

Figure 10.37

(a) The hyperboloid of one sheet $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

(b) The hyperboloid of two sheets $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Figure 10.38 The cylindrical coordinates of a point

Figure 10.39 The coordinate surfaces for cylindrical coordinates

Figure 10.40 The spherical coordinates of a point

Figure 10.41 The coordinate surfaces for spherical coordinates

Figure 10.34

- (a) The circular cylinder $x^2 + y^2 = a^2$
- (b) The parabolic cylinder $z = x^2$

Figure 10.35

- (a) The circular cone $a^2z^2 = x^2 + y^2$ (b) The ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Figure 10.36

- (a) The elliptic paraboloid $z=\frac{x^2}{a^2}+\frac{y^2}{b^2}$ (b) The hyperbolic paraboloid $z=\frac{x^2}{a^2}-\frac{y^2}{b^2}$

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

