TD 07 – Graphes aléatoires

Exercice 1. Graphe Aléatoire Bipartite

Soit $0 et <math>n \in \mathbb{N}^*$. On définit un graphe aléatoire non orienté $H_{2n,p}$ de la manière suivante : on se donne une famille $\{X_{i,j} \mid 1 \le i \le n, \ n+1 \le j \le 2n\}$ de v.a. i.i.d. de loi de Bernoulli de paramètre p. On pose alors $H_{2n,p} = (V,E)$ avec $V = \{1,\ldots,2n\}$ et

$$E = \{(i,j) \mid X_{i,j} = 1\} \subseteq \{1,\ldots,n\} \times \{n+1,\ldots,2n\}.$$

- Quelle est la loi du nombre d'arêtes de $H_{2n,p}$?
- Quelle est l'espérance du nombre de sommets isolés de $H_{2n,p}$?
- **3.** Dans cette question, on pose $p = c \log(n)/n$ pour un nombre réel c > 0.
 - **i.** Montrer que si c > 1, alors :

$$\lim_{n\to\infty} \mathbf{P}\left\{H_{2n,p} \text{ a un sommet isolé}\right\} = 0.$$

ii. Montrer que si c < 1, alors :

$$\lim_{n\to\infty} \mathbf{P}\left\{H_{2n,p} \text{ a un sommet isolé}\right\} = 1.$$

4. Dans cette question, on pose p = 1/2. Montrer qu'il existe une constante C > 0 telle que

$$\lim_{n\to\infty} \mathbf{P}\left\{\text{tous les sommets de } H_{2n,p} \text{ ont un degré inférieur à } \frac{n}{2} + C\sqrt{n\log n}\right\} = 1.$$

Exercice 2. K4

Soit G un graphe aléatoire de loi $G_{n,p}$. L'objectif de cet exercice est de montrer qu'il y a un seuil $p_0 := n^{-2/3}$ tel que pour $p = o(p_0)$, le graphe G n'a pas de clique de taille 4 avec bonne probabilité, et que pour $p = \omega(p_0)$, le graphe G a au moins une clique de taille 4 avec bonne probabilité.

Rappels / définitions :

- Un graphe aléatoire G suit la loi $G_{n,p}$ s'il a n sommets et que chaque arrête est présente dans Gavec probabilité p;
- une clique de taille 4 est un ensemble de 4 sommets tous reliés deux à deux par des arêtes; $p=o(p_0)$ signifie $\frac{p}{p_0} \to 0$ quand $n \to +\infty$;
- $p = ω(p_0)$ signifie $\frac{p_0}{n} \to 0$ quand $n \to +\infty$.
- **1.** Pour p quelconque, calculer $\mathbf{E}[X]$, où X est le nombre de cliques de taille 4 du graphe G.
- **2.** Soit $p = o(p_0)$, montrer que $\Pr(X \neq 0) \to 0$ quand n tend vers l'infini.

On suppose maintenant $p = \omega(p_0)$, et on veut montrer que $\mathbf{P}\{X = 0\} \to 0$ quand n tend vers l'infini.

- 3. Montrer que $\mathbf{P}\left\{X=0\right\} \leq \frac{\mathbf{Var}[X]}{\mathbf{E}[X]^2}$. Il suffira donc de montrer que $\frac{\mathbf{Var}[X]}{\mathbf{E}[X]^2} \to 0$.
- 4. Soit X_i des variables aléatoires à valeur dans 0,1 (et non indépendantes). Montrer que

$$\mathbf{Var}\left[\sum_{i}X_{i}\right] \leq \mathbf{E}\left[\sum_{i}X_{i}\right] + \sum_{i \neq j}\mathbf{E}\left[(X_{i} - \mathbf{E}\left[X_{i}\right])(X_{j} - \mathbf{E}\left[X_{j}\right])\right].$$

5. En déduire que $\operatorname{Var}[X] = o(\mathbf{E}[X]^2)$ et conclure.

Le clique number $\omega(G)$ d'un graphe G est l'entier k maximal tel que G contient une clique de taille k (c'est-à-dire un ensemble de k sommets tous reliés deux à deux par des arêtes). Soit G un graphe aléatoire de loi $G_{n,1/2}$ (i.e. G a n sommets et chaque arête de G est présente avec probabilité 1/2). L'objectif de cet exercice est de montrer que pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \mathbf{P} \left\{ (2 - \varepsilon) \log n \le \omega(G) \le (2 + \varepsilon) \log n \right\} = 1.$$

Asymptotiquement, $\omega(G)$ est donc de l'ordre de $2 \log n$.

