Honor code: I pledge on my honor that: I have completed all steps in the below homework on my own, I have not used any unauthorized materials while completing this homework, and I have not given anyone else access to my homework.

Kartik Bharadwaj Name and Signature

1. (1 point) Have you read and understood the honor code?

Solution: Yes

Concept: Projection

2. (2 points) Consider a matrix A and a vector \mathbf{b} which does not lie in the column space

of A. Let **p** be the projection of **b** on to the column space of A. If $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$ and

$$\mathbf{p} = \begin{bmatrix} 4 \\ 1 \\ 11 \\ 8 \end{bmatrix}, \text{ find } \mathbf{b}.$$

Solution: We know that $A^T \mathbf{e} = 0$ where $\mathbf{e} = \mathbf{b} - \mathbf{p}$. Using this fact, we will find all $\mathbf{e} \in \mathcal{N}(A^T)$. By adding \mathbf{e} to \mathbf{p} , we will get \mathbf{b} .

$$A^T \mathbf{e} = 0$$

Getting the RREF of A^T ,

$$RREF = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

Getting **e** by using RREF form $R = \begin{bmatrix} I & F \end{bmatrix}$,

$$\mathbf{e} = m \begin{bmatrix} -3\\1\\1\\0 \end{bmatrix} + n \begin{bmatrix} -2\\0\\0\\1 \end{bmatrix}$$
 $(m, n \in \mathbb{R})$

Hence,

$$\mathbf{b} = \mathbf{p} + \mathbf{e}$$

$$\mathbf{b} = \begin{bmatrix} 4\\1\\11\\8 \end{bmatrix} + m \begin{bmatrix} -3\\1\\1\\0 \end{bmatrix} + n \begin{bmatrix} -2\\0\\0\\1 \end{bmatrix}$$

- 3. (2 points) Consider the following statement: Two vectors \mathbf{b}_1 and \mathbf{b}_2 cannot have the same projection \mathbf{p} on the column space of A.
 - (a) Give one example where the above statement is True.

Solution: Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$$
. Let $b_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ and $b_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

Then, our projection matrix is,

$$P = A(A^{T}A)^{-1}A^{T}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}^{T} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix})^{-1} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{6} & \frac{5}{6} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Projection of vector b_1 onto the C(A) is,

$$p_{1} = Pb_{1}$$

$$p_{1} = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{6} & \frac{5}{6} & \frac{-1}{3} \\ \frac{1}{3} & \frac{-1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 3\\1\\2 \end{bmatrix}$$

$$p_1 = \begin{bmatrix} \frac{10}{3} \\ \frac{2}{3} \\ \frac{4}{3} \end{bmatrix}$$

Projection of vector b_2 onto the C(A) is,

$$p_{2} = Pb_{2}$$

$$p_{2} = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{6} & \frac{5}{6} & \frac{-1}{3} \\ \frac{1}{3} & \frac{-1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$p_2 = \begin{bmatrix} \frac{7}{6} \\ -1 \\ \frac{2}{3} \end{bmatrix}$$

Here, we see that $p_1 \neq p_2$.

(b) Give one example where the above statement is False.

Solution: Let
$$b_1 = \begin{bmatrix} 0.5 \\ 1.5 \\ 0 \end{bmatrix}$$
 and $b_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.

Projection of vector b_1 onto the C(A) is,

$$p_{1} = Pb_{1}$$

$$p_{1} = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{6} & \frac{5}{6} & \frac{-1}{3} \\ \frac{1}{3} & \frac{-1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0.5 \\ 1.5 \\ 0 \end{bmatrix}$$

$$p_1 = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{3} \\ \frac{-1}{3} \end{bmatrix}$$

Projection of vector b_2 onto the C(A) is,

$$p_{2} = Pb_{2}$$

$$p_{2} = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{6} & \frac{5}{6} & \frac{-1}{3} \\ \frac{1}{3} & \frac{-1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$p_2 = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{3} \\ \frac{-1}{3} \end{bmatrix}$$

Here, we see that $p_1 = p_2$.

(c) Based on the above examples, state the generic condition under which the above statement will be True or False.

Solution: Given two vectors b_1 and b_2 , let the difference between the two vectors be represented by $d = b_1 - b_2$. If $d \in \mathcal{N}(A^T)$, then projections of b_1 and b_2 onto the $\mathcal{C}(A)$ will be the same and the condition mentioned in the question will be False.

