15-213 "The course that gives CMU its Zip!"

Verifying Programs with BDDs Sept. 22, 2006

Topics

- Representing Boolean functions with Binary Decision Diagrams
- Application to program verification

Verification Example

```
int abs(int x) {
  int mask = x>>31;
  return (x ^ mask) + ~mask + 1;
}
```

```
int test_abs(int x) {
  return (x < 0) ? -x : x;
}</pre>
```

Do these functions produce identical results?

How could you find out?

How about exhaustive testing?

More Examples

```
int addXY(int x, int y)
{
  return x+y;
}

int addYX(int x, int y)
{
  return y+x;
}
```

```
int mulXY(int x, int y)
{
  return x*y;
}

int mulYX(int x, int y)
{
  return y*x;
}
```

How Can We Verify Programs?

Testing

- **■** Exhaustive testing not generally feasible
- Currently, programs only tested over small fraction of possible cases

Formal Verification

■ Mathematical "proof" that code is correct

■ Did Pythagoras show that $a^2 + b^2 = c^2$ by testing?

Bit-Level Program Verification

```
int abs(int x) {
  int mask = x>>31;
  return (x ^ mask) + ~mask + 1;
}
```


- View computer word as 32 separate bit values
- Each output becomes Boolean function of inputs

Extracting Boolean Representation

int bitOr(int x, int y) { return ~(~x & ~y); }

```
int test_bitOr(int x, int y)
{
  return x | y;
}
```

Do these functions produce identical results?

Straight-Line Evaluation

Tabular Function Representation

X ₁	<i>x</i> ₁ <i>x</i> ₂ <i>x</i> ₃		
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

■ List every possible function value

Complexity

■ Function with *n* variables

Algebraic Function Representation

- \blacksquare f(x₁, x₂, x₃) = (x₁ + x₂) · x₃
- Boolean Algebra

Complexity

- Representation
- Determining properties of function
 - E.g., deciding whether two expressions are equivalent

Tree Representation

Truth Table

X₁ X₂ X₃ f 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1

Decision Tree

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- **■** Function value determined by leaf value

Complexity

Ordered Binary Decision Diagrams

Initial Tree

Reduced Graph

Canonical representation of Boolean function

- Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
- Desirable property: simplest form is canonical.

Example Functions

Constants

- Unique unsatisfiable function
- 1 Unique tautology

Variable

Treat variable as function

Typical Function

- $\blacksquare (x_1 + x_2) \cdot x_4$
- No vertex labeled x₃
 - lacktriangle independent of x_3
- Many subgraphs shared

Odd Parity

Linear representation

More Complex Functions

Functions

- Add 4-bit words a and b
- Get 4-bit sum s
- Carry output bit Cout

Shared Representation

- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
- Linear growth!

Symbolic Execution

(3-bit word size)

x

У

v1 = -x

 $v2 = \sim y$

Symbolic Execution (cont.)

$$v3 = v1 \& v2$$

$$v4 = \sim v3$$

$$v5 = x | y$$

$$t = v4 == v5$$

Counterexample Generation

```
int bitOr(int x, int y)
{
  return ~(~x & ~y);
}
```

```
int bitXor(int x, int y)
{
  return x ^ y;
}
```

Find values of x & y for which these programs produce different results

Straight-Line Evaluation

Symbolic Execution

$$t = v4 == v5$$

x = 111y = 001

Performance: Good

```
int addXY(int x, int y)
{
  return x+y;
}
```

```
int addYX(int x, int y)
{
  return y+x;
}
```


Performance: Bad

```
int mulXY(int x, int y)
{
  return x*y;
}
```

```
int mulYX(int x, int y)
{
  return y*x;
}
```


Why Is Multiplication Slow?

Multiplication function intractable for BDDs

 Exponential growth, regardless of variable ordering

Node Counts

Bits	Add	Mult
4	21	155
8	41	14560

What if Multiplication were Easy?

```
int factorK(int x, int y)
{
  int K = XXXX...X;
  int rangeOK =
    1 < x && x <= y;
  int factorOK =
    x*y == K;
  return
  !(rangeOK && factorOK);
}</pre>
```

```
int one(int x, int y)
{
  return 1;
}
```

Dealing with Conditionals

```
int abs(int x)
{
  int r;
  if (x < 0)
    r = -x;
  else
    r = x;
  return r;
}</pre>
```

Context defined value					
x	1	0	0		
t1 = x<0	1	0	0		
v 1 = - x	t1	0	0		
r = v1	t1	t1	t1?v1:0		
r = x	!t1	1	t1?v1:x		
v2 = r	1	1	t1?v1:x		

r

During Evaluation, Keep Track of:

- Current Context: Under what condition would code be evaluated
- Definedness (for each variable)
 - Has it been assigned a value

Dealing with Loops

```
int ilog2(unsigned x)
{
  int r = -1;
  while (x) {
    r++; x >>= 1;
  }
  return r;
}
```

Unroll

- Turn into bounded sequence of conditionals
 - Default limit = 33
- Signal runtime error if don't complete within limit

Unrolled

```
int ilog2(unsigned x)
  int r = 31;
  if (x) {
    r++; x >>= 1;
  } else return r;
  if (x) {
    r++; x >>= 1;
  } else return r;
  if (x) {
    r++; x >>= 1;
  } else return r;
  error();
```

Evaluation

Strengths

- Provides 100% guarantee of correctness
- Performance very good for simple arithmetic functions

Weaknesses

- Important integer functions have exponential blowup
- Not practical for programs that build and operate on large data structures

Some History

Origins

- Lee 1959, Akers 1976
 - Idea of representing Boolean function as BDD
- Hopcroft, Fortune, Schmidt 1978
 - Recognized that ordered BDDs were like finite state machines
 - Polynomial algorithm for equivalence
- **Bryant 1986**
 - Proposed as useful data structure + efficient algorithms
- McMillan 1987
 - Developed symbolic model checking
 - Method for verifying complex sequential systems
- Bryant 1991
 - Proved that multiplication has exponential BDD
 - No matter how variables are ordered