筛选主动脉-下腔静脉瘘 ACF 模型 DEGs 并功能分析

2024-02-02

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1 摘	岁	1
2 前	洁	1
3 材:	料和方法	1
3.1	. 材料	1
3.2	2 方法	1
4 分	析结果	2
5 结	论	2
6 附	: 分析流程	2
6.1		2
	6.1.1 SRA	2
6.2	2 RNA-seq 前处理	3
	6.2.1 QC	3
	6.2.2 定量	3
6.3	3 差异分析	4
	6.3.1 QC	4
	6.3.2 结果	5
	6.3.3 基因名映射到人类的基因	6
6.4	4 内皮-间质转化 (endothelial-to-mesenchymal transition, ET)	7
	6.4.1 ET 来源	7
	6.4.2 与 DEG 交集	8
6.5	5 富集分析	9
Refer	rence	LO
List	of Figures	
1	Filtered	4
2	Normalization	5
3	Model vs control DEGs	5
4	Intersection of ET with DEGs	8
5	Ids KEGG enrichment	9
6	Ids GO enrichment	10
List	of Tables	
1	GSE metadata	2

2	SRA metadata	2
3	Quantification	3
4	Data model vs control DEGs	6
5	Mapped Data model vs control DEGs	7
6	ET related targets from GeneCards	8

1 摘要

需求:

生物信息学分析筛选对照组动物和 ACF 动物之间有差异表达的 XXX mRNA (若缺少动物数据库,可以筛选血液透析患者的血管差异基因)。GO 和 KEGG 分析与内皮-间质转化相关的显著富集的通路 YYY。

结果:

- 筛选的差异表达基因见 Fig. 4
- 富集结果见 Fig. 5 和 Fig. 6
 - GO:0048771 'tissue remodeling' 为显著富集并与 ET 相关的通路。

2 前言

3 材料和方法

3.1 材料

All used GEO expression data and their design:

• **GSE232594**: Comparative gene expression profiling analysis of RNA-seq data for right atrium free wall myocardium in volume overload and sham-operated C57/BL6 mice on postnatal day21.

3.2 方法

Mainly used method:

- R package biomaRt used for gene annotation¹.
- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)¹.
- R package ClusterProfiler used for gene enrichment analysis².
- Fastp used for Fastq data preprocessing³.
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition.
- The Human Gene Database GeneCards used for disease related genes prediction⁴.
- Kallisto used for RNA-seq mapping and quantification⁵.
- R package Limma and edgeR used for differential expression analysis^{6,7}.
- Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

5 结论

6 附:分析流程

6.1 数据来源 GSE232594

由于该数据集 (以及相似的其它数据集) 的原作者没有导出 Count 数据 (适应于差异分析),因此这里下载了 SRA (PRJNA972912) 原始数据从头开始分析该 RNA-seq 数据集。

Table 1 (下方表格) 为表格 GSE metadata 概览。

(对应文件为 Figure+Table/GSE-metadata.xlsx)

注: 表格共有6行6列,以下预览的表格可能省略部分数据; 表格含有6个唯一'rownames'。

Table 1: GSE metadata

rownames	title	genotype.ch1	strain.ch1	tissue.ch1	treatment.ch1
GSM7359743	RA, sham-o	WT	C57BL/6	Right atrium	sham-operated
$\operatorname{GSM7359744}$	RA, sham-o	WT	C57BL/6	Right atrium	sham-operated
$\operatorname{GSM7359745}$	RA, sham-o	WT	C57BL/6	Right atrium	sham-operated
$\operatorname{GSM7359746}$	RA, Volume	WT	C57BL/6	Right atrium	volume ove
$\operatorname{GSM7359747}$	RA, Volume	WT	C57BL/6	Right atrium	volume ove
$\operatorname{GSM7359748}$	RA, Volume	WT	C57BL/6	Right atrium	volume ove

6.1.1 SRA

Table 2 (下方表格) 为表格 SRA metadata 概览。

(对应文件为 Figure+Table/SRA-metadata.xlsx)

注:表格共有6行45列,以下预览的表格可能省略部分数据;表格含有6个唯一'Run'。

Table 2: SRA metadata

Run	spots	bases	spots	avgLength	$size_MB$	Assemb	downlo	Experi	Librar
SRR245	23554439	706633	23554439	300	2164	NA	https:	SRX203	GSM735
SRR245	23066894	692006	23066894	300	2125	NA	https:	SRX203	$\operatorname{GSM735}$
SRR245	22691185	680735	22691185	300	2136	NA	https:	SRX203	$\operatorname{GSM735}$
SRR245	23061459	691843	23061459	300	2141	NA	https:	SRX203	$\operatorname{GSM735}$
SRR245	21413791	642413	21413791	300	2006	NA	https:	SRX203	$\operatorname{GSM735}$

Run	spots	bases	spots	avgLength	$size_MB$	Assemb	downlo	Experi	Librar
SRR245	21966609	658998	21966609	300	2050	NA	https:	SRX203	GSM735

6.2 RNA-seq 前处理

6.2.1 QC

'QC report' 数据已全部提供。

(对应文件为 ./fastp_report/)

注:文件夹./fastp_report/共包含6个文件。

- 1. SRR24578639.html
- 2. SRR24578640.html
- 3. SRR24578641.html
- 4. SRR24578642.html
- 5. SRR 24578643.html
- 6. ...

