Fundamentos matemáticos del aprendizaje profundo

1° cuatrimestre 2025

Práctica 9: Aproximadores universales

Ejercicio 1. Se sabe que el conjunto de los números racionales, \mathbb{Q} , es denso en el conjunto de los números reales, \mathbb{R} . Formula este resultado en términos de la terminología del aprendizaje automático.

Ejercicio 2. Un resultado de aproximación bien conocido es el Teorema de Aproximación de Weierstrass: Sea f una función continua con valores reales definida en el intervalo real [a,b]. Entonces, existe una sucesión de polinomios P_n tal que

$$\sup_{x \in [a,b]} |f(x) - P_n(x)| \to 0, \quad \text{cuando } n \to \infty.$$

Formula este resultado en términos de la terminología del aprendizaje automático.

Ejercicio 3 (separación de puntos). Sean x_0, x_1 dos vectores distintos y no colineales en el espacio normado lineal X. Demuestra que existe un funcional lineal acotado L en X tal que $L(x_0) = 1$ y $L(x_1) = 0$.

Ejercicio 4. Sean x_0, x_1 dos vectores distintos y no colineales en el espacio normado lineal X. Demuestra que existe un funcional lineal acotado L en X tal que $L(x_0) = L(x_1) = \frac{1}{2}$, con

$$||L|| \le \frac{\delta_0 + \delta_1}{2\delta_0 \delta_1},$$

donde δ_i es la distancia de x_i a la recta generada por el otro vector.

Ejercicio 5. Dados dos números finitos a y b, demuestra que existe una medida de Borel finita con signo no nula en [a, b] tal que

$$\int_{a}^{b} \sin t \, d\mu(t) = \int_{a}^{b} \cos t \, d\mu(t).$$

Ejercicio 6. Sea P([0,1]) el espacio de polinomios en [0,1]. Para cualquier $P \in P([0,1])$, define el funcional

$$L(P) = a_0 + a_1 + \cdots + a_n$$

donde $P(x) = a_0 + a_1 x + \dots + a_n x^n$, con $a_i \in \mathbb{R}$.

- (a) Demuestra que L es un funcional lineal y acotado en P([0,1]).
- (b) Prueba que existe una medida de Borel finita con signo, μ en [0, 1], tal que

$$\int_0^1 P(x) \, d\mu(x) = a_0 + a_1 + \dots + a_n, \quad \forall P \in P([0, 1]).$$

Ejercicio 7. (a) ¿La función tangente hiperbólica es discriminatoria en el sentido L^2 ? ¿Y en el sentido L^1 ?

- (b) Demuestra que la función $\varphi(x) = e^{-x^2}$ es discriminatoria en el sentido L^1 en \mathbb{R} .
- **Ejercicio 8.** (a) Escribe una fórmula para la salida de una red neuronal de alimentación hacia adelante (FNN) con dos capas ocultas que tienen N_1 y N_2 neuronas, respectivamente.
 - (b) Demuestra que las salidas de todas las posibles FNNs con dos capas ocultas y la misma entrada forman un espacio lineal de funciones.

Ejercicio 9. Una función de activación σ se llama fuertemente discriminatoria para la medida μ si

$$\int_{I_n} (\sigma \circ f)(x) \, d\mu(x) = 0, \quad \forall f \in C(I_n) \Rightarrow \mu = 0.$$

- (a) Demuestra que si σ es fuertemente discriminatoria, entonces es discriminatoria en el sentido de las funciones continuas.
- (b) Suponer que las funciones de activación de una FNN de dos capas son continuas y fuertemente discriminatorias con respecto a cualquier medida con signo. Demuestra que esta FNN puede aprender cualquier función continua en $C(I_n)$.

Ejercicio 10. Encuentra $\phi'_{\theta}(t)$, $\nabla_w \phi_{\theta}(t)$ y $\nabla_w \phi'_{\theta}(t)$ para la expresión de $\phi_{\theta}(t)$ dada por

$$\phi_{\theta}(t) = \sum_{j=1}^{N} \alpha_j \sigma(w_j t + b_j), \quad \theta = (\mathbf{w}, \mathbf{b}, \alpha) \in \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N.$$