Power Electronics Education Electronic Book

Welcome to PEEEB

Lecture 5: Non-isolated DC-DC Converters

Presenter: Dr. Firuz Zare

www.peeeb.com

Lecture 5

DC-DC Converters

Presenter: Dr. Firuz Zare

DC-DC Converters: Some applications

- •Power Supply with Constant or Adjustable Magnitude
- **•DC Motor Drives**
- •Improving Power Factor

Presenter: Dr. Firuz Zare www.peeeb.com

Low Power Linear Power Supply (Voltage Regulator)

Low Power Linear Power Supply (Voltage Regulator)

Presenter: Dr. Firuz Zare www.peeeb.com

Power Supply: Linear ⇔ Switched Mode

Presenter: Dr. Firuz Zare www.peeeb.com

Power Supply: Linear ⇔ Switched Mode

A Switched Mode Power Supply with AC-DC and DC-DC Converters

A Linear Mode Power Supply with AC-DC Converter and Transformer

Presenter: Dr. Firuz Zare www.peeeb.com

Pulse Width Modulator and Control

Presenter: Dr. Firuz Zare www.peeeb.com

High Frequency Filter

Presenter: Dr. Firuz Zare

w.peeeb.com www.peeeb.com

Presenter: Dr. Firuz Zare www.peeeb.com

Steady State or Transient Analysis DC-DC Steady State Analysis Dynamic Continuous Conduction Mode (CCM) Discontinuous Conduction Mode (DCM) Real/Ideal Components Modelling

Presenter: Dr. Firuz Zare www.peeeb.com

Design of Controller

Steady State or Transient Analysis

Presenter: Dr. Firuz Zare www.peeeb.com

Lecture 5

Presenter: Dr. Firuz Zare

Presenter: Dr. Firuz Zare www.peeeb.com

Presenter: Dr. Firuz Zare www.peeeb.com

Presenter: Dr. Firuz Zare www.peeeb.com

Three Different DC-DC Converters

Presenter: Dr. Firuz Zare www.peeeb.com

w.peeeb.com www.peeeb.com

Presenter: Dr. Firuz Zare www.peeeb.com

Lecture 5

Buck Converter V_{in} V_{in} V_{out} V_{out

Effects of f_{sw} and filter size on output voltage ripple!

different filters
 different f_{sw}

Presenter: Dr. Firuz Zare

www.peeeb.com

It is clear that by increasing the switching frequency, the output voltage ripple or filter size is decreased.

A larger LC filter can reduce the output voltage ripple magnitude but the size, cost and weight of system are increased.

Thus different applications have different requirements which almost define the system performance and cost!

Presenter: Dr. Firuz Zare www.peeeb.com

When the switch is turned on, $V_{\rm in}$ appears across the diode and it makes if off.

When the switch is turned off, due to inductor current, the diode conducts.

Presenter: Dr. Firuz Zare

When the switch is turned on for t_{on} . $\theta < t < t_{on}$

$$v_L(t) = V_{in} - v_{out}(t)$$

$$i_{\scriptscriptstyle C}(t) = i_{\scriptscriptstyle L}(t) - i_{\scriptscriptstyle out}(t)$$

$$\begin{cases} v_L(t) = V_{in} - V_{out} \end{cases}$$

$$i_C(t) = i_L(t) - I_{out}$$

Duty cycle (D) is defined as: $D = \frac{t_{on}}{T_{sw}}$

Presenter: Dr. Firuz Zare

When the switch is turned off for the rest of cycle, T_{sw} - t_{on} . $t_{on} < t < T_{sw}$

$$v_{L}(t) = -v_{out}(t)$$

$$i_{C}(t) = i_{L}(t) - i_{out}(t)$$

$$\begin{cases} v_{L}(t) = -V_{out} \\ i_{C}(t) = i_{L}(t) - I_{out} \end{cases}$$

Presenter: Dr. Firuz Zare www.peeeb.com

Steady State Equations

$$v_{L}(t) = \begin{cases} V_{in} - V_{out} & 0 < t < t_{on} \\ -V_{out} & t_{on} < t < T_{sw} \end{cases}$$

$$i_{C}(t) = i_{L}(t) - i_{out}(t) & 0 < t < T_{sw} \end{cases}$$

$$\overline{v_{L}(t)} = 0 \qquad \frac{1}{T_{sw}} \int_{\theta}^{T_{sw}} v_{L}(t) dt = 0$$

$$\int_{\theta}^{DT_{sw}} (V_{in} - V_{out}) dt + \int_{DT_{sw}}^{T_{sw}} v_{dt} dt = 0$$

$$(V_{in} - V_{out}) DT_{sw} + (-V_{out}) (T_{sw} - DT_{sw}) = 0$$

$$V_{in} D - V_{out} (D + 1 - D) = 0$$

$$V_{in} D - V_{out} = 0$$

$$H(D) = \frac{V_{out}}{V} = D$$

Presenter: Dr. Firuz Zare

How to select L and C sizes?

