DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID

Cálculo Diferencial (M3 y M4). Curso 2021–2022.

Espacios métricos. Hoja 1

1. Estudia si la aplicación $d: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ definida por

$$d(x,y) = \left| \log \left(\frac{y}{x} \right) \right|$$

es una métrica en \mathbb{R}^+ .

2. Demuestra que si d(x,y) es una métrica en un conjunto X, entonces para todo $x,y,z\in X$,

$$|d(x,y) - d(y,z)| \le d(x,z).$$

3. Demuestra que si d(x,y) es una métrica en un conjunto X, entonces

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

es también una métrica en X.

4. Demuestra que si X = C([0,1]), entonces

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)| \quad \text{y} \quad d_1(f,g) = \int_0^1 |f(x) - g(x)| \, dx$$

son dos métricas en X.

5. Se define la distancia entre dos subconjuntos A y B de un espacio métrico (X,d) mediante

$$d(A,B) = \inf_{a \in A, b \in B} d(a,b).$$

¿Es cierto que

$$d(A, B) < d(A, C) + d(C, B),$$

para todos los subconjuntos A, B y C de X?

6. Sea $\|\cdot\|$ una norma en un espacio vectorial E. Demuestra que para todo $x, y \in E$ se verifica que:

$$| \|x\| - \|y\| | \le \|x - y\| \le \|x\| + \|y\|.$$

7. Utilizando la desigualdad de Cauchy-Schwarz: $|u \cdot v| \leq ||u|| ||v||$, prueba que si $x_1, \dots, x_n \in \mathbb{R}$, se cumple que

$$-\sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} \le \frac{x_1 + \dots + x_n}{n} \le \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}.$$

¿Para qué vectores $w = (x_1, \dots, x_n)$ la primera desigualdad es una igualdad?

8. Comprueba que la expresión

$$||(x,y)|| := (x^2 + y^2 + xy)^{1/2}$$

define una norma en \mathbb{R}^2 . (Indicación: $\|\cdot\|$ está inducida por un producto escalar en \mathbb{R}^2).

- 9. Demuestra que las normas $||\cdot||_1$, $||\cdot||_2$, y $||\cdot||_\infty$ en \mathbb{R}^n son equivalentes.
- 10. Estudiar cuál de las siguientes expresiones define una métrica en X:
 - (a) $d(x,y) = |x^2 y^2|, X = \mathbb{R}.$
 - (b) $d(n,m) = \frac{1}{n} + \frac{1}{m}$, si $n \neq m$ y d(n,m) = 0, si n = m, $X = \mathbb{N}$.
- 11. Demuestra que si d es una métrica en X y $A \subset X$, entonces

$$\left| d(x,A) - d(y,A) \right| \le d(x,y), \quad \forall x,y \in X.$$

12. Sea X el espacio vectorial de las funciones continuas en \mathbb{R} , $C(\mathbb{R})$. Consideremos

$$d_n(f,g) = \sup_{x \in [-n,n]} |f(x) - g(x)|$$

y sea

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(f,g)}{1 + d_n(f,g)}.$$

¿Son d_n y d métricas en X?

- 13. a) Demuestra que $(1+t)^p \le 1+t^p$, para $t \ge 0$ y $p \in (0,1]$.
 - b) Sea $X = \mathcal{C}([0,1])$ y fijemos un número p > 0. Para $f, g \in X$ pongamos

$$d_p(f,g) = \int_0^1 |f(t) - g(t)|^p dt.$$

Demuestra que para todo $p \in (0,1]$, d_p es una distancia en X.

c) Para $f, g \in X$ definimos

$$\delta_p(f,g) = \left(\int_0^1 |f(t) - g(t)|^p dt \right)^{1/p}.$$

Demuestra que existe un $p \in (0,1)$ tal que δ_p no define una distancia en X.

Indicación. Considera las cantidades $\delta_p(f,g)$ y $\delta_p(f,0) + \delta_p(0,g)$, donde f(t) = t y g(t) = t - 1, y calcula el límite cuando $p \to 0^+$.