```
In [1]: # Machine Learning for Public Policy
    # Assignment 1: Prepping Student Data
    # Name: Vi Nguyen

In [1]: %matplotlib inline

In []: # Problem A #
```

In [2]: import prep\_data

hist\_ID.png created



hist\_First\_name.png created



 $\verb|hist_Last_name.png| created|$ 



hist\_State.png created



hist\_Gender.png created



hist\_Age.png created



hist\_GPA.png created



hist\_Days\_missed.png created



hist\_Graduated.png created



summary\_stats.csv created
mock\_student\_data\_gender\_inferred.csv created
Number of records with missing gender after inference: 0
mock\_student\_data\_gend\_inf\_fillna\_mean.csv created
mock\_student\_data\_gend\_inf\_fillna\_cond\_mean.csv created
mock\_student\_data\_gend\_inf\_fillna\_cond\_mean2.csv created

```
In [6]: # Problem A (continued) #
# 3c. I'm using conditional mean on Graduation and Gender to infer the
# missing values for Age, GPA, and Days_missed. We could have used padding
# methods in pandas if we thought there was some mathematical relationship
# between one missing value and the next. We could also have used linear
# regression to infer the missing values but there were a lot of missing
# values.
```

## In [7]: # Problem B #

```
In [9]: # Problem B, Initial Question A #

# David and Chris would be expected to have the same probability of

# of graduation. Since Chris and Adam differ only on income, Chris's

# probability will be -0.109 * ln(10,000) relative to Adam's (where the

# 10,000 is the difference in income between the two). Similarly, David's

# probability will also be -0.109 * ln(10,000), relative to Bob's. Because

# Bob and Adam have the same probability, and Chris and David differ by

# the same amount relative to Bob's and Adam's probability--Chris and David

# have the same probability of graduation, as predicted by the model.
```

## In [10]: # Problem B, Second Question A # The negative coefficient on AfAm\_Male indicates that relative to # non-African American Males, African American Males are less likely to # graduate. Since the coefficients on Female, and AfAm are -2.11, and # 2.07 respectively--the negative coefficient on AfAm\_Male indicates that # relative to African American Females, African American Males are also # less likely to graduate.

- In [13]: # Problem B, Question B
  # Although the z-scores on Age and Age\_Sq are not high enough in absolute
  # value to be significant, the coefficients indicate that different ages
  # may be correlated differently with the probability of graduation. The
  # model variables estimate that the incremental probability of
  # graduation changes to positive beyond age 65.
  # 0 = -0.013 + .0001 \* 2 \* Age
  # Age = 65
- In [12]: # Problem B, Question C
  # I would drop either the Male or Female variable since having both of them
  # is redundant. Having a coefficient on Male also gives us a sense of the
  # correlation between being a Female (when Male = 0) and the probability of
  # graduating. I would also potentially look into removing the Age variables
  # since the z-scores are not significant. However, I would need to know how
  # that would affect the model (Would run F-tests), and understand
  # what is the reason for our model. If we are trying to understand how Age
  # is correlated with probability of graduation, then removing Age and Age\_sq
  # would not make sense even if it did not affect our model.