Package 'ParallABEL'

February 22, 2010

Title Parallel of Go	enome-Wide Association function
Version 0.1-0	
Author Unitsa Sar	ngket
Description Suppo	ort for parallel GenABEL package in R.
Maintainer Unitsa	a Sangket <usangket@yahoo.com></usangket@yahoo.com>
License GPL	
Depends R (>= 2.8	R) utile
Depends K (>= 2.6	5), utils
R topics doc	umented:
type2.p type3.p	
Index	10
type1.p	Parallel for the analyses of statistics of each SNP
Description	
Parallel for the ation test statis	analyses of statistics of each SNP, such as SNP characterization statistics or associtics
Usage	
type1.p(np	ro,fun,data,data_f,)
Arguments	
npro	number of processors on compute nodes
fun	function name will be process such as mlreg.p
data	object of snp.data-class
data_f	file name that was saved the input object of snp.data-class, the object must be named "data"
	further arguments passed to function of fun argument

2 type1.p

Author(s)

Unitsa Sangket, Yurii S. Aulchenko and Surakameth Mahasirimongkol

```
Example 1 (summit job on R)
#clear working space
rm(list = ls())
library(GenABEL)
library(ParallABEL)
formula=dm2~sex+age
data(ge03d2.clean)
data <- ge03d2.clean[,]</pre>
npro=2 \ \# \ npro = number \ of \ processors \ on \ the \ compute-nodes
fun=mlreg.p
output.p = type1.p(npro,fun,data,formula=formula)
output.p[1:5,]
mpi.quit(save="no")
Example 2 (summit job on Sun Grid Engine)
You have to create 2 files if you want to summit a job on Sun Grid Engine.
(http://math.acadiau.ca/ACMMaC/Rmpi/submitting.html)
File 1 (R_script.sh):
#!/bin/bash
# Run in the current directory
#$ -cwd
#$ -j y
#$ -V
# Run using bash
#$ -S /bin/bash
# The number of processors required - 1 for frontend-node, plus whatever
# number for compute-nodes.
# This example runs with a processor on frontend-node, plus 2 processors on compute-nodes
#$ -pe lam 3
# Run the job. Replace with whatever R script should run
lamrun -np 1 R --slave CMD BATCH R_script.R R_script_sh.Rout
File 2 (R_script.R):
#clear working space
```

type2.p

```
rm(list = ls())
library(GenABEL)
library(ParallABEL)
formula=dm2~sex+age
data(ge03d2.clean)
data <- ge03d2.clean[,]</pre>
npro=2 # npro = number of processors on the compute-nodes
fun=mlreq.p
output.p = type1.p(npro,fun,data,formula=formula)
output_Rdata ="output_type1_mlreg_c3.Rdata"
save(output.p,file=output_Rdata)
# You can load the output from output_type1_mlreg_c3.Rdata
output.p[1:5,]
mpi.quit(save="no")
For summit the job please use command:
qsub R_script.sh
You can see the progress on R_script_sh.Rout.
```

type2.p

Parallel for the analyses of statistics of each individual

Description

Parallel for the analyses of statistics of each individual, for example, summary statistics of genotype quality for each sample

Usage

```
type2.p(npro,fun,data,data_f,...)
```

Arguments

npro	number of processors on compute nodes
fun	function name will be processed such as hom
data	object of snp.data-class
data_f	file name that was saved the input object of snp.data-class, the object must be named "data" $$
	further arguments passed to function of fun argument

Author(s)

Unitsa Sangket, Yurii S. Aulchenko and Surakameth Mahasirimongkol

4 type2.p

```
Example 1 (summit job on R)
#clear working space
#clear working space
rm(list = ls())
library(GenABEL)
library(ParallABEL)
data(ge03d2.clean)
data <- ge03d2.clean[,]</pre>
npro=2 # npro = number of processors
fun=hom
output.p = type2.p(npro,fun,data)
output.p[1:5,]
mpi.quit(save="no")
Example 2 (summit job on Sun Grid Engine)
You have to create 2 files if you want to summit a job on Sun Grid Engine.
(http://math.acadiau.ca/ACMMaC/Rmpi/submitting.html)
File 1 (R_script.sh):
#!/bin/bash
# Run in the current directory
#$ -cwd
#$ -ј у
#$ -V
# Run using bash
#$ -S /bin/bash
# The number of processors required - 1 for frontend-node, plus whatever
# number for compute-nodes.
# This example runs with a processor on frontend-node, plus 2 processors on compute-nodes
#$ -pe lam 3
# Run the job.
            Replace with whatever R script should run
lamrun -np 1 R --slave CMD BATCH R_script.R R_script_sh.Rout
File 2 (R_script.R):
#clear working space
rm(list = ls())
library(GenABEL)
library(ParallABEL)
```

type3.p

type3.p Parallel for the pairwise statistics derived from analyses between each individual

