Seminarvortrag Isoperimetrische Ungleichung in der Ebene

Robert Hemstedt r@twopi.eu

18. Mai 2013

1 Motivation

Sei Γ eine **geschlossene Kurve** in der Ebene, ohne Selbstüberschneidung. Es bezeichne l die **Länge** von Γ und \mathcal{A} die **Fläche** der beschränkten Umgebung in \mathbb{R}^2 , die von Γ umschlossen wird.

Frage: Falls existent, welche Kurve Γ für ein festes l maximiert A?

Man kann sich schnell selbst davon überzeugen, dass der Kreis dieses Problem löst. Wir wollen dies formal beweisen.

2 Kurven, Längen und Flächen

Bei der ersten Beschreibung des Problems haben wir die uns alltäglichen Begriffe **geschlossene Kurve**, **Länge** und **Fläche** verwendet, ohne sie vorher klar definiert zu haben. Das holen wir jetzt nach.

Definition 2.1: Eine parametrisierte Kurve ist eine Abbildung

$$\gamma: [a,b] \to \mathbb{R}^2.$$

 $\operatorname{Im}(\gamma)$ ist eine Menge von Punkten in der Ebene, die wir als Kurve Γ bezeichnen. Eine Kurve heißt einfach, wenn sie sich nicht selbst schneidet und sie heißt geschlossen, wenn ihr Anfangs- und Endpunkt identisch sind. Also:

$$\Gamma \ einfach \ und \ geschlossen :\Leftrightarrow \left\{ \begin{array}{ll} \gamma(s_1) = \gamma(s_2) & s_1 = a, s_2 = b \\ \forall s_1 \neq s_2 \in [a,b] : \gamma(s_1) \neq \gamma(s_2) & sonst \end{array} \right.$$

Bemerkung 2.2: Wir können γ als eine periodische Funktion auf \mathbb{R} mit Periodenlänge b-a fortsetzen und sie als Funktion auf dem Kreis betrachten.

Für unsere weiteren Betrachtungen fordern wir eine gewisse Glattheit von γ voraus, sodass wir sie als \mathcal{C}^1 Funktion betrachten mit $\gamma'(s) \neq 0 \ \forall s$, also γ nie konstant ist.

Insgesamt garantieren uns diese Forderungen an γ , dass Γ an jedem Punkt eine wohldefinierte Tangente hat, die sich stetig ändert, wenn der Stützpunkt auf der Kurve (stetig) wandert.

Bemerkung 2.3: Die Parametrisierung von γ induziert eine Orientierung auf Γ , wenn s von a nach b geht. Weiterhin ergibt sich für jede bijektive Abbildung $s:[c,d] \to [a,b], s \in \mathcal{C}^1$ eine neue Parametrisierung $\eta:[c,d] \to \mathbb{R}^2$ von Γ mit

$$\eta(t) = \gamma(s(t)).$$

Es sollte klar sein, dass Γ geschlossen und einfach unabhängig von der gewählten Parametrisierung ist.

Definition 2.4: Mit den Bezeichnungen von oben sind die zwei Parametrisierungen η und γ äquivalent, wenn s'(t) > 0 für alle t, d.h. η und γ induzieren die gleiche Orientierung auf Γ . Gilt jedoch s'(t) < 0 für alle t, so kehrt η die Orientierung um.

Definition 2.5: Wird die Kurve Γ durch eine Funktion $\gamma(s) = (x(s), y(s))$ parametrisiert, dann ist ihre Länge l definiert durch

$$l := \int_a^b |\gamma'(s)| ds = \int_a^b \left((x'(s)^2 + y'(s)^2) \right)^{1/2} ds.$$

Satz 2.6: Die Länge einer Kurve Γ ist unabhängig von deren Parametrisierung.

Beweis. Seien γ und η zwei Parametrisierung mit $\gamma(s(t)) = \eta(t)$ wie oben. Dann

$$\int_{a}^{b} \gamma'(s)|ds = \int_{c}^{d} |\gamma'(s(t))||s'(t)|dt = \int_{c}^{d} |\eta'(t)|dt,$$

wobei wir die Kettenregel auf γ angewandt und die Variable im Integral substituiert haben. \square

Für den anvisierten Beweis wählen wir eine besondere Parametrisierung von Γ .

Definition 2.7: Wir bezeichen γ als eine Parametrisierung nach der Bogenlänge, wenn $|\gamma'(s) = 1|$ für alle s.