碩管一甲 M09218001 周彥廷

高等類神經網路 作業 1: 脂肪肝預測

作答說明:

請以 FattyLiver_training.csv 訓練你的 MLP 模型,並繪製你的網路結構、記錄你的最佳學習率、權重修正演算法等,記得要避免模式過擬合。

接著,再以 FattyLiver_testing.csv 計算模型預測的混淆矩陣與預測正確率。

目錄:

第一部分:依照題意建立 MLP 模型針對 FattyLiver 資料集訓練

- 1.導入數據
- 2.探索數據
- 3.切分訓練集和測試集
- 4.數據預處理
- 5.模型建立
- 6.模型訓練
- 7.模型評估

第二部分:導入投影片所教技巧與法則改善模型效能

類神經網路實務應用技巧

0.載入 Python 所需套件

import numpy as np

import pandas as pd

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from keras.utils import np_utils

from sklearn.preprocessing import StandardScaler,MinMaxScaler

from sklearn.utils import shuffle

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import OneHotEncoder, LabelEncoder

from keras import layers

from keras import losses

from keras.layers import LeakyReLU

from keras import regularizers

from sklearn.metrics import classification_report, confusion_matrix

第一部分:依照作業題目建立 MLP 模型針對 FattyLiver 資料集訓練 1.導入資料

讀入訓練資料集

training_dataset = pd.read_csv('C:/Users/MCUT/Desktop/FattyLiver_training.csv',
encoding='big5')

train x = training dataset.iloc[:, 1:42].values

train_y = np.where(training_dataset['是否有脂肪肝']== 'NO',0,1)

■ training_dataset - DataFrame								_				
Index	显否有脂肪肝	年齡	性別	BMI	收縮壓	舒張壓	脈搏	由菸喝酒檳枹	腰圍	白血球	紅血球	血色素
0	NO	2	0	23.07	98.35	67.1	88.06	0	73.26	6.04	4.57	8.88
1	NO	2	0	20.72	103.23	72.77	94.56	0	67.94	4.69	5.53	12.06
2	NO	2	0	20.24	115.18	59.49	71.69	0	69.84	6.56	4.46	13.21
3	NO	3	0	21.25	98.2	62.03	68.74	0	72.33	3.82	4.16	12.64
4	YES	3	1	25.16	109.37	64.61	89.36	2	85.59	8.4	4.91	15.2
5	NO	2	0	20.48	93.38	61.89	74.11	0	62.34	6.44	4.36	13.34
6	NO	2	0	22.06	105.58	65.43	96.94	0	78.74	6.74	4.42	12.59
7	NO	2	1	21.9	104.62	69.32	66.02	1	77.46	6.57	5.62	17
8	NO	2	0	19.46	100.21	64.19	77.18	0	63.35	7.25	4.7	12.44
9	YES	2	0	29.73	102.03	60.18	61.6	0	84.39	8.53	4.59	13.36
10	NO	3	0	26.46	126.9	80.91	77.66	0	74.2	4.55	4.48	9.44
11	NO	2	0	20.67	92.5	56.75	76.54	0	72.15	4.46	4.58	12.14

train_x	Array of float64	(1500, 41)
train_y	Array of int32	(1500,)
training_dataset	DataFrame	(1500, 42)

讀入測試資料集

test_dataset = pd.read_csv('C:/Users/MCUT/Desktop/FattyLiver_testing.csv', header = None, encoding='big5')

test_x = test_dataset.iloc[:, 1:42].values

test y = np.where(test dataset[0]=='NO',0,1)

