Training Optimization I Based on "Deep Learning"

Penelope Mueck, Siba Mohsen

University of Bonn

08.12.2020

Motivation

Outline

1. How Learning Differs from Pure Optimization

2. Challenges in Neural Optimization

3. Basic Algorithms

4. Parameter Initialization Strategies

How Learning Differs from Pure Optimization

4/39

Training Deep Learning Models

- Optimize performance measure P defined w.r.t. test set
- ullet P can only be optimized indirectly o minimize the **risk**

$$J^*(\theta) = E_{(x,y) \sim p_{data}}[L(f(x;\theta), y)]$$

- p_{data}: data generating distribution
- L: per-example loss function
- $f(x;\theta)$: predicted output when input is x
- y: target output
- p_{data} is unknown \rightarrow minimize **empirical risk**

$$E_{(x,y)\sim\hat{\rho}_{data}}[L(f(x;\theta),y)] = \frac{1}{m}\sum_{i=1}^{m}L(f(x;\theta),y)$$

- Empirical risk minimization rarely used in deep learning
 - ▶ Loss functions do not have useful derivatives
 - Overfitting

Surrogate Loss Functions and Early Stopping

- Instead of the loss function we often minimize a surrogate loss function
- Minimizing the surrogate loss function halts when early stopping criterion is met
 - Training often halts when surrogate loss function still has large derivatives
- Early stopping criterion is based on true underlying loss function measured on the validation set

Figure: Surrogate loss functions for 0-1 loss [Ngu20].

Form of the Objective Function

- Objective function decomposes as a sum over training examples
- We compute each update to the parameters based on an expected value of the cost function
- Example: Maximum likelihood estimation

$$J(\theta) = E_{(x,y) \sim \hat{p}_{data}} \log p_{model}(x, y; \theta)$$
$$\nabla_{\theta} J(\theta) = E_{(x,y) \sim \hat{p}_{data}} \nabla_{\theta} \log p_{model}(x, y; \theta)$$

Batch, online and Stochastic Methods

- Batch methods: Optimization algorithms that use the entire training set
- Online methods: Optimization algorithms that use only a single example at a time
- Minibatch/Stochastic methods: Batch size between size for batch and online methods
 - \rightarrow used in deep learning

Stochastic Methods - How to Pick the Minibatches

- How to pick the minibatches:
 - Minibatches have to be selected randomly
 - Subsequent minibatches should be independent of each other
 - Shuffle examples if ordering is significant
 - Special case very large datasets: minibatches are constructed from shuffled examples rather than selected randomly
- Factors influencing the size:
 - Accuracy of estimate
 - Regularization vs. optimization
 - Hardware and memory
 - lacktriangle Multicore architectures are underutilized by very small batches ightarrow define minimum batch size

Stochastic Gradient Descent Minimizes Generalization Error

Assumptions:

- Examples are drawn from stream of data
- ullet x and y are discrete \Rightarrow

$$J^*(\theta) = \sum_{x} \sum_{y} p_{data}(x, y) L(f(x; \theta), y)$$

$$abla_{ heta} J^*(heta) = \sum_{x} \sum_{y} p_{data}(x, y)
abla_{ heta} L(f(x; heta))$$

 $\Rightarrow \hat{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)}) \text{ is an unbiased estimate of } \nabla_{\theta} J^{*}(\theta) \text{ if we sample a}$ minibatch of examples $\{x^{(1)}, ..., x^{(m)}\}$ with corresponding targets $y^{(i)}$ sampled from p_{data}

Challenges in Neural Optimization

Challenges Facing Optimization of Deep Neural Networks

- III-Conditioning
- Local Minima
- Plateaus, Saddle points and other Flat regions
- Cliffs
- Long-Term Dependencies
- Poor Correspondence between Local and Global Structure

Figure: Loss function during training a neural network [Goe19].

12 / 39

Definitions (Recap)

- ▶ Given vector-valued function $f: \mathbb{R}^n \to \mathbb{R}^m$
- ▶ f consists of m functions $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$
- ▶ Jacobian Matrix: $J \in \mathbb{R}^{m \times n}$, $(J)_{i,j} = \frac{\partial f_i}{\partial x_j}$

$$J = \left[\begin{array}{ccc} | & & | \\ \nabla_{\mathsf{x}} f_1 & \dots & \nabla_{\mathsf{x}} f_m \\ | & & | \end{array} \right]$$

- ightarrow 1st-Order Optimization
- ▶ Hessian Matrix: $H \in \mathbb{R}^{n \times n}$, $H(f)(x)_{i,j} := \frac{\partial}{\partial x_i \partial x_j} f(x)$
 - $ightarrow 2^{\sf nd}$ -Order Optimization

13 / 39

Conditioning

Figure: Gradient descent directions during training [source].

- Neural Networks are trained by changing parameters based on an optimization algorithm (e.g. Stochastic Gradient Descent)
- 2. Optimization algorithm searches for local/global minima on loss function
- Hessian matrix hints at curvature of functions (convex)
- 4. Condition number of the Hessian measures the difference between derivatives in each direction

III-Conditioning

Figure: Gradient descent directions during training with ill-conditioned Hessian [source].

