RegARIMA Model Diagnostics

Seasonal Adjustment With X-13ARIMA-SEATS 2019

Economic Statistical Methods Division

U.S. Census Bureau

Objectives

- At the end of this unit, you should understand
 - How to interpret some basic regARIMA model diagnostics

Modeling Diagnostics

- Standard errors, correlations, and t tests for regression and ARMA model coefficients
 - Except for outliers, |t| should be > 2 (or 1.96)
- Normality Geary's a, kurtosis
- Sample autocorrelations and partial autocorrelations
- Ljung-Box Q
- Spectrum plot of regARIMA residuals
- QS (discussed in later class section)

Modeling Diagnostics (continued)

- Average forecast error over last three years
- AICC comparisons
 - (history spec)
- Out-of-sample forecast error plots
 - (history spec)

Other Modeling Diagnostics

- Histogram of standardized residuals
 - Do they look normal?
- Durbin-Watson Statistic for residuals
 - Tests for first order autocorrelation: generally values from 1.5-2.5 are desired
- Friedman Non-Parametric Test for seasonality of the residuals
- Available in the output, we will not cover them

Estimate Spec

- Default estimation happens whenever you have a regARIMA model even without the estimate spec
- Use it to gather needed diagnostics and information

Estimate Spec Example

```
estimate {
  print=(roots regcmatrix)
  savelog=all
# savelog=(aicc aic bic hq afc)
}
```

Check Spec

• Use the **check** spec to gather certain model diagnostics, control output

Check Spec Example

```
check {
   print=all
   savelog=all
# savelog=(normalitytest
# lbq bpq sft)
}
```

Model Information

- ARMA coefficients and standard errors
- Regression coefficients, standard errors, t-values and p-values

Correlations between the parameters

Midwest Single-Family Building Permits

- Log transformation
- ARIMA model: (1 1 0)(0 1 1)
- Regressor: Easter[2]
- Automatically Identified Outlier: TC2008.Dec
- Run series with and without trading day regressors

Regression Model With One-Coefficient Trading Day Regression

Regression Model							
	Parameter Estimate	Standard Error	t-value				
1-Coefficient Trading Day							
Weekday	0.0151	0.00118	12.77				
Sat/Sun (derived)	-0.0378	0.00296	-12.77				
Easter[2]	-0.0514	0.01873	-2.75				
Automatically Identified Outliers							
TC2008.Dec	-0.3637	0.06537	-5.56				

Regression Model With Full Six-Coefficient Trading Day Regression

Regression Model						
	Parameter Estimate	Standard Error	t-value			
Trading Day						
Mon	0.0228	0.00939	2.43			
Tue	0.0140	0.00919	1.52			
Wed	0.0174	0.00911	1.91			
Thu	0.0094	0.00935	1.01			
Fri	0.0157	0.00925	1.69			
Sat	-0.0341	0.00924	-3.69			
Sun (derived)	-0.0451	0.00962	-4.69			
Easter[2]	-0.0465	0.01938	-2.40			
Automatically Identified Outliers						
TC2008.Dec	-0.3762	0.06582	-5.72			

Regression Model With No Trading Day Regression

Regression Model							
	Parameter Standard Estimate Error		t-value				
Easter[2]	-0.0940	0.02731	-3.44				
Automatically Identified Outliers							
TC2008.Dec	-0.3481	0.08444	-4.12				

Significance Test for Variable Groups

- Most common groups
 - Trading day
 - Seasonal dummies
- F tests for regressor groups
 - Also chi-square tests, but research indicates the F tests are more appropriate

Significance Tests of the Regressor Groups

F Tests for Trading Day Regressors						
	df F-statistic P-Value					
Trading Day	6, 185	25.90	0.00			

Normality of the residuals

- X-13ARIMA-SEATS has three tests for normality of the residuals:
- Skewness
- 2. Geary's a assumes series is not skewed
- 3. Sample kurtosis only reliable for very long series, but significance may indicate need for additional outlier regressors
- If the regARIMA model fits the data well, a lack of normality of the residuals may not be a problem.
- However, these tests may indicate a need for additional or different regressors (trading day, holiday, outliers)

Normality of Midwest Building Permits, No TD

Normality Statistics for regARIMA Model Residuals

Number of residuals: 191 Skewness coeffi: -0.3917

Geary's a: 0.7977 Kurtosis: 2.8764

No indication of lack of normality.

