```
In [120]:
```

```
import numpy as np
import re
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
from sklearn.metrics import confusion matrix, accuracy score, mean squared error, r2 scor
from sklearn.linear model import LogisticRegression
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
import plotly.express as px
import scipy.stats as stats
import scipy.cluster.hierarchy as ch
import calendar
import datetime
```

In [129]:

```
data = pd.read_csv(r'C:\Users\Mannahil Miftah\Downloads\retail_services.csv')
data.head(10)
```

Out[129]:

	time.index	time.month	time.month name	time.period	time.year	data.inventories.all department stores	data.inventories.all other home furnishings stores	data.inventories.all other merchandise stores	data
0	1	1	Jan	Jan1992	1992	0	0	0	
1	2	2	Feb	Feb1992	1992	0	0	0	
2	3	3	Mar	Mar1992	1992	0	0	0	
3	4	4	Apr	Apr1992	1992	0	0	0	
4	5	5	May	May1992	1992	0	0	0	
5	6	6	Jun	Jun1992	1992	0	0	0	
6	7	7	Jul	Jul1992	1992	0	0	0	
7	8	8	Aug	Aug1992	1992	0	0	0	
8	9	9	Sep	Sep1992	1992	0	0	0	
9	10	10	Oct	Oct1992	1992	0	0	0	

10 rows × 197 columns

1

In [130]:

```
print(list(data.keys()))
```

['time.index', 'time.month', 'time.month name', 'time.period', 'time.year', 'data.invento ries.all department stores', 'data.inventories.all other home furnishings stores', 'data.inventories.all other merchandise stores', 'data.inventories.appliances and other electro nics stores', 'data.inventories.auto and other motor vehicles', 'data.inventories.automob ile dealers', 'data.inventories.automotive parts and tire stores', 'data.inventories.beer, wine, and liquor stores', 'data.inventories.book stores', 'data.inventories.building ma terials and garden supplies dealers', 'data.inventories.building supplies dealers', 'data.inventories.clothing stores', 'data.inventories.computer and software stores', 'data.inventories.discount department stores', 'data.inventories.drinking places', 'data.inventori es.electronic shopping and mail-order houses', 'data.inventories.electronics and applianc e stores', 'data.inventories.family clothing stores', 'data.inventories.floor covering st

```
ores', 'data.inventories.food and beverage stores', 'data.inventories.food services and d
rinking places', 'data.inventories.fuel dealers', 'data.inventories.full service restaura
nts', 'data.inventories.furniture and home furnishings stores', 'data.inventories.furnitu
re stores', 'data.inventories.furniture, home furn, electronics, and appliance stores', '
data.inventories.gafo', 'data.inventories.gasoline stations', 'data.inventories.general m
erchandise stores', 'data.inventories.gift, novelty, and souvenir stores', 'data.inventories.grocery stores', 'data.inventories.hardware stores', 'data.inventories.health and per sonal care stores', 'data.inventories.hobby, toy, and game stores', 'data.inventories.hom
e furnishings stores', 'data.inventories.household appliance stores', 'data.inventories.j
ewelry stores', 'data.inventories.limited service eating places', "data.inventories.men's
clothing stores", 'data.inventories.miscellaneous store retailers', 'data.inventories.mot or vehicle and parts dealers', 'data.inventories.new car dealers', 'data.inventories.non-
discount department stores', 'data.inventories.non-leased department stores', 'data.inven
tories.nonstore retailers', 'data.inventories.office supplies and stationery stores', 'da
ta.inventories.office supplies, stationery, and gift stores', 'data.inventories.other clo
thing stores', 'data.inventories.other general merchandise stores', 'data.inventories.pai
nt and wallpaper stores', 'data.inventories.pharmacies and drug stores', 'data.inventorie
s.radio, TV, and electronics stores', 'data.inventories.retail trade', 'data.inventories.
retail trade and food services', 'data.inventories.retail trade and food services, ex aut
o', 'data.inventories.retail trade, ex auto', 'data.inventories.shoe stores', 'data.inven
tories.sporting goods stores', 'data.inventories.sporting goods, hobby, book, and music s
tores', 'data.inventories.supermarkets and other grocery (except convenience) stores', 'd
ata.inventories.used car dealers', 'data.inventories.used merchandise stores', 'data.inve
ntories.warehouse clubs and superstores', "data.inventories.women's clothing stores", 'da
ta.ratio.all department stores', 'data.ratio.all other home furnishings stores', 'data.ra
tio.all other merchandise stores', 'data.ratio.appliances and other electronics stores',
'data.ratio.auto and other motor vehicles', 'data.ratio.automobile dealers', 'data.ratio.
automotive parts and tire stores', 'data.ratio.beer, wine, and liquor stores', 'data.rati
o.book stores', 'data.ratio.building materials and garden supplies dealers', 'data.ratio.
building supplies dealers', 'data.ratio.clothing stores', 'data.ratio.computer and softwa
re stores', 'data.ratio.discount department stores', 'data.ratio.drinking places', 'data.
ratio.electronic shopping and mail-order houses', 'data.ratio.electronics and appliance s
tores', 'data.ratio.family clothing stores', 'data.ratio.floor covering stores', 'data.ra
tio.food and beverage stores', 'data.ratio.food services and drinking places', 'data.rati
o.fuel dealers', 'data.ratio.full service restaurants', 'data.ratio.furniture and home fu
rnishings stores', 'data.ratio.furniture stores', 'data.ratio.furniture, home furn, elect ronics, and appliance stores', 'data.ratio.gafo', 'data.ratio.gasoline stations', 'data.r
atio.general merchandise stores', 'data.ratio.gift, novelty, and souvenir stores', 'data.
ratio.grocery stores', 'data.ratio.hardware stores', 'data.ratio.health and personal care
stores', 'data.ratio.hobby, toy, and game stores', 'data.ratio.home furnishings stores',
'data.ratio.household appliance stores', 'data.ratio.jewelry stores', 'data.ratio.limited
service eating places', "data.ratio.men's clothing stores", 'data.ratio.miscellaneous store retailers', 'data.ratio.motor vehicle and parts dealers', 'data.ratio.new car dealers'
, 'data.ratio.non-discount department stores', 'data.ratio.non-leased department stores',
'data.ratio.nonstore retailers', 'data.ratio.office supplies and stationery stores', 'dat
a.ratio.office supplies, stationery, and gift stores', 'data.ratio.other clothing stores'
, 'data.ratio.other general merchandise stores', 'data.ratio.paint and wallpaper stores',
'data.ratio.pharmacies and drug stores', 'data.ratio.radio, TV, and electronics stores',
'data.ratio.retail trade', 'data.ratio.retail trade and food services', 'data.ratio.retail trade and food services, ex auto', 'data.ratio.retail trade, ex auto', 'data.ratio.shoe
stores', 'data.ratio.sporting goods stores', 'data.ratio.sporting goods, hobby, book, and
music stores', 'data.ratio.supermarkets and other grocery (except convenience) stores', '
data.ratio.used car dealers', 'data.ratio.used merchandise stores', 'data.ratio.warehouse
clubs and superstores', "data.ratio.women's clothing stores", 'data.sales.all department
stores', 'data.sales.all other home furnishings stores', 'data.sales.all other merchandis
e stores', 'data.sales.appliances and other electronics stores', 'data.sales.auto and oth
er motor vehicles', 'data.sales.automobile dealers', 'data.sales.automotive parts and tir
e stores', 'data.sales.beer, wine, and liquor stores', 'data.sales.book stores', 'data.sa
les.building materials and garden supplies dealers', 'data.sales.building supplies dealer
s', 'data.sales.clothing stores', 'data.sales.computer and software stores', 'data.sales.
discount department stores', 'data.sales.drinking places', 'data.sales.electronic shoppin
g and mail-order houses', 'data.sales.electronics and appliance stores', 'data.sales.fami
ly clothing stores', 'data.sales.floor covering stores', 'data.sales.food and beverage st ores', 'data.sales.food services and drinking places', 'data.sales.fuel dealers', 'data.s
ales.full service restaurants', 'data.sales.furniture and home furnishings stores', 'data
.sales.furniture stores', 'data.sales.furniture, home furn, electronics, and appliance st ores', 'data.sales.gafo', 'data.sales.gasoline stations', 'data.sales.general merchandise stores', 'data.sales.gift, novelty, and souvenir stores', 'data.sales.grocery stores', 'd
ata.sales.hardware stores', 'data.sales.health and personal care stores', 'data.sales.hob by, toy, and game stores', 'data.sales.home furnishings stores', 'data.sales.household ap
pliance stores', 'data.sales.jewelry stores', 'data.sales.limited service eating places',
"data.sales.men's clothing stores", 'data.sales.miscellaneous store retailers', 'data.sal
```

