Tema **2.3**

Interacción Persona Ordenador (IPO)

La Persona

Índice

- Introducción.
- Modelo de procesamiento humano.
- Los sentidos (vista, oído, tacto, olfato).
- La memoria.
- Pensamiento: razonamiento, resolución de problemas, emociones.
- Ergonomía.
- Atención a la diversidad.

Pensamiento humano

Pensamiento humano

- Veamos ahora cómo se procesa y manipula la información que captamos a través de los sentidos.
 - Es lo que realmente nos diferencia respecto de otros seres vivos y de la inteligencia artificial.
- Dos categorías de pensamiento (interrelacionadas):
 - Razonamiento: métodos para inferir nueva información a partir de lo ya conocido.
 - Resolución de problemas: proceso de encontrar una solución a una tarea no familiar utilizando el conocimiento que tenemos
- (Auto)consciencia.

Razonamiento

Aristóteles y la Lógica Formal:

Deducción

- Inducción

Abducción

Razonamiento deductivo

Deducción:

- Deriva la conclusión lógica necesaria a partir de unas premisas dadas.
- Si A, entonces B.
- ej. Si es viernes, ella irá a trabajar.
- Hoy es viernes.
- Luego ella irá a trabajar.
- La negación de esta proposición es: Si no B, entonces no A.
 - ej. Si ella no trabaja hoy, entonces no es viernes.
- Equivalencia: Si A, entonces B, y, si B, entonces A (A es cierto si y sólo si B es cierto).
- ej. Si yo soy tu padre, tú eres mi hijo.
- Si tú eres mi hijo, yo soy tu padre.
- Yo soy tu padre, si y sólo si tú eres mi hijo.

Razonamiento deductivo

- La conclusión lógica no es necesariamente correcta ni acorde con la noción de verdad:
 - ej. Si llueve, el suelo está seco.
 - Está lloviendo.
 - Luego el suelo está seco.
- A veces la verdad y la validez lógica chocan:
 - ej. Algunas personas son bebés.
 - Algunos bebés lloran.
 - Luego algunas personas lloran.
- ¿Es correcta la deducción?

Las personas manejan el conocimiento del mundo siguiendo un proceso de razonamiento.

Razonamiento inductivo

Inducción:

- Se generaliza a partir de casos conocidos para inferir información sobre casos no vistos previamente :
- ej. Todos los elefantes que he visto tienen trompa.
 Luego todos los elefantes tienen trompa.
- No se puede demostrar su veracidad:
 - Solo puede probar algo de manera negativa (basta con encontrar un caso que no se cumpla para echarlo por tierra).
- Sin embargo, los humanos no somos buenos utilizando evidencias negativas.
 - ej. Tarjetas de Wason.

Tarea de selección de Wason

Si una tarjeta tiene una vocal por un lado, entonces tiene un número par en el otro

- ¿Cómo podemos comprobar la veracidad de esta proposición?
- ¿Cuántas cartas habría que girar para comprobar si esto es verdad?
 - ¿Y qué cartas?

Razonamiento abductivo

- Abducción: Razonamiento desde un hecho hasta la acción o causa más probable que lo produjo.
- Si A, entonces B. Tengo B, luego A.
- Así explicamos los fenómenos que observamos:
 - ej. Pepe conduce rápido cuando está borracho.
 - Si veo a Pepe conduciendo rápido, asumo que estará borracho.
 - (Quizá su mujer está de parto).
- No es de fiar:
 - Puede dar lugar a falsas explicaciones.
- Implicaciones en el diseño de interfaces:
 - Si un suceso ocurre siempre después de una acción, el usuario creerá que la acción es la causa del suceso, salvo que se demuestre lo contrario.

Resumen de los tres casos

Deducción:

- Todas las alubias de la marca UFV son blancas.
- Estas alubias son de la marca UFV.
- Luego son blancas.

Inducción.

- Todas las alubias que conozco de la marca UFV son blancas.
- Luego todas las alubias de la marca UFV son blancas.

Abducción:

- Todas las alubias de la marca UFV son blancas.
- Estas alubias son blancas.
- Luego son de la marca UFV.

Resolución de problemas

- Proceso de encontrar la solución a una tarea no familiar usando nuestro conocimiento.
- Analogía o mapeado analógico:
 - Se empareja un nuevo conocimiento con conocimientos previos de un dominio similar.
 - Es un proceso difícil si los dominios son semánticamente diferentes.
 - La analogía es por restructuración productiva.
- Adquisición de habilidades:
 - ¿Qué diferencia un buen jugador de uno malo de ajedrez?
 - Se caracteriza por la división en bloques de información. Para facilitar el uso de la Memoria a Corto Plazo.
 - Es una agrupación de problemas más conceptual (y menos obvia) que superficial.
 - La información se estructura de manera más efectiva.

Errores humanos

Tipos de error:

Despiste, desliz o descuido:

- Intención buena, pero no se consigue hacer bien.
- Causas: por accidente, poca habilidad física, no prestar atención, etc.
- Son los errores más frecuentes.
- Se eliminan mejorando el diseño de la interfaz.

Fallo o equivocación:

- Se produce porque el usuario extrae una conclusión incorrecta de la información que recibe de la interfaz.
- Difíciles de prever.
- Se eliminan mejorando la comprensión del sistema, por ejemplo, dando información de los efectos de cada acción.

