# Food Interpolation using GANs

## Main Idea

- Food dataset with labels
- Train GANS with auxiliary classifier
- Interpolate between Burger



and Pizza



## **Initial Setup**

- Dataset: Food 101
- GAN setup from WGAN-GP paper
- Use auxiliary classifier to encode classes
- GPU: GeForce GTX 1080 Ti (11GB Mem.)

| Generator $G(z)$ |                     |          |                           |  |
|------------------|---------------------|----------|---------------------------|--|
|                  | Kernel size         | Resample | Output shape              |  |
| z                | -                   | -        | 128                       |  |
| Linear           | -                   | -        | $128 \times 4 \times 4$   |  |
| Residual block   | $[3\times3]\times2$ | Up       | $128 \times 8 \times 8$   |  |
| Residual block   | $[3\times3]\times2$ | Up       | $128 \times 16 \times 16$ |  |
| Residual block   | $[3\times3]\times2$ | Up       | $128 \times 32 \times 32$ |  |
| Conv, tanh       | $3\times3$          | -        | $3\times32\times32$       |  |

| Critic $D(x)$   |                     |          |                           |  |
|-----------------|---------------------|----------|---------------------------|--|
|                 | Kernel size         | Resample | Output shape              |  |
| Residual block  | [3×3]×2             | Down     | $128 \times 16 \times 16$ |  |
| Residual block  | $[3\times3]\times2$ | Down     | $128 \times 8 \times 8$   |  |
| Residual block  | $[3\times3]\times2$ | -        | $128 \times 8 \times 8$   |  |
| Residual block  | $[3\times3]\times2$ | _        | $128 \times 8 \times 8$   |  |
| ReLU, mean pool | _                   | -        | 128                       |  |
| Linear          | -                   | -        | 1                         |  |

## **First Results**

• Iterations: 16.000

• Resolution: 64 x 64

• Batch Size: 256



#### Issues

- Results with a lot of artifacts
- Weird patterns
- Bad colors
- Dataset not well suited for GANs!
- → Download images from Google







## **Second Results**

• Iterations: 16.000

• Resolution: 64 x 64

• Batch Size: 256



## First Interpolations



## **First Interpolations**

Lets go big!



## **Third Results**

• Iterations: < 10.000

• Resolution: 256 x 256

• Batch Size: 16



## **Solution**

- Use progressive growing GAN architecture
  - Start with 4x4
  - Train 50 epochs stabilizing
  - Upscale
  - o Train 50 epoch fade-in
  - Repeat!

## **Fourth Results**

• Epochs: 700

• Res.: 256 x 256



Adaptive Batch Size:

 $\circ$  4x4  $\rightarrow$  1024, 8x8  $\rightarrow$  1024, 16x16  $\rightarrow$  512, 32x32  $\rightarrow$  256, 64x64  $\rightarrow$  128, 128x128  $\rightarrow$  50, 256x256  $\rightarrow$  30



# **Interpolations**

