

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

3H-thymidine Incorporation

FIG. 6

Effect of mpl-ligand depleted APP on human megakaryocytopolesis

FIG. 7

FIG. 8

GACAATGATT TCCTCCTCAT CTTTCAACCT CACCTCTCT CATCTAAGAA TTGCTCCTCG TGGTCATGCT TCTCCTAACT CTTAAGGACC TTATGGTCGA CTGTTACTAA AGGAGGAGTA GAAAGTTGGA GTGGAGGGG GTAGATTCTT AACGAGGAGC ACCAGTACGA AGAGGATTGA J J Σ > ٦ ٧ 1 GAATTCCTGG AATACCAGCT

CGTTCCGATT GCGACAGGTC GGGCCGAGGA GGACGAACAC TGGAGGCTCA GGAGTCATTT GACGAAGCAC TGAGGGTACA GGAAGTGTCG TCTGACCACT cencertiche accreceagt cereagraaa etgettegtg acteeeatgt certeaeage agaetgetga H ഗ Ω ĸ r L r s ж > 10 u PACD A R L T L S S P A P 101 GCAAGGCTAA CGCTGTCCT

201 GAACTCCCAA CATTATCCCC TTTATCCGCG TAACTGGTAA GACACCCATA CTCCCAGGAA GACACCATCA CTTCCTCTAA CTCCTTGACC CAATGACTAT CTTGACGGTT GTGAGGAGATT GAGGAACTGG GTTACTGATA CTTGAGGGTT GTAATAGGGG AAATAGGCGC ATTGACCATT CTGTGGTTCTT CTGTGGTAGT GAAGGAGATT GAGGAACTGG GTTACTGATA

AGAAGGGTAT AACAGGGGTG GATGACTAGT GTGAGAGACT GTTCTTAATA AGAAGTGTTA TGTCGGGCGT AAATTTTCGA GAGCAGATCT 301 TCTTCCCATA TTGTCCCCAC CTACTGATCA CACTCTCTGA CAAGAATTAT TCTTCACAAT ACAGCCCGCA TTTAAAAGCT CTCGTCTAGA

FIG. 9

h-ML h-epo	1 SPAPPAC 1 APPRUIC	1 SPAPPACOLRVUSKLURDSHVLHSRLSOGPEVHPUPTPVLLPAVDFSLGE 1 APPRLICOSRVUERYLLEAKEAENITTGCAEHCSLNENITVPOTKVNFYA
h-ML h-epo	SI WKRMEVG	51 WKTOMEETKAODILGAVTLLILEGVMAARGOLIGPTCLSSILGOLSGOVR 51 WKRMEVGOOAVEVWOGLALLISEAVLRGOALLVNSSOPWEPLOLHVDKAVS
h-ML h-epo	99 LL LG A	99 LL LGALOS LLGTO LPPOGRTTAHKDPNAIFLSFOHLLRGKVRFL - 101 GLRSLTTLLRALGAOKEAISPPDAASAAPLRTITADTERKLFRVYSNFLR
h-ML h-epo	143 M L V G G 151 G K L K L Y T	143 MLVGGSTLCVRRAPPTTAVPSRTSLVLTLNELPNRTSGLLETNFTASA 151 GKLKLYTGEACRTGDR
h-ML	191 R T T G S G L	RTTGSGLLKWQQGFRAKIPGLL <u>WO</u> TSRSLDQIPGYLNRIHELL <u>NG</u> TRGLF
h-ML	241 PGPSRRT	241 PGPSRRTLGAPDISSGTSDTGSLPPNLOPGYSPSPTHPPTGOYTLFPLPP
Þ-M∟	291 TLPTPVV	291 TLPTPVVOLHPLLPDPSAPTPTSPLL <u>NTS</u> YTHSO <u>NLS</u> OEG

FIG. 10

```
1 SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGE
hML
         S P A P P A C D L R V L S K L L R D S H V L H S R L S Q C P E V H P L P T P V L L P A V D F S L G E
hML2
         S P A P P A C D L R V L S K L L R D S H V L H S R L S Q C P E V H P L P T P V L L P A V D F S L G E
hML3
         S P A P P A C D L R V L S K L L R D S H V L H S R L S Q C P E V H P L P T P V L L P A V D F S L G E
hML4
         WKTQMEETKAQD IL GAVTLLLE GV MAAR GQL GPT CL S S L L GQL S G Q V R L L
hML
         WK T Q M E E T K A Q D I L G A V T L L L E G V M A A R G Q L G P T C L S S L L G Q L S G Q V R L L
hML2
         WKT Q MEET KA Q D I L G A V T L L L E G V M A A R G Q L G P T C L S S L L G Q L S G Q V R L L
hML3
         WKTQMEETKAQDILGAVTLLLEGVMAARGQLGPTCLSSLLGQLSGQVRLL
hML4
         L G A L Q S L L G T Q L P P Q G R T T A H K D P N A I F L S F Q H L L R G K V R F L M L V G G S T L
hML
         |LGALQSLLGT|----|QGRTTAHKDPNAIFLSFQHLLRGKVRFLMLVGGSTL
hML2
         LGALQSLLGTQEPPQGRTTAHKDPNAIFLSFQHLLRGK PFW- IVGDKLH
hML3
         LGALQSLLGT. - - - QGRTTAHKDPNAIFLSFQHLLRGK - DFW - IVGDKLH
hML4
         |C V R R A P P T T A V P S R T S L V L T L N E L P N R T S G L L E T N F T A S A R T T G S G L L K W
hML
         C V R R A P P T T A V P S R T S L V L T L N E L P N R T S G L L E T N F T A S A R T T G S G L L K W
hML2
         CL SQ. . . . . . . NYWL. . . . . . . WASEVAAGIQSQDSWSAEPNLQ. .
hML3
hML4
      201 QQGFRAKIPGLLNQTSRSLDQIPGYLNRIHELLNGTRGLFPGPSRRTLGA
hML
      197 QQGFRAKIPGLLNQTSRSLDQIPGYLNRIHELLNGTRGLFPGPSRRTLGA
hML2
      179 VPGPNPRIP- -- EQDTRTLEWNSWTLSWTLTQDPRSPGHFLRNIRHRLPA
hML3
      175 VPGPNPRIP. . . EQDTRTLEWNSWTLSWILTQDPRSPGHFLRNIRHRLPA
hML4
      251 PDISSGTSDTGSLPPNLQPGYSPSPTHPPTGQYTLFPLPPTLPTPVVQLH
hML
       247 PD ISSGTSDTGSLPPNLQPGYSPSPTHPPTGQYTLFPLPPTLPTPVVQLH
hML2
       hML3
                           PPAWIFSFP. . . . NPSSYWTVYALPSS.
hML4
         |PLLPDPSAPTPTPTSPLLNTSYTHSQNLSQEG
hML
       297 PLLPDPSAPTPTSPLLNTSYTHSQNLSQEG
hML2
       251 THILIAHPIC GIPIAIPIPIPIAIS
hML3
       247 THLAHPCGPAPPPAS
hML4
```

