# Final Report

Will Gullion, Brian Nalley, Nate Nellis, McKade Thomas

STAT 5650

## Introduction

We chose to focus on data having to do with heart disease/heart attach indicators to understand which factors impact a person's probability to have a heart attach or summer from strong levels of heart disease. Data was found on Kaggle and was modified from a CDC survey. See the *Data Dictionary* section for more details at the end of the document. The dataset contains 252,680 observations. The response variable we have is a binary one telling us if the person being interviewed suffered from a heart attack or not. There are a total of 20 available predictor variables.

# **Exploratory Data Analysis**

Taking a closer look at our predictor variable, we noticed that only 9.4% of participants in the survey had heart disease or a heart attack, 23,893 responded yes versus 229,787 who responded no. This means that we could just predict a 0 for all observations and we could get an accuracy of over 90%. Since we aren't concerned in this instance with a high accuracy, but actually a decent sensitivity (getting accurate results when someone is at risk of a heart attack or heart disease), we utilized Upsampling in some of our methods to skew the model to predict the results we wanted. This decreased overall accuracy, but resulted in a much better prediction accuracy of finding those people with heart disease or who had a heart attack. Even with a loss in accuracy, we felt that this was a wise move as predicting someone who has heart disease is much more important than identifying someone who doesn't have heart disease. See the below bar chart to compare the two catagories visually.



When it comes to the predictor variables there are 12 binary, 3 numerical, and 5 factor variables. Having fewer numerical variables is less than desireable, especially when it comes to how some of the factor variables are coded/binned. An example of this terrible survey coding is the **Income** variable where the CDC survey sets the highest bucket capped at \$75,000+. Due to how low that is for the maximum response allowed, a full third of the observations fall into that category.



For the three numerical variables, **BMI**, **MentHlth**, and **PhysHlth**, there is a definite skewness that we can see in their distributions. This is especially true for **PhysHlth** and **MentHlth**, which are how many times in the last 30 days a survey respondent reported having poor physical or mental health respectively. A huge percentage of respondents reported zero days, 70% for **MentHlth** and 63% for **PhysHlth**. To correct for these skewed variables, we logged **BMI** to enforce normality constraints. The For **MentHlth** and **PhysHlth** we created binary variables where any value greater than 0 was coded as a 1 and was coded as a 0 otherwise. We originally attempted to log these variables but the skew wasn't reduced very much and we ended up finding that the binary variables worked out much better. These transformations were valuable in the various classification methods that we tried, even though they did reduce our numerical variables to really just the **ln.BMI** variable.



See more information on the variables in the **Data Dictionary** Section at the end of the document.

# **Data Dictionary**

Data found by us at https://www.kaggle.com/datasets/alexteboul/heart-disease-health-indicators-dataset Description of variables found in https://www.cdc.gov/brfss/annual\_data/2015/pdf/codebook15\_llcp.pdf

## Response Variable

HeartDiseaseorAttack, binary

#### summary(health\$HeartDiseaseorAttack)

```
## 0 1
## 229787 23893
```

#### **Predictor Variables**

#### HighBP, binary

- Adults who have been told they have high blood pressure by a doctor, nurse, or other health professional

#### summary(health\$HighBP)

```
## 0 1
## 144851 108829
```

#### HighChol, binary

- Have you EVER been told by a doctor, nurse or other health professional that your blood cholesterol is high?

#### summary(health\$HighChol)

```
## 0 1
## 146089 107591
```

#### CholCheck, binary

- Cholesterol check within past five years

#### summary(health\$CholCheck)

```
## 0 1
## 9470 244210
```

#### BMI, numerical

### summary(health\$BMI)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.00 24.00 27.00 28.38 31.00 98.00
```

# Histogram of as.numeric(health\$BMI)



#### ln.BMI, numerical

- Logged version of the BMI variable to reduce the impact of outliers and enforce better normality contstraints.

#### summary(health\$ln.BMI)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.485 3.178 3.296 3.323 3.434 4.585
```

hist(as.numeric(health\$ln.BMI))

# Histogram of as.numeric(health\$In.BMI)



#### $\mathbf{Smoker},\,\mathrm{binary}$

- Have you smoked at least 100 cigarettes in your entire life?

# summary(health\$Smoker)

## 0 1 ## 141257 112423

 ${\bf Stroke},\ {\rm binary}$ 

#### summary(health\$Stroke)

## 0 1 ## 243388 10292

#### Diabetes, factor

- 0 is no diabetes,
- 1 is pre-diabetes
- 2 is diabetes

#### summary(health\$Diabetes)

## 0 1 2 ## 213703 4631 35346

#### PhysActivity, binary

- During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?

