CS 321: Homework #1

1. $\{x \in \{a, b\}^* \mid \text{last 5 characters of } x \text{ are } \mathbf{not} \text{ } abbab\}$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\Sigma = \{a, b\}$$

δ:

	1
(q, c)	$\delta(q, c)$
(q_0, a)	q_1
(q_0, b)	q_0
(q_1, a)	q_1
(q_1, b)	q_2
(q_2, a)	\mathbf{q}_1
(q_2, b)	\mathbf{q}_3
(q_3, a)	q_4
(q_3, b)	q_0
(q_4, a)	q_1
(q_4, b)	q_5
(q_5, a)	q_1
(q_5, b)	q_0

$$s=q_0\\$$

$$F = \{q_0, q_1, q_2, q_3, q_4\}$$

2. $\{x \in \{0, 1\}^* \mid x \text{ is a binary encoding of a multiple of 3, with$ **no unnecessary leading zeroes** $}\}$

$$Q=\{q_0,\,q_1,\,q_2,\,q_3,\,q_4\}$$

$$\Sigma = \{0, 1\}$$

δ:

	I -
(q, c)	δ (q, c)
$(q_0, 0)$	q_1
$(q_0, 1)$	q_2
$(q_1, 0)$	q_2
$(q_1, 1)$	q_2
$(q_2, 0)$	q_4
$(q_2, 1)$	q_3
$(q_3, 0)$	q_3
$(q_3, 1)$	\mathbf{q}_2
$(q_4, 0)$	\mathbf{q}_2
$(q_4, 1)$	q_4

$$s=q_0\\$$

$$F = \{q_1, q_3\}$$

3. $\{x \in \{a, b\}^* \mid x \text{ contains at least 3 occurrences of the substring } bbb\}$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\Sigma = \{a, b\}$$

δ:

	Ī
(q, c)	$\delta(q, c)$
(q_0, a)	q_0
(q_0, b)	\mathbf{q}_1
(q_1, a)	\mathbf{q}_0
(q_1, b)	\mathbf{q}_2
(q_2, a)	\mathbf{q}_0
(q_2, b)	q_3
(q_3, a)	\mathbf{q}_1
(q_3, b)	q_4
(q_4, a)	\mathbf{q}_2
(q_4, b)	q_5
(q_5, a)	\mathbf{q}_3
(q_5, b)	q_5

$$s=q_0\\$$

$$F=\{q_5\}$$

4. $\{x \in \Sigma^* \mid \text{the top row of } x \text{ encodes a larger binary number than the bottom row of } x\}$

$$Q=\{q_0,\,q_1\}$$

$$\Sigma = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$$

δ:

(q, c)	δ (q, c)
$(q_0, \begin{bmatrix} 0 \\ 0 \end{bmatrix})$	q_0
$(q_0, \begin{bmatrix} 0 \\ 1 \end{bmatrix})$	\mathbf{q}_0
$(q_1, \begin{bmatrix} 1 \\ 0 \end{bmatrix})$	q_1
$(q_1, \begin{bmatrix} 1 \\ 1 \end{bmatrix})$	q_1
$(q_2, \begin{bmatrix} 0 \\ 0 \end{bmatrix})$	q_1
$(q_2, \begin{bmatrix} 0 \\ 1 \end{bmatrix})$	q_1
$(q_3, \begin{bmatrix} 1 \\ 0 \end{bmatrix})$	q_1
$(q_3, \begin{bmatrix} 1 \\ 1 \end{bmatrix})$	q_1

$$s = q_0$$

$$F = \{q_1\}$$

5. Let w be a string, and define rev(w) to be its **reversal**.

We can define the reversal operation rev : $\Sigma^* \to \Sigma^*$ formally and recursively as:

$$rev(\varepsilon) = \varepsilon$$

$$rev(wb) = brev(w)$$
, for $w \in \Sigma^*$ and $b \in \Sigma$

Using this definition, prove that rev(xy) = rev(y) rev(x), for all $x, y \in \Sigma^*$.

Hint: Use induction on the length of y.

Claim:

$$rev(xy) = rev(y) rev(x)$$
, for all $x, y \in \Sigma^*$

Proof:

By induction on the length of y.

Base Case:

$$rev(\varepsilon) = \varepsilon$$

Induction Step:

$$rev(wb) = brev(w)$$
, for $w \in \Sigma^*$ and $b \in \Sigma$

$$rev(x\varepsilon) = \varepsilon rev(x) = rev(\varepsilon) rec(x)$$
 //Define by base case

$$rev(y) = arev(z) = rev(az)$$
 // Define by inductive step

$$rev(azx) = rev(az) rev(x) = a(rev(z)) rev(x) = rec(z) rev(x)$$

$$rev(xy) = rev(y) rev(x) \square$$