

EM7028 Datasheet

Heart Rate Sensor with I²C Interface

Revision V 1.0 2016-05-03 Updated

CONTENTS

1.	Description	6
2.	Features	6
3.	Functional Block Diagram	7
4.	PIN Configuration	8
5.	Functional Description	8
	5.1 HRS in continuous mode	8
	5.2 HRS in pulse mode	9
	5.3 Typical performance chart	9
6.	Parameters	10
7.	Spectral Response Range	12
8.	Absolute Maximum Ratings	12
9.	I ² C State Machine	13
10.	Timing	13
11.	Registers Operation	14
12.	Registers Definition	14
13.	Sample Application	20
14.	PCB Design	21
15.	Package Outline Dimensions	22

16.	Packing	.24
17.	Recommended Reflow Profile	.25

EM7028 Datasheet

FIGURE LIST

Fig.	1 EM7028 Functional Block Diagram
Fig.	2 EM7028 HRS value vs. receiving light lux
Fig.	3 EM7028 HRS wave
Fig.	4 Operation current vs. supply voltage in continuous mode w/o current-limiting resistor, and
	the current is controlled by VDD_LED and current-limiting resistor. Typical operation curren
	for heart rate detection is around 1mA.
Fig.	5 Operation current vs. supply voltage in pulse mode w/i current controlled by resisters10
Fig.	6 LED1/LED2 Spectral Response Range (The peak wavelength may change withou
	notification)
Fig.	7 Slave State Machine
Fig.	8 Data Structure
Fig.	9 Write waveform
Fig.	10 Read waveform14
Fig.	11 Register random write operation
Fig.	12 Register page write operation
Fig.	13 Register random read operation
Fig.	14 Typical Application Circuit in pulse mode of HRS2 ((VDD 2.6~3.6V, VDD_I²C 1.6~3.6V)
	VDD_LED 2.6~4.5V)
Fig.	15 Typical Application Circuit in continuous mode of HRS1
Fig.	16 PCB layout design guide (all linear dimensions are in mm)
Fig.	17 Side view of package
Fig.	18 Package Outline Dimensions
Fig.	19 Tape & Reel Information
Fia	20. Recommended Pellow Profile for SMT

TABLE LIST

Table. 1 Pin Configuration	8
Table. 2 I ² C bus timing characteristics	10
Table. 3 Electrical Characteristics	11
Table. 4 Optical Characteristics	11
Table. 5 Absolute Maximum Ratings	12
Table. 6 REGISTER DESCRIPTION	15
Table. 7 REGISTER 0x00 (RESERVED)	15
Table. 8 REGISTER 0x01 (CONFIGURE) - PROX/HRS CONFIGURATION	15
Table. 9 REGISTER 0x02 (INTERRUPT) - PROX/GES/HRS INTERRUPT CONTROL	16
Table. 10 REGISTER 0x03 (HRS_LT) - INTERRUPT LOW THRESHOLD FOR HRS2/HRS1	16
Table. 11 REGISTER 0x04 (HRS _LT) - INTERRUPT LOW THRESHOLD FOR HRS2/HRS1	16
Table. 12 REGISTER 0x05 (HRS _HT) - INTERRUPT LOW THRESHOLD FOR HRS2/HRS1	17
Table. 13 REGISTER 0x06 (HRS _HT) - INTERRUPT LOW THRESHOLD FOR HRS2/HRS1	17
Table. 14 REGISTER 0x07 (LED_CURRENT) – HRS2 LED CURRENT FOR HRS2	17
Table. 15 REGISTER 0x08 (HRS2_DATA_OFFSET) – HRS2 DATA OFFSET	17
Table. 16 REGISTER 0x09 (HRS2_CTRL) - HRS2 CONTROL	17
Table. 17 REGISTER 0x0A (HRS2_GAIN_CTRL) - PROXIMITY SENSOR GAIN CONTROL	18
Table. 18 REGISTER 0x0B (Reserved)	18
Table. 19 REGISTER 0x0C (Reserved)	18
Table. 20 REGISTER 0x0D (HRS1_CTRL) – HRS1 CONTROL	18
Table 21 REGISTER 0x0E (INT. CTRL) -INTERRUPT CONTROL	19

1. Description

EM7028 is a low-power I²C interface module includes Heart Rate Sensor(HRS) and internal LED Current Drivers with 2 Green LED. It can work in both continuous mode and pulse mode. It is designed for applications of Heart Beat Rate detection esp. such as smart watch etc.

Heart Rate Sensor in continuous mode is designed to monitor heart rate by optical detection. A 16-bit ADC detects the result constantly with adjustable gain and resolution.

Heart Rate Sensor in pulse mode is designed to monitor heart rate by optical detection in low-power. It also acts as a proximity sensor with rejection of ambient light noise. In order to removing component variations and eliminate offset caused by IR reflection, 2 registers were specially defined for compensation and high dynamic range of detection.

HRS in continuous mode stores ADC output result into HRS1 registers, while HRS in pulse mode stores ADC output result into HRS2 registers. All pixels are controlled by analog-MUX in different modes.

2. Features

- Heart-Rate Sensors(HRS) with built-in 2 LED of 525nm wavelength integrated in a single Optical Module
- 50Hz/60Hz Flicker Noise Rejection
- Temperature Compensation
- Higher Sensitivity of Proximity Sensing
- HRS in continuous mode with higher detection rate
- HRS in pulse mode with Ambient Light Rejection
- HRS detect rates is up to 1000/s
- 2048 Steps Programmable LED current driver for flexibility and part-to-part calibration
- 16bits ADC of Heart Rate Sensor
- Offset register adjustment for compensation of DC noise
- Programmable Interrupt modes
- Low Average Operation Power consumption
- Output Type: I²C Bus (HRS2) up to 400K Hz
- Operation Voltage 2.5V ~ 3.6V
- Logic Interface Voltage VBUS=1.8V or VBUS=VDD
- Minimum External Components
- Package: (4.0mmX2.4mmX1.35mm)
- RoHS package

3. Functional Block Diagram

Fig. 1 EM7028 Functional Block Diagram

4. PIN Configuration

Top View Bottom View

Table. 1 Pin Configuration

Pin No.	Pin Name	Туре	Description
1	SDA	I/O(Open Drain)	I ² C Serial data I/O terminal -serial data I/O for I ² C
2	INT	O(Open Drain)	Interrupt.
3	LED1	O(Open Drain)	LED Current Driver for LED1 - up to 200mA
4	LED2	O(Open Drain)	LED Current Driver for LED2 - up to 12mA
5	LEDA	I	LED Anode, connect to VDD_LED on PCB
6	GND		Power supply ground. All voltages are referenced to GND
7	SCL	I(Open Drain)	I ² C serial clock input terminal — clock signal for I ² C serial data.
8	VDD		Power Supply voltage

5. Functional Description

5.1 HRS in continuous mode

In Normal HRS mode, one of the LED turns on, and HRS Sensor detects both ambient light and light from green LED. The sensitivity of light is 1 lux/count, and totally 65536lux in full range; The typical resolution of ADC is 16bits and 25ms conversion time.

In low-lux mode, 8 times of ADC gain is chosen for receiving light. The detect range is 0.125lux to 8192lux.

Fig. 2 EM7028 HRS value vs. receiving light lux

5.2 HRS in pulse mode

The Heart Rate Sensor in pulse mode detects reflected light with LED turned on in pulse.

5.3 Typical performance chart

HRS value typically reflect heart beat status as illustrated in Fig.3

Fig. 3 EM7028 HRS wave

Fig. 4 Operation current vs. supply voltage in continuous mode w/o current-limiting resistor, and the current is controlled by VDD_LED and current-limiting resistor. Typical operation current for heart rate detection is around 1mA.

TBD

Fig. 5 Operation current vs. supply voltage in pulse mode w/i current controlled by resisters.

6. Parameters

Table. 2 I2C bus timing characteristics

Symbol	Parameters	Minimum	Typical	Maximum	Units	Condition
t	SCL clock frequency	10k		100k	Hz	Normal Mode
f _{clk}	SCE clock frequency	10k		400k	Hz	Fast Mode
t SUDAT	data set up time	250			ns	Normal Mode
		100			ns	Fast Mode
tHDDAT	data hold time			300	ns	Normal Mode
				90	ns	Fast Mode
trise	clock/data rise time			1000	ns	Normal Mode
				300	ns	Fast Mode
t _{fall}	clock/data fall time			300	ns	Normal Mode
				300	ns	Fast Mode
tLOW	I ² C clock (SCL) low cycle	4.7			μs	Normal Mode
		1.3			μs	Fast Mode
t _{HIGH}	I ² C clock (SCL) high cycle	4.0			μs	Normal Mode
		0.6			μs	Fast Mode
t BUF	Bus free time between the start	4.7			μs	Normal Mode
	and stop state	1.3			μs	Fast Mode
t HDSTA	(repeat) started state holding time	4.0			μs	Normal Mode

