

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2017/2018 - UC 47166 (1º Ano/2º Sem)

Exame de Recurso - 04/07/2018

Duração: 2h 30m

- 1. Admita que o universo do discurso é um conjunto de objetos que fazem parte de um dado jogo. Considere definidos os seguintes predicados:
 - $Cubo(x) \equiv "x \text{ \'e um cubo"};$
 - $Triang(x) \equiv "x \text{ \'e um triângulo"};$
 - $MesmaCol(x, y) \equiv "x \text{ está na mesma coluna que } y";$
 - (a) Usando os predicados definidos traduza na lógica de primeira ordem (LPO) as afirmações:
 - A1. Não é verdade que o cubo a esteja na mesma coluna que o cubo b.
 - A2. a está na mesma coluna que b, exceto se forem ambos triângulos.
 - (b) Sejam conhecidos os seguintes factos na LPO, onde $a, b \in c$ são constantes:
 - F1. $MesmaCol(a,b) \Rightarrow \forall x \ (Cubo(x) \Rightarrow \exists y \neg Triang(y));$
 - F2. $MesmaCol(a, b) \wedge Cubo(c)$.

Aplicando o princípio da resolução mostre que a partir de F1 e F2 se pode concluir $\exists z \neg Triang(z)$.

- 2. Determine, justificando, o número de elementos dos seguintes conjuntos:
 - (a) Conjunto de *passwords* de 6 caracteres, formadas a partir de um alfabeto de 11 letras e 4 digítos, contendo exatamente dois digítos. Note que, tanto as letras como os digítos podem repetir-se.
 - (b) Conjunto de sacos de 7 peças de fruta que podem ser escolhidas de uma coleção de ameixas, bananas, laranjas, maçãs e pêras.
- 3. Determine a sucessão $(a_n)_{n\in\mathbb{N}}$ que tem como função geradora $f(x)=\frac{x}{(1-x)^3}$.
- 4. Seja H um grafo cuja sequência dos graus dos seus seis vértices é (1,2,2,3,4,4) e \mathcal{R} uma relação binária definida no conjunto dos vértices de H, V_H , tal que:

 $u\mathcal{R}v$ se e só se d(v)=m d(u), para algum $m\in\mathbb{N}$, sendo d(u),d(v) os graus dos vértices $u,v\in V_H$.

- (a) Classifique \mathcal{R} quanto às propriedades de reflexividade, simetria, antissimetria e transitividade.
- (b) \mathcal{R} é uma relação de ordem em V_H ? Justifique.
- 5. Considere o grafo \mathcal{G} com custos positivos nas arestas representado por:

Usando o algoritmo de Prim determine uma árvore abrangente de \mathcal{G} de custo mínimo e diga, justificando, se a árvore ótima a que chegou é a única que se pode obter (com custo mínimo).

6. Seja $x \in \mathbb{Q}$ (conjunto dos números racionais) e $y \in \mathbb{R} \setminus \mathbb{Q} = \mathbb{I}$ (conjunto dos números irracionais). Mostre, por redução ao absurdo (contradição), que x + y é irracional.

Cotações:

	1.(b)							
2.5	3.0	1.5	1.5	2.5	2.5	1.0	3.5	2.0