Дискретная математика

Илья Ковалев

2024 год

1 Информация

Профессор — Светлана Олеговна Почта — svetlana_os@mail.ru Учебники:

- Нефедов и Осипова Курс Дискретной Математики
- Лавров и Максимова Сборник задач по теории множеств, мат. логике и теории алгоритмов

2 Теория Множеств

2.1 Множества

Множеству невозможно дать определение без парадоксов.

2.1.1 Создание множества

$$P(x)$$
 — форма от $x/$. $A = \{x|P(x)\}$ $x^2 - 1 = 0$ $A = \{1, -1\} = \{x|x^2 - 1 = 0\}$

2.1.2 Равенство

$$\{1,2\} = \{2,1,1,2,2,1\}$$

2.1.3 Подмножества

$$A \subseteq B \Rightarrow \forall x \in A \Rightarrow x \in B$$

 $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$
 $A = B \Leftrightarrow A \subseteq B, B \subseteq A$

2.1.4 Примеры

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$$
 Пусть $A=\{1,2\},B=\{\{1,2\},3\},C=\{1,2,3\}$ $A\not\subseteq B$

2.1.5 Размер множества

$$m(A) = |A|$$
 — количество элементов множества \emptyset — пустое множество, $|\emptyset| = 0$

2.1.6 Множество-степень

P(A) — множество-степень — множество всех подмножеств A Например:

$$A = \{1, 2, 3\}$$

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{3, 1\}, A\}$$

$$|P(A)| = 2^{|A|}$$

2.1.7 Абсолютное (универсальное) множество

Универсальное множество — U — множество всех подмножеств

2.1.8 Операции

- 1. Объединение. $A \cup B = \{x | x \in A \lor x \in B\}$
- 2. Пересечение. $A \cap B = \{x | x \in A \land x \in B\}$
- 3. Относительное дополнение. $A \setminus B = \{x | x \in B \land x \notin B\}$
- 4. Симметрическая разность. $A \oplus B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$
- 5. Отрицание. $\overline{A} = \{x | x \notin A\}$

Пример:

Пусть $A \subseteq B$

Тогда:

- \bullet $A \cap B = A$
- $\bullet \ A \cup B = B$
- \bullet $A \setminus B = \emptyset$

2.1.9 Примеры

Пусть
$$A = [5; 9), B = [6; 10), C = [4; 8)$$

 $A \cup B = [5; 10)$
 $A \cap C = [5; 8)$
 $\overline{B} = (-\infty; 6) \cup [10; +\infty)$
 $C \setminus A = \emptyset$
 $B \oplus C = [4; 6) \cup [8; 10)$
 $\overline{A} \setminus (B \cup \overline{C}) = (4; 9]$
 $\overline{(B \setminus A)} \cup \overline{(C \setminus B)} = \mathbb{R}$

2.1.10 Свойства

- 1. Коммутативность. $A \cup B = B \cup A$
- 2. Ассоциативность. $A \cup (B \cup C) = (A \cup B) \cup C$
- 3. Дистрибутивность. $A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$
- 4. Идемпотентность. $A \cup A = A$
- 5. Закон Де-Моргана. $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- 6. Поглощение. $A \cup (A \cap B) = A$
- 7. Расщепление. $A = (A \cup B) \cap (A \cup \overline{B})$
- 8. $\overline{\overline{A}} = A$

$\mathbf{2.1.11}$ Функция ψ

$$A\subseteq U, A o \psi(x): U o \{0,1\}$$
 $\psi_A(x)=egin{cases} 1, \operatorname{если} x\in A \ 0, \operatorname{если} x
ot\in A \end{cases}$

- 1. $\psi_{A \cap B} = \psi_A \psi_B$
- 2. $\psi_{A \cup B} = \psi_A + \psi_B \psi_A \psi_B$

3.
$$\psi_{A\oplus B}=\psi_A+\psi_B-2\psi_A\psi_B$$
 Заметим, что $\psi_A^2=\psi_A$, тогда $\psi_{A\oplus B}=(\psi_A-\psi_B)^2=|\psi_A-\psi_B|$

4.
$$\psi_{\overline{A}} = 1 - \psi_A$$

5.
$$\psi_{A \setminus B} = \psi_A - \psi_A \psi_B$$

2.1.12 Табличный метод

ψ_A	$\mid \psi_B \mid$	$ \psi_{A\cap B} $	$ \psi_{A\cup B} $	$ \psi_{\overline{A}} $	$ \psi_{A\setminus B} $	$\psi_{A\oplus B}$					
1	1	1	1	0	0	0					
1	0	0	1	0	1 1	1					
0	1	0	1	1	0	1					
0	0	0	0	1	0	0					
Пример:											

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$

	ψ_A	$ \psi_B $	$ \psi_C $	$\psi_{B\setminus C}$	$\psi_{A\setminus (B\setminus C)}$	$\psi_{A \setminus B}$	$\psi_{A\cap C}$	ψ_{\cup}
	0	0	0	0	0	0	0	0
	0	0	1	1	0	0	0	0
	0	1	0	0	0	0	0	0
	0	1	1	0	0	0	0	0
_	1	0	0	0	1	1	0	1
	1	0	1	1	0	1	1	1
	1	1	0	0	1	0	0	0
	1	1	1	0	1	0	1	1

2.1.13 Доказательство утверждением

Условия:

1.
$$A \subseteq B$$

$$2. A \cap B = A$$

3.
$$A \cup B = A$$

эквивалентны.

доказа<u>тельство</u> $1 \Rightarrow 2$:

 $\overline{\text{Дано: } A \subset B}$

Доказать: $A \cap B = A$

1. $A \cap B \subseteq A$

Пусть $x \in A \cap B \Rightarrow x \in A$

$2. A \subseteq A \cap B$

Пусть $x \in A \stackrel{\text{по усл}}{\Rightarrow} x \in B \Rightarrow x \in A \cap B$

Доказательство $2 \Rightarrow 3$:

Дано: $A \cap B = A$

Доказать: $A \cup B = B$

 $A \cup B = (A \cap B) \cup B = B$

Доказательство $3 \Rightarrow 1$:

 $\overline{\text{Дано: } A \cup B = B}$

Доказать: $A \subseteq B$

От противного:

Предположим $A \not\subseteq B \Rightarrow \exists x \in A \land x \not\in B$

Так как $x \in A \Rightarrow x \in A \cap B \stackrel{\text{по усл}}{\Rightarrow} x \in B$ — противоречие

Следовательно, $A \subseteq B$

2.1.14 ДЗ

Лаврова & Максимов: Часть І, ¶ 1, №11, 12, 14

3 Бинарные отношения

$$\rho \subseteq A \times B$$

$$A = B = X$$

$$\langle x, y \rangle \in \rho = x \rho y$$

3.1 Свойства

Бинарное отношение ρ , заданное на множестве X, называется:

1. **Рефлексивным** если $\forall x \in X, x \rho x$

Примеры: $x = x, x \parallel x$

2. Симметричным если $\forall x, y \in X, x \rho y \Rightarrow y \rho x$

Примеры: $x = x, x \perp x$

3. **Антисимметричным** если $\forall x,y \in X, x\rho y \land y\rho x \Rightarrow x=y$

Примеры: $x \ge y, x \le y, x > y, X \subseteq Y$

4. **Транзитивным** если $\forall x,y,z\in X, x\rho y \wedge y\rho z \Rightarrow x\rho z$

Примеры: $x = y \land y = z, x \parallel y \land y \parallel z$

5. **Ассимметричным** если $\forall x, y \in X, x \rho y \Rightarrow \overline{y \rho x}$

3.2 Специальные бинарные отношения

3.2.1 Отношение эквивалентности

- 1. Рефлексивно
- 2. Симметрично
- 3. Транзитивно

Пример:

- $\bullet \ x = x$
- $\bullet \ x = y \Rightarrow y = x$
- $x = y \land y = z \Rightarrow x = z$

3.2.2 Отношение (частичного) порядка

Частично упорядоченное множество — множество, на котором задано отношение частичного порядка.

- 1. Рефлексивно
- 2. Антисимметрично
- 3. Транзитивно

Пример:

- $x \leq x$
- $x \le y \land y \le x \Rightarrow x = y$
- $x \le y \land y \le z \Rightarrow x \le z$

Утверждение:

Пусть ρ — эквивалентнсть на X Тогда ρ :

- 1. Задает на X разбиение на классы эквивалентности.
- 2. Если на X задано разбиение, то отношение ρ , заданное так, что $x \rho y \Leftrightarrow x$ и $y \in$ одном подмножестве

3.3 Разбиение

$$A = \bigcup_{i=1}^n A_i$$
, так что:

1.
$$\forall i, j \in [1; n], i \neq j, A_i \cap A_j = \emptyset$$

2.
$$\forall i \in [1; n], A_i \neq \emptyset$$

Разбиение $A - P(A) = \{A_1, A_2 \dots A_n\}$

Наибольший элемент: элемент $a \in X$ — наибольший, если $\forall y \in X : a \leq y$

