第3章 交流电路

- 3.1 正弦交流电的基本概念
- 3.2 正弦量的相量表示法
- 3.3 单一元件参数电路
- 3.4 简单的正弦交流电路分析

3.6 正弦交流电路的功率

二、复数式表示法

直角坐标 — 复数坐标

横轴 — 实轴 — 表示复数的实部

纵轴 → 虚轴 → 表示复数的虚部

$$a = r \cos \varphi$$

 $b = r \sin \varphi$

$$\times$$
 ① 复数的代数式 $\longrightarrow A = a + jb$

$$\longrightarrow A = a + jb$$

② 复数的三角函数式
$$\longrightarrow A = r\cos\varphi + jr\sin\varphi$$
 欧拉公式:

$$A = re^{j\varphi}$$

$$\cos \varphi = \frac{e^{j\varphi} + e^{-j\varphi}}{2}$$

$$\times$$
 ④ 复数的极坐标式 $\longrightarrow A = r \angle \varphi$

$$\sin \varphi = \frac{e^{j\varphi} - e^{-j\varphi}}{2j}$$

相量的加减运算常用代数形式; 乘除运算常用极坐标形式;

例题:
$$u_A = 220\sqrt{2}\sin(314t)V$$
 $u_B = 220\sqrt{2}\sin(314t - 120^\circ)V$

$$u_B = 220\sqrt{2}\sin(314t - 120^\circ)V$$

要求: 写出幅值相量和有效值相量的代数形式和极坐标形式

$$\dot{U}_{Am} = r \angle \varphi = 220\sqrt{2} \angle 0^{\circ} = a + jb$$

$$= (220\sqrt{2}\cos 0^{\circ}) + j(220\sqrt{2}\sin 0^{\circ})$$

$$= 220\sqrt{2} V$$

$$\dot{U}_A = r \angle \varphi = 220 \angle 0^\circ = a + jb$$

$$= (220\cos 0^\circ) + j(220\sin 0^\circ) = 220 V$$

※ 结论: 用复数表示正弦交流电量时, 常用极坐标形式表示

$$U_m = U_m \angle \varphi_u$$

$$U = U \angle \varphi_u$$

常使用有效值相量

相量的加减运算常用代数形式; 乘除运算常用极坐标形式;

$$A_1 = a_1 + jb_1 = r_1 \angle \varphi_1$$

$$\dot{A}_2 = a_2 + jb_2 = r_2 \angle \varphi_2$$

$$=(a_1+a_2)+j(b_1+b_2)$$

$$=(a_1-a_2)+j(b_1-b_2)$$

$$=r_1r_2\angle(\varphi_1+\varphi_2)$$

$$=\frac{r_1}{r_2}\angle(\varphi_1-\varphi_2)$$

[例 3-3] 已知 A_1 =10+j5, A_2 =3+j4. 求 $A_1 \cdot A_2$ 和

$$A_{1} = 10 + j5 = 11.18 \angle 26.57^{0}$$

$$A_{2} = 3 + j4 = 5 \angle 53.13^{0}$$

$$A_{1} \cdot A_{2} = (11.18 \angle 26.57^{0})(5 \angle 53.13^{0})$$

$$= (11.18 \times 5) \angle (26.57^{0} + 53.13^{0})$$

$$= 55.90 \angle 79.70^{0}$$

$$\frac{A_{1}}{A_{2}} = \frac{11.18 \angle 26.57^{0}}{5 \angle 53.13^{0}}$$

$$= \frac{11.18}{5} \angle (26.57^{0} - 53.13^{0})$$

$$= 2.236 \angle - 26.56^{0}$$

如何计算线电压 $u_{AB} = u_A - u_B = 220\sqrt{2}\sin(\omega t) - 220\sqrt{2}\sin(\omega t - 120^\circ)$?

