Robust Machine Learning with Imbalanced Data: Expanding Mixup

Andriamarolahy Rabetokotany

African Institute for Mathematical Sciences

- Supervisor -

Dr. Vukosi Marivate

August 6, 2019

Introduction

Definitions

Background studies

Proposed method

Results

Introduction

Definitions

Background studies

Proposed method

Results

Introduction

Generality

- More and more data are generated:
 - social media
 - \square mobile, sensors (IOT)
 - □ Large Hadron Collider (*LHC*)
 - ______
- Imbalanced data: unequal classes.
- Problem: Machine Learning algorithm will be biased towards majority classes.

IMBALANCED LEARNING

Introduction

Goal

- Find a more robust technique for approaching this problem.
- Compare the new technique with the related works.

Introduction

Definitions

Background studies

Proposed method

Results

Definitions

Machine Learning

- A subfield of computer science.
- Give computers the ability to learn and make predictions on data.
- Classified into 2 groups:
 - Supervised
 - Unsupervised

Definitions

Imbalanced Data

- A data set that exhibits a significant unequal distribution between its classes.
 - □ Majority classes: the dominant groups in the data (negative classes).
 - □ Minority classes: the underrepresented groups in the data (positive classes).

Definitions

Imbalanced Learning

- The process of learning from imbalanced data
- Two methods to approach it:
 - Data level methods.
 - Algorithm level methods.

Introduction

Definitions

Background studies

Proposed method

Results

SMOTE

- SMOTE: Synthetic Minority Oversampling Technique:
 - \square Select x_i in minority class.
 - \square Select x_{i1}, x_{i2}, x_{i3} and x_{i4} randomly.
 - \Box Take the difference between x_i and its nearest neighbour.
 - Multiply this difference by a random number between 0 and 1.
 - \square Add it to the feature vector x_i .
 - \square We get r_1 , r_2 , r_3 and r_4 .
- Advantages:
 - □ simple: easy, implemented in python,
 - avoid overfitting.

mixup

- Empirical Risk Minimization
 - \square Minimize (1) over P
 - □ Problem: *P* is unknown.
 - □ Solution: ERM: $(x_i, y_i)_{i=1}^n$, where $(x_i, y_i) \sim P_{emp}$
 - $\square (1) \Rightarrow (3).$
- Drawbacks:
 - memorize instead of generalize
 - \square poor performance outside $(x_i, y_i)_{i=1}^n$
- Solution: VRM

$$R(f) = \int \ell(f(x), y) dP(x, y) \quad (1)$$

$$P_{emp}(x,y) = \frac{1}{n} \sum_{i=1}^{n} \delta(x = x_i, y = y_i)$$
 (2)

$$R_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
 (3)

mixup

- Vicinal Risk minimization
 - $\ \square$ Use (4) defined from $\Omega(x_i)=x:d(x,x_i)\leq r_{x_i}$
 - $\ \square\ \Omega(x_i)$: the vicinity of the point x_i .

 - \square (3) \Rightarrow (5)
- Advantage: Improves the generalization of the training data.
- Drawback: requires big understanding of the distribution of the dataset.
- Solution: mixup

$$P_{est}(\tilde{x}, \tilde{y}) = \frac{1}{n} \sum_{i=1}^{n} \nu(\tilde{x}, \tilde{y} | x_i, y_i)$$
 (4)

$$R_{vic}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(\tilde{x_i}), \tilde{y_i})$$
 (5)

mixup

- \bullet ν can be chosen arbitrary
- use *mixup vicinal distribution* which is defined in (6)
- $\lambda \sim Beta(\alpha, \alpha)$, for $\alpha \in (0, \infty)$.
- Improves the efficiency of the algolirthm in term of adversarial examples.

$$\nu(\tilde{x}, \tilde{y}|x_i, y_i) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{\lambda} [\delta(\tilde{x} = \lambda . x_i + (1 - \lambda) . x_j, \tilde{y} = \lambda . y_i + (1 - \lambda) . y_j)]$$
(6)

Introduction

Definitions

Background studies

Proposed method

Results

Proposed method

■ Combine the advantages of SMOTE and mixup.

Data samplers and Classifiers

- Data samplers
 - \square SMOTE
 - \blacksquare random state = 42
 - \blacksquare ratio = 1:25000
 - mixup
 - \blacksquare alpha = 0.1
 - \square mixup +SMOTE
 - \blacksquare alpha = 0.1
 - \blacksquare random state = 42
 - \blacksquare ratio = 1:25000

- Classifiers
 - Random Forest
 - default parameters
 - Gradient Boost
 - \blacksquare 'n estimators': 500,
 - \blacksquare 'max_depth': 3,
 - \blacksquare 'subsample': 0.5,
 - \blacksquare 'learning_rate': 0.01,
 - \blacksquare 'min_samples_leaf': 1,
 - \blacksquare 'random_state': 3

Dataset

- European credit card transactions.
- 284,807 rows: 284,315 normal and 492 fraudulant transactions,
- 31 columns: $V1, V2, \dots, V28, Time, Amount$ and Class
- features: $V1, V2, \dots, V28, Time, Amount$
- lacktriangledown targets: Class: normal , fraudulant

Evaluation metrics

Confusion matrix

- a performance measurment for classification.
 - □ *TP*: predicted Positive and it's True.
 - $\ \square$ TN: predicted Negative and it's True.
 - FP (type I error): predicted Positive and it's False.
 - □ *FN* (*type II error*): predicted Negative and it's False.

Actual Values

Positive (1) Negative (0)

redicted Values

Positive (1)	TP	FP
Negative (0)	FN	TN

Evaluation metrics

- Accuracy:
 - the percentage of correct predictions.
- Precision:
 - the fraction of positive predictions that are correct.
- Recall:
 - the fraction of the truly positive instances that the classifier recognizes.

Evaluation metrics

AUC - ROC

- a performance measurement for classification problem at various thresholds settings.
- Receiver Operating Characteristic (ROC) curve visualizes a classifier's performance.
- AUC represents degree or measure of separability.
- It tells how much model is capable of distinguishing between classes.
- Higher the AUC, better the model is.

False Positive Rate

Roc curve with values of AUC for balanced two-class problem

Introduction

Definitions

Background studies

Proposed method

Results

Confusion matrices

Random Forest

Confusion matrices

Random Forest

Confusion matrices

Gradient Boost

Confusion matrices

Gradient Boost

(f) mixup + SMOTE

Accuracies

	SMOTE	mixup	mixup + SMOTE
RF	0.999508	0.999157	0.999438
GB	0.9986798	0.999073	0.996854

AUC-ROC

Random Forest

(i) mixup + SMOTE: 0.948

AUC-ROC

Gradient Boost

(I) mixup + SMOTE: 0.976

Introduction

Definitions

Background studies

Proposed method

Results

- Imbalanced data is one of the big issues in Machine Learning.
- *SMOTE* is simple and efficient.
- mixup improved the efficiency towards adversarial examples.
- mixup + *SMOTE* exhibits prominent results.
- Future works:
 - Tune the best values of hyperparameters.
 - $\ \square$ study mixup + SMOTE with multiclass problems.

