Chapter 05

Mingjia Huo

Problem 5.1. Formal definition of second preimage resistance:

The collision-finding experiment Hash- $\sec_{\mathcal{A},\Pi}(n)$:

- 1. A key s is generated by running $Gen(1^n)$. Then uniformly choose $x \in \{0,1\}^*$. (If Π is a fixed-length hash function for inputs of length l'(n), then require $x \in \{0,1\}^{l'(n)}$.)
- 2. Then adversary \mathcal{A} is given s,x. Then \mathcal{A} outputs $x' \in \{0,1\}^*$.(If Π is a fixed-length hash function for inputs of length l'(n), then require $x \in \{0,1\}^{l'(n)}$.)
- 3. The output of the experiment is defined to be 1 is and only if $x \neq x'$ and $H^s(x') = H^s(x)$. In such a case we say that \mathcal{A} has found a collision.

Definition 1. A hash function $\Pi = (Gen, H)$ is second preimage resistance if for all PPT adversary A, there is a negl(n) such that

$$\Pr[Hash-sec_{\mathcal{A},\Pi}(n)=1] \leq negl(n).$$

Formal definition of **preimage resistance**:

The collision-finding experiment Hash-prei_{A,Π}(n):

- 1. A key s is generated by running $\text{Gen}(1^n)$. Then uniformly choose $x \in \{0,1\}^*$. (If Π is a fixed-length hash function for inputs of length l'(n), then require $x \in \{0,1\}^{l'(n)}$.) Compute $y = H^s(x)$.
- 2. Then adversary \mathcal{A} is given s, y. Then \mathcal{A} outputs $x' \in \{0, 1\}^*$. (If Π is a fixed-length hash function for inputs of length l'(n), then require $x \in \{0, 1\}^{l'(n)}$.)
- 3. The output of the experiment is defined to be 1 is and only if $y = H^s(x')$. In such a case we say that \mathcal{A} has found a collision.

Definition 2. A hash function $\Pi = (Gen, H)$ is preimage resistance if for all PPT adversaries A, there is a negl(n) such that

$$\Pr[Hash-prei_{A,\Pi}(n)=1] \leq negl(n).$$

Proof of collision resistant to second preimage resistant: Proof by contradiction, assume $\Pi = (\text{Gen}, H)$ is not second preimage resistant but is collision resistant, so there's an PPT adversary \mathcal{A}' , such that

$$\Pr[\operatorname{Hash-sec}_{\mathcal{A}',\Pi}(n)=1] > \operatorname{negl}(n).$$

Construct an experiment for PPT adversary A:

- 1. A key s is generated by running $Gen(1^n)$.
- 2. Then adversary \mathcal{A} is given s. Then \mathcal{A} uniformly chooses $x \in \{0,1\}^*$ and gives A' s and x.
- 3. When \mathcal{A}' outputs $x' \in \{0,1\}^*$, \mathcal{A} outputs x, x'.
- 4. The output is 1 if and only if $x \neq x', H^s(x) = H^s(x')$. (If Π is a fixed-length hash function for inputs of length l'(n), then require $x, x' \in \{0, 1\}^{l'(n)}$.)
- So \mathcal{A} outputs $1 \Leftrightarrow x \neq x'$ and $H^s(x) = H^s(x') \Leftrightarrow \mathcal{A}'$ outputs 1. Thus $\Pr[\operatorname{Hash-coll}_{\mathcal{A},\Pi}(n) = 1] = \Pr[\operatorname{Hash-prei}_{\mathcal{A}',\Pi}(n) = 1] > \operatorname{negl}(n)$, a contradiction.

