产品手册

Datasheet

MM32W3xxB

32 位基于 ARM Cortex M3 核心的蓝牙低功耗芯片

版本:1.1/n4

目录

1.	Å	总介.		8
	1.1	概之	<u></u>	8
	1.2	产品	· 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	8
2.	其	岘格证	总明1	0
	2.1	器作	‡ 对比1	0
	2.2	概之	<u> </u>	1
	2.2	2.1	ARM®的Cortex®-M3核心并内嵌闪存和SRAM1	1
	2.2	2.2	内置闪存存储器1	1
	2.2	2.3	CRC(循环冗余校验)计算单元1	1
	2.2	2.4	内置SRAM1	1
	2.2	2.5	嵌套的向量式中断控制器(NVIC)1	1
	2.2	2.6	外部中断/事件控制器(EXTI)1	1
	2.2	2.7	控制模块时钟和启动1	1
	2.2	2.8	自举模式1	2
	2.2	2.9	供电方案1	2
	2.2	2.10	供电监控器1	2
	2.2	2.11	电压调压器1	2
	2.2	2.12	低功耗模式1	2
	2.2	2.13	DMA1	3
	2.2	2.14	RTC(实时时钟)和后备寄存器1	3
	2.2	2.15	定时器和看门狗1	3
	2.2	2.16	通用异步收发器(UART)1	4
	2.2	2.17	I2C总线1	4
	2.2	2.18	串行外设接口(SPI)1	4
	2.2	2.19	通用串行总线(USB)1	5
	2.2	2.20	通用输入输出接口(GPIO)1	5
	2.2	2.21	ADC(模拟/数字转换器)1	5
	2.2	2.22	DAC(数字/模拟转换)1	5

	2.2.23	蓝牙低功耗广播	15
	2.2.24	温度传感器	16
	2.2.25	串行单线SWD调试口(SW-DP)	16
3.	引脚	定义	19
4.	存储	器映像	24
5.	电气	特性	26
5	.1 测记	式条件	26
	5.1.1	最小和最大数值	26
	5.1.2	典型数值	26
	5.1.3	典型曲线	26
	5.1.4	负载电容	26
	5.1.5	引脚输入电压	26
	5.1.6	供电方案	27
	5.1.7	电流消耗测量	28
5	.2 RF	一般特性	28
5	.3 RF	发射机特性	29
5	.4 RF	接收机特性	29
5	.5 绝》	付最大额定值	29
5	.6 绝》	对最大额定值工作条件	30
	5.6.1	通用工作条件	30
	5.6.2	上电和掉电时的工作条件	31
	5.6.3	内嵌复位和电源控制模块特性	31
	5.6.4	内置的参照电压	32
	5.6.5	供电电流特性	32
	5.6.6	外部时钟源特性	35
	5.6.7	控制模块内部时钟源特性	39
	5.6.8	PLL特性	40
	5.6.9	存储器特性	41
	5.6.10	EMC特性	41
	5.6.11	绝对最大值(电气敏感性)	42

	5.6	5.12	I/O端口特性	.43
	5.6	6.13	NRST引脚特性	.46
	5.6	6.14	TIM定时器特性	.46
	5.6	6.15	通信接口	.47
	5.6	6.16	12位ADC特性	52
	5.6	6.17	温度传感器特性	.54
	5.6	S.18	DAC特性	.54
6.	P	CB设	计建议	.56
6.	.1	电源记	设计建议	.56
6.	.2	PCB	生意事项	.56
6.	.3	2.4G	射频天线设计	57
7.	圭	対装特	<u> </u>	.58
7.	.1	封装L	QFP64	.58
7.	.2	封装L	QFP48	.59
8.	四	型号命名	名	.60
9.	作	多改记者	式 	61

图片目录

图1. MM32W3x2xxB模块框图	16
图2. 时钟树	18
图3. MM32W3x2xxB LQFP64引脚分布	19
图4. MM32W3x2xxBLQFP48引脚分布	20
图5. 引脚的负载条件	26
图6. 引脚输入电压	27
图7. 供电方案	27
图8. 电流消耗测量方案	28
图9. 射频性能参数	28
图10. 待机模式下的典型电流消耗在V _{DD} =3.3V时与温度的对比	33
图11. 控制模块使用8~24MHz晶体的典型应用	35
图12. 射频模块使用16MHz晶体的典型应用	36
图13. 外部高速时钟源的交流时序图	37
图14. 外部低速时钟源的交流时序图	38
图15. 使用32.768KHz晶体的典型应用	39
图16. 输入输出交流特性定义	45
图17. 建议的NRST引脚保护	46
图18. I2C总线交流波形和测量电路 ⁽¹⁾	48
图19. SPI时序图-从模式和CPHA = 0	49
图20. SPI时序图-从模式和CPHA = 1 ⁽¹⁾	50
图21. SPI时序图-主模式 ⁽¹⁾	50
图22. USB时序:数据信号上升和下降时间定义	51
图23. 使用ADC典型的连接图	53
图24. 12Bit带缓冲/不带缓冲DAC	55
图25. 供电电源和参考电源去藕线路	56
图26. 天线的尺寸	57
图27. LQFP64,64脚低剖面方形扁平封装图	58
图28. LQFP48,48脚低剖面方形扁平封装图	59

表格目录

表1. MM32W3x2xxB产品功能和外设配置	10
表2. 定时器功能比较	13
表3. MM32W3x2xxB引脚定义	21
表4. 存储器映像	24
表5. 功耗参数	26
表6. 外围电流消耗	31
表7. RF一般特性	29
表8. 射频发射机特性表	29
表9. RF接收机特性	29
表10. 电压特性	29
表11. 电流特性	30
表12. 温度特性	30
表13. 通用工作条件	30
表14. 上电和掉电时的工作条件	31
表15. 内嵌复位和电源控制模块特性	31
表16. 内置的参照电压	32
表17. 控制模块运行模式下的最大电流消耗,数据处理代码从内部闪存中运行	32
表18. 控制模块睡眠模式下的最大电流消耗,代码运行在Flash中	33
表19. 控制模块停机和待机模式下的典型和最大电流消耗	33
表20. 控制模块内置外设的电流消耗	34
表21. 高速外部用户时钟特性	35
表22. 射频模块高速晶体时钟特性	35
表23. HSE 16MHz振荡器特性	36
表24. 低速外部用户时钟特性	37
表25. LSE振荡器特性(fLsE=32.768KHz)	38
表26. HSI振荡器特性	39
表27. LSI振荡器特性	39
表28 任功耗模式的唤醒时间	40

表29. PLL特性	0
表30. 闪存存储器特性4	1
表31. 闪存存储器寿命和数据保存期限4	1
表32. EMS特性4	2
表33. ESD特性4	3
表34. I/O静态特性4	3
表35. 输出电压特性4	4
表36. 输入输出交流特性	4
表37. NRST引脚特性4	6
表38. TIMx特性	7
表39. I2C接口特性4	7
表40. SPI特性4	8
表41. USB启动时间5	1
表42. USB直流特性5	1
表43. USB全速电气特性5	2
表44. ADC特性5	2
表45. f _{ADC} = 15MHz时的最大R _{AIN} 5	3
表46. ADC精度 - 局限的测试条件5	3
表47. 温度传感器特性5	4
表48. DAC特性5	4
表49. 天线的尺寸5	7

1. 总介

1.1 概述

MM32W372xxB 是超低功耗的单模蓝牙芯片,射频采用 2.4GHz ISM 频段的频率,2MHz 信道间隔,符合蓝牙规范。MM32W372xxB 使用高性能的 ARM® Cortex®-M3 为内核的 32 位微控制器,最高工作频率可达 96MHz,内置高速存储器,丰富的增强型 I/O 端口和外设连接到两条 APB 总线。MM32W372xxB 系列包含 2 个 12 位 ADC、2 个 12 位的 DAC、3 个 16 位通用定时器和 1 个 PWM 高级定时器,还包含标准的通信接口: 3 个 UART 接口、2 个 I2C 接口、1 个 SPI 接口和 1 个 USB 接口。

MM32W372xxB 产品系列工作电压为 2.3V ~ 3.9V, 工作温度范围包含-40℃ ~ +85℃常规型。多种省电工作模式保证低功耗应用的要求。

MM32W372xxB 产品采用 LQFP64 和 LQFP48 的封装形式,下面给出了该系列产品中所有外设的基本介绍。

这些丰富的外设配置,使得 MM32W3x2xxB 产品微控制器适合于多种应用场合:

- Beacon
- 无线键盘、鼠标
- 工业应用:工业遥控、遥测
- 警报系统、门禁系统、数据采集和传输系统
- 便捷式医疗设备、可穿戴的运动和健身设备

1.2 产品特性

- 内核与系统:
 - 32 位 ARM®Cortex®-M3 处理器内核 最高工作频率可达 96MHz
 - 内置可嵌套向量中断控制器(NVIC)
 - 系统节拍定时器
 - 支持 SWD 调试及 JTAG 边界扫描模式
 - 单指令周期 32 位硬件乘法器
- 存储器
 - 高达 128K 字节的 Flash, 用户可用空间 110K
 - 高达 20K 字节的 SRAM,用户可用空间 16K
 - Bootloader 支持片内 Flash、UART 在线用户编程(IAP)/在线系统编程(ISP)
- 单模 BLE 射频收发机
 - 数据包处理引擎
 - GFSK 编码方式
 - 内部电压调节器保证 PSRR
 - 可编程发射功率范围: -28dBm ~ +4dBm
 - 1Mbps 空中数据传输
 - 优秀的射频链路预算: 高达-80dBm
- 时钟、复位和电源管理
 - 2.3V~3.9V供电
 - 上电/断电复位(POR/PDR)、可编程电压监测器(PVD)
 - 射频模块外部 16MHz 高速晶体振荡器
 - 内嵌经出厂调校的 48MHz 高速振荡器

- 内嵌 40KHz 低速振荡器
- PLL 支持 CPU 最高运行在 96MHz
- 外部 32.768KHz RTC 振荡器
- 低功耗
 - 睡眠、停机和待机模式
 - V_{BAT}为 RTC 和后备寄存器供电
- 2个12位模数转换器,1µS转换时间(多达13个输入通道)
 - 转换范围: **0~V**_{DDA}
 - 支持采样时间和分辨率配置
 - 片上温度传感器
- 2 个 12 位数模转换器
- 7 通道 DMA 控制器
 - 支持的外设: Timer、ADC、DAC、UART、I2C、SPI 和 USB
- 多达 40 个快速 I/O 端口:
 - 所有 I/O 口可以映像到 16 个外部中断; 部分端口可支持 5V 信号
- 调试模式
 - 串行单线调试(SWD)和JTAG接口
- 多达7个定时器
 - 3个16位定时器,每个定时器有多达4个用于输入捕获/输出比较/PWM或脉冲计数的通道和增量编码器输入
 - 1个16位带死区控制和紧急刹车,用于电机控制的PWM高级控制定时器
 - 2个看门狗定时器(独立的和窗口型的)
 - 系统时间定时器: 24 位自减型计数器
- 多达7个通信接口
 - 3个UART接口
 - 2个I2C接口
 - 1个SPI接口
 - 1个USB device 接口
- 96 位的芯片唯一 ID (UID)
- 采用 LQFP64/LQFP48 封装

注:

本文给出了 MM32W3x2xxB 产品的订购信息和器件的机械特性。有关完整的 MM32W3x2xxB 产品的详细信息,请参考 MM32W3x2xxB 产品数据手册第 2.2 节。

