# Overview of the protocol

### **PCR Barcoding Expansion features:**

We have two PCR barcoding expansions available depending on the number of barcodes required:

- PCR Barcoding Expansion 1-12 (EXP-PBC001): up to 12 unique barcodes are available
- PCR Barcoding Expansion 1-96 (EXP-PBC096): up to 96 unique barcodes are available

These expansions are used with the Ligation Sequencing Kit V14 and recommended for users who:

- Want to multiplex up to 12 or 96 barcodes, depending on the expansion they are using.
- Would like to achieve raw read sequencing modal accuracy of Q20+ (99%) or above.
- Want to optimise their sequencing experiment for output.
- Require control over read length.
- Would like to utilise upstream processes such as size selection or whole genome amplification.

### Introduction to the PCR Barcoding protocol

This protocol describes how to carry out PCR barcoding of gDNA using the Ligation Sequencing Kit V14 (SQK-LSK114) with the PCR Barcoding Expansion Pack 1-12 (EXP-PBC001) or 1-96 (EXP-PBC096). This protocol also outlines recommendations to PCR barcode amplicons. Using the PCR Barcoding expansions allows for up to either 12 or 96 samples to be combined and loaded onto a single flow cell. It is highly recommended that a Lambda control experiment is completed first to become familiar with the technology.

**Note:** For amplicon inputs, first-round PCR product with the following tailed primers are required. Please see the equipment and consumables page for further information.

5' TTTCTGTTGGTGCTGATATTGC-[ project-specific forward primer sequence ] 3'

 $5'\ ACTTGCCTGTCGCTCTATCTTC-[\ project-specific\ reverse\ primer\ sequence\ ]\ 3'$ 

### Steps in the sequencing workflow:

### Prepare for your experiment

You will need to:

- Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success
- · Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run

### **Experiment workflow**

Prepare your gDNA input:

- Prepare the DNA ends for adapter attachment
- Attach barcoding adapters to the DNA ends
- Amplify each barcoded sample by PCR, then pool the samples together

### OR prepare your amplicon input:

- Perform a round of PCR to incorporate tailed primers
- Complete a second round of PCR to incorporate the Oxford Nanopore barcode sequences and amplify each barcoded sample, then pool the samples together

### Library preparation:

- Prepare the DNA ends for adapter attachment
- Attach sequencing adapters to the DNA ends
- Prime the flow cell, and load your DNA library into the flow cell



### Sequencing and analysis

### You will need to:

- In the current MinKNOW software version, the PCR Barcoding Expansions are not available in "Kit selection" when setting up a sequencing run. These will be included in the next software update. For the meantime, we recommend the following:
  - Start a sequencing run in the MinKNOW software using SQK-LSK114, which will collect raw data from the device and convert it into basecalled reads.
  - Demultiplex your data post-run on MinKNOW using the barcoding option, choosing either EXP-PBC001 or EXP-PBC096 as your barcoding kit. Further information is available in the "Post-run barcoding" of the MinKNOW protocol.
- Start the EPI2ME software and select the barcoding workflow for further analysis (this step is optional).

### **IMPORTANT**

We do not recommend mixing barcoded libraries with non-barcoded libraries prior to sequencing.

### **IMPORTANT**

### **Compatibility of this protocol**

This protocol should only be used in combination with:

- PCR Barcoding Expansion Pack 1-12 (EXP-PBC001)
- PCR Barcoding Expansion Pack 1-96 (EXP-PBC096)
- Ligation Sequencing Kit V14 (SQK-LSK114)
- R10.4.1 MinION Flow Cells (FLO-MIN114)
- Flow Cell Wash Kit (EXP-WSH004)
- Control Expansion (EXP-CTL001)
- Flow Cell Priming Kit V14 (EXP-FLP004)

# **Equipment and consumables**

### Materials

- $\bullet$  <100-200 fmol of each DNA sample to be barcoded in 45  $\mu$ l
- OR <100-200 fmol first-round PCR product (with tailed primers) per sample
- PCR Barcoding Expansion 1-12 (EXP-PBC001)
- PCR Barcoding Expansion 1-96 (EXP-PBC096)
- Ligation Sequencing Kit V14 (SQK-LSK114)

### Consumables

- NEBNext Ultra II End repair/dA-tailing Module (NEB, E7546)
- NEBNext Quick Ligation Module (NEB, E6056)
- NEB Blunt/TA Ligase Master Mix (NEB, M0367)
- LongAmp Taq 2X Master Mix (e.g. NEB, cat # M0287)
- 1.5 ml Eppendorf DNA LoBind tubes
- 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
- Freshly prepared 80% ethanol in nuclease-free water
- Agencourt AMPure XP beads (Beckman Coulter<sup>™</sup> cat # A63881)
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Qubit<sup>™</sup> Assay Tubes (Invitrogen, Q32856)
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
- (Optional) Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

### **Equipment**

- Hula mixer (gentle rotator mixer)
- Microfuge
- Vortex mixer
- Thermal cycler
- P1000 pipette and tips

- P200 pipette and tips
- P100 pipette and tips
- P20 pipette and tips
- P10 pipette and tips
- P2 pipette and tips
- Ice bucket with ice
- Magnetic rack
- Timer
- · Multichannel pipette and tips
- Qubit fluorometer (or equivalent for QC check)

# Optional equipment

- Agilent Bioanalyzer (or equivalent)
- Eppendorf 5424 centrifuge (or equivalent)

For gDNA input, <100-200 fmol of each DNA sample to be barcoded in 45 μl is required.

For amplicon input, start from the "Barcoding PCR" step with <100-200 fmol first-round PCR product with tailed primers in the following volumes per sample:

- 48 μl for up to 12 barcodes
- 24 μl for 13 barcodes or more

Start from the "Barcoding PCR" step after the amplicons have undergone a first round of PCR to incorporate the following 5' tail sequences:

- 5' TTTCTGTTGGTGCTGATATTGC-[ project-specific forward primer sequence ] 3'
- 5' ACTTGCCTGTCGCTCTATCTTC-[ project-specific reverse primer sequence ] 3'

The sequences above are required for the Barcoding PCR step to incorporate the Oxford Nanopore barcode sequences into your amplicon. Multiple first-round PCR products can be pooled together and we recommend all amplicon samples to receive the same barcode should be quantified and pooled in the desired ratios before the barcoding PCR step is performed.

After the first round of PCR to incorporate the 5' tail is complete, a purification step is required to remove any proteins, salts, dNTPs and primers. We recommend using AMPure XP Beads but other methods suitable for the amplicon size may also be used.

If you do not want to redesign your primers, the Barcode Adapter (BCA) from the PCR Barcoding Expansion 1-12 or 1-96 (EXP-PBC001 or EXP-PBC096) can be ligated onto the ends of the amplicons and the protocol started from the first end-prep step.

### **IMPORTANT**

### **Optional fragmentation and size selection**

By default, the protocol contains no DNA fragmentation step, however in some cases it may be advantageous to fragment your sample. For example, when working with lower amounts of input gDNA (25 ng–125 ng), fragmentation will increase the number of DNA molecules and therefore increase throughput. Instructions are available in the <u>DNA Fragmentation section</u> of Extraction methods.

Additionally, we offer several options for size-selecting your DNA sample to enrich for long fragments - instructions are available in the Size Selection section of Extraction methods.

### **Input DNA**

### How to QC your input DNA

It is important that the input DNA meets the quantity and quality requirements. Using too little or too much DNA, or DNA of poor quality (e.g. highly fragmented or containing RNA or chemical contaminants) can affect your library preparation.

For instructions on how to perform quality control of your DNA sample, please read thenput DNA/RNA QC protocol.

### **Chemical contaminants**

Depending on how the DNA is extracted from the raw sample, certain chemical contaminants may remain in the purified DNA, which can affect library preparation efficiency and sequencing quality. Read more about contaminants on the <u>Contaminants page</u> of the Community.

