Formelsamling for Matematikk 1 TDAT1004A/S1 - høst 2016

A. Komplekse tall

Standardform:	z	=	a + i b
Polarform:	z	=	$re^{i\theta} = r(\cos\theta + i\sin\theta)$
De Moivres:			$(\cos\theta + i\sin\theta)^n$
		=	$=\cos n\theta + i\sin n\theta$
Konjugert:	\bar{z}	=	a - bi
Argument:	$\arg z$	=	θ
Absoluttverdi:	z	=	$\sqrt{a^2+b^2}$
Realdelen:	Re(z)	=	a
Imaginærdelen:	$\operatorname{Im}(z)$	=	b

B. Lineær algebra

1. Matriseoperasjoner

Gitt matrisene $A = [a_{ij}]$ og $B = [b_{ij}]$.

Sum:	A + B	=	$[a_{ij} + b_{ij}]$
Multiplikasjon med skalar:			$\left[ka_{ij} ight]$
Produkt:	AB	=	$\left[\sum_{k=1}^{n} a_{ik} b_{kj}\right]$
Transponering:	A^T	=	$[a_{ji}]$
	$(AB)^T$	=	B^TA^T

2. Spesielle kvadratiske matriser

Diagonal matrise $D = diag(a_{11}, \cdots, a_{nn})$	$a_{ij} = 0$, når $i \neq j$.
Enhetsmatrise	$I = \operatorname{diag}(1, 1, \dots, 1)$
ÿvre triangulær matrise	$a_{ij} = 0$ når $i > j$
Nedre triangulær matrise	$a_{ij} = 0$ når $i < j$
Symmetrisk matrise	$A^T = A$
Skjevsymmetrisk matrise	$A^T = -A$
Singulær matrise	$\det A = 0$

3. Rangen til en matrise

 $\operatorname{rank} A = \operatorname{antall} \operatorname{pivotelementer} i \operatorname{en} \operatorname{trappematrise} \operatorname{for} A.$

$$rank(A^T) = rank(A)$$

4. Invers matrise

$$A^{-1}A = AA^{-1} = I$$
$$(AB)^{-1} = B^{-1}A^{-1}$$
$$(A^{T})^{-1} = (A^{-1})^{T}$$

Gauss Jordan:

$$[A|I] \sim [I|A^{-1}]$$

Kofaktormetoden

$$A^{-1} = \frac{(\ker A)^T}{\det A}$$

Følgende er ekivalent for kvadratiske matriser:

- 1. A er inverterbar $(A^{-1}$ eksisterer.)
- 2. $\det A \neq 0$.
- 3. A har maksimal rang.

5. Ortogonale matriser.

$$A^T = A^{-1} \Leftrightarrow AA^T = A^TA = I$$

6. Determinanter

Kofaktor: $kof(a_{ij}) = (-1)^{i+j} D_{ij}$, der D_{ij} er underdeterminanten en får ved å fjerne rad i og søyle j fra det A.

Utvikling langs rad nr. i og langs søyle nr. j:

$$\det A = \sum_{k=1}^{n} a_{ik} \operatorname{kof}(a_{ik}) \qquad \det A = \sum_{k=1}^{n} a_{kj} \operatorname{kof}(a_{kj}).$$

$$\bullet \ \det(A^{T}) = \det(A)$$

$$\bullet \ \det(A^{-1}) = (\det(A))^{-1}$$

- $\det(AB) = \det A \cdot \det B$

7. Lineære transformasjoner

En transformasjon T fra \mathbb{R}^n til \mathbb{R}^m kalles lineær hvis og bare hvis

- 1. $T(c\mathbf{x}) = cT(\mathbf{x})$, for alle $\mathbf{x} \in \mathbb{R}^n$ og alle $c \in \mathbb{R}$.
- 2. $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$, for alle $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Transformasjonsmatrisen til T er matrisen

$$\begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

10. Underrom, lineært spenn:

En vektormengde V i \mathbb{R}^n er et underrom i \mathbb{R}^n hvis og bare hvis

- 1. \mathbf{u} og \mathbf{v} er vilkårlige vektorer i V, så er $\mathbf{u} + \mathbf{v}$ en vektor i V,
- 2. c er et vilkårlig tall og ${\bf u}$ er en vilkårlig vektor i V, så er $c{\bf u}$ en vektor i V.

Vektorsettet S er et **generatorsett** for V hvis og bare hvis enhver vektor i V kan skrives som en lineærkombinasjon over S.

 $V = \operatorname{linsp} S$ (det lineære spennet til S).

