Solutions to the exam in commutative algebra MMA300 2020-10-26

- 1a) \mathbf{Z}_{2020} is naturally isomorphic to $\mathbf{Z}_4 \times \mathbf{Z}_5 \times \mathbf{Z}_{101}$ where \mathbf{Z}_5 and \mathbf{Z}_{101} are integral domains. If (a, b, c) is a nilpotent in $\mathbf{Z}_4 \times \mathbf{Z}_5 \times \mathbf{Z}_{101}$ we will thus have that b=0, c=0 and that a is even. The corresponding elements n in \mathbf{Z}_{2020} must therefore be divisible by $2 \times 5 \times 101 = 1010$, which gives the nilpotents 1010 and 0 in \mathbf{Z}_{2020}
- b) The only idempotents in an integral domain are 0 and 1 and this is also true for \mathbb{Z}_4 . There are therefore eight idempotents (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0) and (1,1,1) in $\mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_{101}$, where (0,0,0) corresponds to 0 and (1,1,1) to 1 in \mathbb{Z}_{2020} . Further (0,0,1) corresponds to a multiple n of 20 with $n\equiv 1 \pmod{101}$, which gives that $n\equiv -100 \pmod{2020}$ and n=1920 in \mathbb{Z}_{2020} . Similarly (0,1,0) corresponds to a multiple n of 404 with $n\equiv 1 \pmod{5}$, which gives that n=1616 in \mathbb{Z}_{2020} while (0,0,1) corresponds to a multiple n of 505 with $n\equiv 1 \pmod{4}$ which gives that n=505 in \mathbb{Z}_{2020} . Finally, (0,1,1)=(1,1,1)-(1,0,0) corresponds to 1-1920=2021-1920=101 in \mathbb{Z}_{2020} while (1,0,1)=(1,1,1)-(0,1,0) corresponds to 1-1616=2021-1616=405 in \mathbb{Z}_{2020} and (1,1,0)=(1,1,1)-(0,0,1) corresponds to 1-505=2021-505=1516 in \mathbb{Z}_{2020} . There are thus eight idempotents in \mathbb{Z}_{2020} represented by 0,1,101,405,505,1516,
- 2) Let a,b be non-units in $A\setminus\{0\}$. If $a/b\in A$, then $a\pm b=b(a/b\pm 1)$ cannot be a unit as if $b(a/b\pm 1)c=1$ for $c\in A$, we would have the inverse $(a/b\pm 1)c\in A$ to b. Similarly, if $b/a\in A$, then $a\pm b=a(1\pm b/a)$ cannot be a unit in A. As $a/b\in A$ or $b/a\in A$, the non-units will thus form an additive subgroup I of A. Moreover, if $a\in A$ and $i\in I$, then $ai\in I$ as if (ai)c=1 for $c\in A$ we would have the inverse $ac\in A$ to i. By the criterion in section 1.13, A is thus a local ring with maximal ideal I.

1616 and 1920.

- 3) Suppose that $x \in K$ is integral over $S^{-1}A$ with $x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$ for $c_i = a_i / s_i$ in $S^{-1}A$. Let s be the product of all s_i . Then $a_{n-i} := c_{n-i} s^i \in A$ for all $i \ge 1$ and $(xs)^n + a_{n-1}(xs)^{n-1} + \dots + a_1(xs) + a_0 = 0$. Hence $xs \in K$ is integral over A and $xs \in A$ as A is normal. Therefore, $x = xs/s \in S^{-1}A$, as was to be proved.
- 4a) If the complex number $a\neq 0$ is integral over \mathbb{Z} , then we may find a complex number $b\neq 0$ with $b^2=a$, which is also integral over \mathbb{Z} . If now b is a unit in $\tilde{\mathbb{Z}}$, then $a=b^2$ is also a unit in $\tilde{\mathbb{Z}}$, while if b is a non-unit in $\tilde{\mathbb{Z}}$ $a=b^2$ will be reducible in $\tilde{\mathbb{Z}}$. Hence no complex number in $\tilde{\mathbb{Z}}$ can be irreducible in $\tilde{\mathbb{Z}}$.
- b) $1/2 \notin \tilde{\mathbf{Z}}$ as \mathbf{Z} is integrally closed in \mathbf{Q} by exercise 0.7. So 2 is not a unit in $\tilde{\mathbf{Z}}$. Let $b_0=2$ and $b_{k+1}=\sqrt{b_k}$ for $k\geq 0$. Then $(b_k)\subseteq (b_{k+1})$ in $\tilde{\mathbf{Z}}$ but not $(b_k)=(b_{k+1})$ as

otherwise $b_k/b_{k+1} = b_{k+1}$ would be a unit in $\tilde{\mathbf{Z}}$ just like all powers of b_{k+1} including 2. We have thus an infinite chain of different ideals

$$(b_0) \subset (b_1) \subset \dots \subset (b_{k-1}) \subset (b_k) \subset (b_{k+1}) \subset \dots$$

which proves that $\tilde{\mathbf{Z}}$ is not Noetherian.

- 5) Let $\varphi: M \to M/N_1 \oplus M/N_2$ be the *A*-linear map which sends $m \in M$ to $(m+N_1, m+N_2)$. As the kernel of φ is $N_1 \cap N_2$, we obtain then from prop 2.3(c) an *A*-linear isomorphism from $M/(N_1 \cap N_2)$ to im φ . Further, $M/N_1 \oplus M/N_2$ is Noetherian by corollary 3.5(i) just like its submodule im φ and $M/(N_1 \cap N_2)$ by the trivial part of prop 3.4.
- 6) If such an A-linear map $g: S^{-1}M \rightarrow N$ exists, then

$$g(\frac{m}{s}) = g(\frac{1}{s}\frac{m}{1}) = \frac{1}{s}g(\frac{m}{1}) = s^{-1}f(m)$$

To see that this gives a well defined map $g: S^{-1}M \rightarrow N$, suppose that m/s = n/t in $S^{-1}M$. Then utm = usn for some $u \in S$ such that

$$g(m/s) = g(utm/stu) = (stu)^{-1} f(utm) = (stu)^{-1} f(usn) = g(usn/stu) = g(n/t).$$

This map is $S^{-1}A$ -linear as

$$g(\frac{m}{s} + \frac{n}{t}) = g(\frac{tm + sn}{st}) = \frac{f(tm + sn)}{st} = \frac{tf(m) + sf(n)}{st} = \frac{f(m)}{s} + \frac{f(n)}{t} = g(\frac{m}{s}) + g(\frac{n}{t})$$

$$\frac{a}{s}g(\frac{m}{t}) = \frac{a}{s}\frac{f(m)}{t} = \frac{af(m)}{st} = \frac{f(am)}{st} = g(\frac{am}{st}) = g(\frac{a}{s}\frac{m}{t}).$$