Banco de Dados NoSQL

Lieverton Silva Welison Regis 17/0039251 17/0024121

NoSQL

Not Only SQL

O termo NoSQL, majoritariamente interpretado como "não apenas SQL", representa os bancos de dados não relacionais (VAISH, 2013, p. 19).

ACID vs BASE

Propriedades ACID: atomicidade, consistência, isolamento e durabilidade.

As propriedades **BASE** realizam *tradeoff* para obter maior versatilidade:

- **Basicamente disponível** (Basically Available): sistema funciona todo o tempo.
- Estado leve (Soft State): não há necessidade de ser consistente todo o tempo.
- Eventualmente consistente (Eventually Consistent): sistema consistente no tempo devido.

TEOREMA CAP

Teorema CAP - só se pode ter até 2 dos 3:

- Consistência: cada leitura recebe a escrita mais recente ou um erro
- Disponibilidade: cada pedido recebe uma resposta (sem erro) - sem garantia que seja a escrita mais recente
- Tolerante a partição: sistema continua a funcionar mesmo se houver falhas em partições.

OBJETIVOS DO NOSQL

Escalabilidade

Os SGBDs NoSQL são escaláveis horizontalmente, tornando o sistema menos oneroso.

Flexibilidade

Os SGBDs NoSQL fornecem esquemas flexíveis que permitem um desenvolvimento mais rápido e interativo. Mais flexíveis às propriedades ACID.

Alta Performance

Os SGBDs NoSQL são otimizados para modelos de dados específicos e padrões de acesso que permitem maior performance.

VANTAGENS DO NOSQL

Principais vantagens do NoSQL:

- Escalabilidade elástica: bancos noSQL são escaláveis horizontalmente.
- **Esquemas dinâmicos**: a **flexibilidade de esquemas** facilita uma alta escalabilidade e alta disponibilidade do serviço.
- Open Source: maior parte dos bancos de dados NoSQL são de código fonte aberto e gratuitos para uso.

DESVANTAGENS DO NOSQL

Principais desvantagens do NoSQL:

- Tecnologia nova no mercado: apresenta uma comunidade pequena com menos especialistas na área;
- Não compatível com SQL: requer maior esforço na aprendizagem.
- Menor confiabilidade: não garante a ACID e o desenvolvedor deverão prover meios para garantir o funcionamento do sistema.

DIFERENTES MODELOS DE DADOS EM NOSQL

Classificação por modelo de dados NoSQL:

- Chave-valor;
- Baseado em grafos;
- Baseado em documento;
- Baseado em colunas;

NOSQL BASEADO EM CHAVE-VALOR

Características gerais:

- Precursor do NoSQL;
- Funciona como dicionário, uma chave endereça valores;
- As chaves e os valores podem ser qualquer coisa;
- altamente particionáveis;
- escalabilidade horizontal.

Bancos baseados em chave-valor: Berkeley DB, DynamoDB, Redis.

NOSQL BASEADO EM GRAFOS

Características gerais:

- Utiliza-se da Teoria dos Grafos para modelar os dados;
- Grafo é direcionado;
- Nós: representam as "entidades" com suas propriedades;
- Arestas: estabelecem o relacionamento entre os nós.

Aplicações: redes sociais, redes de informação etc.

Bancos baseados em grafos: Neo4j, GraphDB, InfoGrid.

NOSQL BASEADO EM COLUNAS

Características gerais:

- Coluna: valor atômico. Representado por nome e valor.
- Super colunas: associam colunas. Associação semântica.
- Família de colunas: abrange colunas e super colunas.

Aplicações: redes sociais.

Bancos baseados em Colunas: Cassandra, HBase.

NOSQL BASEADO EM DOCUMENTOS

Características gerais:

- Coleções de documentos;
- JSON (Javascript Object Notation) ou XML (Extensible Markup Language);
- Flexível e Dinâmico.

Aplicações: aplicativos, APIs etc.

Bancos baseados em Documentos: MongoDB, CouchDB.

Ranking dos Bancos de Dados

Sep 2019	Rank Aug 2019	Sep 2018	DBMS	Database Model	Score		
					Sep 2019	Aug 2019	Sep 2018
1.	1.	1.	Oracle 📇	Relational, Multi-model	1346.66	+7.18	+37.54
2.	2.	2.	MySQL 🔠	Relational, Multi-model	1279.07	+25.39	+98.60
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model	1085.06	-8.12	+33.78
4.	4.	4.	PostgreSQL [1]	Relational, Multi-model	482.25	+0.91	+75.82
5.	5.	5.	MongoDB 🔠	Document	410.06	+5.50	+51.27
6.	6.	6.	IBM Db2 🔠	Relational, Multi-model	171.56	-1.39	-9.50
7.	7.	7.	Elasticsearch 🔠	Search engine, Multi-model	149.27	+0.19	+6.67
8.	8.	8.	Redis 🔠	Key-value, Multi-model 🛐	141.90	-2.18	+0.96
9.	9.	9.	Microsoft Access	Relational	132.71	-2.63	-0.69
10.	10.	10.	Cassandra 🔠	Wide column	123.40	-1.81	+3.85
22.	22.	22.	Neo4j 🚦	Graph	48.22	-0.17	+8.12

Mongo DB

O MongoDB é um banco de dados distribuído, baseado em documentos e de propósito geral, desenvolvido para desenvolvedores de aplicativos modernos e para a era da nuvem.

Documentos JSON avançados

- A maneira mais natural e produtiva de trabalhar com dados.
- Suporta matrizes e objetos aninhados como valores.
- Permite esquemas flexíveis e dinâmicos.

Todo o poder de um banco de dados relacional

- Transações ACID completas.
- Suporte para junções em consultas.
- Dois tipos de relacionamentos em vez de um: referência e incorporado.

Linguagem de consulta poderosa

- Linguagem de consulta rica e expressiva que permite filtrar e classificar por qualquer campo
- Suporte para agregações e outros casos de uso modernos, como pesquisa geográfica, pesquisa gráfica e pesquisa de texto.
- As consultas são elas próprias JSON.

Base de Dados

A base de dados escolhida possui a lista de todas a músicas que entraram no ranking das músicas mais tocadas semanalmente da revista Billboard do período de 02/08/1958 até 22/06/2019.

DER

DL

REFERÊNCIAS

- [1] VAISH, G. **Getting Started with NoSQL: 1ªEdição**. Birmingham, Reino Unido, Packt Publishing. 2013.
- [2] SADALAGE, P. J.; FOWLER, M. J. **NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence**. Addison-Wesley, 1ª edição. 2013.
- [3] OLIVEIRA, Lucas. **Everything you need to know about NoSQL databases.** 5 jun. 2019. Disponível em:

https://dev.to/lmolivera/everything-you-need-to-know-about-nosql-databases-3o3 h#comparison. Acesso em: 6 set. 2019.