## **CS 422 Data Mining**

Lecture 4 September 13, 2018

#### **Classification Errors**

- □ Training errors (apparent errors)
  - Errors committed on the training set
- Test errors
  - Errors committed on the test set
- Generalization errors
  - Expected error of a model over random selection of records from same distribution

### **Notes on Overfitting**

- Overfitting results in decision trees that are <u>more</u> <u>complex</u> than necessary
- Training error does not provide a good estimate of how well the tree will perform on previously unseen records
- Need ways for estimating generalization errors

#### **Model Selection**

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
  - Using Validation Set
  - Incorporating Model Complexity
  - Estimating Statistical Bounds

#### **Model Selection:**

#### **Using Validation Set**

Divide <u>training</u> data into two parts:
 Training set:
 use for model building
 Validation set:
 use for estimating generalization error

Note: validation set is not the same as test set

- Drawback:
  - Less data available for training

#### **Model Selection:**

### **Incorporating Model Complexity**

- Rationale: Occam's Razor
  - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
  - A complex model has a greater chance of being fitted accidentally by errors in data
  - ☐ Therefore, one should include model complexity when evaluating a model

Gen. Error(Model) = Train. Error(Model, Train. Data) +  $\alpha$  x Complexity(Model)

#### **Model Selection for Decision Trees**

- □ Pre-Pruning (Early Stopping Rule)
  - Stop the algorithm before it becomes a fully-grown tree
  - Typical stopping conditions for a node:
    - Stop if all instances belong to the same class
    - Stop if all the attribute values are the same
  - More restrictive conditions:
    - Stop if number of instances is less than some user-specified threshold
    - Stop if class distribution of instances are independent of the available features (e.g., using  $\chi^2$  test)
    - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
    - Stop if estimated generalization error falls below certain threshold

#### **Model Selection for Decision Trees**

- ☐ Post-pruning
  - Grow decision tree to its entirety
  - Subtree replacement
    - Trim the nodes of the decision tree in a bottom-up fashion
    - If generalization error improves after trimming, replace sub-tree by a leaf node
    - Class label of leaf node is determined from majority class of instances in the sub-tree
  - Subtree raising
    - Replace subtree with most frequently used branch

#### **Model Evaluation**

- □ Purpose:
  - □ To estimate performance of classifier on previously unseen data (test set)
- Holdout
  - Reserve k% for training and (100-k)% for testing
  - Random subsampling: repeated holdout
- Cross validation
  - Partition data into k disjoint subsets
  - k-fold: train on k-1 partitions, test on the remaining one
  - Leave-one-out: k=n

#### **Cross-validation Example**

#### 3-fold cross-validation



#### **History**

- Precursors: Expert Based Systems (EBS)
  - EBS = Knowledge database + Inference Engine
  - MYCIN: Medical diagnosis system based, 600 rules
  - XCON: System for configuring VAX computers, 2500 rules (1982)
- The rules were created by experts by hand!!
- Knowledge acquisition has to be automatized
  - Substitute the Expert by its archive with solved cases

#### **Extension to Basic DT**

- CHAID (CHi-squared Automatic Interaction Detector) Gordon V. Kass ,1980
- CART (Classification and Regression Trees),
   Breiman, Friedman, Olsen and Stone, 1984
- ID3 (Iterative Dichotomiser 3), Quinlan, 1986
- C4.5, Quinlan 1993: Based on ID3

#### **General Approach to DT**

For decision trees a greedy approach is generally selected:

- Built step by step, instead of building the tree as a whole
- At each step the best split with respect to the train data is selected (following a split criterion).
- The tree is grown until a stopping criterion is met
- The tree is generally pruned (following a pruning criterion) to avoid over-fitting.

Cost-complexity based pruning:

$$R \downarrow \alpha(t) = R(t) + \alpha \cdot C(t)$$

- R(t) is the error of the decision tree rooted at node t
- C(t) is the number of leaf nodes from node t
- Parameter  $\alpha$  specifies the relative weight between the accuracy and complexity of the tree



#### CART

- CART uses 10-fold cross-validation within the training data to estimate alpha. Iteratively nine folds are used for training a tree and one for test.
- A tree is trained on nine folds and it is pruned using all possible alphas (that are finite).
- Then each of those trees is tested on the remaining fold.
- The process is repeated 10 times and the alpha value that gives the best generalization accuracy is kept

### **Statistics Based Pruning**

- C4.5 estimates the accuracy % on the leaf nodes using the upper confidence bound (parameter) of a normal distribution instead of the data.
- Error estimate for subtree is the weighted sum of the error estimates for all its leaves
- This error is higher when few data instances fall on a leaf.
- Hence, leaf nodes with few instances tend to be pruned.

