AD-775 456

BLAST LOADING OF OBJECTS IN BASEMENT SHELTER MODELS

George A. Coulter

Ballistic Research Laboratories Aberdeen Proving Ground, Maryland

January 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2348

JANHARY 1974

SUMMARY

BLAST LOADING OF OBJECTS IN BASEMENT SHELTER MODELS

George A. Coulter Terminal Bailistics Laboratory

This work was supported by Defense Civil Preparedness Agency, Work Order No. DAHC 2C -70-C-U310, A#2 Work Unit 1123C

ABERDEEN PROVING GROUND, MARYLAND

I. INTRODUCTION

This report is a part of a study for the Defense Civil Preparedness Agency under Work Order No. DAHC 20-70-C-0310, A#2; Work Unit 1123C, "Blast Loading in Existing Structures". Results are presented for the blast induced loading on objects inside 1/12th scale model basement shelters. The work assumes that the external blast wave will destroy and blow away the above ground structure. The blast wave is assumed then to enter the basement shelter through open stairways, elevator shafts and other openings that are left.

The work reported here is a continuation of that reported in BRL Memorandum Report 2208 (Ref. 1). The BRL 24 inch shock tube was modified, since that work, by the addition of a longer driver section which increased the duration of the input shock wave for the smaller model experiments. Also, an additional model was built for use with the BRL 5.5 foot shock tube, to simulate a 1000 shelteree size basement shelter. Results are also presented for this larger model.

II. EXPERIMENTS

The first experiment made use of the same basement model (40 x 70 x 8 inches) as used for the experiments reported in Ref. 1. A larger driver section (35 1/2 ft) was added to the shock tube. The added driver length increased the positive, flat duration of the input shockwaves. As in the earlier experiments, pressure transducers and high speed framing cameras were used to record the pressures and object translation within the basement model.

A second basement model was built to simulate a 1000 shelteree shelter. This larger model (70 x 144 x 8 inches) was constructed to be used with the BRL 5.5 ft. shock tube to take advantage of still greater shock wave duration. Input pressure of 5 and 10 psi were used to create the internal flows within the basement models which in turn, caused the objects to translate. Pressure-time records of input shock waveforms and pressure fill records were taken and high speed 16 mm cameras (2000-3000 pps) recorded the motion of nylon cylinders placed within the models prior to shock wave exposure.

III. RESULTS AND CONCLUSIONS

A summary of the shots is given in the appendixes of this report along with pertinent data for the shots. Velocity field predictions for the interior air flow induced by an input shockwave are given by the RIPPLE code.

Some pertinent results are summarized for the two sets of experiments.

iii

A. Model 40 - Single Closed Stairway

- 1. Nylon cylinders caught in the incoming jet-like flow from the stair entrance were translated away from the entrance and toward the left rear area of the model. The translation speed of the cylinders varied from a few ft/sec for the 5 psi input to about 36 ft/sec for the input of 20 psi.
- 2. Cylinders positioned outside the jet-flow limits were caught at later times into the long-term rotation of the internal flow. These observed speeds of cylinder translation were less than 5 ft/sec.
- 3. The cylinders, when caught in the high speed jet-flow, rotated, if airborne, as they were translated. For example, rotations of 36 rotations/sec were measured for the 20 psi shock wave input.

B. Model 42 - Stairway and Elevator Shaft

- 1. Cylinders placed in the center of the incoming flow from the stairway were translated to speeds of 17 and 38 ft/sec corresponding to input pressures of 5 and 10 psi.
 - 2. Cylinders near center of room showed only slight motion.
- 3. The general pattern of motion for all cylinders was similar to that of Model 40, clockwise around the model from the entrances.
- 4. Generally translational speeds of the cylinder were higher, proportional to the six-time V/A increase for Model 42 over Model 40.

C. Predictions for Full Size Shelters

Fill-time predictions of cylinder motion for a variety of basement shelter are shown as a function of their volume to entrance area ratio. The flow parameters from these predictions are used to predict maximum translational speeds for cylinders calculated for each of the different basement sizes. In all cases, the cylinders were assumed to remain in the center and in a maximum flow region. Friction from the floor and the effect of gravity are neglected.

I

the shelter models.

Security Classification

AD-775456

DOCUMENT CONTI	ROL DATA - R & D
(Security classification of titte, body of abstract and industries	mnototion must be intered when the everall report is closelited)
1 ORIGINATING ACTIVITY (Corporate author)	M. REPORT SECURITY CLASSIFICATION
U.S. Army Ballistic Research Laboratorie	
Aberdeen Froving Ground, Maryland 21005	2b. GROUP
3 REPORT TITLE	
BLAST LOADING OF OBJECTS IN BASEMENT SHE	ELTER MODELS
A DESCRIPTION MOTERATE	
4. DESCRIPTIVE NOTES (Type of report and Inclinity dates)	
5. AUTHOR(2) (First name, middle initial, last name)	
George A. Coulter	
REPORT DATE	74. TOTAL NO. OF PAGES 26. NO. OF HEFS
JANUARY 1974	J76 7
ON CONTRACT OR GRANT NO.	SE. ORIGINATOR'S REPORT NUMBER(S)
A. PROJECT NO.	Memorandum Report No. 2348
work Order No. DAHC 20-70-C-0310.	richorandum report no. 2000
e. A=2 Work Unit 1123C	D. OTHER REPORT MO(S) (Any other numbers that may be assigned
	this report)
4.	
10. DISTRIBUTION STATEMENT	
Improved for Dublic Dalamas Discriberia	
Approved for Public Release; Distribution	on Unlimited.
II. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	Defense Civil Preparedness Agency
	Washington, D.C.
13. ABSTRACT	
xperimental results obtained from loading	two 1/12th scale basement shelter models are
given for 80 and 1000 shelteree size shelte	ers. The models were exposed to shock waves
pressure filling are compared to the measur	mputer program predictions of air speeds and red motion of mylon cylinders placed within

Lete s of illustrations in this document may be better: studied on microfidia.

DD . POR 1473 REPLACES DO PORE 1472, 1 JAM 44, WHICH H

Unclassified

Unclassified
Security Classification LINK A KEY WORDS ROLE ROLE WT ROLE WT Basement Shelter
Blast Loading
Air Flow in Shelter
Translation of Objects ia

Unclassified
Socurity Classification

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2348

JANUARY 1974

BLAST LOADING OF OBJECTS IN BASEMENT SHELTER MODELS

George A. Coulter
Terminal Ballistics Laboratory

Approved for public release; distribution unlimited.

This work was supported by Defense Civil Preparedness Agency, Work Grder No. DAHC 20-70-C-0310, A#2 Work Unit 1123C

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2348

GACoulter/njs Aberdeen Proving Ground, Md. January 1974

BLAST LOADING OF OBJECTS IN BASEMENT SHELTER MODELS

ABSTRACT

Experimental results obtained from loading two 1/12th: 'e basement shelter models are given for 80 and 1000 shelteree size shelt. The models were exposed to shock waves in the 5 to 20 psi overpressure range. Computer program predictions of air speeds and pressure filling are compared to the measured motion of nylon cylinders placed within the shelter models.

TABLE OF CONTENTS

		rage
	ABSTRACT	3
	LIST OF ILLUSTRATIONS	7
	LIST OF TABLES	1;
	LIST OF SYMBOLS	12
I.	INTRODUCTION	13
II.	EXPERIMENTS	13
	A. Basement Model 40-24 inch Shock Tube	13
	B. Basement Model 42-5.5 foot Shock Tube	16
III.	RESULTS	16
	A. Model 40-80 Shelteree Size	16
	B. Model 42-1000 Shelteree Size	21
IV.	COMPUTER CODE PREDICTIONS	31
	A. Fill-Time Predictions	31
	B. RIPPLE Code Flow Predictions	. 31
	C. Translation Calculations for Cylinders	. 31
v.	SUMMARY AND CONCLUSIONS	. 55
	A. Summary of Experiments	. 35
	B. Predictions for Full Size Basement Shelters	. 55
	ACKNOWLEDGEMENTS	. ó3
	PEFERENCES	. 64
	APPENDIXES	. 65
	A. Summary of Shots	. 65
	B. High Speed Photographs-Model 40	. 73

TABLE OF CONTENTS

		Page
c.	High Speed Photographs-Model 42	93
D,	Prediction of Velocity Fields-Model 40	191
E.	Prediction of Velocity Fields-Model 42	127
F.	Fill Pressure and Motion Predictions for Cylinders in Basement Shelters	147
DIS	TETRIFTION LIST	181

LIST OF ILLUSTRATIONS

Figure		Page
1.	1/12th Scale Basement Model-24 inch Shock Tube	. 14
2.	Floor Plan for Cylinder Experiments	. 15
3.	Model 42-1000 Person Basement Shelter Model	. 17
4.	Photographs of Model 42	. 18
5.	Location of Nylon Cylinders-Model 42	. 19
6.	Typical Pressure-Time Records-Model 40	. 20
7.	End View, Cylinders on Row 3-Ps = 20.1 psi	. 22
8.	Side View, Cylinders on Row 3-Ps = 20.1 psi	. 24
9.	Typical Pressure-Time Curves for Model 42	. 26
10.	Camera 1, 2-ft Row, Model 42	. 27
11.	Camera 2, 6-ft Row, Model 42	. 28
12.	Camera 2 - Cylinders from Other Rows	. 29
13.	Fill Prediction for Model 40, Ps=5 psi	. 35
14.	Fill Prediction for Model 40, Ps=10 psi	. 36
15.	Fill Prediction for Model 40, Ps=20 psi	. 37
16.	Fill Predictions for Model 42, Ps=5 psi	. 41
17.	Fill Predictions for Model 42, Ps=10 psi	. 42
18.	RIPPLE Flow Predictions for Model 40	. 43
19.	RIPPLE Flow Predictions for Mode' 42	. 44
20.	Coefficient of Drag for a Cylinder	. 46
21.	Fredicted Translation for Cylinder-Model 40	. 49
22.	Predicted Translation Velocity for Cylinder-Model 40.	. 50
23.	Predicted Acceleration for Cylinder - Model 40	. 51

LIST OF ILLUSTRATIONS

Figure		Page
24.	Predicted Translation for Cylinder-Model 42	52
25.	Predicted Translation Velocity for Cylinder-Model 42	53
26.	Predicted Acceleration for Cylinder-Model 42	54
27.	Comperison of Predicted Cylinder Motion-Scale Model with Full Size	. é 0
28.	Displacement of 156 lb. Cylinder as a Function of Basement Volume to Entrance Area Ratio	61
29.	Velocity of 156 lb. Cylinder as a Function of Basement Volume to Entrance Area Ratio	62
B-1.	End View, Cylinders on Row 15.2 psi	75
B-2.	Side View, Cylinders on Row 15.2 psi	76
B-3.	End View, Cylinders on Row 110.2 psi	. 77
B-4.	Side View, Cylinders on Row 110.2 psi	78
B-5.	End View, Cylinders on Row 120.3 psi	. 79
B-6.	Side View, Cylinders on Row 120.3 psi	. 80
B-7.	End View, Cylinders on Row 25.3 psi	. 81
B-8.	Side View, Cylinders on Row 25.3 psi	. 82
B-9	End View, Cylinders on Row 210.2 psi	. 83
B-10.	Side View, Cylinders on Row 210.2 psi	. 84
B -11.	End View, Cylinders on Row 220.2 psi	. 85
B-12.	Side View, Cylinders on Row 220.2 psi	. 86
B-13.	End and Side Views, Cylinders on Row 35.1 psi	. 87
B-14.	End and Side Views, Cylinders on Row 310.0 psi	. 88
D_1C	End View Culinders on You 5 5 1 nei	90

LIST OF ILLUSTRATIONS

Figure		Page
B-16.	End and Side Views, Cylinders on Row 510.2 psi	90
B-17.	End View, Cylinders on Row 520.2 psi	91
B 18.	Side View, Cylinders on Row 520.2 psi	92
C-1.	Camera 1, Side View Model 425 psi	95
C-2.	Camera 2, Side View Model 425 psi	96
C-3.	Camera 1, Side View Model 4210 psi	98
C-4.	Camera 2, Side View Model 4210 psi	99
D-1.	Velocity Field at -0.058 milliseconds	104
D-2.	Velocity Field at 1.28 milliseconds	105
D-3.	Velocity Field at 1.67 milliseconds	106
D-4.	Velocity Field at 2.19 milliseconds	107
D-5.	Velocity Field at 2.81 milliseconds	108
D-6.	Velocity Field at 3.55 milliseconds	109
D-7.	Velocity Field at 4.03 milliseconds	110
D-8.	Velocity Field at 4.50 milliseconds	111
D-9.	Velocity Field at 4.97 milliseconds	112
D-10	Velocity Field at 5.65 milliseconds	113
D- 11	Velocity Field at 6.09 milliseconds	114
D-12.	Velocity Field at 7.52 milliseconds	115
D-13.	Velocity Field at 7.95 milliseconds	116
D-14.	Velocity Field at 8.59 milliseconds	117
n_15	Valority Field at Q 00 milliceronds	110

Figure	LIST OF ILLUSTRATIONS	Page
D-16.	Velocity Field at 9.41 milliseconds	119
E-1.	Velocity Field at-2.5 milliseconds	141
E-2.	Velocity Field at 2.1 milliseconds	142
E-3.	Velocity Field at 7.0 milliseconds	143
E-4.	Velocity Field at 9.4 milliseconds	144
E-5.	Velocity Field at 13.9 milliseconds ,	145
F-1.	Fill Prediction for Basement Shelter I	149
F-2.	Fill Prediction for Basement Shelter II	154
F-3.	Fill Prediciton for Basement Shelter III	159
F-4.	Fill Prediciton for Resement Shelter IV	164

LIST OF TABLES

Table		Page
1.	Summary of Motion of Cylinders-Model 40	25
II.	Summary of Motion of Cylinders-Model 42	30
III.	Fill Parameters for Model 40	32
IV.	Fill Parameters for Model 42	38
v.	Motion Predictions for Model 40	47
vI.	Motion Predictions for Model 42	48
VII.	Dimensions of Models and Basements	56
VIII.	Prediction of Translation for a Cylinder	58
A-I.	Summary of Shots-Model 40	. 67
A-II.	Summary fo Shots-Model 42	. 70
D-I.	Input Parameters for RIPPLE Code Predictions- Model 40	. 103
D-II.	Flow Parameters Predicted by RIPPLE Code-Model 42	. 120
E-I.	Input Parameters for RIPPLE Code Predictions- Model 42	. 129
E-II.	Flow Parameters for RIPPLE Code Predictions-	. 133
F-I.	Motion Parameters from Basement I	. 173
F-II.	Motion Parameters from Basement II	. 175
F-III.	Motion Parameters from Basement III	. 177
F-IV.	Motion Parameters from Basement IV	. 179

LIST OF SYMBOLS

	2
a	Acceleration, ft/sec ²
A	Area of entrance to model, ft ²
A _c	Frontal area of cylinder, in. ²
A_1	Ambient sound speed of air, ft/sec
A ₂	Sound speed behind shock, ft/sec
c_{D}	Coefficient of drag, Force/ $(Q_{stag} A_c)$, non-dimensional
Н	Height of basement model, ft
L	Length of model, ft
n	Mass of cylinder, slugs
M ₂	Flow Mach number behind shock, non-dimensional
Pcenter	Pressure at the center of basement model floor, psi
P_1	Ambient air pressure, psi
Ps	Overpressure behind shock, psi
P _{stag}	Stagnation overpressure, psi
Q	Dynamic pressure, 1/2 ρυ ² , 1b/ft ²
Q_{stag}	P _{Stag} - P _S , psi
Re	Reynolds number, non-dimensional
t	Time, sec
T ₁	Ambient air temperature, deg F
T ₂	Temperature behind shock, deg F
T _{fill}	Time to fill model to input pressure in the shock tube, sec
Time Zero	Defined to be when shock wave exits stairway
υį	Ambient air speed, ft/sec
υ ₂	Speed of air flow behind shock, ft/sec
v	Internal volume of basement model, ft ³
V/A	Internal volume to entrance area ratio of model, ft
W	Width of model entrance, ft
X	Coordinate in direction of model width, in.
Y	Coordinate in direction of model length, in.
ρ ₁	Ambient air density, slug/ft ³
ρ_2	Density behind the shock, slug/ft ³

I. INTRODUCTION

The work being reported is a part of a study for the Defense Civil Preparedness Agency under Work Order No. DAHC 20-70-C-0310, A#2; Work Unit 1123C, "Blast Loading in Existing Structures". Results are presented for the loading experienced by objects in a model basement shelter when exposed to shock waves entering the room. The work assumes that an external blast wave will destroy and remove that portion of the structure above ground. The blast wave is then assumed to enter the basement through the open stairways, elevator shafts, and remaining openings.

The work reported here is a continuation of that reported in BRL Memorandum Report 2208 (Ref. 1). A longer driven section has since been added to the BRL 24-inch shock tube which has increased the duration of the input shock wave. This has allowed the smaller model to be exposed to another set of input conditions for longer fill times. A larger basement model representing a 1000 shelteree shelter was built for use on the BRL 5.5-foot shock tube. Results are presented for this model and compared to those obtained for the smaller (80 shelteree) basement model exposed at the 24-inch shock tube.

II. EXPERIMENTS

The experiments are reported in two parts, Part A which concerns the work done with a basement model exposed to shock waves from the 24-inch shock tube, and Part B which reports the experiments with a larger model at the 5.5-foot shock tube.

A. Basement Model 40-24 inch Shock Tube

Model 40 measured 20 x 40 x 8 inches in size and simulated a 1/12th scale basement shelter capable of holding about 80 shelterees at 10 feet 2 /person. The model was designed with a single closed stairway with an opening of 4.75 x 8 inches. The model volume to entrance area ratio, V/A, was approximately 14 feet.

The instrumentation included Susquehanna Instrument ST-2 pressure transducers coupled with Kistler Model 566 charge amplifiers to Textronix 502-A oscilloscopes. These were used to measure the input shock overpressure and also the model's interior fill pressure. Fastex 16 mm framing cameras running at 2000-3000 pps were used to record the motion of nylon cylinders (1.28" dia x 1.83" high, weight 1.56 oz.) exposed to the shock-created internal flows. Figures 1 and 2 show the model attached to the 24-inch shock tube and a schematic of the floor grid where the cylinders were placed.

Figure 1. 1/12th Scale Basement Model-24 inch Shock Tube

Figure 2. Floor Plan for Cylinder Experiments

The experimental procedure was to place a row of three cylinders across the floor of the model and allow a shock wave to enter the model. A series of 5, 10 and 20 psi input waves was used for the cylinders placed at the different rows shown. During the shot time, the motion of the cylinders was recorded by cameras placed at the end and the side. Photographs of the cylinders' motion and tables of average translational velocities are given in the Results Section, Part A.

B. Basement Model 42-5.5 Foot Shock Tube

A larger basement model, also 1/12th scale, with a size of 70 x 144 x 8 inches was built and attached to the 5.5 foot shock tube. An elevator-stairway entrance combination was built at the shock tube end for entrances into the model. Figures 3-5 describe the model. The size was chosen to approximate a full size shelter with space for 1000 shelterees at 10 ft²/person. The shelter volume to total entrance area ratio was about 85 feet.

The instrumentation was similar to that used earlier except that longer time response was needed for the several hundred milliseconds duration shock waves. Accordingly, strain gage type transducers manufactured by Bytrex (Series HFG) and CEC (Type 4-312) were used instead of the ST-2 transducer. Also, a multichannel oscillograph recorder was used with CEC System D amplifiers for the strain transducers outputs.

The camera system was enlarged by one camera and mostly were used at the side position. Additional DXC 500 watt photoflood lamps were needed for a total of fourteen lamps. The framing rate was again held between 2000 and 3000 pps.

A pressure range of 5 and 10 psi input shock waves was used and the motion of the nylon cylinders observed. Since the basement model was large, twenty cylinders were used inside of three as before. The results of these experiments are given in the Results Section, Part B.

III. RESULTS

The results are presented in two parts. Part A describes the results obtained from Model 40 and Part B the results from Model 42.

A. Model 40-80 Shelteree Size

A summary of the shots to which model 40 was exposed is given in Appendix A, Table A-I. A representative set of pressure-time records obtained from the input transducer located 41 inches upstream of model entrance and the interior transducer, located flush in the center of floor, are shown in Fig. 6. The input shockwave has an approximately

Figure 3. Model 42-1000 Person Basement Shelter Model

(A) MODEL 42 INSTALLED ON 5.5 FT. SHOCK TUBE

(B) INTERIOR VIEW OF MODEL 42

Figure 4. Photographs of Model 42

Figure 5. Location of Nylon Cylinders-Model 42

Figure 6. Typical Pressure-Time Records-Model 40

Q

flat portion of about 45 msec. long. The slight dip at about 10 msec is caused by the filling rarifaction wave moving upstream from the model.

At all three input pressure levels the model was completely filled with pressure to the value of the outside shock pressure. Predictions have been made in Ref. 2, 3 and 4 that incoming air flow from the entrance is jet-like and attains a speed of several hundred feet/sec near the entrance. Other areas may maintain the order of 50-100 ft/sec for times several times the amount of the filling time. These predictions are compared with the experimental results later, in Section 1V.

The purpose of the high speed photography was to record the effect of these interior flows upon the cylinders placed in various locations inside the model. Figures 7 and 8 show some of this motion as recorded by the Fastex cameras at the end and side of Model 40. Additional pictures are given in Appendix B. The motion is summarized in Table I as a function of cylinder location and input shock overpressure. In all shots the cylinders were arranged from left to right "A", "B", and "C". This placed "C" near the entrance, exposed to the highest air flow speeds.

B. Model 42-1000 Shelteree Size

The shot series for Model 42 is given in Appendix A, Table A-II. Typical records for the input shock waves for the shot series and the related filling pressure records are shown in Fig. 9. The input shock wave is seen to have a flat portion of 180-190 milliseconds duration. This is more than enough time for the filling curve to reach the input shockwave pressure at 100-150 milliseconds.

Photographs of the motion of the cylinders as they are affected by the shock created internal air flow are shown in Fig. 10-12. As in the smaller Model 40, the cylinders placed in the incoming high speed flow from the stairway were translated at speeds of 17 and 38 ft/sec for inputs of 5 and 10 psi. Other cylinders out of the main flow and near the center of the floor, moved only a slight amount. Generally, the observed pattern of motion for the cylinders was quite similar to that of Model 40. The main difference of greater maximum translational speeds for the cylinders can be attributed to the increased filling time for Model 42 as indicated by a V/A of about six times that of Model 40. Table II summarizes the data from Model 42.

Figure 7. End View, Cylinders on Row 3-Ps = 20.1 psi

Figure 7. Continued

Figure 8. Side View, Cylinders on Row 3-Ps = 20.1 psi

Table I. Summary of Motion of Cylinders-Model 40

Cylinder	Input	Input Pressure, psi	Wo.	Motion of Cylinders	rs	
			Row 1	Row 2	Row 3	Row S
< +		s	Slightly toward stairs	Slight	Slid toward stairs	slid slightly
		10	Slight	Did not fall	2-4 ft/sec toward stairs	4 ft/sec toward stairs
		20	Slid to left toward stairs	< 2 ft/sec	Airborne,6 ft/ Did not fall sec to left of stairs	Did not fall
æ		w	Slightly toward stairs	Slight	Slight	Slight
		10	Fell down	Tilted	2-4 ft/sec toward stairs	Slid toward stairs
******		20	4-9 ft/sec away from stairs	< 2 ft/sec	Fell over	Tumbles at 8-10 rot/sec
υ		2	3-4 ft/sec away from stairs	1-2 ft/sec	l ft/sec	Slid only
<u>, </u>		10	<pre>11-15 ft/sec away from stairs</pre>	5 ft/sec away 2-4 ft/sec from stairs away from stairs	2-4 ft/sec away from stairs	Slid slightly toward stairs
		20	36 ft/sec to diagonal left rear away from stairs	11-30 ft/sec to left rear	8-13 ft/sec to left rear	9 ft/sec toward front to stairs

A. A. Allegan

Figure 9. Typical Pressure-Time Curves for Model 42

~ 7

SHOT 5-73-7 CAMERA I

Figure 10. Camera 1, 2-ft Row, Model 42

SHOT 5-73-7 CAMERA 2

Figure 11. Camera 2, 6-ft Row, Model 42

SHOT 5-73-7 CAMERA 2-OTHER CYLINDERS

183.9

Figure 12. Camera 2 - Cylinders from Other Rows

Table II. Summary of Motion of Cylinders-Model 42 [nput Pressure 5 psi

Camera 1,	Camera 1, 2ft-3ft lines	Camera 2,	Camera 2, 6ft-7ft lines	Camera 3, 9	9ft-10ft lines
Cylinder Numbers	Motion of Cylinders	Cylinder Numbers	Motion of Cylinders	Cylinder Numbers	Motion of Cylinders
	Not seen	6,8,7,9	Not seen	A11	Little
283	14-17 ft/sec	11	Not seen	Cylinders	Motion
4	2-3 ft/sec	12,13,14	Slight motion		
s	17 ft/sec,max	15	7 ft/sec		
		10	7 ft/sec		
		Ŋ	8-10 ft/sec		
		m	4-6 ft/sec		
		Input	Input Pressure 10 psi		
	Not. seen	6,7.8,9	Not seen	4	Not seen
C 3	15 ft/sec	11,12,13	Slight motion	ţ	
10	8-12 ft/sec		to front	SAC C	Little Motion
4	Little motion	14	2-3 ft/sec	۵	10-12 ft/sec
· w	24 ft/sec.max	15	19 ft/sec,max	15	23-30 ft/sec
)		10	20-26 ft/sec	10	23-34 ft/sec
		ហ	23-33 ft/sec	ß	21-38 ft/sec
		4	Slight	ю	10 ft/sec
		ю	10-13 ft/sec	O+ber	
		2	32-58 ft/sec	Cylinders	
			Not seen	Not Seen.	
		16	3.5 ft/sec to front		

IV. COMPUTER CODE PREDICTIONS

Three types of predictions were made with the help of computer codes. (1) Prediction of interior filling of the models with pressure, as a function of time, were made with the BRL Fixling Code, Ref.1. (2) Two-dimensional hydrodynamic code predictions of the interior flows were made for Models 40 and 42, for an input of 10 psi, with the RIPPLE Code, Ref. 2. (3) Translation calculations were made for cylinders by making use of the flow parameters obtained from Filling Code predictions.

A. Fill-Time Predictions

Interior pressure filling predictions for Model 40 are shown as Table III for 5, 10 and 20 psi input shock pressures. The pressure filling from the table are plotted as a function of time in Fig. 13-15. They are plotted as solid lines, the input pressures as dotted lines and some "X's" for experimental points. There is some scatter in the data caused by peak reflections of the internal shock waves. Also, the stairs have been neglected as a correction to the total room volume and was neglected as a source of possible choking of the entrance flow. Similar predictions for Model 42 are given in Table IV and Fig. 16 and 17.

B. RIPPLE Code Flow Predictions

RIPPLE Code predictions of shock induced internal flow for a 10 psi input were made for Models 40 and 42. An example for Model 40 is shown in Fig. 18 for a time of about 5 msec. The time was chosen to start when the input shock wave entered the room from the entryway. The vector scale is shown at the bottom of the figure. A wide range of flow speeds exist at this time. Flows vary from a maximum of 650-750 ft/sec at the entryway corner, to 200ft/sec near center of room, to 50-100 feet near vortex, and to less than 20 ft/sec in the corners of the room. Although the RIPPLE Code is two-dimensional, it does seem to describe sufficiently well the actual three-dimensional rown. A set of figures for Model 40 (two dimension) are given in Appendix D for flows at other times of interest.

A similar example of a flow field for Model 42 is shown in Fig. 19. The two entrances are seen to modify the flow field somewhat. The vortex location is displaced but the overall flow pattern for Model 42 resembles that of Model 40. The predicted ranges of flow speeds for the 10 psi input pressure are from 600-80° ft/sec near the entrance, 100-150 ft/sec across center of room, and 100 ft/sec near vortex. The set of flow charts are found in Appendix E.

C. Translation Calculations for Cylinders

Predictions of translation, velocity and acceleration for a nylon cylinder placed directly in the path of the incoming high speed flow were made for each of the two basement models. The simplified calculations for the parameters as a function of time, measured from diffracted shock arrival at the cylinders position, were made with a programable desk calculator.

Table III. Fill Parameters for Model 40

Model 40 Shot 569 5psi

		Shot 569 5psi		
AREAl	VOLUME	TIME	DOFFFLOR	
0.264E 00	0.370400E 01	0.200000E-02	PRESSURE	DENSITY
		0120000gE-02	0.145000E C2	0-293700E-02
TIME	PRESSURE	0543		
SECONDS	PS1	DEN3	U2	OPT
	F31	UE-S2/F4	FPS	PSI
0.200E-02	0.110568E 01			
0.400E-02		0.249548E-02	0-4909C1E C3	0.197868E 01
0.600E-02	0.208339E 01	0.264195E-02	0.412297E 03	0.147097E 01
0.800E-02	0.294322E 01	0.277066E-02	0.346933E 03	0.108774E 01
0.100E-01	0.367233E 01	0.287980E-02	0.283722E 03	0.754226E 00
0.1208-01	0.423518E 01	0.296420E-02	0.213094E 03	0.438089E 00
	0.461982E 01	0.302198E-02	0.142729E G3	0-200864E 00
0.140E-31	0.484458E 01	0.305574E-02	0.822119E 02	0.676167E-01
01160E~01	0.495154E 01	0.307179E-02	0.387624E 02	0.151576E-01
01180E-01	0.485214E 01	0.305610E-02	-0.359055E 02	0.137293E-01
0.200E-01	0.490990E 01	0.306477E-02	0.209329E CZ	0.442170E-02
0.2208-01	478283E 01	0.304470E-02	-0.460435E 02	0.225027E-01
0.240E-01	0.494990E 01	0.306978E-02	0.606785E 02	0.3705845-01
0.260E-01	0.502270E 01	0.3C8O69E-02	0.262498E 02	0.697826E-02
0.2808-01	0.491857E 01	0.306426E-02	-0.374784E 02	0.149998E-01
0+300E-01	0.4×9360E 01	0.307551E-02	0.270943E 02	0.742593E-02
01320E-01	9-489795E 01	0.306042E-02	-0.344712E 02	0.126712E-01
0.340E-01	3-507159E 01	0.308643E-02	0.626846E 02	0.397179E-01
0.360E-01	0-508407E 01	0.308830E-02	0.447176E 01	
0.380E-01	0.512247E 01	0.309405E-02	0.137550E 02	0.203416E-03
0.400E-01	0.500773E 01	0.307596E-02	-0.411027E 02	0.192553E-02
0.420E-01	0.5103916 01	0.309036E-02	0.345659E 02	0.181131E-01
0.440E-01	0.499112E 01	0.307258E-02		0.121258E-01
0:460E-01	0.511802E 01	0.309158E-02	-0.404392E 02 0.456306E 02	G-175133E-01
0.480E-01	0.499080E 01	0.307153E-02	-0.456048E 02	0.211185E-01
0.500E-01	0.502137E 01	0.307611E-02	0.109994E 02	0.222703E-01
01520E-01	0.481850E 01	0.304414E-02	-0.733734E 02	0.122712E-02
0.540E-01	0.461516E 01	0.301226E-02	-0.739558E 02	0.571343E-01
0.560E-01	0.440487E 01	0.297897E-02	-0.781034E C2	0.574359E-01
0.580E-01	0.4178596 01	0.294331E-02	-0.846872E C2	0,633408E-01
0.600E-31	0.394318E 01	0.290621E-02	-0.892525E 02	0.735537E-01
0.620E-01	0.370350E 01	0.286845F-02	-0.920903E 02	0.806444E-01
01640E-01	0.346172E 01	0.283035E-C2	-0.941602E 02	0.847211E-01
0.66GE-01	0.321891E 01	0.279209E-02	-0.958717E 02	0.873821E-01
0.680E-31	0.298205E 01	0.275476E-02	-0.947776E 02	0.893504E-01
0.700E-01	0.275587E 01	0.271912E-02	-0.916727E 02	0.861632E-01
017208-01	0.253625E 01	0.268451E-02	-0.901504E 02	0.795866E-01
0.740E-01	0-232006E 01	0.265045E-02	-0.898790E 02	0.759941E-01
0.760E-01	0.210565E 01	0.2616668-02	-0.902924E 02	0.745802E-01
0.7802-01	0.189218E 01	0.258303E-02	-0.910746E 02	0.743061E-01
0.800E-01	0.167922E 01	0.254947E-02	-0.910/40E 0Z	0.746232E-01
0-320E-01	0.146655E 01	0.251596E-02	-0.920603E 02	0.752511E-01
0.840E-01	0.125972E 01	0-248336E-02	-0.931652E C2	0.760488E-01
0.860E-01	0.106469E 01	0.245263E-02	-0.917858E 02	0.728650E-01
0.880E-01	7.878832E 00	0.242334E-02	-G.876121E 02	0.655865E-01
0.900E-01	0.697596E 00	0.239479E-02	-0.844811E 02	0.602659E-01
0.920E-01	0.558535E 00	0.237287E-02	-0.833584E 02	0.579870E-01
0.940E-01	0.581184E 00	0.237653E-02	-0.645101E 02	0.344326E-01
0.960E-01	0.495345E 00		0.105506E 02	0.938997E-03
01980E-01	0.561171E 00	0-236300E-02	-0.400057E 02	0.131813E-01
0.100E 00	0-455006E 00	0.237363E-02	0.307807E 02	0.796830E-02
0+102E 00	0.518027E 00	0.235699E-02	-0.495953E 02	0.202125E-01
0.104E 00	0.405923E 00	0.236708E-02	0.295493E 02	0.7329376-02
	++************************************	0.2349415-02	-0.525393E 02	0.556156E-01

