

ON THE MOTIVE OF AN ABELIAN SCHEME WITH NON-TRIVIAL ENDOMORPHISMS

by Ben Moonen

Abstract. Let X be an abelian scheme over a base variety S and let $D = \text{End}(X/S) \otimes \mathbb{Q}$ be its endomorphism algebra. We prove that the relative Chow motive of X has a natural decomposition as a direct sum of motives $R^{(\alpha)}$ where α runs over an explicitly determined finite set. To each α corresponds an irreducible representation ρ_α of the group $D^{\text{opp},*}$ and the motivic decomposition is such that $R^{(\alpha)}$, as a functor on the category of relative Chow motives, is a sum of copies of ρ_α . In particular $\text{CH}(R^{(\alpha)})$, as a representation of $D^{\text{opp},*}$, is a sum of copies of ρ_α . Our decomposition refines the motivic decomposition of Deninger and Murre, as well as Beauville's decomposition of the Chow group.

AMS 2010 Mathematics subject classification: 14C15, 14K05

Introduction

As an application of Fourier theory, Beauville proved in [2] that the Chow ring (with \mathbb{Q} -coefficients) of a g -dimensional abelian variety X has a bigrading $\text{CH}(X) = \bigoplus_{j,s} \text{CH}_{(s)}^j(X)$, where the upper grading is given by the codimension of cycles and $[m]_X^*$ acts on $\text{CH}_{(s)}^j(X)$ as multiplication by m^{2j-s} . As shown by Deninger and Murre in [4], this decomposition in fact comes from a natural decomposition $R(X) = \bigoplus_{i=0}^{2g} R^i(X)$ of the Chow motive of X ; we have $\text{CH}_{(s)}^j(X) = \text{CH}^j(R^{2j-s}(X))$. The results of Deninger and Murre are valid, more generally, for abelian schemes $X \rightarrow S$ over a smooth quasi-projective base variety over a field.

One way to state Beauville's result is by saying that \mathbb{Q}^* acts on the Chow ring (letting $m/n \in \mathbb{Q}^*$ act as $[m]_X^* \circ [n]_X^{*, -1}$), and that the only characters that occur in this representation are the characters $q \mapsto q^i$ for $i \in \{0, 1, \dots, 2g\}$. The main purpose of this paper is to explain how this can be refined in the presence of non-trivial endomorphisms.

To describe our main result, consider an abelian scheme $X \rightarrow S$ of relative dimension g that is isogenous to a power of a simple abelian scheme. (This is the essential case, to which the general case is reduced; see (5.5).) The endomorphism algebra $D = \text{End}(X/S) \otimes \mathbb{Q}$ is then a simple algebra with center a number field K . Let Γ denote the Galois group of the normal closure of K over \mathbb{Q} . The group $D^{\text{opp},*}$ acts on $\text{CH}(X)$ and on the motives $R^i(X/S)$, which are objects of the category $\mathbf{M}^0(S)$ of relative Chow motives over S . This induces the structure of a $D^{\text{opp},*}$ -representation on $\text{Hom}_{\mathbf{M}^0(S)}(M, R(X/S))$, for any relative Chow motive M .

Let G be $D^{\text{opp},*}$, viewed as a reductive group over \mathbb{Q} . The irreducible representations of G over \mathbb{Q} are indexed by the Γ -orbits in a space \mathbb{X}^+ of highest weight vectors. Write ρ_α for the irreducible representation of $D^{\text{opp},*} = G(\mathbb{Q})$ corresponding to $\alpha \in \mathbb{X}^+/\Gamma$. There is a natural “weight function” $\|\cdot\|: \mathbb{X}^+/\Gamma \rightarrow \mathbb{Z}$ that sends a class α to the degree of the restriction of ρ_α to the subgroup $\mathbb{G}_m \subset G$ of homotheties. Further, we consider an explicit finite subset $\mathbb{X}^{\text{adm}}/\Gamma \subset \mathbb{X}^+/\Gamma$ of “admissible” elements; see (4.2) for the definition.

Our main results are Theorems (4.3) and (5.1) in the text. The content of these results is

that there is a unique motivic decomposition

$$R(X/S) = \bigoplus_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} R^{(\alpha)}(X/S)$$

that is stable under the action of $D^{\text{opp},*}$ and has the property that for any motive M the $D^{\text{opp},*}$ -representation $\text{Hom}_{\mathbf{M}^0(S)}(M, R^{(\alpha)}(X/S))$ is isomorphic to a sum of copies of the irreducible representation ρ_α . In particular, the Chow group $\text{CH}(R^{(\alpha)}(X/S))$ is a sum of copies of ρ_α as a representation of $D^{\text{opp},*}$. For $\alpha \in \mathbb{X}^{\text{adm}}/\Gamma$ we have $0 \leq \|\alpha\| \leq 2g$ and $R^i(X/S)$ is the direct sum of the motives $R^{(\alpha)}(X/S)$ with $\|\alpha\| = i$.

Further we describe an involution $\alpha \mapsto \alpha^*$ on the set $\mathbb{X}^{\text{adm}}/\Gamma$, with $\|\alpha^*\| = 2g - \|\alpha\|$, and we obtain a motivic Poincaré duality isomorphism $R^{(\alpha)}(X/S)^\vee \xrightarrow{\sim} R^{(\alpha^*)}(X/S)(g)$. Finally, if X^\dagger/S is the dual abelian scheme, we have a motivic Fourier duality $\mathcal{F}: R^i(X/S) \xrightarrow{\sim} R^{2g-i}(X^\dagger/S)(g-i)$ and we prove that this \mathcal{F} is a sum of isomorphisms $R^{(\alpha)}(X/S) \xrightarrow{\sim} R^{(\alpha^*)}(X^\dagger/S)(g-i)$, for $\alpha \in \mathbb{X}^{\text{adm}}/\Gamma$ with $\|\alpha\| = i$.

The proof of our results relies on the fact that the group $D^{\text{opp},*}$ acts on $\text{CH}(R^i(X/S))$ through a representation that is polynomial of degree i , by which we mean that all matrix coefficients that occur in this representation are homogeneous polynomial functions of degree i on D . In Section 1 we discuss the classification of such representations. The proof that the representation on $\text{CH}(R^i(X/S))$ is indeed of this kind reduces, via Künnemann's isomorphism $R^i(X/S) \cong \wedge^i R^1(X/S)$, to the case $i = 1$, in which case it is the unsurprising assertion that the natural map $D^{\text{opp}} \rightarrow \text{End}(R^1(X/S))$ given by $f \mapsto f^*$ is a homomorphism of \mathbb{Q} -algebras. In Section 4 we study the decomposition of $\text{CH}(X)$ and by bootstrapping we obtain from this in Section 5 a motivic decomposition.

Conventions. — Throughout, Chow groups are taken with \mathbb{Q} -coefficients. All group actions we consider are left actions.

1. Some inputs from representation theory

(1.1) In this section we consider a simple algebra B of finite dimension over a field k of characteristic 0. Let K be the center of B , let $[K : k] = n$ and let $d = \dim_K(B)^{1/2}$.

Let \bar{k} be an algebraic closure of k and let $\Sigma(K)$ denote the set of k -algebra homomorphisms $K \rightarrow \bar{k}$. Let \tilde{K} denote the normal closure of K inside \bar{k} , and write $\Gamma = \text{Gal}(\tilde{K}/k)$. The natural action of $\text{Gal}(\bar{k}/k)$ on $\Sigma(K)$ factors through an action of Γ .

(1.2) Let H be the reductive group over K with $H(R) = (B \otimes_K R)^*$ for any commutative K -algebra R . Let $(\mathbb{X}(H), \Phi, \mathbb{X}^\vee(H), \Phi^\vee, \Delta)$ be the based root datum of H . We need to recall the definition of $\mathbb{X}(H)$; see for instance [10], Section 1.2, for further details. Consider pairs (T, Q) consisting of a maximal torus $T \subset H_{\bar{K}}$ and a Borel subgroup $Q \subset H_{\bar{K}}$ containing T . Given such a pair, let $\mathbb{X}_{(T, Q)}$ denote the character group of T . If (T', Q') is another pair, there exists an element $h \in H(\tilde{K})$ such that $hTh^{-1} = T'$ and $hQh^{-1} = Q'$. The induced isomorphism $\mathbb{X}_{(T', Q')} \xrightarrow{\sim} \mathbb{X}_{(T, Q)}$ is independent of the choice of h and $\mathbb{X}(H)$ is defined as the projective limit of the groups $\mathbb{X}_{(T, Q)}$. For any pair (T, Q) the natural map $\mathbb{X}(H) \rightarrow \mathbb{X}_{(T, Q)}$ is an isomorphism.