有关 Cortex®-M3 核心的相关信息,请参考《Cortex®-M3 技术参考手册》。

2. 规格说明

2.1 器件对比

表 1. MM32W3x2xxB 产品功能和外设配置

农 1. 阿阿马277572470) 即为能种外 农癿直							
外围接口	MM32W372/62/52PSB			MM32W372/62/52PFB			
闪	存 - K 字节	128	64	32	128	64	32
SR	AM - K字节	20	20	10	20	20	10
ch H H	通用目的		3			3	
定时器	高级控制		1			1	
	UART		3		3		
湿油 按口	I2C	2			2		
通讯接口	SPI	1			1		
	USB		1		1		
(GPIO端口	40			27		
	(通道数)						
12	位同步ADC	1			1		
	15	5 channe	ls	7 channels			
	96 MHz						
	2.3V ~ 3.9V					•	
	封装	LQFP64 LQFP48				i i	

2.2 概述

2.2.1 ARM®的 Cortex®-M3 核心并内嵌闪存和 SRAM

ARM 的 Cortex®-M3 处理器是最新一代的嵌入式 ARM 处理器,它为实现 MCU 的需要提供了低成本的平台、缩减的引脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。

ARM 的 Cortex®-M3 是 32 位的 RISC 处理器,提供额外的代码效率,在通常 8 和 16 位系统的存储空间上发挥了 ARM 内核的高性能。

MM32W3x2xxB 拥有内置的 ARM 核心,因此它与所有的 ARM 工具和软件兼容。

2.2.2 内置闪存存储器

最大 128K 字节的内置闪存存储器,用户可用空间 110K 的内置闪存存储器,用于存放程序和数据。

2.2.3 CRC(循环冗余校验)计算单元

CRC(循环冗余校验)计算单元使用一个固定的多项式发生器,从一个32位的数据字产生一个CRC码。

在众多的应用中,基于 CRC 的技术被用于验证数据传输或存储的一致性。在 EN/IEC60335-1 标准的范围内,它提供了一种检测闪存存储器错误的手段,CRC 计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

2.2.4 内置 SRAM

最大20K字节的内置SRAM,用户可用空间16K的内置SRAM。

2.2.5 嵌套的向量式中断控制器(NVIC)

MM32W3x2xxB产品内置嵌套的向量式中断控制器,能够处理多达 68 个可屏蔽中断通道(不包括 16 个 Cortex®-M3 的中断线)和 16 个可编程优先级。

- 紧耦合的 NVIC 能够达到低延迟的中断响应处理
- 中断向量入口地址直接进入内核
- 紧耦合的 NVIC 接口
- 允许中断的早期处理
- ◆ 处理晚到的较高优先级中断
- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复,无需额外指令开销

该模块以最小的中断延迟提供灵活的中断管理功能。

2.2.6 外部中断/事件控制器(EXTI)

外部中断/事件控制器包含 21 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。EXTI 可以检测到脉冲宽度小于内部 APB2 的时钟周期。多达 40 个通用 I/O 口连接到 16 个外部中断线。

2.2.7 控制模块时钟和启动

控制模块系统时钟的选择是在启动时进行,复位时内部 48MHz 的振荡器被选为默认的 CPU 时钟,随后可以选择外部的、具失效监控的 16MHz 时钟;当检测到外部时钟失效时,它将被隔离,系统将自动地切换到内部的振荡器,如果使能了中断,软件可以接收到相应的中断。同样,在需要时可以采取对 PLL 时钟完全的中断管理(如当一个间接使用的外部振荡器失效时)。

多个预分频器用于配置 AHB 的频率、高速 APB(APB2 和 APB1)区域。AHB 和高速 APB 的最高频率是 96MHz。参考图 2 的时钟驱动框图。

2.2.8 自举模式

在启动时,通过自举引脚可以选择三种自举模式中的一种:

- 从程序闪存存储器自举
- 从系统存储器自举
- 从内部 SRAM 自举

自举加载程序(Bootloader)存放于系统存储器中,可以通过 UART1 对闪存重新编程。

2.2.9 供电方案

- V_{DD}= 2.3V ~ 3.9V: V_{DD} 引脚为 I/O 引脚和内部调压器供电。
- V_{SSA}, V_{DDA}= 2.3V ~ 3.9V: 为 ADC、复位模块、振荡器和 PLL 的模拟部分提供供电。V_{DDA} 和 V_{SSA} 必须分别连接到 V_{DD} 和 V_{SS}。
- V_{BAT} = 1.8V ~ 3.9V: 当关闭 V_{DD} 时,(通过内部电源切换器)为 RTC、外部 32KHz 振荡器和后备寄存器供电。

2.2.10 供电监控器

本产品内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过 2.0V 时工作;当 V_{DD} 低于设定的阀值(VPOR/PDR)时,置器件于复位状态,而不必使用外部复位电路。

器件中还有一个可编程电压监测器(PVD),它监视 V_{DD}/V_{DDA} 供电并与阀值 V_{PVD} 比较,当 V_{DD} 低于或高于阀值 V_{PVD} 时产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。PVD 功能需要通过程序开启。

2.2.11 电压调压器

调压器将外部电压转成内部数字逻辑工作的电压,该调压器在复位后始终处于工作状态。

2.2.12 低功耗模式

MM32W3x2xxB产品支持低功耗模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡。

● 睡眠模式

在睡眠模式,只有 CPU 停止,所有外设处于工作状态并可在发生中断/事件时唤醒 CPU。

● 停机模式

在保持 SRAM 和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,停止所有内部 1.8V 部分的供电,HSI 的振荡器和 HSE 晶体振荡器被关闭,调压器可以被置于普通模式或低功耗模式。

可以通过任一配置成 EXTI 的信号把微控制器从停机模式中唤醒, EXTI 信号可以是 16 个外部 I/O 口之一、PVD 的输出的唤醒信号。

● 待机模式

待机模式可实现系统的最低功耗。该模式是在 CPU 深睡眠模式时关闭电压调节器。整个 1.5V 供电 区域被断电。 PLL、 HSI 和 HSE 振荡器也被断电。 SRAM 和寄存器内容丢失。只有备份的寄存器和待机电路维持供电。

当一个外部复位(NRST 引脚)、 IWDG 复位或 WKUP 引脚上的上升沿,微控制器从待机模式退出。

2.2.13 DMA

灵活的 7 路通用 DMA 可以管理存储器到存储器、设备到存储器和存储器到设备的数据传输; DMA 控制器支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。

每个通道都有专门的硬件 DMA 请求逻辑,同时可以由软件触发每个通道;传输的长度、传输的源地址和目标地址都可以通过软件单独设置。

DMA 可以用于主要的外设: UART、I2C、SPI、通用/基本/高级控制定时器 TIMx、ADC、DAC 和 USB。

2.2.14 RTC (实时时钟) 和后备寄存器

RTC 和后备寄存器通过一个开关供电,在 V_{DD} 有效时该开关选择 V_{DD} 供电,否则由 V_{BAT} 引脚供电。后备寄存器(10 个 16 位的寄存器)可以用于在关闭 V_{DD} 时,保存 20 个字节的用户应用数据。RTC 和后备寄存器不会被系统或电源复位源复位;当从待机模式唤醒时,也不会被复位。

实时时钟具有一组连续运行的计数器,可以通过适当的软件提供日历时钟功能,还具有闹钟中断和阶段性中断功能。RTC 的驱动时钟可以是一个使用外部晶体的 32.768KHz 的振荡器、内部低功耗振荡器或高速的外部时钟经 128 分频。内部低功耗振荡器的典型频率为 40KHz。为补偿天然晶体的偏差,可以通过输出一个 512Hz 的信号对 RTC 的时钟进行校准。RTC 具有一个 32 位的可编程计数器,使用比较寄存器可以进行长时间的测量。有一个 20 位的预分频器用于时基时钟,默认情况下时钟为 32.768KHz 时,它将产生一个 1 秒长的时间基准。

2.2.15 定时器和看门狗

中等容量的 MM32W3x2xxB 产品包含 1 个高级控制定时器、3 个通用定时器,以及 2 个看门狗定时器和 1 个系统嘀嗒定时器。

下表比较了高级控制定时器、通用定时器和基本定时器的功能:

定时器	计数器分辨率	计数器类型	预分频系数	产生DMA请求	捕获/比较通道	互补输出
TIM1	16位	向上,向下, 向上/下	1~65536之间 的任意整数	有	4	有
TIM2 TIM3 TIM4	16位	向上,向下, 向上/下	1~ 65536之间 的任意整数	有	4	没有

表 2. 定时器功能比较

高级控制定时器(TIM1)

高级控制定时器(TIM1)可以被看成是分配到 6 个通道的三相 PWM 发生器,它具有带死区插入的互补 PWM 输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生 PWM (边缘或中心对齐模式)
- 单脉冲输出

配置为 16 位通用定时器时,它与 TIMx 定时器具有相同的功能。配置为 16 位 PWM 发生器时,它具有全调制能力($0\sim100\%$)。

在调试模式下,计数器可以被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。

很多功能都与通用的 TIM 定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与 TIM 定时器协同操作,提供同步或事件链接功能。

通用定时器 (TIMx)

MM32W3x2xxB产品中,内置了多达 3 个可同步运行的通用定时器(TIM2、TIM3 和 TIM4)。每个定时器都有一个 16 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个独立的通道,每个通道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出,在最大的封装配置中可提供最多 12 个输入捕获、输出比较或 PWM 通道。

它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一通用定时器都能用于产生 PWM 输出。每个定时器都有独立的 DMA 请求机制。

这些定时器还能够处理增量编码器的信号,也能处理 1~3个霍尔传感器的数字输出。

独立看门狗

独立的看门狗是基于一个 12 位的递减计数器和一个 8 位的预分频器,它由一个内部独立的 40KHz 的振荡器提供时钟;因为这个振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以被当成看门狗用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

窗口看门狗

窗口看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能,在调试模式下,计数器可以被冻结。

系统时基定时器

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它具有下述特性:

- 24 位的递减计数器
- 自动重加载功能
- 当计数器为0时能产生一个可屏蔽系统中断
- 可编程时钟源

2.2.16 通用异步收发器(UART)

UART 接口具有硬件的 CTS 和 RTS 信号管理。

所有 UART 接口都可以使用 DMA 操作。

2.2.17 I2C 总线

多达 2 个 I2C 总线接口,能够工作于多主模式或从模式,支持标准和快速模式。

I2C 接口支持 7 位或 10 位寻址, 7 位从模式时支持双从地址寻址。

2.2.18 串行外设接口(SPI)

1 个 SPI 接口,在从或主模式下,全双工和半双工的通信速率可达 18 兆位/秒。3 位的预分频器可产生 8 种主模式频率,可配置成每帧 8 位或 16 位。

所有的 SPI 接口都可以使用 DMA 操作。

2.2.19 通用串行总线(USB)

MM32W3x2xxB产品,内嵌一个兼容全速 USB 的设备控制器,遵循全速 USB 设备(12 兆位/秒)标准,端点可由软件配置,具有待机/唤醒功能。USB 专用的 48MHz 时钟由内部主 PLL 直接产生(时钟源必须是一个 HSE 晶体振荡器)。

2.2.20 通用输入输出接口(GPIO)

每个 GPIO 引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。多数 GPIO 引脚都与数字或模拟的复用外设共用。除了具有模拟输入功能的端口,所有的 GPIO 引脚都有大电流通过能力。

在需要的情况下,I/O 引脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入 I/O 寄存器。在 AHB2 上的 I/O 脚可达 18MHz 的翻转速度。

2.2.21 ADC (模拟/数字转换器)

MM32W3x2xxB 产品内嵌 2 个 12 位的模拟/数字转换器(ADC),每个 ADC 可用多达 8 个外部通道,可以实现单次或扫描转换。在扫描模式下,自动进行在选定的一组模拟输入上的转换。

ADC 可以使用 DMA 操作。

模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,将产生中断。

由通用定时器(TIMx)和高级控制定时器(TIM1)产生的事件,可以分别内部级联到 ADC 的触发,应用程序能使 AD 转换与时钟同步。

2.2.22 DAC (数字/模拟转换)

数字/模拟转换模块(DAC)是 12 位数字输入,电压输出的数字/模拟转换器。DAC 可以配置成 8 位或者 12 位模式,也可以与 DMA 控制器配合使用。DAC 工作在 12 位模式时,数据可以设置成左对齐,也可以设置成右对齐。DAC 有 2 个输出通道,每个通道都有单独的转换器,可以工作在双 DAC 模式。在此模式下,可以同步地更新 2 个通道的输出,这 2 个通道的转换可以同时进行,也可以分别进行。

DAC主要特征:

- 2个 DAC 转换器: 1个输出通道对应 1个转换器
- 8 位或者 12 位单调输出
- 12 位模式下数据左对齐或者右对齐
- 同步更新功能
- 噪声波形生成
- 三角波形生成
- 双 DAC 通道同时或者分别转换
- 每个通道都有 DMA 功能
- 外部触发转换

2.2.23 蓝牙低功耗广播

MM32W3x2xxB集成了蓝牙规范和射频收发器,兼容国际通信联盟无线电通信局定义的无需授权许可的2.4GHz的ISM频段。

为MM32W3x2xxB供电后,射频收发外围只需搭建简单的外围元件即可实现无线收发功能。它提供高达-80dBm的优秀的射频链路预算,待机电流低于250uA。

2.2.24 温度传感器

温度传感器产生一个随温度线性变化的电压,转换范围在 2.5V < V_{DDA}<3.6V 之间。温度传感器在内部被连接到 ADC1_IN9 的输入通道上,用于将传感器的输出转换到数字数值。

2.2.25 串行单线 SWD 调试口(SW-DP)

内嵌 ARM 的两线串行调试端口(SW-DP)

ARM 的 SW-DP 接口允许通过串行线调试工具连接到单片机。

图 2. 时钟树

3. 引脚定义

图 3. MM32W3x2xxB LQFP64 引脚分布

图 4. MM32W3x2xxBLQFP48 引脚分布

表 3. MM32W3x2xxB 引脚定义

			表 3. MI	M32W3>	‹2xxB 引脚定	X		
引脚编码				I/O		可选的复用功能		
LQFP64	LQFP48	引脚名称	类型	电平	主功能	默认复用功能	重定义功能	
1	1	V_{BAT}	S		V_{BAT}			
2	2	PC13- TAMPER-RT C	I/O		PC13	TAMPER-RTC		
3	3	PC14- OSC32_IN	I/O		PC14	OSC32_IN		
4	4	PC15- OSC32_ OUT	I/O		PC15	OSC32_OUT		
5	5	PD0- OSC_IN	I/O		OSC_IN			
6	6	PD1-OSC_O UT	I/O		OSC_ OUT			
7	7	NRST	I/O		NRST			
8		PC0	I/O		PC0	ADC2_IN2		
9		PC1	I/O		PC1	ADC2_IN3		
10	8	RF_XO	I/O		RF_XO			
11	9	RF_XI	I/O		RF_XI			
12	10	VSSA	S		Vssa			
13	11	VDDA	S		V_{DDA}			
14	12	PA0- WKUP	I/O		PA0	ADC1_IN0/WKUP/ UART2_CTS/ TIM2_CH1_ETR		
15		DVDD	S		RF_ AVDD			
16		PA2	I/O		PA2	ADC1_IN2/UART2_TX/ TIM2_CH3		
17	13	PA3	I/O		PA3	ADC1_IN3/UART2_RX/ TIM2_CH4		
18		DVSS	S		DVSS			
19		DVDD	S		DVDD			
20	14	PA4	I/O		PA4	ADC1_IN4/DAC1_OUT/ SPI1_NSS		
21	15	PA5	I/O		PA5	ADC1_IN5/DAC2_OUT/ SPI1_SCK		
22	16	PA6	I/O		PA6	ADC1_IN6/SPI1_MISO /TIM3_CH1	TIM1_BKIN	
23	17	PA7	I/O		PA7	ADC1_IN7/SPI1_MOSI /TIM3_CH2	TIM1_CH1N	

引脚编码				I/O		可选的复用功能		
LQFP64	LQFP48	引脚名称	类型	电平	主功能	默认复用功能	重定义功能	
24		PC4	I/O		PC4	ADC2_IN6		
25		PC5	I/O		PC5	ADC2_IN7		
26	18	PB0	I/O		PB0	ADC2_IN0/TIM3_CH3	TIM1_CH2N	
27	19	PB1	I/O		PB1	ADC2_IN1/TIM3_CH4	TIM1_CH3N	
28	20	PB2	I/O	FT	PB2/BO OT1			
29	21	PB10	I/O	FT	PB10	I2C2_SCL/UART3_TX	TIM2_CH3	
30	22	PB11	I/O	FT	PB11	I2C2_SDA/UART3_RX	TIM2_CH4	
31	23	DVSS	S		DVSS			
32	24	ANTP			ANTP			
33	25	PB12	I/O	FT	PB12	SPI2_NSS/I2C2_SMBAI/ TIM1_BKIN		
34	26	PB13	I/O	FT	PB13	SPI2_SCK/UART3_CTS/ TIM1_CH1N		
35	27	PB14	I/O	FT	PB14	SPI2_MISO/UART3_RTS /TIM1_CH2N		
36	28	PB15	I/O	FT	PB15	SPI2_MOSI/TIM1_CH3N		
37		PC6	I/O	FT	PC6		TIM3_CH1	
38		PC7	I/O	FT	PC7		TIM3_CH2	
39		PC8	I/O	FT	PC8		TIM3_CH3	
40		PC9	I/O	FT	PC9		TIM3_CH4	
41	29	PA8	I/O	FT	PA8	TIM1_CH1/MCO		
42	30	PA9	I/O	FT	PA9	UART1_TX/TIM1_CH2		
43	31	PA10	I/O	FT	PA10	UART1_RX/TIM1_CH3		
43	32	PA11	I/O	FT	PA11	UART1_CTS/USBDM /TIM1_CH4		
45	33	PA12	I/O	FT	PA12	UART1_RTS/USBDP /TIM1_ETR		
46	34	PA13	I/O	FT	JTM/ SWDIO		PA13	
47	35	DVSS	S		DVSS			
48	36	DVDD	S		DVDD			
49	37	PA14	I/O	FT	JTCK/ SWCLK		PA14	
50	38	PA15	I/O	FT	JTDI		PA15/ TIM2_CH1_ ETR/ SPI1_NSS	
51		PC10	I/O	FT	PC10		UART3_TX	

引脚编码						可选的复用功能	
LQFP64	LQFP48	引脚名称	类型	电 平	主功能	默认复用功能	重定义功能
52		PC11	I/O	FT	PC11		UART3_RX
53	•	PC12	I/O	FT	PC12		
54	-	NC	S	FT	NC		
55	39	NC	S	FT	NC		
56	40	PB4	I/O	FT			SPI1_MISO
57	41	NC	S	FT	NC		
58	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1	UART1_TX
59	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2	UART1_RX
60	44	воото	I		воото		
61	45	RF_MISO	I/O		RF_ MISO		
62	46	VDD1V2	S		RF_ VDD1V2		
63	47	IRQ	S		RF_IRQ		
64	48	DVDD	S		DVDD		

- 1. **I=**输入,**O=**输出,**S=**电源,**HiZ=**高阻
- 2. FT: 容忍 5V

4. 存储器映像

表 4. 存储器映像

总线	编址范围	大小	外设	<u> </u>
	0x4002 3400 - 0x4002 43FF	4 KB	Reserved	
	0x4002 3000 - 0x4002 33FF	1 KB	CRC	
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved	
AHB	0x4002 2000 - 0x4002 23FF	1 KB	Flash接口	
/ (ID	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved	
	0x4002 1000 - 0x4002 13FF	1 KB	复位和时钟控制(RCC)	
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved	
	0x4002 0000 - 0x4002 03FF	1 KB	DMA	
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved	
	0x4001 4C00 - 0x4001 7FFF	13 KB	Reserved	
	0x4001 4800 - 0x4001 4BFF	1 KB	Reserved	
	0x4001 4400 - 0x4001 47FF	1 KB	Reserved	
	0x4001 4000 - 0x4001 43FF	1 KB	Reserved	
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved	
	0x4001 3800 - 0x4001 3BFF	1 KB	UART1	
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved	
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1	
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1	
APB2	0x4001 2800 - 0x4001 2BFF	1 KB	ADC2	
	0x4001 2400 - 0x4001 27FF	1 KB	ADC1	
	0x4001 1C00 - 0x4001 23FF	2 KB	Reserved	
	0x4001 1800 - 0x4001 1BFF	1 KB	GPIOE	
	0x4001 1400 - 0x4001 17FF	1 KB	GPIOD	
	0x4001 1000 - 0x4001 13FF	1 KB	GPIOC	
	0x4001 0C00 - 0x4001 0FFF	1 KB	GPIOB	
	0x4001 0800 - 0x4001 0BFF	1 KB	GPIOA	
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI	
	0x4001 0000 - 0x4001 03FF	1 KB	AFIO	
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved	
	0x4000 7800 - 0x4000 7FFF	2 KB	Reserved	
	0x4000 7400 - 0x4000 77FF	1 KB	DAC	
	0x4000 7000 - 0x4000 73FF	1 KB	电源控制(PWR)	
APB1	0x4000 6C00 - 0x4000 6FFF	1 KB	后备寄存器(BKP)	
	0x4000 6800 - 0x4000 6BFF	1 KB	Reserved	
	0x4000 6400 - 0x4000 67FF	1 KB	Reserved	
	0x4000 6000 - 0x4000 63FF	1 KB	Reserved	

总线	编址范围	大小	外设	备注
	0x4000 5C00 - 0x4000 5FFF	1 KB	USB	
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2	
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1	
	0x4000 4C00 - 0x4000 53FF	2 KB	Reserved	
	0x4000 4800 - 0x4000 4BFF	1 KB	UART3	
	0x4000 4400 - 0x4000 47FF	1 KB	UART2	
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved	
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2	
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved	
	0x4000 3000 - 0x4000 33FF	1 KB	IWWDG	
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG	
_	0x4000 2800 - 0x4000 2BFF	1 KB	RTC	
	0x4000 0C00 - 0x4000 27FF	7 KB	Reserved	
	0x4000 0800 - 0x4000 0BFF	1 KB	TIM4	
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3	
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2	
00444	0x2000 5000 -0x3FFF FFFF	~512 MB	Reserved	
SRAM	0x2000 0000 - 0x2000 4FFF	20 KB	SRAM	
	0x1FFF F810 - 0x1FFF FFFF	~2 KB	Reserved	
	0x1FFF F800 - 0x1FFF F80F	16 B	Option bytes	
	0x1FFF F400 - 0x1FFF F7FF	1 KB	Sysem memory	
	0x1FFE 1C00 - 0x1FFF F3FF	~256 MB	Reserved	
	0x1FFE 1000 - 0x1FFE 1BFF	3KB	Security space	
	0x1FFE 0200 - 0x1FFE 0FFF	3 KB	Reserved	
Flash	0x1FFE 0000 - 0x1FFE 01FF	0.5KB	Protect byte	
гіазіі	0x1000 2000 - 0x 1FFDFFFF	~256 MB	Reserved	
	0x1000 0000 - 0x1000 1FFF	8KB	Reserved	
	0x0802 0000 - 0x0FFF FFFF	~128 MB	Reserved	
	0x0800 0000 - 0x0801FFFF	128 KB	Main Flash memory	
	0x00020000 - 0x07FF FFFF	~128 MB	Reserved	
	0x0000 0000 - 0x0001FFFF	128 KB	主闪存存储器,系统存储器或是 SRAM,有赖于BOOT的配置	

5. 电气特性

5.1 测试条件

除非特别说明, 所有电压的都以 Vss 为基准。所有性能均在 50Ω 天线连接器下测得。

5.1.1 最小和最大数值

除非特别说明,最小和最大数值是在环境温度 T_A = 25°C, V_{DD}= 3.3V 下执行的测试。

5.1.2 典型数值

除非特别说明,典型数据是基于 T_A = 25°C和 V_{DD} = 3.3V。这些数据仅用于设计指导而未经测试。

5.1.3 典型曲线

除非特别说明,典型曲线仅用于设计指导而未经测试。

				外部提供	共3.3V的直流	流电压			单位
标注	参数		测试条件		最小值	典型值	最大值	单位	
			RESET			0.005			
			SLEEP			4.8	5.3		
		STOP				0.146	0.200		
ID AT	Supplycurrent	STANDBY				0.0002	0.0005		mA
IBAT	Supplyculterit		RX		29.07	29.45	30.54		
					29.56	30.19	30.82		
		TV	+4dBm			34.91			
		TX	+3dBm			33.45			

表5. 功耗参数

5.1.4 负载电容

测量引脚参数时的负载条件示于下图。

图5. 引脚的负载条件
C=50pF

5.1.5 引脚输入电压

引脚上输入电压的测量方式示于下图。

5.1.6 供电方案

图 7. 供电方案

注: 上图中的 4.7µF 电容必须连接到 V_{DD3}

5.1.7 电流消耗测量

图 8. 电流消耗测量方案

5.2 RF 一般特性

图9. 射频性能参数

表6. RF一般特性

标注	参数	测试条件	最小值	典型值	最大值	单位
FREQ	频率变化	V _{DD} =3.0V, T _A =25°C	2400		2483.5	MHz
FC	信道间隔	V _{DD} =3.0V, T _A =25°C		2		MHz
RFch	RF 通道中心	V _{DD} =3.0V, T _A =25°C	2402		2480	MHz

5.3 RF 发射机特性

表7. 射频发射机特性表

标注	参数	测试条件	最小值	典型值	最大值	单位
MOD	调制方式			GFSK		
BT	带宽			0.5		
Mindex	调制指数		0.45	0.5	0.55	
DR	空气传输速率			1Mbps		
PMAX	最大输出功率				+4	dBm
PBW1M	6dB带宽调制载波		500			KHz
, DAN LIM	(1Mbps)		300			KI IZ
PSPUR	杂散发射				-41	dBm
CF _{dev}	中心频率偏移				±150	KHz
Freq _{drift}	频率漂移				±50	KHz
IFreq _{drift}	初始载波频率漂移				±20	KHz

5.4 RF 接收机特性

表8. RF接收机特性

标注	参数	测试条件	最小值	典型值	最大值	单位
RXsens	接收灵敏度	BER < 0.1%		-80		dBm

5.5 绝对最大额定值

加在器件上的载荷如果超过'绝对组最大额定值'列表(表 9、表 10、表 11)中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表 9. 电压特性

符号	描述	最小值	最大值	单位
V _{DD} -V _{SS}	外部主供电电压(包含 V _{DDA} 和 V _{DD}) ⁽¹⁾	- 0.3	3.6	
V _{IN}	在 5V 容忍的引脚上的输入电压 ⁽²⁾	Vss-0.3	3.6	V
VIN	在其它引脚上的输入电压(2)	Vss-0.3	3.6	
$ \Delta V_{DDx} $	不同供电引脚之间的电压差		50	m\/
Vssx-Vss	不同接地引脚之间的电压差		50	mV
V _{ESD(HBM)}	V _{ESD(HBM)} ESD 静电放电电压(人体模型)		5.3.11	

±25

- 1. 所有的电源(V_{DD}, V_{DDA})和地(V_{SS}, V_{SSA})引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限(见表 13),即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 V_{IN} > V_{INmax} 时,有一个正向注入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。

符号 描述 单位 最大值 经过 V_{DD}/V_{DDA} 电源线的总电流(供应电流)⁽¹⁾ 150 I_{VDD} 经过 Vss 地线的总电流(流出电流)(1) Ivss 150 任意 I/O 和控制引脚上的输出灌电流 20 lιο 任意 I/O 和控制引脚上的输出电流 -18 mΑ NRST 引脚的注入电流 ±5 $I_{\mathsf{INJ}(\mathsf{PIN})}{}^{(2)(3)}$ HSE 的 OSC_IN 引脚和 LSE 的 OSC_IN 引脚的注入电流 ±5 其他引脚的注入电流(4) ±5

表 10. 电流特性

- 1. 所有的电源(V_{DD}, V_{DDA})和地(V_{SS}, V_{SSA})引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{\text{INJ}(\text{PIN})}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{\text{INJ}(\text{PIN})}$ 不超过其最大值。当 V_{IN} V_{DD} 时,有一个正向注入电流;当 V_{IN} V_{SS} 时,有一个反向注入电流。

所有 I/O 和控制引脚上的总注入电流(4)

- 3. 反向注入电流会干扰器件的模拟性能。参看第5.3.17节。
- 4. 当几个 I/O 口同时有注入电流时, $\sum I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 4 个 I/O 端口上 $\sum I_{INJ(PIN)}$ 最大值的特性。

符号	描述	最大值	单位
T _{STG}	储存温度范围	-45 ~ +150	°C
TJ	最大结温度	125	°C

表 11. 温度特性

5.6 绝对最大额定值工作条件

5.6.1 通用工作条件

 $\sum I_{INJ(PIN)}^{(2)}$

表 12. 通用工作条件

符号	参数	条件	最小值	最大值	单位	
fhclk	内部AHB时钟频率		0	96		
f _{PCLK1}	内部APB1时钟频率		0	96	MHz	
f _{PCLK2}	内部APB2时钟频率		0	96		
V _{DD}	标准工作电压		2.1	3.6	V	
V_{DDA}	模拟部分工作电压	必须与V _{DD} ⁽¹⁾ 相同	2.5	3.6	V	
V _{BAT}	备份部分工作电压		1.8	3.6	V	
	功率耗散	LQFP64 203		203		
P _D	温度: T _A =85℃	LQFP48			mW	
T _A	环境温度: T _A =85℃	最大功率耗散	- 40	85	°C	

符号	参数	条件	最小值	最大值	单位
		低功率耗散(3)	- 40	105	
	环境温度: TA=105℃	最大功率耗散	- 40	105	°C
	小児@及: TA=105 €	低功率耗散(3)	- 40	125	

- 1.建议使用相同的电源为 V_{DD}和 V_{DDA}供电,在上电和正常操作期间, V_{DD}和 V_{DDA}之间最多允许有 300mV 的差别。
 - 2.如果 T_A 较低,只要 T_J 不超过 T_{Jmax} (参见第 1 节),则允许更高的 P_D 数值。
 - 3.在较低的功率耗散的状态下,只要 T_J 不超过 $T_{J max}$ (参见第 1 节), T_A 可以扩展到这个范围。

5.6.2 上电和掉电时的工作条件

下表中给出的参数是在一般的工作条件下测试得出。

表 13. 上电和掉电时的工作条件

符号	符号 参数 条件		最小值	最大值	单位
4	V _{DD} 上升速率	大岩油下	100	8	
tvdd	VDD下降速率	在常温下	100	8	μS/V

5.6.3 内嵌复位和电源控制模块特性

下表中给出的参数是依据表 13 列出的环境温度下和 VDD 供电电压下测试得出。

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[3: 0]=0000(上升沿)	1.813	1.819	1.831	V
		PLS[3: 0]=0000(下降沿)		1.705		V
		PLS[3: 0]=0001(上升沿)	2.112	2.116	2.124	V
		PLS[3: 0]=0001(下降沿)		2.0		V
		PLS[3: 0]=0010(上升沿)	2.411	2.414	2.421	V
	可编程的电压	PLS[3: 0]=0010(下降沿)		2.297		V
V_{PVD}	检测器的电平 选择	PLS[3: 0]=0011(上升沿)	2.711	2.714	2.719	V
	761+	PLS[3: 0]=0011(下降沿)		2.597		V
		PLS[3: 0]=0100(上升沿)	3.011	3.013	3.018	V
		PLS[3: 0]=0100(下降沿)		2.895		V
		PLS[3: 0]=0101(上升沿)	3.311	3.313	3.317	V
		PLS[3: 0]=0101(下降沿)		3.194	3.018	V
V _{PVDhyst} ⁽²⁾	PVD 迟滞			100		mV
\/	上电/掉电复	下降沿	1.623	1.656	1.675	V
V _{POR/PDR}	位阀值	上升沿		1.747	2.719 3.018 3.317	V
V _{PDRhyst} ⁽²⁾	PDR 迟滞			90.9		mV
T _{RSTTEMPO} ⁽²⁾	复位持续时间			20		mS

表 14. 内嵌复位和电源控制模块特性

- 1. 产品的特性由设计保证至最小的数值 VPOR/PDR。
- 2. 由设计保证,不在生产中测试。

5.6.4 内置的参照电压

下表中给出的参数是依据表 15 列出的环境温度下和 VDD 供电电压下测试得出。

		水 10. 门直的多洲石	1/11			
符号	参数	条件	最小值	典型值	最大值	单位
V	内置参照电压	-40°C <t<sub>A<+105°C</t<sub>		1.2		V
VREFINT	內且参照电压	-40°C <t<sub>A< +85°C</t<sub>		1.2		V
Ts_vrefint ⁽¹⁾	当读出内部参照电压时, ADC的采样时间		10			μS

表 15. 内置的参照电压

- 1.最短的采样时间是通过应用中的多次循环得到。
- 2.由设计保证,不在生产中测试。

5.6.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

电流消耗的测量方法说明,详见图 11。

本节中给出的所有运行模式下的电流消耗测量值,都是在执行一套精简的代码,能够得到 Dhrystone2.1 代码等效的结果。

最大电流消耗

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——V_{DD} 或 V_{SS}(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到f_{HCLK}的控制模块的频率(0~24MHz时为0个等待周期,24~48MHz 时为1个等待周期,48~72MHz 时为2个等待周期,72~96MHz 时为3个等待周期)。
- 指令预取功能开启(提示:这个参数必须在设置时钟和总线分频之前设置)。当开启外设时: fpclk1=fhclk/2, fpclk2=fhclk。

表 16、表 17、表 18 中给出的参数,是依据表 12 列出的环境温度下和 VDD 供电电压下测试得出。

符号	参数	条件	fHCLK	典型值	单位	
				使能所有外设(2)	关闭所有外设	半世
I _{DD}	运行模式下的供应电流	外部时钟(2)	96MHz	26.23	15.2	
			72MHz	20.52	12.19	
			48MHz	14.71	9.13	mA
			36MHz	11.76	7.58	IIIA
			24MHz	8.84	6.03	
			8MHz	4.1	3.14	

表 16. 控制模块运行模式下的最大电流消耗,数据处理代码从内部闪存中运行

- 1. 典型值是在 T_A=25℃下测试得到。由综合评估得出,不在生产中测试。
- 2. 外部时钟为 8MHz, 当 f_{HCLK}>8MHz 时启用 PLL。

符号	参数	条件		典型值	X L	
			fhclk	使能所有外设(2)	关闭所有外设	单位
	运行模式下的供应电流	外部时钟(2)	96MHz	22.41	10.92	
I _{DD}			72MHz	17.57	8.96	
			48MHz	12.68	6.96	mA
			36MHz	10.29	5.95	IIIA
			24MHz	7.79	4.9	
			8MHz	3.46	2.8	

