

AD 685 QUANTITATIVE METHODS FOR FINANC TERM PROJECT

Yuxuan Chen

U76697870

1. Data selection

For this project I selected The Coca-Cola Company (KO). It is an American multinational beverage corporation headquartered in Atlanta, Georgia. A quick search on Yahoo Finance shows its Market Cap (intraday) is USD 299.663 billion (retrieved 18 Jun 2025). According to the project instructions, KO falls under the "large-cap" category (market capitalization between \$100 billion and \$200 billion). Therefore, I have chosen to use the SPDR S&P 500 ETF (SPY) as the benchmark. In addition to the benchmark, I selected SPDR Gold Shares (GLD) as my second explanatory variable (denoted as X2). GLD is an exchange-traded fund (ETF) designed to track the price of gold bullion. As the Coca-Cola Company operates on a global scale and is subject to commodity and macroeconomic fluctuations, the inclusion of gold returns provides a relevant economic signal.

2. Calculate daily earnings and related statistics

Because most of the estimations will refer to returns rather than prices, I choose to use logarithmic return:

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right)$$

where P_{t-1} and P_t are the starting and ending prices.

Log-returns are additive and symmetric, closely approximate simple returns for small moves, and exhibit distributions closer to normality, making them ideal for multiperiod quantitative asset analysis. The price data for GLD and SPY are also converted to daily logarithmic yields to maintain consistency with the yield calculation method used by KO.

By using Python, I obtained a series of statistics for the stock returns (see Table 1).

Name	The Coca-Cola Company
Ticker	KO

Mean	0.000193
Median	0.000958
Sample standard deviation	0.015624
Minimum	-0.101728
Maximum	0.062783
Sample skewness	-0.841427
Sample kurtosis	6.966093
Starting date	2020/1/3
Final date	2022/12/30

Table 1 Stock Return Statistics

Figure 1: Daily Log Returns KO vs SPY

3. OLS regression and Newey-West estimator

3.1 Ordinary Least Squares Regression

Ordinary Least Squares (OLS) regression is a method for estimating the relationship between a dependent variable and one or more independent variables by minimizing the sum of squared residuals (differences between observed and predicted values).

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i$$

OLS finds the set of coefficients β_0 , β_1 , \cdots , β_k that minimize:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

3.2 Newey-West estimator

In time-series regressions, residuals often display heteroskedasticity and autocorrelation, violating classical OLS assumptions. This makes standard errors invalid, compromising inference.

The Newey–West estimator corrects this by adjusting the OLS covariance matrix to provide robust standard errors.

The general formula is:

$$\widehat{Var}_{NW}(\widehat{\hat{\beta}}) = (X'X)^{-1} \widehat{S}(X'X)^{-1}$$

where:

$$\hat{S} = \Gamma_0 + \sum_{h=1}^{q} w_h \left(\Gamma_h + \Gamma_h^T \right)$$

q: maximum lag order (e.g., Newey-West (1 lag) uses q = 1)

$$w_h = 1 - \frac{h}{a+1}$$
: Bartlett weights

 Γ_h : sample lag — hhh autocovariance of residuals

For the special case of Newey-West (1 lag):

$$\hat{S}_{laq=1} = \Gamma_0 + 0.5(\Gamma_1 + \Gamma_1^T)$$

Therefore, the robust covariance becomes:

$$\widehat{Var}_{NW(1)}(\widehat{\beta}) = (X'X)^{-1}[\Gamma_0 + 0.5(\Gamma_1 + {\Gamma_1}^T)](X'X)^{-1}$$

4. Regression Results

4.1 Separate data

First, I separated all the data into two periods:

- First 2 years. This data will be used to "teach" or establish our model.
- ♦ Last year. This data will be used to test our model and to "forecast".

The results are shown on the table below:

KO-train (2020-2021)					
Mean 0.000147					
Median	0.000751				
Std Dev	0.016984				
Min	-0.101728				
Max	0.062783				
Skewness	-0.81508				
Kurtosis	6.624366				

KO-test (2022)					
Mean 0.000286					
Median	0.001399				
Std Dev	0.012482				
Min	-0.072169				
Max	0.037942				
Skewness	-0.835994				
Kurtosis	4.678076				

Table 2 KO's two periods' statistics

Compared to 2020–2021, KO's log returns in 2022 showed slightly higher average returns, but lower volatility and fewer extreme movements. The return distribution remained slightly left-skewed, but became more stable and closer to normal, as indicated by lower kurtosis. Overall, KO returns in 2022 were calmer and less risky than in the prior two years.

SPY-train (2020-2021)					
Mean 0.000754					
Median	0.001648				
Std Dev 0.016144					
Min	-0.115887				
Max	0.086731				
Skewness	-1.061486				
Kurtosis	13.253851				

SPY-test (2022)						
Mean -0.000863						
Median	-0.001815					
Std Dev	0.015298					
Min	-0.044456					
Max	0.053497					
Skewness	-0.001245					
Kurtosis	0.33286					

Table 3 SPY's two periods' statistics

In 2022, SPY's average and median log returns turned negative, contrasting with the positive returns in 2020–2021. Volatility stayed at a similar level, but extreme movements became much less frequent, as seen from the sharp drop in kurtosis. The distribution also became more symmetric, with skewness moving closer to zero. Overall, SPY returns in 2022 were weaker but more stable.

GLD-train (2020-2021)						
Mean 0.000341						
Median	0.000926					
Std Dev	0.010643					
Min	-0.05519					
Max	0.04739					
Skewness	-0.614508					
Kurtosis	3.869966					

GLD-test (2022)					
Mean -0.000031					
Median	0.000388				
Std Dev	0.009619				
Min	-0.030162				
Max	0.030235				
Skewness	0.133872				
Kurtosis	0.629863				

Table 4 GLD's two periods' statistics

GLD's log returns in 2022 showed slightly lower volatility compared to 2020–2021.

The average return turned slightly negative, though the median remained positive, suggesting minimal directional change. Skewness shifted from left-skewed to mildly right-skewed, and kurtosis decreased notably, indicating fewer extreme price moves. Overall, GLD returns in 2022 were more balanced and less volatile than in the previous two years.

4.2 Stock returns & Intercept

Figure 2: KO vs Intercept (OLS)

```
Newey-West (lag = 1) ==
                           OLS Regression Results
Dep. Variable:
                                       R-squared:
                                                                         0.002
                                 OLS Adj. R-squared:
Model:
                                                                        -0.000
                     Least Squares F-statistic:
Method:
                  Thu, 19 Jun 2025 Prob (F-statisti
20:09:43 Log-Likelihood:
                                       Prob (F-statistic):
Date:
                                                                        0.454
                                                                        1339.8
Time:
No. Observations:
                                                                        -2676.
Df Residuals:
Df Model:
Covariance Type:
                                 HAC
                                                 P>|t|
                coef
                        std err
                                                            [0.025
                                                                        0.975]
           -2.3085 3.080 -0.750
3.129e-06 4.17e-06 0.750
                                                0.454
                                                           -8.359
                                                                         3.743
                                                 0.454
                                                         -5.07e-06
                                                                      1.13e-05
Omnibus:
                              112.389 Durbin-Watson:
Prob(Omnibus):
                               0.000 Jarque-Bera (JB):
                                                                       908.295
                                       Prob(JB):
Skew:
                               -0.718
                                                                     5.84e-198
Kurtosis:
                               9.418 Cond. No.
                                                                      2.59e+09
```

Figure 3: KO vs Intercept (Newey-West)

Whether using ordinary OLS or Newey-West, the p-values for Intercept are much greater than 0.05 (0.384 and 0.454) and are not significant.

