UNSUPERVISED STYLE EXTRACTION

FROM SENTENCE EMBEDDINGS

Kim et al. 2023

Contents

Unsupervised Style Extraction

Data & Model

Experiments

Discussion & Comments

References

What is Style?

Given two corpora, the invariance between them is the content, whereas the variance is the style.

Style Attribute	Source Attribute / Sentence	Target Attribute / Sentence		
Politeness	Polite: "Could you please send me the data?"	Impolite: "send me the data!!"		
Toxicity	Offensive: "I hope they pay out the ***."	Non-offensive: "I hope they pay what they deserve."		
Simplicity	Expert: "Many cause dyspnea, pleuritic chest pain, or both."	Layman: "The most common symptoms, regardless of the type of fluid in the pleural space or its cause, are shortness of breath and chest pain."		
Biasedness	Biased: "A new downtown is being developed which will bring back"	Neutral: "A new downtown is being developed which its promoters hope will bring back"		
Authorship	Shakespearean: "My lord, the queen would speak with you, and presently."	Contemporary: "My lord, the queen wants to speak with you right away."		

Text Style Transfer

Previous work on text style transfer deals with labelled data.

Unsupervised Style Extraction

But what if the data is not labelled with respective styles?

Data

Data: Kaggle Bible Corpus (Genesis)

Invariant content, variant style!

Genesis 1:1

:

ASV: In the beginning God created the heavens and the earth.

BBE: At the first God made the heaven and the earth.

YLT: In the beginning of God's preparing the heavens and the earth--

:

1533 sentences 7 versions

Mean-removed vectors Gen 1:1 (ASV) Gen 1:2 (ASV) Gen 1:1 (BBE) Gen 1:2 (BBE) Gen 1:1 (YLT) Gen 1:2 (YLT) \mathbb{R}^{384}

Mean-removed vectors

The Model: Baseline

Baseline: Kmeans clustering using only the mean-removed vectors

V-Measure	Macro-Avg Acc.	Micro-Avg Acc.
0.312	0.623	0.426

The Model: Denoising AutoEncoder

Model: an Autoencoder to capture the latent style representations

The Model: Loss Function

Reconstruction Loss: F(X) should be similar to mean-removed embedding

The Model: Loss Function

Positive Example Loss: Z should be simliar to noise-perturbed Z

$$L_{+} = \left(1 - Z(X)^{T} Z(\widehat{X})\right)^{2}$$

The Model: Loss Function

Negative Example Loss: Sentences different with X should have a different Z

$$L_{-} = (Z(X)^{T}Z(Y))^{2}$$

The Model: Results

Baseline: Kmeans clustering using only the mean-removed vectors

V-Measure	Macro-Avg Acc.	Micro-Avg Acc.
0.402	0.751	0.480

Experiments

Hyperparameter Settings

Epoch	Batch	λ_{rec}	λ_+	λ	ϵ_{in}	$oldsymbol{\epsilon}_+$	d(Z)	L Rate
50	73	1	1	1/6	5e-3	5e-2	64	1e-3

Experiments

Ablation Study

Reconstruction	Positive	Negative	V-measure
X	Ο	Ο	0.310
О	Χ	О	0.276
О	O	X	0.130

The loss on the negative examples is very important!

Discussion

Testing the Model on Different Data

- Legal Data
- Scientific Papers
- Literary Corpus

Discussion

Extracting More Data from Sentences

Fine-tune

SentenceBERT

to extract relevant information about style

Discussion

Disentanglement

Conclusion

- Our experiments demonstrate that our approach is able to learn style from sentences without supervision.
- Sentence embeddings with KNN mean-removal was used as the labels.
- An autoencoder was used, and reconstruction loss with positive-negative example loss was employed.
- The results prove significantly better than the baseline.

References

Jin et al., Deep Learning for Text Style Transfer: a Survey https://arxiv.org/pdf/2011.00416.pdf

Toshevska et al., A Review of Text Style Transfer using Deep Learning https://arxiv.org/abs/2109.15144

Reimers et al., Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks https://arxiv.org/abs/1908.10084

Carlson et al., Evaluating prose style transfer with the Bible https://arxiv.org/abs/1711.04731

Hoffer et al., Deep Metric Learning using Triplet network https://arxiv.org/abs/1412.6622

Lample et al., Unsupervised Machine Translation Using Monolingual Corpora Only https://arxiv.org/abs/1711.00043

Our source code: https://github.com/etharthinas/styledetection

Thanks!