

Sums of toric ideals

DE ALBA CASILLAS Hernan, MORALES Marcel

Abstract

Given two toric ideals $I_1, I_2 \subset \mathbb{k}[\mathbf{x}]$, it is not always true that $I_1 + I_2$ is a toric ideal. Given $I_1, \dots, I_k \subset \mathbb{k}[\mathbf{x}]$ a family of toric ideals we give necessary conditions in order to have that $I_1 + \dots + I_k$ is a toric ideal.

1 Introduction

Let \mathbb{k} be a field. Let $\mathbb{k}[\mathbf{t}^\pm] := \mathbb{k}[\mathbf{t}_1^\pm, \dots, \mathbf{t}_m^\pm]$ the Laurent polynomial ring on m variables over a field \mathbb{k} . Let $\alpha = (\alpha^{(1)}, \dots, \alpha^{(m)}) \in \mathbb{Z}^m$, $\mathbf{t}^\alpha = t_1^{\alpha^{(1)}} \dots t_m^{\alpha^{(m)}}$ is called a monomial of $\mathbb{k}[\mathbf{t}]$. Let $Y_1 = \mathbf{y}^{\alpha_1}, \dots, Y_n = \mathbf{y}^{\alpha_n}$ be monomials in $\mathbb{k}[\mathbf{t}]$, we denote by $S := \mathbb{k}[Y_1, \dots, Y_m]$ the subalgebra of the polynomial ring over the field k generated by Y_1, \dots, Y_m . The set of monomials \mathcal{M} contained in S form a semigroup under multiplication, and the function $\deg : \mathcal{M} \rightarrow \mathbb{N}^m$ that assigns each monomial its exponent vector maps \mathcal{M} isomorphically onto a subsemigroup H of \mathbb{N}^m . Up to isomorphism, S is the semigroup algebra $\mathbb{k}[H]$. We will always assume that Y_1, \dots, Y_n are irreducible elements of \mathcal{M} , or, in other words, that they form a minimal system of algebra generators of S .

Now, let $\mathbb{k}[\mathbf{x}] := \mathbb{k}[x_1, \dots, x_n]$ the polynomial ring on n -variables and $\varphi : \mathbb{k}[\mathbf{x}] \rightarrow S$ the algebra morphism defined by $\varphi(x_i) = Y_i$. As S is a Laurent polynomial ring, S is an integer domain and $J = \text{Ker } \varphi$ is prime. We will say that J is a **toric ideal** of $\mathbb{k}[\mathbf{x}]$ and φ is a parametrization of J . The next two propositions are well known:

1.1 Proposition. *Let $A = [\alpha_1, \dots, \alpha_n] \in M_{m,n}(\mathbb{Z})$, $\pi : \mathbb{N}^n \rightarrow \mathbb{Z}^m$ the semigroup morphisms defined by $\pi(\mathbf{e}_i) = \alpha_i$ and $\varphi : \mathbb{k}[\mathbf{x}] \rightarrow \mathbb{k}[t^{\alpha_1}, \dots, t^{\alpha_n}]$ the algebra morphism defined by $\varphi(x_i) = t^{\alpha_i}$. Then $\ker \varphi = I_A := (\mathbf{x}^{u+} - \mathbf{x}^{u-} : \pi(u_+) = \pi(u_-))$. Moreover, for any $u \in \mathbb{N}^n$, $\varphi(z^u) = t^{A \cdot u}$.*

1.2 Proposition. *Let $\varphi : \mathbb{k}[\mathbf{x}] \rightarrow \mathbb{k}[\mathbf{t}^{\pm 1}]$ be a parametrization of $I := \text{Ker } \varphi$ such that $\varphi(x_i) = t^{\alpha_i}$. Let set $A = [\alpha_1, \dots, \alpha_n] \in M_{m,n}(\mathbb{Z})$, then $\text{rank}(A) = \dim(\mathbb{k}[\mathbf{x}]/I)$.*

1.3 Definition. Let $\varphi : \mathbb{k}[\mathbf{x}] \rightarrow \mathbb{k}[\mathbf{t}^{\pm 1}]$ a parametrization of $I := \text{Ker } \varphi$. We say that φ has maximal rank if $\dim(\mathbb{k}[\mathbf{x}]/I)$ is equal to cardinality of \mathbf{t} .

We say that $u = (u_1, \dots, u_n) \in \mathbb{N}^n$ and $v = (v_1, \dots, v_n) \in \mathbb{N}^n$ have disjoint support if for all $i \in \mathbb{N}$ such that $u_i \neq 0$ then $v_i = 0$ and reciprocally. Furthermore, for any $u \in \mathbb{Z}^n$ there is two unique vectors $u_+, u_- \in \mathbb{N}^n$ with disjoint supports such that $u = u_+ - u_-$. In this manner, by proposition 1.1 we deduce the next proposition:

1.4 Proposition. *Let $\varphi : \mathbb{k}[\mathbf{x}] \rightarrow \mathbb{k}[\mathbf{t}^{\pm 1}]$ be a parametrization of $\text{Ker } \varphi$. Then, setting*

$$\text{Ker}_{\mathbb{Z}} A := \{u \in \mathbb{Z}^n : Au = 0\},$$

$\text{Ker } \varphi = (\mathbf{x}^{u+} - \mathbf{x}^{u-} : u_+, u_- \in \mathbb{N}^n \text{ of disjoint support and } (u_+ - u_-) \in \text{Ker}_{\mathbb{Z}} A)$. ■

From the proposition 1.4, in order to describe a toric ideal I , it is enough to solve the linear homogeneous equation system over \mathbb{Z}

$$A \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = 0,$$

where A is a matrix related to the parametrization φ of I . We know from linear algebra that for any $Q \in M_{m,m}(\mathbb{Q})$ non-singular, $\text{Ker}_{\mathbb{Z}} A = \text{Ker}_{\mathbb{Z}} QA$, thus the next proposition is immediate.

