# Introduction to Topic Models

Dr Pierre Le Bras

February 2020



- Any text document
  - Course materials
  - Academic papers
  - Company reports
  - Emails
  - Wikipedia
- ⇒ Collections of Words or Labels















**Latent Dirichlet Allocation** 

How are documents created?

How are documents created?

$$\theta(t \mid d) \sim Dir(\alpha)$$

$$\varphi(w \mid t) \sim Dir(\beta)$$

$$v(i,d) \sim \theta(t \mid d)$$

$$\omega(i,d) \sim \varphi(w \mid v(i,d))$$

| Documents  |  |  |  |  |
|------------|--|--|--|--|
| Document 1 |  |  |  |  |
| Document 2 |  |  |  |  |
| Document 3 |  |  |  |  |
| Document 4 |  |  |  |  |
|            |  |  |  |  |
| Document M |  |  |  |  |

| Topics |         |  |  |  |
|--------|---------|--|--|--|
|        | Topic 1 |  |  |  |
|        | Topic 2 |  |  |  |
|        | Topic 3 |  |  |  |
|        | Topic 4 |  |  |  |
|        | •••     |  |  |  |
|        | Topic N |  |  |  |

| Words |        |  |  |  |
|-------|--------|--|--|--|
|       | Word 1 |  |  |  |
|       | Word 2 |  |  |  |
|       | Word 3 |  |  |  |
|       | Word 4 |  |  |  |
|       |        |  |  |  |
|       | Word O |  |  |  |

$$\theta(t \mid d) \sim Dir(\alpha)$$

$$\varphi(w \mid t) \sim Dir(\beta)$$

$$v(i,d) \sim \theta(t \mid d)$$

$$\omega(i,d) \sim \varphi(w \mid v(i,d))$$

| Documents  |         |      | Topics  |
|------------|---------|------|---------|
| Document 1 |         | 0.06 | Topic 1 |
| Document 2 |         | 0.15 | Topic 2 |
| Document 3 | $\prec$ | 0.1  | Topic 3 |
| Document 4 |         | 0.08 | Topic 4 |
|            |         |      | •••     |
| Document M |         | 0.03 | Topic N |

| Words  |
|--------|
| Word 1 |
| Word 2 |
| Word 3 |
| Word 4 |
| 0 0 0  |
| Word O |

 $\theta(t \mid D3)$ 

| Documents  |             |        |      | Topics  |
|------------|-------------|--------|------|---------|
| Document 1 |             |        | 0.07 | Topic 1 |
| Document 2 | $\vdash$    | )<br>) | 0.03 | Topic 2 |
| Document 3 |             |        | 0.08 | Topic 3 |
| Document 4 |             |        | 0.2  | Topic 4 |
|            |             |        |      |         |
| Document M |             |        | 0.1  | Topic N |
|            | $\theta(t $ | D2)    |      |         |

| Words  |
|--------|
| Word 1 |
| Word 2 |
| Word 3 |
| Word 4 |
|        |
| Word O |

- Documents are distributions of Topics
  - A document is made of multiple topics

$$\theta(t \mid d) \sim Dir(\alpha)$$

$$\varphi(w \mid t) \sim Dir(\beta)$$

$$v(i,d) \sim \theta(t \mid d)$$

$$\omega(i,d) \sim \varphi(w \mid v(i,d))$$

#### I DA

| Documents  |
|------------|
| Document 1 |
| Document 2 |
| Document 3 |
| Document 4 |
| •••        |
| Document M |

| Topics  |                      |      | Words  |
|---------|----------------------|------|--------|
| Topic 1 |                      | 0.08 | Word 1 |
| Topic 2 | $\rightarrow$        | 0.1  | Word 2 |
| Topic 3 |                      | 0.12 | Word 3 |
| Topic 4 |                      | 0.04 | Word 4 |
|         |                      |      | •••    |
| Topic N |                      | 0.15 | Word O |
|         | $\varphi(w \mid T2)$ |      |        |

