IN THE CLAIMS

1. (currently amended) A compound of formula (I)

$$R^{8}$$
 R^{7}
 R^{6}
 R^{9}
 R^{4}

(I)

or a salt, ester, or amide or prodrug thereof;

where X is O, or S, S(O) or S(O)₂ or NR¹⁰ where R¹⁰ is hydrogen or C₁₋₆alkyl; R⁵ is a group OR¹¹, NR¹²R¹³ or SR¹¹ where R¹¹, R¹² and R¹³ are independently selected from <u>hydrogen</u>, optionally substituted hydrocarbyl or optionally substituted heterocyclic groups, and R¹² and R¹³ may additionally form together with the nitrogen atom to which they are attached, an optionally substituted aromatic or non-aromatic heterocyclic ring which may contain further heteroatoms,

R⁶ and R⁷ are independently selected from hydrogen or hydrocarbyl;
R⁸ and R⁹ are independently selected from hydrogen, halo, C₁₋₄ alkyl, C₁₋₄alkoxy,
C₁₋₄alkoxymethyl, di(C₁₋₄alkoxy)methyl, C₁₋₄alkanoyl, trifluoromethyl, cyano, amino,
C₂₋₅alkenyl, C₂₋₅alkynyl, a phenyl group, a benzyl group or a 5-6-membered heterocyclic group with 1-3 heteroatoms, selected independently from O, S and N, which heterocyclic group may be aromatic or non-aromatic and may be saturated (linked via a ring carbon or nitrogen atom) or unsaturated (linked via a ring carbon atom), and which phenyl, benzyl or heterocyclic group may bear on one or more ring carbon atoms up to 5 substituents selected from hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkanoyloxy, trifluoromethyl, cyano, amino, nitro, C₂₋₄alkanoyl, C₁₋₄alkanoylamino, C₁₋₄alkoxycarbonyl,

C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphinyl, C₁₋₄alkylsulphonyl, carbamoyl, N-C₁₋₄alkylcarbamoyl, N,N-di(C₁₋₄alkyl)carbamoyl, aminosulphonyl, C₁₋₄alkylsulphonylamino, N-C₁₋₄alkylsulphonylamino, and a saturated heterocyclic group selected from morpholino, thiomorpholino, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl and pyrazolidinyl, which saturated heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkanoyloxy, trifluoromethyl, cyano, amino, nitro and C₁₋₄alkoxycarbonyl, and R¹, R², R³, R⁴ are independently selected from halogeno, cyano, nitro, C₁₋₃alkylsulphanyl, -N(OH)R¹⁴ (wherein R¹⁴ is hydrogen, or C₁₋₃alkyl), or R¹⁶X¹- [[(]]wherein X¹ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR¹⁷C(O)-, -C(O)NR¹⁸-, -SO₂NR¹⁹-, -NR²⁰SO₂- or -NR²¹- (wherein R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl), and R¹⁶ is hydrogen, optionally substituted hydrocarbyl, optionally substituted heterocyclyl or optionally substituted alkoxy.

2. (currently amended) A compound according to claim 1 wherein at least one group R¹, R², R³, R⁴ is a group R¹⁶X¹- and R¹⁶ is hydrogen, an optionally substituted hydrocarbyl group selected from alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, cycloalkenyl or cycloalkynyl, or combinations thereof; or an optionally substituted heterocyclyl group of from 4 to 20 ring atoms, at least one of which is a heteroatom such as oxygen, sulphur or nitrogen and where the optional substituents comprise at least one functional group selected from nitro, cyano, halo, oxo, =CR⁷⁸R⁷⁹, C(O)_xR⁷⁷, OR⁷⁷, S(O)_yR⁷⁷, NR⁷⁸R⁷⁹, C(O)NR⁷⁸R⁷⁹, OC(O)NR⁷⁸R⁷⁹, =NOR⁷⁷, -NR⁷⁷C(O)_xR⁷⁸, -NR⁷⁷CONR⁷⁸R⁷⁹, -N=CR⁷⁸R⁷⁹, S(O)_yNR⁷⁸R⁷⁹ or -NR⁷⁷S(O)_yR⁷⁸ where R⁷⁷, R⁷⁸ and R⁷⁹ are independently selected from hydrogen, optionally substituted hydrocarbyl, optionally substituted heterocyclyl or optionally substituted alkoxy, or R⁷⁸ and R⁷⁹ together form an optionally substituted ring which optionally contains further heteroatoms, where x is an integer of 1 or 2, y is 0 or an integer of 1-3.

- 3. (original) A compound according to claim 2 where hydrocarbyl, heterocyclyl or alkoxy groups R^{77} , R^{78} and R^{79} as well as rings formed by R^{78} and R^{79} are optionally substituted by halo, perhaloalkyl, mercapto, alkylthio, hydroxy, carboxy, alkoxy, heteroaryl, heteroaryloxy, cycloalkyl, cycloalkenyl, cycloalkynyl, alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy (where the aryl group may be substituted by halo, nitro, or hydroxy), cyano, nitro, amino, mono- or di-alkyl amino, oximino or $S(O)_y R^{90}$ where y is as defined in claim 2 and R^{90} is a alkyl.
- 4. (currently amended) A compound according to any one of the preceding claims $\underline{2}$ wherein at least one group R^1 , R^2 , R^3 , R^4 is a group $R^{16}X^1$ and R^{16} is hydrogen or an alkyl group, optionally substituted with one or more groups selected from functional groups as defined in claim 2 or claim 3, or alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, cycloalkenyl or cycloalkynyl, any of which may be substituted with a functional group as defined in claim 2 or claim 3, and where any aryl, heterocyclyl, cycloalkyl, cycloalkenyl, cycloalkynyl groups may also be optionally substituted with hydrocarbyl such as alkyl, alkenyl or alkynyl.
- 5. (currently amended) A compound according to claim 1 or claim 2 wherein at least one of R^1 , R^2 , R^3 and R^4 is a group $R^{16}X^1$ where X^1 is as defined in claim 1 and R^{16} is selected from one of the following twenty-two groups:
 - 1) hydrogen or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more functional groups;
 - 2) $-R^aX^2C(O)R^{22}$ (wherein X^2 represents -O- or $-NR^{23}$ (in which R^{23} represents hydrogen, or alkyl optionally substituted with a functional group) and R^{22} represents C_{1-3} alkyl, $-NR^{24}R^{25}$ or $-OR^{26}$ (wherein R^{24} , R^{25} and R^{26} which may be the same or different each represents hydrogen, or alkyl optionally substituted with a functional group));
 - 3) -R^bX³R²⁷ (wherein X³ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR²⁸C(O)-, -NR²⁸C(O)O-, -C(O)NR²⁹-, -C(O)ONR²⁹- -SO₂NR³⁰-, -NR³¹SO₂- or -NR³²- (wherein R²⁸, R²⁹, R³⁰, R³¹ and R³² each independently represents hydrogen, or alkyl optionally substituted with a functional group) and R²⁷ represents hydrogen, hydrocarbyl (as defined herein) or a saturated heterocyclic group, wherein the hydrocarbyl or heterocyclic groups

may be optionally substituted by one or more functional groups and the heterocyclic groups may additionally be substituted by a hydrocarbyl group);

- 4) -R°X⁴R° X⁵R³⁵ (wherein X⁴ and X⁵ which may be the same or different are each -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR³⁶C(O)-, -NR³⁶C(O)O-, -C(O)NR³⁷-, -C(O)ONR³⁷-SO₂NR³⁸-, -NR³⁹SO₂- or -NR⁴⁰- (wherein R³⁶, R³⁷, R³⁸, R³⁹ and R⁴⁰ each independently represents hydrogen or alkyl optionally substituted by a functional group) and R³⁵ represents hydrogen, or alkyl optionally substituted by a functional group);
- 5) R⁴¹ wherein R⁴¹ is a C₃₋₆ cycloalkyl or saturated heterocyclic ring (linked via carbon or nitrogen), which cycloalkyl or heterocyclic group may be substituted by one or more functional groups or by a hydrocarbyl or heterocyclyl group which hydrocarbyl or heterocyclyl group may be optionally substituted by one or more functional groups;
- 6) -R^dR⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 7) ReR⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 8) -R^f R⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 9) R⁴² wherein R⁴² represents a pyridone group, an aryl group or an aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, aryl or aromatic heterocyclic group may be substituted by one or more functional groups or by a hydrocarbyl group optionally substituted by one or more functional groups or heterocyclyl groups, or by a heterocyclyl group optionally substituted by one or more functional groups or hydrocarbyl groups;
- 10) -R^gR⁴² (wherein R⁴² is as defined hereinbefore);
- 11) -RhR42 (wherein R42 is as defined hereinbefore);
- 12) -Rⁱ R⁴² (wherein R⁴² is as defined hereinbefore);
- 13) -R^j X⁶R⁴² (wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁴⁷C(O)-, -C(O)NR⁴⁸-, -C(O)ONR⁴⁸-, -SO₂NR⁴⁹-, -NR⁵⁰SO₂- or -NR⁵¹- (wherein R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰ and R⁵¹ each independently represents hydrogen, or alkyl optionally substituted with a functional group) and R⁴² is as defined hereinbefore);
- 14) -R^kX⁷R⁴² (wherein X⁷ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁵²C(O)-, -C(O)NR⁵³-, C(O)ONR⁵³-, -SO₂NR⁵⁴-, -NR⁵⁵SO₂- or -NR⁵⁶- (wherein R⁵², R⁵³, R⁵⁴, R⁵⁵ and R⁵⁶ each independently represents hydrogen, or alkyl optionally substituted with a functional group) and R⁴² is as defined hereinbefore);

- 15) -R^mX⁸R⁴² (wherein X⁸ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁵⁷C(O)-, -C(O)NR⁵⁸-, -C(O)ONR⁵⁸-, -SO₂NR⁵⁹-, -NR⁶⁰SO₂- or -NR⁶¹- (wherein R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰ and R⁶¹ each independently represents hydrogen, hydrogen, or alkyl optionally substituted with a functional group) and R⁴² is as defined hereinbefore); 16) -Rⁿ X⁹Rⁿ'R⁴² (wherein X⁹ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁶²C(O)-, -C(O)NR⁶³-, -C(O)ONR⁶³-,-SO₂NR⁶⁴-, -NR⁶⁵SO₂- or -NR⁶⁶- (wherein R⁶², R⁶³, R⁶⁴, R⁶⁵ and R⁶⁶ each independently represents hydrogen, hydrogen, or alkyl optionally substituted with a functional group) and R⁴² is as defined hereinbefore); 17) -R^p X⁹-R^p'R⁴¹ (wherein X⁹ and R⁴¹ are as defined hereinbefore); 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or
- more functional groups; 19) C_{2-5} alkynyl which may be unsubstituted or which may be substituted with one or
- more functional groups; 20) -R^tX⁹R^{t'}R⁴¹ (wherein X⁹ and R⁴¹ are as defined hereinbefore);
- 21) -R^u X⁹ R^u'R⁴¹ (wherein X⁹ and R⁴¹ are as defined hereinbefore); and
- 22) $R^v R^{67}(R^{v'})_q(X^9)_r R^{68}$ (wherein X^9 is as defined hereinbefore, q is 0 or 1, r is 0 or 1, and R^{67} is a C_{1-3} alkylene group or a cyclic group selected from divalent cycloalkyl or heterocyclic group, which C_{1-3} alkylene group may be substituted by one or more functional groups and which cyclic group may be substituted by one or more functional groups or by a hydrocarbyl group optionally substituted by one or more functional groups or heterocyclyl groups, or by a heterocyclyl group optionally substituted by one or more functional groups or hydrocarbyl groups; and R^{68} is hydrogen, C_{1-3} alkyl, or a cyclic group selected from cycloalkyl or heterocyclic group, which C_{1-3} alkylene group may be substituted by one or more functional groups and which cyclic group may be substituted by one or more may be substituted by one or more functional groups or by a hydrocarbyl group optionally substituted by one or more functional groups or heterocyclyl groups, or by a heterocyclyl group optionally substituted by one or more functional groups or hydrocarbyl groups);

and wherein R^a , R^b , R^c , R^c , R^d , R^g , R^j , R^n , R^n , R^p , R^p , R^p , $R^{u'}$, $R^{u'}$, R^v and $R^{v'}$ are independently selected from C_{1-8} alkylene groups optionally substitued by one or more functional groups,

- R^e R^h , R^k and R^t are independently selected from C_{2-8} alkenylene groups optionally substituted by one or more functional groups, and R^f , R^i , R^m and R^u are independently selected from by C_{2-8} alkynylene groups optionally substituted by one or more functional groups.
- 6. (currently amended) A compound according to claim 1.5 where in R¹⁶ is selected from one of the following twenty-two groups:
 - 1) hydrogen or C_{1-5} alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, oxiranyl, fluoro, chloro, bromo, and amino, C_{1-3} alkyl, and trifluoromethyl;
 - 2) $-R^aX^2C(O)R^{22}$ (wherein X^2 represents -O- or -NR²³- (in which R²³ represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R²² represents C_{1-3} alkyl, -NR²⁴R²⁵ or -OR²⁶ (wherein R²⁴, R²⁵ and R²⁶ which may be the same or different each represents hydrogen, C_{1-5} alkyl, hydroxy C_{1-5} alkyl or C_{1-3} alkoxy C_{2-3} alkyl));
 - 3) $-R^bX^3R^{27}$ (wherein X^3 represents -O-, C(O) -S-, -SO-, -SO₂-, -OC(O)-, -NR²⁸C(O)-, -NR²⁸C(O)O-, -C(O)NR²⁹-, C(O)ONR²⁹-, -SO₂NR³⁰-, -NR³¹SO₂- or -NR³²- (wherein R²⁸, R²⁹, R³⁰, R³¹ and R³² each independently represents hydrogen, C₁₋₃alkyl, hydroxy C₁₋₃ 4alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁷ represents hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₆alkyl group may bear 1, 2 or 3 substituents selected from oxo, hydroxy, halogeno, cyclopropyl, amino, C₁₋₄alkylamino, C₁₋₄alkanoyldi-C₁₋₄alkylamino, C₁₋₄alkylthio, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo. hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, di $(C_{1-4}$ alkyl)amino, C_{1-4} alkylamino C_{1-4} alkyl, di $(C_{1-4}$ alkyl)amino C_{1-4} alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(R^{b'})_oD (wherein f is 0 or 1, g is 0 or 1 and D is a cyclic group selected from C₃₋₆cycloalkyl group, an aryl group or a 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo or C₁₋₄alkyl));

- 4) $-R^c X^4 R^{c'} X^5 R^{35}$ (wherein X^4 and X^5 which may be the same or different are each -O-, C(O), -S-, -SO-, -SO₂-, $-NR^{36}C(O)$ -, $-NR^{36}C(O)$ O-, $-C(O)NR^{37}$ -, $-C(O)ONR^{37}$ -, $-SO_2NR^{38}$ -, $-NR^{39}SO_2$ or $-NR^{40}$ (wherein R^{36} , R^{37} , R^{38} , R^{39} and R^{40} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{35} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl);
- 5) R⁴¹ (wherein R⁴¹ is a 4-6-membered cycloalkyl or saturated heterocyclic ring (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which cycloalkyl or heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, cyanoC₁₋₄alkyl, cyclopropyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, carboxamido, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy nitro, amino, C₁₋₄alkoxy, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, -C(O)NR⁴³R⁴⁴, -NR⁴⁵C(O)R⁴⁶ (wherein R⁴³, R⁴⁴, R⁴⁵ and R⁴⁶, which may be the same or different, each represents hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl));
- 6) -R^dR⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 7) R^eR⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 8) -R^f R⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 9) R⁴² [[(]]wherein R⁴² represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkyl, C₁₋₄alkylamino, C₁₋₄alkylamino, C₁₋₄alkylamino, C₁₋₄alkylamino, C₁₋₄alkylamino, C₁₋₄alkylamino, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkanoyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkyl, carboxy, carboxamido, trifluoromethyl, cyano, -C(O)NR⁶⁹R⁷⁰, -NR⁷¹C(O)R⁷² (wherein R⁶⁹, R⁷⁰, R⁷¹ and R⁷²,

which may be the same or different, each represents hydrogen, C_{1-4} alkyl, hydroxy C_{1-4} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and a group -(-O-)_f(C_{1-4} alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C_{3-6} cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C_{1-4} alkyl);

- 10) -R^gR⁴² (wherein R⁴² is as defined hereinbefore);
- 11) -R^hR⁴² (wherein R⁴² is as defined hereinbefore);
- 12) -Rⁱ R⁴² (wherein R⁴² is as defined hereinbefore);
- 13) -R^j X⁶R⁴² (wherein X⁶ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-,
- -NR⁴⁷C(O)-, -C(O)NR⁴⁸-, C(O)ONR⁴⁸-, -SO₂NR⁴⁹-, -NR⁵⁰SO₂- or -NR⁵¹- (wherein R⁴⁷,
- R^{48} , R^{49} , R^{50} and R^{51} each independently represents hydrogen, C_{1-3} alkyl, hydroxy C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{42} is as defined hereinbefore);
- 14) -R^kX⁷R⁴² (wherein X⁷ represents -O-, C(O), -S-, -SO-, -SO₂-, -NR⁷³C(O)-,
- -C(O)NR⁷⁴-, C(O)ONR⁷⁴-, -SO₂NR⁷⁵-, -NR⁷⁶SO₂- or -NR⁷⁷- (wherein R⁷³, R⁷⁴, R⁷⁵, R⁷⁶
- and R⁷⁷ each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or
- $C_{1\text{--}3}$ alkoxy $C_{2\text{--}3}$ alkyl) and R^{42} is as defined hereinbefore);
- 15) -R^mX⁸R⁴² (wherein X⁸ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁵⁷C(O)-,
- -C(O)NR⁵⁸-, -SO₂NR⁵⁹-, -NR⁶⁰SO₂- or -NR⁶¹- (wherein R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰ and R⁶¹ each independently represents hydrogen, C_{1-3} alkyl, hydroxy C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl)
- and R⁴² is as defined hereinbefore);
- 16) - $R^n X^9 R^{n'} R^{42}$ (wherein X^9 represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁶²C(O)-,
- -C(O)NR⁶³-, C(O)ONR⁶³-, -SO₂NR⁶⁴-, -NR⁶⁵SO₂- or -NR⁶⁶- (wherein R⁶², R⁶³, R⁶⁴, R⁶⁵
- and R^{66} each independently represents hydrogen, C_{1-3} alkyl, hydroxy C_{1-3} alkyl or
- C₁₋₃alkoxyC₂₋₃alkyl) and R⁴² is as defined hereinbefore);
- 17) $-R^p X^9 R^{p'} I R^{41}$ (wherein X^9 and R^{41} are as defined hereinbefore);
- 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino,
- $\underline{N},\underline{N}$ -di(C_{1-4} alkyl)amino, aminosulphonyl, \underline{N} - C_{1-4} alkylaminosulphonyl and $\underline{N},\underline{N}$ -di(C_{1-4} alkyl)aminosulphonyl;

- 19) C_{2-5} alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C_{1-4} alkylamino, $N.N-di(C_{1-4}$ alkyl)amino, aminosulphonyl, $N.N-di(C_{1-4}$ alkyl)aminosulphonyl;
- 20) -R^tX⁹R^t'R⁴¹ (wherein X⁹ and R⁴¹ are as defined hereinbefore);
- 21) -R^u X⁹ R^u R⁴¹ (wherein X⁹ and R⁴¹ are as defined hereinbefore); and
- 22) $R^{v} R^{67} (R^{v'})_{o} (X^{9})_{r} R^{68}$ (wherein X^{9} is as defined hereinbefore, q is 0 or 1, r is 0 or 1, and R⁶⁷ is a C₁₋₃alkylene group or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentylene, cyclohexylene or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkylene group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)₀ringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl); and R⁶⁸ is hydrogen, C₁₋₃alkyl, or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₆(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic

group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl);

and wherein R^a , R^b , R^b , R^c , R^c , R^c , R^d , R^g , R^j , R^n , R^n , R^p , R^p , R^t , R^u , R^v and R^v are independently selected from C_{1-8} alkylene groups optionally substituted by one or more substituents selected from hydroxy, halogeno, amino,

