Lambda calculus

- Lambda calculus is a formal system.
- We can restrict some functions from being applied to others.
- This is known as typing.
- The system we get is called simply typed lambda calculus.
- We only have function types, but we can have more...

Ali Caglayan Dependent types 1 / 1:

Extending typed lambda calculus

When adding a new type we must write down rules to define how it will behave. Usually these are sorted into 4 kinds of rules:

- Introduction rules (how to make the type)
- Constructors (how to make terms of the type)
- Eliminators (how to break terms of the type)
- Computation rules (how a function coming out of the type computes)

Note: Computation rules can usually be derived from the other rules, and therefore can be omitted.

Ali Caglayan Dependent types 2 / 1

Product types

Introduction

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma \vdash B \text{ Type}}{\Gamma \vdash A \times B \text{ Type}}$$

Constructors

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a,b) : A \times B}$$

Eliminators

$$\frac{\Gamma \vdash t : A \times B}{\Gamma \vdash \mathsf{fst}(t) : A}$$

$$\frac{\Gamma \vdash t : A \times B}{\Gamma \vdash \mathsf{snd}(t) : B}$$

Computation rules

$$(fst(t), snd(t)) \equiv t$$

Sum types

Introduction

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma \vdash B \text{ Type}}{\Gamma \vdash A + B \text{ Type}}$$

Constructors

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash \mathsf{inl}(a) : A + B}$$

$$\frac{\Gamma \vdash b : B}{\Gamma \vdash \mathsf{inr}(b) : A + B}$$

Eliminators

$$\frac{\Gamma \vdash f : A \to C \qquad \Gamma \vdash g : B \to C}{\Gamma \vdash \mathsf{ind}_{A+B}(f,g) : A + B \to C}$$

Motivation

- Programming languages
 - Haskell
 - ML
 - basically every other typed functional programming language

Ali Caglayan Dependent types 5/1

Mathematical motivation - Curry-Howard correspondance

There is a correspondance between propositional logic and type theory. Types are propositions, and terms are proofs.

Propositional logic	Type theory
proposition A	A Type
proof of A	term of A
and $A \wedge B$	product type $A \times B$
or $A \vee B$	sum type $A + B$
implies $A \implies B$	function type $A \rightarrow B$
true	unit type $oldsymbol{1}$
false	empty type 0
not A	$A \rightarrow 0$

This is the begining of using type theory to encode mathematics. This is how proof assistants work.

Ali Caglayan Dependent types 6/1

What are dependent types?

- Functions allow terms to depend on other terms
- Polymorphism allows types to depend on other types
- Terms already depend on types
- Dependent types allow types to depend on terms

What problems can dependent types solve?

- Encoding hard to encode data types such as lists (or vectors) of fixed length.
- It is equivalent to first-order logic in some suitable sense.

Ali Caglayan Dependent types 7 / 1

Pi types

What if the target of a function type could change depending on the input?

Ali Caglayan Dependent types 8 / 1

Sigma types

Some times product types are not enough. Especially when we need a family.

Ali Caglayan Dependent types 9 / 1

(Dependent) Curry-Howard

Propositional logic	Type theory
$\forall a \in A, P(a)$	pi type $\prod_{(a:A)} P(a)$
$\exists a \in A, P(a)$	sigma type $\sum_{(a:A)} P(a)$
proposition A	A Type
proof of A	term of A
and $A \wedge B$	product type $A \times B$
or $A \vee B$	sum type $A + B$
implies $A \implies B$	function type $A \rightarrow B$
true	unit type $oldsymbol{1}$
false	empty type 0
not A	A o 0

Ali Caglayan Dependent types $10 \ / \ 11$

How can we model type theories?

Answer:

Categorical semantics.

This allows us to use category theory to reason about the metatheory of our type theory.

But theres more...

When modelling "type theories" in mathematics it was found that there is really a two way correspondance.

Type theory \rightleftharpoons Category theory

Type theory can be used to reason about a category. Lots of people have investigated this, notably Topos theorists.

Ali Caglayan Dependent types 11 / 1