

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 04-335060
(43)Date of publication of application : 24.11.1992

(51)Int.CI. C08L 67/04

(21)Application number : 03-105673 (71)Applicant : MITSUI TOATSU CHEM INC
(22)Date of filing : 10.05.1991 (72)Inventor : AJIOKA MASANOBU
ENOMOTO TSUYOSHI
YAMAGUCHI TERUHIRO
SHINODA NORIMASA

(54) DEGRADABLE THERMOPLASTIC POLYMER COMPOSITION

(57)Abstract:

PURPOSE: To obtain a thermoplastic polymer composition which can be degraded under natural environmental conditions and can be used as a packaging material or a medical material.

CONSTITUTION: A degradable thermoplastic polymer composition mainly consisting of polylactic acid, a copolymer of lactic acid with a hydroxycarboxylic acid or a mixture of polylactic acid with polyhydroxycarboxylic acid each of which is plasticized and is flexible.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-335060

(43)公開日 平成4年(1992)11月24日

(51)Int.Cl.⁵

C 08 L 67/04

識別記号

L P D

庁内整理番号

8933-4 J

F I

技術表示箇所

審査請求 未請求 請求項の数4(全6頁)

(21)出願番号

特願平3-105673

(22)出願日

平成3年(1991)5月10日

(71)出願人 000003126

三井東圧化学株式会社

東京都千代田区霞が関三丁目2番5号

(72)発明者

味岡 正伸

神奈川県横浜市栄区笠間町1190三井東圧化
学株式会社内

(72)発明者

榎本 堅

神奈川県横浜市栄区笠間町1190三井東圧化
学株式会社内

(72)発明者

山口 彰宏

神奈川県横浜市栄区笠間町1190三井東圧化
学株式会社内

最終頁に続く

(54)【発明の名称】 热可塑性分解性ポリマー組成物

(57)【要約】

【目的】 包装材料や、医療用材料として用いることができる自然環境下での分解性を持った熱可塑性ポリマー組成物。

【構成】 可塑剤を含む柔軟性を持ったポリ乳酸、または乳酸とヒドロキシカルボン酸のコポリマー、またはポリ乳酸とポリヒドロキシカルボン酸の混合物を主成分とする熱可塑性分解性ポリマー組成物。

1

【特許請求の範囲】

【請求項1】 可塑剤を含む、柔軟性の高いポリ乳酸、または乳酸とヒドロキシカルボン酸のコポリマー、またはポリ乳酸とヒドロキシカルボン酸のポリマーの混合物を主成分とする熱可塑性分解性ポリマー組成物。

【請求項2】 可塑剤がタル酸エステル、脂肪族二塩基酸エステル、リン酸エステル、ヒドロキシ多価カルボン酸エステル、脂肪酸エステル、多価アルコールエステル、エボキシ系可塑剤、ポリエステル系可塑剤、またはそれらの混合物である請求項1記載の組成物。

【請求項3】 ポリ乳酸がL-乳酸、D-乳酸、またはそれらの混合物から得られるものであることを特徴とする請求項1記載の組成物。

【請求項4】 ヒドロキシカルボン酸がグリコール酸、3-ヒドロキシ酪酸、3-ヒドロキシ吉草酸、6-ヒドロキシカブロン酸であることを特徴とする請求項1記載の組成物。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は包装用材料等に用いられる分解性を持った熱可塑性樹脂に関するものである。さらに詳しくは、可塑剤を含む柔軟なL-ラクタイド、D-ラクタイド、D,L-ラクタイドまたはそれらの混合物から得られる熱可塑性分解性ポリマーに関するものである。これら熱可塑性分解性ポリマーは、包装材料や医療用材料として最近注目されているものである。

【0002】

【従来の技術】 近年、賞品の美観、衛生、荷作り輸送の問題から、包装用プラスチックの使用量が増加している。これにともない、家庭や工場から廃棄されるゴミの量も急増しており大都市周辺では埋設する土地の不足が深刻な問題になっている。

【0003】 従来このような包装用プラスチックとしては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、塩化ビニール等が用いられていた。しかし、これらが自然環境中に廃棄された場合、これらの安定性のために分解することなく残り、景観を損ない、海洋生物の生活環境を汚染するなどの問題を引き起こしている。