FIG. 11

hML Proliferation Assay

[3H]-Thymidine Incorporation

FIG. 13

eleuleuleu CCTGCTTCTG GTAGAAGGTC CCACCCTCTG CTAGAAGGTC CCACCCTCTG 180 ProAshArgT hrSerGlyLe uleuGluthr CCAAACAGGA CTRCTGAAT GTTGGAAGA	evGlnGl	50 eril eProValleu LeuProAleV alAspPheSe rLeuGlyGlu TrpLysThrG ctat ccrigincig ctgCctgCtG tGGACTTTAG ccrGGAGAA TGGAAAACCC	20 rovala laptoalacy saspProarg LeuleumsnL ysLeuleuar gaspSerHis ccgtag ctcttgcctg tgaccccaga ctcctaaata aactgctgcg tgactccac	-10 Met Glubeuthra 101 Afacadodad CCACTTCAGT fadaCaCCCT GGCCAGAATG GAGCTGACTG	<u>ANGINCTINO</u> COCACOTOTO TECCACOCOA CICTIGOCOAA AGAAGCACAG AACOTOAAGO COCOTOCATO GOOCOAGAA AGAITOAGG GAGAGGOOCO
210 1ethrProGl yGlnLeudan GlnThrSerA TTACTCCTGG TCAGCTAAAT CAAAGCTCCA 240 ealaGlyThr SerLeuGlnT hrLeuGluAl	140 eLeuLeuLeu ccrocritcro ProAsnArgr ccAAACAGA 1eThrProGl TTACTCCTGG 240 eAlaGlyThr	LeugludlyV alMethlaAl aArgdlyGln CTCGAGGGGGG euglnGlyLe uLeuglyThr GlnGlyArgT TCGAGGGCT CCTAGGAAC CAGGGCAGG 140 eLeuLeuLeu ValGluGlyP roThrLeuCy CCTGCTTCTG GTAGAAGGT CAGGCAGGA 180 ProAsnArgT hrSerGlyLe uLeugluThr CCAAACAGGA CTTCTGGATT GTTGGAGGG 180 181 180 210 181 eAlaGlyThr SerLeuGlnT hrLeuGluAl 240 eAlaGlyThr SerLeuGlnT hrLeuGluAl	40 ccrotrice creceroere redacritad leugludiyy almeraladi aargdiydin crocaccoc rearcocco redacacco euglindiyle uleudiyrhr cindiyargt recaccocct ccraccacc caccoccocc recaccocct ccraccacc caccoccocc crocriter oracaacc caccoccocc crocriter oracaacc caccoccocc labo Proashargt hrserdlyle uleudiuthr ccaaccocc ctrocact crecoccocc 180 Proashargt hrserdlyle uleudiuthr ccaaccocc ctrocacat ctrocaccc 180 210 180 210 210 240 240 240 240 240 24	1 laptohlacy sasphtoks Leuleukshi. crecrocers raacecaaa crecraaara 40 1 eprovalleu Leubrohlav alasphese r ccrotrers crecrocers raacings n cresaccas rancecas creativa 140 n eleuleuleu Valdiudiyp rothrieucy r ccrotrers cracacae cacacacac 140 n eleuleuleu Valdiudiyp rothrieucy r ccrotrers cracacae cacacacac 180 prohandryf hrserdlyte uleudiuthr c cchancaca crecrocart crocacacac 180 prohandryf hrserdlyte uleudiuthr c cchancaca crecrocart crocacacaca 180 prohandryf hrserdlyte uleudiuthr c cchancaca crecrocart crocacacaca 180 prohandryf hrserdlyte uleudiuthr c cchancaca crecrocart crocacacacacacacacacacacacacacacacacacac	Her CCACTTCAGT TAGACACCCT GGCCAGANTG 10 1aProAlacy sAspProArg LeuLauAsnL 40 40 40 40 40 40 40 40 40 40 40 40 40
110 euGlnGlyLe uLeuGlyThr GlnGlyArgT rccAccccr cctAccAACC CACCCAGGA			40 eProValLeu LeuProAlaV alAspPheSe CCCTGTTCTG CTGCTGCTG TGGACTTTAG	10 laptohlacy sAspProArg LeuLeuAshL CTCCTGCCTG TGACCCGAGA CTCCTAAATA 40 eProValLeu LeuProAlav alAspPheSe CCCTGTTCTG CTGCCTGCTG TGGACTTTAG	Met CCACTTCAGT TAGACACCCT GGCCAGAATG 10 laProblacy sAspProArg LeuLeudsnL CTCCTGCCTG TGACCCCAGA CTCCTAAATA 40 eProValleu LeuProAlav alAspPheSe CCCTGTTCTG CTGCCTGCTG TGGACTTTAG

FIG. 14

GInLeukisProLeuPheProAspProSerThrThrMetPro<u>AsmSerThr</u>AlaProVithrMetTyrProKisProArg<mark>AsnLeuSer</mark>Ginglu CAGCTCCACCCCCTGTTTCCTGACCTTCCACCATGCCTAACTCTACGCCCTCATCCAGTCACAATGTACCCTCATCCAGGAATTTGTCTCAGG 220 LeuginglyPheargVallysIleThrProGlyGinLeu<u>AsnGinThT</u>SerargSerProValGinIleSerGlyTyrLeu<u>AsnArgThr</u>HisGlyProVal crrcaggoattcagagicaagattactcctggtcagctaataatcaaacctccagtcccagtccaaatctctggatacctgaacagacacagaactg LeuGlyalaLeuGlnGlyLeuLeuGlyThrGlnLeuProLeuGlnGlyArgthrThrAlaHisLysAsp?roAsnAlaLeuPheLeuSerLeuGlnGlnLeu TrgggggccrgcAgggccrccTAggAACC<u>CAGCTTCCTCTA</u>CAGGGCAGGACCACAGGACCCAAAGGACCCCAATGCCCTCTTCTTGAGCTTGCAACAAC RsnGiyThiHisGlyLeuPheAlaGlyThrSerLeuGlnThrLeuGluAlaSerAspIleSerProGlyAlaPheAsnLysGlySerLeuAlaPheAsn rgAATGGAACTCargGGCTCTTTGCTGGAACCTCACTTCAGACCCTCAGACATCTCGCCCGGAGCTTCAACAAAGGCTCCCTGGCATTCAA 20
SerProValAlaProAlaCysAspProArgLeuLeuAsnLysLeuLeuArgAspSerHisLeuLeuHisSerArgLeuSerGlnCysProAspValAspPro
AGCCCCTAGCTCCTGCCCAGACTCCTAAATAAACTGCTGCTGCTGCTCCCACCTCCTTCACAGCCGACTGAGTCAGTGCCGACGTCGACGTCGACC 1301 etgettteacetaaaaggeeetggggaagggatacacageaetggagattgsaaaattttaggagetatttttttttaaeetateageaatatteateag 1101 901 801 501 601 701 401 201 301

