Examen Parcial 1 de I.O. Grau d'Enginyeria Informàtica

Curs 2012-13

 $\mathbf{P1}[4\text{punts}]$ Un gestor d'inversions te n=4 clients (en països diferents) pels que ha de invertir les quatitats M_i , $1 \le i \le n$ (expressades ja a \$ de l'any en curs). El gestor ha localitzat m=5 inversions que semblen atractives. Les inversions on poden ser dipositades aquestes quantitats tenen unes rendibilitats (en p.u.) que poden fluctuar d'acord amb l'estat de l'economia regional i que, en general són diferents entre sí. Els experts auguren tres escenaris (optimista, moderat, pesimista) tots ells amb forces probabilitats de donar-se. La taula següent mostra les rendibilitats de cada inversió d'acord amb l'escenari

Rendibilitat	I_1	I_2	I_3	I_4	I_5
Optimista	0,10	0, 12	0, 18	0,06	0,05
Moderat	0,12	0,07	0, 11	0,07	0,09
Pesimista	0,055	0,08	-0,05	0,03	-0,02

En altres paraules, en cas de que, per exemple, es facin efectives les previsions optimistes, si y_j , $1 \le j \le 5$ són les quantitats totals invertides en la inversió j, els retorns serien $1,1y_1+1,12y_2+1,18y_3+1,06y_4+1,05y_5$.

Addicionalment, cal tenir en compte els costs de transferència bancària que caldria imputar a les quantitats invertides en cada inversió. Els costs de transferencia bancària (en %) des del pais del client inversor fins al banc on es canalitzaran les inversions venen donats en la taula següent, així com les quantitats en \$ de cada client; la darrera columna expressa la suma total a invertir de cada client:

Cost Transf.(%)	I_1	I_2	I_3	I_4	I_5	M
C_1	0,12	0,22	0, 10	0, 16	0,25	100000
C_2	0,32	0,37	0, 11	0,07	0,09	120000
C_3	0,15	0,18	0, 12	0,09	0, 13	452000
C_4	0, 15	0,08	0,07	0,09	0, 10	300000

El gestor es fa càrrec pel seu compte dels costs de transferència bancària i el seu negoci consisteix en determinar quines són les quantitats x_{ij} que cal invertir de cada client i en cada inversió j, de forma que, independentment de com evolucioni l'economia, el retorn de les inversions sempre sigui el mateix; aquestes quantitats les anomenarem d'inversió segura. Coneixent aquest retorn i tenint en compte els costs de transferència bancària el gestor oferirà una determinada rendibilitat als seus clients que li permeti d'obtenir uns guanys moderats. Es tracta de que plantejeu un problema de programació lineal que serveixi per determinar les quantitats x_{ij} d'inversió segura, d'acord amb el criteri d'amillorar el pitjor cas possible.

P2[6punts]

a) [2,5 punts] Resoldre el problema:

$$\begin{array}{ll} Max_x & x_1 + x_2 \\ s.a: & x_1 + 2x_2 \leq 1 \\ & 2x_1 + x_2 \leq 1 \\ & x_1, x_2 \geq 0 \end{array}$$

Es tracta de un òptim únic o bé n'hi han d'alternatius? Quan val la funció objectiu?

b) [1 punt] Comproveu que la solució verifica les condicions de folga complementaria.

Trieu ara un qualsevol dels apartats c) o d) següents:

- c) [2,5 punts] Considereu la funció $f(x_1, x_2) = x_1^2 + x_2^2 4x_2$. Utilitzant el mètode de conjunts actius resoleu el problema de minimitzar f, eastant subjectes x_1, x_2 a les constriccions del problema lineal de l'apartat a). Partiu del punt (0,0).
- d) [2,5 punts] Considereu el problema de determinar el mínim de $f(x_1, x_2)$ sense cap constricció. Efectueu una passa del mètode del gradient partint del punt (0,0). Utilitzeu el mètode d'exploració lineal més oportú que considereu.

$$\begin{aligned} Max_{\,\eta,y,x} &\quad \eta - \sum_{i=1}^n \sum_{j=1}^m t_{ij} x_{ij} \\ &\quad \eta \leq B_\ell(y_1,...,y_m), \quad 1 \leq \ell \leq \text{ numero-escenaris} \\ &\quad \sum_{j=1}^m x_{ij} = M_i \quad 1 \leq i \leq n \\ &\quad \sum_{i=1}^n x_{ij} = y_j \quad 1 \leq j \leq n \\ &\quad x_{ij} \geq 0 \end{aligned}$$

Sent $B_{\ell}(y_1,...,y_m) = \sum_{k=1}^m (1+r_{\ell k})y_k$ el retorn que proporciona l'escenari $\ell =$ optimista, moderat, pesimista en funció de les inversions totals $y_1,...,y_m$. En la funció objectiu t_{ij} son els costs unitaris de transferència des del inversor i a la inversió j.

P2 Siguin x_3, x_4 variables de folga.

