Solusi Sistem Persamaan Lanjar (Bagian 2)

Bahan Kuliah IF4058 Topik Khusus Informatika I

Oleh; Rinaldi Munir (IF-STEI ITB)

Pemfaktoran dengan Metode Reduksi Crout

- Meskipun metode LU Gauss dikenal paling baik untuk melakukan dekomposisi LU, terdapat metode lain yang digunakan secara luas, yaitu metode reduksi Crout
- Nama lain: metode reduksi Cholesky atau metode Dolittle

Dalam membahas metode reduksi Crout, tinjau matriks 3×3 berikut:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{3,2} & 1 \end{bmatrix} U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{2,2} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Karena LU = A, maka hasil perkalian L dan U itu dapat ditulis sebagai

$$LU = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{13} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix} = A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Dari kesamaan dua buah matriks LU = A, diperoleh

$$u_{11} = a_{11}, \quad u_{12} = a_{12}, \quad u_{13} = a_{13}$$
 } Baris pertama U

$$l_{21}u_1 = a_{21} \rightarrow l_{21} = \frac{a_{21}}{u_{11}}$$

$$l_{31}u_{11} = a_{31} \rightarrow l_{31} = \frac{a_{31}}{u_{11}}$$
Kolom pertama L

$$l_{21}u_{12} + u_{22} = a_{22} \rightarrow u_{22} = a_{22} - l_{21}u_{12}$$

$$l_{21}u_{13} + u_{23} = a_{23} \rightarrow u_{23} = a_{23} - l_{21}u_{13}$$
Baris pertama U

$$l_{31}u_{12} + l_{32}u_{22} = a_{32} \rightarrow l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{22}}$$
 Kolom kedua L
 $l_{31}u_{13} + l_{32}u_{23} + u_{33} = a_{33} \rightarrow u_{33} = a_{33} - (l_{31}u_{13} + l_{32}u_{23})$ Baris

Kita perhatikan ada urutan pola teratur dalam menemukan elemen-elemen L dan U, yaitu:

- (1)elemen-elemen baris pertama dari *U*
- (2)elemen-elemen baris pertama dari L
- (3)elemen-elemen baris kedua dari U
- (4)elemen-elemen baris kedua L
- (5)...
- (6) elemen-elemen baris ke-k dari U
- (7)elemen-elemen baris ke-k dari L

ketiga U

Rumus umum menghitung u dan l untuk sistem dengan matriks A yang berukuran 3×3 dapat ditulis sebagai berikut:

$$u_{pj} = a_{pj} - \sum_{k=1}^{p-1} l_{pk} u_{kj},$$
 $p = 1, 2, 3, ..., n$
 $j = p, p+1, ..., n$ (P.4.13)

dan

$$l_{iq} = \frac{a_{iq} - \sum_{k=1}^{q-1} 1_{ik} u_{kq}}{u_{qq}} \qquad q = 1, 2, 3, \dots, n-1$$

$$i = q+1, q+2, \dots, n$$

$$dengan \text{ syarat } u_{qq} \neq 0$$

$$(P.4.14)$$

Contoh: Selesaikan

$$x_1 + x_2 - x_3 = 1$$

 $2x_1 + 2x_2 + x_3 = 5$
 $-x_1 + x_2 + 2x_3 = 5$

dengan metode dekomposisi *LU*, yang dalam hal ini *L* dan *U* dihitung dengan metode reduksi Crout.

Penyelesaian:

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}$$

Diperoleh:

$$u_{11} = a_{11} = 1$$

$$u_{12} = a_{12} = 1$$

$$u_{13} = a_{13} = -1$$

$$l_{21} = a_{21}/u_{11} = 2/1 = 2$$

$$l_{31} = a_{31}/u_{11} = -1/1 = -1$$

$$u_{22} = a_{22} - l_{21}u_{12} = 2 - 2 \cdot 1 = 0$$

Karena u_{qq} tidak boleh nol, lakukan pertukaran baris, baik untuk matriks A maupun untuk vektor b:

Hitung kembali nilai l_{21} , l_{31} , dan u_{22} (Perhatikan bahwa nilai u_{11} , u_{12} , u_{13} tidak berubah)

$$l_{21} = a_{21}/u_{11} = -1/1 = -1$$

$$l_{31} = a_{31}/u_{11} = 2/1 = 2$$

$$u_{22} = a_{22} - l_{21}u_{12} = 1 - (-1)(1) = 1 + 1 = 2$$

$$u_{23} = a_{23} - l_{21}u_{13} = 1 - (-1)(-1) = 1 - 1 = 0$$

$$l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{22}} = \frac{2 - 2(1)}{2} = 0$$

Diperoleh L dan U sebagai berikut,

$$U = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \quad \text{dan } b = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$$

Berturut-turut dihitung y dan x sebagai berikut:

$$Ly = b \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$$

 y_1 , y_2 , dan y_3 dihitung dengan teknik penyulihan maju:

$$y_1$$
 = 1
 $-y_1 + y_2$ = 1 $\rightarrow y_2 = 1 + y_1 = 1 + 1 = 2$
 $2y_1 + 0y_2 + y_3$ = 5 $\rightarrow y_3 = 5 - 2y_1 = 3$

$$Ux = y \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

 x_1 , x_2 , dan x_3 dihitung dengan teknik penyulihan mundur:

$$3x_3 = 3 \rightarrow x_3 = 1$$

 $2x_2 + 0x_3 = 2 \rightarrow x_2 = 1$
 $x_1 + x_2 - x_3 = 1 \rightarrow x_1 = 1$

Jadi, solusi sistem persamaan lanjar di atas adalah $x = (1, 1, 1)^{T}$.

- Jika diamati elemen segitiga bawah pada matriks U semuanya bernilai nol, sehingga ruang yang tidak terpakai itu dapat dipakai untuk menyimpan elemen matriks L.
- Elemen diagonal matriks *L* seluruhnya 1, jadi tidak perlu disimpan (*default*). Dengan demikian, penyimpanan elemen *L* dan *U* pada satu matriks dapat menghemat penggunaan memori.
- Selain itu, matriks A hanya dipakai sekali untuk memperoleh L dan U, sesudah itu tidak dipakai lagi.
- Dengan demikian, setelah L dan U diperoleh, elemennya dapat dipindahkan ke dalam A.
- Karena alasan ini, maka metode dekomposisi LU dinamakan juga metode kompaksi memori.

Determinan

- Metode eliminasi Gauss dapat diterapkan untuk menghitung determinan matriks $n \times n$.
- Determinannya dapat dihitung setelah ia ditransformasi menjadi matriks segitiga atas U.
- Dua hukum penting determinan:

Hukum 1: $det(BC) = det(B) \times det(C)$

Hukum 2: det(M) = hasil kali semua elemen diagonal M jika M adalah matriks segitiga atas atau matriks segitiga bawah.

Kasus 1: Bila eliminasi Gauss tidak menerapkan tatancang *pivoting*.

 Jika pivoting tidak diterapkan, determinan matriks A adalah:

det (A) = det (LU)
= det (L) × det(U)
= det(U)
=
$$u_{11} u_{22} u_{33} ... u_{nn}$$

 yang dalam hal ini det(L) = 1 sebab semua elemen diagonal L adalah satu.

Kasus 2: Bila eliminasi Gauss menerapkan tatancang *pivoting*.

