4.3 微分学基本定理及其应用

4.3.1 微分中值定理

- 一、函数的极值与Fermat定理
- 二、罗尔(Rolle)定理
- 三、拉格朗日(Lagrange)中值定理
- 四、柯西(Cauchy)中值定理

一、函数的极值及与Fermat定理

定义: 设函数 f(x) 在(a,b)内有定义, $x_0 \in (a,b)$, 若存在 x_0 的一个邻域, **在其中当** $x \neq x_0$ 时,

- (1) $f(x) \le f(x_0)$, 则称 x_0 为 f(x) 的极大点,
 称 $f(x_0)$ 为函数的极大值;
- (2) $f(x) \ge f(x_0)$, 则称 x_0 为 f(x) 的极小点,
 称 $f(x_0)$ 为函数的极小值.

极大点与极小点统称为极值点.

例如
$$f(x) = 2x^3 - 9x^2 + 12x - 3$$

x=1为极大点,f(1)=2 是极大值 x=2为极小点,f(2)=1 是极小值

- 注意: 1) 函数的极值是函数的局部性质.
 - 2) 对常见函数,极值可能出现在导数为0或不存在的点.

 x_1, x_4 为极大点 x_2, x_5 为极小点 x_3 不是极值点

定理(Fermat定理,极值的必要条件)

设函数 f 在点 x_0 的某邻域内有定义,且在点 x_0 可导,如果 x_0 是 f 的极值点,则必有 $f'(x_0) = 0$.

证: 设f(x)在 x_0 取极大值,则只要 $_0 + \Delta x \in N(x_0, \delta)$,就有 $f(x_0 + \Delta x) \le f(x_0)$,即 $f(x_0 + \Delta x) - f(x_0) \le 0$,

$$\Rightarrow f'(x_0) = f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0$$

$$f'(x_0) = f'_-(x_0) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0.$$

$$\Rightarrow f'(x_0) = 0.$$

定理的几何意义:如果f 在极值 $x=x_0$ 处可导,则该点处的切线平行于x 轴.

称满足方程 f'(x) = 0 的点为 f 的驻点(稳定点). 注 驻点不一定都是极值点,如 x = 0 是 $y = x^3$ 的驻点,但不是极值点. 反之,极值点也不一定都是驻点,如 x = 0 是 y = |x| 的极小值点,但不是驻点,因为它在 x = 0 处不可导.

二、罗尔(Rolle)定理

罗尔(Rolle)定理 如果函数 f(x)满足以下条件:

- (1) f(x)在闭区间[a,b]上连续;
- (2) f(x)在开区间(a,b)内可导;
- (3) f(a) = f(b).

则在(a,b)内至少有一点 $\xi(a < \xi < b)$,使得

 $f'(\xi) = 0.$

几何解释 在曲线弧 AB上至少有一 点C,在该点处的切线是 水平的.

证明: :: f(x) 在 [a,b] 连续, 必有最大值 M 和最小值 m.

(1) 若 M = m. 则 f(x) = M, 即 f(x) 为常函数.

由此得 f'(x) = 0. $\forall \xi \in (a,b)$, 都有 $f'(\xi) = 0$.

 $(2) 若 M \neq m. : f(a) = f(b),$

因此,最大值和最小值不可能同时在区间端点取得,不妨设 $M \neq f(a)$,

则在 (a,b)内至少存在一点 ξ 使 $f(\xi) = M$.

 ξ 也是极值点,由②及Fermat 定理 $\Rightarrow f'(\xi) = 0$.

注1:若罗尔定理的三个条件中有一个不满足,其结论可能不成立.

例如
$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ 0, & x = 1 \end{cases}$$

$$f(v) - |v| \quad v \in [-1, 1]$$

$$f(x) = |x|, x \in [-1,1]$$

$$f(x) = x, x \in [0,1]$$

注2: 定理条件只是充分的. 本定理可推广为

$$y = f(x)$$
在(a , b) 内可导,且
$$\lim_{x \to a^{+}} f(x) = \lim_{x \to b^{-}} f(x)$$

 \Longrightarrow 在(a,b) 内至少存在一点 ξ , 使 $f'(\xi) = 0$.

证明提示: 设
$$F(x) = \begin{cases} f(a^+), & x = a \\ f(x), & a < x < b \\ f(b^-), & x = b \end{cases}$$

证 F(x) 在 [a,b] 上满足罗尔定理.

例1. 证明方程 $x^5 - 5x + 1 = 0$ 有且仅有一个小于1 的 正实根.

证: 1) 存在性.

设 $f(x) = x^5 - 5x + 1$, 则 f(x) 在 [0,1] 连续,且 f(0) = 1, f(1) = -3. 由介值定理知存在 $x_0 \in (0,1)$, 使 $f(x_0) = 0$, 即方程有小于 1 的正根 x_0 .

2) 唯一性.

假设另有 $x_1 \in (0,1), x_1 \neq x_0$,使 $f(x_1) = 0$,:: f(x) 在以 x_0 , x_1 为端点的区间满足罗尔定理条件 , :. 在 x_0 , x_1 之间 至少存在一点 ξ , 使 $f'(\xi) = 0$.

但 $f'(x) = 5(x^4 - 1) < 0$, $x \in (0,1)$, 矛盾, 故假设不真!

例2. 设 $f(x) \in C[0,\pi]$, 且在 $(0,\pi)$ 内可导,证明至少存在一点 $\xi \in (0,\pi)$,使得 $f'(\xi) = -f(\xi)\cot \xi$.

分析: 由结论可知, 只需证 $f'(\xi)\sin\xi + f(\xi)\cos\xi = 0$, 即 $\left[f(x)\sin x\right]_{x=\xi} = 0$

证:作辅助函数 $F(x) = f(x) \sin x$,

则 $F(x) \in C[0,\pi]$,且在 $(0,\pi)$ 内可导,又 $F(0) = F(\pi) = 0.$

由罗尔定理, $\exists \xi \in (0, \pi)$, 使得 $F'(\xi) = 0$

 $\Rightarrow f'(\xi)\sin\xi + f(\xi)\cos\xi = 0,$

 $\Rightarrow f'(\xi) = -f(\xi)\cot \xi$.

例3. 设 f(x) 在 [a,b](0 < a < b)上连续,在 (a,b)内可导,且 f(a) = b, f(b) = a, 证明在 (a,b)内至少存在一点 ξ 使得 $f'(\xi) = -\frac{f(\xi)}{\xi}$.

证: 令 $\varphi(x) = xf(x)$. 由题意知, $\varphi(x)$ 在 [a,b] 上连续,在 (a,b)内可导,又因为 f(a) = b, f(b) = a, 所以 $\varphi(a) = af(a) = ab = bf(b) = \varphi(b)$, 于是 $\varphi(x)$ 在 [a,b] 上满足 Rolle 定理的条件,由 Rolle 定理,存在 $\xi \in (a,b)$, $\varphi'(\xi) = 0$,

例4. 若 f(x)可导,试证在其两个零点间一定有 f(x)+f'(x) 的零点.

提示: 设
$$f(x_1) = f(x_2) = 0$$
, $x_1 < x_2$,

只要证
$$e^{\xi} f(\xi) + e^{\xi} f'(\xi) = 0$$

亦即
$$\left[e^x f(x)\right]'\Big|_{x=\xi}=0$$

作辅助函数 $F(x) = e^x f(x)$, 验证 F(x)在 $[x_1, x_2]$ 上满足 罗尔定理条件.

三、拉格朗日(Lagrange)中值定理

Lagrange中值定理: 如果函数 f(x)满足

- ① 在闭区间[a,b]上连续;
- (2) 在开区间(a,b)内可导,则在(a,b)内至

少存在一点
$$\xi \in (a,b)$$
使得

$$f'(\xi) = \frac{f(b) - f(a)}{(b-a)}$$

注:与罗尔定理相比,条件少了f(a) = f(b).

结论亦可写成 $f(b)-f(a)=f'(\xi)(b-a)$.

几何解释:

在曲线弧 AB 上至少有一点 C,在该点处的切线平行于弦 AB.

分析: 条件与罗尔定理的的条件相差 f(a) = f(b).

