Secure Software Development Life Cycle Fast Track

- S-SDLC. Secure Software Development.
- Threat Modeling. Modelado de Amenazas.
- BSIMM6. Bring Security in Maturity Model 6. Midiendo la madurez del SDL.

About Me

- Victor Figueroa
- Maestría Universitaria en Seguridad Informática.
 Universidad Internacional de la Rioja. Madrid. España.
- Diplomado en Delitos Informáticos.
 Universidad Blas Pascal. Córdoba. Argentina.
- Diplomado en Informática Forense.
 Uni Colombia. Bogotá. Colombia.
- Licenciado en Informática. Universidad Blas Pascal. Córdoba. Argentina.
- QMS Implementation & Audit Lead.
 Bureau Veritas. IRCA Certified.
- Analista en Computación Instituto Superior Juan XXIII. Bahía Blanca. Baires. Argentina.

☐ Saturno Hogar S. A.

Jefe de Desarrollo. Gerencia de Sistemas.

Mailto: rvfigueroa@saturno.com.ar figueroa.rv@gmail.com

Twitter: @FigueroaRV

LinkedIn: https://www.linkedin.com/in/vfigueroa

FAST TRACK

- S-SDLC Overview
 - OWASP CLASP
 - Trustworthy Computing
 - Seven Touchpoints
- S-SDLC Threat Modeling
 - Microsoft Threat Modeling
 - STRIDE
 - DREAD
 - Caso Práctico
- BSIMM6 Building Security in Maturity Model
 - Midiendo la madurez de nuestro S-SDLC

S-SDLC – Secure Software Development Life Cycle

Conjunto de principios de diseño y buenas prácticas a implantar en el SDLC, para detectar, prevenir y corregir los defectos de seguridad en el desarrollo y adquisición de aplicaciones, de forma que se obtenga software de confianza y robusto frente a taques maliciosos, que realice solo las funciones para las que fue diseñado, que esté libre de vulnerabilidades, ya sean intencionalmente diseñadas o accidentalmente insertadas durante su ciclo de vida y se asegure su integridad, disponibilidad y confidencialidad".

S-SDLC – Propiedades elementales Software Seguro

- Integridad: capacidad que garantiza que el código del software, activos manejados, configuraciones y comportamientos no puedan ser o no hayan sido modificados o alterados.
- Disponibilidad: capacidad que garantiza que el software es operativo y accesible por usuarios.
- Confidencialidad: capacidad de preservar que cualquiera de sus características, activos manejados, están ocultos a usuarios no autorizados.

S-SDLC – Propiedades Software Seguro

S-SDLC – OWASP CLASP Comprehensive, Lightweight Application Security Process

Modelo prescriptivo, basado en roles y buenas prácticas, que permite a los equipos de Desarrollo implementar seguridad en cada una de las fases del Ciclo de Vida de Desarrollo en forma estructurada, medible y repetible.

Estructura CLASP

- CLASP View [5]

Prespectivas de alto nivel, interconectadas entre sí.

- CLASP Best Practices [7]

Agrupación de las Activitidades de Seguridad.

CLASP Activities [24]

Diseñadas para permitir una facil integración entre actividades de seguridad y el SDL.

CLASP Resources

Ayudan a la planificación, ejecución y cumplimiento de las actividades.

CLASP Taxonomy

Clasificación de alto nivel de 104 tipos de problemas o vulnerabilidades, divididos en 5 categorías de alto nivel.

CLASP Best Practices	CLASP Activities	Related Project Roles
1. Institute swareness programs	Institute security awareness program	Project manager
	Perform pecurity analysis of system requirements and design (threat modeling)	Security suditor
	Perform source-level security review	Owner: security suditor
2. Perform application approximents	Perform source-toral security renew	Key contributor: implementer, designer
a. Patroin approximation	Identify, implement, and perform security tests	Test malyst
	Verify security attributes of resources	Tester
	Research and assess security posture of technology	Owner: designer
	colutions	Key contributor: component vendor
	Identify global security policy	Requirements specifier
	Identify resources and trust boundaries	Owner: architect
	racing resources and trees boundaries	Key contributor: requirements specifier
	Identify user roles and resource capabilities	Owner: srchitect
	nationy and roles and resource capabilities	Key contributor: requirements specifier
3. Capture security requirements	Specify operational environment	Owner: requirements specifier
3. Capture security requirements	openy operational environment	Key contributor: architect
	Detail micuos casso	Owner: requirements specifier
	Devai mirary cares	Key contributor: stakeholder
	Identify strack purface	Designer
	Document security-relevant requirements	Owner: requirements specifier
	Societies receive receive requirements	Key contributor: architect
	Apply security principles to design	Designer
	Annotate class designs with security properties	Designer
4. Implement secure development practices	Implement and elaborate resource policies and security technologies	Implementer
practices	Implement interface contracts integrate security analysis into source management	Implementer
	вкодтьке гесинку выпуска вко гонгсе вывъдстене	Integrator
	Perform code signing	Integrator
	Manage pecurity ippus disclopure process	Owner: project manager
5. Build vulnerability remediation	manage security issue disclosure process	Key contributor: designer
procedures	Address reported security issues	Owner: designer
	nadros reported security to acc	Fault reporter
6. Define and monitor metrics	Monitor security metrics	Project manager
	Specify database security configuration	Databace designer
7. Publish operational security		Owner: integrator
guidelines	Build operational security guide	Key contributor: designer, architect, implementer

CLASP Best Practices	CLASP Activities	Related Project Roles
1. Institute swareness programs	Institute pecurity awareness program	Project manager
	Perform occurity analysis of system requirements and design (threat modeling)	Security suditor
	Perform source-level security review	Owner: security suditor
2. Perform application appearments		Key contributor: implementer, designer
Cit dittin appetrate direction	Identify, implement, and perform security tests	Test analyst
	Verify security attributes of resources	Tester
	Research and assess security posture of technology	Owner: designer
	polytions	Key contributor: component vendor
	Identify global occurity policy	Requirements specifier
	Identify repources and trust boundaries	Owner: architect
	naturally represents and transcription	Key contributor: requirements specifier
	Identify user roles and resource capabilities	Owner: srchitect
3. Capture security requirements	nationly and roses and resource capabilities	Key contributor: requirements specifier
	Specify operational environment	Owner: requirements specifier
	openy operational environment	Key contributor: architect
	Dotall micaco casos	Owner: requirements specifier
	Deven impere cares	Key contributor: stakeholder
	Identify strack perface	Designer
	Document security-relevant requirements	Owner: requirements specifier
	botanin seeing terran requiences	Key contributor: architect
	Apply security principles to design	Designer
	Annotate class designs with security properties	Designer
Implement secure development practices	Implement and elaborate resource policies and security technologies	Implementer
process	Implement interface contracts integrate security analysis into source management	Implementer
	integrate recurry unaryour into rource management	Integrator
	Perform code signing	Integrator
	Manage security issue disclosure process	Owner: project manager
5. Build vulnerability remediation	manage security issue discressive process	Key contributor: designer
procedures	Address reported security issues	Owner: designer
	readily readily trans	Fault reporter
6. Define and monitor metrics	Monitor security metrics	Project manager
	Specify database security configuration	Database designer
7. Publish operational security		Owner: integrator
guidelines	Build operational recurity guide	Key contributor: designer, architect, implementer

CLASP Problem Types (Basic Causes of Vulnerabilities) CLASP identifies 104 underlying problem types that form the basis of security vulnerabilities in application source code. An individual problem type in itself is often not a security vulnerability; frequently it is a combination of problems that creates a security condition leading to a vulnerability in the source code. CLASP divides the 104 problem types into 5 high-level categories. Each problem type may have more than one parent category. Avoidance & Mitigation **Problem Type Categories** 104 problem types are divided into five The more successful the avoidance vulnerability high-level categories: and mitigation of vulnerability basic resolution source Range and Type Errors causes, the fewer and less severe Environmental Problems will be the consequences of any attempted exploitation of Synchronization & Timing Errors vulnerabilities in the application's Protocol Errors General Logic Errors source code. Source Code A & M Period **Exposure Period** Periods when vulnerabilities can be Periods when vulnerabilities can be avoided and mitigated through inadvertently introduced into source exploited vulnerabilities improved source coding code by developer - organized by organized by phases of SDLC phases of SDLC. attack on Exploiter Consequences of Exploited Vulnerabilities vulnerabilities Atttacks vulnerabilities in code, in code can be failures in, e.g., these basic security services: which may result in failures of Authorization (resource access control) basic security services. . Confidentiality (of data or other resources) · Authentication (identity establishment and integrity) · Availability (denial of service) Accountability Non-repudiation Required Resources Prerequisites for exploiter to attack vulnerabilities in application's source code. Severity of Exploit Likelihood of Exploit Indicates criticality of an Likelihood that a vulnerability will exploited vulnerability in result in a successful exploitaapplication's source code. tion of application's source code. Risk Assessment

S-SDLC – Trustworthy Computing SDL

"Trustworthy Computing is computing that is as available, reliable and secure as electricity, water services and telephony." Bill Gates, 2002.