1.5 Proposition. *If $\tilde{A} \in M_{m,n}(\mathbb{Z})$ is a matrix obtained from A by a left multiplication for a non-singular matrix $Q \in M_{m,m}(\mathbb{Q})$, then $I_{\tilde{A}} = \text{Ker } \varphi$ and the matrix \tilde{A} define a new parametrization of $\text{Ker } \varphi$ par $\tilde{\varphi}(x^u) = \mathbf{t}^{[\tilde{A}] \cdot u}$. In particular, if $\tilde{A} \in M_{m,n}(\mathbb{Z})$ is obtained by a finite sequence of elementary operations over the lines of A , then $I_{\tilde{A}} = \text{Ker } \varphi$ and the matrix B define a new parametrization of $\text{Ker } \varphi$. Reciprocally, if $I \subset \mathbb{k}[x_1, \dots, x_n]$ is a toric ideal, then $L = \{u \in \mathbb{Z}^n : x^{u+} - x^{u-} \in I\}$ is a saturated lattice. If $\{b_1, \dots, b_m\}$ is a basis of L and $B = [b_1 \dots b_m] \in M_{n,m}$ then any matrix $A \in M_{m,n}(\mathbb{Z})$ such that $AB = 0$, A is a parametrization of I .*

■

2 Sums of toric ideals

2.1 Définition. We consider two polynomial rings $\mathbb{k}[\mathbf{z}] := \mathbb{k}[z_1, \dots, z_n]$ and $\mathbb{k}[x][z] \cong \mathbb{k}[x, z_1, \dots, z_n]$. Let $f := f(z_1, \dots, z_n)$ be a polynomial in $\mathbb{k}[\mathbf{z}]$ and $g := g(z_1, \dots, z_n, x)$ a homogeneous polynomial in $\mathbb{k}[\mathbf{x}][\mathbf{z}]$. Writting $f = \sum_{i=1}^m a_i \mathbf{z}_i^{\beta_i}$ for some $a_i \in \mathbb{k}$ and $\beta_i \in \mathbb{N}^n$, we define the degree of f as $\deg_{\mathbb{N}}(f) = \max_{i=1}^m (|\beta_i|)$. The **homogenization** of f by x is the polynomial $f^{\text{hom}_x} = x^{\deg_{\mathbb{N}}(f)} f(\frac{z_1}{x}, \dots, \frac{z_n}{x})$. The **dehomogenization** of g by x is the polynomial $g^{\text{deh}_x} = g(z_1, \dots, z_n, 1) \in \mathbb{k}[\mathbf{z}]$. In case where there is not confusion about the variable x , we will only write f^{hom} and g^{deh} . In addition, let I be an ideal of $\mathbb{k}[\mathbf{z}]$ and J an ideal of $\mathbb{k}[\mathbf{z}, x]$. The homogenization of I by x is the ideal $I^{\text{hom}} = (f^{\text{hom}} : f \in I)$ and the dehomogenization of J by x is the ideal $J^{\text{deh}} = (g^{\text{deh}} : g \in J)$.

2.2 Lemma. [17, Lemma 4.14] *Let $A = [\alpha_1, \dots, \alpha_n] \in M_{m,n}(\mathbb{Z})$. The ideal I_A is homogeneous if and only if there exists a vector $\omega \in \mathbb{Q}^m$ such that $\alpha_i \cdot \omega = 1$ for any $i = 1, \dots, n$ for which $\alpha_i \neq 0$.*

2.3 Lemma. *Let $\mathbf{z} = (z_1, \dots, z_n)$ be a sequence of variables, x be a variable which does not belong to \mathbf{z} and $I \subset \mathbb{k}[\mathbf{z}, x]$ be a homogeneous toric ideal such that there exist a parametrization of I :*

$$\varphi : \mathbb{k}[\mathbf{z}, x] \rightarrow \mathbb{k}[\mathbf{t}^{\pm 1}, s]$$

with $\varphi(z_i) = \mathbf{t}^{\alpha_i} s^{\gamma_i}$ where $\alpha_i \in \mathbb{Z}^n$, $\gamma_i \in \mathbb{Z}$, and $\varphi(x) = s^{\gamma_{n+1}}$ where $\gamma_{n+1} \in \mathbb{Z}^$. Let $\tilde{\varphi} : \mathbb{k}[\mathbf{z}] \rightarrow \mathbb{k}[\mathbf{t}^{\pm 1}]$ be the morphism defined by $\tilde{\varphi}(z_i) = (\varphi(z_i))^{\text{deh}_s}$, then $(\text{Ker } \tilde{\varphi})^{\text{hom}} = I$.*

Proof. We set $\tilde{A} = [\alpha_1, \dots, \alpha_n] \in M_{m,n}(\mathbb{Z})$, $\gamma = (\gamma_1, \dots, \gamma_n)$ and

$$A = \left(\begin{array}{c|c} \tilde{A} & \mathbf{0} \\ \hline \gamma & \gamma_{n+1} \end{array} \right) \in M_{m,n}(\mathbb{Z}) \text{ so that } I := \text{Ker } \varphi = I_A.$$

Now, we are going to prove that $(\text{Ker } \tilde{\varphi})^{\text{hom}} = I$. Clearly $I \subset (\text{Ker } \tilde{\varphi})^{\text{hom}}$; so we only need to prove that $(\text{Ker } \tilde{\varphi})^{\text{hom}} \subset I$.

Let $\mathbf{z}^{u+} - \mathbf{z}^{u-} \in \text{Ker } \tilde{\varphi}$, where $u_+ = (u_+^{(1)}, \dots, u_+^{(n)})$ and $u_- = (u_-^{(1)}, \dots, u_-^{(n)}) \in \mathbb{N}^n$ have disjoint support. We should prove that $(\mathbf{z}^{u+} - \mathbf{z}^{u-})^{\text{hom}} \in I$. We recall that if $u = (u^{(1)}, \dots, u^{(n)}) \in \mathbb{Z}^n$, $|u| = \sum_{i=1}^n u^{(i)}$. Without lost of generality we can assume $|u_+| \leq |u_-|$. Setting $u_+^{(n+1)} \in \mathbb{N}$ such that $|u_+| + u_+^{(n+1)} = |u_-|$, we have that

$$(\mathbf{z}^{u+} - \mathbf{z}^{u-})^{\text{hom}} = \mathbf{z}^{u+} x^{u_+^{(n+1)}} - \mathbf{z}^{u-}.$$