Alternatively, if $d \notin \mathcal{N}(A^T)$, then projections of b_1 and b_2 onto the $\mathcal{C}(A)$ will be different and the condition mentioned in the question will be True.

4. (2 points) (a) Find the projection matrix P_1 that projects onto the line through $\mathbf{a} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and also the matrix P_2 that projects onto the line perpendicular to \mathbf{a} .

Solution: For projection matrix P_1 ,

$$P_{1} = \frac{\mathbf{a}\mathbf{a}^{T}}{\mathbf{a}^{T}\mathbf{a}}$$

$$= \frac{\begin{bmatrix} 1\\3 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix}}{\begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 1\\3 \end{bmatrix}}$$

$$= \frac{\begin{bmatrix} 1 & 3\\3 & 9 \end{bmatrix}}{10}$$

$$= \begin{bmatrix} \frac{1}{10} & \frac{3}{10} \\ \frac{3}{10} & \frac{9}{10} \end{bmatrix}$$

The line $\mathbf{b} \perp \mathbf{a}$ will satisfy the condition: $\mathbf{b}^T \mathbf{a} = \mathbf{a}^T \mathbf{b} = 0$. Hence, $\mathbf{b} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$.

For projection matrix P_2 ,

$$P_{2} = \frac{\mathbf{b}\mathbf{b}^{T}}{\mathbf{b}^{T}\mathbf{b}}$$

$$= \frac{\begin{bmatrix} -3\\1 \end{bmatrix} \begin{bmatrix} -3&1 \end{bmatrix}}{\begin{bmatrix} -3&1 \end{bmatrix}} \begin{bmatrix} -3\\1 \end{bmatrix}$$

$$= \frac{\begin{bmatrix} 9&-3\\-3&1 \end{bmatrix}}{10}$$

$$= \begin{bmatrix} \frac{9}{10} & \frac{-3}{10} \\ \frac{-3}{10} & \frac{1}{10} \end{bmatrix}$$

(b) Compute $P_1 + P_2$ and P_1P_2 and explain the result.

Solution:

$$P_1 + P_2 = \frac{\mathbf{a}\mathbf{a}^{\mathbf{T}}}{\mathbf{a}^{\mathbf{T}}\mathbf{a}} + \frac{\mathbf{b}\mathbf{b}^{\mathbf{T}}}{\mathbf{b}^{\mathbf{T}}\mathbf{b}}$$

$$= \begin{bmatrix} \frac{1}{10} & \frac{3}{10} \\ \frac{3}{10} & \frac{9}{10} \end{bmatrix} + \begin{bmatrix} \frac{9}{10} & \frac{-3}{10} \\ \frac{-3}{10} & \frac{1}{10} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

For P_1P_2 ,

$$\begin{split} P_1 P_2 &= \frac{\mathbf{a} \mathbf{a}^T \mathbf{a}}{\mathbf{a}^T \mathbf{a}} \frac{\mathbf{b} \mathbf{b}^T}{\mathbf{b}^T \mathbf{b}} \\ &= \frac{\mathbf{a} \mathbf{a}^T \mathbf{b} \mathbf{b}^T}{(\mathbf{a}^T \mathbf{a})(\mathbf{b}^T \mathbf{b})} \\ &= 0 \qquad \qquad (\text{Since } \mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a} = 0 \text{ i.e., } \mathbf{a} \perp \mathbf{b}.) \end{split}$$

For two vectors **a** and **b**, the above result tells us that if **a** \perp **b**, then their respective projection matrices P_1 and P_2 are also perpendicular. Also, projection matrices that sum to identity matrix are orthogonal to each other. In other words, $C(P_1) \perp C(P_2)$.

Concept: Dot product of vectors

5. (1 point) Consider two vectors \mathbf{u} and \mathbf{v} . Let θ be the angle between these two vectors. Prove that

$$cos\theta = \frac{\mathbf{u}^{\top}\mathbf{v}}{||\mathbf{u}||_2||\mathbf{v}||_2}$$

Solution: Let vector $u = \begin{bmatrix} \mathbf{u_1} \\ \mathbf{u_2} \end{bmatrix}$ and $v = \begin{bmatrix} \mathbf{v_1} \\ \mathbf{v_2} \end{bmatrix}$ make an angle α and β respectively with the x-axis where $\beta > \alpha$ or $\beta - \alpha = \theta$.

