Luiz Guilherme Morais da Costa Faria

APRENDIZADO DE MÁQUINA

Brasília, DF 24 de setembro de 2025

Luiz Guilherme Morais da Costa Faria

APRENDIZADO DE MÁQUINA

Universidade de Brasília

Orientador: Nome do Orientador/Revisor (se aplicável)

Brasília, DF 24 de setembro de 2025

Sumário

Sumário		3
I	HISTÓRIA DA IA E DO COMPUTADOR	11
1	UMA BREVE HISTÓRIA DO COMPUTADOR	13
1.1	A Necessidade de Contar ao Longo das Eras	13
1.1.1	Ábaco	13
1.1.2	Régua de Cálculo	13
1.1.3	Bastões de Napier	13
1.1.4	Pascalina	13
2	UMA BREVE HISTÓRIA DA INTELIGÊNCIA ARTIFICIAL	15
2.1	Os Anos 1900	15
2.2	Os Anos 1910	15
2.3	Os Anos 1920	15
2.4	Os Anos 1930	15
2.5	Os Anos 1940	15
2.6	Os Anos 1950	15
2.7	Os Anos 1960	15
2.8	Os Anos 1970	15
2.9	Os Anos 1980	15
2.10	Os Anos 1990	15
2.11	Os Anos 2000	15
2.12	Atualidade	15
II	CONCEITOS MATEMÁTICOS	17
3	CÁLCULO PARA APRENDIZADO DE MÁQUINA	19
3.1	Funções: A Base do Cálculo	19
3.2	Derivadas Ordinárias	19
3.3	Integrais Simples	19
3.4	Derivadas Parciais	19
4	ÁLGEBRA LINEAR PARA APRENDIZADO DE MÁQUINA	21
4.1	A Unidade Fundamental: Vetores e Espaços Vetoriais	21

4.2	Organizando Dados: Matrizes e Suas Operações	21
4.3	Tensores: A Estrutura de Dados do Deep Learning	21
4.4	Resolvendo Sistemas e Encontrando Propriedades: Autovalores e	
	Autovetores	21
4.5	Decomposição de Matrizes (SVD e PCA)	21
5	PROBABILIDADE E ESTATÍSTICA PARA APRENDIZADO DE	
	MÁQUINA	23
5.1	Medindo a Incerteza: Probabilidade Básica e Condicional	23
5.2	O Teorema de Bayes: Aprendendo com Evidências	23
5.3	Descrevendo os Dados: Estatística Descritiva: Média, mediana,	
	variância, desvio padrão	23
5.4	Variáveis Aleatórias e Distribuições de Probabilidade	23
5.5	A Função de Máxima Verossimilhança (Maximum Likelihood Es-	
	timation - MLE)	23
III	PILARES DAS REDES NEURAIS	25
6	O ALGORITMO DA REPROPROPAGAÇÃO E OS OTIMIZADO-	
	RES BASEADOS EM GRADIENTE	27
6.1	O Método do Gradiente Descendente	27
6.1.1	Exemplo Ilustrativo: Cadeia de Montanhas	27
6.1.2	O Método em Si	28
6.1.3	Implementação em Python	30
6.2	A Retropropagação: Aprendendo com os Erros	31
6.3	Otimizadores Baseados em Gradiente	32
6.3.1	Método do Gradiente Estocástico	32
6.3.1.1	Implementação em Python	32
6.3.2	Método do Gradiente com Momentum	32
6.3.2.1	Implementação em Python	32
6.3.3	Nesterov	32
6.3.3.1	Implementação em Python	32
6.3.4	AdaGrad	32
6.3.4.1	Implementação em Python	32
6.3.5	RMSProp	32
6.3.5.1	Implementação em Python	32
6.3.6	Adam	32
6.3.6.1	Implementação em Python	32
637	Nadam	32

6.3.7.1	Implementação em Python	32
6.4	O Método de Newton: Indo Além do Gradiente	32
6.4.1	Implementação em Python	32
7	FUNÇÕES DE ATIVAÇÃO SIGMOIDAIS	33
7.1	Teoremas da Aproximação Universal	33
7.2	Exemplos Ilustrativo	33
7.3	A Sigmoide Logística	33
7.3.1	Implementação em Python	33
7.4	Tangente Hiperbólica	34
7.4.1	Implementação em Python	34
7.5	Softsign: Uma Sigmoidal Mais Barata	34
7.5.1	Implementação em Python	35
7.6	Hard Sigmoid e Hard Tanh: O Sacrifício da Suavidade em Prol	
	do Desempenho	35
7.6.1	Implementação em Python	37
7.7	O Desaparecimento de Gradientes	38
7.8	Comparativo de Desempenho das Sigmoidais	38
8	FUNÇÕES DE ATIVAÇÃO RETIFICADORAS	39
8.1	Exemplo Ilustrativo	39
8.2	Rectified Linear Unit e Revolução Retificadora	39
8.2.1	Implementação em Python	39
8.3	Dying ReLUs Problem	40
8.4	Corrigindo o Dying ReLUs Problem: As Variantes com Vazamento	40
8.4.1	Leaky ReLU	40
8.4.1.1	Implementação em Python	40
8.4.2	Parametric ReLU	41
8.4.3	Randomized Leaky ReLU	41
8.5	Em Busca da Suavidade	41
8.5.1	Exponential Linear Unit	41
8.5.2	Scaled Exponential Linear Unit	42
8.5.3	Noisy ReLU	42
8.6	O Problema dos Gradientes Explosivos	42
8.7	Comparativo de Desempenho das Funções Retificadoras	42
9	FUNÇÕES DE ATIVAÇÃO MODERNAS E OUTRAS FUNÇÕES DE ATIVAÇÃO	43
10	FUNÇÕES DE PERDA PARA CLASSIFICAÇÃO BINÁRIA	45

