Rupsa and the Game Problem Code: RGAME

Princess Rupsa saw one of her friends playing a special game. The game goes as follows:

- N+1 numbers occur sequentially (one at a time) from A₀ to A_N.
- You must write the numbers on a sheet of paper, such that A_0 is written first. The other numbers are written according to an inductive rule after A_{i-1} numbers have been written in a row, then A_i can be written at either end of the row. That is, you first write A_0 , and then A_1 can be written on its left or right to make A_0A_1 or A_1A_0 , and so on.
- A_i must be written before writing A_j, for every i < j.
- For a move in which you write a number A_i (i>0), your points increase by the product
 of A_i and its neighbour. (Note that for any move it will have only one neighbour as you write the
 number at an end).
- Total score of a game is the score you attain after placing all the N+1 numbers. Princess Rupsa wants to find out the sum of scores obtained by all possible different gameplays. Two gameplays are different, if after writing down all N+1 numbers, when we read from left to right, there exists some position i, at which the gameplays have a_i and a_k written at the i^{th} position such that $j \neq k$. But since she has recently found her true love, a frog Prince, and is in a hurry to meet him, you must help her solve the problem as fast as possible. Since the answer can be very large, print the answer modulo $10^9 + 7$.

Input

- The first line of the input contains an integer **T** denoting the number of test cases.
- The first line of each test case contains a single integer N.
- The second line contains N + 1 space-separated integers denoting A₀ to A₀.

Output

For each test case, output a single line containing an integer denoting the answer.

Constraints

- 1 ≤ T ≤ 10
- $1 \le N \le 10^5$
- $\bullet \qquad 1 \le A_i \le 10^9$

Sub tasks

- Subtask #1: 1 ≤ N ≤ 10 (10 points)
- Subtask #2: 1 ≤ **N** ≤ 1000 (20 points)
- Subtask #3: Original Constraints (70 points)

Example

Input:

2

1	2										
2											
1	2	1									
Ou	Output:										
4											

Explanation

14

• There are 2 possible gameplays. A_0A_1 which gives score of 2 and A_1A_0 which also gives score of 2. So the answer is 2 + 2 = 4