

AD-A046 671

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO
CERTAIN FINITE-DIFFERENCE SCHEMES FOR EQUATIONS OF THE NONSTATI--ETC(U)
JUN 77 A P OSKOLKOV

F/G 20/4

UNCLASSIFIED

FTD-ID(RS)T-0880-77

NL

DF
AD
AO46671

END
DATE
FILED
12-77
DDC

FTD-ID(RS)T-0880-77

FOREIGN TECHNOLOGY DIVISION

CERTAIN FINITE-DIFFERENCE SCHEMES FOR EQUATIONS OF THE NONSTATIONARY LAMINAR BOUNDARY LAYER

by

A. P. Oskolkov

Approved for public release;
distribution unlimited.

ACCESSION NO.	
FTD	White Section <input checked="" type="checkbox"/>
DSO	Buff Section <input type="checkbox"/>
DECODED	
JOURNAL	
BY	
DISTRIBUTION/AVAILABILITY CODES	
001	AVAIL. AND/OR SPECIAL
A	

FTD - ID (RS)T-0880-77

EDITED TRANSLATION

FTD-ID(RS)T-0880-77 6 June 1977

MICROFICHE NR: FTD-77-C-000676

CERTAIN FINITE-DIFFERENCE SCHEMES FOR
EQUATIONS OF THE NONSTATIONARY LAMINAR BOUNDARY
LAYER

By: A. P. Oskolkov

English pages: 10

Source: Leningradskogo Korablenstroitel'nogo
Instituta Trudy, Leningrad, Number 80,
1972, pp. 55-61.

Country of origin: USSR
Translated by: Robert D. Hill
Requester: FTD/PDRS
Approved for public release;
distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-AFB, OHIO.

FTD - ID (RS)T-0880-77

Date 6 June 1977

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
А а	А а	A, a	Р р	Р р	R, r
Б б	Б б	B, b	С с	С с	S, s
В в	В в	V, v	Т т	Т т	T, t
Г г	Г г	G, g	Ү ү	Ү ү	U, u
Д д	Д д	D, d	Ф ф	Ф ф	F, f
Е е	Е е	Ye, ye; E, e*	Х х	Х х	Kh, kh
Ж ж	Ж ж	Zh, zh	Ц ц	Ц ц	Ts, ts
З з	З з	Z, z	Ч ч	Ч ч	Ch, ch
И и	И и	I, i	Ш ш	Ш ш	Sh, sh
Й й	Й й	Y, y	Щ щ	Щ щ	Shch, shch
К к	К к	K, k	Ь ъ	Ь ъ	"
Л л	Л л	L, l	Ы ы	Ы ы	Y, y
М м	М м	M, m	Ь ь	Ь ь	'
Н н	Н н	N, n	Э э	Э э	E, e
О о	О о	O, o	Ю ю	Ю ю	Yu, yu
П п	П п	P, p	Я я	Я я	Ya, ya

*ye initially, after vowels, and after ъ, ь; e elsewhere.
 When written as ё in Russian, transliterate as yё or ё.
 The use of diacritical marks is preferred, but such marks
 may be omitted when expediency dictates.

GREEK ALPHABET

Alpha	A	α	•	Nu	N	ν
Beta	B	β		Xi	Ξ	ξ
Gamma	Г	γ		Omicron	Ο	ο
Delta	Δ	δ		Pi	Π	π
Epsilon	E	ε	•	Rho	Ρ	ρ
Zeta	Z	ζ		Sigma	Σ	σ
Eta	H	η		Tau	Τ	τ
Theta	Θ	θ	•	Upsilon	Τ	υ
Iota	I	ι		Phi	Φ	φ
Kappa	K	κ	•	Chi	Χ	χ
Lambda	Λ	λ		Psi	Ψ	ψ
Mu	M	μ		Omega	Ω	ω

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English
---------	---------

sin	sin
cos	cos
tg	tan
ctg	cot
sec	sec
cosec	csc
sh	sinh
ch	cosh
th	tanh
cth	coth
sch	sech
csch	csch
arc sin	\sin^{-1}
arc cos	\cos^{-1}
arc tg	\tan^{-1}
arc ctg	\cot^{-1}
arc sec	\sec^{-1}
arc cosec	\csc^{-1}
arc sh	\sinh^{-1}
arc ch	\cosh^{-1}
arc th	\tanh^{-1}
arc cth	\coth^{-1}
arc sch	\sech^{-1}
arc csch	\csch^{-1}

rot	curl
lg	log

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc.
merged into this translation were extracted
from the best quality copy available.

