Couplage d'une chaîne de Markov

I. Préliminaires

Soit X une chaîne de Markov de matrice de transition P sur un espace d'état M dénombrable. Soit $f: M \to \mathbb{R}$ une fonction mesurable bornée. On appelle oscillation de f la quantité

$$\operatorname{Osc}(f) = \sup_{x,y \in M} |f(x) - f(y)| = \sup_{M} f - \inf_{M} f.$$

Et pour tout $n \in \mathbb{N}$, on pose

$$\rho_n = \sup_{f \text{ bornée}} \frac{\operatorname{Osc}(P^n f)}{\operatorname{Osc}(f)}.$$

- **1.** Montrer que pour toust $(n,m) \in \mathbb{N}^2$, on a $\rho_{n+m} \leq \rho_n \rho_m$.
- **2.** Montrer que pour tout $n \in \mathbb{N}$ et $(x,y) \in M^2$ on a

$$|P^{n+m}f(x) - P^nf(x)| \le \operatorname{Osc}(P^nf).$$

3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite vérifiant $u_{n+m} \leq u_n + u_m$ pour tous n et m et soit $\alpha = \inf_n \frac{u_n}{n}$. Montrer que $\frac{u_n}{n} \to \alpha$.

Indication: on pourra fixer $\epsilon > 0$ et n_0 tel que $\frac{u_{n_0}}{n_0} \le \alpha + \epsilon$, puis montrer en effectuant la division euclidienne de n par n_0 , qu'on a $\frac{u_n}{n} \le \alpha + 2\epsilon$ pour n assez grand.

4. En déduire que si $\inf_{n} \rho_n < 1$ alors $\rho_n \stackrel{n}{\to} 0$.

II. Couplage

On suppose maintenant qu'il existe une suite $(\theta_n)_{n\geq 1}$ de variables aléatoires réelles indépendantes identiquement distribuées, et $F: \mathbb{R} \times M \to M$ une fonction mesurable telles que X soit donnée par le système dynamique aléatoire

$$X_n = F(\theta_n, X_{n-1}).$$

On introduit une deuxième chaîne $Y_n = F(\theta_n, Y_{n-1})$ et le couple Z = (X, Y). Enfin on pose $T=\inf\{n\geq 0,\ X_n=Y_n\}$, et on suppose qu'il existe $n_0\in\mathbb{N}^*$ et $\epsilon>0$ tels que pour tout $(x,y) \in M^2$, on ait

$$\mathbb{P}_{(x,y)}(T \le n_0) \ge \epsilon.$$

- 5. Montrer que Z est une chaine de Markov. Préciser son espace d'état et sa matrice de transition.
- **6.** Montrer que presque sûrement $(\forall n \geq T)$ $(X_n = Y_n)$.
- 7. Montrer que pour tout $n \in \mathbb{N}$ et pour tout $(x,y) \in M^2$, on a

$$|P_n f(x) - P_n f(y)| \le \mathbb{P}_{(x,y)}(T > n) \operatorname{Osc}(f).$$

- **8.** En déduire que $\rho_{n_0} \leq 1 \epsilon$, puis que $\rho_n \to 0$.
- 9. Soit f une fonction bornée, montrer que $P^n f$ converge uniformément vers une constante qu'on appelle c(f).
- 10. Montrer qu'il existe une mesure de probabilité π telle que pour toute f bornée on ait $c(f) = \int f d\pi$. Puis montrer que π est l'unique probabilité stationnaire de la chaîne.