Non-deterministic finite Automata

* for any particular input symbol, the machine can move to multiple state.

Previously, 900 9

This is not the case fore NFA. for getting O, there might be multiple transitions.

+At the same time, we don't have to show transition fore all injured symbols.

* We can go to other state without giving any input.

$$(q_0)$$
 (q_1) (q_2)

$20 \longrightarrow 21, 22$

* However, NFA can't be used for machine.

* We use NFA for design purpose.

* To use this for machine we need to convert the NFA to DFA.

Example

Input: ab

input: aa

input: aaba

* NFA has some choices. Freom those choices it always selects on makes the reight choice.

Ly You may ask, if there exists an accepting choice, how

Some Examples

1. L= { wefoil}*: w starts with 01 }

2. L= { wefa, by! w contains aba'as a substring}

3. $L = \sum \omega \in \{0,1\}^*$. The 3red last symbol in ω is 13

4. L= { we so, 14 *: w ends with 001 }

Every NFA has an equivalent DFA.

NFA to DFA

Language NFA
(negular)
DFA

power set set -, n elements powerset - 2" {--7 Sa, 63 - 9 2 = 4 FF {F,F} ← {} → {-,-} q < T $b = T \qquad f = fai \rightarrow fai$ $TT \qquad \xi T, T \xi \leftarrow f \alpha, b \xi \longrightarrow f \alpha, b \xi$ $2 \times 2 = 2^{\circ}$ 0/1 0/1 0/1

.

NFA

 $E(1) = \{1,3\}$

baa

Egzivalent DFA

Regular Operations

Union

Example

 $L_{1} = \begin{cases} \omega \in \varsigma_{0,1} 2^{*} : \omega \text{ ends } \omega \text{ ith } 01 \end{cases}$ $L_{2} = \begin{cases} \omega \in \varsigma_{0,1} 2^{*} : \text{ length of } \omega \text{ is odd } \end{cases}$ $L = L_{1} U L_{2}$ $V_{N_{1}} V_{N_{2}}$ $O_{N_{1}} V_{N_{2}}$ $O_{N_{1}} V_{N_{2}}$

Concatenation

$$L = L_1 \circ L_2$$

$$V = V_1 \circ V_2$$

 N_1

N2

Example

$$L_1 = \{ \omega \in \{0, 12^* : \omega \text{ ends with 01} \}$$

$$L_2 = \{ \omega \in \{0, 12^* : \text{length of } \omega \text{ is odd } \}$$

$$\frac{0.1}{0.1}$$

$$\frac{0.1}{0.2}$$

$$\frac{1}{E} = \frac{1}{1}$$

State

Example

 $L_{1} = \begin{cases} \omega \in \{0,12^{*}: w \text{ ends with 01}\} \\ L = L_{1}^{*} \\ \lambda_{1}^{*} \\ 0,1 \end{cases}$

Practice Problems