

工科数学分析进阶课程

任课老师: 苑 佳

数学科学学院

第10章 常微分方程

10.2 一阶微分方程求解

- 1. 可分离变量的微分方程
- 2. 齐次方程
- 3. 可化为齐次的方程
- 4. 一阶线性微分方程
- 5. 伯努利方程

$$g(y)dy = f(x)dx$$
 (1) 可分离变量的微分方程

例如
$$\frac{dy}{dx} = 2x^2y^{\frac{4}{5}} \implies y^{-\frac{4}{5}}dy = 2x^2dx.$$

分析: 设函数 f(x) 和 g(y) 是连续的, $y = \varphi(x)$

是方程(1)的解,则

$$g(\varphi(x))\varphi'(x)dx = f(x)dx$$

两端积分

$$\int g(\varphi(x))\varphi'(x)dx = \int f(x)dx$$

利用
$$y = \varphi(x)$$
 作代换,引入变量 y ,则
$$\int g(y)dy = \int f(x)dx$$

设 G(y)和 F(x) 是依次为 g(y)和 f(x)的原函数

于是
$$G(y) = F(x) + C$$
 (2)

说明: 方程(1)的解满足关系式(2).

反之

如果 $y = \varphi(x)$ 是由关系式(2)确定的隐函数, 由隐函数求导法可知,当 $g(y) \neq 0$ 时,

$$\varphi'(x) = \frac{F'(x)}{G'(y)} = \frac{f(x)}{g(y)}$$

表明 $y = \varphi(x)$ 满足方程(1), 所以 $y = \varphi(x)$ 是方程(1)的解.

解法 f(x),g(y) 连续, $g(y) \neq 0$.

在上面的假设条件下,通过两端积分

$$\int g(y)dy = \int f(x)dx$$

得到关系式

$$G(y) = F(x) + C$$

就是方程(1)的隐式解. 隐式通解

例1 求解微分方程 $\frac{dy}{y} = 2xdx$ 的通解

$$\mathbf{M}$$
 分离变量 $\frac{dy}{y} = 2xdx$,

两端积分
$$\int \frac{dy}{y} = \int 2x dx$$
,

$$\ln|y| = x^2 + C_1$$

$$\therefore y = Ce^{x^2}$$
 为所求通解.

M 2 衰变问题:衰变速度与未衰变原子含量M成正比,已知

$$M|_{t=0} = M_0$$
,求衰变过程中铀含量 $M(t)$ 随时间 t 变化的规律.

解 衰变速度
$$\frac{dM}{dt}$$
, 由题设条件
$$\frac{dM}{dt} = -\lambda M \quad (\lambda > 0 \quad 衰变系数) \quad \frac{dM}{M} = -\lambda dt$$

$$\int \frac{dM}{M} = \int -\lambda dt, \quad \ln M = -\lambda t + \ln C, \quad \mathbb{P} M = Ce^{-\lambda t},$$
 代入 $M|_{t=0} = M_0$ 得 $M_0 = Ce^0 = C,$ $\therefore M = M_0 e^{-\lambda t}$

例3 某车间体积为12000立方米,开始时空气中含有 0.1%的 CO_2 ,为了降低车间内空气中 CO_2 的含量,用一台风量为每分2000立方米的鼓风机通入含 0.03%的 CO_2 的新鲜空气,同时以同样的风量将混合均匀的空气排出,问鼓风机开动6分钟后,车间内 CO_2 的百分比降低到多少?

解 设鼓风机开动后t 时刻 CO_2 的含量为x(t)%

在 [t, t+dt] 内,

CO,的通入量 = $2000 \cdot dt \cdot 0.03$,

CO,的排出量 = $2000 \cdot dt \cdot x(t)$,

 CO_2 的改变量 = CO_2 的通入量 - CO_2 的排出量

$$12000dx = 2000 \cdot dt \cdot 0.03 - 2000 \cdot dt \cdot x(t),$$

$$\frac{dx}{dt} = -\frac{1}{6}(x - 0.03), \quad \Rightarrow x = 0.03 + Ce^{-\frac{1}{6}t},$$

$$\therefore x|_{t=0} = 0.1, \quad \therefore C = 0.07, \quad \Rightarrow x = 0.03 + 0.07e^{-\frac{1}{6}t},$$

$$\therefore x|_{t=0} = 0.1, \quad \therefore C = 0.07, \quad \Rightarrow x = 0.03 + 0.07e^{-\frac{1}{6}t},$$

$$x|_{t=6} = 0.03 + 0.07e^{-1} \approx 0.056,$$

6分钟后, 车间内 CO, 的百分比降低到 0.056%.

思考题

求解微分方程
$$\frac{dy}{dx} + \cos \frac{x-y}{2} = \cos \frac{x+y}{2}$$
.

思考题解答

$$\frac{dy}{dx} + \cos\frac{x - y}{2} - \cos\frac{x + y}{2} = 0,$$

$$\frac{dy}{dx} + 2\sin\frac{x}{2}\sin\frac{y}{2} = 0, \qquad \int \frac{dy}{2\sin\frac{y}{2}} = -\int \sin\frac{x}{2}dx,$$

$$\ln\left|\csc\frac{y}{2} - \cot\frac{y}{2}\right| = 2\cos\frac{x}{2} + C, \quad 为所求解.$$

二、齐次方程

- 1.定义 形如 $\frac{dy}{dx} = f(\frac{y}{x})$ 的微分方程称为齐次方程.
- 2. 解法 作变量代换 $u = \frac{y}{v}$, 即 y = xu,

$$\therefore \frac{dy}{dx} = u + x \frac{du}{dx}, \quad dy = u dx + x du,$$

代入原式
$$u + x \frac{du}{dx} = f(u),$$

即
$$\frac{du}{dx} = \frac{f(u) - u}{x}$$
. 可分离变量的方程

二、齐次方程

分离变量,积分得
$$\int \frac{du}{f(u)-u} = \ln |C_1x|$$
,

将
$$u = \frac{y}{x}$$
 代入,得通解 $x = Ce^{\varphi(\frac{y}{x})}$.

二、齐次方程

例1 求解微分方程

$$(x - y\cos\frac{y}{x})dx + x\cos\frac{y}{x}dy = 0.$$

解 令
$$u = \frac{y}{x}$$
, 则 $dy = xdu + udx$, $(x - ux\cos u)dx + x\cos u(udx + xdu) = 0$, $\cos udu = -\frac{dx}{x}$, $\sin u = -\ln|x| + C$, 微分方程的解为 $\sin \frac{y}{x} = -\ln|x| + C$.

1. 定义 形如 $\frac{dy}{dx} = f(\frac{ax + by + c}{a_1x + b_1y + c_1})$ 的微分方程 当 $c = c_1 = 0$ 时,为齐次方程.否则为非齐次方程.

2. 解法 令
$$x = X + h$$
, (其中 h 和 k 是待定的常数)
$$y = Y + k, \qquad dx = dX, \quad dy = dY$$

$$\frac{dY}{dX} = f(\frac{aX + bY + ah + bk + c}{a_1X + b_1Y + a_1h + b_1k + c_1})$$

$$\begin{cases} ah+bk+c=0, \\ a_1h+b_1k+c_1=0, \end{cases}$$

(1)
$$\Delta = \begin{vmatrix} a & b \\ a_1 & b_1 \end{vmatrix} \neq 0$$
, 有唯一一组解.

$$\frac{dY}{dX} = f(\frac{aX + bY}{a_1X + b_1Y})$$
 得通解代回
$$\begin{cases} X = x - h, \\ Y = y - k, \end{cases}$$

(2) $\Delta = 0$, 未必有解,上述方法不能用.

当 $b_1 = 0$ 时, a_1 与 b中必至少有一个为零.

若 b = 0, 可分离变量的微分方程.

若
$$b \neq 0, a_1 = 0$$
, 令 $z = ax + by$, $\frac{dy}{dx} = \frac{1}{b}(\frac{dz}{dx} - a)$,

$$\frac{1}{b}(\frac{dz}{dx}-a)=f(\frac{z+c}{c_1})$$
可分离变量的微分方程.

方程可化为
$$\frac{dy}{dx} = f(\frac{ax + by + c}{\lambda(ax + by) + c_1})$$
, \diamondsuit $z = ax + by$,

则
$$\frac{dz}{dx} = a + b\frac{dy}{dx}$$
, $\frac{1}{b}(\frac{dz}{dx} - a) = f(\frac{z + c}{\lambda z + c_1})$. 可分离变量.

例2 求
$$\frac{dy}{dx} = \frac{x-y+1}{x+y-3}$$
 的通解.

