EDAN95

Applied Machine Learning

http://cs.lth.se/edan95/

Lecture 8: Word and Segment Categorization

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

November 26, 2018

Motivation

The analysis of sentences always involves the analysis of words.

We can divide it in three main tasks:

- Identify the type of word, for instance noun or verb using the classical grammar;
- Identify a group or segment, for instance are these three words, Kjell Olof Andersson,

the name of a person;

Identify the relations between two words: for instance is this group the subject of a verb? This corresponds to parsing, semantic analysis, or information extraction.

We will consider the two first tasks.

This lecture will show you how to solve the first one and you will write a program for the second one.

Word Categorization: The Parts of Speech

Sentence:

That round table might collapse

Annotation:

Words Parts of spee		POS tags
that	Determiner	DT
round	Adjective	JJ
table	Noun	NN
might	Modal verb	MD
collapse	Verb	VB

The automatic annotation uses predefined POS tagsets such as the Penn Treebank tagset for English

Ambiguity

Words	Possible tags	Example of use
that	Subordinating conjunction	That he can swim is good
	Determiner	That white table
	Adverb	It is not that easy
	Pronoun	That is the table
	Relative pronoun	The table that collapsed
round	Verb	Round up the usual suspects
	Preposition	Turn round the corner
	Noun	A big round
	Adjective	A round box
	Adverb	He went round
table	Noun	That white table
	Verb	I table that
might	Noun	The might of the wind
	Modal verb	She might come
collapse	Noun	The collapse of the empire
	Verb	The empire can collapse

Training Sets: The CoNLL Format

The CoNLL format is a tabular format to distribute annotated texts. This format was created for evaluations carried out by the Conference in natural language learning

Annotation of the Spanish sentence:

La reestructuración de los otros bancos checos se está acompañando por la reducción del personal

'The restructuring of Czech banks is accompanied by the reduction of personnel'

in CoNLL 2006.

Example of Annotation

ID	FORM	LEMMA	CPOS	POS	FEATS
1	La	el	d	da	num=s gen=f
2	reestructuración	reestructuración	n	nc	num=s gen=f
3	de	de	S	sp	for=s
4	los	el	d	da	gen=m num=p
5	otros	otro	d	di	gen=m num=p
6	bancos	banco	n	nc	gen=m num=p
7	checos	checo	а	aq	gen=m num=p
8	se	se	р	p0	
9	está	estar	V	vm	num=s per=3 mod=i tmp=p
10	acompañando	acompañar	V	vm	mod=g
11	por	por	S	sp	for=s
12	la	el	d	da	num=s gen=f
13	reducción	reducción	n	nc	num=s gen=f
14	del	del	S	sp	gen=m num=s for=c
15	personal	personal	n	nc	gen=m num=s
16			F	Fp	

Another Example

ID	FORM	LEMMA	PLEMMA	POS	PPOS	FEAT	PFEAT
1	Battle	battle	battle	NN	NN		
2	_	_	-	HYPH	HYPH	_	_
3	tested	tested	tested	NN	NN	_	_
4	Japanese	japanese	japanese	JJ	JJ	_	_
5	industrial	industrial	industrial	JJ	JJ	_	_
6	managers	manager	manager	NNS	NNS	_	_
7	here	here	here	RB	RB	_	_
8	always	always	always	RB	RB	_	_
9	buck	buck	buck	VBP	VB	_	_
10	ир	up	up	RP	RP	_	_
11	nervous	nervous	nervous	JJ	JJ	_	_
12	newcomers	newcomer	newcomer	NNS	NNS	_	_
13	with	with	with	IN	IN	_	_
14	the	the	the	DT	DT	_	_
15	tale	tale	tale	NN	NN	_	_
16	of	of	of	IN	IN	_	_
17	the	the	the	DT	DT	_	_
18	first	first	first	JJ	JJ	_	_
19	of	of	of	IN	IN	_	_
20	their	their	their	PRP\$	PRP\$	_	_
21	countrymen	countryman	countryman	NNS	NNS	_	_
22	to	to	to	TO	TO	_	_
23	visit	visit	visit	VB	VB	_	_
24	Mexico	mexico	mexico	NNP	NNP	_	_
25						_	_
26	a	a	a a	, DT	, DT	_	_
27	boatload	boatload	boatload	NN	NN	_	_
28	of	of	of	IN	IN	_	_
29	samurai	samurai	samurai	NN	NN	_	_
30	warriors	warrior	warrior	NNS	NNS	< A□	- -

