

GMOインターンシップ CTR予測

GMOINTERNET GROUP

すべての人にインターネット

http://www.gmo.jp

目次

- 1. 目的•目標
- 2. データ・特徴量の作成
- 3. モデル紹介
- 4. 結果
- 5. Apendix

自己紹介

名前:長谷川太河

所属:東京大学経済学部3年

最近読んだ本:

目的•目標

目的•目標

「広告のクリック率(CTR)予測」

- 1 課題に即した評価指標で最適なモデルの策定
- 2 推論時間を短くしたい
- ③ feature importanceの可視化
- 4 スケールできるようなモデル

データ・特徴量の作成

データの特徴

log データセット

今回の目的変数

•ユーザー*iと広告jの*属性

・広告jに対するユーザーiの行動

変数名	説明
広告の識別ID	campaign idやsponsor idなど広告の種類を識別
ssp-uid	ユーザーの識別ID
os, browser, carrier name, region	ユーザーの属性
fq, inview fq	ユーザーが広告を表示・視認した回数
recency, inview recency	前回の広告表示・視認からの時間
request time, click time, cv time	リクエスト、クリック、cvの時間
click_flg, cv_flg, is_rt	クリック、cvしたかどうか、rtタグを踏んだユーザー かどうか

データの特徴

rt データセット ユーザーi の今までのrtに関する時系列データ

変数名	説明
広 告 の識別ID	campaign idやsponsor idなど広告の種類を識別
ssp-uid	ユーザーの識別ID
os, browser, carrier name, region	ユーザーの属性
rt_status	有効なrtかどうか
request time	リクエストされた時間

データの特徴

1 不均衡データ

全体のCTRは10%

(総クリック数20,000、総データ数200,000)

- →Over Sampling, Under Sampling, Probability Calibration, Focal Loss, Affinity Loss
- 2 ほぼ1ユーザー1データ

(総ユーザー数194,525、総データ数200,000)

- →ユーザーベースの手法よりコンテンツベースの手法 ssp uidをone hot encodingするのはあまりよくなさそう
- 3 カテゴリ変数が多い
 - →交互作用、One-hot encoding、Target Encoding

特徴量作成(1)

1 request timeから月・日・時間・曜日を抽出

```
*click timeやcv timeに関しては特徴量作成ダメ!! 
月 時間
2019-07-06 21:33:35 UTC
日・曜日
```

② User *i* に対する広告*j* の累計rt回数(rt_times)

<u>S</u> :	sp uid	sponsor_id	is <u>rt</u>	
	i	j	1	User <i>i</i> に対する広告 <i>j</i>
	i	j	1	の累計rt回数
	i	k	1	rt times = 3
	i	j	1	_

特徴量作成 (2)

3 Target Mean Encoding 変数○○ごとのクリック率

(例)slot_idごとのクリック率

df.groupby(["slot_id"]).mean()["click_flg"]

slot_id	click_flg	Target Encoding
34	1	0.66
25	0	0
25	0	0
34	1	0.66
34 10	0	0.66

Target Smooth Mean Encoding

カテゴリの数が少数の場合、過学習になってしまう恐れがあるので、データ全体での"click flg"率との加重平均をとる。

5 One Hot Encoding 決定木では不要。 回帰では重要。

特徴量作成(2)

6 欠損値補完

region \rightarrow -1 recency \rightarrow 100000 *Nanはないがゼロが存在。初めて広告を見たユーザーの値がゼロに設定されている。

7 log変換

recencyとinview recencyは分散が大きい

max: 1

min: 100000

max : 0

min: 11.512

決定木モデルはScaleの影響がないが、回帰とDeepは大きく 影響を受ける

データの作成

request timeでソートし8(Train):1(Validation):1(Test)に分割

(理由)時間に依存した変数の存在

rt_timesやTarget Encodingを行う際、未来の結果も利用して特徴量を作成するとleakageになってしまう。

train test

6/29/10:26 7/2/17:30 時点A 7/4/18:00

時点Aまでにわかる情報のみを使ってテスト データの特徴量を作成する

モデル紹介

評価指標

ROC_AUC

ROC: 偽陽性率(=FP/(FP+TN))を横軸、

真陽性率(=TP/(TP+FN))を縦軸

にしてplotしたもの

ROC_AUC: ROCカーブの下側の面積

PR_AUC

PR: Recall(=TP/(TP+FN))を横軸、
Precision(=TP/(TP+FP))を縦軸にして
plotしたもの

PR_AUC: PRカーブの下側の面積

 予測ラベル

 0
 TN
 FP

 1
 FN
 TP

 予測ラベル

正解ラベル

正解ラベル

今回用いたモデル

*実際に採用したモデル

- Logistic Regression
- Random Forest
- Light GBM
- Multi Layer Perceptron
- xDeepFM

*試そうとしたモデル

- Support Vector Machine 計算量
- Deep Interest Evolution Network ユーザーベース

xDeepFM(1)

- 1 低次元・高次元の明示的な交互作用特徴量を 自動的に求めたい(例) region × creative id × request_hour
- ② 不要な交互作用は使わないようにしたい (理由) 精度が下がる可能性あるから
- 3 ベクトルワイズに交互作用を計算したい
 - * https://arxiv.org/pdf/1803.05170.pdf

xDeepFM(2)

近年、DNNを活用してFMをより表現力をもつようにしようとしている。

	表現力	低次元交互作用	ベクトルワイズ	高次元交互作用 が明示的
FM	×	0	0	0
FNN, PNN	0	×	×	×
Wide&Deeep, Deep FM	0	0	×	×
xDeepFM	0	0	0	0

xDeepFMはこれらがすべて可能なモデル

工夫点(1)