6.2.2 定量

cDNA 参考基因注释 (使用的是 mus musculus 的参考基因) 。https://ftp.ensembl.org/pub/release-110/fasta/mus_musculus/

Table 3 (下方表格) 为表格 Quantification 概览。

(对应文件为 Figure+Table/Quantification.csv)

注: 表格共有 116873 行 7 列,以下预览的表格可能省略部分数据;表格含有 116873 个唯一 'target_id'。

Table 3: Quantification

target_id SRR245	5786391SRR245	5786401SRR245	5786411SRR245	5786421SRR245	5786431SRR245	5786441
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	

target_id SRR2	245786391SRR2457	786401SRR245	786411SRR245	5786421SRR245	786431SRR245	5786441
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	
ENSMUST0000.	0	0	0	0	0	

6.3 差异分析

6.3.1 QC

Figure 1 (下方图) 为图 Filtered 概览。

(对应文件为 Figure+Table/Filtered.pdf)

Figure 1: Filtered

Figure 2 (下方图) 为图 Normalization 概览。

(对应文件为 Figure+Table/Normalization.pdf)

Figure 2: Normalization

6.3.2 结果

Figure 3 (下方图) 为图 Model vs control DEGs 概览。

(对应文件为 Figure+Table/Model-vs-control-DEGs.pdf)

Table 4 (下方表格) 为表格 Data model vs control DEGs 概览。

(对应文件为 Figure+Table/Data-model-vs-control-DEGs.xlsx)

注: 表格共有 2522 行 13 列,以下预览的表格可能省略部分数据;表格含有 2108 个唯一'mgi_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)
- 3. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 4. Ave Expr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'Marray LM' object
- 5. t: moderated t-statistic (omitted for 'topTableF')
- 6. P.Value: raw p-value
- 7. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

ensemb.....2ensemb.....4descri... logFC AveExpr rownames mgi_sy... entrez... hgnc s... 7133 ENSMUS... Nppb ENSMUS... 18158 NA-1.967... 7.6029... natriu... 31330 ENSMUS... Asb2 ENSMUS... 65256 ankyri... -1.084... 6.5994...RAP1 G... 89274 -1.912... ENSMUS... Rap1gap2 ENSMUS... 380711 NA3.8988... 78044 ENSMUS... Rpsa ENSMUS... 16785NA riboso... -1.184... 8.2501... 85206 ENSMUS... Gapdh ENSMUS... 14433 -2.180... 8.8656...NAglycer... 36842 ENSMUS... Mb ENSMUS... 17189NAmyoglo... -2.336... 6.9739...96280ENSMUS... Fam220aENSMUS... 67238 NAfamily... -3.529...2.4402...96286 ENSMUS... Fam220aENSMUS... 67238 NAfamily... -3.529... 2.4402...70694 ENSMUS... Fbxl22 ENSMUS... 74165NAF-box ... -0.913... 6.5089...60553 ENSMUS... Rpl22l1 ENSMUS... 68028 NAriboso... -1.944... 3.7509... -1.395...82742 ENSMUS... Copa ENSMUS... 12847 NAcoatom... 5.2027...13717-1.193... ENSMUS... Ankrd1 ENSMUS... 107765 NAankyri... 10.790... 63231 2.8106... ENSMUS... Rps19 ENSMUS... 20085 NAriboso... 3.0550... 51535ENSMUS... Fau ENSMUS... 14109 NA Finkel... -2.483... 4.8874... 58716 ENSMUS... FERM d... ENSMUS... Frmd5 228564NA -1.151... 4.5589...

Table 4: Data model vs control DEGs

6.3.3 基因名映射到人类的基因

Table 5 (下方表格) 为表格 Mapped Data model vs control DEGs 概览。

(对应文件为 Figure+Table/Mapped-Data-model-vs-control-DEGs.xlsx)

注: 表格共有 2108 行 13 列,以下预览的表格可能省略部分数据;表格含有 1980 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)
- 3. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 4. AveExpr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'MarrayLM' object
- 5. t: moderated t-statistic (omitted for 'topTableF')
- 6. P.Value: raw p-value
- 7. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 5: Mapped Data model vs control DEGs

hgnc_s	mgi_sy	logFC	P.Value	rownames	ensemb6	ensemb7	entrez	descri	
NPPB	Nppb	-1.967	1.4872	7133	ENSMUS	ENSMUS	18158	natriu	
ASB2	Asb2	-1.084	2.1399	31330	ENSMUS	ENSMUS	65256	ankyri	
RAP1GAP2	Rap1gap2	-1.912	1.9290	89274	ENSMUS	ENSMUS	380711	RAP1 G	
RPSAP58	Rpsa	-1.184	3.6418	78044	ENSMUS	ENSMUS	16785	riboso	
GAPDH	Gapdh	-2.180	6.0987	85206	ENSMUS	ENSMUS	14433	glycer	
MB	Mb	-2.336	6.8296	36842	ENSMUS	ENSMUS	17189	myoglo	
FAM220A	Fam220a	-3.529	1.0560	96280	ENSMUS	ENSMUS	67238	family	
FBXL22	Fbxl22	-0.913	7.8460	70694	ENSMUS	ENSMUS	74165	F-box	
RPL22L1	Rpl22l1	-1.944	6.3883	60553	ENSMUS	ENSMUS	68028	riboso	
COPA	Copa	-1.395	9.0391	82742	ENSMUS	ENSMUS	12847	coatom	
ANKRD1	Ankrd1	-1.193	9.7473	13717	ENSMUS	ENSMUS	107765	ankyri	
RPS19	Rps19	2.8106	7.4734	63231	ENSMUS	ENSMUS	20085	riboso	
FAU	Fau	-2.483	0.0001	51535	ENSMUS	ENSMUS	14109	Finkel	
FRMD5	Frmd5	-1.151	0.0001	58716	ENSMUS	ENSMUS	228564	FERM d	
NA	Rpl11	-0.940	0.0001	54544	ENSMUS	ENSMUS	67025	riboso	

6.4 内皮-间质转化 (endothelial-to-mesenchymal transition, ET)

6.4.1 ET 来源

从 GeneCards 获取相关的基因集。

Table 6 (下方表格) 为表格 ET related targets from GeneCards 概览。

(对应文件为 Figure+Table/ET-related-targets-from-GeneCards.xlsx)

注: 表格共有 96 行 7 列,以下预览的表格可能省略部分数据;表格含有 96 个唯一'Symbol'。

Table 6: ET related targets from GeneCards

Symbol	Description	Category	$UniProt_ID$	GIFtS	GC_id	Score
TGFB1	Transformi	Protein Co	P01137	61	GC19M041301	5.71
H19	H19 Imprin	RNA Gene		34	GC11M001995	4.52
MIR21	MicroRNA 21	RNA Gene		31	GC17P102034	4.40
BMP7	Bone Morph	Protein Co	P18075	55	GC20M057168	3.85
MIR126	MicroRNA 126	RNA Gene		29	GC09P136670	3.49
MIRLET7C	MicroRNA L	RNA Gene		28	GC21P017033	3.49
CTNNB1	Catenin Be	Protein Co	P35222	62	GC03P041194	3.41
TGFB2	Transformi	Protein Co	P61812	60	GC01P218345	3.41
TMX2-CTNND1	TMX2-CTNND	RNA Gene		23	GC11P057712	2.96
BMPR2	Bone Morph	Protein Co	Q13873	59	GC02P202376	2.88
ROCK1	Rho Associ	Protein Co	Q13464	57	GC18M032996	2.88
SNAI1	Snail Fami	Protein Co	O95863	52	GC20P049982	2.88
MALAT1	Metastasis	RNA Gene		31	GC11P084571	2.88
MIR532	MicroRNA 532	RNA Gene		23	GC0XP056752	2.88
RUNX3	RUNX Famil	Protein Co	Q13761	51	GC01M024899	2.78
				•••		

6.4.2 与 DEG 交集

Figure 4 (下方图) 为图 Intersection of ET with DEGs 概览。

(对应文件为 Figure+Table/Intersection-of-ET-with-DEGs.pdf)

Figure 4: Intersection of ET with DEGs

Intersection:

CTNNB1, NFKB1, HSPB1, ACVRL1, ACTA2, FOXO1

(上述信息框内容已保存至 Figure+Table/Intersection-of-ET-with-DEGs-content)

6.5 富集分析

Figure 5 (下方图) 为图 Ids KEGG enrichment 概览。

(对应文件为 Figure+Table/Ids-KEGG-enrichment.pdf)

Figure 5: Ids KEGG enrichment

Figure 6 (下方图) 为图 Ids GO enrichment 概览。

(对应文件为 Figure+Table/Ids-GO-enrichment.pdf)

Figure 6: Ids GO enrichment

Reference

- 1. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 2. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 3. Chen, S. Ultrafast one-pass fastq data preprocessing, quality control, and deduplication using fastp. *iMeta* **2**, (2023).
- 4. Stelzer, G. et al. The genecards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics **54**, 1.30.1–1.30.33 (2016).
- 5. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic rna-seq quantification. *Nature Biotechnology* **34**, (2016).
- 6. Ritchie, M. E. et al. Limma powers differential expression analyses for rna-sequencing and microarray studies. *Nucleic Acids Research* 43, e47 (2015).
- 7. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence

read count data user's guide. 119.