Comunicação Serial

Prof. Dr. Roberto Kenji Hiramatsu Prof. Dr. João Henrique Correia Pimentel

Comunicação assíncrona

- BAUD Taxa de transmissão de sinais que também define a taxa que deve ser trabalhada a o processamento da recuperação do sinal
- Na assíncrona o sinal precisa que a taxa para transmissão seja configurada e que a diferença de relógio do que transmite em relação ao do que recebe seja menor que 2%
- Algumas padrões de comunicação serial são os RS-232, RS-485, RS-422, CAN BUS, USB

Conexão física

- Simplex somente vai numa direção
- Half-Duplex Tem somente 1 linha em que transmiti os dados
- Full-Duplex Conversa simultaneamente nos

dois sentidos.

Comunicação assíncrona

Start 1 0 0 0 0 0 1 0 Stop

Table 20-7. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

	f _{osc} = 16.0000MHz				f _{osc} = 18.4320MHz				f _{osc} = 20.0000MHz				
Baud Rate	U2Xn	= 0	U2Xn	= 1					,5XI	'?Xn = 1			
(bps)	UBRRn	Error	UBRRn	Error	104115	nor h	i+ o 1 0	Amc n	or cara	ctoro	om n	Error	
2400	416	-0.1%	832	0.0%	8bits sem paridade e 1 stop bit						0.0%		
4800	207	0.2%	111								0.0%		
9600	_100	U.2%	207	0.2%				1	<u> </u>			0.2%	
14.4k	68	0.6%	138	-0.1%	79	0.0%	159	0.0%	86	-0.2%	173	-0.2%	
19.2k	51	0.2%	103	0.2%	59	0.0%	119	0.0%	64	0.2%	129	0.2%	
28.8k	34	-0.8%	68	0.6%	39	0.0%	79	0.0%	42	0.9%	86	-0.2%	
38.4k	25	0.2%	51	0.2%	29	0.0%	59	0.0%	32	-1.4%	64	0.2%	
57.6k	16	2.1%	34	-0.8%	19	0.0%	39	0.0%	21	-1.4%	42	0.9%	
76.8k	12	0.2%	25	0.2%	14	0.0%	29	0.0%	15	1.7%	32	-1.4%	
115.2k	8	-3.5%	16	2.1%	9	0.0%	19	0.0%	10	-1.4%	21	-1.4%	
230.4k	3	8.5%	8	-3.5%	4	0.0%	9	0.0%	4	8.5%	10	-1.4%	

ASCII TABLE

Decim	al Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	п	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	С
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h /
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	5	76	4C	L	108	6C	
13	D	[CARRIAGE RETURN]	45	2D 💆		77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E -		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]

Tratamento serial na plataforma arduino

 64 bytes de armazenamento de dado recebido e 64 para transmissão

The Arduino Reference text is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

Find anything that can be improved? Suggest corrections and new documentation via

Functions

```
If (Serial)
available()
availableForW
begin()
end()
find()
findUntil()
flush()
parseFloat()
parseInt()
peek()
print()
```

println()

Recebendo letras pela serial

```
void setup(){
 pinMode(13,OUTPUT);
 Serial.begin(9600);
void loop(){
                                   // verifica se tem dados disponiveis, não bloqueia
 if(Serial.available()){
   char c=Serial.read();
                                   // faz a leitura de dados
  if(c=='l'){
                                   //Se for letra 'l' liga led da placa
   digitalWrite(13,HIGH);
                                   // Senao desliga
  else{
   digitalWrite(13,LOW);
```

A serial tem limite para receber e enviar

- Teste uma mensagem muito longa no código abaixo do tipo:
 - 0123456789012345678<mark>9</mark>01234567890123456789012345 6789<mark>01234567890123456789</mark>
- Capture o máximo que puder quando recebe
- Se precisar enviar muito dado em intervalos muito pequenos

```
e necessário aumentar o baudrate.

void setup(){
    pinMode(13,OUTPUT);
    Serial.begin(9600);
    while(Serial.available()); // somente iniciar o loop quando receber
}

void loop(){
    delay(100);
    if(Serial.available()){ // poderia ser substituído por while
        char c=Serial.read();
        Serial.print(c);
```

Tratamento com mensagem terminadas por caractere

```
1 String inputString = "";
                                        // a string to hold incoming
 2 boolean stringComplete = false; // whether the string is com
 3 void setup() {
 4
     Serial.begin (9600);
                                    Exemplo de SerialEvent encontrado em:
 5
     inputString.reserve(200);
                                    https://www.arduino.cc/en/Tutorial/SerialEvent
 6 }
 7 void loop() {
 8
     if (stringComplete) {
 9
       Serial.println(inputString)
10
       inputString = "";
                                        Similar a interrupção externa de pelos pinos
11
       stringComplete = false;
                                         do UNO R3. Não precisa registrar uma fun
12
                                             mas o nome não pode ser mudada.
13|}
14 void serialEvent()
15
     while (Serial.available()) {
       char inChar = (char)Serial.read();
16
17
       inputString += inChar;
       if (inChar == '\n') {
18
19
          stringComplete = true;
20
```