8. Geometriske transformasjoner i \mathbb{R}^2 : En basis for V er et l.u. generatorsett for V.

De første fem er lineære. Den sjette er en fiktiv transformasjonsmatrise.

1. Speiling om 1. akse:	$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$
2. Speiling om 2. akse:	$\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]$
3. Speiling om linjen $x_1 = x_2$:	$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]$
4. Rotasjon om origo:	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$
5. Skalering:	$\left[\begin{array}{cc} k_1 & 0 \\ 0 & k_2 \end{array}\right]$
6. Translasjon:	$ \left[\begin{array}{ccc} 1 & 0 & a_1 \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{array}\right] $

Elementære linjeoperasjoner på en matrise bevarer eventuelle lineære sammenhenger mellom søylene i matrisen.

11. Egenverdier og egenvektorer:

 $A\mathbf{x} = \lambda \mathbf{x}, \ x \neq 0.$ $\mathbf{x} =$ egenverdion, $\lambda =$ egenverdi. $E_{\lambda} =$ egenrommet hørende til egenverdion λ . $m_{\lambda} =$ multiplisiteten av en repetert egenverdi λ ,

$$1 \leq \dim(E_{\lambda}) \leq m_{\lambda}$$
.

Hvis $\dim(E_{\lambda}) < m_{\lambda}$ for en repetert egenverdi λ , er A defekt.

12. Diagonalisering av A, $(n \times n-matrise)$

$$K^{-1}AK = D,$$

Egenvektormatrise: (Diagonaliseringsmatrise)

$$K = \begin{bmatrix} \mathbf{k}_1 & \mathbf{k}_2 & \cdots & \mathbf{k}_n \end{bmatrix},$$

 $\operatorname{der} \{\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_n\}$ er l.u. og egenvektorer.

Egenverdimatrise: $D = diag(\lambda_1, \lambda_1, \dots, \lambda_1)$

9. Lineært avhengig/uavhengig vektorsett:

Rangmetoden: Innfør matrisen $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_k \end{bmatrix}$ så er $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\}$ l.a. hvis rank(A) < k og l.u. hvis rank(A) = k.

Alternativ metode: $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\}$ er l.u. hvis og bare hvis $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_k\mathbf{a}_k = 0$ kun har løsningen $x_1 = x_2 = \dots = x_k = 0$.

C. Logikk

1. Logikklovene

 $\sim \mathbf{t} \equiv \mathbf{c}$

Kommutative lover $p \lor q \equiv q \lor p$ $p \wedge q \equiv q \wedge p$ Assosiative lover $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ Distributive lover $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ ${\bf Identitets lover}$ $p \lor \mathbf{c} \equiv p$ $p \wedge \mathbf{t} \equiv p$ Negasjonslover $p \lor \sim p \equiv \mathbf{t}$ $p \wedge \sim p \equiv \mathbf{c}$ Dobbel negasjon $\sim (\sim p) \equiv p$ Idempotens $p \lor p \equiv p$ $p \wedge p \equiv p$ Universalgrense $p \lor \mathbf{t} \equiv \mathbf{t}$ $p \wedge \mathbf{c} \equiv \mathbf{c}$ ${\bf DeMorgan}$ $\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \lor q) \equiv \sim p \land \sim q$ Absorbsjon $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$ Negasjon av t og c

 $\sim \mathbf{c} \equiv \mathbf{t}$

2. Gyldige argumenter

Et argument er en sekvens av premisser $P_1, P_2, P_3, \ldots, P_n$, og en konklusjon Q. Argumentet er gyldig hvis og bare hvis konklusjonen er sann hver gang alle premissene er sanne.

4. Inferensregler

		$p \rightarrow q$		
Modus Ponens		p		
	··.	q		
		$p \to q$		
Modus Tollens		$\sim q$		
	··.	$\sim p$		
Generalisering		p		
	:.	$\frac{p \vee q}{p \wedge q}$		
Spesialisering				$p \wedge q$
	::	p	<u>:. </u>	q
Konjunksjon		p		
		q		
	:.	$p \wedge q$		
		$p \lor q$		$p \lor q$
Eliminasjon		$\sim q$		$\sim p$
	::	$\frac{p}{p \to q}$	<i>:</i> .	q
Transitivitet		$q \rightarrow r$		
		$\frac{p \to r}{p \lor q}$		
Oppdeling		$p \to r$		
i tilfeller		$q \rightarrow r$		
	··.			
Motsigelse		$\sim p \to \mathbf{c}$		
111010180100	<i>:</i> .	p		