).

We also have that

$$\mathcal{K}_{\mathsf{S}}(G) = \bigoplus_{\mu \in W \setminus \mathfrak{h}^*} \mathcal{K}_{\mu,\mathsf{S}}(G) \qquad (W \text{ denotes the Weyl group}),$$

where $\mathcal{K}_{\mathsf{S}}(G)$ is the Grothendieck group, with \mathbb{C} -coefficients, of the category of Cassleman-Wallach representations of G whose complex associated variety is contained in S .

Let $\mathcal{K}(\mathfrak{g})$ be the Grothendieck group with \mathbb{C} -coefficients of the category of finitedimensional algebraic representations of \mathfrak{g} . Write $\mathcal{R}(\mathfrak{g})$ be the subgroup of $\mathcal{K}(\mathfrak{g})$ generated by finite dimensional \mathfrak{g} -modules occur in the symmetric algebra $S(\mathfrak{g})$. Write $\Delta \subset Q \subset \mathfrak{h}^*$ for the root system and the root lattice of \mathfrak{g} , respectively. It is a commutative \mathbb{C} -algebra under the tensor products and identified with $\mathbb{C}[Q/W]$.

By pulling back through the adjoint representation $G \to \operatorname{Inn}(\mathfrak{g})$, $\mathcal{R}(\mathfrak{g})$ is naturally identified with a subgroup of $\mathcal{K}(G)$. Then by using the tensor products, $\mathcal{K}_{\mathsf{S}}(G)$ is naturally a $\mathcal{R}(\mathfrak{g})$ -module.

Let $[\lambda] \subset \mathfrak{h}^*$ be a Q-coset, and write $W_{[\lambda]}$ for its stabilizer group in W. Then $W_{[\lambda]}$ equals the Weyl group of the root system

$$\{\alpha \in \Delta \mid \langle \mu, \alpha^{\vee} \rangle \in \mathbb{Z} \text{ for all } \mu \in [\lambda] \} \qquad (\alpha^{\vee} \text{ denotes the corresponding coroot}).$$

Definition 1.1. Let K be a $\mathcal{R}(\mathfrak{g})$ -module equipped with a family $\{K_{\mu}\}_{{\mu} \in \mathfrak{h}^*}$ of subspaces such that $K_{w \cdot \mu} = K_{\mu}$ for all $w \in W_{[\lambda]}$ and $\mu \in \mathfrak{h}^*$. A K-valued coherent family on $[\lambda]$ is a map

$$\Theta: [\lambda] \to \mathcal{K}$$

satisfying the following two conditions:

• for all $\mu \in [\lambda]$, $\Theta(\mu) \in \mathcal{K}_{\mu}$;

• for all finite-dimensional algebraic representations F of $Inn(\mathfrak{g})$, and all $\mu \in [\lambda]$,

$$F \cdot (\Theta(\mu)) = \sum_{\nu} \Theta(\mu + \nu),$$

where ν runs over all weights of F, counted with multiplicities, and F is obviously identified with an element of $\mathcal{R}(\mathfrak{g})$.

In the notation of Definition ??, let $Coh_{[\lambda]}(\mathcal{K})$ denote the vector space of all \mathcal{K} -valued coherent families on $[\lambda]$. It is a representation of $W_{[\lambda]}$ under the action

$$(w \cdot \Theta)(\mu) = \Theta(w^{-1} \cdot \mu), \quad \text{for all } w \in W_{[\lambda]}, \ \mu \in [\lambda].$$

For simplicity in notation, put

$$\operatorname{Coh}_{[\lambda],S}(G) := \operatorname{Coh}_{[\lambda]}(\mathcal{K}_{S}(G)).$$

1.2. Counting the irreducible representations with bounded complex associated varieties. Suppose that $\lambda \in [\lambda]$ and denote by W_{λ} the stabilizer of λ in W. Then $W_{\lambda} \subset W_{[\lambda]}$. Write $1_{W_{\lambda}}$ for the trivial representation of W_{λ} .

The following Theorem is due to Vogan. We will provide a proof for the lack of reference.

Theorem 1.2. The equality

$$\sharp(\operatorname{Irr}_{\lambda,\mathsf{S}}(G)) = [1_{W_{\lambda}} : \operatorname{Coh}_{[\lambda],\mathsf{S}}(G)]$$

holds.

Here and henceforth, [:] indicates the multiplicity of the first (irreducible) representation in the second one. Theorem ?? implies that

(1.1)
$$\sharp(\operatorname{Irr}_{\lambda,\mathsf{S}}(G)) = \sum_{\sigma \in \operatorname{Irr}(W_{[\lambda]})} [1_{W_{\lambda}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{[\lambda],\mathsf{S}}(G)].$$

Thus it suffices to understand the multiplicity $[\sigma: \operatorname{Coh}_{[\lambda],S}(G)]$ for every $\sigma \in \operatorname{Irr}(W_{[\lambda]})$. Let $\sigma \in \operatorname{Irr}(W_{[\lambda]})$. Define the nilpotent orbit

$$\mathcal{O}_{\sigma} := \operatorname{Springer}(j_{W_{(1)}}^W \sigma_0) \subset \operatorname{Nil}(\mathfrak{g}^*)$$
 ("Springer" indicates the Springer correspondence),

where σ_0 denote the special irreducible representation of $W_{[\lambda]}$ that lies in the same double cell as σ , and $j_{W_{[\lambda]}}^W \sigma_0$ denotes the *j*-induction which is an irreducible representation of W.

