

11/18/99

JC639 U.S. PRO

A REISSUE
SQ Listing

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re U.S. Letters Patent of

ALBERTSEN *et al.*

U.S. Letters Patent No. 5,691,454
(Serial No. 08/452,654)

Issued: November 25, 1997
(Filed: May 25, 1995)

)) ATTN: Applications Branch
)) Previous Examiner: N. Johnson
))
)) Atty. Dkt. No. 01107.78817

For: APC ANTIBODIES

JC542 U.S. PRO
09/442489
11/18/99

SUBMISSION OF REISSUE APPLICATION

Assistant Commissioner of Patents
Washington, D.C. 20231

Sir:

A reissue application is hereby requested on behalf of the current assignees of record, Zeneca, Ltd.; The Cancer Institute, Japanese Foundation for Cancer Research; The Johns Hopkins University; and the University of Utah. Accompanying this submission are:

- a reissue application under 37 C.F.R. § 1.173;
- an amendment under 37 C.F.R. § 1.121(b);
- a computer readable form and paper copy of a substitute sequence listing;
- a reissue declaration; and
- assent of all assignees of record.

Transfer of all formal drawings from the patent file is requested. Copies of the formal drawings are enclosed for the Examiner's convenience.

Assignees offer to surrender the original patent upon indication of allowance of this application.

Respectfully submitted,

Date: November 18, 1999

By: Lisa M. Hemmendinger
Lisa M. Hemmendinger
Registration No. 42,653

Banner & Witcoff, Ltd.
1001 G Street, N.W., Eleventh Floor
Washington, D.C. 20001-4597
(202) 508-9100

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of)
ALBERTSON *et al.*) Group Art Unit: T.B.A.
Serial No. T.B.A.) Examiner: T.B.A.
Filed: even herewith)) Atty. Dkt. No. 01107.78817

For: **APC ANTIBODIES**

AMENDMENT UNDER 37 C.F.R. § 1.121(b)

Assistant Commissioner of Patents
Washington, D.C. 20231

Sir:

Please enter the following amendments to the resisue application referenced above. We believe no fee is due in connection with this amendment. If a fee is due, please charge Deposit Account No. 19-0733.

IN THE SPECIFICATION

At column 3, line 20:

In even another embodiment a preparation of the human APC protein is provided which is substantially free of other human proteins. The amino acid sequence of the protein is shown in [FIG. 3] **FIGS. 3A-3Z** (SEQ ID NOS: 7 and 2).

At column 4, line 26:

[FIGS. 3A-3F] **FIGS. 3A-3Z** show the sequence of the APC gene product (SEQ ID NO: 7). The cDNA sequence was determined through the analysis of 87 cDNA clones derived from normal colon, liver, and brain. A total of 8973 bp were contained within overlapping cDNA

clones, defining an ORF of [2842] 2843 amino acids. In frame stop codons surrounded this ORF, as described in the text, suggesting that the entire APC gene product was represented in the ORF illustrated. Only the predicted amino acids are shown.

At column 6, line 30:

Alteration of wild-type genes can also be detected on the basis of the alteration of a wild-type expression product of the gene. Such expression products include both the APC mRNA as well as the APC protein product. The sequences of these products are shown in [FIG. 3] FIGS. 3A-3Z. Point mutations may be detected by amplifying and sequencing the mRNA or via molecular cloning of cDNA made from the mRNA. The sequence of the cloned cDNA can be determined using DNA sequencing techniques which are well known in the art. The cDNA can also be sequenced via the polymerase chain reaction (PCR) which will be discussed in more detail below.

At column 8, line 32:

In order to facilitate subsequent cloning of amplified sequences, primers may have restriction enzyme site sequences appended to their 5' ends. Thus, all nucleotides of the primers are derived from APC sequences or sequences adjacent to APC except the few nucleotides necessary to form a restriction enzyme site. Such enzymes and sites are well known in the art. The primers themselves can be synthesized using techniques which are well known in the art. Generally, the primers can be made using oligonucleotide synthesizing machines which are commercially available. Given the sequence of the APC open reading frame shown in [FIG. 3] FIGS. 3A-3Z (SEQ ID NO: 1), design of particular primers is well within the skill of the art.

At column 10, line 39:

Polypeptides which have APC activity can be supplied to cells which carry mutant or missing APC alleles. The sequence of the APC protein is disclosed in [FIG. 3] FIGS. 3A-3Z (SEQ ID NO:7). [These two sequences differ slightly and appear to indicate the existence of two different forms of the APC protein.] Protein can be produced by expression of the cDNA sequence in bacteria, for example, using known expression vectors. Alternatively, APC can be extracted from APC-producing mammalian cells such as brain cells. In addition, the techniques of synthetic chemistry can be employed to synthesize APC protein. Any of such techniques can provide the preparation of the present invention which comprises the APC protein. The preparation is substantially free of other human proteins. This is most readily accomplished by synthesis in a microorganism or in vitro.

At column 10, line 66:

A short region of homology has been identified between APC and the human m3 muscarinic acetylcholine receptor (mAChR). This homology was largely confined to 29 residues in which 6 out of 7 amino acids (EL(GorA)GLQA) were identical (See [FIG. 4] FIG. 4B (SEQ ID NO: 9)). Initially, it was not known whether this homology was significant, because many other proteins had higher levels of global homology (though few had six out of seven contiguous amino acids in common). However, a study on the sequence elements controlling G protein activation by mAChR subtypes (Lechleiter et al., EMBO J., p. 4381 (1990)) has shown that a 21 amino acid region from the m3 mAChR completely mediated G protein specificity when substituted for the 21 amino acids of m2 mAChR at the analogous protein position. These 21 residues overlap the 19 amino acid homology between APC and m3 mAChR.

At column 13, line 1:

Contig 2: TB1 - TB1 was identified through a cross-hybridization approach. Exons of genes are often evolutionarily conserved while introns and intergenic regions are much less conserved. Thus, if a human probe cross-hybridizes strongly to the DNA from non-primate species, there is a reasonable chance that it contains exon sequences. Subclones of the cosmids shown in [FIG. 1] FIGS. 1A, 1B-1, 1B-2, and 1B-3 were used to screen Southern blots containing rodent DNA samples. A subclone of cosmid N5.66 (p 5.66-4) was shown to strongly hybridize to rodent DNA, and this clone was used to screen cDNA libraries derived from normal adult colon and fetal liver. The ends of the initial cDNA clones obtained in this screen were then used to extend the cDNA sequence. Eventually, 11 cDNA clones were isolated, covering 2314 bp. The gene detected by these clones was named TB1. Sequence analysis of the overlapping clones revealed an open reading frame (ORF) that extended for 1302 bp starting from the most 5' sequence data obtained (FIG. 2A). If this entire open reading frame were translated, it would encode 434 amino acids (SEQ ID NO: 5). The product of this gene was not globally homologous to any other sequence in the current database but showed two significant local similarities to a family of ADP, ATP carrier/translocator proteins and mitochondrial brown fat uncoupling proteins which are widely distributed from yeast to mammals. These conserved regions of TB1 (underlined in FIG. 2A) may define a predictive motif for this sequence family. In addition, TB1 appeared to contain a signal peptide (or mitochondrial targeting sequence) as well as at least 7 transmembrane domains.

At column 14, line 38:

Sequence analysis of the APC cDNA clones revealed an open reading frame of 8,535 nucleotides. The 5' end of the ORF contained a methionine codon (codon 1) that was preceded

by an in-frame stop codon 9 bp upstream, and the 3' end was followed by several in-frame stop codons. The protein produced by initiation at codon 1 would contain [2,842] 2843 amino acids (SEQ ID NO: 7) [(FIG. 3)] **FIG. 3A-3Z**. The results of database searching with the APC gene product were quite complex due to the presence of large segments with locally biased amino acid compositions. In spite of this, APC could be roughly divided into two domains. The N-terminal 25% of the protein had a high content of leucine residues (12%) and showed local sequence similarities to myosins, various intermediate filament proteins (e.g., desmin, vimentin, neurofilaments) and *Drosophila* armadillo/human plakoglobin. The latter protein is a component of adhesive junctions (desmosomes) joining epithelial cells (Franke et al., Proc. Natl. Acad. Sci. U.S.A., Vol. 86, p. 4027 (1989); Perfer et al., Cell, Vol. 63, p. 1167 (1990)). The C-terminal 75% of APC (residues 731-2832) is 17% serine by composition with serine residues more or less uniformly distributed. This large domain also contains local concentrations of charged (mostly acidic) and proline residues. There was no indication of potential signal peptides, transmembrane regions, or nuclear targeting signals in APC, suggesting a cytoplasmic localization.

At column 26, line 27:

To obtain DNA sequence adjacent to the exons of the genes DP1, DP2.5, and SRP19, sequencing substrate was obtained by inverse PCR amplification of DNAs from two YACs, 310D8 and 183H12, that span the deletions. Ligation at low concentration cyclized the restriction enzyme-digested YAC DNAs. Oligonucleotides with sequencing tails, designed in inverse orientation at intervals along the cDNAs, primed PCR amplification from the cyclized templates. Comparison of these DNA sequences with the cDNA sequences placed exon boundaries at the divergence points. SRP19 and DP1 were each shown to have five exons. DP2.5 consisted of 15

exons. The sequences of the oligonucleotides synthesized to provide PCR amplification primers for the exons of each of these genes are listed in Table III [SEQ ID NOS:39-94] (SEQ ID NOS: 39-94). With the exception of exons 1, 3, 4, 9, and 15 of DP2.5 (see below), the primer sequences were located in intron sequences flanking the exons. The 5' primer of exon 1 is complementary to the cDNA sequence, but extends just into the 5' Kozak consensus sequence for the initiator methionine, allowing a survey of the translated sequences. The 5' primer of exon 3 is actually in the 5' coding sequences of this exon, as three separate intronic primers simply would not amplify. The 5' primer of exon 4 just overlaps the 5' end of this exon, and we thus fail to survey the 19 most 5' bases of this exon. For exon 9, two overlapping primer sets were used, such that each had one end within the exon. For exon 15, the large 3' exon of DP2.5, overlapping primer pairs were placed along the length of the exon; each pair amplified a product of 250-400 bases.

At column 29, line 1:

The sequences of the unique conformers from exons 7, 8, 10, and 11 of DP2.5 revealed dramatic mutations in the DP2.5 gene. The sequence of the new mutation creating the exon 7 conformer in patient 3746 was shown to contain a deletion of two adjacent nucleotides, at positions 730 and 731 in the cDNA sequence ([FIG. 7,] SEQ ID NO:1). The normal sequence at this splice junction is CAGGGTCA (intrinsic sequence underlined), with the intron-exon boundary between the two repetitions of AG. The mutant allele in this patient has the sequence CAGGTCA. Although this change is at the 5' splice site, comparison with known consensus sequences of splice junctions would suggest that a functional splice junction is maintained. If this new splice junction were functional, the mutation would introduce a frameshift that creates a stop

codon 15 nucleotides downstream. If the new splice junction were not functional, messenger processing would be significantly altered.

At column 29, line 26:

The unique conformer found in exon 8 of patient 3460 was found to carry a C-T transition, at position 904 in the cDNA sequence of DP2.5 [(shown in FIG. 7)], which replaced the normal sequence of CGA with TGA. This point mutation, when read in frame, results in a stop codon replacing the normal arginine codon. This single-base change had occurred within the context of a CG dimer, a potential hot spot for mutation (Barker et al., 1984).

At column 30, line 37:

The continuity of the very large (6.5 kb), most 3' exon in DP2.5 was shown in two ways. First, inverse PCR with primers spanning the entire length of this exon revealed no divergence of the cDNA sequence from the genomic sequence. Second, PCR amplification with converging primers placed at intervals along the exon generated products of the same size whether amplified from the originally isolated cDNA, cDNA from various tissues, or genomic template. Two forms of exon 9 were found in DP2.5: one is the complete exon; and the other, labeled exon 9A, is the result of a splice into the interior of the exon that deletes bases 934 to 1236 in the mRNA and removes 101 amino acids from the predicted protein (see [FIG. 3] FIGS. 3A-3Z, SEQ ID NOS: 1 & 2).

At column 31, line 30:

The cDNA consensus sequence of APC predicts that the longer, more abundant form of the message codes for a [2842 or 2844] 2843 amino acid peptide with a mass of 311.8 kd. This predicted APC peptide was compared with the current data bases of protein and DNA sequences using both Intelligenetics and GCG software packages. No genes with a high degree of amino

acid sequence similarity were found. Although many short (approximately 20 amino acid) regions of sequence similarity were uncovered, none was sufficiently strong to reveal which, if any, might represent functional homology. Interestingly, multiple similarities to myosins and keratins did appear. The APC gene also was scanned for sequence motifs of known function; although multiple glycosylation, phosphorylation, and myristoylation sites were seen, their significance is uncertain.

At columns 31-132:

Please delete the sequence listing and replace it with the enclosed substitute sequence listing. The substitute sequence listing is identical to the sequence listing in the patent with the exception of one amino acid in SEQ ID NO:7. The substitute sequence listing contains a proline at position 173.

Remarks

The specification has been amended to correct the number of amino acids said to be present in the APC protein. This correction is supported in Figure 3 and in SEQ ID NOS:1 and 2, each of which show a 2843 amino acid APC protein.

The sequence listing has been amended to correct the amino acid sequence of the APC protein shown in SEQ ID NO:7, by insertion of a proline at position 173 of SEQ ID NO:7. This amendment is supported in the issued patent in Figure 3 and in SEQ ID NOS:1 and 2, each of which contain a proline at position 173. A computer readable form of the substitute sequence listing is provided for use in examining this application. The contents of the computer readable form and the paper copy of the substitute sequence listing are identical. The contents of the substitute sequence listing are identical to those of the original sequence listing except for the insertion of the proline at position 173

in SEQ ID NO:7.

The specification also has been amended to refer separately to each figure according to 37 C.F.R. § 1.74 and to delete references to originally filed Figure 7, which was cancelled during prosecution.

None of the amendments to the specification or sequence listing adds new matter.

Respectfully submitted,

Date: November 18, 1999

By: Lisa M. Hemmendinger
Lisa M. Hemmendinger
Registration No. 42,653

Banner & Witcoff, Ltd.
1001 G Street, N.W., Eleventh Floor
Washington, D.C. 20001-4597
(202) 508-9100

1
APC ANTIBODIES

This application is a division, of application Ser. No. 08/289,548, filed Aug. 12, 1994, which is a division of application Ser. No. 07/741,940 filed Aug. 8, 1991 (issued as 5 U.S. Pat. No. 5,352,775).

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of grants awarded by the National 10 Institutes or Health.

TECHNICAL AREA OF THE INVENTION

The invention relates to the area of cancer diagnostics and therapeutics. More particularly, the invention relates to 15 detection of the germline and somatic alterations of wild-type APC genes. In addition, it relates to therapeutic intervention to restore the function of APC gene product.

BACKGROUND OF THE INVENTION 20

According to the model of Knudson for tumorigenesis (Cancer Research, Vol. 45, p. 1482, 1985), there are tumor suppressor genes in all normal cells which, when they become non-functional due to mutation, cause neoplastic 25 development. Evidence for this model has been found in the cases of retinoblastoma and colorectal tumors. The implicated suppressor genes in those tumors, RB, p53, DCC and MCC, were found to be deleted or altered in many cases of the tumors studied. (Hansen and Cavenee, Cancer Research, 30 Vol. 47, pp: 5518-5527 (1987); Baker et al., Science, Vol. 244, p. 217 (1989); Fearon et al., Science, Vol. 247, p. 49 (1990); Kinzler et al. Science Vol. 251, p. 1366 (1991).)

In order to fully understand the pathogenesis of tumors, it will be necessary to identify the other suppressor genes that 35 play a role in the tumorigenesis process. Prominent among these is the one(s) presumptively located at 5q21. Cytogenetic (Herrera et al., *Am J. Med. Genet.*, Vol. 25, p. 473 (1986) and linkage (Leppert et al., *Science*, Vol. 238, p. 1411 (1987); Bodmer et al., *Nature*, Vol. 328, p. 614 (1987)) 40 studies have shown that this chromosome region harbors the gene responsible for familial adenomatous polyposis (FAP) and Gardner's Syndrome (GS). FAP is an autosomal-dominant, inherited disease in which affected individuals develop hundreds to thousands of adenomatous polyps, 45 some of which progress to malignancy. GS is a variant of FAP in which desmoid tumors, osteomas and other soft tissue tumors occur together with multiple adenomas of the colon and rectum. A less severe form of polyposis has been identified in which only a few (2-40) polyps develop. This 50 condition also is familial and is linked to the same chromosomal markers as FAP and GS (Leppert et al., *New England Journal of Medicine*, Vol. 322, pp. 904-908, 1990.) Additionally, this chromosomal region is often deleted from the adenomas (Vogelstein et al., *N. Engl. J. Med.*, Vol. 319, 55 p. 525 (1988)) and carcinomas (Vogelstein et al., *N. Engl. J. Med.*, Vol. 319, p. 525 (1988); Solomon et al., *Nature*, Vol. 328, p. 616 (1987); Sasaki et al., *Cancer Research*, Vol. 49, p. 4402 (1989); Delattre et al., *Lancet*, Vol. 2, p. 353 (1989); and Ashton-Rickardt et al., *Oncogene*, Vol. 4, p. 1169 60 (1989)) of patients without FAP (sporadic tumors). Thus, a putative suppressor gene on chromosome 5q21 appears to play a role in the early stages of colorectal neoplasia in both sporadic and familial tumors.

Although the MCC gene has been identified on 5q21 as a 65 candidate suppressor gene, it does not appear to be altered in FAP or GS patients. Thus there is a need in the art for

65 60 55 50 45 40 35 30 25 20 15 10 5

investigations of this chromosomal region to identify genes and to determine if any of such genes are associated with FAP and/or GS and the process of tumorigenesis.

5 SUMMARY OF THE INVENTION

It is an object of the present invention to provide a method for diagnosing and prognosing a neoplastic tissue of a human.

10 It is another object of the invention to provide a method of detecting genetic predisposition to cancer.

It is another object of the invention to provide a method of supplying wild-type APC gene function to a cell which has lost said gene function.

15 It is yet another object of the invention to provide a kit for determination of the nucleotide sequence of APC alleles by the polymerase chain reaction.

It is still another object of the invention to provide nucleic acid probes for detection of mutations in the human APC gene.

It is still another object of the invention to provide a cDNA molecule encoding the APC gene product.

It is yet another object of the invention to provide a preparation of the human APC protein.

It is another object of the invention to provide a method of screening for genetic predisposition to cancer.

It is an object of the invention to provide methods of testing therapeutic agents for the ability to suppress neoplasia.

It is still another object of the invention to provide animals carrying mutant APC alleles.

These and other objects of the invention are provided by

5 one or more of the embodiments which are described below.
In one embodiment of the present invention a method of
diagnosing or prognosing a neoplastic tissue of a human is
provided comprising: detecting somatic alteration of wild-
type APC genes or their expression products in a sporadic
colorectal cancer tissue, said alteration indicating neoplasia
10 of the tissue.

In yet another embodiment a method is provided of detecting genetic predisposition to cancer in a human including familial adenomatous polyposis (FAP) and Gardner's Syndrome (GS), comprising: isolating a human sample selected from the group consisting of blood and fetal tissue; detecting alteration of wild-type APC gene coding sequences or their expression products from the sample, said alteration indicating genetic predisposition to cancer.

50 In another embodiment of the present invention a method is provided for supplying wild-type APC gene function to a cell which has lost said gene function by virtue of a mutation in the APC gene, comprising: introducing a wild-type APC gene into a cell which has lost said gene function such that said wild-type gene is expressed in the cell.

In another embodiment a method of supplying wild-type APC gene function to a cell is provided comprising: introducing a portion of a wild-type APC gene into a cell which has lost said gene function such that said portion is expressed in the cell, said portion encoding a part of the APC protein which is required for non-neoplastic growth of said cell. APC protein can also be applied to cells or administered to animals to remediate for mutant APC genes. Synthetic peptides or drugs can also be used to mimic APC function in cells which have altered APC expression.

In yet another embodiment a pair of single stranded primers is provided for determination of the nucleotide

sequence of the APC gene by polymerase chain reaction. The sequence of said pair of single stranded DNA primers is derived from chromosome 5q band 21, said pair of primers allowing synthesis of APC gene coding sequences.

In still another embodiment of the invention a nucleic acid probe is provided which is complementary to human wild-type APC gene coding sequences and which can form mismatches with mutant APC genes, thereby allowing their detection by enzymatic or chemical cleavage or by shifts in electrophoretic mobility.

In another embodiment of the invention a method is provided for detecting the presence of a neoplastic tissue in a human. The method comprises isolating a body sample from a human; detecting in said sample alteration of a wild-type APC gene sequence or wild-type APC expression product, said alteration indicating the presence of a neoplastic tissue in the human.

In still another embodiment a cDNA molecule is provided which comprises the coding sequence of the APC gene.

In even another embodiment a preparation of the human APC protein is provided which is substantially free of other human proteins. The amino acid sequence of the protein is shown in FIG. 3 (SEQ ID NOS: 7 and 2).

In yet another embodiment of the invention a method is provided for screening for genetic predisposition to cancer, including familial adenomatous polyposis (FAP) and Gardner's Syndrome (GS), in a human. The method comprises: detecting among kindred persons the presence of a DNA polymorphism which is linked to a mutant APC allele in an individual having a genetic predisposition to cancer, said kindred being genetically related to the individual, the presence of said polymorphism suggesting a predisposition to cancer.

In another embodiment of the invention a method of testing therapeutic agents for the ability to suppress a neoplastically transformed phenotype is provided. The method comprises: applying a test substance to a cultured epithelial cell which carries a mutation in an APC allele; and determining whether said test substance suppresses the neoplastically transformed phenotype of the cell.

In another embodiment of the invention a method of testing therapeutic agents for the ability to suppress a neoplastically transformed phenotype is provided. The method comprises: administering a test substance to an animal which carries a mutant APC allele; and determining whether said test substance prevents or suppresses the growth of tumors.

In still other embodiments of the invention transgenic animals are provided. The animals carry a mutant APC allele from a second animal species or have been genetically engineered to contain an insertion mutation which disrupts an APC allele.

The present invention provides the art with the information that the APC gene, a heretofore unknown gene is, in fact, a target of mutational alterations on chromosome 5q21 and that these alterations are associated with the process of tumorigenesis. This information allows highly specific assays to be performed to assess the neoplastic status of a particular tissue or the predisposition to cancer of an individual. This invention has applicability to Familial Adenomatous Polyposis, sporadic colorectal cancers, Gardner's Syndrome, as well as the less severe familial polyposis discussed above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows an overview of yeast artificial chromosome (YAC) contigs. Genetic distances between selected RFLP markers from within the contigs are shown in centi-Morgans.

FIGS. 1B-1, 1B-2 and 1B-3 show a detailed map of the three central contigs. The position of the six identified genes from within the FAP region is shown; the 5' and 3' ends of the transcripts from these genes have in general not yet been isolated, as indicated by the string of dots surrounding the bars denoting the genes' positions. Selected restriction endonuclease recognition sites are indicated. B, BssH2; S, SstII; M, MluI; N, NruI.

FIGS. 2A and 2B show the sequence of TB1 (FIG. 2A) and TB2 (FIG. 2B) genes. The cDNA sequence of the TB1 gene was determined from the analysis of 11 cDNA clones derived from normal colon and liver, as described in the text. A total of 2314 bp were contained within the overlapping cDNA clones, defining an ORF of 424 amino acids beginning at nucleotide 1. Only the predicted amino acids from the ORF are shown. The carboxy-terminal end of the ORF has apparently been identified, but the 5' end of the TB1 transcript has not yet been precisely determined.

The cDNA sequence of the TB2 gene was determined from the YS-39 clone derived as described in the text. This clone consisted of 2300 bp and defined an ORF of 185 amino acids beginning at nucleotide 1. Only the predicted amino acids are shown. The carboxy terminal end of the ORF has apparently been identified, but the 5' end of the TB2 transcript has not been precisely determined.

FIGS. 3A-3F show the sequence of the APC gene product (SEQ ID NO:7). The cDNA sequence was determined through the analysis of 87 cDNA clones derived from normal colon, liver, and brain. A total of 8973 bp were contained within overlapping cDNA clones, defining an ORF of 2842 amino acids. In frame stop codons surrounded this ORF, as described in the text, suggesting that the entire APC gene product was represented in the ORF illustrated. Only the predicted amino acids are shown.

FIGS. 4A and 4B show the local similarity between human APC (SEQ ID NO:2) and ral2 (SEQ ID NO:8) of yeast. FIG. 4A shows amino acids 203 to 233 of APC, and FIG. 4B shows amino acids 453 to 481 of APC. Local similarity among the APC (SEQ ID NO:2) and MCC genes (SEQ ID NO:10) genes and the m3 muscarinic acetylcholine receptor (SEQ ID NO:9) is shown. The region of the mAChR shown corresponds to that responsible for coupling the receptor to G proteins. The connecting lines indicate identities; dots indicate related amino acids residues.

FIG. 5 shows the genomic map of the 1200 kb NotI fragment at the FAP locus. The NotI fragment is shown as a bold line. Relevant parts of the deletion chromosomes from patients 3214 and 3824 are shown as stippled lines. Probes used to characterize the NotI fragment and the deletions, and three YACs from which subclones were obtained, are shown below the restriction map. The chimeric end of YAC 183H12 is indicated by a dotted line. The orientation and approximate position of MCC are indicated above the map.

FIG. 6A-6D show the DNA sequence (SEQ ID NO:3) and predicted amino acid sequence of DP1 (TB2) (SEQ ID NO:4). The nucleotide numbering begins at the most 5' nucleotide isolated. A proposed initiation methionine (base 77) is indicated in bold type. The entire coding sequence is presented.

FIG. 7A, FIG. 7B-1, and FIG. 7B-2 show the arrangement of exons in DP2.5 (APC). (A) Exon 9 corresponds to nucleotides 933-1312; exon 9a corresponds to nucleotides 1236-1312. The stop codon in the cDNA is at nucleotide 8535. (B) Partial intronic sequence surrounding each exon is shown (SEQ ID NO: 11-38). 5' intron sequences of exons 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 are shown in SEQ ID NOS: 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, respectively. 3' intron sequences of exons 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 are shown in SEQ ID NOS: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, respectively.

DETAILED DESCRIPTION

It is a discovery of the present invention that mutational events associated with tumorigenesis occur in a previously unknown gene on chromosome 5q named here the APC (Adenomatous Polyposis Coli) gene. Although it was previously known that deletion of alleles on chromosome 5q were common in certain types of cancers, it was not known that a target gene of these deletions was the APC gene. Further it was not known that other types of mutational events in the APC gene are also associated with cancers. The mutations of the APC gene can involve gross rearrangements, such as insertions and deletions. Point mutations have also been observed.

According to the diagnostic and prognostic method of the present invention, alteration of the wild-type APC gene is detected. "Alteration of a wild-type gene" according to the present invention encompasses all forms of mutations—including deletions. The alteration may be due to either rearrangements such as insertions, inversions, and deletions, or to point mutations. Deletions may be of the entire gene or only a portion of the gene. Somatic mutations are those which occur only in certain tissues, e.g., in the tumor tissue, and are not inherited in the germline. Germline mutations can be found in any of a body's tissues. If only a single allele is somatically mutated, an early neoplastic state is indicated. However, if both alleles are mutated then a late neoplastic state is indicated. The finding of APC mutations thus provides both diagnostic and prognostic information. An APC allele which is not deleted (e.g., that on the sister chromosome to a chromosome carrying an APC deletion) can be screened for other mutations, such as insertions, small deletions, and point mutations. It is believed that many mutations found in tumor tissues will be those leading to decreased expression of the APC gene product. However, mutations leading to non-functional gene products would also lead to a cancerous state. Point mutational events may occur in regulatory regions, such as in the promoter of the gene, leading to loss or diminution of expression of the mRNA. Point mutations may also abolish proper RNA processing, leading to loss of expression of the APC gene product.

In order to detect the alteration of the wild-type APC gene in a tissue, it is helpful to isolate the tissue free from surrounding normal tissues. Means for enriching a tissue preparation for tumor cells are known in the art. For example, the tissue may be isolated from paraffin or cryostat sections. Cancer cells may also be separated from normal cells by flow cytometry. These as well as other techniques for separating tumor from normal cells are well known in the art. If the tumor tissue is highly contaminated with normal cells, detection of mutations is more difficult. 50 55

Detection of point mutations may be accomplished by 60 molecular cloning of the APC allele (or alleles) and sequencing that allele(s) using techniques well known in the art. Alternatively, the polymerase chain reaction (PCR) can be used to amplify gene sequences directly from a genomic DNA preparation from the tumor tissue. The DNA sequence 65 of the amplified sequences can then be determined. The polymerase chain reaction itself is well known in the art.

See, e.g., Saiki et al., *Science*, Vol. 239, p. 487, 1988; U.S. Pat. No. 4,683,203; and U.S. Pat. No. 4,683,195. Specific primers which can be used in order to amplify the gene will be discussed in more detail below. The ligase chain reaction, which is known in the art, can also be used to amplify APC sequences. See Wu et al., *Genomics*, Vol. 4, pp. 560-569 (1989). In addition, a technique known as allele specific PCR can be used. (See Ruano and Kidd, *Nucleic Acids Research*, Vol. 17, p. 8392, 1989.) According to this technique, primers are used which hybridize at their 3' ends to a particular APC mutation. If the particular APC mutation is not present, an amplification product is not observed. Amplification Refractory Mutation System (ARMS) can also be used as disclosed in European Patent Application Publication No. 0332435 and in Newton et al., *Nucleic Acids Research*, Vol. 17, p.7, 1989. Insertions and deletions of genes can also be detected by cloning, sequencing and amplification. In addition, restriction fragment length polymorphism (RFLP) probes for the gene or surrounding marker genes can be used to score alteration of an allele or an insertion in a polymorphic fragment. Such a method is particularly useful for screening among kindred persons of an affected individual for the presence of the APC mutation found in that individual. Single stranded conformation polymorphism (SSCP) analysis can also be used to detect base change variants of an allele. (Orita et al., *Proc. Natl. Acad. Sci. USA* Vol. 86, pp. 2766-2770, 1989, and *Genomics*, Vol. 5, pp. 874-879, 1989.) Other techniques for detecting insertions and deletions as are known in the art can be used.

Alteration of wild-type genes can also be detected on the basis of the alteration of a wild-type expression product of the gene. Such expression products include both the APC mRNA as well as the APC protein product. The sequences of these products are shown in FIG. 3. Point mutations may be detected by amplifying and sequencing the mRNA or via molecular cloning of cDNA made from the mRNA. The sequence of the cloned cDNA can be determined using DNA sequencing techniques which are well known in the art. The cDNA can also be sequenced via the polymerase chain reaction (PCR) which will be discussed in more detail below.

Mismatches, according to the present invention are hybridized nucleic acid duplexes which are not 100% homologous. The lack of total homology may be due to deletions, insertions, inversions, substitutions or frameshift mutations. Mismatch detection can be used to detect point mutations in the gene or its mRNA product. While these techniques are less sensitive than sequencing, they are simpler to perform on a large number of tumor samples. An example of a mismatch cleavage technique is the RNase protection method, which is described in detail in Winter et al., *Proc. Natl. Acad. Sci. USA*, Vol. 82, p. 7575, 1985 and Meyers et al., *Science*, Vol. 230, p. 1242, 1985. In the practice of the present invention the method involves the use of a labeled riboprobe which is complementary to the human wild-type APC gene coding sequence. The riboprobe and either mRNA or DNA isolated from the tumor tissue are annealed (hybridized) together and subsequently digested with the enzyme RNase A which is able to detect some mismatches in a duplex RNA structure. If a mismatch is detected by RNase A, it cleaves at the site of the mismatch. Thus, when the annealed RNA preparation is separated on an electrophoretic gel matrix, if a mismatch has been detected and cleaved by RNase A, an RNA product will be seen which is smaller than the full-length duplex RNA for the riboprobe and the mRNA or DNA. The riboprobe need not be the full length of the APC mRNA or gene but can be a

segment of either. If the riboprobe comprises only a segment of the APC mRNA or gene it will be desirable to use a number of these probes to screen the whole mRNA sequence for mismatches.

In similar fashion, DNA probes can be used to detect mismatches, through enzymatic or chemical cleavage. See, e.g., Cotton et al., Proc. Natl. Acad. Sci. USA, Vol. 85, 4397, 1988; and Shenk et al., Proc. Natl. Acad. Sci. USA, Vol. 72, p. 989, 1975. Alternatively, mismatches can be detected by shifts in the electrophoretic mobility of mismatched duplexes relative to matched duplexes. See, e.g., Cariello, Human Genetics, Vol. 42, p. 726, 1988. With either riboprobes or DNA probes, the cellular mRNA or DNA which might contain a mutation can be amplified using PCR (see below) before hybridization. Changes in DNA of the APC gene can also be detected using Southern hybridization, especially if the changes are gross rearrangements, such as deletions and insertions.

DNA sequences of the APC gene which have been amplified by use of polymerase chain reaction may also be screened using allele-specific probes. These probes are nucleic acid oligomers, each of which contains a region of the APC gene sequence harboring a known mutation. For example, one oligomer may be about 30 nucleotides in length, corresponding to a portion of the APC gene sequence. By use of a battery of such allele-specific probes, PCR amplification products can be screened to identify the presence of a previously identified mutation in the APC gene. Hybridization of allele-specific probes with amplified APC sequences can be performed, for example, on a nylon filter. Hybridization to a particular probe under stringent hybridization conditions indicates the presence of the same mutation in the tumor tissue as in the allele-specific probe.

Alteration of APC mRNA expression can be detected by any technique known in the art. These include Northern blot analysis, PCR amplification and RNase protection. Diminished mRNA expression indicates an alteration of the wild-type APC gene. Alteration of wild-type APC genes can also be detected by screening for alteration of wild-type APC protein. For example, monoclonal antibodies immunoreactive with APC can be used to screen a tissue. Lack of cognate antigen would indicate an APC mutation. Antibodies specific for products of mutant alleles could also be used to detect mutant APC gene product. Such immunological assays can be done in any convenient format known in the art. These include Western blots, immunohistochemical assays and ELISA assays. Any means for detecting an altered APC protein can be used to detect alteration of wild-type APC genes. Functional assays can be used, such as protein binding determinations. For example, it is believed that APC protein oligomerizes to itself and/or MCC protein or binds to a G protein. Thus, an assay for the ability to bind to wild type APC or MCC protein or that G protein can be employed. In addition, assays can be used which detect APC biochemical function. It is believed that APC is involved in phospholipid metabolism. Thus, assaying the enzymatic products of the involved phospholipid metabolic pathway can be used to determine APC activity. Finding a mutant APC gene product indicates alteration of a wild-type APC gene.

Mutant APC genes or gene products can also be detected in other human body samples, such as, serum, stool, urine and sputum. The same techniques discussed above for detection of mutant APC genes or gene products in tissues can be applied to other body samples. Cancer cells are sloughed off from tumors and appear in such body samples. In addition, the APC gene product itself may be secreted into

the extracellular space and found in these body samples even in the absence of cancer cells. By screening such body samples, a simple early diagnosis can be achieved for many types of cancers. In addition, the progress of chemotherapy or radiotherapy can be monitored more easily by testing such body samples for mutant APC genes or gene products.

The methods of diagnosis of the present invention are applicable to any tumor in which APC has a role in tumorigenesis. Deletions of chromosome arm 5q have been observed in tumors of lung, breast, colon, rectum, bladder, liver, sarcomas, stomach and prostate, as well as in leukemias and lymphomas. Thus these are likely to be tumors in which APC has a role. The diagnostic method of the present invention is useful for clinicians so that they can decide upon an appropriate course of treatment. For example, a tumor displaying alteration of both APC alleles might suggest a more aggressive therapeutic regimen than a tumor displaying alteration of only one APC allele.

The primer pairs of the present invention are useful for determination of the nucleotide sequence of a particular APC allele using the polymerase chain reaction. The pairs of single stranded DNA primers can be annealed to sequences within or surrounding the APC gene on chromosome 5q in order to prime amplifying DNA synthesis of the APC gene itself. A complete set of these primers allows synthesis of all of the nucleotides of the APC gene coding sequences, i.e., the exons. The set of primers preferably allows synthesis of both intron and exon sequences. Allele specific primers can also be used. Such primers anneal only to particular APC mutant alleles, and thus will only amplify a product in the presence of the mutant allele as a template.

In order to facilitate subsequent cloning of amplified sequences, primers may have restriction enzyme site sequences appended to their 5' ends. Thus, all nucleotides of the primers are derived from APC sequences or sequences adjacent to APC except the few nucleotides necessary to form a restriction enzyme site. Such enzymes and sites are well known in the art. The primers themselves can be synthesized using techniques which are well known in the art. Generally, the primers can be made using oligonucleotide synthesizing machines which are commercially available. Given the sequence of the APC open reading frame shown in FIG. 3 (SEQ ID NO:1), design of particular primers is well within the skill of the art.

The nucleic acid probes provided by the present invention are useful for a number of purposes. They can be used in Southern hybridization to genomic DNA and in the RNase protection method for detecting point mutations already discussed above. The probes can be used to detect PCR amplification products. They may also be used to detect mismatches with the APC gene or mRNA using other techniques. Mismatches can be detected using either enzymes (e.g., S1 nuclease), chemicals (e.g., hydroxylamine or osmium tetroxide and piperidine), or changes in electrophoretic mobility of mismatched hybrids as compared to totally matched hybrids. These techniques are known in the art. See, Cotton, *supra*, Shenk, *supra*, Myers, *supra*; Winter, *supra*, and Novack et al., *Proc. Natl. Acad. Sci. USA*, Vol. 83, p. 586, 1986. Generally, the probes are complementary to APC gene coding sequences, although probes to certain introns are also contemplated. An entire battery of nucleic acid probes is used to compose a kit for detecting alteration of wild-type APC genes. The kit allows for hybridization to the entire APC gene. The probes may overlap with each other or be contiguous.

If a riboprobe is used to detect mismatches with mRNA, it is complementary to the mRNA of the human wild-type

0 9 1 4 2 6 9 3 1 1 2 8 9 0

APC gene. The riboprobe thus is an anti-sense probe in that it does not code for the APC protein because it is of the opposite polarity to the sense strand. The riboprobe generally will be labeled with a radioactive, colorimetric, or fluorometric material, which can be accomplished by any means known in the art. If the riboprobe is used to detect mismatches with DNA it can be of either polarity, sense or anti-sense. Similarly, DNA probes also may be used to detect mismatches.

Nucleic acid probes may also be complementary to mutant alleles of the APC gene. These are useful to detect similar mutations in other patients on the basis of hybridization rather than mismatches. These are discussed above and referred to as allele-specific probes. As mentioned above, the A PC probes can also be used in Southern hybridizations to genomic DNA to detect gross chromosomal changes such as deletions and insertions. The probes can also be used to select cDNA clones of APC genes from tumor and normal tissues. In addition, the probes can be used to detect APC mRNA in tissues to determine if expression is diminished as a result of alteration of wild-type APC genes.

According to the present invention a method is also provided of supplying wild-type APC function to a cell which carries mutant APC alleles. Supplying such function should suppress neoplastic growth of the recipient cells. The wild-type APC gene or a part of the gene may be introduced into the cell in a vector such that the gene remains extrachromosomal. In such a situation the gene will be expressed by the cell from the extrachromosomal location. If a gene portion is introduced and expressed in a cell carrying a mutant APC allele, the gene portion should encode a part of the APC protein which is required for non-neoplastic growth of the cell. More preferred is the situation where the wild-type APC gene or a part of it is introduced into the mutant cell in such a way that it recombines with the endogenous mutant APC gene present in the cell. Such recombination requires a double recombination event which results in the correction of the APC gene mutation. Vectors for introduction of genes both for recombination and for extrachromosomal maintenance are known in the art and any suitable vector may be used. Methods for introducing DNA into cells such as electroporation, calcium phosphate co-precipitation and viral transduction are known in the art and the choice of method is within the competence of the routineer. Cells transformed with the wild-type A PC gene can be used as model systems to study cancer remission and drug treatments which promote such remission.

Similarly, cells and animals which carry a mutant APC allele can be used as model systems to study and test for substances which have potential as therapeutic agents. The cells are typically cultured epithelial cells. These may be isolated from individuals with APC mutations, either somatic or germline. Alternatively, the cell line can be engineered to carry the mutation in the APC allele. After a test substance is applied to the cells, the neoplastically transformed pheno-type of the cell will be determined. Any trait of neoplastically transformed cells can be assessed, including anchorage-independent growth, tumorigenicity in nude mice, invasiveness of cells, and growth factor dependence. Assays for each of these traits are known in the art.

Animals for testing therapeutic agents can be selected after mutagenesis of whole animals or after treatment of germline cells or zygotes. Such treatments include insertion of mutant A PC alleles, usually from a second animal species, as well as insertion of disrupted homologous genes. Alternatively, the endogenous APC gene(s) of the animals may be disrupted by insertion or deletion mutation. After test

substances have been administered to the animals, the growth of tumors must be assessed. If the test substance prevents or suppresses the growth of tumors, then the test substance is a candidate therapeutic agent for the treatment of FAP and/or sporadic cancers.

Polypeptides which have APC activity can be supplied to cells which carry mutant or missing APC alleles. The sequence of the APC protein is disclosed in FIG. 3 (SEQ ID NO:7). These two sequences differ slightly and appear to be 10 indicate the existence of two different forms of the APC protein. Protein can be produced by expression of the cDNA sequence in bacteria, for example, using known expression vectors. Alternatively, APC can be extracted from APC-producing mammalian cells such as brain cells. In addition, 15 the techniques of synthetic chemistry can be employed to synthesize APC protein. Any of such techniques can provide the preparation of the present invention which comprises the APC protein. The preparation is substantially free of other human proteins. This is most readily accomplished by 20 synthesis in a microorganism or in vitro.

Active APC molecules can be introduced into cells by microinjection or by use of liposomes, for example. Alternatively, some such active molecules may be taken up by cells, actively or by diffusion. Extracellular application of APC gene product may be sufficient to affect tumor growth. Supply of molecules with APC activity should lead to a partial reversal of the neoplastic state. Other molecules with APC activity may also be used to effect such a reversal, for example peptides, drugs, or organic compounds.

30 The present invention also provides a preparation of antibodies immunoreactive with a human APC protein. The antibodies may be polyclonal or monoclonal and may be raised against native APC protein, APC fusion proteins, or mutant APC proteins. The antibodies should be immunoreactive with APC epitopes, preferably epitopes not present on other human proteins. In a preferred embodiment of the invention the antibodies will immunoprecipitate APC proteins from solution as well as react with APC protein on 35 Western or immunoblots of polyacrylamide gels. In another preferred embodiment, the antibodies will detect APC proteins in paraffin or frozen tissue sections, using immunocytochemical techniques. Techniques for raising and purifying 40 antibodies are well known in the art and any such techniques may be chosen to achieve the preparation of the invention.

43 Predisposition to cancers as in FAP and GS can be ascertained by testing any tissue of a human for mutations of the APC gene. For example, a person who has inherited a germline APC mutation would be prone to develop cancers.

50 This can be determined by testing DNA from any tissue of the person's body. Most simply, blood can be drawn and DNA extracted from the cells of the blood. In addition, prenatal diagnosis can be accomplished by testing fetal cells, placental cells, or amniotic fluid for mutations of the APC gene. Alteration of a wild-type APC allele, whether for example, by point mutation or by deletion, can be detected by any of the means discussed above.

55

Molecules of cDNA according to the present invention are intron-free, APC gene ceding molecules. They can be made by reverse transcriptase using the APC mRNA as a template. These molecules can be propagated in vectors and cell lines as is known in the art. Such molecules have the sequence shown in SEQ ID NO:3. The cDNA can also be made using the techniques of synthetic chemistry given the sequence disclosed herein.

A short region of homology has been identified between APC and the human m3 muscarinic acetylcholine receptor

(mAChR). This homology was largely confined to 29 residues in which 6 out of 7 amino acids (EL(GorA)GLQA) were identical (See FIG. 4 (SEQ ID NO: 9)). Initially, it was not known whether this homology was significant, because many other proteins had higher levels of global homology 5 (though few had six out of seven contiguous amino acids in common). However, a study on the sequence elements controlling G protein activation by mAChR subtypes (Lechleiter et al., EMBO J., p. 4381 (1990)) has shown that a 21 amino acid region from the m3 mAChR completely 10 mediated G protein specificity when substituted for the 21 amino acids of m2 mA ChR at the analogous protein position. These 21 residues overlap the 19 amino acid homology between APC and m3 mA ChR.

This connection between APC and the G protein activating region of mAChR is intriguing in light of previous investigations relating G proteins to cancer. For example, the RAS oncogenes, which are often mutated in colorectal cancers (Vogelstein, et al., N. Engl. J. Med., Vol. 319, p. 525 (1988); Bos et al., Nature Vol. 327, p. 293 (1987)), are 15 members of the (1 protein family (Bourne, et al., Nature, Vol. 348, p. 125 (1990)) as is an in vitro transformation suppressor (Noda et al., Proc. Natl. Acad. Sci. USA, Vol. 86, p. 162 (1989)) and genes mutated in hormone producing tumors (Candis et al., Nature, Vol. 340, p. 692 (1989); Lyons et al., 20 Science, Vol. 249, p. 655 (1990)). Additionally, the gene responsible for neurofibromatosis (presumably a tumor suppressor gene) has been shown to activate the GTPase activity of RAS (Xu et al., Cell, Vol. 63, p. 835 (1990); Martin et al., Cell, Vol. 63, p. 843 (1990); Ballester et al., 25 Cell, Vol. 63, p. 851 (1990)). Another interesting link between G proteins and colon cancer involves the drug sulindac. This agent has been shown to inhibit the growth of benign colon tumors in patients with FAP, presumably by virtue of its activity as a cyclooxygenase inhibitor (Waddell et al., J. Surg. Oncology 24(1), 83 (1983); Wadell, et al., Am. J. Surg., 157(1), 175 (1989); Charneau et al., Gastroenterologie Clinique et Biologique 14(2), 153 (1990)). Cyclooxygenase is required to convert arachidonic acid to prostaglandins and other biologically active molecules. G proteins 30 are known to regulate phospholipase A2 activity, which generates arachidonic acid from phospholipids (Role et al., Proc. Natl. Acad. Sci. USA, Vol. 84, p. 3623 (1987); Kurachi et al., Nature, Vol. 337, 12 555 (1989)). Therefore we propose that wild-type APC protein functions by interacting 35 with a G protein and is involved in phospholipid metabolism. 40

The following are provided for exemplification purposes only and are not intended to limit the scope of the invention 45 which has been described in broad terms above. 50

EXAMPLE 1

This example demonstrates the isolation of a 5.5 Mb region of human DNA linked to the FAP locus. Six genes are 55 identified in this region, all of which are expressed in normal colon cells and in colorectal, lung, ad bladder tumors.

The cosmid markers YN5.64 and YN5.48 have previously been shown to delimit an 8 cM region containing the locus for FAP (Nakamura et al., Am. J. Hum. Genet. Vol. 43, p. 60 638 (1988)). Further linkage and pulse-field gel electrophoresis (PFGE) analysis with additional markers has shown that the FAP locus is contained within a 4 cM region bordered by cosmids EF5.44 and L5.99. In order to isolate clones representing a significant portion of this locus, a yeast 65 artificial chromosome (YAC) library was screened with various 5q21 markers. Twenty-one YAC clones, distributed

within six contigs and including 5.5 Mb from the region between YN5.64 and YN5.48, were obtained (FIG. 1A).

Three contigs encompassing approximately 4 Mb were contained within the central portion of this region. The 5 YAC's constituting these contigs, together with the markers used for their isolation and orientations, are shown in FIG. 1. These YAC contigs were obtained in the following way. To initiate each contig, the sequence of a genomic marker cloned from chromosome 5q21 was determined and used to 10 design primers for PCR. PCR was then carried out on pools of YAC clones distributed in microtiter trays as previously described (Anand et al., *Nucleic Acids Research*, Vol. 18, p. 1951 (1980)). Individual YAC clones from the positive pools were identified by further PCR or hybridization based 15 assays, and the YAC sizes were determined by PFGE.

To extend the areas covered by the original YAC clones, "chromosomal walking" was performed. For this purpose, YAC termini were isolated by a PCR based method and sequenced (Riley et al., *Nucleic Acids Research*, Vol. 18, p. 2887 (1990)). PCR primers based on these sequences were 20 then used to rescreen the YAC library. For example, the sequence from an intron of the FER gene (Hao et al., *Mol. Cell. Biol.*, Vol. 9, p. 1587 (1989)) was used to design PCR primers for isolation of the 28EC1 and SEH8 YACs. The 25 termini of the 28EC1 YAC were sequenced to derive markers RHE28 and LHE28, respectively. The sequences of these two markers were then used to isolate YAC clones 15CH12 (from RHE28) and 40CF1 and 29EF1 (from LHE28). These five YAC's formed a contig encompassing 1200 kb (contig 30 1, FIG. 1B).

Similarly, contig 2 was initiated using cosmid N5.66 sequences, and contig 3 was initiated using sequences both from the MCC gene and from cosmid EF5.44. A walk in the 35 telomeric direction from YAC 14FH1 and a walk in the opposite direction from YAC 39GG3 allowed connection of the initial contig 3 clones through YAC 37HG4 (FIG. 1B). YAC37HG4 was deposited at the National Collection of Industrial and Marine Bacteria (NCIMB), P.O. Box 31, 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland, under 40 Accession No. 40353 on Dec. 17, 1990.

Multipoint linkage analysis with the various markers used to define the contigs, combined with PFGE analysis, showed that contigs 1 and 2 were centromeric to contig 3. These 45 contigs were used as tools to orient and/or identify genes which might be responsible for FAP. Six genes were found to lie within this cluster of YAC's, as follows:

Contig #1: FER—The FER gene was discovered through its homology to the viral oncogene ABL (Hao et al., *supra*). It has an intrinsic tyrosine kinase activity, and in situ 50 hybridization with an FER probe showed that the gene was located at 5q11-23 (Morris et al., *Cytogenet. Cell. Genet.*, Vol. 53, p. 4, (1990)). Because of the potential role of this oncogene-related gene in neoplasia, we decided to evaluate it further with regards to the FAP locus. A human genomic 55 clone from FER was isolated (MF 2.3) and used to define a restriction fragment length polymorphism (RFLP), and the RFLP in turn used to map FER by linkage analysis using a panel of three generation families. This showed that FER was very tightly linked to previously defined polymorphic 60 markers for the FAP locus. The genetic mapping of FER was complemented by physical mapping using the YAC clones derived from FER sequences (FIG. 1B). Analysis of YAC contig 1 showed that FER was within 600 kb of cosmid marker M5.28, which maps to within 1.5 Mb of cosmid 65 L5.99 by PFGE of human genomic DNA. Thus, the YAC mapping results were consistent with the FER linkage data and PFGE analyses.

Contig 2: TB1—TB1 was identified through a cross-hybridization approach. Exons of genes are often evolutionarily conserved while introns and intergenic regions are much less conserved. Thus, if a human probe cross-hybridizes strongly to the DNA from non-primate species, there is a reasonable chance that it contains exon sequences. Subclones of the cosmids shown in FIG. 1 were used to screen Southern blots containing rodent DNA samples. A subclone of cosmid N5.66 (p 5.66-4) was shown to strongly hybridize to rodent DNA, and this clone was used to screen cDNA libraries derived from normal adult colon and fetal liver. The ends of the initial cDNA clones obtained in this screen were then used to extend the cDNA sequence. Eventually, 11 cDNA clones were isolated, covering 2314 bp. The gene detected by these clones was named TB1. Sequence analysis of the overlapping clones revealed an open reading frame (ORF) that extended for 1302 bp starting from the most 5' sequence data obtained (FIG. 2A). If this entire open reading frame were translated, it would encode 434 amino acids (SEQ ID NO:5). The product of this gene was not globally homologous to any other sequence in the current database but showed two significant local similarities to a family of ADP, ATP carrier/translocator proteins and mitochondrial brown fat uncoupling proteins which are widely distributed from yeast to mammals. These conserved regions of TB1 (underlined in FIG. 2A) may define a predictive motif for this sequence family. In addition, TB1 appeared to contain a signal peptide (or mitochondrial targeting sequence) as well as at least 7 transmembrane domains.

Contig 3: MCC, TB2, SRP and APC—The MCC gene was also discovered through a cross-hybridization approach, as described previously (Kinzler et al., Science Vol. 251, p. 1366 (1991)). The MCC gene was considered a candidate for causing FAP by virtue of its tight genetic linkage to FAP susceptibility and its somatic mutation in sporadic colorectal carcinomas. However, mapping experiments suggested that the coding region of MCC was approximately 50 kb proximal to the centromeric end of a 200 kb deletion found in an FAP patient. MCC cDNA probes detected a 10 kb mRNA transcript on Northern blot analysis of which 4151 bp, including the entire open reading frame, have been cloned. Although the 3' non-translated portion or an alternatively spliced form of MCC might have extended into this deletion, it was possible that the deletion did not affect the MCC gene product. We therefore used MCC sequences to initiate a YAC contig, and subsequently used the YAC clones to identify genes 50 to 250 kb distal to MCC that might be contained within the deletion.

In a first approach, the insert from YAC24ED6 (FIG. 1B) was radiolabelled and hybridized to a cDNA library from normal colon. One of the cDNA clones (YS39) identified in this manner detected a 3.1 kb mRNA transcript when used as a probe for Northern blot hybridization. Sequence analysis of the YS39 clone revealed that it encompassed 2283 nucleotides and contained an ORF that extended for 555 bp from the most 5' sequence data obtained. If all of this ORF were translated, it would encode 185 amino acids (SEQ ID NO:6) (FIG. 2B). The gene detected by YS39 was named TB2. Searches of nucleotide and protein databases revealed that the TB2 gene was not identical to any previously reported sequences nor were there any striking similarities.

Another clone (YS11) identified through the YAC 24ED6 screen appeared to contain portions of two distinct genes. Sequences from one end of YS11 were identical to at least 180 bp of the signal recognition particle protein SRP19 (Lingelbach et al. Nucleic Acids Research, Vol. 16, p. 9431

00000000000000000000000000000000

(1988). A second ORF, from the opposite end of clone YS11, proved to be identical to 78 bp of a novel gene which was independently identified through a second YAC-based approach. For the latter, DNA from yeast cells containing YAC 14FH1 (FIG. 1B) was digested with EcoRI and sub-cloned into a plasmid vector. Plasmids that contained human DNA fragments were selected by colony hybridization using total human DNA as a probe. These clones were then used to search for cross-hybridizing sequences as described above for TB1, and the cross-hybridizing clones were subsequently used to screen cDNA libraries. One of the cDNA clones discovered in this way (FH38) contained a long ORF (2496 bp), 78 bp of which were identical to the above-noted sequences in YS11. The ends of the FH38 cDNA clone were then used to initiate cDNA walking to extend the sequence. Eventually, 85 cDNA clones were isolated from normal colon, brain and liver cDNA libraries and found to encompass 8973 nucleotides of contiguous transcript. The gene corresponding to this transcript was named APC. When used as probes for Northern blot analysis, APC cDNA clones hybridized to a single transcript of approximately 9.5 kb, suggesting that the great majority of the gene product was represented in the cDNA clones obtained. Sequences from the 5' end of the APC gene were found in YAC 37HG4 but not in YAC 14FH1. However, the 3' end of the APC gene was found in 14FH1 as well as 37HG4. Analogously, the 5' end of the MCC ceding region was found in YAC clones 19AA9 and 266C3 but not 24ED6 or 14FH1, while the 3' end displayed the opposite pattern. Thus, MCC and APC transcription units pointed in opposite directions, with the direction of transcription going from centromeric to telomeric in the case of MCC, and telomeric to centromeric in the case of APC. PFGE analysis of YAC DNA digested with various restriction endonucleases showed that TB2 and SRP were between MCC and APC, and that the 3' ends of the ceding regions of MCC and APC were separated by approximately 150 kb (FIG. 1B).

Sequence analysis of the APC cDNA clones revealed an open reading frame of 8,535 nucleotides. The 5' end of the ORF contained a methionine codon (codon 1) that was preceded by an in-frame stop codon 9 bp upstream, and the 3' end was followed by several in-frame stop codons. The protein produced by initiation at codon 1 would contain 2,842 amino acids (SEQ ID NO:7) (FIG. 3). The results of database searching with the APC gene product were quite complex due to the presence of large segments with locally biased amino acid compositions. In spite of this, APC could be roughly divided into two domains. The N-terminal 25% of the protein had a high content of leucine residues (12%) and showed local sequence similarities to myosins, various intermediate filament proteins (e.g., desmin, vimentin, neurofilaments) and *Drosophila armadillo/human plakoglobin*. The latter protein is a component of adhesive junctions (desmosomes) joining epithelial cells (Franke et al., Proc. Natl. Acad. Sci. U.S.A., Vol. 86, p. 4027 (1989); Perfer et al., Cell, Vol. 63, p. 1167 (1990)) The C-terminal 75% of APC (residues 731-2832) is 17% serine by composition with serine residues more or less uniformly distributed. This large domain also contains local concentrations of charged (mostly acidic) and proline residues. There was no indication of potential signal peptides, transmembrane regions, or nuclear targeting signals in APC, suggesting a cytoplasmic localization.

To detect short similarities to APC, a database search was performed using the PAM-40 matrix (Altschul. J. Mol. Bio., Vol. 219, p. 555 (1991). Potentially interesting matches to several proteins were found. The most suggestive of these

involved the ral2 gene product of yeast, which is implicated in the regulation of ras activity (Fukui et al., Mol. Cell. Biol., Vol. 9, p. 5617 (1989)). Little is known about how ral2 might interact with ras but it is interesting to note the positively-charged character of this region in the context of the 5 negatively-charged GAP interaction region of ras. A specific electrostatic interaction between ras and GAP-related proteins has been proposed.

Because of the proximity of the MCC and APC genes, and the fact that both are implicated in colorectal tumorigenesis, 10 we searched for similarities between the two predicted proteins. Bourne has previously noted that MCC has the potential to form alpha helical coiled coils (Nature, Vol. 351, p. 188 (1991). Lupas and colleagues have recently developed a program for predicting coiled coil potential from 15 primary sequence data (Science, Vol. 252, p. 1162 (1991) and we have used their program to analyze both MCC and APC. Analysis of MCC indicated a discontinuous pattern of coiled-coil domains separated by putative "hinge" or "spare" regions similar to those seen in laminin and other 20 intermediate filament proteins. Analysis of the APC sequence revealed two regions in the N-terminal domain which had strong coiled coil-forming potential, and these regions corresponded to those that showed local similarities with myosin and IF proteins on database searching. In 25 addition, one other putative coiled coil region was identified in the central region of APC. The potential for both APC and MCC to form coiled coils is interesting in that such structures often mediate homo- and hetero-oligomerization.

Finally, it had previously been noted that MCC shared a 30 short similarity with the region of the m3 muscarinic acetylcholine receptor (mAChR) known to regulate specificity of G-protein coupling. The APC gene also contained a local similarity to the region of the m3 mAChR (SEQ ID NO:9) 35 that overlapped with the MCC similarity (SEQ ID NO:10) (FIG. 4B). Although the similarities to ral2 (SEQ ID NO:8) (FIG. 4A) and m3 mAChR (SEQ ID NO:9) (FIG. 4B) were not statistically significant, they were intriguing in light of previous observations relating G-proteins to neoplasia.

Each of the six genes described above was expressed in 40 normal colon mucosa, as indicated by their representation in colon cDNA libraries. To study expression of the genes in neoplastic colorectal epithelium, we employed reverse transcription-polymerase chain reaction (PCR) assays. 45 Primers based on the sequences of FER, TB1, TB2, MCC, and APC were each used to design primers for PCR performed with cDNA templates. Each of these genes was found to be expressed in normal colon, in each of ten cell 50 lines derived from colorectal cancers, and in tumor cell lines derived from lung and bladder tumors. The ten colorectal cancer cell lines included eight from patients with sporadic CRC and two from patients with FAP.

EXAMPLE 2

This example demonstrates a genetic analysis of the role 55 of the FER gene in FAP and sporadic colorectal cancers.

We considered FER as a candidate because of its proximity to the FAP locus as judged by physical and genetic criteria (see Example 1), and its homology to known 60 tyrosine kinases with oncogenic potential. Primers were designed to PCR-amplify the complete coding sequence of FER from the RNA of two colorectal cancer cell lines derived from FAP patients. cDNA was generated from RNA and used as a template for PCR. The primers used were 65 5'-AGAAGGATCCCTTGTGCAGTGTGGA-3' (SEQ ID NO:95) and 5'-GACAGGATCCTGAAGCTGAGTTG-3'

(SEQ ID NO:96). The underlined nucleotides were altered from the true FER sequence to create BamHI sites. The cell lines used were JW and Difi, both derived from colorectal cancers of FAP patients. (C. Paraskeva, B. G. Buckle, D. Sheer, C. B. Wigley, *Int. J. Cancer* 34, 49 (1984); M. E. Gross et al., *Cancer Res.* 51, 1452 (1991). The resultant 2554 basepair fragments were cloned and sequenced in their entirety. The PCR products were cloned in the BamHI site of Bluescript SK (Stratagene) and pools of at least 50 clones were sequenced en masse using T7 polymerase, as described in Nigro et al., *Nature* 342, 705 (1989).

Only a single conservative amino acid change (GTG→CTG, creating a val to leu substitution at codon 439) was observed. The region surrounding this codon was then amplified from the DNA of individuals without FAP and this substitution was found to be a common polymorphism, not specifically associated with FAP. Based on these results, we considered it unlikely (though still possible) the FER gene was responsible for FAP. To amplify the regions surrounding codon 439, the following primers were used: 5'-TCGAAAGTGTGAAGAG-3' (SEQ ID NO:97) and 5'-GGAATAATTAGGTCTCCAA-3' (SEQ ID NO:98). PCR products were digested with PstI, which yields a 50 bp fragment if codon 439 is leucine, but 26 and 24 bp fragments if it is valine. The primers used for sequencing were chosen from the FER cDNA sequence in Hao et al., *supra*.

EXAMPLE 3

30 This example demonstrates the genetic analysis of MCC, TB2, SRP and APC in FAP and sporadic colorectal tumors. Each of these genes is linked and encompassed by contig 3 (see FIG. 1).

Several lines of evidence suggested that this contig was of particular interest. First, at least three of the four genes in this contig were within the deleted region identified in two FAP patients. (See Example 5 *infra*.) Second, allelic deletions of chromosome 5q21 in sporadic cancers appeared to be centered in this region. (Ashton-Rickardt et al., 1990; Oncogene, in press; and Miki et al., *Jpn. J. Cancer Res.*, in press.) Some tumors exhibited loss of proximal RFLP markers (up to and potentially including the 5' end of MCC), but no loss of markers distal to MCC. Other tumors exhibited loss of markers distal to and perhaps including the 3' end of MCC, but no loss of sequences proximal to MCC. This suggested either that different ends of MCC were affected by loss in all such cases, or alternatively, that two genes (one proximal to and perhaps including MCC, the other distal to MCC) were separate targets of deletion. Third, clones from each of the six FAP region genes were used as probes on Southern blots containing tumor DNA from patients with Sporadic CRC. Only two examples of somatic changes were observed in over 200 tumors studied: a rearrangement/deletion whose centromeric end was located within the MCC gene (Kinzler et al., *supra*) and an 800 bp insertion within the APC gene between nucleotides 4424 and 5584. Fourth, point mutations of MCC were observed in two tumors (Kinzler et al.) *supra* strongly suggesting that MCC was a target of mutation in at least some sporadic colorectal cancers.

Based on these results, we attempted to search for subtle alterations of contig 3 genes in patients with FAP. We chose to examine MCC and APC, rather than TB2 or SRP, because of the somatic mutations in MCC and APC noted above. To facilitate the identification of subtle alterations, the genomic sequences of MCC and APC exons were determined (see Table I, SEQ ID NO:24-38).

TABLE I

APC EXONS

¹Relative to predicted translation initiation site

²Small case letters represent introns, large case letters represent exons

The entire 3' end of the cloned APC cDNA (nt 1956-8973) appeared to be encoded in this exon, as indicated by restriction endonuclease mapping and sequencing of the cloned genomic DNA. The ORF ended at nt 8535. The extreme 3' end of the APC transcript has not yet been identified.

These sequences were used to design primers for PCR analysis of constitutional DNA from FAP patients.

We first amplified eight exons and surrounding introns of the MCC gene in affected individuals from 90 different FAP kindreds. The PCR products were analyzed by a ribonuclease (RNase) protein assay. In brief, the PCR products were hybridized to *in vitro* transcribed RNA probes representing the normal genomic sequences. The hybrids were digested with RNase A, which can cleave at single base pair mismatches within DNA-RNA hybrids, and the cleavage products were visualized following denaturing gel electrophoresis. Two separate RNase protection analyses were performed for each exon, one with the sense and one with the antisense strand. Under these conditions, approximately 40% of all mismatches are detectable. Although some amino acid variants of MCC were observed in FAP patients, all such variants were found in a small percentage of normal individuals. These variants were thus unlikely to be responsible for the inheritance of FAP. 30 35 40

We next examined three exons of the A PC gene. The three exons examined included those containing nt 822-930, 931-1309, and the first 300 nt of the most distal exon (nt 1956-2256). PCR and RNase protection analysis were performed as described in Kinzler et al. *supra*, using the primers underlined in Table I (SEQ ID NO:24-38). The primers for nt 1956-2256 were 5'-GCAAATCTAAGAGAGAACAA-3' (SEQ ID NO:99) and 5'-GATGGCAAGCTTGAGCCAG-3' (SEQ ID NO:100).

In 90 kindreds, the RNase protection method was used to screen for mutations and in an additional 13 kindreds, the PCR products were cloned and sequenced to search for mutations not detectable by RNase protection. PCR products were cloned into a Bluescript vector modified as described in T. A. Holton and M. W. Graham, Nucleic Acids Res. 19, 1156 (1991). A minimum of 100 clones were pooled and sequenced. Five variants were detected among the 103 kindreds analyzed. Cloning and subsequent DNA sequencing of the PCR product of patient P21 indicated a C to T transition in codon 413 that resulted in a change from arginine to cysteine. This amino acid variant was not observed in any of 200 DNA samples from individuals without FAP. Cloning and sequencing of the PCR product

from patients P24 and P34, who demonstrated the same abnormal RNase protection pattern indicated that both had a C to T transition at codon 801 that resulted in a change from 30 arginine (CGA) to a stop codon (TGA). This change was not present in 200 individuals without FAP. As this point mutation resulted in the predicted loss of the recognition site for the enzyme Taq I, appropriate PCR products could be digested with Taq I to detect the mutation. This allowed us 35 to determine that the stop codon co-segregated with disease phenotype in members of the family of P24. The inheritance of this change in affected members of the pedigree provides additional evidence for the importance of the mutation.

40 Cloning and sequencing of the PCR product from FAP patient P93 indicated a C to G transversion at codon 279, also resulting in a stop codon (change from TCA to TGA). This mutation was not present in 200 individuals without FAP. Finally, one additional mutation resulting in a serine 45 (TCA) to stop codon (TGA) at codon 712 was detected in a single patient with FAP (patient P60).

The five germline mutations identified are summarized in Table IIA, as well as four others discussed in Example 9.

50

TABLE IIA

Germline mutations of the APC gene in FAP and GS Patients

EXTRA-COLO-PATIENT-DISEASE	NIC	PATIENT	DISEASE	NUCLEOTIDE CHANGE		AMINO ACID CHANGE		AGE
				CODON	CHANGE	Ser->Stop	Arg->Stop	
	93		Osteoma	279	TCA-> <u>TGA</u>			39
<u>Tumor</u>								
	24			301	CGA-> <u>TGA</u>			46
	34			301	CGA-> <u>TGA</u>			27
	21			413	CGC-> <u>TGC</u>			24

TABLE II A-continued

Germline mutations of the APC gene in FAP and GS Patients					
EXTRA-COLO-NIC-PATIENT-DISEASE	CODON	NUCLEO-TIDE CHANGE	AMINO ACID CHANGE	AGE	
Osteoma					10
60	712	TCA-> <u>TGA</u>	Ser->Stop	37	Mandibular
Osteoma					
3746	243	CAGAG->CAG	splice-junction		15
3460	301	CGA-> <u>TGA</u>	Arg->Stop		
3827	456	CTTCA->CTTCA	frameshift		
3712	500	T-> <u>G</u>	Tyr->Stop		

* The mutated nucleotides are underlined.

In addition to these germline mutations, we identified several somatic mutations of MCC and APC in sporadic CRC's. Seventeen MCC exons were examined in 90 sporadic colorectal cancers by RNase protection analysis. In each case where an abnormal RNase protection pattern was observed, 25 the corresponding PCR products were cloned and sequenced. This led to the identification of six point mutations (two described previously) (Kinzler et al., supra), each of which was not found in the germline of these patients (Table II B). 30

TABLE II B

Somatic Mutations in Sporadic CRC Patients			
PATIENT	CODON ¹	NUCLEOTIDE CHANGE	AMINO ACID CHANGE
T35	MCC 12	GAG/gtaaga-> GAG/gtaaaa	(Splice Donor)
T16	MCC 145	ctcag/GGA-> atcag/GGA	(Splice Acceptor)
T47	MCC 267	CGG-> <u>CTG</u>	Arg->Leu
T81	MCC 490	TCG-> <u>TIG</u>	Ser->Leu
T35	MCC 506	CGG-> <u>CAG</u>	Arg->Gln
T91	MCC 698	GCT-> <u>GT</u>	Ala->Val
T34	APC 288	CCAGT->CCC <u>AGCCAGT</u>	(Insertion)
T27	APC 331	CGA-> <u>TGA</u>	Arg->Stop
T135	APC 437	CAA/gtaa->CAA/gcaa	(Splice Donor)
T20I	APC 1338	CAG-> <u>TAG</u>	Gln->Stop

For splice site mutations, the codon nearest to the mutation is listed. The underlined nucleotides were mutant; small case letters represent introns, 50 large case letters represent exons

Four of the mutations resulted in amino acid substitutions and two resulted in the alteration of splice site consensus elements. Mutations at analogous splice site positions in other genes have been shown to alter RNA processing in vivo and in vitro. 55

Three exons of APC were also evaluated in sporadic tumors. Sixty tumors were screened by RNase protection, and an additional 98 tumors were evaluated by sequencing. The exons examined included nt 822-930, 931-1309, and 60 1406-1545 (Table I). A total of three mutations were identified, each of which proved to be somatic. Tumor T27 contained a somatic mutation of CGA (arginine) to TGA (stop codon) at codon 33. Tumor T135 contained a GT to GC change at a splice donor site. Tumor T34 contained a 5 bp 65 insertion (CAGCC between codons 288 and 289) resulting in a stop at codon 291 due to a frameshift.

We serendipitously discovered one additional somatic mutation in a colorectal cancer. During our attempt to define the sequences and splice patterns of the MCC and APC gene products in colorectal epithelial cells, we cloned cDNA from 5 the colorectal cancer cell line SW480. The amino acid sequence of the MCC gene from SW480 was identical to that previously found in clones from human brain. The sequence of APC in SW480 cells, however, differed significantly, in that a transition at codon 1338 resulted in a 10 change from glutamine (CAG) to a stop codon (TAG). To determine if this mutation was somatic, we recovered DNA from archival paraffin blocks of the original surgical specimen (T201) from which the tumor cell line was derived 28 years ago.

15 DNA was purified from paraffin sections as described in S. E. Goelz, S. R. Hamilton, and B. Vogelstein. *Biochem. Biophys. Res. Comm.* 130, 118 (1985). PCR was performed as described in reference 24, using the primers 5'-GTTCCAGCAGTGTACAG-3' (SEQ ID NO:101) and 20 5'-GGGAGATTCGCTCCCTGA-3' (SEQ ID NO:102). A PCR product containing codon 1338 was amplified from the archival DNA and used to show that the stop codon represented a somatic mutation present in the original primary tumor and in cell lines derived from the primary and 25 metastatic tumor sites, but not from normal tissue of the patient.

The ten point mutations in the MCC and APC genes so far discovered in sporadic CRCs are summarized in Table II B. Analysis of the number of mutant and wild-type PCR clones 30 obtained from each of these tumors showed that in eight of the ten cases, the wild-type sequence was present in approximately equal proportions to the mutant. This was confirmed by RFLP analysis using flanking markers from chromosome 5q which demonstrated that only two of the ten tumors 35 (T135 and T201) exhibited an allelic deletion on chromosome 5q. These results are consistent with previous observations showing that 20-40% of sporadic colorectal tumors had allelic deletions of chromosome 5q. Moreover, these data suggest that mutations of 5q21 genes are not limited to 40 those colorectal tumors which contain allelic deletions of this chromosome.

EXAMPLE 4

45 This example characterizes small, nested deletions in DNA from two unrelated FAP patients.

DNA from 40 FAP patients was screened with cosmids that has been mapped into a region near the APC locus to identify small deletions or rearrangements. Two of these 50 cosmids, L5.71 and L5.79, hybridized with a 1200 kb *N*otI fragment in DNAs from most of the FAP patients screened.

The DNA of one FAP patient, 3214, showed only a 940 kb *N*otI fragment instead of the expected 1200 kb fragment. DNA was analyzed from four other members of the patient's 55 immediate family; the 940 kb fragment was present in her affected mother (4711), but not in the other, unaffected family members. The mother also carried a normal 1200 kb *N*otI fragment that was transmitted to her two unaffected offspring. These observations indicated that the mutant 60 polyposis allele is on the same chromosome as the 940 kb *N*otI fragment. A simple interpretation is that APC patients 3214 and 4711 each carry a 260 kb deletion within the APC locus.

If a deletion were present, then other enzymes might also 65 be expected to produce fragments with altered mobilities. Hybridization of L5.79 to *N*ruI-digested DNAs from both affected members of the family revealed a novel *N*ruI

fragment of 1300 kb, in addition to the normal 1200 kb NruI fragment. Furthermore, MluI fragments in patients 3214 and 4711 also showed an increase in size consistent with the deletion of an MluI site. The two chromosome 5 homologs of patient 3214 were segregated in somatic cell hybrid lines; HHW1155 (deletion hybrid) carried the abnormal homolog and HHW1159 (normal hybrid) carried the normal homolog.

Because patient 8214 showed a 940 kb NotI fragment, she had not inherited the 1200 kb fragment present in the unaffected father's DNA. This observation suggests that he must be heterozygous for, and have transmitted, either a deletion of the L5.79 probe region or a variant NotI fragment too large to resolve on the gel system. As expected, the hybrid cell line HHW1159, which carries the paternal homolog, revealed no resolved Not fragment when probed with L5.79. However, probing of HHW1159 DNA with L5.79 following digestion with other enzymes did reveal restriction fragments, demonstrating the presence of DNA homologous to the probe. The father is, therefore, interpreted as heterozygous for a polymorphism at the NotI site, with one chromosome 5 having a 1200 kb NotI fragment and the other having a fragment too large to resolve consistently on the gel. The latter was transmitted to patient 3214.

When double digests were used to order restriction sites within the 1200 kb NotI fragment, L5.71 and L5.79 were both found to lie on a 550 kb NotI-NruI fragment and, therefore, on the same side of an NruI site in the 1200 kb NotI fragment. To obtain genomic representation of sequences present over the entire 1200 kb NotI fragment, we constructed a library of small-fragment inserts enriched for sequences from this fragment. DNA from the somatic cell hybrid HHW141, which contains about 40% of chromosome 5, was digested with NotI and electrophoresed under pulsed-field gel (PFG) conditions; EcoRI fragments from the 1200 kb region of this gel were cloned into a phage vector. Probe Map30 was isolated from this library. In normal individuals probe Map30 hybridizes to the 1200 kb NotI fragment and to a 200 kb NruI fragment. This latter hybridization places Map30 distal, with respect to the locations of L5.71 and L5.79, to the NruI site of the 550 kb NotI-NruI fragment.

Because Map30 hybridized to the abnormal, 1300 kb NruI fragment of patient 3214, the locus defined by Map30 lies outside the hypothesized deletion. Furthermore, in normal chromosomes Map30 identified a 200 kb NruI fragment and L5.79 identified a 1200 kb NruI fragment; the hypothesized deletion must, therefore, be removing an NruI site, or sites, lying between Map30 and L5.79, and these two probes must flank the hypothesized deletion. A restriction map of the genomic region, showing placement of these probes, is shown in FIG. 5.

A *NotI* digest of DNA from another FAP patient, 3824, was probed with *L5.79*. In addition to the 1200 kb normal *NotI* fragment, a fragment of approximately 1100 kb was observed, consistent with the presence of a 100 kb deletion in one chromosome 5. In this case, however, digestion with *NruI* and *MluI* did not reveal abnormal bands, indicating that if a deletion were present, its boundaries must lie distal to the *NruI* and *MluI* sites of the fragments identified by *L5.79*. Consistent with this expectation, hybridization of *Map30* to DNA from patient 3824 identified a 760 kb *MluI* fragment in addition to the expected 860 kb fragment, supporting the interpretation of a 100 kb deletion in this patient. The two chromosome 5 homologs of patient 3824 were segregated in somatic cell hybrid lines; *HHW1291* was found to carry only the abnormal homolog and *HHW1290* only the normal homolog.

That the 860 kb *Mlu*I fragment identified by Map30 is distinct from the 830 kb *Mlu*I fragment identified previously

by L5.79 was demonstrated by hybridization of Map30 and L5.79 to a NotI-MluI double digest of DNA from the hybrid cell (HHW1159) containing the nondeleted chromosome 5 homolog of patient 3214. As previously indicated, this hybrid is interpreted as missing one of the NotI sites that define the 1200 kb fragment. A 620 kb NotI-MluI fragment was seen with probe L5.79, and an 860 kb fragment was seen with Map30. Therefore, the 830 kb MluI fragment recognized by probe L5.79 must contain a NotI site in HHW1159 DNA; because the 860 kb MluI fragment remains intact, it does not carry this NotI site and must be distinct from the 830 kb MluI fragment.

EXAMPLE 5

15 This example demonstrates the isolation of human sequences which span the region deleted in the two unrelated FAP patients characterized in Example 4.

20 A strong prediction of the hypothesis that patients 8214 and 3824 carry deletions is that some sequences present on normal chromosome 5 homologs would be missing from the hypothesized deletion homologs. Therefore, to develop genomic probes that might confirm the deletions, as well as to identify genes from the region, YAC clones from a contig seeded by cosmid L5.79 were localized from a library containing seven haploid human genome equivalents (Albertsen et al., Proc. Natl. Acad. Sci. U.S.A., Vol. 87, pp. 4256-4260 (1990)) with respect to the hypothesized deletions. Three clones, YACs 57B8, 310D8, and 183H12, were found to overlap the deleted region.

30 Importantly, one end of YAC 57B8 (clone AT57) was found to lie within the patient 3214 deletion. Inverse polymerase chain reaction (PCR) defined the end sequences of the insert of YAC 57B8. PCR primers based on one of these 35 end sequences repeatedly failed to amplify DNA from the somatic cell hybrid (HHW1155) carrying the deleted homolog of patient 3214, but did amplify a product of the expected size from the somatic cell hybrid (HHW1159) carrying the normal chromosome 5 homolog. This result 40 supported the interpretation that the abnormal restriction fragments found in the DNA of patient 3214 result from a deletion.

Additional support for the hypothesis of deletion in DNA from patient 3214 came from subcloned fragments of YAC 183H12, which spans the region in question. Y11, an EcoRI fragment cloned from YAC 183H12, hybridized to the normal, 1200 kb NotI fragment of patient 4711, but failed to hybridize to the abnormal, 940 kb NotI fragment of 4711 or to DNA from deletion cell line HHW1155. This result confirmed the deletion in patient 3214.

Two additional EcoRI fragments from YAC 183H12, Y10 and Y14, were localized within the patient 3214 deletion by their failure to hybridize to DNA from HHW1155. Probe Y10 hybridizes to a 150 kb NruI fragment in normal 55 chromosome 5 homologs. Because the 3214 deletion creates the 1300 kb NruI fragment seen with the probes L5.79 and Map30 that flank the deletion, these NruI sites and the 150 kb NruI fragment lying between must be deleted in patient 3214. Furthermore, probe Y10 hybridizes to the same 620 kb 60 NotI-MluI fragment seen with probe L5.79 in normal DNA, indicating its location as L5.79-proximal to the deleted MluI site and placing it between the MluI site and the L5.79-proximal NruI site. The MluI site must, therefore, lie between the NruI sites that define the 150 kb NruI fragment 65 (see FIG. 5).

Probe Y11 also hybridized to the 150 kb NruI fragment in the normal chromosome 5 homolog, but failed to hybridize

to the 620 kb NotI-MluI fragment, placing it L5.79-distal to the MluI site, but proximal to the second NruI site. Hybridization to the same (860 kb) MluI fragment as Map30 confirmed the localization of probe Y11 L5.79-distal to the MluI site. 5

Probe Y14 was shown to be L5.79-distal to both deleted NruI sites by virtue of its hybridization to the same 200 kb NruI fragment of the normal chromosome 5 seen with Map30. Therefore, the order of these EcoRI fragments derived from YAC 183H12 and deleted in patient 3214, with 10 respect to L5.79 and Map30, is L5.79-Y10-Y11-Y14-Map30.

The 100 kb deletion of patient 3824 was confirmed by the failure of aberrant restriction fragments in this DNA to hybridize with probe Y11, combined with positive hybridizations to probes Y10 and/or Y14. Y10 and Y14 each hybridized to the 1100 kb NotI fragment of patient 3824 as well as to the normal 1200 kb NotI fragment, but Y11 hybridized to the 1200 kb fragment only. In the MluI digest, 15 probe Y14 hybridized to the 860 kb and 760 kb fragments of patient 3824 DNA, but probe Y11 hybridized only to the 860 kb fragment. We conclude that the basis for the alteration in fragment size in DNA from patient 3824 is, indeed, a deletion. Furthermore, because probes Y10 and 20 Y14 are missing from the deleted 3214 chromosome, but present on the deleted 3824 chromosome, and they have been shown to flank probe Y11, the deletion in patient 3824 must be nested within the patient 3214 deletion. 25

Probes Y10, Y11, Y14 and Map30 each hybridized to 30 YAC 310D8, indicating that this YAC spanned the patient 3824 deletion and at a minimum, most of the 3214 deletion. The YAC characterizations, therefore, confirmed the presence of deletions in the patients and provided physical representation of the deleted region. 35

EXAMPLE 6

This example demonstrates that the MCC coding sequence maps outside of the region deleted in the two FAP patients characterized in Example 4. 40

An intriguing FAP candidate gene, MCC, recently was ascertained with cosmid L5.71 and was shown to have undergone mutation in colon carcinomas (Kinzler et al., *supra*). It was therefore of interest to map this gene with respect to the deletions in APC patients. Hybridization of 45 MCC probes with an overlapping series of YAC clones extending in either direction from L5.71 showed that the 3' end of MCC must be oriented toward the region of the two APC deletions.

Therefore, two 3' cDNA clones from MCC were mapped 50 with respect to the deletions: clone 1CI (bp 2378-4181) and clone 7 (bp 2890-3560). Clone 1CI contains sequences from the C-terminal end of the open reading frame, which stops at nucleotide 2708, as well as 3' untranslated sequence. Clone 7 contains sequence that is entirely 3' to the open 55 reading frame. Importantly, the entire 3' untranslated sequence contained in the cDNA clones consists of a single 2.5 kb exon. These two clones were hybridized to DNAs from the YACs spanning the FAP region. Clone 7 fails to hybridize to YAC 310D8, although it does hybridize to 60 YACs 183H12 and 57B8; the same result was obtained with the cDNA 1CI. Furthermore, these probes did show hybridization to DNAs from both hybrid cell lines (HWW1159 and HWW1155) and the lymphoblastoid cell line from patient 3214, confirming their locations outside the deleted region. 65 Additional mapping experiments suggested that the 3' end of the MCC cDNA clone contig is likely to be located more

than 45 kb from the deletion of patient 3214 and, therefore, more than 100 kb from the deletion of patient 3824.

EXAMPLE 7

5 This example identifies three genes within the deleted region of chromosome 5 in the two unrelated FAP patients characterized in Example 4.

Genomic clones were used to screen cDNA libraries in 10 three separate experiments. One screening was done with a phage clone derived from YAC 310D8 known to span the 260 kb deletion of patient 3214. A large-insert phage library was constructed from this YAC; screening with Y11 identified λ 205, which mapped within both deletions. When 15 clone λ 205 was used to probe a random-, plus oligo(dT)-, primed fetal brain cDNA library (approximately 300,000 phage), six cDNA clones were isolated and each of them mapped entirely within both deletions. Sequence analysis of 20 these six clones formed a single cDNA contig, but did not reveal an extended open reading frame. One of the six cDNAs was used to isolate more cDNA clones, some of 25 which crossed the L5.71-proximal breakpoint of the 3824 deletion, as indicated by hybridization to both chromosome of this patient. These clones also contained an open reading frame, indicating a transcriptional orientation proximal to distal with respect to L5.71. This gene was named DP1 (deleted in polyposis 1). This gene is identical to TB2 described above.

cDNA walks yielded a cDNA contig of 3.0–3.5 kb, and 30 included two clones containing terminal poly(A) sequences. This size corresponds to the 3.5 kb band seen by Northern analysis. Sequencing of the first 3163 bp of the cDNA contig revealed an open reading frame extending from the first base to nucleotide 631, followed by a 2.5 kb 3' untranslated 35 region. The sequence surrounding the methionine codon at base 77 conforms to the Kozak consensus of an initiation methionine (Kozak, 1984). Failed attempts to walk farther, coupled with the similarity of the lengths of isolated cDNA and mRNA, suggested that the NH₂-terminus of the DP1 40 protein had been reached. Hybridization to a combination of genomic and YAC DNAs cut with various enzymes indicated the genomic coverage of DP1 to be approximately 30 kb.

Two additional probes for the locus, YS-11 and YS-39, 45 which had been ascertained by screening of a cDNA library with an independent YAC probe identified with MCC sequences adjacent to L5.71, were mapped into the deletion region. YS-39 was shown to be a cDNA identical in sequence to DP1. Partial characterization of YS-11 had 50 shown that 200 bp of DNA sequence at one end was identical to sequence coding for the 19 kd protein of the ribosomal signal recognition particle, SRP19 (Lingelbach et al., *supra*). Hybridization experiments mapped YS-11 within both deletions. The sequence of this clone, however, was 55 found to be complex. Although 454 bp of the 1032 bp sequence of YS-11 were identical to the GenBank entry for the SRP19 gene, another 578 bp appended 5' to the SRP19 sequence was found to consist of previously unreported sequence containing no extended open reading frames. This 60 suggested that YS-11 was either a chimeric clone containing two independent inserts or a clone of an incompletely processed or aberrant message. If YS-11 were a conventional chimeric clone, the independent segments would not be expected to map to the same physical region. The 65 segments resulting from anomalous processing of a continuous transcript, however, would map to a single chromosomal region.

Inverse PCR with primers specific to the two ends of YS-11, the SRP19 end and the unidentified region, verified that both sequences map within the YAC 310D8; therefore, YS-11 is most likely a clone of an immature or anomalous mRNA species. Subsequently, both ends were shown to lie 5 with the deleted region of patient 3824, and YS-11 was used to screen for additional cDNA clones.

Of the 14 cDNA clones selected from the fetal brain library, one clone, V5, was of particular interest in that it contained an open reading frame throughout, although it 10 included only a short identity to the first 78 5' bases of the YS-11 sequence. Following the 78 bp of identical sequence, the two cDNA sequences diverged at an AG. Furthermore, divergence from genomic sequence was also seen after these 78 bp, suggesting the presence of a splice junction, and 15 supporting the view that YS-11 represents an irregular message.

Starting with V5, successive 5' and 3' walks were performed; the resulting cDNA contig consisted of more than 100 clones, which defined a new transcript, DP2. Clones 20 walking in the 5' direction crossed the 3824 deletion breakpoint farthest from L5.71; since its 3' end is closer to this cosmid than its 5' end, the transcriptional orientation of DP2 is opposite to that of MCC and DP1.

The third screening approach relied on hybridization with a 120 kb MluI fragment from YAC 57B8. This fragment hybridizes with probe Y11 and completely spans the 100 kb deletion in patient 3824. The fragment was purified on two preparative PFGs, labeled, and used to screen a fetal brain 25 cDNA library. A number of cDNA clones previously identified in the development of the DP1 and DP2 contigs were 30 reascertained. However, 19 new cDNA clones mapped into the patient 3824 deletion. Analysis indicated that these 19 formed a new contig, DP3, containing a large open reading 35 frame.

A clone from the 5' end of this new cDNA contig hybridized to the same EcoRI fragment as the 3' end of DP2. Subsequently, the DP2 and DP3 contigs were connected by a single 5' walking step from DP3, to form the single contig 40 DP2.5. The complete nucleotide sequence of DP2.5 is shown in FIG. 9.

The consensus cDNA sequence of DP2.5 suggests that the entire coding sequence of DP2.5 has been obtained and is 8532 bp long. The most 5' ATG codon occurs two codons from an in-frame stop and conforms to the Kozak initiation consensus (Kozak, Nucl. Acids. Res., Vol. 12, p. 857-872 1984). The 3' open reading frame breaks down over the final 1.8 kb, giving multiple stops in all frames. A poly(A) sequence was found in one clone approximately 1 kb into the 3' untranslated region, associated with a polyadenylation signal 33 bp upstream (position 9530). The open reading frame is almost identical to that identified as APC above.

An alternatively spliced exon at nucleotide 934 of the DP2.5 transcript is of potential interest. It was first discovered by noting that two classes of cDNA had been isolated. 15 The more abundant cDNA class contains a 303 bp exon not included in the other. The presence in vivo of the two transcripts was verified by an exon connection experiment. Primers flanking the alternatively spliced exon were used to amplify, by PCR, cDNA prepared from various adult tissues. 20 Two PCR products that differed in size by approximately 300 bases were amplified from all the tissues tested; the larger product was always more abundant than the smaller.

EXAMPLE 8

25 This example demonstrates the primers used to identify subtle mutations in DP1, SRP19, and DP25. To obtain DNA sequence adjacent to the exons of the genes DP1, DP2.5, and SRP19, sequencing substrate was obtained by inverse PCR amplification of DNAs from two YACs, 310D8 and 183H12, that span the deletions. Ligation at low concentration cyclized the restriction enzyme-digested YAC DNAs. Oligonucleotides with sequencing tails, designed in inverse orientation at intervals along the 30 cDNAs, primed PCR amplification from the cyclized templates. Comparison of these DNA sequences with the cDNA sequences placed exon boundaries at the divergence points. SRP19 and DP1 were each shown to have five exons. DP2.5 consisted of 15 exons. The sequences of the oligonucleotides 35 synthesized to provide PCR amplification primers for the exons of each of these genes are listed in Table III SEQ ID NO:39-94.

TABLE III

Sequences of Primers Used for SSCP Analyses

Exon	Primer 1	Primer 2
<u>DP1</u>		
UP-TCCCCGCCCTGCCGCTCTC	RP-GCAGCGGCCGCTCCCGTG	
UP-GTGAACGGCTCTCATGCTGC	RP-ACGTGCGGGGAGGAATGGA	
UP-ATGATATCTTACCAAATGATATAC	RP-TTATTCCTACTCTCTTATACAG	
UP-TACCCATGCTGGCTCTTTTC	RP-TGGGGCCATCTGTTCCCTGA	
UP-ACATTAAGGCACAAAGCTTGCAA	RP-ATCAAGCTCCAGTAAGAAGGTA	
<u>SRP19</u>		
UP-TGCGGCCTCTGGGTTGTTG	RP-GCCCTTCTCTTCTGAGGAC	
UP-TTTCTCTCTGCCCTCTACTCTGC	RP-ATGACACCCCCCATCCCTC	
UP-CCACTTAAAGCACATATAATTAGT	RP-GTATGGAAAATAGTGAAGAACCC	
UP-TCTCTAAGTCCTGTTCTCTTGTG	RP-TTAAAGAACCTTTTGTGTGTG	
UP-CTCAGATTATACTAACCTAAC	RP-CATGCTCTTACAGTACCA	
<u>DP2.5</u>		
UP-AGGTCCAAGGGTAGCCAAG*	RP-TAAAAATGGATAAAACTACAATTTAAAG	
UP-AAATACAGAACATGTCCTGAAAGT	RP-ACACCTAAAGATGACAATTGAG	
UP-TAACCTAGATAGCAGTAATTCTCC*	RP-ACAATAAACTGGAGTACACAAGG	
UP-ATAGGCTCATTCCTCTGCTGAT*	RP-TGAATTAAATGGATACCTAGGT	
UP-CTTTTTCTCTTTACTGATTAACG	RP-TGTAATTCAATTATCCTAAATACCTC	
UP-GGTAGCCATAGTATGATTATTTCT	RP-CTACCTATTTTATACCCACAAAC	

TABLE III-continued

<u>Sequences of Primers Used for SSCP Analyses</u>		
Exon	Primer 1	Primer 2
	UP-AAGAAAGCCTACACCAATTTCG UP-ACCTATAGTCTAAATTATACCATC UP-AGTCGTAATTTCGTTCTAAACTC UP-TCATTCACACAGCTGATGAC* UP-AAACATCATGGCTCTCAAAATAAC UP-GATGATTGCTTTCTCTCTTCG UP-TTITTAATGATCCCTCTTCTGAT UP-TTCTCTTACTGCTAGCAAT UP-TAGATGACCCATATCTCTTTC UP-GTTACTGCATACACATTGTGAC -B UP-AGTACAAGGATGCCAATATTATG* -C UP-ATTGAAACTACAGTGTACCC* -D UP-CTGCCCATACACATCAAAACAC* -E UP-AGTCCTAAATATTCAAGATGAGCAG* -F UP-AAGCTTACCAATTATAGTGAACCG* -G UP-AAGAACAAACATACAGACTTATGTC* -H UPATCTCCCTCCAAAAGTGGTGC* -I UP-AGTAAATGTCGAGTTCAGAGG* -J UP-CCCAGACTGCTCAAAATTACCC* -K UP-CCCTCCAAATGAGTTAGCTGC* -L UP-ACCCAAACAAAATCAGTTAGATG* -N UP-ATGATGTTGACCTTCCAGGG* -M UP-AAAGACATACCCAGACAGAGGG* -O UP-AAGATGACCTGTTGCGAGGAATG* -P UP-CAATAGTAAGTGTACATCAAG* -Q UP-CAGCCCCCTCAAGCAAACATC* -R UP-CAGTCCTGGCCGAAACTC* -S UP-TGGIAATGGAGCCAATAAAAGG* -T UP-TGTCCTCATCCACATTCGTC* -U UP-GGAGAAGAAGTGGAGTTCAATC* -V UP-TCTCCCACAGGTAATACCTCCC -W UP-CAGGACAAAATAATCCCTGCCCC	RP-GATCATCTTCTAGAACCATCTTGC RP-GTCATGGCATTAATGACCAAG RP-TGAAGGACTCCGATTTCACCC* RP-GCTTGAACATGCACTACGAT RP-TACCATGATTAAAATCCACCAAG RP-CTGAGCTATCTAAGAAATACATG RP-ACAGATCAGACCCCTCCCAAAAG RP-ATACACAGGTAAAGAAATTAGGA RP-CAATTAGGTCTTCTGAGAGTA RP-GCTTTTGTGTTGTAACATGAAG* RP-ACCTCTATCTTCTAGAACGAG* RP-CTTGTATCTAATTTGGCATAAAGG* RP-TGTTGCGTCTGCCATCTT* RP-GTTCCTCTCATATATTTATGCTA* RP-AGCTGATGACAAGATGATAATC* RP-ATGAGTGGGTCTCTGAAAC* RP-TCCAATGGAGTACTTCTGTC* RP-CGGTGGCATATCATCCCC* RP-GAGCCATCTGACTCTCTG* RP-TTGTGGTATAGGTTTACTGGTG* RP-GTGGCTGGIAACTTCTAGCC* RP-ATGIGIAACTTCTCATCAGTTC* RP-CTTCTTGGCATTGCGGACT* RP-GAACAGACCAAGCTGCTAGAT* RP-AAACAGGACTTGTACTGTAGGA* RP-GAGGACTTATCCATTCTCACC* RP-GTGTGACTGGCGTACTAATACAG* RP-TGGGACTTTTCCGCAATCCAC* RP-ATGTTTTCATCTCATCTTCTG* RP-TTGAATCTTAAAGTTGGATTGTC* RP-GCTACACAATGAAATGGGTACCG RP-ATTCTTCACTTCTCATCTTCC

All primers are read in the 5' to 3' direction, the first primer in each pair lies 5' of the exon it amplifies; the second primer lies 3' of the exon it amplifies. Primers that lie within the exon are identified by an asterisk. UP represents the -21M13 universal primer sequence; RP represents the M13 reverse primer sequence.

With the exception of exons 1, 3, 4, 9, and 15 of DP2.5 (see below), the primer sequences were located in intron sequences flanking the exons. The 5' primer of exon 1 is 40 complementary to the cDNA sequence, but extends just into the 5' Kozak consensus sequence for the initiator methionine, allowing a survey of the translated sequences. The 5' primer of exon 3 is actually in the 5' coding sequences of this exon, as three separate intronic primers simply would 45 not amplify. The 5' primer of exon 4 just overlaps the 5' end of this exon, and we thus fail to survey the 19 most 5' bases of this exon. For exon 9, two overlapping primer sets were used, such that each had one end within the exon. For exon 15, the large 3' exon of DP2.5, overlapping primer pairs 50 were placed along the length of the exon; each pair amplified a product of 250–400 bases.

EXAMPLE 9

This example demonstrates the use of single stranded 55 conformation polymorphism (SSCP) analysis as described by Orita et al. Proc. Natl. Acad. Sci. U.S.A., Vol. 86, pp. 2766–70 (1989) and Genomics, Vol. 5, pp. 874–879 (1989) as applied to DP1, SRP19 and DP2.5.

SSCP analysis identifies most single- or multiple-base 60 changes in DNA fragments up to 400 bases in length. Sequence alterations are detected as shifts in electrophoretic mobility of single-stranded DNA on nondenaturing acrylamide gels; the two complementary strands of a DNA segment usually resolve as two SSCP conformers of distinct 65 mobilities. However, if the sample is from an individual heterozygous for a base-pair variant within the amplified

segment, often three or more bands are seen. In some cases, even the sample from a homozygous individual will show 40 multiple bands. Base-pair-change variants are identified by differences in pattern among the DNAs of the sample set.

Exons of the candidate genes were amplified by PCR from the DNAs of 61 unrelated FAP patients and a control set of 12 normal individuals. The five exons from DP1 revealed no unique conformers in the FAP patients, although 45 common conformers were observed with exons 2 and 3 in some individuals of both affected and control sets, indicating the presence of DNA sequence polymorphisms. Likewise, none of the five exons of SRP19 revealed unique conformers in DNA from FAP patients in the test panel.

50 Testing of exons 1 through 14 and primer sets A through N of exon 15, of the DP2.5 gene, however, revealed variant conformers specific to FAP patients in exons 7, 8, 10, 11, and 15. These variants were in the unrelated patients 3746, 3460, 3827, 3712, and 3751, respectively. The PCR-SSCP procedure was repeated for each of these exons in the five affected 55 individuals and in an expanded set of 48 normal controls. The variant bands were reproducible in the FAP patients but were not observed in any of the control DNA samples. Additional variant conformers in exons 11 and 15 of the DP2.5 gene were seen; however, each of these was found in both the affected and control DNA sets. The five sets of conformers unique to the FAP patients were sequenced to 60 determine the nucleotide changes responsible for their altered mobilities. The normal conformers from the host individuals were sequenced also. Bands were cut from the dried acrylamide gels, and the DNA was eluted. PCR amplification of these DNAs provided template for sequencing.

The sequences of the unique conformers from exons 7, 8, 10, and 11 of DP2.5 revealed dramatic mutations in the DP2.5 gene. The sequence of the new mutation creating the exon 7 conformer in patient 3746 was shown to contain a deletion of two adjacent nucleotides, at positions 730 and 731 in the cDNA sequence (FIG. 7, SEQ ID NO:1). The normal sequence at this splice junction is CAGGGTCA (intrinsic sequence underlined), with the intron-exon boundary between the two repetitions of AG. The mutant allele in this patient has the sequence CAGGTCA. Although this change is at the 5' splice site, comparison with known consensus sequences of splice junctions would suggest that a functional splice junction is maintained. If this new splice junction were functional, the mutation would introduce a frameshift that creates a stop codon 15 nucleotides downstream. If the new splice junction were not functional, messenger processing would be significantly altered.

To confirm the 2-base deletion, the PCR product from FAP patient 3746 and a control DNA were electrophoresed on an acrylamide-urea denaturing gel, along with the products of a sequencing reaction. The sample from patient 3746 showed two bands differing in size by 2 nucleotides, with the larger band identical in mobility to the control sample; this result was independent confirmation that patient 3746 is heterozygous for a 2 bp deletion.

The unique conformer found in exon 8 of patient 3460 was found to carry a C-T transition, at position 904 in the cDNA sequence of DP2.5 (shown in FIG. 7), which replaced the normal sequence of CGA with TGA. This point mutation, when read in frame, results in a stop codon 30 replacing the normal arginine codon. This single-base change had occurred within the context of a CG dimer, a potential hot spot for mutation (Barker et al., 1984).

The conformer unique to FAP patient 3827 in exon 10 was found to contain a deletion of one nucleotide (1367, 1368, or 35 1369) when compared to the normal sequence found in the other bands on the SSCP gel. This deletion, occurring within a set of three T's, changed the sequence from CTTTCA to CTTCA; this 1 base frameshift creates a downstream stop within 30 bases. The PCR product amplified from this 40 patient's DNA also was electrophoresed on an acrylamide-urea denaturing gel, along with the PCR product from a control DNA and products from a sequencing reaction. The patient's PCR product showed two bands differing by 1 bp in length, with the larger identical in mobility to the PCR 45 product from the normal DNA; this result confirmed the presence of a 1 bp deletion in patient 3827.

Sequence analysis of the variant conformer of exon 11 from patient 3712 revealed the substitution of a T by a G at position changing the normal tyrosine codon to a stop codon. 50

The pair of conformers observed in exon 15 of the DP2.5 gene for FAP patient 3751 also was sequenced. These conformers were found to carry a nucleotide substitution of C to G at position 5253, the third base of a valine codon. No amino acid change resulted from this substitution, suggesting that this conformer reflects a genetically silent polymorphism.

The observation of distinct inactivating mutations in the DP2.5 gene in four unrelated patients strongly suggested that DP2.5 is the gene involved in FAP. These mutations are 60 summarized in Table II A.

EXAMPLE 10

This example demonstrates that the mutations identified in the DP2.5 (APC) gene segregate with the FAP phenotype.

Patient 3746, described above as carrying an APC allele with a frameshift mutation, is an affected offspring of two

normal parents. Colonoscopy revealed no polyps in either parent nor among the patient's three siblings.

DNA samples from both parents, from the patient's wife, and from their three children were examined. SSCP analysis of DNA from both of the patient's parents displayed the normal pattern of conformers for exon 7, as did DNA from the patient's wife and one of his off-spring. The two other children, however, displayed the same new conformers as their affected father. Testing of the patient and his parents with highly polymorphic VNTR (variable number of tandem repeat) markers showed a 99.98% likelihood that they are his biological parents.

These observations confirmed that this novel conformer, known to reflect a 2 bp deletion mutation in the DP2.5 gene, appeared spontaneously with FAP in this pedigree and was transmitted to two of the children of the affected individual.

EXAMPLE 11

This example demonstrates polymorphisms in the APC gene which appear to be unrelated to disease (FAP).

Sequencing of variant conformers found among controls as well as individuals with APC has revealed the following polymorphisms in the APC gene: first, in exon 11, at position 1458, a substitution of T to C creating an RsaI restriction site but no amino acid change; and second, in exon 15, at positions 5037 and 5271, substitutions of A to G and G to T, respectively, neither resulting in amino acid substitutions. These nucleotide polymorphisms in the APC gene sequence may be useful for diagnostic purposes.

EXAMPLE 12

This example shows the structure of the APC gene.

The structure of the APC gene is schematically shown in FIG. 8, with flanking intron sequences indicated (SEQ ID NO:11-38).

The continuity of the very large (6.5 kb), most 3' exon in DP2.5 was shown in two ways. First, inverse PCR with primers spanning the entire length of this exon revealed no divergence of the cDNA sequence from the genomic sequence. Second, PCR amplification with converging primers placed at intervals along the exon generated products of the same size whether amplified from the originally isolated cDNA, cDNA from various tissues, or genomic template. Two forms of exon 9 were found in DP2.5: one is the complete exon; and the other, labeled exon 9A, is the result of a splice into the interior of the exon that deletes bases 934 to 1236 in the mRNA and removes 101 amino acids from the predicted protein (see FIG. 3, SEQ ID NO:1 and 2).

EXAMPLE 13

This example demonstrates the mapping of the FAP deletions with respect to the APC exons.

Somatic cell hybrids carrying the segregated chromosomes 5 from the 100 kb (HHW1291) and 260 kb (HHW1155) deletion patients were used to determine the distribution of the APC genes exons across the deletions. DNAs from these cell lines were used as template, along with genomic DNA from a normal control, for PCR-based amplification of the APC exons.

PCR analysis of the hybrids from the 260 kb deletion of patient 3214 showed that all but one (exon 1) of the APC exons are removed by this deletion. PCR analysis of the somatic cell hybrid HHW1291, carrying the chromosome 5 homolog with the 100 kb deletion from patient 3824, revealed that exons 1 through 9 are present but exons 10

through 15 are missing. This result placed the deletion breakpoint either between exons 9 and 10 or within exon 10.

EXAMPLE 14

This example demonstrates the expression of alternately spliced APC messenger in normal tissues and in cancer cell lines.

Tissues that express the APC gene were identified by PCR amplification of cDNA made to mRNA with primers located within adjacent APC exons. In addition, PCR primers that flank the alternatively spliced exon 9 were chosen so that the expression pattern of both splice forms could be assessed. All tissue types tested (brain, lung, aorta, spleen, heart, kidney, liver, stomach, placenta, and colonic mucosa) and cultured cell lines (lymphoblasts, HL60, and choriocarcinoma) expressed both splice forms of the APC gene. We note, however, that expression by lymphocytes normally residing in some tissues, including colon, prevents unequivocal assessment of expression. The large mRNA, containing the complete exon 9 rather than only exon 9A, appears to be the more abundant message.

Northern analysis of poly(A)-selected RNA from lymphoblasts revealed a single band of approximately 10 kb, consistent with the size of the sequenced cDNA. 25

EXAMPLE 15

This example discusses structural features of the APC protein predicted from the sequence.

The cDNA consensus sequence of APC predicts that the longer, more abundant form of the message codes for a 2842 or 2844 amino acid peptide with a mass of 311.8 kd. This predicted APC peptide was compared with the current data bases of protein and DNA sequences using both Intelligene-
 30
 tics and GCG software packages. No genes with a high degree of amino acid sequence similarity were found. Although many short (approximately 20 amino acid) regions of sequence similarity were uncovered, none was sufficiently strong to reveal which, if any, might represent functional homology. Interestingly, multiple similarities to myosins and keratins did appear. The APC gene also was scanned for sequence motifs of known function; although
 35
 40

multiple glycosylation, phosphorylation, and myristylation sites were seen, their significance is uncertain.

Analysis of the APC peptide sequence did identify features important in considering potential protein structure. Hydropathy plots (Kyte and Doolittle, *J. Mol. Biol.* Vol. 157, pp. 105-132 (1982)) indicate that the APC protein is notably hydrophilic. No hydrophobic domains suggesting a signal peptide or a membrane-spanning domain were found. Analysis of the first 1000 residues indicates that α -helical rods may form (Cohen and Parry, *Trends Biochem. Sci.* Vol. 77, pp. 245-248 (1986); there is a scarcity of proline residues and, there are a number of regions containing heptad repeats (apolar-X-X-apolar-X-X-X). Interestingly, in exon 9A, the deleted form of exon 9, two heptad repeat regions are reconnected in the proper heptad repeat frame, deleting the intervening peptide region. After the first 1000 residues, the high proline content of the remainder of the peptide suggests a compact rather than a rod-like structure.

The most prominent feature of the second 1000 residues is a 20 amino acid repeat that is iterated seven times with semiregular spacing (Table 4). The intervening sequences between the seven repeat regions contained 114, 116, 151, 205, 107, and 58 amino acids, respectively. Finally, residues 2200-24000 contain a 200 amino acid basic domain.

30

TABLE IV

Seven Different Versions of the 20-Amino Acid Repeat	
Consensus:	F * VE * TP * CFSR * SSLSSLS
1262:	YC VEDTPICFSRCSSLSSLS
1376:	HTVQETPLMFSRCTS VSSLSSLS
1492:	FATESTPDGFSCSSLSALS
1643:	YC VEGTPINFSTATSLSDLT
1848:	TPIEGTPYCFSRNDSSLSSLD
1953:	FAIENTPVCPSHNSSSLSSLS
2013:	R H VEDTPVCFSRNSSLSSLS

40

Numbers denote the first amino acid of each repeat. The consensus sequence at the top reflects a majority amino acid at a given position.

© 1990 American Society for Biochemistry and Molecular Biology, Inc.

5,137,806 8/1992 LeMaistre et al.
5,244,801 9/1993 Tobi .

FOREIGN PATENT DOCUMENTS

WO 89/01481 8/1988 WIPO .

OTHER PUBLICATIONS

Kinzler et al, *Science* 253: 661-665, 1991.

Groden, et al., "Identification and Characterization of the Familial Adenomatous Polyposis Coli Gene", *Cell*, 66:589-600 (1991).

Joslyn, et al., "Identification of Deletion Mutations and Three New Genes at the Familial Polyposis Locus", *Cell*, 66:601-613 (1991).

Kinzler, et al., "Identification of FAP Locus Genes From Chromosome 5q21", *Science*, 253:661-665 (1991).

Nishisho, et al., "Mutations of Chromosome 5q21 Genes in FAP and Colorectal Cancer Patients", *Science*, 253:665-669 (1991).

Orita, et al., *Genomics*, vol. 5, pp. 874-879, 1989.

Stanbridge, et al., "Identifying Tumor Suppressor Genes in Human Colorectal Cancer", *Science*, 247:12-13 (1990).

Fearon et al., "Identification of a Chromosome 18q Gene That is Altered in Colorectal Cancer", *Science*, 247:49-56 (1990).

Baker et al., "Chromosome 17 Deletions and p53 Gene Mutations in Colorectal Carcinomas", *Science*, 244:217-221 (1989).

Bodmer et al., "Localization of the Gene for Familial Adenomatous Polyposis on Chromosome 5", *Nature*, 328:614-616 (1987).

Primary Examiner—Lila Feisee

Assistant Examiner—Nancy A. Johnson

Attorney, Agent, or Firm—Banner & Witcoff, Ltd.

[57]

ABSTRACT

A human gene termed APC is disclosed. Methods and kits are provided for assessing mutations of the APC gene in human tissues and body samples. APC mutations are found in familial adenomatous polyposis patients as well as in sporadic colorectal cancer patients. APC is expressed in most normal tissues. These results suggest that APC is a tumor suppressor.

8 Claims, 40 Drawing Sheets

FIG. 1A

FIG. 1B-1

FIG. 1B-3

FIG. 2A

TB1 AMINO ACID SEQUENCE

VAPVVVGSGR APRHPAPAM HPRRPDGFDG LGYRGGARDE QGFGGAFFPAR SFSTGSDLGH 60
WTTTPDIPG SRNLHGEKS PPyGVPTTST PYEGPTEEPF SSGGGGSVAG OSSEOLNRFA 120
GFGIGLASLF TENVLAHPCI VLRRQCOQNY HAQHYYHLTTF TWINIMYSFN KTQGPRALWK 180
GNGSTFIVQG VTLGAEGLIS EFTPLPREVL HKWSPKQIGE HLLIKSLTYV YAMPFYASL 240
IETVQSEIIR DNTGILECVK EGIGRVIQHG VPHSKRLLPL LSLIFPTVLH GVLHYITISSV 300
I0KFVLLIK RKTYNSHLAE STSPVQSMLD AYFPELIANF AASLCSDVIL YPLETVLHRL 360
H10GIRRIID NTOLGYEVLP INTQYEGHRD CINTIRQEEG VFGFYKGFGA VIIQYTLHAA 420
VLOITKIIYS TLLO 434

FIG. 2B

TB2 AMINO ACID SEQUENCE

ELRRFDRFLH EKNCMTDLA KLEAKTGVNR SFIALGVIGL VALYLVFGYG ASLLCMLIGF 60
GYPAYISIKA IESPNKEDDT QHLTYWVVG VFSIAEFFSD IFLSMWFPFYY ILKCGFLLWC 120
MAPSPSNGAE LLYKRIIRPF FLKHESSQHDS WKDLKDAK ETADAITKEA KKATVNLGE 180
EKKST

FIG. 3A

Met Ala Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu
1 5
Lys Met Glu Asn Ser Asn Leu Arg Gln Glu Leu Glu Asp Asn Ser Asn
10 20 25 30
His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu
35 40 45
Lys Gln Leu Gln Gly Ser Ile Glu Asp Glu Ala Met Ala Ser Ser Gly
50 55 60
Gln Ile Asp Leu Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser
65 70 75 80
Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr
85 90 95
Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro
100 105 110

FIG. 3B

Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg
115 120 125
Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu
130 135 140
Leu Ala Asp Leu Asp Lys Glu Glu Lys Glu Lys Asp Trp Tyr Tyr Ala
145 150 155 160
Gln Leu Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Pro Leu Thr Glu
165 170 175
Asn Phe Ser Leu Gln Thr Asp Leu Thr Arg Arg Gln Leu Glu Tyr Glu
180 185 190
Ala Arg Gln Ile Arg Val Ala Met Glu Glu Gln Leu Gly Thr Cys Gln
195 200 205
Asp Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile
210 215 220

FIG. 3C

FIG. 3D

Met Ser Ser Ser Gln Asp Ser Cys Ile Ser Met Arg Gln Ser Gly Cys
340 345 350
Leu Pro Leu Ile Gln Leu Leu His Gly Asn Asp Lys Asp Ser Val
355 360 365
Leu Leu Gly Asn Ser Arg Gly Ser Lys Glu Ala Arg Ala Arg Ala Ser
370 375 380
Ala Ala Leu His Asn Ile Ile His Ser Gln Pro Asp Asp Lys Arg Gly
385 390 395 400
Arg Arg Glu Ile Arg Val Leu His Leu Glu Gln Ile Arg Ala Tyr
405 410 415
Cys Glu Thr Cys Trp Glu Trp Gln Glu Ala His Glu Pro Gly Met Asp
420 425 430
Gln Asp Lys Asn Pro Met Pro Ala Pro Val Glu His Gln Ile Cys Pro
435 440 445

FIG. 3E

Ala Val Cys Val Leu Met Lys Leu Ser Phe Asp Glu Glu His Arg His
450 455 460
Ala Met Asn Glu Leu Gly Gly Leu Gln Ala Ile Ala Glu Leu Leu Gln
465 470 475 480
Val Asp Cys Glu Met Tyr Gly Leu Thr Asn Asp His Tyr Ser Ile Thr
485 490 495
Leu Arg Arg Tyr Ala Gly Met Ala Leu Thr Asn Leu Thr Phe Gly Asp
500 505 510
Val Ala Asn Lys Ala Thr Leu Cys Ser Met Lys Gly Cys Met Arg Ala
515 520 525
Leu Val Ala Gln Leu Lys Ser Glu Ser Glu Asp Leu Gln Gln Val Ile
530 535 540
Ala Ser Val Leu Arg Asn Leu Ser Trp Arg Ala Asp Val Asn Ser Lys
545 550 555 560

FIG. 3F

Lys Thr Leu Arg Glu Val Gly Ser Val Lys Ala Leu Met Glu Cys Ala
565 570 575

Leu Glu Val Lys Lys Glu Ser Thr Leu Lys Ser Val Leu Ser Ala Leu
580 585 590

Trp Asn Leu Ser Ala His Cys Thr Glu Asn Lys Ala Asp Ile Cys Ala
595 600 605

Val Asp Gly Ala Leu Ala Phe Leu Val Gly Thr Leu Thr Tyr Arg Ser
610 615 620

Gln Thr Asn Thr Leu Ala Ile Ile Glu Ser Gly Gly Ile Leu Arg
625 630 635 640

Asn Val Ser Ser Leu Ile Ala Thr Asn Glu Asp His Arg Gln Ile Leu
645 650 655

Arg Glu Asn Asn Cys Leu Gln Thr Leu Leu Gln His Leu Lys Ser His
660 665 670

FIG. 3G

Ser	Leu	Thr	Ile	Val	Ser	Asn	Ala	Cys	Gly	Thr	Leu	Trp	Asn	Leu	Ser
		675					680					685			
Ala	Arg	Asn	Pro	Lys	Asp	Gln	Glu	Ala	Leu	Trp	Asp	Met	Gly	Ala	Val
		690				695					700				
Ser	Met	Leu	Lys	Asn	Leu	Ile	His	Ser	Lys	His	Lys	Met	Ile	Ala	Met
		705				710				715					720
Gly	Ser	Ala	Ala	Ala	Leu	Arg	Asn	Leu	Met	Ala	Asn	Arg	Pro	Ala	Lys
									725		730		735		
Tyr	Lys	Asp	Ala	Asn	Ile	Met	Ser	Pro	Gly	Ser	Ser	Leu	Pro	Ser	Leu
								740		745			750		
His	Val	Arg	Lys	Gln	Lys	Ala	Leu	Glu	Ala	Glu	Leu	Asp	Ala	Gln	His
								755		760			765		
Leu	Ser	Glu	Thr	Phe	Asp	Asn	Ile	Asp	Asn	Leu	Ser	Pro	Lys	Ala	Ser
								770					780		

FIG. 3H

FIG. 31

FIG. 3J

His Ser Ala Asn His Met Asp Asp Asn Asp Gly Glu Leu Asp Thr Pro
1010
Ile Asn Tyr Ser Leu Lys Tyr Ser Asp Glu Gln Leu Asn Ser Gly Arg
1015
1025
1030
1035
1040
1045
Gln Ser Pro Ser Gln Asn Glu Arg Trp Ala Arg Pro Lys His Ile Ile
1050
1055
1060
Glu Asp Glu Ile Lys Gln Ser Glu Gln Arg Gln Ser Arg Asn Gln Ser
1065
1070
1075
Thr Thr Tyr Pro Val Tyr Thr Glu Ser Thr Asp Asp Lys His Leu Lys
1080
1085
1090
Phe Gln Pro His Phe Gly Gln Glu Cys Val Ser Pro Tyr Arg Ser
1095
1100
1105
Arg Gly Ala Asn Gly Ser Glu Thr Asn Arg Val Gly Ser Asn His Gly
1110
1115
1120

FIG. 3K

Ile Asn Gln Asn Val Ser Gln Ser Leu Cys Gln Glu Asp Asp Tyr Glu
1125 1130 1135
Asp Asp Lys Pro Thr Asn Tyr Ser Glu Arg Tyr Ser Glu Glu Glu Gln
1140 1145 1150
His Glu Glu Glu Arg Pro Thr Asn Tyr Ser Ile Lys Tyr Asn Glu
1155 1160 1165
Glu Lys Arg His Val Asp Gln Pro Ile Asp Tyr Ser Leu Lys Tyr Ala
1170 1175 1180
Thr Asp Ile Pro Ser Ser Gln Lys Gln Ser Phe Ser Phe Ser Lys Ser
1185 1190 1195 1200
Ser Ser Gly Gln Ser Ser Lys Thr Glu His Met Ser Ser Ser Glu
1205 1210 1215
Asn Thr Ser Thr Pro Ser Ser Asn Ala Lys Arg Gln Asn Gln Leu His
1220 1225 1230

FIG. 3L

Pro Ser Ser Ala Gln Ser Arg Ser Gly Gln Pro Gln Lys Ala Ala Thr
1235 1240 1245

Cys Lys Val Ser Ser Ile Asn Gln Glu Thr Ile Gln Thr Tyr Cys Val
1250 1255 1260

Glu Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Leu Ser Ser Leu
1265 1270 1275 1280

Ser Ser Ala Glu Asp Glu Ile Gly Cys Asn Gln Thr Thr Gln Glu Ala
1285 1290 1295

Asp Ser Ala Asn Thr Leu Gln Ile Ala Glu Ile Lys Lys Ile Gly
1300 1305 1310

Thr Arg Ser Ala Glu Asp Pro Val Ser Glu Val Pro Ala Val Ser Gln
1315 1320 1325

His Pro Arg Thr Lys Ser Ser Arg Leu Gln Gly Ser Ser Leu Ser Ser
1330 1335 1340 1345

FIG. 3M

FIG. 3N

Ala Pro Thr Ala Glu Lys Arg Glu Ser Gly Pro Lys Gln Ala Ala Val
1460 1465 1470
Asn Ala Ala Val Gln Arg Val Gln Val Leu Pro Asp Ala Asp Thr Leu
1475 1480 1485
Leu His Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser Cys Ser Ser
1490 1495 1500
Ser Leu Ser Ala Leu Ser Leu Asp Glu Pro Phe Ile Gln Lys Asp Val
1505 1510 1515 1520
Glu Ile Arg Ile Met Pro Pro Val Gln Glu Asn Asp Asn Gly Asn Glu
1525 1530 1535
Thr Glu Ser Glu Gln Pro Lys Glu Ser Asn Glu Asn Gln Glu Lys Glu
1540 1545 1550
Ala Glu Lys Thr Ile Asp Ser Glu Lys Asp Leu Leu Asp Asp Ser Asp
1555 1560 1565

FIG. 30

Asp Asp Asp Ile Glu Ile Leu Glu Glu Cys Ile Ile Ser Ala Met Pro
1570 1575

Thr Lys Ser Ser Arg Lys Gly Lys Pro Ala Gln Thr Ala Ser Lys
1585 1590 1595 1600

Leu Pro Pro Val Ala Arg Lys Pro Ser Gln Leu Pro Val Tyr Lys
1605 1610 1615

Leu Leu Pro Ser Gln Asn Arg Leu Gln Pro Gln Lys His Val Ser Phe
1620 1625 1630

Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu Gly Thr Pro
1635 1640 1645

Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr Ile Glu Ser
1650 1655 1660

Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly Gly Ala Gln
1665 1670 1675 1680

FIG. 3P

Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu Gly Arg Ser
1685 1690 1695

Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr Ile Pro Glu
1700 1705 1710

Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala Glu Cys Ile
1715 1720 1725

Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe Arg Val Lys
1730 1735 1740

Lys Ile Met Asp Gln Val Gln Gln Ala Ser Ala Ser Ser Ala Pro
1745 1750 1755 1760

Asn Lys Asn Gln Leu Asp GLY Lys Lys Lys Pro Thr Ser Pro Val
1765 1770 1775

Lys Pro Ile Pro Gln Asn Thr Glu Tyr Arg Thr Arg Val Arg Lys Asn
1780 1785 1790

FIG. 3Q

Ala Asp Ser Lys Asn Asn Leu Asn Ala Glu Arg Val Phe Ser Asp Asn
1795 1800 1805

Lys Asp Ser Lys Lys Gln Asn Leu Lys Asn Asn Ser Lys Asp Phe Asn
1810 1815 1820

Asp Lys Leu Pro Asn Asn Glu Asp Arg Val Arg Gly Ser Phe Ala Phe
1825 1830 1835 1840

Asp Ser Pro His His Tyr Thr Pro Ile Glu Gly Thr Pro Tyr Cys Phe
1845 1850 1855

Ser Arg Asn Asp Ser Leu Ser Ser Leu Asp Phe Asp Asp Asp Val
1860 1865 1870

Asp Leu Ser Arg Glu Lys Ala Glu Leu Arg Lys Ala Lys Glu Asn Lys
1875 1880 1885

Glu Ser Glu Ala Lys Val Thr Ser His Thr Glu Leu Thr Ser Asn Gln
1890 1895 1900

FIG. 3R

Gln Ser Ala Asn Lys Thr Gln Ala Ile Ala Lys Gln Pro Ile Asn Arg
1905 1910 1915 1920

Gly Gln Pro Lys Pro Ile Leu Gln Lys Gln Ser Thr Phe Pro Gln Ser
1925 1930 1935

Ser Lys Asp Ile Pro Asp Arg Gly Ala Ala Thr Asp Glu Lys Leu Gln
1940 1945 1950

Asn Phe Ala Ile Glu Asn Thr Pro Val Cys Phe Ser His Asn Ser Ser
1955 1960 1965

Leu Ser Ser Leu Ser Asp Ile Asp Gln Glu Asn Asn Lys Glu Asn
1970 1975 1980

Glu Pro Ile Lys Glu Thr Glu Pro Pro Asp Ser Gln Gly Glu Pro Ser
1985 1990 1995 2000

Lys Pro Gln Ala Ser Gly Tyr Ala Pro Lys Ser Phe His Val Glu Asp
2005 2010 2015

FIG. 3S

Thr Pro Val Cys Phe Ser Arg Asn Ser Ser Leu Ser Ser Leu Ser Ile 2020 2025 2030
Asp Ser Glu Asp Asp Leu Leu Gln Glu Cys Ile Ser Ser Ala Met Pro 2035 2040 2045
Lys Lys Lys Pro Ser Arg Leu Lys Gly Asp Asn Glu Lys His Ser 2050 2055 2060
Pro Arg Asn Met GLY Ile Leu GLU Asp Leu Thr Leu Asp Leu 2065 2070 2075 2080
Lys Asp Ile Gln Arg Pro Asp Ser Glu His GLY Leu Ser Pro Asp Ser 2085 2090 2095
Glu Asn Phe Asp Trp Lys Ala Ile Gln Glu GLY Ala Asn Ser Ile Val 2100 2105 2110
Ser Ser Leu His Gln Ala Ala Ala Ala Cys Leu Ser Arg Gln Ala 2115 2120 2125

FIG. 3T

Ser Ser Asp Ser Asp Ser Ile Leu Ser Leu Lys Ser Gly Ile Ser Leu
2130 2135
Gly Ser Pro Phe His Leu Thr Pro Asp Gln Glu Lys Pro Phe Thr
2145 2150 2155 2160
Ser Asn Lys Gly Pro Arg Ile Leu Lys Pro Gly Glu Lys Ser Thr Leu
2165 2170 2175
Glu Thr Lys Lys Ile Glu Ser Glu Ser Lys Gly Ile Lys GLY GLY Lys
2180 2185 2190
Lys Val Tyr Lys Ser Leu Ile Thr Gly Lys Val Arg Ser Asn Ser Glu
2195 2200 2205
Ile Ser Gly Gln Met Lys Gln Pro Leu Gln Ala Asn Met Pro Ser Ile
2210 2215 2220
Ser Arg Gly Arg Thr Met Ile His Ile Pro Gly Val Arg Asn Ser Ser
2225 2230 2235 2240

FIG. 3U

Ser Ser Thr Ser Pro Val Ser Lys Lys Gly Pro Pro Leu Lys Thr Pro
2245 2250 2255

Ala Ser Lys Ser Pro Ser Glu Gly Gln Thr Ala Thr Thr Ser Pro Arg
2260 2265 2270

Gly Ala Lys Pro Ser Val Lys Ser Glu Leu Ser Pro Val Ala Arg Gln
2275 2280 2285

Thr Ser Gln Ile Gly Ser Ser Lys Ala Pro Ser Arg Ser Gly Ser
2290 2295 2300

Arg Asp Ser Thr Pro Ser Arg Pro Ala Gln Gln Pro Leu Ser Arg Pro
2305 2310 2315 2320

Ile Gln Ser Pro Gly Arg Asn Ser Ile Ser Pro Gly Arg Asn Gly Ile
2325 2330 2335

Ser Pro Pro Asn Lys Leu Ser Gln Leu Pro Arg Thr Ser Ser Pro Ser
2340 2345 2350

FIG. 3V

Thr Ala Ser Thr Lys Ser Ser Gly Ser Gly Lys Met Ser Tyr Thr Ser
2355 2360 2365

Pro Gly Arg Gln Met Ser Gln Gln Asn Leu Thr Lys Gln Thr Gly Leu
2370 2375 2380

Ser Lys Asn Ala Ser Ser Ile Pro Arg Ser Glu Ser Ala Ser Lys Gly
2385 2390 2395 2400

Leu Asn Gln Met Asn Asn Gly Asn Gln Gly Ala Asn Lys Lys Val Glu Leu
2405 2410 2415

Ser Arg Met Ser Ser Thr Lys Ser Ser Gly Ser Glu Ser Asp Arg Ser
2420 2425 2430

Glu Arg Pro Val Leu Val Arg Gln Ser Thr Phe Ile Lys Glu Ala Pro
2435 2440 2445

Ser Pro Thr Leu Arg Arg Lys Leu Glu Ser Ala Ser Phe Glu Ser
2450 2455 2460

FIG. 3W

Leu Ser Pro Ser Ser Arg Pro Ala Ser Pro Thr Arg Ser Gln Ala Gln
2465 2470 2475 2480
Thr Pro Val Leu Ser Pro Ser Leu Pro Asp Met Ser Leu Ser Thr His
2485 2490 2495
Ser Ser Val Gln Ala GLY GLY Trp Arg Lys Leu Pro Pro Asn Leu Ser
2500 2505 2510
Pro Thr Ile Glu Tyr Asn Asp GLY Arg Pro Ala Lys Arg His Asp Ile
2515 2520 2525
Ala Arg Ser His Ser Glu Ser Pro Ser Arg Leu Pro Ile Asn Arg Ser
2530 2535 2540
Gly Thr Trp Lys Arg Glu His Ser Lys His Ser Ser Ser Leu Pro Arg
2545 2550 2555 2560
Val Ser Thr Trp Arg Arg Thr Gly Ser Ser Ser Ser Ile Leu Ser Ala
2565 2570 2575

FIG. 3X

Ser Ser Glu Ser Ser Glu Lys Ala Lys Ser Glu Asp Glu Lys His Val
2580 2585 2590
Asn Ser Ile Ser Gly Thr Lys Gln Ser Lys Glu Asn Gln Val Ser Ala
2595 2600 2605
Lys Gly Thr Trp Arg Lys Ile Lys Glu Asn Glu Phe Ser Pro Thr Asn
2610 2615 2620
Ser Thr Ser Gln Thr Val Ser Ser Gly Ala Thr Asn Gly Ala Glu Ser
2625 2630 2635 2640
Lys Thr Leu Ile Tyr Gln Met Ala Pro Ala Val Ser Lys Thr Glu Asp
2645 2650 2655
Val Trp Val Arg Ile Glu Asp Cys Pro Ile Asn Asn Pro Arg Ser Gly
2660 2665 2670
Arg Ser Pro Thr Gly Asn Thr Pro Val Ile Asp Ser Val Ser Glu
2675 2680 2685

FIG. 3Y

Lys Ala Asn Pro Asn Ile Lys Asp Ser Lys Asp Asn Gln Ala Lys Gln
2690 2695 2700

Asn Val Gly Asn Gly Ser Val Pro Met Arg Thr Val Gly Leu Glu Asn
2705 2710 2715 2720

Arg Leu Thr Ser Phe Ile Gln Val Asp Ala Pro Asp Gln Lys Gly Thr
2725 2730 2735

Glu Ile Lys Pro Gly Gln Asn Asn Pro Val Pro Val Ser Glu Thr Asn
2740 2745 2750

Glu Ser Pro Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser
2755 2760 2765

Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe
2770 2775 2780 2785

Asn Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala
2790 2795 2800

FIG. 3Z

Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Thr Lys Lys Arg
2805 2810 2815
Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys
2820 2825 2830
Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val
2835 2840

FIG. 4A

APC	203	LGTCADMEKRAORRIARIQQIEKODILRIRQL	233
		: : !	
RAL2	576	LTGAKGLQLRALRRIARIEQGGTAISPTSPL	606

FIG. 4B

APC	453	MKLSFDEEHRRHANNELGGLOAIAELLOVD	481
		: : : : :	
H3 HACHR	249	LYWRIYKETEKRTKELAGLQASGTEAETE	277
		: :	
HCC	220	LYPNLAERSRWEKELAGLREENESLTAM	248
		: : :	
APC	453	MKLSFDEEHRRHANNELGGLOAIAELLOVD	481

FIG. 5

FIG. 6A

FIG. 6B

FIG. 6C

TACCAAGGATA	GCTTTATAAA	GCAGGTTAGTT	AGTTAGTTAC	TCACCTCTAGT	GATAAATCGG	GAATTTCATA
1410	1420	1430	1440	1450	1460	1470
CACACACACA	CACACACACA	CACACACACA	CACACACACA	CACACACACA	GAGTACCCCTG	TAACTCTCAA
1480	1490	1500	1510	1520	1530	1540
TTCCCTGAAA	AACTAGTAAT	ACTGGTCTTAT	CTGCTATAAA	CTTTACATAT	TTGCTATG	TCAAGATGCT
1550	1560	1570	1580	1590	1600	1610
ACANTGGAMN	CCATTCTGG	TTTTATCTTC	ANAGSGGAGA	NACATGTGAGA	TTTAGTCTTC	TTTCCCAATC
1620	1630	1640	1650	1660	1670	1680
TTCTTTTTA	AMCCAGTTN	AGGMNCTTCT	GRAGATTGTY	CCACCTCTGA	TTACATGTAT	GTTCTYGTTT
1690	1700	1710	1720	1730	1740	1750
GTATCATKAG	CAACAAACATG	CTAATGRCGA	CACCTAGCTC	TRAGMGCAT	TCTGGGAGAN	TGARAGGNWG
1760	1770	1780	1790	1800	1810	1820
TATARAGTMN	CCCATAATCT	GCTTGGCAAT	AGTTAAGTCA	ATCTATCTTC	AGTTTTCTC	TGGCCTTAA
1830	1840	1850	1860	1870	1880	1890
GGTCAAACAC	AAGAGGCCTTC	CCTAGTTAC	AAGTCAGAGT	CACTTGTAGT	CCATTAAAT	GCCCTCATCC
1900	1910	1920	1930	1940	1950	1960
GTATTCCTTG	TGTTGATAAG	CTGCACAKGA	CTACATAGTA	AGTACAGANC	AGTAAAGTTA	ANNCGGATGT
1970	1980	1990	2000	2010	2020	2030
CTCCCATGTAT	CTGCCAAANTC	GNTATAGAGA	GCAATTGTGTC	TGGACTAGAA	AATCTGGAGT	TTACACCATA
2040	2050	2060	2070	2080	2090	2100
CTGTTAAGAG	TCCTTTGAA	TTAAACTAGA	CTAAAACAAG	TGTATAACTA	AACTAACAAAG	ATTAATATC
2110	2120	2130	2140	2150	2160	2170
CAGCCAGTAC	AGTATTTTT	AAGGCAAATA	AAGATGATA	GCTCACCTTG	AGNTAACAAAT	CAGGTAAGAT
2180	2190	2200	2210	2220	2230	2240
CATNACAAATG	TCTCATGATG	TNAANAATAT	AATAAGATATC	AATACTAAGT	GACAGTATCA	CNNCTAATAT

FIG. 6D

2250	AATATGGATC	AGAGCCATT	TTTGGGGAG	GAAGACAGTG	GTGATTACCG	GCATTATT	AAACTTAAA	2310
2320	CTTGTAGAA	AGCAAACAAA	ATTGTTCTTG	GGAGAAATC	AACTTTTAGA	TTAAAAAAAT	TTAAAGTAWC	2380
2390	TAGGAGTATT	TAATCCTTT	TCCCCATAAT	AAAAGTACAG	TTTTCTTGGT	GGCAGAATGA	AAATCAGCAA	2450
2460	CNTCTAGCAT	ATAGACTATA	TAATCAGATT	GACAGGATAT	AGAATATATT	ATCAGACAAG	ATGAGGAGGT	2520
2530	ACAAAAGTTA	CTATTGCTCA	TAATGACTTA	CAGGCTAAA	NTAGNTNTAA	AATACTATAT	TAATTCTGA	2590
2600	ATGCAATT	TTTTGTTCC	CTTGAGACCA	AAATTAAAGT	TAACTGTTGC	TGGCAGTCTA	AGTGTAAATG	2660
2670	TTAACAGCAG	GAGAAGTTAA	GAATTGAGCA	GTTCTGTTGC	ATGATTCCC	AAATGAAATA	CTGCCCTTGCC	2730
2740	TAGAGTTGA	AAAACTAATT	GAGCCTGTGC	CTGGCTAGAA	ACCAAGCGTT	TATTGAATG	TGAATAGTGT	2800
2810	TTCAAAGGTA	TGTAGTTACA	GAATTCCATTAC	CAAACAGCTT	AAATTCTCA	AGAAAGAATT	CCTGCAGCAG	2870
2880	TTATTCCTT	ACCTGAAGGC	TTCAATCAT	TGGATCAACA	ACTGCTACTC	TCGGGAAGAC	TCCTCTAATC	2940
2950	ACAGCTGAAG	AAAATGAGCA	CACCTTCAC	ACTGTTATCA	CCTATCCTGA	AGATGTGATA	CACTGAATGG	3010
3020	AAATAAATAG	ATGTAATAAA	AATTGAGWTC	TCATTAAAAA	AAAACCATGTT	GCCCAATGGG	AAAATGACCT	3080
3090	CATGTTGTGG	TTAAACAGC	AACTGCACCC	ACTAGCACAG	CCCATGAGC	TANCCTATAT	ATACATCTCT	3150
3160	GTCAGTGGCC	CTC						3140

FIG. 7B-1

5'

3'

FIG. 7B-2

JOINT DECLARATION FOR REISSUE PATENT APPLICATION

As the below named inventor, we hereby declare that:

Our residence, post office address and citizenship are as stated below next to our names;

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a patent is sought on the invention entitled APC ANTIBODIES

the specification of which

is attached hereto.
 was filed on May 25, 1995 as Application Serial Number 08/452,654 and was amended on _____ (if applicable).

We hereby state that we have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with Title 37, Code of Federal Regulations, §1.56(a).

Prior Foreign Application(s)

We hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application(s) for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Country	Application Number	Date of Filing (day, month, year)	Date of Issue (day, month, year)	Priority Claimed Under 35 U.S.C. §119
United Kingdom	9100962.1	16/01/91		YES
United Kingdom	9100963.9	16/01/91		YES
United Kingdom	9100974.6	16/01/91		YES
United Kingdom	9100975.3	16/01/91		YES

Prior United States Application(s)

We hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, we acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

Application Serial Number	Date of Filing (Day, Month, Year)	Status -- Patented, Pending, Abandoned

Prior United States Provisional Application(s)

We hereby claim priority benefits under Title 35, United States Code, §119(e) of any provisional application for patent listed below and have also identified below any provisional application for patent having a filing date before that of the application on which priority is claimed:

Provisional Application Number	Date of Filing (day, month, year)	Priority Claimed Under 35 U.S.C. §119(e)

5,691,454, is wholly or partially inoperative or invalid because of the following defects in the specification:

- the amino acid sequence provided for the APC protein in SEQ ID NO:7 of the sequence listing contains a minor error; and
- the specification refers to overlapping APC cDNA clones as "defining an ORF of 2842 amino acids" (column 4, line 31) and as coding "for a 2842 or 2844 amino acid peptide" (column 31, lines 32-33), rather than the correct number of 2843 amino acids.

(2) The correction of SEQ ID NO:7 is supported by the specification. The missing proline at position 173 in SEQ ID NO:7 is supported in the specification by the proline which is present at position 173 in SEQ ID NOS:1 and 2 and in Figure 3. In addition, routine analysis of YAC 37HG4 deposited as NCIMB 40353, referred to at column 12, lines 35-39 of U.S. Patent 5,691,454 establishes that there is, indeed, a proline at codon 173. The deposit was made under the terms of the Budapest Treaty. (See declaration of Dr. Sarah Kagan, of record in Serial No. 08/452,654, filed February 14, 1996.) One of ordinary skill in the art would have recognized the omission of the proline in SEQ ID NO:7 as a minor error by noting the inconsistency between the amino acid sequences presented in Figure 3 and in SEQ ID NOS:1 and 2 with that in SEQ ID NO:7.

(3) The error at column 4, line 31, referring to "an ORF of 2842 amino acids," occurred because of the inadvertent omission of the proline at position 173 in originally filed Figure 3. The omission of this proline resulted in the APC protein being described in the specification as having 2842 rather than 2843 amino acids.

(4) The error at column 31, lines 32-33, referring to a "2842 or 2844 amino acid peptide," occurred as follows. The application which issued as U.S. Patent 5,691,454 originally contained eight figures. In Figure 7 as originally filed, three supernumerary nucleotides were added at nucleotide positions 3972 (C), 3981 (G), and 3996 (A). As a result, the predicted amino acid sequence was erroneously stated to be "Ser Ser Val His Ser Thr Leu Glu" rather than "Ala Val Ser Gln His Pro Arg" at positions 1325 to 1331. This error resulted in an apparent sequence for the APC protein of 2844 amino acids. In combination with the omission of the proline at position 173 in originally filed Figure 3, this error resulted in the APC protein being described in the specification as a "2842 or 2844 amino acid peptide." Originally filed Figure 7 was canceled during prosecution of Serial No. 08/452,654, which issued as U.S. Patent 5,691,545.

(5) Correction of the number of amino acids in the APC protein does not add new matter to the specification. It merely renders consistent the number of amino acids shown in SEQ ID NOS:1 and 2 and the number of amino acids referred to in the specification.

(6) All errors which are being corrected in the present reissue application up to the time of filing of this declaration arose without any deceptive intent on the part of the applicants.

(7) We hereby declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith the following attorneys who are all members of the Bar of the District of Columbia, their registration numbers being listed after their names:

Donald W. Banner, Registration No. 17,037; Edward F. McKie, Jr., Registration No. 17,335; William W. Beckett, Registration No. 18,262; Dale H. Hoscheit, Registration No. 19,090; Joseph M. Potenza, Registration No. 28,175; James A. Niegowski, Registration No. 28,331; Joseph M. Skerpon, Registration No. 29,864; Thomas L. Peterson, Registration No. 30,969; Nina L. Medlock, Registration No. 29,673; William J. Fisher, Registration No. 32,133; Thomas H. Jackson, Registration No. 29,808; Patricia E. Hong, Registration No. 34,373; Robert S. Katz, Registration No. 36,402; Brian E. Hanlon, Registration No. 40,449; Sarah A. Kagan, Registration No. 32,141 and Lisa M. Hemmendinger, Registration No. 42,653.

All correspondence and telephone communications should be addressed to: Banner & Witcoff, Ltd., Eleventh Floor, 1001 G Street, N.W., Washington, D.C. 20001-4597, telephone number (202) 508-9100, which is also the address and telephone number of each of the above listed attorneys.

Bert Signature 11/30/99
 Signature _____ Date _____
 Full Name of _____
 First Inventor VOGELSTEIN Bert _____
 Family Name First Given Name Second Given Name

Residence 3700 Breton Way, Baltimore, Maryland 21208
 Citizenship United States of America
 Post Office _____
 Address Same as above

Kenneth W. Kinzler Signature 11/30/99
 Signature _____ Date _____
 Full Name of _____
 Second Inventor KINZLER Kenneth W. _____
 Family Name First Given Name Second Given Name

Residence 1403 Halkirk Way, BelAir, Maryland 21015
 Citizenship United States of America
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Third Inventor ALBERTSEN Hans _____
 Family Name First Given Name Second Given Name

Residence 744 Northcrest Drive, Salt Lake City, Utah 84103
 Citizenship Denmark
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Fourth Inventor ANAND Rakesh _____
 Family Name First Given Name Second Given Name

Residence 62 Grange Way, Sandbach, Cheshire CW11 9FS England
 Citizenship British
 Post Office _____
 Address Same as above

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith the following attorneys who are all members of the Bar of the District of Columbia, their registration numbers being listed after their names:

Donald W. Banner, Registration No. 17,037; Edward P. McKie, Jr., Registration No. 17,335; William W. Beckett, Registration No. 18,262; Dale H. Hoscheit, Registration No. 19,090; Joseph M. Potenza, Registration No. 28,175; James A. Niegowski, Registration No. 28,331; Joseph M. Skerpon, Registration No. 29,864; Thomas L. Peterson, Registration No. 30,969; Nina L. Medlock, Registration No. 29,673; William J. Fisher, Registration No. 32,133; Thomas H. Jackson, Registration No. 29,808; Patricia E. Hong, Registration No. 34,373; Robert S. Katz, Registration No. 36,402; Brian E. Hanlon, Registration No. 40,449; Sarah A. Kagan, Registration No. 32,141 and Lisa M. Hemmendinger, Registration No. 42,653.

All correspondence and telephone communications should be addressed to: Banner & Witcoff, Ltd., Eleventh Floor, 1001 G Street, N.W., Washington, D.C. 20001-4597, telephone number (202) 508-9100, which is also the address and telephone number of each of the above listed attorneys.

Signature _____ Date _____
Full Name of _____
First Inventor **VOGELSTEIN** _____
Family Name _____
First Given Name **Ben** _____
Second Given Name _____
Residence 3709 Brown Way, Baltimore, Maryland 21208
Citizenship United States of America
Post Office _____
Address Same as above

Signature _____ Date _____
Full Name of _____
Second Inventor **KINZLER** _____
Family Name _____
First Given Name **Kenneth** _____
Second Given Name **W** _____
Residence 1403 Hollister Way, Bel Air, Maryland 21015
Citizenship United States of America
Post Office _____
Address Same as above

Signature Date 11-23-99
Full Name of _____
Third Inventor **ALBERTSEN** _____
Family Name _____
First Given Name **Hans** _____
Second Given Name _____
Residence 744 Northeast Drive, Salt Lake City, Utah 84103
10340 VICKSBURG DRIVE
Cupertino, CA 95014
Citizenship Denmark
Post Office _____
Address Same as above

Signature _____ Date _____
Full Name of _____
Fourth Inventor **ANAND** _____
Family Name _____
First Given Name **Rakesh** _____
Second Given Name _____
Residence 62 Grange Way, Sandbach, Cheshire CW11 9ES England
Citizenship British
Post Office _____
Address Same as above

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith the following attorneys who are all members of the Bar of the District of Columbia, their registration numbers being listed after their names:

Donald W. Banner, Registration No. 17,037; Edward F. McKie, Jr., Registration No. 17,335; William W. Beckett, Registration No. 18,262; Dale H. Hoscheit, Registration No. 19,090; Joseph M. Potenza, Registration No. 28,175; James A. Niegowski, Registration No. 28,331; Joseph M. Skerpon, Registration No. 29,864; Thomas L. Peterson, Registration No. 30,969; Nina L. Medlock, Registration No. 29,673; William J. Fisher, Registration No. 32,133; Thomas H. Jackson, Registration No. 29,808; Patricia E. Hong, Registration No. 34,373; Robert S. Katz, Registration No. 36,402; Brian E. Hanlon, Registration No. 40,449; Sarah A. Kagan, Registration No. 32,141 and Lisa M. Hemmendinger, Registration No. 42,653.

All correspondence and telephone communications should be addressed to: Banner & Witcoff, Ltd., Eleventh Floor, 1001 G Street, N.W., Washington, D.C. 20001-4597, telephone number (202) 508-9100, which is also the address and telephone number of each of the above listed attorneys.

