Problem set # 1

Numerical Methods for Data Science 2021/22

UC3M — Master on Statistics for Data Science

Due date: October 15. Value: 50% of the final grade.

Note: This is an individual assignment. Evidence of plagiarism will be penalized. Hand in the assignment as a pdf file, with Gurobi-Python code in the pdf (no python files).

Problem 1 (50 points). Consider the linear optimization problem

maximize
$$2x_1 + 3x_2 - 4x_3$$

subject to:
 $3x_1 + 5x_2 + 2x_3 = 15$
 $x_1 + 3x_2 - 4x_3 = 8$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

- (a, 10 points) Formulate the dual problem, and find all its solutions using the graphical method.
- (b, 10 points) Formulate the optimality conditions that must be satisfied by any optimal primal solution in relation with a dual optimal solution π^* . Apply them, along with part (a), to find all solutions of the primal problem.
- (c, 10 points) Obtain all possible values for the reduced cost of each primal variable. Are reduced costs unique? Interpret the reduced costs obtained.
- (d, 10 points) Carry out a sensitivity analysis with respect to simultaneous changes of constraint right-hand sides for the primal problem. Contrast the results with those obtained through Gurobi-Python.
- (e, 10 points) Carry out a sensitivity analysis with respect to simultaneous changes of objective coefficients for the primal problem. Contrast the results with those obtained through Gurobi-Python.

Problem 2 (50 points). In a CSI investigation, the crime suspect left both her/his hand and shoe imprints in the crime scene. From that evidence the investigators want to infer the suspect's height. For that purpose, they plan to obtain a prediction equation for height using hand and shoe size based on the following sample data:

Hand size (cm)	Shoe size (cm)	Height (cm)
17.9	30.1	176.2
18.2	29.5	176.8
18.5	30.4	184.2
16.9	31.6	173.2
17.3	27.4	172.8
17.9	28.3	174.1
18.1	33.4	180.5

- (a, 30 points) Formulate the Linear Optimization model seen in class for estimating the best prediction equation under the Mean Absolute Error (MAE) criterion, and implement it in Gurobi-Python.
- (b, 10 points) Solve the model and give the optimal solution (prediction equation). Is it unique?
- (c, 10 points) Obtain the optimal dual solution and discuss its possible interpretation.