线性代数 第25讲

12月6日

奇异值分解

上一讲要点回顾

奇异值分解

广义逆

矩阵的谱范数

对称正定矩阵

定义6.2.1 (正定矩阵) 给定 n 阶实矩阵 A, 如果对任意非零向量 $x \in R^n$, 都有 $x^T Ax > 0$, 则称 A 正定.

命题 6.2.2 对实对称矩阵 A,以下叙述等价:

- 1. A 正定;
- 2. A 的特征值都是正数;
- 3. 存在可逆矩阵 T,使得 $A = TT^{T}$;
- 4. A 有 LDL^T 分解,且 D 的对角元素都是正数;
- 5. A 的顺序主子式都是正数;
- 6. A 的顺序主子阵都正定.

定义 6.2.3 给定 n 阶实矩阵 A, 如果对任意非零向量 $x \in \mathbb{R}^n$, 都有

- 1. $x^TAx > 0$, 则称矩阵 A 正定, 如前定义;
- 2. $x^{T}Ax \ge 0$,则称矩阵 A 半正定;
- 3. $\mathbf{x}^{\mathrm{T}}A\mathbf{x} < 0$,则称矩阵 A 负定;
- $4. x^{T}Ax \leq 0$,则称矩阵 A 半负定;

如果 A 不满足以上任何一种条件,则称 A 不定.

命题 6.2.4 对实对称矩阵 A, 以下叙述等价:

- 1. A 半正定;
- 2. A 的特征值都是非负数;
- 3. 存在矩阵 T,使得 $A = TT^{\mathrm{T}}$;
- 4. A 存在 LDL^{T} 分解,且 D 的对角元素都是非负数.

练习6.2.11 举例说明, 实对称矩阵 A 的所有顺序主子式都非负,但 A 并不半正定

练习6.2.13 证明, 矩阵 A 为实对称矩阵半正定, 当且仅当它的所有主子式都非负

合同变换

定义 6.2.6 (合同) 对方阵 A, 如果存在可逆矩阵 X 使得 $X^{T}AX = B$, 则称 A 和 B **合同**, 或 A 合同于 B.

命题 6.2.7 方阵的合同关系是等价关系.

命题 6.2.8 对实对称矩阵 A,存在可逆矩阵 X,使得 $X^{T}AX = J = \begin{bmatrix} I_{p} \\ -I_{r-p} \\ 0 \end{bmatrix}$,

其中 $r = \operatorname{rank}(A), 0 \leq p \leq r$.

命题 6.2.8 中的 J 称为实对称矩阵 A 的**合同标准形**.

定理6.2.9 (Sylvester 惯性定律) 实对称矩阵的合同标准形唯一,且它的合同标准形中正、负、零对角元的个数分别和它的正、负、零特征值的个数相等.

正惯性指数、负惯性指数,三元组(p, r - p, n - r) 称为 A 的惯性指数或惯量.

容易看出,正惯性指数、负惯性指数分别等于正特征值、负特征值的个数.

n阶实对称矩阵在合同变换下的等价类数目有限,共有 $\frac{(n+1)(n+2)}{2}$ 。

 $f(x_1, x_2, x_3) = 3x_1^2 + x_2^2 - x_3^2 + 2x_1x_2 - x_1x_3 + 4x_2x_3$

$$= (x_1, x_2, x_3) \begin{bmatrix} 3 & 1 & -\frac{1}{2} \\ 1 & 1 & 2 \\ -\frac{1}{2} & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 $X^{T}AX = J = \begin{bmatrix} I_p \\ & -I_{r-p} \\ & 0 \end{bmatrix}$

例 6.2.10 (配平方) 给定 \mathbb{R} 上齐次二次函数 $f(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$,证明 f 可以写成齐次线性函数的平方的和差形式.

证. 令
$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 , $A = \begin{bmatrix} \frac{a_{ij} + a_{ji}}{2} \end{bmatrix}$, 则 $f(\boldsymbol{x}) = \boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}$. 根据命题 6.2.8 ,存在可逆矩阵

$$T = \begin{bmatrix} t_{ij} \end{bmatrix}$$
, 使得 $A = T^{T}JT$. 因此 $f(\mathbf{x}) = (T\mathbf{x})^{T}JT\mathbf{x}$. 令 $\mathbf{y} = T\mathbf{x} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}$, 那么 $y_{i} = \sum_{j=1}^{n} t_{ij}x_{j}$ 是齐次线性函数,而 $f(\mathbf{x}) = y_{1}^{2} + \dots + y_{p}^{2} - y_{p+1}^{2} - \dots - y_{r}^{2}$, 其中 $p \neq A$ 的 正惯性指数, $r \neq A$ 的秩.