Remarque : La méthode utilisée pour montrer ce résultat ressemble beaucoup à celle utilisée dans l'exercice K4.

- **1.** Pour un entier k quelconque, on définit X_k la variable aléatoire comptant le nombre de cliques de taille k dans G. Calculer $\mathbf{E}[X_k]$
- **2.** Soit $\varepsilon > 0$. Montrer que $\lim_{n \to +\infty} \mathbf{P} \{ \omega(G) \ge (2 + \varepsilon) \log n \} = 0$ (pour simplifier, on pourra supposer que $k = (2 + \varepsilon) \log n$ est un entier).
- 3. On considère maintenant $k = (2 \varepsilon) \log n$ (encore une fois, on le suppose entier). Montrer que $\lim_{n \to +\infty} \mathbf{P} \{ \omega(G) \le (2 \varepsilon) \log n \} = 0$. Indice : on pourra utiliser les questions 3 et 4 de l'exercice K4.

Exercice 4. Approximation de Poisson

On se place dans le modèle *Balls and Bins* où l'on jette m balles au hasard dans n paniers. On note X_i la variable aléatoire représentant le nombre de balles dans le *i*ème panier. Le problème est que les X_i ne sont pas indépendantes (intuitivement, car $X_1 + \cdots + X_n = m$).

On voudrait approximer le modèle *Balls and Bins* par le modèle *Approximation de Poisson*, dans lequel $Y_1, \ldots Y_n$ sont des variables aléatoires indépendantes qui suivent chacune une loi de Poisson de moyenne $\mu = m/n$ (la variable Y_i est donc pensée pour être une version « simplifiée » de X_i).

- 1. Montrer que $Y = \sum_{i=1}^{n} Y_i$ suit une loi de Poisson dont on précisera le paramètre.
- **2.** Montrer que la distribution de (Y_1, \ldots, Y_n) conditionnée au fait que Y = m est la même que la distribution de (X_1, \ldots, X_n) .

Note: on peut en fait obtenir un résultat légèrement plus général. Si (X_1, \ldots, X_n) représente la charge de n paniers après avoir lancé au hasard k balles, et que les Y_i sont n v.a. indépendantes suivant chacune une loi de Poisson de paramètre m/n, alors la distribution de (Y_1, \ldots, Y_n) conditionnée au fait que Y = k est la même que la distribution de (X_1, \ldots, X_n) , indépendamment de la valeur de m.

3. Soit f une fonction à n variables à valeurs réelles positives ou nulles. Prouver que

$$\mathbf{E}\left[f(X_1,\ldots,X_n)\right] \leq e\sqrt{m}\mathbf{E}\left[f(Y_1,\ldots,Y_n)\right].$$

Indication : on pourra prouver comme étape intermédiaire que $m! < e\sqrt{m} \left(\frac{m}{o}\right)^m$.

- **4.** En déduire le corollaire suivant : soit \mathcal{E} un événement qui dépend de la charge des paniers. Supposons que \mathcal{E} arrive avec probabilité p dans l'*Approximation de Poisson*, c'est-à-dire si la charge des paniers est (Y_1, \ldots, Y_n) . Alors \mathcal{E} arrive avec probabilité au plus $pe\sqrt{m}$ dans le modèle *Balls and Bins*, c'est-à-dire si la charge des paniers est (X_1, \ldots, X_n) .
- 5. On jette n balles dans n paniers selon le modèle *Balls and Bins*. Montrer qu'avec probabilité au moins $1 \frac{1}{n}$ (pour n assez grand), la charge maximale M est supérieure à $\frac{\log n}{\log \log n}$.