In-Class Problem Solutions for Session 7

Samuel Lair

September 2022

Contents

1	Problem 1	2
2	Problem 2	3
3	Problem 3	4
	3.1 (a)	4
	3.2 (b)	
	3.3 (c)	
	3.4 (d)	
	3.5 (e)	4
4	Problem 4	5
5	Problem 5	6
	5.1 (a)	6
	5.2 (b)	
	5.3 (c)	
	$5.4 (d) \dots \dots$	

R is	iff	R^{-1} is
total		a surjection
a function		an injection
a surjection		total
an injection		a function
a bijection		a bijection

Let $A=\{a_0,a_1,...,a_{n-1}\}$ be a set of size n, and and $B=\{b_0,b_1,...,b_{m-1}\}$ be a set of size m. Prove that

$$|A \times B| = mn \tag{1}$$

Proof. Let

$$f((a_i, b_j)) ::= mi + j$$

$$C ::= \{ z \in \mathbb{N} \mid 0 \le z \le (mn - 1) \}$$

For every $c \in C$, there is exactly $1 s \in A \times B$ such that f(s) = c. Therefore, f is a bijection from $A \times B$ to C. From part 3 of Lemma 4.5.3 on page 116 of the book, it follows that

$$|A \times B| = |C| = mn$$

Hence, (1) must be true.

3.1 (a)

 $|f(A)| \leq |B|$

3.2 (b)

 $|A| \geq |B|$

3.3 (c)

|f(A)| = |B|

3.4 (d)

|f(A)|=|A|

3.5 (e)

|A| = |B|

Prove that

$$|X| \ge |R(X)|\tag{2}$$

Proof. Let n be the number of arrows that originate from an element of X. Since R is a function, at most 1 arrow originates from each member of X. Therefore,

$$|X| \ge n \tag{3}$$

From the definition of image, we know that $\forall r \in R(x)$ there exists an arrow originating from a member of X that terminates at r. Therefore,

$$|R(X)| \le n \tag{4}$$

From (3) and (4), it follows that

$$|X| \ge n \ge |R(X)|$$

Hence, (2) must be true.

5

5.1 (a)

Prove that

$$A \operatorname{surj} B \wedge B \operatorname{surj} C \Longrightarrow A \operatorname{surj} C \tag{5}$$

Proof.

$$A \text{ surj } B \implies \exists \text{ a surjective function } f: A \to B$$

 $B \text{ surj } C \implies \exists \text{ a surjective function } g: B \to C$

Since g is a surjective function, $\forall c \in C \ \exists b \in B. g(b) = c$. Since f is a surjective function, $\forall b \in B \ \exists a \in A. f(a) = b$. Therefore, $\forall c \in C \ \exists a \in A. g(f(a)) = c$. In other words, $g \circ f : A \to C$ is a surjective function. Hence, (5) must be true. \square

5.2 (b)

Prove that

$$A \operatorname{surj} B \iff B \operatorname{inj} A$$
 (6)

Proof. We will proceed by proving the following lemmas:

$$A \operatorname{surj} B \Longrightarrow B \operatorname{inj} A$$
 (7)

$$B \text{ inj } A \implies A \text{ surj } B$$
 (8)

Proof of (7). The proof is by contradiction. Suppose A surj B is true but B inj A is false. Then \exists a surjective function $f: A \to B$.

Suppose that $f^{-1}B \to A$ isn't total. Then $\exists b \in B$ such that no arrows of f^{-1} originate from b. However, this would imply that no arrows of f terminate at b. Therefore, we've reached a contradiction where f isn't surjective. Hence, f^{-1} must be total.

Suppose that $f^{-1}B \to A$ isn't injective. Then $\exists a \in A$ such that more than 1 arrow of f^{-1} terminate at a. However, this would imply that more than 1 arrow of f originates at a. Therefore, we've reached a contradiction where f isn't a function. Hence, f^{-1} must be injective.

Since f^{-1} is both total and injective, f^{-1} is an injective total relation. Therefore, we've reached a contradiction where B inj A is true. Hence, (7) must be true.

Proof of (8). The proof is by contradiction. Suppose that B inj A is true but A surj B is false. Then \exists an injective total relation $g: B \to A$.

Suppose that $g^{-1}: A \to B$ isn't surjective. Then $\exists b \in B$ such that no arrows of g^{-1} terminate at B. However, this would imply that no arrows of g originate at g. Therefore, we've reached a contradiction where g isn't total. Hence, g^{-1} must be surjective.

Suppose that g^{-1} isn't a function. Then $\exists a \in A$ such that more than 1 arrow of g^{-1} originates at a. However, this would imply that more than 1 arrow

of g terminates at a. Therefore, we've reached a contradiction where g isn't injective. Hence, g^{-1} must be a function.

Since g^{-1} is both surjective and a function, g^{-1} is a surjective function. Therefore, we've reached a contradiction where A surj B is true. Hence, (8) must be true.

We've proved that both (7) and (8) are true. Hence, (6) must be true. \Box

5.3 (c)

Prove that

$$A \text{ inj } B \wedge B \text{ inj } C \implies A \text{ inj } C$$
 (9)

Proof.

$$A \text{ inj } B \wedge B \text{ inj } C \iff$$

$$B \text{ surj } A \wedge C \text{ surj } B \qquad \text{(apply (6))} \implies$$

$$C \text{ surj } A \qquad \text{(apply (5))} \iff$$

$$A \text{ inj } C \qquad \text{(apply (6))}$$

Hence, (9) must be true.

5.4 (d)

Prove that

$$A \text{ inj } B \iff \exists \text{ a total injective function } f: A \to B$$
 (10)

Proof. From part 2 of Definition 4.5.2, we can rewrite (10) as

$$\exists \text{ a total injective relation g}: A \to B \qquad \iff \\ \exists \text{ a total injective function f}: A \to B \qquad (11)$$

We will proceed by proving the following lemmas:

$$\exists$$
 a total injective function $f: A \to B \implies$

$$\exists$$
 a total injective relation $g: A \to B$ (12)

 \exists a total injective relation $g: A \to B \implies$

$$\exists$$
 a total injective function $f: A \to B$ (13)

Proof of Lemma (12). (12) is trivially true since a function is a type of relation. In other words, f is also a relation.

Proof of Lemma (13). f can be constructed from g by eliminating arrows of g until there is exactly one arrow originating from every $a \in A$. Hence, (13) must be true.

We've proved that (12) and (13) are true. Hence, (11) must be true and (10) must be true.