表 17. 控制模块睡眠模式下的最大电流消耗,代码运行在 Flash 中

- 1. 典型值是在 $T_A = 25$ °C下测试得到。由综合评估得出,在生产中以 V_{DDmax} 和以 $f_{HCLKmax}$ 使能外设为条件测试。
- 2. 外部时钟为 8MHz, 当 f_{HCLK}>8MHz 时启用 PLL。

表 18. 控制模块停机和待机模式下的典型和最大电流消耗

符号	会 粉	条件	最大值	单位
何亏	参数	家 什	T _A =25°C	半世
	停机模式下的供应电流	复位后进入停机模式,	146	
lod	序机铁八 下的 医丛电机	V _{DD} =3.3V	140	μA
	待机模式下的供应电流	复位后进入待机模式,	0.4	
	何机铁八丁的 医丛电机	V _{DD} =3.3V	0.4	
I _{DD_VBAT}	备份区域的供应电流	低速振荡器和RTC处于开启状态,	0.2	
	台	V _{DD} /V _{BAT} =3.3V	0.2	

1. 由综合评估得出,不在生产中测试。

图 10. 待机模式下的典型电流消耗在 VDD=3.3V 时与温度的对比

典型的电流消耗

MCU 处于下述条件下:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——V_{DD} 或 V_{SS} (无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 f_{HCLK} 的频率 (0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个等待周期, 48~72MHz 时为 2 个等待周期, 72~96MHz 时为 3 个等待周期)。
- 环境温度和 V_{DD} 供电电压条件列于表 13。
- 指令预取功能开启(提示:这个参数必须在设置时钟和总线分频之前设置)。当开启外设时: fpclk1=fhclk/4, fpclk2=fhclk/2, fadcclk = fpclk2/4。

内置外设电流消耗

内置外设的电流消耗列于表 19, MCU 的工作条件如下:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——V_{DD} 或 V_{SS} (无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 给出的数值是通过测量电流消耗计算得出
 - 关闭所有外设的时钟
 - 只开启一个外设的时钟
- 环境温度和 V_{DD} 供电电压条件列于表 12。

I2C2

USB

25℃时的典 25℃时的典 内置外设 单位 内置外设 单位 型功耗 型功耗 **GPIOA** TIM2 0.098 0.045 TIM3 0.062 **GPIOB** 0.046 TIM4 0.055 **GPIOC** 0.052 SPI2 0.133 **GPIOD** 0.046 APB1 APB2 UART2 0.077 mΑ ADC1 0.051 mΑ UART3 0.078 ADC2 0.052 I2C1 0.132 TIM1 0.121

SPI1

UART1

0.122

0.078

表 19. 控制模块内置外设的电流消耗(1)

0.134

0.058

^{1.} f_{HCLK}=96MHz, f_{APB1} = f_{HCLK}/2, f_{APB2} = f_{HCLK}, 每个外设的预分频系数为默认值。

5.6.6 外部时钟源特性

来自外部振荡源产生的高速外部用户时钟

下表中给出的特性参数是使用一个高速的外部时钟源测得,环境温度和供电电压符合表 12 的条件。

符号 典型值 最大值 参数 条件 最小值 单位 用户外部时钟频率(1) 8 32 $f_{\text{HSE_ext}}$ 1 MHz OSC_IN 输入引脚高电平电压 $0.7V_{DD}$ V_{DD} V_{HSEH} ٧ Vss V_{HSEL} OSC_IN 输入引脚低电平电压 $0.3V_{\text{DD}}$ OSC_IN 高或低的时间⁽¹⁾ 16 tw(HSE) nS $t_{\text{r}(\text{HSE})}$ OSC_IN 上升或下降的时间⁽¹⁾ 20 $t_{\text{f(HSE)}}$ OSC_IN 输入容抗⁽¹⁾ 5 рF $C_{\text{in}(\text{HSE})}$ 占空比 $DuCy_{(\text{HSE})}$ 45 55 % OSC_IN 输入漏电流 $V_{SS} \le V_{IN} \le V_{DD}$ ± 1 uA I_{L}

表 20. 高速外部用户时钟特性

表21. 射频模块高速晶体时钟特性

标注	参数	测试条件	最小值	典型值	最大值	单位
f _{NOM}	标称频率			16		MHz
f _{TOL}	频率公差	负载电容、温度			±50	ppm
ESR	等效串联				100	Ω
PD	驱动水平				20	mA

1. 由设计保证,不在生产中测试。

图11. 控制模块使用8~24MHz晶体的典型应用

图12. 射频模块使用16MHz晶体的典型应用

使用一个晶体/陶瓷谐振器产生的高速外部时钟

高速外部时钟(HSE)可以使用一个 16MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

符号	参数	条件	最小值	典型值	最大值	单位
fosc_in	振荡器频率			16		MHz
R _F	内部反馈电阻			3000		kΩ
C _{L1}	建议的负载电容与对应的晶	R _S = 30Ω		30		pF
C _{L2} ⁽³⁾	体串行阻抗(Rs) ⁽⁴⁾	115- 3022		30		РΙ
		$V_{DD}=3.3V$,				
l ₂	HSE 驱动电流	VIN= Vss			1	mA
		30pF 负载				
g m	振荡器的跨导	启动	25			mA/V
tsu(HSE) ⁽⁵⁾	启动时间	V _{DD} 是稳定的		2		mS

表22. HSE 16MHz振荡器特性⁽¹⁾⁽²⁾

- 1.谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. 对于 C_{L1} 和 C_{L2} ,建议使用高质量的、为高频应用而设计的(典型值为)5pF~25pF 之间的瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时, PCB 和 MCU 引脚的容抗应该考虑在内(可以粗略地把引脚与 PCB 板的电容按 10pF 估计)。
- 4. 相对较低的 RF 电阻值,能够可以为避免在潮湿环境下使用时所产生的问题提供保护,这种环境下产生的泄漏和偏置条件都发生了变化。但是,如果 MCU 是应用在恶劣的潮湿条件时,设计时需要把这个参数考虑进去。
- 5. tsu(HSE)是启动时间,是从软件使能 HSE 开始测量,直至得到稳定的 8MHz 振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商的不同而变化较大。

图13. 外部高速时钟源的交流时序图

- 注: 1. 外部高速时钟源的交流时序图表示控制模块和射频模块共用一个16MHz的晶体/陶瓷谐振器, 16MHz的晶体/陶瓷谐振器主要为射频模块提供高速时钟,同时也串联一个100nF电容为控制模块 提供高速时钟。
 - 2. 用户如果使用控制模块内部时钟源, 16MHz的晶体/陶瓷谐振器单独为射频模块提供时钟。

来自外部振荡源产生的低速外部用户时钟

下表中给出的特性参数是使用一个低速的外部时钟源测得,环境温度和供电电压符合表 12 的条件。

符号	参数	条件	最小值	典型值	最大值	单位
F _{LSE_ext}	用户外部时钟频率(1)		16	32.678	200	KHz
VLSEH	OSC_IN输入引脚高电平电压				1.2	V
VLSEL	OSC_IN输入引脚低电平电压		0.25			V
tw(LSE)	OSC_IN高或低的时间 ⁽¹⁾			15259		
t _{r(LSE)}	OSC_IN上升或下降的时间 ⁽¹⁾			1		nS
t _{f(LSE)}	222 11/4			_		_
Cin(LSE)	OSC_IN输入容抗 ⁽¹⁾			5		pF
DuCy _(LSE)	占空比			50		%
IL	OSC_IN输入漏电流	V _{SS} ≤V _{IN} ≤V _{DD}		0.03		uA

表 23. 低速外部用户时钟特性

1. 由设计保证,不在生产中测试。

图 14. 外部低速时钟源的交流时序图

使用一个晶体/陶瓷谐振器产生的低速外部时钟

低速外部时钟(LSE)可以使用一个 32.768KHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用表 23 中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。(译注:这里提到的晶体谐振器就是我们通常说的无源晶振)

注意:对于 C_{L1} 和 C_{L2} ,建议使用高质量的 $5pF\sim15pF$ 之间的瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。

负载电容 C_L 由下式计算: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$,其中 C_{stray} 是引脚的电容和 PCB 板或 PCB 相关的电容,它的典型值是介于 2pF ~ 7pF 之间。

警告:为了避免超出 C_{L1} 和 C_{L2} 的最大值(15pF),强烈建议使用负载电容 C_L≤7pF 的谐振器,不能使用负载电容为 12.5pF 的谐振器。

例如: 如果选择了一个负载电容 C_L=6pF 的谐振器并且 C_{stray}=2pF,则 C_{L1}=C_{L2}=8pF。

符号	参数	条件	最小值	典型值	最大值	单位
R _F	内部反馈电阻			25		МΩ
C _{L1} C _{L2} ⁽²⁾	建议的负载电容与对应的晶体串行阻抗(Rs) ⁽³⁾	Rs=30Ω			4	pF
l ₂	LSE驱动电流	V _{DD} =3.3V V _{IN} =V _{SS}		0.08		uA
g m	振荡器的跨导			0.5		μA/V
t _{SU(HSE)} ⁽⁴⁾	启动时间	V _{DD} 是稳定的		1	4	S

表 24. LSE 振荡器特性(f_{LSE}=32.768KHz)⁽¹⁾

- 1.由综合评估得出,不在生产中测试。
- 2.参见本表格上方的注意和警告段落。
- 3.选择具有较小 Rs值的高质量振荡器(如 MSIV-TIN32.768KHz),可以优化电流消耗。详情请咨询

晶体制造商。

4.t_{SU(HSE)}是启动时间,是从软件使能 HSE 开始测量,直至得到稳定的 8MHz 振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商的不同而变化较大。

图 15. 使用 32.768KHz 晶体的典型应用

5.6.7 控制模块内部时钟源特性

下表中给出的特性参数是使用环境温度和供电电压符合表 12 的条件测量得到。

高速内部 (HSI) 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSI}	频率		40	48	64	MHz
100		$T_A = -40^{\circ}C \sim 105^{\circ}C$	-5		5	
	HSI 振荡器的精度	$T_A = -10^{\circ}C \sim 85^{\circ}C$	-3		3	0/
ACCHSI		$T_A = 0^{\circ}C \sim 70^{\circ}C$	-2		2	%
		T _A = 25°C	-1		1	
tsu(HSI)	HSI 振荡器启动时间				2	μS
I _{DD(HSI)}	HSI 振荡器功耗			81	200	μΑ

表 25. HSI 振荡器特性⁽¹⁾⁽²⁾

- 1. $V_{DD} = 3.3V$, $T_A = -40^{\circ}C \sim 105^{\circ}C$,除非特别说明。
- 2. 由设计保证,不在生产中测试。

低速内部(LSI)振荡器

表 26. LSI 振荡器特性⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSI} ⁽²⁾	频率		31	51	75	KHz
tsu(LSI) ⁽²⁾	LSI 振荡器启动时间				1	μS
I _{DD(LSI)} ⁽³⁾	LSI 振荡器功耗			1.1	1.7	μΑ

- 1. $V_{DD} = 3.3V$, $T_A = -40^{\circ}C \sim 105^{\circ}C$,除非特别说明。
- 2. 由综合评估得出,不在生产中测试。
- 3. 由设计保证,不在生产中测试。

从低功耗模式唤醒的时间

表 28 列出的唤醒时间是在一个 8MHz 的 HSI 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 停机或待机模式:时钟源是振荡器
- 睡眠模式:时钟源是进入睡眠模式时所使用的时钟

