

CS

WEEK 1-1

AGENDA

week	onderwerp	P&H	AT	Dijkstra
1	coderingen en talstelsels representatie van getallen optellen en aftrekken vermenigvuldigen en delen logische poorten schakelingen met poorten geheugen-elementen systeemklok & timers	App. B2, B3, B7, B8, B9 2.4 3.2 t/m 3.5 app B	App. A, B 3.1, 3.2, 3.3	H1 H2
2	typen computers 8 great ideas organisatie van de computer CPU intern, instructies uitvoeren geheugen systeem adres- en databus byte ordering pipelining de AVR MCU	1.1 t/m 1.4 2.12 4.1 t/m 4.5	1.3 2.1, 2.2 3.7	H3 6.1 en 6.2 7.1 en 7.2
3	typen geheugen caching opslag (ssd, harddisk) translating and starting a program parallelle architecturen - h/w multi-threading - multicore - GPU	5.2, 5.3 6.4 t/m 6.6	2.2, 2.3 7.3, 7.4 H8	4.1 7.3

AGENDA

- intro
- representatie van gegevens in de computer
- talstelsels
- rekenen met binaire getallen
- two's complement formaat
- floating point formaat

BELANG VAN DIT VAK

CS is voorwaardelijk voor:

- Thema 2.2 NSE/SE Netwerken
- Thema 2.2 NSE/SE Operating Systems

Zie OER

HUISHOUDELIJK

- Dit college:
 - niet verplicht
 - op tijd
 - mobiele telefoon uit/stil
 - aantekeningen: papier
 Laptop multitasking hinders classroom learning for both users and nearby peers, http://www.sciencedirect.com/science/article/pii/S0360131512002254?np=y
 - actieve deelname
 - sheets: binnen 1 week op BlackBoard
 - indeling: 45/10/45

meest toegankelijk & eenvoudig, NL

Stanford&Berkely meest up-to-date en compleet Hennessy ontwierp de MIPS CPU

best gestructureerd, beetje verouderd

Pearson International Edition Structured Computer Organization FIFTH EDITION ANDREW S. TANENBAUM inleiding: embedded systemen, hardware, scheduling, interrupts, real-time OS

AGENDA

- intro
- representatie van gegevens in de computer
- talstelsels
- rekenen met binaire getallen
- two's complement formaat
- floating point formaat

REPRESENTATIE

- binair = 2 waarden
 - betrouwbare opslag en communicatie
- rijtjes van '1'-nen en '0'-en
 - hoge of lage spanning
 - wel of geen putje in CD/DVD
 - magnetische oriëntatie (links of rechts)
- hoe gegevens (getallen, tekst, muziek, plaatje)
 opslaan in en verwerken met computer?

BIT, BYTE EN WOORD

- bit: 0 of 1 ("binary digit")
 - eenheid van informatie
- byte = 8 bit
- nibble = 4 bit
- rijtje '1'-nen en '0'-en opslaan in "register"
 - breedte register = woord (vaak 32 of 64 bit)

HOEVEEL BITS?

- hoeveel rijtjes '0' en '1' zijn er mogelijk met 2 bits ?
- hoeveel rijtjes '0' en '1' zijn er mogelijk met 5 bits ?
- hoeveel waarden kan ik coderen met een 5-bits register?
- en met een 8-bits register ?
- en met een 16-bits register?
- en met een n-bits register?

STORAGE SIZES (IN BYTES)

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

ANALOOG EN DIGITAAL

- wereld om ons heen is analoog: licht, geluid, temperatuur, afstand, snelheid, druk, enz.
- wanneer meetwaarden (van sensor) als getallen worden weergegeven dan kan een computer ze verwerken
- ADC Analog-to-Digital Converter
- voorbeeld: geluid opnemen, een plaatje scannen

ADC: SAMPLING (BEMONSTEREN)

DIGITAAL - ANALOOG?