There is a natural choice for an ordered \mathbb{Z} -basis $\{e_1, \dots, e_d\}$ of $\mathbb{X}(H)$, obtained in the following way. Choose an isomorphism of \bar{K} -algebras $a: B \otimes_K \bar{K} \xrightarrow{\sim} M_d(\bar{K})$; this induces an isomorphism $\alpha: H_{\bar{K}} \xrightarrow{\sim} \mathrm{GL}_{d, \bar{K}}$. Let $T \subset Q \subset H_{\bar{K}}$ be the maximal torus and Borel subgroup such that $\alpha(T)$ is the diagonal torus and $\alpha(Q)$ is the upper triangular Borel. Let $\epsilon'_j: \alpha(T) \rightarrow \mathbb{G}_{m, \bar{K}}$ be the character that sends a diagonal matrix with entries (c_1, \dots, c_d) to c_j , and define $\epsilon_j \in \mathbb{X}_{(T, Q)}$ by $\epsilon_j = \epsilon'_j \circ \alpha$. Then $\{\epsilon_1, \dots, \epsilon_d\}$ is an ordered \mathbb{Z} -basis of $\mathbb{X}_{(T, Q)}$. Now define $\{e_1, \dots, e_d\}$ to be the ordered \mathbb{Z} -basis of $\mathbb{X}(H)$ such that $e_j \mapsto \epsilon_j$ under the isomorphism $\mathbb{X}(H) \xrightarrow{\sim} \mathbb{X}_{(T, Q)}$. It follows from the Skolem-Noether theorem and the definition of $\mathbb{X}(H)$ that the ordered basis thus obtained does not depend on the choice of the isomorphism a . Further it is clear from the construction that the roots are the vectors $e_i - e_j$ for $i \neq j$, and that the basis of positive roots is given by $\Delta = \{e_i - e_{i+1} \mid i = 1, \dots, d-1\}$.

(1.3) The group H is an inner form of GL_d ; hence the Galois group $\mathrm{Gal}(\bar{K}/K)$ acts trivially on the root datum of H . By [9], Thm. 7.2, we have a bijective correspondence between the set of irreducible finite-dimensional representations of H over K and the set $\mathbb{X}(H)^+$ of dominant weights.

With respect to the ordered basis $\{e_1, \dots, e_d\}$ as in (1.2), the dominant weights are the vectors $\lambda_1 e_1 + \dots + \lambda_d e_d$ for $\lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{Z}^d$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$. This gives an identification of $\mathbb{X}(H)^+$ with the set

$$(1.3.1) \quad \Lambda^+ = \{\lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{Z}^d \mid \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d\}.$$

For $\lambda \in \Lambda^+ = \mathbb{X}(H)^+$, let ψ_λ be the corresponding irreducible representation of H over K .

If ϕ_λ is the irreducible representation of GL_d with highest weight given by λ , the representation ψ_λ is a K -form of the representation $\phi_\lambda^{\oplus d(\lambda)}$ for some integer $d(\lambda)$ that divides d . For later use, let us also recall that if $\lambda_d \geq 0$, the representation ϕ_λ is the one obtained from the standard representation of GL_d applying the Schur functor \mathbb{S}_λ . In the general case, without the assumption that $\lambda_d \geq 0$, we take an integer m with $\lambda_d + m \geq 0$; then $\phi_\lambda = \phi_{(\lambda_1+m, \dots, \lambda_d+m)} \otimes \det^{-m}$. See for instance [5], Section 15.5.

(1.4) Next we consider the reductive group $G = \mathrm{Res}_{K/k} H$ over k . If R is a commutative k -algebra, $G(R) = (B \otimes_k R)^*$. The set $\mathbb{X}(G)^+$ of dominant weights of $G_{\bar{k}}$ is given by $\mathbb{X}(G)^+ = \bigoplus_{\sigma \in \Sigma(K)} \mathbb{X}(H)^+$. Via the identification $\mathbb{X}(H)^+ = \Lambda^+$ of (1.3), we obtain an identification of $\mathbb{X}(G)^+$ with the set

$$\mathbb{X}^+ = \bigoplus_{\sigma \in \Sigma(K)} \Lambda^+.$$

The Galois group $\mathrm{Gal}(\bar{k}/k)$ acts on $\mathbb{X}^+ = \mathbb{X}(G)^+$ by its permutation of the summands; hence this action factors through an action of Γ . By [9], Thm. 7.2, the irreducible k -representations of G are indexed by the elements of \mathbb{X}^+/Γ . If α is a Γ -orbit in \mathbb{X}^+ we denote the corresponding irreducible representation of G by ρ_α .

We have a natural isomorphism $G_{\bar{K}} \cong \prod_{\sigma \in \Sigma(K)} H_\sigma$, with $H_\sigma = H \otimes_{K, \sigma} \bar{K}$. The representation $\rho_{\alpha, \bar{K}}$ decomposes as a direct sum $\bigoplus_{\lambda \in \alpha} \Psi_\lambda$, where Ψ_λ is the external tensor product $\boxtimes_{\sigma \in \Sigma(K)} \psi_{\lambda(\sigma)}$. (Here $\lambda \in \mathbb{X}^+$ is viewed as a function $\Sigma(K) \rightarrow \Lambda^+$.)

Note that, since $G(k) = B^*$ is Zariski dense in G , the representations ρ_α , for $\alpha \in \mathbb{X}^+/\Gamma$, are still irreducible and mutually non-equivalent as representations of the abstract group B^* .

(1.5) Choose a k -basis $\{\beta_1, \dots, \beta_N\}$ for B (with $N = nd^2$). If E is a commutative k -algebra, we call a map $r: B \rightarrow E$ a multiplicative homogeneous polynomial map over k of degree i if it has the following properties:

- (a) r is multiplicative, in the sense that $r(1) = 1$ and $r(b_1 b_2) = r(b_1)r(b_2)$ for all $b_1, b_2 \in B$;
- (b) there exists a homogeneous polynomial $P \in E[t_1, \dots, t_N]$ of degree i such that $r(c_1\beta_1 + \dots + c_N\beta_N) = P(c_1, \dots, c_N)$ for all $c_1, \dots, c_N \in k$.

Note that the polynomial P in (b) is uniquely determined, because k is an infinite field.

Let V be a finite dimensional k -vector space. Consider a multiplicative homogeneous polynomial map $r: B \rightarrow \text{End}_k(V)$ over k of degree i . If R is a commutative k -algebra, define $r_R: B \otimes_k R \rightarrow \text{End}_R(V \otimes_k R) = \text{End}_k(V) \otimes_k R$ by the relation $r_R(c_1\beta_1 + \dots + c_N\beta_N) = P(c_1, \dots, c_N)$, for $c_1, \dots, c_N \in R$. Using that r is multiplicative plus the fact that the field k is infinite, one easily shows that the map r_R is again multiplicative. Hence this construction defines an algebraic representation $\phi_r: G \rightarrow \text{GL}(V)$ over k . We refer to the representations of G , or of $B^* = G(k)$, that are obtained in this manner as the polynomial representations of degree i .

(1.6) Define a subset $\Lambda^{\text{pol}} \subset \Lambda^+$ by the condition that $\lambda_d \geq 0$, i.e.,

$$(1.6.1) \quad \Lambda^{\text{pol}} = \{\lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{Z}^d \mid \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d \geq 0\}.$$

Define $\mathbb{X}^{\text{pol}} = \bigoplus_{\sigma \in \Sigma(K)} \Lambda^{\text{pol}}$, which is a Γ -stable subset of \mathbb{X}^+ .