■ test_dataset - DataFrame									_		×		
Index	0	1	2	3	4	5	6	7	8	9	10	11	
0	YES	2	1	25.15	121.78	71.63	88.15	0	88.04	5.94	5.35	16.38	
1	YES	1	1	23.58	121.84	72.24	89.48	2	80.95	8.21	5.12	15.81	
2	NO	3	1	18.85	125.19	81.89	112.93	2	79.45	7.41	5.25	16.86	
3	YES	2	1	30.22	133.21	87.2	93.17	0	91.02	8.3	5.07	14.51	
4	NO	2	1	22.89	123.32	78.81	79.29	0	78.82	5.73	5.07	14.66	
5	YES	2	1	22.05	116.14	71.91	72.64	0	79.82	4.27	5.45	17.33	
6	YES	1	1	24.61	118.87	67.94	62.96	1	85.43	7.39	5.7	16.55	
7	NO	1	1	19.55	103.14	61.09	83.02	2	66.71	8.86	5.13	16.27	
8	YES	2	1	35.1	123.32	75.02	75.46	2	106.27	8.99	5.42	16.81	
9	NO	2	1	22.76	113.5	68	67.28	0	78.96	6.29	4.83	14.89	
10	YES	1	1	29.39	117.5	77.76	78.21	0	96.12	7.52	6.66	12.75	
11	NO	2	1	22.07	115.58	70.77	80.03	0	69.9	8.17	5.19	15.01	

test_dataset	DataFrame	(377, 42)
test_x	Array of float64	(377, 41)
test_y	Array of int32	(377,)

2.探索數據

檢視讀入資料型態(觀察特徵)並確認是否有無遺漏值,

#檢查是否有缺失值

training dataset.isnull().sum()

```
In [328]: training_dataset.isnull().sum()
Out[328]:
是否有脂肪肝
               0
年齢
            0
性別
            0
BMI
           0
收縮壓
舒張壓
             0
脈搏
抽菸喝酒檳榔
               0
腰圉
白血球
紅血球
             0
血色素
血中紅血球百分比
                0
紅血球平均容積
               0
紅血球色素
```

#特徵欄位均無遺漏值

資料可視化

import seaborn as sns

import matplotlib.pyplot as plt

#繪製關聯矩陣(針對是否有脂肪肝)

correlation_matrix = training_dataset1.corr().round(2).loc[:,['是否有脂肪肝']].abs() sns.heatmap(data=correlation_matrix, annot = True,cmap='YlGnBu')

#發現是否有脂肪肝指標與BMI、腰圍與尿酸的關聯性最高。

3.切分訓練集和測試集

題目已經切分好訓練資料集和測試資料集

4.數據預處理

#使用 StandardScaler 對資料進行預處理

print(f'預處理之前 x:{train_x[0]},y:{test_x[0]}')

ss x = StandardScaler().fit(train x)

X_train, X_test = ss_x.transform(train_x),ss_x.transform(test_x)
print(f'預處理之後 x:{X train[0]},y:{X test[0]}')

```
預處理之前 x:[2.0000e+00 0.0000e+00 2.3070e+01 9.8350e+01 6.7100e+01 8.8060
 0.0000e+00 7.3260e+01 6.0400e+00 4.5700e+00 8.8800e+00 3.0010e+01
 6.6200e+01 2.0080e+01 3.0570e+01 1.8700e+01 4.0632e+02 5.2190e+01
 3.4890e+01 8.6400e+00 4.9500e+00 7.6000e-01 1.6932e+02 1.2040e+01
 4.5050e+01 9.1530e+01 8.8000e-01 3.4690e+01 2.5820e+01 2.5200e+00
 2.8590e+01 7.2720e+01 4.4700e+00 4.4000e-01 2.3000e-01 4.8000e+00
 7.4300e+00 7.0940e+01 1.4085e+02 6.0000e+00 2.0000e+00],y:[2.0000e+00 1.00
 0.0000e+00 8.8040e+01 5.9400e+00 5.3500e+00 1.6380e+01 4.7090e+01
 8.8020e+01 3.1230e+01 3.5890e+01 1.1940e+01 2.5496e+02 6.3070e+01
 3.1420e+01 4.9200e+00 1.3400e+00 2.5000e-01 2.1475e+02 1.2060e+01
 1.6903e+02 8.8320e+01 1.0700e+00 4.0100e+01 2.3730e+01 7.4000e-01
 2.3850e+01 8.8550e+01 4.7800e+00 1.1300e+00 3.2000e-01 6.0900e+00
 7.2800e+00 5.8690e+01 2.0506e+02 7.0000e+00 0.0000e+00]
預處理之後 x:[ 0.04903168 -1.58003275 -0.28254469 -1.48079934 -0.70326852
 -0.64544401 -0.80099708 -0.48092454 -1.06901793 -3.72538223 -3.73385326 -3.34694005 -3.60752438 -2.81150959 5.30742827 2.94001068 -0.51867983
 -3.34694005 -3.60752438 -2.81150959 5.30742827 2.94001008 -0.51007965 -0.14064074 2.00610448 1.19635385 0.63116537 -0.3077062 0.13320577 -0.81906793 0.23675871 -0.90263412 0.30830908 0.02022232 0.62135465 0.55711406 0.62653114 -1.21767015 -1.37433842 -0.85692073 -0.97407039
 -0.58094278 1.40122619 -0.90036908 -0.3578511 2.56205808],y:[ 0.0490 -0.64544401 0.64479188 -0.54756966 0.40785744 0.99399264 0.59725511
                                                             2.56205808],y:[ 0.049031
 0.49636972 -0.05951502 0.00885907 0.53686017 -0.07620188 -1.36328152 0.15427083 1.55055983 0.1277418 0.49522715 0.13454566 -0.1204508
 -0.98722172 0.39408276 0.68033863 1.0793019 -0.59448165]
```

```
# 訓練標籤的獨熱編碼
```

encoding train y = np utils.to categorical(train y)

測試標籤的獨熱編碼

encoding_test_y = np_utils.to_categorical(test_y)

5.模型建立

建立模式

model = Sequential()

model.add(Dense(10, input dim=41, activation='relu'))

model.add(Dense(20, activation='relu'))

model.add(Dense(2, activation='softmax'))

#初步決定神經元個數與選擇激勵函數(relu)

編譯模式

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

6.模型訓練

訓練模式

model.fit(X train, encoding train y, epochs=10, batch size=10)

7.模型評估

評估模式

scores = model.evaluate(test_x, encoding_test_y)

print("\nAccuracy: %.2f%%" % (scores[1]*100))

結論:訓練模式得到模型表現為 0.7507,評估模式得到 0.7215 正確率,第二部分會應用上課時類神經網路實務應用技巧使 MLP 效能提高。

第二部分:導入投影片所教技巧與法則改善模型效能

1.隱藏層活化函數的選擇

```
# 建立模式
```

model = Sequential()

model.add(Dense(10, input_dim=41, activation='sigmoid'))

model.add(Dense(20, activation='sigmoid'))

model.add(Dense(2, activation='softmax'))

編譯模式

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary()

Layer (type)	Output Shape	Param #
dense_560 (Dense)	(None, 10)	420
dense_561 (Dense)	(None, 20)	220
dense_562 (Dense)	(None, 2)	42
Total params: 682 Trainable params: 682		

```
Epoch 1/10
1500/1500 [=
    Epoch 2/10
1500/1500 [
       Epoch 3/10
1500/1500 [
      Epoch 4/10
     1500/1500 [
Epoch 5/10
1500/1500 [
      Epoch 6/10
1500/1500 [
    Epoch 7/10
1500/1500 [
        Epoch 8/10
1500/1500 [
       Epoch 9/10
      1500/1500 [
Epoch 10/10
1500/1500 [================== ] - 1s 568us/step - loss: 0.5622 - acc: 0.7120
377/377 [========= ] - 2s 7ms/step
```

Accuracy: 74.01%

Non-trainable params: 0

model = Sequential()
model.add(Dense(10, input_dim=41, activation='tanh'))
model.add(Dense(20, activation='tanh'))

model.add(Dense(2, activation='softmax'))

```
Epoch 1/10
1500/1500 [
                     =======] - 7s 4ms/step -
                                       loss: 0.6416 - acc: 0.6427
Epoch 2/10
                     =======] - 1s 558us/step - loss: 0.5952 - acc: 0.7040
1500/1500 [
Epoch 3/10
1500/1500 [
                    ========] - 1s 561us/step - loss: 0.6006 - acc: 0.6780
Epoch 4/10
         1500/1500 [=
Epoch 5/10
1500/1500 [================= ] - 1s 563us/step - loss: 0.5888 - acc: 0.7153
Epoch 6/10
1500/1500 [=
          Epoch 7/10
            1500/1500 [
Epoch 8/10
1500/1500 [
            =================== ] - 1s 579us/step - loss: 0.5761 - acc: 0.7187
Epoch 9/10
            1500/1500 [=
Epoch 10/10
1500/1500 [=======================] - 1s 569us/step - loss: 0.5657 - acc: 0.7153
377/377 [========= ] - 3s 7ms/step
```

Accuracy: 62.33%

使用 Sigmoid function 與 Tanh function 作為隱藏層活化函數在網路結構中會有 l 損失函數收斂的問題(紅色區塊觀察)與梯度消失問題,所以隱藏層活化函數選用 ReLU function 或是 Leaky ReLU function。

2.損失函數與輸出層活化函數的搭配

本案例是二元分類問題,因此損失函數選用 Binary Cross-entropy,輸出層的活 化函數為 Softmax。

3.數據輸入批量設定

```
# 建立模式
model = Sequential()
model.add(Dense(10, input_dim=41, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(2, activation='softmax'))
# 編譯模式
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# 訓練模式
model.fit(X_train, encoding_train_y, epochs=10, batch_size=1)
# 評估模式
scores = model.evaluate(test_x, encoding_test_y)
```

print("\nAccuracy: %.2f%%" % (scores[1]*100))

#Mini-batch Size=1: Stochastic Gradient Descent model.fit(X_train, encoding_train_y, epochs=10, batch_size=1)

Layer (type)	Output Shape	Param #
dense_574 (Dense)	(None, 10)	420
dense_575 (Dense)	(None, 10)	110
dense_576 (Dense)	(None, 10)	110
dense_577 (Dense)	(None, 2)	22

Total params: 662 Trainable params: 662 Non-trainable params: 0

Epoch 1/10 Epoch 2/10 Epoch 3/10 1500/1500 [============] - 9s 6ms/step - loss: 0.6330 - acc: 0.6567 Epoch 4/10 1500/1500 [Epoch 5/10 1500/1500 [Epoch 6/10 1500/1500 [Epoch 7/10 1500/1500 [=============] - 9s 6ms/step - loss: 0.5282 - acc: 0.7507 Epoch 8/10 1500/1500 [===========] - 9s 6ms/step - loss: 0.5233 - acc: 0.7540 Epoch 9/10 1500/1500 [============] - 9s 6ms/step - loss: 0.5128 - acc: 0.7533 Epoch 10/10 1500/1500 [===========] - 9s 6ms/step - loss: 0.5001 - acc: 0.7693

Accuracy: 76.66%

#網路結構如前, Mini-batch Size = 8 (2 的三次方)
model.fit(X_train, encoding_train_y, epochs=10, batch_size=8)
實驗顯示如下圖:

377/377 [=========] - 3s 7ms/step

```
Epoch 1/10
1500/1500 [
           ========] - 8s 5ms/step - loss: 1.2962 - acc: 0.6727
Epoch 2/10
       ========= 0.6767 - acc: 0.6767
1500/1500 [
Epoch 3/10
    1500/1500 [=
Epoch 4/10
    1500/1500 [=
Epoch 5/10
Epoch 6/10
     ========= 0.5922 - acc: 0.7333
1500/1500 [:
Epoch 7/10
1500/1500 [=
    Epoch 8/10
      1500/1500 [:
Fnoch 9/10
1500/1500 [:
      Epoch 10/10
377/377 [========= ] - 3s 7ms/step
Accuracy: 78.25%
```

