All About Regression

EC 350: Labor Economics

Kyle Raze

Winter 2022

All About Regression

Econometrics

The objective? Identify the effect of a treatment variable D on an outcome variable Y.

How? Find a way to shut down selection bias.

Regression analysis

A set of statistical processes for quantifying the relationship between a dependent variable (e.g., an outcome) and one or more independent variables (e.g., a treatment or a control variable).

A bundle of useful tools for doing econometrics!

[†] The other objective? Forecast future values of key outcome variables, such as unemployment, GDP, customer retention, *etc.* But that's a different subject for a different course.

All About Regression

Regression analysis

Economists often rely on regression analysis to make various statistical comparisons.

- Can facilitate other things equal comparisons.
- Can shut down selection bias by explicitly controlling for confounding variables.
- Failure to control for confounding variables?

 omitted-variable bias.

Our objective? Learn how to interpret the results of a regression analysis.

1. Literal interpretation

- Interpret the size and statistical significance of regression coefficient estimates.
- Know your way around a regression table.

2. Big-picture interpretation

- What do the estimates imply about the effects of a treatment?
- Should we trust the estimates? Do they reflect a causal relationship?

Model

We can express the relationship between the **outcome variable** and the **treatment variable** as linear:

$$Y_i = \alpha + \beta D_i + \varepsilon_i$$

- *i* indexes an individual.
- α = the **intercept** or constant.
- β = the slope coefficient.
 - Imagine for now that D_i can take on many different values (e.g., more than just 0 or 1).
- ε_i = the **error term**.

Model

The **intercept** tells us the expected value of Y_i when $D_i = 0$.

$$Y_i = \alpha + \beta D_i + \varepsilon_i$$

Part of the regression line, but almost never the focus of an analysis.

• In practice, omitting the intercept would bias estimates of the slope coefficient—the object we really care about.

Model

The **slope coefficient** tells us the expected change in Y_i when D_i increases by one.

$$Y_i = \alpha + \beta D_i + \varepsilon_i$$

"A one-unit increase in D_i is associated with a eta-unit increase in Y_i ."

Under certain (strong) assumptions about the error term (e.g., no selection bias), β represents the causal effect of D_i on Y_i .

- "A one-unit increase in D_i leads to a eta-unit increase in Y_i ."
- ullet Otherwise, it's just the association of D_i with Y_i , representing a non-causal correlation.

Model

The **error term** reminds us that D_i isn't the only variable that affects Y_i .

$$Y_i = \alpha + \beta D_i + \varepsilon_i$$

The error term represents all other factors that explain Y_i .

• So what? If some of those factors influence D_i , then omitted-variable bias will contaminate estimates of the slope coefficient.

Example

Q: How does attendance affect performance?

As a first attempt at an answer, we can estimate a regression of final exam scores on attendance:

$$\text{Final}_i = \alpha + \beta \text{ Attend}_i + \varepsilon_i$$

Parameter	(1)
Intercept	56.82
	(2.19)
Attendance	0.3
	(0.08)

Standard errors in parentheses.

Example

- **Q:** Do police on college campuses reduce crime?
 - What does the slope coefficient tell us?
- **Q:** Does this mean that police *cause* crime!?
 - Why or why not?

For an interesting discussion of the causal effects of police staffing on crime and arrests—and how those effects vary by race—check out episode 55 of the *Probable Causation* podcast.

11 / 30

Estimation

Q: Where does the regression line come from?

A: A routine called ordinary least squares (OLS).

How does OLS work?

- Every "fitted line" produces residuals.
- Residual = actual predicted

Estimation

Q: Where does the regression line come from?

A: A routine called ordinary least squares (OLS).

How does OLS work?

 Some fitted lines generate bigger residuals than others.

Estimation

Q: Where does the regression line come from?

A: A routine called ordinary least squares (OLS).

How does OLS work?

- The "line of best fit" is the line that minimizes the sum of squared residuals.
- Q: Why squared?
- Using math you'll see in EC 320 or matrix algebra, OLS does this without the guesswork.

Estimation

Q: Where does the regression line come from?

A: A routine called ordinary least squares (OLS).

How does OLS work?

