

Our Team

Prashanth Chari

Yukti Sanjay Jain

Ashvin Raj

Akshita Sharma

Business Problem Overview

Dynamic Market Challenges

Hosts in Boston might face difficulties setting optimal nightly rates due to fluctuating demand and competitive market conditions, risking revenue loss or low occupancy

Data Overwhelm

Hosts often struggle to effectively utilize vast amounts of market and customer behavior data, leading to suboptimal pricing decisions

Evolving Consumer

Expectations: Rapidly changing guest preferences in the postpandemic era require hosts to adapt quickly, a challenge without sophisticated analytical tools

Objectives

Optimizing Revenue through Accurate Pricing

Competitive Edge in a Dynamic Market

Guest Satisfaction and Reputation Management

Adaptability to Market Dynamics

Utilizing Technology for Informed Decisions

Dataset Description

- The Airbnb dataset for Boston contains a total of 47,606 records and 111 columns.
- Among these columns are 8 categorical variables and 103 numerical variables, that including various types of data such as IDs, ratings, number of reviews, financial figures, and geographical data
- Detailed information on Airbnb listings and host performance.
 - IDs for hosts and properties.
 - Location details and geographical data.
 - Property characteristics and booking specifics.
 - Host performance metrics and financial data.
 - Indicators: pet allowance, instant booking availability.

Process Overview

- Data Cleaning and Preprocessing
- Feature Engineering
- Model Development
- Model Evaluation
- Parameter tuning
- Interpretation and Insights

Exploratory Data Analysis (EDA)

Summary Statistics of the target variable (Nightly Rate)

	Nightly	Rate
count	47606.000	000
mean	253.504	951
std	171.638	728
min	10.000	000
25%	140.000	000
50%	220.000	000
75%	309.000	000
max	1976.000	000

Boxplot of Bedrooms

Distribution of Nightly Rate

Nightly Rate vs Bedrooms

Exploratory Data Analysis (EDA)

Correlation Matrix

Distribution of Average Review Ratings

Average Nightly Rate

Data Cleaning and Preprocessing

Outlier Treatment

Detected data points that significantly skewed the dataset, leading to impractical scenarios.

For instance, a data point featuring 25 bedrooms with a nightly rate lower than that of a one-bedroom apartment.

Handling Missing Values

Dropping Rows: Eliminated rows with missing bedroom data to ensure data integrity.

Imputing Missing Values:

- a) Categorical Data: Employed the mode for imputing missing values in categorical data.
- b) Geospatial Imputation: Additionally, imputed neighborhood values based on the corresponding zip code.

Preprocessing Relevant Data

Recognized columns highly correlated with the target variable.

Excluded unnecessary columns from the analysis; for instance, prev_nightly rate was highly correlated with nightly rate but omitting it prevented biased model results.

One-hot encoded categorical variables (Property Type, Listing Type, Neighborhood)

Feature Engineering

SuperhostRatio_Zipcode: Reflects the concentration of quality hosts in an area, influencing perceived value and price.

Superhost_Status_Frequency: Indicates host quality and reputation, affecting listing desirability and pricing power.

ListingsCount_Zipcode: Measures market saturation, which can impact pricing through supply and demand dynamics.

OccupancyRate_Zipcode: Signals area demand, informing potential rate setting based on local popularity.

Bathroom_Bedroom_Ratio: Suggests property comfort level, potentially justifying higher rates for greater convenience.

Ratio_5_Star_Superhost: Combines guest satisfaction with host status, which can correlate with higher achievable prices.

```
superhost_ratio_zipcode = subset_data.groupby('Zipcode')['host_is_superhost_in_period'].mean().rename('SuperhostRatio_Zipcode')
subset_data['Superhost_Status_Frequency'] = subset_data.groupby('Airbnb Host ID')['host_is_superhost_in_period'].transform('sum')
listings_count_zipcode = subset_data['Zipcode'].value_counts().rename('ListingsCount_Zipcode')
subset_data['OccupancyRate_Zipcode'] = subset_data.groupby('Zipcode')['numReserv_pastYear'].transform('mean') / subset_data['available_subset_data['Bathroom_Bedroom_Ratio'] = subset_data['Bathrooms'] / subset_data['Bedrooms']
subset_data['Ratio_5_Star_Superhost'] = subset_data.apply(
    lambda x: x['num_5_star_Rev_pastYear'] / x['numReviews_pastYear'] if (x['host_is_superhost_in_period'] == 1 and x['numReviews_pastYear']
axis=1
```


Models Chosen and Why?

Our approach optimizes model accuracy for robustness and interpretability for analyzing business impact

Gradient Boosting:

- For selecting significant variables based on feature importance
- For predicting nightly rates based on the selected predictors, that can be used by the hosts for competitive edge
- Higher model accuracy that withstands inconsistencies in real world data

Train-test: Prediction - 85:15

Train: Test - 80: 20

R-squared - 0.76 MAPE ~ 10%

Prediction R-squared: 0.72

Correlation of prediction vs actual night rate 0.9

Lasso Regression

- For better model interpretability that helped us analyze business impact
- Selecting features from gradient boosting, including interaction terms and refining using lasso shrinkage further increased accuracy
- Coefficients gave us the monetary impact of the most significant features filtered by the model

Validation R-squared: 0.68

MAPE ~ 16.83%

Gradient Boosting

Selecting the most important features

- Excluding variables correlated to pricing or "Nightly Rate" steers the model to assess actionable host-controlled factors, guiding strategy improvements rather than mirroring past prices.
- Omitting direct pricing variables avoids circular logic, ensuring the model's insights reflect genuine market influences on pricing decisions.

Feature Importance in the Selected Model: prev Nightly Rate: 0.547615110874176

prev available days aveListedPrice: 0.08846108615398407

Quarter 2019Q2: 0.08601415157318115

prev_numReserv_pastYear: 0.06635438650846481

available_days_aveListedPrice: 0.037523627281188965

Cleaning Fee (USD): 0.03171306103467941 Neighborhood West End: 0.029507147148251534

Scraped Month: 0.027274372056126595 rating ave pastYear: 0.02705472521483898

Bathrooms: 0.021449275314807892

Instantbook Enabled: 0.02056662179529667
ListingsCount_Zipcode: 0.014577098190784454

Zipcode 2110.0: 0.0018894386012107134

Feature importance analysis identified key determinants of nightly rates for Airbnb listings in Boston. The top features influencing pricing decisions include:

Feature Importance in the Selected Model:
ListingType_Entire home/apt: 0.233995258808136
Bedrooms: 0.13582372665405273
Bathrooms: 0.11631103605031967
Cleaning Fee (USD): 0.07857580482959747
SuperhostRatio_Zipcode: 0.03350621461868286
numReviews_pastYear: 0.025189891457557678

prev_numReserv_pastYear: 0.023794282227754593
Max Guests: 0.0188003983348608

Neighborhood_South End: 0.018769090995192528 Superhost_Status_Frequency: 0.01838596537709236 Bathroom_Bedroom_Ratio: 0.017800912261009216 PropertyType_House: 0.017240483313798904

Neighborhood_Fenway/Kenmore: 0.016919365152716637

Number of Photos: 0.016075685620307922 num_5_star_Rev_pastYear: 0.015307492576539516 rating_ave_pastYear: 0.015287368558347225 ListingsCount Zipcode: 0.014797091484069824

Pets Allowed: 0.013757587410509586 available days: 0.013361964374780655

PropertyType_Serviced apartment: 0.013296765275299549 PropertyType_Entire apartment: 0.011352023109793663

Neighborhood_Downtown: 0.010532181710004807 PropertyType_Apartment: 0.010487598367035389 Neighborhood_Beacon Hill: 0.010253398679196835

PropertyType Room in boutique hotel: 0.010149852372705936

PropertyType_Townhouse: 0.009668545797467232
PropertyType_Condominium: 0.009410306811332703
Instantbook Enabled: 0.009309399873018265
Neighborhood_West End: 0.008953629061579704
OccupancyRate_Zipcode: 0.007971134036779404
Scraped Month: 0.007817287929356098

Neighborhood_North End: 0.007343571167439222 Ratio 5 Star Superhost: 0.006208427716046572

PropertyType_Loft: 0.0059889075346291065 PropertyType_Private room: 0.004956474993377924 prev host is superhost in period: 0.003960586152970

PropertyType_Villa: 0.003432236844673753 PropertyType_Place: 0.002503449795767665 PropertyType Resort: 0.0018218582263216376

PropertyType_Boutique hotel: 0.0005601114244200289
PropertyType Bed and breakfast: 0.00032260012812912464

PropertyType_Private room in house: 0.0

Lasso regression

```
import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler, PolynomialFeatures
    from sklearn.linear_model import LassoCV
    from sklearn.pipeline import Pipeline
    # Assuming 'X top 25' is your DataFrame with the original predictors, and 'y' is your target variable
    # Generate interaction terms
    poly = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)
    X interactions = poly.fit transform(X top 25)
    # Create a DataFrame with interaction terms
    column_names = poly.get_feature_names_out(input_features=X_top_25.columns)
    X interactions_df = pd.DataFrame(X interactions, columns=column_names)
    # List of interaction terms to remove
    terms_to_remove = [
         'ListingType_Entire home/apt Neighborhood South End',
         'ListingType_Entire home/apt Superhost_Status_Frequency',
         'Bedrooms Neighborhood South End',
         'Bedrooms PropertyType_Serviced apartment',
         'Bathrooms available_days',
         'Cleaning Fee (USD) PropertyType Serviced apartment',
         'SuperhostRatio Zipcode ListingsCount Zipcode',
         'Neighborhood_South End PropertyType_Serviced apartment',
         'Number of Photos PropertyType_Serviced apartment'
        # Add other terms as needed
    # Remove these terms from your DataFrame
    X reduced = X interactions_df.drop(columns=terms_to_remove, errors='ignore')
    # Split the data into training and test sets for validation purposes
    X_train, X_test, y_train, y_test = train_test_split(X_reduced, y, test_size=0.2, random_state=42)
    # Create a pipeline that standardizes the data, then applies Lasso
    pipeline = Pipeline([
        ('scaler', StandardScaler()),
        ('lasso', LassoCV(cv=5, random_state=0, max_iter=10000))
    # Fit the model on the training data
    pipeline.fit(X_train, y_train)
    # The best alpha value found by cross-validation
    best_alpha = pipeline.named_steps['lasso'].alpha_
    print(f"Best alpha found by cross-validation: {best_alpha}")
    # Calculate R-squared on the test set
    r squared test = pipeline.score(X test, v test)
```

```
beurooms PropertyType_serviceu apartment,
    'Bathrooms available days'.
    'Cleaning Fee (USD) PropertyType_Serviced apartment',
    'SuperhostRatio_Zipcode ListingsCount_Zipcode',
    'Neighborhood South End PropertyType Serviced apartment',
    'Number of Photos PropertyType_Serviced apartment'
    # Add other terms as needed
# Remove these terms from your DataFrame
X_reduced = X_interactions_df.drop(columns=terms_to_remove, errors='ignore')
# Split the data into training and test sets for validation purposes
X_train, X_test, y_train, y_test = train_test_split(X_reduced, y, test_size=0.2, random_state=42)
# Create a pipeline that standardizes the data, then applies Lasso
pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('lasso', LassoCV(cv=5, random_state=0, max_iter=10000))
# Fit the model on the training data
pipeline.fit(X_train, y_train)
# The best alpha value found by cross-validation
best_alpha = pipeline.named_steps['lasso'].alpha_
print(f"Best alpha found by cross-validation: {best_alpha}")
# Calculate R-squared on the test set
r_squared_test = pipeline.score(X_test, y_test)
print(f"R-squared on the test set: {r_squared_test}")
mape = (mean absolute error(y test, y pred) / y test).mean() * 100
print(f"Mean Absolute Percentage Error (MAPE): {mape:.2f}%")
# Extract and display the coefficients
lasso_coefs = pipeline.named_steps['lasso'].coef_
feature names = X reduced.columns
lasso_coefficients = pd.Series(lasso_coefs, index=feature_names)
print("Lasso coefficients:")
print(lasso coefficients)
lasso_coefficients.to_csv('lasso_coefficients.csv',header=True)
non_zero_coefs = lasso_coefficients[lasso_coefficients != 0]
print("Non-zero Lasso coefficients:")
print(non_zero_coefs)
Best alpha found by cross-validation: 0.09675834192763925
R-squared on the test set: 0.6802052922027048
Mean Absolute Percentage Error (MAPE): 16.83%
```


Pricing Analysis

Nightly Rates:

 The difference between predicated nightly rates and actual nightly rates was calculated for each neighborhood, revealing variations across regions.

Overpriced Neighborhoods:

 The analysis identified several neighborhoods where the average nightly rates exceed the overall average. Notable overpriced neighborhoods include Back Bay.

Underpriced Neighborhoods:

Conversely, some neighborhoods display lower averates, indicating potential opportunities for travefalling into this category.

Recommendations:

Pricing Adjustments:

 Property owners in overpriced neighborhoods might consider adjusting their rates during high-demand seasons to remain competitive.

Marketing Strategies:

• Owners in underpriced neighborhoods could leverage their pricing advantage in marketing campaigns to attract cost-conscious travelers.

Limitations:

- **1.Data Scope :** The analysis is based on available data and assumes that nightly rates accurately reflect property value.
- **2.External Factors :** External factors such as local events, festivals, or economic conditions were not considered in this analysis.

Key Take-aways from Lasso Model

Entire homes/apt attract higher rates (+\$19.22).

House listings tend to be priced lower (-\$24.04).

Consider bathroom-bedroom ratio for optimal pricing (-\$30.46).

Quality photos positively influence rates (+\$23.47).

Interaction Terms:

- •More guests in entire home/apt listings reduce rates.(-\$18.51)
- •Cleaning fee impact amplified by the number of bedrooms.(\$40.29)
- •Higher super host ratios positively affect rates with increased guests, basically, in the areas having more super hosts, having more guest increases the nightly rate. (\$21.21)

Conclusion

Hosts/Property Owners

• Hosts can set competitive prices that increase occupancy rates and revenue, leading to a higher return on investment.

Airbnb Platform

 Accurate pricing maximizes bookings, directly impacting Airbnb's commission-based revenue and enhances customer satisfaction

Impact for Stakeholders

Customers

• Customers benefit from clear and reasonable pricing, enhancing trust and engagement with the Airbnb platform.

Location-Based Pricing

 Properties in sought-after areas such as Beacon Hill and Fenway/Kenmore command higher rates, reflecting their high demand.

Business Insights

Influence of Features on Pricing

• Factors like instant booking availability and the number of photos listed significantly affect nightly rates

Dynamic and Responsive

The model is capable of adjusting to seasonal trends, major events, and changing travel patterns, facilitating flexible pricing strategies

Extra Slides

EDA (Extra)

Categorical Variables Summary:						
	Property Type	Listing Type	City_x			
Apartment	36059.0	NaN	NaN			
Bed & Breakfast	15.0	NaN	NaN			
Bed & Breakfast	3.0	NaN	NaN			
Bed and breakfast	485.0	NaN	NaN			
Boat	57.0	NaN	NaN			
Boston	NaN	NaN	47606.0			
Boutique hotel	2.0	NaN	NaN			
Bungalow	6.0	NaN	NaN			
Bus	2.0	NaN	NaN			
Cabin	4.0	NaN	NaN			
Camper/RV	2.0	NaN	NaN			
Castle	16.0	NaN	NaN			
Chalet	16.0	NaN	NaN			
Condominium	4092.0	NaN	NaN			
Cottage	1.0	NaN	NaN			

R^2 and MAPE score for the gradient boosting model

```
import xgboost as xgb
    from sklearn.metrics import r2 score, mean squared error, mean absolute error
    from math import sqrt
    import numpy as np
   # Define the MAPE function
   def mean_absolute_percentage_error(y_true, y_pred):
        """Calculate the mean absolute percentage error from y_true and y_pred"""
        y_true, y_pred = np.array(y_true), np.array(y_pred)
        # Avoid division by zero
        y_true = np.where(y_true == 0, np.nan, y_true)
        mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100
       return np.nanmean(mape)
   # Predicting on the test set
   y_pred = model_selected.predict(X_test)
   # Calculate R-squared
   r2 = r2 score(y test, y pred)
   print(f"R-squared: {r2}")
    mape = mean_absolute_percentage_error(y_test, y_pred)
    print(f"Mean Absolute Percentage Error (MAPE): {mape}%")
   # Optional: Feature Importance
   print("\nFeature Importance in the Selected Model:")
   for idx in sorted idx selected:
       print(f"{X_train.columns[idx]}: {feature_importance_selected[idx]}")
R-squared: 0.7678296257408863
    Mean Absolute Percentage Error (MAPE): 10.728018848757856%
   Feature Importance in the Selected Model:
   ListingType Entire home/apt: 0.233995258808136
   Bedrooms: 0.13582372665405273
   Bathrooms: 0.11631103605031967
   Cleaning Fee (USD): 0.07857580482959747
   SuperhostRatio Zipcode: 0.03350621461868286
   numReviews_pastYear: 0.025189891457557678
   prev_numReserv_pastYear: 0.023794282227754593
   Max Guests: 0.0188003983348608
   Neighborhood_South End: 0.018769090995192528
   Superhost Status_Frequency: 0.01838596537709236
   Bathroom Bedroom Ratio: 0.017800912261009216
   PropertyType House: 0.017240483313798904
   Neighborhood Fenway/Kenmore: 0.016919365152716637
   Number of Photos: 0.016075685620307922
   num_5_star_Rev_pastYear: 0.015307492576539516
   rating_ave_pastYear: 0.015287368558347225
   ListingsCount_Zipcode: 0.014797091484069824
```


Data pre-processing: imputing 'Neighborhood'

```
Mapping Neighborhood and Zipcode
 import pandas as pd
 # Assuming 'subset data' is your DataFrame
 # Step 1: Create a mapping from Zipcode to Neighborhood
 zipcode to neighborhood = subset data.dropna(subset=['Neighborhood', 'Zipcode'])
 zipcode to neighborhood = zipcode to neighborhood.groupby('Zipcode')['Neighborhood'].agg(pd.Series.mode)
 # Step 2: Fill missing Neighborhood values based on Zipcode
 def fill neighborhood(row):
     if pd.isna(row['Neighborhood']) and row['Zipcode'] in zipcode_to_neighborhood:
         return zipcode to neighborhood[row['Zipcode']]
     else:
         return row['Neighborhood']
 subset data['Neighborhood'] = subset data.apply(fill neighborhood, axis=1)
 # Check results
 print(subset data[['Zipcode', 'Neighborhood']].head())
   Zipcode Neighborhood
    2128.0 East Boston
    2128.0 East Boston
    2128.0 East Boston
   2128.0 East Boston
 4 2128.0 East Boston
```


Data Splitting for Model Training and Testing and Prediction

```
model_building_set, prediction_set = train_test_split(subset_data, test_size=0.15, random_state=42)
X = model_building_set[selected_features]
y = model_building_set['Nightly Rate']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 0.2 here is 20% of 85%
# Train the XGBoost model
model_selected = xgb.XGBRegressor()
model_selected.fit(X_train, y_train)
# Evaluate the model using X_test and y_test, as before
# ...
```


Nightly rate vs Predicted Nightly Rate

```
[184] import pandas as pd
      import xgboost as xgb
      from sklearn.model selection import train test split
      # Assuming subset data is your main DataFrame and selected features contains the feature names used in the model
      selected features = [
          'Scraped Month',
          'Instantbook Enabled', 'ListingsCount Zipcode', 'Cleaning Fee (USD)',
          'rating ave pastYear',
          'Bathrooms', 'prev_numReserv_pastYear', 'Neighborhood_West End', 'PropertyType_Loft','num_5_star_Rev_pastYear','prev_host
          'Max Guests', 'Number of Photos', 'numReviews_pastYear', 'Bathroom_Bedroom_Ratio', 'Bedrooms', 'PropertyType_Serviced apa
          # Add other important features as needed
      # Splitting the data into features (X) and target (y)
      X = subset_data[selected_features]
      y = subset_data['Nightly Rate']
      # Training the model on the entire dataset
     model = xgb.XGBRegressor()
      model.fit(X, y)
      # Generating predictions for the entire dataset
      subset data['Predicted Nightly Rate'] = model.predict(X)
      # Now, subset data includes a new column with predicted nightly rates
      print(subset data[['Nightly Rate', 'Predicted Nightly Rate']].head())
        Nightly Rate Predicted Nightly Rate
          159.000000
                                  196.936356
          169.666667
                                  188.439224
          193.750000
                                  188.792007
          200.000000
                                  206.698532
          200.000000
                                  190.301590
```

```
# Calculating the Pearson correlation coefficient between actual and predicted nightly rates correlation = subset_data['Nightly Rate'].corr(subset_data['Predicted Nightly Rate'])

print(f"Correlation between actual and predicted nightly rates: {correlation}")

Correlation between actual and predicted nightly rates: 0.9071222311071525
```


Over priced vs Under priced

```
# Create a new column for price difference
    subset data['Price Difference'] = subset data['Predicted Nightly Rate'] - subset data['Nightly Rate']
    # Categorize listings based on price difference
    conditions = [
        (subset data['Price Difference'] > 0), # Charging less than predicted
        (subset data['Price Difference'] < 0) # Charging more than predicted
    choices = ['Underpriced', 'Overpriced']
    subset data['Pricing Category'] = np.select(conditions, choices, default='Accurately Priced')
    # View the first few rows
    print(subset data[['Nightly Rate', 'Predicted Nightly Rate', 'Price Difference', 'Pricing Category']].head())
       Nightly Rate Predicted Nightly Rate Price Difference Pricing Category
                                                                 Underpriced
       159.000000
                                196.936356
                                                   37.936356
                                                                 Underpriced
       169.666667
                                188.439224
                                                   18.772558
                                                               Overpriced
    2 193.750000
                                188.792007
                                                   -4.957993
                                                                 Underpriced
         200.000000
                                206.698532
                                                   6.698532
         200.000000
                                190.301590
                                                   -9.698410
                                                                  Overpriced
```


Downtown vs Back Bay

https://www.fodors.com/community/united-states/best-location-to-stay-when-visiting-boston-back-bay-or-downtown-927274/

```
# Assuming 'nightly_rate' is the column name for the nightly rate in your DataFrame
       # and 'Neighborhood' is the column for neighborhood names
       # Group by 'Neighborhood' and calculate the mean of 'nightly_rate'
       average_rates = subset_data.groupby('Neighborhood')['Nightly Rate'].mean()
       # Display the average nightly rate for each neighborhood
       print(average rates)
   Neighborhood
       Back Bay
                        276.132634
                        239.306306
       Beacon Hill
       Brookline
                        249.811458
       Downtown
                        263.250962
                        188.727573
       East Boston
       Fenway/Kenmore 268.410087
       North End
       South Boston
                       257.977901
                        241.387673
       South End
                        302.902623
       Name: Nightly Rate, dtype: float64
```

```
# Group by 'Neighborhood' and calculate the mean of 'nightly_rate'
       average_rates = subset_data.groupby('Neighborhood')['Nightly Rate'].mean()
       # Display the average nightly rate for each neighborhood
       print(average_rates)
       Neighborhood
       Back Bay
                         276.132634
       Beacon Hill
                         239.306306
       Brookline
                         263 250962
       Downtown
       East Boston
                         188.727573
       Fenway/Kenmore
                         241.834864
       North End
       South Boston
                         257.977901
                         302.902623
       West End
       Name: Nightly Rate, dtype: float64
[205] # Analyzing common features for 'Overpriced' listings
       overpriced_listings = subset_data[subset_data['Pricing Category'] == 'Overpriced']
       overpriced_analysis = {
           'Most Common Neighborhood': overpriced_listings['Neighborhood'].mode()[0],
       # Output the analysis for overpriced listings
       for feature, value in overpriced_analysis.items():
           print(f"{feature}: {value}")
   Most Common Neighborhood: Back Bay
```

```
data.reset_index(drop=True, inplace=True)
subset data.reset index(drop=True, inplace=True)
# Adding the original 'Property Type' column back to the subset_data
subset_data['Property Type'] = data['Property Type']
# Ensure indices are aligned between 'data' and 'subset_data'
data.reset index(drop=True, inplace=True)
subset_data.reset_index(drop=True, inplace=True)
# Adding the original 'Neighborhood' column back to the subset data
subset_data['Neighborhood'] = data['Neighborhood']
# Example: Analyzing common features for 'Underpriced' listings
underpriced_listings = subset_data[subset_data['Pricing Category'] == 'Underpriced']
# Calculate mean, median for numerical features and mode for categorical features
     'Most Common Neighborhood': underpriced listings['Neighborhood'].mode()[0],
# Output the analysis for underpriced listings
for feature, value in underpriced_analysis.items():
   print(f"{feature}: {value}")
Most Common Neighborhood: Downtown
```


