Termodinâmica Aula 0 — Conceitos básicos

Prof. Diego J. Raposo

Universidade de Pernambuco, Escola Politécnica de Pernambuco (UPE-POLI)

Semestre 2025.1

Sobre a disciplina

Definição e objetivos

- Termodinâmica lida com trocas de energia e matéria, mudanças de estado e transformações químicas, a nível macroscópico;
- Seguiremos uma abordagem mais detalhada que a apresentada na disciplina Física Ondulatôria e Termodinâmica, com matemática mais rigorosa e numerosas aplicações;
- ➤ Serão realizadas **duas avaliações**. Na ocasião da média das notas ser inferior à 7, os(as) estudantes realizarão um exercício extra, e serão aprovados caso possuam uma média final superior a 5;
- Ata será deixada em sala para alunos assinarem. Falta em 8 encontros (dias) ou mais implica reprovação.

Prioridades e referências

- Prioridades: fundamentos, equilíbrio e modelos macroscópicos;
- Objetivos: Saber aplicar definições, leis e relações matemáticas da termodinâmica para problemas inerentes ao curso;
- ► Referências:
 - Modern Thermodynamics do Prigogine e Kondepudi;
 - ► Thermodynamics do Luscombe.
- Outros livros e artigos serão usados, e pontuados quando usados. Os slides das aulas serão disponibilizados no endereço: diegoraposo.github.io

Cronograma

- Nossas aulas ocorrerão nas **terças**, das 13:50 às 15:30, e nas **quintas**, das 15:30 às 17:10, na sala C06;
- ▶ O calendário [versão1] com datas relevantes segue abaixo:

Introdução e conceitos

Algumas citações

- ▶ A termodinâmica é uma área da física de interesse não só confinado às paredes de um laboratório ou a um quadro de sala de aula, mas tem papel basilar na aplicação prática da ciência e da engenharia, na indústria ou no dia a dia em nossas casas. Sua generalidade, como a de muitas teorias populares, ofusca suas limitações, especialmente para aqueles não devidamente introduzidos a ela;
- ▶ Porém, como indicado por James Clerk Maxwell (um dos físicos mais importantes na história da ciência) em 1878, "uma ciência com fundamentos seguros, definições claras e limites distintos". Essas características inspiraram e ainda motivam pesquisas e aplicações da disciplina. Selecionamos algumas citações interessantes sobre o assunto nas linhas a seguir.

Algumas citações

Uma teoria é mais impressionante quanto maior for a simplicidade de suas premissas, quanto mais tipos diferentes de coisas ela relacionar e quanto mais ampla for sua área de aplicabilidade. A isso se deve a profunda impressão que a termodinâmica clássica causou em mim. É a única teoria física de conteúdo universal sobre a qual estou convencido de que, dentro do âmbito de aplicabilidade de seus conceitos básicos, nunca será derrubada.

Albert Einstein

Algumas citações

Se alguém apontar para você que sua teoria favorita do universo está em desacordo com as equações de Maxwell — tanto pior para as equações de Maxwell. Se for constatado que ela contradiz as observações, bem, esses experimentalistas às vezes cometem erros. Mas, se sua teoria for contra a Segunda Lei da Termodinâmica, não posso lhe dar esperanças; não resta outra opção a não ser colapsar na mais profunda humilhação.

Arthur Eddington

A termodinâmica é uma matéria engraçada. A primeira vez que você a estuda, você não entende nada. A segunda vez que você a estuda, você acha que entende, exceto por um ou dois pontos. A terceira vez que você a estuda, você sabe que não entende, mas, a essa altura, você já está tão acostumado com o assunto que isso não o incomoda mais.

Arnold Sommerfeld

Se as teorias físicas fossem pessoas, a termodinâmica seria a feiticeira da aldeia. As outras teorias a consideram um tanto estranha, de alguma forma diferente por natureza das demais, mas todos vêm a ela em busca de conselhos, e ninguém ousa contradizê-la.

Lidia del Rio et al.

Sobre a origem da termodinâmica

Enquanto que a mecânica clássica de Newton foi o resultado de observações celestes, a termodinâmica surgiu de um contexto mais prático: o interesse em desenvolver máquinas movidas à vapor, que remonta desde o motor proposto por Héron e teve um impulso vertiginoso na revolução industrial, conduzindo cargas rapidamente com trens e impulsionando a produção de bens.

Para saber mais: https://www.youtube.com/watch?v=wRIzKdLBZ08.

Sobre o que é a termodinâmica

- ► A termodinâmica explica certos aspectos relacionados aglomerados grandes de entidades muito pequenas, mas muito numerosas;
- Tipicamente (mas não obrigatoriamente) essas entidades são partículas: átomos e moléculas. No entanto, muito antes da descoberta dos átomos a termodinâmica já existia, pois não depende de propriedades microscópicas, e sim macroscópicas;
- Mais precisamente, a termodinâmica lida com relações entre essas propriedades;
- ▶ De uma maneira mais ampla a termodinâmica estuda as transformações de um sistema de um estado de equilíbrio a outro, que se deve a mudança de uma variável termodinâmica em relação a outra, através de um processo que pode ser espontâneo ou não, a depender das chamadas leis da termodinâmica, cuja validade foi exaustivamente observada.

Sobre o que é a termodinâmica

▶ Portanto os conceitos destacados (variáveis, sistema, estado, processo e leis) precisam ser introduzidos para entender um pouco qual o poder e as limitações da termodinâmica, mesmo que depois venhamos a aprofundá-los em aulas posteriores.

