

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

пьный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ «Информатика и системы управления»

КАФЕДРА ИУ-7 «Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

«Классификация известных методов увеличения разрешения видеопотока»

Студент	ИУ7-73Б	Марченко В.
Руководит	ель НИР	Тассов К. Л.
Рекоменду	емая руководителем НИР оценка	

РЕФЕРАТ

Отчет X с., X рис., X табл., X источн., X прил. ВИДЕО, ВИДЕОПОТОК, ВИДЕОИЗОБРАЖЕНИЕ, РАЗРЕШЕНИЕ, НЕЙ-РОННЫЕ СЕТИ

Объектом исследования являются методы увеличения разрешения видеопотока.

Цель работы: классификация известных методов увеличения разрешения видеопотока.

В результате исследования было проведено сравнение ... по ... критериям.

Область применения результатов — ...

Результат работы...

СОДЕРЖАНИЕ

B .	ВЕД	ЕНИЕ	}	6
1	Ана	ализ п	редметной области	8
	1.1	Супер	разрешение видеопотока	8
	1.2	Поних	жение разрешения	9
	1.3	Подхо	оды к увеличению разрешения видеопотока	9
	1.4	Часто	тная область	10
	1.5	Прост	гранственная область	11
		1.5.1	Бикубическая интерполяция	11
		1.5.2	Метод, основанный на нелокальной регуляризации и на-	
			дежной оценке движения	13
	1.6	Метод	цы, основанные на использовании нейронных сетей	15
		1.6.1	Нейронная сеть, использующая динамические фильтры	
			повышения разрешения без явной компенсации движения	15
		1.6.2	Остаточная обратимая пространственно-временная ней-	
			ронная сеть	18
2	Кла	ассифи	икация методов увеличения разрешения видеопотока	23
	2.1 Критерии оценки методов увеличения разрешения видеопотока			23
	2.2	Сравн	нение методов увеличения разрешения видеопотока	24
34	Ч КЛ	ЮЧЕ	ние	25
\mathbf{C}	ПИС	сок и	СПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	26
П	РИЛ	ОЖЕ	НИЕ А Презентация	27

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

В настоящем отчете о НИР применяют следующие сокращения и обозначения:

VSR. Суперразрешение видео (Video Super-Resolution) Суперразрешение фото (Single-Image Super-Resolution) SISR Дискретное преобразование Фурье (Discrete Fourier Transform) DFT Дискретное косинусное преобразование (Discrete Cosine DCT Transform) DWT Дискретное вейвлет-преобразование (Discrete Wavelet Transform) New Edge-Directed Interpolation **NEDI** Grouped Bees Algorithm GBA POCS Проецирование в выпуклые множества (Projections onto Convex Sets) Interval Bound Interpolation **IBP** RLS Рекуррентный метод наименьших квадратов (Recursive Least Squares) MAP Оценка апостериорного максимума (Maximum a posteriori Probability) MLE Метод максимального правдоподобия (Maximum Likelihood Estimation) MRF Марковское случайное поле (Markov Random Field) Индекс структурного сходства (structure similarity) SSIM **PSNR** Пиковое отношение сигнала к шуму (peak signal-to-noise ratio)

ВВЕДЕНИЕ

Суперразрешение — это способ получения видеопотока (изображения) с высоким разрешением из видеопотока (изображения) низкого разрешеня [1]. В отличие от суперразрешения одного изображения (SISR), основная цель суперразрешения видео — не только восстановить больше мелких деталей при сохранении крупных, но и сохранить согласованность движения.

Во многих областях, работающих с видео, люди имеют дело с различными типами деградации видео, включая понижение разрешения. Разрешение видео может снизиться из-за несовершенства устройств фото и видеосъемки. Плохое освещение и погодные условия добавляют шум. Движение объектов и камеры также ухудшает качество видео. Методы суперразрешения помогают восстановить исходное видео. Это полезно в широком спектре приложений, таких как [2]:

- 1) видеонаблюдение (для улучшения качества видео, снятого с камеры, а также распознавания номеров автомобилей и лиц);
- 2) медицинская визуализация (чтобы лучше обнаружить некоторые органы или ткани для клинического анализа и медицинского вмешательства);
- 3) судебно-медицинская экспертиза (для помощи в расследовании в ходе уголовного процесса);
- 4) астрономия (для улучшения качества видео звезд и планет);
- 5) дистанционное зондирование (для облегчения наблюдения за объектом);
- 6) микроскопия (для усиления возможностей микроскопов).

Суперразрешение видео также помогает решить задачу обнаружения объектов, распознавания лиц и символов (в качестве этапа предварительной обработки).

Суперразрешение видео является давней сложной задачей, главным образом по следующим двум причинам: эта задача по своей сути является некорректно поставленной из-за характера отображения «один ко многим» (один кадр низкого разрешения может отображаться в различные кадры высокого разрешения) и на сегодняшний день не существует удовлетворительной

архитектуры, предназначенной для интеграции пространственной и временной информации в единую структуру [3].

Цель научно-исследовательской работы: провести обзор известных методов увеличения разрешения видеопотока и классифицировать их по сформулированным критериям.

Задачи научно-исследовательской работы:

- 1) исследовать предметную область увеличения разрешения видеопотока;
- 2) проанализировать известные методы увеличения разрешения видеопотока;
- 3) сформулировать критерии для сравнения этих методов;
- 4) сравнить методы увеличения разрешения видеопотока по сформулированным критериям.

1 Анализ предметной области

1.1 Суперразрешение видеопотока

Суперразрешение — это набор действий, выполняемых с целью получения изображения (или последовательности изображений) высокого разрешения из последовательности изображений низкого разрешения. Концепция суперразрешения представлена на рисунке 1.1. Суперразрешение позволяет получить изображение или видео повышенного качества с большим количеством деталей на сцене, что важно для точного анализа [2].

Рисунок 1.1 – Концепция суперразрешения [2]

Суперразрешение может быть оптическим и геометрическим. В оптических методах используются характеристики оптики, датчиков и компонентов дисплея устройства визуализации, которые отвечают за ухудшение качества или понижение разрешения изображения. Улучшение пространственного разрешения устройства визуализации может быть достигнуто путем модификации аппаратного обеспечения двумя способами [2]: увеличить количество пикселей (но есть ограничения, т. к. это уменьшает отношение сигнал/шум (ОСШ) и увеличивает время получения изображения) и увеличить размер чипа, необходимого для получения изображений высокого разрешения (такие чипы достаточно дорогие) [1].

Хорошей альтернативой обоим подходам является использование метода автономного улучшения разрешения, то есть геометрического суперразрешения. В этом типе суперразрешения для восстановления и реконструкции изображения используются методы цифровой обработки изображений [2].

Благодаря широкой применимости концепции суперразрешения это одна из наиболее быстро развивающихся областей исследований в области обработки изображений [4].

1.2 Понижение разрешения

На рисунке 1.2 показан процесс понижения разрешения изображения.

Рисунок 1.2 – Процесс понижения разрешения изображения [2]

Приведенный процесс можно записать с помощью формулы:

$$Y_k = D * H * F_k * X + V_k, (1.1)$$

где Y_k — k-я экспозиция сцены с низким разрешением, H — коэффициент размытия, которое появляется из-за особенностей камеры, D — коэффициент децимации, F_k — деформация, а V_k — коэффициент шума [2].

В приведенной выше формуле факторами деградации являются F_k , H, D и V_k . Если эти коэффициенты известны разработчику, то система называется системой с предварительно известными данными, а изображение с высоким разрешением получается путем решения математического уравнения 1.1 [2].

1.3 Подходы к увеличению разрешения видеопотока

Самый простой способ реализовать суперразрешение видео — покадровый запуск суперразрешения фото. Однако, поскольку методы суперразрешения фото не учитывают временные отношения между кадрами, существует высокая вероятность того, что последовательные кадры не будут соединены естественным образом, что приведет к мерцающим артефактам [5].

Суперразрешение осуществляется или покадрово, или используя сразу несколько кадров. Субпиксельный сдвиг между последовательными кадрами используется для восстановления кадров высокого разрешения в многокадровых методах суперразрешения. Однокадровые методы стремятся улучшить

качество изображения без добавления размытия. Алгоритмы суперразрешения работают в двух областях — частотной и пространственной. На рисунке 1.3 представлены некоторые методы суперразрешения видео [2].

Рисунок 1.3 – Некоторые методы суперразрешения видеопотока [2]

1.4 Частотная область

Подходы, работающие в частотной области, рассматривают частотную составляющую как признак изображения. Преобразование области сигнала изображения/видео в частотную область осуществляется с помощью дис-

кретного преобразования Фурье, дискретного косинусного преобразования и дискретного вейвлет-преобразования. Метод частотной области точно использует алиасинг, существующий в каждом изображении низкого разрешения, для восстановления изображения высокого разрешения [2].

Подходы, работающие в частотной области, базируются на трех принципах [6]:

- 1) свойство временного сдвига преобразования Фурье;
- 2) отношение алиасинга между непрерывным преобразованием Фурье оригинального изображения с высоким разрешением и дискретным преобразованием Фурье изображений низкого разрешения;
- 3) оригинальное изображение высокого разрешения ограничено диапазоном частот.

1.5 Пространственная область

В пространственной области процесс восстановления происходит путем обработки на уровне пикселей вместо работы с каким-либо признаком изображения. Алгоритмы, относящиеся к пространственной области, в основном делятся на интерполяционные и регуляризационные [2].

Итеративные методы обратного проецирования предполагают некоторую функцию между кадрами с низким и высоким разрешением и пытаются улучшить свою предполагаемую функцию на каждом этапе итеративного процесса [7]. Метод проецирования в выпуклые множества, который определяет конкретную функцию стоимости, также может использоваться для итеративных методов [8].

1.5.1 Бикубическая интерполяция

Самый простой способ повысить разрешение изображения — интерполяция. Процесс интерполяции — это оценка нового пикселя с помощью заданного набора пикселей. Регистрация, интерполяция и восстановление — три основных этапа интерполяционных методов суперразрешения [6]. Геометрическое выравнивание происходит при регистрации изображений, при которой изображения низкого разрешения выравниваются по одному конкретному изображению низкого разрешения, используемому в качестве эталона.

Смещения и повороты субпикселей необходимы для точной оценки параметров движения перед их объединением для создания изображения высокого разрешения [2].

Бикубическая интерполяция является более трудоемким методом, чем интерполяция методом «ближайшего соседа» и билинейная интерполяция. В отличие от билинейной интерполяции, коэффициенты бикубической интерполяции в 16-и ближайших пикселях обеспечивают более гладкую поверхность, поскольку связь с известными пикселями имеет полиномиальный, а не линейный характер. Полином третьей степени с коэффициентами $a_0, ..., a_3$ записывается как $f(x) = \sum_{i=0}^3 a^i x^i$. Предположим, есть четыре известные точки $f(p_1), f(p_2), f(p_3), f(p_4)$, которые окружают неизвестную точку f(p), где f — некий полином третьей степени. Запишем функцию f и известные точки $p_1, ..., p_4$ в матричном представлении [9]:

$$y = \begin{bmatrix} f(p_1) & f(p_2) & f(p_3) & f(p_4) \end{bmatrix}^T,$$
 (1.2)

$$B = \begin{bmatrix} (p_1)^3 & (p_1)^2 & (p_1)^1 & (p_1)^0 \\ (p_2)^3 & (p_2)^2 & (p_2)^1 & (p_2)^0 \\ (p_3)^3 & (p_3)^2 & (p_3)^1 & (p_3)^0 \\ (p_4)^3 & (p_4)^2 & (p_4)^1 & (p_4)^0 \end{bmatrix},$$
(1.3)

