Practical type theory

lecture 1: introduction into λ – calculus

Воронов Михаил

BMK MГУ, Fall 2022

План лекции

1 Устройство курса

 $oldsymbol{2}$ Введение в λ -исчисление

Подстановка и преобразования

План лекции

1 Устройство курса

 $oldsymbol{2}$ Введение в λ -исчисление

Подстановка и преобразования

План курса

- **1** Simple untyped λ -calculus
- $2 \lambda \rightarrow$
- **3** λ2
- \bullet $\lambda \omega$
- λP
- **3** λC
- $0 \lambda D$
- Основы MLTT
- Основы НОТТ
- Основы CubicTT
- Введение в практическое использование Coq и Agda

Критерий оценивания

На данный момент планируется 6 домашних заданий, за каждую можно получить 40-50 баллов. Также за экзамен можно получить до 150 баллов, критерии оценивания:

- [0 79] 2
- **②** [80 − 149] 3
- **③** [150 − 199] 4
- **●** [200 − ..] 5

Литература

- Rob Nederpelt, Herman Geuvers "Type theory and formal proof"
- Samuel Mimram "Program = proof"
- Yves Bertot "Interactive program proving and program development"
- Курс Москвитина Дениса Николаевича "Функциональное программирование" youtube

План лекции

Устройство курса

2 Введение в λ -исчисление

③ Подстановка и преобразования

λ -исчисление

- λ -исчисление формальная система, разработанная Алонзо Чёрчем в 1930-х для формализации и анализа понятия вычислимости
- Имеет бестиповую (simple untyped) и множество типовых версий
- Позволяет описывать семантику вычислительных процессов
- Является теоретической основой для многих пруверов

Поведение функций

Рассмотрим функцию $f(x): x^2 + 1$

- в некотором смысле, эту функцию можно рассматривать, как отображение $x \to x^2 + 1$
- чтобы подчеркнуть "абстрактную роль х, используют специальный символ λ : $\lambda x(x^2+1)$
- данная нотация выражает то, что x это не конкретное число, а некоторая абстракция
- для конкретного значения можно "применить" данную функцию:

Practical type theory

$$(\lambda x.x^2 + 1)(3)$$

Введение в λ -исчисление

Из предыдущего слайда следует, что для работы с функциями достаточно двух способов построения выражений:

- **①** Абстракция: из выражения M и переменной x можно составить новое выражение $\lambda x.M$ (абстракция x по M)
- ② Применение (application): из двух выражений M и N можно составить новое выражение MN

Введение в λ -исчисление: абстракция

- **1** Пусть M = M[x] выражение, возможно содержащее x
- $oldsymbol{oldsymbol{eta}}$ Тогда абстракция $\lambda x.M$ обозначает функцию x o M[x]
- Абстракция способ задать неименованную функцию функцию
- ullet Если x в M[x] отсутствует, то $\lambda x.M$ константная функция со значением M.

Введение в λ -исчисление: применение

- ① С точки зрения разработки ПО, применение F к X это применение алгоритма (F) к данным X
- Однако явного различия между алгоритмами и данными нет, в частности, возможно самоприменение: FF
- В общем случае примение это так называемая β -эквивалентность:

$$(\mathcal{N}.M)N =_{\beta} M[x := N]$$

 $oldsymbol{0} M[x:=N]$ - это M, в котором вместо N подставлено вместо x

Введение в λ -исчисление: β -редукция

$$(\lambda x.x^2 + 1)(3) = (x^2 + 1)[x := 3] = 3^2 + 1$$

- $(\lambda y.5)(1) = 5[x := 1] = 5$
- $(\lambda x.x)(\lambda y.y) = x[x := (\lambda y.y)] = (\lambda y.y)$

Термы λ -исчисления

Definition

Множество λ -термов Λ определяется индуктивно из переменных

$$V = x, y, z, ...$$

$$\bullet \ x \in V \to x \in \Lambda$$
 $M = (\lambda_x, x_y)$
 $M = (\lambda_x, x_y)$

- $\underline{M}, N \in \Lambda \rightarrow (\underline{M}N) \in \Lambda$ $N = \mathbb{Z}$ = (24) = 24
- $M \in \Lambda, x \in V \to (\lambda x.M) \in \Lambda$
- В абстрактном синтаксисе:

$$\Lambda ::= V|(\Lambda\Lambda)|(\lambda V.\Lambda)$$

• Произвольные термы будем обозначать заглавными буквами, а переменные - строчными

