Circular convolution and CC using DFT

Experiment No: 6

Aim

- (a) Circular Convolution of discrete time sequences with built—in function using MATLAB
- (b) Circular Convolution of discrete time sequences without built-in function using MATLAB
- } (c) Circular Convolution of discrete time
 sequences using DFT

Circular Convolution

Find the circular convolution of $x(n) = \{2, 3\}$, $h(n) = \{1, 2, 2, 3\}$

Zero padding $x(n) = \{2, 3, 0, 0\}$

Procedure:

- 1. Graph points in the circle in counter clockwise direction
- 2. Multiply corresponding samples on the two circle and sum the products
- 3. Rotate one sample at a time in counterclockwise direction

Circular Convolution

Circular Convolution

} Circular Convolution of discrete time sequences using DFT

```
Given x(n) = \{1, 2, 1, 2\}, h(n) = \{1, 2, 3, 4\}

DFT \{x(n)\} = \{6, 0, -2, 0\}

DFT \{h(n)\} = \{10, -2+j2, -2, -2-j2\}
```

Convolution of two sequence in time domain is equal to multiplication of their transforms in frequency domain \rightarrow convolution property

$$y(n)=x(n)*h(n) \rightarrow in time domain$$

 $Y(k)=X(k)H(k) \rightarrow in frequency domain$
 $Y(k)=\{60,0,4,0\}$

Take inverse transform , $y(n)=IDFT\{Y(k)\}$ = $\{16, 14, 16, 14\}$


```
%circular conv by dft
    x = [1 \ 2 \ 1 \ 2]
    h=[1 2 3 4]
67 -
68 - xf=fft(x)
69 - hf=fft(h)
70 - yf=xf.*hf
71 -
     y=ifft(yf)
72
Command Window
 yf =
     60 0 4
     16
          14 16 14
```