Tuesday 26th June 2018 (2 hours)

ADVANCED STATISTICAL INFERENCE

Answer all questions.

This examination paper includes three questions and is worth a total of 80 marks.

1.		Probabilistic Reasoning (total of [20] points)
	(a)	Consider three random variables A , B , and C . How many ways are there to express the joint distribution as a function of the marginals/conditionals?
		[5]
	(b)	Write Bayes theorem to derive $p(A B,C)$ from $p(B A,C)$. How does this simplify if A does not depend on C ?
		[5]
	(c)	How can you obtain $p(A)$ from $p(A,B,C)$?
	(0)	p(1) from p(1), p(2). [5]
	(L)	
	(a)	Focus on <i>A</i> and <i>B</i> only, and imagine that these are binary variables and that you can obtain as many samples as you want from any of their joint/conditional/marginal distributions. How would you test whether <i>A</i> and <i>B</i> are independent?
		[5]
•		
2.		Bayesian Linear Regression and Gaussian Processes (total of [35] points)
	(a)	What is Linear Regression and why is it called "Linear"?
		[5]
	(b)	Explain how to treat Linear Regression in a Bayesian way.
		[5]
	(c)	Explain how to use Linear Regression for the estimation of nonlinear functions.
	(-)	[5]
	(4)	In Bayesian Linear Regression we usually assume that the labels are corrupted by noise.
	(u)	How would you reformulate Bayesian Linear Regression when assuming that the input too is affected by noise?
		[5]
	(e)	What is the computational complexity (space and time) of Bayesian Linear Regression
	(6)	with respect to number of observations N and dimensionality of the features D
		[5]
	(f)	Denote the $N \times D$ input matrix by X . Interpreting Gaussian Processes as Bayesian Linear
	(1)	Regression, what is the "equivalent" kernel of such Gaussian Processes?
		[5]
	(g)	What is the computational complexity (space and time) of Gaussian Processes?
	\ 5 /	[5]

3. Supervised learning (total of [25] points)

(a) How would you go about extending the Naïve Bayes classifier to regression?

[10]

(b) What is a kernel function in Machine Learning? Why is it useful?

[5]

(c) Imagine a supervised learning problem where you apply a probabilistic model based on kernels. How would you optimize kernel parameters in the two cases where the kernel is parameterized by (i) one parameter or (ii) one-hundred parameters?

[5]

(d) Describe an example of a probabilistic model where we need to resort to approximate inference.

[5]