```
Код 5.1:
public class Solevoin {
    public static void main(String[] args) {
        // Значения интенсивности нагрузки а, как в таблице
        double[] aValues = {0.15, 0.25, 0.35, 0.45,
0.55, 0.65, 0.75, 0.85, 0.95, 0.99};
        // Значения максимальной длины очереди (K-1), как
в таблице
        int[] kValues = {1, 5, 10, 20, 50}
        // Значение времени обслуживания t
        double t = 1.0; // Можно изменить при
необходимости
        // Заголовок таблицы
        System.out.println(" a | K-1=1 (AM) | K-1=5
(MA)
System.out.println("---
        // Цикл по всем значениям а и k для вычисления
вероятности потерь
        for (double a : aValues)
```

```
System.out.printf("%.2f | ", a);
            for (int k : kValues) {
                double p = calculateLossProbability(a,
t, k);
                System.out.printf(" %.3f | ", p)
            System.out.println()
     * Метод для вычисления вероятности потерь.
     * @param a интенсивность нагрузки
     * @param t время обслуживания
     * @param k максимальная длина очереди (K-1)
     * @return вероятность потерь
    public static double
calculateLossProbability(double a, double t, int k)
        double rho = a * t;
        double numerator = (1 - rho) * Math.pow(rho,
k);
        double denominator = 1 - Math.pow(rho, k + 1);
        return denominator != 0 ? numerator /
denominator : 0;
```

```
0.15 | 0.130 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.25 | 0.200 | 0.001 | 0.000 | 0.000 | 0.000 | 0.35 | 0.259 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.45 | 0.310 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.55 | 0.355 | 0.023 | 0.001 | 0.000 | 0.000 | 0.000 | 0.65 | 0.394 | 0.044 | 0.005 | 0.000 | 0.000 | 0.000 | 0.75 | 0.429 | 0.072 | 0.015 | 0.001 | 0.000 | 0.000 | 0.85 | 0.459 | 0.107 | 0.035 | 0.006 | 0.000 | 0.000 | 0.95 | 0.487 | 0.146 | 0.069 | 0.027 | 0.004 | 0.99 | 0.497 | 0.163 | 0.086 | 0.043 | 0.015 |
```

| A    | ИМ    | AM    |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.15 | 0.019 | 0.130 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0.25 | 0.047 | 0.200 | 0     | 0.001 | 0     | 0     | 0     | 0     | 0     | 0     |
| 0.35 | 0.083 | 0.259 | 0.001 | 0.003 | 0     | 0     | 0     | 0     | 0     | 0     |
| 0.45 | 0.123 | 0.310 | 0.004 | 0.010 | 0     | 0     | 0     | 0     | 0     | 0     |
| 0.55 | 0.165 | 0.355 | 0.013 | 0.023 | 0.003 | 0.001 | 0     | 0     | 0     | 0     |
| 0.65 | 0.203 | 0.394 | 0.027 | 0.044 | 0.01  | 0.005 | 0.001 | 0     | 0     | 0     |
| 0.75 | 0.242 | 0.429 | 0.052 | 0.072 | 0.029 | 0.015 | 0.004 | 0.001 | 0     | 0     |
| 0.85 | 0.281 | 0.459 | 0.085 | 0.107 | 0.057 | 0.035 | 0.023 | 0.006 | 0.003 | 0     |
| 0.95 | 0.313 | 0.487 | 0.115 | 0.146 | 0.079 | 0.069 | 0.043 | 0.027 | 0.011 | 0.004 |
| 0.99 | 0.327 | 0.497 | 0.14  | 0163  | 0.079 | 0.086 | 0.043 | 0.043 | 0.011 | 0.015 |



Код 5.2: public class Solevar {

```
private double ca; // Коэффициент вариации
времени между заявками С_а

private double cb; // Коэффициент вариации
времени обслуживания С_b (равен 1)

private double tau; // Средний интервал между
заявками (т)

private int capacity; // Максимальная длина
очереди (К)

private double t = 1.0; // Время обслуживания (t, всегда равно 1)
```

```
public Solevar(double ca, double tau, int capacity)
{
```

```
this.ca = ca;
        this.cb = 1.0; // По условию C b = 1
        this.tau = tau;
        this.capacity = capacity;
    // Метод для вычисления коэффициента нагрузки р
    private double calculateRho() {
    // Метод для расчета вероятности потерь по формуле
    public double calculateLossProbability() {
        double rho = calculateRho(); // Рассчитываем р
        // Проверка на случай, если rho приближается к
        if (Math.abs(rho - 1.0) < 1e-6) {
            // Используем предельное значение вероятности
потерь при 
ho 
ightarrow 1
            double lossProbability = (Math.pow(ca, 2) -
Math.pow(cb, 2)) / (2.0 * (capacity + 1));
            return lossProbability;
        double exponentPart = 2 / (Math.pow(ca, 2) +
Math.pow(cb, 2)); // Часть формулы с экспонентой
```

```
double denominator = 1 - Math.pow(rho,
exponentPart * (сарасіty + 1)); // Знаменатель
        double numerator = (1 - rho) * Math.pow(rho,
exponentPart * capacity); // Числитель
        if (denominator == 0) .
            System.out.println("Ошибка: знаменатель
равен 0.");
            return Double. NaN; // Возвращаем NaN, если
знаменатель равен 0
        // Финальная формула для вероятности потерь
        double lossProbability = numerator
denominator;
        return lossProbability;
    public static void main(String[] args) {
        // Массив данных для двух случаев: К = 5 и К = 10
        // Каждый элемент: {C a для K=5, т для K=5, K=5,
С а для K=10, т для K=10, K=10}
        double[][] data = {
```

 $\{0.447, 10.0, 5, 0.408, 6.6, 10\},\$ 

 $\{0.577, 3.9, 5, 0.5, 3.6, 10\},\$ 

 $\{0.707, 2.8, 5, 0.447, 2.5, 10\}$ 

```
\{0.69, 2.1, 5, 0.577, 2.1, 10\},\
                \{0.707, 2.0, 5, 0.577, 1.8, 10\},
                \{0.577, 1.5, 5, 0.707, 1.6, 10\},\
                {1.0, 1.3, 5, 1.0, 1.4, 10},
                \{0.707, 1.2, 5, 0.707, 1.2, 10\}
                \{0.608, 1.08, 5, 0.447, 1.0, 10\}
                {1.0, 1.0, 5, 0.707, 1.0, 10}
        // Расчет для каждого набора данных
        for (int i = 0; i < data.length; i++)</pre>
            // Для к = 5
            double ca5 = data[i][0];
            double tau5 = data[i][1];
            int capacity5 = (int) data[i][2];
            Solevar calculator5 = new Solevar(ca5,
tau5, capacity5);
            double lossProbability5 =
calculator5.calculateLossProbability();
            System.out.printf("Строка %d для K=5:
Вероятность потерь: %.15f\n", (i + 1), lossProbability5)
            // Для K = 10
            double ca10 = data[i][3];
            double tau10 = data[i][4];
            int capacity10 = (int) data[i][5]
```

```
Solevar calculator10 = new Solevar(ca10, tau10, capacity10);

double lossProbability10 = calculator10.calculateLossProbability();

System.out.printf("Строка %d для K=10:
Вероятность потерь: %.15f\n", (i + 1), lossProbability10);

}
```

| N <i>а</i> Максимальная длина очереди ( <i>K</i> - |      |           |       |     |   |      |           |           |       | K-1) |   |      |      |  |  |
|----------------------------------------------------|------|-----------|-------|-----|---|------|-----------|-----------|-------|------|---|------|------|--|--|
|                                                    |      | 5         |       |     |   |      |           |           | 10    |      |   |      |      |  |  |
|                                                    |      | $C_a$     | $C_b$ | τ   | t | ИМ   | ам        | $C_a$     | $C_b$ | τ    | t | ИМ   | ам   |  |  |
| 1                                                  | 0,15 | 0,44      | 1     | 10  | 1 | 0    | 0         | 0,40      | 1     | 6,6  | 1 | 0    | 0    |  |  |
| 2                                                  | 0,25 | 0,57      | 1     | 3,9 | 1 | 0    | 0         | 0,5       | 1     | 3,6  | 1 | 0    | 0    |  |  |
| 3                                                  | 0,35 | 0,70      | 1     | 2,8 | 1 | 0    | 0         | 0,44      | 1     | 2,5  | 1 | 0    | 0    |  |  |
| 4                                                  | 0,45 | 0,69      | 1     | 2,1 | 1 | 0    | 0,00      | 0,57<br>7 | 1     | 2,1  | 1 | 0    | 0    |  |  |
| 5                                                  | 0,55 | 0,70<br>7 | 1     | 2   | 1 | 0.00 | 0,00<br>5 | 0,57<br>7 | 1     | 1,8  | 1 | 0    | 0    |  |  |
| 6                                                  | 0,65 | 0,57<br>7 | 1     | 1,5 | 1 | 0,00 | 0,01<br>6 | 0,70<br>7 | 1     | 1,6  | 1 | 0    | 0    |  |  |
| 7                                                  | 0,75 | 1         | 1     | 1,3 | 1 | 0,05 | 0,07<br>8 | 0,70<br>7 | 1     | 1,4  | 1 | 0,00 | 0,01 |  |  |

им — имитационное моделирование, ам — а н а л и т и ч е с к о е моделирование. t — среднее время обслуживания,

au – среднее интервала между заявками.



##