UNISUL – UNIVERSIDADE/DO SUL DE SANTA CATARINA CIÊNCIA DA COMPUTAÇÃO - SISTEMAS OPERACIONAIS PROF°. SILVANA MADEIRA ALVES DALIBÓ - DATA: 08/06/2017 MIN LONTUNO ALUNO(A):

3ª AVALIAÇÃO

1. Considere que cinco processos sejam criados (P1, P2, P3, P4 e P5) e possuam as características descritas na tabela a seguir:

Partição	Tamanho Kb	Alocação
P1	32	Livre
P2	10	Programa X
P3	64	Livre
P4	8	Livre
P5	128	Programa Y

1.1. Para cada programa abaixo, qual seria a partição alocada utilizando-se as estratégias first-fit, best-fit e worst-fit?

a) [1.0] Programa A – 12Kb
b) [1.0] Programa B – 10 Kb
c) [1.0] Programa C - 8 Kb

1.2. [1.0] Calcule a fragmentação interna da memória principal após a carga dos três programas, utilizando a first-fit: 1 = 2 10 +3=3116

2. [1.0] Cenário: considere que um sistema operacional tenha na fila de pronto processos CPU-bound e processos I/O bound, de que forma o valor da fatia de tempo (quantum) pode afetar o grau de multiprogramação neste sistema? Qual a principal vantagem e desvantagem de um quantum com um valor muito pequeno?

CPU- MOUNTS

[1.0] Existem quatro processos (P1,P2, P3 e P4) na fila de pronto, com tempos de UCP estimados em 16, 8,30, 10, respectivamente. Qual tipo de escalonamento poderia minimizar o tempo de turnaround dos processos? Estes seriam executados em que ordem? R:

3. Considere que cinco processos sejam criados (P1, P2, P3, P4 e P5) e possuam as características descritas na tabela a seguir:

Processo	Tempo de UCP	Prioridade*
P1	30	3
P2	25	4
P3	22	1
P4	15	2
P5	10	5

PI	30	3
P2	25	4
P)	22.	1
PS	15	2
	10	5

* número menor implica prioridade maior

Desenhe os gráficos ilustrando o escalonamento dos processos, considerando o tempo de troca de contexto igual a 5 u.t.(se existir):

a) [1.0] Circular com fatia de tempo igual a 10 u.t.

b) [1.0] Escalonamento por Prioridade

c) [1.0] Questão teórica: quais os benefícios do escalonamento circular com prioridade em relação ao escalonamento Circular?

Ob linetas de escalenamento circular com prioridade que os procesos são executados conforme o seu gran de prioridade, jo no escalonamento circular ele e executado conforme sua ordemo 705

4. [1.0] Contextualizando Gerência de Memória, qual a limitação da alocação particionada estática absoluta em relação à alocação estática relocável?

Boa Sorte!