尺规作图画出正五边形

叶卢庆* 杭州师范大学理学院, 浙江 杭州 310036

2014年3月6日

下面我们来尺规作出正五边形. 如图,

设 A 位于原点,B 的坐标为 (1,0), 我们的关键是用尺规画出点 C. 点 C 对应的坐标为 $(\cos \frac{2\pi}{5}, \sin \frac{2\pi}{5})$.

$$\cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}, \sin\frac{2\pi}{5} = \sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}.$$

我们先尺规作出长度 $\cos \frac{2\pi}{5}$. 先作出长度 $\sqrt{5}$. 如图,JB 的长度为 $\sqrt{5}$.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:h5411167@gmail.com

去掉那些凌乱的辅助线,得到如下图. 然后我们考虑将 CM 四等分.

CM 四等分如下: 如图, $|CR| = \frac{1}{4}|CM|$. 于是 $|CR| = \frac{\sqrt{5}-1}{4} = \cos \frac{2\pi}{5}$.

去掉那些凌乱的辅助线, 我们只看 CR. 我们考虑以 A 为圆心以 |CR| 为半径作圆. 这是圆规的功能. 然后我们经过千辛万苦, 终于得到了点 S.

接下来我们要考虑的是作出长度 $\sin \frac{2\pi}{5} = \sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}$. 我们先作出长度 $\frac{5}{8}$. 如图, $|AD_1| = \frac{1}{8}$.

再看下图, 如图所示, AH_1 的长度为 $\frac{5}{8}$.

我们记得,BM 的长度为 $\sqrt{5}$, 现在将其八等分, 如图, $|BQ_1|=\frac{1}{8}|BM|=\frac{1}{8}\sqrt{5}$.

如图, 然后我们利用圆规把 AH 和 BQ_1 拼接起来. 得到 $|AR_1| = \frac{5}{8} + \frac{\sqrt{5}}{8}$.

然后,如图,我们得到了正五边形.

