(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-283228

(43)公開日 平成11年(1999)10月15日

(51) Int.Cl.8

識別記号

FΙ

G11B 5/66

G11B 5/66

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号

特願平10-79846

(22)出顧日

平成10年(1998) 3月26日

(71)出願人 000002004

昭和電工株式会社

東京都港区芝大門1丁目13番9号

(71)出願人 390001421

学校法人早稲田大学

東京都新宿区戸塚町1丁目104番地

(72)発明者 吉川 利彦

千葉県市原市八幡海岸通5-1 昭和電工

株式会社HD研究開発センター内

(72) 発明者 坂脇 彰

千葉県市原市八幡海岸通5-1 昭和電工

株式会社HD研究開発センター内

(74)代理人 弁理士 志賀 正武 (外9名)

最終頁に続く

(54) 【発明の名称】 磁気記録媒体

(57)【要約】

【課題】 面内磁気記録媒体を使用する際に一般的に用 いられている信号処理方法をそのまま適用可能であり、 しかもノイズ特性に優れた磁気記録媒体を提供する。

【解決手段】 基板1上に、磁化容易軸が基板に対し面 内方向に配向した面内磁性膜3と、磁化容易軸が基板に 対し垂直に配向した垂直磁性膜6を形成し、面内磁性膜 3を垂直磁性膜6よりも基板1側に設け、面内磁性膜3 と垂直磁性膜6の間に、分離膜4を設け、この分離膜4 を、Ta、Re、CuTi、SiC、W、NiP、Z r、Ti、およびCのうち1種または2種以上を主成分 とするものとする。

【特許請求の範囲】

【請求項1】 基板上に、磁化容易軸が基板に対し面内方向に配向した面内磁性膜と、磁化容易軸が基板に対し垂直に配向した垂直磁性膜を備え、面内磁性膜が垂直磁性膜よりも基板側に設けられ、面内磁性膜と垂直磁性膜の間に、分離膜が設けられ、この分離膜が、Ta、Re、CuTi、SiC、W、NiP、Zr、Ti、およびCのうち1種または2種以上を主成分とするものであることを特徴とする磁気記録媒体。

【請求項2】 請求項1記載の磁気記録媒体において、 分離膜の膜厚は5~200Åであることを特徴とする磁 気記録媒体。

【請求項3】 請求項1または2項記載の磁気記録媒体において、分離膜と垂直磁性膜の間に、hcp構造を有する非磁性中間層を設けたことを特徴とする磁気記録媒体。

【請求項4】 請求項1~3のうちいずれか1項記載の 磁気記録媒体において、面内磁性膜と垂直磁性膜の離間 距離が10~500Åであることを特徴とする磁気記録 媒体

【請求項5】 請求項1~4のうちいずれか1項記載の磁気記録媒体において、面内磁性膜の基板側に面内磁性膜下地膜が設けられ、この面内磁性膜下地膜が、Cr、またはCrにTi、Mo、W、Vのうち1種以上を添加した合金を主成分とするものであることを特徴とする磁気記録媒体。

【請求項6】 請求項5記載の磁気記録媒体において、面内磁性膜が、Crの含有率が12~25at%、Ptの含有率が0~15at%、Taの含有率が1~10at%、Zr、Re、Cu、およびVのうち1種以上の含有率が0~10at%、残部がCoからなるCo合金を主成分とするものであることを特徴とする磁気記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気記録媒体に関するものであり、特に、ノイズ特性に優れた磁気記録媒体に関するものである。

[0002]

【従来の技術】現在市販されている磁気記録媒体は、磁性膜内の磁化容易軸が主に基板に対し水平に配向した面内磁気記録媒体がほとんどである。このような面内磁気記録媒体では、高記録密度化するとビット体積が小さくなりすぎ、熱揺らぎ効果等により再生特性が悪化する可能性がある。また、高記録密度化した際に、磁化反転遷移領域の増大等により媒体ノイズが増加することがあることも知られている。これに対し、磁性膜内の磁化容易軸が基板に対し垂直に配向した、いわゆる垂直磁気記録媒体は、高記録密度化した場合でも、急峻な磁化転移が形成され、記録密度が増大していくにつれ減磁界が小さ

くなり安定化するため低ノイズ化が可能であり、しかも 比較的ビット体積が大きくても高記録密度化が可能であ ることから、近年大きな注目を集めている。しかしなが ら垂直磁気記録媒体は、再生波形が面内磁気記録媒体と 異なる、すなわち孤立波形が単峰型とならずダイパルス 波形を含むものとなるため、面内磁気記録媒体を使用す る際に一般的に用いられている信号処理方法をそのまま 適用するのは難しい。このため、面内磁性膜と垂直磁性 膜の2つの膜を備え、面内磁気記録媒体に用いられるも のと同じ信号処理法の使用を可能とした垂直面内複合型 磁気記録媒体が提案されている。

[0003]

【発明が解決しようとする課題】近年では、磁気記録媒体の更なる高記録密度化が要望されており、これに伴いノイズ特性の向上が要求されてきている。しかしながら従来の磁気記録媒体では、そのノイズ特性が決して満足できるものでなく、よりノイズ特性に優れた磁気記録媒体が要望されていた。本発明は、上記事情に鑑みてなされたもので、面内磁気記録媒体を使用する際に一般的に用いられている信号処理方法をそのまま適用可能であり、しかもノイズ特性に優れた磁気記録媒体を提供することを目的とする。