For $\lambda \in \mathbb{X}^{\text{pol}}$, define $\|\lambda\| = \sum_{\sigma \in \Sigma(K)} |\lambda(\sigma)|$. As the map $\mathbb{X}^{\text{pol}} \rightarrow \mathbb{Z}_{\geq 0}$ given by $\lambda \mapsto \|\lambda\|$ is Γ -invariant, it descends to a map $\|\cdot\|: \mathbb{X}^{\text{pol}}/\Gamma \rightarrow \mathbb{Z}_{\geq 0}$.

(1.7) *Proposition.* — Let $\phi: B^* \rightarrow \text{GL}(V)$ be a polynomial representation of degree i . Then

$$(1.7.1) \quad (V, \phi) = \bigoplus_{\substack{\alpha \in \mathbb{X}^{\text{pol}}/\Gamma \\ \|\alpha\| = i}} (V_\alpha, \phi^{(\alpha)})$$

such that $(V_\alpha, \phi^{(\alpha)})$ is isomorphic to a sum of copies of the irreducible representation ρ_α .

Proof. By construction, $\phi: B^* \rightarrow \text{GL}(V)$ is obtained from an algebraic representation $\phi_r: G \rightarrow \text{GL}(V)$ by evaluation on k -rational points. The irreducible representations that occur in ϕ_r are again polynomial of degree i , and this property is preserved if we extend scalars to \bar{K} . Using the description of the representations $\rho_{\alpha, \bar{K}}$ given in (1.3) and (1.4) we see that the only irreducible representations ρ_α that are polynomial of degree i are those with $\alpha \in \mathbb{X}^{\text{pol}}/\Gamma$ and $\|\alpha\| = i$. \square

(1.8) *Example.* — The reduced norm $\text{Nrd}: B^* \rightarrow k^*$ is a polynomial representation of degree nd . It corresponds to the Γ -orbit $\alpha \in \mathbb{X}^{\text{pol}}/\Gamma$ that consists of the single element $\nu: \Sigma(K) \rightarrow \Lambda^{\text{pol}}$ with $\nu(\sigma) = (1, \dots, 1)$ for all $\sigma \in \Sigma(K)$. If $\alpha \in \mathbb{X}^{\text{pol}}/\Gamma$ is the orbit of $\lambda: \Sigma(K) \rightarrow \Lambda^{\text{pol}}$, the representation $\text{Nrd} \otimes \rho_\alpha$ is again polynomial; it corresponds to the Γ -orbit in \mathbb{X}^{pol} of the sum $\nu + \lambda$.

(1.9) *Remark.* — We shall have to deal with multiplicative homogeneous polynomial maps $r: B \rightarrow \text{End}_k(V)$ of degree i where V is no longer assumed to have finite k -dimension, but is the union of its finite dimensional subspaces V' that are stable under all operators $r(b)$ for $b \in B$. In this case we still have a decomposition (1.7.1), of course with the understanding that the

$(V_\alpha, \phi^{(\alpha)})$ will now in general be infinite sums of copies of ρ_α . We refer to V_α as the α -isotypic component of V .

2. Some preliminaries on the action of endomorphisms on the Chow motive

(2.1) Throughout this section, F is a field and S denotes a connected F -scheme that is smooth and quasi-projective over F . Let $\mathbf{M}^0(S)$ be the category of Chow motives over S with respect to graded correspondences, as defined as in [4], 1.6.

Let \mathbf{V}_S denote the category of smooth projective S -schemes. We have a contravariant functor $R(-/S): \mathbf{V}_S \rightarrow \mathbf{M}^0(S)$, sending a smooth projective $X \rightarrow S$ to $R(X/S) = (X, [{}^t\Gamma_{\text{id}}], 0)$. For a morphism $f: X \rightarrow Y$ between smooth projective S -schemes, $R(f/S) = [{}^t\Gamma_f]: R(Y/S) \rightarrow R(X/S)$. We write f^* for $R(f/S)$.

Let $X \rightarrow S$ be an abelian scheme of relative dimension g over S . For $m \in \mathbb{Z}$, let $[m]_X: X \rightarrow X$ denote the multiplication by m map. By [4], Cor. 3.2 the relative motive $R(X/S)$ decomposes in $\mathbf{M}^0(S)$ as

$$(2.1.1) \quad R(X/S) = \bigoplus_{i=0}^{2g} R^i(X/S),$$

in such a way that $[m]_X^*$ acts on $R^i(X/S)$ as multiplication by m^i . Define $R^i(X/S) = 0$ if $i \notin \{0, \dots, 2g\}$. If $f: X \rightarrow Y$ is a homomorphism of abelian schemes over S the induced morphism f^* of motives is a sum of morphisms $R^i(f): R^i(Y/S) \rightarrow R^i(X/S)$; we shall again call these morphisms f^* .

The goal of this paper is to explain how, in the presence of non-trivial endomorphisms, the decomposition (2.1.1) may be refined. As a first example we consider the case of a product of abelian schemes. Though it is not stated by Deninger and Murre in [4], the following result is an immediate consequence of their work.

(2.2) *Proposition.* — Let X_1, \dots, X_r be abelian schemes over S with X_ν of relative dimension g_ν . Write $X = X_1 \times_S \dots \times_S X_r$, let $g = g_1 + \dots + g_r$ and

$$I_X = \{\mathbf{i} = (i_1, \dots, i_r) \in \mathbb{Z}^r \mid 0 \leq i_\nu \leq 2g_\nu\}.$$

For $\mathbf{m} = (m_1, \dots, m_r)$, let $[\mathbf{m}]_X \in \text{End}(X/S)$ be given by $(x_1, \dots, x_r) \mapsto (m_1 x_1, \dots, m_r x_r)$, and let $\mathbf{m}^{\mathbf{i}} = m_1^{i_1} \dots m_r^{i_r}$. Then there is a unique decomposition

$$(2.2.1) \quad [\Delta_{X/S}] = \sum_{\mathbf{i} \in I_X} \pi_{\mathbf{i}}$$

in $\text{End}_{\mathbf{M}^0(S)}(R(X/S)) = \text{CH}^g(X \times_S X)$ such that the elements $\pi_{\mathbf{i}}$ are mutually orthogonal idempotents and such that $[\mathbf{m}]_X^* \circ \pi_{\mathbf{i}} = \mathbf{m}^{\mathbf{i}} \cdot \pi_{\mathbf{i}}$ for all $\mathbf{m} \in \mathbb{Z}^r$ and $\mathbf{i} \in I_X$. Moreover, $\pi_{\mathbf{i}} \circ [\mathbf{m}]_X^* = \mathbf{m}^{\mathbf{i}} \cdot \pi_{\mathbf{i}}$ for all \mathbf{m} and \mathbf{i} . Corresponding to (2.2.1) we have a decomposition

$$R(X/S) = \bigoplus_{\mathbf{i} \in I_X} R^{\mathbf{i}}(X/S)$$

such that $[\mathbf{m}]^*$ acts on $R^i(X/S)$ as multiplication by \mathbf{m}^i .

Proof. This follows from the main results of [4] by taking tensor products. We have $R(X/S) = R(X_1/S) \otimes \cdots \otimes R(X_r/S)$ in $\mathbf{M}^0(S)$; if $[\Delta_{X_r/S}] = \sum_{j=0}^{2g_r} \pi_j^{(\nu)}$ is the decomposition of loc. cit., Thm. 3.1., we take $\pi_{\mathbf{i}} = \pi_{i_1}^{(1)} \otimes \cdots \otimes \pi_{i_r}^{(r)}$ for $\mathbf{i} = (i_1, \dots, i_r) \in I_X$. \square

(2.3) Example. — (Cf. [7], (3.1.2)(ii).) Let X and Y be abelian schemes over S with X of relative dimension g . If $\xi \in \mathrm{CH}(X \times_S Y)$ we have a decomposition $\xi = \sum \xi_{i,j}$ such that $[m, n]^*(\xi_{i,j}) = m^i n^j \cdot \xi_{i,j}$ for all integers m and n . It follows from the relations in [4], Prop. 1.2.1, together with the motivic Poincaré duality ${}^t \pi_i = \pi_{2g-i}$ that $\xi_{i,j} = \pi_j(Y/S) \circ \xi \circ \pi_{2g-i}(X/S)$.

