<u>Trabajo Práctico Nº 4:</u> Forma de Jordan y Formas Cuadráticas.

Ejercicio 1.

Ejercicio 8 (*).

Dada la forma cuadrática $q: \mathbb{R}^3 \to \mathbb{R}$ definida por:

$$q(x, y, z) = ax^2 + ay^2 + (a - 1)z^2 + 2xy,$$

donde $a \in \mathbb{R}$ es fijo, clasificar q para los distintos valores de a.

En primer lugar, para clasificar la forma cuadrática q: $\mathbb{R}^3 \to \mathbb{R}$ para los distintos valores de a, es necesario encontrar la matriz asociada a q (matriz A). En términos generales, la forma cuadrática q puede ser escrita en términos de esta matriz A como:

$$q(x, y, z) = (x \quad y \quad z) A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

En particular, se tiene:

$$q(x, y, z) = (x \quad y \quad z) \begin{pmatrix} a & 1 & 0 \\ 1 & a & 0 \\ 0 & 0 & a - 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Luego, es necesario encontrar los autovalores de la matriz asociada A:

$$\det (A - \lambda I) = 0$$

$$\det \begin{pmatrix} a & 1 & 0 \\ 1 & a & 0 \\ 0 & 0 & a - 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 0$$

$$\det \begin{pmatrix} a & 1 & 0 \\ 1 & a & 0 \\ 0 & 0 & a - 1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = 0$$

$$\det \begin{pmatrix} a - \lambda & 1 & 0 \\ 1 & a - \lambda & 0 \\ 0 & 0 & a - 1 - \lambda \end{pmatrix} = 0$$

$$\begin{vmatrix} a - \lambda & 1 & 0 \\ 1 & a - \lambda & 0 \\ 0 & 0 & a - 1 - \lambda \end{vmatrix} = 0$$

$$(a - 1 - \lambda) [(a - \lambda)(a - \lambda) - 1] = 0$$

$$(a - 1 - \lambda) [(a - \lambda)^2 - 1] = 0.$$

Entonces, los autovalores son los valores de λ que anulan el polinomio característico de A:

$$a - 1 - \lambda = 0$$
$$\lambda_1 = a - 1.$$

$$(a - \lambda)^2 - 1 = 0$$

$$(a - \lambda)^2 = 1$$

$$\sqrt{(a - \lambda)^2} = \sqrt{1}$$

$$|a - \lambda| = 1$$

$$a - \lambda = \pm 1$$

 $\lambda = a \mp 1$
 $\lambda_2 = a - 1$.
 $\lambda_3 = a + 1$.

Se tiene que los autovalores de la matriz asociada A son: λ_1 = a - 1, λ_2 = a - 1 y λ_3 = a + 1.

Por lo tanto, la forma cuadrática q: $\mathbb{R}^3 \longrightarrow \mathbb{R}$ es:

•	definida positiva	si a > 1,	ya que $\lambda_1 > 0$, $\lambda_2 > 0$ y $\lambda_3 > 0$.
•	semidefinida positiva	si a=1,	ya que $\lambda_1 = 0$, $\lambda_2 = 0$ y $\lambda_3 > 0$.
•	definida negativa	si a < -1 ,	ya que $\lambda_1 < 0$, $\lambda_2 < 0$ y $\lambda_3 < 0$.
•	semidefinida negativa	si a=-1,	ya que $\lambda_1 < 0$, $\lambda_2 < 0$ y $\lambda_2 = 0$.
•	indefinida	si -1 < a < 1,	ya que $\lambda_1 < 0$, $\lambda_2 < 0$ y $\lambda_3 > 0$.