

TRIANGULATED CATEGORIES

Thomas Wilskow Thorbjørnsen

14.06.2021

Outline

Introduction

Triangulated Categories

The axioms

Homological functors
Subcategories and Verdier Quotient

Frobenius Categories

Exact categories
Stable Frobenius categories

Constructions

Homotopy categories

Derived categories

Introduction

- ► Why study triangulated categories?
- Stable Frobenius Categories vs. Stable Homotopy Categories

Candidate Triangles

Assume that:

- $ightharpoonup \mathcal{T}$ an additive category
- ightharpoonup $\Sigma_{\mathcal{T}}: \mathcal{T} \to \mathcal{T}$ an additive autoequivalence

Definition (Candidate triangle)

Candidate triangle: $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} \Sigma_T A$

A triangulated category is a triple $(\mathcal{T}, \Sigma_{\mathcal{T}}, \Delta_{\mathcal{T}})$ where $\Delta_{\mathcal{T}}$ is a triangulation.

Definition (Triangulation)

- $ightharpoonup \Delta_{\mathcal{T}}$ class of candidate triangles
- ▶ Element of Δ_T is called triangle
- $ightharpoonup \Delta_{\mathcal{T}}$ is a triangulation if it satisfies the following axioms:

TR1 Bookkeeping axiom

- 1. A candidate triangle isomorphic to a triangle is a triangle
- **2.** For every morphism $a: A \rightarrow B$ there is a triangle

$$A \stackrel{a}{\longrightarrow} B \stackrel{b}{\longrightarrow} C \stackrel{c}{\longrightarrow} \Sigma_{\mathcal{T}} A$$

3. For every object $A : \mathcal{T}$ there is a triangle

$$A \xrightarrow{id_A} A \xrightarrow{0} 0 \xrightarrow{0} \Sigma_T A$$

TR2 Rotation axiom

Given a triangle

$$A \stackrel{a}{\longrightarrow} B \stackrel{b}{\longrightarrow} C \stackrel{c}{\longrightarrow} \Sigma_{\mathcal{T}} A$$

there are triangles

$$B \xrightarrow{b} C \xrightarrow{c} \Sigma_{\mathcal{T}} A \xrightarrow{-\Sigma_{\mathcal{T}} a} \Sigma_{\mathcal{T}} B$$
$$\Sigma_{\mathcal{T}}^{-1} C \xrightarrow{-\Sigma_{\mathcal{T}}^{-1} c} A \xrightarrow{a} B \xrightarrow{b} C$$

TR3 Morphism axiom

Two triangles and a square of morphisms between the triangles may be completed to a triangle morphism.

TR4 Octahedron axiom

Given three triangles

(1)
$$A \xrightarrow{a} B \xrightarrow{x} C' \xrightarrow{x'} \Sigma_{\mathcal{T}} A$$

(2)
$$B \xrightarrow{b} C \xrightarrow{y} A' \xrightarrow{y'} \Sigma_{\mathcal{T}} B$$

(3) $A \stackrel{b \circ a}{\longrightarrow} C \stackrel{z}{\longrightarrow} B' \stackrel{z'}{\longrightarrow} \Sigma_T A$ such that there is a commutative diagram

TR4 Octahedron axiom

then there exists morphisms f and g making the third row a triangle.

TR4 Octahedron axiom

TR4 Octahedron axiom

There exist morphisms $f: C' \to B'$ and $g: B' \to A'$, and the squiggly teal back face is a triangle.

Functors

Definition (Triangulated functor)

A functor $F: \mathcal{T} \to \mathcal{S}$ between triangulated categories is called triangulated if:

- $\phi: F \circ \Sigma_{\mathcal{T}} \implies \Sigma_{\mathcal{S}} \circ F$ is a natural isomorphism
- $ightharpoonup F(\Delta_{\mathcal{T}}) \subseteq \Delta_{\mathcal{S}}$

Functors

Definition (Triangulated functor)

A functor $F: \mathcal{T} \to \mathcal{S}$ between triangulated categories is called triangulated if:

- $\phi: F \circ \Sigma_{\mathcal{T}} \implies \Sigma_{\mathcal{S}} \circ F$ is a natural isomorphism
- $ightharpoonup F(\Delta_{\mathcal{T}}) \subseteq \Delta_{\mathcal{S}}$

Definition (Homological functor)

A covariant functor $H: \mathcal{T} \to \mathcal{A}$ from a triangulated category and an abelian category is called homological if it sends triangles to long exact sequences.

$$\begin{array}{c} A \\ \Sigma_{\mathcal{T}} \\ c \\ C \end{array} \stackrel{a}{\longrightarrow} B \end{array} \Longrightarrow \begin{array}{c} \ldots \longrightarrow H(\Sigma_{\mathcal{T}}^{i}A) \stackrel{H(\Sigma_{\mathcal{T}}^{i}a)}{\longrightarrow} H(\Sigma_{\mathcal{T}}^{i}B) \stackrel{H(\Sigma_{\mathcal{T}}^{i}b)}{\longrightarrow} H(\Sigma_{\mathcal{T}}^{i}C) \\ H(\Sigma_{\mathcal{T}}^{i+1}A) \stackrel{H(\Sigma_{\mathcal{T}}^{i+1}a)}{\longrightarrow} H(\Sigma_{\mathcal{T}}^{i+1}B) \stackrel{H(\Sigma_{\mathcal{T}}^{i+1}b)}{\longrightarrow} H(\Sigma_{\mathcal{T}}^{i+1}C) \longrightarrow \ldots \end{array}$$

Functors

Definition (Triangulated functor)

A functor $F: \mathcal{T} \to \mathcal{S}$ between triangulated categories is called triangulated if:

- $\phi: F \circ \Sigma_{\mathcal{T}} \implies \Sigma_{\mathcal{S}} \circ F$ is a natural isomorphism
- $ightharpoonup F(\Delta_{\mathcal{T}}) \subseteq \Delta_{\mathcal{S}}$

Definition (Cohomological functor)

A contravariant functor $H:\mathcal{T}\to\mathcal{A}$ from a triangulated category and an abelian category is called cohomological if it sends triangles to long exact sequences.

$$\begin{array}{c} A \\ \Sigma_{\mathcal{T}} \\ c \\ C \end{array} \longrightarrow \begin{array}{c} \dots \longleftarrow H(\Sigma_{\mathcal{T}}^{i-1}A) \underset{H(\Sigma_{\mathcal{T}}^{i-1}a)}{\longleftarrow} H(\Sigma_{\mathcal{T}}^{i-1}B) \underset{H(\Sigma_{\mathcal{T}}^{i-1}b)}{\longleftarrow} H(\Sigma_{\mathcal{T}}^{i-1}C) \longleftarrow \\ H(\Sigma_{\mathcal{T}}^{i}A) \underset{H(\Sigma_{\mathcal{T}}^{i}a)}{\longleftarrow} H(\Sigma_{\mathcal{T}}^{i}B) \underset{H(\Sigma_{\mathcal{T}}^{i}b)}{\longleftarrow} H(\Sigma_{\mathcal{T}}^{i}C) \longleftarrow \dots \end{array}$$

Hom-functor

Lemma (Hom is (co)homological)

For any $M: \mathcal{T}$

- ▶ $\mathcal{T}(M, _) : \mathcal{T} \to \mathcal{A}$ is a homological functor.
- ▶ $\mathcal{T}(_{-},M):\mathcal{T}\to\mathcal{A}$ is a cohomological functor

Hom-functor

Lemma (Hom is (co)homological)

For any $M: \mathcal{T}$

- ▶ $\mathcal{T}(M, _) : \mathcal{T} \to \mathcal{A}$ is a homological functor.
- $ightharpoonup \mathcal{T}(_,M):\mathcal{T}
 ightarrow \mathcal{A}$ is a cohomological functor

Lemma (2-out-of-3 property)

If 2-out-of-3 of the triangle morphism are isomorphism, the final one is as well.

$$A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} \Sigma_{\mathcal{T}} A$$

$$\downarrow \downarrow \phi_{A} \qquad \downarrow \downarrow \downarrow \phi_{B} \qquad \downarrow \downarrow \downarrow \phi_{C} \qquad \downarrow \downarrow \downarrow \Sigma_{\mathcal{T}} \phi_{A}$$

$$A' \xrightarrow{a'} B' \xrightarrow{b'} C' \xrightarrow{c'} \Sigma_{\mathcal{T}} A'$$

