Questions of the day

- What's the best way to store a graph in memory?
- How do we analyze algorithms using graphs?

Graph representation and analysis

William Hendrix

Outline

- Review
 - Iterative dynamic programming
 - Dynamic programming practice
 - Greedy algorithms
- Graph theory
- Graph representations
- Graph analysis

Dynamic programming review

- Design strategy for recursive problems with repeated subproblems
- 1. Solve problem recursively
 - Recurrence and base cases
- 2. Determine data structure
 - Usually based on number of changing parameters
 - E.g., LCS: start index of each string => 2D array

Memoization

- 3. Determine sentinel value
 - Not a valid solution
- 4. Wrapper function, memo check, store before returning

Iterative dynamic programming

- 3. Determine iteration order
 - Start at base case, move in opposition to recursion
- 4. Decide if space complexity can be reduced
- 5. Allocate data structure, write loops, recursion and return => reads and writes, problem variables => loop variables, return answer

Dynamic programming example

- Binary string splitting
 - Given a string a and index i, return a[1..i] and a[i+1..n]
 - Trivial, linear time
- Multiway string splitting
 - Use BSS to split string in multiple places
 - Output: order of cuts that minimizes cost
 - Example: n=1000, i=(10,100,500,700,850)

- Left-to-right:
 - $10: \cos t = 1000$
 - 100: cost = 990
 - 500: cost = 900
 - 700: cost = 500
 - 850: cost = 300
 - Total cost = 3690

- Binary splitting:
 - 500: cost = 1000
 - 100: cost = 500
 - 700: cost = 500
 - 850: cost = 300
 - $10: \cos t = 100$
 - Total cost = 2400

Identifying optimal substructure

Make a decision

- Can we use recursion to solve the rest?
 - Yes!
- How do we combine recursive solutions to solve overall problem?
 - For each decision, cost of cut + best cost(LHS) + best cost(RHS)
 - Best cost = min cost of all decisions
 - Base case
 - No cuts left to make
 - Cost = 0
- Do subproblems overlap?
 - Yes: cut at 500, then 700 yields same "pieces" as reverse order

String splitting

- Write recurrence
 - Best cost = min{length + best cost(LHS) + best cost(RHS)}

$$- C(a) = n + \min_{x} \{C(a[1..x]) + C(a[x+1..n])\}\$$

$$- C(a) = n + \min_{x} \{C(a[1..x]) + C(a[x+1..n])\}$$
$$- C(a[x..y]) = y - x + \min_{i} \{C(a[x..i]) + C(a[i..y])\}$$

- Identify parameters of recursive function
 - String, cuts, x, y
- Data structure: cuts×cuts
- Base case: no cuts between x and y (consecutive)

	10	100	<i>500</i>	700	850	1000	T7' 1
1						←	Final solution
10				?			bolution
100							
<i>500</i>							
700							
<i>850</i>							7

• Answer the following questions about a DP algorithm to calculate the cost of string splitting based on the following recurrence:

$$C(i,j) = \begin{cases} 0, & \text{if } j = i+1 \\ \ell[j] - \ell[i] + \min_{i < x < j} \{C(i,x) + C(x,j])\}, & \text{otherwise} \end{cases}$$

where ℓ is the list of cut indexes and $\min_{i < x < j} \{C(i, x) + C(x, j)\}$ is the min value of C(i, x) + C(x, j) for all values of x between i and j (exclusive)

- 1. What is a reasonable sentinel value for a memoized algorithm?
- 2. Give pseudocode for a memoized algorithm.

```
1. -1
2.
Helper(n, l):
Append 0 and n to the beginning and end of l
numcuts = |I|
dp = Array(numcuts, numcuts)
Initialize do to -1
```

 Answer the following questions about a DP algorithm to calculate the cost of string splitting based on the following recurrence:

$$C(i,j) = \begin{cases} 0, & \text{if } j = i+1 \\ \ell[j] - \ell[i] + \min_{i < x < j} \{C(i,x) + C(x,j])\}, & \text{otherwise} \end{cases}$$

where ℓ is the list of cut indexes and $\min_{i < x < j} \{C(i, x) + C(x, j)\}$ is the min value of C(i, x) + C(x, j) for all values of x between i and j (exclusive)

1. -1 (cannot be nonnegative)

2.

```
Input: a: string of length n
Input: \ell: locations at which to split a
Input: k: length of \ell
Output: Minimum cost of splitting a
1 Algorithm: MinSplit
2 cost = Array(k+2, k+2)
3 Initialize cost to -1
4 Prepend 1 to \ell and append n
5 return MemoSplit(1, k+2)
```

```
1 Algorithm: MemoSplit(x, y)
 2 if cost[x,y] \neq -1 then
      return cost[x, y]
 4 else if y = x + 1 then
      cost[x, y] = 0
 6 else
      mincost = \infty
       for z = x + 1 to y - 1 do
          temp = \ell[y] - \ell[x] + \text{MemoSplit}(x, z) + \text{MemoSplit}(z, y)
          mincost = min\{mincost, temp\}
10
       end
11
       cost[x, y] = mincost
13 end
                                                                   9
14 return cost[x,y]
```

 Answer the following questions about a DP algorithm to calculate the cost of string splitting based on the following recurrence:

$$C(i,j) = \begin{cases} 0, & \text{if } j = i+1 \\ \ell[j] - \ell[i] + \min_{i < x < j} \{C(i,x) + C(x,j])\}, & \text{otherwise} \end{cases}$$

where ℓ is the list of cut indexes and $\min_{i < x < j} \{C(i, x) + C(x, j)\}$ is the min value of C(i, x) + C(x, j) for all values of x between i and j (exclusive)

- 3. What are the recursive calls made by C(1, 6) when n = 6?
- 4. What is a valid iteration order for an iterative DP algorithm?

		1	100	500	700	850	1000
٨	1	(
$\sqrt{1}$	100			1><			1
	<i>500</i>				3		
	700						
)	<i>850</i>						7
	1000						

Can space be reduced?

 Answer the following questions about a DP algorithm to calculate the cost of string splitting based on the following recurrence:

$$C(i,j) = \begin{cases} 0, & \text{if } j = i+1 \\ \ell[j] - \ell[i] + \min_{i < x < j} \{C(i,x) + C(x,j])\}, & \text{otherwise} \end{cases}$$

where ℓ is the list of cut indexes and $\min_{i < x < j} \{C(i, x) + C(x, j)\}$ is the min value of C(i, x) + C(x, j) for all values of x between i and j (exclusive)

- 3. Everything to the left and everything below
- 4. Bottom-to-top, left-to-right or left-to-right, bottom-to-top

	1	100	500	700	850	1000	
1						*	
100							
500							
700							
<i>850</i>						Ţ	
1000							

5. No!

Iterative pseudocode

```
Input: a: string of length n
   Input: \ell: locations in a to cut
   Input: k: length of \ell
   Output: Minimum cost to split a at \ell
1 Algorithm: IterSplit
2 Add 1 and n to the beginning and end of \ell
s cost = Array(k+2, k+2)
4 for x = 1 to k + 1 do
      for y = x - 1 down to 1 do
          if y = x - 1 then
             cost[x, y] = 0
 7
          else
             mincost = \infty
 9
             for z = x + 1 to y - 1 do
10
                 temp = \ell[y] - \ell[x] + cost[x, z] + cost[z, y]
11
                 mincost = min\{mincost, temp\}
12
             end
13
             cost[x, y] = mincost
14
          end
15
      end
16
17 end
18 return cost[1, k+2]
```