Features for Part-of-Speech Tagging

The word *visit* is ambiguous in English:

I paid a **visit** to a friend -> noun I went to **visit** a friend -> verb

The context of the word enables us to tell, here an article or the infinitive marker

To train and apply the model, the tagger extracts a set of features from the surrounding words, for example, a sliding window spanning five words and centered on the current word.

We then associate the feature vector $(w_{i-2}, w_{i-1}, w_i, w_{i+1}, w_{i+2})$ with the part-of-speech tag t_i at index i.

Part-of-Speech Tagging

ID	FORM	PPOS	
	BOS	BOS	Padding
	BOS	BOS	
1	Battle	NN	
2	-	HYPH	
3	tested	NN	
17	the	DT	
18	first	JJ	
19	of	IN	
20	their	PRP\$	
21	countrymen	NNS	Input features
22	to	TO	
23	visit	VB	Predicted tag
24	Mexico		\downarrow
25	1		
26	a		
27	boatload		
34	years		
35	ago		
36			
	EOS		Padding
	EOS		

Feature Vectors

ID			Featu	re vectors				PPOS
	W_{i-2}	w_{i-1}	Wi	w_{i+1}	w_{i+2}	t_{i-2}	t_{i-1}	
1	BOS	BOS	Battle	-	tested	BOS	BOS	NN
2	BOS	Battle	-	tested	Japanese	BOS	NN	HYPH
3	Battle	_	tested	Japanese	industrial	NN	HYPH	JJ
19	the	first	of	their	countrymen	DT	JJ	IN
20	first	of	their	countrymen	to	JJ	IN	PRP\$
21	of	their	countrymen	to	visit	IN	PRP\$	NNS
22	their	countrymen	to	visit	Mexico	PRP\$	NNS	TO
23	countrymen	to	visit	Mexico	,	NNS	ТО	VB
24	to	visit	Mexico	,	a	TO	VB	NNP
25	visit	Mexico		a	boatload	VB	NNP	
34	ashore	375	vears	ago		RB	CD	NNS
35	375	years	ago		EOS	CD	NNS	RB
36	years	ago		EOS	EOS	NNS	RB	

Neural Networks

We will experiment three kinds of neural networks:

- Feed forward
- 2 Recurrent
- S LSTM

In the laboratory assignment, you will use the two last ones.

The Neural Network

We first use a feed-forward architecture corresponding to a logistic regression:

```
np.random.seed(0)
model = models.Sequential()
model.add(layers.Dense(NB_CLASSES,
                       input_dim=X.shape[1],
                       activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy',
              optimizer=OPTIMIZER,
              metrics=['accuracy'])
model.summary()
model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE)
model.save('out.model')
```

Encoding the **y** Vector

In the previous examples, we used categorical_crossentropy This requires that all the targets are encoded with one-hot vectors For instance:

- determiner: [1, 0, 0, 0]
- noun: [0, 1, 0, 0]
- verb: [0, 0, 1, 0]
- adjective: [0, 0, 0, 1]

With sparse_categorical_crossentropy, we can use numerical indices:

- determiner: 1
- noun: 2
- verb: 3
- adjective: 4

We do not need to use the to_categorical function.

Preprocessing

Preprocessing is more complex though: Four steps:

Read the corpus
train_sentences, dev_sentences, test_sentences, \
column_names = datasets.load_conll2009_pos()

- Store the rows in dictionaries
 conll_dict = CoNLLDictorizer(column_names, col_sep='\t')
 train_dict = conll_dict.transform(train_sentences)
 test_dict = conll_dict.transform(test_sentences)
- Extract the features and store them in dictionaries
 context_dictorizer = ContextDictorizer()
 context_dictorizer.fit(train_dict)
 X_dict, y_cat = context_dictorizer.transform(train_dict)
- Vectorize the symbols
 # We transform the X symbols into numbers
 dict_vectorizer = DictVectorizer()
 X_num = dict_vectorizer.fit_transform(X_dict)

Code Example

Jupyter Notebook: 4.1-nn-pos-tagger.ipynb

Using Embeddings

We replace the one-hot vectors with embeddings Word embeddings are dense vectors obtained by a principal component analysis or another method.

