W3 - 1.3 - Factored Form Polynomial Functions MHF4U

1) Match each equation with the most suitable graph. Write the letter of the equation beneath the matching graph.

A)
$$f(x) = 2(x+1)^2(x-3)$$
 B) $f(x) = (x+1)^2(x-3)^2$

B)
$$f(x) = (x+1)^2(x-3)^2$$

C)
$$f(x) = -2(x+1)(x-3)^2$$

C)
$$f(x) = -2(x+1)(x-3)^2$$
 D) $f(x) = x(x+1)(x-3)(x-5)$

2) Complete the table

Equation	Degree	Leading Coefficient	End Behaviour	x-intercepts
f(x) = (x-4)(x+3)(2x-1)	(2)(2) = 2 ³	(1)(1)(2) = 2	Q3 to Q1	(4,0) (-3,0) (1/2,0)
g(x) = -2(x+2)(x-2)(1+x)(x-1)	(20(20(20) = 20.4 4	-2(1)(1)(1)(1) =-2	Q3 to Q4	(-2,0) (-1,0) (2,0) (1,0)
$h(x) = (3x+2)^2(x-4)(x+1)(2x-3)$	(12)(23(23)(2) = 25 (5)	(32)(1)(1)(2) =18	03 to Q1	(-3/3)0) (3/2,0) (4,0) (-1,0)
$p(x) = -(x+5)^3(x-5)^3$	(x3)(x3) = x6	-1(1 ³)(1 ³)	Q3 to Q4	(-5,0) (5,0)

3) For each graph, state...

- i) the least possible degree and the sign of the leading coefficient
- ii) the x-intercepts (specify order of zero) and the factors of the function
- iii) the intervals where the function is positive/negative

- i) degree: 3 leading coefficient: Positive
- ii) x-intercepts: -4, -1/2, 1 factors: (x+4), (2x+1), (x-1)

iii)	Interval	(-00,-4)	(-4, - 1/2)	(-1/2,1)	(1,00)
	Sign	_	+	_	+

- i) degree: 4 leading coefficient: Negative
- ii) x-intercepts: -1 (order 2), 4 (order 2) factors: $(x+1)^2$, $(x-4)^2$

iii)	Interval	(-A)-1)	(-1,4)	(4,00)
	Sign			-

- i) degree: 4 leading coefficient: Poshルセ
- ii) x-intercepts: -3, 1 (order 3) factors: (x+3), $(x-1)^3$

iii)	Interval	(-0,-3)	(-3,1)	(1,0)
	Sign	+		+

- i) degree: 3 leading coefficient: Negative
- ii) x-intercepts: -5 (order 2), 3 factors: $(x+5)^2$, (x-3)

		allen-		
iii)	Interval	(-0,-5)	(-5,37)	(3,00)
	Sign	+	+	_

4) For each function, complete the chart and sketch a possible graph of the function labelling key points.

a)
$$f(x) = -2(x-3)(x+2)(4x-3)$$

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
(x)(x)(x) = x ³ Degree 3	- 2(1)(1)(4) = -8	a2 to a4	(3,0) (-2,0) (3/4,0)	F(0) = -2(-3)(2)(-3) = -36 (0)-36)

b)
$$g(x) = (x-1)(x+3)(1+x)(3x-9)$$

Degree	Leading Coefficient	End Behaviour	<i>x</i> -intercepts	y-intercept
(x)(x)(x)(x) = x4 Degree 4	(1)(1)(1)(3) = 3	Q2 to Q1	(1,0) (3,0) (-3,0) (-1,0)	9(0) = (-1)(3)(1) (-9) = 27

c)
$$h(x) = -(x+4)^2(x-1)^2(x+2)(2x-3)$$

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
(x2)(x2)(x)(x) = x6 Degree 6	-1(1 ²)(1 ²)(1)(2) = -2	Q3 to Q4	(-4,0) order 2 (1,0) order 2 (-2,0) (3/2,0)	h(0)=-1(41)2(21(-3)) = 96

d)
$$p(x) = 3(x+6)(x-5)^2(3x-2)^3$$

Degree	Leading Coefficient	End Behaviour	x-intercepts	y-intercept
(x)(x2)(x3) = x6 Dearce 6	= 8 3(1)(1)=(3)3	Q2 to Q1	(5,0) order 2 (313,0) order 3	=-3600 =-3600

5) Write the equation of each function

b)

6) Determine an equation for a quintic function with zeros -1 (order 3) and 3 (order 2) that passes through the point (-2, 50)

7) Determine the zeros of
$$f(x) = (2x^2 - x - 1)(x^2 - 3x - 4)$$

h(x) = -2(x+1)3(x-3)2

Answer Key

1) B C A D

Equation	Degrae	Leading Coefficient	End Behaviour	x-Intercepts
f(x) = (x-4)(x+3)(2x-1)	3	2	Q3 → Q1	(4, 0) (-3, 0) $(\frac{1}{2}, 0)$
g(x) = -2(x+2)(x-2)(1+x)(x-1)	4	-2	Q3 -> Q4	(-2, 0) (-1, 0) (1, 0) (2, 0)
$h(x) = (3x + 2)^{2}(x - 4)(x + 1)(2x - 3)$	S	18	Q3 → Q1	$ \begin{array}{c} (4,0) \\ (-1,0) \\ \left(-\frac{2}{3},0\right) \\ \left(\frac{3}{2},0\right) \end{array} $
$p(x) = -(x+5)^3(x-5)^3$	6	-1	Q3 > Q4	(-5, 0) (5, 0)

- 3) a) i) degree: 3
 leading coefficient: positive
 - ii) x-intercepts: -4, -0.5, 1 factors: (x + 4), (2x + 1), and (x 1)
 - | Interval $(-\infty, -4)$ (-4, -0.5) (-0.5, 1) $(1, \infty)$ | Sign + + | +
- c) i) degree: 4 leading coefficient: positive
 - ii) x-intercepts: -3, 1 (order 3) factors: (x + 3), and $(x 1)^3$
 - iii) Interval $(-\infty, -3)$ (-3,1) $(1,\infty)$ Sign + - +

- b) I) degree: 4
 leading coefficient: negative
 - ii) x-intercepts: -1 (order 2), 4 (order 2) factors: $(x + 1)^2$, and $(x 4)^2$

iii)	Interval	(-∞, -1)	(-1,4)	(4,∞)
	Sign	-	2	- 2

- d) i) degree: 3 leading coefficient: negative
 - ii) x-intercepts: -5 (order 2), 3 factors: $(x + 5)^2$, and (x 3)

iii)	Interval	(-∞,-5)	(-5,3)	(3,∞)
	Sign	+	+	

- Degree
 Leading Coefficient
 End Behaviour
 x-Intercepts
 y-Intercept

 6
 -2
 Q3 → Q4
 (-4, 0) order 2 (1, 0) order 2 (-2, 0) (1.5, 0)
 (0, 96)
- 5) a) y = 0.5(x+3)(x-2)(x-5) b) $y = -(x+1)^2(x-2)(x-4)$ $y = -2(x+1)^3(x-3)^2$
- **7)** 4, 1, -1, and -0.5

b)