Motivation

- +rue-state
- nominal-state
- pron-state

A true-state = nominal-state & creal state

nominal-state -> takes no account in noise/

Definitions

Magnitude	True	Nominal	Error	Composition	Measured	Noise	
Full state (1)	\mathbf{x}_t	x	δx	$\mathbf{x}_t = \mathbf{x} \oplus \delta \mathbf{x}$			
Position	\mathbf{p}_t	p	$\delta \mathbf{p}$	$\mathbf{p}_t = \mathbf{p} + \delta \mathbf{p}$			
Velocity	\mathbf{v}_t	v	$\delta \mathbf{v}$	$\mathbf{v}_t = \mathbf{v} + \delta \mathbf{v}$			R:
Quaternion (2,3)	\mathbf{q}_t	q	$\delta \mathbf{q}$	$\mathbf{q}_t = \mathbf{q} \otimes \delta \mathbf{q}$			rotation matrix
Rotation matrix (2,3)	\mathbf{R}_t	R	$\delta \mathbf{R}$	$\mathbf{R}_t = \mathbf{R} \delta \mathbf{R}$			from body to
Angles vector (4)		δθ	50	$\delta \mathbf{q} = e^{\delta \theta/2}$			inertial frame
			00	$\delta \mathbf{R} = e^{[\delta \theta]_{\times}}$			
Accelerometer bias	\mathbf{a}_{bt}	\mathbf{a}_b	$\delta \mathbf{a}_b$	$\mathbf{a}_{bt} = \mathbf{a}_b + \delta \mathbf{a}_b$		\mathbf{a}_w	
Gyrometer bias	ω_{bt}	ω_b	$\delta\omega_b$	$\omega_{bt} = \omega_b + \delta \omega_b$		ω_w	
Gravity vector	\mathbf{g}_t	g	$\delta \mathbf{g}$	$\mathbf{g}_t = \mathbf{g} + \delta \mathbf{g}$			
Acceleration	\mathbf{a}_t				\mathbf{a}_m	\mathbf{a}_n	
Angular rate	ω_t				ω_m	ω_n	AUTHORICO CONTROL 4

Dynamic

· measurement

Note: $a_m,\,\omega_m$ are measuremed in the body-fixed frame $a_t,\,\omega_t$ are exoressed in the inertial frame

Nominal State Kinematics

Error State Kinematics

Discrete-time Nominal States

Taking the integration of (237) yields the discrete-time form as

$$\mathbf{p} \leftarrow \mathbf{p} + \mathbf{v} \Delta t + \frac{1}{2} (\mathbf{R}(\mathbf{a}_m - \mathbf{a}_b) + \mathbf{g}) \Delta t^2$$
 (260a)

$$\mathbf{v} \leftarrow \mathbf{v} + (\mathbf{R}(\mathbf{a}_m - \mathbf{a}_b) + \mathbf{g}) \,\Delta t \tag{260b}$$

$$\mathbf{q} \leftarrow \mathbf{q} \otimes \overline{\mathbf{q}\{(\omega_m - \omega_b) \, \Delta t\}} \tag{260c}$$

$$\mathbf{a}_b \leftarrow \mathbf{a}_b$$
 (260d)

$$\omega_b \leftarrow \omega_b$$
 (260e)

$$\mathbf{g} \leftarrow \mathbf{g}$$
, (260f)

Discrete-time Error States

Taking the integration of (238) yields the discrete-time form as

$\delta \mathbf{p} \leftarrow \delta \mathbf{p} + \delta \mathbf{v} \Delta t$	(261a)
$\delta \mathbf{v} \leftarrow \delta \mathbf{v} + (-\mathbf{R} \left[\mathbf{a}_m - \mathbf{a}_b \right]_{\times} \delta \boldsymbol{\theta} - \mathbf{R} \delta \mathbf{a}_b + \delta \mathbf{g}) \Delta t + \mathbf{v_i}$	(261b)
$\delta \boldsymbol{\theta} \leftarrow \mathbf{R}^{\top} \{ (\boldsymbol{\omega}_m - \boldsymbol{\omega}_b) \Delta t \} \delta \boldsymbol{\theta} - \delta \boldsymbol{\omega}_b \Delta t + \boldsymbol{\theta_i} $	(261c)
$\delta \mathbf{a}_b \leftarrow \delta \mathbf{a}_b + (\mathbf{a_i})$	(261d)
$\delta oldsymbol{\omega}_b \leftarrow \delta oldsymbol{\omega}_b + oldsymbol{\widetilde{\omega}_i}$	(261e)
$\delta \mathbf{g} \leftarrow \delta \mathbf{g}$.	(261f)