	after this period produce the first	0.6			μs	Fast Mode
	clock					
tsusta	Repeat the start state set up time	4.7			μs	Normal Mode
		0.6			μs	Fast Mode
t susto	Stop state set up time	4.0			μs	Normal Mode
		0.6			μs	Fast Mode
t _{TIMEOUT}	Low detection clock/data timeout	25	35		ms	Normal Mode
	time				ms	Fast Mode
Cload	The capacitive load for each bus			400	pF	
	line					
R _{BUS}	Pull up resistors SDA and SCL	1		-	ΚΩ	
	system bus					
t∨D	Data valid time			0.9	μs	
t _{VDACK}	Data valid acknowledge time			0.9	μs	

Table. 3 Electrical Characteristics

Symbol	Min	Тур	Max	Unit s	Introductions	
V _{DD}	2.6		3.6	V	Supply voltage	
I _{DD}				μА	DC power supply current (with LED turned off)	
VDD_I ² C	1.6		3.6	V	I ² C power supply voltage	
VDD_LED	2.6		4.5	V	LED power supply voltage	
I _{DD_SD}				nA	Shut Down Current	
TA	-40		85	°C	Recommended operating temperature	
VIL			0.54	V	SCL/SDA Input low voltage	
V _{IH}	1.25			V	SCL/SDA Input high voltage	

Table. 4 Optical Characteristics

Parameters	Min	Тур	Max	Units	Descriptions (Ta = +25 °C)
Full scale HRS1 ADC count			65536	counts	HRS register maximum count in
value			00000	Counts	continuous mode
HRS detect range			65536	lux	HRS detection range
Full scale HRS2 ADC count			65536	counts	HRS ADC maximum count in pulse
value			00000	Courits	mode

HRS2 LED drive	2.5		200	mA	HRS2 LED drive current
HRS2 LED duty cycle		1/500			LED duty cycle, cycle of HRS2 at 100
Three ZEB daty oyolo		1,000			ms
VF			TBD	V	LED Forward Voltage, I _F =20 mA
V _R				٧	LED Reverse Voltage, I _R =1 μA
Po	0.8			mW	LED Radiant Power, I _F =20 mA
λρ		525		nm	LED Peak Wavelength, I _F =100 mA
Δλ		30		nm	Spectrum Width of Half Value, I _F =20
		30		11111	mA
T _R				ns	LED Optical Rise Time, I _F =20 mA
T _F				ns	LED Optical Fall Time, I _F =20 mA

7. Spectral Response Range

Fig. 6 LED1/LED2 Spectral Response Range (The peak wavelength may change without notification)

LED2 has the same spectral response as LED1

8. Absolute Maximum Ratings

Table. 5 Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Units	Condition
Storage Temperature	Ts	-40	85	°C	
Operation Temperature	T _A	-40	85	°C	
Supply Voltage	V_{DD}	2.25	3.6	V	

ESD	V _{ESD}	2K	V	НВМ
ESD	V _{ESD}	200	V	MM

9. I2C State Machine

Fig. 7 Slave State Machine

10.Timing

MSB	6	5	4	3	2	1	LSB	
-----	---	---	---	---	---	---	-----	--

Fig. 8 Data Structure

Fig. 9 Write waveform

Fig. 10 Read waveform

11.Registers Operation

Fig. 11 Register random write operation

Fig. 12 Register page write operation

Fig. 13 Register random read operation

12. Registers Definition

Function Modes:

- 1. HRS1 (Heart Rate Measurement in Continuous Mode)
- 2. HRS2 (Heart Rate Measurement in Pulse Mode)

Table. 6 REGISTER DESCRIPTION

				-								
Address	R/W	Bit7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default		
0(0x00)	R					PID				0x36		
1(0x01)	R/W	HRS2_EN	Reserved	Reserved	Reserved	HRS1_EN	Reserved	Reserved	Reserved	0x00		
2(0x02)	R/W	HRS2_FLAG	HRS2_P	RST[1:0]	Reserved	HRS1_FLAG	HRS1_PI	RST[1:0]	INT_CTRL	0x00		
3(0x03)	R/W		HRS_LT[7:0]									
4(0x04)	R/W				HRS	_LT[15:8]				0x00		
5(0x05)	R/W				HRS	S_HT[7:0]				0xFF		
6(0x06)	R/W				HRS	_HT[15:8]				0xFF		
7(0x07)	R/W				LED	_CAL[7:0]				0x80		
8(0x08)	R/W				HRS2_DA1	A_OFFSET[7:0]				0x00		
9(0x09)	R/W	Reserved	HRS2_TIME[2]	HRS2_TIME[1]	HRS2_TIME[0]	LED_WIDTH[1]	LED_WIDTH[0]	LED_CNT[1]	LED_CNT[0]	0x40		
10(0x0A)	R/W	HRS2_GAIN	HRS2_POS[6]	HRS2_POS[5]	HRS2_POS[4]	HRS2_POS[3]	HRS2_POS[2]	HRS2_POS[1]	HRS2_POS[0]	0x01		
11(0x0B)	R	SIGN				Reserved				0x00		
12(0x0C)	R	SIGN				Reserved				0x00		
13(0x0D)	R/W	HRS_GAIN	HRS_RANGE	HRS_FREG	[2:0], 40960Hz to 2	2.62144MHz	HRS_RES[1:0], 10b, 12b, 14b, 16b IR_MODE			0x32		
14(0x0E)	R/W	INT_EN	INT_MODE1	INT_MODE2	INT_MODE3	Reserved	HRS2_DR[2	0], Programmed L	ED Current	0x90		
15(0x0F)	R/W				SOFT_	RESET[7:0]				0x00		
32(0x20)	R				HRS2_	DATA0[7:0],				0x00		
33(0x21)	R				HRS2_	DATA0[15:8]				0x00		
34(0x22)	R				HRS2_	DATA1[7:0]				0x00		
35(0x23)	R				HRS2_	DATA1[15:8]				0x00		
36(0x24)	R				HRS21	_DATA2[7:0]				0x00		
37(0x25)	R				HRS2_	DATA2[15:8]				0x00		
38(0x26)	R				HRS2_	DATA3[7:0]				0x00		
39(0x27)	R				HRS2_	DATA3[15:8]				0x00		
40(0x28)	R				HRS1_	DATA0[7:0]				0x00		
41(0x29)	R				HRS1_	DATA0[15:8				0x00		
42(0x2A)	R				HRS1_	DATA1[7:0]				0x00		
43(0x2B)	R				HRS1_	DATA1[15:8]				0x00		
44(0x2C)	R				HRS1_	DATA2[7:0]				0x00		
45(0x2D)	R		HRS1_DATA2[15:8]									
46(0x2E)	R				HRS1_	DATA3[7:0]				0x00		
47(0x2F)	R				HRS1_	DATA3[15:8]				0x00		
48(0x30)	R				HRS1_	DATA0[7:0]				0x00		
49(0x31)	R				HRS1_	DATA0[15:8]				0x00		

Table. 7 REGISTER 0x00 (RESERVED)

BIT#	<u> </u>	ACCESS	Default	Name	FUNCTION/OPERATION
7:0		RO	0x36	PID	Product ID - readable

Table. 8 REGISTER 0x01 (CONFIGURE) - PROX/HRS CONFIGURATION

BIT#	R/W	Default Value	Name	Name/operation description
7	RW	0	HRS2_EN	When= 0, heart rate sensing in pulse mode is disabled; When= 1, heart rate sensing in pulse mode is enabled; The enabled HRS2 pixels are defined by HRS2_POS, and HRS2 ADC gain is defined by HRS2_GAIN;
6	RW	0	Reserved	Reserved
5	RW	0	Reserved	Reserved

4	RW	0	Reserved	Reserved
				When= 0, Heart Beat Measurement is disabled;
3	RW	0	HRS1_EN	When= 1, Heart Beat Measurement is enabled with LED1 turned on and only Red
3	KVV	U		Light Sensor and IR sensor enabled. When LED1 turned on, the result stores to
			HRS_DATA0;	
2	RW	1	Reserved	Reserved
1	RW	1	Reserved	Reserved
0	RW	1	Reserved	Reserved

