COURSE 10

4.3. Iterative methods for solving linear systems

Because of round-off errors, direct methods become less efficient than iterative methods for large systems ($>100\,000$ variables).

An iterative scheme for linear systems consists of converting the system

$$Ax = b \tag{1}$$

to the form

$$x = \tilde{b} - Bx.$$

After an initial guess for $x^{(0)}$, the sequence of approximations of the solution $x^{(0)}, x^{(1)}, ..., x^{(k)}, ...$ is generated by computing

$$x^{(k)} = \tilde{b} - Bx^{(k-1)}$$
, for $k = 1, 2, 3, ...$

4.3.1. Jacobi iterative method

Consider the $n \times n$ linear system,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{cases}$$

where we assume that the diagonal terms $a_{11}, a_{22}, \ldots, a_{nn}$ are all nonzero.

We begin our iterative scheme by solving each equation for one of the variables:

$$\begin{cases} x_1 = u_{12}x_2 + \dots + u_{1n}x_n + c_1 \\ x_2 = u_{21}x_1 + \dots + u_{2n}x_n + c_2 \\ \dots \\ x_n = u_{n1}x_1 + \dots + u_{nn-1}x_{n-1} + c_n, \end{cases}$$

where
$$u_{ij} = -\frac{a_{ij}}{a_{ii}}, \ c_i = \frac{b_i}{a_{ii}}, \ i = 1, ..., n.$$

Let $x^{(0)}=(x_1^{(0)},x_2^{(0)},...,x_n^{(0)})$ be an initial approximation of the solution. The k+1-th approximation is:

$$\begin{cases} x_1^{(k+1)} = u_{12}x_2^{(k)} + \dots + u_{1n}x_n^{(k)} + c_1 \\ x_2^{(k+1)} = u_{21}x_1^{(k)} + u_{23}x_3^{(k)} + \dots + u_{2n}x_n^{(k)} + c_2 \\ \dots \\ x_n^{(k+1)} = u_{n1}x_1^{(k)} + \dots + u_{nn-1}x_{n-1}^{(k)} + c_n, \end{cases}$$

for k = 0, 1, 2, ...

An algorithmic form:

$$x_i^{(k)} = \frac{b_i - \sum\limits_{j=1, j \neq i}^{n} a_{ij} x_j^{(k-1)}}{a_{ii}}, \ i = 1, 2, ..., n, \ \text{for } k \ge 1.$$

The iterative process is terminated when a convergence criterion is satisfied.

Stopping criterions: $\left|x^{(k)}-x^{(k-1)}\right|<\varepsilon$ or $\frac{\left|x^{(k)}-x^{(k-1)}\right|}{\left|x^{(k)}\right|}<\varepsilon$, with $\varepsilon>0$ - a prescribed tolerance.

Example 1 Solve the following system using the Jacobi iterative method. Use $\varepsilon = 10^{-3}$ and $x^{(0)} = (0\ 0\ 0\ 0)$ as the starting vector.

$$\begin{cases} 7x_1 - 2x_2 + x_3 & = 17 \\ x_1 - 9x_2 + 3x_3 - x_4 & = 13 \\ 2x_1 + 10x_3 + x_4 & = 15 \\ x_1 - x_2 + x_3 + 6x_4 & = 10. \end{cases}$$

These equations can be rearranged to give

$$x_1 = (17 + 2x_2 - x_3)/7$$

$$x_2 = (-13 + x_1 + 3x_3 - x_4)/9$$

$$x_3 = (15 - 2x_1 - x_4)/10$$

$$x_4 = (10 - x_1 + x_2 - x_3)/6$$

and, for example,

$$x_1^{(1)} = (17 + 2x_2^{(0)} - x_3^{(0)})/7$$

$$x_2^{(1)} = (-13 + x_1^{(0)} + 3x_3^{(0)} - x_4^{(0)})/9$$

$$x_3^{(1)} = (15 - 2x_1^{(0)} - x_4^{(0)})/10$$

$$x_4^{(1)} = (10 - x_1^{(0)} + x_2^{(0)} - x_3^{(0)})/6.$$

Substitute $x^{(0)} = (0,0,0,0)$ into the right-hand side of each of these equations to get

