Software Requirements Specification (SRS)

For projects

1531 (KU FE Module)

Version: 1.0

RESTRICTION OF USE, DUPLICATION, OR DISCLOSURE OF PROPRIETARY INFORMATION

This document contains proprietary information that is the sole property of DSIT. The document is submitted to the recipient for his use only. By receiving this document, the recipient undertakes not to duplicate the document or to disclose in part, or in whole any of the information contained herein to any third party without receiving beforehand written permission from DSIT.

B.A. Microwaves LTD.

ISO 9001

10 Marconi St. P.O.B. 25482, Haifa 3125401

Tel. +972-4-8202715

Fax. +972-4-8202716

bamw@bamicrowaves.co.il www.bamicrowaves.co.il

Table of Contents

1	Cha	ges	
2		ect 1532:	
		ntroduction	
	2.2	System block diagram	5
		Objective	
		Synthesizer registers values	
3		ÅRT	
	3.1	Electrical Specification	
		Host Communication Protocol	
	3.2.		
	3.3	Messages	9
	3.3.	•	
	3.3.		
	3.3.	Status Message	
	3.3.	<u> </u>	
	3.3.		
	3.3.	<u>-</u>	
	3.3.		
	3.3.	DAC control	18
4	Soft	vare Update Session	19
	4.1	Software Update Messages	20
5		ware	
	5.1	Schematic	21
	5.1.	MCU unit	21
	5.1.		
	5.2	Microcontroller	
		GPIO and Analog Pin Assignments	
6		endix A – How to set the registers values of sensitizer ADF-5355	

1 Changes

Name	Change	Version	Date
Roee Zinoue	First Edition.	1.0	07/01/18

2 Project 1532:

2.1 Introduction

This document describes the SW operation of the KU FE module.

This module will output range of frequencies according to digital data that given on a serial communication channel (based on UART-422).

The on board MCU will also configure an on board synthesizer (ADF-5355) unit to output RF signals at range of:

- a. From 950 2620 MHz to 10.95 11.7 GHz. (Tx RF signal).
- b. From 13.75 14.5 GHz to 950 2620 MHz. (Rx RF signal).

The MCU will also control the on board synthesizer by calibrated clock. The calibration will be made via on board CPLD unit and external DAC (PLL circuit).

The module will also be able to sample 6 analog inputs: Temperature, reverse / forward / real voltage and current and stored the samples info on internal FLASH memory section at the MCU (PIC18F45K22) unit.

At a user request those ADC samples (that stored on the internal MCU flash memory) can be read via serial communication at external PC application (among other parameters like: SW version, SW state, synthesizer registers values, RF output signal, etc...).

2.2 System block diagram

2.3 Objective

Main object of the on board MCU (PIC18F45K22):

- a. To configure the on board synthesizer (ADF-5355) to exit RF signals at the range of:
 - 1. Tx RF signal: From 950 2620 MHz to 10.95 11.7 GHz.
 - 2. Rx RF signal: From 13.75 14.5 GHz to 950 2620 MHz.
- b. To sample 6 analog inputs signal like: Temperature, reverse / forward / real voltage and current.
- c. To store ADC samples at internal flash memory section. And flush them at user selection (this request will be given on the serial channel).
- d. To communication via serial communication (RS-422) with external host station (PC) and send / receive data.
- e. To indicate the system user on system state / failures via external LEDs.

Main object of the on board CPLD unit:

a. To calibrate digital clock that is an input to the on board synthesizer unit (ADF-5355) via VCO circuit using external DAC.

2.4 Synthesizer registers values

The registers values that configure the RF output signals are calculated on the on board MCU at each system run. Please refer to document <u>appendix A</u> to see how they are calculated.

3 EUSART

3.1 Electrical Specification

The chosen communication channel with the external host is an RS422 with configuration:

- a. Half Duplex Tx / Rx channels.
- b. Baud-rate of: 115200 Kb/s.
- c. 8 bits, 1 start bit, 2 stop bit.
- d. Hardware control, No CTS, RTS.
- e. Voltage range: -7 to +7 VDC.

A detailed waveform diagram of the UART channel can be seen below:

3.2 Host Communication Protocol

The communication protocol between host and microcontroller is a simple master/slave setup. The host always initiates communication by sending its command message. If the microcontroller receives a correct message (framing and CRC are correct), it sends back an ACK replay. If the received message is a request a data from the MCU unit, the returned data will should be treated as an ACK by the host.

