

IT-214 Database Management System PROJECT TITLE: "TOURISM GUIDE DATABASE"

Student ID	Name
202201017	Om Lachake
	(Representative)
202201041	Dhriti Goenka
202201060	Chintan Bhara
202201071	Nirva Patel
202201076	Vidhi Dhanani

FUNCTIONAL DEPENDENCY SET: Customer ID → CustomerName Customer ID → ContactNumber Customer ID → Email Customer ID → Gender Customer ID → City Customer ID → DOB ContactNumber → Customer ID ContactNumber → CustomerName ContactNumber → Email ContactNumber → Gender ContactNumber → City ContactNumber → DOB Destination Name → Type of Place Destination Name → City Destination_Name → Nearby Landmark Destination Name → Area Destination_Name → Pincode Destination Name → Bus Station(Distance) Destination Name → Railway Station(Distance) Pincode → Area Pincode → City {City, Pincode} → Area {Area, Pincode} → City {Nearby Landmark, Pincode} → City {Nearby Landmark, Pincode} → Area {Landmark, Area, City} → Pincode {Dest_Name, Sight_Name} → Timing {Dest Name, Sight Name} → TicketPrice {Dest_Name, Sight_Name} → Distance_from_Dest {Cust ID, Destination Name} → Start Date {Cust ID, Destination Name} → No of Days Tour ID → Company Name Tour ID → Website Tour ID → Email ID Tour ID \rightarrow Rating {Destination Name, Tour ID, Customer ID} → StartDate {Destination Name, Tour_ID, Customer_ID} → EndDate {Destination Name, Tour ID, Customer ID} → Budget Constraint {Destination Name, Tour ID, Customer ID} → Children {Destination Name, Tour ID, Customer ID} → Adults {Tour_ID, Destination_Name} → Consultant_Fee {Tour_ID, Destination_Name} → Refund Percentage {Tour ID, Destination Name, Days} → Amount Hotel ID → Hotel Name Hotel ID \rightarrow Type of Hotel Hotel ID → Distance from Destination

```
Hotel_ID → Rating
```

