

Property Tax Prediction for Real Estate Professionals

Vaishali Patelia

Outline

- Introduction Use Case
- Data Analysis & Visualization
- Implementation
 - KNN Regression Model
 - MV Regression Model
- Result Analysis
- Conclusion

Estimating property taxes is complicated due to varied attributes, geographic differences, and tax regulations.

Introduction

Inaccurate estimates affect valuations, investments, and financial planning for stakeholders.

Provide precise property tax estimates.

Assist real estate professionals with actionable insights for smarter decision-making.

Property tax depend on Property value, Tax Rate, Location, Property type

Data Analysis

Dataset - cleaned_house_data

Property tax depend on

Property value - sold price, sq_ft, bed, bath, lot acres

Location - zip, lat,long

New column: taxes_sqft , price_zone

Divide taxes_sqft into 5 category (Band of Tax) methods:

Dd

Pd.qcut Pd.cut

Pd.cut (linespace)

Data Visualization

Filtering a DataFrame : using Mix max Method

31.6

-111.2

-111.1

-111.0

-110.9

Longitude

-110.8

-110.7

KNN Regression Model

Accuracy	Cat by qcut	Cat by pdCut	Cat by pdCut linespace
dataframe	0.8013	0.8064	0.8064
Filtered dataframe	0.8010	0.8070	0.8070
Filtered dataframe	0.8010	0.8070	0.8070

Confusion Matrix

Using pd.qcut method

Simple Linear Regression

MV Regression Model

Dependent variable

X = price_zone bedrooms
 bathrooms lot_acres
year_built

Independent variable
y = taxes_sqft

Model optimized with hyperparameters (eta=1e-8, epochs=1e3)

Result Analysis

Predicted Values	Actual Values						
taxes_sqft		taxes_sqft	price_zone	bedrooms	bathrooms	lot_acres	year_built
2.57164559	0	1.722875	13.124431	4	5.0	1.33	1986
1.92747161	1	1.696623	12.827988	4	4.0	1.17	1994
1.31464421	2	1.906972	13.760933	4	3.0	1.30	1993
2.52677025	3	2.817765	13.713572	4	5.0	1.23	2004
1.82934706	4	0.922989	13.124343	3	4.0	1.71	2017

Predicted Tax = Predicted taxes_sqft * sqft

NESULES OF SKIEDFIFMEEFICST

MAE: 0.5738599599999998 MSE: 0.20307177062649126

RMSE: 0.450634852875908

R-Squared: -0.508975605126756

Conclusion

Property taxes strongly depend on features like property value (sold_price, sq_ft) and location (zip, lat, long).

The regression modeling provide real estate professionals with actionable insights for accurate tax predictions

