UTA100 2023 比赛回顾

Jun Zhang

1. 前言

UTA100 2023 已于数月前落幕,今年自己没有上场比赛只是以后援的身份参与其中,也是一份难得的体验。趁着最近有时间,就从统计的角度来回顾一下这场比赛。

2019 年之前的 UTA 比赛数据,官方都提供 Excel 文件可以直接下载。自从 UTA 换了东家之后,现在必需自己想办法从网上抓取。本短文中所使用的比赛数据均来自于 UTA2023 官方所使用的 Multi Sport Australia 网站(https://www.multisportaustralia.com.au/races/ultra-trail-australia-2023/)。

2. 比赛统计信息

2.1 概要信息

今年的 UTA100 重回以前的经典比赛路线,总共有 1108 人报名参赛,其中完赛 834 人,未完成 149 人,未出发 125 人。

Status		Total	
Finished			834
Did	Not	Finish	149
Not	Yet	Started	125

2.2 完赛时间分布

从图中可以看出,12h以内完赛的只有33人,越野精英人群;13h到14h以内这一时段的人数很多,这些选手就是奔着银扣去的,够拼够努力;中间14h至20h以内完赛的人数居多,占了大多数;随着比赛的延续,再往后完赛的人数逐渐减少。

2.3 未完赛(DNF)

这个图中统计的是 DNF 选手最后计时点的位置,以进入 CP5 和 CP4 之后退赛的居多,占总 DNF 人数的 51.7%。

2.4 性别分组

其中,男子报名 895 人,完赛 671 人,完赛率 75.0%;女子报名 213 人,完赛 163 人,完赛率 76.5%。

2.5 年龄组别

可以看出今年 UTA100 的三大主要年龄组分别为 40-44, 45-59 和 35-39,占总报名人数的 49.5%,总完赛的 50.1%,而年龄最大的 70-74 组亦有 4 人报名 3 人完赛。

3. 比赛用时分析

3.1 比赛时序视图

UTA100 2023 Race Time (hours)

UTA100 2023 Race Time (hours)

这个 3D 视图中,横向是比赛名次,纵向是里程,竖向是完赛时间(hours)。从图中可以看出,前面的精英选手和后面的差距明显,而 20 小时之后,完赛时间增加显著,长时间的运动让完赛变得越来越困难、越拖越漫长,中段 12h 到 20h 完赛的数据相对线性、平稳。

这是投影到平面上的 2D 视图。

3.2 比赛时序分析

定义比赛中间计时点 n 的<u>分段用时比值 P_n (Proportion)</u>为:

$$P_n = \frac{T_{n-1, n}}{T_{n-1, n+1}}$$

这里 $n=2\dots 19$ 。该数据项的意思是指第 n 个计时点到前一个计时点 n-1 的用时 $T_{n-1,n}$,与后一个计时点 n+1 到前一个计时点 n-1 的用时 $T_{n-1,n+1}$ 之间的比值。

在抓取到原始比赛结果后,用所有完赛选手的数据,计算出各计时点之间的分段用时比值为:

Location (n)	Proportion (P)	Standard Deviation (σ)
2	0.586274	0.012317
3	0.290029	0.012318
4	0.348253	0.025149
5	0.495898	0.024340
6	0.937742	0.038332
7	0.163351	0.089850
8	0.219899	0.024682
9	0.909416	0.049517
10	0.082487	0.045936
11	0.883966	0.068089
12	0.093464	0.055632
13	0.926608	0.049498
14	0.100476	0.065256
15	0.921762	0.066937
16	0.048146	0.042810
17	0.723417	0.022075
18	0.750221	0.023933
19	0.914246	0.013235

尽管不同选手之间的完赛时间各不相同,从 9.5 小时到 28 小时,可以说相差很大,但透过前面的比赛时序视图可以看到,完赛选手总体上在时间分配比赛进程上大都还是比较平稳的。

从上面这个表中也可以看到,在 UTA100 比赛数据中,分段用时比值 P_n 这个量的标准差较小,意味着其离散程度较小,可以利用它来进行数据检查修复,以及建立比赛用时规划模型。

3.3 粗差检查和数据修复

分段用时比值数据项首先用作粗差检测,基于完赛选手的比赛数据计算单个 *Proportion* 和对应均值之差,用六倍标准差(±6σ)作为显著性粗差判断标准,对超出这个范围的记录进行人工检查。基本原则是:

- 1. 一般路段的分段用时如果过短,则计时有误;
- 2. CP 点停留时间可以较长;
- 3. 其它情况则保留原始记录不修正。

依据上述标准,共有 9 个记录被标记为粗差。经过人工检查之后,确认并修正了 5 个记录,保留了另外 4 个记录。

接着用它来进行数据修复的工作,这也正是最初引入该数据项的直接原因。在官方公布的比赛数据中,因为各种原因缺少了 23 条计时记录,利用前后计时时间差 $T_{n-1,n+1}$ 和相应的分段用时比值 P_n ,计算出 $T_{n-1,n}$ 以补齐这些缺失的数据。

$$T_{n-1,n} = T_{n-1,n+1} \cdot P_n$$

和 Race Time 一并补齐的还有 Time of Day 和 Split Time 这两项。

在完成了数据记录修正和补齐之后,计算出最后的分段用时比值:

Location (n)	Proportion (P)	Standard Deviation (σ)
2	0.586274	0.012288
3	0.290013	0.012294
4	0.347259	0.015259
5	0.497011	0.013817
6	0.937767	0.038335
7	0.163015	0.088253
8	0.220800	0.016568
9	0.909359	0.049429
10	0.082487	0.045936
11	0.883966	0.068089
12	0.093423	0.055612
13	0.926632	0.049327
14	0.100476	0.065021
15	0.921674	0.066785
16	0.048146	0.042759
17	0.723415	0.022050
18	0.750221	0.023933
19	0.914246	0.013235

3.4 分段用时与比赛用时

假如我们把第一个路段用时标记为 T_{12} , 应用上面计算得到的分段用时比值 P_2 可以计算出第二个路段用时 T_{23} 为:

$$T_{23} = T_{12} \cdot \left(\frac{1 - P_2}{P_2}\right)$$

之后的 T34则为:

$$T_{34} = T_{23} \cdot \left(\frac{1 - P_3}{P_3}\right) = T_{12} \cdot \left(\frac{1 - P_2}{P_2}\right) \cdot \left(\frac{1 - P_3}{P_3}\right)$$

那么 $T_{n,n+1}$ 就是:

$$T_{n, n+1} = T_{12} \left(\frac{1 - P_2}{P_2} \right) \cdot \left(\frac{1 - P_3}{P_3} \right) \cdots \left(\frac{1 - P_n}{P_n} \right)$$

即为:

$$T_{n, n+1} = T_{12} \cdot \prod_{i=2}^{n} \left(\frac{1 - P_i}{P_i} \right)$$

计算出各个分时段的用时之后,总的比赛用时就表达为:

$$\begin{split} T_{race} &= \sum_{n=1}^{19} T_{n,\,n+1} \\ &= T_{12} + T_{12} \cdot \left(\frac{1-P_2}{P_2}\right) + T_{12} \cdot \left(\frac{1-P_2}{P_2}\right) \cdot \left(\frac{1-P_3}{P_3}\right) + \dots + T_{12} \cdot \prod_{i=2}^{19} \left(\frac{1-P_i}{P_i}\right) \\ &= T_{12} \cdot \left(1 + \sum_{n=2}^{19} \prod_{i=2}^{n} \left(\frac{1-P_i}{P_i}\right)\right) \end{split}$$

3.5 比赛用时规划

总结过去是为了展望未来,利用过往比赛数据,可以帮助我们更好地准备以后的比赛。当进行比赛用时规划时, 先设定预计的完赛目标时间 T_{race} , 通过反向计算得到未知的 T_{L2} 项:

$$T_{12} = T_{race} \left| \left(1 + \sum_{n=2}^{19} \prod_{i=2}^{n} \left(\frac{1 - P_i}{P_i} \right) \right) \right|$$

接着依次计算出后续各个路段用时 Tn, n+1:

$$T_{n, n+1} = T_{12} \cdot \prod_{i=2}^{n} \left(\frac{1 - P_i}{P_i} \right)$$

将这些计算出来的路段用时串连起来,再考虑比赛分组出发时间,最终就得到一份完整、可行且稳健的比赛用时计划。

4. 小结

本短文简要回顾 2023 年的 UTA100 比赛数据,并据此修正补齐数据集,并建立比赛用时规划模型,为以后参加 UTA100 比赛提供参考。这里介绍的概念与方法已被应用在 <u>UTA100 Planner</u> (https://utaplanner.vercel.app/) 这个 App 中,其中所用到的模型参数也已更新至最新,后续还将进行进一步优化。

这里提出的规划方法不只是针对 UTA100 这一项比赛,也可以套用在其它赛事准备上,当然前提条件是要有过往比赛足够多的中间计时点数据,且赛道线路前后没有较大改动才行。象 UTA50 这样中间只有少数几个计时点的情况,勉强套用并没有参考意义。