10/590456 CLM\$#POIRC'dPCT/PTO 24 AUG 2006 GB 05717801

³²rinted: 19/01/2006

0141 307 8401

MURGITROYD

12:14:36 p.m. 23-12-2005

10/19

	, ,
1	Claims
2	•
3	1. Apparatus for generating a mist comprising:
4	a conduit having a mixing chamber and an exit;
5	a transport nozzle in fluid communication with
6	the said conduit, the transport nozzle being adapted
7	to introduce a transport fluid into the mixing
8	chamber;
9	a working nozzle positioned adjacent the
10	transport nozzle intermediate the transport nozzle
11	and the exit, the working nozzle being adapted to
12	introduce a working fluid into the mixing chamber;
13	characterised in that the transport nozzle
14	includes a convergent-divergent portion therein such
15	as in use to provide for the generation of high
16	velocity flow of the transport fluid;
17	and wherein the transport and working nozzles
18	have a relative angular orientation such that in use
19	the working fluid is atomised and a dispersed
20	droplet flow regime of droplets having a
21	substantially uniform size is created in the mixing
22	chamber by the introduction of transport fluid flow
23	from the transport nozzle into working fluid flow
24	from the working nozzle and the subsequent shearing
25	of the working fluid by the transport fluid.
26	
27	2. The apparatus of claim 1, wherein the transport
28	and/or working nozzle substantially circumscribes
29	the conduit.

30

31 The apparatus of claim 1 or 2, wherein the angular orientation and internal geometry of the 32

MURGITROYD

12:15:04 p.m.

23-12-2005

11 /19

BEST AVAILARIF COPY

1 transport and working nozzles is such that the size

of the working fluid droplets is less than $50\mu m$.

3

- 4 4. The apparatus of any preceding claim, wherein
- the mixing chamber includes a converging portion.

б

- 7 5. The apparatus of any of claims 1 to 3, wherein
- 8 the mixing chamber includes a diverging portion.

9

- 10 6. The apparatus of any preceding claim, wherein
- 11 the apparatus includes a second transport nozzle
- 12 being adapted to introduce further transport fluid
- or a second transport fluid into the mixing chamber.

14

- 15 7. The apparatus of claim 7, wherein the second
- transport nozzle is positioned nearer to the exit
- 17 than the working nozzle, such that the working
- nozzle is intermediate both transport nozzles.

19

- 20 8. The apparatus of any preceding claim, wherein
- 21 the mixing chamber includes an inlet adapted to
- introduce an inlet fluid into the mixing chamber,
- the inlet being distal from the exit, the transport
- and working nozzles being arranged intermediate the
- 25 inlet and exit.

26

- 9. The apparatus of any preceding claim, wherein
- the apparatus includes a supplementary nozzle
- arranged inside the transport nozzle and adapted to
- introduce further transport fluid or a second
- 31 transport fluid into the mixing chamber.

MURGITROYD

12:15:27 p.m. 2

23-12-2005

2/19

RECT AVAILARIE COPY

72

- 1 10. The apparatus of claim 9, wherein the
- 2 supplementary nozzle is arranged axially in the
- 3 mixing chamber.

4

- 5 11. The apparatus of claim 9 or 10, wherein the
- 6 supplementary nozzle extends forward of the
- 7 transport nozzle.

8

- 9 12. The apparatus of any of claims 9 to 11, wherein
- 10 the supplementary nozzle is shaped with a
- 11 convergent-divergent profile to provide supersonic
- 12 flow of the transport fluid which flows
- 13 therethrough.

14

- 15 13. The apparatus of any preceding claim, wherein
- the transport nozzle is shaped such that the
- 17 transport fluid introduced into the mixing chamber
- through the transport nozzle has a divergent or
- 19 convergent flow pattern.

20

- 21 14. The apparatus of claim 13, wherein the
- transport nozzle has inner and outer surfaces each
- 23 being substantially frustoconical in shape.

