Sampling People, Records, & Networks

Jim Lepkowski, PhD **Professor & Research Professor Emeritus** Institute for Social Research, University of Michigan Research Professor. Joint Program in Survey Methodology, University of Maryland

Unit 4

- I Forming groups
- 2 Sampling variance
- 3 More on grouping
- 4 Allocate sample
- 5 Other allocations
- 6 Weights

- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
 - Forming groups
 - Sampling variance
 - More on grouping
 - Allocate sample
 - Other allocations
 - Weights to combine across strata
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- Other allocations
- Proportionate
- Equal sample size
- Domain estimation
- Effect on precision

- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
 - Forming groups
 - Sampling variance
 - More on grouping
 - Allocate sample
 - Other allocations
 - Weights to combine across strata
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- Equal sample size
- Domain estimation
- Effect on precision

 Another allocation that may make sense in other situations is to take the same or about the same number in each stratum:

- Equal sample size
- Domain estimation
- Effect on precision

h	Stratum	N_{h}	$W_{_h}$	n_h
1	Female, Assistant	40	0.1000	13
2	Female, Associate	25	0.0625	14
3	Female, Full	20	0.0500	13
4	Male, Assistant	75	0.1875	14
5	Male, Associate	50	0.1250	13
6	Male, Full	190	0.4750	13
Total		400	1.0000	80

- Equal sample size
- Domain estimation
- Effect on precision

- Here, we end up with 27 assistant, 27 associate, and 26 full professors
 - Compared to the proportionate allocation of 23, 15, and
 38
- Or we have 40 females and 40 males

- Equal sample size
- Domain estimation
- Effect on precision

- Here, we end up with 27 assistant, 27 associate, and 26 full professors
 - Compared to the proportionate allocation of 23, 15, and
 38
- Or we have 40 females and 40 males
- These are of course quite different than the proportionate allocation (17 females and 63 males)

- Equal sample size
- Domain estimation
- Effect on precision

- Here, we end up with 27 assistant, 27 associate, and 26 full professors
 - Compared to the proportionate allocation of 23, 15, and
 38
- Or we have 40 females and 40 males
- These are of course quite different than the proportionate allocation (17 females and 63 males)
- Purposes of the 'equal' allocation
 - Comparisons of different sized subgroups
 - Better estimates for small sized groups

- Equal sample size
- Domain estimation
- Effect on precision

- Here, we end up with 27 assistant, 27 associate, and 26 full professors
 - Compared to the proportionate allocation of 23, 15, and
 38
- Or we have 40 females and 40 males
- These are of course quite different than the proportionate allocation (17 females and 63 males)
- Purposes of the 'equal' allocation
 - Comparisons of different sized subgroups
 - Better estimates for small sized groups
- Weighting the sample is necessary if we are going to combine across subgroups to get back to conclusions about the total population

Sampling People, Records, & Networks

- Equal sample size
- Domain estimation
- Effect on precision

- Equal sample size
- Domain estimation
- Effect on precision

2011 Population by Province

Source: Statistics Canada, Created by: Mack D. Male

License: http://creativecommons.org/licenses/by-sa/2.5/ca/

- Equal sample size
- Domain estimation
- Effect on precision

 On occasion, use an allocation that gives us the smallest sampling variance of all allocations – optimum allocation

- Equal sample size
- Domain estimation
- Effect on precision

- On occasion, use an allocation that gives us the smallest sampling variance of all allocations – optimum allocation
- These purposes require us to look at the size of strata, and the variability within strata, and sometimes even the cost within strata

- Equal sample size
- Domain estimation
- Effect on precision

- On occasion, use an allocation that gives us the smallest sampling variance of all allocations – optimum allocation
- These purposes require us to look at the size of strata, and the variability within strata, and sometimes even the cost within strata
- This kind of minimum variance estimation is beyond the scope of this course

- Equal sample size
- Domain estimation
- Effect on precision

- On occasion, use an allocation that gives us the smallest sampling variance of all allocations – optimum allocation
- These purposes require us to look at the size of strata, and the variability within strata, and sometimes even the cost within strata
- This kind of minimum variance estimation is beyond the scope of this course
- It arises in studies of a single variable, and when there is a lot of variance in the data – things like income, or expenditures, or wealth, and so on

- Equal sample size
- Domain estimation
- Effect on precision

- On occasion, use an allocation that gives us the smallest sampling variance of all allocations – optimum allocation
- These purposes require us to look at the size of strata, and the variability within strata, and sometimes even the cost within strata
- This kind of minimum variance estimation is beyond the scope of this course
- It arises in studies of a single variable, and when there is a lot of variance in the data – things like income, or expenditures, or wealth, and so on
- Minimum variance allocation does not arise often in much of the social, public health, medical, or other sciences

- Equal sample size
- Domain estimation
- Effect on precision

 Let's consider one other simpler example to see how these allocation can affect the sampling variance:

- Equal sample size
- Domain estimation
- Effect on precision

Population	Stratum 1 Qatari	Stratum 2 White & Blue Collar Expatriate (Other)		
Size Empartment (State)				
N	N_1	N_2		
1,000,000	200,000	800,000		
Variance				
S^2	S_1^2	S_2^2		
1,800,000	4,000,000	1,000,000		
Mean				
\overline{Y}	\overline{Y}_1	\overline{Y}_2		
1,400	3,000	1,000		

