Computer Science

Theory of Computation

Context Free Languages

Lecture No.- 3

Recap of Previous Lecture

Topic

Context Free Grammar

Push Down Automata Basics

Topics to be Covered

Topic

Push Down Automata Construction

PDA
using Final state

If wis valid, afleast one palk must half at final state.

R

What is 1/p?

What is tos?

What is apexation? 1/1/x

DPDM: QXZXP->QXP

PDA: QX5eXp = QXp*

7 PDN

1x/1x

Ocad a

Don't look at Stack

Push a

Don't road ip Don't look at stack No operation

E, a/a
Don't read input
tos is a'
No operation

Read a pop b

(4)
$$\int d^m b^m = m > m$$
, $m, n > 0$? = (2) U at

(5)
$$\frac{amb}{amb}$$
 man $\frac{1}{2}$ (3) U $\frac{1}{b}$

(1) da"b" m±n, m,n≥i}

men

=(2) U(3)

(10)
$$f_{m,u}^{\alpha}$$
 $|w,u| > 1$, $w < u > 3$

(13)
$$q r_{w} \sigma_{u} / w'_{u \leq 1}, w \leq u$$

$$b_{0}a_{1}\varepsilon$$
 $b_{0}a_{1}\varepsilon$
 $b_{0}a_{1}\varepsilon$
 $\varepsilon_{1}\varepsilon_{0}\varepsilon$

aaabbbb \$

Every a => push 2 a's

Every b => Pop 1 a end => 20 lest on stack

Every 26s APOP 10 end D) & left on stack

IS) {anb n>1}

Logic I: For every input a > push 1 a

For every input b > pop 2a's

at end of 1/p > Stack only has 20

logic II: For every 2 as is push 1 a

For every b is pop 1 a

at end is to appear on stack

fω | ωε da, b/*, na(ω) = nb(ω) }

(16) {W| WE {a,b}*, Na(w) = Nb(W)}

a E X aa x abe ba V ababy aabb abbar bbaav

abaabbababab E end of Input

Raa add

(22)
$$\sqrt[4]{\frac{\pi}{2}}$$
 $\sqrt[4]{\frac{\pi}{2}}$ $\sqrt[4]{\frac{$

All previous 23 languages are DCFLs (so, CFls)

>DPDA exist

** (24) qww | we fa,63* }

DPDA not exist

It has PDA

It is CFL but not DCFL

JWWR/WEda,by* } = { E, aa, bb, abba, aaaa, bbbb, baab,...}

If stom is valid, Can we find a palk Ikat Palks at final?

last symbol

Same

2 mins Summary

Topic

PDA DPDA

Next: Identifying CFLs & DCFLs

Closure properties.

THANK - YOU