Docket No. 217734US6

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Yuhei KOBAYASHI

GAU:

SERIAL NO: NEW-APPLICATION

EXAMINER:

FILED:

HEREWITH

FOR:

OPTICAL DISC RECORDING AND/OR REPRODUCING APPARATUS AND ABERRATION

ADJUSTMENT METHOD

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

SIR:

- □ Full benefit of the filing date of U.S. Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §120.
- □ Full benefit of the filing date of U.S. Provisional Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

COUNTRY	APPLICATION NUMBER	MONTH/DAY/YEAR
Japan	2000-403453	December 28, 2000
Japan	2001-076915	March 16, 2001

Certified copies of the corresponding Convention Application(s)

- are submitted herewith
- will be submitted prior to payment of the Final Fee
- were filed in prior application Serial No. filed
- were submitted to the International Bureau in PCT Application Number.

 Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
- ☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and
 - (B) Application Serial No.(s)
 - are submitted herewith
 - will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Gregory J. Maier

Registration No. 25,599

C. Irvin McClelland
Registration Number 21,124

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年12月28日

出 願 番 号

Application Number:

特願2000-403453

出 願 Applicant(s):

ソニー株式会社

2001年10月19日

特許庁長官 Commissioner, Japan Patent Office

特2000-403453

【書類名】

特許願

【整理番号】

0000524602

【提出日】

平成12年12月28日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

G11B 11/10

【発明者】

【住所又は居所】 東京都品川区北品川6丁目7番35号 ソニー株式会

社内

【氏名】

小林 由平

【特許出願人】

【識別番号】 000002185

【氏名又は名称】 ソニー株式会社

【代表者】

出井 伸之

【代理人】

【識別番号】

100067736

【弁理士】

【氏名又は名称】

小池 晃

【選任した代理人】

【識別番号】

100086335

【弁理士】

【氏名又は名称】 田村 榮一

【選任した代理人】

【識別番号】 100096677

【弁理士】

【氏名又は名称】 伊賀 誠司

【手数料の表示】

【予納台帳番号】

019530

【納付金額】

21,000円

特2000-403453

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9707387

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 光ディスク記録再生装置及び収差調整方法

【特許請求の範囲】

【請求項1】 記録トラックのトラックピッチを互いに異にして記録密度を異にする複数種類の光ディスクが選択的に装着されるディスク回転機構と、

上記ディスク回転機構に装着される光ディスクの種類を判別するディスク判別 手段と、

波長を略780nmとする光ビームを出射する光源と、開口数(NA)を略0.62となし上記光源から出射される光ビームを集光して上記光ディスクに照射する対物レンズと、上記対物レンズから上記光ディスクに対して照射される光ビームに収差を発生させる収差発生手段と、上記光ディスクからの反射光を受光する受光手段とが設けられた光ピックアップ装置とを有し、

上記ディスク判別手段によって判別される上記光ディスクの種類に応じて、上 記収差発生手段を駆動させて光ビームに発生する収差を補正し、上記光ディスク に対し情報信号の記録及び/又は再生を行うこと

を特徴とする光ディスク記録再生装置。

【請求項2】 上記収差発生手段は、液晶素子であり、この液晶素子が複数の電極パターンを有し、この電極パターンに印加する駆動電圧を制御することによって、上記光ディスクに集光される光ビームに発生する収差を補正することを特徴とする請求項1記載の光ディスク記録再生装置。

【請求項3】 記録トラックのトラックピッチを互いに異にして記録密度を異にする複数種類の光ディスクが選択的に装着されるディスク回転機構と、上記ディスク回転機構に装着される光ディスクの種類を判別するディスク判別手段と、波長を略780nmとする光ビームを出射する光源と開口数(NA)を略0.62となし上記光源から出射される光ビームを集光して上記光ディスクに照射する対物レンズと上記対物レンズから上記光ディスクに照射される光ビームに収差を発生させる収差発生手段と上記光ディスクからの反射光を受光する受光手段とが設けられた光ピックアップ装置とを有し、上記光ディスクを選択的に装着し、情報信号の記録及び/又は再生を行う光ディスク記録再生装置に対して、

上記光ディスクのうちトラックピッチが小となる光ディスクを上記ディスク回 転機構に装着し、上記光ピックアップ装置から上記収差発生手段を取り外し、上 記受光手段を用いて上記光ディスクから読み出した情報信号に基づいてフォーカ スバイアスを調整するフォーカスバイアス調整ステップと、

上記光ディスクのうち他の光ディスクを上記ディスク回転機構に装着し、上記 光ピックアップ装置に上記収差発生手段を装着し、上記収差発生手段を駆動させ 、上記受光手段を用いて上記光ディスクから読み出した情報信号に基づいて上記 収差発生手段を調整する収差発生手段調整ステップとを有すること

