Area and Volume of a solud ProbO find the area of a plane region bounded by the graphs of x=y2, y-x=3, y=-3 and y=2. Solution!y=2y; -3 →2 x: y-3 -> y2 y=xt3/ Areab A = SdA = 5 dndy $= \int_{3}^{2} \left[x \right]_{y-3}^{y^{2}} dy = \int_{3}^{2} \left(y^{2} - y + 3 \right) dy$ $= \left(\frac{y^3}{3} - \frac{y^2}{2} + 3y\right)^2 = \frac{175}{6}.$ (mb 2):- Find the volume of the tetrahed own bounded by the plane 2x+y+z=2 and the three coordinate planes. Solution: - Since the plane 2x+y+z=2 intersects

the coordinate axes at the points (1,0,0), (0,2,0)

and (0,0,2).

Scanned by CamScanner

Z=2-2x-4The trace is found by simply setting Z=0; 2x+y=2 Volume 18 $V = \int_{0}^{1} \int_{0}^{2-2x} Z \, dy \, dx = \int_{0}^{1} \int_{0}^{2-2x} (2-2x-y) \, dy \, dx$ $V = \int_{0}^{1} \int_{0}^{2-2x} Z \, dy \, dx = \int_{0}^{1} \int_{0}^{2-2x} (2-2x-y) \, dy \, dx$ $= \int_{0}^{1} (2y - 2xy - \frac{y^{2}}{2}) \int_{0}^{1} dx$ $= \int \left[2(2-2x) - 2x(2-2x) - \frac{(2-2x)^2}{2} \right] dx$ $= 2 \int_{0}^{1} (1+x^{2}+2x) dx = 2 \left[x+\frac{x^{3}}{3}-x^{2}\right]_{0}^{1}$ = 2 (1+ \frac{1}{3} -1) = \frac{2}{3}. Ans. (3) Find the volume of the solid lying in the first octant and bounded by the graphs of $Z_1 = 4-x^2$, x + y = 2, x=0, y=0 and z=0. $\frac{2}{V} = \int_{0}^{2} \int_{0}^{2-y} (4-x^{2}) dx dy$ Solution!= $=\int_{2}^{2}\left(4x-\frac{x^{3}}{3}\right)\left(\frac{x=2-y}{4}\right)$ $=\int_{2}^{2}\left(4x-\frac{x^{3}}{3}\right)\left(\frac{x}{2}-\frac{x}{2}\right)$ $= \int_{-2\pi}^{2\pi} \left[4(2-y) - (2-y)^{3}\right] dy = \frac{20}{3}$

Prob(4) And the volume of the solid bounded by the greephs of z=2, z=z+1, y=0 and z+y=2. Solution: 2=2+1= 2=1 \Rightarrow $\chi = -1$ and +1Limitsare $\alpha:-1 \longrightarrow 1$ y: 0 -9 2-x $Z_1 = 2^2 + f(x_1 y) = 2 - (x_2^2 + y) = 1 - x_2^2 + y$ $\int_{-\infty}^{1} \int_{-\infty}^{2-x} (2x^{2}+1) dy dx = \int_{-\infty}^{1} (2x^{2}+1) [y]_{0}^{2-x} dx$ $= \int_{-\infty}^{\infty} (2x^{2}+2-x^{3}-x) dx = \int_{-\infty}^{\infty} (2x^{2}+2-x^{3}-x) dx$ $= \int_{-\infty}^{\infty} (-x^3 + 2x^2 - x + 2) dx$ $= -4\left[\frac{x^{3}}{3}\right]^{1} + 2\left[x\right]^{1} = -\frac{4}{3} + 4 = \frac{8}{3}$

Area and Volume in Polar Cooldinate

foob 1 !- Find the area in side the curve defined by $\gamma = 2 - 2 \sin \theta$.