- "Squares?" Sum of squared residuals.
- "Least?" Minimize that sum.
- "Ordinary?" Oldest, most common way of estimating a regression.

Example: Returns to education

The optimal investment in education by students, parents, and legislators depends in part on the monetary return to education.

Thought experiment:

- Randomly select an individual.
- Give her an additional year of education.
- How much do her earnings increase?

The change in her earnings describes the causal effect of education on earnings.

Example: Returns to education

Q: How much extra money can a worker in this sample expect from an additional year of education?

- How do you know?
- **Q:** Does this number represent the causal return to an additional year of education?
 - What other variables could be driving the relationship?

We can produce a fitted line by estimating a regression of an outcome on a treatment:

$$Y_i = \alpha + \beta D_i + \varepsilon_i$$

 β describes how the outcome changes, *on average*, when treatment changes.

Parameter	(1)
Intercept	1.22
	(0.18)
Treatment	0.56
	(0.08)

Standard errors in parentheses.

However, we might worry that a third variable W_i confounds our estimate of the effect of the treatment on the outcome.

If data on the confounder exists, it can be added to the regression model:

$$Y_i = \alpha + \beta D_i + \gamma W_i + \varepsilon_i$$

Q: How does OLS "adjust" for the confounder?

• **Step 1:** Figure out what differences in D are explained by W.

If data on the confounder exists, it can be added to the regression model:

$$Y_i = \alpha + \beta D_i + \gamma W_i + \varepsilon_i$$

Q: How does OLS "adjust" for the confounder?

• **Step 2:** Remove differences in D explained by W.

If data on the confounder exists, it can be added to the regression model:

$$Y_i = lpha + eta \, D_i + \gamma \, W_i + arepsilon_i$$

Q: How does OLS "adjust" for the confounder?

• **Step 3:** Figure out what differences in Y are explained by W.

If data on the confounder exists, it can be added to the regression model:

$$Y_i = \alpha + \beta D_i + \gamma W_i + \varepsilon_i$$

Q: How does OLS "adjust" for the confounder?

• **Step 4:** Remove differences in Y explained by W.

If data on the confounder exists, it can be added to the regression model:

$$Y_i = lpha + eta \, D_i + \gamma \, W_i + arepsilon_i$$

Q: How does OLS "adjust" for the confounder?

• **Step 5:** Fit a regression through the adjusted data.

If data on the confounder exists, it can be added to the regression model:

$$Y_i = lpha + eta \, D_i + \gamma \, W_i + arepsilon_i$$

Parameter	(1)	(2)
Intercept	1.22	0.9
	(0.18)	(0.1)
Treatment	0.56	-0.42
	(0.08)	(0.07)
Confounder		3.91
		(0.2)

Standard errors in parentheses.

Omitted-variable bias

Example: Returns to education

Outcome: Weekly Earnings

Parameter	1	2
Intercept	146.95	-128.89
	(77.72)	(92.18)
Schooling (Years)	60.21	42.06
	(5.70)	(6.55)
IQ Score (Points)		5.14
		(0.96)

Standard errors in parentheses.

Bias from omitting IQ score

= 18.15

The first regression mistakenly attributes some of the influence of intelligence to education.

Omitted-variable bias

Y = Outcome

D = Treatment

W = Omitted variable

If W is correlated with both D and $Y \longrightarrow$ omitted variable bias \longrightarrow regression fails to isolate the causal effect of D on Y.

Omitted-variable bias

Bias

Y = Outcome

D = Treatment

W = Omitted variable

If W is correlated with both D and $Y \longrightarrow$ omitted variable bias \longrightarrow regression fails to isolate the causal effect of D on Y.

Housekeeping

MLK Jr. Day: No class or office hours on Monday the 17th.

Pre-recorded lecture for Wednesday the 19th.

- I will try to post it sometime next week.
- In the meantime, enjoy your weekend!

Assigned reading for next week: Snapping back: Food stamp bans and criminal recidivism by Cody Tuttle (2019).

- Best to read it after you watch next week's lecture.
- Reading Quiz 3 due the following week (Monday the 24th).

Problem Set 1 due on Friday the 21st by 11:59pm.

Covers everything though next Wednesday.