步骤1: 把瞬时值公式转成相量公式 哪个好算选哪个

幅值相量公式: $U_{ABm} = U_{Am} - U_{Bm}$ 有效值相量公式: $U_{AB} = U_{A} - U_{B}$

有向线段的长度为最大值

有向线段的长度为有效值

 $\varphi = \arctan -$

步骤2:根据瞬时值表达式先写出相量的极坐标形式 $r\angle \phi$

$$r$$
:表示有向线段的长度 φ :表示初相角 $+j$

$$U_A = 220 \angle 0^{\circ}$$
 $U_B = 220 \angle -120^{\circ}$

步骤3: 把极坐标形式转换为代数形式

$$a = r \cos \varphi$$
 $b = r \sin \varphi$

$$\dot{U}_{AB} = \dot{U}_A - \dot{U}_B = (220 + 0j) - (-110 - j110\sqrt{3}) = 330 + j110\sqrt{3}$$
 有效值

步骤4: 把代数形式转换为极坐标形式 = 220√3∠30° ≈ 380∠30°

步骤5: 利用极坐标写出瞬时值表达式→>注意相量符号的含义

交流电路的所有计算都遵循上述步骤 $u_{AB} = 380\sqrt{2}\sin(\omega t + 30^\circ)$

已知: $i_1 = 8\sin(314t + 60^\circ)A$

 $I_{m1} = 8 \angle 60^{\circ}$

B $i_2 = 6\sin(314t - 30^\circ)A$ $I_{m2} = 6\angle -30^\circ$

求: i = ? $i = 10\sin(314t + 23.1^{\circ})A$

KCL:任一瞬间,流入某个节点的电流总和=流出它的电流总和

※ KCL和KVL均仅对瞬时值成立,对有效值和最大值并不成立!

$$i=i_1+i_2 \quad I_m\neq I_{m1}+I_{m2} \Rightarrow I\neq I_1+I_2 \quad \dot{I}_m=\dot{I}_{m1}+\dot{I}_{m2} \quad \dot{I}=\dot{I}_1+\dot{I}_2$$

步骤1: 把瞬时值公式转成相量公式 (哪个好算选哪个)

步骤2:根据瞬时值表达式先写出相量的极坐标形式 $r \angle \phi$

步骤3: 把极坐标形式转换为代数形式 a+jb

$$\dot{I}_m = \dot{I}_{m1} + \dot{I}_{m2} = (4 + j6.9) + (5.2 - j3) = 9.2 + j3.9 = 10 \angle 23.1^\circ$$

步骤4: 把代数形式转换为极坐标形式 最大值

步骤5: 利用极坐标写出瞬时值表达式(幅值相量or有效值相量)

注意:瞬时值表达式和相量的转换跳板是极坐标 $r \angle \phi$

用相量分析交流电路步骤

- 1,将各交流物理量用相量表示
- 2,根据电路关系,对相量进行四则运算相量的加减运算常用代数形式; 乘除运算常用极坐标形式;
- 3,将相量计算结果再变换成正弦量形式

问题:交流电路中,两电源都是交流电源,已知各元件参数,求各元件上的电压电流值。其中电源

$$u_s(t) = 10\sqrt{2}\sin(\omega t + 60^\circ) A$$
$$i_s(t) = 5\sqrt{2}\sin(\omega t - 90^\circ) A$$

如何求解?

需先确定各元件上伏安关系。

第3章 交流电路

- 3.1 正弦交流电的基本概念
- 3.2 正弦量的相量表示法
- 3.3 单一元件参数电路
- 3.4 简单的正弦交流电路分析

3.6 正弦交流电路的功率

3.3 单一元件参数电路

电阻电路 3.2.1

(1) 电压与电流的关系

 \dot{z} $i = I_{\rm m} \sin \omega t = \sqrt{2} I \sin \omega t$

由欧姆定 u = R i

 $=\sqrt{2} RI \sin \omega t$

对照电压与电流, 可见

- (1) 频率相同

(2) 功率的计算

①瞬时功率 p: 瞬时电压与瞬时电流的乘

$$i = \sqrt{2} I \sin \omega t$$

$$u = \sqrt{2} U \sin \omega t$$

$$p = u \cdot i$$

$$= 2UI\sin^2 \omega t \ge 0$$

※ 结论: R 永远在消耗电能↓R 是耗能原件

② 平均功率 → 瞬时功率在一个周期内的平均值

 $\times P = UI = I^2R = U^2/R$ 交流设备的额定功率 = 平均功率

[例 3-4] 图 3-15 中电路, $\dot{U}=220 \angle 0^{\circ}\text{V}$,P=200W,求电流 \dot{I} 和电阻 R 。