If a packet is received with an error, the unit will not respond and the host should treat the sent packet as lost. The timeout for a lost packet is approx. 10ms and 10 continues lost packets.

The packets content is sent on the RS422 channel using an RFC1662 (PPP in HDLC-like Framing) inspired implementation and is protected by an 8bit CRC as required in the RFC.

Packet length is devised from the framing mechanism.

The RFC1662 specification guarantees that the framings char will not appear in the data payload by using an "escape" mechanism, each byte is in the message is compared to the framing character (0x7e) and to the escape character (0x7d) and if it is equal to one of them than the character is 'escaped' by inserting a 0x7d in-front of it in the message and then XORing the character with 0x20. As a byproduct of the escape method, the message length can increase by 100% + 2 framing bytes + 1 CRC byte.

The RFC1662 protocol defines the use of a CRC on the packet to ensure that a correct packet has been received. The CRC polynom used in the MFE is $x^8 + x^2 + x + 1$ and will be implemented via a lookup table (and a XOR calculation per byte).

The host can send up to 2000 messages per second to the MCU unit.

3.2.1 Packet Structure

Description about packet structure: Each request from host to MCU will get feedback (ACK) message response.

3.2.1.1 From host to MCU – request packet

Byte #	Value	Details
0 – 1	0xA5 0x5A	Frame Start Chars.
2	MSG_GROUP	Message group.
3	MSG_REQ	Message request type.
N >= 0		Number of data bytes.
D = N		Data.
4 – 5	CRC	CRC-16 code.

Each request consist 6 fixed bytes + N bytes of data in single request frame.

3.2.1.2 From MCU to host – response packet

Byte #	Value	Details
0 – 1	0xA5 0x5A	Frame Start Chars.
2	MSG_GROUP	Message group.
3	MSG_RESP	Message response type.
N >= 0		Number of data bytes.
D = N		Data.
4 – 5	CRC	CRC-16 code.

Each response consist 6 fixed bytes + N bytes of data in single request frame.

3.3 Messages

This section defines all messages groups transmitted from the external host to the MCU. All messages are transmitted as hexadecimal data bytes.

Fields that are more than 1 byte long, will be passed in a little-endian format, meaning that the first byte is the least significant and last byte is most significant.

All fields in the messages below that have no explicit size defined, are 8 bit entities.

3.3.1 Messages request groups – from host to on board MCU

Group ID	Group name	Short group information
0x01	Control	Host set the MCU operation parameters
0x02	Status and version	Host get the MCU operation status and run-time statistics.
0x03	ADC configuration	Host set the MCU ADC configuration parameters.
0x04	ADC samples values	Host get the MCU ADC sampled values.
0x05	Synthesizer (Up / Down) configuration	Host get or set the Synthesizer up registers configuration parameters.
0x06	CPLD control	Host get or set the CPLD operation settings and run-time statistics.
0x07	DAC control	Host set the external CPLD DAC configuration.

KU FE V1.0 page 10 of 25 06/08/2017

3.3.2 Control Message

Group ID: 0x01

The control message group allows the external host to control the operation of the MCU.

Request packet info (MSG_REQ):

Byte MSG_REQ value	Name	Description
0x1	MCU reset	Reset the MCU.
0x2	CPLD reset	Reset the CPLD.
0x3	P.A Enable	Enable the P.A.
0x4	RS-422 baud selection	Set the MCU baud-rate speed.
0x5	Test LEDs	Insert the 2 connected Leds to blink mode test (the Leds will blink for 10 sec at 1 sec toggle time interval).

Baud-rate selection data:

Data Byte value	Baud-rate [bits/sec]
0x1	9600
0x2	19200
0x3	57600
0x4	115200
0x5	921600

Byte MSG_RESP value	Name	DATA size	Description
0x3	P.A Enable OK	0	ACK packet response bit to indicate that the MCU set this option
0x4	Set serial baud- rate OK		ACK packet response bit to indicate that the MCU set this option
0x5	Test LEDs ok	0	Leds test start indication.

3.3.3 Status Message

Group ID: 0x02

The status message group allows the external host to read statistic from the on board mcu such as run time and the on board MCU FW version.