$$x_1^{(1)} = (17 + 2 \cdot 0 - 0)/7 = 2.428 571 429$$
 $x_2^{(1)} = (-13 + 0 + 3 \cdot 0 - 0)/9 = -1.444 444 444$
 $x_3^{(1)} = (15 - 2 \cdot 0 - 0)/10 = 1.5$
 $x_4^{(1)} = (10 - 0 + 0 - 0)/6 = 1.666 666 667$

and so $x^{(1)} = (2.428\ 571\ 429, -1.444\ 444\ 444, 1.5, 1.666\ 666\ 667)$. The Jacobi iterative process:

$$x_{1}^{(k+1)} = \left(17 + 2x_{2}^{(k)} - x_{3}^{(k)}\right) / 7$$

$$x_{2}^{(k+1)} = \left(-13 + x_{1}^{(k)} + 3x_{3}^{(k)} - x_{4}^{(k)}\right) / 9$$

$$x_{3}^{(k+1)} = \left(15 - 2x_{1}^{(k)} - x_{4}^{(k)}\right) / 10$$

$$x_{4}^{(k+1)} = \left(10 - x_{1}^{(k)} + x_{2}^{(k)} - x_{3}^{(k)}\right) / 6, \qquad k \ge 1.$$

We obtain a sequence that converges to

 $\mathbf{x}^{(9)} = (2.000127203, -1.000100162, 1.000118096, 1.000162172).$

4.3.2. Gauss-Seidel iterative method

Almost the same as Jacobi method, except that each x-value is improved using the most recent approx. of the other variables.

For a $n \times n$ system, the k + 1-th approximation is:

$$\begin{cases} x_1^{(k+1)} = u_{12}x_2^{(k)} + \ldots + u_{1n}x_n^{(k)} + c_1 \\ x_2^{(k+1)} = u_{21}x_1^{(k+1)} + u_{23}x_3^{(k)} + \ldots + u_{2n}x_n^{(k)} + c_2 \\ \ldots \\ x_n^{(k+1)} = u_{n1}x_1^{(k+1)} + \ldots + u_{nn-1}x_{n-1}^{(k+1)} + c_n, \end{cases}$$
 with $k = 0, 1, 2, \ldots; \ u_{ij} = -\frac{a_{ij}}{a_{ii}}, \ c_i = \frac{b_i}{a_{ii}}, \ i = 1, \ldots, n \ (as in Jacobi method)$

method).

Algorithmic form:

$$x_i^{(k)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}}{a_{ii}}$$

for each i = 1, 2, ...n, and for $k \ge 1$.

Stopping criterions: $\left|x^{(k)}-x^{(k-1)}\right|<\varepsilon$, or $\frac{\left|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right|}{\left|\mathbf{x}^{(k)}\right|}<\varepsilon$, with ε - a prescribed tolerance, $\varepsilon>0$.

Remark 2 Because the new values can be immediately stored in the location that held the old values, the storage requirements for \mathbf{x} with the Gauss-Seidel method is half than that for Jacobi method and the rate of convergence is faster.

Example 3 Solve the following system using the Gauss-Seidel iterative method. Use $\varepsilon = 10^{-3}$ and $\mathbf{x}^{(0)} = (0\ 0\ 0\ 0)$ as the starting vector.

$$\begin{cases} 7x_1 - 2x_2 + x_3 & = 17 \\ x_1 - 9x_2 + 3x_3 - x_4 & = 13 \\ 2x_1 + 10x_3 + x_4 & = 15 \\ x_1 - x_2 + x_3 + 6x_4 & = 10 \end{cases}$$

