Изучение электростатического поля с помощью проводящей бумаги.

 $x_{min} = 0$ мм

 $x_{max} = 210 \text{ MM}$

φ , B	1	2	4	6	8	9
у, мм				х, мм		
10	21	48	94	129	170	190
30	21	48	92	128	167	190
50	22	46	90	129	169	190
70	20	45	87	127	166	190
90	20	43	84	125	165	188
110	19	42	82	121	163	187
130	20	42	80	118	162	186
150	20	41	78	117	160	185
170	21	40	77	114	160	183

 $y = 4.8 \, MM$

х , см	2	4	6	8	10	12	14	16
φ,Β	0,88	1,72	2,54	3,50	4,47	5,55	6,62	7,64

Таблица 3

 $r_{\rm\scriptscriptstyle \it ehymp} = 14~{\rm MM}$

 $r_{\text{внешн}} = 100$ мм

φ , B	1	2	4	6	8	9			
α		r , ${\it MM}$							
0	14	18	27	41	65	82			
45	14	17	27	40	64	81			
90	14	16	24	39	63	79			
135	14	17	26	40	64	80			
180	14	16	26	41	66	83			
225	14	16	26	40	65	81			
270	14	16	26	38	64	80			
315	14	17	25	40	64	81			

Таблица 4

 $\alpha = 202,5$

_ ~ 202,5										
r , мм	15	18	20	25	30	35	40	50	60	80
ϕ , \emph{B}	1,60	2,55	3,23	4,10	4,86	5,48	6,04	6,96	7,82	8,93

Обработка результатов.

$$E_{12} = \frac{\varphi_1 - \varphi_2}{l_{12}}$$

xy	1-2	3-4	5-6	7-8
E_{xy}	-42,0	-48,0	-54,0	-51,0

$$\Delta E_{xy} = E_{xy} * \sqrt{\left(\frac{\Delta \varphi}{\varphi_{xy}}\right)^2 + \left(\frac{\Delta I}{l_{xy}}\right)^2}$$

xy	1-2	3-4	5-6	7-8
ΔE_{xy}	3,26	3,47	3,68	3,57

- 5. По данным таблицы 2 построить график зависимости $\varphi(r)$ потенциала от координаты в плоском конденсаторе (нанести точки и построить аппроксимирующую прямую).
- 6. Для модели цилиндрического конденсатора из точек на границе внутреннего электрода с угловыми координатами $\alpha = 0^\circ; 45^\circ; 90^\circ; 135^\circ; 180^\circ; 225^\circ; 270^\circ; 315^\circ$ перпендикулярно к потенциальным линиям провести силовые линии до внешнего электрода.
- 7. По данным таблицы 4 построить график зависимости $\varphi(r)$ потенциала от координаты в цилиндрическом конденсаторе (нанести точки и построить аппроксимирующую гладкую кривую).
- 8. По данным таблицы 4 заполнить таблицу 5.

Таблица 5.

$\ln \frac{r}{r_0}$	1,07	1,29	1,43	1,79	2,14	2,5	2,86	3,57	4,29	5,71
ϕ , \emph{B}	1,60	2,55	3,23	4,10	4,86	5,48	6,04	6,96	7,82	8,93

По данным таблицы 3 построить график зависимости потенциала от величины $\ln \frac{r}{r\theta}$ (нанести точки и построить аппроксимирующую прямую). По формуле (9) эта зависимость должна быть прямолинейной.

$$\varphi(r) = \varphi_0 + \frac{U \ln \frac{r}{r_0}}{\ln \frac{r_1}{r_0}}$$