

Spotify®

IS 424 G2 Group 3
Sean Chai
Jazreel Tho
Ngoh Yi Long
Siew Wei Lun
Lee Cheng Leng

SEQUENTIAL SKIP PREDICTION USING SUPERVISED LEARNING TECHNIQUES

A RECAP...

Spotify is looking to make song recommendations in a more innovative way by...

- Finding patterns in user's sequential interactions with recommended songs
- Making predictions of user's skip behavior based on patterns

OUR MOTIVATION

Not many recommendation systems have explored the possibility of recommending music based on the skip behaviour of users

Interesting
Challenging
Opportunity to innovate

LITERATURE REVIEW

Deep Learning

- 1) LSTM Neural Network
- Popular due to its consideration of the sequential nature of data
- Single model used to predict all track positions
- Two bidirectional LSTM layers used
- 1) Sequence Learning with Attention
- Modelled after text encoders in Text-to-Speech systems
- Uses dilated convolution layers and Gated Linear Units (GLUs)
- Attention modules allow the model to focus on important parts of the sequence, improving its accuracy

LITERATURE REVIEW

Gradient Boosted Trees

- 1) Multiple independent GBTs
- Using majority decision to prevent overfitting by a single GBT
- Importance of feature is related to the number of times it is selected by the GBTs
- 1) XGBoost3 to predict skips of songs
- Train multiple position-dependent models that predict a skip at a particular track position in a session

ORIGINAL DATASETS

Track Features dataset:

• 1.2 GB

Competition Training Dataset:

• 56GB across 16 days

Competition Test Dataset:

• 14GB across 16 days

Due to computational limits, we only managed to run our models on **1 day**'s worth of data

DATASETS

Track Features dataset

• 31 features for each track, including acoustic analysis

Training dataset

shows first half of user's listening session

Test dataset

shows second half of user's listening session

DATASETS

Summary of data

No. of rows of data: 2,990,609

No. of unique sessions: 178,342

Evaluation metric Accuracy

EXPLORATORY DATA ANALYSIS

- ✓ Check for missing values
- ✓ Check for categorical data
- ✓ Identify variables with different scales
- ✓ Identify correlation between variables

DISTRIBUTIONS FOR CONTINUOUS VARIABLES

DATA PREPROCESSING

- ✓ Data Integration
- ✓ Data Cleaning
- ✓ Data Selection/ Reduction
- ✓ Data Transformation

DATA INTEGRATION

Merged the track features and training dataset to obtain a more complete representation of the songs

DATA CLEANING: CATEGORICAL FEATURES

track_id_clean t 0479f24c-27d2-46d6a00c-7ec928f2b539 t 9099cd7bc238-47b7-9381f23f2c1d1043 t fc5df5ba-5396-49a7-8b29-35d0d28249e0 t 23cff8d6d874-4b20-83dc-94e450e8aa20 t 64f3743cf624-46bb a579-

0f3f9a07a123

3

Categorical data needs to be transformed Models can only understand numerical data

Data smoothing was conducted, which involved encoding the categorical variables

DATA CLEANING: FEATURES WITH DIFFERENT SCALES

sklearn.preprocessing.MinMaxScaler

Difference in data range among features

Data rescaling for it to be in the same range

Conducted
Normalisation to
change values to
range of [0, 1]

3

FEATURE REDUCTION: CURSE OF DIMENSIONALITY

High dimensionality of 46 features in dataset makes it difficult for model to generalise Plot a **correlation matrix** to discover
relationships

Eliminate independent variables which are correlated with each other

3

FEATURE REDUCTION: CURSE OF DIMENSIONALITY

High dimensionality of 46 features in dataset makes it difficult for model to generalise Conducted Principal-Component Analysis (PCA) Derive lowdimensionality projections of the data that explains the variance in the dataset

FEATURE REDUCTION

Dropped columns for skip variables other than skip_2

Rationale: Skip variables are highly correlated and redundant in predicting the ground truth variable

Decided not to use PCA components.

Rationale: The explained variance with the top 5 PCA components was 57.98%. However, when a logistic regression model was run on PCA components which explained 95% variance, the accuracy was only 55.4% Eventually, we did not use the PCA components

DATA TRANSFORMATION

- ✓ Transforming skewed data distribution
- Exponential on left-skewed data distribution
- ✓ Logarithm on right-skewed data distribution
- ✓ Helps us find patterns after transforming

TRAINING METHODOLOGY

- 1. Split the training dataset into train and test set by session position, where **first half = training** and **second half = test**
- 1. Train model on training set and calculate accuracy on test set using sklearn.metrics
- 1. Based on the results, conduct model-specific hyperparameter tuning if applicable
- 1. Run the model on the tuned parameters iteratively to find the optimal model parameters

NAIVE BAYES THEOREM

- Linear Classifier
- Supervised machine learning method
- Works as a probabilistic classifier
- Calculates probability of features
- Assumes features are independent and equal

GAUSSIAN CLASSIFIER

TP	FP
57308	234360
FN	TN

Accuracy: 54.17%

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

LIMITATIONS

Not designed to simultaneously support both categorical and continuous features.

- Explain relationship between one dependent binary variable and one independent variable
- Dependent variable is binary: Skip /Not Skip
- Values for the parameters: maximum likelihood estimation (MLE)

Library used: statsmodels.api

Selected: 39 Variables

Dropped:

- 1. no_pause_before_play
- 2. mode
- 3. hist_user_behavior_reason_end
- 4. hist_user_behavior_reason_start
- 5. dyn_range_mean
- 6. date

Accuracy: 57. 44%

Current function value: 0.674648

Logit Regression Results

Dep. Variable:		skip_2	No. Observations:	2093426
Model:		Logit	Df Residuals:	2093386
Method:		MLE	Df Model:	39
Date:	Wed, 06	Nov 2019	Pseudo R-squ.:	0.02622
Time:		14:22:33	Log-Likelihood:	-1.4123e+06
converged:		True	LL-Null:	-1.4504e+06
Covariance Type:		nonrobust	LLR p-value:	0.000

Covariance Type:	coef					
	coef					
		ctd arr				
				P> z		0.975]
const	-1.4534					
session_position	-0.0041	0.000	-13.984	0.000		
session length	0.0466	0.000	104.901	0.000		
context switch	-0.7484	0.000	-101.380	0.000		
no pause before play						
short_pause_before_play long_pause_before_play	-0 6919	0.011	-56 042	0.000		
hist user behavior n seekf	-0.051	0.012	46.407			
hist_user_behavior_n_seekf hist_user_behavior_n_seekb	nack 0.2044	0.007				
nist_user_behavior_is_shuf	Ffle 0 2122	0.003				
hour of day	0.0057					
premium	-0.1456		-39.951			
duration		1.34e-05			1.75e-06	
release year	5.422e-09					
us popularity estimate	-0.0035					
as_popularity_estimate acousticness	-0.0155					
beat strength	0.0457					
bounciness	-0.0783					
danceability	0.0031					
	0.003					
dyn_range_mean	-0.0094					
energy flatness						
	-0.0177 -0.0042					
instrumentalness						
key liveness	-0.0016					
	-0.0144					
loudness	0.0044					
mechanism	0.0034					
organism	0.0150					
speechiness	0.0003					
tempo	0.0109					
time_signature	-0.0082					
valence	0.0007					
acoustic_vector_0	-2.418e-09					
acoustic_vector_1	-0.0073					
acoustic_vector_2	0.0197					
acoustic_vector_3	-0.0089					
acoustic_vector_4	-0.0106					
acoustic_vector_5	-0.0202					
acoustic_vector_6	-0.0130					
acoustic_vector_7	0.0048		1.629	0.103	-0.001	0.011

0 Importance:

['duration','release_year',
'acoustic_vector_1'
,'speechiness','danceability','aco
ustic_vector_7','instrumentalne
ss','mechanism','key']

Accuracy: 57.32%

Gridsearch Hypertuning

- Determine the optimal values for a given model
- A hyperparameter -> value set before the learning process begins

LOGISTIC REGRESSION - HYPERTUNING

Parameters:

- penalty = ['I2']
- \bullet cv = 5
- verbose=0

Best Parameters: {'C': 0.001, 'penalty': 'I2'}

Accuracy: 57. 46%

LIMITATIONS

Vulnerable to overfitting

K NEAREST NEIGHBOURS

- Distance calculated by a few metrics
- Usually euclidean distance
- Based on closest (k) similar points
- Classify based on <u>odd number</u> of closest points

K NEAREST NEIGHBOURS

Base KNN Model (46 Features)

	k = 5	k = 7	k = 9
Result (Accuracy)	50.941%	50.906%	50.888%

KNN Model (20 Features)

• Using feature_selection.SelectKBest from sklearn

	k = 5	k = 7	k = 9
Result (Accuracy)	50.943%	50.901%	50.886%

	Specs	Score
15	hist_user_behavior_reason_end	1.508963e+0
3	track_id_enc	7.285853e+05
14	hist_user_behavior_reason_start	5.468766e+05
9	hist_user_behavior_n_seekback	2.658098e+04
1	session_position	2.109660e+04
13	context_type	1.982957e+04
0	new_session_id	1.633599e+04
4	context_switch	1.554118e+04
2	session_length	1.308398e+04
7	long_pause_before_play	1.247439e+04
5	no_pause_before_play	7.688899e+0
10	hist_user_behavior_is_shuffle	5.234450e+0
6	short_pause_before_play	2.498477e+0
11	hour_of_day	1.466178e+0
8	hist_user_behavior_n_seekfwd	1.104502e+0
16	duration	8.952575e+02
28	liveness	5.248749e+0
12	premium	4.561756e+0
19	acousticness	3.157311e+0
43	acoustic_vector_6	1.444756e+0

LIMITATIONS

- 1. Calculation of the euclidean distance of ALL data points
- 2. High computational cost
- 3. Hard to determine optimal value of k value
- 4. Very sensitive to large magnitudes of features since distance measure is used

GRADIENT BOOSTED DECISION TREES

XGBOOST

- Gradient boosted decision tree
- Optimised for speed and performance
- Prediction based on residuals/errors
- Gradient descent algorithm used to minimize errors

XGBoost

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

A graphical representation of possible solutions to a decision based on certain conditions Bagging-based algorithm where only a subset of features are selected at random to build a forest or collection of decision trees Gradient Boosting employs gradient descent algorithm to minimize errors in sequential models

STEPS IN OPTIMISING XGBOOST RESULTS

- 1. Run XGBoost Algorithm to get initial model
- 2. Select features based on feature importance
- 3. Run XGBoost Algorithm with selected features
- 4. Run XGBoost Algorithm with 3-Fold Validation & GridSearch

XGBOOST RESULTS

Results for initial model

Time taken: 0 hours 19 minutes and 41.62 seconds. Accuracy score for initial model: 88.67865665361171%

Feature importance by Gain

Results for model after important features selected

Time taken: 0 hours 9 minutes and 43.97 seconds. Accuracy score: 88.67212697390899%

GridSearch Results after 3-Fold Cross Validation

Time taken: 6 hours 7 minutes and 2.91 seconds.

Accuracy score with hyperparameters tuned: 88.72067085533527%

Best estimator:

LIMITATIONS

- 1. Too many hyperparameters makes optimal tuning of hyperparameters time consuming
- 2. XGBoost unable to accept categorical features, encoding is required
- 3. Prone to overfitting

LSTM

RNN

- Suffers from short-term memory
- Difficult to pass information from earlier time steps to later ones.
- Vanishing gradient problem during backward propagation
- → Small gradient value doesn't contribute too much learning

VS

- Similar to RNN
- Have internal mechanisms to regulate flow of information

LSTM

Able to retain important information across time steps

RELEVANCE OF LSTM

Aim to utilize first half of the listening session to predict the probability of skipping a track in the second half of the session

Understand the temporal relationships for particular note and modeling the joint distribution of notes in the particular timestep.

Provides us with the flexibility to alter the hyperparameters to suit our specific needs.

LSTM DIAGRAM

LSTM ARCHITECTURE

Acc: 0.4740

Skip_2 Predictions

LSTM Model Summary

Layer (type)	Output	Shape			Param #	Connected to
		=====	====			
cat1_input (InputLayer)	(None,	89672,	10)		0	
cat2_input (InputLayer)	(None,	89672,	10)		0	
cat3_input (InputLayer)	(None,	89672,	10)		0	
cat4_input (InputLayer)	(None,	89672,	10)		0	
	,					
cat5_input (InputLayer)	(None,	89672,	10)		0	
	/11000	00673	40)	_	^	
cat6_input (InputLayer)	(None,	89672,	10)		0	
cat7_input (InputLayer)	(None,	89672,	10)		0	
cat8_input (InputLayer)	(None,	89672,	10)		0	
cat9 input (InputLayer)	(None	89672,	10)		0	
caes_inpac (inpaceager)	(none)	05072,	10)			
cat10 input (InputLayer)	(None	89672,	10)		0	
cacio_inpac (inpaceayer)	(110110)	050723	10)			
cat11 input (InputLayer)	(None.	89672,	10)		0	
	()	,	,			
cat12 input (InputLayer)	(None,	89672,	10)		0	
,,	,,	,	/			
embedding 26 (Embedding)	(None.	89672,	10.	2)	2	cat1 input[0][0]
	,,	,		-/		
embedding 28 (Embedding)	(None,	89672,	10,	2)	2	cat2_input[0][0]
0= 1	, ,			_		_ , , , ,
embedding_30 (Embedding)	(None,	89672,	10,	2)	2	cat3_input[0][0]
embedding_32 (Embedding)	(None,	89672,	10,	2)	2	cat4_input[0][0]
	4					
embedding_34 (Embedding)	(None,	89672,	10,	41	861	cat5_input[0][0]
embedding 36 (Embedding)	(None.	89672,	10.	47	1128	cat6_input[0][0]
nie com/drive/search?g=owner\$32ame \$628b	()	olication in	2 Fund	nn		2010_2.kar[a][a]

