The Part-Time Parliament Leslie Lamport, 1998

Carlos Eduardo B. Bezerra

Faculty of Informatics Universittà della Svizzera italiana

May 25th, 2011

Outline

- 1 Introduction
 - A long way to Paxos
 - The consensus problem
- The Paxos Algorithm
 - Notations used
 - Consistency conditions
 - Proof sketch
 - Preliminary protocol

Introduction

Interesting information about 'The Part-Time Parliament':

- the algorithm was first described in 1989 as a technical report [1]
- the paper was submitted in 1990...and accepted in 1998
- several other publications, such as [2, 3, 4], had explaining it as their main purpose...

The paper mostly uses an analogy with the fictional ancient island of Paxos, where:

- The parliament's (group's) legislators (processes) and their messengers (communication channels) may be unpredictably absent;
- There may be several ballots for each decree to be passed (rounds in each consensus instance);
- Legislators and messengers may be lazy or absent, but not dishonest (non-Byzantine failure model*)
- * The algorithm was extended later, however, to tolerate Byzantine failures [5]

Definition

Consensus is the process of agreeing on one single result among a group of participants. Assuming a collection of processes that can propose values, a consensus algorithm ensures that:

- only a single value among the proposed ones may be chosen;
- if no value has been proposed, then no value is chosen;
- a process never learns that a value has been chosen unless it really has been.

The Paxos algorithm

A value is chosen after a series of numbered **ballots**. For each ballot B, we have that:

- B_{bal} is its ballot number;
- B_{qrm} is a nonempty finite set of processes (quorum);
- B_{vot} is the set of processes who voted in B each process may decide to participate (vote) or not in B;
- B_{val} is the value being voted on in that ballot.

A ballot is said to be *successful* when $B_{qrm} \subseteq B_{vot}$ – which means that every quorum member voted.

The Paxos algorithm

In each ballot, each process can cast a vote (accept or not a given proposed value). A vote ν has the components:

- v_p , which is the process p who cast it;
- v_{bal} , the number of the ballot for which it was cast;
- v_{val}, a value voted on.

For the set β of ballots, the set $Votes(\beta)$ is defined as $\{v: \exists B \in \beta \mid v_p \in B_{vot} \land v_{bal} = B_{bal} \land v_{val} = B_{val} \}$

The Paxos algorithm

We then define $MaxVote(b, p, \beta)$ as the vote v with highest v_{bal} in $\{v \in Votes(\beta) : (v_p = p) \land (v_{bal} < b)\} \cup \{null\},$ where null means that p didn't vote in any $B \in \beta$ $(null_{bal} = -\infty)$

We also define $MaxVote(b, Q, \beta)$ as the vote v, such that v_{bal} is the highest among all $MaxVote(b, p, \beta)$ with $p \in Q$

With such notations, we can specify the conditions which ensure consistency and allow for progress.

Consistency conditions

Consistency is guaranteed if the following conditions are ensured:

•
$$B1(\beta)$$

 $\forall B, B' \in \beta : (B \neq B') \Rightarrow (B_{bal} \neq B'_{bal})$

•
$$B2(\beta)$$

 $\forall B, B' \in \beta : B_{qrm} \cap B'_{qrm} \neq \emptyset)$

$$\begin{array}{l} \bullet \ B3(\beta) \\ \forall B,B' \in \beta : \\ (\textit{MaxVote}(B_{\textit{bal}},B_{\textit{qrm}},\beta)_{\textit{bal}} \neq -\infty) \Rightarrow \\ \Rightarrow (B_{\textit{val}} = \textit{MaxVote}(B_{\textit{bal}},B_{\textit{qrm}},\beta)_{\textit{val}}) \end{array}$$

Lemma. If $B1(\beta)$, $B2(\beta)$ and $B3(\beta)$ hold, then

$$((B_{qrm} \subseteq B_{vot}) \land (B_{bal}' > B_{bal})) \Rightarrow (B_{val}' = B_{val})$$

for any B, B' in β .

