MATH 11 WORKSHEET: Scalar line integrals

i) Pavametrize
$$C$$
:
 $x(t) = \cdots$
 $y(t) = \cdots$

[Hint: /="(+)]

iii) Write
$$f(x,y) = xy^2$$
 in terms of t on this "curve":
$$f(\vec{r}(t)) = ...$$

v) Now find
$$S_{c}(x+y)dx = S_{o}(-1+2t+t)2t = 2(\frac{3}{2}-1) = 1$$

vi) If C were taken in reverse, how would answers iv) & v) change?

MATH 11 WORKSHEET: Scalar line integrals

C = straight line. with sense shown.

iii) Write
$$f(x,y) = xy^2$$
 in terms of t on this "curve":
$$f(\vec{r}(t)) = \dots (-1+2t)t^2$$

iv) Hence get
$$\int_{c}^{c} f \, ds = \int_{0}^{c} (2t^{3} - t^{2}) \int_{0}^{c} dt = \int_{0}^{c} (2t^{3} - t^{2}) \int_{0}^{c}$$

v) Now find
$$S_c(x+y)dx = S_o(-1+2t+t)2t = 2(\frac{3}{2}-1) = 1$$

vi) $T_c = c$

vi) If C were taken in reverse, how would answers iv) k v) change?

stays same (like ar length) swapped sign (like fat

10) 0					
B) Pe	cide +, -, or 0:	If dx	Sfdy	Sfds	1
4	_ C,	0	0	0 1	
	C_2	0	+	4	
$C = C_1 + C_2 + C_3$	C3		0	2	
-, -, -, -, -, -, -, -, -, -, -, -, -, -	C	- 1	+		
Ctraversed backwards -> - C		+		7	
	· ·				