

TEST REPORT

FCC PART 15.247

Report Reference No CTL	.1804027093-WF
-------------------------	----------------

Compiled by: (position+printed name+signature)

Allen Wang (File administrators) Allen Wang
Nice Nong

Tested by:

(position+printed name+signature)

Nice Nong (Test Engineer)

Approved by:

(position+printed name+signature)

Ivan Xie (Manager)

Product Name..... Smart Plug

Model/Type reference WS086-D

WS087-D, WS088-D, WS089-D, WS090-D, WS091-D, WS081-D, List Model(s).....

WS082-D, WS083-D, WS084-D, WS085-D

Trade Mark N/A

FCC ID 2ACN3-WS086-D

Applicant's name Shenzhen Aoxingao Technology Co.,Ltd

GHI 3 Floor Block B Building 7, Qingxiang Road 1, Baoneng Address of applicant

Technology Park, Longhua Town, Shenzhen, China

Test Firm Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification.....

Standard...... FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of Receipt...... July 16, 2018

Date of Test Date...... July 16, 2018–Aug. 13, 2018

Data of Issue...... Aug. 13, 2018

Result Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1804027093-WF	Aug. 13, 2018
rest Report No	O1E1004027035-W1	Date of issue

Equipment under Test : Smart Plug

Model /Type : WS086-D

: WS087-D, WS088-D, WS089-D, WS090-D,

Listed Models WS091-D, WS081-D, WS082-D, WS083-D,

WS084-D, WS085-D

Applicant : Shenzhen Aoxingao Technology Co.,Ltd

Address : GHI 3 Floor Block B Building 7, Qingxiang Road 1,

Baoneng Technology Park, Longhua Town,

Shenzhen, China

Manufacturer : Shenzhen Aoxingao Technology Co.,Ltd

Address : GHI 3 Floor Block B Building 7, Qingxiang Road 1,

Baoneng Technology Park, Longhua Town,

Shenzhen, China

Test result	Pass *

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2018-08-13	CTL1804027093-WF	Tracy Qi

1.	SIIN	Table of Contents MMARY	Page
1.	1.1.	TEST STANDARDS	
	1.2.	Test Description	
	1.3.	TEST FACILITY	•
	1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2.	GEN	NERAL INFORMATION	
	2.1.	Environmental conditions	
	2.2.	GENERAL DESCRIPTION OF EUT	
	2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
	2.4.	EQUIPMENTS USED DURING THE TEST	
	2.5.	RELATED SUBMITTAL(S) / GRANT (S)	
	2.6.	Modifications	9
3.	TES	ST CONDITIONS AND RESULTS	10
	3.1.	CONDUCTED EMISSIONS TEST	10
	3.2.	RADIATED EMISSIONS AND BAND EDGE	13
	3.3.	MAXIMUM CONDUCTED OUTPUT POWER	20
	3.4.	Power Spectral Density	21
	3.5.	6dB Bandwidth	
	3.6.	Out-of-band Emissions	
	3.7.	Antenna Requirement	34
4.	TES	ST SETUP PHOTOS OF THE EUT	35
5.	DH	OTOS OF THE EUT	21
3.	rnc	Shenzhen Chinalogy Technology Testing Technology	

V1.0 Page 5 of 39 Report No.: CTL1804027093-WF

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Per Pering Technology

V1.0 Page 6 of 39 Report No.: CTL1804027093-WF

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 399832

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 7 of 39 Report No.: CTL1804027093-WF

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	<u> </u>
Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Smart Plug
Model/Type reference:	WS086-D
Power supply:	AC 120V/60Hz
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)
Modulation:	802.11b: DS\$\$ 802.11g/802.11n(H20): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Channel separation:	5MHz
Antenna type:	PCB antenna
Antenna gain:	OdBi CTL

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

There are 11 channels provided to the EUT and Channel 01/06/11 were selected for WIFI test. During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Operation Frequency WIFI:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	4 2427		2462
5	2432		
6	2437		
7	2442		

Note: The line display in grey were the channel selected for testing

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power Power Spectral Density 6dB Bandwidth Spurious RF conducted emission Radiated Emission 9kHz~1GHz& Radiated Emission 1GHz~10th Harmonic	11b/DSSS	1 Mbps	1/6/11
	11g/OFDM	6 Mbps	1/6/11
	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11

