Diszkrét matematika I. Előadás

6. előadás

Gráfok alapfogalmai

Definíció

A $G=(\varphi,E,V)$ hármast (irányítatlan) gráfnak nevezzük, ha E,V halmazok, $V\neq\emptyset$, $V\cap E=\emptyset$ és $\varphi\colon E\to \{\{v,v'\}\,|\,v,v'\in V\}$. E-t az élek halmazának, V-t a csúcsok (pontok) halmazának és φ -t az illeszkedési leképezésnek nevezzük. A φ leképezés E minden egyes eleméhez egy V-beli rendezetlen párt rendel.

Elnevezés

 $v \in \varphi(e)$ esetén e illeszkedik v-re, illetve v végpontja e-nek.

Megjegyzés

Az illeszkedési leképezés meghatározza az $I \subset E \times V$ illeszkedési relációt: $(e, v) \in I \Leftrightarrow v \in \varphi(e)$.

Gráfok alapfogalmai

Definíció

Ha E és V is véges halmazok, akkor a gráfot véges gráfnak nevezzük, egyébként végtelen gráfnak.

 $E = \emptyset$ esetén üres gráfról beszélünk.

Megjegyzés

Az informatikában elsősorban a véges gráfok játszanak szerepet, így a továbbiakban mi is véges gráfokkal foglalkozunk.

Definíció

Ha egy él egyetlen csúcsra illeszkedik, azt hurokélnek nevezzük. Ha $e \neq e'$ esetén $\varphi(e) = \varphi(e')$, akkor e és e' párhuzamos élek. Ha egy gráfban nincs sem hurokél, sem párhuzamos élek, akkor azt egyszerű gráfnak nevezzük.

Gráfok alapfogalmai

Definíció

Az $e \neq e'$ élek szomszédosak, ha van olyan $v \in V$, amelyre $v \in \varphi(e)$ és $v \in \varphi(e')$ egyszerre teljesül. A $v \neq v'$ csúcsok szomszédosak, ha van olyan $e \in E$, amelyre $v \in \varphi(e)$ és $v' \in \varphi(e)$ egyszerre teljesül.

Definíció

A ν csúcs fokszámán (vagy fokán) a rá illeszkedő élek számát értjük, a hurokéleket kétszer számolva.

Jelölése: d(v) vagy deg(v).

Definíció

Ha d(v) = 0, akkor v-t izolált csúcsnak nevezzük.

Definíció

Ha egy gráf minden csúcsának a foka n, akkor azt n-reguláris gráfnak hívjuk. Egy gráfot regulárisnak nevezünk, ha valamely n-re n-reguláris.

A fokszámösszeg

Állítás

A $G = (\varphi, E, V)$ gráfra

$$\sum_{v\in V}d(v)=2|E|.$$

Bizonyítás

Élszám szerinti teljes indukció: |E|=0 esetén mindkét oldal 0. Tfh. |E|=n esetén igaz az állítás. Ha adott egy gráf, amelynek n+1 éle van, akkor annak egy élét elhagyva egy n élű gráfot kapunk. Erre teljesül az állítás az indukciós feltevés miatt. Az elhagyott élt újra hozzávéve a gráfhoz az egyenlőség mindkét oldala 2-vel nő.

Alternatív bizonyítás

Számoljuk meg az "illeszkedéseket".

Gráfok alapfogalmai

Definíció

A $G = (\varphi, E, V)$ és $G' = (\varphi', E', V')$ gráfok izomorfak, ha léteznek $f \colon E \to E'$ és $g \colon V \to V'$ bijektív leképezések, hogy minden $e \in E$ -re és $v \in V$ -re e pontosan akkor illeszkedik v-re, ha f(e) illeszkedik g(v)-re.

Példa

Megfelelő f és g bijekciók:

$$f = \{(e_1, c_5), (e_2, c_2), (e_3, c_3), (e_4, c_4), (e_5, c_1)\}$$

$$g = \{(v_1, w_1), (v_2, w_4), (v_3, w_2), (v_4, w_5), (v_5, w_3)\}$$

Gráfok alapfogalmai

Példa

Ha egy egyszerű gráfban bármely két különböző csúcs szomszédos, akkor teljes gráfról beszélünk.

Teljes gráfok esetén, ha a csúcsok halmazai között létezik bijektív leképezés, akkor a két teljes gráf a csúcsok és élek elnevezésétől eltekintve megegyezik. Ebben az értelemben beszélünk bármely $n \in \mathbb{Z}^+$ esetén az n csúcsú teljes gráfról.