Could also make separate loop for base cases

Recursive case

Complexity: $\Theta(k^3)$

Space: $\Theta(k^2)$

Not possible to reduce space complexity

Greedy algorithms review

- Strategy:
 - Break down problem into sequence of decisions
 - Make "best" choice for each decision
- **Example:** find largest subset with sum below a threshold
 - Choose min element
 - Greedy idea: min element gives us more "room" to find other elements
 - Repeat until next element would exceed threshold
- Proof of correctness is tricky
 - Intuition: greedy is only correct when greedy choice always "as least as good" as any alternative
 - Many greedy algorithms are incorrect
- Natural choice for optimization problems
- Very efficient (heaps!)
- Can be used as a heuristic
- Often not correct

Graph theory review

- Mathematical abstraction for network of relationships
- Vertices (nodes): set of objects
 - Denoted as V
- **Edges:** set of relationships between vertices
 - Connect two vertices together
 - Denoted as E
- Graph variants
 - **Simple** graphs vs. multigraphs
 - No self loops
 - No edges between same pair of vertices
 - Directed vs. undirected
 - Symmetric or asymmetric relationships
 - Weighted vs. unweighted
 - Edges have "length" or "strength"
 - Labelled vs. unlabelled
 - Vertices and/or edges may have categories

vs.

Graph theory review

- **Order:** number of vertices in the graph
 - Usually denoted as n (or |V|)
- **Size:** number of edges in the graph
 - Usually represented as m (or |E|)
 - Graph complexity can depend on both *n* and *m*
 - $m = O(n^2)$
- **Adjacent:** two vertices with an edge between them
- **Incident:** vertex and an edge where edge connects to vertex
- **Degree:** number of vertices adjacent to a given vertex
 - Denoted deg(v) or $deg_G(v)$
 - Max degree: denoted as Δ or $\Delta(G)$
 - Min degree: denoted as δ or $\delta(G)$
- **Neighborhood:** set of vertices adjacent to a given vertex
 - Denoted N(v) or $N_G(v)$

Handshaking Lemma

Theorem 1. For any simple graph G = (V, E),

$$\sum_{v \in V} \deg(v) = 2|E|,$$

where deg(v) is the degree of vertex v in graph G.

Proof (informal). When m = 0, every vertex has degree 0, so degree sum = 0 = 2m.

Suppose true for graphs with k edges, and let G have k+1 edges.

Remove an edge (u, v)

- \Rightarrow new graph has k edges
- \Rightarrow new graph has degree sum = 2k.

Degree of u and v one more in G, otherwise the same

G has degree sum 2k + 2 = 2m.

Graph representation

- Three main representations of a graph in memory
 - C++: look up Boost Graph Library (<u>www.boost.org</u>)
- Adjacency matrix
 - n by n matrix
 - a_{ij} is 1 if v_i and v_j are adjacent, 0 otherwise

$v_{_1}$	6-	7	χO	0	1
v_{2}	1	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$, የ 1	О	О
$v_3^{}$	0	۲)	Ø	1	О
v_4	О	0	1	ø	1
$v_{\scriptscriptstyle 5}$	1	0	0	1	D

- Symmetric for undirected graphs
 - *Optimization:* only store lower triangle
- Uses numbers > 1 for multiple edges
- Or: a_{ij} stores edge weight
 - Use sentinel value like o or Inf for missing edges
- Edge/vertex labels stored separately

Common graph operations

- Graph(n)
 - Initializes a graph with n vertices and o edges
- AddEdge(u, v)
 - Adds an edge from u to v
- RemoveEdge(u, v)
 - Removes the edge (u, v) from the graph
- IsAdjacent(u, v)
 - Returns whether (u, v) is an edge of the graph
- GetNeighbors(v)
 - Returns set of neighbors of v

Adjacency matrix operations

• Graph(n)

- Initialize n by n matrix
- $-\Theta(n^2)$ time

• AddEdge(u, v)

- $a_{uv} = 1$
- $-\Theta(1)$ time

• RemoveEdge(u, v)

- $-a_{uv} = 0$
- $-\Theta(1)$ time

IsAdjacent(u, v)

- Return $a_{uv} = 1$
- $-\Theta(1)$ time

GetNeighbors(v)

- Scan row v of matrix and add u to list if $a_{vu} = 1$
- $-\Theta(n)$ time

Graph representations, cont'd

Adjacency list

Stores list (or set) of neighbors for each vertex

v_1 :	2	5	
v_2 :	1	3	Y
v_3 :	2	4	
v_4 2	3	5	
v_5 :	1	4	

- Neighbors are often sorted
 - Sometimes use hash table for large graphs
- Can store edge weights or labels in struct/object
- Can also store edges using a linked structure
 - Improves performance of adding/deleting vertices

Hash-based adjacency list

Main idea

- Store neighbors in hash table
- Graph: make empty hash tables
- Add neighbors: insert
- Remove: delete
- IsAdjacent: search
- GetNeighbors: iterate

Operation	Adjacency list
Graph(n)	
AddEdge(u, v)	
RemoveEdge(u, v)	
IsAdjacent(u, v)	
GetNeighbors(v)	

^{*} Expected case

[†] Amortized

Hash-based adjacency list

Main idea

- Store neighbors in hash table
- Graph: make empty hash tables
- Add neighbors: insert
- Remove: delete
- IsAdjacent: search
- GetNeighbors: iterate
- Reduces expected complexity
- GetNeighbors still linear
- More complex
- Higher coefficients
- Poor worst-case performance

Operation	Adjacency list
Graph(n)	$\Theta(n)$
AddEdge(u, v)	Θ(1)*†
RemoveEdge(u, v)	$\Theta(1)^*$
IsAdjacent(u, v)	$\Theta(1)^*$
GetNeighbors(v)	$\Theta(\deg(v))$

^{*} Expected case

[†] Amortized

Graph representations, cont'd

Edge list

- List of all edges in graph
 - Usually sorted
 - Undirected: may or may not include "reverse" edges

1	2
1	5
2	3
3	4
4	5

- Edge weights or labels appear after vertex IDs
- Order and vertex labels represented separately

Graph representation analysis

Operation	Adjacency matrix	Adjacency list	Edge list
Graph(n)	$\Theta(n^2)$	$\Theta(n)$	$\Theta(1)$
AddEdge(u, v)	$\Theta(1)$	$\Theta(1)^*$	$\Theta(m)$
RemoveEdge(u, v)	$\Theta(1)$	$\Theta(1)^*$	$\Theta(m)$
IsAdjacent(u, v)	$\Theta(1)$	$\Theta(1)^*$	$\Theta(\lg(m))$
GetNeighbors(v)	$\Theta(n)$	$\Theta(\deg(v))$	Θ(m)
Convert from:	Adjacency matrix	Adjacency list	Edge list
Adj. matrix	n/a	$\Theta(n^2)$	$\Theta(n^2)$
Adj. list	$\Theta(n^2)$	n/a	$\Theta(m)$
Edge list	$\Theta(n^2)$	$\Theta(m)$	n/a
Space:	$\Theta(n^2)$	$\Theta(m+n)$	$\Theta(m)$

- Matrix: good for small graphs or dense graphs
 - Dense: significant fraction of edges exist, $m = \Theta(n^2)$
- Adj. list: good for sparse graphs
 - Most "real world" graphs are sparse
- Edge list: commonly used to store on disk

Facebook friend graph statistics

- As of May 2011:
 - *− n*: ~721 million
 - − *m*: ~68.7 billion
 - $-\Delta$: 5000 (hard cap)
 - Avg degree: ~191
 - Median degree: 99
 - 99.91% are connected together
 - 99.6% are within 6 "hops" of one another
 - 92% are within 5 "hops"
- Source: "The Anatomy of the Facebook Social Graph," J. Ugander et al., arXiv.org, Nov 2011.

