Lecture 12

1 Grassmann Algebra

Definition. A (differential) n-form on a smooth manifold M is a (0, n)-tensor field ω that is totally antisymmetric, i.e.

$$\omega(X_1,\dots,X_n) = \operatorname{sgn}(\pi) \cdot \omega(X_{\pi(1)},\dots,X_{\pi(n)}), \quad \text{where } X_1,\dots,X_m \in \Gamma(TM)$$

The set of all n-forms is denoted $\Omega^n(M)$, which is a $C^{\infty}(M)$ -module.

Example.
$$\Omega^0 = C^{\infty}(M)$$
 and $\Omega^1(M) = \Gamma(T * M)$

Definition. The wedge product $\wedge : \Omega^n \times \Omega^m \xrightarrow{\sim} \Omega^{n+m}$ is defined as

$$(\omega \wedge \sigma)(X_1, \cdots, X_{n+m}) := \frac{1}{n! \cdot m!} \sum_{\pi} \operatorname{sgn}(\pi)(\omega \otimes \sigma)(X_{\pi(1)}, \cdots, X_{\pi(n+m)})$$

Definition. Suppose $h: M \to N$ be a smooth map and $\omega \in \Omega^n N$, then the *pull-back* h^* is defined in terms of the push-forward h_* of vector fields:

$$(h^*\omega)(X_1,\cdots X_n):=\omega(h_*(X_1),\cdots,h_*(X_n))$$

Theorem. The pull-back distributes over wedge product:

$$h^*(\omega \wedge \sigma) = h^*(\omega) \wedge h^*(\sigma)$$

Definition. Define $\Omega(M) \equiv GR(M)$ as

$$\Omega(M) := \Omega^0(M) \oplus \Omega^1(M) \cdots \oplus \Omega^{\dim M}(M)$$

Then $(\Omega(M), +, \cdot)$ is a $C^{\infty}(M)$ -module, and $(\Omega(M), +, \cdot, \wedge)$ is called the *Grassmann algebra* on manifold M, where $\wedge : \Omega(M) \times \Omega(M) \to \Omega(M)$ is defined by linear continuation of the wedge product, i.e.

$$(\omega + \sigma) \wedge \psi = \omega \wedge \psi + \sigma \wedge \psi$$

where $\omega \in \Omega^a(M)$, $\sigma \in \Omega^b(M)$ and $\psi \in \Omega^c(M)$

Theorem. Suppose $\omega \in \Omega^m(M)$, $\sigma \in \Omega^n(M)$, then

$$\omega \wedge \sigma = (-1)^{m+n} \sigma \wedge \omega$$

Remark. The above theorem does not apply to Grassman algebra in general.

Definition. The exterior derivative operator $d:\Omega^n(M)\to\Omega^{n+1}(M)$ is defined as

$$(d\omega)(X_1, \dots, X_{n+1}) := \sum_{i=1}^{n+1} (-1)^{i+1} X_i \Big(\omega(X_1, \dots, X_i, \dots, X_{n+1}) \Big)$$
$$+ \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_1, \dots, X_i, \dots, X_j, \dots, X_{n+1})$$

It could be verified that $d\omega$ is totally antisymmetric and $C^{\infty}(M)$ -multilinear. The action of the operator extends by linear continuation to $\Omega(M)$.

Example. Suppose $\omega \in \Omega^1(M)$, then

$$(d\omega)(X,Y) = X(\omega(Y) - Y(\omega(X)) - \omega([X,Y])$$

Theorem. Suppose $\omega \in \Omega^m(M)$, $\psi \in \Omega^n(M)$, then

$$d(\omega \wedge \psi) = d\omega \wedge \psi + (-1)^n \omega \wedge d\psi$$

Theorem.

$$h^*(d\omega) = d(h^*\omega)$$

2 de Rham Cohomology

Definition. The antisymmetric part of a tensor is defined as

$$A_{[m_1,\dots m_f]} = \frac{1}{f!} \sum_{\pi} \operatorname{sgn}(\pi) A_{\pi(1),\dots,\pi(f)}$$

And the *symmetric part* is defined as

$$A_{(m_1,\dots,m_f)} = \frac{1}{f!} \sum_{\pi} A_{\pi(1),\dots,\pi(f)}$$

Lemma.

$$A_{ab}B^{[ab]} = A_{[ab]}B^{ab}$$

Lemma.

$$A_{(ab)}B^{[ab]} = 0$$

Theorem.

$$d^2\omega = d(d\omega) = 0$$

Proof. Suppose $\omega \in \Omega^n(M)$. In local coordinates,

$$\omega = \omega_{a_1 \cdots a_n} dx^{a_1} \wedge \cdots \wedge dx^{a_n}$$

It can be shown that

$$d\omega = (\partial_b \omega_{a_1 \cdots a_n}) dx^b \wedge dx^{a_1} \wedge \cdots \wedge dx^{a_n}$$
$$d^2 \omega = (\partial_c \partial_b \omega_{a_1 \cdots a_n}) dx^c \wedge dx^b \wedge dx^{a_1} \wedge \cdots \wedge dx^{a_n}$$

Since $\partial_c \partial_b \omega_{a_1 \cdots a_n}$ is symmetric in b and c, and $dx^c \wedge dx^b \wedge dx^{a_1} \wedge \cdots \wedge dx^{a_n}$ is antisymmetric in b and c, the product is zero.

Definition. Consider the sequence of maps

$$0 \xrightarrow{d} \Omega(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{\dim M}(M) \xrightarrow{d} 0$$

The set of exact forms B^n is defined as

$$B^n := \operatorname{im}(d) \subseteq \Omega^n(M)$$

The set of closed forms \mathbb{Z}^n is defined as

$$Z^n := \ker(d) \subseteq \Omega^n(M)$$

Remark. From the theorem above,

$$B^n \subset Z^n$$

Theorem (Poincare). If $M = \mathbb{R}^m$ then $B^n = Z^n$.

Definition. The n-th de Rham cohomology group is the quotient vector space

$$H^n(M) := Z^n/B^n$$

Theorem (de Rham). $H^n(M)$ only depends on the topology of M.

Example.

$$H^0(M) \cong \mathbb{R}^\#$$
 of connected pieces of M