가상현실

(2024. 5. 21.)

이종원

(jwlee@sejong.ac.kr)

남은 일정

주차	일자	내용
12	5/21 화	강의
	5/23 목	강의
13	5/28 화	최종 프로젝트 중간발표
	5/30 목	강의
14	6/4 화	최종 프로젝트 검토
	6/6 목	휴강(현충일)
15	6/10 월	<mark>최종 프로젝트 발표 동영상(10분) 업로드</mark>
	6/11 화	최종 프로젝트 발표 (동영상 시청 및 질문/답변)
	6/13 목	<u>최종 프로젝트 체험(다른 팀의 작품 체험)</u>
16	6/18 화	<mark>기말고사</mark>
	6/20 목	최종 Project 보고서 제출

3D User Interface for VR

Recap - Tracking

- 트래킹 장비
 - Mechanical
 - Magnetic
 - Inertial
 - Optical

- Inside out vs. Outside in
 - Windows Mixed Reality
 - HTC Vive Lighthouse

Recap – VR System

- VR 입력 장치
 - 몸, 발, 핸드 헬드, 제스처, 시선
 - 상호작용 기술과 장치 분리
- VR 시스템
 - 여러 구성요소
 - 콘텐츠, 소프트웨어, 사용자 I/O 모듈
 - VR 시뮬레이션 루프
 - 시스템 지연이 병에 원인이 됨
 - 시스템 지연 감소
 - 예측 추적, 더 빠른 구성요소

Interaction in VR

Typical VR System

How can we interact in VR?

• VR 시스템은 어떻게 자연스러운 사용자 경험을 생성할 수 있을까?

Background: Human-Computer Interaction

- HCI는 의사 소통 방법을 연구함
 - 사용자와 컴퓨터는 인터페이스를 통해 의사 소통함
- 전통적인 UI 디자인 문제
 - 입력 장치
 - 상호작용 스타일
 - 사용자에게 피드백
 - 실행의 격차 / 평가의 격차
- 이 모든 것이 3D/VR 사용자 인터페이스와 연관이 있음

실행의 격차 vs. 평가의 격차

• 실행의 격차

- 사용자의 의도와 시스템이 사용자에게 허용하는 정도의 차이 또는 시스템이 얼마나 사용자의 의도를 잘 지원하는지를 의미함
- 시스템의 행위 가능성이 사용자의 의도된 행동과 얼마나 잘 일치하는지가 중요함

• 평가의 격차

- 시스템 상태 평가의 어려움과 생성된 객체가 해당 상태를 발견 및 해석을 얼마나 잘 지원 하는지를 의미함
- 시스템이 해석하기 쉽고 사람이 시스템에 대해 생각하는 방식과 일치하는 형태로 상태에 대한 정보를 제공할 때 간격이 작음

Why 3D Interaction?

- 3D/VR 어플리케이션은 유용해야 함
 - 몰입감 지원
 - 자연스러운 기술 사용
 - 시각화된 내용을 즉각적으로 보여줌
- 하지만 많은 기존의 VR 앱은 다음 중 하나임
 - 단순한 상호작용만 지원
 - 또는 심각한 사용성 문제를 갖고 있음
- 좋은 3D 사용자 인터페이스 가이드라인이 필요함

Some Definitions

- 3D 상호작용
 - HCI를 통해 사용자의 작업을 3D 공간 상황에서 수행
 - 3D 입력 장치, 3D로 매핑되는 2D 입력 장치
- 3D 사용자 인터페이스 (3D UI)
 - 3D 상호작용을 포함하는 UI
- 3D 상호작용 기술
 - 사용자가 3D UI를 사용하여 작업을 완성할 수 있도록 지원하는 방법 (하드웨어 와 소프트웨어)

Examples of 3D UIs VR and non-VR

What makes 3D interaction difficult?

- 공간 입력
- 제약 부족
- 표준 부족
- 도구 부족

- 정밀도 부족
- 피로
- 더 복잡한 레이아웃
- 지각, 인식

2003 - 2024 © MR&I Lab. SEJONG Univ. Seoul, Korea

Example: Virtual-SAP

https://www.youtube.com/watch?v=Xz_J0EK8LLs (1:09)

Moving from Mouse to Natural Interaction

2D UI in 3D

Natural 3D interaction

Natural Interface Concept - WorldBuilder

World Builder Today (Available on Steam)

https://www.youtube.com/watch?v=65u3W7wjXs0 (2017. 1. 26.)

