Einführung in die Analysis

5. Ausgewählte Funktionen und deren Eigenschaften: Vorlesungsinput

Joana Portmann — Fachhochschule Nordwestschweiz

Frühjahrsemester 2021

5. Ausgewählte Funktionen und deren Eigenschaften

Inhaltsverzeichnis

- Kurzinput: Umkehrfunktionen
- Potenz- und Wurzelfunktion
- Exponential und Logarithmusfunktion
- Trigonometrische Funktionen und Arcusfunktionen

Definition (Umkehrfunktion)

■ Eine Funktion

$$f: \mathbf{D} \rightarrow \mathbf{W}$$

$$x \mapsto f(x) = y$$

heißt umkehrbar, wenn aus $x_1 \neq x_2$ stets folgt $f(x_1) \neq f(x_2)$.

Ist die Funktion umkehrbar, dann gibt es zu jedem $y\in \mathbb{W}$ genau ein $x\in \mathbb{D}.$ Diese eindeutige Zuordnung ,

$$f^{-1}: \mathbb{W} \to \mathbb{D}$$

$$y \mapsto f^{-1}(y) = f^{-1}(f(x)) = x$$

wird Umkehrfunktion genannt.

$$f(x) = \frac{2x + 1}{2} = \frac{4}{2} \cdot 1 - 1 = f(x) = x^{2} + 1$$

$$x = \frac{4 - 1}{2} = \frac{1}{2} \cdot 1 = f(x) = \frac{1}{2} \cdot 1 =$$

Beispiel:

Potenz- und Wurzelfunktionen

Potenz- und Wurzelfunktionen

Definition (Wurzelfunktion)

Die Funktion

heißt n-te Wurzelfunktion ($n \in \mathbb{N}$).

Beispiel:

■ Die Funktion $p: \mathbb{R}^+ \to \mathbb{R}^+$ mit $x \mapsto x^2$ hat als Umkehrfunktion

$$p^{-1}: \mathbb{R}^+ \to \mathbb{R}^+ \quad \text{mit} \quad x \mapsto \sqrt[2]{x} = x^{\frac{1}{2}}$$

■ Die Funktion $p: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto x^3$ hat als Umkehrfunktion

$$p^{-1}: \mathbb{R} \to \mathbb{R} \quad \text{mit} \quad x \mapsto (3x) = x^{\frac{1}{3}}$$

Potenz- und Wurzelfunktionen

fogt we a

Approximation von beliebigen Funktionen:

Taylorpolynome

Exponential- und Logarithmusfunktion

Definition (Exponentialfunktion)

Die Funktion

$$f: \mathbb{R} \to \mathbb{R}$$
 \mathbf{x}^e $\mathbf{x}^{\mathsf{AG_0}}$ $\mathbf{x} \mapsto e^x$ mit $e = 2.718281828\dots$ Eulersche Zahl

heißt Exponentialfunktion

Exponential- und Logarithmusfunktion

Satz (Rechenregeln der Exponentialfunktion)
$$e^{0} = 1$$

$$e^{x+y} = e^{x} \cdot e^{y}$$

$$e^{nx} = (e^{x})^{n}$$

$$e^{nx} = (e^{x})^{n}$$

$$e^{nx} = n^{2}$$

$$2^{n+2}$$

$$2^{n+2}$$

$$2^{n+2}$$

$$2^{n+2}$$

$$2^{n+2}$$

$$2^{n+2}$$

$$2^{n+2}$$

$$2^{n+2}$$

Exponentialfunktion

Schnelles Wachstum:

- Schachparabel
- 2 Papierfalten
- 3 Der unmögliche Hamster
- 4 Exponentielles vs. lineares Wachstum
- 5 Fibonacchizahlen

Exponential- und Logarithmusfunktion

Definition (Logarithmusfunktion)

Die Umkehrfunktion zur Exponentialfunktion wird ${f nat}{f urliche}$

Logarithmusfunktion genannt:

$$f: \mathbb{R}^+ \to \mathbb{R}$$
 $x \mapsto \underline{\ln x} = \log_e$
 $\log_2(32) = 0$

Exponential- und Logarithmusfunktion

Satz (Rechenregeln der Logarithmusfunktion)

- $\ln(1) = 0$
- $\frac{1}{\ln(x^n)} = n \ln x$

1:14(2)

$$x = \frac{\ln(18)}{\ln(2)}$$

Logarithmusfunktion

Anwendungen:

- 1 Darstellen von Wertebereiche über viele Grössenordnungen
- Kryptologie
- 3 Informationstheorie
- ⇒ Wikipedia

Winkel

- Positive Winkel werden immer im Gegenuhrzeigersinn gemessen.
- Die Angabe des Winkels im Bogenmaß (Radiant) entspricht der Länge des Kreisbogens, den die Schenkel aus dem Einheitskreis ausschneiden.

Umrechnungstabelle:

Gradmaß : α	0°	30°	45°	60°	90°	180°	270°	360°
Bogenmaß: (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

Trigonometrische Funktionen im rechtwinkligen Dreieck

Definition (Trigonometrische Funktionen im rechtwinkligen Dreieck)

■ Sinus:
$$\sin(\alpha) = \frac{\text{Gegenkathete}}{\text{Hypothenuse}} = \frac{a}{c}$$

Cosinus
$$\cos(\alpha) = \frac{\text{Ankathete}}{\text{Hypothenuse}} = \frac{b}{a}$$

Tangens:
$$\tan(\alpha) = \frac{\text{Gegenkathete}}{\text{Ankathete}} = \frac{a}{b}$$

Cotangens:

$$\cot(\alpha) = \frac{1}{\tan(\alpha)} = \frac{\text{Ankathete}}{\text{Gegenkathete}} = \frac{b}{a}$$

Tringonometrische Funktionen

Zwischen den trigonometrischen Funktionen gelten die Folgenden, für Berechnungen sehr oft nützlichen Zusammenhänge:

 $\sin^2(\alpha) + \cos^2(\alpha) = 1$ (trigonometrischer Pythagoras)

Trigonometrische Funktionen

Sinus- und Cosinusfunktion

Definition (Sinus- und Cosinusfunktion)

$$\sin : \mathbb{R} \to [-1, 1], \qquad \cos : \mathbb{R} \to [-1, 1],$$

 $x \mapsto \sin(x) \qquad x \mapsto \cos(x)$

Sinus- und Cosinusfunktion — Funktionsgraph

Anmerkungen:

Sinus- und Cosinusfunktion sind beschränkt:

$$-1 \le \sin(x), \cos(x) \le 1$$

- \blacksquare Die Werte für x im Argument der Funktionen $\sin(x)$ bzw. $\cos(x)$ werden im Bogenmaß angegeben
- Sinus- und Cosinusfunktion sind **periodisch** mit der Periode 2π , d.h. es gilt $f(x) = f(x + k \cdot 2\pi), \quad k \in \mathbb{Z}$
- Die Funktionsgraphen von Sinus- und Cosinusfunktion sind **kongruent**. Durch Verschiebung um $\frac{\pi}{2}$ nach links, geht die Cosinus-Kurve aus der Sinus-Kurve hervor.

Eigenschaften der Sinusfunktion

Anwendungen:

- Periodische Vorgänge
- 2 The most unexpected answer to a counting puzzle