Mathématiques – Maths expertes

Corrigés des exercices

Table des matières

1 Divisibilité, nombres premiers

2

1 Divisibilité, nombres premiers

Exercice 1 1. • On écrit tous les produits d'entiers positifs qui donnent 20 :

$$20 = 1 \times 20 = 2 \times 10 = 4 \times 5$$
,

donc les diviseurs de 20 sont

• On écrit tous les produits d'entiers positifs qui donnent 36 :

$$36 = 1 \times 36 = 2 \times 18 = 3 \times 12 = 4 \times 9 = 6 \times 6$$

donc les diviseurs de 36 sont

- 2. Le nombre 1452 est:
 - divisible par 2, car il est pair;
 - divisible par 3, car la somme de ses chiffres, 1+4+5+2=12, est divisible par 3;
 - non divisible par 5, car il ne se termine ni par 0, ni par 5;
 - non divisible par 9, car la somme de ses chiffres, 12, n'est pas divisible par 9.

Exercice 2 On factorise : l'égalité $x^2 - 2xy = 14$ se réécrit

$$x(x-2y)=14.$$

x et y sont des entiers naturels, donc x-2y est un entier. C'est même un entier naturel, car x et 14 sont positifs, donc par la règle des signes, x-2y est positif.

Or les différentes manières d'écrire 14 comme un produit d'entiers naturels sont :

$$14 = 1 \times 14 = 2 \times 7 = 7 \times 2 = 14 \times 1.$$

Il y a donc quatre possibilités:

$$\begin{cases} x &= 1 \\ x - 2y = 14 \end{cases}, \quad \begin{cases} x &= 2 \\ x - 2y = 7 \end{cases}, \quad \begin{cases} x &= 7 \\ x - 2y = 2 \end{cases}, \quad \begin{cases} x &= 14 \\ x - 2y = 1 \end{cases}.$$

On résout de tête chacun des quatre systèmes :

$$(x = 1, y = -6, 5)$$
 , $(x = 2, y = -2, 5)$, $(x = 7, y = 2, 5)$, $(x = 14, y = 6, 5)$.

Aucun couple n'est un couple d'entiers naturels, donc le problème n'a aucune solution.

Exercice 3 1. Trois entiers consécutifs sont de la forme n, n+1, n+2, avec n entier (dans \mathbb{Z}), donc leur somme est

$$n + (n + 1) + (n + 2) = 3n + 3 = 3(n + 1).$$

n+1 est un entier, donc n+(n+1)+(n+2) est un multiple de 3.

2. Quatre entiers consécutifs sont de la forme n, n+1, n+2, n+3, avec n entier, donc leur somme est

$$n + (n+1) + (n+2) + (n+3) = 4n + 6 = 4(n+1,5).$$

Or n + 1,5 n'est pas un entier, donc la somme des quatre entiers consécutifs n'est pas un multiple de 4.

Exercice 4 On factorise:

$$n^2 - 2n = n(n-2)$$
.

D'après le point 1 de la proposition 1, si 5 divise n, il divise aussi n(n-2).

Exercice 5 Commençons par rappeler que les nombres pairs sont les multiples de 2.

Pour démontrer le résultat de l'énoncé, on factorise

$$n^2 + n = n(n+1),$$

puis on distingue deux cas:

- Si n est pair, il est multiple de 2, donc n(n+1) est également multiple de 2 d'après le point 1 de la proposition 1.
- Si *n* est impair, alors *n* + 1 est pair, donc multiple de 2; *n*(*n* + 1) est donc également multiple de 2 d'après le point 1 de la proposition 1.

Dans tous les cas, $n^2 + n$ est un multiple de 2, donc un nombre pair.

Exercice 6 On rappelle la proposition à démontrer :

Proposition 1.

- 1. Si a|b, alors a|ub pour tout $u \in \mathbb{Z}$.
- 2. Si a|b et a|c, alors a|(ub+vc) pour tous $u, v \in \mathbb{Z}$.