24

- 25 15. The apparatus of any preceding claim, wherein
- the working nozzle is shaped such that working fluid
- introduced into the mixing chamber through the
- working nozzle has a convergent or divergent flow
- 29 pattern.

MURGITRUYD

12:15:48 p.m.

23-12-2005

3/19

DECT AVAILABLE COPY

73

- 1 16. The apparatus of claim 15, wherein the working
- 2 nozzle has inner and outer surfaces each being
- 3 substantially frustoconical in shape.

4

- 5 17. The apparatus of any preceding claim, further
- 6 including control means adapted to control one or
- more of droplet size, droplet distribution, spray
- 8 cone angle and projection distance.

9

- 10 18. The apparatus of any preceding claim, further
- including control means to control one or more of
- the flow rate, pressure, velocity, quality, and
- 13 temperature of the working or transport fluids.

14

- 15 19. The apparatus of claim 17 or claim 18, wherein
- the control means includes means to control the
- angular orientation and internal geometry of the
- 18 transport and working nozzles.

19

- 20 20. The apparatus of any of claims 17 to 19,
- wherein the control means includes means to control
- the internal geometry of at least part of the mixing
- chamber or exit to vary it between convergent and
- 24 divergent.

25⁻

- 26 21. The apparatus of any preceding claim, wherein
- the internal geometry of the transport nozzles has
- an area ratio, namely exit area to throat area, in
- 29 the range 1.75 to 15, having an included angle α
- 30 substantially equal to or less than 6 degrees for
- 31 supersonic flow and substantially equal to or less
- than 12 degrees for sub-sonic flow.

14/19

Printed: 19/01/2006

MURGITROYD

12:16:15 p.m. 23-12-2005

BEST AVAILABLE COPY

74

7	
-	

- The apparatus of any preceding claim, wherein 2 22.
- the transport nozzle is oriented at an angle β of 3
- between 0 to 30 degrees. 4

5

- The apparatus of any preceding claim, wherein б
- the mixing chamber is closed upstream of the 7
- transport nozzle. 8

9

- The apparatus of any preceding claim, wherein 10
- the exit of the apparatus is provided with a cowl to 11
- control the mist. 12

13

- The apparatus of claim 24, wherein the cowl 14
- comprises a plurality of separate sections arranged 15
- radially, each section adapted to control and re-16
- direct a portion of the discharge of mist emerging 17
- from the exit.

19

- 20 The apparatus of any preceding claim, wherein 26.
- the apparatus for generating a mist is located 21
- 22 within a further cowl.

23

- 24 The apparatus of any preceding claim, wherein 27.
- 25 the conduit includes a passage.

- 27 The apparatus of any preceding claim, wherein 28.
- at least one of the passage, the transport 28
- nozzle(s), working nozzle(s) and secondary nozzle(s) 29
- has a turbulator to induce turbulence of the fluid 30
- therethrough prior to the fluid being introduced 31
- 32 into the mixing chamber.

MURGITRUYD

12:16:32 p.m. 23-12-2005

15/19

BEST AVAILABLE COPY

75

7

- 2 29. A spray system comprising apparatus of any of
- claims 1 to 28 and transport fluid in the form of
- 4 steam.

5

- 6 30. The spray system of claim 29, further including
- 7 working fluid in the form of water.

8

- 9 31. The spray system of claim 29 or 30, further
- including a steam generator and water supply.

11

- 12 32. The spray system of claim 31, wherein the spray
- 13 system is portable.

- 15 33. A method of generating a mist comprising the
- 16 steps of:
- introducing a flow of transport fluid into a
- mixing chamber through a transport nozzle;
- introducing a flow of working fluid into the
- 20 mixing chamber through a working nozzle located
- 21 downstream of the transport nozzle;
- generating a high velocity flow of the
- transport fluid by way of a convergent-divergent
- 24 portion within the transport nozzle;
- orienting the transport and working nozzles
- such that the high velocity transport fluid flow
- imparts a shearing force on the working fluid flow;
- 28 and
- atomising the working fluid and creating a
- dispersed droplet flow regime of droplets having a
- 31 substantially uniform size under the shearing action
- of the working fluid on the transport fluid.