$$a = \begin{bmatrix} a_3 & a_2 & a_1 & a_0 \end{bmatrix}^T, \tag{1.4}$$

$$y = Ba. (1.5)$$

Чтобы посчитать f(p), степени p_1, \ldots, p_4 умножаются на коэффициенты a_0, \ldots, a_3 . Так как константы a_0, \ldots, a_3 неизвестны, они выражаются из предыдущих уравнений, что приводит к уравнениям [9]:

$$b = \begin{bmatrix} p^3 & p^2 & p^1 & p^0 \end{bmatrix}, \tag{1.6}$$

$$f(p) = ba = bB^{-1}y. (1.7)$$

Бикубическая интерполяция — это кубическая интерполяция по двум измерениям для поиска поверхности, а не прямой. На рисунке 1.4 показаны распространенные артефакты, возникающие при использовании методов интерполяции: алиасинг (эффект «ступенчатости» изображения), сглаживание

и гало (edge halo) [9].

Рисунок 1.4 – Распространенные артефакты [9]

1.5.2 Метод, основанный на нелокальной регуляризации и надежной оценке движения

Данный метод состоит из двух шагов: регистрация, где оценивается движение между изображениями низкого разрешения, и восстановление изображения, при котором изображение высокого разрешения восстанавливается из изображений низкого разрешения с использованием информации о движении и размытии [10].

Основан метод на многостороннем фильтре, который используется для регуляризации процесса оценки движения. Этот фильтр может адаптивно корректировать оценку движения в соответствии с надежностью оценки, неоднородностью интенсивности изображения и несходством движения [10].

На рисунке 1.5 изображена диаграмма суперразрешения видео. Исходная видеопоследовательность высокого разрешения создается путем деформации опорного кадра (красный прямоугольник) несколькими полями движения. Затем последовательность кадров высокого разрешения сглаживается с помощью ядра размытия, субдискретизируется и загрязняется шумом для создания наблюдаемой последовательности кадров низкого разрешения. Предлагаемый метод суперразрешения видео не только оценивает последовательность кадров высокого разрешения, но также движение, ядро размытия и веса соответствия [10].

Рисунок 1.5 – Диаграмма суперразрешения видео [10]

Пусть z — «размытое» изображение высокого разрешения, F_t — поле движения (motion field) и W_t — матрица весов. Для решения задачи регистрации используется метод оценки апостериорного максимума [10]:

$$\{z^*, \{F_t\}^*, \{W_t\}^*\} = arg \ max \ p(z, \{F_t\}, \{W_t\}|\{y_t\}).$$
 (1.8)

В этой формуле апостериорная вероятность — произведение априорной вероятности на функцию правдоподобия [10]:

$$p(z, \{F_t\}, \{W_t\}|\{y_t\}) = p(\{y_t\}|z, \{F_t\}, \{W_t\}) \cdot p(z) \cdot p(\{F_t\}, \{W_t\}).$$
 (1.9)

В данной формуле $p(\{y_t\}|z, \{F_t\}, \{W_t\})$ — функция правдоподобия, а p(z) и $p(\{F_t\}, \{W_t\})$ — априорные значения скрытого изображения и полей движения соответственно [10].

Условное распределение кадра y_t низкого разрешения:

$$p(y_t|z, F_t, W_t) = \exp(-\frac{||DF_t z - y_t||_{W_t}^2}{2\sigma^2}),$$
 (1.10)

где запись $||a||_W^2 = a^T W a$ представляет взвешенную сумму квадратов. Предполагая статистическую независимость гауссовского шума среди полученных изображений низкого разрешения, условное распределение набора этих изоб-

ражений y_t может быть записано как [10]:

$$p(\lbrace y_t \rbrace | z, \lbrace F_t \rbrace, \lbrace W_t \rbrace) = \prod_{t=1}^{T} p(y_t | z, F_t, W_t) = \exp(-\frac{||DF_t z - y_t||_{W_t}^2}{2\sigma^2}).$$
 (1.11)

С помощью приведенной оценки апостериорного максимума изображение высокого разрешения и оценка движения могут постепенно уточняться альтернативным и итеративным способами [10].

1.6 Методы, основанные на использовании нейронных сетей

Традиционные методы суперразрешения видео используют несколько кадров низкого разрешения в качестве входных данных и на выходе выдают кадры высокого разрешения, принимая во внимание субпиксельные движения между соседними кадрами низкого разрешения. Все методы суперразрешения видео, основанные на глубоком обучении, работают именно по этому прицнипу и состоят из двух этапов: оценки движения и процедуры компенсации, за которой следует процесс увеличения разрешения. Одна из проблем этого двухэтапного подхода заключается в том, что результаты во многом зависят от точной оценки движения. Другая потенциальная проблема заключается в том, что выходной кадр высокого разерешения создается путем смешивания значений из нескольких входных кадров низкого разерешения с компенсацией движения через сверточные нейронные сети, что может привести к размытому выходному кадру высокого разерешения [5].

1.6.1 Нейронная сеть, использующая динамические фильтры повышения разрешения без явной компенсации движения

В этом методе вместо явного вычисления и компенсации движения между входными кадрами, информация о движении неявно используется для генерации динамических фильтров увеличения разрешения. С помощью сгенерированных фильтров кадр высокого разрешения напрямую строится путем локальной фильтрации входного центрального кадра. Поскольку этот метод не полагается на явное вычисление движений и не объединяет напрямую

значения из нескольких кадров, можно создавать гораздо более четкие и согласованные по времени видео высокого разрешения [5].

На рисунке 1.6 показан пример масштабирования пикселя (3, 3) центрального входного кадра X_t с помощью коэффициента масштабирования r=4. Шестнадцать сгенерированных фильтров от $F_t^{3,3,0,0}$ до $F_t^{3,3,3,3}$ используются для создания шестнадцати пикселей в области от (12, 12) до (15, 15) кадра \hat{Y}_t высокого разрешения [5].

Рисунок 1.6 – Пример масштабирования пикселя [5]

Цель суперразрешения видео — оценить кадры $\{\hat{Y}_t\}$ высокого разрешения по последовательности кадров $\{X_t\}$ низкого разрешения. Кадры $\{X_t\}$ низкого разрешения — это субдискретизированные исходные кадры $\{Y_t\}$, где t — шаг по времени. С предложенной нейронной сетью G и параметрами сети θ задача суперразрешения видео определяется как:

$$\hat{Y}_t = G_\theta(X_{t-N:t+N}),\tag{1.12}$$

где N — временной радиус. Форма входного тензора для $G-T\times H\times W\times C$, где T=2N+1, H и W — высота и ширина входного кадра низкого разрешения, а C — количество цветовых каналов. Соответствующая форма выходного тензора — $1\times rH\times rW\times C$, где r — коэффициент масштабирования [5].

Нейронная сеть G на выходе дает два значения для генерации конечно-

го кадра высокого разрешения \hat{Y}_t из множества кадров низкого разрешения $\{X_{t-N:t+N}\}$: динамические фильтры F_t увеличения разрешения и остаток R_t . Входной центральный кадр X_t сначала локально фильтруется с помощью динамических фильтров F_t увеличения разрешения, а затем остаток R_t добавляется к результату для окончательного вывода \hat{Y}_t .

На рисунке 1.7 показана архитектура нейронной сети.