Hence, $\sin \alpha = \frac{\mathbf{u_2}}{||\mathbf{u}||_2}$ and $\cos \alpha = \frac{\mathbf{u_1}}{||\mathbf{u}||_2}$. Also, $\sin \beta = \frac{\mathbf{v_2}}{||\mathbf{v}||_2}$ and $\cos \beta = \frac{\mathbf{v_1}}{||\mathbf{v}||_2}$.

Now,

$$\theta = \beta - \alpha$$

Multiplying throughout the equation by cos,

$$\cos \theta = \cos(\beta - \alpha)$$

$$\cos \theta = \cos \beta \cos \alpha + \sin \beta \sin \alpha$$

$$\cos \theta = \frac{\mathbf{v_1}}{||\mathbf{v}||_2} \frac{\mathbf{u_1}}{||\mathbf{u}||_2} + \frac{\mathbf{v_2}}{||\mathbf{v}||_2} \frac{\mathbf{u_2}}{||\mathbf{u}||_2}$$

$$\cos \theta = \frac{\mathbf{v_1} \mathbf{u_1} + \mathbf{v_2} \mathbf{u_2}}{||\mathbf{v}||_2 ||\mathbf{u}||_2}$$

$$\cos \theta = \frac{\mathbf{u}^{\mathsf{T}} \mathbf{v}}{||\mathbf{u}||_2 ||\mathbf{v}||_2}$$

Concept: Vector norms

6. (1 point) The L_p -norm of a vector $\mathbf{x} = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n$ is defined as:

$$||\mathbf{x}||_p = (|x_1|^p + |x_2|^p + |x_3|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$

(a) Prove that $||\mathbf{x}||_{\infty} = \max_{1 \leq i \leq n} |x_i|$

Solution: Let's assume that $x_1 = \max\{|x_1|, |x_2|, |x_3|, \cdots, |x_n|\}$.

$$||\mathbf{x}||_{\infty} = \lim_{p \to \infty} (|x_1|^p + |x_2|^p + |x_3|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$

$$= \lim_{p \to \infty} \sqrt[p]{|x_1|^p + |x_2|^p + |x_3|^p + \dots + |x_n|^p}$$

$$= \lim_{p \to \infty} \sqrt[p]{|x_1|^p \left(1 + \frac{|x_2|^p}{|x_1|^p} + \frac{|x_3|^p}{|x_1|^p} + \dots + \frac{|x_n|^p}{|x_1|^p}\right)}$$

$$= \lim_{p \to \infty} \sqrt[p]{|x_1|^p \left(1 + \left(\frac{|x_2|}{|x_1|}\right)^p + \dots + \left(\frac{|x_n|}{|x_1|}\right)^p\right)}$$

Since $|x_1|$ is the maximum value, $\left(\frac{|x_i|}{|x_1|}\right) \leq 1$. Also, as $p \to \infty$, $\left(\frac{|x_i|}{|x_1|}\right)^p \to 0$.

$$= \lim_{p \to \infty} \sqrt[p]{|x_1|^p \cdot 1}$$
$$= |x_1|$$
$$= \max_{1 \le i \le n} |x_i|$$

(b) True or False (explain with reason): $||\mathbf{x}||_0$ is a norm.

Solution: False.

$$||\mathbf{x}||_0 = (|x_1|^0 + |x_2|^0 + |x_3|^0 + \dots + |x_n|^0)^{\frac{1}{0}}$$

Assuming x_1, x_2, \dots, x_n are non-zero, $|x_i|^0 = 1$.

$$=(n)^{\frac{1}{0}}$$

The above equation is not defined for the zeroth-root. Hence, $||\mathbf{x}||_0$ is not a norm.

Concept: Orthogonal/Orthonormal vectors and matrices

- 7. (1 point) Consider the following questions:
 - (a) Construct a 2×2 matrix, such that all its entries are +1 and -1 and its columns are orthogonal.

Solution:
$$\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

(b) Now, construct a 4×4 matrix, such that all its entries are +1 and -1, its columns are orthogonal and it contains the above matrix within it.