Table III. Continued

		Model 40 Shot 572	10 psi	
AREAl	VOLUME	TIME	PRESSURE	DENSITY
0.264E 00	0.370400E	0.20000E-92	0.147000E 02	0.333800E-02
TIME	PRESSURE	DEN3	U2	DPT
SECONDS	PSI	UE-\$2/F4	FPS	PS1
0+500E-05	0.175340E (01 0.256758E-02	0.720838E 03	0.417152E 01
0.400E-02	0.342911E (01 0.279385E-02	0.633425E 03	0.349113E 01
01600E-02	0.496615E	01 0.300133E-02	0.541952E C3	0.273895E 01
04800E-02	0.630456E		0.446425E 03	0.196972E 01
0.100E-01	0.741745E		0.446423E 03	0.130742E 01
0.120E-01	0.832068E		0.278258E 03	0.832226E 00
01140E-01	0.903745E	01 0.355376E-02	0.214539E 03	0.509069E 00
0.160E-01	0.956032E (01 0.362480E-02	0.1530788 03	0.264910E 00
01180E-01	0.987025E	01 0.366691E-02	0.893267E 02	0.916?11E-01
0.200E-01	0.980531E		-0.185512E C2	0.438008E-02
01550E-01	0.998746E		0.520R65E 02	0.313762E-01
	0.988922E		-0.279389E C2	0.997056E-02
0.240E-01			• • • • • • • •	
0:5606-01	0.100929E		0.580403E 02	0.390544E-01
0.280E-01	0.999089E (-0.289037E 02	0.107079E-01
0.300E-01	0.101906E	02 0.370677E-02	0.566746E 02	0.373480E-01
0.320E-01	0.100707E	02 0.368890E-02	-0.338546E 02	0.147324E-01
0.340E-01	9.102701E		0.564058E 02	0.370798E-01
01360E-01	0.101447E		-0.352885E C2	0.160443E-01
0.380E-01	0.103386E		0.546831E 02	0.349239E-01
				0.186942E-01
01400E-01	0.102030E		-0.380570E 02	
0.420E-01	0.103972E		0.546381E 02	0.349248E-01
01440E-01	0.102468E		-0.421212E 02	0.229292E-01
0.460E~G1	J.102746E	02 0.371093E-02	0.782096E C1	0.716487E-03
0.480E-01	0.997337E	01 0.366618E-C2	-0.853004E 02	0.929922E-01
0.500E-01	0.963494E	01 0.361589E-02	-0.972471E 02	0.119119E 00
0.520E-01	0.927031E		-0.106450E 03	0.140484E 00
· · · · - · - · -		•	-0 1049335 03	0.139365E 00
0.540E-01	0.890988E		-0.106833E 03	
01290E-01	0.858451E		-0.977149E 02	0.115072E 00
0.580E-01	0.829426E		-0.882143E 02	0.926719E-01
0.600E-01	0.800665E	• • • • • • • • • • • • • • • • • • • •	-0.885162E 02	J.921388E-01
0-620E-01	0.770644E	01 0.332934E-02	-0.936651E 02	0.101774E 00
01640E-01	0.740042E	01 0.328387E-02	-0.968219E 02	0.10724lE 00
0.660E-01	0.709159E	01 0.323798E-02	-0.991116E 02	0.110783E 00
0.680E-01	0.678144E		-0.100986E 03	0.113358E 00
0.700E-01	0.648111E		-0.991614E 02	0.107788E 00
			-0.950948E 02	0.978274E-01
0.720E-31	0.619688E		-0.934433E 02	0.932233E-01
01740E-01	0.592124E			
0.760E-01	0.565000E		-0.931751E 02	0.914715E-01
01780E-01	0.538099E		-0.936493E 02	0.911804E-01
01800E-01	0.511631E	01 0.294447E-02	-0.933696E 02	0.8944376-01
04520E-01	0.485740E	01 0.290600E-02	-0.925391E 02	0.867163E-01
01840E-01	0.460176E	01 0.286802E-02	-0.925809E 02	0.854599E-01
04860E-01	0.434778E		-0.932135E 02	0.856884E-01
0.880E-01	0.409464E		-0.941573E 02	0.862651E-01
	0.384197E		-0.952723E 02	0.871262E-01
0.900E-01				0.827211E-01
01920E-01	0.359739E		-0.934452E 02	
01940E-01	0.337262E		-0.869060E 02	0.706971E-01
0.960E-01	0.316608E		-0.807630E 02	0.603747E-01
01980E-01	0.296811E		-0.782685E 02	0.560796E-01
0.100E 00	0.277383E	01 0.259641E-02	-0.776674E 02	0.546154E-01
01102E 00	0.258106E	01 0.256777E-02	-0.779193E 02	0.543633E-01
0.104E 00	0.238893E	01 0.253922E-02	-0.785367E 02	0.546130E-01
		· · · · · · · · · · · · · · · · · · ·		

Table III. Continued

	Ma	iel 40 Shot 5	777 - 00	
AREA1	AOFOWE	tel 40 TIME Shot 5	77 20 psi PRESSURE	DENSITY
0.264E 00	0.370400E 01	0.200000E-02	0.147COOE 02	0.4218C0E-02
TIME				
SECONDS	PRESSURE	DEN3	U2	DPT
3ECOMD2	PSI	UE-\$2/F4	FPS	PSI
0.200E-02	0 2202275 01	0 2/0/2/5 02		
	0.23C327E 01	0.262434E-02	0.905970E 03	0.649548E 01
01400E-02	0.487529E 01	0.294184E-02	0.880733E 03	0.681123E 01
04600E-02	0.757668E 01	0.326833E-02	J.818998E Ú3	0.651329E 01
0+800E-02	0.101186E 02	0.357555E-02	0.7026725 03	0.525325E 01
0.100E-01 0.120E-01	0.123963E 02	0.385165E-02	0.584606E 03	0.393174E 01
0.140E-01	0.143195E 02 0.159016E 02	0.408603E-02	0.466082F 03	0.266084E 01
0:160E-C1	0.171821E 02	0.427941E-02 0.443602E-02	0.366182E 03	0.172487E 01
0-180E-01	0.181806E 02	0.4558098-02	0.285523E 03	0.108922E 01
0 200E-01	0.189017E 02	0.464617E-02	0.216121E 03 0.152552E 03	0.642600E 00 0.327305E 00
0.220E-01	0.193448E 02	0.470026E-02	0.922286E 02	0.121500E 00
0.240E-01	0.194820E 02	0.471698E-G2	0.282618E 02	0.115161E-01
01260E-01	0.195816E 02	0.472911E-02	0.204335E 02	0.603729E-02
01280E-01	0.197499E 02	0.474959E-02	0.344197E 02	0.171662E-01
0.300E-01	0.198514E 02	0.476192E-02	0.206631E 02	0.620824E-02
0.320E-01	0.200195E 02	0.478233E-02	C-341146E 02	9.169578E-01
01340E-01	0.201202E 02	0.479455E-02	0.203567E 02	0.605914E-02
0.360E-01	0.202502E 02	0.481C30E-02	0.261849E 02	0.1C0461E-01
0.380E-01	0.201353E 02	0.479448E-02	-0.230912E 02	0.890080E-02
0.400E-01	0.204118E 02	0.482795E-02	0.556334E 02	0.453628E-01
01420E-01	0.202099E 02	0.480018E-02	-0.404145E 02	0.273339E-01
01440E-01	0.205198E 02	0.483766E-02	0.621851E 02	0.567629E-01
01460E-01	0.203255E 02	0.481097E-02	-0.387565E 02	0.251912E-01
04480E-01 04500E-01	0.203800F 02	0.481757E-02	0.109106E 02	0.175151E-02
04520E-01	0.199338E 02 0.194936E 02	0.475629E-02	-0.899740E 02	0.134284E 00
0.540E-01	0.194936E 02 0.190560E 02	0.469583E-02 0.463574E-02	-0.899249E 02	0.132433E 00
01560E-01	0.186234E 02	0.457633E-02	-0.905429E 02 -0.906655E 02	0.132537E 00
01580E-01	0.182019E 02	0.451845E-02	-0.894740E 02	0.131193E 00 0.126158E 00
0.600E-01	0.177904E 02	0.446193E-02	-0.884536E 02	0.121760E 00
0:620E-01	0.173833E 02	0.440603E-02	-0.886138E 02	0.120669E 00
01640E-01	0.169782E 02	0.435039E-02	-0.893173E 02	0.121041E 00
01660E-01	0.165621E 02	0.429324E-02	-0.929845E J2	0.129440E 00
01680E-01	0.161268E 02	0.423346E-02	-0.986693E 02	0.143677E 00
01700E-01	0.156799E 02	0.417210E-02	-0.102805E 03	0.153671E 00
01720E-01	0.1522766 02	0.410999E-02	-0.105648E 03	0.159840E 00
0.740E-01	0.147727E 02	0.404752E-02	-0.107915E 03	0.164298E 00
0.760E-01	0.143213E 02	0.398552E-02	-0.108763E 03	0.1642348 00
0.780E-01	0.138922E 02	0.392659E-02	-3.104921E 03	0.150619E 00
0.800E-01 0.820E-01	0.134915E 02	0.387156E-02	-0.993248E 02	0.133140E 00
01840E-01	0.131056E 02	0.381857E-02	-0.969493E 02	0.125129E 00
01860E-01	0.127272E 02 0.123522E 02	0.376659E-02	-0.964102E 02	0.122061E 00
0.880E-01	0.123322E 02 0.119791E 02	9.371511E-02 0.366386E-02	-0.968274E 02	G.121434E 00
01900E-01	0.116068E 02	0.361274E-02	-0.977281E 02 -0.988792E 02	0.121991F 00
01920E-01	0.112439E 02	0.356290E-02	-0.977447E 02	0.123130E 00
01940E-01	0.109046E 02	0.351631E-02	-0.925508E 02	0.118669E 00 0.105031E 00
01960E-01	0.105875E 02	0.347276E-02	-0.875712E 02	0.928884E-01
0.980E-01	0.102806E 02	0.343061E-02	-0.857955E 02	0.860832E-01
01100E 00	0.997808E 01	0.338904E-02	-0.856104E 02	0.866419E-01
01102E 00	0.9677385 01	0.234777E-02	-0.861385E 02	0.866438E-01
0.104E 00	0.937749E 01	0.330658E-02	-0-869806E 02	0.872566F-01

¥

Fkgure 13. Fill Prediction for Model 40, Fs.5 psi

प

Figure 14, Fill Prediction for Model 40, Ps.10 psi

Figure 15. Fill Prediction for Model 40, Ps.20 psi

05 MAR 73 PAGE CT 16..47

MAR. 5,73 BRLESC2 FORTRAN. TB-175 COULTER-BAITY CHFBRL 4911

Model 42 Shot 5-72-3 5psi

ARE/ }	VOLUME	TIME	PRESSURE	DENSITY
0.549E 00	0-466750E 02	0.500G00E-02	0.149800E 02	0.284400E-02
TIME	PRESSURE	DEN3	U2	DPT
SECONDS	PSI	UE-\$2/F4	FPS	PSI
0.500E-02	0.460720E 00	0.251603E-02	0.482794E 03	0.188320E 01
0.100E-01	0.903133E CO	0.257940E-02	0.453459E 03	0.169764F 01
0.150E-01	0.132236E C1	0.263947E-02	0.4213092 03	0.149532E 01
0.200E-01	0.171323E G1	0.269557E-02	0.386122E 03	0.127957E 01
0.250E-01	0.208153E 01	0.274843E-02	0.357763E 03	0.111726E 01
0.300E-01	0.243375E 01	0.279892E-02	0.336436E 03	0.100355E 01
0.350E-01	0.276846E 01	0.284686E-02	0.314770E 03	0.891372E 00
0.400E-01	0.308418E 01	0.289204E-02	0.292698E 03	0.781303E 00
0.450E-01	0.337939E 01	0.293427E-02	0.270127E 03	0.673886E 00
0.500E-01	0.365245E 01	0.297332E-02	0.2469268 03	0.569654E 00
0.550E-01	0.390253E 01	0.300908E-02	0.223760E 03	0.472741E 00
0.600E-01	0.412876E 01	0.304143E-02	0.200489E 03	0.383154E 00
0.650E-01	0.433007E 01	0.307022E-02	0.176921E 03	0.300918E 00
0.700E-01	0-450519E 01	0.309527E-02	0.152786E 03	0.226103E 00
0.750E-01	0.465593E 01	0.311683E-02	0.130670E 03	0.166452E 00
0.800E-01	0.478472E 01	0.313525E-02	0.111006E 03	0.120788E 00
0-850E-01	0.488729E 01	0.314992E-02	0.8800572 02	0.762746E-01
0.900E-01	0.495617E 03	0.3159788-02	0.588953E 02	0.342872E-01
0.950E-01	0.500188E 01	0.316631E-02	0.389877E 02	0.150615E-01
0.100E 00	0.504731E 01	0.317281E-02	0.386535E 02	0.148294E-01
0.105E 00	0.506263E 01	0.317500E-02	0.130201E 02	0.168531E-02
0.110E 00	0.501969€ 01	0.316820E-02	-0.36510VE 02	0.146715E-01
0-115E 00	G.501024E 01	0.316670E-02	-0.804541E 01	0.712003E-03
0.120E 00	0.505397E 01	0.317295E-02	0.371961E 02	0.137364E-01
0.125E 00	0.507049E 01	0.317531E-02	0.140323E 02	0.195801E-02
0.130E 00	0.503519E 01	0.316972E-02	-0.299900E 02	0.990544E-02
0.135E 00	0.505878E 01	0.317310E-02	0.2005525 02	0.399684E-02
0.140E 00	0.509157E 01	0.317778E-02	0.2782886 02	0.770227E-02
0.145E 00	0.507137E 01	0.317473E-02	-0.163375E 02	0.294416E-02
0.150E 00	0.504046E 01	0.316969E-02	-0.270455E 02	0.805601E-02
0.155E 00				
0.160E 00	0.503614E 01 0.506900E 01	0.316900E-02	-0.367194E 01	0.148391E-03
0.165E 00	0.509002E 01	0.317370E-02 0.317670E-02	0.279265E 02 0.178333E 02	0.775019E-02 0.316411E-02
0.189E 00				0.202223E-02
	0.5106839 01	0.317911E-02	0.142514E 02	
0.175E 00	0.512456E 91	0.318164E-02	0.150128E 02	0.224540E-02
0.1806 00	0.514200E 01	0.318413E-02	0.147612E 02	0.217214E-02
0.185E 00	0.503172E 01	0.316668E-02	-0.942397E 02	0.971566E-01
0.190: 00	0.485373E 01	0.313851E-02	-0.155648E 03	0.258986E 00
0.195€ 00	0.463446E 01	0.310381E-02	-0.196544E 03	0.402888E 00
0.200E 00	0.438473E 01	0.306430E-02	-0.229747E 03	0.536359E 00
0.205E 00	0.411691E 01	0.302192E-02	-0.252367E 03	0.631847E 00
0.210E 00	0.383970E 01	0.297805E-02	-0.266895E 03	0.691667E 00
0.215E 00	0.355443E 01	0.293291E-02	-0.280787E 03	0.748795E 00
0.220E 00	0-326225E 01	0.288667E-02	-0.294221E 03	0.803657E 00
0.225E 00	0.297262E 01	0.284084E-02	-0.296739E 03	0.803434E 00
0.230E 00	0.269413E 01	0.279677E-02	-0.288613E 03	0.751403E 00
0.233E 00	0.242611E 01	0.275436E-02	-0.280932E 03	0.703886E 00
0.240E 00	0.216794E 01	0.271351E-02	-0.273699E 03	0.660575E 00
0.245E 00	0.192440E 01	0.267497E-02	-0.260198E 03	0.592383E 00
0.250E 00	0.170067E 01	0.263957E-02	-0.240021E 03	0.502018E 00
0.253E 00	0.149634E 01	0.2607246-02	-0.220040E 03	0.420308E 00
0.260E 00	0.131106E 01	0.257792E-02	-0.200239E 03	0.346844E 00

Table IV. Continued

Model 42 Shot 5-73-" 10psi

	5	10 y 10 y	J.	
AREA1	VOLUME	TIME	PRESSURF	DENSITY
0.586E 00	0.466700E 02	0.500000E-02	0.149100E 02	
017006 60	0.4091005 02	0.50000000-02	0.1491006 02	0.335400E-02

TIME	PRESSURE	DEN3	U2	DPT
SECONDS	PSI	UE-S2/F4	FPS	PSI
0.500E-02	0.730345E 00	0.256482E-02	0.719278E 03	0.416995E 01
0.10JE-01	0-1542R2E 01	0.266718E-02	0.677197E 03	0.383347E 01
0.150E-01	0.228462E 01	0.276669E-02	0.636490E 03	0.350320E 01
0.200E-01	0.300317E G1	0.286304E-02	0.597120E 03	0.318189E 01
0.250E-01	0.369592E 01	0.295590E-02		
0.300E-01			0.558883E 03	0.287014E 01
	0.436055E 01	0.304496E-02	0.521720E 03	0.256984E 01
0.350E-01	0.499565E 01	0.313004E-02	0.486067E 03	0.2287256 01
0.400E-01	0.560003E 01	0.321099E-02	0.451857E 03	0.202293E 01
0.450E-01	0.617110E 01	0.328747E-62	0.417929E 03	0.176792E 01
0.500E-01	0.670629E 01	0.335917E- 02	0.384161E 03	0.152336E 01
0.550E-01	0.720484E 01	0.342598E-02	0.351591E 03	0.129906E 01
0.60GE-01	0.766608E 01	0.348780E-02	0.320112E 03	0.109454E 01
0.650E-01	0.809345E 01	0.354508E-02	0.292223E 03	0.925674E 00
0.700E-01	0.849112E 01	0.359832E-02	0.268046E 03	0.789346E 00
0.75GE-J1	0.885904E 01			
0.800E-01		0.364755E-02	0.244829E 03	0.666589E 00
	0.919743E 01	0.369280E-02	0.222508E 03	0.556797E 00
0.850E-01	0.950257E 01	9.373358E-02	0.198566E 03	0.447918E 00
0.900E-01	0.977013E 01	0.376935E-02	0.172546E 03	0.3412738 00
0.950E-01	0.999974E 01	Q.380004E-02	0.146925E 03	0.249380E 00
0.100E 00	0.101909E 02	0.3825598-02	0.121522E 03	0.171734E 00
0.105E 00	0.103429E 02	0.384590E-02	0.960844E J2	0.107950E 00
0.110E OC	0-104543E 02	0.386080E-02	0.701593E 02	0.578G43E-01
0.115E OC	0.105222E 02	0.386987E-02	0.425709E 02	0.2134916-01
0.120E 00	0.105106E 02	0.386810E-02	-0.726031E 01	0.708252E-03
0.125E 00	0.105570E 02	0.387430E-02	0.290502E 02	0.995729E-02
0-130E 00	0.106004E 02			
0.135E GO		0.3880096-02	0.2713135 02	0.869658E-02
	0.106431E OZ	0.388580E-02	0.266591E 02	0.847672E-02
0.140E 00	0.106857E 02	0.389148E-02	0.265354E 02	0.833885E-02
0.145E 00	0.107032E 02	0.3093826-02	0.109087E 02	0.141096E-02
0.150E 00	0.106746E 02	0.388947E-02	-0.177928£ 02	0.427872E-02
0.155E 00	0.107073E 02	0.389387E-02	0.205489E 02	0.500511E-02
0.169E 00	0.106745E 02	0.588885E-02	-0.205580£ 02	0.571134E-02
0.165E 00	0.10718DE 02	0.389465E-02	0.270479E 02	0.867173E-02
0.170E 00	0.107382E 02	0.389734E-02	0.1253472 02	0.186461E-02
0.175E 00	0.107621E 02	0.390053E-02	0.149576E 02	0.262123E-02
0.180E 00	0.107838E 02	0-390342E-02	0.134774E 02	0.215827E-02
0.185E 00	0.107684E 02	0.390108E-02	-0.956703E 01	0.124040E-02
0.190E 00	0.107971E 02	0.390490E-0Z	0.178053E 02	0.376766E-02
0.195E 00	0.106656E 02	0.348493E-02	-0.821198E 02	0.907302E-01
9-200E 00	0.104621E 02	0.385402E-02		
0.205E 90			-0.129127E 03	0.220721E 00
	0.102212E 02	0.301743E-02	-0.155362E 03	0.314416E 00
0.210E 00	0.995781E 01	0.377742E-02	-0.172551E 03	0.381851E 00
0.215E 00	0.967410E 01	0.373433E-02	-0.188932E 03	0.450186E 00
0.220E 00	0.937200E 01	0.3 6884 3E-02	-0.204944E 03	0.520280E 00
0.225E 00	0.905886E 01	0.364086E-02	-0.216051E 03	0.568375E 00
0.230E 00	0.874060E 01	0.359252E-02	-0.223147E 03	0.5966258 00
0.235E QQ	0.842181E 01	0.354410E-02	-0.226916E 03	0.607721E 00
0.240E 00	0-810642E 01	0.349619E-02	-0.227641E 03	0.603165E 00
0.245E 00	0.779816E 01	0.344937E-02	-0.225298E 03	0.583447E 00
0.250E 00	0.750053E 01	0.340416E-02	-0.219962E 03	0.550008E 00
0.255E 00	0.721022E 01	0.336006E-02	-0.217121E 03	0.529533E 00
0.260E 00	0.692418E 01			
AIRTAE AA	A. A.K.19C AT	0.331661E-02	-0.216702E 03	0.520751E 00

Table IV. Continued

	Wa da	3 10 701	•	
ADEAL		1 42 Estimated	20 ps i	
AREA1	VOLUME	TIME	PRESSURE	DENSITY
0.549E 00	0.466700E 02	0.500000E-02	0.148630E 12	J.421000E-02
TIME	PRESSURE	DEN3	U2	DPT
SECONDS	PSI	UE-S2/F4	FPS	PSI
0.500E-02	0.958799E 00	0.258184E-02	0.905353E C3	0.651658E 01
0.100E-01	0.196370E 01	0.270766E-02	0.894151E C3	0.664663E 01
0.1508-01	0.301523E 01	0.283742E-02	0.882413E 73	0.676435E 01
0-200E-01	0.411371E 01	0.2971J4E-02	0.870124E 3	3.686839E (1
0.250E-01	0.522681E 01	0.310546E-02	0.838906E 93	0.666223E C1
0.300E-01	0.631807E 01	0.323725E-C2	0.7896335 03	0.614792E 01
0.350E-01	0.738325E 01	0.336590E-02	0.742180E 13	0.564037E C1
0.400E-01	0.841857E C1	0.349093E-02	0.696529F .3	
0.450E-01	0.942072E 01	0.361196E-02	0.652647E 03	9.514506E 71
0.500E-01	0.103868E 02	0.372863E-C2		0.466639E C1
0.550E-01	0.113142E 02		0.610487E 03	0.420778E 01
0.600E-01	0.122010E C2	G.384064E-02	0.569995E 13	C.377176E C1
0.650E-01	0.130452E 02	0.394773E-02	0.531104E 73	7.336011E 01
9.700E-01		0.404968E-02	0.493744E C3	0.297395E 01
	0.138454E 02	0.414632E-02	0.457837E (3	0.261385E 01
0.750E-01	0.146003E 02	0.423749E-02	0.423299E 53	0.227994E 01
0.800E-01	0.153090E 02	0.432307E-02	0.390044E 13	0.1972016 31
0.850E-01	0.159705E 02	0.440297E-C2	0.357982E C3	0.168958F C1
0.900E-01	0.165842E 02	0.447709E-02	0.327720E C3	0.143197E G1
0.950E-01	0.171496E 02	0.454537E-G2	0.297061E 73	0.119837E 01
0.100E 00	0.176663E 02	0.460777E-02	0.2680076 03	C.987915E 30
0.105E 00	0.181338E 02	0.466423E-C2	0.239753E 13	0.799689E 30
0-110E 00	0.185518E C2	0.471471E-02	0.212188E 53	0.632794E 90
0.115E 00	0.189199E 02	0.475916E-02	0.185192E (3	7.486373E CO
0.120E 00	0.192377E 02	0.479754E-C2	0.158626E ?3	0.359645E 00
0.125E 00	0.195045E 02	0.482977E-G2	0.132320E 13	0.251932E CC
0.130E 00	0.197196E 02	0.485574E-02	0.106039E 03	C.162698£ 00
0.135E 00	0.198813E 02	0.487527E-C2	0.793894E 02	0.916030E-C1
0.140E 00	0.199865E 02	0.488797E-C2	0.514625E 02	0.3862018-01
0.145E 00	0.20072CE 02	0.489226E-02	0.173186E 02	G.438326E-G2
0.150E 00	0.199800E 02	0.488637E-C2	-0.204939E 92	0.713133E-C2
0.155E 00	0.200232E 02	0.489159E-02	0.210934E 92	C.650137E-C2
0.160E 00	0.199800E 02	0.488554E-02	-0.210496E 02	0.7522G7E-02
0.165E 00	0.200232E 02	0.489075E-02	0.210597E 02	0.648062E-02
0.170E 00	0.199800E 02	0.488470E-02	-0.219491E 92	0.752043E-02
0.175E 00	0.200232E 02	0.488991E-02	0.210618E 02	0.648194E-02
0.180E 00	0.1998COE 02	0.488386E-02	-0.210510E C2	0.752053E-02
0.185E 00	0.200232E C2	0.488907E-32	0.210638E 02	0.648313E-32
0.130E 00	0.199800E C2	0.488302E-02	-0.210539E 02	0.752363E-C2
0.195E 00	0.200232E 02	0.488823E-02	0.210657F 02	0.648432E-02
0.200E GO	0.199800E 02	0.488219E-02	-0.210549E C2	0.752072E-02
0.205E 00	0.200232E 02	0.488740E-02	0.210677E 02	0.648552E-02
0.210E 20	0.199800E 02	0.488135E-32	-0.210568E G2	C.752082E-32
0.215E 00	0.260232E 02	0.488656E-02	0.210696E 02	0.648671E-02
0.220E 00	0.199800E 02	0.488052E-02	-0.210588E 02	G.752091E-02
0.225E CO	0.200232E 02	0.488573E-G2	0.210715E G2	C.648790E-02
0.230E 00	0.199800E 02	0.487969E-02	-0.2106:7E 02	C.752101E-62
0.235E 00	0.200232E 02	0.488490E-02	0.210735E C2	0.648909E-02
0.240E 00	0.199800E G2	0.487885E-02	-0.210626E 02	0.752110E-02
0.245E 00	0.200232E 02	0.488407E-02	0.210754E { 2	0.649G27E-02
0.250E 00	0.199800E C2	0.487802E-02	-0.210645E G2	0.752120E-C2
		30.0.3000		J., , L.

Figure 16. Fill Predictions for Model 42, Ps=5 psi

.....

Figure 17. Fill Prodictions for Model 42, Ps=10 psi

VELOCITY FIELD

TIME: 4.9670 MILLISEC CYCLE 450

VELOCITY VECTOR --- EQUALS 430 FT/SEC

ZERO TIME IS TAKEN AS SHOCK FRONT ENTERS ROOM

Figure 18. RIPPLE Flow Predictions for Model 40

Figure 19. RIPPLE Flow Predictions for Model 42

The force exerted by the air flow upon the cylinder is written as Equation (1).

$$F = C_D A_C Q$$
, where (1)

× 3

C, is the experimentally determined coefficient of drag as a function of the air flow Mach number, $A_{\mathbb{C}}$ is the projected cross-sectional area of the cylinder, and Q is the dynamic pressure of the air flow, found from Equation (2).

$$Q = 1/2 \rho v^2, \text{ where}$$
 (2)

both the density, ρ , and the air speed, υ , were allowed to vary as in Equation (3) and (4).

$$\rho = \rho_1 + (\rho_{fill} - \rho_1) t/t_{fill};$$
 (3)

here ρ_1 is the ambient density before filling the room and ρ_{fill} is the air density to which it fills. The ratio, t/t_{fill} , is elapsed time to total fill time for the room. ρ was varied in a similar way.

$$v = v_{\text{max}} - (v_{\text{max}}) t/t_{\text{fill}}, \qquad (4)$$

where v_{max} is the initial maximum air speed as filling begins and goes to zero when the room has filled. The equations are not valid for times greater than the fill time.

The coefficient of drag varied as Equation (5).

$$C_D = C_{max} - (C_{max} - C_1) t/t_{fill},$$
 (5)

where C_{max} is the value for maximum air speed and C_1 is the lower limit for the minimum drag coefficient. These values are plotted as Figure 20. See also Ref. 5 and 6.

Acceleration is then given by

$$a = C_D Q A_C/m$$
, where (6)

m is the mass of the cylinder exposed to the flow. Incremental calculations for velocity and displacement can be made for a time Δt . A value of Δt about equal to $t_{\mbox{fill}}/20$ gives sufficiently closed-spaced values for the motion parameters.

Predictions of the cylinders motion for each model tested, and also for an example of a full size basement shelter, are given for input shock over pressures of 5-20 psi. Those for the models are shown in Tables V and VI and Fig. 21-26. Predictions for the full size basements are given in Appendix F.

Figure 20. Coefficient of Drag for a Cylinder

Table V. Motion Predictions for Model 40 Shot 569 5 psi

Time,sec	Distance,ft	Velccity, ft/sec	Acceleration, ft/sec ²
.00100 .00200 .00300 .00400 .00500 .00600 .00700 .00800 .01900 .01100 .01200 .01300 .01400 .01500 .01600 .01700	.00066 .00192 .00369 .00589 .00847 .01136 .01450 .01785 .02137 .02501 .02873 .03252 .03635 .04020 .04407 .044793	.00000 .66986 1.23679 1.76649 2.20457 2.57661 2.88813 3.14461 3.35144 3.51414 3.63796 3.72826 3.79035 3.82953 3.85105 3.86017 3.86214	669.86310 586.93502 509.69365 438.07990 372.03910 311.52094 256.47934 206.87238 162.66228 123.815.9 90.30166 62.09557 39.17513 21.52228 9.12284 1.56641 .04640
	Shot 572	10 psi	
.00100 .00200 .00200 .00300 .00400 .00500 .00600 .00700 .00800 .00900 .01100 .01200 .01300 .01400 .01500 .01500 .01600 .01700 .01700 .01800 .01900 .02000	.00208 .00600 .01155 .01851 .02672 .03598 .04617 .05712 .06872 .08885 .09342 .10633 .11930 .13288 .14641 .16003 .17372 .18744 .20118 .21493 .22867	.00000 2.08058 3.92324 5.54635 6.96740 8.20306 9.26926 10.18117 10.95325 11.59931 12.56542 12.90998 13.17759 13.37911 13.52485 13.62462 13.68774 13.72302 13.73881 13.74301	2080.58493 1842.66474 1623.10544 1421.04520 1235.66792 1066.19946 911.90399 772.08078 646.06114 533.20560 632.90132 344.55968 267.61405 201.51766 145.74168 99.77341 63.11456 35.27967 15.79463 4.19530 .02617
	Shot 577	20 psi	
.00200 .00400 .00600 .00800 .01200 .01200 .01400 .01600 .01800 .02000 .02200	.01307 .04035 .07850 .12478 .17696 .23324 .29222 .35284 .41434 .47622 .53821 .60021	4.53156 12.08453 17.90085 22.27722 25.47468 27.72315 29.22496 30.15779 30.67677 30.91630 30.99799	4013.64942 3105.80021 2351.08489 1731.04238 1229.60016 832.58625 527.33311 302.35347 147.07270 51.60671 6.57681 2.95563

Table VI. Motion Predictions for Model 42

	Shot 5-73-3	Spsi	2
Time, sec	Distance, ft	Velocity,ft/sec	Accel., ft/sec
.01000 .02000 .03000 .04000 .05000 .06000 .07000 .08000 .09000	.04897 .15133 .29456 .46807 .66301 .87220 1.08997 1.31214 1.53596 1.76004	3.39113 9.06674 13.44227 16.71229 19.05603 20 64017 21.62139 22.14851 22.36449 22.40824	602.63160 467.54344 352.33537 255.39463 175.40402 111.30242 62.25415 27.62541 6.96681 .00107
	Shot 5-73-6	o 10psi	
.01000 .02000 .03000 .04000 .05000 .06000 .07000 .08000 .09000 .10000 .11000	.15824 .48692 .94553 1.50135 2.12804 2.80460 3.51456 4.24533 4.98765 5.73521 6.48432 7.23358	10.98767 29.15310 43.05478 53.50815 61.18249 66.63500 70.33584 72.68668 74.03469 74.68322 74.89987 74.92276	1934.70696 1485.78838 1122.58405 829.48486 594.56092 408.57068 264.26611 155.89590 78.84369 29.35989 4.35925 1.26504
	Estimated	20psi	
.01000 .02000 .03000 .04000 .05000 .06000 .07000 .08000 .09000 .10000	.33799 1.02925 1.98177 3.12518 4.40539 5.78092 7.22017 8.69354 10.20154 11.71566 13.23348 14.75198	23.61066 61.56092 89.68717 110.31112 125.17205 135.60571 142.66057 147.17569 149.83377 151.19813 151.73856 151.84956	4075.55450 3025.93824 2225.97704 1611.90000 1139.80640 778.63024 505.83806 304.70235 162.51672 69.39162 17.41764 .06669

Figure 21. Predicted Translation for Cylinder-Model 40

Figure 22. Predicted Translation Velocity for Cylinder-Model 40

Figure 23. Predicted Acceleration for Cylinder - Model 40

Figure 24. Predicted Translation for Cylinder-Model 42

Figure 25. Predicted Translation Velocity for Cylinder-Model 42

Figure 26. Predicted Acceleration for Cylinder-Model 42

V. SUMMARY AND CONCLUSIONS

Results obtained from the exposure of two 1/12th scale model basement shelters to shock waves are summarized in Part A. The results obtained and conclusions reached from the experiments are applied in Part B to several cases of full size basement shelters.

A. Summary of Experiments

Two 1/12th scale models of basement shelters were built to simulate full size basements which would hold a maximum of 80 and 1000 shelterees. The models were then exposed to range of input shock waves, $P_S = 5-20~\mathrm{psi}$, from the BRL Shock Tubes.

Small nylon cylinders were placed inside the models and exposed at various floor locations, including areas of high speed air flow. High speed photography was used to record the motion of the cylinders during the air flow into the models from the shock tubes.

Predictions of the interior flows within the model were made by imputer codes with two-dimensional assumptions. These were found to appresent sufficiently the results from the actual three-dimensional models tested.

A general trend was observed from a study of the two scaled models. For an increase in the V/λ ratio, there was a corresponding increase in flow duration available for translation of objects inside the shelter. A scaled duration is assumed for the input shock waves. This is illustrated by comparing the V/λ values and the translation calculations for the two models. Model 40 has a V/λ of 14 feet and Model 42 one of 85 feet, a factor of 6 between the two. The calculated filling times are 17 msec and 100 msec respectively, a factor of 5.9. A set of maximum translation velocities for a cylinder in the midst of the incoming flow for 5 psi input was found experimentally to be 2.9 ft/sec and 14.7 ft/sec respectively, a factor of about 5. This is somewhat less than the other factors shown, but does illustrate that the maximum translation is closely related to the V/λ and fill times for a shelter. Predictions are given in Part B, following this trend, for several sizes of basement shelters.

B. Predictions for Full Size Basement Shelters

Prediction of filling curves of pressure in four basement shelter sizes (20 x 40 x 8 feet, 30 x 60 x 8 feet, 40 x 80 x 8 feet, and 70 x 144 x 8 feet) are given in Appendix F. At 10 ft^2 /shelteree, the shelters would accommadate a maximum of about 80, 180, 320 and 1000 shelterees, respectively. The basement shelters are listed in Table VII.

The pressure-time fil! predictions were made from the BRL Filling Code, Ref. 1, for input pressures of 3, 5, 10, 15 and 20 psi. The blast waves are assumed to have come from a 1-MT explosion, calculated from Ref.7.

Table VII. Dimensions of Models and Basements

	Remarks	Nylon cylinder 1.28" dia x 1.83" high,0.098 lb. weight.		Water drum 15 3/4" dia. x 22" high,156 1b. weight, for I-IV.	A 1-MT blact is assumed for full size basements, I-IV.		
	Tfill, sec	.017 .021 .024	.105	.135 .150 .180 .195	270 .300 .360 .375	.450 .500 .525 .550	.600 .675 .725 .725
•	V/A,Ft	14	84	160	360	640	1008
•	A,Ft2	38iñ.	80°E.	40	40	40	80
•	Size	20x40x8 in.	70x144x8 in.	20x40x8 ft.	30x60x8 ft.	40x80x8 ft.	70x1:44x8 ft.
	P _s ,psi	5 10 20	5 10 20	10 10 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 10 15 20	3 10 15 20	3 10 15 20
	Model or Basement	Model 40	Model 12	Basement I	Basement II	Basement III	Basement IV

The flow parameters from the fill predictions; along with size, weight and coefficient of drag; were used to predict the translation of a 156 pcund cylinder 15 3/4 inches diameter x 22 inches high. In addition, the fill parameters for the fourth basement were used to calculate the translation for a 170 pound cylinder in order to exactly match the cylinders used with Model 42.

The pressure-time filling curves and tables of corresponding motion parameters for the full size basement shelters are given in Appendix F. The parameters given are maximum since the maximum incoming flow parameters are used. Floor friction and gravity are neglected in the given predictions.

The calculations of translation for the cylinders were stopped at times corresponding to the time for the basements to fill to the outside blast pressure. The translation velocities were assumed maximum at the times of fill. The cylinders were assumed to continue at these maximum predicted velocities until the rear or other basement wall was struck. As mentioned above, hitting the floor or ceiling was assumed not to slow the cylinder, although the tumbling rate was experimentally observed to increase after such an impact of a nylon cylinder with the wooden floor of the basement models. Gravity and friction would of course act to decrease these maximum values for some objects.

Table VIII illustrates the scaling comparison for Model 42 and the simulated full size basement shelter. Also, the effect of a change in input blast wave shape is shown for comparison. The translation parameters have been calculated for these conditions. Figure 27 shows the maximum translation velocity predicted for a cylinder in each of these situation as a function of fraction of fill time. The scaled model and full size basements are shown with the lower curve illustrating the decreased relocity because of the exponential type blast wave used for the input. The present experiments with flat shock waves overestimate the maximum relocity when applied to a true field situation with an exponentially decaying blast wave.

Figures 22 and 29 illustrate input pressure dependence and V/A effect upon possible object translation at the end of fill time. For example, for the -MT blast wave assumed, to stay below some maximum translational velocity of say 20 ft/sec, the limits would be 10 psi input for a shelter with a V/A of slightly less than 500 feet. Similar graphs may be plotted for other input blast conditions and V/A ratios. In this manner, maximum effects might be calculated for any given basement shelter situation.

Table VIII. Prediction of Translation for a Cylinder

A. Model 42--70x144x8 in.--Entrance, 80 in^2

1.56 oz. cylinder, 1.28 in. dia x1.83 in. high

5 psi 5 1/2 ft. shock tube

Time,sec	Distance,ft	Velocity, ft/sec	Acceleration, ft/sec ²
.01000	.94570	3.16880	560.53646
.02000	.14980	8.43497	430.00609
.03000	.27324	12.44621	319.20894
.04000	.43286	15.39590	226.63883
.05000	.61127	17.46307	151.07080
.06000	.80171	18.81516	91.52560
.07000	.99900	19.61037	47.24209
.08000	1.19944	19,99978	17.65641
.09000	1.40079	20.12931	2.38667
.10000	1.60223	20.14148	1.22266

B. Full Size Basement--70x144x8 ft--Entrance, 80 ft²

5 psi Flat, 156 lb. cylinder, 15 3/4 in. dia

x 22 in. high

Time,sec	Distance,ft	Velocity, ft/sec	Acceleration,ft/sec ²
.10000	.43790	3.01740	54.46407
.20000	1.36619	8.18815	43.79302
30000	2,68507	12.32662	34.48763
40000	4.30787	15.56675	26.44726
Sonon	6.16012	18.03283	19.58738
.60000	8.17882	19.84108	13.83752
.70000	10.31177	21.10097	9.13980
80000	12.51704	21.91649	5.44756
. 20031	14.76257	22.38721	2.72442
1.00000	17.92586	22.60930	.94350
1.10000	19.29373	22.67650	.08684

C. Full Size Basement--70x144x8 ft--Entrance, 80 ft/sec

5 psi 1-MT 156 lb. cylinder, 15 3/4 in. dia x 22 in. high

Time,sec	Distance,ft	Velocity, ft/sec	Acceleration,ft/sec ²
.05000	.13994	.00000	55.97806
.10000	.39673	2.79890	46.73701
.15000	.74958	5.13575	38.42488
.20000	1.17994	7.05699	31.00341
.25000	1.67139	8.60716	24.43891
.30000	2,20960	9.82911	18.70190
.35000	2.78223	10.76421	13.76683
.40000	3.37889	11.45255	9.61184
45000	3.99109	11.93314	6.21856
.50000	4.61222	12.24407	3.57191
.55000	5.23751	12.42266	1.66001
.60000	5.86398	12.50566	. 47400
.65000	6.49047	12.52936	.00801

Table VIII-Continued

P. Full Size Basement--70x144x8 ft

5 psi Flat 170 lb cylinder, 1.28 ft dia. > 1.83 ft.high

Time, sec	Distance, ft	Velocity, ft/sec	Acceleration,ft/sec
.10000	.38960	2,68334	48.50786
.20000	1.21659	7.29191	39.12192
.30000	2,39302	10.99161	30.90402
.40000	3.84218	13.89723	23.77636
.50000	5.49797	16.11606	17.67310
.60000	7.30423	17.74912	12.53906
.70000	9.21426	18.89212	8.32859
.80000	11.19042	19.63644	5.00470
.90000	13.20376	20.06996	2.53838
1.00000	15.23382	20.27787	.90804
1.10000	17.26840	20.34335	.09913

E. Full Size Basement--70x144x8 ft

5 psi Flat 170 cylinder, 1.28ft.dia x 1.83ft. high

Time, sec	Distance,ft	Velocity,ft/sec	Acceleration,ft/sec
.10000	.35290	2.48855	41.61791
.15000	.66704	4.56945	34.26884
.20000	1.05042	6.28289	27.69416
.25000	1.48847	7.66760	21.86757
.30000	1.96843	8.76098	16.76599
.35000	2.47932	9.59928	12.36934
.40000	3.01186	10.21774	8.66040
.45000	3.55846	10.65076	5.62464
.50000	4.11318	10.93200	3.25010
.55000	4.67173	11.09450	1.52732
.60000	5.23140	11.17087	.44924
.65000	5.79109	11.19333	.01113

Figure 27. Comparison of Predicted Cylinder Motion-Scale Model with Full Size

Figure 28. Displacement of 156 lb. Cylinder as a Function of Basement Volume to Entrance Area Ratio

Figure 29. Velocity of 156 lb. Cylinder as a Function of Basement Volume to Entrance Area Ratio

ACKNOWLEDGEMENTS

The author wishes to thank Messrs. W. Matthews and K. Holbrook for the experimental work performed at the BRL 5.5 foot Shock Tube, and also to thank Messrs. V. Kucher and J. Harrison for the computer runs with the RIPPLE Code.

REFERENCES

- 1. George A. Coulter, "Blast Leading in Existing Structures Basement Models", Ballistic Research Laboratories Memorandum Report No. 2208, August 1972.
- 2. "RIPPLE A Two-Dimensional Eulerion Computer Program for Calculating Compressible Flow and Detonation Problems," Prepared for Ballistic Research Laboratories under Contract No. DA 04495 AMC 148 (x) with General Dynamics, General Atomic Division.
- 3. Joseph F. Mclichar "The Propagation of Blast Waves into Chambers", 5allistic Research Laboratories Memorandum Report No. 1920, March 1968.
- 4. H. L. Murphy, "Feasibility Study of Clanting for Combined Nuclear Weapons Effects (revised) Volume 2: Appendices" Stanford Research Institute, Menlo Park, California 94025, SRI Technica: Report July 1971.
- 5. George A. Coulter and William T. Matthews, "Coefficients of Drag Measured with a Shock Tube Force Balance", Mallistic Research Laboratories Technical Note No. 1155, August 1957.
- 6. S F. Hoerner, "Fluid-Dynamic Drag", 148 Busteed Drive, Midland Park, New Jersey 07432, Published by author. 1965.
- 7. H. L. Brode "A Review of Nuclear Explosion Phenomena Pertinent to Protective Construction", Rand Document No. R-425-PR ECD-AD 601139, Pand Corp., Los Angeles, California, May 1964.

APPENDIX A
SUMMARY OF SHOTS

Table A-I. Summary of Shots-Model 40

		TGP	lable A-1. Summary of Shots-Model 40	
Shot	Ps, psi	Position of Objects	Motion of Objects	Remarks
569	5.2	Pow 1	Cylinder C moved towards right rear by E.9 ms. velocity of 3-4 ft/sec to rear reached with a rotation of 2-5 rotations/sec. Cylinders A and B moved slightly towards entrance.	P ₁ = 14.5 psi T ₁ = 21.7°C Time zero is shock arrival at doorway. All velocities are in direction noted.
S7C	10.2	Row 1	Cylinder C moved at 4.8 ms. Cylinder B moved at 29 ms to right, fell down. C reached velocity of 11-15 ft/sec to rear with 10-15 rotations/sec. Cylinder A showed little motion.	$P_1 = 14.6 \text{ psi}$ $T_1 = 21.0^{\circ}\text{C}$
574	20.3	ROW 1	Cylinder C moved at 3.1 ms, hit upper left rear corner away from entrance. Reached a velocity of 36 ft/sec and a rotation of about 36 rotations/sec. Cylinder B reached velocity to rear of 4-8 ft/sec and 4-7 rotations/sec. Cylinder A slid to left front toward stairs.	P ₁ = 14.7 psi T ₁ = 21.6°C
578	_د .	ROW	Cylinder C moved to right by 10.2 ms, tipped away from stairway and was never airborne. Velocity after 33ms was 1-2 ft/sec. Cylinders A and B showed slight motion.	$P_1 = 14.8 \text{ psi}$ $T_1 = 21.2^{\circ}C$

67

"able A-I Summary of Shots-Model 40 (Continued)

Table A-1 Summary of Shots-Model 40 (Continued)	Remarks Remarks	1.7 linder C moved after 3.8 ms. It was air. P = 14.7 psi borne at 9.5 ms with a rotation of 0.5 rotation/sec. Velocity was about 5 ft/sec after 41.3 ms. Cylinder B moved at 41.5 ms, tilted toward stairway. Cylinder A slid to left of stairs, away from doorway 1. A did not fall.	Cylinder C moved towards left rear of modei. P ₁ = 14.7 psi It moved at 2.2 ms, gained a velocity of 11.3 T ₁ = 21.7°C ft/sec at 6.9 ms, 22.3 ft/sec at 20.9 ms, and hit rear wind; at 71.4 ms with a velocity of 30.1 ft/sec. rotation was 8-11 rotations/sec before impact at rear, then it became about a rotations/sec. Cylinders A and B moved at less that 2 ft/sec.	Cylinder C moved at 5.9 ms. Slight velocity P ₁ = 14.8 psi of less than 1 ft/sec was measured. Cylinder T ₁ = 22.2°C A slid toward stairway, did not fall. Slight T ₁ = 22.2°C motion for Cylinder B.	3 Cylinder C moved away from stairway. Cylinders P = 14.7 psi 8 and A moved toward stairway end. All T = 20.9°C
ms 1-A alca:	Position of Cbjects	Row 2 Cylinder borne at retaion after 41 tilted tilted to feel of not fall	Row 2 Cylinder It moved ft/sec a hit rear 30.1 ft/ before i at less	Row 3 Cylinder of less A slid t motion f	Row 3 Cylinder B and A
	Ps.psi	16.2	20.2	5.1	10.0
	Shot	571	575	579	572

Table A-I Summary of Shots-Model 40 (Continued)

Remarks	$P_1 = 14.7 \text{ psi}$ $T_1 = 22.1^{\circ}\text{C}$	$P_1 = 14.8 \text{ psi}$ $T_1 = 20.7^{\circ}\text{C}$	$P_1 = 14.7 \text{ psi}$ $T_1 = 21.3^{\circ}\text{C}$	$P_1 = 14.7 \text{ psi}$ $T_1 = 22.2^{\circ}C$
Motion of Objects	Cylinder C moved toward left rear of model at 7.6 ms. It attained 7.9 ft/sec at 14.3 ms and 13.4 ft/sec at 257.4 ms. Rotation varied from 12-22 rotations/sec. Cylinder B simply fell over. Cylinder A moved to left front, airborne at 10.5 ms, and attained 6.4 ft/sec at 72.2 ms.	All cylinders slid, not airborne and slight motion.	Cylinder C moved toward rear of model at 9.8 ms and fell at 24.5 ms. Cylinder B slid slightly toward stairs, did not fall. Cylinder A rolled and slid at 3.5ft/sec toward stairs.	Cylinder C moved toward center rear of model at 8.3 ms, was airborne at 28 ms, and hit rear window at 54.6 ms. Diagonal velocity was 8.9 ft/sec. Moved back toward front at 9 ft/sec. Cylinder B tumbled at 8-10 rotations/sec. Cylinder A did not fall down.
Position of Objects	Row 3	Row S	ROW S	Row S
Ps,psi	20.1	5.1	10.2	20.2
Shot	576	280	573	577

Table A-II. Summary of Shots-Model 42

Motion of Objects Remarks	Cylinder I not seen. Cylinders 2 & 3 P ₁ =14.98 psi moved toward rear at 14-17 ft/sec after 75 msec. Cylinder 4 moved toward rear at 2-3 ft/sec after 113 msec. Cylinder 5 began to move at about 11 msec and had gone 1 ft in about 100 msec. Dust motion to front along left side at 50-60 ft/sec.	Cylinder 15 gained a volocity of about 7 ft/sec to rear after 132 msec. Cylinder 10 had a velocity to rear of about 7 ft/sec after 311 msec, 12.3 rot/sec cylinder 5 passed lines with 8-10ft/sec going to rear. Rotations of 17.8 rot/sec were observed. Cylinder 3 passed to rear with a velocity of 4-6 ft/sec, 7.5 rot/sec, Cylinder 12, 13 and 14 showed only slight motion. Dust was observed in clockwise motion to front on left side at about 48 ft/sec.	Cylinder 16 moved toward front slightly.	Cylinder I was not observed. Cylinder 2 had P ₁ =14.9 psi average velocity ever 1 ft of 15 ft/sec. Cylinder 3 attained about 12 ft/sec after 88 msec. Cylinder 4 showed slight motion. Model did not Cylinder 5 attained about 24 ft/sec after quite fill because of small pressure leaks around the light ports.
Position of Objects	Camera 1, 2 ft-3ft lines	Camera 2, 6ft7ft lines	Camera 3, 9ft-10ft lines	Camera 1, 2ft-3ft lines
Ps,psi	Q.			10.0
Shot	5-73-3			5-73-6
		70		

× 7

Table A-II. Surmary of Shots-Model 42(Continued)

Remarks			P _l = 14.9 psi T _l = 19.4°C A slight air leak still f remained.
Motion of Objects	Cylinder 15 moved after about 21 msec, attained a velocity to rear of 19 ft/sec after about 100 msec. Cylinder 10 was moving to rear at 25 ft/sec after 115 msec. Cylinder 5 moved to rear at 33 ft/sec after 190 msec. Cylinder 3 attained a velocity of about 13 ft/sec to rear after 300 msec. Cylinders 11, 12 and 13 f31 toward front. Cylinder 16 moved past towards front at 3-4 ft/sec after 590 msec. Cylinder 2 attained an average velocity of about 43 ft/sec to rear.	Cylinder D attained about 12 ft/sec to rear after 150 msec. Cylinder 15 went past towards rear at 30 ft/sec after 160 msec. Cylinder 10 went past to rear, at about 34 ft/sec after 215 msec. Cylinder 5 went past to rear at about 38 ft/sec after 240 msec. Cylinders B & C moved only slightly, Cylinder 3 moved past at about 10 ft/sec, towards rear.	Cylinder I was not observed. Cylinder 2 P _I = 14.9 had an average velocity to rear of 13 ft/ sec after 76 msec. Cylinder 3 attained about 11 ft/sec after 91 msec. Cylinder 4 A slight amoved slightly to front of model with 9.5 leak still rot/sec. Cylinder 5 attained a velocity of remained. about 25 ft/sec after 60 msec, but moved after about 4 msec.
Position of Objects	Camera 2, 6ft-7ft lines	Camera 3, 9ft-10ft lines	Camera 1, 2ft-3ft lines
Ps,psi	10.0	10.0	10.1
Shot	5-73-6		5-73-7

Table A-II. Summary of Shots-Model 42 (continued)

Remarks	e e	
ion of Objects Motion of Objects	Cylinder 15 moved after about 22 msec and attained a velocity of about 14 ft/sec after .75 ft travel at 91.5 msec. Cylinder 10 passed 6.5 ft line at about 140 msec with a velocity of 22 ft/sec. Cylinder 5 passed at about 150 ms with a velocity of 30-40 ft/sec. Cylinder 2 passed with an average velocity to rear of about 37 ft/sec. Cylinders 11, 12 and 13 fell towards front of model. Cylinder 14 moved to rear slightly at	Cylinder D reached a velocity to rear of 9.5 ft/sec after 152 msec. Cylinder 15 had a velocity of 20 ft/sec after 242 msec. Cylinder 10 passed with a velocity of about 30 ft/sec after 250 msec. Cylinder 5 reached an average velocity of about 36 ft/sec from 9-10 ft lines. It crossed last line at 242 msec. Cylinder C moved slowly a t about 3 ft/sec after about 300 msec. Cylinder A moved slightly to front and B fell after 178 msec.
Position of Objects	Camera 2, 6ft-7ft lines	Camera 3, 9ft-10ft lines
Ps,psi		10.1
Shot		5-73-7

APPENDIX B
HIGH SPEED PHOTOGRAPHS-MODEL 40

Figure B-1. End View, Cylinders on Row 1--5.2 psi

Figure B-2. Side View, Cylinders on Row 1--5.2 psi

Figure B-3. End View, Cylinders on Row 1--10.2 psi

Figure B-4. Side View, Cylinders on Row 1--10.2 psi

Figure B-5. End View, Cylinders on Row 1--20.3 psi

digure B-6. Side View, Cylinders on Row 1--20.3 psi

Figure 8-7. and View, Cylinders on Row 2--5.3 psi

Figure B-9. Side View, Cylinders on Row 2:-5.3 psi

Figure 6-9. End View, Cylinders on Row 2--10.2 psi

Figure B-10. Side View, Cylinders on Row 2--10.2 psi

Figure B-11. End View, Cylinders on Row 2--20.2 psi

Figure B-12. Side View, Cy.inders on Row 2--20.2 psi

Figure B-13. End and Side Views, Cylinders on Row 3--5.1 psi

Figure B-14. End and Side Views, Cylinders on Row 3--10.0 psi

NO SIDE VIEW ON THIS SHOT

Figure B-15. End View, Cylinders on Row 5--5.1 psi

Figure B-16. End and Side Views, Cylinders on Row 5--10.2 psi

Figure Bar7. And View, Cylinders on Row 5--20.2 psi

TIME, M SEC.

250.2

Figure B-18. Side View, Cylinders on Row 5--20.2 psi

Figure B-1". Ind View, Cylinders on Row 5--20.2 psi

250.2

Figure B-18. Side View, Cylinders on Row 5--20.2 psi

APPENDIX C

HIGH SPEED PHOTOGRAPHS-MODEL 42

Figure C-1 Camera 1, Side View Model 42--5 psi 95

Figure C-2. Camera 2, Side View Model 42--5 psi

FRAME NUMBER TIME, MSEC.

Figure C-2. Continued

SHOT 5-73-6 CAMERA I

Figure C-3. Camera 1, Side View Model 42--10 psi

SHOT 5-73-6 CAMERA 2

Figure C-4. Camera 2, Side View Model 42--10 psi

Figure C-4. Continued

APPENDIX D
PREDICTION OF VELOCITY FIELDS-MODEL 40

Table D-I. Input Parameters for RIPPLE Code Predictions--Model 4

Input shock pressure, 10 psi
Shock density, 0.00 3349 slugs/ft³
Shock particle speed, 436.4 ft/sec
Shock temperature, 159.43°F
Shock sound speed, 1219.3 ft/sec
Ambient pressure, 14.7 psi
Ambient temperature, 72°F
Ambient sound speed, 1129.9 ft/sec
Ambient density of air, 0.002321 slugs/ft³
Ambient air speed, 0.0ft/sec

Notes--1. Model was assumed to be two-dimensional for purpose of RIPPLE predictions.

2. Angle of flow is positive in upper quadrants and negative in lower quadrants.

3. Time equals zero at room side of entrance.

Ŧ

VELOCITY FIELD

TIME: -0.058 MILLISEC CYCLE 50
VELOCITY VECTOR— EQUALS 436 FT/SEC

Figure D-1. Velocity Field at -0.058 milliseconds

Figure D-2. Velocity Field at 1.28 milliseconds

VELOCITY FIELD

TIME = 1.670 MILLISEC CYCLE 160

Figure D-3. Velocity Field at 1.67 milliseconds

VELOCITY FIELD

Time= 2.186 Milliser CYCLE 120

Figure D-4. Velocity Field at 2.19 milliseconds

VELOCITY FIELD
TIME: 2.814 MILLISEC CYLLE 270

Figure D-5. Velocity Field at 2.81 milliseconds

VELOCITY FIELD
TIME: 3.549 MILLISEC CYCLE 330

Figure D-6. Velocity Field at 3.55 milliseconds

Figure D-7. Velocity Field at 4.03 milliseconds

VELUCITY FIELD
TIME* 4.502 MILLISEC CYCLE 410

Figure D-8. Velocity Field at 4.50 milliseconds

Figure D-9. Velocity Field at 4.97 milliseconds

Figure D-10. Velocity Field at 5.65 milliseconds

VELOCITY FIELD
TIME: 6.093 MILLISEC CYCLE 550

Figure D-11. Velocity Field at 6.09 milliseconds

VELOCITY FIELD
TIME: 7 518 MILLISEC CYCLE 680

Figure D-12. Velocity Field at 7.52 milliseconds

VELOCITY FIELD
TIME= 7.949 MILLISEC CYCLE 720

Figure D-13. Velocity Field at 7.95 milliseconds

VELOCITY FIELD
TIME: 8.588 MILLISEC CYCLE 780

Figure D-14. Velocity Field at 8.59 milliseconds

VELOCITY FIELD
TIME: 9.004 MILLISEC CYCLE 820

Figure D-15. Velocity Field at 9.00 milliseconds

VELOCITY FIELD
TIME: 9.412 MILLISEC CYCLE 860

Figure D-16. Velocity Field at 9.41 milliseconds

Table D-II. Flow Parameters Prelicted by RIPPLE Code-Model 40

Remi	Fos.A Input pressure, P _S =10psi	Pos.B P center = 0.03 psi	Pos.C		Pcenter*0.95 psi			Pcenter*2.29 psi	
Dynamic Pressure 1b/ft2	e.0	9.2	127.9 0.3 0	8.9	36.5 3.8 0	138.3 44.0 0	17.1 28.5 0.1	39.6 34.4 5.3	124.7 48.0 23.1
Densit/ slugs/ft ³	0.00236 0.00232 0.00232	0.00251 0.00233 0.00232	0.00273 0.00235 0.00232	0.00250 0.00234 0.00232	0.00280 0.00244 0.00232	0.00237 0.00267 0.00232	0.00273 0.00268 0.00234	0.00276 0.00262 0.00246	0.00225 0.00250 0.00258
Angle of Fluw degrees	160.4 135.5 125.0	159.4 124.0 115.5	149.2 101.8 90.1	166.6 136.9 125.7	167.4 129.1 114.2	156.7 117.6 95.3	168.4 145.3 125.7	174.3 139.9 119.4	156.2 122.4 107.5
Air Speed ft/sec	16.5 0.02 0	85.5 1.8 0	306.0 16.4 0	74.0 8.1 0	200.9 55.6 0	342.0 181.4 0.4	111.7 146.0 10.3	169.4 162.1 65.6	332.7 195.9 133.6
Cell No.	12 21 41 61	22 21 41 61	32 21 41 61	12 21 41 61	22 21 41 61	32 21 41 61	12 21 41 61	22 21 41 61	32 21 41 61
Time	1.28			1.67			2.19		

~ 7

lel 40 (Continued)	CATRIIDA				Pcenter = 1.18 psi		
PLE Code-Mod Dynamic Pressure	-11/01	0.3	11.4	21.4	15.2	25.8	22.5
licted by RIP	Siugs/rt-	0.00292	0.00284	0.00263	0.00284	0.00258	0.00255
Table D-II. Flow Parameters Predicted by RIPPLE Code-Model 40 (Continued) Air Speed Angle of Flow Density Pressure	aegrees	56.5	101.4	125.0	-141.3	144.3	123.4
ble D-II. Flo	It/sec	13.3	89.4	127.5	103.4	141.5	132.8
TE Cell No.	~	21	41	61	21	41	61
Ce 11	×	12			22		

2.81

Time

T

3

. .

***************************************	Pcenter = 1.18 psi	4 B Prophography and No.		Pcenter = 2.67 psi			Pcenter = 1.99 psi	
21.4	15.2 25.8 22.5	76.7 50.4 24.7	0.6 5.5 17.2	16.2 10.1 12.6	25.6 55.3 10.6	1.22.	23.7 9.7 1.6	51.6
0.00284	0.00284 0.00258 0.00255	0.00216 0.00229 0.00250	0.00275 0.00278 0.00276	0.00287 0.00280 0.00273	0.00244 0.00207 0.0025	0.00265 0.00273 0.00296	0.00274 0.00278 0.00.85	0.00249 0.00201 0.00273
101.4 125.0	-141.3 144.3 123.4	145.2 129.3 109.7	-47.6 102.5 88.2	-64.0 123.3 94.8	60.6 127.6 121.1	-48.8 121.3 -157.5	-49.8 159.1 143.3	22.9 132.5 91.8
89.4	103.4 141.5 132.8	266.5 209.6 140.0	21.5 62.8 111.6	106.1 84.8 96.0	144.7 231.4 89.1	40.1 41.8 28.8	131.7 83.7 33.9	203.9 237.7 5 5.7
61						1149		
•	22	32	3.55 12	22	35	4.03 12	- 52	32

The same of the sa

Table D-II. Flow Parameters Predicted by RIPPLE Code-Model 40 (Continued)

Remarks	Pcenter = 2.94 psi	Pcenter = 4.24 psi	Pcenter * 3.41 psi
Dynamic Pressure 1b/ft ²	3.2 3.3 5.0 22.9 27.8 0.7 51.1	7.6 5.1 37.7 2.9 24.5 80.4 112.4	28.2 101.2 28.9 28.9 23.5
Density slugs/ft3	0.00258 0.00282 0.00301 0.00269 0.00292 0.00292	0.00271 0.00262 0.00314 0.00288 0.00282 0.00294 0.00271	0.00279 0.00303 0.00313 0.00295 0.00283 0.00283 0.00269 0.00274 0.00274
Angle of Flow degrees	-4.6 -146.7 -83.2 -45.2 -152.7 -93.8	106.2 106.2 112.0 67.2 131.4 165.2 120.8	-88.0 -116.4 -150.7 -63.6 -127.7 -162.2 20.4 166.7
Air Speed ft/sec	49.4 48.1 57.6 130.5 137.9 21.6 201.0 262.9	74.7 68.1 154.8 45.2 131.9 229.4 61.6 95.8	172.0 156.2 87.7 191.9 267.7 139.8 152.1 263.9
Cell No.	12 22 25 22 22 41 32 41 41 41 41 41	22 22 23 24 21 24 21 24 24 24 24 24 24 24 24 24 24 24 24 24	12 21 41 61 32 21 61 61 61
Time	0 x .	4.97	5.65

Table D-II. Flow Parameters Predicted by RIPPLE Code-Model 40 (Continued)

Remarks	er = 3.46 psi	er = 3.32 psi	er = 4.14 psi
	Pcenter	Pceriter	Pcenter
Dynamic Pressure 1b/'c2	9.8 42.0 22.4 39.3 138.4 39.6	91.6 31.6 10.3 58.2 17.0 49.0 127.4 37.3	89.5 39.6 13.3 12.0 12.0 78.5 73.7 45.4
Density slugs/ft3	0.00324 0.00323 0.00311 0.00271 0.00292 0.00280	0.00270 0.00251 0.00326 0.00341 0.00319 0.00260 0.00286	0.00272 0.00230 0.00312 0.00326 0.00366 0.00268 0.00288 0.00294 0.00298
Angle of Flow degrees	-58.1 -113.3 -147.4 -45.9 -126.6 -163.9	166.9 164.8 -21.0 -114.6 -137.8 -21.3 -122.1 -164.7	156.4 161.4 -48.9 -112.5 -22.0 -116.1 -159.8 129.2 159.4
Air Speed ft/sec	77.8 161.3 120.0 161.7 319.7 11.6	260.4 158.8 79.6 184.7 103.2 176.2 312.9 161.4	256.6 186.3 92.2 118.2 86.0 194.2 242.9 139.2 224.0 224.0
Cell No.	12 21 41 22 21 22 21 41 61 32 21		22 22 41 61 32 22 23 61 61 61 61 61
Time	6.09	6.42	98.

Table D-II. Flow Parameters Predicted by RIPPLE Code-Model 40 (Continued)

Remarks	Pcenter = 4.76 psi	Pcenter = 4.49 psi	Pcenter = 9.21 psi
Dynamic Pressure 1b/ft2	16.0 17.8 11.8 52.2 49.5 25.4 66.7 87.2	31.9 31.9 35.2 57.9 31.1 37.3	2.2 17.3 24.3 10.1 34.4 91.9 17.4 80.9
Density slugs/ft3	0.00308 0.00384 0.00326 0.00273 0.00293 0.00297 0.00296	0.00302 0.00341 0.00344 0.00266 0.00298 0.00320 0.00312	0.00295 0.00354 0.00344 0.00298 0.00268 0.00275 0.00303
Angle of Flow degrees	-50.0 -90.2 -111.8 -21.8 -107.8 -153.9 -13.9	-25.1 -80.9 -144.6 -73.5 -162.5 -162.5 -149.8	-36.9 -93.3 -131.3 -7.1 -68.1 -147.8 59.2 59.2
Air Speed ft/sec	101.8 96.3 85.1 185.5 130.5 131.7 211.9 242.9	71.9 136.7 47.8 127.7 208.5 144.5 152.7 222.8	38.3 98.7 119.0 82.4 160.3 258.8 103.2 231.0
Cell No.	12 21 41 52 21 72 21 61 61 61	12 22 23 24 41 41 41 41 41 41 41 41 61 61 61 61 61 61 61 61 61 61 61 61 61	12 22 23 41 41 41 41 41 41 41 41 41 61 61 61 61 61 61 61 61 61 61 61 61 61
Time	7.06	7.95	80 80 80

Table D-II. Flow Parameters Predicted by RIPPLE Code-Model 40 (Continued)

1

Ţ

Remarks	8 8	Pcenter = 5.73 psi	Pcenter = 6.21 psi		Pcenter = 8.75 psi
Dynamic Pressure 1b/ft2	2.2 16.4 66.0	5.5 31.2 138.6 6.5 82.7 106.5	2.3 27.4 66.1 2.3 35.5 133.4	80.0 77.3 3.9 34.0	9.1 76.2 11.7 35.9 55.8
Density slugs/ft3	0.00292 0.00359 0.00376	0.00294 0.00266 0.00260 0.00333 0.00298	0.00296 0.00372 0.00401 0.00298 0.00264	0.00343 0.00287 0.00318 0.00312 0.00379	0.00318 0.00299 0.00270 0.00378 0.00299
Angle of Flow degrees	-51.7 -95.7 -131.9	-14.4 -67.0 -140.1 74.4 60.3 156.0	-49.6 -89.1 -122.3 -33.2 -63.6	83.0 57.3 149.9 -45.9 -70.0	-25.0 -45.1 -99.4 2.3 49.0 101.2
Air Speed ft/sec	38.8 95.6 187.4	61.3 153.2 326.5 62.6 235.5	39.3 121.5 181.5 39.3 163.7 326.8	48.3 236.0 220.4 49.8 134.0 206.6	75.7 159.8 237.7 78.6 155.1
Cell No.		22 21 32 21 41 61 61 61	12 21 41 22 21 41 61	32 21 41 12 21 61 61	22 21 411 32 21 411 61
Time	00.6		9.41	11.66	

Table D-II. Flow Parameters Predicted by RIPPLE Code-Model 40 (Continued)

Remarks		Pcenter = 9.25 psi		
Dynamic Pressure 1b/ft ²	4.5 21.4 84.8	5.5 29.9 55.4	5.1 39.7 66.0	
Density slugs/ft3	0.00316 0.00383 0.00387	0.00318 0.00304 0.00281	0.00371 0.00303 0.00312	
Angle of Flow degrees	-70.6 -68.6 -102.3	-40.9 -36.7 -101.2	26.6 49.8 101.6	
Air Speed ft/sec	53.1 105.8 209.2	58.9 140.2 198.7	\$2.5 161.7 205.7	
Cell No.	12 21 41 61	22 21 41 61	32 21 41 61	
Time	12.06			

APPENDIX E
FREDICTION OF VELOCITY FIELDS-MODEL 42

TABLE E-I. Input Parameters for RIPPLE Code Predictions-Model 42

Input shock pressure, 10 psi
Shock density, 0.003349 slugs/ft³
Shock particle speed, 436.4 ft/sec
Shock temperature, 159.5°F
Shock sound speed, 1219.3 ft/sec
Ambient pressure, 14.7 psi
Ambient temperature, 72°F
Ambient sound speed, 1129.9 ft/sec
Ambient density of air, 0.002321 slug/ft³
Ambient air speed, 0.0 ft/sec

Notes-1. Model 42 was assumed to be two dimensional for RIPPLE predictions. Also, stairway door opening was changed to 6 inches, instead of 5 inches, for code use.

- 2. Constant coefficient of drag assumed to be 0.5 for cylinders.
- 3. Angle of flow is positive in upper quadrants and negative in lower quadrants.

+180° +8 0°

4. Time equals zero at exit of second (stairway) opening.

COMPUTATIONAL GRID

Number of columns = 45

I	DELTA X (ft)	X (ft)
1	11.495240000	31.4952400.00
1 2 3 4 5 6	4.929290000	16.424530000
3	2.113734000	18.538264000
Ĭ4	•906393000	19.444657000
Š	. 388671500	19.333328500
6	.166666700	19.999995200
	.166666700	20.166661900
7 8	.166666700	20.333328600
9	.166666700	20.499995300
10	.166666700	20.666662000
11	.166666700	20.833328700
12	.166666700	20.033320700
13	.166666700	21.166662100
14	.166666700	21.333328800
15	.166666700	21.499995500
<u>16</u>	.166666700	21.666662200
17	.166666700	21.833328900
ī. 13	.166666700	21.999995600
19	.166666700	22.166662300
20	.166666700	22.333329000
21	.166666700	22.499995730
22	.166666700	22.666662400
23	.166666700	22.833329100
24	.166666700	22.999995800
25	.166666700	23.166662500
26	.166666700	23.333329200
27	.166666700	23.499995900
28	.166666700	23.666662600
29	.166666700	23.833329300
30	.165666700	23.999996000
31	.166666700	24.166662700
32	.166666700	24.333329400
33	.166666700	24.499996100
34	.166666700	24.656662800
35	.166666700	24.833329500
36	.166666700	24.999996200
37	,166666700	25.166662900
38	.166666700	25.333329600
39	.166666700	25.499996300
40	.166666700	25.666663630
41	.166666700	25.833329700
42	.498822500	26.332152200
43	1.492944000	27.825096200
44	4.468284000	32.293380200
45	13.373280000	45.666660200

Table E-1 (Continued)

J	DELTA Y (ft)	Y (ft)
12345678	1.520871000	1.520871000
2	1.108957000	2.629828000
3	.808606100	3.438434100
4	•589602600	4.028036700
5	429914100	1 JE705 0000
6	•313475800	4-457950800
7	•228573800	4.771426600 E. 000000kpo
8	•166666700	5.000000400
9 10	•166656700	5.166667100
10	•166666700	5-333333800
11	.166666700	5-500000500
12	.166666700	5.666667200
13	•166666700	5.833333900
14	-166666700	6.000000600
15	. 166666700	6.166667300
16	.166666700	6.333334000
17	. 166666700	6.500000700
18	. 166666700	6.666667400
19	•166666700	6.833334100
20	•16666700	7.0000000800
21	•166666700	7.166667500
22	•166666700	7-333334200
23	•166666700	7.500000900
23 24	.166666700	7.666667600
25	•166666700	7.833334300
25 26	•100000700	8.000001000
27	•166666700	8.166667700
27 28	. 166666700	8.333334400
29	·166666700	8.500001100
30	166666700	8.666667800
31	-166666700	8.833334500
35	.166666700	9.000001200
33	-166666700	9.166667900
33 34	-166666700	9-333334600
)T	.166666700	9-500001300
35 36	-166666700	9.666668000
30 37	-166666700	9.833334700
37 38	-166666700	10.000001400
30 30	-166666700	10.166668100
39 40	-166666700	10.333334800
40	.166666700	10.500001500

Table E-1 (Continued)

J	DELTA Y (ft)	Y (ft)
41	.166666700	10.666666200
42	.166666700	
43	.166666700	10.833334900
44	.166666700	11.000001600
	.166666700	11.166663300
45 46	.166666700	11.333335000
47	•166566 700	11.500001700
48	•166566700	11.666668400
49	.166666700	11.833335100
50	•166666700	12.000001800
51	•166666700	12.166663500
50	•166666700	12.333335200
53	•166666700 •166666700	12.500001900
54	•166666700	12.666668600
55	•166666700	12.833335300
56	.166666700	13.000002000
57	•	13.166668700
57 58	.16666700	13.333335400
50 50	•166666700 •166666700	13.500002100
59 60		13.666668800
61	.166666700	13.833335500
62	•166666700	14.000002200
63	.166666700	14.166658900
64	.166666700	14.333335600
65	.166666700	1/1.500002300
66	•166666700	14.666669000
67	•166666700	14.833335700
68	•166666700	15.000002400
69	•166666700	15.166669100
70	.166666700	15.333335800
71	.166666700	15.500002500
72	.166666700	15.666669200
73	.166666700	15.833335900
7):	.166666700	16.000002600
74 75	.166666700	16.166669300
76	.165666700	16.333336000
77	.166666700	16.500002700
	.166666700	16.666669400
78 70	.166665700	16.833336100
79 80	.166666700	17.000002800
	.166666700	17.166669500
81	.166666700	17.333336200
82	.166666700	17.500002900
83	. 166666700	17.666669600

Table E-1 (Continued

Table E-II Flow "arameters for RIPPLE Code redictions - Model 42

Time	Cel	l No.	Air Speed, ux	Air Speed, uy
msec	<u>·x</u>	<u>y</u>	ft/sec	ft/sec
1.10	8	24	-19.5	55.8
		36	1	.1
		48	.0	.0
		66	.0	.0
	13	78	.0	.0
	15	24	-47.7	59.5
		36	- 1.1	3.8
		48	.0	.0
		66	.0	.0
	18	24	1.8	122.4
		36	.0	6.4
		48	.0	.0
		66	.0	.0
	24	24	51.7	40.0
		36	.7	1.1
		48	.0	.0
		66	.0	.0
	32	24	7.4	3.7
		36	.0	.0
		48	.0	.0
		66	.0	.0
	36	18	4.8	.6
		78	.0	.0
2.07	8	24	23.4	158.6
		36	-6.2	21.2
		48	.0	.0
		66	.0	.0
	13	78	.0	.0

Table E-II (Continued)

Time msec	Cell No.	Air Speed, μx ft/sec	Air Speed, uy ft/sec
	15 24	-12.8	88.6
	36	-12.8	31.6
	48	1	.3
	66	.0	.0
	18 24	35.5	137.9
	36	.2	60.8
	48	.0	.4
	66	.0	.0
	24 24	55.2	32.5
	36	14.7	31.2
	48	. 1	.1
	66	.0	.0
	32 24	39.4	14.2
	36	2.8	2,9
	48	.5	.0
	66	.0	.0
	36 18	33.0	4.2
	78	.0	.0
4.03	8 24	47.0	198.6
	36	10.3	117.9
	48	.9	55.6
	66	.0	.0
	13 78	.0	.0
	15 24	49.4	65.9
	36	49.8	119.1
	48	- 2.1	26.1
	66	.0	. 0
	18 24	95.9	255.4
	36	62.3	109.7
	48	1.1	47.6
	66	.0	.0

Table E-II (Continued)

Time msec	Cell x	No.	Air Speed, μx ft/sec	Air Speed,µy ft/sec
	24	24	145.9	27.3
		36	45.4	55.1
		48	7.5	31.8
		66	.0	.0
	32	24	46.1	16.1
		36	25.6	23.8
		43	i0.1	14.8
		66	.0	.0
	36	18	16.5	6.0
		78	.0	.0
6.96	8	24	83.6	338.0
		36	17.0	141.5
		48	5.1	93.0
		66	3.9	65.2
	13	78	1	4.4
	15	24	94.5	34.6
		36	47.0	100.6
		42	29.0	86.9
		66	11.5	54.1
	18	24	116.9	225.6
		36	48.7	116.7
		48	37.3	85.8
		66	13.5	55.4
	24	24	149.3	40.3
		36	74.5	79.3
		48	46.3	75.7
		66	9.6	33.9

Table E-II (Continued)

Time	Cel1		Air Speed, μx	Air Speed, µy ft/sec
msec	<u>x</u>	<u>y</u>	ft/sec	11,580
	32	24	74.2	13.0
		36	55.7	51.4
		48	45.9	74.2
		66	8.2	21.9
	36	18	39.9	2
		78	.3	.8
8.89	8	24	83.3	439.8
		36	24.9	181.6
		48	5.3	105.7
		66	3.0	74.6
	13	78	8.3	53.7
	15	24	62.7	4.2
		36	42.7	99.3
		48	20.8	87.9
		66	16.3	72.6
	18	24	147.1	219.5
		36	36.2	121.1
		48	23.4	96.8
		66	20.6	73.6
	24	24	148.9	46.4
		36	72.7	89.4
		48	35.4	84.2
		66	24.3	74.3
	32	24	39.2	4.8
		36	28.1	55.1
		48	18.1	73.7
		66		-5.7
	36	18	.7	
		78	4.4	24.6

Table E-II (Continued)

Time msec		э. <u>У</u>	Air Speed, μx ft/sec	Air Speed, µy ft/sec
10.75	8	24	76.9	515.3
		36	44.5	232.3
		48	7.0	130.4
		66	.6	69.2
	13	78	13.1	8.3
	15	24	-5.7	-55.4
		36	57.4	91.5
		48	20.0	107.5
		66	3.7	73.1
	18	24	149.2	274.6
		36	35.8	107.6
		48	15.4	104.8
		66	7.8	70.8
	24	24	115.8	26.8
		36	49.8	93.4
		48	12.9	93.5
		66	11.3	71.8
	32	24	33.9	-9.9
		36	23.1	51.4
		48	6.7	77.1
		66	-5.0	82.7
	36	18	-7.6	-14.7
		78	19.2	48.0
12.55	8	24	47.8	545.1
		36	61.9	293.9
		48	8.0	147.6
		66	3.9	45.3
	13	78	.4	14.6

Table E-II (Continued)

Time	Cel1		Air Speed, μx	Air Speed, my
msec	<u>x</u>	_у_	ft/sec	ft/sec
	15	24	-57.3	-50.7
		36	55.9	77.6
		48	17.6	113.6
		66	4.2	46.4
	18	24	116.1	340.0
		36	52.5	80.4
		48	14.4	105.3
		66	.1	45.8
	24	24	94.0	-4.2
		36	62.7	89.5
		48	21.0	93.9
		66	-1.1	43.0
	32	24	30.2	-21.1
		36	28.8	39.2
		48	10.2	72.5
		66	4.0	43.2
	36	18	-12.2	-18.1
		78	- 4.2	- 2.6
14.30	8	24	5.8	516.5
		36	80.6	360.1
		48	18.6	142.1
		66	-1.4	55.9
	13	78	-11.9	22.0
	15	24	-56.9	5.7
		36	73.4	37.4
		48	42.7	87.1
		66	-3.2	44.9

Table E-11 (Continued)

			•	
Time msec	Cell x	No.	Air Speed, μx ft/sec	Air Speed, μy ft/sec
	18	24	90.9	322.7
		36	79.3	77.6
		48	37.4	66.8
		66	.5	37.1
		24	52.4	-22.3
		36	75.5	72.9
		48	38.1	65.8
		66	5.8	26.6
		24	28.5	-33.4
		36	39.4	26.4
		48	25.3	49.1
		66	-1.9	2.9
		18	-15.0	-22.1
		78	- 8.8	2.8
15.17	8	24	-11.6	497.1
		36	83.0	383.6
		48	24.7	130.0
		66	1.7	49.7
	13	78	-15.6	12.3
	15	24	-77.2	41.7
		36	75,2	12.4
		48	60.2	61.2
		66	5.7	42.7
	18	24	84.0	309.2
		36	89.1	80.4
		48	54.6	44.4
		66	2.2	31.1
	24	24	35.2	-26.0
		36	89.7	54.8
		48	47.4	39.1
		66	-2.9	14.5

Table E-II (Continued)

Time msec	Cell No.		Air Speed, μxft/sec	Air Speed, µy ft/sec
	32	24	24.0	-37.5
		36	40.6	15.5
		48	32.1	18.0
		66	-3.1	-1.4
	36	18	-15.3	-23.0
		78	- 7.2	3.2

VELOCITY FIELD
TIME* 2.07 MILLISEC CYCLE 100
Figure E-2. Velocity Field at 2.1 milliseconds

VELOCITY FIELD TIME: 6.95 MILLISEC CYCLE 200 Figure E-3. Velocity Field at 7.0 milliseconds 143

VELOCITY FIFED
TIME- 9.36 MILLISEC CYCLE 250
Figure E-4. Velocity Field at 9.4 milliseconds

VELOCITY FIELD

TIME: 13.87 MILLISEC CYCLE 350

Figure E-5. Velocity Field at 13.9 milliseconds

145

APPENDIX F

FILL PRESSURE AND MOTION PREDICTIONS FOR CYLINDERS IN BASEMENT SHELTERS

- 1. FILL-PRESSURE CURVES
- 2. MOTION PREDICTIONS FOR CYLINDERS

Ŧ

Figure F-1. Fill Prediction for Basement Shelter I

S

Preceding page blank

Ţ

Figure F-1. Continued

Q

Figure F-1. Continued

AND PROPERTY OF THE PROPERTY O

Ŧ

Figure F-1. Continued

I

7

Figure F-1. Continued

Story with seaton together the

P

ţ

Figure F-2. Fill Prediction for Basement Shelter II

ţ

1

Figure F-2. Continued

V

Figure F-2. Continued

Ø

Figure F-2. Continued

Figure F-2. Continued

Figure 6-3. Fill Prediction for Basement Shelter [II]

Figure F-3. Continued

Figure F-3. Continued

Figure F-3. Continued

पु

> 3

7

Figure F-3. Continued

प

Figure F-4. Fill Brediction for Basement Shalter IV

Figure F-4. Continued

पु

And the second de sistem to the state of the sistem of the

Figure F-4. Continued

Ţ

Figure F-4. Continued

Figure F-4. Continued

Figure F-4. Continued

Commence of the second of the

APPENDIX F.

FILL PRESSURE AND MOTION PREDICTIONS FOR CYLINDERS IN BASEMENT SHELTERS

2. MOTION PREDICTIONS FOR CYLINDERS

Table F-I Motion Parameters from Basement I 20x40x8 feet 3 psi, I-MT

150 15.	cylinder,	15	3/4	in.	dia	X	22	in.	high
---------	-----------	----	-----	-----	-----	---	----	-----	------

	150 lb. cylinder,	, 15 3/4 in. dia x 22	in. high
Time,sec	Distance,ft	Velocity, ft/sec	Acceleration, ft/sec ²
.01000 .02000 .03600 .04000 .05000 .07000 .08000 .09600 .10000 .11000 .12000	.00330 .00940 .01783 .02815 .03998 .05300 .06689 .08141 .09636 .11155 .12687 .14223	.00000 .33068 .60999 .84234 1.03211 1.18366 1.30134 1.38946 1.45230 1.49415 1.51928 1.53192 1.53634	33.06889 27.93073 23.23446 18.97703 15.15568 11.76790 8.81149 6.28449 4.18525 2.51235 1.26466 .44131 .04169
		S psi	
.01000 .02000 .03000 .04000 .05000 .06000 .07000 .09000 .10000 .11000 .12000 .13000 .14000	.00585 .01675 .03192 .05069 .07240 .09651 .12248 .14990 .17835 .20753 .23717 .26706 .29705 .32707	.00000 .58583 1.08956 1.51757 1.87618 2.17165 2.41018 2.59796 2.74110 2.84571 2.91785 2.96355 2.98885 2.98885 2.989973 3.00220	58.58312 50.37350 42.80134 35.86077 29.54644 23.85345 18.77739 14.31434 10.46081 7.21381 4.57075 2.52954 1.08851 .24643 .00253
		10 psi	
.01000 .02000 .03000 .04000 .05000 .06000 .07000 .08000 .09000 .10000 .12000 .13000 .14000 .15000 .16000 .17000	.01823 .05223 .09977 .15881 .22753 .30429 .38762 .47625 .56905 .66505 .76341 .86345 .95450 1.06644 1.16864 1.27097 1.37333 1.47569	.00000 1.82321 3.40038 4.75369 5.90419 6.87188 7.67574 8.33376 8.86304 9.27977 9.59929 9.83611 10.00396 10.11579 10.18379 10.21944 10.23348 10.23597	182.32147 157.71715 135.33088 115.05038 96.76901 80.38531 65.80247 52.92788 41.67275 31.95169 23.68235 16.78513 11.18285 6.80045 3.56475 1.40421 .24867 .02917

- 7

Table F-I (continue ,

15 psi

Time,sec	Distance, ft	Velocity, ft/sec	Acceleration,ft/sec ²
.02000	.08608	3.00074	260.65863
.04000	.26244	7.85592	192.46389
.06000	.50441	11.41326	137.08822
.08000	.79215	13.92155	93.05949
.10000	1.11008	15.60098	59.05867
.12000	1.44639	16.64597	33.88793
.14000	1.79258	17.22751	16.44413
.16000	2.14305	17.49491	5.69661
.18000	2.49466	17.57714	.66863

.02000	.11347	3.95514	343.72756
.04000	.34614	10.36081	254.52475
.06000	.66580	15.07087	182.42912
.03000	1.04665	18.41621	125.26097
.10000	1.46847	20.68548	81.10125
.12000	1.91589	22.13006	48.23316
.14000	2.37776	22.96779	25.09488
.16000	2.84650	23.38593	10.24088
.18000	3.31760	23.54327	2.31027
.20000	3.78903	23.57170	.00068

Table F-II Motion Parameters From Basement II

30x60x8 ft

3 psi, 1 MT

15 3/4 in. dia x 27 in. high

Time,sec	Distance, ft	Velocity, ft/sec	Acceleration, ft/sec ²
.02000 .04000 .06000 .08000 .10000 .12000 .14000 .13000 .20000 .20000	.01318 .03748 .07100 .11204 .15907 .21074 .26587 .32345 .38267 .44286 .50353	.00000 .65924 1.21488 1.67611 2.05198 2.35145 2.58336 2.75647 2.37945 2.96094 3.00947	32.96207 27.78210 23.06139 18.79370 14.97340 11.59546 8.65542 6.14939 4.07405 2.42660 1.20481
.26700	.62522	3.04170	.03186

.02000	02222	00000	51 22012
•	.02333	.00000	58.33863
.04000	.36668	1.16677	50.02485
.06000	.12698	2.16726	42.38618
	.20144	3.01499	35.41051
.10000	.28754	3.72320	29.08682
.1200)	.38300	4.30494	23.40517
.14000	.48580	4.77304	18.35663
.16020	.50418	5.14017	13.93331
.18990	.70661	5.41884	10.12823
.20000	.82181	5.62140	6.93543
.22111	.93875	5.76011	4.34982
. 240 10	1.05664	5.84711	2.36727
.26000	1.17492	5.89445	.98452
.28000	1.29329	5.91414	.19921
. 30000	1.41165	5.91813	.00986

Table F-II. Motion Parameters from Basement II (continued)

•	_		٠
- 2	n	ne	•
	u	vs	£

Time, sec	Distance, ft	Velocity, ft/sec	Acceleration, ft/sec ²
.04000	.20785	3.63375	156.26570
.08000	.62995	9.42556	112.7020υ
.12000	1.20367	13.56455	77.82372
.16000 .20000	1.87938	16.38708	50.56671
.24000	2.61892	18.18852	30.01539
.28000	3.39423 4.18608	19.22884	15.37043
.32000	4.18608	19.73702 19.91439	5.92275
.36000	5.78060	19.91439	1.03242
•30,00	3.70000	17.73/23	.11112

15 psi

.04000 .08000 .12000 .16000 .20000 .24000	.34186 1.03421 1.97360 3.07921 4.28956 5.55971 6.85884	5.98326 15.47033 22.21770 26.81436 29.76247 31.49148 32.36876	256.33425 183.85524 126.69671 82.58583 49.62901 26.21704 10.95217
.28007	6.85884	32.36876	10.95217
.32000	8.16817	32.70744	2.59120
.36000	9.47906	32.77210	.00043

.04000 .44576 7.82215 33	32.18849
	34.04322
.12000 2.55016 28.62006 15	8.26901
.16000 3.96403 34.33637 10	1.04585
.20000 5.50475 37.92530	9.27491
.24000 7.11603 39.97803	30.37620
.28000 8.76035 40.98660	12.13920
.32000 10.41569 41.35740	2.61057
.36000 12.07251 41.42062	.00830

Table F-III. Motion Parameters from Basement III

40	Y	ጸበ	Y	8	ft

3 psi 1-MT

	156 16 cylinder	15 5/4 in. dia x 22 in	
Time, sec	Distance,ft	Velocity, ft/sec	Acceleration,ft/sec ²
.05000 .10000 .15000 .25000 .25000	.07506 .20699 .38024 .58183 .80126	.00000 1.50127 2.63854 3.46502 4.03171 4.36873	30.02556 22.74741 16.52744 11.33339 7.14029 3.92514
.35000 .40000 .45000	1.26394 1.49829 1,73266	4.58498 4.66857 4.68697	1.67174 .36797 .00618

5 psi

.05000	.13368	.00000	53.47493
ຳດຳລາ	.37155	2.67374	41.67223
.15777	.68894	4.75736	31.44991
.20010	1.06149	6.32985	22.74520
.25000	1.47352	7.46711	15.50506
.30000	1.90985	8.24237	9.68552
.35000	2.35931	8.72664	5.25114
.40000	2.81421	8.98920	2.17452 .43598
.45909 .50000	3.27019 3.72624	9.09792 9.11972	.02328

-05000	.40307	.00000	161.23126
.10000	1.11013	8.06156	121.59332
15000	2.03990	14.14122	89.08309
.20000	3.12666	18.59538	62.79678
.25000	4.31836	21.73522	41.97514
30000	5.57500	23.83398	25.97286
.35000	6.86721	25.13262	14.23441
40000	8.17512	25.84434	6.27488
45000	9.48718	26.15808	1.66452
50000	10.79929	26.24131	.01602

Table F-III. (continued)

15	กรา
	P

Time,sec	Distance,ft	Velocity, ft/sec	Acceleration, ft/sec ²
.05000	.66709	.00000	266.83608
.19900	1.83373	13.34180	199.82120
.15000	3.36488	23.33286	145.80351
.20000	5.15294	30.62304	102.76192
.25000	7.11365	35.76113	69.06240
.30000	9.18277	39.21425	43.36205
.35000	11.31323	41.38235	24.53778
.40000	13.47277	42.60924	11.63202
.45000	15.64184	43.19085	3.81099
.50000	17.81174	43.38139	.33182

.05000	.87918	.00000	351.67256
.10000	2.41319	17.58362	261.93307
.15000	4.42373	30.68028	190.60335
20000	6.77034	40.21074	134.43116
.25000	9.34405	46.93230	90.83629
.30000	12.06220	51.47412	57.77653
.35000	14.86429	54.36294	33.57909
40000	17.70850	56.04190	16.84543
45000	20.56865	56.88417	6.3/587
50000	23.43158	57.20297	1.11232
55000	26.29474	57.25858	.09408

Table F-IV. Motion Parameters from Basement IV

70 .. 144 x 8 ft. 3 psi 1-MT

		_	
ì	56	11	cylinder
1	JU	10.	CYLLHUCL

156 lb. cylinder 15 3/4 in. dia. x 22 in. high

Time,sec	Distance,ft	Velocity,ft/sec	Acceleration,ft/sec ²
.05000 .10000 .15000 .29000 .25000 .37000 .35000 .40000 .50000	.08029 .22624 .42480 .65447 .93522 1.22846 1.53705 1.85521 2.17655 2.50401 2.82988 3.15578	.00000 1.60580 2.91903 3.97134 4.79338 5.41490 5.86491 6.17175 6.36323 6.46669 6.50916 6.51739	32.11617 26.26460 21.04616 16.44067 12.43046 9.00021 6.13687 3.82951 2.06928 .84928 .16456 .01202
	S	psi	
.05000 .10000 .15000 .20000 .30000 .30000 .40000 .45000 .55000 .65000	.13994 .39673 .74958 1.17994 1.67139 2.20960 2.78223 3.37889 3.99109 4.61222 5.23751 5.86398 6.49047	.00000 2.79890 5.13575 7.05699 8.60716 9.82911 10.76421 11.45255 11.93314 12.24407 12.42266 12.50566 12.52936	55.97806 46.73701 38.42488 31.00341 24.43891 18.70190 13.76683 9.61184 6.21856 2.57191 1.66001 .47400 .00801
	1	0 psi	
.15000 .15000 .25000 .25000 .30000 .35000 .40000 .45000 .50000 .65000 .70000	.40924 1.15214 2.16354 3.38761 4.77679 6.29093 7.89678 9.56686 11.27940 13.01756 14.76910 16.52589 18.28364 20.04147	.00000 8.18489 14.85791 20.22813 24.48137 27.78360 30.28375 32.11598 33.40163 34.25073 34.76336 35.03069 35.13589 35.15483	163.69790 133.46944 107.40438 85.06474 66.04462 50.00295 36.64470 25.71289 16.98193 10.25255 5.34662 2.10399 .37893 .03740

Table F-IV (Continued)

3

15 psi

-·		* •	2
Time, sec	Distance, ft	Velocity, ft/sec	Acceleration, ft/sec ²
.05000	.71836	.00000	287.34471
.10000	2.01133	14.36723	229.84568
.15000	3.75811	25.85951	181.51974
.20000	5.85753	34.93550	141.05701
.25000	8.22541	41.98835	107.33577
.30000	10.79234	47.35764	79.61996
.35000	13.50182	51.33864	57.01924
.40000	16.30870	54.18960	38.95817
.45000	19.17783	56.13751	24,90220
.50000	22.08293	57. 3262	14.38866
.55000	25.00556	58.10206	7,01158
.60000	27.93422	58.45263	2,40933
.65000	30.86351	58.57310	.25457
.70000	33.79342	58.58583	.24588
			. = . • •

.95990 .10000 .15090 .20000 .25000 .35000 .45000 .45000 .59600 .59600 .65000	.93853 2.61590 4.86762 7.55864 10.57862 13.83827 17.26624 20.80664 24.41695 28.06616 31.73325 35.40579 39.07861	.00000 18.77078 33.54721 45.03446 53.82034 60.39975 65.19294 68.55933 70.89808 72.20610 72.98424 73.34191 73.45060	375.41574 295.52859 229.74490 175.71769 131.58824 95.86368 67.32779 44.97497 27.96054 15.55276 7.15328 2.17390 .11801
.70000	42.75272	73.45060 73.45650	.11801 .51551