

TO PASS 75% or higher

Keep Learning

GRADE 92.30%

Graded quiz on Tangent Lines to Functions, Exponents and Logarithms

LATEST	SUBMISSION	GRADE	

92.3%

1. Convert $\frac{1}{49}$ to exponential form, using 7 as the factor.

1 / 1 point

- $\bigcirc 49^{-1}$
- $O(7^2)$

The rule for a factor to a Negative exponent is to divide by the same factor to a positive exponent with the same absolute value.

2. A light-year (the distance light travels in a vacuum in one year) is 9,460 trillion meters. Express in scientific 1/1 point notation.

- $\bigcirc \ 0.946 \times 10^{16}$
- $\bigcirc~9.46 imes 10^{15}$ kilometers
- $\bigcirc \ 9460 \times 10^{12} \, \text{meters}$
- \odot $9.46 imes 10^{15}$ meters.

9,460 is (9.4×10^3) meters and one trillion meters is 10^{12} meters. $(9.4\times10^3)(10^{12})$ = 9.4×10^3 $10^{15}.\ \mbox{A kilometer}$ is $1000\ \mbox{meters}.$

3. Simplify $(x^8)(y^3)(x^{-10})(y^{-2})$

- $\bigcirc (x)(y^{-2})$
- $(x^{-2})(y)$
- $\bigcirc (x^2)(y)$
- $\bigcirc (x^{-80})(y^{-6})$

By the Division and Negative Powers Rule, this is $(x^{(8-10)})(y^{(3-2)})$

4. Simplify $[(x^4)(y^{-6})]^{-1}$

1 / 1 point

- $\bigcirc (x^3)(y^{-7})$

$$(x^{-4})(y^6)$$

By the Power to a Power Rule, each of the exponents is multiplied by $\left(-1\right)$

5. Solve for x:

1 / 1 point

$$\log_2(39x) - \log_2(x-5) = 4$$

- $\bigcirc \ \frac{80}{38}$
- $\bigcirc \frac{23}{80}$
- $\bigcirc \quad \frac{39}{23}$

✓ Correc

$$\log_2 \, rac{39x}{(x-5)} = 4 \,$$
 by the Quotient Rule.

Since both sides are equal, we can use them as exponents in an equation.

$$2^{\log_2 \frac{39x}{(x-5)}} = 2^4$$

$$\frac{39x}{(x-5)} = 16$$

$$39x = 16 \times (x - 5)$$

$$39x = 16x - 80$$

$$23x = -80$$

$$x = \frac{-80}{23}$$

6. Simplify this expression:

1 / 1 point

$$\left(x^{\frac{1}{2}}\right)^{\frac{-3}{2}}$$

$$\circ_{x^{\frac{4}{3}}}$$

$$left$$
 $x^{rac{-3}{4}}$

$$\circ_{x^{\frac{1}{3}}}$$

$$\circ$$
 x^{-1}

Correct

We use the Power to a Power Rule -- multiply exponents:

$$x^{rac{1}{2} imesrac{-3}{2}}=x^{rac{-3}{4}}$$

7. Simplify $\log_2 8 - \log_2 4 - (\log_3 4.5 + \log_3 2)$

✓ Correct

This is equivalent to:

$$\log_2(\frac{8}{4}) - \log_3(4.5 \times 2) = 1 - 2 = -1$$

 $^{8.}$ If $\log_3 19 = 2.680$, what is $\log_9 19$?

1 / 1 point

- 0.4347
- \circ 0.8934
- \circ 5.216
- **1.304**

To convert from \log_3 to \log_9 , divide by $\log_3 9.$ Which is equal to 2 , so the answer is 1.34

 $^{9.}$ If $\log_{10}b=1.8$ and $log_ab=2.5752$, what is a?

0 / 1 point

1 / 1 point

- \bigcirc 3
- O_4
- 6
- \circ 5

Incorrect

To solve for a in the formula;

$$\log_a b = \frac{\log_x b}{\log_x a}$$

$$\log_a b = 2.5752$$
 and $\log_{10} b = 1.8$

Therefore,
$$\log_{10} a$$
 must equal to $\ \dfrac{1.8}{2.5752} = 0.69897$

Treating both sides of equation $\log_{10}a=0.69897$ as exponents of 10 gives $a=10^{0.69897}=?$

If at first you don't succeed, try again!

 $^{\rm 10.}$ An investment of 1,600 is worth 7,400 after 8.5 years. What is the continuously compounded rate of return of this investment?

 \circ 20.01

 \circ 17.01%

 \circ 19.01%

$$rac{ \ln rac{7400}{1600}}{8.5} = 0.18017$$

 $^{\rm 11.}$ A pearl grows in an oyster at a continuously compounded rate of .24 per year. If a 25-year old pearl weighs 1 gram, what did it weigh when it began to form?

1 / 1 point

- 0.2478
- \bigcirc 0.0002478
- 0.02478
- **0** 0.002478

$$e^{(0.24 imes 25)}=rac{1}{x}$$
 $x=rac{1}{(e^{0.24 imes 25})}$ $x=rac{1}{403.4288}$ $x=0.002478$

 $^{ ext{12.}}\log_2z=6.754.$ What is $\log_{10}(z)$?

1 / 1 point

- 0.82956
- \circ 1.3508
- 0.49185
- 2.03316

$$\frac{\log_2 z}{\log_2 10} =$$
 $(\log_{10} z) imes (\log_{10} 10) = 3.321928$ Therefore, $\log_{10} z = \frac{6.754}{3.321928} = 2.03316$

13. Suppose that $g: \mathbb{R} \to \mathbb{R}$ is a function, and that g(1) = 10. Suppose that g'(a) is negative for every single value of a. Which of the following could possibly be g(1.5)?

$$\bigcirc g(1.5) = 10.1$$

$$\bigcirc g(1.5) = 103.4$$

$$\bigcirc g(1.5) = 11$$

Since the slope of the tangent line to the graph of g is negative everywhere on the graph, we know that g is decreasing function! And therefore we must have g(1.5) < g(1). That is the case here, so this value is at least possible.