Deep Learning for Computer Vision

Spring 2019

http://vllab.ee.ntu.edu.tw/dlcv.html (primary)

https://ceiba.ntu.edu.tw/1072CommE5052 (grade, etc.)

FB: DLCV Spring 2019

Yu-Chiang Frank Wang 王鈺強, Associate Professor Dept. Electrical Engineering, National Taiwan University

What's to Be Covered Today...

- Intro to Neural Networks & CNN
 - Linear Classification
 - Neural Network for Machine Vision
 - Multi-Layer Perceptron
 - Convolutional Neural Networks
- Pytorch Framework Tutorial (by TAs)

吳致緯

劉致廷

CNN: Local Connectivity

Hidden layer

Input layer

Global connectivity

Local connectivity

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters

 - Local connectivity: 3 x 3 = 7

CNN: Weight Sharing

Hidden layer

Input layer

Without weight sharing

With weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing:
 With weight sharing:
 With weight sharing:

Putting them together

- Local connectivity
- Weight sharing
- Handling multiple input channels

Convolution Layer in CNN

What is a Convolution?

Weighted moving sum

Input

Feature Activation Map

What is a Convolution?

Convolution is a local linear operator

The brain/neuron view of CONV layer

The brain/neuron view of CONV layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

• The brain/neuron view of CONV layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

• Image input with 32 x 32 pixels convolved repeatedly with 5 x 5 x 3 filters shrinks volumes spatially (32 -> 28 -> 24 -> ...).

What is a Convolution?

- Stride
 - Step size across signals

Stride: step size across the signal

Nonlinearity Layer in CNN

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Nonlinearity Layer

- E.g., ReLU (Rectified Linear Unit)
 - Pixel by pixel computation of max(0, x)

Pooling Layer in CNN

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently
- E.g., Max Pooling

Pooling Layer

Reduces the spatial size and provides spatial invariance

Example

Nonlinearity by ReLU

Example

Max pooling

Fully Connected (FC) Layer in CNN

FEATURE MAPS FEATURE MAPS OUTPUT $32\times32\times32\times3$ Activation $32\times32\times3$ $32\times32\times2$ $32\times32\times2$ FEATURE MAPS OUTPUT $16\times16\times2$ Full Connection LAYER

FC Layer

 Contains neurons that connect to the entire input volume, as in ordinary neural networks

FC Layer

 Contains neurons that connect to the entire input volume, as in ordinary neural networks

CNN

LeNet

- Presented by Yann LeCun during the 1990s for reading digits
- Has the elements of modern architectures

AlexNet [Krizhevsky et al., 2012]

- Repopularized CNN
 by winning the ImageNet Challenge 2012
- 7 hidden layers, 650,000 neurons,
 60M parameters
- Error rate of 16% vs. 26% for 2nd place.

Full (simplified) AlexNet architecture: [227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Deep or Not?

Depth of the network is critical for performance.

AlexNet: 8 Layers with 18.2% top-5 error

Removing Layer 7 reduces 16 million parameters, but only 1.1% drop in performance!

Removing Layer 6 and 7 reduces 50 million parameters, but only 5.7% drop in performance

Removing middle conv layers reduces 1 million parameters, but only 3% drop in performance

Removing feature & conv layers produces a 33% drop in performance

CNN: A Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

What is 1x1 Convolution?

Doesn't 1x1 convolution sound redundant?

What is 1x1 Convolution? (cont'd)

- Doesn't 1x1 convolution sound redundant?
- Simply speaking, it provides...
 - Dimension reduction (?)
 - Nonlinearity

What is 1x1 Convolution? (cont'd)

- Example 1 {28 x 28 x 192} convolved with 32 {5 x 5x 192} kernels into {28 x 28 x 32}
- (5 x 5 x 192) muls x (28 x 28) pixels x 32 kernels ~ 120M muls

- Example 2
 {28 x 28 x 192} convolved with 16 {1 x 1x 192} kernels into
 {28 x 28 x 16}, followed by convolution with into 32 {5 x 5 x 16} kernels into {28 x 28 x 32}
- 192 mul x (28 x 28) pixels x 16 kernels ~ 2.4M
- (5 x 5 x 16) muls x (28 x 28) pixels x 32 kernels ~ 10M
- 12.4M vs. 120M

33

ResNet

Can we just increase the #layer?

- How can we train very deep network?
 - Residual learning

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

ResNet (cont'd)

Can we just increase # of layers?

- How to train very deep networks?
 - Residual learning

256-d
1x1, 64
relu
3x3, 64
relu
1x1, 256
relu

Non-Bottleneck (ResNet-18, 34)

Bottleneck (ResNet-50, 101, 152)

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Ref: He, Kaiming, et al. "Deep residual learning for image recognition." *EVPR*, 2016.

DenseNet

- Shorter connections (like ResNet) help
- Why not just connect them all?

