Op.155. No.12 磁化率——络合物结构的测定

孙肇远 PB22030708, Dec. 2024

University of Science and Technology of China, Hefei, Anhui, China

1. 引言

本实验基于量子力学与电动力学理论,利用 Gouy 磁天平,通过不同电流下的天平示数,得到不同单电子数物质分子在磁场下所受外力,通过理论公式与标准值得到电流对应的磁场强度,由此算得不同物质的单电子数.

2. 实验

2.1. 实验过程

对 Gouy 磁天平调零, 并确保天平位于水平;

使用空样品管,使样品管底部正好与磁极中心线齐平,记录如下操作时的质量示数: 电流由小至大,分别为 0,1,2,3,4 A 时,再调至 4.1 A,由大至小,分别为 4,3,2,1,0 A 时,再由小至大,分别为 0,1,2,3,4 A 时,再调至 4.1 A,由大至小,分别为 4,3,2,1,0 A 时,得到 20 组数据:

将上述样品管装入莫尔盐,确保高度大于 15 cm, 记录温度, 并重复上述记录数据; 调零天平, 使用空样品管, 重复上述记录数据;

将上述样品管装入硫酸亚铁, 确保高度大于 15 cm, 记录温度, 并重复上述记录数据; 调零天平, 使用空样品管, 重复上述记录数据;

将上述样品管装入亚铁氰化钾, 确保高度大于 15 cm, 记录温度, 并重复上述记录数据; 清理台面, 关闭磁天平, 恢复初态.

3. 结果与讨论

以下未标明量纲的物理量,全部默认为 SI units.

3.1. 实验数据

本实验中使用莫尔盐标定磁场强度,得

 电流/A	0	1	2	3	4	
磁场强度/(A/m)	0	0.1031849	0.2000372	0.2959238	0.3899906	

Table 1. 各电流强度对应的磁场强度

物质	χ_M	n	晶体场理论下的 n		
$\overline{\mathrm{FeSO_4} \cdot 7\mathrm{H_2O}}$	0.117436	4.3	4		
$\mathrm{K}_{4}[\mathrm{Fe}(\mathrm{CN})_{6}]\cdot 3\mathrm{H}_{2}\mathrm{O}$	-0.002145	-0.30	0		

Table 2. 实验结果与理论值

3.2. 结果讨论

本实验中, 在取最近整数的意义下, 可认为实验值与理论值相符.

然而仍需注意的是, 我们并未考虑轨道磁矩, 通常它是电子自旋磁矩的小量.

P.S. 实验的教学文档上使用大量 Gaussian units, 但是并未说明, 这导致计算时量纲还需要自行考虑, 本文中全部转换为 SI units, 因此公式上会略有差别.

P.P.S. 教学文档上的 Boltzmann 常数 $k_{\rm B}=1.386{\rm e}-16~{\rm erg/K}$, 这显然是不对的, 本文中使用了标准值 $k_{\rm B}=1.380649{\rm e}-23$.

3.3. 误差分析讨论

本实验可能误差如下:

- 1°认为样品上端磁场为0,而事实上磁场强度只有在无穷远处才能做到为0;
- 2°在不忽略高次项的情况下, 我们发现不同励磁电流下, 物质的摩尔磁化率会发生改变;
- 3°由于调节电流时存在剩磁现象, 我们虽然采用取平均值的方法来降低影响, 但还是不可避免地会带来误差;
- 4° 硫酸亚铁有较强的还原性,可以被空气氧化,因此其极有可能在实验中被氧化为 $[Fe(H_2O)_6]^{3+}$ 存在 5 个单电子,可能这是导致测量得到的未成对电子数比 4 大的主要原因:
- 5°实验中样品长度的称量很难保证准确,也会在后续计算中引入误差;
- 6° 由于仪器精度问题,实际上每次测定的励磁电流都不能保证非常准确,即存在 0.1 A 的误差:
- 7°温度偏差较大,可实时影响磁矩.

可能可行的改进方式:

- 1° 真空储存或充氮气储存七水合硫酸亚铁,并使硫酸亚铁在研磨后立即装管测量;
- 2° 打开恒温空调;
- 3°多组测量样品长度.

3.4. 实验体会与认识

通过本次实验,我们对电动力学与量子力学内容有了更加深刻的认识,了解并掌握了通过测量质量表征磁场强度,从而计算磁矩的方法,增进了对电子自旋学理解,同时掌握了相关数据需要如何处理,收获较大.

4. 附件 3

4. 附件

4.1. 原始数据处理

■ Notation 1.