Рисунок 1.7 – Архитектура нейронной сети [5]

Динамические фильтры увеличения разрешения. Сначала множество входных кадров $\{X_{t-N:t+N}\}$ низкого разрешения попадают на вход сети генерации динамических фильтров. Обученная сеть выдает множество r^2HW фильтров F_t увеличения разрешения определенного размера, которые затем используются для генерации новых пикселей отфильтрованного кадра \hat{Y}_t . Далее создаются выходные пиксели высокого разрешения с помощью локальной фильтрации входного кадра X_t с помощью соответствующего фильтра:

$$\hat{Y}_t(yr+v, xr+u) = \sum_{j=-2}^2 \sum_{i=-2}^2 F_t^{y,x,v,u}(j+2, i+2) X_t(y+j, x+i), \quad (1.13)$$

где y и x — координаты сетки низкого разрешения, v и u — координаты каждого выходного блока $r \times r$ ($0 \le v$, $u \le r - 1$). Эта операция аналогична деконволюции, поэтому данную сеть можно обучать сквозным образом, поскольку она допускает обратное распространение ошибки [5].

Добавление остатка. Результату после применения динамических фильтров увеличения разрешения не хватает резкости, поскольку он представляет собой взвешенную сумму входных пикселей. Могут быть детали, которые

невозможно восстановить с помощью линейной фильтрации. Чтобы решить эту проблему, дополнительно оценивается остаточное изображение, чтобы увеличить детализацию [5].

1.6.2 Остаточная обратимая пространственно-временная нейронная сеть

В данном методе используется сеть, которая состоит из трех компонентов: пространственная составляющая, временная составляющая и составляющая восстановления (реконструкции). В пространственном компоненте остаточный обратимый блок (RIB) предназначен для извлечения информативных признаков с помощью пространственной информации. Во временном компоненте используется остаточная плотная сверточная длинная кратковременная память (RDC-LSTM) для изучения последовательного представления признаков. Компонент реконструкции используется для интеграции пространственных и временных характеристик в единую структуру. На рисунке 1.8 показана структура остаточной обратимой пространственно-временной сети [3].

Рисунок 1.8 — Структура остаточной обратимой пространственно-временной сети [3]

В пространственном компоненте последовательные кадры низкого разрешения подаются на слой дополнения, который создает исходные карты признаков путем дополнения нулями в каналах RGB. Два последующих параллельных остаточных обратимых блока имеют разную архитектуру с разным количеством слоев для использования иерархических признаков. Выходные карты признаков предыдущего RIB будут объединены и затем помещены в следующие параллельные RIB. Примечательно, что объединение может эффективно увеличить разнообразие карт признаков. Во временном компоненте предлагается использовать остаточную плотную сверточную сеть с длинной краткосрочной памятью для обработки признаков непрерывных кадров. В компоненте реконструкции используется метод объединения разреженных признаков для интеграции пространственных и временных карт признаков, причем объединенные карты признаков подвергаются увелчению разрешения до целевого размера высокого разрешения. Наконец, слой реконструкции используется для восстановления кадров высокого разрешения RGB-канала [3].

Конечная цель суперразрешения видео — обучить производящую функцию F, которая оценивает кадры высокого разрешения по входным кадрам низкого разрешения. Пусть I_T^{LR} — входные кадры низкого разрешения, I^{HR} — исходные кадры высокого разрешения, тогда задача суперразрешения видео может быть описана слеудующим образом:

$$I_T^{HR} = F(\{I_T^{LR}, I_{T+i}^{LR}\}), i \in \{\pm 1, ..., \pm k\},$$
 (1.14)

где T — текущая временная метка, i — последовательная i-я временная метка [3].

Остаточный обратимый блок. Кадры высокого разрешения должны иметь структуру, аналогичную входным кадрам низкого разрешения — это важное свойство называется пространственной информацией. В текущем методе используется остаточный обратимый блок (RIB), в котором создается остаточное соединение, а параллельный обратимый блок предназначен для изучения разницы между кадрами низкого и высокого разрешения. На рисунке 1.9 показана архитектура остаточного обратимого блока. Знак \oplus означает поэлементное сложение [3].