16/19

0141 307 8401

MURGITRUYD

12:16:54 p.m. 23-12-2005

BEST AVAILABLE COPY

. 76

7

- 2 34. The method of claim 33, wherein the apparatus
- is an apparatus according to any of claims 1 to 32.

4

- 5 35. The method of claim 33 or 34, wherein the
- stream of transport fluid introduced into the mixing
- 7 chamber is annular.

8

- 9 36. The method of any of claims 33 to 35, wherein
- the working fluid droplets have a size less than
- 11 50μm.

12

- 37. The method of any of claims 33 to 36, wherein
- 14 the method includes the step of introducing the
- 15 transport fluid into the mixing chamber in a
- 16 continuous or discontinuous or intermittent or
- 17 pulsed manner.

18

- 19 38. The method of any of claims 33 to 37, wherein
- the method includes the step of introducing the
- 21 transport fluid into the mixing chamber as a
- 22 supersonic flow.

23

- 39. The method of any of claims 33 to 38, wherein
- 25 the method includes the step of introducing the
- 26 working fluid into the mixing chamber in a
- 27 continuous or discontinuous or intermittent or
- 28 pulsed manner.

- 30 40. The method of any of claims 33 to 39, wherein
- 31 the method includes the step of introducing the

Printed: 19/01/2006

MURGITROYD

12:17:15 p.m. 23-12-2005

17/19

BEST AVAILABLE COPY

77

transport fluid into the mixing chamber as a sub-

2 sonic flow.

3

- 4 41. The method of any of claims 33 to 40, wherein
- the mist is controlled by modulating at least one of
- 6 the following parameters:
- the flow rate, pressure, velocity, quality
- and/or temperature of the transport fluid;
- the flow rate, pressure, velocity, quality
- and/or temperature of the working fluid;
- the flow rate, pressure, velocity, quality
- and/or temperature of the inlet fluid;
- the angular orientation of the transport and/or
- working and/or secondary nozzle(s) of the apparatus;
- the internal geometry of the transport and/or
- working and/or secondary nozzle(s) of the apparatus;
- 17 and
- the internal geometry, length and/or cross
- 19 section of the mixing chamber.

20

- 21 42. The method of any of claims 33 to 41, including
- mixing the transport and working fluid together by
- means of a high velocity transport fluid jet issuing
- 24 from the transport nozzle.

25

- 26 43. The method of any of claims 33 to 42, including
- the generation of condensation shocks and/or
- momentum transfer to provide suction within the
- 29 apparatus.

MURGITRUYD

12:17:45 p.m. 23-12-2005

18/19

AND F COPY

78

- 1 44. The method of any of claims 33 to 43, including
- 2 inducing turbulence of the inlet fluid prior to it
- 3 being introduced into the mixing chamber.

4

- 5 45. The method of any of claims 33 to 44, including
- inducing turbulence of the working fluid prior to it
- 7 being introduced into the mixing chamber.

8

- 9 46. The method of any of claims 33 to 45 including
- inducing turbulence of the transport fluid prior to
- it being introduced into the mixing chamber.

12

- 13 47. The method of any of claims 33 to 46, wherein
- 14 the transport fluid is steam or an air/steam
- 15 mixture.

16

- 17 48. The method of any of claims 33 to 47, wherein
- the working fluid is water or a water-based liquid.

19

- 20 49. The method of any of claims 33 to 48, wherein
- 21 the mist is used for fire suppression.

22

- 23 50. The method of any of claims 33 to 49, wherein
- 24 the mist is used for decontamination.

- 26 51. The method of any of claims 33 to 50, wherein
- 27 the mist is used for gas scrubbing.