[0004]

【課題を解決するための手段】上記課題は、基板上に、 磁化容易軸が基板に対し面内方向に配向した面内磁性膜 と、磁化容易軸が基板に対し垂直に配向した垂直磁性膜 を備え、面内磁性膜が垂直磁性膜よりも基板側に設けら れ、面内磁性膜と垂直磁性膜の間に、分離膜が設けら れ、この分離膜が、Ta、Re、CuTi、SiC、 W、NiP、Zr、Ti、およびCのうち1種または2 種以上を主成分とするものである磁気記録媒体によって 解決される。分離膜の膜厚は5~200Åとするのが好 ましい。また、分離膜と垂直磁性膜の間には、hcp構 造を有する非磁性中間層を設けるのが好ましい。また、 面内磁性膜の基板側には、面内磁性膜下地膜を設け、こ の面内磁性膜下地膜を、Cr、またはCrにTi、M o、W、Vのうち1種以上を添加した合金を主成分とす るものとするのが好ましい。面内磁性膜は、Crの含有 率が12~25at%、Ptの含有率が0~15at %、Taの含有率が1~10at%、Zr、Re、C u、およびVのうち1種以上の含有率が0~10at %、残部がCoからなるCo合金を主成分とするものと するのが好ましい。

[0005]

【発明の実施の形態】図1は、本発明の磁気記録媒体の一実施形態を示すもので、ここに示す磁気記録媒体は、基板1上に、面内磁性膜下地膜2、面内磁性膜3、分離膜4、非磁性中間層5、垂直磁性膜6、および保護膜7を順次形成してなるものである。基板1としては、NiPめっき膜を有するアルミニウム合金に加え、ガラス、

セラミックなどからなるものを用いることができる。また、基板1は、その表面にメカニカルテクスチャ処理などのテクスチャ処理を施したものとしてもよい。

【0006】面内磁性膜下地膜2は、面内磁性膜3内の結晶のc軸を面内方向に向けるためのもので、Cr、またはCrにTi、Mo、W、Vのうち1種以上を添加した合金を主成分とするものとするのが、面内磁性膜3の結晶配向性向上の観点から好ましい。特に、Cr、Cr/Ti系合金、Cr/Mo系合金、Cr/W系合金、はてに、V系合金を用いるのが好適である。具体例としては、Ti、Mo、W、またはVの含有率が1~40at%であり、残部がCrからなるCr合金を挙げることができる。面内磁性膜下地膜2の厚さは、10~100Åとするのが好ましい。なお本明細書において、主成分とは当該成分を50at%を越えて含むことを指す

【0007】面内磁性膜3は、その磁化容易軸が主に面内方向を向いたものである。面内磁性膜3の材料の好適な具体例としては、Co/Cr系、Co/Cr/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Pt/Ta系会金をげることができる。中でも特に、Crの含有率が12~25at%、Ptの含有率が0~15at%、Taの含有率が1~10at%、Zr、Re、Cu、およびVのうち1種以上の含有率が0~10at%、残部がCoからなるCo合金を主成分とするものを用いるのが、この膜内の結晶配向性向上の観点から好ましい。面内磁性膜3の保磁力Hcは、1500~40000eの範囲に設定するのが好ましい。また面内磁性膜3の残留磁化膜厚積BrTは10~100Gμmとするのが好ましい。

【0008】分離膜4は、垂直磁性膜6の結晶のc軸を基板に対し垂直方向に向け配向性を良好なものとするためのもので、分離膜4の材料としては、Ta、Re、CuTi、SiC、W、NiP、Zr、Ti、およびCのうち1種または2種以上を主成分とするものが用いられる。なお、ここでいうCuTiとはCuおよびTiからなる合金を指す。またSiCとはSiおよびCからなる材料を指す。またNiPとはNiおよびPからなる合金を指す。

【0009】分離膜4の厚さは、5~200Åとするのが好ましい。この厚さが5Å未満であると、分離膜4上に形成される非磁性中間層5が、その成膜時において、面内方向の結晶配向性をもつ面内磁性膜3の影響を受けやすくなり、その結晶配向性が乱れ、非磁性中間層5上に形成される垂直磁性膜6の結晶配向性が乱れ、得られる磁気記録媒体の媒体ノイズが増加するおそれがある。また、分離膜4の厚さが200Åを越えると、面内磁性膜3と垂直磁性膜6の離間距離が大きくなり、短記録波長時における面内磁性膜3の記録特性が低下する。

【0010】非磁性中間層5は、垂直磁性膜6の結晶配

向性をさらに良好なものとするためのもので、hcp構造を有する非磁性材料が用いられ、Co/Cr系、Co/Cr/Ta系、Co/Cr/Pt/X系(X:Ta、Zr、Cu、Reのうち1種または2種以上)の合金を用いるのが好適である。特に、Crの含有率が25~50at%、Ptの含有率が0~15at%、Xの含有率が0~10at%、残部がCoからなるCo合金を主成分とするものを用いるのが好ましい。非磁性中間層5は、単層構造としてもよいし、上記材料からなる複数の層が積層した多層構造としてもよい。