弦AB方程为
$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
.

f(x) 减去弦 AB 在点 x 处的纵坐标,

得到一个关于 x 的函数,

此函数在 a,b 两点的函数值相等.

证法一: 作辅助函数

$$\varphi(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)].$$

容易验证 $\varphi(x)$ 满足 Rolle 定理的条件,因此

在 (a,b)内至少存在一点 ξ , 使得 $\varphi'(\xi) = 0$.

即
$$f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0$$
,

或
$$f(b)-f(a)=f'(\xi)(b-a)$$
.

注意:Lagrange 中值定理精确地表达了函数在一个 区间上的增量与函数在这区间内某点处的导数之 间的关系.

17

证法二: 由于 $f(b) - f(a) = f'(\xi)(b - a)$ 等价于 $\{[f(b) - f(a)]x\}'\Big|_{x=\xi} - [(b - a)f(x)]'\Big|_{x=\xi} = 0$

即等价于 $\{[f(b)-f(a)]x-[(b-a)f(x)]\}'\Big|_{x=\xi}=0.$

因此构造辅助函数

$$\varphi(x) = [f(b) - f(a)]x - [(b-a)f(x)].$$

显然, $\varphi(x)$ 在 [a,b] 上连续,在 (a,b)内可导,并且 $\varphi(a) = \varphi(b) = af(b) - bf(a)$. 满足 Rolle 定理的条件,由 Rolle 定理可证得结论.

注: Lagrange 微分中值公式的其它形式:

- ① $f(b)-f(a)=f'(\xi)(b-a), \xi \in (a,b).$
- ② 将*ξ*表为*ξ* = $a + \theta(b a)$, $0 < \theta = \frac{\xi a}{b a} < 1$, 即:

 $\exists \xi \in (a,b) \Leftrightarrow \exists \theta \in (0,1), \ \ f(b) - f(a) = f'(a + \theta(b-a))(b-a).$

③ 若a = x, $b = x + \Delta x$, $b - a = \Delta x$, 则

$$\Delta y = f(x + \Delta x) - f(x) = f'(x + \theta \Delta x) \Delta x, \quad 0 < \theta < 1.$$

拉格朗日中值定理又称有限增量定理.

④ 在定理条件下, $\forall x_1, x_2 \in [a,b]$, 当 $x_1 < x_2$ 或 $x_2 < x_1$ 时,有 $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1), \xi \oplus Tx_1 = x_2$ 间

例5. 证明当
$$x > 0$$
时, $\frac{x}{1+x} < \ln(1+x) < x$.

证:设
$$f(x) = \ln(1+x)$$
,

f(x)在[0,x]上满足 Lagrange 中值定理的条件,

$$\therefore f(x) - f(0) = f'(\xi)(x - 0), (0 < \xi < x),$$

$$\therefore f(0) = 0, f'(x) = \frac{1}{1+x},$$
由上式得 $\ln(1+x) = \frac{x}{1+\xi}$

$$\mathbb{X} : 0 < \xi < x \implies 1 < 1 + \xi < 1 + x \implies \frac{1}{1+x} < \frac{1}{1+\xi} < 1,$$

$$\therefore \frac{x}{1+x} < \frac{x}{1+\xi} < x, \quad \text{!!!} \frac{x}{1+x} < \ln(1+x) < x.$$

注:本题在-1 < x < 0时也成立。

Lagrange中值定理的推论:

即导数恒为零的函数必是常数函数.

推论2. 若对 $\forall x \in (a,b)$ 有 f'(x) = g'(x), 则 $f(x) = g(x) + C, C = const, \forall x \in (a,b).$

证明: (f(x)-g(x))'=0, $(\forall x \in (a,b))$.

例6. 证明等式 $\arcsin x + \arccos x = \frac{\pi}{2}, x \in [-1, 1].$

证:设 $f(x) = \arcsin x + \arccos x$,则在(-1,1)上

$$f'(x) = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} \equiv 0$$

由推论可知 $f(x) = \arcsin x + \arccos x = C$ (常数)

令
$$x = 0$$
 , 得 $C = \frac{\pi}{2}$.

