Overall model

[counts |
$$\mu, \pi$$
] = $I_{[n=0]}(1 - \pi + \pi e^{-\mu}) + I_{[n>0]}\pi \frac{\mu^n e^{-\mu}}{n!}$

Parameters

$$\begin{split} \log(\mu) &= \alpha^{(\mu)} + X\beta^{(\mu)} + \Phi^{(\mu)} + \log(a) \\ \operatorname{logit}(\pi) &= \alpha^{(\pi)} + X\beta^{(\pi)} + \Phi^{(\pi)} \end{split}$$

Priors

 $\boldsymbol{\beta} \sim N(\mathbf{0}, \boldsymbol{V} \otimes \boldsymbol{U})$

 \boldsymbol{V} is spatial correlation matrix

 $m{U}$ is covariance matrix for spline covariates; has AR(1) structure

 t^{th} column of Φ :

 $\phi_{t=1} \sim N(\mathbf{0}, (\tau(\mathbf{D} - \mathbf{W}))^{-1})$

 $\phi_t \sim N(\eta \phi_{t-1}, (\tau(\boldsymbol{D} - \boldsymbol{W}))^{-1})$

 $D = 84 \times 84$ diagonal matrix, entries correspond to number of spatial neighbors for each spatial unit $W = 84 \times 84$ spatial adjacency matrix with nonzero elements only when unit i is a neighbor of unit j