Calculs de DLs

Exercice 1 - Somme et produit de DLs - L1/Math Sup - *

Calculer les développements limités suivants :

1.
$$\frac{1}{1-x} - e^x$$
 à l'ordre 3 en 0
2. $\sqrt{1-x} + \sqrt{1+x}$ à l'ordre 4 en 0
3. $\sin x \cos(2x)$ à l'ordre 6 en 0
4. $\cos(x) \ln(1+x)$ à l'ordre 4 en 0
5. $(x^3+1)\sqrt{1-x}$ à l'ordre 3 en 0
6. $(\ln(1+x))^2$ à l'ordre 4 en 0

2.
$$\sqrt{1-x} + \sqrt{1+x}$$
 à l'ordre 4 en 0

3.
$$\sin x \cos(2x)$$
 à l'ordre 6 en 0

4.
$$cos(x) ln(1+x)$$
 à l'ordre 4 en 0

5.
$$(x^3 + 1)\sqrt{1 - x}$$
 à l'ordre 3 en 0

6.
$$(\ln(1+x))^2$$
 à l'ordre 4 en 0

Exercice 2 - Composition de DLs - $L1/Math Sup - \star$

Calculer les développements limités suivants :

1.
$$\ln\left(\frac{\sin x}{x}\right)$$
 à l'ordre 4 en 0 2. $\exp(\sin x)$ à l'ordre 4 en 0 3. $(\cos x)^{\sin x}$ à l'ordre 5 en 0 4. $x(\cosh x)^{\frac{1}{x}}$ à l'ordre 4 en 0.

2.
$$\exp(\sin x)$$
 à l'ordre 4 en 0

3.
$$(\cos x)^{\sin x}$$
 à l'ordre 5 en 0

4.
$$x(\cosh x)^{\frac{1}{x}}$$
 à l'ordre 4 en 0

Exercice 3 - Inverse de DL - $L1/Math Sup - \star$

Déterminer les développements limités des fonctions suivantes :

1.
$$\frac{1}{1+x+x^2}$$
 à l'ordre 4 en 0 2. $\tan(x)$ à l'ordre 5 en 0 3. $\frac{\sin x - 1}{\cos x + 1}$ à l'ordre 2 en 0 4. $\frac{\ln(1+x)}{\sin x}$ à l'ordre 3 en 0.

2.
$$tan(x)$$
 à l'ordre 5 en 0

3.
$$\frac{\sin x - 1}{\cos x + 1}$$
 à l'ordre 2 en 0

4.
$$\frac{\ln(1+x)}{\sin x}$$
 à l'ordre 3 en 0.

Exercice 4 - DLs pas en 0! - L1/Math Sup - *

Calculer les développements limités suivants :

$$\mathbf{1}.\sqrt{x}$$
à l'ordre 3 en 2

$$\mathbf{2}.\frac{\sqrt{x+2}}{\sqrt{x}}$$
à l'ordre 3 en $+\infty$

3.
$$\ln\left(x+\sqrt{1+x^2}\right)-\ln x$$
 à l'ordre 4 en $+\infty$

Exercice 5 - Ordre le plus grand possible - L1/Math Sup - **

Déterminer a et b pour que la partie principale du développement limité en 0 de la fonction $\cos x - \frac{1+ax^2}{1+bx^2}$ soit de degré le plus grand possible.

Exercice 6 - Astucieux! - L1/Math Sup - **

Calculer, à l'ordre 100, le DL de $\ln \left(\sum_{k=1}^{99} \frac{x^k}{k!} \right)$.

Exercice 7 - Développement limité d'une fonction réciproque - $L1/Math\ Sup$ - ** Soit f la fonction définie sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ par $f(x)=2\tan x-x$.

- 1. Montrer que f admet une fonction réciproque de classe C^{∞} .
- 2. Justifier que f^{-1} est impaire.
- 3. Donner le développement limité de f^{-1} à l'ordre 6 en 0. On rappelle que $\tan x = x + \frac{x^3}{3} + \frac{x^3}{3}$ $\frac{2x^5}{15} + o(x^6)$.

Exercice 8 - Développement limité d'une fonction réciproque - L1/Math Sup/Oral $Mines - \star\star$

Pour $x \in \mathbb{R}$, on pose $f(x) = \frac{e^{x^2} - 1}{x}$ si $x \neq 0$ et f(0) = 0. Montrer que f admet une fonction réciproque sur \mathbb{R} . Donner un développement limité de f^{-1} à l'ordre f en f en

Application des développements limités

Exercice 9 - Limites de fonctions - $L1/Math Sup - \star$

Déterminer les limites des fonctions suivantes :

1.
$$\frac{\exp(\sin x) - \exp(\tan x)}{\sin x - \tan x}$$
 en 0; 2. $\frac{x^{x^x} \ln x}{x^x - 1}$ en 0;; 3. $\left(\frac{a^x + b^x}{2}\right)^{1/x}$ en 0; 4. $\frac{2x}{\ln\left(\frac{1+x}{1-x}\right)}$ en 0;

Exercice 10 - Étude locale d'une courbe - $L1/Math\ Sup$ - * Soit f la fonction définie sur $\mathbb R$ par $f(x)=\frac{1}{1+e^x}$.

