Multivariate Linear Regression

Model and Assumptions

Parameter Estimation

nference and Prediction

Lecture 7

Multivariate Linear Regression

Readings: DSA 8020 Lectures 1-4; Zelterman, 2015, Chapter 9

DSA 8070 Multivariate Analysis October 3 - October 7, 2022

> Whitney Huang Clemson University

Agenda

Multivariate Linear Regression

Model and Assumptions

Parameter Estimation

nference and

Model and Assumptions

Parameter Estimation

Inference and Prediction

Example: Motor Trend Car Road Tests

Model and Assumptions

Parameter Estimation

Inference and Prediction

> head(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Suppose we would like to study the (linear) relationship between mpg, disp, hp, wt (responses) and cyl, am, carb (predictors)

Review: Linear Regression Model

The multiple linear regression model has the form:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i, \quad i = 1, \dots, n,$$

where

- ullet y_i is the response for the i-th observation
- x_{ij} is the j-th predictor for the i-th observation
- β_0 and β_j 's are the regression intercept and slopes for the response, respectively
- ε_i is the error term for the response of the *i*-th observation

ssumptions

Parameter Estimation

ference and rediction

The multivariate (multiple) linear regression model has the form:

$$y_{ik} = \beta_{0k} + \sum_{j=1}^{p} \beta_{jk} x_{ij} + \varepsilon_{ik}, \quad i = 1, \dots, n, \quad k = 1, \dots, d,$$

where

- ullet y_{ik} is the k-th response for the i-th observation
- x_{ij} is the j-th predictor for the i-th observation
- β_{0k} and β_{jk} 's are the regression intercept and slopes for k-th response, respectively
- ε_{ik} is the error term for the k-th response of the i-th observation

- Relationship between $\{x_{jk}\}_{j=1}^p$ and Y_k is linear for each $k \in \{1, \cdots, d\}$
- $(\varepsilon_{i1}, \cdots, \varepsilon_{id})^T \overset{i.i.d.}{\sim} N(\mathbf{0}, \Sigma)$ is an unobserved random vector
- $[Y_{ik}|x_{i1},\cdots,x_{ip}] \sim N(\beta_{0k} + \sum_{j=1}^{p} \beta_{jk}x_{ij},\sigma_{kk})$ for each $k \in \{1,\cdots,d\}$

Model and Assumptions

Parameter Estimation

nference and Prediction The multivariate multiple linear regression model has the form

$$Y = XB + E$$
,

where

- $Y = [y_1, \dots, y_d]$ is the $n \times d$ response matrix, where $y_k = (y_{1k}, \dots, y_{nk})^T$ is the k-th response vector
- $\boldsymbol{X} = [\boldsymbol{1}, \boldsymbol{x}_1, \cdots, \boldsymbol{x}_p]$ is the $n \times (p+1)$ design matrix
- $\boldsymbol{B} = [\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_d]$ is the $(p+1) \times d$ matrix of regression coefficients
- $E = [\varepsilon_1, \dots, \varepsilon_d]$ is the $n \times d$ error matrix

Matrix form writes the multivariate linear regression model for all $n \times d$ points simultaneously as

$$Y = XB + E$$

$$\begin{bmatrix} y_{11} & \cdots & y_{1d} \\ y_{21} & \cdots & y_{2d} \\ \vdots & \ddots & \vdots \\ y_{n1} & \cdots & y_{nd} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & x_{1p} \\ 1 & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_{01} & \cdots & \beta_{0d} \\ \beta_{11} & \cdots & \beta_{1d} \\ \vdots & \ddots & \vdots \\ \beta_{p1} & \cdots & \beta_{pd} \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} & \cdots & \varepsilon_{1d} \\ \varepsilon_{21} & \cdots & \varepsilon_{2d} \\ \vdots & \ddots & \vdots \\ \varepsilon_{n1} & \cdots & \varepsilon_{nd} \end{bmatrix}$$

