Branching fractions of $B^- \to D^- X_{0,1}(2900)$ and their implications

Yan-Ke Chen

Lanzhou University

Based on work collaborated with Jia-Jie Han, Qi-Fang Lü, Jian-Peng Wang, Fu-Sheng Yu.

arXiv:2009.01182

September 9, 2020

Overview

- Motivation
- Theoretical framework
- Numerical results
 - $B^- o D^- X_{0,1}(2900)$ decays
 - ullet $B^- o ar{\Lambda}_c^- \Xi_c^{(\prime)0}$ and $\Lambda_b^0 o P_c^+ K^-$ decays
 - $B^- \to \pi^- X_{0,1}(2900)$ decays
- 4 Isospin analysis on $B o DX_{0,1}$
- Summary

Motivation(I)

Exotic hadrons: states beyond conventional mesons $(q\bar{q})$ and baryons (qqq).

- Predicted by M. Gell-Mann and G. Zweig in 1964
- Different models: hybrid, glueball, multiquark state, molecular state....

Study of exotic hadrons can provide new insights into:

- internal structure and dynamics of hadrons
- non-perturbative behaviour of QCD

Future experimental discoveries and theoretical advances are needed.

Motivation(II)

States requiring > 3 valence quarks are manifestly exotic.

• $X(5568)(bs\bar{u}d)$ was observed by D0 Collaboration, though the existence was not confirmed by other collaborations.

 $(cs\overline{u}\overline{d})$ is a promising detectable tetraquark in $B^- o D^- X$ decays.

- The lowest-lying ground state may below the $D\overline{K}$ threshold. [arXiv:1709.02571]
- ullet The topological diagram is an W-emission diagram with large $V_{
 m CKM}$ elements.

The topological diagram of $B^- o D^- X$

Motivation(III)

The exotic states $X_{0.1}(2900)$ are observed in mass spectrum of D^+K^- in $B^- \to D^- D^+ K^-$ by the LHCb collaboration. [arXiv:2009.00025],[arXiv:2009.00026]

- Their masses are much higher than the $D\overline{K}$ threshold.
- They are produced in the $B^- \to D^- X_{0.1}$.
- The relatively large branching fractions are the key point in the observation.

	$M_X({ m MeV})$	$\Gamma_X(\text{MeV})$	Fit fraction(%)	$Br_{\rm exp}(10^{-5})$
$B^- o D^- X_0$	2866 ± 7	57 ± 13	5.6 ± 0.5	1.23 ± 0.41
$B^- o D^- X_1$	2904 ± 5	110 ± 12	30.6 ± 3.2	6.73 ± 2.26

It is necessary to understand the production mechanism of $X_{0.1}(2900)$ in the weak decays of B mesons and the corresponding branching fractions.

5/18

Theoretical framework(I)

The topological diagram of $B^- \rightarrow D^- X_{0,1}(2900)$:

- non-factorizable.
- not easy to caculate in QCD-inspired methods.
- dominated by the long-distance contributions.

The final-state-interaction(FSI) effects:

- has been successfully applied to the $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$. [Chin. Phys. C **42** (2018) 051001]
- has been tested in the $B \to \pi\pi, K\pi$ and $D\pi$ modes. [Phys. Rev. D **71** (2005) 014030]

We calculate the long-distance contributions by FSIs effects.

Theoretical framework(II)

Rescattering mechanism: $B^- \to D_s^{*-} D^0 \to D^- X_{0,1}(2900)$ via exchanging one intermediate state \overline{K}^0 .

The weak-decay vertex:

$$\left\langle D_{s}^{*-}D^{0}\left|\mathcal{H}_{eff}\right|B^{-}\right\rangle =\frac{G_{F}}{\sqrt{2}}V_{cb}V_{cs}^{*}a_{1}f_{D_{s}^{*}}m_{D_{s}^{*}}F_{1}^{B\to D}\left(m_{D_{s}^{*}}^{2}\right)\left(2\epsilon_{D_{s}^{*-}}^{*-}\cdot p_{B^{-}}\right)$$

The effective Lagrangian of the strong interaction

$$\mathcal{L} = \mathcal{L}_{VPP} + \mathcal{L}_{SPP} = ig_{VPP}V^{\mu}\left(P\stackrel{\leftrightarrow}{\partial}_{\mu}P\right) - g_{SPP}m_{s}SPP$$

Theoretical framework(III)

The absorptive part of the decay amplitude is:

$$\begin{split} \mathcal{A}bs(B^- \to D^- X_0(2900)) &= -2i\frac{G_F}{\sqrt{2}}V_{CKM}a_1 \int \frac{|\vec{p}_{D_s^+}| d\cos\theta d\phi}{32\pi^2 m_B} g_{D_s^+ DK}g_{DKX_0}m_{X_0}\frac{F^2(t,m_K)}{t-m_K^2} \\ & \cdot f_{D_s^+} - m_{D_s^+} - F_1^{B\to D}(M_{D_s^+}^2) (p_{D^0} \cdot p_{D^-} - \frac{(p_{D_s^+} - p_{D^-})(p_{D_s^+} - p_{D^0})}{m_{D_s^+}^2}), \end{split}$$

$$\begin{split} \mathcal{A}bs(B^- \to D^- X_1(2900)) = & 2i \frac{G_F}{\sqrt{2}} V_{CKM} a_1 \int \frac{|\vec{p}_{D_s^{*-}}| d\cos\theta d\phi}{32\pi^2 m_B} g_{D_s^*DK} g_{DKX_1} m_{X_0} \frac{F^2(t, m_K)}{t - m_K^2} \\ & \cdot f_{D_s^{*-}} m_{D_s^{*-}} F_1^{B\to D} (M_{D_s^{*-}}^2) (p_{D^0} \cdot p_{D^-} - \frac{(p_{D_s^{*-}} \cdot p_{D^-})(p_{D_s^{*-}} \cdot p_{D^0})}{m_{D_s^{*-}}^2}) \\ & \cdot \langle p_K \cdot \epsilon_{X_c} \rangle, \end{split}$$

$$F(t,m_K) = rac{\Lambda^2 - m_K^2}{\Lambda^2 - t}, \quad \Lambda = m_{exc} + \eta \Lambda_{QCD}$$

$$B^- \to D^- X_{0.1}(2900)$$
 decays

 $g_{DKX_0} = 1.0$, $g_{DKX_1} = 9.3$ are be extracted from the widths of $X_{0,1}(2900)$

Consistent with the experimental measurements when $\eta \approx 3.0$. [arXiv:2009.00025],[arXiv:2009.00026]

The prodcution of $X_{0,1}(2900)$ in $B^- \to D^- X_{0,1}(2900)$ can be understood by rescattering mechanism.

$$B^- o \bar{\Lambda}_c^- \Xi_c^{(\prime)0}$$
 and $\Lambda_b^0 o P_c^+ K^-$ decays(I)

They have similar topological diagrams with those of $B^- o D^- X_{0,1}(2900)$

$$B^- o ar{\Lambda}_c^- \Xi_c^{(\prime)0}$$
 and $\Lambda_b^0 o P_c^+ K^-$ decays(II)

The strong couplings based on [Eur. Phys. J. C 80 (2020) 22].

Consisten with the experiment when $\eta \approx 3.0$.

[Prog. Theor. Exp. Phys. 2020, 083C01 (2020)], [Phys. Rev. D 100 (2019) 112010]

$$B^- o ar{\Lambda}_c^- \Xi_c^{(\prime)0}$$
 and $\Lambda_b^0 o P_c^+ K^-$ decays(III)

The strong couplings based on [Phys. Rev. D 100 (2019) 056005].

It can be expected that $\Lambda_b^0 \to K^- P_c^+$ and $B^- \to D^- X_{0,1}$ have similar branching fractions at 10^{-5} .

- The difference is the spectors.
- $Br(\Lambda_b^0 \to \Lambda_c^+ D_s^-) \approx Br(B^- \to D^0 D_s^-)$ [Prog. Theor. Exp. Phys. 2020, 083C01 (2020)]

◆ロト ◆団 ト ◆豆 ト ◆豆 ト ・豆 ・ から()・

$$B^- \to \pi^- X_{0,1}(2900) \text{ decays(I)}$$

The $B^- \to \pi^- X_{0,1}$ decays are similar to the $B^- \to D^- X_{0,1}$ decays.

- A charm anti- quark replaced by an up anti-quark.
- suppressed by CKM factor for $|V_{us}|/|V_{cs}| \approx 0.225$.
- D^- meson has to be reconstructed by $D^- \to K^+ \pi^- \pi^-$ process in the experiments.

 $B^- o \pi^- X_{0,1}$ are good alternative processes to check the results in $B^- o D^- X_{0,1}$ decays.

$$B^-
ightarrow \pi^- X_{0,1}(2900)$$
 decays(II)

The results are much smaller than naively expectation.

- $Br(B^- \to \pi^- X_0)$ is around $10^{-9} \sim 10^{-8}$.
- $Br(B^- \to \pi^- X_1)$ is at the order of 10^{-7} .
- $Br(B^- \to \pi^- X_{0.1})/Br(B^- \to D^+ K^- \pi^-)$ smaller than few percent.

The main reason is the lack of relatively large rescattering contribution. There is no significant enhancement or peak in the D^+K^- mass spectrum in the amplitude analysis of $B^- \to D^+ K^- \pi^-$ by the LHCb collaboration. [Phys. Rev. D 91 (2015) 092002]

Yan-Ke Chen (LZU)

Isospin analysis on $B \to DX_{0,1}(I)$

The quark flovors of $X_{0,1}(2900)$ are $cs\overline{u}\overline{d}$, but their isoapin are not determined, it could either be isospin singlet or triplet.

If X_i is an isospin singlet state:

$$\mathcal{A}\left(\bar{B}^0 \to \bar{D}^0 X_i^0\right) = \mathcal{A}\left(B^- \to D^- X_i^0\right)$$

then we have

$$Br(\bar{B}^0 \to \bar{D}^0 X_0^0) / Br(\bar{B}^0 \to \bar{D}^0 D^+ K^-) = (1.15 \pm 0.38)\%$$

 $Br(\bar{B}^0 \to \bar{D}^0 X_1^0) / Br(\bar{B}^0 \to \bar{D}^0 D^+ K^-) = (6.29 \pm 2.11)\%$

Isospin analysis on $B \to DX_{0,1}(II)$

If X_i is an isospin triplet state:

$$\mathcal{A}\left(B^{-}\to\bar{D}^{0}X_{i}^{-}\right)=-\sqrt{2}\mathcal{A}\left(B^{-}\to D^{-}X_{i}^{0}\right)=-\mathcal{A}\left(\bar{B}^{0}\to D^{-}X_{i}^{+}\right)=\sqrt{2}\mathcal{A}\left(\bar{B}^{0}\to\bar{D}^{0}X_{i}^{0}\right)$$

then we have the fractions

$$Br\left(B^{-} \to \bar{D}^{0}X_{0}^{-}\right)/Br\left(B^{-} \to D^{0}\bar{D}^{0}K^{-}\right) = (1.7 \pm 0.6)\%$$

 $Br\left(\bar{B}^{0} \to D^{-}X_{0}^{+}\right)/Br\left(\bar{B}^{0} \to D^{+}D^{-}\bar{K}^{0}\right) = (3.3 \pm 1.3)\%$

and

Br
$$\left(B^{-} \to \bar{D}^{0} X_{1}^{-}\right) / \text{Br} \left(B^{-} \to D^{0} \bar{D}^{0} K^{-}\right) = (9.3 \pm 3.7)\%$$

Br $\left(\bar{B}^{0} \to D^{-} X_{1}^{+}\right) / \text{Br} \left(\bar{B}^{0} \to D^{+} D^{-} \bar{K}^{0}\right) = (17.9 \pm 7.0)\%$

Summary

- We calculate $Br(B^- \to D^- X_{0,1})$ using rescattering mechanism, which are consistant with experimental measurements.
- ② The rescattering mechanism is tested by the processes $B^- \to \bar{\Lambda}_c^- \Xi_c^{(\prime)0}$ and $\Lambda_b^0 \to P_c^+ K^-$.
- **3** $Br(B^- \to \pi^- X_{0,1})$ are predicted with large uncertainties.
- The isopins of $X_{0,1}(2900)$ are discussed.

Thanks for your attention

