

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
15 juillet 2004 (15.07.2004)

PCT

(10) Numéro de publication internationale
WO 2004/059246 A2

(51) Classification internationale des brevets⁷ : G01B 11/06

(21) Numéro de la demande internationale :
PCT/FR2003/050198

(22) Date de dépôt international :
22 décembre 2003 (22.12.2003)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
02/16526 23 décembre 2002 (23.12.2002) FR

(71) Déposant (pour tous les États désignés sauf US) : COM-
MISSARIAT A L'ENERGIE ATOMIQUE [FR/FR];
31-33 rue de la Fédération, F-75752 Paris 15ème (FR).

(72) Inventeur; et

(75) Inventeur/Déposant (pour US seulement) : HAZART,
Jérôme [FR/FR]; 10, place Saint-Eynard, F-38000 Greno-
ble (FR).

(74) Mandataire : POULIN, Gérard; c/o Brevatome, 3 rue du
Docteur Lancereaux, F-75008 Paris (FR).

(81) États désignés (national) : JP, US.

(84) États désignés (régional) : brevet européen (AT, BE, BG,
CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Publiée :

— sans rapport de recherche internationale, sera republiée
dès réception de ce rapport

[Suite sur la page suivante]

(54) Title: OPTICAL METHOD OF EXAMINING RELIEFS ON A STRUCTURE

(54) Titre : PROCEDE D'ETUDE DES RELIEFS D'UNE STRUCTURE PAR VOIE OPTIQUE

A OBTAINING OF A MEASUREMENT SPECTRUM
B OBTAINING OF A TEST SPECTRUM
C COMPARISON
D ADJUSTMENT OF PARAMETERS
E ADDITION OF PARAMETERS
F DEFINITIVE PARAMETERS
G NEW DEFINITION

(57) Abstract: The invention relates to a method of examining a surface comprising reliefs. The inventive method consists in taking a measurement spectrum and comparing same to test spectra that are representative of arbitrary structures which are incrementally adjusted. The invention further consists in selecting a correlation from the spectra-representative points while optimising the determination by means of a hierarchical parameter adjustment.

(57) Abrégé : Un procédé d'étude d'une surface pourvue de reliefs est proposé, dans lequel un spectre de mesure est pris puis comparé à des spectres d'essai représentatifs de structures arbitraires qu'on ajuste par pas. Selon l'invention, on choisit une corrélation sur des points représentatifs des spectres tout en optimisant la détermination hiérarchisé des paramètres.

WO 2004/059246 A2

534534

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

PROCEDE D'ETUDE DES RELIEFS D'UNE STRUCTURE PAR VOIE
OPTIQUE

DESCRIPTION

5

La présente invention a trait à un procédé d'étude d'une structure par voie optique pour un contrôle dimensionnel de ses reliefs. De tels procédés trouvent application dans la caractérisation 10 géométrique de motifs espacés régulièrement, mais que leurs dimensions microscopiques rendent peu accessibles aux procédés de mesure directe, comme les lignes de relief en microélectronique.

Le terme anglais de "scatterometry" est 15 souvent utilisé dans l'art pour désigner des procédés où la surface à étudier reçoit un rayonnement qu'elle réfléchit en donnant un spectre diffracté en fonction des reliefs. Le spectre de mesure est recueilli et affiché sur un support graphique. On ne peut 20 l'exploiter pour en déduire directement les caractéristiques des reliefs, et c'est pourquoi on procède à des comparaisons du spectre à des spectres de référence obtenus pour des surfaces aux reliefs connus : si le spectre de mesure est proche d'un des 25 spectres de référence, son relief ressemblera à celui qui a donné naissance à ce spectre de référence. Les spectres de référence peuvent être tirés d'une bibliothèque ou d'essais de simulations de la 30 diffraction de modèles aux reliefs paramétrés de la surface. Ce deuxième genre de procédés est itératif en

faisant varier les paramètres pour converger vers la solution. Les brevets US 5 739 909 et 5 867 276 sont relatifs à des procédés d'étude d'une surface par réflectométrie. D'autres documents sont connus dans 5 l'art.

