```
X^{o} \leftarrow X_{0}
for trial < n_trials do
```

Input: Initial path X_0

Draw uniform $\hat{k}^{\circ} \in [1, L(X^{\circ})]$: return \hat{k}°

 $x^{\text{SP}} \leftarrow X^{\text{o}} \text{ at } \hat{k}^{\text{o}}$

 $X^{\text{fwd}} \leftarrow \text{IntegrateToState}(x^{\text{SP}})$ $X^{\text{rv}} \leftarrow \text{IntegrateToState}(\bar{x}^{\text{SP}})$

 $X^{\mathrm{n}} \leftarrow \mathtt{ConcatenatePath}(\bar{X}^{\mathrm{rv}}, X^{\mathrm{fwd}})$

 $p_{\rm acc}(X^{\rm o} \to X^{\rm n}) \leftarrow H_{\rm AB}(X^{\rm n}) \min \left[1, \frac{L(X^{\rm o})}{L(X^{\rm n})}\right]$ if rand() $< p_{acc}(X^{o} \rightarrow X^{n})$ then

end

end

 $X^{o} \leftarrow X^{n}$

Add X^{o} to the ensemble $trial \leftarrow trial+1$