DATA COLLECTION

In [1]: # import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: # To Import Dataset
sd=pd.read_csv(r"c:\Users\user\Downloads\15_Horse.csv")
sd

Out[2]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Coun
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sver
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	Sver
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	Sver
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sver
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	Sver
27003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Austra
27004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Austra
27005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Austra
27006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	N Zeala
27007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	N Zeala
27008 rows × 21 columns										

In [3]: # to display top 10 rows
sd.head(10)

_		 -
$^{\circ}$	+	
w	ш	 ъ.
~	~ ~	

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	Sverige
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	Sverige
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	Sverige
5	10.12.2017	Sha Tin	1	1800	Gress	1310000	4	C Y Ho	52	Sverige
6	01.01.2018	Sha Tin	9	1800	Gress	1310000	9	C Schofie l d	54	Sverige
7	04.02.2018	Sha Tin	5	1800	Gress	1310000	6	Joao Moreira	57	Sverige
8	03.03.2018	Sha Tin	8	1800	Gress	1310000	3	C Y Ho	56	Sverige
9	11.03.2018	Sha Tin	10	1600	Gress	1310000	8	C Y Ho	57	Sverige
10 rows × 21 columns										
4 6										

DATA CLEANING AND PRE_PROCESSING

In [4]: sd.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27008 entries, 0 to 27007
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Dato	27008 non-null	object
1	Track	27008 non-null	object
2	Race Number	27008 non-null	int64
3	Distance	27008 non-null	int64
4	Surface	27008 non-null	object
5	Prize money	27008 non-null	int64
6	Starting position	27008 non-null	int64
7	Jockey	27008 non-null	object
8	Jockey weight	27008 non-null	int64
9	Country	27008 non-null	object
10	Horse age	27008 non-null	int64
11	TrainerName	27008 non-null	object
12	Race time	27008 non-null	object
13	Path	27008 non-null	int64
14	Final place	27008 non-null	int64
1 5	FGrating	27008 non-null	int64
16	Odds	27008 non-null	object
17	RaceType	27008 non-null	object
18	HorseId	27008 non-null	int64
19	JockeyId	27008 non-null	int64
20	TrainerID	27008 non-null	int64
1.1	. 164/40) .	1.(0)	

dtypes: int64(12), object(9)

memory usage: 4.3+ MB

In [5]: # to display summary of statistics sd.describe()

Out[5]:

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age	
count	27008.000000	27008.000000	2.700800e+04	27008.000000	27008.000000	27008.000000	270
mean	5.268624	1401.666173	1.479445e+06	6.741447	55.867373	5.246408	
std	2.780088	276.065045	2.162109e+06	3.691071	2.737006	1.519880	
min	1.000000	1000.000000	6.600000e+05	1.000000	47.000000	2.000000	
25%	3.000000	1200.000000	9.200000e+05	4.000000	54.000000	4.000000	
50%	5.000000	1400.000000	9.670000e+05	7.000000	56.000000	5.000000	
75%	8.000000	1650.000000	1.450000e+06	10.000000	58.000000	6.000000	
max	11.000000	2400.000000	2.800000e+07	14.000000	63.000000	12.000000	
4							

EDA and visualization

In [7]: sns.pairplot(sd)

Out[7]: <seaborn.axisgrid.PairGrid at 0x13da303ca00>

In [8]: | sns.distplot(sd['Distance'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Distance', ylabel='Density'>

In [9]: sns.heatmap(sd.corr())

Out[9]: <AxesSubplot:>

TO TRAIN THE MODEL MODEL BUILDING

we are goint train Liner Regression model; we need to split out the data into two varibles x and y where x is independent on x (output) and y is dependent on x(output) adress coloumn as it is not required our model

```
In [11]: x= sd1[['Race Number', 'Distance', 'Prize money',
                  Starting position']]
         y=sd1[ 'Jockey weight']
In [12]: # To split my dataset into training data and test data
         from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [13]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x train,y train)
Out[13]: LinearRegression()
In [14]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]: |print(lr.intercept_)
          56.29139413877686
         coeff= pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [16]:
Out[16]:
                          Co-efficient
             Race Number -9.066383e-02
                Distance -3.913607e-05
              Prize money 4.643470e-08
          Starting position 4.300373e-03
```

```
In [17]: | prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x13dbb83b880>
          56.8
          56.6
          56.4
          56.2
          56.0
          55.8
          55.6
          55.4
                      50
                            52
In [18]: |print(lr.score(x_test,y_test))
         0.012470199596210652
In [19]: |lr.score(x_train,y_train)
Out[19]: 0.008440924886162104
In [20]: from sklearn.linear_model import Ridge,Lasso
In [21]: dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[21]: Ridge(alpha=10)
In [22]: |dr.score(x_test,y_test)
Out[22]: 0.012469878005481494
In [23]: | dr.score(x_train,y_train)
Out[23]: 0.0084409248447328
In [24]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[24]: Lasso(alpha=10)
In [25]: la.score(x_test,y_test)
Out[25]: -0.00017477995385428713
```

```
In [26]: la.score(x_train,y_train)
Out[26]: 0.00030885069270014665
```

ElasticNet

Evaluation metric