Fundação Getúlio Vargas

Matemática Aplicada

Nome:

Monitores: Cleyton e Jeann

Exercício 1 - A Série de Taylor

Dê a Série de Taylor (centrada em 0) de

- (a) e^x
- (b) $\log 1 + x$

Seja $f(x)=e^{-x}\left(\sum\limits_{n=1}^{\infty}rac{n^2x^n}{n!}
ight)$. Mostre que f é um polinômio. Qual o seu grau?

Exercício 2 - Somas de Riemann

Mostre que

$$\left(\sum_{j=1}^n rac{1}{j^k}
ight) - 1 \leq \int_1^n rac{dx}{x^k} \leq \left(\sum_{j=1}^n rac{1}{j^k}
ight) - rac{1}{n^k}$$

para $k \in \mathbb{N}$.

Exercício 3 - Série de Potências

Seja $a \neq 0$ tal que $\sum a_n a^n < +\infty$. Determine o raio de convergência R_a no qual esta série é absolutamente convergente para $x \in R_a$.

Em particular, conclua que se $\sum a_n < \infty$, então $\sum |a_n x^n| < \infty$, $\forall x \in R_1$.

Exercício 4 - Derivadas por Sequências II

Seja $f: \mathbb{R} \to \mathbb{R}$ derivável em $\mathbb{R} \setminus \{c\}$ e tal que o $\lim_{x \to c} f'(x)$ existe. Mostre então que f é derivável também em c e $f'(c) = \lim_{x \to c} f'(x)$.

Exercício 5 - Integrais Iteradas

Seja $F(x)=\int\limits_0^x\left[\int\limits_0^yf(t)dt\right]dy$, onde $f:\mathbb{R} o\mathbb{R}$ é contínua. Mostre que F é duas vezes derivável e determine F''(x).

Exercício 6 - Equações Funcionais II

Determine todas as funções f deriváveis tais que

(a)
$$f:[0,+\infty) o \mathbb{R}$$
 e $f(x)^2=\int\limits_0^x f(t)dt$

(b)
$$f:\mathbb{R} o\mathbb{R}$$
 e $f'(x)=-f(x)$.

Exercício 7 - D'Alembert e Cauchy

Eriki, amigo de várias pessoas, incluíndo Robertinha, Nati, Gustavo, Murilo, Eulerverton, Matosmático, Π -vanato, Cardineiro, Borges, Rodrigues, Benzo, Daviros, Beatriza, Severo, Jeã, Luka e Alexor, estava assistindo a série $a+b+a^2+b^2+a^3+b^3+...$, que é convergente quando 0 < a < b < 1. Utilize os Testes de D'Alembert (Razão) e Cauchy (Raiz) para verificar em qual destes este resultado ocorre e em qual o resultado é inconclusivo.

Exercício 8 - The Last Question

Os monitores Klainton e Jean² proporam aos alunos um problema de séries, que consistia num problema feito por etapas, considerando a série $\sum\limits_{n=1}^{\infty} \frac{1}{n^r}$:

- 1. Jean 2 os desafiou que mostrassem que a série divergia para $0 < r \le 1$.
- 2. Klainton os desafiou que mostrassem que a série convergia para r > 1.
- 3. Jean² e Klainton juntos, supondo agora que $r\in\mathbb{C}$, os desafiaram que mostrassem que os únicos números r=a+bi nos quais a série assumia valor 0, com a>0, são apenas aqueles (não necessariamente todos) nos quais $a=\frac{1}{2}$.