- **Challenges:** Poor conditioning imerges when the condition number is high:
 - gradient descent will perform poorly: which direction will the gradient choose?
 - \blacktriangleright choice of suitable step size becomes difficult: smaller steps to adapt to strong curvature \rightarrow slow learning

Mitigation Techniques:

- Modification of Newton's method then applying it to the Neural Network
- Momentum Algorithm

Local Minima

- Neural networks have nonconvex cost functions → several local minima
- Neural Networks are nonidentifiable, because there are many possibilities to select suitable weights during training
 - ▶ Infinite number of local minima
 - **Equivalent** to each other in cost value
 - Not problematic
- Challenge: Local minima have higher cost function value than global minimum
- Mitigation Techniques:
 - Most local minima present low cost function value
 - ▶ It is sufficient to find a convenient local minimum instead of the global minimum

Plateaus, Saddle Points and other Flat Regions

Saddle points:

- Most frequent in high dimensional nonconvex functions
- Can be local minimum and maximum of cost function depending on point of view
- How do 1st and 2nd order optimizations deal with saddle points?
 - ▶ 1st order: The gradient becomes very small or escapes the point
 - ▶ 2nd order: **Challenges:**
 - 1. The gradient may go directly and sit on the saddle point $(\nabla_x f(x) = 0)$
 - 2. Hard to be used in huge NN

Mitigation Technique: Saddle-free Newton method by rapidly escaping high dimensional saddle points [Dau+14]

Plateaus and Flat Regions:

• Cause problems when optimizing nonconvex functions with no remediation techniques

Cliffs

- Dangerous from both sides: above and below
- Challenge: The gradient surpasses the cliff structure because it only determines which direction to choose and disregards step size
- Mitigation Technique: Gradient Clipping Heuristic (chapter 10) by reducing the step size to prohibit the gradient to surpass the cliff

Figure: Cliff region [GBC16].

Long-Term Dependencies

- Very deep computational graphs caused by big number of layers in NN (e.g recurrent networks)
- Challenges: Vanishing and Exploding gradient descent
 - ▶ Vanishing GD: gradients don't know which direction to choose to improve the cost function
 - ▶ Exploding GD: makes the learning process inconsistent
- Mitigation Technique: Power method for recurrent and feedforward neural networks to discard uninteresting features in input vector

Figure: Computational Graph [source]

Poor Correspondence between Local and Global Structure

- Previous mitigation techniques solve the optimization problem at a single point on the loss function to arrive to a low cost value
- **Challenge:** Is this cost value sufficiently low w.r.t. other low values? Does this low value drives the point into a much lower cost value (e.g. global minimum)?
- Mitigation Techniques:
 - Force the gradient to start at good points on the loss function to get faster into a convenient minimum
 - ▶ Do not concentrate on finding the exact minimum of the loss function, rather try to achieve a low cost value that would generalize well

Basic Algorithms

SGD-Algorithm

Algorithm 1: Stochastic Gradient Descent (SGD) update

Require: Learning rate schedule $\epsilon_1, \epsilon_2, \dots$

Require: Initial Parameter θ

Set k = 0;

while stopping criterion is not met do

Pick a minibatch of m examples from the training set $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\};$

Compute gradient estimate: $\hat{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L\left(f(x^{(i)}; \theta), y^{(i)}\right)$;

Apply update $\theta = \theta - \epsilon_k \hat{g}$;

k = k + 1;

end

SGD-Learning Rate ϵ_k

- Tells how much to change the model based on the loss function
- Decreases over time
- To choose by trial and error or by depicting the learning curve over time
- In practice: for $\alpha = \frac{k}{\tau}$, decrease ϵ_k linearly until iteration τ :

$$\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha\epsilon_\tau$$

- ightharpoonup au = number of iterations to make few hundred passes through NN
- $\epsilon_{ au} = \frac{\epsilon_0}{100}$
- $ightharpoonup \epsilon_0$ best performing ϵ_k in the first iterations

23 / 39

SGD-Convergence and Computation

- Allows convergence even with huge number of training examples
- To calculate excess error for convergence: $J(\theta) \min_{\theta} J(\theta)$
- SGD applied to a convex problem: excess error $= \mathcal{O}(\frac{1}{\sqrt{k}})$ after k iterations
- SGD applied to a strongly convex problem: excess error $= \mathcal{O}(\frac{1}{k})$ after k iterations

Momentum-Characteristics

Figure: Loss function during training of a neural network [Goe19].

