	/ Utech
<i>Name</i> :	
Roll No.:	
Invigilator's Signature :	

CS/B.Tech/BT(N)/SEM-3/BT-301/2012-13 2012

THERMODYNAMICS AND KINETICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) In cases of enzymatic reactions occurring respectively at high and low substrate concentrations, the reaction orders are respectively
 - a) first and zero
- b) pseudo-first and zero
- c) second and zero
- d) zero and first.
- ii) Enthalpy can be expressed as
 - a) H = U PV
- b) H = U + PV
- c) H = U/PV
- d) none of these.

3160 (N) [Turn over

CS/B.Tech/BT(N)/SEM-3/BT-301/2012-13

- iii) The order of the reaction whose rate $r = kC_A^{0.8} C_B^{1.2}$ is
 - a) 0.8

b) 1.2

c) 2.0

- d) 0.4.
- iv) 1 ton of refrigeration is equivalent to
 - a) 3.517 kW
- b) 35.17 kW
- c) 351.7 kW
- d) 3517 kW.
- v) Unit of rate constant for an n^{th} order reaction is
 - a) (concentration) $^{1-n}$ (time) $^{-1}$
 - b) (concentration) $^{n-1}$ (time) $^{-1}$
 - c) (concentration) $^{-1}$ (time) $^{1-n}$
 - d) (concentration) n (time) $^{1-n}$
- vi) Which of the following influences the rate of a chemical reaction performed in solution?
 - a) Temperature
 - b) Activation energy
 - c) Presence of a catalyst
 - d) None of these.

- vii) In terms of the "Collision Theory of Chemical Kinetics", the rate of a chemical reaction is proportional to
 - a) the change in free energy per second
 - b) the change in temperature per second
 - c) the number of collisions per second
 - d) none of these.
- viii) The time taken for 10% completion of a first order reaction is 20 min. Then, for 19% completion, the reaction will take
 - a) 30 min
- b) 40 min

- c) 50 min
- d) 60 min.
- ix) Compressibility factor of an ideal gas is
 - a) 0

b) 1

c) ∞

- d) 1.
- x) Allosteric enzymes contain
 - a) one substrate binding site
 - b) no substrate binding site
 - c) more than one binding site
 - d) none of these.

CS/B.Tech/BT(N)/SEM-3/BT-301/2012-13

- Utech
- xi) Henry's law is applicable for
 - a) gas-liquid system
 - b) gas-gas system
 - c) liquid-liquid system
 - d) solid-liquid system.
- xii) Michaelis-Menten equation is a kinetic model of system.
 - a) linear

- b) parabolic
- c) asymptotic
- d) sigmoidal.

GROUP - B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Show that $\ln (f/P) = BP/RT$, where B is the second virial coefficient.
- 3. Determine the value of ΔH and ΔE for the reversible isothermal evaporation of 90.0 gm of water at 100°C. Assume that water vapour behaves as an ideal gas and heat of evaporation of water is 540cal/gm.

3160 (N)

- 4. a) Write down the difference between order and molecularity of the reaction.
 - b) In a Batch reactor liquid A decomposes by first order kinetics. The conversion is 50% of A in a 5 minute run. What will be the time taken for 80% conversion of A? 2+3
- Define mathematically the combined form of the 1st and 2nd laws of thermodynamics.
- 6. The l/v axis of a reciprocal plot is labelled v^{-1} (n moles × litre $^{-1}$ × min $^{-1}$ × min $^{-1}$) $^{-1}$ × 10 2 . The plot l/[S] axis is labelled $[S]^{-1}$: (M) $^{-1}$ × 10 $^{-4}$. The plot intersects the two axes at 2 and $^{-4}$, respectively. What are V_{max} and K_m ?

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) State Raoult's law.
 - b) Binary system acetonitrile (1)/nitromethane (2) conforms closely to Raoult's law. Vapour pressures for pure species are given by the following Antoine equations:

$$\ln P_1^{\text{sat}} / \text{kPa} = 14.2724 - \frac{2945.47}{t/^{\circ}\text{C} + 224}$$

 $\ln P_2^{\text{sat}} / \text{kPa} = 14.2043 - \frac{2972.64}{t/^{\circ}\text{C} + 209}$

Prepare a graph showing P vs x_1 and P vs y_1 for a temperature of 25°C. 5+10

- Utech of competitive
- 8. a) Derive Michaelis-Menten equation enzyme inhibition.
 - b) At what substrate concentration will an enzyme with a $k_{\rm cat}$ of 30/sec and $k_{\rm m}$ of 0.005 M show $\frac{1}{4}$ of its mixmum rate? Determine the fraction of V_{max} that would occur at the following substrarte concentration: $S = 1/2 \; k_m$.
- 9. a) Derive an expression for heat transfer and work done for an isothermal process.
 - b) Air enters a compressor at 10 5 Pa and 25 $^\circ$ C having volume of 1.8 m 3 /kg and is compressed to 5 \times 10 5 Pa isothermally. Determine
 - i) Work done
 - ii) Change in internal energy
 - iii) Heat transferred.

3 + 12

- 10. a) A 10-minute experimental run shows that 75% of liquid is converted to product by a $\frac{1}{2}$ order rate. What would be the fraction converted in a half-hour run?
 - b) A constant density first order reaction $A \rightarrow P$ is carried out in a batch reactor. Data obtained are given in Table below:

Time (sec)	30	60	90	120	150	180	600
Concentration	0.74	0.55	0.42	0.29	0.24	0.16	0.0025
of A (kmol/m ³)							

If C $_{A0}$ = 1 kmol/m 3 , calculate the rate constant for the reaction. Also calculate time reequired for 50% conversion.

- 11. a) Atmospheric air is a mixture of N $_2$ and O $_2$ in the mole ratio of 79 : 21. Calculate the minimum work to be done to separate one k.mole of air at 0.1 MPa and 300 K into pure N $_2$ & O $_2$ at the same temperature & pressure. Treat air as an ideal gas.
 - b) A refrigeration system requires 1.5 kW of power for a refigeration in rate of 4 kW.
 - i) What is the coefficient of performance?
 - ii) How much heat is rejected in the condenser?
 - iii) If the heat is rejected at 313 K, what is the lowest temperature the system can possibly maintain?

$$8 + (2 + 2 + 3)$$

3160 (N) 7 [Turn over