CUBIC ZIRCONIA PRICE ANALYSIS

PROBLEM 1: Linear Regression

1.1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA). Perform Univariate and Bivariate Analysis.

Data Set:

	carat	cut	color	clarity	depth	table	X	У	Z	price
0	0.30	Ideal	E	SI1	62.1	58.0	4.27	4.29	2.66	499
1	0.33	Premium	G	IF	60.8	58.0	4.42	4.46	2.70	984
2	0.90	Very Good	Е	VVS2	62.2	60.0	6.04	6.12	3.78	6289
3	0.42	Ideal	F	VS1	61.6	56.0	4.82	4.80	2.96	1082
4	0.31	Ideal	F	VVS1	60.4	59.0	4.35	4.43	2.65	779
•••	***		***	***	***	10000	***	***	•••	(0.00)
26962	1.11	Premium	G	SI1	62.3	58.0	6.61	6.52	4.09	5408
26963	0.33	Ideal	Н	IF	61.9	55.0	4.44	4.42	2.74	1114
26964	0.51	Premium	Е	VS2	61.7	58.0	5.12	5.15	3.17	1656
26965	0.27	Very Good	F	VVS2	61.8	56.0	4.19	4.20	2.60	682
26966	1.25	Premium	J	SI1	62.0	58.0	6.90	6.88	4.27	5166

26967 rows × 10 columns

Data Dictionary:

Carat	Carat weight of the cubic zirconia.
Cut	Describe the cut quality of the cubic zirconia. Quality is increasing order Fair, Good, Very Good, Premium, Ideal.
Color	Color of the cubic zirconia. With D being the worst and the best.

Clarity	Cubic zirconia Clarity refers to the absence of the Inclusions and Blemishes. (In order from Best to Worst, IF = flawless, 11 = level 1 inclusion) IF, VVS1 VVS2, VS1, VS2. SI1, S12, 11
Depth	The Height of cubic zirconia, measured from the Culet to the table, divided by its average Girdle Diameter
Table	The Width of the cubic zirconia's Table expressed as a Percentage of its Average Diameter.
Price	The Price of the cubic zirconia.
Х	Length of the cubic zirconia in mm.
Y	Width of the cubic zirconia in mm.
Z	Height of the cubic zirconia in mm.

Check the null values:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26967 entries, 0 to 26966
Data columns (total 10 columns):
             Non-Null Count Dtype
 #
    Column
    -----
 0
    carat
             26967 non-null float64
 1
    cut
             26967 non-null object
    color
 2
             26967 non-null object
    clarity 26967 non-null object
 3
 4
    depth
            26270 non-null float64
 5
    table
             26967 non-null float64
 6
             26967 non-null float64
 7
             26967 non-null float64
    У
 8
             26967 non-null float64
 9
    price
             26967 non-null int64
dtypes: float64(6), int64(1), object(3)
memory usage: 2.1+ MB
```

Univariate Analysis:

• Cut Analysis:

• Color Analysis:

Clarity Analysis

• Price Analysis:

Carat Analysis:

• Table Analysis:

Bivariate Analysis:

• Heatmap of Data Frame

Carat VS Price

We can see here price and carat are in linear relation.

Depth VS Price

Price and depth are not into linear relationship.

Table VS Price

X VS Price

• Y VS Price

Z VS Price

1.2. Input null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Do you think scaling is necessary in this case?

carat	0
cut	0
color	0
clarity	0
depth	697
table	0
X	0
У	0
Z	0
price	0
dtype: inte	54

Here 697 null values are present in-depth column so we should fill them with mean of depth column.