CERTAIN FINITE-DIFFERENCE SCHEMES FOR
EQUATIONS OF THE NONSTATIONARY LAMINAR
BOUNDARY LAYER

A.P. Oskolkov

Department of Applied and Computational
Mathematics

A number of stable implicit finite-difference schemes for the solution of the nonstationary Navier-Stokes \mathbf{v} equations is proposed in works [1] and [2]. In this article analogies of these schemes for equations of the nonstationary laminar boundary layer are given; it is shown that these schemes in the two-dimensional and three-dimensional case are decomposed into uniform finite-difference schemes; the unique solvability of the appearing linear algebraic systems of equations is proven, and it is shown that these systems can be solved by means of a uniform trial run.

The two-dimensional nonstationary flow in the laminar boundary layer is described by the following set of equations and initial and boundary conditions [3], [4]:

$$\left. \begin{aligned} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - \nu \frac{\partial^2 u}{\partial y^2} &= - \frac{\partial p}{\partial x}, \quad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \\ 0 \leq x \leq X < \infty, \quad 0 \leq y < \infty, \quad 0 \leq t \leq T, \end{aligned} \right\} \quad (1)$$

$$u \Big|_{t=0} = \varphi(x, y), \quad (2)$$

$$u \Big|_{y=0} = 0, \quad v \Big|_{y=0} = V(x, t), \quad u \Big|_{x=0} = \Psi(y, t), \quad (3)$$

$$u(x, y, t) \rightarrow U(x, t), \quad y \rightarrow \infty, \quad (4)$$

where in conformity with the Bernoulli equation

$$-\frac{\partial p}{\partial x} = U_t + UU_x \equiv F(x, t). \quad (5)$$

Furthermore, from the continuity equation, the initial condition for u and the boundary condition for v when $y = 0$, determined is the initial condition for v

$$v|_{t=0} = v(x, 0) - \int_0^x \frac{\partial \varphi}{\partial x} (x, \xi) d\xi \equiv \Phi(x, y). \quad (6)$$

The solution by the method of finite differences to the problem formulated by dependences (1)-(6) is virtually impossible due to the fact that the variable y is changed on the semi-infinite interval $[0, \infty]$. In work [5] the author goes around this difficulty in that by means of the Krokko [Trans. note: spelling not verified] transform $\xi = x \cdot \eta = \frac{u}{U} \cdot t$, $W = \frac{u_y}{U}$ transforms (1)-(6) into the initial-boundary value problem for function W , in which the variables $\xi \cdot \eta$ are changed in the finite limits: $0 \leq \xi \leq x$. $0 \leq \eta \leq 1$.

On the other hand, from the theory of the boundary layer it is known [3] that $u(x, y, t)$ tends to $U(x, t)$ when $y \rightarrow \infty$ exponentially, and therefore the boundary condition (4) can be considered as being fulfilled when $y = Y$, where Y is a sufficiently large finite number, whereupon the admissible quantity Y can be defined according to the assigned accuracy with which the solution is sought by iterations. Therefore, subsequently with the writing out of the finite-difference scheme for the problem (1)-(6) we will assume that its solution is sought in the domain $0 \leq x \leq X$, $0 \leq y \leq Y$ and $u(x, y, t) \rightarrow U(x, t)$, $y \rightarrow Y$.

Let us divide the parallelepiped $Q_T = [0, X] \times [0, Y] \times [0, T]$ into elementary cells by planes $x_i = i \Delta x$, $y_j = j \Delta y$, $t_\ell = \ell \Delta t$ where $i = 0, 1, \dots, L$, $\Delta x = \frac{X}{L}$, $j = 0, 1, \dots, M$, $\Delta y = \frac{Y}{M}$, $\ell = 0, 1, \dots, N$, $\Delta t = \frac{T}{N}$, and we assume

$$u_i^{\ell} = u(i\Delta x, j\Delta y, \ell\Delta t), v_{ij}^{\ell} = v(i\Delta x, j\Delta y, \ell\Delta t).$$