注6.2.11 齐次二次函数 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$,称为自变量 x_1, x_2, \dots, x_n 的二次型.

练习6.2.16 证明或举出反例:

- 1. 如果 A 对称正定, 则 A-1 正定.
- 2. 如果 A, B 对称正定, 则 A + B 正定.
- 3. 如果 A, B 对称半正定, 则 A + B 半正定.
- 4. 如果 A, B 对称不定, 则 A + B 不定.
- 5. 如果 A 列满秩, B 对称正定, 则 $A^{T}BA$ 正定.
- 如果 S = A^TA 且 A 有简化 QR 分解 A = QR,
 则 S = R^TR 是 S 的 Cholesky 分解.
- 7. 如果 A, B 正定, 则 AB 的特征值都是正数.

关于长方阵谱分解问题的讨论

目前对特征值的讨论都局限于方阵.

对 $m \times n$ 矩阵 A, 我们能够考虑特征值吗?

特征值的关键是方程 $Ax = \lambda x$. 显然, 当 $m \neq n$ 时, $Ax = \lambda x$ 不能成立.

A 定义了一个 R^n 到 R^m 的线性映射 A, 而 A^T 定义了一个 R^m 到 R^n 的线性映射 A*,

那么 Ax = y, $A^{\mathsf{T}}y = \mu x$ 可能成立吗?

这表示 x 被映射 A 变成了 R^m 的向量 y, 而这个向量被映射 A* 变成了和 x 共线的向量.

事实上,注意到两个线性映射的复合 A*A 的表示矩阵是 A^TA ,

而需要求解的是方程 $A^{T}Ax = \mu x$.

可见 μ 恰好是对称半正定矩阵 $A^{T}A$ 的特征值,一定有 $\mu \geq 0$.

考虑表达的对称性, $Ax = \lambda y$, $A^T y = \lambda x$, 其中 $\lambda^2 = \mu$

4

奇异值和左、右奇异向量

定义 6.3.1 (奇异值) 给定 $m \times n$ 矩阵 A, 如果存在非零向量 $x \in \mathbb{R}^n, y \in \mathbb{R}^m, \sigma \geq 0$, 使得 $Ax = \sigma y$, $A^{\mathrm{T}}y = \sigma x$, 则称 σ 为 A 的一个奇异值, x 为 A 的属于 σ 的一个右奇异向量, y 为 A 的属于 σ 的一个左奇异向量.

可以验证, A 的右奇异向量是 $A^{T}A$ 的特征向量,

类似地, A 的左奇异向量是 AA^{T} 的特征向量,

而 A 的奇异值是 A^TA 或 AA^T 的特征值的算术平方根.

定理 6.3.2 (奇异值分解) 给定 $m \times n$ 矩阵 A, 存在 m 阶正交矩阵 U 和 n 阶正交矩阵 V, 使得 $A = U\Sigma V^{\mathrm{T}}$, 其中

$$\Sigma = \begin{bmatrix} \Sigma_r & O \\ O & O \end{bmatrix}, \quad \Sigma_r = \begin{bmatrix} \sigma_1 \\ & \ddots \\ & & \sigma_r \end{bmatrix}, \quad \sigma_1 \geqslant \cdots \geqslant \sigma_r > 0.$$

定理 6.3.2 (奇异值分解) 给定 $m \times n$ 矩阵 A, 存在 m 阶正交矩阵 U 和 n 阶正交矩阵 V, 使得 $A = U\Sigma V^{\mathrm{T}}$, 其中

$$\Sigma = \begin{bmatrix} \Sigma_r & O \\ O & O \end{bmatrix}, \quad \Sigma_r = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}, \quad \sigma_1 \geqslant \cdots \geqslant \sigma_r > 0.$$

证. 由于 $A^{\mathrm{T}}A$ 对称半正定,因此有谱分解 $A^{\mathrm{T}}A = VAV^{\mathrm{T}}$,其中 Λ 的对角元素都是非负数,并由大到小排列.设 $\Lambda = \begin{bmatrix} \Sigma_r^2 \\ O \end{bmatrix}$,其中 Σ_r 是 r 阶方阵.记 $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$,其中 V_1 是 $n \times r$ 矩阵, V_2 是 $n \times (n-r)$ 矩阵.则 $V_1^{\mathrm{T}}A^{\mathrm{T}}AV_1 = \Sigma_r^2, V_2^{\mathrm{T}}A^{\mathrm{T}}AV_2 = O$,即 $AV_2 = O$. 令 $U_1 = AV_1\Sigma_r^{-1}$,则有 $U_1^{\mathrm{T}}U_1 = \Sigma_r^{-1}V_1^{\mathrm{T}}A^{\mathrm{T}}AV_1\Sigma_r^{-1} = I$,即 U_1 列正交.把 U_1 补成正交矩阵 $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$ (这相当于把 U_1 的列扩充成一组标准正交基),则 有 $U^{\mathrm{T}}AV = \begin{bmatrix} U_1^{\mathrm{T}}AV_1 & U_1^{\mathrm{T}}AV_2 \\ U_2^{\mathrm{T}}AV_1 & U_2^{\mathrm{T}}AV_2 \end{bmatrix} = \begin{bmatrix} \Sigma_r & O \\ O & O \end{bmatrix}$.

分解 $A = U\Sigma V^{T}$ 称为 A 的**奇异值分解**,简称 **SVD**. (Singular Value Decomposition)

由奇异值分解 $A = U\Sigma V^{\mathsf{T}}$,可得 $AV = U\Sigma$, $A^{\mathsf{T}}U = V\Sigma^{\mathsf{T}}$,这就说明 σ_i 是 A 的奇异值, u_i 是 A 的属于 σi 的左奇异向量,vi 是 A 的属于 σi 的右奇异向量.

例 6.3.3 计算
$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \\ 0 & 0 \end{bmatrix}$$
 的一个奇异值分解.

先计算 $A^{T}A$ 的谱分解:

$$A^{\mathrm{T}}A = \begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 45 \\ 5 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^{\mathrm{T}} =: VDV^{\mathrm{T}}.$$

奇异值是
$$\sigma_1=3\sqrt{5},\sigma_2=\sqrt{5},\$$
记 $\varSigma_r=\begin{bmatrix}3\sqrt{5}\\\sqrt{5}\end{bmatrix},\$ 则

$$U_1 = AV\Sigma_r^{-1} = \begin{bmatrix} 3 & 0 \\ 4 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{3\sqrt{5}} & \\ & \frac{1}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ 0 & 0 \end{bmatrix}.$$

将
$$U_1$$
 补成正交矩阵 $U = \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} & 0 \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 令 $\Sigma = \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \\ 0 & 0 \end{bmatrix}$. 矩阵 A 的 SVD 为: $A = U \Sigma V^T$.

$$A = U\Sigma V^T.$$

从例6.3.3 的求解可以看出,

在实际计算奇异值分解时,

只需要计算左右奇异向量中的一组,就可以由定义导出另一组.

对
$$A$$
 的奇异值分解 $A = U\Sigma V^{\mathrm{T}}$,记 $U = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_m \end{bmatrix}, V = \begin{bmatrix} \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_n \end{bmatrix}$,则

- 1. $\mathbf{u}_1, \dots, \mathbf{u}_r$ 是 $\mathcal{R}(A)$ 的一组标准正交基;
- 2. $\boldsymbol{u}_{r+1}, \cdots, \boldsymbol{u}_m$ 是 $\mathcal{N}(A^{\mathrm{T}})$ 的一组标准正交基;
- 3. $\mathbf{v}_1, \dots, \mathbf{v}_r$ 是 $\mathcal{R}(A^{\mathrm{T}})$ 的一组标准正交基;
- 4. $\boldsymbol{v}_{r+1}, \dots, \boldsymbol{u}_n$ 是 $\mathcal{N}(A)$ 的一组标准正交基.