gagteettggeceaesteteteesaeeegaetetgeegaagaageaeagaageteaageegesteeatggeceeaaggaaagatteaggggagagagggeeee

```
1 SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGE
hML3
      1 SPV APAC DPRILINKLIRDSHIL HSRLSOCPDVDPLS IPVLLPAVDFSLGE
mML3
     51 WKT OMEETKAODILGAVILLLEGVMAARGOLGPTCLSSLLGOLSGOVALL
     51 WKT OT E OSKAODILGAV SLLLEGVMAARGOLEPSCLSSLLGOLSGOVRLL
hML3
mML3
     101 LGALOS LLGTOLPPOGRTTAHKDPNAIFLSFOHLLRGKDFWIVGDKLHCL
     101 LGALOGLIGTOLPLOGRTTAHKDPNALFLSLOOLLRGKDFWIVGDELOCH
hML3
mML3
     151 SONY WLWASEV AAGIOSOD. SWSAEPNLOV PGP NP RIPE QDTRTLE WNSW
hML3
     151 SONCWPWTSEOASGIOSODYSWSAKSNLOVPSPNLWIPEODTRTCEWNSW
mML3
     200 TLSWILTODPRSPGHFLANIRHRLPATOPPAWIFSFPNPSSYWTVYALPS
hML3
     201 ALCWNLTSDPGSLRHLARSFQORLPGIQPPGWTSSFSKPCS
mML3
     250 STHLAHPCGPAPPPAS
hML3
```

FIG. 16

R L L R L L R L L CVRRTLPTTAVPSSTSQLLTLNKFPNRTSGLLETNESVTARTAGPGLLSR CAKRAPPAIAVPSSTSPFHTLNKLPNRTSGLLETNSSISARTTGSGFLKR CVRRAPPTTAVPSRTSLVLTLNELPNRTSGLLETNFTASARTTGSGLLKW S T G K V R F L L L V E G P T L G K V R F L L L V V G P S L G K V R F L M L V G G S T L w w TPGQLNOTSRSPVQISGYLNRTHGPVNGTHGLFAGTSLQTL -PGLLNOTSRSLDQIPGHQNGTHGPLSGIHGLFPGPQPGAL -PGLLNOTSRSLDQIPGYLNRIHELLNGTRGLFPGPSRRTL D F S L G I > 0 > 0 > 0) 1 SDISPGAFNKGSLAFNLOGGLPPSPSLAPDGH-TPFPPSPALPTPPTDGH-TPFPPSPALPTPPTGMGSRPTYLOPGESPSPAHPSPGRYTLFSPSPTSPSPDISSGTSDTGSLPPNLOPGYSPSPTHPPTGOYTLFPLPTLPT ပာ ပာ ပာ > A SS S > ر 0_0 RDSHLLHSRLSOCPDVDPLSIPVLLP RDSHVLHGRLSOCPDINPLSTPVLLP RDSHVLHSRLSOCPEVHPLPTPVLLP 0 0 C L S S L L 6 0 шσ ~ ~ ~ F 0 0 L L F POLHPLEPDPSTTMPNSTAPHPVTMYPHPRNESOEVOLOPLLPDPSAITPNSTSPLLFAAHPHFONESOEVOLHPLLPDPSAPTPTSPLLNTSYTHSONESOE W K T O T E O S K A O D I L G A V S L L L E G V M A A R G O L E P S W K T O T E O T K A O D V L G A V T L L E A V M T A R G O V G P P W K T O M E E T K A O D I L G A V T L L L E G V M A A R G O L G P T W O G R T T A H K D P N A L F L S O G R T T A H K D P S A I F L N O G R T T A H K D P N A I F L S V APACDPRLLNKLL APPACDPRLLNKLL APPACDLRVLSKLL 1 L G M C 9779 LOGFRVKIT LOAFRAKI-OOGFRAKI-LGALOD S O 0 A AL A P <u>ہ</u> ۔ ပ 9 SP < 201 297 297 151 201 201 250 101 101 151 51 101 a-M-E p-ML h-ML m-ML p-ML p-ML p-ML p-ML 카메 h-ML h-ML m-ML p-ML h-ML h-ML p-ML m-ML h-ML