Рисунок 1.9 – Архитектура остаточного обратимого блока [3]

На рисунке показано, что входные признаки F_{fea} делятся на два подслоя $X_0^{(0)}$ и $X_1^{(0)}$. Далее определяется сверточное бутылочное горлышко $F_i,\ i\in[1,\ 2,\ ...,\ n-1]$. Сверточное бутылочное горлышко состоит из слоев свертки, пакетной нормализации (BNs) и срезанных линейных узлов (ReLUs). Признаки $X_1^{(i-1)}$ и $X_0^{(i-1)}$ могут быть получены по формулам:

$$X_1^{(i-1)} = X_1^{(i)} - F_i(X_0^{(i-1)}), (1.15)$$

$$X_0^{(i-1)} = X_0^{(i)}. (1.16)$$

Согласно приведенным выше формулам, предыдущие признаки могут быть последовательно выведены из любого $X_1^{(i)}$ и $X_0^{(i)}$. Таким образом, результат работы пространственного компонента можно записать в следующем виде:

$$X_{\text{out}} = [X_0^{(n)}, \ X_1^{(n)}] + X_{\text{fea}},$$
 (1.17)

где, обозначает объединение карт признаков [3].

Рекуррентная модель с короткими соединениями. Во временном компоненте используется сверточная долгая краткосрочная память для определения информативных признаков последовательных кадров. В отличие от обычного одномерной долгой краткосрочной памяти, сверточная захватывает двумерные призаки из соседних временных меток. Для тщательного использования временной согласованности сверточная долгая краткосрочная память построена как двунаправленная архитектура, в которой выходные данные прямого

и обратного хода объединяются и образуют выходные данные одного нейрона. На рисунке 1.10 показаны архитектуры различных модификаций сверточной долгой краткосрочной памяти [3].

Рисунок 1.10 – Архитектуры различных модификаций сверточной долгой краткосрочной памяти [3]

Результат работы временного компонента можно записать в следующем виде:

$$X_{out} = W_{1 \times 1 \times c \times c'} * X_{in} + [H_0, H_1, ..., H_{n-1}]_{c'}, \tag{1.18}$$

где $[H_0, H_1, ..., H_{n-1}]$ — конкатенация карт признаков, полученных на всех предыдущих слоях, X_{in} и X_{out} — входные и выходные данные временного компонента, W — матрица сверточного фильтра размера 1×1 , c — исходное количество цветовых каналов, а * обозначает операцию свертки, которая преобразует c в c' [3].

Слияние разреженных признаков. Временные признаки будут преобразованы в то же пространство, что и пространственные признаки, с использованием слоя отображения. Предположим, что карты пространственных признаков X_s имеют c_1 каналов, а карты временных признаков $X_t - c_2$ каналов. Пусть $c = 2 \times c_1$, тогда объединенные карты признаков X_{concat} могут быть представлены в виде:

$$X_{concat} = [W_{1 \times 1 \times c_2 \times c_1} * X_t, X_s]_c, \tag{1.19}$$

где W — сверточный фильтр временно-пространственного отображения, c_2 —

исходное количество каналов, c_1 — выходное количество каналов, * обозначает операцию свертки, а , — перекрестная конкатенация. Затем используется разреженная матрица $SM \in \mathbb{R}^{c \times c/2}$, предназначенная для выбора карт полезных признаков и адаптивного сжатия каналов признаков. Объединенные карты признаков X_{fused} могут быть посчитаны по формуле:

$$X_{\text{fused}} = X_{\text{concat}} \times SM,$$
 (1.20)

где × означает матричное умножение [3].

Рисунок 1.11 – Схема слияния разреженных признаков [3]

Увеличение разрешения во время реконструкции. В компоненте реконструкции создаются деконволюционные слои для увеличение разрешения карт признаков до целевого высокого разрешения. В данном методе используются слои деконволюции в качестве слоя увеличения разрешения в компоненте реконструкции для того, чтобы преобразованные объекты подвергались увеличению разрешения в конце сети. В отличие от субпиксельной свертки, уровень деконволюции адаптивно допускает в качестве входных данных произвольные номера каналов, а не фиксированные числа. Для увеличения разрешения карт признаков используются два стека слоев деконволюции с небольшими ядрами размером 3 × 3 и 256 картами признаков [3].

