3. Präsenzübung – Logik

WS 2014/2015

Stand: 30.10.2014

Aufgabe 1

Sei $n \in \mathbb{N}$ und $\varphi_0, \dots, \varphi_n$ aussagenlogische Formeln. Zeigen Sie, dass

$$\bigwedge_{i=0}^{n} \varphi_i \models \bigvee_{i=0}^{n} \varphi_i$$

gilt.

Aufgabe 2

Sei Φ eine erfüllbare Formelmenge mit $\text{var}(\Phi) = \{X_1, \dots, X_n\}$. Zeigen Sie, dass folgende Aussagen äquivalent sind.

- (i) Für alle Formeln φ mit $var(\varphi) \subseteq var(\Phi)$ gilt $\Phi \models \varphi$ oder $\Phi \models \neg \varphi$.
- (ii) Es existiert genau eine Belegung β von $var(\Phi)$ mit $\beta \models \Phi$.

Aufgabe 3

Wandeln Sie

$$\varphi := (X \oplus Y) \oplus Z$$

in disjunktive und konjunktive Normalform um.

Aufgabe 4

Zeigen Sie mit struktureller Induktion, dass jede aussagenlogische Formel φ äquivalent ist zu einer Formel ohne \neg .