#### CART vs C4.5

- CART pruning is slower since it has to build 10 extra trees to estimate alpha.
- C4.5 pruning is faster, however the algorithm does not propose a way to compute the confidence threshold
- The statistical grounds for C4.5 pruning are questionable.
- Using cross validation is safer

#### **Oblique Splits**

- CART algorithms allows for oblique splits, i.e. splits that are not orthogonal to the attributes axis
- The algorithm searches for planes with good impurity reduction
- The growing tree process becomes slower
- But trees become more expressive and compact





# Comparison

|      | Splitting criterion                                                                     | Pruning criterion                  | Other features                                                                                                                                                       |
|------|-----------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CART | <ul><li> Gini</li><li> Twoing</li></ul>                                                 | Cross-validation post-<br>pruning  | <ul> <li>Regression/Classif.</li> <li>Nominal/numeric<br/>attributes</li> <li>Missing values</li> <li>Oblique splits</li> <li>Nominal splits<br/>grouping</li> </ul> |
| ID3  | Information Gain (IG)                                                                   | Pre-pruning.                       | <ul><li>Classification</li><li>Nominal attributes</li></ul>                                                                                                          |
| C4.5 | <ul> <li>Information Gain<br/>(IG)</li> <li>Information Gain<br/>Ratio (IGR)</li> </ul> | Statistical based post-<br>pruning | <ul> <li>Classification</li> <li>Nominal/numeric<br/>attributes</li> <li>Missing values</li> <li>Rule generator</li> <li>Multiple nodes split</li> </ul>             |

- Use Binary Decisions based on one value
- Several Choices for the splitting value
  - Number of possible splitting values
    - = Number of distinct values
- Each splitting value has a count matrix associated with it
  - Class counts in each of the partitions, A < v and A ≥ v</li>
- Simple method to choose best v
  - For each v, scan the database to gather count matrix and compute its Gini index
  - Computationally Inefficient!
     Repetition of work.

| ID | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted |
|----|---------------|-------------------|------------------|-----------|
| 1  | Yes           | Single            | 125K             | No        |
| 2  | No            | Married           | 100K             | No        |
| 3  | No            | Single            | 70K              | No        |
| 4  | Yes           | Married           | 120K             | No        |
| 5  | No            | Divorced          | 95K              | Yes       |
| 6  | No            | Married           | 60K              | No        |
| 7  | Yes           | Divorced          | 220K             | No        |
| 8  | No            | Single            | 85K              | Yes       |
| 9  | No            | Married           | 75K              | No        |
| 10 | No            | Single            | 90K              | Yes       |



- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index

|               | Cheat    | No | No | No | Yes | Yes   | Yes      | No  | No  | No  | No  |
|---------------|----------|----|----|----|-----|-------|----------|-----|-----|-----|-----|
|               |          |    |    |    |     | Annua | al Incom | е   |     |     |     |
| Sorted Values | <b>→</b> | 60 | 70 | 75 | 85  | 90    | 95       | 100 | 120 | 125 | 220 |

- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index

|                 | Cheat   |     | No |     | No | )   | N                                         | 0     | Ye | s     | Ye | s   | Υe | es         | N          | 0   | N   | lo  | N   | lo  |     | No  |    |
|-----------------|---------|-----|----|-----|----|-----|-------------------------------------------|-------|----|-------|----|-----|----|------------|------------|-----|-----|-----|-----|-----|-----|-----|----|
| Sorted Values   | <b></b> |     | 60 |     | 70 |     | Annual Income 75 85 90 95 100 120 125 220 |       |    |       |    |     |    |            |            |     |     |     |     |     |     |     |    |
| Split Positions | 55      |     |    |     | 7  |     | 80                                        |       |    | 87 92 |    |     | 97 |            | 110        |     | 122 |     | 172 |     | 230 |     |    |
|                 |         | <=  | >  | <=  | >  | <=  | >                                         | <=    | >  | <=    | >  | <=  | >  | <=         | >          | <=  | >   | <=  | >   | <=  | >   | <=  | >  |
|                 | Yes     | 0   | 3  | 0   | 3  | 0   | 3                                         | 0     | 3  | 1     | 2  | 2   | 1  | 3          | 0          | 3   | 0   | 3   | 0   | 3   | 0   | 3   | 0  |
|                 | No      | 0   | 7  | 1   | 6  | 2   | 5                                         | 3     | 4  | 3     | 4  | 3   | 4  | 3          | 4          | 4   | 3   | 5   | 2   | 6   | 1   | 7   | 0  |
|                 | Gini    | 0.4 | 20 | 0.4 | 00 | 0.3 | 375                                       | 0.343 |    | 0.4   | 17 | 0.4 | 00 | <u>0.3</u> | <u>800</u> | 0.3 | 343 | 0.3 | 375 | 0.4 | 100 | 0.4 | 20 |