方程组
$$\begin{cases} h-k+1=0\\ h+k-3=0, \end{cases} \Rightarrow h=1, k=2,$$

令
$$x = X + 1, y = Y + 2$$
. 代入原方程得
$$\frac{dY}{dX} = \frac{X - Y}{X + Y}, \quad \diamondsuit \quad u = \frac{Y}{Y},$$

方程变为
$$u+X\frac{du}{dX}=\frac{1-u}{1+u}$$
, 分离变量法得

$$X^{2}(u^{2}+2u-1)=c$$
, $\mathbb{P} Y^{2}+2XY-X^{2}=C$,

将
$$X = x - 1, Y = y - 2$$
 代回,

得原方程的通解

$$(y-2)^2 + 2(x-1)(y-2) - (x-1)^2 = C,$$

$$\mathbf{Z} \qquad x^2 + 2xy - y^2 + 2x + 6y = C_1.$$

小结

齐次方程
$$\frac{dy}{dx} = f(\frac{y}{x}).$$

齐次方程的解法 $\Rightarrow u = \frac{y}{x}$.

可化为齐次方程的方程

$$\Rightarrow x = X + h,$$
$$y = Y + k.$$

直接使用变量代换简化计算

思考题

方程
$$\int_0^x \left[2y(t) + \sqrt{t^2 + y^2(t)} \right] dt = xy(x)$$

可否化为齐次方程?

思考题解答

方程两边同时对 x 求导:

$$2y + \sqrt{x^{2} + y^{2}} = y + xy',$$

$$xy' = \sqrt{x^{2} + y^{2}} + y, \qquad y' = \sqrt{1 + \left(\frac{y}{x}\right)^{2}} + \frac{y}{x},$$

原方程<mark>是</mark>齐次方程.

一阶线性微分方程的标准形式:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

例如
$$\frac{dy}{dx} = y + x^2$$
, $\frac{dx}{dt} = x \sin t + t^2$, 线性的; $yy' - 2xy = 3$, $y' - \cos y = 1$, 非线性的.

当
$$Q(x) \equiv 0$$
, 上方程称为齐次的.

当
$$Q(x) \neq 0$$
, 上方程称为非齐次的.

一阶线性微分方程的解法

1. 线性齐次方程
$$\frac{dy}{dx} + P(x)y = 0.$$

(使用分离变量法)

$$\frac{dy}{y} = -P(x)dx, \qquad \int \frac{dy}{y} = -\int P(x)dx,$$
$$\ln|y| = -\int P(x)dx + \ln C_1,$$

齐次方程的通解为 $y = Ce^{-\int P(x)dx}$.

2. 线性非齐次方程 $\frac{dy}{dx} + P(x)y = Q(x)$.

两边积分 $\ln|y| = \int \frac{Q(x)}{y} dx - \int P(x) dx,$ 设 $\int \frac{Q(x)}{y} dx$ 为 u(x) $\therefore \ln|y| = u(x) - \int P(x) dx,$

即 $y = e^{u(x)}e^{-\int P(x)dx}$. 非齐次方程通解形式

与齐次方程通解相比: $C \Rightarrow u(x)$

常数变易法

把齐次方程通解中的常数变易为待定函数的方法.

实质: 未知函数的变量代换.

新未知函数 $u(x) \Rightarrow$ 原未知函数 y(x)

作变换
$$y = \underline{u(x)}e^{-\int P(x)dx}$$

 $y' = u'(x)e^{-\int P(x)dx} + u(x)[-P(x)]e^{-\int P(x)dx}$,

将
$$y$$
 和 y '代入原方程得 $u'(x)e^{-\int P(x)dx} = Q(x)$,

积分得
$$u(x) = \int Q(x)e^{\int P(x)dx}dx + C$$
,

一阶线性非齐次微分方程的通解为:

$$y = \left[\int Q(x)e^{\int P(x)dx} dx + C \right] e^{-\int P(x)dx}$$

$$= Ce^{-\int P(x)dx} + e^{-\int P(x)dx} \cdot \int Q(x)e^{\int P(x)dx} dx$$

对应齐次方程通解

非齐次方程特解

例1 求方程
$$y' + \frac{1}{x}y = \frac{\sin x}{x}$$
 的通解

$$P(x) = \frac{1}{x}, \quad Q(x) = \frac{\sin x}{x},$$

$$y = e^{-\int \frac{1}{x} dx} \left(\int \frac{\sin x}{x} \cdot e^{\int \frac{1}{x} dx} dx + C \right)$$

$$=e^{-\ln x}\left(\int \frac{\sin x}{x} \cdot e^{\ln x} dx + C\right)$$

$$=\frac{1}{x}\left(\int \sin x dx + C\right) = \frac{1}{x}\left(-\cos x + C\right).$$

Jacob Bernoulli (1654 –1705)

许多数学成果与雅各布的名字相联系

```
悬链线问题(1690年),
曲率半径公式(1694年),
"伯努利双纽线"(1694年),
"伯努利微分方程"(1695年),
"等周问题"(1700年)等。
```


伯努利(Bernoulli)方程的标准形式

$$\frac{dy}{dx} + P(x)y = Q(x)y^{\lambda} \qquad (\lambda \neq 0,1)$$

当 $\lambda = 0.1$ 时, 方程为线性微分方程.

