31251 – Data Structures and Algorithms Week 11, Autumn 2020

Xianzhi Wang

Everyone's gonna love this:

- Computational Complexity
- P
- NP
- NP-hardness and NP-completeness

Algorithmic to Computational Complexity

So far we've seen a variety of algorithms for problems.

• We can compare them via their asymptotic running time.

What about the problems themselves?

- An algorithm is but may not be the best solution.
- How can we get some idea of whether we're doing well with our algorithms?

We need some formalisation to talk about the complexity of problems.

Formalising Computational Problems

A (basic) computational problem consists of two parts:

- The input.
- The ouput.

SORT

Input: An array A of length n.

Output: An sorted array A' that contains the same elements as A and satisfies $\forall 1 \le i \le j \le n$, $A'[i] \le A'[j]$.

Formalising Computational Problems

The same computational problem can come in several varieties:

- Optimisation we want to find the best solution according to some optimisation criterion.
- Search we want to find any solution that solves the problem.
- Decision we just want to know if there is a solution.

We're interested in *decision* problems (what Turing Machines do).

Formalising Computational Problems

The decision version of sorting looks like:

SORT

Input: An array A of length n, two integers k, p.

Question: Is element A[k] at position p when A is put into

ascending order?

Are these always equivalent to the others?

The Complexity of a Problem

Now that we have at least some notion of a formal problem, we define what we mean by its complexity:

Definition

The complexity of a problem is the complexity of the (asymptotically) most efficient algorithm that correctly solves the problem.

- Most of the time, when we say "most efficient", we mean fastest.
- Any algorithm that solves the problem at least gives an upper bound – but we also need a lower bound to be precise.

Algorithms so far

Using Turing Machine, we can say things like:

- SORT has complexity $\Theta(n \log n)$.
- DEPTH FIRST SEARCH has complexity $\mathcal{O}(|V| + |E|)$.
- MINIMUM SPANNING TREE has complexity $\mathcal{O}(|E| \cdot \log |V|)$.
- SHORTEST PATH(S) has complexity $\mathcal{O}(|E| + |V| \log |V|)$.

These are fast, practical algorithms - we would like to group these together...

Definition (Polynomial-time or "P")

Given a decision problem Π , we say that Π is polynomial-time solvable, or $\Pi \in \mathbf{P}$, if and only if there exists a Turing Machine (\approx algorithm) \mathcal{A} such that for each instance I of Π the Turing Machine \mathcal{A} halts and correctly answers YES or No in time bounded by $\mathcal{O}(|I|^c)$ for a fixed $c \in \mathbb{N}$.

Alternatively, if we think of Π as a language, \mathcal{A} decides $I \in \Pi$ in polynomial time.

The Class **P** & the Cobham Edmonds Thesis

Cobham Edmonds Thesis

Computational problems can be feasibly computed on some computational device only if they can be computed in polynomial time.

- This is the basic rule-of-thumb that standard complexity theory works with.
- Why is this a reasonable thing to say?
 - A finite number of Yes/No decision problems.
 - Each solved in polynomial time.

$$c_1 O(|I|^{c_2}) = O(|I|^{c_2})$$

Excursion 1 - Measuring Things

- Problem size (|I|): the length of encoding of an instance over the input alphabet Σ of Turing Machine.
- We can reasonably assume $\Sigma=\{0,1\}$, so the encoding is in binary.
- But what does it mean when we start using |V| or |E|, or other measures for the complexity?
 - We can encode a graph in at most $\mathcal{O}(|V|^2 \log |V|)$ bits.
 - Why? Each node $\log |V|$; number of edges related to the node |V|; number of nodes |V|.
 - So |V| is within a polynomial factor of |I|, so it's "okay" to use it as a proxy of |I|.

Is Everything in **P**?

- So 'everything' we've seen so far is in P. Is everything in P?
- Of course not! We can easily make up problems that aren't, some things aren't even decidable!
- What about things that we might want to solve reasonably, but can't quite seem to get a polynomial-time algorithm?

Excursion 2 - Non-determinism

- Turing Machines can be non-deterministic.
- What does this mean?
 - A non-deterministic machine can guess cleverly to solve a problem (but we still have to check the solution).

- The class **P** is actually the class of problems that can be solved in polynomial time by a deterministic Turing Machine.
- What happens if we switch deterministic for non-deterministic?
- We get **NP**!

Non-deterministic Polynomial Time, or **NP**

Definition (NP)

Given a decision problem Π , we say that Π is non-deterministically polynomial-time solvable, or $\Pi \in \mathbf{NP}$, if and only if there exists a non-deterministic Turing Machine (\approx algorithm) \mathcal{A} such that for each instance I of Π the Turing Machine \mathcal{A} halts and correctly answers YES or No in time bounded by $\mathcal{O}(|I|^c)$ for a fixed $c \in \mathbb{N}$.