Примеры термов

- X
- (xz)
- $(\lambda x.(xz))$
- $((\lambda x.(xz))y)$
- $(\lambda y.((\lambda x.(xz))y))$
- $((\lambda y.((\lambda x.(xz))y))w)$
- $(\lambda z.(\chi w.((\lambda y.((\lambda x.(xz))y))w)))$

Термы (соглашения)

Общеприняты следующие соглашения:

Ax. Ay. Az. M

- Внешние скобки опускаются
- Применение левоассоциативно:

ассоциативно: $\chi \chi \chi Z M$ $((FX)Y)Z) \chi \chi \chi Z M$

• Абстракция правоассоциативна:

$$\lambda x \underline{y} z.\underline{M}$$
 обозначает $(\lambda x.(\lambda y.(\lambda z.(M))))$

• Тело абстракции простирается вправо насколько это возможно $\lambda x.MNK$ обозначает $\lambda x.(MNK)$

Примеры термов

- \bullet x = x
- (xz) = xz
- $(\lambda x.(xz)) = \lambda x.xz$
- $((\lambda x.(xz))y) = (\lambda x.xz)y$
- $(\lambda y.((\lambda x.(xz))y)) = \lambda y.(\lambda x.xz)y$
- $\bullet ((\lambda y.((\lambda x.(xz))y))w) = (\lambda y.(\lambda x.xz)y)w$
- $(\lambda z.(\lambda y.((\lambda y.((\lambda x.(xz))y))w))) = \lambda zw.(\lambda y.(\lambda x.xz)y)w$

Свободные и связанные переменные

Абстракция $\lambda x. M[x]$ связывает дотоле свободную переменную x в терме M.

Example

$$(\lambda y.(\lambda x.xz)y)w$$

Переменные x и y - связанные, а z и w - свободные

Example

$$(\lambda x.(\lambda x.xz)x)x$$

?

Свободные переменные

Definition

Множество FV(T) свободных переменных в терме T определяется рекурсивно:

$$FV(x) = \{x\}$$

 $FV(MN) = FV(M) \cup FV(N);$
 $FV(\lambda x.N) = FV(M) \setminus x;$

Связанные переменные

Definition

Множество BV(T) связанных переменных в терме T определяется рекурсивно:

$$BV(x) = \{\varnothing\};$$

 $BV(MN) = BV(M) \cup BV(N);$
 $BV(\lambda x.N) = BV(M) \cup x;$

Комбинаторы

Definition

Комбинатор (замкнутый λ -**терм)** M - это такой λ -терм, что $FV(M) = \emptyset$. Множество всех замкнутых термов обозначается Λ^0 .

- $I = \lambda x.x$
- $\omega = \lambda x.xx$
- $\Omega = \omega \ \omega = (\lambda x.xx)(\lambda x.xx)$
- $K = \lambda xy.x$
- $K_* = \lambda xy.y$
- $S = \lambda fgx.fx(gx)$
- $B = \lambda fgx.f(gx)$

План лекции

Устройство курса

 $oxed{2}$ Введение в λ -исчисление

Подстановка и преобразования

α -преобразование и α -эквивалентность

Definition

 α -преобразование и α -эквивалентность $=_{\alpha}$ - это отношение, λ_{x} \times $(\lambda_{x}$ \times)удовлетворящее следующим свойствам:

- довлетворящее след $\lambda x.M =_{\alpha} \lambda y.M \xrightarrow{x \to y}$ фес
- $M =_{\alpha} N \rightarrow ML =_{\alpha} NL, LM =_{\alpha} LN, \forall x \lambda x. M =_{\alpha} = \lambda x. N$ * & FU(m)
- \bigcirc (Рефлексивность) $M =_{\alpha} M$
- lacktriangle (Симметричность) $M=_lpha N o N=_lpha M$
- **5** (Транзитивность) $M =_{\alpha} N, N =_{\alpha} L \rightarrow M =_{\alpha} L$

7x40 (224)[2:=]

lpha-преобразование и lpha-эквивалентность

Definition

 α -преобразование и α -эквивалентность $=_{\alpha}$ - это отношение, удовлетворящее следующим свойствам:

- **①** (Переименование) $\lambda x.M =_{\alpha} \lambda y.M^{x \to y}$
- ② (Сопоставимость) $M =_{\alpha} N \to ML =_{\alpha} NL, LM =_{\alpha} LN, \forall x \lambda x. M =_{\alpha} = \lambda x. N$
- **3** (Рефлексивность) $M =_{\alpha} M$
- lacktriangle (Симметричность) $M =_{\alpha} N \to N =_{\alpha} M$
- ullet (Транзитивность) $M=_{lpha}N,N=_{lpha}L o M=_{lpha}L$