Sistemas

- A descrição termodinâmica baseia-se na divisão do universo em duas regiões: o sistema (parte de interesse, sis.) e o que lhe é exterior (vizinhança, viz.);
- ► Tal descrição, portanto, depende também da divisória (ou parede) que separa essas duas regiões;
- Assim, temos 3 classes de sistemas:
 - Sistemas isolados: parede não permite troca de energia e/ou matéria entre sis. e viz.;
 - ➤ Sistemas fechados: parede permite a troca de energia, mas não de matéria, entre sis. e viz.;
 - Sistemas abertos: parede permite a troca de energia e matéria entre sis. e viz.

Variáveis termodinâmicas

- ➤ O estado termodinâmico do sistema e da vizinhança é especificado por um conjunto de variáveis macroscópicas chamadas variáveis termodinâmicas ou variáveis de estado. Entre elas, destacam-se:
 - ▶ Pressão (p);
 - ► Temperatura (*T*);
 - Volume (V);
 - Quantidade de substância de um componente $k(n_k)$.
- Lidaremos tanto com as variáveis de estado quanto com funções de estado, que são funções que dependem dessas variáveis (p. ex.: a energia interna e a entropia).

Variáveis termodinâmicas

- ▶ O estado termodinâmico do sistema e da vizinhança é especificado por um conjunto de variáveis macroscópicas chamadas variáveis termodinâmicas ou variáveis de estado. Entre elas, destacam-se:
 - Pressão (p);
 - ▶ Temperatura (T);
 - Volume (V);
 - Quantidade de substância de um componente $k(n_k)$.
- Lidaremos tanto com as variáveis de estado quanto com funções de estado, que são funções que dependem dessas variáveis (p. ex.: a energia interna e a entropia);
- As variáveis termodinâmicas também são divididas em duas categorias: **intensivas** e **extensivas**.
 - Intensivas: propriedades localmente definidas, não sendo uma função do tamanho do sistema. Ex.: p e T.
 - **Extensivas**: associadas às dimensões do sistema. Ex.: $V \in n_k$.

Tipos de estado

- ▶ O sistema está em estado de equilíbrio termodinâmico se o estado do mesmo pode ser descrito por propriedades que não dependem do tempo (invariância temporal) e são as mesmas em qualquer ponto no interior do sistema (homogeneidade espacial). Neste estado o sis. não interage com viz.;
- O sistema pode estar em equilíbrio térmico, mecânico, químico e/ou radiante, em um deles ou em todos eles ao mesmo tempo;
- Se o sistema troca energia e/ou matéria com a vizinhança em uma velocidade constante é dito que está em um estado estacionário. As propriedades também são invariantes com o tempo neste caso, mas geralmente são distintas em diferentes partes do seu interior;
- Se o sistema não se encontra em um desses estados (logo possui propriedades que variam com o tempo), o sistema esta fora do equilíbrio, ou em um estado de não-equilíbrio.

Tipos de processos termodinâmicos

- ▶ A mudança de um estado de equilíbrio para o outro é chamada de mudança de estado, ou processo (termodinâmico);
- O processo pode ser realizado lentamente de modo que em qualquer momento o sistema está infinitamente perto do estado de equilíbrio termodinâmico. Este é chamado de processo quase-estático, uma sucessão ordenada de estados de equilíbrio;
- Um processo reversível é conduzido de tal maneira que, ao seu fim, tanto o sistema quanto as vizinhanças estão nos respectivos estados iniciais, sem produção de mudança no resto do universo. Um processo reversível é, necessariamente, quase-estático;
- Um processo físico real (ou processo natural espontâneo) é uma evolução temporal de estados de equilíbrio e de não-equilíbrio. Tal processo é irreversível;
- Um processo cíclico ocorre quando o sistema retorna ao seu estado inicial após completar um ciclo.

Leis da Termodinâmica

- Para determinar se um processo é possível ou "impossível", ou se é espontâneo (ocorre naturalmente) ou não-espontâneo (requer alguma forma de energia para ocorrer) são usadas as leis da termodinâmica;
- ▶ A termodinâmica é baseada essencialmente em duas leis. Uma trata da **energia interna** (*U*) e a outra, da **entropia** (*S*). De uma maneira simplificada, qualquer transformação deve ser tal que:
 - ▶ 1ª. lei: *U* é constante;
 - ▶ 2ª. lei: S aumenta.
- ▶ Das outras leis mais conhecidas, também se destacam as baseadas na temperatura absoluta (T):
 - ▶ lei 0: T existe;
 - ▶ $3^{\underline{a}}$. Lei: T = 0 não pode ser alcançada.

- Conceitos Básicos
 - Sistemas: isolado (sem troca), fechado (troca E) e aberto (troca E e m);
 - ► Variáveis: extensivas (dependem de m) e intensivas (independem de m);
 - Estados: não-equilíbrio (estacionário ou não) e equilíbrio (estável, meta-estável, instável);
 - Processos: reversível, quase-estático, irreversível;
 - ▶ Leis: a) processo possível (espontâneo ou não) ou não; b) 1a. (U cte.), 2a. (S aumenta), Lei zero (T existe), 3a. (T > 0 sempre).

Referências adicionais

- Máquina de Héron improvisada: https://www.youtube. com/watch?v=l_wL_mc10fc&list=LL&index=2&t=60s;
- Células de Benárd: https: //www.youtube.com/watch?v=kuLX76g7Fec&t=586s;
- Figuras de Chladni: https: //www.youtube.com/watch?v=zlsnazwRYeU&t=475s;
- ► N.W. Tschoegl Fundamentals of Equilibrium and Steady-State Thermodynamics Elsevier Science (2000);