Week 5 Summary

Leo Soccio

Table of contents

Fuesday, Jan 17
Interpreting regression coefficients
Using Categorical Covariates
Reordering Factors
Гhursday, Jan 19
Multiple Linear Regression
Multiple Regression with Categorical Covariates

Tuesday, Jan 17

! TIL

Include a $very\ brief$ summary of what you learnt in this class here. Today, I learnt the following concepts in class:

- 1. Interpreting Regression Coefficients
- 2. Categorical Covariates
- 3. Reordering Factors + Setting a Baseline

Packages:

```
library(tidyverse)

-- Attaching packages ------ tidyverse 1.3.2 --
v ggplot2 3.4.0 v purrr 1.0.1
```

```
v tibble 3.1.8 v dplyr 1.1.0
v tidyr 1.3.0
               v stringr 1.5.0
v readr
        2.1.3
                 v forcats 1.0.0
-- Conflicts -----
                                      x dplyr::filter() masks stats::filter()
x dplyr::lag()
               masks stats::lag()
  library(ISLR2)
  library(cowplot)
  library(kableExtra)
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
   group_rows
```

Provide more concrete details here. You can also use footenotes¹ if you like

Interpreting regression coefficients

Recall that the regression model is $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

 y_i is the response, x_i is the covariate, ϵ_i is the error, β_0 and β_1 are the regression coefficients, and i = 1, 2, ..., n are the indices for the observations.

Example using mtcars:

```
library(ggplot2)
attach(mtcars)
```

The following object is masked from package:ggplot2:

mpg

```
mtcars %>% head()
```

¹You can include some footnotes here

```
mpg cyl disp hp drat
                                            wt qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
Mazda RX4 Wag
                  21.0
                            160 110 3.90 2.875 17.02
                                                                    4
Datsun 710
                  22.8
                            108 93 3.85 2.320 18.61
                                                          1
                                                                    1
                            258 110 3.08 3.215 19.44
Hornet 4 Drive
                  21.4
                                                               3
                                                                    1
                         6
                            360 175 3.15 3.440 17.02
Hornet Sportabout 18.7
                                                               3
                                                                    2
                            225 105 2.76 3.460 20.22
                                                               3
Valiant
                  18.1
                                                                    1
```

```
x <- mtcars$hp
y<- mtcars$mpg

plot(x,y,pch=20, xlab="Horsepower", ylab="Miles per Gallon")</pre>
```



```
model<-lm(y~x)
summary(model)

Call:
lm(formula = y ~ x)

Residuals:
    Min    1Q    Median    3Q    Max</pre>
```

```
-5.7121 -2.1122 -0.8854 1.5819 8.2360
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.09886    1.63392   18.421 < 2e-16 ***

x     -0.06823    0.01012   -6.742   1.79e-07 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.863 on 30 degrees of freedom Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892 F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07

For the intercept, a hypothetical car with 0 horsepower would have a predicted mpg of $30.099=\beta_0$ For the slope, each increase of 1 horsepower decreases the predicted mpg by $0.068=\beta_1$

Using Categorical Covariates

Return to the mtcars dataset, looking at the cyl variable. Also look at the iris dataset:

```
mtcars$cyl
```

iris%>%head()

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                                    1.4
1
           5.1
                       3.5
                                                0.2
                                                     setosa
                                                0.2 setosa
2
           4.9
                       3.0
                                    1.4
3
           4.7
                       3.2
                                    1.3
                                                0.2 setosa
4
           4.6
                       3.1
                                    1.5
                                                0.2 setosa
5
           5.0
                       3.6
                                    1.4
                                                0.2 setosa
6
                                                0.4 setosa
           5.4
                       3.9
                                    1.7
```

```
summary(iris$Species)
```

```
setosa versicolor virginica
50 50 50
```

EDA for a potential relationship between Species and Sepal.Length:

Run a linear regression model:

Call:

Coefficients:

With a categorical x, we can write the regression model the same way: $y_i = \beta_0 + \beta_1 x_i$, where $x \in (setosa, versicolor, virginica)$

We essentially have 3 different models:

- $y_i = \beta_0 + \beta_1 x_i = \text{setosa}$
- $y_i = \beta_0 + \beta_1 x_i$ =versicolor

- $y_i = \beta_0 + \beta_1 x_i$ =virginica
- For the baseline (setosa), $\beta_1=0$ such that β_0 is the expected value for the baseline category.
- For the other two beta 1 values, they describe the change from the baseline to its category.(ex. setosa to versicolor and setosa to virginica)

Reordering Factors

Let's say we want to place virginica as the baseline.

```
iris$Species <- relevel(iris$Species,"virginica")
summary(iris$Species)

virginica setosa versicolor
50 50 50

new_iris_model<-lm(Sepal.Length~Species,iris)
new_iris_model

Call:
lm(formula = Sepal.Length ~ Species, data = iris)

Coefficients:
    (Intercept) Speciessetosa Speciesversicolor
    6.588 -1.582 -0.652</pre>
```

Thursday, Jan 19

TIL

Include a *very brief* summary of what you learnt in this class here. Today, I learnt the following concepts in class:

- 1. Introduction to Multiple Linear Regression
- 2. Relationship between beta values and R-squared
- 3. Categorical Covariates in MLR

Provide more concrete details here, e.g.,

```
# packages for today
library(plotly)

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':
    last_plot

The following object is masked from 'package:stats':
    filter

The following object is masked from 'package:graphics':
    layout
```

Multiple Linear Regression

We now have p covariates instead of 1: $X=\{x_1|x_2|...|x_p\}$ such that $y=\beta_0+\beta_1x_1+...+\beta_px_p$ and the full description is $y_i=\beta_0+\beta_1x_{1i}+...+\beta_px_{pi}+\epsilon_i$