Only one of HRS1/HRS2 modes is enabled in a time

Table. 9 REGISTER 0x02 (INTERRUPT) - PROX/GES/HRS INTERRUPT CONTROL

BIT#	ACCESS	Default	BIT Name	Function/Operation
				When=0, no proximity interrupt event has occurred since power-
7	FLAG	0	UDC2 FLAC	on or last "clear"
′	FLAG	0	HRS2_FLAG	When=1, a proximity interrupt event occurred. Clearable by writing
				"0"
				When=00, 1 times of HRS2 value transfer threshold value;
6:5	RW	00	HRS2 Persist	When=01, 2 times of HRS2 value transfer threshold value;
0.5	KW	00	HR52 Persist	When=10, 4 times of HRS2 value transfer threshold value;
				When=11, 8 times of HRS2 value transfer threshold value;
4	FLAG	0	Reserved	Reserved
				When=0, no HRS1 interrupt event has occurred since power-on
3	FLAG			or last "clear";
3	FLAG	0	HRS1_FLAG	When=1, an HRS1 interrupt event occurred. Clearable by writing
				"0"
				When=00, 1 times of HRS1 value transfer threshold value;
2:1	RW	00	HRS1 Persist	When=01, 2 times of HRS1 value transfer threshold value;
2.1	L/VV	00	I INO I PEISIST	When=10, 4 times of HRS1 value transfer threshold value;
				When=11, 8 times of HRS1 value transfer threshold value;
0	DW	0	INT CTDI	When=0, only HRS2 interrupt is enabled, unless INT_EN=0;
U	0 RW	0	INT_CTRL	When=1, only HRS interrupt is enabled, unless INT_EN=0;

Table. 10 REGISTER 0x03 (HRS_LT) - INTERRUPT LOW THRESHOLD FOR HRS2/HRS1

BIT#	ACCESS	Default	BIT Name	Function/operation
7:0	RW	0x00	HRS_LT (HRS2/HRS1 Low Threshold)	Low 8-bit interrupt low threshold for HRS sensing.

Table. 11 REGISTER 0x04 (HRS _LT) - INTERRUPT LOW THRESHOLD FOR HRS2/HRS1

BIT#	ACCESS	Default	BIT Name	Function/operation
7:0	RW	0x00	HRS_LT	High 8-bit interrupt low threshold for HRS sensing.

	(HRS2/HRS1	
	Low Threshold)	

Table. 12 REGISTER 0x05 (HRS _HT) - INTERRUPT LOW THRESHOLD FOR HRS2/HRS1

BIT#	ACCESS	Default	BIT Name	Function/operation
			HRS_HT	
7:0	RW	0xFF	(HRS2/HRS1	Low 8-bit interrupt high threshold for HRS sensing.
			High Threshold)	

Table. 13 REGISTER 0x06 (HRS _HT) - INTERRUPT LOW THRESHOLD FOR HRS2/HRS1

BIT#	ACCESS	Default	BIT Name	Function/operation
			HRS_HT	
7:0	RW	0xFF	(HRS2/HRS1	High 8-bit interrupt high threshold for HRS sensing.
			High Threshold)	

Table. 14 REGISTER 0x07 (LED_CURRENT) - HRS2 LED CURRENT FOR HRS2

BIT#	ACCESS	Default	BIT Name	Function/operation
				When=0x00, LED current is 256/512 of full range;
				When=0x01, LED current is 257/512 of full range;
7:0	RW	0x80	LED CAL	When=0x02, LED current is 258/512 of full range;
7.0	RVV	UXOU	LED CAL	
				When=0xff, LED current is of full range to maximum;
				This function serves for LED calibration;

Table. 15 REGISTER 0x08 (HRS2_DATA_OFFSET) - HRS2 DATA OFFSET

BIT#	ACCESS	Default	BIT Name	Function/operation
7	RW	0X0	Reserved	N/A
				When=0x00, no offset;
	6:0 RW 0x00		HRS2_ OFFSET	When=0x01, HRS2 data subtract by 8 counts(6.25n);
6:0		000		When=0x02, HRS2 data subtract by 16 counts(12.5n);
0.0		UXUU		
				When=0x8f,
				HRS2 data subtract by 1016 counts (793.75n);

