NDFA

(Non-Deterministic Finite Automate)

```
.: NDFA dengan ε-move :.
```

.: NDFA dengan ϵ -closure :.

.: NDFA dengan ε-move :.

NDFA dengan ε-move

- Jenis otomata baru yang disebut Non-deterministic Finite Automata dengan ε-move
- Pada NDFA dengan ε-move diperbolehkan berpindah state tanpa membaca input
- Disebut dengan transisi ε karena tidak bergantung pada suatu input ketika melakukan transisi.

Contoh:

- Dari q0 tanpa membaca input dapat berpindah ke q1
- Dari q1 tanpa membaca input dapat berpindah ke q2
- Dari q4 tanpa membaca input dapat berpindah ke q1

Salah satu kegunaan dari transisi ϵ ini adalah memudahkan kita untuk mengkombinasikan Finite State Automata.

.: NDFA dengan ε-closure :.

ε-Closure

- ► ε-Closure adalah himpunan *state-state* yang dapat dicapai dari suatu *state* tanpa membaca input.
- Misalkan saja ϵ -closure(q_0) = himpunan *state-state* yang dapat dicapai dari *state* q_0 tanpa membaca input
- Pada suatu *state* yang tidak memiliki transisi ε, maka ε-closure-nya adalah *state* itu sendiri.

Berdasarkan contoh diatas ε -closure(q_0) = { q_0 , q_1 , q_2 }, artinya dari state q_0 tanpa membaca input dapat mencapai *state* q_0 , q_1 , q_2 .

- ϵ -closure(q_0) = { q_{0} , q_{1} , q_{2} },
- ϵ -closure(q_1) = { q_1, q_2 },
- ϵ -closure(q_2) = { q_2 },
- ϵ -closure(q₃) = { q₃},
- ϵ -closure(q_4) = { q_{1}, q_{2}, q_{4} }

*Perhatikan:

Pada suatu *state* yang tidak memiliki transisi ε, maka ε-closure-nya adalah *state* itu sendiri.