Module 2: Cryptography II

Nitesh Saxena

Overview of the Module

- 1.1 Block Cipher Modes of Encryption
- 1.2 Other Ciphers
- 1.3 Public Key Crypto Overview
- 1.4 Math Background
- 1.5 Public Key Encryption (RSA)
- 1.6 RSA Security
- 1.7 Digital Signatures

Module 2: Cryptography II

Module 2, Lecture 1

Block Cipher Encryption Modes

Module 2: Cryptography II

3

Block Cipher Encryption modes

- Electronic Code Book (ECB)
- Cipher Block Chain (CBC)
 - Most popular one
- Others (we will not cover)
 - Cipher Feed Back (CFB)
 - Output Feed Back (OFB)

Module 2: Cryptography II

Analysis

We will analyze both mode in terms of:

- Security
- Computational Efficiency (parallelizing encryption/decryption)
- Transmission Errors

Module 2: Cryptography II

5

Electronic Code Book (ECB) Mode

 Although DES encrypts 64 bits (a block) at a time, it can encrypt a long message (file) in Electronic Code Book (ECB) mode.

 Deterministic -- If same key is used then identical plaintext blocks map to identical ciphertext

Module 2: Cryptography II

CBC Traits

- Randomized encryption
- IV Initialization vector serves as the randomness for first block computation; the ciphertext of the previous block serves as the randomness for the current block computation
- IV is a random value
- IV is **no secret**; it is sent along with the ciphertext blocks (it is part of the ciphertext)

Module 2: Cryptography II

9

Example – why CBC is good?

Tux

Tux encrypted with AES in CBC mode

Module 2: Cryptography II

CBC – More Properties

- What happens if k-th cipher block C_K gets corrupted in transmission.
 - With ECB Only decrypted P_{κ} is affected.
 - With CBC?
 - Only blocks P_K and P_{K+1} are affected!!

Module 2: Cryptography II

11

Security of Block Cipher Modes

- ECB is not even secure against eavesdroppers (ciphertext only and known plaintext attacks)
- CBC is secure against CPA attacks (assuming 3-DES or AES is used in each block computation); automatically secure against eavesdropping attacks
- However, not secure against CCA. Why?
 - Intuitively, this is because the ciphertext can be "massaged" in a meaningful way

Module 2: Cryptography II

How to achieve CCA security?

- Prevent any massaging of the ciphertext
- Intuitively, this can be achieved by using integrity protection mechanisms (such as MACs – message authentication codes), which we will study later
- The ciphertext is generated using CBC and a MAC is generated on this ciphertext
- Both ciphertext and the MAC is sent off
- The other party decrypts only if MAC is valid

Module 2: Cryptography II

13

Module 2, Lecture 2

Other Ciphers

Module 2: Cryptography II

Advanced Encryption Standard (AES)

- National Institute of Science and Technology
 - DES is an aging standard that no longer addresses today's needs for strong encryption
 - Triple-DES: Endorsed by NIST as today's defacto standard
- AES: The Advanced Encryption Standard
 - Finalized in 2001
 - Goal To define Federal Information Processing Standard (FIPS) by selecting a new powerful encryption algorithm suitable for encrypting government documents
 - AES candidate algorithms were required to be:
 - Symmetric-key, supporting 128, 192, and 256 bit keys
 - · Royalty-Free
 - · Unclassified (i.e. public domain)
 - · Available for worldwide export

Module 2: Cryptography II

15

AES

- AES Round-3 Finalist Algorithms:
 - _ MΔR9
 - Candidate offering from IBM
 - RC6
 - Developed by Ron Rivest of RSA Labs, creator of the widely used RC4 algorithm
 - Twofish
 - From Counterpane Internet Security, Inc.
 - Serpent
 - · Designed by Ross Anderson, Eli Biham and Lars Knudsen
 - Rijndael: the winner!
 - Designed by Joan Daemen and Vincent Rijmen