We apply this with $Y = X^\dagger$, the dual of X . Let $\ell \in \mathrm{CH}^1(X \times_S X^\dagger)$ be the first Chern class of the Poincaré bundle. Then $\ell = \ell_{1,1}$; hence, $\ell^i/i! = \pi_i(X^\dagger/S) \circ (\ell^i/i!) \circ \pi_{2g-i}(X/S)$. Now use the Mukai-Beauville relation $\mathcal{F}^\dagger \circ \mathcal{F} = (-1)^g [-1]^*$ and view $\ell^i/i! \in \mathrm{CH}^i(X \times_S X^\dagger)$ as a morphism from $R(X/S) = \bigoplus R^j(X/S)$ to $R(X^\dagger/S)(g-i) = \bigoplus R^j(X^\dagger/S)(i-g)$. It follows that the only non-zero component of this morphism is an isomorphism

$$(2.3.1) \quad \frac{\ell^i}{i!} : R^{2g-i}(X/S) \xrightarrow{\sim} R^i(X^\dagger/S)(i-g),$$

which we refer to as motivic Fourier duality. (The interpretation is that, up to a Tate twist, the dual abelian scheme is the Poincaré dual of X , and that Fourier duality “is” Poincaré duality. Indeed, combining (2.3.1) with the motivic Poincaré duality $R^i(X/S)^\vee = R^{2g-i}(X/S)(g)$ we find that $R^i(X^\dagger/S) \cong R^i(X/S)^\vee(-i)$.)

(2.4) With S as in (2.1), consider an abelian scheme $X \rightarrow S$ of relative dimension $g > 0$. We assume X is isogenous to a power of a simple abelian scheme over S , in which case the endomorphism algebra $D = \mathrm{End}(X/S) \otimes \mathbb{Q}$ is a simple \mathbb{Q} -algebra of finite dimension. (For the general case see (5.5).) Let K be the center of D . Let $n = [K : \mathbb{Q}]$ and $d = \dim_K(D)^{1/2}$. Let $\Sigma(K)$ be the set of ring homomorphisms $K \rightarrow \overline{\mathbb{Q}}$, let $\tilde{K} \subset \overline{\mathbb{Q}}$ denote the normal closure of K inside $\overline{\mathbb{Q}}$, and write $\Gamma = \mathrm{Gal}(\tilde{K}/\mathbb{Q})$.

Every element of D can be written in the form f/m for some $f \in \mathrm{End}(X/S)$ and some integer $m \neq 0$. For $i \geq 0$ we have a well-defined map $r^{(i)} : D^{\mathrm{opp}} \rightarrow \mathrm{End}_{\mathbf{M}^0(S)}(R^i(X/S))$ given by $(f/m) \mapsto f^* \circ [m]^{*, -1}$. This map is multiplicative but is not, in general, additive. In particular, the group $D^{\mathrm{opp}, *}$ acts on $R^i(X/S)$ by automorphisms.

(2.5) Proposition. — The map $r^{(1)} : D^{\mathrm{opp}} \rightarrow \mathrm{End}_{\mathbf{M}^0(S)}(R^1(X/S))$ is a homomorphism of \mathbb{Q} -algebras.

Proof. It will be easier to prove the dual statement. Recall that $R^{2g-1}(X/S)(g) = R^1(X/S)^\vee$; see [7], (3.1.2). If f is an endomorphism of X/S , we have an induced endomorphism $f_* = [\Gamma_f]$ of $R(X/S)$. It follows from Prop. 3.3 of [4], taking transposes, that $\pi_i \circ f_* = f_* \circ \pi_i$ for all i . Hence f_* is the sum of the endomorphisms $f_* \circ \pi_i \in \mathrm{End}_{\mathbf{M}^0(S)}(R^i(X/S))$; we shall again denote these by f_* . For $m \in \mathbb{Z}$ the endomorphism $[m]_* : R^i(X/S) \rightarrow R^i(X/S)$ is the multiplication by m^{2g-i} ; hence for $m \neq 0$ it is an isomorphism and we can define a map $D \rightarrow \mathrm{End}_{\mathbf{M}^0(S)}(R^{2g-1}(X/S))$ by $(f/m) \mapsto f_* \circ [m]_*^{-1}$. It suffices to prove that this map is additive.

Let $A \rightarrow T$ be an abelian scheme of relative dimension g with T a connected, smooth and quasi-projective F -scheme. For $a \in A(T)$, define $\log([\Gamma_a]) \in \mathrm{CH}^g(A)$ as in [7], Section (1.4).

As shown there, $\log([\Gamma_{a+b}]) = \log([\Gamma_a]) + \log([\Gamma_b])$. Applying this to the abelian scheme $\text{pr}_1: X \times_S X \rightarrow X$ we find that for endomorphisms f and f' of X/S we have

$$(2.5.1) \quad \log([\Gamma_{f+f'}]) = \log([\Gamma_f]) + \log([\Gamma_{f'}])$$

in $\text{CH}^g(X \times_S X) = \text{End}_{\mathbf{M}^0(S)}(R(X/S))$.

The projector π_{2g-1} that defines $R^{2g-1}(X/S)$ is $\pi_{2g-1} = \log([\Gamma_{\text{id}}])$. Now we use [6], assertion (iii) of Lemma 2.2; this says that for an endomorphism ϕ we have $\phi_* \circ \log([\Gamma_{\text{id}}]) = \log([\Gamma_\phi])$. So (2.5.1) gives $(f+f')_* \circ \pi_{2g-1} = f_* \circ \pi_{2g-1} + f'_* \circ \pi_{2g-1}$, which is what we wanted to prove. \square

(2.6) *Corollary.* — *The map $r^{(i)}: D^{\text{opp}} \rightarrow \text{End}_{\mathbf{M}^0(S)}(R^i(X/S))$ defined in (2.4) is a multiplicative homogeneous polynomial map over \mathbb{Q} of degree i .*

Proof. We already know that $r^{(i)}$ is multiplicative. Taking the isomorphism $R^i(X/S) \xrightarrow{\sim} \wedge^i R^1(X/S)$ of [7], Thm. (3.3.1), as an identification, the map $r^{(i)}$ is the composition of the homomorphism $r^{(1)}$ with the map $\text{End}_{\mathbf{M}^0(S)}(R^1(X/S)) \rightarrow \text{End}_{\mathbf{M}^0(S)}(R^i(X/S))$ that sends an endomorphism h of $R^1(X/S)$ to the induced endomorphism $\wedge^i h = h \wedge \cdots \wedge h$ of $R^i(X/S)$. It follows that $r^{(i)}$ is a homogeneous polynomial map of degree i . \square

3. Duality

(3.1) We retain the notation and assumptions of (2.4). We apply the theory of Section 1 with $k = \mathbb{Q}$ and three different choices for B , to be discussed in more detail below. In each case B is central simple of dimension d^2 over the field K of (2.4). The meaning of $\Sigma(K)$ and Γ is the same in all cases and the notation we use is consistent with the notation introduced in Section 1. In each case we index the irreducible algebraic representations of B^* by \mathbb{X}^+/Γ , following the method discussed in (1.2)–(1.4).

Let us now give some more details about the group actions we consider.