Autocorrelation Function and Partial Autocorrelation Function of Residuals

- Look for lags that spike beyond the bounds (2 standard errors)
- Consider *important* lags that may indicate model inadequacy
 - Low lags
 - Seasonal frequencies (multiples of 12 for monthly series, multiples of 4 for quarterly)

Kevin Tolliver (OSMREP), 2010

Ljung-Box Q Diagnostic

- Goodness-of-fit diagnostic to indicate model inadequacy
- Function of the sample autocorrelation function

Greta Ljung and George Box (1978)

Ljung-Box Q Diagnostic (2)

- Based on the sample autocorrelation function but cumulative rather than specific to individual lags
 - One ACF peak at a low lag can result in a string of failures in LBQ
 - Some users check only the LBQ result at 24

Ljung-Box Q Formula

If r_k are the autocorrelations of the residuals and n is the series length, then the LBQ at lag K is

$$Q_K = n(n+2) \sum_{k=1}^K \frac{r_k^2}{n-k}$$

For large n, $Q_K \sim \chi^2_{K-p-q}$

Ljung-Box Qs in the Output File: Midwest Single-Family BP No TD

Sample	Sample Autocorrelation of Innovations, Part 1								
	Lag1	Lag 2	Lag 3	Lag 4	Lag 5	Lag 6	Lag 7	Lag 8	•••
ACF	-0.08	-0.06	0.17	-0.18	0.03	0.08	-0.11	0.07	•••
SE	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.08	•••
LB Q	1.16	1.96	7.69	14.19	15.78	15.78	18.22	19.23	•••
DF	0	0	1	2	3	4	5	6	•••
Р	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	***

Ljung-Box Qs From Win X-13

Series Name	# LBQ Fail	Sig LBQ	Sig Seas LBQ
Example BP Midwest Single Family No TD	22	3 – 24	s12s24
Example BP Midwest Single Family TD 1Coef	0		
Example BP Midwest Single Family TD (6)	0		

Spectral Diagnostic

- More information coming during discussion of seasonal adjustment diagnostics
- Monthly series only
- Look for large peaks at seasonal frequencies (1/12, 2/12, 3/12, 4/12, 5/12) and trading day frequencies (0.348, 0.432)

Forecast Spec

- Forecasting is so important, even without the forecast spec, the program produces a year of forecasts
 - Popular leads: (a) 2 years (b) $\frac{1}{2}$ the seasonal filter length, for example 3x5=>42 monthly forecasts, 14 quarterly forecasts
- Also controls backcasts at beginning of series
 - No backcasts if model span is different from (shorter than) the adjustment span

Forecast Spec Example

```
forecast{
 maxlead = 8 # 2 years in quarters
# [ default: 12 months or 4 quarters ]
# [ range: 0 to 120 ]
 maxback = 8
# [ default: 0 max: 120 ]
 print = See Manual/Quick Reference
  save = See Manual/Quick Reference
```

Average Forecast Errors

- Within sample average absolute percentage errors:
 - AAPE(Last year): Remove the last year of the series, calculate forecasts for the year, find average error
 - AAPE(Last-1 year): Remove additional year of the series, calculate forecasts for the year, find average error
 - AAPE(Last-2 years): Remove additional year of the series, calculate forecasts for the year, find average error

Average Forecast Errors, continued

- AAPE(Last 3 years): average of the other three
 - All four are in the output file; only this average is in the Win X-13 diagnostics tables
- These are within-sample errors because the default setting is not to recalculate the regARIMA parameters after removing series values
 - Full span parameters are used for forecasting
- To recalculate the parameters, use **outofsample=yes** in the **estimate** { } spec

Average Forecast Error From Win X-13

Series Name	aaFcE (3-yr)	
Example BP Midwest Single Family No TD	7.6236109489352	
Example BP Midwest Single Family TD 1Coef	6.0469965328332	
Example BP Midwest Single Family TD (6)	6.0151315575393	

AICC – Akaike's Information Criterion (Corrected for Sample Size)

- Alternate to usual AIC
- Comparison diagnostic for different models, prefer minimum
 - Not pass/fail, no "good" value
- Must have
 - Same outliers
 - Same order(s) of differencing
 - Same underlying series and model span

Want to Compare AICC for Series With Different Outliers?

- Force the same outliers then compare
 - Hard-code outliers and turn off automatic outlier identification
- Can be tricky try...
 - Union of outlier sets
 - Multiple runs, each with the other model's outliers
 - Closer analysis to identify one good outlier set

AICC in the Output File: Midwest Single-Family BP, TD 1-Coefficient

Likelihood Statistics

Number of observations (nobs)	205
Effective number of observations (nefobs)	192
Number of parameters estimated (np)	6
Log likelihood	222.8849
Transformation Adjustment	-1797.589
Adjusted Log likelihood (L)	-1574.7041
AIC	3161.4082
AICC (F-corrected-AIC)	3161.8622
Hannan Quinn	3169.324
BIC	3180.9531

AICC Comparison

Midwest Single-Family BP, No TD

AICC: 3269.82056

Midwest Single-Family BP, TD (6)

AICC: 3171.38135

Midwest Single-Family BP, TD 1-Coefficient

AICC: 3161.8623

- If models meet all criteria, prefer the lesser value (TD1 model)
- As of now, no clear significance levels for likelihood-statistic comparisons, but some work indicates that the AICC difference should be at least 2

Interventions, Note

- In cases of interventions comparing AICC values may be OK
 - Outliers are identified generally, not usually as known events
 - Interventions are for specific known events

Out-of-Sample Forecast Error Plot

- Prefer the model with generally smaller forecast errors
- This graph compares the forecast performance of two models over time, to see if one has consistently smaller forecast errors

History Spec Forecasts

```
history {
   estimates = ( fcst )
   start = yyyy.mm
}
```

Forecast Performance

- Truncate series at t_0
- Fit the regARIMA model and calculate h-step-ahead forecast
 - One step ahead and one year ahead
- Add data point $(t_0 + 1)$
- Repeat model fit and forecast

Out-of-Sample Forecast Error, Illustration

Error: $Y_{t+h} - \hat{Y}_{t+h|t}$, for $t_0 \le t \le T - h$

Notation for h-step Forecasting

 $\widehat{Y}_{t+h\mid t}^{(i)} = \text{Model } i$'s h-step ahead forecast of Y_{t+h} at time t for i=1,2

(re-estimate model parameters for each time t)

h: Usually compare 1-step ahead and 1-year ahead forecasts (1 year = s steps, s is 12 for monthly, 4 for quarterly series)

Graphical Model Selection

For given h and t_0 , plot

$$SSE_{h,N}^{(1,2)} = \sum_{t=t_0}^{N-h} \left[\left(Y_{t+h} - \hat{Y}_{t+h|t}^{(1)} \right)^2 - \left(Y_{t+h} - \hat{Y}_{t+h|t}^{(2)} \right)^2 \right]$$

versus N for $(t_0+h) \le N \le T$

N is the end date of the series (progresses over time)

T is the final end date of the full series

Slope Is the Key

- Persistently *decreasing* value (negative slope) with increasing N → prefer Model 1
 - Persistently better forecasts from Model 1 (consistently summing negative values, indicating Model 1 has smaller errors)
 - Stair-stepping down, prefer Model 1
- Persistently *increasing* value (positive slope) with increasing
 N → prefer Model 2
 - Stair-stepping up, prefer Model 2

Two Lines on the Graph: 1-Step Ahead, 1-Year Ahead

- Because usually the series and model are seasonal, the seasonal (year-ahead) forecast is especially important
- In this example
 - Model 1: Midwest Single-Family BP, TD 1-Coef
 - Model 2: Midwest Single-Family BP, TD (6-Coef)

Interpret the Graph

- Seasonal forecasts are inconclusive, neither model seems to forecast better one year ahead
- One-month ahead forecasts are better from the model with the one-coefficient trading day regressor
 - Negative slope

Each Line Is a Separate Comparison of Two Models

- If one line is inconclusive, the other line can indicate model preference
- Weight seasonal forecasts more
- Weight most-recent result more

Uses for Forecast Error History Diagnostic

- Compare any two regARIMA models
- Especially useful when AICC is not appropriate
 - Different spans of data
 - Different outliers
 - Different orders of differencing

Other Forecasting Use

- Forecast next month's (quarter's) value before it is reported
- Compare the forecasted value to the actual value when it is available
- Big differences may indicate problems with the incoming value, need for editing or treating as an outlier

Programs Using Forecast Comparisons

- Census Bureau
 - International Trade forecasted year 2000 data
 - Identifying reporting problems among respondents
 - Service Sector checks forecasts for heads up on outlier results
- TERROR (TRAMO for Errors) by Gianluca Caporello and Agustín Maravall (Bank of Spain)
 - Automatic modeling and forecast checking
 - Capable of handling large number of series
 - Can point to editing needs

Very *Very* Generally – When Diagnostics Disagree

- AICC/AIC
 - (need to see clear separation in value)
- Out-of-Sample Forecast Error Graphs
 - (need to see clear preference)

outweigh

- ACF/PACF
- Spectrum of the Model Residuals

Diagnostics with Win X-13

V	Model Span	ARIMA Model	Trading Day	Holiday
Midwest Single Family TD 1Coef	1999.01 to 2016.01	(1 1 0)(0 1 1)	TD1[t12.8]	E2[t ₇ 2.75]
Midwest Single Family TD (6)	1999.01 to 2016.01			
Midwest Single Family No TD	1999.01 to 2016.01	(1 1 0)(0 1 1)		E2[t-3.44]

V	AICC	aa FcE (3-yr)	Normal?	#LBQ Fail	Sig LBQ	Sig Seas LBQ
TD 1Coef	3161.8623	6.0469965328332	ok	0	No.	
TD (6)	3171.38135	6.01513155753926	ok	0	Ť	
No TD	3269.82056	7.62361094893522	ok	22	324	s12s24

Win X-13 Diagnostics

- Help -> Diagnostics List to find a description of all the columns
- File -> Failure/Warning Thresholds to set the limits for what should be considered a failure (row is pink, failed diagnostic is bolded) or a warning (row is yellow, warned diagnostic is italic)

Purpose of RegARIMA Model Diagnostics

- Help users choose best model for their purposes
 - Many diagnostics are comparative rather than pass/fail
- Indicate areas of model inadequacy
 - User may need to start over, shorten the series, investigate unusual series behavior, etc.

