Matemática Discreta II

Prof^o Pablo Henrique Perondi

LISTA DE EXERCÍCIOS 3

1) Considere as operações em \mathbb{R} definidas por

$$-: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \qquad p: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(x, y) \mapsto x - y \qquad (x, y) \mapsto x$$

- a) Estas operações são associativas?
- b) Estas operações são comutativas?
- c) Estas operações possuem elemento neutro? Se sim, qual?
- d) Quais elementos de \mathbb{R} são simetrizáveis em relação a estas operações?
- e) Quais elementos de \mathbb{R} são regulares em relação a estas operações?

2) Denote por $M_{2\times 3}(\mathbb{R})$ o conjunto das matrizes de ordem 2 por 3 com entradas reais. Considere

$$+: M_{2\times 3}(\mathbb{R}) \times M_{2\times 3}(\mathbb{R}) \to M_{2\times 3}(\mathbb{R})$$

 $(A, B) \mapsto A + B$

a soma usual entre matrizes. $(M_{2\times 3}(\mathbb{R}),+)$ é um grupo?

3) Seja $\mathcal{F}(\mathbb{R}) = \{f | f : \mathbb{R} \to \mathbb{R}\}$ o conjunto das funções de \mathbb{R} em \mathbb{R} . Considere

$$\circ: \mathcal{F}(\mathbb{R}) \times \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R})$$
$$(f,g) \mapsto f \circ g$$

a operação de composição de funções em $\mathcal{F}(\mathbb{R})$.

- a) Verifique se esta operação é associativa, se é comutativa, se possui elemento neutro e quais são os elementos simetrizáveis.
- b) $(\mathcal{F}(\mathbb{R}), \circ)$ é um grupo? Qual subconjunto de $\mathcal{F}(\mathbb{R})$ é um grupo com esta operação?

4) Fixado $m \geq 2$ inteiro, seja $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$ o conjunto das classes de equivalência módulo m. Considere as operações de soma e multiplicação em \mathbb{Z}_m definidas por

$$+: \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m \qquad \cdot: \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m$$
$$(\overline{x}, \overline{y}) \mapsto \overline{x + y} \qquad (\overline{x}, \overline{y}) \mapsto \overline{x \cdot y}$$

1

- a) Estas operações são associativas?
- b) Estas operações são comutativas?
- c) Estas operações possuem elemento neutro? Se sim, qual?
- d) Quais elementos de \mathbb{Z}_m são simetrizáveis em relação a operação de soma?

- e) Quais elementos de \mathbb{Z}_m são simetrizáveis em relação a operação de multiplicação?
- f) $(\mathbb{Z}_m, +)$ é um grupo?
- **g)** (\mathbb{Z}_m,\cdot) é um grupo?
- h) Quais elementos de \mathbb{Z}_m são regulares em relação a operação de soma?
- i) Quais elementos de \mathbb{Z}_m são regulares em relação a operação de multiplicação?
- 5) Fixado $m \geq 2$ inteiro, considere

$$\mathbb{Z}_m^* = \mathbb{Z}_m \setminus \{\overline{0}\} = \{\overline{1}, \dots, \overline{m-1}\}.$$

- a) Se m é um número composto, então a multiplicação usual entre classes de equivalências é uma operação em \mathbb{Z}_m^* ?
- **b)** Se m é um número primo, então a multiplicação usual entre classes de equivalências é uma operação em \mathbb{Z}_m^* ?
- c) Mostre que se m é um número primo, então (\mathbb{Z}_m^*,\cdot) é um grupo comutativo.
- 6) Considere a operação * definida por

*:
$$\mathbb{R}^2 \setminus \{(0,0)\} \times \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\}$$

 $((a,b),(c,d)) \mapsto (ac-bd,ad+bc)$

Mostre que $(\mathbb{R}^2 \setminus \{(0,0)\}, *)$ é um grupo comutativo onde (1,0) é o elemento neutro e a inversa de um elemento (a,b) é $(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2})$.

- 7) Verifique que o conjunto $H = \{a + b\sqrt{3} \in \mathbb{R}^* : a, b \in \mathbb{Q}\}$ é um subgrupo de (\mathbb{R}^*, \cdot) .
- 8) Considere o grupo comutativo $(\mathbb{R}^2, +)$, onde a soma é definida por

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2).$$

Verifique se os subconjuntos abaixo são subgrupos de $(\mathbb{R}^2, +)$ ou não.

- a) $H_1 = \{(x,0) : x \in \mathbb{R}\};$
- **b)** $H_2 = \{(1, y) : y \in \mathbb{R}\};$
- c) $H_3 = \{(x, y) : x + y = 0\}.$