又 $f(\pm 1) = \frac{\pi}{2}$, 故所证等式在定义域 [-1,1]上成立.

经验: 欲证 $x \in I$ 时 f(x) = C,只需证在 $I \perp f'(x) \equiv 0$,且 $\exists x_0 \in I$,使 $f(x_0) = C$.

证明恒等式:

$$\arctan x + \operatorname{arc} \cot x = \frac{\pi}{2}, x \in (-\infty, +\infty)$$

$$2\arctan x + \arcsin \frac{2x}{1+x^2} = \pi \operatorname{sgn} x, |x| \ge 1$$

$$3\arccos x - \arccos(3x - 4x^2) = \pi, |x| \le \frac{1}{2}$$

导数极限定理: 设 f(x) 在点 x_0 的邻域 $U(x_0)$ 内连续,

在 $U^{\circ}(x_0)$ 可导,且 $\lim_{x \to x_0} f'(x)$ 存在,则 f(x) 在 x_0 可导,且 $f'(x_0) = \lim_{x \to x_0} f'(x)$.

证: 由条件,可设 $\lim_{x\to x_0} f'(x) = k$, 从而 $\lim_{x\to x_0^+} f'(x) = \lim_{x\to 0^-} f'(x) = k$.

任取 $x \in U^0_+(x_0)$, f(x) 在 $[x_0,x]$ 上满足拉格朗日定理条件,

则存在 $\xi \in (x_0, x)$, 使得 $\frac{f(x) - f(x_0)}{x - x_0} = f'(\xi)$

因 $x_0 < \xi < x$, 故 $x \rightarrow x_0^+$ 时, $\xi \rightarrow x_0^+$, 进而

$$f'_{+}(x_{0}) = \lim_{x \to x_{0}^{+}} \frac{f(x) - f(x_{0})}{x - x_{0}^{+}} = \lim_{\xi \to x_{0}^{+}} f'(\xi) = k.$$
 (1)

同理
$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0^{-}} = \lim_{\xi \to x_0^{-}} f'(\xi) = k.$$
 (2)

由(1)、(2)知 $f'(x_0) = k$.

注1: 定理对单侧极限成立. 如:

设 f(x) 在点 x_0 的右邻域 $U_+(x_0)=[x_0,x_0+\delta)$ 内连续,在 $U_+^\circ(x_0)=(x_0,x_0+\delta)$ 内可导,且 $\lim_{x\to x_0^+}f'(x)$ 存在,则 f(x) 在 x_0 处的右导数存在,且 $f_+'(x_0)=\lim_{x\to x_0^+}f'(x)$.

注2: 定理的条件是充分的. 即:

即使 $\lim_{x\to x_0} f'(x)$ 不存在, f(x) 在 x_0 任然可能可导.

反例:
$$f(x) = \begin{cases} x^{\frac{5}{3}} \sin \frac{1}{x}, x \neq 0, \\ 0, x = 0 \end{cases}$$

$$f'(x) = \frac{5}{3}x^{\frac{2}{3}}\sin\frac{1}{x} - \frac{1}{\sqrt[3]{x}}\cos\frac{1}{x} \ (x \neq 0), \qquad \lim_{x \to 0} f'(x) \, \overline{\wedge} \, \overline{\wedge} \, \overline{\wedge} \, \overline{\wedge}$$

但 f'(0) = 0. (此例导数极限定理失效,要用定义求导)

例7. 求分分段函数
$$f(x) = \begin{cases} x + \sin x^2, x \le 0 \\ \ln(1+x), x > 0 \end{cases}$$
 的导函数.

解: 因
$$f'(x) = \begin{cases} 1 + 2x \cos x^2, x < 0 \\ \frac{1}{1+x}, x > 0 \end{cases}$$

$$f$$
 1
 x

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (x + \sin x^{2}) = 0,$$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \ln(1+x) = 0,$$

所以
$$\lim_{x\to 0} f(x) = 0 = f(0)$$
, 即 $f(x)$ 在 $x = 0$ 处连续.

$$\lim_{x\to 0^{-}} f'(x) = \lim_{x\to 0^{-}} (1+2x\cos x^{2}) = 1,$$

$$\lim_{x\to 0^+} f'(x) = \lim_{x\to 0^+} \frac{1}{1+x} = 1, \qquad \text{if } \lim_{x\to 0} f'(x) = 1,$$

由导数极限定理知,
$$f'(0) = \lim_{x \to 0} f'(x) = 1$$
.

