Path Color Switching

Supervisor: Jean-Charles Régin

Fissore Davide

Mars 30, 2023

Problem Description Problem Description

000

Problem Description

We want to generate sequences of musical "chords" with some known constraints as well as control on the complexity of the sequence.

Spotify

Problem Description

We want to generate sequences of musical "chords" with some known constraints as well as control on the complexity of the sequence.

Spotify

- Input An oriented graph whose arcs are colored with a set of colors, two nodes of the graphs s and t.
- Output A path \mathcal{P} going from s to t and which minimizes the number of color switch.

000

Definitions & notations

Color switch (CS): given two adjacent arcs a_1 and a_2 colored respectively with c_1 and c_2 , we have a color CS if $c_1 \neq c_2$.

Problem Description Problem Description

000

Definitions & notations

- Color switch (CS): given two adjacent arcs a_1 and a_2 colored respectively with c_1 and c_2 , we have a color CS if $c_1 \neq c_2$.
 - $\mathcal{G} = (V, A)$: A directed graph where V is the set of its nodes and A is the set of its arcs.
 - C: A finite set of colors.
 - \mathcal{F} : The coloring function defined as $\mathcal{F}: A \to 2^{\mathcal{C}}$.
- $\mathcal{P} = (v_1, \dots, v_k)$: A path going from v_1 to v_k .

Definitions & notations

- Color switch (CS): given two adjacent arcs a_1 and a_2 colored respectively with c_1 and c_2 , we have a color CS if $c_1 \neq c_2$.
 - $\mathcal{G} = (V, A)$: A directed graph where V is the set of its nodes and A is the set of its arcs.
 - C: A finite set of colors.
 - \mathcal{F} : The coloring function defined as $\mathcal{F}: A \to 2^{\mathcal{C}}$.
- $\mathcal{P} = (v_1, \dots, v_k)$: A path going from v_1 to v_k .
 - $w(\mathcal{P})$: The cost of the path \mathcal{P} which is given by the sum of its CS.

Problem decomposition

The problem can decomposed in small parts:

- Minimize CS on paths;
- Minimize *CS* on graphs.

Figure: A path \mathcal{P}

What is the color assignation minimizing $w(\mathcal{P})$?

Algorithm

Let $\mathcal{P} = (a_1, \dots, a_k)$ a path Let $\mathcal{T} : A \to 2^{\mathcal{C}}$ a function such that:

- $\mathcal{T}(a_1) = \mathcal{F}(a_1)$
- $\mathcal{T}(a_i) = \mathcal{F}(a_i) \cap \mathcal{T}(a_{i-1})$ if not empty else $\mathcal{F}(a_i)^1$

Algorithm

Let $\mathcal{P} = (a_1, \ldots, a_k)$ a path Let $\mathcal{T}: A \to 2^{\mathcal{C}}$ a function such that:

- \bullet $\mathcal{T}(a_1) = \mathcal{F}(a_1)$
- $\mathcal{T}(a_i) = \mathcal{F}(a_i) \cap \mathcal{T}(a_{i-1})$ if not empty else $\mathcal{F}(a_i)^1$

 $H:A\to\mathcal{C}$ the function minimizing $w(\mathcal{P})$ such that:

- $H(a_k) =$ a rnd elt from $\mathcal{T}(a_k)$
- $H(a_i) = H(a_i + 1)$ if $H(a_i + 1) \in$ $\mathcal{T}(a_i)$ else rnd from $\mathcal{T}(a_i)$

 $^{^{1}\}forall i>1$

Figure: A path \mathcal{P}

Start to compute $\mathcal{T}(\mathcal{P})$

Figure: Computing $\mathcal{T}(\mathcal{P})$

$$\mathcal{T}(a_1) = \mathcal{F}(a_1)$$

Figure: Computing $\mathcal{T}(\mathcal{P})$

$$\mathcal{T}(a_2) = \mathcal{F}(a_2) \cap \mathcal{T}(a_1)$$
 since not empty

Figure: Computing $\mathcal{T}(\mathcal{P})$

$$\mathcal{T}(a_2) = \mathcal{F}(a_2) \cap \mathcal{T}(a_1)$$
 since not empty

Figure: Computing $\mathcal{T}(\mathcal{P})$

$$\mathcal{T}(a_3) = \mathcal{F}(a_3) \cap \mathcal{T}(a_2)$$
 since not empty

Figure: Computing $\mathcal{T}(\mathcal{P})$

$$\mathcal{T}(a_3) = \mathcal{F}(a_3) \cap \mathcal{T}(a_2)$$
 since not empty

Figure: Computing $\mathcal{T}(\mathcal{P})$

$$\mathcal{T}(a_4) = \mathcal{F}(a_4)$$
 since $\mathcal{F}(a_4) \cap \mathcal{T}(a_3) = \varnothing$

Figure: Computing $\mathcal{T}(\mathcal{P})$

$$\mathcal{T}(a_5) = \mathcal{F}(a_5)$$
 since $\mathcal{F}(a_5) \cap \mathcal{T}(a_4) = \varnothing$

Figure: Computing $\mathcal{T}(\mathcal{P})$

$$\mathcal{T}(a_6) = \mathcal{F}(a_6) \cap \mathcal{T}(a_5)$$
 since not empty

Example run

Figure: Computing $\mathcal{T}(\mathcal{P})$

Start to compute $H(\mathcal{P})$

Figure: Computing $H(\mathcal{P})$

$$H(a_6) = black$$

Example run

Figure:

$$H(a_5) = black$$
 since $black \in \mathcal{T}(a_5)$

Example run

Figure:

$$H(a_5) = black$$
 since $black \in \mathcal{T}(a_5)$

Example run

Figure:

Nothing to do for a_4, a_3 and a_2 since they only have 1 color

Example run

Figure:

$$H(a_1) = red$$
 since $red \in \mathcal{T}(a_1)$

Proof

Minimize CS in Graph

Example

Algorithm with Matrixes

Complexity

Algo with MDD

Complexity

Proof

Minimize CS on Graphs 0000 \bullet

Benchmark 200

Minimize CS on Graphs

The allDiff variant

Graphs Benchmark Conclusio

●00 ○

Benchmark

My Implementation

Another representation of the problem

Benchmark

Benchmark

Sample of Spotify

Conclusion

Conclusion

Perspective

