Arithmetic Operations

100010101001010100010010010101010

Decimal and Binary

Four Basic Operations

ALU and the math operations are the heart of the CPU

The computer-CPU (ALU) performs ... mathematical operations?

Main math operation of ALU?

Main math operation of ALU: Add

 All the other mathematical operations are performed, using addition, and ...

HOW ?

Decimal addition

Binary addition

1 = sum

Binary addition

Binary addition

Example

10110 +10011

Example

10011, 10110 and 101001 are stored in the CPU/ALU in Registers

Addition using Octal (1)

1476 +3554 ———

?

Addition using Octal (1)

Addition using Octal (2)

- +3554
- •

$$1+7+5 = 13 => (1, 5)$$
 carry sum

Addition using Octal (3)

- +3554

$$1+4+5 = 10 => (1, 2)$$
carry sum

Addition using Octal (4)

$$1+1+3 = 5 => (0, 5)$$
 carry sum

Addition using Hex (1)

- 59F
- +E46

Addition using Hex (1)

F+6 =
$$15 + 6 = 21 => (1, 5)$$

carry sum

Addition using Hex (2)

$$1 + 9 + 4 = 14 => (0, E)$$

01

59F

E46

Addition using Hex (3)

- 59F
- +E46

$$0 + 5 + E = 19 => (1, 3)$$
carry sum

01

59F

E46

Subtraction

Decimal subtraction

401

- 32

0

- 0

Example

```
1 0 1 1 0 = 2+4+16 = 22
-1 0 0 1 1 = 1+2+16 = 19
```

Example (1)

Example (1a)

Example (1b)

Example (1c)

Example (1d)

Example (1e)

Example (1f)

```
1 0 1
1 0 1 1 0
-1 0 0 1 1
     Therefore 10-1=1
```

Example (1g)

Since we borrowed a 1 a 0 is left

Example (1h)

Since we borrowed a 1 a 0 is left

Example (1i)

Example (1j)

Result: 22-19 = 3

```
1 0 1 1 0
-1 0 0 1 1
-----
0 0 0 1 1
```

Multiplication

Shift + Add operation

Binary multiplication

101

X 100

000

000

+101

100 add zeros

100 shift-add zeros

100 shift-copy number

10100

Add

Binary multiplication

We Need:

- > An Adder
- > A Shifter

Binary multiplication

We Need:

- > An Adder
- > A Shifter

Please ...

Read the next lecture, about complements, before you come to class.