We have

$$x_1 = (17 + 2x_2 - x_3)/7$$

$$x_2 = (-13 + x_1 + 3x_3 - x_4)/9$$

$$x_3 = (15 - 2x_1 - x_4)/10$$

$$x_4 = (10 - x_1 + x_2 - x_3)/6,$$

and, for example,

$$x_1^{(1)} = (17 + 2x_2^{(0)} - x_3^{(0)})/7$$

$$x_2^{(1)} = (-13 + x_1^{(1)} + 3x_3^{(0)} - x_4^{(0)})/9$$

$$x_3^{(1)} = (15 - 2x_1^{(1)} - x_4^{(0)})/10$$

$$x_4^{(1)} = (10 - x_1^{(1)} + x_2^{(1)} - x_3^{(1)})/6,$$

which provide the following Gauss-Seidel iterative process:

$$x_{1}^{(k+1)} = \left(17 + 2x_{2}^{(k)} - x_{3}^{(k)}\right) / 7$$

$$x_{2}^{(k+1)} = \left(-13 + x_{1}^{(k+1)} + 3x_{3}^{(k)} - x_{4}^{(k)}\right) / 9$$

$$x_{3}^{(k+1)} = \left(15 - 2x_{1}^{(k+1)} - x_{4}^{(k)}\right) / 10$$

$$x_{4}^{(k+1)} = \left(10 - x_{1}^{(k+1)} + x_{2}^{(k+1)} - x_{3}^{(k+1)}\right) / 6, \quad \text{for } k \ge 1.$$

Substitute $\mathbf{x}^{(0)} = (0,0,0,0)$ into the right-hand side of each of these equations to get

$$x_1^{(1)} = (17 + 2 \cdot 0 - 0)/7 = 2.428 571 429$$

 $x_2^{(1)} = (-13 + 2.428 571 429 + 3 \cdot 0 - 0)/9 = -1.1746031746$
 $x_3^{(1)} = (15 - 2 \cdot 2.428 571 429 - 0)/10 = 1.0142857143$
 $x_4^{(1)} = (10 - 2.428 571 429 - 1.1746031746 - 1.0142857143)/6$
 $= 0.8970899472$

and so

 $\mathbf{x}^{(1)} = (2.428571429 - 1.1746031746, 1.0142857143, 0.8970899472).$

Similar procedure generates a sequence that converges to

 $\mathbf{x}^{(5)} = (2.000025, -1.000130, 1.000020.0.999971).$

4.3.3. Relaxation method

In case of convergence, the Gauss-Seidel method is faster than Jacobi method. The convergence can be more improved using **relaxation method (SOR method)** (SOR=Succesive Over Relaxation)

Algorithmic form of the method:

$$x_i^{(k)} = \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) + (1 - \omega) x_i^{(k-1)}$$

for each i = 1, 2, ...n, and for $k \ge 1$.

For $0 < \omega < 1$ the procedure is called **under relaxation method**, that can be used to obtain convergence for systems which are not convergent by Gauss-Siedel method.

For $\omega > 1$ the procedure is called **over relaxation method**, that can be used to accelerate the convergence for systems which are convergent by Gauss-Siedel method.

By Kahan's Theorem follows that the method converges for $0 < \omega < 2$.

Remark 4 For $\omega = 1$, relaxation method is Gauss-Seidel method.

Example 5 Solve the following system, using relaxation iterative method. Use $\varepsilon = 10^{-3}$, $\mathbf{x}^{(0)} = (1\ 1\ 1)$ and $\omega = 1.25$,

$$4x_1 + 3x_2 = 24$$

 $3x_1 + 4x_2 - x_3 = 30$
 $-x_2 + 4x_3 = -24$

We have

$$x_1^{(k)} = 7.5 - 0.937x_2^{(k-1)} - 0.25x_1^{(k-1)}$$

$$x_2^{(k)} = 9.375 - 9.375x_1^{(k)} + 0.3125x_3^{(k-1)} - 0.25x_2^{(k-1)}$$

$$x_3^{(k)} = -7.5 + 0.3125x_2^{(k)} - 0.25x_3^{(k-1)}, \text{ for } k \ge 1.$$

The solution is (3, 4, -5).