4.3 Stock returns & Benchmark returns & Intercept

=== OLS === OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:	EKO_lo KO_lo Least Squ Thu, 19 Jun 19:3	OLS A ares F 2025 F 7:12 L 504 A	R-squared Adj. R-squ F-statist Prob (F-st Log-Likel: AIC: BIC:	uared: ic: tatistic):		0.571 0.571 669.3 2.05e-94 1552.9 -3102.	
Df Model: Covariance Type:	nonro	1 bust					
cc	ef stderr		t 1	P> t	[0.025	0.975]	
Intercept -0.00 SPY_logRet 0.79		-0.9 25.8 ======		0.362 0.000 =======	-0.001 0.735	0.001 0.856	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0 -0	.000 J	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.			1.873 551.441 1.80e-120 62.0	

Figure 4: KO vs SPY & Intercept (OLS)

=== Newey-West (lag = 1) ===								
OLS Regression Results								
==========					========			
Dep. Variable:		KO	_logRet	: R-sq	uared:		0.571	
Model:			OLS	Adj.	R-squared:		0.571	
Method:		Least	Squares	F-st	atistic:		250.8	
Date:	1	hu, 19 J	un 2025	Prob	(F-statistic)	:	4.15e-46	
Time:		1	9:37:12	Log-	Likelihood:		1552.9	
No. Observation	ıs:		504	AIC:			-3102.	
Df Residuals:			502	BIC:			-3093.	
Df Model:			1					
Covariance Type	::		HAC					
=========		:======	======			:======		
A. 7 Phys. 3 2 11 a 1 2 11	coef	std e	rr	t	P> t	[0.025	0.975]	
Intercept -	0.0005	0.0	 101	-0.880	0.379	-0.001	0.001	
SPY_logRet	0.7953	0.0	50	15.837	0.000	0.697	0.894	
Omnibus:			75.347	====== ' Durb	======== in-Watson:		1.873	
Prob(Omnibus):			0.000	Jarq	ue-Bera (JB):		551.441	
Skew:			-0.377	' Prob	(JB):		1.80e-120	
Kurtosis:			8.069	Cond	. No.		62.0	
=======================================		======	=====	======		=======	========	

Figure 5: KO vs SPY & Intercept (Newey-West)

In both the OLS and Newey-West regressions, the intercept terms are not statistically significant, with p-values of 0.362 and 0.379, respectively. In contrast, the SPY log return is highly significant in both models, with p-values well below the 0.05 threshold.

4.4 Stock returns & CRSP returns & Intercept

=== OLS === OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Thu	KO_logRet OLS Least Squares , 19 Jun 2025 19:37:12 504 502 1 nonrobust	Adj. R F-stat Prob (I Log-Li AIC:	F-statistic: Prob (F-statistic): Log-Likelihood: AIC:		0.518 0.517 538.7 1.67e-81 1523.1 -3042.		
	coef	std err	t	P> t	[0.025	0.975]		
Intercept CRSP_logRet	-0.0006 0.0074	0.001 0.000	-1.080 23.210	0.281 0.000	-0.002 0.007	0.000 0.008		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		93.962 0.000 -0.528 9.024	Jarque Prob(J			1.834 785.599 2.57e-171 1.67		

Figure 6: KO vs CRSP & Intercept (OLS)

=== Newey-West (lag = 1) === OLS Regression Results							
Dep. Variable:	-======	KO logRet R-squared:					
Model:		OLS	Adj. R	squared:		0.517	
Method:		Least Squares	F-stati	stic:		227.0	
Date:	Thu	, 19 Jun 2025	Prob (F	-statistic):		1.35e-42	
Time:		19:37:13	Log-Li	celihood:		1523.1	
No. Observation	ıs:	504	AIC:			-3042.	
Df Residuals:		502	BIC:			-3034.	
Df Model:		1					
Covariance Type	2:	HAC					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-0.0006	0.001	-1.033	0.302	-0.002	0.001	
CRSP_logRet	0.0074	0.000	15.067	0.000	0.006	0.008	
Omnibus:	=======	93 . 962	 Durbin	======= -Watson:	======	1.834	
Prob(Omnibus):		0.000	Jarque-	Bera (JB):		785.599	
Skew:		-0.528	Prob(JE	3):		2.57e-171	
Kurtosis:		9.024	Cond. I	lo.		1.67	
==========		=======				======	

Figure 7: KO vs CRSP & Intercept (Newey-West)

In both the OLS and Newey-West regressions, the intercept terms are not statistically significant, with p-values of 0.281 and 0.302, respectively. In contrast, the CRSP log return is highly significant in both models, with p-values far below the 0.05 threshold.

