Arquiteturas P2P

SMD0050 - SISTEMAS DISTRIBUÍDOS

Slides são baseados nos slides do Couloris e Tanenbaum

O que é P2P?

- Peer-to-peer (do inglês par-a-par ou simplesmente ponto-a-ponto)
- Arquitetura de redes de computadores onde cada um dos pontos ou nós da rede funciona tanto como cliente quanto como servidor.
 - compartilhamentos de serviços e dados sem a necessidade de um servidor central

Diferenças entre P2P e Cliente-Servidor

Descentralização

Cliente-Servidor

P2P

Origem do P2P

- Surgimento por volta do ano 2000
- Primeiros sistemas P2P parcialmente descentralizados
- A "cooperação" era o principal objetivo e o "valor" da rede

Características – P2P Ideal

- Cada participante age como cliente e servidor ao mesmo tempo
- Cada cliente "paga" a sua participação fornecendo acesso a (alguns de) seus recursos
- Sem coordenação central
- Sem banco de dados central
- Sem local único de falha ou gargalo

Características – P2P Ideal

- Nenhum ponto (peer) tem visão global do sistema
 - Pontos são autônomos
 - Pontos e conexões não são confiáveis
- Comportamento global definido por interações locais
 - Todos os dados e serviços são acessíveis de qualquer ponto

Distribuição de arquivos P2P

- Tempo de distribuição
- para arquiteturas P2P
- e cliente-servidor

P2P- Redes de Sobreposição

- P2P Distribuição horizontal
 - Processos são visto como "iguais"
- Como consequência, grande parte da interação entre processos é simétrica
 - cada processo agirá como um cliente e um servidor ao mesmo tempo.
- Arquiteturas peer-to-peer se desenvolvem em torno da questão de como organizar os processos em uma rede de sobreposição

Modelos de P2P e aplicações -Classificação

Centralized Service Location (CSL ou CIA)

- Busca centralizada
- Exemplo Napster https://www.youtube.com/watch?v=7AF18DUIH1Y

Modelos de P2P e aplicações -Classificação

- Flooding-based Service Location (FSL ou DIFA)
 - Busca baseada em inundação
 - Gnutella
- Distributed Hash Table-based Service Location (DHT ou DIHA)
 - Busca baseada em tabela de hash distribuída
 - CAN, Pastry, Tapestry, Chord

Modelos de P2P e aplicações – Gnutella Flooding

Query Flooding:

- Join: on startup, client contacts a few other nodes (learn from bootstrapnode); these become its "neighbors" (overlay!! ©)
- Publish: no need
- Search: ask "neighbors", who ask their neighbors, and so on... when/if found, reply to sender.
- Fetch: get the file directly from peer

Exercício

Quais são as vantagens e desvantagens do modelo de inundação em relação a arquitetura do Napster?

 Enumere uma possível solução para diminuir o número de mensagens e o tempo de resposta

Sistemas Distribuídos Colaborativos

 O mais importante é que, ao consultar um item de dado, o endereço de rede do nó responsável por aquele item de dado é retornado.

 Na verdade, consegue-se isso roteando uma requisição para um item de dado até o nó responsável.

Arquiteturas Estruturadas

Quando um usuário final estiver procurando um arquivo....

Ele baixa porções do arquivo de outros usuários até que as porções transferidas possam ser montadas em conjunto, resultando no arquivo completo

O que isso lembra?

A companhia BitTorrent

- Arquitetura Peer to Peer
- BitTorrent Live
- BitTorrent Bundle
- BitTorrent Sync
- SoShare

Estrutura

- Torrent descriptor
- Pieces
- Peers, leechers, seeds, trackers e swarm
- Trønsmissão não-sequencial
- Rarest First (política de download)
- Tit-for-tat (política de reciprocidade)

Outra visão

Figura 2.14 Funcionamento principal do BitTorrent [adaptado com permissão de Pouwelse et al. (2004)].

Vantagens e desvantagens

- Velocidade mais alta
- Evita congestionamento
- Fácil acesso e atualização por meio dos trackers
- Inconstância na velocidade
- Necessidade de seeders
- Consumo de banda

Prêmios

- 2004 Wired Rave Award
- 2005 MIT Technology Review TR35 as one of the top 35 innovators in the world under the age of 35.
- 2005 Time's 100 Most Influential People
- 2006 USENIX STUG Award
- 2010 Internet Evolution 100

Questões legais

- protocolo vs websites
- responsabilidade legal
- Traffic Shaping
 - Operadoras de telefonia ou ISPs que bloqueiam mensagens Bit Torrent

Timeline – Momento Leitura (10 min)

 https://medium.com/paratii/a-brief-history-of-p2pcontent-distribution-in-10-major-steps-6d6733d25122

Redes de Sobreposição Estruturada

- Existem dois tipos de redes de sobreposição: as que são estruturadas e as que não são.
- Em uma arquitetura peer-to-peer estruturada, a rede de sobreposição é construída com a utilização de um procedimento determinístico. O procedimento mais empregado é o DHT – Distributed Hash Table

Redes de Sobreposição Estruturada

- Em um sistema baseado em DHT, os itens de dados recebem uma chave aleatória, como um identificador de 128 ou 160 bits.
- O ponto crucial de todo sistema baseado em DHT é implementar um esquema eficiente e determinístico que mapeie exclusivamente a chave de um item de dado para o identificador de um nó.

Distributed Hash Tables (DHTs)

 Vamos considerar como montar uma versão distribuída,
 P2P, de um banco de dados, que guardará os pares (chave, valor) por milhões.

 No sistema P2P, cada par só manterá um pequeno subconjunto da totalidade (chave, valor).

 Permitiremos que qualquer par consulte o banco de dados distribuído com uma chave em particular.

Distributed Hash Tables (DHTs)

 O banco de dados distribuído, então, localizará os pares que possuem os pares (chave, valor) correspondentes e retornará os pares chave-valor ao consultante.

 Qualquer par também poderá inserir novos pares chave-valor no banco de dados.

 Esse banco de dados distribuído é considerado como uma tabela hash distribuída (DHT — Distributed Hash Table).

Exemplo de DHT - Chord

O DHT circular oferece uma solução bastante elegante para reduzir a quantidade de informação sobreposta que cada par deve gerenciar.

DHT - Arquiteturas Descentralizadas

No sistema Chord os nós estão logicamente organizados em um anel de modo tal que um item de dado com chave k seja mapeado para o nó que tenha o menor identificador id ≥ k.

 Esse nó é denominado sucessor da chave k e denotado como succ(k).

Chave-Valor

- Cada nó mantém apenas uma pequena quantidade de informação sobre os outros nós. (barato manter índices atualizados)
- Cada nó pode pesquisar entradas no índice rapidamente
- Cada nó pode usar o índice ao mesmo tempo, mesmo que outros nós apareçam e desapareçam.
 (desempenho aumenta com o número de nós).

Identificador de Pares

- Na disposição circular cada par rastreia apenas o seu sucessor imediato.
- Rastrear=identificar o IP
- Identificador = nome (numero) do par.
- No caso da figura, os identificadores são: 1,3,4,5,8,10,12 e 15.
- Cada par é responsável por conjuntos de chave-valor.
- Chave= endereço; valor= conteúdo

Identificador de Pares

- Ser responsável por uma chave = ser próximo.
- Ex: par 12 é responsável pela chave 11.
- Quando um par X quer saber quem é o responsável por uma dupla chave-valor, cria uma mensagem perguntando "quem é o responsável pela chave?".
 Então envia essa mensagem ao seu sucessor e este a envia até chegar ao par.

Identificador de Pares

Como gerar esses valores? 35

Hash

- A construção de uma DHT se dá de forma similar a uma tabela hash, também conhecida por tabela de dispersão ou tabela de espalhamento.
 - Uma tabela hash é uma estrutura de dados especial que usa uma função hash para associar uma identificação, conhecida por chave, e valores.
 - A função hash é empregada para transformar as chaves em índices de um vetor, no qual os valores são armazenados. O objetivo é, a partir de uma chave, fazer uma busca rápida para obter o valor desejado.

Hash

- A função hash de uma DHT deve ser elaborada de maneira a atribuir um identificador único para diferentes objetos.
- Quando dois ou mais objetos distintos recebem o mesmo identificador ocorre uma colisão, impossibilitando a diferenciação entre estes objetos.

Para evitar as colisões, adota-se um espaço de identificadores grande o suficiente => a probabilidade de dois objetos receberem a mesma chave torne-se praticamente nula.