李普希兹(Lipschitz)条件:

若f(x)在[a,b]上有定义,且存在常数, $\forall x_1, x_2 \in [a,b]$,有 $|f(x_1) - f(x_2)| \le L|x_1 - x_2|,$

则称f(x)在[a,b]上满足Lipschitz条件.

推论 4. 若f(x)在[a,b]上存在有界导数, $\int f(x)$ 在[a,b]上满足Lipschitz条件.

证明: $\forall x_1, x_2 \in [a,b]$,

$$|f(x_1)-f(x_2)|=|f'(\xi)(x_1-x_2)| \le L|x_1-x_2|.$$

例8. 证明: $\left| \arctan x_1 - \arctan x_2 \right| \le \left| x_1 - x_2 \right|, \forall x_1, x_2 \in \mathbb{R}$

四、柯西(Cauchy)中值定理

设 f(x) 及 F(x) 满足:

- (1) 在闭区间 [a,b] 上连续;
- (2) 在开区间 (a, b) 内可导;
- (3)在开区间 (a,b) 内 $F'(x) \neq 0$

三>至少存在一点
$$\xi \in (a,b)$$
,使 $\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$.

分析: $F(b) - F(a) = F'(\eta)(b-a) \neq 0$ $a < \eta < b$

要证
$$\frac{f(b)-f(a)}{F(b)-F(a)}F'(\xi)-f'(\xi)=0 \qquad \varphi'(\xi)$$

$$\Rightarrow \varphi(x) = \frac{f(b) - f(a)}{F(b) - F(a)} F(x) - f(x)$$

证: 作辅助函数
$$\varphi(x) = \frac{f(b) - f(a)}{F(b) - F(a)}F(x) - f(x)$$

则 $\varphi(x)$ 在[a,b]上连续,在(a,b)内可导,且

$$\varphi(a) = \frac{f(b)F(a) - f(a)F(b)}{F(b) - F(a)} = \varphi(b)$$

由罗尔定理知,至少存在一点 $\xi \in (a,b)$,

使
$$\varphi'(\xi) = 0,$$

即
$$\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}.$$

证法二: 作辅助函数

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{F(b) - F(a)} [F(x) - F(a)].$$

则 $\varphi(x)$ 在[a,b]上连续,在(a,b)内可导,

$$\underline{\mathbb{H}} \quad \varphi(a) = 0 = \varphi(b)$$

则在(a,b)内至少存在一点 (ξ) ,使得 (ξ) 0.

思考: 柯西定理的下述证法对吗?

上面两式相比即得结论. 错!

柯西定理的几何意义:

$$\frac{f(b) - f(a)}{F(b) - F(a)} = \frac{f'(\xi)}{F'(\xi)}$$

弦的斜率 切线斜率

曲线C:
$$\begin{cases} x = F(t) \\ y = f(t) \end{cases}$$

注意:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(t)}{F'(t)}$$

f(a)

例9. 设函数f(x)在[0,1]上连续,在(0,1)内可导,证明: 至少存在一点 $\xi \in (0,1)$,使 $f'(\xi) = 2\xi[f(1) - f(0)]$.

证 分析: 结论可变形为

$$\frac{f(1)-f(0)}{1-0} = \frac{f'(\xi)}{2\xi} = \frac{f'(x)}{(x^2)'}\Big|_{x=\xi}. \quad \forall x g(x) = x^2,$$

则 f(x),g(x) 在[0,1]上满足柯西中值定理的条件,

::在(0,1)内至少存在一点,有

$$\frac{f(1)-f(0)}{1-0} = \frac{f'(\xi)}{2\xi} \qquad \text{If } f'(\xi) = 2\xi[f(1)-f(0)].$$

例10. 试证至少存在一点 $\xi \in (1,e)$ 使 $\sin 1 = \cos \ln \xi$.