#經過實驗證實設定適當的 Mini-batch size 相較 SGD 損失函數收斂表現較好, 且在電腦執行上 SGD 計算時間所需時間較長。

4.權重學習準則

選擇有考量 learning rate 的權重學習方法以 Adam 和 RMSprop 為主,進行學習 率超參數調整實驗。

開始使用 Leaky ReLU function 並嘗試更改 Dense 層數與神經元個數,並使用 Dropout 優化模型權重更新

```
網路結構圖:
```

```
model = Sequential()
model.add(Dense(30, input_dim=41))
model.add(LeakyReLU(alpha=0.01))
model.add(Dropout(0.3)) #使用 Dropout
model.add(Dense(30))
model.add(LeakyReLU(alpha=0.01))
model.add(Dense(30))
model.add(LeakyReLU(alpha=0.01))
model.add(Dense(30))
model.add(LeakyReLU(alpha=0.01))
model.add(Dense(units=2, activation = 'softmax'))
# 編譯模式
ADAM = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
```

model.compile(loss='binary_crossentropy', optimizer = ADAM, metrics=['accuracy']) model.summary()

訓練模式

model.fit(X train, encoding train y, epochs=20, batch size=10) #batch size

評估模式

scores = model.evaluate(X_test, encoding_test_y)
print("\nAccuracy: %.2f%%" % (scores[1]*100))

Layer (type)	Output Shape	Param #
dense_714 (Dense)	(None, 30)	1260
leaky_re_lu_366 (LeakyReLU)	(None, 30)	0
dropout_48 (Dropout)	(None, 30)	0
dense_715 (Dense)	(None, 30)	930
leaky_re_lu_367 (LeakyReLU)	(None, 30)	0
dense_716 (Dense)	(None, 30)	930
leaky_re_lu_368 (LeakyReLU)	(None, 30)	0
dense_717 (Dense)	(None, 30)	930
dense_718 (Dense)	(None, 2)	62

Total params: 4,112 Trainable params: 4,112 Non-trainable params: 0

Accuracy: 80.11%

發現模型的損失函數有下降和正確率都有提升,模型驗證正確率保持水平。 # Optimizer 設定 RMSprop:

RMSprop = keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=None, decay=0.0) model.compile(loss='binary_crossentropy', optimizer = RMSprop, metrics=['accuracy'])

model.summary()

```
Epoch 11/20
1500/1500 [=
       ================== ] - 2s 1ms/step - loss: 0.3930 - acc: 0.8333
Epoch 12/20
      ============= ] - 2s 1ms/step - loss: 0.3940 - acc: 0.8380
1500/1500 [=
Epoch 13/20
      1500/1500 [=
Epoch 14/20
      1500/1500 [=
Epoch 15/20
1500/1500 [=
      Epoch 16/20
1500/1500 [=
      Epoch 17/20
1500/1500 [=
      Epoch 18/20
1500/1500 [=
       Epoch 19/20
1500/1500 [=
      Epoch 20/20
377/377 [======== - - 4s 11ms/step
```

Accuracy: 79.84%

結論:使用 Adam 和 RMSprop 使用效果差不多,學習率不宜設定太大(ex:0.1),損失函數容易卡住使正確率無法提升,本案例設定 0.001 左右為宜。 設定 lr=0.1 執行結果如下:

```
Epoch 15/20
                                      loss: 4.0443 - acc: 0.7473
1500/1500 [=
              Epoch 16/20
1500/1500 [=
            ======= ] - 1s 931us/step -
                                      loss: 3.7831 - acc: 0.7640
Epoch 17/20
1500/1500 [=
           loss: 4.6608 - acc: 0.7087
Epoch 18/20
1500/1500 [============== ] - 1s 945us/step -
                                      loss: 4.5312 - acc: 0.7173
Epoch 19/20
1500/1500 [==
        -----] - 1s 957us/step -
                                      loss: 4.6488 - acc: 0.7100
Epoch 20/20
377/377 [========= ] - 4s 10ms/step
```

Accuracy: 69.23%

5.權重初始化方法

```
#使用 lecun 作為權重初始化方法
```

model = Sequential()

model.add(Dense(30, input_dim=41, kernel_initializer = 'lecun_uniform'))

#lecun normal

model.add(LeakyReLU(alpha=0.01))

model.add(layers.BatchNormalization()) #作 BN 批量標準化

model.add(Dropout(0.3))

model.add(Dense(30))

model.add(LeakyReLU(alpha=0.01))

model.add(Dense(30))

model.add(LeakyReLU(alpha=0.01))

model.add(Dense(30))

model.add(Dense(units=2, activation = 'softmax'))

編譯模式

ADAM = keras.optimizers.Adam(lr=0.001, beta 1=0.9, beta 2=0.999,

epsilon=None, decay=0.0, amsgrad=False)

model.compile(loss='binary_crossentropy', optimizer = ADAM, metrics=['accuracy'])

model.summary()

Layer (type)	Output	Shape	Param #
dense_907 (Dense)	(None,	30)	1260
leaky_re_lu_493 (LeakyReLU)	(None,	30)	0
batch_normalization_77 (Batc	(None,	30)	120
dropout_81 (Dropout)	(None,	30)	0
dense_908 (Dense)	(None,	30)	930
leaky_re_lu_494 (LeakyReLU)	(None,	30)	0
dense_909 (Dense)	(None,	30)	930
leaky_re_lu_495 (LeakyReLU)	(None,	30)	0
dense_910 (Dense)	(None,	30)	930
leaky_re_lu_496 (LeakyReLU)	(None,	30)	0
dense_911 (Dense)	(None,	2)	62

Total params: 4,232 Trainable params: 4,172 Non-trainable params: 60

```
1500/1500 [========== ] - 3s 2ms/step - loss: 0.4299 - acc: 0.8053
Epoch 15/20
1500/1500 [=========== ] - 2s 2ms/step - loss: 0.4313 - acc: 0.8067
Epoch 16/20
1500/1500 [========= ] - 2s 2ms/step - loss: 0.4209 - acc: 0.8073
Epoch 17/20
1500/1500 [============ ] - 2s 2ms/step - loss: 0.4185 - acc: 0.8133
Epoch 18/20
1500/1500 [=========== ] - 2s 2ms/step - loss: 0.4109 - acc: 0.8213
Epoch 19/20
1500/1500 [=========== ] - 2s 2ms/step - loss: 0.4064 - acc: 0.8247
Epoch 20/20
1500/1500 [============= ] - 2s 2ms/step - loss: 0.4233 - acc: 0.8040
377/377 [======== ] - 6s 16ms/step
Accuracy: 79.05%
#使用正則化(Regularizer)訓練神經網路
model = Sequential()
model.add(Dense(30, input dim=41, kernel regularizer=regularizers.12(0.01),
               bias regularizer=regularizers.11 12(11=0.01, 12=0.01),
               activity regularizer=regularizers.11(0.01)))
model.add(LeakyReLU(alpha=0.01))
model.add(layers.BatchNormalization()) #作 BN 批量標準化
model.add(Dropout(0.3))
model.add(Dense(30))
model.add(LeakyReLU(alpha=0.01))
model.add(Dense(30))
model.add(LeakyReLU(alpha=0.01))
model.add(Dense(30))
model.add(Dense(units=2, activation = 'softmax'))
model.compile(loss='binary crossentropy', optimizer = ADAM, metrics=['accuracy'])
Epoch 15/20
1500/1500 [============= ] - 3s 2ms/step - loss: 0.6247 - acc: 0.7893
Epoch 16/20
Epoch 17/20
Epoch 18/20
1500/1500 [===========] - 2s 2ms/step - loss: 0.5998 - acc: 0.7973
Epoch 19/20
1500/1500 [=========== ] - 2s 2ms/step - loss: 0.5869 - acc: 0.7893
Epoch 20/20
1500/1500 [=========== ] - 2s 2ms/step - loss: 0.5797 - acc: 0.8027
377/377 [======== ] - 6s 16ms/step
Accuracy: 76.92%
```