【0011】非磁性中間層5の厚さは、20~400Åとするのが好ましい。この厚さが20Å未満であると、非磁性中間層5上に垂直磁性膜6を形成する際、垂直磁性膜6の初期成長時においてその結晶配向性が乱れやすくなり、得られる磁気記録媒体の媒体ノイズが増加するおそれがある。また、この厚さが400Åを越えると、面内磁性膜3と垂直磁性膜6の離間距離が大きくなり、短記録波長時における面内磁性膜3の記録特性が低下する。

【0012】分離膜4と非磁性中間層5の合計膜厚、すなわち面内磁性膜3と垂直磁性膜6の離間距離は、10~500Åとするのが好ましい。この厚さが10Å未満であると、垂直磁性膜6の結晶配向性が乱れやすくなり、十分な保磁力が得られなくなるおそれがある。またこの厚さが500Åを越えると、面内磁性膜3と垂直磁性膜6の離間距離が大きくなり、短記録波長時における面内磁性膜3の記録特性が低下する。

【0013】垂直磁性膜6は、その磁化容易軸が基板に対し主に垂直方向に向いたものである。垂直磁性膜6の材料としては、Co/Cr系、Co/Cr/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Ni/Pt/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Ni/Pt/Ta系、Co/Cr/Pt/Ta系、Co/Cr/Ni/Pt/Ta系、Co/Cr/Pt/Ta/Zr系合金を用いることができる。中でも特に、Crの含有率が16~30at%、Ptの含有率が0~15at%、Taの含有率が2~10at%、Zrの含有率が0~5at%、残部がCoからなるCo合金を主成分とするものを用いるのが好ましい。垂直磁性膜6の保磁力Hcは、1500~4000eの範囲に設定するのが好ましい。また垂直磁性膜6の厚さは、100~1000Åとするのが好ましい。

【0014】保護膜7は、カーボンからなるものとするのが好ましい。保護膜7の厚さは、20~100Åとするのが好ましい。また、保護膜7上には、パーフルオロボリエーテル(PFPE)などからなる潤滑膜を形成することも可能である。

【0015】上記構成の磁気記録媒体を製造するには、まず、基板1上に、上記非磁性下地膜2ないし垂直磁性膜6をスパッタリング、真空蒸着、イオンプレーティング、めっきなどの手法により形成する。続いて保護膜7を、スパッタリング、プラズマCVD法、イオンビーム

法等により形成する。また、保護膜7上に潤滑膜を形成するには、ディッピング法などを採用することができる。

【0016】上記構成の磁気記録媒体にあっては、面内磁性膜3と垂直磁性膜6の間に分離膜4を設け、この分離膜4を、Ta、Re、CuTi、SiC、W、NiP、Zr、Ti、およびCのうち1種または2種以上を主成分とするものとしたので、分離膜4上に形成される非磁性中間層5および垂直磁性膜6の垂直方向の配向性を向上させ、垂直磁性膜6の磁気異方性を高め、媒体ノイズを低下させることができる。

【0017】分離膜4を、上記材料からなるものとする ことによって垂直磁性膜6の磁気異方性を向上させるこ とができる理由は明らかでないが、これには次のような メカニズムが関与していると考えることができる。すな わち、分離膜4の材料としてSiC、NiP、Cを用い た場合には、ダングリングボンド、すなわち分離膜4の 表面または内部の格子欠陥の周囲の原子群が担う不飽和 結合が、分離膜4と、その上に形成される非磁性中間層 5の間の結合力を高め、これによって非磁性中間層5の 初期成長時における結晶配向性が向上し、非磁性中間層 5が垂直方向の結晶配向性に優れたものとなり、その結 果、非磁性中間層5上に形成される垂直磁性膜6の磁気 異方性が向上する。また、これらの材料は面内磁性膜3 に対し非エピタキシャル的に成長することが可能な材料 であるため、面内異方性を有する面内磁性膜3の影響に よる非磁性中間層5および垂直磁性膜6の配向性の乱れ が起こりにくい。

【0018】また、分離膜4の材料としてTa、Re、 W、CuTi、Ti、Zrを用いた場合には、これら材 料の表面自由エネルギーが非磁性中間層5の構成材料 (例えばCo合金)の表面自由エネルギーより高いた め、非磁性中間層5がその成膜時において(002)配 向しやすくなる。これは、分離膜4に接する非磁性中間 層5が(002)配向した場合に、分離膜4と非磁性中 間層5の界面におけるトータルの表面エネルギーが最小 となるためである。非磁性中間層5の配向性が向上する ことにより、これに対しエピタキシャル成長する垂直磁 性膜6の配向性も向上する。また、これらの材料は面内 磁性膜 3 に対し非エピタキシャル的に成長することが可 能な材料であるため、面内異方性を有する面内磁性膜3 の影響による非磁性中間層5および垂直磁性膜6の配向 性の乱れが起こりにくい。以上のようなメカニズムによ って垂直磁性膜6の磁気異方性が高められていると考え ることができる。

【0019】また、面内磁性膜下地膜2を、Cr、また

はCrにTi、Mo、W、Vのうち1種以上を添加した合金からなるものとし、面内磁性膜3を、Crの含有率が12~25at%、Ptの含有率が0~15at%、Taの含有率が1~10at%、Zr、Re、Cu、およびVのうち1種以上の含有率が0~10at%、残部がCoからなるCo合金を主成分とするものとすることによって、面内磁性膜3の結晶配向性を良好なものとし、得られる磁気記録媒体の媒体ノイズを低下させることができる。