Then by analogy with the Navier-Stokes equations [1], [2], the system of equations (1) can be approximated by the following implicit finite-difference scheme:

$$\frac{u_{ij}^{\ell+1} - u_{ij}^{\ell}}{\Delta t} + u_{ij}^{\ell} \frac{u_{ij}^{\ell+1} - u_{i-1,j}^{\ell+1}}{\Delta x} + v_{ij}^{\ell} \frac{u_{ij}^{\ell+1} - u_{i,j-1}^{\ell+1}}{\Delta y} - \nu \frac{u_{i+1,j}^{\ell+1} - 2u_{ij}^{\ell+1} + u_{i-1,j}^{\ell+1}}{(\Delta y)^2} = F_{ij}^{\ell+1} \quad (7)$$

$$\frac{u_{ij}^{\ell+1} - u_{i-1,j}^{\ell+1}}{\Delta x} + \frac{v_{ij}^{\ell+1} - v_{i,j-1}^{\ell+1}}{\Delta y} = 0, \quad (8)$$

where

$$i=1,2,\dots,L, j=1,2,\dots,M, \ell=0,1,2,\dots,N-1.$$

Added to equations (7) and (8) are the following initial and boundary conditions:

$$u_{ij}^0 = \varphi_{ij}, v_{ij}^0 = \Phi_{ij}, i=0,1,\dots,L, j=0,1,\dots,M. \quad (9)$$

$$\left. \begin{array}{l} u_{i0}^{\ell+1} = 0, v_{i0}^{\ell+1} = V_i^{\ell+1}, u_{0j}^{\ell+1} = \Psi_j^{\ell+1}, \\ i=0,1,\dots,L, j=0,1,\dots,M, \ell=0,1,\dots,N-1. \end{array} \right\} \quad (10)$$

$$u_{iM}^{\ell+1} = U_i^{\ell+1} \equiv U(i\Delta x, (l+1)\Delta t), i=0,1,\dots,L, \ell=0,1,\dots,N-1. \quad (II)$$

From equations (7) and (8) it is clear that introduced into them are values of function U on two adjacent verticals x_{i-1} and x_i , and values of function v - only on one vertical x_i , $i=1,2,\dots,L$. By using three of the boundary conditions (10), we obtain the cyclic process for the finding of the unknowns $u_{ij}^{\ell+1}, v_{ij}^{\ell+1}$, on

each i th step of which we have on the i th vertical at any $\ell=1,2,\dots,N-1$ a system of $2(M-1)$ linear algebraic equations with $2(M-1)$ unknowns, and these equations should be solved by taking into account the initial and boundary conditions (9)-(11). Thereby the problem is reduced to the subsequent solution of the uniform finite-difference problems (7)-(11). Let us show that theorem 1 is correct.

The system of equations (7)-(11) is uniquely solvable at each $i=1,2,\dots,L$ and each $\ell=0,1,\dots,N-1$.

Since the equations (7)-(11) are the system of linear algebraic equations in which the number of equations is equal to the number of unknowns, then for proof \mathbf{x} of the theorem it is enough to show ~~and~~ that the corresponding uniform systems have only a trivial solution. Further, starting from the uniform initial condition (9), we find that on the i th vertical when

$\forall \ell=0,1,\dots,N-1$ the corresponding (7), (8) uniform system has the form

$$\frac{1}{\Delta t} u_{ij}^{\ell+1} - v \frac{u_{i,j+1}^{\ell+1} - 2u_{ij}^{\ell+1} + u_{i,j-1}^{\ell+1}}{(\Delta y)^2} = 0, \quad (7a)$$

$$\frac{1}{\Delta x} u_{ij}^{\ell+1} + \frac{v_{i+1,j}^{\ell+1} - v_{i,j}^{\ell+1}}{\Delta y} = 0, \quad (8a)$$

where $i=1,2,\dots,L$, $j=1,2,\dots,M$, $\ell=0,1,\dots,N-1$.

Added to these equations are the uniform boundary conditions

$$u_{i0}^{\ell+1} = 0, \quad u_{iM}^{\ell+1} = 0, \quad i=1,2,\dots,L, \quad \ell=0,1,\dots,N-1, \quad (12)$$

$$v_{i0}^{\ell+1} = 0, \quad i=1,2,\dots,L, \quad \ell=0,1,\dots,N-1. \quad (13)$$

It is known [6] that the system (7a), (12) has only a trivial solution $u_{ij}^{\ell+1} = 0$, and therefore from (8a) and (13) it follows that $v_{ij}^{\ell+1} = 0$, $i=1,2,\dots,L$, $j=0,1,\dots,M$, $\ell=0,1,\dots,N-1$.