Proposition 1.3. Suppose that $\sigma \in \operatorname{Irr}(W_{[\lambda]})$ and $\mathcal{O}_{\sigma} \not\subset S$. Then

$$[\sigma : \operatorname{Coh}_{[\lambda],S}(G)] = 0.$$

Combining Theorems ?? and ??, we conclude that

(1.2)
$$\sharp(\operatorname{Irr}_{\lambda,\mathsf{S}}(G)) = \sum_{\sigma \in \operatorname{Irr}(W_{[\lambda]}), \mathcal{O}_{\sigma} \subset \mathsf{S}} [1_{W_{\lambda}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{[\lambda],\mathsf{S}}(G)].$$

Write

$$\operatorname{Coh}_{[\lambda]}(G) := \operatorname{Coh}_{[\lambda],\operatorname{Nil}(\mathfrak{g}^*)}(G),$$

which contains $Coh_{[\lambda],S}(G)$ as a subrepresentation. It is obvious that

$$[\sigma: \operatorname{Coh}_{[\lambda],S}(G)] \leq [\sigma: \operatorname{Coh}_{[\lambda]}(G)].$$

We expect that

(1.4) if
$$\mathcal{O}_{\sigma} \subset \mathsf{S}$$
, then $[\sigma : \mathrm{Coh}_{[\lambda],\mathsf{S}}(G)] = [\sigma : \mathrm{Coh}_{[\lambda]}(G)].$

1.3. Counting the irreducible representations annihilated by a maximal primitive ideal. Write I_{λ} for the maximal ideal of $\mathcal{U}(\mathfrak{g})$ with infinitesimal character λ . Its associated variety equals the Zariski closure $\overline{\mathcal{O}_{\lambda}}$ of an $\mathrm{Inn}(\mathfrak{g})$ -orbit $\mathcal{O}_{\lambda} \subset \mathrm{Nil}(\mathfrak{g}^*)$. Note that an irreducible Casselman-Wallach representation of G lies in $\mathrm{Irr}_{\lambda,\overline{\mathcal{O}_{\lambda}}}(G)$ if and only if it is annihilated by I_{λ} .

Let ${}^{L}\mathcal{C}_{\lambda} \subset \operatorname{Irr}(W_{[\lambda]})$ be the subset consisting all the irreducible representations that occur in

$$(J_{W_{\lambda}}^{W_{[\lambda]}}\operatorname{sgn})\otimes\operatorname{sgn},$$

where $J_{W_{\lambda}}^{W_{[\lambda]}}$ indicates the *J*-induction, and sgn denotes the sign character.

Proposition 1.4 ([?BVUni, (5.26), Proposition 5.28]). The set

$${}^{L}\mathscr{C}_{\lambda} = \left\{ \sigma \in \operatorname{Irr}(W_{[\lambda]}) \mid \mathcal{O}_{\sigma} \subset \overline{\mathcal{O}_{\lambda}}, \ [1_{W_{\lambda}} : \sigma] \neq 0 \right\}.$$

Moreover, the multiplicity $[1_{W_{\lambda}}:\sigma]$ is one when $\sigma \in {}^{L}\mathscr{C}_{\lambda}$.

Combining (??), Proposition ?? and Proposition ??, we obtain the following inequality (and the equality is expected).

Corollary 1.5. The inequality

(1.5)
$$\sharp(\operatorname{Irr}_{\lambda,\overline{\mathcal{O}_{\lambda}}}(G)) \leq \sum_{\sigma \in {}^{L}\mathscr{C}_{\lambda}} [\sigma : \operatorname{Coh}_{[\lambda]}(G)]$$

holds.

1.4. Special unipotent representations of classical groups. We are particularly interested in counting special unipotent representations of real classical groups.

Let \star be one of the 14 symbols

$$A, A^{\mathbb{C}}, A^{\mathbb{H}}, A^*, B, D, B^{\mathbb{C}}, D^{\mathbb{C}}, C, C^{\mathbb{C}}, D^*, C^*, \widetilde{C}, \widetilde{C}^{\mathbb{C}}.$$

Suppose that G is a classical Lie group of type \star , namely G respectively equals one of the following Lie groups:

$$\operatorname{GL}_n(\mathbb{R}), \ \operatorname{GL}_n(\mathbb{C}), \ \operatorname{GL}_n(\mathbb{H}), \ \operatorname{U}(p,q),$$

 $\operatorname{SO}(p,q) \ (p+q \ \text{is odd}), \ \operatorname{SO}(p,q) \ (p+q \ \text{is even}),$
 $\operatorname{SO}_n(\mathbb{C}) \ (n \ \text{is odd}), \ \operatorname{SO}_n(\mathbb{C}) \ (n \ \text{is even}),$
 $\operatorname{Sp}_{2n}(\mathbb{R}), \ \operatorname{Sp}_{2n}(\mathbb{C}), \ \operatorname{O}^*(2n), \ \operatorname{Sp}(p,q), \ \widetilde{\operatorname{Sp}}_{2n}(\mathbb{R}), \ \operatorname{Sp}_{2n}(\mathbb{C}) \ (n,p,q \geq 0).$

Here $\operatorname{Sp}_{2n}(\mathbb{R})$ denotes the metaplectic double cover of the symplectic group $\operatorname{Sp}_{2n}(\mathbb{R})$ that does not split unless n=0. As usual, the universal Cartan subalgebra \mathfrak{h} of the complexified Lie algebra \mathfrak{g} of G is respectively identified with

