NOTE

ON THE COMPLEMENTATION OF BÜCHI AUTOMATA

Jean-Pierre PECUCHET

Laboratoire d'Informatique de Rouen, 76130 Mont-Saint-Aignan, France

Communicated by D. Perrin Received June 1986

Abstract. Given a Büchi automaton with n states, we propose an elementary construction of a Büchi automaton with $O(16^{n^2})$ states which recognizes the complement of the ω -language recognized by the first one.

1. Introduction

Büchi [1] has shown that the class of ω -languages recognized by finite automata is closed under complementation. The first constructions of a Büchi automaton for the complement of the set recognized by a given n-state Büchi automaton [2, 3, 4, 7] involved a doubly exponential blow-up (at least 2^{2^n} states). More recently Sistla, Vardi and Wolper [8] have announced the construction of an automaton with only $O(16^{n^2})$ states. Here we give a new construction, which is simpler and more complete, of another Büchi automaton with $O(16^{n^2})$ states for the complement. The method is based on notions from [1] and a lemma from [6].

2. Preliminaries

A Büchi automaton on the finite alphabet A is a finite automaton $\mathfrak{A} = (Q, I, T, E)$ where Q is the finite set of states, I and T are the subsets of initial and terminal states respectively, and $E \subseteq Q \times A \times Q$ the set of edges. It recognizes the ω -regular language \mathfrak{A}^{ω} formed of all ω -words for which there is a run starting in an initial state and passing infinitely often through a terminal state.

With this automaton \mathfrak{A} the terminal transition semigroup of state relations is associated which is the image of A^+ in the morphism $\theta: A^+ \to SS(\mathfrak{A})$ defined by

$$\theta(a) = \begin{pmatrix} \sigma(a) & \tau(a) \\ \emptyset & \sigma(a) \end{pmatrix}. \tag{1}$$

Here, $\sigma(a) = \{(p, q) \in Q^2 | (p, a, q) \in E\}$ and $\tau(a) = \{(p, q) \in Q^2 | (p, a, q) \in E \text{ with } p \in T \text{ or } q \in T\}.$

96 J.-P. Pécuchet

If $f: A^+ \to S$ is a semigroup morphism, we call every ω -language of the form $f^{-1}(m)f^{-1}(e)^{\omega}$ with m = me and $e^2 = e$ an elementary f-language. We say that f saturates an ω -language $L \subseteq A^{\omega}$ if every elementary f-language intersecting L is included in L.

Let us recall some elementary facts.

Proposition ([1]). (1) If f saturates L, it also saturates the complement $\bar{L} = A^{\omega}/L$.

- (2) f saturates L iff L is the union of all elementary f-languages intersecting it.
- (3) The terminal transition morphism θ saturates \mathfrak{A}^{ω} .

Proof. (1): Is an immediate consequence of the definition.

- (2): The 'if'-part is evident. For the 'only-if'-part the union is trivially included in L; and the equality is obtained by showing, via Ramsey's Theorem, that every element of A^{ω} is contained in an elementary f-language.
- (3): Let $\theta^{-1}(m)\theta^{-1}(e)^{\omega}$ be an elementary θ -language intersecting \mathfrak{A}^{ω} , and let $\alpha = uv_1v_2...$ be a factorization of an element α in the intersection, with $\theta(u) = m$ and $\theta(v_i) = e$ for every *i*. Because me = e and $e^2 = e$, we can suppose, after possibly grouping some v_i 's, that there is a run of \mathfrak{A} over α of the form

$$i_0 \stackrel{u}{\rightarrow} q_0 \stackrel{v_1}{\rightarrow} q_0 \stackrel{v_2}{\rightarrow} q_0 \rightarrow \cdots,$$

where $i_0 \in I$ and every run $q_0 \rightarrow^{v_i} q_0$ goes through a terminal state. Let now β be another element of $\theta^{-1}(m)\theta^{-1}(e)^{\omega}$ and let $\beta = u'v'_1v'_2...$ be a factorization with $\theta(u') = m$ and $\theta(v'_i) = e$ for all i. We then have

$$(i_0, q_0) \in \sigma(u) = \{(p, q) | \text{there is a run } p \xrightarrow{u} q\} = \sigma(u')$$

and

$$(q_0, q_0) \in \tau(v_i) = \{(p, q) | \text{there is a run } p \xrightarrow{v_i} q \text{ going through}$$

a terminal state $\} = \tau(v_i')$.

So we have a run of $\mathfrak A$ over β of the form

$$i_0 \stackrel{u'}{\rightarrow} q_0 \stackrel{v'_1}{\rightarrow} q_0 \stackrel{v'_2}{\rightarrow} s_0 \rightarrow \cdots,$$

where every run $q_0 \to v_i' q_0$ goes through a terminal state; this shows that $\beta \in \mathfrak{A}^{\omega}$. \square

Our construction relies on the two following lemmas. The first one is a technical result on elementary languages.