- Tatancang pivoting mengakibatkan pertukaran baris.
 Dekomposisi LU dengan pivoting setara dengan mengerjakan dua proses terpisah berikut:
 - Transformasikan matriks A menjadi matriks A' dengan cara permutasi baris-baris matriks (sama dengan mengalikan A dengan matriks permutasi P),

A' = PA atau setara dengan $A = P^{-1}A'$

2. Dekomposisi A' menjadi *LU* tanpa *pivoting*

$$A' = LU$$

• Dari (1) dan (2), L dan U dihubungkan dengan A oleh

$$A = P^{-1} A' = P^{-1} LU$$

Determinan A dapat ditulis sebagai

$$det (A) = det (P^{-1}) \times det (L) \times det (U)$$

$$= det (P^{-1}) \times 1 \times det (U)$$

$$= det (P^{-1}) \times det (U)$$

$$= \alpha det (U)$$

yang dalam hal ini α = det (P^{-1}) = -1 atau 1 bergantung pada apakah *pivoting* sejumlah bilangan ganjil atau genap.

• Jika *pivoting* dilakukan sejumlah p kali, maka α dapat ditulis sebagai:

$$\alpha$$
 = $(-1)^p$

• α bernilai 1 untuk p genap dan -1 untuk p ganjil. Karena itu,

$$\det(A) = (-1)^p \det(U) = (-1)^p u_{11} u_{22} u_{33} \dots u_{nn}$$

Contoh: Hitung determinan matriks A berikut:

$$A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ -2 & 3 & -1 \end{bmatrix}$$

Penyelesaian:

$$\begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ -2 & 3 & -1 \end{bmatrix} \quad R_2 - {}^4/{}_2R_1 \qquad \begin{bmatrix} 2 & 3 & -1 \\ 0 & -2 & -1 \\ 1 & 0 & -2 \end{bmatrix} \quad R_3 - {}^6/{}_2R_2 \begin{bmatrix} 2 & 3 & -1 \\ 0 & -2 & -1 \\ 0 & 0 & -5 \end{bmatrix}$$

Tidak ada proses *pivoting* selama eliminasi Gauss, maka det(A) = (2)(-2)(-5) = 20

Metode Lelaran Untuk Menyelesaikan SPL

- Metode eliminasi Gauss melibatkan banyak galat pembulatan. Galat pembulatan yang terjadi pada eliminasi Gauss dapat menyebabkan solusi yang diperoleh "jauh" dari solusi sebenarnya.
- Gagasan metoda lelaran pada pencarian akar persamaan nirlanjar dapat juga diterapkan untuk menyelesaikan SPL.
- Dengan metode lelaran, galat pembulatan dapat diperkecil, karena kita dapat meneruskan lelaran sampai solusinya seteliti mungkin, sesuai dengan batas galat yang kita perbolehkan.
- Dengan kata lain, besar galat dapat dikendalikan sampai batas yang bisa diterima

- Jika metode eliminasi Gauss dan variasi-variasinya serta metode dekomposisi LU dinamakan metode langsung (direct) -karena solusi SPL diperoleh tanpa lelaran-
- maka metode lelaran dinamakan metode tidak langsung (indirect) atau metode iteratif.
- Tinjau kembali sistem persamaan lanjar

• Dengan syarat $a_{kk} \neq 0$, k = 1, 2, ..., n, maka persamaan lelarannya dapat ditulis sebagai

$$x_1^{(k+1)} = \frac{b_1 - a_{12} x_2^k \dots - a_{1n} x_n^{(k)}}{a_{11}}$$

$$x_2^{(k+1)} = \frac{b_2 - a_{21}x_1^{(k)} - a_{23}x_3^{(k)} - \dots a_{2n}x_n^{(k)}}{a_{22}}$$

:

$$x_n^{(k+1)} = \frac{b_n - a_{n1} x_1^{(k)} - a_{n2} x_2^{(k)} - \dots - a_{nn-1} x_{n-1}^{(k)}}{a_{nn}}$$

dengan k = 0, 1, 2, ...

Lelaran dimulai dengan memberikan tebakan awal untuk x,

$$x_0 = \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \\ \vdots \\ x_n^{(0)} \end{bmatrix}$$

Sebagai kondisi berhenti lelarannya, dapat digunakan pendekatan galat relatif

$$\left| \frac{x_i^{(k+1)} - x_i^{(k)}}{x_i^{(k+1)}} \right| < \varepsilon \quad \text{untuk } \underline{\text{semua}} \ i = 1, 2, 3, \dots, n$$

Syarat cukup agar lelarannya konvergen adalah sistem **dominan secara diagonal**:

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$
, $i = 1, 2, 3, ..., n$

Sebagai contoh, SPL berikut

$$3x_1 + x_2 - x_3 = 1$$

 $2x_1 + 4x_2 + x_3 = 5$
 $-x_1 + 5x_2 + 8x_3 = 5$

dominan secara diagonal, karena

karena itu lelarannya pasti konvergen.

Ada dua metode lelaran yang akan kita bahas di sini:

- 1. Metode lelaran Jacobi
- 2. Metode lelaran Gauss-Seidel

Metode Lelaran Jacobi

Persamaan lelarannya adalah seperti yang ditulis di atas.

• Misalkan diberikan tebakan awal $x^{(0)}$:

$$x^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})^T$$

 Prosedur lelaran untuk lelaran pertama, kedua, dan seterusnya adalah sebagai berikut:

Lelaran pertama:

$$x_1^{(1)} = \frac{b_1 - a_{12} x_2^{(0)} - a_{13} x_3^{(0)} - \dots - a_{1n} x_n^{(0)}}{a_{11}}$$

$$x_2^{(1)} = \frac{b_2 - a_{21}x_1^{(0)} - a_{23}x_3^{(0)} - \dots - a_{2n}x_n^{(0)}}{a_{22}}$$
:

$$x_n^{(1)} = \frac{b_n - a_{n1} x_1^{(0)} - a_{n2} x_2^{(0)} - \dots - a_{nn-1} x_{n-1}^{(0)}}{a_{nn}}$$

Lelaran kedua:

$$x_1^{(2)} = \frac{b_1 - a_{12}x_2^{(1)} - a_{13}x_3^{(1)} - \dots - a_{1n}x_n^{(1)}}{a_{11}}$$

$$x_2^{(2)} = \frac{b_2 - a_{21}x_1^{(1)} - a_{23}x_3^{(1)} - \dots - a_{2n}x_n^{(1)}}{a_{22}}$$

$$x_n^{(2)} = \frac{b_n - a_{n1} x_1^{(1)} - a_{n2} x_2^{(1)} - \dots - a_{nn-1} x_{n-1}^{(1)}}{a_{nn}}$$

Rumus umum:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)}}{a_{ii}}, k = 0,1,2,....$$

Metode Lelaran Gauss-Seidel

- Kecepatan konvergen pada lelaran Jacobi dapat dipercepat bila setiap harga x_i yang baru dihasilkan segera dipakai pada persamaan berikutnya untuk menentukan harga x_{i+1} yang lainnya.
- Metode lelarannya dinamakan lelaran Gauss-Seidel

Lelaran pertama:

$$x_1^{(1)} = \frac{b_1 - a_{12} x_2^{(0)} - a_{13} x_3^{(0)} - a_{14} x_4^{(0)}}{a_{11}}$$

$$x_2^{(1)} = \frac{b_1 - a_{21}x_1^{(1)} - a_{23}x_3^{(0)} - a_{24}x_4^{(0)}}{a_{22}}$$

$$x_3^{(1)} = \frac{b_3 - a_{31}x_1^{(1)} - a_{32}x_2^{(1)} - a_{34}x_4^{(0)}}{a_{33}}$$

$$x_4^{(1)} = \frac{b_4 - a_{41}x_1^{(1)} - a_{42}x_2^{(1)} - a_{43}x_3^{(1)}}{a_{44}}$$

Lelaran kedua:

$$x_1^{(2)} = \frac{b_1 - a_{12}x_2^{(1)} - a_{13}x_3^{(1)} - a_{14}x_4^{(1)}}{a_{11}}$$

$$x_2^{(2)} = \frac{b_1 - a_{21}x_1^{(2)} - a_{23}x_3^{(1)} - a_{24}x_4^{(1)}}{a_{22}}$$

$$x_3^{(2)} = \frac{b_3 - a_{31}x_1^{(2)} - a_{32}x_2^{(2)} - a_{34}x_4^{(1)}}{a_{33}}$$

$$x_4^{(2)} = \frac{b_4 - a_{41}x_1^{(2)} - a_{42}x_2^{(2)} - a_{43}x_3^{(2)}}{a_{44}}$$

Rumus umum:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^n a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}}{a_{ii}}, k = 0,1,2,....$$

Contoh: Tentukan solusi SPL

$$4x - y + z = 7$$

 $4x - 8y + z = -21$
 $-2x + y + 5z = 15$

dengan nilai awal $P_0 = (x_0, y_0, z_0) = (1, 2, 2)$. (Solusi sejatinya adalah (2, 4, 3))

Penyelesaian:

(a) Metode lelaran Jacobi Persamaan lelarannya:

$$x_{r+1} = \frac{7 + y_r - z_r}{4}$$
$$y_{r+1} = \frac{21 + 4x_r - z_r}{8}$$
$$z_{r+1} = \frac{15 + 2x_r - y_r}{5}$$

Lelarannya:

$$x_{1} = \frac{7+2-2}{4} = 1.75$$

$$y_{1} = \frac{21+4(1)+2}{8} = 3.375$$

$$z_{1} = \frac{15+2(1)-2}{5} = 3.000$$

$$x_{2} = \frac{7+3.375-3.00}{4} = 1.84375$$

$$y_{2} = \frac{21+4(3.375)-3.00}{8} = 3.875$$

$$z_{2} = \frac{15+2(1.75)-3.375}{5} = 3.025$$
...
$$x_{19} = 2.000000000$$

$$y_{19} = 4.00000000$$

$$z_{19} = 3.00000000$$

(b) Metode lelaran Gauss-Seidel Persamaan lelarannya,

$$x_{r+1} = \frac{7 + y_r - z_r}{4}$$

$$y_{r+1} = \frac{21 + 4x_r - z_r}{8}$$

$$z_{r+1} = \frac{15 + 2x_r - y_r}{5}$$

Lelarannya,

$$x_{1} = \frac{7+2-2}{4} = 1.75$$

$$y_{1} = \frac{21+4(1.75)+2}{8} = 3.75$$

$$z_{1} = \frac{15+2(1.75)-3.75}{5} = 3.000$$

$$x_{2} = \frac{7 + 3.75 - 2.95}{4} = 1.95$$

$$y_{2} = \frac{7 + 3.75 - 2.95}{8} = 3.96875$$

$$z_{2} = \frac{15 + 2(1.95) - 3.968375}{5} = 2.98625$$
...
$$x_{10} = 2.000000000$$

$$y_{10} = 4.00000000$$

 $z_{10} = 3.00000000$

Jadi, solusi SPL adalah x = 2.00000000, y = 4.00000000, z = 3.00000000

Contoh Soal Terapan

Dalam hal ini, semua arus *i* yang memasuki simpul dianggap bertanda positif. Sedangkan hukum Ohm menyatakan bahwa arus *i* yang melalui suatu tahanan adalah:

$$i_{ij} = \frac{V_i - V_j}{R_{ij}}$$

yang dalam hal ini V adalah tegangan dan R adalah tahanan.

Diberikan sebuah rangkaian listrik dengan 6 buah tahanan seperti pada Gambar di bawah ini. Anda diminta menghitung arus pada masing-masing rangkaian.

