语法分析 (3. 递归下降语法分析方法)

魏恒峰

hfwei@nju.edu.cn

2021年11月23日

语法分析阶段的主题之二: 构建语法分析树

						(5	$\operatorname{Stmt} \rangle$							
if	((Expr))						(St	$\mathrm{mt}\rangle$			
if	(\(\bar{\text{Expr}}\)	(Optr)	(Expr)							(St	mt			
if	$(\overline{\langle Id \rangle})$	(Optr)	(Expr)							(St	$\mathrm{mt}\rangle$			
if	(x	(Optr)	(Expr)			$\langle \mathrm{Stmt} \rangle$								
if	(x	>	$\langle Expr \rangle$							(St	$\mathrm{mt}\rangle$			
if	(x	>	(Num)			$\langle \mathrm{Stmt} \rangle$								
if	(x	>	9			$\langle \mathrm{Stmt} \rangle$								
if	(x	>	9) -	{				(S	$_{ m tm}$	tList			}
if	(x	>	9		{ (Stn	$\operatorname{ntList}\rangle$				($Stmt\rangle$		}
if	(x	>	9		{	(S	$\operatorname{tmt}\rangle$					Stmt		
if	(x	>	9		$\langle \mathrm{Id} \rangle$	=	(Expr)	;				Stmt		
if	(x	>	9		x									
if	(x	>	9		$x = \overline{\langle Num \rangle}$; $\langle Stmt \rangle$									
if	(x	>	9		(x	=	0				($\operatorname{Stmt} \rangle$		
if	(x	>	9		(x			;	$\langle Id \rangle$	=		(Expr)		; }
if	(x	>	9		(x			;	У	=		$\langle \text{Expr} \rangle$; }
if	(x	>	9		(x	=			У	=	(Expr	(Optr)	(Expr)	; }
if	(x	>	9		(x	=				=	$\langle Id \rangle$	$\langle \text{Optr} \rangle$	$\langle Expr \rangle$; }
if	(x	>	9		(x	=			У	=	У	$\langle \text{Optr} \rangle$	$\langle \text{Expr} \rangle$; }
if	(x	>	9		(x	=				=	у	+	$\langle \mathrm{Expr} \rangle$; }
if	(x	>	9		(x	=				=		+	(Num)	; }
if	(x	>	9) -	(x	=	0	;	у	=	У	+	1	; }
									-		4 □ ▶	< A → <	3 → 4 3	· 1

只考虑无二义性的文法

这意味着,每个句子对应唯一的一棵语法分析树

今日份主题: LL(1) 语法分析器

自顶向下的、

递归下降的、

预测分析的、

适用于LL(1) 文法的、

LL(1) 语法分析器

自顶向下构建语法分析树

根节点是文法的起始符号 S

叶节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

自顶向下构建语法分析树

每个中间节点表示对某个非终结符应用某个产生式进行推导

(Q:选择哪个非终结符,以及选择哪个产生式)

叶节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

递归下降的实现框架

```
void A()
           先不考虑这里是如何选择产生式的
        选择一个 A 产生式, A \to X_1 X_2 \cdots X_k
             i = 1 \text{ to } k
3)
              else if (X_i 等于当前的输入符号a)
 匹配当前词法单元
6)
                   读入下一个输入符号;
              else /* 发生了一个错误 */;
                 出现了不期望出现的词法单元
```

为每个非终结符写一个递归函数

内部按需调用其它非终结符对应的递归函数

$$S \to F$$

$$S \to F$$

 $S \to (S+F)$
 $F \to a$

$$F \to a$$

$$w = ((a+a)+a)$$

演示递归下降过程

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

演示递归下降过程

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

每次都选择语法分析树最左边的非终结符进行展开

同样是展开非终结符 S,

为什么前两次选择了 $S \to (S+F)$, 而第三次选择了 $S \to F$?

同样是展开非终结符S,

为什么前两次选择了 $S \to (S+F)$, 而第三次选择了 $S \to F$?