Vision vs. Reality – Still Work to Do

Natural interface Gesture, speech Wide field of view Full body input

Limited input
Wireless, limited range tracking
Reduced field of view
2D GUI in VR

Universal 3D Interaction Tasks in VR

- 객체와 상호작용
 - 선택: 다수의 객체 중 하나 이상의 객체 선택
 - 조작: 객체 속성 수정
- 탐색 (Navigation)
 - 여행 (Travel): 시점 변경을 위한 운동 구성요소
 - 길 찾기 (Wayfinding): 인지 구성 요소; 의사 결정
- 시스템 제어
 - 시스템 상태 또는 모드를 변경하는 명령 실행

Object Interaction

Selection and Manipulation

- 선택
 - 세트에서 하나 이상의 객체 지정
- 조작
 - 객체 속성 수정
 - 위치, 방향, 크기, 모양, 색상, 질 감, 행위 등

Goals of Selection

- 객체에 액션을 표시함
- 객체에 대한 질의
- 객체 활성화
- 객체 위치로 이동
- 조작 설정

Selection Performance

- 사용자의 수행 능력에 영향을 미치는 변수들
 - 사용자로부터 객체까지 거리
 - 객체 (시각적) 크기
 - 영역에 존재하는 객체의 밀도
 - 방해물

Classification of Selection Techniques

Selection Classification

Common Selection Techniques

- 간단한 가상 손
- 광선 캐스팅
- Occlusion (가림)
- Go-go (팔 연장)

Simple Virtual Hand Technique

• 과정

- 물리적 손과 가상 손 사이에 일대일 매핑
- 객체는 가상 손으로 터치하여 선택할 수 있음
- 자연스러운 매핑

• 단점

• 손이 닿는 범위 안에 있는 객체만 선택 가능

Ray-Casting Technique

- 가상의 손에 레이저 포인터가 붙어 있음
 - 광선과 처음으로 교차하는 객체가 선택이 됨
 - 사용자는 2DOF만 제어하면 됨
- 원거리 선택에 적합한 것으로 입증 됨
- 변형
 - 원뿔 캐스팅
 - Snap-to-object rays

Example Ray Casting

https://www.youtube.com/watch?v=W1ZUBTPCL3E (1:34) 2003 - 2024 © MR&I Lab. SEJONG Univ. Seoul, Korea

Occlusion Technique

- 이미지 평면 기법 진정한 2D
- 선택 객체 (예: 손가락)을 사용하여 원하는 객체를 가림
- 눈에서 출발한 광선이 손가락을 통과하여 만나는 가장 가까운 객체 선택

Image Plane Interaction

Head Crusher technique

Sticky Finger technique

Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik, R., & Mine, M. (1997). Image Plane Interaction Techniques in 3D Immersive Environments. Proceedings of the ACM Symposium on Interactive 3D Graphics, 39-44.

http://www.cs.cmu.edu/~stage3/publications/97/conferences/3DSymposium/HeadCrusher/

Go-Go Technique

- 팔 연장 기술
- 물리적 손과 가상 손 사이에 비선형 매핑
- 근 거리와 원 거리 구분
- (선형 < D, 비선형 > D)

Poupyrev, I., Billinghurst, M., Weghorst, S., & Ichikawa, T. (1996). The Go-Go Interaction Technique: Non-linear Mapping for Direct Manipulation in VR. Proceedings of the ACM Symposium on User Interface Software and Technology, 79-80.

Precise 3D Selection Techniques

- 선택 영역 증가
 - Cone-casting (Liang, 1993)
 - Snapping (de Haan, 2005)
 - 3D Bubble Cursor (Vanacken, 2007)
 - Sphere-casting (Kopper 2011)
- 제어/표시 비율 증가
 - PRISM (Frees, 2007)
 - ARM (Kopper, 2010)

복잡한 환경 (고밀도, 가림)에 적합하지 않음

신중한 상호작용이 필요할 수 있음

Cone-Casting Spotlight Aperture

Sphere-casting (SQUAD)

- 2단계 과정
 - 구 캐스팅 후 QUAD-메뉴 선택
- 특징
 - 다수의 저 정밀도 선택
- 단점
 - QUAD-메뉴 단계가 공간 환경 외부에서 수행됨
 - 대상은 고유하거나 동일한 항목 중에서 선택 가능해야 함

Kopper, R., Bacim, F., & Bowman, D. A. (2011). Rapid and accurate 3D selection by progressive refinement. In 3D User Interfaces (3DUI), 2011 IEEE Symposium on (pp. 67-74). IEEE.

SQUAD Selection Sphere Casting Quad Selection

Quad Selection

Example: SQUAD Selection

PRISM (Frees 2005)

- 손의 속도에 따라 제어/이득 비율 변경
 - 손의 움직임이 느려짐에 따라 객체의 움직임도 느려짐
 - 손의 움직임이 빨라지면 1:1 모션 매핑 사용
- 객체 결합 작업의 성능이 두 배가 됨

 $m{D}_{object}$ is the distance the controlled object will move $m{D}_{hand}$ is the distance the hand itself moved since the last frame $m{V}_{hand}$ is the velocity of the hand over the last 500 milliseconds $m{SC}$ is Scaling Constant (meters per second)

Frees, S., & Kessler, G. D. (2005). Precise and rapid interaction through scaled manipulation in immersive virtual environments. In Virtual Reality, 2005. Proceedings. VR 2005. IEEE (pp. 99-106).

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.3296&rep=rep1&type=pdf

Goals of Manipulation

- 객체 배치
 - 디자인
 - 배치
 - 그룹화
- 도구 사용
- 탐색

Classification of Manipulation Techniques

Technique Classification by Components

Common Manipulation Techniques

- Simple virtual hand
- HOMER
- Scaled-world grab
- World-in-miniature

Simple Virtual Hand Manipulation

HOMER Technique

Hand-Centered

Object

Manipulation

Extending

Ray-Casting

- 선택: 광선 투사법
- 조작: 가상 손으로 직접 조작

• 넓은 범위의 깊이에서 조작이 가능하도록 하기 위하여 선형 매핑을 포함함

Time Bowman, D., & Hodges, L. (1997). An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments. Proceedings of the ACM Symposium on Interactive 3D Graphics, 35-38.

Example

Scaled-World Grab Technique

- 종종 가려짐과 함께 사용됨
- 선택을 위해 사용자를 확대 (또는 세계 축소) 함
- 사용자는 움직이기 전까지 이미지의 변화를 느끼지 못함

Mine, M., Brooks, F., & Sequin, C. (1997). Moving Objects in Space: Exploiting Proprioception in Virtual Environment Interaction. Proceedings of ACM SIGGRAPH, 19-26

World-In-Miniature (WIM) Technique

- 사용자의 손에 인형 집이 연결되어 있음
- 축소된 객체는 직접 조작될 수 있음
- 축소된 객체의 이동은 실제 크기의 객체 에 영향을 줌

• 탐색에도 사용될 수 있음

Stoakley, R., Conway, M., & Pausch, R. (1995). Virtual Reality on a WIM: Interactive Worlds in Miniature. Proceedings of CHI: Human Factors in Computing Systems, 265-272, and Pausch, R., Burnette, T., Brockway, D., & Weiblen, M. (1995). Navigation and Locomotion in Virtual Worlds via Flight into Hand-Held Miniatures. Proceedings of ACM SIGGRAPH, 399-400.

Example

https://www.youtube.com/watch?v=Ytc3ix-He4E (2:12)

Voodoo Doll Interaction

- 축소된 객체 조작
 - 객체의 복사본 적용
 - 실제 객체에 복사된 작업이 적용됨
 - 원거리 조작을 지원함
- 양손 기술
 - 한 손은 정지된 기준 프레임 설정
 - 다른 손으로 객체 조작

Pierce, J. S., Stearns, B. C., & Pausch, R. (1999). Voodoo dolls: seamless interaction at multiple scales in virtual environments. In Proceedings of the 1999 symposium on Interactive 3D graphics (pp. 141-145). ACM.

Two-Handed Interaction

- 대칭 vs. 비대칭
 - 대칭: 양손이 동일한 행동을 수행함
 - 비대칭: 양손이 서로 다른 동작을 수행함
- 주 사용 손 vs. 부 사용 손
 - Guiard's 원칙
 - 부 사용 손은 기준 프레임 제공
 - 부 사용 손은 대략적인 작업에 사용되고 주 사용 손은 세밀한 작업에 사용됨
 - 조작은 부 사용 손으로부터 시작됨

Guiard, Y., "Asymmetric Division of Labor in Human Skilled Bimanual Action: The Kinematic Chain as a Model," J. Motor Behavior, 19 (4), 1987, pp. 486-517.

Symmetric Bimanual Technique

- iSith (Wyss 2006)
- 광선 투사법이 포함된 두 개의 6 DOF 컨트롤러 사용
- 두 개의 광선 교차점이 상호작용 되는 지점을 결정함

Wyss, H. P., Blach, R., & Bues, M. (2006, March). iSith-Intersection-based spatial interaction for two hands. In 3D User Interfaces, 2006. 3DUI 2006. IEEE Symposium on (pp. 59-61). IEEE

Asymmetric Bimanual Technique

- Spindle + Wheel (Cho 2015)
- 손에 들고 사용하는 컨트롤러
 - 두 개 6DOF
 - 주 사용 손과 부 사용 손
- 다른 손을 기준으로 하는 손의 움직임 을 통해 7 DOF 입력 제공

Cho, I., & Wartell, Z. (2015). Evaluation of a bimanual simultaneous 7DOF interaction technique in virtual environments. In 3D User Interfaces, 2015 IEEE Symposium on (pp. 133-136). IEEE.

Demo: Spindle + Wheel 7 DOF Input

https://www.youtube.com/watch?v=nF4egFHyLYM (3:04)

Design Guidelines for Manipulation

- 모든 경우에 적용할 수 있는 하나의 최고의 조작 기술은 없음
- 상호작용 기술을 장치에 매핑 함
- 가능한 경우 자유도 축소
- Clutching을 줄일 수 있는 기술 사용
- 잡기에 민감함(grasp-sensitive) 객체 선택 방법 사용 고려
- 조작을 위한 선택 및 잡기를 위한 포인팅 기술 사용
- 새로운 어플리케이션에 특화된 방법을 디자인하는 장점이 큰 경우가 아니라면 기존 기술 사용