Proof of second preimage resistant to preimage resistant: Proof by contradiction, assume $\Pi = (\text{Gen}, H)$ is not preimage resistant but is second preimage resistant, so there's an PPT adversary \mathcal{A}' , such that

$$\Pr[\text{Hash-prei}_{\mathcal{A}',\Pi}(n) = 1] > \text{negl}(n).$$

Construct an experiment for PPT adversary A:

- 1. A key s is generated by running $Gen(1^n)$. Then uniformly choose $x \in \{0,1\}^*$.
- 2. Then adversary A is given s, x. Compute $y = H^s(x)$. Then, gives A' s and y.
- 3. When \mathcal{A}' outputs $x' \in \{0,1\}^*$, \mathcal{A} outputs x'.
- 4. The output is 1 if and only if $x \neq x', H^s(x) = H^s(x')$. (If Π is a fixed-length hash function for inputs of length l'(n), then require $x, x' \in \{0, 1\}^{l'(n)}$.)

So \mathcal{A}' outputs $1 \Leftrightarrow H^s(x) = H^s(x')$, and \mathcal{A} outputs $1 \Leftrightarrow x \neq x', H^s(x) = H^s(x')$.

Denote set $W = \{x \mid y = H^s(x) \text{ has only one x hashed to y.}\}$, since $y \in \{0,1\}^{l(n)}$, we have $|W| \le 2^{l(n)}$. Consider the probability that $x \ne x'$ when $H^s(x) = H^s(x')$, here we assume $2^{l(n)-l'(n)} \le \text{negl}(n)$, where l(n) = len(y), l'(n) = len(x):

$$\begin{split} &\Pr[x \neq x' \land H^s(x) = H^s(x')] \\ &= \Pr[x \neq x' \land H^s(x) = H^s(x') \land x \not\in W] \\ &= \Pr[H^s(x) = H^s(x')] - \Pr[H^s(x) = H^s(x') \land x \in W] - \Pr[x = x' \land H^s(x) = H^s(x') \land x \not\in W] \\ &= \Pr[H^s(x) = H^s(x')] - 0 - \Pr[x = x' \land H^s(x) = H^s(x') \mid x \not\in W] \times \Pr[x \not\in W] \\ &\geq \Pr[H^s(x) = H^s(x')] - \frac{1}{2} \Pr[H^s(x) = H^s(x')] \times (1 - 2^{l(n) - l'(n)}) \\ &= \frac{1}{2} \Pr[H^s(x) = H^s(x')] - \operatorname{negl}(n) \end{split}$$

Since $\Pr[H^s(x) = H^s(x')] > \operatorname{negl}(n)$, we have $\Pr[\operatorname{Hash-sec}_{\mathcal{A},\Pi}(n) = 1] = \Pr[x \neq x' \land H^s(x) = H^s(x')] > \operatorname{negl}(n)$, a contradiction.

Refute: If we remove the condition that $2^{l(n)-l'(n)} \leq \text{negl}(n)$, then second preimage resistant can not imply preimage resistant. A construction is as followed: assume there is a second preimage resistant $H': \{0,1\}^{n+1} \to \{0,1\}^n$, then

$$H(x) = \begin{cases} 0x_3 \cdots x_{n+1}, & x_1 = x_2 = 0\\ 1H'(x_1 \cdots x_{n+1}), & otherwise \end{cases}$$

H(x) is second preimage resistant. But there is probability $\frac{1}{4}$ that given y, A can invert x. So it not implies preimage resistant.

Problem 5.2. (a). Assume $\Pi_1 = (\operatorname{Gen}_1, H_1)$ is collision resistant. For arbitrary \mathcal{A} of $\Pi = (\operatorname{Gen}_1, H)$, construct an experiment for PPT adversary \mathcal{A}_1 of $\Pi_1 = (\operatorname{Gen}_1, H_1)$ based on it:

- 1. A key s_1 is generated by running $Gen(1^n)$.
- 2. Then adversary A_1 is given s_1 . Run $Gen_2(1^n)$ and get s_2 .
- 3. A_1 gives s_1, s_2 to A, then A outputs x, x'.
- 4. A_1 outputs x, x'.
- 5. The output is 1 if and only if $H_1^{s_1}(x) = H_1^{s_1}(x')$.

