

МИРЭА – Российский технологический университет Институт Радиотехнических и телекоммуникационных систем кафедра радиоволновых процессов и технологий дисциплина Радиотехнические цепи и сигналы 2 презентация к лекции №1

ВВЕДЕНИЕ В ЦИФРОВУЮ ОБРАБОТКУ СИГНАЛОВ

ст. пр. каф. РПТ Исаков В.Н. circuits-signals@yandex.ru

Москва 2021

1. Аналоговая и цифровая обработка сигналов

2. Сравнение аналоговой и цифровой обработки сигналов

Критерий	Аналоговая обработка	Цифровая обработка
Универсальность (возможность изменения алгоритма обработки без изменения структуры устройства)	Конфигурируемые устройства	Программируемые устройства
Проблемы межкаскадного согласования (согласование реализаций последовательных процедур обработки сигналов)	Да	Нет
Проблема роста массогабаритных параметров при увеличении сложности и многообразия алгоритмов обработки сигнала	Да	Нет
Неизбежные погрешности обработки сигналов	Собственные шумы АЭУ	Погрешности дискретизации и квантования
Специфика проектирования	Цифровое моделирование	Непосредственная реализация математически описанного алгоритма

3. Классификация сигналов

Непрерывным (аналоговым) называется сигнал s(t), который в любой момент времени может принимать произвольные значения из некоторой области допустимых значений на \mathbb{R} .

Дискретным называется сигнал $s_{\rm д}(t)$, который может быть отличен от нуля только в определённые моменты времени и может принимать произвольные значения из некоторой области допустимых значений на $\mathbb R$.

Квантованным называется сигнал $s_{{\scriptscriptstyle KB}}(t)$, который может быть отличен от нуля в любой момент времени и может принимать только определённые значения на ${\Bbb R}$.

Дискретный квантованный сигнал $s_{\mathrm{II}}(t)$ называется **цифровым**.

4. Основные термины

Дискретизация

Это формирование последовательности чисел, соответствующих мгновенным значениям аналогового или квантованного сигнала.

Отсчёт (выборка)

Это мгновенное значение аналогового сигнала s(nT).

Момент дискретизации

Это момент времени, в который берётся отсчёт сигнала $t_n = nT, n \in \mathbb{Z}$.

Период (интервал, шаг) дискретизации

Это временной интервал с которым берутся отсчёты сигнала T или $T_{\rm I\!I}$.

Квантование

Это замена значений аналогового или дискретного сигнала ближайшими к ним значениями соответствующими уровням квантования.

Уровень квантования

Уровень одного из разрешённых значений квантованного сигнала

Шаг (интервал) квантования

Разница между соседними уровнями квантования Δ .

Период дискретизации

5. Основные термины (продожение)

Частота дискретизации

Величины

$$\omega_{\mathrm{A}} = \frac{2\pi}{T}; f_{\mathrm{A}} = \frac{1}{T};$$
 $\omega_{\mathrm{A}} = 2\pi f_{\mathrm{A}}$

называются круговой и линейной частотами дискретизации соответственно.

Квантование с усечением

$$s_i \le s < s_{i+1} \Longrightarrow s_{\text{KB}} = s_i$$

Квантование с округлением

$$s_i - \frac{\Delta}{2} \le s < s_i + \frac{\Delta}{2} \Longrightarrow s_{\text{KB}} = s_i$$

$$s(t) = A_1 \cos(\omega_1 t)$$

$$s_{\Pi}(t) = \sum_{n=2}^{N} A_n \cos(\omega_n t)$$

$$s_{\Pi}(t) = \sum_{n=2}^{N} A_n \cos(\omega_n t) \qquad s_{\text{BX}}(t) = A_1 \cos(\omega_1 t) + \sum_{n=2}^{N} A_n \cos(\omega_n t)$$

$$P = \frac{A_0^2}{2}$$

$$P_{\Pi} = \sum_{n=2}^{N} \frac{A_n^2}{2}$$

$$q_{\mathrm{BX}} = \frac{P}{P_{\mathrm{II}}}$$

$$s_{\text{BX}}(t) = A_1 \cos(\omega_1 t) + kA_1 \cos(5\omega_1 t) + 0.5kA_1 \cos(12\omega_1 t)$$

$$A_1 = 1B$$

$$A_1 = 1B$$
 $\Delta = 0.1B$ $q_{ex} >> 1$

$$q_{ex} >> 1$$

$$\Delta \ll A_1$$

$$S_{\text{BMX}}(t) = S(t) + S_{\Pi}(t) + e(t)$$

$$q_e = \frac{P}{P_e}$$

$$P_{\Pi,\text{BMX}}(t) = P_{\Pi} + P_{e}$$

$$q_{\text{вых}} = \frac{P}{P_{\text{п.вых}}} = \frac{P}{P_{\text{п}} + P_e} = \frac{1}{\frac{1}{q_{ex}} + \frac{1}{q_e}}$$

$$k = 0, 7 \div 0, 9$$

$$\begin{aligned} q_{\text{BbIX.min}} &= kq_{\text{BX}} \\ q_{\text{BbIX}} &= \frac{1}{\frac{1}{q_{\text{ex}}} + \frac{1}{q_{e}}} \end{aligned} \Rightarrow \frac{1}{\frac{1}{q_{\text{ex}}} + \frac{1}{q_{\text{e.min}}}} = kq_{\text{BX}} \Rightarrow q_{\text{e.min}} = \frac{k}{1-k} q_{\text{BX}} \Rightarrow P_{\text{e.max}} = \frac{1-k}{k} P_{\text{II}} = \frac{1-k}{k} \frac{P}{q_{\text{BX}}}$$

$$\max |s'(t)| \approx \frac{\Delta_{\max}}{\tau_{\min}}$$

$$s(t) = A_1 \cos(\omega_1 t)$$

$$\max |s'(t)| = A_1 \omega_1$$

$$\tau_{\min} \approx \frac{\Delta_{\max}}{A_1 \omega_1}$$

$$\Delta \omega = \frac{2\pi}{\tau_{\min}} \approx 2\pi \frac{A_1 \omega_1}{\Delta_{\max}}$$

$$N_e \approx \frac{\Delta \omega}{\omega_1} \approx 2\pi \frac{A_1}{\Delta_{\text{max}}}$$

$$N_{e} \approx 2\pi \frac{A_{1}}{\Delta_{\text{max}}}$$

$$P_{e.\text{max}} = N_{e} \frac{E^{2}}{2}$$

$$\Delta_{\text{max}} = N_{e}E$$

$$\Rightarrow P_{e.\text{max}} = N_{e} \frac{\Delta_{\text{max}}^{2}}{2N_{e}^{2}} = \frac{\Delta_{\text{max}}^{2}}{2N_{e}} = \frac{\Delta_{\text{max}}^{2}}{2 \cdot 2\pi \frac{A_{1}}{\Delta_{\text{max}}}} = \frac{\Delta_{\text{max}}^{3}}{4\pi A_{1}} \Rightarrow \frac{\Delta_{\text{max}}^{3}}{2 \cdot 2\pi \frac{A_{1}}{\Delta_{\text{max}}}} \Rightarrow \frac{\Delta_{\text{max}}^{3}}{2\pi A_{1}} \Rightarrow \frac{$$

$$\Rightarrow \frac{\Delta_{\text{max}} = \sqrt[3]{4\pi A_1 P_{e.\text{max}}}}{P_{e.\text{max}}} \Rightarrow \Delta_{\text{max}} = \sqrt[3]{4\pi \frac{1-k}{k} \frac{PA_1}{q_{\text{BX}}}} = \sqrt[3]{2\pi \frac{1-k}{k} \frac{A_1^3}{q_{\text{BX}}}} = k' \frac{A_1}{\sqrt[3]{q_{\text{BX}}}}$$

$$k' = \sqrt[3]{2\pi \frac{1-k}{k}} = 0,9 \div 1,4 \approx 1$$
 $\Delta_{\text{max}} = \frac{A_1}{\sqrt[3]{q_{\text{BX}}}}$

$$h = 2A_1$$

$$N_{\text{\tiny KB}} \ge \frac{h}{\Delta_{\max}} - 1$$

$$B \ge \log_2 N_{\text{KB}} = \log_2 \left(\frac{h}{\Delta_{\text{max}}} - 1\right) = B_{\text{min}}$$

$$B_{\min} = \log_2 \left(\frac{h}{\Delta_{\max}} - 1 \right) = \log_2 \left(\frac{2A_1}{A_1 / \sqrt[3]{q_{\text{BX}}}} - 1 \right) = \log_2 \left(2\sqrt[3]{q_{\text{BX}}} - 1 \right)$$

$$B_{\min} \approx \log_2(2\sqrt[3]{q_{\text{BX}}})$$
 $B \ge B_{\min} \Rightarrow N_{\text{KB}} = 2^B \Rightarrow \Delta = \frac{h}{N_{\text{KB}} + 1}$

16. Обобщённая структурная схема системы цифровой обработки сигналов

17. Временные диаграммы

Список литературы

Основная литература

- 1. Радиотехнические цепи и сигналы: Учеб. для вузов / О. А. Стеценко. М.: Высш. шк., 2007. 432 с. https://library.mirea.ru/books/39991
- 2. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Радио и связь, 1986. 512 с. https://library.mirea.ru/books/6969
- 3. Радиотехнические цепи и сигналы: учеб. для вузов / С. И. Баскаков. М.: Высш. шк., 2005. 462 с. https://library.mirea.ru/books/875
- 4. Радиотехнические цепи и сигналы: Учеб. пособие / Д. В. Васильев, М. Р. Витоль, Ю. Н. Горшенков, и др.; К. А. Самойло. М.: Радио и связь, 1982. 528 с. https://library.mirea.ru/books/19694

Дополнительная литература

- 5. Карташев В.Г. Основы теории дискретных сигналов и цифровых фильтров: учебное пособие для вузов. М.: Высшая школа, 1982.
- 6. Основы цифровой обработки сигналов: Учеб. пособие для вузов / А. И. Солонина, Д. А. Улахович, С. М. Арбузов, Е. Б. Соловьева. СПб.: БХВ-Петербург, 2005. 753 с. https://library.mirea.ru/books/831
- 7. Сигналы. Теоретическая радиотехника: Справ. пособие / А. Н. Денисенко. М.: Горячая линия Телеком, 2005. 704 с. https://library.mirea.ru/books/45
- 8. Теория радиотехнических цепей / Н. В. Зернов, В. Г. Карпов. Л.: Энергия, 1972. 816 с.: ил. Библиогр.: с. 804 (15 назв.) https://library.mirea.ru/books/9447
- 9. Справочник по математике для инженеров и учащихся вузов / И. Н. Бронштейн, К. А. Семендяев. М.: Наука, 1998. 608 с. https://library.mirea.ru/books/4829

Пособия и методические указания

10. Радиотехнические цепи и сигналы. Ч. 2 [Электронный ресурс]: метод. указания по выполнению лаб. работ / В. Н. Исаков, Д. Р. Барский. — М.: РТУ МИРЭА, 2019. — Электрон. опт. диск (ISO) https://library.mirea.ru/share/3274