Let set $\tilde{u}_+ = (u_+, u_+^{(n+1)}) \in \mathbb{N}^{n+1}$, and $\tilde{u}_- = (u_-, 0) \in \mathbb{N}^{n+1}$. Since I is homogeneous, thanks to lemma 2.2 there exists $\omega \in \mathbb{Q}^m$ and $\omega_{m+1} \in \mathbb{Q}$ such that $(\omega, \omega_{m+1}) \cdot \alpha'_i = 1$ for any $i = 1, \dots, n+1$, this is equivalent to

$$(\omega, \omega_{m+1}) \cdot A = (1, \dots, 1).$$

Thus,

$$\begin{aligned} |u_+| + u_+^{(n+1)} &= (1, \dots, 1) \cdot \tilde{u}_+ \\ &= ((\omega, \omega_{m+1}) \cdot A) \cdot (u_+, u_+^{(n+1)}) \\ &= \omega \cdot (\tilde{A} \cdot u_+) + \omega_{m+1}((\gamma, \gamma_{n+1}) \cdot \tilde{u}_+) \\ &= \omega \cdot (\tilde{A} \cdot u_+) + \omega_{m+1} \sum_{i=1}^{n+1} \gamma_i u_+^{(i)}, \end{aligned}$$

and

$$\begin{aligned} |u_-| &= (1, \dots, 1) \cdot \tilde{u}_- \\ &= ((\omega, \omega_{m+1}) \cdot A) \cdot (u_-, 0) \\ &= \omega \cdot (\tilde{A} \cdot u_-) + \omega_{m+1} \sum_{i=1}^n \gamma_i u_-^{(i)}. \end{aligned}$$

Besides $0 = \tilde{\varphi}(\mathbf{z}^{\mathbf{u}+} - \mathbf{z}^{\mathbf{u}-}) = \mathbf{t}^{\tilde{A} \cdot \mathbf{u}+} - \mathbf{t}^{\tilde{A} \cdot \mathbf{u}-}$, so $\tilde{A} \cdot u_+ = \tilde{A} \cdot u_-$. Furthermore, $|u_+| + u_{n+1} = |u_-|$, and then $\omega_{m+1} \sum_{i=1}^{n+1} \gamma_i u_+^{(i)} = \omega_{m+1} \sum_{i=1}^n \gamma_i u_-^{(i)}$. In addition, $\omega_{m+1} \neq 0$, because

$$1 = (\omega, \omega_{m+1}) \cdot \alpha'_{m+1} = \omega_{m+1} \gamma_{m+1}.$$

Thus,

$$\sum_{i=1}^{n+1} \gamma_i u_+^{(i)} = \sum_{i=1}^n \gamma_i u_-^{(i)}. \quad (1)$$

On the other side

$$\begin{aligned} \varphi(\mathbf{z}^{\mathbf{u}+} \mathbf{x}^{\mathbf{u}+^{(n+1)}} - \mathbf{z}^{\mathbf{u}-}) &= \varphi(z^u + x^u u_+^{(n+1)}) - \varphi(\mathbf{z}^{\mathbf{u}-}) \\ &= (\mathbf{t}, s)^{A \cdot u_+} - (\mathbf{t}, s)^{A \cdot u_-} \\ &= \mathbf{t}^{\tilde{A} \cdot u_+} s^{\gamma \cdot u_+} s^{\gamma_{n+1} u_+^{(n+1)}} - \mathbf{t}^{\tilde{A} \cdot u_-} s^{\gamma \cdot u_-} \\ &= \mathbf{t}^{\tilde{A} \cdot u_+} s^{\sum_{i=1}^{n+1} \gamma_i u_+^{(i)}} - \mathbf{t}^{\tilde{A} \cdot u_-} s^{\sum_{i=1}^n \gamma_i u_-^{(i)}} \\ &= \mathbf{t}^{\tilde{A} \cdot u_+} s^{\sum_{i=1}^{n+1} \gamma_i u_+^{(i)}} - \mathbf{t}^{\tilde{A} \cdot u_+} s^{\sum_{i=1}^n \gamma_i u_-^{(i)}} \\ &= \mathbf{t}^{\tilde{A} \cdot u_+} (s^{\sum_{i=1}^{n+1} \gamma_i u_+^{(i)}} - s^{\sum_{i=1}^n \gamma_i u_-^{(i)}}) = 0. \end{aligned}$$

The last inequality is due to the equation 1. By consequence

$$(\mathbf{z}^{\mathbf{u}+} - \mathbf{z}^{\mathbf{u}-})^{\text{hom}} = \mathbf{z}^{\mathbf{u}+} x^u u_+^{(n+1)} - \mathbf{z}^{\mathbf{u}-} \in I$$

and $(\text{Ker } \tilde{\varphi})^{\text{hom}} \subset I$. As we have already seen $I \subset (\text{Ker } \tilde{\varphi})^{\text{hom}}$, we conclude $(\text{Ker } \tilde{\varphi})^{\text{hom}} = I$. \blacksquare

2.4 Lemma. Let $A \in M_{m,n}(\mathbb{Z})$ where $m \leq n$ and $\text{rang}(A) = m$. Then, for any $i \in \{1, \dots, n\}$ such that the i -th column of A is not nul, there always exists a submatrix A' of m columns of A where the i -th column of A is a column of A' and A' is non-singular over \mathbb{Q} .

Proof. Since $\text{rank}(A) = m$, there exists a matrix $A_1 \in M_{m,m}(\mathbb{Z})$ with m columns of A such that A_1 is inversible. Let α_i be the i -th column of A with $\alpha_i \neq 0$ and $\alpha'_1, \dots, \alpha'_m \in \mathbb{Z}^m$ the m -columns of A_1 . Then $\{\alpha'_1, \dots, \alpha'_m\}$ is a basis of \mathbb{Q}^m . Thus, there exists $a_1, \dots, a_m \in \mathbb{Q}$ not all nul such that $\alpha_i = \sum_{j=1}^m a_j \alpha'_j$. We can assume $\alpha_1 \neq 0$, then $\alpha'_1 = \sum_{j=2}^m \frac{a_j}{\alpha_1} \alpha'_j - \frac{1}{\alpha_1} a_1$. So $\{\alpha_i, \alpha'_2, \dots, \alpha'_m\}$ is a basis of \mathbb{Q}^m and the matrix $A' = [\alpha_i, \alpha'_2, \dots, \alpha'_m]$ is non-singular over \mathbb{Q} . \blacksquare