Entra x_1 ; $min\{1/1, 1/2\} = 1/2$; Surt x_4

Entra x_2 ; $min\{\frac{1/2}{3/2}, \frac{1/2}{1/2}\} = 1/3$; Surt x_3

Òptim únic: tots els costs reduïts > 0. $x_1^* = x_2^* = 1/3, \ f^* = 2/3.$

b) Variables bàsiques $x_2 = 1/3$, $x_2 = 1/3$; costs reduïts $r_3 = r_4 = 1/3$

$$\begin{pmatrix} x_2 \\ x_1 \\ x_3 \\ x_4 \end{pmatrix}^{\top} \begin{pmatrix} 0 \\ 0 \\ r_3 \\ r_4 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 0 \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} 0 \\ 0 \\ 1/3 \\ 1/3 \end{pmatrix} = 0$$

c) Ús del mètode de conjunts actius per al problema:

$$\begin{aligned} Min_x & x_1^2 + x_2^2 - 4x_2 \\ s.a:1) & x_1 + 2x_2 \le 1 \\ 2) & 2x_1 + x_2 \le 1 \\ 3),4) & x_1, x_2 \ge 0 \end{aligned}$$

$$x^{(0)} = (0,0) \Rightarrow \mathcal{A}(0,0) = \{3,4\} = \mathcal{A}_0$$

La solució del problema imposant les constriccions que marca el conjunt d'índexos actius:

$$\begin{array}{ll} Min_x & x_1^2+x_2^2-4x_2\\ s.a: & x_1=0\\ & x_2=0 & |\sigma_3| & \rightarrow x^*=y^{(0}=(0,0) \text{ que sí és factible} \end{array}$$

Es plantejen les condicions K-T pel problema anterior per poder conèixer el valor de σ_3 , σ_4

$$\nabla f(x) = \begin{pmatrix} 2x_1 \\ 2x_2 - 4 \end{pmatrix}; \begin{pmatrix} 2x_1 \\ 2x_2 - 4 \end{pmatrix}_{(0,0)} = \begin{pmatrix} \sigma_3 \\ \sigma_4 \end{pmatrix} \rightarrow \sigma_3 = 0, \ \sigma_4 = -4 < 0$$

S'actualitza el conjunt d'índexos actius: $A_1 = A_0 - \{4\} = \{3\}$

$$\begin{array}{ccc} Min_x & x_1^2+x_2^2-4x_2\\ s.a: & x_1=0 & |\sigma_3| \end{array} \rightarrow x^*=y^{(1)}=(0,2) \ \text{que no \'es factible}, \ \sigma_3=0$$

Cal determinar el màxim valor de $\alpha > 0$ tal que $x(\alpha) = x^0 + \alpha(y^1 - x^0)$ sigui factible

$$x(\alpha) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) + \alpha \left(\left(\begin{array}{c} 0 \\ 2 \end{array}\right) - \left(\begin{array}{c} 0 \\ 0 \end{array}\right)\right) = \left(\begin{array}{c} 0 \\ 2\alpha \end{array}\right)$$

En calcular el màxim α que fa $x(\alpha)$ factible surt $\alpha^* = 0, 25$ i surt el punt x(0, 25) = (0, 1/2) que és factible i fa les constriccions 1 i 3 actives.

Càlcul d'un valor $\alpha^* > 0$:

$$\begin{array}{lll} x_1 + 2x_2 \leq 1 & \Rightarrow 0 + 2(2\alpha) \leq 1 \\ 2x_1 + x_2 \leq 1 & \Rightarrow 0 + 2\alpha \leq 1 \\ 0 \geq 0 & \Rightarrow \text{sempre} \\ 2\alpha \geq 0 & \Rightarrow \text{sempre} \end{array} \Rightarrow \alpha^* = \min\{1/2, 1/4\} = 1/4$$

Càlcul dels multiplicadors associats a les constriccions actives $\mathcal{A} = \{3, 1\}$

$$\begin{pmatrix} 2x_1 \\ 2x_2 - 4 \end{pmatrix}_{(0,1/2)} = \begin{pmatrix} 1 & -1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} \sigma_3 \\ \sigma_1 \end{pmatrix} \rightarrow \sigma_1 = 3/2, \ \sigma_3 = 3/2 > 0$$

Per tant el punt (0, 1/2) és l'òptim.

d) Passa del mètode de gradient.

Càlcul de direcció de descens:

$$\nabla f(0,0) = \begin{pmatrix} 2x_1 \\ 2x_2 - 4 \end{pmatrix}_{(0,0)} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}, d^0 = -\nabla f(0,0) = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

$$x(\alpha) = (0,0) - \alpha((0,4) - (0,0)) = (0,4\alpha)$$

$$h(\alpha) = f(x(\alpha)) = 16(\alpha^2 - 1).$$

Pot triar-se una exploració lineal exacta $\min_{\alpha \geq 0} h(\alpha) \Rightarrow \alpha^* = 1/2$; x(1/2) = (0,2); es calcula $\|\nabla f(0,2)\|_2 = 0$. El punt (0,2) és òptim.