55. 直线与平面垂直

一、基本训练题

- 1. 如图,设 PO⊥平面 AOB,PA,PB 与平面 AOB 所成角分别为 30°,45°,∠AOB=90°, PO=10,则 P 到 AB 的距离为______.
- 2. 如图, $\angle BAC$ 在平面 α 内,PA 是 α 的斜线,若 $\angle PAB = \angle PAC = \angle BAC = 60^{\circ}$, $PA = \alpha$,则点 P 到 α 的距离为______.
- 3. 如图,从平面 α 外一点 P 向平面 α 引垂线和斜线, A 为垂足, B 为斜足,射线 $BC \subset \alpha$, 且 $\angle PBC$ 为钝角,设 $\angle PBC = x$, $\angle ABC = y$,则有
 - (A) x > y
- (B) x = y
- (C) x < y
- (D) x,y 的大小关系不确定

二、典型例题

1. l_1, l_2 是异面直线, $A, B \in l_1, A_1, B_1 \in l_2$, $AA_1 \perp l_2$, $BB_1 \perp l_2$.

(1) 当 A_1, B_1 重合时,求证; $l_1 \perp l_2$;(2) 当 l_1, l_2 所成角为 θ $\left(0 < \theta < \frac{\pi}{2}\right)$,且 AB = a 时,求 A_1B_1 的长.

2. 在三棱台 ABC- $A_1B_1C_1$ 中, AA_1 上底面 ABC, $\angle BAC$ = $\angle BC_1C$ = 90°, A_1C_1 = a, BC_1 = 2a. (1) 求证: CC_1 上平面 ABC_1 ; (2) 求 BC_1 与平面 A_1B_1BA 所成的角.

3. 在四棱锥 P-ABCD 中,底面 ABCD 是平行四边形,异面直线 PA, CD 所成角为 α , 它们的公垂线为 EF. (1) 求证: EF 上平面 PAB; (2) 当 PA=a, CD=b, EF=c 时,求 V_{PABCD} .

三、测试题

1. ∠ACB = 90°在平面 α内, PC 与 CA, CB 所成角∠PCA = ∠PCB=60°,则 PC 与平面 α所成角为

2. 空间三条线段 AB, BC, CD, $AB \perp BC$, $BC \perp CD$, 已知 AB = 3, BC = 4, CD = 6, 则 AD 的取值范围是

3. a,b,c 表示直线,a表示平面,下列条件中能使 a Lα的是

(A) $a \perp b, a \perp c, b \subseteq a, c \subseteq a$

(B) $a \perp b, b // a$

(C) $a \cap b = A, b \subset a, a \mid b$

(D) $a//b,b\perp a$

4. OA 是平面 M 的斜线,O 为斜足,OB 是 OA 在 M 内的射影,OC 是 M 内过 O 的任一直线,设 $\angle AOB = \alpha$, $\angle BOC = \beta$, $\angle COA = \gamma$, α , β , γ 均为锐角. (1) 求 α , β , γ 应满足的关系;(2) 指出 α , β , γ 中的最大角并说明理由.

5. 在三棱锥 P-ABC 中, $PA\bot AC$, $PB\bot BC$, $AC\bot BC$,PA ,PB 与 平面 ABC 所成角分别为 30°和 45°. (1) 若 P 到底面 ABC 的距离为 h,求 P 到直线 AB 的距离; (2) 问:直线 PC 与 AB 能否垂直? 证明你的结论.

6. 已知三棱台 $ABC-A_1B_1C_1$, CC_1 上底面 ABC, $AB\perp BC$, $BC=CC_1=A_1B_1=\frac{1}{2}B_1C_1$.

(1) 求证: $AC_1\perp BB_1$; (2) 求斜线 A_1C_1 与平面 AA_1B_1B 所成角的大小.

四、说明

- 1. 本节的复习内容为:(1) 直线和平面垂直的定义、判定定理、性质定理;(2) 三垂线定理及其逆定理;(3) 点到平面的距离,直线和平面所成的角. 三垂线定理及其逆定理是立几中的重要定理,应注意各种图式的变换.
- 2. 立几中求空间角和距离时,首先要写出前提,证明某个对象就是所求的角或距离. 立几中"作、证、算"这三个步骤缺一不可.