を特徴とする収差調整方法。

【請求項4】 上記収差発生手段は、液晶素子であり、上記液晶素子が複数の電極パターンを有し、この電極パターンに印加する駆動電圧を制御することによって、上記光ディスクに集光される光ビームに発生する収差を補正すること

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

を特徴とする請求項3記載の収差調整方法。

本発明は、記録トラックのトラックピッチを互いに異にして記録密度を異にする複数種類の光ディスクに対して情報信号の記録及び/又は再生を行う光ディスク記録再生装置、並びにそのような光ディスク記録再生装置の収差調整方法に関する。

[0002]

【従来の技術】

従来、情報信号の記録媒体として用いられる光ディスクにあっては、記録密度 の高密度化が図られている。例えば、直径を略65mmとされた光磁気ディスク にあっては、情報信号が記録される記録トラックのトラックピッチを1.6μm から0.95μmに狭小化し、記録密度を略5倍としたものが提案されている。

[0003]

このようにトラックピッチが狭小化された光磁気ディスクに対し情報信号の記録及び/又は再生(以下では、記録再生と称する)を行うためには、光磁気ディ

スクに形成された記録トラックを走査する光ビームのスポット径をより小径化する必要がある。これは、記録トラックのトラックピッチに比して光ビームのスポット径が大きくなると、記録トラックの正確なトラッキングが行えなくなり、所望の記録トラックに対し情報信号の記録再生を行うことができなくなってしまうからである。

[0004]

そこで、光磁気ディスクに照射される光ビームのスポット径を小径化するため、波長の短い光ビームを出射する光源を備えた光ピックアップ装置を用いることが提案されている。

[0005]

しかしながら、このような波長の短い光ビームを出射する光ピックアップ装置をトラックピッチを1.6μmとする光磁気ディスクの記録再生に用いると、記録トラック幅に比し光ビームのスポット径が小さすぎるため、所望の記録トラックを正確にトラッキングすることができなくなり、正確に情報信号の記録再生を行うことができなくなってしまう。

[0006]

そこで、記録トラックのトラックピッチを互いに異にして記録密度を異にする 複数種類の光磁気ディスクを共通の光ディスク記録再生装置により記録再生する ことを可能とするために、波長の短い光ビームと波長の長い光ビームとをそれぞ れ出射する複数の光源を有する光ピックアップ装置を備えた光ディスク記録再生 装置が提案されている。

[0007]

この光ディスク記録再生装置は、記録トラックのトラックピッチを互いに異に して記録密度を異にする複数種類の光磁気ディスクにそれぞれ適合するように、 複数の光源を切り替えて波長を異にする光ビームを出射するようになされている

[0008]

また、トラックピッチを1.6μmとする光磁気ディスクは、トラックピッチ を0.95μmとする光磁気ディスクと比して、複屈折が大きく、光磁気ディス ク中の光路を光ビームが透過する際に、光学系において非点収差が発生してしまう。このため、トラックピッチを1.6μmとする光磁気ディスク専用の光ディスク記録再生装置では、この非点収差の量を光学系全体で管理している。一方、トラックピッチ0.95μmとする光磁気ディスクは、トラックピッチを1.6μmとする光磁気ディスクと比して、複屈折が小さいことから、光学系において非点収差が抑制されている。

[0009]

【発明が解決しようとする課題】

しかしながら、上述したような、複数の光源を設けた光ピックアップ装置では、装置自体が大型化してしまい、小型化を図る光ディスク記録再生装置に用いる ことが困難となってしまう。

[0010]

また、波長の短い、例えば略650nmの光ビームを出射する半導体レーザは、波長の長い、例えば略780nmに光ビームを出射する半導体レーザに比して消費電力が大きい。したがって、消費電力が大きな半導体レーザを用いた光ピックアップ装置は、電池を電源とする携帯型の光ディスク記録再生装置には適さない。さらに、消費電力が大きな半導体レーザは、温度係数が大きく自己発熱量が大きいため、光ピックアップ装置に搭載したときに、光ビームの安定した発振を図るための放熱対策を施す必要があり、光ピックアップ装置の小型、薄型化を実現することが困難となる。

[0011]

さらにまた、波長の短い光ビームを出射する半導体レーザは、従来から広く用いられている 7 8 0 n mの波長の光ビームを発振する半導体レーザに比して高価であり、光ピックアップ装置の低価額化を図り、ひいては光ディスク記録再生装置の低価額化を図ることができない。

[0012]

また、トラックピッチを 0.95μmとする光磁気ディスク専用の光ディスク 記録再生装置を用いて、トラックピッチを 1.6μmとする光磁気ディスクに対 して情報信号の記録再生を行うと、記録再生光学系において非点収差が発生して しまうといった問題がある。

[0013]

また、トラックピッチを 0.95μ mとされた光磁気ディスク専用の記録再生光学系において、トラックピッチを 1.6μ mとされた光磁気ディスクに対して情報信号の記録再生を行う場合に、上述した非点収差の影響によりADIP (Address In Pregroove) のエラーレートであるADER (Address In Pregroove Error Rate)を検出する際のフォーカスバイアス最適点と、トラックピッチを 0.95μ mとされた光磁気ディスクのRF信号のフォーカスバイアス最適点とに差が生じるといった問題がある。

[0014]

具体的には、トラックピッチを 0.95 μmとする光磁気ディスクに対して情報信号の記録再生を行うために最適化した光ディスク記録再生装置のフォーカスバイアスに対して、トラックピッチを 1.6 μmとする光磁気ディスクの記録再生に最適化したフォーカスバイアスを電気的にオフセットする必要がある。

[0015]

しかしながら、個々の記録再生光学系に存在する非点収差により、このオフセットの最適値にはばらつきがあり、オフセットの調整が困難となる。

[0016]

そこで、本発明の目的は、光ディスク記録再生装置自体の一層の小型、薄型化を図るとともに、トラックピッチを0.95μmとする光磁気ディスクとトラックピッチを1.6μmとする光磁気ディスクとに対して、情報信号の記録再生を行うことを可能とされた光ディスク記録再生装置、並びにそのような光ディスク記録再生装置の収差調整方法を提供することを目的とする。

[0017]

【課題を解決するための手段】

以上のような問題を解決するために、本発明に係る光ディスク記録再生装置は、波長を略780nmとする光ビームを出射する光源と、開口数(NA)を略0.62となし上記光源から出射される光ビームを集光して光ディスクに照射する対物レンズと、対物レンズから光ディスクに対して照射される光ビームに収差を

発生させる収差発生手段と、光ディスクからの反射光を受光する受光手段とが設けられた光ピックアップ装置を備えている。そして、ディスク判別手段によって判別される光ディスクの種類に応じて、収差発生手段を駆動させて光ビームに発生する収差を補正し、光ディスクに対し情報信号の記録及び/又は再生を行うことを特徴とする。

[0018]

以上のように構成された本発明に係る光ディスク記録再生装置は、異なるトラックピッチとされた複数種類の光ディスクに対して情報信号の記録再生を行い、 且つ異なるトラックピッチとされた複数種類の光ディスクに対して情報信号の記 録再生が良好となるように、光学系で発生する非点収差を調整する。

[0019]

また、本発明に係る収差調整方法は、波長を略780nmとする光ビームを出射する光源と、開口数(NA)を略0.62となし上記光源から出射される光ビームを集光して光ディスクに照射する対物レンズと、対物レンズから光ディスクに対して照射される光ビームに収差を発生させる収差発生手段と、光ディスクからの反射光を受光する受光手段とが設けられた光ピックアップ装置を備えている光ディスク記録再生装置に対して、記録トラックのトラックピッチを互いに異にして記録密度を異にする複数種類の光ディスクのうちトラックピッチを小とされる光ディスクを装着し、光ピックアップ装置から収差発生手段を取り外し、受光手段を用いて光ディスクから読み出した情報信号からフォーカスバイアスを調整するフォーカスバイアス調整ステップを有している。また、光ディスクのうち他の光ディスクを装着し、光ピックアップ装置に収差発生手段を装着し、この収差発生手段を駆動させ、受光手段を用いて光ディスクから読み出したADERに基づいて収差を発生させる収差発生手段調整ステップとを有することを特徴とする

[0020]

以上のように構成された本発明に係る収差調整方法は、異なるトラックピッチとされた複数種類の光ディスクに対して情報信号の記録再生を行い、且つ異なるトラックピッチとされた複数種類の光ディスクに対して情報信号の記録再生が良

好となるように、光学系で発生する非点収差を調整する。

[0021]

【発明の実施の形態】

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は以下で説明する実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において変更が可能であることは勿論である。本発明を適用した光ディスク記録再生装置の一構成例を図1に示す。

[0022]

光ディスク記録再生装置1は、記録媒体である光磁気ディスク2に対して光ビームを照射し、光磁気ディスク2から反射した光ビームを検出する光学系を有する光ピックアップ装置3と、光磁気ディスク2に対して記録すべき情報信号に応じて変調された外部磁界を印加する磁気ヘッド4と、光磁気ディスクを装着され、この光磁気ディスクを回転駆動させるディスク回転機構であるスピンドルモータ5とを備えている。

[0023]

また、光ディスク記録再生装置1において、磁気ヘッド4は、光磁気ディスク2を挟んで光ピックアップ装置3に対向するように配設され、光ピックアップ装置3と同期して光磁気ディスク2の内外周に亘って移動自在とされている。

[0024]

このような光ディスク記録再生装置1が備える光ピックアップ装置3は、光磁気ディスク2の信号記録面に照射される光ビームを出力する光源として半導体レーザ11を備えている。

[0025]

この半導体レーザ11には、波長を略780nmとする光ビームを出射するものであり、記録トラックのトラックピッチを約1.6μmとするCD等の光ディスクに対して情報の読み込みを行うために用いられる光ピックアップ装置の光源として広く用いられている。

[0026]

また、光ピックアップ装置3は、半導体レーザ11の一方の側面に、半導体レ

ーザ11側から順にグレーティング12と、ビームスプリッタ13とを備えている。

[0027]

グレーティング12は、3ビーム法によりトラッキングエラー信号を取得するために、半導体レーザ11から出射された光ビーム L_1 を主ビームとして2本の副ビームに分割する。

[0028]

ビームスプリッタ13は、光磁気ディスク2に照射される光ビームと光磁気ディスク2から反射される戻りの光ビームとを分離する。なお、ここでは、ビームスプリッタ13として、ウォラストンプリズムを用いている。

[0029]

また、光ピックアップ装置3は、ビームスプリッタ13の半導体レーザ11からの光ビームが透過する方向に、半導体レーザ11から所定の放射角もって出射される光ビームを平行光にするためのコリメータレンズ14と、このコリメータレンズ14により平行光とされた光ビームを集光し光磁気ディスク2の信号記録面上に照射する対物レンズ15とを備えている。

[0030]

また、光ピックアップ装置3は、ビームスプリッタ13の光磁気ディスク2から反射された戻りの光ビームを反射させる反射方向に、戻りの光ビームのカー回転角度を光強度に変換して出力する検光子16と、マルチレンズ17と、これら検光子16及びマルチレンズ17を透過した光磁気ディスク2から反射された光ビームを受光する受光手段であるフォトディテクタ18とを備えている。

[0031]

このうち、フォトディテクタ18は、受光した光磁気ディスク2から反射された戻りの光ビームの偏光面の回転角度の相違による光量の強弱に基づいて光磁気ディスク2に記録されたデータを電気信号に変換して出力する。

[0032]

ここで、光ビームを光磁気ディスク2上に集光して照射する対物レンズ15には、開口数(NA)を略0.62とするものが用いられる。この対物レンズ15

を透過して集光される波長を780nmとする光ビームは、焦点においてスポット径を略1.53μmとするビームスポットを形成する。すなわち、波長が780nmの光ビームは、開口数(NA)を略0.62とする対物レンズ15により集光され、対物レンズ15の焦点に位置する光磁気ディスク2の信号記録面にスポット径を略1.53μmとするビームスポットを形成して照射される。

[0033]

ところで、直径を略 64 mmとする光磁気ディスク 2 において、図 2 に示すように、記憶容量を 140 MBとする第 1 の光磁気ディスク 2 a の記録トラック 2 1 は、トラックピッチTp1 を略 1 . 6 μ mとして形成されている。この記録トラック 2 1 は、データが記録される領域をグルーブ 2 1 G の両側に、トラッキング制御用及びアドレス検出用の信号を得るためのウォブルされたランド 2 1 L とが形成されてなる。

[0034]

また、直径を略 $6.4\,\mathrm{mm}$ とする光磁気ディスク 2 において、図 3 に示すように、記憶容量を $6.5\,\mathrm{OMB}$ とする第 2 の光磁気ディスク 2 b の記録トラック 2 2 は、トラックピッチTP $_2$ を略 0. $9.5\,\mu$ m として形成されている。この記録トラック 2.2 は、データが記録される領域をランド 2.2 L と、このランド 2.2 L の一方の側に、記録トラック 2.2 を分離するグルーブ 2.2 G $_1$ と、ランド 2.2 L の他方の側に、トラッキング制御用及びアドレス検出用の信号を得るためにウォブルされたグループ 2.2 G $_2$ とが形成されてなる。

[0035]

ところで、光磁気ディスク2の所望の記録トラックに対して適切に情報信号の記録再生を行うためには、光ピックアップ装置3から出射された光ビームが光磁気ディスク2の記録トラックを正確に走査する必要がある。光ビームが光磁気ディスク2の記録トラックを正確に走査するためには、少なくともトラッキング制御信号が生成され、このトラッキング制御信号に基づいて光ビームの走査位置が制御される必要がある。すなわち、トラッキング制御信号により光ビームが記録トラックを正確に走査するためには、光ビームが記録トラックの全幅に照射され、記録トラックの両側又は一方の側に設けられたウォブルされたランド21L、

22 L若しくはグルーブ21G、22G₁、22G₂を検出する必要がある。

[0036]

光ディスク記録再生装置1は、上述したトラックピッチを1.6μmとする第1の光磁気ディスク2aと、トラックピッチを0.95μmとする第2の光磁気ディスク2bとを、ひとつの光源である半導体レーザ11から出射される光ビームによって情報信号の記録再生を行う。

[0037]

このため、本発明を適用した光ディスク記録再生装置1は、コリメータレンズ 14と対物レンズ15との間に、非点収差を発生させる収差発生手段として液晶素子31を配置し、この液晶素子31を用いて非点収差を調整し、これによって ビーム径を調整して、トラックピッチを1.6μmとする第1の光磁気ディスク 2aとトラックピッチを0.95μmとする第2の光磁気ディスク 2bとに対し て情報信号の記録再生を行うことを特徴としている。

[0038]

具体的に、液晶素子31は、図4及び図5に示すように、液晶分子が封入された液晶板32を挟んで、第1の電極板33及び第2の電極板34が配置された構造を有している。このうち、第1の電極板33には、光ビームを透過する円形のアパーチャ35に相当する領域部分において、この円形の相対向する両側の一部を覆うように円弧状に形成され、互いに電気的に接続された一対の第1の電極パターン36a、36bにより囲まれた領域部分に形成された楕円形の第2の電極パターン37とが形成されている。一方、第2の電極板34には、第1の電極パターン38が形成されている。

[0039]

そして、第1の電極パターン36a、36bと共通電極パターン38との間及び第2の電極パターン37と共通電極パターン38との間には、これら電極パターンに接続された図示しない液晶駆動部からそれぞれ同電位または異なる電位の駆動電圧が印加される。これによって、液晶素子31は、液晶板32に駆動電圧を印加して、液晶板32内の液晶分子の配向を変化させる。

[0040]

これにより、光ディスク記録再生装置1は、半導体レーザ11から出射される 光ビームのビーム径を液晶素子31により調整して、トラックピッチを1.6 μ mとする第1の光磁気ディスク2aと、トラックピッチを0.95μmとする第 2の光磁気ディスク2bとに対して情報信号の記録再生を適切に行うことができ る。

[0041]

液晶素子31においては、第1の電極パターン36a、36bと共通電極パターン38との間に駆動電圧 V_{LC1} 、第2の電極パターン37と共通電極パターン38との間に駆動電圧 V_{LC2} を印加することにより、それぞれの駆動電圧 V_{LC1} 、 V_{LC2} に応じて液晶分子の配向が変化する。そして、液晶分子の配向が変化することによって、液晶素子31を透過する光ビームに位相遅れが発生する。この位相遅れは、液晶素子31に印加された駆動電圧 V_{LC1} 、 V_{LC2} に依存しており、液晶分子の配向と同じ方向の偏光成分に対して垂直方向の偏光成分に発生し、駆動電圧 V_{LC1} 、 V_{LC2} が異なることにより各電極パターンに応じて局所的に異なったものとなる。そして、この液晶素子31は、上述した位相遅れと光学系で発生した非点収差とを合成し、フォトディテクタ18により受光された光ビームの強度から、RMS(Root Mean Square)値が最小となるように駆動電圧 V_{LC1} 、 V_{LC2} を調整することで非点収差の補正を行っている。

[0042]

ここで、光ディスク記録再生装置1では、トラックピッチを1.6 μ mとする第1の光磁気ディスク2aに対して情報信号の記録再生を行う場合に、液晶素子31に対して印加する駆動電圧 V_{LC1} と駆動電圧 V_{LC2} とを異ならせ、非点収差を発生させてビームスポット径を制御する。また、トラックピッチを0.95 μ mとする第2の光磁気ディスク2bに対して情報信号の記録再生を行う場合に、駆動電圧 V_{LC1} 、 V_{LC2} を同電位として、非点収差を発生させないようにしている。これは、トラックピッチを0.95 μ mとする第2の光磁気ディスク2bの複屈折が小さく、非点収差が抑制されているからである。

[0043]

なお、トラックピッチを 0.9 5 μ mとする第 2 の光磁気ディスク 2 bに対して情報信号の記録再生を行う場合には、第 1 の電極パターン 3 6 a、 3 6 b と共通電極パターン 3 8 との間及び第 2 の電極パターン 3 7 と共通電極パターン 3 8 との間に印加する駆動電圧 V_{LC1} 、 V_{LC2} が、液晶素子 3 1 を透過した光ビームの液晶分子の配向と同じ方向の偏光成分と垂直方向の偏光成分との位相差が $\lambda/2$ となるように、電圧(以下では電圧 V_{LC} ($\lambda/2$) という)を予め設定しておく。

[0044]

