

G1: Autoregressive Models Conclusion

Motivation for autoregressive models

- Goal: estimate underlying distribution of data
- Predict future values in sequential data by using past values (autoregression)

MADE vs PixelCNN: Distribution

MADE distribution:

$$p(x) = \prod_{d=1}^{D} p(x_d | x_{< d}), \quad \text{where } x_{< d} = [x_1, ..., x_{d-1}]^T$$

PixelCNN distribution:

$$p(x) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

$$p(x) = p(x_{i,R}|x_{< i}) p(x_{i,G}|x_{< i}, x_{i,R}) p(x_{i,B}|x_{< i}, x_{i,R}, x_{i,G})$$

MADE vs PixelCNN: Loss

MADE uses the cross-entropy loss

$$\ell(\mathbf{x}) = \sum_{d=1}^{D} -x_d \log \widehat{x}_d - (1-x_d) \log(1-\widehat{x}_d)$$

PixelCNN uses negative log likelihood

$$ext{NLPD} = -\sum_{i=1}^N \log p(y_i = t_i | \mathbf{x_i})$$

MADE vs PixelCNN: Masks

Masked out because they haven't been generated yet

Goal: Erase all non-autoregressive connections (logically)

MADE vs PixelCNN: Structure

PixelCNN	Row LSTM	Diagonal BiLSTM
	7×7 conv mask	A
Mul	tiple residual blocks:	(see fig 5)
$\begin{array}{l} \text{Conv} \\ 3\times 3 \text{ mask B} \end{array}$	Row LSTM i-s: 3 × 1 mask B s-s: 3 × 1 no mask	Diagonal BiLSTM i-s: 1 × 1 mask B s-s: 1 × 2 no mask
ReLU foll	owed by 1×1 conv, r	nask B (2 layers)
256-way Soft	max for each RGB co or Sigmoid (MNIS	•

Table 1. Details of the architectures. In the LSTM architectures i-s and s-s stand for input-state and state-state convolutions.

MADE samples

Samples from paper

Samples from us

PixelCNN samples

Samples from paper

Samples from us

PixelCNN completions

Partially occluded image

PixelCNN

Gated PixelCNN

Completions from

https://towardsdatascience.com/pixelcnns-blind-spot-84e19a3797b9

Completions from us

PixelCNN completions

Original Image Masked Image Completed Image 1 Completed Image 2 Completed Image 3 Completed Image 4 Completed Image 5

Completions from paper

Completions from us

Problems

- Autoregressive property of pictures is a problem in sampling
- Mistakes in sampling accumulate over time
- Blind spot problem (receptive field)
- Sampling takes long time

https://miro.medium.com/v2/resize:fit:1100/format:webp/1*V0V1bID6mdGkPmYDede3dw.png

Appendix

Sources

- Pixel Recurrent Neural Networks Google DeepMind
- MADE: Masked Autoencoder for Distribution Estimation Mathieu Germain
- https://medium.com
- https://miro.medium.com
- https://youtu.be/hfMk-kjRv4c?si=UGt55n13H9mIYcJa Sebastian Lauge
- https://youtu.be/tleHLnjs5U8?si=5IEHnfWKft9AT6IP 3Blue1Brown
- MADE blog by Kapil Sachdeva
- https://bios691-deep-learning-r.netlify.app/class/04-class
- https://neuroverse0.wordpress.com/2020/08/11/pixelrnn-gated-pixelcnn-and-pixelcnn
- https://images.datacamp.com/image/upload/v1647442110/image2_ysmali.png
- https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
- https://www.jeremyjordan.me/autoencoders
- https://www.researchgate.net/figure/MLP-Autoencoder-architecture_fig4_373266879