	Training	>	Requirements	>	Design		Implementation	\rangle	Verification	\geq	Release	Response
			Establish Security Requirements	5.	Establish Design Requirements	8.	Use Approved Tools	11.	Perform Dynamic Analysis	14.	Create an Incident Response Plan	
1.	Core Security Training		Create Quality Gates/Bug Bars	6.	Perform Attack Surface Analysis/ Reduction	9.	Deprecate Unsafe Functions	12.	Perform Fuzz Testing	15.	Conduct Final Security Review	ecute Incident sponse Plan
			Perform Security and Privacy Risk Assessments	7.	Use Threat Modeling	10.	Perform Static Analysis	13.	Conduct Attack Surface Review	16.	Certify Release and Archive	

S-SDLC – Seven Touchpoints

"Conjunto de buenas prácticas de seguridad que pueden ser aplicadas sobre los artefactos de software durante la fase de Desarrollo". Gary McGraw, Cigital.

S-SDLC – Threat Modeling

Amenaza

"Causa potencial de un incidente no deseado, el cual puede ocasionar daño a un sistema o a una organización."

ISO/IEC 27000:2014

Vulnerabilidad

"Defecto o debilidad en el diseño, implementación u operación de un sistema que habilita o facilita la materialización de una amenaza."

Magerit:2012

Riesgo

"El riesgo de seguridad de la información se relaciona con la posibilidad de que las amenazas exploten vulnerabilidades de un activo o grupo de activos de información y causen daño a una organización."

ISO/IEC 27000:2014

CCN STIC 401 Glosario de Seguridad

S-SDLC – Threat Modeling

El Modelado de Amenazas, como metodología y práctica de Ingeniería de Software, se introduce dentro del S-SDLC, constituyendo un framework específico para el proceso de análisis de riesgo estructurado, que permite identificar las amenazas de una aplicación, cuantificar los riesgos a los que la misma estará expuesta, y definir contramedidas de mitigación.

Permite contar, desde las etapas iniciales del desarrollo, con una visión de la seguridad que alcanza todo el ciclo de vida, a través de la evaluación de riesgos y la determinación de contramedidas.

El objetivo del modelado de amenazas es **asegurar las propiedades** esenciales de Integridad, Disponibilidad y Confidencialidad que constituyen un **Software Seguro**.

Es una metodología fomentada por Microsoft y soportada con su herramienta Microsoft Threat Modeling Tool, disponible de forma gratuita. Es reconocida como una de las mejores metodologías para esta tarea dada su simpleza y claridad de los conceptos involucrados.

STRIDE: Metodología de identificación de **Amenazas**. Su nombre surge de la abreviatura de las categorías de Amenazas que caracteriza.

Se aplica sobre cada uno de los objetos del diagrama de flujo de datos, para especificar la amenaza a la que éste se encuentra expuesto.

Desired Property	Threat	Definition
Authentication	Spoofing	Impersonating something or someone else
Integrity	Tampering	Modifying code or data without authorization
Non-repudiation	Repudiation	The ability to claim to have not performed some action against an application
Confidentiality	Information Disclosure	The exposure of information to unauthorized users
Availability	Denial of Service	The ability to deny or degrade a service to legitimate users
Authorization	Elevation of Privilege	The ability of a user to elevate their privileges with an application without authorization

STRIDE: Metodología de identificación de **Amenazas**. Su nombre surge de la abreviatura de las categorías de Amenazas que caracteriza.

Se aplica sobre cada uno de los objetos del diagrama de flujo de datos, para especificar la amenaza a la que éste se encuentra expuesto.

DREAD: Metodología que permite puntuar la probabilidad que tiene una amenaza de materializarse. Esto permite priorizar la definición de contramedidas para mitigar las amenaza, dado que el riesgo se puede cuantificar como el resultado de multiplicar la probabilidad de que la amenaza se produzca, por el daño potencial de esta, presenta la siguiente ecuación.

Riesgo = Probabilidad * Daño Potencial

Luego:

Riesgo_DREAD = (Damage + Reproductibility + Exploitability + Afected Users + Discoverability) / 5

Este enfoque, si bien, un poco simplista, permite de forma simple clasificar las amenazas en una escala entre 1-100 que podemos dividir en tres niveles según su riesgo: Alto, Medio, Bajo.