Hotel ID → Website

Website→ Hotel ID

Website → Type of Hotel

Website → Distance from Destination

Website → Hotel Name

Website → Rating

{Hotel_ID, Room_Type} → Total Rooms

{Hotel_ID, Room_Type} → Price

{RoomType, Hotel_ID, Days} → Amount Percentage

Hotel ID → ContactNumber

{Hotel_ID, Room_Type, Room_No, Startdate} → Cust_ID

{Hotel ID, Room Type, Room No, Startdate} → EndDate

{Hotel_ID, Room_Type, Room_No, Startdate} → Tour_ID

{Hotel_ID, Room_Type, Room_No, Startdate} → Children

{Hotel_ID, Room_Type, Room_No, Startdate} → Adults

{Hotel_ID, Room_Type, Startdate, Cust_ID} \rightarrow Tour_ID

{Hotel_ID, Room_Type, StartDate, Cust_ID} → CancellationDate

{Hotel_ID, Room_Type, StartDate, Cust_ID} → EndDate

{Hotel ID, Cust ID} → Stars

{Dest Name, Cust ID} → Stars

{Tour ID, Cust ID} → Stars

{Cust ID, StartDate} → Hotel ID

MINIMAL FUNCTIONAL DEPENDENCY SET: Customer ID → CustomerName Customer ID → ContactNumber Customer ID → Email Customer ID → Gender Customer ID → City Customer ID → DOB Destination_Name → Type of Place Destination_Name → City Destination Name → Nearby Landmark Destination Name → Area Destination Name → Pincode Destination Name → Bus Station(Distance) Destination Name → Railway Station(Distance) Pincode → Area Pincode → City {Landmark, Area, City} → Pincode {Dest Name, Sight Name} → Timing {Dest Name, Sight Name} → TicketPrice {Dest Name, Sight Name} → Distance from Dest {Cust ID, Destination Name} → Start Date {Cust ID, Destination Name} → No of Days Tour_ID → Company Name Tour ID → Website Tour ID → Email ID Tour ID → Rating {Destination Name, Tour ID, Customer ID} → StartDate {Destination Name, Tour ID, Customer ID} → EndDate {Destination_Name, Tour_ID, Customer_ID} → Budget_Constraint {Destination Name, Tour ID, Customer ID} → Children {Destination Name, Tour ID, Customer ID} → Adults {Tour ID, Destination Name} → Consultant Fee {Tour ID, Destination Name} → Refund Percentage {Tour ID, Destination Name, Days} → Amount Hotel ID → Hotel Name Hotel ID \rightarrow Type of Hotel Hotel ID → Distance from Destination Hotel ID → Rating Hotel ID → Website Website→ Hotel ID Website → Type of Hotel Website → Distance from Destination Website → Hotel Name Website → Rating {Hotel ID, Room Type} \rightarrow Total Rooms {Hotel ID, Room Type} → Price

```
 \begin{tabular}{l} & \{RoomType,\ Hotel\_ID,\ Days\} \to Amount\ Percentage \\ & \ Hotel\_ID \to ContactNumber \\ & \{Hotel\_ID,\ Room\_Type,\ Room\_No,\ Startdate\} \to Cust\_ID \\ & \{Hotel\_ID,\ Room\_Type,\ Room\_No,\ Startdate\} \to EndDate \\ & \{Hotel\_ID,\ Room\_Type,\ Room\_No,\ Startdate\} \to Children \\ & \{Hotel\_ID,\ Room\_Type,\ Room\_No,\ Startdate\} \to Adults \\ & \{Hotel\_ID,\ Room\_Type,\ Startdate,\ Cust\_ID\} \to Tour\_ID \\ & \{Hotel\_ID,\ Room\_Type,\ StartDate,\ Cust\_ID\} \to CancellationDate \\ & \{Hotel\_ID,\ Room\_Type,\ StartDate,\ Cust\_ID\} \to EndDate \\ & \{Hotel\_ID,\ Cust\_ID\} \to Stars \\ & \{Dest\_Name,\ Cust\_ID\} \to Stars \\ & \{Tour\ ID,\ Cust\ ID\} \to Stars \\ & \{Tour\ ID,\ Cust\ ID\} \to Stars \\ & \{Tour\ ID,\ Cust\ ID\} \to Stars \\ \end{tabular}
```

{Cust ID, StartDate} → Hotel ID

NORMALIZATION PROOFS:

CUSTOMER (Customer ID, CustomerName, ContactNumber, Email, Gender, City, DOB): Customer ID → {CustomerName, ContactNumber, Email, Gender, City, DOB} ContactNumber → {Customer ID, CustomerName, Email, Gender, City, DOB} Computing the primary key: {Customer ID}⁺ → {Customer ID,CustomerName, ContactNumber,Email,Gender, City, DOB} {ContactNumber}⁺ → {Customer ID,CustomerName, ContactNumber,Email,Gender, City, DOB} Customer_ID and ContactNumber can both be the primary key. **BCNF Proof**: The relation is in BCNF because all functional dependencies have Customer ID or ContactNumber on the left. **DESTINATION** (<u>Destination Name</u>, Type of Place, City, Nearby Landmark, Area, Pincode, Bus Station(Distance), Railway Station(Distance)): Destination_Name → {Type of Place, City, Nearby Landmark, Area, Pincode, Bus_Station(Distance), Railway Station(Distance) Pincode → Area Pincode → City {Landmark, Area, City} → Pincode Computing the primary key: {Destination Name}⁺ → {Destination Name, Type of Place, City, Nearby Landmark, Area, Pincode, Bus_Station(Distance), Railway_Station(Distance)} {Destination Name} is the primary key. BCNF Proof: The relation is not in BCNF because the last three functional dependencies do not have the primary key on left. **SIGHTSEEING PLACES** (Dest Name, Sight Name, Timing, Ticket price, Distance from Dest): {Dest Name, Sight Name} → {Timing, TicketPrice, Distance from Dest} Computing the primary key: {Dest Name, Sight Name}⁺ → {Dest Name, Sight Name, Timing, TicketPrice, Distance from Dest} {Dest Name, Sight Name} is the primary key. **BCNF Proof:** The relation is in BCNF because all functional dependencies have the primary key {Dest_Name, Sight_Name} on the left.

