FOSE1025 — Scientific Computing

Week 8 Lecture 1: Summarising and Analysing Data

Diego Mollá

Department of Computer Science Macquarie University

FOSE1025 2020H1

Programme

- Pivot Tables
- 2 Data Analysis

Reading

- Lecture notes
- https://www.linkedin.com/learning/excel-pivottables-for-beginners/

The Scientific Method

Some results of a Google image search with the words "scientific" and "method" — 1 April 2020.

Excel to Manage Data in Science

We are covering these aspects in FOSE1025:

- Import data from external files (e.g. CSV) Week 3.
- Explore the data Week 4.
- Clean the data Week 6.
- Preprocess, transform the data Week 7.
- Analyse, summarise, interpret the data Week 8.

Programme

- Pivot Tables
- 2 Data Analysis

Pivot Tables: A Motivational Example

(data from https://www.linkedin.com/learning/excel-pivottables-for-beginners)

- Find the total shopping in each category "Fuel", etc, of file shopping.csv.
- Find the total shopping of each month.
- What shopping per month and per category??
- Pivot tables can help you generate data for all of above and more.

	A	ь	-	U		
	Date	Buyer	Type	Amt		
	1-Jan	Mom	Fuel	\$50		
	2-Jan	Mom	Groceries	\$120		
Ļ	3-Jan	Dad	Cafes	\$10		
,	4-Jan	Dad	Fuel	\$40		
i	4-Jan	Kelly	Groceries	\$129		
,	5-Jan	Mom	Cafes	\$12		

A Simple Pivot Table

Anatomy of a Pivot Table

Filters

- What column to use to filter values.
- Only for columns with categorical data.

Rows

- What column to use in the rows of the pivot table.
- Only for columns with categorical data.

Columns

- What column to use in the columns of the pivot table.
- Only for columns with categorical data.

Values

- What value we want to aggregate.
- Only for columns with numerical data.

Pivot Tables to Convert from Long to Wide

Exercise 1 (weather_data.csv)

What is the average precipitation in Antigo?

- Using AVERAGEIFS
- Using a pivot table

Exercise 2 (weather_data.csv)

What is the March-2013 average precipitation in Antigo?

- Using AVERAGEIFS
- Using a pivot table

4	Α	В	С	D	E	F
ιſ		data	date	param	siteid	
2	1	0	1/1/03	Precipitation	ACRE	
3	2	0	2/1/03	Precipitation	AlbertLea	
1	3	11.3199997	3/1/03	Precipitation	Ames	
5	4	0	4/1/03	Precipitation	Antigo	
5	5	3.03999996	5/1/03	Precipitation	Appleton	

Pivot Tables for Charts

- Pivot tables facilitate the transformation of data for the creation of complex plots.
- In a multiple chart, each column of a table is plotted overlayed with the rest. Good for line plots.
- In a clustered chart, each row forms a cluster. Good for bar charts.
- In a stacked chart, columns of a table are plotted one on top of the other.

Pivot Tables for Charts

- Pivot tables facilitate the transformation of data for the creation of complex plots.
- In a multiple chart, each column of a table is plotted overlayed with the rest. Good for line plots.
- In a clustered chart, each row forms a cluster. Good for bar charts.
- In a stacked chart, columns of a table are plotted one on top of the other.

Pivot Tables for Charts

- Pivot tables facilitate the transformation of data for the creation of complex plots.
- In a multiple chart, each column of a table is plotted overlayed with the rest. Good for line plots.
- In a clustered chart, each row forms a cluster. Good for bar charts.
- In a stacked chart, columns of a table are plotted one on top of the other.

Pivot Charts: Pivot Tables and Charts!

- Pivot tables are so useful for making charts that there's a tool for that combines both: Pivot charts!
- Exercise: Can you plot (multiple line plot) the maximum and minimum temperature of Antigo as it changes over time? Do not plot precipitation.
 - (hint: you can filter row labels and column labels.)

Programme

- Pivot Tables
- 2 Data Analysis
 - Finding Trends
 - Finding Correlations

Analysing the Data

- Excel provides various tools for data analysis.
- Understanding most of these tools is beyond the scope of this unit.
- Here we will focus on two goals:
 - Finding trends.
 - Finding correlations.

- Excel charts support the inclusion of a trend line.
- Select chart \rightarrow Design \rightarrow Add Chart Element \rightarrow Trendline.
- Choose the kind of trendline based on what you want to show.

(this figure is based on MS Excel for Mac, Version 16.30, Office 365

- Excel charts support the inclusion of a trend line.
- Select chart \rightarrow Design \rightarrow Add Chart Element \rightarrow Trendline.
- Choose the kind of trendline based on what you want to show.

(this figure is based on MS Excel for Mac, Version 16.30, Office 365

- Excel charts support the inclusion of a trend line.
- Select chart \rightarrow Design \rightarrow Add Chart Element \rightarrow Trendline.
- Choose the kind of trendline based on what you want to show.

(this figure is based on MS Excel for Mac, Version 16.30, Office 365

- Excel charts support the inclusion of a trend line.
- Select chart \rightarrow Design \rightarrow Add Chart Element \rightarrow Trendline.
- Choose the kind of trendline based on what you want to show.

(this figure is based on MS Excel for Mac, Version 16.30, Office 365

What is Correlation?

- Sometimes two variables are measuring the same property.
 - (each column represents one variable)
 - May happen when multiple agents are providing data.
- You may detect this by observing that the values are the same.
- But sometimes there are minor variations.
- In other cases, two variables are correlated but might not be identical.
 - For example, tree trunk height and girth are correlated.
 - Taller trees will normally have thicker trunks.

Finding Correlations Graphically

- A scatterplot can plot one variable against the other.
- If the two variables are not correlated, the scatterplots will look random.
- If the scatterplot has a distinct shape, the two variables are correlated.
- For example, if the shape looks like a line, then the two variables have a linear correlation.

Finding Correlations on Multiple Columns

- Scatterplots are intuitive but may be cumbersome if you want to check the correlations among many columns.
- E.g. if there are 10 columns you will need to make a plot for each possible pair.
 - This means making $10 \times 9 = 90$ plots.
- There are various formulas that attempt to express the correlation as a number.
- Excel's CORREL function uses one of those formulas.
 - e.g. =CORREL(B:B,C:C) computes the correlation between columns B and C.
 - If you want to know what formula Excel uses, look for the "sample correlation coefficient".
- A number close to 1 (or -1) indicates positive (or negative) correlation.

Correlation Matrix

- Excel's "Data Analysis" tool can compute a correlation matrix.
- Data \rightarrow Data Analysis \rightarrow Correlation.

(you will observe a strong correlation between girth and volume)

Exercise

- File: shopping.png
- Build the correlation matrix between all types of shopping.
- What are the two most correlated types of shopping?
- Show it clearly by introducing conditional formatting that highlights the highest correlations.
 - ullet Home o Conditional Formatting o Colour Scales

	Books	Cafes	Entertainment	Fuel	Groceries	Music	Restaurants
Books	1						
Cafes	-0.289396228	1					
Entertainment	0.160093641	-0.08	1				
Fuel	-0.271487084	0.09	-0.625410842	1			
Groceries	0.09428483	0.19	-0.000504711	-0.2	1		
Music	-0.243270987	0.88	-0.285322756	0.34	0.026135	1	
Restaurants	0.030060483	-0	-0.470731464	-0.1	0.470645	0.071	1

Take-home Messages

- Pivot tables are very powerful to process tables in long format.
- You must be able to use pivot tables for a range of tasks.
- You must be able to create charts based on pivot tables.
- You must be able to show trends by adding trend lines to a plot.
- You must be able to detect whether two variables are correlated.

What's Next

- Week 9 lecture: Ethics related to Scientific Computing.
- Week 9: Submit the project.