

İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

LOJİK DEVRE TASARIMI LABORATUVARI DENEY RAPORU

DENEY NO : 5

DENEYİN ADI : ÖTELEMELİ SAKLAYICI ve SERİ TOPLAYICI UYGULAMASI

DENEY TARİHİ : 15.05.2024 RAPOR TESLİM TARİHİ : 29.05.2024

GRUP NO : A - 2

DENEYİ YAPANLAR :

No Adı Soyadı İmza

1306220012 Muhammet Talha ODABAŞI

1306220047 Eda ERER

1306210007 Baran UYGUN

Öğretim Üyesi: Dr. Öğr. Üyesi Muhammed Erdem İSENKUL

Asistanlar: Araş.Gör. Ümmet OCAK – Araş.Gör. Mustafa ŞİRİN

Ötelemeli sÖtelemeli s	aklayıcıların incelenm aklayıcılar kullanarak	esi seri toplama devresi	nin gerçeklenmesi	
	J	1	<i>U</i> ,	

2. DENEY ÖNCESİ ÇALIŞMALARI

1.	Saklayıcılar konusunu gözden geçiriniz: Geçen sene işlediğimiz en son konu olduğu
	için ve bu sene Bilgisayar Organizasyon Tasarımı dersindede işlediğimiz için konuya
	hakimiz.

2.	Deneyde kurulacak	olan	devreleri	inceleyiniz:	Gerekli	incelemeleri	ve	analizleri
	yaptık.							

3. DENEYDE KULLANILAN ELEMANLAR

- **© CADET**
- ① **74xx194** Üniversal Ötelemeli Saklayıcı (Universal Shift Register) (2 adet)
- ① **74xx08** VE (AND) kapısı
- 74xx100 VE (AND) Rapisi
 74xx174 D flip-flopu (2 adet)
 74xx283 4-bitlik ikili tam toplayıcı

4. ÖLÇME SONUÇLARI

ADIM 1: 74xx299 Üniversal Ötelemeli Saklayıcıyı CADET'e yerleştiriniz. Gerekli giriş ve çıkış bağlantılarını yapınız

ADIM 2: Seçme girişlerini değiştirerek, bütün fonksiyonları inceleyiniz

Şekillerde görüldüğü gibi farklı input değerleri verilerek fotoğraflar çekilmiştir.

ADIM 3: Şekil 3'de ki seri toplama devresini kurunuz.

Bu adımdan itibaren lab süremiz dolduğu için kalan kısımları logisim üzerinden gerçekledik.

• 79xx194 devresi bulunmadığı için önce o devreyi oluşturduk.

• 74xx174 devresi de bulunmadığı için onuda D Flip Floplar ile yaptık.

ADIM 4: A=1101 ve B=1001 değerlerini saklayıcıya yükleyiniz.

• Devreyi oluşturduktan sonra şekildeki gibi devrelere gerekli değerleri yükledik.

ADIM 5: Saklayıcıları sağa kaydırmalı olarak ayarlayınız.

ADIM 6: Kaydırmalı Kaydedici B 'ye Dış giriş olarak lojik-0 veriniz

• İki adımda istenilen durumlar oluşturulmuştur. 01 modunu seçerek sağa kaydırmalı olarak ayarlanmış ve B devresinin P0-3 girişleri 0 olarak verilmiştir:

ADIM 7: Başlangıçta D flip-flobunu sıfırlayınız.

 Yanda görüldüğü üzere Sil girişi 1 verilerek D Flip Flop sıfırlanmıştır.

ADIM 8: Saat işaretini titreşimsiz buton (debounced pushbutton) ile uygulayınız.

• Clock girişini istenilen buton ile değiştirip kullanabiliriz.

ADIM 9: A saklayıcının çıkışlarını Çıkış Led'lerine bağlayarak her adımdaki değişimleri gözlemleyiniz.

Şekilde görüldüğü üzere A saklayıcısının çıkışlarına LED bağlanmış ve belirli girdilere göre verdiği çıktılar gösterilmiştir. (Kırmızı: 1, Yeşil: 0)

5. DENEY SONU SORULARI

- Tablo 2 de gösterildi#i gibi, mod fonksiyonları değiştirilmiş ötelemeli saklayıcı devresini tasarlayınız?
 - Bu devreyi Adım 3' de logisim üzerinden gerçeklediğimiz için tekrardan gerçeklemiyoruz.
- Şekil 3'de incelediğiniz seri toplama devresinde bir değişiklik yaparak seri çıkarma devresinin nasıl elde edilebileceğini gösteriniz? Bir örnek çıkarma işlemini devre üzerinde sayısal değerler olarak gösteriniz.
 - B' nin girişlerinin 2' ye tümlemesini alırsak çıkarma devresi olacaktır. Aşağıda görüldüğü üzere 1111 yüklü değerden 0001 değeri çıkarılmış ve 1110 sonucu elde edilmiştir.

S1	S0	İşlem
0	0	Değişiklik yok
0	1	Paralel giriş
1	0	Tümleme
1	1	Silme

Yandaki tablodaki işlemleri gerçekleştiren devreyi
 D Flip Flop ile tasarlamamız istenmiş.

Tablo yanda görüldüğü gibi Logisim üzerinden gerçeklenmiştir. Not kapısı ile tümleme alınmış, silme işlemi için ise 11 girişi verildiğinde Lojik-0 değeri D Flip Flop içerisine yüklenmiştir.

6. SONUÇ VE YORUMLAR

 Flip Flop ve MUX devreleri kullanarak temel seviyede register (yazmaç) yapabileceğimiz öğrendik. Öğrenmenin yanında 4 girişli mini bir kaydırmalı saklayıcıda gerçekledik.

•	74LS194 dev	resini kull	anarak k	kayd	ırmal	ı sak	layıcının	davranışl	larını g	gözleml	edik.