Метрики и валидация

Лекция 2

Разминочный тест на оценку

https://forms.gle/J11gVygAK2UDYmM69

Повторение

X - множество объектов (их признаковое описание)

Y - множество истинных ответов

 \widehat{Y} - множество предсказанных ответов. Получаем по формуле:

$$\widehat{Y}=f(X),$$

где f(X) -- модель машинного обучения

Чем ближе \hat{Y} к Y, тем лучше аппроксимируем неизвестную зависимость => лучше модель

На чем оценивать близость \widehat{Y} и Y

Разбиваем датасет на два множества — **обучающее** и **тестовое**

$$\begin{aligned} X &= X_{train} \cup X_{test} \\ Y &= Y_{train} \cup Y_{test} \\ \widehat{Y} &= \widehat{Y}_{train} \cup \widehat{Y}_{test} \end{aligned}$$

Dataset

Training

Testing

Разбиение на обучение и тест

Алгоритм построения и валидации модели

- 1. Разбиение датасета на X,Y
- 2. Разбиение множеств X,Y на обучающее и тестовое множества
- 3. Обучение модели f() на (X_{train}, Y_{train})
- 4. Получение предсказаний $\hat{Y}_{test} = f(X_{test})$ и $\hat{Y}_{train} = f(X_{train})$
- 5. Оцениваем близость \hat{Y}_{test} и Y_{test} , а также Y_{train} и \hat{Y}_{train}

Влизость множеств оцениваются при помощи **метрик**. Разбиение на тестовое и обучающее множество необходимо, чтобы избежать **переобучения**.

Переобучение и метрики

Переобучение (переподгонка, пере- в значении «слишком», overfitting) — явление, когда построенная модель хорошо объясняет примеры из обучающей выборки, но относительно плохо работает на примерах, не участвовавших в обучении (на примерах из тестовой выборки).

Метрика – критерий качества модели машинного обучения.

Переобучение графически

Переобучение на лоссах / метриках

Метрики. Классификация

1. Accuracy — доля правильно предсказанных классов

$$Accuracy = \frac{correct \ class}{total \ class} = \frac{1}{N} \sum_{i=1}^{N} [y_i = \hat{y}_i]$$

 $Accuracy \in [0, 1]$ $Accuracy \in [0\%, 100\%]$

	true	predict
0	0	0
1	0	1
2	0	0
3	0	0
4	0	0
5	0	0
6	1	1
7	1	1
8	0	0
9	0	0

Метрики. Классификация. Дисбаланс

Множество Y:

0 - 990 объектов

1 - 10 объектов

Предсказываем всегда самый популярный класс: f(X) = 0

В таком случае accuracy = 99%

Метрики. Матрица ошибок

Теперь есть целых 4 варианта, куда может попасть пара (y_i, \widehat{y}_i) :

TP, FP, FN, TN

Можно переписать формулу для accuracy:

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Метрики. Precision

Precision - точность

$$Precision = \frac{TP}{TP + FP}$$

По-человечески: доля истинно целевых событий среди всех событий, отмеченных моделью как целевое.

Примеры:

- 1. Детектирование редкого заболевания через тест-систему: положительный результат у 100 человек, из них действительно болеют 95. Тогда Precision = 95%.
- 2. Мошеннические операции: заблокировали 1000 транзакций, действительно мошеннических из них 200. Precision = 20%.

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Метрики. Recall

Recall - полнота

$$Recall = \frac{TP}{TP + FN}$$

По-человечески: доля целевых событий, отловленных моделью, относительно всех истинных целевых событий.

Примеры:

- 1. Детектирование редкого заболевания через тест-систему: положительный результат у 100 человек, из них действительно болеют 95. Всего болеющих 1000. Тогда Recall = 9.5%.
- 2. Мошеннические операции: заблокировали 1000 транзакций, действительно мошеннических из них 200. Всего было совершено 250 мошеннических транзакций. Recall = 80%.

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Метрики. Precision и Recall

Метрики. F-мера

Как-нибудь учитывать одновременно Recall и Precision

Например:

$$\frac{Recall + Precision}{2}$$

Метрики. F-мера

Лучше делать вот так:

$$F = 2 \frac{Precision \cdot Recall}{Precision + Recall}$$

Метрики. F-мера с

Можно учитывать разные цены ошибок с помощью параметра β :

$$F_{\beta}$$

$$= (1 + \beta^{2}) \frac{Precision \cdot Recall}{\beta^{2} \cdot Precision + Recall}$$

F-мера с $oldsymbol{eta}$

Метрики. ROC-AUC

Метрика, отражающая ранжирующую способность модели Метрика не зависит от порога Устойчива к дисбалансу

	true	predict
0	0	0.000012
1	0	0.000218
2	0	0.008439
3	0	0.002587
4	0	0.000249
•••	•••	•••
2995	0	0.011185
2996	0	0.206901
2997	0	0.105899
2998	0	0.000023
2999	0	0.000145

Метрики. ROC-AUC

Строится график в координатах FPR, TPR:

$$FPR = \frac{FP}{TN + FP}$$

$$TPR = \frac{TP}{TP + FN}$$

Считаются пары (FPR,TPR) на всех порогах и наносятся на график

	true	predict
0	0	0.000012
1	0	0.000218
2	0	0.008439
3	0	0.002587
4	0	0.000249
•••	•••	•••
2995	0	0.011185
2996	0	0.206901
2997	0	0.105899
2998	0	0.000023
2999	0	0.000145

Метрики. ROC-AUC. Пример

id	оценка	класс
1	0.5	0
2	0.1	0
3	0.2	0
4	0.6	1
5	0.2	1
6	0.3	1
7	0.0	0

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

id	> 0.25	класс
4	1	1
1	1	0
6	1	1
3	0	0
5	0	1
2	0	0
7	0	0

Табл. 1 Табл. 2 Табл. 3

Метрики. ROC-AUC. Пример

Количество уникальных TPR - количество «1».

Количество уникальных FPR - количество «0».

Идем сверху вниз. Если видим 1, то «вверх», если 0, то «вправо». Если и 1, и 0, то идем по диагонали.

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

ссылка

Метрики. ROC-AUC

Значение ROC-AUC = 1 лучшая модель

ROC-AUC = 0.5 - случайная модель

Чем выше значение, тем выше ранжирующая способность модели.

Интерпретация:

ROC-AUC показывает долю пар (1, 0), которые упорядочены корректно.

Meтрики. Вновь Precision и Recall

Изменяя порог — меняем показатели Precision и Recall.

Чем выше порог, тем выше Precision и ниже Recall

Чем ниже порог, тем ниже Precision и выше Recall

Метрики. Регрессия

Методы валидации модели

Обучение на train части

Тестирование на test части

Подбор гиперпараметров на validation части

Кросс-валидация

Обучение на train части

Тестирование на test части

Подбор гиперпараметров на validation части \mathbf{N} раз (например 5)

Time Series Cross Validation