4.5 Stock returns & Benchmark returns & Gold returns & Intercept

=== OLS === OLS Regression Results						
Dep. Variable:		KO logRet	 R-squar	:======= :ed:		 0.572
Model:		OLS				
Method:		Least Squares	F-stati			
Date:	Thu	, 19 Jun 2025	Prob (F	Prob (F-statistic):		
Time:		19:37:13	Log-Lik	Log-Likelihood:		
No. Observation	ıs:	504	AIC:			-3100.
Df Residuals:		501	BIC:			-3087.
Df Model:		2				
Covariance Type	2:	nonrobust				
=========	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0005	0.000	-0 . 925	0.355	-0.001	0.001
SPY_logRet	0.7926	0.031	25.457	0.000	0.731	0.854
Gold_logRet	0.0267	0.047	0.566	0.571	-0.066	0.120
Omnibus:		 73 . 909	 -Durbin	 Watson:		1.874
Prob(Omnibus):		0.000	Jarque-	Bera (JB):		552.457
Skew:		-0.349	Prob(JE	3):		1.09e-120
Kurtosis:		8.081	Cond. N	lo.		96.0
=========		=======	=====			======

Figure 8: KO vs SPY & Gold & Intercept (OLS)

OLS Regression Results							
Dep. Variable:		KO_logRet	R-squar	ed:		0.572	
Model:		OLS	Adj. R-squared:			0.570	
Method:		Least Squares	F-stati	F-statistic:			
Date:	Thu	, 19 Jun 2025	Prob (F	Prob (F-statistic):			
Time:		19:37:14	Log-Lik	elihood:		1553.1	
No. Observatio	ons:	504	AIC:			-3100.	
Df Residuals:		501	BIC:			-3087.	
Df Model:		2					
Covariance Typ	e:	HAC					
	coef	std err	t 	P> t	[0.025	0.975]	
Intercept	-0.0005	0.001	-0.885	0.376	-0.001	0.001	
SPY_logRet	0.7926	0.052	15.201	0.000	0.690	0.895	
Gold_logRet	0.0267	0.080	0.335	0.738	-0.130	0.184	
Omnibus:		73 . 909	 -Durbin	======= Watson:		1.874	
Prob(Omnibus):		0.000	Jarque-	Bera (JB):		552.457	
Skew:		-0.349				1.09e-120	
Kurtosis:		8.081	Cond. N	0.		96.0	

Figure 9: KO vs SPY & Gold & Intercept (Newey-West)

In both the OLS and Newey-West regressions, the intercept terms are not statistically significant, with p-values of 0.355 and 0.376, respectively. The SPY log return remains highly significant across both models, with p-values well below 0.05, confirming its strong predictive power for KO's returns. However, the Gold log return is not statistically significant in either model (p-values of 0.571 and 0.738), suggesting that gold returns do not provide meaningful additional explanatory power for KO's daily return.

4.6 Stock returns & CRSP returns & Gold returns & Intercept

=== OLS === OLS Regression Results						
Dep. Variable:		KO logRet	 R-squared:			0.518
Model:		OLS				0.516
Method:		Least Squares	F-stati	stic:		269.1
Date:	te: Thu, 19 Jun 2025		Prob (F	Prob (F-statistic):		
Time:		19:37:14	Log-Lik	Log-Likelihood:		
No. Observation	ıs:	504	AIC:			-3040.
Df Residuals:		501	BIC:			-3028.
Df Model:		2				
Covariance Type	:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0006	0.001	-1 .0 91	0.276	-0.002	0.000
CRSP_logRet	0.0073	0.000	22.799	0.000	0.007	0.008
Gold_logRet	0.0253	0.050	0.505	0.614	-0.073	0.124
Omnibus:	======	92.115	 -Durbin	Watson:	======	1.835
Prob(Omnibus):		0.000	Jarque-	Bera (JB):		784.589
Skew:		-0.502	Prob(JE	3):		4.25e-171
Kurtosis:		9.029	Cond. N	lo.		158.
=========	=======	========	=======			

