	DELIA
	Proof for square root Proof for square root Proof for square root Proof for square root Proof for square root
4)	Proof for square root To show that sqrt(n) = m where m2 < n < (m+1)2
	10 show that squeen
	I PIVI AIRYSIAN 3
	Basis: When $n=0$, $sqrt(n)=0=m$ $\therefore 0^2=0$
	Induction Hypothesis: For 0 < k <n (k)="1" 12="" <="" k<(1+1)2<="" sqrt="" td="" where=""></n>
	SQYE CR) = 10 min
	Induction Step:
	Induction Step: Let a = Reset a = sqrt ([n]) where [.] is the floor function
	$\Rightarrow \alpha^2 \leq \lceil n \rceil < (\alpha+1)^2$
	4
	⇒ 4.2 < 1. [n] ≤ (29+2) ²
	$\Rightarrow 4a^{2} \leq 4[n] \leq (2a+2)^{2}$
	=> $(2a)^2 < 4[n] < n < (2a+2)^2 - 0$
	[4]
	Case I: $(2a+1)^2 > n$
	Sgrt (n) = 2 × Sgrt ([n])
	= 2 a
	Since (2a)2 ≤ n < (2a+1)2 (From (1))
	This algorithm gives the correct result
	0
	$(ase \pi)$ $(2a+1)^2 \leq \pi$
	case π (2a+1) ² < π $sgrt(n) = 2 \times \frac{sgrt}{(n)} + 1$
	Syrection - ax and (Lin)
	= 2a +1
	Since (2a+1)2 KnK (2a+2)2 (From (1)
	Hence this algorithm gives the correct answer
1	

	-
Proof of iterative process of fibonacci series	
flux fis(h)/= Invaniant: (n≥3) ∧ (3< < <n) &="" (a="fib(c-2)" b="fi</td" ∧=""><td>ble</td></n)>	ble
Initialisation: for $n=3$, since $c_6=3$ $n=c$	
hence $a+b=2=fib(3)$ $= fib(1)+fib(2)$	
Maintainence: Let for some antitary step'c', $a = fib(c-2)$	
$b = f'b(c-1)$ Hence to prove for $(c+1)^{th}$ step, $a = fib(c-1)$ $b = fib(c)$	
fun fib-iter (n, fib(c-1), fib(c-1), c+1) = fib-iter (n, fib(c-1), fib(c-1) + fib(c-2), c+	<u>2)</u>
By mathematical defination $fib(c-1) + fib(c-2) = fib(c)$ hence $a = fib(c-1)$, $b = fib(c)$	
Hence proved	
Final Step: When C=n a=fib(n-2)	
b = fib(n-1) $hence fib(n) = fib(n-2) + fib(n-2)$	<u>n-1)</u>
LHS = RHS honce, output will be fib(n) = fib(n-1) + fib	Cn==