

交互网络 - 相关性热图[云]

网址: https://www.xiantao.love

更新时间: 2023.02.24

目录

基本概念	3
应用场景	3
分析过程	3
结果解读	6
数据格式	7
参数说明	8
ID 列表	8
统计	9
映射	10
布局	12
热图1	13
标注 1	15
标题文本 1	16
图注 1	
坐标轴	17
风格	18
图片 1	18
结果说明 1	19
主要结果 1	19
补充结果 2	20
方法学 2	22
如何引用 2	23
常见问题 2	<u>2</u> 4

基本概念

- ▶ 热图: 热图是一个以颜色变化来显示数据情况的矩阵; 相关性热图这是根据 分子之间的相关性来展示的热图。
- ▶ 涉及的统计方法:
 - Pearson 相关:参数相关性检验,衡量两组之间是否存在线性关系
 - Spearman 相关: 非参数相关性检验, 通过秩次来判断两组是否存在相关性。如果不懂具体的选择条件, 可以选择该方法
- ▶ 注意: 相关不等于因果, 也就是两者是可能不存在直接的关系

应用场景

基于云端数据 分析和可视化 各个基因之间(基因/分子两两间) 表达的相关趋势情况

分析过程

云端数据 — 相关性分析 — 可视化

- 云端数据:提供预清洗好的云端数据,不同平台的云端数据集的分子可能会有不同。注意:选择了不同的平台,搜索出来的分子可能是不一样的
- ▶ 相关性分析
 - 将云端数据进行相关性分析

◆ 在参数[ID 列表]输入云端数据中需要进行分析的分子/基因名,输入 多少个分子 ID 就对多少分子进行分析,如下:

如果输入分子 ID 少于 3 个或者输入分子 ID 与数据中匹配的个数少于 3 个,则不能进行分析:如下:

◆ 相关性分析表: 将分子 ID 匹配到数据中的分子进行两两间相关性分析

● 相关性系数表

表1: 相关系数表格											
	TSPAN6	TNMD	DPM1	SCYL3	C1orf112	FGR	CFH	FUCA2	GCLC	NFYA	
TSPAN6		0.183	0.326	0.2	0.299	-0.0651	-0.003	0.00586	0.0725	0.0798	
TNMD	0.183		0.0379	0.177	0.0244	0.161	0.106	0.0636	-0.00236	0.119	
DPM1	0.326	0.0379		0.132	0.452	-0.073	-0.00952	0.187	0.234	0.132	
SCYL3	0.2	0.177	0.132		0.544	-0.04	0.0741	0.148	0.163	0.533	
C1orf112	0.299	0.0244	0.452	0.544		-0.138	0.0032	0.181	0.329	0.41	
FGR	-0.0651	0.161	-0.073	-0.04	-0.138		0.521	-0.00798	-0.0888	-0.0141	
CFH	-0.003	0.106	-0.00952	0.0741	0.0032	0.521		-0.064	0.0836	-0.0934	
FUCA2	0.00586	0.0636	0.187	0.148	0.181	-0.00798	-0.064		-0.144	0.171	
GCLC	0.0725	-0.00236	0.234	0.163	0.329	-0.0888	0.0836	-0.144		0.147	
NFYA	0.0798	0.119	0.132	0.533	0.41	-0.0141	-0.0934	0.171	0.147		

● 统计学检验 p 值

表2: 相关性检验表格												
	TSPAN6	TNMD	DPM1	SCYL3	C1orf112	FGR	CFH	FUCA2	GCLC	NFYA		
TSPAN6		0.0192	2.22e-05	0.0105	0.000108	0.409	0.97	0.941	0.358	0.311		
TNMD	0.0192		0.631	0.024	0.757	0.0398	0.177	0.42	0.976	0.13		
DPM1	2.22e-05	0.631		0.0941	1.35e-09	0.354	0.904	0.017	0.0026	0.0933		
SCYL3	0.0105	0.024	0.0941		5.82e-14	0.613	0.347	0.0597	0.0374	2.5e-13		
C1orf112	0.000108	0.757	1.35e-09	5.82e-14		0.0788	0.968	0.0211	1.83e-05	5.63e-08		
FGR	0.409	0.0398	0.354	0.613	0.0788		9.73e-13	0.919	0.26	0.859		
CFH	0.97	0.177	0.904	0.347	0.968	9.73e-13		0.417	0.289	0.236		
FUCA2	0.941	0.42	0.017	0.0597	0.0211	0.919	0.417		0.0666	0.0289		
GCLC	0.358	0.976	0.0026	0.0374	1.83e-05	0.26	0.289	0.0666		0.0614		
NFYA	0.311	0.13	0.0933	2.5e-13	5.63e-08	0.859	0.236	0.0289	0.0614			