Description

Parallel for pairwise statistics derived from analyses between each individual, for example genomewide identity-by-state or genomic kinship analyses

Usage

```
type3.p(npro,fun,data,data_f,...)
```

Arguments

npro	number of processors on the compute-nodes
fun	function name will be processed such as ibs
data	object of snp.data-class
data_f	file name that was saved the input object of snp.data-class, the object must be named "data"
	further arguments passed to function of fun argument

Author(s)

Unitsa Sangket, Yurii S. Aulchenko and Surakameth Mahasirimongkol

6 type3.p

```
Example 1 (summit job on R)
#clear working space
rm(list = ls())
library(GenABEL)
library(ParallABEL)
data(srdta)
data <- srdta[,]</pre>
npro=2 # npro = number of processors on the compute-nodes
fun=ibs
output.p = type3.p(npro,fun,data)
output.p[1:5,1:5]
mpi.quit(save="no")
Example 2 (summit job on Sun Grid Engine)
You have to create 2 files if you want to summit a job on Sun Grid Engine.
(http://math.acadiau.ca/ACMMaC/Rmpi/submitting.html)
File 1 (R_script.sh):
#!/bin/bash
# Run in the current directory
#$ -cwd
#$ -j y
#$ -V
# Run using bash
#$ -S /bin/bash
# The number of processors required - 1 for frontend-node, plus whatever
# number for compute-nodes.
# This example runs with a processor on frontend-node, plus 2 processors on compute-nodes
#$ -pe lam 3
# Run the job.
            Replace with whatever R script should run
lamrun -np 1 R --slave CMD BATCH R_script.R R_script_sh.Rout
File 2 (R_script.R):
#clear working space
rm(list = ls())
library(GenABEL)
library(ParallABEL)
```

type4.p

type4.p

Parallel for the pairwise statistics derived from each pair of SNP

Description

Parallel for pairwise statistics derived from each pair of SNP, e.g. linkage disequilibrium characterisation

Usage

```
type4.p(npro,fun,data,data_f,output_f,...)
```

Arguments

npro	number of processors on compute nodes
fun	function name will be processed such as r2fast
data	object of snp.data-class
data_f	file name that was saved the input object of snp.data-class, the object must be named "data" $$
output_f	a file will be saved the outputs
	further arguments passed to function of fun argument

Author(s)

Unitsa Sangket, Yurii S. Aulchenko and Surakameth Mahasirimongkol

8 type4.p

```
Example 1 (summit job on R)
#clear working space
rm(list = ls())
library(GenABEL)
library(ParallABEL)
data(srdta)
data <- srdta[,]</pre>
npro=2 # npro = number of processors
output_f="output_type4_r2fast_c3"
fun=r2fast
output.p = type4.p(npro,fun,data,output_f=output_f)
# You can load the output from output_type4_r2fast_c3.Rdata
mpi.quit(save="no")
Example 2 (summit job on Sun Grid Engine)
You have to create 2 files if you want to summit a job on Sun Grid Engine.
(http://math.acadiau.ca/ACMMaC/Rmpi/submitting.html)
File 1 (R_script.sh):
#!/bin/bash
# Run in the current directory
#$ -cwd
#$ -j y
#$ -V
# Run using bash
#$ -S /bin/bash
# The number of processors required - 1 for frontend-node, plus whatever
# number for compute-nodes.
# This example runs with a processor on frontend-node, plus 2 processors on compute-nodes
#$ -pe lam 3
# Run the job.
            Replace with whatever R script should run
lamrun -np 1 R --slave CMD BATCH R_script.R R_script_sh.Rout
File 2: R_script.R:
#clear working space
rm(list = ls())
library(GenABEL)
library(ParallABEL)
```

type4.p

Index

- type1.p,1 type2.p,3 type3.p,5 type4.p,7