#### I DA

| Documents  |  |  |  |  |
|------------|--|--|--|--|
| Document 1 |  |  |  |  |
| Document 2 |  |  |  |  |
| Document 3 |  |  |  |  |
| Document 4 |  |  |  |  |
| •••        |  |  |  |  |
| Document M |  |  |  |  |

| Topics  |     |     |      | Words  |
|---------|-----|-----|------|--------|
| Topic 1 |     |     | 0.14 | Word 1 |
| Topic 2 |     |     | 0.01 | Word 2 |
| Topic 3 |     |     | 0.13 | Word 3 |
| Topic 4 |     |     | 0.08 | Word 4 |
|         |     |     |      | •••    |
| Topic N |     |     | 0.05 | Word O |
|         | φ(w | T4) |      |        |

- Documents are distributions of Topics
- Topics are distributions of Words
  - A topic is a collection of words

Token 36 in Document 2 = ?

$$\theta(t \mid d) \sim Dir(\alpha)$$

$$\varphi(w \mid t) \sim Dir(\beta)$$

$$v(i,d) \sim \theta(t \mid d)$$

$$\omega(i,d) \sim \varphi(w \mid v(i,d))$$

#### Token 36 in Document 2 = ?



 $v(36, D2) \sim \theta(t \mid D2)$ 

- Documents are distributions of Topics
- Topics are distributions of Words
- To write a word in a document:
  - We select a topic from the document's topic distribution

$$\theta(t \mid d) \sim Dir(\alpha)$$

$$\varphi(w \mid t) \sim Dir(\beta)$$

$$v(i,d) \sim \theta(t \mid d)$$

$$\omega(i,d) \sim \varphi(w \mid v(i,d))$$



#### Token 36 in Document 2 = ?



 $v(36, D2) \sim \theta(t \mid D2)$ 



 $\omega(36,D2)\sim\varphi(w\,|\,v(36,D2))$ 

- Documents are distributions of Topics
- Topics are distributions of Words
- To write a word in a document:
  - We select a topic from the document's topic distribution
  - We select a word value from the topic's word distribution

### **In Practice**



- Collapsed?
  - $\theta$  and  $\varphi$  are integrated out
- Sampling?
  - Iteratively samples v(i,d) (topic assignment) for every token i in every document d

- Input
  - Lemmatised Documents (i.e. clean list of labels)
  - Number of topics desired
- Output
  - Document to topic distributions
  - Topic to word distributions

- Markov chain Monte Carlo (MCMC) algorithm
  - a. Randomly assign topics to all words in all documents
  - b. Select a word in a document
  - c. Remove topic assignment
  - d. Build the new probabilities of topic assignment
  - e. Assign new topic using probability
  - f. Repeat for all words, for all documents
  - g. Repeat multiple times until the model gets stable

$$P(v(i,d) = t) \propto \frac{n^{\neg i,d}(t,d) + \alpha_t}{\sum_k n(k,d) + \alpha_k} \times \frac{v^{\neg i,d}(\omega(i,d),t) + \beta_{\omega(i,d)}}{\sum_w v(w,t) + \beta_w}$$

$$P(v(i,d) = t) \propto \frac{n^{\neg i,d}(t,d) + \alpha_t}{\sum_k n(k,d) + \alpha_k} \times \frac{v^{\neg i,d}(\omega(i,d),t) + \beta_{\omega(i,d)}}{\sum_w v(w,t) + \beta_w}$$

The probability that the observed token (*i* in document *d*) belongs to topic

$$P(v(i,d) = t) \propto \frac{n^{\neg i,d}(t,d) + \alpha_t}{\sum_k n(k,d) + \alpha_k} \times \frac{v^{\neg i,d}(\omega(i,d),t) + \beta_{\omega(i,d)}}{\sum_w v(w,t) + \beta_w}$$

Number of times document d uses topic t (minus current token)

$$P(v(i,d) = t) \propto \frac{n^{\neg i,d}(t,d) + \alpha_t}{\sum_k n(k,d) + \alpha_k} \times \frac{v^{\neg i,d}(\omega(i,d),t) + \beta_{\omega(i,d)}}{\sum_w v(w,t) + \beta_w}$$

Dirichlet parameter for document to topic distribution

$$P(v(i,d) = t) \propto \frac{n^{\neg i,d}(t,d) + \alpha_t}{\sum_k n(k,d) + \alpha_k} \times \frac{v^{\neg i,d}(\omega(i,d),t) + \beta_{\omega(i,d)}}{\sum_w v(w,t) + \beta_w}$$

In proportion, how much document d likes topic t

$$P(v(i,d) = t) \propto \frac{n^{\neg i,d}(t,d) + \alpha_t}{\sum_k n(k,d) + \alpha_k} \times \frac{v^{\neg i,d}(\omega(i,d),t) + \beta_{\omega(i,d)}}{\sum_w v(w,t) + \beta_w}$$

• Number of times topic t uses word  $\omega(i,d)$  (minus current token)

$$P(v(i,d) = t) \propto \frac{n^{\neg i,d}(t,d) + \alpha_t}{\sum_k n(k,d) + \alpha_k} \times \frac{v^{\neg i,d}(\omega(i,d),t) + \beta_{\omega(i,d)}}{\sum_w v(w,t) + \beta_w}$$

Dirichlet parameter for topic to word distribution

$$P(v(i,d) = t) \propto \frac{n^{\neg i,d}(t,d) + \alpha_t}{\sum_k n(k,d) + \alpha_k} \times \frac{v^{\neg i,d}(\omega(i,d),t) + \beta_{\omega(i,d)}}{\sum_w v(w,t) + \beta_w}$$

• In proportion, how much topic t likes word  $\omega(i,d)$ 



|     | Topic 0 | Topic 1 | Topic 2 | Topic 3 |
|-----|---------|---------|---------|---------|
|     |         |         |         |         |
| dog | 12      | 3       | 8       | 7       |
|     |         | •••     |         |         |



|     | Topic 0 | Topic 1 | Topic 2 | Topic 3        |
|-----|---------|---------|---------|----------------|
|     |         |         |         |                |
| dog | 12      | 3       | 8       | <del>7</del> 6 |
|     |         | •••     |         |                |



|     | Topic 0 | Topic 1 | Topic 2 | Topic 3 |
|-----|---------|---------|---------|---------|
|     |         |         |         |         |
| dog | 12      | 3       | 8       | 6       |
|     |         | •••     |         |         |



How much topic likes word



|     | Topic 0 | Topic 1 | Topic 2 | Topic 3 |  |
|-----|---------|---------|---------|---------|--|
|     |         |         |         |         |  |
| dog | 12      | 3       | 8       | 6       |  |
|     |         | •••     |         |         |  |



How much topic likes word



|     | Topic 0 | Topic 1 | Topic 2 | Topic 3 |
|-----|---------|---------|---------|---------|
|     |         |         |         |         |
| dog | 12      | 3       | 8       | 6       |
|     |         | •••     |         |         |







|     | Topic 0 | Topic 1 | Topic 2 | Topic 3 |
|-----|---------|---------|---------|---------|
|     |         | •••     |         |         |
| dog | 12      | 3       | 8       | 6       |
|     |         | •••     |         |         |





How much topic likes word



|     | Topic 0 | Topic 1 | Topic 2 | Topic 3 |
|-----|---------|---------|---------|---------|
|     |         |         |         |         |
| dog | 12      | 3       | 8       | 6       |
|     |         | •••     |         |         |







$$P(\nu(7,d)=T1)$$



$$P(\nu(7,d) = T2)$$



$$P(v(7,d) = T3)$$



|     | Topic 0          | Topic 1 | Topic 2 | Topic 3 |
|-----|------------------|---------|---------|---------|
|     |                  | •••     |         |         |
| dog | <del>12</del> 13 | 3       | 8       | 6       |
|     |                  | •••     |         |         |

#### Results

#### Document to Topic Matrix

|                | T <sub>o</sub> | T <sub>1</sub> | ••• | T <sub>N</sub> |
|----------------|----------------|----------------|-----|----------------|
| D <sub>0</sub> | 0.2            | 0.09           |     | 0.03           |
| D <sub>1</sub> | 0.03           | 0.13           |     | 0.11           |
| D <sub>2</sub> | 0.04           | 0.12           |     | 0.08           |
| •••            |                |                |     |                |
| D <sub>M</sub> | 0.09           | 0.01           |     | 0.2            |

#### Topic to Word Matrix

|                | W <sub>o</sub> | W <sub>1</sub> | ••• | W <sub>o</sub> |
|----------------|----------------|----------------|-----|----------------|
| T <sub>o</sub> | 0.02           | 0.01           |     | 0.13           |
| T <sub>1</sub> | 0.01           | 0.02           |     | 0.14           |
| T <sub>2</sub> | 0.09           | 0.01           |     | 0.03           |
| •••            |                |                |     |                |
| T <sub>N</sub> | 0.11           | 0.23           |     | 0.01           |

# **Topic Model Data**

#### **Topic Model Data**

Orders of Magnitude:

Topics << Documents <<<< Words

~100

~10,000 ~100,000

For the User: Reasonable

Too much

## **Topics to Words Matrix**

|                | Topic 1 |        |  |  |  |
|----------------|---------|--------|--|--|--|
|                | Label   | Weight |  |  |  |
| W <sub>o</sub> | book    | 0.02   |  |  |  |
| W <sub>1</sub> | tulip   | 0.01   |  |  |  |
| •••            |         |        |  |  |  |
| W <sub>o</sub> | fox     | 0.16   |  |  |  |

| Topic 2        |       |        |  |  |
|----------------|-------|--------|--|--|
|                | Label | Weight |  |  |
| W <sub>o</sub> | book  | 0.12   |  |  |
| W <sub>1</sub> | tulip | 0.02   |  |  |
| •••            |       |        |  |  |
| W <sub>o</sub> | fox   | 0.001  |  |  |

| Topic 1        |        |      |  |  |  |  |
|----------------|--------|------|--|--|--|--|
| Label Weight   |        |      |  |  |  |  |
| W <sub>A</sub> | dog    | 0.25 |  |  |  |  |
| W <sub>B</sub> | canine | 0.2  |  |  |  |  |
| W <sub>c</sub> | fox    | 0.16 |  |  |  |  |
| •••            |        |      |  |  |  |  |

| Topic 2 |              |      |  |  |  |  |
|---------|--------------|------|--|--|--|--|
|         | Label Weight |      |  |  |  |  |
| $W_{D}$ | page         | 0.18 |  |  |  |  |
| $W_{E}$ | ink          | 0.16 |  |  |  |  |
| $W_{F}$ | book         | 0.12 |  |  |  |  |
| •••     |              |      |  |  |  |  |

```
> dataModel

√ ftopics: Array(30), topicsAsocIndex: {...}, refEntries: Array(1819)}

    ▼ topics: Array(30)
      w 0:
         topicNumber: 0
        www.words:
           first3words: "food-environmental-science"
          ▼ wordCloudAsArrayOfObjects: Array(20)
           ▶ 0: {weight: 1639, label: "food"}
           ▶ 1: {weight: 1373, label: "environmental"}
           ▶ 2: {weight: 1211, label: "science"}
           ▶ 3: {weight: 825, label: "research"}
           ▶ 4: {weight: 704, label: "plant"}
           ▶ 5: {weight: 689, label: "facility"}
           ▶ 6: {weight: 653, label: "environment"}
           ▶ 7: {weight: 644, label: "marine"}
           ▶ 8: {weight: 627, label: "change"}
           ▶ 9: {weight: 622, label: "conservation"}
           ▶ 10: {weight: 602, label: "animal"}
           ▶ 11: {weight: 587, label: "development"}
           ▶ 12: {weight: 569, label: "ecology"}
           ▶ 13: {weight: 500, label: "nerc"}
           ▶ 14: {weight: 487, label: "management"}
           ▶ 15: {weight: 475, label: "work"}
           ▶ 16: {weight: 469, label: "ecosystem"}
           ▶ 17: {weight: 442, label: "soil"}
           ▶ 18: {weight: 441, label: "include"}
           ▶ 19: {weight: 420, label: "agriculture"}
             length: 20
           ▶ proto : Array(0)
          proto : Object
        ▶ topDocuments: {fullInfo: Array(100)}
        similarities: (30) [1, 0, 0, 0, 0, 0, 0, 0.07207604062325, 0.00797398165
        ▶ proto : Object
      ▶1: {topicNumber: 1, words: {...}, topDocuments: {...}, similarities: Array(30)}
      ▶ 2: {topicNumber: 2, words: {...}, topDocuments: {...}, similarities: Array(30)}
```

