2017-2018 学年第一学期研究生随机过程I试题

姓名:	学院:	 壬课教师:	
专业:	班级:	 学号:	
(注:	本试卷满分100 分, 差 姓名、学院、专业、		

- **1. (20分)** 设在 [0,t] 内事件 A 已经发生 n 次, 求第 k(k < n) 次事件 A 发生的时间 S_k 的条件概率密度函数. (其中等待时间 S_n 服从参数为 n,λ 的 Γ 分布,即分布密度为 $f(t) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, t \geq 0$.)
- **2. (20分)** A, B 两罐总共装着 N 个球, 在时刻 n 先从 N 个球中等概率地任取一球. 然后从 A, B 两罐中任选一个, 选中 A 的概率为 p, 选中 B 的概率为 1-p. 之后再将选出的球放入选好的罐中. 设 X_n 为每次试验时 A 罐中的球数. 试详细求此 Markov 链的转移概率矩阵.
- **3.** (20分) 设 Markov 链 X_n , $n \ge 0$ 的状态空间 $E = \{1, 2, 3\}$ 和一步转移概率矩阵

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

初始分布为 $P(X_0 = 1) = P(X_0 = 2) = P(X_0 = 3) = 1/3$. 对任意 $n \ge 1$, 试求: (1) $P(X_{n+2} = 2|X_n = 1)$; (2) $P(X_3 = 1)$ (写出计算步骤); (3) 该链是否具有平稳分布? 为什么? (4) 是否具有极限分布? 若有则求出.

4. (20分)

(I) 设马尔科夫链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2, 3\}$, 一步转移概率矩阵为

$$P = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 \\ 0.5 & 0.3 & 0.2 & 0 \end{array}\right).$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集; (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.
- (II) 设 Markov 链的状态空间 $E = \{1, 2, 3\}$, 其转移概率矩阵

$$P = \left(\begin{array}{ccc} 0.6 & 0.2 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ 0.5 & 0.2 & 0.3 \end{array}\right).$$

(1) 判别以上 Markov 链是否具有平稳分布(写出理由); (2) 若具有平稳分布, 求平稳分布及 $\lim_{n\to\infty} P^{(n)}$.

5. (20分) 设
$$Y_t = \sum_{n=1}^{N_t} \xi_n$$
 是一个复合 Poisson 过程, $t \ge 0$.

- (1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中\ i = \sqrt{-1})$ 是随机变量 ξ_n 的特征函数, 试求 Y_t 的特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2) < \infty$, 试求 $E(Y_t)$, $Var(Y_t)$.

(注:
$$Var(Y_t) = E[Var(Y_t|N_t)] + Var[E(Y_t|N_t)].$$
)

2015-2016 学年第一学期研究生随机过程试题(A)

姓名:	学院:任课教师:
专业:	班级: 学号:
`	本试卷满分100 分, 共五道大题. 请在 <u>答卷纸</u> 上写清楚 姓名、学院、专业、班级、学号、题号.)

- **1. (20分)** 设 $\{N_t, t \geq 0\}$ 是参数 λ 的齐次 Poisson 过程, 设 $X_1(t)$ 为第一个事件来到的时刻. 证明条件随机变量 $(X_1|N_t=1) \sim U(0,t)$, 即服从区间 (0,t) 上的均匀分布.
- **2. (20分)** 对于任意的整数 $n, m \ge 0$ 及 $i, j \in E$ (E 为状态空间). (1) 证明: 转移概率具有

$$p_{ij}^{(n+m)} = \sum_{k \in E} p_{ik}^{(n)} p_{kj}^{(m)};$$

- (2) 并叙述上式直观意义.
 - **3. (20分)** 设随机过程 {*X_n*} 满足:
- (1) $X_n = f(X_{n-1}, \xi_n) (n \ge 1)$, 其中 $f: E \times E \to E$, 且 ξ_n 取值在 E 上;
- (2) $\{\xi_n, n \geq 1\}$ 为独立同分布随机变量,且 X_0 与 $\{\xi_n, n \geq 1\}$ 也相互独立. 证明: $\{X_n\}$ 是 Markov 链,而且其一步转移概率为,对于任意 $i, j \in E$,

$$p_{ij} = P(f(i, \xi_1) = j).$$

(I) 设马尔科夫链 $\{X_n\}$ 的状态空间 $E = \{1, 2, 3, 4\}$, 一步转移概率矩阵为

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 2/3 & 1/3 & 0 \\ 3/4 & 0 & 1/4 & 0 \end{pmatrix},$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集; (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.
- (II) 设 Markov 链的状态空间 $E = \{1, 2, 3\}$, 其转移概率矩阵

$$P = \left(\begin{array}{ccc} 1/3 & 1/3 & 1/3 \\ 1/2 & 1/3 & 1/6 \\ 1/4 & 1/2 & 1/4 \end{array}\right).$$

- (1) 判别以上 Markov 链是否具有平稳分布(写出理由); (2) 若具有平稳分布, 求平稳分布及 $\lim_{n\to\infty} P^{(n)}$.
- **5. (20分)** 设 X, Y_1, Y_2, \cdots 是一列相互独立的随机变量, 其中X 服从参数为 $\lambda(\lambda > 0)$ 的 Poisson 分布, 而 Y_1, Y_2, \cdots 服从 [0, 1] 上均匀分布. 定义

$$Z(t) = \sum_{k=1}^{X} I_{[0,t]}(Y_k), \quad t \in [0,1]$$

其中 $I_{[0,t]}(\cdot)$ 为示性函数(即: $I_{[0,t]}(y) = 1$, 若 $y \in [0,t]$; $I_{[0,t]}(y) = 0$, 若 $y \notin [0,t]$). (1) 求 $\xi_{t,k} = I_{[0,t]}(Y_k)$ 的特征函数; (2) 求 Z(t) 的特征函数; (3) 证明: Z(t) 是参数为 $\lambda(\lambda > 0)$ 的 Poisson 过程. (提示: 可采用特征函数证明)

2014-2015 学年第一学期研究生随机过程试题(A)

姓名:	学院:	任课教师:
专业:	班级:	_学号:
`	本试卷满分100 分, 共五道大题。 姓名、学院、专业、班级、学号	

- **1. (20分)** 设随机变量 X 的概率分布是服从参数为 $\lambda(\lambda > 0)$ 的指数分布. (1) 写出 X 的概率密度函数; (2) 求出指数分布的矩母函数(写出计算过程); (3) 利用其矩母函数求出 X 的期望和方差(写出计算过程).
- **2. (20分)** 设在 [0,t] 内事件 A 已经发生 n 次, 求第 k(k < n) 次事件 A 发生的时间 S_k 的条件概率密度函数.
 - 3. (20分) 设 Markov 链 $X_n, n \ge 0$ 有状态 1, 2 和一步转移概率矩阵

$$P = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

初始分布为 $P(X_0=1)=p$, $P(X_0=2)=1-p$, $0 . 对任意 <math>n \ge 1$, 试求: (1) $P(X_{n+2}=2|X_n=1)$; (2) $P(X_3=1)$ (写出计算步骤); (3) 该链是否具有平稳分布? 为什么? (4) 是否具有极限分布? 若有则求出.

(I) 设 Markov 链 X_n , $n \ge 0$ 的状态空间 $E = \{0, 1, 2, 3\}$ 和一步转移概率矩

$$P = \left(\begin{array}{cccc} 0 & 1/2 & 1/2 & 0\\ 0 & 0 & 1/3 & 2/3\\ 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 \end{array}\right).$$

- (1) 试分析该 Markov 链: 画出状态转移图; 常返性; 周期.
- (2) 该链是否具有平稳分布? 为什么? 若有则求出.
- (II) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2, 3, 4\}$, 转移矩阵为

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/5 & 4/5 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集;
- (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.

5. (20分) 设
$$Y_t = \sum_{n=1}^{N_t} \xi_n$$
 是一个复合 Poisson 过程, $t \ge 0$.

(1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中 i = \sqrt{-1})$ 是随机变量 ξ_n 的特征函数, 试求 Y_t 的特征函数,

- 特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2) < \infty$, 试求 $E(Y_t)$, $Var(Y_t)$.

(注:
$$\operatorname{Var}(Y_t) = E[\operatorname{Var}(Y_t|N_t)] + \operatorname{Var}[E(Y_t|N_t)].$$
)

2013-2014 学年第一学期研究生随机过程试题(A)

姓名:	学院:	_任课教师:
专业:	班级:	_ 学号:

(注:本试卷满分100分,共五道大题.请在答卷纸上写清楚姓名、学院、专业、班级、学号、题号.)

1. (20分) 对于任意的整数 $n, m \ge 0$ 及 $i, j \in E$ (E 为状态空间). (1) 证明: 转移概率具有

$$p_{ij}^{(n+m)} = \sum_{k \in E} p_{ik}^{(n)} p_{kj}^{(m)};$$

- (2) 并叙述上式直观意义.
- **2. (20分)** 证明在 $N_t = n$ 的条件下, n 个事件来到的时刻 S_1, \dots, S_n 的联合密度与 n 个独立的 [0,t] 上均匀分布随机变量的顺序统计量的联合密度相同. 即条件随机向量 $(S_1, \dots, S_n | N_t = n)$ 具有联合密度

$$f(t_1, \dots, t_n) = \frac{n!}{t^n}, \quad 0 < t_1 < \dots < t_n < t.$$

- **3. (20分)** 设随机过程 {*X_n*} 满足:
- (1) $X_n = f(X_{n-1}, \xi_n) (n \ge 1)$, 其中 $f: E \times E \to E$, 且 ξ_n 取值在 E 上;
- (2) $\{\xi_n, n \geq 1\}$ 为独立同分布随机变量,且 X_0 与 $\{\xi_n, n \geq 1\}$ 也相互独立.证明: $\{X_n\}$ 是 Markov 链,而且其一步转移概率为,对于任意 $i, j \in E$,

$$p_{ij} = P(f(i, \xi_1) = j).$$

(I) 设马尔科夫链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2, 3\}$, 一步转移概率矩阵为

$$P = \left(\begin{array}{cccc} 2/3 & 1/3 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 1/3 & 2/3 & 0\\ 1/3 & 0 & 2/3 & 0 \end{array}\right),$$

(1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集; (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.

(II) 设 Markov 链的状态空间 $E = \{0, 1, 2\}$, 其转移概率矩阵

$$P = \left(\begin{array}{ccc} 1/2 & 1/3 & 1/6 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/6 & 1/2 \end{array}\right).$$

(1) 判别以上 Markov 链是否具有平稳分布(写出理由); (2) 若具有平稳分布, 求平稳分布及 $\lim_{n\to\infty} P^{(n)}$.

5. (20分) 设 X, Y_1, Y_2, \cdots 是一列相互独立的随机变量, 其中X 服从参数为 $\lambda(\lambda > 0)$ 的 Poisson 分布, 而 Y_1, Y_2, \cdots 服从 [0, 1] 上均匀分布. 定义

$$Z(t) = \sum_{k=1}^{X} I_{[0,t]}(Y_k), \quad t \in [0,1]$$

其中 $I_{[0,t]}(\cdot)$ 为示性函数(即: $I_{[0,t]}(y) = 1$, 若 $y \in [0,t]$; $I_{[0,t]}(y) = 0$, 若 $y \notin [0,t]$). (1) 求 $\xi_{t,k} = I_{[0,t]}(Y_k)$ 的特征函数; (2) 求 Z(t) 的特征函数; (3) 证明: Z(t) 是参数为 $\lambda(\lambda > 0)$ 的 Poisson 过程. (提示: 可采用特征函数证明)

2012-2013 学年第一学期研究生随机过程试题(A)

姓名:	_学院:	_任课教师:
专业:	. 班 级:	_ 学号:

(注:本试卷满分100分,共五道大题.请在<u>答卷纸</u>上写清楚 姓名、学院、专业、班级、学号、题号.)

- **1.** (15分) 设随机变量 X 的概率分布是服从参数为 $\lambda(\lambda > 0)$ 的指数分布. (1) 写出 X 的概率密度函数; (2) 求出指数分布的矩母函数(写出计算过程); (3) 利用其矩母函数求出 X 的期望和方差(写出计算过程).
- **2.** (15分) 考虑强度为 λ 的齐次 Poisson 过程 $\{N_t, t \geq 0\}$, 计算前三个事件到来的时刻 S_1, S_2, S_3 的联合密度.
 - 3. (20分) 设 $Y_t = \sum_{n=1}^{N_t} \xi_n$ 是一个复合 Poisson 过程, $t \ge 0$.
- (1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中 i = \sqrt{-1})$ 是随机变量 ξ_n 的特征函数, 试求 Y_t 的特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2) < \infty$, 试求 $E(Y_t)$, $Var(Y_t)$.
- (注: $\operatorname{Var}(Y_t) = E[\operatorname{Var}(Y_t|N_t)] + \operatorname{Var}[E(Y_t|N_t)].$)
- **4. (20分)** 记 Z_i , $i=1,2,\cdots$ 为一串独立同分布的离散随机变量. $P\{Z_1=k\}=p_k\geq 0,\ k=0,1,2,\cdots,\sum_{k=0}^{\infty}p_k=1.$

- (1) 令 $X_n = \sum_{i=1}^n Z_i$, $n = 1, 2, \dots$, 并约定 $X_0 = 0$. 试证 X_n 为 Markov 链, 并求其一步转移概率矩阵. (请将转移概率矩阵完整写出)
- (2) 令 $X_n = \max\{Z_1, \dots, Z_n\}$, $n = 1, 2, \dots$, 并约定 $X_0 = 0$. 试证 X_n 为 Markov 链, 并求其一步转移概率矩阵. (请将转移概率矩阵完整写出)

5. (30分)

(I) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2\}$, 转移矩阵为

$$P = \left(\begin{array}{ccc} 1/2 & 1/2 & 0\\ 1/4 & 1/2 & 1/4\\ 0 & 3/4 & 1/4 \end{array}\right),$$

初始分布 $p_0=p_1=p_2=\frac{1}{3}$,其中 $p_i=P(X_0=i)$,i=0,1,2. 试求 $P(X_0=0,X_1=1,X_2=2)$ 和 $P(X_0=1,X_1=1,X_3=1)$.

(II) 设 Markov 链 X_n , $n \ge 0$ 的状态空间 $E = \{0, 1, 2, 3\}$ 和一步转移概率矩阵

$$P = \left(\begin{array}{cccc} 0 & 1/5 & 4/5 & 0\\ 0 & 0 & 1/2 & 1/2\\ 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 \end{array}\right).$$

- (1) 试分析该 Markov 链: 画出状态转移图; 常返性; 周期.
- (2) 该链是否具有平稳分布? 为什么? 若有则求出.
- (III) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2, 3, 4\}$, 转移矩阵为

$$P = \begin{pmatrix} 0 & 1/5 & 4/5 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 2/5 & 3/5 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集;
- (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.

2011-2012 学年第一学期研究生随机过程试题(A)

姓名:	学院:	任课教师:
专业:	班级:	学号:
`	本试卷满分100 分, 共六道大题。	
	姓名、学院、专业、班级、学号	、

- **1.** (15分) 设随机变量 X 的概率分布是服从参数为 $\lambda(\lambda > 0)$ 的 Poisson 分布. (1) 写出 X 的概率分布; (2) 求出 Poisson 分布的特征函数(写出计算过程); (3) 利用其特征函数求出 X 的期望和方差(写出计算过程).
- **2. (15分)** 对于任意的整数 $n \ge 0$ 及 $i, j \in E$ (E 为状态空间). (1) 证明: 转移概率具有

$$p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)};$$

- (2) 并叙述上式直观意义.
- **3.** (15分) 一书亭用邮寄订阅销售杂志,订阅的顾客是强度为 6 的一个泊松过程,每位顾客订阅 1 年, 2 年, 3 年的概率分别为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$, 彼此如何订阅是相互独立的,每订阅一年,店主即获利 5 元.设 Y_t 是 [0,t] 内,店主从订阅中所获得的总收入,计算: (1) $E(Y_t)$ (即 [0,t] 内的总的平均收入); (2) $Var(Y_t)$.

4. (15分) A, B 两罐总共装着 N 个球, 在时刻 n 先从 N 个球中等概率 地任取一球. 然后从 A, B 两罐中任选一个, 选中 A 的概率为 p, 选中 B 的概率为 1-p. 之后再将选出的球放入选好的罐中. 设 X_n 为每次试验时 A 罐中的球数. 试求此 Markov 链的转移概率矩阵.

5. (20分)

(I) 设 Markov 链 X_n , $n \ge 0$ 的状态空间 $E = \{0, 1, 2, 3\}$ 和一步转移概率矩阵

$$P = \left(\begin{array}{cccc} 0 & 1/2 & 1/2 & 0\\ 0 & 0 & 1/5 & 4/5\\ 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 \end{array}\right).$$

- (1) 试分析该 Markov 链: 画出状态转移图; 常返性; 周期.
- (2) 该链是否具有平稳分布? 为什么? 若有则求出.
- (II) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{0,1,2,3,4\}$, 转移矩阵为

$$P = \left(\begin{array}{cccc} 0 & 1/2 & 1/2 & 0 & 0\\ 0 & 0 & 0 & 1/5 & 4/5\\ 0 & 0 & 0 & 2/5 & 3/5\\ 1 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 \end{array}\right).$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集;
- (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.

6. (20分) 设
$$Y_t = \sum_{n=1}^{N_t} \xi_n$$
 是一个复合 Poisson 过程, $t \ge 0$.

- (1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中^{n-1})$ 是随机变量 ξ_n 的特征函数, 试求 Y_t 的特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2) < \infty$, 试求 $E(Y_t)$, $Var(Y_t)$.

$$(\stackrel{\cdot}{\cong}: \operatorname{Var}(Y_t) = E[\operatorname{Var}(Y_t|N_t)] + \operatorname{Var}[E(Y_t|N_t)].)$$

2010-2011 学年第一学期研究生随机过程试题(A)

姓名:	学院:	_任课教师:
专业:	班级:	_学号:

(注:本试卷满分100分,共六道大题.请在答卷纸上写清楚姓名、学院、专业、班级、学号、题号.)

1. (15分) (Chapman-Kolmogorov (切普曼-柯尔莫哥洛夫)方程) 对任何整数 $m,n\geq 0$ 证明

$$p_{ij}^{(m+n)} = \sum_{k \in E} p_{ik}^{(m)} p_{kj}^{(n)}.$$

- **2.** (15分) 设在 [0,t] 内事件 A 已经发生 n 次, 求第 k(k < n) 次事件 A 发生的时间 S_k 的条件概率密度函数.
 - **3.** (15分) 设随机过程 $\{X_n\}$ 满足:
 - (1) $X_n = f(X_{n-1}, \xi_n) (n \ge 1)$, 其中 $f: E \times E \to E$, 且 ξ_n 取值在 E 上;
- (2) $\{\xi_n, n \geq 1\}$ 为独立同分布随机变量, 且 X_0 与 $\{\xi_n, n \geq 1\}$ 也相互独立.

证明 $\{X_n\}$ 是 Markov 链, 而且其一步转移概率为, 对于任意 $i, j \in E$,

$$p_{ij} = P(f(i, \xi_1) = j).$$

4. (20分) 证明在 $N_t = n$ 的条件下, n 个事件来到的时刻 S_1, \dots, S_n 的 联合密度与 n 个独立的 [0,t] 上均匀分布随机变量的顺序统计量的联合密度 相同. 即条件随机向量 $((S_1,\cdots,S_n|N_t=n))$ 具有联合密度

$$f(t_1, \dots, t_n) = \frac{n!}{t^n}, \quad 0 < t_1 < \dots < t_n < t.$$

5. (10分) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{1, 2, 3, 4\}$, 转移矩阵为

$$P = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1/3 & 2/3 & 0 & 0 \\ 1/4 & 1/4 & 0 & 1/2 \end{array}\right),$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集;
- (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.

6. (25分) 设
$$Y_t = \sum_{n=1}^{N_t} \xi_n$$
 是一个复合 Poisson 过程, $t \geq 0$. (1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中 $i = \sqrt{-1}$) 是随机变量 ξ_n 的特征函数, 试求 Y_t 的$

- 特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2) < \infty$, 试求 $E(Y_t)$, $Var(Y_t)$.

$$(\stackrel{.}{\cong}: \operatorname{Var}(Y_t) = E[\operatorname{Var}(Y_t|N_t)] + \operatorname{Var}[E(Y_t|N_t)].)$$

2009-2010 学年第一学期研究生随机过程试题(A)

姓名:	学院:	任课教师:
专业:	班级:	学号:
	大津券港公100 公 井売港土販	

(汪:本试卷满分100分,共六道大题.请在<u>答卷纸</u>上写清楚 姓名、学院、专业、班级、学号、题号.)

- **1. (20分)** (1)设随机变量 X 的概率分布是服从参数为 $\lambda(\lambda > 0)$ 的指数分布, 试写出其分布函数; (2) 证明强度为 λ 的齐次 Poisson 过程 $\{N_t, t \geq 0\}$ 的到达时间间隔序列 $\{X_n, n = 1, 2, \cdots\}$ 是独立同分布的随机变量序列, 且是具有相同均值 $\frac{1}{\lambda}$ 的指数分布.
- **2.** (15分) 设在 [0,t] 内事件 A 已经发生 n 次, 求第 k(k < n) 次事件 A 发生的时间 S_k 的条件概率密度函数. (其中等待时间 S_n 服从参数为 n,λ 的 Γ 分布,即分布密度为 $f(t) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, t \geq 0$.)
- **3.** (15分) 考虑质点在整数点上的一维无限制随机游动,设质点以概率 p~(0 向右移动一个单位,以概率 <math>q~ 向左移动一个单位,且 p + q = 1. 试判别各状态的周期和常返性. (注:斯特灵公式 $n! \simeq n^{n+\frac{1}{2}}e^{-n}\sqrt{2\pi}$)
- **4.** (15分) A, B 两罐总共装着 N 个球, 在时刻 n 先从 N 个球中等概率地任取一球. 然后从 A, B 两罐中任选一个, 选中 A 的概率为 p, 选中 B 的概率为 1-p. 之后再将选出的球放入选好的罐中. 设 X_n 为每次试验时 A 罐中的球数. 试求此 Markov 链的转移概率矩阵.

(I) 设 Markov 链 X_n , $n \ge 0$ 的状态空间 $E = \{0, 1, 2, 3\}$ 和一步转移概率矩阵

$$P = \left(\begin{array}{cccc} 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array}\right).$$

- (1) 试分析该 Markov 链: 画出状态转移图; 常返性; 周期.
- (2) 该链是否具有平稳分布? 为什么? 若有则求出.
- (II) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{1, 2, 3, 4\}$, 转移矩阵为

$$P = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \\ 0.6 & 0.2 & 0.2 & 0 \end{array}\right).$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集;
- (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.
 - **6.** (15分) 证明Chapman-Kolmogorov 方程: 对任何整数 $m, n \ge 0$ 有

$$p_{ij}^{(m+n)} = \sum_{k \in E} p_{ik}^{(m)} p_{kj}^{(n)}, \quad \text{or} \quad P^{(m+n)} = P^{(m)} \times P^{(n)}.$$

2008-2009 学年第一学期研究生随机过程试题(A)

姓名:	学院:	任课教师:
专业:	班级:	学号:
——— (注,	木冠类滞分100 分 廿六诺士斯	

(注:本试卷满分100分,共六道大题.请在<u>答卷纸</u>上写清楚 姓名、学院、专业、班级、学号、题号.)

- **1.** (15分) 设随机变量 X 的概率分布是服从参数为 $\lambda(\lambda > 0)$ 的指数分布. (1) 写出 X 的概率分布; (2) 求出指数分布的特征函数和矩母函数(写出计算过程); (3) 利用其特征函数求出 X 的期望和方差(写出计算过程).
- **2. (15分)** 设在 [0,t] 内事件 A 已经发生 n 次, 求第 k(k < n) 次事件 A 发生的时间 S_k 的条件概率密度函数.
 - **3.** (15分) 设随机过程 $\{X_n\}$ 满足:
- (1) $X_n = f(X_{n-1}, \xi_n) (n \ge 1)$, 其中 $f: E \times E \to E$, 且 ξ_n 取值在 E 上;
- (2) $\{\xi_n, n \geq 1\}$ 为独立同分布随机变量,且 X_0 与 $\{\xi_n, n \geq 1\}$ 也相互独立. 证明: $\{X_n\}$ 是 Markov 链,而且其一步转移概率为,对于任意 $i, j \in E$,

$$p_{ij} = P(f(i, \xi_1) = j).$$

4. (15分) 一书亭用邮寄订阅销售杂志,订阅的顾客是强度为 6 的一个泊松过程,每位顾客订阅 1 年, 2 年, 3 年的概率分别为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$, 彼此如何订阅是相互独立的,每订阅一年,店主即获利 5 元. 设 Y_t 是 [0,t] 内,店主从订阅中所获得的总收入,计算: (1) $E(Y_t)$ (即 [0,t] 内的总的平均收入); (2) $Var(Y_t)$.

