Desenvolvimento de Mancal Magnético para Rodas de Reação Qualificação Mestrado

Rafael Corsi Ferrão

rafael.corsi@maua.br
http://www.maua.br

3 de setembro de 2014

Conteúdo

Introdução

Rodas de Reação Revisão

O mancal magnético

nagnético Estator Interno Estator Externo

Modelo Dinâmico

- 1 Introdução
 - Rodas de Reação
 - Revisão
- 2 O mancal magnético
 - Estator Interno
 - Estator Externo
- 3 Modelo Dinâmico
- 4 Próximos passos

Rodas De Reação

Introdução

Rodas de Reação Revisão

O mancal magnético Estator Interno Estator Externo

Modelo Dinâmico

Próximos passos

- atuador eletromecânico
- conservação de momento angular

é constituída de :

- ► Motor de corrente contínua sem escovas (BLDC)
- ► Inércia
- Mancal
- ► Eletrônica

Mancal mecânico

Intro du çã o

Rodas de Reação Revisão

O mancal magnético Estator Interno Estator Externo

Dinâmico

Próximos passos

Solução mais usual porém apesar de sua aparente simplicidade apresenta sérios desafios:

- ► Lubrificantes (Ciclos térmicos, radiação, pressão atmosférica)
 - ► Fluida
 - Seca
- ► Eventual necessidade de um selamento hermético
- ► Difícil modelagem

Solução proposta

Intro du çã o

Rodas de Reação Revisão

O mancal magnético Estator Interno Estator Externo

Dinâmico

Próximos passos

Mancal magnético:

- ▶ solução sem contato mecânico entre o estator e rotor
- ► confiabilidade depende basicamente da eletrônica
- ▶ validação em ambiente terrestre
- ▶ eliminação da zona morta
- ▶ aumento na complexidade da malha de controle

Objetivos

Intro du çã o

Rodas de Reação Revisão

O mancal magnético Estator Interno Estator Externo

Dinâmico

- ► Desenvolver um mancal magnético para rodas de reação que atenda os requisitos impostos pelo INPE;
- ▶ Versão de engenharia porém visando a "espacialização"

${\sf Metodologia}$

Introdução

Rodas de Reação

Revisão

O mancal magnético

Estator Interno Estator Externo

Dinâmico

Modelo

Revisão bibliografica

Introdução

Rodas de Reação Revisão

O mancal magnético Estator Interno Estator Externo

Modelo Dinâmico

- mancais com aplicação em rodas de reação
- tipos de mancais magnéticos
- mancais magnético em rodas de reação

Mancal magnético

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno Estator Externo

Modelo Dinâmico

Dinâmico

- ▶ dois graus de liberdade ativo (radial)
- graus de liberdade passivo estabilizados por ímãs permanentes
- ► geometria plana
- mancal localizado externo ao motor
- escalonável

Topologia

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno Estator Externo

Modelo Dinâmico

Corte longitudinal do mancal magnético

Estator Interno

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno Estator Externo

Modelo Dinâmico

Estator Interno Modelagem

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno Estator Externo

Modelo

Estator Interno Modelagem/ Força

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno Estator Externo

Modelo Dinâmico

Próximos passos

Força (N) vs Deslocamento axial (mm)

Estator Interno Modelagem/ Força

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno Estator Externo

Modelo Dinâmico

Estator Externo

Intro du ção

Rodas de Reação Revisão

O mancal magnético

Estator Interno

Estator Externo

Modelo Dinâmico

Estator Externo Modelagem/ Força

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno

Estator Externo

Modelo Dinâmico

Batente/ Base

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno

Estator Externo

Modelo Dinâmico

Modelo dinâmico Forças

Introdução

Rodas de Reação Revisão

O mancal magnético Estator Interno

Estator Externo

Dinâmico Próximos passos

Modelagem por Lagrange

Introdução Rodas de Reação

Revisão

O mancal magnético Estator Interno

Estator Externo

Modelo

Dinâmico

$$T_{\theta,x,y,z} = \frac{1}{2} I_z \dot{\theta}^2 + \frac{1}{2} m \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right)$$

$$V_z = m g z + \frac{1}{2} K z^2$$

$$L = T - V$$

$$\frac{\partial}{\partial t} \left[\frac{\partial L}{\partial \dot{r}} \right] - \frac{\partial L}{\partial r} = Q^{nc} + Q^{c}$$

$$\rightarrow$$

$$I\ddot{\theta} = 0$$
 $m\ddot{x} = F_{px}(x, y) - F_{by}(x, y, i)$
 $m\ddot{y} = F_{py}(x, y) - F_{bx}(x, y, i)$
 $m\ddot{z} - Kz = mg$