□ Random forest classifier

#### **Ensemble Methods**

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

#### General Idea



### Why does it work?

- Suppose there are 25 base classifiers
  - $\Box$  Each classifier has error rate, ε = 0.35
  - Assume classifiers are independent
  - Probability that the ensemble classifier makes a wrong prediction: 25 (25)

prediction:  $\sum_{i=1}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$ 

#### **Examples of Ensemble Methods**

- ☐ How to generate an ensemble of classifiers?
  - Bagging
  - Boosting

### **Bagging**

| Original Data     |   | cemen | 3  | 4  | 5 | 6 | 7  | 8  | 9 | 10 |
|-------------------|---|-------|----|----|---|---|----|----|---|----|
| Bagging (Round 1) | 7 | 8     | 10 | 8  | 2 | 5 | 10 | 10 | 5 | 9  |
| Bagging (Round 2) | 1 | 4     | 9  | 1  | 2 | 3 | 2  | 7  | 3 | 2  |
| Bagging (Round 3) | 1 | 8     | 5  | 10 | 5 | 5 | 9  | 6  | 3 | 7  |

- Build classifier on each bootstrap sample
- Each sample has probability (1 1/n)<sup>n</sup> of being selected

# **Feature Space**



## **Feature Space**



#### Example

- Try several lines, chosen at random
- Keep line that best separates data
  - · Information gain
- Recurse



#### Example

- Try several lines, chosen at random
- Keep line that best separates data
  - · Information gain
- Recurse



# Example

- Try several lines, chosen at random
- Keep line that best separates data
  - · Information gain
- Recurse



# Example

- Try several lines, chosen at random
- Keep line that best separates data
  - · Information gain
- Recurse



□ Random forest classifier

- Train a collection of trees
- Ensemble method
- Averages over (diverse) classification trees (a forest)
- For each tree draw L samples of the original data
- At each node randomly sample P queries and choose the best among them



- Aggregate across trees (majority vote or average ⇒ mixture model)
- Avoide over-fitting and computationally afficient





- Random forests are a very popular tool for classification, e.g. in computer vision
- Based on decision trees: classifiers constructed greedily using the conditional entropy
- The extension hinges on two ideas:
  - building an ensemble of trees by training on subsets of data
  - considering a reduced number of possible queries (attributes) at each node

- 6 classes in a 2 dimensional feature space.
- Split functions are lines in this space.



With a depth 2 tree, we cannot separate all six classes.



 With a depth 3 tree, we can do better, but still cannot separate all six classes.



- With a depth 4 tree, we now have at least as many leaf nodes as classes,
- and so are able to classify most examples correctly.





Randomly trained decision trees can give rise to very different decision boundaries, none of which is particularly good on its own.

- Bagging (averaging together) many trees
  - decision boundaries look very sensible
  - even quite close to the max margin classifier (Shading represents entropy – darker is higher entropy).



Association Rule Mining

- Large Data
  - Transactions
  - Market basket transactions

- Large Data
  - Transactions
  - Market basket transactions
- Association Analysis
  - Discovering of interesting relationships in large data sets





| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |



□ Diapers + Beer!



