(19) BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift ₁₀ DE 41 10 406 A 1

(5) Int. Cl.⁵: F 16 H 3/62 B 60 K 17/08

1 (80) (10 (8 8)) (1 (8 8) (1 80) (1 80) (1 80) (1 80) (2 8) (1 80) (1 80) (1 80) (1 80) (1 80) (1 80) (1 80)

DEUTSCHES PATENTAMT Anmeldetag:

P 41 10 406.4

28. 3.91

Offenlegungstag:

Aktenzeichen:

2, 10, 91

30 Unionspriorität: 32 33 31

28.03.90 JP P 2-080532

(71) Anmelder:

Honda Giken Kogyo K.K., Tokio/Tokyo, JP

(74) Vertreter:

Weickmann, H., Dipl.-Ing.; Fincke, K., Dipl.-Phys. Dr.; Weickmann, F., Dipl.-Ing.; Huber, B., Dipl.-Chem.; Liska, H., Dipl.-Ing. Dr.-Ing.; Prechtel, J., Dipl.-Phys. Dr.rer.nat., Pat.-Anwälte, 8000 München

(72) Erfinder:

Hotta, Takashi; Morita, Yukio; Kojima, Yoichi; Kikuchi, Kimihiko; Niiyama, Tsunefumi; Kumagai, Yorinori; Sakaguchi, Shinichi; Kumagai, Tomoharu, Wako, Saitama, JP

- (54) Mittels Kupplung lösbares Planetengetriebe der Integralbauart
- Es wird ein Planetengetriebe zur Verwendung in einem Kraftfahrzeug angegeben, welches eine Eingangswelle, ein Abtriebsrad und drei Planetengetriebeteile umfaßt, die koaxial zueinander angeordnet sind und jeweils ein Sonnenradelement, ein Trägerelement und ein Hohlradelement haben, wobei zwei der Elemente der jeweiligen Planetengetriebeteile mechanisch mit den Elementen der anderen Planetengetriebeteile zur Ausführung einer Drehung mit derselben gekoppelt sind. Die Elemente, die mechanisch miteinander gekoppelt sind, bilden erste bis fünfte Drehteile, wobei die ersten und fünften Drehteile mit der Eingangswelle gekoppelt sind, eines der zweiten und dritten Drehteile mit dem Abtriebsrad gekoppelt ist, und das vierte Drehteil mit dem Abtriebsrad gekoppelt ist. Das Planetengetriebe hat auch eine Trennkupplung, die zwischen den Elementen des dritten Drehteils zum selektiven Ankoppeln und Abkoppeln der Elemente des dritten Drehteils angeordnet ist.

Beschreibung

Die Erfindung bezieht sich auf eine mittels einer Kupplung lösbare Planetengetriebeeinrichtung der Integralbauart, welche drei Planetengetriebeteile mit zwei Elementen in jedem Getriebeteil umfaßt, welche miteinander koppelbar sind.

Planetengetriebe werden in großem Umfang als Automatikgetriebe bei Fahrzeugen eingesetzt. Viele übliche Planetengetriebe weisen eine integrale Verknüp- 10 fung von zwei Planetengetriebeteilen, wie mit dem Ravigneaux-Getriebeteil, dem Simpson-Getriebeteil o. dgl. auf, und die haben im allgemeinen bis zu vier Vorwärtsgänge. Im Hinblick auf bessere Laufcharakteristika des Fahrzeugs wurden Getriebe vorgeschlagen und einge- 15 setzt, die fünf oder mehr Vorwärtsgänge haben.

Derartige Mehrgang-Getriebe sind in der japanischen Offenlegungsschrift No. 63(1988)-3 18 439, der offengelegten japanischen Gebrauchsmusteranmeldung No. 61(1986)-1 03 654 beispielsweise angegeben. Die an- 20 gegebenen Getriebe weisen zwei Planetengetriebeteile, drei Kupplungen und eine Bremse in Kombination mit jedem Planetengetriebeteil auf, und sie haben sechs Vorwärtsgänge und einen einzigen Rückwärtsgang. Da nur zwei Planetengetriebeteile vorhanden sind, können 25 bei den vorstehend angegebenen Getrieben und den üblichen Getrieben gemeinsame Bauteile zum Einsatz kommen. Jedoch müssen die angegebenen Getriebe gemäß einem komplizierten Steuerverfahren gesteuert werden, da bei einigen Gangschaltungen das gleichzeiti- 30 ge Ausrücken von zwei Eingriffsteilen (einer Kupplung und einer Bremse) und das Einrücken von zwei Eingriffsteilen erforderlich sind.

Wenn beispielsweise die angegebenen Getriebe vom geschaltet werden, ist es erforderlich, eine Kupplung auszurücken und eine Bremse zu lösen, und es ist auch erforderlich, eine weitere Kupplung einzurücken und eine weitere Bremse anzuziehen.

Offenlegungsschriften japanischen 59(1984)-2 22 644 und 1(1989)-3 20 362 zeigen Getriebe mit zwei Planetengetriebeteilen. Bei jedem der dort angegebenen Getriebe sind zwei Teile der jeweiligen Planetengetriebeteile mechanisch mit Teilen der anderen und drei Bremsen sind den Planetengetriebeteilen zugeordnet. Die Getriebe haben fünf Vorwärtsgänge und einen Rückwärtsgang, welche sich dadurch einstellen lassen, daß das Arbeiten dieser Eingriffsteile, d. h. der Kupplungen und der Bremse, in entsprechender Weise 50 mente des dritten Drehteils angeordnet ist. gesteuert wird. Alle aufeinanderfolgenden Schaltschritte unter den fünf Vorwärtsgängen können dadurch eingestellt werden, daß eines der Eingriffsbauteile (eine Kupplung oder eine Bremse) eingerückt bzw. angezoeingerückt wird. Daher lassen sich derartige Getriebe relativ einfach steuern.

Jedoch sind Getriebe mit drei Planetengetriebeteilen nachteilig dahingehend, daß entweder eines der Elemente (d. h. ein Sonnenrad, ein Träger und ein Hohlrad) 60 zugnahme auf die beigefügte Zeichnung. Darin zeigt: der Planetengetriebeteile überdrehen kann, d. h. sich mit einer beträchtlichen höheren Geschwindigkeit als die Drehgeschwindigkeit der Brennkraftmaschine (d. h. der Eingangsdrehzahl) in einigen Gangbereichen dreht einem REV Rückwärtsfahrtbereich). Während diese Getriebe in Kombination mit langsam laufenden Brennkraftmaschinen, wie Dieselbrennkraftmaschinen, einge-

setzt werden können, ergeben sich Schwierigkeiten bei der Kombination dieser Getriebe mit schnellaufenden Brennkraftmaschinen.

Zur Vergrößerung der Anzahl der Gänge von vier Gängen auf fünf Gänge ist ein Gang mit einer Geschwindigkeitabnahme bzw. einem Reduktionsverhältnis, d. h. vom ersten Gang (LOW) zum fünften Gang erforderlich, und diese Verhältnisse müssen größer als die Bereiche der Geschwindigkeitsreduktionsverhältnisse vom ersten Gang zum vierten Gang sein, um die Laufeigenschaften des Fahrzeugs zu verbessern. Wenn der Bereich der Geschwindigkeitsreduktionsverhältnisse jedoch erweitert wird, bereitet die vorstehende Problematik des Überdrehens immer zunehmende Schwierigkeiten.

Die Erfindung zielt darauf ab, ein Planetengetriebe der Integralbauart bereitzustellen, das drei Planetengetriebeteile hat, welche sich leicht derart auslegen lassen, daß man ein Mehrgang-Getriebe erhält.

Ferner soll nach der Erfindung ein Planetengetriebe der Integralbauart bereitgestellt werden, das drei Planetengetriebeteile hat, bei dem sich Gangschaltungen zwischen aufeinanderfolgenden Gangstellungen durch das Lösen eines Eingriffsteils (einer Kupplung oder einer Bremse) und das Einrücken eines weiteren Eingriffsteil vornehmen lassen und bei dem sich die Gangschaltungen leicht steuern lassen.

Ferner soll nach der Erfindung ein Planetengetriebe der Integralbauart bereitgestellt werden, das drei Planetengetriebeteile hat und bei dem verhindert wird, daß irgendeines der Elemente, wie die Sonnenräder, Träger 🗀 🔠 und Hohlräder der Planetengetriebeteile überdreht, inch werden können.

Nach der Erfindung wird ein Planetengetriebe bereitzweiten Gang auf den dritten Gang oder umgekehrt 35 gestellt, das ein Eingangsteil, ein Ausgangsteil, drei Planetengetriebeteile, die koaxial zueinander angeordnet sind und jeweils ein Sonnenradelement, ein Trägerelement und ein Hohlradelement haben, wobei zwei der ner Elemente der Planetengetriebeteile mechanisch mit Elementen der jeweils anderen Planetengetriebeteile zur Drehung mit denselben gekoppelt sind, wobei die Elemente, die mechanisch miteinander gekoppelt sind, erste bis fünfte Drehteile bilden, die ersten und fünften Drehteile mit dem Eingangsteil gekoppelt sind, das Planetengetriebeteile gekoppelt, und vier Kupplungen 45 zweite oder das dritte Drehteil mit dem Ausgangsteil gekoppelt ist, und wobei das vierte Drehteil mit dem Ausgangsteil gekoppelt ist, und das eine Trennkupplung aufweist, die zwischen den Elementen des dritten Drehteils zum selektiven Einrücken und Ausrücken der Ele-

In einer Gangstellung oder einem Geschwindigkeitsbereich, in dem ein Element zum Überdrehen neigt, wird die Trennkupplung ausgerückt, um die Elemente des dritten Drehteils zu trennen, so daß sich die Schwieriggen wird und ein weiteres Eingriffsteil angezogen bzw. 55 keiten im Zusammenhang mit einem Überdrehen überwinden lassen.

> Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreibung von bevorzugten Ausführungsformen unter Be-

> Fig. 1 ein schematisches Getriebediagramm zur Verdeutlichung eines Planetengetriebes gemäß einer bevorzugten Ausführungsform nach der Erfindung,

Fig. 2 eine Tabelle zur Verdeutlichung der Zuord-(z. B. bei LOW(1ter) Bereich, einem 5ten Bereich und 65 nung zwischen der Betätigung der Kupplung und den Bremsen und den Gangbereichen des Planetengetriebes nach Fig. 1,

Fig. 3 eine Tabelle zur Verdeutlichung der Verbin-

dungszuordnung zwischen den Elementen der Planetengetriebeteile des Planetengetriebes, das in Fig. 1 gezeigt

Fig. 4-7 Diagramme zur Verdeutlichung der Geschwindigkeitszuordnung zwischen den Elementen der Planetengetriebeteile des Planetengetriebes nach Fig. 1,

Fig. 8 ein schematisches Getriebediagramm zur Verdeutlichung eines Planetengetriebes gemäß einer weiteren bevorzugten Ausführungsform nach der Erfindung,

Fig. 9 eine Tabelle zur Verdeutlichung der Zuord- 10 nung zwischen der Betätigung der Kupplungen und der Bremsen und den Gangbereichen des Planetengetriebes, das in Fig. 8 gezeigt ist,

Fig. 10 eine Tabelle zur Verdeutlichung der Verbindungszuordnung zwischen den Elementen der Planeten- 15 getriebeteile des Planetengetriebes nach Fig. 8,

Fig. 11 – 14 Diagramme zur Verdeutlichung der Geschwindigkeitszuordnung zwischen den Elementen der Planetengetriebeteile des Planetengetriebes nach Fig. 9,

Fig. 15 ein schematisches Getriebediagramm zur 20 Verdeutlichung eines Getriebes gemäß einer weiteren bevorzugten Ausführungsform nach der Erfindung,

Fig. 16 eine Tabelle zur Verdeutlichung der Zuordnung zwischen der Betätigung der Kupplungen und der Bremsen und den Gangbereichen des Planetengetrie- 25 bes, das in Fig. 15 gezeigt ist,

Fig. 17 eine Tabelle zur Verdeutlichung der Verbindungszuordnung zwischen den Elementen der Planetengetriebeteile des Planetengetriebes, das in Fig. 15 ge-

Fig. 18-21 Diagramme zur Verdeutlichung der Geschwindigkeitszuordnung zwischen den Elementen der Planetengetriebeteile des Planetengetriebes, das in Fig. 15 gezeigt ist,

Fig. 22 ein schematisches Getriebediagramm zur 35 Verdeutlichung eines Planetengetriebes gemäß einer weiteren bevorzugten Ausführungsform nach der Erfinin the Marketin of

Fig. 23 eine Tabelle zur Verdeutlichung der Zuordnung zwischen der Betätigung der Kupplungen und der 40 Bremsen in den Gangbereichen des in Fig. 22 gezeigten Planetengetriebes,

Fig. 24 eine Tabelle zur Verdeutlichung der Verbindungszuordnung zwischen den Elementen der Planetengetriebeteile des Planetengetriebes, das in Fig. 22 ge- 45 zeigt ist, und

Fig. 25 - 28 Diagramme zur Verdeutlichung der Geschwindigkeitszuordnung zwischen den Elementen der Planetengetriebeteile des Planetengetriebes nach

Es werden vier Bauarten der Planetengetriebe gemäß unterschiedlichen bevorzugten Ausführungsformen nach der Erfindung gezeigt und beschrieben. Diese unterschiedlichen Bauarten der Planetengetriebe werden mit Bauart 1, Bauart 2, Bauart 3 und Bauart 4 bezeichnet 55 und nachstehend gesondert beschrieben.

Bauart 1

getriebes der Bauart 1 ist in Fig. 1 gezeigt. Das in Fig. 1 gezeigte Planetengetriebe hat erste, zweite und dritte Planetengetriebeteile G1, G2, G3, die koaxial und parallel zueinander angeordnet sind. Die Planetengetriebeteile G1, G2, G3 haben jeweils erste, zweite und dritte 65 Sonnenräder S1, S2, S3, die mittig angeordnet sind, zugeordnete erste, zweite und dritte Planetenräder P1, P2, P3, die in Kämmeingriff mit den Sonnenrädern S1, S2,

S3 jeweils sind, und drehbar um ihre eigenen Achsen sind, währenddem sie zugleich um die Sonnenräder S1, S2, S3 umlaufen, zugeordnete erste, zweite und dritte Träger C1, C2, C3, auf denen die zugeordneten Planetenräder P1, P2, P3 drehbar gelagert sind, und die mit diesen um die Sonnenräder S1, S2, S3 jeweils drehbar sind, und zugeordnete erste, zweite und dritte Hohlräder R1, R2, R3, welche eine Innenverzahnung haben, die mit den Planetenrädern P1, P2, P3 jeweils kämmt.

Das erste Sonnenrad S1 ist immer mit einer Eingangswelle 1 verbunden, und der erste Träger C1 ist mit dem zweiten Hohlrad R2 und einem Abtriebsrad 2 verbunden. Dem ersten Hohlrad R1 ist eine erste Bremse B1 zugeordnet, die das erste Hohlrad R1 drehfest halten kann. Das erste Hohlrad R1 ist selektiv in Eingriff mit dem zweiten Träger C2 und dem dritten Hohlrad R3 bringbar oder aus diesem Eingriffszustand lösbar, und zwar über eine dritte Kupplung K3. Der zweite Träger C2 und das dritte Hohlrad R3 sind miteinander gekoppelt. Das zweite Sonnenrad S2 ist selektiv mit der Eingangswelle 1 über eine zweite Kupplung K2 in Eingriff bringbar und aus diesem Eingriffszustand lösbar, und ist mit dem dritten Träger C3 gekoppelt. Das zweite Sonnenrad S2 und der dritte Träger C3, die miteinander gekoppelt sind, können durch eine zweite Bremse B2 drehfest gehalten werden. Das dritte Sonnenrad S3 ist selektiv mit einer Eingangswelle 1 über eine erste Kupplung K1 in Eingriff bringbar und kann aus diesem Eingriffszustand gelöst werden, und es kann durch eine dritte Bremse B3 drehfest gehalten werden.

Die Planetengetriebeelemente, die die ersten, zweiten, dritten Sonnenräder S1, S2, S3, die ersten, zweiten und dritten Träger C1, C2, C3 und die ersten, zweiten und dritten Hohlräder R1, R2, R3 umfassen, sind zwischen der Eingangswelle 1 und dem Abtriebsrad 2 auf die vorstehend beschriebene Weise miteinander gekoppelt angeordnet. Bei dem entsprechend der voranstehenden Beschreibung ausgelegten Planetengetriebe lassen sich Gangstellungen einstellen und Gangschaltungen in gesteuerter Weise vornehmen, indem selektiv die ersten, zweiten und dritten Kupplungen K1, K2, K3 und die ersten, zweiten und dritten Bremsen B1, B2, B3 eingerückt und ausgerückt werden. Insbesondere können fünf Vorwärtsgänge oder Gangbereiche (LOW 2ter, 3ter, 4ter und 5ter) und ein Rückwärtsgang oder ein Rückwärtsfahrtbereich (REV) dadurch eingestellt werden, daß die Kupplungen und Bremsen wie in Fig. 2 gezeigt eingerückt und ausgerückt werden. In Fig. 2 sind jene Kupplungen und Bremsen eingerückt, die mit 50 einem Kreis bezeichnet sind. Der Kreis, der sich auf die zweite Bremse B2 im LOW-Bereich befindet, ist jedoch in Klammern gesetzt, da die zweite Bremse B2 im LOW-Bereich nicht zur Übertragung von Antriebskräften beiträgt, obgleich sie eingerückt ist. Die Geschwindigkeitsreduktionsverhältnisse des Getriebes in den zugeordneten Gangbereichen ändern sich in Abhängigkeit von der Zähnezahl der Räder, und sind in Fig. 2 nur als Beispiele angegeben.

Wie sich aus der Tabelle nach Fig. 2 entnehmen läßt, Das schematische Getriebediagramm eines Planeten- 60 läßt sich jeder der fünf Vorwärtsgänge oder Gangbereiche (LOW bis 5ter) dadurch einstellen, daß zwei der Kupplungen und Bremsen eingerückt werden (die nachstehend als Eingriffseinrichtungen bezeichnet werden). Zur Gangschaltung zwischen aufeinanderfolgenden Geschwindigkeitsbereichen wird eines der beiden Eingriffseinrichtungen ausgerückt und die andere Eingriffseinrichtung wird eingerückt. Es ist aber nicht erforderlich, daß beide Eingriffseinrichtungen gleichzeitig eingerückt oder ausgerückt werden. Daher läßt sich das Getriebe hinsichtlich den Gangschaltungen einfach steu-

Die Verbindungszuordnung zwischen den Elementen (einschließlich der Sonnenräder, der Träger und der Hohlräder) der Planetengetriebeteile des vorstehenden Planetengetriebes ist in Fig. 3 gezeigt. Das dritte Sonnenrad S3 dient lediglich als ein erstes Drehteil. Das zweite Sonnenrad S2 und der dritte Träger C3, die miteinander gekoppelt sind, dienen in Verbindung mitein- 10 ander als ein zweites Drehteil. Das erste Hohlrad R1, der zweite Träger C2 und das dritte Hohlrad R3, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein drittes Drehteil. Der erste Träger C1 und das zweite Hohlrad R2, die miteinander gekoppelt 15 sind, dienen in Verbindung miteinander als ein viertes Drehteil. Das erste Sonnenrad S1 dient lediglich als ein fünftes Drehteil. Wie in Fig. 1 gezeigt ist, ist die dritte Kupplung K3 zwischen dem ersten Hohlrad R1 und dem zweiten Träger C1 und dem dritten Hohlrad R3 20 angeordnet, welche als drittes Drehteil dienen und mit Hilfe dieser Kupplung können diese Teile selektiv gekoppelt und abgekoppelt werden.

Die Zuordnung zwischen den Geschwindigkeiten der in Fig. 4 gezeigt. Die Geschwindigkeitsreduktionsverhältnisse in den Geschwindigkeitsbereichen des Getriebes werden nachstehend unter Bezugnahme auf Fig. 4 All the second sections and the second

In Fig. 4 sind die ersten, zweiten und dritten Planeten- 30 getriebeteile G1, G2, G3 gesondert dargestellt, und die vertikalen Linien in den Planetengetriebeteilen beziehen sich auf die Elemente derselben und haben Längen, welche die Drehgeschwindigkeiten der Elemente darproportional zu dem Kehrwert der Zähnezahl der Sonnenräder und der Hohlräder.

Beispielsweise entsprechen die drei vertikalen Linien, die im ersten Planetengetriebeteil G1 gezeigt sind, dem ersten Sonnenrad S1, dem ersten Träger C1, dem ersten 40 Hohlrad R1 jeweils von rechts aus gesehen. Die oberen Längen dieser vertikalen Linien beziehen sich auf die Drehgeschwindigkeiten n dieser Elemente in Vorwärtsrichtung. Der Abstand "a" zwischen der vertikalen Linie, die für den ersten Träger C1 bestimmt ist, entspricht dem Kehrwert (=1/Zs) der Zähnezahl Zs des ersten Sonnenrads S1. Der Abstand "b" zwischen der vertikalen Linie des ersten Trägers C1 und der vertikalen Linie des ersten Hohlrads R1 entspricht dem Kehrwert (= 1/Zr) der Zähnezahl Zr des ersten Hohlrads R1. Wenn das erste Sonnenrad S1 mit der Eingangswelle 1 gekoppelt ist und sich mit einer Drehgeschwindigkeit n dreht, und das erste Hohlrad R1 drehfest mit Hilfe der ersten Bremse B1 gehalten ist, dreht sich der erste Träger C1 mit einer Drehgeschwindigkeit Nc, die an einer Schnittstelle zwischen der vertikalen Linie des ersten Trägers C1 und einer Linie C angegeben ist, welche einen Punkt A, der den Drehzustand des ersten Sonnenrads S1 wiedergibt, und einen Punkt B verbindet, der den festen 60 Zustand des ersten Hohlrads R1 wiedergibt.

Die zweiten und dritten Planetengetriebeteile G2, G3 sind ebenfalls auf die gleiche wie zuvor beschriebene Weise definiert, wobei die ersten, zweiten und dritten dritten Bremsen B1, B2, B3 den jeweiligen Elementen zugeordnet dargestellt sind, mit denen sie gekoppelt sind.

Die Drehgeschwindigkeiten des Abtriebsrades 2, die den Drehgeschwindigkeiten der Eingangswelle 1 in den jeweiligen Gangbereichen entsprechen, lassen sich unter Verwendung der nachstehend angegebenen Ge-5 schwindigkeitsdiagramme bestimmen.

Im LOW-Bereich sind alle Kupplungen K1, K2, K3 und die dritte Bremse B3 ausgerückt, und die erste und die zweite Bremse B1, B2 sind angezogen. Da der zweite Träger C2 und das dritte Hohlrad R3 mechanisch miteinander gekoppelt sind, und das zweite Sonnenrad S2 und der dritte Träger C3 miteinander mechanisch gekoppelt sind, d. h. die beiden Elemente in jedem Paar sind mechanisch miteinander gekoppelt, arbeiten die zweiten und dritten Planetengetriebeteile G2, G3 als ein integrales Planetengetriebe, dessen Geschwindigkeitsdiagramm entsprechend Fig. 5 verknüpft werden kann. Da die dritte Kupplung K3 ausgerückt ist, ist das erste Planetengetriebeteil G1 von den integral kombinierten zweiten und dritten Planetengetriebeteilen G2, G3 getrennt, und nur ein Element (erster Träger C1) des ersten Planetengetriebeteils G1 ist mit den zweiten und dritten Planetengetriebeteilen G2, G3 gekoppelt. Somit wirkt die dritte Kupplung K3 als eine Trennkupplung.

Wenn die Drehgeschwindigkeit der Eingangswelle 1 verschiedenen Elemente des Getriebes der Bauart 1 ist 25 n0 ist, ist die Drehgeschwindigkeit des ersten Sonnenrads S1, das mit der Eingangswelle 1 gekoppelt ist, ebenfalls mit n0 anzugeben. Solange das erste Hohlrad R1 gehalten oder drehfest durch die erste Bremse B1 gehalten ist, dreht sich der erste Träger C1, d.h. das Aus-einen Schnittpunkt zwischen der vertikalen Linie des 20 (438), 300 (100) ersten Trägers C1 und einer gebrochenen geraden Liniem der gebrochenen geraden gebrochenen geraden gebrochenen geraden gebrochenen gebrochenen gebrochenen gebrochenen gebrochenen gebrochen gebroc L1 (Fig. 5) angegeben ist, die den Punkt zur Angabe des seiner der Drehzustandes des ersten Sonnenrads S1 und den Punkt-webgerings in die er stellen. Der Abstand zwischen den vertikalen Linien ist 35 zur Angabe des festen Zustands des ersten Hohlrads R1 14 38 20 18 20 ger einer statten Kaharenstelle i schneidet.

Wenn der erste Träger C1 mit dem zweiten Hohlrad leibeitstelle in term R2 gekoppelt ist, dreht sich das zweite Hohlrads R2htsproditen in ihr gral verknüpften zweiten und dritten Planetengetriebeteilen G2, G3 sind das zweite Sonnenrad S2 und der dritte Träger C3 gehalten oder drehfest durch die zweite Bremse B2 gehalten. Folglich wird eine gebrochene Linie L1' zwischen einem Punkt für den Drehzustand die für das erste Sonnenrad S1 und die vertikale Linie, 45 des zweiten Hohlrads R2 bei der Drehgeschwindigkeit n1 und einem Punkt für den festen Zustand des zweiten Sonnenrads S2 und des dritten Trägers C3 gezogen, und die Schnittpunkte mit der gebrochenen, geraden Linie L1' gibt die Drehgeschwindigkeiten der anderen Elemente an. Insbesondere drehen sich der zweite Träger C3 und das dritte Hohlrad R3 mit einer Drehgeschwindigkeit bzw. Drehzahl n11, und das dritte Sonnenrad S3 dreht sich mit einer Drehgeschwindigkeit n12. Da diese Drehgeschwindigkeiten n11, n12 niedriger als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, tritt bei diesem Getriebe keine Schwierigkeit hinsichtlich des Überdrehens auf.

Die erste Kupplung K1 kann nicht ausgerückt werden und das erste Hohlrad, der zweite Träger C2 und das dritte Hohlrad R3 können miteinander gekoppelt werden, so daß die ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 miteinander verknüpft werden können. In einem solchen Fall überlappt das erste Planetengetriebeteil G1 die zweiten und dritten Getriebeteile Kupplungen K1, K2, K3 und die ersten, zweiten und 65 G2, G3, wie dies mit zwei Punkten in gebrochenen Linien in Fig. 5 dargestellt ist. Wenn die zweite Bremse B2 gelöst ist und die erste Bremse B1 angezogen ist, um das erste Hohlrad R1, den zweiten Träger C2 und das dritte

Hohlrad R3 drehfest zu halten oder zu fixieren, kann der erste Träger C1, d. h. das Abtriebsrad 2, sich mit derselben Drehgeschwindigkeit n1 wie vorstehend angegeben drehen, und wie die mit einer Linie mit zwei Punkten L1" eingetragen ist, wodurch man das gewünschte Geschwindigkeitsreduktionsverhältnis erhält. Das dritte Sonnenrad S3 jedoch dreht sich mit einer Drehgeschwindigkeit n13, welche höher als die Drehgeschwindigkeit der Eingangswelle 1 ist, so daß sich die Schwierigkeit eines Überdrehens ergibt.

Die Drehgeschwindigkeiten des Abtriebsrads in den zweiten bis vierten Gangstellungen oder Geschwindigkeitsbereichen werden nachstehend unter Bezugnahme auf Fig. 6 erläutert. In diesen Geschwindigkeitsbereichen ist die dritte Kupplung K3 (Trennkupplung) einge- 15 rückt, um das erste Hohlrad R1, den zweiten Träger C2 und das dritte Hohlrad R3 miteinander zu koppeln. Daher sind alle die ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 integral miteinander verknüpft, wie dies in Fig. 6 gezeigt ist.

In der zweiten Gangstellung bleibt die zweite Bremse B1 eingerückt und hält das Sonnenrad S2 und den dritten Träger C2 drehfest. Das erste Sonnenrad S1 dreht sich mit derselben Drehgeschwindigkeit n0 wie die Drehgeschwindigkeit der Eingangswelle 1. Verschiede- 25 ne Elemente drehen sich mit Drehgeschwindigkeiten, die durch die Schnittpunkte zwischen den vertikalen Linien der jeweiligen Elemente und einer gebrochenen geraden Linie L2 angegeben sind, welche den Drehzustand des ersten Sonnenrads S1 und den festen Zustand 30 des zweiten Sonnenrads S2 und des dritten Trägers C3 schneidet. Insbesondere dreht sich das Abtriebsrad 2 mit einer Drehgeschwindigkeit n2, die an der Schnittstelle zwischen der vertikalen Linie des ersten Trägers geraden Linie L2 angegeben ist. In ähnlicher Weise drehen sich das erste Hohlrad R1, der zweite Träger C2 und das dritte Hohlrad R3 mit einer Drehgeschwindigkeit n21, und das dritte Sonnenrad S3 dreht sich mit einer Drehgeschwindigkeit n22. Da die Drehgeschwindigkei- 40 ten der jeweiligen Elemente niedriger als die Drehgeschwindigkeit n0 der Eingangswelle 1 sind, treten bei diesem Getriebe keine Schwierigkeiten hinsichtlich des Überdrehens im zweiten Gang auf.

die dritte Bremse B3 ist angezogen, so daß das dritte Sonnenrad S3 drehfest gehalten ist. Verschiedene Elemente drehen sich mit Drehgeschwindigkeiten, die durch die Schnittpunkte zwischen den vertikalen Linien angegeben sind, die sich auf die Elemente beziehen, und 50 einer gebrochenen, geraden Linie L3. Insbesondere dreht sich das Abtriebsrad 2 mit einer Drehgeschwindigkeit n3, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Trägers C2 und des zweiten angegeben ist. In ähnlicher Weise drehen sich das erste Hohlrad R1, der zweite Träger C2 und das dritte Hohlrad R3 mit einer Drehgeschwindigkeit n31, und das zweite Sonnenrad S2 und das dritte Hohlrad R3 drehen sich mit einer Drehgeschwindigkeit n32. Da die Drehge- 60 den lassen. schwindigkeiten der jeweiligen Elemente kleiner als die Drehgeschwindigkeit n0 der Eingangswelle 1 sind, treten bei diesem Getriebe keine Schwierigkeiten hinsichtlich des Überdrehens im dritten Gang auf.

die zweite Kupplung K2 ist zusätzlich zu der dritten Kupplung K3 eingerückt. Somit drehen sich die ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3

als eine Einheit mit der Eingangswelle 1. Das erste Sonnenrad S1, das zweite Sonnenrad S2 und der dritte Träger C3 drehen sich mit der gleichen Geschwindigkeit n0 wie die Eingangswelle 1. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n4 (= n0), wie dies mit der Schnittstelle zwischen der vertikalen Linie des ersten Trägers C1 und des zweiten Hohlrads R2 und einer horizontalen, durchgezogenen, geraden Linie LA dargestellt ist. Da die Drehgeschwindigkeiten aller Elemente 10 gleichgroß wie die Drehgeschwindigkeit n0 der Eingangswelle 1 sind, hat dieses Getriebe keine Schwierigkeiten hinsichtlich des Überdrehens im vierten Gang.

Bei der fünften Gangstellung ist die dritte Kupplung K3 ausgerückt, um das erste Planetengetriebeteil G1 von den zweiten und dritten Planetengetriebeteilen G2, G3 abzukoppeln. Die Drehgeschwindigkeiten der verschiedenen Elemente sind in Fig. 7 gezeigt. In der fünften Gangstellung ist die dritte Bremse B3 angezogen, und das dritte Sonnenrad S3 wird drehfest gehalten. Die zweite Kupplung K2 bleibt eingerückt, wodurch ermöglicht wird, daß das zweite Sonnenrad S2 und der dritte Träger C3 sich mit der gleichen Drehgeschwindigkeit wie die Eingangswelle 1 drehen können. Verschiedene Elemente drehen sich mit Drehgeschwindigkeiten, die durch die Schnittpunkte zwischen den vertikalen Linien, die sich auf die Elemente beziehen, und einer gebrochenen, geraden Linie L5 gegeben sind. Insbesondere dreht sich das Abtriebsrad 2 mit einer Drehgeschwindigkeit n5, die durch den Schnittpunkt zwischen der vertikalen Linie des zweiten Hohlrads R2 und der gebrochenen, geraden Linie L5 gegeben ist. Der zweite Träger C2 und das dritte Hohlrad R3 drehen sich mit einer Drehgeschwindigkeit n51.

Im ersten Planetengetriebeteil G1 dreht sich der erste C1 und des zweiten Hohlrades R2 und der gebrochenen 35 Träger C1 mit der Drehgeschwindigkeit n5, und das erste Sonnenrad S1, das mit der Eingangswelle 1 gekoppelt ist, dreht sich mit der Drehgeschwindigkeit no. Das erste Hohlrad R1 dreht sich mit einer Drehgeschwindigkeit n52, wie dies durch die Schnittstelle zwischen der vertikalen Linie des ersten Hohlrads R1 und einer gebrochenen, geraden Linie L5' angegeben ist, die den Punkt schneidet, die den Drehzustand des ersten Sonnenrads S1 angibt und durch den Punkt geht, der den Drehzustand des ersten Trägers C1 angibt. Obgleich die Im dritten Gang ist die zweite Bremse B2 gelöst, und 45 Drehgeschwindigkeit n52 höher als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, arbeitet die Brennkraftmaschine üblicherweise nicht in einem Hochgeschwindigkeitsbereich, da die Kraftfahrzeuggeschwindigkeit hoch ist und der Laufwiderstand des Fahrzeugs groß ist, wenn das Fahrzeug im fünften Gang fährt, so daß das erste Hohlrad R1 nahezu keine Schwierigkeiten hinsichtlich des Überdrehens bereitet. Bei der dargestellten bevorzugten Ausführungsform ist das erste Sonnenrad S1 direkt mit der Eingangswelle 1 gekoppelt. Hohlrades R2 und der gebrochenen, geraden Linie L3 55 Das erste Sonnenrad S1 kann jedoch auch mit der Eingangswelle 1 über eine Kupplung ein- und ausrückbar gekoppelt sein, und die Kupplung kann im fünften Gang ausgerückt sein, so daß sich dann auch jegliche mögliche Schwierigkeiten hinsichtlich des Überdrehens überwin-

Im Rückwärtsgang oder im REV-Bereich ist die dritte Kupplung K3 ausgerückt, um das erste Planetengetriebeteil G1 von dem zweiten und dritten Planetengetriebeteil G2, G3 abzukoppeln. Die Drehgeschwindigkeiten Im vierten Gang ist die dritte Bremse B3 gelöst, und 65 der verschiedenen Elemente sind in Fig. 7 gezeigt. Im Rückwärtsgang ist die zweite Bremse B2 angezogen, und das zweite Sonnenrad S2 und der dritte Träger C3 sind drehfest gehalten. Die erste Kupplung K1 ist anstelle der zweiten Kupplung K2 eingerückt, so daß das dritte Sonnenrad S3 sich mit derselben Drehgeschwindigkeit wie die Eingangswelle 1 dreht. Die verschiedenen Elemente drehen sich mit Drehgeschwindigkeiten, die durch die Schnittpunkte zwischen den vertikalen Linien, die sich auf die Elemente beziehen, und einer gebrochenen, geraden Linie LR ergeben. Insbesondere dreht sich das Abtriebsrad 2 mit einer Drehgeschwindigkeit nR (mit einem negativen Wert), wie dies durch den Schnittpunkt zwischen der vertikalen Linie des zweiten Hohlrads R2 und der gebrochenen, geraden Linie L3 dargestellt ist. Der zweite Träger C2 und das dritte Hohlrad R3 drehen sich mit einer Drehgeschwindigkeit nR1.

Im ersten Planetengetriebeteil G1 dreht sich der erste 15 Träger C1 mit der Drehgeschwindigkeit nR, und das erste Sonnenrad S1, das mit der Eingangswelle 1 gekoppelt ist, dreht sich mit einer Drehgeschwindigkeit no. Das erste Hohlrad R1 dreht sich mit einer Drehgeschwindigkeit nR2, die durch den Schnittpunkt zwischen 20 der vertikalen Linie des ersten Hohlrads R1 und einer gebrochenen, geraden Linie LR' angegeben ist, die den Punkt für den Drehzustand des ersten Sonnenrads S1 und den Punkt für den Drehzustand des ersten Trägers C1 schneidet. Die Drehgeschwindigkeit nR2 hat einen 25 negativen Wert, aber der Absolutwert ist größer als die Drehgeschwindigkeit n0 der Eingangswelle 1. Jedoch tritt bei dem ersten Hohlrad R1 nahezu keine Schwierigkeit hinsichtlich des Überdrehens auf, da die Brennkraftmaschine in einem nahezu vollständig gedrosselten 30 Zustand bei der Rückwärtsfahrt arbeitet. Das erste Sonnenrad S1 kann lösbar mit der Eingangswelle 1 über eine Kupplung gekoppelt werden, und die Kupplung kann im fünften Gang ausgekoppelt werden, so daß sich jegliche Probleme hinsichtlich des Überdrehens über- 35 winden lassen.

