

Update on an algorithm for the online determination of the MIP peak in the UUB DAQ

Paul Filip, David Schmidt

Idea & terminology

WCD offline calibration algorithm WCD online calibration algorithm

Fit peak of muon histogram

- (1) Start with a value of $I_{VEM}^{est.} = 50 \text{ ch.}$
- (2) Measure, for each PMT, the rate of events satisfying the calibration trigger by counting these events for a time $t_{\rm cal}$, initially set to 5 s.
- (3) If, for a given PMT, the rate is above $70 + \sigma Hz$, increase $I_{VFM}^{est.}$ by δ . Likewise, if the rate is below $70 - \sigma Hz$, decrease $I_{VEM}^{est.}$ by δ , with $\sigma = 2 Hz$ and $\delta =$ 1 ch initially.
- (4) If the rate of any single PMT is more than 10σ away from 70 Hz, adjust $I_{VEM}^{est.}$ by 5ch in the appropriate direction, set $t_{\rm cal}$ to 10 s, $\delta = 1$ ch, and repeat from step (2).
- (5) Otherwise, if $t_{\rm cal} < 60$ s, increase $t_{\rm cal}$ by 5 s. If $\delta > 0.1$ ch, decrease δ by 0.1 ch, and repeat from step (2).

Idea & terminology

WCD offline calibration algorithm WCD online calibration algorithm

Fit peak of muon histogram

- (1) Start with a value of $I_{VEM}^{est.} = 50 \text{ ch.}$
- (2) Measure, for each PMT, the rate of the calibration trigger by count time $t_{\rm cal}$, initially set to 5
- (3) If, for a given P increase $I_{\rm VE}^{\rm est}$
 - re than 10σ away th in the appropriate leh, and repeat from step
 - $_{color}$ 60 s, increase t_{cal} by 5 s. If $\delta > 0.1$ ch, crease δ by 0.1 ch, and repeat from step (2).

Data

- T3 from {Mar, Jun, Sep, Dec} 2022/23 for 11 (10) stations ~ 150k (50k) SSD histograms
- Bootstrap muon events according to event histogram and fit MIP

Characteristic shape

Data

- T3 from {Mar, Jun, Sep, Dec} 2022/23 for 11 (10) stations ~ 150k (50k) SSD histograms
- Bootstrap muon events according to event histogram and fit MIP

- Characteristic shape
- Differences across stations

Data

- T3 from {Mar, Jun, Sep, Dec} 2022/23 for 11 (10) stations ~ 150k (50k) SSD histograms
- Bootstrap muon events according to event histogram and fit MIP

- Characteristic shape
- Differences across stations
- MIP value determined by:
 - Weather
 - Electronics
 - ???
- Does there exist a stable threshold/rate relationship?

MIP Rate

- Fit MIP from histogram
- Count all entries above threshold to calculate rate

MIP Rate

- Fit MIP from histogram
- Count all entries above threshold to calculate rate
- Average per-station rate over multiple stations
- Rate spread rather big (+10%), but not greatly dependant on set threshold

- Setup threshold/rate relationship from plot below
- Determine threshold for 50 Hz rate is observed
- (online) MIP is then (e.g.) **threshold** / 1.85

 $1.3 \times I_{\text{Peak}}^{\text{MIP}}$

 $1.25 \times I_{\text{Peak}}^{\text{MIP}}$

- Setup threshold/rate relationship from plot below
- Determine threshold for 50 Hz rate is observed

 $1.05 \times I_{\text{Pools}}^{\text{MIP}}$

 $1.1 \times I_{\text{Peak}}^{\text{MIP}}$

 $1.15 \times I_{\text{Peak}}^{\text{MIP}}$

 $1.2 \times I_{\text{Peak}}^{\text{MIP}}$

Next steps

Repeat analysis with more stations (ongoing)