8. (1 point) Consider the vectors
$$\mathbf{a} = \begin{bmatrix} 4 \\ 5 \\ 2 \\ 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$

(a) What multiple of **a** is closest to **b**?

$$\mathbf{p} = \frac{\mathbf{a}\mathbf{a}^{\mathsf{T}}}{\mathbf{a}^{\mathsf{T}}\mathbf{a}}\mathbf{b}$$

$$\mathbf{p} = \frac{\begin{bmatrix} 4\\5\\2\\2\\2 \end{bmatrix} \begin{bmatrix} 4 & 5 & 2 & 2 \end{bmatrix}}{\begin{bmatrix} 4 & 5 & 2 & 2 \end{bmatrix}} \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}$$

$$\begin{bmatrix} 4\\5\\2\\2 \end{bmatrix}$$

$$\mathbf{p} = \frac{\begin{bmatrix} 16 & 20 & 8 & 8\\20 & 25 & 10 & 10\\8 & 10 & 4 & 4\\8 & 10 & 4 & 4 \end{bmatrix}}{\begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}}$$

$$\mathbf{p} = \frac{\begin{bmatrix} 56\\70\\28\\28 \end{bmatrix}}{49}$$

Since $\mathbf{p} = \mathbf{\hat{x}a}$,

$$\mathbf{p} = \hat{\mathbf{x}} \begin{bmatrix} 4\\5\\2\\2 \end{bmatrix} = \begin{bmatrix} \frac{8}{7}\\\frac{10}{7}\\4\\\frac{4}{7} \end{bmatrix}$$

Hence, the multiple $\hat{\mathbf{x}} = \frac{2}{7}$ for which the above equation holds.

(b) Find orthonormal vectors $\mathbf{q_1}$ and $\mathbf{q_2}$ that lie in the plane formed by \mathbf{a} and \mathbf{b} ?

Solution: Let $\mathbf{a_1} = a$ and $\mathbf{a_2} = b$. Let us retain $\mathbf{a_1}$ as the first orthogonal vector. Then, $\hat{\mathbf{a_1}} = a_1$. Let \mathbf{p} be the component of $\mathbf{a_2}$ along a_1 . Let \mathbf{e} be the component of $\mathbf{a_2}$ orthogonal to a_1 . We want to delete \mathbf{p} and retain \mathbf{e} . We have

the projection \mathbf{p} from the previous question. Therefore,

$$\hat{\mathbf{a_2}} = \mathbf{e} = \mathbf{a_2} - \mathbf{p}$$

$$\hat{\mathbf{a_2}} = \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix} - \begin{bmatrix} \frac{8}{7}\\\frac{10}{7}\\\frac{4}{7}\\\frac{4}{7} \end{bmatrix}$$

$$\hat{\mathbf{a_2}} = \begin{bmatrix} \frac{-1}{7} \\ \frac{4}{7} \\ \frac{-4}{7} \\ \frac{-4}{7} \end{bmatrix}$$

After normalizing $\hat{\mathbf{a_1}}$ and $\hat{\mathbf{a_2}}$, we get $\mathbf{q_1} = \begin{bmatrix} \frac{4}{7} \\ \frac{5}{7} \\ \frac{2}{7} \\ \frac{2}{7} \end{bmatrix}$ and $\mathbf{q_2} = \begin{bmatrix} -1 \\ 7 \\ \frac{4}{7} \\ -4 \\ \hline 7 \\ -4 \\ \hline \end{bmatrix}$ nt) Suppose

9. (1 point) Suppose $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ are orthogonal vectors. Prove that they are also independent.

Solution: We know that $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ are orthogonal. To prove they are all independent, we have to show that only for $c_1 = c_2 = \cdots = c_k = 0$ in the following

equation:

$$0 = c_1 \mathbf{a_1} + c_2 \mathbf{a_2} + \dots + c_n \mathbf{a_n}$$

Compute the dot product of $\mathbf{a_i^T}$ throughout the equation for $i = 1, 2, \dots, n$.

$$0 = c_1 \mathbf{a_i^T} \mathbf{a_1} + c_2 \mathbf{a_i^T} \mathbf{a_2} + \dots + c_n \mathbf{a_i^T} \mathbf{a_n}$$

Since $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ are orthogonal vectors, $\mathbf{a_i^T a_j} = 0$ for $i \neq j$. Hence,

$$0 = c_i \mathbf{a_i^T a_i}$$

 $0 = c_i \|\mathbf{a}_i\|^2$
 $c_i = 0$ (Since $\mathbf{a_i}$ is a non-zero vector, $\|\mathbf{a}_i\| > 0$)

Since $c_i = 0$ for i = 1, 2, ..., n, vectors $\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}$ are orthogonal and independent to each other.

