SEQUENCE LISTING

<110>	Novozymes Bioto Connelly, Mari Brody, Howard												
<120>	Methods For Pro			stances In 1	Enzyme-Defic	cient							
<130>	10345.200-US												
<160>	30												
<170>	PatentIn versi	on 3.2											
<210><211><212><212><213>	1 1517 DNA Aspergillus niger												
<400>	1 aaaa atacgagctc	caatgaacct	gggtgtggca	acttcaatgg	aaaggaactg	6							
	cagg tgtggctgaa			•		12							
	gcg tggagggtcg					18							
	gttc acctcatata				_	24							
	gatc taccaattag					30							
	tca teceegeatt					36							
	tgc ccgtgccagc					42							
	ccaa gaagaccaat				•	48							
	tgc tgaccgtagg				•	54							
attaac	ggtg ataccggact	gaggtctcgg	tccctacatc	gccgtgatca	aaacccacat	60							
cgatato	ctc tctgacttca	gcgacgagac	cattgagggc	ctcaaggctc	ttgcgcagaa	66							
gcacaad	ttc ctcatcttcg	aggaccgcaa	attcatcgac	attggcaaca	ctgtccagaa	72							
gcaata	cac cgtggtaccc	tccgcatctc	agaatgggcc	catatcatca	actgcagcat	78							
cctgcct	ggc gagggtatcg	tcgaggctct	cgctcagacg	gcgtctgcac	cggacttctc	84							
ctacggo	ccc gaacgtggtc	tgttgatctt	ggcggaaatg	acctctaagg	gttccttggc	90							
caccggo	cag tacactactt	cttcggttga	ttatgcccgg	aaatacaaga	acttcgtcat	96							
gggattt	gtg togaccogct	cattagataa	ggtgcagtcg	gaagtcaget	ctccttccc	102							

1080

tgaggaggac tttgtggtct tcacgactgg tgtgaacatt tcgtccaagg gagataagct

cggtcagcag taccagactc ccgcatcggc tatcggtcgg ggtgctgact tcattatcgc 1140 gggtcgcggt atctacgccg cgccggaccc ggtgcaggct gcgcaacagt accagaagga 1200 aggttgggag gcgtacctgg cccgtgtcgg cggaaactaa tactataaaa tgaggaaaaa 1260 agttttgatg gttatgaatg atatagaaat gcaacttgcc gctacgatac gcatacaaac 1320 taatgtcgag cacgggtagt cagactgcgg catcggatgt caaaacqgta ttqatcctqc 1380 aggctattat agggtggcac gggattaatg cggtacgacg atttgatgca gataagcagg 1440 ctgcgaagta cttagtcctg taactcttgc gtagagcaaa tggcgacggg tggctgataa 1500 gggacggtga taagctt 1517

<210> 2

<211> 277

<212> PRT

<213> Aspergillus niger

<400> 2

Met Ser Ser Lys Ser Gln Leu Thr Tyr Thr Ala Arg Ala Ser Lys His 1 5 10 15

Pro Asn Ala Leu Ala Lys Arg Leu Phe Glu Ile Ala Glu Ala Lys Lys 20 25 30

Thr Asn Val Thr Val Ser Ala Asp Val Thr Thr Thr Lys Glu Leu Leu 35 40 45

Asp Leu Ala Asp Arg Leu Gly Pro Tyr Ile Ala Val Ile Lys Thr His 50 55 60

Ile Asp Ile Leu Ser Asp Phe Ser Asp Glu Thr Ile Glu Gly Leu Lys 70 75 80

Ala Leu Ala Gln Lys His Asn Phe Leu Ile Phe Glu Asp Arg Lys Phe 85 90 95

Ile Asp Ile Gly Asn Thr Val Gln Lys Gln Tyr His Arg Gly Thr Leu 100 105 110

Arg Ile Ser Glu Trp Ala His Ile Ile Asn Cys Ser Ile Leu Pro Gly 115 120 125 Glu Gly Ile Val Glu Ala Leu Ala Gln Thr Ala Ser Ala Pro Asp Phe 130 135 140

Ser Tyr Gly Pro Glu Arg Gly Leu Leu Ile Leu Ala Glu Met Thr Ser 145 150 155 160

Lys Gly Ser Leu Ala Thr Gly Gln Tyr Thr Thr Ser Ser Val Asp Tyr 165 170 175

Ala Arg Lys Tyr Lys Asn Phe Val Met Gly Phe Val Ser Thr Arg Ser 180 185 190

Leu Gly Glu Val Gln Ser Glu Val Ser Ser Pro Ser Asp Glu Glu Asp 195 200 205

Phe Val Val Phe Thr Thr Gly Val Asn Ile Ser Ser Lys Gly Asp Lys 210 215 220

Leu Gly Gln Gln Tyr Gln Thr Pro Ala Ser Ala Ile Gly Arg Gly Ala 225 230 235 240

Asp Phe Ile Ile Ala Gly Arg Gly Ile Tyr Ala Ala Pro Asp Pro Val 245 250 255

Gln Ala Ala Gln Gln Tyr Gln Lys Glu Gly Trp Glu Ala Tyr Leu Ala 260 265 270

Arg Val Gly Gly Asn 275

<210> 3

<211> 30

<212> DNA

<213> Aspergillus niger

<400> 3

gggactagtg gatcgaagtt ctgatggtta

30

<210> 4

<211> 30

<212> DNA

<213> Aspergillus niger

<400> 4

<210> 5

<211> 2103

<213> Aspergillus niger

<400> 5

tecettttag gegeaactga gageetgage tteateecca geateattae aceteageaa 60 tgtcgttccg atctctactc gccctgagcg gcctcgtctg cacagggttg gcaaatgtga 120 tttccaagcg cgcgaccttg gattcatggt tgagcaacga agcgaccgtg gctcgtactg 180 ccatcctgaa taacatcggg gcggacggtg cttgggtgtc gggcgcggac tctggcattg 240 tegttgetag teccageacg gataaccegg actaetteta cacetggaet egegaetetg 300 gtctcgtcct caagaccctc gtcgatctct tccgaaatgg agataccagt ctcctctca 360 ccattgagaa ctacatctcc gcccaggcaa ttgtccaggg tatcagtaac ccctctggtg 420 atctgtccag cggcgctggt ctcggtgaac ccaagttcaa tgtcgatgag actgcctaca 480 ctggttcttg gggacggccg cagcgagatg gtccggctct gagagcaact gctatgatcg 540 gcttcgggca gtggctgctt gacaatggct acaccagcac cgcaacggac attgtttggc 600 ecetegitag gaacgacetg tegtatgigg etcaatactg gaaccagaca ggatatgate 660 tctgggaaga agtcaatggc tcgtctttct ttacgattgc tgtgcaacac cgcgccttg 720 tcgaaggtag tgccttcgcg acggccgtcg gctcgtcctg ctcctggtgt gattctcagg 780 cacccgaaat tctctgctac ctgcagtcct tctggaccgg cagcttcatt ctggccaact 840 tcgatagcag ccgttccggc aaggacgcaa acaccctcct gggaagcatc cacacctttg 900 atectgagge egeatgegae gaetecaeet tecageeetg eteceegege gegetegeea 960 accacaagga ggttgtagac tettteeget caatetatae eeteaaegat ggteteagtg 1020 acagcgaggc tgttgcggtg ggtcggtacc ctgaggacac gtactacaac ggcaacccgt 1080 ggttcctgtg caccttggct gccgcagagc agttgtacga tgctctatac cagtgggaca 1140 agcaggggtc gttggaggtc acagatgtgt cgctggactt cttcaaggca ctgtacagcg 1200 atgctgctac tggcacctac tcttcgtcca gttcgactta tagtagcatt gtagatgccg 1260 tgaagacttt cgccgatggc ttcgtctcta ttgtggaaac tcacgccgca agcaacggct 1320 1380 ggtcttatgc tgctctgctg accgccaaca accgtcgtaa ctccgtcgtg cctgcttctt 1440

ggggcgagac ctctgccagc agcgtgcccg gcacctgtgc ggccacatct gccattggta 1500 cctacagcag tgtgactgtc acctcgtggc cgagtatcgt ggctactggc ggcaccacta 1560 cgacggctac ccccactgga tccggcagcg tgacctcgac cagcaagacc accgcgactg 1620 ctagcaagac cagcaccagt acgtcatcaa cctcctgtac cactcccacc gccgtggctg 1680 tgactttcga tctgacaget accaccacet acggegagaa catctacetg gteggatega 1740 tctctcagct gggtgactgg gaaaccagcg acggcatagc tctgagtgct gacaagtaca 1800 cttccagcga cccgctctgg tatgtcactg tgactctgcc ggctggtgag tcgtttgagt 1860 acaagtttat ccgcattgag agcgatgact ccgtggagtg ggagagtgat cccaaccgag 1920 aatacaccgt teeteaggeg tgeggaacgt egacegegae ggtgaetgae acetggeggt 1980 gacaatcaat ccatttcgct atagttaaag gatggggatg agggcaattg gttatatgat 2040 catgtatgta gtgggtgtgc ataatagtag tgaaatggaa gccaagtcat gtgattgtaa 2100 tcg 2103

