Inverse molecular design of Organic Photovoltaics

presentation du sujet

Patrick Sorrel Mvoto Kongo 19D2706

sorrel.mvoto@facsciences-uy1.cm

Licencié en physique

Sous la direction de

NANA ENGO S.G: Professeur

J.P TCHAPET NJAFA: Chargé de Cours

Sous le mentorat de Steve Cabrel Teguia Kouam Doctorant en Physique

Laboratoire de Physique Atomique , Moléculaire et Biophysique

Université de Yaoundé 1

Sunday 19th November, 2023

Plan de travail

- Présentation générale
- Principales composantes du sujet
- Méthodes et logiciels
- Repère et planification

Figure 1: Énergie solaire.

イロト イ団ト イミト イミト

Introduction

Agence Internationale renouvelable (IRENA)

- 29 % de l'électricité Mondiale proviennent de sources renouvelables
- 20 % de l'énergie solaire est convertie en électricité
- sep 2021, consommation globale d'électricité: 23000-25000TWh/an

En jeux

- Enjeux énergétiques: Diversification du mix énergétique et Rendement et efficacité énergétique
- Enjeux sociaux-économiques: Accessibilité, emplois
- Enjeux environnementaux: Réduction des émissions de gaz à effet de serre Utilisation de matériaux durables.

Présentation générale

Principales composantes du sujet

Méthodes et logiciels

Repère et planification

Présentation générale

Domaine application

Domaine d'applications

Olndustrie solaire

Figure 2: Cellules solaire photo-voltaïque.

Olndustrie pharmaceutique

Figure 3: Médicament synthétise.

○Afro-chimie

Figure 4: Herbicide-insecticide-fongicides.

Utilisations des dispositifs OPV

○Électricité résidentielle :

Figure 5: Opanneau Solaire

Figure 6: Panneaux solaires portables camping

Figure 7: • Panneaux industriel.

Présentation générale

Avantages

Rendements plus élevés

$$V_{oc}=rac{1}{e}|E^{Do}HOMO|-|E^{AC}LUMO|-0.3$$

$$PCE=rac{V_oc*FF*J_{sc}}{P_{in}}$$

Plus grande flexibilité

- Voc : Tension a circuit ouvert
- FF: Facteur de remplissage 65%
- J_{sc} : Densité de courant de cour circuit
- P_{in}: intensité lumineuse incidente

Figure 8: Flexibilité et dureté des cellules photovoltaique organique.

Meilleure stabilité

Principe de fonctionnement

Figure 9: principe de fonctionnement des cellules.

<ロト <回ト < 重ト < 重ト

Principe de fonctionnement

- Génération d'un excitons par photo-absorption
- 2 Diffusion de l'exciton vers l'hétérojonction donneur-accepteur
- Séparation de l'exciton en porteurs de charges libres
- Extraction aux contacts électriques

Figure 10: Principe de fonctionnement d'une cellule solaire organique

Définition des mots clés

Titre: Inverse molecular design of Organic Photovoltaics

Mots clés : OPV,PCE, high-throughput virtual screening, Inverse molecular design

Definition des mots clés

- OPV(Organic Photovoltaic): Dispositifs photo-voltaïque dont au moins la couche active est constituée de molécules organiques pour convertir la lumière solaire en électricité
- PCE(Power Conversion Efficiencie): Rapport entre la puissance électrique produite par la cellule et la puissance lumineuse incidente
- VHTS (high-throughput virtual screening): Technique informatique utilisée pour évaluer rapidement des molécules pour leurs propriétés biologiques ou physico-chimiques
- Inverse molecular design: Approche utilisée en chimie et en science des matériaux qui permet de concevoir des molécules avec des propriétés spécifiques

Re-formulation du sujet

Reformulation du sujet

Concevoir des molécules dotées de propriétés électroniques spécifiques des dispositif photovoltaique ayant au moins une couche active pour convertir la lumière solaire en énergie

objet de Recherche

Concevoir des petites molécules organiques en utilisant la methode inverse :

- Donneuse organique à utiliser avec l'ester méthylique de l'acide [6,6]phénylC61butyrique(PCBM).
- Acceptrice avec à utiliser dans dispositifs poly[N90heptadécanyl2,7-carbazolealt5,5(40,70di2thiényl20,10,30benzothiaMachine (PCDTBT)

Figure 12: structure PCDTBT(958261-50-2)

Figure 11: Structure PCBM (PubChem CID : 53384373)

Problème et question de recherche

Problème de recherche

Complexité ,coût élevé liés a la recherche de bons conformères et des couples donneurs accepteurs compatibles par des méthodes traditionnels

Type de cellule	Homojonction	Heterojonction	OPV
Rendement moyen	21-22%	23-25%	20%
Coup de fabrication	Élevé (10-25)\$/W	Élevé (10-25)\$/W	Faible < 10\$/W
Support	Rigide	rigide <120µm	Souple ,Flexible
Durée de vie	L>20 ans	L >20 ans	quelques années

Question de recherche

peut on améliorer le Pce des appareilles photo-voltaïques pour des meilleurs rendements grâce a la conception moléculaire inverse

Principales composantes de recherche

Problématique

Problématique : Comment surmonter le problème lies a la recherche des bons conformères et des donneurs-accepteurs compatibles avec la conception moléculaire inverse

Figure 13: Niveau homo-lumo correspondant

Principale composantes de recherche

Objectifs généraux et spécifiques

• Objectifs Généraux : Concevoir des molécules dotées de propriétés électroniques spécifiques ; Conception de petites molécules effectuant la séparation des charges en utilisant la conception moléculaire inverse .

Objectifs spécifiques :

- **©**Trouver de bons conformères pour des molécules organiques de PCBM et PCDTBT
- ●Trouver la bonne combinaisons des candidats Donneurs-avec pour accepteur PCDTBT idéaux
- ●Trouver la bonne combinaisons des candidats Acceptrices-avec pour Donneur PCBM idéaux
- DÉvaluer le pce de chaque molécule l'aide du Machine Learning

Principale composantes de recherche

Hypothèse de Recherche

- Concevoir des molécules avec un positionnement optimal du groupe donneur a associer avec l'accepteur PCBM et également du groupe accepteur a associer avec donneur PCDTBT d'électrons pour améliorer l'efficacité de conversion des cellules solaires organiques grâce a la conception moléculaire inverse
- Utilisation de techniques d'apprentissage automatique et d'intelligence artificielle ML facilitera l'identification de molécules prometteuses répondant au propriétés définit

Méthodes et logiciels

Méthodes et Logiciels

Méthodes

- CNN (Convolutional Neural Network)
- GNNGraph Neural Network
- Algorithme Génétique
- Modèle génératifs de profond

Logiciels et Boite d'outils

- RDKit, OPenBabel Dataset: CEP(Clearn-EnergY-Projet)
- Pyscf-plugin
- Tartarus

Repère et planification

Repère et planification

Chronogramme

Periode	Activite	
Nov-Dec 2023	Etudier les semi-conducteurs	
Jav-Fev 2024	-Analyser les mécanismes photovotaics organique	
	-comprendre les mécanismes photovotaics	
Fev-Mar 2024	- étudier les conforméres des molécules organique	
	- optimiser la géométrie des molécules organique	
Mar-Avr 2024	Évaluer de la performance des nouvelles molécules conçus	
Mai-jui 2024	Analyse des résultats et interprétation des données	
jui-jul 2024	Rédaction du rapport de recherche	

Bibliographie

- Scharber, M. C., et al. "Design rules for donors in bulk-heterojunction solar cells—towards 10
- Hachmann, Johannes, et al. "The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid." The Journal of Physical Chemistry Letters 2.17 (2011): 2241-2251.
- Liu, Xiaofeng, et al. "Understanding the efficiency of organic solar cells: From photophysics to evaluation methodology." Chemical Society Reviews 48.1 (2019): 285-309.

Remerciement

Merci pour votre aimable attention sorrel.mvoto@facsciences-uy1.cm

イロト イ団ト イミト イミト