Megjegyzés

Az n csúcsú teljes gráfnak $\binom{n}{2} = n(n-1)/2$ éle van, és K_n -nel jelöljük.

További példák

Definíció

A C_n ciklus csúcsai egy szabályos n-szög csúcspontjai, és pontosan a szomszédos csúcspontoknak megfelelő csúcsok szomszédosak.

A P_n ösvény C_{n+1} -ből valamely él törlésével adódik.

Az S_n csillagban egy szabályos n-szög csúcspontjainak és középpontjának megfelelő csúcsok közül a középpontnak megfelelő csúcs szomszédos az összes többivel.

Példák

Megjegyzés

Míg C_n és K_n esetén az n a pontszám (C_n esetén az élszám is), addig P_n és S_n esetén az élszámot jelöli az n (ezek pontszáma n+1).

Gráfok alapfogalmai

Definíció

A $G=(\varphi,E,V)$ gráfot páros gráfnak nevezzük, ha V-nek létezik V' és V'' diszjunkt halmazokra való felbontása úgy, hogy minden él egyik végpontja V'-nek, másik végpontja pedig V''-nek eleme.

Definíció

Azt az egyszerű páros gráfot, amelyben |V'|=m, |V''|=n és minden V'-beli csúccs minden V''-beli csúccsal szomszédos, $K_{m,n}$ -nel jelöljük.

Példa

Gráfok alapfogalmai

Definíció

A $G'=(\varphi',E',V')$ gráfot a $G=(\varphi,E,V)$ gráf részgráfjának nevezzük, ha $E'\subset E$, $V'\subset V$ és $\varphi'\subset \varphi$ (függvényes jelöléssel: $\varphi'=\varphi\big|_{E'}$). Ekkor G-t a G' szupergráfjának hívjuk.

Ha E' pontosan azokat az éleket tartalmazza, melyek végpontjai V'-ben vannak, akkor G'-t a V' által meghatározott feszített (vagy telített) részgráfnak nevezzük.

Példa

G-nek G_1 részgráfja, ami nem feszített, míg G_2 feszített részgráfja G-nek.

Definíció

Ha $G'=(\varphi',E',V')$ részgráfja a $G=(\varphi,E,V)$ gráfnak, akkor a G'-nek a G-re vonatkozó komplementerén a $(\varphi\big|_{E\setminus E'},E\setminus E',V)$ gráfot értjük.

11.

Példa

 G_2 a G_1 gráf G-re vonatkozó komplementere.

Megjegyzés

Ha G' egyszerű gráf, és külön nem mondjuk, akkor a V'-beli csúcspontokkal rendelkező teljes gráfra vonatkozó komplementert értjük G' komplementere alatt.

Gráfok alapfogalmai

Definíció

Ha $G = (\varphi, E, V)$ egy gráf, és $E' \subset E$, akkor a G-ből az E' élhalmaz törlésével kapott gráfon a $G' = (\varphi|_{E \setminus E'}, E \setminus E', V)$ részgráfot értjük.

A fenti típusú részgráfot feszítő részgráfnak nevezzük.

Definíció

Ha $G=(\varphi,E,V)$ egy gráf, és $V'\subset V$, akkor legyen E' az összes olyan élek halmaza, amelyek illeszkednek valamely V'-beli csúcsra. A G-ből a V' csúcshalmaz törlésével kapott gráfon a $G'=(\varphi|_{E\setminus E'},E\setminus E',V\setminus V')$ részgráfot értjük.

A V' csúcshalmaz törlésével kapott részgráf a maradék $V \setminus V'$ csúcshalmaz által *feszített* részgráf.

13.

Gráfok alapfogalmai

Definíció

Legyen $G = (\varphi, E, V)$ egy gráf. A

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$$

sorozatot sétának nevezzük v_0 -ból v_n -be, ha

- $v_j \in V$ $0 \le j \le n$,
- $e_k \in E$ $1 \le k \le n$,
- $\varphi(e_m) = \{v_{m-1}, v_m\} \quad 1 \le m \le n.$

A séta hossza a benne szereplő élek száma (n).

Ha $v_0 = v_n$, akkor zárt sétáról beszélünk, különben nyílt sétáról.

