Producto booleano

Ejemplo: sean las matrices
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$

Vamos a hallar la matriz producto $C = A \odot B$

Como A es una matriz de 2x3 y B una de 3x2, C es de 2x2 $C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

$$c_{11} = (a_{11} \land b_{11}) \lor (a_{12} \land b_{21}) \lor (a_{13} \land b_{31}) = (1 \land 1) \lor (1 \land 1) \lor (0 \land 0) = 1$$

$$c_{12} = (a_{11} \land b_{12}) \lor (a_{12} \land b_{22}) \lor (a_{13} \land b_{32}) = (1 \land 0) \lor (1 \land 0) \lor (0 \land 1) = 0$$

$$c_{21} = (a_{21} \land b_{11}) \lor (a_{22} \land b_{21}) \lor (a_{23} \land b_{31}) = (0 \land 1) \lor (1 \land 1) \lor (0 \land 0) = 1$$

$$c_{22} = (a_{21} \land b_{12}) \lor (a_{22} \land b_{22}) \lor (a_{23} \land b_{32}) = (0 \land 0) \lor (1 \land 0) \lor (0 \land 1) = 0$$

COMPOSICIÓN DE RELACIONES

Sean A, B y C tres conjuntos y R1: A \rightarrow B y R2: B \rightarrow C dos relaciones, llamamos composición de R₁ seguida de R₂, que se indica R₂ o R₁, a

$$R_2 \circ R_1 = \{ (a, c) / \exists b \in B \land (a, b) \in R_1 \land (b, c) \in R_2 \}$$

 $R_2 \circ R_1$

Ejemplo: Sean los conjuntos $A = \{a, b\} B = \{x, y, z, t\} C = \{1, 2, 3\} y$ las relaciones binarias:

$$R : A \rightarrow B / R = \{ (a; x), (a; z), (b; y), (b; z), (b; t) \}$$

$$S : B \rightarrow C / S = \{ (x; 2), (x; 3), (y; 1), (z; 2), (t; 2) \}$$

$$M_{S \circ R} = M_R \odot M_S$$

$$M_{R} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}^{2x4} \quad M_{S} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{4x3}$$

$$M_{S \circ R} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \odot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$M_{S \circ R} = \frac{a}{b} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Propiedades

- ightharpoonup Si R₁: A ightharpoonup B, R₂: B ightharpoonup C son relaciones <u>no</u> se verifica la propiedad conmutativa R₂ o R₁ \neq R₁ o R₂
- \triangleright propiedad asociativa R₃ o (R₂ o R₁) = (R₃ o R₂) o R₁
- Arr R₁⁻¹ y R₂⁻¹ son las relaciones recíprocas de R₁ y R₂ \Rightarrow (R₂ o R₁)⁻¹ = R₁⁻¹ o R₂⁻¹
- Sean A, B, C tres conjuntos finitos, R₁: A \rightarrow B, R₂: B \rightarrow C dos relaciones y M_{R1} y M_{R2} las matrices de adyacencia \Rightarrow para la composición R₂ o R₁ la matriz de adyacencia es $M_{R_2 \circ R_1} = M_{R_1} \odot M_{R_2}$

PROPIEDADES DE LA RELACIONES

Sean A un conjunto y una relación R: A → A

R es reflexiva $\Leftrightarrow \forall a \in A \Rightarrow (a, a) \in R$ o bien a R a

El dígrafo de R tiene bucles en todos sus vértices La matriz de R tiene todos "I" en la diagonal principal

Propiedad : \mathbf{R} es reflexiva $\Leftrightarrow \Delta_{\mathbf{A}} \subseteq \mathbf{A}$

Matricialmente

$$I \leq M_R$$

R es arreflexiva $\Leftrightarrow \forall a \in A \Rightarrow (a, a) \notin R$

En su dígrafo ningún elemento tiene bucle

En la matriz de R la diagonal principal son todos "0"

Propiedad: R es arreflexiva $\Leftrightarrow \Delta_A$

Matricialmente

$$I \wedge M_R = N \ (matriz \ nula)$$

√ Simé

R es simétrica
$$\Leftrightarrow \forall$$
 (a,b) \in R \Rightarrow (b,a) \in R o bien \forall a, \forall b \in A: a R b \Rightarrow b R a

En el dígrafo de R si hay un arco dirigido de "a" a "b" existe también un arco dirigido de "b" a "a"

$$R$$
 es simétrica $\Leftrightarrow R = R^{-1}$

La matriz de R es simétrica respecto de la diagonal principal MR = (MR)

✓ Asimétrica

R es asimétrica $\Leftrightarrow \forall$ (a,b) \in R \Rightarrow (b,a) \notin R o bien \forall a, \forall b \in A: a R b \Rightarrow b R a

La MR \wedge (MR) = N matriz nula En el dígrafo de R si hay un arco dirigido de "a" a "b" no hay de "b" a "a"

✓ Antisimétrica

R es antisimétrica \Leftrightarrow Si (a, b) \in R \wedge (b, a) \in R \Rightarrow a = b o bien \forall a, \forall b \in A: a R b \wedge b R a \Rightarrow a = b

Propiedad:

 $R \ es \ antisim\'etrica \Leftrightarrow R \cap R^{-1} \subseteq \Delta_A \quad con \ \Delta_A = \{(a;a) / a \in A\}$

Matricialmente

 $MR \wedge (MR)^{t} \leq I \text{ matriz identidad}$

El dígrafo de R tiene la propiedad de que entre dos vértices distintos cualesquiera hay a lo sumo un arco dirigido.

✓ Transitiva

R es transitiva \Leftrightarrow Si (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R o bien \forall a, b, c \in A: a R b \land b R c \Rightarrow a R c

El dígrafo de R tiene la propiedad de que siempre que existan arcos dirigidos de "a" a "b" y de "b" a "c" entonces también existe un arco dirigido de "a" a "c"

Propiedad

$$R^2 = R \circ R \subseteq R$$

Matricialmente

 $R \ estransitiva \Leftrightarrow M_R \square \ M_R \leq M_R$

