APPLICATION D'UNE BOUCLE D'INDUCTION

Les détecteurs de métaux

INTRODUCTION

• Définition :

Appareil permettant de localiser un objet métallique en utilisant des propriétés électromagnétiques

• Utilisation:

- -sécurité
- -militaire
- -loisirs
- -archéologie

• Types de détecteurs :

- -Battements de fréquences
- -Très basses fréquences
- -Inductions pulsées

OBJECTIF

Etude du fonctionnement et mise en évidence des limites du détecteur à battements de fréquences

PLAN

- I) Approche théorique
 - 1. Principe de la détection
 - 2. Description du circuit
- II) Approche expérimentale
 - 1. Comparaison avec un détecteur du commerce
 - 2. Réponse du détecteur devant la présence d'un métal
 - 3. Limites du détecteur

- I) Approche théorique du détecteur à battements de fréquences
- 1. Principe de la détection de métaux par oscillateur à battements

Schéma représentant les courants de Foucault

Schéma général de fonctionnement du détecteur de métaux

2. Description du circuit

Schéma du circuit du détecteur à battements de fréquences

Schéma simplifié de l'oscillateur de recherche (oscillateur de type Colpitts) et du métal

On suppose que la résistance r est négligeable devant L₂.

Inductance équivalente: $|Leq = L(1-k^2)|$

k : coefficient de couplage

Fonction de transfert de l'oscillateur :

$$\frac{H(jw)}{W} = \frac{V1}{V2} = \frac{Go}{1 + jQ(\frac{w}{w_{\circ}} - \frac{w_{\circ}}{w})}$$

$$Go = \frac{R1+R2}{R1} * \frac{C1}{C1+C2} et \qquad Q = R\sqrt{\frac{C1C2}{(C1+C2)Leq}}$$

On obtient donc la pulsation d'oscillation :
$$w_o = \sqrt{\frac{C1+C2}{L(1-k^2)C1C2}}$$

II) Approche expérimentale

1. Comparaison avec un détecteur du commerce

	Métal à	Pièce	Pièce	Clés	Ciseaux	Cannette	Boite
	détecter	de 50	de 2			en	de
		cents	cents			aluminium	thon
Distance	Mon	4-5	4	10	6	14	10
de	détecteur						
détection							
(en cm)							
	ADX 150	9	9	14	10	20	15

2. Réponse du détecteur devant la présence d'un métal

3. Limites du détecteur

a) Distance de détection

b) Influence de la dimension du métal sur la détection

Métal	Sans	Bille de	Médaille	Bracelet
	métal	fer	en argent	en or
Fréquence	119.470	120.372	120.710	120.593
d'oscillation				
(kHz)				
Variation de	0	0.902	1.240	1.123
fréquence (kHz)				

c) Impact de l'environnement sur la détection

Environnem ent	Air		Sable sec		Sable mouillé et salé	
	sans métal	avec métal	sans métal	avec métal	sans métal	avec métal
Fréquence de l'oscillateur (kHz)	119,47	120,71	119,32	120,55	119,52	120,77
$\Delta f (kHz)$	1,24		1,23		1,25	

CONCLUSION

• Atouts:

- simple à réaliser
- idéal pour débuter

• Contraintes:

- non discriminant
- très sensible à l'environnement
- la détection à l'oreille demande de la pratique

Remplacés par les détecteurs à induction pulsées et les détecteurs très basses fréquences

Schéma du principe de fonctionnement du détecteur à très basses fréquences

	Distance de détection (en cm)		
	Détecteur à	Détecteur à	
	battements de	très basses	
	fréquences	fréquences	
Pièce de 5 cents	5	10	
Bracelet en or (10g)	5	12	
Cannette en	14	30	
aluminium (33 cl)			
Radiateur en fer	30	50	
$(1m \times 1.50 m)$			

<u>Tableau de comparaison entre les détecteurs à</u> <u>battements et très basses fréquences</u>