- (a) We shall mostly describe things from the cohomological perspective. In this case we take $B = D^{\text{opp}}$, which we let act on $\text{CH}(X)$ through the operators f^* . Let H denote the reductive group over K with $H(R) = (D^{\text{opp}} \otimes_K R)^*$ and let $G = \text{Res}_{K/\mathbb{Q}} H$. For $\lambda \in \Lambda^+$, let ψ_λ be the corresponding irreducible representation of H over K . For $\alpha \in \mathbb{X}^+/\Gamma$, let ρ_α be the corresponding irreducible representation of $G(\mathbb{Q}) = D^{\text{opp},*}$ over \mathbb{Q} .
- (b) In order to describe Poincaré duality we need the homological perspective, letting $B = D$ act on $\text{CH}(X)$ through the operators f_* . Let H' be the reductive group over K with $H'(R) = (D \otimes_K R)^*$ and let $G' = \text{Res}_{K/\mathbb{Q}} H'$, which is the opposite of the group G . For $\lambda \in \Lambda^+$, let ψ'_λ be the corresponding irreducible representation of H' over K . For $\alpha \in \mathbb{X}^+/\Gamma$, the corresponding irreducible representation of $G'(\mathbb{Q}) = D^*$ over \mathbb{Q} is denoted by ρ'_α .
- (c) Let $X^\dagger \rightarrow S$ be the dual abelian scheme and let $D^\dagger = \text{End}(X^\dagger/S) \otimes \mathbb{Q}$. If f is an endomorphism of X/S , let $f^\dagger: X^\dagger \rightarrow X^\dagger$ denote the dual endomorphism. The map $f \mapsto f^\dagger$ gives an isomorphism of \mathbb{Q} -algebras $D \xrightarrow{\sim} D^{\dagger, \text{opp}}$ and we use this to identify the center of $D^{\dagger, \text{opp}}$ with K . (This may lead to confusion; see (3.5).) For the rest the pattern is the same as in (a). We consider $\text{CH}(X^\dagger)$ as a representation of $D^{\dagger, \text{opp},*}$, with $g \in D^{\dagger, \text{opp}}$ acting as g^* . For $\alpha \in \mathbb{X}^+/\Gamma$, let ρ_α^\dagger be the corresponding irreducible representation of $D^{\dagger, \text{opp},*}$ over \mathbb{Q} .

(3.2) Lemma. — Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_d)$ be an element of Λ^+ . Then the representation τ of H' over K given by $\tau(h) = \psi_\lambda(h^{-1})$ is isomorphic to ψ'_μ , where $\mu = (-\lambda_d, \dots, -\lambda_1)$.

Proof. It is clear that τ is an irreducible representation of H' . As the representations are determined by their highest weights, we may work over \bar{K} . Choose an isomorphism of \bar{K} -algebras $a: D_{\bar{K}}^{\text{opp}} \xrightarrow{\sim} M_d(\bar{K})$, and define $a': D_{\bar{K}} \xrightarrow{\sim} M_d(\bar{K})$ by $a'(\xi) = {}^t a(\xi)$, the transpose of $a(\xi)$. Let $\alpha: H_{\bar{K}} \xrightarrow{\sim} \text{GL}_{d, \bar{K}}$ and $\alpha': H'_{\bar{K}} \xrightarrow{\sim} \text{GL}_{d, \bar{K}}$ be the induced isomorphisms of algebraic groups. Via these isomorphisms we can view both ψ_λ and τ as representations of $\text{GL}_{d, \bar{K}}$; in other words, we consider $\psi_\lambda \circ \alpha^{-1}$ and $\tau \circ (\alpha')^{-1}$. In both cases the highest weight is taken with regard to the diagonal torus T and the upper triangular Borel $Q \subset \text{GL}_d$. We have

$$(\tau \circ (\alpha')^{-1})(g) = (\psi_\lambda \circ \alpha^{-1})({}^t g^{-1}).$$

Let β be the automorphism of GL_d given by $g \mapsto {}^t g^{-1}$. Then $\beta(T) = T$ and $\beta(Q) = Q^-$, the lower triangular Borel subgroup. If $A \in \text{GL}_d(K)$ is the anti-diagonal matrix with all anti-diagonal coefficients equal to 1, the inner automorphism $\text{Inn}(A)$ transforms (T, Q^-) back to (T, Q) , and the effect of $\text{Inn}(A) \circ \beta$ on the character group of T is given by $e_i \mapsto -e_{d-i}$. Hence if $\psi_\lambda \circ \alpha^{-1}$ has highest weight $\lambda_1 e_1 + \dots + \lambda_d e_d$, the highest weight of $\tau \circ (\alpha')^{-1}$ is $-\lambda_d e_1 - \dots - \lambda_1 e_d$. \square

(3.3) Notation. — For $\lambda = (\lambda_1, \dots, \lambda_d)$ in Λ^+ define

$$\lambda^* = \left(\frac{2g}{nd} - \lambda_d, \dots, \frac{2g}{nd} - \lambda_1 \right).$$

Note that $2g/nd$ is an integer; see [8], Chap. 19, Corollary to Thm. 4. Hence λ^* is again an element of Λ^+ . For $\lambda \in \mathbb{X}^+$, define $\lambda^* \in \mathbb{X}^+$ by the rule $\lambda^*(\sigma) = \lambda(\sigma)^*$. For $\alpha \in \mathbb{X}^+/\Gamma$, let α^* denote the Γ -orbit consisting of the elements λ^* , for $\lambda \in \alpha$. Note that $\|\alpha^*\| = 2g - \|\alpha\|$.

(3.4) Proposition. — Let $V \subset \text{CH}(X)$ be an irreducible subrepresentation of $D^{\text{opp},*}$ that is isomorphic to ρ_α .

(i) The subspace $V \subset \text{CH}(X)$ is stable under the action of the operators f_* , for $f \in D$, and V is isomorphic to ρ'_{α^*} as a representation of D^* .

(ii) Let $\mathcal{F}: \text{CH}(X) \xrightarrow{\sim} \text{CH}(X^\dagger)$ be the Fourier transform. Then $\mathcal{F}(V) \subset \text{CH}(X^\dagger)$ is an irreducible subrepresentation of $D^{\dagger, \text{opp},*}$ that is isomorphic to $\rho_{\alpha^*}^\dagger$.

Proof. (i) Let $f \in D^{\text{opp},*}$. Then f is a quasi-isogeny of X to itself. Its degree $\deg(f)$ equals $\text{Nrd}(f)^{(2g/nd)}$, where $\text{Nrd}: D^{\text{opp},*} \rightarrow \mathbb{Q}^*$ is the reduced norm character. (See (1.8).) For $\xi \in \text{CH}(X)$ we have the relation $f_*(\xi) = \deg(f) \cdot (1/f)^*(\xi)$. Now use (1.8) and Lemma (3.2).

(ii) For $f \in D$ and $\xi \in \text{CH}(X)$ we have the relation $\mathcal{F}(f_*(\xi)) = f^{\dagger,*}(\mathcal{F}(\xi))$. So (ii) follows from (i). \square

(3.5) Caution. — The field K is either totally real or a CM field. In (ii) of the Proposition, it is important that we identify K with the center of $D^{\dagger, \text{opp}}$ via the isomorphism $D \xrightarrow{\sim} D^{\dagger, \text{opp}}$ given by $f \mapsto f^\dagger$. If we choose a polarization $\theta: X \rightarrow X^\dagger$, the resulting isomorphism $D \xrightarrow{\sim} D^\dagger$ gives the complex conjugate identification of K with the center of $D^{\dagger, \text{opp}}$. Under that identification, the Fourier dual of a $D^{\text{opp},*}$ -subrepresentation $V \subset \text{CH}(X)$ of type ρ_α is a $D^{\dagger, \text{opp},*}$ -subrepresentation $\mathcal{F}(V) \subset \text{CH}(X^\dagger)$ of type $\rho_{\bar{\alpha}^*}^\dagger$, where $\bar{\alpha}^* \in \mathbb{X}^{\text{adm}}/\Gamma$ is the complex conjugate of α^* .

4. Decomposition of the Chow ring

Notation and assumptions as in (2.4) and (3.1).

(4.1) Lemma. — *Let $U \subset \mathrm{CH}(X)$ be a \mathbb{Q} -subspace of finite dimension. Then the \mathbb{Q} -linear span of the classes $f^*(u)$, for $f \in D$ and $u \in U$, again has finite \mathbb{Q} -dimension.*

Proof. It suffices to prove this if $U = \mathbb{Q} \cdot u$ for some element $u \in \mathrm{CH}(X)$. Using the Deninger-Murre decomposition (2.1.1) we may, in addition, assume there is an integer i such that $[m]^*(u) = m^i \cdot u$ for all $m \in \mathbb{Z}$.

