

JPEG

정보통신공학 2012126673 강 지 원

목차

- JPEG
- JPEG Algorithm
- 전처리 과정 -색상변환 -다운 샘플링
- DCT
- 양자화
- 엔트로피 부호화
- JPEG 복호화
- 복원영상 측정 방법
- JPEG의 장.단 점

JPEG

JPEG 이란?
(Joint Photographic Expert Group) 약자
사진과 같은 정지화상 정보를 통신하기 위하여 압축하는 기술의 표준

JPEG 의 장점

●J P E G 장점

- 저해상도의 표시계에서 고해상도의 인쇄계에 이르기까지 여러 종류의 해상도에 대응
- 다양한 색공간에 대응
- 컬러 정지 영상 압축의 국제표준 방식으로 세계적인 인정

JPEG 의 단점

•JPEG단점

- 낮은 픽셀에서 변형 심함
- 대용량 및 정밀 이미지 처리 부적절
- 전송 에러시 복원력이 매우 약함
- 이미지와 혼합문서에 적합지 않음

-> JPEG 압축 방식을 적용 할 시 블록화 현상 발생

JPEG Algorithm

전처리과정

색상변환 (RGB ⇒ YIQ)

- 컬러를 표현하는 여러가지 방법
 - RGB(Red, Green, Blue): 빛의 3원색으로 표현
 - CMY(Cyan, Magenta, Yellow) : 빛의 3원색을 두개씩 조합 했을때
 - YIQ : 밝기와 색차로 컬러를 표현

• JPEG 압축을 위해서는 일단 컬러모델 (RGB -> YIQ)로 변환

RGB-> YIQ 변환공식

Y=0.3R+0.59G+0.11B $U=(B-Y)\times0.493$ $V=(R-Y)\times0.877$

전처리 과정

다운 샘플링 (YIQ ⇒ YCbCr)

- 눈의 특징을 감안하여 Y성분은 그대로 둔다.
- 색 차 신호인 I와 Q값은 다운 샘플링
- I와 Q값은 가로, 세로가 (2,2) 또는 (2,1) 크기의 블록에서 한 개씩 만기억 -> 원 크기의 ¼ 또는 ½의 크기로 감소
- 영상 데이터 손실

RGB->YCbCr 변환공식 Y=0.29900R+0.58700G+0.11400B Cb=-0.16874R-0.33126G+0.50000B Cr=0.50000R-0.41869G-0.08131B

DCT

• DCT (Discrete Cosine transform) 영상 압축을 위한 효과적인 코딩기술 공간 영역을 주파수 영역으로 변화

$$S_{vu} = \frac{1}{4} c_{u} c_{v} \sum_{x=0}^{7} \sum_{y=0}^{7} S_{yx} \cos \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16}$$

$$C_0, C_0 = \frac{1}{\sqrt{2}}, C_u C_v = 1$$

- S(0,0)은 DC 계수 나머지 63개는 AC 계수

8*8 블록

- 8×8 블록이 DCT되었을 때의 구성
 - (0, 0)은 DC 성분 이고 나머지 계수는 AC 성분
 - 왼쪽 위가 저주파, 대각선 방향으로 오른쪽 아래로 갈수록 고주파

[그림 14-13] 8×8 블록의 DCT 구성

DCT

- DCT 계수에서 DC 계수 값은 아주 큼.
 - 에너지가 집중되어 있고, 영상의 주요 성분이 포함되어 있음.
- 고주파 쪽으로 갈수록 계수가 작아짐
 - 에너지와 중요한 정보가 작음.

139	144	149	153	155	155	155	155
144	151	153	156	159	156	156	156
150	155	160	163	158	156	156	156
159	161	162	161	160	159	159	159
159	160	161	162	162	155	155	155
161	161	161	161	161	157	157	157
162	162	161	163	162	157	157	157
162	162	161	161	163	158	158	158

235.6	-1.0	-12.1	-5.2	2.1	-1.7	-2.7	1.3
-22.6	-17.5	-6.2	-3.2	-2.9	-0.1	0.4	-1.2
-10.9	-9.3	-1.6	1.5	0.2	-0.9	-0.6	-0.1
-7.1	-1.9	0.2	1.5	0.9	-0.1	0.0	0.3
-0.6	-0.8	1.5	1.6	-0.1	-0.7	0.6	1.3
1.8	-0.2	1.6	-0.3	-0.8	1.3	1.0	-1.0
-1.3	-0.4	-0.3	-1.5	-0.5	1.7	1.1	-0.8
-2.6	1.6	-3.8	-1.8	1.9	1.2	-0.6	-0.4