They can be trained by the neural network or pretained Here, we will use pretrained embeddings from the GloVe project Our version of GloVe is lowercased, so set all the characters in lower case We will add an Embedding layer at the start of the network We will initialize it with GloVe and make it trainable or not It would be possible to use a randomly initialized matrix

The Embedding Layer

```
model = models.Sequential()
model.add(layers.Embedding(cnt_uniq, embedding_dim,
                                 input_length=2 * w_size + 1))
if embedding_matrix is not None:
    model.layers[0].set_weights([embedding_matrix])
    model.layers[0].trainable = True
model.add(layers.Flatten())
model.add(layers.Dense(nb_classes, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy',
                   optimizer=OPTIMIZER,
                   metrics=['accuracy'])
model.summary()
model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE)
```

Code Example

Jupyter Notebook: 4.2-nn-pos-tagger-embeddings.ipynb

The RNN Architecture

Credit Wikipedia

Input Format for RNNs

The input format is different from feed forward networks. We need to build two lists: one for the input and the other for the output

y	DT	NN	VB	DT	NN
Х	The	waiter	brought	the	meal

All the vectors in a same batch must have the same length. We pad them:

у	PAD	PAD	PAD	DT	NN	VB	DT	NN
X	PAD	PAD	PAD	The	waiter	brought	the	meal

Building the Sequences

```
def build_sequences(corpus_dict, key_x='form', key_y='pos',
                  tolower=True):
    X, Y = [], []
    for sentence in corpus_dict:
        x, y = [], []
        for word in sentence:
            x += [word[key_x]]
            y += [word[key_y]]
        if tolower:
            x = list(map(str.lower, x))
        X += [x]
        Y += [V]
    return X, Y
```

At this point, we have x and y vectors of symbols

Building Index Sequences

 ${\tt 0}$ is for the padding symbol and ${\tt 1}$ for the unknown words

```
rev_word_idx = dict(enumerate(vocabulary_words, start=2))
rev_pos_idx = dict(enumerate(pos, start=2))
word_idx = {v: k for k, v in rev_word_idx.items()}
pos_idx = {v: k for k, v in rev_pos_idx.items()}
```

At this point, we have x and y vectors of numbers

Padding the Index Sequences

X = pad_sequences(X_idx)

We build the complete **X_idx** and **Y_idx** matrices for the whole corpus And we pad the matrices:

```
Y = pad_sequences(Y_idx)

# The number of POS classes and 0 (padding symbol)
Y_train = to_categorical(Y, num_classes=len(pos) + 2)
```

pad_sequences can have an argument that specifies the maximal length maxlen (MAX_SEQUENCE_LENGTH).

The padded sentences must have the same length in a batch. This automatically computed by Keras

Recurrent Neural Networks (RNN)

Parameters

Keras functions have many parameters. In case of doubt, read the documentation A few useful parameters:

- mask_zero=True is to tell whether or not the input value 0 is a special "padding" value;
- return_sequences=True tells whether to return the last output in the output sequence, or the full sequence. In sequences, it is essential;
- recurrent_dropout=0.3 tells how much to drop for the linear transformation of the recurrent state.

Long Short-Term Memory (LSTM)

Segment Recognition

```
Group detection – chunking –:
    Brackets: [NG] The government NG has [NG]
              other agencies and instruments NG for pursuing NG
              these other objectives NG .
       Tags: The/I government/I has/O other/I agencies/I and/I
             instruments/I for/O pursuing/O these/I other/I objectives/I ./O
    Brackets: Even [NG] Mao Tse-tung NG [NG] 's China NG began in [NG]
              1949 _{NG} with [_{NG} a partnership _{NG} between [_{NG}
              the communists N_G and N_G a number N_G of N_G
              smaller, non-communists parties NG.
       Tags: Even/O Mao/I Tse-tung/I 's/B China/I began/O in/O 1949/I
              with/O a/I partnership/I between/O the/I communists/I and/O
             a/I number/I of /O smaller/I ,/I non-communists/I parties/I
              ./0
```

Segment Categorization

Tages extendible to any type of chunks: nominal, verbal, etc.