当 $\lambda \neq 0,1$ 时,方程为非线性微分方程.

解法: 需经过变量代换化为线性微分方程.

两端除以
$$y^{\lambda}$$
, 得 $y^{-\lambda} \frac{dy}{dx} + P(x)y^{1-\lambda} = Q(x)$,

$$\Rightarrow z = y^{1-\lambda}, \qquad \frac{dz}{dx} = (1-\lambda)y^{-\lambda}\frac{dy}{dx},$$

代入上式
$$\frac{dz}{dx} + (1-\lambda)P(x)z = (1-\lambda)Q(x),$$

求出通解后,将 $z = y^{1-\lambda}$ 代入即得

$$y^{1-\lambda} = z$$

$$= e^{-\int (1-\lambda)P(x)dx} (\int Q(x)(1-\lambda)e^{\int (1-\lambda)P(x)dx} dx + C).$$

例 1 求方程
$$\frac{dy}{dx} - \frac{4}{x}y = x^2 \sqrt{y}$$
 的通解.

解 两端除以
$$y^{\frac{1}{2}}$$
 , 得 $\frac{1}{\sqrt{y}}\frac{dy}{dx} - \frac{4}{x}\sqrt{y} = x^2$,

$$\Rightarrow z = \sqrt{y}, \quad 2\frac{dz}{dx} - \frac{4}{x}z = x^2,$$

解得
$$z = x^2 \left(\frac{x}{2} + C\right)$$
, 即 $y = x^4 \left(\frac{x}{2} + C\right)^2$.

例2 用适当的变量代换解下列微分方程:

1.
$$2yy' + 2xy^2 = xe^{-x^2}$$
;

解
$$\Rightarrow z = y^2$$
, 则 $\frac{dz}{dx} = 2y\frac{dy}{dx}$,

$$\therefore \frac{dz}{dx} + 2xz = xe^{-x^2}, \quad z = e^{-\int 2x dx} \left[\int xe^{-x^2} e^{\int 2x dx} dx + C \right]$$

所求通解为
$$y^2 = e^{-x^2} (\frac{x^2}{2} + C).$$

2.
$$\frac{dy}{dx} = \frac{1}{x \sin^2(xy)} - \frac{y}{x};$$
解 令 $z = xy$, 则 $\frac{dz}{dx} = y + x \frac{dy}{dx}$,
$$\frac{dz}{dx} = y + x(\frac{1}{x \sin^2(xy)} - \frac{y}{x}) = \frac{1}{\sin^2 z},$$
分离变量法得 $2z - \sin 2z = 4x + C$, 将 $z = xy$ 代回

3. 求
$$\frac{dy}{dx} = (x+y)^2$$
 的通解.

解
$$\Rightarrow x + y = u, \quad \frac{dy}{dx} = \frac{du}{dx} - 1$$
 代入原方程

$$\frac{du}{dx} = 1 + u^2$$
 解得 $\arctan u = x + C$,

代回
$$u=x+y$$
 得, $\arctan(x+y)=x+C$,

原方程的通解为 $y = \tan(x + C) - x$.

思考题

求微分方程
$$y' = \frac{\cos y}{\cos y \sin 2y - x \sin y}$$
 的通解.

思考题解答

$$\frac{dx}{dy} = \frac{\cos y \sin 2y - x \sin y}{\cos y} = \sin 2y - x \tan y,$$

$$\therefore \frac{dx}{dv} + (\tan y) \cdot x = \sin 2y,$$

$$x = e^{\ln|\cos y|} \left[\int \sin 2y \cdot e^{-\ln|\cos y|} dy + C \right]$$

$$= \cos y \left[\int \frac{2\sin y \cos y}{\cos y} dy + C \right] = \cos y \left[C - 2\cos y \right].$$

作业

习题10.1: 1(2,3), 2(2), 3(4), 5(3), 6(1,4)

本讲课程结束

北京航空航天大学数学科学学院