UT12.1: Administración de Linux: usuarios y permisos

Usuarios y grupos

Linux como sabemos es un sistema operativo **multiusuario**, característica que permite por tanto ser utilizado por múltiples usuarios al mismo tiempo, compartiendo procesador, memoria, almacenamiento, aplicaciones y periféricos.

Para que múltiples usuarios puedan utilizar el sistema de forma segura y ordenada, es necesario que el sistema disponga de mecanismos de administración y seguridad para la protección de los datos de cada uno de los usuarios, así como herramientas que permitan su correcto funcionamiento.

Los usuarios del sistema pueden acceder a este de manera **local** y **remota**, siendo esta última manera la más común en este tipo de sistemas.

Cada usuario se identifica por un User ID o **UID** así como por su Group ID o **GID** asociado, que por defecto tiene su mismo nombre.

En general, a los usuarios generados se les asigna un UID igual o superior a 1000. Los comprendidos entre 0-100 quedan reservados a usuarios especiales del sistema.

Los diferentes **tipos de usuarios** en Linux:

- Root o superusuario (#) (UID=0): es el único que tiene privilegios sobre todo el sistema, y responsable de las tareas de administración del sistema, tales como la instalación y desinstalación de software, entre otras muchas. Para cualquier acción que necesite permisos de superusuario, el sistema requerirá credenciales root.
- Usuarios especiales de sistema: van vinculados a ciertos servicios, y que pueden asumir ciertos privilegios relativos a este servicio. Se crean automáticamente en la instalación del sistema o de ciertas aplicaciones. Por ejemplo *mail, apache, syslog..*
- Usuarios estándar (\$): Las cuentas de usuarios individuales con login. Puede haber tantas como se requiera. Cada usuario estándar posee su directorio personal dentro de /home

Cada usuario tiene asociada una **cuenta de usuario** concreta (en este curso solo veremos las <u>cuentas locales</u>).

Dichas cuentas no solo ofrecen al usuario un nombre y una contraseña, también le proporciona una ruta para almacenar sus documentos y su perfil, generalmente dentro de la carpeta /home/nombre-usuario y comúnmente denominada carpeta home del usuario, y un intérprete de comandos (*shell*) que le permitirá ejecutar aplicaciones.

ADMINISTRADOR, ROOT O SUPERUSUARIO (UID=0)

Es el único que tiene privilegios sobre todo el sistema, y el responsable de las tareas de administración del sistema.

USUARIO DEL SISTEMA

Vinculados a ciertos servicios y con ciertos privilegios sobre estos. Se crean automáticamente durante instalación del sistema o de ciertas aplicaciones: bin, mail, apache, clamav, syslog, etc.

USUARIO ESTÁNDAR

Cada uno posee su directorio personal dentro de /home, donde se almacenan los archivos personales, además de preferencias para algunas aplicaciones e incluso archivos temporales.

Superusuario root

Como hemos comentado el usuario **root** (UID=0) en Linux es el usuario que posee mayor nivel de privilegios en el sistema. Es el único que tiene privilegios sobre todo el sistema, y el responsable de las tareas administrativas: instalaciones,

modificaciones, configuraciones, etc.

Mediante el comando **sudo** en la línea de comandos se permite al usuario actual, ejecutar aplicaciones o procesos bajo los privilegios de root u otro usuario.

Iniciar sesión de continuo como usuario root es una práctica poco recomendada (sudo su) ya que mantener abierta permanentemente una sesión de usuario root podría traer graves consecuencias e inutilizar el sistema.