10.1	A Intuição da Perda: Medindo o Erro do Modelo	45
10.2	Entropia Cruzada Binária (Binary Cross-Entropy): A função de	73
	perda padrão	45
10.3	Perda Hinge (Hinge Loss)	45
10.4	Comparativo Visual e Prático	45
11	FUNÇÕES DE PERDA PARA CLASSIFICAÇÃO MULTILABEL .	47
11.1	Softmax e a Distribuição de Probabilidades	47
11.2	Entropia Cruzada Categórica (Categorical Cross-Entropy)	47
11.3	Entropia Cruzada Categórica Esparsa (Sparse Categorical Cross-	
	Entropy)	47
12	METAHEURÍSTICAS: OTIMIZANDO REDES NEURAIS SEM O	
	GRADIENTE	49
12.1	Algoritmos Evolutivos	49
12.2	Inteligência de Enxame	49
IV	APRENDIZADO DE MÁQUINA CLÁSSICO	51
13	TÉCNICAS DE REGRESSÃO	53
13.1	Exemplo Ilustrativo	53
13.2	Regressão Linear	53
13.2.1	Função de Custo MSE	53
13.2.2	Equação Normal	53
13.2.3	Implementação em Python	53
13.3	Regressão Polininomial	53
13.3.1	Impletanção em Python	53
13.4	Regressão de Ridge	53
13.4.1	Implementação em Python	53
13.5	Regressão de Lasso	53
13.5.1	Implementação em Python	53
13.6	Elastic Net	53
13.6.1	Implementação em Python	53
13.7	Regressão Logística	53
13.7.1	Implementação em Python	53
13.8	Regressão Softmax	53
13.8.1	Implementação em Python	53
13.9	Outras Técnicas de Regressão	53
14	ÁRVORES DE DECISÃO E FLORESTAS ALEATÓRIAS	55

14.1	Exemplo Ilustrativo	55
14.2	Entendendo o Conceito de Árvores	55
14.2.1	Árvores Binárias	55
14.3	Árvores de Decisão	55
14.3.1	Implementação em Python	55
14.4	Florestas Aleatórias	55
14.4.1	Implementação em Python	55
15	MÁQUINAS DE VETORES DE SUPORTE	57
15.1	Exemplo Ilustrativo	57
16	ENSAMBLE	59
16.1	Exemplo Ilustrativo	59
17	DIMENSIONALIDADE	61
17.1	Exemplo Ilustrativo	61
17.2	A Maldição da Dimensionalidade	61
17.3	Seleção de Características (Feature Selection)	61
17.4	Extração de Características (Feature Extraction)	61
17.4.1	Análise de Componentes Principais (PCA)	61
17.4.2	t-SNE (t-Distributed Stochastic Neighbor Embedding) e UMAP	61
18	CLUSTERIZAÇÃO	63
18.1	Exemplo Ilustrativo	63
18.2	Aprendizado Não Supervisionado: Encontrando Grupos nos Dados	63
18.3	Clusterização Particional: K-Means	63
18.4	Clusterização Hierárquica	63
18.5	Clusterização Baseada em Densidade: DBSCAN	63
V	REDES NEURAIS PROFUNDAS (DNNS)	65
19	PERCEPTRONS MLP - REDES NEURAIS ARTIFICIAIS	67
20	REDES FEEDFORWARD (FFNS)	69
21	REDES DE CRENÇA PROFUNDA (DBNS) E MÁQUINAS DE BOLTZMANN RESTRITAS	71
22	REDES NEURAIS CONVOLUCIONAIS (CNN)	74
22.1	Exemplo Ilustrativo	74
?? ?	Camadas Convolucionais: O Bloco Fundamental para as CNNs	7/

22.2.1	Implementação em Python	74
22.3	Camadas de Poooling: Reduzindo a Dimensionalidade	76
22.3.1	Max Pooling	76
22.3.1.1	Implementação em Python	76
22.3.2	Average Pooling	78
22.3.2.1	Implementação em Python	78
22.3.3	Global Average Pooling	79
22.3.3.1	Implementação em Python	79
22.4	Camada Flatten: Achatando os Dados	80
22.4.1	Implementação em Python	80
22.5	Criando uma CNN	81
22.6	Detecção de Objetos	81
22.7	Redes Totalmente Convolucionais (FCNs)	81
22.8	You Only Look Once (YOLO)	81
22.9	Algumas Arquiteturas de CNNs	81
22.9.1	LeNet-5	81
22.9.2		81
22.9.3	GoogLeNet	81
22.9.4	VGGNet	81
22.9.5	ResNet	81
22.9.6	Xception	81
22.9.7	SENet	81
23	REDES RESIDUAIS (RESNETS)	83
24	REDES NEURAIS RECORRENTES (RNN)	85
24.1	· ,	85
24.2	Neurônios e Células Recorrentes	85
24.2.1	Implementação em Python	85
24.3	Células de Memória	85
24.3.1	Implementação em Python	85
24.4	Criando uma RNN	85
24.5	O Problema da Memória de Curto Prazo	85
24.5.1	Células LSTM	85
24.5.2	Conexões Peephole	85
24.5.3		85
25	TÉCNICAS PARA MELHORAR O DESEMPENHO DE REDES NEURAIS	87
25.1	Técnicas de Inicialização	87

SUMÁRIO 9

25.2	Reguralização L1 e L2	87
25.3	Normalização	87
25.3.1	Normalização de Camadas	87
25.3.2	Normalização de Batch	87
25.4	Cliping do Gradiente	87
25.5	Dropout: Menos Neurônios Mais Aprendizado	87
25.6	Data Augmentation	87
26	TRANSFORMERS	89
26.1	As Limitações das RNNs: O Gargalo Sequencial	89
26.2	A Ideia Central: Self-Attention (Query, Key, Value)	89
26.3	Escalando a Atenção: Multi-Head Attention	89
26.4	A Arquitetura Completa: O Bloco Transformer	89
26.5	Entendendo a Posição: Codificação Posicional	89
26.6	As Três Grandes Arquiteturas	89
26.6.1	Encoder-Only (Ex: BERT): Para tarefas de entendimento	89
26.6.2	Decoder-Only (Ex: GPT): Para tarefas de geração	89
26.6.3	Encoder-Decoder (Ex: T5): Para tarefas de tradução/sumarização	89
26.7	Além do Texto: Vision Transformers (ViT)	89
27	REDES ADVERSÁRIAS GENERATIVAS (GANS)	91
28	MIXTURE OF EXPERTS (MOE)	93
29	MODELOS DE DIFUSÃO	95
30	REDES NEURAIS DE GRAFOS (GNNS)	97
VI	APÊNDICES	99
	Referências	101

