

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY SRI CITY, CHITTOOR

AI/ML BASED IOT FRAMEWORK FOR WIDE AREA WATER QUALITY AND QUANTITY MANAGEMENT SYSTEMS

P HARISH RAGAVENDER- S20220020301 MENTOR MAITHREYAN M - S20220020293 Dr. RAJA VARA PRASAD

CONTENT

- MOTIVATION
- PROBLEM STATEMENT
- LITERATURE SURVEY
- PROPOSED METHODOLOGY
- PREVIOUSLY COMPLETED
- PROGRESS
- PROGRESS FOR NEXT EVALUATION
- FUTURE PLAN

MOTIVATION

- RISING DEMAND –
 POPULATION GROWTH
 INCREASES FRESHWATER
 NEEDS.
- Quality Decline Pollution and overuse harm water sources.
- Sustainable Management –
 Essential for future water security.

PROBLEM STATEMENT

IOT BASED END TO END FRAMEWORK FOR WATER MONITORING AND MANAGEMENT USING AI/ML RECOMMENDATION SYSTEM

LITERATURE SURVEY

YEAR	TITLE OF THE PAPER	AUTHOR NAME	CONTRIBUTION	OBSERVATION
2023	Design and Implementation of IoT-based Water Quality and Leakage Monitoring System for Urban Water Systems Using ML Algorithms	C. R. Natarajan, K. Ramya, G. S. S. Murthy	Applied LR, SVM, and RF to real-time water quality (pH, turbidity, temperature) and leakage detection using IoT sensors	The paper highlights model accuracy but lacks deployment details for long-term environmental adaptation
2023	Integrating IoT and AI for Holistic Water Quality Monitoring and Management	T. Shilpa, G. Keerthana, S. Vijayalakshmi	Proposed hybrid system using KNN, DT, RF, SVR, and XGBoost for multi-parameter prediction (DO, pH, turbidity, conductivity, temperature)	Offers a robust model comparison but faces potential latency and scalability issues in real-time large-scale deployment
2022	IoT-Based Water Consumption Monitoring System for Water Management	A. Iqbal, M. Khan, A. Qadir	loT-based water meter data logging and visualization with proposed use of LR and RF for predictive analytics	Primarily focuses on monitoring and visualization; ML usage is discussed as a future enhancement, not yet implemented

PROPOSED METHODOLOGY

PREVIOUSLY COMPLETED

Hardware integration of Enthutech Sensors:

Water level sensor

Water Flow meter

Water Quality Sensors

Dataset of the water quality parameters

Serial No.	Date	Time	Device Name	dissolved_oxygen	turbidity	ph
1	27/04/202	23:40:47	Water Quality	5.44	93.7	7.71
2	27/04/202	23:21:56	Water Quality	5.46	92.4	7.71
3	27/04/202	23:00:48	Water Quality	5.38	92.1	7.7
4	27/04/202	22:40:48	Water Quality	5.48	92.7	7.7
5	27/04/202	22:20:48	Water Quality	5.38	94.7	7.7
6	27/04/202	22:00:49	Water Quality	5.38	93.7	7.7
7	27/04/202	21:40:49	Water Quality	5.37	94.3	7.7
8	27/04/202	21:21:47	Water Quality	5.41	94	7.7
9	27/04/202	21:00:49	Water Quality	5.36	94.7	7.7
10	27/04/202	20:40:49	Water Quality	5.33	94.7	7.7
11	27/04/202	20:20:50	Water Quality	5.28	94.3	7.69
12	27/04/202	20:00:50	Water Quality	5.23	95.6	7.69
13	27/04/202	19:40:50	Water Quality	5.23	95.3	7.69
14	27/04/202	19:20:50	Water Quality	5.21	95	7.68

- This is the water quality dataset which consists of the Ph, turbidity and DO levels..
- It consists of 40
 days of data and
 after data
 cleaning we are
 left with 3000
 data points.

ML MODELS AND PREDICTIONS OF WATER QUALITY AND FLOW RATE

- Water Quality parameter
 Predictions.
- Used Linear Regression, Random Forest and XGBoost for clear comparison and understanding.

Prediction Parameters:

Parameter	Model	RMSE	MAE	R ² Score
ph	Linear	0.826	0.513	0.825
ph	RandomForest	0.862	0.385	0.81
ph	XGBoost	0.994	0.474	0.747
turbidity	Linear	0.907	0.64	0.896
turbidity	RandomForest	0.918	0.626	0.893
turbidity	XGBoost	0.706	0.421	0.937
dissolved_oxygen	Linear	0.103	0.063	0.902
dissolved_oxygen	RandomForest	0.11	0.071	0.887
dissolved_oxygen	XGBoost	0.108	0.067	0.891
		page 1	11	

The linear regression
 model works the best
 compared to the rest, but
 we need more data in
 order to accurately
 predict the parameters.

12:35 AM (15 minutes ago)

Email Notification system based on water quality parameters:

- The system
 automatically sends an email notification if the quality parameters
 reach dangerous levels.
- Used SMTP for easy access control

Email Notification system based on water quality parameters:

maithreyan15@gmail.com to maithreyan.m22 -▲ TEST EMAIL - This is a test of the water quality alert system ▲

The following water quality parameters have exceeded their thresholds | Parameter | Value | Threshold | Timestamp 5.2 | below minimum (6.0) | 2025-05-05 00:35:40 | | turbidity | 156.8 | above maximum (100.0) | 2025-05-05 00:35:40 | ⚠ This is a TEST alert. No actual action is required. ▲ If you received this email, your water quality monitoring system is working correctly. This is an automated alert from the Water Quality Monitoring System.

← Reply

→ Forward

[WATER QUALITY ALERT - TEST] 2025-05-05 00:35:40

00:35 (16 hours ago)

- This is the sender email id through which the device notifications are being sent.
- Parallely dashboard notifications are also being developed.

Sent email

Initial drafts of dashboard for the proposed statement:

page 1

- This is the initial draft of the dashboard which will display all the different parameters.
- It will also show the all the graphical data along with a way to download the previous data in a csv file format.
- It is made using React

Initial drafts of dashboard for the proposed statement:

- Here it will display the future ML predicted trends if the same environmental conditions continues.
- Along with this we are developing a mobile app to display all these data.

PLAN FOR NEXT EVALUATION

- Implement approx. 5 nodes along with their communication modules in our campus.(including the sensor, communication modules and gateway etc.)
- Gather their realtime data and store it in a cloud database.
- Further improvements in mobile app/dashboard.

TIMELINE

LEARNING AND IMPLEMENTING VARIOUS ML MODELS AND BUILDING A RECOMMENDATION SYSTEM.

COMPLETE IOT FRAMEWORK INCLUDING THE USER INTERFACE

REFERENCES

- Zhang, Y., et al. (2023). "Emerging contaminants in water resources: Detection methods and removal technologies." Water Research, 215, 118262.
- Chen, X., et al. (2024). "Machine learning applications for predicting and managing water scarcity in urban environments." Journal of Hydrology, 612, 128964.
- Patel, S., & Johnson, M. (2023). "Community-based watershed management for sustainable water quality improvement: A systematic review."
- Lopez-Maldonado, E., & Berger, T. (2023). "Integrated water resources management under climate change: Case studies from arid regions."

THANKYOU