所有的时间是使用环境温度和供电电压符合表 12 的条件测量得到。

符号 单位. 参数 条件 最大值 twusleep(1) 从睡眠模式唤醒 使用 HSI 振荡器时钟唤醒 4.2 从停机模式唤醒(调压器处 μS $t_{\text{WUSTOP}^{(1)}}$ HSI 振荡器时钟唤醒= 2µS 6.3 于运行模式) HSI 振荡器时钟唤醒= 2µS $t_{\text{WUSTDBY}}^{(1)}$ 47 从待机模式唤醒 mS 调压器从关闭模式唤醒时间= 38µS

表 27. 低功耗模式的唤醒时间

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

5.6.8 PLL 特性

下表列出的参数是使用环境温度和供电电压符合表 12 的条件测量得到。

	A 20.1 21	- 14 1-1-			
符号	参数			单位	
11) 5	少 致	最小值	典型值	最大值	平位
t	PLL 输入时钟 ⁽²⁾	8		24	MHz
f _{PLL_IN}	PLL 输入时钟占空比	40		60	%
f _{PLL_OUT}	PLL 倍频输出时钟	40		200	MHz
tLOCK	PLL 锁相时间			100	μS

表 28. PLL 特件⁽¹⁾

- 1. 由设计保证,不在生产中测试。
- 2. 需要注意使用正确的倍频系数,从而根据 PLL 输入时钟频率使得 fpll out 处于允许范围内。

5.6.9 存储器特性

闪存存储器

除非特别说明, 所有特性参数是在 T_A = -40°C~ 105°C得到。

表 29. 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{prog}	8位的编程时间	TA = -40°C ~ 125°C	4	-	-	μS
terase	页(512K字节)擦除时 间	TA = -40°C ~ 125°C	4		5	mS
tme	整片擦除时间	$TA = -40^{\circ}C \sim 125^{\circ}C$	20		40	mS
		读模式,f _{HCLK} = 48MHz,		5	6	mA
I _{DD}	供电电流	写模式, f _{HCLK} = 48MHz,			7	mA
		擦除模式, f _{HCLK} = 48MHz,			2	mA
I _{SB}	Standby电流			1@25°C	50@125°C	μΑ
I _{DEP}	Deep Standby电流			0.5	15@125°C	μΑ
V_{prog}	编程电压		TBD	3.3	TBD	V

1. 由设计保证,不在生产中测试。

表 30. 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N _{END}	寿命(译注:擦写次数)	T _A = -40°C~ 85°C(尾缀为 6) T _A = -40°C~ 105°C(尾缀为 7)	10			千次
		T _A = 85℃时,1000 次擦写 ⁽²⁾ 之后	30			
t _{RET}	数据保存期限	T _A = 105°C,1000 次擦写 ⁽²⁾ 之后	10			年
		T _A = 55°C,1 万次擦写 ⁽²⁾ 之后	20			

- 1. 由综合评估得出,不在生产中测试。
- 2. 循环测试均是在整个温度范围下进行。

5.6.10 EMC 特性

敏感性测试是在产品的综合评估时抽样进行测试的。

功能性 EMS (电磁敏感性)

当运行一个简单的应用程序时(通过 I/O 端口闪烁 2 个 LED),测试样品被施加 2 种电磁干扰直到产生错误,LED 闪烁指示了错误的产生。

- 静电放电(ESD)(正放电和负放电)施加到芯片所有的引脚直到产生功能性错误。这个测试符合 IEC1000-4-2 标准。
- FTB: 在 V_{DD} 和 V_{SS}上通过一个 100pF 的电容施加一个瞬变电压的脉冲群(正向和反向)直到产生功能性错误。这个测试符合 IEC1000-4-4 标准。

芯片复位可以使系统恢复正常操作。

测试结果列于下表中。这是基于应用笔记中定义的 EMS 级别和类型进行的测试。

表 31. EMS 特性

符号	参数	条件	级别/类型
V _{EFT}	在 V _{DD} 和 V _{SS} 上通过 100pF 的电容施加的、	$V_{DD} = 3.3V$, $T_A = +25^{\circ}C$,	TBD
VEFT	导致功能错误的瞬变脉冲群电压极限。	fнськ = 48MHz。符合 IEC1000-4-4	טטו

设计牢靠的软件以避免噪声的问题

在器件级进行 EMC 的评估和优化,是在典型的应用环境中进行的。应该注意的是,好的 EMC 性能与用户应用和具体的软件密切相关。

因此,建议用户对软件实行 EMC 优化,并进行与 EMC 有关的认证测试。

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等.....)

认证前的试验

很多常见的失效(意外的复位和程序计数器被破坏),可以通过人工地在 NRST 上引入一个低电平或在晶振引脚上引入一个持续 1 秒的低电平而重现。

在进行 ESD 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错误。

5.6.11 绝对最大值(电气敏感性)

基于三个不同的测试(ESD, LU),使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

静电放电 (ESD)

静电放电(一个正的脉冲然后间隔一秒钟后一个负的脉冲)施加到所有样品的所有引脚上,样品的大小与芯片上供电引脚数目相关(3 片 x(n+1)供电引脚)。这个测试符合 JESD22-A114/C101 标准。

静态栓锁

为了评估栓锁性能,需要在6个样品上进行2个互补的静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的 I/O 引脚上注入电流。

这个测试符合 EIA/JESD78A 集成电路栓锁标准。

表32. ESD特性

符号	参数	条件	类型	最大值	单位	
V	静电放电电压(人体模型)	$T_A = +25^{\circ}C$	2000			
Vesd(HBM)		符合JESD22-A114		2000	V	
V	静电放电电压(充电设备模型)	$T_A = +25^{\circ}C$		500	V	
V _{ESD(CDM)}		符合JESD22-C101	300			
l	静态栓锁类(Latch-up current)	$T_A = +25^{\circ}C$		200	mΛ	
ILU		符合JESD78A		200	mA	

5.6.12 I/O 端口特性

通用输入/输出特性

除非特别说明,下表列出的参数是按照表 12的条件测量得到。所有的I/O端口都是兼容 CMOS 和 TTL。

	r	. 00. 110 Ht. 70.10 LT.				
符号	参数	条件	最小值	典型值	最大值	单位
VIL	输入低电平电压	TTL 端口			0.8	V
V _{IH}	输入高电平电压	- Ⅱ □ 4前 □	2			V
VIL	输入低电平电压	- CMOS 端口	- 0.5		1.1	V
ViH	输入高电平电压	- CIVIOS 编口	2.08			V
V _{hys}	I/O 脚施密特触发器电压迟滞 ⁽¹⁾		500	700	800	mV
lıkg	输入漏电流(2)				1	μΑ
R _{PU}	弱上拉等效电阻 ⁽³⁾	V _{IN} = V _{SS}	30	50	100	1.0
R _{PD}	弱下拉等效电阻(3)	VIN = VDD	30	50	100	kΩ
Сю	I/O 引脚的电容				5	pF

表 33. I/O 静态特性

- 1. 施密特触发器开关电平的迟滞电压。由综合评估得出,不在生产中测试。
- 2. 如果在相邻引脚有反向电流倒灌,则漏电流可能高于最大值。
- 3. 上拉和下拉电阻是设计为一个真正的电阻串联一个可开关的 PMOS/NMOS 实现。这个 PMOS/NMOS 开关的电阻很小(约占 10%)。

所有 I/O 端口都是 CMOS 和 TTL 兼容(不需软件配置),它们的特性考虑了多数严格的 CMOS 工艺或 TTL 参数:

- 对于 V_{IH}:
 - 如果 V_{DD} 是介于[2.50V ~ 3.08V];使用 CMOS 特性但包含 TTL。
 - 如果 V_{DD} 是介于[3.08V ~ 3.60V];使用 TTL 特性但包含 CMOS。
- 对于 V_{IL}:
 - 使用 CMOS 特性但包含 TTL。

输出驱动电流

GPIO(通用输入/输出端口)可以吸收或输出多达±8mA 电流,并且吸收+20mA 电流(不严格的 VoL)。在用户应用中, I/O 脚的数目必须保证驱动电流不能超过 5.5 节给出的绝对最大额定值:

- 所有 I/O 端口从 V_{DD} 上获取的电流总和,加上 MCU 在 V_{DD} 上获取的最大运行电流,不能超过绝对最大额定值 I_{VDD} (参见表 6)。
- 所有 I/O 端口吸收并从 V_{SS} 上流出的电流总和,加上 MCU 在 V_{SS} 上流出的最大运行电流,不能超过绝对最大额定值 I_{VSS} (参见表 6)。

输出电压

除非特别说明,表 34 列出的参数是使用环境温度和 V_{DD} 供电电压符合表 12 的条件测量得到。所有的 I/O 端口都是兼容 CMOS 和 TTL 的。

符号	参数	条件	最小值	最大值	单位
VoL ⁽¹⁾	输出低电平,当8个引脚同时吸收电流	TTL 端口,I _{IO} = +8mA		0.4	
V _{OH} ⁽²⁾	输出高电平,当8个引脚同时输出电流	2.7V <v<sub>DD<3.6V</v<sub>	0.8V _{DD}		
VoL ⁽¹⁾	输出低电平,当8个引脚同时吸收电流	CMOS 端口,lio=+8mA		0.4	
V _{OH} ⁽²⁾	输出高电平,当8个引脚同时输出电流	2.7V <v<sub>DD<3.6V</v<sub>	0.8V _{DD}		V
V _{OL} ⁽¹⁾⁽³⁾	输出低电平,当8个引脚同时吸收电流	I _{IO} = +20mA		0.4	V
V _{OH} ⁽²⁾⁽³⁾	输出高电平,当8个引脚同时输出电流	2.7V <v<sub>DD<3.6V</v<sub>	0.8V _{DD}		
V _{OL} ⁽²⁾⁽³⁾	输出低电平,当8个引脚同时吸收电流	I _{IO} = +6mA		TBD	
V _{OH} ⁽²⁾⁽³⁾	输出高电平,当8个引脚同时输出电流	2V <v<sub>DD<2.7V</v<sub>	TBD		

表 34. 输出电压特性

- 1. 芯片吸收的电流 l_{IO} 必须始终遵循表中给出的绝对最大额定值,同时 l_{IO} 的总和(所有 l/O 脚和控制脚)不能超过 l_{VSS} 。
- 2. 芯片输出的电流 I_{IO} 必须始终遵循表中给出的绝对最大额定值,同时 I_{IO} 的总和(所有 I/O 脚和控制脚)不能超过 I_{VDD} 。
 - 3. 由综合评估得出,不在生产中测试。

输入输出交流特性

输入输出交流特性的定义和数值分别在图 17 和表 34 给出。

除非特别说明,表 35 列出的参数是使用环境温度和供电电压符合表 12 的条件测量得到。

	表 33. 棚八棚田文机特任·/							
MODEx[1: 0]的配置	符号	参数	条件	最小值	最大值	单位		
01	f _{max(IO)out}	最大频率(2)	$C_L=50pF,$ $V_{DD}=2V\sim3.6V$		10	MHz		
(10MHz)	t _{f(IO)out}	输出高至低电平的下降时间	C _L = 50pF,		25 ⁽³⁾	nS		
	t _{r(IO)out}	输出低至高电平的上升时间	V _{DD} = 2V ~ 3.6V		25 ⁽³⁾	20		
10	f _{max(IO)out}	最大频率(2)	$C_L = 50pF,$ $V_{DD} = 2V \sim 3.6V$		20	MHz		
(20MHz)	t _{f(IO)out}	输出高至低电平的下降时间	C _L = 50pF,		125 ⁽³⁾	2		
	t _{r(IO)out}	输出低至高电平的上升时间	$V_{DD} = 2V \sim 3.6V$		125 ⁽³⁾	nS		
11 (50MHz)	f _{max(IO)out}	最大频率(2)	$C_L=30pF,$ $V_{DD}=2.7V\sim3.6V$		50	MHz		

表 35. 输入输出交流特性(1)