We define the Langlands dual \check{G} of G to be the respective complex group

$$\begin{split} \operatorname{GL}_n(\mathbb{C}), \ \operatorname{GL}_n(\mathbb{C}), \ \operatorname{GL}_{2n}(\mathbb{C}), \ \operatorname{GL}_{p+q}(\mathbb{C}), \\ \operatorname{Sp}_{p+q-1}(\mathbb{C}) \ (p+q \ \text{is odd}), \ \operatorname{SO}_{p+q}(\mathbb{C}) \ (p+q \ \text{is even}), \\ \operatorname{Sp}_{n-1}(\mathbb{C}) \ (n \ \text{is odd}), \ \operatorname{SO}_n(\mathbb{C}) \ (n \ \text{is even}), \\ \operatorname{SO}_{2n+1}(\mathbb{C}), \ \operatorname{SO}_{2n+1}(\mathbb{C}), \ \operatorname{SO}_{2n}(\mathbb{C}), \ \operatorname{SO}_{2p+2q+1}(\mathbb{C}), \ \operatorname{Sp}_{2n}(\mathbb{C}) \ \text{or} \ \operatorname{Sp}_{2n}(\mathbb{C}). \end{split}$$

Write $n_{\check{G}}$ for the dimension of the standard representation of \check{G} , which respectively equals

$$n, n, 2n, p+q, p+q-1, p+q, n-1, n, 2n+1, 2n+1, 2n, 2p+2q+1, 2n, \text{ or } 2n.$$

For a Young diagram i, write

$$\mathbf{r}_1(i) \geq \mathbf{r}_2(i) \geq \mathbf{r}_3(i) \geq \cdots$$

for its row lengths, and similarly, write

$$\mathbf{c}_1(i) > \mathbf{c}_2(i) > \mathbf{c}_3(i) > \cdots$$

for its column lengths. Denote by $|i| := \sum_{i=1}^{\infty} \mathbf{r}_i(i)$ the total size of i.

We recall the parameterization of the set $Nil(\check{G})$ of nilpotent \check{G} orbits in $\check{\mathfrak{g}} := Lie(\check{G})$ by Young diagrams. Each nilpotent orbit $\mathcal{O} \in \text{Nil}(\mathcal{G})$ is identified with a Young diagram, still called \mathcal{O} by abuse of notation, together with a possible symbol I/II with the following property:

- $|\check{\mathcal{O}}| = n_{\check{G}};$ if $\star \in \{D, D^{\mathbb{C}}, D^*, C, C^{\mathbb{C}}, C^*\}$, then all even rows occur in $\check{\mathcal{O}}$ with even multiplic-
- if $\star \in \{B, \widetilde{C}, B^{\mathbb{C}}, \widetilde{C}^{\mathbb{C}}\}$, then all odd rows occur in $\check{\mathcal{O}}$ with even multiplicity.
- if $\star \in \{D, D^{\mathbb{C}}, D^*\}$ and all rows of $\check{\mathcal{O}}$ are even (called a very even orbit), then one attach the symbol "I" or "II" to $\check{\mathcal{O}}$. We adopt the convention that the orbits with symbol I are those can be induced from the standard parabolic subgroups. Here, G is the dual group of G. Since we fixed an abstract Cartan \mathfrak{h} and therefore a Borel subalgebra of G, the corresponding Cartan and Borel are also fixed for G!

Since, the situation of orbits marked with I and II are symmetry (see ??), in the following we will not consider the orbits with "II" and if $\star \in \{D, D^{\mathbb{C}}, D^*\}$,

a partition is implicitly attached to the symbol "I" when necessary.

From now on, let \mathcal{O} be a Young diagram which is naturally identified with an nilpotent

We define an element $\lambda_{\check{\mathcal{O}}} := \lambda_{\star,\check{\mathcal{O}}} \in \mathfrak{h}^*$ as in what follows. For every $a \in \mathbb{N}^+$ (the set of positive integers), write

$$\rho(a) := \begin{cases} \left(\frac{a-1}{2}, \frac{a-3}{2}, \cdots, 2, 1\right), & \text{if } a \text{ is odd;} \\ \left(\frac{a-1}{2}, \frac{a-3}{2}, \cdots, \frac{3}{2}, \frac{1}{2}\right), & \text{if } a \text{ is even,} \end{cases}$$

and

$$\tilde{\rho}(a) := (\frac{a-1}{2}, \frac{a-3}{2}, \cdots, \frac{3-a}{2}, \frac{1-a}{2}).$$

By convention, $\rho(1)$ is the empty sequence. Write $a_1 \geq a_2 \geq \cdots \geq a_s > 0$ $(s \geq 0)$ for the nonzero row lengths of \mathcal{O} . Then we define

$$\lambda_{\tilde{\mathcal{O}}} := \begin{cases} (\tilde{\rho}(a_1), \tilde{\rho}(a_2), \cdots, \tilde{\rho}(a_s)), & \text{if } \star \in \{A, A^{\mathbb{H}}, A^*\}; \\ (\tilde{\rho}(a_1), \tilde{\rho}(a_2), \cdots, \tilde{\rho}(a_s); \tilde{\rho}(a_1), \tilde{\rho}(a_2), \cdots, \tilde{\rho}(a_s)), & \text{if } \star = A^{\mathbb{C}}; \\ (\rho(a_1), \rho(a_2), \cdots, \rho(a_s), 0^{l_1}), & \text{if } \star \in \{B, C, D, D^*, C^*, \widetilde{C}\}; \\ (\rho(a_1), \rho(a_2), \cdots, \rho(a_s), 0^{l_1}; \rho(a_1), \rho(a_2), \cdots, \rho(a_s), 0^{l_1}), & \text{if } \star \in \{B^{\mathbb{C}}, C^{\mathbb{C}}, D^{\mathbb{C}}, \widetilde{C}^{\mathbb{C}}\}. \end{cases}$$

Here

$$l_1 := \left\lfloor \frac{\text{the number of odd rows of the Young diagram of } \check{\mathcal{O}}}{2} \right
floor,$$

and 0^{l_1} denotes the sequence of 0's of length l_1

Note that $\lambda_{\mathcal{O}}$ is conjugate to the neutral element in any \mathfrak{sl}_2 triple attached to \mathcal{O} . (put more explanation?)

