Konstrukcja mechaniczna

Wymiary i masa

masa: 300 – 350 g (jeśli jest lżejszy musi wziąć balast! – wymaga miejsca!)

Obudowa

Obudowa

- chroni podzespoły przed wilgocią, deszczem, a także pyłem
- chroni wnętrze CanSata przed uszkodzeniem w trakcie lądowania
- spadochron powinien być przymocowany do wewnętrznej struktury!

jest łatwo zdejmowalna!

Obudowa, a łatwość dostępu

OBUDOWA POWINNA POZWALAĆ NA:

- wymianę baterii zasilających
- łatwą wymianę akumulatorów (nawet jeśli mają być ładowane w CanSat)
- dojście do kill-switcha (włącznika głównego) dla obsługi konkursu/organizatorów!
- programowanie częstotliwości / kanału transceiverów

System odzyskiwania - wymagania

 po złożeniu spadochron może zajmować maksymalnie przestrzeń ograniczoną walcem o średnicy 66 mm i wysokości 40 mm

- mocowanie spadochronu do CanSatu musi wytrzymać siłę 1000 N
- każda linka powinna wytrzymać siłę $^{1000}/_{N_{linek}} [N]$

- kluczowe jest osiągnięcie zakładanej szybkości opadania
- spadochron powinien zachowywać stabilność spadania

Fizyka spadochronu

- po pewnym (krótkim) czasie siła oporu równoważy ciężar całego układu ($F_o = F_g$), a szybkość opadania stabilizuje się
- w dużym uproszczeniu: $v_{max}(m, S)$

Jaka średnica?

$$\begin{cases} F_g = (m_c + m_s) \cdot g \\ F_o = \frac{1}{2} \cdot v^2 \cdot S \cdot C_d \cdot \rho \end{cases}$$

$$S = \frac{2 \cdot (m_c + m_s) \cdot g}{v^2 \cdot C_d \cdot \rho}$$

gdzie:

S – powierzchnia spadochronu

 v_{\parallel} – szybkość powietrza opływającego spadochron

 m_{c} , m_{s} - masa cansatu, spadochronu

g-przyśpieszenie ziemskie

ho – gęstość powietrza

 \mathcal{C}_d – bezwymiarowy współczynnik czołowego oporu aerodynamicznego, zależny od kształtu obiektu

Tabela współczynników $oldsymbol{\mathcal{C}}_d$	
kwadrat	1,000
sześciokąt	0,866
ośmiokąt	0,828
koło	0,785

- Otwór znacznie poprawia stabilność spadochronu
- Średnica otworu ≈ 20% średnicy spadochronu
- Symulacje np. w Rocksim

- Przynajmniej 6 linek dla stabilności i redundancji
- Wykonany z nienasiąkalnego i niemnącego się materiału
- Jaskrawy kolor ułatwi znalezienie
 CanSata po upadku na ziemię

Testy spadochronu

- Testy wytrzymałościowe
 - mocowania
 - poszczególnych linek

Testy spadochronu

• Testy w locie:

- testy otwarcia się spadochronu
- testy szybkości spadania
- duża wysokość (kilkadziesiąt metrów)

Połączenia kablowe i wtyczki

Wtyczki i kable, złącza baterii zabezpieczone taśmą izolacyjną!

Q&LA