Reinforcement Learning for Dynamic Cryptocurrency Portfolio Management

An Empirical Deep Reinforcement Learning Framework for Weekly, Cost-Aware Crypto Allocation

Jose Márquez Jaramillo, Taylor Hawks

October 11, 2025

Johns Hopkins University

Motivation and Research Goals

- **Cryptocurrency markets** are highly volatile and exhibit strong regime shifts, making static allocation rules (e.g., equal or market-cap weights) often sub-optimal.
- Reinforcement Learning (RL) provides a natural framework for adaptive portfolio rebalancing by treating allocation as a sequential decision problem under uncertainty.
- Traditional optimization methods (mean-variance, risk parity) assume stationarity and ignore transaction costs; RL can model *dynamic*, *cost-aware* adjustments.

Research Goal:

- Develop and compare deep RL agents (LinUCB, DQN, A2C, REINFORCE+Baseline) for long-only, weekly-rebalanced crypto portfolios.
- Evaluate performance across three dimensions: profitability, risk, and trading efficiency.

Key references: [2-4].

Problem Statement and Contributions

Problem Statement

- Learn a **policy** $\pi_{\theta}(s_t)$ that outputs portfolio weights w_t maximizing long-run, risk-adjusted growth under realistic transaction costs.
- The environment provides daily market observations; the agent rebalances weekly (every 7 days) with proportional trading fees.

Objective

$$\begin{split} \pi^{\star} &= \arg\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} r_{t} \right], \\ r_{t} &= \log(w_{t-1}^{\top} y_{t}) - c \|w_{t} - w_{t-1}\|_{1}. \end{split}$$

Main Contributions

- A cost- and risk-aware RL framework for long-only cryptocurrency portfolio management using realistic Binance fees.
- A unified environment for LinUCB, DQN, A2C, REINFORCE+Baseline with shared state, action, and reward design.
- Comprehensive evaluation of RL agents and classical baselines (Equal-Weight, Market-Cap, Mean-Variance) across profitability, risk, and efficiency.

References: [1, 2, 4].

Formulation: Portfolio Management as an MDP

Formal Definition

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle, \quad \pi^\star = \arg\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} r_t \right].$$

- State S: market and portfolio context $(X_{t-L+1:t}, w_{t-1}, m_t)$.
- Action A: portfolio weights w_t on the simplex $(w_{t,i} \ge 0, \sum_i w_{t,i} = 1)$.
- **Transition** *P*: exogenous market evolution; portfolio memory carried forward.
- **Reward** *R*: net log-return minus trading costs.
- **Discount** $\gamma=1$: long-term wealth-growth objective.

Interpretation

- The RL agent observes daily features and prior weights, then rebalances weekly.
- Market prices drive transitions; the policy controls allocations only.
- The reward integrates both return and cost sensitivity.
- The optimal policy π^* maximizes expected cumulative wealth.

Based on frameworks by [2-4].

Design: Environment and State Representation

State at decision epoch t (weekly):

$$s_t = (X_{t-L+1:t}, w_{t-1}, m_t), \qquad X_{t-L+1:t} \in \mathbb{R}^{N \times F \times L}$$

- **Inputs** *X*: daily features per asset over a rolling window of *L* days: returns/OHLCV, realized volatility, and technical indicators.
- **Portfolio memory** w_{t-1} : previous weights to inform cost-aware rebalancing.
- Universe mask m_t: top-N assets by market cap, reconstituted monthly; ensures safe handling of listings/delistings.
- Lookback L: e.g., L daily observations; actions are weekly (every 7 days), features remain daily.
- Normalization: per-asset expanding mean/std (no look-ahead); deterministic preprocessing for reproducibility.

Design: Actions and Transitions

Action (long-only weekly rebalance):

$$\hat{w}_t = f_{ heta}(s_t), \quad ilde{w}_t = \operatorname{softmax}(\hat{w}_t) \odot m_t, \quad w_t = rac{ ilde{w}_t}{\mathbf{1}^{ op} ilde{w}_t} \in \Delta^N$$

Transition (advance by 7 calendar days):

$$s_{t+1} = (X_{t-L+1+7:\ t+7},\ w_t,\ m_{t+1})$$

- **Constraints:** simplex (long-only), weights nonnegative and sum to 1; masking prevents allocation to inactive assets.
- Costs: applied at rebalance via $c \| w_t w_{t-1} \|_1$ (Binance spot fees).
- Optional: no-trade band δ if $\|w_t w_{t-1}\|_1 < \delta$, skip trades to reduce micro-turnover; cash asset can be included as an additional dimension in X and m_t .

Design follows portfolio-RL practice in [1, 3, 4].

Design: Reward Function (Cost-Aware)

Base reward (weekly):

$$r_{t+1} = \log(w_t^{\top} y_{t+1}) - c \|w_t - w_{t-1}\|_1,$$

- y_{t+1}: vector of **7-day price relatives** for each asset (weekly rebalancing).
- c: transaction cost per trade, modeled from Binance spot fees: 0.10% standard (non-VIP) or 0.075% with BNB discount.

Source: binance.com/en/fee/schedule.

References: [2–4].

Optional risk-adjusted reward:

$$r'_{t+1} = r_{t+1} - \lambda \operatorname{Risk}(r_{t-H:t}),$$

- Risk(·): rolling downside volatility, drawdown, or **CVaR**; λ tunes risk aversion.
- Encourages smoother policies under heavy tails while preserving growth incentives.

Design: Agent-Environment Interaction Loop

Weekly decision cycle (every 7 calendar days):

- 1. Observe s_t (features from last L days), current weights w_{t-1} .
- 2. Choose action:
 - LinUCB: pick arm/tilt a_t by UCB score; map to weight adjustment.
 - DQN: pick discrete rebalancing move arg max_a $Q_{\psi}(s_t, a)$ with ϵ -greedy.
 - A2C / REINFORCE: sample weights from softmax policy $\pi_{\theta}(\cdot|s_t)$.
- 3. Execute trade; update portfolio w_t ; compute reward $r_{t+1} = \log(w_t^\top y_{t+1}) c \|w_t w_{t-1}\|_1$.
- 4. **Update**: LinUCB via ridge updates; DQN via TD loss with replay/target; A2C via advantage actor–critic; REINFORCE via Monte Carlo with baseline.

Aligned with portfolio-RL practice in [2–4].

Algorithm Possibilities: LinUCB, DQN, A2C, and REINFORCE (Baseline) (Choose Three) Algorithm Data

Key Idea / Objective

Policy Type

		Regime	
LinUCB [5]	Contextual ban- dit (linear)	Online, per-	Choose arm/tilt a_t maximizing $\hat{\theta}^\top x_{t,a} + \alpha \sqrt{x_{t,a}^\top A^{-1} x_{t,a}}$; map selection to portfolio tilt on simplex (weekly).
DQN [7, 9, 10]	Value-based (discrete)	Off-policy w/	Discretize rebalancing moves (e.g., $\pm 5\%$ shifts); learn $Q(s,a)$ with target network, Double/Dueling variants;
10]	crete)	Гергау	argmax action per week.
A2C [8]	Actor–Critic (stochastic)	On-policy (batched)	Policy $\pi_{\theta}(a s)$ outputs weights via softmax; critic $V_{\phi}(s)$ for baseline; advantage updates with entropy bonus.

tic/det.) [11]ance. **Simplex & Costs:** All methods enforce $w_i \ge 0$, $\sum_i w_i = 1$ (softmax or projection). Reward uses

cost-aware log-return: $r_{t+1} = \log(w_t^\top y_{t+1}) - c \|w_t - w_{t-1}\|_1$ (weekly).

REINFORCE Policy gradi-On-policy Directly optimize expected return: softmax to enforce baseline ent (stochas-(episodic) simplex; subtract learned/value baseline to reduce vari-

9/14

Experimental Setup: Data and Baselines

Data and Sampling

- Assets: top-10 cryptocurrencies by market capitalization (excluding stablecoins), reconstituted monthly.
- Cadence: daily OHLCV features; weekly rebalancing every 7 calendar days.
- Period: January 2019 October 2025.
- **Splits:** Train (2019–2021), Validation (2022), Test (2023–2025).
- Lookback: L = 30 daily observations per asset; deterministic preprocessing, no look-ahead.
- **Transaction Costs:** c = 0.0010 (Binance spot fees).

Baselines (Long-Only, Weekly Rebalance)

- Equal-Weight (EW): $w_i = 1/N$; naive diversification benchmark.
- Market-Cap Weight (CapW): weights proportional to free-float market capitalization.
- Mean–Variance (MVO): classical Markowitz [6]; $\max_{w \geq 0, \, 1^\top w = 1} \, w^\top \hat{\mu} \tfrac{\lambda}{2} w^\top \hat{\Sigma} w, \\ \text{estimated from a 60-day rolling window.}$

Framework references: [1, 2, 4].

Evaluation: Metrics and Reporting Protocol

1. Profitability

- Cumulative wealth: $W_T = \prod_{t=1}^T (w_t^\top y_t)$.
- Annualized return (CAGR): $(W_T)^{1/(T/52)} 1$ (weekly cadence).
- Excess return: vs. Equal-Weight (EW) and Market-Cap (CapW) baselines.

2. Risk

- Volatility (annualized): $\sigma_{\text{ann}} = \sigma_{\text{weekly}} \sqrt{52}$.
- Sharpe ratio: $(\mu r_f)/\sigma_{ann}$.
- Maximum Drawdown (MDD): largest peak-to-trough portfolio loss.

3. Efficiency

- Turnover: $\tau = \frac{1}{T} \sum_{t} ||w_{t} w_{t-1}||_{1}$.
- Fee drag: realized cost $c\tau$ using Binance fee (0.10% per trade).
- Stability: variance of weekly returns across rebalancing periods.

References: [2-4].

Reporting Protocol

- Model selection via validation Sharpe; final results on untouched test period.
- 3 random seeds per agent; report mean \pm standard deviation.
- Robustness checks: alternate universes (top-5/top-15) and cost levels.

References i

- C. Betancourt et al. Deep reinforcement learning for portfolio management of markets with a dynamic number of assets. *Information Sciences*, 557:95–110, 2021. doi: 10.1016/j.ins.2020.12.020.
- [2] T. Cui, S. Ding, H. Jin, and Y. Zhang. Portfolio constructions in cryptocurrency market: A cvar-based deep reinforcement learning approach. *Economic Modelling*, 119:106078, 2023. doi: 10.1016/j.econmod.2022.106078.
- [3] Z. Jiang and J. Liang. Cryptocurrency portfolio management with deep reinforcement learning. In 2017 International Conference on Systems, Man, and Cybernetics (SMC), 2017. URL https://arxiv.org/abs/1612.01277. arXiv:1612.01277.
- [4] Z. Jiang, D. Xu, and J. Liang. A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprint arXiv:1706.10059, 2017. URL https://arxiv.org/abs/1706.10059.

References ii

- [5] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recommendation. In *Proceedings of the 19th International Conference on World Wide Web (WWW)*, pages 661–670, 2010. doi: 10.1145/1772690.1772758. URL https://arxiv.org/abs/1003.0146.
- [6] H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952. doi: 10.1111/j.1540-6261.1952.tb01525.x.
- [7] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015. doi: 10.1038/nature14236.
- [8] V. Mnih, A. P. Badia, M. Mirza, et al. Asynchronous methods for deep reinforcement learning. In ICML, pages 1928–1937, 2016. URL https://arxiv.org/abs/1602.01783.
- [9] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In AAAI, 2016.
- [10] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas. Dueling network architectures for deep reinforcement learning. In *ICML*, pages 1995–2003, 2016.

References iii

[11] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine Learning*, 8(3-4):229-256, 1992. doi: 10.1007/BF00992696.