- Diapers + Beer!
- Diapers ->
  - □ baby ->
  - don't go out to a bar ->
  - buy more beer for home





☐ Hot dog and mustard



#### ☐ Hot dog and mustard



#### **Association Rules: General Idea**

- Given a set of baskets
  - Want to discover association rules
  - People who bought {x,y,z} tend to buy {v,w}
    - ☐ Amazon!
- 2 step approach:
  - Find frequent itemsets
  - Generate association rules

- □ Items = products, Baskets = sets of products someone bought in one trip to the store
  - □ Real market baskets: Chain stores keep TBs of data about what customers buy together
  - Tells how typical customers navigate stores, lets them position tempting items
  - □ Suggests tie-in "tricks", e.g., run sale on diapers and raise the price of beer
  - Amazon's people who bought X also bought Y

#### Plagiarism

- Baskets = sentences, Items = documents containing those sentences
- Items that appear together too often could represent plagiarism
- Notice items are "in" baskets, not "part of"

- Medical domain
  - Baskets = patients, Items = drugs & side-effects
  - □ Has been used to detect combinations of drugs that result in particular side-effects
  - But requires extension: Absence of an item needs to be observed as well as presence

#### Biomarkers

- Baskets are sets of data about the patient: genome, bloodchemistry analysis, medical history. Items are biomarkers s.a. genes, blood protein or diseases
- Frequent item: one disease + biomarkers

- ☐ Finding communities in graphs (e.g., web)
  - Baskets = nodes; Items = outgoing neighbors
  - Searching for complete bipartite subgraphs Ks,t of a big graph

S nodes

T nodes

B1

R1

R2

R3

R3

- □ A large set of items
  - e.g., things sold in a supermarket
- A large set of baskets each is a small subset of items
  - e.g., the things one customer buys on one day
- A general many-many mapping (association) between two kinds of things
- But we ask about connections among "items", not "baskets"

- Association Analysis
  - Discovering of interesting relationships in large data sets

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

- Association Analysis
  - Discovering of interesting relationships in large data sets

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

- Association Analysis
  - Discovering of interesting relationships in large data sets

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Association rule:**

```
{Diapers → Beer} {Beer, Bread} → {Milk}
```

- Association Analysis
  - Discovering of interesting relationships in large data sets

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Association rule:**

```
{Diapers → Beer} {Beer, Bread} → {Milk}
```

Co-occurrence, not causality

#### **Problem Definition**

- Set of items I={i1,i2,...,id}
- Set of transaction T={t1,t2,...tN}

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Problem Definition**

- □ Itemset  $X = \{i | i \subseteq I\}$ 
  - ☐ {Bread, Milk}
  - □ *k*-itemset has k items
  - ☐ {Bread, Milk} is a 2-itemset
- ☐ Transaction ti contains an itemset X

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

ti 
$$\subseteq$$
 **T**
 $t1 = \{Bread, Milk\}$ 

ti contains X

X  $\subseteq$  ti

X =  $\{ik, im, ...\}$ ,

where  $ik \subseteq$  **I**
 $X = \{Bread, Milk\}$ 

### **Problem Definition**

- □ Itemset  $X = \{i | i \subseteq I\}$ 
  - ☐ {Bread, Milk}
  - □ *k*-itemset has k items
  - ☐ {Bread, Milk} is a 2-itemset
- Transaction ti contains an itemset X

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

### **Problem Definition**

- Set of items I={i1,i2,...,id}
- Set of transaction T={t1,t2,...tN}
- Itemset X = {i|i ⊆ I}
- Transaction ti contains an itemset X

- $\square$  Support Count of an itemset X:  $\sigma(X)$ 
  - $\Box$   $\sigma(X)$  = Number of transactions that contain X

- Support Count of an itemset X
  - Number of transactions that contain X
  - Number of transations that support {Bread, Milk}?

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

- Support Count of an itemset X
  - Number of transactions that contain X
  - Number of transations that support {Bread, Milk}?

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

 $\Box \sigma(\{Bread, Milk\}) = 3$ 

- Support Count of an itemset X
  - Number of transactions that contain X
  - Number of transations that support {Bread}?

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

- Support Count of an itemset X
  - Number of transactions that contain X
  - Number of transations that support {Bread}?

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

 $\Box \sigma(\{Bread\}) = 4$ 

- Support Count of an itemset X
  - Number of transactions that contain X
  - Number of transations that support {Bread, Milk, Diaper, Coke}?

| TID | Items                      |
|-----|----------------------------|
| 1   | Bread, Milk                |
| 2   | Bread, Diaper, Beer, Egg s |
| 3   | Milk, Diaper, Beer, Coke   |
| 4   | Bread, Milk, Diaper, Beer  |
| 5   | Bread, Milk, Diaper, Coke  |

- Support Count of an itemset X
  - Number of transactions that contain X
  - Number of transations that support {Bread, Milk, Diaper, Coke}?