2.4. Equipments Used during the Test

		1			
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.1 2	2018/06/02	2019/06/01
LISN	R&S	ESH2-Z5	860014/010	2018/06/02	2019/06/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2018/06/02	2019/06/01
EMI Test Receiver	R&S	ESCI	103710	2018/06/02	2019/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2018/05/21	2019/05/20
Spectrum Analyzer	Agilent	N9020	US46220290	2018/01/17	2019/01/16
Power Meter	Anritsu	ML2487B	110553	2018/06/02	2019/06/01
Power Sensor	Anritsu	MA2411B	100345	2018/05/21	2019/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2018/05/21	2019/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2018/05/19	2019/05/18
Active Loop Antenna	SCHWARZBE CK	FMZB1519	1519-037	2018/05/19	2019/05/18
Amplifier	Agilent	8349B	3008A02306	2018/05/19	2019/05/18
Amplifier	Agilent	8447D	2944A10176	2018/05/19	2019/05/18
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2018/05/20	2019/05/19
High-Pass Filter	K&L	9SH10-2700/X1 2750-O/O	N/A	2018/05/20	2019/05/19
High-Pass Filter	K&L	41H10-1375/U1 2750-O/O	N/A	2018/05/20	2019/05/19
Coaxial Cables	HUBER+SUHN	SUCOFLEX	10m	2018/06/02	2019/06/01

	ER	104PEA-10M			
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-3M	3m	2018/06/02	2019/06/01
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-3M	3m	2018/06/02	2019/06/01
RF Cable	Megalon	RF-A303	N/A	2018/06/02	2019/06/01

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

V1.0 Page 11 of 39 Report No.: CTL1804027093-WF

TEST RESULTS

Remark:802.11b/802.11g/802.11n(H20) mode all have been tested ,only worse case of 802.11b High Channel was reported.

SCAN TABLE: "Voltage (9K-30M)FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL180418714_fin"

18/04/2018 1	6:15						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dBµV	dB	dΒμV	dB			
0.554000	45.30	10.2	56	10.7	QP	N	GND
0.656000	44.20	10.2	56	11.8	QP	N	GND
0.692000	43.20	10.2	56	12.8	QP	N	GND
1.688000	44.10	10.3	56	11.9	QP	N	GND
1.772000	43.10	10.3	56	12.9	QP	N	GND
2.720000	43.20	10.4	56	12.8	QP	N	GND

MEASUREMENT RESULT: "CTL180418714 fin2"

18/04/2018 16	:15						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.382000	34.90	10.2	48	13.3	AV	N	GND
0.458000	34.80	10.2	47	11.9	AV	N	GND
0.466000	34.40	10.2	47	12.2	AV	N	GND
0.500000	34.40	10.2	46	11.6	AV	N	GND
0.548000	33.90	10.2	46	12.1	AV	N	GND
2.708000	31.60	10.4	46	14.4	AV	N	GND

3.2. Radiated Emissions and Band Edge

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark:

- 1. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 2. All three channels (lowest/middle/highest) of each mode were measured above1GHz and recorded worst case at 802.11b mode.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

V1.0 Page 15 of 39 Report No.: CTL1804027093-WF

MEASUREMENT RESULT: "CTL180424308 red"

2018-4-24 9: Frequency MHz	48 Level dB礦/m	Transd dB	Limit dB礦/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	29.00	13.4	40.0	11.0		0.0	0.00	VERTICAL
55.220000	16.30	13.4	40.0	23.7		0.0	0.00	VERTICAL
117.300000	21.70	12.6	40.0	18.3		0.0	0.00	VERTICAL
268.620000	25.20	13.6	47.0	21.8		0.0	0.00	VERTICAL
472.320000	25.00	18.5	47.0	22.0		0.0	0.00	VERTICAL
972.840000	30.20	26.0	47.0	16.8		0.0	0.00	VERTICAL

For 1GHz to 25GHz

802.11b Mode (above 1GHz)

Note: 802.11b/802.11g/802.11n (H20) all have been tested, only worse case 802.11b is reported

