Universidad Autónoma de Madrid

Álgebra Lineal

1. Un endomofimo $f: V \longrightarrow V$ se dice **nilpotente** si existe $k \in \mathbb{N}$ tal que $f^k = 0$. Si, además, $f^{k-1} \neq 0$, el número k se llama **orden de nilpotencia** de f.

El endomorfismo nilpotente $f: V \longrightarrow V$, con orden de nilpotencia k, se dice **nilcíclico** si existe $\vec{u} \in V$ tal que $V = \langle \vec{u}, f(\vec{u}), f^2(\vec{u}), \dots, f^{k-1}(\vec{u}) \rangle$, con $f^{k-1}(\vec{u}) \neq \vec{0}$. Este vector \vec{u} se llama **vector cíclico** para f de orden k.

- a) Prueba que si el endomorfismo f es nilcíclico con orden de nilpotencia k y \vec{u} es un vector cíclico para f de orden k, el conjunto $\mathcal{B} = \{\vec{u}, f(\vec{u}), f^2(\vec{u}), \dots, f^{k-1}(\vec{u})\}$ es base de V.
- b) Halla la matriz del endormorfismo f en la base $\mathcal{B}' = \{f^{k-1}(\vec{u}), f^{k-2}(\vec{u}), \dots, f(\vec{u}), \vec{u}\}.$
- c) Prueba que $\lambda = 0$ es el único autovalor de un endomorfismo nilpotente.
- d) Sea $J_n(0)$ una matriz elemental de Jordan de orden n y autovalor 0. Prueba que el endormorfismo con matriz $J_n(0)$ es nilpotente y calcula su orden de nilpotencia.
- e) Sea $J = J_n(\lambda)$ un matriz elemental de Jordan de orden n y autovalor λ . Demuestra que para $k = 1, \ldots, n$ se tiene, para matrices $\mathbf{0}$ de tamaños adecuados,

$$J^k = \sum_{i=0}^k \binom{k}{i} \lambda^{k-i} \begin{pmatrix} \mathbf{0} & I_{n-i} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} .$$