By using Harish-Chandra isomorphism, we view $\lambda_{\check{\mathcal{O}}}$ as a character $\lambda_{\check{\mathcal{O}}}: \mathcal{Z}(\mathfrak{g}) \to \mathbb{C}$. Write

$$I_{\check{\mathcal{O}}} := I_{\star,\check{\mathcal{O}}}$$

for the maximal ideal of $\mathcal{U}(\mathfrak{g})$ with infinitesimal character $\lambda_{\check{\mathcal{O}}}$.

Finally, we define the set of the special unipotent representations of G attached to $\check{\mathcal{O}}$ by

$$\begin{aligned} \operatorname{Unip}_{\tilde{\mathcal{O}}}(G) := & \operatorname{Unip}_{\star, \check{\mathcal{O}}}(G) \\ := & \begin{cases} \{\pi \in \operatorname{Irr}(G) \mid \pi \text{ is genuine and annihilated by } I_{\check{\mathcal{O}}}\}, & \text{if } \star = \widetilde{C}; \\ \{\pi \in \operatorname{Irr}(G) \mid \pi \text{ is annihilated by } I_{\check{\mathcal{O}}}\}, & \text{otherwise.} \end{cases} \end{aligned}$$

Here "genuine" means that the representation π of $\operatorname{Sp}_{2n}(\mathbb{R})$ does not descend to $\operatorname{Sp}_{2n}(\mathbb{R})$. Our ultimate goal is to parametrize the set $\operatorname{Unip}_{\mathcal{O}}(G)$ and to construct all the representations in this set ([?BMSZ2]). (Define the unipotent packet using the neutral element first?)

Remark 1.6. Suppose $\star = \{D, D^{\mathbb{C}}, D^*\}$. Let \mathcal{A} be an outer automorphism of G, which induces an automorphism on \mathfrak{g} and $\mathcal{U}(\mathfrak{g})$. Let

$$I'_{\check{\mathcal{O}}} := \mathcal{A}(I_{\check{\mathcal{O}}}).$$

If $\check{\mathcal{O}}$ has only even rows (i.e. $\check{\mathcal{O}}$ is very even), then $I'_{\check{\mathcal{O}}}$ is the maximal primitive ideal attached to the nilpotent orbit $\check{\mathcal{O}}_{II}$. Otherwise $I_{\check{\mathcal{O}}} = I'_{\check{\mathcal{O}}}$.

1.5. The cases of general linear groups and unitary groups. For any Young diagram i, we introduce the set Box(i) of boxes of i as the following subset of $\mathbb{N}^+ \times \mathbb{N}^+$:

(1.6)
$$\operatorname{Box}(i) := \left\{ (i, j) \in \mathbb{N}^+ \times \mathbb{N}^+ \mid j \le \mathbf{r}_i(i) \right\}.$$

We also introduce five symbols \bullet , s, r, c and d, and make the following definitions.

Definition 1.7. A painting on a Young diagram i is a map

$$\mathcal{P}: \mathrm{Box}(i) \to \{\bullet, s, r, c, d\}$$

with the following properties:

- $\mathcal{P}^{-1}(S)$ is the set of boxes of a Young diagram when $S = \{\bullet\}, \{\bullet, s\}, \{\bullet, s, r\}$ or $\{\bullet, s, r, c\}$;
- when $S = \{s\}$ or $\{r\}$, every row of i has at most one box in $\mathcal{P}^{-1}(S)$;
- when $S = \{c\}$ or $\{d\}$, every column of i has at most one box in $\mathcal{P}^{-1}(S)$.

Definition 1.8. Suppose that $\star \in \{A, A^{\mathbb{H}}, A^*\}$. A painting \mathcal{P} on a Young diagram i has $type \star if$

• the image of P is contained in

$$\begin{cases} \{\bullet, c, d\}, & if \star = A; \\ \{\bullet\}, & if \star = A^{\mathbb{H}}; \\ \{\bullet, s, r\}, & if \star = A^*, \end{cases}$$

- if $\star = A$ or $A^{\mathbb{H}}$, then $\mathcal{P}^{-1}(\bullet)$ has even number of boxes in every column of ι ,
- if $\star = A^*$, then $\mathcal{P}^{-1}(\bullet)$ has even number of boxes in every row of ι .

To reconcile with the Barbasch-Vogan duality, we write $PP_{\star}(i^t)$ for the set of paintings on i that has type \star where i^t is the transpose of i,.

The special unipotent representations of the general linear groups are well-understood. In particular, we have the following result on the counting.

Theorem 1.9. The equality

$$\sharp(\mathrm{Unip}_{\check{\mathcal{O}}}(G)) = \left\{ \begin{array}{l} \sharp(\mathrm{PP}_{\star}(\check{\mathcal{O}})), & if \, \star \in \{A, A^{\mathbb{H}}\}; \\ 1, & if \, \star = A^{\mathbb{C}} \end{array} \right.$$

holds.

