Loan Repayment Prediction Using Ensemble Learning Methods

Objective:

· Predicts whether the bank should approves the loan of an applicant based on his profit using Ensemble Learning Methods.

Submission by:-

Name:- Anand Kumar Uni. Roll no:- 2013008

▼ Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import StratifiedKFold
kFold = StratifiedKFold(n_splits=5)
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score , precision_score , recall_score,confusion_matrix,classification_report
```

▼ Reading file

```
df = pd.read_csv("/content/loan_data.csv")
df.head()
```

	credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq
(1	debt_consolidation	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	52.1	
1	1	credit_card	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	76.7	
2	2 1	debt_consolidation	0.1357	366.86	10.373491	11.63	682	4710.000000	3511	25.6	
3	1	debt_consolidation	0.1008	162.34	11.350407	8.10	712	2699.958333	33667	73.2	
4	1	credit_card	0.1426	102.92	11.299732	14.97	667	4066.000000	4740	39.5	

Consise Summery

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 14 columns):
Column Non-Null Coun

Data columns (total 14 columns):									
#	Column	Non-Null Count	Dtype						
0	credit.policy	9578 non-null	int64						
1	purpose	9578 non-null	object						
2	int.rate	9578 non-null	float64						
3	installment	9578 non-null	float64						
4	log.annual.inc	9578 non-null	float64						
5	dti	9578 non-null	float64						
6	fico	9578 non-null	int64						
7	days.with.cr.line	9578 non-null	float64						
8	revol.bal	9578 non-null	int64						
9	revol.util	9578 non-null	float64						
10	inq.last.6mths	9578 non-null	int64						
11	delinq.2yrs	9578 non-null	int64						
12	pub.rec	9578 non-null	int64						
13	not.fully.paid	9578 non-null	int64						
<pre>dtypes: float64(6), int64(7), object(1)</pre>									
memoi	memory usage: 1.0+ MB								

Here we can see that attribute purpose has object datatype. We need to deal with it.

Summery
df.describe()

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util
count	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9.578000e+03	9578.000000
mean	0.804970	0.122640	319.089413	10.932117	12.606679	710.846314	4560.767197	1.691396e+04	46.799236
std	0.396245	0.026847	207.071301	0.614813	6.883970	37.970537	2496.930377	3.375619e+04	29.014417
min	0.000000	0.060000	15.670000	7.547502	0.000000	612.000000	178.958333	0.000000e+00	0.000000
25%	1.000000	0.103900	163.770000	10.558414	7.212500	682.000000	2820.000000	3.187000e+03	22.600000
50%	1.000000	0.122100	268.950000	10.928884	12.665000	707.000000	4139.958333	8.596000e+03	46.300000
75%	1.000000	0.140700	432.762500	11.291293	17.950000	737.000000	5730.000000	1.824950e+04	70.900000
max	1.000000	0.216400	940.140000	14.528354	29.960000	827.000000	17639.958330	1.207359e+06	119.000000

▼ Checking For Null Values

```
df.isnull().sum().sum()
0
```

Our DataFrame contain **Zero** Null values.

Now lets solve the problem with Purpose Attribute.

unique values in purpose attribute

df.purpose.value_counts()

debt_consolidation 3957
all_other 2331
credit_card 1262
home_improvement 629
small_business 619
major_purchase 437
educational 343
Name: purpose, dtype: int64

It has 6 unique values. lets convert these labels into numeric form.

▼ Encoding

- We will be using Label Encoder to convert labels available in purpose attribute.
- It will Encode purpose labels with value between 0 and n_classes-1(5).

df['purpose']=LabelEncoder().fit_transform(df['purpose'])
df.head()

	<pre>credit.policy</pre>	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6m1
0	1	2	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	52.1	
1	1	1	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	76.7	
2	1	2	0.1357	366.86	10.373491	11.63	682	4710.000000	3511	25.6	
3	1	2	0.1008	162.34	11.350407	8.10	712	2699.958333	33667	73.2	
4	1	1	0.1426	102.92	11.299732	14.97	667	4066.000000	4740	39.5	

▼ Data Visualization

```
sns.set_style('darkgrid')
plt.hist(df['fico'].loc[df['credit.policy']==1], bins=30, label='Credit.Policy=1')
plt.hist(df['fico'].loc[df['credit.policy']==0], bins=30, label='Credit.Policy=0')
plt.legend()
plt.xlabel('FICO')
```



```
plt.figure(figsize=(10,6))
df[df['not.fully.paid']==1]['fico'].hist(bins=30, alpha=0.5, color='blue', label='not.fully.paid=1')
df[df['not.fully.paid']==0]['fico'].hist(bins=30, alpha=0.5, color='green', label='not.fully.paid=0')
plt.legend()
plt.xlabel('FICO')
```


#creating a countplot to see the counts of purpose of loans by not.fully.paid plt.figure(figsize=(12,6)) sns.countplot(data=df, x='purpose', hue='not.fully.paid')

#checking the trend between FICO and the interest rate plt.figure(figsize=(10,6)) sns.jointplot(x='fico', y='int.rate', data=df)

<seaborn.axisgrid.JointGrid at 0x7f52e9918e48>
<Figure size 720x432 with 0 Axes>

#understanding the relationship between credit.policy and not.fully.paid
sns.lmplot(data=df, x='fico', y='int.rate', hue='credit.policy', col='not.fully.paid', palette='Set2')

plt.figure(figsize = (20, 15))
sns.heatmap(df.corr(), cmap='BuPu', annot=True)
plt.show()

We can see that init rate, credit policy, fico and inq.last.6mths has corresponding grater impact on target class(not.gully.paid)

Train-Test Split

Splitting the dataset for training and testing purpose.

```
# Dropping target class

X = df.drop('not.fully.paid',axis=1)
y = df['not.fully.paid']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,random_state=101)
```

Modeling

Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
dt_clf = DecisionTreeClassifier()
param_grid = {'max_depth': [2,3, 4,5,6,7,8,9,10,11,13,15,20]}
\verb|grid_search| = GridSearchCV(dt_clf, param_grid, scoring = 'recall_weighted', cv=kFold, return_train_score=True)|
grid_search.fit(X_train,y_train)
     \label{lem:continuous} GridSearchCV (cv=StratifiedKFold (n\_splits=5, random\_state=None, shuffle=False), \\
                  error score=nan
                  estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
                                                    criterion='gini', max_depth=None,
                                                    max_features=None,
                                                    max_leaf_nodes=None,
                                                    min_impurity_decrease=0.0,
                                                    min_impurity_split=None,
                                                    min_samples_leaf=1,
                                                    min_samples_split=2,
                                                    min_weight_fraction_leaf=0.0,
                                                    presort='deprecated',
                                                    random_state=None,
                                                    splitter='best'),
                  iid='deprecated', n_jobs=None,
                  param_grid={'max_depth': [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15,
                                             20]},
                  pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                  scoring='recall_weighted', verbose=0)
grid_search.best_params_
     {'max_depth': 2}
dt_clf = DecisionTreeClassifier(max_depth=2)
dt_clf.fit(X_train, y_train)
y_pred_train = dt_clf.predict(X_train)
y_pred_test = dt_clf.predict(X_test)
```

0.8

0.6

0.4

```
train_accuracy = accuracy_score(y_train, y_pred_train)
test_accuracy = accuracy_score(y_test, y_pred_test)
print("Confusion Matrix \n",confusion_matrix(y_test,y_pred_test))
print("\n")
print("<----->\n")
print(classification_report(y_test,y_pred_test))
print("\n")
print("<----->\n")
print('Train Accuracy score: ',train_accuracy)
print('Test Accuracy score:',test_accuracy)
   Confusion Matrix
    [[2431
          0]
    [ 443
          0]]
    <----->
             precision recall f1-score support
                 0.85
                     1.00
                               0.92
                                      2431
           0
           1
                 0.00
                       0.00
                             0.00
                                      443
                               0.85
                                      2874
      accuracy
     macro avg
                 0.42
                        0.50
                               0.46
                                      2874
                        0.85
                               0.78
                                      2874
   weighted avg
                 0.72
   <----->
   Train Accuracy score: 0.8374105011933174
```

We got Accuracy of 84.58% using Decision Tree Classifier.

Test Accuracy score: 0.8458594293667363

Bagging with Decision Tree

```
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import cross_val_score
scaler=StandardScaler()
X_scaled = scaler.fit_transform(X)
bag_dt = BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=2),n_estimators=100,bootstrap=True)
score = cross_val_score(estimator=bag_dt, X=X_scaled, y=y, scoring='recall_weighted', cv=kFold, n_jobs=-1)
print('Mean score:', score.mean())

Mean score: 0.7310162599410215
```

Bagging is not improving the score of model and giving only 73.10% of mean Score.

AdaBoosting with Decision Tree

```
from sklearn.ensemble import AdaBoostClassifier
adaboost_clf = AdaBoostClassifier(base_estimator = DecisionTreeClassifier(max_depth=2), learning_rate = 0.5)
adaboost_clf.fit(X_train, y_train)
print('Train score: {0:0.2f}'.format(adaboost_clf.score(X_train, y_train)))
print('Test score: {0:0.2f}'.format(adaboost_clf.score(X_test, y_test)))

Train score: 0.85
Test score: 0.84
```

It giving the same result of 84% and not improving our Model.