intervention focus education age change data

aim health care child survey
policy life people practice
service school experience social support
young older family
interview explore

```
understand design methodology modelling apply address statistical test model complex interaction behaviour data tool analysis predict prediction aim base propose framework effect level
```





## **Documents to Topics Matrix**

|                | T <sub>o</sub> | T <sub>1</sub> | ••• | T <sub>N</sub> |
|----------------|----------------|----------------|-----|----------------|
| D <sub>0</sub> | 0.2            | 0.09           |     | 0.03           |
| D <sub>1</sub> | 0.03           | 0.13           |     | 0.11           |
| D <sub>2</sub> | 0.04           | 0.12           |     | 0.08           |
| •••            |                |                |     |                |
| D <sub>M</sub> | 0.09           | 0.01           |     | 0.2            |

|                       | D <sub>0</sub> | D <sub>1</sub> | ••• | D <sub>M</sub> |
|-----------------------|----------------|----------------|-----|----------------|
| T <sub>o</sub>        | 0.2            | 0.03           |     | 0.09           |
| T <sub>1</sub>        | 0.09           | 0.13           |     | 0.01           |
| <b>T</b> <sub>2</sub> | 0.05           | 0.08           |     | 0.14           |
| •••                   |                |                |     |                |
| T <sub>N</sub>        | 0.03           | 0.11           |     | 0.2            |

Top documents per topic

```
> dataModel

⟨ ▼{topics: Array(30), topicsAsocIndex: {...}, refEntries: Array(1819)} []
    ▼ topics: Array(30)
      ₩0:
         topicNumber: 0
       words: {first3words: "food-environmental-science", wordCloudAsArrayOfObjects: Array(20)}
       ▼ topDocuments:

▼ fullInfo: Array(100)
           w 0:
               topicWeight: 0.5197057277982133
              wordCount: 3972
               docID: "10007799-6-"
             ▶ docInfo: {UoAString: " Agriculture, Veterinary and Food Science", Institution name: "Newcas
             proto : Object
           ▶1: {topicWeight: 0.5148090413094311, wordCount: 5242, docID: "10007857-6-", docInfo: {...}}
           2: {topicWeight: 0.5074045206547155, wordCount: 5242, docID: "10007856-6-", docInfo: {...}}
           3: {topicWeight: 0.4523875241512559, wordCount: 3748, docID: "10007804-6-", docInfo: {...}}
           4: {topicWeight: 0.43951985226223456, wordCount: 3286, docID: "10007822-6-", docInfo: {...}}
           ▶5: {topicWeight: 0.4359951845906902, wordCount: 5087, docID: "10007802-6-", docInfo: {...}}
           ▶ 6: {topicWeight: 0.4173706441393875, wordCount: 3932, docID: "10007857-7-", docInfo: {...}}
           ▶ 7: {topicWeight: 0.41129883843717, wordCount: 3932, docID: "10007856-7-", docInfo: {...}}
           ▶8: {topicWeight: 0.39144845873384154, wordCount: 3091, docID: "10040812-6-", docInfo: {...}}
```