- DAC = Digital-to-Analog Converter
- VOORBEELDEN?
 - www.dutchaudioclassics.nl/the complete d a dac converter list/

Part #	Manufacturer	Description	Stock	Price
PCM54HP	ВВ	Replaced by DAC7742 : 16-Bit Monolithic Digital-to-Analog Converter 28-PDIP	73072	1: \$3.55 10: \$3.02 100: \$2.84

AGENDA

- intro
- representatie van gegevens in de computer
- talstelsels
- rekenen met binaire getallen
- two's complement formaat
- floating point formaat

DECIMALE STELSEL

- wat betekent eigenlijk 15671?
 - grondtal = 10
 - er zijn 10 symbolen
 - $1*10^{0} + 7*10^{1} + 6*10^{2} + 5*10^{3} + 1*10^{4}$
 - als teller op positie n > 9 dan teller op positie n+1 met één verhogen
- heet: "positie-stelsel"
- hoe zou ik de cijfers 1, 7, 6, 5 en 1 kunnen berekenen?
- wat betekent eigenlijk 15,671 ?

DECIMALE STELSEL

TALSTELSELS

- codering en notatie van getallen
- grondtal = 10 (decimaal)
- grondtal = 2 (binair)
- grondtal = 8 (octaal)
- grondtal = 16 (hexadecimaal)

BINAIRE STELSEL

- grondtal 2
- er zijn 2 symbolen
- wat betekent dan 100101?
- 100101 binair = ... decimaal?
- 54 decimaal = ... binair ?

CONVERSIE VAN DECIMAAL NAAR BINAIR

Conversion of the decimal number 1492 to binary by successive halving, starting at the top and working downward.

For example, 93 divided by 2 yields a quotient of 46 and a remainder of 1, written on the line below.

HEXADECIMALE STELSEL

- grondtal 16
- er zijn 16 symbolen: 0, 1, ..., 9, A, B, C, D, E, F
- wat betekent AEB7 ? (of: \$AEB7, 0xAEB7)
- AEB7 hex = ... decimaal ?
- 698 decimaal = ... hex ?
- van binair naar hexadecimaal en omgekeerd is eenvoudig (want $16 = 2^4$)
- 10110011 binair = ... hex?

decimaal	hex	binair
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	Е	1110
15	F	1111

Figure 8. Program Memory Map \$0000 Application Flash Section Boot Flash Section \$3FFF

OCTALE STELSEL

- grondtal 8
- er zijn 8 symbolen
- wat betekent 1356?
- 1356 octaal = ... decimaal ?
- 262 decimaal = ... octaal ?
- van binair naar octaal en omgekeerd is eenvoudig (want $8 = 2^3$)

Octal notation

Another common method for representing Unix permissions is octal notation. Octal notation consists of a three- or four-digit base-8 value.

With three-digit octal notation, each numeral represents a different component of the permission set: user class, group class, and "others" class respectively.

Each of these digits is the sum of its component bits (see also Binary numeral system). As a result, specific bits add to the sum as it is represented by a numeral:

- The read bit adds 4 to its total (in binary 100),
- . The write bit adds 2 to its total (in binary 010), and
- The execute bit adds 1 to its total (in binary 001).

These values never produce ambiguous combinations; each sum represents a specific set of permissions.

These are the examples from the Symbolic notation section given in octal notation:

- "-rwxr-xr-x" would be represented as 755 in three-digit octal.
- "-rw-rw-r--" would be represented as 664 in three-digit octal.
- "-r-x----" would be represented as 500 in three-digit octal.

Here is a summary of the meanings for individual octal digit values:

```
--- no permission
  --x execute
   wx write and execute
   -x read and execute
6 rw- read and write
```

7 rwx read, write and execute

CONVERSION FROM ONE RADIX TO ANOTHER

Binary

Octal

AGENDA

- intro
- representatie van gegevens in de computer
- talstelsels
- rekenen met binaire getallen
- two's complement formaat
- floating point formaat

OPTELLEN

$$-0+0=0$$

$$\bullet 0 + 1 = 1$$

•
$$1 + 1 = 0 \underline{\text{met carry}}$$

$$-25 + 9 = ?$$

	1 1	1	← carry
25	1 1	0 0 1	
9 _	1	0 0 1	_
34	1 0 0	0 1 0	•

OVERFLOW

- stel we hebben registers met een breedte van 4 bit
- 15 + 2 = 17, dit past niet meer in het 4-bit register
- dit 'niet-meer-passen' noemen we overflow

VERMENIGVULDIGEN

$$-0 \times 0 = 0$$

$$-0 \times 1 = 0$$

$$-1 \times 0 = 0$$

$$-1 \times 1 = 1$$

DECIMAAL VERMENIGVULDIGEN

```
231 (<- B)
103 (A ->)
3 * 231
0 * 2310
1 * 23100
693 + 0 + 23100
```

25 X 13 BINAIR = ?

```
11001 (<- B)
     1101 (A ->)
   1 * 11001
  0 * 110010
1 * 1100100
1 * 11001000
   101000101
```

BINAIR VERMENIGVULDIGEN

- binair vermenigvuldigen = schuiven en optellen
 - want het is 0x of 1x
- A x B :
 - resultaat = 0

- Isb = least significant bit = meest rechtse bit
- herhaal tot A=0 :
 - als lsb A=1 dan resultaat = resultaat + B
 - shift left B
 - shift right A

DECIMAAL DELEN

- voorbeeld : decimaal 1001010 : 1000 = 1001 rest 10
- at every step
 - shift divisor right and compare it with current dividend
 - if divisor is larger, shift 0 as the next bit of the quotient
 - if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

AGENDA

- intro
- representatie van gegevens in de computer
- talstelsels
- rekenen met binaire getallen
- two's complement formaat
- floating point formaat

NEGATIEVE GETALLEN

- signed magnitude:
 - meest linkse bit is tekenbit
 - \bullet +99 = 0110 0011
 - -99 = 1110 0011
 - onhandig!
- one's complement:
 - negatieve waarde door alle bits te inverteren
 - \bullet +99 = 0110 0011
 - -99 = 1001 1100
 - 0000 0000 en 1111 1111 zijn **beide** 0
 - (vrijwel niet meer gebruikt)

NEGATIEVE GETALLEN

two's complement:

- negatieve waarde door alle bits te inverteren en er 1 bij op te tellen (negeer overflow)
- \bullet +99 = 0110 0011
- -99 = 1001 1101
- 0 = 0000 0000; inverteren en 1 erbij op geeft zelfde representatie
- voordeel : één representatie voor 0
- voordeel: het optellen van negatieve getallen gaat net als optellen positieve getallen
- nadeel : aantal negatieve getallen = aantal positieve getallen + 1

NEGATIEVE GETALLEN

- 8-bit two's complement van -60?
- $60_{10} = 0011 1100_2$
- reken uit in 4-bit: 3 5
- reken uit in 4-bit : -5 -5

voorbeeld :2's complement met 4 bits

decimaal	binair 2's c
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Binary, inverse and complement co	des	0 ⊙
Number:	-11	
Number of binary digits:	8	
PLANET (CALC		Calculate
Range:		[-128,127]
Binary code:		00001011
Inverse code (one's complement):		11110100
Complement code (two's complement):		11110101

AGENDA

- intro
- representatie van gegevens in de computer
- talstelsels
- rekenen met binaire getallen
- two's complement formaat
- floating point formaat

FLOATING POINT FORMAT

```
float x = 0.4 - 0.3;
float y = 0.3 - 0.2;
if (x == y) {
   printf ("gelijk");
} else {
   printf ("ongelijk");
}
```

FLOATING POINT FORMAT

gebroken getallen:

$$+ 0,000123 = + 0,123 \times 10^{-3}$$
 $- 3450000 = - 0,345 \times 10^{+7}$ exponent

Figuur 1.3 IEEE 32-bit floating-point formaat

Teken	Exponent	Mantisse	
1	8	23	bits

Teken: 0 is positief, 1 is negatief.

Exponent: loopt van -126 tot +127 (excess code).

Mantisse: is genormaliseerd tot het eerste bit een 1 is. Dit wordt niet genoteerd (dit heet een hidden bit). De complete mantisse is dus 24 bits groot.

FLOATING POINT FORMAT

- exponent kan positief of negatief zijn
- een bias (offset) van 127 wordt voor opslag opgeteld bij de exponent, dus :
 - -126 wordt genoteerd als -126+127=1=0000 0001
 - +127 wordt genoteerd als 127+127=254=1111 1110
- Hoe 05
 - Mantisse = 0 en exponent = 0
- Hoe oneindig?
 - Mantisse = 0 en exponent = 255

VOORBEELD DIJKSTRA OPG. 1.32A

Wat is 43,75 in floating point formaat?

- 43 is binair 101011
- 0.75 = 3/4 = 1/2 + 1/4 = 0.11
- samen geeft dit 101011,11
- normaliseren (komma opschuiven) geeft 1,0101111 * 2⁵
- het tekenbit = 0 (positief)
- exponent: bias 127 erbij = 5 + 127 = 132 is binair 1000 0100
- mantisse: 0101111 (eerste bit weglaten)

teken	exponent	mantisse
0	1000 0100	0101 111 00