【0004】 これらの問題を生じない分解性のポリマーを包装用材料として用いるための研究開発が多数行われている。例えば、ポリエチレン、ポリプロピレン、ポリスチレン等の材料を、でんぶんとブレンドすることにより、分解性を付与する試みがある。

【0005】 しかし、この方法では、でんぶんが分解して樹脂自体は崩壊するが、非分解性のポリマー自体はそのまま残り、環境の汚染を進めると言われている。

【0006】 熱可塑性で分解性のあるポリマーとして、乳酸とそのコポリマーが知られている。この乳酸ポリマーは、動物の体内で数ヶ月から1年のうちに100%生

2

分解する。また、土壤や海水中におかれた場合、湿った環境下では数週間で分解を初め、約1年で消滅する。分解生成物は、乳酸と二酸化炭素と水ですべて無害である。

【0007】 原料となる乳酸は、コーンスタークやコーンシロップのような安価な原料の発酵から得られ、また、エチレンのような石油化学原料からも得られる。

【0008】 米国特許1,995,970, 2,362,511, 2,683,136には乳酸、ラクタイド、またはそれらの混合物の重合に関する製造法が示されている。乳酸のポリマーは、通常ラクタイドと呼ばれる乳酸の環状2量体から合成される。乳酸から直接脱水縮合によりポリマーを合成すると、長時間かけても高分子量のポリマーを得ることが出来ない。これに対してラクタイドを原料として開環重合により合成した直鎖状ポリエステルは分子量が高い。

【0009】 このようにして得られた乳酸ポリマーは、糸や成形物に加工して生医学の徐放性材料、ポーンプレート、ねじ等に利用される。しかし、これらの用途には強くて硬いポリマー物性が要求されるが、柔軟性は要求されない。

【0010】 しかし、フィルム原料としてラクタイドポリマーを用いる場合には、しなやかさが不足しているので脆くて堅く使いにくいものである。

【0011】 米国特許3,736,646と3,982,543には、ラクタイドコポリマーの柔軟性を得るために、揮発性の溶剤を可塑剤として用いることを示している。しかし、溶媒を可塑剤として用いるとフィルム等の製品を保存または使用している間に溶剤が徐々に揮発してその効果がなくなってしまう。また、食品や医科用途の製品に対してはそれら溶媒の安全性の点から問題がある。

【0012】 PCT国際出願9001521には、L-ラクタイド、D-ラクタイド、meso-ラクタイド、を触媒の存在下で重合する際に、少量のラクタイドが残る程度で重合を止めて、残ったラクタイド、ラクタイドオリゴマー、乳酸オリゴマーが可塑剤として働きポリマーに柔軟性をもたせる方法が示されている。この特許には重合を完結した後にラクタイド、乳酸オリゴマー、ラクタイドオリゴマーを加える方法についても示されている。

【0013】 しかしこの方法では、目的とするポリマーの物性を示す重合度で重合反応を停止することは困難であり工業的には特殊な技術を必要とする上に、十分な柔軟性を得るためにラクタイド、乳酸オリゴマー、ラクタイドオリゴマー等の含量を多くするとフィルム等に成形後、時間が経つとラクタイドが結晶化して透明性がなくなる。

【0014】 このように、これまでフィルム、糸、パッケージ材料等、特に食品包装剤あるいは医科用途に用い

ることが出来るポリ乳酸を主成分とする柔軟性を持ったポリマー組成物は知られていなかった。

【0015】

【発明が解決しようとする課題】従つて本発明は、前記欠点を克服したフィルム、糸、パッケージ材料等、特に食品包装剤あるいは医療用途に用いることが出来るポリ乳酸を主成分とする柔軟性を持ったポリマー組成物を提供することを課題とする。

【0016】

【課題を解決するための手段】本発明者らは、以上の問題点を解決するために鋭意検討した結果、L-乳酸、D-乳酸あるいはそれらの混合物を脱水縮合するか、またはL-ラクタイド(L-LTD)、D-ラクタイド(D-LTD)、DL-L-ラクタイド(DL-LTD)、meso-ラクタイド(meso-LTD)またはそれらの混合物を開環重合させたのち、可塑剤を加えることによりポリマーに柔軟性を与えることができ、さらに、十分な柔軟性を与える量だけ添加量を増やしても、透明なポリマー成形物が得られることを見いだし本発明を完成了。