DREAD

Damage Potential	Daño Potencial	Si una amenaza fuese explotada, ¿Cuánto daño causaría? o = Nada 5 = Datos de los usuarios individuales comprometidos o afectados. 10 = Destrucción de datos del sistema completo
Reproducibility	Grado de Reproducibilidad	¿Es fácil de reproducir la amenaza a explotar? o = Muy difícil o imposible, incluso para los administradores de la aplicación. 5 = Uno o dos pasos necesarios, puede ser necesario un usuario autorizado. 10 = Sólo un navegador web y la barra de direcciones es suficiente, sin necesidad de autenticación.
Exploitability Grado de Explotabilidad		Lo que se necesita para aprovechar esta amenaza. o = Conocimientos avanzados de programación y de redes, con herramientas de ataque personalizadas o avanzadas. 5 = Malware existente en el Internet, o un exploit fácil de realizar con las herramientas disponibles en la web. 10 = Sólo un navegador web.
Affected users	Usuarios afectados	¿Cuántos usuarios se verán afectados? o = Ninguno 5 = Algunos usuarios, pero no todos. 10 = Todos los usuarios. En esta categoría se aplica matemáticamente un punto por cada 10% de posibles usuarios afectados.
Discoverability	Detectabilidad	¿Es fácil descubrir esta amenaza? o = Muy difícil o imposible, requiere el código fuente o acceso administrativo. 5 = ¿Se puede averiguar de adivinar o mediante el control de trazas de red? 9 = Detalles de fallas de este tipo son ya de dominio público y puede ser fácilmente descubierto usando un motor de búsqueda.

DREAD

Categoría Amenaza STRIDE	Amenaza Descripción	Contexto / Objeto	D	R	Е	A	D	Riesgo DREAD
Denegación de Servicio	Data Flow RESPONSE Is Potentially Interrupted	Usuario y Servidor web	5	10	0	10	10	7
Divulgación de Información	Weak Authentication Scheme	Servidor web y Servidor db	5	5	0	10	10	6
Denegación de Servicio	Potential Excessive Resource Consumption for SERVIDOR BASE DE DATOS or BASE DE DATOS	Servidor db y archivos físicos	5	0	0	10	9	4,8
Tampering	Potential SQL Injection Vulnerability for BASE DE DATOS	Servidor db y archivos físicos	5	5	5	10	9	6,8
Suplantación	Spoofing of Destination Data Store BASE DE DATOS	Servidor db y archivos físicos	5	5	0	10	5	5
Divulgación de Información	Weak Access Control for a Resource	Servidor db y archivos físicos	5	5	0	10	5	5
Suplantación	Spoofing of Source Data Store BASE DE DATOS	Servidor db y archivos físicos	10	0	0	10	9	5,8

Categoría Amenaza STRIDE	Amenaza Descripción	Contexto / Objeto	Riesgo DREAD	Nivel Riesgo
Denegación de Servicio	Potential Process Crash or Stop for SERVIDOR WEB	Servidor web y Servidor db	7,8	Alto
Denegación de Servicio	Data Flow RESPONSE Is Potentially Interrupted	Usuario y Servidor web	7	Alto
Denegación de Servicio	Potential Process Crash or Stop for SERVIDOR BASE DE DATOS	Servidor web y Servidor db	7	Alto

S-SDLC – Microsoft Threat Modeling. Caso Práctico.

S-SDLC – Microsoft Threat Modeling. Caso Práctico.

S-SDLC – Microsoft Threat Modeling. Caso Práctico.

"Is not about how to eat bananas..."

Es un estudio de iniciativas existentes de Seguridad del Software.

Al cuantificar las prácticas de muchas organizaciones diferentes, se puede describir la base común compartida por varias de ellas, así como la variación que hace que cada una sea única.

El objetivo es ayudar a la vasta comunidad de seguridad del software a planificar, llevar a cabo y medir sus propias iniciativas.

BSIMM no es una guía de los "cómo", ni una prescripción aplicable a todos. BSIMM es, en cambio, un reflejo de lo más avanzado en Seguridad del Software.

Modelo de Referencia	para la Seguridad d	lel Software (MRSS)
----------------------	---------------------	---------------------

Gobernanza	Inteligencia	Puntos de Contacto con el SSDL	Despliegue
Estrategia y Métricas	Modelos de Ataque	Análisis de la Arquitectura	Pruebas de Penetración
Cumplimiento y Política	Características de Seguridad y Diseño	Revisión de Código	Entorno del Software
Capacitación	Normas y Requisitos	Pruebas de Seguridad	Gestión de Configuración y Gestión de Vulnerabilidades

GO	/ERNAN	NCE	INTELLIGENCE			SSDL TOUCHPOINTS			DEPLOYMENT			
ACTIVITY	BSIMM6 FIRMS	FIRM	ACTIVITY	BSIMM6 FIRMS	FIRM	ACTIVITY	BSIMM6 FIRMS	FIRM	ACTIVITY	BSIMM6 FIRMS	FIRM	
STRA'	TEGY & ME	TRICS	AT1	ACK MOD	ELS	ARCHIT	ECTURE AI	NALYSIS	PENET	RATION TE	STING	
[SM1.1]	41	1	[AM1.1]	17	1	[AA1.1]	67	1	[PT1.1]	69	1	
[SM1.2]	40		[AM1.2]	51		[AA1.2]	29	1	[PT1.2]	47	1	
[SM1.3]	36	1	[AM1.3]	31		[AA1.3]	22	1	[PT1.3]	47		
[SM1.4]	66	1	[AM1.4]	8	1	[AA1.4]	46		[PT2.2]	20	1	
[SM2.1]	36		[AM1.5]	46	1	[AA2.1]	12		[PT2.3]	17		
[SM2.2]	29		[AM1.6]	11		[AA2.2]	9	1	[PT3.1]	10	1	
[SM2.3]	30		[AM2.1]	6		[AA2.3]	13		[PT3.2]	8		
[SM2.5]	17		[AM2.2]	8	1	[AA3.1]	6					
[SM2.6]	29		[AM3.1]	4		[AA3.2]	1					
[SM3.1]	15		[AM3.2]	2								
[SM3.2]	7											
COMP	LIANCE & F	POLICY	SECURITY	FEATURES	& DESIGN	C	ODE REVIE	w	SOFTWA	RE ENVIR	DNMENT	
[CP1.1]	45	1	[SFD1.1]	61		[CR1.1]	18		[SE1.1]	37		
[CP1.2]	61		[SFD1.2]	59	1	[CR1.2]	53	1	[SE1.2]	69	1	
[CP1.3]	41	1	[SFD2.1]	24		[CR1.4]	55	1	[SE2.2]	31	1	
[CP2.1]	19		[SFD2.2]	39		[CR1.5]	24		[SE2.4]	25		
[CP2.2]	23		[SFD3.1]	8		[CR1.6]	27	1	[SE3.2]	10		

	ACTIVITY	112 BSIMM6 activities, shown in 4 domains and 12 practices
	BSIMM6 FIRMS	count of firms (out of 78) observed performing each activity
LECENID		most common activity within a practice
LEGEND:		most common activity not observed in this assessment
	1	most common activity was observed in this assessment
		a practice where firm's high-water mark score is below the BSIMM6 average

Bibliografía Recomendada

OWASP CLASP

https://www.owasp.org/index.php/Category:OWASP_CLASP_Project/es

Microsoft Trustworthy Computing SDL

https://msdn.microsoft.com/en-us/library/ff648644.aspx

http://www.wired.com/2002/01/bill-gates-trustworthy-computing/

SDL Touchpoints

https://www.cigital.com/blog/what-is-the-secure-software-development-lifecycle/

OWASP CLASP vs Microsoft SDL vs SDL TouchPoints

https://lirias.kuleuven.be/bitstream/123456789/242084/1/comparison.pdf

S-SDLC vs Desarrollo Agil, un desafío...

https://buildsecurityin.us-cert.gov/articles/knowledge/sdlc-process/secure-software-development-life-cycle-processes

Microsoft Threat Modeling

https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx

https://www.owasp.org/index.php/Threat Risk Modeling

P.A.S.T.A. (Process for Attack Simulation and Threat Analysis)

http://myappsecurity.com/comparison-threat-modeling-methodologies/

Ministerio de Justicia – Dir. Nacional de Protección de Datos Personales – Guía de Buenas Prácticas para el Desarrollo de Aplicaciones http://www.jus.gob.ar/media/3075908/guiabpsoftware.pdf

Cigital BSIMM

Official Site: https://www.cigital.com

BSIMM-V Versión Español http://www.fundacionsadosky.org.ar/wp-content/uploads/2014/07/BSIMM-V-esp.pdf

BSIMM 6 https://www.cigital.com/services/software-security-strategy/bsimm-assessment/

S-SDLC – Threat Modeling - BSIMM

Dudas, consultas...

S-SDLC – Threat Modeling - BSIMM

¡Muchas gracias!