CET 141: Day 2

Dr. Noori KIM

Warm up ourselves

Find the value of v_o

$$v_o = 100V \frac{100k}{100k + 25k} = 80V$$

• The resistors used in the voltage-divider circuits have a tolerance of $\pm 10\%$. Find the maximum and minimum value of v_0

- The maximum value of v_0 occurs when R2 is 10% high and R1 is 10% low
- The minimum value of v_0 occurs when R2 is 10% low and R1 is 10% high

$$v_o(\text{max}) = \frac{(100)(110)}{110 + 22.5} = 83.02 \text{ V}.$$
 $v_o(\text{min}) = \frac{(100)(90)}{90 + 27.5} = 76.60 \text{ V}$

Thus, in making the decision to use 10% resistors in this voltage divider, we recognize that the no-load output voltage will lie between 76.60 and 83.02 V.

Electrical Sources

	Independent (Circle)	Dependent (Diamond)
Current (Arrow)	$\frac{11A}{\bullet}$	$2I_y$
Voltage (Polarity)	-(+)- -2V	$6I_x$

Dependent sources

A dependent source

- a voltage source or a current source
- whose value depends on a voltage or current
 somewhere else in the network.

Wheatstone bridge

- A device which is used to measure the electrical resistance by comparison method
- To measure an unknown resistance by passing current through the unknown resistor
- Brief History:
 - First founded by Samuel Hunter Christie in 1833
 - Sir Charles Wheatstone claimed the various applications of the device and showed its importance to the people (the device name after him)

- R1, R2, R3 and Ru
- Ru is the resistor whose resistance is to be found and R1 is the only adjustable resistor (in this setting)

- Known path: R2, R3 = Unknown path: Ru, R1
 - The reading current at the galvanometer=0
 - Varying R1 to find Ru: Ru = (R3*R2)/R1
 - Or varying one of variable resistors among R1, R2, or R3

• The bridge circuit shown is balanced when R1= 100Ω , R2 = $1000~\Omega$, and R3 = $150~\Omega$. The bridge is energized from a 5 V dc source. What is the value of Rx?

$$100R_x = (1000)(150)$$
 so $R_x = \frac{(1000)(150)}{100} = 1500 \Omega = 1.5 \text{ k}\Omega$

 Suppose each bridge resistor is capable of dissipating 250 mW. Can the bridge be left in the balanced state without exceeding the power-dissipating capacity of the resistors (without damaging the bridge)?

Hint>>

- Calculate dissipating power for each resistor and compare it to 250mW
- When the bridge is balanced, there is no current flowing through the meter, so the meter acts like an open circuit.

$$i_{R_1,R_3} = \frac{5 \text{ V}}{100 \Omega + 150 \Omega} = 20 \text{ mA} \quad i_{R_2,R_x} = \frac{5 \text{ V}}{1000 + 1500} = 2 \text{ mA}$$

$$p = Ri^{2}$$
:
 $p_{100\Omega} = p_{150 \Omega} = p_{1000\Omega} = p_{1500 \Omega} = p_{1500 \Omega} = p_{1000\Omega} = p_{100\Omega} = p_{10\Omega} =$

The bridge can be left in the balanced state without exceeding the power-dissipating capacity of the resistors

Delta-to-Wye Equivalent Circuits

 From the Wheatstone bridge, we replace the galvanometer with its equivalent resistance Rm,

as the Δ can be shaped into a π without disturbing the electrical equivalence of each node

Figure 3.29 \triangle A \triangle configuration viewed as a π configuration.

Figure 3.30 ▲ A Y structure viewed as a T structure.

Transformations without disturbing the electrical equivalence

Then, how about this?

Figure 3.31 \triangle The Δ -to-Y transformation.

Basic idea of the transformation

$$R_{ab} = \frac{R_c(R_a + R_b)}{R_a + R_b + R_c} = R_1 + R_2$$

$$R_{bc} = \frac{R_a(R_b + R_c)}{R_a + R_b + R_c} = R_2 + R_3$$

$$R_{ca} = \frac{R_b(R_c + R_a)}{R_a + R_b + R_c} = R_1 + R_3$$

Solve for R1, R2, and R3 in terms of Ra, Rb, and Rc

Preserve node a, b, c voltages

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}, \qquad R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}},$$

$$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}, \qquad R_{2} = \frac{R_{c}R_{a}}{R_{a} + R_{b} + R_{c}},$$

$$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}, \qquad R_{b} = \frac{R_{a}R_{b}}{R_{a}R_{b}}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}. \qquad R_3 = \frac{R_a R_b}{R_a + R_b + R_c}.$$

Find the current and power supplied by the 40V source

$$R_1 = \frac{100 \times 125}{250} = 50 \Omega,$$

 $R_2 = \frac{125 \times 25}{250} = 12.5 \Omega,$
 $R_3 = \frac{100 \times 25}{250} = 10 \Omega.$

$$\begin{cases} 80 \,\Omega \ R_{\rm eq} = 55 + \frac{(50)(50)}{100} = 80 \,\Omega. \end{cases}$$

The 40 V source delivers 0.5 A and 20 W to the circuit.

Source transformation

Figure 4.36 ▲ Source transformations.

Find the power associated with the 6 V source.

The current in the direction of the voltage drop across the 6 V source is (19.2 - 6)/16, or 0.825 A

$$p_{6V} = (0.825)(6) = 4.95 W.$$

(d) Fourth step

$$Vab = \frac{1632}{50} - \frac{903}{50} \cdot \frac{944}{50}$$

$$= \frac{116}{50} \cdot \frac{3}{50}$$

$$= \frac{116}{50} \cdot \frac{3}{50} \cdot \frac{3}{50} \cdot \frac{3}{50}$$

$$= \frac{30(6-0)}{40} + 192 - \frac{1}{40} = \frac{40}{10}$$

$$= \frac{312}{40} = \frac{93}{10}$$

$$= \frac{312}{40} = \frac{93}{10}$$

$$= \frac{312}{10} \cdot \frac{93}{10}$$