For the IOB scheme, this means tags such as I.Type, O.Type, and B.Type, Types being NG, VG, PG, etc.

In CoNLL 2000, ten types of chunks

Word	POS	Group	Word	POS	Group
Не	PRP	B-NP	to	TO	B-PP
reckons	VBZ	B-VP	only	RB	B-NP
the	DT	B-NP	£	#	I-NP
current	JJ	I-NP	1.8	CD	I-NP
account	NN	I-NP	billion	CD	I-NP
deficit	NN	I-NP	in	IN	B-PP
will	MD	B-VP	September	NNP	B-NP
narrow	VB	I-VP	•		0

Noun groups (NP) are in red and verb groups (VP) are in blue.

IOB Annotation for Named Entities

Co	NLL 2002		CoNLL 2003				
Words	Named entities	Words	POS	Groups	Named entities		
Wolff	B-PER	U.N.	NNP	I-NP	I-ORG		
,	0	official	NN	I-NP	0		
currently	0	Ekeus	NNP	I-NP	I-PER		
a	0	heads	VBZ	I-VP	0		
journalist	0	for	IN	I-PP	0		
in	0	Baghdad	NNP	I-NP	I-LOC		
Argentina	B-LOC			0	0		
,	0						
played	0						
with	0						
Del	B-PER						
Bosque	I-PER						
in	0						
the	0						
final	0						
years	0						
of	0						
the	0						
seventies	0						
in	0						
Real	B-ORG						
Madrid	I-ORG						
	0						

Named Entities: Proper Nouns

Others Entities: Common Nouns

Evaluation

There are different kinds of measures to evaluate the performance of machine learning techniques, for instance:

- Precision and recall in information retrieval and natural language processing;
- The receiver operating characteristic (ROC) in medicine.

	Positive examples: P	Negative examples: N
Classified as P	True positives: A	False positives: <i>B</i>
Classified as N	False negatives: C	True negatives: D

More on the receiver operating characteristic here: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Recall, Precision, and the F-Measure

The accuracy is $\frac{|A \cup D|}{|P \cup N|}$.

Recall measures how much relevant examples the system has classified correctly, for P:

$$Recall = \frac{|A|}{|A \cup C|}.$$

Precision is the accuracy of what has been returned, for *P*:

$$Precision = \frac{|A|}{|A \cup B|}.$$

Recall and precision are combined into the **F-measure**, which is defined as the harmonic mean of both numbers:

$$F = \frac{2 \cdot \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}.$$

Evaluation

Accuracy, precision, and recall.

For noun groups with the predicted output:

Word	POS	Group	Word	POS	Group
Не	PRP	B-NP	to	TO	B-PP
reckons	VBZ	B-VP	only	RB	B-NP
the	DT	B-NP	£	#	I-NP
current	JJ	B-NP	1.8	CD	B-NP
account	NN	I-NP	billion	CD	I-NP
deficit	NN	I-NP	in	IN	B-PP
will	MD	B-VP	September	NNP	B-NP
narrow	VB	I-VP	•		0

Accuracy =
$$\frac{14}{16}$$
, recall = $\frac{2}{4}$ = 0.5, precision = $\frac{2}{6}$ = 0.33 harmonic mean = $2 \times \frac{0.33 \times 0.5}{0.33 + 0.5}$ = 0.4

The Architecture of a Full-Fledged Network

Courtesy: Marcus Klang. See also:

- Xuezhe Ma, Eduard Hovy, End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF, 2016, https://arxiv.org/abs/1603.01354
- Jason P.C. Chiu, Eric Nichols, Named Entity Recognition with Bidirectional LSTM-CNNs, 2016, https://arxiv.org/abs/1511.08308
- Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, Chris Dyer, Neural Architectures for Named Entity Recognition, 2016, https://arxiv.org/abs/1603.01360