因为它们面对的当前词法单元不同

使用预测分析表确定产生式

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

	()	a	+	\$
S	2		1		
\overline{F}			3		

指明了每个**非终结符**在面对不同的<mark>词法单元或文件结束符</mark>时,

该选择哪个产生式(按编号进行索引)或者报错

Definition (LL(1) 文法)

如果文法 G 的预测分析表是无冲突的, 则 G 是 LL(1) 文法。

无冲突:每个单元格里只有一个生成式(编号)

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

	()	a	+	\$
S	2		1		
F			3		

对于当前选择的非终结符,

仅根据输入中当前的词法单元即可确定需要使用哪条产生式

递归下降的、预测分析实现方法

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

	()	a	+	\$
S	2		1		
F			3		

```
1: procedure MATCH(t)

2: if token = t then

3: token \leftarrow NEXT-TOKEN()

4: else

5: ERROR(token, t)
```

```
1: procedure S()
       if token = ('then )
 2:
           MATCH('('))
 3:
           S()
 4:
 5:
           MATCH('+')
           F()
 6:
           MATCH(')'
 7:
       else if token = 'a' then
 8:
           F()
 9:
10:
       else
           ERROR(token, \{(', 'a'\})
11:
```

递归下降的、预测分析实现方法

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

	()	a	+	\$
S	2		1		
F			3		

```
1: procedure F()
```

2: **if** token = 'a' then

3: MATCH('a')

4: **else**

5: $ERROR(token, \{'a'\})$

- 1: **procedure** MATCH(t)
- 2: **if** token = t **then**
- 3: $token \leftarrow NEXT-TOKEN()$
- 4: **else**
- 5: ERROR(token, t)

 $FIRST(\alpha)$ 是可从 α 推导得到的句型的**首终结符号**的集合

Definition (FIRST(α) 集合)

对于任意的 (产生式的右部) $\alpha \in (N \cup T)^*$:

$$FIRST(\alpha) = \Big\{ t \in T \cup \{\epsilon\} \mid \alpha \xrightarrow{*} t\beta \lor \alpha \xrightarrow{*} \epsilon \Big\}.$$

 $FIRST(\alpha)$ 是可从 α 推导得到的句型的**首终结符号**的集合

Definition (FIRST(α) 集合)

对于任意的 (产生式的右部) $\alpha \in (N \cup T)^*$:

$$FIRST(\alpha) = \left\{ t \in T \cup \{\epsilon\} \mid \alpha \stackrel{*}{\Rightarrow} t\beta \lor \alpha \stackrel{*}{\Rightarrow} \epsilon \right\}.$$

考虑非终结符 A 的所有产生式 $A \to \alpha_1, A \to \alpha_2, \dots, A \to \alpha_m,$ 如果它们对应的 FIRST(α_i) 集合互不相交,

则只需查看当前输入词法单元,即可确定选择哪个产生式(或报错)

Follow(A) 是可能在某些句型中**紧跟在** A 右边的终结符的集合

Definition (FOLLOW(A) 集合)

对于任意的 (产生式的左部) 非终结符 $A \in N$:

$$\operatorname{Follow}(A) = \Big\{ t \in T \cup \{\$\} \mid \exists s. \ S \xrightarrow{*} s \triangleq \beta A t \gamma \Big\}.$$

FOLLOW(A) 是可能在某些句型中**紧跟在** A 右边的终结符的集合

Definition (FOLLOW(A) 集合)

对于任意的 (产生式的左部) 非终结符 $A \in N$:

$$Follow(A) = \left\{ t \in T \cup \{\$\} \mid \exists s. \ S \stackrel{*}{\Rightarrow} s \triangleq \beta A t \gamma \right\}.$$

考虑产生式 $A \rightarrow \alpha$,

如果从 α 可能推导出空串 ($\alpha \stackrel{*}{\Rightarrow} \epsilon$),

则只有当当前词法单元 $t \in \text{Follow}(A)$, 才可以选择该产生式

- 4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q (~)

先计算每个符号 X 的 FIRST(X) 集合

```
1: procedure FIRST(X)
        if X \in T then
                                                              ▶ 规则 1: X 是终结符
2:
            FIRST(X) = X
 3:
        for X \to Y_1 Y_2 \dots Y_k do
                                                           ▶ 规则 2: X 是非终结符
 4:
             FIRST(X) \leftarrow FIRST(X) \cup \{FIRST(Y_1) \setminus \{\epsilon\}\}\
 5:
             for i \leftarrow 2 to k do
 6:
                 if \epsilon \in L(Y_1 \dots Y_{i-1}) then
 7:
                     FIRST(X) \leftarrow FIRST(X) \cup \{FIRST(Y_i) \setminus \{\epsilon\}\}
 8:
                                                       ▶ 规则 3: X 可推导出空串
             if \epsilon \in L(Y_1 \dots Y_k) then
9:
                 First(X) \leftarrow First(X) \cup \{\epsilon\}
10:
```

不断应用上面的规则, 直到每个 FIRST(X) 都不再变化 (**闭包!!!**)

再计算每个符号串 α 的 First(α) 集合

$$\alpha = X\beta$$

$$\operatorname{First}(\alpha) = \begin{cases} \operatorname{First}(X) & \epsilon \notin L(X) \\ (\operatorname{First}(X) \setminus \{\epsilon\}) \cup \operatorname{First}(\beta) & \epsilon \in L(X) \end{cases}$$

最后, 如果 $\epsilon \in L(\alpha)$, 则将 ϵ 加入 $FIRST(\alpha)$ 。

(1)
$$X \to Y$$

- (2) $X \to a$
- (3) $Y \to \epsilon$
- (4) $Y \rightarrow c$
- (5) $Z \to d$
- (6) $Z \rightarrow XYZ$

$$(1) X \rightarrow Y$$

(2)
$$X \rightarrow a$$

(3)
$$Y \to \epsilon$$

(4)
$$Y \rightarrow c$$

(5)
$$Z \to d$$

(6)
$$Z \to XYZ$$

$$FIRST(X) = \{a, c, \epsilon\}$$

$$FIRST(Y) = \{c, \epsilon\}$$

$$FIRST(Z) = \{a, c, d\}$$

$$FIRST(XYZ) = \{a, c, d\}$$

为每个非终结符 X 计算 Follow(X) 集合

```
1: procedure FOLLOW(X)
      for X 是开始符号 do
                                               ▶ 规则 1: X 是开始符号
2:
         Follow(X) \leftarrow Follow(X) \cup \{\$\}
3:
      for A \to \alpha X\beta do ▷ 规则 2: X 是某产生式右部中间的一个符号
4:
         Follow(X) \leftarrow Follow(X) \cup (First(\beta) \setminus \{\epsilon\})
5:
         if \epsilon \in \text{First}(\beta) then
6:
             Follow(X) \leftarrow Follow(X) \cup Follow(A)
7:
      for A \to \alpha X do ▷ 规则 3: X 是某产生式右部的最后一个符号
8:
         Follow(X) \leftarrow Follow(X) \cup Follow(A)
9:
```

不断应用上面的规则, 直到每个 Follow(X) 都不再变化 (**闭包!!!**)

(1)
$$X \to Y$$

- (2) $X \to a$
- (3) $Y \to \epsilon$
- (4) $Y \rightarrow c$
- (5) $Z \to d$
- (6) $Z \rightarrow XYZ$

$$(1) X \rightarrow Y$$

(2)
$$X \to a$$

(3)
$$Y \to \epsilon$$

(4)
$$Y \rightarrow c$$

(5)
$$Z \rightarrow d$$

(6)
$$Z \rightarrow XYZ$$

$$\begin{aligned} & \operatorname{Follow}(X) = \{a, c, d, \$\} \\ & \operatorname{Follow}(Y) = \{a, c, d, \$\} \\ & \operatorname{Follow}(Z) = \emptyset \end{aligned}$$

如何根据First 与 Follow 集合计算给定文法 G 的预测分析表?

按照以下规则, 在表格 [A,t] 中填入生成式 $A \rightarrow \alpha$ (编号):

$$t \in \text{First}(\alpha)$$
 (1)

$$\alpha \stackrel{*}{\Rightarrow} \epsilon \wedge t \in \text{Follow}(A) \tag{2}$$

如何根据First 与 Follow 集合计算给定文法 G 的预测分析表?

按照以下规则, 在表格 [A,t] 中填入生成式 $A \to \alpha$ (编号):

$$t \in \text{First}(\alpha)$$
 (1)

$$\alpha \stackrel{*}{\Rightarrow} \epsilon \wedge t \in \text{Follow}(A) \tag{2}$$

Definition (LL(1) 文法)

如果文法 G 的预测分析表是无冲突的, 则 G 是 LL(1) 文法。

"你是电, 你是光, 你是唯一的神话"

按照以下规则, 在表格 [A,t] 中填入生成式 $A \rightarrow \alpha$ (编号):

$$t \in \text{First}(\alpha)$$
 (1)

$$\alpha \stackrel{*}{\Rightarrow} \epsilon \wedge t \in \text{Follow}(A) \tag{2}$$

因其"唯一", 必要变充分

21/39

$$(1) X \rightarrow Y$$

(2)
$$X \to a$$

(3)
$$Y \to \epsilon$$

(4)
$$Y \rightarrow c$$

(5)
$$Z \to d$$

(6)
$$Z \to XYZ$$

$$First(X) = \{a, c, \epsilon\}$$

$$First(Y) = \{c, \epsilon\}$$

$$First(Z) = \{a, c, d\}$$

$$FIRST(XYZ) = \{a, c, d\}$$

$$Follow(X) = \{a, c, d, \$\}$$

$$Follow(Y) = \{a, c, d, \$\}$$

$$\operatorname{Follow}(Z) = \emptyset$$

	a	c	d	\$
X	1, 2	1	1	1
Y	3	3, 4	3	3
Z	6	6	5, 6	

LL(1) 语法分析器

L: 从左向右 (left-to-right) 扫描输入

L: 构建最左 (leftmost) 推导

1: 只需向前看一个输入符号便可确定使用哪条产生式

非递归的预测分析算法

非递归的预测分析算法

```
设置 in 使它指向 w的第一个符号, 其中 in 是输入指针;
令 X = 栈顶符号;
while ( X ≠ $ ) { /* 栈非空 */
     if (X 等于 ip 所指向的符号 a) 执行栈的弹出操作,将ip 向前移动一个位置;
     else if (X是一个终结符号) error();
     else if (M[X,a]是一个报错条目) error();
     else if (M[X,a] = X \rightarrow Y_1Y_2 \cdots Y_k) {
          输出产生式X \to Y_1 Y_2 \cdots Y_k;
          弹出栈顶符号;
          将 Y_k, Y_{k-1}, \dots, Y_1 压入栈中,其中 Y_1 位于栈顶。
```

不是 LL(1) 文法怎么办?

改造它

消除左递归 提取左公因子

$$E
ightarrow E + T \mid E - T \mid T$$
 $T
ightarrow T * F \mid T/F \mid F$ $F
ightarrow (E) \mid \mathbf{id} \mid \mathbf{num}$

E 在**不消耗任何词法单元**的情况下, 直接递归调用 E, 造成**死循环**

$$E
ightarrow E + T \mid E - T \mid T$$
 $T
ightarrow T * F \mid T/F \mid F$ $F
ightarrow (E) \mid \mathbf{id} \mid \mathbf{num}$

E 在**不消耗任何词法单元**的情况下, 直接递归调用 E, 造成**死循环**

$$E
ightarrow E + T \mid E - T \mid T$$
 $T
ightarrow T * F \mid T/F \mid F$ $F
ightarrow (E) \mid \mathbf{id} \mid \mathbf{num}$

$$\mathrm{First}(E+T)\cap\mathrm{First}(T)\neq\emptyset$$
 不是 $LL(1)$ 文法

消除左递归

$$E \rightarrow E + T \mid T$$

消除左递归

$$E \rightarrow E + T \mid T$$

$$E \to TE'$$

$$E' \to + TE' \mid \epsilon$$

将左递归转为右递归

消除左递归

$$E \to E + T \mid T$$

$$E \to TE'$$

$$E' \to + TE' \mid \epsilon$$

将左递归转为右递归

(注: 右递归对应右结合; 需要在后续阶段进行额外处理)

$$A \to A\alpha_1 \mid A\alpha_2 \mid \dots A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \beta_n$$

其中, β_i 都不以 A 开头

$$A \to \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \rightarrow (E) \mid \mathbf{id}$$

$$E \rightarrow E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid id$$

$$E \to TE'$$

$$E' \to + TE' \mid \epsilon$$

$$T \to FT'$$

$$T' \to *FT' \mid \epsilon$$

$$F \to (E) \mid \mathbf{id}$$

非直接左递归

$$S \to Aa \mid b$$

$$A \to Ac \mid Sb \mid \epsilon$$

$$S \implies Aa \implies Sba$$

非直接左递归

$$S \to Aa \mid b$$
$$A \to Ac \mid Sb \mid \epsilon$$

$$S \implies Aa \implies Sba$$

图 4-11 消除文法中的左递归的算法

$$A_k \to A_l \alpha \implies l > k$$

$$S \to Aa \mid b$$

$$A \to Ac \mid Sb \mid \epsilon$$

$$A \to Ac \mid Aad \mid bd \mid \epsilon$$

$$S \to Aa \mid b$$

$$A \to bdA' \mid A'$$

$$A' \to cA' \mid adA' \mid \epsilon$$

$$A_k \to A_l \alpha \implies l > k$$

$$E o TE'$$
 $E' o + TE' \mid \epsilon$
 $T o FT'$
 $T' o * FT' \mid \epsilon$
 $F o (E) \mid \mathbf{id}$

FIRST
$$(F) = \{(, id)\}$$

FIRST $(T) = \{(, id)\}$
FIRST $(E) = \{(, id)\}$
FIRST $(E') = \{+, \epsilon\}$
FIRST $(T') = \{*, \epsilon\}$