Signature _____ Date _____
Full Name of _____
First Inventor VOGELSTEIN Bert _____
Family Name _____ First Given Name _____ Second Given Name _____
Residence 3700 Breton Way, Baltimore, Maryland 21208
Citizenship United States of America
Post Office _____
Address Same as above

Signature _____ Date _____
Full Name of _____
Second Inventor KINZLER Kenneth W. _____
Family Name _____ First Given Name _____ Second Given Name _____
Residence 1403 Halkirk Way, BelAir, Maryland 21015
Citizenship United States of America
Post Office _____
Address Same as above

Signature _____ Date _____
Full Name of _____
Third Inventor ALBERTSEN Hans _____
Family Name _____ First Given Name _____ Second Given Name _____
Residence 744 Northcrest Drive, Salt Lake City, Utah 84103
Citizenship Denmark
Post Office _____
Address Same as above

Signature Rakesh Anand Date 12th November, 1999
Full Name of _____
Fourth Inventor ANAND Rakesh _____
Family Name _____ First Given Name _____ Second Given Name _____
Residence 62 Grange Way, Sandbach, Cheshire CW11 9FS England
Citizenship British
Post Office _____
Address Same as above

Signature Mary B. Carlson
 Full Name of
 Sixth Inventor CARLSON Family Name Mary
 First Given Name Mary Second Given Name

Date 11/22/99Residence 2074 E Sunnyside Avenue, Salt Lake City, UtahCitizenship United States of America
 Post Office
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Sixth Inventor GRODEN Family Name Japan
 First Given Name John Second Given Name

Residence 6229 9th Avenue, Salt Lake City, Utah 84103Citizenship United States of America
 Post Office
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Seventh Inventor BEDGE Family Name Willie
 First Given Name Willie Second Given Name

Residence 7, Rosberry Drive, Winsford, Cheshire CW7 3EA, EnglandCitizenship British
 Post Office
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Eighth Inventor JOSLYN Family Name Grant
 First Given Name Grant Second Given Name

Residence 426 7th Avenue, Salt Lake City, Utah 84103Citizenship United States of America
 Post Office
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Ninth Inventor MARKHAM Family Name Alexander
 First Given Name Alexander Second Given Name

Residence 25, Booth End Lane, Goostrey, Cheshire, EnglandCitizenship British
 Post Office
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Tenth Inventor NAKUMURA Family Name Yasushi
 First Given Name Yasushi Second Given Name

Residence 1-43-3 Maruyama, Kiyose, Tokyo 204, JapanCitizenship Japanese
 Post Office
 Address Same as above

11/24/99 WED 13:06 FAX 801 581 7538
11/16/99 THU 10:54 FAX 801 581 7538

UofU/TECH TRANSFER
UofU/TECH TRANSFER

008
F. UC
11/22/99

Signature _____ Date _____
Full Name of First Inventor GORDON Mary _____
Family Name _____ First Given Name _____
Second Given Name _____

Residence 2014 B. Sunnyside Avenue, Salt Lake City, Utah

Citizenship United States of America

Post Office _____

Address Same as above

Signature _____ Date 11/22/99
Full Name of First Inventor GORDON Joanna _____
Family Name _____ First Given Name _____
Second Given Name _____

Residence 620 9th Avenue, Salt Lake City, Utah 84103

Citizenship United States of America

Post Office _____

Address Same as above

Signature _____ Date _____
Full Name of Second Inventor HEDGE Philip _____
Family Name _____ First Given Name _____
Second Given Name _____

Residence 7 Rockley Vale, Winstanley, Cheshire CW7 3RE, England

Citizenship British

Post Office _____

Address Same as above

Signature _____ Date _____
Full Name of Eighth Inventor JOSELYN Grant _____
Family Name _____ First Given Name _____
Second Given Name _____

Residence 426 7th Avenue, Salt Lake City, Utah 84103

Citizenship United States of America

Post Office _____

Address Same as above

Signature _____ Date _____
Full Name of Ninth Inventor MARKHAM Fred _____
Family Name _____ First Given Name _____
Second Given Name _____

Residence 75 Booth End Lane, Gomers, Cheshire, England

Citizenship British

Post Office _____

Address Same as above

Signature _____ Date _____
Full Name of Tenth Inventor NAKUMURA Yumiko _____
Family Name _____ First Given Name _____
Second Given Name _____

Residence 1-49-3 Minoyama, Kiyose, Tokyo 204 Japan

Citizenship Japanese

Post Office _____

Address Same as above

LAW OFFICES
BANNER & WITCOFF, LTD.
1001 G STREET, N.W.
WASHINGTON, D.C. 20001-4597
(202) 347-8100

Signature _____ Date _____
Full Name of Fifth Inventor CARLSON Family Name Mary First Given Name Second Given Name
Residence 2074 E. Sunnyside Avenue, Salt Lake City, Utah
Citizenship United States of America
Post Office _____
Address Same as above

Signature _____ Date _____
Full Name of Sixth Inventor GRODEN Family Name Joanna First Given Name Second Given Name
Residence 629 9th Avenue, Salt Lake City, Utah 84103
Citizenship United States of America
Post Office _____
Address Same as above

Signature Philip Helf Date 12th November 1999
Full Name of Seventh Inventor HEDGE Family Name Philip First Given Name Second Given Name
Residence 7, Rookery Rise, Winsford, Cheshire CW7 3EA England
Citizenship British
Post Office _____
Address Same as above

Signature _____ Date _____
Full Name of Eighth Inventor JOSLYN Family Name Geoff First Given Name Second Given Name
Residence 426 7th Avenue, Salt Lake City, Utah 84103
Citizenship United States of America
Post Office _____
Address Same as above

Signature _____ Date _____
Full Name of Ninth Inventor MARKHAM Family Name Alexander First Given Name Second Given Name Fred
Residence 25, Booth Bed Lane, Goostrey, Crewe, Cheshire, England
Citizenship British
Post Office _____
Address Same as above

Signature _____ Date _____
Full Name of Tenth Inventor NAKUMURA Family Name Yusuka First Given Name Second Given Name
Residence 1-43-3 Matsuyama, Kiyose Tokyo 204 Japan
Citizenship Japanese
Post Office _____
Address Same as above

Signature _____ Date _____
 Full Name of Fifth Inventor **CARLSON** Mary _____
 Family Name _____ First Given Name _____
 Residence **2074 E. Sunnyside Avenue Salt Lake City, Utah** Second Given Name _____
 Citizenship **United States of America**
 Post Office _____
 Address **Same as above**

Signature _____ Date _____
 Full Name of Sixth Inventor **GRODSEN** Linda _____
 Family Name _____ First Given Name _____
 Residence **629 9th Avenue Salt Lake City, Utah 84116** Second Given Name _____
 Citizenship **United States of America**
 Post Office _____
 Address **Same as above**

Signature _____ Date _____
 Full Name of Seventh Inventor **HEDGE** Philip _____
 Family Name _____ First Given Name _____
 Residence **7 Rockery Rise, Wixford, Cheshire CW7 3EA England** Second Given Name _____
 Citizenship **British**
 Post Office _____
 Address **Same as above**

Signature **Geoff John** Date **11/23/99**
 Full Name of Eighth Inventor **STASIK** First Given Name **LANDQUIST**
 Family Name _____ Second Given Name _____
 Residence **426 7th Avenue, Salt Lake City, Utah 84107**
 Citizenship **United States of America**
 Post Office _____
 Address **Same as above**

Signature _____ Date _____
 Full Name of Ninth Inventor **MARTHAM** Fred _____
 Family Name _____ First Given Name _____ Second Given Name _____
 Residence **25 Brook End Lane, Goostrey, Cheshire, England**
 Citizenship **British**
 Post Office _____
 Address **Same as above**

Signature _____ Date _____
 Full Name of Tenth Inventor **NAKUMURA** Yukiaki _____
 Family Name _____ First Given Name _____ Second Given Name _____
 Residence **1-43-3 Matsuyama, Kiyose, Tokyo 204 Japan**
 Citizenship **Japanese**
 Post Office _____
 Address **Same as above**

Signature _____ Date _____
 Full Name of First Inventor CARLSON Mary _____
 Family Name _____ First Given Name _____
 Second Given Name _____

Residence 2074 E. Sunnyside Avenue, Salt Lake City, Utah
 Citizenship United States of America
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of Sixth Inventor GRODEN Joannas _____
 Family Name _____ First Given Name _____
 Second Given Name _____

Residence 629 9th Avenue, Salt Lake City, Utah 84103
 Citizenship United States of America
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of Seventh Inventor HEDGE Philip _____
 Family Name _____ First Given Name _____
 Second Given Name _____

Residence 7 Rookery Rise, Winsford, Cheshire CW7 3EA England
 Citizenship British
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of Eighth Inventor JOSLYN Geoff _____
 Family Name _____ First Given Name _____
 Second Given Name _____

Residence 426 7th Avenue, Salt Lake City, Utah 84103
 Citizenship United States of America
 Post Office _____
 Address Same as above

Signature A. March Date 11 NOVEMBER 1999
 Full Name of Ninth Inventor MARKHAM Alexander _____
 Family Name _____ First Given Name _____
 Second Given Name _____

Residence 25 Booth Bed Lane, Goostrey, Crewe, Cheshire, England
 Citizenship British
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of Tenth Inventor NAKUMURA Yusuka _____
 Family Name _____ First Given Name _____
 Second Given Name _____

Residence 1-43-3 Matsuyama, Kiyose Tokyo 204 Japan
 Citizenship Japanese
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Fifth Inventor CARLSON Mary _____
 Family Name _____ Second Given Name _____

Residence 2074 E. Sunnyside Avenue, Salt Lake City, Utah

Citizenship United States of America
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Sixth Inventor GRODEN Joanna _____
 Family Name _____ Second Given Name _____

Residence 629 9th Avenue, Salt Lake City, Utah 84103

Citizenship United States of America
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Seventh Inventor HEDGE Philip _____
 Family Name _____ Second Given Name _____

Residence 7 Rookery Rise, Winsford, Cheshire CW7 3EA England

Citizenship British
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Eighth Inventor IOSLYN Geoff _____
 Family Name _____ Second Given Name _____

Residence 426 7th Avenue, Salt Lake City, Utah 84103

Citizenship United States of America
 Post Office _____
 Address Same as above

Signature _____ Date _____
 Full Name of _____
 Ninth Inventor MARKHAM Alexander _____
 Family Name _____ Second Given Name _____

Residence 25 Booth Bed Lane, Goostrey, Crewe, Cheshire, England

Citizenship British
 Post Office _____
 Address Same as above

Signature Yuki Nakamura Date 11/13/99
 Full Name of _____
 Tenth Inventor NAKUMURA Yusuka _____
 Family Name _____ Second Given Name _____

Residence 1-43-3 Matsuyama, Kiyose Tokyo 204 Japan

Citizenship Japanese
 Post Office _____
 Address Same as above

11/23/99 TUE 14:03 FAX 801 581 7538

UofU/TECH TRANSFER

007

Date 11/24/99

Signature _____
Full Name of
First Inventor **THOMAS R. EVERIS** Andrew _____
Family Name _____ First Given Name _____
Second Given Name _____

Residence **1704 N 2100 E, Salt Lake City, Utah 84106**Citizenship **United States of America**Post Office **Same as above**Address **Same as above**

Date _____

Signature _____
Full Name of
Second Inventor **WILLIAM K. WHITAKER** Raymond _____
Family Name _____ First Given Name _____
Second Given Name _____

Residence **711 13th Avenue, Salt Lake City, Utah 84132**Citizenship **United States of America**Post Office **Same as above**Address **Same as above**PRINTED NAME: **THOMAS R. EVERIS**

LAW OFFICES
BANNER & WITCOFF, LTD.
1001 G STREET, N.W.
WASHINGTON, D.C. 20001-4887
(202) 467-1200

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i i i) NUMBER OF SEQUENCES: 102

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9606 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(v i i) IMMEDIATE SOURCE:

(B) CLONE: DP2.5(APC)

(i x) FEATURE:

(A) NAME/KEY: CDS

-continued

(B) LOCATION: 34.8562

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GGACTCGGAA ATGAGGTCCA AGGGTAGCCA AGG ATG GCT GCA GCT TCA TAT GAT	54		
Met Ala Ala Ala Ser Tyr Asp			
1	5		
CAG TTG TTA AAG CAA GTT GAG GCA CTG AAG ATG GAG AAC TCA AAT CTT	102		
Gln Leu Leu Lys Gln Val Glu Ala Leu Lys Met Glu Asn Ser Asn Leu			
10	15	20	
CGA CAA GAG CTA GAA GAT AAT TCC AAT CAT CTT ACA AAA CTG GAA ACT	150		
Arg Gln Glu Leu Glu Asp Asn Ser Asn His Leu Thr Lys Leu Glu Thr			
25	30	35	
GAG GCA TCT AAT ATG AAG GAA GTA CTT AAA CAA CTA CAA GGA AGT ATT	198		
Glu Ala Ser Asn Met Lys Gln Val Leu Lys Gln Leu Gln Gly Ser Ile			
40	45	50	55
GAA GAT GAA GCT ATG GCT TCT TCT GGA CAG ATT GAT TTA TTA GAG CGT	246		
Glu Asp Gln Ala Met Ala Ser Ser Gly Gln Ile Asp Leu Leu Glu Arg			
60	65	70	
CTT AAA GAG CTT AAC TTA GAT AGC AGT AAT TTC CCT GGA GTA AAA CTG	294		
Leu Lys Glu Leu Asn Leu Asp Ser Ser Asn Phe Pro Gly Val Lys Leu			
75	80	85	
CGG TCA AAA ATG TCC CTC CGT TCT TAT GGA AGC CGG GAA GGA TCT GTA	342		
Arg Ser Lys Met Ser Leu Arg Ser Tyr Gln Ser Arg Glu Gly Ser Val			
90	95	100	
TCA AGC CGT TCT GGA GAG TGC AGT CCT GTT CCT ATG GGT TCA TTT CCA	390		
Ser Ser Arg Ser Gly Glu Cys Ser Pro Val Pro Met Gly Ser Phe Pro			
105	110	115	
AGA AGA GGG TTT GTA AAT GGA AGC AGA GAA AGT ACT GGA TAT TTA GAA	438		
Arg Arg Gly Phe Val Asn Gly Ser Arg Glu Ser Thr Gly Tyr Leu Glu			
120	125	130	135
GAA CTT GAG AAA GAG AGG TCA TTG CTT CTT GCT GAT CTT GAC AAA GAA	486		
Glu Leu Glu Lys Glu Arg Ser Leu Leu Leu Ala Asp Leu Asp Lys Glu			
140	145	150	
GAA AAG GAA AAA GAC TGG TAT TAC GCT CAA CTT CAG AAT CTC ACT AAA	534		
Glu Lys Glu Lys Asp Trp Tyr Tyr Ala Gln Leu Gln Asn Leu Thr Lys			
155	160	165	
AGA ATA GAT AGT CTT CCT TTA ACT GAA AAT TTT TCC TTA CAA ACA GAT	582		
Arg Ile Asp Ser Leu Pro Leu Thr Glu Asn Phe Ser Leu Gln Thr Asp			
170	175	180	
TTG ACC AGA AGG CAA TTG GAA TAT GAA GCA AGG CAA ATC AGA GTT GCG	630		
Leu Thr Arg Arg Gln Leu Glu Tyr Glu Ala Arg Gln Ile Arg Val Ala			
185	190	195	
ATG GAA GAA CAA CTA GGT ACC TGC CAG GAT ATG GAA AAA CGA GCA CAG	678		
Met Glu Glu Gln Leu Gly Thr Cys Gln Asp Met Glu Lys Arg Ala Gln			
200	205	210	215
CGA AGA ATA GCC AGA ATT CAG CAA ATC GAA AAG GAC ATA CTT CGT ATA	726		
Arg Arg Ile Ala Arg Ile Gln Gln Ile Glu Lys Asp Ile Leu Arg Ile			
220	225	230	
CGA CAG CTT TTA CAG TCC CAA GCA ACA GAA GCA GAG AGG TCA TCT CAG	774		
Arg Gln Leu Leu Gln Ser Gln Ala Thr Glu Ala Glu Arg Ser Ser Gln			
235	240	245	
AAC AAG CAT GAA ACC GGC TCA CAT GAT GCT GAG CGG CAG AAT GAA GGT	822		
Asn Lys His Glu Thr Gly Ser His Asp Ala Glu Arg Gln Asn Glu Gly			
250	255	260	
CAA GGA GTG GGA GAA ATC AAC ATG GCA ACT TCT GGT AAT GGT CAG GGT	870		
Gln Gly Val Gly Glu Ile Asn Met Ala Thr Ser Gly Asn Gly Gln Gly			
265	270	275	
TCA ACT ACA CGA ATG GAC CAT GAA ACA GCC AGT GTT TTG AGT TCT AGT	918		
Ser Thr Thr Arg Met Asp His Glu Thr Ala Ser Val Leu Ser Ser Ser			
280	285	290	295

-continued

AGC ACA CAC TCT GCA CCT CGA AGG CTG ACA AGT CAT CTG GGA ACC AAG	966
Ser Thr His Ser Ala Pro Arg Arg Leu Thr Ser His Leu Gly Thr Lys	
300 305 310	
GTG GAA ATG GTG TAT TCA TTG TTG TCA ATG CTT GGT ACT CAT GAT AAG	1014
Val Glu Met Val Tyr Ser Leu Leu Ser Met Leu Gly Thr His Asp Lys	
315 320 325	
GAT GAT ATG TCG CGA ACT TTG CTA GCT ATG TCT AGC TCC CAA GAC AGC	1062
Asp Asp Met Ser Arg Thr Leu Leu Ala Met Ser Ser Ser Gln Asp Ser	
330 335 340	
TGT ATA TCC ATG CGA CAG TCT GGA TGT CTT CCT CTC CTC ATC CAG CTT	1110
Cys Ile Ser Met Arg Gln Ser Gly Cys Leu Pro Leu Leu Ile Gln Leu	
345 350 355	
TTA CAT GGC AAT GAC AAA GAC TCT GTA TTG TTG GGA AAT TCC CGG GGC	1158
Leu His Gly Asn Asp Lys Asp Ser Val Leu Leu Gly Asn Ser Arg Gly	
360 365 370 375	
AGT AAA GAG GCT CGG GCC AGG GCC AGT GCA GCA CTC CAC AAC ATC ATT	1206
Ser Lys Glu Ala Arg Ala Arg Ala Ser Ala Ala Leu His Asn Ile Ile	
380 385 390	
CAC TCA CAG CCT GAT GAC AAG AGA GGC AGG CGT GAA ATC CGA GTC CTT	1254
His Ser Gln Pro Asp Asp Lys Arg Gly Arg Arg Glu Ile Arg Val Leu	
395 400 405	
CAT CTT TTG GAA CAG ATA CGC GCT TAC TGT GAA ACC TGT TGG GAG TGG	1302
His Leu Leu Glu Gln Ile Arg Ala Tyr Cys Glu Thr Cys Trp Glu Trp	
410 415 420	
CAG GAA GCT CAT GAA CCA GGC ATG GAC CAG GAC AAA AAT CCA ATG CCA	1350
Gln Glu Ala His Glu Pro Gly Met Asp Gln Asp Lys Asn Pro Met Pro	
425 430 435	
GCT CCT GTT GAA CAT CAG ATC TGT CCT GCT GTG TGT GTT CTA ATG AAA	1398
Ala Pro Val Glu His Gln Ile Cys Pro Ala Val Cys Val Leu Met Lys	
440 445 450 455	
CTT TCA TTT GAT GAA GAG CAT AGA CAT GCA ATG AAT GAA CTA GGG GGA	1446
Leu Ser Phe Asp Glu Glu His Arg His Ala Met Asn Glu Leu Gly Gly	
460 465 470	
CTA CAG GCC ATT GCA GAA TTA TTG CAA GTG GAC TGT GAA ATG TAT GGG	1494
Leu Gln Ala Ile Ala Glu Leu Leu Gln Val Asp Cys Glu Met Tyr Gly	
475 480 485	
CTT ACT AAT GAC CAC TAC AGT ATT ACA CTA AGA CGA TAT GCT GGA ATG	1542
Leu Thr Asn Asp His Tyr Ser Ile Thr Leu Arg Arg Tyr Ala Gly Met	
490 495 500	
GCT TTG ACA AAC TTG ACT TTT GGA GAT GTA GCC AAC AAG GCT ACG CTA	1590
Ala Leu Thr Asn Leu Thr Phe Glu Asp Val Ala Asn Lys Ala Thr Leu	
505 510 515	
TGC TCT ATG AAA GGC TGC ATG AGA GCA CTT GTG GCC CAA CTA AAA TCT	1638
Cys Ser Met Lys Gly Cys Met Arg Ala Leu Val Ala Gin Leu Lys Ser	
520 525 530 535	
GAA AGT GAA GAC TTA CAG CAG GTT ATT GCA AGT GTT TTG AGG AAT TTG	1686
Glu Ser Glu Asp Leu Gln Gln Val Ile Ala Ser Val Leu Arg Asn Leu	
540 545 550	
TCT TGG CGA GCA GAT GTA AAT AGT AAA AAG ACG TTG CGA GAA GTT GGA	1734
Ser Trp Arg Ala Asp Val Asn Ser Lys Lys Thr Leu Arg Glu Val Gly	
555 560 565	
AGT GTG AAA GCA TTG ATG GAA TGT GCT TTA GAA GTT AAA AAG GAA TCA	1782
Ser Val Lys Ala Leu Met Glu Cys Ala Leu Glu Val Lys Lys Glu Ser	
570 575 580	
ACC CTC AAA AGC GTA TTG AGT GCC TTA TGG AAT TTG TCA GCA CAT TGC	1830
Thr Leu Lys Ser Val Leu Ser Ala Leu Trp Asn Leu Ser Ala His Cys	
585 590 595	
ACT GAG AAT AAA GCT GAT ATA TGT GCT GTA GAT GGT GCA CTT GCA TTT	1878
Thr Glu Asn Lys Ala Asp Ile Cys Ala Val Asp Gly Ala Leu Ala Phe	
600 605 610 615	

-continued

TTG	GTT	GGC	ACT	CTT	ACT	TAC	CGG	AGC	CAG	ACA	AAC	ACT	TTA	GCC	ATT	1926
Leu	Val	Gly	Thr	Leu	Thr	Tyr	Arg	Ser	Gln	Thr	Asn	Thr	Leu	Ala	Ile	
620									625						630	
ATT	GAA	AGT	GGA	GGT	GGG	ATA	TTA	CGG	AAT	GTG	TCC	AGC	TTG	ATA	GCT	1974
Ile	Glu	Ser	Gly	Gly	Gly	Ile	Leu	Arg	Asn	Val	Ser	Ser	Leu	Ile	Ala	
635							640						645			
ACA	AAT	GAG	GAC	CAC	AGG	CAA	ATC	CTA	AGA	GAG	AAC	AAC	TGT	CTA	CAA	2022
Thr	Asn	Glu	Asp	His	Arg	Gln	Ile	Leu	Arg	Glu	Asn	Asn	Cys	Leu	Gln	
650						655				660						
ACT	TTA	TTA	CAA	CAC	TTA	AAA	TCT	CAT	AGT	TTG	ACA	ATA	GTC	AGT	AAT	2070
Thr	Leu	Leu	Gln	His	Leu	Lys	Ser	His	Ser	Leu	Thr	Ile	Val	Ser	Asn	
665						670				675						
GCA	TGT	GGA	ACT	TTG	TGG	AAT	CTC	TCA	GCA	AGA	AAT	CCT	AAA	GAC	CAG	2118
Ala	Cys	Gly	Thr	Leu	Trp	Asn	Leu	Ser	Ala	Arg	Asn	Pro	Lys	Asp	Gln	
680						685				690					695	
GAA	GCA	TTA	TGG	GAC	ATG	GGG	GCA	GTT	AGC	ATG	CTC	AAG	AAC	CTC	ATT	2166
Glu	Ala	Leu	Trp	Asp	Met	Gly	Ala	Val	Ser	Met	Leu	Lys	Asn	Leu	Ile	
700						705									710	
CAT	TCA	AAG	CAC	AAA	ATG	ATT	GCT	ATG	GGA	AGT	GCT	GCA	GCT	TTA	AGG	2214
His	Ser	Lys	His	Lys	Met	Ile	Ala	Met	Gly	Ser	Ala	Ala	Ala	Leu	Arg	
715						720									725	
AAT	CTC	ATG	GCA	AAT	AGG	CCT	GCG	AAG	TAC	AAG	GAT	GCC	AAT	ATT	ATG	2262
Asn	Leu	Met	Ala	Asn	Arg	Pro	Ala	Lys	Tyr	Lys	Asp	Ala	Asn	Ile	Met	
730						735									740	
TCT	CCT	GGC	TCA	AGC	TTG	CCA	TCT	CTT	CAT	GTT	AGG	AAA	CAA	AAA	GCC	2310
Ser	Pro	Gly	Ser	Ser	Leu	Pro	Ser	Leu	His	Val	Arg	Lys	Gln	Lys	Ala	
745						750				755						
CTA	GAA	GCA	GAA	TTA	GAT	GCT	CAG	CAC	TTA	TCA	GAA	ACT	TTT	GAC	AAT	2358
Leu	Glu	Ala	Glu	Leu	Asp	Ala	Gln	His	Leu	Ser	Glu	Thr	Phe	Asp	Asn	
760						765				770					775	
ATA	GAC	AAT	TTA	AGT	CCC	AAG	GCA	TCT	CAT	CGT	AGT	AAG	CAG	AGA	CAC	2406
Ile	Asp	Asn	Leu	Ser	Pro	Lys	Ala	Ser	His	Arg	Ser	Lys	Gln	Arg	His	
780						785									790	
AAG	CAA	AGT	CTC	TAT	GGT	GAT	TAT	GTT	TTT	GAC	ACC	AAT	CGA	CAT	GAT	2454
Lys	Gln	Ser	Leu	Tyr	Gly	Asp	Tyr	Val	Phe	Asp	Thr	Asn	Arg	His	Asp	
795						800									805	
GAT	AAT	AGG	TCA	GAC	AAT	TTT	AAT	ACT	GGC	AAC	ATG	ACT	GTC	CTT	TCA	2502
Asp	Asn	Arg	Ser	Asp	Asn	Phe	Asn	Thr	Gly	Asn	Met	Thr	Val	Leu	Ser	
810						815									820	
CCA	TAT	TTG	AAT	ACT	ACA	GTG	TTA	CCC	AGC	TCC	TCT	TCA	TCA	AGA	GGA	2550
Pro	Tyr	Leu	Asn	Thr	Thr	Val	Leu	Pro	Ser	Ser	Ser	Ser	Ser	Arg	Gly	
825						830				835						
AGC	TTA	GAT	AGT	TCT	CGT	TCT	GAA	AAA	GAT	AGA	AGT	TTG	GAG	AGA	GAA	2598
Ser	Leu	Asp	Ser	Ser	Arg	Ser	Glu	Lys	Asp	Arg	Ser	Leu	Glu	Arg	Glu	
840						845				850					855	
CGC	GGA	ATT	GGT	CTA	GGC	AAC	TAC	CAT	CCA	GCA	ACA	GAA	AAT	CCA	GGA	2646
Arg	Gly	Ile	Gly	Leu	Gly	Asn	Tyr	His	Pro	Ala	Thr	Glu	Asn	Pro	Gly	
860						865									870	
ACT	TCT	TCA	AAG	CGA	GGT	TTG	CAG	ATC	TCC	ACC	ACT	GCA	GCC	CAG	ATT	2694
Thr	Ser	Ser	Lys	Arg	Gly	Leu	Gln	Ile	Ser	Thr	Thr	Ala	Ala	Gln	Ile	
875						880									885	
GCC	AAA	GTC	ATG	GAA	GAA	GTG	TCA	GCC	ATT	CAT	ACC	TCT	CAG	GAA	GAC	2742
Ala	Lys	Val	Met	Glu	Glu	Val	Ser	Ala	Ile	His	Thr	Ser	Gln	Glu	Asp	
890						895				900						
AGA	AGT	TCT	GGG	TCT	ACC	ACT	GAA	TTA	CAT	TGT	GTG	ACA	GAT	GAG	AGA	2790
Arg	Ser	Ser	Gly	Ser	Thr	Thr	Glu	Leu	His	Cys	Val	Thr	Asp	Glu	Arg	
905						910				915						
AAT	GCA	CTT	AGA	AGA	AGC	TCT	GCT	GCC	CAT	ACA	CAT	TCA	AAC	ACT	TAC	2838
Asn	Ala	Leu	Arg	Arg	Ser	Ser	Ala	Ala	His	Thr	His	Ser	Asn	Thr	Tyr	
920						925				930					935	

-continued

AAT	TTC	ACT	AAG	TCG	GAA	AAT	TCA	AAT	AGG	ACA	TGT	TCT	ATG	CCT	TAT	2886
Asn	Phe	Thr	Lys	Ser	Glu	Asn	Ser	Asn	Arg	Thr	Cys	Ser	Met	Pro	Tyr	
940									945						950	
GCC	AAA	TTA	GAA	TAC	AAG	AGA	TCT	TCA	AAT	GAT	AGT	TTA	AAT	AGT	GTC	2934
Ala	Lys	Leu	Glu	Tyr	Lys	Arg	Ser	Ser	Asn	Asp	Ser	Leu	Asn	Ser	Val	
955									960						965	
AGT	AGT	AAT	GAT	GGT	TAT	GGT	AAA	AGA	GGT	CAA	ATG	AAA	CCC	TCG	ATT	2982
Ser	Ser	Asn	Asp	Gly	Tyr	Gly	Lys	Arg	Gly	Gln	Met	Lys	Pro	Ser	Ile	
970							975					980				
GAA	TCC	TAT	TCT	GAA	GAT	GAT	GAA	AGT	AAG	TTT	TGC	AGT	TAT	GGT	CAA	3030
Glu	Ser	Tyr	Ser	Glu	Asp	Asp	Glu	Ser	Lys	Phe	Cys	Ser	Tyr	Gly	Gln	
985							990					995				
TAC	CCA	GCC	GAC	CTA	GCC	CAT	AAA	ATA	CAT	AGT	GCA	AAT	CAT	ATG	GAT	3078
Tyr	Pro	Ala	Asp	Leu	Ala	His	Lys	Ile	His	Ser	Ala	Asn	His	Met	Asp	
1000							1005				1010				1015	
GAT	AAT	GAT	GGA	GAA	CTA	GAT	ACA	CCA	ATA	AAT	TAT	AGT	CTT	AAA	TAT	3126
Asp	Asn	Asp	Gly	Glu	Leu	Asp	Thr	Pro	Ile	Asn	Tyr	Ser	Leu	Lys	Tyr	
1020							1025							1030		
TCA	GAT	GAG	CAG	TTG	AAC	TCT	GGA	AGG	CAA	AGT	CCT	TCA	CAG	AAT	GAA	3174
Ser	Asp	Glu	Gln	Leu	Asn	Ser	Gly	Arg	Gln	Ser	Pro	Ser	Gln	Asn	Glu	
1035							1040					1045				
AGA	TGG	GCA	AGA	CCC	AAA	CAC	ATA	ATA	GAA	GAT	GAA	ATA	AAA	CAA	AGT	3222
Arg	Trp	Ala	Arg	Pro	Lys	His	Ile	Ile	Glu	Asp	Glu	Ile	Lys	Gln	Ser	
1050							1055					1060				
GAG	CAA	AGA	CAA	TCA	AGG	AAT	CAA	AGT	ACA	ACT	TAT	CCT	GTT	TAT	ACT	3270
Glu	Gln	Arg	Gln	Ser	Arg	Asn	Gln	Ser	Thr	Thr	Tyr	Pro	Val	Tyr	Thr	
1065							1070					1075				
GAG	AGC	ACT	GAT	AAA	CAC	CTC	AAG	TTC	CAA	CCA	CAT	TTT	GGA	CAG	3318	
Glu	Ser	Thr	Asp	Asp	Lys	His	Leu	Lys	Phe	Gln	Pro	His	Phe	Gly	Gln	
1080							1085					1090			1095	
CAG	GAA	TGT	GTT	TCT	CCA	TAC	AGG	TCA	CGG	GGA	GCC	AAT	GGT	TCA	GAA	3366
Gln	Glu	Cys	Val	Ser	Pro	Tyr	Arg	Ser	Arg	Gly	Ala	Asn	Gly	Ser	Glu	
1100							1105					1110				
ACA	AAT	CGA	GTG	GGT	TCT	AAT	CAT	GGA	ATT	AAT	CAA	AAT	GTA	AGC	CAG	3414
Thr	Asn	Arg	Val	Gly	Ser	Asn	His	Gly	Ile	Asn	Gln	Asn	Val	Ser	Gln	
1115							1120					1125				
TCT	TTG	TGT	CAA	GAA	GAT	GAC	TAT	GAA	GAT	GAT	AAG	CCT	ACC	AAT	TAT	3462
Ser	Leu	Cys	Gln	Glu	Asp	Asp	Tyr	Glu	Asp	Asp	Lys	Pro	Thr	Asn	Tyr	
1130							1135					1140				
AGT	GAA	CGT	TAC	TCT	GAA	GAA	GAA	CAG	CAT	GAA	GAA	GAG	AGA	CCA	3510	
Ser	Glu	Arg	Tyr	Ser	Glu	Glu	Glu	Gln	His	Glu	Glu	Glu	Glu	Arg	Pro	
1145							1150					1155				
ACA	AAT	TAT	AGC	ATA	AAA	TAT	AAT	GAA	GAG	AAA	CGT	CAT	GTG	GAT	CAG	3558
Thr	Asn	Tyr	Ser	Ile	Lys	Tyr	Asn	Glu	Glu	Lys	Arg	His	Val	Asp	Gln	
1160							1165					1170			1175	
CCT	ATT	GAT	TAT	AGT	TTA	AAA	TAT	GCC	ACA	GAT	ATT	CCT	TCA	TCA	CAG	3606
Pro	Ile	Asp	Tyr	Ser	Leu	Lys	Tyr	Ala	Thr	Asp	Ile	Pro	Ser	Ser	Gln	
1180							1185					1190				
AAA	CAG	TCA	TTT	TCA	TTC	TCA	AAG	AGT	TCA	TCT	GGA	CAA	AGC	AGT	AAA	3654
Lys	Gln	Ser	Phe	Ser	Phe	Ser	Lys	Ser	Ser	Ser	Gly	Gln	Ser	Ser	Lys	
1195							1200					1205				
ACC	GAA	CAT	ATG	TCT	TCA	AGC	AGT	GAG	AAT	ACG	TCC	ACA	CCT	TCA	TCT	3702
Thr	Glu	His	Met	Ser	Ser	Ser	Ser	Glu	Asn	Thr	Ser	Thr	Pro	Ser	Ser	
1210							1215					1220				
AAT	GCC	AAG	AGG	CAG	AAT	CAG	CTC	CAT	CCA	AGT	TCT	GCA	CAG	AGT	AGA	3750
Asn	Ala	Lys	Arg	Gln	Asn	Gln	Leu	His	Pro	Ser	Ser	Ala	Gln	Ser	Arg	
1225							1230					1235				
AGT	GGT	CAG	CCT	CAA	AAG	GCT	GCC	ACT	TGC	AAA	GTT	TCT	TCT	ATT	AAC	3798
Ser	Gly	Gln	Pro	Gln	Lys	Ala	Ala	Thr	Cys	Lys	Val	Ser	Ser	Ile	Asn	
1240							1245					1250			1255	

-continued

CAA GAA ACA ATA CAG ACT TAT TGT GTA GAA GAT ACT CCA ATA TGT TTT Gln Glu Thr Ile Gln Thr Tyr Cys Val Glu Asp Thr Pro Ile Cys Phe 1260 1265 1270	3846
TCA AGA TGT AGT TCA TTA TCA TCT TTG TCA TCA GCT GAA GAT GAA ATA Ser Arg Cys Ser Ser Leu Ser Ser Leu Ser Ser Ala Glu Asp Glu Ile 1275 1280 1285	3894
GGA TGT AAT CAG ACG ACA CAG GAA GCA GAT TCT GCT AAT ACC CTG CAA Gly Cys Asn Gln Thr Thr Gln Glu Ala Asp Ser Ala Asn Thr Leu Gln 1290 1295 1300	3942
ATA GCA GAA ATA AAA GGA AAG ATT GGA ACT AGG TCA GCT GAA GAT CCT Ile Ala Glu Ile Lys Gly Lys Ile Gly Thr Arg Ser Ala Glu Asp Pro 1305 1310 1315	3990
GTG AGC GAA GTT CCA GCA GTG TCA CAG CAC CCT AGA ACC AAA TCC AGC Val Ser Glu Val Pro Ala Val Ser Gln His Pro Arg Thr Lys Ser Ser 1320 1325 1330 1335	4038
AGA CTG CAG GGT TCT AGT TTA TCT TCA GAA TCA GCC AGG CAC AAA GCT Arg Leu Gln Gly Ser Ser Leu Ser Ser Glu Ser Ala Arg His Lys Ala 1340 1345 1350	4086
GTT GAA TTT CCT TCA GGA GCG AAA TCT CCC TCC AAA AGT GGT GCT CAG Val Glu Phe Pro Ser Gly Ala Lys Ser Pro Ser Lys Ser Gly Ala Gln 1355 1360 1365	4134
ACA CCC AAA AGT CCA CCT GAA CAC TAT GTT CAG GAG ACC CCA CTC ATG Thr Pro Lys Ser Pro Pro Glu His Tyr Val Gln Glu Thr Pro Leu Met 1370 1375 1380	4182
TTT AGC AGA TGT ACT TCT GTC AGT TCA CTT GAT AGT TTT GAG AGT CGT Phe Ser Arg Cys Thr Ser Val Ser Ser Leu Asp Ser Phe Glu Ser Arg 1385 1390 1395	4230
TCG ATT GCC AGC TCC GTT CAG AGT GAA CCA TGC AGT GGA ATG GTA AGT Ser Ile Ala Ser Ser Val Gln Ser Glu Pro Cys Ser Gly Met Val Ser 1400 1405 1410 1415	4278
GGC ATT ATA AGC CCC AGT GAT CTT CCA GAT AGC CCT GGA CAA ACC ATG Gly Ile Ile Ser Pro Ser Asp Leu Pro Asp Ser Pro Gly Gln Thr Met 1420 1425 1430	4326
CCA CCA AGC AGA AGT AAA ACA CCT CCA CCA CCT CCT CAA ACA GCT CAA Pro Pro Ser Arg Ser Lys Thr Pro Pro Pro Pro Gln Thr Ala Gln 1435 1440 1445	4374
ACC AAG CGA GAA GTA CCT AAA AAT AAA GCA CCT ACT GCT GAA AAG AGA Thr Lys Arg Glu Val Pro Lys Asn Lys Ala Pro Thr Ala Glu Lys Arg 1450 1455 1460	4422
GAG AGT GGA CCT AAG CAA GCT GCA GTA AAT GCT GCA GTT CAG AGG GTC Glu Ser Gly Pro Lys Gln Ala Ala Val Asn Ala Ala Val Gln Arg Val 1465 1470 1475	4470
CAG GTT CTT CCA GAT GCT GAT ACT TTA TTA CAT TTT GCC ACA GAA AGT Gln Val Leu Pro Asp Ala Asp Thr Leu Leu His Phe Ala Thr Glu Ser 1480 1485 1490 1495	4518
ACT CCA GAT GGA TTT TCT TGT TCA TCC AGC CTG AGT GCT CTG AGC CTC Thr Pro Asp Gly Phe Ser Cys Ser Ser Leu Ser Ala Leu Ser Leu 1500 1505 1510	4566
GAT GAG CCA TTT ATA CAG AAA GAT GTG GAA TTA AGA ATA ATG CCT CCA Asp Glu Pro Phe Ile Gln Lys Asp Val Glu Leu Arg Ile Met Pro Pro 1515 1520 1525	4614
GTT CAG GAA AAT GAC AAT GGG AAT GAA ACA GAA TCA GAG CAG CCT AAA Val Gln Glu Asn Asp Asn Gly Asn Glu Thr Glu Ser Glu Gln Pro Lys 1530 1535 1540 1545	4662
GAA TCA AAT GAA AAC CAA GAG AAA GAG GCA GAA AAA ACT ATT GAT TCT Glu Ser Asn Glu Asn Gln Glu Lys Glu Ala Glu Lys Thr Ile Asp Ser 1545 1550 1555	4710
GAA AAG GAC CTA TTA GAT GAT TCA GAT GAT GAT GAT ATT GAA ATA CTA Glu Lys Asp Leu Leu Asp Asp Ser Asp Asp Asp Ile Glu Ile Leu 1560 1565 1570 1575	4758

-continued

GAA GAA TGT ATT ATT TCT GCC ATG CCA ACA AAG TCA TCA CGT AAA GGC	4806
Glu Glu Cys Ile Ile Ser Ala Met Pro Thr Lys Ser Ser Arg Lys Gly	
1580 1585 1590	
AAA AAG CCA GCC CAG ACT GCT TCA AAA TTA CCT CCA CCT GTG GCA AGG	4854
Lys Lys Pro Ala Gln Thr Ala Ser Lys Leu Pro Pro Pro Val Ala Arg	
1595 1600 1605	
AAA CCA AGT CAG CTG CCT GTG TAC AAA CTT CTA CCA TCA CAA AAC AGG	4902
Lys Pro Ser Gln Leu Pro Val Tyr Lys Leu Leu Pro Ser Gln Asn Arg	
1610 1615 1620	
TTG CAA CCC CAA AAG CAT GTT AGT TTT ACA CCG GGG GAT GAT ATG CCA	4950
Leu Gln Pro Gln Lys His Val Ser Phe Thr Pro Gly Asp Asp Met Pro	
1625 1630 1635	
CGG GTG TAT TGT GTT GAA GGG ACA CCT ATA AAC TTT TCC ACA GCT ACA	4998
Arg Val Tyr Cys Val Glu Gly Thr Pro Ile Asn Phe Ser Thr Ala Thr	
1640 1645 1650 1655	
TCT CTA AGT GAT CTA ACA ATC GAA TCC CCT CCA AAT GAG TTA GCT GCT	5046
Ser Leu Ser Asp Leu Thr Ile Glu Ser Pro Pro Asn Glu Leu Ala Ala	
1660 1665 1670	
GGA GAA GGA GTT AGA GGA GGA GCA CAG TCA GGT GAA TTT GAA AAA CGA	5094
Gly Glu Gly Val Arg Gly Gly Ala Gln Ser Gly Glu Phe Glu Lys Arg	
1675 1680 1685	
GAT ACC ATT CCT ACA GAA GGC AGA AGT ACA GAT GAG GCT CAA GGA GGA	5142
Asp Thr Ile Pro Thr Glu Gly Arg Ser Thr Asp Glu Ala Gln Gly Gly	
1690 1695 1700	
AAA ACC TCA TCT GTA ACC ATA CCT GAA TTG GAT GAC AAT AAA GCA GAG	5190
Lys Thr Ser Ser Val Thr Ile Pro Glu Leu Asp Asp Asn Lys Ala Glu	
1705 1710 1715	
GAA GGT GAT ATT CTT GCA GAA TGC ATT AAT TCT GCT ATG CCC AAA GGG	5238
Glu Gly Asp Ile Leu Ala Glu Cys Ile Asn Ser Ala Met Pro Lys Gly	
1720 1725 1730 1735	
AAA AGT CAC AAG CCT TTC CGT GTG AAA AAG ATA ATG GAC CAG GTC CAG	5286
Lys Ser His Lys Pro Phe Arg Val Lys Lys Ile Met Asp Gln Val Gln	
1740 1745 1750	
CAA GCA TCT GCG TCG TCT TCT GCA CCC AAC AAA AAT CAG TTA GAT GGT	5334
Gln Ala Ser Ala Ser Ser Ala Pro Asn Lys Asn Gln Leu Asp Gly	
1755 1760 1765	
AAG AAA AAG AAA CCA ACT TCA CCA GTA AAA CCT ATA CCA CAA AAT ACT	5382
Lys Lys Lys Pro Thr Ser Pro Val Lys Pro Ile Pro Gln Asn Thr	
1770 1775 1780	
GAA TAT AGG ACA CGT GTA AGA AAA AAT GCA GAC TCA AAA AAT AAT TTA	5430
Glu Tyr Arg Thr Arg Val Arg Lys Asn Ala Asp Ser Lys Asn Asn Leu	
1785 1790 1795	
AAT GCT GAG AGA GTT TTC TCA GAC AAC AAA GAT TCA AAG AAA CAG AAT	5478
Asn Ala Glu Arg Val Phe Ser Asp Asn Lys Asp Ser Lys Lys Gln Asn	
1800 1805 1810 1815	
TTG AAA AAT AAT TCC AAG GAC TTC AAT GAT AAG CTC CCA AAT AAT GAA	5526
Leu Lys Asn Asn Ser Lys Asp Phe Asn Asp Lys Leu Pro Asn Asn Glu	
1820 1825 1830	
GAT AGA GTC AGA GGA AGT TTT GCT TTT GAT TCA CCT CAT CAT TAC ACG	5574
Asp Arg Val Arg Gly Ser Phe Ala Phe Asp Ser Pro His His Tyr Thr	
1835 1840 1845	
CCT ATT GAA GGA ACT CCT TAC TGT TTT TCA CGA AAT GAT TCT TTG AGT	5622
Pro Ile Glu Gly Thr Pro Tyr Cys Phe Ser Arg Asn Asp Ser Leu Ser	
1850 1855 1860	
TCT CTA GAT TTT GAT GAT GAT GTT GAC CTT TCC AGG GAA AAG GCT	5670
Ser Leu Asp Phe Asp Asp Asp Asp Val Asp Leu Ser Arg Glu Lys Ala	
1865 1870 1875	
GAA TTA AGA AAG GCA AAA GAA AAT AAG GAA TCA GAG GCT AAA GTT ACC	5718
Glu Leu Arg Lys Ala Lys Glu Asn Lys Glu Ser Glu Ala Lys Val Thr	
1880 1885 1890 1895	

-continued

AGC CAC ACA GAA CTA ACC TCC AAC CAA CAA TCA GCT AAT AAG ACA CAA	5766
Ser His Thr Glu Leu Thr Ser Asn Gln Gln Ser Ala Asn Lys Thr Gln	
1900 1905 1910	
GCT ATT GCA AAG CAG CCA ATA AAT CGA GGT CAG CCT AAA CCC ATA CTT	5814
Ala Ile Ala Lys Gln Pro Ile Asn Arg Gly Gln Pro Lys Pro Ile Leu	
1915 1920 1925	
CAG AAA CAA TCC ACT TTT CCC CAG TCA TCC AAA GAC ATA CCA GAC AGA	5862
Gln Lys Gln Ser Thr Phe Pro Gln Ser Ser Lys Asp Ile Pro Asp Arg	
1930 1935 1940	
GGG GCA GCA ACT GAT GAA AAG TTA CAG AAT TTT GCT ATT GAA AAT ACT	5910
Gly Ala Ala Thr Asp Glu Lys Leu Gln Asn Phe Ala Ile Glu Asn Thr	
1945 1950 1955	
CCA GTT TGC TTT TCT CAT AAT TCC TCT CTG AGT TCT CTC AGT GAC ATT	5958
Pro Val Cys Phe Ser His Asn Ser Ser Leu Ser Ser Leu Ser Asp Ile	
1960 1965 1970 1975	
GAC CAA GAA AAC AAC AAT AAA GAA AAT GAA CCT ATC AAA GAG ACT GAG	6006
Asp Gln Glu Asn Asn Asn Lys Glu Asn Gln Pro Ile Lys Glu Thr Glu	
1980 1985 1990	
CCC CCT GAC TCA CAG GGA GAA CCA AGT AAA CCT CAA GCA TCA GGC TAT	6054
Pro Pro Asp Ser Gln Gly Glu Pro Ser Lys Pro Gln Ala Ser Gly Tyr	
1995 2000 2005	
GCT CCT AAA TCA TTT CAT GTT GAA GAT ACC CCA GTT TGT TTC TCA AGA	6102
Ala Pro Lys Ser Phe His Val Glu Asp Thr Pro Val Cys Phe Ser Arg	
2010 2015 2020	
AAC AGT TCT CTC AGT TCT CTT AGT ATT GAC TCT GAA GAT GAC CTG TTG	6150
Asn Ser Ser Leu Ser Ser Leu Ser Ile Asp Ser Glu Asp Asp Leu Leu	
2025 2030 2035	
CAG GAA TGT ATA AGC TCC GCA ATG CCA AAA AAG AAA AAG CCT TCA AGA	6198
Gln Glu Cys Ile Ser Ser Ala Met Pro Lys Lys Lys Pro Ser Arg	
2040 2045 2050 2055	
CTC AAG GGT GAT AAT GAA AAA CAT AGT CCC AGA AAT ATG GGT GGC ATA	6246
Leu Lys Gly Asp Asn Glu Lys His Ser Pro Arg Asn Met Gly Gly Ile	
2060 2065 2070	
TTA GGT GAA GAT CTG ACA CTT GAT TTG AAA GAT ATA CAG AGA CCA GAT	6294
Leu Gly Glu Asp Leu Thr Leu Asp Leu Lys Asp Ile Gln Arg Pro Asp	
2075 2080 2085	
TCA GAA CAT GGT CTA TCC CCT GAT TCA GAA AAT TTT GAT TGG AAA GCT	6342
Ser Glu His Gly Leu Ser Pro Asp Ser Glu Asn Phe Asp Trp Lys Ala	
2090 2095 2100	
ATT CAG GAA GGT GCA AAT TCC ATA GTA AGT AGT TTA CAT CAA GCT GCT	6390
Ile Gln Glu Gly Ala Asn Ser Ile Val Ser Ser Leu His Gln Ala Ala	
2105 2110 2115	
GCT GCT GCA TGT TTA TCT AGA CAA GCT TCG TCT GAT TCA GAT TCC ATC	6438
Ala Ala Ala Cys Leu Ser Arg Gln Ala Ser Ser Asp Ser Asp Ser Ile	
2120 2125 2130 2135	
CTT TCC CTG AAA TCA GGA ATC TCT CTG GGA TCA CCA TTT CAT CTT ACA	6486
Leu Ser Leu Lys Ser Gly Ile Ser Leu Gly Ser Pro Phe His Leu Thr	
2140 2145 2150	
CCT GAT CAA GAA GAA AAA CCC TTT ACA AGT AAT AAA GGC CCA CGA ATT	6534
Pro Asp Gln Glu Glu Lys Pro Phe Thr Ser Asn Lys Gly Pro Arg Ile	
2155 2160 2165	
CTA AAA CCA GGG GAG AAA AGT ACA TTG GAA ACT AAA AAG ATA GAA TCT	6582
Leu Lys Pro Gly Glu Lys Ser Thr Leu Glu Thr Lys Lys Ile Glu Ser	
2170 2175 2180	
GAA AGT AAA GGA ATC AAA GGA GGA AAA AAA GTT TAT AAA AGT TTG ATT	6630
Glu Ser Lys Gly Ile Lys Gly Gly Lys Lys Val Tyr Lys Ser Leu Ile	
2185 2190 2195	
ACT GGA AAA GTT CGA TCT AAT TCA GAA ATT TCA GGC CAA ATG AAA CAG	6678
Thr Gly Lys Val Arg Ser Asn Ser Glu Ile Ser Gly Gln Met Lys Gln	
2200 2205 2210 2215	

-continued

CCC CTT CAA GCA AAC ATG CCT TCA ATC TCT CGA GGC AGG ACA ATG ATT Pro Leu Gln Ala Asn Met Pro Ser Ile Ser Arg Gly Arg Thr Met Ile 2220 2225 2230	6726
CAT ATT CCA GGA GTT CGA AAT AGC TCC TCA AGT ACA AGT CCT GTT TCT His Ile Pro Gly Val Arg Asn Ser Ser Ser Thr Ser Pro Val Ser 2235 2240 2245	6774
AAA AAA GGC CCA CCC CTT AAG ACT CCA GCC TCC AAA AGC CCT AGT GAA Lys Lys Gly Pro Pro Leu Lys Thr Pro Ala Ser Lys Ser Pro Ser Glu 2250 2255 2260	6822
GGT CAA ACA GCC ACC ACT TCT CCT AGA GGA GCC AAG CCA TCT GTG AAA Gly Gln Thr Ala Thr Ser Pro Arg Gly Ala Lys Pro Ser Val Lys 2265 2270 2275	6870
TCA GAA TTA AGC CCT GTT GCC AGG CAG ACA TCC CAA ATA GGT GGG TCA Ser Glu Leu Ser Pro Val Ala Arg Gln Thr Ser Gln Ile Gly Gly Ser 2280 2285 2290 2295	6918
AGT AAA GCA CCT TCT AGA TCA GGA TCT AGA GAT TCG ACC CCT TCA AGA Ser Lys Ala Pro Ser Arg Ser Gly Ser Arg Asp Ser Thr Pro Ser Arg 2300 2305 2310	6966
CCT GCC CAG CAA CCA TTA AGT AGA CCT ATA CAG TCT CCT GGC CGA AAC Pro Ala Gln Pro Leu Ser Arg Pro Ile Gln Ser Pro Gly Arg Asn 2315 2320 2325	7014
TCA ATT TCC CCT GGT AGA AAT GGA ATA AGT CCT CCT AAC AAA TTA TCT Ser Ile Ser Pro Gly Arg Asn Gly Ile Ser Pro Pro Asn Lys Leu Ser 2330 2335 2340	7062
CAA CTT CCA AGG ACA TCA TCC CCT AGT ACT GCT TCA ACT AAG TCC TCA Gln Leu Pro Arg Thr Ser Ser Pro Ser Thr Ala Ser Thr Lys Ser Ser 2345 2350 2355	7110
GGT TCT GGA AAA ATG TCA TAT ACA TCT CCA GGT AGA CAG ATG AGC CAA Gly Ser Gly Lys Met Ser Tyr Thr Ser Pro Gly Arg Gln Met Ser Gln 2360 2365 2370 2375	7158
CAG AAC CTT ACC AAA CAA ACA GGT TTA TCC AAG AAT GCC AGT AGT ATT Gln Asn Leu Thr Lys Gln Thr Gly Leu Ser Lys Asn Ala Ser Ser Ile 2380 2385 2390	7206
CCA AGA AGT GAG TCT GCC TCC AAA GGA CTA AAT CAG ATG AAT AAT GGT Pro Arg Ser Glu Ser Ala Ser Lys Gly Leu Asn Gln Met Asn Asn Gly 2395 2400 2405	7254
AAT GGA GCC AAT AAA AAG GTA GAA CTT TCT AGA ATG TCT TCA ACT AAA Asn Gly Ala Asn Lys Lys Val Glu Leu Ser Arg Met Ser Ser Thr Lys 2410 2415 2420	7302
TCA AGT GGA AGT GAA TCT GAT AGA TCA GAA AGA CCT GTA TTA GTA CGC Ser Ser Gly Ser Glu Ser Asp Arg Ser Glu Arg Pro Val Leu Val Arg 2425 2430 2435	7350
CAG TCA ACT TTC ATC AAA GAA GCT CCA AGC CCA ACC TTA AGA AGA AAA Gln Ser Thr Phe Ile Lys Glu Ala Pro Ser Pro Thr Leu Arg Arg Lys 2440 2445 2450 2455	7398
TTG GAG GAA TCT GCT TCA TTT GAA TCT CTT TCT CCA TCA TCT AGA CCA Leu Glu Glu Ser Ala Ser Phe Glu Ser Leu Ser Pro Ser Ser Arg Pro 2460 2465 2470	7446
GCT TCT CCC ACT AGG TCC CAG GCA CAA ACT CCA GTT TTA AGT CCT TCC Ala Ser Pro Thr Arg Ser Gln Ala Gln Thr Pro Val Leu Ser Pro Ser 2475 2480 2485	7494
CTT CCT GAT ATG TCT CTA TCC ACA CAT TCG TCT GTT CAG GCT GGT GGA Leu Pro Asp Met Ser Leu Ser Thr His Ser Ser Val Gln Ala Gly Gly 2490 2495 2500	7542
TGG CGA AAA CTC CCA CCT AAT CTC AGT CCC ACT ATA GAG TAT AAT GAT Trp Arg Lys Leu Pro Pro Asn Leu Ser Pro Thr Ile Glu Tyr Asn Asp 2505 2510 2515	7590
GGA AGA CCA GCA AAG CGC CAT GAT ATT GCA CGG TCT CAT TCT GAA AGT Gly Arg Pro Ala Lys Arg His Asp Ile Ala Arg Ser His Ser Glu Ser 2520 2525 2530 2535	7638

-continued

CCT TCT AGA CTT CCA ATC AAT AGG TCA GGA ACC TGG AAA CGT GAG CAC	7 6 8 6
Pro Ser Arg Leu Pro Ile Asn Arg Ser Gly Thr Trp Lys Arg Glu His	
2540 2545 2550	
AGC AAA CAT TCA TCA TCC CTT CCT CGA GTA AGC ACT TGG AGA AGA ACT	7 7 3 4
Ser Lys His Ser Ser Ser Leu Pro Arg Val Ser Thr Trp Arg Arg Thr	
2555 2560 2565	
GGA AGT TCA TCT TCA ATT CTT TCT GCT TCA TCA GAA TCC AGT GAA AAA	7 7 8 2
Gly Ser Ser Ser Ile Leu Ser Ala Ser Ser Glu Ser Ser Glu Lys	
2570 2575 2580	
GCA AAA AGT GAG GAT GAA AAA CAT GTG AAC TCT ATT TCA GGA ACC AAA	7 8 3 0
Ala Lys Ser Glu Asp Glu Lys His Val Asn Ser Ile Ser Gly Thr Lys	
2585 2590 2595	
CAA AGT AAA GAA AAC CAA GTA TCC GCA AAA GGA ACA TGG AGA AAA ATA	7 8 7 8
Gln Ser Lys Glu Asn Gln Val Ser Ala Lys Gly Thr Trp Arg Lys Ile	
2600 2605 2610 2615	
AAA GAA AAT GAA TTT TCT CCC ACA AAT AGT ACT TCT CAG ACC GTT TCC	7 9 2 6
Lys Glu Asn Glu Phe Ser Pro Thr Asn Ser Thr Ser Gln Thr Val Ser	
2620 2625 2630	
TCA GGT GCT ACA AAT GGT GCT GAA TCA AAG ACT CTA ATT TAT CAA ATG	7 9 7 4
Ser Gly Ala Thr Asn Gly Ala Glu Ser Lys Thr Leu Ile Tyr Gln Met	
2635 2640 2645	
GCA CCT GCT GTT TCT AAA ACA GAG GAT GTT TGG GTG AGA ATT GAG GAC	8 0 2 2
Ala Pro Ala Val Ser Lys Thr Glu Asp Val Trp Val Arg Ile Glu Asp	
2650 2655 2660	
TGT CCC ATT AAC AAT CCT AGA TCT GGA AGA TCT CCC ACA GGT AAT ACT	8 0 7 0
Cys Pro Ile Asn Asn Pro Arg Ser Gly Arg Ser Pro Thr Gly Asn Thr	
2665 2670 2675	
CCC CCG GTG ATT GAC AGT GTT TCA GAA AAG GCA AAT CCA AAC ATT AAA	8 1 1 8
Pro Pro Val Ile Asp Ser Val Ser Glu Lys Ala Asn Pro Asn Ile Lys	
2680 2685 2690 2695	
GAT TCA AAA GAT AAT CAG GCA AAA CAA AAT GTG GGT AAT GGC AGT GTT	8 1 6 6
Asp Ser Lys Asp Asn Gln Ala Lys Gln Asn Val Gly Asn Gly Ser Val	
2700 2705 2710	
CCC ATG CGT ACC GTG GGT TTG GAA AAT CGC CTG ACC TCC TTT ATT CAG	8 2 1 4
Pro Met Arg Thr Val Gly Leu Glu Asn Arg Leu Thr Ser Phe Ile Gln	
2715 2720 2725	
GTG GAT GCC CCT GAC CAA AAA GGA ACT GAG ATA AAA CCA GGA CAA AAT	8 2 6 2
Val Asp Ala Pro Asp Gln Lys Gly Thr Glu Ile Lys Pro Gly Gln Asn	
2730 2735 2740	
AAT CCT GTC CCT GTA TCA GAG ACT AAT GAA AGT CCT ATA GTG GAA CGT	8 3 1 0
Asn Pro Val Pro Val Ser Glu Thr Asn Glu Ser Pro Ile Val Glu Arg	
2745 2750 2755	
ACC CCA TTC AGT TCT AGC AGC TCA AGC AAA CAC AGT TCA CCT AGT GGG	8 3 5 8
Thr Pro Phe Ser Ser Ser Ser Lys His Ser Ser Pro Ser Gly	
2760 2765 2770 2775	
ACT GTT GCT GCC AGA GTG ACT CCT TTT AAT TAC AAC CCA AGC CCT AGG	8 4 0 6
Thr Val Ala Ala Arg Val Thr Pro Phe Asn Tyr Asn Pro Ser Pro Arg	
2780 2785 2790	
AAA AGC AGC GCA GAT AGC ACT TCA GCT CGG CCA TCT CAG ATC CCA ACT	8 4 5 4
Lys Ser Ser Ala Asp Ser Thr Ser Ala Arg Pro Ser Gln Ile Pro Thr	
2795 2800 2805	
CCA GTG AAT AAC ACA AAG AAG CGA GAT TCC AAA ACT GAC AGC ACA	8 5 0 2
Pro Val Asn Asn Asn Thr Lys Lys Arg Asp Ser Lys Thr Asp Ser Thr	
2810 2815 2820	
GAA TCC AGT GGA ACC CAA AGT CCT AAG CGC CAT TCT GGG TCT TAC CTT	8 5 5 0
Glu Ser Ser Gly Thr Gln Ser Pro Lys Arg His Ser Gly Ser Tyr Leu	
2825 2830 2835	
GTG ACA TCT GTT TAAAAGAGAG GAAGAATGAA ACTAAGAAAA TTCTATGTTA	8 6 0 2
Val Thr Ser Val	
2840	

-continued

ATTACAAC	CTATATAGAC	ATTTGTTTC	AAATGAAACT	TTAAAAGACT	AAAAAATT	8 6 6 2
GTAATAGGT	TTGATTCTG	TTAGAGGGTT	TTTGTCTGG	AAGCCATATT	TGATAGTATA	8 7 2 2
CTTGTC	ACTGGCTTA	TTTGGGAGG	CACTCTGAT	GTAGGAAA	AAATAGAAAG	8 7 8 2
CCAAGTATGT	TTGTACAGTA	TGTTTACAT	GTATTAAAG	TAGCATCCC	TCCCAACTTC	8 8 4 2
CTTAATTATT	GCTTGCTAA	AATAATGAAC	ACTACAGATA	GGAAATATGA	TATATTGCTG	8 9 0 2
TTATCAATCA	TTTCTAGATT	ATAAACTGAC	TAAACTTACA	TCAGGGAAA	ATTGGTATT	8 9 6 2
ATGCAAAAAA	AAAATGTTT	TGTCCTTGTG	AGTCCATCTA	ACATCATAAT	TAATCATGTG	9 0 2 2
GCTGTGAAAT	TCACAGTAAT	ATGGTCCCG	ATGAACAAAGT	TTACCCAGCC	TGCTTGCTT	9 0 8 2
ACTGCATGAA	TGAAACTGAT	GGTCAATT	CAGAAGTAAT	GATTAACAGT	TATGTGGTCA	9 1 4 2
CATGATGTGC	ATAGAGATAG	CTACAGTGT	ATAATTACA	CTATTTGTG	CTCCAAACAA	9 2 0 2
AACAAAAAATC	TGTGTAAC	TAAAACATTG	AATGAAACTA	TTTACCTGA	ACTAGATT	9 2 6 2
ATCTGAAAGT	AGGTAGAATT	TTGCTATGC	TGTAATTGT	TGTATATTCT	GGTATTGAG	9 3 2 2
GTGAGATGGC	TGCTCTTAT	TAATGAGACA	TGAATTGTG	CTCAACAGAA	ACTAAATGAA	9 3 8 2
CATTCAGAA	TAAATTATTG	CTGTATGTAA	ACTGTTACTG	AAATTGGTAT	TTGTTGAAG	9 4 4 2
GGTTGTTTC	ACATTGTAT	TAATTAATTG	TTTAAATGC	CTCTTTAAA	AGCTTATATA	9 5 0 2
AATTTTTCT	TCAGCTTCTA	TGCATTAAGA	GTAAAATTCC	TCTTACTGT	ATAAAAACAT	9 5 6 2
TGAAGAAGAC	TGTTGCCACT	TAACCATTCC	ATGCGTTGGC	ACTT		9 6 0 6

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2843 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met	Ala	Ala	Ala	Ser	Tyr	Asp	Gln	Leu	Leu	Lys	Gln	Val	Glu	Ala	Leu
1					5					10				15	
Lys	Met	Glu	Asn	Ser	Asn	Leu	Arg	Gln	Glu	Leu	Glu	Asp	Asn	Ser	Asn
	20					25					30				
His	Leu	Thr	Lys	Leu	Glu	Thr	Glu	Ala	Ser	Asn	Met	Lys	Glu	Val	Leu
	35					40					45				
Lys	Gln	Leu	Gln	Gly	Ser	Ile	Glu	Asp	Glu	Ala	Met	Ala	Ser	Ser	Gly
	50					55					60				
Gln	Ile	Asp	Leu	Leu	Glu	Arg	Leu	Lys	Glu	Leu	Asn	Leu	Asp	Ser	Ser
	65					70					75				80
Asn	Phe	Pro	Gly	Val	Lys	Leu	Arg	Ser	Lys	Met	Ser	Leu	Arg	Ser	Tyr
	85						90					95			
Gly	Ser	Arg	Glu	Gly	Ser	Val	Ser	Ser	Arg	Ser	Gly	Glu	Cys	Ser	Pro
	100						105					110			
Val	Pro	Met	Gly	Ser	Phe	Pro	Arg	Arg	Gly	Phe	Val	Asn	Gly	Ser	Arg
	115						120					125			
Glu	Ser	Thr	Gly	Tyr	Leu	Glu	Glu	Leu	Glu	Lys	Glu	Arg	Ser	Leu	Leu
	130					135					140				
Leu	Ala	Asp	Leu	Asp	Lys	Glu	Glu	Lys	Glu	Asp	Trp	Tyr	Tyr	Ala	
	145					150					155				160
Gln	Leu	Gln	Asn	Leu	Thr	Lys	Arg	Ile	Asp	Ser	Leu	Pro	Leu	Thr	Glu
	165						170					175			
Asn	Phe	Ser	Leu	Gln	Thr	Asp	Leu	Thr	Arg	Arg	Gln	Leu	Glu	Tyr	Glu

-continued

180	185	190
Ala Arg Gln Ile Arg Val Ala Met	Glu Glu Gln Leu	Gly Thr Cys Gln
195	200	205
Asp Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg	Ile Gln Gln Ile	
210	215	220
Glu Lys Asp Ile Leu Arg Ile Arg Gln Leu Leu	Gln Ser Gln Ala Thr	
225	230	235
Glu Ala Glu Arg Ser Ser Gln Asn Lys His	Glu Thr Gly Ser His Asp	
245	250	255
Ala Glu Arg Gln Asn Glu Gly Gln Gly Val Gly	Glu Ile Asn Met Ala	
260	265	270
Thr Ser Gly Asn Gly Gln Gly Ser Thr Thr Arg	Arg Met Asp His Glu Thr	
275	280	285
Ala Ser Val Leu Ser Ser Ser Thr His Ser	Ala Pro Arg Arg Leu	
290	295	300
Thr Ser His Leu Gly Thr Lys Val Glu Met Val	Tyr Ser Leu Leu Ser	
305	310	315
Met Leu Gly Thr His Asp Lys Asp Asp	Met Ser Arg Thr Leu Leu Ala	
325	330	335
Met Ser Ser Ser Gln Asp Ser Cys Ile Ser Met	Arg Gln Ser Gly Cys	
340	345	350
Leu Pro Leu Leu Ile Gln Leu Leu His	Gly Asn Asp Lys Asp Ser Val	
355	360	365
Leu Leu Gly Asn Ser Arg Gly Ser Lys Glu Ala	Arg Ala Arg Ala Ser	
370	375	380
Ala Ala Leu His Asn Ile Ile His Ser Gln Pro	Asp Asp Lys Arg Gly	
385	390	395
Arg Arg Glu Ile Arg Val Leu His Leu	Leu Glu Gln Ile Arg Ala Tyr	
405	410	415
Cys Glu Thr Cys Trp Glu Trp Gln Glu Ala His	Glu Pro Gly Met Asp	
420	425	430
Gln Asp Lys Asn Pro Met Pro Ala Pro Val	Glu His Gln Ile Cys Pro	
435	440	445
Ala Val Cys Val Leu Met Lys Leu Ser Phe Asp	Glu Glu His Arg His	
450	455	460
Ala Met Asn Glu Leu Gly Gly Leu Gln Ala Ile	Ala Glu Leu Leu Gln	
465	470	475
Val Asp Cys Glu Met Tyr Gly Leu Thr Asn Asp	His Tyr Ser Ile Thr	
485	490	495
Leu Arg Arg Tyr Ala Gly Met Ala Leu Thr Asn	Leu Thr Phe Gly Asp	
500	505	510
Val Ala Asn Lys Ala Thr Leu Cys Ser Met	Lys Gly Cys Met Arg Ala	
515	520	525
Leu Val Ala Gln Leu Lys Ser Gln Ser Glu Asp	Leu Gln Gln Val Ile	
530	535	540
Ala Ser Val Leu Arg Asn Leu Ser Trp Arg	Ala Asp Val Asn Ser Lys	
545	550	555
Lys Thr Leu Arg Glu Val Gly Ser Val	Lys Ala Leu Met Glu Cys Ala	
565	570	575
Leu Glu Val Lys Lys Glu Ser Thr	Leu Lys Ser Val Leu Ser Ala Leu	
580	585	590
Trp Asn Leu Ser Ala His Cys Thr Glu Asn Lys	Ala Asp Ile Cys Ala	
595	600	605

-continued

Val	Asp	Gly	Ala	Leu	Ala	Phe	Leu	Val	Gly	Thr	Leu	Thr	Tyr	Arg	Ser
610						615					620				
Gln	Thr	Asn	Thr	Leu	Ala	Ile	Ile	Glu	Ser	Gly	Gly	Gly	Ile	Leu	Arg
625						630				635					640
Asn	Val	Ser	Ser	Leu	Ile	Ala	Thr	Asn	Glu	Asp	His	Arg	Gln	Ile	Leu
						645			650					655	
Arg	Glu	Asn	Asn	Cys	Leu	Gln	Thr	Leu	Leu	Gln	His	Leu	Lys	Ser	His
						660			665				670		
Ser	Leu	Thr	Ile	Val	Ser	Asn	Ala	Cys	Gly	Thr	Leu	Trp	Asn	Leu	Ser
						675			680			685			
Ala	Arg	Asn	Pro	Lys	Asp	Gln	Glu	Ala	Leu	Trp	Asp	Met	Gly	Ala	Val
						690			695			700			
Ser	Met	Leu	Lys	Asn	Leu	Ile	His	Ser	Lys	His	Lys	Met	Ile	Ala	Met
						705			710			715			720
Gly	Ser	Ala	Ala	Ala	Leu	Arg	Asn	Leu	Met	Ala	Asn	Arg	Pro	Ala	Lys
						725			730					735	
Tyr	Lys	Asp	Ala	Asn	Ile	Met	Ser	Pro	Gly	Ser	Ser	Leu	Pro	Ser	Leu
						740			745				750		
His	Val	Arg	Lys	Gln	Lys	Ala	Leu	Glu	Ala	Glu	Leu	Asp	Ala	Gln	His
						755			760			765			
Leu	Ser	Glu	Thr	Phe	Asp	Asn	Ile	Asp	Asn	Leu	Ser	Pro	Lys	Ala	Ser
						770			775			780			
His	Arg	Ser	Lys	Gln	Arg	His	Lys	Gln	Ser	Leu	Tyr	Gly	Asp	Tyr	Val
						785			790		795				800
Phe	Asp	Thr	Asn	Arg	His	Asp	Asp	Asn	Arg	Ser	Asp	Asn	Phe	Asn	Thr
						805			810				815		
Gly	Asn	Met	Thr	Val	Leu	Ser	Pro	Tyr	Leu	Asn	Thr	Thr	Val	Leu	Pro
						820			825			830			
Ser	Ser	Ser	Ser	Ser	Arg	Gly	Ser	Leu	Asp	Ser	Ser	Arg	Ser	Glu	Lys
						835			840			845			
Asp	Arg	Ser	Leu	Glu	Arg	Glu	Ile	Gly	Leu	Gly	Asn	Tyr	His		
						850			855			860			
Pro	Ala	Thr	Glu	Asn	Pro	Gly	Thr	Ser	Ser	Lys	Arg	Gly	Leu	Gln	Ile
						865			870			875			880
Ser	Thr	Thr	Ala	Ala	Gln	Ile	Ala	Lys	Val	Met	Gln	Glu	Val	Ser	Ala
						885			890				895		
Ile	His	Thr	Ser	Gln	Glu	Asp	Arg	Ser	Ser	Gly	Ser	Thr	Thr	Glu	Leu
						900			905			910			
His	Cys	Val	Thr	Asp	Glu	Arg	Asn	Ala	Leu	Arg	Arg	Ser	Ser	Ala	Ala
						915			920			925			
His	Thr	His	Ser	Asn	Thr	Tyr	Asn	Phe	Thr	Lys	Ser	Glu	Asn	Ser	Asn
						930			935			940			
Arg	Thr	Cys	Ser	Met	Pro	Tyr	Ala	Lys	Leu	Glu	Tyr	Lys	Arg	Ser	Ser
						945			950			955			960
Asn	Asp	Ser	Leu	Asn	Ser	Val	Ser	Ser	Asn	Asp	Gly	Tyr	Gly	Lys	Arg
						965			970				975		
Gly	Gln	Met	Lys	Pro	Ser	Ile	Glu	Ser	Tyr	Ser	Glu	Asp	Asp	Glu	Ser
						980			985			990			
Lys	Phe	Cys	Ser	Tyr	Gly	Gln	Tyr	Pro	Ala	Asp	Leu	Ala	His	Lys	Ile
						995			1000				1005		
His	Ser	Ala	Asn	His	Met	Asp	Asp	Asn	Asp	Gly	Glu	Leu	Asp	Thr	Pro
						1010			1015			1020			
Ile	Asn	Tyr	Ser	Leu	Lys	Tyr	Ser	Asp	Glu	Gln	Leu	Asn	Ser	Gly	Arg
						1025			1030			1035			1040

-continued

Gln Ser Pro Ser Gln Asn Glu Arg Trp Ala Arg Pro Lys His Ile Ile
 1045 1050 1055
 Glu Asp Glu Ile Lys Gln Ser Glu Gln Arg Gln Ser Arg Asn Gln Ser
 1060 1065 1070
 Thr Thr Tyr Pro Val Tyr Thr Glu Ser Thr Asp Asp Lys His Leu Lys
 1075 1080 1085
 Phe Gln Pro His Phe Gly Gln Gln Glu Cys Val Ser Pro Tyr Arg Ser
 1090 1095 1100
 Arg Gly Ala Asn Gly Ser Glu Thr Asn Arg Val Gly Ser Asn His Gly
 1105 1110 1115 1120
 Ile Asn Gln Asn Val Ser Gln Ser Leu Cys Gln Glu Asp Asp Tyr Glu
 1125 1130 1135
 Asp Asp Lys Pro Thr Asn Tyr Ser Glu Arg Tyr Ser Glu Glu Gln
 1140 1145 1150
 His Glu Glu Glu Glu Arg Pro Thr Asn Tyr Ser Ile Lys Tyr Asn Glu
 1155 1160 1165
 Glu Lys Arg His Val Asp Gln Pro Ile Asp Tyr Ser Leu Lys Tyr Ala
 1170 1175 1180
 Thr Asp Ile Pro Ser Ser Gln Lys Gln Ser Phe Ser Phe Ser Lys Ser
 1185 1190 1195 1200
 Ser Ser Gly Gln Ser Ser Lys Thr Glu His Met Ser Ser Ser Glu
 1205 1210 1215
 Asn Thr Ser Thr Pro Ser Ser Asn Ala Lys Arg Gln Asn Gln Leu His
 1220 1225 1230
 Pro Ser Ser Ala Gln Ser Arg Ser Gly Gln Pro Gln Lys Ala Ala Thr
 1235 1240 1245
 Cys Lys Val Ser Ser Ile Asn Gln Glu Thr Ile Gln Thr Tyr Cys Val
 1250 1255 1260
 Glu Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Leu Ser Ser Leu
 1265 1270 1275 1280
 Ser Ser Ala Glu Asp Glu Ile Gly Cys Asn Gln Thr Thr Gln Glu Ala
 1285 1290 1295
 Asp Ser Ala Asn Thr Leu Gln Ile Ala Glu Ile Lys Gly Lys Ile Gly
 1300 1305 1310
 Thr Arg Ser Ala Glu Asp Pro Val Ser Glu Val Pro Ala Val Ser Gln
 1315 1320 1325
 His Pro Arg Thr Lys Ser Ser Arg Leu Gln Gly Ser Ser Leu Ser Ser
 1330 1335 1340
 Glu Ser Ala Arg His Lys Ala Val Glu Phe Pro Ser Gly Ala Lys Ser
 1345 1350 1355 1360
 Pro Ser Lys Ser Gly Ala Gln Thr Pro Lys Ser Pro Pro Glu His Tyr
 1365 1370 1375
 Val Gln Glu Thr Pro Leu Met Phe Ser Arg Cys Thr Ser Val Ser Ser
 1380 1385 1390
 Leu Asp Ser Phe Glu Ser Arg Ser Ile Ala Ser Ser Val Gln Ser Glu
 1395 1400 1405
 Pro Cys Ser Gly Met Val Ser Gly Ile Ile Ser Pro Ser Asp Leu Pro
 1410 1415 1420
 Asp Ser Pro Gly Gln Thr Met Pro Pro Ser Arg Ser Lys Thr Pro Pro
 1425 1430 1435 1440
 Pro Pro Pro Gln Thr Ala Gln Thr Lys Arg Glu Val Pro Lys Asn Lys
 1445 1450 1455
 Ala Pro Thr Ala Glu Lys Arg Glu Ser Gly Pro Lys Gln Ala Ala Val

-continued

1460

1465

1470

Asn Ala Ala Val Gln Arg Val Gln Val Leu Pro Asp Ala Asp Thr Leu
 1475 1480 1485
 Leu His Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser Cys Ser Ser
 1490 1495 1500
 Ser Leu Ser Ala Leu Ser Leu Asp Glu Pro Phe Ile Gln Lys Asp Val
 1505 1510 1515 1520
 Glu Leu Arg Ile Met Pro Pro Val Gln Glu Asn Asp Asn Gly Asn Glu
 1525 1530 1535
 Thr Glu Ser Glu Gln Pro Lys Glu Ser Asn Glu Asn Gln Glu Lys Glu
 1540 1545 1550
 Ala Glu Lys Thr Ile Asp Ser Glu Lys Asp Leu Leu Asp Asp Ser Asp
 1555 1560 1565
 Asp Asp Asp Ile Glu Ile Leu Glu Glu Cys Ile Ile Ser Ala Met Pro
 1570 1575 1580
 Thr Lys Ser Ser Arg Lys Gly Lys Lys Pro Ala Gln Thr Ala Ser Lys
 1585 1590 1595 1600
 Leu Pro Pro Pro Val Ala Arg Lys Pro Ser Gln Leu Pro Val Tyr Lys
 1605 1610 1615
 Leu Leu Pro Ser Gln Asn Arg Leu Gln Pro Gln Lys His Val Ser Phe
 1620 1625 1630
 Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu Gly Thr Pro
 1635 1640 1645
 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr Ile Glu Ser
 1650 1655 1660
 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly Gly Ala Gln
 1665 1670 1675 1680
 Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu Gly Arg Ser
 1685 1690 1695
 Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr Ile Pro Glu
 1700 1705 1710
 Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala Glu Cys Ile
 1715 1720 1725
 Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe Arg Val Lys
 1730 1735 1740
 Lys Ile Met Asp Gln Val Gln Gln Ala Ser Ala Ser Ser Ser Ala Pro
 1745 1750 1755 1760
 Asn Lys Asn Gln Leu Asp Gly Lys Lys Lys Pro Thr Ser Pro Val
 1765 1770 1775
 Lys Pro Ile Pro Gln Asn Thr Glu Tyr Arg Thr Arg Val Arg Lys Asn
 1780 1785 1790
 Ala Asp Ser Lys Asn Asn Leu Asn Ala Glu Arg Val Phe Ser Asp Asn
 1795 1800 1805
 Lys Asp Ser Lys Lys Gln Asn Leu Lys Asn Asn Ser Lys Asp Phe Asn
 1810 1815 1820
 Asp Lys Leu Pro Asn Asn Glu Asp Arg Val Arg Gly Ser Phe Ala Phe
 1825 1830 1835 1840
 Asp Ser Pro His His Tyr Thr Pro Ile Glu Gly Thr Pro Tyr Cys Phe
 1845 1850 1855
 Ser Arg Asn Asp Ser Leu Ser Ser Leu Asp Phe Asp Asp Asp Val
 1860 1865 1870
 Asp Leu Ser Arg Glu Lys Ala Glu Leu Arg Lys Ala Lys Glu Asn Lys
 1875 1880 1885

-continued

Glu	Ser	Glu	Ala	Lys	Val	Thr	Ser	His	Thr	Glu	Leu	Thr	Ser	Asn	Gln
1890						1895					1900				
Gln	Ser	Ala	Asn	Lys	Thr	Gln	Ala	Ile	Ala	Lys	Gln	Pro	Ile	Asn	Arg
1905						1910					1915				1920
Gly	Gln	Pro	Lys	Pro	Ile	Leu	Gln	Lys	Gln	Ser	Thr	Phe	Pro	Gln	Ser
						1925				1930					1935
Ser	Lys	Asp	Ile	Pro	Asp	Arg	Gly	Ala	Ala	Thr	Asp	Glu	Lys	Leu	Gln
						1940				1945					1950
Asn	Phe	Ala	Ile	Glu	Asn	Thr	Pro	Val	Cys	Phe	Ser	His	Asn	Ser	Ser
						1955			1960						1965
Leu	Ser	Ser	Leu	Ser	Asp	Ile	Asp	Gln	Glu	Asn	Asn	Asn	Lys	Glu	Asn
						1970			1975						1980
Glu	Pro	Ile	Lys	Glu	Thr	Glu	Pro	Pro	Asp	Ser	Gln	Gly	Glu	Pro	Ser
						1985			1990			1995			2000
Lys	Pro	Gln	Ala	Ser	Gly	Tyr	Ala	Pro	Lys	Ser	Phe	His	Val	Glu	Asp
						2005			2010						2015
Thr	Pro	Val	Cys	Phe	Ser	Arg	Asn	Ser	Ser	Leu	Ser	Ser	Leu	Ser	Ile
						2020			2025						2030
Asp	Ser	Glu	Asp	Asp	Leu	Leu	Gln	Glu	Cys	Ile	Ser	Ser	Ala	Met	Pro
						2035			2040						2045
Lys	Lys	Lys	Lys	Pro	Ser	Arg	Leu	Lys	Gly	Asp	Asn	Glu	Lys	His	Ser
						2050			2055			2060			
Pro	Arg	Asn	Met	Gly	Gly	Ile	Leu	Gly	Glu	Asp	Leu	Thr	Leu	Asp	Leu
						2065			2070			2075			2080
Lys	Asp	Ile	Gln	Arg	Pro	Asp	Ser	Glu	His	Gly	Leu	Ser	Pro	Asp	Ser
						2085			2090			2095			
Glu	Asn	Phe	Asp	Trp	Lys	Ala	Ile	Gln	Glu	Gly	Ala	Asn	Ser	Ile	Val
						2100			2105			2110			
Ser	Ser	Leu	His	Gln	Ala	Ala	Ala	Ala	Cys	Leu	Ser	Arg	Gln	Ala	
						2115			2120			2125			
Ser	Ser	Asp	Ser	Asp	Ser	Ile	Leu	Ser	Leu	Lys	Ser	Gly	Ile	Ser	Leu
						2130			2135			2140			
Gly	Ser	Pro	Phe	His	Leu	Thr	Pro	Asp	Gln	Glu	Glu	Lys	Pro	Phe	Thr
						2145			2150			2155			2160
Ser	Asn	Lys	Gly	Pro	Arg	Ile	Leu	Lys	Pro	Gly	Glu	Lys	Ser	Thr	Leu
						2165			2170			2175			
Glu	Thr	Lys	Lys	Ile	Glu	Ser	Glu	Ser	Lys	Gly	Ile	Lys	Gly	Gly	Lys
						2180			2185			2190			
Lys	Val	Tyr	Lys	Ser	Leu	Ile	Thr	Gly	Lys	Val	Arg	Ser	Asn	Ser	Glu
						2195			2200			2205			
Ile	Ser	Gly	Gln	Met	Lys	Gln	Pro	Leu	Gln	Ala	Asn	Met	Pro	Ser	Ile
						2210			2215			2220			
Ser	Arg	Gly	Arg	Thr	Met	Ile	His	Ile	Pro	Gly	Val	Arg	Asn	Ser	Ser
						2225			2230			2235			2240
Ser	Ser	Thr	Ser	Pro	Val	Ser	Lys	Lys	Gly	Pro	Pro	Leu	Lys	Thr	Pro
						2245			2250			2255			
Ala	Ser	Lys	Ser	Pro	Ser	Glu	Gly	Gln	Thr	Ala	Thr	Thr	Ser	Pro	Arg
						2260			2265			2270			
Gly	Ala	Lys	Pro	Ser	Val	Lys	Ser	Glu	Leu	Ser	Pro	Val	Ala	Arg	Gln
						2275			2280			2285			
Thr	Ser	Gln	Ile	Gly	Gly	Ser	Ser	Lys	Ala	Pro	Ser	Arg	Ser	Gly	Ser
						2290			2295			2300			
Arg	Asp	Ser	Thr	Pro	Ser	Arg	Pro	Ala	Gln	Gln	Pro	Leu	Ser	Arg	Pro
						2305			2310			2315			2320

-continued

Ile	Gln	Ser	Pro	Gly	Arg	Asn	Ser	Ile	Ser	Pro	Gly	Arg	Asn	Gly	Ile
2325								2330						2335	
Ser	Pro	Pro	Asn	Lys	Leu	Ser	Gln	Leu	Pro	Arg	Thr	Ser	Ser	Pro	Ser
2340							2345						2350		
Thr	Ala	Ser	Thr	Lys	Ser	Ser	Gly	Ser	Gly	Lys	Met	Ser	Tyr	Thr	Ser
2355							2360					2365			
Pro	Gly	Arg	Gln	Met	Ser	Gln	Gln	Asn	Leu	Thr	Lys	Gln	Thr	Gly	Leu
2370						2375					2380				
Ser	Lys	Asn	Ala	Ser	Ser	Ile	Pro	Arg	Ser	Glu	Ser	Ala	Ser	Lys	Gly
2385						2390				2395					2400
Leu	Asn	Gln	Met	Asn	Asn	Gly	Asn	Gly	Ala	Asn	Lys	Lys	Val	Glu	Leu
2405							2410						2415		
Ser	Arg	Met	Ser	Ser	Thr	Lys	Ser	Ser	Gly	Ser	Glu	Ser	Asp	Arg	Ser
2420							2425						2430		
Glu	Arg	Pro	Val	Leu	Val	Arg	Gln	Ser	Thr	Phe	Ile	Lys	Glu	Ala	Pro
2435						2440						2445			
Ser	Pro	Thr	Leu	Arg	Arg	Lys	Leu	Glu	Glu	Ser	Ala	Ser	Phe	Glu	Ser
2450						2455					2460				
Leu	Ser	Pro	Ser	Ser	Arg	Pro	Ala	Ser	Pro	Thr	Arg	Ser	Gln	Ala	Gln
2465						2470				2475					2480
Thr	Pro	Val	Leu	Ser	Pro	Ser	Leu	Pro	Asp	Met	Ser	Leu	Ser	Thr	His
2485							2490						2495		
Ser	Ser	Val	Gln	Ala	Gly	Gly	Trp	Arg	Lys	Leu	Pro	Pro	Asn	Leu	Ser
2500							2505						2510		
Pro	Thr	Ile	Glu	Tyr	Asn	Asp	Gly	Arg	Pro	Ala	Lys	Arg	His	Asp	Ile
2515						2520						2525			
Ala	Arg	Ser	His	Ser	Glu	Ser	Pro	Ser	Arg	Leu	Pro	Ile	Asn	Arg	Ser
2530						2535						2540			
Gly	Thr	Trp	Lys	Arg	Glu	His	Ser	Lys	His	Ser	Ser	Ser	Leu	Pro	Arg
2545						2550					2555				2560
Val	Ser	Thr	Trp	Arg	Arg	Thr	Gly	Ser	Ser	Ser	Ser	Ile	Leu	Ser	Ala
2565							2570						2575		
Ser	Ser	Glu	Ser	Ser	Glu	Lys	Ala	Lys	Ser	Glu	Asp	Glu	Lys	His	Val
2580							2585						2590		
Asn	Ser	Ile	Ser	Gly	Thr	Lys	Gln	Ser	Lys	Glu	Asn	Gln	Val	Ser	Ala
2595						2600						2605			
Lys	Gly	Thr	Trp	Arg	Lys	Ile	Lys	Glu	Asn	Gln	Phe	Ser	Pro	Thr	Asn
2610						2615					2620				
Ser	Thr	Ser	Gln	Thr	Val	Ser	Ser	Gly	Ala	Thr	Asn	Gly	Ala	Glu	Ser
2625						2630				2635					2640
Lys	Thr	Leu	Ile	Tyr	Gln	Met	Ala	Pro	Ala	Val	Ser	Lys	Thr	Glu	Asp
2645							2650						2655		
Val	Trp	Val	Arg	Ile	Glu	Asp	Cys	Pro	Ile	Asn	Asn	Pro	Arg	Ser	Gly
2660							2665						2670		
Arg	Ser	Pro	Thr	Gly	Asn	Thr	Pro	Pro	Val	Ile	Asp	Ser	Val	Ser	Gly
2675							2680						2685		
Lys	Ala	Asn	Pro	Asn	Ile	Lys	Asp	Ser	Lys	Asp	Asn	Gln	Ala	Lys	Gln
2690						2695						2700			
Asn	Val	Gly	Asn	Gly	Ser	Val	Pro	Met	Arg	Thr	Val	Gly	Leu	Glu	Asn
2705						2710					2715				2720
Arg	Leu	Thr	Ser	Phe	Ile	Gln	Val	Asp	Ala	Pro	Asp	Gln	Lys	Gly	Thr
2725							2730						2735		
Glu	Ile	Lys	Pro	Gly	Gln	Asn	Asn	Pro	Val	Pro	Val	Ser	Glu	Thr	Asn

-continued

2740	2745	2750	
Glu Ser Pro Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser			
2755	2760	2765	
Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe			
2770	2775	2780	
Asn Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala			
2785	2790	2795	2800
Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg			
2805	2810	2815	
Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys			
2820	2825	2830	
Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val			
2835	2840		

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3172 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(vii) IMMEDIATE SOURCE:

- (B) CLONE: DP1(TB2)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..630

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCA GCC CCG GGN GGC	48
Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly	
1 5 10 15	
GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG	96
Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg	
20 25 30	
TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG	144
Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu	
35 40 45	
GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA	192
Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly	
50 55 60	
CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC	240
Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	
65 70 75 80	
AAC CTG ATA GGA TTT GGC TAC CCA GCC TAC ATC TCA ATT AAA GCT ATA	288
Asn Leu Ile Gly Phe Gly Tyr Pro Ala Tyr Ile Ser Ile Lys Ala Ile	
85 90 95	
GAG AGT CCC AAC AAA GAA GAT GAT ACC CAG TGG CTG ACC TAC TGG GTA	336
Glu Ser Pro Asn Lys Glu Asp Asp Thr Gln Trp Leu Thr Tyr Trp Val	
100 105 110	
GTG TAT GGT GTG TTC AGC ATT GCT GAA TTC TTC TCT GAT ATC TTC CTG	384
Val Tyr Gly Val Phe Ser Ile Ala Glu Phe Phe Ser Asp Ile Phe Leu	
115 120 125	
TCA TGG TTC CCC TTC TAC TAC ATG CTG AAG TGT GGC TTC CTG TTG TGG	432
Ser Trp Phe Pro Phe Tyr Tyr Met Leu Lys Cys Gly Phe Leu Leu Trp	
130 135 140	
TGC ATG GCC CCG AGC CCT TCT AAT GGG GCT GAA CTG CTC TAC AAG CGC	480

-continued

-continued

TATTGCTCAT AATGACTTAC AGGCTAAAAN TAGNTNTAAA ATACTATATT AAATTCTGAA	2600
TGCAATTTT TTTTGTCCC TTGAGACCAA AATTTAAGTT AACTGTTGCT GGCAGTCTAA	2660
GTGTAATGT TAACAGCAGG AGAAGTTAAG AATTGAGCAG TTCTGTTGCA TGATTTCCTA	2720
AATGAAATAC TGCCTTGGCT AGAGTTGAA AAACTAATTG AGCCTGTGCC TGGCTAGAAA	2780
ACAAGCGTTT ATTTGAATGT GAATAGTGT TCAAAGGTAT GTAGTTACAG AATTCCCTACC	2840
AAACAGCTTA AATTCTCAA GAAAGAATTG CTGCAGCAGT TATTCCCTTA CCTGAAGGCT	2900
TCAATCATTT GGATCAACAA CTGCTACTCT CGGGAAAGACT CCTCTACTCA CAGCTGAAGA	2960
AAATGAGCAC ACCCTTCACA CTGTTATCAC CTATCCTGAA GATGTGATAC ACTGAATGGA	3020
AATAAAATAGA TGTAATATAA ATTGAGWTCT CATTAAAAAA AAACCATGTG CCCAATGGGA	3080
AAATGACCTC ATGTTGTGGT TTAAACAGCA ACTGCACCCA CTAGCACAGC CCATTGAGCT	3140
ANCCTATATA TACATCTCTG TCAGTGCCCC TC	3172

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 210 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly	
1 5 10 15	
Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg	
20 25 30	
Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu	
35 40 45	
Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly	
50 55 60	
Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	
65 70 75 80	
Asn Leu Ile Gly Phe Gly Tyr Pro Ala Tyr Ile Ser Ile Lys Ala Ile	
85 90 95	
Glu Ser Pro Asn Lys Glu Asp Asp Thr Gln Trp Leu Thr Tyr Trp Val	
100 105 110	
Val Tyr Gly Val Phe Ser Ile Ala Glu Phe Phe Ser Asp Ile Phe Leu	
115 120 125	
Ser Trp Phe Pro Phe Tyr Tyr Met Leu Lys Cys Gly Phe Leu Leu Trp	
130 135 140	
Cys Met Ala Pro Ser Pro Ser Asn Gly Ala Glu Leu Leu Tyr Lys Arg	
145 150 155 160	
Ile Ile Arg Pro Phe Phe Leu Lys His Glu Ser Gln Met Asp Ser Val	
165 170 175	
Val Lys Asp Leu Lys Asp Lys Ser Lys Glu Thr Ala Asp Ala Ile Thr	
180 185 190	
Lys Glu Ala Lys Lys Ala Thr Val Asn Leu Leu Gly Glu Glu Lys Lys	
195 200 205	
Ser Thr	
210	

(2) INFORMATION FOR SEQ ID NO:5:

-continued

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 434 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: TB1

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Val	Ala	Pro	Val	Val	Val	Gly	Ser	Gly	Arg	Ala	Pro	Arg	His	Pro	Ala	
1				5				10					15			
Pro	Ala	Ala	Met	His	Pro	Arg	Arg	Pro	Asp	Gly	Phe	Asp	Gly	Leu	Gly	
			20				25						30			
Tyr	Arg	Gly	Gly	Ala	Arg	Asp	Glu	Gln	Gly	Phe	Gly	Gly	Ala	Phe	Pro	
			35				40					45				
Ala	Arg	Ser	Phe	Ser	Thr	Gly	Ser	Asp	Leu	Gly	His	Trp	Val	Thr	Thr	
			50				55				60					
Pro	Pro	Asp	Ile	Pro	Gly	Ser	Arg	Asn	Leu	His	Trp	Gly	Glu	Lys	Ser	
	65				70				75				80			
Pro	Pro	Tyr	Gly	Val	Pro	Thr	Thr	Ser	Thr	Pro	Tyr	Glu	Gly	Pro	Thr	
		85					90					95				
Glu	Glu	Pro	Phe	Ser	Ser	Gly	Gly	Gly	Ser	Val	Gln	Gly	Gln	Ser		
	100						105					110				
Ser	Glu	Gln	Leu	Asn	Arg	Phe	Ala	Gly	Phe	Gly	Ile	Gly	Leu	Ala	Ser	
	115					120					125					
Leu	Phe	Thr	Glu	Asn	Val	Leu	Ala	His	Pro	Cys	Ile	Val	Leu	Arg	Arg	
	130					135					140					
Gln	Cys	Gln	Val	Asn	Tyr	His	Ala	Gln	His	Tyr	His	Leu	Thr	Pro	Phe	
	145				150					155			160			
Thr	Val	Ile	Asn	Ile	Met	Tyr	Ser	Phe	Asn	Lys	Thr	Gln	Gly	Pro	Arg	
		165					170					175				
Ala	Leu	Trp	Lys	Gly	Met	Gly	Ser	Thr	Phe	Ile	Val	Gln	Gly	Val	Thr	
	180						185					190				
Leu	Gly	Ala	Glu	Gly	Ile	Ile	Ser	Glu	Phe	Thr	Pro	Leu	Pro	Arg	Glu	
	195						200					205				
Val	Leu	His	Lys	Trp	Ser	Pro	Lys	Gln	Ile	Gly	Glu	His	Leu	Leu	Leu	
	210					215					220					
Lys	Ser	Leu	Thr	Tyr	Val	Val	Ala	Met	Pro	Phe	Tyr	Ser	Ala	Ser	Leu	
	225				230					235			240			
Ile	Glu	Thr	Val	Gln	Ser	Glu	Ile	Ile	Arg	Asp	Asn	Thr	Gly	Ile	Leu	
	245						250					255				
Glu	Cys	Val	Lys	Glu	Gly	Ile	Gly	Arg	Val	Ile	Gly	Met	Gly	Val	Pro	
	260					265						270				
His	Ser	Lys	Arg	Leu	Leu	Pro	Leu	Leu	Ser	Leu	Ile	Phe	Pro	Thr	Val	
	275					280						285				
Leu	His	Gly	Val	Leu	His	Tyr	Ile	Ile	Ser	Ser	Val	Ile	Gln	Lys	Phe	
	290				295						300					
Val	Leu	Leu	Ile	Leu	Lys	Arg	Lys	Thr	Tyr	Asn	Ser	His	Leu	Ala	Glu	
	305				310					315			320			
Ser	Thr	Ser	Pro	Val	Gln	Ser	Met	Leu	Asp	Ala	Tyr	Phe	Pro	Glu	Leu	
	325							330					335			
Ile	Ala	Asn	Phe	Ala	Ala	Ser	Leu	Cys	Ser	Asp	Val	Ile	Leu	Tyr	Pro	

-continued

3 4 0	3 4 5	3 5 0	
Leu Glu Thr Val Leu His Arg	Leu His Ile Gln Gly	Thr Arg Thr Ile	
3 5 5	3 6 0	3 6 5	
Ile Asp Asn Thr Asp Leu Gly	Tyr Glu Val Leu Pro	Ile Asn Thr Gln	
3 7 0	3 7 5	3 8 0	
Tyr Glu Gly Met Arg Asp Cys	Ile Asn Thr Ile Arg	Gln Glu Glu Gly	
3 8 5	3 9 0	3 9 5	4 0 0
Val Phe Gly Phe Tyr Lys Gly	Phe Gly Ala Val Ile	Ile Gln Tyr Thr	
4 0 5	4 1 0	4 1 5	
Leu His Ala Ala Val Leu Gln Ile Thr	Lys Ile Ile Tyr	Ser Thr Leu	
4 2 0	4 2 5	4 3 0	
Leu Gln			

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 185 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(vii) IMMEDIATE SOURCE:

- (B) CLONE: YS-39(TB2)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Gl u Leu Arg Arg Phe Asp Arg Phe Leu His Glu Lys Asn Cys Met Thr	1	10	15	
5				
Asp Leu Leu Ala Lys Leu Glu Ala Lys Thr Gly Val Asn Arg Ser Phe	20	25	30	
Ile Ala Leu Gly Val Ile Gly Leu Val Ala Leu Tyr Leu Val Phe Gly	35	40	45	
Tyr Gly Ala Ser Leu Leu Cys Asn Leu Ile Gly Phe Gly Tyr Pro Ala	50	55	60	
Tyr Ile Ser Ile Lys Ala Ile Glu Ser Pro Asn Lys Glu Asp Asp Thr	65	70	75	80
Gln Trp Leu Thr Tyr Trp Val Val Tyr Gly Val Phe Ser Ile Ala Glu	85	90	95	
Phe Phe Ser Asp Ile Phe Leu Ser Trp Phe Pro Phe Tyr Tyr Ile Leu	100	105	110	
Lys Cys Gly Phe Leu Leu Trp Cys Met Ala Pro Ser Pro Ser Asn Gly	115	120	125	
Ala Glu Leu Leu Tyr Lys Arg Ile Ile Arg Pro Phe Phe Leu Lys His	130	135	140	
Glu Ser Gln Met Asp Ser Val Val Lys Asp Leu Lys Asp Lys Ala Lys	145	150	155	160
Glu Thr Ala Asp Ala Ile Thr Lys Glu Ala Lys Lys Ala Thr Val Asn	165	170	175	
Leu Leu Gly Glu Glu Lys Lys Ser Thr	180	185		

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2842 amino acids
- (B) TYPE: amino acid

-continued

(C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(v i i) IMMEDIATE SOURCE:

(B) CLONE: APC

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:7:

```

Met Ala Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu
 1           5           10           15

Lys Met Glu Asn Ser Asn Leu Arg Gln Glu Leu Glu Asp Asn Ser Asn
 20          25           30

His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu
 35          40           45

Lys Gln Leu Gln Gly Ser Ile Glu Asp Glu Ala Met Ala Ser Ser Gly
 50          55           60

Gln Ile Asp Leu Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser
 65          70           75           80

Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr
 85          90           95

Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro
100          105          110

Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg
115          120          125

Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu
130          135          140

Leu Ala Asp Leu Asp Lys Glu Glu Lys Glu Lys Asp Trp Tyr Tyr Ala
145          150          155           160

Gln Leu Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Leu Thr Glu Asn
165          170           175

Phe Ser Leu Gln Thr Asp Met Thr Arg Arg Gln Leu Glu Tyr Glu Ala
180          185           190

Arg Gln Ile Arg Val Ala Met Glu Gln Gln Leu Gly Thr Cys Gln Asp
195          200           205

Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile Glu
210          215           220

Lys Asp Ile Leu Arg Ile Arg Gln Leu Leu Gln Ser Gln Ala Thr Glu
225          230           235           240

Ala Glu Arg Ser Ser Gln Asn Lys His Glu Thr Gly Ser His Asp Ala
245          250           255

Glu Arg Gln Asn Glu Gly Gln Gly Val Gly Glu Ile Asn Met Ala Thr
260          265           270

Ser Gly Asn Gly Gln Gly Ser Thr Thr Arg Met Asp His Glu Thr Ala
275          280           285

Ser Val Leu Ser Ser Ser Thr His Ser Ala Pro Arg Arg Leu Thr
290          295           300

Ser His Leu Gly Thr Lys Val Glu Met Val Tyr Ser Leu Leu Ser Met
305          310           315           320

Leu Gly Thr His Asp Lys Asp Asp Met Ser Arg Thr Leu Leu Ala Met
325          330           335

Ser Ser Ser Gln Asp Ser Cys Ile Ser Met Arg Gln Ser Gly Cys Leu
340          345           350

Pro Leu Leu Ile Gln Leu Leu His Gly Asn Asp Lys Asp Ser Val Leu

```

-continued

3 5 5	3 6 0	3 6 5													
Leu	Gly	Asn	Ser	Arg	Gly	Ser	Lys	Glu	Ala	Arg	Ala	Arg	Ala	Ser	Ala
3 7 0					3 7 5					3 8 0					
Ala	Leu	His	Asn	Ile	Ile	His	Ser	Gln	Pro	Asp	Asp	Lys	Arg	Gly	Arg
3 8 5					3 9 0					3 9 5					4 0 0
Arg	Glu	Ile	Arg	Val	Leu	His	Leu	Leu	Glu	Gln	Ile	Arg	Ala	Tyr	Cys
	4 0 5								4 1 0					4 1 5	
Glu	Thr	Cys	Trp	Glu	Trp	Gln	Glu	Ala	His	Glu	Pro	Gly	Met	Asp	Gln
	4 2 0						4 2 5					4 3 0			
Asp	Lys	Asn	Pro	Met	Pro	Ala	Pro	Val	Glu	His	Gln	Ile	Cys	Pro	Ala
	4 3 5						4 4 0					4 4 5			
Val	Cys	Val	Leu	Met	Lys	Leu	Ser	Phe	Asp	Glu	Glu	His	Arg	His	Ala
	4 5 0					4 5 5					4 6 0				
Met	Asn	Glu	Leu	Gly	Gly	Leu	Gln	Ala	Ile	Ala	Glu	Leu	Leu	Gln	Val
	4 6 5				4 7 0					4 7 5					4 8 0
Asp	Cys	Glu	Met	Tyr	Gly	Leu	Thr	Asn	Asp	His	Tyr	Ser	Ile	Thr	Leu
	4 8 5								4 9 0					4 9 5	
Arg	Arg	Tyr	Ala	Gly	Met	Ala	Leu	Thr	Asn	Leu	Thr	Phe	Gly	Asp	Val
	5 0 0								5 0 5					5 1 0	
Ala	Asn	Lys	Ala	Thr	Leu	Cys	Ser	Met	Lys	Gly	Cys	Met	Arg	Ala	Leu
	5 1 5								5 2 0					5 2 5	
Val	Ala	Gln	Leu	Lys	Ser	Glu	Ser	Glu	Asp	Leu	Gln	Gln	Val	Ile	Ala
	5 3 0					5 3 5					5 4 0				
Ser	Val	Leu	Arg	Asn	Leu	Ser	Trp	Arg	Ala	Asp	Val	Asn	Ser	Lys	Lys
	5 4 5					5 5 0					5 5 5				5 6 0
Thr	Leu	Arg	Glu	Val	Gly	Ser	Val	Lys	Ala	Leu	Met	Glu	Cys	Ala	Leu
	5 6 5								5 7 0					5 7 5	
Glu	Val	Lys	Lys	Glu	Ser	Thr	Leu	Lys	Ser	Val	Leu	Ser	Ala	Leu	Trp
	5 8 0							5 8 5						5 9 0	
Asn	Leu	Ser	Ala	His	Cys	Thr	Glu	Asn	Lys	Ala	Asp	Ile	Cys	Ala	Val
	5 9 5							6 0 0					6 0 5		
Asp	Gly	Ala	Leu	Ala	Phe	Leu	Val	Gly	Thr	Leu	Thr	Tyr	Arg	Ser	Gln
	6 1 0					6 1 5					6 2 0				
Thr	Asn	Thr	Leu	Ala	Ile	Ile	Glu	Ser	Gly	Gly	Gly	Ile	Leu	Arg	Asn
	6 2 5					6 3 0					6 3 5				6 4 0
Val	Ser	Ser	Leu	Ile	Ala	Thr	Asn	Glu	Asp	His	Arg	Gln	Ile	Leu	Arg
	6 4 5							6 5 0					6 5 5		
Glu	Asn	Asn	Cys	Leu	Gln	Thr	Leu	Leu	Gln	His	Leu	Lys	Ser	His	Ser
	6 6 0							6 6 5					6 7 0		
Leu	Thr	Ile	Val	Ser	Asn	Ala	Cys	Gly	Thr	Leu	Trp	Asn	Leu	Ser	Ala
	6 7 5						6 8 0					6 8 5			
Arg	Asn	Pro	Lys	Asp	Gln	Glu	Ala	Leu	Trp	Asp	Met	Gly	Ala	Val	Ser
	6 9 0					6 9 5					7 0 0				
Met	Leu	Lys	Asn	Leu	Ile	His	Ser	Lys	His	Lys	Met	Ile	Ala	Met	Gly
	7 0 5					7 1 0					7 1 5				7 2 0
Ser	Ala	Ala	Ala	Leu	Arg	Asn	Leu	Met	Ala	Asn	Arg	Pro	Ala	Lys	Tyr
	7 2 5									7 3 0					7 3 5
Lys	Asp	Ala	Asn	Ile	Met	Ser	Pro	Gly	Ser	Ser	Leu	Pro	Ser	Leu	His
	7 4 0							7 4 5					7 5 0		
Val	Arg	Lys	Gln	Lys	Ala	Leu	Glu	Ala	Glu	Leu	Asp	Ala	Gln	His	Leu
	7 5 5							7 6 0					7 6 5		
Ser	Glu	Thr	Phe	Asp	Asn	Ile	Asp	Asn	Leu	Ser	Pro	Lys	Ala	Ser	His
	7 7 0							7 7 5					7 8 0		

-continued

Arg	Ser	Lys	Gln	Arg	His	Lys	Gln	Ser	Leu	Tyr	Gly	Asp	Tyr	Val	Phe
785						790				795					800
Asp	Thr	Asn	Arg	His	Asp	Asp	Asn	Arg	Ser	Asp	Asn	Phe	Asn	Thr	Gly
					805				810					815	
Asn	Met	Thr	Val	Leu	Ser	Pro	Tyr	Leu	Asn	Thr	Thr	Val	Leu	Pro	Ser
					820				825					830	
Ser	Ser	Ser	Ser	Arg	Gly	Ser	Leu	Asp	Ser	Ser	Arg	Ser	Glu	Lys	Asp
					835			840					845		
Arg	Ser	Leu	Glu	Arg	Glu	Arg	Gly	Ile	Gly	Leu	Gly	Asn	Tyr	His	Pro
						855					860				
Ala	Thr	Glu	Asn	Pro	Gly	Thr	Ser	Ser	Lys	Arg	Gly	Leu	Gln	Ile	Ser
					870				875					880	
Thr	Thr	Ala	Ala	Gln	Ile	Ala	Lys	Val	Met	Glu	Glu	Val	Ser	Ala	Ile
					885			890						895	
His	Thr	Ser	Gln	Glu	Asp	Arg	Ser	Ser	Gly	Ser	Thr	Thr	Glu	Leu	His
			900					905						910	
Cys	Val	Thr	Asp	Glu	Arg	Asn	Ala	Leu	Arg	Arg	Ser	Ser	Ala	Ala	His
						915		920						925	
Thr	His	Ser	Asn	Thr	Tyr	Asn	Phe	Thr	Lys	Ser	Glu	Asn	Ser	Asn	Arg
					930		935				940				
Thr	Cys	Ser	Met	Pro	Tyr	Ala	Lys	Leu	Glu	Tyr	Lys	Arg	Ser	Ser	Asn
					945		950			955					960
Asp	Ser	Leu	Asn	Ser	Val	Ser	Ser	Ser	Asp	Gly	Tyr	Gly	Lys	Arg	Gly
					965				970					975	
Gln	Met	Lys	Pro	Ser	Ile	Glu	Ser	Tyr	Ser	Glu	Asp	Asp	Glu	Ser	Lys
					980			985						990	
Phe	Cys	Ser	Tyr	Gly	Gln	Tyr	Pro	Ala	Asp	Leu	Ala	His	Lys	Ile	His
					995			1000						1005	
Ser	Ala	Asn	His	Met	Asp	Asp	Asn	Asp	Gly	Glu	Leu	Asp	Thr	Pro	Ile
					1010		1015				1020				
Asn	Tyr	Ser	Leu	Lys	Tyr	Ser	Asp	Glu	Gln	Leu	Asn	Ser	Gly	Arg	Gln
					1025		1030				1035				1040
Ser	Pro	Ser	Gln	Asn	Glu	Arg	Trp	Ala	Arg	Pro	Lys	His	Ile	Ile	Glu
					1045			1050						1055	
Asp	Glu	Ile	Lys	Gln	Ser	Glu	Gln	Arg	Gln	Ser	Arg	Asn	Gln	Ser	Thr
					1060			1065						1070	
Thr	Tyr	Pro	Val	Tyr	Thr	Glu	Ser	Thr	Asp	Asp	Lys	His	Leu	Lys	Phe
					1075			1080						1085	
Gln	Pro	His	Phe	Gly	Gln	Gln	Glu	Cys	Val	Ser	Pro	Tyr	Arg	Ser	Arg
					1090			1095						1100	
Gly	Ala	Asn	Gly	Ser	Glu	Thr	Asn	Arg	Val	Gly	Ser	Asn	His	Gly	Ile
					1105			1110			1115				1120
Asn	Gln	Asn	Val	Ser	Gln	Ser	Leu	Cys	Gln	Glu	Asp	Asp	Tyr	Glu	Asp
					1125			1130						1135	
Asp	Lys	Pro	Thr	Asn	Tyr	Ser	Glu	Arg	Tyr	Ser	Glu	Glu	Gln	His	
					1140			1145						1150	
Glu	Glu	Glu	Glu	Arg	Pro	Thr	Asn	Tyr	Ser	Ile	Lys	Tyr	Asn	Glu	Glu
					1155			1160						1165	
Lys	Arg	His	Val	Asp	Gln	Pro	Ile	Asp	Tyr	Ser	Leu	Lys	Tyr	Ala	Thr
					1170			1175						1180	
Asp	Ile	Pro	Ser	Ser	Gln	Lys	Gln	Ser	Phe	Ser	Phe	Ser	Lys	Ser	Ser
					1185			1190			1195				1200
Ser	Gly	Gln	Ser	Ser	Lys	Thr	Glu	His	Met	Ser	Ser	Ser	Ser	Glu	Asn
					1205			1210						1215	

-continued

Thr Ser Thr Pro Ser Ser Asn Ala Lys Arg Gln Asn Gln Leu His Pro
 1220 1225 1230
 Ser Ser Ala Gln Ser Arg Ser Gly Gln Pro Gln Lys Ala Ala Thr Cys
 1235 1240 1245
 Lys Val Ser Ser Ile Asn Gln Glu Thr Ile Gln Thr Tyr Cys Val Glu
 1250 1255 1260
 Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Leu Ser Ser Leu Ser
 1265 1270 1275 1280
 Ser Ala Glu Asp Glu Ile Gly Cys Asn Gln Thr Thr Gln Glu Ala Asp
 1285 1290 1295
 Ser Ala Asn Thr Leu Gln Ile Ala Glu Ile Lys Glu Lys Ile Gly Thr
 1300 1305 1310
 Arg Ser Ala Glu Asp Pro Val Ser Glu Val Pro Ala Val Ser Gln His
 1315 1320 1325
 Pro Arg Thr Lys Ser Ser Arg Leu Gln Gly Ser Ser Leu Ser Ser Glu
 1330 1335 1340
 Ser Ala Arg His Lys Ala Val Gln Phe Ser Ser Gly Ala Lys Ser Pro
 1345 1350 1355 1360
 Ser Lys Ser Gly Ala Gln Thr Pro Lys Ser Pro Pro Glu His Tyr Val
 1365 1370 1375
 Gln Glu Thr Pro Leu Met Phe Ser Arg Cys Thr Ser Val Ser Ser Leu
 1380 1385 1390
 Asp Ser Phe Glu Ser Arg Ser Ile Ala Ser Ser Val Gln Ser Glu Pro
 1395 1400 1405
 Cys Ser Gly Met Val Ser Gln Ile Ile Ser Pro Ser Asp Leu Pro Asp
 1410 1415 1420
 Ser Pro Gly Gln Thr Met Pro Pro Ser Arg Ser Lys Thr Pro Pro Pro
 1425 1430 1435 1440
 Pro Pro Gln Thr Ala Gln Thr Lys Arg Glu Val Pro Lys Asn Lys Ala
 1445 1450 1455
 Pro Thr Ala Glu Lys Arg Glu Ser Gly Pro Lys Gln Ala Ala Val Asn
 1460 1465 1470
 Ala Ala Val Gln Arg Val Gln Val Leu Pro Asp Ala Asp Thr Leu Leu
 1475 1480 1485
 His Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser Cys Ser Ser Ser
 1490 1495 1500
 Leu Ser Ala Leu Ser Leu Asp Glu Pro Phe Ile Gln Lys Asp Val Glu
 1505 1510 1515 1520
 Leu Arg Ile Met Pro Pro Val Gln Glu Asn Asp Asn Gly Asn Glu Thr
 1525 1530 1535
 Glu Ser Glu Gln Pro Lys Glu Ser Asn Gln Glu Asn Gln Glu Ala
 1540 1545 1550
 Glu Lys Thr Ile Asp Ser Glu Lys Asp Leu Leu Asp Asp Ser Asp Asp
 1555 1560 1565
 Asp Asp Ile Glu Ile Leu Glu Glu Cys Ile Ile Ser Ala Met Pro Thr
 1570 1575 1580
 Lys Ser Ser Arg Lys Ala Lys Lys Pro Ala Gln Thr Ala Ser Lys Leu
 1585 1590 1595 1600
 Pro Pro Pro Val Ala Arg Lys Pro Ser Gln Leu Pro Val Tyr Lys Leu
 1605 1610 1615
 Leu Pro Ser Gln Asn Arg Leu Gln Pro Gln Lys His Val Ser Phe Thr
 1620 1625 1630
 Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu Gly Thr Pro Ile

-continued

1 6 3 5	1 6 4 0	1 6 4 5
Asn Phe Ser Thr Ala Thr Ser	Leu Ser Asp Leu	Thr Ile Glu Ser Pro
1650 1655	1660	
Pro Asn Glu Leu Ala Ala Gly	Glu Gly Val Arg	Gly Gly Ala Gln Ser
1665 1670	1675	1680
Gly Glu Phe Glu Lys Arg Asp	Thr Ile Pro Thr Glu	Gly Arg Ser Thr
1685 1690	1695	
Asp Glu Ala Gln Gly Gly Lys	Thr Ser Ser Val	Thr Ile Pro Glu Leu
1700 1705	1710	
Asp Asp Asn Lys Ala Glu Glu	Gly Asp Ile Leu Ala Glu	Cys Ile Asn
1715 1720	1725	
Ser Ala Met Pro Lys Gly Lys	Ser His Lys Pro	Phe Arg Val Lys Lys
1730 1735	1740	
Ile Met Asp Gln Val Gln	Gln Ala Ser Ala Ser	Ser Ala Pro Asn
1745 1750	1755	1760
Lys Asn Gln Leu Asp Gly Lys	Lys Lys Pro	Thr Ser Pro Val Lys
1765 1770	1775	
Pro Ile Pro Gln Asn Thr Glu	Tyr Arg Thr Arg	Val Arg Lys Asn Ala
1780 1785	1790	
Asp Ser Lys Asn Asn Leu Asn	Ala Glu Arg Val	Phe Ser Asp Asn Lys
1795 1800	1805	
Asp Ser Lys Lys Gln Asn Leu	Lys Asn Asn Ser	Lys Asp Phe Asn Asp
1810 1815	1820	
Lys Leu Pro Asn Asn Glu Asp	Arg Val Arg	Gly Ser Phe Ala Phe Asp
1825 1830	1835	1840
Ser Pro His His Tyr Thr Pro	Ile Glu Gly Thr Pro	Tyr Cys Phe Ser
1845 1850	1855	
Arg Asn Asp Ser Leu Ser	Ser Leu Asp Phe	Asp Asp Asp Val Asp
1860 1865	1870	
Leu Ser Arg Glu Lys Ala Glu	Leu Arg Lys Ala Lys	Glu Asn Lys Glu
1875 1880	1885	
Ser Glu Ala Lys Val Thr	Ser His Thr Glu	Leu Thr Ser Asn Gln Gln
1890 1895	1900	
Ser Ala Asn Lys Thr Gln	Ala Ile Ala Lys	Gln Pro Ile Asn Arg Gly
1905 1910	1915	1920
Gln Pro Lys Pro Ile Leu Gln	Lys Gln Ser Thr	Phe Pro Gln Ser Ser
1925 1930	1935	
Lys Asp Ile Pro Asp Arg	Gly Ala Ala Thr	Asp Glu Lys Leu Gln Asn
1940 1945	1950	
Phe Ala Ile Glu Asn Thr	Pro Val Cys Phe	Ser His Asn Ser Ser Leu
1955 1960	1965	
Ser Ser Leu Ser Asp Ile	Asp Gln Glu Asn Asn	Asn Lys Glu Asn Gln
1970 1975	1980	
Pro Ile Lys Glu Thr	Glu Pro Pro Asp Ser	Gln Gly Glu Pro Ser Lys
1985 1990	1995	2000
Pro Gln Ala Ser Gly	Tyr Ala Pro Lys	Ser Phe His Val Glu Asp Thr
2005 2010	2015	
Pro Val Cys Phe Ser Arg	Asn Ser Ser	Leu Ser Ile Asp
2020 2025	2030	
Ser Glu Asp Asp Leu Leu	Gln Glu Cys Ile	Ser Ser Ala Met Pro Lys
2035 2040	2045	
Lys Lys Lys Pro Ser Arg	Leu Lys Gly Asp	Asn Glu Lys His Ser Pro
2050 2055	2060	

-continued

Arg	Asn	Met	Gly	Gly	Ile	Leu	Gly	Glu	Asp	Leu	Thr	Leu	Asp	Leu	Lys
2065					2070					2075					2080
Asp	Ile	Gln	Arg	Pro	Asp	Ser	Glu	His	Gly	Leu	Ser	Pro	Asp	Ser	Glu
					2085				2090						2095
Asn	Phe	Asp	Trp	Lys	Ala	Ile	Gln	Glu	Gly	Ala	Asn	Ser	Ile	Val	Ser
			2100				2105						2110		
Ser	Leu	His	Gln	Ala	Ala	Ala	Ala	Ala	Cys	Leu	Ser	Arg	Gln	Ala	Ser
			2115				2120						2125		
Ser	Asp	Ser	Asp	Ser	Ile	Leu	Ser	Leu	Lys	Ser	Gly	Ile	Ser	Leu	Gly
	2130				2135						2140				
Ser	Pro	Phe	His	Leu	Thr	Pro	Asp	Gln	Glu	Glu	Lys	Pro	Phe	Thr	Ser
	2145			2150				2155					2160		
Asn	Lys	Gly	Pro	Arg	Ile	Leu	Lys	Pro	Gly	Glu	Lys	Ser	Thr	Leu	Glu
	2165				2170				2175						
Thr	Lys	Lys	Ile	Glu	Ser	Glu	Ser	Lys	Gly	Ile	Lys	Gly	Gly	Lys	Lys
	2180			2185						2190					
Val	Tyr	Lys	Ser	Leu	Ile	Thr	Gly	Lys	Val	Arg	Ser	Asn	Ser	Glu	Ile
	2195				2200					2205					
Ser	Gly	Gln	Met	Lys	Gln	Pro	Leu	Gln	Ala	Asn	Met	Pro	Ser	Ile	Ser
	2210				2215						2220				
Arg	Gly	Arg	Thr	Met	Ile	His	Ile	Pro	Gly	Val	Arg	Asn	Ser	Ser	Ser
	2225				2230				2235						2240
Ser	Thr	Ser	Pro	Val	Ser	Lys	Lys	Gly	Pro	Pro	Leu	Lys	Thr	Pro	Ala
	2245				2250								2255		
Ser	Lys	Ser	Pro	Ser	Glu	Gly	Gln	Thr	Ala	Thr	Thr	Ser	Pro	Arg	Gly
	2260				2265				2270						
Ala	Lys	Pro	Ser	Val	Lys	Ser	Glu	Leu	Ser	Pro	Val	Ala	Arg	Gln	Thr
	2275				2280							2285			
Ser	Gln	Ile	Gly	Gly	Ser	Ser	Lys	Ala	Pro	Ser	Arg	Ser	Gly	Ser	Arg
	2290				2295						2300				
Asp	Ser	Thr	Pro	Ser	Arg	Pro	Ala	Gln	Gln	Pro	Leu	Ser	Arg	Pro	Ile
	2305				2310					2315					2320
Gln	Ser	Pro	Gly	Arg	Asn	Ser	Ile	Ser	Pro	Gly	Arg	Asn	Gly	Ile	Ser
	2325				2330								2335		
Pro	Pro	Asn	Lys	Leu	Ser	Gln	Leu	Pro	Arg	Thr	Ser	Ser	Pro	Ser	Thr
	2340				2345								2350		
Ala	Ser	Thr	Lys	Ser	Ser	Gly	Ser	Gly	Lys	Met	Ser	Tyr	Thr	Ser	Pro
	2355				2360							2365			
Gly	Arg	Gln	Met	Ser	Gln	Gln	Asn	Leu	Thr	Lys	Gln	Thr	Gly	Leu	Ser
	2370				2375						2380				
Lys	Asn	Ala	Ser	Ser	Ile	Pro	Arg	Ser	Glu	Ser	Ala	Ser	Lys	Gly	Leu
	2385				2390						2395				2400
Asn	Gln	Met	Asn	Asn	Gly	Asn	Gly	Ala	Asn	Lys	Lys	Val	Glu	Leu	Ser
	2405				2410								2415		
Arg	Met	Ser	Ser	Thr	Lys	Ser	Ser	Gly	Ser	Glu	Ser	Asp	Arg	Ser	Glu
	2420				2425								2430		
Arg	Pro	Val	Leu	Val	Arg	Gln	Ser	Thr	Phe	Ile	Lys	Glu	Ala	Pro	Ser
	2435				2440								2445		
Pro	Thr	Leu	Arg	Arg	Lys	Leu	Glu	Glu	Ser	Ala	Ser	Phe	Glu	Ser	Leu
	2450				2455								2460		
Ser	Pro	Ser	Ser	Arg	Pro	Ala	Ser	Pro	Thr	Arg	Ser	Gln	Ala	Gln	Thr
	2465				2470					2475					2480
Pro	Val	Leu	Ser	Pro	Ser	Leu	Pro	Asp	Met	Ser	Leu	Ser	Thr	His	Ser
	2485				2490								2495		

-continued

Ser Val Gln Ala Gly Gly Trp Arg Lys Leu Pro Pro Asn Leu Ser Pro
 2500 2505 2510
 Thr Ile Glu Tyr Asn Asp Gly Arg Pro Ala Lys Arg His Asp Ile Ala
 2515 2520 2525
 Arg Ser His Ser Glu Ser Pro Ser Arg Leu Pro Ile Asn Arg Ser Gly
 2530 2535 2540
 Thr Trp Lys Arg Glu His Ser Lys His Ser Ser Ser Leu Pro Arg Val
 2545 2550 2555 2560
 Ser Thr Trp Arg Arg Thr Gly Ser Ser Ser Ile Leu Ser Ala Ser
 2565 2570 2575
 Ser Glu Ser Ser Glu Lys Ala Lys Ser Glu Asp Glu Lys His Val Asn
 2580 2585 2590
 Ser Ile Ser Gly Thr Lys Gln Ser Lys Glu Asn Gln Val Ser Ala Lys
 2595 2600 2605
 Gly Thr Trp Arg Lys Ile Lys Glu Asn Glu Phe Ser Pro Thr Asn Ser
 2610 2615 2620
 Thr Ser Gln Thr Val Ser Ser Gly Ala Thr Asn Gly Ala Glu Ser Lys
 2625 2630 2635 2640
 Thr Leu Ile Tyr Gln Met Ala Pro Ala Val Ser Lys Thr Glu Asp Val
 2645 2650 2655
 Trp Val Arg Ile Glu Asp Cys Pro Ile Asn Asn Pro Arg Ser Gly Arg
 2660 2665 2670
 Ser Pro Thr Gly Asn Thr Pro Pro Val Ile Asp Ser Val Ser Glu Lys
 2675 2680 2685
 Ala Asn Pro Asn Ile Lys Asp Ser Lys Asp Asn Gln Ala Lys Gln Asn
 2690 2695 2700
 Val Gly Asn Gly Ser Val Pro Met Arg Thr Val Gly Leu Glu Asn Arg
 2705 2710 2715 2720
 Leu Asn Ser Phe Ile Gln Val Asp Ala Pro Asp Gln Lys Gly Thr Glu
 2725 2730 2735
 Ile Lys Pro Gly Gln Asn Asn Pro Val Pro Val Ser Glu Thr Asn Glu
 2740 2745 2750
 Ser Ser Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser Lys
 2755 2760 2765
 His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe Asn
 2770 2775 2780 2785
 Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala Arg
 2785 2790 2795 2800
 Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg Asp
 2805 2810 2815
 Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys Arg
 2820 2825 2830
 His Ser Gly Ser Tyr Leu Val Thr Ser Val
 2835 2840

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vii) IMMEDIATE SOURCE:

- (B) CLONE: ral2(yeast)

-continued

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Leu	Thr	Gly	Ala	Lys	Gly	Leu	Gln	Leu	Arg	Ala	Leu	Arg	Arg	Ile	Ala
1				5					10				15		
Arg	Ile	Glu	Gln	Gly	Gly	Thr	Ala	Ile	Ser	Pro	Thr	Ser	Pro	Leu	
		20						25					30		

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: peptide

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: m3(mAChR)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Leu	Tyr	Trp	Arg	Ile	Tyr	Lys	Glu	Thr	Glu	Lys	Arg	Thr	Lys	Glu	Leu
1				5				10			15				
Ala	Gly	Leu	Gln	Ala	Ser	Gly	Thr	Glu	Ala	Glu	Thr	Glu			
		20						25							

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: peptide

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: MCC

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Leu	Tyr	Pro	Asn	Leu	Ala	Glu	Glu	Arg	Ser	Arg	Trp	Glu	Lys	Glu	Leu
1				5				10			15				
Ala	Gly	Leu	Arg	Glu	Glu	Asn	Glu	Ser	Leu	Thr	Ala	Met			
		20						25							

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GTATCAAGAC TGTGACTTTT AATTGTAGTT TATCCATT

40

(2) INFORMATION FOR SEQ ID NO:12:

5,691,454

91

92

-continued

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:12:

TTTAGAATT T CATGTTAATA TATTGTGTT C TTTTAACAG

4 0

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:13:

G TAGATTTA AAAAGGTGTT T TAAAATAAT TTTTAAGCT

4 0

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AAGCAATTGT TGTATAAAAA CTTGTTCTA TTTTATTTAG

4 0

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTAACCTTTC TTCATATAGT AACACATTGCC TTGTGTACTC

4 0

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

5,691,454

93

94

-continued

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:16:

NNNNNNNNNN NNNGTCCCTT TTTTTAAAAA AAAAAAAATAG

4 0

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GTAAGTAACT TGGCAGTACA ACTTATTTGA AACTTTAATA

4 0

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:18:

ATACAAGATA TTGATACTTT TTTATTATTT GTGGTTTAG

4 0

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GTAAGTTACT TGTTTCTAAG TGATAAAACA G Y GAAGAGCT

4 0

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:20:

AATAAAAACA TAACTAATTA GGTTTCTTGT TTTATTTAG

4 0

-continued

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 40 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GTTAGTAAAT TSCCTTTTT GTTTGTGGGT ATAAAAAATAG

4 0

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 40 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:22:

ACCATTTTG CATGTACTGA TGTAACTCC ATCTAACAG

4 0

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 40 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTAATAAAAT TATTTATCA TATTTTTAA AATTATTTAA

4 0

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 64 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CATGATGTTA TCTGTATTTA CCTATAGTCT AAATTATAACC ATCTATAATG TGCTTAATTT

6 0

TTAG

6 4

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 52 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

5,691,454

97

98

-continued

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GTAACAGAAG ATTACAAACC CTGGTCACTA ATGCCATGAC TACTTGCTA AG

5 2

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 46 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GGATATTAAGA GTCGTAATTT TGTTTCTAAA CTCATTTGGC CCACAG

4 6

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 40 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GTATGTTCTC TATAGTGTAC ATCGTAGTGC ATGTTTCAAA

4 0

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 56 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CATCATTGCT CTTCAAATAA CAAAGCATTA TGGTTTATGT TGATTTTATT TTTCAAG

5 6

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 43 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:29:

5,691,454

99

100

-continued

GTAAGACAAA AATGTTTTT AATGACATAG ACAATTACTG GTG

43

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:30:

T TAGATGATT GTCTTTTCC TCTTGCCCTT TTTAAATTAG

40

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 44 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:31:

G TATGTTTT ATAACATGTA TTTCTTAAGA TAGCTCAGGT ATGA

44

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 54 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:32:

GCTTGGCTTC AAGTTGNCTT TTTAATGATC CTCTATTCTG TATTTAATTACAG

54

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 65 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GTACTATTAA GAATTCACC TGTTTTCTT TTTCTCTTT TTCTTTGAGG CAGGGTCTCA

60

CTCTG

65

(2) INFORMATION FOR SEQ ID NO:34:

5,691,454

101

102

-continued

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 52 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GCAACTAGTA TGATTTATG TATAAATTAA TCTAAAATTG ATTAATTTCAG

52

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 42 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GTACCTTTGA AAACATTTAG TACTATAATA TGAATTTCAT GT

42

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CCAACTCNAATTTAGATGACC CATATTCAGAACTTACTAG

40

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 54 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GTATATATAG AGTTTTATAT TACTTTAAAGTACAGAATT CATACTCTCA AAAA

54

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 41 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

5,691,454

103

104

-continued

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:38:

ATTGTGACCT TAATTTGTG ATCTCTTGAT TTTTATTCA G

4 1

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TCCCCGCGCTG CCGCTCTC

1 8

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GCAGCGGGCGG CTCCCGTG

1 8

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GTGAACGGCT CTCATGCTGC

2 0

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:42:

ACGTGCGGGG AGGAATGGA

1 9

5,691,454

105

106

-continued

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ATGATATCTT ACCAAATGAT ATAC

2 4

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:44:

TTATTCCTAC TTCTTCTATA CAG

2 3

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:45:

TACCCATGCT GGCTCTTTT C

2 1

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:46:

TGGGGCCATC TTGTTCTGTA

2 0

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5,691,454

107

108

-continued

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:47:

A C A T T A G G C A C A A A G C T T G C A A

2 2

(2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:48:

A T C A A G C T C C A G T A A G A A G G T A

2 2

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:49:

T G C G G G T C C T G G G T T G T T G

1 9

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:50:

G C C C C T T C C T T T C T G A G G A C

2 0

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:51:

T T T T C T C C T G C C T C T T A C T G C

2 1

5,691,454

109

110

-continued

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ATGACACCCC CCATTCCTC

2 0

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:53:

CCACTTAAAG CACATATATT TAGT

2 4

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:54:

GTATGGAAA TAGTGAAGAA CC

2 2

(2) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:55:

TTCTTAAGTC CTGTTTTCT TTTG

2 4

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

5,691,454

111

112

-continued

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:56:

TTT A G A A C C T T T T T T G T G T T G T G

2 3

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 24 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:57:

C T C A G A T T A T A C A C T A A G C C T A A C

2 4

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 22 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:58:

C A T G T C T C T T A C A G T A G T A C C A

2 2

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:59:

A G G T C C A A G G G T A G C C A A G G

2 0

(2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 27 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:60:

5,691,454

113

114

-continued

TAAAAATGGA TAAACTACAA TTAAAAG

27

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:61:

AAATACAGAA TCATGTCTTG AAGT

24

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:62:

ACACCTAAAG ATGACAATTT GAG

23

(2) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:63:

TAACTTAGAT AGCAGTAATT TCCC

24

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:64:

ACAATAAACT GGAGTACACA AGG

23

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs

-continued

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:65:

A T A G G T C A T T G C T T C T T G C T G A T

23

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:66:

T G A A T T T T A A T G G A T T A C C T A G G T

24

(2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:67:

C T T T T T T T G C T T T T A C T G A T T A A C G

25

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:68:

T G T A A T T C A T T T T A T T C C T A A T A G C T C

27

(2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

5,691,454

117

118

-continued

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:69:

GGTAGCCATA GTATGATTAT TTCT

2 4

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:70:

CTACCTATTT TTATACCCAC AAAC

2 4

(2) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:71:

AAGAAAGCCT ACACCATTTC TGC

2 3

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:72:

GATCATTCTT AGAACCATCT TGC

2 3

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:73:

ACCTATAGTC TAAATTATAC CATC

2 4

(2) INFORMATION FOR SEQ ID NO:74:

5,691,454

119

120

-continued

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(1 i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:74:

G T C A T G G C A T T A G T G A C C A G

2 0

(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(1 i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:75:

A G T C G T A A T T T T G T T T C T A A A C T C

2 4

(2) INFORMATION FOR SEQ ID NO:76:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(1 i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:76:

T G A A G G A C T C G G A T T T C A C G C

2 1

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(1 i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:77:

T C A T T C A C T C A C A G C C T G A T G A C

2 3

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(1 i) MOLECULE TYPE: cDNA

5,691,454

121

122

-continued

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:78:

G C T T T G A A A C A T G C A C T A C G A T

2 2

(2) INFORMATION FOR SEQ ID NO:79:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:79:

A A A C A T C A T T G C T C T T C A A A T T A A C

2 4

(2) INFORMATION FOR SEQ ID NO:80:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:80:

T A C C A T G A T T T A A A A A T C C A C C A G

2 4

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:81:

G A T G A T T G T C T T T T C C T C T T G C

2 3

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:82:

C T G A G G C T A T C T T A A G G A A A T A C A T G

2 4

5,691,454

123

124

-continued

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:83:

T T T A A A T G A T C C T C T A T T C T G T A T

2 5

(2) INFORMATION FOR SEQ ID NO:84:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:84:

A C A G A G T C A G A C C C T G C C T C A A A G

2 4

(2) INFORMATION FOR SEQ ID NO:85:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:85:

T T T C T A T T C T T A C T G C T A G C A T T

2 3

(2) INFORMATION FOR SEQ ID NO:86:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:86:

A T A C A C A G G T A A G A A A T T A G G A

2 2

(2) INFORMATION FOR SEQ ID NO:87:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5,691,454

125

126

-continued

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:87:

T A G A T G A C C C A T A T T C T G T T T C

2 2

(2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:88:

C A A T T A G G T C T T T T G A G A G A G T A

2 2

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:89:

G T T A C T G C A T A C A C A T T G T G A C

2 2

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:90:

G C T T T T T G T T T C C T A A C A T G A A G

2 3

(2) INFORMATION FOR SEQ ID NO:91:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:91:

T C T C C C A C A G G T A A T A C T C C C

2 1

5,691,454

127

128

-continued

(2) INFORMATION FOR SEQ ID NO:92:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:92:

G C T A G A A C T G A A T G G G G T A C G

2 1

(2) INFORMATION FOR SEQ ID NO:93:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:93:

C A G G A C A A A A T A A T C C T G T C C C

2 2

(2) INFORMATION FOR SEQ ID NO:94:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:94:

A T T T T C T T A G T T T C A T T C T T C C T C

2 4

(2) INFORMATION FOR SEQ ID NO: 95:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:95:

A G A A G G A T C C C T T G T G C A G T G T G G A

2 5

(2) INFORMATION FOR SEQ ID NO: 96:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

5,691,454

129

130

-continued

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:96:

GACAGGATCC TGAAGCTGAG TTTG

2 4

(2) INFORMATION FOR SEQ ID NO: 97:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:97:

T CAGAAAGTG CTGAAGAG

1 8

(2) INFORMATION FOR SEQ ID NO: 98:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:98:

GGAAATAATTAA GGTCTCCCAA

1 9

(2) INFORMATION FOR SEQ ID NO: 99:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:99:

GCAAATCCTA AGAGAGAACAA

2 1

(2) INFORMATION FOR SEQ ID NO: 100:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:100:

131

132

-continued

GATGGCAAGC TTGAGCCAG

19

(2) INFORMATION FOR SEQ ID NO: 101:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:101:

GTTCCAGCAG TGTACACAG

18

(2) INFORMATION FOR SEQ ID NO: 102:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: cDNA

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:102:

GGGAGATTC GCTCCTGA

18

We claim:

1. A preparation of antibodies which specifically binds to a human APC (adenomatous polyposis coli) protein having an amino acid sequence as shown in SEQ ID NO:1, 2, or 7, and does not specifically bind to other human proteins. 40
2. A preparation of antibodies which specifically binds to a human APC protein which is the product of a mutant allele found in a tumor, wherein the antibodies do not specifically bind to other human proteins, and wherein the human APC protein is a mutant form of the amino acid sequence shown in SEQ ID NOS:2 and 7, and the mutant allele is a mutant form of the nucleotide sequence shown in SEQ ID NO:1. 45
3. The preparation of claim 2 wherein the mutant allele contains a mutation selected from the group consisting of

35 mutations at codons 243, 279, 288, 301,331,413,437, 456, 500, 712, and 1338.

4. The preparation of claim 2 wherein the mutant allele contains a premature stop codon.

40 5. The preparation of claim 2 wherein the mutant allele contains a missense mutation.

6. The preparation of claim 2 wherein the mutant allele contains a frameshift mutation.

7. The preparation of claim 2 wherein the mutant allele contains a splice junction mutation.

45 8. The preparation of claim 2 wherein the mutant allele contains an insertion mutation.

* * * * *

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: ALBERTSEN, HANS
ANAND, RAKESH
CARLSON, MARY
GRODEN, JOANNA
HEDGE, PHILIP J.
JOSLYN, GEOFF
KINZLER, KENNETH
MARKHAM, ALEXANDER F.
NAKAMURA, YUSUKE
THLIVERIS, ANDREW
VOGELSTEIN, BERT
WHITE, RAYMOND L.

(ii) TITLE OF INVENTION: APC ANTIBODIES

(iii) NUMBER OF SEQUENCES: 102

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Banner & Witcoff, Ltd.
(B) STREET: 1001 G Street, NW
(C) CITY: Washington
(D) STATE: D.C.
(E) COUNTRY: USA
(F) ZIP: 20001-4598

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/452,654
(B) FILING DATE: 25-MAY-1995

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/289,548
(B) FILING DATE: 12-AUG-1994

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/741,940
(B) FILING DATE: 08-AUG-1991

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Kagan, Sarah A.
(B) REGISTRATION NUMBER: 32,141

(C) REFERENCE/DOCKET NUMBER: 1107.78817

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 202-508-9100
(B) TELEFAX: 202-508-9299

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9606 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(vi) IMMEDIATE SOURCE:

(B) CLONE: DP2.5 (APC)

(A) NAME

(B) LOCATION: 34.

SEQUENCE DESCRIPTION 6

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GGACTCGGAA ATGAGGTCCA AGGGTAGCCA AGG ATG GCT GCA GCT TCA TAT GAT 54
Met Ala Ala Ala Ser Tyr Asp
1 5

CAG TTG TTA AAG CAA GTT GAG GCA CTG AAG ATG GAG AAC TCA AAT CTT 102
 Gln Leu Leu Lys Gln Val Glu Ala Leu Lys Met Glu Asn Ser Asn Leu
 10 15 20

CGA CAA GAG CTA GAA GAT AAT TCC AAT CAT CTT ACA AAA CTG GAA ACT 150
 Arg Gln Glu Leu Glu Asp Asn Ser Asn His Leu Thr Lys Leu Glu Thr
 25 30 35

GAG GCA TCT AAT ATG AAG GAA GTA CTT AAA CAA CTA CAA GGA AGT ATT 198
 Glu Ala Ser Asn Met Lys Glu Val Leu Lys Gln Leu Gln Gly Ser Ile
 40 45 50 55

GAA GAT GAA GCT ATG GCT TCT TCT GGA CAG ATT GAT TTA TTA GAG CGT
 Glu Asp Glu Ala Met Ala Ser Ser Gly Gln Ile Asp Leu Leu Glu Arg
 60 65 70

CTT AAA GAG CTT AAC TTA GAT AGC AGT AAT TTC CCT GGA GTA AAA CTG 294
 Leu Lys Glu Leu Asn Leu Asp Ser Ser Asn Phe Pro Gly Val Lys Leu
 75 80 85

CGG TCA AAA ATG TCC CTC CGT TCT TAT GGA AGC CGG GAA GGA TCT GTA 342
 Arg Ser Lys Met Ser Leu Arg Ser Tyr Gly Ser Arg Glu Gly Ser Val

90	95	100	
TCA AGC CGT TCT GGA GAG TGC AGT CCT GTT CCT ATG GGT TCA TTT CCA Ser Ser Arg Ser Gly Glu Cys Ser Pro Val Pro Met Gly Ser Phe Pro 105 110 115			390
AGA AGA GGG TTT GTA AAT GGA AGC AGA GAA AGT ACT GGA TAT TTA GAA Arg Arg Gly Phe Val Asn Gly Ser Arg Glu Ser Thr Gly Tyr Leu Glu 120 125 130 135			438
GAA CTT GAG AAA GAG AGG TCA TTG CTT CTT GCT GAT CTT GAC AAA GAA Glu Leu Glu Lys Glu Arg Ser Leu Leu Ala Asp Leu Asp Lys Glu 140 145 150			486
GAA AAG GAA AAA GAC TGG TAT TAC GCT CAA CTT CAG AAT CTC ACT AAA Glu Lys Glu Lys Asp Trp Tyr Tyr Ala Gln Leu Gln Asn Leu Thr Lys 155 160 165			534
AGA ATA GAT AGT CTT CCT TTA ACT GAA AAT TTT TCC TTA CAA ACA GAT Arg Ile Asp Ser Leu Pro Leu Thr Glu Asn Phe Ser Leu Gln Thr Asp 170 175 180			582
TTG ACC AGA AGG CAA TTG GAA TAT GAA GCA AGG CAA ATC AGA GTT GCG Leu Thr Arg Arg Gln Leu Glu Tyr Glu Ala Arg Gln Ile Arg Val Ala 185 190 195			630
ATG GAA GAA CAA CTA GGT ACC TGC CAG GAT ATG GAA AAA CGA GCA CAG Met Glu Glu Gln Leu Gly Thr Cys Gln Asp Met Glu Lys Arg Ala Gln 200 205 210 215			678
CGA AGA ATA GCC AGA ATT CAG CAA ATC GAA AAG GAC ATA CTT CGT ATA Arg Arg Ile Ala Arg Ile Gln Gln Ile Glu Lys Asp Ile Leu Arg Ile 220 225 230			726
CGA CAG CTT TTA CAG TCC CAA GCA ACA GAA GCA GAG AGG TCA TCT CAG Arg Gln Leu Leu Gln Ser Gln Ala Thr Glu Ala Glu Arg Ser Ser Gln 235 240 245			774
AAC AAG CAT GAA ACC GGC TCA CAT GAT GCT GAG CGG CAG AAT GAA GGT Asn Lys His Glu Thr Gly Ser His Asp Ala Glu Arg Gln Asn Glu Gly 250 255 260			822
CAA GGA GTG GGA GAA ATC AAC ATG GCA ACT TCT GGT AAT GGT CAG GGT Gln Gly Val Gly Glu Ile Asn Met Ala Thr Ser Gly Asn Gly Gln Gly 265 270 275			870
TCA ACT ACA CGA ATG GAC CAT GAA ACA GCC AGT GTT TTG AGT TCT AGT Ser Thr Thr Arg Met Asp His Glu Thr Ala Ser Val Leu Ser Ser Ser 280 285 290 295			918
AGC ACA CAC TCT GCA CCT CGA AGG CTG ACA AGT CAT CTG GGA ACC AAG Ser Thr His Ser Ala Pro Arg Arg Leu Thr Ser His Leu Gly Thr Lys 300 305 310			966
GTC GAA ATG GTG TAT TCA TTG TTG TCA ATG CTT GGT ACT CAT GAT AAG			1014

Val	Glu	Met	Val	Tyr	Ser	Leu	Leu	Ser	Met	Leu	Gly	Thr	His	Asp	Lys			
315																325		
GAT GAT ATG TCG CGA ACT TTG CTA GCT ATG TCT AGC TCC CAA GAC AGC															1062			
Asp	Asp	Met	Ser	Arg	Thr	Leu	Leu	Ala	Met	Ser	Ser	Gln	Asp	Ser				
330																340		
TGT ATA TCC ATG CGA CAG TCT GGA TGT CTT CCT CTC CTC ATC CAG CTT															1110			
Cys	Ile	Ser	Met	Arg	Gln	Ser	Gly	Cys	Leu	Pro	Leu	Ile	Gln	Leu				
345																350	355	
TTA CAT GGC AAT GAC AAA GAC TCT GTA TTG TTG GGA AAT TCC CGG GGC															1158			
Leu	His	Gly	Asn	Asp	Lys	Asp	Ser	Val	Leu	Leu	Gly	Asn	Ser	Arg	Gly			
360																365	370	375
AGT AAA GAG GCT CGG GCC AGG GCC AGT GCA GCA CTC CAC AAC ATC ATT															1206			
Ser	Lys	Glu	Ala	Arg	Ala	Arg	Ala	Ser	Ala	Ala	Leu	His	Asn	Ile	Ile			
380																385	390	
CAC TCA CAG CCT GAT GAC AAG AGA GGC AGG CGT GAA ATC CGA GTC CTT															1254			
His	Ser	Gln	Pro	Asp	Asp	Lys	Arg	Gly	Arg	Arg	Glu	Ile	Arg	Val	Leu			
395																400	405	
CAT CTT TTG GAA CAG ATA CGC GCT TAC TGT GAA ACC TGT TGG GAG TGG															1302			
His	Leu	Leu	Glu	Gln	Ile	Arg	Ala	Tyr	Cys	Thr	Cys	Trp	Glu	Trp				
410																415	420	
CAG GAA GCT CAT GAA CCA GGC ATG GAC CAG GAC AAA AAT CCA ATG CCA															1350			
Gln	Glu	Ala	His	Glu	Pro	Gly	Met	Asp	Gln	Asp	Lys	Asn	Pro	Met	Pro			
425																430	435	
GCT CCT GTT GAA CAT CAG ATC TGT CCT GCT GTG TGT GTT CTA ATG AAA															1398			
Ala	Pro	Val	Glu	His	Gln	Ile	Cys	Pro	Ala	Val	Cys	Val	Leu	Met	Lys			
440																445	450	455
CTT TCA TTT GAT GAA GAG CAT AGA CAT GCA ATG AAT GAA CTA GGG GGA															1446			
Leu	Ser	Phe	Asp	Glu	Glu	His	Arg	His	Ala	Met	Asn	Glu	Leu	Gly	Gly			
460																465	470	
CTA CAG GCC ATT GCA GAA TTA TTG CAA GTG GAC TGT GAA ATG TAT GGG															1494			
Leu	Gln	Ala	Ile	Ala	Glu	Leu	Leu	Gln	Val	Asp	Cys	Glu	Met	Tyr	Gly			
475																480	485	
CTT ACT AAT GAC CAC TAC AGT ATT ACA CTA AGA CGA TAT GCT GGA ATG															1542			
Leu	Thr	Asn	Asp	His	Tyr	Ser	Ile	Thr	Leu	Arg	Arg	Tyr	Ala	Gly	Met			
490																495	500	
GCT TTG ACA AAC TTG ACT TTT GGA GAT GTA GCC AAC AAG GCT ACG CTA															1590			
Ala	Leu	Thr	Asn	Leu	Thr	Phe	Gly	Asp	Val	Ala	Asn	Lys	Ala	Thr	Leu			
505																510	515	
TGC TCT ATG AAA GGC TGC ATG AGA GCA CTT GTG GCC CAA CTA AAA TCT															1638			
Cys	Ser	Met	Lys	Gly	Cys	Met	Arg	Ala	Leu	Val	Ala	Gln	Leu	Lys	Ser			
520																525	530	535

GAA AGT GAA GAC TTA CAG CAG GTT ATT GCA AGT GTT TTG AGG AAT TTG Glu Ser Glu Asp Leu Gln Gln Val Ile Ala Ser Val Leu Arg Asn Leu 540 545 550	1686
TCT TGG CGA GCA GAT GTA AAT AGT AAA AAG ACG TTG CGA GAA GTT GGA Ser Trp Arg Ala Asp Val Asn Ser Lys Lys Thr Leu Arg Glu Val Gly 555 560 565	1734
AGT GTG AAA GCA TTG ATG GAA TGT GCT TTA GAA GTT AAA AAG GAA TCA Ser Val Lys Ala Leu Met Glu Cys Ala Leu Glu Val Lys Lys Glu Ser 570 575 580	1782
ACC CTC AAA AGC GTA TTG AGT GCC TTA TGG AAT TTG TCA GCA CAT TGC Thr Leu Lys Ser Val Leu Ser Ala Leu Trp Asn Leu Ser Ala His Cys 585 590 595	1830
ACT GAG AAT AAA GCT GAT ATA TGT GCT GTA GAT GGT GCA CTT GCA TTT Thr Glu Asn Lys Ala Asp Ile Cys Ala Val Asp Gly Ala Leu Ala Phe 600 605 610 615	1878
TTG GTT GGC ACT CTT ACT TAC CGG AGC CAG ACA AAC ACT TTA GCC ATT Leu Val Gly Thr Leu Thr Tyr Arg Ser Gln Thr Asn Thr Leu Ala Ile 620 625 630	1926
ATT GAA AGT GGA GGT GGG ATA TTA CGG AAT GTG TCC AGC TTG ATA GCT Ile Glu Ser Gly Gly Ile Leu Arg Asn Val Ser Ser Leu Ile Ala 635 640 645	1974
ACA AAT GAG GAC CAC AGG CAA ATC CTA AGA GAG AAC AAC TGT CTA CAA Thr Asn Glu Asp His Arg Gln Ile Leu Arg Glu Asn Asn Cys Leu Gln 650 655 660	2022
ACT TTA TTA CAA CAC TTA AAA TCT CAT AGT TTG ACA ATA GTC AGT AAT Thr Leu Leu Gln His Leu Lys Ser His Ser Leu Thr Ile Val Ser Asn 665 670 675	2070
GCA TGT GGA ACT TTG TGG AAT CTC TCA GCA AGA AAT CCT AAA GAC CAG Ala Cys Gly Thr Leu Trp Asn Leu Ser Ala Arg Asn Pro Lys Asp Gln 680 685 690 695	2118
GAA GCA TTA TGG GAC ATG GGG GCA GTT AGC ATG CTC AAG AAC CTC ATT Glu Ala Leu Trp Asp Met Gly Ala Val Ser Met Leu Lys Asn Leu Ile 700 705 710	2166
CAT TCA AAG CAC AAA ATG ATT GCT ATG GGA AGT GCT GCA GCT TTA AGG His Ser Lys His Lys Met Ile Ala Met Gly Ser Ala Ala Ala Leu Arg 715 720 725	2214
AAT CTC ATG GCA AAT AGG CCT GCG AAG TAC AAG GAT GCC AAT ATT ATG Asn Leu Met Ala Asn Arg Pro Ala Lys Tyr Lys Asp Ala Asn Ile Met 730 735 740	2262
TCT CCT GGC TCA AGC TTG CCA TCT CTT CAT GTT AGG AAA CAA AAA GCC Ser Pro Gly Ser Ser Leu Pro Ser Leu His Val Arg Lys Gln Lys Ala 745 750 755	2310

CTA GAA GCA GAA TTA GAT GCT CAG CAC TTA TCA GAA ACT TTT GAC AAT Leu Glu Ala Glu Leu Asp Ala Gln His Leu Ser Glu Thr Phe Asp Asn 760 765 770 775	2358
ATA GAC AAT TTA AGT CCC AAG GCA TCT CAT CGT AGT AAG CAG AGA CAC Ile Asp Asn Leu Ser Pro Lys Ala Ser His Arg Ser Lys Gln Arg His 780 785 790	2406
AAG CAA AGT CTC TAT GGT GAT TAT GTT TTT GAC ACC AAT CGA CAT GAT Lys Gln Ser Leu Tyr Gly Asp Tyr Val Phe Asp Thr Asn Arg His Asp 795 800 805	2454
GAT AAT AGG TCA GAC AAT TTT AAT ACT GGC AAC ATG ACT GTC CTT TCA Asp Asn Arg Ser Asp Asn Phe Asn Thr Gly Asn Met Thr Val Leu Ser 810 815 820	2502
CCA TAT TTG AAT ACT ACA GTG TTA CCC AGC TCC TCT TCA TCA AGA GGA Pro Tyr Leu Asn Thr Thr Val Leu Pro Ser Ser Ser Ser Arg Gly 825 830 835	2550
AGC TTA GAT AGT TCT CGT TCT GAA AAA GAT AGA AGT TTG GAG AGA GAA Ser Leu Asp Ser Ser Arg Ser Glu Lys Asp Arg Ser Leu Glu Arg Glu 840 845 850 855	2598
CGC GGA ATT GGT CTA GGC AAC TAC CAT CCA GCA ACA GAA AAT CCA GGA Arg Gly Ile Gly Leu Gly Asn Tyr His Pro Ala Thr Glu Asn Pro Gly 860 865 870	2646
ACT TCT TCA AAG CGA GGT TTG CAG ATC TCC ACC ACT GCA GCC CAG ATT Thr Ser Ser Lys Arg Gly Leu Gln Ile Ser Thr Thr Ala Ala Gln Ile 875 880 885	2694
GCC AAA GTC ATG GAA GAA GTG TCA GCC ATT CAT ACC TCT CAG GAA GAC Ala Lys Val Met Glu Glu Val Ser Ala Ile His Thr Ser Gln Glu Asp 890 895 900	2742
AGA AGT TCT GGG TCT ACC ACT GAA TTA CAT TGT GTG ACA GAT GAG AGA Arg Ser Ser Gly Ser Thr Thr Glu Leu His Cys Val Thr Asp Glu Arg 905 910 915	2790
AAT GCA CTT AGA AGA AGC TCT GCT GCC CAT ACA CAT TCA AAC ACT TAC Asn Ala Leu Arg Arg Ser Ser Ala Ala His Thr His Ser Asn Thr Tyr 920 925 930 935	2838
AAT TTC ACT AAG TCG GAA AAT TCA AAT AGG ACA TGT TCT ATG CCT TAT Asn Phe Thr Lys Ser Glu Asn Ser Asn Arg Thr Cys Ser Met Pro Tyr 940 945 950	2886
GCC AAA TTA GAA TAC AAG AGA TCT TCA AAT GAT AGT TTA AAT AGT GTC Ala Lys Leu Glu Tyr Lys Arg Ser Ser Asn Asp Ser Leu Asn Ser Val 955 960 965	2934
AGT AGT AAT GAT GGT TAT GGT AAA AGA GGT CAA ATG AAA CCC TCG ATT Ser Ser Asn Asp Gly Tyr Gly Lys Arg Gly Gln Met Lys Pro Ser Ile 970 975 980	2982

GAA TCC TAT TCT GAA GAT GAT GAA AGT AAG TTT TGC AGT TAT GGT CAA Glu Ser Tyr Ser Glu Asp Asp Glu Ser Lys Phe Cys Ser Tyr Gly Gln 985 990 995	3030
TAC CCA GCC GAC CTA GCC CAT AAA ATA CAT AGT GCA AAT CAT ATG GAT Tyr Pro Ala Asp Leu Ala His Lys Ile His Ser Ala Asn His Met Asp 1000 1005 1010 1015	3078
GAT AAT GAT GGA GAA CTA GAT ACA CCA ATA AAT TAT AGT CTT AAA TAT Asp Asn Asp Gly Glu Leu Asp Thr Pro Ile Asn Tyr Ser Leu Lys Tyr 1020 1025 1030	3126
TCA GAT GAG CAG TTG AAC TCT GGA AGG CAA AGT CCT TCA CAG AAT GAA Ser Asp Glu Gln Leu Asn Ser Gly Arg Gln Ser Pro Ser Gln Asn Glu 1035 1040 1045	3174
AGA TGG GCA AGA CCC AAA CAC ATA ATA GAA GAT GAA ATA AAA CAA AGT Arg Trp Ala Arg Pro Lys His Ile Ile Glu Asp Glu Ile Lys Gln Ser 1050 1055 1060	3222
GAG CAA AGA CAA TCA AGG AAT CAA AGT ACA ACT TAT CCT GTT TAT ACT Glu Gln Arg Gln Ser Arg Asn Gln Ser Thr Thr Tyr Pro Val Tyr Thr 1065 1070 1075	3270
GAG AGC ACT GAT GAT AAA CAC CTC AAG TTC CAA CCA CAT TTT GGA CAG Glu Ser Thr Asp Asp Lys His Leu Lys Phe Gln Pro His Phe Gly Gln 1080 1085 1090 1095	3318
CAG GAA TGT GTT TCT CCA TAC AGG TCA CGG GGA GCC AAT GGT TCA GAA Gln Glu Cys Val Ser Pro Tyr Arg Ser Arg Gly Ala Asn Gly Ser Glu 1100 1105 1110	3366
ACA AAT CGA GTG GGT TCT AAT CAT GGA ATT AAT CAA AAT GTA AGC CAG Thr Asn Arg Val Gly Ser Asn His Gly Ile Asn Gln Asn Val Ser Gln 1115 1120 1125	3414
TCT TTG TGT CAA GAA GAT GAC TAT GAA GAT GAT AAG CCT ACC AAT TAT Ser Leu Cys Gln Glu Asp Asp Tyr Glu Asp Asp Lys Pro Thr Asn Tyr 1130 1135 1140	3462
AGT GAA CGT TAC TCT GAA GAA CAG CAT GAA GAA GAA GAG AGA CCA Ser Glu Arg Tyr Ser Glu Glu Glu Gln His Glu Glu Glu Arg Pro 1145 1150 1155	3510
ACA AAT TAT AGC ATA AAA TAT AAT GAA GAG AAA CGT CAT GTG GAT CAG Thr Asn Tyr Ser Ile Lys Tyr Asn Glu Glu Lys Arg His Val Asp Gln 1160 1165 1170 1175	3558
CCT ATT GAT TAT AGT TTA AAA TAT GCC ACA GAT ATT CCT TCA TCA CAG Pro Ile Asp Tyr Ser Leu Lys Tyr Ala Thr Asp Ile Pro Ser Ser Gln 1180 1185 1190	3606
AAA CAG TCA TTT TCA TTC TCA AAG AGT TCA TCT GGA CAA AGC AGT AAA Lys Gln Ser Phe Ser Phe Ser Lys Ser Ser Ser Gly Gln Ser Ser Lys 1195 1200 1205	3654

ACC GAA CAT ATG TCT TCA AGC AGT GAG AAT ACG TCC ACA CCT TCA TCT Thr Glu His Met Ser Ser Ser Ser Glu Asn Thr Ser Thr Pro Ser Ser 1210 1215 1220	3702
AAT GCC AAG AGG CAG AAT CAG CTC CAT CCA AGT TCT GCA CAG AGT AGA Asn Ala Lys Arg Gln Asn Gln Leu His Pro Ser Ser Ala Gln Ser Arg 1225 1230 1235	3750
AGT GGT CAG CCT CAA AAG GCT GCC ACT TGC AAA GTT TCT TCT ATT AAC Ser Gly Gln Pro Gln Lys Ala Ala Thr Cys Lys Val Ser Ser Ile Asn 1240 1245 1250 1255	3798
CAA GAA ACA ATA CAG ACT TAT TGT GTA GAA GAT ACT CCA ATA TGT TTT Gln Glu Thr Ile Gln Thr Tyr Cys Val Glu Asp Thr Pro Ile Cys Phe 1260 1265 1270	3846
TCA AGA TGT AGT TCA TTA TCA TCT TTG TCA TCA GCT GAA GAT GAA ATA Ser Arg Cys Ser Ser Leu Ser Ser Leu Ser Ser Ala Glu Asp Glu Ile 1275 1280 1285	3894
GGA TGT AAT CAG ACG ACA CAG GAA GCA GAT TCT GCT AAT ACC CTG CAA Gly Cys Asn Gln Thr Thr Gln Glu Ala Asp Ser Ala Asn Thr Leu Gln 1290 1295 1300	3942
ATA GCA GAA ATA AAA GGA AAG ATT GGA ACT AGG TCA GCT GAA GAT CCT Ile Ala Glu Ile Lys Gly Lys Ile Gly Thr Arg Ser Ala Glu Asp Pro 1305 1310 1315	3990
G TG AGC GAA GTT CCA GCA GTG TCA CAG CAC CCT AGA ACC AAA TCC AGC Val Ser Glu Val Pro Ala Val Ser Gln His Pro Arg Thr Lys Ser Ser 1320 1325 1330 1335	4038
AGA CTG CAG GGT TCT AGT TTA TCT TCA GAA TCA GCC AGG CAC AAA GCT Arg Leu Gln Gly Ser Ser Leu Ser Ser Glu Ser Ala Arg His Lys Ala 1340 1345 1350	4086
GTT GAA TTT CCT TCA GGA GCG AAA TCT CCC TCC AAA AGT GGT GCT CAG Val Glu Phe Pro Ser Gly Ala Lys Ser Pro Ser Lys Ser Gly Ala Gln 1355 1360 1365	4134
ACA CCC AAA AGT CCA CCT GAA CAC TAT GTT CAG GAG ACC CCA CTC ATG Thr Pro Lys Ser Pro Pro Glu His Tyr Val Gln Glu Thr Pro Leu Met 1370 1375 1380	4182
TTT AGC AGA TGT ACT TCT GTC AGT TCA CTT GAT AGT TTT GAG AGT CGT Phe Ser Arg Cys Thr Ser Val Ser Ser Leu Asp Ser Phe Glu Ser Arg 1385 1390 1395	4230
TCG ATT GCC AGC TCC GTT CAG AGT GAA CCA TGC AGT GGA ATG GTA AGT Ser Ile Ala Ser Ser Val Gln Ser Glu Pro Cys Ser Gly Met Val Ser 1400 1405 1410 1415	4278
GGC ATT ATA AGC CCC AGT GAT CTT CCA GAT AGC CCT GGA CAA ACC ATG Gly Ile Ile Ser Pro Ser Asp Leu Pro Asp Ser Pro Gly Gln Thr Met 1420 1425 1430	4326

CCA CCA AGC AGA AGT AAA ACA CCT CCA CCA CCT CCT CAA ACA GCT CAA Pro Pro Ser Arg Ser Lys Thr Pro Pro Pro Pro Pro Gln Thr Ala Gln 1435 1440 1445	4374
ACC AAG CGA GAA GTA CCT AAA AAT AAA GCA CCT ACT GCT GAA AAG AGA Thr Lys Arg Glu Val Pro Lys Asn Lys Ala Pro Thr Ala Glu Lys Arg 1450 1455 1460	4422
GAG AGT GGA CCT AAG CAA GCT GCA GTA AAT GCT GCA GTT CAG AGG GTC Glu Ser Gly Pro Lys Gln Ala Ala Val Asn Ala Ala Val Gln Arg Val 1465 1470 1475	4470
CAG GTT CTT CCA GAT GCT GAT ACT TTA TTA CAT TTT GCC ACA GAA AGT Gln Val Leu Pro Asp Ala Asp Thr Leu Leu His Phe Ala Thr Glu Ser 1480 1485 1490 1495	4518
ACT CCA GAT GGA TTT TCT TGT TCA TCC AGC CTG AGT GCT CTG AGC CTC Thr Pro Asp Gly Phe Ser Cys Ser Ser Leu Ser Ala Leu Ser Leu 1500 1505 1510	4566
GAT GAG CCA TTT ATA CAG AAA GAT GTG GAA TTA AGA ATA ATG CCT CCA Asp Glu Pro Phe Ile Gln Lys Asp Val Glu Leu Arg Ile Met Pro Pro 1515 1520 1525	4614
GTT CAG GAA AAT GAC AAT GGG AAT GAA ACA GAA TCA GAG CAG CCT AAA Val Gln Glu Asn Asp Asn Gly Asn Glu Thr Glu Ser Glu Gln Pro Lys 1530 1535 1540	4662
GAA TCA AAT GAA AAC CAA GAG AAA GAG GCA GAA AAA ACT ATT GAT TCT Glu Ser Asn Glu Asn Gln Glu Lys Glu Ala Glu Lys Thr Ile Asp Ser 1545 1550 1555	4710
GAA AAG GAC CTA TTA GAT GAT TCA GAT GAT GAT ATT GAA ATA CTA Glu Lys Asp Leu Leu Asp Asp Ser Asp Asp Ile Glu Ile Leu 1560 1565 1570 1575	4758
GAA GAA TGT ATT ATT TCT GCC ATG CCA ACA AAG TCA TCA CGT AAA GGC Glu Glu Cys Ile Ile Ser Ala Met Pro Thr Lys Ser Ser Arg Lys Gly 1580 1585 1590	4806
AAA AAG CCA GCC CAG ACT GCT TCA AAA TTA CCT CCA CCT GTG GCA AGG Lys Lys Pro Ala Gln Thr Ala Ser Lys Leu Pro Pro Pro Val Ala Arg 1595 1600 1605	4854
AAA CCA AGT CAG CTG CCT GTG TAC AAA CTT CTA CCA TCA CAA AAC AGG Lys Pro Ser Gln Leu Pro Val Tyr Lys Leu Leu Pro Ser Gln Asn Arg 1610 1615 1620	4902
TTG CAA CCC CAA AAG CAT GTT AGT TTT ACA CCG GGG GAT GAT ATG CCA Leu Gln Pro Gln Lys His Val Ser Phe Thr Pro Gly Asp Asp Met Pro 1625 1630 1635	4950
CGG GTG TAT TGT GTT GAA GGG ACA CCT ATA AAC TTT TCC ACA GCT ACA Arg Val Tyr Cys Val Glu Gly Thr Pro Ile Asn Phe Ser Thr Ala Thr 1640 1645 1650 1655	4998

TCT CTA AGT GAT CTA ACA ATC GAA TCC CCT CCA AAT GAG TTA GCT GCT Ser Leu Ser Asp Leu Thr Ile Glu Ser Pro Pro Asn Glu Leu Ala Ala 1660 1665 1670	5046
GGA GAA GGA GTT AGA GGA GCA CAG TCA GGT GAA TTT GAA AAA CGA Gly Glu Gly Val Arg Gly Ala Gln Ser Gly Glu Phe Glu Lys Arg 1675 1680 1685	5094
GAT ACC ATT CCT ACA GAA GGC AGA AGT ACA GAT GAG GCT CAA GGA GGA Asp Thr Ile Pro Thr Glu Gly Arg Ser Thr Asp Glu Ala Gln Gly Gly 1690 1695 1700	5142
AAA ACC TCA TCT GTA ACC ATA CCT GAA TTG GAT GAC AAT AAA GCA GAG Lys Thr Ser Ser Val Thr Ile Pro Glu Leu Asp Asp Asn Lys Ala Glu 1705 1710 1715	5190
GAA GGT GAT ATT CTT GCA GAA TGC ATT AAT TCT GCT ATG CCC AAA GGG Glu Gly Asp Ile Leu Ala Glu Cys Ile Asn Ser Ala Met Pro Lys Gly 1720 1725 1730 1735	5238
AAA AGT CAC AAG CCT TTC CGT GTG AAA AAG ATA ATG GAC CAG GTC CAG Lys Ser His Lys Pro Phe Arg Val Lys Lys Ile Met Asp Gln Val Gln 1740 1745 1750	5286
CAA GCA TCT GCG TCG TCT TCT GCA CCC AAC AAA AAT CAG TTA GAT GGT Gln Ala Ser Ala Ser Ser Ala Pro Asn Lys Asn Gln Leu Asp Gly 1755 1760 1765	5334
AAG AAA AAG AAA CCA ACT TCA CCA GTA AAA CCT ATA CCA CAA AAT ACT Lys Lys Lys Pro Thr Ser Pro Val Lys Pro Ile Pro Gln Asn Thr 1770 1775 1780	5382
GAA TAT AGG ACA CGT GTA AGA AAA AAT GCA GAC TCA AAA AAT AAT TTA Glu Tyr Arg Thr Arg Val Arg Lys Asn Ala Asp Ser Lys Asn Asn Leu 1785 1790 1795	5430
AAT GCT GAG AGA GTT TTC TCA GAC AAC AAA GAT TCA AAG AAA CAG AAT Asn Ala Glu Arg Val Phe Ser Asp Asn Lys Asp Ser Lys Lys Gln Asn 1800 1805 1810 1815	5478
TTG AAA AAT AAT TCC AAG GAC TTC AAT GAT AAG CTC CCA AAT AAT GAA Leu Lys Asn Asn Ser Lys Asp Phe Asn Asp Lys Leu Pro Asn Asn Glu 1820 1825 1830	5526
GAT AGA GTC AGA GGA AGT TTT GCT TTT GAT TCA CCT CAT CAT TAC ACG Asp Arg Val Arg Gly Ser Phe Ala Phe Asp Ser Pro His His Tyr Thr 1835 1840 1845	5574
CCT ATT GAA GGA ACT CCT TAC TGT TTT TCA CGA AAT GAT TCT TTG AGT Pro Ile Glu Gly Thr Pro Tyr Cys Phe Ser Arg Asn Asp Ser Leu Ser 1850 1855 1860	5622
TCT CTA GAT TTT GAT GAT GAT GTT GAC CTT TCC AGG GAA AAG GCT Ser Leu Asp Phe Asp Asp Asp Val Asp Leu Ser Arg Glu Lys Ala 1865 1870 1875	5670

GAA TTA AGA AAG GCA AAA GAA AAT AAG GAA TCA GAG GCT AAA GTT ACC Glu Leu Arg Lys Ala Lys Glu Asn Lys Glu Ser Glu Ala Lys Val Thr 1880 1885 1890 1895	5718
AGC CAC ACA GAA CTA ACC TCC AAC CAA CAA TCA GCT AAT AAG ACA CAA Ser His Thr Glu Leu Thr Ser Asn Gln Gln Ser Ala Asn Lys Thr Gln 1900 1905 1910	5766
GCT ATT GCA AAG CAG CCA ATA AAT CGA GGT CAG CCT AAA CCC ATA CTT Ala Ile Ala Lys Gln Pro Ile Asn Arg Gly Gln Pro Lys Pro Ile Leu 1915 1920 1925	5814
CAG AAA CAA TCC ACT TTT CCC CAG TCA TCC AAA GAC ATA CCA GAC AGA Gln Lys Gln Ser Thr Phe Pro Gln Ser Ser Lys Asp Ile Pro Asp Arg 1930 1935 1940	5862
GGG GCA GCA ACT GAT GAA AAG TTA CAG AAT TTT GCT ATT GAA AAT ACT Gly Ala Ala Thr Asp Glu Lys Leu Gln Asn Phe Ala Ile Glu Asn Thr 1945 1950 1955	5910
CCA GTT TGC TTT TCT CAT AAT TCC TCT CTG AGT TCT CTC AGT GAC ATT Pro Val Cys Phe Ser His Asn Ser Ser Leu Ser Ser Leu Ser Asp Ile 1960 1965 1970 1975	5958
GAC CAA GAA AAC AAC AAT AAA GAA AAT GAA CCT ATC AAA GAG ACT GAG Asp Gln Glu Asn Asn Lys Glu Asn Glu Pro Ile Lys Glu Thr Glu 1980 1985 1990	6006
CCC CCT GAC TCA CAG GGA GAA CCA AGT AAA CCT CAA GCA TCA GGC TAT Pro Pro Asp Ser Gln Gly Glu Pro Ser Lys Pro Gln Ala Ser Gly Tyr 1995 2000 2005	6054
GCT CCT AAA TCA TTT CAT GTT GAA GAT ACC CCA GTT TGT TTC TCA AGA Ala Pro Lys Ser Phe His Val Glu Asp Thr Pro Val Cys Phe Ser Arg 2010 2015 2020	6102
AAC AGT TCT CTC AGT TCT CTT AGT ATT GAC TCT GAA GAT GAC CTG TTG Asn Ser Ser Leu Ser Ser Leu Ser Ile Asp Ser Glu Asp Asp Leu Leu 2025 2030 2035	6150
CAG GAA TGT ATA AGC TCC GCA ATG CCA AAA AAG AAA AAG CCT TCA AGA Gln Glu Cys Ile Ser Ser Ala Met Pro Lys Lys Lys Pro Ser Arg 2040 2045 2050 2055	6198
CTC AAG GGT GAT AAT GAA AAA CAT AGT CCC AGA AAT ATG GGT GGC ATA Leu Lys Gly Asp Asn Glu Lys His Ser Pro Arg Asn Met Gly Gly Ile 2060 2065 2070	6246
TTA GGT GAA GAT CTG ACA CTT GAT TTG AAA GAT ATA CAG AGA CCA GAT Leu Gly Glu Asp Leu Thr Leu Asp Leu Lys Asp Ile Gln Arg Pro Asp 2075 2080 2085	6294
TCA GAA CAT GGT CTA TCC CCT GAT TCA GAA AAT TTT GAT TGG AAA GCT Ser Glu His Gly Leu Ser Pro Asp Ser Glu Asn Phe Asp Trp Lys Ala 2090 2095 2100	6342

ATT CAG GAA GGT GCA AAT TCC ATA GTA AGT AGT TTA CAT CAA GCT GCT Ile Gln Glu Gly Ala Asn Ser Ile Val Ser Ser Leu His Gln Ala Ala 2105 2110 2115	6390
GCT GCT GCA TGT TTA TCT AGA CAA GCT TCG TCT GAT TCA GAT TCC ATC Ala Ala Ala Cys Leu Ser Arg Gln Ala Ser Ser Asp Ser Asp Ser Ile 2120 2125 2130 2135	6438
CTT TCC CTG AAA TCA GGA ATC TCT CTG GGA TCA CCA TTT CAT CTT ACA Leu Ser Leu Lys Ser Gly Ile Ser Leu Gly Ser Pro Phe His Leu Thr 2140 2145 2150	6486
CCT GAT CAA GAA GAA AAA CCC TTT ACA AGT AAT AAA GGC CCA CGA ATT Pro Asp Gln Glu Glu Lys Pro Phe Thr Ser Asn Lys Gly Pro Arg Ile 2155 2160 2165	6534
CTA AAA CCA GGG GAG AAA AGT ACA TTG GAA ACT AAA AAG ATA GAA TCT Leu Lys Pro Gly Glu Lys Ser Thr Leu Glu Thr Lys Lys Ile Glu Ser 2170 2175 2180	6582
GAA AGT AAA GGA ATC AAA GGA GGA AAA AAA GTT TAT AAA AGT TTG ATT Glu Ser Lys Gly Ile Lys Gly Lys Lys Val Tyr Lys Ser Leu Ile 2185 2190 2195	6630
ACT GGA AAA GTT CGA TCT AAT TCA GAA ATT TCA GGC CAA ATG AAA CAG Thr Gly Lys Val Arg Ser Asn Ser Glu Ile Ser Gly Gln Met Lys Gln 2200 2205 2210 2215	6678
CCC CTT CAA GCA AAC ATG CCT TCA ATC TCT CGA GGC AGG ACA ATG ATT Pro Leu Gln Ala Asn Met Pro Ser Ile Ser Arg Gly Arg Thr Met Ile 2220 2225 2230	6726
CAT ATT CCA GGA GTT CGA AAT AGC TCC TCA AGT ACA AGT CCT GTT TCT His Ile Pro Gly Val Arg Asn Ser Ser Ser Thr Ser Pro Val Ser 2235 2240 2245	6774
AAA AAA GGC CCA CCC CTT AAG ACT CCA GCC TCC AAA AGC CCT AGT GAA Lys Lys Gly Pro Pro Leu Lys Thr Pro Ala Ser Lys Ser Pro Ser Glu 2250 2255 2260	6822
GGT CAA ACA GCC ACC ACT TCT CCT AGA GGA GCC AAG CCA TCT GTG AAA Gly Gln Thr Ala Thr Ser Pro Arg Gly Ala Lys Pro Ser Val Lys 2265 2270 2275	6870
TCA GAA TTA AGC CCT GTT GCC AGG CAG ACA TCC CAA ATA GGT GGG TCA Ser Glu Leu Ser Pro Val Ala Arg Gln Thr Ser Gln Ile Gly Gly Ser 2280 2285 2290 2295	6918
AGT AAA GCA CCT TCT AGA TCA GGA TCT AGA GAT TCG ACC CCT TCA AGA Ser Lys Ala Pro Ser Arg Ser Gly Ser Arg Asp Ser Thr Pro Ser Arg 2300 2305 2310	6966
CCT GCC CAG CAA CCA TTA AGT AGA CCT ATA CAG TCT CCT GGC CGA AAC Pro Ala Gln Gln Pro Leu Ser Arg Pro Ile Gln Ser Pro Gly Arg Asn 2315 2320 2325	7014

TCA ATT TCC CCT GGT AGA AAT GGA ATA AGT CCT CCT AAC AAA TTA TCT Ser Ile Ser Pro Gly Arg Asn Gly Ile Ser Pro Pro Asn Lys Leu Ser 2330 2335 2340	7062
CAA CTT CCA AGG ACA TCA TCC CCT AGT ACT GCT TCA ACT AAG TCC TCA Gln Leu Pro Arg Thr Ser Ser Pro Ser Thr Ala Ser Thr Lys Ser Ser 2345 2350 2355	7110
GGT TCT GGA AAA ATG TCA TAT ACA TCT CCA GGT AGA CAG ATG AGC CAA Gly Ser Gly Lys Met Ser Tyr Thr Ser Pro Gly Arg Gln Met Ser Gln 2360 2365 2370 2375	7158
CAG AAC CTT ACC AAA CAA ACA GGT TTA TCC AAG AAT GCC AGT AGT ATT Gln Asn Leu Thr Lys Gln Thr Gly Leu Ser Lys Asn Ala Ser Ser Ile 2380 2385 2390	7206
CCA AGA AGT GAG TCT GCC TCC AAA GGA CTA AAT CAG ATG AAT AAT GGT Pro Arg Ser Glu Ser Ala Ser Lys Gly Leu Asn Gln Met Asn Asn Gly 2395 2400 2405	7254
AAT GGA GCC AAT AAA AAG GTA GAA CTT TCT AGA ATG TCT TCA ACT AAA Asn Gly Ala Asn Lys Lys Val Glu Leu Ser Arg Met Ser Ser Thr Lys 2410 2415 2420	7302
TCA AGT GGA AGT GAA TCT GAT AGA TCA GAA AGA CCT GTA TTA GTA CGC Ser Ser Gly Ser Glu Ser Asp Arg Ser Glu Arg Pro Val Leu Val Arg 2425 2430 2435	7350
CAG TCA ACT TTC ATC AAA GAA GCT CCA AGC CCA ACC TTA AGA AGA AAA Gln Ser Thr Phe Ile Lys Glu Ala Pro Ser Pro Thr Leu Arg Arg Lys 2440 2445 2450 2455	7398
TTG GAG GAA TCT GCT TCA TTT GAA TCT CTT TCT CCA TCA TCT AGA CCA Leu Glu Glu Ser Ala Ser Phe Glu Ser Leu Ser Pro Ser Ser Arg Pro 2460 2465 2470	7446
GCT TCT CCC ACT AGG TCC CAG GCA CAA ACT CCA GTT TTA AGT CCT TCC Ala Ser Pro Thr Arg Ser Gln Ala Gln Thr Pro Val Leu Ser Pro Ser 2475 2480 2485	7494
CTT CCT GAT ATG TCT CTA TCC ACA CAT TCG TCT GTT CAG GCT GGT GGA Leu Pro Asp Met Ser Leu Ser Thr His Ser Ser Val Gln Ala Gly Gly 2490 2495 2500	7542
TGG CGA AAA CTC CCA CCT AAT CTC AGT CCC ACT ATA GAG TAT AAT GAT Trp Arg Lys Leu Pro Pro Asn Leu Ser Pro Thr Ile Glu Tyr Asn Asp 2505 2510 2515	7590
GGA AGA CCA GCA AAG CGC CAT GAT ATT GCA CGG TCT CAT TCT GAA AGT Gly Arg Pro Ala Lys Arg His Asp Ile Ala Arg Ser His Ser Glu Ser 2520 2525 2530 2535	7638
CCT TCT AGA CTT CCA ATC AAT AGG TCA GGA ACC TGG AAA CGT GAG CAC Pro Ser Arg Leu Pro Ile Asn Arg Ser Gly Thr Trp Lys Arg Glu His 2540 2545 2550	7686

650 649 648 647 646 645 644 643 642 641 640

AGC AAA CAT TCA TCA TCC CTT CCT CGA GTA AGC ACT TGG AGA AGA ACT Ser Lys His Ser Ser Ser Leu Pro Arg Val Ser Thr Trp Arg Arg Thr 2555 2560 2565	7734
GGA AGT TCA TCT TCA ATT CTT TCT GCT TCA TCA GAA TCC AGT GAA AAA Gly Ser Ser Ser Ser Ile Leu Ser Ala Ser Ser Glu Ser Ser Glu Lys 2570 2575 2580	7782
GCA AAA AGT GAG GAT GAA AAA CAT GTG AAC TCT ATT TCA GGA ACC AAA Ala Lys Ser Glu Asp Glu Lys His Val Asn Ser Ile Ser Gly Thr Lys 2585 2590 2595	7830
CAA AGT AAA GAA AAC CAA GTA TCC GCA AAA GGA ACA TGG AGA AAA ATA Gln Ser Lys Glu Asn Gln Val Ser Ala Lys Gly Thr Trp Arg Lys Ile 2600 2605 2610 2615	7878
AAA GAA AAT GAA TTT TCT CCC ACA AAT AGT ACT TCT CAG ACC GTT TCC Lys Glu Asn Glu Phe Ser Pro Thr Asn Ser Thr Ser Gln Thr Val Ser 2620 2625 2630	7926
TCA GGT GCT ACA AAT GGT GCT GAA TCA AAG ACT CTA ATT TAT CAA ATG Ser Gly Ala Thr Asn Gly Ala Glu Ser Lys Thr Leu Ile Tyr Gln Met 2635 2640 2645	7974
GCA CCT GCT GTT TCT AAA ACA GAG GAT GTT TGG GTG AGA ATT GAG GAC Ala Pro Ala Val Ser Lys Thr Glu Asp Val Trp Val Arg Ile Glu Asp 2650 2655 2660	8022
TGT CCC ATT AAC AAT CCT AGA TCT GGA AGA TCT CCC ACA GGT AAT ACT Cys Pro Ile Asn Asn Pro Arg Ser Gly Arg Ser Pro Thr Gly Asn Thr 2665 2670 2675	8070
CCC CCG GTG ATT GAC AGT GTT TCA GAA AAG GCA AAT CCA AAC ATT AAA Pro Pro Val Ile Asp Ser Val Ser Glu Lys Ala Asn Pro Asn Ile Lys 2680 2685 2690 2695	8118
GAT TCA AAA GAT AAT CAG GCA AAA CAA AAT GTG GGT AAT GGC AGT GTT Asp Ser Lys Asp Asn Gln Ala Lys Gln Asn Val Gly Asn Gly Ser Val 2700 2705 2710	8166
CCC ATG CGT ACC GTG GGT TTG GAA AAT CGC CTG ACC TCC TTT ATT CAG Pro Met Arg Thr Val Gly Leu Glu Asn Arg Leu Thr Ser Phe Ile Gln 2715 2720 2725	8214
GTG GAT GCC CCT GAC CAA AAA GGA ACT GAG ATA AAA CCA GGA CAA AAT Val Asp Ala Pro Asp Gln Lys Gly Thr Glu Ile Lys Pro Gly Gln Asn 2730 2735 2740	8262
AAT CCT GTC CCT GTA TCA GAG ACT AAT GAA AGT CCT ATA GTG GAA CGT Asn Pro Val Pro Val Ser Glu Thr Asn Glu Ser Pro Ile Val Glu Arg 2745 2750 2755	8310
ACC CCA TTC AGT TCT AGC AGC TCA AGC AAA CAC AGT TCA CCT AGT GGG Thr Pro Phe Ser Ser Ser Ser Ser Lys His Ser Ser Pro Ser Gly 2760 2765 2770 2775	8358

ACT GTT GCT GCC AGA GTG ACT CCT TTT AAT TAC AAC CCA AGC CCT AGG Thr Val Ala Ala Arg Val Thr Pro Phe Asn Tyr Asn Pro Ser Pro Arg 2780 2785 2790	8406
AAA AGC AGC GCA GAT AGC ACT TCA GCT CGG CCA TCT CAG ATC CCA ACT Lys Ser Ser Ala Asp Ser Thr Ser Ala Arg Pro Ser Gln Ile Pro Thr 2795 2800 2805	8454
CCA GTG AAT AAC AAC ACA AAG AAG CGA GAT TCC AAA ACT GAC AGC ACA Pro Val Asn Asn Asn Thr Lys Lys Arg Asp Ser Lys Thr Asp Ser Thr 2810 2815 2820	8502
GAA TCC AGT GGA ACC CAA AGT CCT AAG CGC CAT TCT GGG TCT TAC CTT Glu Ser Ser Gly Thr Gln Ser Pro Lys Arg His Ser Gly Ser Tyr Leu 2825 2830 2835	8550
GTG ACA TCT GTT TAAAAGAGAG GAAGAATGAA ACTAAGAAAA TTCTATGTTA Val Thr Ser Val 2840	8602
ATTACAACTG CTATATAGAC ATTTTGTTC AAATGAAACT TTAAAAGACT GAAAAATT GTAAATAGGT TTGATTCTG TTAGAGGGTT TTTGTTCTGG AAGCCATATT TGATAGTATA	8662 8722
CTTTGTCTTC ACTGGTCTTA TTTTGGGAGG CACTCTTGAT GGTTAGGAAA AAATAGAAAG	8782
CCAAGTATGT TTGTACAGTA TGTTTACAT GTATTTAAAG TAGCATCCCA TCCCAACTTC	8842
CTTAATTATT GCTTGTCTAA AATAATGAAC ACTACAGATA GGAAATATGA TATATTGCTG	8902
TTATCAATCA TTTCTAGATT ATAAACTGAC TAAACTTACA TCAGGGGAAA ATTGGTATTT	8962
ATGCAAAAAA AAAATGTTTT TGTCCTTGTG AGTCCATCTA ACATCATAAT TAATCATGTG	9022
GCTGTGAAAT TCACAGTAAT ATGGTTCCCG ATGAACAAAGT TTACCCAGCC TGCTTGCTT	9082
ACTGCATGAA TGAAACTGAT GGTTCAATT CAGAAGTAAT GATTAACAGT TATGTGGTCA	9142
CATGATGTGC ATAGAGATAG CTACAGTGTA ATAATTACA CTATTTGTG CTCCAAACAA	9202
AACAAAAATC TGTGTAAC TG TAAACATTG AATGAAACTA TTTTACCTGA ACTAGATT	9262
ATCTGAAAGT AGGTAGAATT TTTGCTATGC TGTAATTGT TGTATATTCT GGTATTGAG	9322
GTGAGATGGC TGCTCTTAT TAATGAGACA TGAATTGTGT CTCAACAGAA ACTAAATGAA	9382
CATTTCAGAA TAAATTATTG CTGTATGTAA ACTGTTACTG AAATTGGTAT TTGTTGAAG	9442
GGTTTGTTC ACATTGTAT TAATTAATTG TTTAAAATGC CTCTTTAAA AGCTTATATA	9502
AATTTTTCT TCAGCTTCTA TGCATTAAGA GTAAAATTCC TCTTACTGTA ATAAAAACAT	9562
TGAAGAAGAC TGTTGCCACT TAACCATTCC ATGCGTTGGC ACTT	9606

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2843 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu
1 5 10 15

Lys Met Glu Asn Ser Asn Leu Arg Gln Glu Leu Glu Asp Asn Ser Asn
20 25 30

His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu
35 40 45

Lys Gln Leu Gln Gly Ser Ile Glu Asp Glu Ala Met Ala Ser Ser Gly
50 55 60

Gln Ile Asp Leu Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser
65 70 75 80

Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr
85 90 95

Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro
100 105 110

Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg
115 120 125

Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu
130 135 140

Leu Ala Asp Leu Asp Lys Glu Glu Lys Glu Lys Asp Trp Tyr Tyr Ala
145 150 155 160

Gln Leu Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Pro Leu Thr Glu
165 170 175

Asn Phe Ser Leu Gln Thr Asp Leu Thr Arg Arg Gln Leu Glu Tyr Glu
180 185 190

Ala Arg Gln Ile Arg Val Ala Met Glu Glu Gln Leu Gly Thr Cys Gln
195 200 205

Asp Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile
210 215 220

Glu Lys Asp Ile Leu Arg Ile Arg Gln Leu Leu Gln Ser Gln Ala Thr
225 230 235 240

Glu Ala Glu Arg Ser Ser Gln Asn Lys His Glu Thr Gly Ser His Asp
 245 250 255
 Ala Glu Arg Gln Asn Glu Gly Gln Gly Val Gly Glu Ile Asn Met Ala
 260 265 270
 Thr Ser Gly Asn Gly Gln Gly Ser Thr Thr Arg Met Asp His Glu Thr
 275 280 285
 Ala Ser Val Leu Ser Ser Ser Thr His Ser Ala Pro Arg Arg Leu
 290 295 300
 Thr Ser His Leu Gly Thr Lys Val Glu Met Val Tyr Ser Leu Leu Ser
 305 310 315 320
 Met Leu Gly Thr His Asp Lys Asp Asp Met Ser Arg Thr Leu Leu Ala
 325 330 335
 Met Ser Ser Ser Gln Asp Ser Cys Ile Ser Met Arg Gln Ser Gly Cys
 340 345 350
 Leu Pro Leu Leu Ile Gln Leu Leu His Gly Asn Asp Lys Asp Ser Val
 355 360 365
 Leu Leu Gly Asn Ser Arg Gly Ser Lys Glu Ala Arg Ala Arg Ala Ser
 370 375 380
 Ala Ala Leu His Asn Ile Ile His Ser Gln Pro Asp Asp Lys Arg Gly
 385 390 395 400
 Arg Arg Glu Ile Arg Val Leu His Leu Leu Glu Gln Ile Arg Ala Tyr
 405 410 415
 Cys Glu Thr Cys Trp Glu Trp Gln Glu Ala His Glu Pro Gly Met Asp
 420 425 430
 Gln Asp Lys Asn Pro Met Pro Ala Pro Val Glu His Gln Ile Cys Pro
 435 440 445
 Ala Val Cys Val Leu Met Lys Leu Ser Phe Asp Glu Glu His Arg His
 450 455 460
 Ala Met Asn Glu Leu Gly Gly Leu Gln Ala Ile Ala Glu Leu Leu Gln
 465 470 475 480
 Val Asp Cys Glu Met Tyr Gly Leu Thr Asn Asp His Tyr Ser Ile Thr
 485 490 495
 Leu Arg Arg Tyr Ala Gly Met Ala Leu Thr Asn Leu Thr Phe Gly Asp
 500 505 510
 Val Ala Asn Lys Ala Thr Leu Cys Ser Met Lys Gly Cys Met Arg Ala
 515 520 525
 Leu Val Ala Gln Leu Lys Ser Glu Ser Glu Asp Leu Gln Gln Val Ile

530	535	540
Ala Ser Val Leu Arg Asn Leu Ser Trp Arg Ala Asp Val Asn Ser Lys		
545	550	555
Lys Thr Leu Arg Glu Val Gly Ser Val Lys Ala Leu Met Glu Cys Ala		
565	570	575
Leu Glu Val Lys Lys Glu Ser Thr Leu Lys Ser Val Leu Ser Ala Leu		
580	585	590
Trp Asn Leu Ser Ala His Cys Thr Glu Asn Lys Ala Asp Ile Cys Ala		
595	600	605
Val Asp Gly Ala Leu Ala Phe Leu Val Gly Thr Leu Thr Tyr Arg Ser		
610	615	620
Gln Thr Asn Thr Leu Ala Ile Ile Glu Ser Gly Gly Gly Ile Leu Arg		
625	630	635
Asn Val Ser Ser Leu Ile Ala Thr Asn Glu Asp His Arg Gln Ile Leu		
645	650	655
Arg Glu Asn Asn Cys Leu Gln Thr Leu Leu Gln His Leu Lys Ser His		
660	665	670
Ser Leu Thr Ile Val Ser Asn Ala Cys Gly Thr Leu Trp Asn Leu Ser		
675	680	685
Ala Arg Asn Pro Lys Asp Gln Glu Ala Leu Trp Asp Met Gly Ala Val		
690	695	700
Ser Met Leu Lys Asn Leu Ile His Ser Lys His Lys Met Ile Ala Met		
705	710	715
720		
Gly Ser Ala Ala Ala Leu Arg Asn Leu Met Ala Asn Arg Pro Ala Lys		
725	730	735
Tyr Lys Asp Ala Asn Ile Met Ser Pro Gly Ser Ser Leu Pro Ser Leu		
740	745	750
His Val Arg Lys Gln Lys Ala Leu Glu Ala Glu Leu Asp Ala Gln His		
755	760	765
Leu Ser Glu Thr Phe Asp Asn Ile Asp Asn Leu Ser Pro Lys Ala Ser		
770	775	780
His Arg Ser Lys Gln Arg His Lys Gln Ser Leu Tyr Gly Asp Tyr Val		
785	790	795
800		
Phe Asp Thr Asn Arg His Asp Asp Asn Arg Ser Asp Asn Phe Asn Thr		
805	810	815
Gly Asn Met Thr Val Leu Ser Pro Tyr Leu Asn Thr Thr Val Leu Pro		

820	825	830
Ser Ser Ser Ser Arg Gly Ser Leu Asp Ser Ser Arg Ser Glu Lys		
835	840	845
Asp Arg Ser Leu Glu Arg Glu Arg Gly Ile Gly Leu Gly Asn Tyr His		
850	855	860
Pro Ala Thr Glu Asn Pro Gly Thr Ser Ser Lys Arg Gly Leu Gln Ile		
865	870	875
880		
Ser Thr Thr Ala Ala Gln Ile Ala Lys Val Met Glu Glu Val Ser Ala		
885	890	895
Ile His Thr Ser Gln Glu Asp Arg Ser Ser Gly Ser Thr Thr Glu Leu		
900	905	910
His Cys Val Thr Asp Glu Arg Asn Ala Leu Arg Arg Ser Ser Ala Ala		
915	920	925
His Thr His Ser Asn Thr Tyr Asn Phe Thr Lys Ser Glu Asn Ser Asn		
930	935	940
Arg Thr Cys Ser Met Pro Tyr Ala Lys Leu Glu Tyr Lys Arg Ser Ser		
945	950	955
960		
Asn Asp Ser Leu Asn Ser Val Ser Ser Asn Asp Gly Tyr Gly Lys Arg		
965	970	975
Gly Gln Met Lys Pro Ser Ile Glu Ser Tyr Ser Glu Asp Asp Glu Ser		
980	985	990
Lys Phe Cys Ser Tyr Gly Gln Tyr Pro Ala Asp Leu Ala His Lys Ile		
995	1000	1005
His Ser Ala Asn His Met Asp Asp Asn Asp Gly Glu Leu Asp Thr Pro		
1010	1015	1020
Ile Asn Tyr Ser Leu Lys Tyr Ser Asp Glu Gln Leu Asn Ser Gly Arg		
1025	1030	1035
1040		
Gln Ser Pro Ser Gln Asn Glu Arg Trp Ala Arg Pro Lys His Ile Ile		
1045	1050	1055
Glu Asp Glu Ile Lys Gln Ser Glu Gln Arg Gln Ser Arg Asn Gln Ser		
1060	1065	1070
Thr Thr Tyr Pro Val Tyr Thr Glu Ser Thr Asp Asp Lys His Leu Lys		
1075	1080	1085
Phe Gln Pro His Phe Gly Gln Gln Glu Cys Val Ser Pro Tyr Arg Ser		
1090	1095	1100
Arg Gly Ala Asn Gly Ser Glu Thr Asn Arg Val Gly Ser Asn His Gly		

1105	1110	1115	1120
Ile Asn Gln Asn Val Ser Gln Ser Leu Cys Gln Glu Asp Asp Tyr Glu			
1125	1130	1135	
Asp Asp Lys Pro Thr Asn Tyr Ser Glu Arg Tyr Ser Glu Glu Gln			
1140	1145	1150	
His Glu Glu Glu Arg Pro Thr Asn Tyr Ser Ile Lys Tyr Asn Glu			
1155	1160	1165	
Glu Lys Arg His Val Asp Gln Pro Ile Asp Tyr Ser Leu Lys Tyr Ala			
1170	1175	1180	
Thr Asp Ile Pro Ser Ser Gln Lys Gln Ser Phe Ser Phe Ser Lys Ser			
1185	1190	1195	1200
Ser Ser Gly Gln Ser Ser Lys Thr Glu His Met Ser Ser Ser Glu			
1205	1210	1215	
Asn Thr Ser Thr Pro Ser Ser Asn Ala Lys Arg Gln Asn Gln Leu His			
1220	1225	1230	
Pro Ser Ser Ala Gln Ser Arg Ser Gly Gln Pro Gln Lys Ala Ala Thr			
1235	1240	1245	
Cys Lys Val Ser Ser Ile Asn Gln Glu Thr Ile Gln Thr Tyr Cys Val			
1250	1255	1260	
Glu Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Leu Ser Ser Leu			
1265	1270	1275	1280
Ser Ser Ala Glu Asp Glu Ile Gly Cys Asn Gln Thr Thr Gln Glu Ala			
1285	1290	1295	
Asp Ser Ala Asn Thr Leu Gln Ile Ala Glu Ile Lys Gly Lys Ile Gly			
1300	1305	1310	
Thr Arg Ser Ala Glu Asp Pro Val Ser Glu Val Pro Ala Val Ser Gln			
1315	1320	1325	
His Pro Arg Thr Lys Ser Ser Arg Leu Gln Gly Ser Ser Leu Ser Ser			
1330	1335	1340	
Glu Ser Ala Arg His Lys Ala Val Glu Phe Pro Ser Gly Ala Lys Ser			
1345	1350	1355	1360
Pro Ser Lys Ser Gly Ala Gln Thr Pro Lys Ser Pro Pro Glu His Tyr			
1365	1370	1375	
Val Gln Glu Thr Pro Leu Met Phe Ser Arg Cys Thr Ser Val Ser Ser			
1380	1385	1390	
Leu Asp Ser Phe Glu Ser Arg Ser Ile Ala Ser Ser Val Gln Ser Glu			

1395	1400	1405	
Pro Cys Ser Gly Met Val Ser Gly Ile Ile Ser Pro Ser Asp Leu Pro			
1410	1415	1420	
Asp Ser Pro Gly Gln Thr Met Pro Pro Ser Arg Ser Lys Thr Pro Pro			
1425	1430	1435	1440
Pro Pro Pro Gln Thr Ala Gln Thr Lys Arg Glu Val Pro Lys Asn Lys			
1445	1450	1455	
Ala Pro Thr Ala Glu Lys Arg Glu Ser Gly Pro Lys Gln Ala Ala Val			
1460	1465	1470	
Asn Ala Ala Val Gln Arg Val Gln Val Leu Pro Asp Ala Asp Thr Leu			
1475	1480	1485	
Leu His Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser Cys Ser Ser			
1490	1495	1500	
Ser Leu Ser Ala Leu Ser Leu Asp Glu Pro Phe Ile Gln Lys Asp Val			
1505	1510	1515	1520
Glu Leu Arg Ile Met Pro Pro Val Gln Glu Asn Asp Asn Gly Asn Glu			
1525	1530	1535	
Thr Glu Ser Glu Gln Pro Lys Glu Ser Asn Glu Asn Gln Glu Lys Glu			
1540	1545	1550	
Ala Glu Lys Thr Ile Asp Ser Glu Lys Asp Leu Leu Asp Asp Ser Asp			
1555	1560	1565	
Asp Asp Asp Ile Glu Ile Leu Glu Glu Cys Ile Ile Ser Ala Met Pro			
1570	1575	1580	
Thr Lys Ser Ser Arg Lys Gly Lys Lys Pro Ala Gln Thr Ala Ser Lys			
1585	1590	1595	1600
Leu Pro Pro Pro Val Ala Arg Lys Pro Ser Gln Leu Pro Val Tyr Lys			
1605	1610	1615	
Leu Leu Pro Ser Gln Asn Arg Leu Gln Pro Gln Lys His Val Ser Phe			
1620	1625	1630	
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu Gly Thr Pro			
1635	1640	1645	
Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr Ile Glu Ser			
1650	1655	1660	
Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly Gly Ala Gln			
1665	1670	1675	1680
Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu Gly Arg Ser			

1685

1690

1695

Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr Ile Pro Glu
 1700 1705 1710

Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala Glu Cys Ile
 1715 1720 1725

Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe Arg Val Lys
 1730 1735 1740

Lys Ile Met Asp Gln Val Gln Gln Ala Ser Ala Ser Ser Ala Pro
 1745 1750 1755 1760

Asn Lys Asn Gln Leu Asp Gly Lys Lys Lys Pro Thr Ser Pro Val
 1765 1770 1775

Lys Pro Ile Pro Gln Asn Thr Glu Tyr Arg Thr Arg Val Arg Lys Asn
 1780 1785 1790

Ala Asp Ser Lys Asn Asn Leu Asn Ala Glu Arg Val Phe Ser Asp Asn
 1795 1800 1805

Lys Asp Ser Lys Lys Gln Asn Leu Lys Asn Asn Ser Lys Asp Phe Asn
 1810 1815 1820

Asp Lys Leu Pro Asn Asn Glu Asp Arg Val Arg Gly Ser Phe Ala Phe
 1825 1830 1835 1840

Asp Ser Pro His His Tyr Thr Pro Ile Glu Gly Thr Pro Tyr Cys Phe
 1845 1850 1855

Ser Arg Asn Asp Ser Leu Ser Ser Leu Asp Phe Asp Asp Asp Asp Val
 1860 1865 1870

Asp Leu Ser Arg Glu Lys Ala Glu Leu Arg Lys Ala Lys Glu Asn Lys
 1875 1880 1885

Glu Ser Glu Ala Lys Val Thr Ser His Thr Glu Leu Thr Ser Asn Gln
 1890 1895 1900

Gln Ser Ala Asn Lys Thr Gln Ala Ile Ala Lys Gln Pro Ile Asn Arg
 1905 1910 1915 1920

Gly Gln Pro Lys Pro Ile Leu Gln Lys Gln Ser Thr Phe Pro Gln Ser
 1925 1930 1935

Ser Lys Asp Ile Pro Asp Arg Gly Ala Ala Thr Asp Glu Lys Leu Gln
 1940 1945 1950

Asn Phe Ala Ile Glu Asn Thr Pro Val Cys Phe Ser His Asn Ser Ser
 1955 1960 1965

Leu Ser Ser Leu Ser Asp Ile Asp Gln Glu Asn Asn Asn Lys Glu Asn
 1970 1975 1980

Glu Pro Ile Lys Glu Thr Glu Pro Pro Asp Ser Gln Gly Glu Pro Ser
1985 1990 1995 2000

Lys Pro Gln Ala Ser Gly Tyr Ala Pro Lys Ser Phe His Val Glu Asp
2005 2010 2015

Thr Pro Val Cys Phe Ser Arg Asn Ser Ser Leu Ser Ser Leu Ser Ile
2020 2025 2030

Asp Ser Glu Asp Asp Leu Leu Gln Glu Cys Ile Ser Ser Ala Met Pro
2035 2040 2045

Lys Lys Lys Pro Ser Arg Leu Lys Gly Asp Asn Glu Lys His Ser
2050 2055 2060

Pro Arg Asn Met Gly Gly Ile Leu Gly Glu Asp Leu Thr Leu Asp Leu
2065 2070 2075 2080

Lys Asp Ile Gln Arg Pro Asp Ser Glu His Gly Leu Ser Pro Asp Ser
2085 2090 2095

Glu Asn Phe Asp Trp Lys Ala Ile Gln Glu Gly Ala Asn Ser Ile Val
2100 2105 2110

Ser Ser Leu His Gln Ala Ala Ala Ala Ala Cys Leu Ser Arg Gln Ala
2115 2120 2125

Ser Ser Asp Ser Asp Ser Ile Leu Ser Leu Lys Ser Gly Ile Ser Leu
2130 2135 2140

Gly Ser Pro Phe His Leu Thr Pro Asp Gln Glu Glu Lys Pro Phe Thr
2145 2150 2155 2160

Ser Asn Lys Gly Pro Arg Ile Leu Lys Pro Gly Glu Lys Ser Thr Leu
2165 2170 2175

Glu Thr Lys Lys Ile Glu Ser Glu Ser Lys Gly Ile Lys Gly Gly Lys
2180 2185 2190

Lys Val Tyr Lys Ser Leu Ile Thr Gly Lys Val Arg Ser Asn Ser Glu
2195 2200 2205

Ile Ser Gly Gln Met Lys Gln Pro Leu Gln Ala Asn Met Pro Ser Ile
2210 2215 2220

Ser Arg Gly Arg Thr Met Ile His Ile Pro Gly Val Arg Asn Ser Ser
2225 2230 2235 2240

Ser Ser Thr Ser Pro Val Ser Lys Lys Gly Pro Pro Leu Lys Thr Pro
2245 2250 2255

Ala Ser Lys Ser Pro Ser Glu Gly Gln Thr Ala Thr Thr Ser Pro Arg
2260 2265 2270

Gly Ala Lys Pro Ser Val Lys Ser Glu Leu Ser Pro Val Ala Arg Gln
2275 2280 2285

Thr Ser Gln Ile Gly Gly Ser Ser Lys Ala Pro Ser Arg Ser Gly Ser
2290 2295 2300

Arg Asp Ser Thr Pro Ser Arg Pro Ala Gln Gln Pro Leu Ser Arg Pro
2305 2310 2315 2320

