Problem2

Pej

November 29, 2018

1 Introduction and Outlines

Implement one Smart Beta strategy and discuss pros and cons compared to a chosen benchmark.

Disclaimer: I do not have background in portfolio management/construction. The following is the result of reading the Wiki pages on CAPM and Markowitz's Modern Portfolio Theory.

So with this being said, the following is an attempt to construct a dynamic portfolio from some random holdings of SPY. Dynamics means the diversification is change at some fixed periods. For example, every month ('M') a certain calculation is done and based on those the diversification (how the capital is distributed on the assets) is modified.

Main Assumption: In the diversification it is assumed that there is no cap on the capitals. That is any amount of shares/stocks can be bought and also liquidity is possible at the observation times (Monthly for example).

Strategy Outline:

- calculate a β_i associate to the *i*-th asset rate r_i , using a market index. In our case we used SPY as the benchmark. β 's are calculated at the end of an observation period ($alloc_period$). The calculation is based on the covariances and the volatility of SPY over a predetermined period (lookBackDays).
- based on the $\{\beta_i\}$ decide to sell and/or buy new stocks (from the pre-considered set of tickers). In this step the position (weight) w_i is digital, that is you either buy the i-th asset or sell completely.

$$\beta_i = \frac{cov(r_i, r_{SPY})}{vol(SPY)} \tag{1}$$

• apply the weights to the portfolio for the next period.

In the above the decision of the portfolio manager on how to define the $w_i = W_i(\{\beta_j\})$ is left as a quantile parameter that defines a cuttoff on what *beta* is accepted and what is not.

2 Packages

3 Data and Source

The data are gathered from yahoo finance using their API tools to fetch the database through python.

4 Parameters

```
In [111]: ##### the strategy:
          ##### is based on reallocating capital over a range of
          ##### assets on 'alloc_period' based.
          ##### the period 'alloc_period' can be modified bellow.
          alloc_period='M'
          ##### the vol and covariance of the assets are obtain
          ##### from historical data by looking back from the
          ##### day of allocation back till 'lookBackDays' number of days
          ##### 'lookBackDays' is defined and can be modified
          lookBackDays=70
          ##### the allocation is based on comparing the beta of each asset
          ##### in the basket and comparing it to
          ##### the a cutoff set at the beginning.
          ##### The cutoff is defined by a 'quantile_'.
          quantile_ =0.5 # != 1.0 or there is no allocation
          ##### number of asset in the basket = number of columns in the
          ##### data - 1, since one column is the index itself
          num_assets = closes.shape[1]-1 ## -1 because one col is the spy (index)
```

5 Illustration

6 The market index is SPY

In [113]: ########## variance of of spy (the index) this will be used as the numeraire to obto
spy_vol_3M1M = closes_return['SPY'].rolling(lookBackDays).std().resample(alloc_period)

7 Covariances

```
8 \{\beta_i\}
```

9 Weights and Reallocation of Caps Based on β 's

```
In [116]: ### Digital Strategy
    ### we assign the weghts in the following way (a bit silly though !)
    ### in each allocation period the assets with a beta higher than cutoff
    ### of that period receives a w=1 and otherwise w=0
    ### (notice this in practice means you need to sell all the position on one asset==> h
    ### ==> liquidity issue
weights = np.zeros(betas.shape, dtype=int)
for r in range(betas.shape[0]):
    cutoff = betas.iloc[r].quantile(quantile_)
```

weights_df = pd.DataFrame(weights, index= betas.index, columns=cols)

weights[r, :] = betas.iloc[r].apply(lambda x: (0,1)[x>cutoff])

10 Returns

```
In [117]: ######### application to the returns
    ### lets exclude the SPY from returns
    portfolio_return = np.zeros([betas.shape[0]-1, 1])
    closes_return_assets = closes_return.drop(['SPY'], axis=1)
    for alloc_idx in range(len(betas.index)-1):
        start_date = betas.index[alloc_idx]
        end_date = betas.index[alloc_idx+1]
        period_returns = closes_return_assets.loc[start_date:end_date]
```

```
### This is the aggregate return daily
total_per_date_in_period_return = period_returns.mul(weights[alloc_idx, :], ).sum(
# full return in alloc_period - aggregate return Monthly
portfolio_return[alloc_idx,0]=(total_per_date_in_period_return + 1.0).prod() - 1

col_name = 'portfolio %s '%(alloc_period) + 'Return'
portfolio_return=pd.DataFrame(portfolio_return, index=betas.index[1:], columns=[col_name]
```

11 Illustration of returns

```
In [118]: ##### The index return over same period:

market_index = closes_return['SPY']
    return_per_period_idx=np.zeros([betas.shape[0]-1, 1])
    for alloc_idx in range(len(betas.index)-1):
        start_date = betas.index[alloc_idx]
        end_date = betas.index[alloc_idx+1]
        period_returns_idx = market_index.loc[start_date:end_date]
        return_per_period_idx[alloc_idx, 0] = (period_returns_idx+1).prod()-1

col_name = 'SPY %s '%(alloc_period) + 'Return'
    return_per_period_idx= pd.DataFrame(return_per_period_idx, index=betas.index[1:], col
```

12 Overview and Final Results

print 'Annual mean return over the horizon of the Index %:', return_per_period_idx

alloc_period : M

hist data used from 70 days prior : allocation to quantiles > 0.500000 :

In [181]: portfolio_return *100

Out[181]:		portfolio M Return
	Date	
	2013-12-31	30.850111
	2014-01-31	10.407848
	2014-02-28	29.051271
	2014-03-31	-35.761914
	2014-04-30	-28.586576
	2014-05-31	53.548087
	2014-06-30	91.111906
	2014-07-31	-36.694971
	2014-08-31	-7.686768
	2014-09-30	-1.340038
	2014-10-31	14.610343
	2014-11-30	69.339104
	2014-12-31	-12.881044
	2015-01-31	-46.641394
	2015-02-28	98.763274
	2015-03-31	-9.712619
	2015-04-30	-27.257293
	2015-05-31	6.203842
	2015-06-30	-28.002931
	2015-07-31	10.540944
	2015-08-31	-64.762432
	2015-09-30	-54.477730
	2015-10-31	86.692670
	2015-11-30	-1.786692
	2015-12-31	-42.552455
	2016-01-31	-65.365010
	2016-02-29	-16.820930
	2016-03-31	10.975783
	2016-04-30	50.546005 -17.291260
	2016-05-31 2016-06-30	-32.369408
	2016-00-30	80.944140
	2016-07-31	15.752938
	2016-09-30	-20.652282
	2016-10-31	-38.888551
	2016-11-30	79.972333
	2016-11-30	-25.665009
	2017-01-31	17.197721
	2017-02-28	9.452241
	2017-02-20	8.440916
	2017-03-31	-4.622728
	2017-05-31	11.889035
	2017-06-30	11.786402
	2017-07-31	22.401877
	2017-08-31	-6.678591
	2017-09-30	1.223639

2017-10-31	0.013816
2017-11-30	-14.582586
2017-12-31	11.222381

In [177]: return_per_period_idx *100

Out[177]:		SPY M Return
	Date	
	2013-12-31	2.038675
	2014-01-31	-3.068226
	2014-02-28	3.939071
	2014-03-31	0.640398
	2014-04-30	1.520294
	2014-05-31	2.625828
	2014-06-30	1.577750
	2014-07-31	-1.394143
	2014-08-31	1.893599
	2014-09-30	-1.838475
	2014-10-31	2.085659
	2014-11-30	3.922155
	2014-12-31	-0.801160
	2015-01-31	-3.925823

2015 22 22	F 000400
2015-02-28	5.620460
2015-03-31	-2.007980
2015-04-30	0.100844
2015-05-31	0.270690
2015-06-30	-2.486502
2015-07-31	2.423710
2015-08-31	-6.299219
2015-09-30	-3.839595
2015-10-31	10.554015
2015-11-30	0.365512
2015-12-31	-2.715214
2016-01-31	-5.929196
2016-02-29	-0.082595
2016-03-31	5.346255
2016-04-30	0.150470
2016-05-31	1.701155
2016-06-30	-0.361496
2016-07-31	5.061449
2016-08-31	0.119754
2016-09-30	-0.779815
2016-10-31	-0.992170
2016-11-30	3.688723
2016-12-31	1.186001
2017-01-31	1.789469
2017-02-28	3.920017
2017-03-31	-0.577789
2017-04-30	0.757548
2017-05-31	1.411290
2017-06-30	0.124225
2017-07-31	2.245700
2017-08-31	0.234904
2017-09-30	2.121865
2017-10-31	2.356406
2017-11-30	3.217141
2017-12-31	1.579686