<210> 6

<211> 662

<212> PRT

<213> Aspergillus niger

<400> 6

Met Ser Phe Arg Ser Leu Leu Ala Leu Ser Gly Leu Val Cys Thr Gly
1 5 10 15

Leu Ala Asn Val Ile Ser Lys Arg Ala Thr Leu Asp Ser Trp Leu Ser 20 25 30

Asn Glu Ala Thr Val Ala Arg Thr Ala Ile Leu Asn Asn Phe Thr Ile 35 40 45

Gly Ala Asp Gly Ala Trp Val Ser Gly Ala Asp Ser Gly Ile Val Val 50 55 60

Ala Ser Pro Ser Thr Asp Asn Pro Asp Tyr Phe Tyr Thr Trp Thr Arg 65 70 75 80

Asp Ser Gly Leu Val Leu Lys Thr Leu Val Asp Leu Phe Arg Asn Gly 85 90 95

Asp Thr Ser Leu Leu Ser Thr Ile Glu Asn Phe Thr Tyr Ile Ser Ala Gln Ala Ile Val Gln Gly Ile Ser Asn Pro Ser Gly Asp Leu Ser Ser Gly Ala Gly Leu Gly Glu Pro Lys Phe Asn Val Asp Glu Thr Ala Tyr Thr Gly Ser Trp Gly Arg Pro Gln Arg Asp Gly Pro Ala Leu Arg Ala Thr Ala Met Ile Gly Phe Gly Phe Thr Gln Trp Leu Leu Asp Asn Gly Tyr Thr Ser Thr Ala Thr Asp Ile Val Trp Pro Leu Val Arg Asn Asp Leu Ser Tyr Val Ala Gln Tyr Trp Asn Gln Thr Gly Tyr Asp Leu Trp Glu Glu Val Asn Gly Ser Ser Phe Phe Thr Ile Ala Val Gln His Arg Ala Leu Val Glu Phe Thr Gly Ser Ala Phe Ala Thr Ala Val Gly Ser Ser Cys Ser Trp Cys Asp Ser Gln Ala Pro Glu Ile Leu Cys Tyr Leu Gln Ser Phe Trp Thr Gly Ser Phe Ile Leu Ala Asn Phe Asp Ser Ser Arg Ser Gly Lys Asp Ala Asn Thr Leu Leu Gly Ser Ile His Thr Phe Asp Phe Thr Pro Glu Ala Ala Cys Asp Asp Ser Thr Phe Gln Pro Cys . 300 Ser Pro Arg Ala Leu Ala Asn His Lys Glu Val Val Asp Ser Phe Arg

Ser Ile Tyr Thr Leu Asn Asp Gly Leu Ser Asp Ser Glu Ala Val Ala 325 330 335

Val Gly Arg Tyr Pro Glu Asp Thr Tyr Tyr Asn Gly Asn Pro Phe Thr 340 345 350

Trp Phe Leu Cys Thr Leu Ala Ala Glu Gln Leu Tyr Asp Ala Leu 355 360 365

Tyr Gln Trp Asp Lys Gln Gly Ser Leu Glu Val Thr Asp Val Ser Leu 370 380

Asp Phe Phe Lys Ala Leu Tyr Ser Asp Ala Ala Thr Gly Thr Tyr Ser 385 390 395 400

Ser Ser Ser Ser Thr Tyr Ser Ser Ile Val Asp Phe Thr Ala Val Lys 405 410 415

Thr Phe Ala Asp Gly Phe Val Ser Ile Val Glu Thr His Ala Ala Ser 420 425 430

Asn Gly Ser Met Ser Glu Gln Tyr Asp Lys Ser Asp Gly Glu Gln Leu 435 440 445

Ser Ala Arg Asp Leu Thr Trp Ser Tyr Ala Ala Leu Leu Thr Ala Asn 450 455 460

Asn Arg Arg Asn Ser Val Val Pro Phe Thr Ala Ser Trp Gly Glu Thr 465 470 475 480

Ser Ala Ser Ser Val Pro Gly Thr Cys Ala Ala Thr Ser Ala Ile Gly 485 490 495

Thr Tyr Ser Ser Val Thr Val Thr Ser Trp Pro Ser Ile Val Ala Thr 500 505 510

Gly Gly Thr Thr Thr Ala Thr Pro Thr Gly Ser Gly Ser Val Thr
515 520 525

Ser Thr Ser Lys Thr Phe Thr Thr Ala Thr Ala Ser Lys Thr Ser Thr 530 540

Ser Thr Ser Ser Thr Ser Cys Thr Thr Pro Thr Ala Val Ala Val Thr 545 550 555 Phe Asp Leu Thr Ala Thr Thr Thr Tyr Gly Glu Asn Ile Tyr Leu Val 565 570 Gly Ser Ile Ser Gln Leu Gly Asp Trp Glu Thr Ser Asp Gly Ile Ala 580 585 Leu Ser Phe Thr Ala Asp Lys Tyr Thr Ser Ser Asp Pro Leu Trp Tyr 595 Val Thr Val Thr Leu Pro Ala Gly Glu Ser Phe Glu Tyr Lys Phe Ile 615 Arg Ile Glu Ser Asp Asp Ser Val Glu Trp Glu Ser Asp Pro Asn Arg 630 635 Glu Tyr Thr Val Pro Gln Ala Cys Gly Thr Ser Thr Ala Thr Val Phe 645 650 Thr Thr Asp Thr Trp Arq 660 <210> 7 <211> 21 <212> DNA <213> Aspergillus niger <400> 7 actagtggcc ctgtacccag a 21 <210> 8 <211> 26 <212> DNA <213> Aspergillus niger <400> 8 gcatgcattg ctgaggtgta atgatg 26 <210> 9

<211> 21 <212> DNA

<213> Aspergillus niger

<400>	9 gacg	gtatcgataa	q	•			21
		5 5					
		•					
<210>	10						
<211>	33						
<212>	DNA						
<213>	Aspe	ergillus nio	ger				
<400>	10						
gcatgca	agat	ctcgagaata	caccgttcct	cag			33
<210>	11						
<211>	21						
<212>	DNA						
<213>	Aspe	ergillus nic	ger				
<400>	11						
		gaaactccga	t				21
		J					2.1
-210-							
<210>	12						
<211> <212>	21						
	DNA	- wed 11 d					
<213>	Aspe	ergillus nic	ger				
<400>	12						
agcagad	cgat	gtcctgagct	g ·				21
						•	
<210>	13						
<211>	4098	2					
<212>	DNA						
<213>		ergillus nig	ger				
			5 -				
<400>	13	2226662255	taaggaatgt	+ o + o o o o o + o - o			
ceggege	cgg	aaagcccatt	caagggaccc	tataaggtaa		tcagtcgcct	60
atggtct	ttg	tcgagagaaa	ctctttctcg	ttaagatcta	catgatcgct	tttgattttc	120
tetaaat	tca	cgcggtactt	teteeceate	2210000220	agatattata	aatasaasta	100
555	Jeou	ogoggeacce	cccccgcc	aaccccaac	cgctgttgtg	cetgaceate	180
aatgtgg	gaac	ggataagggg	acaagagaaa	ttgaaggagc	gatcataaaa	agctaatttt	240
ggtttat	tat	ttttttttt	tataaaactc	aaaaaagaaa	acqaaaacqa	ааааддаааа	300
aagaaaa	aggt	aaaatggaaa	aagaaaggcg	gtcatcactt	ccaataacca	tcagccaaag	360
atacaga	acga	gttactgacc	ttcttatcct	ggacttccgc	ccgatccata	tcttcatgat	420
aagcagg	ggaa	ccgaacaaat	caacgccaac	ttcagcggca	gttcctcact	aatttcccac	480
ttcccac	cgg	cgtcattttg	gtcccaaccc	cctccctgga	agcagcggga	tttagttacg	540
atccoot	tta	categgagag	tcggaaaata	ccatagraca	taccaatcaa	aacccctccc	600

agggtgactg	gccagtatca	cgacccattg	tttctatctt	tctagaagac	ctgcagggac	660
atggattggc	tggccgccgt	gctgccgtcc	attagcgtct	accccaggtc	aagaacggac	720
tggacggacc	cataaccaat	ctaaccaaag	ccaatttcgt	caattcccag	ctggcgagca	780
caatcccatt	cccagggttg	gccgccaact	gttaaaaggc	actatgtgtc	tctccacctg	840
cccgccccc	tcgatggcct	gcgcgtaata	actattctac	tgctttttgc	ctcttacttg	900
cctcattatt	agtattttac	tctactctcc	agattgcctg	ccagcaattg	gtccaaagtg	960
gactttgttt	gatgacatga	ctcgaaccgt	ggacgagatc	aaatacgaaa	cgccttcttc	1020
atgggagcac	aagagcttgg	acgttgccga	ggatggcagg	cgactagctc	cccattccga	1080
cactgctcgt	ccgaaaggcc	gcatacgacg	atcgatgact	gcctgtcaca	catgtcggaa	1140
gcttaaaact	agatgtgatc	tagatccgcg	cggtcatgcg	tgccgtcgct	gtctatctct	1200
aaggtcagag	gcactaccta	cctgccagtt	gaagctttgt	ccttctgaac	gcgacatgat	1260
actagtcgtg	gaatataact	gtcccaactt	tgctgacagt	ccacaatatc	tttagaatcg	1320
attgtaagct	gcctgaaacg	accgaccgct	tccaagacag	tgctgcgatg	tggccagacg	1380
ccacctcggc	aattccctcc	atcgaggagc	gcctcacctc	cctagaaaga	tgcatgaggg	1440
agatgacggg	catgatgcga	cagatgctag	atcactcccc	aggtttcgca	aatgcctcgg	1500
ttccgcattt	gaccaaaagc	atcatcacgg	atgaaaccgc	ctcgatggag	ggaagcccgt	1560
cgtccccctt	cctgcctaag	cccgttcgcc	tcattcagga	cctccagtcc	gacttcttcg	1620
gagaagcaga	gacttcccc	gttgactccc	ctctctccag	cgatgġtaac	gccaagggcg	1680
ctatcgactc	taagctatcc	ctcaaattgt	tgcaaacgta	tgggtatacc	tgattgacaa	1740
ttaccaaaaa	gctgctaatc	cttggcgcaa	atcaggtttg	tcgatcactt	tggcgcttgc	1800
gtttccattt	acaatctctc	cgacatccac	aacgacatga	aagcccccga	ctctttactg	1860
tataatactg	catgccttct	agcttcacgc	tatgtaccgg	ggataccgac	atctaccgtg	1920
catgctatat	accttcaagt	gcgacatgca	gtagtcaata	ttttgtggga	aaaaccaccc	1980
ctgaagtatg	agaccctcca	agcacttgca	cttctctgtc	tctggccagc	aaccgcccag	2040
aaagagccac	ccatggacag	ctggctgctg	agtggtatct	caattaacca	tgcaattatc	2100
gcgctcgatt	tcctaaacta	tgcgccctcg	gaagtcatgg	tggaćaatga	aacggctgcg	2160
cagctgcggc	tatggaatac	atattgcttg	acacagctac	agtgggtttc	atctaagatc	2220
tcccgtccag	aagatagcta	acaagcttta	gttttgcggt	cgggaatgcg	cgtcctttcc	2280