Area

$$0:0\longrightarrow 2\pi$$

$$2\pi$$

$$2\pi$$

$$0:0\longrightarrow 2\pi$$

$$A = \iint dA = \iint r dr d\theta$$

$$= \iint \frac{2\pi}{2-25m0} \frac{2-25m0}{2} d\theta = \iint \frac{(2-25m0)^2}{2} d\theta$$

$$= \int_{0}^{2\pi} \left[\frac{\sqrt{2}}{2} \right]_{0}^{2-23m}$$

$$= 2 \int (1+\sin^2\theta - 28m\theta) d\theta$$

$$=2\left[\int_{0}^{2}1d0+\int_{2}^{2}\left[\frac{1-\cos 20}{2}\right]d0-2\int_{0}^{2}m0d0\right]$$

Prob 2:- Evaluate S (2+y2+3) dA, where R is the circle

Area by Double Integration

(a) Cartesian Co-ordinates

The area A of the region bounded by the curves $y = f_1(n)$, $y = f_2(n)$ and the lines x = a, x = b is given by $A = \int_{a}^{b} \int_{a}^{f_2(n)} dy dx$

The area A of the region bounded by the curves $x = f_1(y)$, $x = f_2(y)$ and the lines y = C, y = d is given by $\int_{C}^{\infty} dx dy$ $\int_{C}^{\infty} dx dy$

(b) Polar Coosdonates: - The area A of the regron bounded by the curvet $r = f_1(0)$, $r = f_2(0)$ and the lines $0 = \alpha$, $0 = \beta$ is given by $A = \int_{-\infty}^{\beta} \int_{-\infty}^{f_2(0)} r dr d\theta$.

In case of parametric egns, thousand area is grown by

$$A = \int_{-\infty}^{\beta} y \, dx \, dt$$

$$t = 0$$

$$t = 0$$

$$= \int_{-\infty}^{\beta} x \, dy \, dt$$

paraboloid Prob(3):- And the volume inside the $Z_1 = 9 - x^2 y^2$, out side the cylinder $x^2 + y^2 = 4$ and orbove the xy-plane. Solution: = g-x2y2 with z=0, 9-x2-y=0 =) 22+4=9 ~=9=) Y=3 and x2=y= 4 =) r=2 $0:0 \to 2\pi$ $\int_{-1}^{2\pi} (g-x^2+y^2)dA = \int_{-1}^{2\pi} (g-x^2).rdrda$ $= \int_{0}^{2\pi} \int_{0}^{3} (9r-r^{3}) dr d\theta = \int_{0}^{2\pi} \left[\frac{9r^{2}-r^{4}}{4} \right]_{2}^{3} d\theta$ $= 2\pi x \left[\left(\frac{9}{2} x 9 - \frac{91}{4} \right) - \left(\frac{9}{4} \right) - \left(\frac{9}{4} \right) \right]$ $= 2\pi \times \left[\frac{8!}{2}(1-\frac{1}{2}) - (18-4)\right] = 2\pi \times \left[\frac{8!}{4} - 14\right]$ $=2\Pi \times \left(\frac{81-56}{4}\right) = \frac{2\Pi \times 2\Gamma}{4} = \frac{2\Pi \times 2\Gamma}{2}$ Proble Graluete the iterated integral

[1] (1-x2 x2(x2+y2)2dydx.

Notice that equal partitions of the volume lie above the below the circle of radius 1 centered at (0,1) Therefore, required volume $V = 2 \iint (4 - x^2 - y^2) dA$ $=2\int_{0}^{1}\int_{0}^{28m0} (4-r^{2}) r dr d\theta$ $=2\int_{0}^{17}\left(\int_{0}^{2}t\cdot tdt\right)Gd\theta$ put 4-8= t2 -2rdr=2tdl rdr=-tdt t:272610 = 2 (TT [8-8030] do $= -\frac{16}{3} \int_{0}^{\pi} (cs^{3}0 - 1) d0 = -\frac{32}{3} \int_{0}^{\pi} (cs^{3}0 - 1) d0$ = -64 + 16 17 = 9-644 Aw Prob (6) Find the volume of the solid bounded by Salution: The height of sold is greenby $(8-x^2-y^2)$ - (x^2-y^2) = 8-2x2-2y2

