Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 11

Aufgabe 11.1 (3+4 Punkte)

Geben Sie für die folgenden Sprachen $L_{1,2}$ jeweils einen Endlichen Akzeptor $A_{1,2}$, einen Regulären Ausdruck $R_{1,2}$ und eine Rechtslineare Grammatik $G_{1,2}$ an, so dass für $i \in \{1,2\}$ gilt: $L(A_i) = \langle R_i \rangle = L(G_i) = L_i$.

a) $L_1 = \{ w \in \{a, b\}^* \mid w \text{ enthält das Teilwort abb} \}.$

Endlicher Automat:

Regulärer Ausdruck: $R = (a \mid b) * abb(a \mid b) *$ Rechtslineare Grammatik: $G = (\{X,Y\}, \{a,b\}, X, \{X \rightarrow aX \mid bX \mid abbY, Y \rightarrow aY \mid bY \mid \epsilon\})$

b)
$$L_2 = \{ w \in \{ a, b \}^* \mid w \notin L_1 \}.$$

Endlicher Automat:

Regulärer Ausdruck: $b* \mid b*a(a \mid (ba))*(b \mid \emptyset*)$ Rechtslineare Grammatik: $G = (\{S, X\}, \{a, b\}, S, \{S \rightarrow bS \mid \epsilon \mid aX, X \rightarrow aX \mid baX \mid b \mid \epsilon\})$

Aufgabe 11.2 (2 Punkte)

Geben Sie einen Regulären Ausdruck R an, so dass gilt: $\langle R \rangle = \{ w \in \{0,1\}^* \mid Num_2(w) \text{ ist durch 3 teilbar} \}.$

Hinweis: Überlegen Sie sich, wie der Endliche Akzeptor aussieht, der $\langle R \rangle$ erkennt.

$$R = (0 \mid 1(01 * 0) * 1)*$$

Aufgabe 11.3 (1+1+2+1+1) Punkte

In dieser Aufgabe geht es um reguläre Ausdrücke über dem Alphabet $A = \{a, b\}$.

- a) Wie viele Regex-Bäume gibt es, die die Höhe 0 haben?
 - 3 (a, b und \emptyset)
- b) Wie viele Regex-Bäume gibt es, die die Höhe 1 haben?

Die Wurzel kann * sein; dann gibt es für den einen Knoten, der an der Wurzel hängt, 3 Möglichkeiten.

Die Wurzel kann | sein; dann gibt es für die beiden Knoten, die an der Wurzel hängt, jeweils 3 Möglichkeiten, also insgesamt 9.

Die Wurzel kann \cdot sein; dann gibt es für die beiden Knoten, die an der Wurzel hängt, jeweils 3 Möglichkeiten, also insgesamt 9.

Man erhält also 21 verschiedene Regex-Bäume der Höhe 1.

c) Wie viele Regex-Bäume gibt es, die die Höhe 2 haben?

Die Wurzel kann * sein; dann gibt es für den Baum der Höhe 1, der an der Wurzel hängt, 21 Möglichkeiten.

Die Wurzel kann | sein. Falls beide an der Wurzel hängenden Teilbäume die Höhe 1 haben, gibt es für beide Teilbäume jeweils 21 Möglichkeiten, also insgesamt 441. Falls der linke Teilbaum die Höhe 0 hat, gibt es für den linken Baum 3 Möglichkeiten und für den rechten Baum 21, also insgesamt 63.

Gleiches gilt, wenn der rechte Teilbaum die Höhe 0 hat und der linke Teilbaum die Höhe 1.

Für die Wurzel ergeben sich somit 567 Möglichkeiten.

Analog ergeben sich 567 Möglichkeiten, falls die Wurzel · ist.

Insgesamt ergeben sich also $2 \cdot 567 + 21 = 1155$ Regex-Bäume der Höhe 2.

d) Was ist die geringste Anzahl an Knoten, die ein Regex-Baum der Höhe n besitzen kann?

n+1, wenn alle Knoten außer dem einzigen Blatt * sind.

e) Was ist die höchste Anzahl an Knoten, die ein Regex-Baum der Höhe n besitzen kann?

 $\sum_{i=0}^n 2^n = 2^{n+1} - 1,$ falls alle Knoten außer den Blättern | oder \cdot sind.

Aufgabe 11.4 (2+2 Punkte)

Gegeben sei ein Mealy-Automat $A_1 = (Z_1, z_1, X, f_1, Y, g)$ und ein Endlicher Akzeptor $A_2 = (Z_2, z_2, X, f_2, F)$.

a) Geben Sie eine rechtslineare Grammatik $G_1=(N_1,T_1,S_1,P_1)$ an, so dass gilt: $L(G_1)=\{g^{**}(z_1,w)\mid w\in X^*\}.$ (Hinweis: Wählen Sie $N=Z_1$ und $S=z_1$.)

$$G_1 = (Z_1, Y, z_1, P) \text{ mit }$$

$$P = \{z \to g(z, x) f_1(z, x) \mid z \in Z_1 \land x \in X\} \cup \{z \to \epsilon \mid z \in Z_1\}$$

b) Die Grammatik $G_2=(N_2,T_2,S_2,P_2)$ sei definiert durch $N_2=Z_1\times Z_2, T_2=Y, S=(z_1,z_2)$ und $P=\{(s_1,s_2)\to g(s_1,x)(f_1(s_1,x),f_2(s_2,x))\mid s_1\in Z_1\wedge s_2\in Z_2\wedge x\in X\}\cup\{(s_1,s_2)\to\epsilon\mid s_1\in Z_1\wedge s_2\in F\}$ Geben Sie eine mathematisch präzise Beschreibung für $L(G_2)$ an.

$$L(G_2) = \{g^{**}(z_1, w) \mid w \in L(A_2)\}\$$