atatccagca	aagatacctt	gaccactgcc	cacggatact	ggagcaccca	gcagcaactc	2340
tggaggacgc	aagggttgta	gcagaaatac	agttgtattt	gatgacattg	cggctccaga	2400
gcaatagcag	tcgaatgcgg	ttggcggacc	ttgactatga	ggaaatagag	cgatggaaga	2460
gggagtgggc	tcaccttttc	tgtaagaagc	ctgttcttgt	ttcccgggga	ctaccactga	2520
cgagagcaac	agctggggaa	agttccacat	tggagctgag	cctttggttc	tgccagacac	2580
tccttcaccg	cacagcaatg	aggcttcagc	ccagatccga	caggctcgca	tctgaggttc	2640
tgcaaacctc	acgtctgata	atatcgcggt	tcctccagat	ccggtactct	accgcattaa	2700
gccttgtcga	ccaagtctat	ttcattgtcg	gctacgctgc	actgaatctg	tgcgatttca	2760
atcttatgga	cccgcttatc	gagcaagtgc	agatgttcct	gctgcatctc	tccccgaacg	2820
aagaccacat	cgcctaccgg	ttttcgtgca	tggtcgccga	gttcaagcgg	cgatgtggca	2880
gtgcggaatg	caatgaccca	tcatccactg	tcaaggggtc	tccgttatca	tcctacggcg	2940
acagtcgtaa	gatgagcatg	gggcaagcac	cgttcatgcc	accgctcatg	gatggcatga	3000
tcgaggggta	cggcttcgag	caactgatgc	cagaagtcat	gccgagttcc	tttccggatg	3060
ggatactcaa	cggaatgcct	gtgactgggc	tagcagcgta	tcggtcagcg	acgctgtaag	3120
taatcgagat	cgggttggaa	aggacatgag	tgggggtggt	ggtggtagta	gcagtaacac	3180
cagggatgat	aacctgcagc	ggtggtttag	ttcctgccca	tgggctgaac	taaaaccccg	3240
aacctagcat	gatgacgtgc	aacgaaagga	tcataaccaa	ggccaagtaa	atactaaaat	3300
aaaataatat	aattccacac	gatccactac	caccaccacc	accggatcca	tcaggttgcc	3360
ttcctgcaca	ggcctattta	gttagagggc	ccgtgccacg	aaacatcacg	taattgagcg	3420
cttttgcttc	cttgcaactt	aaacaacccc	atagacactc	tcacattcac	atgccaaact	3480
actaactcct	actgaccacc	agctgcagga	agccagccag	ccaccatttc	ctaatcggat	3540
atatctccga	aacgtacgct	ttcctccttt	gttcggaccg	ttccgtgcct	ccgcggagag	3600
ttgaacgagt	cagaacacat	tcttttcgtt	tctatcgttt	cttttccaag	gcagcagaga	3660
gacgaacaag	tcagtgcttg	ctaactaact	tacccctcag	cattttagta	aactactatt	3720
taggaaagag	taatcattca	tcgaagacaa	gatgtttatt	tctccgatcg	accaaacaaa	3780
aacgttcagg	tagactaagt	agtagtagta	gtatgtcttt	gaccccttta	ctccactatc	3840
cgttgactgc	acatagtagt	aagtaactat	ctaaccagtt	gccgaggaga	ggaaagtgag	3900
tgggtgggag	ccggaggatg	ccgccgagaa	ttattaagtc	gatcattgct	agttagttat	3960

cttttcatga tgaggagagg aaggagaggg gggacgggat tagagaaata aacttttctc 4020 tccaattaat tatctggatt aattaaaact tggagaggag ggtaggggag ttgggtattg 4080 gtatgttgct gtgaatgt 4098

<210> 14

<211> 717

<212> PRT

<213> Aspergillus niger

<400> 14

Met Asn Arg Val Thr Asn Leu Leu Ala Trp Ala Gly Ala Ile Gly Leu

Ala Gln Ala Thr Cys Pro Phe Ala Asp Pro Ala Ala Leu Tyr Ser Arg

Gln Asp Thr Thr Ser Gly Gln Ser Pro Leu Ala Ala Tyr Glu Val Asp 40

Asp Ser Thr Gly Tyr Leu Thr Ser Asp Val Gly Gly Pro Ile Gln Asp 55

Gln Thr Ser Leu Lys Ala Gly Ile Arg Gly Pro Thr Leu Leu Glu Asp 70

Phe Met Phe Arg Gln Lys Ile Gln His Phe Asp His Glu Arg Val Pro 85 95

Glu Arg Ala Val His Ala Arg Gly Ala Gly Ala His Gly Thr Phe Thr

Ser Tyr Ala Asp Trp Ser Asn Ile Thr Ala Ala Ser Phe Leu Asn Ala 115 120

Thr Gly Lys Gln Thr Pro Val Phe Val Arg Phe Ser Thr Val Ala Gly 130 135

Ser Arg Gly Ser Ala Asp Thr Ala Arg Asp Val His Gly Phe Ala Thr 145 150 155 160

Arg Phe Tyr Thr Asp Glu Gly Asn Phe Asp Ile Val Gly Asn Asn Ile

165 170 175

Pro Val Phe Phe Ile Gln Asp Ala Ile Gln Phe Pro Asp Leu Ile His 180 185 190

Ser Val Lys Pro Arg Pro Asp Asn Glu Ile Pro Gln Ala Ala Thr Ala 195 200 205

His Asp Ser Ala Trp Asp Phe Phe Ser Gln Gln Pro Ser Thr Met His 210 215 220

Thr Leu Phe Trp Ala Met Ser Gly His Gly Ile Pro Arg Ser Tyr Arg 225 230 235 240

His Met Asp Gly Phe Gly Val His Thr Phe Arg Phe Val Lys Asp Asp 245 250 255

Gly Ser Ser Lys Leu Ile Lys Trp His Phe Lys Ser Arg Gln Gly Lys
260 265 270

Ala Ser Leu Val Trp Glu Glu Ala Gln Val Leu Ser Gly Lys Asn Ala 275 280 285

Asp Phe His Arg Gln Asp Leu Trp Asp Ala Ile Glu Ser Gly Asn Gly 290 295 300

Pro Glu Trp Asp Val Cys Val Gln Ile Val Asp Glu Ser Gln Ala Gln 305 310 315 320

Ala Phe Gly Phe Asp Leu Leu Asp Pro Thr Lys Ile Ile Pro Glu Glu 325 330 335

Tyr Ala Pro Leu Thr Lys Leu Gly Leu Leu Lys Leu Asp Arg Asn Pro 340 345 350

Thr Asn Tyr Phe Ala Glu Thr Glu Gln Val Met Phe Gln Pro Gly His 355 360 365

Ile Val Arg Gly Ile Asp Phe Thr Glu Asp Pro Leu Leu Gln Gly Arg 370 375 380

Leu Phe Ser Tyr Leu Asp Thr Gln Leu Asn Arg Asn Gly Gly Pro Asn - 13 -

Phe Glu Gln Leu Pro Ile Asn Met Pro Arg Val Pro Ile His Asn Asn 405 410 415

Asn Arg Asp Gly Ala Gly Gln Met Phe Ile His Arg Asn Lys Tyr Pro 420 425 430

Tyr Thr Pro Asn Thr Leu Asn Ser Gly Tyr Pro Arg Gln Ala Asn Gln
435 440 445

Asn Ala Gly Arg Gly Phe Phe Thr Ala Pro Gly Arg Thr Ala Ser Gly 450 455 460

Ala Leu Val Arg Glu Val Ser Pro Thr Phe Asn Asp His Trp Ser Gln 465 470 475 480

Pro Arg Leu Phe Phe Asn Ser Leu Thr Pro Val Glu Gln Gln Phe Leu 485 490 495

Val Asn Ala Met Arg Phe Glu Ile Ser Leu Val Lys Ser Glu Glu Val
500 505 510

Lys Lys Asn Val Leu Thr Gln Leu Asn Arg Val Ser His Asp Val Ala 515 520 525

Val Arg Val Ala Ala Ala Ile Gly Leu Gly Ala Pro Asp Ala Asp Asp 530 540

Thr Tyr Tyr His Asn Asn Lys Thr Ala Gly Val Ser Ile Val Gly Ser 545 550 555 560

Gly Pro Leu Pro Thr Ile Lys Thr Leu Arg Val Gly Ile Leu Ala Thr 565 570 575

Thr Ser Glu Ser Ser Ala Leu Asp Gln Ala Ala Gln Leu Arg Thr Arg
580 585 590

Leu Glu Lys Asp Gly Leu Val Val Thr Val Val Ala Glu Thr Leu Arg
595 600 605

Glu Gly Val Asp Gln Thr Tyr Ser Thr Ala Asp Ala Thr Gly Phe Asp
- 14 -

610 615 620

Gly Val Val Val Asp Gly Ala Ala Leu Phe Ala Ser Thr Ala 630 635 Ser Ser Pro Leu Phe Pro Thr Gly Arg Pro Leu Gln Ile Phe Val Asp 645 650 Ala Tyr Arg Trp Gly Lys Pro Val Gly Val Cys Gly Gly Lys Ser Ser 660 665 Glu Val Leu Asp Ala Ala Asp Val Pro Glu Asp Gly Asp Gly Val Tyr 680 Ser Glu Glu Ser Val Asp Met Phe Val Glu Glu Phe Glu Lys Gly Leu 695 Ala Thr Phe Arg Phe Thr Asp Arg Phe Ala Leu Asp Ser 710 715 <210> 15 <211> 20 <212> DNA <213> Aspergillus niger <400> 15 tgtgattgag gtgattggcg 20 <210> 16 <211> 20 <212> DNA <213> Aspergillus niger <400> 16 tcagccacac ctgcaaaggc 20 <210> 17 <211> 2443 <212> DNA <213> Aspergillus niger <220> <221> misc_feature <222> (10)..(10)

<223> n=a,c,g or t

<400> 17 ctgcagaatn aatttaaact cttctgcgaa tcgcttggat tccccgcccc tggccgtaga 60 gcttaaagta tgtcccttgt cgatgcgatg tatcacaaca tataaatact agcaagggat 120 gccatgettg gaggatagea acegacaaca teacateaag etetecette tetgaacaat 180 aaaccccaca gaaggcattt atgatggtcg cgtggtggtc tctatttctg tacggccttc 240 aggtcgcggc acctgctttg gctgcaacgc ctgcggactg gcgatcgcaa tccatttatt 300 teetteteae ggategattt geaaggaegg atgggtegae gaetgegaet tgtaataetq 360 cggatcaggt gtgttgttac ctactagctt tcagaaagag gaatgtaaac tgacttgata 420 tagaaatact gtggtggaac atggcagggc atcatcgaca aggtaaattg cccctttatc 480 540 cacatagttg gactatatcc agggaatggg cttcacagcc atctggatca cccccgttac 600 agcccagctg ccccagacca ccgcatatgg agatgcctac catggctact ggcagcagga 660 tatgtaagtc gatttcttta aatatctacc tgtcatcttt tacatcaata tgaactaact 720 tgatggtttt agatactctc tgaacgaaaa ctacggcact gcagatgact tgaaggcgct 780 etetteggee etteatgaga gggggatgta tettatggte gatgtggttg etaaceatat 840 ggttcgtggt cctttgcaac tgacttcgcg gatatggttc atttcagtac tgacaatgag 900 taatatcagg gctatgatgg agcgggtagc tcagtcgatt acagtgtgtt taaaccgttc 960 agttcccaag actacttcca cccgttctgt ttcattcaaa actatgaaga tcagactcag 1020 gttgaggatt gctggctagg agataacact gtctccttgc ctgatctcga taccaccaag 1080 gatgtggtca agaatgaatg gtacgactgg gtgggatcat tggtatcgaa ctactccagt 1140 aagatatttc tccctcattc tacaacttgg ctgatcgatg atacttacga aatcagttga 1200 cggcctccgt atcgacacag taaaacacgt ccagaaggac ttctggcccg ggtacaacaa 1260 agccgcaggc gtgtactgta tcggcgaggt gctcgacggt gatccggcct acacttgtcc 1320 ctaccagaac gtcatggacg gcgtactgaa ctatcccatg tatggttcct ccaaccatga 1380 gccttcttgc aagtctcatc tcctaacgaa acggctaaaa ccagttacta tccactcctc 1440 aacgccttca agtcaacctc cggcagcatg gacgacctct acaacatgat caacaccgtc 1500 aaatccgact gtccagactc aacactcctg ggcacattcg tcgagaacca cgacaaccca 1560 eggttegett egtaagtett eeettttatt tteegtteee aattteeaea eagaaceeea 1620 cctaacaaga gcaaagttac accaacgaca tagccctcgc caagaacgtc gcagcattca 1680

teatecteaa egaeggaate eccateatet aegeeggeea agaacageae taegeeggeg 1740 gaaacgaccc cgcgaaccgc gaagcaacct ggctctcggg ctacccgacc gacagcgagc 1800 tgtacaagtt aattgcctcc cggaacgcaa tccggaacta tgccattagc aaagatacaq 1860 gattcgtgac ctacaaggta agcacaacct ctaagcatac cctaatggcc tatcttcaga 1920 gtatctgaca caagagacta atcactggca atacagaact ggcccatcta caaaqacqac 1980 acaacgatcc cgatgcgcaa gggcacagat gggtcqcaqa tcqtqactat cttqtccaac 2040 aagggtgctt cgggtgattc gtataccctc tccttgagtg gtgcgggtta cacaqccqqc 2100 cagcaattga cggaggtcat tggctgcacg accgtgacgg ttggttcqqa tqqaaatqtq 2160 cctgttccta tggcaggtgg gctacctagg gtattgtatc cgactgagaa gttggcaggt 2220 agcaagatct gtagtagctc gtgaagggtg gagagtatat gatggtactg ctattcaatc 2280 tggcattgga cagcgagatt gaatgtggtg gacgtaacct acgttgtgtc tgtagaatat 2340 atacatgtaa gatacatgag cttcggtgat ataatacaga agtaccatac agtaccgcgt 2400 tatggaatcg aactactaca gggcttttcc tataatagac tag 2443

<210> 18

<211> 499

<212> PRT

<213> Aspergillus niger

<400> 18

Met Met Val Ala Trp Trp Ser Leu Phe Leu Tyr Gly Leu Gln Val Ala 1 5 10 15

Ala Pro Ala Leu Ala Ala Thr Pro Ala Asp Trp Arg Ser Gln Ser Ile 20 25 30

Tyr Phe Leu Leu Thr Asp Arg Phe Ala Arg Thr Asp Gly Ser Thr Thr 35 40 45

Ala Thr Cys Asn Thr Ala Asp Gln Lys Tyr Cys Gly Gly Thr Trp Gln 50 55 60

Gly Ile Ile Asp Lys Leu Asp Tyr Ile Gln Gly Met Gly Phe Thr Ala 65 70 75 80

Ile Trp Ile Thr Pro Val Thr Ala Gln Leu Pro Gln Thr Thr Ala Tyr

- Gly Asp Ala Tyr His Gly Tyr Trp Gln Gln Asp Ile Tyr Ser Leu Asn 100 105 110
- Glu Asn Tyr Gly Thr Ala Asp Asp Leu Lys Ala Leu Ser Ser Ala Leu 115 120 125
- His Glu Arg Gly Met Tyr Leu Met Val Asp Val Val Ala Asn His Met 130 135 140
- Gly Tyr Asp Gly Ala Gly Ser Ser Val Asp Tyr Ser Val Phe Lys Pro 145 150 155 160
- Phe Ser Ser Gln Asp Tyr Phe His Pro Phe Cys Phe Ile Gln Asn Tyr 165 170 175
- Glu Asp Gln Thr Gln Val Glu Asp Cys Trp Leu Gly Asp Asn Thr Val 180 185 190
- Ser Leu Pro Asp Leu Asp Thr Thr Lys Asp Val Val Lys Asn Glu Trp 195 200 205
- Tyr Asp Trp Val Gly Ser Leu Val Ser Asn Tyr Ser Ile Asp Gly Leu 210 215 220
- Arg Ile Asp Thr Val Lys His Val Gln Lys Asp Phe Trp Pro Gly Tyr 225 230 235 240
- Asn Lys Ala Ala Gly Val Tyr Cys Ile Gly Glu Val Leu Asp Gly Asp 245 250 255
- Pro Ala Tyr Thr Cys Pro Tyr Gln Asn Val Met Asp Gly Val Leu Asn 260 265 270
- Tyr Pro Ile Tyr Tyr Pro Leu Leu Asn Ala Phe Lys Ser Thr Ser Gly 275 280 285
- Ser Met Asp Asp Leu Tyr Asn Met Ile Asn Thr Val Lys Ser Asp Cys 290 295 300
- Pro Asp Ser Thr Leu Leu Gly Thr Phe Val Glu Asn His Asp Asn Pro 18-

Arg Phe Ala Ser Tyr Thr Asn Asp Ile Ala Leu Ala Lys Asn Val Ala 325 330 335

Ala Phe Ile Ile Leu Asn Asp Gly Ile Pro Ile Ile Tyr Ala Gly Gln
340 345 350

Glu Gln His Tyr Ala Gly Gly Asn Asp Pro Ala Asn Arg Glu Ala Thr 355 360 365

Trp Leu Ser Gly Tyr Pro Thr Asp Ser Glu Leu Tyr Lys Leu Ile Ala 370 380

Ser Arg Asn Ala Ile Arg Asn Tyr Ala Ile Ser Lys Asp Thr Gly Phe 385 390 395 400

Val Thr Tyr Lys Asn Trp Pro Ile Tyr Lys Asp Asp Thr Thr Ile Pro 405 410 415

Met Arg Lys Gly Thr Asp Gly Ser Gln Ile Val Thr Ile Leu Ser Asn 420 425 430

Lys Gly Ala Ser Gly Asp Ser Tyr Thr Leu Ser Leu Ser Gly Ala Gly
435 440 445

Tyr Thr Ala Gly Gln Gln Leu Thr Glu Val Ile Gly Cys Thr Thr Val 450 455 460

Thr Val Gly Ser Asp Gly Asn Val Pro Val Pro Met Ala Gly Gly Leu 465 470 475 480

Pro Arg Val Leu Tyr Pro Thr Glu Lys Leu Ala Gly Ser Lys Ile Cys 485 490 495

Ser Ser Ser

<210> 19

<211> 21

<212> DNA

<213> Aspergillus niger

-100-	10					•	
<400>,							
ggcagca	agga	tatgtaagtc	g				21
							•
<210>	20					•	
<211>	21						
<212>	DNA						
<213>	Aspe	ergillus nig	ger				
<400>	20						
cactota	aatc	gactgagcta	C				21
caccacc	2000	gaccgagcca	•				21
<210>	21						
<211>	2520)					
<212>	DNA					•	
		amedline ed	~~~				
<213>	Aspe	ergillus nig	ger				
<220>		•					
<221>	mia	fosturo					
		c_feature					
<223>	n=a,	c,g or t					
<220>							
<221>	mic	c feature			•		
				•	•		
<222>	(10))(10)					
<223>	n=a,	c,g or t					
<400>	21						
		22+++2224	attataa		L	.	
ctycaga	aatii	adittadact	cttctgcgaa	tegettggat	teceegeece	tggccgtaga	60
gcttaaa	agta	tgtcccttgt	cgatgcgatg	tatcacaaca	tataaatact	agcaagggat	120
accatac	etta	gaggatagca	accgacaaca	tcacatcaad	ctctcccttc	tetessesst	100
5000090	0009	gaggacagca	accgacaaca	ccacaccaag		ccigaacaac	180
•							
aaacccc	caca	gaaggcattt	atgatggtcg	cgtggtggtc	tctatttctg	tacggccttc	240
aggtcgc	caac	acctdctttd	gctgcaacgc	ctacaaacta	acastcacas	fccatttatt	300
350051	-550	4000500005	geegeaaege	cegeggaeeg	gegacegeaa	cccacccacc	300
teettet	cac	ggatcgattt	gcaaggacgg	atgggtcgac	gactgcgact	tgtaatactg	360
cqqatca	aggt	gtgttgttac	ctactagctt	tcagaaagag	gaatgtaaac	tgacttgata	420
33	J J -	3-33			Jaacycaaac	cgaccegaca	120
+				- 4 1			
Lagaaat	Lact	grggrggaac	atggcagggc	atcatcgaca	aggtaaattg	cccctttatc	480
					•		
aaaaaaa	aaag	aaggaaaagc	agaagaaaaa	taaaataaaa	agaactctag	tcctaaccat	540
	_		2 3		J		
gagatag	7++~	gagtatatag	.~~~				
Cacacac	JLLG	gactatatee	agggaatggg	cttcacagec	atctggatca	ccccgttac	600
agcccag	gctg	ccccagacca	ccgcatatgg	agatgcctac	catqqctact	ggcagcagga	660
-	_	_					
tatotas	agto	gatttcttta	aatatctacc	tatastattt	tagatgaata	tannatan	700
Julylac	-9	Juccicica	aacacccacc	Lycoattit	cacaccaata	cyaactaact	720
tgatggt	ttt	agatactctc	tgaacgaaaa	ctacggcact	gcagatgact	tgaaggcgct	780
				-	= =		
ctcttcc	adda	cttcatgaga	gggggatgta	tettateete	gatgtggttg	ctaaccetat	840
	, , , , ,		2222246264		344349449	ccaaccatat	040
				- 20 -			

ggttcgtggt	cctttgcaac	tgacttcgcg	gatatggttc	atttcagtac	tgacaatgag	900
taatatcagg	gctatgatgg	agcgggtagc	tcagtcgatt	acagtgtgtt	taaaccgttc	960
agttcccaag	actacttcca	cccgttctgt	ttcattcaaa	actatgaaga	tcagactcag	1020
gttgaggatt	gctggctagg	agataacact	gtctccttgc	ctgatctcga	taccaccaag	1080
gatgtggtca	agaatgaatg	gtacgactgg	gtgggatcat	tggtatcgaa	ctactccagt	1140
aagatatttc	tccctcattc	tacaacttgg	ctgatcgatg	atacttacga	aatcagttga	1200
cggcctccgt	atcgacacag	taaaacacgt	ccagaaggac	ttctggcccg	ggtacaacaa	1260
agccgcaggc	gtgtactgta	tcggcgaggt	gctcgacggt	gatccggcct	acacttgtcc	1320
ctaccagaac	gtcatggacg	gcgtactgaa	ctatcccatg	tatggttcct	ccaaccatga	1380
gccttcttgc	aagtctcatc	tcctaacgaa	acggctaaaa	ccagttacta	tccactcctc	1440
aacgccttca	agtcaacctc	cggcagcatg	gacgacctct	acaacatgat	caacaccgtc	1500
aaatccgact	gtccagactc	aacactcctg	ggcacattcg	tcgagaacca	cgacaaccca	1560
cggttcgctt	cgtaagtctt	cccttttatt	ttccgttccc	aatttccaca	cagaacccca	1620
cctaacaaga	gcaaagttac	accaacgaca	tagccctcgc	caagaacgtc	gcagcattca	1680
tcatcctcaa	cgacggaatc	cccatcatct	acgccggcca	agaacagcac	tacgccggcg	1740
gaaacgaccc	cgcgaaccgc	gaagcaacct	ggctctcggg	ctacccgacc	gacagcgagc	1800
tgtacaagtt	aattgcctcc	cggaacgcaa	tccggaacta	tgccattagc	aaagatacag	1860
gattcgtgac	ctacaaggta	agcacaacct	ctaagcatac	cctaatggcc	tatcttcaga	1920
gtatctgaca	caagagacta	atcactggca	atacagaact	ggcccatcta	caaagacgac	1980
acaacgatcc	cgatgcgcaa	gggcacagat	gggtcgcaga	tcgtgactat	cttgtccaac	2040
aagggtgctt	cgggtgattc	gtataccctc	tccttgagtg	gtgcgggtta	cacageegge	2100
cagcaattga	cggaggtcat	tggctgcacg	accgtgacgg	ttggttcgga	tggaaatgtg	2160
cctgttccta	tggcaggtgg	gctacctagg	gtattgtatc	cgactgagaa	gttggcaggt	2220
agcaagatct	gttacggctg	agcagtcaag	ctcaagtccc	aactgtattg	actctgttga	2280
ctattcctgg	gtctccttag	atgatgcagt	tggaggaata	tgccaattgg	cacttgtcgc	2340
gtgttggccg	tgagatttat	agagaccata	ttaaaaaagc	acgtgatgtg	gcgttggaaa	2400
atggattaga	ccttcaacag	gtttcgaagg	aagacccaga	cttcttcgtc	aagcaagggg	2460
tgataattgg	tgtcgcacgc	cggttcgtta	gcgacattag	agattgggcc	aaccaataca	2520

<210> 22

<211> 498

<212> PRT

<213> Aspergillus niger

<400> 22

Met Met Val Ala Trp Trp Ser Leu Phe Leu Tyr Gly Leu Gln Val Ala 1 5 10 15

Ala Pro Ala Leu Ala Ala Thr Pro Ala Asp Trp Arg Ser Gln Ser Ile 20 25 30

Tyr Phe Leu Leu Thr Asp Arg Phe Ala Arg Thr Asp Gly Ser Thr Thr 35 40 45

Ala Thr Cys Asn Thr Ala Asp Gln Lys Tyr Cys Gly Gly Thr Trp Gln 50 55 60

Gly Ile Ile Asp Lys Leu Asp Tyr Ile Gln Gly Met Gly Phe Thr Ala 65 70 75 80

Ile Trp Ile Thr Pro Val Thr Ala Gln Leu Pro Gln Thr Thr Ala Tyr 85 90 95

Gly Asp Ala Tyr His Gly Tyr Trp Gln Gln Asp Ile Tyr Ser Leu Asn 100 105 110

Glu Asn Tyr Gly Thr Ala Asp Asp Leu Lys Ala Leu Ser Ser Ala Leu 115 120 125

His Glu Arg Gly Met Tyr Leu Met Val Asp Val Val Ala Asn His Met 130 135 140

Gly Tyr Asp Gly Ala Gly Ser Ser Val Asp Tyr Ser Val Phe Lys Pro 145 150 155 160

Phe Ser Ser Gln Asp Tyr Phe His Pro Phe Cys Phe Ile Gln Asn Tyr 165 170 175

Glu Asp Gln Thr Gln Val Glu Asp Cys Trp Leu Gly Asp Asn Thr Val 180 185 190

Ser Leu Pro Asp Leu Asp Thr Thr Lys Asp Val Val Lys Asn Glu Trp Tyr Asp Trp Val Gly Ser Leu Val Ser Asn Tyr Ser Ile Asp Gly Leu Arg Ile Asp Thr Val Lys His Val Gln Lys Asp Phe Trp Pro Gly Tyr Asn Lys Ala Ala Gly Val Tyr Cys Ile Gly Glu Val Leu Asp Gly Asp Pro Ala Tyr Thr Cys Pro Tyr Gln Asn Val Met Asp Gly Val Leu Asn Tyr Pro Ile Tyr Tyr Pro Leu Leu Asn Ala Phe Lys Ser Thr Ser Gly Ser Met Asp Asp Leu Tyr Asn Met Ile Asn Thr Val Lys Ser Asp Cys Pro Asp Ser Thr Leu Leu Gly Thr Phe Val Glu Asn His Asp Asn Pro Arg Phe Ala Ser Tyr Thr Asn Asp Ile Ala Leu Ala Lys Asn Val Ala Ala Phe Ile Ile Leu Asn Asp Gly Ile Pro Ile Ile Tyr Ala Gly Gln Glu Gln His Tyr Ala Gly Gly Asn Asp Pro Ala Asn Arg Glu Ala Thr Trp Leu Ser Gly Tyr Pro Thr Asp Ser Glu Leu Tyr Lys Leu Ile Ala Ser Arg Asn Ala Ile Arg Asn Tyr Ala Ile Ser Lys Asp Thr Gly Phe

Val Thr Tyr Lys Asn Trp Pro Ile Tyr Lys Asp Asp Thr Thr Ile Pro

Met Arg Lys Gly Thr Asp Gly Ser Gln Ile Val Thr Ile Leu Ser Asn 420 425 430

Lys Gly Ala Ser Gly Asp Ser Tyr Thr Leu Ser Leu Ser Gly Ala Gly
435 440 445

Tyr Thr Ala Gly Gln Gln Leu Thr Glu Val Ile Gly Cys Thr Thr Val 450 455 460

Thr Val Gly Ser Asp Gly Asn Val Pro Val Pro Met Ala Gly Gly Leu 465 470 475 480

Pro Arg Val Leu Tyr Pro Thr Glu Lys Leu Ala Gly Ser Lys Ile Cys 485 490 495

Tyr Gly

<210> 23

<211> 3494

<212> DNA

<213> Aspergillus niger

<220>

<221> misc feature

<222> (3370)..(3370)