Lemma 1 ([5]). Let u and v be two words with $e = e^2 = \theta(v)$ and $m = me = \theta(u)$. Then the elementary θ -language $\theta^{-1}(m)\theta^{-1}(e)^{\omega}$ intersects \mathfrak{A}^{ω} iff there exists $i \in I$ and $q \in Q$ such that $(i, q) \in \sigma(u)$ and $(q, q) \in \tau(v)$.

Proof. First suppose that $\theta^{-1}(m)\theta^{-1}(e)^{\omega}$ intersects L. This elementary language is then included in L by the Proposition, and thus, the word uv^{ω} is accepted by \mathfrak{A} . Then if $p_0 \to^u p_1 \to^v p_2 \to^v \cdots$ is an accepting run, we can obtain a pair (i, q) with the desired property by taking p_0 for i and any state occurring infinitely often among the p_i s for q.

The converse is evident. \square

We are now going to prove our key lemma. It relies on an idea of reverse determinism.

Lemma 2 ([6]). Let $f: A^+ \to S$ be a morphism, $e \in S$ an idempotent, and M a subset of S for which every element $m \in M$ satisfies me = m. Let S^1 be the monoid deduced from S by the adjunction of a new identity denoted by 1. Then the Büchi automaton

$$\mathfrak{A} = \{S^1, M, \{1\}, \{(r, a, s) | f(a)s = r \text{ or } f(a)s = re\}\}\$$

recognizes the language $L = \bigcup_{m \in M} f^{-1}(m) f^{-1}(e)^{\omega}$.

Proof. A simple verification shows that for this automaton the relation σ in (1) is defined by $\sigma(u) = \{(r, s) | f(u)s = r \text{ or } f(u)s = re\}$. Thus, for every $m \in M$, we have a path of the form $m \to^u 1$ iff f(u) = m = me, and a path of the form $1 \to^u 1$ iff f(u) = e. The conclusion follows. \square

Now we can give our construction.

Theorem. Given a Büchi automaton \mathfrak{A} with n states, one can effectively construct a Büchi automaton with $4^{n^2} (4^{n^2}+1)$ states which recognizes the complement of \mathfrak{A}^{ω} .

Proof. It is clear that we can effectively construct the terminal transition morphisms $\theta: A^+ \to SS(\mathfrak{A})$ and the semigroup $S = SS(\mathfrak{A})$, whose cardinality is at most equal to $m = 2^{2n^2}$.

By the Proposition, θ saturates the language $L = A^{\omega}/\mathfrak{A}^{\omega}$, which can thus be expressed in the form $L = \bigcup_{e \in E} L_e$ with

$$E = \{e = e^2 \mid \exists m \colon \theta^{-1}(m)\theta^{-1}(e)^{\omega} \cap L \neq \emptyset\}, \qquad L_e = \bigcup_{m \in M_e} \theta^{-1}(m)\theta^{-1}(e)^{\omega}$$

and

$$M_e = \{m \mid me = m \text{ and } \theta^{-1}(m)\theta^{-1}(e)^{\omega} \cap L \neq \emptyset\}.$$

Further, E and the M_e can be effectively computed by Lemma 1. As in Lemma 2, we can then construct, for every $e \in E$, a Büchi automaton \mathfrak{A}_e with m+1 states recognizing L_e . The disjoint union of these automata gives a Büchi automaton that recognizes L and whose number of states is at most equal to m(m+1). \square

98 J.-P. Pécuchet

References

- [1] J.R. Büchi, On a decision method in restricted second-order arithmetic, in: *Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science* (Stanford Univ. Press, 1962) 1-11.
- [2] J.R. Büchi, The monadic theory of ω_1 , Lecture Notes in Mathematics 328 (Springer, Berlin, 1973) 1-127.
- [3] Y. Choueka, Theories of automata on ω-tapes: A simplified approach, J. Comput. System Sci. 8 (1974) 117-141.
- [4] R. McNaughton, Testing and generating infinite sequences by a finite automaton, *Inform. and Control* 9 (1966) 521-530.
- [5] J.P. Pécuchet, Automates boustrophédons et mots infinis, Theoret. Comput. Sci. 35 (1985) 115-122.
- [6] J.P. Pécuchet, Variétés de semigroupes et mots infinis, Lecture Notes in Computer Science 210 (Springer, Berlin, 1986) 180-191.
- [7] D. Siefkes, Decidable Theories I—Büchi's Monadic Second-order Successor Arithmetics, Lecture Notes in Mathematics 120 (Springer, Berlin, 1970).
- [8] A.P. Sistla, M.Y. Vardi and P. Wolper, The Complementation Problem for Büchi Automata with Applications to Temporal Logic, Lecture Notes in Computer Science 194 (Springer, Berlin, 1985).