EX.NO:8 A PYTHON PROGRAM TO IMPLEMENT

DATE: 18.10.2024 GRADIENT BOOSTING

AIM:-

To implement a python program using the gradient boosting model.

ALGORITHM:-

Step1: Import all the other necessary libraries(numpy as np, matplotlib.pyplot as plt and pandas as pd).

Step2: Generate random numbers from the standard uniform distribution using random.seed().

Step3: Fit a simple decision tree regressor on data [call x as input and y as output].

Step4: Calculate error residuals. Actual target value, minus predicted target value [e1= y - y_predicted1].

Step5: Fit a new model on error residuals as target variable with same input variables [call it e1 predicted].

Step6: Add the predicted residuals to the previous predictions [y_predicted2 = y_predicted1 + e1_predicted].

Step7: Fit another model on residuals that is still left. i.e. [e2 = y - y_predicted2] and repeat steps 2 to 5 until it starts overfitting or the sum of residuals become constant.

Step8: Overfitting can be controlled by consistently checking accuracy on validation data.

Step9: Plot the graph using the "tight_layout" function and the following parameters(h_pad=0.5, w_pad=0.5, pad=2.5).

```
Step10: Create a function to do gradient boosting where (gradient_boost(X,y,number1,lr,count+1,regs,foo=foo)).
```

Step11: Plot all the x_label and y_label feature pairs.

IMPLEMENTATION:-

```
import numpy as np import
matplotlib.pyplot as plt import
pandas as pd
```

```
np.random.seed(42)
```

$$X = np.random.rand(100, 1) - 0.5 y = 3*X[:, 0]**2 + 0.05 * np.random.randn(100)$$

df

[6]:		X	У
	0	-0.125460	0.051573
	1	0.450714	0.594480
	2	0.231994	0.166052
	3	0.098658	-0.070178
	4	-0.343981	0.343986

	95	-0.006204	-0.040675
	96	0.022733	-0.002305
	97	-0.072459	0.032809
	98	-0.474581	0.689516
	99	-0.392109	0.502607

$$\begin{split} & plt.scatter(df['X'],df['y']) \; plt.title('X \\ & vs \; y') \end{split}$$

Text(0.5, 1.0, 'X vs y')

df['pred1'] = df['y'].mean() df

[11]:		X	У	pred1
	0	-0.125460	0.051573	0.265458
	1	0.450714	0.594480	0.265458
	2	0.231994	0.166052	0.265458
	3	0.098658	-0.070178	0.265458
	4	-0.343981	0.343986	0.265458

	95	-0.006204	-0.040675	0.265458
	96	0.022733	-0.002305	0.265458
	97	-0.072459	0.032809	0.265458
	98	-0.474581	0.689516	0.265458
	99	-0.392109	0.502607	0.265458

100 rows × 3 columns

$$df['res1'] = df['y'] - df['pred1']$$

df

[13]:		X	У	pred1	res1
	0	-0.125460	0.051573	0.265458	-0.213885
	1	0.450714	0.594480	0.265458	0.329021
	2	0.231994	0.166052	0.265458	-0.099407
	3	0.098658	-0.070178	0.265458	-0,335636
	4	-0.343981	0.343986	0.265458	0.078528
		***	***		***
	95	-0.006204	-0.040675	0.265458	-0.306133
	96	0.022733	-0.002305	0.265458	-0.267763
	97	-0.072459	0.032809	0.265458	-0.232650
	98	-0.474581	0.689516	0.265458	0.424057
	99	-0.392109	0.502607	0.265458	0.237148

100 rows × 4 columns

 $plt.scatter(df['X'],df['y']) \ plt.plot(df['X'],df['pred1'],color='red') \\$

[14]: [<matplotlib.lines.Line2D at 0x7f6ef51f7a10>]

from sklearn.tree import DecisionTreeRegressor

tree1 = DecisionTreeRegressor(max_leaf_nodes=8)

tree1.fit(df['X'].values.reshape(100,1),df['res1'].values)

DecisionTreeRegressor(max_leaf_nodes=8)

from sklearn.tree import plot_tree
plot_tree(tree1) plt.show()

X test = np.linspace(-0.5, 0.5, 500)

 $y_pred = 0.265458 + tree1.predict(X_test.reshape(500, 1))$

plt.figure(figsize=(14,4)) plt.subplot(121)
plt.plot(X_test, y_pred, linewidth=2,color='red') plt.scatter(df['X'],df['y'])

 $df['pred2'] = \textbf{0.265458} + tree1.predict(df['X'].values.reshape(100,1)) \ df$

[92]:		X	у	pred1	res1	pred2
	0	-0.125460	0.051573	0.265458	-0.213885	0.018319
	1	0.450714	0.594480	0.265458	0.329021	0.605884
	2	0.231994	0.166052	0.265458	-0.099407	0.215784
	3	0.098658	-0.070178	0.265458	-0.335636	0.018319
	4	-0.343981	0.343986	0.265458	0.078528	0.305964
					***	100
	95	-0.006204	-0.040675	0.265458	-0.306133	0.018319
	96	0.022733	-0.002305	0.265458	-0.267763	0.018319
	97	-0.072459	0.032809	0.265458	-0.232650	0.018319
	98	-0.474581	0.689516	0.265458	0.424057	0.660912
	99	-0.392109	0.502607	0.265458	0.237148	0.487796

100 rows × 5 columns

df['res2'] = df['y'] - df['pred2']df

resi	pred2	res1	pred1	У	X	
0.033254	0.018319	-0.213885	0.265458	0.051573	-0.125460	0
-0.011404	0.605884	0.329021	0.265458	0.594480	0.450714	1
-0.049732	0.215784	-0.099407	0.265458	0.166052	0.231994	2
-0.08849	0.018319	-0.335636	0.265458	-0.070178	0.098658	3
0.038022	0.305964	0.078528	0.265458	0.343986	-0.343981	4
	***	***	***	***	***	
-0.058994	0.018319	-0.306133	0.265458	-0.040675	-0.006204	95
-0.020624	0.018319	-0.267763	0.265458	-0.002305	0.022733	96
0.014489	0.018319	-0.232650	0.265458	0.032809	-0.072459	97
0.028604	0.660912	0.424057	0.265458	0.689516	-0.474581	98
0.014810	0.487796	0.237148	0.265458	0.502607	-0.392109	99

tree2 = DecisionTreeRegressor(max_leaf_nodes=8)
tree2.fit(df['X'].values.reshape(100,1),df['res2'].values)
DecisionTreeRegressor(max_leaf_nodes=8) y_pred = 0.265458 +
sum(regressor.predict(X_test.reshape(-1, 1)) for regressor in [tree1,tree2])

plt.figure(figsize=(14,4)) plt.subplot(121)
plt.plot(X_test, y_pred, linewidth=2,color='red')
plt.scatter(df['X'],df['y']) plt.title('X vs y')

def gradient_boost(X,y,number,lr,count=1,regs=[],foo=None):
if number == 0: return else:

```
# do gradient boosting
if count > 1:
       y = y - regs[-1].predict(X)
else:
       foo = y
    tree_reg = DecisionTreeRegressor(max_depth=5, random_state=42)
tree reg.fit(X, y)
    regs.append(tree_reg)
    x1 = \text{np.linspace}(-0.5, 0.5, 500) y pred = sum(lr *
regressor.predict(x1.reshape(-1, 1)) for regressor in regs)
                        plt.figure()
    print(number)
plt.plot(x1, y pred, linewidth=2)
plt.plot(X[:, 0], foo,"r")
plt.show()
     gradient_boost(X,y,number-1,lr,count+1,regs,foo=foo)
np.random.seed(42) X = np.random.rand(100, 1)
-0.5 y = 3*X[:, 0]**2 + 0.05 *
np.random.randn(100)
gradient boost(X,y,5,lr=1)
```


RESULT:-

Thus, the python program to implement gradient boosting for the standard uniform distribution has been successfully implemented and the results have been verified and analyzed.