Certaines difficultés doivent être affrontées dans ce genre de procédés. Il est manifeste qu'une bibliothèque assez fournie est nécessaire pour donner une estimation précise des reliefs. Les procédés 10 itératifs sont sujets à des imprécisions de modélisation et à des difficultés de converger vers la solution correcte. Il en résulte des temps de calculs excessifs.

L'invention offre un perfectionnement aux 15 mesures de reliefs d'une surface par réflectométrie, et plus précisément à la seconde famille de procédés mentionnée où des simulations du relief et des spectres sont faites. Elle permet d'obtenir de meilleures corrélations entre le spectre mesuré et les spectres 20 d'essai successifs.

Elle peut être définie, sous sa forme la plus générale, par un procédé d'étude d'une surface par réflectométrie, comprenant des étapes de projection d'un rayonnement sur la surface, de recueil d'un 25 spectre de mesure du rayonnement après une réflexion d'un rayonnement sur la surface et d'affichage du spectre sur un support graphique, comprenant encore des étapes de sélection de points du spectre, les points pouvant être joints par des lignes approchant le 30 spectre, et de recherche de reliefs de la surface par des comparaisons des points sélectionnés du spectre de

mesure à des points homologues d'un spectre d'essai, le spectre d'essai provenant d'une réflexion simulée du rayonnement sur une surface d'essai résultant d'une modélisation du relief exprimée par des paramètres, et 5 comprenant des ajustements des comparaisons et du spectre d'essai par des ajustements des paramètres, caractérisé en ce que les paramètres sont ajustés successivement dans un ordre déterminé par une sensibilité du spectre d'essai aux paramètres, le ou 10 les paramètres les plus influents sur ledit spectre étant ajustés en premier lieu et ainsi de suite. De préférence, le relief est modélisé par un empilement de tranches exprimées par des paramètres dont un nombre de tranches dans l'empilement et des hauteurs et des 15 largeurs des sections de tranches, le nombre et les hauteurs et largeurs étant déterminés à partir d'une erreur totale et d'une constante de propagation du rayonnement. L'erreur pour chaque tranche peut être définie par l'intégrale sur une hauteur de la tranche, 20 de la valeur absolue de la différence entre la constante de propagation du relief et la constante de propagation moyenne de la tranche. La somme des erreurs de toutes les tranches, d'après un critère possible, doit être inférieure ou égale à une valeur admissible. 25

L'invention sera maintenant décrite plus complètement en liaison aux figures. La figure 1 illustre un dispositif d'étude, la figure 2 un organigramme du procédé, la figure 3 un spectre de mesure et les figures 4 et 5 certaines techniques 30 d'étude.

Une source lumineuse 1 pouvant consister en un laser prolongé par une fibre optique projette un rayon lumineux incident 2 vers un échantillon 3 consistant en un substrat 4 strié et dont des reliefs 5 en saillie forment des arêtes 5 linéaires sur la face supérieure qu'on étudie. Le rayon lumineux incident 2 est réfléchi sur l'échantillon 3 en un rayon lumineux réfléchi 6 dont la direction est symétrique par rapport à la normale au substrat 4 au point d'illumination et qui aboutit à un spectromètre 7. En pratique, plusieurs dizaines des arêtes 5 sont atteintes à la fois pour le rayon lumineux et contribuent à la fois à la mesure. L'installation comprend encore schématiquement un système de commande 8 dont une des fonctions est de recueillir les mesures par le spectromètre 7, et aussi de les retransmettre à une interface graphique 9 que consulte l'utilisateur. Certaines autres possibilités de l'installation ne sont qu'esquissées. C'est ainsi qu'il est possible d'incliner l'échantillon 3 en faisant tourner un plateau 10 sur lequel le substrat 4 est collé en commandant une rotation d'un axe 11 de support du plateau 10. On commande alors aussi une rotation du spectromètre 7 d'un angle double pour continuer de recevoir des mesures, en déplaçant un bras 25 coudé 12 sur lesquels il est monté autour d'un axe 13 coaxial ou précédent. Ces mouvements sont assurés par le système de commande 8. L'opérateur dispose aussi d'un clavier ou d'éléments équivalents pour agir sur l'installation par l'intermédiaire du système de commande 8. On désigne par θ l'angle d'incidence du rayon lumineux d'incident 2 sur l'échantillon 3, par λ