Once we select the switching frequency based on other design issues such as switching losses and EMI. Then we can find the inductor and capacitor values.

Presenter: Dr. Firuz Zare

www.peeeb.com

How to select L and C sizes?

$$v_{L}(t) = L \frac{di_{L}(t)}{dt}$$

$$di_{L}(t) = \frac{v_{L}(t)dt}{L}$$

$$\int_{\theta}^{t} di_{L}(t)dt = \frac{1}{L} \int_{\theta}^{t} v_{L}(t)dt$$

$$\int_{\theta}^{DT_{sw}} (t) = \frac{1}{L} \int_{\theta}^{DT_{sw}} (t)dt$$

$$i_{L}(DT_{sw}) - i_{L}(\theta) = \frac{(V_{in} - V_{out})DT_{sw}}{2}$$

$$i_{L}(DT_{sw}) - i_{L}(\theta) = \frac{(V_{in} - V_{out})DT_{sw}}{L}$$

$$2\Delta i_{L} = \frac{DT_{sw}(V_{in} - V_{out})}{L} \qquad T_{sw} = \frac{1}{f_{sw}}$$

$$\Delta i_{L} = \frac{D(V_{in} - V_{out})}{2Lf_{sw}}$$

$$\Delta i_{L} = \frac{D(V_{in} - V_{out})}{2Lf_{sw}} = \frac{DD'V_{in}}{2Lf_{sw}}$$

$$L = \frac{DD'V_{in}}{2f_{sw}\Delta i_{L}}$$

Presenter: Dr. Firuz Zare

How to select L and C sizes?

When $i_C(t)$ is positive, the capacitor voltage $v_C(t)$ is charged.

$$C\frac{dv_c(t)}{dt} = i_c(t)$$

$$dv_c(t) = \frac{i_c(t)dt}{C}$$

$$\int_{t_1}^{t_2} dv_C(t) dt = \frac{1}{C} \int_{t_1}^{t_2} i_C(t) dt$$

$$2\Delta v_C(t) = \frac{1}{C} \left(\frac{\Delta i_L}{2} \frac{T_{sw}}{2} \right)$$

$$\Delta v_C(t) = \frac{\Delta i_L}{8Cf_{sw}}$$

$$C = \frac{\Delta i_L}{8\Delta v_C f_{sw}}$$

$$C = \frac{DD'V_{in}}{16Lf_{sw}^2 \Delta v_C}$$

Presenter: Dr. Firuz Zare

Continues and Discontinues Conduction Modes CCM & DCM

Presenter: Dr. Firuz Zare

www.peeeb.com

Discontinues Conduction Modes, DCM

In the DCM, the inductor current is not continues and the converter has three different states.

Presenter: Dr. Firuz Zare

www.peeeb.com

Discontinues Conduction Modes, DCM The IGBT is on and the diode is off

When the switch is turned on for t_{on} . $v_L(t) = V_{in} - v_{out}(t)$ $i_C(t) = i_L(t) - i_{out}(t)$ $\begin{cases} v_L(t) = V_{in} - V_{out} \\ i_C(t) = i_L(t) - I_{out} \end{cases}$

 $0 < t < t_{on} \qquad i_{in}(t), i_L(t) \qquad L \qquad i_{C(t)} \qquad i_{Out}(t) + \dots$ $V_{in} \qquad C_{V_C(t)} \qquad R \qquad V_{out(t)} \qquad - \qquad C_{V_C(t)} \qquad C_{V_C($

Duty cycle (D) is defined as: $D = \frac{t_{on}}{T_{sw}}$

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM The IGBT is off and the diode is on

When the switch is turned off till the inductor current reaches to zero, $DT_{sw}\!<\!t\!<(D\!+\!D_{\rm DCM}\!)T_{sw}$

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM The diode and IGBT are off

The inductor current is zero.

$$v_L(t) = \theta$$

$$i_c(t) = -i_{out}(t)$$

$$\begin{cases} v_L(t) = \theta \\ i_c(t) = -I_{out} \end{cases}$$

 $V_{in} = \begin{bmatrix} i_{in}(t), i_L(t) & L \\ + v_L(t) & - & i_C(t) \\ + & + \\ - & - & - \end{bmatrix}$

Presenter: Dr. Firuz Zare

Discontinues Conduction Mode, DCM

Presenter: Dr. Firuz Zare www.peeeb.com

$$egin{aligned} V_{in}I_{in} &= V_{out}I_{out} \ I_{in} &= \overline{i_{in}(t)} = rac{1}{T_{sw}} \int_{ heta}^{DT_{sw}} i_L(t)dt = rac{DT_{sw} imes 2\Delta i_L}{2T_{sw}} = D\Delta i_L \ V_{in}D\Delta i_L &= rac{V_{out}^2}{R} \end{aligned}$$

$$L\frac{dl_L}{dt} = v_L(t)$$

$$L\frac{di_L}{dt} = v_L(t) \qquad L(\frac{2\Delta i_L}{DT_{out}}) = V_{in} - V_{out} \qquad \theta < t < t_{out}$$

$$\theta < t < t_{on}$$

$$\Delta i_L = \frac{(V_{in} - V_{out})DT_{sw}}{2L}$$

$$\frac{V_{in}D^2(V_{in}-V_{out})T_{sw}}{2L}=\frac{V_{out}^2}{R}$$

$$V_{in}^{2} - V_{in}V_{out} = \frac{2LV_{out}^{2}}{RT_{out}D^{2}}$$

$$\frac{V_{in}^{2}}{V_{out}^{2}} - \frac{V_{in}}{V_{out}} - K_{1} = \theta \qquad K_{1} = \frac{2L}{RT_{sw}D^{2}}$$

$$\frac{V_{in}}{V_{out}} = \frac{+1 \pm \sqrt{1 + 4K_1}}{2}$$

Presenter: Dr. Firuz Zare

$$H(D) = \frac{V_{out}}{V_{in}} = \frac{2}{+1 + \sqrt{1 + \frac{8L}{RT_{sw}D^2}}}$$

Buck Converter

Assuming that the converter operates in CCM:

$$\Delta i > I_L$$
 DCM
 $\Delta i < I_L$ CCM

$$I_L = I_{out}$$
 $I_L = \frac{V_{out}}{R}$

$$\Delta i = \frac{(V_{in} - V_{out})DT_{sw}}{2L} = \frac{(V_{in} - DV_{in})DT_{sw}}{2L}$$

$$\Delta i = \frac{V_{in}(1-D)DT_{sw}}{2L} = \frac{V_{in}DD'T_{sw}}{2L}$$

$$\Delta i < I_L \implies \frac{DD'V_{in}T_{sw}}{2L} < \frac{DV_{iu}}{R}$$

$$\frac{D'T_{sw}}{2L} < \frac{1}{R} \implies D' < \frac{2L}{RT_{sw}}$$

Presenter: Dr. Firuz Zare

w.peeeb.com www.peeeb.com w

Presenter: Dr. Firuz Zare www.peeeb.com

Presenter: Dr. Firuz Zare www.peeeb.com

Presenter: Dr. Firuz Zare

$$egin{aligned} v_L(t) = V_{in} - v_{out}(t) & t_{on} < t < T_{sw} \ i_C(t) = i_L(t) - i_{out}(t) \end{aligned}$$

$$\begin{cases} v_{\scriptscriptstyle L}(t) = V_{\scriptscriptstyle in} - V_{\scriptscriptstyle out}(t) \\ \\ i_{\scriptscriptstyle C}(t) = i_{\scriptscriptstyle L}(t) - I_{\scriptscriptstyle out} \end{cases}$$

Presenter: Dr. Firuz Zare

$$v_L(t) = \begin{cases} V_{in} & 0 < t < t_{on} \end{cases}$$

$$V_L(t) = \begin{cases} V_{in} - V_{out} & t_{on} < t < T_{sw} \end{cases}$$

$$i_C(t) = \begin{cases} -I_{out} & 0 < t < t_{on} \end{cases}$$

$$i_C(t) = \begin{cases} i_L(t) - I_{out} & t_{on} < t < T_{sw} \end{cases}$$

Presenter: Dr. Firuz Zare

$$\overline{V_L(t)} = \theta$$

$$\int_{\theta}^{DT_{sw}} V_{in} dt + \int_{DT_{sw}}^{T_{sw}} (V_{in} - V_{out}) dt = \theta$$

$$V_{in} DT_{sw} + (V_{in} - V_{out}) (T_{sw} - DT_{sw}) = \theta$$

$$V_{in} DT_{sw} + (V_{in} - V_{out}) D'T_{sw} = \theta$$

$$V_{in} (D + D') - V_{out} D' = \theta$$

$$H(D) = \frac{V_{out}}{V_{in}} = \frac{1}{(1 - D)} = \frac{1}{D'}$$

Presenter: Dr. Firuz Zare

www.peeeb.com www.peeeb.co

Presenter: Dr. Firuz Zare www.peeeb.com

How to select L and C sizes?

$$L rac{di_L(t)}{dt} = v_L(t)$$

$$\int_{ heta}^{DT_{sw}} di_L(t) = rac{1}{L} \int_{ heta}^{DT_{sw}} V_{in} dt$$

$$i_L(DT_{sw}) - i_L(heta) = rac{V_{in}DT_{sw}}{L}$$

$$2\Delta i_L = rac{V_{in}DT_{sw}}{L} \Rightarrow$$

$$\Delta i_L = rac{V_{in}D}{2Lf_{sw}}$$

$$L = rac{V_{in}D}{2f_{sw}\Delta i_L}$$

Presenter: Dr. Firuz Zare

How to select L and C sizes?

$$C\frac{dv_{c}(t)}{dt} = i_{c}(t)$$

$$dv_{c}(t) = \frac{i_{c}(t)dt}{C}$$

$$\int_{\theta}^{DT_{sw}} dv_{c}(t) = \frac{1}{C} \int_{\theta}^{DT_{sw}} i_{c}(t) dt$$

$$-2\Delta v_{c} = \frac{-I_{out}DT_{sw}}{C}$$

$$\Delta v_{c} = \frac{I_{out}DT_{sw}}{2C}$$

$$I_{out} = \frac{V_{out}}{R} \qquad T_{sw} = \frac{1}{f_{sw}}$$

$$\Delta v_{c} = \frac{V_{out}D}{2RCf_{sw}}$$

$$C = \frac{V_{in}D}{2RD'f_{sw}\Delta v_{c}}$$

Presenter: Dr. Firuz Zare

Presenter: Dr. Firuz Zare

www.peeeb.com

Discontinues Conduction Modes, DCM

The IGBT is on and the diode is off.

$$i_{C}(t) = -i_{out}(t)$$

$$\begin{vmatrix} \mathbf{i}_C(t) = -\mathbf{I}_{out} \end{vmatrix}$$

 $\theta < t < t_{on}$

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM

The IGBT is off and the diode is on.

$$v_L(t) = V_{in} - v_{out}(t)$$

$$t_{on} < t < D_{DCM} T_{sw}$$

$$i_{\scriptscriptstyle C}(t) = i_{\scriptscriptstyle L}(t) - i_{\scriptscriptstyle out}(t)$$

$$\begin{cases} v_L(t) = V_{in} - V_{out}(t) \\ i_C(t) = i_L(t) - I_{out} \end{cases}$$

$$i_C(t) = i_L(t) - I_{out}$$

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM Both the IGBT and the diode are off.

$$v_L(t) = \theta$$

$$D_{\scriptscriptstyle DCM}T_{\scriptscriptstyle SW} \leq t \leq T_{\scriptscriptstyle SW}$$

$$i_{\scriptscriptstyle C}(t) = i_{\scriptscriptstyle out}(t)$$

$$\begin{cases} v_L(t) = \theta \\ i_c(t) = -I_{out} \end{cases}$$

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM

$$I_{in} = (D + D_{DCM})\Delta i_L$$

$$V_{in}\Delta i_L(D+D_{DCM}) = \frac{V_{out}^2}{R}$$

$$L\frac{di_L(t)}{dt} = v_L(t)$$

$$L\!\left(\frac{2\Delta i_L}{DT_{sw}}\right) = V_{in}$$

$$\Delta i_L = \frac{V_{in}DT_{sw}}{2L}$$

 $V_{in} = \begin{array}{c} & & & & \\ & + & v_L(t) - & \\ & & + \\ & & \\ &$

 DT_{sw}

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM

$$V_{in}\left(\frac{V_{in}DT_{sw}}{2L}\right)\left(D+D_{DCM}\right) = \frac{V_{out}^2}{R}$$

$$V_{in}^2 \left(\frac{RT_{sw}D}{2L} \right) \left(D + D_{DCM} \right) = V_{out}^2$$

$$V_{in}^2 \times \left(\frac{RT_{sw}D}{2L}\right) \left(D + \frac{V_{in}D}{V_{out} - V_{in}}\right) = V_{out}^2$$

$$V_{in}^2 \left(\frac{RT_{sw}D}{2L} \right) (DV_{out} - DV_{in} + DV_{in}) = V_{out}^2 (V_{out} - V_{in})$$

$$V_{in}^2 \left(\frac{RT_{sw}D}{2L} \right) (DV_{out}) = V_{out}^2 (V_{out} - V_{in})$$

$$V_{in}^2 \left(\frac{RT_{sw}D}{2L}\right) D = V_{out}^2 - V_{out}V_{in}$$

$$\frac{V_{out}^{2}}{V_{in}^{2}} - \frac{V_{out}}{V_{in}} - \left(\frac{RD^{2}T_{sw}}{2L}\right) = 0 \qquad K_{2} = \frac{RD^{2}T_{sw}}{2L}$$

$$\frac{V_{out}^{2}}{V_{in}^{2}} - \frac{V_{out}}{V_{in}} - K_{2} = 0$$

$$\frac{V_{out}}{V_{in}} = \frac{+1 \pm \sqrt{1 + 4K_{2}}}{\sqrt{1 + 4K_{2}}}$$

$$\frac{\frac{V_{out}^{2}}{V_{in}^{2}} - \frac{V_{out}}{V_{in}} - K_{2} = 0}{\frac{V_{out}}{V_{in}}} = \frac{1 + \sqrt{1 + \frac{2RD^{2}T_{sw}}{L}}}{\frac{2}{V_{in}}}$$

$$\frac{V_{out}}{V_{in}} = \frac{1 + \sqrt{1 + \frac{2RD^{2}T_{sw}}{L}}}{\frac{2}{U_{in}}}$$
Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM

$$\Delta i_L > I_L$$
 DCM $\Delta i_L < I_L$

$$\Delta i_L < I_L$$

CCM

 $i_{in}(t), i_L(t)$ L

 $+ v_L(t) -$

$$\Delta i_L = \frac{V_{in}DT_{sw}}{2L} \qquad \frac{V_{in}DT_{sw}}{2L} < I_L$$

$$\frac{V_{in}DT_{sw}}{2L} < \frac{V_{in}}{\left(1-D\right)^2R}$$

$$D(I-D)^2 < \frac{2L}{RT_{sw}}$$

$$D(I-2D+D^2)<rac{2L}{RT_{sw}}$$
 $D^3-2D^2+D<rac{2L}{RT_{sw}}$

$$D^3 - 2D^2 + D < \frac{2L}{RT_{cor}}$$

$$f(D) = D^3 - 2D^2 + D$$

$$\frac{df(D)}{dD} = \theta \Rightarrow 3D^2 - 4D + 1 = \theta \Rightarrow D = \frac{1}{3}$$

$$f\left(\frac{1}{3}\right)\Big|_{max} = \frac{4}{27} < \frac{2L}{RT_{sw}}$$

Presenter: Dr. Firuz Zare

M. BERRDICOIII MAM. BERRDICOIII

Presenter: Dr. Firuz Zare www.peeeb.com

Wall book now While beech cou

Presenter: Dr. Firuz Zare www.peeeb.com

Presenter: Dr. Firuz Zare

$$\begin{cases} v_L(t) = -V_{out} \\ i_C(t) = i_L(t) - I_{out} \end{cases}$$

Presenter: Dr. Firuz Zare

$$v_L(t) = \begin{cases} V_{in} \\ -V_{out} \end{cases}$$

$$\theta < t < t_{o}$$

$$0 < t < t_{on}$$

$$t_{on} < t < T_{sw}$$

$$i_c(t) = \begin{cases} -I_{out} \\ \\ i_L(t) - I_{out} \end{cases}$$

$$\theta < t < t_{or}$$

$$t_{on} < t < T_{sw}$$

T_{sw}

DTsw

Presenter: Dr. Firuz Zare

$$\overline{v_L(t)} = \theta$$

$$\int_{\theta}^{DT_{sw}} dt + \int_{DT_{sw}}^{T_{sw}} dt = 0$$

$$V_{in}DT_{sw} + \left(-V_{out}\right)\left(T_{sw} - DT_{sw}\right) = 0$$

$$DV_{iu} + (-V_{out})(T_{sw} - DT_{sw}) = 0$$

$$DV_{in} = (1-D)V_{out}$$

$$H(D) = \frac{V_{out}}{V_{iu}} = \frac{D}{(I-D)} = \frac{D}{D'}$$

Presenter: Dr. Firuz Zare

How to select L and C sizes?