<223> n=a,c,g or t

<400> 23

tgctccctcg gccaagcgcc aataacgtcc gattcatccc attcctcgtc cagctggcga 60 actccggagg ttgattgctc gctcgctctc agttggccac caaacttact cgtcccctc 120 cttcaccctc cctcctctgc caatgctaca gagtacttgg ctaggctact atcttctcag 180 ctgggtgaag aacaacgggc cccgtgcgtg atgagcaaaa gcgtctgaca tgcagcaact 240 gcagtatact ggagcccgcg gctaccgagg aactcgtgct cgtgtgccac cacatcgaag 300 tgagttgatg cgtcttgtcc atgcagtgtc ggcgtggcct aaagtacggg ccaaacctgt 360 ctgacttcat cccacactat taccccctcc ctcattctcc cctgattcgg cccaataagg 420 aaatcactta gtcaatcaat cctgccatta ccggcgcgta atctgaaact acgcgcggac 480 tgtctcttac tcccctcgcg gtgggcggcc cagccagccc catccttact agatttagcg 540 aattactggt cattagccct gtacggggga ggggcgggaa aacaaaaatg cgaataatag 600

aataaattta	ataaagaaaa	aagaggggg	gggagcttat	ctaggcccct	gctgcattgc	660
attcggacat	ttttcgactt	gtcacaggca	caaatcatag	tccgccgatg	gcgtcgattg	720
accattttct	tttctttct	cggcgctggg.	atggtggcca	agaaaattga	atggcaatgg	780
ttcgttcacc	ggagtagggt	gtacgtgcat	tgtgtggatt	gacgatgatt	ctcggccaag	840
ggcttgcgtt	gcaatcccac	caggaggga	atgttgcaga	cagacagaaa	gcaaaagaag	900
tattggaggg	aaaaaaacaa	ttcttgaaaa	atgatcttct	caggtaatga	atattggttg	960
ctggcgggct	gatcttctcc	cgacacgtct	atataaactg	gtcaccttct	ggcccttcct	1020
ttctatctct	tccttctcat	catcagtctc	aaacaagcct	ctttctctcc	taccttcact	1080
ctccactttc	tcctttcgaa	agggataaaa	ctctcctcct	cattctcacc	tatatatacc	1140
ttgtgctttt	ctcgcaatga	aagttgatac	ccccgattct	gcttccacca	tcagcatgac	1200
caacactatc	accatcaccg	tagagcagga	cggtatctat	gagatcaacg	gtgcccgtca	1260
agagcccgtg	gtcaacctga	acatggtcac	cggtgcgagc	aaactgcgca	agcagcttcg	1320
cgagaccaat	gagttgctcg	tgtgtcctgg	tgtgtacgac	ggtctgtccg	cccgtattgc	1380
catcaacctg	ggcttcaagg	gcatgtacat	ggtatgttgg	attccttaga	ctacctttcc	1440
ccacagtcaa	cacttctccg	cttccgcgat	ggagaaaaaa	gatcatacta	acggaaaggt	1500
cagaccggcg	ccggtactac	cgcgtctaga	ctgggcatgg	ccgatctggg	tctagcccac	1560
atctacgaca	tgaagaccaa	cgcagagatg	atcgcgaacc	tggaccccta	cggtcctccc	1620
ctgatcgcag	acatggacac	tggctacgga	ggtgagaatc	ccccatctcc	actgtctgcc	1680
aagacataat	gatctacccg	cgccaaaaag	caaaacggca	atatagaccc	agttccccac	1740
taacaccaaa	aaaacaaaaa	taggccccct	gatggtcgcc	cgttccgttc	aacaatacat	1800
ccaagccgga	gtcgcgggat	tccacatcga	agaticagate	caaaacaagc	gatgcggaca	1860
cctggcaggc	aagcgcgtcg	tcaccatgga	cgaatacttg	actcgcatcc	gcgccgccaa	1920
gctcaccaag	gaccgcctcc	gcagcgacat	cgtgctgatt	gcccgcaccg	acgccctcca	1980
gcagcacggc	tacgacgagt	gcattcgccg	ccttaaggcc	gcccgcgatc	ttggcgccga	2040
tgttggtctc	ctcgagggct	tcaccagtaa	ggagatggcg	aggcggtgtg	tccaggacct	2100
tgcgccttgg	ccgcttctgc	tcaacatggt	ggagaacggt	gctgggccgg	ttatttccgt	2160
cgatgaggct	agggaaatgg	gcttccgcat	tatgatcttc	tcgttcgctt	gcattactcc	2220
tgcctatatg	gggattaccg	ctgctctgga	gaggeteaag	aaggatggtg	tggttgggtt	2280

gcccgagggg atggggccga agaagctgtt tgaggtgtgc ggattgatgg actcggtgag 2340 ggttgatacc gaggctggtg gagatgggtt tgctaatggt gtttaattct tttcttttt 2400 tgattottaa ttoootggtt gttttgttgt gaaagtttot tatttttotg gtttgtttta 2460 tttccccttc tggtaactaa ttttgtgtga gaaagagttg ttgagttggg ttgaactgca 2520 2580 ttggttttcg agtggggacc gatatattcc tactatacat atcgaagctt gcgtggtaca 2640 tatactagta tctactacat taccaagaat ggaaatgaaa actgggtgtt agatttcagt 2700 tgacaggtct tatgttcgtt taccgataga gtaattcctg cttctcactc catgtgagcc 2760 caatcacaat ggaattgtaa tctggttgcc ttataagtac ttagtactct gtactctgta 2820 ctacttctcg catcacatca aatcttaata cttagtacgt agtttgtttc acccagcaaa 2880 accttattgc cttaacaatc atattctcag taagcacgag acacagaaac gagagaagta 2940 ttctagaccc tgacagaacw ccctgatcga cagtcactta cccaacaaag taagtggtct 3000 ctaccetetg attacagtta aggeaggeag tagtaageaa gaagaagaa gaaagaataa 3060 ttaactacta agtttctcac tactgcatgc acgaccacgg agtcgccgtg caaaaaaatt 3120 ggtgcgtgct cagctagctg cactctgcac actgccaccc tcgccctaca aaagaaacca 3180 tgctgtttct ccactatact gttcccgcga tgaaactagg gccaataacc atgcagttac 3240 tattggtccc actggggtgg gttgggtagc cttatggtat taaaaggagt aggggtcttt 3300 gtcgatcgtt ttctgttttc tttttgkatt tttatttytg ttggwctctg tttgtgttgt 3360 gttgggccgn ttttgttttc tttgggtaac gagggatggg aatatattca tatggaaatg 3420 gaaatggatt atgctattga ttgatgaatg gtgatgatct gcgtggaaat taatgtcaga 3480 gtcttgmtga ttca 3494

```
<210> 24
```

Met Lys Val Asp Thr Pro Asp Ser Ala Ser Thr Ile Ser Met Thr Asn
1 5 10 15

Thr Ile Thr Ile Thr Val Glu Gln Asp Gly Ile Tyr Glu Ile Asn Gly - 26-

<211> 341

<212> PRT

<213> Aspergillus niger

<400> 24

Ala Arg Gln Glu Pro Val Val Asn Leu Asn Met Val Thr Gly Ala Ser 35 40 45

Lys Leu Arg Lys Gln Leu Arg Glu Thr Asn Glu Leu Leu Val Cys Pro 50 55 60

Gly Val Tyr Asp Gly Leu Ser Ala Arg Ile Ala Ile Asn Leu Gly Phe 65 70 75 80

Lys Gly Met Tyr Met Thr Gly Ala Gly Thr Thr Ala Ser Arg Leu Gly 85 90 95

Met Ala Asp Leu Gly Leu Ala His Ile Tyr Asp Met Lys Thr Asn Ala 100 105 110

Glu Met Ile Ala Asn Leu Asp Pro Tyr Gly Pro Pro Leu Ile Ala Asp 115 120 125

Met Asp Thr Gly Tyr Gly Gly Pro Leu Met Val Ala Arg Ser Val Gln 130 135 140

Gln Tyr Ile Gln Ala Gly Val Ala Gly Phe His Ile Glu Asp Gln Ile 145 150 . 155 160

Gln Asn Lys Arg Cys Gly His Leu Ala Gly Lys Arg Val Val Thr Met 165 170 175

Asp Glu Tyr Leu Thr Arg Ile Arg Ala Ala Lys Leu Thr Lys Asp Arg 180 185 190

Leu Arg Ser Asp Ile Val Leu Ile Ala Arg Thr Asp Ala Leu Gln Gln 195 200 205

His Gly Tyr Asp Glu Cys Ile Arg Arg Leu Lys Ala Ala Arg Asp Leu 210 215 220

Gly Ala Asp Val Gly Leu Leu Glu Gly Phe Thr Ser Lys Glu Met Ala 225 230 235 240

Arg Arg Cys Val Gln Asp Leu Ala Pro Trp Pro Leu Leu Asn Met
- 27 -

			245					250					255		
Val Gl	u Asn	Gly 260	Ala	Gly	Pro	Val	Ile 265	Ser	Val	Asp	Glu	Ala 270	Arg	Glu	
Met Gl	y Phe 275	Arg	Ile	Met	Ile	Phe 280	Ser	Phe	Ala	Cys	Ile 285	Thr	Pro	Ala	
Tyr Me		Ile	Thr	Ala	Ala 295	Leu	Glu	Arg	Leu	Lys 300	Lys	Asp	Gly	Val	
Val Gl 305	y Leu	Pro	Glu	Gly 310	Met	Gly	Pro	Lys	Lys 315	Leu	Phe	Glu	Val	Cys 320	
Gly Le	u Met	Asp	Ser 325	Val	Arg	Val	Asp	Thr 330	Glu	Ala	Gly	Gly	Asp 335	Gly	
Phe Al	a Asn	Gly 340	Val		•										
<210><211><211><212><213>	25 21 DNA Asper	rgill	lus r	niger	:							· ·			
<400>	25														
ctacga	catg a	aagad	ccaac	cg c											21
<210><211><211><212>	26 21 DNA	-~ : 1 1			_										
<213>		giii	lus I	iigei											
<400> gcaccg		ccaco	catgt	t g											21
<210> <211>	27 1389														
<212>	DNA													-	
<213>	Candi	ida a	ıntar	cctic	a										