Module 2: Cryptography II

Other Symmetric Ciphers and their applications

- IDEA (used in PGP)
- Blowfish (password hashing in OpenBSD)
- RC4 (used in WEP), RC5
- SAFER (used in Bluetooth)

Module 2: Cryptography II

17

Module 2, Lecture 3

Public Key Crypto Overview

Module 2: Cryptography II

Recall: Private Key/Public Key Cryptography

- Private Key: Sender and receiver share a common (private) key
 - Encryption and Decryption is done using the private key
 - Also called conventional/shared-key/single-key/ symmetric-key cryptography
- Public Key: Every user has a private key and a public key
 - Encryption is done using the public key and Decryption using private key
 - Also called two-key/asymmetric-key cryptography

Module 2: Cryptography II

19

Private key cryptography revisited.

- · Good: Quite efficient
- Bad: Key distribution and management is a serious problem

Module 2: Cryptography II

Public key cryptography model

- Good: Key management problem potentially simpler
- Bad: Much slower than private key crypto (we'll see later!)

Module 2: Cryptography II

21

Public Key Encryption

- Two keys:
 - public encryption key e
 - private decryption key d
- Encryption easy when *e* is known
- Decryption easy when d is known
- Decryption hard when *d* is not known
- We'll study such public key encryption schemes; first we need some mathematical background (next lecture).

Module 2: Cryptography II

Public Key Encryption: Security Notions

- Very similar to what we studied for private key encryption
 - What's the difference?
 - Adversary has access to public key
 - Adversary can create encryptions on its own

Module 2: Cryptography II

23

Module 2, Lecture 4

Math Background

Module 2: Cryptography II

Group: Definition

(G,.) (where G is a set and . : $GxG \rightarrow G$) is said to be a group if following properties are satisfied:

- 1. Closure: for any a, b ϵ G, a.b ϵ G
- 2. Associativity: for any a, b, c ϵ G, a.(b.c)=(a.b).c
- 3. Identity: there is an identity element such that a.e = e.a = a, for any a ε G
- 4. Inverse: there exists an element a^{-1} for every a in G, such that $a.a^{-1} = a^{-1}.a = e$

Module 2: Cryptography II

25

Groups: Examples

- Set of all integers with respect to addition --(Z,+)
- Set of all integers with respect to multiplication (Z,*) – not a group
- Set of all real numbers with respect to multiplication (R,*)
- Set of all integers modulo m with respect to modulo addition (Z_m, "modular addition")

Module 2: Cryptography II

Multiplicative inverses in Z_m

- 1 is the multiplicative identity in Z_m $x*1 \equiv x \pmod{m} \equiv 1*x \pmod{m}$
- Multiplicative inverse (x*x-1=1 mod m)
 - SOME, but not ALL elements have unique multiplicative inverse.
 - In Z_9 : 3*0=0, 3*1=3, 3*2=6, 3*3=0, 3*4=3, 3*5=6, ..., so 3 does not have a multiplicative inverse (mod 9)
 - On the other hand, 4*2=8, 4*3=3, 4*4=7, 4*5=2, 4*6=6, 4*7=1, so $4^{-1}=7$, (mod 9)

Module 2: Cryptography II

27

Which numbers have inverses?

- In Z_m, x has a multiplicative inverse if and only if x and m are relatively prime or gcd(x,m)=1
 - E.g., 4 in Z_9
- Efficient algorithm to compute inverses
 - Extended Euclidian Algorithm

Module 2: Cryptography II

Modular Exponentiation

- Usual approach to computing x^c mod n is inefficient when c is large.
- Efficient algorithm: Square and Multiply

Module 2: Cryptography II

20

Euler's totient function

- Given positive integer n, Euler's totient function $\Phi(n)$ is the number of positive numbers less than n that are relatively prime to n
- Fact: If *p* is prime then
 - $-\{1,2,3,...,p-1\}$ are relatively prime to p.

