Secondo Esonero di "Reti Logiche e Calcolatori" del 13/5/2016 – Traccia A

ESERCIZIO: Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **VMOD X**, definita come segue.

A partire dalla locazione X+1 della RAM è memorizzato un vettore di L elementi, dove L è il valore contenuto in M[X].

L'istruzione modificherà il vettore sostituendo ad ogni elemento negativo V[i] di V il valore -(2*V[i]) e memorizzerà il numero di sostituzioni effettuate nell'accumulatore.

La figura sulla destra mostra un esempio dello stato della memoria e dei registri prima e dopo l'esecuzione dell'istruzione.

F	PRIMA			DC	PO	
X	:		X		:	
1052 L	1052	8	1052	L	1052	8
V[0	1053	3		V[0]	1053	3
V[1	1054	-2	AC	V[1]	1054	4
V[2	2] 1055	-11	3	V[2]	1055	22
V[3	3] 1056	3		V[3]	1056	3
V[4	1057	8		V[4]	1057	8
V[1058	-6		V[5]	1058	12
V[6	1059	9		V[6]	1059	9
V[7	7] 1060	12		V[7]	1060	12
	:				:	

CODICE RTL

```
IR_X \rightarrow MAR;
\mu_1
           M[MAR] \rightarrow MBR, INCR(MAR) \rightarrow MAR;
\mu_2
           MBR \rightarrow T1, 0 \rightarrow T2:
μз
       1: if OR(T1) = 1 then
               M[MAR] \rightarrow MBR;
\mu_4
               MBR \rightarrow B;
\mu_5
               if B_{31} = 1 then
                   -B \rightarrow MBR, INCR(T2) \rightarrow T2;
\mu_6
                   SHL(MBR) → MBR:
\mu_7
                   MBR \rightarrow M[MAR], INCR(MAR) \rightarrow MAR, DECR(T1) \rightarrow T1, qoto 1;
\mu_8
               else
                   INCR(MAR) \rightarrow MAR, DECR(T1) \rightarrow T1, goto 1;
\mu_9
               fi
           else
               T2 \rightarrow AC;
\mu_{10}
```

Modifiche architetturali

- aggiunta funzione di incremento al registro MAR
- · aggiunta funzione di scorrimento sinistro al registro MBR
- aggiunta funzione di azzeramento al registro T2
- aggiunta del segnale beta B₃₁ collegato al bit più significativo del registro B

СОР	OR(T1)	B ₃₁	y ₂	y 1	y 0	y' 2	y' 1	y' o	μ
00001001	-	-	0	0	0	0	0	1	μ1
00001001	-	-	0	0	1	0	1	0	µ ₂
00001001	-	-	0	1	0	0	1	1	µ ₃
00001001	1	-	0	1	1	1	0	0	μ4
00001001	1	-	1	0	0	1	0	1	μ_5
00001001	1	1	1	0	1	1	1	0	μ ₆
00001001	1	1	1	1	0	1	1	1	µ ₇
00001001	1	1	1	1	1	0	1	1	μ_8
00001001	1	0	1	0	1	0	1	1	µ ₉
00001001	0	-	0	1	1	0	0	0	$\mu_{10,}Z_{ir}=1$

Secondo Esonero di "Reti Logiche e Calcolatori" del 13/5/2016 – Traccia B

ESERCIZIO: Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **VMOD X**, definita come segue.

A partire dalla locazione X+1 della RAM è memorizzato un vettore di L elementi, dove L è il valore contenuto in M[X].

L'istruzione modificherà il vettore sostituendo ad ogni elemento dispari V[i] di V il valore (V[i]*2)+3 e memorizzerà il numero di sostituzioni effettuate nell'accumulatore.

La figura sulla destra mostra un esempio dello stato della memoria e dei registri prima e dopo l'esecuzione dell'istruzione.

	PR	IMA			DC	PO	
X		:		X		:	
1052	L	1052	8	1052	L	1052	8
	V[0]	1053	12		V[0]	1053	12
	V[1]	1054	3	AC	V[1]	1054	9
	V[2]	1055	14	4	V[2]	1055	14
	V[3]	1056	4		V[3]	1056	4
	V[4]	1057	7		V[4]	1057	17
	V[5]	1058	5		V[5]	1058	13
	V[6]	1059	10		V[6]	1059	10
	V[7]	1060	3		V[7]	1060	9
	-	:				:	

CODICE RTL

```
IR_x \rightarrow MAR:
\mu_1
            M[MAR] \rightarrow MBR, INCR(MAR) \rightarrow MAR;
\mu_2
           MBR \rightarrow T1, 0 \rightarrow T2, 3 \rightarrow A;
\mu_3
        1: if OR(T1) = 1 then
                M[MAR] \rightarrow MBR;
\mu_4
                MBR \rightarrow AC;
\mu_5
                if AC_0 = 1 then
                    MBR \rightarrow B, INCR(T2) \rightarrow T2;
\mu_6
                    SHL(B) \rightarrow B;
\mu_7
                    A + B \rightarrow MBR:
\mu_8
                    MBR \rightarrow M[MAR], INCR(MAR) \rightarrow MAR, DECR(T1) \rightarrow T1, qoto 1;
\mu_9
                    INCR(MAR) \rightarrow MAR, DECR(T1) \rightarrow T1, goto 1;
\mu_{10}
                fi
            else
                T2 \rightarrow AC;
\mu_{11}
```

Modifiche architetturali

- aggiunta funzione di incremento al registro MAR
- aggiunta funzione di scorrimento sinistro al registro B
- aggiunta funzione di caricamento della costante 3 al registro A
- aggiunta funzione di azzeramento al registro T2
- aggiunta del segnale beta AC₀ collegato al bit meno significativo del registro AC

СОР	OR(T1)	AC ₀	y ₃	y ₂	y ₁	y 0	y' 3	y' 2	y' 1	y' 0	μ
00001001	_	_	0	0	0	0	0	0	0	1	µ ₁
00001001	_	_	0	0	0	1	0	0	1	0	μ_2
00001001	_	_	0	0	1	0	0	0	1	1	µ ₃
00001001	1	-	0	0	1	1	0	1	0	0	μ4
00001001	1	-	0	1	0	0	0	1	0	1	µ ₅
00001001	1	1	0	1	0	1	0	1	1	0	μ_6
00001001	1	1	0	1	1	0	0	1	1	1	μ_7
00001001	1	1	0	1	1	1	1	0	0	0	μ_8
00001001	1	1	1	0	0	0	0	0	1	1	µ ₉
00001001	1	0	0	1	0	1	0	0	1	1	µ ₁₀
00001001	0	_	0	0	1	1	0	0	0	0	$\mu_{11}, Z_{ir} = 1$

Secondo Esonero di "Reti Logiche e Calcolatori" del 13/5/2016 – Traccia C

ESERCIZIO: Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **VMOD X**, definita come segue.

A partire dalla locazione X+1 della RAM è memorizzato un vettore di L elementi, dove L è il valore contenuto in M[X].

L'istruzione modificherà il vettore sostituendo ad ogni elemento positivo V[i] di V il valore (V[i]+16)/2 e memorizzerà il numero di sostituzioni effettuate nell'accumulatore.

La figura sulla destra mostra un esempio dello stato della memoria e dei registri prima e dopo l'esecuzione dell'istruzione.

	PR	IMA		DOPO						
X		:		X		:				
1052	L	1052	8	1052	L	1052	8			
	V[0]	1053	-13		V[0]	1053	-13			
	V[1]	1054	2	AC	V[1]	1054	9			
	V[2]	1055	10	3	V[2]	1055	13			
	V[3]	1056	-3		V[3]	1056	-3			
	V[4]	1057	8		V[4]	1057	12			
	V[5]	1058	-6		V[5]	1058	-6			
	V[6]	1059	-9		V[6]	1059	-9			
	V[7]	1060	2		V[7]	1060	9			
		:				:				

CODICE RTL

```
IR_x \rightarrow MAR:
\mu_1
           M[MAR] \rightarrow MBR, INCR(MAR) \rightarrow MAR;
\mu_2
           MBR \rightarrow T1, 0 \rightarrow T2, 16 \rightarrow A;
µз
       1: if OR(T1) = 1 then
               M[MAR] \rightarrow MBR;
\mu_4
               MBR \rightarrow B;
\mu_5
               if B_{31} = 0 then
                    A + B \rightarrow MBR, INCR(T2) \rightarrow T2;
\mu_6
                    SHR(MBR) \rightarrow MBR;
\mu_7
                    MBR \rightarrow M[MAR], INCR(MAR) \rightarrow MAR, DECR(T1) \rightarrow T1, goto 1;
\mu_8
               else
                    INCR(MAR) \rightarrow MAR, DECR(T1) \rightarrow T1, goto 1;
μ<sub>9</sub>
               fi
           else
               T2 \rightarrow AC;
\mu_{10}
```

Modifiche architetturali

- aggiunta funzione di incremento al registro MAR
- aggiunta funzione di scorrimento destro al registro MBR
- aggiunta funzione di caricamento della costante 16 al registro A
- aggiunta funzione di azzeramento al registro T2
- aggiunta del segnale beta B₃₁ collegato al bit più significativo del registro B

СОР	OR(T1)	B ₃₁	y ₂	y ₁	y ₀	y' 2	y' 1	y' 0	μ
00001001	-	-	0	0	0	0	0	1	μ1
00001001	-	ı	0	0	1	0	1	0	µ ₂
00001001	_	ı	0	1	0	0	1	1	µ ₃
00001001	1	-	0	1	1	1	0	0	µ ₄
00001001	1	-	1	0	0	1	0	1	μ_5
00001001	1	1	1	0	1	1	1	0	μ ₆
00001001	1	1	1	1	0	1	1	1	µ ₇
00001001	1	1	1	1	1	0	1	1	μ ₈
00001001	1	0	1	0	1	0	1	1	µ ₉
00001001	0	_	0	1	1	0	0	0	$\mu_{10,}Z_{ir}=1$

Secondo Esonero di "Reti Logiche e Calcolatori" del 13/5/2016 – Traccia D

ESERCIZIO: Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **VMOD X**, definita come segue.

A partire dalla locazione X+1 della RAM è memorizzato un vettore di L elementi, dove L è il valore contenuto in M[X].

L'istruzione modificherà il vettore sostituendo ad ogni elemento pari V[i] di V il valore (V[i]/2)-4 e memorizzerà il numero di sostituzioni effettuate nell'accumulatore.

La figura sulla destra mostra un esempio dello stato della memoria e dei registri prima e dopo l'esecuzione dell'istruzione.

	PR	IMA			DO	PO	
Χ		:		X		:	
1052	L	1052	8	1052	L	1052	8
	V[0]	1053	13		V[0]	1053	13
	V[1]	1054	12	AC	V[1]	1054	2
	V[2]	1055	14	3	V[2]	1055	3
	V[3]	1056	3		V[3]	1056	3
	V[4]	1057	9		V[4]	1057	9
	V[5]	1058	7		V[5]	1058	7
	V[6]	1059	9		V[6]	1059	9
	V[7]	1060	12		V[7]	1060	2
		:				:	

CODICE RTL

```
IR_X \rightarrow MAR;
\mu_1
           M[MAR] \rightarrow MBR, INCR(MAR) \rightarrow MAR;
\mu_2
           MBR \rightarrow T1, 0 \rightarrow T2, 4 \rightarrow B;
µз
       1: if OR(T1) = 1 then
               M[MAR] \rightarrow MBR;
\mu_4
               MBR \rightarrow AC;
\mu_5
               if AC_0 = 0 then
                    MBR \rightarrow A, INCR(T2) \rightarrow T2;
\mu_6
                    SHR(A) \rightarrow A:
\mu_7
                    A - B \rightarrow MBR;
\mu_8
                    MBR \rightarrow M[MAR], INCR(MAR) \rightarrow MAR, DECR(T1) \rightarrow T1, goto 1;
\mu_9
                    INCR(MAR) \rightarrow MAR, DECR(T1) \rightarrow T1, goto 1;
\mu_{10}
               fi
           else
               T2 \rightarrow AC;
\mu_{11}
           fi
```

Modifiche architetturali

- aggiunta funzione di incremento al registro MAR
- aggiunta funzione di scorrimento destro al registro A
- aggiunta funzione di caricamento della costante 4 al registro B
- aggiunta funzione di azzeramento al registro T2
- aggiunta del segnale beta AC₀ collegato al bit meno significativo del registro AC

СОР	OR(T1)	AC ₀	y 3	y ₂	y ₁	y 0	y' 3	y' 2	y' 1	y' 0	μ
00001001	_	_	0	0	0	0	0	0	0	1	μ1
00001001	_	_	0	0	0	1	0	0	1	0	µ ₂
00001001	_	_	0	0	1	0	0	0	1	1	µ ₃
00001001	1	-	0	0	1	1	0	1	0	0	µ ₄
00001001	1	-	0	1	0	0	0	1	0	1	µ ₅
00001001	1	1	0	1	0	1	0	1	1	0	μ ₆
00001001	1	1	0	1	1	0	0	1	1	1	µ ₇
00001001	1	1	0	1	1	1	1	0	0	0	μ ₈
00001001	1	1	1	0	0	0	0	0	1	1	µ ₉
00001001	1	0	0	1	0	1	0	0	1	1	µ ₁₀
00001001	0	_	0	0	1	1	0	0	0	0	$\mu_{11,}Z_{ir}=1$