Gittins Indices for Bayesian Optimization: Insights from Pandora's Box

Qian Xie (Cornell ORIE)

Joint work with Raul Astudillo, Peter Frazier, Ziv Scully, and Alexander Terenin

ECGI'24

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Applications:

Hyperparameter tuning
Drug discovery
Control design

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Applications:

Hyperparameter tuning
Drug discovery
Control design

Goal: optimize expensive-to-evaluate black-box function

Applications:

Hyperparameter tuning
Drug discovery
Control design

x: hyperparameter/configuration

mean: prediction

variance: confidence/uncertainty

Objective: find global optimum $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$

Decision: evaluate a set of points

Goal: optimize expensive-toevaluate black-box function

Applications:

Hyperparameter tuning Drug discovery Control design

x: hyperparameter/configuration

Objective: find global optimum $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$

Decision: evaluate a set of points

Goal: optimize expensive-toevaluate black-box function

An unknown random o.5 function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian o.0 process prior

Applications:

Hyperparameter tuning Drug discovery Control design

x: hyperparameter/configuration

Decision: adaptively evaluate a set of points

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

T: time budget

Goal: optimize expensive-toevaluate black-box function

An unknown random function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian 0.0 process prior $\begin{array}{c} 1.0 \\ 0.5 \\ -0.5 \\ -1.0 \end{array}$

0.2

0.4

0.6

0.8

Applications:

Hyperparameter tuning
Drug discovery
Control design

x: hyperparameter/configuration

Objective: optimize best observed value at time *T*

0.0

$$\max_{\text{policy}} \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Decision: adaptively evaluate a set of points

1.0

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

T: time budget

⇒ Optimal policy unknown!

Continuous

Correlated

Correlated

Correlated

21

budget

- How to translate?
- Is Pandora's Box Gittins index (PBGI) good?

- Develop PBGI policy for Bayesian optimization
- Is Pandora's Box Gittins index (PBGI) good?

- Develop PBGI policy for Bayesian optimization
- Show performance against baselines on synthetic & empirical experiments

- Develop PBGI policy for Bayesian optimization
- Show performance against baselines on synthetic & empirical experiments

How is our PBGI policy different from baselines?

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

 $EI(x; y) = \mathbb{E}[(f(x) - y)^+]$

y_{best}: current best observed value

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

 $EI(x; y) = \mathbb{E}[(f(x) - y)^+]$

y_{best}: current best observed value

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

 $EI(x; y) = \mathbb{E}[(f(x) - y)^+]$

y_{best}: current best observed value

Other heuristics:

simple

- Upper Confidence Bound
- Thompson Sampling (TS)
- Predictive Entropy Search

slow

- Knowledge Gradient
- Multi-step Lookahead EI

Expected improvement

$$EI(x; y) = \mathbb{E}[(f(x) - y)^+]$$

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

y_{best}: current best observed value

New One-step Heuristic: PBGI

Other heuristics:

- Upper Confidence Bound
- Thompson Sampling (TS)
- Knowledge Gradient
- Predictive Entropy Search
- Multi-step Lookahead EI

Pandora's box

Pandora's box Gittins index

g(x): Gittins index function

PBGI policy: evaluate $argmax_x g(x)$

New One-step Heuristic: PBGI

Other heuristics:

- Upper Confidence Bound
- Thompson Sampling (TS)
- Knowledge Gradient
- Predictive Entropy Search
- Multi-step Lookahead EI

Pandora's box

λ: cost per sample

Pandora's box Gittins index

$$EI(x; y) = \mathbb{E}[(f(x) - y)^+]$$

g(x): solution to $EI(x; g(x)) = \lambda$

PBGI policy: evaluate $argmax_x g(x)$

Experiment Results: Gittins vs EI vs TS

• Propose easy-to-compute PBGI policy for Bayesian optimization

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show PBGI mostly outperforms baselines on synthetic & empirical experiments particularly on medium-high dimensions and relatively-large domains!

- Propose easy-to-compute Gittins index function for Bayesian optimization
- Show PBGI mostly outperforms baselines on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs

Heterogeneous-cost Experiment Results

- Show PBGI mostly outperforms baselines on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show PBGI mostly outperforms baselines on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs
- Open door for exotic BO (freeze-thaw, multi-fidelity, function network, etc.)