Hash

 Geração das chaves (IDs) e armazenagem de objetos em uma DHT

DHTs

- As DHTs que mantêm tabelas de roteamento com N entradas são conhecidas por Single Hop DHTs pois a sua função lookup consegue resolver qualquer consulta usando apenas a tabela local.
- Esta abordagem requer que os eventos de entrada, saída ou falha de qualquer nó do sistema sejam reportados para todos os participantes sem falha

Mensagem Ping

- Rastreamento de pares próximos
- Numa rede p2p um par pode ir ou vir sem aviso. Existe então a exigência que cada par verifique se seus dois sucessores estão vivos, através do envio da mensagem ping e aguardo de resposta.

DHT de Múltiplos Saltos

- CAN (Content Addressable Network)
 - Nodos são mapeados pseudo-randomicamente para um espaço cartesiano virtual de d-dimensões que se juntam nas extremidades (tours)
- Chord Circular
 - Cada nodo recebe um identificador de m-bits
 - Conhece o caminho para os vizinhos a distância 20, 21, 22, etc.
- Pastry
 - Semelhante ao Chord
 - Conhece o caminho para apenas um vizinho
- Tapestry.
 - Baseada na técnica distribuída de Plaxtom e estrutura de dados distribuídos
 Plaxton Mesh

DHT – Circular ou CHord

- Protocolo consiste na utilização de chaves para mapear, localizar e remover nós em uma rede P2P.
- 2. Consiste em mapear os peers conectados a rede através de um código hash que identifica cada elemento.
- 3. Com esse código, cada peer pode localizar e identificar seus vizinhos através de um emaranhado de peers conectados.
- 4. A maneira como é feita consiste em um única operação (lookup) que mapeia o endereço IP com o hash gerado

Chord

Atalhos

- Como cada par só envia mensagem para seu sucessor, o número de mensagens enviadas até encontrar o par responsável e enorme. Daí para refinar essa busca podem ser adicionados atalhos, usados para expedir o roteamento das mensagens de solicitação.
- Isso reduz consideravelmente o número de mensagens enviadas.

Exercício

- Proponha SOlUÇÕES para
 - Inserir um novo nó na rede P2P
 - Remover um novo nó na rede P2P
 - Substituir um nó na rede P2P

Substituição de sucessor

Quando sai um par

Por exemplo, se 5 sai, 4 e 3 sabem, pois ele não responde mais as mensagens ping. Assim eles atualizam-se. O par 4 substitui seu sucessores para 8 e 10, enquanto que 3 muda seu sucessores para 4 e 8.

Substituição do sucessor

Quando entra um novo par

Se o par 7 entra, ele passa a ser o sucessor principal de 5 e o secundário de 4 (pois pergunta ao 5 o IP do sucessor dele).

Substituição do sucessor

- Se um par de numero maior quiser entrar e não tem sucessor dele?
- Ele faz do 1 o seu sucessor para não quebrar o ciclo.

Aplicações

- BitTorrent
- EDonkey
- Dynamo (Amazon)

Eleições em sistemas de grande escala

- Há situações em que é necessário trabalhar com redes maiores e é necessário eleger maior quantidade de pares, ex.: Superpares em P2P
- Requisitos a serem cumpridos por superpar:
 - Nós normais devem ter baixa latência de acesso com superpares;
 - Superpares devem estar uniformemente distribuídos pela rede de sobreposição;
 - 3. Deve haver uma porção predefinida de superpares em relação ao número total de nós na rede de sobreposição;
 - Cada superpar não deve precisar atender mais do que um número fixo de nós normais;

Eleições em sistemas de grande escala Superpares com *k* de *m* bits como id

- Uma solução é dada quando se usa m bits de identificador, separar os k bits da extrema esquerda para identificar superpares;
 - Ex.: $log_2(N)$ Superpares, m=8,k=3.
 - p AND 11100000 = Superpar.
- Problema: não garante posicionamento geométrico para organizar os superpares uniformemente pela rede

Eleições em sistemas de grande escala Eleição de pares por fichas repulsoras

- N fichas distribuídas aleatoriamente entre os nós;
- Nenhum nó pode ter mais de uma ficha;
- Fichas possuem uma força de repulsão;
- Um nó que mantiver a ficha por determinado tempo é eleito superpar.