Assuming that n subjects are independent, we have

•
$$\boldsymbol{\varepsilon}_k \sim \mathrm{N}(\boldsymbol{0}, \sigma_{kk} \boldsymbol{I}), \quad k \in \{1, \dots, d\}$$

$$\bullet \ \varepsilon_i \overset{i.i.d.}{\sim} \mathrm{N}(\mathbf{0}, \Sigma), \quad i = 1, \dots, n$$

The ordinary least squares OLS estimate is

$$\underset{\boldsymbol{B} \in \mathbb{R}^{(p+1) \times d}}{\operatorname{argmin}} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{B}\|^2 = \underset{\boldsymbol{B} \in \mathbb{R}^{(p+1) \times d}}{\operatorname{argmin}} \sum_{i=1}^n \sum_{k=1}^d \left(y_{ik} - \beta_{0k} - \sum_{j=1}^p \beta_{jk} x_{ij} \right)^2,$$

where $\|\cdot\|$ denotes the Frobenius norm.

$$OLS(B) = ||Y - XB||^2 = tr(Y^TY) - 2tr(Y^TXB) + tr(B^TX^TXB)$$

The OLS estimate has the form

$$\hat{\boldsymbol{B}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y} \Rightarrow \hat{\boldsymbol{\beta}}_k = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}_k, \quad k \in \{1, \dots, d\}$$

Expected Value of Least Squares Coefficients

Multivariate Linear Regression

Model and Assumptions

Parameter Estimation

Inference and Prediction

The expected value of the estimated coefficients is given by

$$\mathbb{E}(\hat{B}) = \mathbb{E}\left[(X^T X)^{-1} X^T Y \right]$$
$$= (X^T X)^{-1} X^T \mathbb{E}(Y)$$
$$= (X^T X)^{-1} X^T X B$$
$$= B$$

 $\Rightarrow \hat{B}$ is an unbiased estimator of B

Fitted values are given by

$$\hat{\boldsymbol{Y}} = \boldsymbol{X}\hat{\boldsymbol{B}},$$

i.e.,
$$\hat{y}_{ik}=\hat{\beta}_{0k}+\sum_{j=1}^p\hat{\beta}_{jk}x_{ij}, \quad i=1,\cdots,n, \quad k=1,\cdots,d$$

Residuals are given by

$$\hat{\boldsymbol{E}} = \boldsymbol{Y} - \hat{\boldsymbol{Y}},$$

i.e.,
$$\hat{\varepsilon}_{ik}$$
 = y_{ik} - \hat{y}_{ik} , i = 1, \cdots , n , k = 1, \cdots , d

Just like in univariate linear regression we can write the fitted values as

$$\hat{Y} = X\hat{B}$$

$$= X(X^{T}X)^{-1}X^{T}Y$$

$$= HY,$$

where $\boldsymbol{H} = \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T$ is the hat matrix

 \Rightarrow H projects y_k onto the column space of X for $k \in \{1, \cdots, d\}$

We can partition the total covariation in $\{y_i\}_{i=1}^n$ (SSCP $_{\mathrm{Tot}}$)as

$$SSCP_{tot} = \sum_{i=1}^{n} (\mathbf{y}_{i} - \bar{\mathbf{y}})^{T} (\mathbf{y}_{i} - \bar{\mathbf{y}})$$

$$= \sum_{i=1}^{n} (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i} + \hat{\mathbf{y}}_{i} - \bar{\mathbf{y}}) (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i} + \hat{\mathbf{y}}_{i} - \bar{\mathbf{y}})^{T}$$

$$= \sum_{i=1}^{n} (\hat{\mathbf{y}}_{i} - \bar{\mathbf{y}}) (\hat{\mathbf{y}}_{i} - \bar{\mathbf{y}})^{T} + \sum_{i=1}^{n} (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}) (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i})^{T}$$

$$+ 2 \sum_{i=1}^{n} (\hat{\mathbf{y}}_{i} - \bar{\mathbf{y}}) (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i})$$

$$= SSCP_{Reg} + SSCP_{Err}$$

The corresponding degrees of freedom are d(n-1) for $SSCP_{Tot}$; dp for $SSCP_{Reg}$; and d(n-p-1) for $SSCP_{Err}$

