Report for ECE 5463 Final Project

by Abigail Hua

```
Report for ECE 5463 Final Project
```

```
PD Controller
Tuning Parameters
    Effect of Derivative Variable kv
    Effect of Proportional Variable kp
PID Controller
    Effect of Integral Variable ki
Choice of Parameters
```

PD Controller

I reference the example solution for Homework 4, which is for single-link manipulator, and expand the solution for two-link manipulator.

Therefore, my PD controller is designed as followed:

```
% td1 and td2 are desired theta values
tau1 = -param.kp*(theta1-param.td1)-param.kv*dtheta1;
tau2 = -param.kp*(theta2-param.td2)-param.kv*dtheta2;
```

Tuning Parameters

Before integrating the PD controller into the project, which takes consecutive user inputs, I ran a demo that only took one inputs, i.e. $desired_\theta_1 = desired_\theta_2 = 0$, and tuned the parameters on this demo.

There are two parameters for PD controller, i.e. the proportional variable kp and the derivative variable kv.

(Sorry that I don't know how to add legend to subplots elegantly. So for all the subplots shown below, from blue to yellow plots, the value of parameter increases.)

Effect of Derivative Variable kv

First I tune kv and see what happens. The value of kv ranges from 100 to 1000, with step=100. The value of kp is fixed as 500. Or in Matlab,

```
n = 10;
kv = linspace(10, 100, n)';
kp = linspace(80, 80, n)';
```

As we can see from the graph, kv determines the sensitivity of the system, or in other words, if the system is underdamped, overdamped or critically damped.

Effect of Proportional Variable kp

Then I tune kp and observe its effect. The value of kp ranges from 100 to 1000, with step=100. The value of kv is fixed as 100. Or in Matlab,

```
n = 10;
kv = linspace(100, 100, n)';
kp = linspace(10, 100, n)';
```


We can see from the graph that at the beginning, kp determines the settling value of the system. As kp increases, the convergence value increases.

PID Controller

My PID controller has the following control law:

```
tau1 = -kp*(theta1-param.td1)-ki*interror1-kv*dtheta1;
tau2 = -kp*(theta2-param.td2)-ki*interror2-kv*dtheta2;
```

kp and kv have been discussed in the previous section, so we will only check the effect of ki.

Effect of Integral Variable ki

I fixed kv and kp, and change the value of ki.

```
n = 5;
kv = linspace(10, 10, n)';
kp = linspace(500, 500, n)';
ki = linspace(100, 500, n)';
```

As we can observe from the graph, ki can change the length of period of the responses. The period becomes shorter as ki increases.

Choice of Parameters

I choose to use PD controller in my simulation. And my final choice of parameters is

```
kp = 100;
kv = 80;
```

After integrating the controller into the whole project (users can select consecutive 5 points), I get a graph like this