la longueur d'onde de la lumière et par p l'angle de polarisation de celle-ci. Les mesures par réfléttométrie peuvent prendre des aspects différents selon le paramètre qu'on fait varier pour avoir non un 5 point de mesure unique mais un spectre complet. On décrira ici plus complètement une mesure dite spectroscopique, où le spectre est obtenu en faisant varier la longueur d'onde λ dans une plage assez large, mais les mesures dites goniométriques, où varie l'angle 10 d'incidence θ , sont aussi très courantes pour donner un autre spectre. L'application de l'invention n'est pas affectée par la catégorie du spectre.

On se reporte maintenant à la figure 2 pour la description générale du procédé utilisé. L'étape A 15 consiste à obtenir un spectre de mesure de la façon qu'on vient d'indiquer. L'étape suivante B consiste à obtenir un spectre d'essai qui est comparé au précédent à l'étape suivante C. Un paramètre de l'échantillon 3 sera alors ajusté à l'étape suivante D avec l'espoir 20 d'améliorer la comparaison, et on reviendra à l'étape B et aux suivantes jusqu'à être parvenu à une comparaison optimale. L'étape C sera suivie alors d'une étape E d'addition de paramètres qui seront ajustés, et on recommencera une série de cycles des étapes D, B et C 25 jusqu'à ce que les nouveaux paramètres soient optimisés eux aussi. On procédera de même jusqu'à avoir considéré tous les paramètres, après quoi une solution du système sera atteinte et les valeurs des paramètres seront fournies à l'utilisateur selon l'étape F. Après un 30 ajustement (D), il sera aussi possible

occasionnellement de commander une nouvelle définition du modèle à l'étape G avant de revenir à l'étape B.

Nous nous intéressons maintenant à l'étape A du procédé. Il s'agit d'un aspect essentiel puisqu'il 5 permet de réduire énormément les temps de calcul nécessaires à la corrélation par itérations successives. Le spectre ici représenté est une intensité lumineuse en fonction de la longueur d'onde λ . On ne considérera que quelques points de ce spectre, 10 notamment ceux, notés par 16, qui sont situés aux sommets de pics du spectre, d'autres points notés 17 situés à la base de ces pics, le cas échéant des points 18 situés dans des vallées du spectre si celles-ci sont accusées ; des points intermédiaires aux précédents, 15 notés 19, peuvent aussi sélectionnés. On cherche à obtenir une très bonne adéquation entre le spectre réel de mesure et un spectre fictif défini par des lignes joignant les points sélectionnés successifs. La représentation de la figure 3 montre qu'on peut y 20 parvenir avec un nombre de points réduit ; des vérifications peuvent être entreprises en calculant l'écart général entre le spectre de mesure et le spectre défini par les points sélectionnés. Une autre possibilité, à laquelle il est facile de recourir bien 25 qu'on ne le fasse pas avec l'exemple de la figure 3, est de ne considérer qu'une partie jugée intéressante du spectre et de négliger complètement le reste dans les corrélations. Des points appartenant à des régions différentes, comme les sommets et les bases de pics, 30 devraient pourtant être conservés pour offrir une base de comparaison sûre.

Dans d'autres modes de réalisation de l'invention, des approximations différentes mais satisfaisantes du spectre sont atteintes par un échantillonnage régulier du spectre sur la plage des 5 longueurs d'onde ou en énergie.

Nous passons maintenant à une description de l'obtention des spectres d'essai et de leur ajustement.

