

Introdução

- Combinacional X Sequencial;
- Sinal de Clock;
- Diagrama de tempo;
- Latch com portas NOR e NAND;
- Exercícios

Combinacional X Sequencial

Combinacional

Apresentam as saídas, únicas e exclusivamente, dependentes das combinações das entradas.

<u>Circuitos combinacionais não possuem memória.</u>

Combinacional X Sequencial

Sequencial

Saída é uma combinação das entradas e de uma saída anterior, operaram geralmente sob o comando de uma sequência de pulsos denominadas *clock*.

Sinal de Clock

O **clock** é o sinal de sincronismo de um sistema digital. Serve para controlar de quanto em quanto tempo, os elementos de **memória** podem **armazenar** um valor diferente, para que todos mudem de valor ao mesmo tempo.

Características do Clock

Características do Clock

- Período (T): é o tempo em que dura um ciclo do sinal antes de se repetir (segundos).
- Frequência (f): quantas vezes o sinal se repete por segundo (Hz).
- A frequência f é o inverso do período T:

$$f = \frac{1}{T}$$

Clock na prática

O sinal de **clock** pode ser gerado pelos seguintes componentes eletrônicos:

Oscilador à cristal

- Formado por um cristal ressonador (geralmente piezoelétrico) e um circuito oscilador
- Utilizado em altas frequências.
- Oscilador RC (Resistivo-Capacitivo)
 - Utilizados em baixas frequências

INSTITUTO Clock e análise de um sistema digital

- Nos circuitos combinacionais a análise de um sistema digital se dava através de seu circuito, expressão booleana e tabela verdade.
- Nos circuitos sequenciais, o sinal de clock (sincronismo) exige uma análise das formas de onda dos sinais digitais.
 - Essa análise é realizada através dos diagramas de tempo.

Diagrama de tempo

É uma representação gráfica da evolução dos sinais de entrada e saída de um sistema digital ao longo do tempo.

Exemplo de Diagrama de tempo

Exemplo:

Υ -----

Exemplo de Diagrama de tempo

Exemplo:

Exemplo de Diagrama de tempo

Diagrama de tempo

 Portas lógicas possuem atrasos de propagação, devido às limitações físicas do componentes de circuitos integrados.

 Dessa forma, quando um valor lógico de saída deve mudar, devido à uma nova entrada, há uma janela de tempo até que o novo valor seja atualizado

- São construídos a partir de portas lógicas.
- Possuem SEMPRE apenas duas saídas opostas (Q e Q').
- O objetivo é forçar as saídas assumirem os seguintes níveis lógicos:
 - Q = 1 (gravar o bit 1)
 - \circ Q = 0 (gravar o bit 0)
 - Q = Q_a (mantém o estado anterior armazena)

- Possuem no mínimo 1 e no máximo 5 entradas. Geralmente chamadas de S (ou J), R (ou K), CLK (ou ENB), CLR, PRE.
- A saída (Q) é alterada através das entradas:
 - Liga SET → grava a saída Q =1
 - Liga RESET → grava a saída Q = 0
 - Desliga SET e RESET → mantém o bit
- Podem operar sem sinal de sincronismo ou com sinal de sincronismo (pelo nível ou pela borda).

Estados de saída

$$Q = 1$$
, $\overline{Q} = 0$:

chamado estado ALTO ou 1; também chamado estado SET

$$Q = 0$$
, $\overline{Q} = 1$:

chamado estado BAIXO ou 0; também chamado estado CLEAR ou RESET

SET	RESET	Q	Q		
DESLIGA	DESLIGA	MANTEM			
DESLIGA	LIGA	0	1		
LIGA	DESLIGA	1 0			
LIGA	LIGA	PROIBIDO			

O latch RS

- O latch RS (RESET/SET), ou SR (SET/RESET) é o elemento de memória mais básico possível.
- Estes circuitos podem ser implementados utilizando portas NAND ou portas NOR.

 As realimentações garantem que o latch mantenha o valor na saída Q e Q, enquanto as entradas estiverem "DESLIGADAS".

O latch RS - Liga SET → grava a saída Q =1

O latch RS - Liga SET → grava a saída Q =1

O latch RS - Desliga SET e RESET → mantém o bit

O latch RS - Liga RESET → grava a saída Q = 0

O latch RS - Liga RESET → grava a saída Q = 0

O latch RS - Liga SET e RESET ?????

O latch RS - Liga SET e RESET → Estado proibido

O latch RS - Desliga SET e RESET → mantém o bit

Manter
$$\begin{cases} 0 = & S & \bullet & \bullet & 1 \\ & 1 & & \bullet & Q & = 1 \\ & 1 & & \bullet & Q & = 1 \\ & 0 = & R & \bullet & \bullet & \overline{Q} & = 1 \\ \end{cases}$$
 Inconsistência $Q = \overline{Q}$

O latch RS - Desliga SET e RESET → mantém o bit

O latch RS

S	R	Qp	$\overline{\mathbb{Q}_{P}}$	Ação
0	0	Q_A	$\overline{\mathbb{Q}_{A}}$	Não muda
0	1	0	1	Desativa (Resseta)
1	0	1	0	Ativa (Seta)
1	1	?	?	Proibida

- Q_P indica qual será o próximo valor de Q, e Q_A é valor anterior de Q. O mesmo é válido para Q.
- Teste você mesmo as combinações de entrada no circuito apresentado e avalie a tabela verdade.

O que ocorre se o inversor for retirado do lacth SR?

SET	RESET	Q	Q'
DESLIGA	DESLIGA	MANTEM	
DESLIGA	LIGA	0	1
LIGA	DESLIGA	1	0
LIGA	LIGA	PROIBIDO	

O que ocorre se o inversor for retirado do lacth SR?

SET'	RESET'	Q	Q'
1	1	MANTEM	
1	0	0	1
0	1	1	0
0	0	PROIBIDO	

O latch RS

 Se tirarmos os inversores das entradas RS, o latch irá ativar em lógica inversa

Lógica inversa: entrada ativa em nível BAIXO.

O latch RS

Note que na simbologia, a lógica inversa possui inversores em suas entradas.

Ação	$\overline{Q_P}$	Q_P	R	S
Não muda	$\overline{\mathbb{Q}_{A}}$	Q_A	0	0
Desativa (Resseta)	1	0	1	0
Ativa (Seta)	0	1	0	1
Proibida	?	?	1	1

Ação	$\overline{Q_P}$	Q_P	R	S
Proibida	?	?	0	0
Ativa (Seta)	0	1	1	0
Desativa (Resseta)	1	0	0	1
Não muda	$\overline{Q_A}$	QA	1	1

s	R	Qp	$\overline{\mathbb{Q}_{P}}$	Ação			
0	0	$Q_{\mathbf{A}}$	$\overline{\mathbb{Q}_A}$	Não muda			
0	1	0	1	Desativa (Resseta)			
1	0	1	0	Ativa (Seta)			
1	1	7	?	Proibida			

Ação	$\overline{\mathbb{Q}_{\mathbb{P}}}$	Qp	R	S
Proibida	?	9	0	0
Ativa (Seta)	0	1	1	0
Desativa (Resseta	1	0	0	1
Não muda	$\overline{\mathbb{Q}_A}$	$Q_{\mathbf{A}}$	1	1

	_							
S	R	Q_P	$\overline{Q_P}$	Ação				
0	0	?	5	Proibida				
0	1	1	0	Ativa (Seta)				
1	0	0	1.	Desativa (Resseta)				
1	1	QA	$\overline{Q_A}$	Não muda				

S	R	Q_P	$\overline{\mathbb{Q}_{P}}$	Ação
0	0	3	3	Proibida
0	1	1	0	Ativa (Seta)
1	0	0	1	Desativa (Resseta)
1	1	QA	$\overline{\mathbb{Q}_A}$	Não muda

Α								
							9.	
В								
Q								
Q'								
		· · · · · · · · · · · · · · · · · · ·	 					 1

S	R	Q	Q

O latch RS - Circuito Integrado

OCI 74LS279.

Fonte: FLOYD (2007)

O latch RS - Uma aplicação

Latch usado como eliminador de trepidação de contato.