Thereby the theorem 1 is proven.

Let us point out the simple method of solving the system (7)-(11). For this let us rewrite equations (7), (8) in the following way:

$$A_{ij}^{\ell} u_{i,j-1}^{\ell+1} + B_{ij}^{\ell} u_{ij}^{\ell+1} + C_{ij}^{\ell} u_{i,j+1}^{\ell+1} = f_{ij}^{\ell}, \quad (14)$$

$$u_{ij}^{\ell+1} + \frac{\Delta x}{\Delta y} v_{ij}^{\ell+1} - \frac{\Delta x}{\Delta y} v_{i,j-1}^{\ell+1} = g_{ij}^{\ell}, \quad (15)$$

where

$$\left. \begin{aligned} A_{ij}^{\ell} &= -\left(\nu \frac{\Delta t}{(\Delta y)^2} + \frac{\Delta t}{\Delta y} v_{ij}^{\ell} \right), \quad B_{ij}^{\ell} = 1 + \frac{\Delta t}{\Delta x} u_{ij}^{\ell} + \frac{\Delta t}{\Delta y} v_{ij}^{\ell} + 2\nu \frac{\Delta t}{(\Delta y)^2}, \\ C_{ij}^{\ell} &= -\nu \frac{\Delta t}{(\Delta y)^2}, \quad f_{ij}^{\ell} = \Delta t F_{ij}^{\ell+1} + u_{ij}^{\ell} + \frac{\Delta t}{\Delta x} u_{ij}^{\ell} u_{i,j-1}^{\ell+1}, \quad g_{ij}^{\ell} = u_{i,j-1}^{\ell+1}. \end{aligned} \right\} \quad (16)$$

Equations (14) together with the boundary conditions

$$u_{i0}^{\ell+1} = 0, \quad u_{iM}^{\ell+1} = U_i^{\ell+1},$$

the initial conditions (9) and boundary condition $u_{ij}^{\ell+1} = \psi_j^{\ell+1}$ can be solved on each i th vertical, $i=1, 2, \dots, L$ by the dispersion method [7], and after this $v_{ij}^{\ell+1}$ is determined from (15) with the use of the boundary condition

$v_{i0}^{\ell+1} = v_i^{\ell+1}$ by the formula

$$v_{ij}^{\ell+1} = v_{i,j-1}^{\ell+1} + \frac{\Delta y}{\Delta x} (g_{ij}^{\ell} - u_{ij}^{\ell+1}), \quad j=1, 2, \dots, M.$$

The three-dimensional nonstationary flow in the laminar boundary layer, circumfluent a piece of plane (x, z) , is described by the following set of equations and initial and boundary conditions [4]:

$$\left. \begin{aligned} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - \nu \frac{\partial^2 u}{\partial y^2} &= -\frac{\partial p}{\partial x}, \\ \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} - \nu \frac{\partial^2 w}{\partial y^2} &= -\frac{\partial p}{\partial z}, \\ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} &= 0, \quad 0 \leq x \leq X, \quad 0 \leq z \leq Z, \quad 0 \leq y \leq \infty, \quad 0 \leq t \leq T; \end{aligned} \right\} \quad (17)$$

$$u|_{t=0} = \varphi(x, y, z), \quad w|_{t=0} = \Psi(x, y, z); \quad (18)$$

$$v|_{y=0} = 0, \quad v|_{y=0} = V(x, z, t), \quad w|_{y=0} = 0; \quad (19)$$

$$\left. \begin{array}{l} u|_{x=0} = \alpha(y, z, t), \quad u|_{z=0} = \beta(x, y, t), \\ w|_{x=0} = \gamma(y, z, t), \quad w|_{z=0} = \delta(x, y, t); \end{array} \right\} \quad (20)$$

$$u(x, y, z, t) \rightarrow U(x, z, t), \quad w(x, y, z, t) \rightarrow W(x, z, t), \quad y \rightarrow \infty. \quad (21)$$

Here the derivatives of pressure $\frac{\partial p}{\partial x} \equiv F(x, z, t)$ and $\frac{\partial p}{\partial z} \equiv G(x, z, t)$ are considered to be the assigned functions. Furthermore, from the continuity equation, the initial conditions (18) for u and w and the boundary condition for v when $y = 0$, it is possible, just as in the two-dimensional case, to define the initial condition for v

$$v|_{t=0} = V(x, z, 0) - \int_0^y \left[\frac{\partial \varphi}{\partial x}(x, \xi, z) + \frac{\partial \Psi}{\partial z}(x, \xi, z) \right] d\xi = \Phi(x, y, z). \quad (22)$$