Ile Gln Ser Pro Gly Arg Asn Ser Ile Ser Pro Gly Arg Asn Gly Ile
2325 2330 2335

Ser Pro Pro Asn Lys Leu Ser Gln Leu Pro Arg Thr Ser Ser Pro Ser
2340 2345 2350

Thr Ala Ser Thr Lys Ser Ser Gly Ser Gly Lys Met Ser Tyr Thr Ser
2355 2360 2365

Pro Gly Arg Gln Met Ser Gln Gln Asn Leu Thr Lys Gln Thr Gly Leu
2370 2375 2380

Ser Lys Asn Ala Ser Ser Ile Pro Arg Ser Glu Ser Ala Ser Lys Gly
2385 2390 2395 2400

Leu Asn Gln Met Asn Asn Gly Asn Gly Ala Asn Lys Lys Val Glu Leu
2405 2410 2415

Ser Arg Met Ser Ser Thr Lys Ser Ser Gly Ser Glu Ser Asp Arg Ser
2420 2425 2430

Glu Arg Pro Val Leu Val Arg Gln Ser Thr Phe Ile Lys Glu Ala Pro
2435 2440 2445

Ser Pro Thr Leu Arg Arg Lys Leu Glu Glu Ser Ala Ser Phe Glu Ser
2450 2455 2460

Leu Ser Pro Ser Ser Arg Pro Ala Ser Pro Thr Arg Ser Gln Ala Gln
2465 2470 2475 2480

Thr Pro Val Leu Ser Pro Ser Leu Pro Asp Met Ser Leu Ser Thr His
2485 2490 2495

Ser Ser Val Gln Ala Gly Gly Trp Arg Lys Leu Pro Pro Asn Leu Ser
2500 2505 2510

Pro Thr Ile Glu Tyr Asn Asp Gly Arg Pro Ala Lys Arg His Asp Ile
2515 2520 2525

Ala Arg Ser His Ser Glu Ser Pro Ser Arg Leu Pro Ile Asn Arg Ser
2530 2535 2540

Gly Thr Trp Lys Arg Glu His Ser Lys His Ser Ser Ser Leu Pro Arg
2545 2550 2555 2560

Val Ser Thr Trp Arg Arg Thr Gly Ser Ser Ser Ser Ile Leu Ser Ala
2565 2570 2575

Ser Ser Glu Ser Ser Glu Lys Ala Lys Ser Glu Asp Glu Lys His Val
2580 2585 2590

Asn Ser Ile Ser Gly Thr Lys Gln Ser Lys Glu Asn Gln Val Ser Ala
2595 2600 2605

Lys Gly Thr Trp Arg Lys Ile Lys Glu Asn Glu Phe Ser Pro Thr Asn
2610 2615 2620

Ser Thr Ser Gln Thr Val Ser Ser Gly Ala Thr Asn Gly Ala Glu Ser
2625 2630 2635 2640

Lys Thr Leu Ile Tyr Gln Met Ala Pro Ala Val Ser Lys Thr Glu Asp
2645 2650 2655

Val Trp Val Arg Ile Glu Asp Cys Pro Ile Asn Asn Pro Arg Ser Gly
2660 2665 2670

Arg Ser Pro Thr Gly Asn Thr Pro Pro Val Ile Asp Ser Val Ser Glu
2675 2680 2685

Lys Ala Asn Pro Asn Ile Lys Asp Ser Lys Asp Asn Gln Ala Lys Gln
2690 2695 2700

Asn Val Gly Asn Gly Ser Val Pro Met Arg Thr Val Gly Leu Glu Asn
2705 2710 2715 2720

Arg Leu Thr Ser Phe Ile Gln Val Asp Ala Pro Asp Gln Lys Gly Thr
2725 2730 2735

Glu Ile Lys Pro Gly Gln Asn Asn Pro Val Pro Val Ser Glu Thr Asn
2740 2745 2750

Glu Ser Pro Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser Ser
2755 2760 2765

Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe
2770 2775 2780

Asn Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala
2785 2790 2795 2800

Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg
2805 2810 2815

Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys
2820 2825 2830

Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val
2835 2840

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3172 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(vii) IMMEDIATE SOURCE:

- (B) CLONE: DP1(TB2)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..630

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC	48
Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly	
1 5 10 15	
GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG	96
Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg	
20 25 30	
TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG	144
Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu	
35 40 45	
GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA	192
Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly	
50 55 60	
CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC	240
Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	
65 70 75 80	
AAC CTG ATA GGA TTT GGC TAC CCA GCC TAC ATC TCA ATT AAA GCT ATA	288
Asn Leu Ile Gly Phe Gly Tyr Pro Ala Tyr Ile Ser Ile Lys Ala Ile	
85 90 95	
GAG AGT CCC AAC AAA GAA GAT GAT ACC CAG TGG CTG ACC TAC TGG GTA	336
Glu Ser Pro Asn Lys Glu Asp Asp Thr Gln Trp Leu Thr Tyr Trp Val	
100 105 110	
GTG TAT GGT GTG TTC AGC ATT GCT GAA TTC TTC TCT GAT ATC TTC CTG	384
Val Tyr Gly Val Phe Ser Ile Ala Glu Phe Phe Ser Asp Ile Phe Leu	
115 120 125	
TCA TGG TTC CCC TTC TAC TAC ATG CTG AAG TGT GGC TTC CTG TTG TGG	432

Ser	Trp	Phe	Pro	Phe	Tyr	Tyr	Met	Leu	Lys	Cys	Gly	Phe	Leu	Leu	Trp	
130																
TGC	ATG	GCC	CCG	AGC	CCT	TCT	AAT	GGG	GCT	GAA	CTG	CTC	TAC	AAG	CGC	480
Cys	Met	Ala	Pro	Ser	Pro	Ser	Asn	Gly	Ala	Glu	Leu	Leu	Tyr	Lys	Arg	
145																
ATC	ATC	CGT	CCT	TTC	TTC	CTG	AAG	CAC	GAG	TCC	CAG	ATG	GAC	AGT	GTG	528
Ile	Ile	Arg	Pro	Phe	Phe	Leu	Lys	His	Glu	Ser	Gln	Met	Asp	Ser	Val	
165																
GTC	AAG	GAC	CTT	AAA	GAC	AAG	TCC	AAA	GAG	ACT	GCA	GAT	GCC	ATC	ACT	576
Val	Lys	Asp	Leu	Lys	Asp	Lys	Ser	Lys	Glu	Thr	Ala	Asp	Ala	Ile	Thr	
180																
AAA	GAA	GCG	AAG	AAA	GCT	ACC	GTG	AAT	TTA	CTG	GGT	GAA	GAA	AAG	AAG	624
Lys	Glu	Ala	Lys	Lys	Ala	Thr	Val	Asn	Leu	Leu	Gly	Glu	Glu	Lys	Lys	
195																
AGC	ACC	TAAACCAGAC	TAAACCAGAC	TGGATGGAAA	CTTCCTGCC	TCTCTGTACC										680
Ser	Thr															
210																
TTCCTACTGG	AGCTTGATGT	TATATTAGGG	ACTGTGGTAT	AATTATTTA	ATAATGTTGC											740
CTTGGAAACA	TTTTTGAGAT	ATTAAGATT	GGAATGTGTT	GTAAGTTCT	TTGCTTACTT											800
TTACTGTCTA	TATATATAGG	GAGCACTTTA	AACTTAATGC	AGTGGGCAGT	GTCCACGTT											860
TTGGAAAATG	TATTTGCCT	CTGGGTAGGA	AAAGATGTAT	GTTGCTATCC	TGCAGGAAAT											920
ATAAAACCTAA	AATAAAATTA	TATACCCAC	AGGCTGTGTA	CTTTACTGGG	CTCTCCCTGC											980
ACGSATTTTC	TCTGTAGTTA	CATTTAGGRT	AATCTTATG	GTTCTACTTC	CTRATAATGTA											1040
CAATTTATA	TAATTNCNGRA	ATGTTTTAA	TGTATTGTG	CACATGTACA	TATGGAAATG											1100
TTACTGTCTG	ACTACANCAT	GCATCATGCT	CATGGGGAGG	GAGCAGGGGA	AGGTTGTATG											1160
TGTCATTTAT	AACTTCTGTA	CAGTAAGACC	ACCTGCCAAA	AGCTGGAGGA	ACCATTGTGC											1220
TGGTGTGGTC	TACTAAATAA	TACTTTAGGA	AATACGTGAT	TAATATGCAA	GTGAACAAAG											1280
TGAGAAATGA	AATCGAATGG	AGATTGGCCT	GGTTGTTCC	GTAGTATATG	GCATATGAAT											1340
ACCAGGATAG	CTTTATAAAG	CAGTTAGTTA	GTTAGTTACT	CACTCTAGTG	ATAAATCGGG											1400
AAATTTACAC	ACACACACAC	ACACACACAC	ACACACACAC	ACACACACAC	ACACACACAG											1460
AGTACCCCTGT	AACTCTCAAT	TCCCTGAAAA	ACTAGTAATA	CTGTCTTATC	TGCTATAAAC											1520
TTTACATATT	TGTCTATTGT	CAAGATGCTA	CANTGGAMNC	CATTCTGGT	TTTATCTTCA											1580
NAGSGGAGAN	ACATGTTGAT	TTAGTCTTCT	TTCCCAATCT	TCTTTTTAA	MCCAGTTNA											1640

GGMNCTCTG RAGATTGTC CACCTCTGAT TACATGTATG TTCTYGTGG TATCATKAGC	1700
AACAAACATGC TAATGRCGAC ACCTAGCTCT RAGMGCAATT CTGGGAGANT GARAGGNWGT	1760
ATARAGTMNC CCATAATCTG CTTGGCAATA GTTAAGTCAA TCTATCTTCA GTTTTCTCT	1820
GGCCTTTAAG GTCAAACACA AGAGGCTTCC CTAGTTACA AGTCAGAGTC ACTTGTAGTC	1880
CATTTAAATG CCCTCATCCG TATTCTTGT GTTGATAAGC TGCACAKGAC TACATAGTAA	1940
GTACAGANCA GTAAAGTTAA NNCGGATGTC TCCATTGATC TGCCAANTCG NTATAGAGAG	2000
CAATTTGTCT GGACTAGAAA ATCTGAGTTT TACACCATACT GTTTAAGAGT CCTTTGAAT	2060
TAAACTAGAC TAAAACAAGT GTATAACTAA ACTAACAAAGA TTAAATATCC AGCCAGTACA	2120
GTATTTTTA AGGCAAATAA AGATGATTAG CTCACCTTGA GNTAACAAATC AGGTAAGATC	2180
ATNACAATGT CTCATGATGT NAANAATATT AAAGATATCA ATACTAAGTG ACAGTATCAC	2240
NNCTAATATA ATATGGATCA GAGCATTAT TTTGGGGAGG AAAACAGTGG TGATTACCGG	2300
CATTTTATTA AACTAAAAC TTTGTAGAAA GCAAACAAAA TTGTTCTTGG GAGAAAATCA	2360
ACTTTTAGAT TAAAAAAATT TTAAGTAWCT AGGAGTATTT AAATCCTTTT CCCATAAATA	2420
AAAGTACAGT TTTCTGGTG GCAGAATGAA AATCAGCAAC NTCTAGCATA TAGACTATAT	2480
AATCAGATTG ACAGCATATA GAATATATTA TCAGACAAGA TGAGGAGGTA CAAAAGTTAC	2540
TATTGCTCAT AATGACTTAC AGGCTAAAAN TAGNTNTAAA ATACTATATT AAATTCTGAA	2600
TGCAATTTT TTTTGTCCC TTGAGACCAA AATTAAAGTT AACTGTTGCT GGCAGTCTAA	2660
GTGTAAATGT TAACAGCAGG AGAAGTTAAG AATTGAGCAG TTCTGTTGCA TGATTCCCA	2720
AATGAAATAC TGCCTTGGCT AGAGTTGAA AAACTAATTG AGCCTGTGCC TGGCTAGAAA	2780
ACAAGCGTTT ATTTGAATGT GAATAGTGT TCAAAGGTAT GTAGTTACAG AATTCTTAC	2840
AAACAGCTTA AATTCTCAA GAAAGAATTC CTGCAGCAGT TATTCCCTTA CCTGAAGGCT	2900
TCAATCATTT GGATCAACAA CTGCTACTCT CGGGAAGACT CCTCTACTCA CAGCTGAAGA	2960
AAATGAGCAC ACCCTTCACA CTGTTATCAC CTATCCTGAA GATGTGATAC ACTGAATGGA	3020
AATAAAATAGA TGTAAATAAA ATTGAGWTCT CATTAAAAAA AAACCATGTG CCCAATGGGA	3080
AAATGACCTC ATGTTGTGGT TTAAACAGCA ACTGCACCCA CTAGCACAGC CCATTGAGCT	3140
ANCCTATATA TACATCTCTG TCAGTGCCCC TC	3172

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 210 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly
1 5 10 15

Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg
20 25 30

Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu
35 40 45

Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly
50 55 60

Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys
65 70 75 80

Asn Leu Ile Gly Phe Gly Tyr Pro Ala Tyr Ile Ser Ile Lys Ala Ile
85 90 95

Glu Ser Pro Asn Lys Glu Asp Asp Thr Gln Trp Leu Thr Tyr Trp Val
100 105 110

Val Tyr Gly Val Phe Ser Ile Ala Glu Phe Phe Ser Asp Ile Phe Leu
115 120 125

Ser Trp Phe Pro Phe Tyr Tyr Met Leu Lys Cys Gly Phe Leu Leu Trp
130 135 140

Cys Met Ala Pro Ser Pro Ser Asn Gly Ala Glu Leu Leu Tyr Lys Arg
145 150 155 160

Ile Ile Arg Pro Phe Phe Leu Lys His Glu Ser Gln Met Asp Ser Val
165 170 175

Val Lys Asp Leu Lys Asp Lys Ser Lys Glu Thr Ala Asp Ala Ile Thr
180 185 190

Lys Glu Ala Lys Lys Ala Thr Val Asn Leu Leu Gly Glu Glu Lys Lys
195 200 205

Ser Thr
210

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 434 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(vii) IMMEDIATE SOURCE:

- (B) CLONE: TB1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Val Ala Pro Val Val Val Gly Ser Gly Arg Ala Pro Arg His Pro Ala
1 5 10 15

Pro Ala Ala Met His Pro Arg Arg Pro Asp Gly Phe Asp Gly Leu Gly
20 25 30

Tyr Arg Gly Gly Ala Arg Asp Glu Gln Gly Phe Gly Gly Ala Phe Pro
35 40 45

Ala Arg Ser Phe Ser Thr Gly Ser Asp Leu Gly His Trp Val Thr Thr
50 55 60

Pro Pro Asp Ile Pro Gly Ser Arg Asn Leu His Trp Gly Glu Lys Ser
65 70 75 80

Pro Pro Tyr Gly Val Pro Thr Thr Ser Thr Pro Tyr Glu Gly Pro Thr
85 90 95

Glu Glu Pro Phe Ser Ser Gly Gly Gly Ser Val Gln Gly Gln Ser
100 105 110

Ser Glu Gln Leu Asn Arg Phe Ala Gly Phe Gly Ile Gly Leu Ala Ser
115 120 125

Leu Phe Thr Glu Asn Val Leu Ala His Pro Cys Ile Val Leu Arg Arg
130 135 140

Gln Cys Gln Val Asn Tyr His Ala Gln His Tyr His Leu Thr Pro Phe
145 150 155 160

Thr Val Ile Asn Ile Met Tyr Ser Phe Asn Lys Thr Gln Gly Pro Arg
165 170 175

Ala Leu Trp Lys Gly Met Gly Ser Thr Phe Ile Val Gln Gly Val Thr
180 185 190

Leu Gly Ala Glu Gly Ile Ile Ser Glu Phe Thr Pro Leu Pro Arg Glu
195 200 205

Val Leu His Lys Trp Ser Pro Lys Gln Ile Gly Glu His Leu Leu Leu
 210 215 220
 Lys Ser Leu Thr Tyr Val Val Ala Met Pro Phe Tyr Ser Ala Ser Leu
 225 230 235 240
 Ile Glu Thr Val Gln Ser Glu Ile Ile Arg Asp Asn Thr Gly Ile Leu
 245 250 255
 Glu Cys Val Lys Glu Gly Ile Gly Arg Val Ile Gly Met Gly Val Pro
 260 265 270
 His Ser Lys Arg Leu Leu Pro Leu Leu Ser Leu Ile Phe Pro Thr Val
 275 280 285
 Leu His Gly Val Leu His Tyr Ile Ile Ser Ser Val Ile Gln Lys Phe
 290 295 300
 Val Leu Leu Ile Leu Lys Arg Lys Thr Tyr Asn Ser His Leu Ala Glu
 305 310 315 320
 Ser Thr Ser Pro Val Gln Ser Met Leu Asp Ala Tyr Phe Pro Glu Leu
 325 330 335
 Ile Ala Asn Phe Ala Ala Ser Leu Cys Ser Asp Val Ile Leu Tyr Pro
 340 345 350
 Leu Glu Thr Val Leu His Arg Leu His Ile Gln Gly Thr Arg Thr Ile
 355 360 365
 Ile Asp Asn Thr Asp Leu Gly Tyr Glu Val Leu Pro Ile Asn Thr Gln
 370 375 380
 Tyr Glu Gly Met Arg Asp Cys Ile Asn Thr Ile Arg Gln Glu Glu Gly
 385 390 395 400
 Val Phe Gly Phe Tyr Lys Gly Phe Gly Ala Val Ile Ile Gln Tyr Thr
 405 410 415
 Leu His Ala Ala Val Leu Gln Ile Thr Lys Ile Ile Tyr Ser Thr Leu
 420 425 430
 Leu Gln

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 185 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(vii) IMMEDIATE SOURCE:

(B) CLONE: YS-39(TB2)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Glu Leu Arg Arg Phe Asp Arg Phe Leu His Glu Lys Asn Cys Met Thr
1 5 10 15

Asp Leu Leu Ala Lys Leu Glu Ala Lys Thr Gly Val Asn Arg Ser Phe
20 25 30

Ile Ala Leu Gly Val Ile Gly Leu Val Ala Leu Tyr Leu Val Phe Gly
35 40 45

Tyr Gly Ala Ser Leu Leu Cys Asn Leu Ile Gly Phe Gly Tyr Pro Ala
50 55 60

Tyr Ile Ser Ile Lys Ala Ile Glu Ser Pro Asn Lys Glu Asp Asp Thr
65 70 75 80

Gln Trp Leu Thr Tyr Trp Val Val Tyr Gly Val Phe Ser Ile Ala Glu
85 90 95

Phe Phe Ser Asp Ile Phe Leu Ser Trp Phe Pro Phe Tyr Tyr Ile Leu
100 105 110

Lys Cys Gly Phe Leu Leu Trp Cys Met Ala Pro Ser Pro Ser Asn Gly
115 120 125

Ala Glu Leu Leu Tyr Lys Arg Ile Ile Arg Pro Phe Phe Leu Lys His
130 135 140

Glu Ser Gln Met Asp Ser Val Val Lys Asp Leu Lys Asp Lys Ala Lys
145 150 155 160

Glu Thr Ala Asp Ala Ile Thr Lys Glu Ala Lys Lys Ala Thr Val Asn
165 170 175

Leu Leu Gly Glu Glu Lys Lys Ser Thr
180 185

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2843 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(vii) IMMEDIATE SOURCE:

(B) CLONE: APC

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Ala Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu
1 5 10 15

Lys Met Glu Asn Ser Asn Leu Arg Gln Glu Leu Glu Asp Asn Ser Asn
20 25 30

His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu
35 40 45

Lys Gln Leu Gln Gly Ser Ile Glu Asp Glu Ala Met Ala Ser Ser Gly
50 55 60

Gln Ile Asp Leu Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser
65 70 75 80

Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr
85 90 95

Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro
100 105 110

Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg
115 120 125

Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu
130 135 140

Leu Ala Asp Leu Asp Lys Glu Glu Lys Asp Trp Tyr Tyr Ala
145 150 155 160

Gln Leu Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Pro Leu Thr Glu
165 170 175

Asn Phe Ser Leu Gln Thr Asp Met Thr Arg Arg Gln Leu Glu Tyr Glu
180 185 190

Ala Arg Gln Ile Arg Val Ala Met Glu Glu Gln Leu Gly Thr Cys Gln
195 200 205

Asp Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile
210 215 220

Glu Lys Asp Ile Leu Arg Ile Arg Gln Leu Leu Gln Ser Gln Ala Thr
225 230 235 240

Glu Ala Glu Arg Ser Ser Gln Asn Lys His Glu Thr Gly Ser His Asp
 245 250 255
 Ala Glu Arg Gln Asn Glu Gly Gln Gly Val Gly Glu Ile Asn Met Ala
 260 265 270
 Thr Ser Gly Asn Gly Gln Gly Ser Thr Thr Arg Met Asp His Glu Thr
 275 280 285
 Ala Ser Val Leu Ser Ser Ser Thr His Ser Ala Pro Arg Arg Leu
 290 295 300
 Thr Ser His Leu Gly Thr Lys Val Glu Met Val Tyr Ser Leu Leu Ser
 305 310 315 320
 Met Leu Gly Thr His Asp Lys Asp Asp Met Ser Arg Thr Leu Leu Ala
 325 330 335
 Met Ser Ser Ser Gln Asp Ser Cys Ile Ser Met Arg Gln Ser Gly Cys
 340 345 350
 Leu Pro Leu Leu Ile Gln Leu Leu His Gly Asn Asp Lys Asp Ser Val
 355 360 365
 Leu Leu Gly Asn Ser Arg Gly Ser Lys Glu Ala Arg Ala Arg Ala Ser
 370 375 380
 Ala Ala Leu His Asn Ile Ile His Ser Gln Pro Asp Asp Lys Arg Gly
 385 390 395 400
 Arg Arg Glu Ile Arg Val Leu His Leu Glu Gln Ile Arg Ala Tyr
 405 410 415
 Cys Glu Thr Cys Trp Glu Trp Gln Glu Ala His Glu Pro Gly Met Asp
 420 425 430
 Gln Asp Lys Asn Pro Met Pro Ala Pro Val Glu His Gln Ile Cys Pro
 435 440 445
 Ala Val Cys Val Leu Met Lys Leu Ser Phe Asp Glu Glu His Arg His
 450 455 460
 Ala Met Asn Glu Leu Gly Gly Leu Gln Ala Ile Ala Glu Leu Leu Gln
 465 470 475 480
 Val Asp Cys Glu Met Tyr Gly Leu Thr Asn Asp His Tyr Ser Ile Thr
 485 490 495
 Leu Arg Arg Tyr Ala Gly Met Ala Leu Thr Asn Leu Thr Phe Gly Asp
 500 505 510
 Val Ala Asn Lys Ala Thr Leu Cys Ser Met Lys Gly Cys Met Arg Ala
 515 520 525
 Leu Val Ala Gln Leu Lys Ser Glu Ser Glu Asp Leu Gln Gln Val Ile

530 535 540

Ala Ser Val Leu Arg Asn Leu Ser Trp Arg Ala Asp Val Asn Ser Lys
 545 550 555 560

Lys Thr Leu Arg Glu Val Gly Ser Val Lys Ala Leu Met Glu Cys Ala
 565 570 575

Leu Glu Val Lys Lys Glu Ser Thr Leu Lys Ser Val Leu Ser Ala Leu
 580 585 590

Trp Asn Leu Ser Ala His Cys Thr Glu Asn Lys Ala Asp Ile Cys Ala
 595 600 605

Val Asp Gly Ala Leu Ala Phe Leu Val Gly Thr Leu Thr Tyr Arg Ser
 610 615 620

Gln Thr Asn Thr Leu Ala Ile Ile Glu Ser Gly Gly Ile Leu Arg
 625 630 635 640

Asn Val Ser Ser Leu Ile Ala Thr Asn Glu Asp His Arg Gln Ile Leu
 645 650 655

Arg Glu Asn Asn Cys Leu Gln Thr Leu Leu Gln His Leu Lys Ser His
 660 665 670

Ser Leu Thr Ile Val Ser Asn Ala Cys Gly Thr Leu Trp Asn Leu Ser
 675 680 685

Ala Arg Asn Pro Lys Asp Gln Glu Ala Leu Trp Asp Met Gly Ala Val
 690 695 700

Ser Met Leu Lys Asn Leu Ile His Ser Lys His Lys Met Ile Ala Met
 705 710 715 720

Gly Ser Ala Ala Ala Leu Arg Asn Leu Met Ala Asn Arg Pro Ala Lys
 725 730 735

Tyr Lys Asp Ala Asn Ile Met Ser Pro Gly Ser Ser Leu Pro Ser Leu
 740 745 750

His Val Arg Lys Gln Lys Ala Leu Glu Ala Glu Leu Asp Ala Gln His
 755 760 765

Leu Ser Glu Thr Phe Asp Asn Ile Asp Asn Leu Ser Pro Lys Ala Ser
 770 775 780

His Arg Ser Lys Gln Arg His Lys Gln Ser Leu Tyr Gly Asp Tyr Val
 785 790 795 800

Phe Asp Thr Asn Arg His Asp Asp Asn Arg Ser Asp Asn Phe Asn Thr
 805 810 815

Gly Asn Met Thr Val Leu Ser Pro Tyr Leu Asn Thr Thr Val Leu Pro

	820	825	830
Ser Ser Ser Ser Arg Gly Ser Leu Asp Ser Ser Arg Ser Glu Lys			
835	840	845	
Asp Arg Ser Leu Glu Arg Glu Arg Gly Ile Gly Leu Gly Asn Tyr His			
850	855	860	
Pro Ala Thr Glu Asn Pro Gly Thr Ser Ser Lys Arg Gly Leu Gln Ile			
865	870	875	880
Ser Thr Thr Ala Ala Gln Ile Ala Lys Val Met Glu Glu Val Ser Ala			
885	890	895	
Ile His Thr Ser Gln Glu Asp Arg Ser Ser Gly Ser Thr Thr Glu Leu			
900	905	910	
His Cys Val Thr Asp Glu Arg Asn Ala Leu Arg Arg Ser Ser Ala Ala			
915	920	925	
His Thr His Ser Asn Thr Tyr Asn Phe Thr Lys Ser Glu Asn Ser Asn			
930	935	940	
Arg Thr Cys Ser Met Pro Tyr Ala Lys Leu Glu Tyr Lys Arg Ser Ser			
945	950	955	960
Asn Asp Ser Leu Asn Ser Val Ser Ser Asp Gly Tyr Gly Lys Arg			
965	970	975	
Gly Gln Met Lys Pro Ser Ile Glu Ser Tyr Ser Glu Asp Asp Glu Ser			
980	985	990	
Lys Phe Cys Ser Tyr Gly Gln Tyr Pro Ala Asp Leu Ala His Lys Ile			
995	1000	1005	
His Ser Ala Asn His Met Asp Asp Asn Asp Gly Glu Leu Asp Thr Pro			
1010	1015	1020	
Ile Asn Tyr Ser Leu Lys Tyr Ser Asp Glu Gln Leu Asn Ser Gly Arg			
1025	1030	1035	1040
Gln Ser Pro Ser Gln Asn Glu Arg Trp Ala Arg Pro Lys His Ile Ile			
1045	1050	1055	
Glu Asp Glu Ile Lys Gln Ser Glu Gln Arg Gln Ser Arg Asn Gln Ser			
1060	1065	1070	
Thr Thr Tyr Pro Val Tyr Thr Glu Ser Thr Asp Asp Lys His Leu Lys			
1075	1080	1085	
Phe Gln Pro His Phe Gly Gln Gln Glu Cys Val Ser Pro Tyr Arg Ser			
1090	1095	1100	
Arg Gly Ala Asn Gly Ser Glu Thr Asn Arg Val Gly Ser Asn His Gly			

1105	1110	1115	1120
Ile Asn Gln Asn Val Ser Gln Ser Leu Cys Gln Glu Asp Asp Tyr Glu			
1125	1130	1135	
Asp Asp Lys Pro Thr Asn Tyr Ser Glu Arg Tyr Ser Glu Glu Glu Gln			
1140	1145	1150	
His Glu Glu Glu Glu Arg Pro Thr Asn Tyr Ser Ile Lys Tyr Asn Glu			
1155	1160	1165	
Glu Lys Arg His Val Asp Gln Pro Ile Asp Tyr Ser Leu Lys Tyr Ala			
1170	1175	1180	
Thr Asp Ile Pro Ser Ser Gln Lys Gln Ser Phe Ser Phe Ser Lys Ser			
1185	1190	1195	1200
Ser Ser Gly Gln Ser Ser Lys Thr Glu His Met Ser Ser Ser Glu			
1205	1210	1215	
Asn Thr Ser Thr Pro Ser Ser Asn Ala Lys Arg Gln Asn Gln Leu His			
1220	1225	1230	
Pro Ser Ser Ala Gln Ser Arg Ser Gly Gln Pro Gln Lys Ala Ala Thr			
1235	1240	1245	
Cys Lys Val Ser Ser Ile Asn Gln Glu Thr Ile Gln Thr Tyr Cys Val			
1250	1255	1260	
Glu Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Leu Ser Ser Leu			
1265	1270	1275	1280
Ser Ser Ala Glu Asp Glu Ile Gly Cys Asn Gln Thr Thr Gln Glu Ala			
1285	1290	1295	
Asp Ser Ala Asn Thr Leu Gln Ile Ala Glu Ile Lys Glu Lys Ile Gly			
1300	1305	1310	
Thr Arg Ser Ala Glu Asp Pro Val Ser Glu Val Pro Ala Val Ser Gln			
1315	1320	1325	
His Pro Arg Thr Lys Ser Ser Arg Leu Gln Gly Ser Ser Leu Ser Ser			
1330	1335	1340	
Glu Ser Ala Arg His Lys Ala Val Glu Phe Ser Ser Gly Ala Lys Ser			
1345	1350	1355	1360
Pro Ser Lys Ser Gly Ala Gln Thr Pro Lys Ser Pro Pro Glu His Tyr			
1365	1370	1375	
Val Gln Glu Thr Pro Leu Met Phe Ser Arg Cys Thr Ser Val Ser Ser			
1380	1385	1390	
Leu Asp Ser Phe Glu Ser Arg Ser Ile Ala Ser Ser Val Gln Ser Glu			

1395	1400	1405
Pro Cys Ser Gly Met Val Ser Gly Ile Ile Ser Pro Ser Asp Leu Pro		
1410	1415	1420
Asp Ser Pro Gly Gln Thr Met Pro Pro Ser Arg Ser Lys Thr Pro Pro		
1425	1430	1435
1440		
Pro Pro Pro Gln Thr Ala Gln Thr Lys Arg Glu Val Pro Lys Asn Lys		
1445	1450	1455
Ala Pro Thr Ala Glu Lys Arg Glu Ser Gly Pro Lys Gln Ala Ala Val		
1460	1465	1470
Asn Ala Ala Val Gln Arg Val Gln Val Leu Pro Asp Ala Asp Thr Leu		
1475	1480	1485
Leu His Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser Cys Ser Ser		
1490	1495	1500
Ser Leu Ser Ala Leu Ser Leu Asp Glu Pro Phe Ile Gln Lys Asp Val		
1505	1510	1515
1520		
Glu Leu Arg Ile Met Pro Pro Val Gln Glu Asn Asp Asn Gly Asn Glu		
1525	1530	1535
Thr Glu Ser Glu Gln Pro Lys Glu Ser Asn Glu Asn Gln Glu Lys Glu		
1540	1545	1550
Ala Glu Lys Thr Ile Asp Ser Glu Lys Asp Leu Leu Asp Asp Ser Asp		
1555	1560	1565
Asp Asp Asp Ile Glu Ile Leu Glu Glu Cys Ile Ile Ser Ala Met Pro		
1570	1575	1580
Thr Lys Ser Ser Arg Lys Ala Lys Lys Pro Ala Gln Thr Ala Ser Lys		
1585	1590	1595
1600		
Leu Pro Pro Pro Val Ala Arg Lys Pro Ser Gln Leu Pro Val Tyr Lys		
1605	1610	1615
Leu Leu Pro Ser Gln Asn Arg Leu Gln Pro Gln Lys His Val Ser Phe		
1620	1625	1630
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu Gly Thr Pro		
1635	1640	1645
Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr Ile Glu Ser		
1650	1655	1660
Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly Gly Ala Gln		
1665	1670	1675
1680		
Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu Gly Arg Ser		

1685	1690	1695
Thr Asp Glu Ala Gln Gly Gly Lys	Thr Ser Ser Val Thr Ile Pro Glu	
1700	1705	1710
Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala Glu Cys Ile		
1715	1720	1725
Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe Arg Val Lys		
1730	1735	1740
Lys Ile Met Asp Gln Val Gln Ala Ser Ala Ser Ser Ala Pro		
1745	1750	1755
1760		
Asn Lys Asn Gln Leu Asp Gly Lys Lys Lys Pro Thr Ser Pro Val		
1765	1770	1775
Lys Pro Ile Pro Gln Asn Thr Glu Tyr Arg Thr Arg Val Arg Lys Asn		
1780	1785	1790
Ala Asp Ser Lys Asn Asn Leu Asn Ala Glu Arg Val Phe Ser Asp Asn		
1795	1800	1805
Lys Asp Ser Lys Lys Gln Asn Leu Lys Asn Asn Ser Lys Asp Phe Asn		
1810	1815	1820
Asp Lys Leu Pro Asn Asn Glu Asp Arg Val Arg Gly Ser Phe Ala Phe		
1825	1830	1835
1840		
Asp Ser Pro His His Tyr Thr Pro Ile Glu Gly Thr Pro Tyr Cys Phe		
1845	1850	1855
Ser Arg Asn Asp Ser Leu Ser Ser Leu Asp Phe Asp Asp Asp Val		
1860	1865	1870
Asp Leu Ser Arg Glu Lys Ala Glu Leu Arg Lys Ala Lys Glu Asn Lys		
1875	1880	1885
Glu Ser Glu Ala Lys Val Thr Ser His Thr Glu Leu Thr Ser Asn Gln		
1890	1895	1900
Gln Ser Ala Asn Lys Thr Gln Ala Ile Ala Lys Gln Pro Ile Asn Arg		
1905	1910	1915
1920		
Gly Gln Pro Lys Pro Ile Leu Gln Lys Gln Ser Thr Phe Pro Gln Ser		
1925	1930	1935
Ser Lys Asp Ile Pro Asp Arg Gly Ala Ala Thr Asp Glu Lys Leu Gln		
1940	1945	1950
Asn Phe Ala Ile Glu Asn Thr Pro Val Cys Phe Ser His Asn Ser Ser		
1955	1960	1965
Leu Ser Ser Leu Ser Asp Ile Asp Gln Glu Asn Asn Asn Lys Glu Asn		
1970	1975	1980

Glu Pro Ile Lys Glu Thr Glu Pro Pro Asp Ser Gln Gly Glu Pro Ser
1985 1990 1995 2000
Lys Pro Gln Ala Ser Gly Tyr Ala Pro Lys Ser Phe His Val Glu Asp
2005 2010 2015
Thr Pro Val Cys Phe Ser Arg Asn Ser Ser Leu Ser Ser Leu Ser Ile
2020 2025 2030
Asp Ser Glu Asp Asp Leu Leu Gln Glu Cys Ile Ser Ser Ala Met Pro
2035 2040 2045
Lys Lys Lys Pro Ser Arg Leu Lys Gly Asp Asn Glu Lys His Ser
2050 2055 2060
Pro Arg Asn Met Gly Gly Ile Leu Gly Glu Asp Leu Thr Leu Asp Leu
2065 2070 2075 2080
Lys Asp Ile Gln Arg Pro Asp Ser Glu His Gly Leu Ser Pro Asp Ser
2085 2090 2095
Glu Asn Phe Asp Trp Lys Ala Ile Gln Glu Gly Ala Asn Ser Ile Val
2100 2105 2110
Ser Ser Leu His Gln Ala Ala Ala Ala Cys Leu Ser Arg Gln Ala
2115 2120 2125
Ser Ser Asp Ser Asp Ser Ile Leu Ser Leu Lys Ser Gly Ile Ser Leu
2130 2135 2140
Gly Ser Pro Phe His Leu Thr Pro Asp Gln Glu Glu Lys Pro Phe Thr
2145 2150 2155 2160
Ser Asn Lys Gly Pro Arg Ile Leu Lys Pro Gly Glu Lys Ser Thr Leu
2165 2170 2175
Glu Thr Lys Ile Glu Ser Glu Ser Lys Gly Ile Lys Gly Gly Lys
2180 2185 2190
Lys Val Tyr Lys Ser Leu Ile Thr Gly Lys Val Arg Ser Asn Ser Glu
2195 2200 2205
Ile Ser Gly Gln Met Lys Gln Pro Leu Gln Ala Asn Met Pro Ser Ile
2210 2215 2220
Ser Arg Gly Arg Thr Met Ile His Ile Pro Gly Val Arg Asn Ser Ser
2225 2230 2235 2240
Ser Ser Thr Ser Pro Val Ser Lys Lys Gly Pro Pro Leu Lys Thr Pro
2245 2250 2255
Ala Ser Lys Ser Pro Ser Glu Gly Gln Thr Ala Thr Thr Ser Pro Arg
2260 2265 2270

Gly Ala Lys Pro Ser Val Lys Ser Glu Leu Ser Pro Val Ala Arg Gln
 2275 2280 2285
 Thr Ser Gln Ile Gly Gly Ser Ser Lys Ala Pro Ser Arg Ser Gly Ser
 2290 2295 2300
 Arg Asp Ser Thr Pro Ser Arg Pro Ala Gln Gln Pro Leu Ser Arg Pro
 2305 2310 2315 2320
 Ile Gln Ser Pro Gly Arg Asn Ser Ile Ser Pro Gly Arg Asn Gly Ile
 2325 2330 2335
 Ser Pro Pro Asn Lys Leu Ser Gln Leu Pro Arg Thr Ser Ser Pro Ser
 2340 2345 2350
 Thr Ala Ser Thr Lys Ser Ser Gly Ser Gly Lys Met Ser Tyr Thr Ser
 2355 2360 2365
 Pro Gly Arg Gln Met Ser Gln Gln Asn Leu Thr Lys Gln Thr Gly Leu
 2370 2375 2380
 Ser Lys Asn Ala Ser Ser Ile Pro Arg Ser Glu Ser Ala Ser Lys Gly
 2385 2390 2395 2400
 Leu Asn Gln Met Asn Asn Gly Asn Gly Ala Asn Lys Lys Val Glu Leu
 2405 2410 2415
 Ser Arg Met Ser Ser Thr Lys Ser Ser Gly Ser Glu Ser Asp Arg Ser
 2420 2425 2430
 Glu Arg Pro Val Leu Val Arg Gln Ser Thr Phe Ile Lys Glu Ala Pro
 2435 2440 2445
 Ser Pro Thr Leu Arg Arg Lys Leu Glu Glu Ser Ala Ser Phe Glu Ser
 2450 2455 2460
 Leu Ser Pro Ser Ser Arg Pro Ala Ser Pro Thr Arg Ser Gln Ala Gln
 2465 2470 2475 2480
 Thr Pro Val Leu Ser Pro Ser Leu Pro Asp Met Ser Leu Ser Thr His
 2485 2490 2495
 Ser Ser Val Gln Ala Gly Gly Trp Arg Lys Leu Pro Pro Asn Leu Ser
 2500 2505 2510
 Pro Thr Ile Glu Tyr Asn Asp Gly Arg Pro Ala Lys Arg His Asp Ile
 2515 2520 2525
 Ala Arg Ser His Ser Glu Ser Pro Ser Arg Leu Pro Ile Asn Arg Ser
 2530 2535 2540
 Gly Thr Trp Lys Arg Glu His Ser Lys His Ser Ser Ser Leu Pro Arg
 2545 2550 2555 2560

Val Ser Thr Trp Arg Arg Thr Gly Ser Ser Ser Ser Ile Leu Ser Ala
2565 2570 2575

Ser Ser Glu Ser Ser Glu Lys Ala Lys Ser Glu Asp Glu Lys His Val
2580 2585 2590

Asn Ser Ile Ser Gly Thr Lys Gln Ser Lys Glu Asn Gln Val Ser Ala
2595 2600 2605

Lys Gly Thr Trp Arg Lys Ile Lys Glu Asn Glu Phe Ser Pro Thr Asn
2610 2615 2620

Ser Thr Ser Gln Thr Val Ser Ser Gly Ala Thr Asn Gly Ala Glu Ser
2625 2630 2635 2640

Lys Thr Leu Ile Tyr Gln Met Ala Pro Ala Val Ser Lys Thr Glu Asp
2645 2650 2655

Val Trp Val Arg Ile Glu Asp Cys Pro Ile Asn Asn Pro Arg Ser Gly
2660 2665 2670

Arg Ser Pro Thr Gly Asn Thr Pro Pro Val Ile Asp Ser Val Ser Glu
2675 2680 2685

Lys Ala Asn Pro Asn Ile Lys Asp Ser Lys Asp Asn Gln Ala Lys Gln
2690 2695 2700

Asn Val Gly Asn Gly Ser Val Pro Met Arg Thr Val Gly Leu Glu Asn
2705 2710 2715 2720

Arg Leu Asn Ser Phe Ile Gln Val Asp Ala Pro Asp Gln Lys Gly Thr
2725 2730 2735

Glu Ile Lys Pro Gly Gln Asn Asn Pro Val Pro Val Ser Glu Thr Asn
2740 2745 2750

Glu Ser Ser Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser Ser
2755 2760 2765

Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe
2770 2775 2780

Asn Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala
2785 2790 2795 2800

Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg
2805 2810 2815

Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys
2820 2825 2830

Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val
2835 2840

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vii) IMMEDIATE SOURCE:

- (B) CLONE: ral2(yeast)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Leu	Thr	Gly	Ala	Lys	Gly	Leu	Gln	Leu	Arg	Ala	Leu	Arg	Arg	Ile	Ala
1				5				10						15	
Arg	Ile	Glu	Gln	Gly	Gly	Thr	Ala	Ile	Ser	Pro	Thr	Ser	Pro	Leu	
	20					25						30			

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(vii) IMMEDIATE SOURCE:

- (B) CLONE: m3 (mAChR)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Leu	Tyr	Trp	Arg	Ile	Tyr	Lys	Glu	Thr	Glu	Lys	Arg	Thr	Lys	Glu	Leu
1				5				10						15	
Ala	Gly	Leu	Gln	Ala	Ser	Gly	Thr	Glu	Ala	Glu	Thr	Glu			
	20						25								

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(vii) IMMEDIATE SOURCE:
(B) CLONE: MCC

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Leu Tyr Pro Asn Leu Ala Glu Glu Arg Ser Arg Trp Glu Lys Glu Leu
1 5 10 15

Ala Gly Leu Arg Glu Glu Asn Glu Ser Leu Thr Ala Met
20 25

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GTATCAAGAC TGTGACTTTT AATTGTAGTT TATCCATTTC 40

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

TTTAGAATTT CATGTTAATA TATTGTGTC TTTTTAACAG

40

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GTAGATTTA AAAAGGTGTT TTAAAATAAT TTTTTAAGCT

40

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AAGCAATTGT TGTATAAAAA CTTGTTCTA TTTTATTAG

40

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTAACCTTTC TTCATATAGT AACATTGCC TTGTGTACTC

40

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

NNNNNNNNNN NNNGTCCCTT TTTTAAAAAA AAAAAAATAG

40

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GTAAGTAACT TGGCAGTACA ACTTATTGAA AACTTTAATA

40

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

ATACAAGATA TTGATACTTT TTTATTATTT GTGGTTTAG

40

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GTAAGTTACT TGTTTCTAAG TGATAAAACA GYGAAGAGCT

40

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

AATAAAAACA TAACTAATTA GGTTTCTTGT TTTATTTTAG

40

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GTTAGTAAAT TSCCTTTTTT GTTTGTGGGT ATAAAAATAG

40

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Homo sapiens*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

ACCATTTTG CATGTACTGA TGTAACTCC ATCTAACAG

40

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Homo sapiens*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTAAATAAAT TATTATCA TATTTTTAA AATTATTTAA

40

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 64 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Homo sapiens*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CATGATGTTA TCTGTATTAA CCTATAGTCT AAATTATACC ATCTATAATG TGCTTAATT

60

TTAG

64

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 52 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GTAACAGAAG ATTACAAACC CTGGTCACTA ATGCCATGAC TACTTGCTA AG

52

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 46 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GGATATTAAA GTCGTAATTT TGTTTCTAAA CTCATTGGC CCACAG

46

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GTATGTTCTC TATAGTGTAC ATCGTAGTGC ATGTTCAAA

40

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 56 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CATCATTGCT CTTCAAATAA CAAAGCATTG TGTTTATGT TGATTTTATT TTTCAG

56

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 43 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GTAAGACAAA AATGTTTTT AATGACATAG ACAATTACTG GTG

43

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

TTAGATGATT GTCTTTTCC TCTTGCCCTT TTTAAATTAG

40

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 44 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GTATGTTTT ATAACATGTA TTTCTTAAGA TAGCTCAGGT ATGA

44

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 54 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

GCTGGCTTC AAGTTGNCTT TTTAATGATC CTCTATTCTG TATTTAATT ACAG

54

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 65 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GTACTATTAA GAATTCACC TGTTTTCTT TTTTCTCTT TTCTTGAGG CAGGGTCTCA

60

CTCTG

65

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 52 base pairs
- (B) TYPE: nucleic acid

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA		
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: Homo sapiens		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:		
GCAACTAGTA TGATTTATG TATAAATTAA TCTAAAATTG ATTAATTCC AG		52
(2) INFORMATION FOR SEQ ID NO:35:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 42 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: cDNA		
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: Homo sapiens		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:		
GTACCTTGAA AACATTTAG TACTATAATA TGAATTCAT GT		42
(2) INFORMATION FOR SEQ ID NO:36:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 40 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		
(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: cDNA		
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: Homo sapiens		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:		
CCAACTCNAATTAGATGACC CATATTAGA AACTTACTAG		40
(2) INFORMATION FOR SEQ ID NO:37:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 54 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: single		

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GTATATATAG AGTTTTATAT TACTTTAAA GTACAGAATT CATACTCTCA AAAA

54

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 41 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

ATTGTGACCT TAATTTGTG ATCTCTTGAT TTTTATTCA G

41

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TCCCCGCCTG CCGCTCTC

18

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GCAGCGGCCGG CTCCCGTG

18

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GTGAACGGCT CTCATGCTGC

20

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

ACGTGCGGGG AGGAATGGA

19

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ATGATATCTT ACCAAATGAT ATAC

24

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

TTATTCCTAC TTCTTCTATA CAG

23

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

TACCCATGCT GGCTCTTTT C

21

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

TGGGGCCATC TTGTTCTGGA

20

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

ACATTAGGCA CAAAGCTTGC AA

22

(2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

ATCAAGCTCC AGTAAGAAGG TA

22

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

TGCGGCTCCT GGGTTGTTG

19

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

GCCCCTTCCT TTCTGAGGAC

20

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

TTTTCTCCTG CCTCTTACTG C

21

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ATGACACCCCC CCATTCCCTC

20

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

CCACTTAAAG CACATATATT TAGT

24

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

GTATGGAAAA TAGTGAAGAA CC

22

(2) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

TTCTTAAGTC CTGTTTTCT TTTG

24

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

TTTAGAACCT TTTTGTTGTT GTG

23

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

CTCAGATTAT ACACTAAGCC TAAC

24

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

CATGTCTCTT ACAGTAGTAC CA

22

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

AGGTCCAAGG GTAGCCAAGG

20

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

TAAAAATGGA TAAACTACAA TTAAAAG

27

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

AAATACAGAA TCATGTCTTG AAGT

24

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

ACACCTAAAG ATGACAATTT GAG

23

(2) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

TAACCTTAGAT AGCAGTAATT TCCC

24

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

ACAATAAACT GGAGTACACA AGG

23

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

ATAGGTCATT GCTTCTTGCT GAT

23

(2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

TGAATTAA TGGATTACCT AGGT

24

(2) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

CTTTTTTGCA TTTTACTGAT TAACG

25

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

TGTAATTCAT TTTATTCCTA ATAGCTC

27

(2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

GGTAGCCATA GTATGATTAT TTCT

24

(2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

CTACCTATTT TTATACCCAC AAAC

24

(2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

AAGAAAGCCT ACACCATTTC TGC

23

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

GATCATTCTT AGAACCATCT TGC

23

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

ACCTATAGTC TAAATTATAC CATC

24

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

GTCATGGCAT TAGTGACCAAG

20

(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

AGTCGTAATT TTGTTTCTAA ACTC

24

(2) INFORMATION FOR SEQ ID NO:76:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

TGAAGGACTC GGATTCACG C

21

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

TCATTCACTC ACAGCCTGAT GAC

23

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

GCTTGAAAC ATGCACTACG AT

22

(2) INFORMATION FOR SEQ ID NO:79:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

AAACATCATT GCTCTTCAAA TAAC

24

(2) INFORMATION FOR SEQ ID NO:80:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

TACCATGATT TAAAAATCCA CCAG

24

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

GATGATTGTC TTTTCCTCT TGC

23

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

CTGAGCTATC TTAAGAAATA CATG

24

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

TTTTAAATGA TCCTCTATTG TGTAT

25

(2) INFORMATION FOR SEQ ID NO:84:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

ACAGAGTCAG ACCCTGCCTC AAAG

24

(2) INFORMATION FOR SEQ ID NO:85:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

TTTCTATTCT TACTGCTAGC ATT

23

(2) INFORMATION FOR SEQ ID NO:86:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

ATACACAGGT AAGAAATTAG GA

22

(2) INFORMATION FOR SEQ ID NO:87:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

TAGATGACCC ATATTCTGTT TC

22

(2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

CAATTAGGTC TTTTGAGAG TA

22

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

GT TACTGCAT ACACAT TGTG AC

22

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

GCTTTTGTT TCCTAACATG AAG

23

(2) INFORMATION FOR SEQ ID NO:91:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

TCTCCCACAG GTAATACTCC C

21

(2) INFORMATION FOR SEQ ID NO:92:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

GCTAGAACTG AATGGGGTAC G

21

(2) INFORMATION FOR SEQ ID NO:93:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

CAGGACAAAA TAATCCTGTC CC

22

(2) INFORMATION FOR SEQ ID NO:94:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

ATTTTCTTAG TTTCATTCTT CCTC

24

(2) INFORMATION FOR SEQ ID NO: 95:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

AGAAGGATCC CTTGTGCAGT GTGGA

25

(2) INFORMATION FOR SEQ ID NO: 96:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

GACAGGATCC TGAAGCTGAG TTTG

24

(2) INFORMATION FOR SEQ ID NO: 97:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

TCAGAAAGTG CTGAAGAG

18

(2) INFORMATION FOR SEQ ID NO: 98:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

GGAATAATTA GGTCTCCAA

19

(2) INFORMATION FOR SEQ ID NO: 99:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

GCAAATCCTA AGAGAGAACAA

21

(2) INFORMATION FOR SEQ ID NO: 100:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

GATGGCAAGC TTGAGCCAG

19

(2) INFORMATION FOR SEQ ID NO: 101:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

GTTCCAGCAG TGTCACAG

18

(2) INFORMATION FOR SEQ ID NO: 102:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

GGGAGATTTC GCTCCTGA

18