Assignment 2

CMPT 215

Name: Yinsheng Dong Student Number: 11148648

NSID: yid164

Due: July 27th, 2017 **Total**: **65** marks

Problem 1.

(8 marks) Add the following, indicate if there is a type of overflow or carry over for a 8 bit binary.

i 12 + 10

Solution: 12 in the 8-bit binary: 0000 1100 10 in the 8-bit binary: 0000 1010 0000 1100 (12) + 0000 1010 (10) = 0001 0110

ii 01001100 + 00111110

It should be an unsigned overflow

```
Solution:
0100 1100
+
0011 1110
=
1 0000 1010
It should be a signed overflow
```

iii 10010000 + 111111111

```
Solution:
1001 0000
+
1111 1111
=
1 1000 1111
It should be a singed overflow
```

iv 4 + -13

```
Solution:
4 in the 8-bit binary: 0000 0100
13 in the 8 bit binary: 0000 1101
-13 in the binary: 1111 0011
0000 0100 (4)
+
1111 0011(-13)
=
1111 0111
It should be neither kind overflow
```

Problem 2.

(8 marks) Subtract the following, indicate if there is a type of overflow or carry over for a 8 bit binary.

i 00111010 - 00011111

```
Solution:
0011 1010
-
0001 1111
=
0001 1011
It should be neither carry over or overflow
```

ii 9 - 10

```
Solution:

9 in 8-bit binary: 0000 1001

10 in 8-bit binary: 0100 1010

-10 in 8-bit binary: 1111 0110

9 - 10 = 9 + (-10)

0000 1001 (9)

+

1111 0110 (-10)

=

1111 1111

It should be the signed overflow
```

iii 00001010 - 111111111

```
Solution:
0000 1010 - 1111 1111 =
0000 1010
+
0000 0001 (by 2s complement)
=
0000 1011
It should be a carry over
```

Solution:

4 in 8-bit binary: 0000 0100 13 in 8-bit binary: 0000 1101 -13 in 8-bit binary: 1111 0011 4 - 13 = 4 + (-13) $0000\ 0100$ +

1111 0011

1111 0111

It should be signed overflow

Problem 3.

(12 marks) Multiply the following, indicate if there is a type of overflow or carry over for a 8 bit binary.

i 00111010×00011111

```
Solution:

0011 1010

×

0001 1111

=

0011 1010
+

0011 1010
+

0011 1010
+

0011 1010

=

111 0000 0110
```

ii 9×10

```
Solution:

9 in 8-bit binary: 0000 1001

10 in 8-bit binary: 0000 1010

0000 1001

×
0000 1010

=
0000 0000

+
0000 1001

+
0000 0000

+
0000 1001

=
0101 1010
```

iii 01100111×00001111

```
Solution:
0110 0111

×
0000 1111

=
0110 0111

+
0110 0111

+
0110 0111

+
110 0000 1001
```

iv 11010100×11110101

```
Solution:
1101 0100

×

1111 0101

1101 0100
+

0000 0000
+

1101 0100
+

1101 0100
+

1101 0100
+

1101 0100
+

1101 0100

=

1100 1010 1110 0100
```

Problem 4.

(6 marks) Divide the following, indicate if there is a type of overflow or carry over for a 8 bit binary.

i 01001100/00000100

```
Solution:
The result should be 0001 0011
```

ii 10101111/00001111

Solution:

The result should be $0000\ 1011\ r\ 1010$

iii 11010100/11110101

Solution:

The result should be $0000\ 0000\ r\ 1101\ 0100$ because $1101\ 0100$ is larger than $1101\ 0100$, so it only could be divided by 0, and left the $1101\ 0100$

Problem 5.

(8 marks) Convert the following to IEEE 754 single precision binary floating point representation for each of the following numbers.

i -3.96875

Solution:

Sign: 1

exponent: 127 + 1 = 128 (1000 0000)

fraction: 111111

ii -1.5

Solution:

Sign: 1

exponent: 127 + 0 = 127 (0111 1111)

fraction: 1

the final answer is $1011\ 1111\ 1100\ 0000\ 0000\ 0000\ 0000\ 0000$

iii 1.1×10^{-126}

Solution:

Sign: 0

exponent: 0 (0000 0000)

fraction: 0000

the final answer is $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

This should be an underflow case

iv 2.8×10^6

Solution:

Sign: 0

exponent: 148 (1001 0010)

 2.8×10^6 should be 0100 1010 0010 1010 1011 1001 1000 0000

Problem 6.

(8 marks) Convert the following IEEE 754 single precision binary floating point values to $base_{10}$ number.

Solution:

Sign: 0 is positive

exponent: $1000\ 0000$ is 128-127 = 1

fraction should be 0011 the final answer should be 3

Solution:

Sign: 0 is positive

exponent: $1000\ 0011$ is 131-127 = 4

fraction should be 10100.000... the final answer should be 20

Solution:

This question should be negative infinity because all exponent digit is 1, and the sign is 1

Solution:

Sign: 1 is negative

exponent: $1000\ 0010$ is 130 - 127 = 3

fraction should be 1101.1010... the final answer is -13.625

Problem 7.

(10 marks) Fill out the following table for the following MIPS instructions, assume that it starting at address 4000.

loop: ben \$s0,\$s1,out

sw \$s2,4(\$s1) addu \$s1,\$s1,\$t0

j loop

out: ori \$t2,\$s7,3

		Fields					
Instruction	Format	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
loop: bne $$s0,$s1,out$	I	000101	10000	10001	00000	00000	000010
sw $$s2,4($s1),out$	I	101011	10001	10010	00100	00000	000000
addu $$s1,$s1,$t0$	R	000000	10001	01000	10001	00000	100001
j loop	J	000010	00000	00000	00000	01111	101000
out: ori \$t2,\$s7,3	I	001101	10111	01010	00000	00000	000011

Problem 8.

(5 marks) Design and show the truth table for Ex-Nor Gate using only NOT, AND and OR gates. EX-Nor game is a digital logic gate that is the reverse or complementary form of the Exclusive-OR function.

Solution:

The truth table is below, A and B is input, C is true if and only if A and B is same input to make EX-Nor gate

A	В	С
1	1	1
1	0	0
0	0	1
0	1	0

This is the flow gate that I designed

If A and B both 1, it will be (A * B) + (-A * -B) = (1 * 1) + (0 * 0) = 1

If A is 1 and B is 0, it will be (1 * 0) + (1 * 0) = 0

If A is 0 and B is 1, it will be (0 * 1) + (0 * 1) = 0

If A and B both 0, it will be (0 * 0) + (1 * 1) = 1

the result is if and only if the A and B is same, and C will be the true

Bonus:

Problem 9.

(3 marks) Name two universal Quantum circuits and one error correction gate used in Quantum computers.

Solution:

- 1. Depth-universal Quantum circuits construct universal circuits whose depth is the same order as the circuits being simulated
- 2. Almost-size universal Quantum circuits there is a log factor blow-up in the universal circuits constructed here
- 3. Controlled NOT (or C-NOT or CNOT) gate is a quantum gate that is an important part of a quantum computer. $\frac{1}{2}$