CS181 Practice Questions: Clustering and PCA

K-Means and Related Algorithms

1. Convergence of K-Means (Bishop 9.1)

Consider Lloyd's algorithm for finding a K-Means clustering of N data, i.e., minimizing the "distortion measure" objective function

$$J(\{\boldsymbol{r}_n\}_{n=1}^N, \{\boldsymbol{\mu}_k\}_{k=1}^K) = \sum_{n=1}^N \sum_{k=1}^K r_{nk} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||_2^2.$$

Show that as a consequence of there being a finite number of possible assignments for the set of responsibilities $r_{n,k}$, and that for each such assignment there is a unique optimum for the means $\{\mu_k\}_{k=1}^K$, the K-Means algorithm must converge after a finite number of iterations.

2. K-Means++

One way to initialize Lloyd's algorithm for K-Means is to randomly select some of the data to be the first cluster centers. The easiest version of this would pick uniformly from among the data. K-Means++ biases this distribution so that it is not uniform. Explain in words how the distribution is non-uniform and why it should lead to better initializations.

3. Standardizing Input Data

Standardizing data helps ensure that distances makes sense and that the different properties of the items are balanced. Give an example of a kind of data for which standardization might be necessary to get good results from K-Means clustering.

4. K-Medoids

K-Medoids clustering is similar to K-Means, except that it requires the cluster centers to be data examples. Describe a situation in which this is desirable or necessary.

Hierarchical Agglomerative Clustering

1. Curse of Dimensionality

Define the concept of "the curse of dimensionality" and explain how it is related to HAC.

2. HAC vs K-Means

What are some advantages of HAC over K-Means?

3. Single-Linkage HAC

Using the single-linkage criterion for the HAC algorithm, what is the clustering sequence until there are two clusters remaining? Hint: The single-linkage criterion merges groups based on the shortest distance over all possible pairs.

Step 1: {1} {2} {4} {5} {9} {11} {16} {17}

Principal Component Analysis

1. High Dimensional Data (Bishop 12.1.4)

Suppose we have a design matrix $X \in \mathbb{R}^{N \times D}$ which has been centered, so the sample covariance matrix is $S = \frac{1}{N}X^{\mathsf{T}}X$. Also, let u_d , where d = 1..D, be the eigenvectors of S.

- (a) Show that the D vectors defined by $v_d = Xu_d$ are eigenvectors of $\frac{1}{N}XX^T$, and that they have the same eigenvalues as their corresponding u_d .
- (b) Assuming we can recover the u_d from the v_d with reasonable time and memory, explain why calculating the v_d first might be useful if N < D.
- (c) Show that the $\hat{u}_d = Xv_d$ is, like u_d , an eigenvector of S.

2. Heuristic for assessing applicability PCA (Press 9.8, Murphy 12.3)

Let the empirical covariance matrix Σ have eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d > 0$. Explain why the variance of the eigenvalues

$$\sigma^2 = \frac{\sum_i^d (\lambda_i - \bar{\lambda})^2}{d},$$

where $\bar{\lambda}$ is the average eigenvalue, is a good measure of whether or not PCA would be useful for analyzing the data.

3. Component vectors

Suppose I have a dataset with N rows, each row being an instance, and D columns, where each column represents a feature. How many component vectors can we get at most?