### **Third-party reagents**

We have validated and recommend the use of all the third-party reagents used in this protocol. Alternatives have not been tested by Oxford Nanopore Technologies.

For all third-party reagents, we recommend following the manufacturer's instructions to prepare the reagents for use.

### **IMPORTANT**

### **AMPure XP Beads**

Within the Ligation Sequencing Kit V14 (SQK-LSK114), AMPure XP Beads (AXP) are supplied at the volume needed to complete the "End-prep" and "Adapter ligation and clean up" steps of the protocol. However, for initially preparing the sample ends and the PCR steps, extra AMPure XP Beads are required for purification and clean-up. Please note, other purification methods are available.

### Ligation Sequencing Kit V14 (SQK-LSK114) contents

Note: We are in the process of reformatting our kits with single-use tubes into a bottle format.

### Single-use tubes format:



DCS: DNA Control Strand
LA: LigationAdapter
LNB: Ligation B@fer
LFB: Long Fragment Buffer
SEB: Short Fragment Ruffer

LFB : Long Fragment Buffer LIS : Library Solution SFB : Short Fragment Buffer FCF : Flow Cell Flush AXP : AMPure XP Beads FCT : Flow Cell Tether

### **Bottle format:**



LA: LigationAdapter
LNB: Ligation Buffer
LFB: Long Fragment Buffer
SFB: Short Fragment Buffer
AXP: AMPure XPBeads

SB: Sequencing B@fer EB: Elution B@fer LIB: Library Beads LIS: Library Solution FCF: Flow Cell Flush FCT: Flow CellTether

SB: Sequencing Btfer

EB: Elution Buffer

LIB: Library Beads

**Note:** This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.

Note: The DNA Control Sample (DCS) is a 3.6 kb standard amplicon mapping the 3' end of the Lambda genome.

### PCR Barcoding Expansion 1-12 (EXP-PBC001) contents



BC1: PCR barcode 1
BC2: PCR barcode 2
BC3: PCR barcode 3
BC4: PCR barcode 4
BC5: PCR barcode 5
BC6: PCR barcode 6
BC7: PCR barcode 7

BC8: PCR barcode 9
BC9: PCR barcode 9
BC10: PCR barcode 11
BC5: PCR barcode 5
BC12: PCR barcode 12
BCA: Barcode adapter

| Name             | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
|------------------|---------|------------|--------------|---------------------------|
| PCR Barcode 1-12 | BC1-12  | Clear      | 12           | 20                        |

| Name            | Acronym | Cap colour  | No. of vials | Fill volume per vial (μl) |
|-----------------|---------|-------------|--------------|---------------------------|
| Barcode Adapter | BCA     | Blue stripe | 1            | 260                       |

### PCR Barcoding Expansion Pack 1-96 (EXP-PBC096)



| Name                         | Acronym | Cap colour | No. of vials/plates | Fill volume per well (μl) |
|------------------------------|---------|------------|---------------------|---------------------------|
| PCR Barcode Primer Mix plate | BC01-96 | White      | 1 plate             | 24                        |
| Barcode Adapter plate        | ВСА     | Blue       | 1 plate             | 240                       |

### Layout of barcodes in the 96 tube plate

The wells of the 96 tube plate correspond to the barcodes in the following way. All barcodes are supplied at 10  $\mu$ M concentration and to be used at a final concentration of 0.2  $\mu$ M.

|   | 01   | 02   | 03   | 04   | 05   | 06   | 07   | 80   | 09   | 10   | 11   | 12   |  |
|---|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Α | BC01 | BC02 | BC03 | BC04 | BC05 | BC06 | BC07 | BC08 | BC09 | BC10 | BC11 | BC12 |  |
| В | BC13 | BC14 | BC15 | BC16 | BC17 | BC18 | BC19 | BC20 | BC21 | BC22 | BC23 | BC24 |  |
| С | BC25 | BC26 | BC27 | BC28 | BC29 | BC30 | BC31 | BC32 | BC33 | BC34 | BC35 | BC36 |  |
| D | ВС37 | ВСЗВ | BC39 | BC40 | BC41 | BC42 | BC43 | BC44 | BC45 | BC46 | BC47 | BC48 |  |
| Е | BC49 | BC50 | BC51 | BC52 | BC53 | BC54 | BC55 | BC56 | BC57 | BC58 | BC59 | BC60 |  |
| F | BC61 | BC62 | BC63 | BC64 | BC65 | BC66 | BC67 | BC68 | BC69 | BC70 | BC71 | BC72 |  |
| G | BC73 | BC74 | BC75 | BC76 | BC77 | BC78 | BC79 | BC80 | BC81 | BC82 | BC83 | BC84 |  |
| Н | BC85 | BC86 | BC87 | BC88 | BC89 | BC90 | BC91 | BC92 | BC93 | BC94 | BC95 | BC96 |  |
|   |      |      |      |      |      |      |      |      |      |      |      |      |  |

# Capping and decapping the 96 well format



## 96 barcode sequences

| Component              | Sequence                 |
|------------------------|--------------------------|
| BC01 / RB01            | AAGAAAGTTGTCGGTGTCTTTGTG |
| BC02 / RB02            | TCGATTCCGTTTGTAGTCGTCTGT |
| BC03 / RB03            | GAGTCTTGTGTCCCAGTTACCAGG |
| BC04 / RB04            | TTCGGATTCTATCGTGTTTCCCTA |
| BC05 / RB05            | CTTGTCCAGGGTTTGTGTAACCTT |
| BC06 / RB06            | TTCTCGCAAAGGCAGAAAGTAGTC |
| BC07 / RB07            | GTGTTACCGTGGGAATGAATCCTT |
| BC08 / RB08            | TTCAGGGAACAAACCAAGTTACGT |
| BC09 / RB09            | AACTAGGCACAGCGAGTCTTGGTT |
| BC10 / RB10            | AAGCGTTGAAACCTTTGTCCTCTC |
| BC11 / RB11            | GTTTCATCTATCGGAGGGAATGGA |
| BC12 / RB12            | CAGGTAGAAAGAAGCAGAATCGGA |
| BC13 / 16S13 /<br>RB13 | AGAACGACTTCCATACTCGTGTGA |
| BC14 / 16S14 /<br>RB14 | AACGAGTCTCTTGGGACCCATAGA |

| Component              | Sequence                 |
|------------------------|--------------------------|
| BC15 / 16S15 /<br>RB15 | AGGTCTACCTCGCTAACACCACTG |
| BC16 / 16S16 /<br>RB16 | CGTCAACTGACAGTGGTTCGTACT |
| BC17 / 16S17 /<br>RB17 | ACCCTCCAGGAAAGTACCTCTGAT |
| BC18 / 16S18 /<br>RB18 | CCAAACCCAACAACCTAGATAGGC |
| BC19 / 16S19 /<br>RB19 | GTTCCTCGTGCAGTGTCAAGAGAT |
| BC20 / 16S20 /<br>RB20 | TTGCGTCCTGTTACGAGAACTCAT |
| BC21 / 16S21 /<br>RB21 | GAGCCTCTCATTGTCCGTTCTCTA |
| BC22 / 16S22 /<br>RB22 | ACCACTGCCATGTATCAAAGTACG |
| BC23 / 16S23 /<br>RB23 | CTTACTACCCAGTGAACCTCCTCG |
| BC24 / 16S24 /<br>RB24 | GCATAGTTCTGCATGATGGGTTAG |
| BC25 / RB25            | GTAAGTTGGGTATGCAACGCAATG |
| BC26 / RB26            | CATACAGCGACTACGCATTCTCAT |
| BC27 / RB27            | CGACGGTTAGATTCACCTCTTACA |
| BC28 / RB28            | TGAAACCTAAGAAGGCACCGTATC |
| BC29 / RB29            | CTAGACACCTTGGGTTGACAGACC |
| BC30 / RB30            | TCAGTGAGGATCTACTTCGACCCA |
| BC31 / RB31            | TGCGTACAGCAATCAGTTACATTG |
| BC32 / RB32            | CCAGTAGAAGTCCGACAACGTCAT |
| BC33 / RB33            | CAGACTTGGTACGGTTGGGTAACT |
| BC34 / RB34            | GGACGAAGAACTCAAGTCAAAGGC |
| BC35 / RB35            | CTACTTACGAAGCTGAGGGACTGC |
| BC36 / RB36            | ATGTCCCAGTTAGAGGAGGAAACA |
| BC37 / RB37            | GCTTGCGATTGATGCTTAGTATCA |
| BC38 / RB38            | ACCACAGGAGGACGATACAGAGAA |
| BC39 / RB39            | CCACAGTGTCAACTAGAGCCTCTC |
| BC40 / RB40            | TAGTTTGGATGACCAAGGATAGCC |
| BC41 / RB41            | GGAGTTCGTCCAGAGAAGTACACG |