Bauart 2

Das schematische Getriebediagramm eines Getriebes 40 der Bauart 2 ist in Fig. 8 gezeigt. Das Planetengetriebe, das in Fig. 8 gezeigt ist, hat erste, zweite und dritte Planetengetriebeteile G1, G2, G3, die koaxial und parallel zueinander angeordnet sind. Die Planetengetriebeteile G1, G2, G3 haben jeweils erste, zweite und dritte 45 Sonnenräder S1, S2, S3, die zentrisch angeordnet sind, jeweils erste, zweite und dritte Planetenräder P1, P2, P3, welche mit den Sonnenrädern S1, S2, S3 jeweils kämmen, und um ihre eigenen Achsen drehbar sind und zugleich eine Umlaufbewegung um die Sonnenräder S1, 50 S2, S3 ausführen, hat ferner erste, zweite und dritte Träger C1, C2, C3, auf denen die zugeordneten Planetenräder P1, P2, P3 drehbar gelagert sind, und die mit diesen um die Sonnenräder S1, S2, S3 jeweils drehbar sind, und sie haben zugeordnete erste, zweite und dritte 55 Hohlräder R1, R2, R3, die eine Innenverzahnung haben, die mit den Planetenrädern P1, P2, P3 jeweils kämmt.

Das erste Sonnenrad S1 ist direkt mit einer Eingangswelle 1 gekoppelt, und der erste Träger C1 ist direkt mit dem zweiten Hohlrad R2 und einem Ausgangsrad 2 gekoppelt. Dem ersten Hohlrad R1 ist eine erste Bremse B1 zugeordnet, die das erste Hohlrad R1 drehfest festlegen kann. Das erste Hohlrad R1 wird selektiv mit dem dritten Hohlrad R3 über eine erste Kupplung K1 in Eingriff gebracht oder ausgerückt. Die zweiten und dritten Sonnenräder S2, S3 sind direkt miteinander gekoppelt, und sie können von der Eingangswelle 1 über eine zweite Kupplung K2 abgekoppelt werden. Die zweiten

und dritten Sonnenräder S2, S3 können mit Hilfe einer Bremse B2 drehfest festgelegt werden. Die zweiten und dritten Träger C2, C3 sind direkt miteinander gekoppelt, und sie sind selektiv mit der Eingangswelle 1 über eine 5 dritte Kupplung K3 koppelbar und von dieser abkoppelbar, und sie können mit Hilfe einer dritten Bremse B3 drehfest festgelegt werden.

Die Planetengetriebeelemente, die die ersten, zweiten, dritten Sonnenräder S1, S2, S3, die ersten, zweiten und dritten Träger C1, C2, C3 und die ersten, zweiten und dritten Hohlräder R1, R2, R3 umfassen, können als Kopplung zwischen der Eingangswelle 1 und dem Abtriebsrad 2 auf die vorstehend angegebene Weise angeordnet sein. Bei dem Planetengetriebe, das den vorstehend angegebenen Aufbau hat, lassen sich Gangstellungen und Gangschaltungen dadurch gesteuert vornehmen, daß selektiv die ersten, zweiten und dritten Kupplungen K1, K2, K3 und die ersten, zweiten und dritten Bremsen B1, B2, B3 eingerückt bzw. angezogen und ausgerückt bzw. gelöst werden. Insbesondere lassen sich fünf Vorwärtsgänge oder Gangbereiche (LOW 2ter, 3ter, 4ter und 5ter) und ein Rückwärtsgang oder ein Gangbereich (REV) dadurch einstellen, daß die Kupplungen und Bremsen entsprechend Fig. 9 eingerückt und abgekoppelt werden.

der Absolutwert ist größer als die no der Eingangswelle 1. Jedoch Hohlrad R1 nahezu keine Schwiese Überdrehens auf, da die Brennmanhezu vollständig gedrosselten wärtsfahrt arbeitet. Das erste Sonar mit der Eingangswelle 1 über ppelt werden, und die Kupplung ausgekoppelt werden, so daß sich nsichtlich des Überdrehens übersichtlich den Gangschaltung zwischen zwei aufeinanderfolgenden Geschwindigkeitsbereichen wird eines der beiden Eingriffselement eingerückt, aber die beiden Eingriffseinrichtungen brauchen nicht gleichzeitig einsoder ausgerückt zu werden. Daher läßt sich das Getriebe auf einfache Weise hinsichtlich den Gangschaltungen steuern.

Die Verbindungszuordnung zwischen den Elementen (einschließlich der Sonnenräder, der Träger und der Hohlräder) der Planetengetriebeteile des vorstehend angegebenen Planetengetriebes ist in Fig. 10 gezeigt. Die zweiten und dritten Sonnenräder S2, 1 S3, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein erstes Drehteil. Der zweite Träger C2 und der dritte Träger C3, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein zweites Drehteil. Das erste Hohlrad R1 und das dritte Hohlrad R3, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein drittes Drehteil. Der erste Träger C1 und das zweite Hohlrad R2, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein viertes Drehteil. Das erste Sonnenrad S1 dient lediglich als ein fünftes Drehteil. Wie in Fig. 8 gezeigt ist, ist die erste Kupplung K1 zwischen dem ersten Hohlrad R1 und dem dritten Hohlrad R3 angeordnet, welche als drittes Drehteil dienen, und sie kann diese Elemente selektiv koppeln und abkoppeln.

Die Zuordnung zwischen den Geschwindigkeiten der verschiedenen Elemente des Getriebes der Bauart 2 ist in Fig. 11 gezeigt.

Die Drehgeschwindigkeiten des Abtriebsrades 2, die den Drehgeschwindigkeiten der Eingangswelle 1 in den jeweiligen Geschwindigkeitsbereichen zugeordnet sind, lassen sich unter Verwendung der nachstehend angegebenen Geschwindigkeitsdiagramme bestimmen.

Im LOW-Bereich sind alle Kupplungen K1, K2, K3 und die zweite Bremse B2 ausgerückt, und die ersten und dritten Bremsen B1, B3 sind angezogen. Da die

beiden Elemente in jedem Paar mechanisch miteinander in den zweiten und dritten Planetengetriebeteilen G2, G3 gekoppelt sind, arbeiten die zweiten und dritten Planetengetriebeteile G2, G3 als ein integrales Planetengewerden kann, wie dies in Fig. 12 gezeigt ist. Da die erste Kupplung K1 ausgerückt ist, ist das erste Planetengetriebeteil G1 von der integralen Kombination der zweiten und dritten Planetengetriebeteile G2, G3 getrennt, und nur der erste Träger C1 und das zweite Hohlrad R2 10 sind miteinander gekoppelt.

Wenn die Drehgeschwindigkeit der Eingangswelle 1 mit n0 bezeichnet ist, ergibt sich dann für die Drehgeschwindigkeit des ersten Sonnenrads S1, das direkt mit der Eingangswelle 1 gekoppelt ist, eine Drehgeschwin- 15 digkeit von n0. Solange das erste Hohlrad R1 durch die erste Bremse B1 drehfest gehalten oder fixiert ist, dreht sich der erste Träger C1, d. h. das Abtriebsrad 2 mit einer Drehgeschwindigkeit n1, die durch einen Schnittpunkt zwischen der vertikalen Linie des ersten Trägers 20 C1 und einer gebrochenen Linie L1 (Fig. 12) angegeben ist, die den Punkt schneidet, der den Drehzustand des ersten Sonnenrads S1 wiedergibt, und jenen Punkt schneidet, der den festgelegten Zustand des ersten Hohlrads R1 angibt.

Wenn der erste Träger C1 direkt mit dem zweiten Hohlrad R2 gekoppelt ist, dreht sich das zweite Hohlrad R2 ebenfalls mit der Drehgeschwindigkeit n1. Bei der integralen Kombination der zweiten und dritten Planetengetriebeteile G2, G3 sind der zweite Träger C2 und 30 der dritte Träger C3 durch die dritte Bremse B3 drehfest gehalten oder fixiert. Folglich läßt sich eine gebrochene, gerade Linie L1' zwischen einem Punkt für den Drehzustand des zweiten Hohlrads R2 bei der Drehgeschwindigkeit n1 und einem Punkt für die Angabe des festen 35 Zustandes des zweiten und dritten Trägers C2, C3 ziehen, und die Schnittpunkte mit der gebrochenen, geraden Linie L1' geben die Drehgeschwindigkeiten der anderen Elemente an. Die maximale Drehgeschwindigkeit ist die Drehgeschwindigkeit n11 der zweiten und dritten 40 Sonnenräder S2, S3. Da die Drehgeschwindigkeit n11 niedriger als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergeben sich keine Schwierigkeiten hinsichtlich eines Überdrehens.

Die erste Kupplung K1 braucht nicht ausgerückt zu 45 sein, und die ersten und dritten Hohlräder R1, R3 können direkt miteinander gekoppelt sein, so daß die ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 integral miteinander kombiniert werden können. In einem solchen Fall überlappt das erste Planetengetriebe- 50 teil G1 sich mit den zweiten und dritten Getriebeteilen G2, G3, wie dies mit gebrochenen Linien mit zwei Punkten in Fig. 12 dargestellt ist. Wenn die dritte Bremse B3 ausgerückt ist und die erste Bremse B1 angezogen ist, halten oder zu fixieren, kann der erste Träger C1, d. h. das Abtriebsrad 2, sich mit derselben Drehgeschwindigkeit n1 wie vorstehend angegeben drehen, wie dies mit der gebrochenen Linie L1" mit zwei Punkten dargestellt angegeben ist. Hierdurch erhält man das gewünschte 60 Geschwindigkeitsreduktionsverhältnis. Jedoch können sich die zweiten und dritten Sonnenräder S2, S3 mit einer Drehgeschwindigkeit n12 drehen, die größer als die Drehgeschwindigkeit der Eingangswelle 1 ist, so daß geben können.

Die Drehgeschwindigkeiten des Abtriebsrades in den zweiten und vierten Gangstellungen oder Geschwindig-

keitsbereichen werden nachstehend unter Bezugnahme auf Fig. 13 näher erläutert. In diesen Geschwindigkeitsbereichen ist die erste Kupplung K1 eingerückt, und die erste Bremse B1 ist gelöst. Zwei Elemente (der erste triebe, dessen Geschwindigkeitsdiagramm kombiniert 5 Träger C1 und das erste Hohlrad R1) des ersten Planetengetriebeteils G1 sind direkt mit den Elementen der zweiten und dritten Planetengetriebeteile G2, G3 gekoppelt. Somit sind alle ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 integral miteinander verknüpft, wie dies in Fig. 13 gezeigt ist.

In der zweiten Gangstellung ist die dritte Bremse B3 angezogen, und die zweiten und dritten Träger C2, C3 sind drehfest gehalten. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n2, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Trägers C1 und einer gebrochenen, geraden Linie L2 angegeben ist. Eine Drehgeschwindigkeit n21, die mit dem Schnittpunkt zwischen einer Verlängerung der gebrochenen geraden Linie L2 und der vertikalen Linie der zweiten und dritten Sonnenräder S2, S3 angegeben ist, nimmt ein Maximum an. Da jedoch die Drehgeschwindigkeit n21 gleich oder kleiner als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergeben sich keine Schwierigkeiten hinsichtlich eines Überdrehens in der zweiten Gangstellung.

In der dritten Gangstellung ist die zweite Bremse B2 angezogen, und die zweiten und dritten Sonnenräder S2, S3 sind drehfest gehalten. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n3, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten. Trägers C1 und einer gebrochenen, geraden Linie L3 gegeben ist. Die Drehgeschwindigkeiten aller Elemente sind kleiner als die Drehgeschwindigkeiten n1 der Eingangswelle 1, und daher ergeben sich keinerlei Schwie- 1000 b. rigkeiten hinsichtlich des Überdrehens in der dritten 25 288 13 C C Gangstellung.

In der vierten Gangstellung ist die dritte Kupplung K3 zusätzlich zu der ersten Kupplung K1 eingerückt: Daher drehen sich die ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 als Einheit mit der Eingangswelle 1. Das erste Sonnenrad S1, die zweiten und dritten Träger C2, C3 drehen sich mit derselben Drehgeschwindigkeit n0, wie die Eingangswelle 1. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n4, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Trägers C1 und einer horizontalen, durchgezogenen, geraden Linie L4 gegeben ist. Da die Drehgeschwindigkeiten aller Elemente gleichgroß wie die Drehgeschwindigkeit n0 der Eingangswelle 1 sind, ergeben sich keinerlei Schwierigkeiten hinsichtlich des Uberdrehens in der vierten Gangstellung.

In der fünften Gangstellung sind die erste Kupplung K1 und die erste Bremse B1 ausgerückt, und es werden zwei Elemente (der erste Träger C1 und das erste Hohlum die ersten und dritten Hohlräder R1, R3 drehfest zu 55 rad R1) des ersten Planetengetriebeteils G1 freigegeben, welche sich dann frei drehen können. In der fünften Gangstellung ist das erste Planetengetriebeteil G1 gesondert und getrennt von den zweiten und dritten Planetengetriebeteilen G2, G3 hinsichtlich der Funktionsweise vorgesehen, wie dies in Fig. 14 gezeigt ist. Nur der erste Träger C1 überträgt die Drehbewegung des Abtriebsrades 2, und die anderen Elemente nehmen bei dem Getriebe bei der Drehbewegung nicht teil. In der fünften Gangstellung ist die zweite Bremse B2 angezosich Schwierigkeiten hinsichtlich eines Überdrehens er- 65 gen, und die zweiten und dritten Sonnenräder S2, S3 sind drehfest gehalten. Die dritte Kupplung K3 ist eingerückt, so daß die zweiten und dritten Träger C2, C3 sich mit der Eingangswelle 1 drehen können. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n5, die durch den Schnittpunkt zwischen der vertikalen Linie des zweiten Hohlrades R2 (und des ersten Trägers C1) die direkt mit dem Ausgangsrad 2 gekoppelt sind, und einer gebrochenen Linie L5 in Fig. 14 gegeben ist. Die Drehbewegung wird über den ersten Träger C1 auf das Abtriebsrad 2 übertragen.