10. (1 point) If Q_1 and Q_2 are orthogonal matrices, show that their product Q_1Q_2 is also an orthogonal matrix.

Solution: Let Q_1 and Q_2 be two $n \times n$ matrices where $Q_1 = \begin{bmatrix} Q_{11} & Q_{12} & \cdots & Q_{1n} \end{bmatrix}$

and $Q_2 = \begin{bmatrix} Q_{21} & Q_{22} & \cdots & Q_{2n} \end{bmatrix}$. Here, Q_{11} to Q_{1n} are columns of Q_1 and Q_{21} to Q_{2n} are columns of Q_2 . Then,

$$Q_1Q_2 = \begin{bmatrix} Q_{11} & Q_{12} & \cdots & Q_{1n} \end{bmatrix} \begin{bmatrix} Q_{21} & Q_{22} & \cdots & Q_{2n} \end{bmatrix}$$

Since each column of Q_2 will linearly combine columns of Q_1 to give the respective column of Q_1Q_2 ,

$$Q_1 Q_2 = \begin{bmatrix} (\sum_{i=1}^n Q_{1i}) Q_{21} & (\sum_{i=1}^n Q_{1i}) Q_{22} & \cdots & (\sum_{i=1}^n Q_{1i}) Q_{2n} \end{bmatrix}$$

$$Q_1 Q_2 = \begin{bmatrix} C_1 & C_2 & \cdots & C_n \end{bmatrix}$$

where $C_j = (\sum_{i=1}^n Q_{1i})Q_{2j}$ for j = 1, 2, ..., n. For Q_1Q_2 to be an orthogonal matrix, columns of Q_1Q_2 must be orthogonal to each other. We will show that $C_r \perp C_s$ for r, s = 1, 2, ..., n and $r \neq s$.

$$C_1^T C_2 = \left(\left(\sum_{i=1}^n Q_{1i} \right) Q_{21} \right)^T \left(\sum_{i=1}^n Q_{1i} \right) Q_{22}$$

$$= \left(Q_{21}^T \left(\sum_{i=1}^n Q_{1i} \right)^T \left(\sum_{i=1}^n Q_{1i} \right) Q_{22} \right)$$

$$= \left(Q_{21}^T \left(Q_{11}^T + Q_{12}^T + \dots + Q_{1n}^T \right) \left(Q_{11} + Q_{12} + \dots + Q_{1n} \right) Q_{22} \right)$$

Since columns of Q_1 are orthogonal, $Q_{1r} \perp Q_{1s} = Q_{1r}^T Q_{1s} = 0$ for r, s = 1, 2, ..., n and $r \neq s$.

$$= (Q_{11}^T (Q_{11}^T Q_{11} + Q_{12}^T Q_{12} + \dots + Q_{1n}^T Q_{1n}) Q_{22})$$

Since for any vector x, $x^T x = ||x||_2^2$,

$$= (Q_{21}^T(||Q_{11}||_2^2 + ||Q_{12}||_2^2 + \dots + ||Q_{1n}||_2^2)Q_{22})$$

$$= \sum_{i=1}^n ||Q_{1i}||_2^2 (Q_{21}^T Q_{22})$$

Since columns of Q_2 are orthogonal, $Q_{2r} \perp Q_{2s} = Q_{2r}^T Q_{2s} = 0$ for r, s = 1, 2, ..., n and $r \neq s$.

$$= \left(\sum_{i=1}^{n} ||Q_{1i}||_{2}^{2}\right) \cdot 0$$
$$= 0$$

Hence, columns of Q_1Q_2 are orthogonal, thereby, making Q_1Q_2 an orthogonal matrix.

Concept: Determinants

11. (2 points) A tri-diagonal matrix is a matrix which has 1's on the main diagonal as well as on the diagonals to the left and right of the main diagonal. For example,

$$A_4 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Let A_n be an $n \times n$ tri-diagonal matrix. Prove that $|A_n| = |A_{n-1}| - |A_{n-2}|$

Solution: To prove the above equation, we will use a basic fact: Every determinant can be written as a linear combination of any row i times its co-factors.