4.3.4 The matriceal formulations of the iterative methods

Split the matrix A into the sum

$$A = D + L + U,$$

where D is the diagonal of A, L the lower triangular part of A, and U the upper triangular part of A. That is,

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & \cdots & \ddots & \vdots \\ \vdots & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}, \quad L = \begin{bmatrix} 0 & \cdots & 0 \\ a_{21} \vdots & & \ddots \\ \vdots & \cdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{bmatrix},$$

$$U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ \vdots & \cdots & \ddots & \vdots \\ & \ddots & a_{n-1,n} \\ 0 & \cdots & & 0 \end{bmatrix}$$

The system Ax = b can be written as

$$(D+L+U)\mathbf{x} = \mathbf{b}.$$

The **Jacobi method** in matriceal form is given by:

$$D\mathbf{x}^{(k)} = -(L+U)\mathbf{x}^{(k-1)} + \mathbf{b}$$

the Gauss-Seidel method in matriceal form is given by:

$$(D+L)\mathbf{x}^{(k)} = -U\mathbf{x}^{(k-1)} + \mathbf{b}$$

and the relaxation method in matriceal form is given by:

$$(D + \omega L)\mathbf{x}^{(k)} = ((1 - \omega)D - \omega U)\mathbf{x}^{(k-1)} + \omega \mathbf{b}$$

Convergence of the iterative methods

Remark 6 The convergence (or divergence) of the iterative process in the Jacobi and Gauss-Seidel methods does not depend on the initial guess, but depends only on the character of the matrices themselves. However, a good first guess in case of convergence will make for a relatively small number of iterations.

A sufficient condition for convergence:

Theorem 7 (Convergence Theorem) If A is strictly diagonally dominant, then the Jacobi, Gauss-Seidel and relaxation methods converge for any choice of the starting vector $\mathbf{x}^{(0)}$.

Example 8 Consider the system of equations

$$\begin{bmatrix} 3 & 1 & 1 \\ -2 & 4 & 0 \\ -1 & 2 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}.$$

The coefficient matrix of the system is strictly diagonally dominant since

$$|a_{11}| = |3| = 3 > |1| + |1| = 2$$

 $|a_{22}| = |4| = 4 > |-2| + |0| = 2$
 $|a_{33}| = |-6| = 6 > |-1| + |2| = 3$.

Hence, if the Jacobi or Gauss-Seidel method are used to solve the system of equations, they will converge for any choice of the starting vector $\mathbf{x}^{(0)}$.

Example 9 Consider the linear system

$$4x_1 + x_2 = 3$$
$$2x_1 + 5x_2 = 1.$$

- a) Perform two iterations of the Jacobi method to this system, beginning with the vector x = [3, 11].
- b) Perform two iterations of the Gauss-Seidel method to this system, beginning with the vector x = [3, 11].

(Solutions of the system are 7/9 and -1/9).

5. Numerical methods for solving nonlinear equations in $\mathbb R$

Let $f: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}$. Consider the equation

$$f(x) = 0, \quad x \in \Omega. \tag{2}$$

We attach a mapping $F: D \to D, D \subset \Omega^n$ to this equation.

Let $(x_0,...,x_{n-1}) \in D$. Using F and the numbers $x_0,x_1,...,x_{n-1}$ we construct iteratively the sequence

$$x_0, x_1, ..., x_{n-1}, x_n, ...$$
 (3)

with

$$x_i = F(x_{i-n}, ..., x_{i-1}), \quad i = n,$$
 (4)

The problem consists in choosing F and $x_0, ..., x_{n-1} \in D$ such that the sequence (3) to be convergent to the solution of the equation (2).

Definition 10 The procedure of approximation the solution of equation (2) by the elements of the sequence (3), computed as in (4), is called F-method.

The numbers $x_0, x_1, ..., x_{n-1}$ are called **the starting points** and the k-th element of the sequence (3) is called an approximation of k-th order of the solution.

If the set of starting points has only one element then the F-method is **an one-step method**; if it has more than one element then the F-method is **a multistep method**.

Definition 11 If the sequence (3) converges to the solution of the equation (2) then the F-method is convergent, otherwise it is divergent.