Nogemano Gua M Ex:= NJ Mell, Nell= $1a \times C \times := NJ = N$ $(MN) \in \Lambda$ 15 $y \in x := w = y \times \neq y$ 2. (PQ) [x := wJ] = (P[x := wJ) (Q [x := wJ)3. $(\lambda_g \cdot P) \left\{ x := NJ = \lambda_z \cdot \left(P^{g \to z} \left(x := NJ \right) \right) \right\}$ eau $\lambda z. P^{y \to z} = \lambda y. P z \neq FV(N)$ 4. $(\lambda_x \cdot P) \quad [x := n) = (\lambda_x \cdot P)$ × N $\lambda y. y(xy) [x:=y] = \lambda y. y(yy)$ (AX. X) N = N y & FV(N) FV(N) y c FU(W)

XEV PER= $\lambda x y \cdot (x y x) [x = \lambda y \cdot y] = \lambda x y \cdot (x g x)$ $(\lambda_{X}P) \in \Omega$ $(\lambda y \cdot y \times) [x := xy] = (\lambda z \cdot z \times) [x := xy] =$ $= (\lambda_2, (z_x) \{ x : = xy \})$ $= (\lambda z.(z \leq x : = x \leq z)) (x \leq x : = x \leq z)$ $= (\lambda_2. Z (xy))$ = 12.2(xy) $z \times y = ((z \times) y) \neq z (x y) (\lambda x \lambda^2 + 1) I$ xyz. xyxz = ((xx(xy(xz.xyxz))+)= (\ q. (\large 2. + 4 + 2))

$$(\lambda \times P) + =_{B} P(x := +]$$

$$= d (=_{B})$$

$$(\lambda \times P) + \neq \lambda \times P +$$

$$(\lambda \times Ay \cdot P) = \lambda \times P + \lambda \times P +$$

$$(\lambda \times Ay \cdot P) = \lambda \times P + \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P + \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P + \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P + \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P + \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P + \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P + \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + = \lambda \times P +$$

$$(\lambda \times P) + \Delta \times P +$$

$$(\lambda \times P) +$$

$$(\lambda \times$$

 $xy(\lambda zy.zx(wx)y)[x:=w(\lambda x.wx)]=$ = $(w(\lambda \times . w \times)) y (\lambda z y \cdot z (w(\lambda \times . w \times))_{-}$ 19 x [x:=W]=W $P=(xy(\lambda zy.zx(wx)))y)$ $P=(xy(\lambda zy.zx(wx)y))[z:=w(\lambda x.wx)]$ 15 9 Ex= NJ = 4 2 (PQ)[x:=N] P[z:=N]=P $xy(\lambda zy. 2x(wx)y)$ z=10 def foo (x,y) z=10 z=10 z=10 z=10 $\sum x := w(\lambda x. yx)$ =>) xy. (x·y+Z)

if= Abxy-bxy Repupolus lépra if (boolean) els e $+nue = \lambda + f. + = K$ false = x +f. f = Kx if true = (Abxy. bxy) (A $+f. +) = \lambda \times y. (\lambda + f. +) \times y = \lambda \times y. \times =$ if false = (x bxy. bxy) (x t.f. f) = dxy. (xtf. f) xy = xxy. y= Axy. x Axy.y $\lambda b \times y \cdot b \times y = (\lambda b (\lambda x (\lambda y \cdot b \times y)))$ if folse AB = A if folse AB = B $(\lambda_{x}.P) + = P[x := +]$ (hb (xx (hy. bxy))) += (hb. P) += = PCb := +J

and = dxy. xy false and true true = () xy, xy folse) true true = true true false = $= (\lambda + f + \lambda) (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) (\lambda + f + \lambda) = (\lambda + f + \lambda) = (\lambda + f + \lambda) = (\lambda + f + \lambda) (\lambda + f + \lambda) (\lambda + f + \lambda) (\lambda + \lambda) = (\lambda + f + \lambda) (\lambda + \lambda) (\lambda + \lambda) (\lambda + \lambda) (\lambda + \lambda) = (\lambda + \lambda) = (\lambda + \lambda) (\lambda$ $=\lambda +f. += fnue$ $\lambda \times yz = (\lambda \times (\lambda y - (\lambda z - P)))$ $\times yz = ((\times y)z) \quad \text{number} \quad \text{selso} \quad \text{selso} \quad \text{numerical} \quad \text{acc} - 96$ or = ? or = xxy. x true y or false false = false true false (x2+1)(3) (xxy.P)Q= $(\lambda_{\kappa}, P) Q$ $(\lambda_{x}.P) \chi_{y} =$ $(\lambda_X, P)(xy)$