Natural Language Processing

- 1. Introduction to NLP
 - History
 - Motivation for NLP
 - How simple programs can help you manipulate and analyze language data, and how to write these programs
 - How key concepts from NLP and linguistics are used to describe and analyze language
 - How data structures and algorithms are used in NLP
 - How language data is stored in standard formats
 - How data can be used to evaluate the performance of NLP techniques
 - Look at how ML helps NLP
 - What are Automatic Learning Procedures
 - Look at Computational Linguistics
 - Look at how Statistics helps NLP
 - Look at Stochastic, Probabilistic, and Statistical methods
 - Look at Markov models
 - Brief on important tasks of NLP
 - Automatic summarization
 - Coreference resolution
 - Language identification
 - Machine translation (language translation)
 - Named entity recognition (NER)
 - Part-of-speech tagging
 - Parsing
 - Relationship extraction
 - Natural language generation and understanding
 - Optical character recognition (OCR)
 - Question answering

- Sentiment analysis
- Speech recognition
- Topic segmentation and recognition
- Word sense disambiguation
- Stemming
- Text simplification
- Text-to-speech
- Text-proofing
- Natural language search
- Limitations of NLP

2. Introduction to NLTK

- Installation
- Language Processing
 - Accessing pre-built books
 - Searching text using concordance
 - Word Sense Disambiguation
- Simple Statistics
 - Dispersion plots
 - Frequency distribution
 - Look at Collocations and Bigrams
- Corpus
 - Accessing Text Corpora
 - Look at famous Corpora
 - Gutenberg Corpus
 - Brown Corpus
 - Web Chat Corpus
 - Text Corpus Structure
 - Isolated
 - Categorized
 - Overlapping
 - Temporal

- Loading your own Corpus
- LAB: Conditional Frequency Distributions
 - Conditions and Events
 - Counting Words by Genre
 - Plotting and Tabulating Distributions
- Lexical Resources
 - Look at Wordlist Corpora
 - What are stopwords?
 - Look at Comparative Wordlists
- WordNet
 - Look at WordNet Hierarchy
 - Lexical Relations
 - Semantic Similarity
- The NLP Pipeline
 - Capture User Input
 - Tokenize text and select words of interest
 - Normalize words and build the vocabulary
- 3. Text Manipulation
 - Capturing User Input
 - Electronic Books
 - Dealing with HTML
 - Processing RSS Feeds
 - Reading Local Files
 - Extracting Text from PDF, MSWord and other Binary
 Formats
 - String Manipulation
 - Dealing with Unicode text
 - Regular Expression
 - Regular Expressions for Detecting Word Patterns
 - Accessing Individual Characters
 - Accessing Substrings

- Tokenization
 - Using Regex
 - Using NLTK
- Normalizing Text
 - Stemming
 - Lemmatization
- Segmentation
 - Sentence Segmentation
 - Word Segmentation
- N-Grams
- LAB: Convert English Text to Pig Latin
 - Definition of Pig Latin Each word of the text is converted as follows: move any consonant (or consonant cluster) that appears at the start of the word to the end, then append ay, e.g. string → ingstray, idle → idleay.

http://en.wikipedia.org/wiki/Pig_Latin

- Write a function to convert a word to Pig Latin.
- Write code that converts text, instead of individual words.
- Extend it further to preserve capitalization, to keep qu together (i.e. so that quiet becomes ietquay), and to detect when y is used as a consonant (e.g. yellow) vs a vowel (e.g. style).
- 4. Categorizing and Tagging Words
 - POS Tagger
 - Standard Part-of-Speech Tagset
 - Look at the English Language Structure
 - ADJ adjective (new, good, high, special, big, local)
 - ADV adverb (really, already, still, early, now)
 - CNJ conjunction (and, or, but, if, while, although)
 - DET determiner (the, a, some, most, every, no)
 - EX existential (there, there's)

- FW foreign (word dolce, ersatz, esprit, quo, maitre)
- MOD modal (verb will, can, would, may, must, should)
- N noun (year, home, costs, time, education)
- NP proper (noun Alison, Africa, April, Washington)
- NUM number (twenty-four, fourth, 1991, 14:24)
- PRO pronoun (he, their, her, its, my, I, us)
- P preposition (on, of, at, with, by, into, under)
- TO the (word to to)
- UH interjection (ah, bang, ha, whee, hmpf, oops)
- V verb (is, has, get, do, make, see, run)
- VD past (tense said, took, told, made, asked)
- VG present (participle making, going, playing, working)
- VN past (participle given, taken, begun, sung)
- WH wh (determiner who, which, when, what, where, how)
- Defining Dictionaries
 - Default Dictionaries
 - Updating Dictionaries
 - Inverting Dictionaries
- Tagging
 - The Default Tagger
 - The Regular Expression Tagger
 - The Lookup Tagger
 - N-Gram Tagging
 - Unigram Tagging
 - General N-Gram Tagging
 - Combining Taggers
 - Storing Taggers
- Determine the Category of a Word
 - Morphological Clues
 - Syntactic Clues
 - Semantic Clues

- New Words
- LAB: Process the Brown Corpus to find answers to the following questions,
 - Which nouns are more common in their plural form, rather than their singular form? (Only consider regular plurals, formed with the -s suffix.)
 - Which word has the greatest number of distinct tags. What are they, and what do they represent?
 - List tags in order of decreasing frequency. What do the 20 most frequent tags represent?
 - Which tags are nouns most commonly found after? What do these tags represent?

5. Classifying Text

- Supervised Classification
 - Gender Identification
 - Document Classification
 - Part-of-Speech Tagging
 - Sequence Classification
 - Sentence Segmentation
 - Identifying Dialogue Act Types
 - Recognizing Textual Entailment
- Evaluating Models
 - Accuracy
 - Precision and Recall
 - True positives (relevant items that we correctly identified as relevant)
 - True negatives (irrelevant items that we correctly identified as irrelevant)
 - False positives (irrelevant items that we incorrectly identified as relevant)
 - False negatives (relevant items that we incorrectly

identified as irrelevant)

- Confusion Matrices
- Cross-Validation
- Decision Trees
 - Definition
 - Naive Bayes Classifiers
 - Zero Counts and Smoothing
 - Non-Binary Features
 - The Naivete of Independence
 - The Cause of Double-Counting
- 6. Information Extraction
 - Architecture
 - Sentence Segmentation
 - Tokenization
 - POS Tagging (Parts of Speech)
 - Entity Detection
 - Relation Detection
 - Chunking
 - Noun Phrase Chunking
 - Tagging Patterns
 - Chunking with Regular Expressions
 - Chinking (Exclusion)
 - Representing Chunks: Tags vs Trees
 - A look at NLTK Trees
 - Named Entity Recognition
 - Relation Extraction
 - Analyzing Sentence Structure
 - A look grammar representation in NLTK
 - S sentence (the man walked)
 - NP noun phrase (a dog)
 - VP verb phrase (saw a park)

- PP prepositional phrase (with a telescope)
- Det determiner(the)
- N noun (dog)
- V verb (walked)
- P preposition (in)
- Parsing with grammar
- Writing your own grammars
- Parsing With Context Free Grammar
 - Recursive Descent Parsing
 - Shift-Reduce Parsing
 - The Left-Corner Parser
 - Substring Tables
- LAB: Write a tag pattern to identify places of work from a set of resumes by building your own grammar.