Solution 1: Filter problems

Let $f(x_1, x_2 | \boldsymbol{\mu})$ be the density function of the bivariate Normal distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma} = \boldsymbol{I}_2$. You are given the following data generating process (DGP):

- the target $Y \sim \text{Bernoulli}(0.5)$,
- the conditional density $p(x_1, x_2|Y=1) = 0.5 \left(f(x_1, x_2|(1, -1)^\top) + f(x_1, x_2|(-1, 1)^\top) \right)$,
- the conditional density $p(x_1, x_2|Y=0) = 0.5 \left(f(x_1, x_2|(1, 1)^\top) + f(x_1, x_2|(-1, -1)^\top) \right)$.
- (a) Sketch the DGP
- (b) Compute $\mathbb{P}(Y=1|x_1=\widetilde{x}_1), \mathbb{P}(Y=1|x_2=\widetilde{x}_2)$
- (c) Compute $\mathbb{P}(Y = 1 | x_1 = 1, x_2 = 1)$
- (d) Explain what happens if we apply mutual information as filter in this scenario