LeuGlnAlaPheArgAlaLysIleProGlyLeuLeuAsnGlnThrSerArgSerLeuAspGlnIleProGlyHisGlnAsnGlyThrHisGlyProLeuSer LeuGlyAlaLeuGlnAspLeuLeuGlyMetGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProSerAlaIlePheLeuAsnPheGlnGlnLeu GlyIleHisGlyLeuPheProGlyProGlnProGlyAlaLeuGlyAlaProAspIleProProAlaThrSerGlyMetGlySerArgProThrTyrLeu CCTCTGCTTCCTGACCCCTCTGCGATCACACCCCAACTCTACCAGTCCTTCTATTTGCAGCTCACCCTCATTTCCAGAACCTGTCTCAGGAAGAAGTAAG Ser Pro Ala Pro Pro Ala Cys Asp Pro Arg Leu Leu Leu Leu Arg Asp Ser His Val Leu His Gly Arg Leu Ser Gln Cys Pro Asp Ile Asn Pro GlnProGlyGluSerProSerProAlaHisProSerProGlyArgTyrThrLeuPheSerProSerProThrSerProSerProThrValGlnLeuGln ccagecttogagagtetecetaceteaceteacetetectagaegatacaeteteteteteteteteacetegeetegagatecagetecag LeuArgGlyLysValArgPheLeuLeuLeuValValGlyProSerLeuCysAlaLysArgAlaProProAlaIleAlaValProSerSerThrSerPro CTGCAGGCATTCAGAGCCAAGATTCCTGGTCTGCTGAACCACCAGGTCCCTAGACCAAATCCCTGGACACCAGAATGGGACACACGGACCCTTGA pheHisThrLeuAsnLysLeuProAsnArgThrSerGlyLeuLeuGluThrAsnSerSerIleSerAlaArgThrThrGlySerGlyPheLeuLysArg 501 ATTCCACACACTGAACAĞGTCCCAAACAGGACCTCTGGATTGTTGGAGACAAACTCCAGTATCTCAGCCAGAACTACTGGGTTTTGTTGAAGAGG 401 TGCTCCGĂGGĂAĂĂGGTGCGŤTTCCTGCTCCTTGTAGTGGĞCCCTCCTCTĞTGCCAĂGAĞĞGCCCCACCGCCATAGCTGTCCCGAGCACCTCTCC 101 CTTTGTCCACACCTGTCCTGCTGCTGTGGACTTCACCTTGGAGAATGGAAAACCCAGACGAGCAGACAAAGGCACAGATGTCCTGGGAGCCAC 201 AACCCTTCTGCTGGAGGCAGTGATGACAGCACGGGGACAAGTGGGACCCCCTTGCCTCTCATCCCTGGTGGAGGTTTCTGGACAGGTTCGCCTCCTC 100 ProLeuLeuProAspProSerAlaIleThrProAsnSerThrSerProLeuLeuPheAlaAlaHisProHisPheGlnAsnLeuSerGlnGluGlu 260 290 320 220 701 801 601 301

1001 GIGCICAGACCCIGCCAACTICAGCA

901

SerproAlaProProAlaCysAspProArgLeuLeuAsnLysLeuLeuArgAspSerHisValLeuHisGlyArgLeuSerGlnCysProAspIleAsnPro LeuGlyAlaLeuGlnAspLeuLeuGlyMetGlnGlyArgThrThrAlaHisLysAspProSerAlaIlePheLeuAsnPheGlnGlnLeuLeuArgGlyLys ValArgPheLeuLeuValValValGlyProSerLeuCysAlaLysArgAlaProProAlaIleAlaValProSerSerThrSerProPheHisThrLeu LeuSerThrProValLeuLeuProAlaValAspPheThrLeuGlyGluTrpLysThrGlnThrGluGlnThrLysAlaGlnAspValLeuGlyAlaThr 401 AGGIGCGITITCCIGCICCITGIAGIGGGGCCCICCICCICTGIGCCAAGAGGGCCCCCACCCGCCAIAGCIGICCCGAGCAGCACCICTCCAIICCACACACAC CTTTGTCCACACCTGTCCTGCTGCTGTGGACTTCACCTTGGGAGAATGGAAAACCCAGACGGAGCAGACAAAGGCACAGGATGTCCTGGGAGCCAC ThrLeuLeuLeuCluAlaValMetThrAlaArqGlyGlnValGlyProProCysLeuSerSerLeuLeuValGlnLeuSerGlyGlnValArgLeuLeu **AACCCTTCTGCTGGAGGCAGTGATGACAGCACGGGGACAAGTGGGACCCCCTTGCCTTCATCCCTGCTGGTGCAGGTTTCTGGACAGGTTCGCCTCTC** CTCGGGGCCCTGCAGGACCTCCTTGGAATGCAGGGACGACGACAGCTCACAAGGATCCCAGTGCCATCTTCCTGAACTTCCAACAACTGCTCCTGAAAA 120 110 140 101 301

ArgAlaLysIleProGlyLeuLeuAsnGlnThrSerArgSerLeuAspGlnIleProGlyHisGlnAsnGlyThrHisGlyProLeuSerGlyIleHisGly AGAGCCAAGATTCCTGGTCTGATGCAAACCTCCAGGTCCCTAGACCAAATCCCTGGACACGAAATGGGACACGAGAATGGGACACGGACCCTTGAGTGGAATTCATG GAACAAGCTCCCAAACAGGACCTCTGGATTGTTGGAGACAAACTCCAGTATCTCAGCCAGAACTACTGGCTCTGGATTTCTCAAGAGGCTGCAGGCATTTC 220 210

AsnLysLeuProAsnArgThrSerGlyLeuLeuGluThrAsnSerSerIleSerAlaArgThrThrGlySerGlyPheLeuLysArgLeuGlnAlaPhe

LeuPheProGlyProGlnProGlyAlaLeuGlyAlaProAspIleProProAlaThrSerGlyMetGlySerArgProThrTyrLeuGlnProGlyGlu 240

 ${ t SerProSerProAlaH}$ is ${ t ProSerProGlyArgTyrThrLeuPheSerProSerProThrSerProSerProThrValGlnLeuGlnProLeuLeuProSerProSerProSerProSerProThrValGlnLeuGlnProLeuProSerPro$

GACCCCTCTGCGATCACACCCCAACTCTACCAGTCCTCTTCTATTTGCAGCTCACCTCATTTCCAGAACCTGTCTCAGGAAGAGTAAGGTGCTCAGACCC AspProSerAlalleThrProAsnSerThrSerProLeuLeuPheAlaAlaHisProHisPheGlnAsnLeuSerGlnGluGlu

310

1001 TGCCAACTTCAGCA

901

pML pML2	1 SPAPPACDPRILNKLIRDSHVLHGRLSQCPDINPLSTPVLLPAVDFTLGE 1 SPAPPACDPRILNKLIRDSHVLHGRLSQCPDINPLSTPVLLPAVDFTLGE
pML pML2	51 WKTQTEQTKAQDVLGATTLLLEAVMTARGQVGPPCLSSLLVQLSGOVRLL 51 WKTQTEQTKAQDVLGATTLLLEAVMTARGQVGPPCLSSLLVQLSGOVRLL
DML5	101 LGALQDLLGMOLPPOGRTTAHKDPSAIFLNFQQLLRGKVRFLLLVVGPSL 101 LGALQDLLGM QGRTTAHKDPSAIFLNFQQLLRGKVRFLLLVVGPSL
PML PML	151 CAKRAPPAIAVPSSTSPFHTLNKLPNRTSGLLETNSSISARTTGSGFLKR 147 CAKRAPPAIAVPSSTSPFHTLNKLPNRTSGLLETNSSISARTTGSGFLKR
pML pML2	L Q A F R A K I P G L L N O T S R S L D O I P G H O N G T H G P L S G I H G L F P G P Q P G A L G A 197 L Q A F R A K I P G L L N O T S R S L D O I P G H Q N G T H G P L S G I H G L F P G P Q P G A L G A
pML pML2	PD I'PPATS GMG S RPTYL QPG E S P S P A H P S P G R Y T L F S P S P T S P S P T V Q L Q PD I PPATS GMG S R P T Y L QPG E S P S P A H P S P G R Y T L F S P S P T S P S P T V Q L Q
DML DML2	301 PLLPDPSAITPNSTSPLLFAAHPHFQNLSQEE 297 PLLPDPSAITPNSTSPLLFAAHPHFQNLSQEE

FIG. 20