2.5 Lemma. Let $\varphi : \mathbb{k}[\mathbf{x}] \rightarrow \mathbb{k}[t_1, \dots, t_{m'}, t_1^{-1}, \dots, t_{m'}^{-1}]$ be a parametrization of the ideal $I := \text{Ker } \varphi$ and $A^* \in M_{m',n}(\mathbb{Z})$ the matrix related to this parametrization such that

$$\text{rang}(A^*) = m \leq m'.$$

For any $i \in \{1, \dots, n\}$ such that $\varphi(x_i) \neq 1$, there exists a parametrization of I

$$\tilde{\varphi} : \mathbb{k}[\mathbf{x}] \rightarrow \mathbb{k}[t_1, \dots, t_m, t_1^{-1}, \dots, t_m^{-1}]$$

of maximal rank such that $\tilde{\varphi}(x_i) = t_j^q$, for some $q \in \mathbb{N}$ and $j \in \{1, \dots, m\}$.

Proof. By hypothesis $\varphi(x_i) = t_1^{\alpha_{i,1}} \cdots t_{m'}^{\alpha_{i,m'}} \neq 1$. Let $j' \in \{1, \dots, m'\}$ be the smallest integer such that $\alpha_{i,j'} \neq 0$. Let denote by β_r the r -th line vector of the matrix A^* . As $\text{rang}(A^*) = m$, there exist $\beta_{i_1}, \dots, \beta_{i_m} \in \{\beta_1, \dots, \beta_{m'}\}$ such that

$$\text{Span}_{\mathbb{Q}}(\beta_{i_1}, \dots, \beta_{i_m}) \cong \mathbb{Q}^m.$$

Thus there exist $b_1, \dots, b_m \in \mathbb{Q}$ not all null such that $\beta_{j'} = \sum_{k=1}^m b_k \beta_{i_k}$. We can assume $b_1 \neq 0$, then

$$\beta_{i_1} = \sum_{k=2}^m \frac{b_k}{b_1} \beta_{i_k} - \frac{1}{b_1} \beta_{j'}.$$

So $\beta_{j'}, \beta_{i_2}, \dots, \beta_{i_m}$ is a basis of $\text{Span}_{\mathbb{Q}}(\beta_{i_1}, \dots, \beta_{i_m}) = \mathbb{Q}^m$ and there exists a non-singular matrix $B \in M_{m',m'}(\mathbb{Q})$ such that

$$B \cdot A^* = \begin{pmatrix} A \\ \mathbf{0} \end{pmatrix} \in M_{m',n}(\mathbb{Q}), \text{ avec } A = (\beta_{j'}, \beta_{i_{k_2}}, \dots, \beta_{i_{k_m}})^T \text{ et } \mathbf{0} \in M_{m'-m,n}(\mathbb{Q}).$$

By the lemma 2.4 there exists a non-singular matrix $A' \in M_{m,m}(\mathbb{Z})$ of m columns of A containing the i -th column of A . Moreover, we can assume that $A = [A'|A'']$ where $A'' \in M_{m,n-m}$. Since A' is invertible, there exists $B \in M_{m,m}(\mathbb{Q})$ such that $BA' = I$. By this way $BA = [BA'|BA''] = [I|BA'']$. Let q be the smaller natural integer such that

$$q(BA) = (qB)A = [qI|q(BA'')] \in M_{m,n}(\mathbb{Z}).$$

From the proposition 1.5, $(qB)A$ defines a parametrization of I , $\tilde{\varphi} : \mathbb{k}[\mathbf{x}] \rightarrow \mathbb{k}[\mathbf{t}^{\pm 1}]$ of maximal rank ($\text{rank}(A') = m$) such that there exists $j \in \{1, \dots, m\}$ and $\tilde{\varphi}(x_i) = t_j^q$. ■

2.6 Theorem. Let $\mathbf{z}_1 = \{z_{1,1}, \dots, z_{1,n_1}\}$ and $\mathbf{z}_2 = \{z_{2,1}, \dots, z_{2,n_2}\}$ be two disjoint variable sets, x be a new variable and $I_1 \subset \mathbb{k}[\mathbf{z}_1, x]$, $I_2 \subset \mathbb{k}[\mathbf{z}_2, x]$ two homogeneous toric ideals such that x appears in at least one generator of a minimal generator system of I_1 and I_2 . Then:

1. $I_1 + I_2$ is a homogeneous toric ideal of $\mathbb{k}[\mathbf{z}_1, \mathbf{z}_2, x]$.
2. $\dim(\mathbb{k}[\mathbf{z}_1, \mathbf{z}_2, x]/(I_1 + I_2)) = \dim(\mathbb{k}[\mathbf{z}_1, x]/I_1) + \dim(\mathbb{k}[\mathbf{z}_2, x]/I_2) - 1$.

Proof. Without lost of generality we can suppose I_1 and I_2 are non degenerated, i.e., for any $i = 1, 2$, any variable of $\mathbf{z}_i \cup \{x\}$ appears in a minimal system of generators of I_i .

Before to prove this theorem, we make the following remarks:

We set $\mathbf{z} = \mathbf{z}_1 \cup \mathbf{z}_2$. From the lemma 2.5 there exist

$$\overline{\varphi}_1 : \mathbb{k}[\mathbf{z}_1, x] \rightarrow \mathbb{k}[\mathbf{t}^{\pm 1}, s^{\pm 1}] \text{ et } \overline{\varphi}_2 : \mathbb{k}[\mathbf{z}_2, x] \rightarrow \mathbb{k}[\mathbf{w}^{\pm 1}, s^{\pm 1}]$$

parametrizations of maximal rank of I_1 and I_2 respectively, where $\overline{\varphi}_i(x) = s^{\gamma_{i,n_i+1}}$ and $\gamma_{i,n_i+1} \in \mathbb{Z}^*$ for any $i = 1, 2$. We set m_1, m_2 the cardinals of \mathbf{t} and \mathbf{u} , repectively. We set also $\gamma = \text{lcm}(\gamma_{1,n_1+1}, \gamma_{2,n_2+1})$. We denote by $\overline{A}_1 \in M_{m_1+1, n_1+1}(\mathbb{Z})$ et $\overline{A}_2 \in M_{m_2+1, n_2+1}(\mathbb{Z})$ the matrices which represent the parametrizations $\overline{\varphi}_1$ and $\overline{\varphi}_2$, respectively. These matrices can be written as below:

$$\overline{A}_1 = \left(\begin{array}{c|c} \overline{A}'_1 & \mathbf{0} \\ \hline \alpha'_1 & \gamma_{1,n_1+1} \end{array} \right) \text{ et } \overline{A}_2 = \left(\begin{array}{c|c} \overline{A}'_2 & \mathbf{0} \\ \hline \alpha'_2 & \gamma_{2,n_2+1} \end{array} \right),$$

where $\overline{A}'_1 \in M_{m_1, n_1}(\mathbb{Z})$, $\overline{A}'_2 \in M_{m_2, n_2}(\mathbb{Z})$, $\alpha_1 = (\gamma_{1,1}, \dots, \gamma_{1,n_1}) \in \mathbb{Z}^{n_1}$ and $\alpha_2 = (\gamma_{2,1}, \dots, \gamma_{2,n_2}) \in \mathbb{Z}^{n_2}$. Multiplying the last line of each matrix \overline{A}_1 and \overline{A}_2 respectively, by $\frac{\gamma}{\gamma_{1,n_1+1}}$ and $\frac{\gamma}{\gamma_{2,n_2+1}}$, where

$\gamma = \text{lcm}(\gamma_{1,n_1+1}, \gamma_{2,n_2+1})$, we obtain from the proposition 1.5 other parametrizations φ_1 and φ_2 for I_1 and I_2 , respectively, namely

$$A_1 = \left(\begin{array}{c|c} A'_1 & \mathbf{0} \\ \hline \alpha_1 & \gamma \end{array} \right) \text{ et } A_2 = \left(\begin{array}{c|c} A'_2 & \mathbf{0} \\ \hline \alpha_2 & \gamma \end{array} \right),$$

respectively, where $\alpha_1 = \frac{\gamma}{\gamma_{1,n_1+1}} \cdot \alpha'_1 \in \mathbb{Z}^{n_1}$ et $\alpha_2 = \frac{\gamma}{\gamma_{2,n_2+1}} \cdot \alpha'_2 \in \mathbb{Z}^{n_2}$. Let $\overline{\varphi} : \mathbb{k}[\mathbf{z}, x] \rightarrow \mathbb{k}[\mathbf{t}^{\pm 1}, \mathbf{u}^{\pm 1}, s^{\pm 1}]$ be the morphism defined by $\overline{\varphi}(x) = s^\gamma$ and $\overline{\varphi}(z_{j,i}) = \varphi_i(z_{j,i})$ où $i = 1, 2$.

Now we are able to prove the theorem:

1. We set $J := \text{Ker } \overline{\varphi}$, then J is a toric ideal and we have that:

- J is homogeneous. This is obtained by the following reasoning:

Since I_1 and I_2 are homegeneous ideal, by the lemma 2.2, there exist $\omega_1 \in \mathbb{Q}^{m_1}$, $\omega_2 \in \mathbb{Q}^{m_2}$, $\omega' \in \mathbb{Q}$ and $\omega'' \in \mathbb{Q}$ such that

$$\begin{aligned} (1, \dots, 1) &= (\omega_1, \omega') \cdot A_1 = (\omega_1 \cdot A'_1 + \omega' \cdot \alpha_1, \omega' \cdot \gamma) \text{ et} \\ (1, \dots, 1) &= (\omega_2, \omega'') \cdot A_2 = (\omega_2 \cdot A'_2 + \omega'' \cdot \alpha_2, \omega'' \cdot \gamma). \end{aligned}$$

Thus $\omega' \cdot \gamma = \omega'' \cdot \gamma$ and by consequence $\omega' = \omega''$ Moreover, the matrix which represents the morphism $\overline{\varphi}$ is

$$A = \left(\begin{array}{c|c|c} A'_1 & \mathbf{0} & \mathbf{0} \\ \hline \mathbf{0} & A'_2 & \mathbf{0} \\ \hline \alpha_1 & \alpha_2 & \gamma \end{array} \right)$$

and

$$\begin{aligned} (\omega_1, \omega_2, \omega') \cdot A &= (\omega_1 \cdot A_1 + \omega' \cdot \alpha_1, \omega_2 \cdot A_2 + \omega' \cdot \alpha_2, \omega' \gamma) \\ &= (\omega_1 \cdot A_1 + \omega' \cdot \alpha_1, \omega_2 \cdot A_2 + \omega' \cdot \alpha_2, \omega' \gamma) \\ &= (1, \dots, 1, 1, \dots, 1, 1). \end{aligned}$$

Due to lemma 2.2, $J = \text{Ker } \overline{\varphi} = I_A$ is homogeneous.

- Let us prove that $J = I_1 + I_2$. It is clear that $I_1 + I_2 \subset J$. We need to prove that $J \subset I_1 + I_2$: Let $B := \mathbf{z}_1^{u_1} \mathbf{z}_2^{u_2} x^\delta - \mathbf{z}_1^{v_1} \mathbf{z}_2^{v_2} \in J$ homogeneous, where $\delta \in \mathbb{N}$ and $u_i, v_i \in \mathbb{N}^{n_i}$ for any $i = 1, 2$, with the property that if $(u_i)_j \neq 0$, then $(v_i)_j = 0$ and reciprocally. Thus

$$|u_1| + |u_2| + \delta = \deg_{\mathbb{N}}(\mathbf{z}_1^{u_1} \mathbf{z}_2^{u_2} x^\delta) = \deg_{\mathbb{N}}(\mathbf{z}_1^{v_1} \mathbf{z}_2^{v_2}) = |v_1| + |v_2|. \quad (2)$$

Furthermore, since

$$0 = \overline{\varphi}(B) \widetilde{\varphi_1}(\mathbf{z}_1^{u_1}) \widetilde{\varphi_2}(\mathbf{z}_2^{u_2}) s^{\lambda_1} - \widetilde{\varphi_1}(\mathbf{z}_1^{v_1}) \widetilde{\varphi_2}(\mathbf{z}_2^{v_2}) s^{\lambda_2}$$

and the variable sets \mathbf{t} , \mathbf{w} and s are disjoint,

$$\widetilde{\varphi_1}(\mathbf{z}_1^{u_1}) = \widetilde{\varphi_1}(\mathbf{z}_1^{v_1}) \text{ et } \widetilde{\varphi_2}(\mathbf{z}_2^{u_2}) = \widetilde{\varphi_2}(\mathbf{z}_2^{v_2}) \text{ et } \lambda_1 = \lambda_2.$$