On commence par le point 1. Si a|b, on peut écrire $b=k\times a$, où k est un entier. Donc

$$ub = u(k \times a) = (uk) \times a$$
,

qui est donc bien un multiple de a (car uk est un entier).

On démontre ensuite le point 2. Par hypothèse a|b et a|c, donc on peut écrire $b=k\times a$ et $c=j\times a$, où k et j sont deux entiers. Mais alors

$$ub + vc = u(k \times a) + v(j \times a) = a(uk + vj).$$

Il s'agit bien d'un multiple de a, puisque uk + vj est un entier (du fait que u, v, k, j sont des entiers).

Remarque : Une façon agréable d'énoncer le point 2 de la proposition 1 est de dire que

« Si a divise b et c, alors il divise toute combinaison linéaire à coefficients entiers de b et c »

(ub + vc) est ce que l'on appelle une combinaison linéaire de b et c).

Exercice 7 On fait un raisonnement par analyse-synthèse :

• Analyse. Soit n un entier naturel tel que n+3 divise n+15. De façon évidente, n+3 divise n+3, donc d'après la proposition 1 du cours, n+3 divise la combinaison linéaire

$$1(n+15) - 1(n+3) = n+15 - n - 3 = 12.$$

On cherche les solutions avec n entier naturel, donc n+3 est supérieur ou égal à 3. Or les seuls diviseurs de 12 supérieurs ou égaux à 3 sont 3, 4, 6 et 12. On a donc quatre possibilités :

$$n+3=3$$
 , $n+3=4$, $n+3=6$, $n+3=12$,

qui donnent

$$n = 0$$
 , $n = 1$, $n = 3$, $n = 9$.

- Synthèse. On vérifie les solutions trouvées :
 - Si n = 0, on on bien n + 3 = 0 + 3 = 3, qui divise n + 15 = 0 + 15 = 15.
 - Si n = 1, on on bien n + 3 = 1 + 3 = 4, qui divise n + 15 = 1 + 15 = 16.
 - Si n = 3, on on bien n + 3 = 3 + 3 = 6, qui divise n + 15 = 3 + 15 = 18.
 - Si n = 9, on on bien n + 3 = 9 + 3 = 12, qui divise n + 15 = 9 + 15 = 24.

Conclusion : les entiers naturels n tels que n+3 divise n+15 sont 0, 1, 3 et 9.

Exercice 8 Soit $n \in \mathbb{N}^*$. On considère l'équation

$$a^2 + 1 = 2^n, (1)$$

d'inconnue $a \in \mathbb{Z}$.

1. • On commence par le cas n = 1. Comme $2^1 = 2$, l'équation (1) s'écrit

$$a^2 + 1 = 2$$
.

On résout :

$$a^2 = 2 - 1 \iff a^2 = 1 \iff (a = 1 \text{ ou } a = -1).$$

Il y a deux solutions : a = 1 et a = -1.

• Ensuite le cas n = 2. Comme $2^2 = 4$, l'équation (1) s'écrit

$$a^2 + 1 = 4$$
.

On résout :

$$a^2 = 4 - 1 \iff a^2 = 3 \iff (a = \sqrt{3} \text{ ou } a = -\sqrt{3}).$$

Or $\sqrt{3} \approx 1,732$ n'est pas un entier, donc il n'y a pas de solution.

- 2. On suppose à présent que $n \ge 3$.
 - (a) On peut écrire

$$2^n = 2^{n-3} \times 2^3 = 2^{n-3} \times 8$$
.

Par hypothèse $n \ge 3$, donc $n-3 \ge 0$, et donc 2^{n-3} est un entier. Il s'ensuit que $2^n = \underbrace{2^{n-3}}_{\text{entier}} \times 8$ est un multiple de 8.

(b) On raisonne par contraposée ¹.

