Advice for applying machine learning

- · Deciding what to try next
- Evaluating a hypothesis
- Model selection and training/validation/test sets
- Diagnosing bias vs. variance
 - Regularization and bias/variance
- Learning Curves
- Deciding what to try next (revisited)
- Neural networks and overfitting

Deciding what to try next

hypothesis makes unacceptably large errors in its predictions. Some method to improve:

- 1. Get more training examples;
- 2. Try smaller sets of features;
- 3. Try getting additional features;
- 4. Try adding polynomial features;
- 5. Try decreasing λ ;
- 6. Try increasing λ .

Evaluating a hypothesis

devide datas into training data and test data; some parameter to evaluate the hypothesis: J_{test} or $misclassification\ error$

Model selection and training/validation/test sets

fit the parameter by training data, compute the error by validation data and choose the best parameter, get the final error by test data.

Diagnosing bias vs. variance

Underfit	High bias	$J_{train}(heta)$ will be high and $J_{cv}(heta)pprox J_{train}(heta)$
Overfit	High variance	$J_{train}(heta)$ wiil be low and $J_{cv}(heta) >> J_{train}(heta)$

Regularization and bias/variance

Large λ	High bias(Underfit)
Small λ	High variance(Overfit)

Learning Curves

https://blog.csdn.net/CarolusRex

High bias

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more data is likely to help.

Deciding what to try next (revisited)

- 1. Get more training examples \rightarrow fixed high variance;
- 2. Try smaller sets of features \rightarrow fixed high variance;
- 3. Try getting additional features \rightarrow fixed high bias;
- 4. Try adding polynomial features \rightarrow fixed high bias;
- 5. Try decreasing λo fixed high bias;
- 6. Try increasing λo fixed high vriance.

Neural networks and overfitting

size of Neural Nerwork	size of parameters	complexity
Small Neural Netwrok	fewer parameters; more prone to underfitting;	Computationally Cheaper

size of Neural Nerwork	size of parameters	complexity
Large Neural Network	more paramaters; more prone to overfitting	Computationally more expensive