Penyelesaian: Arah arus dimisalkan seperti diatas. Dengan hukum Kirchoff diperoleh persamaan-persamaan berikut :

$$i_{12}$$
 + i_{52} + i_{32} = 0
 i_{65} - i_{52} - i_{54} = 0
 i_{43} - i_{32} = 0
 i_{54} - i_{43}

Dari hukum Ohm didapat :

$$i_{32} R_{32}$$
 $-V_3$ $+V_2 = 0$
 $i_{43} R_{43}$ $-V_4$ $+V_3 = 0$
 $i_{65} R_{65}$ $+V_5 = 0$
 $i_{12} R_{12}$ $+V_2 = 0$
 $i_{54} R_{54}$ $-V_5$ $+V_4 = 0$
 $i_{52} R_{52}$ $-V_5$ $+V_2 = 0$

Dengan menyusun kesepuluh persamaan diatas didapatkan SPL sbb:

Tentukan

$$i_{12}$$
, i_{52} , i_{32} , i_{65} , i_{54} , i_{13} , V_2 , V_3 , V_4 , V_5

bila diketahui

$$R_{12} = 5 \text{ ohm}$$
 , $R_{52} = 10 \text{ ohm}$, $R_{32} = 10 \text{ ohm}$ $R_{65} = 20 \text{ ohm}$, $R_{54} = 15 \text{ ohm}$, $R_{14} = 5 \text{ ohm}$. $V_1 = 200 \text{ volt}$, $V_6 = 0 \text{ volt}$.

Persoalan ini diselesaikan dengan metode eliminasi Gauss. Matriks awal sebelum proses eliminasi Gauss adalah:

										٦
1.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-1.000	0.000	1.000	-1.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	-1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	1.000	-1.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	10.000	0.000	0.000	0.000	-1.000	1.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	5.000	0.000	1.000	-1.000	0.000	0.000
0.000	0.000	0.000	20.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000
5.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	200.000
0.000	0.000	0.000	0.000	15.000	0.000	0.000	0.000	1.000	-1.000	0.000
0.000	10.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	-1.000	0.000
_										

Matriks akhir setelah eliminasi adalah:

```
1.000 1.000 0.000 0.000 0.000 0.000
                                              0.000
                                                     0.000
                                                                    0.000
                                                             0.000
0.000 -1.000 0.000 1.000 -1.000
                                 0.000
                                                             0.000
                                                                    0.000
                                        0.000
                                              0.000
                                                     0.000
0.000 \ 0.000 \ -1.000 \ 0.000 \ 0.000 \ 0.000 \ 0.000 \ 0.000
                                                     0.000
                                                             0.000
                                                                    0.000
                                                                    0.000
0.000 0.000 0.000 1.000 -1.000 0.000 0.100
                                              0.000
                                                     0.000
                                                            -0.100
0.000 0.000 0.000
                                                                    0.000
                   0.000
                          1.000 -1.000 0.000
                                              0.000
                                                     0.000
                                                             0.000
0.000 0.000 0.000 0.000
                          0.000 1.000 0.000 0.200 -0.200
                                                             0.000
                                                                    0.000
0.000 0.000 0.000 0.000 0.000 0.000 -0.100 -0.200
                                                     0.200
                                                             0.150
                                                                    0.000
0.000
      0.000 0.000 0.000
                          0.000 0.000 0.000 -0.600
                                                     0.600
                                                             0.350
                                                                    40.000
0.000
      0.000 \quad 0.000 \quad 0.000
                          0.000 \quad 0.000
                                        0.000 \quad 0.000
                                                     0.100
                                                             0.025
                                                                    20.000
0.000
      0.000 0.000 0.000 0.000 0.000 0.000 0.000
                                                     0.000
                                                            -0.200
                                                                    -26.667
```

Dengan teknik penyulihan mundur diperoleh solusinya sebagi berikut:

```
i52
i12
         4.444 ampere,
                                       = -4.444 ampere
                               i65
i32
           0.000 ampere,
                                       = -6.667 ampere
        = -2.222 ampere, i43
                                       = -2.222 ampere
i54
        = 177.778 \text{ volt}, V3
V2
                               = 177.778 volt
V4
        = 166.667 \text{ volt}, V5
                               = 133.333 volt
```