6. Summary

運用技巧

- 1.隱藏層活化函數的選擇 (Leaky ReLU function)
- 2.損失函數與輸出層活化函數的搭配 (Binary Cross-entropy)
- 3.數據輸入批量設定 (batch size)
- 4.權重學習準則 (Adam)
- 5.權重初始化方法 (lecun)

經過實驗與調整超參數得出最佳網路結構程式碼如下

```
model = Sequential()
model.add(Dense(30, input dim=41, kernel initializer = 'he normal'))
model.add(LeakyReLU(alpha=0.01))
model.add(layers.BatchNormalization())
                                        #作 BN 批量標準化
model.add(Dropout(0.3))
                                       # Dropout
model.add(Dense(30))
model.add(LeakyReLU(alpha=0.01))
model.add(layers.BatchNormalization())
                                        #作 BN 批量標準化
model.add(Dropout(0.3))
                                       # Dropout
model.add(Dense(30))
model.add(LeakyReLU(alpha=0.01))
model.add(Dropout(0.3))
                                       # Dropout
model.add(Dense(30))
model.add(LeakyReLU(alpha=0.01))
model.add(Dense(units=2, activation = 'softmax'))
# 編譯模式
ADAM = keras.optimizers.Adam(\frac{1}{r}=0.001, beta 1=0.9, beta 2=0.999,
epsilon=None, decay=0.0, amsgrad=False)
model.compile(loss='binary crossentropy', optimizer = ADAM, metrics=['accuracy'])
model.summary()
# 訓練模式
model.fit(X train, encoding train y, epochs=20, batch size=8)
# 評估模式
scores = model.evaluate(test x, encoding test y)
print("\nAccuracy: %.2f%%" % (scores[1]*100))
```

繪製網路結構如下

Layer (type)	Output	Shape	Param #
dense_933 (Dense)	(None,	30)	1260
leaky_re_lu_513 (LeakyReLU)	(None,	30)	0
batch_normalization_84 (Batc	(None,	30)	120
dropout_89 (Dropout)	(None,	30)	0
dense_934 (Dense)	(None,	30)	930
leaky_re_lu_514 (LeakyReLU)	(None,	30)	0
batch_normalization_85 (Batc	(None,	30)	120
dropout_90 (Dropout)	(None,	30)	0
dense_935 (Dense)	(None,	30)	930
leaky_re_lu_515 (LeakyReLU)	(None,	30)	0
dropout_91 (Dropout)	(None,	30)	0
dense_936 (Dense)	(None,	30)	930
leaky_re_lu_516 (LeakyReLU)	(None,	30)	0
dense_937 (Dense)	(None,	2)	62

Total params: 4,352 Trainable params: 4,232 Non-trainable params: 120

權重學習使用 Adam,學習率(lr=0.001),隱藏層激勵函數使用 LeakyReLU 並在輸入層使用拋棄法(Dropout)

7.計算模型預測的混淆矩陣與預測正確率

Predicted class

$$\begin{array}{ll} precision & = & \frac{TP}{TP+FP} \\ \\ recall & = & \frac{TP}{TP+FN} \\ \\ F1 & = & \frac{2 \times precision \times recall}{precision+recall} \\ \\ accuracy & = & \frac{TP+TN}{TP+FN+TN+FP} \\ \\ specificity & = & \frac{TN}{TN+FP} \end{array}$$

```
pred_model = model.predict(X_test)
pred = np.argmax(pred_model, axis=1)
pred_1 = np_utils.to_categorical(pred)
```

print(confusion_matrix(encoding_test_y.argmax(axis=1),
pred_model.argmax(axis=1)))

```
In [506]: print(confusion_matrix(
[[136  19]
  [ 57 165]]
```

print(classification_report(encoding_test_y, pred_1))

		precision	recall	f1-score	support
	0	0.70	0.88	0.78	155
	1	0.90	0.74	0.81	222
micro	avσ	0.80	0.80	0.80	377
macro	_	0.80	0.81	0.80	377
weighted	avg	0.82	0.80	0.80	377
samples	avg	0.80	0.80	0.80	377

結論:透過課程所學技巧配合反覆實驗得到預測準確率80%結果。