So $\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1} \in (\text{Ker } \widetilde{\varphi_1})$ et $\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2} \in (\text{Ker } \widetilde{\varphi_2})$. By the lemma 2.3:

$$(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}} \in (\text{Ker } \widetilde{\varphi_1})^{\text{hom}} = I_1 \text{ et } (\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2})^{\text{hom}} \in (\text{Ker } \widetilde{\varphi_2})^{\text{hom}} = I_2.$$

- We will prove that B is a algebraic combination of $(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}}$ and $(\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2})^{\text{hom}}$.

In order to prove it, we consider three cases:

- (a) Let $|u_1| < |v_1|$. Then, there exists $\alpha \in \mathbb{N}$, $\alpha > 0$, such that

$$(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}} = \mathbf{z}_1^{u_1} x^\alpha - \mathbf{z}_1^{v_1}.$$

So

$$|u_1| + \alpha = |v_1|. \quad (3)$$

Now, we consider the following two subcases:

i. Let $|u_2| \leq |v_2|$. Then, there exist $\beta \in \mathbb{N}$, such that

$$(\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2})^{\text{hom}} = \mathbf{z}_2^{u_2}x^\beta - \mathbf{z}_2^{v_2}.$$

Then $|u_2| + \beta = |v_2|$. Furthermore, from the equations 3 and 2, we deduce that

$$(|u_1| + \alpha) + (|u_2| + \beta) = |v_1| + |v_2| = |u_1| + |u_2| + \delta.$$

By consequence $\alpha + \beta = \delta$ and

$$\begin{aligned} B &= \mathbf{z}_1^{u_1}\mathbf{z}_2^{u_2}x^\delta - \mathbf{z}_1^{v_1}\mathbf{z}_2^{v_2} \\ &= \mathbf{z}_1^{u_1}x^\alpha(\mathbf{z}_2^{u_2}x^\beta - \mathbf{z}_2^{v_2}) + \mathbf{z}_2^{v_2}(\mathbf{z}_1^{u_1}x^\alpha - \mathbf{z}_1^{v_1}) \\ &= \mathbf{z}_1^{u_1}x^\alpha(\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2})^{\text{hom}} + \mathbf{z}_2^{v_2}(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}} \in I_2 + I_1. \end{aligned}$$

ii. Let $|u_2| > |v_2|$. Then, there exists $\beta \in \mathbb{N}$, such that

$$(\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2})^{\text{hom}} = \mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2}x^\beta.$$

Thus $|u_2| = |v_2| + \beta$. Furthermore, from the equation 3 and 2, we deduce that

$$(|u_1| + \alpha) + |u_2| = |v_1| + (|v_2| + \beta) = (|v_1| + |v_2|) + \beta = (|u_1| + |u_2| + \delta) + \beta$$

So $\alpha = \delta + \beta$ and

$$\begin{aligned} B &= \mathbf{z}_1^{u_1}\mathbf{z}_2^{u_2}x^\delta - \mathbf{z}_1^{v_1}\mathbf{z}_2^{v_2} \\ &= \mathbf{z}_1^{u_1}x^\delta(\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2}x^\beta) + \mathbf{z}_2^{v_2}(\mathbf{z}_1^{u_1}x^\alpha - \mathbf{z}_1^{v_1}) \\ &= \mathbf{z}_1^{u_1}x^\delta(\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2})^{\text{hom}} + \mathbf{z}_2^{v_2}(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}} \in I_2 + I_1. \end{aligned}$$

(b) Let $|u_1| > |v_1|$. Then, from the equation 2 $|v_2| > |u_2|$. By this manner, there exist $\alpha, \beta \in \mathbb{N}$, $\alpha > 0$ and $\beta > 0$ such that

$$(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}} = \mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1}x^\alpha \text{ et } (\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2})^{\text{hom}} = \mathbf{z}_2^{u_2}x^\beta - \mathbf{z}_2^{v_2}.$$

So $|u_1| + (|u_2| + \beta) = (|v_1| + \alpha) + |v_2| = (|v_1| + |v_2|) + \alpha = (|u_1| + |u_2| + \delta) + \alpha$, this last equality is due to the equation 2. By consequence $\beta = \delta + \alpha$ and finally we have:

$$\begin{aligned} B &= \mathbf{z}_1^{u_1}\mathbf{z}_2^{u_2}x^\delta - \mathbf{z}_1^{v_1}\mathbf{z}_2^{v_2} \\ &= \mathbf{z}_2^{u_2}x^\delta(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1}x^\alpha) + \mathbf{z}_2^{v_2}(\mathbf{z}_2^{u_2}x^\beta - \mathbf{z}_2^{v_2}) \\ &= \mathbf{z}_2^{u_2}x^\delta(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}} + \mathbf{z}_2^{v_2}(\mathbf{z}_2^{u_2}x^\beta - \mathbf{z}_2^{v_2})^{\text{hom}} \in I_1 + I_2. \end{aligned}$$

(c) Let $|u_1| = |v_1|$. Then, from the equation 2, $|v_2| \geq |u_2|$. By this way, there exist $\beta \in \mathbb{N}$, such that

$$(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}} = \mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1} \text{ et } (\mathbf{z}_2^{u_2} - \mathbf{z}_2^{v_2})^{\text{hom}} = \mathbf{z}_2^{u_2}x^\beta - \mathbf{z}_2^{v_2}.$$

Thus $|u_1| + (|u_2| + \beta) = |v_1| + |v_2| = |v_1| + |v_2| = |u_1| + |u_2| + \delta$, this last equality is due to the equation 2. By consequence $\beta = \delta$ and we have:

$$\begin{aligned} B &= \mathbf{z}_1^{u_1}\mathbf{z}_2^{u_2}x^\delta - \mathbf{z}_1^{v_1}\mathbf{z}_2^{v_2} \\ &= \mathbf{z}_2^{u_2}x^\delta(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1}) + \mathbf{z}_2^{v_2}(\mathbf{z}_2^{u_2}x^\beta - \mathbf{z}_2^{v_2}) \\ &= \mathbf{z}_2^{u_2}x^\delta(\mathbf{z}_1^{u_1} - \mathbf{z}_1^{v_1})^{\text{hom}} + \mathbf{z}_2^{v_2}(\mathbf{z}_2^{u_2}x^\beta - \mathbf{z}_2^{v_2})^{\text{hom}} \in I_1 + I_2. \end{aligned}$$

It proves that $J \subset I_1 + I_2$ and we conclude $I_1 + I_2 = J := \text{Ker } \overline{\varphi}$.