Im ersten Planetengetriebeteil G1 dreht sich der erste Träger C1 mit der Drehgeschwindigkeit n5, und das erste Sonnenrad S1, das direkt mit der Eingangswelle 1 10 gekoppelt ist, dreht sich mit einer Drehgeschwindigkeit no. Das erste Hohlrad R1 dreht sich mit einer Drehgeschwindigkeit n51, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Hohlrades R1 und einer gebrochenen, geraden Linie L5' gegeben ist. Obgleich 15 die Drehgeschwindigkeit n51 größer als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergibt sich nahezu keine Schwierigkeit hinsichtlich des Überdrehens beim ersten Hohlrad R1, da die Fahrzeuggeschwindigkeit hoch ist und der Laufwiderstand des 20 Fahrzeugs groß ist, während das Fahrzeug im fünften Gang fährt und die Brennkraftmaschine üblicherweise nicht in einem hohen Drehzahlbereich arbeitet.

In der Rückwärtsgangstellung oder im REV-Bereich sind die erste Kupplung K1 und die erste Bremse B1 25 ausgerückt, um das erste Planetengetriebeteil G1 abzukoppeln. Die Drehgeschwindigkeiten der verschiedenen Elemente sind in Fig. 14 gezeigt. In der Rückwärtsfahrtgangstellung ist die dritte Bremse B3 angezogen, und die zweiten und dritten Träger C2, C3 sind drehfest 30 gehalten. Die zweite Kupplung K2 ist eingerückt, um zu ermöglichen, daß die zweiten und dritten Sonnenräder S2, S3 sich mit der Eingangswelle 1 drehen. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit nR (mit einem negativen Wert), die durch den Schnittpunkt 35 zwischen der vertikalen Linie des zweiten Hohlrads R2 und einer gebrochenen, geraden Linie LR gegeben ist.

Im ersten Planetengetriebeteil G1 dreht sich der erste Träger C1 mit einer Drehgeschwindigkeit nR, und das erste Sonnenrad S1, das direkt mit der Eingangswelle 1 40 gen einfach steuern. gekoppelt ist, dreht sich mit einer Drehgeschwindigkeit n0. Das erste Hohlrad R1 dreht sich mit einer Drehgeschwindigkeit nR1, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Hohlrads R1 und einer gebrochenen, geraden Linie LR' gegeben ist. Das erste 45 Hohlrad R1 dreht sich in eine Gegenrichtung, und der Absolutwert der Drehgeschwindigkeit nR1 ist im wesentlichen gleichgroß wie die Drehgeschwindigkeit no. Das erste Hohlrad R1 bereitet daher im wesentlichen die Brennkraftmaschine nicht in einem vollständig gedrosselten Zustand bei der Rückwärtsfahrt betrieben wird.

Bauart 3

Das schematische Getriebediagramm eines Planetengetriebes der Bauart 3 ist in Fig. 15 gezeigt. Das Planetengetriebe, das in Fig. 15 gezeigt ist, hat erste, zweite und dritte Planetengetriebeteile G1, G2, G3, die koaxial 60 und parallel zueinander angeordnet sind. Die Planetengetriebeteile G1, G2, G3 haben jeweils erste, zweite und dritte Sonnenräder S1, S2, S3, jeweils erste, zweite und dritte Träger C1, C2, C3 und jeweils erste, zweite und dritte Hohlräder R1, R2, R3.

Das erste Sonnenrad S1 ist direkt mit einer Eingangswelle 1 gekoppelt und der erste Träger C1 ist direkt mit den zweiten und dritten Hohlrädern R2, R3 und einem

Abtriebsrad 2 gekoppelt. Dem ersten Hohlrad R1 ist eine erste Bremse B1 zugeordnet, welche das erste Hohlrad R1 drehfest festhalten kann. Das erste Hohlrad R1 läßt sich selektiv über eine erste Kupplung K1 in 5 Eingriff mit dem dritten Träger C3 bringen oder aus diesem Eingriffszustand lösen. Das zweite Sonnenrad S2 ist lösbar mit der Eingangswelle 1 über eine zweite Kupplung K2 gekoppelt. Das zweite Sonnenrad S2 kann durch eine zweite Bremse B2 drehfest gehalten werden. Der zweite Träger C2 und das dritte Sonnenrad S3 können direkt miteinander gekoppelt werden, und sie können selektiv mit einer Eingangswelle 1 über eine dritte Kupplung K3 gekoppelt oder von dieser abgekoppelt werden. Der zweite Träger C2 und das dritte Sonnenrad S3 können mittels einer dritten Bremse B3 drehfest gehalten werden.

Bei dem vorstehend angegebenen Aufbau des Planetengetriebes lassen sich Gangstellungen und Gangschaltungen durch Steuern des jeweiligen Einrückens und Ausrückens der ersten, zweiten und dritten Kupplungen K1, K2, K3 und der ersten, zweiten und dritten Bremsen B1, B2, B3 einstellen. Insbesondere lassen sich fünf Vorwärtsgangstellungen oder Geschwindigkeitsbereiche (LOW, 2ter, 3ter, 4ter und 5ter) und ein Rückwärtsgang oder ein Bereich (REV) einstellen, indem die Kupplungen und Bremsen entsprechend Fig. 16 eingerückt bzw. angezogen und ausgerückt bzw. gelöst werden. In Fig. 16 sind jene Kupplungen und Bremsen, die mit einem Kreis versehen sind, eingerückt bzw. abgezogen. Geschwindigkeitsreduktionsverhältnisse des Getriebes in den jeweiligen Gangbereichen sind beispielsweise in Fig. 16 verdeutlicht.

Um eine Gangschaltung zwischen zwei aufeinanderfolgenden Geschwindigkeitsbereichen vorzunehmen, wird eines der beiden Eingriffseinrichtungen ausgerückt und eine weitere Eingriffseinrichtung wird eingerückt, aber die beiden Eingriffseinrichtungen brauchen nicht gleichzeitig eingerückt oder ausgerückt zu werden. Daher lassen sich bei diesem Getriebe die Gangschaltun-

Die Verbindungszuordnung zwischen den Elementen (einschließlich der Sonnenräder, der Träger und der Hohlräder) der Planetengetriebeteile des vorstehend angegebenen Planetengetriebes ist in Fig. 17 gezeigt. Das zweite Sonnenrad S2 dient lediglich als ein erste Drehteil. Der zweite Träger C2 und das dritte Sonnenrad S3, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein zweites Drehteil. Das erste Hohlrad R1 und der dritte Träger C3, die miteinander keine Schwierigkeiten hinsichtlich des Überdrehens, da 50 gekoppelt sind, dienen in Verbindung miteinander als ein drittes Drehteil. Der erste Träger C1, das zweite Hohlrad R2 und das dritte Hohlrad R3, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein viertes Drehteil. Das erste Sonnenrad S1 dient ledig-55 lich als ein fünftes Drehteil. Wie in Fig. 15 gezeigt ist, ist die dritte Kupplung K3 zwischen dem ersten Hohlrad R1 und dem dritten Träger C3 angeordnet, welche als ein drittes Drehteil dienen, und diese Kupplung kann selektiv diese Elemente koppeln und abkoppeln.

> Die Zuordnung zwischen den Geschwindigkeiten der verschiedenen Elemente des Getriebes der Bauart 3 ist in Fig. 18 gezeigt. Die Geschwindigkeitsreduktionsverhältnisse in den Geschwindigkeitsbereichen bzw. Gangbereichen des Getriebes werden nachstehend unter Be-65 zugnahme auf Fig. 18 näher erläutert.

Im LOW-Bereich sind alle Kupplungen K1, K2, K3 und die zweite Bremse B2 ausgerückt bzw. gelöst, und die erste und dritte Bremse B1, B3 sind angezogen. Da

die beiden Elemente in jedem Paar mechanisch miteinander in den zweiten und dritten Planetengetriebeeinheiten G2, G3 gekoppelt sind, arbeiten die zweiten und dritten Planetengetriebeteile G2, G3 als ein integrales Planetengetriebe, dessen Geschwindigkeitsdiagramm wie in Fig. 19 gezeigt, kombiniert werden kann. Da die erste Kupplung K1 ausgerückt ist, ist das erste Planetengetriebeteil G1 von der integralen Verknüpfung der zweiten und dritten Planetengetriebeteile G2, G3 abge-Hohlrad R2 sind miteinander gekoppelt.

Das erste Sonnenrad S1, das direkt mit der Eingangswelle 1 gekoppelt ist, dreht sich mit derselben Drehgeschwindigkeit n0, wie die Eingangswelle 1. Solange das erste Sonnenrad R1 durch die erste Bremse B1 drehfest 15 gehalten und fixiert ist, dreht sich der erste Träger C1, d. h. das Abtriebsrad 2, mit einer Drehgeschwindigkeit n1, die durch eine Schnittstelle zwischen der vertikalen Linie des ersten Trägers C1 und einer gebrochenen, geraden Linie L1 (Fig. 19) gegeben ist.

Da der erste Träger C1 direkt mit den zweiten und dritten Hohlrädern R2, R3 gekoppelt ist, drehen sich die zweiten und dritten Hohlräder R2, R3 mit der Drehgeschwindigkeit n1. Bei den integralverknüpften zweiten und dritten Planetengetriebeteilen G2, G3 sind der 25 zweite Träger C2 und das dritte Sonnenrad S3 durch die dritte Bremse B3 drehfest gehalten oder fixiert. Folglich läßt sich eine gebrochene, gerade Linie L1' zwischen einem Punkt, der den Drehzustand der zweiten und dritwiedergibt, und einem Punkt ziehen, der den festen Zustand des zweiten Trägers C2 und des dritten Sonnenrads S3 angibt, und die Schnittpunkte mit der gebrochenen, geraden Linie L1' gibt die Drehgeschwindigkeiten digkeit ist die Drehgeschwindigkeit n11 des zweiten Sonnenrads S2. Da die Drehgeschwindigkeit n11 niedriger als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergeben sich keine Schwierigkeiten hinsichtlich eines Überdrehens.

Die erste Kupplung K1 braucht nicht in Eingriff zu sein, und das erste Hohlrad R1 und der dritte Träger C3 können miteinander gekoppelt sein, so daß die ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 integral miteinander kombiniert sein können. Wenn in 45 einem solchen Fall die dritte Bremse B3 gelöst ist und die erste Bremse B1 angezogen ist, um das erste Hohlrad R1 und den dritten Träger C3 drehfest zu halten oder zu fixieren, kann sich der erste Träger C1 mit derben drehen, welche durch eine mit zwei Punkten gebrochene Linie L1" dargestellt ist. Hierdurch erhält man das gewünschte Geschwindigkeitsreduktionsverhältnis. Jedoch dreht sich das zweite Sonnenrad S2 mit einer schwindigkeit der Eingangswelle 1 ist, so daß sich eine Schwierigkeit hinsichtlich eines Überdrehens ergeben

Die Drehgeschwindigkeiten des Abtriebsrades in den keitsbereichen werden nachstehend unter Bezugnahme auf Fig. 20 näher erläutert. Bei diesen Geschwindigkeitsbereichen ist die erste Kupplung K1 eingerückt, und die erste Bremse B1 ist gelöst. Die beiden Elemente (der erste Träger C1 und das erste Hohlrad R1) des 65 ersten Planetengetriebeteils G1 sind direkt mit den Elementen der zweiten und dritten Planetengetriebeteile G2, G3 gekoppelt. Daher sind alle ersten, zweiten und

dritten Planetengetriebeteile G1, G2, G3 integral miteinander verknüpft, wie dies in Fig. 20 gezeigt ist.

In der zweiten Gangstellung ist die dritte Bremse B3 angezogen, und der zweite Träger C2 und das dritte Sonnenrad S3 sind drehfest gehalten. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n2, die durch die Schnittstelle zwischen der vertikalen Linie des ersten Trägers C1 und einer gebrochenen, geraden Linie L2 gegeben ist. Eine Drehgeschwindigkeit n21 gibt eine koppelt, und nur der erste Träger C1 und das zweite 10 Schnittstelle zwischen einer Verlängerung der gebrochenen, geraden Linie L2 und der vertikalen Linie an, die für das zweite Sonnenrad S2 bestimmt ist, und hierbei ergibt sich ein Maximum. Da jedoch die Drehgeschwindigkeit n21 gleichgroß oder kleiner als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergeben sich keine Schwierigkeiten hinsichtlich eines Überdrehens in der zweiten Gangstellung.

