Prediction with GNNs

A General GNN Framework (4)

(5) Learning objective

GNN Training Pipeline

So far what we have covered

Output of a GNN: set of node embeddings

$$\{\mathbf{h}_{v}^{(L)}, \forall v \in G\}$$

GNN Training Pipeline (1)

- Node-level tasks
- Edge-level tasks
- Graph-level tasks

GNN Prediction Heads

Idea: Different task levels require different prediction heads

Prediction Heads: Node-level

- Node-level prediction: We can directly make prediction using node embeddings!
- After GNN computation, we have d-dim node embeddings: $\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\}$
- Suppose we want to make k-way prediction
 - Classification: classify among k categories
 - lacktriangle Regression: regress on k targets
- $\widehat{\mathbf{y}}_{v} = \text{Head}_{\text{node}}(\mathbf{h}_{v}^{(L)}) = \mathbf{W}^{(H)}\mathbf{h}_{v}^{(L)}$
 - $\mathbf{W}^{(H)} \in \mathbb{R}^{k*d}$: We map node embeddings from $\mathbf{h}_v^{(L)} \in \mathbb{R}^d$ to $\hat{\mathbf{y}}_v \in \mathbb{R}^k$ so that we can compute the loss

Prediction Heads: Edge-level

- Edge-level prediction: Make prediction using pairs of node embeddings
- Suppose we want to make k-way prediction

$$\mathbf{\hat{y}}_{uv} = \text{Head}_{\text{edg}e}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)})$$

• What are the options for $\operatorname{Head}_{\operatorname{edg}e}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)})$?

Prediction Heads: Edge-level

- Options for $Head_{edge}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)})$:
- (1) Concatenation + Linear
 - We have seen this in graph attention

Concatenate Linear
$$\widehat{y_{uv}}$$

$$\mathbf{h}_{u}^{(l-1)} \, \mathbf{h}_{v}^{(l-1)}$$

- \hat{y}_{uv} = Linear(Concat($\mathbf{h}_u^{(L)}$, $\mathbf{h}_v^{(L)}$))
- Here Linear(\cdot) will map 2d-dimensional embeddings (since we concatenated embeddings) to k-dim embeddings (k-way prediction)

Prediction Heads: Edge-level

- Options for $Head_{edge}(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)})$:
- (2) Dot product
 - $\widehat{\mathbf{y}}_{uv} = (\mathbf{h}_u^{(L)})^T \mathbf{h}_v^{(L)}$
 - This approach only applies to 1-way prediction (e.g., link prediction: predict the existence of an edge)
 - Applying to k-way prediction:
 - Similar to multi-head attention: $\mathbf{W}^{(1)}$, ..., $\mathbf{W}^{(k)}$ trainable $\widehat{\mathbf{y}}_{uv}^{(1)} = (\mathbf{h}_{u}^{(L)})^{T} \mathbf{W}^{(1)} \mathbf{h}_{v}^{(L)}$... $\widehat{\mathbf{y}}_{uv}^{(k)} = (\mathbf{h}_{u}^{(L)})^{T} \mathbf{W}^{(k)} \mathbf{h}_{v}^{(L)}$ $\widehat{\mathbf{y}}_{uv} = \operatorname{Concat}(\widehat{\mathbf{y}}_{uv}^{(1)}, ..., \widehat{\mathbf{y}}_{uv}^{(k)}) \in \mathbb{R}^{k}$

Prediction Heads: Graph-level

- Graph-level prediction: Make prediction using all the node embeddings in our graph
- Suppose we want to make k-way prediction
- $\widehat{\boldsymbol{y}}_G = \operatorname{Head}_{\operatorname{graph}}(\{\boldsymbol{\mathbf{h}}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$

• Head_{graph} (\cdot) is similar to AGG (\cdot) in a GNN layer!

Prediction Heads: Graph-level

- Options for $\operatorname{Head}_{\operatorname{graph}}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$
- (1) Global mean pooling

$$\widehat{\boldsymbol{y}}_G = \operatorname{Mean}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

(2) Global max pooling

$$\widehat{\boldsymbol{y}}_G = \operatorname{Max}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

(3) Global sum pooling

$$\widehat{\boldsymbol{y}}_G = \operatorname{Sum}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

- These options work great for small graphs
- Can we do better for large graphs?

Issue of Global Pooling

- Issue: Global pooling over a (large) graph will lose information
- Toy example: we use 1-dim node embeddings
 - Node embeddings for G_1 : $\{-1, -2, 0, 1, 2\}$
 - Node embeddings for G_2 : $\{-10, -20, 0, 10, 20\}$
 - Clearly G₁ and G₂ have very different node embeddings
 Their structures should be different
- If we do global sum pooling:
 - Prediction for G_1 : $\hat{y}_G = \text{Sum}(\{-1, -2, 0, 1, 2\}) = 0$
 - Prediction for G_2 : $\hat{y}_G = \text{Sum}(\{-10, -20, 0, 10, 20\}) = 0$
 - We cannot differentiate G_1 and G_2 !

Hierarchical Global Pooling

- A solution: Let's aggregate all the node embeddings hierarchically
 - **Toy example:** We will aggregate via $ReLU(Sum(\cdot))$
 - We first separately aggregate the first 2 nodes and last 3 nodes
 - Then we aggregate again to make the final prediction
 - G_1 node embeddings: $\{-1, -2, 0, 1, 2\}$
 - Round 1: $\hat{y}_a = \text{ReLU}(\text{Sum}(\{-1, -2\})) = 0$, $\hat{y}_b = \text{ReLU}(\text{Sum}(\{0, 1, 2\})) = 3$
 - Round 2: $\hat{y}_G = \text{ReLU}(\text{Sum}(\{y_a, y_b\})) = 3$
 - G_2 node embeddings: $\{-10, -20, 0, 10, 20\}$
 - Round 1: $\hat{y}_a = \text{ReLU}(\text{Sum}(\{-10, -20\})) = 0$, $\hat{y}_b = \text{ReLU}(\text{Sum}(\{0, 10, 20\})) = 30$
 - Round 2: $\hat{y}_G = \text{ReLU}(\text{Sum}(\{y_a, y_b\})) = 30$

Now we can differentiate G_1 and G_2 !

Hierarchical Pooling In Practice

DiffPool idea:

Hierarchically pool node embeddings

- Leverage 2 independent GNNs at each level
 - GNN A: Compute node embeddings
 - GNN B: Compute the cluster that a node belongs to
- GNNs A and B at each level can be executed in parallel

Hierarchical Pooling In Practice

DiffPool idea:

For each Pooling layer

- Use clustering assignments from GNN B to aggregate node embeddings generated by GNN A
- Create a single new node for each cluster, maintaining edges between clusters to generated a new pooled network
- Jointly train GNN A and GNN B