Table. 16 REGISTER 0x09 (HRS2_CTRL) - HRS2 CONTROL

	usion to the order (times_orter) times_orter				
BIT#	ACCESS	Default	BIT Name	Function/operation	
				When=0, HRS2 conversion is continuous;	
7	RW	0x0	Reserved	When=1, HRS2 conversion is divided by WAIT time	
				specified in HRS2_TIME;	
				When=000, HRS2 WAIT TIME = 0, continuous	
6:4	RW	0b100	HRS2_WAIT_TIME	detect;	
				When=001, HRS2 WAIT TIME = 1.5625ms.;	

				,
				When=010, HRS2 WAIT TIME = 6.25ms;
				When=011, HRS2 WAIT TIME = 25ms;
				When=100, HRS2 WAIT TIME = 100ms;
				When=101, HRS2 WAIT TIME =400ms;
				When=110, HRS2 WAIT TIME = 1.6s;
				When=111, HRS2 WAIT TIME = 6.4s;
			When=00, LED WIDTH = 8 counts;	
	DW.		LED_WIDTH	When=01, LED WIDTH = 32 counts;
3:2	RW	0b10		When=10, LED WIDTH = 128 counts;
				When=11, LED WIDTH = 512 counts;
				When=00, LED COUNT = 1;
1.0	DW.	V 0600	LED_CNT	When=01, LED COUNT =4;
1:0	RW			When=10, LED COUNT = 16;
				When=11, LED COUNT = 64;

Table. 17 REGISTER 0x0A (HRS2_GAIN_CTRL) - PROXIMITY SENSOR GAIN CONTROL

BIT#	ACCESS	Default	BIT Name	Function/operation
7	RW	0b0	HRS2 GAIN	When=0, HRS2 GAIN = 1;
			When=1, HRS2 GAIN = 10;	
6:0	RW	0x01	HRS2_POS[6:0]	Each bit mark one pixel;

Table. 18 REGISTER 0x0B (Reserved)

Table. 19 REGISTER 0x0C (Reserved)

Table. 20 REGISTER 0x0D (HRS1_CTRL) - HRS1 CONTROL

BIT#	ACCESS	Default	BIT Name	Function/operation
7	DW	0.41	LIDE CAIN	When = 0, HRS1 GAIN =1;
<i>'</i>	RW	0x1	HRS_GAIN	When =1, HRS1 GAIN =5;:
6	RW	0x1	UDS DANCE	When = 0, HRS1 RANGE =1;
0	KVV	UXI	HRS_RANGE	When =1, HRS1 RANGE =8;
				When=000, HRS1 FREQ = 2.62144MHz (1.5625ms);
			HRS_FREQ	When=001, HRS1 FREQ = 1.31072MHz(3.125 ms);
		0b110		When=010, HRS1 FREQ = 655,360Hz(6.25 ms);
5:3	RW			When=011, HRS1 FREQ = 327,680Hz(12.5ms);
5.5	KVV			When=100, HRS1 FREQ = 163,840Hz(25ms);
				When=101, HRS1 FREQ = 81,920Hz(50ms);
				When=110, HRS1 FREQ = 40,960Hz(100ms);
				When=111, HRS1 FREQ = 20,480Hz(200ms);
				When=00, HRS1 RES = 10 bits;
2:1	RW	0b01	HRS_RES	When=01, HRS1 RES = 12 bits;
				When=10, HRS1 RES = 14 bits;

				When=11, HRS1 RES = 16 bits;
0	0 RW 0b1	IR MODE	When=0, IR mode;	
	IXVV	001	IN_IVIOUE	When=1, HRS1 mode;