cccttctaca cgacgccatc caacatcggc acgtttgcca agggccaggt gatccaatct - 28 -

60

120

180

atgcgagtgt cettgegete cateacgteg etgettgegg eggeaacgge ggetgtgete

gcggctccgg cggccgagac gctggaccga cgggcggcgc tgcccaaccc ctacgacgat

<400> 27

cgcaaggtgc ccacggacat cggcaacgcc aacaacgctg cgtcgttcca gctgcagtac 240 cgcaccacca atacgcagaa cgaggcggtg gccgacgtgg ccaccgtgtg gatcccggcc 300 aagcccgctt cgccgcccaa gatcttttcg taccaggtct acgaggatgc cacggcgctc 360 gactgtgctc cgagctacag ctacctcact ggattggacc agccgaacaa ggtgacggcg 420 gtgctcgaca cgcccatcat catcggctgg gcgctgcagc agggctacta cgtcgtctcg 480 tccgaccacg aaggetteaa ageegeette ategetgget aegaagaggg catggetate 540 ctcgacggca tccgcgcgct caagaactac cagaacctgc catccgacag caaggtcgct 600 cttgagggct acagtggcgg agctcacgcc accgtgtggg cgacttcgct tgctgaatcg 660 tacgcgcccg agctcaacat tgtcggtgct tcgcacggcg gcacgcccgt gagcgccaag 720 gacacettta catteeteaa eggeggaeee ttegeegget ttgeeetgge gggtgttteg 780 ggtctctcgc tcgctcatcc tgatatggag agcttcattg aggcccgatt gaacgccaag 840 ggtcagcgga cgctcaagca gatccgcggc cgtggcttct gcctgccgca ggtggtgttg 900 acctacccct tcctcaacgt cttctcgctg gtcaacgaca cgaacctgct gaatgaggcg 960 ccgatcgcta gcatcctcaa gcaggagact gtggtccagg ccgaagcgag ctacacggta 1020 teggtgeeca agtteeegeg etteatetgg catgegatee eegaegagat egtgeegtae 1080 cagcctgcgg ctacctacgt caaggagcaa tgtgccaagg gcgccaacat caatttttcg 1140 ccctacccga tcgccgagca cctcaccgcc gagatetttg gtctggtgcc tagcctgtgg 1200 tttatcaagc aagcettega eggeaceaca eecaaggtga tetgeggeae teecateeet 1260 gctatcgctg gcatcaccac gccctcggcg gaccaagtgc tgggttcgga cctggccaac 1320 cagctgcgca gcctcgacgg caagcagagt gcgttcggca agccctttgg ccccatcaca 1380 ccaccttag 1389

<210> 28

<211> 462

<212> PRT

<213> Candida antarctica

<220>

<221> MISC FEATURE

<222> (1389)..(1389)

<223> X=Xaa

<400> 28

Met Arg Val Ser Leu Arg Ser Ile Thr Ser Leu Leu Ala Ala Thr
1 5 10 15

Ala Ala Val Leu Ala Ala Pro Ala Ala Glu Thr Leu Asp Arg Ala 20 25 30

Ala Leu Pro Asn Pro Tyr Asp Asp Pro Phe Tyr Thr Thr Pro Ser Asn 35 40 45

Ile Gly Thr Phe Ala Lys Gly Gln Val Ile Gln Ser Arg Lys Val Pro 50 55 60

Thr Asp Ile Gly Asn Ala Asn Asn Ala Ala Ser Phe Gln Leu Gln Tyr 65 70 75 80

Arg Thr Thr Asn Thr Gln Asn Glu Ala Val Ala Asp Val Ala Thr Val 85 90 95

Trp Ile Pro Ala Lys Pro Ala Ser Pro Pro Lys Ile Phe Ser Tyr Gln
100 105 110

Val Tyr Glu Asp Ala Thr Ala Leu Asp Cys Ala Pro Ser Tyr Ser Tyr 115 120 125

Leu Thr Gly Leu Asp Gln Pro Asn Lys Val Thr Ala Val Leu Asp Thr 130 135 140

Pro Ile Ile Gly Trp Ala Leu Gln Gln Gly Tyr Tyr Val Val Ser 145 150 155 160

Ser Asp His Glu Gly Phe Lys Ala Ala Phe Ile Ala Gly Tyr Glu Glu 165 170 175

Gly Met Ala Ile Leu Asp Gly Ile Arg Ala Leu Lys Asn Tyr Gln Asn 180 185 190

Leu Pro Ser Asp Ser Lys Val Ala Leu Glu Gly Tyr Ser Gly Gly Ala 195 . 200 205

His Ala Thr Val Trp Ala Thr Ser Leu Ala Glu Ser Tyr Ala Pro Glu 210 215 220

225	ASII	116	Val	GIY	230	ser	nis	GIÀ	GIY	235	PIO	Val	ser	АТА	1ys 240
Asp	Thr	Phe	Thr	Phe 245	Leu	Asn	Gly	Gly	Pro 250	Phe	Ala	Gly	Phe	Ala 255	Leu
Ala	Gly	Val	Ser 260	Gly	Leu	Ser	Leu	Ala 265	His	Pro	Asp	Met	Glu 270	Ser	Phe
Ile	Glu	Ala 275	Arg	Leu	Asn	Ala	Lys 280	Gly	Gln	Arg	Thr	Leu 285	Lys	Gln	Ile
Arg	Gly 290	Arg	Gly	Phe	Cys	Leu 295	Pro	Gln	Val	Val	Leu 300	Thr	Tyr	Pro	Phe
Leu 305	Asn	Val	Phe	.Ser	Leu 310	Val	Asn	Asp	Thr	Asn 315	Leu	Leu	Asn	Glu	Ala 320
Pro	Ile	Ala	Ser	Ile 325	Leu	Lys	Gln	Glu	Thr 330	Val	Val	Gln	Ala	Glu 335	Ala
Ser	Tyr	Thr	Val 340	Ser	Val	Pro	Lys	Phe 345	Pro	Arg	Phe	Ile	Trp 350	His	Ala
Ile	Pro	Asp 355	Glu	Ile	Val	Pro	Tyr 360	Gln	Pro	Ala	Ala	Thr 365	Tyr	Val	Lys
Glu	Gln 370	Cys	Ala	Lys	Gly	Ala 375	Asn	Ile	Asn	Phe	Ser 380	Pro	Tyr	Pro	Ile
Ala 385	Glu	His	Leu	Thr	Ala 390	Glu	Ile	Phe	Gly	Leu 395	Val	Pro	Ser	Leu	Trp 400
Phe	Ile	Lys	Gln	Ala 405	Phe	Asp	Gly	Thr	Thr 410	Pro	Lys	Val	Ile	Cys 415	Gly
Thr	Pro	Ile	Pro 420	Ala	Ile	Ala	Gly	Ile 425	Thr	Thr	Pro	Ser	Ala 430	Asp	Gln
Val	Leu	Gly	Ser	Asp	Leu	Ala	Asn	Gln	Leu	Arg	Ser	Leu	Asp	Gly	Lys

Gln Ser Ala Phe Gly Lys Pro Phe Gly Pro Ile Thr Pro Pro 450 455

<210> 29

<211> 2794

<212> DNA <213> Scytalidum thermophilum

<400> 29

atgaacagag	tcacgaatct	cctcgcctgg	gccggcgcga	tagggctcgc	ccaagcaaca	60
tgtccctttg	cggaccctgc	cgctctgtat	agtcgtcaag	atactaccag	cggccagtcg	120
ccacttgcag	catacgaggt	ggatgacagc	accggatacc	tgacctccga	tgttggcggg	180
cccattcagg	accagaccag	cctcaaggca	ggcatccggg	gtccgaccct	tcttgaggac	240
tttatgttcc	gccagaagat	ccagcacttc	gaccatgaac	gggtaaggac	ataatgctca	300
cacgagcggc	tgcgtgccca	cctatttccg	agacattggg	ctggctggct	ggctgtgact	360
gcttgagttt	ggggacatac	ggagtacctt	actgacgcgc	tgaaccactc	caggttcccg	420
aaagggcggt	ccatgctcga	ggcgctggag	cacacgggac	cttcacgagt	tacgccgact	480
ggagtaacat	caccgcggcg	tcctttctga	acgccactgg	aaagcagacg	ccggtgtttg	540
tccggttctc	gaccgttgct	gggtctcgag	ggagcgcaga	cacggcgaga	gacgttcatg	600
gtttcgcgac	gcggtttgta	agttttgttg	tgtttcattc	gttccggtct	gtagaggagg	660
gttaggatat	gagctaacgt	gtgtgtgtgt	gtgaagtaca	ctgatgaagg	caactttgta	720
cgtcccacgc	atggtcctca	attctcttat	ctggcagcca	tgtggtcatt	gtcgacgttg	780
ctaacttgcg	taggatatcg	tcggaaacaa	catcccggta	ttcttcattc	aagatgcaat	840
ccagttccct	gaccttatcc	actcggtcaa	gccgcgtccc	gacaacgaga	ttccccaagc	900
ggcgacggct	catgattcag	cttgggactt	cttcagccag	cagccaagca	ccatggtaag	960
caatggacca	aggagccgca	cctggggtga	catgccaggg	agtacacaag	gcgttccgat	1020
gaccctcgtg	tgaccaaggc	agtacaacac	tccacggagg	actcgaagag	attcggcaat	1080
atggaacaca	gaactgacag	gatggtagca	cacgttgttc	tgggccatgt	ccggccacgg	1140
aatccctcgc	agctaccgcc	atatggtacg	tttgcctggc	tgagatgacc	gtgaatccat	1200
ttctaacctc	aagcccagga	tggcttcggc	gtccacacgt	tccggtttgt	caaagatgac	1260
ggctcgtcca	agttgatcaa	gtggcatttc	aagtcacgcc	agggaaaggc	gagtctagtc	1320
tgggaagagg	cgcaggttct	ttctggcaag	aatgccgact	tccaccgtca	ggacctctgg	1380

