Espaces préhilbertiens (Corrigés des exercices chapitre 7)

Résultats dans un espace préhilbertien

1. * Soit E un espace préhilbertien réel et n points x_1, x_2, \dots, x_n de E $(n \ge 2)$. Établir la formule

$$\sum_{1 \le i < j \le n} \|x_i - x_j\|^2 = n \sum_{i=1}^n \|x_i\|^2 - \|\sum_{i=1}^n x_i\|^2.$$

On procède par récurrence sur n. Pour n=2, la formule est vérifiée puisque : $||x_1-x_2||^2=||x_1||^2+||x_2||^2-2(x_1|x_2)$, et :

$$2(\|x_1\|^2 + \|x_2\|^2) - \|x_1 + x_2\|^2 = 2(\|x_1\|^2 + \|x_2\|^2) - (\|x_1\|^2 + \|x_2\|^2 + 2(x_1|x_2))$$
$$= \|x_1\|^2 + \|x_2\|^2 - 2(x_1|x_2).$$

Supposons la propriété annoncée vraie à l'ordre n-1, c'est-à-dire pour n-1 points. Alors, en utilisant l'hypothèse de récurrence :

$$\sum_{1 \le i < j \le n} \|x_i - x_j\|^2 = \sum_{1 \le i < j \le n-1} \|x_i - x_j\|^2 + \sum_{i=1}^n \|x_i - x_n\|^2$$

$$= (n-1) \sum_{i=1}^{n-1} \|x_i\|^2 - \|\sum_{i=1}^{n-1} x_i\|^2 + \sum_{i=1}^n \|x_i\|^2 + n\|x_n\|^2 - 2 \sum_{i=1}^n (x_i | x_n)$$

Or:

$$-2\sum_{i=1}^{n}(x_{i}|x_{n}) = -2\sum_{i=1}^{n-1}(x_{i}|x_{n}) - 2\|x_{n}\|^{2} = \left(\|\sum_{i=1}^{n-1}x_{i}\|^{2} - \|\sum_{i=1}^{n}x_{i}\|^{2} + \|x_{n}\|^{2}\right) - 2\|x_{n}\|^{2}.$$

En injectant cette expression dans l'équation précédente, il vient :

$$\sum_{1 \le i < j \le n} \|x_i - x_j\|^2 = (n-1) \sum_{i=1}^{n-1} \|x_i\|^2 + \sum_{i=1}^n \|x_i\|^2 + n\|x_n\|^2 - \|\sum_{i=1}^n x_i\|^2 - \|x_n\|^2$$

$$= n \sum_{i=1}^n \|x_i\|^2 - \|\sum_{i=1}^n x_i\|^2$$

ce qui est le résultat escompté.

- **2.** *** Soit *E* euclidien et $\mathcal{A} = \{\alpha/\forall (x,y) \in E^2, \|x\| + \|y\| \le \alpha \max(\|x-y\|, \|x+y\|)\}.$
- a) Montrer que \mathcal{A} est un intervalle inclus dans $[1, +\infty[$.
- b) Si dimE = 1, montrer que $\mathcal{A} = [1, +\infty[$.
- c) Si dim $E \ge 2$, montrer que $\mathcal{A} = [\sqrt{2}, +\infty[$.

- a) Soit $\gamma, \alpha \in \mathcal{A}$ et $\alpha \leq \beta \leq \gamma$. $||x|| + ||y|| \leq \alpha \max(||x-y||, ||x+y||) \leq \beta \max(||x-y||, ||x+y||)$ donc $\beta \in \mathcal{A}$ qui est convexe. Donc \mathcal{A} est bien un intervalle. En prenant $x \neq 0$ et y = 0, on obtient $||x|| \leq \alpha ||x||$, donc $\alpha \geq 1$, i.e. $\mathcal{A} \subset [1, +\infty[$.
- b) Si dimE = 1; $E = K\epsilon$ avec ϵ unitaire; $x = a\epsilon$; $y = b\epsilon$, et: ||x|| + ||y|| = |a| + |b|; ||x y|| = |a b|; ||x + y|| = |a + b|. Or |a| + |b| = |a + b| si signe(a) =signe(b); sinon |a| + |b| = |a b| sinon, donc $1 \in A$ et si $\beta \ge 1$, $\beta \in A$; donc $A = [1, +\infty[$.
 - c) $n \ge 2$; si $x \perp y$, et $||x|| = ||y|| \ne 0$, alors ||x|| + ||y|| = 2||x|| et

$$||x - y||^2 = ||x + y||^2 = ||x||^2 + ||y||^2 = 2||x||^2.$$

donc, si $\alpha \in \mathcal{A}$, alors $2 \leq \sqrt{2}\alpha$ donc $\mathcal{A} \subset [\sqrt{2}, +\infty[$. Montrons alors que $\sqrt{2} \in \mathcal{A}$. $||x + \epsilon y||^2 = ||x||^2 + ||y||^2 + 2\epsilon(x|y)$. Si $\delta(x,y) = \max(||x - y||, ||x + y||)$, on a:

$$2\delta^{2}(x,y) = 2\|x\|^{2} + 2\|y\|^{2} + 4|(x|y)|$$

$$= (\|x\| - \|y\|)^{2} + (\|x\| + \|y\|)^{2} + 4|(x|y)|$$

$$\geq (\|x\| + \|y\|)^{2}$$

d'où $\sqrt{2} \in \mathcal{A}$, et $\mathcal{A} = [\sqrt{2}, +\infty[$.

3. * Soit E euclidien, F un sous-espace vectoriel de E et $x \in E$. Montrer que x est orthogonal à F si, et seulement si, $||x|| \le ||x-y||$ pour tout $y \in F$.

On a d'abord $||x-y||^2 - ||x||^2 = -2(x|y) + ||y||^2$, donc, si $x \in F^{\perp}$, $||x-y||^2 - ||x||^2 = ||y||^2 \ge 0$. Réciproqument, si $||x|| \le ||x-y||$ pour tout $y \in F$, on a notamment $||x-0|| \le ||x-p_F(x)||$. Mais $0 \in F$ et $p_F(x)$ réalise le minimum des distances d(x,y), $y \in F$ et c'est l'unique point qui le fait, donc $p_F(x) = 0$ et $x \in F^{\perp}$.