Let $D_i = det(A_i)$ for an $i \times i$ matrix.

Without loss of generality,

$$D_{0} = 1$$

$$D_{1} = a_{1}$$

$$D_{2} = det\left(\begin{bmatrix} a_{2} & b_{1} \\ c_{1} & a_{1} \end{bmatrix}\right) = a_{2}a_{1} - b_{1}c_{1} = a_{2}D_{1} - b_{1}c_{1}D_{0}$$

$$D_{3} = det\left(\begin{bmatrix} a_{3} & b_{2} & 0 \\ c_{2} & a_{2} & b_{1} \\ 0 & c_{1} & a_{1} \end{bmatrix}\right) = a_{3}D_{2} - b_{2}c_{2}a_{1} = a_{3}D_{2} - b_{2}c_{2}D_{1}$$

$$D_{4} = det\left(\begin{bmatrix} a_{4} & b_{3} & 0 & 0 \\ c_{3} & a_{3} & b_{2} & 0 \\ 0 & c_{2} & a_{2} & b_{1} \\ 0 & 0 & c_{1} & a_{1} \end{bmatrix}\right) = a_{4}D_{3} - b_{3}c_{3}(a_{2}a_{1} - b_{1}c_{1}) = a_{4}D_{3} - b_{3}c_{3}D_{2}$$

$$D_{5} = det\left(\begin{bmatrix} a_{5} & b_{4} & 0 & 0 & 0 \\ c_{4} & a_{4} & b_{3} & 0 & 0 \\ 0 & c_{3} & a_{3} & b_{2} & 0 \\ 0 & 0 & c_{2} & a_{2} & b_{1} \\ 0 & 0 & 0 & c_{1} & a_{1} \end{bmatrix}\right) = a_{5}D_{4} - b_{4}c_{4}D_{3}$$

Using the structure of a tri-diagonal matrix, we see a pattern here. For a $n \times n$ matrix, $D_n = a_n D_{n-1} - b_{n-1} c_{n-1} D_{n-2}$. In our tri-diagonal matrix A, $a_1 = b_1 = c_1 = 1$.

Therefore, $D_n = D_{n-1} - D_{n-2}$.

Another way to look at this is using block determinants.

Let
$$A_n = \begin{bmatrix} A_{n-1} & u \\ v & a_1 \end{bmatrix}$$
 where $u = [0, 0, 0, \dots, b_1]^T$ is a $(n-1) \times 1$ vector and $v = [0, 0, 0, \dots, c_1]^T$ is a $(n-1) \times 1$ vector. Then, by using formula for determinant of block matrices,

$$det(A_n) = det(A_{n-1}) \times det(a_1 - v(A_{n-1})^{-1}u)$$

$$det(A_n) = det(A_{n-1}) \times (a_1 - b_1c_1(A_{n-1})^{-1})$$
(1)

Using
$$A^{-1} = \frac{C^T}{\det(A)}$$
 and $\det(C^T) = \det(C)$,

$$\therefore (A_{n-1})_{i,i}^{-1} = \frac{(-1)^{i+i} \det(A_{n-2})}{\det(A_{n-1})} = \frac{\det(A_{n-2})}{\det(A_{n-1})}$$
(2)

Using (2) in (1), we get

$$det(A_n) = det(A_{n-1}) \times (a_1 - b_1 c_1 \frac{\det(A_{n-2})}{\det(A_{n-1})})$$
$$det(A_n) = a_1 det(A_{n-1}) - b_1 c_1 \det(A_{n-2})$$

In our tri-diagonal matrix A, $a_1 = b_1 = c_1 = 1$. Therefore, $det(A_n) = det(A_{n-1}) - det(A_{n-2})$.

12. (1 point) State True or False and explain your answer: det(A+B) = det(A) + det(B)

Solution: False.

Property 2 says that we can add two determinants only one row at a time with all except the added row being the same in both same matrices. This is different from finding the determinant of matrix A + B where addition of two matrices adds all the rows at once. Therefore, $det(A + B) \neq det(A) + det(B)$.

For instance, let's take an example of a 2×2 matrix. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} e & f \\ q & h \end{bmatrix}$.

