

POLIMI RECSYS CHALLENGE 2018

Doniele Montesi - Federico Piccinini

OVERVIEW

Objective

Create the best recommender system for a music streaming service.

Our tools

- PyCHARM
- Jupyter notebook

Results

Ranked 1st at the Polimi RecSys challenge 2018 MAP@10 = 0.10020

CODE STRUCTURE

Recommender

- __init__(params) //command pattern
- fit(URM)
- get_expected_ratings(playlist_id)
- recommend(playlist_id)
- Use of cosine similarity

Runner

run(is_test, recommender_obj, split_method)

Other objects

- Helper: contains shared and support methods
- Evaluator: evalution and split methods

ALGORITHMS

Hybrid weights

	Sequential playlists	Short randomic playlists	Long randomic playlists
User_CF	0.5	0.03	0.03
Item_CF	0.1	0.25	0.35
CBF	0.72	0.15	0.2
ALS	0.14	0.3	0.3
SLIM BPR	2.06	0.6	0.22
SLIM ElasticNet	0.07	1.5	1.5

HYBRIDIZATION

We experimented many methods:

1- Round Robin

- 2- Weighted sum of *normalized* expected ratings
- 3- Weighted sum of expected ← Best one ratings

FIRST ENSEMBLES

ITEM CF

USER CF

MAP@10 = 0.08912 (public)

CBF

Adding the fourth ingredient

SLIM BPR

MAP@10 = 0.09218 (public)

NEW INGREDIENTS

ALS (alternative least square)

- Efficient cython implementation of MF
- technique adapted by "implicit" module by benfred

MAP@10 = 0.09652 (public

ElasticNET

- SLIM with penalization
- Adapted from Massimo Quadrana's version

WHEN MAGIC STARTS

2 types of playlists orders were analyzed

- Randomically ordered
- MAP@10 = 0.105 (local)

Sequentially ordered

MAP@10 = 0.0645 (local)

2 approaches were followed:

- BIB (Before Is Better) awful performance
- LIB (handcrafted Tail boost) very interesting performance

TAIL BOOST

- Old Sequentially ordered MAP@10 = 0.0645 (local)
- New Sequentially ordered MAP@10 = 0.0802 (local)

$$\vec{x}_u$$
 = 3 36 7 54 154 46 79 69 34 User's tracks \vec{x}_u = 1 1 1 1 1 1 1 1 1 1 User's ratings \vec{x}_u = 1 1 1 1 1 1 2 3 4 5 Boosted user's ratings

LastN = 4

MAP@10 = 0.1002(private)

SPLIT & TUNING

We created multiple splitting methods aimed at imitating the original split

- Sequential or randomic playlists
- Imitation of the statistical distribution of the original dataset
- Selection of playlists based on their length

Tuning principles:

- Bottom-up tuning & grid search
- Use of automatic tools to better optimization
- Hold-out 10-20% of data used for testing

- Round Robin
- Normalization of intermediate ratings
- Before is better
- MF BPR
- Track's duration

- Weighted sum of ratings
- Tail boost
- SLIM BPR + SLIM ElasticNet
- ALS
- MaurizioFD's repo

Our journey

1- October – First approach with RecSys

2- November – SLIM lovers and first hybrids

3- December: explored new methods of parameter tuning based on playlists length with *slightly* improvements

4- Mid December: discovered a new working MF technique (ALS)

5- Late December: Santa told us the ingredient for success (Tail Boost)

6- Mid January – Won POLIMI RecSys Challange 2018

ALGORITHMS (1)

Content Based Filtering

- Album
 - o BM_25
 - o KNN = 45
 - o Shrink = 8
 - Weight = 0.85
- Artist
 - TF_IDF, l2 normalization
 - o KNN = 25
 - o Shrink = 0
 - Weight = 0.15

ALGORITHMS (2)

User Collaborative Filtering

- KNN = 140
- Shrink = 0

Item Collaborative Filtering

- TF_IDF, l2 norm
- KNN = 310
- Shrink = 0

SLIM BPR

- Epochs = 40
- topK = 200
- Sgd_mode = adagrad
- Batch_size = 1

- Lambda_i = 0.01
- Lambda_j = 0.001

ALGORITHMS (3)

SLIM ElasticNet

- Alpha = 1e-4
- L1-ratio = 0.1
- Max_iter = 100
- topK = 100

ALS

- N_factors = 300
- Regularization = 0.15
- Iterations = 30

TEAM

Daniele Montesi

Data Science student @ EIT Digital Master School (POLIMI, KTH)

Federico Piccinini

Data Science student @ EIT Digital Master School (POLIMI, TU/e)

APPiccio