Lista 5

MI406/ME861 - 1s2025

1. Considere o conjunto de dados abaixo:

X	У
1	2.67
1	3.48
1	2.46
4	3.40
4	2.13
4	0.98
7	6.19
7	6.44
7	6.28
10	14.69
10	16.51
10	15.39

- (a) Calcule a Soma de Quadrados dos Resíduos considerando o modelo $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$.
- (b) Calcule a Soma de Quadrados de Erro Puro.
- (c) Calcule a Soma de Quadrados de Falta de Ajuste ("Lack of Fit").
- (d) Faça um teste para determinar se o modelo linear é apropriado.

2. Considere o conjunto de dados abaixo:

ζ	у
1 2	2.37
1 :	3.18
1 2	2.16
1 7	7.60
4 6	3.33
1 :	5.18
7 9	9.49
7 9	9.74
7 9	9.58
) 11	1.69
) 13	3.51
) 12	2.39

- (a) Calcule a Soma de Quadrados dos Resíduos considerando o modelo $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$.
- (b) Calcule a Soma de Quadrados de Erro Puro.
- (c) Calcule a Soma de Quadrados de Falta de Ajuste ("Lack of Fit").
- (d) Faça um teste para determinar se o modelo linear é apropriado.
- 3. Considerando o mesmo conjunto de dados da questão 2:

- (a) Calcule a Soma de Quadrados dos Resíduos considerando o modelo $Y_i = \beta_1 x_i + \epsilon_i$.
- (b) Calcule a Soma de Quadrados de Erro Puro.
- (c) Calcule a Soma de Quadrados de Falta de Ajuste ("Lack of Fit").
- (d) Faça um teste para determinar se o modelo linear sem intercepto é apropriado.
- 4. Um banco de dados contém informações de área e valor sobre 3 tipos de imóveis: Apartamentos, Casas e Terrenos. Defina dois modelos de regressão para determinação do valor dos imóveis de acordo com o tipo e a área. Em um deles o incremento do valor com respeito à área deve ser o mesmo para os 3 tipos, enquanto no outro, cada tipo de imóvel pode ter um incremento de valor em função da área distinto.

Interprete todos os parâmetros desses dois modelos.

5. Sejam $x_i \in \mathbb{R}$ covariáveis com valores contínuos e z_i covariáveis com valores $z_i \in \{0, 1\}$. Considere os seguintes modelos de regressão:

$$Y_i = \beta_{a,0} + \beta_{a,1} x_i + \epsilon_i$$

$$Y_i = \beta_{b,0} + \beta_{b,1} x_i + \beta_{b,2} z_i + \epsilon_i$$

- (a) Explique, se existir, em que cenário os coeficiente estimador $\hat{\beta}_{a,1}$ e $\hat{\beta}_{b,1}$ podem ter sinais diferentes.
- (b) O que podemos dizer sobre a igualdade $\hat{\beta}_{a,2} = \hat{\beta}_{b,2}$? Em quais cenários, se existirem, essa igualdade é verdadeira? Interprete.
- (c) (Extra, opcional) Simule um banco de dados com base no modelo $Y_i = \beta_{b,0} + \beta_{b,1}x_i + \beta_{b,2}z_i + \epsilon_i$, de forma que o teste de falta de ajuste não rejeite a hipótese de que o modelo $Y_i = \beta_{a,0} + \beta_{a,1}x_i + \epsilon_i$ é apropriado. Interprete esse resultado.