

Winning Space Race with Data Science

<Name> <Date>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

- Project background and context
- Problems you want to find answers

Methodology

Executive Summary

- Data collection methodology:
 - Data Collection using web scraping and SpaceX API
 - https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches
 - https://api.spacexdata.com/v4/launches/past
- Perform data wrangling
 - Collected data was formatted and extracted into a DataFrame for further use.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Data normalization is performed and dataset is split into Training and test data.and evaluated by different classification models

Data Collection

- Describe how data sets were collected.
 - Data Collection using web scraping and SpaceX API
 - https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches
 - https://api.spacexdata.com/v4/launches/past

Data Collection – SpaceX API

https://github.com/Shri0613
/CapstoneSpaceX/blob/main
/jupyter-labs-spacex-datacollection-api.ipynb

 SpaceX offers public API from where the data can be obtained

Data Collection - Scraping

https://github.com/Shri0613
/CapstoneSpaceX/blob/main/
jupyter-labswebscraping.ipynb

 Data about SpaceX can be obtained from Wikipedia

Data Wrangling

- EDA was performed on dataset
- The launchs per site was summarized, occurrence was calculated.
- Landing outcome was created
- https://github.com/Shri0613/CapstoneSpaceX/blob/main/jupyter-labs-eda-sql-coursera-sqllite.ipynb

EDA with Data Visualization

 To explore data scatter plot, barplots were used to visualize the data of SpaceX

 https://github.com/Shri0613/CapstoneSpaceX/blob/main/edad ataviz.ipynb

EDA with SQL

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was acheived
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch site for the months in year 2015.
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.
- https://github.com/Shri0613/CapstoneSpaceX/blob/main/jupyter-labs-eda-sqlcoursera sqllite.ipynb

Build an Interactive Map with Folium

- Summarize what map objects such as markers, circles, lines, etc. you created and added to a folium map
- Explain why you added those objects
- Add the GitHub URL of your completed interactive map with Folium map, as an external reference and peer-review purpose

Build a Dashboard with Plotly Dash

- . Markers, circles, lines and marker clusters were used with Folium Maps Markers indicate points like launch sites;
- Circles indicate highlighted areas around specific coordinates, like NASA Johnson SpaceCenter;
- Marker clusters indicates groups of events in each coordinate, like launches in a launch site;and. Lines are used to indicate distances between two coordinates.
- https://github.com/Shri0613/CapstoneSpaceX/blob/main/lab j upyter launch site location.ipynb

Predictive Analysis (Classification)

- The following graphs and plots were used to visualize data. Percentage of launches by site. Payload range.
- This combination allowed to quickly analyze the relation between payloadsand launch sites, helping to identify where is best place to launch according to payloads.

 https://github.com/Shri0613/CapstoneSpaceX/blob/main/lab_j upyter_launch_site_location.ipynb

Results

- Exploratory data analysis results: Space X uses 4 different launch sites;
- The first launches were done to Space X itself and NASA; The average payload of F9 v1.1 booster is 2,928 kg;
- The first success landing outcome happened in 2015 fiver year after the first launch;
- Many Falcon 9 booster versions were successful at landing in drone ships having payload above the average;
- Almost 100% of mission outcomes were successful; Two booster versions failed at landing in drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015;
- The number of landing outcomes became as better as years passed.

Flight Number vs. Launch Site

 Show a scatter plot of Flight Number vs. Launch Site

Payload vs. Launch Site

 Show a scatter plot of Payload vs. Launch Site

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

Launch Success Yearly Trend

 Show a line chart of yearly average success rate

All Launch Site Names

- Find the names of the unique launch sites
- Present your query result with a short explanation here

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- Present your query result with a short explanation here

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Present your query result with a short explanation here

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Present your query result with a short explanation here

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Present your query result with a short explanation here

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Present your query result with a short explanation here

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Present your query result with a short explanation here

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- Present your query result with a short explanation here

2015 Launch Records

• List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Present your query result with a short explanation here

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Present your query result with a short explanation here

<Folium Map Screenshot 1>

Replace <Folium map screenshot 1> title with an appropriate title

• Explore the generated folium map and make a proper screenshot to include all launch sites' location markers on a global map

<Folium Map Screenshot 2>

Replace <Folium map screenshot 2> title with an appropriate title

 Explore the folium map and make a proper screenshot to show the colorlabeled launch outcomes on the map

<Folium Map Screenshot 3>

Replace <Folium map screenshot 3> title with an appropriate title

• Explore the generated folium map and show the screenshot of a selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

< Dashboard Screenshot 1>

• Replace < Dashboard screenshot 1> title with an appropriate title

• Show the screenshot of launch success count for all sites, in a piechart

< Dashboard Screenshot 2>

Replace < Dashboard screenshot 2> title with an appropriate title

• Show the screenshot of the piechart for the launch site with highest launch success ratio

< Dashboard Screenshot 3>

• Replace < Dashboard screenshot 3> title with an appropriate title

• Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

• Visualize the built model accuracy for all built classification models, in a bar chart

• Find which model has the highest classification accuracy

Confusion Matrix

• Show the confusion matrix of the best performing model with an explanation

Conclusions

- Point 1
- Point 2
- Point 3
- Point 4

•

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