Choose a \mathbb{Q} -basis $\{\beta_1, \dots, \beta_N\}$ of D with $\beta_1 = \mathrm{id}_X$. With $\mu: X^N \rightarrow X$ the addition map, consider the \mathbb{Q} -subspace of $\mathrm{CH}(X^N)$ spanned by the class $(\beta_1 \times \dots \times \beta_N)^* \mu^*(u)$. By Prop. (2.2), applied to X^N , there exists a finite dimensional \mathbb{Q} -subspace $W \subset \mathrm{CH}(X^N)$ that contains all classes $(m_1 \beta_1 \times \dots \times m_N \beta_N)^* \mu^*(u)$ for $(m_1, \dots, m_N) \in \mathbb{Z}^N$. Our assumptions on u imply that W even contains all $(q_1 \beta_1 \times \dots \times q_N \beta_N)^* \mu^*(u)$ for $(q_1, \dots, q_N) \in \mathbb{Q}^N$. If $\Delta: X \rightarrow X^N$ is the diagonal morphism, $\Delta^*(W)$ is then a finite dimensional subspace of $\mathrm{CH}(X)$ that contains all classes $(q_1 \beta_1 + \dots + q_N \beta_N)^*(u)$, and because $\beta_1 = \mathrm{id}_X$ we have $U \subset \Delta^*(W)$. \square

(4.2) Define a subset $\Lambda^{\mathrm{adm}} \subset \Lambda^{\mathrm{pol}}$ of “admissible” elements by the condition that $(2g/nd) \geq \lambda_1$; so,

$$\Lambda^{\mathrm{adm}} = \left\{ \lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{Z}^d \mid \frac{2g}{nd} \geq \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d \geq 0 \right\}.$$

Define $\mathbb{X}^{\mathrm{adm}} = \bigoplus_{\sigma \in \Sigma(K)} \Lambda^{\mathrm{adm}}$, which is a Γ -stable subset of \mathbb{X}^+ . Note that $0 \leq \|\alpha\| \leq 2g$ for all $\alpha \in \mathbb{X}^{\mathrm{adm}}/\Gamma$. If $\lambda \in \mathbb{X}^{\mathrm{adm}}$ then λ^* is an element of $\mathbb{X}^{\mathrm{adm}}$, too; hence $\alpha \mapsto \alpha^*$ is an involutive automorphism of $\mathbb{X}^{\mathrm{adm}}/\Gamma$.

(4.3) Theorem. — *We have a decomposition*

$$(4.3.1) \quad \mathrm{CH}(X) = \bigoplus_{\alpha \in \mathbb{X}^{\mathrm{adm}}/\Gamma} \mathrm{CH}_\alpha(X)$$

as a representation of $D^{\mathrm{opp},*}$, such that the $\mathrm{CH}_\alpha(X)$ is isomorphic to a sum of copies of the irreducible representation ρ_α . For $i \geq 0$ the subspace $\mathrm{CH}(R^i(X/S)) \subset \mathrm{CH}(X)$ is the direct sum of the $\mathrm{CH}_\alpha(X)$ with $\|\alpha\| = i$. For $\alpha \in \mathbb{X}^{\mathrm{adm}}/\Gamma$, the Fourier transform \mathcal{F} restricts to an isomorphism

$$\mathcal{F}: \mathrm{CH}_\alpha(X) \xrightarrow{\sim} \mathrm{CH}_{\alpha^*}(X^\dagger).$$

Proof. By (2.6) and (4.1) we can apply Prop. (1.7). This gives a decomposition of $\mathrm{CH}(R^i(X/S))$ as a direct sum of subspaces $\mathrm{CH}_\alpha(R^i(X/S))$ for $\alpha \in \mathbb{X}^{\mathrm{pol}}/\Gamma$ with $\|\alpha\| = i$. (Cf. (1.9).) But if $\mathrm{CH}_\alpha(R^i(X/S)) \neq 0$ then it follows from Prop. (3.4) that α^* lies in the subset $\mathbb{X}^{\mathrm{pol}}/\Gamma \subset \mathbb{X}^+/\Gamma$. This implies that $\alpha \in \mathbb{X}^{\mathrm{adm}}/\Gamma$. The last assertion is immediate from (3.4). \square

5. Motivic decomposition

We retain the notation and assumptions of the previous sections; in particular, X/S is still assumed to be isogenous to a power of a simple abelian scheme.

(5.1) *Theorem.* — (i) *There is a unique decomposition*

$$(5.1.1) \quad R(X/S) = \bigoplus_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} R^{(\alpha)}(X/S),$$

in $\mathbf{M}^0(S)$ that is stable under the action of $D^{\text{opp},*}$ and has the property that for any M in $\mathbf{M}^0(S)$ the $D^{\text{opp},*}$ -representation $\text{Hom}_{\mathbf{M}^0(S)}(M, R^{(\alpha)}(X/S))$ is a sum of copies of the irreducible representation ρ_α . The motive $R^i(X/S)$ is the direct sum of the $R^{(\alpha)}(X/S)$ with $\|\alpha\| = i$.

(ii) For $\alpha \in \mathbb{X}^{\text{adm}}/\Gamma$ the subspace $\text{CH}(R^{(\alpha)}(X/S)) \subset \text{CH}(X)$ is the α -isotypic component $\text{CH}_\alpha(X) \subset \text{CH}(X)$ of (4.3.1).

(iii) Let δ_α be the idempotent in $\text{CH}^g(X \times_S X) = \text{End}_{\mathbf{M}^0(S)}(R(X/S))$ that defines the submotive $R^{(\alpha)}(X/S)$, so that $[\Delta_{X/S}] = \sum_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} \delta_\alpha$ is the decomposition of the diagonal that corresponds with (5.1.1). Then ${}^t\delta_\alpha = \delta_{\alpha^*}$; hence

$$R^{(\alpha)}(X/S)^\vee = R^{(\alpha^*)}(X/S)(g).$$

(iv) The motivic Fourier duality $R^{2g-i}(X/S) \xrightarrow{\sim} R^i(X^\dagger/S)(i-g)$ of (2.3.1) is the direct sum of isomorphisms

$$R^{(\alpha)}(X/S) \xrightarrow{\sim} R^{(\alpha^*)}(X^\dagger/S)(i-g)$$

for $\alpha \in \mathbb{X}^{\text{adm}}/\Gamma$ with $\|\alpha\| = 2g - i$.

Proof. (i) We view $X \times_S X$ as an abelian scheme over X via the first projection. Correspondingly, we let an element $f \in D$ act on $\text{CH}(X \times_S X)$ as $(1 \times f)^*$. By Thm. (4.3),

$$(5.1.2) \quad \text{CH}(X \times_S X) = \bigoplus_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} \text{CH}_\alpha(X \times_S X)$$

such that $\text{CH}_\alpha(X \times_S X)$ is α -isotypic as a representation of $D^{\text{opp},*}$. For m an integer, $(1 \times [m])^*$ is multiplication by $m^{\|\alpha\|}$ on $\text{CH}_\alpha(X \times_S X)$; hence the idempotent π_i lies in the direct sum of the subspaces $\text{CH}_\alpha(X \times_S X)$ with $\|\alpha\| = i$. Define δ_α to be the α -component of $[\Delta_{X/S}]$ in (5.1.2).

For $\xi \in \text{CH}(X \times_S X)$ let $W(\xi) \subset \text{CH}(X \times_S X)$ denote the smallest \mathbb{Q} -subspace containing ξ that is stable under the action of $D^{\text{opp},*}$, i.e., the linear span of the elements $(1 \times f)^*\xi$, for $f \in D^{\text{opp},*}$. If ξ and η are correspondences from X to itself relative to S and $f \in D$, it follows from [4], Prop. 1.2.1, that $(1 \times f)^*(\eta \circ \xi) = (1 \times f)^*\eta \circ \xi$. Hence $W(\eta \circ \xi)$, as a representation of $D^{\text{opp},*}$, is a quotient of $W(\eta)$. In particular, for $\alpha \in \mathbb{X}^{\text{adm}}/\Gamma$ we have $\delta_\alpha \circ \xi \in \text{CH}_\alpha(X \times_S X)$. On the other hand, $\xi = [\Delta_{X/S}] \circ \xi = \sum_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} \delta_\alpha \circ \xi$; hence $\delta_\alpha \circ \xi$ is the α -component of ξ in the decomposition (5.1.2). It follows that

$$\delta_\beta \circ \delta_\alpha = \begin{cases} \delta_\alpha & \text{if } \beta = \alpha; \\ 0 & \text{otherwise.} \end{cases}$$

In particular, δ_α is an idempotent. Define $R^{(\alpha)}(X/S) = (X, \delta_\alpha, 0)$, the submotive of $R(X/S)$ cut out by δ_α . By construction we have a decomposition (5.1.1). Further, $(1 \times f)^*$ preserves the

subspaces $\text{CH}_\beta(X \times_S X) \subset \text{CH}(X \times_S X)$; so $(1 \times f)^*(\delta_\beta) = [{}^t\Gamma_f] \circ \delta_\beta$ lies in $\text{CH}_\beta(X \times_S X)$, and by the above it follows that $\delta_\alpha \circ [{}^t\Gamma_f] \circ \delta_\beta = 0$ if $\alpha \neq \beta$. This means that the decomposition (5.1.1) is stable under the action of $D^{\text{opp},*}$.