Definition 12 Let $\alpha \in \Omega$ be a solution of the equation (2) and let $x_0, x_1, ..., x_{n-1}, x_n, ...$ be the sequence generated by a given F-method. The number p having the property

$$\lim_{x_i \to \alpha} \frac{\alpha - F(x_{i-n+1}, \dots, x_i)}{(\alpha - x_i)^p} = C \neq 0, \quad C = constant,$$

is called the order of the F-method.

We construct some classes of F-methods based on the interpolation procedures.

Let $\alpha \in \Omega$ be a solution of the equation (2) and $V(\alpha)$ a neighborhood of α . Assume that f has inverse on $V(\alpha)$ and denote $g := f^{-1}$. Since

$$f\left(\alpha\right)=0$$

it follows that

$$\alpha = g(0).$$

This way, the approximation of the solution α is reduced to the approximation of g(0).

Definition 13 The approximation of g by means of an interpolating method, and of α by the value of g at the point zero is called **the** inverse interpolation procedure.

5.1. One-step methods

Let F be a one-step method, i.e., for a given x_i we have $x_{i+1} = F(x_i)$.

Remark 14 If p = 1 the convergence condition is |F'(x)| < 1.

If p > 1 there always exists a neighborhood of α where the F-method converges.

All information on f are given at a single point, the starting value \Rightarrow we are lead to Taylor interpolation.

Theorem 15 Let α be a solution of equation (2), $V(\alpha)$ a neighborhood of α , $x, x_i \in V(\alpha)$, f fulfills the necessary continuity conditions.

Then we have the following method, denoted by F_m^T , for approximating α :

$$F_m^T(x_i) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} [f(x_i)]^k g^{(k)}(f(x_i)),$$
 (5)

where $g = f^{-1}$.

Proof. There exists $g = f^{-1} \in C^m[V(0)]$. Let $y_i = f(x_i)$ and consider Taylor interpolation formula

$$g(y) = (T_{m-1}g)(y) + (R_{m-1}g)(y),$$

with

$$(T_{m-1}g)(y) = \sum_{k=0}^{m-1} \frac{1}{k!} (y - y_i)^k g^{(k)}(y_i),$$

and $R_{m-1}g$ is the corresponding remainder.

Since $\alpha = g(0)$ and $g \approx T_{m-1}g$, it follows

$$\alpha \approx (T_{m-1}g)(0) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} y_i^k g^{(k)}(y_i).$$

Hence,

$$x_{i+1} := F_m^T(x_i) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} [f(x_i)]^k g^{(k)}(f(x_i))$$

is an approximation of α , and F_m^T is an approximation method for the solution α . \blacksquare

Concerning the order of the method ${\cal F}_m^T$ we state:

Theorem 16 If $g = f^{-1}$ satisfies condition $g^{(m)}(0) \neq 0$, then $\operatorname{ord}(F_m^T) = m$.

Remark 17 We have an upper bound for the absolute error in approximating α by x_{i+1} :

$$\left|\alpha - F_m^T(x_i)\right| \leq \frac{1}{m!} [f(x_i)]^m M_m g, \text{ with } M_m g = \sup_{y \in V(0)} \left|g^{(m)}(y)\right|.$$

Particular cases.

1) Case m = 2.

$$F_2^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)}.$$

This method is called **Newton's method** (the tangent method). Its order is 2.

2) Case m = 3.

$$F_3^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)} - \frac{1}{2} \left[\frac{f(x_i)}{f'(x_i)} \right]^2 \frac{f''(x_i)}{f'(x_i)},$$

with $\operatorname{ord}(F_3^T)=3$. So, this method converges faster than F_2^T .

3) Case m = 4.

$$F_4^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)} - \frac{1}{2} \frac{f''(x_i)f^2(x_i)}{[f'(x_i)]^3} + \frac{\left(f'''(x_i)f'(x_i) - 3[f''(x_i)]^2\right)f^3(x_i)}{3![f'(x_i)]^5}.$$

Remark 18 The higher the order of a method is, the faster the method converges. Still, this doesn't mean that a higher order method is more efficient (computation requirements). By the contrary, the most efficient are the methods of relatively low order, due to their low complexity (methods F_2^T and F_3^T).

