

Figure 14.4: A denoising autoencoder is trained to map a corrupted data point \tilde{x} back to the original data point x. We illustrate training examples x as red crosses lying near a low-dimensional manifold illustrated with the bold black line. We illustrate the corruption process $C(\tilde{x} \mid x)$ with a gray circle of equiprobable corruptions. A gray arrow demonstrates how one training example is transformed into one sample from this corruption process. When the denoising autoencoder is trained to minimize the average of squared errors $||g(f(\tilde{x})) - x||^2$, the reconstruction $g(f(\tilde{x}))$ estimates $\mathbb{E}_{\mathbf{x},\tilde{\mathbf{x}}\sim p_{\text{data}}(\mathbf{x})}C(\tilde{\mathbf{x}}|\mathbf{x})[\mathbf{x}\mid \tilde{x}]$. The vector $g(f(\tilde{x})) - \tilde{x}$ points approximately towards the nearest point on the manifold, since $g(f(\tilde{x}))$ estimates the center of mass of the clean points x which could have given rise to \tilde{x} . The autoencoder thus learns a vector field g(f(x)) - x indicated by the green arrows. This vector field estimates the score $\nabla_x \log p_{\text{data}}(x)$ up to a multiplicative factor that is the average root mean square reconstruction error.