Focal Loss

$$\mathrm{FL}(p_t) = -(1-p_t)^{\gamma} \log(p_t).$$

簡単に分類できるデータの損失を $(1-p_t)^{\gamma}$ こより小さくする。

2 特徴量選択

Light GBM, Random ForestのFeature Importanceや Validation Scoreをもとに使用する特徴量を選択

モデルによって使用する特徴量違う

rt_timesは使われず

工夫点(2)

4 Optunalによるハイパーパラメータの最適化 Light GBMはハイパーパラメータが多いのでoptunaにより最適化。

Random ForestltGrid Search。

工夫点(2)

5 Under Sampling, Over Sampling

Light GBM: AUC_ROCは上がったが、AUC_PRは下がってしまう。

Logistic Regression: ともに下がる

Probability Calibration: 効果なし

	モデル名	ROC_AUC	PR_AUC	
·	Without features made by me			_
	Logistic Regression	0.7927	0.3264	特徴量エンジニアリ
	Random Forest	0.7444	0.2677	ングを行うことで <mark>精度</mark> UP!!
	Light GBM	0.7742	0.3003	
	With features made by me			
	Logistic Regression	0.7932	0.3277	
Focal Loss で精度少し	Random Forest	0.7646	0.2879	
UP	Light GBM (Focal Lossなし)	0.7832	0.3111	Logistic Regressionが 一番良い結果に
	Light GBM(Focal Lossあり)	0.7834	0.3141	田以小川木门

モデル名	ROC_AUC	PR_AUC
Logistic Regression (Undersampling)	0.7873 Down	0.3159 Down
Light GBM (Under Sampling)	0.7859 UP!	0.3126 Down
Light GBM (Under Sampling + Bagging)	0.7848 UP!	0.3175 UP!
Multi Layer Perceptron	0.7476	0.2563
Stacked Generalization	0.7820	03151
xDeepFM	0.7870	0.3103
Ensemble	0.7950	0.3284

Best Score

GMOINTERNET GROUP

結果

Random Forest slot id, creative id, fq, campaign id, recency O 順で重要

Light GBM

slot id, creative id, recency, campaign id, request hour の順で重要

予測ラベル

		0	1
解ラベル	0	17740	249
正解-	1	1746	265

確実にクリックされたい。

クリックされない広告をクリックされると予測するのは減らしたい(=Precisionを高めたい)

Precision: 51.5% クリックされると予測したものの半分は実際にクリックされる(Randomだと10%程度)

まとめ

- 1 課題に即した評価指標で最適なモデルの策定
 - → ROC_AUC : 0.7950, ROC_PR : 0.3284, Precision 0.515
- 2 推論時間を短くしたい
 - → あまり、気にかけることができなかった。。
- ③ feature importanceの可視化
 - → slot id, creative id, recencyが重要
- 4 スケールできるようなモデル
 - → コンテンツベースなので、新しいユーザーが増えてもスケールできる。新しいコンテンツに関してはデータが集まらないと予測がうまくできない。

ご清聴ありがとうございました

Apendix

Random Forest

1 gini impurityで境界とnodeを 決定

$$p(i|t) = rac{n_i}{n}$$
 $I_G(t) = 1 - \sum_{i=1} p(i|t)^2$

- 2 bootstrappingでデータをサン プル(replacementありサンプリ ング)
- ③ バギング
- 4 ダミー変数・交互作用作る必要なし

Light GBM(1)

特徵1. Gradient Boosting Decision Tree

- 2. For m=1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

psedo-residual

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

(d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.

Light GBM(2)

特徴2. ヒストグラムをもとに分岐点を計算

特徴3. Gradient-based One-side Samplingでデータ数を減らす

・ 勾配の絶対値の上位 $a \times 100$ %と、 残りのデータの $b \times 100$ %をサンプリングして各反復で使用 サンプリングした側の勾配は $\frac{1-a}{b}$ 倍して使用

Light GBM(3)

特徴4. Exclusive Feature Bundlingで特徴量を減らす

Sparseなデータでは非ゼロ要素に被りがないときが多い。そのような特徴同士はまとめて(bundling)、一つの特徴としてしまう。計算量が $O(\#data\#feature) \rightarrow O(\#data\#fbundle)$ になる。

xDeepFM(1)

- One hot encoding
- Embedding Layer

$$e=[e_1,e_2,\cdot,\cdot,e_m]$$

Figure 1: The field embedding layer. The dimension of embedding in this example is 4.

1 暗示的な高次元の交互作用

$$\mathbf{x}^{1} = \sigma(\mathbf{W}^{(1)}\mathbf{e} + \mathbf{b}^{1})$$
$$\mathbf{x}^{k} = \sigma(\mathbf{W}^{(k)}\mathbf{x}^{(k-1)} + \mathbf{b}^{k})$$

xDeepFM(2)

2 明示的な交互作用

Compressed Interaction Network

(a) Outer products along each dimension for feature interactions. The tensor \mathbf{Z}^{k+1} is an intermediate result for further learning.

(b) The k-th layer of CIN. It compresses the intermediate tensor \mathbb{Z}^{k+1} to H_{k+1} embedding vectors (aslo known as *feature maps*).

(c) An overview of the CIN architecture.

xDeepFM(2)

3 Networkを組み合わせる

Figure 5: The architecture of xDeepFM.