Parte I História da IA e do Computador

1 Uma Breve História do Computador

- 1.1 A Necessidade de Contar ao Longo das Eras
- 1.1.1 Ábaco
- 1.1.2 Régua de Cálculo
- 1.1.3 Bastões de Napier
- 1.1.4 Pascalina

2 Uma Breve História da Inteligência Artificial

- 2.1 Os Anos 1900
- 2.2 Os Anos 1910
- 2.3 Os Anos 1920
- 2.4 Os Anos 1930
- 2.5 Os Anos 1940
- 2.6 Os Anos 1950
- 2.7 Os Anos 1960
- 2.8 Os Anos 1970
- 2.9 Os Anos 1980
- 2.10 Os Anos 1990
- 2.11 Os Anos 2000
- 2.12 Atualidade

Parte II Conceitos Matemáticos

3 Cálculo para Aprendizado de Máquina

- 3.1 Funções: A Base do Cálculo
- 3.2 Derivadas Ordinárias
- 3.3 Integrais Simples
- 3.4 Derivadas Parciais

- 4 Álgebra Linear para Aprendizado de Máquina
- 4.1 A Unidade Fundamental: Vetores e Espaços Vetoriais
- 4.2 Organizando Dados: Matrizes e Suas Operações
- 4.3 Tensores: A Estrutura de Dados do Deep Learning
- 4.4 Resolvendo Sistemas e Encontrando Propriedades: Autovalores e Autovetores
- 4.5 Decomposição de Matrizes (SVD e PCA)

- 5 Probabilidade e Estatística para Aprendizado de Máquina
- 5.1 Medindo a Incerteza: Probabilidade Básica e Condicional
- 5.2 O Teorema de Bayes: Aprendendo com Evidências
- 5.3 Descrevendo os Dados: Estatística Descritiva: Média, mediana, variância, desvio padrão
- 5.4 Variáveis Aleatórias e Distribuições de Probabilidade
- 5.5 A Função de Máxima Verossimilhança (Maximum Likelihood Estimation MLE)

Parte III

Pilares das Redes Neurais

6 O Algoritmo da Repropropagação e Os Otimizadores Baseados em Gradiente

6.1 O Método do Gradiente Descendente

O Método do Gradiente faz parte de uma série de métodos numéricos que possuem como função otimizar diferentes funções. Métodos dessa forma veem sendo estudados a séculos, um exemplo disso é o trabalho *Méthode générale pour la résolution des systèmes d'équations simultanées* (Método geral para resolução de sistemas de equações simultâneos em portguês) do matemático francês do século XVIII Cauchy (1847), em que o autor apresenta um método que pode ser considerado um precursor para o método do gradiente atual.

Nesse texto, o autor apresenta uma forma de minimizar uma função de múltiplas variáveis (u = f(x,y,z)) que não assume valores negativos, para fazer isso, ele faz uso do cálculo de derivadas parciais dessa função de cada um dos seus componentes ($D_x u, D_y u, D_z u$), em seguida, ele realiza um passo de atualização, de forma que os os valores de cada uma das variáveis sejam ligeiramente incrementados por valores (α, β, γ) (Cauchy, 1847). Um ponto importante destacado por Cauchy (1847) é de que esses incrementos devem ser proporcionais ao negativo das suas respectivas derivadas parciais, ele descreve que esse processo de calcular as derivadas e fazer pequenos incrementos deve ser feito de forma iterativa, assim, calculá-se as derivadas, faz-se os incrementos, e o passo é repetido até convergir para o valor mínimo de u.

Esse trabalho explica bem como aplicar o método do gradiente para se calcular mínimos de funções, mas para facilitar o entendimento do leitor, em seguida está um exemplo ilutrativo explicando o funcionamento dessa ferramenta.

6.1.1 Exemplo Ilustrativo: Cadeia de Montanhas

Imagine que você adora aventuras, e por isso, decidiu fazer uma trilha em uma floresta que fica em uma cadeia de montanhas que podem ser escaladas. Então, você teve a incrivel ideia de ir para o menor ponto dessa cadeia de montanhas, pois, no guia que você estava seguindo, falava que lá havia um lago com uma água cristalina, perfeito para tirar fotos.

Para chegar até esse lago, você conta com uma bússula um tanto quanto diferente, ao invés dela apontar para o norte como uma bússola comum, ela aponta para a direção do lugar com menor altitude de uma região. Isso é perfeito para o que você precisa, pois ela irá apontar justamente para o lago de você quer ir.

Com isso em mente, você criou um plano de como irá chegar a esse lago, ele é método que segue dois passos diferentes, sendo eles:

- 1. Olha na bússola qual a direção ela está apontando;
- 2. Anda um metro na direção apontada pela bússola.

Você chegou na conclusão que se seguir essa estratégia repetidas vezes, em algum momento, você inevitavelmente irá chegar no lago que está querendo tirar as suas fotos.

Na matemática, existe um método semelhante a este, que busca com base em uma bússola (chamada de vetor gradiente), encontrar um ponto de mínimo de um determinado lugar (neste caso, uma função composta por múltiplas variáveis). Esse é o método do gradiente, ele é ponto central desse capítulo, pois, ele (e suas variações) junto com o algortimo da retroprogação são algumas das principais ferramentas que colaboram para que os modelos de aprendizado de máquina possam aprender com os seus erros e com isso se tornarem melhores a cada iteração.

6.1.2 O Método em Si

A vantagem do método do gradiente é que ele é uma ferramenta matemática, e por isso pode ser representado utilizando notações mais formais e de forma enxuta. As notações utilizadas por Cauchy são diferentes das que são utilizadas hoje em dia, mas o seu significado não muda. Em *Deep Learning*, Goodfellow, Bengio e Courville (2016) explicam essa ferramenta através da equação 6.1 que deve ser repetida por múltiplos passos até o modelo convergir, ou seja, encontrar o ponto de mínimo da função estudada.