(a) 입력 영상

(b) DCT 계수

[그림 14-14] 영상의 임의의 한 블록에서 수행한 DCT 결과

양자화

- 영상의 중요 정보가 아닌 고주파 성분을 제거하는 과정
- DCT 계수를 양화자 테이블의 양자화 계수로 나눈 뒤 반올림해서 수행
- 양자화 테이블에서 양자화 계수
 - DC와 저주파 성분이 있는 왼쪽 윗부분에서는 값이 작음.
 - 고주파 성분의 오른쪽 아랫부분으로 이동할수록 크기가 큼.
- 양자화 계수로 DCT 계수를 나누면 몫은 DC와 저주파 부분은 크고 고 주파 부분은 작아서 거의 0에 가까움.

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	83	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

15	0	-1	0	0	0	0	0
-2	-1	0	0	0	0	0	0
-1	-1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

(a) 양자화 계수

(b) 양자화 결과

[그림 14-15] 양자화 테이블과 양자화 결과

엔트로피 부호화

⑤ 지그재그(zigzag) scanning (줄세우기)

엔트로피 부호화

- DC 계수에 대한 DPCM(Differential Pulse Code Modulation)
 - DC 계수는 값이 커 비트수도 크지만 앞의 DC 계수와 값 차이가 많지 않다.
 - 앞의 8X8 블록의 DC 계수와의 값 '차'만을 부호화
- AC 계수에 대한 RLE(Run Length Encoding)
 - AC 계수는 우측하단으로 갈수록 0 값이 많아진다.
 - $(6, 1) \Rightarrow 0 0 0 0 0 1$
 - **•** (1, 3) ⇒ 0 3

엔트로피 부호화

- DC 값의 차분부호화 & 허프만 부호화
 - -차분신호는 (SSS, Value)의 형태로 분류한다.
 - -SSS : Value를 부호화 하는데 필요한 비트수
 - SSS 와 Value가 허프만 부호화가 된다.
- AC 계수값에 대한 길이 부호화
 - AC 계수들은(Skip, value)의 형태로 구성된다.
 - Skip은 1차원 벡터에서 Value 의 값이 나올때 까지의 0의 수를 의미
 - -63개의 AC계수들은 길이 부호화로 표현된다.
 - -마지막 (0,0) 은 EOB(End of Block)을 의미한다.
 - -Value는 DC 계수와 마찬가지로 SSS/Value의 형태로 부호화된다.

 양자화까지 수행되면 허프만 부호화로 디지털 스트림의 압축된 영상 데이터가 생성

[그림 14-11] 실제 영상에서 JPEG 압축을 수행하는 과정

JPEG 복호화

복호화 과정

- JPEG 복호화 과정은 부호화 과정의 역순으로 진행된다.
- 출력 스트림에 부가적으로 추가된 헤더정보를 이용하여 실제 데이터 압축 부분을 복호한다.
- 마지막 영상빌더(image builder) 부분은 부호화전 전처리과정에서 수행된 레벨-쉬프트과정과 8x8 블록 생성의 역과정을 거친 후 각 블록을 모아서 한 장의 원본영상을 만드는 과정이다.
- 압축 비트스트림을 복호하는 과정에서 전치정리(Prefix Property)가 만족되어야 복호가 가능하다.

복원영상 평가 방법

- 객관적인 화질측정
 - PSNR (Peak-Signal-to Noise Ratio)

MSE(Mean Square Error) =
$$\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (p_{i,j} - \hat{p}_{i,j})^2$$

복원영상 평가 방법

- 주관적인 화질측정
 - ITU-R Recommendation B.T.500-11에 정의
 - Double Stimulus Continuous Quality Scale (DSCQS) 방법으로 평가자에게 A와 B라는 한 쌍의 이미지 또는 짧은 동영상을 순차적으로 보여주고 각 영상 또는 동영상의 화질에 대한 점수(quality score)를 '매우 좋음 (excellent)'에서 '나쁨(bad)'까지의 5단계로 평가하는 방법