▼ Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(n_estimators=600)
rf_clf.fit(X_train, y_train)
y_pred_train = rf_clf.predict(X_train)
```

```
y_pred_test = rf_clf.predict(X_test)
train_accuracy = accuracy_score(y_train, y_pred_train)
test_accuracy = accuracy_score(y_test, y_pred_test)
print("Confusion Matrix \n",confusion_matrix(y_test,y_pred_test))
print("\n")
print("<----->\n")
print(classification_report(y_test,y_pred_test))
print("\n")
print("<----->\n")
#print('Train Accuracy score: ',train_accuracy)
print('Test Accuracy score:',test_accuracy)
    Confusion Matrix
    [[2427
           4]
    [ 434
          911
    <----->
              precision
                       recall f1-score support
           0
                 0.85
                        1.00
                                0.92
                                       2431
                 0.69
                        0.02
                                0.04
                                0.85
                                       2874
      accuracy
                 0.77
                        0.51
                                       2874
                                0.48
     macro avg
                                       2874
   weighted avg
                 0.82
                        0.85
                                0.78
    <----->
   Test Accuracy score: 0.8475991649269311
```

We got the Accuracy of 84.7% with random Forest Classifier

AdaBoosting with RandomForest

```
from sklearn.ensemble import AdaBoostClassifier
adaboost_clf = AdaBoostClassifier(base_estimator = rf_clf, learning_rate = 0.5)
adaboost_clf.fit(X_train, y_train)
#print('Train score: {0:0.2f}'.format(adaboost_clf.score(X_train, y_train)))
#print('Test score: {0:0.2f}'.format(adaboost_clf.score(X_test, y_test)))
y_pred_train = adaboost_clf.predict(X_train)
y_pred_test = adaboost_clf.predict(X_test)
train_accuracy = accuracy_score(y_train, y_pred_train)
test_accuracy = accuracy_score(y_test, y_pred_test)
print("Confusion Matrix \n",confusion_matrix(y_test,y_pred_test))
print("\n")
print("<----->\n")
print(classification_report(y_test,y_pred_test))
print("\n")
print("<----->\n")
#print('Train Accuracy score: ',train_accuracy)
print('Test Accuracy score:',test_accuracy)
    Confusion Matrix
    [[2424
    [ 433 10]]
    <----->
                        recall f1-score support
               precision
                                          2431
            a
                   0 85
                          1 00
                                  a 92
                   0.59
                           0.02
                                  0.04
                                           443
            1
                                  0.85
                                          2874
       accuracy
                           0.51
      macro avg
                   0.72
                                  0.48
                                          2874
                                  0.78
                                          2874
    weighted avg
                           0.85
    <----->
```

Test Accuracy score: 0.8469032707028532

Gradient Boosting

```
from sklearn.ensemble import GradientBoostingClassifier
gb_clf = GradientBoostingClassifier(learning_rate = 0.05)
gb_clf.fit(X_train, y_train)
#print('Train score: {0:0.2f}'.format(gb_clf.score(X_train, y_train)))
#print('Test score: {0:0.2f}'.format(gb_clf.score(X_test, y_test)))
y_pred_train = gb_clf.predict(X_train)
y pred test = gb clf.predict(X test)
train_accuracy = accuracy_score(y_train, y_pred_train)
test_accuracy = accuracy_score(y_test, y_pred_test)
print("Confusion Matrix \n",confusion matrix(y test,y pred test))
print("\n")
print("<----->\n")
print(classification_report(y_test,y_pred_test))
print("\n")
print("<----->\n")
#print('Train Accuracy score: ',train_accuracy)
print('Test Accuracy score:',test_accuracy)
    Confusion Matrix
    [[2420 11]
    [ 436
          7]]
    <----->
              precision recall f1-score support
            0
                          1.00
                                 0.92
                                         2431
                  0.85
                                0.03
                  0.39
                         0.02
                                         443
            1
                                        2874
       accuracy
                                  0.84
                 0.62
                         0.51
      macro avg
                                 0.47
                                         2874
    weighted avg
                  0.78
                          0.84
                                 0.78
                                         2874
    <----->
```

Upon analyzing several ensemble learning technologies, we discovered that the majority of bagging and boosting algorithms yield comparable results with negligible variations in accuracy. While in each of these Ensembles—

We discovered that Random Forest, with an accuracy of 85%, is the best model for this dataset.

Test Accuracy score: 0.8444676409185804