记
$$U_r = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_r \end{bmatrix}, V_r = \begin{bmatrix} \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_r \end{bmatrix}, \ \mathbb{M}$$

$$A = U_r \Sigma_r V_r^{\mathrm{T}} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \cdots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\mathrm{T}},$$

这称为 A 的简化奇异值分解.

Full SVD $(m \ge n)$

Reduced SVD $(m \ge n)$

定义3.3.10 给定 \mathbb{R}^n 的子空间 \mathcal{M} , 对任意 $a \in \mathbb{R}^n$

都有唯一的分解 $\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2$,其中 $\mathbf{a}_1 \in \mathcal{M}, \mathbf{a}_2 \in \mathcal{M}^{\perp}$.

线性变换 $P_{\mathcal{M}}(a) = a_1$ 称为子空间 \mathcal{M} 上的**正交投影(变换)**,

而 $a_1 = P_{\mathcal{M}}(a)$ 称为向量 a 在 \mathcal{M} 上的**正交投影**.

命题 3.3.12 给定 \mathbb{R}^n 的子空间 \mathcal{M} 和向量 \boldsymbol{a} ,而 $\boldsymbol{a}_1 = \boldsymbol{P}_{\mathcal{M}}(\boldsymbol{a})$ 为 \boldsymbol{a} 在 \mathcal{M} 上的正交投影,则 $\|\boldsymbol{a} - \boldsymbol{a}_1\| = \min_{\boldsymbol{x} \in \mathcal{M}} \|\boldsymbol{a} - \boldsymbol{x}\|$.

设 q_1, \dots, q_r 是 \mathcal{M} 的一组标准正交基. 正交投影 $P_{\mathcal{M}}$ 的表示矩阵就是 $Q_rQ_r^{\mathsf{T}}$, 记为 $P_{\mathcal{M}}$.

例 3.3.1 考虑方程组
$$Ax = b$$
, 其中 $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 3 \\ 5 \end{bmatrix}$,

$$Q = \begin{bmatrix} \frac{1}{\sqrt{6}} & 0 \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} \end{bmatrix}. \quad \text{If \mathcal{P}} \\ \text{If \mathcal{P}} \\$$

向量 \boldsymbol{b} 的正交投影分解为 $\boldsymbol{b} = P_A \boldsymbol{b} + (I_3 - P_A) \boldsymbol{b}$,

如果不计算 $\Re(A)$ 的标准正交基, 能否求出正交投影矩阵?

对任意向量 b, 记其在 $\mathcal{R}(A)$ 上的正交投影为 Ax,

则 $b-Ax \perp \mathcal{R}(A)$.

因此 $b-Ax \in \mathcal{R}(A)^{\perp} = \mathcal{N}(A^{\mathsf{T}})$, 即 $A^{\mathsf{T}}(b-Ax) = \mathbf{0}$, 于是 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$.

考虑线性方程组 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$,

 $\mathcal{R}(A^{\mathsf{T}}A) = \mathcal{R}(A^{\mathsf{T}})$, 因此 $A^{\mathsf{T}}b \in \mathcal{R}(A^{\mathsf{T}}A)$.

这说明 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ 有解.

如果 $A^{\mathsf{T}}A$ 可逆, 那么唯一解 $x = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b$,

于是 \boldsymbol{b} 在 $\mathcal{R}(A)$ 上的正交投影是 $A\boldsymbol{x} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\boldsymbol{b}$.

这意味着,关于 A 的正交投影矩阵是 $P_A = A(A^TA)^{-1}A^T$.

最小二乘问题

例 6.3.4 (广义逆) 第 3.3 节中讨论过关于 A 的正交投影矩阵 P_A ,若 $\mathcal{R}(A)$ 的一组基排成矩阵 B,则 $P_A = B(B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}}$. 而矩阵 U_r 的列是 $\mathcal{R}(A)$ 的一组标准正交基,因此 $P_A = U_r U_r^{\mathrm{T}}$.

若记矩阵 $A^+ = V_r \Sigma_r^{-1} U_r^{\mathrm{T}}$,则 $AA^+ = U_r U_r^{\mathrm{T}}$ 是 $\mathcal{R}(A)$ 上的正交投影的表示矩阵, $A^+ A = V_r V_r^{\mathrm{T}}$ 是 $\mathcal{R}(A^{\mathrm{T}})$ 上的正交投影的表示矩阵. 于是 $I - AA^+$ 是 $\mathcal{N}(A^{\mathrm{T}})$ 上的正交投影的表示矩阵. 打一 $A^+ A$ 是 $\mathcal{N}(A)$ 上的正交投影的表示矩阵. 矩阵 $A^+ = V_r \Sigma_r^{-1} U_r^{\mathrm{T}}$ 称为 A 的 Moore-Penrose 广义逆,简称广义逆. 矩阵的广义逆唯一,证明留给读者.

广义逆在解方程组时很有用.

当 A 可逆时,方程组有唯一解 $A^{-1}b$. 此时, A^+ 就是 A 的逆 A^{-1} .

当 Ax = b 有不只一个解时,A 不可逆,但注意到 $b \in \mathcal{R}(A)$,就有 $AA^+b = b$,即 A^+b 是方程组的一个解. 不仅如此, A^+b 还是方程组所有解中长度最小的解. 方程组的解集 是 $\{A^+b + x_0 \mid x_0 \in \mathcal{N}(A)\}$,而 $x_0^TA^+b = ((I-A^+A)x_0)^TA^+b = x_0^T(I-A^+A)A^+b = 0$,因此 $\|A^+b + x_0\|^2 = \|A^+b\|^2 + \|x_0\|^2 \ge \|A^+b\|^2$,这就说明它是长度最小的解.

再考虑方程组无解的情形,即最小二乘问题. 由于 AA^+b 是 b 在 $\mathcal{R}(A)$ 上的正交投影,因此 A^+b 是一个最小二乘解. 事实上, A^+b 也是 Ax=b 的最小二乘解中长度最小的解(为什么?).

奇异值是良态的,即如果矩阵变化不大,那么奇异值变化也不大.

例 6.3.5 考察 Jordan 块 $J_n = \begin{bmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}$, 只有一个 n 重特征值 0; 有两个奇异

值, 是 n-1 重的 1 和 1 重的 0.

给
$$J_n(0)$$
 添加一点微小变化 $\widetilde{J}_n=\begin{bmatrix}0&1\\&0&\ddots\\&&\ddots&1\\10^{-n}&&0\end{bmatrix}$,有 n 个单特征值 $10^{-1}\mathrm{e}^{2\pi\mathrm{i}\frac{j}{n}}$,

 $j = 1, \dots, n$; 有两个奇异值,是 n - 1 重的 1 和 1 重的 10^{-n} .

可以看到,矩阵添加了一点微小变化,特征值的变化比矩阵的变化要大的多,而奇异值的变化则和矩阵的变化相差不大. ②

4

矩阵的谱范数

定义 6.3.6 (矩阵的谱范数) 对任意矩阵 A,非负数 $\max_{x\neq 0} \frac{\|Ax\|}{\|x\|}$ 称为矩阵 A 的谱范数,记为 $\|A\|$.

命题 6.3.7 矩阵的谱范数满足:

- 1. $||A|| \ge 0$,且 ||A|| = 0 当且仅当 A = O;
- 2. ||kA|| = |k|||A||;
- 3. $||A + B|| \le ||A|| + ||B||$;
- 4. $||AB|| \leq ||A|| ||B||$;
- 5. 如果 U, V 正交,则 $||UAV^{\mathrm{T}}|| = ||A||$.
- **命题 6.3.8** 对任意矩阵 A, 矩阵的谱范数 ||A|| 等于 A 的最大奇异值.
- **命题 6.3.9** 设实矩阵 A 的奇异值为 $\sigma_1 \ge \cdots \ge \sigma_n$,相应的右奇异向量为 v_1, \cdots, v_n ,则

$$\sigma_1 = \max_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\|A\boldsymbol{x}\|}{\|\boldsymbol{x}\|}, \qquad \sigma_i = \max_{\substack{\boldsymbol{x} \neq \boldsymbol{0} \\ \boldsymbol{x} \perp \operatorname{span}(\boldsymbol{v}_1, \cdots, \boldsymbol{v}_{i-1})}} \frac{\|A\boldsymbol{x}\|}{\|\boldsymbol{x}\|}, i = 2, \cdots, n.$$

作业 (12月6日)

练习6.3

1(1, 2, 3, 6), 2, 3, 4, 5, 6

12月13日提交