Module 2: Cryptography II

Euler's totient function

- Fact: If p and q are prime and n=pq then $\Phi(n) = (p-1)(q-1)$
- Each number that is not divisible by p or by q is relatively prime to pq.
 - E.g. p = 5, q = 7: {1,2,3,4,-,6,-,8,9,-,11,12,13,-,-,16,17,18,19,-,-,22,23,24,-,26,27,-,29,-,31,32,33,34,-}
 - -pq-p-(q-1)=(p-1)*(q-1)

Module 2: Cryptography II

31

Euler's Theorem and Fermat's Theorem

- If a is relatively prime to n then $a^{\Phi(n)} \equiv 1 \mod n$
- If a is relatively prime to p then $a^{p-1} = 1 \mod p$

Module 2: Cryptography II

Euler's Theorem and Fermat's Theorem

EG: Compute 9¹⁰⁰ mod 17:

$$p = 17$$
, so $p-1 = 16$. $100 = 6.16+4$. Therefore, $9^{100} = 9^{6.16+4} = (9^{16})^6 (9)^4$. So mod 17 we have $9^{100} \equiv (9^{16})^6 (9)^4 \pmod{17} \equiv (1)^6 (9)^4 \pmod{17} \equiv (81)^2 \pmod{17} \equiv \mathbf{16}$

Module 2: Cryptography II

33

Further Reading

- Chapter 4 of Stallings
- Chapter 2.4 of HAC

Module 2: Cryptography II

Module 2, Lecture 5

The RSA Cryptosystem (Encryption)

Module 2: Cryptography II

35

RSA Math Setting

- In RSA, we work in a multiplicative group Z_n*,
 i.e., a group of all numbers between 0 and n-1 that are relatively prime to n.
- Here, n is a product of two prime numbers p and q
 - i.e., n itself is composite
- The size of Z_n^* is $\Phi(n) = (p-1)(q-1)$
- Computation is done modulo n

Module 2: Cryptography II

"Textbook" RSA: KeyGen

- Alice wants people to be able to send her encrypted messages.
- She chooses two (large) prime numbers, p and q and computes n=pq and $\Phi(n)$. ["large" = 1024 bits +]
- She chooses a number e such that e is relatively prime to $\Phi(n)$ and computes d, the inverse of e in $Z_{\Phi(n)}$, i.e., ed =1 mod $\Phi(n)$
- She publicizes the pair (e,n) as her public key. (e is called RSA exponent, n is called RSA modulus). She keeps d secret and destroys p, q, and $\Phi(n)$
- Plaintext and ciphertext messages are elements of Z_n and e is the encryption key.

Module 2: Cryptography II

37

RSA: Encryption

- Bob wants to send a message x (an element of Z_n*) to Alice.
- He looks up her encryption key, (e,n), in a directory.
- The encrypted message is $y = E(x) = x^e \mod n$
- Bob sends y to Alice.

Module 2: Cryptography II

RSA: Decryption

• To decrypt the message

$$y = E(x) = x^e \mod n$$

she's received from Bob, Alice computes $D(y) = y^d \bmod n$

Claim: D(y) = x

Module 2: Cryptography II

39

RSA: why does it all work

- Need to show
 - D[E[x]] = x
 - E[x] and D[y] can be computed efficiently if keys are known
 - E⁻¹[y] cannot be computed efficiently without knowledge of the (private) decryption key d.
- Also, it should be possible to select keys reasonably efficiently
 - This does not have to be done too often, so efficiency requirements are less stringent.

Module 2: Cryptography II

E and D are Inverses

$$D(y) = y^d \mod n$$

$$\equiv (x^e \mod n)^d \mod n$$

$$\equiv (x^e)^d \mod n$$

$$\equiv x^{ed} \mod n$$

$$\equiv \chi^{t\Phi(n)+1} \mod n$$
 Because $ed \equiv 1 \mod \Phi(n)$

$$\equiv (x^{\Phi(n)})^t x \mod n$$

$$\equiv 1^t x \mod n \equiv x \mod n$$
 From Euler's Theorem

Module 2: Cryptography II

4

Tiny RSA example.

- Let p = 7, q = 11. Then n = 77 and $\Phi(n) = 60$
- Choose e = 13. Then $d = 13^{-1} \mod 60 = 37$.
- Let message = 2.
- $E(2) = 2^{13} \mod 77 = 30$.
- $D(30) = 30^{37} \mod 77 = 2$

Module 2: Cryptography II

Slightly Larger RSA example.

- Let p = 47, q = 71. Then n = 3337 and $\Phi(pq) = 46*70 = 3220$
- Choose e = 79. Then d = 79⁻¹ mod 3220 = 1019.
- Let message = 688232... Break it into 3 digit blocks to encrypt.
- E(688) = 688⁷⁹ mod 3337 = 1570.
 E(232) = 232⁷⁹ mod 3337 = 2756
- $D(1570) = 1570^{1019} \mod 3337 = 688$. $D(2756) = 2756^{1019} \mod 3337 = 232$.

43

Module 2, Lecture 6

RSA Security

Module 2: Cryptography II

Security of RSA: RSA assumption

- Suppose Eve intercepts the encrypted message y that Bob has sent to Alice.
- Eve can look up (e,n) in the public directory (just as Bob did when he encrypted the message)
- If Eve can compute $d = e^{-1} \mod \Phi(n)$ then he can use $D(y) = y^d \mod n = x$ to recover the plaintext x.
- If Oscar can compute $\Phi(n)$, he can compute d (the same way Alice did) $\Phi(n)$

Security of RSA: factoring

- Oscar knows that n is the product of two primes
- If he can factor n, he can compute $\Phi(n)$
- But factoring large numbers is very difficult:
 - Grade school method takes $O(\sqrt{n})$ divisions.
 - Prohibitive for large n, such as 160 bits
 - Better factorization algorithms exist, but they are still too slow for large n
 - Lower bound for factorization is an open problem

Module 2: Cryptography II

How big should n be?

- Today we need n to be at least 1024-bits
 - This is equivalent to security provided by 80-bit long keys in private-key crypto
- No other attack on RSA function known
 - Except some side channel attacks, based on timing, power analysis, etc. But, these exploit certain physical charactesistics, not a theoretical weakness in the cryptosystem!

Module 2: Cryptography II

47

Efficiency (even with large n)

During key generation:

- Select large primes
 - Primes are dense so choose randomly.
 - Probabilistic primality testing methods known. Work in logarithmic time.
- Compute multiplicative inverses
 - Efficient algorithm (Extended Euclidean algorithm) exists

During encryption and decryption

Requires modular multiplication (use Square and Multiply)

Module 2: Cryptography II

RSA in Practice

- Textbook RSA is insecure
 - Since it is deterministic
- In practice, we use a "randomized" version of RSA, called RSA-OAEP
 - Use PKCS#1 standard for RSA encryption

https://www.rfc-editor.org/rfc/rfc8017

Interested in details of OAEP: refer to:

https://iacr.org/archive/crypto2001/21390259.pdf

Module 2: Cryptography II

49

Further Reading

- Stallings Chapter 11
- HAC Chapter 9

Module 2: Cryptography II

Module 2, Lecture 7

Digital Signatures

Module 2: Cryptography II

51

Goals

- Authentication
- Integrity
- Non-repudiation

Module 2: Cryptography II

Public Key Signatures

- Signer has public key, private key pair
- Signer signs using its private key
- · Verifier verifies using public key of the signer

Module 2: Cryptography II

53

Security Notion/Model for Signatures

- Existential Forgery under (adaptively) chosen message attack (CMA)
 - Adversary (adaptively) chooses messages m_i of its choice
 - Obtains the signature s_i on each m_i
 - Outputs any message m (≠ mi) and a signature s on m

Module 2: Cryptography II

RSA Signatures

- Key Generation: same as in encryption
- Sign(m): s = m^d mod N
- Verify(m,s): (se == m mod N)
- The above text-book version is insecure; why?
- In practice, we use a randomized version of RSA (implemented in PKCS#1)
 - Hash the message and then sign the hash

Module 2: Cryptography II