ESP8266

Embora o ESP8266 seja frequentemente usado apenas como ponte para conexão WiFi, ele é um microcontrolador muito poderoso por si só.

Entradas e saídas digitais

Assim como em qualquer microcontrolador, o ESP8266 possui pinos de entrada / saída digitais, estes pinos são reconhecidos como GPIOs (pinos de entrada / saída para fins gerais). Como o nome indica, eles podem ser usados como entradas digitais para ler uma voltagem digital, ou como saídas digitais para saída de OV (corrente de aterramento) ou 3.3V (corrente de fonte).

Restrições de tensão e corrente

O ESP8266 é um microcontrolador de 3,3V, portanto, suas interfaces de entrada e saída operam com tensão de 3,3V também. É importante observar que os pinos não são tolerantes a 5V, ou seja, se for aplicado mais de 3.6V em qualquer pino o microcontrolador queimará. A corrente máxima que pode ser aplicada de uma entrada ou saída GPIO é 12mA.

Pinos utilizáveis

O ESP8266 tem 17 portas GPIO (0-16), no entanto, só é possível utilizar 11 delas. Seis portas, GPIO (6 - 11) são usados para conectar o chip de memória de operação *flash*. As GPIO (1 e 3) são usadas como TX e RX da porta serial do hardware (UART), portanto, na maioria dos casos, você não pode, ou não deve usá-las como E/S normal ao enviar/receber dados seriais.

Resistores internos de *pull-up* ou *pull-down*

As GPIO (0-15) têm um resistor de pull-up integrado.

PWM

Ao contrário da maioria dos chips Atmel, o ESP8266 não suporta hardware PWM, no entanto, o PWM por software é suportado em todos os pinos digitais. O intervalo PWM padrão é de 10 bits a 1 kHz, mas isso pode ser alterado (até> 14 bits a 1 kHz).

Entrada analógica

O ESP8266 possui uma única entrada analógica, com um intervalo de entrada de 0 a 1.0V. Se for fornecido uma tensão maior que este valor, 3.3V por exemplo, o chip será danificado, porém isso só vale para o ESP8266 como unidade isolada. Algumas placas, como o NodeMCU, possuem um divisor de tensão resistivo integrado, para obter uma faixa de 0 a 3.3V. O ADC (conversor analógico para digital) tem uma resolução de 10 bits.

Comunicação

Serial

O ESP8266 tem dois UARTS de hardware (portas seriais):

- UARTO nas portas 1 e 3 (TXO e RXO)
- UART1 nas portas 2 e 8 (TX1 e RX1)

No entanto, a GPIO8 é usada para conectar o chip *flash*. Isso significa, praticamente, que o UART1 só pode transmitir dados. O UART0 também possui controle de fluxo de hardware nas

portas GPIO15 e GPIO13 (RTSO e CTSO). Essas duas portas também podem ser usadas como portas TXO e RXO alternativas.

I^2C

O ESP8266 não tem um TWI de hardware (interface de dois fios), mas esta é implementada via software. Isso significa que é possível usar praticamente todas as portas disponíveis digitais para representar esta interface. Por padrão, a biblioteca I²C usa o pino 4 como SDA e o pino 5 como SCL. A velocidade máxima de comunicação é de aproximadamente 450kHz.

SPI

O ESP8266 tem uma conexão SPI disponível para o usuário, conhecida como HSPI. Utiliza GPIO14 como CLK, GPIO12 como MISO, GPIO13 como MOSI e GPIO15 como *Slave Select* (SS). Pode ser usado no modo escravo e mestre.

GPIO - funções

GPIO	Função	Estado	Restrições
0	Boot mode select	3.3V	No Hi-Z
1	TX0	-	Não utilizável durante a transmissão serial
2	Boot mode select TX1	3.3V (boot only)	Não conectar ao aterramento durante o boot, esta porta é utilizada para debug durante o boot.
3	RX0	-	Não utilizável durante a transmissão serial
4	SDA (I ² C)	-	-
5	SCL (I ² C)	-	-
6 - 11	Flash connection	Х	Não é utilizado para conexões externas
12	MISO (SPI)	-	-
13	MOSI (SPI)	-	-
14	SCK (SPI)	-	-
15	SS (SPI)	0V	Resistor Pull-up não disponível
16	Wake up from sleep	-	Resistor pull-down disponível. Deve ser conectado ao RST (reset) para reativar o microcontrolador