| Component   | Sequence                 |
|-------------|--------------------------|
| BC42 / RB42 | CTACGTGTAAGGCATACCTGCCAG |
| BC43 / RB43 | CTTTCGTTGTTGACTCGACGGTAG |
| BC44 / RB44 | AGTAGAAAGGGTTCCTTCCCACTC |
| BC45 / RB45 | GATCCAACAGAGATGCCTTCAGTG |
| BC46 / RB46 | GCTGTGTTCCACTTCATTCTCCTG |
| BC47 / RB47 | GTGCAACTTTCCCACAGGTAGTTC |
| BC48 / RB48 | CATCTGGAACGTGGTACACCTGTA |
| BC49 / RB49 | ACTGGTGCAGCTTTGAACATCTAG |
| BC50 / RB50 | ATGGACTTTGGTAACTTCCTGCGT |
| BC51 / RB51 | GTTGAATGAGCCTACTGGGTCCTC |
| BC52 / RB52 | TGAGAGACAAGATTGTTCGTGGAC |
| BC53 / RB53 | AGATTCAGACCGTCTCATGCAAAG |
| BC54 / RB54 | CAAGAGCTTTGACTAAGGAGCATG |
| BC55 / RB55 | TGGAAGATGAGACCCTGATCTACG |
| BC56 / RB56 | TCACTACTCAACAGGTGGCATGAA |
| BC57 / RB57 | GCTAGGTCAATCTCCTTCGGAAGT |
| BC58 / RB58 | CAGGTTACTCCTCCGTGAGTCTGA |
| BC59 / RB59 | TCAATCAAGAAGGGAAAGCAAGGT |
| BC60 / RB60 | CATGTTCAACCAAGGCTTCTATGG |
| BC61 / RB61 | AGAGGGTACTATGTGCCTCAGCAC |
| BC62 / RB62 | CACCCACACTTACTTCAGGACGTA |
| BC63 / RB63 | TTCTGAAGTTCCTGGGTCTTGAAC |
| BC64 / RB64 | GACAGACACCGTTCATCGACTTTC |
| BC65 / RB65 | TTCTCAGTCTTCCTCCAGACAAGG |
| BC66 / RB66 | CCGATCCTTGTGGCTTCTAACTTC |
| BC67 / RB67 | GTTTGTCATACTCGTGTGCTCACC |
| BC68 / RB68 | GAATCTAAGCAAACACGAAGGTGG |
| BC69 / RB69 | TACAGTCCGAGCCTCATGTGATCT |
| BC70 / RB70 | ACCGAGATCCTACGAATGGAGTGT |
| BC71 / RB71 | CCTGGGAGCATCAGGTAGTAACAG |
| BC72 / RB72 | TAGCTGACTGTCTTCCATACCGAC |
| BC73 / RB73 | AAGAAACAGGATGACAGAACCCTC |

| Component   | Sequence                 |
|-------------|--------------------------|
| BC74 / RB74 | TACAAGCATCCCAACACTTCCACT |
| BC75 / RB75 | GACCATTGTGATGAACCCTGTTGT |
| BC76 / RB76 | ATGCTTGTTACATCAACCCTGGAC |
| BC77 / RB77 | CGACCTGTTTCTCAGGGATACAAC |
| BC78 / RB78 | AACAACCGAACCTTTGAATCAGAA |
| BC79 / RB79 | TCTCGGAGATAGTTCTCACTGCTG |
| BC80 / RB80 | CGGATGAACATAGGATAGCGATTC |
| BC81 / RB81 | CCTCATCTTGTGAAGTTGTTTCGG |
| BC82 / RB82 | ACGGTATGTCGAGTTCCAGGACTA |
| BC83 / RB83 | TGGCTTGATCTAGGTAAGGTCGAA |
| BC84 / RB84 | GTAGTGGACCTAGAACCTGTGCCA |
| BC85 / RB85 | AACGGAGGAGTTAGTTGGATGATC |
| BC86 / RB86 | AGGTGATCCCAACAAGCGTAAGTA |
| BC87 / RB87 | TACATGCTCCTGTTGTTAGGGAGG |
| BC88 / RB88 | TCTTCTACTACCGATCCGAAGCAG |
| BC89 / RB89 | ACAGCATCAATGTTTGGCTAGTTG |
| BC90 / RB90 | GATGTAGAGGGTACGGTTTGAGGC |
| BC91 / RB91 | GGCTCCATAGGAACTCACGCTACT |
| BC92 / RB92 | TTGTGAGTGGAAAGATACAGGACC |
| BC93 / RB93 | AGTTTCCATCACTTCAGACTTGGG |
| BC94 / RB94 | GATTGTCCTCAAACTGCCACCTAC |
| BC95 / RB95 | CCTGTCTGGAAGAAGAATGGACTT |
| BC96 / RB96 | CTGAACGGTCATAGAGTCCACCAT |

# **Computer requirements and software**

### MinION Mk1C IT requirements

The MinION Mk1C contains fully-integrated compute and screen, removing the need for any accessories to generate and analyse nanopore data. Read more in the MinION Mk1C IT requirements document

### MinION Mk1B IT requirements

Sequencing on a MinION Mk1B requires a high-spec computer or laptop to keep up with the rate of data acquisition. Read more in the MinION Mk1B IT Requirements document.

### Software for nanopore sequencing

### **MinKNOW**

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.

### **EPI2ME** (optional)

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform *only* if you would like further analysis of your data post-basecalling.

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to the PI2ME Platform protocol.

### Check your flow cell

We highly recommend that you check the number of pores in your flow cell prior to starting a sequencing experiment. This should be done within three months of purchasing for MinION/GridION/PromethION or within four weeks of purchasing Flongle Flow Cells. Oxford Nanopore Technologies will replace any flow cell with fewer than the number of pores in the table below, when the result is reported within two days of performing the flow cell check, and when the storage recommendations have been followed. To do the flow cell check, please follow the instructions in the Flow Cell Check document.

| Flow cell                   | Minimum number of active pores covered by warranty |
|-----------------------------|----------------------------------------------------|
| Flongle Flow Cell           | 50                                                 |
| MinION/GridION Flow<br>Cell | 800                                                |
| PromethION Flow Cell        | 5000                                               |

# **End-prep**

~25 minutes

### **Materials**

 $\bullet$  <100-200 fmol of each DNA sample to be barcoded in 45  $\mu$ l

### **Consumables**

- NEBNext Ultra II End repair/dA-tailing Module (NEB, E7546)
- Freshly prepared 80% ethanol in nuclease-free water

- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
- Qubit<sup>™</sup> Assay Tubes (Invitrogen, Q32856)
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

### **Equipment**

- P1000 pipette and tips
- P100 pipette and tips
- P10 pipette and tips
- Thermal cycler
- Ice bucket with ice
- Microfuge
- Magnetic rack
- Vortex mixer

# Optional equipment

• Qubit fluorometer (or equivalent for QC check)

# 1 Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:

For optimal perfomance, NEB recommend the following:

- 1. Thaw all reagents on ice.
- 2. Flick and/or invert the reagent tubes to ensure they are well mixed.

**Note:** Do not vortex the Ultra II End Prep Enzyme Mix.

- 3. Always spin down tubes before opening for the first time each day.
- 4. The Ultra II End Prep Buffer may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for 30 seconds to solubilise any precipitate.

### 2 Prepare the DNA in nuclease-free water.

- 1. Transfer <100-200 fmol DNA of each sample into a fresh 0.2 ml PCR tube or plate
- 2. Adjust the volume to 45  $\mu$ l with nuclease-free water
- 3. Mix thoroughly by flicking the tube to avoid unwanted shearing
- 4. Spin down briefly in a microfuge

### 3 Set up the end-repair reaction as follows for each library:

Between each addition, pipette mix 10-20 times.

| Reagent                           | Volume per sample |
|-----------------------------------|-------------------|
| <100-200 fmol DNA                 | 45 μΙ             |
| Ultra II End-prep reaction buffer | 7 μΙ              |
| Ultra II End-prep enzyme mix      | 3 μΙ              |
| Nuclease-free water               | 5 μΙ              |
| Total                             | 60 μΙ             |

- 4 Mix by pipetting and briefly spin down.
- 5 Using a thermal cycler, incubate for 5 minutes at 20 °C and 5 minutes at 65 °C.
- 6 Resuspend the AMPure XP beads by vortexing.
- 7 Add 60 µl of resuspended AMPure XP beads to the end-prep reaction and mix by pipetting.
- 8 Incubate at room temperature for 5 minutes.
- 9 Prepare sufficient fresh 80% ethanol in nuclease-free water for all of your samples. Allow enough for 400  $\mu$ l per sample, with some excess.
- 10 Spin down the samples and pellet on a magnet until supernatant is clear and colourless. Keep the samples on the magnet, and pipette off the supernatant.
- 11 Keep the samples on the magnet and wash the beads with 200  $\mu$ l of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
- 12 Repeat the previous step.
- 13 Spin down and place the samples back on the magnetic rack. Pipette off any residual ethanol. Allow the pellet to dry for  $\sim$ 30 seconds, but do not dry the pellet to the point of cracking.
- 14 Remove the samples from the magnet and resuspend each pellet in 16  $\mu$ l nuclease-free water. Incubate for 2 minutes at room temperature.

- 15 Pellet the beads on a magnet until the eluate is clear and colourless.
- 16 Remove eluate once it is clear and colourless. Transfer each eluted sample to a new tube or plate well.
- 17 Quantify 1 µl of end-prepped DNA using a Qubit fluorometer.

#### **END OF STEP**

Take forward the end-prepped DNA into the next step. However, at this point it is also possible to store the sample at  $4^{\circ}$ C overnight.

# **Ligation of Barcode Adapter**

~40 minutes

### **Materials**

• Barcode Adapter (BCA)

### **Consumables**

- NEB Blunt/TA Ligase Master Mix (NEB, cat # M0367)
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Freshly prepared 80% ethanol in nuclease-free water
- 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

### **Equipment**

- Microfuge
- Hula mixer (gentle rotator mixer)
- Vortex mixer
- Ice bucket with ice
- Multichannel pipette and tips
- Magnetic rack
- P1000 pipette and tips
- P100 pipette and tips
- P10 pipette and tips
- Qubit fluorometer (or equivalent for QC check)

- 1 Prepare the NEB Blunt/TA Ligase Master Mix according to the manufacturer's instructions, and place on ice:
  - 1. Thaw the reagents at room temperature.
  - 2. Spin down the reagent tubes for 5 seconds.
  - 3. Ensure the reagents are fully mixed by performing 10 full volume pipette mixes.
- 2 Spin down the Barcode Adapter (BCA), pipette mix and place on ice.
- 3 Add the reagents in the order given below, into fresh 0.2 ml PCR tubes or 96-well plate:

Between each addition, pipette mix 10-20 times.

| Reagent                       | Volume |
|-------------------------------|--------|
| End-prepped DNA               | 15 μΙ  |
| Barcode Adapter               | 10 μΙ  |
| Blunt/TA Ligase Master<br>Mix | 25 μΙ  |
| Total                         | 50 μΙ  |

- 4 Mix by pipetting and briefly spin down.
- 5 Incubate the samples for 10 minutes at room temperature.
- 6 Resuspend the AMPure XP beads by vortexing.
- 7 Add 20  $\mu$ l of resuspended AMPure XP beads to each sample for a 0.4X clean and mix by pipetting up and down ten times.
- 8 Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
- 9 Prepare sufficient fresh 80% ethanol in nuclease-free water for all of your samples. Allow enough for  $400~\mu l$  per sample, with some excess.
- 10 Place on a magnetic rack, allow beads to pellet and pipette off supernatant.
- 11 Keep the samples on the magnet and wash the beads with 200  $\mu$ l of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

- 12 Repeat the previous step.
- 13 Place the samples back on the magnet. Pipette off any residual 80% ethanol. Allow to dry for  $\sim$ 30 seconds, but do not dry the pellet to the point of cracking.
- 14 Remove the samples from the magnet and resuspend pellet in 25  $\mu$ l nuclease-free water. Incubate for 2 minutes at room temperature.
- 15 Pellet the beads on a magnet until the eluate is clear and colourless.
- 16 Remove and retain the eluate once it is clear and colourless. Transfer each eluted sample to a fresh 0.2 ml PCR tube or plate.
  - Dispose of the pelleted beads.
- 17 Quantify 1  $\mu$ I of the adapter ligated DNA using a Qubit fluorometer.

### **END OF STEP**

Take forward the adapter ligated samples into the Barcoding PCR step. However, at this point it is also possible to store the sample at  $4^{\circ}$ C overnight.

# **Barcoding PCR**

~15 minutes

### **Materials**

- 100-200 fmol of each adapter-ligated sample
- OR 100-200 fmol of each amplicon sample
- PCR Barcodes (BC01-96, at 10 μM)

### **Consumables**

- LongAmp Taq 2X Master Mix (e.g. NEB, cat # M0287)
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- $\bullet$  Agencourt AMPure XP Beads (Beckman Coulter  $\sp{\text{\tiny TM}}$  , A63881)
- Freshly prepared 80% ethanol in nuclease-free water
- 1.5 ml Eppendorf DNA LoBind tubes
- 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

### **Equipment**

- Thermal cycler
- Magnetic rack
- Microfuge

- P1000 pipette and tips
- P100 pipette and tips
- P10 pipette and tips
- Qubit fluorometer (or equivalent for QC check)

Please note, this protocol is written for a template input of 100-200 fmol with PCR Barcodes (BC01-96) used at a final concentration of 0.2  $\mu$ M. However, the input mass and the number of PCR cycles may be adjusted as appropriate depending on the requirements of the experiment.

1 Thaw the PCR Barcodes (BC01-96) required for your number of samples at room temperature. Individually mix the barcodes by pipetting, spin down, and place on ice.

### **IMPORTANT**

If using amplicon samples, ensure the samples have undergone a round of PCR with tailed primers before commencing with the protocol.

- 2 Prepare the samples in nuclease-free water:
  - 1. Transfer 100-200 fmol of each sample to a clear 0.2 ml PCR tube or plate
    - For 1-12 samples: Adjust the volume to 48 μl with nuclease-free water
    - For 13-96 samples: Adjust the volume to 24 μl with nuclease-free water
  - 2. Mix thoroughly by flicking the tube or plate to avoid unwanted shearing
  - 3. Spin down briefly in a microfuge
- 3 Select a unique barcode for each sample to be run together on the same flow cell.