【0017】本発明に用いられるポリマーは、ポリ乳酸と他のヒドロキシカルボン酸のポリマーとの混合物、または乳酸と他のヒドロキシカルボン酸とのコポリマーである。他のヒドロキシカルボン酸としては、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸等が用いられる。

【0018】これらのポリマーは、乳酸、あるいは他のヒドロキシカルボン酸から直接脱水重縮合することによって合成した物でも良いし、ラクタイド、またはグリコライド(GLD)やε-カプロラクトン(CL)、またはそれらの混合物を開環重合することによって得られた物でも良い。またポリ乳酸と他のヒドロキシカルボン酸のポリマーを高温下エステル交換反応することによって合成したコポリマーでも良い。ポリマーを構成する乳酸は、L-乳酸またはD-乳酸またはそれらの混合物のいずれでもよい。

【0019】重合方法は、溶媒を用いる方法でも、溶媒を用いない方法でも良いが、溶媒の回収等の問題から、工業的には溶媒を用いない塊状重合がよい。

【0020】開環重合の触媒は、一般に亜鉛、錫の塩化物またはカルボン酸塩等が用いられるが、特に限定されない。生体適合性材料や食品関係に用いる場合は毒性を考慮する必要がある。

【0021】重合の温度は、触媒によって異なるが通常は95から180°Cで行われる。重合時間は触媒の種類と温度で決まり、反応中の残存ラクタイド量を測定しながら決定することが出来る。

【0022】重合の終点は、残存する原料ラクタイドモノマーが5%以下になった時点であり、これ以上のラク

タイドが残存すると得られた熱可塑性樹脂の物性に影響を与えるため、本発明の方法に沿つて望みの物性を得ることが難しくなる。

【0023】ポリマーの重合度は、150~20,000が好ましい。これより低い重合度ではフィルム等の成形品にしたときの強度が小さく実用に適さない。

【0024】また、これより重合度が高いと、熱時溶融した状態での粘度が高く、成形加工性が劣る。

【0025】添加する可塑剤は食品包装容器等に使用しても安全な物が好ましいが、例えば、フタル酸ジエチル、フタル酸ジオクチル、フタル酸ジシクロヘキシリのようなフタル酸エステル、アジピン酸ジ-1-ブチル、アジピン酸ジ-n-オクチル、セバシン酸ジ-n-ブチル、アゼライン酸ジ-2-エチルヘキシリのような脂肪族二塩基酸エステル、リン酸ジフェニル-2-エチルヘキシリ、リン酸ジフェニルオクチルのようなリン酸エステル、アセチルクエン酸トリプチル、アセチルクエン酸トリ-2-エチルヘキシリ、クエン酸トリプチルのようなヒドロキシ多価カルボン酸エステル、アセチルリノール酸メチル、ステアリン酸アミルのような脂肪酸エステル、グリセリントリアセテート、トリエチレングリコールジカブリレートのような多価アルコールエステル、エポキシ化大豆油、エポキシステアリン酸オクチルのようなエポキシ系可塑剤、ポリプロピレングリコールアジピン酸エステル、ポリプロピレングリコールセバシン酸エステルのようなポリエステル系可塑剤などが挙げられる。

【0026】添加剤は、通常ポリマー組成物に対して5~50重量%用いられる。特に好ましくは、5~20重量%である。これら可塑剤の添加方法としては、溶剤に溶解した状態でポリ乳酸に加えるか、または溶融した状態で加えて良い。

【0027】また、本発明のポリマー組成物は、可塑剤の他に安定剤、酸化防止剤、紫外線吸収剤、着色剤等の他の添加剤を含んでいても構わない。

【0028】可塑化された、ポリマー組成物は、加熱時に押し出し成形铸型に注入する方法等で加工することが出来る。また、溶剤に溶かし、膜状にしてフィルムを作る等の方法も用いることが出来る。このように加工されたフィルム等の成形物を包装用材料等に用いるためには、適当な弹性率を持っていることが必要である。通常この値が10~100kg/mm²が好ましい。これより大きいと硬く、外力により割れを生じ易い。これより小さい場合には、小さな力で変形し易く実用に耐えない。