Freq	uency(MH	z):	24	12		Polarity:		HORIZ	HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction		
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor		
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)		
4824.00	57.33	PK	74	16.67	52.78	33.52	6.92	35.89	4.55		
4824.00	51.76	AV	54	2.24	47.21	33.52	6.92	35.89	4.55		
5125.75	43.91	PK	74	30.09	36.71	34.38	7.10	34.28	7.20		
5125.75		AV	54					-			
7236.00	48.17	PK	74	25.83	36.90	37.1	9.19	35.02	11.27		
7236.00		AV	54								

Freq	uency(MH	z):	24	12		Polarity:		VER	TICAL
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4824.00	58.36	PK	74	15.64	53.81	33.52	6.92	35.89	4.55
4824.00	51.92	AV	54	2.08	47.37	33.52	6.92	35.89	4.55
5125.75	45.68	PK	74	28.32	38.48	34.38	7.10	34.28	7.20
5125.75		AV	54	-	-		1		
7236.00	48.13	PK	74	25.87	36.86	37.1	9.19	35.02	11.27
7236.00		AV	54			+	-0		
		he	Na						

Freq	uency(MH	z):	24	37		Polarity:		HORIZ	ZONTAL
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4874.00	57.06	PK	74	16.94	50.82	33.59	6.95	34.3	6.24
4874.00	50.33	AV	54	3.67	44.09	33.59	6.95	34.3	6.24
5215.50	44.12	PK	74	29.88	36.52	34.56	7.15	34.11	7.60
5215.50		AV	54			C/7,			
7311.00	47.81	PK	74	26.19	36.15	37.44	9.22	35	11.66
7311.00		AV	54	-	5				

Freq	uency(MH	z):	24	37		Polarity:	VERTICAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4874.00	58.39	PK	74	15.61	52.05	33.59	6.95	34.2	6.34
4874.00	51.74	AV	54	2.26	45.4	33.59	6.95	34.2	6.34
5215.50	44.09	PK	74	29.91	37.19	34.07	7.05	34.22	6.90
5215.50		AV	54						
7311.00	48.64	PK	74	25.36	36.98	37.44	9.22	35	11.66
7311.00		AV	54						

Freq	juency(MH	lz):	24	62		Polarity:		HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction	
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor	
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)	
4924.00	57.62	PK	74	16.38	53.55	33.71	6.98	35.91	4.78	
4924.00	50.39	AV	54	3.61	43.73	33.71	6.98	35.91	4.78	
5105.50	44.87	PK	74	29.13	41.24	34.34	7.09	34.27	7.17	
5105.50		AV	54	-	-					
7386.00	47.24	PK	74	26.76	37.4	37.61	9.25	34.98	11.88	
7386.00	-	AV	54	-			-	-		

Freq	uency(MH	z):	2462			Polarity:		VER	VERTICAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction		
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor		
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)		
4924.00	58.38	PK	74	15.62	53.6	33.71	6.98	35.91	4.78		
4924.00	51.91	AV	54	2.09	47.13	33.71	6.98	35.91	4.78		
5105.50	46.03	PK	74	27.97	38.86	34.34	7.09	34.27	7.17		
5105.50		AV	54	-	1						
7386.00	47.94	PK	74	26.06	36.06	37.61	9.25	34.98	11.88		
7386.00		AV	54		-3	(A =	- L				

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Ch Testing Technolos

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20) all have been tested, only worse case 802.11b is reported

Fred	Frequency(MHz):		24	12		Polarity:		HORIZONTAL	
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2412.00	109.37	PK			75.98	28.78	4.61	0	33.39
2412.00	104.82	AV			71.43	28.78	4.61	0	33.39
2357.75	43.71	PK	74	30.29	10.63	28.52	4.56	0	33.08
2357.75		AV	54						
2390.00	57.05	PK	74	16.95	23.73	28.72	4.60	0	33.32
2390.00	51.47	AV	54	2.53	18.15	28.72	4.60	0	33.32
2400.00	58.12	PK	74	15.88	24.73	28.78	4.61	0	33.39
2400.00	51.79	AV	54	2.21	18.4	28.78	4.61	0	33.39

