

### Topic 4 Content

#### This lecture covers:

- Capacitors
- Circuit analysis with capacitors
- First order circuits with resistors and capacitors (RC circuits)
  - Natural response
  - Step response

Corresponds to parts of Chapters 6 and 7 of your textbook



- A capacitor is a circuit element that stores energy in its electric field.
  - It consists of two conducting plates separated by an insulator (or dielectric).
    - The plates are typically aluminum foil.
    - The dielectric is often air, ceramic, paper, plastic, or mica.
- When a voltage source v is connected to the capacitor, the source deposits a positive charge +q on one plate and a negative charge -q on the other plate.
  - The charges will be equal in magnitude on both plates.
  - The amount of charge is proportional to the voltage.





The ratio of voltage to charge across a capacitor is its capacitance.

$$q = Cv$$

- The symbol for capacitance is C.
- Capacitance is measured in farads, F, which are coulombs per volt.

$$C = \frac{q}{v} = \frac{1 \text{ C}}{1 \text{ V}} = 1 \text{ F}$$



- Capacitance depends of the physical dimensions and geometry of the capacitor.
- For parallel-plate capacitors, the capacitance is given as follows:
  - A is the surface area of each plate.
  - d is the distance between the plates.
  - $\varepsilon$  is the **permittivity** of the dielectric.

$$C = \frac{\varepsilon A}{d}$$





- Capacitors are available in different values and types.
- They are described by their dielectric material.
  - E.g. thin film capacitors with polyester (Fig. 1(a)), ceramic (Fig. 1(b)), or electrolytic (Fig. 1(c)).
- Most capacitors are rated in picofarad (pF) to microfarad ( $\mu$ F).
- They are used to block DC and pass AC signals, shift phase, store energy, suppress and filter noise, etc.





- Passive sign convention applies to capacitors as well.
  - If  $v \times i > 0$ , the capacitor is being **charged** (absorbing energy).
  - If  $v \times i < 0$ , the capacitor is **discharging** (supplying energy).
- For capacitors in the range of μF, particularly electrolytic ones, the polarity is already assigned (the negative sign is marked on the capacitor).





Charge = Capacitance x Voltage

$$q = Cv$$

Differentiation with respect to time gives:

$$\frac{dq}{dt} = C \frac{dv}{dt}$$

Current is rate of change of charge, so

$$i = C \frac{dv}{dt}$$

Voltage will then be:

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau)d\tau + v(t_0)$$

where  $v(t_0) = \frac{q(t_0)}{c}$  is called the initial voltage or initial conditions at time  $t_0$ .



Capacitor's current i is proportional to the rate of change of its voltage v, with capacitance C as the constant of proportionality, assuming passive sign convention.



Instantaneous power delivered to the capacitor:

$$p = vi = Cv \frac{dv}{dt}$$

 The energy stored in the electric field that exists between the plates of the capacitor can be then calculated as:

$$w(t) = \int_{t_0}^{t} p(\tau) d\tau = \int_{t_0}^{t} Cv(\tau) \frac{dv(\tau)}{d\tau} d\tau = C \int_{t_0}^{t} v(\tau) dv(\tau) = C \frac{v(\tau)^2}{2} \left| t_0 \right| d\tau$$

$$w(t) = \frac{1}{2} C(v(t)^2 - v(t_0)^2)$$
If  $v(t_0) = 0 \longrightarrow w(t) = \frac{1}{2} Cv(t)^2$ 



### Properties of capacitors

• A capacitor is an open circuit to DC voltage.

$$i = C \frac{dv}{dt} = 0$$
 for constant voltage.



### Properties of capacitors

- An ideal capacitor does not dissipate energy.
  - Energy is absorbed from a circuit, stored as electric field and then released back to the circuit.
- A real capacitor has a parallel-model leakage resistance, leading to a slow loss of the stored energy internally.





Obtain the energy stored in each capacitor in the circuit below (keep in mind they are under DC conditions)





 $w(t) = \frac{1}{2}Cv(t)^2$ . Also,  $i = C\frac{dv}{dt} = 0$  for DC voltage/current.



### Capacitors in parallel

- Similar to resistors, capacitors in series or parallel can be combined to simplify the circuit.
- For capacitors in parallel, the voltage is the same across each capacitor.
- Applying KCL and current-voltage relation  $i = C \frac{dv}{dt}$  for capacitors:

$$i_{S} = i_{c_{1}} + i_{c_{2}}$$

$$i_{S} = C_{1} \frac{dv_{c}}{dt} + C_{2} \frac{dv_{c}}{dt}$$

$$i_{S} = (C_{1} + C_{2}) \frac{dv_{c}}{dt} \iff i_{S} = C_{eq} \frac{dv_{c}}{dt}$$

$$C_{eq} = C_{1} + C_{2}$$





### Capacitors in parallel

 The equivalent capacitance of any number of capacitors in parallel is the sum of the individual capacitances.



$$C_{eq} = C_1 + C_2 + \dots + C_N = \sum_{k=1}^{N} C_k$$



### Capacitors in series

- For capacitors in series, the current is the same through each capacitor.
- Applying KVL and voltage-current relation for capacitors:

$$v_{s} = v_{c_{1}} + v_{c_{2}}$$

$$v_{s} = \frac{1}{c_{1}} \int_{t_{0}}^{t} i_{c}(\tau) d\tau + v_{c_{1}}(t_{0}) + \frac{1}{c_{2}} \int_{t_{0}}^{t} i_{c}(\tau) d\tau + v_{c_{2}}(t_{0})$$

$$v_{s} = \left(\frac{1}{c_{1}} + \frac{1}{c_{2}}\right) \int_{t_{0}}^{t} i_{c}(\tau) d\tau + \left(v_{c_{1}}(t_{0}) + v_{c_{2}}(t_{0})\right)$$

$$\leftrightarrow v_{s} = \frac{1}{c_{eq}} \int_{t_{0}}^{t} i_{c}(\tau) d\tau + v_{c_{eq}}(t_{0})$$

$$\frac{1}{c_{eq}} = \frac{1}{c_{1}} + \frac{1}{c_{2}} \quad \text{or} \quad c_{eq} = \frac{c_{1}c_{2}}{c_{1} + c_{2}}$$

and 
$$v_{C_{eq}}(t_0) = v_{c_1}(t_0) + v_{c_2}(t_0)$$





### Capacitors in series

 The reciprocal of the equivalent capacitance of any number of capacitors in series is the sum of the individual reciprocal capacitances.



NOTE: Although the voltage across each capacitor is different for different values of capacitance, the **charge** across the plates is **equal** because charge is the integral of current, and current is the same through all of them.



Find the voltage across and the charge on each capacitor in the given circuit.



### Circuit response

- The response of a circuit is the way it reacts to an excitation.
  - Natural response → Behaviour of the circuit (in terms of voltage or current) due to initial energy stored and physical characteristics.
  - Forced response → Behaviour of the circuit (in terms of voltage or current) due to external sources and excitation.



Let's consider a circuit with a single capacitor, charged to an initial voltage  $V_0$  and connected to a resistor. How will it behave?



We can use KCL to get:

$$-i_{c} - i_{R} = 0 \quad \rightarrow \quad -i_{c} = i_{R}$$
$$-C \frac{dv}{dt} = \frac{v}{R}$$

Note: We will consider how this capacitor was charged later in this lecture.

Note: A circuit characterised by a first order differential equation is called a first order circuit.



Solve differential equation:

 $-C\frac{dv}{dt} = \frac{v}{R}$ Rearrange:

$$\frac{dv}{dt} = \frac{-v}{RC}$$

Separate:

$$\frac{1}{v}dv = \frac{-1}{RC}dt$$

Integrate:

$$\int \frac{1}{v} dv = \frac{-1}{RC} \int dt$$

$$\ln(v) = \frac{-t}{RC} + D$$

Solve for v(t)

$$v(t) = e^{\frac{-t}{RC} + D}$$

$$v(t) = e^{\frac{-t}{RC}} e^D$$

$$v(t) = Ae^{\frac{-t}{RC}}$$

Apply initial conditions

$$v(0) = Ae^0 = A = V_0$$

$$v(t) = V_0 e^{\frac{-t}{RC}}$$



- There is no need to derive the differential equation solution every time, just use the result.
- The result shows that the voltage response of the RC circuit is an exponential decay of the initial voltage.





#### Time constant

 The speed at which the voltage decays depends on the coefficient of t in the power of exponential function, which can be expressed in terms of the time constant.

The **time constant** of a circuit is the time required for the response to **decay** to 1/e (or **36.8%**) of its initial value or to **increase** to 1 - 1/e (or **63.2%**) of its final value. It is denoted by  $\tau$ .

• This implies that at  $t = \tau$ , the voltage should be  $0.368V_0$ :

$$V_0 e^{-\frac{\tau}{RC}} = V_0 e^{-1} = 0.368 V_0 \rightarrow \tau = RC$$





#### Time constant

- For every time interval of  $\tau$ , the voltage is reduced to 36.8 percent of its previous value.
  - A circuit with a small time constant has a fast response and vice versa.
- After **5 time constants**, the voltage v(t) on the capacitor is less that **one** percent of its initial value  $V_0$ .

It takes  $5\tau$  for an RC circuit to reach its **final state** or **steady-state** (either fully charged or fully discharged).



| t       | $\frac{v(t)}{V_0} = e^{\frac{-t}{\tau}}$ |
|---------|------------------------------------------|
| τ       | 0.36788                                  |
| $2\tau$ | 0.13534                                  |
| 3τ      | 0.04974                                  |
| 4τ      | 0.01832                                  |
| 5	au    | 0.00674                                  |



- Follow these steps to find the natural (or source-free response) of RC circuits:
  - 1. Find the **initial voltage**  $v(0) = V_0$  across the capacitor **before** it is connected to the resistor.
    - The capacitor is assumed to be fully charged at the beginning and can be replaced with an open circuit.
  - 2. Find the **time constant**  $\tau = RC$ .
    - If the circuit has **more than one resistor**, the resistance that we need to find in order to calculate the time constant is the equivalent resistance as seen by the terminals of the capacitor, i.e. the **Thevenin equivalent resistance**  $R = R_{Th}$ .
    - When possible, this resistance can be obtained by simplification of series or parallel resistances.
  - 3. Calculate the voltage across the capacitor as  $v(t) = V_0 e^{-\frac{t}{\tau}}$ .
  - 4. Find any other circuit variable using the capacitor's voltage.

Note: A switch which opens or closes can remove part of the circuit or add something to it.



Find the voltages  $v_c$ ,  $v_x$ , and the current  $i_x$  for t>0 if the initial voltage is  $v_c(0)=15$  V.



Find the voltages  $v_c$ ,  $v_x$ , and the current  $i_0$  for t > 0 if the initial voltage is  $v_c(0) = 60 \text{ V}$ .



The switch in the circuit has been closed for a long time, and it is opened at t = 0, Find the voltages v(t) for  $t \ge 0$ . Calculate the initial energy stored in the capacitor.



If the switch opens at t = 0 after a long time, find the voltages v(t) for  $t \ge 0$  and  $w_c(0)$ .

- For practice!
- Answer:  $v(t) = 8e^{-2t} V$ ,  $w_c(0) = 5.333 J$





- A unit step function, denoted by u(t), is zero for negative values of time t and one for positive values of time t (it resembles a step).
  - It serves as a good approximation to switching signals representing a sudden change in voltage or current.



$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

It can be shifted in time.





- Step response is the response of the circuit due to a sudden application of a DC voltage or current.
  - It is the circuit behaviour when the excitation/input is the step function, which may be a voltage or a current source.
  - We can model this behavior with a switch opened or closed at  $t = t_0$ .
- Let's assume that the capacitor is initially charged to a voltage V<sub>0</sub>. Since the voltage of the capacitor cannot change instantaneously:



Note:  $v(0^-)$  is the capacitor voltage **just before** switching and  $v(0^+)$  **just after** switching.



To analyse the step response of the RC circuit, we can use KCL at the node between resistor and capacitor.





Solve differential equation:

Rearrange:

Separate:

Integrate:

Solve for v(t):

Apply initial conditions  $v(0) = V_s + Ae^0 = V_0$ 

$$C\frac{dv}{dt} + \frac{v - V_S}{R} = 0, \ t \ge 0$$

$$\frac{dv}{dt} = \frac{-1}{RC}(v - V_s)$$

$$\frac{1}{v - V_{\rm S}} dv = \frac{-1}{RC} dt$$

$$\int \frac{1}{v - V_S} dv = \frac{-1}{RC} \int dt$$

$$\ln(v - V_S) = \frac{-t}{RC} + D$$

$$v(t) - V_S = e^{\frac{-t}{RC} + D}$$

$$v(t) = V_{S} + Ae^{\frac{-t}{RC}}$$

$$v(t) = V_S + (V_0 - V_S)e^{\frac{-t}{RC}}$$
,  $t \ge 0$ 



- No need to derive the differential equation solution every time, just use the result.
- The result shows that the **voltage response** of the RC circuit will change from the initial  $V_o$  to the value of  $V_s$  in an **exponential manner**.
  - Depending on the value of initial conditions  $V_0$  and voltage source  $V_s$ , the capacitor can be charged or discharged.

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_S + (V_0 - V_S)e^{-\frac{t}{RC}}, & t > 0 \end{cases} \qquad V_S \stackrel{+}{=} \qquad C = 0$$









The concept of time constant also applies to step response.