ここで、液晶素子31に対して印加する駆動電圧 V_{LC1} 、 V_{LC2} を同電位として、上述した位相差が $\lambda/2$ 近傍となるように駆動電圧 V_{LC1} 、 V_{LC2} を変化させた際の位相差の変化を図6に示す。また、同様に液晶素子31に対して印加する駆動電圧 V_{LC1} 、 V_{LC2} を同電位として、上述した位相差が $\lambda/2$ 近傍となるように駆動電圧 V_{LC1} 、 V_{LC2} を変化させ、読み出されるRF信号のジッターの変化を図7に示す。

[0045]

これら図6及び図7に示すグラフより、上述した位相差が λ /2となる点において、最もジッターが低減しており、光磁気ディスク2に対して情報信号の記録再生を行うために最適であることがわかる。したがって、トラックピッチを0. 95 μ mとされた第2の光磁気ディスク2bに対して情報信号の記録再生を行う場合には、複屈折による非点収差を補正する必要がないので、液晶素子31に対して印加する駆動電圧 V_{LC1} 、 V_{LC2} を同電位として、この電圧を上述した位相差が λ /2となる電圧 V_{LC} (λ /2)とすることが好ましい。

[0046]

また、トラックピッチを 1.6μ mとする第1の光磁気ディスク 2 a に対して記録再生を行う場合には、第2の電極パターン 3 7 と共通電極パターン 3 8 との間に印加する駆動電圧 V_{LC2} を上述した第2 の光磁気ディスク 2 b に対して記録再生を行う場合と同様の電圧 V_{LC} ($^{\lambda}$ / $_{2}$) とし、第1 の電極パターン 3 6 a、3 6 b と共通電極パターン 3 8 との間に印加する駆動電圧 V_{LC1} と異なる駆動電圧とする。すなわち、液晶素子 3 1 に対して、駆動電圧 V_{LC1} は、光学

系の非点収差を補正できるように最適化された電圧(以下では電圧 V_{LC} (AS) という)となるように印加される。

[0047]

以上のような光ディスク記録再生装置1の各部の制御及び各種信号の流れを、 図8に示すようなブロック図を用いて説明する。

[0048]

光ディスク記録再生装置1は、マイクロコンピュータ61を備え、このマイクロコンピュータ61が、液晶素子31を駆動する液晶駆動部62と、フォーカス駆動部63と、トラック駆動部64とに接続されている。液晶駆動部62とフォーカス駆動部63とトラック駆動部64とは、光ピックアップ装置3に接続されており、マイクロコンピュータ61からの制御信号に基づいて、光ピックアップ装置3の駆動制御を行う。

[0049]

[0050]

ここで、トラックピッチを 1.6μ mとする第1の光磁気ディスク 2aに対して情報信号を記録再生する場合に、液晶素子 31の駆動電圧 V_{LC2} を電圧 V_{LC2} に固定し、液晶素子 31 の駆動電圧 V_{LC1} を変化させた場合の ADERの変化を図 9 に示す。

[0051]

ここで、ADERについて簡単に説明する。図2及び図3中に示す領域A、B、C、Dは、フォトディテクタ18が受光する光ビームの分割された各領域を示し、この領域A、B、C、Dに応じてフォトディテクタ18が分割されている。

フォトディテクタ18は、それぞれ領域A、B、C、Dに対応する部分により受 光した光ビームのレベルを演算し、これをADERとしている。すなわち、AD ERは、第1の光磁気ディスク2aの場合に、光ビームのレベルを(A+D)ー (B+C)となるように演算を行い、第2の光磁気ディスク2bの場合に、光ビ ームのレベルを(A+B+C+D)となるように演算を行うことにより求められ る。

[0052]

そこで、図9に示すように、駆動電圧 V_{LC1} は、ADERが抑えられている範囲の中間となるように調整される。したがって、トラックピッチを1. $6~\mu$ m とする第1の光磁気ディスク2~aに対して情報信号の記録再生を行う場合には、液晶素子3~1の駆動電圧 V_{LC1} を電圧 V_{LC} (AS) とすることが好ましい。

[0053]

また、光ディスク記録再生装置1は、マイクロコンピュータ61からの制御信号に基づいてフォーカス駆動部63が光ピックアップ装置3に対してフォーカス バイアスを印加しフォーカスサーボを行う。

[0054]

ここで、フォーカスバイアスは、図10に示すように、光ピックアップ装置3によって読み出されたRF信号が良好に再生できる、すなわちエラーレートが低く抑えられている範囲の中間となるように調整され、この調整されたフォーカスバイアス V_{FR} という。

[0055]

また、マイクロコンピュータ61は、光ピックアップ装置3が記録トラックを 正確に走査するようにトラック駆動部64を制御する。

[0056]

