Project Euler #130: Composites with prime repunit property

This problem is a programming version of Problem 130 from projecteuler.net

A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111.

Given that i is a positive integer and c(i,10) = 1, it can be shown that there always exists a value, k, for which R(k) is divisible by i, and let A(i) be the least such value of k; for example, A(7) = 6 and A(41) = 5.

You are given that for all primes, p > 5, that p - 1 is divisible by A(p). For example, when p = 41, A(41) = 5, and A(41) = 5, and A(41) = 5, and A(41) = 5.

However, there are rare composite values for which this is also true; the first five examples being \$91\$, \$259\$, \$451\$, \$481\$, and \$703\$.

Given $L\$ and $R\$, print all composite values $i\$ in the interval $L, R\$ for which $\text{which } 4(i,10) = 1\$ and $i - 1\$ is divisible by $A(i)\$.

Input Format

The input contains consists of one line containing two integers \$L\$ and \$R\$ separated by a space.

Constraints

\$R - L \le 1500000\$ \$2 \le L \le R\$

In files #01-#05: \$R \le 10000\$
In files #06-#10: \$R \le 1500000\$
In files #11-#25: \$R \le 10^{{12}}\$

Output Format

Output all composite values i in the interval L, R for which composite Values i - 1 is divisible by A(i), each in a single line.

Sample Input

2 1000

Sample Output

91 259

451

481 703