Note: Only use one barcode per sample.

4 Set up a barcoding PCR reaction as follows for each library in fresh 0.2 ml PCR tubes or plate.

Between each addition, pipette mix 10-20 times.

| Reagent                                              | Volume per sample for using 1-12 barcodes | Volume per sample for using 13 barcodes or more |
|------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| PCR Barcode (one of BC1-BC96, at 10 $\mu$ M)         | 2 μΙ                                      | 1 μΙ                                            |
| Adapter ligated DNA or amplicons with tailed primers | 48 μΙ                                     | 24 μΙ                                           |
| LongAmp Taq 2X master mix                            | 50 μΙ                                     | 25 μΙ                                           |
| Total volume                                         | 100 μΙ                                    | 50 μΙ                                           |

If the amount of input material is altered, the number of PCR cycles may need to be adjusted to produce the same yield.

- 5 Mix by pipetting and briefly spin down.
- 6 Amplify using the following cycling conditions:

| Cycle step           | Temperature | Time                                       | No. of cycles |
|----------------------|-------------|--------------------------------------------|---------------|
| Initial denaturation | 95 °C       | 3 mins                                     | 1             |
| Denaturation         | 95 °C       | 15 secs                                    | 12-15 (b)     |
| Annealing            | 62 °C (a)   | 15 secs (a)                                | 12-15 (b)     |
| Extension            | 65 °C (c)   | dependent on length of target fragment (d) | 12-15 (b)     |
| Final extension      | 65 °C       | dependent on length of target fragment (d) | 1             |
| Hold                 | 4 °C        | 00                                         |               |

- a. This is specific to the Oxford Nanopore primer and should be maintained
- b. Adjust accordingly if input quantities are altered
- c. This temperature is determined by the type of polymerase that is being used (given here for LongAmp Taq polymerase)
- d. Adjust accordingly for different lengths of amplicons and the type of polymerase that is being used. During the development of this kit, 8 minutes was used as standard for DNA fragmented to 8 kb.
- 7 Resuspend the AMPure XP beads by vortexing.
- 8 Add 0.4X volume of resuspended AMPure XP Beads to each reaction and mix by flicking the tube.

| Reagent         | Volume for 100 µl samples | Volume for 50 µl samples |
|-----------------|---------------------------|--------------------------|
| AMPure XP Beads | 40 μΙ                     | 20 μΙ                    |

- 9 Incubate at room temperature for 5 minutes.
- 10 Prepare sufficient fresh 80% ethanol in nuclease-free water for all of your samples. Allow enough for 400  $\mu$ l per sample, with some excess.
- 11 Place on a magnetic rack, allow beads to pellet and pipette off supernatant.
- 12 Keep the samples on the magnet and wash the beads with 200  $\mu$ l of freshly prepared 80% ethanol without disturbing the pellets. Remove the ethanol using a pipette and discard.

- 13 Repeat the previous step.
- 14 Spin down and place the samples back on the magnet. Pipette off any residual ethanol. Allow to dry for ~30 seconds, but do not dry the pellets to the point of cracking.
- 15 Remove the samples from the magnetic rack and resuspend each pellet in 25  $\mu$ l nuclease-free water. Incubate for 2 minutes at room temperature.
- 16 Pellet the beads on a magnetic rack until the eluate is clear and colourless.
- 17 Remove and retain 25  $\mu l$  of each eluate into clean 0.2 ml PCR tubes or plate.

Dispose of the pelleted beads

18 Quantify the barcoded library using a Qubit fluorometer and pool all barcoded libraries in the desired ratios in a 1.5 ml DNA LoBind Eppendorf tube.

### Gel analysis of amplified and ligated DNA

Sometimes a high-molecular weight product is visible in the wells of the gel when the PCR products are run, instead of the expected smear. These libraries are typically associated with poor sequencing performance. We have found that repeating the PCR with fewer cycles can remedy this.

19 Prepare 1 µg of pooled barcoded libraries in 49 µl nuclease-free water.

If the volume of your pool exceeds the 49  $\mu$ l required for the end-prep reaction, consider a 2.5X AMPure XP Bead purification of the pool to concentrate your sample.

### **END OF STEP**

This pooled library is now ready to be end-repaired and adapted for sequencing. However, at this point it is also possible to store the sample at 4°C overnight.

# **End-prep**

~25 minutes

### Materials

- DNA Control Sample (DCS)
- AMPure XP Beads (AXP)

### Consumables

- 0.2 ml thin-walled PCR tubes
- 1.5 ml Eppendorf DNA LoBind tubes

- Nuclease-free water (e.g. ThermoFisher, AM9937)
- NEBNext® Ultra II End Repair / dA-tailing Module (NEB, E7546)
- Freshly prepared 80% ethanol in nuclease-free water
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

### **Equipment**

- P1000 pipette and tips
- P100 pipette and tips
- P10 pipette and tips
- Thermal cycler
- Microfuge
- Hula mixer (gentle rotator mixer)
- Magnetic rack
- Ice bucket with ice

# Optional equipment

• Qubit fluorometer (or equivalent for QC check)

1 Thaw the AMPure XP Beads (AXP) and DNA Control Sample (DCS) at room temperature and mix by vortexing. Keep the beads at room temperature and store the DNA Control Sample (DCS) on ice.

TIP

We recommend using the DNA Control Sample (DCS) in your library prep for troubleshooting purposes. However, you can omit this step and make up the extra 1  $\mu$ l with your sample DNA.

2 Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:

For optimal perfomance, NEB recommend the following:

- 1. Thaw all reagents on ice.
- 2. Flick and/or invert the reagent tubes to ensure they are well mixed.

Note: Do not vortex the Ultra II End Prep Enzyme Mix.

- 3. Always spin down tubes before opening for the first time each day.
- 4. The Ultra II End Prep Buffer may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for 30 seconds to solubilise any precipitate.

3 In a 0.2 ml thin-walled PCR tube, mix the following:

| Reagent                              | Volume |
|--------------------------------------|--------|
| DNA Control Sample (DCS)             | 1 μΙ   |
| DNA                                  | 49 μΙ  |
| Ultra II End-prep Reaction<br>Buffer | 7 μΙ   |
| Ultra II End-prep Enzyme Mix         | 3 μΙ   |
| Total                                | 60 μΙ  |

- 4 Thoroughly mix the reaction by gently pipetting and briefly spinning down.
- 5 Using a thermal cycler, incubate at 20°C for 5 minutes and 65°C for 5 minutes.
- 6 Resuspend the AMPure XP Beads (AXP) by vortexing.
- 7 Transfer the DNA sample to a clean 1.5 ml Eppendorf DNA LoBind tube.
- 8 Add 60 μl of resuspended the AMPure XP Beads (AXP) to the end-prep reaction and mix by flicking the tube.
- 9 Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
- 10 Prepare 500 µl of fresh 80% ethanol in nuclease-free water.
- 11 Spin down the sample and pellet on a magnet until supernatant is clear and colourless. Keep the tube on the magnet, and pipette off the supernatant.
- 12 Keep the tube on the magnet and wash the beads with 200  $\mu$ l of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
- 13 Repeat the previous step.
- 14 Spin down and place the tube back on the magnet. Pipette off any residual ethanol. Allow to dry for  $\sim$ 30 seconds, but do not dry the pellet to the point of cracking.
- 15 Remove the tube from the magnetic rack and resuspend the pellet in 61  $\mu$ l nuclease-free water. Incubate for 2 minutes at room temperature.

16 Pellet the beads on a magnet until the eluate is clear and colourless, for at least 1 minute.

17 Remove and retain 61 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

Quantify 1  $\mu$ l of eluted sample using a Qubit fluorometer.

