

MA1014 CALCULUS AND ANALYSIS TUTORIAL 1

Dr. Andrew Tonks: apt12@le.ac.uk

Ben Smith: bjs30@le.ac.uk

ANNOUNCEMENTS

• I'm not here this week! 😊

 Make sure you keep up to date with all module content!

Want to prove a Proposition, P.

- If the negation, $\neg P$, leads to a contradiction
- Then P is true.

Example:

 $P: a^2 - 4b \neq 2: a, b \in \mathbb{Z}$

- $\neg P: a^2 4b = 2$ $\Rightarrow a^2 = 2(1 + 2b)$ $\Rightarrow a \text{ is even, let } a = 2c$ $\Rightarrow 2(c^2 - b) = 1$
- C: 1 is odd and $\neg C: 1$ is even
- So P is true

Prove the Proposition:

P: If N^2 is even $\Rightarrow N$ is even

Hints:

- What is $\neg P$?
- If a number Q is even, then Q = ?

Prove by Contradiction that $\sqrt{2}$ is irrational.

Hints:

- Can you write down a proposition P?
- What is $\neg P$?
- If a number Q is even, then Q = ?

Extra Time: Try a similar approach to prove that $\sqrt{3}$ is irrational. (Hint: There is a useful theorem from Number Theory you can use)

ORDER & INEQUALITIES

The real numbers \mathbb{R} are an ordered field, i.e. \exists a relation <, that $\forall a, b, c \in \mathbb{R}$:

- Total Order: Either a < b, b < a or b = a
- Transitivity: If a < b and $b < c \Rightarrow a < c$
- Compatibility: If $a < b \Rightarrow a + c < b + c$. If a < b and c > 0 then ac < bc

Example:

If x, y > 0, then Compatibility $\Rightarrow x + y > y$ and xy > 0 (i.e. a = 0, b = x, c = y)

Also we can denote intervals with these inequalities.

Example: -2 < x < 4

EXERCISE:

SOLVE THE FOLLOWING INEQUALITIES

a)
$$x^2 - 5x + 4 < 0$$

b)
$$3x - 4 \ge 0$$

c)
$$4(x+2)-1>5-7(4-x)$$

d)
$$2x^2 + 3x - 9 \le 0$$

WORKED EXAMPLE: TRIANGLE INEQUALITY

The Triangle Inequality will be extremely useful during this course!

$$|x + y| \le |x| + |y|$$

It sets a bound on the addition of two real numbers.

Prove the Triangle Inequality. Provide an example where there is equality and another where there is inequality.

BOUNDS

Let $S \subset F$, then

- An <u>Upper Bound</u> of S is $M \in F : \forall s \in S, s \leq M$.
- A Lower Bound of S is $m \in F : \forall s \in S, m \leq s$.
- The <u>Supremum</u> of S or sup(S) is the smallest/least upper bound
- The <u>Infimum</u> of S or Inf(S) is the largest/greatest lower bound

EXERCISE: FILL THIS IN AS MUCH AS YOU CAN

Set	Upper bound	Lower bound	Max	Min	Sup	Inf	Is the sup in the set?	Is the inf in the set?
$\{x \in \mathbb{R} : 0 \le x < 1\}$	1	0	N/A	0	1	0	No	Yes
$\{x \in \mathbb{R} : 0 \le x \le 1\}$								
$\{x \in \mathbb{R} : 0 < x < 1\}$								
$\{1/n: n \in \mathbb{Z} - \{0\}\}$								
$\{1/n:n\in\mathbb{N}\}$								
$\{x \in \mathbb{R} : x < \sqrt{2}\}$								
{1,4,7,97}								
$\{(-1)^n(2-\frac{1}{n}): n \in \mathbb{N}\}$								
$\{\ln(x): x \in \mathbb{R}, x > 0\}$								
$\{n^{1/n}:n\in\mathbb{N}\}$								
$\{\arctan(x):x\in\mathbb{R}\}$								
$\{(-1)^n:n\in\mathbb{N}\}\}$								
$\{e^x : x \in \mathbb{R}\}\}$								

$$rac{d}{dx}\int_a^x f(t)\,dt = f(x)$$

$$\int_a^b \! f(x) dx = F(b) \! - \! F(a)$$

ANY QUESTIONS?

$$m\frac{d^2x}{dt^2} = -kx$$

$$\int \frac{dx}{1+x^2} = \tan^{-1}(x) + C$$

