Университет ИТМО

Факультет программной инженерии и компьютерной техники Образовательная программа системное и прикладное программное обеспечение

Лабораторная работа №5 По дисциплине "Основы профессиональной деятельности" Вариант 9500

> Выполнил студент группы Р3109 Евграфов Артём Андреевич Проверила: Ткешелашвили Нино Мерабиевна

Содержание

1. Задание варианта 9500	2
2. Описание программы	2
3. ОП и ОДЗ исходных данных и результата	2 3
4. Трассировка программы	3
5. Дополнительное задание	4
6. Вывод	6

1. Задание варианта 9500

Лабораторная работа №5

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

Введите номер варианта 9500

- 1. Программа осуществляет асинхронный ввод данных с ВУ-2
- 2. Программа начинается с адреса 28 B_{16} . Размещаемая строка находится по адресу $5CD_{16}$.
- 3. Строка должна быть представлена в кодировке КОИ-8.
- 4. Формат представления строки в памяти: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП_СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 0A (NL). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

2. Описание программы

Адрес	Содержимое	Мнемоника	Комментарии
28B	05CD	ADR	Ячейка для инкрементирования адреса результата
28C	0200	CLA	0000 -> AC
28D	1205	IN 5	Ввод содержимого SR ВУ2 в 6-й бит АС
28E	2F40	AND #40	Проверяем условие "6-й бит $AC = 1$ "
28F	F0FD	BZS (IP - 3)	Переход на 0 х 2 8D, если 6 -й бит $=0$ ($Z==1$)
290	1204	IN 4	Ввод содержимого DR ВУ2 в младший байт АС
291	7F0A	CMP #0A	Сравнение АС со стоп-символом 0А
292	F00B	BZS (IP + 11)	Переход на 0 х 2 9 E , если $Z==1$
293	0680	SWAB	Свап байтов АС
294	E8F6	ST (IP - 10)	Сохранение первого символа по адресу из ячейки 0x28B
295	1205	IN 5	Ввод содержимого SR ВУ2 в 6-й бит АС
296	2F40	AND #40	Проверяем условие "6-й бит $AC = 1$ "(старший байт за-
			тирается из-за расширения знака)
297	F0FD	BZS (IP - 3)	Переход на 0 х 2 94, если 6-й бит $= 0 \; (Z == 1)$
298	1204	IN 4	Ввод содержимого DR BУ2 в младший байт AC
299	7F0A	CMP $\#0A$	Сравнение АС со стоп-символом 0А
29A	F005	BZS (IP + 5)	Переход на $0x29E$, если $Z==1$
29B	48EF	ADD (IP - 17)	Теперь в АС хранится СИМВ1 СИМВ2
29C	EAEE	ST (IP - 18)+	Сохранение второго символа по адресу из ячейки 0x28B
			и увеличение значения ячейки на 1
29D	CEED	JUMP (IP - 18)	Переход на адрес 0x28D (если все окей, продолжаем счи-
			тывать)
29E	0680	SWAB	Свап байтов АС (так как 0А должен быть слева)
29F	CE01	JUMP (IP + 1)	Переходим на 0х2А0
2A0	48EA	ADD (IP - 22)	Теперь в AC хранится СИМВ1 СИМВ2=0A
2A1	E8E9	ST (IP - 23)	Сохранение результата с символом 0А
2A2	0100	HLT	остановка программы
5CD	0000	RES	Ячейка для сохранения символа слова (дальше инкре-
			ментируется)

3. ОП и ОДЗ исходных данных и результата

3.1. Область представления

RES - 16-разрядная ячейка для сохранения 2-х символов. Старший байт - код первого символа, младший байт - код второго символа.

ADR - 11-разрядное беззнаковое число. Ячейка для хранения адреса начала символов кода.

