<u>cpu סרויקט גמר - קורס</u>

בפרויקט נתבקשנו לשלב בין ה – MIPS שיצרנו בעבודה הקודמת ובין הצגת תמונה דרך פילטרים שונים, תוך כדי חישוב היסטוגרמה.

ראשית נתבונן על המערכת מלמעלה:

איור1 – RTL של ה – TOP LEVEL

Total logic elements	17,234 / 18,752 (92 %)
Total combinational functions	16,595 / 18,752 (88 %)
Dedicated logic registers	4,299 / 18,752 (23 %)

איור2 – רכיבים לוגיים עבור כלל המערכת

nuty	Logic Cells	Dedicated Logic Registers	1/O Kegisters	
Cyclone II: EP2C20F484C7				
ø № DE1_D5M 4	17046 (3)	4304 (1)	14 (14)	
VGA_Controller:u1	68 (68)	27 (27)	0 (0)	
Reset_Delay:u2	50 (50)	35 (35)	0 (0)	
CCD_Capture:u3	56 (56)	48 (48)	0 (0)	
▷ 🛗 RAW2RGB:u4	12525 (190)	2066 (0)	0 (0)	
▷ 🌬 SEG7_LUT_8:u5	28 (0)	0 (0)	0 (0)	
▷ 🌂 sdram_pll:u6	0 (0)	0 (0)	0 (0)	
▷ abd Sdram_Control_4Port:u7	904 (226)	665 (130)	0 (0)	
▷ 📴 I2C_CCD_Config:u8	253 (175)	132 (94)	0 (0)	
De TopEntity:u9	3229 (0)	1330 (0)	0 (0)	

איור3 – רכיבים לוגיים עבור כל רכיב בנפרד

חלוקת האלמנטים הלוגיים לא גבוהה בהרבה מהמימוש המקורי שקיבלנו.

מאחר ורוב העבודה נעשתה ב –RGB 2RAW, ניתן לראות כי רוב הרכיבים הלוגיים הוקדשו אליו.

Stott	Model I IIIda	- Administra			
	Fmax	Restricted Fmax	Clock Name	Note	
1	25.13 MHz	25.13 MHz	GPIO_1[0]		
2	137.4 MHz	137.4 MHz	u6 altpll_component pll clk[0]		
3	146.71 MHz	146.71 MHz	CLOCK_50		
4	151.15 MHz	151.15 MHz	rClk[0]		
5	202.72 MHz	202.72 MHz	I2C_CCD_Config:u8 mI2C_CTRL_CLK		

איור4 – תדרים עבור המערכת

כמו שצפוי, התדר עבור הגישה ל-٥١١, נמוך בהרבה מהתדר עבור שער המערכת.

איור5 – מסלול קריטי

ניתן לראות כי המסלול הקריטי, הוא במעבר דרך השעון, דרך רכיב האנטרופיה ועד לזיכרון. עקב מימוש הבאפר והעבודה הטורית, רכיב זה אמור לקחת את רוב הזמן ואכן כמו שניתן לראות כך קורה.

ניתן היה לשפר את הזמן, על ידי דרך עבודה אחרת שלא עם באפר, אלא בניית מטריצה ישירות והמשך עבודה כרגיל. השתמשתי במערכת המקורית שניתנה לנו, תוך שינוי מספר רכיבים על מנת לייצר את המתבקש, אפרט כאן את הרכיבים ששונו:

:ROW2RGB

איור 6 – דיאגרמת בלוקים ו – RTL של ROW2RGB

מודול זה שומר לזיכרון את הפיקסלים שמושך מה – capture ולכן היה רק הגיוני לעבוד בו על מנת לייצר את הפילטרים המתבקשים:

עבור התמונה האפורה, ייצרתי קו נוסף המקבל את ערכי האדום, כחול וירוק של הפיקבל המקורי ומייצר הזזה כדי ליצור פיקסל אפור. את מוצא הקו חיברתי לבורר המוצא.

הוספתי מספר רכיבים בתוך המודול ואת יציאתם בררתי על פי ערכי כניסת המתגים.

פונציונאליות	גודל-ביט	כיוון	שם
מוצא ערך ללד	12	out	Ored
אדום			
מוצא ערך ללד	12	out	Ogreen
ירוק			
מוצא ערך ללד	12	out	Oblue
כחול			
האם הפיקסל	1	out	Odval
הנקרא הינו			
באקטיב פיקטור			
מיקום איקס של	11	in	iXcont
הפיקסל			
מיקום וואי של	11	in	iYcont
הפיקסל			
ערך היקסלים	12	in	iDATA
הנכנסים			
מהקאפטור			
מתג לאנטרופי	1	in	SW3ENTROPY
מתג	1	in	SW2HISTOGRAM
להיסטוגראמה			
מתג לתמונה	1	in	SW1GRAY
אפורה			
כניסה	1	in	iDVAL
מהקאפטור עבור			
המוצא Odval			
שעון	1	in	iCLK
Reset למערכת	1	in	iRST

איור 7 – טבלת פינים של ROW2RGB

:Histogram

איור 8 – דיאגרמת בלוקים ו – RTL של histogram

רכיב זה מייצר את ההיסטוגראמה ומחובר לאחד המוצאים של ה – ROW2RGB. עבור כל פיקסל הנכנס מהתמונה האפורה, בדקתי את ערכו וחילקתי לפי סקאלה ל-16 "סלים" במערך. לאחר החלוקה, על פי ערכי וואי ואיקס המתקבלים מה-capture, אנו יודעים את מיקום הפיקסל, וכך את המיקום הרצוי של העמודה על המסך, ולפי הכמות שחושבה, אני יודע את גובה העמודה. על ידי כך ניתן לצבוע את הפיקסל בשחור או לבן.

פונציונאליות	גודל-ביט	כיוון	שם
כניסת ערך	12	in	garyscale
הפיקסל האפור			
מיקום איקס	1	in	iX
מיקום וואי	1	in	iY
מוצא	12	out	HISTOUT
ההיסטוגראמה			
האם הפיקסל	1	out	iDVAL
באקטיב פיקטור			
שעון	1	out	iCLK
איפוס	1	out	iRST

histogram איור9 – טבלת פינים של

:Entropy

entropy של RTL – איור 10 - דיאגרמת בלוקים ו

רכיב זה מייצר את פילטר האנטרופיה. בעזרת רכיב ה – linebuffer אני מייצר כמו מטריצה של חמש על חמש. בכל פעם נעביר את העמודות קדימה ונכניס את העמודה החדשה לראשונה. לאחר מכן, מתבצע מעבר על תאי המטריצה ליצירת היסטוגראמה מקומית. אזי מתבצעת ספירה של הערכים השונים ואז בעזרת טבלה מוכנה מראש, מתבצעת סכימה של הערכים המתאימים של האנטרופיה. הסכימה מוצאת ליציאת הרכיב ומשם לבורר המוצא ב – ROW2RGB.

פונציונאליות	גודל-ביט	כיוון	שם
כניסת ערך	12	in	garyscale
הפיקסל האפור			
מיקום איקס	1	in	iX
מיקום וואי	1	in	iY
מוצא	12	out	ENTOUT
האנטרופיה			
האם הפיקסל	1	out	iDVAL
באקטיב פיקטור			
שעון	1	out	iCLK
איפוס	1	out	iRST

entropy איור 11 - טבלת פינים של

Top entity

top entity של RTL – איור 12 – דיאגרמת בלוקים ו

רכיב זה מכיל את ה- MIPS ממטלה קודמת ועוד רגיסטר השומר את הערך של הseven-sig. הוא מקבל את ערכי האיקס וה-וואי של הפיקסל, על מנת ליצור קו אינטרפט למיפס, בהגעה ל-(0,0) כדי לספור את כמות הפריימים שעבדנו עליהם. בהגעת קו אינטרפט המיפס יקפוץ לקטע קוד המעלה קאונטר באחת.

פונציונאליות	גודל-ביט	כיוון	שם
שעון	12	in	Clk
מיקום איקס	1	in	iX
מיקום וואי	1	in	iY
איפוס	12	in	reset
מוצא שבע	1	out	Seven-seg
ספרות			

top entity איור - 13 טבלת פינים של

<u>מסקנות:</u>

- סך הכל ניתן היה לשפר את המערכת על ידי דרך עבודה אחרת. למשל, באנטרופיה, על ידי בניית מטריצה ולא באפרים.
 - 2) את רוב הזמן העברתי על שפצור הפילטרים. יש לשים לב לחיבורים נכונים ועקביות בקוד.
 - .) יש צורך במתן תשומת לב לסוג המשתנה שמגדירים ולעבודה עם משתנה או סיגנל.