

Table of contents

01

Problem Statement

Defining the problem
1st teaser into our solution

04

Digital Technology

IoT Sensors, Microservices and Computer Vision

02

Company

TechFarm Solutions Vision and Mission Statement Empathy Map Analysis 05

Product Demo

Real Time Sensor Monitoring Irrigation Forecasting Plant Health Vision

03

Business Strategy

Porter 5 Forces Business Model Canvas Regional Expansion Strategy

Problem Statement

Small commercial crop farmers in Singapore face 3 key issues in scaling up their business operations. They are:

- Small agricultural workforce and
- Lack of technological implementation that will improve farmer's productivity
- Creating optimum environment for crop growing.

A digital publication by the Singapore Food Agency

Solution

Designing a greenhouse chamber with IoT sensors. These sensors measure light, water, temperature, and plant health.

Companion application will help farmers to track the 4 criterias, allowing farmers to make informed decisions that will improve crop yield.

Food Safety, Food Supply

Future of farming

Singapore's agriculture sector needs to embrace technologies or innovations that can help to achieve quantum leaps in productivity.

By Agri-Food and Veterinary Authority of Singapore Published 01 Jan 2017 | Updated 27 Feb 2020

With land and labour constraints, and imminent climate change, the approach to food production needs to transform and be more creative. Farmers need to leverage on technology and innovation. Our future in food security lies in a modern and technologically-savvy farm sector that is fuelled by agricultural professionals, or 'agri-technologists' and 'agri-specialists'.

Vision

Help farmers to rethink farming using 21st century technology.

Mission

Develop comprehensive, scalable and cost effective agriculture tech solutions for SME farmers based in Singapore.

Empathy Map Analysis

Porter 5 Forces Analysis

Threat Of New Entrants

Low Threat. Land scarcity and high land cost limits new entrants

Threat Of Substitutes

Low threat. Consumers prefer locally produced crops if its fresh and cheap to produce.

Medium Power. Consumers can easily switch suppliers if crop quality expectations are not met.

Intensity Of Rivalry

Low rivalry. High barriers to entry limits competition. Government push for food security via tech innovation will put pressure on farmers to innovate.

Bargaining Power Of Suppliers

Medium Power. Farmers can source/switch farming equipment suppliers relatively easily. International market.

Business Model Canvas

Key Partners

 Outsource IoT hardware to local/international vendors

Key Activities

- Sale of IoT equipment
- Implementation advisory service
- Social media to raise awareness on FarmTech service and products

Key Resources

- IoT agriculture consultants
- Low skilled labor
- IoT hardware
- Greenhouse chamber

Value Proposition

- Low cost of implementation
- Scalable
- Lower reliance on manpower
- Intuitive mobile application user interface

Customer Relations

- Salesmen will represent group of farmers
- Specialist work with salesmen to solve tech specific problems

Customer Segments

- SME commercial farmers in Singapore
- Young tech savvy farmers
- Older farmers willing and able to learn and integrate IoT tech

Business Model Canvas

Channel

- TechFarm Solution Website
- Product Support Customer Service
- Outreach Events for product demonstration

Cost Structure

- IoT hardware procurement (eg ard \$7/unit of soil hydrometer sensor)
- Hardware storage
- Skilled labor cost

Revenue Streams

- After sale support
- Implementation advisory
- Markup of IoT hardware sold

Global Expansion Plans

2023

Deployment of prototype in Singapore

2025

Expand into Southeast Asia, Cambodia & Thailand

Application Features

Application Features

- Moisture, Light and Temperature Sensing
- Raw Data Collection
- Real Time
 Monitoring

Real Time Sensor Monitoring

- Data Analysis on raw data collected
- Forecasts when groups of plant need watering
- Reduces the need for manual label

Irrigation Forecasting

- Computer Vision Plant Detection
- Reduces the need for manual label
- Detect if groups of plant is Healthy, Unhealthy or Dead

Plant Health Vision

Real Time Sensor Monitoring

Technologies Used

- 1. MicroBit (Bluetooth IoT Device)
 - a. Light Sensor
 - b. Temperature Sensor
 - c. Moisture Sensor
- 2. Microsoft Excel (SaaS)
 - a. Raw Data Storage

Additional Information

- Low Cost Sensors for easy and affordable scaling capabilities
- 2. Ability to monitor and capture multiple plots of plants
- **3. Segregation of raw data** from different plots of plants
 - Cleaner Data
 - Different type of plants have different requirements

Real Time Sensor Monitoring

Technologies Used

- 1. MicroBit (Bluetooth IoT Device)
 - a. Light Sensor
 - b. Temperature Sensor
 - c. Moisture Sensor
- 2. Microsoft Excel (SaaS)
 - a. Raw Data Storage

Additional Information

- Low Cost Sensors for easy and affordable scaling capabilities
- 2. Ability to monitor and capture multiple plots of plants
- **3. Segregation of raw data** from different plots of plants
 - Cleaner Data
 - Different type of plants have different requirements

Irrigation Forecasting

Technologies Used

- 1. Machine Learning (Forecasting)
 - a. Linear Regression Classifier
 - b. Decision Tree Classifier
 - Trained with Mock and Processed Data from real time sensors
- 2. Cloud-Deployable Microservice (Flask)
 - a. Central data hub for mobile app and ML/AI models
 - b. Scalable
 - c. Offsite processing reduces mobile device demands

Additional Information

- Ability to apply different algo/models for different plant type
- 2. Ability to iteratively improve
- 3. Reduction in water waste
 - With the ability to prepare for the future

Plant Health Vision

Technologies Used

- 1. Computer Vision Object Detection
 - a. OpenCV Model
 - i. To detect micro bit from it's LED pattern to identify plants in a image
- 2. Computer Vision Image Classification
 - a. TensorFlow Model
 - i. To determine plant health by classifying them into 3 groups (Healthy, Unhealth, Dead)
 - ii. Trained with over 100 training data

Additional Information

 Ability to scale easily as one camera is able to detect, ID and classify healthiness of different plant groups

Plant Health Vision

Technologies Used

- 1. Computer Vision Object Detection
 - a. OpenCV Model
 - To detect micro bit from it's LED pattern to identify plants in a image
- 2. Computer Vision Image Classification
 - a. TensorFlow Model
 - i. To determine plant health by classifying them into 3 groups (Healthy, Unhealth, Dead)
 - ii. Trained with over 100 training data

Additional Information

 Ability to scale easily as one camera is able to detect, ID and classify healthiness of different plant groups

Technology Stack

Appendix - How to detect plants

Count number of dots to determine different shape

Appendix - How to detect plants