```
df.depth.fillna(df.depth.mean(),inplace=True)
```

As shown in upper figure I used fillna method to fill missing values in depth column and I fill NaN values with mean of that perticular column.

We can also use interpolete method but here filling NaN values by mean is good for Linear Regression.

1.3. Encode the data (having string values) for Modeling. Data Split: Split the data. Data Split: Split the data into train and test (70:30). Apply Linear Regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using Rsquare, RMSE.

Encode The Data:

Cut

Here in Dataset cut column contain categorical data and ML algorithm can't understand categorical data so we must convert that data into numerical data. Here quality of zirconia cube is increase as order Fair, Good, Very Good, Premium, Ideal so we must encode that as shown below.

Fair	1
Good	2
Very Good	3
Premium	4
Ideal	5

• Color

Here in Dataset color column contain categorical data and ML algorithm can't understand categorical data so we must convert that data into numerical data. Here color quality of zirconia cube is incrise as D,E,F,G,H,I,J alphabetic order increase so I use labelencoder method to transform data into numbers and below table shows perticular number of alphabet.

D	0
E	1
F	2
G	3
Н	4
I	5
J	6

Clarity

Here clarity of zirconia cube is increasing order from worst to best as following order L1,SL2,SL1,VS2,VS1,VVS2,VVS1,IF so I transfer categorical data into numeric data as following table.

L1	0
SL2	1
SL1	2
VS2	3

VS1	4
VVS2	5
VVS1	6
IF	7

After Encoding:

	carat	cut	color	clarity	depth	table	X	у	Z	price	cut_num	color_num	clarity_num
0	0.30	Ideal	E	SI1	62.1	58.0	4.27	4.29	2.66	499	5	1	2
1	0.33	Premium	G	IF	60.8	58.0	4.42	4.46	2.70	984	4	3	7
2	0.90	Very Good	E	VVS2	62.2	60.0	6.04	6.12	3.78	6289	3	1	5
3	0.42	Ideal	F	VS1	61.6	56.0	4.82	4.80	2.96	1082	5	2	4
4	0.31	Ideal	F	VVS1	60.4	59.0	4.35	4.43	2.65	779	5	2	6
5	1.02	Ideal	D	VS2	61.5	56.0	6.46	6.49	3.99	9502	5	0	3
6	1.01	Good	Н	SI1	63.7	60.0	6.35	6.30	4.03	4836	2	4	2
7	0.50	Premium	E	SI1	61.5	62.0	5.09	5.06	3.12	1415	4	1	2
8	1.21	Good	Н	SI1	63.8	64.0	6.72	6.63	4.26	5407	2	4	2
9	0.35	Ideal	F	VS2	60.5	57.0	4.52	4.60	2.76	706	5	2	3

Split Data:

I use train_test_split method to split dataset into two parts 1) Training dataset 2) Testing dataset.

Using this method I divide dataset into 70:30 ratio for better model training.

Following are dataset to train model.

	carat	depth	table	X	У	Z	cut_num	color_num	clarity_num
7737	0.40	63.600000	57.0	4.69	4.65	2.97	2	1	2
11202	2.06	61.745147	55.0	8.23	8.19	5.08	5	6	1
5345	0.33	61.500000	57.0	4.46	4.49	2.75	5	5	2
16036	0.31	62.100000	55.0	4.35	4.32	2.69	5	0	3
10663	0.31	60.800000	56.0	4.38	4.41	2.67	5	5	2
•••	***	MAN I	***		***	***		250	(1555)
21807	1.61	62.900000	56.0	7.52	7.46	4.71	5	2	3
21586	0.34	60.600000	60.0	4.53	4.48	2.73	4	0	1
17218	1.01	61.800000	60.0	6.37	6.41	3.95	3	0	1
24931	1.06	62.100000	58.0	6.50	6.52	4.04	4	2	2
26644	0.51	61.600000	58.0	5.09	5.14	3.15	3	6	3

18876 rows × 9 columns

y_tra:	i <mark>n</mark>					
7737	8	82				
11202	113	37				
5345	4	45				
16036	94	42				
10663	4:	36				
21807	154	26				
21586	6	50				
17218	45	88				
24931	514	42				
26644	100	98				
Name:	price,	Length:	18876,	dtype:	int64	

Following are testing dataset for model.

x_test

	carat	depth	table	X	у	Z	cut_num	color_num	clarity_num
6376	0.53	60.9	60.0	5.22	5.16	3.16	4	1	3
21323	1.03	62.2	54.0	6.46	6.50	4.03	5	5	2
10761	0.42	62.1	59.0	4.77	4.79	2.97	4	0	2
12716	1.22	61.8	57.0	6.90	6.83	4.23	5	5	1
20717	0.91	58.0	57.0	6.36	6.47	3.72	2	2	2
102	120	35.03		1		8.2	1.22		
18209	0.77	62.1	57.0	5.88	5.84	3.64	5	2	4
8349	0.73	63.1	59.0	5.76	5.72	3.62	3	1	1
55	1.02	62.4	58.0	6.42	6.47	4.02	3	2	4
2089	1.02	63.3	58.0	6.42	6.38	4.05	3	3	4
19813	1.45	60.6	61.0	7.32	7.41	4.46	3	5	7

8091 rows × 9 columns

y_tes	t	
6376	1813	
21323	4782	
10761	810	
12716	4612	
20717	4067	
18209	3387	
8349	1975	
55	7587	
2089	6861	
19813	9683	
Name:	price, Length: 8091, dtype: int	64

Apply LinearRegression:

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()

lr.fit(x_train,y_train)
LinearRegression()
```

Perfomance Check:

Score Of Model

```
lr.score(x_test,y_test)
0.9102317749435431
```

• R*R Score of Model

```
r2_score(y_test,y_predicted)
0.9102317749435431
```

• Mean Square Error

```
mean_squared_error(y_test,y_predicted)
1484645.567671571
```

1.4. Inference: Basis on these predictions, what are the business insights and recommendations.

- In cut category Ideal and Premium cubes are contain more than 50% of total cell that means people are more prefer to buy Ideal or Premium category cube so companey should more focus on this two category for advertisement or production.
- There is very low chance for Fair and good category to sold because people don't prefer to buy this two category cube.

- In color column if cube are in E, F or G color than there is high chance for selling and which cube contain J or I color they are low chance of selling. So companey should focus on E, F or G color cube Production rather than producing I and J color Production.
- If cube's clarity is SL1, VS2 or SL2 then there is high chance for selling and cube's clarity is L1, IF or VVS1 then there is very low chance for selling so companey should focus on building or pramoting cubes which are contain SL1, VS2 or SL2 clarity.
- We can see clearly from price histogram, if cube price is increase than chance of selling that perticular cube is decrise. So companey should focus on building low price cube.
- We can see clearly from carat histogram, if carat is more than 1 means low chance of cube selling.
- It is clearly shown in table histogram around 90% cube have table value in range 55-61 so companey should focus on it.