1. Übung Numerik von partiellen Differentialgleichungen - stationäre Probleme 12. Oktober 2018

1. Sei V ein Hilbertraum,

$$A: V \times V \to \mathbb{R}$$

eine stetige, elliptische und symmetrische Bilinearform,

$$f: V \to \mathbb{R}$$

eine stetige Linearform auf V sowie $J(v):=\frac{1}{2}A(v,v)-f(v)$. Weiters sei $V_0\subset V$ ein linearer Teilraum, $g\in V$ und $V_g=g+V_0$.

Zeigen Sie: J nimmt sein Minimum über V_g genau dann bei $u \in V_g$ an, wenn für $u \in V_g$ $A(u,v) = f(v) \quad \forall v \in V_0$ gilt. Muss dazu V_0 abgeschlossen sein?

2. Sei V ein Hilbertraum sowie $A:V\to V$ ein linearer, beschränkter sowie selbstadjungierter Operator.

Zeigen Sie ohne allgemeine Spektraltheorie zu verwenden:

$$||A|| := \sup_{\substack{v \in V \\ v \neq 0}} \frac{||Av||}{||v||} = \sup_{\substack{v \in V \\ v \neq 0}} \frac{|(Av, v)|}{||v||^2}$$

- 3. Sei $T_{\sigma}: l_2 \to l_2$ ein linearer Operator mit $(T_{\sigma}x)_n = \sigma_n x_n$, wobei $\sigma \in \mathbb{R}^{\mathbb{N}}$ mit $\sigma_n \to 0$. Zeigen Sie, dass T kompakt ist.
- 4. Lösen Sie die Poissongleichung $-\Delta u=1$ mit Dirichlet-Randbedingungen u=0 auf dem "Lshape" Gebiet $\Omega=(0,2)^2\setminus[1,2]^2$ mit NGSolve. Plotten Sie die partiellen Ableitungen. Schätzen Sie für $p=1\dots 8$ den L_2 -Fehler und den H^1 -Fehler, indem Sie mit einer FEM-Lösung höherer Ordnung vergleichen (z.B. p+2).