

Scatter Chart

In [20]: import numpy as np

```
In [21]: x = np.array([6,7,8,9,4,6,2,11,5,9])
y = np.array([26,47,28,19,14,46,22,11,25,19])

plt.scatter(x,y)
plt.show()
```


In []: # outlier detector

```
In [22]: x = np.array([6,7,8,9,4,6,2,11,5,9])
y = np.array([26,47,28,19,14,46,22,11,25,19])

plt.scatter(x,y)
x1 = np.array([2,4,2,7,5,8,8,1,5,8])
y1 = np.array([36,37,38,29,44,26,32,31,35,39])
plt.scatter(x1,y1)
plt.show()
```


Subplot

```
In [28]:
         z1 = np.array([0,1,2,3])
         z2 = np.array([5,3,1,4])
         plt.subplot(1,4,1)
         plt.plot(z1,z2)
         z3 = np.array([0,1,2,3])
         z4 = np.array([5,3,1,4])
         plt.subplot(1,4,2)
         plt.plot(z3,z4)
         z5 = np.array([0,1,2,3])
         z6 = np.array([5,3,1,4])
         plt.subplot(1,4,3)
         plt.plot(z5,z6)
         z7 = np.array([0,1,2,3])
         z8 = np.array([5,3,1,4])
         plt.subplot(1,4,4)
         plt.plot(z7,z8)
         plt.show()
```


Histrogram

```
In [35]:
         x = np.random.normal(100,10,100)
Out[35]: array([ 96.05186571, 113.40267057, 105.95774438,
                                                          94.0260581 ,
                 93.00170361, 97.7018842, 100.09361305, 99.56591998,
                111.49866241, 85.75863583, 104.82728694, 103.14885779,
                102.13172595, 93.11384561, 107.55318078, 99.25049466,
                 95.5440471 , 106.43570885, 90.47085593,
                                                          98.35268492,
                110.4758783 , 85.31923973, 93.54255967,
                                                          99.48178323,
                121.03992709, 98.53413953, 118.03092598, 104.88851359,
                 87.3122187 , 108.62733994, 91.38711737, 108.42205788,
                105.00013658, 102.25966197, 99.31155441, 118.96551809,
                 98.62187732, 93.47002725, 93.15137489, 110.2732397,
                 96.3185733 , 99.13371156, 102.76385703, 93.33243856,
                 90.16098611, 102.80213467, 77.85047777, 98.47491766,
                102.58457021, 105.51902932, 97.08138372, 105.3579533,
                 99.68987803, 107.53269646, 82.82823087, 108.0012414,
                 98.68775778, 95.70291932, 100.6632775, 102.90756796,
                 99.93741369, 103.93336801, 112.43857424, 91.08014116,
                114.14201206, 110.47996372, 105.76472611, 89.81153481,
                110.01880716, 104.96459479, 104.71283873, 112.0727133 ,
                 87.6087387 , 94.11556245, 103.39289674, 101.01199783,
                110.61596285, 104.59760162, 88.06686775, 92.37237306,
                 99.13064749, 98.71265995, 91.81615868, 108.88386869,
                108.32897384, 90.69861697, 103.77551238, 106.68845166,
                107.18353753, 111.16606574, 93.08613883, 81.36296997,
                 95.30643583, 98.38407662, 82.91723082, 86.24693394,
                101.74059718, 122.40480378, 97.50409524, 96.42415161])
```



```
In [38]: import pandas as pd
In [39]: df = pd.read_csv("gas_prices.csv")
In [40]: df
```

Out[40]:

	Year	Australia	Canada	France	Germany	Italy	Japan	Mexico	South Korea	UK	USA
0	1990	NaN	1.87	3.63	2.65	4.59	3.16	1.00	2.05	2.82	1.16
1	1991	1.96	1.92	3.45	2.90	4.50	3.46	1.30	2.49	3.01	1.14
2	1992	1.89	1.73	3.56	3.27	4.53	3.58	1.50	2.65	3.06	1.13
3	1993	1.73	1.57	3.41	3.07	3.68	4.16	1.56	2.88	2.84	1.11
4	1994	1.84	1.45	3.59	3.52	3.70	4.36	1.48	2.87	2.99	1.11
5	1995	1.95	1.53	4.26	3.96	4.00	4.43	1.11	2.94	3.21	1.15
6	1996	2.12	1.61	4.41	3.94	4.39	3.64	1.25	3.18	3.34	1.23
7	1997	2.05	1.62	4.00	3.53	4.07	3.26	1.47	3.34	3.83	1.23
8	1998	1.63	1.38	3.87	3.34	3.84	2.82	1.49	3.04	4.06	1.06
9	1999	1.72	1.52	3.85	3.42	3.87	3.27	1.79	3.80	4.29	1.17
10	2000	1.94	1.86	3.80	3.45	3.77	3.65	2.01	4.18	4.58	1.51
11	2001	1.71	1.72	3.51	3.40	3.57	3.27	2.20	3.76	4.13	1.46
12	2002	1.76	1.69	3.62	3.67	3.74	3.15	2,24	3.84	4.16	1.36
13	2003	2.19	1.99	4.35	4.59	4.53	3.47	2.04	4.11	4.70	1.59
14	2004	2.72	2.37	4.99	5.24	5.29	3.93	2.03	4.51	5.56	1.88
15	2005	3.23	2.89	5.46	5.66	5.74	4.28	2.22	5.28	5.97	2.30
16	2006	3.54	3.26	5.88	6.03	6.10	4.47	2.31	5.92	6.36	2.59
17	2007	3.85	3.59	6.60	6.88	6.73	4.49	2.40	6.21	7.13	2.80
18	2008	4.45	4.08	7.51	7.75	7.63	5.74	2.45	5.83	7.42	3.27

```
In [45]: df.Year[::3]
Out[45]: 0
                1990
                1993
          6
                1996
          9
                1999
          12
                2002
          15
                2005
          18
                2008
          Name: Year, dtype: int64
 In [ ]:
```