

Theory of Spin Wave Emission from a Bloch Domain Wall

N.J. Whitehead¹, T.G. Philbin¹, S.A.R. Horsley¹, A.N. Kuchko², V.V. Kruglyak¹

¹Department of Physics & Astronomy, University of Exeter, Stocker Road, Exeter, UK, EX4 4QL ²Donetsk National University, 24 Universitetskaya Street, Donetsk, 83001, Ukraine

Abstract. An analytical theory of exchange spin wave emission from a Bloch domain wall in a thin film is presented. We model a ferromagnet with antiparallel domains aligned along the (in-plane) easy-axis, where the hard axis points out of the film plane. When excited by a continuous, harmonic external magnetic field oriented orthogonal to the domain wall, plane spin waves are emitted above a threshold frequency. The precession is elliptical, with the ellipticity reducing with increasing wavevector.

Introduction

Exchange spin waves (SWs) have great potential as information carriers on the nanoscale, due to their short wavelengths and isotropic, quadratic dispersion [1-2].

The wavelengths of SWs generated via **electrical antennas** or point contacts are **limited** by the **size** of the device [2].

Recent experimental [3,4], modelling [5] and numerical [6] work has demonstrated that **domain walls can generate SWs**.

Fig.1: Model of the single layer system: a) top and b) side view.

We use analytical theory to explain this phenomena for exchange SWs.

We model an infinitely wide thin film, with a pinned Bloch domain wall separating two antiparallel domains, shown in Fig.1. Note the film lies in the y-z plane.

Background Theory

Excitation of the sample via an in-plane, time-varying magnetic field $\mathbf{h}(t)$ induces **precession** of the magnetisation \mathbf{M} , described by the **Landau-Lifshitz equation** without damping:

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma [\mathbf{M} \times \mathbf{H}_{eff}]$$

The effective field \mathbf{H}_{eff} is the functional derivative of the free energy density W:

$$W = \frac{1}{2}\alpha \left(\frac{\partial \mathbf{M}^2}{\partial y^2}\right) - \frac{1}{2}\beta_{\parallel}(\mathbf{M} \cdot \hat{\mathbf{n}}_{\parallel})^2 + \frac{1}{2}\beta_{\perp}(\mathbf{M} \cdot \hat{\mathbf{n}}_{\perp})^2 - \mathbf{h}(t) \cdot \mathbf{M}$$
Exchange
In-Plane
Anisotropy
Anisotropy
Excitation

Minimising W in spherical coord's leads to the domain wall profile (Fig.2); a function of y and the domain wall width λ_B :

We rotate the frame of reference, as shown in Fig. 3, to follow the static magnetisation M_0 .

due to the domain wall.

We then **linearise** the Landau-Lifshitz equation and solve for $\tilde{\mathbf{m}}_{\beta}'$; the excitation of magnetisation

Fig.2: Static magnetisation M_0 with $\lambda_B \approx$ 6nm. NB: The length of M_0 is arbitrarily sized for clarity.

Fig.3: Rotated (primed) frame. The \mathbf{z} ' axis always follows \mathbf{M}_0 , and $\mathbf{y} = \mathbf{y}$ '.

Results & Discussion

- SWs emitted for frequency: $\omega > \gamma M_0 \sqrt{\beta_{\parallel}(\beta_{\parallel} + \beta_{\perp})}$ (Fig.4a,4b).
- Amplitude and wavelength (Fig.4c) determined by h(t).

- SWs are **elliptical** (Fig.4d) with ellipticity reducing at large **k**.
- Magnetisation vectors in unprimed frame clearly show domain wall **oscillating** back and forth, causing SW emission (Fig.5).

References

- [1] A. V. Chumak, V. I. Vasyuchka, A. A. Serga and B. Hillebrands, *Nat. Phys.* 11 453-461 (2015).
 [2] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, *J. Phys. D: Appl. Phys.* 43 264001 (2010).
 [3] V. Sluka *et al.*, INTERMAG IEEE Abstract DE-03 (2015).
- [4] B. Mozooni and J. McCord, Appl. Phys. Lett. **107** 042402 (2015).
- [5] B. Van de Wiele, S. J. Hämäläinen, P. Baláž, F. Montoncello and S. van Dijken, Sci. Rep. 6 21330 (2016).
- [6] X. S. Wang and X. R. Wang, Phys. Rev. B **90**, 184415 (2014).

This research has received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement No. 644348 (MagIC).

 $|\mathbf{h}(t)|=10e$, $\beta_{\parallel}=0.1$, $\beta_{\perp}=10$, frequency= $\omega/2\pi=50$ GHz.