4. *** Soit, dans E préhilbertien, (e_1, \dots, e_n) libre et telle que, pour tout $x \in E$, $||x||^2 = \sum_{i=1}^{n} |(e_i|x)|^2$. Montrer que cette famille est une base orthonormale de E.

Si, pour tout i, $(e_i|x) = 0$, alors x = 0, donc, si $F = \text{Vect}(e_1, \dots, e_n)$, alors $F^{\perp} = \{0\}$, et $E = F \oplus F^{\perp} = F$, donc on a une base de E.

 $x = e_j \text{ donne } ||e_j||^2 \ge ||e_j||^4, \text{ d'où } ||e_j|| \le 1.$

Pour $x \in \text{Vect}(e_1, \dots, e_{n-1})^{\perp}$; $||x||^2 = |(e_n|x)|^2 \le ||e_n||^2 ||x||^2$, donc $||e_n|| \ge 1$ puis $||e_n|| = 1$ et il en est de même pour les autres : $||e_i|| = 1$.

Dès lors, par Cauchy-Schwarz, (x, e_n) est liée : $\text{Vect}(e_1, \dots, e_{n-1})^{\perp} = \mathbb{K}e_n$. De même, $\text{Vect}(e_i \; ; \; i \neq j)^{\perp} = \mathbb{K}e_j$, donc (e_1, \dots, e_n) est orthonormale.

- 5. ** Soit E euclidien et e_1, \ldots, e_n des vecteurs de E tels que $||x||^2 = \sum_{i=1}^n (x|e_i)^2$ pour tout $x \in E$.
- a) On suppose que les e_i sont unitaires : montrer que (e_1, \dots, e_n) est une base orthonormale de E.
- b) On suppose que $\dim(E) = n$.
- i) Montrer que (e_1, \ldots, e_n) est une base de E. En déduire que la matrice $[(e_i|e_j)]_{1 \le i,j \le n}$ est inversible.
- ii) Montrer que, pour tout $(x,y) \in E^2$, $(x|y) = \sum_{i=1}^n (x|e_i)(y|e_i)$. En déduire que (e_1,\ldots,e_n) est une base orthonormale de E.

a) Pour $x = e_j$, il vient $||e_j||^2 = ||e_j||^4 + \sum_{i \neq j} (e_j | e_i)^2$, donc $\sum_{i \neq j} (e_j | e_i)^2 = 0$ et la famille des e_i est orthonormale.

 $x \in \text{vect}(e_1, \dots, e_n)^{\perp}$ équivaut à $||x||^2 = 0$, donc à x = 0, et la famille des e_i engendre donc E. Comme elle est libre (orthonormale), c'en est une base.

b) i) Cette fois encore, $x \in \text{vect}(e_1, \dots, e_n)^{\perp}$ équivaut à $||x||^2 = 0$, donc à x = 0, et la famille des e_i engendre donc E et c'en est une base car elle a n éléments.

Si une combinaison linéaire des colonnes de la matrice est nulle, c'est que, pour tout i, $\sum_{j=1}^{n} \alpha_j(e_i|e_j) = 0$, donc $\sum_{j=1}^{n} \alpha_j e_j \in E^{\perp} = \{0\}$, donc les α_j sont nuls : la matrice est inversible.

ii)
$$||x+y||^2 = \sum_{i=1}^n (x+y|e_i)^2 = ||x||^2 + ||y||^2 + 2\sum_{i=1}^n (x|e_i)(y|e_i)$$
 conduit à la formule demandée.

Si on prend $x = e_l$ et $y = e_c$, la formule devient la relation matricielle $A^2 = A$ où A est la matrice des $(e_i|e_j)$. Comme A est inversible, c'est que $A = I_n$, donc $(e_i|e_j) = \delta_{ij}$ et la base est bien orthonormale.

6. * Soit E un espace vectoriel euclidien de dimension n et soit $(a_i)_{1 \le i \le p} \in E^p$. Soit $f: E \to E$, $x \mapsto \sum_{i=1}^p (x|a_i)a_i$. Montrer que f est bijective si et seulement si $(a_i)_{1 \le i \le p}$ est génératrice.

f est linéaire, car, par linéarité d'un côté du produit scalaire :

$$f(\lambda x + \mu y) = \sum_{i=1}^{p} (\lambda x + \mu y | a_i) a_i = \lambda f(x) + \mu f(y).$$

Si f est bijective, et si $y \in E$, il existe x tel que f(x) = y, soit $y = \sum_{i=1}^{p} \lambda_i a_i$, avec $\lambda_i = (x|a_i)$. C'est bien le caractère générateur de la famille $(a_i)_{1 \le i \le p}$.

Pour montrer la bijectivité de f, il suffit de montrer son injectivité, car c'est un endomorphisme en dimension finie. Or, $(x|f(x)) = \sum_{i=1}^{p} (x|a_i)^2$, donc f(x) = 0 si, et seulement si, $(x|a_i) = 0$ pour tout i, car la réciproque est évidente. Si c'est le cas, et si la famille est génératrice, $x = \sum_{i=1}^{p} x_i a_i$, donc (x|x) = 0, puis x = 0: f est bien injective.

7. ** Soit E un espace préhilbertien réel et (e_1, \cdots, e_p) une famille d'éléments de E telle que $p \geq 2$ et $(e_i|e_j) < 0$ pour $1 \leq i < j \leq p$. Montrer que toute sous-famille à p-1 termes de cette suite est libre [on pourra commencer par montrer que $\sum_{k=1}^{p-1} \lambda_k e_k = 0$ implique $\sum_{k=1}^{p-1} |\lambda_k| e_k = 0$].

Supposons que $(\lambda_1, \dots, \lambda_{p-1}) \in \mathbb{R}^{p-1}$ soit tel que $\sum_{k=1}^{p-1} \lambda_k e_k = 0$. On a :

$$0 = \|\sum_{k=1}^{p-1} \lambda_k e_k\|^2 = \sum_{k=1}^{p-1} \lambda_k^2 \|e_k\|^2 + 2 \sum_{1 \le i < j \le p-1} \lambda_i \lambda_j (e_i | e_j).$$

Pour tout (i, j) tel que $i \neq j$, $(e_i|e_j) < 0$, donc : $\lambda_i \lambda_j (e_i|e_j) \ge |\lambda_i| |\lambda_j| (e_i|e_j)$. On en déduit alors que $0 \ge \sum_{k=1}^{p-1} |\lambda_k|^2 ||e_k||^2 + 2 \sum_{1 \le i < j \le p-1} |\lambda_i| |\lambda_j| (e_i|e_j) = ||\sum_{k=1}^{p-1} |\lambda_k| e_k||^2 \ge 0$, et, et par conséquent

 $\sum_{k=1}^{p-1} |\lambda_k| e_k = 0. \text{ On remarque alors, puisque pour tout } k \in \{1, \cdots, p-1\}, \ |\lambda_k| (e_k|e_p) \leq 0,$

l'égalité $0 = (\sum_{k=1}^{p-1} |\lambda_k| e_k | e_p) = \sum_{k=1}^{p-1} |\lambda_k| (e_k | e_p)$ n'est possible que si, pour tout $k \in \{1, \dots, p-1\}$, $|\lambda_k| (e_k | e_p) = 0$ et donc, puisque $(e_k | e_p) < 0$, $|\lambda_k| = 0$.

La famille (e_1, \dots, e_{p-1}) est donc libre. Il en est de même pour les autres sous-familles de p-1 termes de la famille (e_1, \dots, e_p) .

8. *** Soit E euclidien et $f \in \mathcal{L}(E)$ tel que $||f(x)|| \le ||x||$ pour tout $x \in E$. Montrer que $E = \ker(f - id_E) \oplus \operatorname{im}(f - id_E)$.

Soit $x \in \ker(f - id_E)$ et $y = f(z) - z \in \operatorname{im}(f - id_E)$. Soit $\lambda \in \mathbb{R}$. On a $y = f(z + \lambda x) - (z + \lambda x)$ d'où :

$$||z + \lambda x||^2 \ge ||f(z + \lambda x)||^2 = ||z + \lambda x||^2 + 2\lambda(x|y) + 2(z|y) + ||y||^2.$$

Donc $2\lambda(x|y) + 2(z|y) + ||y||^2 \le 0$ pour tout λ . Or, si $(x|y) \ne 0$, $2\lambda(x|y) + 2(z|y) + ||y||^2$ change de signe. Les deux sous-espaces sont donc orthogonaux et de ce fait en somme directe. On conclut avec la formule du rang.

Produits scalaires, familles orthonormalisées

- **9.** * Soit $n \ge 2$ et $E = \{P \in \mathbb{R}_n[X]/P(0) = P(1) = 0\}.$
- $\overline{a)}$ Montrer que E est un sous-espace vectoriel de $\mathbb{R}_n[X]$, et en donner la dimension.
- b) Soit, pour $P \in E$, $\phi(P) = -\int_{[0,1]} PP''$. Montrer que $\sqrt{\phi}$ est une norme euclidienne.
- a) L'application $u: \mathbb{R}_n[X] \to \mathbb{R}^2$, $P \mapsto (P(0), P(1))$ est linéaire, et E en est le noyau donc E est un sous-espace vectoriel de $\mathbb{R}_n[X]$. Si $(a,b) \in \mathbb{R}^2$, il existe $P \in \mathbb{R}_n[X]$ tel que P(0) = a et P(1) = b: par exemple, P = a(1 X) + bX (calcul issu éventuellement de la théorie des polynômes d'interpolation de Lagrange), donc u est surjective, et dim(E) = (n+1) 2 = n 1.

On peut aussi dire que $E = X(X-1)\mathbb{R}[X] \cap \mathbb{R}_n[X]$, donc $E = X(X-1)\mathbb{R}_{n-2}[X]$ et ainsi une base de E est $(X(X-1), X^2(X-1), \dots, X^{n-1}(X-1))$.

b) L'éventuel produit scalaire est

$$\frac{1}{4}[\phi(P+Q) - \phi(P-Q)] = -\frac{1}{2} \int_{[0,1]} [PQ'' + P''Q],$$

donc soit $f(P,Q) = -\frac{1}{2} \int_{[0,1]} [PQ'' + P''Q].$

- $\bullet \ f(P,Q) = f(Q,P).$
- Pour tout $Q, P \mapsto -\frac{1}{2} \int_{[0,1]} [PQ'' + P''Q]$ est linéaire par linéarité de l'intégration et de la dérivation.

• $f(P,P) = \phi(P)$, et, en intégrant par parties,

$$\phi(P) = [-PP']_0^1 + \int_{[0,1]} {P'}^2 = \int_{[0,1]} {P'}^2,$$

car $P \in E$. Commme ${P'}^2$ est continue et positive, $\phi(P) \ge 0$ et $\phi(P) = 0$ équivaut à P' = 0 sur [0,1], donc à P=0 car P(0)=0. Comme [0,1] est infini, on a bien P=0.

Par conséquent, f est un produit scalaire sur E tel que $f(P,P) = \phi(P)$. Ainsi, $\sqrt{\phi}$ est la norme euclidienne associée à f.

10. ** Soit
$$E = \mathcal{C}^{\infty}([a, b], \mathbb{R})$$
.

- a) Montrer que $(f,g)\mapsto \int_{[a,b]}[fg+f'g']=(f|g)$ est un produit scalaire sur E.
- b) Trouver les orthogonaux des deux sous-espaces vectoriels suivants :
- i) $F = \{ f \in E / \int_{[a,b]} f = 0 \}.$ ii) $G = \{ f \in E / f(a) = f(b) = 0 \}.$
- a) (f|g) = (g|f) et $g \mapsto fg + f'g'$ est linéaire, donc ,par linéarité de l'intégrale $g \mapsto (f|g)$ est linéaire.
- $(f|f) = \int_{[a,b]} [f^2 + {f'}^2]$ est positive par continuité et positivité, ce qui amène aussi (f|f) = 0
- b) i) $\int_{[a,b]} f = (f|1)$, donc $F = [\mathbb{R}1]^{\perp}$. Donc, déjà, $D = \mathbb{R}1 \subset F^{\perp}$. F est le noyau d'une forme linéaire non nulle : c'est un hyperplan, et, comme $1 \notin F$, $E = D \oplus F$. Donc, D et F sont supplémentaires orthogonaux, et ainsi $D = F^{\perp}$
- ii) On cherche les fonctions g telles que $\int_{[a,b]} [fg + f'g'] = 0$ dès que f(a) = f(b) = 0. On a alors, par parties, $\int_{[a,b]} f'g' = [f(x)g'(x)_a^b - \int_{[a,b]} fg'', \text{ donc } \int_{[a,b]} f[g-g''] = 0.$ Prenons f(x) = (a-x)(x-b)(g(x)-g''(x)): il vient $\int_{a}^{b} (a-t)(t-b)[g(t)-g''(t)]^2 dt = 0$. Par continuité-positivité, g=g'' sur]a,b[puis sur [a,b] par continuité, donc $g(t)=Ae^t+Be^{-t}$. Réciproquement, cela donne bien (f|g)=0 puisque g=g'', donc $G^{\perp}=\mathrm{vect}(t\mapsto e^t,t\mapsto e^{-t})$.

11. * Soit
$$\varphi: (\mathbb{R}[X])^2 \to \mathbb{R}, (f,g) \mapsto f(0)g(0) + \int_0^1 f'(t)g'(t)dt$$

- a) Montrer que φ est un produit scalaire.
- b) Trouver 3 polynômes P_0 , P_1 , P_2 de degrés respectifs 0, 1, et 2 formant une base orthonormale
 - c) Cette base est-elle orthonormale pour $\psi(f,g) = \int_0^1 f(t)g(t)dt$?

$$\begin{split} & \to \varphi(f,g) = \varphi(g,f). \\ & \to \varphi(f,\lambda g+h) = f(0)(\lambda g(0) + h(0)) + \int_0^1 f'(t)(\lambda g'(t) + h'(t)) dt \text{ et par linéarité de l'intégrale, on a bien } \varphi(f,\lambda g+h) = \lambda \varphi(f,g) + \varphi(f,h). \end{split}$$

$$ightharpoonup \varphi(f,f) = f(0)^2 + \int_0^1 f'(t)^2 dt \ge 0$$
 et $\varphi(f,f) = 0$ équivaut à $f(0)^2 = 0$ et $\int_0^1 f'(t)^2 dt = 0$. Puisque f'^2 est continue et positive, on a donc $f'^2 = 0$ donc $f'(t) = 0$ sur $[0,1]$. f est donc constante sur $[0,1]$, avec $f(0) = 0$: $f = 0$. Comme $[0,1]$ est infini, f est le polynôme nul.

b) \to Si $P_0 = \lambda$, on a $(P_0|P_0) = \lambda^2$ donc $\lambda^2 = 1$. On prend $P_0 = 1$. $\to P_1 = aX + b$ donne $(P_1|P_1) = b^2 + a^2$ et $(P_0|P_1) = b + 0 = b$ n donc b = 0 et $a^2 = 1$

$$(P_2|P_1) = \int_0^1 (2\alpha t + \beta)dt = \alpha + \beta = 0 \text{ et}$$

$$(P_2|P_2) = \int_0^1 (2\alpha t + \beta)^2 dt = \int_0^1 (4\alpha^2 t^2 + 4\alpha\beta t + \beta^2)dt = \frac{4}{3}\alpha^2 + 2\alpha\beta + \beta^2 = 1$$

$$\text{donc} \left\{ \begin{array}{l} \beta = -\alpha \\ \frac{4}{3}\alpha^2 - 2\alpha^2 + \alpha^2 = 1 = \frac{1}{3}\alpha^2 \end{array} \right.$$
On prend $\alpha = \sqrt{3}$, d'où $\beta = -\sqrt{3}$, puis $P_2 = \sqrt{3}(X^2 - X)$.
$$c) \ \psi(P_0|P_1) = \int_0^1 t dt = \frac{1}{2} \text{ donc il n'y a pas même orthogonalité.}$$

- 12. ** Soit $E = \{f \in \mathcal{F}([-1,1],\mathbb{R})/f_{|[-1,0]} \text{ et } f_{|[0,1]} \text{ soient affines } \}.$ a) Montrer que E est un sous-espace vectoriel de $\mathcal{F}([-1,1],\mathbb{R})$, qui est de dimension 3 et dont une base est $\mathcal{B} = (e_1, e_2, e_3)$, où $e_1(x) = 1$, $e_2(x) = x$ et $e_3(x) = |x|$.
- b) Montrer que $(f,g) \mapsto \int_{[-1,1]} fg$ est un produit scalaire sur E et orthonormaliser \mathcal{B} pour ce produit scalaire.
- a) E est un sous-espace vectoriel de $\mathcal{F}([-1,1],\mathbb{R})$ car il n'est pas vide (il y a toutes les fonctions affines sur [-1,1]) et que, si f et g sont dans E, $\lambda f + \mu g$ aussi, du fait notamment que $[\lambda f + \mu g]_{[a,b]} = \lambda f_{[a,b]} + \mu g_{[a,b]}.$ Si $f \in E$,

$$f(x) = \begin{cases} f(0) + [f(0) - f(-1)]x & \text{si } x \in [-1, 0] \\ f(0) - [f(0) - f(1)]x & \text{si } x \in [0, 1] \end{cases}.$$

Il vient donc que f est entièrement caractérisée par la donnée de f(-1), f(0) et f(1), donc $f \mapsto (f(-1), f(0), f(1))$ est bijective de E sur \mathbb{R}^3 . Comme elle est linéaire, c'est un isomorphisme

En fait, si on pose $\varepsilon_1(x) = \begin{cases} -x & \text{si } x \in [-1,0] \\ 0 & \text{si } x \in [0,1] \end{cases}$, $\varepsilon_2(x) = \begin{cases} 0 & \text{si } x \in [-1,0] \\ x & \text{si } x \in [0,1] \end{cases}$ et $\varepsilon_3(x) = |x| + 1$, on a $f = f(-1)\varepsilon_1 + f(1)\varepsilon_2 + f(0)\varepsilon_3$ donc la famille $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ engenge E et c'en est une base vu la dimension.

- Or, $\varepsilon_1 = \frac{e_2 e_3}{2}$, $\varepsilon_2 = \frac{e_2 + e_3}{2}$ et $\varepsilon_3 = e_1 + e_3$, donc (e_1, e_2, e_3) est aussi génératrice et c'est ainsi une base de E car elle a 3 éléments.
- b) En fait, les fonctions de E sont continues car du fait que l'on considère les restrictions aux segments, $f(0) = f(0^-) = f(0^+)$. Donc, $(f,g) \mapsto \int_{[-1,1]} fg$ est la restriction d'un produit scalaire classiaue sur $\mathcal{C}([-1,1],\mathbb{R})$ et c'en est un sur E.

$$||e_1||^2 = 2$$
, donc on prend $f_1 = \frac{1}{\sqrt{2}}$.

 $e_2 - p_{\mathbb{IR}f_1}(e_2)$ est dans E et orthogonale à f_1 , avec $p_{\mathbb{IR}f_1}(e_2) = (f_1|e_2)f_1 = 0$ car d_1e_2 est impaire. De plus, $||e_2||^2 = 2\int_0^1 x^2 dx = \frac{2}{3}$, donc on prend $f_2(x) = \sqrt{\frac{3}{2}}x$.

 $e_3 - p_{\text{vect}(f_1, f_2)}(e_3)$ est dans E et orthogonale à f_1 et f_3 , avec $p_{\text{vect}(f_1, f_2)}(e_3) = (f_1|e_3)f_1 + (f_2|e_3)f_2$. $(f_3|e_2) = 0$ car f_3e_2 est impaire. $(f_1|e_3) = \sqrt{2} \int_0^1 x dx = \frac{\sqrt{2}}{2}$. Enfin, $||x| - \frac{1}{2}||^2 = 2 \int_0^1 (x - \frac{1}{2})^2 dx = \frac{1}{6}$, donc $f_3(x) = \sqrt{6}(|x| - \frac{1}{2})$.

Projecteurs orthogonaux

13. * On se place dans l'espace vectoriel euclidien \mathbb{R}^3 . Soit $V_t = \text{vect}((1,1,1),(1,t,t^2))$, P_t la projection orthogonale sur V_t et M_t la matrice qui lui est canoniquement associée.

- a) Que dire de $tr(M_t)$?
- b) Calculer M_t en distinguant deux cas.

a)
$$\operatorname{tr}(M_t) = \operatorname{rg}(P_t) = \dim(V_t)$$
.

$$\triangleright$$
 Si $t = 1, V_1 = \mathbb{R}(1, 1, 1) = \mathbb{R}e$ et $tr(M_t) = 1$.

$$\triangleright$$
 Si $t \neq 1$, $\operatorname{tr}(M_t) = 2$.

b)
$$\triangleright$$
 Si $t = 1$, $P_t(x) = \frac{(e|x)}{\|e\|^2} e = \frac{x_1 + x_2 + x_3}{3} (1, 1, 1)$ donc $M_t = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

ightharpoonup Si $t \neq 1$, $V_t^{\perp} = \mathbb{R}\varepsilon$ où ε est proportionnel à $(1,1,1) \wedge (1,t,t^2) = (t-1)(t,-(1+t),1)$. On peut prendre $\varepsilon = (t,-(1+t),1)$. On a $\|\varepsilon\|^2 = 2(1+t+t^2)$.

Alors,
$$P_t(x) = x - \frac{(\varepsilon|x)}{\|\varepsilon\|^2} \varepsilon$$
 avec $(\varepsilon|x) = tx_1 - (1+t)x_2 + x_3$ donc

$$M_{t} = I_{3} - \frac{1}{2(1+t+t^{2})} \begin{pmatrix} t^{2} & -(t^{2}+t) & t \\ -(t^{2}+t) & (1+t)^{2} & -(1+t) \\ t & -(1+t) & 1 \end{pmatrix}$$

$$= \frac{1}{2(1+t+t^{2})} \begin{pmatrix} 2+2t+t^{2} & t^{2}+t & -t \\ t^{2}+t & 1+t^{2} & 1+t \\ -t & 1+t & 1+2t+2t^{2} \end{pmatrix}.$$

14. * Dans \mathbb{R}^4 euclidien canonique, soit $F\left\{\begin{array}{l} x_1+x_2+x_3+x_4=0\\ x_1+2x_2+3x_3+4x_4=0 \end{array}\right.$ Donner $\dim F$ et une base orthonormale de F, ainsi que $p_F(x)$ pour $x\in\mathbb{R}^4$.

F est le noyau de l'application linéaire

$$u: \mathbb{R}^4 \to \mathbb{R}^2, (x_1, x_2, x_3, x_4) \mapsto (x_1 + x_2 + x_3 + x_4, x_1 + 2x_2 + 3x_3 + 4x_4),$$

et, si C_i est la base canonique de \mathbb{R}^i , $\mathcal{M}_{\mathcal{C}_4\mathcal{C}_2}(u) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$, dont le rang est 2. Donc, dim F = 4 - 2 = 2. On a aussi $F \left\{ \begin{array}{l} x_2 = -2x_3 - 3x_4 \\ x_1 = x_3 + 2x_4 \end{array} \right.$. Donc, $\varepsilon_1 = (1, -2, 1, 0)$ et $\varepsilon_2 = (1, -2, 1, 0)$

(2, -3, 0, 1) forment une base de F. On prend donc $e_1 = \frac{1}{\sqrt{6}}(1, -2, 1, 0)$. Soit $e'_2 = \varepsilon_2 - (\varepsilon_2|e_1)e_1$. On a bien $(e_1|e_2') = 0$. Comme $(\varepsilon_2|e_1)e_1 = \frac{1}{6}(\varepsilon_2|\varepsilon_1)\varepsilon_1 = \frac{4}{3}\varepsilon_1$, on a $e_2' = (\frac{2}{3}, -\frac{1}{3}, -\frac{4}{3}, 1)$, donc $e_2 = \frac{1}{\sqrt{30}}(2, -1, -4, 3)$. Dès lors, $p_F(x) = (e_1|x)e_1 + (e_2|x)e_2 = \frac{1}{6}(\varepsilon_1|x)\varepsilon_1 + \frac{1}{30}(e_2'|x)e_2'$.

$$p_F(x) = \frac{1}{6}(x_1 - 2x_2 + x_3)\varepsilon_1 + \frac{1}{30}(2x_1 - x_2 - 4x_3 + 3x_4)e_2'$$

Finalement, $p_F(x) = (\frac{1}{30}(9x_1 - 12x_2 - 3x_3 + 6x_4, -12x_1 + 21x_2 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 + 21x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 - 3x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 - 3x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 - 3x_3 - 6x_3 - 3x_4, -3x_1 - 6x_2 - 3x_3 - 3x_4 - 3x_1 - 3x_1 - 3x_2 - 3x_2 - 3x_2 - 3x_3 - 3x_2 - 3x_3 - 3x_3 - 3x_2 - 3x_3 - 3x_$ $12x_4, 6x_1 - 3x_2 - 12x_3 + 9x_4$).