【0020】また、この分離膜4と垂直磁性膜6の間に、hcp構造を有する非磁性中間層5を設けることによって、同じくhcp構造を有するCo合金等からなる垂直磁性膜6の初期成長時の配向性の乱れを防ぎ、その磁気異方性を高め、媒体ノイズを低下させることができる。

[0021]

【実施例】(試験例1~17)表面にNiPめっき膜 (厚さ15µm)を形成したアルミニウム合金基板(直 径84mm、厚さ0.8mm)の表面に、表面平均粗さ Raが15Åとなるようにメカニカルテクスチャ加工を 施した後、この基板1をDCマグネトロンスパッタ装置 (アネルバ社製3010)のチャンバ内にセットした。 チャンバ内を真空到達度2×10-7Paとなるまで排気 し、基板1を200℃まで加熱した後、この基板1上 に、面内磁性膜下地膜2(厚さ200Å)、面内磁性膜 3、分離膜4、Co-40at%Cr(Co40Cr) からなる非磁性中間層5、Co-18at%Cr-6a t%Pt-3at%Ta(Co18Cr6Pt3Ta) からなる垂直磁性膜6を順次スパッタリングにより形成 した。垂直磁性膜6上には、引続き、厚さ100Åのカ ーボン保護膜を形成し、次いで、このカーボン保護膜上 に潤滑剤を塗布し、PFPEからなる潤滑膜(厚さ20 Å)を形成し、磁気記録媒体を得た。

【0022】(試験例18、19)分離膜4、または非磁性中間層5を設けないこと以外は試験例 $1\sim17$ と同様にして磁気記録媒体を作製した。

【0023】上記各試験例の磁気記録媒体の静磁気特性を振動式磁気特性測定装置(VSM)を用いて測定した。また、これら磁気記録媒体の記録再生特性を、再生部に磁気抵抗(MR)素子を有する複合型薄膜磁気ヘッドを用い、線記録密度240kFCIにて測定した。測定結果を表1に示す。SNR(Signal Noise Ratio)を測定する際には、孤立波を測定対象として信号量(Signal)を測定した。

[0024]

【表1】

日本 日本 日本 日本 日本 日本 (人) (06) (人) (06) (06) (06) (06) (06) (06) (06) (06		而内础性 膜下地膜	面内磁性膜	性脱		分離散	≤	非磁性中間層		垂直磁性膜	性膜	i	再生特性
Cr ColfCrSta 50 1800 C 20 Co40Cr 200 Col 8Cr8P13Ta 500 2550 Cr ColfCrSta 50 1800 C 50 Co40Cr 200 Col 8Cr8P13Ta 500 2570 Cr ColfCrSta 50 1800 Ta 50 Co40Cr 200 Col 8Cr8P13Ta 500 2150 Cr ColfCrSta 50 1800 Ta 50 Co40Cr 200 Col 8Cr8P13Ta 500 2150 Cr ColfCrSta 50 1800 NIP 50 Co40Cr 200 Col 8Cr8P13Ta 500 2350 Cr ColfCrSta 50 Co40Cr 200 Col 8Cr8P13Ta 500 2350 Cr ColfCrSta 50 1800 71 50 Co40Cr 200 Col 8Cr8P13Ta 500 2350 Cr ColfCrSta 20 ColfCr 20 Col 8Cr8P13Ta 500 2350 Cr		組成	組成	BrT (Gam)	H (96)	粗砂	(A)	組成	草さ (A)	粗成	₩ (¥)	H (96)	SNR (dB)
Cr Co17Cr51a 50 1800 C 50 Co40Cr 200 Co18Cr6P13Ta 500 2670 Cr Co17Cr51a 50 1800 Ta 50 Co40Cr 200 Co18Cr6P13Ta 500 2150 Cr Co17Cr51a 50 1800 Ta 100 Co40Cr 200 Co18Cr6P13Ta 500 2150 Cr Co17Cr51a 50 1800 NiP 50 Co40Cr 200 Co18Cr6P13Ta 500 235 Cr Co17Cr51a 50 1800 NiP 50 Co40Cr 200 Co18Cr6P13Ta 500 235 Cr Co17Cr51a 50 1800 NiP 50 Co40Cr 200 Co18Cr6P13Ta 500 235 Cr Co17Cr51a 50 1800 NiP 50 Co40Cr 200 Co18Cr6P13Ta 500 235 Cr Co17Cr51a 50 1800 NiP 50 Co40Cr 200 <th>試験例!</th> <th>Çı</th> <th>Col7Cr5Ta</th> <th>20</th> <th>1800</th> <th>J</th> <th>20</th> <th>Co40Cr</th> <th>200</th> <th>Col 8Cr 6Pt 3Ta</th> <th>200</th> <th>2550</th> <th>14.8</th>	試験例!	Çı	Col7Cr5Ta	20	1800	J	20	Co40Cr	200	Col 8Cr 6Pt 3Ta	200	2550	14.8
Cr Co17Cr51a 50 1800 Ta 50 Co40Cr 200 Co18Cr6P13Ta 500 2150 Cr Co17Cr51a 50 1800 Ta 100 Co40Cr 200 Co18Cr6P13Ta 500 2155 Cr Co17Cr51a 50 1800 W 50 Co40Cr 200 Co18Cr6P13Ta 500 2155 Cr Co17Cr51a 50 1800 W 50 Co40Cr 200 Co18Cr6P13Ta 500 2155 Cr Co17Cr51a 50 1800 Cu1 50 Co40Cr 200 Co18Cr6P13Ta 500 2150 Cr Co17Cr51a 50 1800 Cu1 50 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr Co17Cr51a 50 1800 Zr 50 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr Co17Cr51a 50 1800 Zr 50 Co40Cr 200 <th>試験例2</th> <th>ئ</th> <th>Col 7Cr 5Ta</th> <th>20</th> <th>1800</th> <th>C</th> <th>20</th> <th>Co40Cr</th> <th>200</th> <th>Col8Cr6Pt3Ta</th> <th>200</th> <th>2670</th> <th>15.3</th>	試験例2	ئ	Col 7Cr 5Ta	20	1800	C	20	Co40Cr	200	Col8Cr6Pt3Ta	200	2670	15.3
Cr Col7Cr51a 50 1800 Ta 100 Co40Cr 200 Co18Cr6P13Ta 500 1345 Cr Col7Cr51a 50 1800 W1P 50 Co40Cr 200 Co18Cr6P13Ta 500 1930 Cr Co17Cr51a 50 1800 W 50 Co40Cr 200 Co18Cr6P13Ta 500 2315 Cr Co17Cr51a 50 1800 Re 50 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr Co17Cr51a 50 1800 Cu1i 50 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr Co17Cr51a 50 1800 Ti 50 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr Co17Cr51a 50 1800 Ti 50 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr Co17Cr51a 50 1800 C 2 Co40Cr 200 <th>試験例3</th> <th>ئ</th> <th>Col7Cr5Ta</th> <th>20</th> <th>1800</th> <th>Fa</th> <th>93</th> <th>Co40Cr</th> <th>200</th> <th>Cot 8Cr 6Pt 3Ta</th> <th>200</th> <th>2150</th> <th>14.3</th>	試験例3	ئ	Col7Cr5Ta	20	1800	Fa	93	Co40Cr	200	Cot 8Cr 6Pt 3Ta	200	2150	14.3
Cr Col7Cr5Ta 50 N3P 50 Co40Cr 200 Col8Cr6P13Ta 500 1950 Cr Col7Cr5Ta 50 1800 W 50 Co40Cr 200 Col8Cr6P13Ta 500 2435 Cr Col7Cr5Ta 50 1800 CuTi 50 Co40Cr 200 Col8Cr6P13Ta 500 2435 Cr Col7Cr5Ta 50 1800 CuTi 50 Co40Cr 200 Col8Cr6P13Ta 500 2435 Cr Col7Cr5Ta 50 1800 CuTi 50 Co40Cr 200 Col8Cr6P13Ta 500 2350 Cr Col7Cr5Ta 50 1800 7 50 Co40Cr 200 Col8Cr6P13Ta 500 2350 Cr Col7Cr5Ta 50 1800 7 50 Co40Cr 200 Col8Cr6P13Ta 500 2350 Cr Col7Cr5Ta 50 1800 C 2 Co40Cr 200 Col8Cr6	試験例4	J.	Col 7Cr5Ta	20	1800	Гa	100	C040Cr	200	Cot8Cr6Pt3Ta	200	2245	14.6
Cr Col7Cr5Ta SO 1800 W SO Co40Cr 200 Col8Cr6P13Ta 500 2315 Cr Col7Cr5Ta SO 1800 Re SO Co40Cr 200 Col8Cr6P13Ta 500 2435 Cr Col7Cr5Ta SO 1800 Cuti SO Co40Cr 200 Col8Cr6P13Ta 500 2435 Cr Col7Cr5Ta SO 1800 Ti SO Co40Cr 200 Col8Cr6P13Ta 500 2450 Cr Col7Cr5Ta SO 1800 Ti SO Co40Cr 200 Col8Cr6P13Ta 500 2350 Cr Col7Cr5Ta SO 1800 Ti SO Co40Cr 200 Col8Cr6P13Ta 500 2350 Cr Col7Cr5Ta SO 1800 C 20 Co40Cr 200 Col8Cr6P13Ta 500 2350 Cr15W Col7Cr5Ta SO 2000 C 20 Co40Cr 200 <th>双极例5</th> <th>J.</th> <th>Col7Cr5Ta</th> <th>20</th> <th>1800</th> <th>N3P</th> <th>20</th> <th>Co40Cr</th> <th>200</th> <th>Col8Cr6Pt3Ta</th> <th>200</th> <th>1950</th> <th>14.3</th>	双极例5	J.	Col7Cr5Ta	20	1800	N3P	20	Co40Cr	200	Col8Cr6Pt3Ta	200	1950	14.3
Cr Col7Cr5Ta 50 1800 Re 50 Co40Cr 200 Col8Cr6Pi3Ta 500 2435 Cr Col7Cr5Ta 50 1800 Cuti 50 Co40Cr 200 Col8Cr6Pi3Ta 500 2050 Cr Col7Cr5Ta 50 1800 Ti 50 Co40Cr 200 Col8Cr6Pi3Ta 500 2550 Cr Col7Cr5Ta 50 1800 Ti 50 Co40Cr 200 Col8Cr6Pi3Ta 500 2350 Cr Col7Cr5Ta 50 1800 Ti 50 Co40Cr 200 Col8Cr6Pi3Ta 500 2350 Cr Col7Cr5Ta 50 1800 Ti 300 Co40Cr 200 Col8Cr6Pi3Ta 500 2350 Cr15W Col7Cr5Ta 50 1800 C 20 Co40Cr 200 Col8Cr6Pi3Ta 500 2520 Cr15W Col7Cr5W 20 200 Co40Cr 20 Col8Cr6Pi3Ta	試験例6	J.	Col 7Cr STa	50	1800	æ	20	Co40Cr	200	Col8Cr6P13Ta	200	2315	14.9
Cr Col7Cr51a 50 1800 Cu1i 50 Co40Cr 200 Col8Cr6Pt31a 500 2550 Cr Col7Cr51a 50 1800 51 50 Co40Cr 200 Col8Cr6Pt31a 500 2550 Cr Col7Cr51a 50 1800 7r 50 Co40Cr 200 Col8Cr6Pt31a 500 2550 Cr Col7Cr51a 50 1800 7r 50 Co40Cr 200 Col8Cr6Pt31a 500 2550 Cr Col7Cr51a 50 1800 7r 50 Co40Cr 20 Col8Cr6Pt31a 500 250 Cr Col7Cr57a 50 1800 7 20 Co40Cr 20 Col8Cr6Pt31a 500 250 Cr157 Col7Cr57a 50 2200 C 20 Co40Cr 20 Col8Cr6Pt31a 500 2520 Cr157 Col7Cr8Pt31a 50 200 C 20 Co40Cr 20 <th>試験例7</th> <th>رز</th> <th>Col7Cr5Ta</th> <th>20</th> <th>1800</th> <th>Re</th> <th>20</th> <th>Co40Cr</th> <th>200</th> <th>Col8Cr6Pt3Ta</th> <th>200</th> <th>2435</th> <th>15.4</th>	試験例7	رز	Col7Cr5Ta	20	1800	Re	20	Co40Cr	200	Col8Cr6Pt3Ta	200	2435	15.4
Cr Col7Cr51a SO 1800 SiC SO Co40Cr 200 Col8Cr6Pt31a 500 2450 Cr Col7Cr51a SO 1800 Ti SO Co40Cr 200 Col8Cr6Pt31a 500 2450 Cr Col7Cr51a SO 1800 Zr SO Co40Cr 200 Col8Cr6Pt3Ta 500 2450 Cr Col7Cr5Ta SO 1800 Z Co40Cr 200 Col8Cr6Pt3Ta 500 2350 Cr Col7Cr5Ta SO 1800 C 20 Co40Cr 200 Col8Cr6Pt3Ta 500 2350 Cr15W Co20Cr8Pt2Ta2Zr SO 2200 C 20 Co40Cr 200 Col8Cr6Pt3Ta 500 2320 Cr15W Co20Cr8Pt3Ta2Zr SO 2000 C 20 Co40Cr 200 Col8Cr6Pt3Ta 500 2820 Cr15W Co19Cr6Pt3Ta2Zr SO 2000 C 20 Co40Cr 200 </th <th>其数例8</th> <th>ت</th> <th>Col 7Cr 5Ta</th> <th>20</th> <th>1800</th> <th>CuTi</th> <th>20</th> <th>Co40Cr</th> <th>200</th> <th>Col8Cr6Pt3Ta</th> <th>200</th> <th>2050</th> <th>14.4</th>	其数例8	ت	Col 7Cr 5Ta	20	1800	CuTi	20	Co40Cr	200	Col8Cr6Pt3Ta	200	2050	14.4
Cr Col7Cr5Ta 50 1800 Ti 50 Co40Cr 200 Co18Cr6P13Ta 500 2450 Cr Col7Cr5Ta 50 1800 2r 50 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr Col7Cr5Ta 50 1800 C 2 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr Col7Cr5Ti3Mo Co17Cr5Ta 50 1800 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2350 Cr15Ti3Mo Co18Cr8P13Ta2Zr 50 2200 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2820 Cr15W Co20Cr8P13Ta3Zr 50 200 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2820 Cr15W Co16Cr8P13Ta2Zr 50 1800 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2820 Cr15W Co16Cr6P12Ta2Ra 50 Co40Cr 20	試験例9	ت	Coi7Cr5Ta	20	1800	Sic	20	Co40Cr	200	Col8Cr6Pt3Ta	200	2250	14.8
