Department of Computer Science Chair of Computer Networks and Telematics Prof. Dr. Christian Schindelhauer Exam: "Mock Exam 7: Introduction to Cryptography" Date and time: 2020/09/03 11:40 Duration: 90 minutes Room: your room Permitted exam aids: none (well, not this time, but in the real exam) Prof. Dr. Christian Schindelhauer Examiner: Family name: First name: Matriculation number: Subject: Program: ☐ Bachelor ☐ Master ☐ Lehramt □ others Signature:

NOTES

· Please fill out this form.

Signature of the examiner:

- Please write your matriculation number on each paper sheet.
- Please fill in your answer in the designated areas.

	Max	Reached	Comments
Basics	4		
DES & AES	13		
Fields and Modular Arithmetics	34		
Hash Functions, Digital Signature and Cryptographic Protocols	9		
Public Key Cryptography	24		
Quantum Cryptography	6		
Sum	90		
Grade:			
Date of the review of the exam:			

Question 1: Basics	[4 Points]
(a) [4 Points] Explain the ciphertext-only attack with	th a picture

Question 2: DES & AES

[13 Points]

[10 Points] Describe the Cipher I	Feedback Mo	de Encryption.	

(Duestion	3:	Fields	and	Modular	Arithme	tics
•	Jucsuvii	J.	ricius	anu	Midulai	Allumic	ucs

[34 Points]

equations.					

(c)	[4 Points] For which elements in \mathbb{Z}_n does a multiplicative inverse exist?	
	[6 Points] How many prime numbers exist asymptotically, which are smaller than n ? Eplain your answer.	Ξ x -

Question 4: Crypto Hash Functions, Digital Signature and Crypto Protocols [9 Points]

functions			

	O	uestion	5 :	Public	Kev	Crypto	gran	h	V
--	---	---------	------------	---------------	-----	--------	------	---	---

[24 Points]

(h)	[4 Points]	Consider the	ellintic curve
(U)	[4 FOIIIIS]	Consider the	empue curve

$$y^2 = x^3 - 3x$$

for $E(\mathbb{R})$. For the point $P=(-1,\sqrt{2})$ compute $P\star P$.

(c)	[8 Points]	Name the four properties of an Abelian group.

)	[4 Points]	Define the extension field over a given elliptic curve $y^2 = x^3 + ax + b$.

Question 6: Quantum Cryptography

[6 Points]

(a) [6 Points] Check whether the matrix

$$M = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & i \end{pmatrix}$$

is a unitary matrix.