The **time constant** of a circuit is the time required for the response to **decay** to 1/e (or **36.8%**) of its initial value or to **increase** to 1 - 1/e (or **63.2%**) of its final value. It is denoted by  $\tau$ .

• After 5 time constants (5 $\tau$ ), the capacitors is again considered as open circuit as its voltage is no longer changing.



$$\tau = RC$$

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-\frac{t}{\tau}}, & t > 0 \end{cases}$$

The step response has two components:

$$v(t) = V_S + (V_0 - V_S)e^{-\frac{t}{\tau}}, \quad t > 0$$

$$v(t) = V_0e^{-\frac{t}{\tau}} + V_S(1 - e^{-\frac{t}{\tau}}), \quad t > 0$$
Natural Forced response 
$$v_n \qquad v_f \qquad \downarrow$$
Due to stored energy Due to Independent sources

Complete response = **natural response** + **forced response** 

$$v(t) = v_n(t) + v_f(t), \quad t > 0$$

This can be viewed as **superposition principle** in RC circuits for **two** sources of energy powering the circuit:

- 1. Initial conditions (stored energy)
- 2. Independent sources



- From another perspective:
  - The transient response is the circuit's temporary response that will die out with time.
  - The **steady-state response** is the behaviour of the circuit **a long time after** an external input/excitation is applied (after 5 time constants,  $5\tau$ ).

$$v(t) = V_S + (V_0 - V_S)e^{-\frac{t}{\tau}}, \quad t > 0$$
Steady-state Transient response response 
$$v_{ss} \qquad v_t \\ \downarrow \qquad \downarrow$$
Permanent Temporary part part

Complete response = transient response + steady-state response

$$v(t) = v_t(t) + v_{ss}(t), \quad t > 0$$



- More specifically:
  - 1. First stage of steady-state (t < 0):

There has been **no change** in the circuit for a **long time** and the capacitor is an **open circuit** with  $v(0) = V_0$ .

- 2. Transient stage  $(0 < t < 5\tau)$ : The capacitor's voltage changes **exponentially**.
- 3. Second stage of steadystate ( $t > 5\tau$ ):

The capacitor's voltage reaches its final value or steady-state value and becomes open circuit again with  $v(t) = V_s$  when  $t \to \infty$  or  $v(\infty) = V_s$ .



$$v(t) = V_S + (V_0 - V_S)e^{-\frac{t}{\tau}}, \quad t > 0$$

$$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-\frac{t}{\tau}}, \quad t > 0$$



# Step response of (complex) RC circuit

- The step response solution has been derived for a circuit with one single capacitor and resistor.
- It is possible to find the voltage across a capacitor in a complicated circuit with multiple resistors, switches, independent and dependent sources by replacing the circuit with its Thevenin equivalent circuit.





- Follow these steps to find step response of RC circuits:
  - 1. Find the **initial voltage** v(0) at t=0 across the capacitor **before any changes** in the circuit (t<0).
    - The capacitor is assumed to be an open circuit.
  - 2. Find the **final voltage**  $v(\infty)$  or  $V_{\text{Th}_{-}\infty}$  at  $t \to \infty$  across the capacitor **after** the changes in the circuit  $(t \ge 0)$ .
    - The capacitor is assumed to be an open circuit.
  - 3. Find the time constant  $\tau = R_{\rm Th} \,_{\infty} C$  after the changes in the circuit.
    - $R_{\mathrm{Th}_{-}\infty}$  is Thevenin equivalent resistance after the changes  $(t \ge 0)$ .
  - 4. Calculate the voltage across the capacitor as:

$$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-\frac{t}{\tau}}$$

5. Find any other circuit variable using the capacitor's voltage.

Note: A switch which opens or closes can remove part of the circuit or add something to it.



### Time shift in step response of RC circuit

- Note that if the switch changes position at time  $t=t_0$  instead of t=0, there is a time delay in the response which can be expressed as time shift in the equation.
  - This method can be used for multiple switching at different times.

$$v(t) = v(\infty) + [v(t_0) - v(\infty)]e^{\frac{-(t-t_0)}{\tau}}, \quad t > t_0$$

The switch in the circuit below has been in position A for a long time. At t = 0, the switch moves to B. Determine v(t) for t > 0 and calculate its value at t = 1 s and t = 4 s.



In the circuit below, the switch has been closed for a long time and it is opened at t = 0. Find v and i for all time.





Find v(t) for t > 0 in the circuit below. Assume the switch has been open for a long time and it is closed at t = 0. Calculate v(t) at t = 0.5 s.

- For practice!
- Answer:  $v(t) = (9.375 + 5.625e^{-2t}) \text{ V}, v(0.5) = 11.444 \text{ V}$





# Questions?