Remark 1.10. If $\star = A$, then

$$\sharp(\mathrm{PP}_{\star}(\check{\mathcal{O}})) = \prod_{i \in \mathbb{N}^+} (1 + \text{the number of rows of length } i \text{ in } \check{\mathcal{O}})$$

If $\star = A^{\mathbb{H}}$, then

$$\sharp(\operatorname{PP}_{\star}(\check{\mathcal{O}})) = \left\{ \begin{array}{ll} 1, & \text{if all row lengths of } \check{\mathcal{O}} \text{ are even;} \\ 0, & \text{otherwise.} \end{array} \right.$$

Suppose that i is a Young diagram and \mathcal{P} is a painting on i that has type A^* . Let

$$AC_{\mathcal{P}}: Box(i) \to \{+, -\}$$

to be the map such that

- the symbols + and occur alternatively in each row of i;
- for all $1 \leq i \leq \mathbf{c}_1(i)$,

$$AC_{\mathcal{P}}(i, \mathbf{r}_{i}(i)) := \begin{cases} +, & \text{if } \mathcal{P}(i, \mathbf{r}_{i}(i)) = r; \\ -, & \text{if } \mathcal{P}(i, \mathbf{r}_{i}(i)) \in \{\bullet, s\}. \end{cases}$$

Define the signature of \mathcal{P} to be the pair

$$(p_{\mathcal{P}}, q_{\mathcal{P}}) := (\sharp(\mathcal{P}^{-1}(r)) + \frac{1}{2}\sharp(\mathcal{P}^{-1}(\bullet)), \sharp(\mathcal{P}^{-1}(s)) + \frac{1}{2}\sharp(\mathcal{P}^{-1}(\bullet)))$$

= $(\sharp(AC_{\mathcal{P}}^{-1}(+)), \sharp(AC_{\mathcal{P}}^{-1}(-))).$

[The first equation is the true definition of signature. The second one is an easy consequence of the definition of $AC_{\mathcal{P}}$.]

Example 1.11. Suppose that

Then

Given two Young diagrams i and j, write $i \sqcup j$ for the Young diagram whose multiset of nonzero row lengths equals the union of those of i and j.

For unitary groups, we have the following result.

Theorem 1.12. Assume that $\star = A^*$ so that G = U(p,q). If there is a decomposition

$$\check{\mathcal{O}} = \check{\mathcal{O}}_{\mathrm{g}} \overset{r}{\sqcup} \check{\mathcal{O}}_{\mathrm{b}}' \overset{r}{\sqcup} \check{\mathcal{O}}_{\mathrm{b}}'$$

such that all nonzero row lengths of $\check{\mathcal{O}}_g$ have the same parity as p+q, and all nonzero row lengths of $\check{\mathcal{O}}_b'$ have different parity as p+q, then

$$\sharp(\operatorname{Unip}_{\check{\mathcal{O}}}(G)) = \sharp \left\{ \mathcal{P} \in \operatorname{PP}_{\star}(\check{\mathcal{O}}_{g}) \mid (p_{\mathcal{P}} + \left| \check{\mathcal{O}}_{b}' \right|, q_{\mathcal{P}} + \left| \check{\mathcal{O}}_{b}' \right|) = (p, q) \right\}$$

If there is no such decomposition, then $\sharp(\mathrm{Unip}_{\mathcal{O}}(G))=0$.

1.6. Orthogonal and symplectic groups: reduction to good parity. Now we assume that

$$\star \in \left\{ \, B, D, B^{\mathbb{C}}, D^{\mathbb{C}}, C, C^{\mathbb{C}}, D^*, C^*, \widetilde{C}, \widetilde{C}^{\mathbb{C}} \, \right\}.$$

Then there is a unique decomposition

$$\check{\mathcal{O}} = \check{\mathcal{O}}_{g} \overset{r}{\sqcup} \check{\mathcal{O}}_{b}' \overset{r}{\sqcup} \check{\mathcal{O}}_{b}'$$

such that $\check{\mathcal{O}}_{\mathrm{g}}$ has \star -good parity in the sense that all its nonzero row lengths are

$$\left\{ \begin{array}{ll} \text{even,} & \text{if } \star \in \{B, B^{\mathbb{C}}, \widetilde{C}, \widetilde{C}^{\mathbb{C}}\}; \\ \text{odd,} & \text{if } \star \in \{C, D, C^{\mathbb{C}}, D^{\mathbb{C}}, D^{*}, C^{*}\}, \end{array} \right.$$

and $\check{\mathcal{O}}_{\mathrm{b}}$ has \star -bad parity in the sense that all its nonzero row lengths are

$$\left\{ \begin{array}{ll} \mathrm{odd}, & \mathrm{if} \ \star \in \{\,B, B^{\mathbb{C}}, \widetilde{C}, \widetilde{C}^{\mathbb{C}} \,\}; \\ \mathrm{even}, & \mathrm{if} \ \star \in \{\,C, D, C^{\mathbb{C}}, D^{\mathbb{C}}, D^{*}, C^{*} \,\}. \end{array} \right.$$

For simplicity, put

$$l := \left| \check{\mathcal{O}}_{\mathrm{b}} \right|,$$

and

$$G_{\mathbf{b}}' := \begin{cases} \operatorname{GL}_{\left| \check{\mathcal{O}}_{\mathbf{b}}' \right|}(\mathbb{R}) & \text{when } \star \in \left\{ B, C, \widetilde{C}, D \right\}, \\ \operatorname{GL}_{\left| \check{\mathcal{O}}_{\mathbf{b}}' \right|}(\mathbb{C}) & \text{when } \star \in \left\{ B^{\mathbb{C}}, C^{\mathbb{C}}, \widetilde{C}^{\mathbb{C}}, D^{\mathbb{C}} \right\}. \\ \operatorname{GL}_{\frac{1}{2} \left| \check{\mathcal{O}}_{\mathbf{b}}' \right|}(\mathbb{H}) & \text{when } \star \in \left\{ C^*, D^* \right\}. \end{cases}$$

Note that G has a subgroup isomorphic to $G'_{\mathbf{b}}$ if and only if

$$\begin{cases} p,q \geq l & \text{when } G = \mathrm{SO}(p,q), \\ p,q \geq 2l & \text{when } G = \mathrm{Sp}(p,q), \\ \text{no conditions} & \text{otherwise.} \end{cases}$$

In such cases, G has a Levi subgroup isomorphic to $G'_{\rm b} \times G_{\rm g}$ where

$$G_{\mathbf{g}} := \begin{cases} \operatorname{SO}(p-l,q-l) & \text{when } \star \in \{B,D\}, \\ \operatorname{SO}_{n-2l}(\mathbb{C}) & \text{when } \star \in \{B^{\mathbb{C}},D^{\mathbb{C}}\}, \\ \operatorname{O}^{*}(2n-2l) & \text{when } \star = D^{*}, \\ \operatorname{Sp}_{2n-2l}(\mathbb{R}) & \text{when } \star = C, \\ \operatorname{Sp}_{2n-2l}(\mathbb{R}) & \text{when } \star = \widetilde{C}, \\ \operatorname{Sp}_{2n-2l}(\mathbb{C}) & \text{when } \star \in \{C^{\mathbb{C}},\widetilde{C}^{\mathbb{C}}\}, \\ \operatorname{Sp}(p-\frac{1}{2}l,q-\frac{1}{2}l) & \text{when } \star = C^{*}. \end{cases}$$

Theorem 1.13. Retain the notation above. When G has a subgroup isomorphic to G'_{b} , there is a bijection

(1.7)
$$\mathfrak{I} : \operatorname{Unip}_{G'}(\check{\mathcal{O}}'_b) \times \operatorname{Unip}_{G_g}(\check{\mathcal{O}}_g) \longrightarrow \operatorname{Unip}_{G}(\check{\mathcal{O}}) \\ (\pi', \pi_0) \longmapsto \pi' \rtimes \pi_0.$$

Otherwise,

$$\operatorname{Unip}_G(\check{\mathcal{O}}) = \emptyset.$$

Combine the result for general linear groups, we list the consequence of the above theorem as the follows:

(a) Assume that $\star \in \{B, D\}$ so that G = SO(p, q). Then

$$\sharp(\mathrm{Unip}_{\tilde{\mathcal{O}}}(G)) = \begin{cases} \sharp(\mathrm{Unip}_{\tilde{\mathcal{O}}_{\mathrm{g}}}(G_{l})) \times \sharp(\mathrm{Unip}_{\tilde{\mathcal{O}}_{\mathrm{b}}}(\mathrm{GL}_{l}(\mathbb{R}))), & \text{if } p, q \geq l; \\ 0, & \text{otherwise.} \end{cases}$$

(b) Assume that $\star = C^*$ so that $G = \operatorname{Sp}(p, q)$. Then

$$\sharp(\operatorname{Unip}_{\check{\mathcal{O}}}(G)) = \begin{cases} \sharp(\operatorname{Unip}_{\check{\mathcal{O}}_{g}}(G_{l})), & \text{if } p, q \geq \frac{l}{2}; \\ 0, & \text{otherwise.} \end{cases}$$

- (c) Assume that $\star \in \{C, \widetilde{C}\}$ so that $G = \operatorname{Sp}_{2n}(\mathbb{R})$ or $\widetilde{\operatorname{Sp}}_{2n}(\mathbb{R})$. Then $\sharp(\operatorname{Unip}_{\check{\mathcal{O}}_{\operatorname{g}}}(G)) = \sharp(\operatorname{Unip}_{\check{\mathcal{O}}_{\operatorname{g}}}(G_l)) \times \sharp(\operatorname{Unip}_{\check{\mathcal{O}}_{\operatorname{b}}}(\operatorname{GL}_l(\mathbb{R}))).$
- (d) Assume that $\star \in \{B^{\mathbb{C}}, D^{\mathbb{C}}, C^{\mathbb{C}}, \widetilde{C}^{\mathbb{C}}, D^*\}$. Then $\sharp (\mathrm{Unip}_{\check{\mathcal{O}}}(G)) = \sharp (\mathrm{Unip}_{\check{\mathcal{O}}_{\mathtt{g}}}(G_l)).$
- 1.7. Orthogonal and symplectic groups: the case of good parity. Now we further assume that $\check{\mathcal{O}}$ has \star -good parity, namely $\check{\mathcal{O}} = \check{\mathcal{O}}_g$. By Theorem ??, the counting problem in general is reduced to this case.

Definition 1.14. A \star -pair is a pair (i, i + 1) of consecutive positive integers such that

$$\left\{ \begin{array}{ll} i \ is \ odd, & if \ \star \in \{C, \widetilde{C}, C^*, C^{\mathbb{C}}, \widetilde{C}^{\mathbb{C}}\}; \\ i \ is \ even, & if \ \star \in \{B, D, D^*, B^{\mathbb{C}}, D^{\mathbb{C}}\}. \end{array} \right.$$

 $A \star \text{-pair}(i, i + 1)$ is said to be

- vacant in $\check{\mathcal{O}}$, if $\mathbf{r}_i(\check{\mathcal{O}}) = \mathbf{r}_{i+1}(\check{\mathcal{O}}) = 0$;
- balanced in $\check{\mathcal{O}}$, if $\mathbf{r}_i(\check{\mathcal{O}}) = \mathbf{r}_{i+1}(\check{\mathcal{O}}) > 0$;
- tailed in $\check{\mathcal{O}}$, if $\mathbf{r}_i(\check{\mathcal{O}}) \mathbf{r}_{i+1}(\check{\mathcal{O}})$ is positive and odd;
- primitive in $\check{\mathcal{O}}$, if $\mathbf{r}_i(\check{\mathcal{O}}) \mathbf{r}_{i+1}(\check{\mathcal{O}})$ is positive and even.

Denote $\mathfrak{P}_{\star}(\check{\mathcal{O}})$ the set of all \star -pairs that are primitive in $\check{\mathcal{O}}$.

We remark that, the set $\mathfrak{P}_{\star}(\check{\mathcal{O}})$ is the same as that in [?So, Section 5] (used to describe Lusztig's canonical quotient) when $\star \neq \widetilde{C}^{\mathbb{C}}$.

Theorem 1.15 (Barbasch-Vogan, Barbasch). Assume that $\star \in \{B^{\mathbb{C}}, D^{\mathbb{C}}, C^{\mathbb{C}}, \widetilde{C}^{\mathbb{C}}\}$. Then $\sharp(\operatorname{Unip}_{\check{\mathcal{O}}}(G)) = 2^{\sharp(\mathfrak{P}_{\star}(\check{\mathcal{O}}))}$.

[Here is a tricky point: When $\star = \widetilde{C}^{\mathbb{C}}$, the Lusztig canonical quotient of $\check{\mathcal{O}}$ is a quotient by $\wp \sim \wp^c$ of $\mathbb{F}_2[\mathfrak{P}_{\star}(\check{\mathcal{O}})]$. However, the counting should still be correct!]

We attach to $\check{\mathcal{O}}$ a pair of Young diagrams

$$(\imath_{\check{\mathcal{O}}}, \jmath_{\check{\mathcal{O}}}) := (\imath_{\star}(\check{\mathcal{O}}), \jmath_{\star}(\check{\mathcal{O}})),$$

as follows.

The case when $\star = \{B, B^{\mathbb{C}}\}$. In this case,

$$\mathbf{c}_1(\jmath_{\check{\mathcal{O}}}) = \frac{\mathbf{r}_1(\check{\mathcal{O}})}{2},$$

and for all $i \geq 1$,

$$(\mathbf{c}_i(\imath_{\check{\mathcal{O}}}), \mathbf{c}_{i+1}(\jmath_{\check{\mathcal{O}}})) = \left(\frac{\mathbf{r}_{2i}(\check{\mathcal{O}})}{2}, \frac{\mathbf{r}_{2i+1}(\check{\mathcal{O}})}{2}\right).$$

The case when $\star \in \{\widetilde{C}, \widetilde{C}^{\mathbb{C}}\}$. In this case, for all $i \geq 1$,

$$(\mathbf{c}_i(\imath_{\check{\mathcal{O}}}), \mathbf{c}_i(\jmath_{\check{\mathcal{O}}})) = \left(\frac{\mathbf{r}_{2i-1}(\check{\mathcal{O}})}{2}, \frac{\mathbf{r}_{2i}(\check{\mathcal{O}})}{2}\right).$$

The case when $\star \in \{C, C^*, C^{\mathbb{C}}\}$. In this case, for all $i \geq 1$,

$$(\mathbf{c}_i(j_{\check{\mathcal{O}}}), \mathbf{c}_i(i_{\check{\mathcal{O}}})) = \begin{cases} (0,0), & \text{if } (2i-1,2i) \text{ is vacant in } \check{\mathcal{O}}; \\ (\frac{\mathbf{r}_{2i-1}(\check{\mathcal{O}})-1}{2}, 0), & \text{if } (2i-1,2i) \text{ is tailed in } \check{\mathcal{O}}; \\ (\frac{\mathbf{r}_{2i-1}(\check{\mathcal{O}})-1}{2}, \frac{\mathbf{r}_{2i}(\check{\mathcal{O}})+1}{2}), & \text{otherwise.} \end{cases}$$

The case when $\star \in \{D, D^*, D^{\mathbb{C}}\}$. In this case,

$$\mathbf{c}_1(\imath_{\check{\mathcal{O}}}) = \left\{ \begin{array}{ll} 0, & \text{if } \mathbf{r}_1(\check{\mathcal{O}}) = 0; \\ \frac{\mathbf{r}_1(\check{\mathcal{O}}) + 1}{2}, & \text{if } \mathbf{r}_1(\check{\mathcal{O}}) > 0, \end{array} \right.$$

and for all $i \geq 1$,

$$(\mathbf{c}_i(\jmath_{\check{\mathcal{O}}}), \mathbf{c}_{i+1}(\imath_{\check{\mathcal{O}}})) = \left\{ \begin{array}{ll} (0,0), & \text{if } (2i,2i+1) \text{ is vacant in } \check{\mathcal{O}}; \\ \left(\frac{\mathbf{r}_{2i}(\check{\mathcal{O}})-1}{2},0\right), & \text{if } (2i,2i+1) \text{ is tailed in } \check{\mathcal{O}}; \\ \left(\frac{\mathbf{r}_{2i}(\check{\mathcal{O}})-1}{2},\frac{\mathbf{r}_{2i+1}(\check{\mathcal{O}})+1}{2}\right), & \text{otherwise.} \end{array} \right.$$

Example 1.16. Suppose that $\star = C$, and $\check{\mathcal{O}}$ is the following Young diagram which has \star -good parity.

Then

$$\mathfrak{P}_{\star}(\check{\mathcal{O}}) = \{(1,2), (5,6)\}$$

and

$$(i_{\check{\mathcal{O}}}, j_{\check{\mathcal{O}}}) = \times$$

Here and henceforth, when no confusion is possible, we write $\alpha \times \beta$ for a pair (α, β) . We will also write $\alpha \times \beta \times \gamma$ for a triple (α, β, γ) .