> In der dritten Gangstellung ist die zweite Bremse B2 angezogen, und das zweite Sonnenrad S2 ist drehfest 20 gehalten. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n3, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Trägers C1 und einer gebrochenen, geraden Linie L3 gegeben ist. Die Drehgeschwindigkeiten aller Elemente sind niedriger als die Drehgeschwindigkeit n0 der Eingangswelle 1, und daher ergeben sich bei diesem Getriebe keinerlei Schwierigkeiten hinsichtlich des Überdrehens in der dritten Gangstellung.

In der vierten Gangstellung ist die dritte Kupplung ten Hohlräder R2, R3 bei der Drehgeschwindigkeit n1 30 K3 zusätzlich zu der ersten Kupplung K1 eingerückt. Somit drehen sich die ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 als eine Einheit mit der Eingangswelle 1. Das erste Sonnenrad S1, der zweite Träger C2 und das dritte Sonnenrad S3 drehen sich mit der anderen Elemente an. Die maximale Drehgeschwin- 35 derselben Drehgeschwindigkeit no wie die Eingangswelle 1. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n4, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Trägers C1 und einer horizontalen, durchgezogenen, geraden Linie LA gege-40 ben ist. Da die Drehgeschwindigkeiten aller Elemente gleich wie die Drehgeschwindigkeit n0 der Eingangswelle sind, ergeben sich bei diesem Getriebe keinerlei Schwierigkeiten hinsichtlich des Überdrehens im vierten Gangbereich.

of Cart Distance

In der fünften Gangstellung sind die erste Kupplung K1 und die erste Bremse B1 eingerückt bzw. angezogen, und die beiden Elemente (der erste Träger C1 und das erste Hohlrad R1) des ersten Planetengetriebeteils G1 sind gelöst, so daß sie sich frei drehen können. Das erste selben Drehgeschwindigkeit n1 wie vorstehend angege- 50 Planetengetriebeteil G1 ist von den zweiten und dritten Planetengetriebeteilen G2, G3 abgekoppelt, wie dies in Fig. 21 gezeigt ist. In der fünften Gangstellung ist die zweite Bremse B2 angezogen, und das zweite Sonnenrad S2 ist drehfest gehalten. Die dritte Kupplung K3 ist Drehgeschwindigkeit n12, die größer als die Drehge- 55 angezogen, wodurch ermöglicht wird, daß der zweite Träger C2 und das dritte Sonnenrad S3 sich mit der Eingangswelle 1 drehen. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n5, die durch den Schnittpunkt zwischen der vertikalen Linie der zweiten zweiten bis vierten Gangstellungen oder Geschwindig- 60 und dritten Hohlräder R2, R3 (und des ersten Trägers C1), welche direkt mit dem Abtriebsrad 2 gekoppelt sind, und einer gebrochenen, geraden Linie L5 in Fig. 21 gegeben ist. Die Drehbewegung wird über den ersten Träger C1 auf das Abtriebsrad 2 übertragen.

> Beim ersten Planetengetriebeteil G1 dreht sich der erste Träger C1 mit einer Drehgeschwindigkeit n5, und das erste Sonnenrad S1, das direkt mit der Eingangswelle 1 gekoppelt ist, dreht sich mit einer Drehgeschwindig

keit n0. Das erste Hohlrad R1 dreht sich mit einer Drehgeschwindigkeit n51, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Hohlrades R1 und einer gebrochenen, geraden Linie L5' gegeben ist. Obgleich die Drehgeschwindigkeit n51 größer als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergeben sich bei dem ersten Hohlrad R1 nahezu keine Schwierigkeiten hinsichtlich des Überdrehens, da die Fahrzeuggeschwindigkeit hoch ist und der Laufwiderstand des Kraftfahrzeugs groß ist, während das Kraft- 10 fahrzeug im fünften Gang fährt, und wenn das Fahrzeug im fünften Gang fährt, arbeitet die Brennkraftmaschine üblicherweise nicht in einem Hochgeschwindigkeitsbereich.

Bei der Rückwärtsgangstellung oder dem REV-Be- 15 reich, sind die erste Kupplung K1 und die erste Bremse B1 ausgerückt bzw. gelöst, um das erste Planetengetriebeteil G1 abzukoppeln. Die Drehgeschwindigkeiten der verschiedenen Elemente sind in Fig. 21 gezeigt. In der gen und hält den zweiten Träger C2 und das dritte Sonnenrad S3 drehfest. Die zweite Kupplung K2 ist eingerückt, um zu ermöglichen, daß das zweite Sonnenrad S2 sich mit der Eingangswelle 1 dreht. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit nR (mit einem 25 negativen Wert), die durch den Schnittpunkt zwischen der vertikalen Linie der zweiten und dritten Hohlräder R2, R3 (und des ersten Trägers C1) und einer gebrochenen, geraden Linie LR gegeben ist.

Im ersten Planetengetriebeteil G1 dreht sich der erste 30 fach vornehmen. Träger C1 mit einer Drehgeschwindigkeit nR, und das erste Sonnenrad S1, das direkt mit der Eingangswelle 1 gekoppelt ist, dreht sich mit der Drehgeschwindigkeit no. Das erste Hohlrad R1 dreht sich mit einer Drehgeschwindigkeit nR1, die durch den Schnittpunkt zwischen 35 der vertikalen Linie des ersten Hohlrades R1 und einer gebrochenen, geraden Linie LR' gegeben ist. Das erste Hohlrad R1 dreht sich in eine Gegenrichtung, und der Absolutwert der Drehgeschwindigkeit nR1 ist größer als die Drehgeschwindigkeit no. Das erste Hohlrad R1 40 bringt jedoch kaum Schwierigkeiten hinsichtlich des Uberdrehens mit sich, da die Brennkraftmaschine nicht in einem vollständig gedrosselten Zustand in der Rückwärtsgangstellung betrieben wird.

44.44

Bauart 4

Ein schematisches Getriebediagramm eines Planetengetriebes der Bauart 4 ist in Fig. 22 gezeigt. Das Planetengetriebe nach Fig. 22 hat erste, zweite und dritte 50 selektiv angekoppelt und abgekoppelt. Planetengetriebeteile G1, G2, G3, die koaxial und parallel zueinander angeordnet sind. Die Planetengetriebeteile G1, G2, G3 haben jeweils erste, zweite und dritte Sonnenräder S1, S2, S3, jeweils erste, zweite und dritte Hohlräder R1, R2, R3.

Das erste Sonnenrad S1 ist direkt mit einer Eingangswelle 1 gekoppelt, und der erste Träger C1 ist direkt mit dem zweiten Hohlrad R2 und einem Abtriebsrad 2 ge-B1 zugeordnet, die das erste Hohlrad R1 drehfest halten kann. Das erste Hohlrad R1 wird selektiv mit dem dritten Hohlrad R3 über eine erste Kupplung K1 gekoppelt oder von dieser abgekoppelt. Das zweite Sonnenrad S2 einer zweiten Bremse B2 drehfest gehalten werden kann. Der zweite Träger C2 und das dritte Hohlrad R3 sind miteinander gekoppelt, und sie lassen sich selektiv

mit der Eingangswelle 1 über eine dritte Kupplung K3 koppeln oder von dieser abkoppeln. Dem Sonnenrad S3 ist eine dritte Bremse B3 zugeordnet, und es läßt sich mit der Eingangswelle 1 über eine dritte Bremse B3 lösbar verbinden.

Bei dem vorstehend angegebenen Aufbau des Planetengetriebes lassen sich Gangstellungen und Gangschaltungen mittels Steuerung selektiv dadurch vornehmen, daß die ersten, zweiten und dritten Kupplungen K1. K2. K3 und die ersten, zweiten und dritten Bremsen B1, B2, B3 selektiv in Eingriff gebracht werden und au-Ber Eingriff gebracht werden. Insbesondere lassen sich fünf Vorwärtsgänge oder Geschwindigkeitsbereiche (LOW, 2ter, 3ter, 4ter und 5ter) und ein Rückwärtsgang oder ein Bereich (REV) dadurch einstellen, daß die Kupplungen und die Bremsen entsprechend Fig. 23 einund ausgerückt werden. In Fig. 23 sind jene Kupplungen und Bremsen mit einem Kreis versehen, welche eingerückt sind. Die Geschwindigkeitsreduktionsver-Rückwärtsgangstellung ist die dritte Bremse B3 angezo- 20 hältnisse des Getriebes in den jeweiligen Geschwindigkeitsbereichen sind nur beispielsweise in Fig. 23 verdeutlicht.

> Um eine Gangschaltung zwischen zwei aufeinanderfolgenden Geschwindigkeitsbereichen vorzunehmen, wird eine der beiden Eingriffseinrichtungen ausgerückt, und die andere Eingriffseinrichtung wird eingerückt, aber die beiden Eingriffseinrichtungen brauchen nicht gleichzeitig ein- oder ausgerückt zu werden. Daher lassen sich bei diesem Getriebe die Gangschaltungen ein-

Die Verbindungszuordnung zwischen den Elementen. (einschließlich der Sonnenräder, der Träger und der-Hohlräder) der Planetengetriebeteile des vorstehend angegebenen Planetengetriebes ist in Fig. 24 gezeigt. Das dritte Sonnenrad S3 dient lediglich als ein erstes Drehteil. Das zweite Sonnenrad S2 und der dritte Träger C3, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein zweites Drehteil. Das erste Hohlrad R1, der zweite Träger C2 und das dritte Hohlrad R3, die miteinander gekoppelt sind, dienen in Verbindung miteinander als ein drittes Drehteil. Der erste Träger C1 und das zweite Hohlrad R2, welche miteinander gekoppelt sind, dienen in Verbindung miteinander als ein viertes Drehteil. Das erste Sonnenrad S1 dient 45 lediglich als ein fünftes Drehteil. Wie in Fig. 22 gezeigt ist, ist die dritte Kupplung K3 zwischen dem ersten Hohlrad R1 und dem zweiten Träger C2 und dem dritten Hohlrad R3 angeordnet, welche als das dritte Drehteil dienen, und es werden hierdurch diese Elemente

Die Zuordnung zwischen den Geschwindigkeiten der verschiedenen Elemente des Getriebes der Bauart 4 ist in Fig. 25 gezeigt. Die Geschwindigkeitsreduktionsverhältnisse in den Gangbereichen des Getriebes werden Träger C1, C2, C3 und jeweils erste, zweite und dritte 55 nachstehend unter Bezugnahme auf Fig. 25 näher erläu-

Im LOW-Bereich sind alle Kupplungen K1, K2, K3 und die dritte Bremse B3 ausgerückt, und die ersten und zweiten Bremsen B1, B2 sind angezogen. Da die beiden koppelt. Dem ersten Hohlrad R1 ist eine erste Bremse 60 Elemente jedes Paars mechanisch miteinander in den zweiten und dritten Planetengetriebeteilen G2, G3 gekoppelt sind, arbeiten die zweiten und dritten Planetengetriebeteile G2, G3 als ein integrales Planetengetriebe, dessen Geschwindigkeitsdiagramm so kombiniert werist mit dem dritten Träger C3 gekoppelt, der mittels 65 den kann, wie dies in Fig. 26 gezeigt ist. Da die erste Kupplung K1 ausgerückt ist, ist das erste Planetengetriebeteil G1 von den integral kombinierten zweiten und dritten Planetengetriebeteilen G2 und G3 abgekop-

pelt, und nur der erste Träger C1 und das zweite Hohlrad R2 sind miteinander gekoppelt.

Das erste Sonnenrad S1, das direkt mit der Eingangswelle 1 gekoppelt ist, dreht sich mit derselben Drehgeschwindigkeit n0 wie die Eingangswelle 1. Solange das erste Hohlrad R1 durch die erste Bremse B1 gehalten oder drehfest festgelegt ist, dreht sich der erste Träger C1, d. h. das Abtriebsrad 2 mit einer Drehgeschwindigkeit n1, die durch einen Schnittpunkt zwischen der vertikalen Linie des ersten Trägers C1 und einer gebroche- 10 nen, geraden Linie L1 gegeben ist (Fig. 26).

