Phase 1 - Exploratory data analysis (EDA) + Feature importance with Random Forest

BUSINESS REQUIREMENT detailed in phase 0

** The public dataset proviced by IBM will present revenue information related to some products and countries for specific years (2004 to 2007)

The Business question are:

- 1. Can we predict our revenue in 2008?
- 1. What is the confidence of this prediction?
- 1. And finally, if we sell the same products from 2007, what are the divergence expected on revenue in 2008?

Info

- In this notebook we are going to evaluate and profile the dataset
- Run a Random Forest Regressor to plot the feature importance and evaluate one initial prediction

```
In [1]: import pandas as pd
   import pandas_profiling as pp
```

Dataset

the dataset used in this process can be accessed trought IBM website below

https://www.ibm.com/communities/analytics/watson-analytics-blog/guide-to-sample-datasets/ (https://www.ibm.com/communities/analytics/watson-analytics-blog/guide-to-sample-datasets/)

```
In [2]: df = pd.read_csv('../data/WA_Retail-SalesMarketing_-ProfitCost.csv')
## fill NaN com zero

df.fillna(0, inplace=True)

## Predict Revenue - columns used
df = df [['Year' ,'Product line' ,'Product type' ,'Product' ,'Order method type' ,'Retailer country' ,'Revenue' ,'Planned revenue']]

df.head().T
```

Out[2]:

	0	1	2	3	4
Year	2004	2004	2004	2004	2004
Product line	Camping Equipment				
Product type	Cooking Gear				
Product	TrailChef Water Bag				
Order method type	Telephone	Telephone	Telephone	Telephone	Telephone
Retailer country	United States	Canada	Mexico	Brazil	Japan
Revenue	315044	13444.7	0	0	181120
Planned revenue	437477	14313.5	0	0	235237

Profile the data

In [3]: # pp.ProfileReport(df, check_correlation=False)

pp.ProfileReport(df, check_correlation=True)

Overview

Dataset info

Number of variables 8

Number of observations84672Total Missing (%)0.0%Total size in memory5.2 MiBAverage record size in memory64.0 B

Variables types

Numeric2Categorical5Boolean0Date0Text (Unique)0Rejected1Unsupported0

Warnings

- Planned revenue is highly correlated with Revenue (ρ = 0.99917) Rejected
- Product has a high cardinality: 144 distinct values Warning
- Revenue has 60005 / 70.9% zeros Zeros

Variables

Order method type

Categorical

Distinct count 7
Unique (%) 0.0%

Missing (%) 0.0%
Missing (n) 0

Fax 12096 E-mail 12096 Telephone 12096

Other values (4) 48384

Toggle details

Planned revenue

Highly correlated

This variable is highly correlated with Revenue and should be ignored for analysis

Correlation 0.99917

Product

Categorical

 Distinct count
 144

 Unique (%)
 0.2%

 Missing (%)
 0.0%

 Missing (n)
 0

Polar Ice 588
Polar Wave 588
TrailChef Cup 588

Other values (141) 82908

Toggle details

Product line

Categorical

Distinct count 5
Unique (%) 0.0%

Revenue

Numeric

Distinct count 24009
Unique (%) 28.4%
Missing (%) 0.0%
Missing (n) 0
Infinite (%) 0.0%
Infinite (n) 0

 Mean
 55352

 Minimum
 0

Maximum 10054000 **Zeros (%)** 70.9%

Toggle details

Year

Numeric

Distinct count	4		
Unique (%)	0.0%		
Missing (%)	0.0%		
Missing (n)	0		
Infinite (%)	0.0%		
Infinite (n)	0		

 Mean
 2005.5

 Minimum
 2004

 Maximum
 2007

 Zeros (%)
 0.0%

Toggle details

Correlations

Sample

	Year	Product line	Product type	Product	Order method type	Retailer country
0	2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	United States
1	2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	Canada
2	2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	Mexico
3	2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	Brazil
4	2004	Camping Equipment	Cooking Gear	TrailChef Water Bag	Telephone	Japan
)

Exclude column with high correlation

• Planned Revenue

```
In [4]: ## drop items not used
drop_items = ['Planned revenue']

df.drop(drop_items, axis = 1, inplace = True)
```

Machine Learning model - Random Forest Regressor

· More info at sklearn website

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html)

```
In [5]: ## sklearn import
        from sklearn.preprocessing import LabelEncoder
        from sklearn.model selection import train test split
        from sklearn.ensemble import RandomForestRegressor
        # LabelEncoder
        le = LabelEncoder()
        # apply "le.fit transform"
        df = df.apply(le.fit transform)
In [6]: target = 'Revenue'
        features = df.columns.tolist()
        features.remove(target)
        X = df[features]
        y = df[target]
In [7]: # Generate train and test data
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=122345)
        ## This line instantiates the model.
        fit rf = RandomForestRegressor()
        ## Fit the model on your training data.
        fit rf.fit(X train, y train)
        ## And score it on your testing data.
        fit rf.score(X test, y test)
        print('----- The best score/coefficient of determination R^2 of the prediction is: ' + str(fit_rf.score(X_tes
        t, y test)))
        fit_rf.score(X_test, y_test)
```

------ The best score/coefficient of determination R^2 of the prediction is: 0.8442048767542322

Out[7]: 0.8442048767542322

Plot Feature Importance

Summary - initial analysis

The 3 most important features that drives revenue are

- 1. Order method type
- 1. Retailer country and
- 1. Product