

CCCTGTCACTTAAAGATTCTAGAAGTCGCTGCCTATACGGAAACCCAAAA
CTCTCACTGTTAATGAAATACCATTTGTCGGGGCGAAGATGTAGCTCAGTGGTAAAATACT -121

TGCCAGCACACACAAGAATTAGACTTCAACCGTCACCAACTGCCCTGTGAGGACGGTCG
GTCACTGAAAGAGAATATTGTCTGCAATACTCTAATGACATCTGTCTGTGTTCATCTGAA -1

SP

1 MetPheHisLeuLysHisSerSerLeuThrValGlyProPheIleSerValMetIleLeu
ATGTTCCATTAAACACAGCAGCCTTACTGTTGGACCATTATCTCAGTAATGATTCTG

LeuArgPheLeuCysThrGlyArgAsnAsnSerLysGlyArgSerLeuIleGlyArgLeu
CTCCGCTTTCTTGTACAGGACGCAACAAACAGTAAAGGAAGTCTTATTGGCAGATTA 120

41 GluThrGlnProProIleThrGlyLysGlyValProValGluProGlyPheSerIleAsp
GAAACCCAGCCTCCAATCACTGGGAAAGGGGTTCCGGTAGAACCGAGGCTTTCCATCGAT

GluPheSerAlaSerIleLeuThrGlyLysLeuThrThrValPheLeuProValValTyr
GAGTTCTCTCGGTCCATCCTCACCGGGAAAGCTGACCACGGTCTTCTCCGGTGTCTAC 240

81 IleIleValPheValIleGlyLeuProSerAsnGlyMetAlaLeuTrpIlePheLeuPhe
ATTATTGTGTTGTGATTGGTTGCCAGTAATGGCATGGCCCTCTGGATCTTCCTTTTC -

ArgThrLysLysLysHisProAlaValIleTyrMetAlaAsnLeuAlaLeuAlaAspLeu
CGAACGAAGAAGAACACCCCCGCGTGATTACATGGCCAACCTGGCCTTGGCCGACCTC 360

121 LeuSerValIleTrpPheProLeuLysIleSerTyrHisLeuHisGlyAsnAsnTrpVal
CTCTCTGTCATCTGGTCCCCCTGAAGATCTCCTACACCACCATGGCAACAACTGGTC

TyrGlyGluAlaLeuCysLysValLeuIleGlyPhePheTyrGlyAsnMetTyrCysSer
TACGGGGAGGCCCTGTGCAAGGTGCTCATTGGCTTTCTATGGAACATGTATTGCTCC 480

161 IleLeuPheMetThrCysLeuSerValGlnArgTyrTrpValIleValAsnProMetGly
ATCCTCTTCATGACCTGCCTCAGCGTGCAGAGGTACTGGGTGATCGTGAACCCCCATGGGA

HisProArgLysLysAlaAsnIleAlaValGlyValSerLeuAlaIleTrpLeuLeuIle
CACCCCCAGGAAGGCAAACATGCCGTTGGCGTCTCCTGGCAATCTGGCTCTGATT 600

FIG. IA

201 PheLeuValThrIleProLeuTyrValMetLysGlnThrIleTyrIleProAlaLeuAsn
TTCTGGTCACCATCCCTTGATGTATGCATGAAGCAGACCCTACATTCCAGCATTGAAC

IleThrThrCysHisAspValLeuProGluGluValLeuValGlyAsnMetPheAsnTyr
ATCACCACTGTCACGATGTGCTGCCTGAGGAGGTATTGGTGGGGACATGTTCAATTAC 720

241 PheLeuSerLeuAlaIleGlyValPheLeuPheProAlaLeuLeuThrAlaSerAlaTyr
TTCCTCTCACTGGCCATTGGAGTCTTCCCTGGCCCTCTACTGCATCTGCCTAC

ValLeuMetIleLysThrLeuArgSerSerAlaMetAspGluHisSerGluLysLysArg
GTGCTCATGATCAAGACGCTCCGCTCTCTGCTATGGATGAACACTCAGAGAACAAAAGG 840

281 GlnArgAlaIleArgLeuIleIleThrValLeuAlaMetTyrPheIleCysPheAlaPro
CAGAGGGCTATCCGACTCATCATCACCGTGCTGGCCATGTACTTCATCTGCTTCTGCCT

SerAsnLeuLeuLeuValValHisTyrPheLeuIleLysThrGlnArgGlnSerHisVal
AGCAACCTCTGCTCGTAGTGCATTATTCCTAATCAAACCCAGAGGCAGAGGCCACGTC 960

321 TyrAlaLeuTyrLeuValAlaLeuCysLeuSerThrLeuAsnSerCysIleAspProPhe
TACGCCCTCTACCTTGTCGCCCTTGCCCTGTCGACCTCAACAGCTGCATAGACCCCTT

ValTyrTyrPheValSerLysAspPheArgAspHisAlaArgAsnAlaLeuLeuCysArg
GTCTATTACTTTGTCATAAAAGATTCAGGGATCACGCCAGAACGCGCTCCTTGCCGA 1080

361 SerValArgThrValAsnArgMetGlnIleSerLeuSerSerAsnLysPheSerArgLys
AGTGTCCGCACTGTGAATCGCATGCAAATCTCGCTCAGCTCCAACAAGTTCTCCAGGAAG
GATGTCAAGCCTGCTTGATGATGATGATGATGGTGTGTGTG 1246

SerGlySerTyrSerSerSerSerThrSerValLysThrSerTyr
TCCGGCTCCTACTCTCAAGCTAACCAAGTGTAAAACCTCCTACTGAGCTGTACCTGAG 1200

FIG. 1B

CGCTCCAGG CCTGGGTGACAGCGAGACCCTGTCTCATAAATTAAAAATGAATAA

SP

MetAsnValLeuSerPheGluGlnThrSerValThrAlaGluThrPheIleSerValMet
ATGAATGTACTTCAATTGAACAAACAGTGTTACTGCTGAAACATTATTCCTGTAATG

▼

ThrLeuValPheLeuSerCysThrGlyThrAsnArgSerSerLysGlyArgSerLeuIle
ACCCCTTGCTTCCTTCTTGACAGGAACCAATAGATCCTCAAAGGAAGAACAGCCTTATT -1
120

GlyLysValAspGlyThrSerHisValThrGlyLysGlyValThrValGluThrValPhe
GGTAAGGTTGATGGCACATCCCACGTCACTGGAAAAGGAGTTACAGTTGAAACAGTCTT

SerValAspGluPheSerAlaSerValLeuThrGlyLysLeuThrThrValPheLeuPro
TCTGTGGATGAGTTTCTGCATCTGCTCACTGGAAAAGTACCACTGTCTTCTTCCA 240

I
IleValTyrThrIleValPheValValGlyLeuProSerAsnGlyMetAlaLeuTrpVal
ATTGTCTACACAATTGTGTTGTGGTGGGTTGCCAAGTAACGGCATGGCCCTGTGGGTC

PheLeuPheArgThrLysLysLysHisProAlaValIleTyrMetAlaAsnLeuAlaLeu
TTTCTTTTCCGAACATAAGAAGCACCCTGCTGTGATTACATGGCCAATCTGGCCTTG 360

II
AlaAspLeuLeuSerValIleTrpPheProLeuLysIleAlaTyrHisIleHisGlyAsn
GCTGACCTCCCTCTGTCATCTGGTCCCCCTGAAGAGATTGCCTATCACATGGCAAC

AsnTrpIleTyrGlyGluAlaLeuCysAsnValLeuIleGlyPhePheTyrGlyAsnMet
AACTGGATTATGGGGAGCTTTGTAATGTGCTTATTGGCTTTCTATGGCAACATG 480

III
TyrCysSerIleLeuPheMetThrCysLeuSerValGlnArgTyrTrpValIleValAsn
TACTGTTCCATTCTTCATGACCTGCCTCAGTGTGCAGAGGTATTGGTCATCGTGAAC

ProMetGlyHisSerArgLysLysAlaAsnIleAlaIleGlyIleSerLeuAlaIleTrp
CCCATGGGGCACTCCAGGAAGAAGGCAAACATTGCCATTGGCATCTCCCTGGCAATATGG 600

FIG. 2A

IV
LeuLeuIleLeuLeuValThrIleProLeuTyrValValLysGlnThrIlePheIlePro
CTGCTGATTCTGCTGGTCACCATCCCTTGATGTCGTGAAGCAGACCATCTTCATTCC

AlaLeuAsnIleThrThrCysHisAspValLeuProGluGlnLeuLeuValGlyAspMet
GCCCTGAACATCACGACCTGTATGATGTTGCCTGAGCAGCTTGTTGGGGAGACATG

720

PheAsnTyrPheLeuSerLeuAlaIleGlyValPheLeuPheProAlaPheLeuThrAla
TTCAATTACTTCCTCTCTGGCCATTGGGGTCTTCTGTTCCCAGCCTCCTCACAGCC

SerAlaTyrValLeuMetIleArgMetLeuArgSerSerAlaMetAspGluAsnSerGlu
TCTGCCTATGTGCTGATCAGAATGCTGCGATCTTGCCATGGATGAAAACTAGAG

840

LysLysArgLysArgAlaIleLysLeuIleValThrValLeuAlaMetTyrLeuIleCys
AAGAAAAGGAAGAGGGCCATCAAACTCATTGTCAGTGCTGGCCATGTACCTGATCTGC

PheThrProSerAsnLeuLeuLeuValValHisTyrPheLeuIleLysSerGlnGlyGln
TTCACTCCTAGTAACCTTCTGCTTGTTGCATTATTTCTGATTAAGAGCCAGGGCCAG

960

SerHisValTyrAlaLeuTyrIleValAlaLeuCysLeuSerThrLeuAsnSerCysIle
AGCCATGTCTATGCCCTGTACATTGTAGCCCTCTGCCTCTACCCCTAACAGCTGCATC

AspProPheValTyrTyrPheValSerHisAspPheArgAspHisAlaLysAsnAlaLeu
GACCCCTTGCTATTACTTTGTTACATGATTTCAGGGATCATGCAAAGAACGCTCTC 1080

LeuCysArgSerValArgThrValLysGlnMetGlnValSerLeuThrSerLysLysHis
CTTGCCGAAGTGTCCGCACTGTAAAGCAGATGCAAGTATCCCTCACCTCAAAGAACAC

SerArgLysSerSerSerTyrSerSerSerThrThrValLysThrSerTyr
TCCAGGAAATCCAGCTTACTCTCAAGTTCAACCACTGTTAAGACCTCCTATTGAGTT 1200

FIG. 2B

Mouse C140	M--FHLKHSS	LIVGPFISVM	I	LLRFICTGR	NNSHKGRLSI	GRLETQPPIT	47		
Human C140	MNVLSFEQTS	MTAETFISVM	I	LVFLSCTGT	NRSSKGRLSI	GKVDGTSVIT	50		
Mouse C140	GKGVFVEPGF	SIDEFSASIL	TCKLTTVFLP	MVYI	IVFVIIG	LPSNGMALWI	97		
Human C140	GKGVIVEIVF	SMDEFSASMV	TGKLTTVFLP	[MVYI]	IVFVIG	LPSNGMALWV	100		
Mouse C140	FLFRKKKHP	AVIYMANLAL	ADLLSVIWFP	LKI	SYHIIHGN	NWMYGEALCK	147		
Human C140	FLFRKKKHP	AVIYMANLAL	ADLLSVIWFP	LKIA	YHIIHGN	NWYIYGEALCN	150		
Mouse C140	VLIGFFYGNM	YCSILFMTCI	SVQRYWIVVN	PMGH	PRKKAN	IAMGMSLAIW	197		
Human C140	VLIGFFYGNM	YCSILFMTCI	SVQRYWIVVN	PMGH	SRKKAN	IAIGISLAIW	200		
Mouse C140	LL	IFLVTIPL	YMKQTIYIP	ALNITTCHDV	LPEEV	LVGDM	FNYFLSLAIG	247	
Human C140	LL	IFLVTIPL	YMKQTIP	IP	ALNITTCHDV	LPEQL	LVGDM	FNYFLSLAIG	250
Mouse C140	VFLFPALLTA	SAYVLMIKTL	RSSAMDEHSE	KKRQRAIRLI	I	TVLAMYFIC	297		
Human C140	VFLFPALLTA	SAYVLMIRML	RSSAMDENSE	KKRKRAIKLI	M	TVLAMYLIC	300		
Mouse C140	FIAPSNLVV	HYFLIKIQRQ	SHVYALYVA	LCLSTLNSCI	D	PFVYYFVSK	347		
Human C140	FIAPSNLVV	HYFLIKSQGQ	SHVYALYVA	LCLSTLNSCI	D	PFVYYFVSH	350		
Mouse C140	DFRDHARNAL	LCRSVRTVMNR	MQISLSSNKF	SRKSGSYSSS	S	TSVKTSY	395		
Human C140	DFRDHAKNAL	LCRSVRTVKQ	MQMSLISKHH	SRKSSSYSSS	S	TSVKTSY	398		

FIG.3

FIG. 4

C140 <i>HSTHRR</i>	SP <u>MFHLKHSSTVYGPFIISVYILLRFLLCTGRNNSK</u> ----- <u>MGPRRLLLLVAACFSLCCGPLLSSARTARRPESKATNATLDPRSFLLRNPDKYEPWEDEE</u>	44 60
I		
C140 <i>HSTHRR</i>	<u>KNESGLTEYRLVSINKSSPLQKQLPAF</u> ISEDASGYLTSSWLTFLFVPSVYGVFVVSPLN	120
II		
C140 <i>HSTHRR</i>	<u>GMALWIFLFRTRKKKKPAVIYMANALADLLSVIWFPLKISYHLHGNNWWYGEALCKVLJG</u> 151 <u>IMAIIVVFILKMKVKPKAVVYMLHLATADVLFVSVLPFKISYYFSGSDWQFGSELCRFVTA</u> 180	91
III		
C140 <i>HSTHRR</i>	<u>FYGNMYCSILFMTCISVQRYWWIVNPM-GHPRKKKANIAVGVS</u> SLAIWLLIFLVTIPLVVM	210
IV		
C140 <i>HSTHRR</i>	<u>AFFYCNMYASILLMTVISIDRFLAVVYPMQSLSWRTLGRASF</u> TCLAIWALATAGVVPLVLK	240
V		
C140 <i>HSTHRR</i>	<u>KQTLYIPALNITICHDLPEEVLYGDMFNYFLS</u> LAIGVFLPALLTASAYVLMIKTLRSS	270
VI		
C140 <i>HSTHRR</i>	<u>AMDEHSEKKRQRAIRLIITVLAAMYFICFAPSNLLLVWVHY</u> -FLIKTORQSHVYALYLVALC	329
VII		
C140 <i>HSTHRR</i>	<u>LSTLNSSCIDPFVYYFVSKDFRDHARNALLCRSVRTVNRMQISLSMNKFSSRKGSYSSSSST</u> 389 <u>VSSISSCIDPLIYYYASSECQRYYVSYILCKESSDPPSYNSGGQLMASKMDTCSSNLNN</u> 418	358
VIII		
C140 <i>HSTHRR</i>	<u>SVKTSY-</u> <u>IYKKLLT</u>	395 426

F I G. 5

28 S →

18 S →

FIG. 6

BLOOD PRESSURE

FIG. 7

Applicants: Johan Sundelin, et al.
Title: RECOMBINANT C140 RECEPTOR, ITS AGONISTS AND
ANTAGONISTS, AND NUCLEIC ACIDS ENCODING THE RECEPTOR
Attorney/Agent: Jean M. Silveri
Docket No.: MPI93-006CP1DV1ACN1DV1M
Sheet 9 of 16

FIG. 8a

FIG. 8b

Applicants: Johan Sundelin, et al.

Title: RECOMBINANT C140 RECEPTOR, ITS AGONISTS AND
ANTAGONISTS, AND NUCLEIC ACIDS ENCODING THE RECEPTOR

Attorney/Agent: Jean M. Silveri

Docket No.: MPI93-006CP1DV1ACN1DV1M

Sheet 10 of 16

FIG. 9a

FIG. 9b

F I G.9c

CCCTGTGCTCAGAGTAGGGCTCCGAGTTCGAACCACTGGTGGCGGATTGCCCGCCCCGCC
CCACGTCCGGGGATGCGAAGTCTCAGCCTGGCGTGGCTGGGAGGTATCACCCCTCTG
M R S L S L A W L L G G I T L L
GCGGCCTCGGTCTCTGCAGCCGGACCGAGAACCTTGACCCGGACGCAACAACAGTAAA
A A S V S C S R T E N L A P G R N N S K
GGAAGAAGTCTTATTGGCAGATTAGAAACCCAGCCTCCAATCACTGGGAAAGGGGTTCCG
G R S L I G R L E T Q P P I T G K G V P
GTAGAACCAAGGCTTTCCATCGATGAGTTCTCGCGTCCATCCTCACCGGGAAAGCTGACC
V E P G F S I D E F S A S I L T G K L T
ACGGTCTTCCTCCGGTCGTCTACATTATTGTGTTGTGATTGGTTGCCAGTAATGGC
T V F L P V V Y I I V F V I G L P S N G
ATGGCCCTCTGGATCTTCCTTCCGAACGAAGAAGAAACACCCCGCCGTGATTTACATG
M A L W I F L F R T K K K H P A V I Y M
GCCAACCTGGCTTGGCGACCTCTCTGTCTCATCTGGTTCCCCCTGAAGATCTCCTAC
A N L A L A D L L S V I W F P L K I S Y
CACCTACATGGCAACAACACTGGGTCTACGGGAGGGCCCTGTGCAAGGTGCTCATTGGCTT
H L H G N N W V Y G E A L C K V L I G F
TTCTATGGTAACATGTATTGCTCCATCCTCTTCATGACCTGCCTCAGCGTGAGAGGTAC
F Y G N M Y C S I L F M T C L S V Q R Y
TGGGTGATCGTAACCCATGGGACACCCAGGAAGAAGGCAAACATGCCGTTGGCGTC
W V I V N P M G H P R K K A N I A V G V
TCCTGGCAATCTGGCTCCTGATTTCTGGTACCATCCCTTGATGTCTGAAGCAG
S L A I W L L I F L V T P I L Y V M K Q
ACCATCTACATTCCAGCATTGAACATCACCAACCTGTACGATGTGCTGCCTGAGGAGGTAC
T I Y I P A L N I T T C H D V L P E E V
TTGGTGGGGGACATGTTCAATTACTTCCTCTCAGGGCATTGGAGTCTTCTGTTCCG
L V G D M F N Y F L S L A I G V F L F P
GCCCTCCTACTGCATCTGCCTACGTGCTCATGATCAAGACGCTCCGCTCTGCTATG
A L L T A S A Y V L M I K T L R S S A M
GATGAACACTCAGAGAAGAAAAGGCAGAGGGCTATCCGACTCATCATCACCGTGCTGGCC
D E H S E K K R Q R A I R L I I T V L A
ATGTAATTCTGCTTGCCTAGCAACCTCTGCTCGTAGTCATTATTCCTAATC
M Y F I C F A P S N L L L V V H Y F L I
AAAACCCAGAGGCAGAGCCACGTCTACGCCCTCTACCTTGTGCGCCCTCTGCCTGTCGACC
K T Q R Q S H V Y A L Y L V A L C L S T
CTCAACAGCTGCATAGACCCCTTGCTATTACTTGTCTAAAAGATTCAGGGATCAC
L N S C I D P F V Y Y F V S K D F R D H

FIG. 10A

GCCAGAAACGCGCTCCTCTGCCGAAGTGTCCGCACGTGAATGCATGCAAATCTCGCTC
A R N A L L C R S V R T V N R M Q I S L
AGCTCCAACAAGTTCTCCAGGAAGTCCGGCTCCTACTCTCAAGCTAACCGAGTGTAAA
S S N K F S R K S G S Y S S S S T S V K
ACCTCCTACTGAGCTGTACCTGAGGATGTCAAGCCTGCTTGATGATGATGATGATGG
T S Y
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCACCCGTGTGAGTGCCTG
GTAGGGATAACCAACATGGATGGGGCTGTCAATTCTATCCAAGCTGTCTGTCTGCA
CCAATCACAGCATGCAGCTCTCCCAGGATTGACAGAACGCCTCTCCTTGATGAGAA
CAGTCTTCACTCTGATGAAAAGCATCAGTATCAGAAACTGAAACGAACGTGAGAGGAGCT
TGTTTGTGAAAGTGAAGAGAAGATGGAGGGTCAGTGACTTGCAAAAAAAACCAACCAA
CAAAAACACCTGGCAAGAAGGCTAACAGACTCTCTGAAATGCTCCCTTCCATCTGG
AGTTCGTCTCGGCCTTGTTCAGGACCTGAGGCCCTGGTAGAGCTTCAGTCAGTTGATTG
ACTTTACAGACTTGAGAGAGGAGTGAATGAGGAGTGAATGAGGCTCTGGCGGCATCCTA
ACCGGCTAACAGTGGCCTTGTGGACAATAGGATTCAAGATGGCTGGAGTTACATTCTCAC
ACCATTTCATCAGAACTATTGGGGATCTTGATCAATGTGCAGGTCCCTAGCGTCAGTAA
CCCTGGGAGCTCAGACACGATGGGGTGAGGGTGGGGGTGGGGGTGGGGGTGAGGCTCTA
CAAACCTTAGTGAATGACTGCAGACACAGAACCATGGAGCTGAGCCTGCTTGCTTGCCA
GGGCACCACTGTAATGTTGCCAAAGAAAAACCAACAGCAGTGTGAGGCTCTTTT
GGTCAGTTATGATGAATTGCCATTGGTTATTGGGATTTCAAGTCCCTTATTACTT
TGTTGTAATTTGTGTGTTATTAGTCAAGAAAAAGAAGATGAGGCTCTTAAAGTAA
ATAAAATTTTGGTTTTGGTTTTAACTGGCCAACACTAAACTGCTTAGGTT
TTTCTAACTTAATTGTTAACTACATCATGTGAACCTAACAGACATTTCATGATAAACAT
TACTGTAGTGTCAAGTTCCCTCATCCTCGATCATAGTCCTCCCGTGAAGCAGGCCCT
TCCCCCTCCCCCCCCCTTGCCGTTCCCTCCCCACCAAGATAGTCCTCTGCTGCTTAAAC
CTACCAAGTTAGTATTTATAAAACAGATCATTGGAATATTATTATCAGTTGTTCAC
TTGTTATCAGTTGTTCACTAATTGTCATAATGGAATTAAACGTCTCTCATCTGTT
TGAGGAAGATCTGAAACAAGGGGCCATTGCAGGAGTACATGGCTCCAGGCTTACTTTATA
TACTGCCTGTATTGTTGGCTTAAAAAAATGACCTGTTATATGAATGCTTATAAATAA
ATAATGCATGAACCTTAAAAAAAAAAAAAA

F I G. 10B

10	20	30	40	50	60
123456789012345678901234567890123456789012345678901234567890					
CAAAGAATTGTAATACGACTCACTATAGGGCGAATTGGATCCAGGAGGAATCGGAGGCC					
MetArgSerPr					
<hr/>					
70	80	90	100	110	120
123456789012345678901234567890123456789012345678901234567890					
CAGCGCGGCGTGGCTGGCTGGGGGCCATCCTGCTAGCAGCCTCTCTCCTGCAGTGG					
120					
oSerAlaAlaTrpLeuLeuGlyAlaAlaIleLeuLeuAlaAlaSerLeuSerCysSerG1					
CACCATCCAAGGAACCAATAGATCCTCTAAAGGAAGAACGCTTATTGGTAAGGTTGATGG					
yThrIleGlnGlyThrAsnArgSerSerLysGlyArgSerLeuIleGlyLysValAspG1					
CACATCCCACGTCACTGGAAAAGGAGTTACAGTTGAAACAGTCTTCTGTGGATGAGTT					
240					
yThrSerHisValThrGlyLysGlyValThrValGluThrValPheSerValAspGluPh					
TTCTGCATCTGTCCTCGCTGGAAACTGACCACTGTCTTCCATTGTCTACACAAT					
eSerAlaSerValLeuAlaGlyLysLeuThrThrValPheLeuProIleValTyrThrI1					
TGTGTTGCGGTGGGTTGCCAACGTAACGGCATGGCCCTATGGGTCTTCTTCCGAAC					
360					
eValPheAlaValGlyLeuProSerAsnGlyMetAlaLeuTrpValPheLeuPheArgTh					
TAAGAAGAAGCACCTGCTGTGATTACATGGCCAATCTGGCCTTGGCTGACCTCCTCTC					
rLysLysLysHisProAlaValIleTyrMetAlaAsnLeuAlaLeuAlaAspLeuLeuSe					
TGTATCTGGTCCCCCTTGAAGATTGCCTATCACATACATGGCAACAACTGGATTATGG					
480					
rValIleTrpPheProLeuLysIleAlaTyrHisIleHisGlyAsnAsnTrpIleTyrG1					
GGAAGCTCTTGTAAATGTGCTTATTGGCTTTCTATCGCAACATGTAATGTTCCATTCT					
yGluAlaLeuCysAsnValLeuIleGlyPhePheTyrGlyAsnMetTyrCysSerIleLu					
CTTCATGACCTGCCTCAGTGTGAGAGGTATTGGTCATCGTAACCCCCATGGGGCACTC					
600					
uPheMetThrCysLeuSerValGlnArgTyrTrpValIleValAsnProMetGlyHisSe					
CAGGAAGAAGGCAAACATTGCCATTGGCATCTCCCTGGCAATATGGCTGACTCTGCT					
rArgLysAlaAsnIleAlaIleGlyIleSerLeuAlaIleTrpLeuLeuThrLeuLe					
GGTACCATCCCTTGATGCGTGAAGCAGACCATCTCATTCCCTGCCCTAACATCAC					
720					
uValThrIleProLeuTyrValValLysGlnThrIlePheIleProAlaLeuAsnIleTh					

FIG.IIA

GACCTGTCATGATGTTTGCCTGAGCAGCTTGGTGGGAGACATGTTCAATTACTTCCT	
rThrCysHisAspValLeuProGluGlnLeuLeuValGlyAspMetPheAsnTyrPheLe	
CTCTCTGGCCATTGGGGTCTTCTGTTCCCAGCCTCCTCACAGCCTCTGCCATGTGCT	840
uSerLeuAlaIleGlyValPheLeuPheProAlaPheLeuThrAlaSerAlaTyrValLe	
GATGATCAGAATGCTCGATCTCTGCCATGGATGAAAACTCAGAGAAGAAAAGGAAGAG	
uMetIleArgMetLeuArgSerSerAlaMetAspGluAsnSerGluLysLysArgLysAr	
GGCCATCAAACCTATTGTCACTGTCCTGGGCATGTACCTGATCTGCTTACTCCTAGTAA	960
gAlaIleLysLeuIleValThrValLeuGlyMetTyrLeuIleCysPheThrProSerAs	
CCTTCTGCTTGTGGTCATTATTTCTGATTAAGAGGCCAGGGCCAGAGCCATGTCTATGC	
nLeuLeuLeuValValHisTyrPheLeuIleLysSerGlnGlyGlnSerHisValTyrAl	
CCTGTACATTGTAGCCCTGCCTCTCACCCCTAACAGCTGCATCGACCCCTTGTCTA	1080
aLeuTyrIleValAlaLeuCysLeuSerThrLeuAsnSerCysIleAspProPheValTy	
TTACTTTGTTCACATGATTCAGGGATCATGCAAAGAACGCTCTCCTTGCCGAAGTGT	
rTyrPheValSerHisAspPheArgAspHisAlaLysAsnAlaLeuLeuCysArgSerVa	
CCGCACTGAAAGCAGATGCAAGTACCCCTCACCTCAAAGAACACTCCAGGAAATCCAG	1200
IArgThrValLysGlnMetGlnValProLeuThrSerLysLysHisSerArgLysSerSe	
CTCTTACTCTCAAGTTAACCACTGTTAACGACCTCTATTGAGTTTCCAGGTCTCAG	
rSerTyrSerSerSerThrThrValLysThrSerTyr	
ATGGGAATTGCACAGTAGGATGTGGAACCTGTTAATGTTATGAGGACGTGTCTGTTATT	1320
TCCGGATCCAGATCTTATTAAAGCAGAACCTGTTATTGCAGCTATAATGGTTACAAAT	
AAAGCAATAGCATCACAAATTCAACAAATAAAGC	1414

FIG.IIB

FIG.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIG.13