On peut aussi calculer $p_F(x)$ sans passer par la base orthonormale. On utilise :

Ici, on pose $p_F(x) = \lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2$, et on traduit que $(\varepsilon_i | x - p_F(x)) = 0$, soit $(\varepsilon_i | p_F(x)) = (\varepsilon_i | x)$, en utilisant $\|\varepsilon_1\|^2 = 6$, $\|\varepsilon_2\|^2 = 14$ et $(\varepsilon_1|\varepsilon_2) = 8$. Donc $\begin{cases} (\varepsilon_1|x) = x_1 - 2x_2 + x_3 = 6\lambda_1 + 8\lambda_2 \\ (\varepsilon_2|x) = 2x_1 - 3x_2 + x_4 = 8\lambda_1 + 14\lambda_2 \end{cases}$, $soit \begin{cases}
20\lambda_1 = -2x_1 - 4x_2 + 14x_3 - 8x_4 \\
20\lambda_2 = 4x_1 - 2x_2 + -8x_3 + 6x_4
\end{cases}$. Puis $20p_F(x) = 20\lambda_1\varepsilon_1 + 20\lambda_2\varepsilon_2$ redonne le résultat.

* Trouver la matrice canoniquement associée au projecteur orthogonal de \mathbb{R}^3 sur le plan engendré par les vecteurs (2,1,0) et (1,0,-1).

 $e_1 = (2,1,0)$ et $e_2 = (1,0,-1)$ sont bien indépendants mais pas orthogonaux. Soit $D = P^{\perp}$. $p_D(x) = (\varepsilon | x)\varepsilon$ quand $D = \mathbb{R}\varepsilon$ avec ε unitaire et $p_D + p_P = \mathrm{id}_{\mathbb{R}^3}$.

$$e_1 \wedge e_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$
. Si $\varepsilon = \frac{1}{\sqrt{6}}(-1, 2, -1)$ et $x = (x_1, x_2, x_3)$,

$$p_P(x) = x - (\varepsilon | x)\varepsilon = x + \frac{1}{6}(x_1 - 2x_2 + x_3)(-1, 2, -1).$$

La "matrice" est celle qui est canoniquement associée à p_P , donc

$$M = I_3 + \frac{1}{6} \begin{pmatrix} -1 & 2 & -1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}.$$

Problèmes de distance

16. * Soit $F = \{P \in \mathbb{R}_3[X]/P(0) = P'(0) = 0\}$. Trouver $\inf_{P \in F} \int_0^1 [2 + 3t - P(t)]^2 dt$ et $\inf_{P \in F} \int_0^1 [2 + 3t - P(t)]^2 dt$ $3t - P(t)]^2 dt$.

La formule de Taylor conduit à $F = \text{vect}(X^2, X^3)$ et on cherche d(2+3X, F) pour (P|Q) = $\int_{[0,1]} PQ \text{ puis } < P|Q> = \int_{[-1,1]} PQ. \text{ C'est } ||2+3X-p_F(2+3X)||.$ • Si $(P|Q) = \int_{[0,1]} PQ$, posons $p_F(2+3X) = aX^2 + bX^3$. On a donc le système

• Si
$$(P|Q) = \int_{[0,1]} PQ$$
, posons $p_F(2+3X) = aX^2 + bX^3$. On a donc le système

$$\begin{cases} (2+3X-aX^2-b^3|X^2) = 0 = \frac{17}{12} - \frac{a}{5} - \frac{b}{6} \\ (2+3X-aX^2-b^3|X^3) = \frac{11}{10} - \frac{a}{6} - \frac{b}{7} \end{cases}.$$

On obtient $p_F(2+3X) = 24X^2 - \frac{203}{10}X^3$. Puis,

$$d(2+3X,F)^2 = (2+3X|2+3X-p_F(2+3X)) = \frac{133}{100}.$$

• Si $< P|Q> = \int_{[-1,1]} PQ$, la famille (X^2, X^3) est orthogonale, donc

$$p_F(2+3X) = \frac{(2+3X|X^2)}{\|X^2\|^2}X^2 + \frac{(2+3X|X^3)}{\|X^3\|^2}X^3 = \frac{10}{3}X^2 + \frac{21}{5}X^3.$$

Puis, $d(2+3X, F)^2 = (2+3X|2+3X-p_F(2+3X)) = \frac{1016}{225}$.

17. ** Soit $E = \mathcal{M}_2(\mathbb{R})$, muni de $(A|B) = \operatorname{tr}({}^t\!AB)$. Pour $A \in E$, trouver d(A,F) dans les deux cas suivants :

- a) $F = \mathbb{R}I_2$.
- b) $F = S_2(\mathbb{R})$, sous-espace vectoriel des matrices symétriques.
- $F = \mathbb{R}I_n$ est une droite vectorielle, avec $p_F(A) = \frac{(I_n|A)}{\|I_n\|^2}I_n = \frac{\operatorname{tr}(A)}{n}I_n$. Donc, $d(A, F) = \sqrt{(A|A p_F(A))} = \sqrt{\operatorname{tr}(t^*AA) \frac{\operatorname{tr}(A)^2}{n}}$.
- $A = \frac{1}{2}(A + {}^t A) + \frac{1}{2}(A {}^t A)$ conduit à $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$, de manière orthogonale par rapport au produit scalaire $(A|B) = \operatorname{tr}({}^t AB)$. D'où $d(A, S_n(\mathbb{R})) = \|A p_{\mathcal{S}_n(\mathbb{R})}(A)\|$ avec $p_{\mathcal{S}_n(\mathbb{R})}(A) = \frac{1}{2}(A + {}^t A)$. Finalement $d(A, S_n(\mathbb{R})) = \frac{1}{2}\|A {}^t A\| = \frac{1}{\sqrt{2}}\sqrt{\operatorname{tr}(A^2) \operatorname{tr}({}^t AA)}$.