【0029】

【実施例】以下、実施例及び比較例により本発明の方法を具体的に説明する。

【0030】実施例1~7

ガラス製重合管にモノマーを仕込み、触媒としてオクタ

5

ン酸第一スズ 150 mg を加える。この重合管に脱気コックを取り付け、数時間脱気乾燥した後コックを閉じ重合管を真空に保ちつつ熔封した。つづいて 180 °C で 20 時間重合させ、反応生成物として樹脂組成物を得た。重合反応停止後、反応生成物を塩化メチレンに溶解し、ガスクロマトグラフィーにて残存モノマーを定量した。

【0031】また、重合体をクロロホルムに溶解し、ゲルバーミエイションクロマトグラフィー (G P C) にて重量平均分子量を算定した。

【0032】得られた樹脂組成物をクロロホルムに溶解し（濃度 5 重量%）、添加物を加えた。これらをテフロン製フラットシャーレ上にキャストし、室温にて溶媒をゆっくり蒸発させフィルムを作成した。さらに減圧 (3 *

6

* mmHg) 下、50 °C で 24 時間乾燥し、フィルムの赤外吸収スペクトルの測定によりフィルム中に残存する溶媒が無いことを確認した。

【0033】得られたフィルムから、幅 10 mm、長さ 50 mm の試験片を作成し、引張試験機を用いて、チャック幅 20 mm、引張速度 50 mm/min で測定した。また、60 °C 温水中での加水分解試験の結果を表 1 に示した。

【0034】得られた結果をまとめて（表 1）、（表 2）、（表 3）で示される表 1 に示した。いずれのフィルムも良好な柔軟性を有していた。

【0035】

【表 1】

表 1

	実施例			
	1	2	3	4
L-ラクタイド(g)	8	5	4	8
DL-ラクタイド(g)	2	5	4	0
グリコライド(g)	0	0	2	0
ε-カプロラクトン(g)	0	0	0	2
平均分子量(×10 ³)	110	84	54	58
残存モノマー LTD(%)	0.3	0.5	0.8	0.5
GLD(%)	-	-	0.1	-
CL(%)	-	-	-	0.1
添加物(g)	アセビン酸 タノリカル 0.5	セバシ酸 タノカル 1.0	アセチルケン 酸トリエチル 1.0	ブチルジフェニルオクチル 1.0
弾性率(kg/mm ²)	53	39	33	32
温水中重量減少率(%) (60 °C、20 日間)	10	15	16	13

【0036】

【表 2】

表1 (つづき)

	実施例		
	5	6	7
L-ラクタイド(g)	8	8	8
DL- ラクタイド(g)	2	2	2
グリコライド (g)	0	0	0
ε-カプロラクトン (g)	0	0	0
平均分子量 ($\times 10^3$)	108	105	113
残存モノマー LD (%)	0.3	0.3	0.2
GLD (%)	-	-	-
CL (%)	-	-	-
添加物(g)	ジエチルフタレ + 1.0	グリセリントリ アセテート 1.0	エチルベン ゼト 1.0
弾性率(kg/mm ²)	92	83	86
温水中重量減少率(%) (60 °C、20日間)	7	8	6

【0037】

【表3】

表1(つづき)

	比較例			
	1	2	3	4
L-ラクタイド(g)	8	5	4	4
DL-ラクタイド(g)	2	5	4	4
グリコライド(g)	0	0	2	2
ϵ -カプロラクトン(g)	0	0	0	0
平均分子量($\times 10^3$)	112	83	51	55
残存モノマー LTD(%) GLD(%) CL(%)	0.5 - -	0.4 - -	0.8 0.1 -	0.8 - 0.1
添加物(g)	なし	なし	なし	なし
弹性率(kg/mm ²)	213	187	156	120
温水中重量減少率(%) (60℃、20日間)	6	7	11	11

【0038】比較例1~4

実施例1~4と同様にして得られた反応生成物に添加剤を加えないでフィルムを作成した。これらは添加剤を加えたものにくらべ明らかに柔軟性が劣っていた。

【0039】

【発明の効果】本発明により、良好な柔軟性と加水分解性を持ったポリ乳酸を主成分とする熱可塑性樹脂組成物が得られる。

フロントページの続き

(72)発明者 篠田 法正

愛知県名古屋市南区丹後通2-1三井東庄

化学株式会社内