✓Back to Week 2
 XLessons
 Prev
 Next

Multiple Features

Note: [7:25 - θ^T is a 1 by (n+1) matrix and not an (n+1) by 1 matrix]

Linear regression with multiple variables is also known as "multivariate linear regression".

We now introduce notation for equations where we can have any number of input variables.

 $x_{j}^{(i)} = ext{value of feature } j ext{ in the } i^{th} ext{ training example}$

 $x^{(i)} =$ the input (features) of the i^{th} training example

m =the number of training examples

n =the number of features

The multivariable form of the hypothesis function accommodating these multiple features is as follows:

$$h_{ heta}\left(x
ight)= heta_{0}+ heta_{1}x_{1}+ heta_{2}x_{2}+ heta_{3}x_{3}+\cdots+ heta_{n}x_{n}$$

In order to develop intuition about this function, we can think about θ_0 as the basic price of a house, θ_1 as the price per square meter, θ_2 as the price per floor, etc. x_1 will be the number of square meters in the house, x_2 the number of floors, etc.

Using the definition of matrix multiplication, our multivariable hypothesis function can be concisely represented as:

This is a vectorization of our hypothesis function for one training example; see the lessons on vectorization to learn more.

Remark: Note that for convenience reasons in this course we assume $x_0^{(i)}=1$ for $(i\in 1,\ldots,m)$. This allows us to do matrix operations with theta and x. Hence making the two vectors ' θ ' and $x^{(i)}$ match each other element-wise (that is, have the same number of elements: n+1).]

1 of 1 2/9/2018, 12:04 PM