解法一:对于图 3-15 中电阻电路,由P=UI 得

$$I = \frac{P}{U} = \frac{200}{220} \approx 0.91$$
A

电压与电流同相位, 故

15

 $\dot{I} \approx 0.91 \angle 0^0 \, \mathrm{A}$ 由 $\dot{U} = R \, \dot{I}$ 得

$$R = \frac{\dot{U}}{\dot{I}} = \frac{220 \angle 0^0}{0.91 \angle 0^0} = 242 \, (\Omega)$$

[例 3-5] 图 3-15 中电路, $\dot{U}=220 \angle 0^{0}V$,P=200W,求电流 \dot{I} 和电阻 R 。

解法二: 对于图 3-15 中电阻电路,由 $P = \frac{U^2}{R}$ 得

$$R = \frac{U^2}{P} = \frac{220^2}{220} = 242 \left(\Omega\right)$$

15

$$I = \frac{P}{U} = \frac{200}{220} \approx 0.91$$
A

3.3.2 电感元件

(1) 电压与电流的关系
$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

谈
$$i = \sqrt{2} I \sin \omega t$$

则
$$u = L \frac{d(\sqrt{2I\sin\omega t})}{dt} = \sqrt{2} I\omega L\cos(\omega t)$$

$$= \sqrt{2} I\omega L\sin(\omega t + 90^{\circ})$$

- ①频率相同
- ② 有效值 $U=\omega LI$
- ③ 电压超前电流 90°

$$\diamondsuit$$
 $X_L = \omega L = 2\pi f L$, $U_m = I_m X_L$
$$U = I X_L$$

$$U = I X_L$$

$$\omega \neq i X_L = L \frac{di}{dt}$$

$$\begin{array}{c|c}
\bullet \\
U = jX_L I
\end{array}$$

$$\dot{U} = j\omega L\dot{I} = jX_L\dot{I}$$

电感的伏安特性

(2) 瞬时功率
$$p = i \cdot u = U_{\rm m} I_{\rm m} \sin \omega t \sin (\omega t + 90^{\circ})$$

$$= U_{\rm m} I_{\rm m} \sin \omega t \cos \omega t = \frac{U_{\rm m} I_{\rm m}}{2} \sin 2 \omega t$$

$$= UI \sin 2 \omega t$$

$$P = \frac{1}{T} \int_0^T p \, dt$$
$$= \frac{1}{T} \int_0^T UI \sin (2\omega t) \, dt = 0$$

电感元件有的时刻是吸收 电功率,有的时刻发出电功率。 平均功率为零。

问题: L什么时候耗能? 什么时候供能?

瞬时功率: $p=i\cdot u=UI\sin 2\omega t$

结论: 电感元件是储能元件, 不消耗能量, 只和电源进行能量交换。

(4) 无功功率(衡量元件 储存能量的能

$$Q_L = \max(p) = UI = I^2 X_L = \frac{U^2}{X_L}$$
 (Var)

 $\diamondsuit X_L = \omega L$ 感抗 (Ω) $U_m = I_m X_L$ $U = I X_L$ $u \neq i X_L$

[例 3-5] 把一个 L=0.01H 的电感接到 f=50Hz, U=220V 的正弦电源上, (1) 求电感电流 I; (2) 如保持 U 不变, 而电源 f=5000Hz, 这时 I 为多少?