Here, \mathcal{A} succeeds $\Leftrightarrow H_1^{s_1}(x) \| H_2^{s_2}(x) = H_1^{s_1}(x') \| H_2^{s_2}(x') \Rightarrow H_1^{s_1}(x) = H_1^{s_1}(x') \Leftrightarrow \mathcal{A}_1$ succeeds. Thus,

$$\Pr[\operatorname{Hash-coll}_{\mathcal{A},\Pi}(n) = 1] \leq \Pr[\operatorname{Hash-coll}_{\mathcal{A}_1,\Pi_1}(n) = 1] \leq \operatorname{negl}(n).$$

So $\Pi = (Gen, H)$ is collision resistant.

(b). It holds for second preimage resistant.

Assume $\Pi_1 = (\text{Gen}_1, H_1)$ is second preimage resistant. Assume all the theme are fixed-length with input length l'(n). For arbitrary \mathcal{A} of $\Pi(\text{Gen}, H)$, construct an experiment for PPT adversary \mathcal{A}_1 of $\Pi_1(\text{Gen}_1, H_1)$ based on it:

- 1. A key s_1 is generated by running $Gen(1^n)$, uniformly choose $x \in \{0,1\}^{l'(n)}$.
- 2. Then adversary A_1 is given s_1, x . Run $Gen_2(1^n)$ and get s_2 .
- 3. A_1 gives s_1, s_2, x to A, then A outputs $x' \in \{0, 1\}^{l'(n)}$.
- 4. A_1 outputs x'.
- 5. The output is 1 if and only if $x \neq x', H_1^{s_1}(x) = H_1^{s_1}(x')$.

Here, \mathcal{A} succeeds $\Leftrightarrow H_1^{s_1}(x) \| H_2^{s_2}(x) = H_1^{s_1}(x') \| H_2^{s_2}(x') \Rightarrow H_1^{s_1}(x) = H_1^{s_1}(x') \Leftrightarrow \mathcal{A}_1$ succeeds. Thus,

$$\Pr[\operatorname{Hash-sec}_{\mathcal{A},\Pi}(n) = 1] \le \Pr[\operatorname{Hash-sec}_{\mathcal{A}_1,\Pi_1}(n) = 1] \le \operatorname{negl}(n).$$

So $\Pi = (Gen, H)$ is second preimage resistant.

It doesn't hold for preimage resistant. Construct $\Pi_2 = (Gen_2, H_2)$ as followed:

- 1. Gen₂: do nothing.
- 2. H_2 : on input $x = \{0,1\}^{n+1}$, output first n bits of x as $H_2(x)$.

Thus, in the experiment of preimage resistant: on input y, we first define the last n bits as y_2 , then simply add a uniformly bit $b \in \{0,1\}$ after y_2 , define as x. Then with probability $\frac{1}{2}$, the adversary succeeds.

Thus, although Π_1 is preimage resistant, it doesn't work for Π .

Problem 5.3. Yes.

For arbitrary \mathcal{A} of $\Pi = (\text{Gen}, \hat{H})$, construct an experiment for PPT adversary \mathcal{A}' of $\Pi' = (\text{Gen}, H)$ based on it:

- 1. A key s is generated by running $Gen(1^n)$.
- 2. Then adversary \mathcal{A}' is given s. \mathcal{A}' gives s to \mathcal{A} , then \mathcal{A} outputs $x, x' \in \{0, 1\}^*$.
- 3. \mathcal{A}' checks: if $H^s(x) \neq H^s(x')$, let $x = H^s(x), x' = H^s(x')$. Then \mathcal{A}' output x, x'.
- 4. The output is 1 if and only if $x \neq x'$, $H^s(x) = H^s(x')$.

In the experiment, if \mathcal{A} succeeds, then $x \neq x'$ and $H^s(H^s(x)) = H^s(H^s(x'))$. If $H^s(x) = H^s(x')$, then x, x' succeeds for \mathcal{A} ; otherwise we have $H^s(x) \neq H^s(x')$ and $H^s(H^s(x)) = H^s(H^s(x'))$, so $H^s(x)$, $H^s(x')$ succeeds for \mathcal{A} .

