Übungsblatt 3

Aufgabe 1. Untersuchen Sie die Funktion $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{x^3 + y^3 - 3x^2 + 3y^2 + 3(x+y)}{x^2 + y^2 - 2(x-y) + 2} & \text{für } (x,y) \neq (1,-1) \\ 0 & \text{für } (x,y) = (1,-1) \end{cases}$$

auf partielle Differenzierbarkeit nach x und nach y im Punkt (1, -1) und berechnen Sie die partiellen Ableitungen dort, falls sie existieren.

Aufgabe 2. Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{x \cdot y \cdot (x+y) \cdot (x-y)}{(x^2+y^2)^2} & \text{falls } (x,y) \neq (0,0) \\ 0 & \text{falls } (x,y) = (0,0) \end{cases}$$

im Punkt (0,0) partiell differenzierbar nach x und nach y aber nicht stetig ist.

Aufgabe 3. Bestimmen Sie alle Punkte an denen die Funktion $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ mit $f(x,y) = x \cdot y \cdot \sqrt{x^2 + y^2}$ partiell nach x bzw. y differenzierbar ist und bestimmen Sie dort die partiellen Ableitungen.

Aufgabe 4. Bestimmen Sie die partiellen Ableitungen erster Ordnung der Funktion $f: \mathbb{R}^4 \longrightarrow \mathbb{R}$ mit $f(x_1, x_2, x_3, x_4) = \sqrt{1 + \ln\left(1 + \sqrt{2 + x_1^2 + x_2^2 + x_3^2 + x_4^2}\right)}$.

Aufgabe 5. Bestimmen Sie den maximalen Definitionsbereich $D \subseteq \mathbb{R}^4$ der Funktion, die gegeben ist durch

$$f(x_1, x_2, x_3, x_4) = \frac{1}{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$

Zeigen Sie dass die Funktion in ihrem Definitionsbereicht zweimal stetig partiell differenzierbar ist, und dass sie eine Lösung der Laplacegleichung

$$\Delta f = 0$$

ist, wobei

$$\Delta(f)(x_1, x_2, x_3, x_4) = \sum_{k=1}^{4} \frac{\partial^2 f}{\partial x_k^2}(x_1, x_2, x_3, x_4)$$

Aufgabe 6. Bestimmen Sie den maximalen Definitionsbereich $D \subseteq \mathbb{R}^2$ der durch die Vorschrift $f(x,y) = \frac{x \cdot y}{x-y}$ gegebenen Funktion und bestimmen Sie dort alle partiellen Ableitungen bis zur Ordnung 3.