解: (1) 当 f=50Hz 时

$$X_L = 2\pi f L = 2 \times 3.14 \times 50 \times 0.01 = 3.14\Omega$$

$$I = \frac{U}{X_L} = \frac{220}{3.14} = 70A$$

(2) 当 f=5000Hz 时

$$X_L = 2\pi f L = 2 \times 3.14 \times 5000 \times 0.01 = 314\Omega$$

$$I = \frac{U}{X_L} = \frac{220}{314} = 0.70A$$

[例] 一只 L=20mH 的电感元件, 通有电流

$$i = 5\sqrt{2}\sin(314t - 30^{\circ})A$$

求(1)感抗 X_L ;(2)线圈两端的电压u;(3)平均功率。

解:
$$X_L = 2\pi f L = \omega L = 314 \times 0.02 = 6.28(\Omega)$$

(2) 线圈两端的电压 u

$$\dot{I} = 5 \angle -30^{\circ}$$

$$\dot{U} = j\omega L \dot{I} = j314 \times 0.02 \times 5 \angle -30^{\circ}$$

= 31.4\angle 60^{\circ}

$$u = 31.4\sqrt{2}\sin(314t + 60^{\circ})A$$

电感元件不消耗电功率,平均功率为零, P=0。

3.3.3 电容元件

(1) 电流与电压的关系

$$i = \frac{\mathrm{d}q}{\mathrm{d}t} = C \frac{\mathrm{d}u}{\mathrm{d}t}$$

$$\dot{z}$$
 $u = \sqrt{2} U \sin \omega t$

$$i = C \frac{du}{dt} = \sqrt{2} UC \omega \cos \omega t$$
$$= \sqrt{2} U \omega C \sin(\omega t + 90^{\circ})$$

对照电流与电压的表达式

- ①频率相同
- ②有效值 I=ωCU
- ③电流超前电压 90°

$$\varphi = \psi_u - \psi_i = -90^{\circ}$$

$$\begin{cases} u = \sqrt{2}U\sin\omega t \\ i = \sqrt{2}\omega CU\sin(\omega t + 90^{\circ}) \end{cases}$$

有效值
$$I = U \cdot \omega C$$
 或 $U = \frac{1}{\omega C} I$ 定义 $X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C}$

则 $U = X_C I$ X_C 称为电容电抗,简称为容抗,单位为欧姆 (Ω) 。 用相量形式写出电容电压与电流之间的关系

$$\dot{U} = -jX_C\dot{I} = -j\frac{1}{\omega C}\dot{I} = \frac{1}{j\omega C}\dot{I}$$
(3-19)

电容电路中相量形式的欧姆定律

$$\dot{U} = -jX_C\dot{I} = -j\frac{1}{\omega C}\dot{I} = \frac{1}{j\omega C}\dot{I}$$

$$\begin{cases} u = \sqrt{2}U\sin\omega t \\ i = \sqrt{2}U\omega C \cdot \sin(\omega t + 90^{\circ}) \end{cases}$$

(2) 瞬时功率

$$p = i \cdot u = U_{\rm m} I_{\rm m} \sin \omega t \sin (\omega t + 90^{\circ})$$

$$= \frac{U_{\rm m} I_{\rm m}}{2} \sin 2 \omega t = UI \sin 2 \omega t$$

(3) 平均功率(有功功

$${\stackrel{\text{prince}}{P}} = \frac{1}{T} \int_0^T p \, dt = \frac{1}{T} \int_0^T UI \sin (2\omega t) \, dt = 0$$

与电感元件相似, 电容元件有的时刻是吸收电功率, 有的时刻发出电功率。平均功率为零。

- (4) 无功功率(衡量元件 储存能量的能

瞬时功率: $p = i \cdot u = UI \sin 2\omega t$

[例 3-6] 把一个电容 C=318.5×10 $^-$ °F, 接到 f=50Hz, Ù =220 $\angle 0^0$ V 的正弦电源上, 试求 (1) 求电容电流 Ì; (2) 如保持 Ù 不变, 而电源 f=10°Hz, 这时 Ì 为多少?