$$L\frac{di_{L}}{dt} = v_{L}(t)$$

$$\int_{\theta}^{DT_{sw}} di_{L}(t) = \frac{1}{L} \int_{\theta}^{DT_{sw}} V_{in} dt$$

$$i_{L}(DT_{sw}) - i_{L}(\theta) = \frac{V_{in}DT_{sw}}{L}$$

$$2\Delta i_{L} = \frac{V_{in}DT_{sw}}{L}$$

$$L = \frac{V_{in}D}{2f_{sw}\Delta i_{L}}$$

Presenter: Dr. Firuz Zare

How to select L and C sizes?

$$C\frac{dv_{c}(t)}{dt} = i_{c}(t)$$

$$\int_{\theta}^{DT_{sw}} dv_{c}(t) = \frac{1}{C} \int_{\theta}^{DT_{sw}} i_{c}(t) dt$$

$$-2\Delta v_{c} = \frac{(-I_{out})DT_{sw}}{C}$$

$$\Delta v_{c} = \frac{I_{out}DT_{sw}}{2C}$$

$$\Delta v_{c} = \frac{V_{out}D}{2RCf_{sw}} = \frac{V_{in}D^{2}}{2RCf_{sw}D'}$$

$$C = \frac{V_{in}D^{2}}{2Rf_{sw}D'\Delta v_{c}}$$

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM

Presenter: Dr. Firuz Zare www.peeeb.com

Discontinues Conduction Modes, DCM

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM

Presenter: Dr. Firuz Zare

$$V_{in}I_{in} = V_{out}I_{out}$$

$$I_{in} = \overline{i_{in}(t)} = \frac{1}{T_{sw}} \int_{\theta}^{DT_{sw}} i_L(t) dt = \frac{DT_{sw} \times 2\Delta i_L}{2T_{sw}} = D\Delta i_L$$

$$V_{in}D\Delta i_L = V_{out}I_{out}$$

$$L\frac{di_L(t)}{dt} = v_L(t)$$

$$L\left(rac{2\Delta i_L}{DT_{sw}}
ight) = V_{in}$$
 $\Delta i_L = V_{in}\left(rac{DT_{sw}}{2L}
ight)$

$$V_{in}DV_{in}\left(\frac{DT_{sw}}{2L}\right) = \frac{V_{out}^2}{R}$$

$$\left(rac{V_{out}}{V_{in}}
ight)^2 = D^2 \left(rac{RT_{sw}}{2L}
ight)$$

$$H(D) = \frac{V_{out}}{V_{in}} = D \sqrt{\frac{RT_{sw}}{2L}}$$

Presenter: Dr. Firuz Zare

Discontinues Conduction Modes, DCM

Presenter: Dr. Firuz Zare

Assuming that the converter operates in CCM:

$$\Delta i_L > I_L$$

$$\Delta i_L < I_L$$

$$I_{out} = rac{1}{T_{cw}} \int_{DT_{cw}}^{T_{sw}} (t) dt$$

$$I_{out} = \frac{\left(T_{sw} - DT_{sw}\right)I_L}{T_{sw}}$$

$$I_{out} = (I - D)I_L$$

$$I_L = \frac{I_{out}}{D'} = \frac{V_{out}}{RD'}$$

$$\Delta i_L = V_{in} \left(\frac{DT_{sw}}{2L} \right)$$

 $\Delta i_L < I_L$ CCM

$$V_{in}\!\left(rac{DT_{sw}}{2L}
ight)\!<\!rac{V_{out}}{RD'}$$

$$V_{in} \left(\frac{DT_{sw}}{2L} \right) < \frac{V_{in}D}{D'} \frac{1}{RD'}$$

$$rac{T_{\scriptscriptstyle SW}}{2L}\!<\!rac{1}{R(D^{\prime})^2}$$

$$(D')^2 < \frac{2L}{RT_{sw}}$$

Presenter: Dr. Firuz Zare