#### summary(health\$PhysActivity)

```
## 0 1
## 61760 191920
```

#### Fruits, binary

- Consume Fruit 1 or more times per day

#### summary(health\$Fruits)

```
## 0 1
## 92782 160898
```

#### Veggies, binary

- Consume Vegetables 1 or more times per day

#### summary(health\$Veggies)

```
## 0 1
## 47839 205841
```

#### HvyAlcoholConsum, binary

- Heavy drinkers (adult men having more than 14 drinks per week and adult women having more than 7 drinks per week)

#### summary(health\$HvyAlcoholConsum)

```
## 0 1
## 239424 14256
```

#### AnyHealthcare, binary

- Do you have any kind of health care coverage, including health insurance, prepaid plans such as HMOs, or government plans such as Medicare, or Indian Health Service?

#### summary(health\$AnyHealthcare)

```
## 0 1
## 12417 241263
```

#### NoDocbcCost, binary

- Was there a time in the past 12 months when you needed to see a doctor but could not because of cost?

#### summary(health\$NoDocbcCost)

```
## 0 1
## 232326 21354
```

#### GenHlth, factor

- Would you say that in general your health is:
- -1 = Excellent
- -2 = Very Good
- -3 = Good
- -4 = Fair
- -5 = Poor

#### summary(health\$GenHlth)

```
## 1 2 3 4 5
## 45299 89084 75646 31570 12081
```

#### MentHlth, numerical

- Now thinking about your mental health, which includes stress, depression, and problems with emotions, for how many days during the past 30 days was your mental health not good?

#### summary(health\$MentHlth)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 0.000 3.185 2.000 30.000
```

#### bin.MentHlth, binary

- Binary version of **MentHlth** where 0 days is coded as 0 and any number of days is coded as 1.

#### summary(health\$bin.MentHlth)

```
## 0 1
## 175680 78000
```

#### PhysHlth, numerical

- Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good?

#### summary(health\$PhysHlth)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 0.000 4.242 3.000 30.000
```

#### bin.PhysHlth, binary

- Binary version of **PhysHlth** where 0 days is coded as 0 and any number of days is coded as 1.

#### summary(health\$bin.PhysHlth)

```
## 0 1
## 160052 93628
```

#### DiffWalk, binary

- Do you have serious difficulty walking or climbing stairs?

```
summary(health$DiffWalk)
## 211005 42675
Sex, binary
- 0 = \text{Female}
-1 = Male
summary(health$Sex)
##
                 М
## 141974 111706
Age, factor
- 1 Age 18 to 24
- 2 Age 25 to 29
- 3 Age 30 to 34
- 4 Age 35 to 39
- 5 Age 40 to 44
- 6 Age 45 to 49
- 7 Age 50 to 54
- 8 Age 55 to 59
- 9 Age 60 to 64
- 10 Age 65 to 69
- 11 Age 70 to 74
- 12 Age 75 to 79
- 13 Age 80 or older
- 14 Don't Know / Refused to answer (I removed these as well)
```

#### summary(health\$Age)

## 1 2 3 4 5 6 7 8 9 10 11 12 13 ## 5700 7598 11123 13823 16157 19819 26314 30832 33244 32194 23533 15980 17363

hist(as.numeric(health\$Age))

# Histogram of as.numeric(health\$Age)



### Education, factor

- What is the highest grade or year of school you completed?
- 1 Never attended school or only kindergarten
- 2 Grades 1 through 8 (Elementary)
- 3 Grades 9 through 11 (Some high school)
- 4 Grade 12 or GED (High school graduate)
- 5 College 1 year to 3 years (Some college or technical school)
- 6 College 4 years or more (College graduate)

### summary(health\$Education)

## 1 2 3 4 5 6 ## 174 4043 9478 62750 69910 107325

hist(as.numeric(health\$Education))

# Histogram of as.numeric(health\$Education)



### Income, factor

- Is your annual household income from all sources
- 1 Less than \$10,000
- 2 Less than \$15,000 (\$10,000 to less than \$15,000)
- -3 Less than \$20,000 (\$15,000 to less than \$20,000)
- 4 Less than \$25,000 (\$20,000 to less than \$25,000)
- 5 Less than \$35,000 (\$25,000 to less than \$35,000)
- 6 Less than \$50,000 (\$35,000 to less than \$50,000)
- 7 Less than \$75,000 (\$50,000 to less than \$75,000)
- 8 \$75,000 or more

summary(health\$Income)

## 1 2 3 4 5 6 7 8 ## 9811 11783 15994 20135 25883 36470 43219 90385

hist(as.numeric(health\$Income))

# **Histogram of as.numeric(health\$Income)**

