Numerische Mathematik für Ingenieure (SS 14) - Übung 3

Merikan Koyun & Julian Andrej

May 16, 2014

T4. Spaltensummennorm

Es soll gezeigt werden, dass $||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|$ gilt, wobei $||\cdot||_1$ die induzierte Matrixnorm ist. Es gilt ausserdem $||x||_1 = \sum_{i=1}^n |x_i|$. Zunächst wird gezeigt, dass gilt

$$||Ax||_1 \le m||x||_1, \quad \forall x \in \mathbb{R}^n \setminus \{0\}, \quad m = ||A||_1$$
 (1)

Wir beginnen mit der linken Seite der Ungleichung. Da das Produkt Ax einem Vektor entspricht, so muss auch $\|\cdot\|_1$ für Ax definiert sein. Wir definieren uns die i-te Zeile der Matrix A als a_{i*} . Es gilt also:

Die Ungleichung lässt sich also schreiben als:

$$||Ax||_1 = \sum_{i=1}^n |a_{i*}x| = \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij}x_i \right| \le m \sum_{j=1}^n |x_j| = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}| \sum_{j=1}^n |x_j|$$

Trivialerweise muss gelten, dass:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| |x_j| \le \max_{j=1,\dots,n} \sum_{i=1}^{n} |a_{ij}| \sum_{j=1}^{n} |x_j|$$
(2)

Es folgt die Ungleichung:

$$\sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij} x_i \right| \le \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| |x_j| \tag{3}$$

Es lässt sich unmittelbar erkennen, dass die linke Ungleichung zu einer Gleichheit wird für $a_{ij} \ge 0$ und $x_i \ge 0$, $\forall i, j \in \{1, ..., n\}$, da die Beträge gestrichen werden können. Sobald $a_{ij} < 0$ oder $x_i < 0$ für ein beliebiges $i, j \in \{1, ..., n\}$ gilt die Ungleichung.

Um nun die Rückrichtung zu beweisen genügt es einen Vektor zu finden, der (1) mit Gleichheit erfüllt, da dann die Ungleichheit aus (1) wegfällt. Wir wählen $x = e_k$ und wählen k so, dass $\sum_{i=1}^{n} |a_{ik}|$ maximal wird, wobei $e_k \in \mathbb{R}^n$ der k-te Einheitsvektor ist. Es gilt offensichtlich $||e_k||_1 = 1$. Somit lässt sich die linke Seite von (1) schreiben als:

$$||Ae_k||_1 = ||A_{*k}||_1 \tag{4}$$

Wir erhalten also eine Spalte aus der Matrix A, die maximal ist. Für die Spalte lässt sich wiederum $\|\cdot\|_1$ anwenden, da wir einen Spaltenvektor haben. Es gilt also:

$$||A_{*k}||_1 = \sum_{i=1}^n |a_{ik}| \tag{5}$$

woraus sich mit $||e_k||_1 = 1$ für (1) Gleichheit ergibt, da wir k so gewählt haben, dass die Spalte maximal ist:

$$\sum_{i=1}^{n} |a_{ik}| = \max_{j=1,\dots,n} \sum_{i=1}^{n} |a_{ij}|.$$
(6)

Somit ist die Behauptung bewiesen. \blacksquare