Thus,

$$\Pr[\operatorname{Hash-coll}_{\mathcal{A},\Pi}(n) = 1] = \Pr[\operatorname{Hash-coll}_{\mathcal{A}',\Pi'}(n) = 1] \le \operatorname{negl}(n)$$

The inequality holds because $\Pi' = (Gen, H)$ is collision resistant. So $\Pi = (Gen, \hat{H})$ is collision resistant.

Problem 5.6. Before answering the questions, prove claim: if hash function $h: \{0,1\}^{2n} \to \{0,1\}^n$ is collision resistant, then construct H as followed:

$$\forall x \in \{0,1\}^{2n}, s, H^s(x) = h^s(x) \oplus c_s.$$

Then H is collision resistant. (Here $c_s \in \{0,1\}^n$.)

Proof. For arbitrary \mathcal{A} of $\Pi = (Gen, H)$, construct an experiment for PPT adversary \mathcal{A}' of $\Pi' = (Gen, h)$ based on it:

- 1. A key s is generated by running $Gen(1^n)$.
- 2. Then adversary \mathcal{A}' is given s. Then \mathcal{A}' gives s to \mathcal{A} ,
- 3. When \mathcal{A} outputs $x, x' \in \{0, 1\}^{2n}$, \mathcal{A}' outputs x, x'.
- 4. The output is 1 if and only if $x \neq x', H^s(x) = H^s(x')$.

Here,

$$\begin{aligned} \operatorname{Hash-coll}_{\mathcal{A}',\Pi'} &= 1 \Leftrightarrow H^s(x) = H^s(x') \\ &\Leftrightarrow h^s(x) \oplus h^s(0^n \| c_s) = h^s(x') \oplus h^s(0^n \| c_s) \\ &\Leftrightarrow h^s(x) = h^s(x') \\ &\Leftrightarrow \operatorname{Hash-coll}_{\mathcal{A},\Pi} &= 1 \end{aligned}$$

Thus, H is collision resistant.

(a).No.

Fixed $x_0 \in \{0,1\}^n$ Given hash function h, construct H as followed:

$$\forall x \in \{0, 1\}^{2n}, s, H^s(x) = h^s(x) \oplus h^s(0^n || x_0).$$

Thus,

$$\forall s, H^s(0^n || x_0) = 0^n.$$

For the claim we prove above, H is collision resistant.

Use H as the hash block in Merkle-Damgård transform and define as H_m , we have

$$H_m(x_0||x_0) = H(0^n||x_0) = 0^n = H_m(x_0),$$

a collision.

So it's not collision resistant.

(b). Yes.

Proof by contradiction: If there are $x \neq x'$, such that

$$H^{s}(x) = z_{B} || L = z'_{B'} || L' = H^{s}(x'),$$

we have L=L'. Assume $x=x_1\cdots x_B, x'=x_1'\cdots x_B'$. Let $I_i=z_{i-1}\|x_i$ denote the *i*th input to h^s , and set $I_{B+1}=z_B$. Define I_i' analogously with respect

Let N be the largest index of $\{1, 2 \cdots, B\}$, such that $I_N \neq I'_N$. Since $x \neq x'$, there exists such N. By the maximization of N, we have $I_{N+1} = I'_{N+1}$, that is $z_N = z'_N$. However, $I_N \neq I'_N$. So we find a collision in h^s .

But h^s is collision resistant, a contradiction. So it's collision resistant.

(c). Yes.

Proof by contradiction: If there are $x \neq x'$, such that

$$H^{s}(x) = z_{B} || L = z'_{B'} || L' = H^{s}(x'),$$

we have L=L'. Assume $x=x_1\cdots x_B, x'=x_1'\cdots x_B'$. Let $I_i=z_{i-1}\|x_i$ denote the *i*th input to h^s , and set $I_{B+1}=z_B$. Define I_i' analogously with respect to x'.

Let N be the largest index of $\{1, 2 \cdots, B\}$, such that $I_N \neq I'_N$. Since $x \neq x'$, there exists such N.

