#### Further investigation of harmonic vibration

Math 352 Differential Equations

7 April 2014

#### Last time: free harmonic oscillations

The equation of motion for an unforced spring-mass system:

$$mu'' + \gamma u' + ku = 0,$$

where m, k > 0 and  $\gamma \ge 0$ .

Here u is the displacement of the mass from equilibrium.

## **Determining the spring constant**

In practice, the spring constant is obtained via the relation

$$mg = kL$$
.

Here L is the marginal length added when the mass m is attached.

## No damping

▶ If  $\gamma = 0$ , our system is a *simple harmonic oscillator*, vibrating subject to the displacement function

$$u = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t).$$

- ▶ Here  $\omega_0 = \sqrt{k/m}$  is the natural frequency of the oscillator.
- ▶ If either of  $c_1$  or  $c_2$  is nonzero, then either u(0) or u'(0) is nonzero. Thus either the potential energy or kinetic energy of the mass is nonzero.
- Such a system's motion persists indefinitely.
- The energy added by the initial conditions stays in the system forever.



#### Reduction to standard form

- Every linear combination of sines and cosines with like frequency can be written as a single sinusoidal function.
- ▶ A sinusoidal function is one of the form  $R\cos{(\omega t \delta)}$ , where R is the amplitude,  $\omega$  is the common frequency, and  $\delta$  is the phase shift.
- If we know  $c_1$  and  $c_2$  from the initial conditions, we can find R and  $\delta$  with

$$c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) = R \cos(\omega_0 t - \delta).$$



#### **Getting the new parameters**

Using the cosine subtraction identity, we find this entails that

$$c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) = R \cos \delta \cos(\omega_0 t) + R \sin \delta \sin(\omega_0 t).$$

Hence  $c_1 = R \cos \delta$ ,  $c_2 = R \sin \delta$ , and the usual polar-coordinate equations give us

$$R = \sqrt{c_1^2 + c_2^2}, \quad \tan \delta = c_2/c_1.$$

The arctangent function must be used with due care.



# Reminder on arctangent; atan2

- ▶ Recall:  $tan^{-1}x \in (-\pi/2, \pi/2)$  for all x
- You may need to adjust the value from a calculator.
- ▶ Adjustments must be made when the desired value of  $\delta$  is in the left half-plane: namely, when  $c_1 < 0$ .
- Sage and many other programming languages include the useful function atan2.
- This is a function of two variables that makes this adjustment automatically.
- ▶ atan2(y, x) returns the unique angle  $\delta$  with  $\sin(\delta) = y$  and  $\cos(\delta) = x$ 
  - (and of course  $tan(\delta) = y/x$ )



## Classification of damping; overdamped

- $\gamma > 0$ : the system is "damped".
- ► The type of damping corresponds to the sign of  $D = \gamma^2 4km$ .
- ▶ When D > 0, the system is *overdamped*.
  - ▶ The displacement function is a linear combination of two exponentials  $e^{r_1t}$  and  $e^{r_2t}$ , with  $r_1$ ,  $r_2 < 0$ .
  - ▶ The vibration decays as *t* increases—in practice, very quickly.

## **Underdamped**; critically damped

- ▶ When D < 0, the displacement function is a linear combination of the functions  $e^{\lambda t} \cos(\mu t)$  and  $e^{\lambda t} \sin(\mu t)$ .
- ▶ The coefficients  $\lambda$  and  $\mu$ , as always, are determined by the characteristic polynomial: its roots are  $\lambda \pm i\mu$  in this case.
- ▶ Here  $\lambda$  < 0, so the oscillation again decays with time.
- This is called underdamped.
- ▶ When D = 0, the system is *critically damped*.
- ► The displacement function is a linear combination of e<sup>rt</sup> and te<sup>rt</sup>. Here r is the unique root of the characteristic polynomial.
- ► The graphs of critically damped displacement functions look a lot like those of overdamped ones.



## The damped cases: three regimes

- If  $\gamma > 0$ , then the initial energy is dissipated
  - (and in practice, quickly)
  - in resisting the damping force of the surrounding fluid.
- $\blacktriangleright$  Clearly, greater values of  $\gamma$  mean "more" damping is occurring.
- ▶ The "size" of the damping is measured by a dimensionless coefficient involving all three constants m,  $\gamma$ , and k.

# Dimensional analysis: work together

- ▶ Find a dimensionless combination of m,  $\gamma$ , and k.
- ▶ Hint: mg = kL.

# Damping and the discriminant

- ▶ Let  $Q = \gamma^2/4km$ .
- Q is dimensionless: all the units cancel out of it.
- Dimensionless coefficients are important, because they don't depend on our scale of measurement.
- ▶ Trivially, Q = 0 when  $\gamma = 0$ .
- ▶ Our system is underdamped when 0 < Q < 1.
- Critical damping obtains when Q = 1.
- ▶ Overdamping is the case Q > 1.

## **Quasiperiod and quasifrequency**

The parameter  $\mu$  determines the quasifrequency of a damped oscillation (since it is not periodic, it doesn't have an honest "frequency"). Some algebra shows that

$$\frac{\mu}{\omega_0} = \frac{\sqrt{4km - \gamma^2}}{2m\sqrt{k/m}} = (1 - Q)^{1/2} \approx 1 - \frac{Q}{2}.$$

The last approximation is a tangent line approximation, valid when Q is small.

Thus, small damping slightly reduces the frequency of the oscillation. These calculations will be of great utility for us in the next section, which concerns *forced vibrations*.