2. Inverse Geometry

5 minutes trailer

Direct geometry

The geometric model is a tree of joints and bodies

$$\mathbf{M}(\mathbf{q}) = \mathbf{M}_1 \oplus \mathbf{M}_1(\mathbf{q}_1) \oplus \mathbf{M}_2 \oplus \ldots \oplus \mathbf{M}_4 \oplus \mathbf{M}_4(\mathbf{q}_4) \oplus \mathbf{M}_e$$

Representation!

ŗ

0

This is a point

This is not a point
This is the representation of a point

Rotation

Rotation matrices

$$R = \begin{pmatrix} r00 & r01 & r02 \\ r10 & r11 & r12 \\ r20 & r21 & r22 \end{pmatrix}$$

Derivation of a matrix

$$\dot{R} = \cdots$$

Angular velocity / Angle vector

Formal definition

$$\dot{R} = \omega \times R$$

- From rotation to velocity
 - □ R -> w
- □ From velocity to rotation?
 - □ w -> R ... integrate
- Meaning of w?
- Angle axis representation

Quaternions

- Start from complex
 - □ 1, i, -1, -i, 1 ...
 - □ X, Y, -X, -Y, X ...
 - Complexs can map the 2D plan, and the 2D rotation
- □ Hamilton (again!) says: let's do it more complex
 - \Box j so that j² = -1 and ij = -ji
 - \Box ij = k , jk = i ...
 - \square $x \times y = z$, $y \times z = x$...
- Unit quaternions map 3D rotations
 - \square q = [w, x, y, z] = cos($\alpha/2$), sin $\alpha/2$)[a,b,c]

Inverse geometry

- Being given a x* ...
- \Box what is q such that $h(q) = x^*$

$$M^{-1}: x^* \to q = M^{-1}(x^*)$$

$$M(q) = \begin{bmatrix} l_1 \cos(q_1) + l_2 \cos(q_1 + q_2) \\ l_1 \sin(q_1) + l_2 \sin(q_1 + q_2) \end{bmatrix}$$

Numerical inversion of the geometry

- □ Computing analytically h⁻¹ is difficult and tedious
- We can compute it numerically!
- Problem definition

$$search f(x) - f^* = 0$$

$$min || f(x) - f^* ||$$

Follow the slope

□ Decreasing sequence: $f(x_{k+1}) < f(x)$

Problem specifications

- Problem specification
 - \Box Computing f(x) is easy
 - \square We can derivate $f: x \rightarrow f(x)$
 - We know the distance to the reference value

Newton method (unconstrained)

x0=-1.9 x1=-1.4263158 x2=-1.1274228 x3=-1.0144015 x4=-1.0002045 x5=-1.00000004 x6=-1.

Convergence rate

	linear	superlinear	quadratic
0	1.	1.	1.
1	1.207106781186547524400844	1.207106781186547524400844	1.5
2	1.310660171779821286601267	1.345177968644245874001408	1.417893218813452475599156
3	1.362436867076458167701478	1.396954663940882755101619	1.414220332308854580746306
4	1.388325214724776608251583	1.410761782686652590061675	1.414213562396011063892029
5	1.401269388548935828526636	1.413638265758687972345020	1.414213562373095048801952
6	1.407741475461015438664163	1.414131377142465466450736	1.414213562373095048801689
7	1.41 0977518917055243732926	1.414203289219266351007820	
8	1.412595540645075146267307	1.41421 2420911558526824592	
9	1.41 3404551509085097534498	1.414213 448226941396603980	
10	1.413809056941090073168094	1.4142135 51996171989510988	
11	1.414011309727803239103546	1.41421356 1508351460527464	
12	1.414 112436050449143952618	1.4142135623 06576311242133	
13	1.414162999211772096377153	1.4142135623 68343710404578	
14	1.414188280721722894470766	1.414213562372778292908548	
15	1.414200921547403971636228	1.414213562373075251558368	
16	1.414207241960249510218958	1.414213562373093884257964	
17	1.414210402166672279510324	1.414213562373094984104816	
18	1.414211982269883664156006	1.414213562373095045396590	
19	1.414212772250778178360193	1.414213562373095048631434	
20	1.414213167311936613580941	1.414213562373095048793582	
21	1.414213364913226509309970	1.414213562373095048801321_	
22	1.414213463643160779055829	1.414213562373095048801673	
23	1.414213513008127913928759	1.414213562373095048801689	p=2
	22		•
81	1.41421356237309504880 $\frac{r_{k-1}}{r}$	$\rightarrow \alpha$ 0<\alpha<1, p>1	

Gradient descent

Gradient descent

The nemesis: the Rosenbrock's banana function

$$f(x,y) = (1-x)^2 + 100 * (y-x^2)^2$$

Examples

- Ill-conditionned hessian
- Non positive hessian

