

SCHWEIZERISCHE EIDGENOSSENSCHAFT CONFÉDÉRATION SUISSE CONFEDERAZIONE SVIZZERA

44

Bescheinigung

Die beiliegenden Akten stimmen mit den ursprünglichen technischen Unterlagen des auf der nächsten Seite bezeichneten Patentgesuches für die Schweiz und Liechtenstein überein. Die Schweiz und das Fürstentum Liechtenstein bilden ein einheitliches Schutzgebiet. Der Schutz kann deshalb nur für beide Länder gemeinsam beantragt werden.

Attestation

Les documents ci-joints sont conformes aux pièces techniques originales de la demande de brevet pour la Suisse et le Liechtenstein spécifiée à la page suivante. La Suisse et la Principauté de Liechtenstein constituent un territoire unitaire de protection. La protection ne peut donc être revendiquée que pour l'ensemble des deux Etats.

Attestazione

I documenti allegati sono conformi agli atti tecnici originali della domanda di brevetto per la Svizzera e il Liechtenstein specificata nella pagina seguente. La Svizzera e il Principato di Liechtenstein formano un unico territtorio di protezione. La protezione può dunque essere rivendicata solamente per l'insieme dei due Stati.

Bern, 2 9. 0KT. 2001

Eidgenössisches Institut für Geistiges Eigentum Institut Fédéral de la Propriété Intellectuelle Istituto Federale della Proprietà Intellettuale

Patentverfahren Administration des brevets Amministrazione dei brevetti Population Rolf Hofstetter

19 broprier 186883W12M 12

Patentgesuch Nr. 2001 1887/01

HINTERLEGUNGSBESCHEINIGUNG (Art. 46 Abs. 5 PatV)

Das Eidgenössische Institut für Geistiges Eigentum bescheinigt den Eingang des unten näher bezeichneten schweizerischen Patentgesuches.

Titel: Lichtkoppelelement.

Patentbewerber: Unaxis Balzers Aktiengesellschaft

9496 Balzers LI-Liechtenstein

Vertreter: Troesch Scheidegger Werner AG Schwäntenmos 14 8126 Zumikon

Anmeldedatum: 12.10.2001

Voraussichtliche Klassen: H04B

This Page Blank (uspto)

Lichtkoppelelement

Die vorliegende Erfindung betrifft ein Lichtkoppelelement mit einer Oberfläche aus einem Material, welches für Licht einer gegebenen Wellenlänge transparent ist, wobei in mindestens einem Bereich der Oberfläche ein Liniengitter vorhanden ist mit äquidistant parallelen, linienförmigen Einformungen oder mit äquidistant parallelen, linienförmigen Ausformungen.

Die vorliegende Erfindung geht dabei primär von Erkenntnissen aus, die sich an Lichtkoppelelementen der 10 genannten Art zum Nachweis chemischer oder biochemischer Reaktionen anhand von Fluoreszenz ergeben haben. Diesbezüglich wird insbesondere auf die WO 01/02839 verwiesen, worin im Rahmen einer Analyseplattform ein derartiges Lichtkoppelelement beschrieben ist. Es wird ein 15 Effekt, bekannt als "abnormale Reflexion" ausgenützt. Dabei wird ein mit einer Schicht versehener Träger vorgesehen. Vorzugsweise ist dieser Träger und auch die Schicht für Licht gegebener Wellenlänge λ im UV- VIS oder NIR-Bereich (200 nm bis 2000nm) einer Lichtquelle vorzugsweise einer 20 zumindest angenähert monochromatischen Lichtquelle, wie zum Beispiel eines Lasers oder einer LED transparent. Im Falle dielektrischer Materialien hat das Material der Schicht einen wesentlich höheren Brechungsindex als das Material des Trägers, betrachtet bei der gegebenen Wellenlänge. Die 25 Oberfläche des Trägers, worauf die Schicht aufliegt, hat ein Liniengitter, dessen Struktur sich über die dünne Schicht an die Oberfläche der Schicht überträgt. Beim

ausgenützten "abnormalen Reflexionseffekt" wird Licht der gegebenen Wellenlänge bei Einhalt eines bestimmten Einfallswinkels praktisch vollständig reflektiert und praktisch kein Licht entlang der Schicht bzw. durch die Schicht transmittiert. Bei geeigneter Wahl der Strukturparameter wird das evaneszente, d.h. quergedämpfte, elektromagnetische Feld in der unmittelbaren Umgebung der Schichtoberfläche besonders stark, wodurch Fluoreszenzmoleküle in diesem Bereich besonders effizient angeregt werden. Dies ermöglicht wesentlich kleinere Konzentrationen von mit sogenannten Fluoreszenz-Labels versehenen Substanzen an der Schichtoberfläche zu analysierender Proben zu detektieren, als dies mit bezüglich dieser Schrift vorbekannten Methoden möglich war.

Das vorhandene Liniengitter bzw. die an beiden Grenzflächen 15 Trägersubstrat/Schicht und Schicht/Umgebungsatmosphäre vorhandenen, in Aufsicht deckend ausgerichteten Liniengitter sind dabei in dem Sinne gerichtet, als sich die linienförmigen Einformungen und dazwischen sich ergebenden Ausformungen wellenartig in einer Richtung 20 ausdehnen. Das mit den Liniengittern versehene Lichtkoppelelement dehnt sich, als Struktur-Welle betrachtet, eindimensional senkrecht zu den linienförmigen Einformungen bzw. dazwischenliegenden Ausformungen aus. Diese Gerichtetheit berücksichtigend, wird gemäss der in 25 dieser Schrift detailliert beschriebenen Vorgehensweise, Laserlicht der erwähnten, gegebenen Wellenlänge erst mittels eines Polarisators in eine bestimmte Richtung

polarisiert, bevor die Plattform mit dem Lichtkoppelelement damit beaufschlagt wird.

Betrachtet man Lichtkoppelelemente für andere optische Analysemethoden oder zu nachrichtentechnischen Zwecken, also beispielsweise zum Ein- und Auskoppeln von Laserlicht 5 in wellenleitende Schichten, so fällt auch dort auf, dass die vorgesehenen Liniengitter im genannten Sinne eindimensional gerichtet sind, d.h / die vorgesehenen linienförmigen Einformungen und dazwischen gebildeten Ausformungen breiten sich in einer Richtung entlang der 10 Oberfläche aus. Aufgrund dieser Gerichtetheit werden grundsätzlich vektorielle Grössen des dem Lichtkoppelelement zugeführten Lichtes räumlich gewichtet und je nach ihrer Richtung unterschiedlich durch das Lichtkoppelelement beeinflusst. Typischerweise wird beim 15 Vorgehen gemäss der genannten WO 01/02839 das beaufschlagende Licht in Abhängigkeit von seiner Polarisierungsrichtung am Lichtkoppelelement unterschiedlich beeinflusst.

20 Es ist Aufgabe der vorliegenden Erfindung, ein Lichtkoppelelement eingangs genannter Art zu schaffen, welches grundsätzlich auf vektorielle Grössen des beaufschlagenden Lichtes, wie insbesondere auf dessen Polarisierung, vermehrt unabhängig von der Vektorrichtung einwirkt.

Dies wird an einem Lichtkoppelelement obgenannter Art, welches in mindestens einem Bereich der Oberfläche äquidistant parallele, linienförmige Einformungen hat,

dadurch erreicht, dass an der Oberfläche weitere äquidistant parallele, linienförmige Einformungen vorhanden sind, die die ersterwähnten kreuzen.

Alternativ wird dies an einem Lichtkoppelelement obgenannter Art, bei welchem in mindestens einem Bereich der Oberfläche äquidistant parallele, linienförmige Ausformungen vorhanden sind, dadurch erreicht, dass an der genannten Oberfläche weitere äquidistant parallele, linienförmige Ausformungen vorhanden sind, die die ersterwähnten Ausformungen kreuzen.

Die Periodizität der vorbekannten wie auch der erfindungsgemässen Gitter, d.h. der Folgeabstand der erwähnten Einformungen oder Ausformungen, ist in Funktion der gegebenen Wellenlänge des Lichtes, -welches bei zweckentsprechendem Einsatz des Lichtkoppelelementes eingesetzt werden soll, ausgelegt.

Folgerichtig schlägt deshalb sowohl die WO 01/02839 wie auch die WO 00/75644 vor, dann, wenn das Lichtkoppelelement mit Licht von zwei Wellenlängen eingesetzt werden soll, dieses wohl mit parallelen Einformungen bzw. Ausformungen, aber nicht mit äquidistanten auszubilden, d.h. mit örtlich modulierter Gitterperiode oder mit sich kreuzenden Liniengittern, deren eines mit einer ersten Periode für Licht der einen Wellenlänge optimiert ist, und woran das zweite Liniengitter, optimiert für eine zweite Wellenlänge, 25 mit einer von der ersten abweichenden Periode realisiert ist.

10

15

Weiterhin werden dabei aber vektorielle Grössen des Lichtes einer der erwähnten Wellenlängen am Lichtkoppelelement in Funktion der Vektorrichtung unterschiedlich gewichtet behandelt, wie insbesondere abhängig von dessen Polarisationsrichtung.

Beim erfindungsgemässen Lichtkoppelelement, bei welchem sich äquidistant parallele, linienförmige Einformungen kreuzen, entstehen, von den erwähnten Einformungen berandet, dazwischenliegende Ausformungsinseln. Analog ergeben sich beim Lichtkoppelelement obgenannter Art, bei welchem sich äquidistant parallele, linienförmige Ausformungen kreuzen, dazwischenliegende Einformungsinseln.

Im Zusammenhang mit dem Vorsehen von Erhebungsstrukturen kann im weiteren auf die EP 1 040 874 verwiesen werden. Darin wird nämlich vorgeschlagen, zur gezielten 15 Beeinflussung der Benetzbarkeit von Oberflächen für die optische Analysetechnik, Oberflächenbereiche, die nicht benetzt werden sollen, mit Ausformungsstrukturen auszubilden, deren Höhe ein bestimmtes Minimalmass nicht unterschreitet, nämlich von 50 nm bis 10 μ m, derart, dass 20 mit solchen Strukturen versehene Bereiche im Zusammenhang mit der Oberflächenenergie des unstrukturierten Oberflächenmaterials, eine Benetzung verhindert und sich diese in nicht strukturierten Oberflächenbereichen konzentriert. Obwohl es sich bei den wie erwähnt 25 strukturierten Bereichen gemäss der EP 1 040 874 gerade nicht um Lichtkoppelbereiche handelt - sollen doch Proben dort gerade nicht vorhanden sein - und die beschriebenen Erhebungsstrukturen keine Kriterien bezüglich optischer

5

Wirkung erfüllen müssen, wird doch auch gemäss vorliegender Erfindung und wie noch zu beschreiben sein wird das mit der Oberflächenenergie von Oberflächenbereichen im Zusammenhang stehende Gebiet der Oberflächenbenetzbarkeit angesprochen werden.

Wie erwähnt sind aus der erwähnten EP 1 040 874 die Gesetzmässigkeiten bekannt, mit hydrophob strukturierten Oberflächen nicht zu benetzenden Bereiche an einer Oberfläche zu definieren und damit auch die zu benetzenden.

Beim Vorgehen gemäss vorliegender Erfindung werden zusätzlich zur Lösung der eingangs genannten Aufgabe nun auch folgende Vorteile in diesem Zusammenhang erwirkt:

Die Oberflächenenergie einer Grenzfläche zu einer Flüssigkeit ist proportional zu der in einem definierten Aufsichtsbereich vorhandenen Oberfläche. Ist die Oberfläche im genannten Bereich plan, dann ist diese Oberfläche, als spezifische Oberfläche bezeichenbar, weit kleiner, als wenn im nämlichen Aufsichtsbereich die Oberfläche aufgeraut ist. Wird auf einem solchen Oberflächenbereich ein

Pragmatisch heisst dies, dass sich ein Flüssigkeitstropfen auf dem genannten Bereich mit zunehmender spezifischer Oberfläche mehr und mehr zusammenzieht, bis hin zu dem gemäss der EP 1 040 874 ausgenützten Effekt, dass nämlich die Flüssigkeit vom betrachteten Bereich abtropft.

Es wird beim Lichtkoppelelement gemäss vorliegender Erfindung, im betrachteten Bereich, die spezifische

5

Oberfläche, verglichen mit Vorsehen lediglich eines Liniengitters, vergrössert, aber nur soweit, dass sich wohl ein darauf abgelegter Tropfen zusammenzieht, nicht aber abtropft. Beim oben erwähnten, bevorzugten Einsatz des erfindungsgemässen Lichtkoppelelementes zur Erzeugung 5 evaneszenter, d.h. quergedämpfter elektromagnetischer Felder im Rahmen einer Technik, wie sie beispielsweise aus der WP 01/02839 vorbekannt ist, ergibt sich dadurch eine erhöhte Konzentration einer aufgebrachten, mit Label versehenen Flüssigsubstanz auf der Oberfläche, was wiederum 10 das resultierende auslesbare Fluoreszenzsignal erhöht und zudem den Vorteil mit sich bringt, dass im betrachteten Bereich eine Mehrzahl, ja Vielzahl, einzelner Flüssigtropfen abgelegt werden kann, ohne dass diese ineinander flössen. 15

In einer bevorzugten Ausführungsform des erfindungsgemässen Lichtkoppelelementes wird vorgeschlagen, Einformungen mit drei Tiefen-Niveaus vorzusehen.

Durch Tiefenstaffelung der Einformungen wird ein zusätzlicher Parameter geschaffen, die Grösse der genannten spezifischen Oberfläche zu variieren.

Dabei ist zu berücksichtigen, dass auch einspringende Seitenflächenpartien der erwähnten Einformungen die erwähnte spezifische Oberfläche mitbestimmen, und dass tiefere Einformungen die erwähnte spezifische Oberfläche mehr vergrössern als weniger tiefe Einformungen.

Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemässen Lichtkoppelelementes sind die Einformungen im wesentlichen überall gleich tief.

Obwohl die erfindungsgemäss vorgesehenen äquidistant parallelen, linienförmigen Einformungen oder Ausformungen sich beispielsweise bogenförmig entlang des betrachteten Bereiches erstrecken können, wird in weitaus bevorzugter Ausführungsform des erfindungsgemässen Lichtkoppelelementes vorgeschlagen, die linienförmigen Einformungen bzw.

10 Ausformungen linear vorzusehen.

5

Gemäss dem grundlegenden Aspekt der vorliegenden Erfindung können sich die erwähnten linienförmigen Einformungen bzw. Ausformungen durchaus schiefwinklig kreuzen, und trotzdem wird die eingangs gestellte Aufgabe gelöst. Licht einer gegebenen Wellenlänge wird an einem betrachteten 15 Liniengitter, in Funktion u.a. der Gittertiefe, der Gitterperiode und innerhalb einer solchen Periode, des Duty Cycles von Einformungen und Ausformung beeinflusst. Somit ist es durchaus möglich, vektorielle Grössen des betrachteten Lichtes, wie insbesondere dessen 20 Polarisationsrichtungen, am erfindungsgemässen Lichtkoppelelement mindestens genähert gleich zu behandeln, wenn bei schiefwinklig sich kreuzenden, linienförmigen Einformungen bzw. Ausformungen diese Schiefwinkligkeit durch entsprechend unterschiedliche Auslegung der erwähnten 25 Parameter, nämlich Gittertiefe, Gitterperiode und Duty Cycle, an den sich kreuzenden Mustern kompensiert wird. Auch so kann z.B. eine weitgehendst polarisationsrichtungsunabhängige Beeinflussung des Lichtes

durch das Lichtkoppelelement erzielt werden. In einer weitaus bevorzugten Ausführungsform kreuzen sich die linienförmigen Einformungen bzw. die linienförmigen Ausformungen rechtwinklig. Weiter sind dann die Abstände der sich folgenden äquidistant parallelen linienförmigen Einformungen bzw. Ausformungen gleich. Bezogen auf die gegebene Wellenlänge λ , bevorzugt zwischen 20 nm und 2000 nm, werden (an Luft) bevorzugterweise folgende Dimensionierungsvorschriften befolgt:

10 Gitterperiode, definiert als Abstand sich folgender linienförmiger Einformungen bzw. Ausformungen:

 $0.1\lambda \leq d_0 \leq 10\lambda$

bevorzugt: $0.2\lambda \le d_0 \le 2\lambda$

besonders bevorzugt: $0.5\lambda \le d_0 \le 0.6\lambda$

15 Gittertiefe, definiert als Tiefe zwischen linienförmigen Ausformungen bzw. von linienförmigen Einformungen:

 $0.001\lambda \leq d_T \leq 10\lambda$

bevorzugt: $0.01\lambda \le d_T \le \lambda$

besonders bevorzugt: $0.05\lambda \le d_T \le 0.2\lambda$

20 Dabei ergeben sich folgende absolute Dimensionen:

Die Abstände der vorgesehenen linienförmigen Einformungen bzw. Ausformungen, d_0 , betragen bevorzugterweise 20 nm bis 20000 nm, besonders bevorzugt 40 nm bis 4000 nm, insbesondere bevorzugt zwischen 100 nm und 1200 nm.

Die Tiefe d_T der vorhandenen Einformungen beträgt dabei bevorzugterweise 0,2 nm bis 20000 nm, besonders bevorzugt zwischen 2 nm und 2000 nm, insbesondere zwischen 10 nm und 400 nm.

- Als Duty Cycle, definiert als Verhältnis von
 Ausformungsbreite d, zu Abstand sich folgender
 linienförmiger Einformungen, wird bevorzugterweise ein
 Bereich von 0,2 bis 0,8, insbesondere bevorzugt von 0,4 bis
 0,6 gewählt.
- In einer weiteren bevorzugten Realisationsform des erfindungsgemässen Lichtkoppelelementes handelt es sich bei der erwähnten Oberfläche um diejenige einer Schicht, welche auf einem Trägers aufgebracht ist. Insbesondere mit Blick auf eine bevorzugte Anwendung des erfindungsgemässen
- Lichtkoppelelementes, nämlich im Rahmen von Fluoreszenzmarker-Messverfahren mittels evaneszenter, quergedämpfter elektromagnetischer Felder, insbesondere wie in der WO 00/75644 beschrieben, wird vorgeschlagen, dass die Oberfläche des Trägers im erwähnten Bereich die gleiche Einformungs/Ausformungs-Struktur hat wie die Oberfläche der Schicht und, in Aufsicht, die Strukturen aufeinander ausgerichtet sind.

Dabei hat das Material des Trägers einen Brechungsindex für das Licht der gegebenen Wellenlänge, der tiefer ist als der Brechungsindex des Schichtmaterials.

Die Schicht aus mindestens einem hochbrechenden Material besteht bevorzugterweise mindestens aus einem der Materialien Ta_2O_5 , TiO_2 , NbO_5 , ZrO_2 , ZnO oder HfO_2 und hat

dabei bevorzugterweise eine Dicke, bezogen auf die gegebene Wellenlänge λ an Luft von:

Schichtdicke: $0.01\lambda \le d_s \le 10\lambda$

bevorzugt: $0.1\lambda \le d_s \le 2\lambda$

besonders bevorzugt: $0.2\lambda \le d_s \le 0.3\lambda$

Die absolute Dicke ist somit bevorzugterweise:

 $2 \text{ nm} \leq d_s \leq 20000$

bevorzugt

5

15

20

20 nm \leq d_s \leq 4000 nm

10 besonders bevorzugt

40 nm \leq d_s \leq 600 nm.

Bei der Verwendung des Lichtkoppelelementes für biochemische Anwendungen kann eine vom hochbrechenden Material abweichende chemische Zusammensetzung an der Oberfläche von Vorteil sein. (Z.b. wenn eine auf der Struktur zu applizierende Chemie zur Haftung auf SiO2 optimiert wurde, ist es möglich eine sehr dünne und damit optisch nicht oder nicht nachteilig wirksame SiO2 Schicht auf die hochbrechende Schicht zu applizieren.) Dies kann erreicht werden, indem eine zusätzliche dünne Schicht bevorzugt der Dicke d mit $0.001\lambda \le d \le 0.2\lambda$, vorzugsweise $0.01\lambda \le d \le 0.05\lambda$ eines weiteren Materiales, bevorzugterweise von SiO2, aufgebracht wird. Die absolute

Dicke d dieser zusätzlichen Schicht beträgt dabei somit, bei bevorzugtem λ zwischen 200 nm und 2000 nm, bevorzugt:

 $0.2 \text{ nm} \leq d \leq 400 \text{ nm}$

vorzugsweise

10

5 $2 \text{ nm} \leq d \leq 100 \text{ nm}$.

Die Erfindung wird anschliessend beispielsweise anhand von Figuren erläutert. Diese zeigen:

- Fig. 1 schematisch und in Aufsicht, ein Lichtkoppelelement bekannter Art mit eindimensionalem Liniengitter;
- Fig. 2 in einer Darstellung analog zu derjenigen von Fig. 1, in Aufsicht und mit zwei Schnittdarstellungen, eine erste, bevorzugte Ausführungsform eines erfindungsgemässen Lichtkoppelelementes;
- 15 Fig. 3 in einer Aufsichtsdarstellung analog zu derjenigen von Fig. 2, eine weitere Ausführungsform eines erfindungsgemässen Lichtkoppelelementes;

Fig. 4(a) und 4(b)

Schematisch die Auswirkungen der

Oberflächenstrukturierung für die Formung eines auf die Oberfläche aufgebrachten
Flüssigkeitstropfens;

Fig. 5 anhand einer Aufsichtsdarstellung in Analogie zu den Fig. 2 bzw. 3, ein erfindungsgemässes

Lichtkoppelelement mit Einformungen auf drei unterschiedlichen Einformungstiefen-Niveaus;

- Fig. 6 eine bevorzugte Ausführungsform eines erfindungsgemässen Lichtkoppelelementes in schematisch-perspektivischer Darstellung und realisiert gemäss der Ausführungsform von Fig. 2, und
- Fig. 7 in einer Darstellung analog zu derjenigen von Fig. 6, ein erfindungsgemässes Lichtkoppelelement, realisiert nach der Ausführungsform von Fig. 3.

In Fig. 1 ist, einerseits in Aufsicht, anderseits in einer Seitenansicht, ein Liniengitter vorbekannter Art dargestellt. In die Oberfläche 3 eines für Licht einer gegebenen Wellenlänge transparenten Materials, insbesondere für Laserlicht der Wellenlänge λ = 633nm, wie 15 beispielsweise aus Ta₂O₅, ist ein Liniengitter eingearbeitet. Es besteht aus Einformungen 5, welche zueinander parallel sind, und es sind, soll es mit Licht einer einzigen Wellenlänge λ beaufschlagt werden vorzugsweise mit 200 nm $\leq \lambda \leq$ 2000 nm - die Einformungen 5 20 äquidistant in dem Sinne, dass ihre Abstände do überall gleich sind, ebenso wie ihre Breite d_5 , und damit die Breite d, der zwischen den Einformungen 5 verbleibenden Stege 7. Die Abstände do definieren die Gitterperiode, wie sich ohne weiteres aus der Seitenansicht ergibt, mit dem 25 Duty Cycle des Gitters definiert als Verhältnis der Ausformungsbreite d_7 zur Gitterperiode d_o .

Auch die Tiefe d_T der Einformungen 5 ist üblicherweise überall gleich. Material der Oberfläche 3 und des Körpers 1, Gitterperiode d_o , Duty Cycle des Gitters und Gittertiefe d_T werden dabei an die erwünschte Lichtwellenlänge λ angepasst.

Das in Fig. 1 dargestellte, an sich bekannte Liniengitter kann ggf. auch, wie strichpunktiert dargestellt, gebogen sein. Es definiert eine Fortschreitensrichtung LG1. Definiert man diese Richtung in der ursprünglichen, nicht mit den Einformungen 7 versehenen Oberflächenebene E mit y, 10 und die Richtung quer dazu, wie dargestellt, mit x, so ist folgendes ersichtlich: Wie schematisch am Lichtbündel 9 dargestellt, werden die Komponenten $\overline{E}_{ exttt{x}}$ und $\overline{E}_{ exttt{v}}$ einer vektoriellen Grössen $\overline{\it E}$ des Lichtes, wie insbesondere dessen Polarisation, durch das Liniengitter unterschiedlich 15 beeinflusst, d.h. die Wirkung des Liniengitters ist bezüglich solcher vektorieller Grössen des Lichtes von der Vektorrichtung α abhängig. Z.B. ist die Wirkung des Liniengitters nicht unabhängig von der Polarisationsrichtung des Lichtes im Lichtstrahl 9. 20

Wie bereits eingangs erläutert wurde, ist es vorbekannt, mit Liniengittern des in Fig. 1 dargestellten Typs Licht von zwei und mehr Wellenlängen λ zu behandeln. Zu diesem Zweck wird dabei am Liniengitter die Gitterperiode do nebst ggf. weiteren Grössen in der Fortschreitensrichtung LG1 moduliert, d.h. örtlich variiert. Das nachfolgend zu beschreibende erfindungsgemässe Lichtkoppelelement ist jedoch jedenfalls für eine einzige Lichtwellenlänge λ

25

optimiert, womit örtlich modulierte Gitterperioden oder Liniengitter mit unterschiedlichen Perioden in einem betrachteten Bereich nicht vorgesehen sind.

In Fig. 2 ist eine erste prinzipielle Ausführungsvariante
eines erfindungsgemässen Lichtkoppelelementes dargestellt.
Dabei stellt Fig. 2(a) die Aufsicht dar, Fig. 2(b) eine
Querschnittsdarstellung in einer Richtung und Fig. 2(c)
eine Querschnittsdarstellung in dazu senkrechter Richtung.
In der Oberfläche 3 des Körpers 1 sind äquidistant
parallele, linienförmige, erste Einformungen 51
eingearbeitet sowie diese unter dem Winkel φ kreuzende,
zweite äquidistant parallele, linienförmige Einformungen
52. Die linienförmigen Einformungen 51 und 52 bilden ein im
betrachteten Bereich durchgehendes Einformungsgitter in
zwei Dimensionen x und y.

Die ersten linienförmigen Einformungen 5_1 haben eine Breite d_{51} , die zweiten 5_2 eine Breite d_{52} .

Die Abstände sich folgender erster linienförmiger Einformungen 5₁ betragen d_{o1}, diejenigen sich folgender, linienförmiger zweiter Einformungen, 5₂, d_{o2}. Diese Abstände definieren die entsprechenden ersten, d_{o1}, und zweiten, d_{o2}, Gitterperioden.

Durch die linienförmigen Einformungen 5_1 und 5_2 werden Ausformungsinseln 7 definiert.

Der erste Duty Cycle ist definiert durch das Verhältnis $(d_{o1}-d_{51})/d_{o1}$. Analog ist der zweite Duty Cycle definiert als $(d_{o2}-d_{52})/d_{o2}$.

Je nach Wahl des Winkels ϕ sowie Bemessung der jeweiligen Breiten d_{5x} der linienförmigen Einformungen und deren Abstände d_{ox} in Aufsicht gemäss der Darstellung von Fig. 2(a) ergeben sich für die verbleibenden Ausformungs-"Inseln" 7 rhomboidförmige, rombusförmige, rechteckige oder quadratische Formen.

Betrachtet man im Zusammenhang mit Fig. 2 das in Fig. 1 schematisch dargestellte Lichtbündel 9 der gegebenen Wellenlänge λ , so ist ersichtlich, dass mit dem erfindungsgemässen Lichtkoppelelement, gemäss Fig. 2, beide 10 Vektorkomponenten $\overline{E}_{ extsf{x}}$ und $\overline{E}_{ extsf{y}}$ der vektoriellen Lichtgrösse E , wie insbesondere deren Polarisation, gezielt beeinflusst werden. Bei Schiefwinkligkeit - $\phi \neq 90^{\circ}$ - der Lage der sich kreuzenden linienförmigen Einformungen 51 und 5_2 kann durch Wahl des Verhältnisses der Gitterperioden d_{01} 15 und d_{02} und beispielsweise der jeweiligen Breiten der Einformungen d₅₁ und d₅₂ die Beeinflussung der Lichtvektorkomponenten entsprechend $\overline{E}_{\mathrm{x}}$ und $\overline{E}_{\mathrm{y}}$ durch das Lichtkoppelelement ebenfalls gezielt beeinflusst werden. Somit kann auch bei $\phi \neq 90^{\circ}$ mit entsprechender Abstimmung 20 der erwähnten Parameter d_{01} , d_{02} , d_{51} , d_{52} richtungsunabhängige Wirkung des erfindungsgemässen Lichtkoppelelementes auf vektorielle Lichtgrössen \overline{E} erreicht werden.

Im weiteren ist ohne weiteres ersichtlich, dass die eingangs erwähnte, spezifische Oberfläche, beispielsweise an einem Bereich B_1 der Oberfläche 3 betrachtet, beim erfindungsgemässen Lichtkoppelelement wesentlich grösser

ist als an einem Lichtkoppelelement bekannter Art, dessen Liniengitter, als Beispiel, in Fig. 1 dargestellt ist.

Bevor anhand von Fig. 4(a) und 4(b) diese Auswirkungen weiter diskutiert werden, soll anhand von Fig. 3, eine

5 Darstellung analog zu Fig. 2(a), eine weitere Ausführungsform eines erfindungsgemässen Lichtkoppelelementes dargestellt werden. Bei dieser Ausführungsform sind in der Oberfläche 3 des Körpers 1 äquidistant parallele, erste linienförmige Ausformungen 71

10 vorhanden, welche durch äquidistant parallele zweite linienförmige Ausformungen 72 unter dem Winkel φ gekreuzt werden. Das so entstehende zweidimensionale Ausformungsgitter berandet bzw. definiert dazwischenliegende Einformungs-"Inseln" 5.

15 Es sind durch die Ausformungen 7₁ bzw. 7₂
Ausformungsbreiten d₇₁ und d₇₂ festgelegt sowie
entsprechende Gitterperioden d₀₁ und d₀₂, beispielsweise
entsprechend den Abständen benachbarter paralleler,
linienförmiger Ausformungen 7₁ bzw. 7₂. Hier sind die Duty
20 Cycles definiert durch die Verhältnisse d₇₁/d₀₁ bzw. d₇₂/d₀₂.

Bezüglich der Einwirkung des in Fig. 3 dargestellten erfindungsgemässen Lichtkoppelelementes auf vektorielle Lichtgrössen gilt das bereits im Zusammenhang mit Fig. 2 erläuterte, ebenso, was die mit dem erfindungsgemässen Lichtkoppelelement erwirkte Vergrösserung des spezifischen Oberfläche anbelangt.

Die Auswirkungen einer vergrösserten spezifischen Oberfläche auf eine Tropfenbildung sind in Fig. 4

schematisch dargestellt. In Fig. 4(a) ist schematisch ein Körper 10 mit planer Oberfläche 12 dargestellt. Auf der Oberfläche liegt ein Flüssigkeitstropfen 14. In Fig. 4(b) ist ein Körper 10a dargestellt, mit durch Strukturierung vergrösserter spezifischer Oberfläche 12a. Wiederum ist ein Flüssigkeitstropfen 14a auf der Oberfläche aufgebracht. Es bezeichnen weiter in beiden Darstellungen E_{as} die Oberflächenenergie zwischen Umgebungsatmosphäre und Oberfläche der Körper 10 bzw. 10a, Efs die Oberflächenenergien an den Grenzflächen zwischen 10 Flüssigkeit der Tropfen 14 bzw. 14a und den Körpern 10 bzw. 10a und schliesslich E_{fa} die Oberflächenenergie an den Grenzflächen zwischen Flüssigkeit der Tropfen 14 bzw. 14a und Umgebungsatmosphäre. Grundsätzlich dehnt sich ein Flüssigkeitstropfen so weit aus, dass die Summe dieser 15 Oberflächenenergien ein Minimum wird. Weil aufgrund der grösseren spezifischen Oberfläche 12a die Oberflächenenergie E_{fs} an der strukturierten Fläche 12a grösser ist als im Falle der planen Oberfläche 12, zieht sich der Tropfen 14a zum Erreichen des erwähnten 20 Energieminimums lateral mehr zusammen als im links dargestellten Fall planer Oberfläche 12.

Dieser Effekt wird auch beim Übergang eines vorbekannten Liniengitters bzw. Lichtkoppelelementes nach Fig. 1 zu einem erfindungsgemässen gemäss Fig. 2 oder Fig. 3 erzielt: An den gemäss Fig. 2 oder Fig. 3 strukturierten Oberflächen zieht sich ein aufgebrachter Flüssigkeitstropfen mehr zusammen, so dass es insbesondere für optische Analysen von Flüssigproben möglich wird, auf der nach Fig. 2 oder Fig. 3

strukturierten Oberfläche Probentropfen aufzubringen, die sich aufgrund des dargestellten Effektes von benachbarten "abkapseln", was auch ermöglicht, eine wesentlich erhöhte Zahl von Einzeltropfen auf einer gegebenen Ausdehnung der erfindungsgemäss strukturierten Oberfläche aufzubringen als beispielsweise auf einer gemäss Fig. 1 strukturierten, was beispielsweise für die automatisierte, schnelle optische Analyse einer Vielzahl von Proben von hoher Wichtigkeit ist. Die Gefahr, dass einzelne Probentropfen ineinander laufen, ist trotz ihrer engen Applikation, auf der nach Fig. 2 oder Fig. 3 strukturierten Oberfläche in zwei Dimensionen verteilt, wesentlich reduziert.

In einer ersten, bevorzugten Ausführungsform der erfindungsgemässen Lichtkoppelelemente nach Fig. 2 ist die Tiefe d_{T1} der Einformungen 5_1 gleich der Tiefe d_{T2} der Einformungen 5_2 .

Bezüglich eines Herstellungsverfahrens für eine wie in Fig. 2 dargestellte Oberflächenstruktur kann beispielsweise vollumfänglich auf die WO 01/55760 verwiesen werden. Diese Struktur kann durch Lithographie und Ätztechniken, die bekannt sind, wie folgt hergestellt werden:

Auf die Oberfläche 3 des unstrukturierten Körpers 1 wird eine Fotolackschicht, beispielsweise ca. 120 nm des Lackes AZ1815 der Firma Clariant aufgebracht. Die erste Einformungsstruktur 5₁ wird in die Fotolackschicht mittels Nahfeldholographie (NFH), mittels Zweistrahlholographie oder mittels Maskenbelichtung üblicher Art belichtet. Die geeignete Belichtungstechnik wird selbstverständlich

10

15

20

entsprechend der Grösse der Gitterperioden d_{o1} gewählt. Für sehr kurze Gitterperioden d_{01} beispielsweise von 360nm, werden bevorzugterweise holographische Belichtungsmethoden eingesetzt, insbesondere Nahfeldholographie (NFH), wie beispielsweise in WO 01/55760 beschrieben.

Nach der Belichtung wird die Körperoberfläche 3 bezüglich Belichtungsquelle um den Winkel ϕ (siehe Fig. 2) gedreht, und es erfolgt die Belichtung gemäss der Struktur der zweiten Einformungen 5_2 .

10 Nach dieser zweiten Belichtung wird der Fotolack entwickelt, und durch einen anschliessenden Ätzprozess werden die nach dem Belichtungsprozess freigelegten Oberflächenpartien entsprechend 51, 52 gleichzeitig weggeätzt. Danach wird der verbleibende Fotolack entfernt, z.B. mittels eines Sauerstoffplasmas.

Die in Fig. 2 dargestellte Struktur mit $d_{\text{T}1}=d_{\text{T}2}$ ergibt sich mithin durch gleichzeitiges Ätzen beider Einformungsstrukturen 5_1 , 5_2 .

Anhand von Fig. 5 soll ein weiteres bevorzugtes
erfindungsgemässes Lichtkoppelelement der in Fig. 2
dargestellten Art erläutert werden. Dabei ergibt sich eine
Struktur mit drei Tiefen-Niveaus der Einformungsbereiche
51, 52. Hierzu wird wie folgt vorgegangen: Nach Belacken
und Belichten der ersten Einformungsstruktur 51 wird der
Fotolack entwickelt und das erste Liniengitter mit der
Tiefe d_{T1} geätzt. Daraufhin wird der Körper 1 um den Winkel
φ gedreht, die Oberfläche wiederum belackt, belichtet,

entwickelt und die zweite Einformungsstruktur 52 mit der Tiefe d_{T2} geätzt. Aufgrund der Tatsache, dass bei diesem Vorgehen die beiden Einformungsstrukturen 5_1 und 5_2 separat geätzt werden, ergibt sich die Möglichkeit, die geätzten Tiefen d_{T1} und d_{T2} unterschiedlich zu wählen. In Fig. 5 ist in Aufsicht die resultierende Lichtkoppelelementstruktur dargestellt, vorerst für den allgemeinen Fall, dass die beiden Ätztiefen bzw. die Tiefen der Einformungen d_{Tl} und d_{T2} ungleich sind. Dabei bezeichnen die nicht schraffierten Felder Strukturelemente auf dem ursprünglichen Niveau der nicht strukturierten Oberfläche also Ausformungsinseln 7 gemäss Fig. 2. Die einfach schraffierten Strukturbereiche haben die jeweils eingetragenen Tiefen, also entweder d_{T2} oder d_{T1} . Bei den doppelt schraffierten Strukturbereichen addieren sich die Tiefen $d_{\text{T}1}$ und $d_{\text{T}2}$. Es ergibt sich mithin eine Oberflächenstruktur mit drei Strukturtiefen-Niveaus d_{T1} , d_{T2} , d_{T1} + d_{T2} . Wird dabei durch entsprechende Bemessung beispielsweise der Ätzzeiten gewählt $d_{T1} = d_{T2}$, so reduziert sich die Niveauzahl von 3 auf 2, nämlich auf die Tiefen d_{T1} $= d_{T2} und 2d_{T1} = 2d_{T2}.$

Es ist ohne weiteres ersichtlich, dass das
Lichtkoppelelement in den Varianten nach Fig. 5 eine weiter
ganz massgeblich vergrösserte spezifische Oberfläche
aufweist, womit der oben erläuterte Effekt bezüglich
Tropfenlokalisation noch verstärkt ausgenützt wird.

Betrachten wir nun das anhand von Fig. 3 dargestellte erfindungsgemässe Lichtkoppelelement, so ist ersichtlich, dass dort die Einformungsinseln 5 mit einer entsprechenden Photolack- und Ätztechnik praktisch als Sacklöcher geätzt

5

10

15

20

werden können und dass auch dort ggf. Einformungen 5 auf unterschiedlichen Niveaus ihrer Tiefe realisiert werden können.

Zudem ist es bei der Ausführungsform gemäss Fig. 3 durchaus möglich, auch die linienförmigen Ausformungen 7_1 bzw. 7_2 mit Tiefenstufen zu realisieren, falls das erwünscht ist.

Während bei der Ausführungsform gemäss Fig. 2 die verbleibenden Ausformungsinseln 7 bevorzugterweise und insbesondere fertigungsbedingt in Aufsicht rhomboidförmig, rombusförmig, rechteckig oder quadratisch sein können, können aufgrund der unterschiedlichen Fertigungstechniken die Einformungsinseln 5 bei der Ausführungsform gemäss Fig. 3 im Grunde genommen in Aufsicht beliebig geformt sein, hinzukommend zu den im Zusammenhang mit Fig. 2 erläuterten Formen also insbesondere auch kreisförmig oder elliptisch sein.

Anhand der Fig. 2 bis 5 wurde ein erfindungsgemässes Lichtkoppelelement dargestellt, bei welchem lediglich die Oberfläche eines Körpers 1 strukturiert ist. Dabei kann der die Oberfläche 3 definierende Körper bevorzugterweise eine auf einen Träger aufgebrachte Schicht sein, wie insbesondere eine wellenleitende Schicht, beispielsweise aus Ta_2O_5 . Es ist nochmals zu betonen, dass auch bei unterschiedlichen Gitterperioden d_{01} , d_{02} und/oder Duty Cyclen diese Unterschiedlichkeit nicht zur Berücksichtigung von zwei Lichtwellenlängen vorgesehen ist, sondern, um - wie anhand von Fig. 1 und 2 erläutert wurde – auch bei Schiefwinkligkeit der – $\phi \neq 90^{\circ}$ – erfindungsgemäss

5

10

15

20

vorgesehenen Strukturen auf die Komponenten von Lichtvektorgrössen, wie insbesondere auf die Polarisation, jeweils gezielt einzuwirken.

Daraus ist nun ersichtlich, dass in einer weitaus 5 bevorzugten Ausführungsform gewählt wird:

 φ = 90° und gleichzeitig:

 $d_{01} = d_{02}$,

 $d_{51} = d_{52} bzw. d_{71} = d_{72}.$

Dadurch wird auch das Fertigungsverfahren, insbesondere für die Form nach Fig. 2, massgeblich vereinfacht.

Insbesondere mit Blick auf ein Lichtkoppelelement, auch für Mikrotiterplatten, es sei hierzu auf die WO 01/55760 hingewiesen, aber insbesondere zur Ausnützung evaneszenter elektromagnetischer Felder für die Erfassung von mittels

Fluoreszenzmarkern versehenen Substanzen, wird der bis anhin erläuterte Körper 1 durch eine Schicht hochbrechenden, für Laserlicht der gegebenen Wellenlänge transparentes Material realisiert, beispielsweise aus einem Metalloxid, wie aus Ta₂O₅, TiO₂, Nb₂O₅, ZrO₂, ZnO₂, HfO₂,

dabei bevorzugt mit einer Dicke von 150 nm. Die Schicht wird dabei auf einem Träger z.B. aus Schott Desag AF45-Glas abgelegt, mit einer Schichtdicke d von beispielsweise 0,7 mm.

Die vorbeschriebenen Strukturierungsverfahren werden nun 25 nicht an der Oberfläche der Schicht 1 vorgenommen, sondern es werden die anhand der Fig. 2 bis 5 dargestellte

Strukturen an der Oberfläche des Trägers eingearbeitet. Danach wird die Oberfläche des Trägers mit der Schicht 1 beschichtet, und es bildet sich die auf der Oberfläche des Trägers aufgebrachte, erfindungsgemässe Struktur an die Oberfläche 3 der abgelegten Schicht 1 ab. Es resultiert bei einer Struktur nach Fig. 2, mit ϕ = 90°, d_{T1} = d_{T2} und gleichzeitigem Ätzen der Einformungen das anhand von Fig. 6 dargestellte Lichtkoppelelement mit Träger 15 gemäss Ausführungsform von Fig. 2 strukturierter Trägeroberfläche 15°, der darauf aufgebrachten Schichten 1a mit strukturierter Oberfläche 3a.

Das Material der Schicht la hat dabei einen grösseren Brechungsindex als das Material des Trägers 15, was bei Glas und einem der erwähnten Schichtmaterialien, wie insbesondere Ta_2O_5 erfüllt ist.

In Fig. 7 ist auf einem Träger 15 in die Schicht la eine Struktur gemäss der Ausführungsform von Fig. 3 eingearbeitet, mit kreisförmigen Einformungsinseln 5.

Mit dem erfindungsgemässen Lichtkoppelelement in all den

20 dargestellten Ausführungsformen wird ein Element
bereitgestellt, welches auf vektorielle Lichtgrössen wirkt,
im wesentlichen unabhängig von der Vektorrichtung.

Zusätzlich wird der Vorteil erwirkt, dass sich bei
Beaufschlagung der erfindungsgemäss strukturierten

25 Oberfläche mit Flüssigkeitstropfen, aufgrund der
spezifischen Oberflächenvergrösserung, eine Konzentration
der Flüssigkeitstropfen auf klar definierte Bereiche
ergibt, was eine dichte Beaufschlagung des

Lichtkoppelelementes mit Flüssigproben ermöglicht. Das erfindungsgemässe Lichtkoppelement kann für alle bekannten optischen Analysemethoden, insbesondere auch unter Ausnützung des evaneszenten Feldes, zur Untersuchung Fluoreszenz-markierter Substanzen ausgenützt werden, aber auch zum Ein- und Auskoppeln von Licht, insbesondere Laserlicht, aus bzw. in wellenleitende Schichten, sei dies wiederum unter dem Aspekt der optischen Analysetechnik oder im Rahmen der Nachrichtentechnik.

Patentansprüche:

- 1. Lichtkoppelelement mit einer Oberfläche (3) aus einem Material, welches für Licht einer gegebenen Wellenlänge (λ) transparent ist, wobei in mindestens einem Bereich der Oberfläche (3) äquidistant parallele, linienförmige Einformungen (5_1) vorhanden sind, dadurch gekennzeichnet, dass an der Oberfläche (3) weitere äquidistant parallele, linienförmige Einformungen (5_2) vorhanden sind, die die ersterwähnten kreuzen (ϕ).
- 2. Lichtkoppelelement mit einer Oberfläche (3) aus einem Material, welches für Licht einer gegebenen Wellenlänge (λ) transparent ist, wobei in mindestens einem Bereich der Oberfläche (3) äquidistant parallele, linienförmige Ausformungen (7_1) vorhanden sind, dadurch gekennzeichnet, dass an der Oberfläche (3) weitere äquidistant parallele, linienförmige Ausformungen (7_2) vorhanden sind, die die ersterwähnten kreuzen (ϕ) .
- Lichtkoppelelement nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass daran vorgesehene, zwischen
 den Ausformungen (7, 7₁, 7₂) definierte Einformungen (5₁, 5₂, 5) mit drei Tiefen-Niveaus (d_{T1}, d_{T2}, d_{T1} + d_{T2}) ausgebildet sind.
- Lichtkoppelelement nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zwischen den vorgesehenen
 Ausformungen (7, 7₁, 7₂) gelegene Einformungen (5, 5₁, 5₂) im wesentlichen gleich tief sind.

- 5. Lichtkoppelelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die vorhandenen linienförmigen Einformungen $(5_1, 5_2)$ bzw. Ausformungen $(7_1, 7_2)$ linear sind.
- 5 6. Lichtkoppelelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich die äquidistant parallelen, linienförmigen Einformungen (5₁, 5₂) bzw. Ausformungen (7₁, 7₂) rechtwinklig kreuzen und die Abstände (d_o) der vorhandenen, sich folgenden, äquidistant parallelen, linienförmigen Einformungen (5₁, 5₂) bzw. Ausformungen (7₁, 7₂) gleich sind.
 - 7. Lichtkoppelelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Abstände (d_o) sich folgender äquidistant paralleler, linienförmiger Einformungen (5_1 , 5_2) bzw. äquidistant paralleler, linienförmiger Ausformungen (7_1 , 7_2) wie folgt gewählt sind:

200 nm $\leq d_o \leq 20000$ nm,

bevorzugterweise

20 $40 \text{ nm} \le d_o \le 4000 \text{ nm}$,

insbesondere

15

25

100 nm $\leq d_{o} \leq 1200$ nm.

8. Lichtkoppelelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Abstände (d_0) sich folgender äquidistant paralleler, linienförmiger

Einformungen $(5_1,\ 5_2)$ bzw. äquidistant paralleler, linienförmiger Ausformungen $(7_1,\ 7_2)$, bezogen auf die gegebene Wellenlänge λ an Luft wie folgt gewählt sind:

$$0,1 \lambda \leq d_0 \leq 10 \lambda$$

5 bevorzugt

$$0.2 \lambda \leq d_0 \leq 2 \lambda$$

insbesondere bevorzugt

$$0.5 \lambda \leq d_0 \leq 0.6 \lambda$$
.

- 9. Lichtkoppelelement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Tiefe d_T der vorgesehenen Einformungen 0,2 nm bis 20000 nm beträgt, bevorzugt 10 nm bis 400 nm.
- 10. Lichtkoppelelement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Tiefe d_T der vorgesehenen Einformungen bezogen auf die gegebene Wellenlänge λ an Luft wie folgt gewählt wird:

$$0.001 \lambda \leq d_T \leq 10 \lambda$$

bevorzugt

$$0.01 \lambda \leq d_T \leq \lambda$$

20 insbesondere bevorzugt

$$0.05 \lambda \leq d_T \leq 0.2 \lambda$$
.

- 11. Lichtkoppelelement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Duty Cycle, definiert als Verhältnis von Ausformungsbreite zu Abstand sich folgender linienförmiger Einformungen bzw. Ausformungen zu 0,2 bis 0,8 gewählt ist, insbesondere bevorzugt zu 0,4 bis 0,6.
- 12. Lichtkoppelelement nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Oberfläche (3) die Oberfläche eines Schichtsystems (1a) mit mindestens einer Schicht ist, welches auf einem Träger (15) aufgebracht ist.
- 13. Lichtkoppelelement nach Anspruch 12, dadurch gekennzeichnet, dass die Oberfläche des Trägers (15) im Bereich die gleiche Einformungs-/Ausformungs-Struktur hat wie die Oberfläche des Schichtsystems (1a) und, in Aufsicht, die Strukturen aufeinander ausgerichtet sind.
- 14. Lichtkoppelelement nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass das Material des Trägers (15) einen Brechungsindex für das Licht der gegebenen Wellenlänge (λ) hat, der tiefer ist als der Brechungsindex eines Schichtmaterials des Schichtsystems.
- 15. Lichtkoppelelement nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das Schichtsystem mindestens eine Schicht aus einem hochbrechenden Material, vorzugsweise aus mindestens einem der folgenden Materialien hat:
- 25 Ta₂O₅, TaO₂, NbO₅, ZrO₂, ZnO, HfO₂.

16. Lichtkoppelelement nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass das Schichtsystem eine Dicke d_s hat von

2 nm bis 20000 nm,

5 bevorzugt von

20 nm bis 4000 nm,

insbesondere von

40 nm bis 600 nm,

bevorzugterweise von

 $d_s = 150 \text{ nm}.$

17. Lichtkoppelelement nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass das Schichtsystem bezogen auf die gegebene Wellenlänge λ an Luft eine Dicke d_S hat, für die, bezogen auf die gegebene Wellenlänge λ , an Luft gilt:

15 $0.01 \lambda \leq d_s \leq 10 \lambda$

bevorzugt

 $0.01 \lambda \leq d_s \leq 2 \lambda$

insbesondere bevorzugt

 $0.2 \lambda \leq d_s \leq 0.3 \lambda$.

20 18. Lichtkoppelelement nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die zwischen den äquidistant

parallelen, linienförmigen Einformungen (5₁, 5₂) verbleibenden Ausformungen (7) oder die zwischen den äquidistant parallelen, linienförmigen Ausformungen (7₁, 7₂) verbleibenden Einformungen (5) in Aufsicht rhomboidförmig, rombusförmig, rechteckförmig oder quadratisch sind.

- 19. Lichtkoppelelement nach einem der Ansprüche 2 oder 3 bis 16, sofern von Anspruch 2 abhängig, dadurch gekennzeichnet, dass die zwischen den parallelen, linienförmigen Ausformungen $(7_1, 7_2)$ vorhandenen Einformungen (5) in Aufsicht kreisförmig oder elliptisch
- 20. Verwendung des Lichtkoppelelementes nach einem der Ansprüche 1 bis 19 an einer optischen Analyseplattform für
 - 21. Verwendung des Lichtkoppelelementes nach einem der Ansprüche 1 bis 19 für nachrichtentechnische Datenübertragung.
- 22. Verfahren zur Realisation von
 20 Polarisationsunabhängigkeit, mittels welcher ein Lichtkoppelelement mit einem Oberflächengitter auf einfallendes Licht gegebener Wellenlänge wirkt, dadurch gekennzeichnet, dass man das Oberflächengitter zweidimensional an der Oberfläche so ausbildet, dass
 25 orthogonale Polarisationsvektorkomponenten gleichermassen durch das Gitter beeinflusst werden.

5

10

15

sind.

Substanzenanalyse.

23. Verfahren zur Reduktion der Tropfengrösse auf einem Lichtkoppelelement mit Oberflächengitter, dadurch gekennzeichnet, dass man durch Vorsehen eines zweidimensional sich erstreckenden Oberflächengitters die sich daran ausbildende Tropfengrösse reduziert.

Exemplaire invariable
Exemplare immutable

1/4

Unveränderliches Exemplar

Evennelaire invariable

2/4

Unverändernenes zweiten Unveränder invariable Esemplare immutablie

 $\frac{7}{3}$ $\frac{7}$

ブダア