Drone-based System for Localization of People Inside Buildings

Piotr Kaniewski and Tomasz Kraszewski, Military University of Technology, Faculty of Electronics, Institute of Radioelectronics, Warsaw, Poland

Schéma du système de localisation

Notions clés

- GNSS, RTK (cinématique temps réel)
- INS, dead reckoning ("navigation à l'estime")
- UWB, TW-TOF
- RFID (radio-identification)
- Kalman Filters, EKF

Problématique et besoins

- Un système de localisation par satellite + INS :
 - Est fiable, précis et son usage est répandu dans le domaine...
 - o ... mais nécessite une infrastructure particulière et complexe.
- Un système de localisation par ondes radio :
 - Est fiable, efficace et nécessite peu d'éléments internes...
 - mais perd en fiabilité quand des surfaces épaisses cachent la cible.
- Quelle technologie est plus adaptée ?
- Peut-on tirer parti des avantages des deux méthodes ?

Fonctionnement global du système

- MS (station de surveillance) :
 - Station GNSS RTK
 - Application sur ordinateur
 - Contrôleur du drône
 - Modem radio
 - Placé sur véhicule terrestre pouvant aussi transporter le LU
- LU (unité de localisation) :
 - Modem radio
 - Module radio UWB/TW-TOF Pulson P440
 - Placé à bord d'un UAV (drone aérien)
 - Récepteur GNSS
- PUs (unités personnelles) :
 - o Module radio UWB/TW-TOF Pulson P440

Exécution des algorithmes de localisation

- Essentiellement basés sur la technologie UWB...
- ... mais aussi sur des corrections RTK envoyés par la station GNSS du MS.
- Un algorithme EKF s'exécute pour chaque PU dans le LU.
 - o Un time update basé sur un modèle dynamique linéaire, à une fréquence régulière...
 - et un measurement update basé sur un modèle d'observation non-linéaire, effectué dès qu'une ouverture apparaît.

Expériences réalisées :

- Environnement 2D sous Matlab, 1 PU, 3 ouvertures
- Le Pulson P440 effectue 45 mesures par seconde

Expériences réalisées

Même test avec 3 PUs

Conclusion & évolutions possibles

- Résultats prometteurs
- Reste à étudier le suivi du PU dans un environnement 3D
- Adapter le drone aux situations dangereuses ?
- Plus de drones pour une collecte plus efficace des données ?