|                       | D <sub>0</sub> | D <sub>1</sub> | ••• | D <sub>M</sub> |
|-----------------------|----------------|----------------|-----|----------------|
| T <sub>o</sub>        | 0.2            | 0.03           |     | 0.09           |
| T <sub>1</sub>        | 0.09           | 0.13           |     | 0.01           |
| <b>T</b> <sub>2</sub> | 0.05           | 0.08           |     | 0.14           |
| •••                   |                |                |     |                |
| T <sub>N</sub>        | 0.03           | 0.11           |     | 0.2            |

- Top documents per topic
- Document vectors per topic

## **Cosine Similarity**



#### **Cosine Similarity**



Similarity ~ 52%





#### **Cosine Similarity**



Similarity ~ 96%





|                       | D <sub>0</sub> | D <sub>1</sub> | ••• | D <sub>M</sub> |
|-----------------------|----------------|----------------|-----|----------------|
| T <sub>0</sub>        | 0.2            | 0.03           |     | 0.09           |
| T <sub>1</sub>        | 0.09           | 0.13           |     | 0.01           |
| <b>T</b> <sub>2</sub> | 0.05           | 0.08           |     | 0.14           |
| •••                   |                |                |     |                |
| T <sub>N</sub>        | 0.03           | 0.11           |     | 0.2            |

- Top documents per topic
- Document vectors per topic
  - → Topic to Topic Similarity

#### **Topics to Topic Similarity**

```
> dataModel

⟨ ▼{topics: Array(30), topicsAsocIndex: {...}, refEntries: Array(1819)} 

    ▼ topics: Array(30)
      ▼0:
        words: {first3words: "food-environmental-science", wordCloudAsArrayOfObjects: Array(20)}
        ▶ topDocuments: {fullInfo: Array(100)}
        ▼ similarities: Array(30)
           0: 1
           1: 0
           2: 0
           3: 0
           4: 0
           5: 0
           6: 0
           7: 0
           8: 0.07207604062325
           9: 0.00797398165098
           10: 0.02409086293046
           11: 0
           12: 0.00553670267199
           13: 0.01827718882005
           14: 0.08280989828378
           15: 0
           16: 0.20354517225645
           17: 0.02644391490685
           18: 0.10612095996277
           19: 0.00466132686394
           20: 0
           21: 0
           22: 0
           23: 0
           24: 0.00734715054184
           25: 0.00928436669004
           27: 0.01919855096201
           28: 0
           29: 0
           length: 30
         ▶ proto : Array(0)
       ▶ proto : Object
      ▶ 1: {topicNumber: 1, words: {...}, topDocuments: {...}, similarities: Array(30)}
```

|                       | D <sub>0</sub> | D <sub>1</sub> | ••• | D <sub>M</sub> |
|-----------------------|----------------|----------------|-----|----------------|
| T <sub>0</sub>        | 0.2            | 0.03           |     | 0.09           |
| T <sub>1</sub>        | 0.09           | 0.13           |     | 0.01           |
| <b>T</b> <sub>2</sub> | 0.05           | 0.08           |     | 0.14           |
| •••                   |                |                |     |                |
| T <sub>N</sub>        | 0.03           | 0.11           |     | 0.2            |