We introduce two more symbols B^+ and B^- , and make the following definition.

Definition 1.17. A painted bipartition is a triple $\tau = (i, \mathcal{P}) \times (j, \mathcal{Q}) \times \alpha$, where (i, \mathcal{P}) and (j, \mathcal{Q}) are painted Young diagrams, and $\alpha \in \{B^+, B^-, C, D, \widetilde{C}, C^*, D^*\}$, subject to the following conditions:

$$\bullet \ \mathcal{P}^{-1}(\bullet) = \mathcal{Q}^{-1}(\bullet);$$

• the image of P is contained in

$$\begin{cases} \{ \bullet, c \}, & \text{if } \alpha = B^+ \text{ or } B^-; \\ \{ \bullet, r, c, d \}, & \text{if } \alpha = C; \\ \{ \bullet, s, r, c, d \}, & \text{if } \alpha = D; \\ \{ \bullet, s, c \}, & \text{if } \alpha = \widetilde{C}; \\ \{ \bullet \}, & \text{if } \alpha = C^*; \\ \{ \bullet, s \}, & \text{if } \alpha = D^*, \end{cases}$$

• the image of Q is contained in

$$\begin{cases} \{ \bullet, s, r, d \}, & \text{if } \alpha = B^+ \text{ or } B^-; \\ \{ \bullet, s \}, & \text{if } \alpha = C; \\ \{ \bullet \}, & \text{if } \alpha = D; \\ \{ \bullet, r, d \}, & \text{if } \alpha = \widetilde{C}; \\ \{ \bullet, s, r \}, & \text{if } \alpha = C^*; \\ \{ \bullet, r \}, & \text{if } \alpha = D^*. \end{cases}$$

For any painted bipartition τ as in Definition ??, we write

$$i_{\tau} := i, \ \mathcal{P}_{\tau} := \mathcal{P}, \ j_{\tau} := j, \ \mathcal{Q}_{\tau} := \mathcal{Q}, \ \alpha_{\tau} := \alpha,$$

and

$$\star_{\tau} := \left\{ \begin{array}{ll} B, & \text{if } \alpha = B^+ \text{ or } B^-; \\ \alpha, & \text{otherwise.} \end{array} \right.$$

We further define a pair (p_{τ}, q_{τ}) of natural numbers given by the following recipe.

• If $\star_{\tau} \in \{B, D, C^*\}$, (p_{τ}, q_{τ}) is given by counting the various symbols appearing in (i, \mathcal{P}) , (j, \mathcal{Q}) and $\{\alpha\}$:

(1.8)
$$\begin{cases} p_{\tau} := (\# \bullet) + 2(\# r) + (\# c) + (\# d) + (\# B^{+}); \\ q_{\tau} := (\# \bullet) + 2(\# s) + (\# c) + (\# d) + (\# B^{-}). \end{cases}$$

Here

 $\# \bullet := \#(\mathcal{P}^{-1}(\bullet)) + \#(\mathcal{Q}^{-1}(\bullet))$ (# indicates the cardinality of a finite set),

and the other terms are similarly defined.

• If $\star_{\tau} \in \{C, C, D^*\}, p_{\tau} := q_{\tau} := |\tau|.$

We also define a classical group

(1.9)
$$G_{\tau} := \begin{cases} \operatorname{SO}(p_{\tau}, q_{\tau}), & \text{if } \star_{\tau} = B \text{ or } D; \\ \operatorname{Sp}_{2|\tau|}(\mathbb{R}), & \text{if } \star_{\tau} = C; \\ \widetilde{\operatorname{Sp}}_{2|\tau|}(\mathbb{R}), & \text{if } \star_{\tau} = \widetilde{C}; \\ \operatorname{Sp}(\frac{p_{\tau}}{2}, \frac{q_{\tau}}{2}), & \text{if } \star_{\tau} = C^{*}; \\ \operatorname{O}^{*}(2|\tau|), & \text{if } \star_{\tau} = D^{*}. \end{cases}$$

Define

$$\mathsf{PBP}_{\star}(\check{\mathcal{O}}) := \left\{ \tau \text{ is a painted bipartition } \middle| \ \star_{\tau} = \star, \text{ and } (\imath_{\tau}, \jmath_{\tau}) = (\imath_{\check{\mathcal{O}}}, \jmath_{\check{\mathcal{O}}}) \right\}, \quad \text{and} \quad \mathsf{PBP}_{G}(\check{\mathcal{O}}) := \left\{ \tau \in \mathsf{PBP}_{\star}(\check{\mathcal{O}}) \middle| G_{\tau} = G \right\}.$$

Example 1.18. Suppose that $\star = B$ and

Then

$$\tau := \underbrace{\begin{bmatrix} \bullet & \bullet \\ \bullet \\ c \end{bmatrix}}_{c} \times \underbrace{\begin{bmatrix} \bullet & \bullet & d \\ \bullet \\ d \end{bmatrix}}_{c} \times B^{+} \in \mathrm{PBP}_{\star}(\check{\mathcal{O}}),$$

and

$$G_{\tau} = SO(10, 9).$$

Theorem 1.19. Assume that $\star \in \{B, C, D, \widetilde{C}, C^*, D^*\}$. Then $\sharp(\operatorname{Unip}_{\check{\mathcal{O}}}(G)) \leq 2^{\sharp(\mathfrak{P}_{\star}(\check{\mathcal{O}}))} \cdot \sharp \mathsf{PBP}_{G}(\check{\mathcal{O}}).$

In [?BMSZ2], we will construct sufficiently many representations in $\mathrm{Unip}_{\mathcal{O}}(G)$, and show that the equality holds in $\ref{eq:constraint}$?