### **END OF STEP**

Take forward the repaired and end-prepped DNA into the adapter ligation step. However, at this point it is also possible to store the sample at 4°C overnight.

# Adapter ligation and clean-up

~35 minutes

### **Materials**

- Ligation Adapter (LA)
- Ligation Buffer (LNB) from the Ligation Sequencing Kit
- Long Fragment Buffer (LFB)
- Short Fragment Buffer (SFB)
- AMPure XP Beads (AXP)
- Elution Buffer (EB) from the Oxford Nanopore sequencing kit

### **Consumables**

- NEBNext Quick Ligation Module (NEB, E6056)
- 1.5 ml Eppendorf DNA LoBind tubes
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
- Qubit™ Assay Tubes (Invitrogen, Q32856)

### **Equipment**

- Magnetic rack
- Microfuge
- Vortex mixer
- P1000 pipette and tips
- P100 pipette and tips
- P20 pipette and tips
- P10 pipette and tips
- Qubit fluorometer (or equivalent for QC check)

### IMPORTANT

Although the recommended third-party ligase is supplied with its own buffer, the ligation efficiency of the Ligation Adapter (LA) is higher when using the Ligation Buffer (LNB) supplied in the Ligation Sequencing Kit.

- 1 Prepare the NEBNext Quick Ligation Reaction Module according to the manufacturer's instructions, and place on ice:
  - 1. Thaw the reagents at room temperature.
  - 2. Spin down the reagent tubes for 5 seconds.
  - 3. Ensure the reagents are fully mixed by performing 10 full volume pipette mixes. **Note:** Do NOT vortex the Quick T4 DNA Ligase.

The NEBNext Quick Ligation Reaction Buffer (5x) may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for several seconds to ensure the reagent is thoroughly mixed.

- 2 Spin down the Ligation Adapter (LA) and Quick T4 Ligase, and place on ice.
- 3 Thaw Ligation Buffer (LNB) at room temperature, spin down and mix by pipetting. Due to viscosity, vortexing this buffer is ineffective. Place on ice immediately after thawing and mixing.
- 4 Thaw the Elution Buffer (EB) at room temperature and mix by vortexing. Then spin down and place on ice.

### **IMPORTANT**

Depending on the wash buffer (LFB or SFB) used, the clean-up step after adapter ligation is designed to either enrich for DNA fragments of >3 kb, or purify all fragments equally.

- To enrich for DNA fragments of 3 kb or longer, use Long Fragment Buffer (LFB)
- To retain DNA fragments of all sizes, use Short Fragment Buffer (SFB)
- 5 Thaw either Long Fragment Buffer (LFB) or Short Fragment Buffer (SFB) at room temperature and mix by vortexing. Then spin down and place on ice.
- 6 In a 1.5 ml Eppendorf DNA LoBind tube, mix in the following order:

Between each addition, pipette mix 10-20 times.

| Reagent                           | Volume |
|-----------------------------------|--------|
| DNA sample from the previous step | 60 μΙ  |
| Ligation Buffer (LNB)             | 25 μΙ  |
| NEBNext Quick T4 DNA Ligase       | 10 μΙ  |
| Ligation Adapter (LA)             | 5 μΙ   |
| Total                             | 100 μΙ |

- 7 Thoroughly mix the reaction by gently pipetting and briefly spinning down.
- 8 Incubate the reaction for 10 minutes at room temperature.
- 9 Resuspend the AMPure XP beads (AXP) by vortexing.
- 10 Add 40 µl of resuspended AMPure XP Beads (AXP) to the reaction and mix by flicking the tube.
- 11 Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
- 12 Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant when clear and colourless.
- 13 Wash the beads by adding either 250  $\mu$ l Long Fragment Buffer (LFB) or 250  $\mu$ l Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
- 14 Repeat the previous step.
- 15 Spin down and place the tube back on the magnet. Pipette off any residual supernatant. Allow to dry for  $\sim$ 30 seconds, but do not dry the pellet to the point of cracking.
- 16 Remove the tube from the magnetic rack and resuspend the pellet in 15 µl Elution Buffer (EB). Spin down and incubate for 10 minutes at room temperature. For high molecular weight DNA, incubating at 37°C can improve the recovery of long fragments.
- 17 Pellet the beads on a magnet until the eluate is clear and colourless, for at least 1 minute.
- 18 Remove and retain 15 μl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.

Dispose of the pelleted beads

Quantify 1 µl of eluted sample using a Qubit fluorometer.

19 Prepare 35-50 fmol of your final library to 12 µl with Elution Buffer (EB).

### IMPORTANT

We recommend loading 35-50 fmol of this final prepared library onto the R10.4.1 flow cell.

This is to ensure high pore occupancy of >95% is reached. How to calculate pore occupancy can be foundhere.

### **END OF STEP**

The prepared library is used for loading into the flow cell. Store the library on ice or at 4°C until ready to load.

### TIP

### **Library storage recommendations**

We recommend storing libraries in Eppendorf DNA LoBind tubes at 4°C for short-term storage or repeated use, for example, re-loading flow cells between washes.

For single use and **long-term storage** of more than 3 months, we recommend storing libraries at-80°C in Eppendorf DNA LoBind tubes.

# Priming and loading the MinION and GridION Flow Cell

~5 minutes

### **Materials**

- Flow Cell Flush (FCF)
- Flow Cell Tether (FCT)
- Library Solution (LIS)
- Library Beads (LIB)
- Sequencing Buffer (SB)

### **Consumables**

- MinION and GridION Flow Cell
- 1.5 ml Eppendorf DNA LoBind tubes
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- (Optional) Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

### **Equipment**

- MinION or GridION device
- MinION and GridION Flow Cell Light Shield
- P1000 pipette and tips
- P100 pipette and tips
- P20 pipette and tips
- P10 pipette and tips

### IMPORTANT

Please note, this kit is only compatible with R10.4.1 flow cells (FLO-MIN114).

#### TIP

### Priming and loading a flow cell

We recommend all new users watch the Priming and loading your flow cell video before your first run.

1 Thaw the Sequencing Buffer (SB), Library Beads (LIB) or Library Solution (LIS, if using), Flow Cell Tether (FCT) and Flow Cell Flush (FCF) at room temperature before mixing by vortexing. Then spin down and store on ice.

### **IMPORTANT**

For optimal sequencing performance and improved output on MinION R10.4.1 flow cells (FLO-MIN114), we recommend adding Bovine Serum Albumin (BSA) to the flow cell priming mix at a final concentration of 0.2 mg/ml.

Note: We do not recommend using any other albumin type (e.g. recombinant human serum albumin).

2 To prepare the flow cell priming mix with BSA, combine Flow Cell Flush (FCF) and Flow Cell Tether (FCT), as directed below. Mix by pipetting at room temperature.

**Note:** We are in the process of reformatting our kits with single-use tubes into a bottle format. Please follow the instructions for your kit format.

### Single-use tubes format:

Add 5 µl Bovine Serum Albumin (BSA) at 50 mg/ml and 30 µl Flow Cell Tether (FCT) directly to a tube of Flow Cell Flush (FCF).

### **Bottle format:**

In a suitable tube for the number of flow cells, combine the following reagents:

| Reagent                                | Volume per flow cell |
|----------------------------------------|----------------------|
| Flow Cell Flush (FCF)                  | 1,170 μΙ             |
| Bovine Serum Albumin (BSA) at 50 mg/ml | 5 μΙ                 |
| Flow Cell Tether (FCT)                 | 30 μΙ                |
| Total volume                           | 1,205 μΙ             |

3 Open the MinION or GridION device lid and slide the flow cell under the clip. Press down firmly on the flow cell to ensure correct thermal and electrical contact.



### Optional action

Complete a flow cell check to assess the number of pores available before loading the library.

This step can be omitted if the flow cell has been checked previously.