Cr Col7Cr51a 50 1800 2r 50 Co40Cr 200 Co18Cr6F13Ta 500 2350 Cr Col7Cr51a 50 1800 C 2 Co40Cr 200 Co18Cr6F13Ta 500 2350 Cr Co17Cr5Ta 50 1800 7 300 Co40Cr 400 Co18Cr6F13Ta 500 2350 Cr15Ti3Mo Co18Cr5F12Ba2rr 50 2200 C 20 Co40Cr 200 Co18Cr6F13Ta 500 2350 Cr15Ti3Mo Co16Cr8Pt2Ta2Ra 50 2200 C 20 Co40Cr 200 Co18Cr6F13Ta 500 2350 Cr15T Co16Cr8Pt2Ta2Ra 50 1900 C 20 Co40Cr 200 Co18Cr6Pt3Ta 500 2520 Cr41 Co19Cr8Pt2Ta2Ra 50 1800 C 20 Co40Cr 200 Co18Cr6Pt3Ta 500 2520 Cr Co17Cr5Ta S0 1800 C 20	成数例10		Col 7Cr5Ta	20	1800	Ţi	20	Co40Cr	200	Col8Cr6Pt3Ta	200	2450	14.7
Cr Col7Cr5Ta SO 1800 C 2 Co40Cr 200 Col8Cr6Pl3Ta 500 780 Cr Col7Cr5Ta SO 1800 R 300 Co40Cr 400 Col8Cr6Pl3Ta 500 2350 Cr15N Col2Cr8Pr1Ta3Zr SO 2200 C 20 Co40Cr 200 Col8Cr6Pl3Ta 500 2720 Cr15N Co20Cr8Pr1Ta3Zr SO 1900 C 20 Co40Cr 200 Col8Cr6Pl3Ta 500 2820 Cr15N Col9Cr8Pr1Ta3Zr SO 1900 C 20 Co40Cr 200 Col8Cr6Pl3Ta 500 2820 Cr41s Col9Cr8Pl3Ta SO 1800 C 20 Co40Cr 200 Col8Cr6Pl3Ta 500 2820 Cr Col7Cr5Ta SO 1800 C 20 Co40Cr 200 Col8Cr6Pl3Ta 500 435 Cr Col7Cr5Ta Col7Cr5Ta Col8Cr6Pl3Ta SO Col8Cr6Pl3Ta<	試験例!!	ت	Col7Cr5Ta	20	1800	2r	20	Co40Cr	200	Col 8Cr 6P i 3Ta	200	2350	15.0
Cr Col7Cr5Ta SO 1800 W 300 Co40Cr 400 Co18Cr6P13Ta 500 2350 Cr15Ti3Mo Co18Cr5P12Ta2Zr SO 2200 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2720 Cr15W Co20Cr8P12Ta3Zr SO 2000 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2820 Cr15W Co20Cr8P12Ta2Rr SO 1900 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2820 Cr4Ti Co19Cr6P13Ta SO 1800 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2820 Cr Co17Cr5Ta SO 1800 C 20 Co40Cr 200 Co18Cr6P13Ta 500 435 Cr Co17Cr5Ta SO 1800 C 20 Co40Cr 200 Co18Cr6P13Ta 500 435	試験例12	ت	Col7Cr5Ta	20	1800	J J	2	Co40Cr	500	Ce 18Cr6P13Ta	200	780	1.0
Cr15Ti 3Mo Co18Cr5Fi2Ta2Zr SO 2200 C 20 Co40Cr 200 Co18Cr6Fi3Ta SO 2720 Cr15M Co20Cr8Pi1Ta3Zr SO 2000 C 20 Co40Cr 200 Co18Cr6Fi3Ta 500 2820 Cr15W Co15Cr8Pi3Ta SO 1900 C 20 Co40Cr 200 Co18Cr6Pi3Ta 500 2520 Cr4Ti Co19Cr6Pi3Ta SO 2000 C 20 Co40Cr 200 Co18Cr6Pi3Ta 500 2520 Cr Co17Cr5Ta SO 1800 C 20 Co40Cr 200 Co18Cr6Pi3Ta 500 435	試験例13		Col7Cr5Ta	20	0081	254	300	Co40Cr	400	Co18Cr6P13Ta	200	2350	13.9
Cr15W Co20Cr8P111a3Zr S0 2000 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2820 Cr15V Co17Cr8P13Ta S0 1900 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2550 Cr4Ti Co19Cr6P12Ta2Re S0 2000 C 20 Co40Cr 200 Co18Cr6P13Ta 500 435 Cr Co17Cr5Ta S0 1800 C 20 Co40Cr 200 Co18Cr6P13Ta 500 1850	試験例14	Cr15Ti3Mo	Col8Cr5Pt2Ta22r	20	2200	J J	20	C040Cr	200	Co18Cr6P13Ta	200	2720	15.9
Cr15V Col7Cr8P13Ta S0 1900 C 26 Co40Cr 200 Co18Cr6P13Ta 500 2650 Cr4Ti Co19Cr6P12Ta2Re S0 2000 C 20 Co40Cr 200 Co18Cr6P13Ta 500 2520 Cr Co17Cr5Ta S0 1800 C 20 Co40Cr 200 Co18Cr6P13Ta 500 435	試験例15		Co20Cr8P11Ta3Zr	05	2000	U	20	Co40Cr	002	Co 18Cr 6Pt 3Ta	200	2820	1 9
Cr4Ti Co19Cr6P12fa2Re S0 2000 C 10 Co40Cr 200 Co18Cr6P13fa 500 2520 Cr Co17Cr5fa S0 1800 C 20 Co40Cr 200 Co18Cr6P13fa 500 435 Cr Co17Cr5fa S0 1800 C 20 - - Co18Cr6P13fa 500 1850	战败例16		Col7Cr8Pt3Ta	20	1900	S	20	C040C;	200	Co 18Cr6Pt 3Ta	200	2650	15.4
Cr Col7Cr5Ta 50 1800 Co40Cr 200 Col8Cr6Pt3Ta 500 435 Cr Col7Cr5Ta 50 1800 C 20 - Col8Cr6Pt3Ta 500 1850 i	成款例17	Cr4Ti	Co19Cr6P12Ta2Re	20	2000	J	02	Co40Cr	200	Col8Cr6P13Ta	200	2520	15.6
Cr CoilCr57a 50 1800 C 20 - Co18Cr6Pt37a 500 185n i	試験例18		Col7Cr5Ta	20	1800	1	-	Co40Cr	200	Co18Cr 6Pt 3Ta	200	435	10.3
	試験例19		Coi 7Cr5Ta	20	1800	U	20			Co18Cr6Pt3Ta	200	1850	12.6