	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	.A	.B	.C	.D	.E	.F
8.	- 2500	2502	Г 250С	7 2510	L 2514	J 2518	- 251C	- 2524	T 252C	<u>⊥</u> 2534	+ 253C	2580	2584	2588	258C	2590
9.	2591	2592	2593		■ 25A0	· 2219	√ 221A	≈ 2248	≤ 2264	≥ 2265	A0	J 2321	о В0	2 B2	В7	÷ F7
Α.	= 2550	 2551	F 2552	ë 451	Г 2553	Г 2554	7 2555	T 2556	1 2557	L 2558	⊥ 2559	L 255A	Ⅎ 255B	_ ∐ 255C	<u></u>	= 255E
в.	- 255F	L F 2560	 2561	Ë 401	4 2562	 	T 2564	TT 2565	T 2566	<u>⊥</u> 2567	<u> </u>	<u>JL</u> 2569	‡ 256A	# 256B	JL T 256C	© A9
c.	Ю 44E	a 430	б 431	Ц 446	Д 434	e 435	ф 444	Г 433	X 445	И 438	й 439	К 43А	Л 43B	M 43C	H 43D	O 43E
D.	П 43F	Я 44F	p 440	c 441	T 442	y 443	Ж 436	B 432	Ь 44С	Ы 44В	3 437	III 448	Э 44D	Щ 449	Ч 447	Ъ 44А
E.	Ю 42E	A 410	Б 411	Ц 426	Д 414	E 415	Ф 424	Γ 413	X 425	И 418	Й 419	K 41A	Л 41В	M 41C	H 41D	O 41E
F.	П 41F	Я 42F	P 420	C 421	T 422	У 423	Ж 416	B 412	Ь 42С	Ы 42В	3 417	Ш 428	Э 42D	Щ 429	Ч 427	Ъ 42А

3.2. Область определения

8-ричный код символа \in [0x20; 0xFF\{0x7F}]. Максимально возможное количество символов для ввода = 1126. $(2047(0x7FF_{16})-1484(0x5CD_{16}))\cdot 2=1126$

4. Трассировка программы

Слово для трассировки: СМЕСЬ.

Слово в кодировке KOИ-8: F3 ED E5 F3 F8.

Слово в кодировке UTF-8 (BE): D0A1 D09C D095 D0A1 D0AC Слово в кодировке UTF-16 (BE): 0421 041C 0415 0421 042C Таблица трассировки первых двух символов слова CMECЬ:

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
<u>лдр</u> 28В	05CD	28B	0000	000	0000	000	0000	0000	0100	лдр	Onan
28B	05CD	28C	05CD	28B	05CD	000	028B	0000	0100		
28C	0200	28D	0200	28C	0200	000	028C	0000	0100		
28D	1205	28E	1205	28D	1205	000	028D	0040	0100		
28E	2F40	28F	2F40	28E	0040	000	0040	0040	0000		
28F	FOFD	290	FOFD	28F	FOFD	000	028F	0040	0000		
290	1204	291	1204	290	1204	000	0290	00F3	0000		
291	7F0A	292	7F0A	291	000A	000	000A	00F3	0001		
292	F00B	293	FOOB	292	F00B	000	0292	00F3	0001		
293	0680	294	0680	293	0680	000	0293	F300	1001		
294	E8F6	295	E8F6	5CD	F300	000	FFF6	F300	1001	5CD	F300
295	1205	296	1205	295	1205	000	0295	F300	1001		
296	2F40	297	2F40	296	0040	000	0040	0000	0101		
297	FOFD	295	FOFD	297	FOFD	000	FFFD	0000	0101		
295	1205	296	1205	295	1205	000	0295	0040	0101		
296	2F40	297	2F40	296	0040	000	0040	0040	0001		
297	FOFD	298	FOFD	297	FOFD	000	0297	0040	0001		
298	1204	299	1204	298	1204	000	0298	OOED	0001		
299	7F0A	29A	7F0A	299	000A	000	000A	OOED	0001		
29A	F005	29B	FOOB	29A	FOOB	000	029A	OOED	0001		
29B	48EF	29C	48EF	5CD	F300	000	FFEF	F3ED	1000		

29C	EAEE	29D	EAEE	5CD	F3ED	000	FFEE	F3ED	1000	28B	05CE
										5CD	F3ED
29D	CEEF	28D	CEEF	29D	028D	000	FFEF	F3ED	1000		
28D	1205	28E	1205	28D	1205	000	028D	F340	1000		
28E	2F40	28F	2F40	28E	0040	000	0040	0040	0000		
28F	FOFD	290	FOFD	28F	FOFD	000	028F	0040	0000		
290	1204	291	1204	290	1204	000	0290	000A	0000		
291	7F0A	292	7F0A	291	000A	000	000A	000A	0101		
292	F00B	29E	F00B	292	F00B	000	000B	000A	0101		
29E	0680	29F	0680	29E	0680	000	029E	0A00	0001		
29F	CE01	2A1	CE01	29F	02A1	000	0001	0A00	0001		
2A1	E8E9	2A2	E8E9	5CE	0A00	000	FFE9	OAOO	0001	5CE	0A00
2A2	0100	2A3	0100	2A2	0100	000	02A2	0A00	0001	·	

5. Дополнительное задание

С ВУ-8 (клавиатура) вводится строка, enter - завершение ввода. После окончания ввода, на ВУ-5 (принтер) вывести коды символов в 16-ричной системе счисления через пробел. Кодировка любая.

```
1 ORG 0x000
2 ADR: WORD $RES
  COUNTER: WORD 0x0000
5
  BEGIN: CLA
6
7
  READ: IN 0x19
8
         AND #0x40
9
         BZS READ
10
         IN 0x18
         CMP #0x0A
11
12
         BZS SAVE
13
         ST (ADR) +
14
         LD COUNTER
         INC
15
16
         ST COUNTER
17
         JUMP READ
18
19 SAVE: CLA
20
         LD COUNTER
21
         CMP #0x00
22
         BZS EXIT
23
         JUMP START_WRITING
24
25
  START_WRITING: CLA
26
         IN OxD
27
         AND #0x40
28
         BZS START_WRITING
29
         LD ADR
30
         SUB COUNTER
31
         ST ADR
32
         JUMP WRITE
33
34
  WRITE: CLA
35
         LD (ADR)
36
         ASR
37
         ASR
38
         ASR
39
         ASR
40
         PUSH
```

```
CALL FUNC
41
42
          POP
43
          OUT 0xC
          LD (ADR) +
44
          AND #0x0F
45
46
          PUSH
47
          CALL FUNC
48
          POP
          OUT 0xC
49
50
          LD #0x9A
          OUT 0xC
51
52
          LOOP COUNTER
          JUMP WRITE
53
54
          HLT
55
56 FUNC: LD &1
57
          CMP #0x00
58
          BZS SET_0
          CMP #0x01
59
          BZS SET_1
60
          CMP #0x02
61
62
          BZS SET_2
63
          CMP #0x03
          BZS SET_3
64
65
          CMP #0x04
66
          BZS SET_4
          CMP #0x05
67
          BZS SET_5
68
69
          CMP #0x06
70
          BZS SET_6
71
          CMP #0x07
72
          BZS SET_7
73
          CMP #0x08
74
          BZS SET_8
          CMP #0x09
75
          BZS SET_9
76
77
          CMP #0x0A
78
          BZS SET_A
79
          CMP #0x0B
80
          BZS SET_B
81
          CMP #0x0C
82
          BZS SET_C
          CMP #0x0D
83
          BZS SET_D
84
85
          CMP #0x0E
86
          BZS SET_E
          CMP #0x0F
87
88
          BZS SET_F
89
90 SET_0: LD #0x30
            ST &1
91
            RET
92
93
           LD #0x31
94 SET_1:
95
            ST &1
96
            RET
97
98 SET_2:
            LD #0x32
99
            ST &1
100
            RET
101
```

```
102 SET_3: LD #0x33
103
            ST &1
104
            RET
105
106 SET_4: LD #0x34
107
             ST &1
108
             RET
109
110 SET_5:
            LD #0x35
111
             ST &1
             RET
112
113
114 SET_6:
            LD #0x36
115
             ST &1
116
             RET
117
118 SET_7:
            LD #0x37
119
             ST &1
120
             RET
121
122 SET_8: LD #0x38
123
             ST &1
124
             RET
125
            LD #0x39
126 SET_9:
127
             ST &1
128
             RET
129
130 SET_A:
            LD #0x41
131
             ST &1
132
            RET
133
134 SET_B: LD #0x42
135
             ST &1
136
             RET
137
138 SET_C:
            LD #0x43
139
             ST &1
            RET
140
141
142 SET_D:
            LD #0x44
             ST &1
143
             RET
144
145
146 SET_E:
            LD #0x45
147
             ST &1
             RET
148
149
150 SET_F:
            LD #0x46
             ST &1
151
152
             RET
153
154 ORG Ox2CD
155 RES: WORD 0x0000
```

6. Вывод

В ходе выполнения данной лабораторной работы я научился работать с ВУ-2, освоил команды вводавывода, а также познакомился с синтаксисом ассемблера БЭВМ-NG.