Ασκήσεις (2)

Άσκηση 1

Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n, η ταξινόμηση με εισαγωγή απαιτεί $8n^2$ βήματα ενώ η ταξινόμηση με συγχώνευση $64n\lg n$. Για ποιες τιμές του n ταξινόμηση με εισαγωγή υπερτερεί της ταξινόμησης με συγχώνευση; (Χρησιμοποιήστε, αν κρίνετε σκόπιμο, όποιο υπολογιστικό πρόγραμμα θέλετε.)

Άσκηση 2

i) Aν
$$f(n) = 3n^2 - n + 4$$
 και $g(n) = n \log n + 5$, δείξτε ότι $f(n) + g(n) = O(n^2)$.

ii) Αν
$$f(n) = \sqrt{n}$$
 και $g(n) = \log n$, δείξτε ότι $f(n) + g(n) = O(\sqrt{n})$.
iii) Δείξτε ότι $(n+a)^k = \Theta(n^k)$, όπου a και k είναι πραγματικές σταθέρές με $k>0$.

iii) Δείξτε ότι
$$(n+a)^k = \Theta(n^k)$$
, όπου a και k είναι πραγματικές σταθέρες με $k>0$.

iv) Εξηγήστε αν είναι σωστοί οι εξής ισχυρισμοί:

$$\alpha$$
) $2^{n+1} = O(2^n)$

$$β) 2^{2n} = O(2^n)$$

Άσκηση 3

Για κάθε ζεύγος συναρτήσεων f(n) και g(n) πίνακα

f(n)	g(n)		
10 <i>n</i>	$n^2 - 10n$		
n^3	$n^2 \log n$ $n + \log n$		
$n \log n$			
$\log n$	$\sqrt[k]{n}$		
$\ln n$	$\log n$		
$\log(n+1)$	$\log n$ $\log n$ 10^n		
$\log \log n$			
2^n			
n^m	m^n		

εξηγήστε αν f(n) = O(g(n)), και αν g(n) = O(f(n)).

Άσκηση 4

Λύστε κάθε μία από τις ακόλουθες αναδρομικές σχέσεις

1.
$$T(n) = \begin{cases} O(1) & n = 0, \\ aT(n-1) + O(1) & n > 0, & a > 1. \end{cases}$$
2. $T(n) = \begin{cases} O(1) & n = 0, \\ aT(n-1) + O(n) & n > 0, & a > 1. \end{cases}$
3. $T(n) = \begin{cases} O(1) & n = 1, \\ aT(\lfloor n/a \rfloor) + O(1) & n > 1, & a \ge 2. \end{cases}$
4. $T(n) = \begin{cases} O(1) & n = 1, \\ aT(\lfloor n/a \rfloor) + O(n) & n > 1, & a \ge 2. \end{cases}$

4.
$$T(n) = \begin{cases} O(1) & n = 1, \\ aT(\lfloor n/a \rfloor) + O(n) & n > 1, \quad a \ge 2. \end{cases}$$

Άσκηση 5

Υπολογίστε αυστηρά ασυμπτωτικά Ο φράγματα για τους χρόνους εκτέλεσης των Προγραμμάτων 1.1, 1.2, 1.3, 2.5 και 2.6 (διαφάνειες (1) των παραδόσεων του μαθήματος).

Άσκηση 6

```
Αλγόριθμος: Υπολογισμός κατά όρους της τιμής ενός πολυωνύμου [P] Ο αλγόριθμος αυτός υπολογίζει την τιμή ενός πολυωνύμου a[n]x^n + a[n-1]x^{n-1} [P] [P]
```

- Έστω S(n) το πλήθος των προσθέσεων και πολλαπλασιασμών που πρέπει να πραγματοποιηθούν κατά την εκτέλεση του Αλγορίθμου για ένα πολυώνυμο βαθμού n. Εκφράστε το S(n) συναρτήσει του n.
- Εκφράστε την πολυπλοκότητα S(n) του Αλγορίθμου στον συμβολισμό O.

Άσκηση 7

```
Αλγόριθμος Horner
```

```
// Ο αλγόριθμος αυτός υπολογίζει την τιμή ενός πολυωνύμου a[n]x^n + a[n-1]x^{n-1} + \cdots + a[2]x^2 //+ a[1]x + a[0] με διαδοχικές προσθέσεις και πολλαπλασιασμούς, όπως φαίνεται στην παρά-//σταση ((\cdots((a[n]x + a[n-1])x + a[n-2])x + \cdots + a[2])x + <math>a[1])x + a[0]. //Σε κάθε βήμα, με αρχή το a[n], η τρέχουσα τιμή της μεταβλητής polyval πολλαπλασιάζεται //με x και ο επόμενος μικρότερος συντελεστής προστίθεται στη μεταβλητή.] //Είσοδος: n [ένας μη αρνητικός ακέραιος] //a[0], a[1], a[2], ...., a[n] [μια συστοιχία πραγματικών αριθμών], //x [ένας πραγματικός αριθμός] //Εξοδος: η τιμή polyval του πολυωνύμου. polyval := a[n] for i := 1 to n polyval := polyval · <math>x + a[n-i]
```

- i) Έστω M(n) το πλήθος των προσθέσεων και πολλαπλασιασμών που πρέπει να γίνουν κατά την εκτέλεση του Αλγορίθμου για ένα πολυώνυμο βαθμού n. Εκφράστε το M(n) συναρτήσει του n.
- ii) Εκφράστε την πολυπλοκότητα M(n) του Αλγορίθμου στον συμβολισμό O.

iii)	Πώς συγκρίνεται η πολυπλοκότητα Άσκησης 6;	αυτή	με την	πολυπλοκότητα	του	Αλγορίθμου της