$\begin{array}{c} \text{Kyle Kondrat} \\ \text{MATH 572} \\ \text{HW}\#1 \\ 02/02/2016 \end{array}$

Problem #1

a)

Starting from the Taylor expansions of u(x), (x+h), u(x-h), u(x+2h), u(x-2h); for u(x) the expansion is u(x), for u(x+h) about x

$$u(x+h) = u(x) + hu'(x) + \frac{h^2u''(x)}{2} + \frac{h^3u'''(x)}{6} + \frac{h^4u''''(x)}{24},$$
(1)

for u(x-h) about x

$$u(x+h) = u(x) - hu'(x) + \frac{h^2u''(x)}{2} - \frac{h^3u'''(x)}{6} + \frac{h^4u''''(x)}{24},$$
(2)

for u(x+2h) about x

$$u(x+2h) = u(x) + 2hu'(x) + \frac{4h^2u''(x)}{2} + \frac{8h^3u'''(x)}{6} + \frac{16h^4u''''(x)}{24},$$
(3)

and for u(x-2h) about x

$$u(x+2h) = u(x) - 2hu'(x) + \frac{4h^2u''(x)}{2} - \frac{8h^3u'''(x)}{6} + \frac{16h^4u''''(x)}{24}.$$
 (4)

$$\begin{bmatrix} u(x-2h) & u(x-h) & u(x) & u(x+h) & u(x+2h) \end{bmatrix}$$

$$\begin{bmatrix} u(x) & u(x) & u(x) & u(x) & u(x) \\ -2hu'(x) & -hu'(x) & 0 & hu'(x) & 2hu'(x) \\ \frac{4h^2u''(x)}{2} & \frac{h^2u''(x)}{2} & 0 & \frac{h^2u''(x)}{2} & \frac{4h^2u''(x)}{2} \\ -\frac{8h^3u'''(x)}{6} & -\frac{h^3u'''(x)}{24} & 0 & \frac{h^3u''(x)}{24} & \frac{8h^3u'''(x)}{6} \\ \frac{16h^4u'''(x)}{24} & \frac{h^4u'''(x)}{24} & 0 & \frac{h^4u'''(x)}{24} & \frac{16h^4u'''(x)}{24} \end{bmatrix},$$

$$(5)$$

Now we can set up the 5×5 Vandermonde Matrix from the coefficients in the matrix above

$$V = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -2h & -1h & 0 & 1h & 2h \\ \frac{4}{2}h^2 & \frac{1}{2}h^2 & 0 & \frac{1}{2}h^2 & \frac{4}{2}h^2 \\ -\frac{8}{6}h^3 & -\frac{1}{6}h^3 & 0 & \frac{1}{6}h^3 & \frac{8}{6}h^3 \\ \frac{16}{24}h^4 & \frac{1}{24}h^4 & 0 & \frac{1}{24}h^4 & \frac{16}{24}h^4 \end{bmatrix}$$
 (6)

and from Eqn. 6 we can set up the Vandermonde system to solve for the coefficients

$$V \cdot C = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -2h & -1h & 0 & 1h & 2h \\ \frac{4}{2}h^2 & \frac{1}{2}h^2 & 0 & \frac{1}{2}h^2 & \frac{4}{2}h^2 \\ -\frac{8}{6}h^3 & -\frac{1}{6}h^3 & 0 & \frac{1}{6}h^3 & \frac{8}{6}h^3 \\ \frac{16}{24}h^4 & \frac{1}{24}h^4 & 0 & \frac{1}{24}h^4 & \frac{16}{24}h^4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$
 (7)

From the Vandermonde system we get a system of equations to solve

$$\begin{cases}
0 &= c_1 + c_2 + c_3 + c_4 + c_5 \\
0 &= -2c_1 - c_2 + c_4 + 2c_5 \\
2h^2 &= 4c_1 + c_2 + c_4 + 4c_5 \\
0 &= -8c_1 - c_2 + c_4 + 8c_5 \\
0 &= 16c_1 + c_2 + c_5 + 16c_5
\end{cases} \tag{8}$$

Using a linear systems of equation solver, we see that the coefficients are

$$\begin{cases}
c_1 &= -\frac{1}{12h^2} \\
c_2 &= \frac{4}{3h^2} \\
c_3 &= -\frac{5}{2h^2} \\
c_4 &= \frac{4}{3h^2} \\
c_5 &= -\frac{1}{12h^2}
\end{cases} \tag{9}$$

So our equation becomes

$$u''(x) = -\frac{1}{12}u(x-2h) + \frac{4}{3}u(x-h) - \frac{5}{2}u(x) + \frac{4}{3}u(x+h) - \frac{1}{12}u(x+2h) + \mathcal{O}(h^4). \tag{10}$$

b)

The results from the code are:

The derivative $u^{(2)}$ of u at x0 is approximated by

For smooth u,

 $Error = 0 * h^3*u^(5) + -0.0111111 * h^4*u^(6) + \dots , which verify the result found in part a.$

c)

Using the finite difference method from part a), $u^{''}(1)$ was approximated for $u(x) = \sin(x)$ with the values in the array hvals=logspace(-1, -2, 13). The following output of the table for the h values, numerical error, and predicted error is:

h	D2error	Predicted Error
1.0000e-01	6.4431e-05	6.4661e-05
5.6234e-02	6.4588e-06	6.4661e-06
3.1623e-02	6.4638e-07	6.4661e-07
1.7783e-02	6.4653e-08	6.4661e-08
1.0000e-02	6.4608e-09	6.4661e-09
5.6234e-03	6.3753e-10	6.4661e-10
3.1623e-03	5.2040e-11	6.4661e-11
1.7783e-03	3.9182e-11	6.4661e-12
1.0000e-03	5.0307e-10	6.4661e-13
5.6234e-04	4.8242e-10	6.4661e-14
3.1623e-04	4.3333e-09	6.4661e-15
1.7783e-04	9.9178e-09	6.4661e-16
1.0000e-04	3.3754e-08	6.4661e-17

The following figure is the log-log plot of the errors vs. h

Figure 1: Problem1: log-log plot of errors vs. h

Problem #2

Using Lagrange method for an interpolating polynomial, the interpolating polynomial an be found to be

$$p(x) = u(x_0) \frac{(x - (x_0 - h))(x - (x_0 - 2h))}{(x_0 - (x_0 - h))(x_0 - (x_0 - 2h))} + u(x_0 - h) \frac{(x - (x_0))(x - (x_0 - 2h))}{(x_0 - (x_0))(x_0 - (x_0 - 2h))} + u(x_0 - 2h) \frac{(x - (x_0 - h))(x - (x_0))}{(x_0 - (x_0 - h))(x_0 - (x_0))}.$$
(11)

Expanding this we get

$$p(x) = \frac{u(x_0)}{2h^2} \left[x^2 - 2xx_0 + 3xh - 3x_0h + 2h^2 + x_0^2 \right] - \frac{u(x_0 - h)}{h^2} \left[x^2 - 2xx_0 + 2xh - 2x_0h + x_0^2 \right]$$

$$+\frac{u(x_0-2h)}{2h^2}\left[x^2-2xx_0+xh-x_0h+x_0^2\right],\tag{12}$$

and then taking the first derivative

$$p'(x) = \frac{u(x_0)}{2h^2} \left[2x - 2x_0 + 3h \right] - \frac{u(x_0 - h)}{h^2} \left[2x - 2x_0 + 2h \right] + \frac{u(x_0 - 2h)}{2h^2} \left[2x - 2x_0 + h \right], \tag{13}$$

then evaluate x at x_0

$$p'(x_0) = \frac{u(x_0)}{2h^2} \left[2x_0 - 2x_0 + 3h \right] - \frac{u(x_0 - h)}{h^2} \left[2x_0 - 2x_0 + 2h \right] + \frac{u(x_0 - 2h)}{2h^2} \left[2x_0 - 2x_0 + h \right]$$
(14)

$$p'(x_0)\frac{u(x_0)}{2h^2}[3h] - \frac{u(x_0 - h)}{h^2}[2h] + \frac{u(x_0 - 2h)}{2h^2}[h] = \frac{1}{2h}[3u(x_0) - 4u(x_0 - h) + u(x_0 - 2h)].$$
 (15)

This gives us the same answer as shown in class. We get this from assuming the form of

$$D_2u(x_0) = au(x_0) + bu(x_0 - h) + cu(x_0 - 2h),$$
(16)

where we then take the Taylor series expansions for the u(x) to get

$$D_{2}u(x) = (a+b+c)u(x) - (b+2c)hu'(x) + \frac{1}{2}(b+4c)h^{2}u''(x) - \frac{1}{6}(b+8c)h^{3}u'''(x) + ...,$$
(17)

then we enfore that

$$\begin{cases} a+b+c &= 0\\ -(b+2c)h &= 1\\ \frac{1}{2}(b+4c)h^2 &= 0 \end{cases}$$
 (18)

then solve for the coefficients to get

$$\begin{cases}
a = \frac{3}{2}h \\
b = -\frac{2}{h}, \\
b = \frac{1}{2}h
\end{cases}$$
(19)

therefore

$$D_2 u(x) = \frac{1}{2h} \left[3u(x) - 4u(x-h) + u(x-2h) \right]. \tag{20}$$

Problem #3

a)

Modify the m-file bvp2.m so that it implements a Dirichlet boundary coundition at x = a and a Neumann condition at x = b and test the modified program.

For this the following changes were made to the bvp2.m program

ax = 0;

bx = 3;

sigma = -5; % Neumann boundary condition at ax

beta = 3; % Dirichlet boundary condition at bx

was changed to

```
\begin{array}{l} ax = 0; \\ bx = 3; \\ sigma = -5; \\ alpha = 22 - exp(3); \% \ Dirichlet \ boundary \ condition \ at \ ax \\ beta = 3; \\ beta\_new = exp(3)-6; \% \ Neumann \ boundary \ condition \ at \ bx \\ \end{array}
```

To change the boundary conditions. Then these other changes were made to the code for the boundary condition changes, with the original bvp2.m program having

```
\% \ first \ row \ for \ Neumann \ BC \ at \ ax: \\ A(1,1:3) = fdcoeffF(1, x(1), x(1:3)); \\ and \\ \% \ last \ row \ for \ Dirichlet \ BC \ at \ bx: \\ A(m2,m:m2) = fdcoeffF(0,x(m2),x(m:m2)); \\ and \\ \% \ Right \ hand \ side: \\ F = f(x); \\ F(1) = sigma; \ k \\ F(m2) = beta;
```

was changed to

```
% first row for Dirichlet BC at ax: A(1,1:3) = \mathrm{fdcoeffF}(0,\,x(1),\,x(1:3)); and \% \ \mathrm{last} \ \mathrm{row} \ \mathrm{for} \ \mathrm{Neumann} \ \mathrm{BC} \ \mathrm{at} \ \mathrm{bx}: A(m2,m:m2) = \mathrm{fdcoeffF}(1,x(m2),x(m:m2)); and \% \ \mathrm{Right} \ \mathrm{hand} \ \mathrm{side}: F = f(x); F(1) = \mathrm{alpha}; F(m2) = \mathrm{beta\_new};
```

The output for the original program bvp2.m is

h	error	ratio	observed order
0.30000	5.08091e-02	NaN	NaN
0.15000	1.40105e-02	3.62650	1.85858
0.07500	3.66223e-03	3.82568	1.93572
0.03750	9.34417e-04	3.91927	1.97058

Least squares fit gives $E(h) = 0.525438 * h^1.92303$ and the output for the modification is

h	error	ratio	observed order
0.30000	1.74886e+00	NaN	NaN
0.15000	4.80811e-01	3.63732	1.86288
0.07500	1.26086e-01	3.81336	1.93106
0.03750	3.22858e-02	3.90531	1.96544

Least squares fit gives $E(h) = 18.0049 * h^1.92092$

From this we can see that the accurry has gone remained about the same $\mathcal{O}(h^{1.92303})$ for the original program to $\mathcal{O}(h^{1.92092})$ for the modified program. The plots for these two cases are

Figure 2: Problem 2 Part a. log-log plots (bvp2.m on right side and modification on left side)

b)

Make the same modification to the m-file bvp4.m, which implements a fourth order accurate method. Again test the modified program.

For this the following changes were made to the bvp2.m program

ax = 0;

bx = 3;

sigma = -5; % Neumann boundary condition at ax

beta = 3; % Dirichlet boundary condtion at bx

was changed to

```
\begin{array}{l} ax = 0; \\ bx = 3; \\ sigma = -5; \\ alpha = 22 - exp(3); \% \ Dirichlet \ boundary \ condition \ at \ ax \\ beta = 3; \\ beta\_new = exp(3)-6; \% \ Neumann \ boundary \ condition \ at \ bx \\ \end{array}
```

To change the boundary conditions. Then these other changes were made to the code for the boundary condition changes, with the original bvp2.m program having

```
\% \ first \ row \ for \ Neumann \ BC \ on \ u'(x(1)) A(1,1:5) = fdcoeffF(1, x(1), x(1:5)); and \% \ last \ row \ for \ Dirichlet \ BC \ on \ u(x(m+2)) A(m2,m-2:m2) = fdcoeffF(0,x(m2),x(m-2:m2)); and \% \ Right \ hand \ side: F = f(x); F(1) = sigma; F(m2) = beta;
```

was changed to

```
% first row for Dirichlet BC on u(x(1))

A(1,1:5) = fdcoeffF(0, x(1), x(1:5));

and

% last row for Neumann BC on u'(x(m+2))

A(m2,m-2:m2) = fdcoeffF(1,x(m2),x(m-2:m2));

and

% Right hand side:

F = f(x);

F(1) = alpha;

F(m2) = beta_new;
```

The output for the original program byp4.m is

h	error	ratio	observed order
0.30000	6.05673e-03	NaN	NaN
0.15000	4.01813e-04	15.07352	3.91394
0.07500	2.51825e-05	15.95603	3.99603
0.03750	1.56256e-06	16.11621	4.01044

Least squares fit gives $E(h) = 0.740188 * h^3.97573$ and the output for the modification is

h	error	ratio	observed order
0.30000	7.22610e-02	NaN	NaN
0.15000	5.21206e-03	13.86421	3.79329
0.07500	3.47061e-04	15.01768	3.90859
0.03750	2.23260e-05	15.54515	3.95839

Least squares fit gives $E(h) = 8.04933 * h^3.88894$

From this we can see that the accurry has gone down a litte from $\mathcal{O}(h^{3.97573})$ to $\mathcal{O}(h^{3.88894})$ for the modification. The plots for these two cases are

Figure 3: Problem 2 Part b. log-log plots (bvp4.m on right side and modification on left side)

Problem #4

a)

Setting gridchoice to be 'rtlayer'. The output we get from this is:

h	error	ratio	observed	order
0.30000	5.67023e-01	NaN]	NaN

0.15000	1.26585e-01	4.47940	2.16330
0.07500	2.98496e-02	4.24076	2.08432
0.03750	7.24452e-03	4.12030	2.04275

Least squares fit gives $E(h) = 6.91323 * h^2.09554$

From this we can see that we have second accurate accuracy with $\mathcal{O}(h^2)$. We can also see this from the output figure as well

Figure 4: Problem 4 part b, log-log plot

b)

The local truncation error is defined by

$$\tau = c_{i-1}u(x_{i-1}) + c_{i}u(x_{i}) + c_{i+1}u(x_{i+1}) - u''(x_{i}), \qquad (21)$$

where are coefficients are

$$\begin{cases}
c_{i-1} &= \frac{2}{h_{i-1}(h_{i-1}+h_i)} \\
c_i &= \frac{-2}{h_{i-1}h_i} \\
c_{i+1} &= \frac{2}{h_i(h_{i-1}+h_i)}
\end{cases} ,$$
(22)

where $h_{i-1} = x_i - x_{i-1}$ and $h_i = x_{i+1} - x_i$. We also have the following approximation of $x_i - x_{i-1} \approx hX'(x_i)$, therefore our coefficients become

$$\begin{cases}
c_{i-1} &= \frac{2}{h^2 X'(x_i)(X'(x_i) + X'(x_{i+1}))} \\
c_i &= -\frac{2}{h^2 X'(x_i)X'(x_{i+1})} \\
c_{i+1} &= \frac{2}{h^2 X'(x_{i+1})(X'(x_i) + X'(x_{i+1}))}
\end{cases} (23)$$

Now take Taylor expansions of $u(x_{i-1})$ and $u(x_{i+1})$,

$$u(x_{i-1}) = u(x_i) + u'(x_i)(x_{i-1} - x_i) + \frac{u''(x_i)(x_{i-1} - x_i)^2}{2} + \frac{u'''(x_i)(x_{i-1} - x_i)^3}{6} + \frac{u''''(x_i)(x_{i-1} - x_i)^4}{24},$$
(24)

and

$$u(x_{i+1}) = u(x_i) + u'(x_i)(x_{i+1} - x_i) + \frac{u''(x_i)(x_{i+1} - x_i)^2}{2} + \frac{u'''(x_i)(x_{i+1} - x_i)^3}{6} + \frac{u''''(x_i)(x_{i+1} - x_i)^4}{24}.$$
 (25)

Now substitute in the approximation into the expansions to get

$$u(x_{i-1}) = u(x_i) - u'(x_i)hX'(x_i) + \frac{u''(x_i)h^2X'(x_i)^2}{2} - \frac{u'''(x_i)h^3X'(x_i)^3}{6} + \frac{u''''(x_i)h^4X'(x_i)^4}{24},$$
 (26)

and

$$u(x_{i-1}) = u(x_i) + u'(x_i)hX'(x_{i+1}) + \frac{u''(x_i)h^2X'(x_{i+1})^2}{2} + \frac{u'''(x_i)h^3X'(x_{i+1})^3}{6} + \frac{u''''(x_i)h^4X'(x_{i+1})^4}{24}.$$
 (27)

Frist look at the first term $u(x_i)$ with its coefficients and we have

$$u(x_{i}) \cdot \left[\frac{2}{h^{2}X'(x_{i})(X'(x_{i}) + X'(x_{i+1}))} - \frac{2}{h^{2}X'(x_{i})X'(x_{i+1})} + \frac{2}{h^{2}X'(x_{i+1})(X'(x_{i}) + X'(x_{i+1}))} \right]$$

$$= \frac{u(x_{i})}{h^{2}} \left[\frac{2X'(x_{i+1}) - 2(X'(x_{i}) + X'(x_{i+1})) + 2X'(x_{i})}{X'(x_{i+1})(X'(x_{i}) + X'(x_{i+1}))X'(x_{i})} \right] = 0,$$
(28)

which eliminates the first term. Now look at the $u'(x_i)$ term with the coefficients and we get

$$\frac{-2u^{'}(x_{i})hX'(x_{i})}{h^{2}X'(x_{i})\left(X'(x_{i})+X'(x_{i+1})\right)} + \frac{2u^{'}(x_{i})hX'(x_{i+1})}{h^{2}X'(x_{i+1})\left(X'(x_{i})+X'(x_{i+1})\right)} = \frac{-2u^{'}(x_{i})+2u^{'}(x_{i})}{h\left(X'(x_{i})+X'(x_{i+1})\right)} = 0, \tag{29}$$

which eliminates the 1st derivative term. Now look at the $u''(x_i)$ terms with the coefficients and we get

$$\frac{2u''(x_i)h^2X'(x_i)^2}{h^2X'(x_i)(X'(x_i) + X'(x_{i+1})) 2} + \frac{2u''(x_i)h^2X'(x_{i+1})^2}{h^2X'(x_{i+1})(X'(x_i) + X'(x_{i+1})) 2} - u''(x_i)$$

$$= \frac{u''(x_i)X'(x_i) + u''(x_i)X'(x_{i+1})}{(X'(x_i) + X'(x_{i+1}))} - u''(x_i) = 0.$$
(30)

Now our local truncation error is

$$\tau = \frac{2}{h^2 X'(x_i) (X'(x_i) + X'(x_{i+1}))} \cdot \left[-\frac{u'''(x_i)h^3 X'(x_i)^3}{6} + \frac{u''''(x_i)h^4 X'(x_i)^4}{24} \right] + \frac{2}{h^2 X'(x_{i+1}) (X'(x_i) + X'(x_{i+1}))} \cdot \left[\frac{u'''(x_i)h^3 X'(x_{i+1})^3}{6} + \frac{u''''(x_i)h^4 X'(x_{i+1})^4}{24} \right].$$
(31)

Collect the $u'''(x_i)$ terms to show the cancelation

$$-\frac{2u'''(x_{i})h^{3}X'(x_{i})^{3}}{h^{2}X'(x_{i})(X'(x_{i}) + X'(x_{i+1}))6} + \frac{2u'''(x_{i})h^{3}X'(x_{i+1})^{3}}{h^{2}X'(x_{i+1})(X'(x_{i}) + X'(x_{i+1}))6} = \frac{hu'''(x_{i})\left[X'(x_{i+1})^{2} - X'(x_{i})^{2}\right]}{3(X'(x_{i}) + X'(x_{i+1}))}$$

$$\frac{1}{3}hu'''(x_{i})\frac{\left[X'(x_{i+1}) + X'(x_{i})\right]}{X'(x_{i+1}) + X'(x_{i})} \cdot \left[X'(x_{i+1}) - X'(x_{i})\right] = \frac{1}{3}hu'''(x_{i})\left[X'(x_{i+1}) - X'(x_{i})\right], \tag{32}$$

and if this is a smooth enough then $X'(x_i) \approx X'(x_{i+1})$, thefore the $u'''(x_i)$, can be eliminated, and we are left with

$$\tau = \frac{2}{h^2 X'(x_i) \left(X'(x_i) + X'(x_{i+1}) \right)} \cdot \left[\frac{u''''(x_i) h^4 X'(x_i)^4}{24} \right] + \frac{2}{h^2 X'(x_{i+1}) \left(X'(x_i) + X'(x_{i+1}) \right)} \cdot \left[\frac{u''''(x_i) h^4 X'(x_{i+1})^4}{24} \right]$$

$$= h^2 \frac{u''''(x_i) \left[X'(x_i)^3 + X'(x_{i+1})^3 \right]}{12 \left(X'(x_i) + X'(x_{i+1}) \right)}, \tag{33}$$

which is $\mathcal{O}(h^2)$, for the local truncation error.

c)

For this problem the gridchioce was set to 'random' and the mvals=round(logspace(1,3,50)); to do 50 tests for values between 10 and 1000. The output from this is:

h	error	ratio	observed order
0.30000	1.03455e-01	NaN	NaN
0.27273	3.09755e+00	0.03340	-35.66495
0.25000	1.31142e+00	2.36198	9.87804
0.23077	1.88213e+00	0.69677	-4.51376
0.20000	4.07625e-01	4.61731	10.69044
0.18750	2.86107e-01	1.42473	5.48483
0.16667	1.33476e-01	2.14351	6.47330

0.15789	2.16270e-01	0.61717	-8.92604
0.14286	6.25518e-02	3.45745	12.39497
0.13043	1.31840e-01	0.47445	-8.19587
0.11538	8.30575e-02	1.58733	3.76872
0.10714	7.96189e-02	1.04319	0.57055
0.09677	2.85435e-02	2.78939	10.07855
0.08824	1.38157e-01	0.20660	-17.07161
0.08108	3.80493e-01	0.36310	-11.98096
0.07317	8.65950e-03	43.93943	36.85006
0.06667	1.27935e-01	0.06769	-28.92740
0.06122	1.53809e-02	8.31778	24.87612
0.05556	2.27839e-02	0.67508	-4.04398
0.05000	5.50789e-02	0.41366	-8.37803
0.04545	9.33110e-03	5.90273	18.62775
0.04167	1.73652e-02	0.53734	-7.13835
0.03797	1.87520e-02	0.92605	-0.82805
0.03448	7.78873e-03	2.40758	9.10863
0.03158	1.21303e-02	0.64209	-5.03623
0.02857	5.25001e-03	2.31053	8.36781
0.02609	1.07162e-02	0.48991	-7.84342
0.02381	2.30405e-02	0.46510	-8.37979
0.02158	3.04564e-03	7.56507	20.60800
0.01961	1.55053e-03	1.96426	7.03510
0.01786	6.38858e-03	0.24270	-15.13929
0.01630	1.64307e-03	3.88821	14.92713

0.01485	2.52427e-03	0.65091	-4.60066
0.01351	4.24860e-03	0.59414	-5.51465
0.01230	1.22618e-03	3.46492	13.15143
0.01119	1.85625e-03	0.66057	-4.41979
0.01017	2.85995e-04	6.49051	19.48508
0.00926	3.09968e-04	0.92266	-0.85844
0.00843	3.92073e-04	0.79059	-2.49482
0.00767	1.66909e-03	0.23490	-15.44719
0.00699	3.84353e-04	4.34261	15.83272
0.00637	5.07775e-04	0.75694	-2.98152
0.00579	3.19535e-04	1.58910	4.86948
0.00527	2.64155e-04	1.20965	2.02683
0.00480	1.97289e-04	1.33892	3.10921
0.00437	1.73438e-04	1.13752	1.36233
0.00398	1.83517e-04	0.94508	-0.60704
0.00362	7.64580e-05	2.40024	9.23324
0.00330	5.24937e-05	1.45652	4.03380
0.00300	8.01179e-05	0.65521	-4.48313

Least squares fit gives $E(h) = 9.43204 * h^2.01101$

[,] which we can see that the average accuracy is observed to be around $\mathcal{O}(h^2)$. The plot from these conditions is

Figure 5: Problem 4 part c, log-log plot