Da der erste Träger C1 direkt mit dem zweiten Hohlrad R2 gekoppelt ist, dreht sich das zweite Hohlrad R2 ebenfalls mit der Drehgeschwindigkeit n1. Bei der integral kombinierten Einheit aus den zweiten und dritten 15 Planetengetriebeteilen G2, G3 sind das zweite Sonnenrad S2 und der dritte Träger C3 durch die zweite Bremse B2 gehalten oder drehfest fixiert. Folglich läßt sich eine gebrochene, gerade Linie L1' zwischen einem Punkt für den Drehzustand des zweiten Hohlrads R2 20 mit der Drehgeschwindigkeit n1 und einem Punkt für den festen Zustand des zweiten Sonnenrads S2 und des dritten Trägers C3 ziehen, und die Schnittpunkte mit der gebrochenen, geraden Linie L1' geben die Drehgeschwindigkeiten der anderen Elemente an. Die maxima- 25 le Drehgeschwindigkeit ist die Drehgeschwindigkeit n11 des dritten Sonnenrads S3. Da die Drehgeschwindigkeit n11 kleiner als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergeben sich keine Schwierigkeiten hinsichtlich eines Überdrehens.

Die erste Kupplung K1 kann ausgerückt sein, und das erste Hohlrad R1, der zweite Träger C2 und das dritte Hohlrad R3 können direkt miteinander gekoppelt sein, so daß die ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 integral miteinander kombiniert wer- 35 den können. Wenn in einem solchen Fall die zweite die Bremse B2 gelöst ist, und die erste Bremse B1 angezogen ist, um das erste Hohlrad R1, den zweiten Träger C2 und das dritte Hohlrad R3 drehfest zu halten oder zu fixieren, kann sich der erste Träger C1 mit derselben 40 Drehgeschwindigkeit n1 wie zuvor angegeben drehen, wie dies mit einer mit zwei Punkten gebrochenen Linie L1" verdeutlich ist. Hierbei erhält man das gewünschte Geschwindigkeitsreduktionsverhältnis. Das dritte Sonnenrad S3 dreht sich jedoch mit einer Drehgeschwindig- 45 keit n12, die höher als die Drehgeschwindigkeit der Eingangswelle 1 ist, so daß sich Schwierigkeiten hinsichtlich des Überdrehens ergeben können.

Die Drehgeschwindigkeiten des Abtriebsrads in den zweiten bis vierten Gängen oder Geschwindigkeitsbe- 50 reichen werden nachstehend unter Bezugnahme auf Fig. 27 näher erläutert. In diesen Geschwindigkeitsbereichen ist die erste Kupplung K1 eingerückt, und die erste Bremse B1 ist gelöst. Die beiden Elemente (der erste Träger C1 und das erste Hohlrad R1) des ersten 55 Planetengetriebeteils G1 sind direkt mit den Elementen der zweiten und dritten Planetengetriebeteile G2, G3 gekoppelt. Daher sind alle ersten, zweiten und dritten Planetengetriebeteile G1, G2, G3 integral miteinander verknüpft, wie dies in Fig. 27 gezeigt ist.

In der zweiten Gangstellung ist die zweite Bremse B2 angezogen, und das zweite Sonnenrad S2 und der dritte Träger C3 sind drehfest gehalten. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n2, die durch Trägers C1 und einer gebrochenen, geraden Linie L2 gegeben ist. Eine Drehgeschwindigkeit n21 gibt eine Schnittstelle zwischen einer Verlängerung der gebro-

chenen, geraden Linie L2 und der vertikalen Linie des dritten Sonnenrads S3 an, und dort ergibt sich ein Maximum. Da jedoch die Drehgeschwindigkeit n21 gleich oder kleiner als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergeben sich keine Schwierigkeiten hinsichtlich eines Überdrehens in der zweiten Gangstel-

In der dritten Gangstellung ist die dritte Bremse B3 angezogen, und das dritte Sonnenrad S3 ist drehfest gehalten. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n3, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Trägers C1 und einer gebrochenen, geraden Linie L3 gegeben ist. Die Drehgeschwindigkeiten aller Elemente sind niedriger als die Drehgeschwindigkeit n0 der Eingangswelle 1, und daher ergeben sich bei dem Getriebe überhaupt keine Schwierigkeiten hinsichtlich eines Überdrehens in der dritten Gangstellung.

In der vierten Gangstellung ist die zweite Kupplung K2 zusätzlich zu der ersten Kupplung K1 eingerückt. Daher drehen sich das erste, zweite und das dritte Planetengetriebeteil G1, G2, G3 als eine Einheit mit der Eingangswelle 1. Das erste Sonnenrad S1 und das erste Hohlrad R1, und der zweite Träger C1 und das dritte Hohlrad R3 drehen sich mit derselben Drehgeschwindigkeit n0 wie die Eingangswelle 1. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n4, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Trägers C und einer horizontalen, durchgezogenen, 30 geraden Linie L4 gegeben ist. Da die Drehgeschwindigkeiten aller Elemente gleichgroß wie die Drehgeschwindigkeit n0 der Eingangswelle 1 sind, ergeben sich bei diesem Getriebe keine Schwierigkeiten im vierten Gangbereich.

In der fünften Gangstellung sind die erste Kupplung K1 und die erste Bremse B1 ausgerückt, und die beiden Elemente (der erste: Träger C1 und das erste Hohirad R1) des ersten Planetengetriebeteils G1 sind abgekoppelt, so daß sie sich frei bewegen können. Das erste Planetengetriebeteil G1 ist von den zweiten und dritten Planetengetriebeteilen G2, G3 abgekoppelt, wie dies in Fig. 28 gezeigt ist. In der fünften Gangstellung ist die dritte Bremse B3 angezogen, und das dritte Sonnenrad S3 ist drehfest gehalten. Die zweite Kupplung K2 ist eingerückt, so daß ermöglicht wird, daß der zweite Träger C2 und das dritte Hohlrad R3 sich mit der Eingangswelle 1 drehen. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit n5, die durch den Schnittpunkt zwischen der vertikalen Linie des zweiten Hohlrads R2 (und des ersten Trägers C1), welche direkt mit dem Abtriebsrad 2 gekoppelt sind, und einer gebrochenen, geraden Linie L5 in Fig. 28 gegeben ist. Die Drehung wird über den ersten Träger C1 auf das Abtriebsrad 2 über-

In dem ersten Planetengetriebeteil G1 dreht sich der erste Träger C1 mit einer Drehgeschwindigkeit n5, und das erste Sonnenrad S1, das direkt mit der Eingangswelle 1 gekoppelt ist, dreht sich mit einer Drehgeschwindigkeit n0. Das erste Hohlrad R1 dreht sich mit einer Dreh-60 geschwindigkeit n51, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Hohlrads R1 und einer gebrochenen, geraden Linie L5' gegeben ist. Obgleich die Drehgeschwindigkeit n51 größer als die Drehgeschwindigkeit n0 der Eingangswelle 1 ist, ergeden Schnittpunkt zwischen der Vertikallinie des ersten 65 ben sich bei dem ersten Hohlrad R1 im wesentlichen keine Schwierigkeiten hinsichtlich eines Überdrehens, da die Fahrzeuggeschwindigkeit hoch ist und der Laufwiderstand des Fahrzeugs relativ groß ist, und wenn das 21

Fahrzeug in der fünften Gangstellung fährt, wird die Brennkraftmaschine üblicherweise nicht in einem Hochgeschwindigkeitsbereich betrieben.

Die fünfte Gangstellung kann man durch Anziehen der zweiten Bremse B2 anstelle der dritten Bremse B3 erzielen.

In der Rückwärtsgangstellung oder dem REV-Bereich sind die erste Kupplung K1 und die erste Bremse B1 ausgerückt, um das erste Planetengetriebeteil G1 abzukoppeln. Die Drehgeschwindigkeiten der verschiedenen Elemente sind in Fig. 28 gezeigt. In der Rückwärtsgangstellung ist die zweite Bremse B3 angezogen, und das zweite Sonnenrad S2 und der dritte Träger C3 sind drehfest gehalten. Die dritte Kupplung K3 ist eingerückt, um zu ermöglichen, daß das dritte Sonnenrad S3 sich mit der Eingangswelle 1 drehen kann. Das Abtriebsrad 2 dreht sich mit einer Drehgeschwindigkeit nR (mit einem negativen Wert), der durch den Schnittpunkt zwischen der vertikalen Linie des zweiten Hohlrads R2 (und des ersten Trägers C1) und einer gebrochenen, 20 geraden Linie LR gegeben ist.

Im ersten Planetengetriebeteil G1 dreht sich der erste Träger C1 mit der Drehgeschwindigkeit nR, und das erste Sonnenrad S1, das direkt mit der Eingangswelle 1 gekoppelt ist, dreht sich mit der Drehgeschwindigkeit n0. Das erste Hohlrad R1 dreht sich mit einer Drehgeschwindigkeit nR1, die durch den Schnittpunkt zwischen der vertikalen Linie des ersten Hohlrads R1 und einer gebrochenen, geraden Linie LR' gegeben ist. Das erste Hohlrad R1 dreht sich in eine Gegenrichtung, und der Absolutwert der Drehgeschwindigkeit nR1 ist größer als die Drehgeschwindigkeit n0. Das erste Hohlrad R1 bringt jedoch kaum Schwierigkeiten hinsichtlich des Überdrehens mit sich, da die Brennkraftmaschine nicht in einem vollständig gedrosselten Zustand in der Rückwärtsfahrtstellung betrieben wird.

Obgleich bevorzugte Ausführungsformen nach der Erfindung gezeigt und beschrieben wurden, sind selbstverständlich Änderungen und Modifikationen möglich, die der Fachmann im Bedarfsfall treffen wird, ohne den 40 Erfindungsgedanken zu verlassen.

Zusammenfassend gibt die Erfindung ein Planetengetriebe zur Verwendung in einem Kraftfahrzeug an, welches eine Eingangswelle, ein Abtriebsrad und drei Planetengetriebeteile umfaßt, die koaxial zueinander ange- 45 ordnet sind und jeweils ein Sonnenradelement, ein Trägerelement und ein Hohlradelement haben, wobei zwei der Elemente der jeweiligen Planetengetriebeteile mechanisch mit den Elementen der anderen Planetengetriebeteile zur Ausführung einer Drehung mit derselben 50 gekoppelt sind. Die Elemente, die mechanisch miteinander gekoppelt sind, bilden erste bis fünfte Drehteile, wobei die ersten und fünften Drehteile mit der Eingangswelle gekoppelt sind, eines der zweiten und dritten Drehteile mit dem Abtriebsrad gekoppelt ist, und 55 das vierte Drehteil mit dem Abtriebsrad gekoppelt ist. Das Planetengetriebe hat auch eine Trennkupplung, die zwischen den Elementen des dritten Drehteils zum selektiven Ankoppeln und Abkoppeln der Elemente des dritten Drehteils angeordnet ist.

Patentansprüche

1. Planetengetriebe, gekennzeichnet durch: ein Eingangsteil (1), ein Ausgangsteil (2), drei Planetengetriebeteile (G1, G2, G3), die koaxial zueinander angeordnet sind und jeweils Sonnen-

65

22

radelemente (S1, S2, S3), ein Trägerelement (C1, C2, C3) und ein Hohlradelement (R1, R2, R3) aufweisen, wobei zwei der Elemente jedes Planetengetriebeteils mechanisch mit den Elementen der jeweils anderen Planetengetriebeteile zur Ausführung einer Drehung mit denselben gekoppelt sind,

wobei die Elemente, die mechanisch miteinander gekoppelt sind, erste bis fünfte Drehteile darstellen, die ersten und fünften Drehteile mit dem Eingangsteil (1) gekoppelt sind, eines der zweiten und dritten Drehteile mit dem Ausgangsteil (2) gekoppelt ist, und das vierte Drehteil mit dem Ausgangsteil (2) gekoppelt ist, und

eine Trennkupplung (K3), die zwischen den Elementen des dritten Drehteils zum selektiven Ankoppeln und Abkoppeln der Elemente des dritten Drehteils angeordnet ist.

2. Planetengetriebe, gekennzeichnet durch:

ein Eingangsteil (1),

ein Ausgangsteil (2),

erste, zweite und dritte Planetengetriebeteile (G1, G2, G3), die koaxial zueinander angeordnet sind und

jeweils erste, zweite und dritte Sonnenräder (S1, S2, S3).

jeweils erste, zweite und dritte Träger (C1, C2, C3) und

jeweils zugeordnete erste, zweite und dritte Hohlräder (R, R2, R3) haben,

wobei das erste Sonnenrad (S1) mit dem Eingangsteil (1) immer gekoppelt ist, der erste Träger (C1) mit dem zweiten Hohlrad (S2) und dem Ausgangsteil (2) gekoppelt ist,

der zweite Träger (C2) mit dem dritten Hohlrad (R3) gekoppelt ist, und wobei das zweite Sonnenrad (S2) mit dem dritten Träger (C3) gekoppelt ist, eine erste Bremse (B1), die dem ersten Hohlrad (R1) zugeordnet ist, und das erste Hohlrad drehfest hält.

eine zweite Bremse (B2), die dem zweiten Sonnenrad (S2) und dem dritten Träger (C3) zugeordnet ist, um das zweite Sonnenrad (R2) und den dritten Träger (C3) drehfest zu halten,

eine dritte Bremse (B3), die dem dritten Sonnenrad (S3) zugeordnet ist, und die das dritte Sonnenrad (S3) drehfest hält,

eine erste Kupplung (C1), welche das dritte Sonnenrad (S3) und das Eingangsteil (1) selektiv anund abkoppelt,

eine zweite Kupplung (K2), welche das zweite Sonnenrad (S2) und das Eingangsteil (1) selektiv anund abkoppelt, und

eine dritte Kupplung (K3), welche das erste Hohlrad (R1) und den zweiten Träger (C1) und das dritte Hohlrad (R3) selektiv an- und abkoppelt.

