Solució al problema 28 b) I

$$U^{T}U = \begin{pmatrix} u_{11} & & & & \\ u_{12} & u_{22} & & & \\ \vdots & \vdots & \ddots & \\ u_{1n} & u_{2n} & \dots & u_{nn} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ & u_{22} & \dots & u_{2n} \\ & & \ddots & \vdots \\ & & & u_{nn} \end{pmatrix}$$

Com que U és triangular superior, tenim

$$a_{ij} = \sum_{k=1}^{\min\{i,j\}} u_{ki} u_{kj} , \ 1 \leq i,j \leq n.$$

Solució al problema 28 b) II

Igualem els elements de A i de U^TU , fila a fila i calculem primer l'element de la diagonal i després els altres

$$(u_{11}, u_{12}, \dots, u_{1n}, u_{22}, u_{23}, \dots, u_{2n}, u_{33}, \dots, u_{nn})$$
. Tenim: fila i $(i = 1, \dots, n)$

$$a_{ii} = \sum_{k=1}^{i} u_{ki}^2$$
 i $a_{ij} = \sum_{k=1}^{i} u_{ki} u_{kj}$, $j > i$

$$u_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} u_{ki}^2\right)^{1/2}$$
 i $u_{ij} = \left(a_{ij} - \sum_{k=1}^{i-1} u_{ki} u_{kj}\right) / u_{ii}, j = i+1, \dots, n$

Solució al problema 28 b) III

Oper.	Pas <i>i−</i> è	Total d'Oper.
$\sqrt{}$	1	$\sum_{i=1}^{n} 1 = n$
*	$\overbrace{i-1}^{u_{ij}} + \overbrace{(i-1)(n-i)}^{u_{ij},j>i}$	$\sum_{i=1}^{n} (i-1) + \sum_{i=1}^{n} (i-1)(n-i) = \frac{n(n^2-1)}{6}$
+,-	$\overbrace{i-1}^{u_{ii}} + \overbrace{(i-1)(n-i)}^{u_{ij},j>i}$	$\frac{n(n^2-1)}{6}$
(e)	n – i	$\sum_{i=1}^{n} (n-i) = (n-1+0)n/2 = \frac{n(n-1)}{2}$

Solució al problema 28 b) IV

Nombre de productes:

$$\sum_{i=1}^{n} (i-1) + \sum_{i=1}^{n} (i-1)(n-i) = \frac{n(n-1)}{2} + n \sum_{i=1}^{n} (i-1) - \sum_{i=1}^{n} (i-1)i$$

$$= \frac{n(n-1)}{2} + \frac{n^2(n-1)}{2} - \sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} i$$

$$= \frac{n(n-1)}{2} + \frac{n^2(n-1)}{2} - \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n^2-1)}{6}$$

