- Aproximando áreas mediante sumas de Riemann:
- a) Determine una aproximación del área de la región R bajo la curva de f al calcular la suma de Riemann de f correspondiente a la división del intervalo dentro de los subintervalos mostrados en las figuras anexas

- b) Determine el área de aproximación de la región R bajo la curva de la función f sobre el intervalo [a, b]. En cada caso, utilice n subintervalos y elija los puntos representativos como se indica.
 - **1.** $f(x) = x^2 + 1$; [0, 2]; n = 5; puntos medios
 - 2. $f(x) = 4 x^2$; [-1, 2]; n = 6; extremos izquierdos
 - 3. $f(x) = \frac{1}{x}$; [1, 3]; n = 4; extremos derechos

c) En los siguientes ejercicios, hallar el área exacta de la región acotada por la curva de la función y el eje x en el intervalo que se indica.

1.
$$f(x) = 2x + 3$$
; [-1, 2] 2. $f(x) = 4x - 1$; [2, 4]

2.
$$f(x) = 4x - 1$$
; [2, 4]

3.
$$f(x) = -x^2 + 4$$
; [-1, 2] 4. $f(x) = 4x - x^2$; [0, 4]

4.
$$f(x) = 4x - x^2$$
; [0, 4]

- Evaluando integrales a partir de valores de áreas
 - a) A continuación, se muestra la gráfica de una función f. Hallar el valor de cada integral en términos de áreas, haciendo uso de fórmulas geométricas y propiedades de la integra

$$1. \int_{-4}^{0} 2 \ f(x) dx$$

$$2.\int_{2}^{6}f(x)\ dx$$

$$1. \int_{-4}^{0} 2 f(x) dx \qquad 2. \int_{2}^{6} f(x) dx \qquad 3. \int_{0}^{5} (f(x) - 2) dx \qquad 4. \int_{-1}^{7} -3 f(x) dx$$

$$4.\int_{-1}^{7} -3 \ f(x) dx$$

- Utilizando propiedades para hallar el valor de una integral definida
 - a) En los siguientes ejercicios, evaluar la integral utilizando los siguientes valores.

$$\int_{2}^{4} x^{3} dx = 60, \qquad \int_{2}^{4} x dx = 6, \qquad \int_{2}^{4} dx = 2$$

1.
$$\int_{4}^{2} x \, dx$$
 5. $\int_{2}^{2} x^{3} \, dx$

2.
$$\int_{2}^{4} 8x \, dx$$
 6. $\int_{2}^{4} 25 \, dx$

3.
$$\int_{2}^{4} (x-9) dx$$
 7. $\int_{2}^{4} (x^3+4) dx$

4.
$$\int_{2}^{4} \left(\frac{1}{2}x^{3} - 3x + 2\right) dx$$
 8. $\int_{2}^{4} (10 + 4x - 3x^{3}) dx$