Look at the Credit dataset:

```
attach(ISLR2::Credit)
df<-Credit%>%tibble()
df
```

A tibble: 400 x 11

	${\tt Income}$	${\tt Limit}$	${\tt Rating}$	Cards	Age	${\tt Educat~1}$	Own	${\tt Student}$	${\tt Married}$	Region	Balance
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>
1	14.9	3606	283	2	34	11	No	No	Yes	South	333
2	106.	6645	483	3	82	15	Yes	Yes	Yes	West	903
3	105.	7075	514	4	71	11	No	No	No	West	580
4	149.	9504	681	3	36	11	Yes	No	No	West	964
5	55.9	4897	357	2	68	16	No	No	Yes	South	331
6	80.2	8047	569	4	77	10	No	No	No	South	1151
7	21.0	3388	259	2	37	12	Yes	No	No	East	203
8	71.4	7114	512	2	87	9	No	No	No	West	872
9	15.1	3300	266	5	66	13	Yes	No	No	South	279

```
71.1 6819
                   491
                            3
                                 41
                                           19 Yes
                                                    Yes
                                                            Yes
                                                                               1350
                                                                     East
# ... with 390 more rows, and abbreviated variable name 1: Education
Focus on income, rating, and limit:
  df3 <- df %>%select(Income,Limit,Rating)
  df3
# A tibble: 400 x 3
   Income Limit Rating
    <dbl> <dbl> <dbl>
 1
     14.9 3606
                    283
 2 106.
           6645
                    483
 3
   105.
           7075
                   514
 4 149.
           9504
                   681
 5
   55.9
           4897
                   357
 6
     80.2
                   569
           8047
 7
     21.0
           3388
                   259
 8
     71.4 7114
                    512
 9
     15.1
           3300
                    266
10
     71.1 6819
                    491
# ... with 390 more rows
To see how credit limit relates to income and rating, use the following EDA:
  # fig <- plot_ly(df3, x=~Income,y=~Rating,z=~Limit)</pre>
  # fig%>%add_markers()
  # these interactive plots break the pdf rendering so they will not be included in the pdf
And a model:
  model<- lm(Limit~Income+Rating,df3)</pre>
  model
Call:
lm(formula = Limit ~ Income + Rating, data = df3)
Coefficients:
```

Rating

14.7711

(Intercept)

-532.4711

Income

0.5573

The model looks like a hyperplane when using 2 covariates:

```
# ranges <- df3 %>%
# select(Income, Rating) %>%
# colnames()%>%
\# map((x) seq(0.1*min(df3[x]),1.1*max(df3[x]),length.out=50))
#b<-model$coefficients
#z<-outer(
# ranges[[1]],
 #ranges[[2]],
 #Vectorize(function(x2,x3) {
  # b[1]+b[2]*x2+b[3]*x3
    #})
#)
#fig%>%
# add_surface(x=ranges[[1]],y=ranges[[2]],z=t(z),alpha=0.3)%>%
# add_markers()
#once again, the interactive plots cannot be included in the pdf submission.
```

Interpretation:

- $\beta_0 = -532.47$ is the expected value of y when income = 0 and rating = 0
- If Rating is held constant and Income changes by 1 unit, the corresponding change in Limit is $\beta_1=0.553$ units
- If Income is held constant and Rating changes by 1 unit, the corresponding change in Limit is $\beta_2=14.77$ units

Significance:

```
Income     0.55727     0.42349     1.316     0.189
Rating     14.77115     0.09647 153.124     <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Residual standard error: 182.3 on 397 degrees of freedom Multiple R-squared: 0.9938, Adjusted R-squared: 0.9938 F-statistic: 3.18e+04 on 2 and 397 DF, p-value: < 2.2e-16

Clear case of multicolinearity, Income and Rating are related, so that is why Income shows up as completely insignificant.

Relating betas and R-squared:

```
x<-seq(0,1,length.out=100)
b0<-0.00001
b1<-0.00001
y<-b0+b1*x+rnorm(100)*0.000001
plot(x,y,pch=20)
```



```
modelex <-lim(y~x)
  summary(modelex)
Call:
lm(formula = y \sim x)
Residuals:
                   1Q
                         Median
                                         30
-2.834e-06 -6.108e-07 -3.994e-08 5.960e-07 2.136e-06
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.827e-06 1.899e-07
                                   51.76
                                           <2e-16 ***
           1.026e-05 3.281e-07
                                   31.29
                                           <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.565e-07 on 98 degrees of freedom
Multiple R-squared: 0.909, Adjusted R-squared: 0.9081
F-statistic: 978.9 on 1 and 98 DF, p-value: < 2.2e-16
```

You can have a significant p-value without a high R-squared, but not vice versa. To have a high R-squared, you *NEED* a significant p-value.

Multiple Regression with Categorical Covariates

Very similarly to simple linear regression, a categorical covariate changes the intercept.

```
attach(Credit)

The following objects are masked from ISLR2::Credit:
    Age, Balance, Cards, Education, Income, Limit, Married, Own, Rating, Region, Student

df<-Credit%>%tibble()

model <- lm(Limit~Rating+Married,df)
model</pre>
```

Call:

```
lm(formula = Limit ~ Rating + Married, data = df)
```

Coefficients:

```
(Intercept) Rating MarriedYes
-528.09 14.87 -25.97
```

```
ggplot(df)+
  geom_point(aes(x=Rating,y=Limit,color=Married))+
  geom_smooth(aes(x=Rating,y=Limit, fill=Married))
```

 $geom_smooth()$ using method = 'loess' and formula = 'y ~ x'