D'après la figure 4, les arêtes 5 peuvent 10 être assimilées à un empilement de tranches 22 superposées et de largeurs différentes que traverse la lumière selon un mode de propagation déterminé dépendant de l'angle d'incidence. Cette décomposition en tranches 22 sert de modèle pour obtenir les spectres 15 d'essai par une simulation. Dans la méthode la plus courante, les tranches 22 sont supposées être de largeur uniforme, donc de section rectangulaire et leur épaisseur est choisie arbitrairement. Chacune des tranches 22 possède alors une constante de propagation 20 de la lumière uniforme notée β_k , où k est l'indice de la tranche 22 considérée. Cette constante de propagation exprime la vitesse de propagation de la lumière à travers la tranche 22 selon le mode de propagation qui prévaut. Une erreur systématique est 25 toutefois commise puisque le relief a en réalité une largeur variable dans les tranches 22. Cette erreur peut être exprimée par les formules :

$$e_k = \int_{y_k}^{y_{k+1}} |\bar{\beta}_k - \beta(y)| dy$$

$$\bar{\beta}_k = \frac{1}{y_{k+1} - y_k} \int_{y_k}^{y_{k+1}} \beta(y) dy$$

où y_k et y_{k+1} sont les hauteurs extrêmes de la tranche 22, et $\beta(y)$ la constante réelle de propagation de la lumière à toute hauteur y , calculée 5 d'après la largeur locale $x(y)$ du relief entre les flancs de l'arête 5, et $\bar{\beta}_k$ la constante réelle moyenne dans la tranche 22. L'erreur est donc calculée sur l'intégrale de la hauteur de chaque tranche.

L'article « Formulation for stable and 10 efficient implementation of the rigorous coupled-wave analysis of binary gratings » paru dans le Journal of Optical Society of America, vol.12, n°5, mai 1995, p.1068 à 1076, par Moharam et d'autres, donne des précisions sur la propagation de la lumière dans les 15 arêtes 5 ou d'autres reliefs.

Selon l'invention, les épaisseurs $(y_{k+1}-y_k)$ des tranches 22 ne sont plus choisies arbitrairement, mais de façon que l'erreur d'obtention totale des spectres d'essai sur tout le relief modélisé, $E = \sum e_k$, 20 devienne inférieure ou égale à un maximum admissible E_{\max} . L'étape G du procédé consistera donc à ajuster la hauteur des tranches 22 composant l'arête 5 et à appliquer les formules précédentes de manière que $E = E_{\max}$. L'arête 5 sera alors découpée de la meilleure 25 façon, en conciliant une erreur réduite et un nombre de tranches 22 modéré qui aura l'avantage de ne pas accroître excessivement les temps de calcul.

Nous explicitons cet ajustement et abordons d'autres étapes du procédé de corrélation au moyen de 30 la figure 5. L'arête 5 pourra être assimilée à un

relief de forme simple, tel qu'un trapèze aux coins supérieurs arrondis, dans bien des cas pratiques. Cette forme peut être décrite au moyen de quatre paramètres, à savoir la hauteur h , l'angle des côtés t , la courbure r des coins supérieurs et la largeur f , par exemple à mi-hauteur. D'autres formes sont concevables.

Ces paramètres régissent la décomposition de l'arête 5 par laquelle les spectres d'essai sont obtenus, ainsi que la partie du procédé explicitée par la figure 4. Leurs valeurs sont inconnues à l'origine, puisqu'elles sont l'objet de l'étude, et doivent donc être déduites par des corrélations entre le spectre de mesure et les spectres d'essai les faisant varier de façon itérative pour améliorer la corrélation. Un spectre d'essai est calculé par groupe de valeurs que prennent les paramètres dans la progression du procédé. Une première étape, qui peut être accomplie pour chaque jeu de paramètres ou pour certains d'eux seulement, est l'étape G, qui donne le nombre des tranches 22 optimal pour les valeurs courantes, ou des valeurs précédentes, peu différentes, des paramètres et après les critères précédents. Conformément à un autre aspect de l'invention, on détermine des classes des paramètres. En effet, un ajustement anarchique de ceux-ci pourrait échouer à donner la solution exacte du problème en ne convergeant que vers une solution locale. C'est pourquoi on se décide à faire varier les paramètres les uns après les autres pour réaliser l'ajustement, en commençant par les plus significatifs, c'est-à-dire ceux qui ont le plus d'influence sur le spectre d'essai.

Chacune des classes de paramètres peut comprendre un ou plusieurs paramètres. L'ajustement se fait d'abord en utilisant seulement les paramètres de la première classe. On peut ici juger que la hauteur et 5 la largeur auront des importances comparables, de sorte que la première classe les comprendra toutes deux. Un cycle d'étape B, C et D est alors entrepris en ajustant les valeurs de f et h jusqu'à obtenir un minimum de différence entre le spectre de mesure et le dernier 10 spectre d'essai. Un nouveau cycle d'étape B, C et D est alors entrepris en considérant aussi la deuxième classe de paramètres, qui comprend l'angle t : on fait varier cette fois à la fois les paramètres h , f et t . Enfin, 15 un dernier cycle d'étapes B, C et D est entrepris en incorporant la troisième classe de paramètre, comprenant la courbure r , et en faisant donc varier tous les paramètres à la fois. Quand l'erreur minimale entre le spectre de mesure et le spectre d'essai a été trouvé, on considère que l'arête 5 a été trouvée.

20 Il est clair que l'invention pourrait être appliquée à d'autres formes d'arêtes.

REVENDICATIONS

1) Procédé d'étude d'une surface par
5 réflectrométrie, comprenant des étapes de projection
d'un rayonnement (2) sur la surface, de recueil d'un
spectre de mesure du rayonnement après une réflexion
(6) du rayonnement sur la surface et d'affichage du
spectre sur un support graphique (9), procédé
10 comprenant encore des étapes de sélection de points du
spectre (16, 17, 18, 19), les points pouvant être
 joints par des lignes approchant le spectre, et de
 recherche de reliefs (5) de la surface par des
 comparaisons des points sélectionnés du spectre de
15 mesure à des points homologues d'un spectre d'essai, le
 spectre d'essai provenant d'une réflexion simulée du
 rayonnement sur une surface d'essai (5; 22) résultant
 d'une modélisation du relief exprimée par des
 paramètres, et comprenant des ajustements des
20 comparaisons et du spectre d'essai par des ajustements
 des paramètres, caractérisé en ce que les paramètres
 sont ajustés successivement dans un ordre déterminé par
 une sensibilité du spectre d'essai aux paramètres,
 le ou les paramètres les plus influents sur ledit
25 spectre étant ajustés en premier lieu et ainsi de
 suite.

2) Procédé selon la revendication 1,
 caractérisé en ce que le relief est modélisé par un
 empilement de tranches défini par un nombre de tranches
30 dans l'empilement et des hauteurs et des largeurs des
 sections de tranches, le nombre ainsi que les hauteurs

et largeurs étant déterminés à partir d'une erreur totale et d'une constante de propagation du rayonnement.

3) Procédé selon la revendication 2,
5 caractérisé en ce que l'erreur pour chaque tranche est définie par l'intégrale sur une hauteur de la tranche, de la valeur absolue de la différence entre la constante de propagation du relief et la constante de propagation moyenne de la tranche.

10 4) Procédé selon la revendication 3,
caractérisé en ce que la somme des erreurs de toutes les tranches est égale à une valeur maximum admissible.

15 5) Procédé d'étude d'une surface par réflectométrie suivant l'une quelconque des revendications précédentes, caractérisé en ce que les paramètres les plus influent comprennent une hauteur et une largeur des reliefs, qui sont modifiés d'abord dans les ajustements.

20 6) Procédé d'étude d'une surface par réflectométrie suivant la revendication 5, caractérisé en ce que les paramètres comprennent une pente et un arrondi des reliefs, qui sont modifiés dans cet ordre dans les ajustements, et après la hauteur et la largeur.

25 7) Procédé d'étude d'une structure par réflectométrie suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des ajustements de nombre d'étages (22) des reliefs utilisés pour obtenir le spectre d'essai.

