

(a) Diagrama de um radar CWFM. (b) Frequência instantânea de x(t).

Figura 1: Figuras relevantes para a prova.

Questão 1

O diagrama da Figura 1a descreve o princípio de operação de um radar do tipo CWFM. O sinal transmitido x(t) é o resultado da modulação de uma onda do tipo dente de serra por um modulador de frequência, e sua frequência instantânea é ilustrada na Figura 1b. O período da onda modulante é T_0 , e a frequência da portadora é f_c . O sinal emitido reflete em um anteparo posicionado à uma distância d m do transmissor. A velocidade de propagação da onda no meio é c $\frac{m}{s}$. Isso dito, responda e justifique as perguntas abaixo.

- (i) Descreva o sinal refletido $\hat{x}(t)$ em termos de x(t), $d \in c$.
- (ii) Descreva a frequência instantânea de $\hat{x}(t)$, em termos de $f_i(t)$, $d \in c$.
- (iii) O sinal $p(t) = \hat{x}(t)x(t)$ é filtrado por um filtro passa-baixas com frequência de corte f_c , gerando o sinal m(t). Descreva a frequência instantânea de m(t), em função das variáveis mencionadas.
- (iv) O conceito de *frequência média* pode ser definido como a integral da frequência instantânea absoluta dividido pelo intervalo de integração, isso é,

$$\bar{f} = \frac{1}{T} \int_{\langle T \rangle} |f_i(t)| \, \mathrm{d}t. \tag{1}$$

Considere $\frac{d}{c}$ desprezível com relação a T_0 . Como a frequência média de m(t) se relaciona com d?

(v) (Bônus) O bloco SCOPE é um osciloscópio operando no modo frequencímetro. A precisão desse dispositivo o permite medir frequências (médias) com sensibilidade de 1 Hz. Qual deve ser a relação entre f_m e T_0 para que se possa medir distâncias com precisão de 1 m?

Sugestão: Utilize de desenhos e esboços durante a resolução das questões acima.