Cayley Graphs

Christo Keller, Omer Sade, Nathan Sherman, Alexis Thompson, Matt Trainor

Motivation

CAMPANALOGIA Improved:
OR, THE
ART OF RINGING
MADE EASY,
вч
PLAIN and METHODICAL RULES
. AND
DIRECTIONS,
The INGENIOUS PRACTITIONER
MAY,
With a fittle PRACTICE and CARE,
, ATTAIN TO THE
KNOWLEDGE of RINGING
ALL MANNER OF
DOUBLE, TRIPPLE,
QUADRUPLE CHANGES,

The ART of RINGING. On three Bells there are twice as many more; for by multiplying two by three, the additional Fi-2 3 I gure the Product is fix, in Ringing whereof no Bell is peculiarly affigned as an Hunt, because every 1 3 2 Bell has one and the fame Course, 2 3 as may be here feen: These six Changes may be likewife rung another Way, that is, by hunting the Bell which lies behind, being third, first down; or, as it appears, by ringing the faid Changes backwards, thus: On four Bells there are three Times as many more Changes as there are on three, as appears by

Group theory

- A group is a set of objects together with an associative and invertible closed binary operation sending any two of its elements to a third.
- We will discuss the following famous groups, among others:
 - \circ $Z_5 = \{0, 1, 2, 3, 4\}$
 - \circ D₄ = { e, a, b, ab, a², a²b, a³b, a³b }
- A subset *S* of group *G* elements is called a *generating set* for *G* provided each element *q* of *G* can be written as a linear combination of *S*.
- A group G is called cyclic if there exists a singleton set generating it.

Cayley graphs

- A Cayley graph G is a directed graph formed from a group H and a generating set S. Each element $h \in H$ is assigned some vertex $g \in V(G)$ and the directed edges are defined by $(h, hs) \in E(G)$.
- Changing the generating set S can significantly change the Cayley graph, even though the underlying group remains the same.
- A Cayley graph is undirected if and only if its generating set is closed under inverses, i.e., $S = S^{-1}$.

Examples

Cayley graph of \mathbf{Z}_5 generated by $\{1\}$: Cayley graph of \mathbf{D}_4 generated by $\{a,b\}$:

Graph theory

- A walk in a Cayley graph represents how many times one must perform the binary operations and with which generators to get from one element to another.
- A *path* in a Cayley graph represents a series of elements obtained by performing the binary operation a certain number of times with certain generators such that no two elements in the series are the same.
- A cycle in a Cayley graph represents how many times one must perform the binary operations and with which generators to get from one element to itself, without repeating elements along the way.
- The *diameter* of a Cayley graph represents the two elements that require the most iterations of the binary operation to get from one element to the other.

Vertex-transitivity

- A graph is vertex-transitive provided there exists a graph automorphism taking any point to any other point.
- Every Cayley graph is vertex-transitive, but not every vertex-transitive graph is Cayley.
- The Petersen graph is the smallest such graph.

Vertex-transitivity (McKay & Prager 1996)

Theorem 1. Let p and q be primes with q < p. Then $pq \in NC$ if and only if one of the following holds.

- (a) q^2 divides p-1,
- (b) p = 2q 1 > 3 or $p = (q^2 + 1)/2$,
- (c) $p = 2^t + 1$ and either q divides $2^t 1$ or $q = 2^{t-1} 1$,
- (d) $p = 2^t 1$ and $q = 2^{t-1} + 1$,
- (e) p = 11 and q = 7.

Theorem 2. Let p and q be distinct primes. Then $p^2q \in NC$ unless $p^2q = 12$.

One consequence of this theorem is a complete determination of membership of NC for non-square-free integers n.

Theorem 3. Let n be a positive integer which is divisible by the square of some prime p. Then $n \in NC$ unless $n = p^2$ or $n = p^3$ or n = 12.

Applications

- By far the most important usage of a Cayley graph is an intuitive visual on a group's structure.
 - More specifically, how the given generating set interacts with the group.
- An easy example is the number of perfect bridge shuffles to get back to the ordered state is 8.

Applications (cont.)

- The Cayley Graph of a 3x3x3 Rubik's cube has a diameter of 20. This
 means that when scrambled it takes 20 or less moves to solve a Rubik's
 cube no matter the state it starts.
 - This number is known as God's Number. This is powerful when knowing that there would be about 4.3*10¹⁹ different vertices on that Cayley Graph.
- The diameter of the Cayley Graph of a 2x2x2 Rubik's Cube when using only 90° rotations of the front, upper, and left faces was found to be 14 by a team at Northeastern.

Open problems

- A variant of the Lovász conjecture states that:
 Every finite undirected Cayley graph contains a Hamiltonian cycle.
 - For directed Cayley graphs, the Lovász conjecture is false.
- It has been shown that for finite groups the only groups that generate a planar Cayley Graph are \mathbf{Z}_{n} , \mathbf{Z}_{n} x \mathbf{Z}_{2} , \mathbf{D}_{n} , \mathbf{S}_{4} , \mathbf{A}_{4} , and \mathbf{A}_{5} (Maschke 1896).
 - There is ongoing research regarding which infinite groups generate planar Cayley Graphs.

References

- B. D. McKay and C. E. Praeger, Vertex-transitive graphs which are not Cayley graphs, II., J. Graph Theory, 22 (1996) 321-334
- "Cayley Graph." Wikipedia, Wikimedia Foundation, 10 Nov. 2019, en.wikipedia.org/wiki/Cayley graph.
- "Coarse Structure." Wikipedia, Wikimedia Foundation, 4 June 2019, en.wikipedia.org/wiki/Coarse_structure. Cooperman, G., et al. "Applications of Cayley Graphs." Northeastern University. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.1321&rep=rep1&type=pdf "CS E6204 Lecture 6 Cayley Graphs." Columbia University.
- 5. http://www.cs.columbia.edu/~cs6204/files/Lec6-CayleyGraphs.pdf
- 6.
- "Eight Perfect Shuffles." Eight Perfect Shuffles, jdgmiles.github.io/Riffle-Shuffles "File:Dih 4 Cayley Graph; Generators b, C.svg." File:Dih 4 Cayley Graph; Generators b, C.svg Wikimedia Commons, 10 Nov. 2019, commons.wikimedia.org/wiki/File:Dih 4 Cayley Graph; generators b, c.svg.
- "Geometric Group Theory." Wikipedia, Wikimedia Foundation, 29 Sept. 2019, 8. en.wikipedia.org/wiki/Geometric group theory.
- "How to Build Groups: Semidirect Products." Building Groups: Semidirect Products, 9. www.weddslist.com/groups/building/sdp.html.
- Pegg, Ed Jr.; Rowland, Todd; and Weisstein, Eric W. "Cayley Graph." From MathWorld--A Wolfram Web Resource. 10. http://mathworld.wolfram.com/CayleyGraph.html
- "Rubik's Cube Group." Wikipedia, Wikimedia Foundation, 27 Apr. 2019, 11. en.wikipedia.org/wiki/Rubik%27s Cube group.