MODEx[1: 0]的配置	符号	参数	条件	最小值	最大值	単位
			C _L = 50pF,	00		
			$V_{DD} = 2.7 V \sim 3.6 V$		30	
			C _L = 50pF,		20	
			V _{DD} = 2V ~ 2.7V		20	
			C _L = 30pF,		5	
		hout 输出高至低电平的下降时间 ——	$V_{DD} = 2.7 V \sim 3.6 V$		5	
	4		C _L = 50pF,		8	
	t _{f(IO)out}		$V_{DD} = 2.7V \sim 3.6V$		0	
			C _L = 50pF,		12	
			V_{DD} = $2V \sim 2.7V$		12	
			C _L = 30pF,		5	0
			$V_{DD} = 2.7V \sim 3.6V$		5	nS
	4	於山瓜乙宣由亚的 L 1.时间	C _L = 50pF,		8	
	t _{r(IO)out} 输出低至高电平的上升时间	制出似主局电干的上开时间	$V_{DD} = 2.7V \sim 3.6V$		8	
			C _L = 50pF,		12	
		V _{DD} = 2V ~ 2.7V		12		
	4	EXTI 控制器检测到外部信		10		
	textipw	号的脉冲宽度		10		

- 1. I/O 端口的速度可以通过 MODEx[1:0]配置。参见 MM32W3x2xxB 参考手册中有关 GPIO 端口配置 寄存器的说明。
 - 2. 最大频率在图 17 中定义。
 - 3. 由设计保证,不在生产中测试。

图 16. 输入输出交流特性定义

5.6.13 NRST 引脚特性

NRST 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻,R_{PU}(参见表 36)。

除非特别说明,下表列出的参数是使用环境温度和 VDD 供电电压符合表 12 的条件测量得到。

符号	参数	条件	最小值	典型值	最大值	单位	
VIL(NRST) ⁽¹⁾	NRST 输入低电平电压		-0.5		0.8	V	
V _{IH(NRST)} ⁽¹⁾	NRST 输入高电平电压		2		V_{DD}	V	
V _{hys(NRST)}	NRST 施密特触发器电压迟滞			0.2V _{DD}		mV	
R _{PU}	弱上拉等效电阻(2)	V _{IN} = V _{SS}		15		kΩ	
V _{F(NRST)} ⁽¹⁾	NRST 输入滤波脉冲				100	nS	
V _{NF(NRST)} ⁽¹⁾	NRST 输入非滤波脉冲		300				

表 66. NRST 引脚特性

- 1. 由设计保证,不在生产中测试。
- 2. 上拉电阻是设计为一个真正的电阻串联一个可开关的 PMOS 实现。这个 PMOS/NMOS 开关的电阻 很小(约占 10%)。

图 17. 建议的 NRST 引脚保护

- 1. 复位网络是为了防止寄生复位。
- 2. 用户必须保证 NRST 引脚的电位能够低于表 37 中列出的最大 V_{IL(NRST)}以下, 否则 MCU 不能得到复位。

5.6.14 TIM 定时器特性

下表列出的参数由设计保证。

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM输出)的特性详情,参见第5.6.12 节。

表	37.	TIMx ⁽¹⁾ 特性

符号	参数	条件	最小值	最大值	单位
4	定时器分辨时间		1		tтімхськ
t _{res(TIM)}	足 門 奋刀 <u></u>	f _{TIMxCLK} = 96MHz	10.4		nS
4	CH1 至 CH4 的定时器外部		0	f _{TIMxCLK} /2	MHz
f _{EXT}	时钟频率	f _{TIMxCLK} = 96MHz	0	48	IVIMZ
Restim	定时器分辨率			16	位
4	当选择了内部时钟时,16位		1	65536	t _{TIMxCLK}
tcounter	计数器时钟周期	f _{TIMxCLK} = 96MHz	0.0104	682	μS
4	是十可丝的计粉			65536 x 65536	t _{TIMxCLK}
t _{MAX_} COUNT	最大可能的计数	f _{TIMxCLK} = 96MHz		44.7	S

1. TIMx 是一个通用的名称,代表 TIM1~TIM4。

5.6.15 通信接口

I2C 接口特性

除非特别说明,表 38 列出的参数是使用环境温度, f_{PCLK1} 频率和 V_{DD} 供电电压符合表 12 的条件测量得到。

MM32W3x2xxB 的 I2C 接口符合标准 I2C 通信协议,但有如下限制: SDA 和 SCL 不是'真'的引脚,当配置为开漏输出时,在引出脚和 V_{DD}之间的 PMOS 管被关闭,但仍然存在。

I2C 接口特性列于表 38, 有关输入输出复用功能引脚(SDA 和 SCL)的特性详情,参见第 5.3.12 节。

快速 I2C⁽¹⁾⁽²⁾ 标准 I2C(1) 符号 参数 单位 最小值 最大值 最小值 最大值 SCL 时钟低时间 4.7 1.3 $t_{w(SCLL)}$ μS SCL 时钟高时间 4.0 0.6 $t_{\text{w}(\text{SCLH})}$ SDA 建立时间 250 $t_{su(SDA)}$ 100 0(4) $0^{(3)}$ SDA 数据保持时间 900(3) th(SDA) $t_{r(SDA)}$ SDA 和 SCL 上升时间 1000 2.0+0.1C_b 300 nS tr(SCL) t_{f(SDA)} SDA 和 SCL 下降时间 300 300 $t_{\text{f(SCL)}}$ 开始条件保持时间 4.0 0.6 th(STA) 重复的开始条件建立时间 4.7 0.6 tsu(STA) μS 4.0 停止条件建立时间 0.6 $t_{su(STO)}$ 停止条件至开始条件的时间(总线 4.7 1.3 $t_{\text{W}(\text{STO:STA})}$ 空闲) C_b 每条总线的容性负载 400 400 рF

表 38. I2C 接口特性

- 1. 由设计保证,不在生产中测试。
- 2. 为达到标准模式 I2C 的最大频率,f_{PCLK1} 必须大于 2MHz。为达到快速模式 I2C 的最大频率,f_{PCLK1}

必须大于 4MHz。

- 3. 如果不要求拉长 SCL 信号的低电平时间,则只需满足开始条件的最大保持时间。
- 4. 为了跨越 SCL 下降沿未定义的区域,在 MCU 内部必须保证 SDA 信号上至少 300nS 的保持时间。

图 18. I2C 总线交流波形和测量电路⁽¹⁾

1. 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

SPI 接口特性

除非特别说明,表 39 列出的参数是使用环境温度, f_{PCLKx} 频率和 V_{DD} 供电电压符合表 12 的条件测量得到。

有关输入输出复用功能引脚(NSS、SCK、MOSI、MISO)的特性详情,参见第5.3.12节。

表 39. SPI 特性⁽¹⁾ 数 条件

符号	参数	条件	最小值	最大值	单位
f1/4	SPI 时钟频率	主模式	0	36	MHz
fsck1/tc(sck)	SPI 的 钾	从模式	0	18	IVI□Z
$t_{r(SCK)}$ $t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C= 30pF		8	
$t_{\text{su(NSS)}}^{(2)}$	NSS 建立时间	从模式	4t _{PCLK}		
t _{h(NSS)} (2)	NSS 保持时间	从模式	73		nS
$t_{\text{w(SCKH)}}^{(2)}$ $t_{\text{w(SCKL)}}^{(2)}$	SCK 高和低的时间	主模式,f _{PCLK} = 36MHz, 预分频系数= 4	50	60	113
t _{su(MI)} ⁽²⁾	数据输入建立时间, 主模式	SPI1	1		
t _{su(SI)} (2)	数据输入建立时间, 从模式		1		

符号	参数	条件	最小值	最大值	单位
t _{h(MI)} ⁽²⁾	数据输入保持时间, 主模式	SPI1	1		
th(SI) ⁽²⁾	数据输入保持时间, 从模式		3		
t _{a(SO)} (2)(3)	数据输出访问时间	从模式,f _{PCLK} = 36MHz, 预分频系数= 4	0	55	
		从模式,f _{PCLK} = 24MHz		4t _{PCLK}	
t _{dis(SO)} (2)(4)	数据输出禁止时间	从模式	10		
t _{v(SO)} (2)(1)	数据输出有效时间	从模式(使能边沿之后)		25	
$t_{v(MO)}^{(2)(1)}$	数据输出有效时间	主模式(使能边沿之后)		3	
th(SO) ⁽²⁾	数据输出保持时间	从模式(使能边沿之后)	25		
t _{h(MO)} ⁽²⁾		主模式 (使能边沿之后)	4		

- 1. 重映射的 SPI1 特性需要进一步确定。
- 2. 由综合评估得出,不在生产中测试。
- 3. 最小值表示驱动输出的最小时间,最大值表示正确获得数据的最大时间。
- 4. 最小值表示关闭输出的最小时间,最大值表示把数据线置于高阻态的最大时间。

1. 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

图 21. SPI 时序图-主模式⁽¹⁾ 高电平 NSS输入 tc(SCK) CPHA = 0CPOL = 0CPHA = 0CPOL = 1 CPHA = 1 CPOL = 0CPHA = 1 CPOL = 1 tw(SCKH) tsu(MI) tf(SCK) MISO输入 输入第6~1位 输入最高位 输入最低位 **←** th(M)**→** MOSI输出 输出第6~1位 输出最高位士 输出最低位 th(MO) → tv(MO) ◀►

1. 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

USB 特性

表 40. USB 启动时间

符号	参数	最大值	单位
tstartup ⁽¹⁾	USB 收发器启动时间	1	μS

1. 由设计保证,不在生产中测试。

表 71. USB 直流特性

符号	参数	条件	最小值(1)	最大值(1)	单位
		输入电平			
V_{DD}	USB 操作电压 ⁽²⁾		3.0	3.6	
$V_{DI}^{(4)}$	差分输入灵敏度	I (USBDP, USBDM)			\/
V _{CM} ⁽⁴⁾	差分共模范围	包含 Voi 范围			V
$V_{SE}^{(4)}$	单端接收器阀值				
		输出电平			
VoL	静态输出低电平	1.5kΩ的 R∟接至 3.6V ⁽⁵⁾		0.3	V
Vон	静态输出高电平	15kΩ的 R∟接至 Vss ⁽⁵⁾		3.6	V

- 1. 所有的电压测量都是以设备端地线为准。
- 2. 为了与 USB 2.0 全速电气规范兼容,USBDP(D+)引脚内部已经内置一个 1.5k Ω 电阻接至 V_{DD} ,外部无需再外接。
- 3. MM32W3x2xxB 的正确 USB 功能可以在 2.7V 得到保证,而不是在 2.7V ~3.0V 电压范围下降级的电气特性。
 - 4. 由综合评估保证,不在生产中测试。
 - 5. RL是连接到 USB 驱动器上的负载。

图 22. USB 时序:数据信号上升和下降时间定义

7							
符号	参数	条件	最小值	最大值	单位		
tr	上升时间(2)	C∟≤50pF	7.041	23.13	nS		
t _f	下降时间(2)	C∟≤50pF	6.866	26.76	nS		
t _{rfm}	上升下降时间匹配	t _r / t _f	96.52	125.1	%		
Vcrs	输出信号交叉电压		1.391	2.967	V		

表 42. USB 全速电气特性(1)

- 1. 由设计保证,不在生产中测试。
- 2. 测量数据信号从 10%至 90%。更多详细信息,参见 USB 规范第 7 章(2.0 版)。

5.6.16 12 位 ADC 特性

除非特别说明,表 **43** 的参数是使用符合表 **12** 的条件的环境温度、**f**_{PCLK2} 频率和 **V**_{DDA} 供电电压测量得到。