Método do Gradiente Descendente

$$x' = x - \epsilon \nabla f(x) \tag{6.1}$$

Em que:

- *x*′: representa as coordenadas do próximo ponto;
- *x*: representa as coordernadas do ponto atual;
- ϵ : representa o tamanho do passo, também chamado de taxa de aprendizado;
- $\nabla f(x)$: representa o vetor gradiente calculado na posição do ponto atual (x) para função que se deseja otimizar.

Note que assim como no método proposto por Cauchy, é pego como base o inverso do vetor gradiente. Isso ocorre pois o vetor gradiente é um vetor especial que tem como principal propriedade apontar para a direção de maior crescimento de uma função no ponto que está sendo calculada. Mas no método, o objetivo não é encontrar o ponto que irá gerar os maiores valores da função, e sim o contrário. Por isso, é tomado inverso do vetor gradiente, que, dessa forma, estará então apontando para a direção de menor crescimento de uma função.

Um ponto a ser destacado nesse metodo é na hora de escolher uma taxa de aprendizado para ser utilizada no método. Uma taxa de aprendizado muito pequena significa que o passo que o modelo irá dar de um ponto para outro será menor, e com isso implica que ele levará mais passos para encontrar um ponto de mínimo. É como se você fosse comparar a quantidade de passos que você gasta para andar do seu quarto até a sua cozinha com a quantidade de passos dados por uma formiga até lá, ambos vão chegar no local, mas a formiga certamente irá demorar bem mais. Considerando isso, surge então a hipótese de que quanto maior for o passo, mais rápido será a convergência, mas isso também não funciona muito bem, pois um passo muito largo pode ultrapassar o ponto de mínimo indo parar em outro canto da função, e ficará tentando chegar até o mínimo mas não irá conseguir pois caminha uma distância muito grande de uma só vez. Essas duas situações, em que o passo é pequeno demais e que o passo e grande demais, são ilustradas na figura 1.

Figura 1 – Comparativo do tamanho de passos em uma função polinomial.

Na prática, escolher o valor da taxa de aprendizado é uma tarefa que irá depender de modelo em modelo, também irá variar com os diferentes métodos de otimização além da topologia da rede neural que está sendo construída. É sempre recomendado então experimentar diferentes tamanhos de passo, de forma que seja encontrado um que melhor se ajusta ao cenário que está sendo trabalhado.

Outro ponto que deve-se atentar é com relação as funções que estão sendo analisas ao utilizar o método do gradiente mas também qualquer otimizador que seja baseado nele. Se tivermos uma função convexa, em que seu formato lembra um funil, será bem mais fácil para o modelo encontrar o ponto de mínimo global daquela função.

Mas se tivermos uma função não convexa, cheia de ondas e com muitos pontos de mínimos locais e pontos de sela, a convergência do modelo será pior, pois existe a chance de que ele fique preso em um ponto de mínimo local ou em um ponto de sela. Isso afeta diretamente o desempenho da rede neural que estará sendo criada, fazendo com que ela tenha métricas piores. O problema é que muitas das vezes a função f(x) que estaremos interessados para calcular o desempenho do modelo será não convexa, dificultando o seu aprendizado.

Na figura 2 é possível ver o gráfico de duas funções diferentes, a primeira sendo uma função convexa e a segunda uma função não convexa.

Figura 2 – Comparação entre funções 3D convexas e não-convexas.

6.1.3 Implementação em Python

Para implementar o método do gradiente utilizando Python e a biblioteca de cálculos Numpy, deve-se seguir como base a equação 6.1, criando uma classe implenta essa ferramenta, recebendo como parâmetros de entrada a taxa de aprendizado (learning_rate), a função que se quer encontrar o ponto de mínimo (function), e um ponto inicial (initial_point), que pode ser um conjunto de coordenadas aleatórias ou escolhidas pelo programador.

Outro ponto que deve ser destacado nas informações dessa função é de que ela também irá receber a derivada da função (function_prime) que se quer descobrir o ponto de mínimo, pois não será feito cálculo simbólico para calcular o vetor gradiente. Dessa forma os cálculos serão mais rápidos. Além disso, também é preciso definir outros parâmetros auxiliares, como a quantidade máxima de iterações que o modelo irá seguir (tolerance), que são chamadas de épocas epochs, também será definida um grau de tolerância para o modelo, pois, podem existir casos em que a norma do vetor gradiente são será exatemente zero, mas um valor muito próximo de zero, assim a

tolerância será responsável por definir qual valor dessa diferença será aceitável para o problema.

Por fim, um ponto interessante que é possível adicionar nessa função é uma lista, que irá armazenar todos os pontos que o modelo passou em cada uma de suas iterações, indicando o seu caminho pela função que está sendo estudada.

Bloco de Código: Classe completa do otimizador GradientDescent

```
1 class GradientDescent:
      def __init__(self, function, function_prime, initial_point
3
     , learning_rate=0.001, epochs=100, tolerance=1e-6):
          self.f = function
          self.fp = function_prime
5
          self.ip = initial_point
          self.lr = learning_rate
          self.ep = epochs
          self.tol = tolerance
          self.path = []
11
      def update_step(self):
12
          for i in range(self.ep):
13
              self.path.append(self.ip)
14
               grad = self.fp(self.ip)
15
16
               if abs(grad) < self.tol: break</pre>
               self.ip = self.ip + self.lr * (-grad)
17
          return self.ip, self.path
18
```

Note que a classe apresenta apenas dois métodos, o primeiro sendo o __init__, que inicializa os parâmetros da classe, e a update_step a qual é responsável por implementar de fato o método do gradiente, ela irá retornar o ponto de mínimo e também a lista com os pontos pelos quais o modelo passou ao longo das iterações.

6.2 A Retropropagação: Aprendendo com os Erros

Ainda no contexto de utilizar com o vetor gradiente para otimizar um modelo de rede neural, existe uma ferramenta que trabalha justamente com essse processo, ela é a retropropagação ou *backpropagation* em inglês.