2 Классификация методов увеличения разрешения видеопотока

2.1 Критерии оценки методов увеличения разрешения видеопотока

Для сравнения и оценки производительности методов суперразрешения используются такие показатели, как пиковое отношение сигнала к шуму и индекс структурного сходства. Среднеквадратическая ошибка, которая представляет собой среднюю ошибку между исходным и улучшенным изображением, используется для расчета пикового отношения сигнала к шуму. Формула для нахождения среднеквадратической ошибки [2]:

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [X(i, j) - \hat{X}(i, j)].$$
 (2.1)

Формула для нахождения пикового отношения сигнала к шуму [2]:

$$PSNR = 20 \log_{10}(\frac{1}{\sqrt{MSE}}).$$
 (2.2)

Сходство между исходным изображением и изображением, полученным в результате использования метода суперразрешения, вычисляется по индексу структурного сходства. Параметрами, используемыми для расчета, являются яркость, контрастность и структурные изменения между двумя изображениями. Индекс структурного сходства определяется уравнением [2]:

$$SSIM(X, \hat{X}) = \frac{(2\mu_x \mu_{\hat{x}} + C_1)(2\sigma_{x\hat{x}} + C_2)}{(\mu_x^2 + \mu_{\hat{x}}^2 + C_1)(\sigma_x^2 + \sigma_{\hat{x}}^2 + C_2)}.$$
 (2.3)

2.2 Сравнение методов увеличения разрешения видеопотока

Таблица 2.1 – Сравнение методов увеличения разрешения видеопотока

Метод	Подход	PSNR	SSIM
Бикубическая ин-	интерполяционный	26.4037	0.7227
терполяция			
Нелокальная	регуляризационный	33.18	_
регуляризация и			
надежная оценка			
движения			
RIB	нейронные сети	31.65	0.897
DUF	нейронные сети	28.90	0.8898

ЗАКЛЮЧЕНИЕ

В ходе выполнения научно-исследовательской работы была достигнута поставленная цель, а также решены все задачи:

- 1) исследована предметная область увеличения разрешения видеопотока;
- 2) проанализированы известные методы увеличения разрешения видеопотока;
- 3) сформулированы критерии для сравнения этих методов;
- 4) проведено сравнение методов увеличения разрешения видеопотока по сформулированным критериям.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Park S. C., Park M. K., Kang M. G. Super-resolution image reconstruction: a technical overview // IEEE Signal Processing. 2003. C. 21—36.
- 2. Mrunmayee D. V., Sachin R. D. Video Super Resolution: A Review // Department of Electronics Engineering, Walchand College of Engineering, Sangli, M aharashtra, India. 2021. C. 6.
- 3. Residual Invertible Spatio-Temporal Network for Video Super-Resolution / Z. Xiaobin [и др.] // Proceedings of the AAAI Conference on Artificial Intelligence. 2019. Т. 33. С. 5981—5988.
- 4. Image super-resolution: The techniques, applications, and future / L. Yue [и др.] // IEEE Signal Processing. 2016. Т. 128. С. 389—408.
- 5. Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation / J. Younghyun [и др.] // IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018. С. 3224—3232.
- 6. A performance comparison among different super-resolution techniques / D. Thapa [и др.] // Computers and Electrical Engineering. 2016. Т. 54. С. 313—329.
- 7. Cohen B., Avrin V., Dinstein I. Polyphase back-projection filtering for resolution enhancement of image sequences // 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. 2000. C. 2171—2174.
- 8. Katsaggelos A. K. An iterative weighted regularized algorithm for improving the resolution of video sequences // Proceedings of International Conference on Image Processing. 1997. C. 474—477.
- 9. Bavenstrand E. Real-Time Video Super-Resolution // KTH Royal Institute of Technology. -2021. C. 92.
- 10. Jian L., HongRan Z., Yi S. Video super resolution based on non-local regularization and reliable motion estimation // Signal Processing: Image Communication. -2014. C. 16.

приложение а