将分析后得到的结果(相关性系数与p值)进行后续的相关性热图可视化

结果解读

左图: (完整热图)

- ▶ 行、列都代表分子/基因
- ▶ 每一个小方格表示分子之间的相关系数,颜色越深,分子间越相关

右图: (完整热图-三角对角线)

- ▶ 行、列都代表基因/分子
- ▶ 每一个小方格分为两个部分(三角形),上部分表示分子间的相关系数,颜色越深,分子间越相关;下部分表示 p 值,颜色越深 p 值越小

补充:

- ▶ * 表示 Pvalue < 0.05
- ➤ Correlation 代表相关性系数(Correlation): |Correlation|越大,分子间相关性越高,反之相关性越低
 - Correlation < 0, 分子间呈负相关关系
 - Correlation = 0,分子间没有相关关系
 - Correlation > 0, 分子间呈正相关关系
- ▶ Pvalue 代表分子间相关系数对应的 Pvalue 值, Pvalue 值越小, 分子间相关系数越显著

数据格式

提供预清洗好的云端数据,不同平台的云端数据集的分子可能会有不同。 注意: 选择了不同的平台,搜索出来的分子可能是不一样的

(该样本数据:如下:)

食管癌 / TCGA / TCGA-ESCA / RNAseq / STAR / TPM @过滤:去除正常 @处理:log2(value+1)

参数说明

(说明:标注了颜色的为常用参数。)

ID 列表

- ▶ 分子 ID: 这部分输入的是热图部分的分子列表
 - 这部分分子可以来自「单基因差异分析」或者「单基因相关性筛选」两个模块筛选后再进行选择,建议是结合两者一起来看,如果想要热图结果好看一些,建议是从「单基因相关性筛选」模块中挑相关性高的分子进行可视化(因为相关趋势更加明显)
 - 分子 ID 不能少于 3 个或者分子 ID 与数据中匹配的个数少于 3 个
 - 一行一个 ID,可以是分子名,也可以是分子 ID,最多支持 20 个(最多 支持 20 个分子进行相关性分析,也就是热图的行/列不能超过 20)

统计

- ▶ 统计方法:可以选择分子间进行相关性分析的方法
 - spearman: Spearman(默认)为非参数检验方法,数据可以不需要满足正态性

■ pearson: Pearson 为参数检验方法,数据需要满足双正态

映射

▶ 上半颜色映射:对应整体颜色的映射,当热图选择的是三角对角线类型时,则对应三角的上半颜色映射,热图-->类型-->三角对角线(第1个为上半颜色映射变量相关系数,下半颜色映射变量 p 值;第2个为上半颜色映射变量 p 值,下半颜色映射变量相关系数)

▶ 下半颜色映射: 当热图选择的是三角对角线类型时,则对应三角的下半颜色映射(如上: 上半颜色映射)

大小映射:可以对热图进行大小映射,只有在非三角对角线类型的时候会有效果,对应映射方块大小,默认为不映射,还可以选择相关系数绝对值,如下:

布局

▶ 类型:可以选择热图的类型,默认为完整热图,还可以选择上半热图(只画上半部分热图)、下半热图(只画下半热图),如下:

热图

▶ 方块: 可以选择热图中每个小块(一行一列)的类型,默认为方块,还可以 选择圆形,三角对角线,如下:

▶ 上半(全)颜色:选择三角类型时可以修改对应方块上半部分颜色,其他类型则修改对应整个方块颜色

▶ 下半颜色: 当选择三角类型时可以修改对应方块下半部分颜色, 其他类型无法修改

▶ 描边颜色:可以修改热图对应方块的描边颜色

描边粗细:可以修改热图对应块方的描边粗细

▶ 大小比例:可以修改热图对应方块的大小比例,默认为1

不透明度:可以修改热图对应方块的不透明度,默认为1,表示完全不透明, 0表示完全透明

标注

- ➤ 标注映射:可以选择是否在热图矩阵对应的每一个小矩形上进行标注映射, 默认为星号(*p<0.05)进行标注,还可以选择,如下: (左侧为(*p<0.05)映射, 右侧为不映射)
 - 星号(*p<0.05|**p<0.01)
 - 星号(*p<0.05|**p<0.01|***p<0.001)
 - p值(2位小数)
 - 相关系数(2位小数)
 - 无

- 颜色:可以选择当进行标注映射时,标注的颜色
- 》标注大小:可以选择并修改标注的大小,默认为6pt

标题文本

▶ 大标题: 大标题文本

补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括号括住,比如 [[2]]

图注

▶ 是否展示: 可以选择是否展示图注信息, 默认展示

▶ 图注标题:可以修改图注标题内容,默认没有

▶ 图注位置:默认为图片的右侧,还可以选择上、下

坐标轴

> x 轴标注旋转:可选择并修改 x 轴对应刻度文本的旋转角度

风格

网格:可以选择是否展示网格,默认不展示

》 文字大小: 控制整体文字大小, 默认为 6pt

图片				
	图片		~	
	宽度 (cm)	6		
	高度 (cm)	6		
	字体	Arial	¥	

▶ 宽度:图片横向长度,单位为 cm

▶ 高度: 图片纵向长度,单位为 cm

▶ 字体:可以选择图片中文字的字体

结果说明

主要结果

补充结果

计方法: spe	arman									
				3	表1: 相关系数表	格				
	FAM241B	TMEM37	UGT2B7	LRG1	SHCBP1	SOSTDC1	NPTX1	FAM98B	ZNF439	ZNF440
FAM241B		0.185	-0.169	-0.136	0.307	0.128	0.0152	0.293	0.0653	-0.0255
TMEM37	0.185		0.141	0.177	-0.0371	0.0581	-0.177	-0.0648	-0.034	0.0259
UGT2B7	-0.169	0.141		0.444	-0.247	-0.227	-0.476	-0.182	0.0138	0.133
LRG1	-0.136	0.177	0.444		-0.128	-0.197	-0.392	-0.126	-0.0191	0.16
SHCBP1	0.307	-0.0371	-0.247	-0.128		0.144	0.125	0.453	-0.0528	0.111
SOSTDC1	0.128	0.0581	-0.227	-0.197	0.144		0.0384	0.235	0.102	-0.0428
NPTX1	0.0152	-0.177	-0.476	-0.392	0.125	0.0384		0.104	0.273	-0.0087
FAM98B	0.293	-0.0648	-0.182	-0.126	0.453	0.235	0.104		0.159	0.16
ZNF439	0.0653	-0.034	0.0138	-0.0191	-0.0528	0.102	0.273	0.159		0.25
ZNF440	-0.0255	0.0259	0.133	0.16	0.111	-0.0428	-0.00871	0.16	0.25	

这里提供相关性分析表: 可以查看分子之间的相关系数

- ▶ 相关系数为正数,说明两个分子(主要分子与其他分子)之间可能存在正相 关关系;相关系数为负数,说明两个分子可能存在负相关关系
 - 相关系数绝对值在 0.8-1.0 之间,说明两个分子之间强相关
 - 相关系数绝对值在 0.5-0.8 之间,说明两个分子之间中等程度相关
 - 相关系数绝对值在 0.3-0.5 之间, 说明两个分子之间相关程度一般
 - 相关系数绝对值在 0.0-0.3 之间,说明两个分子之间弱相关或者不相关