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

 $\Box \sigma(\{Bread, Milk Diaper, Coke\}) = 1$ 

- Association rule is an implication expression
  - ☐ X -> Y where X and Y are disjoint itemsets

- Association rule is an implication expression
  - □ X -> Y where X and Y are disjoint itemsets

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Market basket transactions**

#### **Association rules:**

**{Diapers** → **Beer} {Beer, Bread}** → **{Milk}** 

- Association rule:
  - Support
  - Confidence

- Association rule:
  - Support X->Y
    - Number of transactions containing X ∪ Y
    - $\Box S(X->Y) = \sigma(X \cup Y)/N$

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

Market basket transactions

#### **Association rules:**

- Association rule:
  - Support X->Y
    - Number of transactions containing X ∪ Y
    - $\Box S(X->Y) = \sigma(X \cup Y)/N$

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

**Market basket transactions** 

#### **Association rules:**

{Diapers 
$$\rightarrow$$
 Beer}  
{Beer, Bread}  $\rightarrow$  {Milk}  
 $S(Diapers \cup Beer) =$   
 $3/5$   
 $S(Beer, Bread \cup Milk) =$   
 $1/5$ 

- Association rule:
  - Support
  - Confidence

- ☐ Association rule:
  - Support
  - Confidence X->Y
    - ☐ How often transactions that contain X also contain Y
    - $\Box c(X->Y) = \sigma(X \cup Y)/\sigma(X)$

- Association rule:
  - Support
  - Confidence X->Y
    - How often transactions that contain X also contain Y

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Market basket transactions

#### **Association rules:**

{Diapers → Beer}  
{Beer, Bread} → {Milk}  

$$C(Diapers → Beer) =$$
  
?  
 $C(Beer, Bread → Milk) =$   
?

- Association rule:
  - Support
  - Confidence X->Y
    - How often transactions that contain X also contain Y

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Market basket transactions

#### **Association rules:**

{Diapers 
$$\rightarrow$$
 Beer}  
{Beer, Bread}  $\rightarrow$  {Milk}  
 $C(\text{Diapers} \rightarrow \text{Beer}) = 3/4$   
 $C(\text{Beer, Bread} \rightarrow \text{Milk}) = 1/2$ 

## **Use of Support and Confidence**

- Support
  - Rule with a low support can occur by chance
  - Low support rules are not interesting from the business perspective
  - Eliminate uninteresting rules
- Confidence
  - Reliability of the implication from an association rule X->Y
  - Conditional probability P(Y|X)

# **Association Rule Mining Problem**

- ☐ Given a set of transactions T, the goal of association rule mining is to find all rules having
  - support ≥ minsupport threshold
  - confidence ≥ minconfidence threshold

# **Association Rule Mining Problem**

- Given a set of transactions T, the goal of association rule mining is to find all rules having
  - support ≥ minsupport threshold
  - □ confidence ≥ minconfidence threshold

```
 \begin{aligned} &\{\text{Milk,Diaper}\} \to \{\text{Beer}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Milk,Beer}\} \to \{\text{Diaper}\} \; (\text{s=0.4, c=1.0}) \\ &\{\text{Diaper,Beer}\} \to \{\text{Milk}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Beer}\} \to \{\text{Milk,Diaper}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Diaper}\} \to \{\text{Milk,Beer}\} \; (\text{s=0.4, c=0.5}) \\ &\{\text{Milk}\} \to \{\text{Diaper,Beer}\} \; (\text{s=0.4, c=0.5}) \end{aligned}
```

Minsup=0.4 Minconf=0.6

# **Association Rule Mining Problem**

- Given a set of transactions T, the goal of association rule mining is to find all rules having
  - support ≥ minsupport threshold
  - □ confidence ≥ minconfidence threshold

```
 \begin{split} &\{\text{Milk,Diaper}\} \to \{\text{Beer}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Milk,Beer}\} \to \{\text{Diaper}\} \; (\text{s=0.4, c=1.0}) \\ &\{\text{Diaper,Beer}\} \to \{\text{Milk}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Beer}\} \to \{\text{Milk,Diaper}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Diaper}\} \to \{\text{Milk,Beer}\} \; (\text{s=0.4, c=0.5}) \\ &\{\text{Milk}\} \to \{\text{Diaper,Beer}\} \; (\text{s=0.4, c=0.5}) \end{split}
```

```
Minsup=0.4
Minconf=0.6
\{Milk, Diaper\} \rightarrow \{Beer\}
\{Diaper, Beer\} \rightarrow \{Milk\}
\{Beer\} \rightarrow \{Milk, Diaper\}
```

- Brute-force approach
  - Compute support and confidence for every possilbe rule

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

- ☐ In our example d=6, there are 602 rules
  - ☐ If minsup=20%
  - ☐ If minconf=50%, then
  - 80% of rules are discarded

### ☐ The number of possible rules that contains d items

$$\Box$$
 R = 3<sup>d</sup> - 2<sup>(d+1)</sup> + 1



$$R = \sum_{k=1}^{d+1} \begin{bmatrix} \binom{d}{k} \times \sum_{j=1}^{d+j} \binom{d-k}{j} \end{bmatrix}$$
$$= 3^d - 2^{d+1} + 1$$

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Example of Rules:**

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67) 
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0) 
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67) 
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67) 
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5) 
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

- ☐ Two steps
  - Frequent Itemset Generation
    - Generate all itemsets with support ≥ minsup
  - Rule Generation
    - Generate high confidence rules from each frequent itemset

- Brute-force approach
  - Support count for every itemset
  - Use lattice structure

Use lattice structure



- ☐ Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
  - Match each transaction against every candidate



■ Use lattice structure

$$I=\{A,B,C,D,E\}$$



#### ■ Use lattice structure

K items | I|=k

 $M = 2^{k-1}$  itemsets



#### Use lattice structure

K items || I|=k

M = 2k-1 itemsets

N it the number of transactions
w is the max transaction width
(max number of items per transaction)

O(NMw) computations



# **Reduce Complexity**

- Reduce the number of candidate itemsets M
- Reduce the number of transactions
- Reduce the number of comparisons

■ Apriori Principle

# **Apriori Principle**

- □ Apriori principle:
  - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support



### **Apriori Algorithm**

- Method:
  - Let k=1
  - Generate frequent itemsets of length 1
  - Repeat until no new frequent itemsets are identified
    - ☐ Generate length (k+1) candidate itemsets from length k frequent itemsets
    - □ Prune candidate itemsets containing subsets of length k that are infrequent
    - ☐ Count the support of each candidate by scanning the DB
    - Eliminate candidates that are infrequent, leaving only those that are frequent

### Minimum Support = 3

# **Apriori Algorith**

#### Items (1-itemsets)

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Pairs (2-itemsets)



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |



### Minimum Support = 3

# **Apriori Algorithm**

### Items (1-itemsets)

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Pairs (2-itemsets)



(No need to generate candidates involving Coke or Eggs)

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

Triplets (3-itemsets)

| If every subset is considered,                 |  |  |
|------------------------------------------------|--|--|
| ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$ |  |  |
| With support-based pruning,                    |  |  |
| 6 + 6 + 1 = 13                                 |  |  |

| Itemset             | Count |
|---------------------|-------|
| {Bread,Milk,Diaper} | 3     |

### **Apriori Algorithm**

- Method:
  - Let k=1
  - Generate frequent itemsets of length 1
  - Repeat until no new frequent itemsets are identified
    - ☐ Generate length (k+1) candidate itemsets from length k frequent itemsets
    - □ Prune candidate itemsets containing subsets of length k that are infrequent
    - ☐ Count the support of each candidate by scanning the DB
    - Eliminate candidates that are infrequent, leaving only those that are frequent

- Generate length (k+1) candidate itemsets from length k frequent itemsets
  - Fk X F1

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |



- Generate length (k+1) candidate itemsets from length k frequent itemsets
  - Fk X F1

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

```
{Bread, Milk}
{Beer}
{Diaper}
{Milk}
{Coke}
{Eggs}

{Bread, Beer}
{Bread, Diaper}
{Milk, Bread}
{Milk, Beer}
```

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

- Generate length (k+1) candidate itemsets from length k frequent itemsets
  - Fk X F1

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

```
{Bread} {Bread, Milk}
{Beer} {Bread, Beer}
{Diaper} {Bread, Diaper}
{Milk, Bread}
{Coke} {Milk, Beer}
{Eggs}
```

ItemsetCount{Bread,Milk}3{Bread,Beer}2{Bread,Diaper}3{Milk,Beer}2{Milk,Diaper}3{Beer,Diaper}3