 R^e R^h , R^k and R^t are independently selected from C_{2-8} alkenylene groups optionally substituted by by one or more substituents selected from hydroxy, halogeno, amino, and R^t may additionally be a bond; and

 R^f , R^i , R^m and R^u are independently selected from by C_{2-8} alkynylene groups optionally susbstituted by one or more substituents selected from hydroxy, halogeno, amino.

7. (currently amended) A compound of formula (IA)

$$R^{8}$$
 R^{7}
 R^{6}
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{7

or a salt, ester or amide thereof;

where X is O, or S, S(O) or S(O)₂, NH or NR¹⁰ where R¹⁰ is hydrogen or C_{1-6} alkyl[[,]]; R⁵ is a group OR¹¹, NR¹²R¹³ or SR¹¹ where R¹¹, R¹² and R¹³ are independently selected from <u>hydrogen</u>, optionally substituted hydrocarbyl or optionally substituted heterocyclic groups, and R¹² and R¹³ may additionally form together with the nitrogen atom to which they are attached, an aromatic or non-aromatic heterocyclic ring which may contain further heteroatoms,

 R^8 and R^9 are independently selected from hydrogen, halo, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} alkoxymethyl, di(C_{1-4} alkoxy)methyl, C_{1-4} alkanoyl, trifluoromethyl, cyano, amino, C_{2-5} alkenyl, C_{2-5} alkynyl, a phenyl group, a benzyl group or a 5-6-membered heterocyclic

group with 1-3 heteroatoms, selected independently from O, S and N, which heterocyclic group may be aromatic or non-aromatic and may be saturated (linked via a ring carbon or nitrogen atom) or unsaturated (linked via a ring carbon atom), and which phenyl, benzyl or heterocyclic group may bear on one or more ring carbon atoms up to 5 substituents selected from hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkanoyloxy, trifluoromethyl, cyano, amino, nitro, C₂₋₄alkanoyl, C₁₋₄alkanoylamino, C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphonyl, carbamoyl, N-C₁₋₄alkylsulphonyl, carbamoyl,

N,N-di(C₁₋₄alkyl)aminosulphonyl, C₁₋₄alkylsulphonylamino, and a saturated heterocyclic group selected from morpholino, thiomorpholino, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl and pyrazolidinyl, which saturated heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkanoyloxy, trifluoromethyl, cyano, amino, nitro and C₁₋₄alkoxycarbonyl, and R¹, R², R³, R⁴ are independently selected from, halo, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, -NR¹⁴R¹⁵ (wherein R¹⁴ and R¹⁵, which may be the same or different, each represents hydrogen or C₁₋₃alkyl), or -X¹R¹⁶ (wherein X¹ represents a direct bond, -O-, -CH₂-, -OCO-, carbonyl, -S-, -SO-, -SO₂-, -NR¹⁷CO-, -CONR¹⁸-, -SO₂NR¹⁹-, -NR²⁰SO₂- or -NR²¹- (wherein R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl), and R¹⁶ is selected from one of the following seventeen eighteen groups:

- 1') hydrogen or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro or amino,
- 2') C_{1-5} alkyl X^2COR^{22} (wherein X^2 represents -O- or -NR²³- (in which R²³ represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R²² represents C_{1-3} alkyl, -NR²⁴R²⁵ or -OR²⁶ (wherein R²⁴, R²⁵ and R²⁶ which may be the same or different each represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl));
- 3') C_{1-5} alkyl X^3R^{27} (wherein X^3 represents -O-, -S-, -SO-, -SO₂-, -OCO-, -NR²⁸CO-, -CONR²⁹-, -SO₂NR³⁰-, -NR³¹SO₂- or -NR³²- (wherein R²⁸, R²⁹, R³⁰, R³¹ and R³² each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkyl or C_{1-3} alkyl, cyclopentyl, cyclohexyl or a 5-6-membered saturated heterocyclic

- group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1-3} alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C_{1-4} alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C_{1-4} alkyl, C_{1-4} hydroxyalkyl and C_{1-4} alkoxy);
- 4') C_{1-5} alkyl X^4C_{1-5} alkyl X^5R^{35} (wherein X^4 and X^5 which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR³⁶CO-, -CONR³⁷-, -SO₂NR³⁸-, -NR³⁹SO₂- or -NR⁴⁰- (wherein R³⁶, R³⁷, R³⁸, R³⁹ and R⁴⁰ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R³⁵ represents hydrogen or C_{1-3} alkyl);
- 5') R⁴¹ (wherein R⁴¹ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl and C₁₋₄alkylsulphonylC₁₋₄alkyl);
- 6') C₁₋₅alkylR⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 7') C₂₋₅alkenylR⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 8') C₂₋₅alkynylR⁴¹ (wherein R⁴¹ is as defined hereinbefore);
- 9') R⁴² (wherein R⁴² represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents on an available carbon atom selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -CONR⁴³R⁴⁴ and -NR⁴⁵COR⁴⁶ (wherein R⁴³, R⁴⁴, R⁴⁵ and R⁴⁶, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl));
- 10') C₁₋₅alkylR⁴² (wherein R⁴² is as defined hereinbefore);
- 11') C_{2-5} alkenyl R^{42} (wherein R^{42} is as defined hereinbefore);
- 12') C₂₋₅alkynylR⁴² (wherein R⁴² is as defined hereinbefore);
- 13') C_{1-5} alkyl X^6R^{42} (wherein X^6 represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁷CO-, -CONR⁴⁸-, -SO₂NR⁴⁹-, -NR⁵⁰SO₂- or -NR⁵¹- (wherein R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰ and R⁵¹ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{42} is as defined hereinbefore);

14') C_{2-5} alkenyl X^7R^{42} (wherein X^7 represents -O-, -S-, -SO-, -SO₂-, -NR⁵²CO-, -CONR⁵³-, -SO₂NR⁵⁴-, -NR⁵⁵SO₂- or -NR⁵⁶- (wherein R⁵², R⁵³, R⁵⁴, R⁵⁵ and R⁵⁶ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{42} is as defined hereinbefore);

15') C_{2-5} alkynyl X^8R^{42} (wherein X^8 represents -O-, -S-, -SO-, -SO₂-, -NR⁵⁷CO-, -CONR⁵⁸-, -SO₂NR⁵⁹-, -NR⁶⁰SO₂- or -NR⁶¹- (wherein R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰ and R⁶¹ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{42} is as defined hereinbefore);

16') C_{1-3} alkyl X^9C_{1-3} alkyl R^{42} (wherein X^9 represents -O-, -S-, -SO-, -SO₂-, -NR⁶²CO-, -CONR⁶³-, -SO₂NR⁶⁴-, -NR⁶⁵SO₂- or -NR⁶⁶- (wherein R⁶², R⁶³, R⁶⁴, R⁶⁵ and R⁶⁶ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{42} is as defined hereinbefore); and

17') C_{1-3} alkyl X^9C_{1-3} alkyl R^{41} (wherein X^9 and R^{41} are as defined hereinbefore); and R^6 and R^7 are hydrogen or C_{1-4} alkyl.

- 8. (currently amended) A compound according to any one of the preceding claims $\underline{7}$ wherein R^6 and R^7 are hydrogen.
- 9. (currently amended) A compound according to any one of the preceding claims 7 of formula (IB)

where X, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are as defined in claim 1 or claim 7.

- 10. (currently amended) A compound according to any one of the preceding claims $\underline{6}$, wherein R⁵ is selected from a group OR^{11} where R¹¹ is hydrogen or C_{1-4} alkyl; or a group $NR^{12}R^{13}$ where one of R^{12} or R^{13} is hydrogen and the other is optionally substituted C_{1-6} alkyl, optionally substituted aryl or optionally substituted heterocyclyl, or R^{12} and R^{13} together with the nitrogen atom to which they are attached from a heterocylic ring.
- 11. (currently amended) A compound according to any one of claims 1 to 6 or 8 to 10, which is a phosphate ester prodrug of a compound of formula (I).
- 12. (currently amended) A method for preparing a compound of formula (I) as defined in claim 1 which method comprises reacting a compound of formula (II)

(II)

where X, R⁸ and R⁹ are as defined in claim 1, R¹, R², R³, R⁴ are groups R¹, R², R³, R⁴ as defined in claim 1 respectively, or precursors thereof; and R⁸⁵ is a leaving group, with a compound of formula (III)

where R⁶ are R⁷ are as defined in claim 1[[,]] and R⁵ is a group R⁵ as defined in claim 1 or a precursor group therefore; and thereafter if desired or necessary, converting any

precursor groups R¹², R²², R³², R⁴² or R⁵² to groups R¹, R², R³, R⁴ or R⁵ respectively, or changing a group R⁵ to a different such group.

- 13. (cancelled)
- 14. (currently amended) A method for <u>treating colorectal or breast cancer inhibiting aurora 2</u> kinase in a warm blooded animal, such as man, in need of such treatment, which comprises administering to said animal an effective amount of a compound of formula (I), or a salt, ester, <u>or amide or prodrug</u> thereof.
- 15. (currently amended) A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 or a salt, ester, <u>or</u> amide or prodrug thereof, in combination with a pharmaceutically acceptable carrier.
- 16. (new) A compound according to claim 10 or a salt, ester or amide thereof; where X is as defined in claim 1 and R^1 , R^2 , R^3 , R^4 are as defined in claim 6; and

 R^5 is a group OR^{11} , $NR^{12}R^{13}$ or SR^{11} where R^{11} is hydrogen or C_{1-4} alkyl, and where one of R^{12} and R^{13} is hydrogen and the other is C_{1-6} alkyl optionally substituted with one or more groups selected from hydroxy, trifluoromethyl, C_{1-3} alkoxy, cyano, amino, mono- or di- C_{1-4} alkylamino, C_{1-4} alkylthio, C_{3-6} cycloalkyl or heterocyclyl optionally substituted with C_{1-4} alkyl; or one of R^{12} and R^{13} is hydrogen and the other is a heterocyclic group as well as dioxides thereof, C_{3-6} cycloalkyl or a phenyl group any of which may be substituted with one or more groups selected from halo, nitro, C_{1-4} alkyl or C_{1-4} alkoxy, and R^{12} and R^{13} may additionally form together with the nitrogen atom to which they are attached, morpholine or piperidine,

 R^6 and R^7 are independently selected from hydrogen or C_{1-4} alkyl; R^8 and R^9 are independently selected from hydrogen, halo, C_{1-4} alkoxy, trifluoromethyl, cyano or phenyl.

- 17. (new) A compound according to claim 16 wherein X is NH or O.
- 18. (new) A compound according to claim 16 wherein R¹ is hydrogen,

R² is halo, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, -NR¹⁴R¹⁵ (wherein R¹⁴ and R¹⁵, which may be the same or different, each represents hydrogen or C₁₋₃alkyl), or a group -X¹R¹⁶ where X¹ is oxygen and R¹⁶ is a group (1) as defined in claim 6, R³ is a group -X¹R¹⁶ where X¹ is oxygen and R¹⁶ is a group selected from group (1), (3), (6) and (10) as defined in claim 6 and R⁴ is hydrogen, halo, C₁₋₄alkyl, or C₁₋₄alkoxy.

- 19. (new) A compound according to claim 16 wherein R² and R³ are independently methoxy or 3,3,3-trifluoroethoxy.
- 20. (new) A compound according to claim 16 wherein R³ is 3-morpholinopropoxy.
- 21. (new) A compound according to claim 16 wherein R⁸ and R⁹ are both hydrogen.
- 22. (new) A compound according to claim 16 wherein R⁶ and R⁷ are both hydrogen.