

Visión Artificial

O. Presentación

JOSÉ MIGUEL GUERRERO HERNÁNDEZ

EMAIL: JOSEMIGUEL.GUERRERO@URJC.ES

- 1. Presentación
- 2. Objetivos
- 3. Temario
- 4. Evaluación
- 5. Metodología
- 6. Bibliografía
- 7. Aplicaciones prácticas

- 1. Presentación
- 2. Objetivos
- 3. Temario
- 4. Evaluación
- 5. Metodología
- 6. Bibliografía
- 7. Aplicaciones prácticas

1. Presentación

- Asignatura: Visión Artificial (VA)
- Grado: Ingeniería de Robótica Software
- Periodo de impartición: 3º, 2Q
- Tipo: Obligatoria
- Número de créditos: 6 ECTS
- Idioma: Castellano
- Profesor: José Miguel Guerrero Hernández (josemiguel.guerrero@urjc.es)

1. Presentación

• Clases:

- Martes y Viernes
- Horario: de 9:00 a 11:00
- Lugar: L3.208

• Tutorías:

- Email: josemiguel.guerrero@urjc.es
- Lugar: MS Teams o presencial

URJC, Campus de Fuenlabrada

- 1. Presentación
- 2. Objetivos
- 3. Temario
- 4. Evaluación
- 5. Metodología
- 6. Bibliografía
- 7. Aplicaciones prácticas

2. Objetivos

- Aprender los principios fundamentales de la formación de imágenes y su tratamiento:
 - Técnicas de calibración de cámaras
 - Técnicas de tratamiento de imagen mediante espacios de color
 - Técnicas de percepción de visión estéreo y RGBD
 - Técnicas de control visual y atención visual

2. Objetivos

- Aprender el tratamiento de imagen con:
 - ROS 2
 - OpenCV
 - Lenguaje C++
 - Point Cloud Library

- 1. Presentación
- 2. Objetivos
- 3. Temario
- 4. Evaluación
- 5. Metodología
- 6. Bibliografía
- 7. Aplicaciones prácticas

3. Temario

- 1. Introducción
- Formación de la imagen
- 3. Transformación del dominio y espacial
- 4. Transformaciones y correcciones
- 5. Bordes, Regiones y Puntos de interés
- 6. Operaciones morfológicas
- 7. Calibración
- 8. Visión 3D
- 9. Flujo óptico
- 10. Reconocimiento de patrones

- 1. Presentación
- 2. Objetivos
- 3. Temario
- 4. Evaluación
- 5. Metodología
- 6. Bibliografía
- 7. Aplicaciones prácticas

4. Evaluación

Convocatoria ordinaria:

- 1. Entrega de prácticas (grupo): 30%
- 2. Práctica final y presentación (grupo): 20%
- 3. Examen teórico y de prácticas (individual): 50%

Nota mínima en cada parte: **4**

Nota mínima final: 5

Las copias detectadas se calificarán con un **0**

Convocatoria extraordinaria:

- Se podrán recuperar individualmente las notas anteriores en la convocatoria extraordinaria
- Aplican los mismos requisitos que en la ordinaria
- Nota máxima de prácticas ponderada sobre 7

4. Evaluación

• Calificación:

 Aprobado, notable, sobresaliente o matrícula de honor en función de la nota numérica resultante de:

```
CF = (Promedio\ nota\ prácticas)*0,3 
+ (Nota\ práctica\ final)*0,2 
+ (Nota\ examen)*0,2
```

- No presentado si no se presenta o entrega ninguna de las partes en convocatoria ordinaria (Prácticas, Práctica final y Examen) o bien no se presenta en convocatoria extraordinaria
- Suspenso en el resto de los casos
- Si se supera la nota mínima en cada apartado, pero no se alcanza la nota final requerida, se deberá realizar examen extraordinario y obtener una nota que permita alcanzarla

- 1. Presentación
- 2. Objetivos
- 3. Temario
- 4. Evaluación
- 5. Metodología
- 6. Bibliografía
- 7. Aplicaciones prácticas

5. Metodología

- Las clases teóricas normalmente estarán formadas por una parte de teoría seguida de ejemplos prácticos
- Las clases prácticas serán dedicadas al desarrollo de las distintas prácticas y al uso del material de la asignatura
- Se busca fomentar el aprendizaje activo (learn by doing)

• La asistencia a clase no es obligatoria pero sí muy

recomendable

- 1. Presentación
- 2. Objetivos
- 3. Temario
- 4. Evaluación
- 5. Metodología
- 6. Bibliografía
- 7. Aplicaciones prácticas

6. Bibliografía

Título: VISIÓN POR COMPUTADOR: IMÁGENES DIGITALES Y

APLICACIONES (2ª)

Autor/es: Gonzalo Pajares Y Jesús Manuel De La Cruz

Editorial: RAMA. ISBN(13): 9788478978311

Título: EJERCICIOS RESUELTOS DE VISIÓN POR COMPUTADOR (1ª)

Autor/es: Gonzalo Pajares Y Jesús Manuel De La Cruz

Editorial: RAMA. ISBN(13): 9788478978281

6. Bibliografía

Título: DIGITAL COLOR IMAGE PROCESSING (1º)

Autor/es: Koschan, A. And Abidi, M.

Editorial: JOHN WILEY. ISBN(13): 9780470147085

Título: PATTERN CLASSIFICATION (2nd ed.)

Autor/es: Stork, David G.; Hart, Peter E.

Editorial: WILEY. ISBN(13): 9780471056690

6. Bibliografía

Título: PROBABILISTIC ROBOTICS

Autor/es: Thrun, S.; Wolfram Burgard, W.; Fox, D.

Editorial: MIT Press. ISBN(13): 9780262201629

Título: Learning OpenCV: Computer Vision with the

OpenCV Library (2008)

Autor/es: Bradski, G.; Kaehler, A.

Editorial: O'Reilly Media. ISBN(13): 9780596516130

- 1. Presentación
- 2. Objetivos
- 3. Temario
- 4. Evaluación
- 5. Metodología
- 6. Bibliografía
- 7. Aplicaciones prácticas

7. Aplicaciones prácticas

7. Aplicaciones prácticas

Reflexión

A programar se aprende programando

➤ ¿Dudas, consultas, sugerencias?