Per il doppio bipolo di figura determinare la matrice dei parametri Z:

 $R=5 \Omega$

L=20mH $C=500 \mu F$

 $\alpha=4A/V$

 ω =500 rad/s

Nel il circuito trifase simmetrico ed equilibrato mostrato in figura determinare la potenza meccanica erogata dalla macchina asincrona e le potenze attive e reattive erogate della terna V_1 , V_2 V_3 (\overline{Z}_1 è l'impedenza interna del generatore).

$$\begin{split} \dot{E}_{1} &= 380 e^{j\frac{\pi}{4}} V_{eff}; \quad \dot{V}_{1} = 800 e^{j\frac{\pi}{3}} V_{eff}; \\ \bar{Z}_{2} &= 2 + j2 \Omega; \quad \bar{Z}_{1} = 1 + j3 \Omega; \quad f = 50 \ Hz; \\ n_{T} &= 2; \quad \bar{Z}_{m,T} = 150 + j100; \quad \bar{Z}_{1cc,T} = 0.5 + j0.75; \end{split}$$

ASINCRONO

Prova a rotorelibero

 $V_{10} = 380 V$; $I_{10} = 1.8 A$; $P_{10} = 150 W$; Prova a rotore bloccato

 $V_{lcc} = 40 V$; $I_{lcc} = 20 A$; $P_{lcc} = 500 W$;

k = 2; s = 0.75; $\overline{Z}_s = 0.2 + j0.5 \Omega$