Definição: A **retropropagação** é uma ferramenta que veio para permitir que redes que fazem o uso de unidades de neurônios possam aprender, para isso, o procedimento ajusta repetidamente os pesos das conexões da rede para minimizar a diferença entre o valor atual da saída do vetor da rede neural com o valor real desejado (Rumelhart; Hinton; Williams, 1986).

Essa ferramenta foi introduzida para a comunidade científica pelos pesquisadores Rumelhart, Hinton e Williams (1986) no texto *Learning Representations by Back-Propagating Errors*,

6.3 Otimizadores Baseados em Gradiente

- 6.3.1 Método do Gradiente Estocástico
- 6.3.1.1 Implementação em Python
- 6.3.2 Método do Gradiente com Momentum
- 6.3.2.1 Implementação em Python
- 6.3.3 Nesterov
- 6.3.3.1 Implementação em Python
- 6.3.4 AdaGrad
- 6.3.4.1 Implementação em Python
- 6.3.5 RMSProp
- 6.3.5.1 Implementação em Python
- 6.3.6 Adam
- 6.3.6.1 Implementação em Python
- 6.3.7 Nadam
- 6.3.7.1 Implementação em Python
- 6.4 O Método de Newton: Indo Além do Gradiente
- 6.4.1 Implementação em Python

7 Funções de Ativação Sigmoidais

- 7.1 Teoremas da Aproximação Universal
- 7.2 Exemplos Ilustrativo
- 7.3 A Sigmoide Logística

Sigmoide Logística

$$\sigma(z_i) = \frac{1}{1 + e^{-z_i}} \tag{7.1}$$

Derivada da sigmoide logística

$$\frac{d}{dz_i}\sigma(z_i) = \frac{e^{-z_i}}{(1 + e^{-z_i})^2}$$
 (7.2)

7.3.1 Implementação em Python

Bloco de Código: Classe completa do função de ativação Sigmoid

```
1 import numpy as np
2
3 class Sigmoid(Layer):
4    def __init__(self):
5        super().__init__()
6        self.input = None
7        self.sigmoid = None
8
9    def forward(self, input_data):
10        self.input = input_data
11        self.sigmoid_output = 1/ (1 + np.exp(-input_data)))
12        return self.sigmoid_output
13
14    def backward(self, grad_output):
15        sigmoid_grad = self.sigmoid_output * (1 - self.sigmoid_output)
16        return grad_output * sigmoid_grad, None
```

7.4 Tangente Hiperbólica

Tangente Hiperbólica

$$\tanh(z_i) = \frac{\sinh(z_i)}{\cosh(z_i)} = \frac{e_i^z - e^{-z_i}}{e_i^z + e^{-z_i}}$$
(7.3)

Derivada da tangente hiperbólica

$$\frac{d}{dz_i}\tanh(z_i) = \operatorname{sech}^2(z_i) \tag{7.4}$$

7.4.1 Implementação em Python

Bloco de Código: Classe completa do função de ativação Tangente Hiperbólica

```
1 import numpy as np
2 from layers.base import Layer # Assuming your base class is
     here
4 class Tanh(Layer):
      def __init__(self):
          super().__init__()
          self.input = None
          self.tanh_output = None
9
      def forward(self, input_data):
10
          self.input = input_data
11
          self.tanh_output = np.tanh(self.input)
12
          return self.tanh_output
13
14
      def backward(self, grad_output):
15
          tanh_grad = 1 - self.tanh_output **2
16
          return grad_output * tanh_grad, None
17
```

7.5 Softsign: Uma Sigmoidal Mais Barata

Softsign

$$softsign(z_i) = \frac{z_i}{1 + |z_i|} \tag{7.5}$$

Derivada da softsign

$$\frac{d}{dz_i} \operatorname{softsign}(z_i) = \frac{1}{(1+|z_i|)^2}$$
 (7.6)

7.5.1 Implementação em Python

Bloco de Código: Classe completa do função de ativação Softsign

```
1 from layers.base import Layer
2 import numpy as np
3
4 class Softsign(Layer):
5    def __init__(self):
6        super().__init__()
7        self.input = None
8
9    def forward(self, input_data):
10        self.input = input_data
11        return self.input / (1 + np.abs(self.input))
12
13    def backward(self, grad_output):
14        grad = (1 / (1 + np.abs(self.input))**2)
15        return grad_output * softsign_grad, None
```

7.6 Hard Sigmoid e Hard Tanh: O Sacrifício da Suavidade em Prol do Desempenho

Hard Sigmoid

hard sigmoid(
$$z_i$$
) =
$$\begin{cases} 0 & \text{se } z_i < -3 \\ z_i/6 + 0.5 & \text{se } -3 \le z_i \le 3 \\ 1 & \text{se } z_i > 3 \end{cases}$$
 (7.7)

Derivada da Hard Sigmoid

$$\frac{d}{dz_{i}} \text{hard sigmoid}(z_{i}) = \begin{cases}
0 & \text{se } z_{i} < -3 \\
1/6 & \text{se } -3 < z_{i} < 3 \\
0 & \text{se } z_{i} > 3
\end{cases}$$
(7.8)

Hard Tanh

$$\operatorname{hard} \tanh(z_i) = \begin{cases} -1 & \operatorname{se} z_i < -1 \\ z_i & \operatorname{se} -1 \le z_i \le 1 \\ 1 & \operatorname{se} z_i > 1 \end{cases}$$
 (7.9)

Derivada da Hard Tanh

$$\frac{d}{dz_{i}} \operatorname{hard} \tanh(z_{i}) = \begin{cases}
0 & \text{se } z_{i} < -1 \\
1 & \text{se } -1 < z_{i} < 1 \\
0 & \text{se } z_{i} > 1
\end{cases}$$
(7.10)

7.6.1 Implementação em Python

Bloco de Código: Classe completa do função de ativação Hard Sigmoid

```
1 from layers.base import Layer
2 import numpy as np
4 class HardSigmoid(Layer):
      def __init__(self):
          super().__init__()
          self.input = None
      def forward(self, input_data):
          self.input = input_data
          output = self.input / 6 + 0.5
          output = np.clip(output, 0, 1) # A more concise way
     to handle the bounds
          return output
      def backward(self, grad_output):
          hard_sigmoid_grad = np.full_like(self.input, 1 / 6)
          hard_sigmoid_grad[self.input < -3] = 0</pre>
21
          hard_sigmoid_grad[self.input > 3] = 0
23
          return grad_output * hard_sigmoid_grad, None
24
```

