Local Probabilistic Models: Tabular CPDs

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Local Probabilistic Models
 - 1. Tabular CPDs
 - 2. Deterministic CPDs
 - 3. Context-Specific CPDs
 - (1)Tree CPD (Printer Diagnosis), (2) Rule CPD
 - 4. Independence of Causal Influence
 - (1) Noisy-OR, (2) Generalized Linear Models
 - 5. Continuous Variables: Robotics
 - Hybrid Models: Thermostat
 - 6. Conditional BNs: Computer Network

Local Probabilistic Models

 Bayesian Networks capture global properties of independence of variables

→

$$I(G) = \{ (D \perp I \mid \phi),$$

$$(G \perp S \mid D, I),$$

$$(S \perp D, G, L \mid I),$$

$$(D \perp I, S \mid \phi)$$

$$(L \perp I, D, S \mid G) \}$$

- Properties of independence allow us to:
 - factorize high-dimensional joint distribution into product of lower-dimensional CPDs (or factors)

$$P(D,I,G,S,L) = P(D)P(I)P(G | D,I)P(S | I)P(L | G)$$

Next: exploit additional regularities in CPDs

Tabular CPDs

When we have only Discrete Valued Random

Variables

- Encode $P(X|pa_X)$ as a table
 - Contains an entry for each assignment to X and \overline{pa}_X
 - Proper CPD requires all non-negative values and $\sum_{x \in Val(x)} P\!\left(x \mid \mathrm{pa}_{X}\right) = 1$
- Inference algorithms can use table CPDs in a natural way
 - Leads to perception that table CPDs are inherent to BNs, but......

Disadvantages of Tabular CPDs

- R.v.s with inf. domains, e.g., continuous values
 - cannot store each conditional probability in a table
- Even in discrete case there are difficulties
 - No. of parameters grows exponentially with no. of parents: for binary variable X with n binary parents we need 2^n values

Unwieldiness of CPTs

- Tabular representation becomes rapidly large as the no. of parents grows
- It is a serious one in many settings
 - If Fever is caused by 10 diseases, we need to ask expert to answer 1,024 questions– tiresome!

- Regularity among CPDs is not exploited
 - When D_1 is true, Fever is certain irrespective of others

Solution: Different viewpoint

- A CPD needs to specify a conditional probability $P(x|pa_X)$ for every assignment of values pa_X and x but does not have to do so by listing each such value explicitly
- View the CPDs not as tables listing all conditional probabilities but as functions that given pa_X and x return the conditional probability $P(x|pa_X)$