表2: 相关性检验表格											
	FAM241B	TMEM37	UGT2B7	LRG1	SHCBP1	SOSTDC1	NPTX1	FAM98B	ZNF439	ZNF440	
FAM241B		0.0183	0.0312	0.0834	6.86e-05	0.104	0.847	0.000149	0.407	0.747	
TMEM37	0.0183		0.0731	0.0242	0.639	0.461	0.0238	0.411	0.667	0.742	
UGT2B7	0.0312	0.0731		2.91e-09	0.00148	0.0035	1.42e-10	0.02	0.861	0.09	
LRG1	0.0834	0.0242	2.91e-09		0.103	0.0118	2.28e-07	0.108	0.809	0.041	
SHCBP1	6.86e-05	0.639	0.00148	0.103		0.0671	0.111	1.26e-09	0.503	0.159	
SOSTDC1	0.104	0.461	0.0035	0.0118	0.0671		0.626	0.00255	0.196	0.587	
NPTX1	0.847	0.0238	1.42e-10	2.28e-07	0.111	0.626		0.188	0.000415	0.912	
FAM98B	0.000149	0.411	0.02	0.108	1.26e-09	0.00255	0.188		0.0421	0.0407	
ZNF439	0.407	0.667	0.861	0.809	0.503	0.196	0.000415	0.0421		0.00129	
ZNF440	0.747	0.742	0.09	0.041	0.159	0.587	0.912	0.0407	0.00129		

相关性.xlsx

相关性系数表格:

- 1. 表中包含了各个变量间的相关系数(r)值,相关系数一般是 -1到1 之间,正负号表示正相关和负相关,系数绝对值大小表示相关性大小
- 2. 一般关系强度是: |r|>0.95: 显著性相关; |r|≥0.8: 高度相关; 0.5≤|r|<0.8: 中度相关; 0.3≤|r|<0.5: 低度相关; |r|<0.3: 弱相关相关性p值表格:
- 1. 表中包含了各个变量间的相关性的检验p值

这里提供相关性分析表: 可以查看各个分子间的相关性的检验 p 值

▶ p值表示检验 p值

方法学

统计分析和可视化均在 R 4.2.1 版本中进行

涉及的 R 包: ggplot2 包 (用于可视化)

处理过程:

- (1) 对数据中主分子(变量)和次要分子(分子)之间进行相关性分析
- (2) 分析结果用 ggplot 包进行共表达热图可视化

数据:

- (1) 数据获取:从 TCGA 数据库(https://portal.gdc.cancer.gov)下载并整理 TCGA-ESCA(食管癌)项目 STAR 流程的 RNAseq 数据并提取 TPM 格式的数据 以及 临床数据
- (2) 数据过滤策略: 去除正常
- (3) 数据处理方法: log2(value+1)

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 选择哪些分子进行可视化? 分子列表来自哪里? 如何才能让热图更加好看?

答:分子可以来自「单基因差异分析」或者「单基因相关性筛选」两个模块筛选 后再进行选择,建议是结合两者一起来看,可以分别从高和低各自挑选 10 个、 15 个或者 20 个来进行可视化

如果想要<mark>热图结果好看一些</mark>,建议是从「单基因相关性筛选」模块中挑相关性高的分子进行可视化(因为相关趋势更加明显)

2. 方法里面的 Spearman 和 Pearson 方法, 应该选择哪一个?

答: 两种方法均可以选择。Pearson 会要求数据是满足正态性, Spearman 因为是非参数的方法,可以不需要满足。可以先选择非参数的 Spearman 相关进行尝试。

3. 图的内容被压缩了,如何处理?

答:由于文字不会被压缩,如果热图部分很长,就可能会导致热图部分重叠。解决方案可以是:

- ① 增加图片高度;
- ② 减少分子列表中的分子。

4. 为什么在分子输入框内输入了很多的分子, 但是出来的图只有几个分子, 数目对不上?

答:输入的分子会进行匹配的,只有是正式是分子名才会匹配上,而蛋白或者别名有可能会匹配不上,如果是要精准匹配,建议是输入 ENSG 编号 (可以利用 ID 转换工具转换 ID)

5. 相关系数多少为好?

答: 这个没有很统一的标准, 可以参考以下:

- ▶ 相关系数强弱:
 - 绝对值在 0.8 以上: 强相关
 - 绝对值在 0.5-0.8: 中等程度相关
 - 绝对值在 0.3-0.5: 相关程度一般
 - 绝对值在 0.3 以下: 弱或者不相关