同济大学课程考核试卷(A卷) 2022-2023 学年第二学期

课名: 高等数学 AB (下) 考试考查: 考试 课号:

此卷选为:期中考试()、期终考试(√)、重修() 试卷

题号	<u>1</u>	一 24 分	二 12 分	三 36 分	四 10 分	五 10 分	六 8分	总分
得分	}							

(注意:本试卷共六大题,三大张,满分100分,考试时间为120分钟.解答题要求写出解题过程)

- 一. 选择题(每小题 3 分, 共 24 分, 将正确选项填在对应的括号内)
- 1. 直线 $L: \frac{x}{0} = \frac{y+1}{1} = \frac{z}{1}$ 与平面 $\Pi: 2x-2y+z=5$ 的夹角为
- (A) $\frac{\pi}{6}$. (B) $\frac{\pi}{4}$. (C) $\frac{\pi}{3}$.

- 2. 函数 u = xyz 在点(3,2,1) 处,从该点沿直线方向到点(4,3,2) 的方向导数是

[C]

- (A) $3\sqrt{3}$. (B) $\frac{10}{\sqrt{3}}$. (C) $\frac{11}{\sqrt{3}}$. (D) $\frac{22}{\sqrt{3}}$.
- 3. 设 f(x,y) 为连续函数,则 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho =$ [C]

- (A) $\int_{0}^{1} dy \int_{0}^{2} f(x, y) dx$. (B) $\int_{0}^{1} dy \int_{0}^{1-\sqrt{1-y^{2}}} f(x, y) dx$.
- (C) $\int_{0}^{2} dx \int_{0}^{\sqrt{2x-x^{2}}} f(x,y) dy$. (D) $\int_{0}^{2} dx \int_{0}^{\sqrt{x-x^{2}}} f(x,y) dy$.
- 4. 在曲线 $\{ y = -t^2, \text{ 的所有切线中,与平面 } x + 3y + 3z = 7$ 平行的切线 [A]
- (A) 只有 1 条.

(B) 只有 2 条.

(C)至少有3条.

(D) 不存在.

- 5. 设 $f(x,y) = x^3 + y^3 3xy$,则下列结论正确的是 [A]
- (A) f(x,y) 只有极小值点. (B) f(x,y) 只有极大值点.
- (C) f(x,y)既有极小值点也有极大值点. (D) f(x,y)没有极值点.
- 6. 曲线 Γ : $\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$, 则曲线积分 $\int_{\Gamma} (xy + yz) ds = [D]$

- (A) $\frac{\pi}{3}$. (B) 0. (C) $-\frac{\pi}{3}$.
- 7. 平面曲线 L 为逆时针走向的圆周 $(x-2)^2 + (y-3)^2 = 2$ 上从点 A(1,2) 到点 B(3,4) 的半圆弧,则

- (A) $\pi 2$. (B) $\pi 1$. (C) $2\pi 1$. (D) $2\pi 2$.
- 8. 常数项级数 $\sum_{i=2}^{\infty} \frac{n-2}{2^n}$

[B]

- (A) 发散. (B) 的和为0. (C) 的和为 $\frac{1}{2}$. (D) 的和为 $\frac{\sqrt{2}}{2}$.
- 二. 填空题(每小题 3 分, 共 12 分)
- 1. 函数 $u = \frac{1}{r}$, $r = \sqrt{x^2 + y^2 + z^2}$, 则 $\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) = \underline{0}$.
- 2. 椭球面 $x^2 + y^2 + 2z^2 = 7$ 上到平面 x + 2y + 2z = 48 的距离最短的点的坐标是 ____

(1,2,1)_____.

3. 有向曲面 Σ 为旋转抛物面 $z=x^2+y^2$ 上介于 z=0 和 z=4 部分的下侧,将积分 $I = \iint P dy dz + Q dz dx + R dx dy$ 化为对坐标 x, y 的曲面积分时,

$$I = \underline{\iint_{\Sigma} (-2xP - 2yQ + R) \, dx \, dy} \underline{\qquad}.$$

- 4. 已知周期函数 f(x) 的周期是 2π ,在 $(-\pi,\pi]$ 上, $f(x) = \begin{cases} 0, & -\pi < x \le 0, \\ x, & 0 < x \le \pi \end{cases}$

三. 解答题(每小题 9 分, 共 36 分)

1. 已知两直线 $L_1: \frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{-6}$ 与 $L_2: \frac{x-1}{0} = \frac{y}{-2} = \frac{z-5}{4}$,判断 L_1 和 L_2 是否有交点?若有

交点,求交点坐标;若无交点,求该两直线之间的距离

解: 两直线方向向量分别为: $\vec{s}_1 = (2,3,-6), \vec{s}_2 = (0,-2,4)$. 连结两直线上两点的向量为 $\overrightarrow{M_1M_2} = (1,-2,2)$.

