The \mathbb{Z}_2 -genus of Kuratowski minors

Radoslav Fulek and Jan Kynčl

Charles University, Prague

Drawings and embeddings

drawing of a graph:

vertices \rightarrow points edges \rightarrow simple curves

forbidden:

embedding = drawing with no crossings

Hanani-Tutte theorems

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an **independently even** drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

application: polynomial-time algorithm for testing planarity

Hanani-Tutte theorems

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an **independently even** drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani–Tutte theorem: (Cairns–Nikolayevsky, 2000; Pach–Tóth, 2000; Pelsmajer–Schaefer–Štefankovič, 2007) If a graph *G* has an **even** drawing *D* in the plane (every pair of edges crosses an even number of times), then *G* is planar. (Moreover, *G* has a plane embedding with the same rotation system as *D*.)

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:

(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009)

If a graph G has an even drawing $\mathcal D$ on a surface S, then G has an embedding on S (that preserves the embedding scheme of $\mathcal D$).

(Strong) Hanani–Tutte theorem on the projective plane:

(Pelsmajer-Schaefer-Stasi, 2009;

Colin de Verdière–Kaluža–Paták–Patáková–Tancer, 2016)

If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani–Tutte theorem be extended to other surfaces?

Partial answer: No to the orientable surface of genus 4 or larger (Fulek–K., 2017)

Genus and \mathbb{Z}_2 -genus

genus g(G) of a graph G = minimum g such that G has an embedding on the orientable surface M_g of genus g.

 \mathbb{Z}_2 -genus $g_0(G)$ of a graph G is the minimum g such that G has an independently even drawing on M_q .

Strong Hanani–Tutte theorem: $g_0(G) = 0 \Rightarrow g(G) = 0$.

Theorem: (Fulek–K., 2017)

There is a graph G with $\mathbf{g}(G) = 5$ and $\mathbf{g}_0(G) \le 4$.

Consequently, for every positive integer k there is a graph G with $\mathbf{g}(G) = 5k$ and $\mathbf{g}_0(G) \le 4k$.

Problem: (Schaefer-Štefankovič, 2013)

Is there a function f such that $\mathbf{g}(G) \leq f(\mathbf{g}_0(G))$ for every graph G?

Main result: YES, if a certain "folklore result" is true.

Bounding genus by \mathbb{Z}_2 -genus—the plan

1) Ramsey-type statement:

If G has large genus g = g(t), then G contains, as a minor, $G_1(t)$ or $G_2(t)$ or . . . or $G_r(t)$ of genus t.

2) Easier subproblem:

Show that the \mathbb{Z}_2 -genus of each of $G_i(t)$ is unbounded in t.

Ramsey-type statements

Theorem: (Böhme–Kawarabayashi–Maharry–Mohar, 2008) For every positive integer t, every sufficiently large 7-connected graph contains $K_{3,t}$ as a minor.

Generalization: (Böhme-Kawarabayashi-Maharry-Mohar, 2009)

- larger connectivity and $K_{a,t}$ minors for every fixed a > 3.

Unpublished "folklore" result: (Robertson–Seymour)

There is a function g such that for every $t \ge 3$, every graph of Euler genus g(t) contains a t-Kuratowski graph as a minor.

t-Kuratowski graph:

- $K_{3,t}$, or
- t copies of K_5 or $K_{3,3}$ sharing at most 2 common vertices

3-Kuratowski graphs

- what about graphs with large (orientable) genus and constant Euler genus?

Ramsey-type statement for genus

Theorem:

The "folklore result" implies that there is a function h such that for every $t \ge 3$, every graph of genus h(t) contains, as a minor, a t-Kuratowski graph or the projective t-wall.

Lower bounds on the \mathbb{Z}_2 -genus

Theorem: (Schaefer-Štefankovič, 2013)

If G consists of t copies of K_5 or $K_{3,3}$ sharing at most 1 vertex, then $\mathbf{g}_0(G) = \mathbf{g}(G) = t$.

(The \mathbb{Z}_2 -genus is additive for disjoint unions and 1-amalgamations.)

Observation:

If G has maximum degree 3, then $\mathbf{g}_0(G) = \mathbf{g}(G)$. In particular, the \mathbb{Z}_2 -genus of the projective t-wall is $\lfloor t/2 \rfloor$.

· "correct" the rotation of each vertex to obtain an even drawing

use the weak Hanani–Tutte theorem for surfaces

Theorem:

We have $\mathbf{g}_0(G) = \mathbf{g}(G)$ also for each of the remaining t-Kuratowski graphs $G: K_{3,t}$ and 2-amalgamations of t copies of K_5 or $K_{3,3}$.

problem with independently even drawings:

- no faces, rotations "do not matter", no Euler's formula . . .

First lower bound: $\mathbf{g}_0(K_{3,t}) \geq \Omega(\log \log \log t)$

- "correct" the rotation of each degree-3 vertex so that incident edges cross evenly
- use Ramsey's theorem for each degree-t vertex so that incident edges cross with the same parity
- if the parity is odd for some vertex v, "flip" a neighborhood of v

- use the weak Hanani–Tutte theorem for surfaces
- use the fact $\mathbf{g}(K_{3,n}) = \lceil (n-2)/4 \rceil$

Second lower bound: $g_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_q and pigeon-hole principle

Second lower bound: $g_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $\mathbf{g}_0(K_{3,t}) = \mathbf{g}(K_{3,t}) = \lceil (t-2)/4 \rceil$

Second lower bound: $g_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $g_0(K_{3,t}) = g(K_{3,t}) = \lceil (t-2)/4 \rceil$

Second lower bound: $g_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $g_0(K_{3,t}) = g(K_{3,t}) = [(t-2)/4]$

Second lower bound: $g_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $g_0(K_{3,t}) = g(K_{3,t}) = \lceil (t-2)/4 \rceil$

Second lower bound: $g_0(K_{3,t}) \ge \Omega(\log t)$

- \mathbb{Z}_2 -homology of closed curves on M_g and pigeon-hole principle

Third lower bound: $g_0(K_{3,t}) = g(K_{3,t}) = \lceil (t-2)/4 \rceil$

Fact: $H_1(M_g; \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^{2g} .

$$H_1(M_1; \mathbf{Z}_2) = \langle \alpha, \beta \rangle$$

Fact: $H_1(M_q; \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^{2g} .

Fact: $H_1(M_g; \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^{2g} .

intersection form (Cairns–Nikolayevsky, 2000) (symmetric, bilinear) cr : $H_1(M_a; \mathbb{Z}_2) \times H_1(M_a; \mathbb{Z}_2) \to \mathbb{Z}_2$

Fact: $H_1(M_g; \mathbb{Z}_2)$ is isomorphic to \mathbb{Z}_2^{2g} .

intersection form (Cairns-Nikolayevsky, 2000) (symmetric, bilinear)

$$\operatorname{cr}: H_1(M_g; \mathbb{Z}_2) \times H_1(M_g; \mathbb{Z}_2) \to \mathbb{Z}_2$$

for g = 1:

$$\operatorname{cr}(\alpha,\alpha)=0$$
 $\operatorname{cr}(\beta,\beta)=0$ $\operatorname{cr}(\alpha,\beta)=1$

"Crosscap vectors" of closed curves on M_g

Fact: $M_g - \{x\}$ is homeomorphic to a subset of N_{2g+1} or, to a subset of the sphere with 2g + 1 crosscaps

- a cycle $C \to a$ crosscap vector $\mathbf{y}^C = (y_1^C, y_2^C, \dots, y_{2g+1}^C)$ where $y_i = \text{number of passes of } C \text{ through the } i\text{th crosscap mod 2}.$
- a drawing on $M_g \leftrightarrow$ a drawing with 2g + 1 crosscaps where the crosscap vector of each cycle has an even number of 1's.
- homology class of $C \leftrightarrow \text{crosscap vector } \mathbf{y}^C$

"Crosscap vectors" of closed curves on M_g

Fact: $M_g - \{x\}$ is homeomorphic to a subset of N_{2g+1} or, to a subset of the sphere with 2g + 1 crosscaps

- a cycle $C \to a$ crosscap vector $\mathbf{y}^C = (y_1^C, y_2^C, \dots, y_{2g+1}^C)$ where $y_i =$ number of passes of C through the ith crosscap mod 2.
- a drawing on $M_g \leftrightarrow$ a drawing with 2g + 1 crosscaps where the crosscap vector of each cycle has an even number of 1's.
- homology class of $C \leftrightarrow \text{crosscap vector } \mathbf{y}^C$
- intersection form $cr(C, D) \leftrightarrow scalar product \mathbf{y}^C \cdot \mathbf{y}^D$

$$cr(C_1, C_2') + cr(C_1', C_2) = 1.$$

$$cr(C_1, C_2') + cr(C_1', C_2) = 1.$$

Lemma: In every independently even drawing of $K_{3,3}$ (induced by $\{a, b, c, u_0, u_1, u_2\}$ from $K_{3,t}$) on M_g , we have

$$cr(C_1, C_2') + cr(C_1', C_2) = 1.$$

• Let A be the $(t-1) \times (t-1)$ matrix with $A_{i,j} = \operatorname{cr}(C_i, C_j')$

$$cr(C_1, C_2') + cr(C_1', C_2) = 1.$$

- Let A be the $(t-1) \times (t-1)$ matrix with $A_{i,j} = \operatorname{cr}(C_i, C_i')$
- Lemma implies $A_{i,j} + A_{j,i} = 1$ for $i \neq j$, so A is a **tournament matrix**, that is, $A + A^T = J - I$

$$cr(C_1, C_2') + cr(C_1', C_2) = 1.$$

- Let A be the $(t-1) \times (t-1)$ matrix with $A_{i,j} = \operatorname{cr}(C_i, C_i')$
- Lemma implies $A_{i,j} + A_{j,i} = 1$ for $i \neq j$, so A is a **tournament matrix**, that is, $A + A^T = J - I$
- rank of A is at least (t-2)/2 (De Caen, 1991)

$$cr(C_1, C_2') + cr(C_1', C_2) = 1.$$

- Let A be the $(t-1) \times (t-1)$ matrix with $A_{i,j} = \operatorname{cr}(C_i, C_i')$
- Lemma implies $A_{i,j} + A_{j,i} = 1$ for $i \neq j$, so A is a **tournament matrix**, that is, $A + A^T = J - I$
- rank of A is at least (t-2)/2 (De Caen, 1991)
- the rank of the intersection form is at least (t-2)/2 and so 2g > (t-2)/2.