SPI (Serial Peripherical Interface)

- Na síncrona o sinal de relógio é definido pelo mestre.
 - Permite operação Full-Duplex

Como é ligado a shield 1.8" TFT Display Breakout and Shield

Modos SPI

- No SPI existem 4 modos de configuração de comunicação. E necessário ver o manual do componente se for trabalhar com dispositivo novo.
- As bibliotecas de módulos para Arduino já escondem esta configuração

Modo	CPOL	СРНА	Descrição					
0	0	0	O dado é armazenado na borda de subida do clock.					
1	0	1	O dado é armazenado na borda de descida do clock.					
2	1	0	O dado é armazenado na borda de descida do clock.					
3	1	1	O dado é armazenado na borda de subida do clock.					

Tabela 12.1

SPI leitura

 A leitura de dispositivos segue um padrão iniciado pelo comando, seguindo de

Exemplo de acesso ao SD CARD

Entendendo o exemplo - Inicialização

```
The circuit:
* SD card attached to SPI bus as follows:
** MOSI - pin 11
** MISO - pin 12
** CLK - pin 13
** CS - pin 4 (for MKRZero SD: SDCARD_SS_
*/
```

Os pinos do sdcard devem ser conectado na sequencia definida O pino pode ser mudado para outro pois este somente habilita acesso

```
#include <SPI.h>
#include <SD.h>
File myFile;
void setup() {
 Serial.begin(9600); // Open serial communications and wait for port to open:
 while (!Serial);
 Serial.print("Initializing SD card...");
 if (!SD.begin(4)) {
  Serial.println("initialization failed!");
  return;
```

Neste exemplo usa-se o pino 4. Se precisar trabalhar com outro dispositivo SPI execute "SD.end()" que desabilita o SDCARD. Se for usar novamente e necessário inicializar. O processo e demorado para inicializar.

Para escrever no SD card

```
Serial.println("initialization done.");

myFile = SD.open("test.txt", FILE_WRITE); // open the file. note that only one file can be //open at a time.

if (myFile) { // if the file opened okay, write to it:

    Serial.print("Writing to test.txt.");

    myFile.println("testing 1, 2, 3.");

    myFile.close(); // close the file:

    Serial.println("done.");

} else {

    Serial.println("error opening test.txt");

}

Feche o arquivo Se tiver que ler outro arquivo ou
```

o mesmo

Ler o SDCARD

Para mais informações veja:

https://www.arduino.cc/en/Reference/SD

Inspecione também o SD.h quando a biblioteca do SD CARD estiver instalada %HOMEPATH%\Documents\Arduino\libraries\SD\src

Características do l²C (Inter-Integrated Múltiplos mestres Circuit)

- wultiplos mestres
 - Comunicação Half-Duplex
 - Endereçamento de 7bits
- A linha é do tipo open-collector /open-drain
 - Isto é a tensão na linha serial e mantida HIGH e somente quando querem conversar e que vai para LOW

Formato do sinal do 12C

do

escravo

Até aqui o mestre envia o endereço com quem quer conversar e diz se e para uma operação de gravação ou leitura

EEPROM

- O UNO R3 tem 1024 bytes de EEPROM que podem ser gravadas até 100000 vezes
 - Gravar dados de configuração ou dados necessários para posterior recuperação, mas não muito frequentemente gravados
- EEPROM.write(address, value);
 - Escreve na EEPROM um byte no endereço
 - Esta operação demora 3,3ms

EEPROM

- value = EEPROM.read(address);
 - Leitura da EEPROM neste caso não tem limitação da quantidade de vezes que pode ser lida.
 - Veja mais exemplos aqui:
 - https://www.arduino.cc/en/Reference/EEPROM

Protocolo de mensagens

- Considerando que deseje controlar vários dispositivos acionados remotamente. O que precisamos para conversar com o microcontrolador?
- Melhor que cada mensagem tenha uma resposta para saber que ele entendeu o que você pediu.
- Escreva no papel o padrões das mensagens que você vai trabalhar

Protocolo de mensagens

- Acesse o projeto:
- https://www.tinkercad.com/things/d6ctTW0g

Leitura adicional

- Leitura
- Protocolos de comunicação serial
 - https://www.robocore.net/tutoriais/comparacao-entreprotocolos-de-comunicacao-serial.html
 - https://forum.arduino.cc/index.php?topic=483133.0
 - SPI: https://www.totalphase.com/support/articles/200349236 SPI-Background
- Suporte do arduino
 - https://www.arduino.cc/reference/en/language/functions/communication/serial/
- Veja também o capitulo de serial do livro:
 - PEREIRA, Fábio. Microcontroladores PIC: Programação em C. 2. ed. São Paulo: Érica, 2003.