Rolling statistics

Outliers

Contents

ROLLING STATISTICS

MOTIVATE ROLLING MEAN

Estimation methods

- Examine each actual: y_t
- Compute expected value: \hat{y}_t
- Is actual very different than expected?
- If yes, flag as an outlier
- Formally: $|y_t \hat{y}_t| > \delta$, where δ is a threshold to select outliers

Estimation methods

- How to determine \hat{y}_t ?
- How to pick threshold δ ?
- Different methods answer these questions
- Estimation methods use values before and after t to get \hat{y}_t
- Let's talk about rolling statistics (e.g., moving averages)

time

Rolling statistics

- Apply a window to data
- Compute statistics from the data inside the window
- Move window and iterate through all the data

Date	y
2020-02-12	23
2020-02-13	30
2020-02-14	70
2020-02-15	30
2020-02-16	25
2020-02-17	22

Consider window of size 3

Date	у	mean	std
2020-02-12	23		
2020-02-13	30		
2020-02-14	70		
2020-02-15	30		
2020-02-16	25		
2020-02-17	22		

Consider window of size 3

Date	y	mean	std
2020-02-12	23		
2020-02-13	30		
2020-02-14	70		
2020-02-15	30		
2020-02-16	25		
2020-02-17	22		

- Consider window of size 3
- Compute at center of window
- Compute mean and standard deviation

Date	y	mean	std
2020-02-12	23		
2020-02-13	30		
2020-02-14	70		
2020-02-15	30		
2020-02-16	25		
2020-02-17	22		

- Consider window of size 3
- Compute at center of window
- Compute mean and standard deviation

Date	у	mean	std
2020-02-12	23		
2020-02-13	30	41.0	25.4
2020-02-14	70		
2020-02-15	30		
2020-02-16	25		
2020-02-17	22		

- Consider window of size 3
- Compute at center of window
- Compute mean and standard deviation
- Move window and iterate

Date	y	mean	std
2020-02-12	23		
2020-02-13	30	41.0	25.4
2020-02-14	70		
2020-02-15	30		
2020-02-16	25		
2020-02-17	22		

- Consider window of size 3
- Compute at center of window
- Compute mean and standard deviation
- Move window and iterate

Date	у	mean	std
2020-02-12	23		
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30		
2020-02-16	25		
2020-02-17	22		

- Consider window of size 3
- Compute at center of window
- Compute mean and standard deviation
- Move window and iterate

Date	y	mean	std
2020-02-12	23		
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30	41.7	24.7
2020-02-16	25	25.7	4.04
2020-02-17	22		

- Consider window of size 3
- Compute at center of window
- Compute mean and standard deviation
- Move window and iterate

Date	y	mean	std
2020-02-12	23		
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30	41.7	24.7
2020-02-16	25	25.7	4.04
2020-02-17	22		

What about edge cases?

Date	y	mean	std
2020-02-12	23		
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30	41.7	24.7
2020-02-16	25	25.7	4.04
2020-02-17	22		

- What about edge cases?
- Option 1: Treat as missing data

Date	y	mean	std
2020-02-12	23	NaN	NaN
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30	41.7	24.7
2020-02-16	25	25.7	4.04
2020-02-17	22	NaN	NaN

- Pros: All rolling statistics have same window size
- Cons: May need to truncate data depending on application due to missing data at edges

Date	y	mean	std
2020-02-12	23	NaN	NaN
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30	41.7	24.7
2020-02-16	25	25.7	4.04
2020-02-17	22	NaN	NaN

What about edge cases?

Date	y	mean	std
2020-02-12	23		
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30	41.7	24.7
2020-02-16	25	25.7	4.04
2020-02-17	22		

- What about edge cases?
- Option 2: Use smaller window at edges and don't center window

Date	y	mean	std
2020-02-12	23	26.5	4.95
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30	41.7	24.7
2020-02-16	25	25.7	4.04
2020-02-17	22	23.5	2.12

• Pro: No missing data

 Con: Statistics at edges are based on smaller sample sizes and asymmetric window, resulting in overfitting at the edges

Date	y	mean	std
2020-02-12	23	26.5	4.95
2020-02-13	30	41.0	25.4
2020-02-14	70	43.3	23.1
2020-02-15	30	41.7	24.7
2020-02-16	25	25.7	4.04
2020-02-17	22	23.5	2.12

Rolling statistics implementation

pandas.DataFrame.rolling

DataFrame. rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)

[source]

Provide rolling window calculations.

Parameters: window: int, offset, or BaseIndexer subclass

Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size.

If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes.

If a BaseIndexer subclass is passed, calculates the window boundaries based on the defined get_window_bounds method. Additional rolling keyword arguments, namely min_periods, center, and closed will be passed to get_window_bounds.

min_periods: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, *min_periods* will default to 1. Otherwise, *min_periods* will default to the size of the window.

center: bool, default False

Set the labels at the center of the window.

Rolling statistics implementation

```
df = pd.DataFrame(data=[23, 30, 70, 30, 25, 22], columns=['y'])
df.rolling(window=3, center=True).agg(['mean', 'std'])
                    У
       mean
                   std
        NaN
                  NaN
0
  41.000000 25.357445
  43.333333
             23.094011
   41.666667 24.664414
   25.666667
              4.041452
        NaN
                  NaN
5
```

Rolling statistics implementation

```
df = pd.DataFrame(data=[23, 30, 70, 30, 25, 22], columns=['y'])
df.rolling(window=3, center=True, min_periods=1).agg(['mean', 'std'])
                    У
                   std
       mean
0 26.500000
              4.949747
1 41.000000 25.357445
  43.333333
             23.094011
   41.666667 24.664414
   25.666667
              4.041452
5 23.500000
              2.121320
```

Returning to estimation methods

- Expected value, \hat{y}_t : Use the rolling mean
- Threshold, δ : Use the rolling standard deviation
- Recap: Values outside mean
 ± 3 × standard deviations can
 be considered outliers
- $|y_t \hat{y}_t| > \alpha \hat{\sigma}_t$ where $\alpha = 3$