Request packet info (MSG_REQ):

Byte MSG_REQ value	Name	Description
0x1	Get run time (mins).	Request from the on board MCU the run time (power on) in time format (HH:MM:SS).
0x2	Get MCU FW programed date.	Request from the on board MCU the date the last programming was preformed (YY:MM:DD)
0x3	Set the MCU FW programed date.	Set the on board MCU the F.W date in format (YY:MM:DD)
0x4	Get MCU serial number.	Request from the on board MCU the unique serial number (6 Bytes) that was written in the EEPROM memory during calibration progress.
0x5	Set the MCU serial number.	Set the on board MCU the unique serial number (6 Bytes), this number will set on the MCU EEPROM memory section.

Byte MSG_RESP value	Name	DATA size (Bytes)	Description
0x1	MCU run time value.	6	MCU run time in format: HH:MM:SS.
0x2	MCU programed date value.	6	The last programed date in format: YY:MM:DD.
0x3	Set MCU programed date OK	0	ACK packet response bit to indicate that the MCU set this option.
0x4	MCU card serial number value.	6	MCU serial.
0x5	Set MCU serial number OK	0	ACK packet response bit to indicate that the MCU set this option.

3.3.4 ADC configuration Message

Group ID: 0x03

The ADC configuration Message group allows the external host to set the internal on board MCU ADC unit registers configuration values.

Request packet info (MSG_REQ):

Byte MSG_REQ value	Name	Description
0x1	ADC enable	Enable / disable the internal MCU ADC unit.
0x2	ADC Vref negative	Select the ADC negative voltage reference source.
0x3	Analog Channel sample Select	Set ADC to sample single channel (CH: 0 -27) or range of channels (set by host application) in circular mode.
0x4	ADC Vref positive	Select the ADC positive voltage reference source.
0x5	Conversion Result Format	Select if the ADC conversion results are Right justified or Left justified.
0x6	Conversion Clock Select	Select the ADC clock source.

ADC channel selection:

Data Byte value	Channel name
0x1	Pre-Amp Temperature.
0x2	Reverse analog voltage.
0x3	Reverse analog voltage.
0x4	Forward analog voltage.
0x5	Input to system analog voltage.
0x6	Current analog voltage.

Byte MSG_RESP value	Name	DATA size (Bytes)	Description
0x1	Set ADC enable OK	0	ACK packet response bit to indicate that the MCU set this option.
0x2	Set ADC Vref negative value OK	0	ACK packet response bit to indicate that the MCU set this option.
0x3	Set Vref positive value OK	0	ACK packet response bit to indicate that the MCU set this option.
0x4	Set Conversion Result Format OK	0	ACK packet response bit to indicate that the MCU set this option.
0x5	Set Conversion Clock Select	0	ACK packet response bit to indicate that the MCU set this option.

3.3.5 ADC samples values message

Group ID: 0x04

The ADC samples values message group allows the external host to get N samples from the internal on board MCU ADC unit.

This N values read from the internal flash memory.

Please note that the sample precision result (Sample resolution) define as:

$$Res = \frac{Vref}{2^{10}} [VDC]$$

At each conversion round the host define first the number of sampled results to receive (Samples >= 0) from the internal MCU ADC unit.

If there is more than 1 samples request, the samples will separate with chars @ @. Each sample results size is define as 10 bits (3 Bytes).

At the end of the conversion round the MCU will transmit frame that consist all the raw data that he sampled (this raw data stored at flash memory section during the conversion round till finish. Then the MCU will erase this memory section and prepare it to store new data).

Request packet info (MSG_REQ):

Byte MSG_REQ value	Name	Description
0x1	Request N bytes of samples (N >= 0)	Host request N samples from the internal MCU ADC unit.
0x2	Multiple factor	Host request N samples from the internal MCU ADC unit, all samples will multiple by M factor (M >= 0 && M <= 0xFF).
0x3	Divide factor	Host request N samples from the internal MCU ADC unit, all samples will device by D factor $(M \ge 0 \&\& M \le 0 xFF)$.

Byte MSG_RESP value	Name	DATA size (Bytes)	Data Range (Hexadecimal)	Description
0x1	N samples	B >= 0	$(0 \div 0x3FF) * M or (0 \div 0x3FF): D$	The return samples raw data

3.3.6 Synthesizer (Up / Down) configuration message

Group ID: 0x05

The Synthesizer (up / down) configuration message group allows the external host to set the configuration registers values of synthesizer (ADF-5355) up / down (Rx / Tx) units. To set the output frequency from the synthesizer unit the INT and FRAQ need first to set. As noted in Appendix B of this document.