 Generate length (k+1) candidate itemsets from length k frequent itemsets

```
Fk X F1 = Fk+1

{Bread, Milk} {Bread} {Bread, Milk, Beer} {Bread, Diaper} {Beer} {Bread, Milk, Diaper} {Milk, Diaper} {Milk, Diaper} {Milk} ... {Bread, Diaper, Beer} ...
```

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

Min Support = 3

□ Generate length (k+1) candidate itemsets from length k frequent itemsets

```
Fk X F1 = Fk+1

{Bread, Milk} {Bread} {Bread, Milk, Beer} {Bread, Diaper} {Bread, Milk, Diaper} {Diaper} {Bread, Milk, Diaper} {Milk, Diaper} {Milk} ... {Bread, Diaper, Beer}
```

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

Min Support = 3

- □ Generate length (k+1) candidate itemsets from length k frequent itemsets
  - □ Fk X Fk
  - Merge a pair of k-itemsets if the first k-1 items are identical

```
⋠Bread, Milk, Beer}
{Bread, Milk}-
{Bread, Beer}
{Diaper,
                        {Diaper, Milk, Bread}
Bread}
{Diaper, Milk}
      Itemset
                      Count
      {Bread,Milk}
                        3
      Bread, Beer)
                        3
      {Bread,Diaper}
                                Min Support = 3
                        2
      {Milk,Beer}
                        3
      {Milk,Diaper}
      Beer, Diaper)
```

- □ Generate length (k+1) candidate itemsets from length k frequent itemsets
  - □ Fk X Fk
  - Merge a pair of k-itemsets if the first k-1 items are identical

```
( Bread, Milk, Beer )
{Bread, Milk}
{Bread, Beer}
{Diaper,
                        {Diaper, Milk, Bread}
Bread}
{Diaper, Milk}
      Itemset
                      Count
      {Bread,Milk}
                        3
      Bread, Beer)
                        3
      {Bread,Diaper}
                                Min Support = 3
                        2
      {Milk,Beer}
                        3
      {Milk,Diaper}
      Beer,Diaper
```

## **Apriori Algorithm**

- Level-wise algorithm
- Generate and test strategy
- Number of iterations kmax+1
- ☐ Kmax is the max size of the frequent itemset

### **Apriori Algorithm**

- Method:
  - Let k=1
  - Generate frequent itemsets of length 1
  - Repeat until no new frequent itemsets are identified
    - ☐ Generate length (k+1) candidate itemsets from length k frequent itemsets
    - □ Prune candidate itemsets containing subsets of length k that are infrequent
    - ☐ Count the support of each candidate by scanning the DB
    - Eliminate candidates that are infrequent, leaving only those that are frequent

# **Support Counting**

- □ Frequency of each candidate itemset
- Compare each transaction against each candidate, update the counts

# **Support Counting**

# K-1 Iteration's itemsets

# K Iteration's candidate itemsets

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

```
{Bread, Milk} {Bread, Milk, Beer} {Bread, Beer} {Diaper, Bread} {Diaper, Bread, Milk} ...
```

# **Support Counting**

# K-1 Iteration's itemsets

| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

#### **Transactions**

# K Iteration's candidate itemsets



| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

# Given a transaction t, what are the possible subsets of size 3?



## Reducing Number of Comparisons

- □ Candidate counting:
  - Scan the database of transactions to determine the support of each candidate itemset
  - To reduce the number of comparisons, store the candidates in a hash structure
  - Store transactions in the hash as well
  - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

### Candidate Itemsets Hash Tree

Suppose you have 9 items, 15 candidate itemsets of length 3:

```
【1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
```

### Hash function

- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)
- $\Box$  H(p) = p mod 3
- Sort items in the itemsets



### Candidate Itemsets Hash Tree



### Candidate Itemsets Hash Tree $\mathcal{H}(p) = p \mod 3$ 1+. 4+... 7+... {1 4 5}, {1 2 4}, {457}, {125}, {458}, {159}, **{136}** 1 **2+...** 1 **4+...** {3 4 5}, {3 5 6}, 1 **5+...** 1 **3+...** 1 **7+...** {3 5 7}, {6 8 9}, 1 **8+...** 1 **6+...** {3 6 7},{3 6 8} 4 **2+...** 1 **9+...** 4 **5+...** 4 **8+...**

### Candidate Itemsets Hash Tree



### **Enumerating Itemsets in Transaction**



# Itemsets from Transaction in Candidate Hash Tree



# Itemsets from Transaction in Candidate Hash Tree



# Increment counts for matching candidate

## **Count Update**

