Laukik Mujumdar

Email: lmujumda@asu.edu	LinkedIn: laukik-mujumdar-793ab9136	Phone:+1-720-949-8771
EDUCATION		
Master of Science, Robotics and Autonomous Systems (Artificial Intelligence)		08/2019-05/2021
Arizona State University, Tempe, Arizona		GPA:4.00/4
 Courses: Advanced Control Th 	neory, Artificial Intelligence, Deep Learning, Perception	
Bachelor of Technology, Aerospace Engineering		07/2015-05/2019
Indian Institute of Technology, Bombay, India		GPA:7.42/10
• Courses: Nonlinear Control, St	tate Estimation, Optimal Control, Machine Learning	
SELECTED COURSE PROJECTS		

Self Driving Car Motion Planning

Summer 2020

- Implemented a Finite State Machine (FSM) based behavior planner on Udacity's Self Driving Car platform in C++
- Implemented a trajectory planner to drive the car around a loop on a multi-lane highway

Autonomous Vehicle Sensor Fusion

Summer 2020

- Implemented an Extended Kalman Filter on Udacity's self driving car platform in C++. The filter suffered from outliers
- Solved this problem by implementing adaptive innovation thresholding.

Pacman Motion Planning

Spring 2020

- Implemented DFS, BFS, UCS, and A* planning algorithms on the UC Berkeley Pacman Projects platform using Python
- Designed a heuristic for A* resulting in <3500 graph nodes expanded, well below the full credit cutoff (9000)
- Implemented D* Lite in a locally observable environment to expand 20% of the number expanded by A*

Controlling A Self Driving Car

Fall 2019

- Implemented Full State Feedback (FSF), Linear Quadratic Regulator (LQR) controllers for the trajectory control of a car
- Successfully extended FSF & LQR controllers to track arbitrary trajectories in 2D space using body frame error modeling

Advanced Process Control

Spring 2019

• Implemented a Linear Quadratic Optimal Controller (**LQOC**) and a Model Predictive Controller (**MPC**) on a simulated model of a continuous stirred-tank reactor (CSTR) using MATLAB

RESEARCH AND TECHNICAL PROJECTS

Multi-Robot Graph Exploration

Spring 2018

Prof. Arpita Sinha, IIT Bombay

- Simulated a multi-robot system exploring an environment modeled as a graph. Robots dropped information at all nodes
- Used a Modified Graph Incidence Matrix data structure so that robots could collaborate in a decentralized fashion

LiDAR based Environment Mapping System

Fall 2017

Prof. Hemendra Arya, IIT Bombay

- Mounted a LiDAR range sensor atop a servo motor and created a wireless connection using Zigbee modules
- Utilized 'hector_slam' and ROS, to convert polar readings in the sensor frame to global cartesian coordinates using C++
- Used the sensor to map a corner of a room

WORK EXPERIENCE

Teaching Aide, Arizona State University, Tempe, Arizona

Spring 2020

Conducted weekly tutorial sessions for MAE 318 (Control Theory) for a class of 90 undergraduate students

Undergraduate Research Intern, Zhejiang University, China

Summer 2018

• Fabricated a linear actuator (like an artificial muscle) under a non-uniform magnetic field, using a Polyacrylamide gel with embedded magnetic nanoparticles to lift **upto 50** grams of weight

TECHNICAL SKILLS

- **Programming**: C/C++, Python, MATLAB/Simulink, OpenCV
- Other: Gazebo, Arduino, Robotics, Dynamics and Control Theory, Al, Deep Learning, Computer Vision

EXTRA-CURRICULARS

- Awarded a Sho Dan Black Belt in the art of Goju Ryu Karate Do
- Cleared 2 stages of Hindustani Classical Vocals, certified by Gandharva Mahavidyalaya