VISITED (Destination Name, Customer ID, No of Days, StartDate): {Destination Name, Customer ID} \rightarrow {No of Days, StartDate}

Computing the primary key:

{Destination Name, Customer ID} $^+ \rightarrow$ {Destination Date, Customer ID, No of Days, StartDate}

{Desination_Name, Customer_ID} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Desination_Name, Customer_ID} on the left.

TOURS & TRAVELS (Tour_ID, Company Name, Website, Email_ID, Rating):

Tour_ID → {Company Name, Website, Email_ID, Rating}

Computing the primary key:

 ${Tour_ID}^+ \rightarrow {Tour_ID, Company Name, Website, Email_ID, Rating}$ ${Tour_ID}$ is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Tour_ID} on the left.

TOURIST (<u>Destination_Name, Tour_ID, Customer_ID</u>, StartDate, EndDate, Budget_Constraint, Children, Adults):

{Destination_Name, Tour_ID, Customer_ID} → {StartDate, EndDate, Budget_Constraint, Children, Adults

Computing the primary key:

 $\label{localization_Name, Tour_ID, Customer_ID}^+ \to \{ Destination_Name, Tour_ID, Customer_ID, StartDate, \\ EndDate, Budget_Constraint, Children, Adults \}$

{Destination Name, Tour ID, Customer ID} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Destination_Name, Tour_ID, Customer ID} on the left.

PRICING CONDITIONS (Tour ID, Destination Name, Consultant_Fee, Refund_Percentage):

{Tour_ID, Destination_Name} → {Consultant_Fee, Refund_Percentage}

Computing the primary key:

 $\{Tour_ID, Destination_Name\}^+ \rightarrow \{Tour_ID, Destination_Name, Consultant_Fee, Refund_Percentage\} \\ \{Tour_ID, Destination_Name\} is the primary key.$

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Destination_Name, Tour_ID} on the left.

PACKAGES (Tour_ID, Destination_Name, Day, Amount):

{Tour ID, Destination Name, Days} → Amount

Computing the primary key:

{Tour_ID, Destination_Name, Days}⁺ → Amount

{Tour ID, Destination Name, Days} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Tour_ID, Destination_Name, Days} on the left.

HOTELS (Hotel ID, Hotel Name, Type of Hotel, Distance from Destination, Rating, Website):

Hotel ID → {Hotel Name, Type of Hotel, Distance from Destination, Rating, Website}

Website→ {Hotel ID, Hotel Name, Type of Hotel, Distance from Destination, Rating}

Computing the primary key:

{Hotel_ID}⁺ → {Hotel_ID, Hotel Name, Type of Hotel, Distance from Destination, Rating, Website}

{Website}⁺ → {Hotel ID, Hotel Name, Type of Hotel, Distance from Destination, Rating, Website}

{Hotel ID} and {Website} can both be the primary keys.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Hotel ID} or {Website} on the left.

ROOM TYPE (Hotel ID, Room Type, Total Rooms, Price):

 $\{Hotel_ID, Room_Type\} \rightarrow \{Total Rooms, Price\}$

Computing the primary key:

{Hotel_ID, Room_Type}⁺ → {Hotel_ID, Room_Type, Total Rooms, Price}

{Hotel ID, Room Type} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Hotel ID,Room Type} on the left.

REFUND POLICY (<u>RoomType</u>, <u>Hotel_ID</u>, <u>Days</u>, Amount Percentage):

{RoomType, Hotel ID, Days} → Amount Percentage

Computing the primary key:

{RoomType, Hotel ID, Days}⁺ → {RoomType, Hotel ID, Days, Amount Percentage}

{RoomType, Hotel_ID, Days} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {RoomType, Hotel_ID, Days} on the left.