解: (1) 当 f = 50Hz

$$X_C = \frac{1}{2\pi fC} = \frac{1}{2 \times \pi \times 50 \times 31.85 \times 10^{-6}} = 100(\Omega)$$

$$\dot{I} = \frac{\dot{U}}{-jX_C} = \frac{220\angle 0^0}{-j100} = 2.2\angle 90^0 (A)$$

(2) 当 f=10⁶Hz 时

$$X_C = \frac{1}{2\pi fC} = \frac{1}{2 \times \pi \times 10^6 \times 31.85 \times 10^{-6}} = 0.005(\Omega)$$

$$\dot{I} = \frac{\dot{U}}{-jX_C} = \frac{220\angle 0^0}{-j\,0.005} = 44 \times 10^3 \angle 90^0 \text{(A)}$$

单一参数电路中的基本关系

参数	阻抗	基本关系	相量式	相量图	
R	R	u = iR	$\dot{U} = \dot{I}R$		
L	$\mathbf{j}X_L = \mathbf{j}\omega L$	$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$	$\dot{U} = jX_L \dot{I}$	Ü	
C	$-jX_{C} = -j\frac{1}{\omega C}$	$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$	$\dot{U} = -jX_C\dot{I}$	i	

第3章 交流电路

- 3.1 正弦交流电的基本概念
- 3.2 正弦量的相量表示法
- 3.3 单一元件参数电路
- 3.4 简单的正弦交流电路分析
- 3.6 正弦交流电路的功率

用相量分析交流电路步骤

- 1,将各交流物理量用相量表示
- 2,根据电路关系列方程,对相量进行四则运算
- 3,将相量计算结果再变换成正弦量形式

优点:

- 1相量运算简单,
- 2 电感电容在相量下伏安特性类似线性关系。

[例 3-10] 图中 R=10 Ω , X_1 =12.5 Ω , X_2 =50 Ω , 电压源 \dot{U}_1 = \dot{U}_2 =220 \angle 0 0 V, 用支路法求各支路电流。

解:用支路电流法。列出一个KCL方程和二个KVL方程。 $\dot{I}_1+\dot{I}_2-\dot{I}_3=0$

$$jX_1\dot{I}_1 - jX_2\dot{I}_2 + \dot{U}_2 - \dot{U}_1 = 0$$

 $jX_2\dot{I}_2 + R\dot{I}_3 - \dot{U}_2 = 0$

代入数据并整理,得

$$\dot{I}_1 + \dot{I}_2 - \dot{I}_3 = 0$$
 $j12.5\dot{I}_1 - j50\dot{I}_2 = 0$
 $j50\dot{I}_2 + 10\dot{I}_3 - 220 = 0$

解得

$$\dot{I}_1 = 12.44 \angle -45^0 (A), \quad \dot{I}_2 = 3.11 \angle -45^0 (A),$$

 $\dot{I}_3 = 15.55 \angle -45^0 (A)$
30

[例 3-11] 例 3-10 中元件参数不变, 用戴维南定理求电流 Ì₃。

解: 去掉 R 所在支路, 画 出其余部分电路, 见图 (b) 其开路电压为

$$\dot{U}_{OC} = jX_2 \frac{\dot{U}_1 - \dot{U}_2}{jX_1 + jX_2} + \dot{U}_2$$

$$= j50 \times \frac{220 \angle 0^0 - 220 \angle 0^0}{j12.5 + j50} + 220 \angle 0^0$$

$$= 220 \angle 0^0$$

其等效阻抗见图(c),为

其等效阻抗见图(c),为

$$Z = \frac{jX_1 jX_2}{jX_1 + jX2}$$

$$= \frac{j12.5 \times j50}{j12.5 + j50}$$

$$= j10 = 10 \angle 90^{0}(\Omega)$$

其戴维南等效电路见图

[例 3-12] 用叠加原理求图中电容电压 Ù。已知 \dot{U}_S =50 \angle 0°V, \dot{I}_S =10 \angle 30°A, X_L =5 Ω , X_C =3 Ω 。

解: (1) 首先断去电流源, 计算电压源单独作用时的响应, 见图 (b)

$$\dot{U}' = \frac{\dot{U}_S}{jX_L - jX_C} \left(-jX_C\right) = \frac{50 \angle 0^0}{j5 - j3} \left(-j3\right) = 75 \angle 180^0$$

(2) 将电压源置为零 (用短路线替代), 计算电流源单独作用时的响应, 见图 (c)

(2) 将电压源置为零 (用短路线替代), 计算电流源单独作用时的响应, 见图 (c)

$$\dot{U}'' = \frac{jX_L \cdot (-jX_C)}{jX_L - jX_C} \dot{I}_S = \frac{j5 \cdot (-j3)}{j5 - j3} \times 10 \angle 30^0 = 75 \angle -60^0$$

(3) 电压源与电流源共同作用时的响应

$$U = U' + \dot{U}'' = 75\angle 180^{\circ} + 75\angle -60^{\circ} = 75\angle -120^{\circ} (V)$$

[扩展] 图中 R=10 Ω , L₁=0.5 H , X₂=0.1 H, 电压源各支路电流。其中 $\mathbf{u}_1(t)=220\sqrt{2}\sin(314\pi t)V$

 $\mathbf{u}_2(t) = 220\sqrt{2}\sin(628\pi t)V$

有两个不同频率电源怎么处理?

方法:叠加原理。

电路的过渡过程

	∵电容	和电	感是储能	龙元件-	>	岜量	的存储	者和释	放需要	一定时	间
	∴ 当电	路发	生改变日	付,含有	有储值	能元	件的	电路就	1会出现	L过渡过	程
	第2章	电路的	的过渡过程			(31)		电路	的暂态	,	
	2. 1	2. 1. 1	在件与电感元 电容元件	••••••		(31) (31)		求掌握	2		
	2. 2		路的过渡过程				٠.	ь Д. –	M 44 44	上大雨	江 加
r	2. 3	2. 3. 1	RC 电路的零	秦输入响应		(34)	> 1i	者 能	件的放	电至零	过柱
	2.4		RL电路的零状态	响应		(37) (38)	> fi	者能元	件的从	零充电	过程
きド	ا -	2. 4. 1 2. 4. 2	RC 电路的零 RL 电路的零	厚状态响应·		(40)		E0 104			
	2. 5		路的全响应 RC 电路的	And the time and the time of		(42) (42)			件在不 变换过	同存储: 程	能量
	_	2.5.2	RL电路的	全响应		(45)				9.509	

1	3.6.1	瞬时功率	(66)	
1	3. 6. 2	有功功率	(67)	
/	3. 6. 3	视在功率和无功功率	(67)	
3. 7	正弦交	流电路中的谐振	(69)	
	3.7.1	串联谐振	(69)	
	3.7.2	并联谐振	(71)	
3.8	非正弦	周期电流电路	(72)	
	3. 8. 1	非正弦量的谐波分析	(73)	
	3. 8. 2	非正弦周期量的有效值		
		和功率	(73)	_
	3.8.3	非正弦周期电流电路的		
		计算	(74)	
3.9	三相交	E流电路	(75)	
	3 9 1	二相由猶	(75)	

3.9.2 三相电源的连接方式 ····· (76) 3.9.3 三相交流电路的负载 ····· (77)

3.5 复杂交流电路的分析和计算 …… (64)=3.6 正弦交流电路的功率 …… (66)

	穿	3章	交流电路······	(49)
	五七	3. 1	正弦交流电的基本概念	(49)
	安水		3.1.1 周期电流	(49)
u i	掌握		3.1.2 正弦交流电	(49)
A A	7 2		3.1.3 交流电的有效值	(51)
TT		3.2	正弦量的相量表示法	(52)
• •	简单		3.2.1 正弦量的矢量表示法	(52)
U,I	- AT	\rightarrow	3.2.2 正弦量的相量表示法	(53)
C 11	了解		3.2.3 复数	(54)
			3.2.4 基尔霍夫定律的相量形式 …	(55)
	五上	3.3	单一元件参数电路	(55)
	安水		3.3.1 电阻电路	(55)
	掌握		3.3.2 电感电路	(57)
	7 1		3.3.3 电容电路	(58)
	不做	3.4	简单的正弦交流电路	(60)
	小似_	\rightarrow	3.4.1 RLC 串联交流电路 ······	(60)
	要求		3.4.2 阻抗的串联和并联	(62)

2