Hence, $A + B = \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix}$. Since det(A) = ad - bc and det(B) = eh - gf, we claim that det(A) + det(B) = (ad + eh) - (bc + gf).

$$det(A+B) = \begin{vmatrix} a+e & b+f \\ c+g & d+h \end{vmatrix}$$

$$= \begin{vmatrix} a & b \\ c+g & d+h \end{vmatrix} + \begin{vmatrix} e & f \\ c+g & d+h \end{vmatrix}$$
 (Property 3b)
$$= \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a & b \\ g & h \end{vmatrix} + \begin{vmatrix} e & f \\ c & d \end{vmatrix} + \begin{vmatrix} e & f \\ g & h \end{vmatrix}$$
 (Property 3b)
$$= (ad-bc) + (ah-bg) + (ed-cf) + (eh-gf)$$

$$= (ad+ah+ed+eh) - (bc+bg+cf+gf)$$

$$\neq (ad+eh) - (bc+gf)$$

$$\neq det(A) + det(B)$$

- 13. (1 point) This question is about properties 9 and 10 of determinants.
 - (a) Prove that det(AB) = det(A)det(B)

Solution: We know that det(EA) = det(E)det(A). This is because:

- 1. Let E be an elementary matrix performing row exchange on I. Then, matrix EA is the result of row exchange of the corresponding two rows of A. Then, det(EA) = (-1) det(A), where det(E) = -1.
- 2. Let E be an elementary matrix obtained by multiplying nonzero scalar k to the entries of a row of I. Then, EA results in a matrix where entries of a specific row of A is scaled by k. Then, det(EA) = kdet(A), since det(E) = det(kI) = kdet(I) = k.
- 3. Let E be an elementary matrix which scales one row of I and adds it to another row of I. Then, matrix EA results in adding a multiple of a row of A to another row of A. Then, det(EA) = det(A), since scaled addition of one row to another preserves value of determinant.

There are two scenarios which we would like to prove: A is invertible, and A is not invertible.

 $\mathbf{Part}(\mathbf{a})$: First, let's assume that A is invertible. Then, Gauss-Jordan of A tells us that:

$$A = E_n E_{n-1} \cdots E_1$$

$$det(A) = det(E_n E_{n-1} \cdots E_1)$$
 (Taking determinant on both sides)
$$det(A) = det(E_n) det(E_{n-1}) \cdots det(E_1)$$
 (:: $det(EA) = det(E) det(A)$)

Now, let's claim that,

$$det(AB) = det(E_n E_{n-1} \cdots E_1 B)$$

$$det(AB) = det(E_n) det(E_{n-1}) \cdots det(E_1) det(B) \quad (\because det(EA) = det(E) det(A))$$

$$det(AB) = det(E_n E_{n-1} \cdots E_1) det(B)$$

$$det(AB) = det(A) det(B)$$

Part(b): Now, assume that A is not invertible. Then, det(A) = 0. Also, det(AB) = 0 since matrix AB is linear combination of columns of A, thereby, making matrix AB singular. Hence, det(AB) = det(A)det(B) = 0.

(b) (2 points) Prove that $det(A^{\top}) = det(A)$

Solution: We know that det(EA) = det(E)det(A). Also, using Property 7, $det(E^T) = det(E)$.

Gauss-Jordan of A gives the following:

$$A = E_n E_{n-1} \cdots E_1$$

$$det(A) = det(E_n E_{n-1} \cdots E_1)$$
 (Taking determinant on both sides)

Since det(EA) = det(E)det(A),

$$det(A) = det(E_n)det(E_{n-1})\cdots det(E_1)$$
(1)

Now, for A^T ,

$$A^{T} = (E_{n}E_{n-1} \cdots E_{1})^{T}$$

$$A^{T} = E_{1}^{T}E_{2}^{T} \cdots E_{n}^{T}$$

$$det(A^{T}) = det(E_{1}^{T}E_{2}^{T} \cdots E_{n}^{T}) \qquad \text{(Taking determinant on both sides)}$$

$$det(A^{T}) = det(E_{1}^{T})det(E_{2}^{T}) \cdots det(E_{n}^{T}) \qquad (\because det(EA) = det(E)det(A))$$

$$det(A^{T}) = det(E_{1})det(E_{2}) \cdots det(E_{n}) \qquad (\because det(E^{T}) = det(E))$$

$$det(A^{T}) = det(A) \qquad \text{(From (1))}$$

- 14. (1 point) Let $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$.
 - (a) Find the area of the triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}$

Solution: For a 2×2 matrix A in the 2D plane, det(A) is equal to the area of a parallelogram made by two vectors emerging from the same vertex. These two vectors make up the columns of the matrix A. Hence,

$$A = \begin{bmatrix} u & v \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$

$$det(A) = \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix}$$

$$det(A) = 12 - 2 = 10$$

$$(det(A) = ad - bc)$$

Therefore, Area of triangle = $\frac{det(A)}{2} = 5$.

(b) Find the area of the triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{u} - \mathbf{v}$

Solution: Same as above, Area of triangle $=\frac{det(A)}{2}=5$, since the parallelogram is made by the two vectors emerging from the same vertex.

15. (2 points) The determinant of the following matrix can be computed as a sum of 120 (5!) terms.

$$A = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{bmatrix}$$

State true or false with an appropriate explanation: All the 120 terms in the determinant will be 0.

Solution: True.

We know that,

$$det(\text{matrix}_{n \times n}) = \sum_{P \in n! \text{ Permutations}} a_{1\alpha} a_{1\beta} \cdots a_{1\omega} \ det(P)$$

where $\{\alpha, \beta, \dots, \omega\}$ = some permutation of $\{1, 2, 3, \dots, n\}$

$$det(\text{matrix}_{n \times n}) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$
(1)

Using (1), $det(\text{matrix}_{3\times3}) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$. Since each co-factor is made up of two terms, the determinant for a 3 × 3 matrix can be calculated using only 3 co-factors. Similarly, number of co-factors for $n \times n$ is $\frac{n!}{2}$. Therefore, for a 5 × 5 matrix, there are 120 terms or 60 co-factors in its determinant. If we prove all 60 co-factors are 0, then all 120 terms are zero too.

$$det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14} + a_{15}C_{15}$$

$$det(A) = xC_{11} + xC_{12} + xC_{13} + xC_{14} + xC_{15}$$
(2)

We can say more about these co-factors. The determinant of each co-factor is made up of combination of its own co-factors. For instance,

$$det(C_{11}) = a_{22}C_{22} + a_{23}C_{23} + a_{24}C_{24} + a_{25}C_{25}$$
$$det(C_{11}) = xC_{22} + xC_{23} + xC_{24} + xC_{25}$$

Similarly, for $det(C_{22})$,

$$det(C_{22}) = a_{33}C_{33} + a_{34}C_{34} + a_{35}C_{35}$$
$$det(C_{22}) = 0C_{33} + xC_{34} + xC_{35}$$

Similarly, for $det(C_{33})$,

$$det(C_{33}) = a_{44}C_{44} + a_{45}C_{45}$$
$$det(C_{33}) = xC_{44} + xC_{45}$$

Since $C_{44} = x$ and $C_{45} = -x$,

$$det(C_{33}) = x(x) + x(-x)$$
$$det(C_{33}) = 0$$

What does this continuous train of determinant of co-factors tell us? It tells us that each of the co-factors in (2) is made of 12 smaller co-factors. The determinant of smaller co-factors (here, it is the 2×2 matrix at the bottom right corner) affects the determinant of its parent co-factors. Therefore, all co-factors in (2) is made up of combination of permutations of 2×2 co-factors in the last two rows. If we can prove that the determinant of all permutations of 2×2 co-factors in the last two rows is 0, then all combinations of permutations of these 2×2 co-factors which make up the parent co-factors will also be zero.

The last two rows of A consist of only two distinct columns $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} x \\ x \end{bmatrix}$. Therefore, there are only 3 distinct type of 2×2 co-factors which could be made from the two distinct columns. They are:

$$\det\begin{pmatrix} \begin{bmatrix} 0 & x \\ 0 & x \end{bmatrix} \end{pmatrix} = 0$$
 (Property 6)
$$\det\begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} = 0$$
 (Property 4, 6)
$$\det\begin{pmatrix} \begin{bmatrix} x & x \\ x & x \end{bmatrix} \end{pmatrix} = 0$$
 (Property 4)

Combination of any of the above co-factors make the determinant of parent co-factor equal to 0. This means that the determinant of all 12 co-factors for each of the parent co-factor in (2) is 0, thereby, making determinant of all parent co-factors in (2) equal to zero. Since all 60 (5×12) co-factors are zero, all 120 terms are equal to 0.