See the flow cell check instructions in the MinKNOW protocol for more information.

4 Slide the flow cell priming port cover clockwise to open the priming port.

### **IMPORTANT**

Take care when drawing back buffer from the flow cell. Do not remove more than 20-30  $\mu$ l, and make sure that the array of pores are covered by buffer at all times. Introducing air bubbles into the array can irreversibly damage pores.

- 5 After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:
  - 1. Set a P1000 pipette to 200  $\mu l$
  - 2. Insert the tip into the priming port
  - 3. Turn the wheel until the dial shows 220-230  $\mu$ l, to draw back 20-30  $\mu$ l, or until you can see a small volume of buffer entering the pipette tip

**Note:** Visually check that there is continuous buffer from the priming port across the sensor array.



6 Load 800  $\mu$ l of the priming mix into the flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes. During this time, prepare the library for loading by following the steps below.



7 Thoroughly mix the contents of the Library Beads (LIB) by pipetting.

### **IMPORTANT**

The Library Beads (LIB) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

We recommend using the Library Beads (LIB) for most sequencing experiments. However, the Library Solution (LIS) is available for more viscous libraries.

8 In a new 1.5 ml Eppendorf DNA LoBind tube, prepare the library for loading as follows:

| Reagent                                                                               | Volume per flow cell |
|---------------------------------------------------------------------------------------|----------------------|
| Sequencing Buffer (SB)                                                                | 37.5 μΙ              |
| Library Beads (LIB) mixed immediately before use, or Library Solution (LIS), if using | 25.5 μΙ              |
| DNA library                                                                           | 12 μΙ                |
| Total                                                                                 | 75 μΙ                |

### 9 Complete the flow cell priming:

- 1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
- 2. Load **200**  $\mu$ I of the priming mix into the flow cell priming port **not** the SpotON sample port), avoiding the introduction of air bubbles.



10 Mix the prepared library gently by pipetting up and down just prior to loading.

11 Add 75  $\mu$ l of the prepared library to the flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop flows into the port before adding the next.



12 Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port and close the priming port.



### **IMPORTANT**

Install the light shield on your flow cell as soon as library has been loaded for optimal sequencing output.

We recommend leaving the light shield on the flow cell when library is loaded, including during any washing and reloading steps. The shield can be removed when the library has been removed from the flow cell.

### 13 Place the light shield onto the flow cell, as follows:

- Carefully place the leading edge of the light shield against the clip.
   Note: Do not force the light shield underneath the clip.
- 2. Gently lower the light shield onto the flow cell. The light shield should sit around the SpotON cover, covering the entire top section of the flow cell.





### **CAUTION**

The MinION Flow Cell Light Shield is not secured to the flow cell and careful handling is required after installation.

### **END OF STEP**

Close the device lid and set up a sequencing run on MinKNOW.

# Data acquisition and basecalling

### Overview of nanopore data analysis

For a full overview of nanopore data analysis, which includes options for basecalling and post-basecalling analysis, please refer to the Data Analysis document.

### How to start sequencing

The sequencing device control, data acquisition and real-time basecalling are carried out by the MinKNOW software. It is assumed you have already installed MinKNOW on your computer. Further instructions for setting up a sequencing run can be found in the MinKNOW

### protocol.

In the current MinKNOW software version, the PCR Barcoding Expansions are not available in "Kit selection" when setting up a sequencing run. These will be included in the next software update.

For the meantime, we recommend starting a sequencing run in the MinKNOW software using Ligation Sequencing Kit V14 (SQK-LSK114) to perform real-time basecalling. Once basecalling is complete, the data can be demultiplexed using post-run barcoding on MinKNOW, as outlined below.

### MinKNOW settings for real-time basecalling and post-run barcoding:

### **Real-time basecalling**

Follow the instructions in the MinKNOW protocol beginning from the "Starting a sequencing run" section for your device until the end of the "Completing a MinKNOW run" section.

Select Ligation Sequencing Kit (SQK-LSK114) in "Kit selection". The barcoding option will be unavailable as default. Other parameters can be kept at their default settings.



### Post-run barcoding

Follow the instructions in "Post-run barcoding" of the MinKNOW protocol.

Click Analysis to open post-run options. Choose Barcoding and input your fastq data files. Select the PCR Barcoding Expansion used during library preparation in "Barcode settings" and use the default settings for other parameters.





# **Downstream analysis**

### Post-basecalling analysis

There are several options for further analysing your basecalled data:

### 1. EPI2ME workflows

For in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials and workflows available in EPI2ME Labs, which are available in the <u>EPI2ME Labs</u> section of the Community. The platform provides a vehicle where workflows deposited in GitHub by our Research and Applications teams can be showcased with descriptive texts, functional bioinformatics code and example data.

### 2. Research analysis tools

Oxford Nanopore Technologies' Research division has created a number of analysis tools, that are available in the Oxford Nanopore <u>GitHub repository</u>. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.

### 3. Community-developed analysis tools

If a data analysis method for your research question is not provided in any of the resources above, please refer to the Bioinformatics section of the Resource centre. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.

# Flow cell reuse and returns

### **Materials**

- Flow Cell Wash Kit (EXP-WSH004)
- 1 After your sequencing experiment is complete, if you would like to reuse the flow cell, please follow the Flow Cell Wash Kit protocol and store the washed flow cell at 2-8°C.

The Flow Cell Wash Kit protocol is available on the Nanopore Community.

TIP

We recommend you to wash the flow cell as soon as possible after you stop the run. However, if this is not possible, leave the flow cell on the device and wash it the next day.

2 Alternatively, follow the returns procedure to flush out the flow cell ready to send back to Oxford Nanopore.

Instructions for returning flow cells can be foundhere.

Note: All flow cells must be flushed with deionised water before returning the product.

### **IMPORTANT**

If you encounter issues or have questions about your sequencing experiment, please refer to the Troubleshooting Guide that can be found in the online version of this protocol.

# Issues during DNA/RNA extraction and library preparation

Below is a list of the most commonly encountered issues, with some suggested causes and solutions.

We also have an FAQ section available on the Nanopore Community Support section.

If you have tried our suggested solutions and the issue still persists, please contact Technical Support via email (support@nanoporetech.com) or via LiveChat in the Nanopore Community.

Low sample quality

| Observation                                                                                        | Possible cause                                                 | Comments and actions                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low DNA purity (Nanodrop reading for DNA OD 260/280 is <1.8 and OD 260/230 is <2.0-2.2)            | The DNA extraction method does not provide the required purity | The effects of contaminants are shown in the Contaminants document. Please try an alternative extraction method that does not result in contaminant carryover.  Consider performing an additional SPRI clean-up step.                                                                          |
| Low RNA integrity (RNA integrity number <9.5 RIN, or the rRNA band is shown as a smear on the gel) | The RNA degraded during extraction                             | Try a different RNA extraction method. For more info on RIN, please see the RNA Integrity Number document. Further information can be found in the DNA/RNA Handling page.                                                                                                                      |
| RNA has a shorter than expected fragment length                                                    | The RNA degraded during extraction                             | Try a different RNA extraction method. For more info on RIN, please see the RNA Integrity Number document. Further information can be found in the DNA/RNA Handling page.  We recommend working in an RNase-free environment, and to keep your lab equipment RNase-free when working with RNA. |

### Low DNA recovery after AMPure bead clean-up

| Observation                           | Possible cause                                                               | Comments and actions                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low<br>recovery                       | DNA loss due to a<br>lower than intended<br>AMPure beads-to-<br>sample ratio | <ol> <li>AMPure beads settle quickly, so ensure they are well resuspended before adding them to the sample.</li> <li>When the AMPure beads-to-sample ratio is lower than 0.4:1, DNA fragments of any size will be lost during the clean-up.</li> </ol>                                                                                                                             |
| Low<br>recovery                       | DNA fragments are shorter than expected                                      | The lower the AMPure beads-to-sample ratio, the more stringent the selection against short fragments. Please always determine the input DNA length on an agarose gel (or other gel electrophoresis methods) and then calculate the appropriate amount of AMPure beads to use.  NEB TriDye  1 kb ladder  SPRI 1.5x 1.0x 0.8x 0.5x 0.45x 0.4x 0.35x  10.0 -  2.0 - 1.5 - 1.0 - 0.5 - |
| Low<br>recovery<br>after end-<br>prep | The wash step used ethanol <70%                                              | DNA will be eluted from the beads when using ethanol <70%. Make sure to use the correct percentage.                                                                                                                                                                                                                                                                                |

# Issues during the sequencing run

Below is a list of the most commonly encountered issues, with some suggested causes and solutions.