Si a est pair, alors a = 2k avec $k \in \mathbb{Z}$, donc $a^2 + 1 = (2k)^2 + 1 = 4k^2 + 1 = 2(2k^2) + 1$ est impair. D'un autre côté, 2^n est pair (car $n \in \mathbb{N}^*$). Il est donc impossible que $a^2 + 1$ (qui est impair) soit égal à 2^n (qui est pair).

Conclusion : si a est pair, alors il n'est pas solution de (1). Donc par contraposée, si a est solution de (1), alors il est nécessairement impair.

(c) On suppose que *a* est impair, donc de la forme a = 2k + 1, avec $k \in \mathbb{Z}$. Dans ce cas

$$a^2 - 1 = (2k+1)^2 - 1 = (2k)^2 + 2 \times 2k \times 1 + 1^2 - 1 = 4k^2 + 4k + 1 - 1 = 4k^2 + 4k = 4(k^2 + k).$$

∧On a utilisé l'identité remarquable

$$(A+B)^2 = A^2 + 2AB + B^2$$
.

D'après l'exercice 5, k^2+k est un nombre pair, donc multiple de 2 : on peut l'écrire $k^2+k=2m$, avec $m\in\mathbb{Z}$. Il vient donc finalement

$$a^{2}-1=4(k^{2}+k)=4(2m)=8m$$
,

ce qui prouve que $a^2 - 1$ est multiple de 8.

(d) On suppose que $n \ge 3$ et que a est solution de (1). On a prouvé dans la question 2.(a) que 2^n était un multiple de 8, donc $a^2 + 1$ est un multiple de 8. D'un autre côté, d'après les questions 2.(b) et 2.(c), $a^2 - 1$ est également un multiple de 8. Donc d'après la proposition 1 du cours, la différence

$$2^{n} - (a^{2} - 1) = (a^{2} + 1) - (a^{2} - 1) = a^{2} + 1 - a^{2} + 1 = 2$$

est un multiple de 8, ce qui est absurde.

Conclusion : supposant que (1) admet une solution lorsque $n \ge 3$, on aboutit à une absurdité; c'est donc qu'il n'y a pas de solution dans ce cas-là.

3. D'après la question 1, il y a deux solutions, a = 1 et a = -1, lorsque n = 1. En revanche, il n'y a aucune solution quand n = 2. On vient par ailleurs de démontrer qu'il n'y avait aucune solution dans le cas $n \ge 3$. On peut donc conclure avec un tableau :

n	solutions de (1)
1	a = 1 et $a = -1$
≥2	aucune solution

• On effectue la division euclidienne de 587 par 13 :

Si A alors B,

est vraie, il suffit de prouver que sa contraposée

Si (non B) alors (non A)

est vraie.

^{1.} Pour prouver qu'une implication de la forme

$$587 = 45 \times 13 + 2$$
.

Remarque: On obtient directement la réponse avec une calculatrice en faisant les calculs $587 \div 13 = 45, \cdots$, puis $587 - 45 \times 13 = 2$.

• On effectue la division euclidienne de 10000 par 11 :

$$10000 = 909 \times 11 + 1.$$

Exercice 10 1. On suppose que la différence entre *a* et *b* est 538, et que le quotient dans la division de *a* par *b* est 13, le reste 34. On peut donc écrire

$$\begin{cases} a = b + 538 \\ a = 13b + 34 \end{cases}.$$

Par comparaison,

$$b + 538 = 13b + 34$$
,

donc

$$538 - 34 = 13b - b$$
 $b = \frac{504}{12} = 42.$

Conclusion : b = 42 et a = b + 538 = 42 + 538 = 580.

2. Quand on divise n par 29 et par 27, les quotients sont les mêmes et les restes sont respectivement 1 et 25. En notant q les quotients identiques, on obtient le système

$$\begin{cases} n = 29q + 1 \\ n = 27q + 25 \end{cases}$$

Par comparaison,

$$29q + 1 = 27q + 25,$$

donc

$$29q - 27q = 25 - 1$$
 $2q = 24$ $q = \frac{24}{2} = 12$.

Conclusion : $n = 29q + 1 = 29 \times 12 + 1 = 349$.