Synthetic Turbulence in Astrophysical Plasmas

Introductory Talk

Jonas Sinjan Zeuthen, 07.08.2019

Background

What is a Plasma?

- > Ionised volume of gas where EM forces dominate
- Over 99 9% of observable matter is plasma (Pablo 1998)

Turbulence in Plasmas?

- > Supernovae, solar wind, turbulent accretion flows etc.
- Cosmic Ray Scattering and Influences Solar Particles (Yan, Lazarian 2004)

Standard Method

- Turbulence simulated by solving the incompressible MHD equations (Eyink et. al, 2013)
- > Takes 0.1-1 million CPU hours
- Want to generate turbulence data cheaply

Figure: A 1024³ point cube of the Electric Field. Colours display turbulent flow.

Theory

Two important pieces of theory describing turbulence in plasmas:

- > Kolmogorov (1941)
- > Goldreich-Sridhar (1995)

GS-95 describes a spectrum for the turbulence:

$$E = k_{\perp}^{-7/3} \exp\left(-\frac{k_{\parallel}}{k_{\perp}^{2/3}}\right),$$
 (1)

where $E^{1/2}$ is the amplitude of the waves in the plasma in 2D implementation

Synthetic Data Methods

- > Two methods to create turbulence data according to the GS-95 Spectrum:
 - Squares
 - Displacement

Figure: Displacement Method: Given an initial scalar field (left) and a magnetic field (centre), the scalar field should be deformed to follow the magnetic field (right)

Project Outline

- > Squares initially thought to work well for small scales
- > Displacement thought to work well for large scales
- > To make these methods work, compare and contrast
- Try to find best method either by combining/improving
- > Implement both in 3D and parallelise

Results

Thank you!

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Jonas Sinjan

Astroparticle Group, Plasma Astrophysics

jonas sinjan@desy.de

+49 33762 7-70