Having in mind to use the finite-difference method for solving the problem (17)-(22), according to the very same considerations as in the two-dimensional case, we replace the semi-infinite interval of the change in variable y by the finite interval $[0, Y]$, where Y is a sufficiently large number the accessible value of which again can be found by iterations, and, thereby, we examine the problem which describes the relations (17)-(22) in the domain $0 \leq x \leq X, 0 \leq y \leq Y, 0 \leq z \leq Z$, and we replace the boundary conditions (21), respectively, by the following:

$$u \rightarrow U(x, z, t), \quad w \rightarrow W(x, z, t), \quad y \rightarrow Y.$$

Let us divide the parallelepiped $Q_T = [0, X] \times [0, Y] \times [0, Z] \times [0, T]$ into the elementary cells by planes $x_i = i\Delta x, y_j = j\Delta y, z_k = k\Delta z, t_l = l\Delta t$, where $i = 0, 1, \dots, L, \Delta x = \frac{X}{L}, j = 0, 1, \dots, M, \Delta y = \frac{Y}{M}, k = 0, 1, \dots, R, \Delta z = \frac{Z}{R}, l = 0, 1, \dots, N, \Delta t = \frac{T}{N}$, and we assume

$$u_{ijk}^{\ell} \equiv u(i\Delta x, j\Delta y, k\Delta z, \ell\Delta t) .$$

Similarly determined are v_{ijk}^{ℓ} , w_{ijk}^{ℓ} and so on.

By analogy with the Navier-Stokes equations [1] and [2], the system of equations (17) can be approximated by the following implicit finite-difference scheme:

$$\frac{u_{ijk}^{\ell+1} - u_{ijk}^{\ell}}{\Delta t} + u_{ijk}^{\ell} \frac{u_{ijk}^{\ell+1} - u_{i-1,j,k}^{\ell+1}}{\Delta x} + \frac{u_{ijk}^{\ell+1} - u_{i,j-1,k}^{\ell+1}}{\Delta y} + \\ + w_{ijk}^{\ell} \frac{u_{ijk}^{\ell+1} - u_{i,j,k-1}^{\ell+1}}{\Delta z} - \nu \frac{u_{i+1,j,k}^{\ell+1} - 2u_{ijk}^{\ell+1} + u_{i-1,j,k}^{\ell+1}}{(\Delta y)^2} = -P_{ijk}^{\ell+1}, \quad (23)$$

$$\frac{w_{ijk}^{\ell+1} - w_{ijk}^{\ell}}{\Delta t} + u_{ijk}^{\ell} \frac{w_{ijk}^{\ell+1} - w_{i-1,j,k}^{\ell+1}}{\Delta x} + \frac{w_{ijk}^{\ell+1} - w_{i,j-1,k}^{\ell+1}}{\Delta y} + \\ + w_{ijk}^{\ell} \frac{w_{ijk}^{\ell+1} - w_{i,j,k-1}^{\ell+1}}{\Delta z} - \nu \frac{w_{i+1,j,k}^{\ell+1} - 2w_{ijk}^{\ell+1} + w_{i-1,j,k}^{\ell+1}}{(\Delta y)^2} = -G_{ijk}^{\ell+1}, \quad (24)$$

$$\frac{u_{ijk}^{\ell+1} - u_{i-1,j,k}^{\ell+1}}{\Delta x} + \frac{v_{ijk}^{\ell+1} - v_{i-1,j,k}^{\ell+1}}{\Delta y} + \frac{w_{ijk}^{\ell+1} - w_{i,j,k-1}^{\ell+1}}{\Delta z} = 0, \quad (25)$$

where

$$i=1,2,\dots,L, \quad j=1,2,\dots,M, \quad k=1,2,\dots,R, \quad \ell=0,1,\dots,N-1 .$$