Diagrama de Blocos

Intro du ção

Rodas de Reação Revisão

O mancal magnético

Estator Interno Estator Externo

Modelo Dinâmico

- modelo não linear das forças
- ▶ batente modelado como choque elástico
- força contra eletromotriz não modelada

Intro du cã o

Rodas de Reação Revisão

O mancal magnético

Estator Interno
Estator Externo

Modelo Dinâmico

Simulações Ponto de operação - modelo não linear

Introdução

Rodas de Reação Revisão

O mancal magnético Estator Interno Estator Externo

Modelo Dinâmico

Simulações Atuador

Introdução

Rodas de Reação Revisão

O mancal magnético

Estator Interno Estator Externo

Modelo Dinâmico

Próximos passos

23/26

Problemas

Introdução

Rodas de Reação Revisão

O mancal magnético Estator Interno

Estator Interno Estator Externo

Dinâmico

- usinagem das peças
 - ausência de pino guia
 - ▶ tolerância
- batente
- embobinamento dos polos
- validação do modelo com o protótipo
- medida de posição

Protótipo

Introdução Rodas de Reação Revisão

O mancal magnético Estator Interno Estator Externo

Modelo Dinâmico

Trabalhos Futuros

Introdução

Rodas de Reação Revisão

O mancal magnético Estator Interno

Estator Externo Vlodelo

- Próximos passos
- ► correção dos problemas mecânicos
- validação do modelo vs protótipo
- desenvolvimento do controlador
- ▶ forma de sensoriamento
- desenvolvimento da eletrônica
- ▶ implementação e testes

Cronograma

O cronograma será seguido como descrito na Tab. 1 com as atividades detalhadas a seguir:

- projeto protótipo 2: projeto de nova mecânica dado as necessidades levantadas no primeiro protótipo;
- prototipagem mecânica : envio da peça para usinagem e acompanhamento;
- projeto do controlador : projetar controle para estabilização do mancal visando a implementação em eletrônica embarcada;
- validação do protótipo : validar o protótipo com o modelo em elementos finitos (forças);
- projeto eletrônica : projetar eletrônica (processamento, sensoriamento e potência) com os requisitos levantados durante a pesquisa;
- prototipagem eletrônica : confecção e montagem de placa de circuito impresso além de compra de materiais;
- validação eletrônica : validar a eletrônica (programação do microprocessador, atuadores e sensores);
- validação do conjunto : implementação das leis de controle e teste do controle do mancal
- documentação: tempo reservado para a documentação e escrita da dissertação.

	20	2014		2015		
Bimestre	5°	6°	1º	2 °	3°	4º
Projeto protótipo 2	х					
Prototipagem mecânica		х				
Projeto do controlador	х	х	x			
Validação do protótipo		x		x		
Projeto eletrônica			х	x		
Prototipagem eletrônica				x		
Validação eletrônica					x	
Validação do conjunto					х	x
Documentação						х

Figura 1: Cronograma proposto

Sumário Estruturado da Dissertação

1	Intr	Introdução 4						
	1.1	Objetivo	4					
	1.2	Justificativa	4					
	1.3	Revisão bibliográfica	4					
		1.3.1 Graus de liberdade	4					
		1.3.2 Topologias com aplicação em rodas de reação	4					
		1.3.3 Sensoriamento	4					
		1.3.4 Mancais auxiliares	4					
		1.3.5 Técnicas de controle	4					
		1.3.6 Macais magnéticos auto girantes	4					
	1.4	Metodologia	4					
2	Mai	ncal magnético	5					
	2.1	0	5					
	2.2		5					
	2.3		5					
	2.4	Estator interno	5					
	2.5		5					
	2.6		5					
	2.7		5					
			5					
			5					
			5					
	2.8		5					
3	Mo	delagem Eletromagnética do Mancal	6					
U	3.1		6					
	0.1	- · · · · · · · · · · · · · · · · · · ·	6					
		1 0	6					
		,	6					
		1	6					
			6					
			6					
	3.2		6					
	5.2		6					

		3.2.2 Indutância	6									
	3.3	Escolha dos parâmetros	6									
		3.3.1 Simulações	6									
		3.3.2 Elementos Finitos	6									
		3.3.3 Validação	6									
4	Modelagem Dinâmica 7											
	4.1	Rotor	7									
	4.2	Estator externo	7									
	4.3	Estator interno	7									
		4.3.1 Linearização da força	7									
	4.4	Característica do sistema e diagrama de blocos	7									
	4.5	Simulações	7									
	4.6	Validação	7									
5	Projeto do controlador											
	5.1	Técnicas de controle	8									
	5.2	Simulações	8									
	5.3	Implementação	8									
	5.4	Validação	8									
6	Con	nclusões	ç									