BOOKINGS (<u>Hotel_ID, Room_Type, Room_No, Startdate, Cust_ID, Enddate, Tour_ID, Children, Adults): {Hotel_ID, Room_Type, Room_No, Startdate} → {Cust_ID, Enddate, Tour_ID, Children, Adults}</u>

Computing the primary key:

 $\label{eq:cust_ID} $$\{Hotel_ID, Room_Type, Room_No, Startdate\}^+ \to \{Hotel_ID, Room_Type, Room_No, Startdate, Cust_ID, Enddate, Tour_ID, Children, Adults\}$$

{Hotel_ID, Room_Type, Room_No, Startdate} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Hotel_ID, Room_Type, Room_No, Startdate} on the left.

CANCELLATIONS (<u>Hotel_ID, Room_Type, Startdate, Cust_ID</u>, Tour_ID, CancellationDate, EndDate): $\{Hotel_ID, Room_Type, Startdate, Cust_ID\} \rightarrow \{Tour_ID, CancellationDate, EndDate\}$

Computing the primary key:

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

{Hotel ID, Room Type, Startdate, Cust ID} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Hotel_ID, Room_Type, Startdate, Cust_ID} on the left.

RATING_HOTEL (<u>Hotel_ID, Cust_ID</u>, Stars):

{Hotel ID, Cust ID} → Stars

Computing the primary key:

 $\{Hotel_ID,\,Cust_ID\}^{\scriptscriptstyle +} \to \{Hotel_ID,\,Cust_ID,\,Stars\}$

{Hotel_ID, Cust_ID} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Hotel ID, Cust ID} on the left.

RATING_DEST (<u>Dest_Name, Cust_ID</u>, Stars):

 $\{Dest_Name, Cust_ID\} \rightarrow Stars$

Computing the primary key:

{Dest_Name, Cust_ID}⁺ → {Hotel_ID, Cust_ID, Stars}

{Dest_Name, Cust_ID} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Dest_Name, Cust_ID} on the left.

```
RATING_T&T (\underline{\text{Tour\_ID}}, \underline{\text{Cust\_ID}}, \underline{\text{Stars}}): {\underline{\text{Tour\_ID}}, \underline{\text{Cust\_ID}}} \rightarrow \underline{\text{Stars}}
```

Computing the primary key:

 $\{Tour_ID, Cust_ID\}^+ \rightarrow \{Hotel_ID, Cust_ID, Stars\}$

{Tour ID, Cust ID} is the primary key.

BCNF Proof:

The relation is in BCNF because all functional dependencies have the primary key {Tour_ID, Cust_ID} on the left.

ROOM NUMBER (Hotel ID, Room Type, Room No):

Computing the primary key:

{Hotel_ID, Room_Type, Room_No}⁺ → {Hotel_ID, Room_Type, Room_No}

{Hotel_ID, Room_Type, Room_No} is the primary key.

This relation only has a non-trivial functional dependency. So, it is in BCNF, as all functional dependencies only have the primary key on the left.

TOUR CONTACT DETAILS (Tour ID, TContactNumber):

Computing the primary key:

 $\{Tour_ID, TContactNumber\}^+ \rightarrow \{Tour_ID, ContactNumber\}$

{Tour ID, TContactNumber} is the primary key.

This relation only has a non-trivial functional dependency. So, it is in BCNF, as all functional dependencies only have the primary key on the left.

AVAILABLE HOTEL(Destination Name, Hotel ID):

Computing the primary key:

{Destination Name, Hotel ID}⁺ → {Destination Name, Hotel ID}

{Destination Name, Hotel ID} is the primary key.

This relation only has a non-trivial functional dependency. So, it is in BCNF, as all functional dependencies only have the primary key on the left.

HOTEL CONTACT DETAILS (<u>Hotel_ID,HContactNumber</u>):

Computing the primary key:

{Hotel ID, HContactNumber}⁺ → {Hotel ID, ContactNumber}

{Hotel_ID, HContactNumber} is the primary key.

This relation only has a non-trivial functional dependency. So, it is in BCNF, as all functional dependencies only have the primary key on the left.