If M is a relative Chow motive over S the map $h \mapsto \sum \delta_\alpha \circ h$ gives an isomorphism $\text{Hom}_{\mathbf{M}^0(S)}(M, R(X/S)) \xrightarrow{\sim} \bigoplus_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} \text{Hom}_{\mathbf{M}^0(S)}(M, R^{(\alpha)}(X/S))$. By the same argument as above, the $D^{\text{opp},*}$ -subrepresentation of $\text{Hom}_{\mathbf{M}^0(S)}(M, R^{(\alpha)}(X/S))$ generated by $\delta_\alpha \circ h$ is α -isotypic.

Finally, the uniqueness of the decomposition (5.1.1) follows from the Yoneda Lemma, as the required property uniquely characterizes $R^{(\alpha)}(X/S)$ as a subfunctor of $R(X/S)$.

Part (ii) follows from (i) by taking $M = \mathbf{1}(-j)$ for various j .

Next we prove (iv). Given a motive M and a class $\alpha \in \mathbb{X}^{\text{adm}}/\Gamma$ with $\|\alpha\| = 2g - i$, consider the map $h: \text{Hom}(M, R^{(\alpha)}(X/S)) \rightarrow \text{Hom}(M, R(X^\dagger/S)(i-g))$ induced by the composition

$$R^{(\alpha)}(X/S) \hookrightarrow R^{2g-i}(X/S) \xrightarrow{(2.3.1)} R^i(X^\dagger/S)(i-g) \hookrightarrow R(X^\dagger/S)(i-g).$$

By Yoneda, it suffices to prove that the image of h lies in the α^* -isotypic component of $\text{Hom}(M, R(X^\dagger/S)(i-g))$. It is enough to do this for motives M of the form $M = R(Y/S)(m)$ with Y a connected smooth projective S -scheme. In this case, h is just the Fourier transform $\text{CH}_\alpha^{\dim(Y/S)-m}(Y \times_S X) \rightarrow \text{CH}^{\dim(Y/S)-m-g+i}(Y \times_S X^\dagger)$, where we view $Y \times_S X$ and $Y \times_S X^\dagger$ as abelian schemes over Y via the first projections. (We use that our motivic decomposition is compatible, in the obvious sense, with base-change.) We conclude by Thm. (4.3).

For (iii) we first recall from (3.1)(c) that we have a natural isomorphism $\tau: D^* \cong D^{\dagger, \text{opp},*}$. On $R^i(X/S)^\vee$ we have an action of D^* . On $R^i(X^\dagger/S)(i)$ we have an action of $D^{\dagger, \text{opp},*}$. Further, the isomorphism $R^i(X/S)^\vee \xrightarrow{\sim} R^i(X^\dagger/S)(i)$ of (2.3) is equivariant with respect to τ . (Cf. the proof of (3.4)(ii).) With these remarks, (iii) follows from (iv). \square

(5.2) Corollary. — Let $\mathbf{Vect}_\mathbb{Q}$ be the category of \mathbb{Q} -vector spaces. If $\Phi: \mathbf{M}^0(S) \rightarrow \mathbf{Vect}_\mathbb{Q}$ is a \mathbb{Q} -linear functor, $\Phi(R(X/S)) = \bigoplus_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} \Phi(R^{(\alpha)}(X/S))$ and $\Phi(R^{(\alpha)}(X/S))$ is α -isotypic as a representation of $D^{\text{opp},*}$.

Proof. Write $R^{(\alpha)}$ for $R^{(\alpha)}(X/S)$. Let $E_\alpha \subset \text{End}_{\mathbf{M}^0(S)}(R^{(\alpha)})$ be the image of the group algebra $\mathbb{Q}[D^{\text{opp},*}]$, or, what is the same, the $D^{\text{opp},*}$ -subrepresentation of $\text{End}_{\mathbf{M}^0(S)}(R^{(\alpha)})$ generated by the identity. If $u \in \Phi(R^{(\alpha)})$, the $D^{\text{opp},*}$ -subrepresentation of $\Phi(R^{(\alpha)})$ generated by u is a quotient of E_α . Now use that $\text{End}_{\mathbf{M}^0(S)}(R^{(\alpha)})$ is α -isotypic as a representation of $D^{\text{opp},*}$. \square

(5.3) Example. — For the higher Chow groups (with \mathbb{Q} -coefficients) we have

$$\text{CH}(X; j) = \bigoplus_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} \text{CH}(R^{(\alpha)}(X/S); j)$$

and $\text{CH}(R^{(\alpha)}(X/S); j)$ is α -isotypic as a representation of $D^{\text{opp},*}$.

Depending on the context we can draw similar conclusions for cohomology. For instance, if the ground field F is \mathbb{C} and if $q: X \rightarrow S$ is the structural morphism, the variation of Hodge structure $\mathbb{V} = R^n q_* \mathbb{Q}_X$ decomposes as a direct sum $\bigoplus_{\alpha \in \mathbb{X}^{\text{adm}}/\Gamma} \mathbb{V}_\alpha$ where $\mathbb{V}_\alpha \subset \mathbb{V}$ is cut out by the projector δ_α and is α -isotypic as a sheaf of $D^{\text{opp},*}$ -modules.

If we have a cohomology theory with coefficients in a field \mathbb{F} of characteristic 0, we can in general only conclude that the cohomology of $R^{(\alpha)}(X/S)$ is a quotient of a sum of copies of $\rho_{\alpha, \mathbb{F}}$. For instance, if E is a supersingular elliptic curve over $\overline{\mathbb{F}}_p$, in which case D is a quaternion algebra over \mathbb{Q} , there is a unique class $\alpha \in \mathbb{X}^{\text{adm}}/\Gamma$ with $\|\alpha\| = 1$ (see also below) and ρ_α has dimension 4; so the ℓ -adic cohomology $H^1(E, \mathbb{Q}_\ell)$ is only “half” a copy of $\rho_{\alpha, \mathbb{Q}_\ell}$.

(5.4) Example. — Suppose D is a quaternion algebra with center \mathbb{Q} . In this case $\mathbb{X}(G)^{\text{adm}}/\Gamma$ is the set of pairs $\lambda = (\lambda_1, \lambda_2)$ with $g \geq \lambda_1 \geq \lambda_2 \geq 0$. Viewing $D^{\text{opp},*}$ as an inner form of GL_2 over \mathbb{Q} , the irreducible representation ρ_λ associated with λ (which in this case is the same as the representation ψ_λ of (1.3)) is a \mathbb{Q} -form of $d(\lambda)$ copies of the representation $\text{Sym}^{\lambda_1 - \lambda_2}(V) \otimes \det^{\otimes \lambda_2}$, where V is the standard representation of GL_2 and where

$$d(\lambda) = \begin{cases} 1 & \text{if } \lambda_1 - \lambda_2 \text{ is even;} \\ 2 & \text{if } \lambda_1 - \lambda_2 \text{ is odd.} \end{cases}$$

For $0 \leq i \leq g$ we obtain a decomposition

$$R^i(X/S) = R^{(i,0)} \oplus R^{(i-1,1)} \oplus \cdots \oplus R^{(\nu, i-\nu)} \quad \text{with } \nu = \lfloor i/2 \rfloor.$$

For $g \leq i \leq 2g$ the decomposition takes the form

$$R^i(X/S) = R^{(g,i-g)} \oplus R^{(g-1,i+1-g)} \oplus \cdots \oplus R^{(g-\nu,i+\nu-g)}, \quad \text{again with } \nu = \lfloor i/2 \rfloor.$$

Fourier duality exchanges $R^{(\lambda_1, \lambda_2)}(X/S)$ and $R^{(g-\lambda_2, g-\lambda_1)}(X^\dagger/S)$. By looking at cohomology we can see that in general all summands $R^{(\lambda_1, \lambda_2)}$ in the indicated range are non-zero.