ResNeXT

- Deeper and wider → better...what else?
 - Increase cardinality

ResNet block

ResNeXt block

	setting	top-1 error (%)	
ResNet-50	1 × 64d	23.9	
ResNeXt-50	$2 \times 40d$	23.0	
ResNeXt-50	$4 \times 24d$	22.6	
ResNeXt-50	8 × 14d	22.3	
ResNeXt-50	$32 \times 4d$	22.2	
ResNet-101	1 × 64d	22.0	
ResNeXt-101	$2 \times 40d$	21.7	
ResNeXt-101	$4 \times 24d$	21.4	
ResNeXt-101	8 × 14d	21.3	
ResNeXt-101	$32 \times 4d$	21.2	

Squeeze-and-Excitation Net (SENet)

- How to improve acc. without much overhead?
 - Feature recalibration (channel attention)

	original		re-implementation		SENet			
	top-1 err.	top-5 err.	top-1 err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs
ResNet-50 [13]	24.7	7.8	24.80	7.48	3.86	23.29(1.51)	6.62 _(0.86)	3.87
ResNet-101 [13]	23.6	7.1	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60
ResNet-152 [13]	23.0	6.7	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32
ResNeXt-50 [19]	22.2	-	22.11	5.90	4.24	$21.10_{(1.01)}$	5.49(0.41)	4.25
ResNeXt-101 [19]	21.2	5.6	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00
VGG-16 [11]	-	-	27.02	8.81	15.47	25.22(1.80)	7.70(1.11)	15.48
BN-Inception [6]	25.2	7.82	25.38	7.89	2.03	24.23(1.15)	$7.14_{(0.75)}$	2.04
Inception-ResNet-v2 [21]	19.9 [†]	4.9^{\dagger}	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76

Remarks

- CNN:
 - Reduce the number of parameters
 - Reduce the memory requirements
 - Make computation independent of the size of the image
- Neuroscience provides strong inspiration on the NN design, but little guidance on how to train CNNs.
- Few structures discussed: convolution, nonlinearity, pooling

Training Convolutional Neural Networks

- Backpropagation + stochastic gradient descent with momentum
 - Neural Networks: Tricks of the Trade
- Dropout
- Data augmentation
- Batch normalization

An Illustrative Example

$$f(x,y) = xy, \qquad \frac{\partial f}{\partial x} = y, \frac{\partial f}{\partial y} = x$$

Example:
$$x = 4$$
, $y = -3 \Rightarrow f(x, y) = -12$

Partial derivatives

$$\frac{\partial f}{\partial x} = -3, \qquad \frac{\partial f}{\partial y} = 4$$

Gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$f(x,y,z) = (x+y)z = qz$$

$$\frac{q = x + y}{\frac{\partial q}{\partial x}} = 1, \qquad \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \qquad \frac{\partial f}{\partial z} = q$$

Goal: compute the gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right]$$

$$f(x,y,z) = (x+y)z = qz$$

set some inputs

$$\frac{q = x + y}{\frac{\partial q}{\partial x}} = 1, \qquad \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \qquad \frac{\partial f}{\partial z} = q$$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

```
x = -2; y = 5; z = -4

# perform the forward pass
q = x + y \# q becomes 3

f = q * z \# f becomes -12

# perform the backward pass (backpropagation) in reverse order:
# first backprop through f = q * z

dfdz = q \# df/dz = q, so gradient on z becomes 3

dfdq = z \# df/dq = z, so gradient on q becomes -4

# now backprop through q = x + y

dfdx = 1.0 * dfdq \# dq/dx = 1. And the multiplication here is the chain rule!

dfdy = 1.0 * dfdq \# dq/dy = 1
```


Backpropagation (recursive chain rule)

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Intuition: successful conspiracies

- 50 people planning a conspiracy
- Strategy A: plan a big conspiracy involving 50 people
 - Likely to fail. 50 people need to play their parts correctly.
- Strategy B: plan 10 conspiracies each involving 5 people
 - Likely to succeed!

Dropout

Main Idea: approximately combining exponentially many different neural network architectures efficiently

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SVM on Fisher Vectors of Dense SIFT and Color Statistics	-	-	27.3
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT	-	-	26.2
Conv Net + dropout (Krizhevsky et al., 2012)	40.7	18.2	-
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012)	38.1	16.4	16.4

Table 6: Results on the ILSVRC-2012 validation/test set.

Data Augmentation (Jittering)

- Create *virtual* training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion

Batch Normalization

Batch Normalization

10K 20K 30K 40K 50K

(a)

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
                      Parameters to be learned: \gamma, \beta
       Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
          \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                                 // mini-batch mean
          \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                                       // mini-batch variance
            \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                              // normalize
             y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                                      // scale and shift
0.9
0.8
                   Without BN
                    With BN
```

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [loffe and Szegedy 2015]

(b) Without BN

(c) With BN

What Will We Cover Next Week?

- Pytorch Framework Tutorial (for those who are not familiar with Pytorch)
 - Introduction to Pytorch
 - Installation guide
 - Basic concept of computation graph and back propagation
 - Basic: Module Class
 - How to build complex model with pytorch built-in classes.
 - Basic: DataSet & DataLoader Class
 - How to load data efficiently with pytorch built-in classes.
 - Hands on example: Image Classification Task (bring your own laptop!)
 - Advance :
 - Finetuning with pretrained model.
 - Data augmentation
 - Training with multiple GPU
 - Exporting models to other platforms.
- HW #1 is due 3/23 Sat 3AM & no late submission!!