2023 Feb 2 Romanas Munovas, s4004981

The Importance of Filters:

Using Shapley Value Pruning to Optimize Convolutional NNs

Bachelor's Project Presentation

/prun/-prune

Prune

(verb) weed out unwanted or unnecessary things

What about neural networks?

Neural Network Pruning

- Unstructured (weights)
- Structured (filters/layers)

Structured Pruning

Removing whole filteres/layers

Eliminates the feature maps

- Smaller in size
- Decrease computational costs
- Reduce inference time

PRUNING FILTERS FOR EFFICIENT CONVNETS

Hao Li*
University of Maryland
haoli@cs.umd.edu

Asim Kadav
NEC Labs America
asim@nec-labs.com

Igor Durdanovic
NEC Labs America
igord@nec-labs.com

Pruning Procedure

Train a neural network

Pruning Criteria

- Saliency of parameters
- Average Percentage of Zeros
- Batch normalization scaling factors
- Magnitude for each channel of filters
- Geometric mean

Prune based on importance score

Fine-tune

Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning

Deepak Mittal · Shweta Bhardwaj · Mitesh M. Khapra · Balaraman Ravindran

2018

 Pruned 25-50% of the filters randomly from deep CNNs

 Yielded same performance as stateof-art pruning methods

Importance score - redundant metric?

Shapley Literature Findings

Shapley Values as a Principled Metric for Structured Network Pruning

2020

- Introduces Shapley values for pruning
- Shows that Shapley criteria superior to other criteria
 - Game-theoretic foundation
 - Outperformed other pruning criteria
 - Works in low-data regimes, when fine-tuning is either unavailable or ineffective

Original Paper (1952) Literature Findings

A VALUE FOR n-PERSON GAMES

L. S. Shapley

• Proposed a way to compute the contribution of each player in a cooperative game.

Neural Networks

- A CNN can be viewed as a cooperative game with the aim to minimize loss
 - The filters are the players, each contributing towards the minimization goal

Marginal Contribution

 Marginal Contribution: difference between importance of all features S with and without i

$$m_x(S,i) := v_x(S) - v_x(S \setminus \{i\})$$

- S Subset of all players S \subseteq P
- *i* Player from subset S
- v_x Function calculating the score when set of players S participate

Shapley Value

Shapley value: average of marginal contribution distributions

$$\phi_x(i) := \frac{1}{n!} \sum_{S \subseteq P \setminus \{i\}} (|S|!(n - |S| - 1)!) m_x(S, i)$$

12! = 479001600

Methodology

- 1. Create a set of all possible filter permutations (coalitions)
 - a. If not possible, use Monte Carlo sampling

- 2. Calculate the loss of a single forward pass (all filters)
- 3. For each filter permutation, mask the given filters and calculate the marginal contributions of the masked filters.
- 4. Shapley value for filter i is the aggregated average of all marginal contributions.

Setup

LeNet-1 Replicated 2

98.4% accuracy (On MNIST)

3

Cross-entropy Loss as the criterion

n=192

Quantitative Results

Accuracy (Test Data, no fine-tuning)

• Averaged over 3 trials

Quantitative Results

Loss (Test Data, no fine-tuning)

• Averaged over 3 trials

Quantitative Results (AUC) Loss

Area Under the Curve (AUC) Loss

With fine-tuning Without fine-tuning

Random 0.11±0.01 **0.83±0.05**

Shapley 0.08±0.00 **0.41±0.00**

What does the machine deem important?

Qualitative Results

Feature Maps (Layer 1)

- Incomplete digits
- Leads to similarities between classes

Questions?

Zarathustrai/**Shapley**-**Pruning**

A 1 Contributor ⊙ 0 Issues

☆ 0 Stars

왕 0 Forks

Zarathustrai/Shapley-Pruning

Contribute to Zarathustrai/Shapley-Pruning development by creating an account on GitHub.

🞧 GitHub

Extra

1989

[Unstructured] Pruning introduced for the first time

- Better generalization
- Fewer training examples required
- Improved speed of learning

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla AT&T Bell Laboratories, Holmdel, N. J. 07733

Quantitative Results (normal-data regime)

Accuracy

Quantitative Results (Comparison)

An Improvement!

	Accuracy (%)	Parameters
Original	98.3 (%)	3246
Pruned (1)	98.6 (%)	2985 (-8%)

Quantitative Results (normal-data regime)

Loss

Quantitative Results (Comparison)

An Improvement!

	Accuracy (%)	Parameters
Original	98.3 (%)	3246
Pruned (10)	96.8 (%)	636 (-81%)