Newton's method

According to Remark 14, there always exists a neighborhood of α where the F-method is convergent. Choosing x_0 in such a neighborhood allows approximating α by terms of the sequence

$$x_{i+1} = F_2^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)}, \quad i = 0, 1, ...,$$

with a prescribed error ε .

If α is a solution of equation (2) and $x_{n+1} = F_2^T(x_n)$, for approximation error, Remark 17 gives

$$\left|\alpha - x_{n+1}\right| \le \frac{1}{2} [f(x_n)]^2 M_2 g.$$

Lemma 19 Let $\alpha \in (a,b)$ be a solution of equation (2) and let $x_n = F_2^T(x_{n-1})$. Then

$$\left|\alpha-x_{n}\right|\leq\frac{1}{m_{1}}\left|f\left(x_{n}\right)\right|,\quad \text{with } m_{1}\leq m_{1}f=\min_{a\leq x\leq b}\left|f'\left(x\right)\right|.$$

Proof. We use the mean formula

$$f(\alpha) - f(x_n) = f'(\xi) (\alpha - x_n),$$

with $\xi \in$ to the interval determined by α and x_n . From $f(\alpha) = 0$ and $|f'(x)| \ge m_1$ for $x \in (a,b)$, it follows $|f(x_n)| \ge m_1 |\alpha - x_n|$, that is

$$|\alpha - x_n| \leq \frac{1}{m_1} |f(x_n)|.$$

In practical applications the following evaluation is more useful:

Lemma 20 If $f \in C^2[a,b]$ and F_2^T is convergent, then there exists $n_0 \in \mathbb{N}$ such that

$$|x_n - \alpha| \le |x_n - x_{n-1}|, \quad n > n_0.$$

Remark 21 The starting value is chosen randomly. If, after a fixed number of iterations the required precision is not achieved, i.e., condition $|x_n - x_{n-1}| \le \varepsilon$, does not hold for a prescribed positive ε , the computation has to be started over with a new starting value.

A modified form of Newton's method: - the same value during the computation of f':

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)}, \quad k = 0, 1, \dots$$

It is very useful because it doesn't request the computation of f' at $x_j, j = 1, 2, \ldots$ but the order is no longer equal to 2.

Another way for obtaining Newton's method.

We start with x_0 as an initial guess, sufficiently close to the α . Next approximation x_1 is the point at which the tangent line to f at $(x_0, f(x_0))$ crosses the Ox-axis. The value x_1 is much closer to the root α than x_0 .

We write the equation of the tangent line at $(x_0, f(x_0))$:

$$y - f(x_0) = f'(x_0)(x - x_0).$$

If $x = x_1$ is the point where this line intersects the Ox-axis, then y = 0

$$-f(x_0) = f'(x_0)(x_1 - x_0),$$

and solving for x_1 gives

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

By repeating the process using the tangent line at $(x_1, f(x_1))$, we obtain for x_2

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

For the general case we have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n \ge 0.$$
 (6)

The algorithm:

Let x_0 be the initial approximation.

for
$$n = 0, 1, ..., ITMAX$$

$$x_{n+1} \leftarrow x_n - \frac{f(x_n)}{f'(x_n)}$$
.

A stopping criterion is:

$$|f(x_n)| \le \varepsilon \text{ or } |x_{n+1} - x_n| \le \varepsilon \text{ or } \frac{|x_{n+1} - x_n|}{|x_{n+1}|} \le \varepsilon,$$

where ε is a specified tolerance value.

Example 22 Use Newton's method to compute a root of $x^3 - x^2 - 1 = 0$, to an accuracy of 10^{-4} . Use $x_0 = 1$.

Sol. The derivative of f is $f'(x) = 3x^2 - 2x$. Using $x_0 = 1$ gives f(1) = -1 and f'(1) = 1 and so the first Newton's iterate is

$$x_1 = 1 - \frac{-1}{1} = 2$$
 and $f(2) = 3$, $f'(2) = 8$.

The next iterate is

$$x_2 = 2 - \frac{3}{8} = 1.625.$$

Continuing in this manner we obtain the sequence of approximations which converges to 1.465571.