DE LA ESTRUCTURA AL COMPORTAMIENTO EN LA DINÁMICA DE SISTEMAS (2°. PARTE)

scientific and engineering computations

insurance handling

industrial process control

 $\frac{d^{4}\theta}{dt^{2}} + a\frac{d\theta}{dt} + b\theta = f(t)$

mathematics

census

3. Diagramas de Forrester o de Flujo-Nivel

3. <u>Diagramas de Flujo-Nivel</u> o <u>Diagramas de Forrester</u>

- Los diagramas de Forrester (o de flujo-nivel) permiten reelaborar los diagramas de influencias para convertirlos en objetos matemáticos más ricos, los que programados en un computador permiten generar las trayectorias (evolución temporal) de las variables que representan el comportamiento dinámico de los modelos (y, por ende, se espera, comprender mejor el comportamiento dinámico del fenómeno bajo estudio).
- → Cumplen un objetivo epistemológico

Símbolos originales utilizados en los diagramas de *Forrester*

Algunos símbolos alternativos

n oight and	droi Vanningdon Com	representa una fuente o un pozo; puede interpretarse como un nivel que no tiene interés y es prácticamente inagotable.
on mornary but	Estado: (1) 36 504) 16	representa una acumulación de un flujo.
\square	Flujo:	variación de un nivel; representa un cambio en el estado del sistema.
as a cua variable a	Canal de material:	canal de transmisión de una magnitud física que se conserva.
	Canal de información:	canal de transmisión de una cierta información, que no es necesario que se conserve.
a. g. a. Dynesi	Variable auxillar:	una cantidad con un cierto significado físico en el mundo real y con un tiempo de respuesta instantáneo.
Nortsalmente un	- Constante:	un elemento dei modelo que no cambia de valor.
THE CONTRACT OF CR	la la Retraso:	un elemento que simula retrasos en la transmisión de información o de material.
77 S O 79 S T T T	Variable exógena:	variable cuya evolución es independiente de las del resto del sistema. Representa una acción del medio sobre el sistema.

Ejemplo de una representación con múltiples variables:

Figure 3-1 Complete disgram of the world model interrelating the fire level surfables — population, makes a record of supplet electron, and pollution.

Metáfora básica del diagrama de flujo-nivel: hidráulica

Relación trivial:

La <u>variación de x con respecto al</u> <u>tiempo (dx/dt)</u> es un flujo F (→ variable de flujo) que influye en el crecimiento (acumulación) de la variable x (→ variable de nivel, variable de estado).

$$F = \frac{\mathrm{d}x}{\mathrm{d}t} \to x$$

De donde:

$$x = \int_{0}^{t} F(t) dt$$

Tarea: Graficar x(t)

Diagrama de flujo-nivel y modelo matemático básicos

Visión de lazo abierto

Figura 13. - REPRESENTACIÓN GRÁFICA DE LAS VARIABLES DE NIVEL Y DE FLUJO EN EL DIAGRAMA DE FORRESTER -

Diagrama de influencias metáfora hidráulica (visión de lazo cerrado)

Paso 3.- Diagrama de Forrester

Figura 20. - INTERPRETACIÓN MEDIANTE FLUJOS Y NIVELES DEL PROCESO BÁSICO DE TOMA DE DECISIONES -

Paso 4. Modelo matemático

$$x = \int_{0}^{t} F(t) dt \quad (1)$$

$$F = kD$$

$$D = xd - x$$

$$F = k(x_d - x)$$

$$F = -kx + kxd$$
 (2)

De (1) y (2)

$$\frac{\mathrm{d}x}{\mathrm{d}t} + kx = kx_d$$

(Ec. Diferencial de primer orden)

Tarea: Demostrar que:

$$x(t) = x_d (1 - e^{-kt})$$

Paso 5. Simulación: Verificación del Comportamiento del Modelo.