- 1. Donner un développement limité de f à l'ordre 3 en zéro.
- 2. En déduire que la courbe représentative de f admet une tangente au point d'abscisse 0, dont on précisera l'équation.
- 3. Prouver que la courbe traverse la tangente en 0. Un tel point est appelé point d'inflexion.

Exercice 11 - Position relative d'une courbe et de sa tangente - L1/Math Sup - \star

Soit f la fonction définie sur \mathbb{R} par $f(x) = \ln(x^2 + 2x + 2)$. Donner l'équation de la tangente à la courbe représentative de f au point d'abscisse 0 et étudier la position relative de la courbe et de la tangente au voisinage de ce point.

Exercice 12 - Branches infinies - L1/Math Sup - **

A l'aide des développements limités, déterminer les asymptotes éventuelles et la position relative par rapport aux asymptotes de la courbe représentative de la fonction :

$$f(x) = \sqrt{x^2 + 1} + \sqrt{x^2 - 1}.$$

Exercice 13 - Asymptotes - L1/Math Sup - **

Prouver qu'au voisinage de $+\infty$, les courbes représentatives des fonctions suivantes admettent une asymptote dont on donnera l'équation. On précisera aussi la position de la courbe par rapport à son asymptote.

1.
$$f(x) = \frac{x \cosh(x) - \sinh(x)}{\cosh x - 1}$$
 2. $g(x) = x^2 \ln\left(\frac{x+1}{x}\right)$ 3. $h(x) = \frac{x+1}{1 + \exp(1/x)}$ 4. $u(x) = x \exp\left(\frac{2x}{x^2 - 1}\right)$

Exercice 14 - Comparaison de fonction - $L1/Math\ Sup$ - \star

On pose f(x) = 1/(1+x), $g(x) = e^{-x}$, $h(x) = \sqrt{1-2\sin x}$, $k(x) = \cos(\sqrt{2x})$. Préciser les positions relatives au voisinage de 0 des courbes représentatives C_f , C_g , C_h , C_k .

Exercice 15 - Dérivée n-ième en 0 - L1/Math Sup - \star

Soit $f: x \mapsto \frac{x^4}{1+x^6}$. Déterminer $f^{(n)}(0)$.

Exercice 16 - Limite un peu théorique - L1/Math Sup - \star

Soit f définie au voisinage de a et deux fois dérivable en a. Calculer

$$\lim_{h \to 0} \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}.$$

Exercice 17 - Somme des premiers entiers - $L1/Math Sup - \star\star$

Soit $n \geq 1$ et $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{\exp((n+1)x) - 1}{\exp(x) - 1} & \text{si } x \neq 0\\ n + 1 & \text{sinon.} \end{cases}$$

- 1. Calculer le développement limité de f en 0 à l'ordre 3.
- 2. En déduire la valeur de

$$\sum_{k=1}^{n} k^3.$$

DÉVELOPPEMENTS ASYMPTOTIQUES DE SUITES IMPLICITES

Exercice 18 - Tangente - L1/Math Sup - **

- 1. Montrer que l'équation $\tan x = x$ possède une solution unique dans $n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}$.
- 2. Quelle relation lie x_n et $arctan(x_n)$?
- 3. Montrer que $x_n = n\pi + \frac{\pi}{2} + o(1)$.
- 4. En écrivant $x_n = n\pi + \frac{\pi}{2} + \varepsilon_n$ et en utilisant le résultat de la question 2., en déduire que

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right).$$

Exercice 19 - Sinus hyperbolique - L1/Math Sup/Petites Mines - **

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = x \sinh\left(\frac{1}{x}\right)$.

- 1. Montrer que pour tout x > 0, on a tanh(x) < x.
- 2. En déduire le tableau de variations de f. On précisera les limites.
- 3. Donner le développement limité à l'ordre 2 en 0 de $u\mapsto \frac{\sinh u}{u}$.

EXERCICES - DÉVELOPPEMENTS LIMITÉS : énoncé

4. En déduire que f admet au voisinage de $+\infty$ un développement asymptotique de la forme

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + o\left(\frac{1}{x^2}\right),$$

où a_0,a_1,a_2 sont des réels que l'on précisera.

- 5. Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $f(x) = \frac{n+1}{n}$ admet une unique solution $u_n > 0$.
- 6. Montrer que la suite (u_n) est croissante.
- 7. Montrer que la suite (u_n) tend vers $+\infty$ en $+\infty$.
- 8. Déterminer un équivalent de u_n quand n tend vers $+\infty$.

Exercice 20 - Suite implicite - exponentielle - $L1/Math\ Sup$ - ***

On considère, pour tout $n \in \mathbb{N}^*$, l'équation $e^x + x - n = 0$.

- 1. Montrer que l'équation admet une unique solution que l'on notera u_n .
- 2. Montrer que la suite (u_n) tend vers $+\infty$.
- 3. Montrer que $u_n \sim_{+\infty} \ln n$.
- 4. En étudiant $v_n = u_n \ln n$, montrer que

$$u_n = \ln n - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$