Emociones y afectos

Emoción

- Emoción (RAE): "Alteración del ánimo intensa y pasajera, agradable o penosa, que va acompañada de cierta conmoción somática".
- Estado fisiológico y neurológico.

Emoción

- Las emociones forman parte del ser humano.
- User Experience (UX).
- Empleados felices trabajan mejor.
- Mis clientes felices compran otra vez mis productos.

Pirámide de necesidades de Maslow

¿Y para la IPO también?

Emociones en interfaces

- Como objetivo principal:
 - Despertar emociones es el propósito del producto.
 - Ej.: Arte, juegos, entretenimiento
 - Podemos necesitar mayor soporte funcional.
 - Ej,: mando a distancia eficiente, una funcionalidad de una red social para subir fotos más cómodamente, etc.

•

- Como objetivo secundario:
 - Las emociones ayudan al objetivo principal.
 - Ej.: mantenernos alerta en un trabajo repetitivo, motivación en el aprendizaje, etc.

Emociones en interfaces

- Implicaciones para el diseño de interfaces:
 - El estrés aumenta la dificultad de resolver problemas.
 - Los usuarios relajados serán más permisivos con defectos del diseño.
 - ¡No nos da una excusa para diseñar malos interfaces!
 - Los interfaces gratificantes y estéticamente agradables (que fomentan emociones positivas) tienen mayor probabilidad de tener más éxito.

Ergonomía

Ergonomía

La ergonomía estudia las interacciones entre los seres humanos y otros elementos de un sistema informático con el fin de optimizar el confort o bienestar de las personas y el rendimiento global del sistema.

- Tipos de ergonomía:
 - Física: comodidad, seguridad y salud de la persona.
 - Cognitiva: es la encargada de estudiar los procesos mentales (percepción, memoria, razonamiento, etc.).
 - Organizativa: estudia el trabajo cooperativo para el diseño de la interacción de las tareas compartidas.

Ergonomía

Atención a la diversidad

Diferencias individuales

- Los principios psicológicos vistos hasta ahora son comunes a todos los humanos, y aun así, no hay dos personas iguales.
- Diferencias individuales:
 - A largo plazo: Sexo, habilidades físicas e intelectuales.
 - A corto plazo: Efecto del estrés o la fatiga.
 - Variables: Edad.
- ¿La decisión final de nuestro diseño excluirá a un sector de la población de usuarios?
 - Si hay un énfasis especial en la parte visual, dejaremos atrás a las personas con alguna discapacidad visual.
- No llevar a los usuarios hasta los límites de percepción o cognitivos.

Discapacidad y diversidad funcional

Deficiencia

 Imperfección o defecto de un sistema funcional o mecanismo del cuerpo.

Discapacidad:

- Una diferencia individual que supera un límite más o menos arbitrario y que corresponde a una disminución física, sensorial o psíquica que la incapacita total o parcialmente para el trabajo o para otras tareas ordinarias de la vida.
- Hoy en día se prefiere el término: Diversidad Funcional.

Discapacidad y diversidad funcional

- Según datos del INE, en 2008 había en España 3,85 millones de personas con algún tipo de discapacidad.
- Como veremos próximamente (Tema 6), en nuestra legislación existen leyes para garantizar el acceso a las tecnologías, productos y servicios relacionados con la sociedad de la información y medios de comunicación social.
- Los sistemas informáticos ofrecen la ocasión de romper las barreras físicas para estos individuos, abriendo una gran cantidad de oportunidades de relaciones sociales, opciones laborales y de todo tipo.

Tipos de diversidad funcional

- Visual.
 - Color (daltonismo).
 - Ametropías (defectos de refracción).
 - Visión reducida.
 - Ceguera.
- Auditiva
- Táctil.
- Motora.
- Cognoscitiva.

Visual: color

Los defectos de visualización del color provienen de una falta o mal funcionamiento de alguno de los tres tipos de conos: Daltonismo.

No se debe abusar del color como medio de codificación porque los problemas de visión del color son muy comunes.

El 8 % de los hombres y el 1 % de las mujeres tienen algún problema de visión del color.

Tipo	Descripción
Tricromatía	Visión cromática normal
Protanopia	Insensible al rojo
Deuteranopia	Insensible al verde
Tritanopia	Insensible al azul
Monocromatía	Sin visión del color

Visual: color

http://testdaltonismo.com/

Bibliografía

Lecturas recomendadas:

- E. Villalba Mora, "Factores humanos", en *Interacción Persona-Ordenador*, coordinador X. Ferré Grau, 1ª edición. Madrid, España: Ediciones CEF, 2015, capítulo 3, páginas 65–94
- L.A. Martínez Normand, "Accesibilidad y diseño para todos", en Interacción Persona-Ordenador, coordinador X. Ferré Grau, 1^a edición. Madrid, España: Ediciones CEF, 2015, capítulo 4, páginas 95–138

• Lecturas complementaria:

- J.J. Cañas, L. Salmerón y P. Gómez, "El factor humano" en La Interacción Persona-Ordenador, editor J. Lorés, 2002, disponible online: http://aipo.es/content/el-libro-electr%C3%B3nico
- A. Dix, "Cognition and perception", 2012, disponible online: http://www.hcicourse.com

susana.bautista@ufv.es marlon.cardenas@ufv.es

