an 1						
byo.;						
1,1,01	t		ω	\sim	P	
	P(T=t		0 -7	0.2	9-(
16)		1 11 .9	1)	
unnomali	Rel 10	stenor	(pnbr	× likeliho	(lo	
		P/1	[(1)			
			Ŗ			
_		H		N,		
	\mathbb{W}		0-07	0-07		
	M		0.06	0-1		
	<u> </u>	0-03	0-06	0-01		
4	etal:	0-63	0-19	0.18		

normalized posteror (columns sum to I-0): P(T/R)
P(T/R)
tt L N
T \ M 0.06 0.37 0.39 T \ M 0.06 0.32 0.53 F 0.05 0.32 0.06
0-05 0-32 0-06
0-05 0-32 0-06
_
Port (a): For O-1 loss function, just chouse the most likely arture ie-max in each column of the pottern table above, so rule is?
nost likely arture ie- max in each column
of the pottern table above, so rule is?
11, 11, 1, 21, 21, 21
H->W, L->W, N->M
Part (6): Neal to explishly calculate experted
Part (6): Nead to explishly calculate experted asts, using
Cost (estimate T R) = S cost (actual, estimatal) × P (actual T)
habital entres in following
sum is bottom row of table

Experted wits

+			,	
	observed R:	Н	L	N
	estimated T:	WMF	WMF	WMF
	CW	0-89 0-89	0 0-37 0-37	0 6.39 0.39
	autual { M	032 0 025	158 0 1.26	278 0 211
	T (F	0-14 005 0	6-95 o.n O	0-17 0-06 0
	total expected to st:	0.66 0.94 1.14	253 0-68 (.63	2.94 0-44 2.61
_	b	t		

Optimal Bayes rule chooses lowest experted out given observation, le.

HIDW, LIDM, NIDM.

areston 2
ly a Bayerran reterolk,
P(node parents)= P(node) parents and any susset of ancestors)
Therefore, we circle the following:
P(U G,L,A) = P(U G,L,A,C,D)
P(A C,D,G) = P(A C,D,G,W)
P(G D,W) = P(G D)
P(U G,L,A) = P(U G,L,A,D)
P(U A,G,C,D,W) = P(U A,G)

Overtion 3 Softed values are 34 35 37 42 58 65 94 94 (a) Plange is 34->94 i.e. 60 wde. So each In should be 60-4 = 15 wide. i.e. boundaries at 34, 49, 64, 79, 94.

But it's good to allow values < 34 and >94,

so extend leftmost and rightmost bits to -00, 00 resp. (Fihal bihs are: $[-\infty, 49], [49, 64], [64, 79], [79, \infty]$ A bins, 8 points => 2 points per bin. Choose bin splits 2 way between points, and as above extend to ±00, obtaining $[-\infty, 36), [36, 50), [50, 79.5), [79.5, \infty)$ Direction of highest variance is maked in live: Projectory auto the marked like results in new

