Задача № 1

Условие: Миномет установлен у основания некоторой горы под углом $\alpha=1,5$ радиана к горизонту. Минометный расчет ведет записи от отм, насколько далеко падают мины в зависимости от их начальной скорости. Определите по этим данным высоту и примерную форму горы.

	v_0 , м/с	10,00	14,00	18,00	22,00	26,00	30,00	34,00	38,00	42,00	46,00
ſ	<i>l</i> , м	0,711	1,612	2,851	4,454	6,481	8,984	12,020	15,640	19,879	24,749
ſ	v_0 , м/с	50,00	54,00	58,00	62,00	66,00	70,00	74,00	80,00	82,00	
	<i>l</i> , м	30,231	36,277	42,829	49,841	57,294	65,236	73,820	83,418	95,038	

Решение: Введем систему координат, как на рис.1.1. Рассмотрим движение снаряда, выпущенного из начала координат со скоростью v_0 под углом α к горизонту. Сопротивлением воздуха пренебрегаем. Его координаты при таком движении зависят от времени по законам $x(t) = v_0 t \cos \alpha$ и $y(t) = v_0 t \sin \alpha - g t^2/2$ соответственно. Выразив t из первого уравнения и подставив во второе, получим уравнение траектории:

$$y = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}.$$
 (1)

Далее приведем два способа решения: точный численный и приближенный в общем виде.

Рис. 1.1. Ось Ox горизонтальна, ось Oy вертикальна. Миномет расположен в начале координат.

1. Точное решение.

Пусть снаряд упал в точке (x,y). Тогда эта пара точек удовлетворяет уравнению (1). Также, из теоремы Пифагора следует уравнение:

$$x^2 + y^2 = l^2 (2)$$

Подставив y из (1) в (2), получим:

$$x^{2} \left(1 + \left[\operatorname{tg} \alpha - \frac{gx}{2v_{0}^{2} \cos^{2} \alpha} \right]^{2} \right) = l^{2}$$
 (3)

Получили уравнение четвертой степени, которое нереально трудно решить в общем виде. Поэтому оно было решено численно при помощи программы $Mathematica^2$. Каждому значению xнайдено соответствующее значение координаты y в соответствии с уравнением (2). По полученным данным была составлена таблица (ее элементы перечислены в порядке их предоставления в таблице из условия):

x, M	0,052	0,120	0,211	0,331	0,482	0,670	0,898	1,172	1,494	1,864
<i>h</i> , м	0,71	1,62	2,84	4,44	6,46	8,96	11,99	15,60	19,82	24,68
x, M	2,282	2,745	3,246	3,783	4,353	4,962	5,620	6,360	7,265	
<i>h</i> , м	30,14	36,17	42,71	49,70	57,13	65,05	73,61	83,18	94,76	

За высоту горы примем высоту наивысшей точки, в которую попал снаряд: $H=94{,}76~\mathrm{m}.$

¹Значения дальности полета округлили до 2-х знаков после запятой, а к значениям начальной скорости добавили 2 знака для того, чтобы сбалансировать их погрешности.

²Имеется в виду программа компании Wolfram Research, Inc., см. www.wolfram.com/mathematica

Рис. 1.2. График поверхности горы по точкам: хорошо прослеживается линейная зависимость. Зеленым изображена поверхность горы, другими цветами изображены траектории снарядов. Траектории кажутся настолько прижатыми к поверхности из-за малой разности угла наклона горы и угла, под которым производится выстрел. Справа приведен график в масштабе.

Найдем наклон этой горы и оценим его погрешность. Величины, данные в условии, определены с достаточно высокой точностью (порядка 10^{-4}), их погрешностью мы пренебрегаем. Воспользуемся методом наименьших квадратов. Пусть уравнение поверхности горы имеет вид y = kx. Будем минимизировать сумму³

$$S = \sum (y_i - kx_i)^2,$$

где суммирование ведется по всем i от 1 до n=19 — количество измерений. Так как единственным параметром является k, то необходимо выполнение условия dS/dk=0. Продифференцировав, получим:

$$\sum 2x_i \left(y_i - kx_i \right) = 0,$$

откуда

$$k = \frac{\sum x_i y_i}{\sum x_i^2}. (4)$$

Погрешность оцениваем по формуле

$$\Delta k \approx \sqrt{\frac{1}{n-1} \frac{\sum (y_i - mx_i)^2}{\sum x_i^2}} = \sqrt{\frac{1}{n-1} \frac{\sum x_i^2 \sum y_i^2 - (\sum x_i y_i)^2}{(\sum x_i^2)^2}}.$$
 (5)

 $^{^3}$ Метод подробно описан в книге Squires, G.L. *Practical physics.* $4^{\rm th}$ ed. Cambridge University Press, 2001, см. формулы (4.34) и (4.35)

По формулам (4) и (5) получаем $k=13.10\pm0.01$. Как видим, погрешность наклона за счет неточности попадания на прямую намного больше погрешности измерения исходных величин. Угол наклона горы $\varphi = \operatorname{arctg} k = (85.636\pm0.004)^\circ$. Погрешность оцениваем по формуле

$$\Delta \varphi = \Delta k \frac{d\varphi}{dk} = \frac{\Delta k}{1 + k^2}.$$

Такое резкое уменьшение относительной погрешности связано с тем, что функция арктангенса растет очень медленно при аргументах, близких к $\pi/2$.

2. Приближенное решение.

Будем искать угол φ наклона горы, считая ее форму наклонной плоскостью. Координаты точек падения снаряда $x=l\cos\varphi$ и $y=l\sin\varphi$. Подставим их в уравнение (1) и разделим обе его части на x:

$$\operatorname{tg}\varphi = \operatorname{tg}\alpha - \frac{gl\cos\varphi}{2v_0^2\cos^2\alpha},$$

откуда, с использованием тождества $\operatorname{tg} x - \operatorname{tg} y = \frac{\sin(x-y)}{\cos x \cos y}$ получим

$$\sin(\alpha - \varphi) = \frac{gl\cos^2\varphi}{2v_0^2\cos\alpha}.$$
 (6)

Такое уравнение невозможно решить стандартными способами, его можно только привести к уравнению четвертой степени (см. первый способ).

Опираясь на результат первого решения, будем считать углы α и φ близкими между собой и к $\pi/2$. А именно, применим приближения $\sin(\alpha-\varphi)\approx \alpha-\varphi$ и $\cos\varphi\approx \frac{\pi}{2}-\varphi$. Уравнение (6) примет вид

$$\alpha - \varphi = \frac{gl}{2v_o^2 \cos \alpha} \left(\frac{\pi}{2} - \varphi\right)^2,$$

которое легко привести к виду

$$m\varphi^2 - \varphi(m\pi - 1) + \left(\frac{m\pi^2}{4} - \alpha\right), \quad m = \frac{gl}{2v_0^2 \cos \alpha}.$$

Получили квадратное уравнение, корни которого

$$\varphi_{1,2} = \frac{1}{2m} \left(m\pi - 1 \pm \sqrt{(m\pi - 1)^2 - m\pi^2 + 4\alpha} \right).$$

Во всех случаях искомый корень — с плюсом перед радикалом. В таблице представлены решения этого уравнения для всех случаев, представленных в условии, в порядке их перечисления.

φ , $^{\circ}$	85,79	85,76	85,75	85,74	85,73	85,72	85,71	85,70	85,69
85,68	85,67	85,66	85,65	85,65	85,64	85,64	85,63	85,63	85,62

Наилучшая величина для угла наклона горы — среднее этих величин⁴: $\varphi = 85,69^\circ$. Считая величину $\alpha - \varphi$ порядка 5 градусов (как $\pi/2 - \alpha$), оценим погрешность такого приближения: $\Delta \varphi \approx (\pi/2 - \alpha)^2/2 \approx 0,1^\circ$. Как и в предыдущем случае, высота горы $H = l_{19} \sin \varphi_{19} = 94,76$ м. В ответе приведем значение, полученное точным способом.

Ответ: Высота H=94,76 м, форма — наклонная линия, образующая угол $\varphi=(85,636\pm0,004)^\circ$ с горизонтом.

 $^{^4}$ На самом деле правильно усреднять не углы, а их тангенсы, как это было сделано в первом случае.