

MARYLAND STATEWIDE VEHICLE CRASHES – PREDICTING SEVERITY OF INJURY

By

Ujwala Namineni – OI46298

INTRODUCTION

- The dataset used in this project is the Maryland Statewide Vehicle Crashes dataset, which was obtained from https://opendata.maryland.gov/ This dataset contains information on vehicle crashes that occurred in Maryland state between 2015 and 2022. The dataset is composed of three sub-datasets, which are:
- Maryland Statewide Vehicle Crashes: https://opendata.maryland.gov/Public-Safety/Maryland-Statewide-Vehicle-Crashes/65du-s3qu
- Person Details: https://opendata.maryland.gov/Public-Safety/Maryland-Statewide-Vehicle-Crashes-Person-Details-/py4c-dicf
- Vehicle Details: https://opendata.maryland.gov/Public-Safety/Maryland-Statewide-Vehicle-Crashes-Vehicle-Details/mhft-5t5y

PROBLEM STATEMENT

Predicting the severity of the injury after the accident: This project aims to develop a machine-learning model that predicts the severity of injuries sustained by individuals involved in vehicle crashes in Maryland. Predicting the severity by the deployment of the model.

DATASET

- The vehicles and persons datasets are merged on 'VEHICLE ID'.
- The obtained dataset and crashes dataset are merged on 'REPORT NO'.
- After preprocessing, the shape of the dataset is (619031, 22).

PROCESS

Data Preprocessing Exploratory Data Analysis

Modeling

Deployment

TOOLS USED

DATA PREPROCESSING

- To create a comprehensive dataset, we combined data from the three sub-datasets and selected a subset of relevant columns for our analysis.
- Cleaned and pre-processed data using Python.

EXPLORATORY DATA ANALYSIS

- Visualized data using Tableau.
- Link for my Tableau public account is Profile ujwala.namineni1131 | Tableau Public
- The frequency of accidents is influenced by various factors such as road surface conditions, weather conditions, county, and road division type.

DASHBOARD - 1

Sheet 7 Surf Cond Desc Dry 402,556 Ice 6,006 Mud, Dirt, Gravel 303 Other 454 Snow 6,162 Unknown 447 Wet 203,103

Sheet 6

Weather Desc

Inj Sever Desc	Blowin	Blowin	Clear	Cloudy	Foggy	Raining	Severe	Sleet	Snow ₽	Wintry
No Injury	44	966	295,170	44,858	5,256	139,830	1,517	977	5,634	3,367
Non-incapacitati	3	108	44,985	6,838	711	18,488	191	128	719	442
Possible Incapac	4	94	23,567	3,794	570	12,057	128	75	355	348
Incapacitating/D		9	4,618	631	102	1,346	16	15	35	40
Fatal Injury		2	650	103	27	190	6	3	6	8

DASHBOARD - 2

MODELING

- Used a Storage account in Microsoft Azure to store the CSV file of the dataset after preprocessing.
- Used Azure Machine Learning workspace and Azure ML studio to create different types of pipelines of the machine learning models.
- Developed machine learning models using Microsoft Azure, including logistic regression, decision tree, and random forest regression.
- Among the models, logistic regression performed the best for this data, achieving an accuracy of 80.25%.

Macro_Precision

0.3647783

Macro_Recall

0.2315823

Micro_Precision

0.8024759

Micro_Recall

0.8024759

Overall_Accuracy

0.8024759

Logistic Regression

Macro_Precision

0.2742970

Macro_Recall

0.2138486

Micro_Precision

0.7759936

Micro_Recall

0.7759936

Overall_Accuracy

0.7759936

Decision Tree algorithm

DEPLOYMENT

- Developed a web application using Streamlit and Python.
- Implemented a web page via the 'app.py' file.
- Integrated the machine learning model into the web page.
- Defined a function to predict whether a person is injured or not.
- The page is created in localhost (http://localhost:8501/).

Injury Severity Prediction

Vehicle Year 2000 Speed Limit 30 Year_accident 2022 dob_year 2000 AGE 25

Predict Injury Severity

Predicted Injury Severity:

	0
0	No Injury

 \equiv

CHALLENGES

- To ensure accurate and reliable data analysis, it is crucial to validate data integrity and avoid merging duplicate entries or introducing additional rows due to improper merging practices.
- Developing web pages with Microsoft Azure web services is complex and requires technical expertise.
- Using Streamlit, Working with many categorical features can make predicting target variables complex.

THANK YOU