Added to equations (23)-(25) are the following initial and boundary conditions:

$$\left. \begin{array}{l} u_{ijk}^0 = \varphi_{ijk}, \quad v_{ijk}^0 = \Phi_{ijk}, \quad w_{ijk}^0 = \Psi_{ijk}, \\ i=0,1,\dots,L, \quad j=0,1,\dots,M, \quad k=0,1,\dots,R, \end{array} \right\} \quad (26)$$

$$\left. \begin{array}{l} u_{i0k}^{\ell+1} = 0, \quad v_{i0k}^{\ell+1} = V_{ik}^{\ell+1}, \quad w_{i0k}^{\ell+1} = 0, \\ i=0,1,\dots,L, \quad k=0,1,\dots,R, \quad \ell=0,1,\dots,N-1, \end{array} \right\} \quad (27)$$

$$\left. \begin{array}{l} u_{0jk}^{\ell+1} = \alpha_{jk}^{\ell+1}, \quad u_{0j0}^{\ell+1} = \beta_{ij}^{\ell+1}, \quad i=0,1,\dots,L, \quad j=0,1,\dots,M, \\ w_{0jk}^{\ell+1} = \gamma_{jk}^{\ell+1}, \quad w_{0j0}^{\ell+1} = \delta_{ij}^{\ell+1}, \quad k=0,1,\dots,R, \quad \ell=0,1,\dots,N-1, \end{array} \right\} \quad (28)$$

$$\left. \begin{array}{l} u_{ijk}^{l+1} = U_{ik}^{l+1}, \quad w_{ijk}^{l+1} = W_{ik}^{l+1}, \\ i=0,1,\dots,L, \quad k=0,1,\dots,R, \quad l=0,1,\dots,N-1. \end{array} \right\} \quad (29)$$

From equations (23)-(25) it is clear that entering into them are values of functions u , w on three adjacent verticals with numbers (i,k) , $(i-1,k)$ and $(i,k-1)$, and values of function v only on one vertical (i,k) . Using boundary conditions (28), we obtain the cyclic process for the finding of u_{ijk}^{l+1} , v_{ijk}^{l+1} , w_{ijk}^{l+1} ,

in which on the (i,k) -th vertical at any $l=1,2,\dots,N-1$ we have a system of $3(M-1)$ linear algebraic equations with $3(M-1)$ unknowns, whereupon these equations should be solved, taking the initial and boundary conditions (26)-(29) into account. Thereby the problem (17)-(22) is reduced to the subsequent solution of the one-dimensional finite-difference problems (23)-(29). Just as in the two-dimensional case, it is shown that theorem 2 is correct.

The system of equations (23)-(29) is uniquely solvable at any $i=1,2,\dots,L$, $k=1,2,\dots,M$, $l=0,1,\dots,N-1$.

The system (23)-(29) permits a simple method of solution. For proof of this, let us rewrite the equations (23)-(25) in the following way:

$$A_{ijk}^l u_{i,j-1,k}^{l+1} + B_{ijk}^l u_{ijk}^{l+1} + C_{ijk}^l u_{i,j+1,k}^{l+1} = f_{ijk}^l, \quad (30)$$

$$A_{ijk}^l w_{i,j-1,k}^{l+1} + B_{ijk}^l w_{ijk}^{l+1} + C_{ijk}^l w_{i,j+1,k}^{l+1} = f_{ijk}^l, \quad (31)$$

$$\frac{\Delta y}{\Delta x} u_{ijk}^{l+1} + \frac{\Delta y}{\Delta z} w_{ijk}^{l+1} + v_{ijk}^{l+1} - v_{i,j-1,k}^{l+1} = g_{ijk}^l, \quad (32)$$

where

$$\left. \begin{aligned}
 A_{ijk}^l &= -\left(\frac{\Delta t}{(\Delta y)^2} + \frac{\Delta t}{\Delta y} v_{ijk}^l\right), \quad B_{ijk}^l = 1 + \frac{\Delta t}{\Delta x} u_{ijk}^l + \frac{\Delta t}{\Delta y} v_{ijk}^l + \frac{\Delta t}{\Delta z} w_{ijk}^l + \frac{2\Delta t}{(\Delta y)^2}, \\
 C_{ijk}^l &= -\frac{\Delta t}{(\Delta y)^2}, \quad f_{ijk}^l = -\Delta t F_{ijk}^{l+1} + u_{ijk}^l + \frac{\Delta t}{\Delta x} u_{ijk}^l u_{i-1,j,k}^{l+1} + \frac{\Delta t}{\Delta z} w_{ijk}^l u_{i,j,k-1}^l, \\
 \tilde{f}_{ijk}^l &= -\Delta t G_{ijk}^{l+1} + w_{ijk}^l + \frac{\Delta t}{\Delta x} u_{ijk}^l w_{i-1,j,k}^{l+1} + \frac{\Delta t}{\Delta z} w_{ijk}^l w_{i,j,k-1}^{l+1}, \\
 g_{ijk}^l &= \frac{\Delta y}{\Delta x} u_{i-1,j,k}^{l+1} + \frac{\Delta y}{\Delta z} w_{i,j,k-1}^{l+1}.
 \end{aligned} \right\} \quad (33)$$