Definíció

Ha a sétában szereplő élek mind különbözőek, akkor vonalnak nevezzük. Az előzőeknek megfelelően beszélhetünk zárt vagy nyílt vonalról.

Gráfok alapfogalmai

Definíció

Ha a sétában szereplő csúcsok mind különbözőek, akkor útnak nevezzük.

Megjegyzés

Egy út mindig vonal.

A nulla hosszú séták mind utak, és egyetlen csúcsból állnak.

Egy egy hosszú séta pontosan akkor út, ha a benne szereplő él nem hurokél.

Definíció

Egy legalább egy hosszú zárt vonalat körnek nevezünk, ha a kezdő- és végpont megyegyeznek, de egyébként a vonal pontjai különböznek.

15.

Gráfok alapfogalmai

Állítás

Egy G gráfban a különböző v és v' csúcsokat összekötő sétából alkalmasan törölve éleket és csúcsokat a v-t v'-vel összekötő utat kapunk.

Bizonyítás

Legyen az állításban szereplő séta a következő:

$$v = v_0, e_1, v_1, e_2, v_2, \dots, v_{n-1}, e_n, v_n = v'.$$

Ha valamely i < j esetén $v_i = v_j$, akkor töröljük az

$$e_{i+1}, v_{i+1}, e_{i+2}, v_{i+2}, \dots, v_{j-1}, e_j, v_j$$

részt, és ismételjük ezt, amíg van csúcsismétlődés. Ha már nincs, akkor utat kaptunk. Mivel minden lépésben csökken a séta hossza, ezért az eljárás véges sok lépésben véget ér.

16.

Gráfok alapfogalmai

Definíció

Egy gráfot összefüggőnek nevezünk, ha bármely két csúcsa összeköthető sétával.

A $G = (\varphi, E, V)$ gráf esetén V elemeire vezessük be a \sim relációt: $v \sim v'$ pontosan akkor, ha G-ben vezet út v-ből v'-be.

A \sim ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V-n.

A csúcsok egy adott ilyen osztálya által meghatározott feszített részgráf a gráf egy komponense.

Megjegyzés

Bármely él két végpontja azonos osztályba tartozik (Miért?), így a gráf minden éle hozzátartozik egy komponenshez.

Megjegyzés

Egy gráf akkor és csak akkor összefüggő, ha minden csúcs ugyanabba az osztályba tartozik, azaz ha csak egyetlen komponense van.

Definíció

Egy gráfot fának nevezünk, ha összefüggő és körmentes.

Tétel

Egy *G* egyszerű gráfra a következő feltételek ekvivalensek:

- (1) G fa;
- (2) *G* összefüggő, de bármely él törlésével kapott részgráf már nem összefüggő;
- (3) ha v és v' a G különböző csúcsai, akkor pontosan 1 út van v-ből v'-be:
- (4) *G*-nek nincs köre, de bármilyen új él hozzávételével kapott gráf már tartalmaz kört.

A bizonyítás menete

 $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$

Bizonyítás

$$(1) \Rightarrow (2)$$

G összefüggősége következik a fa definíciójából. Az állítás másik részét indirekten bizonyítjuk.

Tfh. létezik egy olyan e él (a végpontjai legyenek v és v') a gráfban, aminek a törlésével kapott gráf összefüggő. Ekkor létezne út v-ből v'-be, amit kiegészítve a törölt éllel és a megfelelő csúccsal egy kört kapnánk:

$$v, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v', e, v.$$

$$(2) \Rightarrow (3)$$

Legalább egy út létezik az összefüggőség miatt. Indirekten bizonyítjuk, hogy nem létezhet két különöző út:

Tfh. 2 út is létezik a különböző v és v' csúcsok között, legyenek ezek: $v, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v'$ és $v, e'_1, v'_1, e'_2, \ldots, v'_{m-1}, e'_m, v'$. Legyen k a legkisebb olyan index, amelyre $v_k \neq v'_k$. (Miért létezik ilyen?) Az e_k élt törölve összefüggő gráfot kapunk, mert a v_{k-1}, e_k, v_k séta helyettesíthető a $v_{k-1}, e'_k, v'_k, \ldots, e'_m, v', e_n, v_{n-1}, e_{n-1}, v_{n-2}, \ldots, v_{k+1}, e_{k+1}, v_k$ sétával.

Bizonyítás

 $(3) \Rightarrow (4)$

Annak a bizonyítása, hogy nincs kör a gráfban indirekt:

tfh. létezik kör: $v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v$. Ekkor v_1 és v között két

különböző út is van: $v_1, e_2, \ldots, v_{n-1}, e_n, v$ illetve v_1, e_1, v .

Ha a hozzávett e él hurokél, és a v csúcsra illeszkedik, akkor v, e, v kör lesz. Ha a hozzávett e él a különböző v és v' csúcsokra illeszkedik, akkor a köztük lévő utat megfelelően kiegészítve kapunk kört:

$$v, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v', e, v.$$

$$(4) \Rightarrow (1)$$

Az, hogy G-nek nincs köre triviálisan teljesül. Kell, hogy G összefüggő, vagyis tetszőleges v és v' csúcsa között van út. Vegyük a gráfhoz a v-re és v'-re illeszkedő e élet. Az így keletkező körben szerepel e (Miért?):

 $v', e, v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v'$. Ekkor $v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v'$ út

lesz v és v' között.

Lemma

Ha egy G véges gráfban nincs kör, de van él, akkor G-nek van legalább 2 elsőfokú csúcsa.

2021.03.18.

Bizonyítás

A G-beli utak között van maximális hosszúságú (hiszen G véges), és a hossza legalább 1, így a végpontjai különbözőek. Megmutatjuk, hogy ezek elsőfokúak. Legyen az említett út: $v_0, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v_n$. Ha lenne az e_1 -től különböző v_0 -ra illeszkedő e él, annak másik végpontja (v') nem lehet az útban szereplő csúcsoktól különböző, mert akkor $v', e, v_0, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v_n$ út hossza nagyobb lenne, mint a maximális út hossza, ami ellentmondás. Ha viszont e másik végpontja az út valamely v_k csúcsa, akkor $v_k, e, v_0, e_1, v_1, e_2, \ldots, v_{k-1}, e_k, v_k$ kör lenne, ami szintén ellentmondás.

Tétel

Egy G egyszerű gráfra, amelynek n csúcsa van $(n \in \mathbb{Z}^+)$ a következő feltételek ekvivalensek:

- (1) G fa;
- (2) G-ben nincs kör, és n-1 éle van;
- (3) G összefüggő, és n-1 éle van.

Bizonyítás

n=1 esetén az állítás triviális. (Miért?)

 $(1) \Rightarrow (2)$: n szerinti TI: tfh. n = k-ra igaz az állítás. Tekintsünk egy k+1 csúcsú G fát. Ennek legyen v egy olyan csúcsa, aminek a foka 1. (Miért van ilyen?) Hagyjuk el a gráfból v-t. Az így kapott gráf, G'nyilván körmentes. Osszefüggő is lesz, hiszen v egy G-beli útnak csak kezdő- vagy végpontja lehet, így a G' tetszőleges v' és v'' csúcsa közti G-beli út nem tartalmazhatja sem v-t, sem a rá illeszkedő élt, így G'-beli

út is lesz egyben. Tehát G' fa, ezért alkalmazva az indukciós feltevést k-1 éle van, és így G-nek k éle van.

Bizonyítás

- $(2)\Rightarrow(3)$: n szerinti TI: tfh. n=k-ra igaz az állítás. Tekintsünk egy k+1 csúcsú körmentes G gráfot, aminek k éle van. Ennek legyen v egy olyan csúcsa, aminek a foka 1. (Miért van ilyen?) Hagyjuk el a gráfból v-t. Az így kapott G' gráf az indukciós feltevés miatt összefüggő, tehát tetszőleges v' és v'' csúcsa között vezet út G'-ben, ami tekinthető G-beli útnak is. G' tetszőleges csúcsa és v közötti utat úgy kaphatunk, hogy az adott csúcs és a v-vel szomszédos csúcs közötti utat kiegészítjük az elhagyott éllel és v-vel.
- $(3)\Rightarrow(1)$: Ha a feltételnek eleget tevő gráfban van kör, akkor az abban szereplő tetszőleges él elhagyásával összefüggő gráfot kapunk. (Miért?) Folytassuk az élek törlését, amíg már nincs több kör a kapott gráfban, tehát fa lesz. Ha k élt hagytunk el, akkor a kapott gráfnak n-1-k éle van, ugyanakkor az $(1)\Rightarrow(2)$ rész miatt a kapott fának n-1 éle van, így k=0, tehát a gráfunkban nem volt kör, így fa.