Request packet info (MSG_REQ):

Byte MSG_REQ value	Name D	escription
		synthesizer down
0x01	Set synthesizer down AUTOCAL value	Host set the AUTOCAL register value of the up synthesizer down.
0x02	Set synthesizer down prescaler(PR1) value	Host set the prescaler register value of the up synthesizer down.
0x03	Set synthesizer down INT value	Host set the INT register value of the up synthesizer down.
0x04	Set synthesizer down FRAC1 value	Host set the FRAC1 register value of the synthesizer down.
0x05	Set synthesizer down FRAC2 value	Host set the FRAC2 register value of the synthesizer down.
0x06	Set synthesizer down MOD1 value	Host set the MOD1 register value of the synthesizer down.
0x07	Set synthesizer down MOD2 value	Host set the MOD2 register value of the synthesizer down.
0x07 – 0x0F	Reserved bytes	Reserved
		Synthesizer up
0x10	Set synthesizer up AUTOCAL value	Host set the AUTOCAL register value of the up synthesizer up.
0x11	Set synthesizer up prescaler value	Host set the prescaler register value of the up synthesizer up.
0x12	Set synthesizer up INT value	Host set the INT register value of the up synthesizer up.
0x13	Set synthesizer up FRAC1 value	Host set the FRAC1 register value of the synthesizer up.
0x14	Set synthesizer up FRAC2 value	Host set the FRAC2 register value of the synthesizer up.
0x15	Set synthesizer up MOD1 value	Host set the MOD1 register value of the synthesizer up.
0x16	Set synthesizer up MOD2 value	Host set the MOD2 register value of the synthesizer up.
0x07 – 0x0F	Reserved bytes	Reserved

Synthesizer registers data value:

Register name	Data bits size	Allowed range	Description
AC1	1	0 - 1	Disable automatic calibration Enable automatic calibration
PR1	1	0 – 1	0: Prescaler = 4/5 1: Prescaler = 8/9
INT	16	$PR: 0 \rightarrow INT = [23, 32767]$	Refer to Appendix B
FREQ1	24	0 – 0xFFFFFF	Refer to Appendix B
FREQ2	14	0 – 0x3FFF	Refer to Appendix B
MOD1	14	0 – 0x3FFF	Refer to Appendix B

Response packet info (MSG_RESP):

Response bit indicate all the request bits at their location. If they

Set: the MCU set the option on ok. Preset: the MCU fail to set this option.

3.3.1 CPLD control message

Group ID: 0x06

The CPLD control message group allows the external host to read and set the CPLD operation settings

Request packet info (MSG_REQ):

Byte MSG_REQ value	Name	Description
0x1	Get run time (mins).	Request from the on board MCU the CPLD run time (power on) in time format (HH:MM:SS).
0x2	Get CPLD FW programed date.	Request from the on board MCU the date the last programming on the CPLD was preformed (YY:MM:DD)
0x3	Set the CPLD FW programed date.	Set the on board CPLD the F.W date in format (YY:MM:DD)
0x4	Get CPLD serial number.	Request from the on board MCU the CPLD unique serial number (6 Bytes) that was written in the EEPROM memory during calibration progress.
0x5	Set the CPLD serial number.	Set the CPLD unique serial number (6 Bytes), this number will set on the MCU EEPROM memory section.

Byte MSG_RESP value	Name	DATA size (Bytes)	Description
0x1	MC CPLD U run time value.	6	CPLD run time in format: HH:MM:SS.
0x2	CPLD programed date value.	6	The last programed date in format: YY:MM:DD.
0x3	Set CPLD programed date OK	0	ACK packet response bit to indicate that the MCU set this option.
0x4	CPLD card serial number value.	6	MCU serial.
0x5	Set CPLD serial number OK	0	ACK packet response bit to indicate that the MCU set this option.

3.3.1 DAC control

Group ID: 0x07

The DAC control message group allows the external host to set the external DAC registers values throw written word that output from the CPLD unit.