证: 法1 用柯西中值定理.令

$$f(x) = \sin \ln x$$
, $F(x) = \ln x$

则f(x),F(x)在[1,e]上满足柯西中值定理条件,

因此
$$\frac{f(e)-f(1)}{F(e)-F(1)} = \frac{f'(\xi)}{F'(\xi)}, \quad \xi \in (1,e)$$

$$\mathbb{P} \qquad \sin 1 = \frac{\frac{1}{\xi} \cos \ln \xi}{\frac{1}{\xi}} = \cos \ln \xi$$

分析:

$$\frac{\sin \ln e - \sin \ln 1}{\ln e - \ln 1} = \frac{\frac{1}{\xi} \cos \ln \xi}{\frac{1}{\xi}}$$

例10. 试证至少存在一点 $\xi \in (1,e)$ 使 $\sin 1 = \cos \ln \xi$.

法2 令 $f(x) = \sin \ln x - \sin 1 \cdot \ln x$

则f(x)在[1,e]上满足罗尔中值定理条件,

因此存在 $\xi \in (1,e)$, 使

$$f'(\xi) = 0$$

$$\int f'(x) = \frac{1}{x} \cdot \cos \ln x - \sin 1 \cdot \frac{1}{x}$$

$$\sin 1 = \cos \ln \xi$$

五、小结

罗尔定理、拉格朗日中值定理及柯西中值定理之间的关系;

注意定理成立的条件;

注意利用中值定理证明等式与不等式的步骤.

1. 微分中值定理的条件、结论及关系

- 2. 微分中值定理的应用
 - (1) 证明恒等式
 - (2) 证明不等式
 - (3) 证明有关中值问题的结论

关键: 利用逆向思维 设辅助函数

思考题

试举例说明拉格朗日中值定理的条件缺一不可.

思考题解答

$$f_1(x) = \begin{cases} x^2, & 0 \le x < 1 \\ 3, & x = 1 \end{cases}$$

不满足在闭区间上连续的条件;

$$f_2(x) = \frac{1}{x}, \quad x \in [a,b] \quad \underline{\perp} \ ab < 0$$

不满足在开区间内可微的条件;

以上两个都可说明问题.

练习题

	填空题:
•	* 77 •

- 1、函数 $f(x) = x^4$ 在区间[1,2]上满足拉格朗日中值 定理,则 $\xi = ____$.
- 3、罗尔定理与拉格朗日定理之间的关系是
- 4、微分中值定理精确地表达函数在一个区间上的 _____与函数在这区间内某点处的____之间 的关系.
- 5、如果函数f(x)在区间 上的导数_____,那么f(x)在区间 上是一个常数.

- 二、试证明对函数 $y = px^2 + qx + r$ 应用拉氏中值定理时所求得的点 ξ 总是位于区间的正中间.
- 三、证明等式 $\arcsin \sqrt{1-x^2} + \arctan \frac{x}{\sqrt{1-x^2}} = \frac{\pi}{2}$ $(x \in (0,1))$
- 四、设a > b > 0,n > 1,证明 $nb^{n-1}(a-b) < a^n b^n < na^{n-1}(a-b) .$
- 五、证明下列不等式:
 - 1, $|\arctan a \arctan b| \leq |a b|$;
 - 2、当x > 1时, $e^x > ex$.
- 六、证明方程 $x^5 + x 1 = 0$ 只有一个正根 .

七、设函数y = f(x)在x = 0的某邻域内且有n阶导数,且 $f(0) = f'(0) = \dots = f^{(n-1)}(0) = 0$ 试用柯西中值定理证明: $\frac{f(x)}{x^n} = \frac{f^{(n)}(\theta x)}{n!}, \quad (0 < \theta < 1).$

八、设f(x)在[a,b]内上连续,在(a,b)内可导,若0 < a < b,则在(a,b)内存在一点 ξ ,使 $af(b)-bf(a)=[f(\xi)-\xi f'(\xi)](a-b)$

思考与练习

- 1. 填空题
- 1) 函数 $f(x) = x^4$ 在区间 [1, 2] 上满足拉格朗日定理

条件,则中值
$$\xi = \sqrt[3]{\frac{15}{4}}$$
.

$$\frac{2^4 - 1^4}{2 - 1} = 4\xi^3$$

2) 设
$$f(x) = (x-1)(x-2)(x-3)(x-4)$$
,方程 $f'(x) = 0$

有_3_个根,它们分别在区间(1,2),(2,3),(3,4)上.