【0025】表1より、分離膜4を設け、これをTa、Re、CuTi、SiC、W、NiP、Zr、Ti、またはCからなるものとした磁気記録媒体は、ノイズ特性に優れたものとなったことがわかる。また、分離膜4の厚さを300Åとした試験例12の磁気記録媒体は、再生時の孤立波形がわずかにダイパルス波形を含むものとなったが、他の試験例のものについては単峰型の孤立波形が得られた。

[0026]

【発明の効果】以上説明したように、本発明の磁気記録

媒体にあっては、汎用の面内磁気記録媒体を再生する際 に用いられる信号処理法の適用が可能となり、しかもノ イズ特性に優れたものとなる。

【図面の簡単な説明】

【図1】 本発明の磁気記録媒体の一実施形態を示す一部断面図である。

【符号の説明】

- 1 · · · 基板、2 · · 面内磁性膜下地膜、3 · · 面内磁性膜、4 · · · 分離膜
- 5…非磁性中間層、6…垂直磁性膜

【図1】

フロントページの続き

(72)発明者 酒井 浩志

千葉県市原市八幡海岸通5-1 昭和電工 株式会社HD研究開発センター内 (72)発明者 逢坂 哲彌

東京都新宿区大久保三丁目4番1号 学校 法人早稲田大学理工学部内

拒絶理由通知書

特許出願の番号

平成11年 特許願 第283228号

起案日

平成13年 4月26日

特許庁審查官

後藤 亮治

9610 2G00

特許出願人代理人

福島 祥人

烂

適用条文

第29条第2項、第36条

この出願は、次の理由によって拒絶をすべきものである。これについて意見があれば、この通知書の発送の日から60日以内に意見書を提出して下さい。

理 由

1. この出願は、明細書及び図面の記載が下記の点において不備であり、特許法第36条第6項に規定する要件を満たしていない。

記

- 1-1. 【請求項1】、【請求項14】、【請求項15】及び【請求項16】において、「表示部の外周部」との記載があるが、表示部内の外周部を意味するものであるのか、非表示部における表示部と隣接する部位を指すものであるのか明確でなく、特許を受けようとする発明が明確に把握できない。
- 1-2. 【請求項2】、【請求項9】、【請求項10】、【請求項11】及び【請求項13】において、「表示部の表示画面の外周」との記載があるが、1-1. 同様いかなる部位を指すものであるのか明確でなく、特許を受けようとする発明が明確に把握できない。
- 1-3. 【請求項1】及び【請求項16】において、「前記温度差推定値に基づき前記表示部に表示される画像の輝度を制御する」との記載があるが、該記載のみでは温度差推定値に基づいて画像の輝度をどのように制御しているか不明であ続葉有

続 葉

- り、該記載により特許を受けようとする発明が明確に把握できない。
- 2. 本願の下記の請求項に係る発明は、本願の出願の日前の出願であって、本願の出願後に出願公開された下記の出願(以下「先願」という。)の願書に最初に添付した明細書及び図面(以下「先願明細書」という。)に記載された発明と同一であり、しかも、本願の発明者が先願に係る上記の発明をした者と同一でなく、また本願の出願の時において、本願の出願人が先願の出願人と同一でもないので、特許法第29条の2の規定により特許を受けることができない。

記

先願

1. 特願平10-91941号(特開平11-288244号公報参照。)

請求項1乃至3、5乃至12、14乃至16 理由2 先願1 備考

請求項1乃至3、5乃至12、14乃至16に係る発明について (対比)

先願明細書1には、「外部から入力される映像信号に応じた輝度で画像を表示する表示部と、前記映像信号から前記表示部の表示画面の温度に対応する温度推定値を推定する温度推定手段と、表示部内の外周部の温度に対応する基準値と前記温度推定値とを用いて温度差推定値を求める演算手段と、前記温度差推定値に基づき前記表示部に表示される画像の輝度を制御する制御手段を備えた表示装置」が記載されている。

よって、本願の請求項1乃至3、5乃至12、14乃至16に係る発明と先願明細書1に記載された発明とを比較すると、両者には、構成上の差異はない。

この拒絶理由通知書中で指摘した請求項以外の請求項に係る発明については、 現時点では、拒絶の理由を発見しない。拒絶の理由が新たに発見された場合には 拒絶の理由が通知される。

先行技術文献調査結果の記録

- ・調査した技術分野
 - IPC第7版, G09G3/00-3/38
- ・先行技術文献 特開平11-231828号公報、特開平11-194745号公報、特開平11-212517号公報

続 葉

この先行技術文献調査結果の記録は、拒絶理由を構成するものではない。

この拒絶理由通知書に不明な点がある場合、または、この案件について面接を希望する場合は、特許審査第一部応用物理 後藤 亮治(TEL 03-3581-1101,内線 3224~3226,FAX 03-3501-0604)までご連絡ください。