The unknowns u_{ijk}^{l+1} and w_{ijk}^{l+1} are determined independently from each other from equations (30), (31) and the initial and boundary conditions (26)-(27) by means of the one-dimensional dispersion, and after this the unknowns v_{ijk}^{l+1} are determined from equation (32) and the second of the boundary conditions (27) according to equation

$$v_{ijk}^{l+1} = v_{ijk}^{l+1} + g_{ijk}^l - \left(\frac{\Delta y}{\Delta x} u_{ijk}^{l+1} + \frac{\Delta y}{\Delta z} w_{ijk}^{l+1} \right), \quad j=1, 2, \dots, M.$$

By applying the known sufficient conditions of correctness of the one-dimensional dispersion [7], and using the fact that according to the physical meaning of the problem

$u_{ijk}^l \geq 0, w_{ijk}^l \geq 0$, it is easy to establish that the solutions to equations (30)-(33) are stable with respect to the computational errors if the following condition is fulfilled:

$$\frac{\Delta y}{\Delta y} + \min_{ijk} v_{ijk}^l > 0.$$

In the two-dimensional case the condition of correctness of the dispersion for the system of equations (14)-(16) has the form

$$\frac{\Delta y}{\Delta y} + \min_{ijl} v_{ijl}^l > 0.$$

Bibliography

1. КИМБИЦКИЙ А., ЛАДЫЖЕНСКАЯ О.А. Метод сеток для нестационарных уравнений Навье-Стокса. - Тр. МИАН СССР, т.92, 1966.
2. ЛАДЫЖЕНСКАЯ О.А. Математические вопросы динамики вязкой несжимаемой жидкости. Изд. 2-е. "Наука", 1970.
3. ОЛЕЙНИК О.А. Математические задачи теории пограничного слоя. - "Успехи матем. наук", т.23, вып.3, 1968.
4. ПЛАНКИНГ Г. Теория пограничного слоя. "Наука", 1969.
5. ОЛЕЙНИК О.А. О решении систем уравнений Прандтля методом конечных разностей. - Ж. прикл. матем. и мех., т.31, вып.21, 1967.
6. ЛАДЫЖЕНСКАЯ О.А., СОЛОДНИКОВ В.А., УРАЛЬСИНА Н.Н. Двеебные и квазидвебные уравнения параболического типа. "Наука", 1967.
7. ГОЛУНОВ С.К., РЫБЕНЬКИЙ В.С. Введение в теорию разностных схем. Физматгиз, 1962.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER FTD-ID(RS)T-0880-77	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) CERTAIN FINITE-DIFFERENCE SCHEMES FOR EQUATIONS OF THE NONSTATIONARY LAMINAR BOUNDARY LAYER		5. TYPE OF REPORT & PERIOD COVERED Translation
7. AUTHOR(s) A. P. Oskolkov		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Foreign Technology Division Air Force Systems Command United States Air Force		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE 1972
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 10
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		15. SECURITY CLASS. (of this report) UNCLASSIFIED
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 20		

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION	MICROFICHE	ORGANIZATION	MICROFICHE
A205 DMATC	1	E053 AF/INAKA	1
A210 DMAAC	2	E017 AF/ RDXTR-W	1
B344 DIA/RDS-3C	8	E404 AEDC	1
C043 USAMIIA	1	E408 AFWL	1
C509 BALLISTIC RES LABS	1	E410 ADTC	1
C510 AIR MOBILITY R&D LAB/FIO	1	E413 ESD FTD	2
C513 PICATINNY ARSENAL	1	CCN	1
C535 AVIATION SYS COMD	1	ETID	3
C557 USAIIC	1	NIA/PHS	1
C591 FSTC	5	NICD	5
C619 MIA REDSTONE	1		
D008 NISC	1		
H300 USAICE (USAREUR)	1		
P005 ERDA	1		
P055 CIA/CRS/ADD/SD	1		
NAVORDSTA (50L)	1		
NAVWPNSCEN (Code 121)	1		
NASA/KSI	1		
AFIT/LD	1		