

DHARMSINH DESAI UNIVERSITY, NADIAD **FACULTY OF TECHNOLOGY**

B.TECH SEMSTER-I (CE, IT, EC)

SUBJECT: (BS101) Mathematics-I

Examination : First Internal

: 18/09/2023

Seat No. :112 :Monday

Date Time : 1 Hr 15min. Day : 36 Max. Marks

INSTRUCTIONS:

Figures to the right indicate maximum marks for that question.

The symbols used carry their usual meanings.

Assume suitable data, if required & mention them clearly.

Draw neat sketches wherever necessary.

[12] Q.1 Do as directed.

[4]

[4]

[6]

(a) Check whether the set $s = \{(1,1,2), (2,1,4), (1,0,3), (1,1,1)\}$ is linearly dependent or not? If so, find [4] CO₄ the relation between them.

Expand $y = \log(1 + \sin x)$ in powers of x up to the term containing x^4 . CO₃

Verify Roll's theorem for the function $f(x) = x^4$; $x \in [-1,1]$. CO₃

Q.2 [12] Attempt Any TWO from the following questions.

(a) Determine which [6] the value of **CO4** x+2y+z=3, $x+y+z=\lambda$, $3x+y+3z=\lambda^2$ are consistent and Solve them for each λ .

(b) Using Gauss Jordan method, find the inverse of the matrix $\begin{vmatrix} 3 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & 4 & -4 \end{vmatrix}$.

[6] for which $(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0, \ (\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0, \ 2x + (3\lambda + 1)y + (3\lambda - 3)z = 0$ CO₄ have a nontrivial solution and solve them completely in each cases.

Q.3 [12]

CO₃ [6] (a) Derive the series for $y = \tan^{-1} x$ and also expand $y = \tan^{-1} \left\{ \frac{\sqrt{1 + x^2 - 1}}{x} \right\}$ in powers of x up to the

term containing x^4 CO3 A (b) Prove that, $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1} b - \sin^{-1} a < \frac{b-a}{\sqrt{1-b^2}}$ and $\frac{\pi}{6} + \frac{1}{5\sqrt{2}} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}$, where 0 < a < b < 1.

CO₃ A (a) Derive the series for $y = e^x$ and also expand $y = \frac{x}{2} \left| \frac{e^x + 1}{e^x - 1} \right|$ in powers of x up to the term [6] containing x^4 .

(b) Verify Cauchy mean value theorem for $f(x) = e^x$ and $g(x) = e^{-x}$; $x \in [a,b], a,b > 0$ [6]

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER-I [CE, IT, EC] SUBJECT: (23BS101) MATHEMATICS-I

Examination

: Second sessional

Seat No. Day

Date Time

: 11:45 to 1:00 pm

: 23/10/2023

Max. Marks

INSTRUCTIONS:

- Figures to the right indicate maximum marks for that question.
- The symbols used carry their usual meanings.
- Assume suitable data, if required & mention them clearly.
- Draw neat sketches wherever necessary.

Q.1 Do as directed.

[12]

CO1 A (a)

(1) Prove that $\beta(m, n) = \beta(n, m)$

[6]

[6]

(2) The value of $\int_0^{\frac{\pi}{2}} \sqrt{\cot \theta} \ d\theta$ is _____ using Beta function.

(3) Find the value of m(>0) given that $\beta(m,2) = \frac{1}{6}$.

CO6 A (b) (1) If
$$A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$$
 then find the eigenvalues of A^{-1} , A^{5} .

(2) Check whether $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is orthogonal matrix or not? If so, find A^{-1} .

(3) If two eigenvalues of $\begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$ are 1 and 2 then the third eigenvalue

Q.2 Attempt any TWO from the following [12]

[6]

Find the eigenvalue and eigenvector for the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \end{bmatrix}$. [6]

A (b) Diagonalize the matrix $A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$ and hence find the matrix A^4

[6] (c) Find the eigenvalue and eigenvector for the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \end{bmatrix}$. Hence find the eigenvalues of $A^2 - 2A$.

Q.3

(a) State and prove relation between Beta and Gamma function and hence evaluate [6]

 $\int_{0}^{\infty} \frac{\sqrt{x}}{1+2x+x^2} dx .$

CO1 A

(b) Evaluate
$$\int_{0}^{\infty} xe^{-x^{8}} dx \cdot \int_{0}^{\infty} x^{2}e^{-x^{4}} dx$$
 in terms of Gamma function. [6]

(a) Prove that $\beta(n, n) = 2^{1-2n}\beta(n, \frac{1}{2})$ and hence find the value of $\Gamma^{\frac{1}{4}}\Gamma^{\frac{3}{4}}$. [6] Q.3

(b) (1) Prove that $\beta(m, n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$ [6]

(2) Evaluate $\int_{5}^{9} \sqrt[4]{(x-5)(9-x)} dx$ using Beta and Gamma function.

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER-I [CE, IT, EC] SUBJECT: (23BS101) MATHEMATICS-I

Examination

: Third sessional : 18/12/2023 Seat No.

: 112 : Monday

Date Time

: 09:15 to 10:30 am

Day Max. Marks

: Monda

INSTRUCTIONS:

- 1. Figures to the right indicate maximum marks for that question.
- The symbols used carry their usual meanings.
- 3. Assume suitable data, if required & mention them clearly.
 - . Draw neat sketches wherever necessary.

Q.1 Do as directed.

[12] [6]

A (a)

(1) Does $f(x,y) = \begin{cases} \frac{x^2 - y^2}{y^2 + x^2}, & \text{for } (x,y) \neq (0,0) \\ 0, & \text{for } (x,y) = (0,0) \end{cases}$ continuous at (0,0)?

CO₅

(2) If $u = x^2 e^{y} z^3$ and $x = \sin 2t$, $y = \cos t$, $z = t^3$ find $\frac{du}{dt}$.

(3) If
$$u = \tan^{-1} \left(\frac{x}{y} \right)$$
 then prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

A (b)

[6]

CO2

(1) Find constants a,b,c so that $\overline{V} = (x+2y+az)i + (bx-3y-z)j + (4x+cy+2z)k$ is irrotational.

- (2) For $\overline{F} = (y^2 z^2 + 3yz 2x)i + (3xz + 2xy)j + (3xy 2xz + 2z)k$, show that \overline{F} is solenodial vector.
- (3) Find the unit normal vector to the surface $x^2 + 2y^2 + z^2 = 7$ at (1, -1, 2).

Q.2 Attempt any TWO from the following

[12]

(a) If
$$\theta = t^{\frac{-3}{2}} e^{\frac{-r^2}{4t}}$$
, prove that $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$ [6]

CO₅ A

- **(b)** Find the extreme values for $f(x, y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$
- [6]
- (c) Find the maximum and minimum distance of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$.

Q.3

(a) Find the angle between the normals to the surface $xy = z^2$ at the points [6]

CO2 A (1,9,-3) and (-2,-2,2).

(b) Find the directional derivative of $\phi = xy^2 + yz^2$ at (2, -1, 2) along the normal to the surface xy + yz + zx = 3 at the point (1,1,1).

OR

Q.3 Show that $\vec{F} = (2xyz)i + (x^2z + 2y)j + (x^2y)k$ is irroational and find a scalar [6]

CO2 $_{\mathbf{A}}$ function ϕ such that $\overline{F} = \nabla \phi$.

(b) Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2, -1, 2) along tangent to [6] the curve $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$ at t=0.