CLEMS#N

Nodel and Assumptions

Farameter Estimation

Inference and Prediction

Estimated Error Covariance

Multivariate Linear Regression

Model and

Parameter Estimation

nference and Prediction

The estimated error variance is

$$\hat{\Sigma} = \frac{\sum_{i=1}^{n} (\mathbf{y}_i - \hat{\mathbf{y}}_i) (\mathbf{y}_i - \hat{\mathbf{y}}_i)^T}{n - p - 1}$$
$$= \frac{\text{SSCP}_{Err}}{n - p - 1}$$

- ullet $\hat{\Sigma}$ is an unbiased estimate of Σ
- ullet The estimate $\hat{f \Sigma}$ is the mean ${
 m SSCP}_{Err}$

We would need to figure out the sampling distributions of estimator and predictor in order to drawn inference

Given the model assumptions, we have

$$\begin{aligned} &\operatorname{vec}(\hat{B}) \sim \operatorname{N}(\operatorname{vec}(\boldsymbol{B}), \boldsymbol{\Sigma} \otimes (\boldsymbol{X}^T \boldsymbol{X})^{-1}) \\ &\operatorname{vec}(\hat{\boldsymbol{Y}}) \sim \operatorname{N}(\operatorname{vec}(\boldsymbol{X}\boldsymbol{B}), \boldsymbol{\Sigma} \otimes \boldsymbol{H}) \\ &\operatorname{vec}(\hat{\boldsymbol{E}}) \sim \operatorname{N}(\boldsymbol{0}, \boldsymbol{\Sigma} \otimes (\boldsymbol{I} - \boldsymbol{H})), \end{aligned}$$

where $\operatorname{vec}(\cdot)$ is the vectorization operator and \otimes is the Kronecker product

Assume that q < p and want to test if a reduced model is sufficient:

$$H_0: \boldsymbol{B}_2 = \boldsymbol{0}_{p-q} \times d, \quad \text{versus} \quad H_a: \boldsymbol{B}_2 \neq \boldsymbol{0}_{p-q} \times d,$$

where

$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

is the partitioned of the coefficient vector

We can compare the $SSCP_{Err}$ for the full model:

$$y_{ik} = \beta_{0k} + \sum_{j=1}^{p} \beta_{jk} x_{ij} + \varepsilon_{ik}, \quad k-1, \dots, d$$

and the reduced model:

$$y_{ik} = \beta_{0k} + \sum_{j=1}^{q} \beta_{jk} x_{ij} + \varepsilon_{ik}, \quad k-1, \dots, d$$

Model and

Parameter Estimation

nference and Prediction

$$H_0: \boldsymbol{B}_2 = \boldsymbol{0}_{p-q} \times d, \quad \text{versus} \quad H_a: \boldsymbol{B}_2 \neq \boldsymbol{0}_{p-q} \times d:$$

Wilks Lambda

$$\Lambda^* = \frac{|\boldsymbol{E}|}{|\tilde{\boldsymbol{H}} + \tilde{\boldsymbol{E}}|}$$

Reject H_0 if Λ^* is "small"

Hotelling-Lawley Trace

$$T_0^2 = \operatorname{tr}(\tilde{\boldsymbol{H}}\tilde{\boldsymbol{E}}^{-1})$$

Reject H_0 if T_0^2 is "large"

Pillai Trace

$$V = \operatorname{tr}(\tilde{\boldsymbol{H}}(\tilde{\boldsymbol{H}} + \tilde{\boldsymbol{E}})^{-1})$$

Reject H_0 if V is "large"

Multivariate Linear Regression

Assumptions

Parameter Estimation

ference and rediction

We would like to estimate the expected value of the response for a given predictor $x_h = (1, x_{h1}, \dots, x_{hp})$.