我们约定莫尔盐, 硫酸亚铁, 亚铁氰化钾分别记为 1,2,3; 相应空管质量记 W_0^i , 包括样品的质量记 W^i , 其都为电流强度的函数, 有时可加括号作为映射.

数据处理默认 SI units, q = 9.8.

4.1.1. 标定磁场强度

根据关系式

$$\chi_M^i = \frac{2(\Delta W^i - \Delta W_0^i)ghM}{(W^i - W_0^i)H^2}, \tag{1} \label{eq:chi_M}$$

$$\chi_M = \chi_{\mathrm{m}} M,$$
 [2]

$$\chi_{\rm m}^1 = \frac{95}{T+1},\tag{3}$$

可解得磁场强度

$$H = \sqrt{\frac{2(\Delta W^1 - \Delta W_0^1)gh}{(W^1 - W_0^1) \times \frac{95}{T+1}}},$$
 [4]

得到下表

电流/A	0	1	2	3	4	
磁场强度/(A/m)	0	0.1031849	0.2000372	0.2959238	0.3899906	

Table 3. 各电流强度对应的磁场强度

4.1.2. 硫酸亚铁

代入 M = 278.032 g/mol, h = 15.89 cm,

$$\chi_M^i = \frac{2(\Delta W^i - \Delta W_0^i)ghM}{(W^i - W_0^i)H^2}, \qquad \qquad \lceil 5 \rfloor$$

得

\overline{I}	1	2	3	4	
χ_M	0.118133	0.117135	0.117525	0.11695	

Table 4. $\chi_M \sim I : {\rm FeSO_4 \cdot 7 \, H_2O}, \, {\rm SI} \, {\rm units}$

根据关系式

$$n(n+2) = \frac{3k_{\rm B}T\chi_M}{N_{\rm A}\beta^2},\tag{6}$$

$$n(n+2) = 0.79968T\chi_M,$$
 [8]

此时 T=273.15+19=292.15 K, $\langle\chi_{M}^{2}\rangle=0.117436$, 故有 $n^{2}=4.3$.

4.1.3. 亚铁氰化钾

代入 M = 422.418 g/mol, h = 15.75 cm,

$$\chi_M^i = \frac{2(\Delta W^i - \Delta W_0^i)ghM}{(W^i - W_0^i)H^2},\tag{9}$$

得

Table 5. $\chi_M \sim I : \mathrm{K}_4[\mathrm{Fe}(\mathrm{CN})_6] \cdot 3\,\mathrm{H}_2\mathrm{O},\,\mathrm{SI}$ units

根据关系式

$$n(n+2) = 0.79968T\chi_M,$$

此时 T=273.15+20.8=293.95 K, $\langle\chi_M^3\rangle=-0.002145$, 故有 $n^3=-0.30$.

4. 附件 5

4.2. 原始数据

```
2. 13. 13. 10. 1 No. 2. 76. 1. 9

26.3338 3342 3341 3338

1 3337 3336 3337 3334

2 3329 3331 3337 3325

3 3319 3319 3319 3315

4 33.05 33.04 33.03 33.02

2. 13. 13. 15. 15. 10. 15. 24. cm

2 37. 8718 8718 8718

1 8846 8851 8844 8850

2 9199 9209 9208 9218

3 9789 9803 9795 9805

4 38.0596 0601 0620 0616
```

Fig. 6. 原始数据记录

Fig. 7. 原始数据记录

4. 附件 7

Fig. 8. 原始数据记录

A(X)	B (Y)	C(Y)	D(Y)	E(Y)	F (Y)	G(Y)	H(Y)	I(Y)	J(Y)	K (Y)	L(Y)	М(А)	N(Y)
										Н			
				(A+B+C+D) /	40000+22. 25				(F+G+H+I) /	40000+34. 41	E-E1	J-J1	2*(M-L)*9.8
41	43	43	48	22. 25438	57	61	61	61	34. 416	0	0	0	
39	39	43	44	22. 25413	52	55	56	58	34. 41553	0. 10318	-2. 5E-4	-4. 75E-4	-0.00227
33	35	47	38	22. 25383	45	42	44	48	34. 41448	0. 20004	-5. 5E-4	-0. 00153	-0. 00261
22	25	28	30	22. 25263	27	26	28	30	34. 41278	0. 29592	-0. 00175	-0. 00323	-0. 00181
13	14	17	17	22. 25153	3	3	7	6	34. 41048	0. 38999	-0. 00285	-0. 00552	-0. 00189

Fig. 9. 转化为 origin 中的数据节选