[14X030] Introduction to Computational Finance

Exercise series 8

April 25, 2023

General instructions

Each student is expected to upload on Moodle a zip file containing:

- A report in **pdf** format to answer exercise questions.
- The code used to generate the results of the report.

Deadline

Upload on Moodle due by: May 1, 2023 at 11:59 pm.

Minority Game

- Let N be the number of agents, M the number of bits of history and S the number of strategies available to each agent among the 2^{2^M} possible strategies.
- Each agent initializes the utilities of its strategies to zero.
- Initialize the history $\mu(0)$ to a random list of M bits.
- For t in 1, ..., T:
 - Each agent $i \in \{1, ..., N\}$ samples a strategy $s_i(t)$ according to the softmax distribution of utilities: $\frac{\exp(\Gamma_i u_s(t))}{\sum_{s'} \exp(\Gamma_i u_{s'}(t))}$ where $\Gamma_i > 0$.
 - Given the current history $\mu(t)$, each agent uses its chosen strategy $s_i(t)$ to pick an action $a_i(t) \in \{+1, -1\}$.
 - Compute the attendance $A(t) = \sum_{i=1}^{N} a_i(t)$.
 - Update the utility of the chosen strategies with a linear payoff:

$$u_{s_i(t)} = u_{s_i(t-1)} - a_i(t) \frac{A(t)}{\beta}$$

- Remove the oldest bit of history and add a new one.
- 1. (a) Why is the above procedure called a minority game?
 - (b) What is the role of Γ_i ? In particular, what does a large or a small value of Γ_i means?
- 2. Implement a minority game. You can use $\beta = 1$ and $\Gamma_i = 0.01, \forall i \in \{1, ..., N\}$. To add a new bit of history, you can either pick it at random or from some function of the attendance (1 if positive attendance, 0 if negative attendance for instance).
- 3. Simulate a minority game with S=2 strategies for T=100 steps for values of N in $\{51,101,251,501,1001\}$ and values of M in $\{0,1,...,18\}$. On a log-log plot, represent $\frac{\sigma^2}{N}$, the scaled variance of the attendance, against $\alpha=\frac{2^M}{N}$.
- 4. What is the critical value α_c for which the volatility reaches a minimum?
- 5. Optional: Define an initial price p(0) (for instance 100) and then update it as follows: $p(t) = p(t-1) \exp(\frac{A(t)}{\lambda})$ with λ some positive constant. What is the intuition behind this update rule? Plot price curves for different values of α and λ and comment.