Ficheros importantes

La información sobre usuarios, grupos y contraseñas se guarda en los archivos:

- /etc/passwd: información sobre usuarios
- /etc/group: información sobre grupos
- /etc/shadow: contraseñas cifradas

Dichos ficheros contiene diversos campos separados por dos puntos que estudiaremos a continuación y se puede visualizar su contenido mediante cat.

```
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/lucp:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
list:x:38:38:Mailing List Manager:/var/list:/bin/sh
```


Ficheros importantes

Estructura del fichero /etc/passwd con el significado de cada para uno de sus campos separados por dos puntos:

javier:	X:	1000:	1004:	Administrador clase:	/home/javier:	/bin/bash
						Shell
					Carpeta personal. Ruta a la carpeta	
				Información del usuario. Nomb	re, ubicación y teléf	ono.
			ID de grupo (GID). ID del grupo principal del usuario.			
		ID de usuario (UID) ID del usuario. El 0 está reservado para root; 1-99 para cuentas predefinidas, 100-999 para cuentas administrativas del sistema.				
	Contraseña. Una x indica que la contraseña se encuentra encriptada en /etc/shadow.					
Nombre de usuario. Nombre que identifica al usuario del sistema. Debe tener entre 1 y 32 caracteres.						

Ficheros importantes

Estructura del fichero /etc/shadow con el significado de sus campos:

vier:	\$1\$GHJJ8\$ow7u:	17647	0:	99999	7:	:	:
							Caducidad. Días que faltan para que se deshabilite la cuenta. Se indica desde el 1 enero de 1970.
						Inactivo. Días para una vez c	que se deshabilite la cuenta aducada la contraseña.
						que el usua bie la contra	rio será avisado para que aseña antes de que esta
				Máximo. Días dura usuario d	nte los ebe can	que la cont ibiar la con	raseña es válida. Al terminar, o traseña.
			Día	iimo. s que deber ibiar la con			no para que el usuario pueda
		Último c Días que contados	han pa		la últin ro de 19	na vez que 970.	a contraseña fue cambiada,
	Contraseña. Contraseña encriptada	. La forman en					oor \$, indica que se ha oritmo está basado en MD5 .

Ficheros importantes

Estructura del fichero /etc/group con el significado de sus campos:

Para mostrar la información de duración de contraseñas de forma más compresible que en el fichero /etc/shadow se puede usar el comando chage –l usuario

```
javi@javi-VirtualBox:~$ chage -l javi

Último cambio de contraseña : abr 28, 2019

La contraseña caduca : nunca

Contraseña inactiva : nunca

La cuenta caduca : nunca

Número de días mínimo entre cambio de contraseña : 0

Número de días máximo entre cambio de contraseña : 99999

Número de días de aviso antes de que caduque la contraseña : 7
```


Privilegios de administrador

Es posible que un usuario estándar necesite disponer de **privilegios de administrador** y poder realizar acciones como **sudo**.

Ello se puede llevar a cabo de dos formas:

1. Editando el fichero /etc/sudoers.

Añadir el usuario al fichero, por lo que habría que añadir una línea como esta: Nombre_usuario ALL=(ALL:ALL) ALL

2. Editando el fichero /etc/group

Si, en el fichero /etc/sudoers ya existe una línea referente al grupo sudo (o admin) como se debe incluir al usuario a uno u otro grupo como secundario editando el fichero /etc/group (o agregarlo mediante usermod) a dichos grupos.

Comandos de usuarios

Los comandos más importantes para la gestión de usuarios locales:

Comando	Acción	Ejemplo
useradd	agregar usuarios	useradd -g users usuario
adduser	agregar usuario mediante un script*	adduser usuario
usermod	modificar usuarios	usermod -d /home/javi user
userdel	borrar usuarios	userdel -r usaurio
deluser	borrar usuario mediante un script*	deluser usuario
passwd	establecer contraseña a un usuario	passwd usuario
chage	visualizar o establecer duración de contraseñas	chage -l usuario
who	usuarios actualmente logueados.	who o w
id	Muestra la identidad del usuario (UID) y sus grupos	id usuario

adduser y deluser utilizan un script más elaborado para agregar o eliminar usuarios

Agregar usuarios/grupos

Para agregar un usuario de forma sencilla usaremos useradd. Su sintaxis:

```
useradd [parámetros] [nombre_de_usuario]
Parámetros:
```

- -d Especifica el directorio home del usuario
- -s Especifica el shell del usuario
- -g Especifica el grupo primario del usuario
- -G Especifica los grupos secundarios del usuario
- -uid Especifica el identificador de usuario para el usuario

Después de crear un usuario con useradd conviene siempre recordar que hay que asignarle a continuación contraseña con el comando passwd.

Para **agregar** grupos se utiliza **groupadd:**

```
groupadd [opciones] [nombre_de_usuario]
```

Parámetros:

-g GID Especifica ID para el grupo, el cual debe ser único y mayor que 499

Modificar usuarios

Para modificar las propiedades de un usuario ya existente se utiliza usermod :

```
usermod [parámetros] [nombre_de_usuario]
```

Parámetros:

- -C Agrega un nuevo valor al campo de comentarios del usuario
- -d Especifica un nuevo directorio home para el usuario
- -g Cambiar el grupo primario del usuario
- -G Cambiar los grupos secundarios del usuario
- -s Cambiar el Shell por defecto del usuario
- -L Bloquea la contraseña del usuario
- -u Cambiar el UID asignado (siempre > 1000)
- -e Fecha en la que estará deshabilitada la cuenta de usuario (formato AAAA-MM-DD)

Gestión de contraseñas

Para la **gestión de contraseñas** se utiliza el comando **chage** con la siguiente sintaxis:

chage [parámetros] [nombre_de_usuario]

Parámetros:

- -l Muestra información sobre la antigüedad de la cuenta
- -d Establece el último día que se cambió la contraseña. Si se pone valor 0 obligará al usuario a cambiar la contraseña en su próximo acceso.
- -m Establece el número mínimo de días entre cambios de contraseña. Si se establece en un valor de 0, indica que el usuario puede cambiar su contraseña en cualquier momento.
- -M Establece el número máximo de días durante los cuales una contraseña es válida.
- -E Establece una fecha concreta de caducidad de una cuenta escrita en formato AAAA-MM-DD

Gestión de contraseñas

Para la modificación de contraseñas se utiliza el comando passwo con la sintaxis:

```
passwd [parámetros] [nombre_de_usuario]
```

Parámetros:

- -a informa del estado de las contraseñas de todas las cuentas
- -d borra la contraseña para la cuenta indicada
- -l bloquea la contraseña de la cuenta indicada
- -u desbloquea la contraseña de la cuenta indicada
- -w establece el aviso de caducidad a los días indicados
- -n establece el número mínimo de días antes de que se cambie la contraseña

Uso de los comandos

useradd es un comando que ejecuta un binario del sistema, mientras que adduser es un script en *perl* que utiliza el comando useradd. Es más completo ya que crea el *home, pide contraseña* y hace verificaciones pero no está en todas las distribuciones. Igual con deluser que además elimina sus ficheros y directorios del home.

Crear al usuario con useradd es el primer paso, el segundo es asignarle una contraseña. Esto se logra con el comando **passwd**, que permite ingresar la contraseña y su verificación. Para verificar el *id* del usuario y grupo usar **id**.

```
javi@javi-VirtualBox:~$ sudo passwd norah
Nueva contraseña:
Vuelva a escribir la nueva contraseña:
passwd: contraseña actualizada correctamente
javi@javi-VirtualBox:~$ 

javi@javi-VirtualBox:~$ id norah
uid=1001(norah) gid=1001(norah) grupos=1001(norah)
javi@javi-VirtualBox:~$
```

passwd tiene varias opciones que permiten bloquear la cuenta -1, desbloquearla -u, y varias opciones más que controlan la vigencia de la contraseña, es decir, es otro modo de establecer los valores de la cuenta en /etc/shadow.

Comandos de grupos

Los comandos más importantes para la gestión de grupos:

Comando	Acción	Ejemplo
groupadd	crear un grupo	groupadd alumnos
groupmod	modificar grupo	groupmod -g 2000 profesores
groupdel	borrar grupo	groupdel profesores
adduser	añadir usuario a un grupo	adduser juan profesores
deluser	eliminar usuario de un grupo	deluser juan profesores
groups	ver los grupos a los que pertenece un usuario	groups juan

Todos los usuarios pertenecen al menos a un grupo que es el **grupo principal del usuario**, también llamado grupo primario del usuario, pero pueden pertenecer a más grupos. En caso de que pertenezcan a más grupos, éstos serán **grupos secundarios**.

El fichero de contraseñas de usuarios es el /etc/gshadow

Ubuntu dispone a su vez de una herramienta gráfica de administración de usuarios que es **users-admin** (paquete *system-tools*).

Para ejecutarla podemos abrir una consola de root y ejecutar users-admin o desde el menú configuración>cuentas de usuario

Los **permisos** en Linux funcionan utilizando el mismo esquema que en Unix; se aplican sobre archivos o sobre directorios y van asociados a usuarios o grupos pudiendo ser de lectura, de escritura o de ejecución.

Todos los archivos y directorios en Linux tienen asociado un conjunto de permisos que debe definir las posibilidades de lectura, escritura y ejecución que se aplican al usuario propietario del archivo, al grupo de usuarios al que pertenece, y al resto del mundo.

Existen por tanto tres tipos de permisos **generales** en Linux ya conocidos:

- Permiso de <u>lectura</u> (r)
- Permiso de <u>escritura</u> (w)
- Permiso de <u>ejecución</u> (x)

En la siguiente tabla se muestran los permisos necesarios para ejecutar determinados comandos conocidos:

Comando	Permisos directorio origen	Permisos fichero	Permisos directorio destino
cd	X	No aplicable	No aplicable
ls	r	No aplicable	No aplicable
mkdir	w, x	No aplicable	No aplicable
rmdir	w, x	No aplicable	No aplicable
cat	X	r	No aplicable
rm	w, x		No aplicable
ср	x	r	w, x
mv	w, x		w, x

Privilegios

De entrada, en cualquier fichero o directorio en Linux hay <u>tres</u> tipos o niveles de **privilegios** a los que van dirigidos los permisos anteriores:

- **Permisos del <u>U</u>suario (U).** Es el primer nivel de privilegios. Básicamente representa los permisos que se aplican al <u>propietario</u> de un determinado fichero o directorio.
- **Permisos del <u>G</u>rupo (G)**. Estamos ante el segundo nivel de privilegios, que define los derechos de lectura, escritura y ejecución que se aplican solo a aquellos usuarios que pertenecen al <u>mismo grupo que el propietario del fichero</u>.
- **Permisos de Otros (O)**. Este es el último nivel. Representan los privilegios de lectura, escritura y ejecución por parte del <u>resto de usuarios</u> que no entran en ninguno de los niveles anteriores.

Tipo de

fichero

X

W

Permisos para el resto de

usuarios

Representación de permisos

r

W

Permisos para el grupo al que

pertenece el fichero

X

X

W

Permisos para el dueño

del fichero

Representación de permisos

Cada archivo en Linux queda identificado por 10+1 caracteres mismos a los que se les denomina máscara. Se pueden mostrar mediante el comando 1s -1

El significado de todos los campos y permisos en dicho comando será:

Representación de permisos

El significado de los **permisos** varía en caso de tratarse de un archivo o de un directorio, lo cual puede ser problemático:

Permiso	Aplicación	Descripción
Lectura (R)	Archivo	Lectura del contenido del archivo.
Lectura (R)	Directorio	Listar los archivos que están contenidos en el directorio (ls).
Escritura (W)	Archivo	Lectura y modificación del contenido del archivo. Eliminación del archivo.
Escritura (W)	Directorio	Eliminar carpeta. Crear subdirectorios dentro de ella.
Ejecución (X)	Archivo	Ejecución de archivos binarios
Ejecución (X)	Directorio	Posicionarnos (cd). Acceso a propiedades y contenido de archivos y subdirectorios.

Representación numérica permisos

También existe una <u>representación numérica</u> en **octal**, que parte de idea de la representación anterior, pero sustituye cada grupo *r w x* (y los especiales) por un valor **numérico que sumar** en caso de tener dicho <u>permiso</u>.

La siguiente tabla muestra la forma de asignar permisos en ambas notaciones:

	Permisos normales	Valor octal	Notación simbólica
Propietario:	Lectura	400	u+r
	Escritura	200	u+w
	Ejecución / Acceso	100	u+x
Grupo:	Lectura	40	g+r
	Escritura	20	g+w
	Ejecución / Acceso	10	g+x
Otros:	Lectura	4	o+r
	Escritura	2	O+W
	Ejecución / Acceso	1	O+X

Modificación de permisos

Habiendo entendido lo anterior, es ahora fácil cambiar los permisos de cualquier archivo o directorio, utilizando para ello el comando **chmod** (*change mode*), cuya sintaxis es la siguiente:

chmod [parámetros] permisos archivo

El parámetro -R aplicará los permisos de forma recursiva a los subdirectorios.

- Existen dos variantes para aplicar permisos, usando <u>letras</u> o los <u>valores octales</u> como veremos con ejemplos a continuación:
 - 1ª forma: chmod [u,g,o][+,-][r,w,x] ruta-directorio
 - 2º forma: chmod [valor] ruta-directorio

Modificación de permisos

■ 1ª Forma: chmod [u,g,o][+,-][r,w,x] ruta-directorio

Dar permiso de escritura al usuario propietario sobre 'examen.txt':

Quitar permiso de escritura al resto de usuarios sobre el archivo anterior:

Dar permiso de ejecución al grupo propietario sobre todos los archivos:

Dar permiso de lectura al grupo propietario sobre 'examen.txt':

Dar permiso de escritura al usuario y quitar el de lectura a grupos y otros:

Dar permisos de escritura a usuarios y grupos:

Modificación de permisos

■ 2ª Forma: chmod [valor] ruta-directorio

Dar todos los permisos al usuario y ninguno al grupo ni al resto del fichero 'examen.txt':

Dar a usuario y grupo permisos de lectura y ejecución, ninguno al resto:

Dar todos los permisos al usuario así como lectura y ejecución a los demás:

Dar todos los permisos al usuario y de lectura al resto, sobre todos los archivos de texto que contenga el directorio:

Dar permisos completos a todos los usuarios al directorio /respaldo/

Cambiar permisos a lectura y escritura a todos los archivos incluyendo subdirectorios:

Máscaras

Es importante saber que al crear un fichero o directorio, se creará por unos <u>permisos</u> <u>por defecto</u> llamados **máscara** que pueden visualizarse o modificarse a través del comando <u>umask</u>.

Normalmente el valor por defecto de **umask** suele ser **002**. Podemos averiguarlo simplemente ejecutando el comando umask.

Los ficheros y directorios tienen definidos por defecto unos permisos base, **666** para los <u>ficheros</u> y **777** para los <u>directorios</u>.

Este será por tanto <u>el valor a restar</u> usando el resultado de la **máscara** devuelto por umask:

- Por eso, al crear un <u>fichero</u>, su permiso inicial será 664 (-rw-r-r-), valor resultante de realizar la operación 666 002.
- Al crear un directorio, su permiso inicial será 775 (drwxr-xr-x), resultado de 777 002.

Máscaras

```
[gacanepa@server ~]$ umask
0002
[gacanepa@server ~]$ touch file1
                                  777-002
[gacanepa@server ~]$ mkdir dir1
[gacanepa@server ~ ] $ Is -ld file1 dir1
drwxrwxr-x 2 gacanepa gacanepa 4096 Aug 4 23:34 dir1
-rw-rw-r-- 1 gacanepa gacanepa 0 Aug 4 23:34 file1
[gacanepa@server ~]$ rm file1
rm: remove regular empty file 'file1'? y
[gacanepa@server ~]$ rmdir dir1
[gacanepa@server ~]$ umask 000
[gacanepa@server ~]$ touch file1
                                       777-000
                                       666-000
[gacanepa@server ~]$ mkdir dir1
[gacanepa@server ~]$ ls -Id file1 dir1
drwxrwxrwx 2 gacanepa gacanepa 4096 Aug 4 23:34 dir1
-rw-rw-rw- 1 gacanepa gacanepa 0 Aug 4 23:34 file1
[gacanepa@server ~]$
```


Modificación de propietario

El comando **chown** (*change user*) permite cambiar el propietario de un archivo o directorio en sistemas tipo UNIX. Puede especificarse tanto el nombre de un usuario, así como el identificador de usuario (UID) y el identificador de grupo (GID).

Opcionalmente, utilizando un signo de dos puntos (:), o bien un punto (.), sin espacios entre ellos, entonces se cambia el **usuario y grupo** al que pertenece cada archivo. Con el parámetro –R se hará el cambio de propietario de forma recursiva.

chown [parámetros] archivo

```
# cambiar usuario propietario
chown root tmpfile
# cambiar grupo propietario
chown :profesores tmpfile
# cambiar usuario y grupo propietario
chown root:profesores tmpfile
```


Comandos importantes para la gestión de **permisos**:

Comando	Acción	Ejemplo	
chmod	cambiar permisos fichero o directorio	chmod 750 mifichero.txt	
chown	cambiar propietario fichero o directorio	chown root prueba.txt	
chgrp	cambiar grupo fichero o directorio	chgrp alumnos notas.doc	
umask	máscara de permisos por defecto	umask 025	

JULIA EVANS @bork

Unix permissions drawings.jvns.ca

There are 3 things you can do to a file

read write execute

Is -I file.txt shows you permissions Here's how to interpret the output:

File permissions are 12 bits 110 in binary is 6

setuid setgid
User group all
OOO 110 110 100
sticky rwx rwx rwx

For the r/w/x bits:

1 means "allowed"
0 means "not allowed"

110 in binary is 6 So rw- r-- r--= 110 100 100 = 6 4 4

chmod 644 file.txt means change the permissions to:

rw-r--r--Simple! setuid affects
executables
\$1s-1/bin/ping
rws r-x r-x root root
this means ping always
runs as root
setgid does 3 different
unrelated things for
executables, directories,

and regular files

Creación de plantillas de usuarios

Las **plantillas de usuarios** permiten ahorrar tiempo en la creación de usuarios cuando su número aumenta. Son como moldes que poseen la configuración básica para crear a partir de ellos el resto de usuarios.

La creación de plantillas de usuarios en Linux se basa en la utilización de:

- Archivos que se copian en la creación de un usuario para configurar su entorno personal. Estos archivos se configuran en el directorio /etc/skel/
- Parámetros que se dan por defecto a los usuarios en su creación.
 Es decir, nosotros podemos especificar en la creación los parámetros de los usuarios, pero si no lo hiciéramos estos serían tomados del archivo /etc/login.defs visto anteriormente.

Creación de plantillas de usuarios

Cuando se crea un **usuario**, el sistema realiza lo siguiente:

- 1. Copia los archivos que se encuentran en el directorio /etc/skel en el directorio de inicio del nuevo usuario.
- 2. Establece al usuario y al grupo del usuario que se está creando como propietario y grupo de estos archivos copiados.

Gracias a esto, cuando creamos los usuarios podemos controlar la apariencia de su escritorio, sus variables de entorno, sus alias y muchos otros parámetros de su entorno.