Very sparse!

Facebook graph representation

Average case timing (approx.):

Best choice!

Operation	Adjacency matrix	Adjacency list	Edge list
Graph(n)	~ 2 years	721 ms	1 ns
AddEdge(u, v)	1 ns	2 ns	68.7 s
RemoveEdge(u, v)	1 ns	2 ns	68.7 s
IsAdjacent (u, v)	1 ns	2 ns	36 ns
GetNeighbors(v)	721 ms	191 ns	68.7 s
Convert from:	Adjacency matrix	Adjacency list	Edge list
Convert from: Adj. matrix	Adjacency matrix n/a	Adjacency list ~ 2 years	Edge list ~ 2 years
		J J	
Adj. matrix	n/a	~ 2 years	~ 2 years

Graph algorithm analysis

- Analysis similar to general algorithm analysis
- Complexity given in terms of graph features
 - n: order (vertices)
 - m: size (edges)
 - $\deg(v)$: all neighbors of a given vertex
 - $-\Delta$: max degree
- Also depends on graph representation
- Sometimes useful to add up function calls separately
- Example

,= t

Input: G = (V, E): a graph

Input: n: the number of vertices in G

Input: m: the number of edges in G

Output: the average degree of the vertices in G

1 Algorithm: AvgDegree

- $\mathbf{2} \ sum = 0$
- for v in V do
- 4 | for u in N(v) do
- 5 sum = sum + 1
- 7 end
- s return sum/n

end

Dominance relationships

$$\deg(v) = O(\Delta), \ O(n), \ O(m)$$

$$\Delta = O(n), \ O(m)$$

$$m = O(n^2)$$

No direct relationship

b/w n and m

Graph algorithm analysis

- Analysis similar to general algorithm analysis
- Complexity given in terms of graph features
 - n: order (vertices)
 - m: size (edges)
 - $\deg(v)$: all neighbors of a given vertex
 - $-\Delta$: max degree
- Also depends on graph representation
- Sometimes useful to add up function calls separately

```
    Example
```

```
Cost to calculate N(v): \Theta(\deg(v)) for list \Theta(n) for matrix
```

```
Total: \sum_{v \in V} \Theta(\deg(v)) = \Theta(m) \text{ for list } \Theta(n^2) \text{ for matrix}
```

```
Input: G = (V, E): a graph
Input: n: the number of vertices in G
Input: m: the number of edges in G
Output: the average degree of the vertices in G
1 Algorithm: AvgDegree

2 sum = 0
3 for v in V do
4 | for u in N(v) do
5 | sum = sum + 1
6 | end
7 end
8 return sum/n
```

$\frac{\text{Dominance relationships}}{\deg(v) = O(\Delta),\ O(n),\ O(m)}$ $\Delta = O(n),\ O(m)$ $m = O(n^2)$ No direct relationship b/w n and m

 $\Theta(1)$ n iterations $\Theta(\deg(v))$ iterations $\Theta(1)$

 $\Theta(1)$ 28

Graph theory example

• What is the worst-case complexity for the following algorithm to compute the average degree in a graph?

```
Input: G = (V, E): a graph
Input: n: the number of vertices in G
Input: m: the number of edges in G
Output: the average degree of the vertices in G
1 Algorithm: FastAverage
2 return 2m/n
```

Graph theory example

• What is the worst-case complexity for the following algorithm to compute the average degree in a graph?

```
Input: G = (V, E): a graph
Input: n: the number of vertices in G
Input: m: the number of edges in G
Output: the average degree of the vertices in G
1 Algorithm: FastAverage
2 return 2m/n
```

• **Moral of the story:** knowledge is power

Coming up

- Traversal-based algorithms
- Weighted graph algorithms
- Recommended readings: Sections 13.1-13.4
- Practice problems: R-13.1, R-13.2, R-13.5, R-13.7, C-13.4