Table. 21 REGISTER 0x0E (INT_CTRL) -INTERRUPT CONTROL

BIT#	ACCES S	Default	BIT Name	Function/operation
7	RW	0b1	INT_EN	When=1, INT mode is enabled
				When=0, INT_MODE1 is disabled;
				When=1, INT pin is drive "low" and interrupt flag is
6	RW	0b0	INT_MODE1	set to "1" when register value up transfer the high
0	KVV	000	INT_MODET	threshold, and INT pin is pulled "high" and interrupt
				flag reset "0" when register value down transfer the
				low threshold.
				When=0, INT_MODE2 is disabled;
				When=1, INT pin is drive "low" and interrupt flag is
5	RW	0b0	INT MODE2	set to "1" when register value larger than the high
	IXVV	ODO	IIVI_IVIODE2	threshold, and INT pin is pulled "high" and interrupt
				flag reset "0" when register value is lower than the
				low threshold.
				When=0, INT_MODE3 is disabled;
				When=1, INT pin is drive "low" and interrupt flag is
4	RW	0b1	INT_MODE3	set to "1" when register value is larger than the high
				threshold or lower than the low threshold, otherwise
				INT pin is pulled "high" and interrupt flag reset "0".
3	RW	0b0	Reserved	Reserved
				Peak current for LED1 of IR light, the average current
				for LED1 is 1/500 of programmed current configured,
				while the internal duty cycle is 1/500
				When=000, LED programmed current = 2.5mA;
				When=001, LED programmed current = 5.0mA;
2:0	RW	0b000	HRS2_DR[2:0]	When=010, LED programmed current = 7.5mA;
				When=011, LED programmed current = 12.5mA;
				When=100, LED programmed current = 25mA;
				When=101, LED programmed current = 50mA;
				When=110, LED programmed current = 100mA;
				When=111, LED programmed current = 200mA;

Table. 22 REGISTER 0x0F (SOFT_RESET) – SOFT RESET BIT

Write any data to the ${\sf SOFT_RESET}$ register will reset the chip. No need to set a real register.

Table. 23 I2C Device address

an austion					I ² C De	vice addre	SS		
operation	7	6	5	4	3	2	1	0	address
Write Register	0	1	0	0	1	0	0	0	0x48H
Read Register	0	1	0	0	1	0	0	1	0x49H

The I²C Interface and 7-bit slave address is 0x24.

13. Sample Application

Fig. 14 Typical Application Circuit in pulse mode of HRS2 ((VDD 2.6~3.6V, VDD_I²C 1.6~3.6V, VDD_LED 2.6~4.5V)

Fig. 15 Typical Application Circuit in continuous mode of HRS1

VDD, VDD_I²C, VDD_LED can be connected together as VDD3.3V to 3.3V voltage.

VDD3.3V should connect 0.1uF capacitor to ground.

INT can be disconnected if no need of interrupt mode.

 R_0 is LED2 adjust resistor, and the typical value of R0 is 100Ω .

14.PCB Design

Suggested PCB pad layout guidelines for the Dual Flat No-Lead surface mount package are shown below.

Fig. 16 PCB layout design guide (all linear dimensions are in mm)

15. Package Outline Dimensions

Fig. 17 Side view of package

Fig. 18 Package Outline Dimensions

16.Packing

Tape and reel dimensions is compliant to JEDEC MSL 3

Ordering Information		Q'TY/REEL	Q'TY/inside box	Q'TY/outside box	Remark
EM7028	(7' reel)	1000EA	2000EA	20000EA	MBB/Label/Temperature Card/Silica gel

Fig. 19 Tape & Reel Information

17. Recommended Reflow Profile

PARAMETER	REFERENCE	DEVICE
Average temperature gradient in preheating		2.5°C/sec
Soak time	t _{soak}	2 to 3 minutes
Time above 217°C(T ₁)	T ₁	Max 60 sec
Time above 230°C(T ₂)	T ₂	Max 50 sec
Time above T _{peak} -10°C(T ₃)	T ₃	Max 10 sec
Peak temperature in reflow	T _{peak}	260°C
Temperature gradient in cooling		Max-5°C/sec

Fig. 20 Recommended Reflow Profile for SMT

The product require to control strictly to prevent moisture absorption into unit. The recommend control is as following. Rebaking of the reel will be required if the devices is unpack from the MBB bag more than 24 hours. If rebaking is required, it should be done at 50°C for 12 hours.

History

Date	Author	Modification

NOTICE:

- 1. The information here contained could be changed without notice owing to product and/or technical improvements. Please make sure before using the product that the information you are referring to is up-to-date.
- 2. No responsibilities are assumed by us for any consequence resulting from any wrong or improper operation, etc. of the product.

Epticore Microelectronics Co. Ltd.

For product information and a complete list of distributors, please contact sales@epticore.com or go to our web site: http://www.epticore.com

Copyright © 2016 by Epticore Microelectronics

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Epticore Microelectronics assumes no responsibility arising from the using of the specification described. The applications mentioned herein are used solely for the purpose of illustration and Epticore Microelectronics makes no warranty or representation that such application will be suitable without further modification, nor recommends the use of its product for application that may present a risk to human life due to malfunction or otherwise. Epticore Microelectronics reserves the right to alter its product without prior notification. For the most up-to-date information, please contact sales representatives.