卷

提醒:请诚信应考,考试违规将带来严重后果!

教务处填写:

年	月	日
考	试	用

(题目不得超过此线

小师:

湖南大学课程考试试卷

课程名称:	线性代数 A	;	课程编码:	GE03003	;
-------	--------	---	-------	---------	---

题 号	1~2	3~4	5~6	7~8	9~10	11~12		总分
应得分	12	14	18	22	16	18		100
实得分								
评卷人								

1.
$$(6 分)$$
设 $A = \begin{vmatrix} 1 & 2 & -3 & -4 \\ 3 & 1 & 2 & 1 \\ 1 & 0 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix}$, A_{ij} 为 A 中的元素 a_{ij} 对应的代数余子式,

求 $-A_{41}-2A_{42}+3A_{43}+4A_{44}$ 的值.

2. (6 分) 计算
$$n$$
 行列式 $D_n = \begin{vmatrix} 0 & 0 & \cdots & 0 & \alpha & \beta \\ 0 & 0 & \cdots & \alpha & \beta & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ \alpha & \beta & \cdots & 0 & 0 & 0 \\ \beta & 0 & \cdots & 0 & 0 & \alpha \end{vmatrix}$.

3. (6 分) 设矩阵
$$A = \begin{pmatrix} 3 & 4 & 0 & 0 \\ 4 & -3 & 0 & 0 \\ 0 & 0 & 4 & -1 \\ 0 & 0 & -7 & 2 \end{pmatrix}$$
, 求 A 的逆矩阵 A^{-1} .

4. (8 分) 设向量组 $\alpha_1 = (1, -1, 2, 3)^T$, $\alpha_2 = (3, 0, 4, -2)^T$, $\alpha_3 = (3, 0, 1, 0)$, $\alpha_4 = (1, 2, 1, -1), ~~$ 判断 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 能否构成 R^4 空间的基,并说明理由.

装订线(题目不得超过此线)

5. (8分) 设 $\alpha = (1, -2, 5)^{T}$, $\beta = (2, 1, 1)^{T}$, $A = \alpha \beta^{T}$, 求 A^{5} .

6. (10 分)设向量组 $\alpha_1 = (1, 4, 1, 0)^T$, $\alpha_2 = (2, 1, -1, -3)^T$, $\alpha_3 = (1, 0, -3, -1)^T, \qquad \alpha_4 = (0, 2, -6, 3)^T, \text{ 求向量组 } \alpha_1, \alpha_2, \alpha_3, \alpha_4 \text{ 的秩,}$ 并求它的一个最大无关组.

7. (10 分)已知 R^3 的两组基分别为 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,0,-1)^T$, $\alpha_3 = (1,0,1)^T$, $\beta_1 = (1,2,1)^T$, $\beta_2 = (2,3,4)^T$, $\beta_3 = (3,4,3)^T$, (1) 求由基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵 A; (2) 求向量 $\eta = (1,0,0)^T$ 在基 α_1 , α_2 , α_3 下的坐标.

- 8. (12 分)讨论 λ 为何值时, 非齐次方程组 $\begin{cases} \lambda x_1 x_2 x_3 = 1, \\ -x_1 + \lambda x_2 x_3 = -\lambda, \\ -x_1 x_2 + \lambda x_3 = \lambda^2. \end{cases}$
- (2) 有唯一解? (3) 有无穷多解? 并求无穷多解时的通解.

9. (8 分) 设三阶矩阵 A 的特征值分别为 2, 1, -1, 令 $B = f(A) = A^2 + 3A - 5E$, 求 B 的所有特征值,并求 B 的行列式 |B|.

10. (8 分) 设三阶矩阵 A 的特征值分别为 6, 3, 3, 特征值 6 对应的特征向量为 $p_1 = (1,-1,1)^{\mathrm{T}}, \text{ 特征值 } 3 \text{ 对应的特征向量分别为 } p_2 = (-1,0,1)^{\mathrm{T}}, p_3 = (1,2,1)^{\mathrm{T}}.$ 求矩阵 A.

- 11. (12 分) 设二次型 $f(x_1, x_2, x_3) = 5x_1^2 + 5x_2^2 + 3x_3^2 2x_1x_2 + 6x_1x_3 6x_2x_3$.
 - (1) 求此二次型对应矩阵的特征值;(2)求正交变换 x = Py,使二次型 f 化为标准型.

12. (6 分) 设 A 为 $m \times n$ 矩阵, E 为 n 阶单位矩阵,且 $B = \lambda E + A^{\mathsf{T}} A$, 证明: 当 $\lambda > 0$ 时, 二次型 $x^{\mathsf{T}} B x$ 为正定二次型.