さらに、マイクロコンピュータ61は、図8に示すように、回転駆動部65に接続されている。そして、このマイクロコンピュータ61からの制御信号に基づいて回転駆動部65がスピンドルモータ5を制御し、光磁気ディスク2を所定の回転速度で回転駆動させる。

[0057]

また、光ピックアップ装置3は、RFアンプ66と接続されており、この光ピックアップ装置3によって再生されたRF信号をRFアンプ66に送り、RFアンプ66においてRF信号が増幅される。RFアンプ66は、DSP(Digital Signal Processor) 67と接続され、DSP67にRF信号を送り、DSP67においてRF信号からデジタル信号に変換される。

[0058]

DSP67は、マイクロコンピュータ61とECC (Error Correction Code) /ACIRC (Advanced Cross Interleave Reed-Solomon Code) 部68とに接続され、DSP67からADIPのエラーレートであるADERをマイクロコンピュータ61に送り、EFM (Eight to Fourteen Modulation) 信号をECC /ACIRC部68に送る。

[0059]

ECC/ACIRC部68は、マイクロコンピュータ61と接続され、入力されたEFM信号に複合処理及びエラー訂正処理を施し、そのエラーレートをマイクロコンピュータ61に送信する。

[0060]

マイクロコンピュータ 6 1 は、記憶手段である RAM(Random Access Memory) 6 9 と接続され、DSP 6 7 及びECC/ACIRC部 6 8 から送られる各種のエラー情報から、液晶駆動部 6 2 及びフォーカス駆動部 6 3 及びトラック駆動部 6 4 を調整し、調整された適切な値である電圧 V_{LC} (AS)、フォーカスバイアス V_{FB} をRAM 6 9 に記憶する。なお、RAM 6 9 としては、EPROM(Erasable Programmable Read-Only Memory)等を用いることができる。

[0061]

[0062]

具体的には、マイクロコンピュータ61によって、トラックピッチを 1.6μ mとする第1の光磁気ディスク2 aと判断された場合には、駆動電圧 V_{LC1} として電圧 V_{LC} (AS)、駆動電圧 V_{LC2} として電圧 V_{LC} ($^{\lambda}$ / 2)が読み出される。また、マイクロコンピュータ61によって、トラックピッチを0.95 $^{\lambda}$ mとする第 $^{\lambda}$ 2の光磁気ディスク $^{\lambda}$ 2 bと判断された場合には、駆動電圧 $^{\lambda}$ $^$

[0063]

以上のように構成された光ディスク記録再生装置1の収差を調整する方法について、図11に示すフローチャートに基づいて以下で説明する。

[0064]

まず、ステップS1において、トラックピッチを0.95μmとする第2の光磁気ディスク2bを光ディスク記録再生装置1に装着する。そしてマイクロコンピュータ61からの制御によって回転駆動部65がスピンドルモータ5を制御して、第2の光磁気ディスク2bを回転駆動させる。また、このとき、光ピックアップ装置3内の液晶素子31は取り外しておく。そして、マイクロコンピュータ61が第2の光磁気ディスク2bの種類を判別する。

[0065]

次にステップS2において、マイクロコンピュータ61の制御にってフォーカス駆動部63から光ピックアップ装置3にフォーカスバイアスを印加して、対物レンズ15の第2の光磁気ディスク2bに対する焦点距離を調整し、光ピックアップ装置3によって読み出されたRF信号のエラーレートに基づいてフォーカスサーボを行う。

[0066]

次にステップS3において、光ピックアップ装置3によって読み出されたRF信号のエラーレートに基づいてフォーカスバイアスが最適であるかどうかを、マイクロコンピュータ61が判断し、最適でない場合には、ステップS2に戻る。 一方フォーカスバイアスが最適である場合は、ステップS4に進む。 [0067]

ステップS4では、マイクロコンピュータ61の判断により最適とされたフォーカスバイアスをフォーカスバイアス V_{FB} としてRAM69に記憶する。

[0068]

次にステップS5において、トラックピッチを 0.95μmとする第2の光磁気ディスク2bを取り外し、トラックピッチを 1.6μmとする第1の光磁気ディスク2aを装着する。そしてマイクロコンピュータ61からの制御によって回転駆動部65がスピンドルモータ5を制御して、第1の光磁気ディスク2aを回転駆動させる。この際に光ピックアップ装置3において取り外されていた液晶素子31を取り付ける。そして、マイクロコンピュータ61が第1の光磁気ディスク2aの種類を判別する。

[0069]

次に、ステップS6において、マイクロコンピュータ61からの制御により液晶駆動部62が液晶素子31の第1の電極パターン36a、36bと共通電極パターン38との間及び第2の電極パターン37と共通電極パターン38との間にそれぞれ異なる駆動電圧 V_{LC1} 、 V_{LC2} を印加する。なお、第2の電極パターン37と共通電極パターン38との間には、駆動電圧 V_{LC1} として電圧 V_{LC2} といれて電圧 V_{LC3} といれてでは、 V_{LC3} といれて電圧 V_{LC3} といれでは、 V_{LC3} といれてでは、 V_{LC3} といれてでは、 V_{LC3} といれてでは、 V_{LC3} となるように変化させる。