- Top documents per topic
- Document vectors per topic
  - → Topic to Topic Similarity
    - → Clusters
    - → Visual Layouts

|   | А   | В   | С   | D   | E   |  |
|---|-----|-----|-----|-----|-----|--|
| Α | 1   | 0.2 | 0.6 | 0.1 | 0.3 |  |
| В | 0.2 | 1   | 0.3 | 0.7 | 0.5 |  |
| С | 0.6 | 0.3 | 1   | 0.2 | 0.4 |  |
| D | 0.1 | 0.7 | 0.2 | 1   | 0.4 |  |
| E | 0.3 | 0.5 | 0.4 | 0.4 | 1   |  |
|   |     |     |     |     |     |  |

|   | А   | В   | С   | D   | E   |  |
|---|-----|-----|-----|-----|-----|--|
| А | 1   | 0.2 | 0.6 | 0.1 | 0.3 |  |
| В | 0.2 | 1   | 0.3 | 0.7 | 0.5 |  |
| С | 0.6 | 0.3 | 1   | 0.2 | 0.4 |  |
| D | 0.1 | 0.7 | 0.2 | 1   | 0.4 |  |
| E | 0.3 | 0.5 | 0.4 | 0.4 | 1   |  |
|   |     |     |     |     |     |  |

|       | А   | В   | С   | D   | E   | (B,D) |
|-------|-----|-----|-----|-----|-----|-------|
| Α     | 1   | 0.2 | 0.6 | 0.1 | 0.3 | 0.1   |
| В     | 0.2 | 1   | 0.3 | 0.7 | 0.5 |       |
| С     | 0.6 | 0.3 | 1   | 0.2 | 0.4 | 0.2   |
| D     | 0.1 | 0.7 | 0.2 | 1   | 0.4 |       |
| E     | 0.3 | 0.5 | 0.4 | 0.4 | 1   | 0.4   |
| (B,D) | 0.1 |     | 0.2 |     | 0.4 | 1     |

|       | Α   | В | С   | D | E   | (B,D) |
|-------|-----|---|-----|---|-----|-------|
| А     | 1   |   | 0.6 |   | 0.3 | 0.1   |
| В     |     |   |     |   |     |       |
| С     | 0.6 |   | 1   |   | 0.4 | 0.2   |
| D     |     |   |     |   |     |       |
| E     | 0.3 |   | 0.4 |   | 1   | 0.4   |
| (B,D) | 0.1 |   | 0.2 |   | 0.4 | 1     |

|       | Α   | С   | E   | (B,D) |  |
|-------|-----|-----|-----|-------|--|
| Α     | 1   | 0.6 | 0.3 | 0.1   |  |
| С     | 0.6 | 1   | 0.4 | 0.2   |  |
| E     | 0.3 | 0.4 | 1   | 0.4   |  |
| (B,D) | 0.1 | 0.2 | 0.4 | 1     |  |
|       |     |     |     |       |  |

B, D, 0.7

|       | E   | (B,D) | (A,C) |  |
|-------|-----|-------|-------|--|
| E     | 1   | 0.4   | 0.3   |  |
| (B,D) | 0.4 | 1     | 0.1   |  |
| (A,C) | 0.3 | 0.1   | 1     |  |
|       |     |       |       |  |

B, D, 0.7 A, C, 0.6

|           | (A,C) | ((B,D),E) |  |
|-----------|-------|-----------|--|
| (A,C)     | 1     | 0.1       |  |
| ((B,D),E) | 0.1   | 1         |  |
|           |       |           |  |

B, D, 0.7

A, C, 0.6

(B,D), E, 0.4

|                  | ((B,D),E),(A,C)) |  |
|------------------|------------------|--|
| ((B,D),E),(A,C)) | 1                |  |
|                  |                  |  |

B, D, 0.7

A, C, 0.6

(B,D), E, 0.4

((B,D),E), (A,C), 0.1



B, D, 0.7

A, C, 0.6

(B,D), E, 0.4

((B,D),E), (A,C), 0.1



# **Agglomerative Layout**



# **Topic Maps**



Source: Strategic Futures Laboratory

#### **Topic Maps**



Source: Strategic Futures Laboratory

## **Topic Maps**



Source: Strategic Futures Laboratory

#### Conclusion

- Topic Modelling Unsupervised classification of documents into themes
- LDA Describes a document generative model
- Collapsed Gibbs Sampling MCMC algorithm sampling document to topic distributions and topic to word distributions
- Agglomerative Clustering Builds a hierarchy from similarity data