1 / 4

FIG. 1

3 / 4

FIG. 3

2 / 4

FIG. 2

4 / 4

FIG. 4

FIG. 5

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

PCT

(43) Date de la publication internationale
15 juillet 2004 (15.07.2004)

(10) Numéro de publication internationale
WO 2004/059246 A3

(51) Classification internationale des brevets⁷ :
G01B 11/06, 11/24, H01L 21/66

(72) Inventeur; et

(75) Inventeur/Déposant (*pour US seulement*) : HAZART,
Jérôme [FR/FR]; 10, place Saint-Eynard, F-38000 Grenoble (FR).

(21) Numéro de la demande internationale :
PCT/FR2003/050198

(74) Mandataire : POULIN, Gérard; c/o Brevatome, 3 rue du
Docteur Lancereaux, F-75008 Paris (FR).

(22) Date de dépôt international :
22 décembre 2003 (22.12.2003)

(81) États désignés (*national*) : JP, US.

(25) Langue de dépôt : français

(84) États désignés (*régional*) : brevet européen (AT, BE, BG,
CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

(26) Langue de publication : français

Publiée :

— avec rapport de recherche internationale

[Suite sur la page suivante]

(54) Title: OPTICAL METHOD OF EXAMINING RELIEFS ON A STRUCTURE

(54) Titre : PROCEDE D'ETUDE DES RELIEFS D'UNE STRUCTURE PAR VOIE OPTIQUE

A OBTAINING OF A MEASUREMENT SPECTRUM
B OBTAINING OF A TEST SPECTRUM
C COMPARISON
D ADJUSTMENT OF PARAMETERS
E ADDITION OF PARAMETERS
F DEFINITIVE PARAMETERS
G NEW DEFINITION

(57) Abstract: The invention relates to a method of examining a surface comprising reliefs. The inventive method consists in taking a measurement spectrum and comparing same to test spectra that are representative of arbitrary structures which are incrementally adjusted. The invention further consists in selecting a correlation from the spectra-representative points while optimising the determination by means of a hierarchical parameter adjustment.

(57) Abrégé : Un procédé d'étude d'une surface pourvue de reliefs est proposé, dans lequel un spectre de mesure est pris puis comparé à des spectres d'essai représentatifs de structures arbitraires qu'on ajuste par pas. Selon l'invention, on choisit une corrélation sur des points représentatifs des spectres tout en optimisant la détermination hiérarchisé des paramètres.

WO 2004/059246 A3

— avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont requises

(88) Date de publication du rapport de recherche
Internationale: 19 août 2004

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

INTERNATIONAL SEARCH REPORT

Ir Application No
PCT/FR 03/50198

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01B11/06 G01B11/24 H01L21/66

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01B H01L G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 02/27288 A (KLA TENCOR CORP) 4 April 2002 (2002-04-04) page 11, line 20 -page 13, line 20; figures 2-4 page 17, line 1-16; figure 8 ---	1-7
A	US 6 483 580 B1 (ABDULHALIM IBRAHIM ET AL) 19 November 2002 (2002-11-19) abstract; figures 1-4 column 11, line 18-26 ---	1-7
A	US 5 900 633 A (ROSENTHAL PETER A ET AL) 4 May 1999 (1999-05-04) column 7, line 38 -column 11, line 15; figures 4-8 ---	1-7 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Invention
- "X" document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

15 June 2004

Date of mailing of the International search report

14/07/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Beyfuß, M

INTERNATIONAL SEARCH REPORT

Ir [REDACTED] Application No
PCT/FR 03/50198

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 6 462 817 B1 (STROCCHIA-RIVERA CARLOS) 8 October 2002 (2002-10-08) column 27, line 46 -column 28, line 10; figure 4 ---	1-7
A	US 2002/113966 A1 (FABRIKANT ANATOLY ET AL) 22 August 2002 (2002-08-22) paragraphs '0059!-'0064!; figures 5,6 ---	1-7
A	US 5 963 329 A (CONRAD EDWARD W ET AL) 5 October 1999 (1999-10-05) column 5, line 16 -column 9, line 6; figures 4-7 ---	1-7
A	US 2002/188580 A1 (DODDI SRINIVAS ET AL) 12 December 2002 (2002-12-12) paragraphs '0020!-'0035!; figures 1-4 -----	1-7

INTERNATIONAL SEARCH REPORT

Ir. Application No.