$og \leftarrow og$.			(2011)
$\begin{aligned} \mathbf{V_i} &= \sigma_{\mathbf{a}_n}^2 \Delta t^2 \mathbf{I} \\ \mathbf{\Theta_i} &= \sigma_{\omega_n}^2 \Delta t^2 \mathbf{I} \\ \mathbf{A_i} &= \sigma_{\mathbf{a}_w}^2 \Delta t \mathbf{I} \\ \mathbf{\Omega_i} &= \sigma_{\omega_w}^2 \Delta t \mathbf{I} \end{aligned}$	$[m^2/s^2] \ [rad^2] \ [m^2/s^4] \ [rad^2/s^2]$	(262) (263) (264) (265)	Integration of covariance matrices
			AND ADDRESS OF THE PARTY OF THE

ESKF v.s. EKF

th

ESKF		EKF
$\begin{split} & \delta \mathbf{x} \leftarrow \mathbf{F}_{\mathbf{x}}(\mathbf{x}, \mathbf{u}_m) \cdot \delta \mathbf{x} \\ & \mathbf{P} \leftarrow \mathbf{F}_{\mathbf{x}} \mathbf{P} \mathbf{F}_{\mathbf{x}}^\top + \mathbf{F}_{\mathbf{i}} \mathbf{Q}_{\mathbf{i}} \mathbf{F}_{\mathbf{i}}^\top , \end{split}$	(268) (269)	$\begin{split} A &= \frac{\partial f}{\partial x} _{\hat{S}_{k-1}, W_{k-1}} \text{ and } \mathcal{C} = \frac{\partial g}{\partial x} _{\hat{S}_{k}} \\ \hat{S}_{k}^{-} &= f(\hat{S}_{k-1}, W_{k-1}) \\ P_{k}^{-} &= A_{k}P_{k-1}A_{k}^{T} + Q \end{split}$
$\mathbf{K} = \mathbf{P}\mathbf{H}^{\top}(\mathbf{H}\mathbf{P}\mathbf{H}^{\top} + \mathbf{V})^{-1}$ $\delta \mathbf{x} \leftarrow \mathbf{K}(\mathbf{y} - h(\hat{\mathbf{x}}_t))$	(274) (275)	$\mathcal{K}_k = P_k^- C^T (C P_k^- C^T + R)^{-1}$ $\hat{x}_k = \hat{x}_k^- + \mathcal{K}_k (y_k - \hat{y}_k)$
$P \leftarrow (I - KH)P$	(276)	$P_k = (I - \mathcal{K}_k C) P_k^-$

Injection of the Observed Error into the Nominal State

6.2 Injection of the observed error into the nominal state

After the ESKF update, the nominal state gets updated with the observed error state using the appropriate compositions (sums or quaternion products, see Table 3)

	$\mathbf{x} \leftarrow \mathbf{x} \oplus \hat{\delta \mathbf{x}}$,	(282)	
nat is,			
	$\mathbf{p} \leftarrow \mathbf{p} + \hat{\delta \mathbf{p}}$	(283a)	
	$\mathbf{v} \leftarrow \mathbf{v} + \hat{\delta \mathbf{v}}$	(283b)	
	$\mathbf{q} \leftarrow \mathbf{q} \otimes \mathbf{q} \{ \delta \hat{\boldsymbol{\theta}} \}$	(283c)	
	$\mathbf{a}_b \leftarrow \mathbf{a}_b + \delta \hat{\mathbf{a}}_b$	(283d)	
	$oldsymbol{\omega}_b \leftarrow oldsymbol{\omega}_b + \delta \hat{oldsymbol{\omega}}_b$	(283e)	
	$\mathbf{g} \leftarrow \mathbf{g} + \hat{\delta \mathbf{g}}$	(283f) worked con	

Error State Reset

Let us call the error reset function g(). It is written as follows,

$$\delta \mathbf{x} \leftarrow g(\delta \mathbf{x}) = \delta \mathbf{x} \ominus \hat{\delta \mathbf{x}}$$
, (28)

where \ominus stands for the composition inverse of \oplus . The ESKF error reset operation is thus,

$$\delta \mathbf{x} \leftarrow 0$$
 (285)
 $\mathbf{P} \leftarrow \mathbf{G} \mathbf{P} \mathbf{G}^{\top}$. (286)

$$\mathbf{P} \leftarrow \mathbf{G} \, \mathbf{P} \, \mathbf{G}^{\top} \; .$$
 where \mathbf{G} is the Jacobian matrix defined by,

$$\mathbf{G} \triangleq \left. rac{\partial g}{\partial \delta \mathbf{x}} \right|_{\delta \mathbf{\hat{x}}} \ .$$

Similarly to what happened with the update Jacobian above, this Jacobian is the identity on all diagonal blocks except in the orientation error. We give here the full expression and proceed in the following section with the derivation of the orientation error block, $\partial \delta \theta^+/\partial \delta \theta = \mathbf{I} - \left[\tfrac{1}{2} \hat{\theta} \theta\right]_\times,$

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_{6} & 0 & 0 \\ 0 & \mathbf{I} - \begin{bmatrix} \frac{1}{2} \hat{\delta \boldsymbol{\theta}} \end{bmatrix}_{\times} & 0 \\ 0 & 0 & \mathbf{I}_{a} \end{bmatrix}. \quad (288)$$