

COURSE DESCRIPTION FORM

INSTITUTION National University of Computers and Emerging Sciences

BS Computer Science

PROGRAM (S) TO BE

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	CL1002
Course Title	Programming Fundamentals Lab
Credit Hours	1
Prerequisites by Course(s) and Topics	None
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Lab Tasks:20 (Best 10: 2 each) Mid: 20 Project: 10 Final: 50
Course Coordinator	Basit Ali
URL (if any)	
Current Catalog Description	
Textbook (or Laboratory Manual for Laboratory Courses)	Name: C How to Program with an Introduction to C Global Edition - 7th Edition Authors: Paul Deitel, Harvey Deitel Publisher: Pearson Name: Problem Solving and Program Design in C - 7th Edition Authors: Maureen Sprankle, Jim Hubbard Publisher: Prentice Hall
Reference Material	Name: Working with C / Let us C

Author(s): YashwantKanetkar Publisher: BPB Publications

Name: Waite Group's Turbo C - Programming for the PC

<u>Authors:</u> Robert Lafore

<u>Publisher:</u> SAMS

Course Goals

A. Course Learning Outcomes (CLOs)	Level
CLO 1: Describe fundamental concepts of structured and procedural programming, use pseudo-codes and simple programs to understand control structures, iterative structures and functions using C language.	C3, PLO1
CLO 2: Examine code writing, compiling, debugging and program execution.	C3, PLO5
CLO 3: Justify problem solving techniques and analytical thinking by identifying the concepts and properties of algorithms.	C5, PLO2
CLO 4: Design basic problems of the real world through small/medium size programs given as course projects.	C6, PLO5

B. Progr	am learning outcor	mes (PLO)	
PLO 1	Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.	?
PLO 2	Problem Analysis	Identify, formulate, research literature, and analyse complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.	?
PLO 3	Design/Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	
PLO 4	Investigation& Experimentatio n	Conduct investigation of complex computing problems using research-based knowledge and research-based methods	
PLO 5	Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including	[3

		prediction and modelling for complex computing problems.	
PLO 6	Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.	
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems	
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.	
PLO 9	Individual and Teamwork	Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.	
PLO 10	Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
PLO 11	Project Mgmt. and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
PLO 12	Life Long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

C. Relation between CLOs and PLOs													
(CLO:	(CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)												
PLOs													
		1	2	3	4	5	6	7	8	9	10	11	12
	1	?											
CL	2					?							
Os	3		?										
	4					?							

Topics Covered in the Course, with Number of Lectures on Each

Week	Topics	CLO	Assessme
			nt

Tonio (assumo 16	14/2 al. 4	Introduction to Businessias Fundamentals	1 - b 01	
Topic (assume 16-week instruction and	Week 1	Introduction to Programming Fundamentals,	Lab 01	
three-hour lectures)		Introduction to problem solving (Real-World		
tinee flour lectures)		Examples), PAC charts, IPO Charts, FlowCharts,		
		Pseudocode writing. (Attempt charts on either		
		paper or utility (diagrams.net) for creation)		
	Week 2	Daily life real world problems	Lab 02	Announce
		2. Flowchart in depth & Extended flowchart &		Project
		Algorithms		(Week 3)
		3. Working examples		
		4. Introduction to GitHub(Login, signing)		
	Week 3	1. Problem solving with decisions, Basic Computer	Lab 03	
		Organization, Intro to IDE (compiled program,		
		text editors, debuggers, etc.), Library, Linking,		
		Compiling & Loading. Program structure and		
		Execution, First Program with Input and		
		Output, Constant, Variables, Keywords, Escape		
		sequence, Format Specifiers, Data types, Data		
		manipulation.		
		2. More on GitHub, Markdown language,		
		commits, branching, pull and merge requests		
	Week 4	Decision Structure (if, if- else, else if and Switch	Lab 04	
	Week 4	Statements)	Lab 04	
	Week 5	Nested if else, nested structures, Operators (Logical,	Lab 05	1
		Conditional, Bitwise, Modulus)		
Week 6		THEORY MID I Examination		
	Week 7	1. Basic loops: for, while and do-while	Lab 06	
		2. Referencing		
		3. Introduction to pointer (Just referencing)		
	Week 8	Loops with 1D arrays	Lab 07	
	Week 9	Lab Mid	Lab Mid	
	Week 10	Nested Loops with N-D arrays	Lab 08	
	Week 11	THEORY MID II Examination		
Week 12 1. Fu		Functions: Declaration, Definition and Calling,	Lab 09	
	AACCK 17	passing values to functions, Passing arrays to	Lab U3	
		functions		
		2. Standard library string functions		
		3. 2D array of characters		

	Week 13 1. 2. 3. Week 14 1. 2. Week 15 1. 2. Week 16	Constant & Static Introduction to Structures Nested Structure, Compos array Filing in C Single Pointer(including structure) 2D pointers with DMA	ition and Struct	MA Lab 12		
			-			
Laboratory Projects/Experime nts Done in the Course	There will be weekly labs starting from the first week. The following is a summary of the Lab exercises given to Students. Introduction to Problem solving statements. Introduction To Conditional Statement In C Control Structure (Repetition) GitHub Functions and Recursion. Arrays (1D, 2D, 3D) String sorting and searching algorithms. Pointers Dynamic memory allocation Structures Filing in C					
Programming Assignments Done in the Course	Assignment related to Functions, Arrays, Pointers, Structures, Dynamic Memory and File Processing will be done					
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social		
,	15%	50%	30%	5%		
Oral and Written Communications	pages and to m Include only ma	s required to submit at least take _1_ oral presentation aterial that is graded for gra- content, completeness, a	s of typically _ ammar, spellir	10_ minute's duration.	s well	

Instructor Name	
Instructor Signature	
Date _	