Freq	Frequency(MHz):		24	12		Polarity:		VERTICAL	
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2412.00	110.24	PK	7,	COMES TO	76.85	28.78	4.61	0	33.39
2412.00	105.96	AV	X	-	72.57	28.78	4.61	0	33.39
2357.75	43.12	PK	74	30.88	10.04	28.52	4.56	0	33.08
2357.75		AV	54			72/			
2390.00	57.37	PK	74	16.63	24.05	28.72	4.60	0	33.32
2390.00	51.88	AV	54	2.12	18.56	28.72	4.60	0	33.32
2400.00	58.72	PK	74	15.28	25.33	28.78	4.61	0	33.39
2400.00	52.95	AV	54	1.05	19.56	28.78	4.61	0	33.39
		17	71.		11/2/1	119/			

Freq	Frequency(MHz):		24	62	Polarity:		HORIZONTAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2462.00	109.37	PK	7	T	75.75	28.92	4.7	0	33.62
2462.00	104.71	AV		CSti	71.09	28.92	4.7	0	33.62
2483.50	43.64	PK	74	30.36	10.01	28.93	4.7	0	33.63
2483.50		AV	54	-			-		
2486.75	44.98	PK	74	29.02	11.34	28.94	4.71	0	33.64
2486.75		AV	54				-		
2500.00	43.69	PK	74	30.31	10.01	28.96	4.72	0	33.68
2500.00		AV	54						

Freq	Frequency(MHz):		24	2462 Polarity:			VERTICAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2462.00	109.83	PK			76.21	28.92	4.7	0	33.62
2462.00	104.71	AV			71.09	28.92	4.7	0	33.62
2483.50	43.47	PK	74	30.53	9.84	28.93	4.7	0	33.63
2483.50		AV	54						
2486.75	44.78	PK	74	29.22	11.14	28.94	4.71	0	33.64
2486.75		AV	54						
2500.00	43.85	PK	74	30.15	10.17	28.96	4.72	0	33.68
2500.00		AV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

V1.0 Page 20 of 39 Report No.: CTL1804027093-WF

3.3. Maximum Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

+A WIFI XA

Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	13.52		
802.11b	06	14.69	30.00	Pass
	(2) 11	16.73	To l	
	5 01	12.97	7	
802.11g	06	13.79	30.00	Pass
	11	15.74		
	01	10.70		
802.11n(HT20)	06	12.95	30.00	Pass
	(11)	14.49	03	
Note: 1.The test resu	Its including the ca	ble lose.	0.	
		esting Tech		

V1.0 Page 21 of 39 Report No.: CTL1804027093-WF

3.4. Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

WIFI

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	01	-16.093	0	
802.11b	06	-14.885	8.00	Pass
	11	-13.043		
	01	-17.764		
802.11g	06	-16.868	8.00	Pass
	11	-15.066		
	01	-19.247		
802.11n(HT20)	06	-17.006	8.00	Pass
	11	-15.446		

Test plot as follows:

V1.0 Page 24 of 39 Report No.: CTL1804027093-WF

3.5. 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

WIFI

Туре	Channel	6dB Bandwidth (MHz)	99% OBW (MHz)	Limit (KHz)	Result
	01	8.580	11.216		
802.11b	06	8.555	11.237	≥500	Pass
	ţ	8.556	11.277		
802.11g	01	16.39	16.434		Pass
	06	16.38	16.434	≥500	
	11)	16.38	16.448	7 /	
	01	17.48	17.662		
802.11n(HT20)	06	17.45	17.654	≥500	Pass
	11	17.30	17.659		
Test plot as follow	vs:	Testing	Technie		

Page 26 of 39

V1.0 Page 27 of 39 Report No.: CTL1804027093-WF

3.6. Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Chi Testing Technolo

Test plot as follows:

V1.0 Page 33 of 39 Report No.: CTL1804027093-WF

Band-edge Measurements for RF Conducted Emissions:

V1.0 Page 34 of 39 Report No.: CTL1804027093-WF

3.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of antenna was 0dBi.

4. Test Setup Photos of the EUT

5. Photos of the EUT

External Photos of EUT

Internal Photos of EUT