Bloco de Código: Classe completa do função de ativação Hard Sigmoid

```
1 from layers.base import Layer
2 import numpy as np
5 class HardTanh(Layer):
      def __init__(self):
          super().__init__()
          self.input = None
      def forward(self, input_data):
10
          self.input = input_data
11
          return np.clip(self.input, -1, 1)
12
13
      def backward(self, grad_output):
14
15
          hard_tanh_grad = np.where((self.input > -1) & (self.
16
     input < 1), 1, 0)</pre>
17
          return grad_output * hard_tanh_grad, None
18
```

- 7.7 O Desaparecimento de Gradientes
- 7.8 Comparativo de Desempenho das Sigmoidais

8 Funções de Ativação Retificadoras

- 8.1 Exemplo Ilustrativo
- 8.2 Rectified Linear Unit e Revolução Retificadora

Rectified Linear Unit (ReLU)

$$ReLU(z_i) = \begin{cases} z_i, & \text{se } z_i > 0\\ 0, & \text{se } z_i \le 0 \end{cases}$$
(8.1)

Derivada Rectified Linear Unit (ReLU)

$$\frac{d}{dz_i}[ReLU](z_i) = \begin{cases} 1, & \text{se } z_i > 0\\ 0, & \text{se } z_i \leqslant 0 \end{cases}$$
(8.2)

8.2.1 Implementação em Python

Bloco de Código: Classe completa do função de ativação Rectified Linear Unit

```
1 import numpy as np
2 from layers.base import Layer
3
4 class ReLU(Layer):
5    def __init__(self):
6        super().__init__()
7        self.input = None
8
9    def forward(self, input_data):
10        self.input = input_data
11        return np.maximum(0, self.input)
12
13    def backward(self, grad_output):
14        relu_grad = (self.input > 0)
15
16        # Apply the chain rule
17        return grad_output * relu_grad, None
```

- 8.3 Dying ReLUs Problem
- 8.4 Corrigindo o Dying ReLUs Problem: As Variantes com Vazamento
- 8.4.1 Leaky ReLU

Leaky ReLU (LReLU)

$$LReLU(z_i) = \begin{cases} z_i, & \text{se } z_i \ge 0\\ \alpha \cdot z_i, & \text{se } z_i < 0 \end{cases}$$
(8.3)

Derivada Leaky ReLU (LReLU)

$$\frac{d}{dz_i}[LReLU](z_i) = \begin{cases} 1, & \text{se } z_i > 0\\ \alpha, & \text{se } z_i \leqslant 0 \end{cases}$$
(8.4)

8.4.1.1 Implementação em Python

Bloco de Código: Classe completa do função de ativação Leaky ReLU

```
1 import numpy as np
2 from layers.base import Layer
5 class LeakyReLU(Layer):
      def __init__(self, alpha=0.01):
          super().__init__()
          self.input = None
          self.alpha = alpha
      def forward(self, input_data):
11
          self.input = input_data
12
          return np.maximum(self.input * self.alpha, self.input)
14
      def backward(self, grad_output):
15
          leaky_relu_grad = np.where(self.input > 0, 1, self.
16
     alpha)
17
          return grad_output * leaky_relu_grad, None
```

8.5. Em Busca da Suavidade 41

8.4.2 Parametric ReLU

Parametric ReLU (PReLU)

$$PReLU(z_i) = \begin{cases} z_i, & \text{se } z_i \ge 0\\ \alpha_i \cdot z_i, & \text{se } z_i < 0 \end{cases}$$
(8.5)

Derivada Parametric ReLU (PReLU)

$$\frac{d}{dz_i}[PReLU](z_i) = \begin{cases}
1, & \text{se } z_i > 0 \\
\alpha_i, & \text{se } z_i < 0 \\
\nexists, & \text{se } z_i = 0
\end{cases}$$
(8.6)

8.4.3 Randomized Leaky ReLU

Randomized Leaky ReLU (RReLU)

$$RReLU(z_i) = \begin{cases} z_i, & \text{se } z_i > 0\\ \alpha_i z_i, & \text{se } z_i \le 0 \end{cases}$$
(8.7)

Derivada Randomized Leaky ReLU (RReLU)

$$\frac{d}{dz_i}[RReLU](z_i) = \begin{cases} 1, & \text{se } z_i > 0\\ \alpha_i, & \text{se } z_i \leqslant 0 \end{cases}$$
(8.8)

8.5 Em Busca da Suavidade

8.5.1 Exponential Linear Unit

Exponential Linear Unit (ELU)

$$ELU(z_i) = \begin{cases} z_i, & \text{se } z_i \ge 0\\ \alpha \cdot (e^{z_i} - 1), & \text{se } z_i < 0 \end{cases}$$
(8.9)

Derivada Exponential Linear Unit (ELU)

$$\frac{d}{dz_i}[ELU](z_i) = \begin{cases} 1, & \text{se } z_i > 0\\ \alpha \cdot e^{z_i}, & \text{se } z_i \le 0 \end{cases}$$
(8.10)

8.5.2 Scaled Exponential Linear Unit

Scaled Exponential Linear Unit (ELU)

$$SELU(z_i) = \lambda \begin{cases} z_i, & \text{se } z_i > 0 \\ \alpha \cdot (e^{z_i} - 1), & \text{se } z_i \le 0 \end{cases}$$
(8.11)

Derivada Scaled Exponential Linear Unit (ELU)

$$\frac{d}{dz_i}[SELU](z_i) = \lambda \begin{cases} 1, & \text{se } z_i > 0\\ \alpha \cdot e^{z_i}, & \text{se } z_i \le 0 \end{cases}$$
(8.12)

8.5.3 Noisy ReLU

Noisy ReLU (NReLU)

$$NReLU(z_i) = \begin{cases} 0 & \text{se } z_i \le 0 \\ z_i + \mathcal{N}(0, \sigma(z_i)) & \text{se } z_i > 0 \end{cases}$$
(8.13)

Derivada Noisy ReLU (NReLU)

$$\frac{d}{dz_i}[\text{NReLU}](z_i) = \begin{cases} 0 & \text{se } z_i \le 0\\ 1 & \text{se } z_i > 0 \end{cases}$$
(8.14)

- 8.6 O Problema dos Gradientes Explosivos
- 8.7 Comparativo de Desempenho das Funções Retificadoras

9 Funções de Ativação Modernas e Outras Funções de Ativação

- 10 Funções de Perda para Classificação Binária
- 10.1 A Intuição da Perda: Medindo o Erro do Modelo
- 10.2 Entropia Cruzada Binária (Binary Cross-Entropy): A função de perda padrão
- 10.3 Perda Hinge (Hinge Loss)
- 10.4 Comparativo Visual e Prático

- 11 Funções de Perda para Classificação Multilabel
- 11.1 Softmax e a Distribuição de Probabilidades
- 11.2 Entropia Cruzada Categórica (Categorical Cross-Entropy)
- 11.3 Entropia Cruzada Categórica Esparsa (Sparse Categorical Cross-Entropy)

12 Metaheurísticas: Otimizando Redes Neurais Sem o Gradiente

- 12.1 Algoritmos Evolutivos
- 12.2 Inteligência de Enxame

Parte IV

Aprendizado de Máquina Clássico

13 Técnicas de Regressão

13.1 Exemplo Ilustrativo	13.1	Exemplo I	lustrative
--------------------------	------	-----------	-------------------

- 13.2 Regressão Linear
- 13.2.1 Função de Custo MSE
- 13.2.2 Equação Normal
- 13.2.3 Implementação em Python
- 13.3 Regressão Polininomial
- 13.3.1 Impletanção em Python
- 13.4 Regressão de Ridge
- 13.4.1 Implementação em Python
- 13.5 Regressão de Lasso
- 13.5.1 Implementação em Python
- 13.6 Elastic Net
- 13.6.1 Implementação em Python
- 13.7 Regressão Logística
- 13.7.1 Implementação em Python
- 13.8 Regressão Softmax
- 13.8.1 Implementação em Python
- 13.9 Outras Técnicas de Regressão

14 Árvores de Decisão e Florestas Aleatórias

- 14.1 Exemplo Ilustrativo
- 14.2 Entendendo o Conceito de Árvores
- 14.2.1 Árvores Binárias
- 14.3 Árvores de Decisão
- 14.3.1 Implementação em Python
- 14.4 Florestas Aleatórias
- 14.4.1 Implementação em Python

15 Máquinas de Vetores de Suporte

15.1 Exemplo Ilustrativo

16 Ensamble

16.1 Exemplo Ilustrativo

17 Dimensionalidade

- 17.1 Exemplo Ilustrativo
- 17.2 A Maldição da Dimensionalidade
- 17.3 Seleção de Características (Feature Selection)
- 17.4 Extração de Características (Feature Extraction)
- 17.4.1 Análise de Componentes Principais (PCA)
- 17.4.2 t-SNE (t-Distributed Stochastic Neighbor Embedding) e UMAP

18 Clusterização

- 18.1 Exemplo Ilustrativo
- 18.2 Aprendizado Não Supervisionado: Encontrando Grupos nos Dados
- 18.3 Clusterização Particional: K-Means
- 18.4 Clusterização Hierárquica
- 18.5 Clusterização Baseada em Densidade: DBSCAN

Parte V

Redes Neurais Profundas (DNNs)

19 Perceptrons MLP - Redes Neurais Artificiais

20 Redes FeedForward (FFNs)

21 Redes de Crença Profunda (DBNs) e Máquinas de Boltzmann Restritas

22 Redes Neurais Convolucionais (CNN)

- 22.1 Exemplo Ilustrativo
- 22.2 Camadas Convolucionais: O Bloco Fundamental para as CNNs
- 22.2.1 Implementação em Python

Bloco de Código: Classe completa de Convolution2D

```
1 import numpy as np
2 from layers.base import Layer
4 class Convolution2D(Layer):
      def __init__(self, input_channels, num_filters,
     kernel_size, stride=1, padding=0):
          super().__init__()
6
          self.input_channels = input_channels
          self.num_filters = num_filters
          self.kernel_size = kernel_size
          self.stride = (stride, stride) if isinstance(stride,
     int) else stride
          self.padding = padding
11
12
          kernel_height, kernel_width = self.kernel_size
13
14
          self.kernels = np.random.randn(num_filters,
     input_channels, kernel_height, kernel_width) * 0.01
          self.biases = np.zeros((num_filters, 1))
15
          self.params = [self.kernels, self.biases]
16
          self.cache = None
      def forward(self, input_data):
19
          (batch_size, input_height, input_width, input_channels
     ) = input_data.shape
          filters, _, kernel_height, kernel_width = self.kernels
21
     .shape
          stride_height, stride_width = self.stride
          pad_config = ((0, 0), (self.padding, self.padding), (
     self.padding, self.padding), (0, 0))
          input_padded = np.pad(input_data, pad_config, mode='
     constant')
          self.cache = input_padded
```

22.3 Camadas de Poooling: Reduzindo a Dimensionalidade

22.3.1 Max Pooling

22.3.1.1 Implementação em Python

Bloco de Código: Classe completa de MaxPooling2D

```
1 import numpy as np
2 from layers.base import Layer
4 class MaxPooling2D(Layer):
      def __init__(self, pool_size=(2,2), stride=None):
          super().__init__()
          self.pool_size = pool_size
          self.stride = stride if stride is not None else
     pool_size
          self.cache = None
      def forward(self, input_data):
11
          (batches, input_height, input_width, channels) =
12
     input_data.shape
13
14
          pool_height, pool_width = self.pool_size
15
          stride_height, stride_width = self.stride
16
17
          output_height = int((input_height - pool_height) /
     stride_height) + 1
          output_width = int((input_width - pool_width) /
18
     stride_width) + 1
19
          output_matrix = np.zeros((batches, output_height,
20
     output_width, channels))
          self.cache = np.zeros_like(input_data)
21
          for b in range(batches):
24
              for c in range(channels):
                   for h in range(output_height):
                       for w in range(output_width):
28
                           start_height = h * stride_height
                           start_width = w * stride_width
29
                           end_height = start_height +
30
     pool_height
31
                           end_width = start_width + pool_width
32
```

22.3.2 Average Pooling

22.3.2.1 Implementação em Python

Bloco de Código: Classe completa de AveragePooling2D

```
1 import numpy as np
2 from layers.base import Layer
4 class AveragePooling2D(Layer):
      def __init__(self, pool_size=(2, 2), stride=None):
          super().__init__()
          self.pool_size = pool_size
          self.stride = stride if stride is not None else
     pool_size
9
      def forward(self, input_data):
10
          (batches, input_height, input_width, channels) =
11
     input_data.shape
          pool_h, pool_w = self.pool_size
12
          stride_h, stride_w = self.stride
13
14
          output_height = int((input_height - pool_h) / stride_h
15
     ) + 1
          output_width = int((input_width - pool_w) / stride_w)
16
     + 1
17
          output_matrix = np.zeros((batches, output_height,
18
     output_width, channels))
19
          for b in range(batches):
20
              for c in range(channels):
                   for h in range(output_height):
22
                       for w in range(output_width):
23
                           start_h = h * stride_h
24
                           start_w = w * stride_w
25
                           end_h = start_h + pool_h
26
                           end_w = start_w + pool_w
27
28
                           pooling_window = input_data[b, start_h
29
     :end_h, start_w:end_w, c]
                           output_matrix[b, h, w, c] = np.mean(
30
     pooling_window) # Changed to mean
31
32
          return output_matrix
33
```

22.3.3 Global Average Pooling

22.3.3.1 Implementação em Python

Bloco de Código: Classe completa de Global Average Pooling 2D

```
1 import numpy as np
2 from layers.base import Layer
4 class GlobalAveragePooling2D(Layer):
      def __init__(self):
          super().__init__()
          self.input_shape = None
      def forward(self, input_data):
          self.input_shape = input_data.shape
          output = np.mean(input_data, axis=(1, 2), keepdims=
12
     True)
13
          return output
14
15
      def backward(self, output_gradient):
          _, input_h, input_w, _ = self.input_shape
17
          distributed_grad = output_gradient / (input_h *
19
     input_w)
20
21
          upsampled_grad = np.ones(self.input_shape) *
     distributed_grad
22
23
          return upsampled_grad, None
```

22.4 Camada Flatten: Achatando os Dados

22.4.1 Implementação em Python

Bloco de Código: Classe completa de Flatten

```
1 import numpy as np
2 from layers.base import Layer
4 class Flatten(Layer):
      def __init__(self):
          super().__init__()
          self.input_shape = None
      def forward(self, input_data):
          self.input_shape = input_data.shape
10
11
          flatten_output = input_data.reshape(input_data.shape
12
     [0], -1)
13
          return flatten_output
14
15
      def backward(self, output_gradient):
16
          input_gradient = output_gradient.reshape(self.
17
     input_shape)
          return input_gradient, None
18
```

22.5. Criando uma CNN 81

00 F	$C \cdot I$		
22.5	Criando	uma	CIVIN

- 22.6 Detecção de Objetos
- 22.7 Redes Totalmente Convolucionais (FCNs)
- 22.8 You Only Look Once (YOLO)
- 22.9 Algumas Arquiteturas de CNNs
- 22.9.1 LeNet-5
- 22.9.2 AlexNet
- 22.9.3 GoogLeNet
- 22.9.4 VGGNet
- 22.9.5 ResNet
- 22.9.6 Xception
- 22.9.7 SENet

23 Redes Residuais (ResNets)

24 Redes Neurais Recorrentes (RNN)

- 24.1 Exemplo Ilustrativo
- 24.2 Neurônios e Células Recorrentes
- 24.2.1 Implementação em Python
- 24.3 Células de Memória
- 24.3.1 Implementação em Python
- 24.4 Criando uma RNN
- 24.5 O Problema da Memória de Curto Prazo
- 24.5.1 Células LSTM
- 24.5.2 Conexões Peephole
- 24.5.3 Células GRU

25 Técnicas para Melhorar o Desempenho de Redes Neurais

- 25.1 Técnicas de Inicialização
- 25.2 Reguralização L1 e L2
- 25.3 Normalização
- 25.3.1 Normalização de Camadas
- 25.3.2 Normalização de Batch
- 25.4 Cliping do Gradiente
- 25.5 Dropout: Menos Neurônios Mais Aprendizado
- 25.6 Data Augmentation

26 Transformers

26.1

26.2 A Ideia Central: Self-Attention (Query, Key, Value)
26.3 Escalando a Atenção: Multi-Head Attention
26.4 A Arquitetura Completa: O Bloco Transformer
26.5 Entendendo a Posição: Codificação Posicional
26.6 As Três Grandes Arquiteturas

As Limitações das RNNs: O Gargalo Sequencial

- 26.6.1 Encoder-Only (Ex: BERT): Para tarefas de entendimento
- 26.6.2 Decoder-Only (Ex: GPT): Para tarefas de geração
- 26.6.3 Encoder-Decoder (Ex: T5): Para tarefas de tradução/sumarização
- 26.7 Além do Texto: Vision Transformers (ViT)

27 Redes Adversárias Generativas (GANs)

28 Mixture of Experts (MoE)

29 Modelos de Difusão

30 Redes Neurais de Grafos (GNNs)

Parte VI

Apêndices

Referências

CAUCHY, Augustin-Louis. Méthode générale pour la résolution des systèmes d'équations simultanées. *Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences*, v. 25, p. 536–538, 1847. Citado na p. 27.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. *Deep Learning*. [S. l.]: MIT Press, 2016. Citado na p. 28.

RUMELHART, David E.; HINTON, Geoffrey E.; WILLIAMS, Ronald J. Learning Representations by Back-Propagating Errors. *Nature*, v. 323, p. 533–536, 1986. Citado na p. 32.