2. 思考: 在[0,x]上对函数 $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 应用拉格朗日中值定理得

$$f(x) - f(0) = f'(\xi)(x - 0), \quad \xi \in (0, x)$$

$$\mathbb{P} \qquad x^2 \sin \frac{1}{x} = (2\xi \sin \frac{1}{\xi} - \cos \frac{1}{\xi}) x, \quad \xi \in (0, x)$$

$$\therefore \qquad \cos \frac{1}{\xi} = 2\xi \sin \frac{1}{\xi} - x \sin \frac{1}{x}$$

当 $x \to 0^+$ 时 $\xi \to 0^+$, 因此由上式得 $\cos \frac{1}{\xi} \to 0$.

问是否可由此得出 $\lim_{x\to 0^+} \cos\frac{1}{x} = 0$?

不能! 因为 $\xi = \xi(x)$ 是依赖于 x 的一个特殊的函数. $x \to 0^+$ 表示 x 从右侧以任意方式趋于 0.

例题

1. 设 f(x) 在 [0,1] 连续,(0,1) 可导,且 f(1) = 0,

求证存在 $\xi \in (0,1)$, 使 $nf(\xi) + \xi f'(\xi) = 0$.

证: 设辅助函数 $\varphi(x) = x^n f(x)$

显然 $\varphi(x)$ 在 [0,1] 上满足罗尔定理条件,

因此至少存在 $\xi \in (0,1)$, 使得

$$\varphi'(\xi) = n\xi^{n-1}f(\xi) + \xi^n f'(\xi) = 0$$

$$\mathbb{P} \qquad nf(\xi) + \xi f'(\xi) = 0$$

2. 设 f''(x) < 0, f(0) = 0 证明对任意 $x_1 > 0$, $x_2 > 0$ 有 $f(x_1 + x_2) < f(x_1) + f(x_2)$

证:不妨设 $0 < x_1 < x_2$

$$f(x_1 + x_2) - f(x_2) - f(x_1)$$

$$= [f(x_1 + x_2) - f(x_2)] - [f(x_1) - f(0)]$$

$$= f'(\xi_2) x_1 - f'(\xi_1) x_1 \quad (x_2 < \xi_2 < x_1 + x_2, 0 < \xi_1 < x_1)$$

$$= x_1 f''(\xi)(\xi_2 - \xi_1) < 0 \quad (\xi_1 < \xi < \xi_2)$$

$$\therefore f(x_1 + x_2) < f(x_1) + f(x_2)$$

费马(Fermat, 1601 – 1665)

法国数学家,他是一位律师,数学只是他的业余爱好.他兴趣广泛,博 览群书并善于思考,在数学上有许多 重大贡献.他特别爱好数论,他提出 的费马大定理:

"当n > 2时,方程 $x^n + y^n = z^n$ 无整数解"

至今尚未得到普遍的证明. 他还是微积分学的先驱,费马引理是后人从他研究最大值与最小值的方法中提炼出来的.

拉格朗日 (Lagrange, 1736 – 1813)

法国数学家.他在方程论,解析函数论, 及数论方面都作出了重要的贡献,近百 余年来,数学中的许多成就都直接或间 接地溯源于他的工作,他是对分析数学 产生全面影响的数学家之一.

柯西(Cauchy, 1789 – 1857)

法国数学家,他对数学的贡献主要集中 在微积分学,复变函数和微分方程方面. 一生发表论文800余篇,著书7本,《柯

西全集》共有 27 卷. 其中最重要的的是为巴黎综合学校编写的《分析教程》,《无穷小分析概论》,《微积分在几何上的应用》等,有思想有创建,对数学的影响广泛而深远. 他是经典分析的奠人之一,他为微积分所奠定的基础推动了分析的发展.