相应的混合积为
$$\begin{bmatrix} \vec{s}_1, \vec{s}_2, \overline{M_1 M_2} \end{bmatrix} = \begin{vmatrix} 2 & 3 & -6 \\ 0 & -2 & 4 \\ 1 & -2 & 2 \end{vmatrix} = 8$$
,直线异面,无交点.

其公垂线方向向量
$$\vec{s} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & -6 \\ 0 & -2 & 4 \end{vmatrix} = -8\vec{j} - 4\vec{k}.$$

距离
$$d = \left| \operatorname{Prj}_{\vec{s}} \overrightarrow{M_1 M_2} \right| = \frac{2}{\sqrt{5}}.$$

2. 计算二重积分 $I = \iint_D |y-x| \, \mathrm{d}x \, \mathrm{d}y$ 的值,其中区域 D 由直线 x=2 、 y=2 、 x 轴及 y 轴所围成.

解: 直线 y = x 分割区域 D 为上下两块,分别记为 D_1 和 D_2 ,

$$I = \iint_{D_1} + \iint_{D_2} |y - x| \, dx \, dy$$

$$= \iint_{D_1} (y - x) \, dx \, dy + \iint_{D_2} (x - y) \, dx \, dy$$

$$= \int_0^2 dy \int_0^y (y - x) \, dx + \int_0^2 dx \int_0^x (x - y) \, dy$$

$$= \int_0^2 \frac{1}{2} y^2 \, dy + \int_0^2 \frac{1}{2} x^2 \, dx$$

$$= \frac{8}{3}.$$

3B. 曲面
$$\sum$$
是上半球面 $z = \sqrt{5-x^2-y^2}$ 上介于 $z = 1$ 和 $z = 2$ 之间的部分,计算曲面积分
$$I = \iint_{\Sigma} (x+y+z) \, \mathrm{d}S.$$

解:由对称性, $I = \iint_{\Sigma} z \, \mathrm{d} S$,

 \sum 在 xoy 坐标面投影 $D_{xy}: 1 \le x^2 + y^2 \le 4$,

$$\sqrt{1+z_x^2+z_y^2} = \frac{\sqrt{5}}{\sqrt{5-x^2-y^2}},$$

$$I = \iint_{D_{xy}} \sqrt{5} dx dy$$
$$= 3\sqrt{5}\pi$$

3A. 计算 $I = \oint_{\Gamma} (y^2 - z^2) dx + (2z^2 - x^2) dy + (3x^2 - y^2) dz$,其中 Γ 是平面 x + y + z = 1 与柱面 |x| + |y| = 1 的交线,从z 轴正向看去, Γ 为逆时针方向.

解: Σ 是平面 x+y+z=1 被 Γ 所围的部分的上侧, Σ 上各点处的法向量的方向余弦为:

$$\cos \alpha = \frac{1}{\sqrt{3}}, \cos \beta = \frac{1}{\sqrt{3}}, \cos \gamma = \frac{1}{\sqrt{3}},$$

由斯托克斯公式,

$$I = \iint_{\Sigma} \begin{vmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^{2} - z^{2} & 2z^{2} - x^{2} & 3x^{2} - y^{2} \end{vmatrix} dS = \iint_{\Sigma} -\frac{2}{\sqrt{3}} (4x + 2y + 3z) dS$$
$$= -\frac{2}{\sqrt{3}} \iint_{D_{xy}} [4x + 2y + 3(1 - x - y)] \sqrt{3} \, dx dy \quad (\text{individe})$$
$$= -\frac{2}{\sqrt{3}} \cdot 3\sqrt{3} S_{D_{xy}} = -12.$$

4. 设有一物体占有由抛物面 $z = x^2 + y^2$ 及平面 z = 2 所围成的空间区域 Ω ,其体密度为 $\mu(x, y, z) = (x^2 + y^2)z$,求该物体对于 z 轴的转动惯量.