Localization; I

Definition (Localization)

Let S be a collection of morphisms in the category \mathcal{C} . The Localization of \mathcal{C} on \mathcal{S} is the category $\mathcal{C}[S^{-1}]$ together with a functor $q:\mathcal{C}\to\mathcal{C}[S^{-1}]$ such that:

- ▶ $\forall s : S$ such that q(s) is an isomorphism
- ▶ Any functor $F: \mathcal{C} \to \mathcal{D}$ such that for any s: S such that F(s) is an isomorphism, then F factors through q. That is to say that there is a natural isomorphism $\eta: F \to F' \circ q$ so that $\mathcal{C}[S^{-1}]$ is the universal category where morphisms in S are isomorphisms.

Calculus of Fractions

Definition (Right multiplicative system)

A set S of morphisms in a category C is called right multiplicative if it satisfies the following conditions:

- ► *S* is closed under composition, and has every identity morphism.
- (Right Ore condition)

$$(1) \quad \downarrow s \qquad \downarrow t \\ Z \xrightarrow{g} Y$$

▶ (Left cancellation) Suppose $f, g: X \to Y$ are parallel morphisms in C, then 1. \Longrightarrow 2.:

- **1.** sf = sg for som s : S starting at Y
- **2.** ft = gt for som t : S ending at X

Calculus of Fractions

Definition (Right fractions)

S is a right multiplicative system

$$X \leftarrow S Y \xrightarrow{t} Z$$

Right fractions are denoted as ts^{-1} .

▶ Let \sim be the equivalence relation of right fractions such that $ts^{-1} \sim t's'^{-1}$ if and only if $\exists w, w' : \mathcal{C}$ making the diagram below commute and the middle row a right fraction.

Calculus of Fractions

Definition (Right fractions)

S is a right multiplicative system

$$X \leftarrow S Y \xrightarrow{t} Z$$

Right fractions are denoted as ts^{-1} .

▶ Let $S^{-1}C$ denote the category with objects from C and arrows are right fractions modulo \sim .

Set theory issues

There is no reason for this category to have small homsets between objects.

Localization; II

Theorem (Gabriel-Zisman)

Let S be a locally small right multiplicative system of morphisms in a category $\mathcal C$. Then the category $\mathfrak r S^{-1}\mathcal C$ exists and it is the localization of $\mathcal C$ on S. This mean that there is an equivalence of categories $\mathcal C[S^{-1}] \simeq \mathfrak r S^{-1}\mathcal C$ together with a functor $q:\mathcal C \to \mathfrak r S^{-1}\mathcal C$ sending a morphism $f:X\to Y$ to the right fraction $f\circ id_X^{-1}$.

Subcategories

Definition (Triangulated subcategory)

A triangulated subcategory ${\cal S}$ of a triangulated category ${\cal T}$ is a full additive subcategory such that the inclusion functor is triangulated.

Definition (Mor_S)

Let \mathcal{C} be a triangulated category and $\mathcal{S} \subseteq \mathcal{C}$ be a triangulated subcategory. Define the collection $\mathit{Mor}_{\mathcal{S}}$ to be a collection of morphisms in \mathcal{C} such that for any $f:\mathit{Mor}_{\mathcal{S}}$ there is a triangle with $\mathcal{C}:\mathcal{S}$.

$$A \stackrel{f}{\longrightarrow} B \longrightarrow C \longrightarrow \Sigma_{C}A$$

Verdier quotient

Lemma

Let $S \subseteq C$ be triangulated categories, then Mor_S is a multiplicative system.

Theorem (Verdier Quotient)

The Verdier quotient \mathcal{C}/\mathcal{S} , defined as $Mor_{\mathcal{S}}^{-1}\mathcal{C}$, together with the functor $q:\mathcal{C}\to\mathcal{C}/\mathcal{S}$ is the universal triangulated category where morphisms in $Mor_{\mathcal{S}}$ are isomorphisms.