Максимальный элемент: элемент $a \in X$ — максимальный, если $\not\exists y \in X : a \lessapprox y$

Наименьший элемент: элемент $a \in X$ — наименьший, если $\forall y \in X : a \geq y$

Минимальный элемент: элемент $a \in X$ — минимальный, если $\exists y \in X : a \gtrsim y$

Два частично упорядоченных множества X и Y называются изоморфными, если существует биекция

№13(б)

$$A\subseteq B\cup C \Leftrightarrow A\cap \overline{B}\subseteq C$$

Дано:

$$A \subseteq B \cup C$$

Доказать:

$$A \cap \overline{B} \subseteq C$$

Доказательство:

$$\begin{array}{c} \text{let } x \in A \cap \overline{B} \Rightarrow x \in A \land x \not\in B \\ x \in a \stackrel{\text{yc}_{\Pi}}{\Rightarrow} x \in B \cup C \Rightarrow x \in B \lor x \in C \\ \begin{cases} x \in B \lor x \in C \\ x \not\in B \end{cases} \Rightarrow x \in C \end{array}$$

Дано:

$$A \cap \overline{B} \subseteq C$$

Доказать:

$$A\subseteq B\cup C$$

Доказательство:

3.4 Метод доказательства критериев

$$A \subseteq B \cup C \Leftrightarrow A \cap \overline{B} \subseteq C$$

$$A \setminus (B \cup C) = \emptyset \Leftrightarrow (A \cap \overline{B}) \setminus C = \emptyset$$

$$\psi_{A \setminus (B \cup C)} = 0 \Leftrightarrow \psi_{(A \cap \overline{B}) \setminus C} = 0$$

$$\psi_{A \setminus (B \cup C)} = \psi_{(A \cap \overline{B}) \setminus C}$$

3.5 Бинарные отношения

3.5.1 Функции

$$f \subseteq X \times Y$$

$$\forall x \in X, \forall y_1 \in Y, \forall y_2 \in Y,$$

$$\langle x, y_1 \rangle \in f \land \langle x, y_2 \rangle \in f \Rightarrow y_1 = y_2$$

$$\langle x, y \rangle \in f \subseteq A \times B$$

$$xfy$$

$$y = f(x)$$

$$f: A \to B$$

$$A \mapsto B$$

3.5.2 Сюръекция

$$f: X \to Y$$
$$\forall y \in Y \exists x \in X : y = f(x)$$

3.5.3 Инъекция

$$f: X \to Y$$
$$\forall x_1, x_2 \in X, x_1 = x_2 \Leftrightarrow f(x_1) = f(x_2)$$

3.5.4 Биекция

$$f: X \leftrightarrow Y$$

$$\forall y \in Y \exists x \in X: y = f(x) \land x = f(y)$$

3.5.5 Комбинация функций

$$g: X \to Y$$

$$f: Y \to Z$$

$$g \circ f = fg: X \to Z$$

$$fg(x) = f(g(x))$$

3.5.6 Равенство функций

$$f = g$$

$$D_f = D_g = X$$

$$\forall x \in X f(x) = g(x)$$

3.6 Функции над множествами

$$\begin{split} f: X \to Y \\ A \subseteq X \\ f(A) = \{ y \mid y = f(x), x \in A \} \end{split}$$

3.6.1 Свойства

1.
$$f(A \cup B) = f(A) \cup f(B)$$

2.
$$f(A \cap B) \subseteq f(A) \cap f(B)$$

3.
$$f(A \setminus B) \supseteq f(A) \setminus f(B)$$

4.
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

5.
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

6.
$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$

3.7 Мощность множества (Кардинальное число множества)

$$f(x):A\to B\land f$$
 — биекция $\Rightarrow A\sim B$

A и B равномощны (эквивалентны). Свойства эквивалентности:

- 1. Рефлексивность: $A \sim A$
- 2. Симметричность: $A \sim B \Rightarrow B \sim A$
- 3. Транзитивность: $A \sim B \wedge B \sim C \Rightarrow A \sim C$

$$|A| = [A]_{\sim}$$
 — мощность множества A $\overline{\overline{A}} = |A| = \mathrm{card}A$

$$N_n = \{1, 2, \dots, n\} \land A = \{a_1, a_2, \dots, a_n\} \Rightarrow A \sim N_n$$

Множество, не являющееся конечным, является бесконечным.