

SRINIVAS UNIVERSITY COLLEGE OF ENGINEERING & TECHNOLOGY

Department Of Computer Science and Engineering TEACHING/LESSON PLAN (EVEN Semester 2021-22)

Subject Code		19SCS62	Title	Machine Learning			Class	VI sem			
Prerequisites					Faculty Name		Ms. Dyanila N	leeta	Ferrao		
Credits	4		Hours/week	L-T-P:	4	CIE Marks	50	SEE Marks	50	Total Hours	50

Course Objectives:

- Define machine learning and problems relevant to machine learning.
- Differentiate supervised, unsupervised and reinforcement learning
- Apply neural networks, Bayes classifier and k nearest neighbour, for problems appear in machine learning.
- Perform statistical analysis of machine learning techniques.
- Applying K nearest Neighbour and reinforcement learning

Course Outcomes of the Course:

On Completion of this Course the Student was able to,

CO id	Course Outcome			
CO1	Identify the problems for machine learning. And select the either supervised, unsupersvised or reinforcement learning.			
CO2	Explain theory of probability and statistics related to machine learning			
CO3	Investigate concept learning, ANN, Bayes classifier, k nearest neighbor, Q, software			
CO4	Explain about Bayes theorem			
CO5	Analyse the Instant Learning			

CO-PO Mapping:

LLQ.												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	V	V										
CO2		V	V									
CO3	V	V										
CO4	V	V	V									
CO5	V	V	V									

Lesson/Teaching Plan of the Course:

Hour No.	Plan Date	Actual Date	Topic to be covered	CO Mapping	Mode of Delivery	Text/ Reference book
1	14.03.2022		Introduction: Well posed learning problems,	CO1	Chalk and talk	T1
2	15.03.2022		Designing a Learning system,	CO1	Chalk and talk	T1
3	17.03.2022		Perspective and Issues in Machine Learning.	CO1	Chalk and talk	T1
4	18.03.2022		Concept Learning: Concept learning task,	CO1	Chalk and talk	T1
5	21.03.2022		Concept learning as search,	CO1	Chalk and talk	T1

6	22.03.2022	Find-S algorithm,	CO1	Chalk and talk	T1
	24.03.2022	Version space,	CO1	Chalk	T1
7	2 1103.2022	version space,		and talk	11
8	25.03.2022	Candidate Elimination algorithm,	CO1	Chalk and talk	T1
8	28.022022	Condidate Elimination algorithm	601	Chalk	T.1
9	28.032022	Candidate Elimination algorithm,	CO1	and talk	T1
10	29.03.2022	Inductive Bias.	CO1	Chalk and talk	T1
11	31.03.2022	Decision Tree Learning: Decision tree representation,	CO2	Chalk and talk	T1
11	01.04.2022		602		TD 1
12	01.04.2022	Appropriate problems for decision tree learning,	CO2	Chalk and talk	T1
13	04.04.2022	Appropriate problems for decision tree learning,	CO2	Chalk and talk	T1
14	05.04.2022	Basic decision tree learning algorithm,	CO2	Chalk and talk	T1
15	07.04.2022	Basic decision tree learning algorithm,	CO2	Chalk and talk	T1
16	08.04.2022	hypothesis space search in decision tree learning,	CO2	Chalk and talk	T1
17	11.04.2022	hypothesis space search in decision tree learning,	CO2	Chalk and talk	T1
18	12.04.2022	Inductive bias in decision tree learning,	CO2	Chalk and talk	T1
19	26.04.2022	Inductive bias in decision tree learning,	CO2	Chalk and talk	T1
20	28.04.2022	Issues in decision tree learning.	CO2	Chalk and talk	T1
21	29.04.2022	Artificial Neural Networks: Introduction,	CO3	Chalk and talk	T1
22	02.05.2022	Neural Network representation,	CO3	Chalk and talk	T1
23	05.05.2022	Neural Network representation,	CO3	Chalk and talk	T1
24	06.05.2022	Appropriate problems,	CO3	Chalk and talk	T1

			CO3	Chalk	T1
25	09.05.2022	Appropriate problems,	COS	and talk	11
26	10.05.2022	Perceptrons,	CO3	Chalk and talk	T1
27	12.05.2022	Perceptrons,	CO3	Chalk and talk	T1
28	13.05.2022	Backpropagation algorithm.	CO3	Chalk and talk	T1
29	16.05.2022	Backpropagation algorithm.	CO3	Chalk and talk	T1
30	17.05.2022	Backpropagation algorithm.	CO3	Chalk and talk	T1
31	19.05.2022	Bayesian Learning: Introduction,	CO4	Chalk and talk	T1
32	20.05.2022	Bayes theorem,	CO4	Chalk and talk	T1
33	23.05.2022	Bayes theorem and concept learning,	CO4	Chalk and talk	T1
34	24.05.2022	Bayes theorem and concept learning,	CO4	Chalk and talk	T1
35	26.05.2022	learning, ML and LS error hypothesis,	CO4	Chalk and talk	T1
36	27.05.2022	ML for predicting probabilities,	CO4	Chalk and talk	T1
37	30.05.2022	MDL principle,	CO4	Chalk and talk	T1
38	31.05.2022	Naive Bayes classifier,	CO4	Chalk and talk	T1
39	06.06.2022	Bayesian belief networks,	CO4	Chalk and talk	T1
40	07.06.2022	EM algorithm.	CO4	Chalk and talk	T1
41	09.06.2022	Instance Based Learning: Introduction,	CO5	Chalk and talk	T1
42	10.06.2022	k-nearest neighbor learning,	CO5	Chalk and talk	T1
43	13.06.2022	k-nearest neighbor learning,	CO5	Chalk and talk	T1

44	14.06.2022	locally weighted regression,	CO5	Chalk and talk	T1
45	16.06.2022	locally weighted regression,	CO5	Chalk and talk	T1
46	17.06.2022	Radial basis function,	CO5	Chalk and talk	T1
47	20.06.2022	cased-based reasoning.	CO5	Chalk and talk	T1
48	21.06.2022	Learning Task,	CO5	Chalk and talk	T1
49	23.06.2022	Q-Learning.	CO5	Chalk and talk	T1
50	24.06.2022	Q-Learning.	CO5	Chalk and talk	T1

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.
R1	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.
R2	EthemAlpaydın, Introduction to machine learning, second edition, MIT press.

Faculty Member	HOD
----------------	-----

Date: