MAT 551: Algebra I Vjeshte 2011, Provim 2, Pergjigje

Stefan Kohl

1. Gjeni rendet $|V_4|$, $|D_4|$, $|A_5|$ dhe |GL(2,2)|. (4 pike)

Pergjigja: Ne kemi $|V_4|=4, |D_4|=8, |A_5|=60$ dhe |GL(2,2)|=6.

2. Gjeni indekset $[S_4:D_4]$, $[A_5:V_4]$, $[A_6:V_4]$ dhe $[S_6:D_6]$. (4 pike)

Pergjigja: Ne kemi $[S_4:D_4]=\frac{24}{8}=3, [A_5:V_4]=\frac{60}{4}=15,$ $[A_6:V_4]=\frac{360}{4}=90$ dhe $[S_6:D_6]=\frac{720}{12}=60.$

3. Gjeni te gjithe klasat e konjugimit e nengrupeve te grupit S_4 . (6 pike)

Pergjigja: Klasat e konjugimit e nengrupeve te grupit S_4 jane

- $1. \{1\},$
- 2. $\langle (1,2) \rangle^{S_4} = (C_2, -)^{S_4},$
- 3. $\langle (1,2)(3,4) \rangle^{S_4} = (C_2,+)^{S_4},$
- 4. $\langle (1,2,3) \rangle^{S_4} = C_3^{S_4}$,
- 5. $\langle (1,2,3,4) \rangle^{S_4} = C_4^{S_4}$,
- 6. $\langle (1,2), (3,4) \rangle^{S_4} = (C_2 \times C_2, -)^{S_4},$
- 7. $\{V_4\}$,
- 8. $\langle (1,2,3), (1,2) \rangle^{S_4} = S_3^{S_4},$
- 9. $\langle (1,2,3,4), (1,3) \rangle^{S_4} = D_4^{S_4},$
- 10. $\{A_4\}$ dhe
- 11. $\{S_4\}$.
- 4. Le te jete G nje grup te thjeshte i cili vepron tranzitiv mbi bashkesine $\{1, \ldots, 11\}$ dhe supozoni se stabilizatori G_{11} ka nje nengrup me indeks 2 i cili eshte izomorfik me A_6 . Gjeni rendin e grupit G. (3 pike)

Pergjigja: Ne kemi $|G| = [G:G_{11}] \cdot 2 \cdot |A_6| = |11^G| \cdot 2 \cdot \frac{6!}{2} = 11 \cdot 2 \cdot 360 = 7920.$

1

5. Tregoni se S_6 ka nje nengrup i cili eshte izomorfik me S_4 dhe i cili vepron tranzitiv mbi $\{1, 2, 3, 4, 5, 6\}$. (3 pike)

Pergjigja: Le te jete φ veprimi e grupit S_4 mbi bashkesine e kosetave te djathte te nengrupit $H := \langle (1,2,3,4) \rangle < G$ me shumezimin nga te djathten. Ne dime se veprimi φ eshte tranzitiv, nengrupi H ka indeks 6 ne G dhe ne kemi $H \cap H^{(3,4)} = 1$. Pra ker $\varphi = 1$ dhe $S_6 > \operatorname{im} \varphi \cong S_4$.

- 6. Vertetoni apo gjeni kundershembuj:
 - 1. Nese te gjithe nengrupet $H \subsetneq G$ e grupit G jane abelian, edhe grupi G eshte abelian.
 - 2. Per grupet G dhe H < G, centralizatori $C_G(H)$ eshte gjithmon nje grup abelian.
 - 3. Per grupet G dhe H < G, ne kemi gjithmon $C_G(H) \triangleleft N_G(H)$.
 - 4. Nje grup i fundem nuk mund te veproje mbi nje bashkesi te pafundem.
 - 5. Nese nje grup G i fundem vepron tranzitiv mbi nje bashkesi me n elemente, rendi i tij eshte i pjesetueshem me n.

(10 pike)

Pergjigja: Ne kemi

- 1. Kundershembull: $G = S_3$.
- 2. Kundershembull: $G = S_3$, H = 1.
- 3. Eshte vertet: normalizatori $N_G(H)$ vepron mbi H me konjugimin, berthama e veprimit eshte $C_G(H)$, dhe berthamat e homomorfizmave jane nengrupe normal.
- 4. Kundershembuj: te gjithe grupet mund te veproje mbi te gjithe bashkesite me veprimin trivial.
- 5. Eshte vertet: nese nje grup G vepron tranzitiv mbi nje bashkesi S me n elemente nje nder te cilet eshte x, stabilizatori $G_x < G$ e pikes x ka indeks n ne G dhe ne kemi $|G| = [G:G_x] \cdot |G_x| = n \cdot |G_x|$.