

ALGEBRA LINEAL

Examen Final. Enero 2015

Problema 1 (1 punto). Sea $\mathbb{R}^{2\times 2}$ el conjunto de matrices 2×2 con entradas reales, y P_4 el conjunto de polinomios con coeficientes reales, de grado menor o igual que 4. Sea la aplicación $T: \mathbb{R}^{2\times 2} \to P_4$ dada por

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = dx^4 + (a-d)x^3 + (d-c)x^2 + (b-c)x + (a+b).$$

a) Demostrar que T es lineal.

[0.25 puntos]

b) Calcular el núcleo, la nulidad y el rango de T.

[0.5 puntos]

c) Decidir si T es inyectiva, suprayectiva, ambas cosas o ninguna.

[0.25 puntos]

Problema 2 (1.5 puntos). Consideremos la matriz $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$, y el vector $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$.

- a) Encontrar la condición que deben satisfacer las coordenadas de b para que el sistema Ax = b sea compatible. [0.25 puntos]
- b) Sea $b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Encontrar la solución del sistema si existe, o la solución de mínimos cuadrados en caso contrario. (Sugerencia: recordar que si la matriz de un sistema no tiene inversa, el sistema puede tener un número infinito de soluciones.) [0.5 puntos]
- c) Describir el conjunto S de los vectores que son ortogonales a $b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, según el producto escalar ordinario. [0.25 puntos]
- d) La operación entre vectores de \mathbb{R}^2 definida por

$$v_1 \cdot v_2 = v_1^T (A^T A + I_2) v_2$$
, para todo $v_1, v_2 \in \mathbb{R}^2$,

es un producto interior. Encontrar el valor de α tales que $b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ y $c = \begin{pmatrix} 4 \\ \alpha \end{pmatrix}$ son ortogonales, de acuerdo con este producto interno. Pertenece c a S? [0.25 puntos]

e) Encontrar la proyección ortogonal de b en $\binom{1}{0}$, según el producto escalar ordinario y según el producto interior definido en el apartado d). [0.25 puntos]

Problema 3 (2.5 puntos). Sea la matriz

$$A = \left[\begin{array}{rrr} 3 & 0 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{array} \right].$$

- a) Encontrar una base para el espacio nulo y para el espacio columna de A. Determinar las dimensiones del espacio fila y del espacio nulo de A^T . [0.25 puntos]
- b) Encontrar una base ortogonal para el espacio columna de A; apoyar los cálculos en la base encontrada en el apartado a). [0.25 puntos]
- c) ¿Es posible encontrar una matriz de cambio de base para pasar de la base estándar B_0 a la base encontrada en b)? ¿Por qué? Si es posible, explicar cómo calcularla. [0.25 puntos]
- d) Obtener una factorización QR de A, A=QR, con Q ortogonal y R triangular superior. [0.25 puntos]
- e) Obtener los autovalores de A y sus multiplicidades algebraicas. [0.25 puntos]
- f) Obtener los espacios propios de A. Calcular las multiplicidades geométricas de los autovalores.

[0.25 puntos]

- g) Encontrar una matriz diagonal D y una matriz invertible P tales que $A = PDP^{-1}$. [0.25 puntos]
- h) Usar los autovalores de A para justificar que A tiene inversa. [0.25 puntos]
- i) Usar la descomposición $A = PDP^{-1}$ para obtener la inversa de A. [0.25 puntos]
- j) Usar la inversa de A y la descomposición de QR del apartado c) para obtener la inversa de R. [0.25 puntos]

Problema 4 (1 punto). Sea el siguiente sistema de ecuaciones differenciales lineales:

$$x'(t) = 4x(t) - 2y(t)$$

$$y'(t) = y(t) - 2x(t)$$

Resolverlo con las condiciones iniciales x(0) = 1 y y(0) = 0.