[0070]

次に、ステップS7において、光ピックアップ装置3によって読み出されたR F信号からADERを検出し、このADERが最適であるかをマイクロコンピュータ61によって判断し、最適でない場合は、ステップS6に戻る。一方最適である場合には、ステップS8に進む。

[0071]

ステップS 8 において、マイクロコンピュータ 6 1 の判断によりADERが最適である場合に、液晶素子 3 1 に印加される駆動電圧 V_{LC1} 、すなわち電圧 V_{LC1} と V_{LC1} と V

[0072]

以上のような手順で、フォーカスバイアス V_{FB} 及び電圧 V_{LC} (AS) $^{\&}$

[0073]

なお、光ディスク記録再生装置 1 の収差を調整する際には、電圧 V_{LC} ($^{\lambda}$ / $_{2}$) を予め調整して R A M 6 9 に記憶してあるものとする。

[0074]

これらの調整は、光ディスク記録再生装置1を製品として出荷する前に行われていることが好ましく、光ディスク記録再生装置1の記録再生光学系の個体レベルの調整を簡単に行うことができる。

[0075]

以上のように本発明によれば、液晶素子31を用いて記録トラックのトラック ピッチを互いに異にし記録密度を異にする光磁気ディスク2に対して、情報信号 の記録再生を行うことができる。また、光磁気ディスク用の記録再生光学系にお いて、非点収差を簡単に補正することができる。また、光ディスク記録再生装置 1において、光ピックアップ装置3が複数の光源を有することが必要でないので 、装置の小型、薄型化、及び低価額化を達成することができる。

[0076]

【発明の効果】

上述したように、本発明は、記録トラックのトラックピッチを互いに異にして記録密度を異にする光磁気ディスクを同じ記録再生光学系で情報信号の記録再生を行う光ディスク記録再生装置の非点収差を簡単に調整することができる。このような調整を、光ディスク記録再生装置が製造される過程において行い、調整されたパラメータを記憶しておくことで、トラックピッチを異にする光磁気ディスクに対して情報信号を記録再生する際に、発生した非点収差を電気的なオフセットをかけなくても光学的に補正することができる。

【図面の簡単な説明】

【図1】

本発明に係る収差調整方法の対象となる記録再生装置を示すブロック図である

【図2】

第1の光磁気ディスクの記録トラックを示す概略平面図である。

【図3】

第2の光磁気ディスクの記録トラックを示す概略平面図である。

【図4】

本発明に用いられる液晶素子を示す概略斜視図である。

【図5】

液晶素子に設けられる第1及び第2の電極パターンを示す概略平面図である。

【図6】

液晶素子に印加する駆動電圧に対して、液晶素子を透過した光ビームのうち、 液晶分子の配向と同じ方向の偏光成分と垂直方向の偏光成分との位相差の変化を 示すグラフである。

【図7】

液晶素子に印加する駆動電圧に対して、読み出されるRF信号のジッターの変化を示すグラフである。

【図8】

本発明に用いられる収差調整装置の構成を示すブロック図である。

【図9】

液晶素子の第1及び第2の電極パターンと共通電極パターンとの間に印加する 駆動電圧に対する、RF信号のエラーレートの変化を示すグラフである。

【図10】

液晶素子の第1の電極パターンと共通電極パターンとの間に印加する駆動電圧 に対するADERの変化を示すグラフである。

【図11】

本発明に係る収差調整方法の流れを示すフローチャートである。

【符号の説明】

特2000-403453

1 記録再生装置、2 光磁気ディスク、3 光ピックアップ装置、4 磁気 ヘッド、5 スピンドルモータ、11 半導体レーザ、12 グレーティング、 13 ビームスプリッタ、14 コリメータレンズ、15 対物レンズ、16 検光子、17 マルチレンズ、18 フォトディテクタ、31 液晶素子 【書類名】. 図面 【図1】

【図2]

【図3】

【図4】

[図5]

【図6】

[図7]

[図8]

1

【図9】

【図10】

【図11】

【書類名】 要約書

【要約】

【課題】 光学系に発生した非点収差を調整する。

【解決手段】 異なるトラックピッチとされた複数種類の光磁気ディスク2に対して情報信号の記録再生を行う記録再生装置1において、液晶素子31を用いて個々の光学系において異なる非点収差の補正量を予め調整する。

【選択図】 図1

出願人履歴情報

識別番号

[000002185]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都品川区北品川6丁目7番35号

氏 名

ソニー株式会社