- Momentum in physics: mass × velocity
- Momentum is faster than SGD
- Momentum fixes variance problem in SGD caused by computing inexact derivates of the loss function
- Momentum is robust to high curvature and small/noisy gradients

Momentum-Algorithm

Algorithm 2: Stochastic Gradient Descent (SGD) with momentum

```
Require: Learning rate \epsilon, momentum parameter \alpha

Require: Initial Parameter \theta, initial velocity v

while stopping criterion is not met do

Pick a minibatch of m examples from the training set \{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\};

Compute gradient estimate: g = \frac{1}{m} \nabla_{\theta} \sum_{i} L\left(f(x^{(i)}; \theta), y^{(i)}\right);

Compute velocity update: v = \alpha v - \epsilon g;

Apply update: \theta = \theta + v;
```

end

Momentum-Parameters

- Momentum algorithm accumulates a quickly decreasing average of past gradients and uses them in the next move
- Velocity v (momentum): direction and speed of parameters
- Momentum parameter $\alpha \in [0,1)$: determines how quickly the contributions of previous gradients exponentially decrease and affect current move
- In practice: $\alpha \in 0.5, 0.9, 0.99$, increases over time
- $\theta(t)$: Point on the loss function at time t

Nesterov Momentum

- Adds correction factor to Momentum
- Gradient step is evaluated after application of momentum (velocity step)
- New update rule:

$$g = \frac{1}{m} \times \nabla_{\theta} \times \sum_{i} L\left(f(x^{(i)}; \theta + \alpha \mathbf{v}), y^{(i)}\right)$$

$$\mathbf{v} = \alpha \mathbf{v} - \epsilon \mathbf{g}$$

$$\theta = \theta + \mathbf{v}$$

Figure: Momentum vs. Nesterov Momentum update step [source].

Parameter Initialization Strategies

Initialization for Deep Learning

- ullet Training algorithms for deep learning are usually iterative o user has to specify an initial point
- Initial point affects
 - convergence
 - speed of convergence
 - ▶ if we converge to a point with high or low cost → points of comparable cost can have a different generalization error!

Characteristics of Initial Parameters

- Most initialization strategies are based on achieving good properties when the network is initialized
 - No good understanding of how these properties are preserved during training
 - Optimization vs. regularization
- Certainly known: Initial parameters need to break symmetry between different units
 - ► Hidden units with same activation function and connection to same input parameters must have different initial parameters
 - → Use random initialization

Random Initialization

- Weights are initialized randomly
- Values are drawn randomly from a Gaussian or uniform distribution
- ullet Scale of initial distribution has a large effect on the outcome o influences optimization and generalization
 - Larger weights lead to stronger symmetry-breaking effect
 - ► Too large weights can cause exploding values during forward or backward-propagation or saturation of the activation function
 - Optimization perspective: weights should be large enough to propagate information successfully
 - Regularization: Keep weights small

Heuristics for Choosing Initial Scale of the Weights

- 1. Initialize weights by sampling each weight from $U\left(-\frac{1}{\sqrt{m}}, \frac{1}{\sqrt{m}}\right)$
 - ▶ We assume we have a fully connected layer with m inputs and n outputs
- 2. Use normalized initialization: $W_{i,j} \sim U\left(-\sqrt{\frac{6}{m+n}},\sqrt{\frac{6}{m+n}}\right)$
- 3. Initialize to random orthogonal matrices with **gain** factor g that needs to be carefully chosen
- 4. Use sparse initialization: each unit is initialized to have exactly k nonzero weights
- Optimal criteria for initial weights do not lead to optimal performance
 - Treat initial weights as hyperparameters
 - ► Treat initial scale of the weights and whether to use sparse or dense initialization as hyperparameter if not too costly

Initializing the Biases

- Approach for setting the biases must be coordinated with the approach for setting the weights
- Setting the biases to zero is compatible with most weight initialization schemes
- Cases where biases may be set to nonzero values:
 - lacktriangle If a bias is for an output unit ightarrow beneficial to initialize the bias to obtain the right marginal statistics of the output
 - ▶ When we want to avoid too much saturation at initialization
 - ▶ When a unit controls whether other units are able to participate in a function

Questions

White Board

White Board

37 / 39

Example: Long-Term Dependencies

- Suppose that a path of the computational graph applies a repeated multiplication with a matrix \mathbf{W} , where $\mathbf{W} = \mathbf{V} diag(\lambda) \mathbf{V}^{-1}$ is the eigendecomposition of \mathbf{W} .
- After t multiplication steps, we are multiplying by \mathbf{W}^t and the eigendecomposition becomes $\mathbf{W}^t = \mathbf{V} diag(\lambda)^t \mathbf{V}^{-1}$
- The Vanishing and Exploding gradient descent problem arises from scaling $diag(\lambda)$.
- The Power Method can be deployed to detect the largest eigenvalue λ_i of **W** and its eigenvector and then to rule out all components that are orthogonal to **W**.

Figure: Computational Graph [source]

References

- Yann N Dauphin et al. "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization". In: *Advances in neural information processing systems*. 2014, pp. 2933–2941.
- Shaumik Daityari. "A Beginners Guide to Keras". In: (2016). URL: %5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition-tutorial/%7D.
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. http://www.deeplearningbook.org. MIT Press, 2016.
- Emilia Lopez-Inesta. In: (2016). URL: %5Curl%7Bhttps: //www.researchgate.net/profile/Emilia_Lopez-Inesta%7D.
- Reza. "The Hard Thing in Deep Learning". In: (2016). URL: %5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-deep-learning%7D.
 - Dr. Nils Goerke. "TNN_W S19₀3_T raining_M LPs_{wB} P_s lides.pdf". In: (2019). URL: https://www.ais.uni-bonn.de/WS1920/4204_L_NN.html: