### 1 算法概述

#### 1.1 最速下降法

第 1 步 选取初始点  $x^0$ , 给定终止误差  $\varepsilon > 0$ , 令 k := 0;

第 2 步 计算 $\nabla f(x^k)$ ,若 $\|\nabla f(x^k)\| \le \varepsilon$ ,停止迭代.输出 $x^k$ .否则进行第三步;

第 3 步 取  $p^k = -\nabla f(x^k)$ ;

第 4 步 进行一维搜索, 求 $t_k$ , 使得

$$f(x^k + t_k p^k) = \min_{t \ge 0} f(x^k + tp^k)$$

令 $x^{k+1} = x^k + t_k p^k$ , k := k+1, 转第**2**步。

### 1.2 阻尼牛顿法

步 0 给定终止误差值  $0 \le \varepsilon \ll 1$ ,  $\delta \in (0,1)$ ,  $\sigma \in (0,0.5)$ . 初始点  $x_0 \in \mathbb{R}^n$ . 令 k:0.

步 1 计算  $g_k = \nabla f(x_k)$ . 若  $||g_k|| \le \varepsilon$ , 停算, 输出  $x^* \approx x_k$ .

步 2 计算  $G_k = \nabla^2 f(x_k)$ , 并求解线性方程组得解  $d_k$ :

$$G_k d = -g_k \tag{3.6}$$

步3 记 $m_k$  是满足下列不等式的最小非负整数m:

$$f(x_k + \delta^m d_k) \le f(x_k) + \sigma \delta^m g_k^T d_k. \tag{3.7}$$

步 4 今  $\alpha_k=\delta^{m_k},\ x_{k+1}=x_k+\alpha_kd_k,\ k:=k+1,$  转步 $1_{\text{trips-Molog,asdn,neVigg.}}$ 4732671

# 1.3 BFGS 方法

- (1) 给定 $x^1$ ,  $\varepsilon > 0$ 。
- (2)  $H_1 = I_n$ , 计算 $g_1 = \nabla f(x^1)$ , k = 1。
- $(3) d^k = -H_k g_{k}$
- $(4) \quad f(x^k+\alpha_k d^k)=\min_{\alpha\in[0,\infty)}f(x^k+\alpha d^k), \quad \mathbb{M} x^{k+1}=x^k+\alpha_k d^k_{\ \circ}$
- (5) 若 $||\nabla f(x^{k+1})|| < \varepsilon$ , 停止, 得 $\bar{x} = x^{k+1}$ 否则执行 (6) 。
- (6)  $g_{k+1} = \nabla f(x^{k+1})$ ,  $p^k = x^{k+1} x^k$ ,  $q^k = g_{k+1} g_k$ , \(\dagger \text{iff} H\_{k+1}, \\ \dagger k = k + 1, \(\text{ig} \text{ig} \) (3) \(\dots\)

#### 2 程序编写



#### 程序架构如下:

(1) rosenbrock、beale、goldstein\_price 分别为对应函数的求值函数

```
function [value, gradient_q, hessian_q] = goldstein_price(x)
% input: [x; y] output: value gradient hessian
function [value, gradient_q, hessian_q] = rosenbrock(x)
% input: [x; y] output: value gradient hessian
function [value, gradient_q, hessian_q] = beale(x)
% input: [x; y] output: value gradient hessian
```

```
(2) damped_newton、steepest_descent、BFGS 分别为对应算法的迭代函数
function [x_bar, fmin, data] = BFGS(func, x0, epsilon)
   % output: x bar—最优点 fmin—最优值
   % input: func—目标函数 x0—初始点 epsilon—允许误差
function [x_bar, fmin, data] = damped_newton(func, x0, epsilon)
   % output: x_bar——最优点 fmin——最优值
   % input: func—目标函数 x0—初始点 epsilon—允许误差
function [x_bar, fmin, data] = steepest_descent(func, x0, epsilon)
   % output: x bar—最优点 fmin—最优值
   % input: func—目标函数 x0—初始点 epsilon—允许误差
 (3) result output 为数据可视化输出函数
function [rosenbrock_t, beale_t, goldstein_t] =
result_output(iterative_method, epsilon, x0_rosenbrock, x0_beale,
x0 goldstein)
   % input: iterative method——迭代方法
          epsilon—允许误差 default: 0.001
          x0—迭代初始点 defalut: (0, 0)
   %
 (4) main 函数调用 result output 函数输出计算结果
[rosenbrock_SteepestDescent_result, beale_SteepestDescent_result,
goldstein SteepestDescent result] = result output(@steepest descent);
[rosenbrock_DampedNewton_result, beale_DampedNewton_result,
goldstein_DampedNewton_result] = result_output(@damped_newton);
[rosenbrock BFGS result, beale BFGS result, goldstein BFGS result] =
result_output(@BFGS);
   优化结果
```

计算的结果均保存在对应的结构体中

#### >> disp(beale\_BFGS\_result)

x\_bar: [2×1 double]

fmin: 3.2917e-09

data: [1×1 struct]

iteration\_process: [10×4 table]

#### 3.1 问题最优解

#### 迭代初始点与允许误差设置如下:

```
epsilon—允许误差 default: 0.001
           x0—迭代初始点 defalut: (0, 0)
   % 为参数赋默认值
   if nargin < 2 || isempty(epsilon)</pre>
       epsilon = 0.001;
   end
   if nargin < 3 || isempty(x0_rosenbrock)</pre>
       x0_rosenbrock = [0; 0];
   end
   if nargin < 4 || isempty(x0_beale)</pre>
       x0_beale = [4; 0.6];
   end
   if nargin < 5 || isempty(x0_goldstein)</pre>
       x0_goldstein = [0.5; -0.5];
       % goldstein price 函数具有多个局部极小点,需要选取合适初始点才可迭代到全
局最优点
   end
```

### 3.1.1 rosenbrock 函数优化结果

#### (1) 最速下降算法迭代结果





# (2) 阻尼牛顿法算法迭代结果





# (3) BFGS 算法迭代结果

| x_bar<br>fmin     | [0.9995;0.9990]<br>2.4675e-07 |
|-------------------|-------------------------------|
| data              | 1x1 struct                    |
| iteration_process | 21x4 table                    |



# 3.1.2 beale 函数优化结果

# (1) 最速下降算法迭代结果





### (2) 阻尼牛顿法算法迭代结果

| <b>⊞</b> x bar    | [2.9999;0.5000] |
|-------------------|-----------------|
| fmin              | 1.2486e-09      |
| <b>⊞</b> data     | 1x1 struct      |
| iteration_process | 5x4 table       |



### (3) BFGS 算法迭代结果





# 3.1.3 goldstein\_price 函数优化结果

# (1) 最速下降算法迭代结果

| 🛨 x bar           | [9.4229e-07;-1.0000] |
|-------------------|----------------------|
| fmin              | 3.0000               |
| 🕕 data            | 1x1 struct           |
| iteration_process | 11x4 table           |



# (2) 阻尼牛顿法算法迭代结果





### (3) BFGS 算法迭代结果





# 3.2 收敛路径与收敛速率

收敛路径由黄色变为红色,代表迭代由初始点到达最终点,越靠近迭代重点红色越突出。

### 3.2.1 Rosenbrock 函数收敛路径

### (1) 最速下降法收敛路径



### 共迭代 5483 次

### (2) 阻尼牛顿法收敛路径



共迭代 141 次

### (3) BFGS 法收敛路径



共迭代 21 次 收敛速率分析:

从迭代过程图中可看出 BFGS 的收敛速率最快, 最速下降法的收敛速率最慢。 从表格(完整表格存于对应的结构体数据)中也可看出, 由于最速下降法存在锯齿现象, 在极小点附近步长极小。

| 1     | 2          | 3      | 4      |
|-------|------------|--------|--------|
| Index | Value      | X      | У      |
| 5824  | 9.1405e-07 | 0.9990 | 0.9981 |
| 5825  | 9.1244e-07 | 0.9990 | 0.9981 |
| 5826  | 9.1088e-07 | 0.9990 | 0.9981 |
| 5827  | 9.0933e-07 | 0.9990 | 0.9981 |
| 5828  | 9.0773e-07 | 0.9990 | 0.9981 |
| 5829  | 9.0612e-07 | 0.9990 | 0.9981 |
| 5830  | 9.0446e-07 | 0.9990 | 0.9981 |
| 5831  | 9.0280e-07 | 0.9991 | 0.9981 |
| 5832  | 9.0105e-07 | 0.9991 | 0.9981 |
| 5833  | 8.9930e-07 | 0.9991 | 0.9981 |
| 5834  | 8.9765e-07 | 0.9991 | 0.9981 |
| 5835  | 8.9600e-07 | 0.9991 | 0.9981 |
| 5836  | 8.9443e-07 | 0.9991 | 0.9981 |
| 5837  | 8.9285e-07 | 0.9991 | 0.9981 |
| 5838  | 8.9133e-07 | 0.9991 | 0.9981 |
| 5839  | 8.8980e-07 | 0.9991 | 0.9981 |
| 5840  | 8.8824e-07 | 0.9991 | 0.9981 |
| 5841  | 8.8667e-07 | 0.9991 | 0.9981 |

### 3.2.2 Beale 函数收敛路径

### (1) 最速下降法收敛路径



共迭代 844 次

### (2) 阻尼牛顿法收敛路径



共迭代5次

### (3) BFGS 法收敛路径



共迭代 10 次

从迭代过程图中可看出阻尼牛顿法的收敛速率最快,最速下降法的收敛速率 最慢。从表格(完整表格存于对应的结构体数据)中也可看出,由于最速下降法 存在锯齿现象,在极小点附近步长极小。

| 1     | 2          | 3      | 4      |
|-------|------------|--------|--------|
| Index | Value      | x      | У      |
| 825   | 1.4985e-06 | 3.0030 | 0.5008 |
| 826   | 1.4617e-06 | 3.0030 | 0.5007 |
| 827   | 1.4257e-06 | 3.0030 | 0.5008 |
| 828   | 1.3906e-06 | 3.0029 | 0.5007 |
| 829   | 1.3564e-06 | 3.0029 | 0.5007 |
| 830   | 1.3229e-06 | 3.0029 | 0.5007 |
| 831   | 1.2904e-06 | 3.0028 | 0.5007 |
| 832   | 1.2586e-06 | 3.0028 | 0.5007 |
| 833   | 1.2275e-06 | 3.0028 | 0.5007 |
| 834   | 1.1973e-06 | 3.0027 | 0.5007 |
| 835   | 1.1678e-06 | 3.0027 | 0.5007 |
| 836   | 1.1390e-06 | 3.0027 | 0.5007 |
| 837   | 1.1109e-06 | 3.0026 | 0.5007 |
| 838   | 1.0835e-06 | 3.0026 | 0.5006 |
| 839   | 1.0568e-06 | 3.0026 | 0.5007 |
| 840   | 1.0307e-06 | 3.0025 | 0.5006 |
| 841   | 1.0053e-06 | 3.0025 | 0.5006 |
| 842   | 9.8051e-07 | 3.0025 | 0.5006 |

# 3.2.3 Goldstein\_price 函数收敛路径如下

### (1) 最速下降法收敛路径



共迭代 11 次

### (2) 阻尼牛顿法收敛路径



共迭代6次

#### (3) BFGS 法收敛路径



#### 共迭代 10 次

从迭代过程图中可看出阻尼牛顿法与 BFGS 方法的收敛速度相近。由于 goldstein\_price 函数具有多个局部极小点,所以迭代初始点的选择较为重要,否 则会收敛至局部极小而不是全局极小。



本次迭代选择的初始点为[-0.5, 0.5], 三种算法均可以迭代到全局极小。选择初始点为[1, -3]则只有阻尼牛顿法会到达全局极小点。



### 4 算法优缺点

#### 4.1 最速下降法

从迭代过程可以看出,最速下降法往往仅在迭代开始时具有较快的收敛速度, 在三种目标函数的迭代过程中,最速下降法的迭代次数总是远远超过其他两种算 法。

#### 优点:

- (1) 程序简单, 计算量小;
- (2) 对初始点没有特别的要求;
- (3) 最速下降法是整体收敛的, 且为线性收敛

#### 缺点:

- (1) 它只在局部范围内具有"最速"属性,对整体求解过程,它的下降速度是缓慢的;
  - (2) 靠近极小值时速度减慢;
  - (3) 存在锯齿现象

#### 4.2 阻尼牛顿法

阻尼牛顿法因为牛顿方向不一定是下降方向,所以在远离极小点时很有可能 不收敛,在迭代开始时需要选择合适的初始点。

#### 优点:

- (1) 二次终止性:在满足某些条件下,阻尼牛顿法在收敛时至少二级收敛,它的收敛速度非常快。
- (2)稳定性:通过引入步长,阻尼牛顿法可以避免牛顿法在某些情况下可能出现的发散问题。
- (3) 适用于非线性问题:阻尼牛顿法可以应用于寻找非线性函数的最小值或零点。

#### 缺点:

- (1) 计算成本:阻尼牛顿法需要在每一步计算函数的黑塞矩阵(Hessian)及其逆,在处理大规模问题时算力的开支非常昂贵。
- (2) 黑塞矩阵的正定性:阻尼牛顿法需要假设黑塞矩阵是正定的,在实际问题中并不总是成立。
- (3) 初始点选择:和其他迭代优化方法一样,阻尼牛顿法的收敛性和收敛速度 受到初始点的影响。

#### 4.2 BFGS 方法

BFGS 方法是拟牛顿法的一种,它克服了牛顿法中黑塞矩阵可能非正定的问题,同样也具有二次终止性。在三种函数的迭代过程中可以看出,BFGS 方法具有良好的收敛性与迭代速度。

#### 优点:

(1) 避免直接计算黑塞矩阵: BFGS 方法只需要计算目标函数的一阶导数, 而不是直接计算二阶导数(黑塞矩阵), 减少了计算复杂性和计算成本。

(2) 超线性收敛速度: BFGS 方法在良好条件下可以具有超线性的收敛速度, 这比梯度下降法的线性收敛速度要快得多。

#### 缺点:

- (1) 存储和计算成本:尽管 BFGS 方法避免了直接计算黑塞矩阵,但是需要存储和更新一个大小为 n\*n 的矩阵,这在 n 非常大的情况下可能会导致存储和计算成本显著增加。
- (2) 线搜索的复杂性: BFGS 方法需要在每一步进行线搜索,以确定沿搜索方向的步长,增加了计算成本。
- (3) 对初始点和初始矩阵的依赖性: BFGS 方法的收敛性和收敛速度可能会受到初始点和初始矩阵选择的影响。