Dr.-Ing. Debdas Paul

Machine learning | Mathematical modeling | Computational & systems biology

I am particularly interested in developing framework for integration (esp. diagonal integration, unmatched pairs) of multi-modal omics data. Apart from that, I have long standing interest in understanding biological robustness using concepts from control and systems

RESEARCH EXPERIENCE

06/2020 - present Postdoctoral researcher

University Hospital, Tübingen, Germany

- · developing machine and deep learning based approaches to integrate single cell flow-cytometry and radiomics data to identify and monitor cancer-immunotherapy responses.
- · Group leader: Prof. Dr. Manfred Claassen

Deep & machine learning / Flow cytometry / Radiomics / cancer immunotherapy / Biomarker discovery

02/2019 - 05/2020 Postdoctoral researcher

The Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

- · Contributed to the development of QPuB a tool that employs Bayesian statistical inference based on MCMC sampling to learn the posterior distributions of the conversion factors for the peptide products without further experimentation.
- · Group leader: Dr. Juliane Liepe

R / MCMC / Bayesian inference / Mass spectrometry / Immunology

07/2017 - 10/2017

Visiting researcher

Harvard Medical School

- · Developed a rule-based modelling approach based on the kappa-language framework for gene regulation.
- · Collaborator: Prof. Jeremy Gunawardena

Python / Kappa - a rule-based language / stochastic simulation

11/2014 - 12/2018

Doctoral researcher

Institute for Systems Theory and Automatic Control

- · explored the origin of robustness and its characterization in biological signaling networks as well as in gene regulation using mechanistic modeling, stochastic simulation and rule-based modelling approach.
- Supervisor: Prof. Dr. rer. nat. Nicole Radde

MATLAB / Systems & control theory / Systems biology / Mathematical modeling & Stochastic simulation

EDUCATION

2014 - 2019	DrIng. Systems theory, Systems Biology, Magna cum Laude	University of Stuttgart, Germany
2012 - 2014	Master of Science & Master of Science (Technology) Computational Systems Biology, Distinction	KTH, Sweden & Aalto University, Finland
2009 - 2011	Master of Engineering Computer Science & Engineering, First class	Jadavpur University, India
2005 – 2009	Bachelor of Technology Computer Science & Engineering, First class	West Bengal University of Technology, India

KEY PROGRAMMING SKILLS

MACHINE LEARNING FRAMEWORKS

COMPUTATIONAL INFRASTRUCTURES

Docker

HONORS & AWARDS

- · European Union's Erasmus Mundus Fellowship (EU equivalent of Fullbright)
- · Bilateral Mobility Grant, Govt. of Republic of Slovenia

ACADEMIC COLLABORATORS

- · Prof. Elena Hsieh, MD University of Colorado Anschutz School of Medicine, USA · Prof. Jeremy Gunawardena HMS, USA
- · Prof. Dragan Stevanovic Mathematical Institute, Serbia · Prof. Steve Kirkland University of Manitoba, Canada

• German - A1 (Goethe-Zertifikat) [98/100] • English - full working proficiency • Bengali - native

Publications

Mathematical modeling, systems biology, systems theory, stochastic simulation, biomimetics

The role of stochastic sequestration dynamics for intrinsic noise filtering in signaling network motifs

Paul, D., and Radde, N., 2018. The role of stochastic sequestration dynamics for intrinsic noise filtering in signaling network motifs. *Journal of Theoretical Biology* 455, pp.86-96.

Robustness and filtering properties of ubiquitous signaling network motifs

Paul, D., and Radde, N., 2016. Robustness and filtering properties of ubiquitous signaling network motifs. *IFAC-PapersOnLine* 49(26), pp.120-127

Structural Design with Biological Methods: Optimality, Multi-functionality and Robustness

Paul, D., Dehkordi, L.K.F., von Scheven, M., Bischoff, M. and Radde, N., 2016. Structural Design with Biological Methods: Optimality, Multi-functionality and Robustness. *In Biomimetic Research for Architecture and Building Construction* pp. 341-360. Springer, Cham.

spectral graph theory, complex networks

Eigenvector-based identification of bipartite subgraphs

Paul, D. and Stevanović, D., 2019. Eigenvector-based identification of bipartite subgraphs. *Discrete Applied Mathematics* 269, pp.146-158.

Bipartite subgraphs and the signless Laplacian matrix

Kirkland, S. and **Paul, D.**, 2011. Bipartite subgraphs and the signless Laplacian matrix. *Applicable Analysis and Discrete Mathematics* 5(1), pp.1-13.

structural bioinformatics, computational geometry

A volumetric method for representing and comparing regions of electrostatic focusing in molecular structure

Chen, B.Y. and **Paul, D.**, 2012. A volumetric method for representing and comparing regions of electrostatic focusing in molecular structure. *In Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine* pp.242-249 (Acceptance rate: 20.7%).

immunopeptidomics, Bayesian inference, MCMC

An in silico -in vitro pipeline identifying an HLA-A*02:01+ KRAS G12V+ spliced epitope candidate for a broad tumor-immune response in cancer patients

Mishto, M., Mansurkhodzhaev, A., Ying, G., Bitra, A., Cordfunke, A.R., Henze, S., **Paul, D.**, Sidney, J., Urlaub, H., Neefjes, J., Sette, A., Dirk, Z., Liepe, J., 2019. An in silico-in vitro pipeline identifying an HLA-A*02:01+ KRAS G12V+spliced epitope candidate for a broad tumor-immune response in cancer patients. *Frontiers Immunology*.