ON THE REPRESENTATION OF VECTOR SPACES AS A FINITE UNION OF SUBSPACES

Ву

J. LUH (Raleigh)

It has been proved in [1] that if a vector space V over a field F is a union of n (finite) proper subspaces then the order of F is necessarily less than n.

The purpose of this note is to sharpen this result. We shall prove the following:

Theorem. Let V be a vector space over a finite field F and q be the order of F. Then V can be expressed as a union of q+1 proper subspaces, and such expression is unique up to an automorphism of V.

PROOF. Let $\{v_1, v_2\} \cup B$ be a basis of V. For α , $\beta \in F$, not all zero, let $W(\alpha, \beta) = \langle \alpha v_1 + \beta v_2, B \rangle$, the proper subspace generated by B and $\alpha v_1 + \beta v_2$. We note that $W(\alpha, \beta) = W(\gamma, \delta)$ if and only if $\alpha v_1 + \beta v_2 \equiv \sigma(\gamma v_1 + \delta v_2) \pmod{\langle B \rangle}$ for some $\sigma \neq 0$ in F, if and only if $\alpha = \sigma \gamma$ and $\beta = \sigma \delta$ for some $\sigma \neq 0$ in F. Thus there are exactly $(q^2 - 1)/(q - 1) = q + 1$ distinct subspaces $W(\alpha, \beta)$ with $\alpha, \beta \in F$, not all zero.

We claim that $V = \bigcup W(\alpha, \beta)$, the union of these q + 1 subspaces. Indeed, let v be an arbitrary vector in V. Then $v = \alpha_1 v_1 + \beta_1 v_2 + u$, where $\alpha_1, \beta_1 \in F$ and $u \in \langle B \rangle$. If $v \in \langle B \rangle$ then $\alpha_1 = \beta_1 = 0$ and $v = u \in W(\alpha, \beta)$ for all $\alpha, \beta \in F$. If $v \notin \langle B \rangle$ then α_1, β_1 are not all zero, and $v \in W(\alpha_1, \beta_1)$. Hence $V = \bigcup W(\alpha, \beta)$ as we desired.

To show the uniqueness of such expression up to automorphism, it suffices to show that if $V = V_1 \cup V_2 \cup \ldots \cup V_{q+1}$ then there exist $v_1, v_2 \in V$ and $B \subset V$ such that $\{v_1, v_2\} \cup B$ forms a basis of V and $V_i = W(\alpha, \beta) = \langle \alpha v_1 + \beta v_2, B \rangle$ for some $\alpha, \beta \in F$, not all zero.

In view of [1], $V_i \subseteq \bigcup_{j \neq i} V_j$, $i = 1, 2, \ldots, q + 1$. Let us first show that the codimension of V_1 is 1. Suppose codim $V_1 \ge 2$. Let $V = V_1 \oplus U_1$, where dim $U_1 = \operatorname{codim} V_1 \ge 2$, let $v_1 \in V_1 \setminus (V_2 \cup \ldots \cup V_{q+1})$, and let $u_1, u_2 \in U_1$ be linearly independent. For any $\alpha, \beta \in F$, let $U(\alpha, \beta) = \langle \alpha v_1 + u_1, \beta v_1 + u_2 \rangle$, the subspace generated by the two vectors $\alpha v_1 + u_1$ and $\beta v_1 + u_2$. It is easy to see that $U(\alpha, \beta) \cap V_1 = \{0\}$. Since $V = \bigcup_{i=1}^{q+1} V_i$, $U(\alpha, \beta) = U(\alpha, \beta) \cap V = \bigcup_{i=1}^{q+1} (U(\alpha, \beta) \cap V_i) = \bigcup_{i=2}^{q+1} (U(\alpha, \beta) \cap V_i) \cap V_i = \bigcup_{i=1}^{q+1} (U(\alpha, \beta) \cap V_i) \cap V_i = \bigcup_$

with $j \ge 2$. Hence there exist two distinct pairs (α_1, β_1) and (α_2, β_2) of elements in F such that $U(\alpha_1, \beta_1)$ and $U(\alpha_2, \beta_2)$ both are contained in the same V_j with $j \ge 2$. Without loss of generality, we may assume that $\alpha_1 \ne \alpha_2$. Then, since $\alpha_1 v_1 + u_1$, $\alpha_2 v_1 + u_1 \in V_j$, $(\alpha_1 - \alpha_2) v_1 \in V_j$ and hence $v_1 \in V_j$, where $j \ge 2$, a contradiction. Therefore, codim $V_1 = 1$.

