

MULTI-SCALE/MULTI-RESOLUTION KRONECKER COMPRESSIVE IMAGING

Thuong Nguyen Canh, Khanh Quoc Dinh and Byeungwoo Jeon College of Information and Communication Engineering, Sungkyunkwan University

Digital Media Lab

1. Compressive Sensing (CS)

Large size sensing matrix

- High computational complexity
- Large memory requirement

Kronecker CS

- Separate H & V sensing matrices.
- Enable frame based sensing.

$$Y = \Phi^1 F(\Phi^2)^T$$
, $Y \in \mathbb{R}^{m \times m}$,
 $\Phi = \Phi^1 \Phi^2$; $\Phi^i \in \mathbb{R}^{m \times n}$, $i = 1, 2$

4. Proposed Sensing Matrix

+/- are low & high pass filter with kernel $1/\sqrt{2}$

- Multi-scale/Multi-resolution measurement $Y = \Phi_K^1(\mathcal{W}_K^n F(\mathcal{W}_K^n)^T)(\Phi_K^2)^T = (\Phi_K^1 \mathcal{W}_K^n) F(\Phi_K^2 \mathcal{W}_K^n)^T$ Proposed sensing matrix
- Reconstruction at scale q (resolution $n/2^{K-q}$)

2. Challenges

Sampling Efficiency

- Conventional CS is universal sampling
 - All CS measurement are equally important.
 - Assumes the sparsity prior only.

Multi-scale sampling is proof as an optimal.

Huge Computational Reconstruction

 The larger resolution, the higher complexity Multi-resolution sensing is a solution

3. Motivations

- Image prior improves CS's performance
 - Most focus on recover part.
- Image pixel is not equality important
 - Human eye is sensitive to low frequency
 - Each wavelet subband carries different info.
- Multi-resolution is an practical approach
 - Recover low resolution at low cost first
 - Recover high resolution later

email: {ngcthuong, bjeon}@skku.edu

5. Proposed Measurement Allocation

Sample more measurement at low SWT subband.

MRK: Require no prior information

$$m_{j} = \widetilde{m} \, \omega_{j} / 2^{K-j+1}$$
 $m = m_{0} + \sum_{i=1}^{K} m_{i} = \sum_{i=1}^{K} \widetilde{m} \omega_{i} \frac{1}{2^{K-j+1}}$

- $\omega_i = a^{K-j}$ is weight ratio with a = const. $m_0 = n/2^K$.
- MRKa: adaptive with sparsity prior
 - SWT sparsity with global threshold $au = \lambda \sigma \sqrt{2 \log Q}$, where $\sigma = \frac{median(|F_K|)}{0.6745}$
 - Relative local sparsity $S_j = \|(F_K)_j\|_0 / Q_K$
 - F_K: SWT transform of F • Q_k :the subband size
 - Adaptive meas.
- $m_j = \widetilde{m} \, \omega_i s_i / 2^{K-j+1}$

7. Conclusions

- Our sensing matrix support both multi-scale, multiresolution and compatible with traditional CS recovery
- Meas. allocation w/wo prior preserve low freq. well
- Enable application for scalable image/video application

6.Experimental Results

Measurement allocation: MRK vs. MRKa

No.	SR = 0.1			SR = 0.2			SR = 0.3		
meas.	${\mathcal M}$	$\mathcal{M}a^1$	$\mathcal{M}a^2$	${\mathcal M}$	Ma^1	$\mathcal{M}a^2$	${\mathcal M}$	$\mathcal{M}a^1$	$\mathcal{M}a^2$
$\overline{m_0}$	64	64	64	64	64	64	64	64	64
m_1	56	43	31	64	64	52	64	64	64
m_2	28	41	39	67	75	65	101	113	87
m_3	14	14	28	34	26	48	51	39	65
Total		162			229			280	

 \mathcal{M} : using MRK; $\mathcal{M}a^1$, $\mathcal{M}a^2$ using MRKa for Lena & Barbara

Resolution vs. complexity

PSNR performance comparison

Visual quality comparison for Barbara image at subrate 0.2

TGVSH[21], 29.1dB MH-MS[16], 26.78dB MRK3, 30.05dB

MRK3a, 30.90dB

Acknowledgment. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No.2011-001-7578).