(I) 设 Markov 链 X_n , $n \ge 0$ 的状态空间 $E = \{0, 1, 2, 3\}$ 和一步转移概率矩

$$P = \left(\begin{array}{cccc} 0 & 1/2 & 1/2 & 0\\ 0 & 0 & 1/5 & 4/5\\ 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 \end{array}\right).$$

- (1) 试分析该 Markov 链: 画出状态转移图; 常返性; 周期.
- (2) 该链是否具有平稳分布? 为什么? 若有则求出.
- (II) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{0,1,2,3,4\}$, 转移矩阵为

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1/5 & 4/5 \\ 0 & 0 & 0 & 2/5 & 3/5 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集;
- (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.

6. (20分) 设
$$Y_t = \sum_{n=1}^{N_t} \xi_n$$
 是一个复合 Poisson 过程, $t \geq 0$.

(1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}(其中\ i = \sqrt{-1})$ 是随机变量 ξ_n 的特征函数, 试求 Y_t 的特征函数

- 特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 ξ_n 服从参数为 λ 指数分布, 试求 Y_t 的特征函数 $\varphi_{Y_t}(u)$.

2007-2008 学年第一学期期末研究生随机过程试题(A)

姓名:	_学院:	_任课教师:
专业:	班级:	_ 学号:

(注:本试卷满分100分,共七道大题.请在答卷纸上写清楚姓名、学院、专业、班级、学号、题号.)

- **1.** (10分) 设随机变量 X 的概率分布是服从参数为 $\lambda(\lambda > 0)$ 的 Poisson 分布. (1) 写出 X 的概率分布; (2) 求出 Poisson 分布的特征函数(写出计算过程); (3) 利用其特征函数求出 X 的期望和方差(写出计算过程).
- **2.** (15分) 设 $\{N_t, t \geq 0\}$ 是参数 λ 的齐次 Poisson 过程, 设 $X_1(t)$ 为第一个事件来到的时刻. 证明条件随机变量 $(X_1|N_t=1) \sim U(0,t)$, 即服从区间 (0,t) 上的均匀分布.
- **3.** (15分) 对于任意的整数 $n \ge 0$ 及 $i, j \in E$ (E 为状态空间). (1) 证明: 转移概率具有

$$p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)};$$

- (2) 并叙述上式直观意义.
- **4.** (15分) 一书亭用邮寄订阅销售杂志,订阅的顾客是强度为 6 的一个泊松过程,每位顾客订阅 1 年, 2 年, 3 年的概率分别为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$, 彼此如何订阅是相互独立的,每订阅一年,店主即获利 5 元. 设 Y_t 是 [0,t] 内,店主从订阅中所获得的总收入,计算: (1) $E(Y_t)$ (即 [0,t] 内的总的平均收入); (2) $Var(Y_t)$.

5. (15分) 设 Markov 链 $X_n, n \ge 0$ 有状态 1, 2 和一步转移概率矩阵

$$P = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

初始分布为 $P(X_0 = 1) = p$, $P(X_0 = 2) = 1 - p$, $0 . 对任意 <math>n \ge 1$, 试求: (1) $P(X_{n+2} = 2|X_n = 1)$; (2) $P(X_3 = 1)$ (写出计算步骤); (3) 该链是否具有遍历性? 为什么? (4) 极限分布和平稳分布.

6. (15分) 设马氏链 $\{X_n\}$ 的状态空间 $E = \{1, 2, 3, 4\}$, 转移矩阵为

$$P = \left(\begin{array}{cccc} 1/2 & 1/2 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 1/3 & 2/3\\ 0 & 0 & 0 & 1 \end{array}\right),$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集; (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.
- **7. (15分)** 对于任意的状态 $i, j \in E$ (E 为状态空间), $f_{ij} > 0$ 的充要条件是 $i \to j$.