embedding_38 (Embedding)	(None, 89672,	10, 2)	2	cat7_input[0][0]
embedding_40 (Embedding)	(None, 89672,	10, 24	288	cat8_input[0][0]
embedding_42 (Embedding)	(None, 89672,	10, 2)	2	cat9_input[0][0]
embedding_44 (Embedding)	(None, 89672,	10, 6)	18	cat10_input[0][0]
embedding_46 (Embedding)	(None, 89672,	10, 10	50	cat11_input[0][0]
embedding_48 (Embedding)	(None, 89672,	10, 9)	45	cat12_input[0][0]
concatenate_3 (Concatenate)	(None, 89672,	10, 14	0	embedding_26[0][0] embedding_28[0][0] embedding_30[0][0] embedding_32[0][0] embedding_34[0][0] embedding_36[0][0] embedding_38[0][0] embedding_40[0][0] embedding_40[0][0] embedding_44[0][0] embedding_44[0][0] embedding_48[0][0]
numeric_input (InputLayer)	(None, 89672,	310)	0	
reshape_2 (Reshape)	(None, 89672,	1490)	0	concatenate_3[0][0]
concatenate_4 (Concatenate)	(None, 89672,	1800)	0	numeric_input[0][0] reshape_2[0][0]
lstm_4 (LSTM)	(None, 89672,	64)	477440	concatenate_4[0][0]
dropout_3 (Dropout)	(None, 89672,	64)	0	lstm_4[0][0]
lstm_5 (LSTM)	(None, 89672,	64)	33024	dropout_3[0][0]
dropout_4 (Dropout)	(None, 89672,	64)	0	lstm_5[0][0]
lstm_6 (LSTM)	(None, 89672,	64)	33024	dropout_4[0][0]
dense_2 (Dense)	(None, 89672,	,	650	lstm_6[0][0]
Total params: 546,540 Trainable params: 546,540				

Non-trainable params: 0

LIMITATIONS

- 1. Difficult to train because they require memory-bandwidth-bound computation
- 2. Vanishing gradient problem still exists
- 3. High risk of overfitting
- 4. LSTMs are sensitive to random weight initializations

COMPARISON OF MODELS

COMPARISON OF MODELS

	Naive Bayes	Logistic Regression	k-Nearest Neighbours	LSTM	XGBoost
Time Complexity					
Flexibility					
Goodness of Fit					
Accuracy					√

CONCLUSION

- We have used a combination of classification and prediction models to study the best supervised learning method for this task
- The models we have developed showed a marked improvement over the baseline model GaussianNB, from **54.17%** to **88.7%** from the XGBoost implementation
- ➤ hist_user_behaviour_reason_end and hist_user_behaviour_reason_start are the two most important features in predicting the skip behaviour of the user
- Concatenation of track and session features provide a more comprehensive understanding of the probability of skipping a track

FUTURE WORK

- ➤ Increase dataset size as larger dataset may improve results of the models utilized
- ➤ Introduce Multi-RNNs in the LSTM model and evaluate its accuracy against our LSTM Model
- > Fine-tune hyperparameters in LSTM Model
- Creating more GBTs and ensembling the models to find the average predictions on the models we trained
- Perform validation test to gain an unbiased estimate of the performance of the final tuned model
- Instead of just focusing on the accuracy, we should look at the lost metrics such as negative log-likelihood and residual sum of squares.

REFERENCES

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e

https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d

https://arxiv.org/ftp/arxiv/papers/1804/1804.07300.pdf

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

https://machinelearningmastery.com/models-sequence-prediction-recurrent-neural-networks/

http://data-mining.philippe-fournier-viger.com/an-introduction-to-sequence-prediction/

https://www.cddt.nz/projects/spotify.html

https://people.eng.unimelb.edu.au/jianzhongq/wsdm19-cup-reports/reports/report16.pdf

https://arxiv.org/pdf/1901.08203.pdf

https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/

Spotify®

IS 424 G2 Group 3
Sean Chai
Jazreel Tho
Ngoh Yi Long
Siew Wei Lun
Lee Cheng Leng

THANK YOU