Beside the digital word to be converted to analog voltage, we can program the DAC to operate at 4 power modes. This done by settings 2 bits in the convert register:

Request packet info (MSG_REQ):

Byte MSG_REQ value	Name	Description
0x1	Set ADC in Normal Operation mode	Host set the ADC to operate in normal voltage mode.
0x2	Set ADC in Power-Down A operation mode	Host set the ADC to operate in Power-Down (1 kΩ Load to GND) voltage mode.
0x3	Set ADC in Power-Down B operation mode	Host set the ADC to operate in Power-Down (100 kΩ Load to GND) voltage mode.
0x4	Set ADC in Power-Down C operation mode	Host set the ADC to operate in Power-Down (High Impedance Output) voltage mode.

Byte MSG_RESP value	Name	DATA size (Bytes)	Description
0x1	Set ADC in Normal Operation mode OK	0	ACK packet response bit to indicate that the MCU set this option.
0x2	Set ADC in Normal Operation mode OK	0	ACK packet response bit to indicate that the MCU set this option.
0x3	Set ADC in Normal Operation mode OK	0	ACK packet response bit to indicate that the MCU set this option.
0x4	Set ADC in Normal Operation mode OK	0	ACK packet response bit to indicate that the MCU set this option.

4 Software Update Session

The MFE software update component is a piece of software that is responsible for checking the integrity of the operational software, loading it and running it. The software update component is also responsible for getting a new software image from the host, verify its integrity and saving it to internal flash.

To start the software update process, a power up should be performed with the PROG_EN discrete line set to '0'. When PROG_EN equals '0' the software update process does not load the operational software from flash but instead waits for configuration data from the host.

The software update process will sample the PROG_EN discrete line for approx. TBD milliseconds. If while sampling the PROG_EN discrete its value does not equal '0' the software update process will load the operational software (if it exists) and jump to it.

As in the operational application, the communication channel is an RS422 Half Duplex, 1Mb/s communication channel as described in section 5.1.

Also, the software update component also uses the RFFC1662 framing as described in section 5.3 and the message / response packet structure is the same.

To verify that the software update component has indeed loaded correctly, the host should request the version string from the MFE. The Version string form the MFE software update component is in the form of B.x where B denotes that this is a software update component version.

When starting a new flash programming operation, the software update process will start by erasing the flash sections affected by the data received, this step is destructive and data saved on that sector will be lost.

The software update component cannot update itself, in case that the software update component needs to be updated a physical access to the MFE will be needed (a PICit3 or similar debugger will be needed to program the MFE controller via ICSP).

Calibration parameters are not programmed via the software update process, and will not be effected by a software upgrade.

4.1 Software Update Messages

As stated above, the software update component uses the same communication channel, framing and message format as the operational software, this allows the host to use the same codebase for communicating with the MFE software update component.

The MFE software update component can receive the following messages:

- Version Request.
- Set Data Line.
- Get Data Line.
- Finished Update Process.

The MFE will respond with the following responses:

- Version Response.
- Data Line Status.
- Data Line Data.
- Ack.

5 Hardware

5.1 Schematic

5.1.1 MCU unit

5.1.2 CPLD unit

KU FE V1.0 page 21 of 25 06/08/2017

5.2 Microcontroller

Recommended PIC	PIC18F45K22 – 8 bit core
Operating voltage	3.3V
Inputs (TTL / converter)	TBD
Outputs (TTL / converter)	TBD
POR	Available
Internal clock	8MHz and up to 64Mhz
Pin count	40

Flash Memory

- The PIC microcontroller has 32Kbytes of internal flash memory. This memory will be used for both the software update component software and for the operational software.
- RAM Memory
 - The PIC microcontroller has 1536 bytes of internal RAM, the software will use this memory for its stack & heap.
- Peripherals support:
 - o Connectivity: 2-UART, 2-SPI, 2-I2C2-MSSP(SPI/I2C).
 - o ADC: 28 ch, 10-bit.

5.3 GPIO and Analog Pin Assignments

Name in document	PIN Name	Net Name	Туре		
MCU power, clocks and programing pins:					
3.3 VDC Enable	VDD1	VDD1	Input Analog		
MCU_3p3V	RA0/AN0	MCU_3p3V	Input Analog		
Digital ground	VSS1	VSS1	Input Analog		
Program data Enable	RB7/PGD	PGD	Bi-directional Discrete		
Program clock Enable	RB6/PGC	PGC	Input Discrete		
System reset	MCLR/RE3	MCLRM	Input Discrete		
OSC1	OSC1/RA7	OSC1	Input Analog		
OSC2	OSC2/RA6	OSC2	Input Analog		
	RS-422 serial com	munication			
UART 422 RX	RC7/RX1	UART_RX	Input Discrete		
UART 422 TX	RC6/TX1/AN18	UART_TX	Output Discrete		
TXRX_MCU	RB0/INT0/AN12	TXRX_MCU	Input Discrete		
	ADC analog inputs				
RF_INDET	RF_INDET RE2/AN7		Input Analog		
FFWR1	VR1 RE1/AN6		Input Analog		
FFWR2 RE0/AN5		FFWR2	Input Analog		
RREV	RA5/AN4/C2OUT	RREV	Input Analog		

PA_TEMP	RD5/AN25	PA_TEMP	Input Analog		
UP_TEMP	RB1/INT1/AN10	UP_TEMP	Input Analog		
DOWN_TEMP	RB5/AN13/CCP3	DOWN_TEMP	Input Analog		
	System status indica	<mark>tion</mark>			
LED_S1	RC0	LED_S1	Output Discrete		
LED_S2	RB4/AN11	LED_S2	Output Discrete		
	Synthesizer RX dov	<mark>vn</mark>			
DOWN_SYNT_LD	RD4/AN24/SDO2	DOWN_SYNT_LD	Input Discrete		
DOWN_SYNT_DATA	C5/AN17/SDO1	DOWN_SYNT_DATA	Output Discrete		
DOWN_SYNT_CLK	RC4/SDA1/SDI1/AN16	DOWN_SYNT_CLK	Output Discrete		
DOWN_SYNT_LE	RD3/AN23	DOWN_SYNT_LE	Output Discrete		
DOWN_SYNT_CE	RD2/AN22	DOWN_SYNT_CE	Output Discrete		
	Synthesizer TX up)			
UP_SYNT_LD	RD1/AN21/CCP4/SDA2/SDI2	UP_SYNT_LD	Input Discrete		
UP_SYNT_DATA	RD0/AN20/SCL2/SCK2	UP_SYNT_DATA	Output Discrete		
UP_SYNT_CLK	RC3/SCL/SCL1/SCK1	UP_SYNT_CLK	Output Discrete		
UP_SYNT_LE	RC2/CCP1/AN1	UP_SYNT_LE	Output Discrete		
UP_SYNT_CE	RC1/CCP2	UP_SYNT_CE	Output Discrete		
	DAC inputs - Need change conn	ections to CPLD			
DAC_DATA	RA4/C1OUT	DAC_DATA	Input Discrete		
DAC_CLK	RA3/AN3	DAC_CLK	Input Discrete		
DAC_SYNC	RA2/AN2	DAC_SYNC	Input Discrete		
AC_LDAC	RA1/AN1	AC_LDAC	Input Discrete		
Sensors					
28V_SNS	RB3/CCP2/AN9	28V_SNS	Input Discrete		
P7V_SENSE	P7V_SENSE	P7V_SENSE	Input Discrete		
CPLD connection					
CPLD_RX	RD6/AN26/TX2	CPLD_RX	Input Analog		
CPLD_TX	RD7/AN27/RX2	CPLD_TX	Output Discrete		

KU FE V1.0 page 24 of 25 06/08/2017

6 Appendix A – How to set the registers values of sensitizer ADF-5355

** Please refer to unit datasheet for full details.

The Sensitizer ADF-5355 is software programmable unit which mean that each of the unit registers data is given and controlled by 12 registers that each one have control buffer of 32-bit. This registers configuration values will output from the on board MCU unit.

The main equation to calculate the output RF signal from this synthesizer is:

$$RF_{OUT} = INT + \frac{FRAC1 + \frac{FRAC2}{MOD2}}{MOD1} \times (f_{PFD}) / RF \; Divider$$

Where:

RFOUT is the RF output frequency. INT is the integer division factor.

FRAC1 is the fractionality.

FRAC2 is the auxiliary fractionality.

MOD1 is the fixed 24-bit modulus.

MOD2 is the auxiliary modulus.

RF Divider is the output divider that divides down the VCO frequency.

And

$$f_{PFD} = REF_{IN} \times ((1 + D)/(R \times (1 + T)))$$

Where:

REFIN is the reference frequency input.

D is the REFIN doubler bit.

R is the REF reference division factor.

T is the reference divide by 2 bit (0 or 1).

All this registers values will set from the system host via serial communication channel.