Note that we have

$$\hat{\boldsymbol{y}}_h \sim \mathrm{N}(\boldsymbol{B}^T \boldsymbol{x}_h, \boldsymbol{x}_h^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_h \boldsymbol{\Sigma})$$

We can exploit the duality between interval estimation and hypothesis testing. That is, we can test

$$H_0: \mathbb{E}(\boldsymbol{y}_h) = \boldsymbol{y}_h^*$$
 versus $H_a: \mathbb{E}(\boldsymbol{y}_h) \neq \boldsymbol{y}_h^*$

The $100(1-\alpha)\%$ confidence interval is the collection of \boldsymbol{y}_h^* values that fail to reject H_0 at α level

Test statistics:

$$T^{2} = \left(\frac{\hat{\boldsymbol{B}}^{T}\boldsymbol{x}_{h} - \boldsymbol{B}^{T}\boldsymbol{x}_{h}}{\sqrt{\boldsymbol{x}_{h}^{T}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{x}_{h}}}\right)^{T} \hat{\boldsymbol{\Sigma}}^{-1} \left(\frac{\hat{\boldsymbol{B}}^{T}\boldsymbol{x}_{h} - \boldsymbol{B}^{T}\boldsymbol{x}_{h}}{\sqrt{\boldsymbol{x}_{h}^{T}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{x}_{h}}}\right)$$

$$\stackrel{H_{0}}{\sim} \frac{d(n-p-1)}{n-p-d} F_{d,n-p-d}$$

Therefore, the $100(1-\alpha)\%$ simultaneous confidence interval for y_{hk} is

$$\hat{y}_{hk} \pm \sqrt{\frac{d(n-p-1)}{n-p-d}} F_{d,n-p-d} \sqrt{\boldsymbol{x}_h^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_h \hat{\sigma}_{kk}},$$

$$k \in \{1, \dots, d\}$$

Assumptions

rediction

Here we want to predict the observed value of response for a given predictor

- ullet Note: interested in actual $\hat{m{y}}_h$ instead of $\mathbb{E}(\hat{m{y}}_h)$
- Given $x_h = (1, x_{h1}, \dots, x_{hp})$, the fitted value is still $\hat{y}_h = \hat{B}^T x_h$

We can exploit the duality between interval estimation and hypothesis testing. That is, we can test

$$H_0: oldsymbol{y}_h = oldsymbol{y}_h^*$$
 versus $H_a: oldsymbol{y}_h
eq oldsymbol{y}_h^*$

The $100(1-\alpha)$ % prediction interval is the collection of y_h^* values that fail to reject H_0 at α level

Test statistics:

$$T^{2} = \left(\frac{\hat{\boldsymbol{B}}^{T}\boldsymbol{x}_{h} - \boldsymbol{B}^{T}\boldsymbol{x}_{h}}{\sqrt{1 + \boldsymbol{x}_{h}^{T}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{x}_{h}}}\right)^{T} \hat{\boldsymbol{\Sigma}}^{-1} \left(\frac{\hat{\boldsymbol{B}}^{T}\boldsymbol{x}_{h} - \boldsymbol{B}^{T}\boldsymbol{x}_{h}}{\sqrt{1 + \boldsymbol{x}_{h}^{T}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{x}_{h}}}\right)$$

$$\stackrel{H_{0}}{\sim} \frac{d(n - p - 1)}{n - p - d} F_{d, n - p - d}$$

Therefore, the $100(1-\alpha)\%$ simultaneous prediction interval for y_{hk} is

$$\hat{y}_{hk} \pm \sqrt{\frac{d(n-p-1)}{n-p-d}} F_{d,n-p-d} \sqrt{\left(1 + \boldsymbol{x}_h^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_h\right) \hat{\sigma}_{kk}},$$

$$k \in \{1, \dots, d\}$$