PRÁCTICA 7: ESPACIOS NORMADOS

Ejercicio 1. Sea $(E, \|\cdot\|)$ un espacio normado (sobre $k = \mathbb{R}$ ó \mathbb{C}). Probar que se verifican:

- i) Las operaciones $+: E \times E \to E$ y $\times: k \times E \to E$ son continuas.
- ii) $\overline{B(x,r)} = \overline{B}(x,r)$ (es decir, la clausura de la bola abierta es la bola cerrada).
- iii) diam(B(x,r)) = 2r.

Ejercicio 2. Sea $(E, \|\cdot\|)$ un espacio normado y sea $C \subset E$. Decimos que C es *convexo* si $\forall x, y \in C$ y $\forall t \in [0, 1]$ se tiene que $tx + (1 - t)y \in C$.

- i) Probar que $B_r(x)$ es convexo.
- ii) Probar que si $(C_i)_{i\in I}$ son convexos, entonces $\bigcap_{i\in I} C_i$ lo es.
- iii) Probar que si C es convexo, entonces C° lo es.
- iv) Probar que si C es convexo, entonces \overline{C} lo es.

Ejercicio 3. Sea $(E, \|\cdot\|)$ un espacio normado y $S \subset E$ un subespacio (vectorial). Probar que:

- i) \overline{S} también es un subespacio.
- ii) Si $S \neq E$, entonces $S^{\circ} = \emptyset$.
- iii) Si $\dim(S) < \infty$, entonces S es cerrado.
- iv) Si S es un hiperplano (o sea: $\exists x \neq 0$ tal que $S \oplus \langle x \rangle = E$), entonces S es o bien denso o bien cerrado en E.

Ejercicio 4. Sea $(E, \|\cdot\|)$ un espacio de Banach y $(x_n) \subset E$. Si $\sum_{n=1}^{\infty} \|x_n\|$ converge, entonces $\sum_{n=1}^{\infty} x_n$ converge.

Ejercicio 5. Para cada uno de los siguientes ejemplos de subespacios decidir si son cerrados, si son densos y si son hiperplanos.

- i) $c = \{(x_n)_{n \in \mathbb{N}} : \exists \lim_{n \to \infty} x_n\} \subseteq \ell^{\infty}.$
- ii) $c_0 = \{(x_n)_{n \in \mathbb{N}} : x_n \to 0\} \subseteq c$.
- iii) $\{x \in \ell^1 : \sum_{n=1}^{\infty} x_n = 0\} \subseteq \ell^1$.
- iv) $\{x \in \ell^2 : \sum_{n=1}^{\infty} x_n = 0\} \subseteq \ell^2$.
- v) $\mathbb{R}[X] \subseteq C[0,1]$.
- vi) $C^1[a,b] \subseteq C[a,b]$.

Ejercicio 6. Sean E y F espacios normados. Sea $T:E\to F$ un operador lineal. Probar que son equivalentes:

- i) T es continuo en 0;
- ii) existe $x_0 \in E$ tal que T es continuo en x_0 ;
- iii) T es continuo;
- iv) T es uniformemente continuo;
- v) $\exists M > 0$ tal que $\forall x \in M : ||Tx|| \le M||x||$ (T es acotada);
- vi) $\forall A \subset E$ acotado, T(A) es acotado.

Ejercicio 7. Sean $(E, \|\cdot\|_E), (F, \|\cdot\|_F)$ espacios normados. Sea L(E, F) el conjunto de operadores $T: E \to F$ lineales y continuos. Para para cada $T \in L(E, F)$ definimos

$$||T|| = \sup_{\|x\|_E \le 1} ||T(x)||_F.$$

Probar que:

- i) $(L(E, F), ||\cdot||)$ es un espacio normado.
- ii) Si F es de Banach entonces L(E, F) también lo es.

Ejercicio 8. Sean E y F espacios normados y sea $T:E\to F$ un operador lineal y continuo. Verificar las siguientes fórmulas:

$$\|T\| = \sup_{\|x\| \le 1} \|Tx\| = \sup_{\|x\| = 1} \|Tx\| = \sup_{x \ne 0} \frac{\|Tx\|}{\|x\|} = \inf\{M : \|Tx\| \le M\|x\|\}.$$

Ejercicio 9. Sea $k:[0,1]\times[0,1]\to\mathbb{R}$ continua y sea $K:C[0,1]\to C[0,1]$ dada por

$$Kf(x) = \int_0^1 k(x, y) f(y) \, dy.$$

Probar que K es lineal y continua. Acotar su norma.

Ejercicio 10. En $\mathbb{R}^{(\mathbb{N})} = \{(a_n)_{n \geq 1} / \exists n_0, \ a_n = 0 \ \forall n \geq n_0\}$ ponemos la norma infinito. Probar que la función $f : \mathbb{R}^{(\mathbb{N})} \to \mathbb{R}$, definida por

$$f((a_n)_{n\geq 1}) = \sum_{n=1}^{\infty} na_n,$$

es lineal pero no continua.

Ejercicio 11.

i) Sea $\phi \in C[0,1]$ y sea $T_{\phi}: C[0,1] \to \mathbb{R}$ dada por

$$T_{\phi}f = \int_0^1 f(x)\phi(x)dx.$$

Probar que T_{ϕ} es un funcional lineal continuo y que $||T_{\phi}|| = \int_0^1 |\phi(x)| dx$.

- ii) Sea $T: c \to \mathbb{R}$ dada por $T(a) = \lim_{n \to \infty} a_n$. Probar que T es lineal y continuo y hallar ||T||.
- iii) Sea $1 \leq p \leq \infty, \, p' = \frac{p}{p-1}$ el conjugado de p y sea $b \in \ell^{p'}$. Definimos $T_b:\ell^p \to \mathbb{R}$ según

$$T_b(a) = \sum_{n=1}^{\infty} b_n a_n.$$

Probar que T_b es lineal, continuo y hallar $||T_b||$.

Ejercicio 12. Sea $(E, \|\cdot\|)$ un espacio normado y $H \subset E$ un subespacio. Probar que H es un hiperplano si y sólo existe $\gamma : E \to \mathbb{R}(o \mathbb{C})$ lineal , $\gamma \neq 0$ tal que $H = Nu(\gamma)$. Probar que H es cerrado si y sólo si γ es continua.

Ejercicio 13. Sean E un espacio de Banach y S, T subespacios cerrados, con dim $T < \infty$. Probar que S + T es cerrado.

Ejercicio 14. (Lema de Riesz) Sean E un espacio normado, $S \subset E$ un subespacio vectorial cerrado propio, y $0 < \alpha < 1$. Probar que existe $x_{\alpha} \in E - S$ tal que $||x_{\alpha}|| = 1$ y $||s - x_{\alpha}|| > \alpha \ \forall s \in S$. Sugerencia: considerar $x \notin S$, r = d(x, S) y $x_{\alpha} = \frac{(x-b)}{||x-b||}$ con $b \in S$ adecuado.

Ejercicio 15. Sean E un espacio normado de dimensión infinita. Probar que existe $(\omega_n)_{n\in\mathbb{N}}\subseteq E$ tal que $\|\omega_n\|=1$ y $d(\omega_n,\omega_m)>1/2,\ n\neq m$. Deducir que $\overline{B(0,1)}$ no es compacta. Sugerencia: aplicar el lema de Riesz a una sucesión creciente de subespacios de dimensión finita.

Ejercicio 16. Sea $(E, \|\cdot\|)$ un espacio vectorial de dimensión finita. Probar que toda norma en E es equivalente a $\|\cdot\|$. Deducir que $\overline{B}(x,r)$ es compacto cualquiera sean $x \in E, r > 0$.

Sugerencia: Sea $\{v_1, \dots, v_n\}$ una base de E. Probar que la aplicación $\|\cdot\|_1 : \sum_{i=1}^n x_i v_i \in E \mapsto \sum_{i=1}^n |x_i| \in \mathbb{R}$ es una norma en E equivalente a $\|\cdot\|$.

Ejercicio 17. Sea E un espacio de Banach de dimensión infinita. Probar que no puede tener una base algebraica numerable.

Sugerencia: si la tuviera se escribiría como unión numerable de subespacios de dimensión finita. Usar el teorema de Baire.

3