Proof of Lemma. Let $\Psi(B,\beta)$ be defined as:

$$\Psi(B,\beta) = \{B' \in \beta : (B'_{bal} > B_{bal}) \land (B'_{val} \neq B_{val})\}$$

Assume that $B_{qrm} \subseteq B_{vot}$. By contradiction, assume that $\Psi(B,\beta) \neq \emptyset$.

- (1) As $\Psi(B,\beta) \neq \emptyset$, we pick $C \in \Psi(B,\beta)$, such that $C_{bal} = min\{B'_{bal}: B' \in \Psi(B,\beta)\}$
- (2) From (1) and from the definition of $\Psi(B,\beta)$, we have that $C_{bal} > B_{bal}$

- (3) As $B_{qrm} \subseteq B_{vot}$ and $\forall B, B' \in \beta : B_{qrm} \cap B'_{qrm} \neq \emptyset$, we have that $B_{vot} \cap C_{qrm} \neq \emptyset$
- (4) As $C_{bal} > B_{bal}$ and $B_{vot} \cap C_{qrm} \neq \emptyset$, we have that $MaxVote(C_{bal}, C_{qrm}, \beta)_{bal} \geq B_{bal}$
- (5) From (4) and the definition of $MaxVote(C_{bal}, C_{qrm}, \beta)$, we know that such vote exists in $Votes(\beta)$ (i.e. it is not *null*).
- (6) From (5) and B3(β), we have that $MaxVote(C_{bal}, C_{qrm}, \beta)_{val} = C_{val}$
- (7) From (6), and as $C_{val} \neq B_{val}$ (from $\Psi(B,\beta)$), we have that $MaxVote(C_{bal},C_{qrm},\beta)_{val} \neq B_{val}$

continuing...

- (8) As $MaxVote(C_{bal}, C_{qrm}, \beta)_{bal} \ge B_{bal}$ (from (4)) and $MaxVote(C_{bal}, C_{qrm}, \beta)_{val} \ne B_{val}$ (from (7)), we have that $MaxVote(C_{bal}, C_{qrm}, \beta)_{bal} > B_{bal}$
- (9) From (8), and since $MaxVote(C_{bal}, C_{qrm}, \beta)_{val} \neq B_{val}$, we have that $MaxVote(C_{bal}, C_{qrm}, \beta) \in Votes(\Psi(B, \beta))$
- (10) By the definition of $MaxVote(C_{bal}, C_{qrm}, \beta)$, we have that $MaxVote(C_{bal}, C_{qrm}, \beta)_{bal} < C_{bal}$
- (11) From (10), we have that $\exists B': B' \in \Psi(B,\beta) \land B'_{bal} < C_{bal}$, which means that

$$C_{bal} \neq min\{B'_{bal}: B' \in \Psi(B,\beta)\}$$

which is a contradiction with (1). \square

With the lemma, we show that, for a given set β of ballots which hold B1, B2 and B3, then any two successful ballots decided the same value.

Theorem 1. If $B1(\beta)$, $B2(\beta)$ and $B3(\beta)$ hold, then

$$((B_{\textit{qrm}} \subseteq B_{\textit{vot}}) \land (B'_{\textit{qrm}} \subseteq B'_{\textit{vot}})) \Rightarrow (B'_{\textit{val}} = B_{\textit{val}})$$

for any B, B' in β .

Proof of Theorem. If $B'_{bal} = B_{bal}$ then $B1(\beta)$ implies B' = B. If $B'_{bal} \neq B_{bal}$, the theorem follows immediately from the lemma. \square

If there are enough correct (non-faulty) processes, then a new ballot may be conducted while *B*1, *B*2 and *B*3 are preserved.