Backward Selection Model Tried

```
Number of interaction features: 277
Number of names in interaction feature names: 277
All feature names are unique
Shape of final DataFrame after renaming: (23035, 277)
First few feature names: ['Intercept', 'ListingType Entire home/apt', 'ListingType Entire home/apt x Bathrooms', 'ListingType Entire home/apt x Cleaning Fee (USD)']
First few columns of DataFrame: Index(['Intercept', 'ListingType Entire home/apt',
      'ListingType Entire home/apt x Bedrooms',
      'ListingType Entire home/apt x Bathrooms',
      'ListingType Entire home/apt x Cleaning Fee (USD)'],
     dtype='object')
                          OLS Regression Results
______
Dep. Variable:
                       Nightlv Rate
                                     R-sauared:
Model:
                                                                    0.586
                                OLS Adj. R-squared:
Method:
                      Least Squares F-statistic:
                                                                    218.0
Date:
                    Sat, 09 Dec 2023 Prob (F-statistic):
                                                                     0.00
                                     Log-Likelihood:
Time:
                           01:00:02
                                                               -1.3939e+05
No. Observations:
                              23035
                                     AIC:
                                                                2.791e+05
Df Residuals:
                              22884
                                     BIC:
                                                                2.803e+05
Df Model:
                                150
Covariance Type:
                          nonrobust
                                                                     coef
                                                                             std err
                                                                                                   P>|t|
                                                                                                              [0.025
                                                                                                                         0.975]
Intercept
                                                                  277.0514
                                                                              29.843
                                                                                         9.284
                                                                                                   0.000
                                                                                                             218.557
                                                                                                                        335.546
ListingType Entire home/apt x Cleaning Fee (USD)
                                                                  -6.1529
                                                                              0.564
                                                                                       -10.919
                                                                                                   0.000
                                                                                                             -7.257
                                                                                                                         -5.048
ListingType Entire home/apt x prop 5 star Rev pastYear
                                                                 -889.7278
                                                                             76.581
                                                                                       -11.618
                                                                                                   0.000
                                                                                                          -1039.831
                                                                                                                       -739.624
ListingType_Entire home/apt_x_prev_numReserv_pastYear
                                                                   0.7810
                                                                              0.056
                                                                                        14,048
                                                                                                   0.000
                                                                                                              0.672
                                                                                                                         0.890
ListingType Entire home/apt x Max Guests
                                                                 104.0374
                                                                             10.273
                                                                                        10.127
                                                                                                   0.000
                                                                                                             83.902
                                                                                                                        124.173
ListingType Entire home/apt x Neighborhood South End
                                                                 -369.9175
                                                                             77.762
                                                                                        -4.757
                                                                                                   0.000
                                                                                                            -522.337
                                                                                                                       -217,498
ListingType Entire home/apt x Superhost Status Frequency
                                                                  -6.9896
                                                                              1.229
                                                                                        -5.687
                                                                                                   0.000
                                                                                                             -9.398
                                                                                                                        -4.581
ListingType Entire home/apt x PropertyType House
                                                                                        2.031
                                                                                                             12,493
                                                                                                                        706,547
                                                                 359.5196
                                                                             177,049
                                                                                                   0.042
ListingType Entire home/apt x Number of Photos
                                                                   8.8933
                                                                              1.415
                                                                                         6.285
                                                                                                   0.000
                                                                                                              6.120
                                                                                                                        11.667
ListingType Entire home/apt x ListingsCount Zipcode
                                                                   -0.0672
                                                                                        -5.971
                                                                                                   0.000
                                                                                                              -0.089
                                                                                                                         -0.045
                                                                              0.011
```


Backward Selection Model indicating high VIF


```
# Recalculate VIF with the updated DataFrame
vif data = pd.DataFrame()
vif_data["feature"] = X_numeric.columns
vif data["VIF"] = [variance inflation factor(X numeric.values, i) for i in range(X numeric.shape[1])]
print(vif_data)
                           feature
                                         VIF
       ListingType Entire home/apt 9.945248
                          Bedrooms 53.316272
                         Bathrooms 50.484812
                Cleaning Fee (USD) 5.159395
            SuperhostRatio_Zipcode 10.526079
               numReviews pastYear 67.454735
           prev_numReserv_pastYear 2.463324
                       Max Guests 18.222496
            Neighborhood South End 1.315921
        Superhost_Status_Frequency 2.608229
10
            Bathroom_Bedroom_Ratio 54.993945
                PropertyType_House 1.255246
11
       Neighborhood_Fenway/Kenmore 1.564440
12
13
                  Number of Photos 4.956380
14
           num_5_star_Rev_pastYear 74.091901
15
               rating_ave_pastYear 67.141202
16
             ListingsCount_Zipcode 7.602532
                    available days 6.330518
17
18 PropertyType Serviced apartment 1.105181
```


Feature Engineering

```
# 1. Superhost Status Frequency
# Count the number of times a host has achieved Superhost status
subset_data['Superhost_Status_Frequency'] = subset_data.groupby('Airbnb Host ID')

# 2. Ratio of 5-Star Reviews for Superhosts
# This assumes 'num_5_star_Rev_pastYear' represents the number of 5-star reviews
# Only calculating for Superhosts (host_is_superhost_in_period == 1)
subset_data['Ratio_5_Star_Superhost'] = subset_data.apply(
lambda x: x['num_5_star_Rev_pastYear'] / x['numReviews_pastYear'] if (x['host_is_superhost_in_period'] == 1 and x['numReviews_pastYear'] > 0) else 0,
axis=1

| 1 # # 3. Superhost Impact on Revenue
```