We also have an FAQ section available on the Nanopore Community Support section.

If you have tried our suggested solutions and the issue still persists, please contact Technical Support via email (support@nanoporetech.com) or via LiveChat in the Nanopore Community.

### Fewer pores at the start of sequencing than after Flow Cell Check

| Observation                                                                                                         | Possible cause                                                         | Comments and actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | An air bubble was introduced into the nanopore array                   | After the Flow Cell Check it is essential to remove any air bubbles near the priming port before priming the flow cell. If not removed, the air bubble can travel to the nanopore array and irreversibly damage the nanopores that have been exposed to air. The best practice to prevent this from happening is demonstrated in this video.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | The flow cell is not correctly inserted into the device                | Stop the sequencing run, remove the flow cell from the sequencing device and insert it again, checking that the flow cell is firmly seated in the device and that it has reached the target temperature. If applicable, try a different position on the device (GridION/PromethION).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | Contaminations<br>in the library<br>damaged or<br>blocked the<br>pores | The pore count during the Flow Cell Check is performed using the QC DNA molecules present in the flow cell storage buffer. At the start of sequencing, the library itself is used to estimate the number of active pores. Because of this, variability of about 10% in the number of pores is expected. A significantly lower pore count reported at the start of sequencing can be due to contaminants in the library that have damaged the membranes or blocked the pores. Alternative DNA/RNA extraction or purification methods may be needed to improve the purity of the input material. The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover. |

| Observation                            | Possible cause | Comments and actions                                                                                                                                                                                                                                                                                                          |
|----------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MinKNOW<br>shows<br>"Script<br>failed" |                | Restart the computer and then restart MinKNOW. If the issue persists, please collect theMinKNOW log files and contact Technical Support. If you do not have another sequencing device available, we recommend storing the flow cell and the loaded library at 4°C and contact Technical Support for further storage guidance. |

### Pore occupancy below 40%

| Observation                     | Possible cause                                                                                                                      | Comments and actions                                                                                                                                                                                                                                                                                                               |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pore<br>occupancy<br><40%       | Not enough library was loaded on the flow cell                                                                                      | Ensure the correct volume and concentration as stated on the appropriate protocol for your sequencing library is loaded onto the flow cell. Please quantify the library before loading and calculate fmols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to fmol"                                           |
| Pore occupancy close to 0       | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA                                             | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the SQK-LSK110 kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
| Pore<br>occupancy<br>close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.                                                                                                                                                                                 |
| Pore occupancy close to 0       | No tether on the flow cell                                                                                                          | Tethers are adding during flow cell priming (FLT tube for Kit 9, 10, 11, and FCT for Kit 14). Make sure FLT/FCT was added to the buffer (FB for Kit 9, 10, 11, and FCF for Kit 14) before priming.                                                                                                                                 |

### Shorter than expected read length

|  | Observation | Possible cause | Comments and actions |  |
|--|-------------|----------------|----------------------|--|
|--|-------------|----------------|----------------------|--|

| Observation                       | Possible cause                       | Comments and actions                                                                                                      |
|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Shorter than expected read length | Unwanted fragmentation of DNA sample | Read length reflects input DNA fragment length. Input DNA can be fragmented during extraction and library prep.           |
|                                   |                                      | 1. Please review the Extraction Methods in the Nanopore Community for best practice for extraction.                       |
|                                   |                                      | 2. Visualise the input DNA fragment length distribution on an agarose gel before proceeding to the library prep.          |
|                                   |                                      | sample 1 sample 2                                                                                                         |
|                                   |                                      | In the image above, Sample 1 is of high molecular weight, whereas Sample 2 has been fragmented. $ \\$                     |
|                                   |                                      | 3. During library prep, avoid pipetting and vortexing when mixing reagents. Flicking or inverting the tube is sufficient. |

### Large proportion of unavailable pores

| Observation                                                                                                                                                                                       | Possible cause                         | Comments and actions                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large proportion of unavailable pores (shown as blue in the channels panel and pore activity plot)  The pore activity plot above shows an increasing proportion of "unavailable" pores over time. | Contaminants are present in the sample | Some contaminants can be cleared from the pores by the unblocking function built into MinKNOW. If this is successful, the pore status will change to "sequencing pore". If the portion of unavailable pores stays large or increases:  1. A nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) can be performed, or 2. Run several cycles of PCR to try and dilute any contaminants that may be causing problems. |

### Large proportion of inactive pores

| Observation                                                                                                                                                    | Possible cause                                                  | Comments and actions                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large proportion of inactive/unavailable pores (shown as light blue in the channels panel and pore activity plot. Pores or membranes are irreversibly damaged) | Air bubbles<br>have been<br>introduced<br>into the flow<br>cell | Air bubbles introduced through flow cell priming and library loading can irreversibly damage the pores. Watch the Priming and loading your flow cell video for best practice |

| Observation                                    | Possible cause                                  | Comments and actions                                                                                                                                                                                                                                                                                 |
|------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large proportion of inactive/unavailable pores | Certain<br>compounds<br>co-purified<br>with DNA | Known compounds, include polysaccharides, typically associate with plant genomic DNA.  1. Please refer to the Plant leaf DNA extraction method. 2. Clean-up using the QIAGEN PowerClean Pro kit. 3. Perform a whole genome amplification with the original gDNA sample using the QIAGEN REPLI-g kit. |
| Large proportion of inactive/unavailable pores | Contaminants are present in the sample          | The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover.                                                                                                                                 |

# Reduction in sequencing speed and q-score later into the run

| Observation                                                               | Possible cause                                                                                                                                                                                                     | Comments and actions                                                                                                                                         |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduction in<br>sequencing<br>speed and q-<br>score later into<br>the run | For Kit 9 chemistry (e.g. SQK-LSK109), fast fuel consumption is typically seen when the flow cell is overloaded with library (please see the appropriate protocol for your DNA library to see the recommendation). | Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell. |

### **Temperature fluctuation**

| Observation             | Possible cause   | Comments and actions                                                                                                                                                                                                                                               |
|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature fluctuation | has lost contact | Check that there is a heat pad covering the metal plate on the back of the flow cell. Re-insert the flow cell and press it down to make sure the connector pins are firmly in contact with the device. If the problem persists, please contact Technical Services. |

### Failed to reach target temperature

| Observation                                                    | Possible cause                                                                                                                                                       | Comments and actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MinKNOW<br>shows<br>"Failed to<br>reach target<br>temperature" | The instrument was placed in a location that is colder than normal room temperature, or a location with poor ventilation (which leads to the flow cells overheating) | MinKNOW has a default timeframe for the flow cell to reach the target temperature. Once the timeframe is exceeded, an error message will appear and the sequencing experiment will continue. However, sequencing at an incorrect temperature may lead to a decrease in throughput and lower q-scores. Please adjust the location of the sequencing device to ensure that it is placed at room temperature with good ventilation, then re-start the process in MinKNOW. Please refer to this FAQ for more information on MinION Mk 1B temperature control. |