注: 建议在每次上电时执行一次校准。

符号 参数 条件 最小值 典型值 最大值 单位 ٧ V_{DDA} 供电电压 2.1 3.3 3.6 $V_{\mathsf{REF}+}$ 正参考电压 2.1 V_{DDA} ٧ ADC 时钟频率 15 **f**ADC MHz fs⁽²⁾ 采样速率 MHz $f_{ADC} = 15MHz$ KHz $f_{\text{TRIG}}^{(2)}$ 外部触发频率 $1/f_{ADC}$ 0(Vssa或 $V_{\text{AIN}}^{(2)}$ 转换电压范围 VREF-连接到 $V_{\mathsf{REF}+}$ 地) $R_{\text{AIN}}^{(2)}$ 外部输入阻抗 参见公式 1 和表 45 kΩ $R_{ADC}^{(2)}$ 采样开关电阻 kΩ $C_{ADC}^{(2)}$ 内部采样和保持电容 рF 10 $f_{ADC} = 15MHz$ 0.1 μS 16 ts(2) 采样时间 1.5 239.5 1/f_{ADC} tstab(2) 上电时间 μS $f_{ADC} = 15MHz$ 总的转换时间 16.9 μS tconv⁽²⁾ (包括采样时间) 15~253 (采样 ts+逐步逼近 13.5) 1/f_{ADC}

表 43. ADC 特性

- 1. 由综合评估保证,不在生产中测试。
- 2. 由设计保证,不在生产中测试。
- 3. 在该系列产品中,VREF+在内部连接到 VDDA,VREF-在内部连接到 VSSA。
- 4. 对于外部触发,必须在表 45 列出的时延中加上一个延迟 1/fpcLK2。

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

上述公式(公式1)用于决定最大的外部阻抗,使得误差可以小于1/4 LSB。其中 N=12(表示12位分辨率)。

T _S (周期)	t _S (µS)	最大 R _{AIN} (kΩ)
1.5	0.1	0.4
7.5	0.5	5.9
13.5	0.9	11.4
28.5	1.9	25.2
41.5	2.76	37.2
55.5	3.7	50
71.5	4.77	NA
239.5	16.0	NA

表 44. f_{ADC}=15MHz⁽¹⁾时的最大 R_{AIN}

1. 由设计保证,不在生产中测试。

符号	参数	测试条件	典型值	最大值	单位
ET	综合误差		8	10	
EO	偏移误差	f _{PCLK2} =60MHz,	3	3	
EG	增益误差	f _{ADC} =15MHz, R _{AIN} <10 kΩ,	1	1	LSB
ED	微分线性误差		6.5	7	
EL	积分线性误差	MERCE TO KIRCHAETT	8	8	

表 45. ADC 精度 - 局限的测试条件(1)(2)

- 1. ADC 的直流精度数值是在经过内部校准后测量的。
- 2. ADC 精度与反向注入电流的关系:需要避免在任何标准的模拟输入引脚上注入反向电流,因为这样会显著地降低另一个模拟输入引脚上正在进行的转换精度。建议在可能产生反向注入电流的标准模拟引脚上,(引脚与地之间)增加一个肖特基二极管。

如果正向的注入电流,只要处于第 5.6.12 节中给出的 $I_{\text{INJ(PIN)}}$ 和 $\Sigma I_{\text{INJ(PIN)}}$ 范围之内,就不会影响 ADC 精度。

3. 由综合评估保证,不在生产中测试。

图23. 使用ADC典型的连接图

- 1. 有关 R_{AIN}、R_{ADC} 和 C_{ADC} 的数值,参见表 43。
- 2. Cparasitic 表示 PCB (与焊接和 PCB 布局质量相关)与焊盘上的寄生电容 (大约 7pF)。较大的 Cparasitic

数值将降低转换的精度,解决的办法是减小 fadc。

5.6.17 温度传感器特性

表46.温度传感器特性

符号	参数	最小值	典型值	最大值	单位
T _L ⁽¹⁾	Vsense相对于温度的线性度		±5		°C
Avg_Slope ⁽¹⁾	平均斜率	4.571	4.801	5.984	mV/°C
V ₂₅ ⁽¹⁾	在 25℃ 时的电压	1.433	1.451	1.467	V
tstart ⁽²⁾	建立时间			10	μS
Ts_temp ⁽²⁾⁽³⁾	当读取温度时,ADC采样时间	10			μS

- 1.由综合评估保证,不在生产中测试。
- 2.由设计保证,不在生产中测试。
- 3.最短的采样时间可以由应用程序通过多次循环决定。

5.6.18 DAC 特性

表47.DAC特性

符号	参数	注释	最小值	典型值	最大值	单位
V_{DDA}	模拟供电电压		2.1	3.3	3.6	V
V _{REF+}	参考供电电压	VREF+必须总是小于 VDDA	2.1	3.3	V_{DDA}	V
Vssa	地			0		V
RLOAD ⁽¹⁾	有 Buffer 时,Vssa 上的阻抗					ΚΩ
	有 Buffer 时,V _{DDA} 上的 阻抗					ΚΩ
Ro ⁽¹⁾	无 Buffer 时的输出阻抗	无 Buffer 时,DAC_OUT 与 V _{SS} 之间的阻抗最小为 1.5MΩ			20	ΚΩ
C _{LOAD} ⁽¹⁾	负载	有 Buffer 时,DAC_OUT 上的最大负载			50	pF
DAC_OUTmin ⁽¹⁾	有 Buffer 时,DAC_OUT 上的最低电压	给 DAC 一个最大输出偏移, 它相当于在 V _{REF+} =3.6V 时 给一个 12 位的			0.2	٧
DAC_OUTmax ⁽¹⁾	有 Buffer 时,DAC_OUT 上的最高电压	0x0E0~0xF1C 之间的输入 或在 V _{REF+} =2.4V 时给一个 12 位的 0x155~0xEAB 之间 的输入			V _{DDA} -0.2	V
DAC_OUTmin ⁽¹⁾	无 Buffer 时,DAC_OUT 上的最低电压	₩ DAC → 本具+松山柏和			0.5	mV
DAC_OUTmax ⁽¹⁾	无 Buffer 时,DAC_OUT 上的最高电压	给 DAC 一个最大输出偏移			V _{DDA} -0.01	V
I _{DDVREF+}	休眠模式(待机模式)下,	无负载,V _{REF+} =3.6V,		50		μΑ

符号	参数	注释	最小值	典型值	最大值	单位
	DAC 直流电流损耗	输入最差值 0x0E4 时的直 流损耗				
I _{DDA}	休眠模式(待机模式)下, DAC 直流电流损耗	无负载下,输入中间值 0x800		630		μA
		无负载,V _{REF+} =3.6V, 输入最差值 0xF1C 时的直 流损耗		703		μA
DNL ⁽²⁾	差分线性,两个连续值	DAC 配置为 10Bit				LSB
DINL(2)	(LSB)之间的差异	DAC 配置为 12Bit			±3	LSB
IN II (2)	非线性积分	DAC 配置为 10Bit				LSB
INL ⁽²⁾		DAC 配置为 12Bit			±4	LSB
		DAC 配置为 12Bit			±10	
Offset ⁽²⁾	偏移误差 (0x800 的测量值与理想 值 VREF+/2 之间的差异)	DAC 配置为 10Bit, VREF+=3.6V DAC 配置为 12Bit,				
		V _{REF+} =3.6V			±12	
Gain error ⁽²⁾	增益误差	DAC 配置为 12Bit			±0.5	%
tsettling ⁽²⁾	建立时间	C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ			4	μs
Update rate ⁽²⁾	当输入一最小变量时(输入值以单 BIT 累加), DAC_OUT 的最大频率 变化	C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ			1	MS/s
twakeup ⁽²⁾	关断状态下的唤醒时间 (在 DAC 控制寄存器内 配置 ENx)	C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ			10	μs
PSRR+ ⁽¹⁾	供电抑制比(VDDA) (静态直流测量)	无 Rload, Cload=50pF			-40	dB

- 1.设计担保,非产品测试
- 2.初步数值

图24. 12Bit带缓冲/不带缓冲DAC

6. PCB设计建议

6.1 电源设计建议

电源的去藕必须按照下图连接。图中的10nF电容必须是瓷介电容(好的质量),它们应该尽可能地靠近MCU芯片。

图25. 供电电源和参考电源去藕线路

6.2 PCB注意事项

MM32W3x2xxB 4.2蓝牙工作在2.4G无线频段,应尽量避免各种因素对无线收发的影响,注意以下几点:

- 包围蓝牙模块的产品外壳避免使用金属,当使用部分金属外壳时,应尽量让模块天线部分远离金属部分。
- 产品内部金属连接线或者金属螺钉,应尽量远离模块天线部分。
- 模块天线部分应靠载板PCB 四围放置,不允许放置于板中,且天线下方载板铣空,与天线平行的方向,不允许铺铜或走线。直接把天线部分直接露出载板,也是比较好的选择。
- 模块下方尽量铺大片GND,走线尽量往外围延伸。
- 建议在基板上的模块贴装位置使用绝缘材料进行隔离,例如在该位置放一个整块的丝印(TopOverLay)。
- 电源电源线、地线的布线直接关系到产品的性能,把噪声干扰降到最低。布线时要尽量加宽地线、电源线宽度,地线>电源线>信号线,通常信号线宽 0.2~0.3mm,电源线宽 1.2~2.5mm,用大面积铜层做地线用,在 PCB上把没有用的空间都铺成地。
- 电源加两个去耦滤波电容:如果使用LDO供电,分别取值1uF 和 0.1uF 用来滤波;如果使用纽扣电池供电,分别取值10uF和10uF用来稳压。
- 芯片ANT到天线之间的走线不能太长,线宽要考虑阻抗匹配要求。

6.3 2.4G射频天线设计

小型天线尺寸可能会因为性能的影响而导致产生比较大的变化。因此,强烈建议做一个准确的参考设计以达到最佳性能。绘制PCB天线时,可参考下图给出的尺寸来绘制天线。

图26. 天线的尺寸

表48. 天线的尺寸

L1	3.94mm
L2	2.70mm
L3	5.00mm
L4	2.64mm
L5	2.00mm
L6	4.90mm
W1	0.90mm
W2	0.50mm
D1	0.50mm
D2	0.30mm
D3	0.30mm
D4	0.50mm
D5	1.40mm
D6	1.70mm

7. 封装特性

7.1 封装 LQFP64

图 27. LQFP64, 64 脚低剖面方形扁平封装图

- 1. 图不是按照比例绘制。
- 2. 尺寸单位为毫米。

标号	毫米			
	最小值	典型值	最大值	
А			1.60	
A1	0.05		0.15	
A2	1.35	1.40	1.45	
b	0.17	0.20	0.27	
С	0.09		0.20	
D	11.80	12.00	12.20	
D1	9.90	10.00	10.10	
E	11.80	12.00	12.20	
E1	9.90	10.00	10.10	
е		0.5		
K	0°	3.5°	7°	
L	0.45	0.60	0.75	
L1		1.00		
N	引脚数目=64			

7.2 封装 LQFP48

图 28. LQFP48, 48 脚低剖面方形扁平封装图

- 1. 图不是按照比例绘制。
- 2. 尺寸单位为毫米。

-				
标号	毫米			
	最小值	典型值	最大值	
А			1.60	
A1	0.05		0.15	
A2	1.35	1.40	1.45	
b	0.17	0.20	0.27	
С	0.09		0.20	
D	8.80	9.00	9.20	
D1	6.90	7.00	7.10	
Е	8.80	9.00	9.20	
E1	6.90	7.00	6.10	
е		0.5		
K	0°	3.5°	7°	
L	0.45	0.60	0.65	
L1		1.00		
N	引脚数目= 48			

8. 型号命名

TR= tape and reel packing blank= tray packing

9. 修改记录

版本	内容	日期
V1.0	Working version	2017/10/17