The hydrodynamic mechanism of whistling

David Fabre, Paolo Luchini, Vincente Citro, Serena Russo, and Flavio Giannetti

(Received 4 February 2014)

Key Words:

1. Introduction

Tone produced by jets, holes: human whistling, bird call, corrugated pipes etc...

This class of situations is characterized by a jet instability, but varicose mode (opposite to flutes: sinuous mode).

Controversy regarding the respective roles of the jet and the acoustic resonator for frequency selection: Rayleigh, Bouasse, ...

Controversy regarding the role of the vortices (Cyclones de Lootens...)

Billon, Valeau, & Sakout (2005): show that the two kinds of feedback can actually occur in a related configuration (planar jet / slot).

Langthjem and Nakano (2010): still think that the feedback is acoustic!

The objective is to clarify the respective roles of hydrodynamics and acoustics for the selection of frequency.

2. Global stability approach (incompressible case)

Spatial instability: for sure!

Global stability: one has to distinguish two cases according to the boundary conditions.

Case 1: zero flow rate, at inlet, zero stress at outlet

We find global stability for the variety of cases considered : single hole, double hole (with or without lateral walls), 2 holes + wall in front, etc...

Case 2: zero pressure (or more properly zero stress) at both inlet and outlet

In this case we do find instability! But what does the zero-pressure condition mean?

3. Modelling the coupling with a resonator: role of the impedance

Def. Impedance

Which one? The better seems to me:

 $Z = \Delta p/q_m$; where $q_m = \text{mass flow rate} = \rho su$ where u is the mean velocity through the aperture. Dimension: [Z] = m/s.

Impedance of the upstream cavity:

$$Z_R = \frac{p_i}{q} = -\frac{c^2}{i\omega V}$$

Impedence of the outlet (matching with open space)

$$Z_O = \frac{p_s}{q} = -\frac{i\omega\delta}{cs} + \frac{\beta}{s} \left(\frac{R\omega}{c}\right)$$

where δ is the open-end correction, and β the radiation coefficient. In the case of an infinite flare : $\delta = 0.8R$, $\beta = 1/2$.

What remains to do is compute the impedance Z_a of the aperture.

3.1. Classical modelling

Classical modeling: Bernouilli

$$\rho \left(\frac{1}{l_a} \frac{\partial u}{\partial t} + \alpha U u \right) = p_i - p_s$$

Where α is a veina contracta coefficient.

This results in the following expression :

$$Z_a = \frac{p_i - p_s}{sq} = \frac{-\rho i\omega \delta}{cs} + \frac{\beta c}{s} \left(\frac{R\omega}{c}\right)^2$$

The total impedance is:

$$Z_t = Z_O + Z_A - Z_R$$

Which can also be written:

$$Z_t = \frac{-il_t}{\omega} \left(\omega^2 - \omega_0^2\right) + \left(\alpha U + \beta \omega^2 R^2 / c\right)$$

With $l_t = l_a + \delta$, and $\omega_0^2 = \frac{c^2 s}{V l_t}$.

The real part is positive (resistive impedance) so the system is stable.

Assuming the real part to be small compared to the imaginary part, the natural complex frequency (eigenfrequency) is :

$$\omega = \omega_0 + \frac{iV\omega_0^2 \left(\beta\omega_0^2 R^2 + \alpha Uc\right)}{2sc^3}$$

3.2. Computation of the impedance through a linearized approach

For the two-hole configuration, we find negative impedance in some ranges of ω .

4. Modelling with a top-hat jet

We work here with a simple, inviscid model which considers the jet with a top-hat profile :

$$u(r) = \begin{cases} U & \text{if } r < R; \\ 0 & \text{if } r > R. \end{cases}$$

$$\tag{4.1}$$

This corresponds to a cylindrical shear layer. The stability analysis of this flow consists of adding small perturbations in potential form, both inside (ϕ_o) and outside (ϕ_i) the jet. These perturbations are searched in eigenvalue form as follows:

$$\phi_i = AI_m(kr)e^{i(kx-\omega t)}; \quad \phi_o = BK_m(kr)e^{i(kx-\omega t)}; \quad \eta = Ce^{i(kx-\omega t)}$$
(4.2)

Where $r = R + \eta$ is the location of the jet edge.

The matching conditions at r = R are continuity of the pressure $(p_i = p_o)$, and

kinematical conditions connecting the temporal derivative of η to the radial velocity $\partial \phi/\partial r$. Hence:

$$i(\omega - kU)\phi_i = i\omega\phi_o,$$

 $-i\omega\eta = \partial\phi_o/\partial r,$
 $i(kU - \omega)\eta = \partial\phi_i/\partial r.$

Eliminating constants A, B, C, we get the following dispersion relation:

$$D(\omega, k, m) = (\omega - kU)^2 + L_m(kR)\omega^2 = 0$$
(4.3)

Where

$$L_m(k) = -\frac{I'_m(k)K_m(k)}{I_m(k)K'_m(k)}$$

Note that this dispersion relation generalizes the classical one for Kelvin-Helmholtz instability of a infinitely thin shear layer (obtained by replacing $L_m(k)$ by one). It is also close to the one obtained for a planar jet of width 2R. The latter case has two kinds of modes: varicose (with $L_v(k) = tanh(k)$) and sinuous (with $L_s(k) = cotanh(k)$).

In the present case, $L_m(k)$ is always close to 1 for m > 0. The case m = 0 differs: $L_m(k)$ tends to 1 for k large, but tends to zero for small k with the following asymptotic behavior:

$$L_0(k) \approx \frac{k^2}{2} \left(\log \frac{2}{k} - \gamma \right)$$

4.1. Temporal stability analysis

The temporal analysis gives:

$$c = \frac{\omega}{k} = U \frac{1 \pm i \sqrt{L}}{1 + L}$$

Note that for m > 0, L is always close to 1 so the real part of c is close to U/2, in accordance with the classical case.

For m=0, the real part of c also tends to U/2 for large k, but for small k it tends to U, meaning that long-wavelength varicose perturbation propagate with the velocity of the jet. Note that varicose perturbations of a planar jet also display this feature.

4.2. Spatial stability analysis

The spatial analysis (solving for k as function of ω real) classically yields two kinds of solutions. The branches called k^+ are relevant to perturbations propagating in the downstream direction, while the branches called k^- are relevant to perturbations propagating in the upstream direction.

Figure 1 shows the two main branches of solutions found with negative k_i , for m = 0 and m = 1. The branch k^+ corresponds to a perturbation which is amplified in the downstream direction, while the branch k^- is a perturbation which is damped in the upstream direction.

4.3. Spatial stability analysis of a forced jet passing through a second aperture We have to use both k^+ and k^- branches to solve the problem.

4 David Fabre, Paolo Luchini, Vincente Citro, Serena Russo, and Flavio Giannetti

FIGURE 1. Properties of the spatial branches for m=0 (red) and m=1 (blue). Plain line: branch k^+ ; dashed line: branch k^- . Upper plot: spatial amplification rate $-k_i$; Middle plot: spatial oscillation rate k_r ; Lower plot: real part of the wave velocity $c_r = Re(\omega/k)$.