- N > 1: By the maximization of N, we have $I_{N+1} = I'_{N+1}$, that is $z_N = z'_N$. However, $I_N \neq I'_N$. So we find a collision in h^s .
- N=1: $I_2=I_2'\Rightarrow z_1=z_1'$, and $I_1\neq I_1'$. we find a collision.

But h^s is collision resistant, a contradiction. So it's collision resistant.

(d).No.

Fixed $x_0 \in \{0,1\}^n$ Given hash function h, construct H as followed:

$$\forall x \in \{0, 1\}^{2n}, s, H^s(x) = h^s(x) \oplus h^s(2L||x_0) \oplus L.$$

Thus,

$$\forall s, H^s(2L||x_0) = L.$$

For the claim we prove above, H^s is collision resistant.

Use H^s as the hash block in Merkle-Damgård transform and define as H_m^s , we have

$$H_m^s(x_0||x_0) = H^s(H^s(2L||x_0)||x_0) = H^s(L||x_0) = H_m^s(x_0),$$

a collision.

So it's not collision resistant.

Problem 5.10(a). Randomly choose m, the adversary \mathcal{A} access the oracle $\operatorname{Mac}_{s,k}(\cdot) = H^s(k\|\cdot)$ and get t. Let m' denotes the message after padding m and adding the string length. So m' is exactly the input of hash function.

Assume L = |m'|. Then \mathcal{A} compute $h^s(t||L) = t'$, and output (m', t'). Since

$$H^{s}(m') = h^{s}(m'||L) = h^{s}(h^{s}(m)||L) = h^{s}(t||L) = t',$$

we have $\operatorname{Vrfy}_k(m',t') = 1$ and (m',t') was not asked by \mathcal{A} .

Thus \mathcal{A} succeeds with probability 1. And it's not a secure Mac.

Problem 5.13. If t is not a power of 2, use an incomplete binary tree. To construct a collision, first randomly choose (x'_1, \dots, x'_{2t}) . Get its Merkle tree construction: define the hash values in the first step as $(H(x'_1, x'_2), \dots, H(x'_{2t-1}, x'_{2t}))$. Then define $(x_1, x_2, \dots, x_t) = (H(x'_1, x'_2), \dots, H(x'_{2t-1}, x'_{2t}))$. Thus, $\mathcal{MT}_t(x_1, x_2, \dots, x_t) = \mathcal{MT}_{2t}(x'_1, x'_2, \dots, x'_{2t})$.

Problem 5.14. (a).

Assume $\mathcal{F}, \mathcal{V}, \mathcal{H}$ denotes the set of files, verify codes and the messages saved by clients. A setting $\Pi = (\text{Hash}, \text{Get-Vrfy}, \text{Vrfy})$ is contained of:

- $H: \mathcal{F}^* \to \mathcal{H}$. Given file set $F \subset \mathcal{F}$, the function return a value h that should be saved by the client.
- Get-Vrfy: $\mathcal{F} \to \mathcal{V}$. When a client wants to verify the exists of $f \in \mathcal{F}$, the function return $v \in \mathcal{V}$ for the client to check.
- Vrfy: $\mathcal{F} \times \mathcal{V} \to \{0,1\}$. Return if the file $f \in \mathcal{F}$ can be verified by $v \in \mathcal{V}$.

Experiment Verify-file $\Pi = (Hash, Get-Vrfy, Vrfy)$ of an PPT adversary A:

- 1. Run $\mathcal{A}(1^n)$. \mathcal{A} is given $\Pi = (\text{Hash, Get-Vrfy, Vrfy})$.
- 2. \mathcal{A} outputs f, v.
- 3. Output 1 if and only if Vrfy(f, v) = 1 and $v \neq Get-Vrfy(f)$.

Definition 3. The files that the client saves on the server are secure if and only if

$$\Pr[Vrfy\text{-file }_{A\Pi}(n)=1] \leq negl(n).$$

(b).

The Merkle trees' construction $\Pi = (Hash, Get-Vrfy, Vrfy)$ is as followed:

- Hash = h^s : Given file set $F = \{f_1, \dots, f_n\}$. Assume $2^{t-1} < n \le 2^t$, then set $f_{n+1} = \dots = f_{2^t} = n$ ull. Let $n' = 2^t$.
 - Use hash function h^s to compute $h^s(f_1, f_2), \dots, h^s(f_{n'-1}, f_{n'}) = h_{1,2}, \dots, h_{n'-1,n'}$.
 - $h^{s}(h_{1,2}, h_{3,4}), \cdots, h^{s}(h_{n'-3, n'-2}, h_{n'-1, n'}) = h_{1\cdots 4}, \cdots, h_{n'-3\cdots n'}.$
 - $-h^{s}(h_{1\cdots n'/2}, h_{n'/2+1\cdots n'}) = h_{n'/2+1\cdots n'} = h$

Then the server save all hash values and give h to the client.

• Get-Vrfy: The client wants to verify x_i . Without loss of generality, assume i=1. Then the server give him $x_2, h_{3,4}, h_{5\cdots 8}, \cdots, h_{n'/2+1\cdots n'}$.

(That is, give the client the other child nodes along the binary tree, such that the client can use these values to compute h.)

• Vrfy: Without loss of generality, assume the client wants to verify x_1 . The client computes $h^{s}(h^{s}(\cdots(h^{s}(x_{1},h_{3,4})\cdots),h_{n'/2+1\cdots n'}))$ equals to h or not.

If so, the verification succeeds; otherwise, the verification fails.

(c). If
$$\Pi' = (Gen_h, h)$$
 is collision resistant, then $\forall \mathcal{A}'$,

$$\Pr[\text{Hash-coll}_{\mathcal{A}',\Pi'}(n) = 1] \le \operatorname{negl}(n).$$

Assume an adversary \mathcal{A} has find a collision in Merkle trees $\Pi = (h, \text{Get-Vrfy}, \text{Vrfy})$. Then we construct an adversary \mathcal{A}' to find a collision in h^s .

To write succinctly, if client asks to verify x_i , denotes the values that the server gives as (h_1, h_2, \dots, h_t) . Denote x_i as h_0 . The client should compute:

$$h^{s}(h_{0}, h_{1}) = h'_{1}$$

$$h^{s}(h'_{1}, h_{2}) = h'_{2}$$

$$\dots$$

$$h^{s}(h'_{t-1}, h_{t}) = h'_{t}$$

Then verify if $h'_t = h$.

Assume $v = (h_1, h_2, \dots, h_t)$ are generated by the correct files. If there are $v^0 = (h_1^0, h_2^0, \dots, h_t^0) \neq v$, such that Vrfy(v') = 1, we say there is a collision in the construction based on Merkle trees.

Define

$$I_1 = (h_0, h_1)$$

$$I_2 = (h'_1, h_2)$$
...
$$I_t = (h'_{t-1}, h_t)$$

$$I_{t+1} = h'_t$$

Similarly, define I_1^0, \dots, I_{t+1}^0 . Let N be the largest index such that $I_N \neq I_N^0$. Since $v \neq v^0$ there exists $h_i \neq h_i^0$, and exists $I_i \neq I_i^0$, so such N exists. Since $h'_t = h = h_t^{0'}$, $I_{t+1} = I_{t+1}^0$. Thus $N \leq t$.

Since
$$h'_t = h = h_t^{0'}$$
, $I_{t+1} = I_{t+1}^{0}$. Thus $N < t$.

For the maximization of N, we have $I_{N+1} = I_{N+1}^0$, so $h_N' = h_N^{0'}$. But $(h_{N-1}', h_N) = I_i \neq I_i^0 = (h_{N-1}^{0'}, h_N^0)$, and there hash value $h_N' = h_N^{0'}$, thus we find a collision in h^s . Thus a collision in Merkle trees \Rightarrow a collision in h^s :

$$\Pr[\operatorname{Vrfy-file}_{A\Pi}(n) = 1] \leq \Pr[\operatorname{Hash-coll}_{\mathcal{A}',\Pi'}(n) = 1] \leq \operatorname{negl}(n).$$

Thus, the construction based on Merkle trees is secure.