Follow(
$$E$$
) = Follow(E') = {), \$}
Follow(T) = Follow(T') = {+,), \$}
Follow(F) = {+, *,), \$}

$$E o TE'$$

#终结符号

id + * () \$

 $E' o + TE' \mid \epsilon$
 $T o FT'$
 $T' o * FT' \mid \epsilon$
 $F o (E) \mid id$

FIRST
$$(T) = \{(, id)\}$$

FIRST $(E) = \{(, id)\}$

 $FIRST(F) = \{(, id)\}$

$$\operatorname{First}(E') = \{+, \epsilon\}$$

$$FIRST(T') = \{*, \epsilon\}$$

FOLLOW(
$$E$$
) = FOLLOW(E') = {),\$}
FOLLOW(T) = FOLLOW(T') = {+,),\$}

$$\operatorname{OLLOW}(T) = \operatorname{FOLLOW}(T') = \{+, \},$$

$$Follow(F) = \{+, *, \}$$

文件结束符 \$ 的必要性

已匹配	栈	输入	动作
句型	E\$	id + id * id\$	
191	TE'\$	id + id * id\$	输出 $E \rightarrow TE'$
	FT'E'\$	id + id * id\$	输出 $T \rightarrow FT'$
	id <i>T'E'</i> \$	id + id * id\$	输出 $F \rightarrow id$
id	T'E'\$	+ id * id\$	匹配 id
id	E'\$	+ id * id\$	输出 $T' o \epsilon$
id	+ TE'\$	+ id * id\$	输出 $E' \rightarrow + TE'$
id +	TE'\$	id*id\$	匹配 +
id +	FT'E'\$	id∗id\$	输出 $T \rightarrow FT'$
id +	$\operatorname{id} T'E'$ \$	id * id\$	输出 $F \to id$
id + id	T'E'\$	* id\$	匹配 id
id + id	*FT'E'\$	* id\$	输出 $T' \rightarrow * FT'$
id + id *	FT'E'\$	id\$	匹配 *
id + id *	id $T'E'$ \$	id\$	输出 $F o \mathrm{id}$
'id + id ∗ id	T'E'\$	\$	匹配 id
id + id * id	E'\$. \$	输出 $T' ightarrow \epsilon$
id + id * id	\$	\$	输出 $E' \rightarrow \epsilon$

图 4-21 对输入 id + id * id 进行预测分析时执行的步骤

$$S \rightarrow i E t S + i E t S e S + a$$

 $E \rightarrow b$

提取左公因子

$$S \rightarrow i \ E \ t \ S \ S' + a$$

$$S' \rightarrow e \ S + \epsilon$$

$$E \rightarrow b$$

$S \rightarrow i E t S + i E t S e S + a$ $E \rightarrow b$

非终结符号	输入符号						
	a	b	e	i	t	\$	
S	$S \rightarrow a$			$S \rightarrow iEtSS'$	_		
S'			$S' \to \epsilon$ $S' \to eS$			$S' \to \epsilon$	
E		$E \rightarrow b$					

解决二义性: 选择 $S' \rightarrow eS$, 将 else 与前面最近的 then 关联起来

语法分析阶段的主题之三: 错误恢复

报错、恢复、继续分析

恐慌 (Panic) 模式: 丢弃输入、调整状态、假装成功

分号作为**语句**分隔符,可用作<mark>同步单词</mark> (Synchronizing Word)

丢弃输入:不断调用词法分析器,直到找到下一个分号

调整状态:不断出栈,直到找到一个状态 s 满足

 $GOTO[s, Stmt] \neq ERROR$

假装成功:将状态 GOTO[s, Stmt] 压栈,恢复语法分析过程

分号作为**语句**分隔符,可用作<mark>同步单词</mark> (Synchronizing Word)

丢弃输入:不断调用词法分析器,直到找到下一个分号

调整状态:不断出栈,直到找到一个状态 s 满足

 $GOTO[s, Stmt] \neq ERROR$

假装成功:将状态 GOTO[s, Stmt] 压栈,恢复语法分析过程

终结符 a 作为非终结符 A 的同步单词 $(\text{如}, a \in \text{Follow}(A))$

分号作为语句分隔符, 可用作同步单词 (Synchronizing Word)

丢弃输入:不断调用词法分析器,直到找到下一个分号

调整状态:不断出栈,直到找到一个状态 s 满足

 $GOTO[s, Stmt] \neq ERROR$

假装成功:将状态 GOTO[s, Stmt] 压栈,恢复语法分析过程

终结符 a 作为非终结符 A 的同步单词 $(\text{如}, a \in \text{Follow}(A))$

可为3个非终结符 A 设置相应的同步单词 a

Thank You!

Office 926 hfwei@nju.edu.cn