Next, let $R = V_1 \cap V_2$. We assert that $R = \bigcap_{i=1}^{q+1} V_i$. Assume that $R = \bigcap_{i=1}^t V_i$, where $2 \le t < q+1$. Suppose $R \ne \bigcap_{i=1}^{t+1} V_i$. Let $u \in R \cap \bigcap_{i=1}^{t+1} V_i$, $v_{t+1} \in V_{t+1} \setminus \bigcup_{i \ne t+1} V_i$. Then, for any $\alpha \ne 0$ in F, clearly $u + \alpha v_{t+1} \notin V_j$ for $1 \le j \le t$. Furthermore, $u + \alpha v_{t+1} \notin V_{t+1}$. For otherwise, $u \in V_{t+1}$ would imply that $u \in \bigcap_{i=1}^{t} V_i$. Hence $u + \alpha v_{t+1} \in V_j$ for some j > t+1. Consider the set $\{u + \alpha v_{t+1} \mid \alpha \in F, \alpha \ne 0\}$. It has exactly q-1 vectors and is contained in $\bigcup_{i=t+2}^{q+1} V_i$, a union of q-t V_j 's. Since $t \ge 2$, q-t < q-1 and hence there exist two non-zero elements $\alpha, \beta \in F, \alpha \ne \beta$, such that $u + \alpha v_{t+1}, u + \beta v_{t+1} \in V_j$ for some j > t+1. Consequently $(\alpha - \beta)v_{t+1} \in V_j$ and hence $v_{t+1} \in V_j$, a contradiction. Thus $R = \bigcap_{i=1}^{t+1} V_i$. By induction, therefore, we have $R = \bigcap_{i=1}^{q+1} V_i$.

Similarly, we obtain $V_k \cap V_j = \bigcap_{i=1}^{q+1} V_i = R$, $V_k + V_j = V$ for all $k \neq j$, and codim $V_i = 1$ for all i.

Now since $V_1 + V_2 = V$ and $V_1 \cap V_2 = R$, $V/V_1 \cong V_2/R$, $V/V_2 \cong (V/R)/(V_2/R)$ and codim $V_2 = \operatorname{codim} R - \operatorname{dim} (V_2/R)$, so codim $R = \operatorname{codim} V_2 + \operatorname{dim} (V_2/R) = \operatorname{codim} V_2 + \operatorname{codim} V_1 = 2$. Therefore $V_1 = R \oplus \langle v_1 \rangle$, $V_2 = R \oplus \langle v_2 \rangle$ for some $v_1, v_2 \in V$, and $V = V_1 + V_2 = R \oplus \langle v_1 \rangle \oplus \langle v_2 \rangle = \langle B \rangle \oplus \langle v_1 \rangle \oplus \langle v_2 \rangle$, where B is a basis of R. For each V_i , since $\langle B \rangle$ is contained in V_i properly, there is $\alpha v_1 + \beta v_2 + u \in V_i$ for some $\alpha, \beta \in F$, not all zero, and $u \in R$. Let $W(\alpha, \beta) = \langle \alpha v_1 + \beta v_2, B \rangle$. Then, since $\alpha v_1 + \beta v_2 \in V_i$ and $B \subseteq V_i$, $W(\alpha, \beta) \subseteq V_i$. But codim $W(\alpha, \beta) = \operatorname{codim} V_i = 1$, so $V_i = W(\alpha, \beta)$. This completes the proof.

(Received 12 January 1971)

DEPARTMENT OF MATHEMATICS NORTH CAROLINA STATE UNIVERSITY RALEIGH, N. C. 27607 U.S.A.

Reference

[1] A. BIALYNICKI-BIRULA, J. BROWKIN and A. SCHINZEL, On the representation of fields as finite union of subfields, *Colloquium Mathematicum*, 7 (1959), pp. 31-32,