- Obviously P ⊆ NP just don't do any guessing.
- Do we get any more power from non-determinism (i.e., is $P \subset NP$?)
- We'll come to that later.

An Alternate Characterisation of **NP**

NP can also be thought of as the class of problems that we can verify in polynomial-time:

Definition (Polynomial-time verifiable.)

Given a decision problem Π , we say that Π is polynomial-time verifiable, if and only if there exists a deterministic Turing Machine (\equiv algorithm) $\mathcal A$ such that for each instance I of Π , with a witness W that I is a YES instance where $|W| \leq |I|^k$ for some $k \in \mathbb{N}$, the Turing Machine $\mathcal A$ halts and correctly answers whether the witness is correct in time bounded by $\mathcal O(|I|^c)$ for a fixed $c \in \mathbb{N}$.

i.e., given a solution, we can check if it is correct quickly. It turns out that this is the same as **NP**

Putting Things in **NP**

For example,

- SORT is NP check the final array in linear time.
- MINIMUM SPANNING TREE (MST) is NP - add up the weights of the solution and check.

But there are things that are in **NP** for which we don't know any polynomial-time algorithm.

NP Seems Bigger

It seems **NP** contains a 'lot more' than **P** - many problems that have no obvious **P**-time algorithm are in **NP**.

- No one knows whether P = NP or not though.
- The general appraisal is that P ≠ NP, but there is notable disagreement.

If we can't implement a non-deterministic algorithm, what is the point of **NP**?

 NP gives us a way to show that a problem has no polynomial-time algorithm unless P = NP.

Excursion 3 - Reducibility

Before we can say how hard things are, we need to be able to compare them. We do this via *polynomial-time many-one mapping reductions* (or ptime reductions, or Karp reductions):

Definition

Given two decision problems A and B, we say A is (ptime many-one) reducible to B (denoted by $A \leq_m B$) iff there exists a deterministic algorithm that maps an instance I_A to an instance I_B such that I_A is a YES-instance iff I_B is a YES-instance, where the algorithm runs in time $\mathcal{O}(|I_A|)$.

Suppose A is reducible to B. Then,

- *B* is "at least as hard as" *A*, up to some polynomial factor.
- if we can solve B in P-time, then we can solve A in P-time.

NP-hardness and **NP**-completeness

A problem Π' is **NP**-hard if every NP problem in NP can be reducible to Π' .

$$\forall \Pi' \in \mathbf{NP}, \exists \leq_m$$
, such that $\Pi' \leq_m \Pi$.

- If A is **NP**-hard and $A \leq_m B$, then B is also **NP**-hard.
- If Π is also in **NP**, then Π is **NP**-complete.

So the NP-complete problems are the 'hardest' problems in NP.

• If there's a polynomial time algorithm for any of them, then $\mathbf{P} = \mathbf{NP}$.

The Cook-Levin Theorem, or, SAT is **NP**-complete

The first **NP**-complete problem is Satisfiability (SAT):

SAT

Instance: A set of variables V and a set of clauses C over the literals of V (i.e. a CNF formula).

Question: Is there an assignment of TRUE and FALSE to V such that the entire formula evaluates to TRUE?

For example,

$$\neg B \land \neg C(A \lor C) \land (B \lor C)(A \lor C) \land (B \lor C)$$
$$A \land (B \lor D) \land (B \lor E).A \land (B \lor D) \land (B \lor E).$$

Theorem (Cook-Levin Theorem)

SAT is **NP**-complete.

And from there...

- \bullet Then from SAT , we can reduce to thousands of other problems.
- Meaning that they are all **NP**-complete:
 - Vertex Cover.
 - HITTING SET.
 - Dominating Set.
 - Independent Set.
 - CLIQUE.
 - Travelling Salesman Problem.
 - Graph Colouring.

What do we do with all this?

- So now we know that some things are NP-complete. What next?
- This gives strong evidence that looking for a polynomial-time algorithm is a waste of time.
- Even worse, lots of problems are **NP**-complete.
 - In comparison, there are very limited problems in P.
- We have to develop methods for coping with intractability.

Methods for Coping with Intractability

- Approximation often, we're happy with sub-optimal solutions.
- Randomisation maybe we get lucky most of the time.
- Heuristics and metaheuristic use what seems to work in practice.
- Relaxation sometimes exponential is better than polynomial.
- Build a different type of computer quantum computing?.