gatgctattg agtccgggaa cggaccagaa tgggatgtct gcgtccagat tgtcgatgag 1440 teccaggege aageetttgg ettegaettg etggaeeega caaagateat eeeegaggag 1500 tacgcccct tgacgaagct gggcctcttg aagctggatc gcaatccgac caactacttc 1560 gccgagacgg agcaggtcat gttccaaccc ggtcatatcg tccgcggcat cgacttcacg 1620 gaggatecee tgetacaggg acgeetettt tegtacettg acaegcaget gaaceggaat 1680 ggcgggccca actttgagca gctgcccatc aacatgccgc gggtgccgat tcacaacaat 1740 aatcgcgacg gcgccggcca gatgttcatc cacaggaaca agtatcctgt aagtgcctct 1800 tttgcctcga tcgttgtggt gccggcttgc tgacagacgc agtacactcc caacaccctg 1860 aacagtggtt atccgcggca agccaaccaa aatgccggac gcggattctt cacagcgcct 1920 ggccgtaccg ccagcggtgc cctcgtccgt gaggtgtcgc caacattcaa cgaccactgg 1980 tegeageece gtetettett caacteeete acteeegteg aacaacagtt cetegteaac 2040 gccatgcgct tcgaaatcag ccttgtgaag tcggaagaag tcaagaagaa cgtgctcacc 2100 cageteaace gegteageea tgaegtggee gtgegegtgg eegeegetat eggeetegge 2160 gcgcccgacg cggacgacac atactaccac aacaacaaga cggctggcgt ctcaatcgtt 2220 ggaagcgggc ccttgcctac catcaagact ctccgcgtcg gcatcctggc taccacgagc 2280 gagtcgagcg cgctggatca ggcggcccag ctccgcaccc gtctggaaaa ggacgggctt 2340 gtggtcacgg ttgtggctga aacgctgcgc gagggggtag accagacgta ctcgacggcg 2400 gatgccacgg gtttcgacgg cgttgttgtt gtggacgggg cggcggcgct gtttgccagc 2460 accgcgtcgt cgccgttgtt cccgacgggc aggccgttgc agatctttgt ggacgcgtat 2520 cggtggggaa agccggtcgg tgtgtgtggt gggaagtcga gcgaggtgtt ggatgcggcg 2580 gatgttccgg aagacgggga cggggtgtat tcggaggagt cggtggacat gtttgtggag 2640 gagtttgaga aggggttggc tactttcagg gtgagtcttg atgcctttgt ttgttgtgat 2700 gttattgttt tgttttgtct cggactttgt gaaagaatga cggactgacg tctttggtat 2760 ctagtttacc gatcggtttg ctctcgactc ttag 2794

<210> 30

<211> 717

<212> PRT

<213> Scytalidium thermophilum

<400> 30

Met Asn Arg Val Thr Asn Leu Leu Ala Trp Ala Gly Ala Ile Gly Leu 1 5 10 15

Ala Gln Ala Thr Cys Pro Phe Ala Asp Pro Ala Ala Leu Tyr Ser Arg
20 25 30

Gln Asp Thr Thr Ser Gly Gln Ser Pro Leu Ala Ala Tyr Glu Val Asp 35 40 45

Asp Ser Thr Gly Tyr Leu Thr Ser Asp Val Gly Gly Pro Ile Gln Asp 50 55 . 60

Gln Thr Ser Leu Lys Ala Gly Ile Arg Gly Pro Thr Leu Leu Glu Asp 65 70 75 80

Phe Met Phe Arg Gln Lys Ile Gln His Phe Asp His Glu Arg Val Pro 85 90 95

Glu Arg Ala Val His Ala Arg Gly Ala Gly Ala His Gly Thr Phe Thr 100 105 110

Ser Tyr Ala Asp Trp Ser Asn Ile Thr Ala Ala Ser Phe Leu Asn Ala 115 120 125

Thr Gly Lys Gln Thr Pro Val Phe Val Arg Phe Ser Thr Val Ala Gly 130 135 140

Ser Arg Gly Ser Ala Asp Thr Ala Arg Asp Val His Gly Phe Ala Thr 145 150 155 160

Arg Phe Tyr Thr Asp Glu Gly Asn Phe Asp Ile Val Gly Asn Asn Ile 165 170 175

Pro Val Phe Phe Ile Gln Asp Ala Ile Gln Phe Pro Asp Leu Ile His 180 185 190

Ser Val Lys Pro Arg Pro Asp Asn Glu Ile Pro Gln Ala Ala Thr Ala 195 200 205

His Asp Ser Ala Trp Asp Phe Phe Ser Gln Gln Pro Ser Thr Met His 210 215 220

225	ьeu	Pne	Trp	Ата	230	ser	GIY	HIS	Gly	235	Pro	Arg	ser	Tyr	Arg 240
His	Met	Asp	Gly	Phe 245	Gly	Val	His	Thr	Phe 250	Arg	Phe	Val	Lys	Asp 255	Asp
Gly	Ser	Ser	Lys 260	Leu	Ile	Lys	Trp	His 265	Phe	Lys	Ser	Arg	Gln 270	Gly	Lys
Ala	Ser	Leu 275	Val	Trp	Glu	Glu	Ala 280	Gln	Val	Leu	Ser	Gly 285	Lys	Asn	Ala
Asp	Phe 290	His	Arg	Gln	Asp	Leu 295	Trp	Asp	Ala	Ile	Glu 300	Ser	Gly	Asn	Gly
Pro 305	Glu	Trp	Asp	Val	Cys 310	Val	Gln	Ile	Val	Asp 315	Glu	Ser	Gln	Ala	Gln 320
Ala	Phe	Gly	Phe	Asp 325	Leu	Leu	Asp	Pro	Thr 330	Lys	Ile	Ile	Pro	Glu 335	Glu
Tyr	Ala	Pro	Leu 340	Thr	Lys	Leu	Gly	Leu 345	Leu	Lys	Leu	Asp	Arg 350	Asn	Pro
Thr	Asn	Tyr 355	Phe	Ala	Glu	Thr	Glu 360	Gln	Val	Met	Phe	Gln 365	Pro	Gly	His
Ile	Val 370	Arg	Gly	Ile	Asp	Phe 375	Thr	Glu	Asp	Pro	Leu 380	Leu	Gln	Gly	Arg
Leu 385	Phe	Ser	Tyr	Leu	Asp 390	Thr	Gln	Leu	Asn	Arg 395	Asn	Gly	Gly	Pro	Asn 400
Phe	Glu	Gln	Leu	Pro 405	Ile	Asn	Met	Pro	Arg 410	Val	Pro	Ile	His	Asn 415	Asn
Asn	Arg	Asp	Gly 420	Ala	Gly	Gln	Met	Phe 425	Ile	His	Arg	Asn	Lys 430	Tyr	Pro
Tyr	Thr	Pro 435	Asn	Thr	Leu	Asn	Ser 440	Gly	Tyr	Pro	Arg	Gln 445	Ala	Asn	Gln

Asn Ala Gly Arg Gly Phe Phe Thr Ala Pro Gly Arg Thr Ala Ser Gly 450 455 460

Ala Leu Val Arg Glu Val Ser Pro Thr Phe Asn Asp His Trp Ser Gln 465 470 475 480

Pro Arg Leu Phe Phe Asn Ser Leu Thr Pro Val Glu Gln Gln Phe Leu 485 490 495

Val Asn Ala Met Arg Phe Glu Ile Ser Leu Val Lys Ser Glu Glu Val 500 505 510

Lys Lys Asn Val Leu Thr Gln Leu Asn Arg Val Ser His Asp Val Ala 515 520 525

Val Arg Val Ala Ala Ala Ile Gly Leu Gly Ala Pro Asp Ala Asp Asp 530 540

Thr Tyr Tyr His Asn Asn Lys Thr Ala Gly Val Ser Ile Val Gly Ser 545 550 555 560

Gly Pro Leu Pro Thr Ile Lys Thr Leu Arg Val Gly Ile Leu Ala Thr 565 570 575

Thr Ser Glu Ser Ser Ala Leu Asp Gln Ala Ala Gln Leu Arg Thr Arg
580 585 590

Leu Glu Lys Asp Gly Leu Val Val Thr Val Val Ala Glu Thr Leu Arg
595 600 605

Glu Gly Val Asp Gln Thr Tyr Ser Thr Ala Asp Ala Thr Gly Phe Asp 610 620

Gly Val Val Val Asp Gly Ala Ala Ala Leu Phe Ala Ser Thr Ala 625 630 635 640

Ser Ser Pro Leu Phe Pro Thr Gly Arg Pro Leu Gln Ile Phe Val Asp 645 650 655

Ala Tyr Arg Trp Gly Lys Pro Val Gly Val Cys Gly Gly Lys Ser Ser 660 665 670

Glu Val Leu Asp Ala Ala Asp Val Pro Glu Asp Gly Asp Gly Val Tyr 675 680 685

Ser Glu Glu Ser Val Asp Met Phe Val Glu Glu Phe Glu Lys Gly Leu 690 695 700

Ala Thr Phe Arg Phe Thr Asp Arg Phe Ala Leu Asp Ser 705 710 715