3. Planetengetriebe nach Anspruch 2, dadurch gekennzeichnet, daß das dritte Sonnenrad (S3) als ein erstes Drehteil dient, das zweite Sonnenrad (S2) und der dritte Träger (C3) in Verbindung miteinander ein zweites Drehteil bilden, daß das erste Hohlrad (R1), der zweite Träger (C2) und das dritte Hohlrad (R3) in Verbindung miteinander ein drittes Drehteil bilden, daß der erste Träger (C1) und das zweite Hohlrad (R2) in Verbindung miteinander ein viertes Drehteil bilden, daß das erste Sonnenrad (S1) als ein erstes Drehteil dient, und daß die dritte Kupplung (K3) als eine Trennkupplung zwischen dem ersten Hohlrad (R1) und dem zweiten Träger (C2) und dem dritten Hohlrad (R3) angeordnet ist. 4. Planetengetriebe, gekennzeichnet durch: ein Eingangsteil (1),

ein Ausgangsteil (2),

erste, zweite und dritte Planetengetriebeteile (G1, 5G2, G3), die koaxial zueinander angeordnet sind und jeweils erste, zweite und dritte Sonnenräder (S1, S2, S3),

jeweils erste, zweite und dritte Träger (C1, C2, C3)

jeweils erste, zweite und dritte Hohlräder (R1, R2, R3) haben,

wobei das erste Sonnenrad (S1) direkt mit dem Eingangsteil (1) gekoppelt ist, der erste Träger (C1) direkt mit dem zweiten Hohlrad (R2) und dem Ausgangsteil (2) gekoppelt ist, die zweiten und die dritten Sonnenräder (S2, S3) direkt miteinander gekoppelt sind, und die zweiten und dritten Träger (C2, C3) direkt miteinander gekoppelt sind,

eine erste Bremse (B1), die dem ersten Hohlrad 20 (R1) zugeordnet ist und das erste Hohlrad drehfest hält.

eine zweite Bremse (B2), die dem zweiten und dem dritten Sonnenrad (S2, S3) zugeordnet ist und das zweite und das dritte Sonnenrad (S2, S3) drehfest 25 hält.

eine dritte Bremse, die dem zweiten und dem dritten Träger (C2, C3) zugeordnet ist und den zweiten und den dritten Träger (C2, C3) drehfest hält,

eine erste Kupplung (K1), welche das erste Hohlrad 30 (R1) und das dritte Hohlrad (R3) selektiv an- und abkoppelt.

eine zweite Kupplung (K2), welche das zweite und das dritte Sonnenrad (S2, S3) und das Eingangsteil (1) selektiv an- und abkoppelt, und

eine dritte Kupplung (K3), welche die zweiten und dritten Träger (C2, C3) und das Eingangsteil (1) selektiv an- und abkoppelt.

5. Planetengetriebe nach Anspruch 4, dadurch gekennzeichnet, daß das zweite Sonnenrad (S2) und das dritte Sonnenrad (S3) in Verbindung miteinander als ein erstes Drehteil dienen, der zweite und der dritte Träger (C2, C3) in Verbindung miteinander als ein zweites Drehteil dienen, die ersten und die dritten Hohlräder (R1, R3) in Verbindung miteinander als ein drittes Drehteil dienen, der erste Träger (C1) und das zweite Hohlrad (R2) in Verbindung miteinander ein viertes Drehteil bilden, das erste Sonnenrad (S1) ein fünftes Drehteil bildet, und daß die dritte Kupplung (K3) als eine Trennkupplung zwischen den ersten und dritten Hohlrädern (R1, R3) angeordnet ist.

6. Planetengetriebe, gekennzeichnet durch:

ein Eingangsteil (1),

ein Ausgangsteil (2),

erste, zweite und dritte Planetengetriebeteile (G1, G2, G3), die koaxial zueinander angeordnet sind und die jeweils erste, zweite und dritte Sonnenräder (S1, S2, S3),

jeweils erste, zweite und dritte Träger (C1, C2, C3) 60 und

jeweils erste, zweite und dritte Hohlräder (R1, R2, R3) haben,

wobei das erste Sonnenrad (S1) direkt mit dem Eingangsteil (1) gekoppelt ist, der erste Träger (C1) 65 direkt mit den zweiten und dritten Hohlrädern (R2, R3) und dem Ausgangsteil (2) gekoppelt ist, und der zweite Träger (C2) direkt mit dem dritten Sonnen-

rad (S3) gekoppelt ist,

eine erste Bremse (B1), die dem ersten Hohlrad (R1) zugeordnet ist und das erste Hohlrad drehfest hält,

eine zweite Bremse (B2), die dem zweiten Sonnenrad (S2) zugeordnet ist,

eine dritte Bremse (B3), die dem zweiten Träger (C2) und dem dritten Sonnenrad (S3) zugeordnet ist und den zweiten Träger (C2) und das dritte Sonnenrad (S3) drehfest hält,

eine erste Kupplung (K1), welche selektiv das erste Hohlrad (R1) und den dritten Träger (C3) an- und abkoppelt,

eine zweite Kupplung (K2), welche selektiv das zweite Sonnenrad (S2) und das Eingangsteil (1) anund abkoppelt, und eine dritte Kupplung (K3), welche selektiv den zweiten Träger (C2) und das dritte Sonnenrad (S3) und das Eingangsteil ein-und abkoppelt.

7. Planetengetriebe nach Anspruch 6, dadurch gekennzeichnet, daß das zweite Sonnenrad (S2) als ein erstes Drehteil dient, der zweite Träger (C2) und das dritte Sonnenrad (S3) in Verbindung miteinander als ein zweites Drehteil dienen, das erste Hohlrad (R1) und der dritte Träger (C3) in Verbindung miteinander als ein drittes Drehteil dienen, der erste Träger (C1), das zweite Hohlrad (R2) und das dritte Hohlrad (R3) in Verbindung miteinander als ein viertes Drehteil dienen, das erste Sonnenrad (S1) als ein fünftes Drehteil dient, und daß die dritte Kupplung (K3) als eine Trennkupplung zwischen dem ersten Hohlrad (R1) und dem dritten Träger (C3) angeordnet ist.

8. Planetengetriebe, gekennzeichnet durch:

ein Eingangsteil (1),

35 ·

ein Ausgangsteil (2),

erste, zweite und dritte Planetengetriebeteile (G1, G2, G3), die koaxial zueinander angeordnet sind und jeweils erste, zweite und dritte Sonnenräder (S1 bis S3),

jeweils erste, zweite und dritte Träger (C1 bis C3)

jeweils erste, zweite und dritte Hohlräder (R1 bis R3) haben,

wobei das erste Sonnenrad (R1) direkt mit dem Eingangsteil (1) gekoppelt ist, der erste Träger (C1) direkt mit dem zweiten Hohlrad (R2) und dem Ausgangsteil (2) gekoppelt ist, das zweite Sonnenrad (R2) mit dem dritten Träger (C3) gekoppelt ist, und der zweite Träger (C2) mit dem dritten Hohlrad (R3) gekoppelt ist,

eine erste Bremse (B1), die dem ersten Hohlrad (R1) zugeordnet ist und das erste Hohlrad drehfest hält.

eine zweite Bremse (B2), die dem dritten Träger (C3) zugeordnet ist und den dritten Träger (C3) drehfest hält,

eine dritte Bremse (B3), die dem dritten Sonnenrad (S3) zugeordnet ist und das dritte Sonnenrad drehfest hält,

eine erste Kupplung (K1), welche selektiv das erste Hohlrad (R1) und das dritte Hohlrad (R3) an- und abkoppelt,

eine zweite Kupplung (K2), welche selektiv den zweiten Träger (C2) und das dritte Hohlrad (R3) an- und abkoppelt, und

eine dritte Kupplung (K3), welche selektiv das dritte Sonnenrad (S3) und das Eingangsteil (1) an- und

abkoppelt.

9. Planetengetriebe nach Anspruch 8, dadurch gekennzeichnet, daß das dritte Sonnenrad (S3) als ein erstes Drehteil dient, das zweite Sonnenrad (S2) und der dritte Träger (C3) in Verbindung miteinander ein zweites Drehteil bilden, das erste Hohlrad (R1), der zweite Träger (C2) und das dritte Hohlrad (R3) in Verbindung miteinander ein drittes Drehteil bilden, der erste Träger (C1) und das zweite Hohlrad (R2) in Verbindung miteinander ein viertes Drehteil bilden, das erste Sonnenrad (S1) ein fünftes Drehteil bildet, und daß die dritte Kupplung (K3) als eine Trennkupplung zwischen dem ersten Hohlrad (R1) und dem zweiten Träger (C2) und dem dritten Hohlrad (R3) angeordnet ist.

Hierzu 16 Seite(n) Zeichnungen

Offenlegungstag:

Fig. I

Fig. 2

Bereich	KI	K2	КЗ	ВІ	B2	B 3	Verhältnis
LOW				0	(0)		3,500
2 ter			0		0		1,937
3 ter			0			0	1,300
4 ter		0	0				1,000
5 ter		0				0	0,680
REV	0			:	0		-2,125

Offenlegungstag:

Fig. 3

	Drehteil								
	1ter 2ter 3ter 4ter 5ter								
GI			RI	CI	SI				
G2		S2	C2	R2					
G3	S3	С3	R3						

Nummer:

DE 41 10 406 A1 F 16 H 3/62 2. Oktober 1991

Int. Cl.⁵:
Offenlegungstag:

DE 41 10 406 A1 F 16 H 3/62

2. Oktober 1991

Offenlegungstag:

Fig. 6

Nummer:

DE 41 10 406 A1 F 16 H 3/62 2. Oktober 1991

Int. Cl.⁵: Offenlegungstag:

Fig. 8

Fig. 9

Bereich	Kı	K2	Кз	Bı	B ₂	B3	Verhältnis
LOW				0		0	3.625
2ter	0					0	2.050
3ter	0				0		1.339
4 ter	0		0				1.000
Ster			0		0		0.677
REV	<u> </u>	0				0	2.100

Offenlegungstag:

Fig. 10

	Drehteil								
	1 ter	5 ter							
GI			RI	СІ	SI				
G2	S2	C2		R2					
G3	S 3	С3	R3						

Fig. 11

Offenlegungstag: 2. 0

Fig. 13

DE 41 10 406 A1 F 16 H 3/62 2. Oktober 1991

Int. Cl.⁵:
Offenlegungstag:

Offenlegungstag:

Fig. 15

Fig. 16

Bereich	Kı	K2	К3_	Ві	B ₂	B3	Verhältnis
LOW				0		0	3.625
2 ter	0					0	2.004
3 ter	0				0		1.301
4 ter	0		0				1.000
5 ter			0		0		0.700
REV		0				0	2.333

Offenlegungstag:

Fig. 17

•	Drehteil								
	1ter 2 ter 3 ter 4 ter 5 te								
GI			RI	СІ	SI				
G2	S2	C2		R2	L				
G3		S3	С3	R3					

Fig. 18

Fig. 20

Nummer: Int Cl 5. DE 41 10 406 A1 F 16 H 3/62 2. Oktober 1991

Int. Cl.⁵: Offenlegungstag:

Nummer:

DE 41 10 406 A1 F 16 H 3/62 2. Oktober 1991

Int. Cl.⁵: Offenlegungstag:

Fig. 23

Bereich	Kı	K2	Кз	Bı	B ₂	Вз	Verhältnis
LOW				0	0		3.625
2 ter	0				0		2.004
3 ter	0					0	1.317
4 ter	0	0					1.000
5 ter		0				0	0.879
REV			0		0		2.162

Offenlegungstag:

Fig. 24

	Drehteil								
	1ter 2 ter 3 ter 4 ter								
GI			RI	CI	SI				
G2		S2	C2	R2					
G3	S 3	C 3	R3						

Fig. 25

Offenlegungstag:

DE 41 10 406 A1 F 16 H 3/62 2. Oktober 1991

Offenlegungstag:

