Introdução a Métodos Computacionais EM EQUAÇÕES DIFERENCIAIS PARCIAIS

Trabalho Computacional FINAL - Data de Entrega: 13/13/23

Instruções básicas.

- 1. Este trabalho deve ser realizado individualmente. O trabalho deve ser entregue em forma de relatório, no qual devem ser discutidos os problemas e os resultados obtidos para cada uma das questões. Tenha certeza de que todas as perguntas realizadas no trabalho sejam respondidas de maneira clara e objetiva.
- 2. O relatório final deve ser entregue ao professor via Moodle. É imprescindível que o aluno entregue, além do relatório com os resultados do trabalho, uma listagem do código desenvolvido e as instruções de compilação.
- 3. Os códigos podem ser escritos em qualquer linguagem computacional, sendo fortemente recomendado (mas não exigido) que sejam escritos em linguagens gratuitas abertas e que possam ser compiladas no computador do professor. Os códigos devem ser comentados e devem conter as informações básicas sobre o que cada rotina faz e o que cada variável representa. Todos os cálculos devem ser feitos com variáveis de precisão **DUPLA**. Não usar rotinas pré-implementadas.
- 4. Os resultados devem ser claramente apresentados, isto é, tabelas e gráficos devem conter todas as identificações necessárias para sua compreensão, incluindo título de colunas, nome dos eixos, legenda de cores e símbolos, etc.
- 5. Plágios não serão tolerados em hipótese alguma e implicarão em nota zero no trabalho para todos os envolvidos. Reincidência implicará em reprovação automática do aluno na disciplina.

Projeto 1: Equação do calor e o problema da adega

Neglecting the curvature of the Earth and the diurnal (daily) variation of temperature, the distribution of temperature T(x,t) at a depth x and a time t is given by the Heat equation:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}.\tag{1}$$

Here κ is thermometric diffusivity of soil whose value is approximately $\kappa = 6.3 \text{m}^2/\text{year}$. We neglect the heat coming from the core of the Earth and we assume that the temperature T should decay to zero as $x \to \infty$. Furthermore, we assume that the temperature f(t) at the surface of the Earth (x = 0) has only two values, a "summer" value for half of the year and a "winter" value for the other half, and that this pattern is repeated every year (i.e. at x=0 the temperature is periodic with a period of one year). Consider the initial condition $u_0(x) = f(t)e^{-q_1x}$, where $q_1 = 0.71 \text{m}^{-1}$. For your computational spatial domain take a sufficiently long interval so that the right-end boundary condition T=0 can be used.

- 1. Implement an explicit scheme for (1) and plot the numerical solution at several times. Select Δx and Δt small enough to resolve well the numerical solution. Can you choose arbitrarily the values of Δx and Δt ? Explain your answer.
- 2. Choose a reference point (t_r, x_r) and, by solving the equation for different values of Δx and Δt , show graphically the order of the forward-difference scheme.
- 3. Implement the Crank-Nicolson scheme to find a numerical approximation to (1). Plot the numerical solution at several times. Can you choose arbitrarily the values of Δx and Δt ? Explain your answer. Which of the methods would you choose if you had to compute the solution for very long times?
- 4. From your numerical solution, find the depth x_c at which the temperature is opposite in phase to the surface temperature, i.e, it is summer at x_c when is winter at the surface. Note that the temperature variation at x_c is much smaller than that at the surface. This makes the depth x_c ideal for a wine cellar or vegetable storage.
- 5. Consider that the thermal diffusivity of the Earth is not constant, but in fact is given by $\kappa = \kappa(x) = (6.3 + x)^{\alpha}$, with α an integer. Formulate the new problem

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial T}{\partial x} \right) \tag{2}$$

and, for $\alpha = 1, 2$ and 4, plot the solution of your problem and determine whether the depth of the cellar changes significantly.

6. SUGGESTIONS FOR EXTRA WORK:

- (a) Consider a higher order scheme to discretise both spatial and temporal derivatives.
- (b) Consider a more detailed seasonal change of the temperature at the surface of the Earth.
- (c) Consider the thermal diffusivity of the Earth decreasing with the depth, something like $\kappa = \kappa(x) = (6.3 x)^{\alpha}$.
- (d) Consider the thermal diffusivity of the Earth varying with the temperature, that is, $\kappa = \kappa(T) = (6.3 T)^{\alpha}$. This would lead to a nonlinear problem.
- (e) Consider the regime of super-diffusion, in which a higher order derivative appears on the equations. For example:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^4 T}{\partial x^4}.\tag{3}$$

[BOM TRABALHO!]

Int. Mét. Comp. EDP - 02/23 - Prof. Yuri Dumaresq Sobral - MAT/UnB