

LIBRARY OF CONGRESS.

Chap. Copyright Da.

Shelf IJ 270

UNITED STATES OF AMERICA.

Works of Prof. Robt. H. Thurston.

Published by JOHN WILEY & SONS, 53 E. Tenth Street, New York.

MATERIA	LS OF	ENGINE	EERING.
---------	-------	--------	---------

A work designed for Engineers, Students, and Artisans in wood, metal, and stone. Also as a TEXT-BOOK in Scientific Schools, showing the properties of the subjects treated. By Prof. R. H. Thurston. Well illustrated. In three parts.

Part I. THE NON-METALLIC MATERIALS OF ENGINEER-ING AND METALLURGY.

With Measures in British and Metric Units, and Metric and Reduction

Part II. IRON AND STEEL.

The Ores of Iron; Methods of Reduction; Manufacturing Processes; Chemical and Physical Properties of Iron and Steel; Strength, Ductility, Elasticity and Resistance; Effects of Time, Temperature, and repeated Strain; Methods of Test; Specifications...........8vo, cloth, 3 50

Part III. THE ALLOYS AND THEIR CONSTITUENTS.

MATERIALS OF CONSTRUCTION.

TREATISE ON FRICTION AND LOST WORK IN MACHIN-ERY AND MILL WORK.

Containing an explanation of the Theory of Friction, and an account of the various Lubricants in general use, with a record of various experiments to deduce the laws of Friction and Lubricated Surfaces, etc. By Prof. Robt. H. Thurston. Copiously illustrated. 8vo, cloth, "It is not too high praise to say that the present treatise is exhaustive and a complete review of the whole subject."—American Engineer.

STATIONARY STEAM-ENGINES.

DEVELOPMENT OF THE PHILOSOPHY OF THE STEAM- ENGINE.	
By Prof. R. H. Thurston	\$0.75
would want, and at the same time a succinct account covering so much	
A MANUAL OF STEAM BOILERS, THEIR DESIGNS, CON-	
STRUCTION, AND OPERATION.	
For Technical Schools and Engineers. By Prof. R. H. Thurston. (188 engravings in text.) Second edition	5 00
discoveries and devices in steam boiler construction."—Mechanical News. STEAM-BOILER EXPLOSIONS IN THEORY AND IN PRAC-	
TICE.	
Containing Causes of —Preventives—Emergencies—Low Water—Consequences—Management—Safety—Incrustation—Experimental Investigations, etc., etc., etc. By R. H. Thurston, Ll.D., Dr. Eng., Director of Sibley College, Cornell University. With many illustrations	1 50
with steam boilers, either in design or use."— <i>Engineering News</i> .	
A HAND-BOOK OF ENGINE AND BOILER TRIALS, AND THE USE OF THE INDICATOR AND THE BRAKE.	
By R. H. Thurston, Director of Sibley College, Cornell University, Second edition revised. "Taken altogether, this book is one which every Engineer will find of value, containing, as it does, much information in regard to Engine and Boiler Trials which has heretofore been available only in the form of scattered papers in the transactions of engineering societies, pamphlet reports, note-books, etc." Railroad Gazette.	5 00
CONVERSION TABLES.	
URES. With an Introduction by Robt. H. Thurston, A.M., C.E. 8vo, cloth,	1 00
"Mr. Thurston's book is an admirably useful one, and the very difficulty and unfamiliarity of the Metric System renders such a volume as this almost indispensable to Mechanics, Engineers, Students, and in fact all classes of people." "Mechanical Name."	
REFLECTIONS ON THE MOTIVE POWER OF HEAT. And on Machines fitted to develop that Power. From the original French of N. L. S. Carnot. By Prof. R. H. Thurston Emo, cloth, From Mons. Haton de la Goupillière, Director of the Ecole Nationale Supérieure des Mines de France, and President of La Société d'Encourage-	2 00
"I have received the volumes is kindly sent me, which contains the translation of the work of Carnot. You have rendered tribute to the founder of the science of thermodynamics in a manner that will be appreciated by the whole French people."	
A MANUAL OF THE STEAM ENGINE.	
A companion to the Manual of Steam Boilers. By Prof. Robt. H. Thurston. 2 vols	12 00
Part I. HISTORY, STRUCTURE AND THEORY. For Engineers and Technical Schools. (Advanced courses.) Nearly	
900 pages 8vo, cloth,	7 50
Part II. DESIGN, CONSTRUCTION AND OPERATION. For Engineers and Technical Schools. (Special courses in Steam	# F0
Engineering.)evo, cloth,	7 50
TEXT-BOOK OF THE PRIME MOTORS. For the Senior Year in Schools of Engineering. By Prof. R. H. Thurston. Ready, Fall of '92.	

HANDY TABLES,

FROM THURSTON'S STEAM-ENGINE MANUAL.

FOR USE IN LABORATORY COMPUTATIONS
IN TECHNICAL SCHOOLS.

NUMERICAL, TRIGONOMETRICAL, AND THERMODYNAMIC QUANTITIES;
STEAM AND HORSE-POWER TABLES, AND RECORDFORMS FOR LABORATORY USE.

NEW YORK:
JOHN WILEY & SONS,
53 EAST TENTH STREET.
1891.

TJ=70

COPYRIGHT, 1891.

BY

R. H. THURSTON.

TO X OF SX

6-28498

HANDY TABLES,

FROM THURSTON'S STEAM-ENGINE MANUAL.

	P.4	GE
I.	Numerical Constants; Circles; Areas; etc	
II.	LOGARITHMS, COMMON AND NATURAL	17
III.	Mean Pressure Ratios	20
IV.	TERMINAL PRESSURES	23
V.	HEAT TRANSFER AND TRANSFORMATION	24
VI.	Comparison of Thermometers	26
VII.	Volumes of Water; Densities	28
VIII.	METRIC STEAM TABLE	29
IX.	METRIC STEAM AND WORK TABLE	32
X.	STEAM TABLE; BRITISH UNITS	34
XI.	STORED ENERGY IN STEAM AND WATER	41
	FORMULAS FOR PROPERTIES OF STEAM	
XIII.	FACTORS OF EVAPORATION	45
XIV.	Composition of Fuels	46
XV.	Horse-power Constants	48
XVI.	REAL RATIOS OF EXPANSION	49
XVII.	Logs and Forms for Blanks	50
VIII.	ELECTRICAL HORSE-POWER	54
XIX.	WATER COMPUTATION TABLE	55
XX.	HIRN'S ANALYSIS BLANKS	57
XXI.	HEAT AND POWER UTILIZATION; NON-CONDENSING ENGINE	50

T.
NUMERICAL CONSTANTS.

n	ηπ	$n^2\frac{\pi}{4}$	n ²	n ³	√n	3 Vn
1.0	3.142	0.7854	1.000	1.000	1.0000	1.0000
1.1	3.456	0.9503	1.210	1.331	1.0488	1.0323
1.2	3.770	1.1310	1.440	1.728	1.0955	1.0627
1.3	4.084	1.3273	1.690	2.197	1.1402	1.0014
1.4	4.398	1.5394	1.960	2.744	1.1832	1.1187
1.5	4.712	1.7672	2.250	3 · 375	1.2247	1.1447
1.6	5.027	2.0106	2.560	4.096	1.2649	1.1696
1.7	5.341	2.2698	2.890	4.913	1.3038	1.1935
1.8	5.655	2.5447	3.240	5.832	1.3416	1.2164
1.9	5.969	2.8353	3.610	6.859	1.3784	1.2386
2.0	6.283	3.1416	4.000	8.000	1.4142	1.2599
2.1	6.597	3.4636	4.410	9.261	1.4491	1.2806
2.2	6.912	3.8013	4.840	10.648	1.4832	1.3006
2.3	7.226	4.1546	5.290	12.167	1.5166	1.3200
2.4	7.540	4.5239	5.760	13.824	1.5492	1.3389
2.5	7.854	4.9087	6.250	15.625	1.5811	1.3572
2.6	8.168	5.3093	6.760	17.576	1.6125	1.3751
2.7	8.482	5.7256	7.290	19.683	1.6432	1.3925
2.8	8.797	6.1575	7.840	21.952	1.6733	1.4095
2 .9	9.111	6.6052	8.410	24.389	1.7029	1.4260
3.0	9.425	7.0686	9.00	27.000	1.7321	1.4422
3.1	9.739	7 • 5477	9.61	29.791	1.7607	1.4581
3.2	10.053	8.0425	10.24	32.768	1.7889	1.4736
3.3	10.367	8.5530	10.89	35 - 937	1.8166	1.4888
3.4	10.681	9.0792	11.56	39.304	1.8439	1.5037
3.5	10.996	9.6211	12.25	42.875	1.8708	1.5183
3.6	11.310	10.179	12.96	46.656	1.8974	1.5326
3.7	11.624	10.752	13.69	50.653	1.9235	1.5467
3.8	11.938	11.341	14.44	54.872	1.9494	1.5605
3.9	12.252	11.946	15.21	59.319	1.9748	1.5741
4.0	12.566	12.566	16.00	64.000	2.0000	1.5874
4.1	12.881	13.203	16.81	68.921	2.0249	1.6005
4.2	13.195	13.854	17.64	74.088	2.0494	1.6134
4.3	13.509	14.522	18.49	79.507	2.0736	1.6261
4.4	13.823	15.205	19.36	85.184	2.0976	1.6386
4.5	14.137	15.904	20.25	91.125	2.1213	1.6510
4.6	14.451	16.619	21.16	97.336	2.1448	1.6631
4.7	14.765	17.349	22.09	103.823	2.1680	1 6751

CONSTANTS—Continued.

22	ηπ	$n^2\frac{\pi}{4}$	n ²	923	√n	³ √ _n		
4.8	15.080	18.096	23.04	110.592	2.1909	1.6869		
4.9	15.394	18.857	24.01	117.649	2.2136			
5.0	15.708	19.635	25.00	125.000	2.2361	1.7100		
5.1	16.022	20.428	26.01	132.651	2.2583	1.7213		
5.2	16.336	21.237	27.04	140.608	2.2804	1.7325		
5.3	16.650	22.062	28.09	148.877	2.3022	1.7435		
5.4	16.965	22.902	29.16	157.464	2.3238	1.7544		
5.5	17.279	23.758	30.25	166.375	2.3452	1.7652		
5.6	17.593	24.630	31.36	175.616	2.3664	1.7758		
5.7	17.907	25.518	32.49	185.193	2.3875	1.7863		
5.8	18.221	26.421	33.64	195.112	2.4083	1.7967		
5.9	18.535	27.340	34.81	205.379	2.4290	1.8070		
6.0	18.850	28.274	36.00	216.000	2.4495	1.8171		
6.1	19.164	29.225	37.21	226.981	2.4698	1.8272		
6.2	19.478	30.191	38.44	238.328	2.4900	1.8371		
6.3	19.792	31.173	39.69	250.047	2.5100	1.8469		
6.4	20.106	32.170	40.96	262.144	2.5298	1.8566		
6.5	20.420	33.183	42.25	274.625	2.5495	1.8663		
6.6	20.735	34.212	43.56	287.496	2.5691	1.8758		
6.7	21.049	35.257	44.89	300.763	2.5884	1.8852		
6.8	21.363	36.317	46.24	314.432	2.6077	1.8945		
6.9	21.677	37.393	47.61	328.509	2.6268	1.9038		
7.0	21.991	38.485	49.00	343.000	2.6458	1.9129		
7.1	22.305	39.592	50.41	357.911	2.6646	1.9220		
7.2	22.619	40.715	51.84	373.248	2.6833	1.9310		
7.3	22.934	41.854	53.29	389.017	2.7019	1.9399		
7.4	23.248	43.008	54.76	405.224	2.7203	1.9487		
7.5	23.562	44.179	56.25	421.875	2.7386	1.9574		
7.6	23.876	45.365	57.76	438.976	2.7568	1.9661		
7.7	24.190	46.566	59.29	456.533	2.7749	1.9747		
7.8	24.504	47.784	60.84	474.552	2.7929	1.9832		
7.9	24.819	49.017	62.41	493.039	2.8107	1.9916		
8.0	25.133	50.266	64.00	512.000	2.8284	2.0000		
8.1	25.447	51.530	65.61	531.441	2.8461	2.0083		
8.2	25.761	52.810	67.24	551.468	2.8636	2.0165		
8.3	26.075	54.106	68.89	571.787	2.8810	2.0247		
8.4	26.389	55.418	70.56	592.704	2.8983	2.0328		
8.5	26.704	56.745	72.25	614.125	2.9155	2.0408		
8.6	27.018	58.088	73.96	636.056	2.9326	2.0488		
8.7	27.332	59.447	75.69	658.503	2.9496	2.0567		
8.8	27.646	60.821	77.44	681.473	2.9665	2.0646		
8.9	27.960	62.211	79.21	704.969	2.9833	2.0724		

CONSTANTS-Continued.

<i>n</i>	nn	$n^2\frac{\pi}{4}$	n ³	n ³	√_n	3 4'n
90	28.274	63.617	81.00	729.000	3.0000	2.0801
9.1	28.588	65.039	82.81	753.571	3.0166	2.0878
9.2	28.903	66.476	84.64	778.688	3.0332	2.0954
9.3	29.217	67.929	86.49	804.357	3.0496	2.1029
9.4	29.531	69.398	88.36	830.584	3.0659	2.1105
9.5	29.845	70.882	90.25	857.375	3.0822	2.1179
9.6	30.159	72.382	92.16	884.736	3.0984	2.1253
9.7	30.473	73.898	94.09	912.673	3.1145	2.1327
9.8	30.788 31.102	75.430 76.977	96.04 98.01	941.192 970.299	3.1305 3.1464	2.1400
9.9	32.102	70.977	90.01	970.299	3.1404	2.14/2
10.0	31.4r6	78.540	100.00	1000.000	3.1623	2.1544
10.1	31.730	80.119	102.01	1030.301	3.1780	2.1616
IO.2 IO.3	32.044 32.358	81.713 83.323	104.04	1061.208 1092.727	3.1937 3.2094	2.1687
10.4	32.673	84.949	108.16	1124.863	3.2249	2.1757
·			100110		3.2249	211020
10.5	32.987	86.590	110.25	1157.625	3.2404	2.1897
10.6	33.301	88.247	112.36	1191.016	3.2558	2.1967
10.7	33.615	89.920 91.609	114.49	1225.043	3.2711	2.2036
10.8	33.929 34.243	93.313	116.64	1259.712	3.2863 3.3015	2.2104
10.9	34.243	93.313	110.01	1295.029	3.3013	2.21/2
11.0	34.558	95.033	121.00	1331.000	3.3166	2.2239
II.I	34.872	96.769	123.21	1367.631	3.3317	2.2307
11.2	35.186	98.520 100.29	125.44	1404.928 1442.897	3.3466	2.2374 2.244I
11.3	35.500 35.814	100.29	127.09	1481.544	3.3764	2.2441
****			129.90		3.3704	2.2500
11.5	36.128	103.87	132.25	1520.875	3.3912	2.2572
11.6	36.442	105.68	134.56	1560.896	3.4059	2.2637
11.7	36.757 37.071	107.51	136.89	1601.613 1643.032	3.4205 3.4351	2.2702 2.2766
11.0	37.385	111.22	141.61	1685.159	3.4496	2.2831
11.9	37.303	111122	142101			
12.0	37.699	113.10	144.00	1728.000	3.4641	2.2894
12.1	38.013	114.99	146.41	1771.561	3.4785	2.2957
12.2	38.327 38.642	116.90 118.82	148.84	1815.848 1860.867	3.4928 3.5071	2.3021
12.3	38.956	120.76	153.76	1906.624	3.5214	2.3146
			/			
12.5	39.270	122.72	156.25	1953.125	3 - 5355	2.3208
12.6	39.584	124.69	158.76	2000.376	3.5496	2.3270
12.7 12.8	39.898 40.212	128.68	163.84	2048.383	3.5637 3.5777	2.3331
12.0	40.527	130.70	166.41	2146.689	3.5917	2.3453
			760.00			
13.0	40.841	132.73	169.00 171.61	2197.000 2248.091	3.6056	2.3513
13.1	41.155	134.76	174.24	2299.968	3.6332	2.3633
13.2	41.409	130.03	-/44	2299.900	3.0332	2.3033

CONSTANTS—Continued.

n	ня	$n^2 \frac{\pi}{4}$	n²	18 ³	√n	**************************************
13.3	41.783 42.097	138.93	176.89 179.56	2352.637 2406.104	3.6469 3.6606	2.3693 2.3752
13.5	42.412	143.14	182.25	2460.375	3.6742	2.3811
13.6	42.726	145.27	184.96	2515.456	3.6878	2.3870
13.7	43.040	147.41	187.69	2571.353	3.7013	2.3928
13.8	43.354 43.668	149·57 151·75	190.44	2628.072 2685.619	3.7148 3.7283	2.3986 2.4044
14.0 14.1 14.2	43.982 44.296 44.611	153.94 156.15 158.37 160.61	196.00 198.81 201.64	2744.000 2803.221 2863.288	3.7417 3.7550 3.7683	2.4101 2.4159 2.4216
14.3	44.925 45.239 45.553	162.86	204.49 207.36 210.25	2924.207 2985.984 3048.625	3.7815 3.7947 3.8079	2.4272 2.4329 2.4385
14.6	45.867	167.42	213.16	3112.136	3.8210	2.444I
14.7	46.181	169.72	216.09	3176.523	3.8341	2.4497
14.8	46.496	172.03	219.04	3241.792	3.8471	2.4552
14.9	46.810	174.37	222.01	3307.949	3.8600	2.4607
15.0	47.124	176.72	225.00	3375.000	3.8730	2.4662
15.1	.47.438	179.08	228.01	3442.951	3.8859	2.4717
15.2	47.752	181.46	231.04	3511.808	3.8987	2.4772
15.3	48.066	183.85	234.09	3581.577	3.9115	2.4825
15.4	48.381	186.27	237.16	3652.264	3.9243	2.4879
15.5	48.695	188.69	240.25	3723.875	3.9370	2.4933
15.6	49.009	191.13	243.36	3796.416	3.9497	2.4986
15.7	49.323	193.59	246.49	3869.893	3.9623	2.5039
15.8	49.637	196.07	249.64	3944.312	3.9749	2.5092
15.9	49.951	198.56	252.81	4019.679	3.9875	2.5146
16.0	50.265	201.06	256.00	4096.000	4.0000	2.5198
16.1	50.580	203.58	259.21	4173.281	4.0125	2.5251
16.2	50.894	206.12	262.44	4251.528	4.0249	2.5303
16.3	51.208	208.67	265.69	4330.747	4.0373	2.5355
16.4	51.522	211.24	268.96	4410.944	4.0497	2.5406
16.5	51.836	213.83	272.25	4492.125	4.0620	2.5458
16.6	52.150	216.42	275.56	4574.296	4.0743	2.5509
16.7	52.465	219.04	278.89	4657.463	4.0866	2.5561
16.8	52.779	221.67	282.24	4741.632	4.0988	2.5612
16.9	53.093	224.32	285.61	4826.809	4.1110	2.5663
17.0	53.407	226 98	289.00	4913.000	4.1231	2.5713
17.1	53.721	229.66	292.41	5000.211	4.1352	2.5763
17.2	54.035	132.35	295.84	5088.448	4.1473	2.5813
17.3	54.350	235.06	299.29	5177.717	4.1593	2.5863
17.4	54.664	237.79	302.76	5268.024	4.1713	2.5913

HANDY TABLES,

n	ηπ	$n^2\frac{\pi}{4}$	n ²	n³	Vn	3 V2
17.5 17.6 17.7 17.8	54.978 55.292 55.606 55.920 56.235	240.53 243.29 246.06 248.85 251.65	306.25 309.76 313.29 316.84 320.41	5359·375 5451·776 5545·233 5639·752 5735·339	4.1833 4.1952 4.2071 4.2190 4.2308	2.5963 2.6012 2.6061 2.6109 2.6158
18.0	56.549	254.47	324.00	5832.000	4.2426	2.6207
18.1	56.863	257.30	327.61	5929.741	4.2544	2.6256
18.2	57.177	260.16	331.24	6028.568	4.2661	2.6304
18.3	57.491	263.02	334.89	6128.487	4.2778	2.6352
18.4	57.805	265.90	338.56	6229.504	4.2895	2.6401
18.5	58.119	268.80	342.25	6331.625	4.3012	2.6448
18.6	58.434	271.72	345.96	6434.856	4.3128	2.6495
18.7	58.748	274.65	349.69	6539.203	4.3243	2.6543
18.8	59.062	277.59	353.44	6644.672	4.3359	2.6590
18.9	59.376	280.55	357.21	6751.269	4.3474	2.6637
19.0 19.1 19.2 19.3	59.690 60.004 60.319 60.633 60.947	283.53 286.52 289.53 292.55 295.59	361.00 364.81 368.64 372.49 376.36	6859.000 6967.871 7077.888 7189.057 7301.384	4.3589 4.3703 4.3818 4.3932 4.4045	2.6684 2.6731 2.6777 2.6824 2.6869
19.5 19.6 19.7 19.8	61.261 61.575 61.889 62.204 62.518	298.65 301.72 304.81 307.91 311.03	380.25 384.16 388.09 392.04 396.01	7414.875 7529.536 7645.373 7762.392 7880.599	4.4159 4.4272 4.4385 4.4497 4.4609	2.6916 2.6962 2.7008 2.7053 2.7098
20.0	62.832	314.16	400.00	8000.000	4.4721	2.7144
20.1	63.146	317.31	404.01	8120.601	4.4833	2.7189
20.2	63.460	320.47	408.04	8242.408	4.4944	2.7234
20.3	63.774	323.66	412.09	8365.427	4.5055	2.7279
20.4	64.088	326.85	416.16	8489.664	4.5166	2.7324
20.5	64.403	330.06	420.25	8615.125	4.5277	2.7368
20.6	64.717	333.29	424.36	8741.816	4.5387	2.7413
20.7	65.031	336.54	428.49	8869.743	4.5497	2.7457
20.8	65.345	339.80	432.64	8989.912	4.5607	2.7502
20.9	05.659	343.07	436.81	9129.329	4.5716	2.7545
21.0	65.973	346.36	441.00	9261.000	4.5826	2.7589
21.1	66.288	349.67	445.21	9393.931	4.5935	2.7633
21.2	66.60 2	352.99	449.44	9528.128	4.6043	2.7676
21.3	66.916	356.33	453.69	9663.597	4.6152	2.7720
21.4	67.230	359.68	457.96	9800.344	4.6260	2.7763
21.5	67.544	363.05	462.25	9938.375	4.6368	2.7806
21.6	67.858	366.44	466.56	10077.696	4.6476	2.7849
21.7	68.173	369.84	470.89	10218.313	4.6583	2.7893

CONSTANTS—Continued.

CONSTANTS—Communes.						
n	пπ	$n^2\frac{\pi}{4}$	n ²	n³	V _n	vn √n
21.8	68.487	373.25	475.24	10360.232	4.6690	2.7935
	68.801	376.69	479.61	10503.459	4.6797	2.7978
22.0	69.115	380.13	484.00	10648.000	4.6904	2.8021
22.1	69.429	383.60	488.41	10793.861	4.7011	2.8063
22.2	69.743	387.08	492.84	10941.048	4.7117	2.8105
22.3	70.058	390.57	497.29	11089.567	4.7223	2.8147
22.4	70.372	394.08	501.76	11239.424	4.7329	2.8189
22.5	70.686	397.61	506.25	11390.625	4.7434	2.8231
22.6	71.000	401.15	510.76	11543.176	4.7539	2.8273
22.7	71.314	404.71	515.29	11697.083	4.7644	2.8314
22.8	71.268	408.28	519.84	11852.352	4.7749	2.8356
22.9	71.942	411.87	524.41	12008.989	4.7854	2.8397
23.0	72.257	415.48	529.00	12167.000	4.7958	2.8438
23.1	72.571	419.10	533.61	12326.391	4.8062	2.8479
23.2	72.885	422.73	538.24	12487.168	4.8166	2.8521
23.3	73.199	426.39	542.89	12649.337	4.8270	2.8562
23.4	73.513	430.05	547.56	12812.904	4.8373	2.8603
23.5	73.827	433·74	552.25	12977.875	4.8477	2.8643
23.6	74.142	437·44	556.96	13144.256	4.8580	2.8684
23.7	74.456	441·15	561.69	13312.053	4.8683	2.8724
23.8	74.770	444·88	566.44	13481.272	4.8785	2.8765
23.9	75.084	448·63	571.21	13651.919	4.8888	2.8805
24.0	75.398	452.39	576.00	13824.000	4.8990	2.8845
24.1	75.712	456.17	580.81	13997.521	4.9092	2.8885
24.2	76.027	459.96	585.64	14172.488	4.9193	2.8925
24.3	76.341	463.77	590.49	14348.907	4.9295	2.8965
24.4	76.655	467.60	595.36	14526.784	4.9396	2.9004
24.5	76.969	471.44	600.25	14706.125	4.9497	2.9044
24.6	77.283	475.29	605.16	14886.936	4.9598	2.9083
24.7	77.597	479.16	610.09	15069.223	4.9699	2.9123
24.8	77.911	483.05	615.04	15252.992	4.9799	2.9162
24.9	78.226	486.96	620.01	15438.249	4.9899	2.9201
25.0	78.540	490.87	625.00	15625.000	5.0000	2.9241
25.1	78.854	491.81	630.01	15813.251	5.0099	2.9279
25.2	79.168	498.76	635.04	16003.008	5.0199	2.9318
25.3	79.482	502.73	640.09	16194.277	5.0299	2.9356
25.4	79.796	506.71	645.16	16387.064	5.0398	2.9395
25.5	80.111	510.71	650.25	16581.375	5.0497	2.9434
25.6	80.425	514.72	655.36	16777.216	5.0596	2.9472
25.7	80.739	518.75	660.49	16974.593	5.0695	2.9510
25.8	81.053	522.79	665.64	17173.512	5.0793	2.9549
25.9	81.367	526.85	670.81	17373.979	5.0892	2.9586

HANDY TABLES.

				1		
n	нπ	$n^2\frac{\pi}{4}$	n ²	23	4'n	∛n
26.0	81.681	530.93	676.00	17576.000	5.0990	2.9624
26.1 26.2	81.996 82.310	535.02 539.13	681.21 686.44	17779.581	5.1088	2.9662
26.3	82.624	543.25	691.69	18191.447	5.1105	2.9701
26.4	82.938	547.39	696.96	18399.744	5.1380	2.9776
26.5 26.6	83.252 83.566	551.55	702.25 707.56	18609.625 18821.006	5.1478	2.9814
26.7	83.881	555.72 559.90	712.89	19034.163	5.1575 5.1672	2.9851
26.8	84.195	564.10	718.24	19248.832	5.1768	2.9926
26.9	84.509	568.32	723.61	19465.109	5.1865	2.9963
27.0	84.823 85.137	572.56 576.80	729.00	19683.000	5.1962	3.0000
27.I 27.2	85.451	581.07	734.41 739.84	20123.648	5.2057 5.2153	3.0037
27.3	85.765	585.35	745.29	20346.417	5.2249	3.0111
27.4	86.080	589.65	750.76	20570.824	5.2345	3.0147
27.5	86.394	593.96	756.25	20796.875	5.2440	3.0184
27.6	86.708 87.022	598.29 602.63	761.76 767.29	21024.576 21253.933	5.2535 5.2630	3.0221
27.8	87.336	606.99	772.84	21484.952	5.2725	3.0293
27.9	87.650	611.36	778.41	21717.639	5.2820	3.0330
28.0 28.1	87.965 88.279	615.75 620.16	784.00 789.61	21952.000 22188.041	5.2915	3.0366
28.2	88.593	624.58	795.24	2242: .768	5.3009	3.0402
28.3	88.907	629.02	800.89	22 65.187	5.3197	3.0474
28.4	89.221	633.47	806.56	22906.304	5.3291	3.0510
28.5 28.6	89.535 89.850	637.94	812.25 817.96	23149.125 23393.656	5.3385 5.3478	3.0546
28.7	90.164	646.93	823.69	23639.903	5.3572	3.0617
28.8	90.478	651.44	829.44	23887.872	5.3665	3.0652
28.9	90.792	655.97	835.21	24137.569	5 · 3758	3.0688
29.0 29.1	91.106	660.52 665.08	841.00 846.81	24389.000 24642.171	5.3852 5.3944	3.0723
29.1	91.420 91.735	669.66	852.64	24897.088	5.4037	3.0794
29.3	92.049	674.26	858.49	25153.757	5.4129	3.0829
29.4	92.363	678.87	864.36	25412.184	5.4221	3.0864
29.5 29.6	92.677	683.49 688.13	870.25 876.16	25672.375 25934.336	5.43I3 5.4405	3.0899
29.7	92.99I 93.305	692.79	882.09	26198.073	5.4497	3.0934
29.8	93.619	697.47	888.04	26463.592	5.4589	3.1003
29.9	93 • 934	702.15	894.01	26730.899	5.468o	3.1038
30.0	94.248	706.86	900.00	27000.000	5 • 4772	3.1072
30.1	94.562	711.58 716.32	906.01	27270.901 27543.608	5.4863 5.4954	3.1107

CONSTANTS-Continued.

n	нπ	π ² π/4	n ²	n³	V_n^-	$\sqrt[3]{n}$
30.3	95.190	721.07	918.09	27818.127	5.5045	3.1176
	95.505	725.83	924.16	28094.464	5.5136	3.1210
30.5	95.819	730.62	930.25	28372.625	5.5226	3.1244
30.6	96.133	735.42	936.36	28652.616	5.5317	3.1278
30.7	96.447	740.23	942.49	28934.443	5.5407	3.1312
30.8	96.761	745.06	948.64	29218.112	5.5497	3.1346
30.9	97.075	749.91	954.81	29503.629	5.5587	3.1380
31.0	97.3 ⁸ 9	754.77	961.00	29791.000	5.5678	3.1414
31.1	97.704	759.65	967.21	30080.231	5.5767	3.1448
31.2	98.018	764.54	973·44	30371.328	5.5857	3.1481
31.3	98.332	769.45	979·69	30664.297	5.5946	3.1515
31.4	98.646	774.37	985·96	30959.144	5.6035	3.1548
31.5 31.6 31.7 31.8 31.9	98.960 99.274 99.588 99.903	779.31 784.27 789.24 794.23 799.23	992.25 998.56 1004.89 1011.24 1017.61	31255.875 31554.496 31855.013 32157.432 32461.759	5.6124 5.6213 5.6302 5.6391 5.6480	3.1582 3.1615 3.1648 3.1681 3.1715
32.0	100.53	804.25	1024.00	32768.000	5.6569	3.1748
32.1	100.85	809.28	1030.41	33076.161	5.6656	3.1781
32.2	101.16	814.33	1036.84	33386.248	5.6745	3.1814
32.3	101.47	819.40	1043.29	33698.267	5.6833	3.1847
32.4	101.79	824.48	1049.76	34012.224	5.6921	3.1880
32.5	102.10	829.58	1056.25	34328.125	5.7008	3.1913
32.6	102.42	834.69	1062.76	34645.976	5.7006	3.1945
32.7	102.73	839.82	1069.29	34965.783	5.7183	3.1978
32.8	103.04	844.96	1075.84	35287.552	5.7271	3.2010
32.9	103.36	850.12	1082.41	35611.289	5.7358	3.2043
33.0	103.67	855.30	1089.00	35937.000	5.7446	3.2075
33.1	103.99	860.49	1095.61	36264.691	5.7532	3.2108
33.2	104.30	865.70	1102.24	36594.368	5.7619	3.2140
33.3	104.62	870.92	1108.89	36926.037	5.7706	3.2172
33.4	104.93	876.16	1115.56	37259.704	5.7792	3.2204
33.5	105.24	881.41	1122.25	37595·375	5.7879	3.2237
33.6	105.56	886.68	1128.96	37933.056	5.7965	3.2269
33.7	105.87	891.97	1135.69	38272·753	5.8051	3.2301
33.8	106.19	897.27	1142.44	38614·472	5.8137	3.2332
33.9	106.50	902.59	1149.21	38958·219	5.8223	3.2364
34.0	106.81	907.92	1156.00	39304.000	5.8310	3.2396
34.1	107.13	913.27	1162.81	39651.821	5.8395	3.2428
34.2	107.44	918.63	1169.64	40001.688	5.8480	3.2460
34.3	107.76	924.01	1176.49	40353.607	5.8566	3.2491
34.4	108.07	929.41	1183.36	40707.584	5.8651	3.2522

n	пп	$n^2 \frac{\pi}{4}$	n?	n ³	√n	$\sqrt[3]{n}$
34.5	108.38	934.82	1190.25	41063.625	5.8730	3.2554
34.6	108.70	940.25	1197.16	41421.736	5.8821	3.2586
34.7	109.01	945.69	1204.09	41781.923	5.8906	3.2617
34.8	109.33	951.15	1211.04	42144.192	5.8991	3.2648
34.9	109.64	956.62	1218.01	42508.549	5.9076	3.2679
35.0	109.96	962.11	1225.00	42875.000	5.9161	3.2710
35.1	110.27	967.62	1232.01	43243.551	5.9245	3.2742
35.2	110.58	973.14	1239.04	43614.208	5.9329	3.2773
35·3 35·4	110.90 111.21	978.68 984.23	1246.09	43986.977 44361.864	5.9413 5.9497	3.2804
35.5	111.53	989.80	1260.25	44738.875	5.9581	3.2866
35.6	111.84	995.38	1267.36	45118.016	5.9665	3.2897
35.7	112.15	1000.98	1274.49	45499.293	5.9749	3.2927
35.8	112.47	1006.60	1281.64	45882.712	5.9833	3.2958
35-9	112.78	1012.23	1288.81	46268.279	5.9916	3.2989
36.0	113.10	1017.88	1296.00	46656.000	6.0000	3.3019
36.1	113.41	1023.54	1303.21	47045.881	6.0083	3.3050
36.2	113.73	1029.22	1310.44	47437.928	6.0166	3.3080
36.3	114.04	1034.91	1317.69	47832.147	6.0249	3.3111
36.4	114.35	1040.62	1324.96	48228.544	6.0332	3.3141
39.5	114.67	1046.35	1332.25	48627.125	6.0415	3.3171
36.6	114.98	1052.09	1339.56	49027.896	6.0497	3.3202
36 7	115.30	1057.84	1346.89	49430.863	6.0580	3.3232
36.8 36.9	115.61	1063.62	1354.24 1361.61	49836.032 50243.409	6.0663	3.3262
37.0	116.24	1075.21	1369.00	50653.000	6.0827	3.3322
37.1	116.55	1081.03	1376.41	51064.811	6.0909	3.3352
37.2	116.87	1086.87	1383.84	51895.117	6.0991	3.3382
37·3 37·4	117.50	1092.72	1391.29 1398.76	52313.624	6.1155	3.3412
37.5	117.81	1104.47	1406.25	52734.375	6.1237	3.3472
37.6	118.12	1110.36	1413.76	53157.376	6.1318	3.3501
37.7	118.44	1116.28	1421.29	53582.633	6.1400	3.3531
37.8	118.75	1122.21	1428.84	54010.152	6.1481	3.3561
37.9	119.07	1128.15	1436.41	54439.939	6.1563	3.3590
38.0	119.38	1134.11	1444.00	54872.000	6.1644	3.3620
38.1	119.69	1140.09	1451.61	55306.341	6.1725	3.3649
38.2	120.01	1146.08	1459.24	55742.968	6.1806	3.3679
38.3	120.32	1152.09	1466.89	56181.887	6.1887	3.3708
38.4	120.64	1158.12	1474.56	56623.104	6.1967	3 - 3737
38.5	120.95	1164.16	1482.25	57066.625	6.2048	3.3767
38.6	121.27	1170.21	1489.96	57512.456	6.2129	3.3796
38.7	121.58	1176.28	1497.69	57960.603	6.2209	3.3825

CONSTANTS—Continued.

п	пп	$n^2\frac{\pi}{4}$	n ²	n ³	V_n	\$\vec{1}{\sqrt{n}}
38.8	121.89	1182.37	1505.44	58411.072	6.2289	3.3854
38.9	122.21	1188.47	1513.21	58863.869	6.2370	3.3883
39.0 39.1	122.52	1194.59 1200.72	1521.00 1528.81	59319.000 59776.471	6.2450	3.3912
39.2	123.15	1206.87	1536.64	60236.288	6.2610	3.3970
39.3	123.46	1213.04	1544.49	60698.457	6.2689	3.3999
39.4	123.78	1219.22	1552.36	61162.984	6.2769	3.4028
39-5	124.09	1225.42	1560.25	61629.875	6.2849	3.4056
39.6	124.41	1231.63	1568.16	62099.136 62570.773	6.2928	3.4085
39·7 39.8	124.72 125.04	1237.86	1576.09	63044.792	6.3087	3.4114
39.9	125.35	1250.36	1592.01	63521.199	6.3166	3.4171
40.0	125.66	1256.64	1600.00	64000.000	6.3245	3.4200
40.I	125.98	1262.93	1608.01	64481.201	6.3325	3.4228
40.2	126.29	1269.23	1616.04	64964.808	6.3404	3.4256
40.3	126.61 126.92	1275.56	1624.09 1632.16	65450.827 65939.264	6.3482	3.4285
40.4	120.92					3.4313
40.5	127.23	1288.25	1640.25	66430.125	6.3639	3.4341
40.6	127.55	1294.62	1648.36	66923.416	6.3718	3.4370
40. 7 40. 8	127.80	1301.00 1307.41	1664.64	67419.143	6.3875	3.4398
40.9	128.49	1313.82	1672.81	68417.929	6.3953	3.4454
41.0	128.81	1320.25	1681.00	68921.000	6.4031	3.4482
41.1	129.12	1326.70	1689.21	69426.531	6.4109	3.4510
41.2	129.43	1333.17	1697.44	69934.528	6.4187	3.4538
41.3	129.75	1339.65	1705.69	70444.997	6.4265	3.4566
41.4	130.06	1346.14	1713.96	70957.944	6.4343	3 • 4594
41.5	130.38	1352.65	1722.25	71473.375	6.4421	3.4622
41.6	130.69	1359.18	1730.56	71991.296	6.4498	3.4650
41.7	131.00	1365.72	1738.89	72511.713 73034.632	6.4575	3.4677
41.9	131.63	1378.85	1755.61	73560.059	6.4730	3.4733
42.0 42.1	131.95	1385.44	1764.00	74088.000 74618.461	6.4807	3.4760
42.1	132.58	1398.67	1780.84	75151.448	6.4961	3.4815
42.3	132.89	1405.31	1789.29	75686.967	6.5038	3.4843
42.4	133.20	1411.96	1797.76	76225.024	6.5115	3.4870
42.5	133.52	1418.63	1806.25	76765.625	6.5192	3.4898
42.6	133.83	1425.31	1814.76	77308.776	6.5268	3.4925
42.7	134.15	1432.01	1823.29	77854.483	6.5345	3.4952
42.8 42.9	134.46	1438.72 1445.45	1840.41	78953.589	6.5498	3.4980
49	234.11	2443.43	1	1-935-339	0.3490	3.3007

CONSTANTS—Continued.

n	иπ	$n^{2}\frac{\pi}{4}$	n ² .	n³	\sqrt{n}	$\sqrt[3]{n}$
43.0	135.09	1452.20	1849.00	79507.000	6.5574	3.5034
43.I	135.40	1458.96	1857.61	80062.991	6.5651	3.5061
43.2	135.72	1465.74	1866.24	80621.568	6.5727	3.5088
43·3 43·4	136.03	1472.54	1874.89 1883.56	81182.737 81746.504	6.5803	3.5115
43.4	130.33	14/9.34	1003.50	01/40.504	0.3079	3.5142
43.5	136.66	1486.17	1892.25	82312.875	6.5954	3.5169
43.6	136.97	1493.01	1900.96	82881.856	6.6030	3.5196
43.7	137.29	1499.87	1909.69	83453.453	6.6166	3.5223
43.8 43.9	137.60	1506.74	1918.44	84027.672 84604.519	6.6257	3.5250
43.9	-57.9-	-3-3.05	19-7:22	040041319		3.52//
44.0	138.23	1520.53	1936.00	85184.000	6.6333	3.5303
44.I	138.54	1527.45	1944.81	85766.121	6.6408	3.5330
44.2	138.86	1534.39	1953.64	86350.888 86938.307	6.6483	3-5357
44·3 44·4	139.49	1548.30	1971.36	87528.384	6.6633	3.5384
44.4					ĺ	2.54.0
44.5	139.80	1555.28	1980.25	88121.125	6.6708	3 - 5437
44.6	140.12	1562.28	1989.16	88716.536	6.6783	3.5463
44.7 44.8	140.43	1569.30	1998.09	89314.623 89915.392	6.6858	3.5490
44.9	141.06	1583.37	2016.01	90518.849	6.7007	3.5516
44.9		2505.57		7-3		3.3343
45.0	141.37	1590.43	2025.00	91125.000	6.7082	3.5569
45.I	141.69	1597.51	2034.01	91733.851	6.7156	3.5595
45.2 45.3	142.00	1604.60	2043.04	92345.408	6.7231	3.5621
45.4	142.63	1618.83	2061.16	93576.664	6.7379	3.5674
45.5	142.94	1625.97	2070.25	94196.375	6.7454	3.5700
45.6 45.7	143.26	1633.13	2079.36	95443.993	6.7528	3.5726
45.8	143.88	1647.48	2097.64	96071.912	6.7676	3.5778
45.9	144.20	1654.68	2106.81	96702.579	6.7749	3.5805
16.5	741.57	1661.00	2116 00	07776 000	6 200	0 7000
46.0 46.1	144.51	1661.90 1669.14	2116.00 2125.21	97336.000	6.7823	3.5830 3.5856
46.2	145.14	1676.39	2134.44	98611.128	6.7971	3.5882
46.3	145.46	1683.65	2143.69	99252.847	6.8044	3.5908
46.4	145.77	1690.93	2152.96	99897.344	6.8117	3 - 5934
46.5	146.08	1698.23	2162.25	100544.625	6.8191	3.596 0
46.6	146.40	1705.54	2171.56	101194.696	6.8264	3.5986
46.7	146.71	1712.87	2180.89	101847.563	6.8337	3.601 1
46.8	147.03	1720.21	2190.24	102503.232	6.8410	3.6037
46.9	147.34	1727.57	2199.61	103161.709	6.8484	3.6063
47.0	147.65	1734.94	2200.00	103823.000	6.8556	3.6088
47.I	147.97	1742.34	2218.41	104487.111	6.8629	3.6114
47.2	148.28	1749.74	2227.84	105154.048	6.8702	3.6139

CONSTANTS—Continued.

n	nπ	$n^2\frac{\pi}{4}$	n ²	92 ^S	√n	√n × n
47·3	148.60	1757.16	2237.29	105823.817	6.8775	3.6165
47·4	148.91	1764.60	2246.76	106496.424	6.8847	3.6190
47.5	149.23	1772.05	2256.25	107171.875	6.8920	3.6216
47.6	149.54	1779.52	2265.76	107850.176	6.8993	3.6241
47.7	149.85	1787.01	2275.29	108531.333	6.9065	3.6267
47.8	150.17	1794.51	2284.84	109215.352	6.9137	3.6292
47.9	150.48	1802.03	2294.41	109902.239	6.9209	3.6317
48.1	151.11	1817.11	2313.61	111284.641	6.9354	3.6368
48.2	151.42	1824.67	2323.24	111980.168	6.9426	3.6393
48.3	151.74	1832.25	2332.89	112678.587	6.9498	3.6418
48.4	152.05	1839.84	2342.56	113379.904	6.9570	3.6443
48.5	152.37	1847.45	2352.25	114084.125	6.9642	3.6468
48.6	152.68	1855.08	2361.96	114791.256	6.9714	3.6493
48.7	153.00	1862.72	2371.69	115501.303	6.9785	3.6518
48.8	153.31 153.62	1870.38 1878.05	2381.44 2391.21	116214.272	6.9857 6.9928	3.6543 3.6568
49.0	153.94 -	1885.74	2401.00	117649.000	7.0000	3.6593
49.1	154.25	1893.45	2410.81	118370.771	7.0071	3.6618
49.2	154.57	1901.17	2420.64	119095.488	7.0143	3.6643
49.3	154.88	1908.90	2430.49	119823.157	7.0214	3.6668
49·4	155.19	1916.65	2440.36	120553.784	7.0285	3.6692
49·5	155.51	1924.42	2450.25	121287.375	7.0356	
49·6	155.82	1932.21	2460.16	122023.936	7.0427	
49.7 49.8 49.9	156.14 156.45 156.77	1940.00 1947.82 1955.65	2470.09 2480.04 2490.01	122763.473 123505.992 124251.499	7.0427 7.0498 7.0569 7.0640	3.6742 3.6767 3.6791 3.6816
50.0	157.08	1963.50	2500.00	125000.000	7.0711	3.6840
51.0	160.22	2042.82	2601.00	132651.000	7.1414	3.7084
52.0	163.36	2123.72	2704.00	140608.000	7.2111	3.7325
53.0	166.50	2206.19	2809.00	148877.000	7.2801	3.7563
54.0	169.64	2290.22	2916.00	157464.000	7.3485	3.7798
55.0	172.78	2375.83	3025.00	166375.000	7.4162	3.8030
56.0	175 93	2463.01	3136.00	175616.000	7.4833	3.8259
57.0	179.07	2551.76	3249.00	185193.000	7.5498	3.8485
58.0	182.21	2642.08	3364.00	195112.000	7.6158	3.8709
59.0	185.35	2733.^7	3481.00	205379.000	7.6811	3.8930
60.0	188.49	2827.44	3600.00	216000.000	7.7460	3.9149
61.0	191.63	2922.47	3721.00	226981.000	7.8102	3.9365
62.0 63.0 64.0 65.0	194.77 197.92 201.06 204.20	3019.07 3117.25 3216.99 3318.31	3844.00 3969.00 4096.00 4225.00	238328.000 250047.000 262144.000	7.8740 7.9373 8.0000	3.9579 3.9791 4.0000
66.0	207.34	3421.20	4356.00	274625.000 287496.000	8.0623 8.1240	4.0207

HANDY TABLES.

22	ηπ	$n^2 \frac{\pi}{4}$	n ²	n ³	V ⁻ n	<i>³√n</i>
67.0	210.48	3525.66	4489.00	300763.000	8.1854	4.0615
68.0	213.63	3631.69	4624.00	314432.000	8.2462	4.0817
69.0	216.77	3739.29	4761.00	328509.000	8.3066	4.1016
70.0	219.91	3848.46	4900.00	343000.000	8.3666	4.1213
71.0	223.05	3959.20	5041.00	357911.000	8.4261	4.1408
72.0	226.19	4071.51	5184.00	373248.000	8.4853	4.1602
73.0	229.33	4185.39	5329.00	389017.000	8.5440	4.1793
74.0	232.47	4300.85	5476.00	405224.000	8.6023	4.1983
75.0	235.62	4417.87	5625.00	421875.000	8.6603	4.2172
76.0	238.76	4536.47	5776.00	438976.000	8.7178	4.2358
77.0	241.90	4656.63	5929.00	456533.000	8.7750	4.2543
78.0	245.04	4778.37	6084.00	474552.000	8.8318	4.2727
79.0	248.18	4901.68	6241.00	493039.000	8.8882	4.2908
80.0	251.32	5026.56	6400.00	512000.000	8.9443	4.3089
81.0	254.47	5153.01	6561.00	531441.000	9.0000	4.3267
82.0	257.61	5281.03	6724.00	551368.000	9.0554	4.3445
83.0	260.75	5410.62	6889.00	571787.000	9.1104	4.3621
84.0	263.89	5541.78	7056.00	592704.000	9.1652	4.3795
85.0	267.03	5674.50	7225.00	614125.000	9.2195	4.3968
86.0	270.17	5808.81	7396.00	636056.000	9.2736	4.4140
87.0	273.32	5944.69	7569.00	658503.000	9.3274	4.4310
88.0	276.46	6082.13	7744.00	681472.000	9.3808	4.4480
89.0	279.60	6221.13	7921.00	704969.000	9.4340	4.4647
90.0	282.74	6361.74	8100.00	729000.000	9.4868	4.4814
91.0	285.88	6503.89	8281.00	753571.000	9.5394	4.4979
92.0	289.02	6647.62	8464.00	778688.000	9.5917	4.5144
93.0	292.17	6792.92	8649.00	804357.000	9.6437	4.5307
94.0	295.31	6939.78	8836.00	830584.000	9.6954	4.5468
95.0	298.45	7088.23	9025.00	857375.000	9.7468	4.5629
96.0	301.59	7238.24	9216.00	884736.000	9.7980	4.5789
97.0	304.73	7389.83	9409.00	912673.000	9.8489	4.5947
98.0	307.87	7542.98	9604.00	941192.000	9.8995	4.6104
99.0	311.02	7697.68	9801.00	970299.000	9.9499	4.6261
00.0	314.16	7854.00	10000.00	1000000.000	10.0000	4.6416

II.
LOGARITHMS.

HYPERBOLIC LOGARITHMS.

N.	Log.	N.	Log.	N.	Log.	N.	Log.	N.	Log.
1.00	0,0000	2.30	0.8329	3.60	1.2809	4.90	1.5892	6.40	1.8563
1.05	0.0488	2.35	0.8544	3.65	1.2947	4.95	1.5994	6.50	1.8718
1.10	0.0953	2.40	0.8755	3.70	1.3083	5.00	1,6004	6.60	1.8871
	0.1398	2.45	0.8961	3.75	1.3218	5.05	1.6194	6.70	1.9021
1.15	0.1823	2.50	0.9163	3.80	1.3350	5.10	1.6202	6.80	1.9169
1.25	0.1023	2.55	0.9361	3.85	1.3481	5.15	1.6390	6.90	1.9315
1.30	0.2624	2.60	0.9555	3.90	1.3610	5.20	1.6487	7,00	1.9459
1.35	0.3001	2.65	0.9746	3.95	1.3737	5.25	1.6582	7.20	1.9741
I 40	0.3365	2.70	0.9933	4.00	1.3863	5.30	1.6677	7.40	2.0015
	0.3305	2.75	1.0116	4.05	1.3987	5.35	1.6771	7.60	2,0281
1.45		2.80	1.0296	4.10	1.4110	5.40	1.6864	7.80	2.0541
1.50	0.4055	2.85	1.0290	4.15	1.4231	5.45	1.6956	8.00	2.0794
1.55	0.4383	2.00	1.0647	4.20	1.4351	5.50	1.7047	8.25	2.1102
1.65	0.4700		1.0047	4.25	1.4469	5.55	1.7138	8.50	2.1401
	0.5008	2.95			1.4586	5.60	1.7228	8.75	2.1601
1.70	0.5306	3.00	1.0986	4.30	1.4500	5.65	1.7317	9.00	2.1091
1.75	0.5596	3.05	1.1154	4.35	1.4816				2.19/2
1.80	0.5878	3.10	1.1314	4.40		5.70	1.7405	9.25	
1.85	0.6152	3.15	1.1474	4 - 45	1.4929	5.75 5.80	1.7492	9.50	2.2513
1.90	0.6419	3.20	1.1632	4.50	1.5041	5.00	1.7579	9.75	2.2773
1.95	0.6678	3.25	1.1787	4 - 55	1.5151	5.85	1.7664	10.00	2.3026
2.00	0.6931	3.30	1.1939	4.60	1.5261	5.90	1.7750	11.00	2.3979
2.05	0.7178	3.35	1.2090	4.65	1.5369	5.95	1.7834	12.00	2.4849
2.10	0.7419	3.40	1.2238	4.70	1.5476	6.00	1.7918	13.00	2.5649
2.15	0.7655	3 · 45	1.2384	4.75	1.5581	6.10	1.8083	14.00	2.6391
2.20	0.7885	3.50	1.2528	4.80	1.5686	6.20	1.8245	15.00	2.7081
2.25	0.8109	3.55	1.2669	4.85	1.5790	6.30	1.8405	16.00	2.7726

COMMON LOGARITHMS: 10-1200.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
10	00000	00432	00860	01284	01703	02119	02531	02938	03342	93743	396
11	04139	04532	04922	05308	05690	06070	06446	06810	07188	07555	363
12	07918	08279	08636	08991	09342	09691	10037	10380	10721	11050	335
13	11394	11727	12057	12385	12710	13033	13354	13672	13988	14301	312
14	14613	14922	15229	15534	15836	16137	16435	16732	17026	17319	290
15	17609	17898	18184	18469	18752	19033	19312	19590	19866	20140	272
16	20412	20683	20952	21219	21484	21748	22011	22272	22531	22789	256
17	23045	23300	23553	23805	24055	24304	24551	24797	25042	25285	242
18	25527	25768	26007	26245	26482	26717	26951	27184	27416	27646	229
19	27875	28103	28330	28556	28780	29003	29226	29447	29667	29885	218
20	30103	30320	30535	30750	30963	31175	31387	31597	31806	32015	207
21	32222	32428	32634	32838	33041	33244	33445	33646	33846	34044	198
22	34242	34439	34635	34830	35025	35218	35411	35603	35793	35984	189
23	36173	36361	36549	36736	36922	37107	37291	37475	37658	37840	181
24	38021	38202	38382	38561	38739	38917	39094	39270	39445	39620	174.
25	39794	39967	40140	40312	40483	40654	40824	40993	41162	41330	167
26	41497	41664	41830	41996	42160	42325	42488	42651	42813	42975	161
27	43136	43297	43457	43616	43775	43933	44091	44248	44404	44560	156
28	44716	44871	45025	45179	45332	45484	45637	45788	45939	46000	150
29	46240	46389	46538	46687	46835	46982	47129	47276	47422	47567	145

HANDY TABLES.

COMMON LOGARITHMS-Continued.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
30	47712	47857	48001	48144	48287	48430	48572	48714	48855	48996	140
31	49136	49276	49415	49554	49693	49831	49969	50106	50243	50379	136
32	50515	50651	50786	50920	51055	51188	51322	51455	51587	51720	132
33	51851	51983	52114	52244	52375	52504	52634	52763	52892	53020	128
34	53148	53275	53403	53529	53656	53782	53908	54033	54158	54283	124
35 36	54407 55630	54531 55751	54654 55871	54777 55991	54900	55023 56220	55145 56348	55267 56467	55388 56585	55509 56703	121
37	56820	56937	57054	57171	57287	57403	57519	57634		57864	114
37 38	57978	58002	58206	58320	58433	58546	58659	58771	57749 58883	58995	III
39	59106	59218	59329	59439	59550	59660	59770	59879	59988	60097	109
40	60206	60314	60423	60531	60638	60746	60853	60959	61066	61172	106
41	61278	61384	61490	61595	61700	61805	61909	62014	62118	62221	104
42	62325	62428	62531	62634	62737	62839	62941	63043	63144	63246	IOI
43	63347 64345	63448 64444	63548 64542	63649 64640	63749 64738	63849 64836	63949 64933	64048 65031	64147 65128	64246	99
44									-		97
45 46	65321 66276	65418 66370	65514 66464	65610 66558	65706 66652	65801 66745	65896 66839	65992 66932	66087 67025	66181	95
47	67210	67202	67394	67486	67578	67669	67761	67852	67042	68034	93
48	68124	67302 68215	68305	68395	68485	68574	68664	68753	67943 68842	68931	89
49	69020	69108	69197	69285	69373	69461	69548	69636	69723	69810	87
50	69897	69984	70070	70157	70243	70329	70415	70501	70586	70672	86
51	70757	70842	70927	71012	71096	71181	71265	71349	71433	71517	84
52	71600	71684	71767	71850	71933	72016	72099	72181	72263	72346	83
53	72428	72509	72591	72673	72754	72835	72916	72997	73078	73159	81
54	73239	73320	73400	73480	73560	73640	73719	73799	73878	73957	80
55	74036	74115	74194	74273	7435 ^t	74429	74507	74586	74663	74741	78
56	74819	74896	74974	75051	75128	75205	75282	75358	75435	75511	77
57 58	75587 76343	75664 76418	75740 76492	75815 76567	75891 76641	75967 76716	76042 76790	76118 76864	76193 76938	76268	76
59	77085	77159	77232	77305	77379	77452	77525	77597	77670	77743	74 73
60	77815	77887	77960	78032	78104	78176	78247	78319	78390	78462	72
бı	78533	78604	78675	78746	78817	78888	78958	79029	79099	79169	71
62	79239	79309 80003	79379	79449	79518	79588	79657	79727	79796	79865	69
63	79934	80003	80072	80140	80209	80277	80346	80414	80482	80550	68
64	80618	80686	80754	80821	80889	80956	81023	81090	81158	81224	67
65	81291	81358	81425	81491	81558	81624	81690	81757	81823	81889	66
66	81954	82020	82086	82151	82217	82282	82347	82413	82478	82543	65
67 68	82607	82672	82737	82802	82866	82930	82995 83632	83059 83696	83123	83187	64
69	83251 83885	83315 83948	83378 84011	83442 84073	83506 84136	83569 84198	84261	84323	83759 84386	83822 84448	63
70	84510	84572	84634	84696	84757	84819	84880	84942	85003	85065	62
71	85126	85187	85248	85309	85370	85431	85491	85552	85612	85673	6x
72	85733	85794	85854	85914	85974	86034	86094	86153	86213	86273	60
73	86332	86392	86451	86510	86570	86629	86688	86747	86806	86864	59
74	86923	86982	87040	87099	87157	87216	87274	87332	87390	87448	58
75	87506	87564	87622	87679	87737	87795	87852	87910	87967	88024	58
76	88081	88138	88195	88252	88300	88366	88423	88480	88536	88593	57
77 78	88649	88705	88762	88818	88874	88930	88986	89042	89098	89154	56
78 79	89209 89763	89265 89818	89321 898 7 3	89376 89927	89432 89982	89487 90037	89542 90091	89597 90146	89653 90200	89708	55 55
80		, í			90526	90580	90634	90687	90741		
81	90309	90363 90902	90417 90956	90472	90520	90500	91169	90087 Q1222	91275	90795	54
82	91381	91434	91487	91540	91593	91645	91109	91751	912/5	91328	53
83	91908	91960	92012	92065	92117	92169	92221	92273	92324	92376	52
84	92428	92480	92531	92583	92634	92686	92737	92788	92840	92891	51
85	92942	92993	93044	93095	93146	93197	93247	93298	93349	93399	51
86	93450	93500	93551	93601	93651	93702 94201	93752	93802	93852	93902	50
87	93952	94002	94052	94101	94151		94250	94300	94349	94399	50

COMMON LOGARITHMS-Continued.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
88 89	94448	94498	94547 95036	94596	94645 95134	94694 95182	94743 95231	94792 95279	94841	94890 95376	49 49
90 91 92 93 94	95424 95904 96379 96848 97313	95472 95952 96426 96895 97359	95521 95999 96473 96942 97405	95569 96047 96520 96988 97451	95617 96095 96567 97035 97497	95665 96142 96614 97081 97543	95713 96190 96661 97128 97589	95761 96237 96708 97174 97635	95809 96284 96755 97220 97681	95856 96332 96802 97267 97727	48 47 47 46 46
95 96 97 98 99	97772 98227 98677 99123 99564	97818 98272 98722 99167 99607	97864 98318 98767 99211 99651	97909 98363 98811 99255 99695	97955 98408 98856 99300 99739	98000 98453 98900 99344 99782	98046 98498 98945 99388 99826	98091 - 98543 98989 99432 99870	98137 98588 99034 99476 99913	98182 98632 99078 99520 99957	45 45 45 44 44
100 101 102 103 104	00000 00432 00860 01284 01703	00043 00475 00903 01326 01745	00087 00518 00945 01368 01787	00130 00561 00988 01410 01828	00173 00604 01030 01452 01870	0021 7 00647 0107 2 01494 01912	00260 00689 01115 01536 01953	00303 00732 01157 01578 01995	00346 00775 01199 01620 02036	00389 00817 01242 01662 02078	43 43 42 42 42
105 106 107 108 109	02119 02531 02938 03342 03743	02160 02572 02979 03383 03782	02202 02612 03019 03423 03822	02243 02653 03060 03463 03862	02284 02694 03100 03503 03902	02325 02735 03141 03543 03941	02366 02776 03181 03583 03981	02407 02816 03222 03623 04021	02449 02857 03262 03663 04060	02490 02898 03302 03703 04100	41 41 40 40
110 111 112 113 114	04139 04532 04922 05308 05690	04179 04571 04961 05346 05729	04218 04610 04999 05385 05767	04258 04650 05038 05423 05805	04297 04689 05077 05461 05843	04336 04727 05115 05500 05881	04376 04766 05154 05538 05918	04415 04805 05192 05576 05956	04454 04844 05231 95614 05994	04493 04883 05269 05652 06032	39 39 39 38 38 38
115 116 117 118 119	06070 06446 06819 07188 07555	06108 06483 06856 07225 07591	06145 06521 06893 07262 07628	06183 06558 06930 07298 07664	06221 06595 06967 07335 07700	06258 06633 07004 07372 07773	06296 06670 07041 07408 07773	o6333 o6707 o7078 o7445 o7809	06371 06744 07115 07482 07846	06408 06781 07151 07518 07882	38 37 37 37 37 36

Log.

III.

MEAN PRESSURES FOR VARIOUS METHODS OF EXPANSION.

Values of $\frac{p_m}{p_1}$. Adiabatic Expansion of Steam.

of ion.	Hi.K		P	ERCENTAG	E OF STE.	AM AND V	ALUE OF	n.	
Ratio of Expansion.	Cut-oft,	100	90	8o	76	70	60	50	100
Ex	Ō	1.135	1.125	1.115	1.111	1.105	1.095	1.085	1.333
2	1/2	.829	.831	.833	.834	.835	.836	.837	.810
2 1	4 9	.785	.787	. 788	.789	.790	.791	•793	.754
2 1/2	2 5	.744	.746	-747	.748	.749	.750	.751	.714
2 ⁸ / ₄	4	.707	.708	.710	.711	.712	.713	.714	.675
3	1 1 3	.675	.676	.677	.678	.679	.681	.683	.639
31	4 18	.644	.645	.647	.648	.649	.650	.652	.606
3 1 /3	3 10	.633	.635	.636	.637	.639	.641	.643	.600
$3\frac{1}{2}$	2 7	.616	.618	.619	.620	.622	.624	.626	.576
3 ⁸ / ₄	18	.591	.592	-593	•594	-595	.596	.598	.552
4	1	.567	.568	.570	.572	-573	• 574	.576	.523
$4\frac{1}{2}$	29	-525	-527	.528	.530	.531	•533	•534	.486
5	1 5	.488	.491	•493	•494	.496	.498	.500	-447
$5\frac{1}{2}$	r ² T	.458	.460	.462	.463	.465	.467	.470	.417
6	1 6	•432	·434	•435	•437	•439	.441	•443	.390
$6\frac{1}{2}$	2 13	.409	.410	.411	.413	.415	.417	.420	.369
7	1	-387	.390	. 392	•394	.400	-403	.405	•345
8	18	-355	.356	-357	.358	.360	.361	.363	.312
10	10	.298	.300	.302	.303	.304	.305	.308	.263
20	1 20	.170	.173	.175	.177	.178	.180	.182	.144
50	1 50	.080	.082	.083	.084	.084	.085	.086	.063
100	100	.044	.045	.045	.046	.046	.047	048	.034

III.—(Continued.)

MEAN PRESSURES FOR VARIOUS METHODS OF EXPANSION.

Values of $\frac{p_m}{p_1}$ for Steam, Air, Gas, and Mixtures.

o of ion, r.	cut-off,	Steam Expanding, Dry and Saturated, n, 1.046.	in Com- n, 1.20.		nd Leak- ctual En-	Vapor in e, 2, 1.60.	Ga	Gases.	
Ratio of Expansion,	Point of cut-off,	Steam Expanding Dry and Saturated n, 1.046. Moist Air in Compressors, n, 1.20.		n, 0.50.	n, 0.75.	Gas and Vapor in Gas-engine, ", 1.60	Isothermal, n,	Adiabat- ic, n, 1.41.	
2	1/2	.841	.825	.914	.875	.783	.846	.801	
21	4/9	.793	.787	.888	.844	-733	.804	.753	
$2\frac{1}{2}$	25	.760	-745	.866	.800	.683	. 765	.707	
24	11	.717	.700	.846	.785	.638	.731	.668	
3	1/8	.695	.665	.824	.752	-598	.699	.638	
3 ¹ / ₄	13	.665	.635	.802	.732	.578	.670	.596	
31/8	3 10	.652	.625	.796	.716	.568	.661	.588	
$3\frac{1}{2}$	27	.632	.605	.782	.704	.548	.642	.568	
34	15 15	.608	.580	-775	.684	.515	.616	.538	
4	1/4	.587	-550	.750	.664	.486	. 566	.518	
$4\frac{1}{2}$	29	.540	.510	.720	.624	.441	-555	-473	
5	1 5	.510	.482	.695	.600	.406	.522	.428	
$5\frac{1}{2}$	2 11	.478	+455	.674	.560	.371	.492	.406	
6	1/6	-454	.420	.650	.530	-349	.465	.378	
$6\frac{1}{2}$	2 13	.430	.390	.632	.515	.326	.441	.358	
7	17	.409	-375	.612	.500	-303	.421	-337	
8	1/8	-372	.340	.697	.468	.276	-385	.302	
10	10	.326	.284	-532	.412	. 225	. 330	253	
20	1 20	.192	.165	. 396	.272	. 103	.200	.138	
50	1 50	.091	.074	. 245	.193	.050	.098	.060	
100	100	.053	.040	.180	.134	.025	.056	.032	

III.—(Continued.)

MEAN PRESSURE RATIOS.

The color of the	.216 .215 .214 .212 .210	218 .: 216 .: 215 .: 214 .: 212 .:	.20
1.1 0.996 0.996 0.996 8.4 4.72 4.97 4.92 9.7 30 338 322 18.0 102 1.3 0.666 0.968 0.97 5.6 4.61 4.86 4.71 9.0 3.05 338 322 18.0 102 1.3 0.66 0.968 0.967 5.6 4.61 4.86 4.71 9.0 3.05 3.33 317 18.4 1.80 1.4 0.947 9.52 9.05 5.7 4.96 4.81 4.66 10.0 3.03 3.30 314 18.6 18.75 1.5 0.28 0.934 0.931 5.8 4.50 4.75 4.60 10.2 2.99 3.25 330 18.8 18.5 18.5 1.7 0.800 0.900 8.95 6.0 4.40 4.65 4.50 10.6 2.91 3.21 3.20 19.0 18.2 1.10 1.8 8.70 8.80 8.75 6.1 4.34 4.60 4.84 10.8 2.83 7.33 2.84 19.4 18.6 1.87 19.0 18.8 1.90 4.85 1.9 4.	.216 .215 .214 .212 .210	216 .: 215 .: 214 .: 212 .:	. 20
1.1 0.996 0.996 0.996 5.4 4.72 4.97 4.92 9.7 3.50 3.38 3.22 18.0 102 1.3 0.968 0.983 0.983 5.5 4.67 4.92 4.77 9.8 3.97 3.35 3.31 18.2 1190 1.3 0.966 0.968 0.967 5.6 4.61 4.86 4.71 9.9 3.95 3.33 3.37 18.4 1.89 1.4 0.947 9.52 0.95 5.7 4.95 4.81 4.80 10.0 3.93 3.30 3.71 18.4 1.89 1.5 0.988 0.934 0.931 5.8 4.59 4.75 4.60 10.2 2.99 3.25 3.30 13.1 18.6 1.87 1.7 0.890 0.900 8.95 6.0 4.40 4.65 4.50 10.6 2.91 3.21 3.20 19.0 19.0 18.3 1.7 0.890 0.900 8.85 8.75 6.1 4.34 4.60 4.81 10.8 2.83 7.33 2.98 19.4 1.86 1.9 0.850 8.862 8.56 6.2 4.29 4.55 4.40 11.0 2.83 3.99 2.94 19.6 17.9 2.0 0.833 8.846 8.40 6.34 4.9 4.55 4.40 11.0 2.83 3.99 2.94 19.6 17.9 2.1 8.87 8.30 8.24 6.4 4.19 4.45 4.34 11.0 2.83 3.99 2.94 19.6 17.9 2.2 0.7 8.812 8.95 6.5 4.44 4.44 4.26 11.6 2.72 2.29 8.81 2.0 2.0 17.7 2.2 2.798 8.812 8.95 6.5 4.44 4.44 4.426 11.6 2.72 2.29 8.83 2.0. 2.75 2.2 3.3 7.80 7.95 7.78 6.6 4.99 4.35 4.11 1.8 2.27 2.29 2.8 2.3 1.80 2.75 6.8 4.91 4.84 4.45 4.84 4.25 1.8 2.85 2.94 2.97 2.0 4.174 2.4 1.50 2.24 1.8 2.85 2.9 2.9 2.75 6.8 4.91 4.88 4.98 2.24 2.27 2.28 2.28 2.28 2.20 2.75 2.29 3.73 2.32 3.75 2.20 3.20 3.75 2.20 3.20 3.75 2.20 3.20 3.75 2.20 3.20 3.75 2.20 3.20 3.75 2.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	.216 .215 .214 .212 .210	216 .: 215 .: 214 .: 212 .:	. 20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.215 .214 .212 .210	215 .: 214 .: 212 .:	
1.4 .947 .952 .950 5.7 .456 .481 .466 10.0 .303 .330 .314 18.6 .187 1.5 .928 .934 .931 5.8 .450 .475 .460 10.2 .299 .325 .330 18.8 18.5 1.6 .910 .914 5.9 .445 .470 .455 10.4 .295 .321 .306 19.0 .183 1.7 .890 .808 .875 6.1 .434 .460 .495 10.6 .291 .317 .321 .122 .182 .188 .876 .828 .313 .298 19.4 .180 .182 .828 .313 .298 19.4 .180 .182 .828 .333 .398 19.4 .180 .288 .333 .398 .44 .450 .432 .11.2 .279 .305 .200 19.8 .178 2.1 .817 .838 <t< td=""><td>.212</td><td>212 .</td><td></td></t<>	.212	212 .	
1. 5 .928 .934 .931 5.8 450 .475 .460 10.2 .299 .325 .350 18.8 .185 1. 6 .910 .914 5.9 .446 .470 .455 10.4 .299 .325 .321 .361 19.0 .183 1.7 .890 .900 .895 6.0 .440 .465 .455 10.6 .291 .317 .302 19.2 .182 1. 8 .870 .850 .856 .856 6.2 .429 .455 .440 11.0 .283 .399 .294 19.6 .179 2.0 .833 .846 .840 6.3 .424 .455 .440 11.0 .283 .399 .294 19.6 .179 2.2 .783 .812 .805 6.5 .414 .441 .426 11.6 .272 .298 .823 .20.0 177 2.2 .798 .812 .89	.210		. 19
1. 6 .910 .914 5.9 .445 .470 .455 10.4 .295 .321 .306 19.0 .183 1. 7 .890 .900 .895 6.0 .440 .465 .450 10.6 .291 .317 .332 19.2 .182 1. 8 .870 .885 6.2 .429 .455 10.4 11.0 .883 .399 .294 19.4 .180 2. 0 .833 .846 .840 6.3 .424 .450 .435 11.2 .279 .305 .200 19.8 .178 2. 1 .837 .826 6.5 .434 .445 .435 11.2 .279 .305 .200 19.8 .178 2. 2 .786 .826 6.5 .434 .441 .411 .287 .301 .286 20.0 .175 2. 4 .703 .750 .776 6.7 .405 .432 .411 12		210	19
$\begin{array}{c} 1.7 \\ 1.8 \\ 1.8 \\ 2.0 \\ 2.0 \\ 3.5 \\ 3.6 \\ 4.0 \\ 3.1 \\ 3.0 \\ 3.0 \\ 4.0 \\ 3.0 \\$. 2081		. 19
$\begin{array}{c} \textbf{1.9} & .850 & .862 & .856 & .6.2 & .429 & .455 & .440 & \textbf{11.0} & .283 & .309 & .294 & \textbf{19.6} & \textbf{1.79} \\ \textbf{2.0} & .833 & .846 & .840 & .6.3 & .424 & .450 & .435 & \textbf{11.2} & .279 & .305 & .200 & \textbf{19.8} & \textbf{1.78} \\ \textbf{2.1} & .817 & .830 & .824 & .6.4 & .419 & .445 & .435 & \textbf{11.2} & .279 & .305 & .200 & \textbf{19.8} & \textbf{1.78} \\ \textbf{2.2} & .788 & .812 & .805 & .6.5 & .474 & .441 & .426 & \textbf{11.6} & .272 & .298 & .283 & .20. & \textbf{2.175} \\ \textbf{2.3} & .780 & .795 & .797 & .60 & .409 & .436 & .421 & \textbf{11.8} & .268 & .294 & .279 & .204 & .272 & .204 & .200 & .275 \\ \textbf{2.4} & .763 & .785 & .771 & .6.7 & .405 & .432 & .417 & \textbf{12.0} & .264 & .290 & .275 & .20. & \textbf{1.73} \\ \textbf{2.5} & .748 & .766 & .756 & .68 & .401 & .428 & .413 & \textbf{12.2} & .261 & .287 & .228 & .208 & \textbf{2.10} \\ \textbf{2.7} & .718 & .756 & .756 & .68 & .401 & .428 & .413 & \textbf{12.2} & .264 & .290 & .275 & .20. & \textbf{1.73} \\ \textbf{2.6} & .732 & .750 & .740 & .6.9 & .396 & .424 & .408 & \textbf{12.4} & .257 & .283 & .268 & \textbf{2.10} & .201 & .201 \\ \textbf{2.8} & .705 & .772 & .775 & .70 & .70 & .389 & .417 & .401 & \textbf{12.8} & .251 & .277 & .256 & \textbf{21.1} & .167 \\ \textbf{2.9} & .692 & .7710 & .700 & .72 & .389 & .417 & .401 & \textbf{12.8} & .251 & .277 & .256 & \textbf{21.6} & .165 \\ \textbf{3.1} & .668 & .669 & .688 & .7.3 & .381 & .410 & .393 & \textbf{13.2} & .245 & .271 & .256 & \textbf{21.6} & .165 \\ \textbf{3.2} & .665 & .675 & .664 & .7.5 & .377 & .406 & .300 & \textbf{13.4} & .242 & .268 & .253 & \textbf{22.0} & .163 \\ \textbf{3.2} & .656 & .675 & .664 & .7.5 & .377 & .406 & .306 & \textbf{13.6} & .204 & .202 & .247 & .224 \\ \textbf{2.3.4} & .653 & .642 & .7.7 & .307 & .309 & .393 & \textbf{31.3.8} & .236 & .262 & .247 & .22.4 & .261 \\ \textbf{3.2.4} & .653 & .642 & .7.7 & .307 & .309 & .393 & \textbf{31.3.8} & .236 & .262 & .247 & .22.4 & .261 \\ \textbf{3.3.4} & .653 & .642 & .7.7 & .307 & .309 & .393 & .318 & .30 & .40.2 & .262 & .247 & .22.4 & .261 \\ \textbf{3.3.6} & .662 & .664 & .653 & .7.8 & .7.8 & .363 & .302 & .308 & .371 & .424 & .231 & .257 & .242 & .288 & .254 \\ \textbf{3.3.6} & .662 & .664 & .631 & .7.8 & .363 & .302 & .308 & .371 & .414 & .231 & .257 & .242 & .288 & .859 $.207	207 .:	. 19
2.0 833 846 840 840 6.3 424 450 435 11.2 279 305 200 19.8 178 2.1 817 830 824 6.4 4419 4445 430 11.4 275 301 286 20.0 177 2.2 798 812 805 6.5 414 441 9.445 430 11.4 275 301 286 20.0 177 2.3 780 795 787 6.6 400 436 421 11.8 268 204 279 20.4 174 2.4 763 780 771 6.7 405 432 417 12.0 264 290 275 20.6 173 2.5 748 766 756 6.8 401 428 417 12.0 264 290 275 20.6 173 2.6 732 750 740 6.9 396 442 417 12.0 264 289 275 20.6 173 2.7 718 736 726 7.0 393 421 405 12.4 257 283 268 21.0 169 2.8 705 723 713 713 71 389 447 408 12.4 257 283 268 21.0 169 2.9 602 710 700 72 285 413 12.2 261 288 274 259 21.6 165 3.0 680 699 688 7.3 381 410 393 13.2 245 271 256 21.6 165 3.1 668 687 676 764 77 4377 406 390 13.4 242 268 283 22.0 163 3.1 668 687 676 774 377 406 390 13.4 242 268 253 22.0 163 3.2 656 675 604 7.5 373 402 386 13.0 239 255 252 22. 165 3.3 645 604 653 77 78 363 393 31 3.2 245 271 256 22.2 16.6 165 3.3 645 604 653 77 87 37 402 386 13.0 239 205 252 22. 163 3.3 645 604 653 77 87 37 300 390 383 13.8 236 262 247 22.4 161 3.4 634 653 642 7.7 367 396 380 140 234 250 262 247 22.4 161 3.5 622 642 631 7.8 363 392 376 14.2 231 257 242 22.8 159 3.6 612 632 642 631 7.8 363 392 376 14.2 231 257 242 22.8 159 3.0 663 632 642 7.7 363 393 373 14.4 282 288 254 259 320 30 33.0 645 63 26 77 7 8 363 392 376 14.2 231 257 242 28.8 159			.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.204	204	. 18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.193	193 .:	.18
2. 8 .705 .723 .713 .71 .359 .417 .407 I2. 8 .251 .277 .262 21. 4 .167 3.0 .680 .690 .688 7. 3 .381 .413 .393 13.2 .245 .271 .259 21. 8 .164 3.1 .668 .687 .676 .74 .377 .406 .390 13.4 .242 .286 .253 22.0 .163 3.2 .656 .675 .664 .75 .373 .402 .286 1.36 .239 .293 .22.0 .163 3.3 .645 .664 .653 .76 .373 .493 .381 13.8 .236 .262 .247 22.4 .161 3.4 .634 .653 .642 .77 .367 .396 .396 .14.2 .231 .255 .242 .274 .231 .252 .255 .232 .262 .255 <			.17
2.9 .692 .710 .700 7.2 .385 .413 .397 13.0 .248 .274 .259 21.6 .165 3.0 .680 .690 .688 7.3 .381 .410 .393 13.2 .245 .271 .250 21.8 .164 3.1 .668 .687 .676 7.4 .377 .406 .300 13.4 .242 .268 .253 22.0 .163 3.2 .665 .675 .664 7.5 .373 .492 .386 13.6 .239 .265 .250 22.2 .163 3.4 .634 .653 .642 7.7 .367 .396 .380 .14.0 .234 .260 .222 .261 .251 .22.6 .262 .22.1 .161 .353 .242 .77 .367 .396 .380 .14.0 .239 .265 .252 .22.6 .262 .221 .262 .234	.191	191	.17
3.0 .680 .699 .688 7.3 .381 .410 .393 13.2 .245 .271 .256 21.8 .164 3.1 .668 .687 .676 7.4 .377 .406 .390 13.4 .242 .268 .253 22.0 .163 3.2 .656 .675 .664 7.5 .373 .402 .386 13.6 .239 .265 .252 22.2 .162 3.3 .645 .664 .653 .7.6 .379 .399 .383 13.8 .236 .262 .247 22.4 .161 3.4 .653 .642 7.7 .367 .396 .396 .140 .234 .260 .245 22.6 .160 3.5 .622 .642 .631 .7.8 .363 .392 .376 14.2 .231 .257 .242 22.8 .159 3.6 .622 .642 .631 .7.8 .363 .392 .376 14.2 .231 .257 .242 22.8 .159 .366 .267 .632 .257 .237 .338 .336 .266 .257 .242 .28.8 .159			.17
3.1 . 668 . 687 . 676 . 7.4 . 377 . 406 . 300 . 13.4 . 242 . 268 . 253 . 22.0 . 163 . 3.2 . 6,56 . 675 . 664 . 7.5 . 373 . 402 . 386 . 13.6 . 23.9 . 2.5 . 252 . 22 163 . 3.3 . 645 . 604 . 653 . 7.6 . 370 . 390 . 383 . 13.8 . 236 . 262 . 247 . 22.4 . 161 . 3.4 . 653 . 642 . 7.7 . 367 . 396 . 368 . 14.0 . 234 . 250 . 247 . 22.4 . 161 . 3.5 . 622 . 642 . 631 . 7.8 . 363 . 392 . 376 . 14.2 . 231 . 257 . 242 . 22.8 . 159 . 3.6 . 622 . 632 . 632 . 7.9 . 360 . 360 . 373 . 14.4 . 231 . 257 . 242 . 22.8 . 159 . 3.6 . 632 . 632 . 632 . 7.9 . 360 . 360 . 373 . 14.4 . 238 . 254 . 259 . 320 . 320 . 158			
3.2 .656 .675 .664 7.5 .373 .402 .386 13.6 .239 .265 .250 22.2 .162 3.3 .645 .664 .653 .76 .370 .399 .383 13.8 .236 .262 .247 22.4 .161 3.4 .634 .653 .642 .77 .367 .396 .14.0 .234 .260 .245 22.6 .160 3.5 .622 .624 .631 .78 .363 .392 .376 14.2 .231 .257 .242 22.8 .159 3.6 .612 .632 .621 .79 .360 .380 .373 14.4 .238 .254 .229 .254 .239 .30 .388			.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.17
3.4 . 634 . 653 . 642 . 7.7 . 367 . 396 . 380 . 14.0 . 234 . 260 . 245 . 226 . 1.60 . 3.5 . 622 . 642 . 631 . 7.8 . 363 . 392 . 376 . 14.2 . 231 . 257 . 242 . 228 . 1.60 . 3.6 . 612 . 632 . 621 . 7.9 . 360 . 389 . 373 . 14.4 . 228 . 254 . 230 . 23 . 0 . 158	.184	184 .:	.17
3.6 .612 .632 .621 7.9 .360 .389 .373 14.4 .228 .254 .239 23.0 .158			.16
3.0 .012 .032 .021 7.9 .300 .309 .373 14.4 .220 .234 .239 23.0 .150			.16
			.16
3.8 .593 .613 .602 8.1 .353 .382 .367 14.8 .223 .249 .234 23.4 .155	.178	178 .	.16
3.9 .584 .604 .593 8.2 .350 .379 .364 15.0 .221 .247 .232 23.6 .154	-177	177 -	.16
4.0 .572 .596 .583 8.3 .347 .376 .361 15.2 .219 .245 .230 23.8 .153	.176	176	. 16
4.1 .565 .587 .575 8.4 .344 .373 .358 15.4 .217 .242 .227 24.0 .151	.174	174	. 16
4.2 .556 .578 .566 8.5 .341 .371 .355 15.6 .215 .240 .225 24.2 .150			.15
4.3 .548 .570 .558 8.6 .338 .368 .352 15.8 .213 .238 .223 24.4 .149 4.4 .540 .563 .550 8.7 .335 .364 .349 16.0 .211 .236 .221 24.6 .148			.15
4.4 .540 .553 .550 8.7 .335 .304 .349 10.0 .211 .230 .221 24.0 .148 4.5 .532 .555 .542 8.8 .332 .361 .346 16.2 .209 .234 .219 24.8 .147			.15
4.6 .525 .548 .535 8.9 .330 .358 .34 16.4 .207 .232 .217 25.0 .146			. 15
4.7 .518 .542 .528 9.0 .327 .355 .340 16.6 .205 .230 .215			
4.8 .511 .535 .521 9.1 .324 .353 .337 16.8 .203 .228 .213 4.9 .504 .528 .514 9.2 .322 .351 .335 17 0 .201 .226 .211			
4.9 .304 .320 .514 9.2 .322 .331 .335 1/ 0 .201 .220 .211			
5.0 .496 .522 .506 9.3 .320 .348 .332 17.2 .199 .224 .209			
5.1 .490 .515 .500 9.4 .317 .345 .329 17.4 .197 .222 .207 5.2 .484 .509 .494 9.5 .315 .343 .327 17.6 .195 .220 .205			
5.2 .484 .509 .494 9.5 .315 .343 .327 17.6 .195 .220 .205			

Column r, the ratio of expansion = $\frac{v_2}{v_1}$

umn
$$r$$
, the ratio of expansion = $\frac{v_1}{v_1}$

"A, ratio of mean to initial pressure, $\frac{\rho_m}{\rho_1} = \frac{10 - 9r^{-\frac{1}{9}}}{r}$

For dry steam, expanded without gain or loss of heat, in a non-cost of ducting cylinder.

B, """

 $\frac{\rho_m}{\rho_1} = \frac{1 + \text{hyp. log. } r}{r}$

For dry steam, expanded receiving heat.

Rule.—To find the mean pressure exerted throughout the stroke, multiply the initial pressure by the number opposite the ratio of expansion, in the column corresponding with the conditions of expansion. (From Northcott.)

IV.
TERMINAL PRESSURE RATIOS 2

*	A	В	С	7	А	В	·c	+	A	В	С	r	A	В	С
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	0.00 1.11 1.22 1.34 1.45 1.57 1.69 1.80 1.92 2.04	0.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	0.00 1.11 1.21 1.32 1.43 1.54 1.65 1.75 1.87	4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6	5.58 5.70 5.84 5.98 6.11 6.24 6.38 6.51 6.64 6.78	4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6	5.18 5.29 5.41 5.52 5.64 5.76 5.88 6.00 6.12 6.23	8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1	10.5 10.6 10.7 10.9 11.0 11.2 11.3 11.5 11.6	8.3 8.4 8.5 8.6 8.7 8.8 9.0 9.1	9.47 9.59 9.64 9.76 9.88 10.0 10.2 10.3 10.4	13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4	18.5 18.8 19.1 19.4 19.7 20.0 20.3 20.6 20.9	13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4	16.2 16.5 16.8 17.0 17.2 17.5 17.8 18.0 18.2
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	2.16 2.28 2.40 2.52 2.64	2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	2.08 2.20 2.31 2.42 2.53 2.64 2.76 2.87 2.99	5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6	6.91 7.05 7.18 7.32 7.45 7.59 7.73 7.86 8.00	5.7 5.8 5.9 6.1 6.2 6.3 6.4 6.5 6	6.35 6.47 6.59 6.71 6.83 6.95 7.07 7.18 7.30	9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0	11.9 12.0 12.2 12.3 12.5 12.6 12.8 12.9 13.2	9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0	10.7 10.8 10.9 11.0 11.1 11.3 11.4 11.5	15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4	21.5 21.8 22.1 22.4 22.7 23.0 23.3 23.6 23.9	15.8 16.0 16.2 16.4 16.6 14.8 17.0 17.2 17.4	18.7 19.0 19.3 19.5 19.8 20.0 20.3 20.5 20.8
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	3·39 3·51 3·64 3·77 3·89 4·02 4·15 4·28 4·41 4·54	3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	3.21 3.32 3.43 3.55 3.67 3.79	6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6	8.27 8.41 8.55 8.69 8.83 8.90 9.10 9.24 9.38	6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6	7.54	10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2	13.8 14.1 14.3 14.6 14.9 15.2 15.5 15.8 16.1	10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2	12.3 12.5 12.8 13.0 13.3 13.5 13.7 14.0	17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4	24.5 24.8 25.1 25.4 25.7 26.9 26.3 26.6 26.9	17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4	21.3 21.0 21.8 22.0 22.3 22.5 22.8 23.1 23.3 23.6
4.0 4.1 4.2 4.3 4.4 4.5 4.6	4.79 4.91 5.05 5.18 5.32	4.0 4.1 4.2 4.3 4.4 4.5 4.6	4.60 4.71 4.82 4.95	8.0	9.66 9.80 9.94 10.1 10.2	7.7 7.8 7.9 8.0 8.1 8.2	8.74 8.87 8.99 9.11 9.23 9.35	12.6 12.8 13.0 13.2 13.4 13.6	16.7 17.0 17.3 17.6 17.9 18.2	12.6 12.8 13.0 13.2 13.4 13.6	15.0 15.2 15.5 15.7	19.8 20.0 21.0 22.0 23.0 24.0	27.5 27.9 29.5 31.0 32.6 34.1	19.8 20.0 21.0 22.0 23.0 24.0	23.9 24.1 25.4 26.7 28.0 29.3

Column r, ratio of expansion = $\frac{v_2}{v_1}$

" A, ratio of initial to final pressure,
$$p_2 = \frac{p_1}{r^{\frac{10}{9}}}$$
. For dry steam, expanded without gain or loss of heat in a non-conducting cylinder.

" B, " "
$$p_2 = \frac{p_1}{r}$$
 ... { For damp steam, expanded receiving heat,

" C, " " "
$$p_2 = \frac{p_1}{r^{\frac{1}{16}}} \cdots \begin{cases} \text{For dry steam, expanded receiving sufficient heat to prevent liquefaction.} \end{cases}$$

Rule.—To find the final pressure obtaining with any ratio of expansion, divide the initial pressure by the number opposite the ratio of expansion, in the column corresponding with the conditions of expansion.

ORKING OF STEAM (NORTHCOTT.)	EAT-TRANSFER AND TRANSFORMATION.
STE_{λ}	AND
OF	VSFER
ORKING	EAT-TRAP

Hour with Boiler of .71 efficiency.	Lbs.	4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6
Coal per Indicated Horse-power per	7	မံက်က်က်က်က်က် ရေချစ်ချစ်ချစ်
Efficiency of Steam.	E.	.0582 .0644 .0684 .0684 .0770 .0770 .0897 .0897 .1118 .1118 .1118 .1118
Heat expended per Indicated Horse- power per Hour.	Units.	From 44,001 44,001 37,475 39,781 33,289 33,289 33,479 From From 212° F. 25,823 22,040 23,038 22,040 21,040
Heat carried off with the Exhaust Steam per lb.	Units.	From 212° Fr. 933.2 933.2 933.4 934.5 934.5 934.5 934.5 934.5 934.5 934.5 934.5 934.5 934.5 934.5 934.5 Prom 212° Fr. 888.5 888.8 8888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 888.8 8
Heat converted into Motive Power in- dicated per lb, of Steam.	Units.	647.8 647.8 6647
Heat expended per lb. of Steam.	Units.	From 991 997 997 997 997 997 997 997 997 997
Heat imparted dur- ing Expansion per lb. of Steam.	Units.	0000000 0000000
Heat entering Cylin- der per lb, of Steam,	Units.	From 991 997 991 991 992 1,000
Piston Area per Indi- cated Horse-power with speed of 330 ft. per minute.	Sq. in.	227 11.527 0.006 0.755 0.057 0.067 0.067 0.067 0.067
Piston Displacement per Indicated Horse-power per Hour.	Cu. ft.	313.0 215.0 163.7 103.8 103.8 103.8 396.2 48.3 48.3 48.3 124.3 124.3 124.3 170.4 70.4
Piston Displacement per lb. of Steam.	Cu. ft.	7. 0500 4.3777 2. 0887 2. 0887 2. 0887 1. 5653 1. 5653 1. 5754 5. 9776 5. 9776 3. 7006 3. 1306
Steam per Indicated Horse-power per Hour.	Lbs.	46.00 62 83.00 63.
Indicated Work per lb, of Steam.	Ft. lbs.	44,666 49,698 52,952 57,673 60,447 64,016 60,139 90,449 104,406 107,202
Pressure at Release.	P3.	66 65 65 65 65 65 65 65 65 65 65 65 65 6
Mean Back Pressure.	P3.	2222222 2222222
Mean Effective Pressure,	Po.	444 1044 1
Mean total pressure.	₽m.	60 100 100 150 250 250 250 300 67.6 1101.5 1101.5 211.5
Ratio of Expansion.	7.	нинини ополопо
Initial absolute pressure per sq. in.	p1.	Class 1 60 80 100 120 120 250 260 80 120 120 120 120 250 250 250 25

2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1.90 1.69 1.57 1.46 1.38 1.20 1.20	1.52 1.39 1.32 1.25 1.20 1.10 1.07
.0934 .1120 .1270 .1398 .1518 .1705 .1834	.1352 .1465 .1624 .1759 .1856 .2002 .2152	.1695 .1852 .1954 .2052 .2144 .2284 .2399
From 2212° F. 27,448 22,802 20,184 18,338 16,887 15,042 13,984 13,200	From 102° F. 18,966 16,815 15,604 14,573 13,761 12,633 11,914 11,528	From 102° F. 15,125 13,846 13,120 12,484 11,922 11,226 10,688 10,383
From 2112° F. 9688 9968 9968 9968 9968 9968 9968 996	From 102° F. 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019 1,019	From 102° F. 1,055 1,055 1,055 1,055 1,055 1,055 1,055 1,055 1,055 1,055 1,055 1,055 1,055
100 123 141 157 173 198 217	159.0 182.0 200.0 216.0 232.0 257.0 276.0	22 23 2 23 3 2 2 2 2 2 2 2 2 2 2 2 2 2
From 212° F. 1,008 1,0091 1,129 1,125 1 141 1,166 1,185 1,126 1,185 1,200	From 102° F. 1,178 1,201 1,219 1,235 1,251 1,276 1,295 1,310	From 102° F. 1,271 1,294 1,312 1,328 1,344 1,368 1,368 1,403
77 94 107 119 130 148 161 171	77 94 107 119 130 148 161	170 184 200 212 223 241 254 264
From 212° F. 991 997 1,002 1,011 1,018 1,024 1,029	From 102° F. 1,101 1,112 1,112 1,121 1,128 1,134 1,139	From 102° F. 1,107 1,107 1,112 1,112 1,113 1,113 1,113 1,113 1,113
4.6.6.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	2 2 2 2 2 1 1 4 2 2 2 2 2 2 2 2 2 2 2 2	2 8 8 8 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2
625.0 5085.3 3961.6 396.4 313.7 287.0 267.5	391.5 330.4 311.2 286.9 267.5 240.7 223.7	1,404 1,262 1,180 1,109 1,050 968 900 873
2	24 33 2 2 4 4 33 2 4 4 33 2 4 4 33 2 4 4 33 2 4 4 33 2 4 4 33 2 4 4 33 2 4 4 33 2 4 4 4 33 2 4 4 4 33 2 4 4 4 4	8 8 8 8 8 8 8 8 8
7.02 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	1.041 1.088 1.099 1.099 1.099	0.01 0.01 0.00 0.08 0.08 0.07 0.08
77,200 94,956 108,852 121,204 133,556 152,856 167,524	122,826 140,582 154,478 166,330 179,182 198,482 213,150	166,752 184,508 198,404 210,756 223,108 242,408 257,076 268,656
29999999	99999999	
29999999	тттттт	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22.0 27.1 31.1 34.6 38.1 43.6 47.8	35.0 44.1 47.6 51.1 56.6 62.8	8.011 8.011 7.121 8.01 8.0
38.00 473.1 550.6 559.6 65.8	38.0 43.1 47.1 50.6 59.6 65.8	21.2.8 1.4.1 1.5.1 1.7.3 1.8.3 1.8.3 1.8.3
6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	6.4.4.00 4.7.7.00 1.7.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	16.7 23.7 26.9 332.0 53.6 75.3
Class 3 60 80 100 120 150 250 250 200	Class 4 60 80 120 120 250 250 300	Classes 5 & 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

CLASS NO.

I Non-condensing; r = 1.

2 " " = 2.

3 Condensing; medrate expansion.

4 Condensing; medrate expansion.

5 " jacketed, till expansion.

5 jacketed, compound expansion complete.

VI.

COMPARISON OF THERMOMETERS.

Celsius.	Réaumur.	Fahren- heit.	Celsius.	Réaumur.	Fahren- heit.	Celsius.	Réaumur.	Fahren- heit.
-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3	-16 -15.2 -14.4 -13.8 -12.0 -11.2 -10.4 -9.6 -8.8 -7.2 -6.4 -5.6 -4.8 -4.0 -3.2	heit. -4 -2.2 -0.4 1.4 3.2 5.0 6.8 8.6 10.4 12.2 14.0 15.8 17.6 19.4 21.2 23.0 24.8 26.6	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	20.0 20.8 21.6 22.4 23.2 24.0 24.8 25.6 26.4 27.2 28.0 30.4 31.2 32.0 32.8 33.6	77.0 78.8 80.6 82.4 84.2 86.0 87.8 89.6 91.4 93.2 95.0 96.8 98.6 100.4 102.2 104.0 105.8	70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87	56.0 56.8 57.6 58.2 60.0 60.8 61.6 62.4 63.2 64.0 64.8 65.6 66.4 67.2 68.0 68.8 69.6	158.0 159.8 161.6 163.4 165.2 167.0 168.8 170.6 172.4 174.2 176.0 177.8 179.6 181.4 183.2 185.0 186.8
-3 -2 -1 0 1 2 3 4 5	-1.6 -0.8 0 0.8 1.6 2.4 3.2 4.0	26.6 28.4 30.2 32.0 33.8 35.6 37.4 39.2 41.0	43 44 45 46 47 48 49 50	33.6 34.4 35.2 36.0 36.8 37.6 38.4 39.2 40.0	109.4 111.2 113.0 114.8 116.6 118.4 120.2 122.0	88 89 90 91 92 93 94 95	70.4 71.2 72.0 72.8 73.6 74.4 75.2 76.0	188.6 190.4 192.2 194.0 195.8 197.6 199.4 201.2 203.0
7 8 9 10 11 12 13	4.8 5.6 6.4 7.2 8.0 8.8 9.6 10.4 11.2	42.8 44.6 46.4 48.2 50.0 51.8 53.6 55.4 57.2	51 52 53 54 55 56 57 58	40.8 41.6 42.4 43.2 44.0 44.8 45.6 46.4 47.2	123.8 125.6 127.4 129.2 131.0 132.8 134.6 136.4 138.2	96 97 98 99 100 101 102 103 104	76.8 77.6 78.4 79.2 80.0 80.8 81.6 82.4 83.2	204.8 206.6 208.4 210.2 212.0 213.8 215.6 217.4 219.2
15 16 17 18 19 20 21 22 23 24	12.0 12.8 13.6 14.4 15.2 16.0 16.8 17.6 18.4	59.0 60.8 62.6 64.4 66.2 68.0 69.8 71.6 73.4 75.2	60 61 62 63 64 65 66 67 68 69	48.0 48.8 49.6 50.4 51.2 52.0 52.8 53.6 54.4 55.2	140.0 141.8 143.6 145.4 147.2 149.0 150.8 152.6 154.4 156.2	105 106 107 108 109 110 111 112 113	84.0 84.8 85.6 86.4 87.2 88.0 88.8 89.6 90.4 91.2	221.0 222.8 224.6 226.4 228.2 230.0 231.8 233.6 235.4 237.2

COMPARISON OF THERMOMETERS-Continued.

Celsius.	Réaumur.	Fahren- heit.	Celsius.	Réaumur.	Fabren- heit.	Celsius.	Réaumur.	Fahren- heit.
115 116 117 118 119 120 121	92.0 92.8 93.6 94.4 95.2 96.0 96.8	239.0 240.8 242.6 244.4 246.2 248.0 249.8 251.6	127 128 129 130 131 132 133 134	101.6 102.4 103.2 104.0 104.8 105.6 106.4	260.6 262.4 264.2 266.0 267.8 269.6 271.4 273.2	139 140 141 142 143 144 145 146	111.2 112.0 112.8 113.6 114.4 115.2 116.0 116.8	282.2 284.0 285.3 287.6 289.4 291.2 293.0 294.8
123 124 125 126	98.4 99.2 100.0 100.8	253.4 255.2 257.0 258.8	135 136 137 138	108.0 108.8 109.6 110.4	275.0 276.8 278.6 280.4	147 148 149 150	117.6 118.4 119.2 120.0	296.6 298.4 300.2 302.0

VII.

DENSITIES AND VOLUMES OF WATER.

KOPP; CORRECTED BY PORTER.

Tempera	Temperature.		Corrected Vol- ume.	Differences.		
F. 39.2 41.0 51.8 59.0 68.0 95.0 104.0 113.0 140.0 149.0 150.0 167.0 176.0 185.0 194.0 203.0 212.0	C. 4 5 10 15 20 25 30 35 40 45 55 60 65 70 75 80 85 90 95 100	1.00000 1.00001 1.00025 1.00082 1.00169 1.00284 1.00283 1.00768 1.00967 1.01190 1.01423 1.01672 1.01943 1.02584 1.02581 1.03202 1.03553 1.03921 1.04312	1.00000 1.00001 1.00025 1.00083 1.00171 1.00286 1.00285 1.00586 1.00767 1.0186 1.01423 1.01678 1.01051 1.02241 1.02548 1.02872 1.03213 1.03570 1.03943 1.04332	24 58 88 30 115 24 139 161 20 181 200 19 237 237 18 255 18 273 17 290 17 307 17 307 17 341 341 341 357 16 373 389		

WEIGHTS AND VOLUMES.

Temperature.	Ratio of volume to that of equal weight at maximum density.	Weight of a cubic foot.	Temperature.	Ratio of volume to that of equal weight at maximum density.	Weight of a cubic foot.	Temperature.	Ratio of volume to that of equal weight at maximum density.	Weight of a cubic foot.
Fahr.		Lbs.	Fahr.		Lbs.	Fahr.		Lbs.
32.0	1.000120	62.417	210.0	1,04226	59.894	390.0	1.15538	54.030
39.1	1.000000	62.425	212.	1.04312	59.707	400.	1.16366	53.635
40.	1.000004	62.423	220.	1.04668	59.641	410.	1.17218	53.255
50.	1.000253	62.409	230.	1.05142	59.372	420.	1.18090	52.862
60.	1.000929	62.367	240.	1.05633	59.096	430.	1.18982	52.466
70.	1.001981	62.302	250.	1.06144	58.812	440.	1.19898	52.065
80.	1.00332	62.218	260.	1.06679	58.517	450.	1.20833	51.662
90.	1.00492	62.119	270.	1.07233	58.214	460.	1.21790	51.256
E00.	1.00686	62,000	280.	1.07809	57.903	470.	1.22767	50.848
IIO.	1.00902	61.867	290.	1.08405	57.585	480.	1.23766	50.438
120.	1.01143	61.720	300.	1.09023	57.259	490.	1.24785	50.026
130.	1.01411	61.556	310.	1.09661	56.925	500.	1.25828	49.611
140.	1.01690	61.388	320.	1.10323	56.584	510.	1.26892	49.195
150.	1.01995	61.204	330.	1.11005	56.236	520.	1.27975	48.778
160.	1.02324	61.007	340.	1.11706	55.883	530.	1.29080	48.360
170.	1.02671	60.801	350.	1.12431	55-523	540.	1.30204	47.94I
180.	1.03033	60.587	360.	1.13175	55.158	550.	1.31354	47.52I
190.	1.03411	60.366	370.	1.13042	54-787			
200.	1.03807	60.136	380.	1.14729	54.411			

VIII.

TEMPERATURES AND PRESSURES, SATURATED STEAM.
IN METRIC MEASURES AND FROM REGNAULT.

Temperature.	STEAM-PF	RESSURE.	Temperature,	STEAM-P	RESSURE.			
Tempe	In Centimetres.	In Atmospheres	Tempe	In Centimetres,	In Atmospheres			
— 32° C.	0.0320	0.0004	+ 14° C.	1.1908	0.016			
31	0.0352	0.0005	15	1.2699	0.017			
30	0.0386	0.0005	15 16	1.3536	0.018			
29	0.0424	0.0006	17	1.4421	0.019			
28	0.0464	0.0006	18	1.5357	0.020			
27	0.0508	0.0007	19	1.6346	0.022			
26	0.0555	0.0007	20	1.7391	0.023			
25	0.0605	0.0008	21	1.8495	0.024			
24	0.0660	0.0009	22	1.9659	0.026			
23	0.0719	0.0009	23	2.0888	0.028			
22	0.0783	0.0010	24	2.2184	0.029			
21	0.0853	0.0011	25	2.3550	0.031			
20	0.0927	0.0012	26	2.4988	0.033			
19	0.1008	0.0013	27	2.5505	0.034			
18	0.1095	0.0014	28	2.8101	0.037			
17	0.1189	0.0015	29	2.9782	0.039			
16	0.1290	0.0017	30	3.1548	0.042			
15	0.1400	0.0018	31	3.3406	0.044			
14	0.1518	0.0020	32	3.5359	0.047			
13	0.1646	0.0022	33	3.7411	0.049			
12	0.1783	0.0024	34	3.9565	0.052			
II	0.1933	0.0025	35	4.1827	0.055			
10	0.2093	0.0027	36	4.4201	0.058			
9 8	0.2267	0.0030	37	4.6691	0.061			
0	0.2455	0.0032	38	4.9302	0.065			
7 6	0.2658	0.0035	39	5.2039	0.068			
	0.2876	0.0038	40	5.4906	0.072			
5 4	0.3113	0.0041	41	5.7910	0.076			
4	0.3644	0.0044	42	6.1055	0.080			
3 2	0.3044	0.0048	43	6.4346	0.085			
ī	0.4263	0.0056	44	6.7790	0.089			
0	0.4600	0.0050	45 46	7.1391 7.5158	0.094			
+ 1	0.4000	0.0065	47	7.9093	0.099			
7 1	0.5302	0.0070	48	8.3204	0.104			
	0.5687	0.0073	49	8.7499	0.115			
4	0.6097	0.0080	50	9.1982	0.115			
5	0.6534	0.0086	51	9.6661	0.121			
6	0.6998	0.0092	52	10.1543	0.134			
3 4 5 6 7 8	0.7492	0.0199	53	10.6636	0.140			
8	0.8017	0.0107	54	11.1945	0.147			
9	0.8574	0.011	55	11.7478	0.155			
10	0.9165	0.012	56	12.3244	0.155			
11	0.9792	0.013	57	12.9251	0.170			
12	1.0457	0.014	58	13.5505	0.178			
13	1.1162	0.015	59	14.2015	0.187			
	J							

TEMPERATURES AND PRESSURES, SATURATED STEAM—Continued.

rature.	STEAM-PI	RESSURE.	rature.	STEAM-P	RESSURE.
Temperature.	In Centimetres.	In Atmospheres	Temperature.	In Centimetres.	In Atmospheres
+ 60° C.	14.8791	0.196	+110°C.	107.537	1.415
61	15.5839	0.205	111	111.200	1.463
62	16.3170	0.215	112	114.983	1.513
63	17.0791	0.225	113	118.861	1.564
64	17.8714	0.235	114	122.847	1.616
65	18.6945	0.246	115	126.941	1.670
66	19.5496	0.257	116	131.147	1.726
67	20.4376	0.267	117	135.466	1.782
68	21.3596	0.281	118	139.902	1.841
69	22.3165	0.294	119 120	144.455	1.901
70	23.3093	0.306	120	149.128	1.962 2.025
71 72	24 · 3393 25 · 4073	0.320	121	153.925 158.847	2.025
73	26.5147	0.349	123	163.896	2.157
74 74	27.6624	0.364	124	169.076	2.225
75	28.8517	0.380	125	174.388	2.295
75 76	30.0838	0.396	126	179.835	2.366
77	31.3600	0.414	127	185.420	2.430
77 78	32.6811	0.430	128	191.147	2.515
7 9	34.0488	0.448	129	197.015	2.592
80	35.4643	0.466	130	203.028	2.671
81	36.9287	0.486	131	209.194	2.753
82	38.4435	0.506	132	215.503	2.836
83	40 0101	0.526	133	221.969	2.921
84 85	41.6298	0.548	134	228.592	3.008
86	43.3041 45.0344	0.570	135 136	235·373 242.316	3.097 3.188
87	46.8221	0.593	137	249.423	3.282
88	48.6687	0,640	138	256.700	3.378
89	50.5759	0.665	139	264.144	3.476
90	52.5450	0.691	140	271.763	3.576
91	54.5778	0.719	141	279.557	3.678
92	56.6757	0.746	142	287.530	3.783
93	58.8406	0.774	143	295.686	3.890
94	61.0740	0.804	144	304.026	4.000
95	63.3778	0.834	145	312.555	4.113
96	65.7535	0.865	146	321.274	4.227
97 98	68.2029 70.7280	0.897	147 148	330.187 339.298	4·344 4.464
	73.3305	0.965	149	348.600	4.587
99 100	76.000	1.000	150	358.123	4.712
101	76.7590	1.036	151	367.843	4.840
102	81.6010	1.074	152	377.774	4.971
103	84.5280	1.112	153	387.918	5.104
104	87.5410	1.152	154	398.277	5.240
105	90.6410	1.193	155	408.856	5.380
106	93.8310	1.235	156	419.659	5.522
107	97.1140	1.278	157	430.688	5.667
108	100.4910	1.322	158	441.945	5.815
109	103.965	1.368	159	453.436	5.966

TEMPERATURES AND PRESSURES, SATURATED STEAM -Continued.

Temperature.	STEAM-PE	RESSURE.	Temperature,	Steam-pressure.						
Тетр	In Centimetres,	In Atmospheres	Тепр	In Centimetres.	In Atmospheres					
+160° C.	465.162	6,120	+196° C.	1074.595	14.139					
161	477.128	6.278	197	1097.500	14.441					
162	489.336	6.439	198	1120.982	14.749					
163	501.791	6.603	199	1144.746	15.062					
164	514.497	6.770	200	1168.896	15.380					
165	527.454	6.940	201	1193.437	15.703					
166	540.669	7.114	202	1218.369	16.031					
167	554.143	7.291	203	1243.700	16.364					
168	567.882	7.472	204	1269.430	16.703					
169	581.890	7.656	205	1295.566	17.047					
170	596.166	7.844	206	1322.112	17.396					
171	610.719	8.036	207	1349.075	17.751					
172	625.548	8.231	208	1376.453	18.111					
173	640.660	8.430	209	1404.252	18.477					
174	656.055	8.632	210	1432.480	18.848					
175	671.743	8.839	211	1461.132	19.226					
176	687.722	9.049	212	1490.222	19.608					
177	703.997	9.263	213	1519.748	19.997					
178	720.572	9.481	214	1549.717	20.391					
179	737 - 452	9.703	215	1580.133	20.791					
180	754.639	9.929	216	1610.994	21.197					
181 182	772.137	10.150	217	1642.315	21.690					
183	789.952	10.394	218	1674.090	22.027					
184	808.084	10.633	219	1706.329	22.452					
185	826.540	10.876	220	1739.036	22.882					
186	845.323	11.123	221	1772.213	23.319					
187	864.435	11.374	222	1805.864	23.761					
188	883.882	11.630	223	1839.994	24.210					
180	903.668	11.885	224	1874.607	24.666					
190	923.795 944.270	12.155	225 226	1909.704	25.128					
190	965.093	12.425		1945.292	25.596					
191	986.271	12.099	227 228	1981.376 2017.961	26.071					
193	1007.804	13.261	220	2017.901	26.552					
193	1029.701	13.549	230	2055.048	27.040					
195	1051.963	13.842	230	2092.040	27.535					

IX.
METRIC STEAM AND WORK TABLE.

phere.	Specific volumes ve in Cu. meters.	Product peve.	$W = \frac{26127.34}{1000 p_e v_e}$	W . p _e .
0.1	14.504	1.450	18.010	1.801
0.2	7.525	1.505	17.418	3.483
0.3	5.128	1.540	16.960	5.088
0.4	3.908	1.560	16.750	6.700
0.5	3.165	1.580	16.530	8.265
0.6	2.665	1.600	16.339	9.803
0.7	2.304	1.610	16.230	11.361
0.8	2.031	1.620	16.120	12.896
0.9	1.818	1.630	16.020	14.418
1.ó	1.646	1.646	15.870	15.870
1.1	1.505	1.655	15.780	17.385
1.2	1.386	1.663	15.710	18.852
1.3	1.285	1.670	15.640	20.332
1.4	1.199	1.68o	15.540	21.756
1.5	1.123	1.684	15.510	23.265
1.6	1.057	1.691	15.450	24.720
1.7	0.999	1.699	15.370	26.129
1.8	0.946	1.703	15.340	27.612
1.9	0.899	1.708	15.290	29.051
2.0	0.857	1.714	15.243	30.486
2.1	0.819	1.718	15.208	31.937
2.2	0.784	1.725	15.146	33.321
2.3	0.751	1.727	15.128	34.794
2.4	0.722	1.733	15.076	36.182
2.5	0.695	1.741	15.002	37.505
2.6	0.670	1.742	14.990	38.974
2.7	0.646	1.744	14.970	40.190
2.8	0.625	1.750	14.929	41.801
2.9	0.604	1.752	14.921	43.271
3.0	0.586	1.758	14.861	44.583
3.1	0.568	1.761	14.838	45.998
3.2	0.551	1.763	14.818	47.417
3.3	0.535	1.765	14.790	48 807
3.4	0.521	1.771	14.749	50.146
3.5	0.507	1.774	14.723	51.330
3.6	0.493	1.775	14.720 14.680	52.992
3.7	0.481	1.780 1.782	14.660	54.316 55.708
3.8	0.469	1.786	14.630	57.057
3.9	0.458	1.788	14.61	58.440
4.0	0.447	1.792	14.58	59.778
4.I 4.2	0.437 0.427	1.793	14.56	61.152
4.2	0.418	1.797	14.53	62.479
4.4	0.400	1.799	14.52	63.888

METRIC STEAM AND WORK TABLE-Continued.

Absolute pres- ure p ₀ in At- mospheres.	Specific volumes ve in Cu. meters.	Product pe ve.	$W = \frac{26127.34}{1000 p_e v_e}$	W. p ₆ .
4.5	0.400	1.800	14.51	65.295
4.6	0.392	1.803	14.49	66.654
4.7	0.384	1.805	14.45	67.915
4.8	0.377	1.810	14.43	69.264
4.9	0.370	1.813	14.41	70.609
5.0	0.363	1.815	14.39	71.950
5.1	0.356	1.816	14.38	73.338
5.2	0.350	1.820	14.36	74.672
5.3	0.343	1.821	14.35	76.055
5.4	0.337	1.823	14.33	77.382
5.5	0.332	1.825	14.31	78.705
5.6	0.326	1.826	14.30	80.080
5.7	0.321	1.829	14.26	81.282
5.8	0.316	1.833	14.25	82.650
5.9	0.311	1.835	14.24	84.016
6.0	0.306	1.836	14.23	85.380
6.25	0.294	1.838	14.21	88.812
6.5	0.284	1.845	14.16	92.040
6.75	0.273	1.848	14.13	95.377
7.0	0.265	1.855	14.10	98.700
7.25	0.256	1.856	14.07	100.997
7.5	0.248	1.860	14.04	105.300
7.75	0.241	1.867	13.99	108.422
8.0	0.234	1.872	13.96	111.680
8.25	0.227	1.873	13.95	114.077
8.5	0.221	1.878 1.881	13.91	118.235
8.75	0.215		13.89	121.537
9.0	0.209	1.883 1.887	13.86	124.740
	0.204	1.891	13.84 13.81	128.020
9.5	0.199	1.893	13.80	131.195
9.75 10.0	0.194 0.190	1.093	13.75	134.550

PROPĒRTIĒS OF SATURATED STEAM.

If TR.—The following table gives the data required by the engineer in this connection as based upon the experiments of Regnault. The temperatures, problem to the macasures are all from Regnault sexperiments. The other quantities were calculated by Mr. R. H. Buel, *adopting the formulas of Rankine already given to obtain quantities not ascertained by direct experiment. The two parts of the latent heat of vaporization are separately determined, and the internal thus distinguished from the external work of expansion. British measures are adopted. The nomenclature is sufficiently

	spur	od ui	Pressure above a vacuum, per square inch.	Ъ	-	. 61	3	4	ro.	٥	~ °	, 0	01	=	12	13 14	14.69	15	92 62	
	Vосиме.	to t	Ratio of volume of stean volume of equal weigh distilled water at tempera of maximum density.	Λ	20.623	10,730	7,325	5,588	4,530	3,810	3,302	2,607	2,361	2,159	1,990	1,845	1,646	1,614	1,519	
	Nor	əidu	Of a pound of steam in c feet.	2	330.4	171.9	117.3	89.51	72.50	61.14	52.89	41.77	37.83	34.59	31.87	29.50	26.37	25.85	24.33	
	ui 't	stean	Weight of a cubic foot of pounds.	М	,000027	.005818	.008522	.011172	.013781	.010357	800810.	.023044	.026437	116820.	.031376	.033828	.037928	.038688	041109	sons, 1884.
		oove on,	Total heat of evaporation algaes, in units of evaporation	U	1.1522	1.1599	1.1647	1.1683	1.1712	1.1737	1.1758	1.1704	1.1810	1.1824	1.1837	1.1849	1.1869	1.1872	1 1882 1 1892	.: J. Wiley & S.
			Total heat of evaporation above 32° = $S + L$.	Н	1113,045	1120.462	1125.144	1128.641	1131.462	1133.842	1135.908	1130,380	1140.892	1142.275	1143.555	1144.748	1146.600	1146.926	1147 926	* Weisbach's Mechanics, vol ii., part ii., Dubois' translation, N. Y.; J. Wiley & Sons, 1884,
	QUANTITIES OF HEAT.	al Units.	Latent heat of evaporation at pressure $P = I + E$.	T	1043.015	1026.094	1015.380	1007.370	1000.899	995.441	990.095	082.600	979.232	976.050	973.098	970.340	690.996	965.318	963.007	rt ii., Dubois' tre
	QUANTIT	In British Thermal Units	External latent heat.	E	61.619	64.114	65.655	66.773	67.000	08.403	69.04I	70.106	70.560	70.967	71.332	71.003	72.175	72.274	72.549	vol ii., par
		In Brit	Internal latent heat.	I	081.306	961.980	949.725	940.597	933.239	927.038	921 054	012.584	908.672	905.083	901.766	895.083	893.894	893.044	890 458 888 007	h's Mechanics,
ble-headings.			Required to raise the temperature of the water from 32° to 7°.	S	70.040	94.368	109.764	121.271	130.563	130.40I	145.213	156.699	161.660	166.225	170.457	174.402	180.531	181.608	188.056	* Weisbacl
well explained by the table-headings.	*5	egree	Temperature, Fahrenheit d	,	102.018	126.302	141.654	153.122	162.370	170.173	170.945	188.357	193.284	197.814	203.012	205.929 209.604	212.000	213.067	216.347	
well expla	spur	od ui	Pressure above a vacuum, per square inch,	Ь	-	1 01	3	4	NO.	0	<u>~~</u>	<i>و</i> ر	, G	11	12	13	14.69	15	17	

l d	18 19 20 20	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14444444444	51 52 53 54 55 55 57
7	1,359 1,292 1,231	1,176 1,126 1,080 1,080 1,038 998.4 9023.8 897.6 868.5	815.8 791.8 769.2 748.0 727.9 700.8 690.8 673.7 657.5	627.3 613.3 599.9 587.0 574.7 563.0 551.7 540.9 530.5	510.9 501.7 492.8 484.2 475.9 467.9
C	21.78 20.70 19.73	18.84 18.04 17.30 16.62 16.00 15.42 14.88 14.38 13.91 13.91	13 68 11.93 11.93 11.93 11.07 10.79	10.05 9.826 9.639 9.207 9.207 8.838 8.838 8.498 8.498 8.338	8.185 8.037 7.894 7.756 7.1624 7.496
M	.045920 .048312 .050696	.053974 .055446 .055446 .057812 .06071 .06854 .064870 .065710 .00545	.076522 .081152 .081152 .0813461 .083461 .09364 .090364 .094446	.099514 .101794 .104071 .106345 .108616 .110884 .113149 .113411 .117670	.122181 .124433 .126682 .128928 .131172 .133414
U	1.1901.1 0191.1 1.1919	1.1927 1.1935 1.1936 1.1950 1.1954 1.1971 1.1971 1.1978 1.1938	1.1996 1.2002 1.2008 1.2013 1.2013 1.2023 1.2033 1.2033 1.2034	1.2048 1.2053 1.2052 1.2052 1.2056 1.2070 1.2074 1.2082 1.2082	1.2090 1.2094 1.2098 1.2102 1.2106 1.2100
Н	1149 779 1150.643 1151.469	1152.269 1153.026 1153.026 1155.471 1155.157 1155.819 1155.461 1157.084	1158.852 1159.410 1159.410 1160.485 1161.003 1161.003 1162.488 1162.488 1162.488	1163.882 1164.329 1164.766 1165.194 1165.039 1166.039 1166.436 1167.228	1167.995 1168.369 1168.738 1169.102 1169.813 1170.161
T	958.721 956.725 954.814	952-978 951.209 951.209 949.504 946.270 944.730 941.238 941.791 940.383	937 687 936.389 935.127 933.891 932.687 930.334 920.227 928.722 927.040	925.980 924.940 923.920 922.919 921.935 920.018 919.084 918.164	916.371 915.494 914.632 913.781 912.942 912.118
E	73.060 73.298 73.525	73.739 73.942 74.136 74.503 74.678 74.847 73.011 75.168	75.466 75.668 75.748 75.878 76.007 76.133 76.255 76.493	76.719 76.932 77.035 77.136 77.136 77.433 77.431 77.517	77.696 77.784 77.870 77.954 78.036 78.117
1	885.661 883.427 881.289	875.239 875.368 875.368 871.538 871.767 870.052 866.391 865.215	865.221 860.781 859.382 856.803 855.803 854.999 854.999 851.699 851.699	849, 261 846, 988 845, 988 845, 884 841, 700 842, 687 842, 687 840, 647 840, 647	838.675 837.740 836.762 835.827 834.006 834.001
S	191.058 193.918 196.655	1999.285 201.817 204.256 206.610 208.887 211.089 213.223 215.293 217.208	221.165 224.827 224.827 228.316 230.001 231.650 234.840 234.86	237.902 239.389 240.284 245.680 245.061 246.418 247.064 250.335	251.624 252.875 254.106 255.321 256.518 257.695
1	222.424 225.255 227.964	230.565 233.060 233.060 247.803 246.053 244.333 244.333 244.333 250.293	255.171 255.782 255.782 255.782 259.221 260.883 260.883 264.093 265.647	268.660 270.122 271.557 273.965 274.347 275.704 275.704 278.334 279.334 280.904	282.151 283.381 285.589 286.955 288.111 288.111
P	18 10 20 20	1 4 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 3 3 3 3 3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6	22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25

spun	od ui	Pressure above a vacuum, per square inch.	l d	55 60 60 60	63 65 64	65 67 68	9 2	71	73 74	2.5
UME.	of to to take	Ratio of volume of steam volume of equal weight distilled water at tempera of maximum density.	Λ	452.7 445.5 438.5	431.7 425.0 418.8	406.6 395.2 389.8	384.5	374.3	364.6	355.5 351.1
Volume.	pidu	Of a pound of steam in ci	C	7.252	6.916 6.811 6.709 6.610	6.515 6.422 6.332 6.244	6.159	5.995	5.841	5.694
ni ,t	stean	Weight of a cubic foot of pounds.	W	.137892 .140128 .142362	.144594 .146824 .149052	.155721	.162372	166794	.173417	.175522
	ove on.	Total heat of evaporation at 32°, in units of evaporation	U	1.2117 1.2120 1.2123	1.2127 1.2130 1.2133 1.2135	1.2140 1.2143 1.2146 1.2149	1.2152 1.2155	1.2158	1.2164	1.2170
		Total heat of evaporation above z^2 = $S + L$.	II	1170.503 1170.841 1171.176	1171.505 1171.829 1172.149 1172.466	1172-779 1173-087 1173-393 1173-694	1173.991	1174.578	1175.150	1175.710
QUANTITIES OF HEAT.	d Units.	Latent heat of evaporation at pressure $P = I + E$.	T	910.501 909.709 908.928	908.157 907.396 906.643 905.900	905.167 904.443 903.727 903.020	902.322 901.629	900.945	898.038	897.635
QUANTIT	In British Thermal Units.	External latent heat.	E	78.273 78.348 78.421	78.494 78.566 78.638 78.709	78.779 78.847 78.913 78.978	79.042	79.167	79.288	79.469
	In Briti	Internal latent heat.	I	832.228 831.361 830.507	829.663 828.830 828.005 827.191	826.388 825.596 824.814 824.042	822.524	821.778 821.041	820.312 819.589	818.166
		Required to traiss the temperature of the water from 32° to Tv.	S	260.002 261.132 262.248	263.348 264.433 265.506 266.566	267.612 268.644 269.666 270.674	271.009	273.633	275.550	278.350
'sa	legree	Temperature, Fahrenheit c	4	290.374 291.483 292.575	293.653 294.717 295.768 296.805	297.830 298.842 299.843 300.831	302.774	303.728	305.603	308.344
spun	od ui	Pressure above a vacuum, per square inch,	Ь	59 60 60	653 65	29.08	200	72	24	76

1 00	78 28	# # # # # # # # # # # # # # # # # # #	100 900 900 900 900 900 900 900 900 900	101 102 103 104 105 106 109 109	111 112 113 114 115 116
7	346.8 342.6 338.5 334.5	330.6 326.8 323.1 315.9 315.9 312.5 309.1 305.8 305.8 305.8	296.3 293.2 290.2 287.3 287.3 281.7 279.0 276.3 273.7 271.1	268.5 265.0 263.6 261.2 258.9 256.6 254.3 252.1 249.9 247.8	245.7 243.6 241.6 239.6 237.6 235.7 235.7
0	5.55	2.23 2.23 5.123 5.118 5.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.302 4.262 4.223 4.185 4.147 4.117 4.074 4.003 3.969	3.935 3.935 3.836 3.775
W	.180027 .182229 .184429	188823 191017 19210 193210 193210 193210 193210 201531 200340 200340 200340	210709 212892 21974 21974 219430 2219430 223778 223778 223778 223778	233464 234034 23603 236072 24133 24367 245467 245467 245467 245467 245789 249789	.254105 .250263 .25420 .260576 .26732 .26787
U	1.2176 1.2179 1.2181 1.2184	1.2187 1.2190 1.2193 1.2195 1.2198 1.2200 1.2203 1.2205 1.2205	1.2212 1.2215 1.2220 1.2222 1.2222 1.2224 1.2227 1.2232 1.2232	1. 2236 1. 2238 1. 2242 1. 2245 1. 2247 1. 2247 1. 2254 1. 2254 1. 2254	1.2258 1.2260 1.2262 1.2264 1.2266 1.2270
Н	1176.259 1176.529 1176.795	1177.321 1177.580 1177.837 1178.391 1178.592 1178.540 1179.328 1179.569	1179-809 1180-045 1180-279 1180-371 1180-370 1181-197 1181-197 1181-045	1182 - 085 1182 - 303 1182 - 319 1182 - 313 1182 - 945 1183 - 156 1183 - 306 1183 - 306	1184.190 1184.393 1184.794 1184.794 1185.188
7	896.994 896.359 895.729 895.108	894.491 893.879 893.879 892.677 892.687 891.496 890.913 890.333 889.763	888.633 888.075 887.521 886.972 886.437 885.887 885.352 884.295 884.295	883.533 882.737 882.226 881.719 881.714 880.712 880.714 870.230 879.230	878.263 877.784 877.309 876.838 876.31 875.907 875.444
E .	79.526 79.582 79.639 79.695	79.749 79.856 79.909 79.901 80.012 80.012 80.113 80.113	80.258 80.355 80.357 80.337 80.442 80.442 80.576 80.576	80.709 80.752 80.752 80.835 80.875 80.916 80.935 81.034 81.032	81.110 81.147 81.184 81.221 81.257 81.293 81.293
7	817.468 816.777 816.090 815.413	814,742 814,077 813,419 812,178 812,122 811,484 810,850 810,850 809,601 809,601	808.375 807.770 807.170 805.575 805.595 805.400 804.821 804.245 803.675	802.544 801.985 801.985 801.432 800.339 799.796 799.258 798.196 797.672	797.153 796.637 796.125 795.114 795.114 794.614
S	279.265 280.170 281.066 281.952	282.830 283.701 284.562 285.414 286.260 287.096 287.927 288.750 289.565 290.373	291.176 291.970 293.539 294.314 295.845 295.845 296.601 297.350 298.093	298 832 299-566 300-293 301-731 301-731 302-444 303-854 303-854 304-551	305.927 306.609 307.285 307.285 307.285 308.621 309.281
*	309.239 310.123 311.000 311.866	312.725 313.576 314.417 315.250 316.893 317.705 319.306 320.094	320.877 321.653 321.422 323.483 323.939 324.688 325.431 325.431 326.900 327.625	328.345 329.060 329.060 339.476 331.169 331.862 332.550 333.911 334.582	335.250 335.914 336.573 337.226 337.874 338.518
P	77 78 79 80 80 80 80 80 80 80 80 80 80 80 80 80	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	101 103 103 104 105 106 107 109	111 112 113 114 115 117

PROPERTIES OF SATURATED STEAM-(Continued).

spun	og ai	Pressure above a vacuum, per square inch.	P	811	120	121	123	124	125	127	128	129	130	131	132	133	134	135	136	137	-
V оцимв.	to i fo i	Ratio of volume of steam volume of equal weight distilled water at tempera of maximum density.		231.9	228.3	226.5	223.0	221.3	219.0	216.4	214.8	213.2	211.6	210.1	208.6	207.1	205.7	204.2	202.8	200.4	2
Vol	oidu:	Of a pound of steam in c feet,	S	5.715	3.050	3.628	3.572	3.545	3.518	3.466	3.440	3.415	3.390	3.366	3.342	3.318	3 295	3.272	3.249	3.227	3.604
ui 't	stean	Weight of a cubic foot of pounds,	M	.269195	.273500	.275651	.279949	282097	.284243	.288533	.290677	.292820	.29496I	.297102	.299242	.301382	.303521	•30505	.307797	.309934	. 3420,
	oove bove	Total heat of evaporation a 32°, in units of evaporatio	U	1.2272	1.2270	1.2278	1.2282	1.2284	1.2280	1.2200	1.2292	1.2293	1.2295	1.2296	1.2298	1.2300	1.2302	1.2304	1.2306	1.2308	4.43-9
	Total heat of appropriation above $\frac{1}{2}$ and $\frac{1}{2}$		Н	1185.577	1105.901	1186.150	1186.527	1186.714	1180.899	1187.266	1187.448	1187.629	1187.809	1187.988	1188.166	1188.344	1188.520	1188.695	1188.869	1189.041	
QUANTITIES OF HEAT.	al Units.	Latent heat of evaporation at pressure $P = I + E$.	T	874.985 874.529	074.070	873.626	872.732	872.289	871.848	870.977	870.545	870.116	869.688	869.263	868.84I	868.422	868.005	867.590	867.177	866.260	
QUANTIT	In British Thermal Units.	External latent heat.	. E	81.366 81.403 87.403	01.439	81.474	81.543	81.578	81.012 81.646	81.679	81.711	81.742	81.774	81.805	81.837	81.868	81.900	81.931	81.962	82.021	
	In Briti	Internal latent heat.	I	793.619	792.037	792.152	791.189	790.711	780.230	789.298	788.834	788.374	787.914	787.458	787.004	786.554	786.105	785.659	785.215	784.775	104.002
		Required to raise the temperature of the water from 32* to Tv.	S	310.592 311.241	311.005	312.524	313.795	314.425	315.051	316.289	316.903	317.513	318.121	318.725	319.325	319.922	320.515	321.105	321.692	322.274	
's:	degr e e	Temperature, Fahrenheit o	*2	339.796	341.050	341.681	342.916	343.528	344.130	345.340	345.936	340.530	347.121	347.706	348.287	348.867	349.443	350.015	350.584	351.149	100
spun	od ui	Pressure above a vacuum, per square inch.	4	811	120	121	123	124	125	127	128	129	130	131	132	133	134	135	130	137	-

ام	139	141 142 144 146 146 148 149 149 149	160 170 180 200	200 200 200 200 200 200 200 200 200	350 400 450 500	55.0 65.0 65.0 86.0 95.0 95.0 95.0
1	198.7	196.0 194.7 193.4 192.2 190.9 188.5 188.5 186.1	173.9 164.3 155.6 147.8	134.5 128.7 123.3 118.5 114.0 109.9 102.3 99.0	82.7 72.8 65.1 58.8	64 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
(3.182	3.140 3.119 3.099 3.098 3.058 3.038 3.000 2.081 2.981	2.786 2.631 2.493 2.368 2.256	2.1.2 4.20.2 1.89.8 1.89.8 1.69.1 1.69.1 2.85.1 2.85.1 2.85.1 3.85.1	1.325 1.167 1.042 .942	
M	.314205	.318471 .322603 .32235 .324867 .324968 .329128 .331257 .331257 .331257 .331257 .331257	.358886 .380071 .401201 .422280	.464295 .485237 .506139 .527003 .547831 .56826 .58930 .610124 .630829	.754534 .857185 .959536 1.061700	1.16380 1.26586 1.36591 1.46995 1.57198 1.77693 1.87804 1.98004 2.08203
<i>v</i>	1.2311	1.2315 1.2316 1.2318 1.2320 1.2323 1.2324 1.2324 1.2328 1.2328 1.2328	1.2346 1.2351 1.2376 1.2390 1.2404	1.2417 1.2430 1.2442 1.24454 1.2455 1.2476 1.2477 1.2497 1.2597	1.256 1.260 1.264 1.264	1.270 1.275 1.276 1.276 1.282 1.287 1.287 1.293
H	1189.384	1189, 724 1189, 892 1190, 059 1190, 255 1190, 554 1190, 574 1191, 040 1191, 200	1192.762 1194.251 1195.671 1197.032 1198.339	1199-597 1200-810 1201-980 1203-111 1204-209 1205-273 1205-306 1207-310 1208-286 1209-238	1213.74 1217.70 1221.30 1224.54	1227.60 1230.48 1233.18 1235.70 1240.30 1244.65 1244.65 1248.66
T	865.955 865.552	865.151 864.751 864.354 863.360 863.360 863.176 863.77 863.400 862.016	857.912 854.359 850.963 847.703 844.573	841.556 838.642 835.828 835.828 837.459 827.896 825.401 820.609	807.48 797.94 789.12 781.02	773.46 766.26 759.60 773.30 741.42 741.42 735.84 725.40
E	82.050 82.080	82.109 82.138 82.156 82.221 82.249 82.344 82.334 82.359	82.616 82.854 83.072 83.273 83.462	83.66 83.868 83.866 84.115 84.256 84.388 84.621 84.621 84.731 84.731	85.28 85.60 85.84 86.01	86.12 86.12 86.12 86.19 86.08 86.08 85.91 85.80 85.80
1	783.905 793.472	783.042 782.613 782.188 781.766 781.346 780.927 780.927 779.684 779.255	775.296 771.505 767.891 764.430	757.916 754.834 751.8652 746.203 746.203 746.891 740.891 738.350 733.470	722.20 712.34 703.28 695.01	687.34 667.34 667.34 667.04 665.34 649.84 634.71
S	323.429 324.003	324.573 325.141 325.705 326.825 326.823 327.378 327.39 328.479 329.024 329.024	334.850 339.892 344.708 349.329 353.766	358.041 362.168 360.052 370.008 377.375 380.905 384.337 384.337 387.677	406.26 419.76 432.18 443.52	454.14 464.22 473.58 482.40 490.86 490.86 506.66 514.03 528.30
7	352.271	353 380 353-931 354-478 355-022 355-022 356-100 356-036 357-697 357-697 358-223	363.34 3 368.226 372.886 377.352 381.636	385,759 389,736 393,575 397,855 400,883 404,370 417,755 411,250 417,371	431.96 444.92 456.62 467.42	477.50 486.86 495.68 512.06 510.62 526.82 533.66 540.30
Ь	139	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	160 170 180 190 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35c 400 450 500	550 650 650 700 700 850 850 950

The column headed "U" in the table of the properties of saturated steam is useful for reducing the performance of different boilers to a common standard—this standard being that most generally accepted by engineers: the equivalent evaporation at atmospheric pressure and the temperature of boiling water, or, as it is frequently called, the evaporation from and at 212°. In the table it is assumed that the temperature of the feed-water is 32°, and an auxiliary table is added, giving corrections for any temperature of feed from 32° to 212°.

CORRECTION FOR TOTAL HEAT IN UNITS OF EVAPORATION.

Tempera- ture of feed, Fah- renheit degrees.	Correction,	Tempera- ture of feed, Fah- renheit degrees.	Correction.	Tempera- ture of feed, Fah- renheit degrees.	Correction.	Tempera- ture of feed, Fah- renheit degrees.	Correction.	Tempera- ture of feed, Fah- renheit degrees.	Correction,
33 34 35 37 37 39 41 42 43 44 45 47 47 47 55 55 55 55 55 55 56 58 58	.0010 .0021 .0031 .0041 .0052 .0062 .0073 .0083 .0093 .0104 .0114 .0135 .0166 .0176 .0186 .0197 .02217 .0228 .0238 .0238 .0238 .0259 .0269	69 70 71 72 73 74 75 76 77 80 81 82 83 84 866 87 88 89 90 91 92 93	. 0383 . 0393 . 0404 . 0414 . 0424 . 0435 . 0445 . 0446 . 0476 . 0476 . 0487 . 0507 . 0507 . 0507 . 0508 . 0528 . 0538 . 0539 . 0509 . 0501 . 0601 . 0601 . 0601	105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 129 129 129 130 130	.0756 .0756 .0766 .0767 .0787 .0797 .0808 .0818 .0829 .0839 .0850 .0890 .0880 .0891 .0901 .0901 .0901 .0903 .0953	141 142 143 144 145 146 147 148 150 151 152 153 154 155 156 167 166 166	.1129 .1149 .1150 .1150 .1160 .1171 .1181 .1192 .1202 .1213 .1223 .1223 .1223 .1224 .1254 .1254 .1275 .1285 .1296 .1316 .1317 .1327 .1337 .1348 .1358 .1368 .1379 .1389 .1389	177 178 179 180 181 182 183 184 185 186 187 199 190 191 192 193 193 195 196 197 197 198 199 199 199 199 199 199 199 199 199	.1504 .1514 .1525 .1535 .1545 .1550 .1550 .1566 .1577 .1587 .1587 .1688 .1608 .1629 .1659 .1659 .1660 .1670 .1661 .1772 .1723 .1713 .1713 .1714 .1715
59 60 61 62 63 64 65 66 67 68	.0290 .0300 .0311 .0321 .0331 .0342 .0352 .0362	95 96 97 98 99 100 101 102 103 104	.0663 .0673 .0683 .0694 .0704 .0714 .0725 .0735	132 133 134 135 136 137 138 139	.1036 .1046 .1057 .1067 .1077 .1088 .1098 .1109	168 169 170 171 172 173 174 175	.1410 .1420 .1431 .1441 .1452 .1462 .1473 .1483 .1493	204 205 206 207 208 209 210 211 212	. 1785 . 1796 . 1806 . 1817 . 1827 . 1837 . 1848 . 1858

XI.

TOTAL AVAILABLE ENERGY IN WATER AND STEAM.

Total amount of energy contained in steam at correspond- ing temperatures and pressures.	1700.8 37526.4 37526.4 37526.4 57576.4
Corresponding amount of ing amount of energy contained in the latent heat of evaporation.	16872.9 380116.8 380116.8 47054.9 60118.7 70848.7 70848.7 70848.7 70873.3 82577.7 82777.7 82777.7 97777.2 97777.7 9777
Amount of energy contained in one pound of water which may be liberated by explosion or expansion to 212° Fahr.	11.00
Corresponding absolute temperature in degrees	33 98 98 98 98 98 98 98 98 98 98 98 98 98
Corresponding absolute temperature in degrees Fahrenheit.	689. 7711.2 2 772.3 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Temperature in degrees Centigrade of the steam and of the water from which it is evaporated.	8 2 2 1 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Temperature in degrees the steam and of the water from which it is evaporated.	2 2 4 5 7 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
Number of British ther- mal units required for the evapora- tion of one pound of water, known as latent heat of evapora- tion, H.	954.415 938.928 938.938 936.4728 936.4728 906.4728 908.24906 908.24906 908.24906 908.24906 908.24906 908.24908 909.3690 889.3690
Absolute pressure in atmospheres.	T T G G G W W W 4 4 4 M N N N G G G C C C C W 8 8 8 9 9 9 8 5 2 4 8 2 5 6 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 5 8 3 1 7 8 3
Same pressure as indicated by steam gauge, allowing 14.7 allowing 14.7 atmospheric pressure.	2 T T C C C C C C C C C C C C C C C C C
Pressure above a vacuum in pounds per square inch.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TOTAL AVAILABLE ENERGY IN WATER AND STEAM-Continued.

Total amount of energy contained in one pound of steam at correspond- ing temperatures and pressures.	127764.5 19909.7 19909.7 19909.7 19909.7 19909.8 19909
Correspond- ing amount of energy con- tained in the latent heat of evaporation.	117,003,5 (19,10),1 (19,10
Amount of energy contained in one pound of water which many be liberated by explosion or expansion to are Fahr.	19261.5 111842.2 111843.2 111843.2 111843.2 111843.3 111873.3 1118
Cor- responding absolute tempora- ture in degrees Centigrade.	2
Cor- responding absolute tempera- ture in degrees Fabrenheit.	2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Temperature in degrees Centigrade of the steam and of the water from which it is evaporated.	1799.7 1881.1 1882.6 1885.7 1886.7 1886.7 1993.3 1993.3 1994.1 1994.1 1994.1 1995.9 19
Temperature in degrees the Stahrenheit of the Steam and of the water from which it is evaporated.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Number of British thermal units mal units required for the evaporation of one pound of water, known as latent heat of evaporation, H.	86.2.577 88.7.727 88.7.727 88.7.727 88.7.727 89.7.7
Absolute pressure in atmospheres,	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Same pressure as indicated by steam-gauge, allowing 14.7 pounds for atmospheric pressure.	11. 12. 12. 12. 12. 12. 12. 12. 12. 12.
Pressure above a vacuum in pounds per square inch.	145 1156 1156 1166 1166 1176 1176 1176 117

XII. FORMULAS RELATING TO PROPERTIES OF STEAM.

	1		1	1	1		11	1	11			1	1	
FORMULA,	$P = \frac{p}{144}, \log P = 6.1007 \frac{2731.62}{t} - \frac{396944}{t^2}$	$p = P \times 144, \log p = 8.2591 - \frac{2731 \cdot 62}{T} - \frac{396044}{T^2}$	$M = P \times 2.03759$	$F = P \times 2.306768$	$A = P \times 0.0680967$	G = P - 14.685	$t = T - 461^{\circ}.2$	$T = 1 + \left(4 \sqrt{\frac{8.2591 - \log p}{396944}} + 0.00001184 - 0.003441 \right)$	$S = t - 32 + 0.000000103(t - 39.1)^3$	I = L - E	$E = p \times \frac{C - v}{77^2}$	$L = 1091.7 - 0.695(t - 32) - 0.00000103(t - 39.1)^{9}$	H = rog1.7 + o.3os(t - 32)	$U = \frac{II}{966.\text{r}}$
SYMBOL,	Ъ	d	M	F	A	9	72	T	S	7	B	7	H	U
QUANTITY.	Pounds per square inch.	Pounds per square foot.	Inches of mercury, at 32º Fahr.	Feet of distilled water, at temperature of maximum density.	Atmospheres.	Above the atmosphere, in pounds per square inch.	Fahrenheit's scales.	Absolute scale, Fahrenheit degrees,	Required to raise the temperature of the water from 32° to 1°.	Required to change the water into steam. (Internal	Required to overcome the pressure of the surrounding medium. (External latent heat.)	Latent heat of evaporation, under constant pressure, P.	Total heat of evaporation above 32°.	Total heat of evaporation per pound of steam, above 32°, in units of evaporation,
			Pressure.					Temperature.			Quantity of beat.	- 200		

FORMULAS RELATING TO PROPERTIES OF STEAM-Continued,

SYMBOL. FORMULA.	$l = a.3026 \times \rho \times \left(\frac{2731.62}{T} + \frac{793888}{T^3}\right)$	$W = \frac{l}{\eta r_0 \times L}$	$uv = \frac{6z \cdot 4z5}{v}$	$C = \frac{1}{W}$	$V = C \times 62.425$	Por temperatures from 32° to 70°, v = 1.00012 - 0.00004304(f324) - 0.000003322(f33) ³ Por temperatures above v = 0.09781 + 0.0000011(f32) + 0.00000105(f32) ³
QUANTITY.	Foot-pounds of energy, in latent heat of evaporation, per cubic foot of steam.	Of a cubic foot of steam, in pounds.	Of a cubic foot of distilled water, in pounds, at temperature t.	Of a pound of steam, in cubic feet.	Ratio of volume of steam to volume of equal weight of distilled water at temperature of maximum density.	Ratio of volume of distilled water, at temperature 7, to volume of equal weight at temperature of maximum density.
	Foot-pound	11.14	weight.		Wolume	

XIII. FACTORS OF EVAPORATION.

	8	13.3	1.241	.238	.233	.227	.222	.217	.212	.207	.202	761.	186	181	921.	171.	.165	.160	.155	.150	.145	.139	.I34	621.	421.	.113	801.	. 103	. oy8	.093	280.	280.	.077	.072	290.	.057
	180	12	I.239	.236	.231	.225	.220	.215	.210	.205	.200	195	18,	170	.174	091	.163	.158	.153	.148	.143	.137	.132	.127	177	ì II	901.	101.	960.	160.	.085	080.	.075	.070	.005	.055
RES.	100	10.7	1.237	.234	.229	.223	.218	+213	.208	.203	861.	187	182	177	.172	.167	.161	951.	.151	.146	.141	• 135	.130	.125	1120	601	POI.	660.	160.	080	.083	.078	.073	2900	.058	.053
ТМОЅРНЕ	140	9.3	1.234	.231	.226	.220	.215	.210	.205	.200	.195	.184	170	174	1691	.164	.158	.153	.143	.143	.130	.132	.127	.122	/11.	901.	ioi.	960.	160.	980.	080.	.075	.070	.005	.055	.050
ND IN A	120	8.0	1.231	.228	.223	.217	.212	.207	.202	.197	192	181	921	171	991.	191.	.155	.150	.145	.140	.135	621.	.124	611.	411.	103	800.	.093	880.	.083	.077	.072	290.	.002	.052	.047
PHERE A	1001	6.7	1.227	.224	612.	.213	.208	.203	861.	•193	188	.177	.172	.167	162	.157	.151	.146	.141	.136	131	.125	.120	5115	2011	660	.004	.089	.084	620.	.073	890.	£90°	.058	.053	.043
4 ATMOS	00	6.0	1.224	.221	312.	.210	.205	. 200	.195	061.	185	.174	160	164	159	.154	.148	.143	.138	.133	.120	122	.117	. 112	1007	960.	100	980.	180.	920.	.070	.065	090.	•055	.050	.040
SOVE THE	80	5.3	1.222	612.	.214	.208	.203	861.	.193	881.	.183	.172	.167	.162	.157	.152	.146	.141	921.	.131	021.	021.	.115	011.	1001	.094	080.	.084	620.	.074	200.	.063	.058	.053	.048	860.
INCH A	- 02	4.7	1.219	.216	.211	.205	.200	.195	061.	.185	081.	169	, x6 ₄	150	.154	.149	.143	.138	.133	.128	.123	711.	.112	701.	201.	160.	980.	.081	920.	1/0.	•005	900	.055	.050	.045	.035
Square	9	4.0	1.217	,214	.209	.203	861.	.193	. 188	.183	.178	.167	.162	.157	.152	.147	141	.136	131	,126	121.	611.	011.	105	200	680.	.084	620.	.074	690.	.003	.058	.053	.048	.038	.033
NDS PER	202	3.3	1.214	.211	902.	.200	.195	. ogi.	.185	081.	.175	.164	.150	154	149	.144	.133	.133	.120	.123	011.	211:	.107	707	9, 6	980.	180.	920.	1/0.	990.	000.	.055	.050	.045	.035	080.
GAUGE PRESSURE IN POUNDS PER SQUARE INCH ABOVE THE ATMOSPHERE AND IN ATMOSPHERES.	45	3.0	1.212	.209	.204	861.	.193	.188	.183	.178	.173	.162	.157	.152	.147	.142	.136	131	126	121	011.	277	105	001.	000	-084	.079	,074	690.	,064	•058	.053	.048	.043	.038	820.
Pressur	40	2.7	1.211	.208	.203	761.	*192	.187	.182	.177	.172	191.	951.	151.	.146	141.	·135	.130	.125	.120	2115	5	· IO4	666	200	.083	820.	.073	890.	.063	.057	.052	.047	.042	.037	.027
GAUGE	35	2.3	1.209	902.	.20I	261.	061.	.185	.180	.175	0,170	.159	154	140	.144	.139	.133	.128	.123	811.	.113	/01.	.102	760.	2,60	180.	940.	1/0*	990*	190.	.055	•050	.045	040	.035	.025
	30	2.0	1.206	.203	861.	261.	187	.182	.177	.172	701.	156	151	146	141	921.	.130	.125	.120	5115	OII.	por.	660.	3.8	200	.078	.073	.068	.063	.058	.052	.047	.042	.037	.032	.027
	25	1.7	1.204	102.	961.	061.	.185	.180	.175	071.	105	.154	.140	.144	.139	.134	.128	.123	811.	.113	901.	707.	160.	200.	280	920.	1/0.	990.	190.	950.	.050	.045	.040	.035	.030	.020
iture of	-623	ن ن	0	9.1	4.4	7.2	o _I	12.7	15.5	18.3	21.1	26.6	20.4	32.5	35.0	37.7	40.5	43.3	46. I	8 4	51.0	54.4	57.2	9 9	65.K		71.1	73.8	9.94	79.4	82.2	85.0	87.7	90.5	93.3	8 86
Temperature of Feed-water in	42	ī.	32	35	04	45	20	22	9	02	2	828	8	8	95	100	ro5	OII	115	120	125	1,30	135	140	150	155	91	165	170	175	180	185	061	195	205	210

XIV. COMPOSITION OF VARIOUS FUELS OF THE UNITED STATES.

	c.	Н. О.	N.	s.	Mois- ture.	Ash.	Spec. Grav.
Pennsylvania Anthracite	78.6	2.5 1.7	0.8	0.4	1.2	14.8	1.45
Rhode Island "Massachusetts "North Carolina "	85.8 92 0 83.1	10.5 6.0 7.8		3·7 2.0 9.1			1.85
Welsh "Maryland Semi-bituminous	84.2 ,80.5	3.7 2.3 4.5 2.7	0.9	0.9	1.3	6. ₇ 8. ₃	1.40
Pennsylvania "	75.8 59.4	38.8				4.0	1.32
Indiana "	70.0	28.0				2.0	1.24
" "	52.0	39.0				9.0	1.27
Illinois Bituminous	62.6	35.5				1.9	1.30
" (Block) Bituminous	58.2	37.I				4.7	
Illinois and Indiana (Cannel) Bituminous	59-5	36.6				3.9	1.27
Kentucky (Cannel) Bituminous	48.4	48.8	• • • • •			2.8	1.25
Tennessee Bituminous	71.0	17.0				12.0	1.45
***************************************	41.5	56.5		****		2.5	
Alabama	54.0	42.6		1.0	1.2	1.2	
Virginia "	55.0	41.0			• • • • •	4.0	
	74.0	18.6			• • • • •	7.4	
California and Oregon Lignite	50.1	3.9 13.7	0.9	1.5	16.7	13.2	1.32

			THEORETI	CAL VALUE.
	COAL.	Per Cent. of Ash.	In Heat	In Pounds of Water
STATE.	KIND OF COAL.		Units.	Evaporated.
Pennsylvania	Anthracite	3.49	14,199	14.70
**		6.13	13,535	14.0t
		2.90	14,221	14.72
66	Cannel	15.02	13,143	13.60
"	Connelsville	6.50	13,368	13.84
"	Semi-bitummous	10.77	13,155	13.62
	Stone's Gas	5.00	14,021	14.51
	Youghiogheny	5.60	14,265	14.76
	Brown	9.50	12,324	12.75
	Caking	2.75	14,391	14.89
**	Cannel	2,00	15,198	16.76
		14.80	13,360	13.84
	Lignite	7.00	9,326	9.65
	Bureau County	5.20	13,025	13.48
44	Mercer County	5.60	13,123	13.58
	Montauk	5.50	12,659	13.10
	Block	2.50	13,588	14.38
	Caking	5.66	14,146	14.64
	Cannel	6.00	13,097	13.56
Maryland		13.98	12,226	12.65
	Lignite	5.00	9,215	9.54
Colorado	44	9.25	13,562	14.04
		4.50	13,866	14.35
Texas		4.50	12,962	13.41
Washington,		3.40	11,551	11.96
Pennsylvania	Petroleum		20,746	21.47

ANALYSES OF ASH.

	Specific Grav.	Color of Ash.	Silica.	Alum- ina.	Oxide Iron.	Lime.	Mag- nesia.	Loss.	Acids S.&P.
Pennsylvania Anthracite	1.559 1.372 1.32 1.26 1.27	Reddish Buff. Gray.	45.6 76.0 40.0 37.6 19.3	42.75 21.00 44.8 52.0 11.6		1.41 12.0 3.7 23.7	0.33 trace 1.1 2.6	0.48	2.97 5.02 33.8

XV.
HORSE-POWER PER POUND MEAN PRESSURE.

Diameter of Cylinder. Inches.				Speed	of Pist	on in Fi	ET PER	MINUTE.			
Diam Cyl Incl	100	240	300	350	400	450	500	550	600	650	750
4.	.038	.091	.114	.133	.152	.171	.19	.209	.228	.247	.285
41/2	.048	.115	.144	.108	.192	.216	30	.264	.288	.312	.360
5 5 6	.072	.173	.216	.252	.24	.324	.36	.396	.432	.468	.540
6 61	.086	.205	.256	.299	.409	.385	.428	.471	.513	·555 .698	.540 .641 .800
7	.116	.279	.307	.391 .408	.466	.524	.512 .583 .669	.641	.699	.756	.874
7½ 8	.134	.321	.401	.468	.534 .608	.602	.669	·735	.802	.756 .869	1.002
81	.152	.365	.456 .516	.532 .602	.688	.685	.761	.946	1.032	.989	1.121
9	.192	.462	· 577	.674	.770	·774 .866	.963	1.059	1.154	1.251	1.444
93	.215	.515	.044	.751 .833	.859	.966	1.074	1.181	1.428	1.395	1.610
10}	.262	.571 .63	.714 .787 .864	.919	1.050	1.181	1.313	1.444	1.575	1.547 1.706 1.872	1.969
11	. 288	.691		1.008	1.152	1.296	1.44	1.584	1.575 1.728 1.886	1.872	2.160
1112	·314	•754 •820	.943 I.025	1.1	1.257	1.540	1.572	1.729	2.050	2.043	2.357
13	.402	.964	1.206	1.407	1.608	1.809	2.01	2.211	2.412	2.613	3.015
14	.466 -535	1.119	1.398	1.631	1.864	2.097	2.331	2.564	2.797 3.212	3.029 3.479	3·495 4.004
16	.609	1.461	1.827	2.131	2.436	2.741	3.045	3.349	3.654	3.958	4.567
17	.685	1.643	2.054	2.396	2.739 3.083	3.081 3.468	3.424 3.854	3.766	4.108	4.450 5.009	5.135
19	.771 .859	2.061	2.312	3.006	3.436	3.865	4.295	4.724	5.154	5.583	5.780
20	.952	2.292	2.577	3.331	3.436 3.807	4.285	4.759	5.234	5.731 6.296	6.186	7.138
21	1.049	2.518	3.148 3.455	3.672 4.031	4.197	4.722 5.183	5·247 5·759	5.771 6.334	6.296	6.820	7.869 8.638
23	1.259	3.021	3.776	4.405	5.035 5.482	5.664	6.204	6.923	7·552 8.223	7.486 8.181	9.44
24	1.370	3.289	4.111	4· 7 97 5.105	5.482	6.692	6.853	7.538 8.179	8.223 8 923	8.908 9.566	10.279
25 26	1.487	3.861	4.826	5.630	6.435	7.239	7.436 8.044	8.848	9.652	10.456	12.065
27	1.733 1.865	4.159	5.199		6.932	7·799 8.395	8.000	9.532	10.399	11.265	12.998
28 29	2.002	4.477	5.596	7.007	7.462 8.008	0.000	9.328	10.261	11.193	12.125	13.991
30	2.142	5.141	6.426 6.865	7.497 8.001	8.568	9.639	10.71	11.781	12.852	13.923	16.065
31 32	2.288	5.486 5.846	7.308	8.526	9.144 9.744	10.287	11.43	12.573	13.716	14.866	17.145
33	2 590	6.216	7.770 8.238	9.065	10.360	11.655	12.959	14.245	15·54 16.476	16.835	19.425
34	2.746	6.59	8.238	9.611	10.984	12.357	13.73	15.103	16.476	17.849	20.595
35 36	3.084	7.401	9.252	10.794	12.336	13.878	15.42	16.962	17.484	20.046	23.130
37 38	3.253	7.819 8.246	9.774	11.403	13.032	14.861	16.29	17.919	19.548	21.177	24 435
39	3.436	8.648	10.308	12.67	13.744	15.462	17.18 18.1	19.91	21.62		25.770 27.150
40	3.808	9.139	11.424	13.328	15.232	17.136	19.04	20.944	22.848	24.752	28.560
41 42	4.002	9.604	12.006	14.007 14.693	16,792	18.009 18.901	20.00	23.089	24.012	26.013 27.287	30.015
43	4.40	10.56	13.20	15.4	17.6 18.424	19.8	22.00	24.2	26.4	28.6	33.00
44	4.606	11.046	13.818	16.121	18.424	20.727	23.03	25·333 26.399	27.636 28.908	29.939 31.317	34·545 36.135
45 46	5.043	12.086	15.128	17.626	20.144	22.662	25.18	27.098	30.216	32.754	37.770
47 48	5.256	12.614	15.768	18.396	21.024	23.652 24.669	26.28	28.908	31.536	34.164 35.633	39.420
48		12.846	16.446	19.999	21.928	25.713	27.41 28.57	31.427	32 152 34.284	37.141	42.855
50	5.950	14.28	17.85	20.825	23.8	26.775 27.855	29.75	32.725	35.7	38.675	44.625
51 52		14.832	18.54	21.665	24.76	27.855	30.95 32.16	34.045	37.08 38.592	40.205	46,425
53	6,684	16.041	20.052	23.394	26.736	30.078	33.42	35.376 36.762	40.104	43.446	50.130
54	6.940	16.656	20.82	24.29 25.193	27.76 28. 7 92	31.23	34·7 35·99	38.17	41.64	45.11 46.787	52.05
55 56		17.275	22.386	26.117	29 848	33 - 579	37.31 38.66	41.041	44.772	48.503	55.965
57 58	7.732	18.557	23.196	27.062	30.928	34·794 36.027	38.66	42.526	46.392	50.258	57.99
58	8,284	19.902	24.018	28.021	33.136	37.278	40.03 41.42	44.033 45.562	48.036 48.704	52.039 53.846	60.045
59 60	8.566	20.558	25.698	29.981	34.264	38.547	42.83	47.113	51.396	55.679	64.245

, XVI. REAL RATIOS OF EXPANSION.

	1	වී වී වී ව	00000	0000	8888	1 2 4 4 4	1 4 2 2 2 2 1	8
	.90	1.109 1.109 1.108	1.108 1.108 1.108 1.107	1.107 1.107 1.106 1.106	1.106	1.104	1.104 1.103 1.103	1.103
	.875	I.140 I.140 I.140 I.140	1.138 1.138 1.138	1.138 1.138 1.137 1.136	1.136 1.136 1.135 1.135	1.135 1.134 1.134 1.134	1.133 1.132 1.132	1.132
	08.	I.246 I.246 I.245 I.245	1.243 1.243 1.242 1.241	I.240 I.240 I.239 I.238	1.238 1.237 1.236 1.235	I.235 I.234 I.233 I.233	1.232 1.231 1.231 1.230	1.229
	.75	1.328 1.327 1.326 1.325	1.325 1.324 1.322 1.321	1.320 1.319 1.318 1.317	1.316 1.315 1.314 1.313	1.312 1.311 1.310 1.309	1.308 1.307 1.306 1.305	1.304
	.70	1.422 1.421 1.419 1.418	1.416 1.415 1.413 1.412	1.409 1.408 1.408	I.405 I.404 I.402 I.401	1.400 1.398 1.397 1.396	I.394 I.393 I.392 I.390	1.389
	.625	1.588 1.588 1.585	1.581 1.579 1.576 1.576	1.572 1.578 1.568 1.566	1.563 1.561 1.569 1.557	I 555 I.553 I.551 I.549	I.547 I.545 I.343 I.541	1.539
	09.	1.655 1.653 1.650 1.647	1.645 1.642 1.640 1.637	1.634 1.632 1.629 1.627	1.625 1.622 1.620 1.617	1.615 1.613 1.608 1.608	1.603 1.603 1.601 1.599	1.597
OFF.	09.	1.983 1.975 1.970 1.966	1.961 1.956 1.952 1.947	1.943 1.938 1.934 1.930	1.925 1.921 1.917 1.913	1.907 2.904 1.900 1.896	1.892 1.888 1.884 1.881	1.877
POINTS OF CUT-OFF.	.40	2.463 2.454 2.445 2.436	2.428 2.420 2.411 2.403	2.395 2.387 2.379 2.371	2.363 2.355 2.348 2.340	2.333 2.325 2.318 2.318	2.304 2.297 2.290 2.283	2.276
Points	.375	2.623 2.612 2.602 2.592	2.582 2.574 2.562 2.552	2.543 2.533 2.524 2.515	2.506 2.497 2.488 2.479	2.461 2.461 2.453 2.445	2.436 2.428 2.420 2.412	2.404
	. 333	2.944 2.930 2.916 2.902	2.876 2.876 2.863 2.850	2.837 2.824 9.812 2.800	2.788 2.776 2.764 2.752	2.741 2.730 2.719 2.708	2.697 2.686 2.675 2.675	5.655
	08.	3.258 3.24 3.222 3.204	3.187 3.170 3.153 3.137	3.121 3.105 3.089 3.074	3.058 3.043 3.028 3.014	3 2.986 2.971 2.957	2.944 2.931 2.917 2.904	2.892
	10	3.884 3.875 3.830 3.803	3.777 3.752 3.727 3.702	3.678 3.654 3.631 3.608	3.58 3.564 3.542 3.521	3.5 3.478 3.459 3.439	3.418 3.407 3.380 3.362	3.342
	.20	4.809 4.764 4.720 4.677	4.595 4.555 4.516	4.417 4.440 4.404 4.484	4.333 4.298 4.256 4.232	4.168 4.168 4.130 4.106	4.076 4.047 4.045 3.990	3.963
	.125	7.481 7.363 7.25 7.133	7.034 6.932 6.833 6.738	6.64 5 6.555 6.46 8 6.390	6.303 6.229 6.147 6.082	5.985 5.861 5.794	5.666 5.666 5.605 5.545	5.482
	.10	9.111 9.8826 8.659	8.346 8.346 8.088	7.933 7.792 7.666 7.545	7.428 7.315 7.206 7.102	7 6.901 6.806 6.714	6.625 6.538 6.454 6.373	6.294
		10.0 10	1 20 20	1 20 20	10010	1 10 to	20.00	
nt. of	Per ce	.01 .0125 .0150	.0225 .0250 .0250	.03 .0350 .0350	.0425 .0450 .0450	.05 .055 .055	.0625 .0650 .0650	400

XVII.
A.
A.
LOG OF TRIAL BY MECHANICAL LABORATORY, DEPARTMENT OF ENGINEERING.

wh	h	$\frac{C}{w} + t - T$	— = Degrees of Superneating.	
$U - \eta$	$x = \frac{x}{H - h}$	$\frac{1}{x} + t - \frac{1}{x}$	0.48	WEIGHTS.
				TEMPERATURES.
				PRESSURES.
Protinging	I col mane at		uo	

	REMARKS,		
	FEED-WATER.	Per Per Metre, Tank,	
WEIGHTS.	FEED-1	Per Metre.	
	-	r nei.	
		Fuel, water, Steam, ruel,	
SZ.	Feed-	water.	
TEMPERATURES.		Fuel.	
TEM	Boiler-	room.	
	External	eter, gauge gauge. Air. room.	
.S3	Draneht-	gauge.	
PRESSURES.	Steam.	gauge	
	Rarom	eter.	
	Тімв.		

,				
		REMARKS		
	TNG.		Heat- stinu	
	SUPER-	-	Degrees	
	I	ng.	Percenti imir V	
	oti .i	ni nu 1919ti	Steam r nirolsO x	
	ater	у — <i>2</i> И ш	Heat fro = ¼	
	meə:	- L	Heat fro	
	rred Ser. U	nster rimei = N	Heat tra to Calor X X W	
STS.	HEAT-UNITS PER POUND	FROM BOILER.	Steam.	
G TE	HEAT	Boi	Water.	
PRIMING TESTS.		TURE.	Range. $R = t' - t''$	
	ا نہ	TEMPERATURE.	Final 1	
	RIMETE	TE	Initial.	
	CALO	is.	Wet Steam.	
		WEIGHTS.	Condensing Water.	
	*SE	เราเก	-маат2 вяя	
		T.		
		N.		

XVII.—(Continued.)

B. AVERAGE AND TOTAL RESULTS OF TRIAL, MECHANICAL LABORATORY, DEPARTMENT OF ENGINEERING. Fuel Frial made at_

		KG			te ed .	F. and at actual steam-pressure.	sq. ft.
		Remarks,			He	Equivalent from 212º	
Ш		REA			t of	at ziz F.	ft.
					Square feet of Heat- ing-surface required to Evaporate one Cubic Foot of Water,	Equivalent from and	sq. ft.
	SLE,	Total	lbs,		are Sur Ev	and at actual steam- pressure,	ft.
		Total Fuel.	ندا		마음 H S H	ture of feed-water	sq. 1
	ES.	Proportion to	per ct.			From actual tempera-	
1	ASHES.		lbs. p		ot of per	F. and at actual	1bs.
1		Total.	<u>a</u>		Per Square Foot of Heating-surface, per Hour,	Equivalent from 2120	
		surface per hour,		ا ا	uare Suri Hour	Equivalent from and	lbs.
	OF	Per sq. ft. of Heating-	lbs.	REAL EVAPORATION	nbs.	pressure,	
	ICN L.	Per sq. ft.		RAJ	eati	ture of feed-water and at actual steam-	lbs.
	CONSUMPTION FUEL.	hour.		APO	H H	From actual tempera-	
	F	Per square foot of Grate per	lbs,	Ev	ģ	F. and at actual steam-pressure.	lbs.
1	Cos	Per square		TVS	ပိ	Equivalent from 212	
		Total.	lbs,	Ri	d of ible	Equivalent from and at 212° F.	lbs.
_		gange,	ins.		Per Pound of Combustible.	pressure.	
itio	AVERAGE PRESSURES	gauge. Draught-			ď.	ture of feed-water and at actual steam-	lbs.
bos	VER.	Steam-	lbs.		Pe	From actual tempera-	=
Composition	PRE	Barometer.	ins.		7	steam-pressure,	vi.
_		water.	1 5		Fue	Equivalent from 212° F. and at actual	lbs.
		Feed-	Fahr.		jo Jo	at ara F.	lbs.
	RS.	Chimney.			pun	Equivalent from and	a
	AVERAGE	Entrance to	Fahr.		Po	and at actual steam- pressure.	ri.
1	TER,	Air.	Fahr.		Per	ture of feed-water	Ibs.
1	AVERAGE TEMPERATURES.	External	Fal		Per Square Foot of Heating-surface, per Per Pound of Fuel Hour.	From actual tempera-	
1	T	room.	Fahr.		ot o	Equivalent from srso	lbs.
		-rəliod	Fa		Fo		
		SURFACE,			uare l Surfa Hour.	Equivalent from and at size F.	lbs.
	*91	TO HEATIN			nbo H	pressure.	<u> </u>
1	alva-	BATIO OF G			er	ture of feed-water	lbs.
		section of Flues.	. ft.	'z		From actual tempera-	
1		surface, Least Cross-	·sd·	TIO	į.	F. and at actual steam-pressure.	lbs.
	ď,	neating.	l. ft.	ORA	Per Pound of Combustible.	Equivalent from 2120	
	AREAS.	Super-	sq. ft. sq.	VAP	d of	Equivalent from and at a size F.	.lbs.
	4	Heating- surface,	i ii	鱼	usti	pressure.	
			i i	ENJ	r Pe	ture of feed-water and at actual steam-	lbs.
1		Grate.	sq. ft.	APPARENT EVAPORATION	Pe	From actual tempera-	=
			oi.	A A	-:	steam-pressure.	vi vi
		LENGTH OF	Hours.		Fue	Equivalent from 212° F, and at actual	lbs.
			H		of	at size F.	lbs.
	"IVI	DATE OF TE			pur	Equivalent from and	=
			<u> </u>		Per Pound of Fuel.	bressure,	,
		Мимвек ов Тимь.			Per	rure of feed-water and at actual steam-	lbs.
On.	ł	no marril	1	li	1 -	From actual tempera-	

711.—(Continued.)

		Remarks,				REMARKS,
	DRY STEAM.	Equivalent from 212° F. and at actual steam- pressure.	lbs.		Horse-power.	
	WATER EVAPORATED INTO DRY STEAM.	Equivalent from and at 212° F.	lbs.		*8	ил <i>ћ</i> 1 + <u>н</u>
i	WATER EVAP	From actual temperature of feed-water and at actual steam-pressure.	lbs.		CY.	ntal.
	,	Total Water Primed, t	lbs.		EFFICIENCY.	
		Average, Priming	per cent.		F.,	
	Boiler.	Equivalent from 212° F. and at actual steam- pressure.	lbs.		EVAPORATION FROM AND AT 212° F., EQUIVALENT TO TOTAL HEAT-UNITS DERIVED FROM FUEL,	leat-
	TOTAL WATER FED TO BOILER.	Equivalent from and at 212° F.	lbs.		VAPORATION FROM AN EQUIVALENT TO TOTA DERIVED FROM FUEL.	
	Total W	From actual temperature of feed-water and at actual stempressure.	lbs.		Ev.A B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B	unt of ting.

	Remarks,	
Horse-power,	Actual.	
Horsi	Rated.	
	$\omega = \sqrt{V_{\text{ALUES OF } A}}$	
	R = Estimental.	
EFFICIENCY.	Estimated.	per cent.
	Experimental,	per cent.
AT 212° F., HEAT-UNITS	Per sq. ft. of Heat- ing-surface per hour,	lbs.
EVAPORATION FROM AND AT 212° F., EQUIVALENT TO TOTAL HEAT-UNITY DERIVED FROM FUEL.	Per Pound of Combustible,	lbs.
EVAPORATIO EQUIVALEI DERIVED F	Per Pound of Fuel.	lbs.
	Average Amount of Superheating.	Fahr.

XVII.

CONDENSED LOG OF ENGINE-TRIAL.

			Scale of Spring.	1	1 : : :
1891.	KE.		р. н. Р.		Ž.
Ĩ	Вкаке.		Load.		
			I. H. P. Total,	1	Test made by
	NK.		I. H. P.		
	CRANK.		M. E. P.	1	
	HEAD.		I. H. P.		
	HE		М. Е. Р.		
Date,					Areas, square inches Piston Steam-port
`	WEIGHTS.		Injection-water,		Areas, square inches Piston Steam-port Exhaust-port
	WEI		Feed-water.		Areas, square inche Piston Steam-port Exhaust-port
		٠,	Condensed Stean		quar nrt port
		rot-	Expanst.		s, sc nn m-pc tust-
		. (Tk	Cylinder.		Area Pisto Stear
		Calorim, (Throttling, Temp.).	Steam-chest.		
	TEMPERATURES.	Cal	Steam-pipe.		Diam. Piston-rod, inches Diam. Crank-pin, inches Length Crank-pin Diam. Wrist-pin, inches Travel-valve, inches Lap of Valve, inches
	SRAT		Discharge-water		,
	EMPE		Injection-water.		Diam. Piston-rod, inches Diam. Crank-pin, inches Length Crank-pin Diam. Wrist-pin, inches Travel-valve, inches Lap of Valve, inches
	T		Feed-water.		d, in n u inc., inc.
		•τ	Condensed Stean		n-ro k-pii k-pii pin in(,
			Engine-room,		istor ranl Cran Trist alve
			External Air,		n. P. Crith Crith Co. W. W. Wel-v
		Hg.	Ватотетет.		Dian Dian Ceng Dian Trav
	OINGS	Inches Hg.	Condenser.		
	REAI	-I	Exhaust.		
	GAUGE READINGS,	ds,	Steam-chest.		ter.
	G _A	Pounds,	Steam-pipe.		Wa Wa
			Boiler.	1	lbs.
	DLU-		Speed-indicator.		Head lbs Crank " inder, inc
	REVOLU-	nter.	Continuo Cour		Clearance, Head lbs. Water " Crank " Brake-arm Diam. Cylinder, inches Length Stroke
			.9miT		" " ake-a am. ngth
	1		Number,		

VOLTS OR AMPERES.

XVIII. ELECTRICAL HORSE-POWER TABLE. By H. W. FISHER, M.E.

1 00134 00266 00400 00536 00500 00504 00126 01120 0114 01566 00744 01567 00114 00266 00400 00134 00124 00265 00260 0			۳	ď	e	4	2	9	7	œ	6	S	H	12	13	14	15	16	17	18	19	20		ı
1		20	.02680	.05360	08040	.10720	.13400	.16080	.18760	.21440	.24120	.26800	.29480	.32160	.34840	.37520	.40200	.42880	4	.48240	.50920	.53600	20	
1		61	.02546	.05092	86920.	. ror84	.12730	.15276	.17822	. 20368	.22914	.25460	38006	.30552	33008	.35644	, uż	.40736	.43282	45828	.48374	.50920	19	
1		18	.02412	.04824	.07236	.09648	.12060		.16884	. 19296				.28944	.31356	.33768	.36180	.38592	•	43416	.45828	.48240	18	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15		17	.02278	.04556	.06834	ciigo.	.11390	.13668			.20502		.25058	.27336	,29614	.31892	ķ	.36448		41004	.43282	.45560	17	
1		91	.02144	.04288	.06432	.08576	.10720		•	-	96261.	.2144o	.23584	.25728	.27872	30016		.34304	.36448			.42880	91	
1 2 3 4 5 6 7 8 9 10 11 12 13 13 13 13 13 13		15	.ozoro	.04020	.06030	08040	.10050	.12060				- 4		.24120	.26130	.28140	•		.34170	.36180	.38190	- 1	15	
1 2 3 4 5 6 7 8 9 10 11 12		14		.03752	.05628	.07504	.09380	.11256	.13132			•	.20636	.22512		.26264	.281	30016	.31892	.33768	.35644		14	
1 2 3 4 5 6 7 8 9 10 11		13	.01742		.05226	89690.	.087IO				.15678		.19162		.22646				,29614	.31356			13	
1 2 3 4 5 6 7 8 9 10		12	80910.	.03216	.04824	.06432					. 14472	•	.17688		,20004		•		.27336				12	
1 2 3 4 5 6 7 8 9 10		11	.01474	.02948	.04422	.05896	.07370		10318	.II792		.14740		.17688	.19162		.22110				28006	.29480	11	
1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 1		oi	.01340	.02680	.04020	.05360	.06700	08040	.09380			.13400	.14740	. 16080	.17420			.21440	.22780	.24120	.25460		or I	1
1 2 3 4 5 6 7	Ì	6	01206	.02412		.04824	06030	.07236	.08442	.00648	. ro834	ogo.J.	13266		. 15678			9626I	. 20502			•	6	
1 2 3 4 5 6		∞	.01072	.02144	.03216	.04288	092500		.07504	.08576	.09648	.10720		.12864	9.661.	.15008	.1608a	.17132	18224	19296	. 20368	.21440	∞	
1 2 3 4 5 6		7	-			.03752	.04690	.05628		.07504	.08442	.09380	.10318		.12194	.13132	.14070	.15008	.15946			.18760	7	
1 2 3 4		9	.00804	80910.	•	.032I6	.04020	.04824	.05628		.07236	.08040	4		. IO452	.11256	.12060				.15276		9	
1 2 3 4		2	02900.	.01340	.020IO	.02680		.04020	.04690		.06030	00290.	.07370		.08710	.09380	.10050	. 10720		•	.12730	. I3400	5	
1 2 2 2 2 2 2 2 2 2		4	.00536	.01072		.02I44		•	.03752	-	_		96850.	.06432	89690.	.07504	08040	.08576		.09648			4	
1 001134 000134		8	.00402	.00804	ozzoe.					.03216			•	-	.05226	_				.07236		.08040	က	
		e	.00268	.00536	•	.01072	.or340	80910.	_	•				÷	•	.03752		_:	•		•		67	
1 4 8 4 500 C 8 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	.00134	.00268	.00402	.00536	.00670	40800.	.00938	.01072	01206	.or340	.01474	80910.	.01742	.01876	02010	.02144	.02278	.02412	.02546	.02680	н	
			-	64	n	4	2	9	7	∞	6	oi	H	12	13	#	15	10	17	81	19	8		

VOLTS OR AMPERES.

VOLTS OR AMPERES

HORSE-POWER TABLE.

At the juncture of columns 22 and 19, we find 39552, which is the required hove-power for Example No. 1.

In Example No. 2 there are two significant figures after the 19 and 22, hence we move the decimal point two places to the right and the Buswer is 90-553. There are three significant figures in Example No. 3, hence the horse-power is 30-553. There are three significant figures in Example No. 3, hence the horse-power is 30-553. Now suppose we have 2500 volts and 45 amperes. In this case, we must take

The horse-power for $\begin{cases} x_0 cov volts$ and $x_0 cov volts$ and $x_0 cov volts$ $\begin{cases} x_0 cov volts \\ x_0 cov volt$

XIX. WATER-COMPUTATION TABLE.

6	150.279	221 728	257.030	291.976	326.594	360.984	395.234	429.328	463.200	496.869	530.500	564.011	597.449	630.653	663.617	696.520	729.410	762.120	794.836	827.334	859.996	892.462	924.768	956.914	989.160	1021.294	1053.288	1085.142
œ	146.665	218 208	253.531	288.506	323.154	357.563	391.824	425.933	459.828	493.516	527.146	560.679	594.115	627.343	660.331	693.238	726.128	758.858	791.570	824.146	856.741	889.223	921.545	953.707	985.939	1018.087	1050.095	1081.963
2	143.075	214 670	250.017	285.031	319.708	354.137	388.410	422.534	456.451	490.159	523.790	557.334	590.780	624.031	657.043	689.953	722.844	755.594	788.303	820.897	853.484	885.982	918.320	950.498	982.717	1014.879	1046.901	1078.783
9	139.399	1/5.52/	246.497	281.550	316.256	350.707	384.992	419.131	453.071	486.798	520 432	553.987	587.441	620.717	653.753	999.989	719.558	752.328	785.034	817.646	850.225	882.739	915.093	947.287	979.493	1011.669	1043.705	1075.601
10	135.748	207 508	212.070	278.063	312.800	347.273	381.570	415.725	449.688	483.435	517.070	550.638	584.100	617.400	650.460	683.378	716.270	749.060	781.763	814.393	846.965	879.495	911.865	944.075	976.268	1008.458	1040.508	1072.418
4	132.083																											
co	128.406	200 483	235.897	271.071	305.872	340.389	374.714	408.902	442.911	476.699	510.338	543.930	577.411	610.759	643.867	676.793	709.688	742.518	775.215	807.881	840.440	873.002	905.404	937.646	969.813	1002.031	1034.109	1066.047
61	124.717	106 014	232.351	267.566	302.400	336.941	371.280	405.485	439.517	473.326	506.968	540.573	574.063	607.435	640.567	673.498	706.394	739.244	771.938	804.622	837.175	869.753	902.171	934.429	966.583	998.815	1030.907	1062.859
1	121.015	15/.514	228.700	264.056	298.922	333.488	367.842	402.004	436 120	469.950	503.596	537.213	570.713	601.409	637.265	670.200	703.098	735.968	768.660	801.362	833.908	866.502	898.936	931.210	963.352	995.598	1027.704	1059.670
0	117.300																											
T. P.	ε,	1 u	00	7	œ	6	OI	II	12	13	14	15	91	17	18	61	20	21	22	23	24	25	50	27	28	29	30	31

ATER-COMFUTATION TABLE-Continued.
WATER

6	1117.152	1149.074	1180.876	1212.558	1244.453	1276.283	1308.013	1339.643	1371.173	1402.603	1433.933	1465.558	1497.146	1528.654	1560.082	1591.430	1622.698	1653.886	1684.994	1716.022	1746.970	1777.838	1808.626	1839.837	1871.043	1902.189	1933.275	1964.30I	1995.267
œ	1113.954	1145.888	1177.702	1209.396	1241.264	1273.104	1304.844	1336.484	1368.024	1399.464	1430.804	1462.394	1493.990	1525.506	1556.942	1588.298	1619.574	1650.770	1681.886	1712.922	1743.878	1774.754	1805.550	1836.713	1867.925	1899.077	1930.169	1961.201	1992.173
2	1110.754	1142.700	1174.526	1206.232	1238.075	1269.925	1301.675	1333.325	1364.875	1396.325	1427.675	1459.230	1490.834	1522.359	1553.802	1585.166	1616.450	1647.654	1678.778	1709.822	1740.786	1771.670	1802.474		1864.806		1927.062		1989.078
9	1107.552	1139.510	1171.348	1203.066	1234.884	1266.744	1298.504	1330.164	1371.724	1393.184	1424.544	1456.066	1487.678	1519.210	1550.662	1582.034	1613.326	1644.538	1675.670	1706.722	1737.604	1768.586	1799.398	1830.463	1861.687	1892.851	1923.955	1954.999	1985.983
70	1104.350	1136.420	1168.170	006.6611	1231.693	1263.563	1295.333	1327.003	1358.573	1390.043	1421.413	1452.900	1484.520	1516.060	1547.520	1578.900	1610.200	1641.420	1672.560	1703.620	1734.600	1765.500	1796.320	1827.338	1858.568	1889.738	1920.848	1951.898	1982.888
4	1101.146	1133.128	1164.990	1196.732	1228.500	1260.380	1292.160	1323.840	1355.420	1386.900	1418.280	1449.734	1481.362	1512.910	1544.378	1575.766	1607.074	1638.302	1669.450	1700.518	1731.506	1762.414	1793.242	1824.211	1855.417	1886.623	1917.739	1948.795	1979.791
ေ	1097.942	1129.936	018.1011	1193.564	1225.307	1257.197	1288.987	1320.677	1352.267	1383.757	1415.147	1446.566	1478.202	1509.758	1541.234	1572.630	1603.946	1635.182	1666.338	1697.414	1728.410	1759.327	1790.162	1821.084	1852.326	1883.508	1914 630	1945.692	1976.694
61		1126.742	1158.628	1190.394	1222.112	1254.012	1285.812	1317.512	1349.112	1380.612	1412.012	1443.398	1475.042	1506.606	1538.090	1569.494	1600.818	1632.062	1663.226	1694.310	1725.314	1756.238	1787.082	1817.957	1849.205	1880.393	1911.521		1973.597
1	1091.528	1123.546	1155.444	1187.222	719.8121	1250.827	1282.637	1314.347	1345.957	1377.467	1408.877	1440.230	1471.882	1503.454	1534.946	1566.358	1597.690	1628.942	1660.114	1691.206	1722.218	1753.150	1784.002	1814.829	1846.083	1877.277	1908.411	1939.485	1970.499
0	1088.320	1120.350	1152.260	1184.050	1215.720	1247.640	1279 460	1311.180	1342.800	1374.320	1405.740	1437.060	1468.720	1500.300	1531.800	1563.220	1594.560	1625.820	1657.000	1688.100	1719.120	1750.060	1780.920	1811.700	1842.960	1874.160	1905.300	1936.380	1967.400
T. P.	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	5.8	50	9

XX.

HIRN'S ANALYSIS.

DATA AND RESULTS.

Test of Steam-engine made byat
Kind of engine
Diam. piston-rod Vol. cylinder, crank endVol. head end
Vol. clearance, cu. ft., headClearance in per cent of stroke
" " crank " " "
Cidik
Boiler-pressure by gauge Barometer
Boiling temp., atmos. pressure
Revolutions per hour Steam used during run, lbs
Quality of steam in steam-pipe Quality of steam in steam-chest
Quality of steam in compression Quality of steam in exhaust
Weight of condensed steam per hour
Pounds of wet steam per stroke
Temperatures condensed steam
Temperatures condensing water, cold
Pounds of condensing water, per hourPer stroke
1 ounds of condensing water, per nour er stroke
Tourids of condensing water, per nour
Symbols.
Symbols.
Symbols. To denote different portions of the stroke, the following subscripts are
Symbols. To denote different portions of the stroke, the following subscripts are used:
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d).
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d). To denote different events of the stroke, the following sub-numbers
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d). To denote different events of the stroke, the following sub-numbers are used:
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d). To denote different events of the stroke, the following sub-numbers are used: Cut-off (1); release (2); compression, beginning of (3); admission, begin-
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d). To denote different events of the stroke, the following sub-numbers are used: Cut-off (I); release (2); compression, beginning of (3); admission, beginning of (0); in exhaust (5).
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d). To denote different events of the stroke, the following sub-numbers are used: Cut-off (I); release (2); compression, beginning of (3); admission, beginning of (0); in exhaust (5). Quality of steam denoted by X.
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d). To denote different events of the stroke, the following sub-numbers are used: Cut-off (I); release (2); compression, beginning of (3); admission, beginning of (0); in exhaust (5). Quality of steam denoted by X. Cut-off, crank end per cent of stroke
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d). To denote different events of the stroke, the following sub-numbers are used: Cut-off (1); release (2); compression, beginning of (3); admission, beginning of (0); in exhaust (5). Quality of steam denoted by X. Cut-off, crank end per cent of stroke
Symbols. To denote different portions of the stroke, the following subscripts are used: Admission (a); expansion (b); exhaust (c); compression (d). To denote different events of the stroke, the following sub-numbers are used: Cut-off (I); release (2); compression, beginning of (3); admission, beginning of (0); in exhaust (5). Quality of steam denoted by X. Cut-off, crank end per cent of stroke

I. H. P..... Brake horse-power.....

XX.—(Continued.)

DATA AND RESULTS

PER 100 STROKES.

Engine.		Date	18	39
Quantities.	SYMBOL.	FORMULA.	Head.	Crank, Strin
Weight steam per 100 strokes, lbs Weight of steam in clearance, lbs Weight of steam, total Condensing water, lbs	M M_{ϕ} $M+M_{0}$ G	$\frac{V_0 \text{ (Wt. per cu, ft.)}}{X_0}$		
Heat given to condensing water, B.T.U. Heat supplied engine, B.T.U.	K Q	$G(S_k - S_i).$ $M(XL + S).$ $V. I$		
Heat retained by compression, B.T.U External heat steam at cut-off, B.T.U	H_1	$M_0S_0 + \frac{V_0I_0}{C_0}.$ $(M+M_0)S_1$		
Internal heat steam at cut-off, B.T.U Cylinder loss during admission, B.T.U. Loss sensible heat during expansion	H_1' Q_a H_2	$(V_0 + V_1) \frac{I_1}{C_1}$. $Q + Q_0 - H_1 - H_1' - \frac{1}{2} \frac{1}{8} W_1$ $(M + M_0)(S_1 - S_2)$		
Internal heat after expansion	-	$(V_0 + V_2) \frac{I_2}{C_2}$. $H_2 + H_1' - H_2' - \frac{1}{278} W_5 \dots$		
Sensible heat at exhaust		$(M+M_0)S_2$ M_0S_3 I_3		
Internal heat at compression Heat delivered from condenser Heat carried off in exhaust	H ₃ H ₀ H ₄	$(V_0 + V_0) \frac{I_3}{C_3}$. MS_{δ_1}		
Cylinder loss, exhaust, B.T.U	Q. Q.	$H_{e} + H_{2}' - H_{3}' - K - H_{3} - H_{c} - \frac{W_{e}}{778}$		
Sensible heat, gain during compression.		$H_0 + H_2' - H_3' - H_3 - H_4 - \frac{w_c}{778}$ $M_0(S_3 - S_0)$		
Internal heat at admission		$V_0 \frac{I_0}{C_0}$, $H_{6} + H_{3}' - H' - \frac{W_d}{778}$.		
Heat admitted	Q B D	$H_0 + K + \text{total } W + 778$ $Q - B$		
Loss	D'	$Q_b + Q_b + Q_c + Q_d$		

NON-CONDENSING ENGINE, DRY SATURATED STEAM, UNJACKETED CYLINDER.

	lod.	E			Poin	POINT OF CUT-OFF.	UT-OF	h.			101 15
	Sym	Formula,	Full Stroke.	34	7%	1/3	×	2%	3/8	-E	Number Refer
Effective horse-power to be developed	B	Assumed,	150	150	150	150	150	150	150	150	
Absolute initial pressure of steam, (В	Assumed.	100	100	100	100	100	100	100	001	.4
Back-pressure, pounds per square inch	9	Assumed.	17.5	17.5	17.71	17.5	1.7.5	17.5	17.5	17.5	,,,
Apparent cut-off	m 1 %	Assumed.	H	.75	÷	•33	.25	.17	.125	.083	_
Absolute pressure at point of cut-off, }	ر ن	Assumed.	8	92.5	95	96.5	97.5	98	98.5	66	٠,
Clearance at each end, in equiva. Piston.	£3	Assumed.	.3125	.3125	.3125	.3125	.3125	.3125		.3125	
lent length of cylinder, inches. Total.	34	(P)+(P)	.0375	1.	.75	1.125		I.2125	I.0025	1.375	<u>~</u> «
Piston-speed, feet per minute	2	Assumed.	450	450	450	450	450			450	
Mean absolute pressure up to cut off,)	211	2+4	95	96.75	97.5	98.25	98.75	66	99.25	99.5	N
Apparent ratio of expansion.	¥	Assumed.	н	1.33	68	m	4	9	∞	12	H
Hyperbolic logarithm of apparent \ ratio of expansion.	hyplog	From tables.		.2877	.693r	.6931 1.0986 1.3863 1.7918 2.0794 2.4849	1.3863	1.7918	2.0794	2.4849	12
Mean effective trial-pressure, } pounds per square inch.	7	$m + C \times \text{hyp log } r - b$	77.5	75	64.2	50.6	14	28.3	20.5	11.3	13
Effective horse-power for trial-pressure, each square inch of piston area.	4	$\frac{T \times V}{V}$	1.057	1.023	.739	069.	.562	386	.280	.154	14
Trial cross-section of cylinder, {	а	(E) W	141.9	142.7	203	217.4	267	388.6	536	974	15
Trial diameter of cylinder, inches, to nearest quarter-inch.	ø	$\sqrt{\frac{a}{18e4}}$	13.5	13.5	91	16.5	18.5	22.25	26.25	35.25	16
Trial stroke of piston, inches	S	2 X. A.	27	27	32	33	37	45	52.5	70.5	17
Fraction of clearance	H	المحا	.0347	.037	.0332	.034I	.0321	.0292		.0239	81

XXI.—(Continued.)

NON-CONDENSING ENGINE, DRY SATURATED STEAM, UNJACKETED CYLINDER,

	pol.	Ē			Po	Point of Cut-off.	Cur-	OFF.			TOI T
	my2	rormula.	Full Stroke.	%	7%	7%	74	2%	7%	13	Numbe Refere
Per cent of clearance to nearest	0	Assumed from F.	3/2	37%	37/2	37%	374	3	21/2	27%	i g
Real ratio of expansion	R	1/2/100	н	1.318	1.935	2.913	3.655	5.228		6.833 9.464	
Hyperbolic logarithm of real ratio	hyp log R	~-		1922.		1.0343	1.2961	1.6540	.6601 1.0343 1.2961 1.6540 1.9218 2.2475	2.2475	21
Mean pressure for stroke plus clear-	M	$\frac{m+C\times \text{hyp}\log R}{R} - b$	77.5	75.4	65.3	52.9	44.7	32.4	24.7	16.8	22
pounds per square men. Mean pressure corrected for back- pressure and clearance, pounds per square inch.	*	$M - \frac{c}{100} \times (P - M)$	1.91	74.5	64.I	51.3	42.9	30.4	22.8	14.7	23
When final cushion-pres- sure is less than initial	_										
Ratio of pressure.	~	Assumed.	+	1.318	1.318 1.935 2.813 3.655 5.228	2.813	3.655	5.228		i	24
pressure and initial pressure equal.		· •		i		:	-		5.724	5.714	25
Hyperbolic logarithm of ratio of \ compression.	log	From tables.		.2761		1.0343	1.2961	1.6540	.6601 I.0343 I.2961 I.6540 I.7429 I.7429	1.7429	26
Final cushion-pressure, pounds	7		17:5	23.1	33.9	49.2	64	91.5	100	100	27
Mean absolute cushion-pressure, }	*2	$L \times \frac{\text{hyp log } l}{l-1}$		20	23.9	28.I	31.2	35.8	37	37	28
Mean pressure, corrected for back pressure, clearance and cushion, county per square inch	*	$n - \frac{c}{100} \times (l - 1) \times (k - b)$	76.7	74.5	63.9	50.6	41.7	28.1	20.5	12.4	29
Probable mean effective pressure, pounds per square inch.	٠	\$ × \$6.	72.9	70.8	60.7	48.1	39 6	26.7	19.5	11.8	30
Horse-power for pressure c, each square inch of effective piston-		€ × B 33,000	566.	196.	.828	.656	.540	-364	992.	191.	31

XXI.—(Continued.)

NON-CONDENSING ENGINE, DRY SATURATED STEAM, UNJACKETED CYLINDER.

XXI.—(Continued.)

	er for ence.	Numb	46	47	48	49	20	SI	52	53	54	55 56 57
	-E		.2303 .2303	3925	26.3	.749	687080	946	704	9	113.3	6329
نہ		-to		3627	32.2	669.	554981	965	575	ις	68.7	1032 5234 34.9
NDE		Htp	8112.	3268	38.3	999.	150951	955	477	ນ	50.3	755 4500 30 2
YLII	UT-OFF	-10	.1513	3328	47.6	.591	348205	945	370	4.5	34.5	518 4216 28
ED C	Point of Cur-off.	-tm	1811	3494	55.1	.534	24063	931	294	4	28.4	426 4214 28.6
KET	Poin	-(1)	08323 .1181	3963	1.79	.411	89649	916	207	4	22.4	336 4506 30.3
NJAC		estes	.05805	5539	80.3	812.	10052	893	124	4	19.7	296 5959 39.3
M, U		Full Stroke.	.04472	5851			110052 189649 274063 348205 456091 554981 687080			3.5	18.9	284 6135 40.7
NON-CONDENSING ENGINE, DRY SATURATED STEAM, UNJACKETED CYLINDER.	t -	Formula.	From tables.	$w \times (v \times W - N \times w)$	$C \times \frac{\text{hyp log } R}{R-1}$	$\frac{U \times (r-1)}{r \times (n+b)}$	$\frac{(n+b)\times I\times (q)\times S/12\times w}{772}$	From tables.	•~ IS	(L)	$+ \frac{2 \times (A)}{144} + \frac{1}{3.446} \times \frac{D}{12} \times \frac{S + (T) + 2 \times (P)}{S + (T)} + \frac{12}{3.446} \times \frac{S + (P)}{S + (P)}$	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $
NGI	.lod	Sym	8	0		7	***	9	(C)	7	(a)	(£ (£)
NON-CONDENSING EI			Weight in pounds of a cubic foot \ of steam at pressure L.	Pounds of steam used hourly, cal- { culated by piston-displacement. }	Mean total pressure during expan- sion, pounds per square inch, }	Ratio of mechanical effect during expansion to total mechanical effect.	Units of heat required hourly for the work of expansion.	Latent heat per pound of steam at \\ pressure B, British thermal units. \\ footnote{\pi}	Pounds of steam condensed hourly for work of expansion.	Thickness of piston, inches, to nearest half-inch.	Internal condensing surface, }	Probably condensation hourly, on internal surfaces, pounds. Probable consumption Per effective of steam hourly, pounds horse-power. (W)

XXI.—(Continued.)

CONDENSING ENGINES, DRY SATURATED STEAM, UNJACKETED CYLINDERS.

	,loo	'elui			щ	Point of Cut-off,	Cut-off			
	Symb	птоЧ	Full Stroke,	co)-e	нa	= (m)	-49	rip	r-Ito	172
Mean press-) Corrected for back-pressure	M	22	90.5	88.4	78.3	6.59	57.7	45.4	37.7	29.8
L	>	23	90.2	88.0	77.5	77.5 64.7	56.3	43.8	36.1	28.0
Ratio of compression	7	20	н	1.318	1.935	2.813	3.655	5.228	1.318 1.935 2.813 3.655 5.228 6.833 9.464	9.464
Hyperbolic logarithm of ratio of compression	gol dyn	21	1	.2761	1099.	I.0343	1.2961	1.654	.2761 .6601 1.0343 1.2961 1.654 1.9218 2.2475	2.2475
Final cushion-pressure, pounds per square inch	7	27	4.5	5.9	8.7	8.7 12.6 16.4 23.5	16.4	23.5	30.7	42.6
Mean absolute cushion-pressure, pounds per square	2/	28	1	5.1	6.1	7.2	8.0	9.5	10.1	11.3
Mean pressure, corrected for back-pressure, clear- ance and cushion, pounds per square inch	72	29	90.2	88.0	77.4	64 5	56.0	43.2	35.3	26.6
riobable mean elective pressure, pounds per square	9 (2)	30	85.7		73.5	61.3		41.0 33.5	33.5	25.3
Calculated by piston-displacement	30	47	5883	5582	4034		3506	3619	257.3 4031	321.9
Pounds Condensed for the work of expansion.	<u></u>	25	1	124	207	294	370	477	575	704
~-	(<i>q</i>)	25 (a)	473	493	260	710	863	1258	1718	2833
hourly. Total		50	35.9	34.7	480I 26.6	24.5	4739	5354	6324	8017 24.8
	-	-								

XXI.—(Continued.)

CONDENSING ENGINES, DRY SATURATED STEAM, UNJACKETED CYLINDERS, 150 EFFECTIVE HORSE-POWER, 100 POUNDS INITIAL PRESSURE, 44 POUNDS BACK-PRESSURE,

TE COMPANIE WITH WESSONE.	Point of Cut-off.	-100 -100 -100	54.5 201.84263.16323.53 16 184 204	27 29½ 32 36½ 40½ 47½ .0304 .0381 .0311 .0355 .03.0 0255	4 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	6554 1.0289 1.2834	61.4 52.7 41.2 34.4	14 154 105 105 205 235 235 235 235 235 235 235 235 235 23	182.65 213.83 268.8 322.06 4 170.68 210.20 264.40 216.04	152 150.4 151.1 148.6 148.7 150.1	2.43 3.132 3.966 5.578 7.316	8.7 12.6 16.2 23.1 2 51.8 36.2 28.4 20.1 1	11571 10623 9818 .8759 8000
2		col-Ai	88 125 124	.040		.2753	83.4	26±	137.89	152.5 154.3	.06	5.9	12226
Î		Full Stroke.	90.5 121.55 124	25	3.4 I	1	85.6	26	132.73	152.5	.941	91.5	12752
		птоЧ	13 15 16	17	19	From tabl's	30	35	37 28	39		27	
	Joc.	Syml	g a A	5 EU	c. R. 1	hy log F	00) e	, F @	(E)	× &	B	m
			Trial Cross-section of cylinder, square inches	Fraction of clearance		Hyperbolic logarithm of preceding	Probable mean effective pressure	Stroke, inches Diameter of piston-rod, inches, to nearest	Gross-section Actual Effective	~:≦	Volume, cubic feet. (195 stroke. Clearance	Absolute pressures. Final cushion	Number of strokes per hour

XXI.—(Continued.)

CONDENSING ENGINES, DRY SATURATED STEAM, UNJACKETED CYLINDERS, 150 EFFECTIVE HORSE-POWER, 100 POUNDS INITIAL PRESSURE, 44 POUNDS BACK-PRESSURE.—(Continued.)

	Symb Form Form	\ w \	cubic foot, pounds. (At pressure B	0 47 5203	Latent heat per pound of steam at pressure B . (1) From British thermal units	. 6	Fhickness of piston, inches, to nearest #"		Probable condensation, hourly, on internal surfaces, pounds (a) 25 \times (a) 408	[(w) 56	Per effective horse-power (W) 57 36.8
	_ oi	1910. 61	27 .173	3 4330	899		100		8 424	4860	3 31.5
Δ,	-40	.0161.02319.03285.04159.05805.07211.09586	.124		916	-	33		471	4125	27.I
Point of Cut-off.	p=(0)	.03285	.124 .08603 .07048 .05093 .04111 .03113	3460 2821	931		249	22.4	195	3631	24.1
Cur-off	-14	.04159	.07048	2683	146	0	201	25.8	949	3609	23.9
	HD	.05805	.05093	2387	955	,	313	32.8	819		23.7
	e-(so	.07211	.04111	2256	696		339 44	39.I	926	3571	24
1	4	.095	.0311	2185	973		390	52.1	1304	3879	25.8

XXI.—(Continued.)

XXI.—(Continued.)

NEV SATURATED STEAM-JACKETED CYLINDERS.

XXI.—(Continued.)
NON-CONDENSING ENGINES, DRY SATURATED STEAM-JACKETED CYLINDERS.

r for	Numbe	2	72	72	73	74	75	92	11
	- 123 - 123	113.3	22.9	%	328°	884	32325 75		4225 77
	7%	68.7	13.8	70°	328°	884	14304 19359	713	3479 3714
FF.	*	50.3		70°	328°	884	14304	595	3479
Cur-o	74	34.5	6.9	%02	328°	884	1646	444	3488
Point of Cut-off.	2%	22.4 28.4	5.7	700	328°	884	8074	350	4103 3631 3488
Por	22		4.4	700	328°	884	6300	243	
	%	19.7	3.9	700	328°	884	5563	143	5023
	Full	18.9	3.7	°02	328°	884	5307	9	5857
	Formula.	Assumed.	$\begin{array}{c} 2 \times \frac{1}{144} \\ + 3.1416 \times \frac{D}{A} \times \frac{S + (P)}{A} \end{array}$	Assumed,	From tables,	From tables.	$\begin{array}{c c} 1.1 \times \{(a) \times [(I) - (t)] \times .5 \\ + (f) \times [(I) - (t)] \times 2.5 \end{array}$	$\frac{(Q)+1.1\times i}{(L)}$	O + (K)
·lo	Symb	(a)	S		3	(F)	0	(K)	(m)
		Felted surface, square feet	Unfelted surface, square feet	External temperature of jacket, Fahr	Total temperature of jacket, Fallr	thermal units per pound.	Heat lost by condensation hourly, {	Probable amount of steam condensed in { jacket hourly, pounds. }	Probable consumption of steam hourly, lbs.

Ref. No.		23 23 34 24 24 24 24 24 24 24 24 24 24 24 24 24
	II	13.2 11.1 10.5 133.6 3333 31.6
	1,8	21.2 19.1 18.1 139 3001 26.7
OFF.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 40.8 28.7 21.2 13.2 4 39.5 26.2 19.1 11.1 11.1 11.1 11.1 11.1 11.1 11
Cur-	74	40.8 39.5 37.5 142.6 3044 24.5
POINT OF CUT-OFF.	1,2%	50.1 40.8 49.4 39.5 46.9 37.5 143.8 142.6 3281 3044 25.2 24.5
Pc	7%	63.4 50.1 63.2 49.4 60 46.9 147.1 143.8 3860 3281 27.9 25.2
	Full Str'ke 34	76.7 73.8 65.4 60.1 40.8 88.7 21.2 13.2 75.7 72.8 65.4 49.4 39.5 86.2 19.1 11.1 15.0 19.0 19.6 19.8 188.8 188.8 187.1 16
	Full Str'ke	76.7 73.8 63.4 50.1 40.8 88.7 21.2 13.2 76.7 73.8 63.4 90.1 49.5 86.2 19.1 11.1 72.9 70.1 60 46.9 37.5 44.9 83.1 10.5 19.0 19.9 38.6 386.0 388.1 12.6 139.4 139. 133.6 28.8 986.0 388.9 38.6 388.9 388.9 388.9 388.9 28.2 24.5 25.1 26.7 31.6
lod	Sym	1 1 0 (E) O (E) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Mean pressure, corrected for back-pressure and clearance, pounds per Nean pressure, corrected for back-pressure, clearance, and cushion, Pounds per square inch. Probable man effective pressure, pounds per square inch. Probable effective horse-power Probable effective horse-power Probable esteam used hourly, calculated by piston-displacement Probable consumption of steam hourly, per effective horse-power

XXI.—(Continued.)

CONDENSING ENGINES—IACKETED (YLINDERS—DRY SATURATED STEAM

	루	28.3 12.2 24.8 23.6 300.3 3838 47788 15.9
	7%	36.1 10.8 33.6 31.9 245 3385 675 4060 16.5
. H.	2%	43.8 9.7 41.4 39.3 219.1 3264 554 3818 17.4
POINT OF CUT-OFF.	74	55.7 8.4 54.5 195.1 3244 426 3670 18.8
NT OF	定	64.8 7.5 63.4 60.2 184.6 3415 356 3771
Poi	7%	77.6 6.3 76.7 72.9 178.7 3933 263 4196
	%	90.5 87.7 77.6 80.2 87.3 76.7 80.2 87.3 76.7 80.2 87.3 76.7 80.2 87.3 76.7 80.4 17.7 17.3 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8
Point of Cur-of	stroke Full	90.5 90.2 85.7 177 177 5883 5883 33.3
1	тюЧ	26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27
01.	Symb	ガルナの(B)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)
		Mean pressure, Corrected for back-pressure. pounds per Cubinon. Cubinon. Probable effective horse-power. Probable effective horse-power. Pounds of steam Condensed in jacket. Pounds of steam Condensed in jacket. Pounds of steam Condensed in jacket. Per effective horse-power.

NON-CONDENSING ENGINES-UNJACKETED CYLINDERS-STEAM SUPERHEATED SUFFICIENTLY TO PREVENT CONDENSATION

	HOLLING THE COL	1 1 0								
	lodi			Por	VT OF	POINT OF CUT-OFF.	FF.			.1
	roimuia.	Full Str'ke	%	2%	7%	74	%	26 24 24 14 14 14 14 14 14 14 14 14 14 14 14 14	12	K.
Terminal pressure, pounds per square inch(7)	$C \times \frac{1}{ a }$		70.1	49.1	34.4	26.7	18.7	70.1 49.1 34.4 26.7 18.7 14.4 10.7 78	10.7	%
Volume of 1, 1b. of steam, cubic feet. Atmos, pressure (7) (v) Mechanical effect of 11 of steam during avanaging for the (2)	(v) From tables. 6.09 8.49 11.84 15.04 21.02 26.89 35.56 79 (p) 17.87 (call tables. 1.1.84 4.45 4.44 4.39 4.38 4.37 4.36 80		6.07	8.49	11.84	15.04	21,02	26.89	35.56	80
Units of heat condensed for work, per lb. of steam	(F)	1838b 583b1 bb959 7334	23.8	58361	86.7	73342	91552	104328	118161	81 82
Total heat, British thermal) Saturated steam (H) units per lb., above 22°. Steam superheated to prevent	From tables.	1174.3 1167.3 1160.5 1156	174.3	1167.3	1.60.5	1156	1150	1146 1142	1142	83
Fah., of steam at pressure (r) condensation due to work	(h) = (H) + (P)	7 1198.1 1242.9 1247 2 1251 1269 1281 1295	1.861	1242.9	247 2	1251	1269	1281	1295	84
Temperature, Fah., of superheated steam, including 50° of superheat to prevent condensation due to radiation	V + 32 + 32 + 50 + 00 + 00 × 4/2	378	397°	485°	4900	495°	528°	378° 397° 485° 490° 495° 528° 540° 587°	587°	85
Degrees of superheat, Fahrenheit		500	°69	157°	162°	167°	2000	69° 157° 162° 167° 200° 212° 259°	259°	98

XXI.—(Continued.)

NON-CONDENSING ENGINES, UNJACKETED CYLINDERS, STEAM SUPERHEATED SUFFICIENTLY TO PREVENT CONDENSATION.

	ool.		POINT OF CUT-OFF.								
	Symbol	Full Str'ke	34	1/2	1/8	1/4	1/6	1/8	1,3	 No Re	
Probable effective horse-power. Pounds of steam used Total. Per effective hourly, calculated by	Q'	150.6 5851	151.5 5539	148.8 3963	147 5 3494	150.6 3328	148.8 3268	149.8 3627	150.1 3925	39 47	
nicton dichlacement Icclive	(W)	38.8	36.6	26. 6	23.7	22.1	22	24.2	26.1	57	

Point of Cut-off.	Pounds of steam hourly.	Effective horse-power.	Pounds of steam hourly, per effective horse-power.
Full stroke.	5883 5582 4034 3611 3506 3619 4031 4480	177 178.9 180.2 188 202.3 228.6 257.3 321.9	33.2 31.2 22.4 19.3 17.3 15.9 15.7

0 029 822 375 2