EX. NO: 04

DATE: 27/09/2024

FLIP-FLOPS

AIM: To implement flipflops in Verilog HDL and verify their functionalities through behavioral

simulation.

SOFTWARE USED: Xilinx Vivado

HARDWARE USED: Basys3 FPGA Board

ADDERS:

```
VERILOG HDL CODE:
```

```
SR flipflop:
```

```
module sr_flipflop(s,r,clk,rst,q,qbar);
input s,r,clk,rst;
output reg q,qbar;
always @ (posedge clk)
  begin
  if (rst==0)
    begin
      case ({s,r})
      2'b00: q=q;
      2'b01: q=1'b0;
      2'b10: q=1'b1;
      2'b11: q=1'bx; //Invalid
      endcase
      qbar=~q;
    end
  else
    begin
      q=1'b0;qbar=^q;
    end
  end
endmodule
```

Test bench for SR flipflop:

```
#100 rst=1;
        s=1'b0; r=1'b0;
       #100 s=1'b0; r=1'b1;
       #100 s=1'b1; r=1'b0;
       #100 s=1'b1; r=1'b1;
       #100 $stop;
       end
initial begin
$monitor("At time=%t, clk=%b,rst=%b, s=%b,r=%b,q=%b,qbar=%b",$time,clk,rst,s,r,q,qbar);
endmodule
JK flipflop:
module jk_flipflop(j,k,clk,rst,q,qbar);
input j,k,clk,rst;
output reg q,qbar;
always @ (posedge clk)
  begin
  if (rst==0)
    begin
      case ({j,k})
      2'b00: q=q;
      2'b01: q=1'b0;
      2'b10: q=1'b1;
      2'b11: q=~q;
      endcase
      qbar=~q;
    end
  else
    begin
      q=1'b0;qbar=^q;
    end
  end
endmodule
Test bench for JK flipflop:
module tb jk flipflop;
reg j,k,clk,rst;
wire q,qbar;
jk flipflop jk(j,k,clk,rst,q,qbar);
always #50 clk = ~clk;
initial
       begin
       clk=1;
       rst=0;
       j=1'b0; k=1'b0;
       #100 j=1'b0; k=1'b1;
       #100 j=1'b1; k=1'b0;
       #100 j=1'b1; k=1'b1;
       #100 rst=1;
       j=1'b0; k=1'b0;
       #100 j=1'b0; k=1'b1;
       #100 j=1'b1; k=1'b0;
```

```
#100 j=1'b1; k=1'b1;
       #100 $stop;
       end
initial begin
$monitor("At time=%t, clk=%b,rst=%b, j=%b,k=%b,q=%b,qbar=%b",$time,clk,rst,j,k,q,qbar);
endmodule
D flipflop:
module d_flipflop(Q,D,clk,reset,Qbar);
input D,clk,reset;
output reg Q,Qbar;
always @(posedge clk or posedge reset)
begin
  if (reset == 1'b1)
  begin
  Q = 1'b0;
  Qbar=~Q;
  end
  else
  begin
    Q = D;
    Qbar=~Q;
  end
end
endmodule
Test bench for D flipflop:
module tb d flipflop;
reg D,clk,reset;
wire Q,Qbar;
d_flipflop DF(Q,D,clk,reset,Qbar);
initial
  begin
  clk = 1'b1;
  forever \#20 \text{ clk} = \text{~clk};
  end
initial
  begin
  reset = 1'b0;
    D = 1'b0;
  #40 D = 1'b1;
  #40 reset = 1'b1;
    D = 1'b0;
  #40 D = 1'b1;
  #40 $finish;
  end
  initial begin
    $monitor("At time %0t: clk = %b, reset = %b, D = %b, Q = %b, Qbar = %b",
          $time, clk, reset, D, Q, Qbar);
  end
endmodule
```

```
T flipflop:
```

```
module t_flipflop (T,clk,reset,Q,Qbar);
  input T,clk,reset;
  output reg Q,Qbar;
  always @(posedge clk or posedge reset)
  begin
    if (reset) begin
      Q = 1'b0;
      Qbar=~Q;end
    else
      if (T) begin
      Q = ^Q;
      Qbar=~Q; end
      else
      begin
      Q = Q;
      Qbar=~Q; end
  end
endmodule
```

Test bench for T flipflop:

```
module tb_t_flipflop;
  reg T;
  reg clk;
  reg reset;
  wire Q,Qbar;
  t_flipflop TF(T,clk,reset,Q,Qbar);
  initial begin
    clk = 0;
    forever #5 clk = ^{\sim}clk;
  end
  initial begin
    reset = 1; T = 0;
    #15;
    reset = 0;
    T=1;
    #10 T = 0;
    #10 T = 1;
    #10 T = 0;
    #10 $finish;
  end
  initial begin
    $monitor("Time: %0t | T: %b | clk: %b | reset: %b | Q: %b", $time, T, clk, reset, Q);
  end
endmodule
```

SIMULATION WAVEFORM:

SR flipflop:

JK flipflop:

D flipflop:

T flipflop:

HADWARE OUTPUT:

SR flipflop:

S: U1 clk: W5 Q: L1 R: T1 rst: R2 Qbar: P1

For S=1,R=0, clk=1, rst=1

JK flipflop:

J: R2 clk: W5 Q: L1 K: T1 Qbar: P1 rst: U1

D flipflop:

D: R2

clk: W5 Q: L1 reset: T1 Qbar: P1

For D=1, clk=1, reset=0

T flipflop:

T: T1

clk: W5 Q: L1 Qbar: P1 reset: R2

For T=1, clk=1, reset=0

TRUTH TABLES AND CIRCUIT DIAGRAMS:

SR flipflop:

	INPUTS		OUTPU	STATE
			T	
CLK	S	R	Q	
X	0	0	No	Previous
			Change	
†	0	1	0	Reset
†	1	0	1	Set
	1	1	-	Forbidde
'				n

Qn+1 = S + QnR'

TRUTH TABLE

S	R	Q _N	Q_{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
	-	-	
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	-

JK flipflop:

Trigger	Inputs		Output				
i i i ggci			Present State		Next State		Inference
CLK	7	K	Ø	Q'	ø	Q'	
X	х	Х	-		-		Latched
	0	0	0	1	0	1	No Change
			1	0	1	0	Tto ondingo
	0	1	0	1	0	1	Reset
			1	0	0	1	110501
	1	0	0	1	1	0	Set
	ľ		1	0	1	0	001
	1	1	0	1	1	0	Toggles
	Ĭ .		1	0	0	1	. 099100

D flipflop:

CLK	D	Qn	Qn	Action
0	Х	Q _{n-1}	\overline{Q}_{n-1}	HOLD
1	0	0	1	Reset
1	1	1	0	Set

	Input		Output		
	D	reset	clock	Q	Q'
	0	0	0	0	1
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	0	1
1	1	0	0	0	1
ł	1	0	1	1	0
ļ	1	1	0	0	1
	1	1	1	0	1

Qn+1 = D

T flipflop:

	Previous		Next	
Ţ	Q	Q Q'		Q'
0	0	1	0	1
0	1	0	1	0
1	0	1	1	0
1	1	0	0	1

Qn+1 =T⊕Qn

RESULT:

Thus, flip-flops were successfully implemented in Verilog HDL and their functionalities were verified through behavioral simulation using Xilinx Vivado software on the Basys3 FPGA board.