PCT/FR 03/50198

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 0227288	A 04-04-2002	JP WO	2004510152 T 0227288 A1		02-04-2004 04-04-2002
US 6483580	B1 19-11-2002	AU EP JP WO US US	3310999 A 1073876 A1 2002506198 T 9945340 A1 2003058443 A1 2002033945 A1		20-09-1999 07-02-2001 26-02-2002 10-09-1999 27-03-2003 21-03-2002
US 5900633	A 04-05-1999	WO	9931483 A1		24-06-1999
US 6462817	B1 08-10-2002	WO	0188955 A2		22-11-2001
US 2002113966	A1 22-08-2002	AU WO	3100302 A 0250501 A1		01-07-2002 27-06-2002
US 5963329	A 05-10-1999	NONE			
US 2002188580	A1 12-12-2002	AU WO	3521002 A 0248746 A2		24-06-2002 20-06-2002

RAPPORT DE RECHERCHE INTERNATIONALE

D International No
PCT/FR 03/50198

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 G01B11/06 G01B11/24 H01L21/66

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 G01B H01L G01N

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'Indication des passages pertinents	no. des revendications visées
A	WO 02/27288 A (KLA TENCOR CORP) 4 avril 2002 (2002-04-04) page 11, ligne 20 -page 13, ligne 20; figures 2-4 page 17, ligne 1-16; figure 8 ---	1-7
A	US 6 483 580 B1 (ABDULHALIM IBRAHIM ET AL) 19 novembre 2002 (2002-11-19) abrégé; figures 1-4 colonne 11, ligne 18-26 ---	1-7
A	US 5 900 633 A (ROSENTHAL PETER A ET AL) 4 mai 1999 (1999-05-04) colonne 7, ligne 38 -colonne 11, ligne 15; figures 4-8 ---	1-7

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant porter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

Date d'expédition du présent rapport de recherche internationale

15 juin 2004

14/07/2004

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Beyfub, M

RAPPORT DE RECHERCHE INTERNATIONALE

Document International No
PCT/FR/03/50198

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	US 6 462 817 B1 (STROCCHIA-RIVERA CARLOS) 8 octobre 2002 (2002-10-08) colonne 27, ligne 46 -colonne 28, ligne 10; figure 4 ---	1-7
A	US 2002/113966 A1 (FABRIKANT ANATOLY ET AL) 22 aout 2002 (2002-08-22) alinéas '0059!-'0064!; figures 5,6 ---	1-7
A	US 5 963 329 A (CONRAD EDWARD W ET AL) 5 octobre 1999 (1999-10-05) colonne 5, ligne 16 -colonne 9, ligne 6; figures 4-7 ---	1-7
A	US 2002/188580 A1 (DODDI SRINIVAS ET AL) 12 décembre 2002 (2002-12-12) alinéas '0020!-'0035!; figures 1-4 ---	1-7

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Déclaration Internationale No

PCT/FR 00/50198

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)		Date de publication
WO 0227288	A	04-04-2002	JP WO	2004510152 T 0227288 A1		02-04-2004 04-04-2002
US 6483580	B1	19-11-2002	AU EP JP WO US US	3310999 A 1073876 A1 2002506198 T 9945340 A1 2003058443 A1 2002033945 A1		20-09-1999 07-02-2001 26-02-2002 10-09-1999 27-03-2003 21-03-2002
US 5900633	A	04-05-1999	WO	9931483 A1		24-06-1999
US 6462817	B1	08-10-2002	WO	0188955 A2		22-11-2001
US 2002113966	A1	22-08-2002	AU WO	3100302 A 0250501 A1		01-07-2002 27-06-2002
US 5963329	A	05-10-1999	AUCUN			
US 2002188580	A1	12-12-2002	AU WO	3521002 A 0248746 A2		24-06-2002 20-06-2002