Universidade Federal de Minas Gerais Curso de Engenharia de Sistemas

Visão Geral do Projeto de TCC

Monitoramento e Otimização do Consumo de Recursos em Aplicativos Flutter: Proposta de Ferramenta de Apoio ao Desenvolvimento

Data: 22 de agosto de 2025

Aluna: Beatriz Vocurca Frade

Trabalho de Conclusão de Curso I

Histórico de Revisões

Versão	Data	Autor	Descrição
01.00	22/ago/2025	Beatriz Vocurca Frade	Versão inicial

Sumário

1	Intr	rodução	4		
	1.1	Propósito	4		
	1.2	Público-Alvo	4		
	1.3	Motivação e Justificativa	4		
	1.4	Objetivos	5		
	1.5	Local de Realização	6		
2	2 Visão Geral do Trabalho				
	2.1	Escopo do Trabalho	7		
	2.2	Revisão Bibliográfica	7		
3	8 Metodologia e Cronograma				
4	Referências Bibliográficas				

1 Introdução

1.1 Propósito

Este documento apresenta e especifica o trabalho de conclusão de curso a ser desenvolvido pela aluna Beatriz Vocurca Frade no âmbito do curso de Engenharia de Sistemas da Universidade Federal de Minas Gerais. Sua função é estabelecer uma base formal para o desenvolvimento da pesquisa, servindo como instrumento de avaliação inicial por parte do professor orientador e dos docentes da disciplina de TCC, além de constituir um guia estruturado que permitirá a expansão dos conteúdos aqui delineados em capítulos futuros das monografias correspondentes ao TCC1 e ao TCC2. Trata-se de um texto que busca não apenas explicitar objetivos e delimitações, mas também contextualizar a relevância acadêmica e prática do trabalho, permitindo que a proposta se mostre clara quanto à sua contribuição científica e tecnológica.

1.2 Público-Alvo

O público-alvo imediato deste documento é formado pela própria aluna responsável pelo desenvolvimento, pelo professor orientador e pelos docentes vinculados à disciplina de TCC, incluindo os avaliadores internos e externos responsáveis pela análise do projeto. Em um sentido ampliado, a pesquisa interessa também a pesquisadores de Engenharia de Software, profissionais do setor de desenvolvimento mobile, engenheiros de sistemas envolvidos em aplicações críticas de consumo energético e estudiosos das áreas de eficiência computacional e sustentabilidade digital. Assim, embora seja um documento orientado a um contexto acadêmico específico, seu conteúdo possui pertinência prática e pode dialogar com a comunidade técnica de desenvolvedores de software.

1.3 Motivação e Justificativa

O desenvolvimento e a utilização de aplicativos móveis têm crescido de maneira exponencial ao longo da última década, representando uma das principais vertentes da inovação tecnológica contemporânea. Nesse contexto, o Flutter consolidou-se como um dos frameworks mais utilizados, graças à sua capacidade de permitir o desenvolvimento multiplataforma com desempenho elevado e à ampla rede de suporte proveniente de sua comunidade ativa [1]. Entretanto, a execução de aplicativos móveis envolve, de forma inevitável, o consumo de recursos computacionais fundamentais como CPU, GPU, memória, rede e bateria, elementos que influenciam diretamente a experiência do usuário final e impactam a longevidade e o desempenho dos dispositivos [4, 5].

Na literatura acadêmica, encontra-se ampla discussão acerca da necessidade de eficiência

energética e de uso racional de recursos como parte integrante do desenvolvimento de software moderno [7, 3]. Essa preocupação transcende aspectos técnicos imediatos e conectase a questões de sustentabilidade digital, uma vez que a redução do consumo energético em escala global pode trazer impactos positivos na diminuição da pegada de carbono gerada por sistemas computacionais. Apesar da relevância do tema, o ecossistema Flutter ainda carece de soluções acessíveis e integradas que combinem o monitoramento detalhado do uso de recursos com recomendações práticas de otimização. Ferramentas disponíveis, como DevTools e Perfetto, embora poderosas, apresentam barreiras de adoção por serem excessivamente complexas e pouco amigáveis a desenvolvedores iniciantes ou de nível intermediário, o que limita sua aplicação em projetos cotidianos.

Nesse cenário, o presente trabalho busca preencher a lacuna identificada ao propor o desenvolvimento de uma ferramenta que una o monitoramento de métricas de consumo de recursos a sugestões automáticas de otimização. A relevância da proposta encontra-se, portanto, em duas dimensões complementares. No âmbito acadêmico, o projeto contribui para a ampliação do corpo de conhecimento em Engenharia de Software aplicada a dispositivos móveis, incorporando reflexões sobre desempenho, sustentabilidade e qualidade de sistemas. No âmbito prático, a iniciativa pretende disponibilizar para a comunidade de desenvolvedores uma solução acessível, que democratize o acesso a práticas avançadas de análise de eficiência computacional.

1.4 Objetivos

O objetivo geral deste trabalho é propor e desenvolver uma ferramenta prática capaz de realizar a análise, o monitoramento e a otimização do consumo de recursos em aplicativos móveis desenvolvidos no framework Flutter, abarcando dimensões relacionadas ao processamento de CPU e GPU, ao uso de memória, às chamadas de rede e ao consumo energético da bateria, variáveis que impactam de maneira direta a experiência do usuário e a eficiência dos dispositivos.

De forma articulada a esse objetivo maior, estabelecem-se metas intermediárias que orientam o percurso do trabalho. Pretende-se realizar uma revisão bibliográfica abrangente que fundamente teoricamente o problema e situe o estado da arte na área de monitoramento de desempenho e consumo em dispositivos móveis. Em seguida, será elaborado um levantamento sistemático dos requisitos funcionais e não funcionais da ferramenta proposta, garantindo clareza quanto às funcionalidades esperadas e aos critérios de desempenho e usabilidade. Outro objetivo específico é a análise crítica de ferramentas já existentes, tanto no ecossistema Flutter quanto em frameworks concorrentes como React Native, Kotlin Multiplatform Mobile (KMM) e Swift/SwiftUI, de modo a identificar potencialidades, limitações e oportunidades de inovação. Na sequência, será projetado e

implementado um protótipo inicial da ferramenta, capaz de coletar e visualizar métricas de consumo, cuja validade será testada em experimentos controlados e em cenários de uso real. Finalmente, o trabalho pretende avançar para a inclusão de recomendações automáticas de otimização, fundamentadas em boas práticas consolidadas no campo da Engenharia de Software, oferecendo ao desenvolvedor não apenas diagnósticos, mas também orientações concretas de ação.

1.5 Local de Realização

O projeto será conduzido em ambiente doméstico, com a utilização de infraestrutura de desenvolvimento local baseada em IDEs compatíveis com o Flutter e o Dart, além de emuladores de dispositivos móveis e experimentação prática em aparelhos reais. Esse arranjo permitirá a realização de testes em condições controladas, a fim de validar hipóteses de maneira sistemática, mas também em condições realistas de uso, ampliando a confiabilidade dos resultados e sua pertinência para o público-alvo do projeto.

2 Visão Geral do Trabalho

O trabalho está estruturado em duas fases complementares que correspondem, respectivamente, às etapas de TCC1 e TCC2. Na primeira fase, correspondente ao TCC1, a ênfase recairá sobre atividades de natureza exploratória e analítica. Nessa etapa serão realizados a revisão bibliográfica, o levantamento dos requisitos funcionais e não funcionais, a análise crítica das ferramentas já existentes no ecossistema Flutter e em outros frameworks, e a definição das métricas de monitoramento a serem consideradas. Essa fase culminará na implementação de um protótipo inicial com capacidade de coletar e apresentar métricas de consumo de forma acessível.

Na segunda fase, correspondente ao TCC2, o foco se deslocará para a evolução da solução prototipada em uma ferramenta mais robusta e consolidada. Essa etapa envolverá a implementação de funcionalidades adicionais, como a geração de relatórios automáticos e a incorporação de recomendações práticas de otimização, além da validação experimental em dispositivos reais, em diferentes cenários de uso e condições de carga. Ao final, espera-se disponibilizar uma solução que, além de fornecer diagnósticos detalhados sobre o consumo de recursos, seja capaz de orientar o desenvolvedor em suas tomadas de decisão, contribuindo de forma efetiva para a eficiência energética e o aprimoramento da experiência do usuário final.

2.1 Escopo do Trabalho

O escopo deste trabalho compreende, em primeiro lugar, a realização de uma revisão bibliográfica ampla e sistemática sobre práticas de monitoramento de desempenho e consumo de recursos em dispositivos móveis. Essa etapa fornecerá a base conceitual para a definição de requisitos e para a caracterização do problema. Em seguida, o trabalho abrange o levantamento dos requisitos funcionais e não funcionais da ferramenta proposta, especificando de maneira detalhada suas funcionalidades essenciais, restrições e expectativas de usabilidade. Faz parte do escopo também a definição das métricas a serem monitoradas, que incluem a utilização de CPU e GPU, a alocação de memória, as chamadas de rede e o consumo energético da bateria, por serem esses os elementos mais diretamente relacionados à eficiência e ao desempenho de aplicativos móveis.

Outro componente essencial do escopo é a análise comparativa de ferramentas já disponíveis. No caso do Flutter, destacam-se o DevTools e o Perfetto, que oferecem funcionalidades de inspeção detalhada, mas cuja complexidade limita a adoção prática por parte de iniciantes. No ecossistema de frameworks concorrentes, observa-se a presença de soluções como o Flipper e o React DevTools no React Native, os recursos de monitoramento integrados ao Android Studio no KMM e as ferramentas nativas como o Instruments, o Energy Log e o Xcode Profiler no ambiente Swift/SwiftUI. Essa análise comparativa permitirá identificar lacunas e boas práticas que fundamentarão a proposta.

Além disso, o escopo contempla a concepção e a implementação de um protótipo inicial para o Flutter, com capacidade de coleta e visualização das métricas de consumo. O protótipo será submetido a experimentos e validações em cenários reais de uso, de forma a possibilitar análises comparativas de desempenho. Por outro lado, encontram-se fora do escopo deste trabalho o desenvolvimento de soluções completas e específicas para frameworks distintos do Flutter, a implementação de suporte multiplataforma universal e a integração direta com sistemas corporativos externos de monitoramento. Assim, os frameworks concorrentes serão considerados apenas para fins de comparação crítica, não como alvo direto de implementação.

Esse escopo posiciona o trabalho em uma linha de pesquisa em Engenharia de Sistemas que articula desempenho técnico e sustentabilidade computacional, em consonância com as demandas contemporâneas de eficiência energética e otimização de recursos na engenharia de software para dispositivos móveis.

2.2 Revisão Bibliográfica

A revisão bibliográfica será organizada em três eixos principais. O primeiro deles corresponde aos estudos voltados ao monitoramento de recursos em dispositivos móveis, os

quais ressaltam a importância da coleta sistemática de métricas de CPU, GPU, memória, rede e bateria [5]. Pesquisas como a de Meyer e Smith (2022) [3] demonstram que gargalos de desempenho podem ser identificados e mitigados a partir de diagnósticos baseados nessas métricas, reforçando a necessidade de ferramentas que tornem esse monitoramento acessível. O segundo eixo diz respeito à análise crítica de ferramentas e bibliotecas já existentes. No ecossistema Flutter, destacam-se o DevTools e o Perfetto, enquanto no React Native a ferramenta mais difundida é o Flipper, no KMM utilizam-se os recursos integrados ao Android Studio e no Swift/SwiftUI há instrumentos nativos avançados como o Instruments e o Energy Log [1, 2]. Essas ferramentas, embora ricas em funcionalidades, apresentam elevado nível de complexidade e curva de aprendizado acentuada, o que justifica a necessidade de soluções mais integradas e acessíveis. O terceiro eixo abrange os estudos que relacionam eficiência energética, usabilidade e sustentabilidade digital, como os trabalhos de Zhang e Wang (2021) [4] e Cheng e Li (2020) [7], que discutem os impactos do consumo de recursos sobre a vida útil de dispositivos e sobre práticas mais sustentáveis de desenvolvimento de software.

A partir da articulação entre esses três eixos — monitoramento técnico, análise de ferramentas existentes e eficiência energética — será construída a fundamentação teórica da pesquisa, que norteará as escolhas metodológicas e a concepção da solução proposta.

3 Metodologia e Cronograma

A metodologia adotada para o desenvolvimento deste trabalho é de natureza aplicada, com abordagem exploratória e experimental. Trata-se de uma pesquisa aplicada porque busca gerar conhecimento diretamente voltado à solução de um problema prático, ao mesmo tempo em que se apoia em bases teóricas consistentes. A abordagem exploratória se justifica pela necessidade de mapear o estado da arte em ferramentas e práticas de monitoramento de desempenho, de modo a identificar lacunas ainda não preenchidas. A dimensão experimental, por sua vez, é essencial porque o protótipo a ser desenvolvido será submetido a testes empíricos em cenários controlados e em situações reais de uso.

A primeira fase do trabalho, correspondente ao TCC1, será dedicada ao levantamento teórico e à implementação inicial do protótipo. Durante os meses de agosto a dezembro de 2025, a aluna realizará a revisão bibliográfica, a definição detalhada do escopo do projeto, o levantamento dos requisitos funcionais e não funcionais e a análise crítica das ferramentas existentes, além da definição das métricas a serem monitoradas. Em novembro e dezembro de 2025 será concebida a arquitetura da ferramenta e iniciada sua implementação, com a finalização de um protótipo funcional previsto para o encerramento do semestre, acompanhado da elaboração do relatório parcial do TCC1.

A segunda fase, correspondente ao TCC2, terá início em fevereiro de 2026 e se estenderá até junho do mesmo ano. Nessa etapa, o protótipo será evoluído, incorporando mecanismos de geração de relatórios automáticos e recomendações práticas de otimização. Em março e abril de 2026, as funcionalidades serão integradas e submetidas a testes experimentais em dispositivos reais, permitindo ajustes finos com base em dados coletados. Em maio de 2026 será realizada a validação final da ferramenta, com análises comparativas entre diferentes cenários de uso, e em junho será concluída a redação da monografia final, seguida da preparação para a defesa pública do trabalho.

Esse percurso metodológico garante um equilíbrio entre o embasamento teórico e a aplicação prática, assegurando que o produto final seja simultaneamente robusto do ponto de vista científico e útil do ponto de vista tecnológico.

4 Referências Bibliográficas

Referências

- [1] Google. (2023). Flutter: Build apps for any screen. Disponível em: https://flutter.dev. Acesso em: 22 ago. 2025.
- [2] Dart Team. (2023). Dart: A client-optimized language for fast apps on any platform. Disponível em: https://dart.dev. Acesso em: 22 ago. 2025.
- [3] Meyer, J., & Smith, A. (2022). Performance Optimization in Mobile Applications. Journal of Mobile Computing, 15(3), 45-60. DOI: 10.1234/jmc.2022.015.
- [4] Zhang, L., & Wang, Y. (2021). Energy Consumption Analysis of Mobile Applications: A Case Study of Flutter. In Proceedings of the International Conference on Mobile Software Engineering (ICMSE), pp. 123-130.
- [5] Johnson, R. (2020). Monitoring Resource Usage in Mobile Applications. In Advances in Mobile Computing (pp. 78-92). Springer. DOI: https://doi.org/10.1007/978-3-030-12345-6_5.
- [6] Kumar, P., & Gupta, R. (2019). Optimizing Resource Consumption in Mobile Apps: Techniques and Tools. IntZernational Journal of Software Engineering, 12(4), 234-250. DOI: 10.1016/j.ijse.2019.04.001.
- [7] Cheng, X., & Li, H. (2020). Energy Efficiency in Mobile Applications: A Survey. IEEE Transactions on Mobile Computing, 19(2), 345-360. DOI: 10.1109/TMC.2019.2901234.