(5.5) Remark. — If we drop the assumption that X is isogenous to a power of a simple abelian scheme over S , we may proceed as in (2.2). Choose an isogeny $h: X \rightarrow Y_1 \times \cdots \times Y_r$ such that each Y_ν is isogenous to a power of a simple abelian scheme. To each Y_ν we may apply (5.1). As h induces an isomorphism $R(X/S) \cong R(Y_1/S) \otimes \cdots \otimes R(Y_r/S)$, this gives us a refined decomposition of the Chow motive of X . We leave it to the reader to write out the details.

It is instructive to consider the case where X is isogenous to Y^r for some abelian scheme Y/S with $\text{End}(Y/S) = \mathbb{Z}$. In this case, taking $Y_1 = \cdots = Y_r = Y$ gives back the decomposition of (2.2), which, in general, is finer than the decomposition of $R(X/S)$ we obtain by applying (5.1) to X itself. However, the finer decomposition in (2.2) does not give information on how $\text{GL}_r(\mathbb{Q})$ acts; it only takes into account the action of the diagonal subgroup $\mathbb{Q}^* \times \cdots \times \mathbb{Q}^*$ (r factors).

(5.6) Remark. — There is another, perhaps more elementary, way to obtain a motivic decomposition of $R(X/S)$, which coincides with the decomposition of (5.1) if $D = K$ but which in general is coarser. For this we need to work in the category $\mathbf{M}^0(S; \tilde{K})$ of relative Chow motives with coefficients in \tilde{K} . Write $R^i(X/S; \tilde{K})$ for the image of $R^i(X/S)$ under the natural functor $\mathbf{M}^0(S) \rightarrow \mathbf{M}^0(S; \tilde{K})$.

Let $D_{\tilde{K}} = D \otimes_{\mathbb{Q}} \tilde{K}$. Then $D_{\tilde{K}} = \prod_{\sigma \in \Sigma(K)} D_\sigma$, where $D_\sigma = D \otimes_{K, \sigma} \tilde{K}$. Let $1 = \sum e_\sigma$ be the corresponding decomposition of $1 \in D_{\tilde{K}}$ as a sum of idempotents. By (2.5) we have an algebra homomorphism $r_{\tilde{K}}: D_{\tilde{K}}^{\text{opp}} \rightarrow \text{End}_{\mathbf{M}^0(S; \tilde{K})}(R^1(X/S; \tilde{K}))$. This gives a decomposition $R^1(X/S; \tilde{K}) = \bigoplus_{\sigma \in \Sigma(K)} R_\sigma$, where R_σ is the submotive of $R^1(X/S; \tilde{K})$ cut out by the idempotent $r_{\tilde{K}}(e_\sigma)$.

Let $\mathbf{J} = (\mathbb{Z}_{\geq 0})^{\Sigma(K)}$, and for $i \geq 0$ define a subset $\mathbf{J}(i) \subset \mathbf{J}$ by

$$\mathbf{J}(i) = \{\mathbf{j} : \Sigma(K) \rightarrow \mathbb{Z}_{\geq 0} \mid |\mathbf{j}| = i\},$$

where $|\mathbf{j}| = \sum_{\sigma \in \Sigma(K)} \mathbf{j}(\sigma)$. Taking exterior powers and using Künnemann's isomorphism $\wedge^i R^1(X/S) \xrightarrow{\sim} R^i(X/S)$, we obtain decompositions

$$R^i(X/S; \tilde{K}) = \bigoplus_{\mathbf{j} \in \mathbf{J}(i)} R^{(\mathbf{j})}(X/S; \tilde{K}) \quad \text{such that} \quad R^{(\mathbf{j})}(X/S; \tilde{K}) \cong \bigotimes_{\sigma \in \Sigma(K)} \left(\wedge^{j(\sigma)} R_{\sigma} \right).$$

(The calculation of the exterior powers works as expected; cf. [3], Section 1.) Fixing $i \geq 0$, let $1 = \sum_{\mathbf{j} \in \mathbf{J}(i)} \epsilon_{\mathbf{j}}$ be the corresponding decomposition of $1 \in \text{End}_{\mathbf{M}^0(S; \tilde{K})}(R^i(X/S; \tilde{K}))$ as a sum of idempotents. The Galois group Γ acts on $\mathbf{J}(i)$ and on the endomorphism algebra of the motive $R^i(X/S; \tilde{K})$. If $\gamma \in \Gamma$ sends $\mathbf{j} \in \mathbf{J}(i)$ to \mathbf{j}' then $\gamma \epsilon_{\mathbf{j}} = \epsilon_{\mathbf{j}'}$. Hence if β is a Γ -orbit in $\mathbf{J}(i)$, the sum $\sum_{\mathbf{j} \in \beta} \epsilon_{\mathbf{j}}$ is an idempotent in $\text{End}_{\mathbf{M}^0(S)}(R^i(X/S))$. This gives us a decomposition

$$R^i(X/S) = \bigoplus_{\beta \in \mathbf{J}(i)/\Gamma} R^{(\beta)}(X/S)$$

in $\mathbf{M}^0(S)$ such that $R^{(\beta)}(X/S; \tilde{K}) = \bigoplus_{\mathbf{j} \in \beta} R^{(\mathbf{j})}(X/S; \tilde{K})$.

To describe the relation with (5.1), consider the map $v : \mathbb{X}^{\text{adm}}/\Gamma \rightarrow \mathbf{J}/\Gamma$ that sends the Γ -orbit of $\lambda \in \mathbb{X}^{\text{adm}}$ to the Γ -orbit of the function $\sigma \mapsto |\lambda(\sigma)|$. By analyzing how the groups $D_{\sigma}^{\text{opp},*}$ act, we find that $R^{(\beta)}(X/S) = \bigoplus R^{(\alpha)}(X/S)$, where the sum runs over the classes $\alpha \in \mathbb{X}^{\text{adm}}/\Gamma$ such that $v(\alpha) = \beta$. In particular, $R^{(\beta)}$ can only be non-zero if $|\mathbf{j}(\sigma)| \leq 2g/n$ for all $\mathbf{j} \in \beta$ and $\sigma \in \Sigma(K)$; hence $\wedge^j R_{\sigma} = 0$ for $j > 2g/n$.

References

- [1] A. Beauville, *Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne*. Algebraic geometry (Tokyo/Kyoto, 1982), 238–260. Lecture Notes in Math. 1016, Springer, Berlin, 1983.
- [2] A. Beauville, *Sur l'anneau de Chow d'une variété abélienne*. Math. Ann. 273 (1986), 647–651.
- [3] P. Deligne, *Catégories tensorielles*. Mosc. Math. J. 2 (2002), 227–248.
- [4] C. Deninger, J. Murre, *Motivic decomposition of abelian schemes and the Fourier transform*. J. reine angew. Math. 422 (1991), 201–219.
- [5] W. Fulton, J. Harris, *Representation theory. A first course*. Graduate Texts in Mathematics 129. Springer-Verlag, New York, 1991.
- [6] S. Kimura, *Correspondences to abelian varieties. I*. Duke Math. J. 73 (1994), 583–591.
- [7] K. Künnemann, *On the Chow motive of an abelian scheme*. Motives (Seattle, WA, 1991), Part 1, 189–205. Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, RI, 1994.
- [8] D. Mumford, *Abelian varieties*. Tata Institute of Fundamental Research Studies in Math. 5. Oxford University Press, Oxford, 1970.
- [9] J. Tits, *Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque*. J. reine angew. Math. 247 (1971), 196–220.
- [10] T. Wedhorn, *Ordinariness in good reductions of Shimura varieties of PEL-type*. Ann. scient. Éc. Norm. Sup. (4) 32 (1999), 575–618.