Finally, by the remark 1.1 we conclude $I_1 + I_2$ is a toric homogeneous ideal.

2. We have proved that the matrix $A \in M_{m_1+m_2+1, n_1+n_2+1}(\mathbb{Z})$ which represents the parametrization $\overline{\varphi}$ of $I_1 + I_2$ is given by:

$$A = \left(\begin{array}{c|c|c} A'_1 & \mathbf{0} & \mathbf{0} \\ \hline \mathbf{0} & A'_2 & \mathbf{0} \\ \hline \alpha_1 & \alpha_2 & \gamma \end{array} \right).$$

By consequence: $\dim (\mathbb{k}[\mathbf{z}_1, \mathbf{z}_2, x]/(I_1 + I_2)) = \dim (\mathbb{k}[\mathbf{z}_1, x]/I_1) + \dim (\mathbb{k}[\mathbf{z}_2, x]/I_2) - 1$.

■

2.7 Proposition. Let $\mathbf{z}_1, \dots, \mathbf{z}_k$ be k disjoint sets of variables and for any $i = 1, \dots, k$, let I_i be a homogeneous toric ideal with the maximal rank parametrizations $\varphi_i : \mathbb{k}[\mathbf{z}_i] \rightarrow \mathbb{k}[\mathbf{t}_i^{\pm 1}]$. Then $\sum_{i=1}^k I_i$ is a homogeneous toric ideal with maximal rank parametrization

$$\varphi : \mathbb{k}[\mathbf{z}_1, \dots, \mathbf{z}_k] \rightarrow \mathbb{k}[\mathbf{t}_1^{\pm 1}, \dots, \mathbf{t}_k^{\pm 1}] \text{ the morphism defined by } \varphi(z_{i,j}) = \varphi_i(z_{i,j}).$$

Moreover

$$\dim (k[\mathbf{z}_1, \dots, \mathbf{z}_k]/(\sum_{i=1}^k I_i)) = \sum_{i=1}^k \dim (\mathbb{k}[\mathbf{z}_i]/I_i).$$

Proof. We set $J := \sum_{i=1}^k I_i$. It is clear that $J \subset \text{Ker } \varphi$. We will prove that $\text{Ker } \varphi \subset J$: Let m_1, m_2 be monomials of $\mathbb{k}[\mathbf{z}_1, \dots, \mathbf{z}_k]$ such that $b = m_1 - m_2$ is a generator of $\text{Ker } \varphi$. Furthermore, we write $m_1 = m_1^{(1)} m_1^{(2)} \cdots m_1^{(k)}$ and $m_2 = m_2^{(1)} m_2^{(2)} \cdots m_2^{(k)}$, where for any $1 \leq i \leq k$ $m_1^{(i)}$ and $m_2^{(i)}$ are monomials in $\mathbb{k}[\mathbf{z}_i]$. Since $\varphi(m_1) = \varphi(m_2)$ and $\mathbf{t}_1, \dots, \mathbf{t}_k$ are disjoint sets of variable, $\varphi(m_1^{(i)}) = \varphi(m_2^{(i)})$. So, for any $1 \leq i < j \leq k$:

$$\varphi_i(m_1^{(i)}) = \varphi(m_1^{(i)}) = \varphi(m_2^{(i)}) = \varphi_i(m_2^{(i)}),$$

thus $m_1^{(i)} - m_2^{(i)} \in \text{Ker } \varphi_i = \mathcal{I}_i$ and

$$m_1 - m_2 = m_1^{(2)} \cdots m_1^{(k)} (m_1^{(1)} - m_2^{(1)}) + m_2^{(1)} m_1^{(3)} \cdots m_1^{(k)} (m_1^{(2)} - m_2^{(2)}) + \cdots + m_2^{(1)} \cdots m_2^{(k-1)} (m_1^{(k)} - m_2^{(k)}) \in J.$$

Thus $\text{Ker } \varphi \subset J$ and we conclude that $J = \text{Ker } \varphi$. So J is a toric ideal. It is clear that the parametrization φ of J is a maximal rank parametrization, thus

$$\dim (k[\mathbf{z}_1, \dots, \mathbf{z}_k]/(\sum_{i=1}^k I_i)) = \sum_{i=1}^k \dim (\mathbb{k}[\mathbf{z}_i]/I_i).$$

■

2.8 Definition. Let $\mathbf{x}_1, \dots, \mathbf{x}_k$ be variable sets and $I_1 \subset \mathbb{k}[\mathbf{x}_1], \dots, I_k \subset \mathbb{k}[\mathbf{x}_k]$ be toric ideals such that for all pair $i, j \in \{1, \dots, k\}$, $i \neq j$, $|\mathbf{x}_i \cap \mathbf{x}_j| \leq 1$. We define the **graph of the sequence of toric ideals** I_1, \dots, I_k , denoted by $G(I_1, \dots, I_k)$, as the graph whose vertex set is I_1, \dots, I_k and $\{I_i, I_j\}$ is an edge if I_i and I_j has a common variable.

2.9 Theorem. Let $\mathbf{x}_1, \dots, \mathbf{x}_k$ be set of variables and $I_1 \subset \mathbb{k}[\mathbf{x}_1], \dots, I_k \subset \mathbb{k}[\mathbf{x}_k]$ be toric ideals such that for any pair $i, j \in \{1, \dots, k\}$, $i \neq j$, $|\mathbf{x}_i \cap \mathbf{x}_j| \leq 1$. If for any connected component $G(I_1, \dots, I_k)$ is a tree, then $J := \sum_{i=1}^k I_i$ is a homogeneous toric ideal and setting r as the number of connected components of $G(I_1, \dots, I_k)$ we have that:

$$\dim (\mathbb{k}[\mathbf{x}]/J) = \sum_{i=1}^k \dim (\mathbb{k}[\mathbf{x}_i]/I_i) + r - k + 1,$$

where $\mathbf{x} = \cup_{i=1}^k \mathbf{x}_i$.

