hw3

uni:xw2598

2019/11/3

- (a) Construct a linear support vector classifier.
- (b) Construct a support vector classifier with Radial kernel.
- (c) Construct a classifier using AdaBoost algorithm (with 50 boosting iterations) with decision stumps as weak learners.

Select the tuning parameter involved in SVM models appropriately. For each method, compute the test error and its standard error on the test set (synth.te). Provide a simple graphical visualization of the produced classification models (i.e. something similar to Figure 2.2 in the textbook [ESL]) and discuss your results.

```
train = read_table2("synth.tr.txt")
## Parsed with column specification:
## cols(
##
     xs = col_double(),
    ys = col_double(),
##
    yc = col_integer()
## )
train$yc = as.factor(train$yc)
test = read_table2("synth.te.txt")
## Parsed with column specification:
## cols(
##
    xs = col_double(),
    ys = col_double(),
    yc = col_integer()
test$yc = as.factor(test$yc)
y.tr = train$yc
y = test\$yc
x.tr = dplyr::select(train,-yc)
```

(a) Construct a linear support vector classifier.

```
linear.tune = tune.svm(yc~ys+xs, data=train, kernel="linear", cost=c(0.001, 0.01, 0.1, 1,10,100,1000))
summary(linear.tune)

##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 100
##
## - best performance: 0.144
```

```
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-03 0.568 0.03155243
## 2 1e-02 0.156 0.05481281
## 3 1e-01 0.148 0.04638007
## 4 1e+00 0.152 0.04131182
## 5 1e+01 0.148 0.04237400
## 6 1e+02 0.144 0.04299871
## 7 1e+03 0.144 0.04299871
#Best tuning parameter C=0.1
best.linear = linear.tune$best.model
tune.test = predict(best.linear, newdata=test[-3])
#prediction table
table(tune.test, as.factor(test$yc))
## tune.test 0 1
    0 452 57
          1 48 443
#test error
linear.mse = sum((as.numeric(y)-as.numeric(tune.test))^2)/dim(test)[1]
#standard error
linear.se = sd((as.numeric(y)-as.numeric(tune.test))^2)/sqrt(dim(test)[1])
tibble(te = linear.mse,se = linear.se)
## # A tibble: 1 x 2
##
       te
               se
##
    <dbl>
           <dbl>
## 1 0.105 0.00970
plot(best.linear,test)
```

SVM classification plot

(b) Construct a support vector classifier with Radial kernel.

```
radial.tune = tune.svm(yc~ys+xs, data=train, kernel="radial",
                       gamma = c(0.01, 0.1, 0.5, 1, 10, 100),
                       cost=c(0.001, 0.01, 0.1, 1,10,100))
summary(radial.tune)
## Parameter tuning of 'svm':
   - sampling method: 10-fold cross validation
##
##
##
   - best parameters:
    gamma cost
      0.5
##
##
##
   - best performance: 0.132
##
  - Detailed performance results:
##
##
      gamma cost error dispersion
## 1 1e-02 1e-03 0.544 0.04299871
     1e-01 1e-03 0.544 0.04299871
      5e-01 1e-03 0.544 0.04299871
## 4 1e+00 1e-03 0.544 0.04299871
     1e+01 1e-03 0.544 0.04299871
     1e+02 1e-03 0.544 0.04299871
     1e-02 1e-02 0.544 0.04299871
```

```
## 8 1e-01 1e-02 0.544 0.04299871
## 9 5e-01 1e-02 0.544 0.04299871
## 10 1e+00 1e-02 0.544 0.04299871
## 11 1e+01 1e-02 0.544 0.04299871
## 12 1e+02 1e-02 0.544 0.04299871
## 13 1e-02 1e-01 0.304 0.12536170
## 14 1e-01 1e-01 0.148 0.05672546
## 15 5e-01 1e-01 0.156 0.06095536
## 16 1e+00 1e-01 0.144 0.05719363
## 17 1e+01 1e-01 0.212 0.10507140
## 18 1e+02 1e-01 0.544 0.04299871
## 19 1e-02 1e+00 0.148 0.05006662
## 20 1e-01 1e+00 0.152 0.05902918
## 21 5e-01 1e+00 0.132 0.04638007
## 22 1e+00 1e+00 0.132 0.04638007
## 23 1e+01 1e+00 0.160 0.06253888
## 24 1e+02 1e+00 0.196 0.07647803
## 25 1e-02 1e+01 0.140 0.05416026
## 26 1e-01 1e+01 0.152 0.05593647
## 27 5e-01 1e+01 0.136 0.07351493
## 28 1e+00 1e+01 0.152 0.06746192
## 29 1e+01 1e+01 0.152 0.08390471
## 30 1e+02 1e+01 0.200 0.06531973
## 31 1e-02 1e+02 0.156 0.05146736
## 32 1e-01 1e+02 0.144 0.05719363
## 33 5e-01 1e+02 0.148 0.07554248
## 34 1e+00 1e+02 0.176 0.06850791
## 35 1e+01 1e+02 0.184 0.09082339
## 36 1e+02 1e+02 0.192 0.06477311
#Best tuning parameter C=10, gamma = 1
best.radial = radial.tune$best.model
pred.radial = predict(best.radial, newdata=test[-3])
#prediction table
table(pred.radial, as.factor(test$yc))
## pred.radial
##
             0 458 53
##
             1 42 447
#test error
radial.mse = sum((as.numeric(y)-as.numeric(pred.radial))^2)/dim(test)[1]
#standard error
radial.se = sd((as.numeric(y)-as.numeric(pred.radial))^2)/sqrt(dim(test)[1])
tibble(te = radial.mse,se = radial.se)
## # A tibble: 1 x 2
##
        te
                se
     <dbl>
             <dbl>
## 1 0.095 0.00928
plot(best.radial,test)
```

SVM classification plot

(c) Construct a classifier using AdaBoost algorithm (with 50 boosting iterations) with decision stumps as weak learners.

```
set.seed(12345678)
adaboost.model = ada(yc~ys+xs, data=train,type = "discrete",iter = 50)
pred.ada = predict(adaboost.model,test[-3])
#test error
ada.mse = sum((as.numeric(y)-as.numeric(pred.ada))^2)/dim(test)[1]
#standard error
ada.se = sd((as.numeric(y)-as.numeric(pred.ada))^2)/sqrt(dim(test)[1])
tibble(te = ada.mse,se = ada.se)

## # A tibble: 1 x 2
## te se
## <dbl> <dbl>
## 1 0.105 0.00970
plot(adaboost.model)
```

Training Error


```
res = tibble(te = c(linear.mse,radial.mse,ada.mse),se = c(linear.se,radial.se,ada.se))
res = t(res)
colnames(res) = c("linear","radial","adaboost")
res
```

```
## linear radial adaboost
## te 0.105000000 0.09500000 0.105000000
## se 0.009698921 0.00927691 0.009698921
```

Disscusion

The result shows that support vector classifier with Radial kernel has better performance. The decreasing rank of prediction performance measured by test error and its standard error is: support vector classifier with Radial kernel > AdaBoost algorithm > linear support vector classifier.

Also, the performance of AdaBoost algorithm will change due to the randomly boosting.

So in this case, we may choose support vector classifier with Radial kernel for training binary outcome data, which helps build a stably precise model.