Datos:

 x_i = temperatura [°F] = {50, 60, 70, 80, 90, 100} f_i = presión [lbf/pulg²] = {24,95; 30,11; 36,05; 42,84; 50,57; 59,30}

i	Xi	fi	∇f _i	$\nabla^2 f_i$	$\nabla^{\mathfrak s} f_{\mathfrak i}$	$\nabla^4 f_i$
5	100	59,30	8,73	1,00	0,06	-0,03
4	90	50,57	7,73	0,94	0,09	
3	80	42,84	6,79	0,85		
2	70	36,05	5,94			
1	60	30,11	5,16			
0	50	24,95				

Los valores que usaremos en el polinomio anclado en $x_5=100$ son $\nabla f_5=8,73,\ \nabla^2 f_5=1,00,\ \nabla^3 f_5=0,06,\ \nabla^4 f_5=-0,03,\ y$ paso h=10 °F.

Paso 2: Para un valor x cualquiera definimos

$$u = (x - 100)/10$$
.

La fórmula de Newton hacia atrás hasta orden 3 es

$$P_3(x) = f_5$$

- + u·∇f₅
- + $[u(u+1)/2] \cdot \nabla^2 f_5$
- + $[u(u+1)(u+2)/6] \cdot \nabla^3 f_5$.

Al cuarto orden sumamos el término

• $[u(u+1)(u+2)(u+3)/24] \cdot \nabla^4 f_5$.

Paso 3: Cálculo numérico

- 1. $x=64 \text{ °F} \Rightarrow u=(64-100)/10=-3,6$
 - $P_3(64) = 59,30$
 - + (-3,6)(8,73)
 - + [(-3,6)(-2,6)/2]·1,00
 - + [(-3,6)(-2,6)(-1,6)/6]·0,06
 - ≈ 32,402 psi

 $P_4(64)=P_3 + [(-3,6)(-2,6)(-1,6)(-0,6)/24] \cdot (-0,03)$

≃ 32,391 psi

Pascalizacion:

 $P_3(64) \approx 32,402.6894,76 = 2,23465.10^5 \text{ Pa}$

 $P_4(64) \approx 32,391.6894,76 = 2,23379.10^5 \text{ Pa}$

3. $x=95 \text{ °F} \Rightarrow u=(95-100)/10=-0.5$ $P_3(95)=59.30 + (-0.5\cdot8.73) + [(-0.5\cdot0.5)/2] \cdot 1 + [(-0.5\cdot0.5\cdot1.5)/6] \cdot 0.06$ $\approx 54.8063 \text{ psi}$ $P_4(95)=P_3 + [(-0.5)(0.5)(1.5)(2.5)/24] \cdot (-0.03)$ $\approx 54.8074 \text{ psi}$

Pascalizacion:

$$\begin{split} P_3(95) \!\approx\! 54,\!8063 \!\cdot\! 6894,\!76 \!=\! 3,\!77865 \!\cdot\! 10^5 \; Pa \\ P_4(95) \!\approx\! 54,\!8074 \!\cdot\! 6894,\!76 \!=\! 3,\!77873 \!\cdot\! 10^5 \; Pa \end{split}$$

Resumen final (SI, Pa):

- A 64 °F: P₃≈2,2347·10⁵ Pa, P₄≈2,2338·10⁵ Pa
- A 88 °F: P₃≈3,3733·10⁵ Pa, P₄≈3,3733·10⁵ Pa
- A 95 °F: P₃≈3,7787·10⁵ Pa, P₄≈3,7787·10⁵ Pa

T (°F)	P_3 (Pa)	P_4 (Pa)
64	2.2341×10^5	2.2333×10^5
88	3.3747×10^5	3.3747×10^5
95	3.7788×10^5	3.7788×10^5

Redondeando a 5 cifras en notación científica:

- A 3.º orden:
 - $-P(64 \text{ °F}) \approx 2.2341 \cdot 10^5 \text{ Pa}$
 - P(88 °F) ≈ 3.3747·10^5 Pa
 - P(95 °F) ≈ 3.7788·10^5 Pa
- A 4.º orden:
 - $-P(64 \text{ °F}) \approx 2.2333.10^5 \text{ Pa}$
 - $P(88 \,^{\circ}F) \approx 3.3747 \cdot 10^{5} Pa$
 - $-P(95 \text{ °F}) \approx 3.7788 \cdot 10^5 \text{ Pa}$

cualquiera de los dos resultados sirve como buena aproximación en el SI.