Comentarios de las Actividades

Bloque 1 Actividad 2

1. Tres ideas por las que se establecieron los patrones y sistemas de unidades.

2. Analiza las siguientes cantidades físicas y pon una ✓ si es una magnitud fundamental o una magnitud derivada según corresponda.

Cantidad física	Magnitud fundamental	Magnitud derivada
La velocidad de un auto.		✓
La distancia entre dos puntos.	✓	
El volumen de una piedra.		✓
La temperatura del ser humano.	✓	
La presión ejercida por una mesa sobre el piso.		✓
El peso de un ser humano.		✓
La fuerza necesaria para levantar un libro.		✓
El trabajo necesario para empujar un auto.		✓
El tiempo que haces de tu casa a la escuela.	✓	
El área que ocupa tu casa.		✓
La cantidad de sustancia que hay en una manzana.	✓	
La aceleración que imprimes cuando empiezas a correr.		✓

3. Completa el siguiente cuadro con las unidades correspondientes.

Magnitud	Sistema Internacional SI	Sistema Cegesimal CGS	Sistema Inglés FPS	
Longitud	m	cm	In	
Masa	kg	g	lb	
Tiempo	S	S	S	
Área	m²	cm ²	ft ²	
Fuerza N		D	Kgf	
Presión	Pa	D/cm ²	Lbf	

Comentarios de las Actividades

4. Completa el siguiente cuadro con las equivalencias correspondientes.

Medida	cm	m	km	in	ft	mi
Centímetro		0.01	0.00001	0.39	0.03	0.0000062
Metro	100		0.001	39.37	3.28	0.00062
Kilómetro	100000	1000		39370	3280.4	0.62
Pulgada	2.54	0.0254	0.0000254		0.08	0.0000158
Pie	30.48	0.3048	0.0003048	12		0.000189
Milla	160934	1609.34	1.60	63360	5280	

5. Completa el siguiente cuadro con las medidas equivalentes a masa.

Medida	g	kg	lb	oz
Gramo		.001	2.2 x 10 ⁻³	0.035
Kilogramo	1000		2.2	35.27
Libra	454	0.454		16
Onza	28.3	0.0283	0.0625	

6. Completa el siguiente cuadro escribiendo las medidas equivalentes a tiempo.

Medida	S	min	hr	día	año
Segundo		.0167	0.0003	1.15 x 10 ⁻⁵	3.17 x 10 ⁻⁸
Minuto	60		0.0167	6.94 x 10 ⁻⁴	1.9 x 10 ⁻⁶
Hora	3600	60		0.04167	1.14 x 10 ⁻⁴
Día	86400	1440	6.94 x 10 ⁻⁴		2.73 x 10 ⁻³
Año	31'536,000	525,600	1.9 x 10 ⁻⁶	2.74 x 10 ⁻³	

7. Resuelve con un compañero los siguientes ejercicios de conversiones

a)
$$\left(\frac{150 \text{ lb}}{1}\right) \left(\frac{0.454 \text{ kg}}{1 \text{ lb}}\right) = 68.1 \text{ kg}$$

b)
$$\left(\frac{6 \text{ ft}}{1}\right) \left(\frac{0.3048 \text{ m}}{1 \text{ ft}}\right) = 1.83 \text{ m}$$
 $\left(\frac{6 \text{ in}}{1}\right) \left(\frac{0.0254 \text{ m}}{1 \text{ in}}\right) = 0.15 \text{ m}$ 1.83+0.15=1.98 m

La altura de Michael Jordan es 1.98 m, por lo que sí alcanza a pasar por la puerta.

C)
$$\left(\frac{25 \text{ gal}}{1}\right) \left(\frac{3.78 \text{ l}}{1 \text{ gal}}\right) = 94.5 \text{ l}$$

Comentarios de las Actividades

- d) Respuesta libre.
- 8. Realizar las siguientes conversiones.
 - a) Respuesta libre.

b)
$$\left(\frac{75 \text{ km}}{\text{hr}}\right) \left(\frac{1000 \text{ m}}{1 \text{ km}}\right) \left(\frac{1 \text{ hr}}{3600 \text{ s}}\right) = 20.83 \text{ m/s}$$

c)
$$\left(\frac{5 \text{ kg}}{1}\right) \left(\frac{2.2 \text{ lb}}{1 \text{ kg}}\right) = 11 \text{ lb}$$

d) Respuesta libre

e)
$$\left(\frac{4.5 \text{ kg}}{1}\right) \left(\frac{60 \text{ min}}{1 \text{ kg}}\right) = 270 \text{ minutos}$$

f)
$$\left(\frac{120 \text{ Jb}}{1}\right) \left(\frac{0.454 \text{ kg}}{1 \text{ Jb}}\right) = 54.48 \text{ kg}$$

g)
$$\left(\frac{38 \text{ min}}{1}\right) \left(\frac{60 \text{ seg}}{1 \text{ min}}\right) = 2280 \text{ seg}$$

h) Respuesta libre

i)
$$\left(\frac{2000.8}{1}\right) \left(\frac{1h}{3600.8}\right) = 0.55 \text{ h}$$

j)
$$\left(\frac{80 \text{ km}}{h}\right) \left(\frac{1 \text{ mi}}{1.609 \text{ km}}\right) = 49.72 \text{ mi/h}$$

k)
$$\left(\frac{25 \text{ H}}{1}\right) \left(\frac{0.3048 \text{ m}}{1 \text{ H}}\right) = 7.62 \text{ m}$$

I)
$$\left(\frac{50 \, \text{oz}}{1}\right) \left(\frac{0.0283 \, \text{kg}}{1 \, \text{oz}}\right) = 1.415 \, \text{kg}$$

Bloque 1 Actividad 3

- 1. Importancia del uso de la notación científica.
 - Ayuda a expresar grandes cantidades en una más pequeña.
 - Se pueden realizar cálculos de manera más fácil.
 - Se utilizan las mismas propiedades de exponentes.