3/31/2015 Coursera

Feedback — Quiz: Week Two

Help Center

You submitted this quiz on **Mon 30 Mar 2015 11:37 AM PDT**. You got a score of **6.00** out of **6.00**.

Question 1

Slope being zero indicates that

Your Answer	Score	Explanation
There is a strong linear relationship between X and Y.		
 Slope does not say anything about the relationship between X and Y. 		
There is no linear relationship between X and Y.	✓ 1.00	Good job!
		Slope being zero indicates that the correlation coefficient between X and Y is zero.
		Both correlation coefficient and slope measure linear relationship.
		There could be any other relationship between X and Y such as quadratic, exponential etc.
There is no relationship between X and Y.		
Total	1.00 / 1.00	

Question 2

The estimate of the intercept term β_0 cannot be negative.

Your Answer		Score	Explanation
True			
False	~	1.00	Great job! The intercept term can be negative if the mean of the dependent variable (Y) is negative.
Total		1.00 / 1.00	

Question 3

The assumption of homoscedasticity means that the variance of Y is same for all X

Your Answer		Score	Explanation
True	~	1.00	Nice work!
False			
Total		1.00 / 1.00	

Question 4

 $\bigcirc H_0$:

The null hypothesis for testing the linear relationship between X and Y is

Your Answer	Score	Explanation
$\bigcirc H_0: eta_0 eq 0$		
$lackbox{0}{ullet} H_0: \checkmark \ eta_1=0$	1.00	Yes, you are right!
		The slope gives us an idea about the linear relationship between X and Y and in the null hypothesis we let the true slope be zero.
$\bigcirc H_0$: $\beta_0 = 0$		

$eta_1 eq 0$			
Total	1.00 /		
	1.00		

Question 5

The test statistic for testing $eta_1=0$ follows t-distribution with degrees of freedom

Score	Explanation
✓ 1.00	Great job!
	From n, 2 degrees of freedom are lost in estimating the intercept term and the slope.
1.00 / 1.00	
	✓ 1.00

Question 6

For the prediction interval, the farther away X_0 is from $ar{X}$, the interval

Your Answer		Score	Explanation
Getswider	~	1.00	Yes, you got it!
			The prediction interval depends on the term $\sqrt{1+rac{1}{n}+rac{(x_0-ar{x})^2}{(n-1)s_x^2}}$.
			As the distance between X_0 and \bar{X} increases, the term gets bigge and hence makes the prediction interval wider.
Getssmaller			

3/31/2015 Coursera

Total	1.00 /		
	1.00		