- Equal sample size
- Domain estimation
- Effect on precision

Suppose
$$n_1 = 240$$
, $n_2 = 960$
What will be $Var(\overline{y})$?

$$Var(\overline{y}) = \sum_{h=1}^{2} W_h^2 \frac{\left(1 - f_h\right)}{n_h} S_h^2 \approx \frac{W_1^2 S_1^2}{n_1} + \frac{W_2^2 S_2^2}{n_2}$$

$$= \frac{\left(0.2\right)^2 \left(4000000\right)}{240} + \frac{\left(0.8\right)^2 \left(1000000\right)}{960}$$

$$= 666.7 + 666.7$$

$$= 1333$$

- Equal sample size
- Domain estimation
- Effect on precision

For n = 1200 what will be $4ar_{SRS}(\overline{y})$?

$$Var_{SRS}(\overline{y}) = \frac{(1-f)}{n}S^{2}$$

$$= \frac{\left(1 - \frac{1,200}{1,000,000}\right)}{1,200}(1800000)$$

$$\approx \frac{18000000}{1200} = 1500$$

- Equal sample size
- Domain estimation
- Effect on precision

As for cluster sampling,

$$deff(\overline{y}) = \frac{Var(\overline{y}) \text{ for a given design}}{Var_{SRS}(\overline{y}) \text{ of same size}}$$

• For this example,

$$deff(\overline{y}) = \frac{Var(\overline{y})}{Var_{SRS}(\overline{y})} = \frac{1333}{1500} = 0.89$$

- Equal sample size
- Domain estimation
- Effect on precision

(1)
$$n_1 = 100$$
 $n_2 = 1100$

(2)
$$n_1 = 240$$
 $n_2 = 960$

(3)
$$n_1 = 400$$
 $n_2 = 800$

(4)
$$n_1 = 600$$
 $n_2 = 600$

(5)
$$n_1 = 960$$
 $n_2 = 240$

- Equal sample size
- Domain estimation
- Effect on precision

(1)
$$n_1 = 100$$
 $n_2 = 1100$: $Var(\bar{y}) = 2133$ & $deff(\bar{y}) = 1.45$

(2)
$$n_1 = 240$$
 $n_2 = 960$

(3)
$$n_1 = 400$$
 $n_2 = 800$

(4)
$$n_1 = 600$$
 $n_2 = 600$

(5)
$$n_1 = 960$$
 $n_2 = 240$

- Equal sample size
- Domain estimation
- Effect on precision

(1)
$$n_1 = 100$$
 $n_2 = 1100$: $Var(\bar{y}) = 2133$ & $deff(\bar{y}) = 1.45$

(2)
$$n_1 = 240$$
 $n_2 = 960$: $Var(\bar{y}) = 1333$ & $deff(\bar{y}) = \mathbf{0.89}$

(3)
$$n_1 = 400$$
 $n_2 = 800$

(4)
$$n_1 = 600$$
 $n_2 = 600$

(5)
$$n_1 = 960$$
 $n_2 = 240$

- Equal sample size
- Domain estimation
- Effect on precision

(1)
$$n_1 = 100$$
 $n_2 = 1100$: $Var(\bar{y}) = 2133$ & $deff(\bar{y}) = 1.45$

(2)
$$n_1 = 240$$
 $n_2 = 960$: $Var(\bar{y}) = 1333 \& deff(\bar{y}) = \mathbf{0.89}$

(3)
$$n_1 = 400$$
 $n_2 = 800$: $Var(\bar{y}) = 1200$ & $deff(\bar{y}) = 0.80$

(4)
$$n_1 = 600$$
 $n_2 = 600$: $Var(\bar{y}) = 1333$ & $deff(\bar{y}) = 0.89$

(5)
$$n_1 = 960$$
 $n_2 = 240$

- Equal sample size
- Domain estimation
- Effect on precision

(1)
$$n_1 = 100$$
 $n_2 = 1100$: $Var(\bar{y}) = 2133$ & $deff(\bar{y}) = 1.45$

(2)
$$n_1 = 240$$
 $n_2 = 960$: $Var(\bar{y}) = 1333$ & $deff(\bar{y}) = \mathbf{0.89}$

(3)
$$n_1 = 400$$
 $n_2 = 800$: $Var(\bar{y}) = 1200$ & $deff(\bar{y}) = 0.80$

(4)
$$n_1 = 600$$
 $n_2 = 600$: $Var(\bar{y}) = 1333$ & $deff(\bar{y}) = 0.89$

(5)
$$n_1 = 960$$
 $n_2 = 240$: $Var(\bar{y}) = 2833$ & $deff(\bar{y}) = 2.36$

Unit 4

- I Forming groups
- 2 Sampling variance
- 3 More on grouping
- 4 Allocate sample
- 5 Other allocations
- 6 Weights

- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
 - Forming groups
 - Sampling variance
 - More on grouping
 - Allocate sample
 - Other allocations
 - Weights to combine across strata
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

