Exercices d'Algèbre

Exercice 1

Déterminer les quels des ensembles $E_1,\,E_2,\,E_3$ et E_4 sont des sous-espaces vectoriels de \mathbb{R}^3 :

$$E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - 7y = z\}$$

$$E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - z^2 = 0\}$$

$$E_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = x + y + z = 0\}$$

$$E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid z(x^2 + y^2) = 0\}$$

Correction

- 1. Pour E_1 :
 - (a) $(0,0,0) \in E_1$.
 - (b) Soient (x, y, z) et (x', y', z') deux éléments de E_1 . On a donc 3x - 7y = z et 3x' - 7y' = z'. Donc :

$$3(x + x') - 7(y + y') = z + z',$$

d'où
$$(x + x', y + y', z + z') \in E_1$$
.

(c) Soit $\lambda \in \mathbb{R}$ et $(x, y, z) \in E_1$. Alors la relation 3x - 7y = z implique que :

$$3(\lambda x) - 7(\lambda y) = \lambda z,$$

donc
$$\lambda(x, y, z) = (\lambda x, \lambda y, \lambda z) \in E_1$$
.

2. Pour E_2

$$E_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 - z^2 = 0\},$$
 c'est-à-dire $E_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x = z \text{ ou } x = -z\}.$

Les vecteurs (1,0,-1) et (1,0,1) appartiennent à E_2 , mais :

$$(1,0,-1) + (1,0,1) = (2,0,0),$$

n'appartient pas à E_2 Par conséquent, E_2 n'est pas un sous-espace vectoriel de \mathbb{R}^3 .

- 3. Pour E_3 :
- (a) $(0,0,0) \in E_3$.
- (b) Soient (x, y, z) et (x', y', z') deux éléments de E_3 . On a donc x + y - z = x + y + z = 0 et x' + y' - z' = x' + y' + z' = 0.

$$(x+x') + (y+y') - (z+z') = (x+x') + (y+y') + (z+z') = 0,$$

et $(x,y,z) + (x',y',z') = (x+x',y+y',z+z') \in E_3.$

(c) Soit $\lambda \in \mathbb{R}$ et $(x, y, z) \in E_3$. Alors la relation x + y - z = x + y + z = 0 implique que :

$$\lambda x + \lambda y - \lambda z = \lambda x + \lambda y + \lambda z = 0,$$

donc
$$\lambda(x, y, z) = (\lambda x, \lambda y, \lambda z) \in E_3$$
.

 E_3 est donc un sous-espace vectoriel de \mathbb{R}^3 .

- **4.** Pour E_4 :
- Les vecteurs (1,0,0) et (0,0,1) appartiennent à E_4 , mais leur somme :

$$(1,0,0) + (0,0,1) = (1,0,1),$$

ne lui appartient pas. Donc E_4 n'est pas un sous-espace vectoriel de \mathbb{R}^3 .

Exercice 2

On note $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à n. On suppose $n \geq 1$.

1. L'application

$$\begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R} \\ P & \mapsto & \int_0^1 P(x) \, dx \end{array}$$

est-elle linéaire?

- 2. L'application f est-elle injective, surjective, bijective?
- 3. L'application

$$\begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R} \\ P & \mapsto & \int_0^1 P^2(x) \, dx \end{array}$$

est-elle linéaire ? Injective, surjective, bijective ?

Correction

1. Application $P \mapsto \int_0^1 P(x) dx$

Une application est linéaire si elle satisfait les deux propriétés suivantes :

- 1. f(P+Q) = f(P) + f(Q) pour tous $P, Q \in \mathbb{R}_n[X]$.
- 2. $f(\alpha P) = \alpha f(P)$ pour tout $\alpha \in \mathbb{R}$ et $P \in \mathbb{R}_n[X]$.