Figure 10: KO vs CRSP & Gold & Intercept (OLS)

=== Newey-West (lag = 1) ===								
OLS Regression Results								
Dep. Variable:		KO_logRet	R-squar	ed:		0.518		
Model:		0LS	Adj. R-	squared:		0.516		
Method:	ı	_east Squares	F-stati	stic:		117.7		
Date:	e: Thu, 19 Jun 2025			-statistic):		1.28e-42		
Time:		19:37:15	Log-Lik	elihood:		1523.2		
No. Observatio	ns:	504	AIC:			-3040.		
Df Residuals:		501	BIC:			-3028.		
Df Model:		2						
Covariance Typ	e:	HAC						
	coef	std err	t 	P> t	[0.025	0.975]		
Intercept	-0.0006	0.001	-1.034	0.302	-0.002	0.003		
CRSP_logRet	0.0073	0.001	14.432	0.000	0.006	0.008		
Gold_logRet	0.0253	0.086	0.296	0.768	-0.143	0.194		
Omnibus:		92.115	 -Durbin	Watson:		1.835		
Prob(Omnibus):		0.000	Jarque-	Bera (JB):		784.589		
Skew:		-0.502	Prob(JE	;):		4.25e-171		
Kurtosis:		9.029	Cond. N	lo.		158.		
=======================================						======		

Figure 11: KO vs CRSP & Gold & Intercept (Newey-West)

In both the OLS and Newey-West regressions, the intercept terms are not statistically significant, with p-values of 0.276 and 0.302, respectively. The CRSP log return is highly significant in both models (p-values < 0.001), confirming its strong explanatory power for KO's daily returns. However, the Gold log return is not statistically significant (p = 0.614 in OLS, and 0.768 in Newey-West), indicating that gold returns do not significantly contribute to explaining KO's return variation.

In summary, no variable changes its significance status when comparing OLS and Newey-West t-statistics.

5. Results Analysis

Regression of KO vs SPY, GLD and CRSP								
Sample: Jan 01, 2020 - Jan 01, 2025								
	1	2	3	4				
Intercept	-0.0005	-0.0006	-0.0005	-0.0006				
(OLS s.e.)	0.0000	0.0010	0.0000	0.0010				
(NW s.e.)	0.0010	0.0010	0.0010	0.0010				
S&P500	0.7953	-	0.7926	-				
(OLS s.e.)	0.0310	-	0.0310	-				
(NW s.e.)	0.0500	-	0.0520	-				
CRSP	-	0.0074	-	0.0073				
(OLS s.e.)	-	0.0000	-	0.0000				
(NW s.e.)	-	0.0000	-	0.0010				
X_2	-	-	0.0267	0.0253				
(OLS s.e.)	-	-	0.0470	0.0500				
(NW s.e.)	-	=	0.0800	0.0860				
R ² Adjusted	0.571	0.517	0.57	0.516				
s.e. Reg	0.01113	0.01181	0.01114	0.01182				
NOBS	504	504	504	504				

Table 5 4 Estimated Regressions

In this project, I compare two alternative specifications for modeling the daily log returns of The Coca-Cola Company (KO): Model (1), which uses the SPDR S&P 500 ETF (SPY) as the market proxy, and Model (2), which uses CRSP. Although both market return variables are highly statistically significant (p-values < 0.001), I find that Model (1) offers stronger explanatory power with an R-squared of 0.571, compared to 0.517 in Model (2). This suggests that SPY better captures market-related movements in KO returns over the sample period. While I do not observe strong evidence of omitted variable bias in either model, I acknowledge that other macroeconomic factors, such as gold prices or interest rates, could influence KO's

returns. To address this possibility, I estimate additional models that include gold returns as an explanatory variable.

In Models (3) and (4), I incorporate gold returns alongside SPY and CRSP, respectively. In both models, the market return variables remain statistically significant, while the gold return is not (p-values well above 0.05). Model (3) yields the highest R-squared (0.572), which confirms that SPY is a more effective market benchmark in this setting. Based on these results, I select **Model (3)** as the preferred specification for explaining KO's return behavior over the sample period, due to its stronger explanatory power and robustness.