18. * Trouver
$$\inf_{(a,b)\in\mathbb{C}^2} \int_0^1 |x^2 + ax + b|^2 dx$$
.

On demande en fait la distance de la fonction $e_2: x \mapsto x^2$ au sous-espace vectoriel F de $\mathcal{C}([0,1])$ engendré par $e_1: x \mapsto x$ et $e_0: x \mapsto 1$. On veut donc $d^2 = \|e_2 - p_F(e_2)\|^2$, et on a $p_F = ce_1 + de_2$ avec aussi $e_2 - ce_1 - de_2$ orthogonal à F donc à e_1 et e_0 . Or,

$$\int_0^1 (x^2 - cx - d)dx = \frac{1}{3} - \frac{c}{2} - d, \int_0^1 (x^3 - cx^2 - dx)dx = \frac{1}{4} - \frac{c}{3} - \frac{d}{2}.$$

Ces deux quantités sont nulles, donc c = 1 et $b = -\frac{1}{6}$. Alors,

$$d^2 = \int_0^1 \left(x^2 - x + \frac{1}{6} \right)^2 dx = \frac{1}{180}.$$

19. * Trouver
$$m = \min_{(a,b) \in \mathbb{R}^2} \int_0^{\pi} [\sin(t) - at^2 - bt]^2 dt$$
.

Munissons $E = \mathcal{C}([0,\pi],\mathbb{R})$ de $(f|g) = \int_{[0,\pi]} fg$. Posons $e_k(t) = t^k$ pour k = 1,2 et $f(t) = \sin(t)$. On doit trouver $d(f,F) = \operatorname{vect}(e_1,e_2)^2$, et c'est $||p_{F^{\perp}}(f)||^2$. Posons $P = p_{F^{\perp}}(f)$. On

a $P(t) = at^2 + bt$, et a et b sont caractérisés par $(e_1 - P|e_1) = (e_2 - P|e_2) = 0$, soit par $(e_k|P) = ||e_k||^2$.

$$\bullet \|e_k\|^2 = \frac{\pi^{2k+1}}{2k+1}.$$

•
$$\int_0^{\pi} t^k \sin(t) dt = [-t^k \cos(t)]_0^{\pi} + k \int_0^{\pi} t^{k-1} \cos(t) dt$$
, donc $(e_1|f) = \pi$ et

$$(e_2|f) = \pi^2 + 2\left([t\sin(t)]_0^{\pi} - \int_0^{\pi} \sin(t)dt\right) = \pi^2 - 4.$$

On est donc confronté au système $\left\{ \begin{array}{l} \frac{a\pi^4}{4} + \frac{b\pi^3}{3} = \pi \\ \frac{a\pi^5}{5} + \frac{b\pi^4}{4} = \pi^2 - 4 \end{array} \right. , \text{ qui donne}$

$$a\pi^{5}(\frac{1}{16} - \frac{1}{15}) = \frac{\pi^{2}}{4} - \frac{1}{3}(\pi^{2} - 4) = \frac{4}{3} - \frac{\pi^{2}}{12},$$

soit $a = \frac{320}{\pi^5} - \frac{20}{\pi^3}$, puis

$$-b\pi^4(\frac{1}{16} - \frac{1}{15}) = \frac{\pi^2}{5} - \frac{1}{4}(\pi^2 - 4) = 1 - \frac{\pi^2}{20},$$

soit $b = -\frac{12}{\pi^2} + \frac{240}{\pi^4}$. Ensuite, m = (f - P|f - P) = (f - P|f). Mais, $(f|f) = \int_0^{\pi} \sin^2 t dt = \int_0^{\pi} \frac{1 - \cos(2t)}{2} dt = \frac{\pi}{2}$, et

$$(f|P) = a(\pi^2 - 4) + b\pi = -(\frac{320}{\pi^5} - \frac{20}{\pi^3})(\pi^2 - 4) - \frac{12}{\pi} + \frac{240}{\pi^3} = \frac{8}{\pi} + \frac{160}{\pi^3} - \frac{1280}{\pi^5},$$

et $m = \frac{\pi}{2} - \frac{8}{\pi} - \frac{160}{\pi^3} + \frac{1280}{\pi^5}$.

20. * Trouver
$$\min_{(a,b) \in \mathbb{R}^2} \int_0^1 [t \ln t - at - b]^2 dt$$
.

L'application $f: t \mapsto t \ln t$ peut être considérée comme étant continue de [0,1] dans \mathbbm{R} si on pose f(0)=0. On munit $\mathcal{C}([0,1],\mathbbm{R})$ du produit scalaire $\int_{[0,1]} fg$. On doit donc chercher la distance (au carré) de f à $F=\mathrm{vect}(e_0,e_1)$ où $e_k(t)=t^k$. C'est $\|f-p_F(f)\|^2=m$.

Posons $g = p_F(f) = ae_0 + be_1$. On a donc $(f - g|e_0) = (f - g|e_1) = 0$ donc $(f|e_k) = (g|e_k)$. Déjà, par parties, $I_k = \int_0^1 t^k \ln t \ dt = \left[\frac{t^{k+1}}{k+1} \ln t\right]_0^1 - \frac{1}{k+1} \int_0^1 t^k \ t = -\frac{1}{(k+1)^2}$. Donc $(f|e_0) = -\frac{1}{4}$ et $(f|e_1) = -\frac{1}{9}$. On a aussi $(g|e_0) = a + \frac{b}{2}$ et $(g|e_1) = \frac{a}{2} + \frac{b}{3}$. D'où $\frac{a}{2} + \frac{b}{4} = -\frac{1}{8}$ soit $\frac{b}{12} = \frac{1}{72}$ et $b = \frac{1}{6}$ puis $a = -\frac{1}{3}$.

Pour finir, $m = (f - g|f - g) = (f - g|f) = ||f||^2 - (g|f)$. En intégrant deux fois par parties,

$$\int_0^1 t^2 \ln^2 t \ dt = \left[\frac{t^3}{3} \ln^2 t\right]_0^1 - \frac{2}{3} \int_0^1 t^2 \ln t \ dt = -\frac{2}{3} I_2 = \frac{2}{27}.$$

On a
$$(g|f) = aI_1 + bI_2 = -\frac{a}{4} - \frac{b}{9} = \frac{7}{108}$$
 donc $m = \frac{1}{108}$.

Inégalités

21. * Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\operatorname{tr}({}^t A A) \geq 0$ et $|\operatorname{tr} A| \leq \sqrt{n \operatorname{tr}^t A A}$. Cas d'égalité ?

Si
$$A = (a_{ij})$$
, $\operatorname{tr}^t A A = \sum_{i,j} a_{ij}^2 \ge 0$. $|\operatorname{tr} A|^2 = (\sum_{i=1}^n 1 \times a_{ii})^2 \le n \times \sum_{i=1}^n a_{ii}^2$ par Cauchy-Schwarz.

Or
$$\sum_{i=1}^{n} a_{ii}^2 \le \sum_{i,j} a_{ij}^2$$
 et $|\operatorname{tr} A|^2 \le n\operatorname{tr}({}^t AA)$.

S'il y a égalité, on a d'abord $a_{ij}=0$ si $i\neq j$, puis, par Cauchy-Schwarz, $(a_{11},\cdots,a_{nn})=\lambda(1,\cdots,1)$, i.e. $A=\lambda I_n$ qui, réciproquement, réalise bien l'égalité.

22. ** Pour
$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$$
, on pose $||A||_2 = \sum_{i,j} |a_{ij}|^2$.

- a) Montrer que, pour $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$, $||AB||_2 \le ||A||_2 ||B||_2$.
- b) Trouver les matrices pour lesquelles $||AB||_2 = ||A||_2 ||B||_2$.
- a) On note $A = (a_{ij})$ et $B = (b_{ij})$, ainsi que $C = AB = (c_{ij})$, donc $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. Alors, en utilisant l'inégalité de Cauchy-Schwarz,

$$|c_{ij}|^2 \le \left[\sum_{k=1}^n |a_{ik}| |b_{kj}|\right]^2 \le \sum_{k=1}^n |a_{ik}|^2 \sum_{k=1}^n |b_{ik}|^2.$$

C'est bien, en sommant toutes ces inégalités sur i et j, que $||AB||_2 \le ||A||_2 ||B||_2$.

- b) On a sommé des inégalités portant sur des nombres positifs, donc elles deviennent toutes des égalités. Cela donne les vecteurs $L_i = (a_{i1}, \ldots, a_{in})$ et $C_j = (b_{1j}, \ldots, b_{nj})$ linéairement dépendants pour tout (i, j). Alors:
 - Si A ou B est nulle, il y a égalité.
- Sinon, il existe $L_{i_0} \neq 0$, et $C_j = \lambda_j L_{i_0}$, donc, le rang de B est 1, et son image est engendrée par L_{i_0} , et il existe $C_{j_0} \neq 0$, donc $L_i = \mu_i C_{j_0}$, et le rang de tA (donc, celui de A) vaut 1, son image étant engendrée par C_{j_0} . Mais, C_{j_0} et L_{i_0} sont liés, donc les deux images sont communes.

Réciproquement, si im $^t A = \text{im} B = D = \mathbb{C}\epsilon$ (droite vectorielle), les vecteurs L_i et C_j sont colinéaires à ϵ , dont linéairement dépendants, et on a bien l'égalité.

- **23.** ** a) Soit $a \in \mathbb{R}$. Justifier l'existence d'un unique $P_a \in \mathbb{R}_3[X]$ tel que $P(a) = \int_{-1}^1 P(t)P_a(t) dt$ pour tout $P \in \mathbb{R}_3[X]$ et calculer P_a .
 - b) Soit $P \in \mathbb{R}_3[X]$ tel que $\int_{-1}^1 P(t)^2 dt = 1$. Montrer que $\sup_{x \in [-1,1]} |P(x)| \le 2\sqrt{2}$.
- a) $E = \mathbb{R}_3[X]$ est euclidien avec $(P|Q) = \int_{[-1,1]} PQ$. $P \mapsto P(a)$ est une forme linéaire sur E donc s'écrit de manière unique sous la forme $P \mapsto (P_a|P)$.

On écrit que $P(a)=(P_a|P)$ pour $P=1,X,X,X^2$ en posant $P_a=A+BX+CX^2+DX^3,$ $1=2A+\frac{2}{7}C$

On écrit que $P(a)=(P_a|P)$ pour $P=1,X,X,X^2$ en posant $F_a=A+2...$ d'où (un exposant impair donne une intégrale nulle) : $\begin{cases} 1=2A+\frac{2}{3}C\\ a^2=\frac{2}{3}A+\frac{2}{5}C\\ a=\frac{2}{3}B+\frac{2}{5}D\\ a^3=\frac{2}{5}C+\frac{2}{5}D \end{cases}$ et on obtient $a=\frac{2}{3}B+\frac{2}{5}D$

$$P_a = \frac{1}{8}[(-15a^2 + 9) + (75a - 105a^3)X + (45a^2 - 15)X^2 + (175a^3 - 105a)X^3].$$

b) D'après l'inégalité de Cauchy-Schwarz, $P(a)^2 \leq \|P_a\|^2 \|P\|^2 = \|P_a\|^2$ si $\|P\|^2 = 1$. Or, $||P_a||^2 = P(a)^2$, donc

$$||P_a||^2 = \frac{1}{8}[(-15a^2 + 9) + (75a - 105a^3)a + (45a^2 - 15)a^2 + (175a^3 - 105a)a^3]$$

= $\frac{1}{8}[9 + 45a^2 - 165a^4 + 175a^6] = \frac{1}{8}Q(a^2),$

avec $Q'(b) = 45 - 330b + 525b^2 = 15(5b - 1)(7b - 3)$. Si on limite b à [0, 1] (soit a à [-1, 1]), on a Q croissante sur [0, 1/5], décroissante sur [1/5, 3/7] puis croissante sur [3/7, 1]. Or, Q(0) > 0, Q(3/7) = 576/49 > 0 donc le maximum de |Q| est atteint en 1 et vaut 64, donc $||P_a||^2 \le 8$ pour tout $a \in [-1, 1]$, soit $|P(a)|^2 \le 8$ d'où l'inégalité.