Theorem 2. Let b be a ballot number, and let Q be a set of processes such that $b > B_{bal}$ and $Q \cap B_{qrm} \neq \emptyset$, for all $B \in \beta$. If $B1(\beta)$, $B2(\beta)$ and $B3(\beta)$ hold, then there is a ballot B' with $B'_{bal} = b$ and $B'_{qrm} = B'_{vot} = Q$ such that $B1(\beta \cup \{B'\})$, $B2(\beta \cup \{B'\})$ and $B3(\beta \cup \{B'\})$ hold.

Proof of Theorem.

- $B1(\beta \cup \{B'\})$ follows from $B1(\beta)$ and the fact that $B'_{bal} = b$, and the assumption about b.
- $B2(\beta \cup \{B'\})$ follows from $B2(\beta)$ and the fact that $B'_{qrm} = Q$, and the assumption about Q.
- For $B3(\beta \cup \{B'\})$, if $MaxVote(b,Q,B) = -\infty$ then let B'_{val} be any value; otherwise, let $B'_{val} = MaxVote(b,Q,B)_{val}$. $B3(\beta \cup \{B'\})$ then follows from $B3(\beta)$. \square

Preliminary protocol

A protocol can be derived directly from $B1(\beta)$, $B2(\beta)$ and $B3(\beta)$, so that all these properties are maintained throughout its execution and a value may* be agreed upon.

- To maintain $B1(\beta)$, whenever p starts a new ballot B, it assigns a sequence number seq, which was never used by p. To avoid collisions, p's unique id is appended. Then $B_{bal} = (seq, p_{id})$.
- To maintain $B2(\beta)$, each ballot B has B_{qrm} as the majority set of the processes. As it is impossible to choose two disjoint majority sets from the same group*, $B2(\beta)$ is satisfied.
- To maintain $B3(\beta)$, before initiating a ballot B, p has to find out what is $MaxVote(B, B_{qrm}, \beta)$, which is done by finding the $MaxVote(B, q, \beta)$ for each q in B_{qrm} .
 - If $MaxVote(B, B_{qrm}, \beta) = null$, then B_{val} can be anything; otherwise $B_{val} = MaxVote(B, B_{qrm}, \beta)_{val}$.
- * If half of the processes is faulty, consistency is still respected and there is no deadlock, but the ballot B does not succeed

Preliminary protocol

Phase 1) Find $MaxVote(B, B_{qrm}, \beta)_{val}$

Phase 1a) p picks a ballot number b and sends NextBallot(b) to other processes

Phase 1b) each process q responds with LastVote(b, vote) to p, where vote is the vote cast by q with the highest ballot number less than b (or null)

Phase 2) Execute the ballot B

Phase 2a) after receiving LastVote(b, vote) from a majority Q of the processes, p initiates the ballot with number b and value val such that $B3(\beta)$ is maintained, by sending BeginBallot(b, val) to every process in Q

Phase 2b) upon receiving BeginBallot(b, val), a process will not vote on it if it has already sent LastVote(b', val'), such that b' > b; otherwise, it sends Voted(b, q) to p and records this vote in its memory

Preliminary protocol

Phase 3) Announce the result of consensus

Phase 3a) if p receives Voted(b,q) from a majority Q of processes, then it sends Success(val) to all processes

Phase 2b) upon receiving *Success(val)*, the process learns that the group achieved consensus on *val*.

Summary

The first main message of your talk in one or two lines.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

References

- [1] Lamport, L. **The part-time parliament**, Technical Report 49, Systems Research Center, Digital Equipment Corp., 1989
- [2] Lamport, L. Paxos Made Simple, ACM SIGACT News, 2001
- [3] De Prisco, R., Lampson, B., Lynch, N. **Revisiting the Paxos Algorithm**, Distributed Algorithms, 1997
- [4] Lampson, B. How to build a highly available system using consensus, Distributed Algorithms, 1996
- [5] Castro, M., Liskov, B., **Practical Byzantine Fault Tolerance**, Operating Systems Design and Implementation, 1999