Calculons:

$$f(P+Q) = \int_0^1 (P(x) + Q(x)) \, dx = \int_0^1 P(x) \, dx + \int_0^1 Q(x) \, dx = f(P) + f(Q).$$
$$f(\alpha P) = \int_0^1 \alpha P(x) \, dx = \alpha \int_0^1 P(x) \, dx = \alpha f(P).$$

L'application est donc linéaire.

2. Injection, Surjection, Bijection

Injectivité:

L'application f est injective si f(P) = 0 implique P = 0.

Si $f(P) = \int_0^1 P(x) dx = 0$, cela signifie que l'intégrale du polynôme P(x) sur [0,1] est nulle. Cependant, cela n'implique pas nécessairement que P(x) = 0 sur tout l'intervalle [0,1]. Par exemple, $P(x) = x - \frac{1}{2}$ satisfait $\int_0^1 P(x) dx = 0$, mais $P(x) \neq 0$.

Donc, f n'est pas injective.

Surjectivité

L'application f est surjective si tout élément de $\mathbb R$ est l'image d'un polynôme $P\in\mathbb R_n[X].$

Pour tout $c \in \mathbb{R}$, on peut choisir P(x) = c (un polynôme constant). Alors :

$$f(P) = \int_0^1 c \, dx = c.$$

Ainsi, f est surjective.

Bijection:

L'application n'est pas injective, mais elle est surjective. Donc, f n'est pas bijective.

3. Application $P \mapsto \int_0^1 P^2(x) dx$

Linéarité

Pour vérifier la linéarité, considérons :

$$f(P+Q) = \int_0^1 (P(x) + Q(x))^2 dx \neq \int_0^1 P^2(x) dx + \int_0^1 Q^2(x) dx = f(P) + f(Q),$$

car le terme 2P(x)Q(x) apparaît lors du développement de $(P(x)+Q(x))^2$. Donc, l'application n'est pas linéaire.

Injectivité

Si f(P) = 0, alors:

$$\int_0^1 P^2(x) \, dx = 0.$$

Cela implique que $P^2(x) = 0$ pour tout $x \in [0, 1]$, donc P(x) = 0. L'application est donc injective.

Surjectivité

L'application f n'est pas surjective. En effet, f(P) produit uniquement des valeurs positives ou nulles (car $P^2(x) \ge 0$). Par exemple, un réel négatif ne peut pas être atteint par f.

Donc, f n'est pas surjective.

Bijection

L'application est injective mais pas surjective. Donc, f n'est pas bijective.

Exercice 3

Soit $f: \mathbb{R}_n[X] \to \mathbb{R}_{n+1}[X]$ définie par :

$$P \mapsto Q = e^{X^2} \left(P e^{-X^2} \right)'.$$

- 1. Vérifier que $f \in \mathcal{L}(\mathbb{R}_n[X], \mathbb{R}_{n+1}[X])$.
- 2. Déterminer la matrice de f relativement aux bases canoniques de $\mathbb{R}_n[X]$ et $\mathbb{R}_{n+1}[X]$.
- 3. Déterminer $\ker f$ et $\operatorname{rg} f$.

Correction

1. Pour P élément de $\mathbb{R}_n[X]$,

$$f(P) = e^{X^2} \left(Pe^{-X^2} \right)' = e^{X^2} \left(P'e^{-X^2} - 2XPe^{-X^2} \right) = P' - 2XP.$$

Ainsi, si P est un polynôme de degré inférieur ou égal à n, alors f(P) = P' - 2XP est un polynôme de degré inférieur ou égal à n+1, et f est bien une application de $\mathbb{R}_n[X]$ dans $\mathbb{R}_{n+1}[X]$.

De plus, pour $(\lambda, \mu) \in \mathbb{R}^2$ et $(P, Q) \in \mathbb{R}_n[X]$, on a :

$$f(\lambda P + \mu Q) = (\lambda P + \mu Q)' - 2X(\lambda P + \mu Q) = \lambda (P' - 2XP) + \mu (Q' - 2XQ) = \lambda f(P) + \mu f(Q).$$

Donc, $f \in \mathcal{L}(\mathbb{R}_n[X], \mathbb{R}_{n+1}[X]).$

2. La matrice A cherchée est élément de $\mathcal{M}_{n+1,n}(\mathbb{R})$. Pour k=0, $f(X^k)=f(1)=-2X,$ et pour $1\leq k\leq n,$ $f(X^k)=kX^{k-1}-2X^{k+1}.$ On a donc :

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ -2 & 0 & 2 & 0 & \cdots & \vdots \\ 0 & -2 & 0 & \cdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \cdots & \ddots & \ddots & n \\ \vdots & \vdots & \cdots & \cdots & -2 & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & -2 \end{pmatrix}.$$

3. Soit $P \in \mathbb{R}_n[X]$ tel que f(P) = 0.

Si P n'est pas nul, alors -2XP a un degré strictement plus grand que P' et donc f(P) n'est pas nul.

Par suite, $\ker f = \{0\}$ (donc f est injective) et, d'après le théorème du rang,

$$\operatorname{rg} f = \dim(\mathbb{R}_n[X]) - \dim(\ker f) = n + 1.$$

Ce qui montre que Im f n'est pas $\mathbb{R}_{n+1}[X]$ (f n'est pas surjective).

Exercice 4

Déterminer une base de :

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + 2z = 0\}.$$

Correction

De l'équation x + y + 2z = 0, on peut exprimer x en fonction de y et z:

$$x = -y - 2z.$$

Un vecteur $(x, y, z) \in E$ s'écrit :

$$(x, y, z) = (-y - 2z, y, z).$$

On peut décomposer ce vecteur en :

$$(x, y, z) = y(-1, 1, 0) + z(-2, 0, 1).$$

Les vecteurs (-1,1,0) et (-2,0,1) sont linéairement indépendants et engendrent l'ensemble E.

Ainsi, une base de E est donnée par :

$$\{(-1,1,0),(-2,0,1)\}$$

Exercice 5

Soit $U = \{(u_n) \mid n \in \mathbb{N}\}$ l'ensemble des suites réelles. On considère :

$$F = \{ u \in U \mid \forall n \ge 0, \ u_{2n+1} = u_{2n} \},\$$

$$G = \{ u \in U \mid \forall n \ge 0, \ u_{2n+1} = -u_{2n} \}.$$

- 1. F et G sont-ils des sous-espaces vectoriels de U?
- 2. Est-il vrai que $F \oplus G = U$?

Correction

Étudions $F \cap G$:

Soit $n \in \mathbb{N}$, $u_n \in F \cap G$, alors :

$$\begin{cases} \forall n \in \mathbb{N}, & u_{2n+1} = u_{2n} \\ \forall n \in \mathbb{N}, & u_{2n+1} = -u_{2n} \end{cases}$$

Alors, $\forall n \in \mathbb{N}$, $u_{2n} = -u_{2n}$ soit $u_{2n} = 0$.

Donc
$$F \cap G = \{u_{2n} = 0\}$$

Étudions de $F \oplus G$:

Soit u_n une suite réelle quelconque.

 $n \in \mathbb{N}, u_n \in \mathbb{R}.$

Posons, pour $n \ge 0$:

$$f_{2n} = \frac{u_{2n} + u_{2n+1}}{2}, \quad g_{2n} = \frac{u_{2n} - u_{2n+1}}{2}.$$

$$f_{2n+1} = f_{2n}$$
$$g_{2n+1} = -g_{2n}.$$

On a bien $(f_n)_{n\in\mathbb{N}}\in F$ et $(g_n)_{n\in\mathbb{N}}\in G$.

Soit $n \geq 0$:

$$-u_{2n} = f_{2n} + g_{2n},$$

$$-u_{2n+1} = f_{2n} + g_{2n} = f_{2n+1} - g_{2n+1}.$$

On a montré que $F \oplus G = U$.