The Spark Foundation - Internship

Data Science And Business Analytics

Author: Sheeba S

TASK: 2

Performing Clustering Techniques on Iris Dataset

Importing the required Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

Read the given Dataset

```
In [10]:

df = pd.read_csv("Documents/iris.csv")

In [11]:
```

```
df.head(10)
```

Out[11]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

Data cleaning

```
In [13]:
df.isna().sum()
Out[13]:
```

SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0

```
Species 0
dtype: int64
```

Displaying the shape of the data

```
In [15]:
```

```
df.shape

Out[15]:
(150, 6)
```

Displaying the information abt the dataset

```
In [16]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
Ιd
                 150 non-null int64
               150 non-null float64
150 non-null float64
SepalLengthCm
SepalWidthCm
PetalLengthCm 150 non-null float64
PetalWidthCm
                150 non-null float64
                150 non-null object
Species
dtypes: float64(4), int64(1), object(1)
memory usage: 7.1+ KB
In [17]:
df.describe()
```

Out[17]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
coun	t 150.000000	150.000000	150.000000	150.000000	150.000000
mea	n 75.500000	5.843333	3.054000	3.758667	1.198667
st	d 43.445368	0.828066	0.433594	1.764420	0.763161
mi	n 1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	6 75.500000	5.800000	3.000000	4.350000	1.300000
75%	6 112.750000	6.400000	3.300000	5.100000	1.800000
ma	x 150.000000	7.900000	4.400000	6.900000	2.500000

Relation between Sepal length, sepal width and petal length, petal width

In [18]:

```
fig=plt.figure(figsize=(17,6))
ax1=fig.add_subplot(121)
ax2=fig.add_subplot(122)

ax1.scatter(df.iloc[:,0],df.iloc[:,1])
ax1.set_title('SepalLength vs SepalWidth')
ax1.set_xlabel('SepalLength')
ax1.set_ylabel('SepalWidth')

ax2.scatter(df.iloc[:,2],df.iloc[:,3])
ax2.scatter(df.iloc[:,2],df.iloc[:,3])
ax2.set_title('PetalLength vs PetalWidth')
ax2.set_xlabel('PetalLength')
ax2.set_ylabel('PetalWidth')
```

plt.show()

Relation between Sepal length, petal length and sepal width, petal width

In [19]:

```
fig=plt.figure(figsize=(17,6))
ax1=fig.add_subplot(121)
ax2=fig.add_subplot(122)

ax1.scatter(df.iloc[:,0],df.iloc[:,2])
ax1.set_title('SepalLength vs PetalLength')
ax1.set_xlabel('SepalLength')
ax1.set_ylabel('PetalLength')

ax2.scatter(df.iloc[:,1],df.iloc[:,3])
ax2.scatter(df.iloc[:,1],df.iloc[:,3])
ax2.set_title('SepalWidth vs PetalWidth')
ax2.set_xlabel('PetalLength')
ax2.set_ylabel('SepalWidth')
plt.show()
```


EDA

In [30]:

```
sns.pairplot(df,hue='Species')
plt.show()
```


Elbow plot

```
In [22]:
```

```
X= df.iloc[:,[0,1,2,3]].values
```

```
In [23]:
```

The elbow method

K-means Classification

```
In [24]:
```

Visualizing the Clusters with Centroids

```
In [46]:
```



```
In [39]:
```

```
plt.figure(figsize=(6,5))
nlt coatter(Y[v kmeance=0 21 Y[v kmeance=0 31 c=50 c=!hlve! label=!iric-cetoca!)
```


THANK YOU

In []: