

Universidade Federal de Pelotas Centro de Desenvolvimento Tecnológico Bacharelado em Engenharia de Computação

Circuitos Digitais

Aula T4

Álgebra Booleana e Circuitos Lógicos: Minimização de Funções com Mapas de Karnaugh, Funções Incompletamente Especificadas

Prof. Leomar S. Rosa Jr. leomarjr@inf.ufpel.edu.br

Álgebra Booleana e Circuitos Lógicos

Relembrando a Simplificação Algébrica

Redução do número de literais ou de operações na equação Booleana, através da aplicação das propriedades da Álgebra Booleana

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (14), A \cdot (B+C) = A \cdot B + A \cdot C$$

$$F = \overline{AB(C+C)} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (4), \overline{C} + C = 1$$

$$F = \overline{AB \cdot 1} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (6), \overline{AB} \cdot 1 = \overline{AB}$$

$$F = \overline{AB} + \overline{ABC} + \overline{ABC}$$

$$Soma de Produtos simplificada$$

Computação UFPel Circuitos Digitais Slide T4.2

Relembrando a Simplificação Algébrica

Entretanto, o termo $\overline{A}B\overline{C}$ poderia ter sido simplificado com o termo $AB\overline{C}$

$$F = \frac{\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}}{\uparrow}$$

Como fazer isso?

Utilizando a propriedade (3), que permite a seguinte manipulação:

$$\overline{ABC} = \overline{ABC} + \overline{ABC}$$

Computação UFPel Circuitos Digitais Slide T4.3

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Relembrando a Simplificação Algébrica

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (3), \overline{ABC} = \overline{ABC} + \overline{ABC}$$

$$Pela prop. (14)$$

$$F = \overline{AB(C+C)} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (4)$$

$$Pela prop. (4)$$

$$F = \overline{AB} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$Pela prop. (6)$$

Computação UFPel Circuitos Digitais Slide T4.4

Simplificação Algébrica

Dificuldades na obtenção da equação mínima:

- Não adianta encontrar todos os pares de termos que se diferenciam de somente uma variável
- O processo de simplificação é recursivo: após simplificar mintermos, pode ser possível continuar a simplificação com os produtos resultantes da primeira rodada de simplificação
- A ordem na qual se procede a simplificação faz diferença!
- É difícil identificar as simplificações possíveis (e também a ordem ótima)

Computação UFPel Circuitos Digitais Slide T4.5

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Simplificação Algébrica: Exemplo 2

Computação UFPel Circuitos Digitais Slide T4.6

Simplificação Algébrica: continuação

Computação UFPel Circuitos Digitais

Slide T4.7

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Simplificação Algébrica: exemplo 3

$$F = A\overline{B}C + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$F = A\overline{B}C + (A + \overline{A})BC + \overline{ABC}$$

$$Pela prop. (4)$$

$$F = A\overline{B}C + 1 \cdot BC + \overline{ABC}$$

$$Pela prop. (6)$$

$$Pela prop. (6)$$

$$Pela prop. (6)$$

$$Pela prop. (6)$$

$$Soma de Produtos simplificada (mas não mínima!!)$$

Computação UFPel Circuitos Digitais Slide T4.8

Simplificação Algébrica: Porém...

Computação UFPel Circuitos Digitais Slide T4.9

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Identificando na tabela-verdade os mintermos que se diferenciam de somente uma variável...

	mintermos	С	В	Α
	Ā·B·C	0	0	0
	A·B·C	1	0	0
+	Ā·B·Ĉ	0	1	0
<u> </u>	Ā·B·C	1	1	0
	A·B·C	0	0	1
	A·B·C	1	0	1
4	A·B·C	0	1	1
	A·B·C	1	1	1

Se trocarmos a ordem de alguns elementos, cada par de elementos adjacentes podem ser simplificados

Computação UFPel Circuitos Digitais Slide T4.10

Mapas de Karnaugh

Reordenando os mintermos

Ā·Ē·Ĉ	Ā·Ē·C	Ā·B·C	Ā·B·Ĉ
A·B·C	A·B·C	A·B·C	A·B·C

Nesta nova organização da tabela-verdade existe uma relação de adjacência entre os mintermos.

Quaisquer dois mintermos adjacentes se diferenciam de somente uma variável

Computação UFPel Circuitos Digitais Slide T4.11

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Reordenando os mintermos

A relação de adjacência vale somente:

- Na horizontal
- Na vertical

Computação UFPel Circuitos Digitais Slide T4.12

Mapas de Karnaugh

Eis o tal mapa de Karnaugh (para funções de 3 variáveis)

Ā·B·C	Ā·Ē·C	Ā·B·C	Ā·B·Ĉ
$A \cdot \overline{B} \cdot \overline{C}$	A·B·C	A·B·C	A·B·C

Computação UFPe Circuitos Digitais Slide T4.13

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes, os quais podem conter retângulos com 2, 4, 8, 16, 32 ... "1s"
- 2. Para cada grupo, escrever a equação de produto usando somente as variáveis de entrada que são iguais para todos os "1s"
- 3. Se houver mais de um grupo, montar e equação em soma de produtos (que já estará simplificada)

OBS: se algum "1" restar sozinho, seu produto (mintermo) também deve ser usado na equação em soma de produtos

Computação UFPel Circuitos Digitais Slide T4.14

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 1:

Computação UFPe Circuitos Digitais Slide T4.15

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 2:

Computação UFPel Circuitos Digitais Slide T4.16

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 3:

As duas "células" extremas de uma mesma linha também são consideradas adjacentes.

Computação UFPel Circuitos Digitais Slide T4.17

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 4:

Computação UFPel Circuitos Digitais Slide T4.18

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 5:

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 6:

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 7:

Computação UFPe Circuitos Digitais Slide T4.21

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 7:

Isto não deveria acontecer!!!!

Computação UFPel Circuitos Digitais Slide T4.22

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 7: Refazendo...

F7 = Ā

F10	БĊ	БC	ВС	вō	_
Ā	1	1	1	1	— Ā
Α	0	0	0	0	

Trata-se de um grupo de 4 "1s" ocupando uma linha inteira do mapa de Karnaugh

Computação UFPel Circuitos Digitais Slide T4.23

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 8: semelhante ao exemplo 7...

Computação UFPel Circuitos Digitais Slide T4.24

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 8:

F8 = B

Computação UFPe Circuitos Digitais Slide T4.25

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 9:

Computação UFPel Circuitos Digitais Slide T4.26

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 10:

As duas "células" extremas também são consideradas adjacentes.

Computação UFPel Circuitos Digitais Slide T4.27

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 11:

Opa!

Mas é posível simplificar mais! Vejamos...

Computação UFPel Circuitos Digitais Slide T4.28

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 11:

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Exercício 2:

Para a função dada pelo mapa de Karnaugh abaixo:

- Encontre a equação mínima em soma de produtos
- Desenhe o circuito resultante e calcule seu custo

S2	БĊ	БC	ВС	вĒ
Ā	1	1	0	0
Α	0	1	1	1

Computação UFPel Circuitos Digitais Slide T4.30

Mapas de Karnaugh

Para funções de 4 variáveis

	CD	CD	CD	CD
\bar{AB}				
$\bar{A}B$				
AB				
ΑB				

Computação UFPel Circuitos Digitais Slide T4.31

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 18:

Computação UFPel Circuitos Digitais Slide T4.32

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 19:

Opa!

Mas dá para simplificar mais... (Usar o maior grupo,ao invés dos grupos que o compõem)

Slide T4.33

Prof. Leomar S. Rosa Jr.

Computação UFPel Circuitos Digitais

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 19:

F19 = A·B

Computação UFPel Circuitos Digitais Slide T4.34

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 20:

F20 = C·D

Os grupos devem ter 2, 4, 8 ou 16 elementos

(2ⁿ elementos, onde n é o número de variáveis de entrada)

F20	ĊĎ	СD	(CD		CD	
AB	0	0		1		0	C·D
ĀB	0	0		1	1	0	
AB	0	0		1		0	
ΑB	0	0		1		0	

Computação UFPel Circuitos Digitais Slide T4.35

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 21:

F21 = B·D

Os grupos só podem ter formato retangular ou quadrado

Computação UFPel Circuitos Digitais Slide T4.36

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 22:

 $F22 = B \cdot \overline{D}$

Os elementos de um grupo podem estar separados, devido às limitações da representação do mapa

Computação UFPel Circuitos Digitais Slide T4.37

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Mapas de Karnaugh

Como usar, considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 23:

 $F23 = \overline{B} \cdot \overline{D}$

Computação UFPel Circuitos Digitais Slide T4.38

Cobertura dos Mapas de Karnaugh

Cconsiderando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 24:

 $F24 = \overline{C} \cdot \overline{D} + C \cdot \overline{D}$

Opa!

Mas dá para simplificar mais... (Usar o maior grupo,ao invés dos grupos que o compõem)

Slide T4.39

Prof. Leomar S. Rosa Jr.

Circuitos Digitais

Álgebra Booleana e Circuitos Lógicos

Cobertura dos Mapas de Karnaugh

Considerando soma de produtos

- 1. Identificar grupos de "1s" adjacentes
- 2. Para cada grupo, escrever a equação de produto (já simplificada)
- 3. Montar a equação em soma de produtos

Exemplo 24:

F24 = D

Computação UFPel Circuitos Digitais Slide T4.40

Cobertura dos Mapas de Karnaugh

Considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

Exemplo 25:

 $F25 = \overline{A} \cdot D + B \cdot \overline{D}$

- Usar somente os grupos essenciais (em vermelho)
- O grupo não-essencial não deve ser usado (neste caso)

 $\bar{\mathsf{A}} \cdot \mathsf{D}$ CD F25 CD B·D 0 1 0 (1 AB 1 1 1 1 AB AB 1 0 0 1 0 AB 0 0 0

Computação UFPel **Circuitos Digitais**

Slide T4.41

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Cobertura dos Mapas de Karnaugh

Considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

Exemplo 26:

Computação UFPel Circuitos Digitais

Slide T4.42

Cobertura dos Mapas de Karnaugh

Exercício 7:

Para a função dada pela equação abaixo:

- Encontre a equação mínima em soma de produtos
- Desenhe o circuito resultante e calcule seu custo

$$S7(A,B,C,D) = \sum (0, 1, 2, 5, 6, 7, 13, 15)$$

S7	CD	CD	CD	CD
$\bar{A}\bar{B}$	1	1	0	1
$\bar{A}B$	0	1	1	1
AB	0	1	1	0
\bar{AB}	0	0	0	0

Computação UFPe Circuitos Digitais

Slide T4.43

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Funções Incompletamente Especificadas

- São funções nas quais uma ou mais posições não estão especificadas
- Tais posições são denominadas *don't cares*, e são representadas por X ou DC ou 2 ou * ...

F29	CD	СD	CD	CD
$\bar{A}\bar{B}$	1	1	Х	1
ĀB	0	0	Х	0
AB	1	1	Х	Х
ΑB	0	0	0	0

Computação UFPel Circuitos Digitais Slide T4.44

Funções com Don't Care

Como fazer a cobertura em Soma de Produtos

- O objetivo é cobrir os "1s" da função
- Posições com don't care podem ser usadas para ajudar a melhorar a cobertura dos "1s"
- Cada posição com don't care é totalmente independente das demais

Computação UFPe Circuitos Digitais Slide T4.45

Prof. Leomar S. Rosa Jr.

Álgebra Booleana e Circuitos Lógicos

Funções com Don't Care

Considerando soma de produtos

- 1. Cobrir os "1s"
- 2. Utilizar as posições com *don't care* para encontrar a melhor cobertura
- 3. Cada posição com don't care é totalmente independente das demais

Exemplo 29:

F29	CD	СD	CD	CD
ĀB	1	1	Х	1
AB	0	0	Х	0
AB	1	1	Х	Χ
ΑB	0	0	0	0

Computação UFPel Circuitos Digitais Slide T4.46

Funções com Don't Care

Exercício 13:

- Encontre a equação mínima em soma de produtos para a função abaixo
- Desenhe o circuito resultante e calcule seu custo

$$S13(A,B,C,D) = \sum (0, 3, 5, 6, 7) + DC (10, 11, 12, 13, 14, 15)$$

S13	ĊD	СD	CD	CD
ΑB	1	0	1	0
ĀB	0	1	1	1
AB	Χ	Х	Х	Х
ΑB	0	0	Х	Х

Computação UFPel Circuitos Digitais Slide T4.47