Proof. Let G_j be a connected component of $G := G(I_1, \dots, I_k)$ and $V(G_j) = \{I_{j_1}, \dots, I_{j_{s_j}}\}$ be the vertex set of G_j . We remark that $J := \sum_{i=1}^k I_i = \sum_{j=1}^r (\sum_{i=1}^{s_j} I_{j_i})$. So, if we prove that for any $j \in \{1, \dots, r\}$, $(\sum_{i=1}^{s_j} I_{j_i})$ is a homogeneous toric ideal and

$$\dim (\mathbb{k}[\mathbf{x}] / \sum_{i=1}^{s_j} I_{j_i}) = \sum_{i=1}^{s_j} \dim (\mathbb{k}[\mathbf{x}_{j_i}] / I_i) - s_j,$$

then J is a homogeneous toric ideal due to the proposition 2.7 and

$$\dim (\mathbb{k}[\mathbf{x}] / J) = \sum_{i=1}^k \dim (\mathbb{k}[\mathbf{x}_i] / I_i) + r - k + 1.$$

Then, we can assume that G is a connected tree and we will prove by induction over k that J is a homogenous toric ideal.

1. If $k = 2$, it is the theorem 2.6
2. We assume that if G is a connected tree with $k-1$ -vertices, then $\sum_{i=1}^{k-1} I_i$ is a toric homogeneous ideal and

$$\dim (\mathbb{k}[\mathbf{x}] / \sum_{i=1}^{k-1} I_i) = \sum_{i=1}^{k-1} \dim (\mathbb{k}[\mathbf{x}_i] / I_i) - (k-1).$$

We must prove that if G is a connected tree with k -vertex, then $J := \sum_{i=1}^k I_i$ is a toric homogeneous ideal and

$$\dim (\mathbb{k}[\mathbf{x}] / J) = \sum_{i=1}^k \dim (\mathbb{k}[\mathbf{x}_i] / I_i) - k.$$

It will follow from the next argument: since G is a connected tree, there exists $i \in \{1, \dots, k\}$ such that there exists a unique $j \in \{1, \dots, k\}$ such that $\{I_i, I_j\} \in E(G)$. We can assume that $i = k$, thus $|\mathbf{x}_i \cap \mathbf{x}_k| = 1$ and for any $j \in (\{1, \dots, k-1\} \setminus \{i\})$, $|\mathbf{x}_j \cap \mathbf{x}_k| = 0$. So $|(\cup_{i=1}^{k-1} \mathbf{x}_i) \cap \mathbf{x}_k| = 1$ and $G \setminus \{I_k\}$ is a connected tree. By induction hypothesis $\sum_{i=1}^{k-1} I_i$ is a homogeneous toric ideal and

$$\dim (\mathbb{k}[\mathbf{x}] / \sum_{i=1}^{k-1} I_i) = \sum_{i=1}^{k-1} \dim (\mathbb{k}[\mathbf{x}_i] / I_i) - (k-1).$$

In addition, I_k is a homogeneous toric ideal, so by the theorem 2.6 $J = \sum_{i=1}^{k-1} I_i + I_k$ is a homogeneous toric ideal and

$$\begin{aligned} \dim (\mathbb{k}[\mathbf{x}] / J) &= \dim (\mathbb{k}[\mathbf{x}] / \sum_{i=1}^{k-1} I_i) + \dim (\mathbb{k}[\mathbf{x}_k] / I_k) \\ &= \sum_{i=1}^{k-1} \dim (\mathbb{k}[\mathbf{x}_i] / I_i) - (k-1) + \dim (\mathbb{k}[\mathbf{x}_k] / I_k) - 1 \\ &= \sum_{i=1}^k \dim (\mathbb{k}[\mathbf{x}_i] / I_i) - k. \end{aligned}$$

■

References

- [1] M. Auslander, D. Buchsbaum, *Groups, rings, modules*, Harper and Row, 1974.
- [2] L. Bădescu, G. Valla, *Grothendieck-Lefschetz theory, set-theoretic complete intersections and rational normal scrolls*, J. Algebra **324** (2010), 1636-1655.
- [3] W. Bruns, J. Herzog, *Cohen-Macaulay rings*, Cambridge University Press, Cambridge, 1993.
- [4] W. Bruns, J. Herzog, *Semigroup rings and simplicial complexes*, J. of Pure and App. Math, **122** (1997), 185-208.

- [5] D. Eisenbud, *The geometry of syzygies*, Graduate Text in Mathematics, Springer, 2000.
- [6] D. Eisenbud, B. Sturmfels, *Binomial Ideals*, Duke Math. J., **84** (1996), 1-45.
- [7] K. Eto, *Binomial arithmetical rank of lattice ideals*, manuscripta math. **109** (2002), 455-463.
- [8] R. Gilmer, *Commutative semigroup rings*, The University of Chicago Press, 1984.
- [9] M. Green, R. Lazarsfeld, *On the projective normality of complete linear series on an algebraic curve*, Invent. Math. **83** (1986), 73-90.
- [10] Ha Minh Lam, M. Morales, *Binomial extension of simplicial ideals*, <http://arxiv.org/abs/0911.5423>.
- [11] J. Harris, *Algebraic geometry a first course*, Springer, 1992.
- [12] J. Howie, *Fundamentals of semigroup theory*, Clarendon Press, 1955.
- [13] M. Kreuzer, L. Robbiano, *Computational Commutative Algebra 2*, Springer, 2005.
- [14] H. Matsumura, *Commutative ring theory*, Cambridge University Press, Cambridge, 1990.
- [15] E. Miller, B. Sturmfels, *Combinatorial commutative algebra*, Springer, 2005.
- [16] I. Peeva, *Graded syzygies*, Springer, 2010.
- [17] B. Sturmfels, *Gröbner bases and convex polytopes*, America Mathematical Society, 1996.