

FORMATO PARA LA TRANSFERENCIA DOCUMENTAL DE PROGRAMA DE CURSO

UNIVERSIDAD DE ANTIQUIA

1. INFORMACIÓN GENERAL											
Unidad Académica:		Facultad de Ciencias Exactas y Naturales									
Programa Académico:		Física									
Semestre:	2020-l				Código curso:	0302151					
Nombre del curso:		Física Computacional I									
Área o componente currico		ılar: Escriba nombre del área o componente curricular.									
Tipo de curso:	Teórico	- Práct	ico		Crédit	2					
Horas semana	con acompa	ñamien	to Docente (AD)*:	3	Total se	emanas:	16				
Horas semana	trabajo inde	pendier	nte (TI):	3	Total h	oras semana:	6				
Características del curso:		Validable (V)									
Pre-requisitos:		Fundamentación en computación (0302150), Métodos Computacionales (0302390)									
Co-requisitos:		Ninguno.									

^{*}AD: Comprende las horas de acompañamiento directo del docente. (Decreto 1075 de 2015, Artículo 1, 2, 3, 4 y 5)

2. INFORMACIÓN ESPECÍFICA

Descripción general del curso o asignatura:

Curso que comprende diferentes métodos numéricos aplicados a la solución de problemas de Física.

Objetivo general y/o objetivos específicos:

- Ampliar en el estudiante la cognición de la Física apoyada en las matemáticas y la programación.
- Desarrollar la creatividad del estudiante, el pensamiento independiente y la capacidad para investigar y solucionar problemas.
- Incentivar en los estudiantes la utilización de métodos computacionales para la solución de problemas de física y el estudio de fenómenos físicos.

Objetivos Conceptuales:

- Desarrollar en el estudiante habilidades investigativas con el uso de técnicas numéricas.
- Plantear y solucionar nuevos problemas basados en otros que el estudiante haya tratado.

- Entender el trabajo de investigación en física computacional como un trabajo altamente grupal y dependiente de otras personas.

Objetivos Procedimentales:

- Manipular métodos numéricos para la solución de problemas de sistemas físicos descritos a través de ecuaciones diferenciales.
- Desarrollar en el estudiante competencias básicas para el análisis de datos de física experimental y su posterior interpretación usando métodos estadísticos apoyados en métodos computacionales.
- Utilizar herramientas y métodos numéricos para la solución de ecuaciones diferenciales ordinarias.
- Desarrollar estrategias para la evaluación de las soluciones encontradas de problemas físicos encontradas con métodos numéricos.
- Utilizar herramientas de programación que permitan el desarrollo de software en equipos de trabajo.

Objetivos Actitudinales:

 Al tratar el estudiante un nuevo problema, debe conocer los algoritmos numéricos que le permitan solucionarlo., ya sea con técnicas de Fourier, Algebra lineal, ecuaciones diferenciales ordinarias o parciales etc.

Contenido del curso:

Ecuaciones diferenciales ordinarias:

- Definiciones básicas para la solución numérica de ecuaciones diferenciales a través de métodos numéricos y computacionales.
- Definición de convergencia de una solución numérica con respecto a la solución analítica.
- Aproximación a la convergencia para sistemas en donde no existen soluciones analíticas.
- Implementación y evaluación del método de Gauss y otros métodos relacionados.
- Implementación y evaluación del método de Runge-Kutta genérico y de orden 4 en particular como método de base.
- Comparación entre diferentes métodos de solución de ecuaciones diferenciales, comparación de errores, convergencia.

Técnicas de Monte Carlo:

- Técnicas de integración de Monte Carlo
- Generadores de eventos con técnicas de Monte Carlo

Análisis de datos

- Definición de un espacio muestral
- Definiciones básicas de probabilidad y discusión de sistemas físicos con variabilidad estadística intrínseca.
- Distribuciones de probabilidad.
- Definición de errores en la medida
- Interpretación de los datos en el marco de una teoría y un modelo físico dado para la explicación

- de un fenómeno o sistema físico
- Definición y utilización de métodos para interpretar un conjunto de datos
- Definición e implementación de algoritmos de "fiteo" o ajuste de datos a una función.
- Métodos para estimar que tan bueno es un ajuste.
- Puesta a prueba de hipótesis bajo un conjunto de datos y confiabilidad de las conclusiones.
- Técnicas para la adecuada estructuración de un conjunto de datos y su posterior análisis.
- Limpieza de un conjunto de datos, relevancia estadística y variabilidad.

Lenguajes de programación y paquetes para diferentes tareas computacionales

- Conceptos fundamentales del lenguaje de programación C++: Tipos de variables, funciones, bucles, condicionales, clases.
- Clases de Python
- Utilización de paquetes como herramientas para generación de eventos de Monte Carlo en el contexto de la física de altas energías: MadGraph, ExRoot, entre otros.
- Paquetes para análisis de datos: ROOT y Pandas
- Estudio, modificación y utilización de grandes códigos desarrollados por otras personas o equipos.
- Git como herramienta para posibilitar el efectivo y eficiente desarrollo de software en equipo.

Bibliografía básica:

- Simon Sirca, Martin Horvat, Computational Methods for Physicists, (2012), Springer.
- Titus A. Beu, Introduction to Numerical Programming: A practical guide for Scientists and Engineers using Python and C/C++, (2014), CRC Press, Boca Raton.
- Glenn Cowan, Statistical Data Analysis (1998), Clarendon Press Oxford.

Bibliografía complementaria:

- Rubin H Landau, Manuel J. Páez, Cristian Bordeianu, Computational Physics, 3rd Ed, (2015), Wiley V C H, Weinheim, Germany.
- Titus A. Beu, Introduction to Numerical Programming: A practical guide for Scientists and Engineers using Python and C/C++, (2014), CRC Press, Boca Raton.
- ROOT manuals https://root.cern.ch/doumentation for ROOT 6

3. Secretario del Consejo de Unidad Académica											
	Nombre Completo		Firma		Cargo						

Aprobado en Acta número del Haga clic aquí o pulse para escribir una fecha..

Página $\mathbf{4}$ de $\mathbf{4}$ VD-FO-002, Versión 01