解一:
$$I_z = \iiint_{\Omega} (x^2 + y^2) \cdot (x^2 + y^2) z \, dx dy dz$$
$$= \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} \rho \, d\rho \int_{\rho^2}^2 \rho^4 z \, dz$$
$$= \frac{32}{15} \pi.$$

解二:
$$I_z = \iiint_{\Omega} (x^2 + y^2) \cdot (x^2 + y^2) z \, dx dy dz$$
$$= \int_0^2 dz \iint_{D_z} (x^2 + y^2)^2 z dx dy$$
$$= \int_0^2 z dz \int_0^{2\pi} d\theta \int_0^{\sqrt{z}} \rho^4 \cdot \rho d\rho$$
$$= \frac{32}{15} \pi.$$

四. (本题 10 分) 计算积分 $I = \iint_{\Sigma} (y^2 + x) dy dz + (z^2 + y) dz dx + (x^2 + z) dx dy$, 其中 Σ 为锥面

 $z = \sqrt{x^2 + y^2}$ 上位于平面 z = 4 下方部分的下侧.

解: 作辅助面 Σ_1 : $x^2 + y^2 \le 16$, z = 4取上侧, Σ 和 Σ_1 围成空间区域 Ω .

$$I = (\iint_{\Sigma + \Sigma_{1}} - \iint_{\Sigma_{1}})(y^{2} + x) dy dz + (z^{2} + y) dz dx + (x^{2} + z) dx dy$$

$$= \iiint_{\Omega} 3dx dy dz - \iint_{D_{xy} : x^{2} + y^{2} \le 16} (x^{2} + 4) dx dy$$

$$= 3 \cdot \frac{1}{3} \pi \cdot 16 \cdot 4 - (\pi \cdot \frac{1}{4} \cdot 4^{4} + 4 \cdot \pi \cdot 16)$$

$$= -64\pi.$$

五. (本题 10 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n+1}$ 的和函数.

解: 收敛半径为 1, 当
$$-1 < x < 1$$
时, $\left(\sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n+1}\right)' = \sum_{n=1}^{\infty} x^{2n} = \frac{x^2}{1-x^2}$

上式两端从0到x积分,并注意到 $\sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n+1}$ 在x=0处收敛于0,

数有
$$\sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n+1} = \int_0^x \frac{x^2}{1-x^2} dx = -x + \frac{1}{2} \ln \frac{1+x}{1-x},$$

由于 $\sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n+1}$ 在 $x = \pm 1$ 处均发散,故所求和函数 $S(x) = -x + \frac{1}{2} \ln \frac{1+x}{1-x}$, (-1 < x < 1).

六.(本题8分,其中第一小题3分,第二小题5分)

设数列 $\left\{a_n\right\}_{n=1}^{\infty}$ 满足: $a_1=2$, $a_{n+1}=\frac{1}{2}(a_n+\frac{1}{a_n})$, (n=1,2,L). 证明:

(1)
$$\lim_{n\to\infty} a_n$$
 存在; (2) 级数 $\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1\right)$ 收敛.

证: (1) 显然
$$a_n > 0$$
, 且 $a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n}) \ge 1$ $(n = 1, 2, L)$,

$$a_{n+1} - a_n = \frac{1}{2}(a_n + \frac{1}{a_n}) - a_n = \frac{1}{2a_n} - \frac{a_n}{2} \le 0$$

数列 $\{a_n\}$ 单调下降有下界,故 $\lim_{n\to\infty}a_n$ 存在。

(2)
$$\pm$$
 (1) \pm (1) \pm (2) \pm (2) \pm (3) \pm (4) \pm (5) \pm (6) \pm (7) \pm (8) \pm (9) \pm (1) \pm (1) \pm (1) \pm (1) \pm (2) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (9) \pm (1) \pm (1) \pm (1) \pm (1) \pm (1) \pm (1) \pm (2) \pm (2) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (5) \pm (7) \pm (7) \pm (8) \pm (8) \pm (9) \pm (1) \pm (1)

故
$$\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1\right)$$
为正项级数.

考虑正项级数 $\sum_{n=1}^{\infty} (a_n - a_{n+1})$, 其部分和 $S_n = a_1 - a_{n+1}$,

因为 $\lim_{n\to\infty} a_n$ 存在,所以 $\lim_{n\to\infty} S_n$ 存在,故 $\sum_{n=1}^{\infty} (a_n - a_{n+1})$ 收敛,

由比较审敛法知,级数 $\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1\right)$ 收敛.