Exact categories

Definition (Kernel-cokernel pair)

- $ightharpoonup \mathcal{A}$ is an additive category
- (p, q) is a kernel-cokernel pair if p is the kernel of q and q is the cokernel of p
- A morphism of kernel-cokernel pairs are diagrams

Exact categories

An exact structure for an additive category \mathcal{A} is a class \mathcal{E} of kernel-cokernel pairs which are closed under isomorphisms. A pair $(p,q):\mathcal{E}$ is called a conflation, here p is called an inflation and q is called a deflation. $(\mathcal{A},\mathcal{E})$ is called exact when the following axioms holds:

- ▶ (QE0) $\forall A : A$, id_A is both an inflation and a deflation.
- (QE1) Both inflations and deflations are closed under composition.
- (QE2) The push-out of an inflation is an inflation.
- ightharpoonup (QE2^{op}) The pull-back of a deflation is a deflation.

An exact category is the additive category $\mathcal A$ together with an exact structure $\mathcal E$.

Examples of exact categories

Example

Any abelian category is exact with every short exact sequence as the exact structure. This exact structure is \mathcal{E}_{max} .

Example

Any additive category is exact with every split short exact sequence as the exact structure. This structure will always be \mathcal{E}_{min} , and it is always contained inside another exact structure.

Projective and injective objects

Definition (Exact functors)

A functor $F: (\mathcal{A}, \mathcal{E}) \to (\mathcal{A}', \mathcal{E}')$ between exact categories is called exact if it is additive and $F(\mathcal{E}) \subseteq \mathcal{E}'$.

Definition (Projective object)

 $P:\mathcal{A}$ is called projective if $\mathcal{A}(P,\underline{\ }):(\mathcal{A},\mathcal{E})\to \mathbf{Ab}$ is an exact functor.

Lemma

 $P: \mathcal{A}$ is projective if and only if for every deflation $q: A \to B$ and morphism $f: P \to B$, there is a morphism $f': P \to A$ rendering the diagram below commutative.

Projective and injective objects

Definition (Exact functors)

A functor $F: (\mathcal{A}, \mathcal{E}) \to (\mathcal{A}', \mathcal{E}')$ between exact categories is called exact if it is additive and $F(\mathcal{E}) \subseteq \mathcal{E}'$.

Definition (Injective object)

 $I:\mathcal{A}$ is called injective if $\mathcal{A}(\cdot,I):(\mathcal{A},\mathcal{E})^{op}\to \mathbf{Ab}$ is an exact functor.

Lemma

 $I: \mathcal{A}$ is injective if and only if for every inflation $p: B \to A$ and morphism $f: B \to I$, there is a morphism $f': A \to I$ rendering the diagram below commutative.

Cosyzygies and stabilization

Definition (Zysygy)

A syzygy of an object X, if it exists, is denoted ΩX . It is defined to be the kernel object of any deflation $p: P \to X$, where P is projective.

Syzygy is not a functor

Cosyzygies and stabilization

Definition (Cosyzygy)

A cosyzygy of an object X, if it exists, is denoted $\mho X$. It is defined to be the cokernel object of any inflation $i:X\to I$, where I is injective.

Cosyzygy is not a functor

Cosyzygies and stabilization

Definition (Cosyzygy)

A cosyzygy of an object X, if it exists, is denoted $\Im X$. It is defined to be the cokernel object of any inflation $i:X\to I$, where I is injective.

Cosyzygy is not a functor

Definition (Frobenius category)

 \mathcal{A} is a Frobenius category if

- it has enough injectives and projectives
- injectives and projectives coincide

The quotient category $\underline{\mathcal{A}} = \mathcal{A}/\sim$ is the stable Frobenius category. $f \sim g \iff f-g$ factors over an injective/projective.

Triangulation

- ightharpoonup is an additive category
- ▶ abla: $\underline{\mathcal{A}} \rightarrow \underline{\mathcal{A}}$ is an additive autoequivalence
- ▶ What is $\Delta_{\underline{A}}$?

Triangulation

- \blacktriangleright <u>A</u> is an additive category
- ▶ abla: $\underline{A} \rightarrow \underline{A}$ is an additive autoequivalence

Triangles from morphisms

Triangulation

- ightharpoonup is an additive category
- ▶ $\nabla: \underline{\mathcal{A}} \to \underline{\mathcal{A}}$ is an additive autoequivalence

Triangles from conflations

Definition (Chain complexes)

Let $\mathcal A$ be an additive category. Define $\mathit{Ch}(\mathcal A)$ to be the category of diagrams in $\mathcal A$ on the form

$$\dots \xrightarrow{d_{A^{\bullet}}^{-2}} A^{-1} \xrightarrow{d_{A^{\bullet}}^{-1}} A^0 \xrightarrow{d_{A^{\bullet}}^0} A^1 \xrightarrow{d_{A^{\bullet}}^1} \dots$$

such that $d_{A^{\bullet}}^{i} \circ d_{A^{\bullet}}^{i-1} = 0$ for every $i : \{-\infty, ..., \infty\}$. A morphism $\phi^{\bullet} : A^{\bullet} \to B^{\bullet}$ between chain complexes is a collection of morphisms from \mathcal{A} , such that the diagram commutes.

Definition (Homotopies)

A chain map $f^{ullet}: A^{ullet} o B^{ullet}$ is called null-homotopic if there is a map $\varepsilon^{ullet}: A^{ullet} o B^{ullet}[-1]$ such that $f^{ullet} = d_{B^{ullet}}^{ullet-1} \varepsilon^{ullet} + \varepsilon^{ullet+1} d_{A^{ullet}}^{ullet}$.

$$\dots \xrightarrow{d_{A^{\bullet}}^{-2}} A^{-1} \xrightarrow{d_{A^{\bullet}}^{-1}} A^{0} \xrightarrow{d_{A^{\bullet}}^{0}} A^{1} \xrightarrow{d_{A^{\bullet}}^{1}} \dots$$

$$\downarrow_{f^{-1}} \xrightarrow{\varepsilon^{0}} \downarrow_{f^{0}} \xrightarrow{\varepsilon^{1}} \downarrow_{f^{1}} \downarrow_{f^{1}}$$

$$\dots \xrightarrow{d_{B^{\bullet}}^{-2}} B^{-1} \xrightarrow{d_{B^{\bullet}}^{-1}} B^{0} \xrightarrow{d_{B^{\bullet}}^{0}} B^{1} \xrightarrow{d_{B^{\bullet}}^{1}} \dots$$

 ε^{ullet} is called the homotopy. Two chain maps f^{ullet} and g^{ullet} are said to be homotopic $f^{ullet} \sim g^{ullet}$ if their difference $f^{ullet} - g^{ullet}$ is null-homotopic.

Definition (Homotopy category)

$$K(A) = Ch(A)/\sim$$

Lemma (Exact structure on Ch(A)**)**

For every chain map $r^{\bullet}: A^{\bullet} \to B^{\bullet}$ there is a conflation as the diagram below. This makes Ch(A) an exact category with structure \mathcal{E} .

$$B^{\bullet} \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} cone(r^{\bullet}) \xrightarrow{\begin{pmatrix} 0 & -1^{\bullet} \\ ---- \end{pmatrix}} A^{\bullet}[1]$$

Definition (Homotopy category)

$$K(A) = Ch(A)/\sim$$

Lemma (Triangulation on K(A))

For every chain map $r^{\bullet}: A^{\bullet} \to B^{\bullet}$ there is a triangle as the diagram below.

$$A^{\bullet} \xrightarrow{r^{\bullet}} B^{\bullet} \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} cone(r^{\bullet}) \xrightarrow{\begin{pmatrix} 0 & -1^{\bullet} \end{pmatrix}} A^{\bullet}[1]$$

Derived categories are triangulated

Definition

Let \mathcal{A} be an abelian category. Define the category $Ac(\mathcal{A}) \subset K(\mathcal{A})$ to be the full category whose objects are exact sequences.

Lemma

Let $f^{\bullet}: A^{\bullet} \to B^{\bullet}$ be a chain map between acyclic chain complexes, then $cone(f^{\bullet})$ is acyclic as well.

Theorem

The derived category is the Verdier quotient K(A)/Ac(A)