

Data Provided: None

DEPARTMENT OF COMPUTER SCIENCE

Spring Semester 21-22

NATURAL LANGUAGE PROCESSING

1 hour 30 minutes

Answer TWO questions.

All questions carry equal weight. Figures in square brackets indicate the percentage of available marks allocated to each part of a question.

THIS PAGE IS BLANK

- 1. a) What is a language model? Describe the data required to train a language model, and what a trained model is expected to return. [20%]
 - b) What is the equation for the probability of a sentence? How is this probability approximated in an n-gram language model? Explain the equation and the approximation terms.

[30%]

- c) What is add-1 smoothing? Why is it important for language modelling? Describe using equations how add-1 smoothing is applied to the bigram language model. [20%]
- d) Language models can be evaluated intrinsically and extrinsically. Discuss the advantages and disadvantages for each approach and describe TWO methods for intrinsic and THREE for extrinsic evaluation. [30%]

- 2. A Hidden Markov Model (HMM) is a popular approach to automatic part-of-speech tagging.
 - a) A HMM tagger's estimate of the best tag sequence \hat{y} for a given word sequence $x = \{x_1, ..., x_n\}$ is expressed by the formula:

$$\hat{y} = \operatorname*{argmax}_{y \in \mathcal{Y}^{\mathcal{N}}} P(y|x)$$

where $y=\{y_1,...,y_n\}$ and $\mathcal Y$ is a set of possible tags. This is approximated by assuming:

$$\hat{y} = \underset{y \in \mathcal{Y}^{\mathcal{N}}}{\operatorname{argmax}} \prod_{n=1}^{N} P(x_n | y_n) P(y_n | y_{n-1})$$

Explain using equations how this approximation is derived, including the simplifying assumptions that are used. [30%]

b) Consider the sentence *I play games*. The following counts are observed in a corpus: (i) unigram word/tag counts; (ii) bigram tag counts; and (iii) counts of occurrences of a word with a particular part-of-speech tag (see the corresponding tables below). Here <s> denotes a special start of sentence marker.

	Count									
I	7342		VB	NN	PRP			I	play	games
play	100		789	5783	2304	-	VB	0	26	82
games	253	VB	43	7432	1038		NN	0	35	171
<s> VB</s>	50000 148787	NN	1134	2276	1358		PRP	7342	0	0
NN	253048	PRP	1492	68	9	(iii)	Tag-word		
PRP	64520	(ii) Bigram tag counts				C	counts			

(i) Word/tag counts

Write down the equations for computing the Maximum Likelihood estimates of $P(x_n|y_n)$ and $P(y_n|y_{n-1})$. Use them to tag the given word sequence by computing \hat{y} . You do not need to calculate all of the transition probabilities or the emission probabilities, but you should show how you would calculate one of each.

Note: If you do not have a calculator, you may leave your answer in the form of an arithmetic expression(s) involving integers.

[40%]

c) The Viterbi algorithm is the most commonly used algorithm to calculate the most probable path through a HMM efficiently. Describe the Viterbi algorithm using pseudocode and any auxiliary data structures it employs. [30%]

- 3. a) What are distributed word representations? How do they compare to one-hot encoding? [20%]
 - b) Describe how one can obtain sparse distributed word representations from a corpus by counting word contexts, giving details on how the choices of context window size, context representation and count post-processing affect the representations learned.

 [30%]
 - c) Describe in detail, using appropriate equations and diagrams, the skip-gram model and how it can be used to learn dense distributed word representations from a corpus.

 [30%]
 - d) Give ONE example of intrinsic word representation evaluation and ONE example of extrinsic word representation evaluation. [20%]

END OF QUESTION PAPER

COM6513 5