4.1.5滑轮 预习导航

【预习目标】

- 1、知道滑轮:
- 2、知道定滑轮的定义、特点,并且能够理解定滑轮是一种变形的等臂杠杆;
- 3、知道动滑轮的定义、特点,并且能够理解动滑轮是一种变形的(动力臂是 阻力臂两倍的)省力杠杆;
- 4、知道定滑轮和动滑轮在生活中的应用:

【预习内容】				
1、	1、 定滑轮和动滑轮是根据使用时是否	5固定来分类的,使用		
	时固定不动的滑轮叫做定滑轮,	和一起移		
	动的滑轮叫做动滑轮。			
2、	2、 使用定滑轮不能,但可以	;		
	使用动滑轮不能,但可	可以。		
3、	3、 定滑轮的实质相当于一个杠杆,动	滑轮的实质相当于一		
	个杠杆。			
【尝试练习】				
1、判断以下滑轮是哪一种滑轮:				

【我的困惑】

【当堂训练】

- 1、如图5所示,物体A在力F的作用下匀速上升,物体A的重为100牛,滑轮的重力为20牛,则拉力F的大小为_____牛,物体相对于滑轮是_____的。 (选填"运动"或"静止")。
- 2、如图6所示,某工人将重150牛的铁桶在10秒内竖直向上匀速拉起4米,A装置是____(填"定"或"动")滑轮。上升过程工人拉绳子的拉力为___牛,拉力移动的距离为____米。(滑轮、绳的重力及摩擦不计).

3、如图所示,用三个滑轮分别拉同一个物体,沿同一水平面做匀速直线运动, 所用的拉力分别是 F_1 、 F_2 、 F_3 ,比较它们的大小应是() A、 $F_1 > F_2 > F_3$ B、 $F_1 < F_2 < F_3$ C、 $F_2 > F_1 > F_3$ D、 $F_2 < F_1 < F_3$

巩固案

【课内巩固】

1、如图1所示,通过定滑轮匀速提起重物G时,向三个方向拉动的力分别 为 F_1 、 F_1 、 F_1 ,则这三个力大小关系是() A, F_1 最大 * B、F₂最大 * C、F₃最大 * D、一样 F2 大 甲 \mathbb{Z} 图1 图2 2、如上图2所示,利用定滑轮、动滑轮匀速向上提升中午。已知物体的重力都 是100牛,则: (1) 不计动滑轮重及绳子与滑轮的摩擦,拉力 F_{H} = 牛、Fz= 牛; (2)如果物体被提升了2米,则绳子自由端移动的距离S **₩、S**Z= 米。 3、如下图3所示装置,用两个滑轮分别拉同一个物体在水平面上做匀速直线运 动,物体重为60 N,水平面与物体间的摩擦力为20 N,不考虑其他摩擦, 则F₁=_____, F₂=____。若物体在水平面移动的距离都是2m,则两图中 绳子自由端分别通过的距离s1= , s2= 图3 4、在下图4中做出定滑轮、动滑轮的五要素。

图4

果,然后归纳得出初步结论.

(1)比较(a)、(b)两图可知	
; (2)比较(b)、(c)、(d)三图可知	
———· 6、某同学研究动滑轮的使用特点,他每次都匀速提起钩码,研究过程如图所示,请仔细观察图中的操作和测量结果(不计滑轮的重力),然后归纳得出初结论:	
0.2* 10.1*	
(1)比较A、B两图可知:	
(2)比较B、C两图可知:	0
7、如图5所示,物体重180牛,动滑轮重20牛,绳重和摩擦不计。在拉力F的/用下,物体正以0.1米/秒的速度匀速上升。求:(1)拉力F;(2)2分钟时拉海绳子的长度。(假设绳子足够长)	

【能力拓展】

1、如图6所示,放在水平地面上的物体所受重力为G,系着它的一根竖直轻绳 绕过光滑滑轮,它的另一端受的拉力为F,地面对物体的支持力为N,下面关于 这三个力大小的关系正确的是()

A, F=G B, G=N C, F+N=G D, F=N

图5

2、如图7所示,物体A重20牛,滑轮重1牛,绳重不计,弹簧秤示数为25牛,则 物体B重为____牛; 地面对物体A的支持力____牛.