es.motor vehicle and parts dealers', 'data.sales.new car dealers', 'data.sales.non-discou nt department stores', 'data.sales.non-leased department stores', 'data.sales.nonstore re tailers', 'data.sales.office supplies and stationery stores', 'data.sales.office supplies , stationery, and gift stores', 'data.sales.other clothing stores', 'data.sales.other gen eral merchandise stores', 'data.sales.paint and wallpaper stores', 'data.sales.pharmacies and drug stores', 'data.sales.radio, TV, and electronics stores', 'data.sales.retail trade e', 'data.sales.retail trade and food services', 'data.sales.retail trade and food services, ex auto', 'data.sales.retail trade, ex auto', 'data.sales.shoe stores', 'data.sales.s porting goods stores', 'data.sales.sporting goods, hobby, book, and music stores', 'data.sales.supermarkets and other grocery (except convenience) stores', 'data.sales.used car d ealers', 'data.sales.used merchandise stores', 'data.sales.warehouse clubs and superstore s', "data.sales.women's clothing stores"]

```
In [131]:
data.shape
Out[131]:
(289, 197)
In [132]:
data.dtypes
Out[132]:
time.index
                                                                              int64
time.month
                                                                              int.64
time.month name
                                                                             object
time.period
                                                                             object
time.year
                                                                              int64
data.sales.supermarkets and other grocery (except convenience) stores
                                                                              int64
data.sales.used car dealers
                                                                              int64
data.sales.used merchandise stores
                                                                              int64
data.sales.warehouse clubs and superstores
                                                                              int64
                                                                              int64
data.sales.women's clothing stores
Length: 197, dtype: object
How has retail economic activity in the United States changed over the past five years?
In [133]:
# columns which are of retail
retail col = [i for i in data.columns
                 if i.startswith('data.sales.retail')]
In [134]:
retail col
Out[134]:
['data.sales.retail trade',
 'data.sales.retail trade and food services',
 'data.sales.retail trade and food services, ex auto',
 'data.sales.retail trade, ex auto']
In [135]:
# copy the data of retail columns only
last 5 years = data[['time.year'] + retail col].copy()
last 5 years.head(10)
Out[135]:
```

data.sales.retail trade and food

services

data.sales.retail

trade

time.year

data.sales.retail trade,

ex auto

data.sales.retail trade and food

services, ex auto

0	1992 time.year	data.sale s3@tail	data.sales.retail trade and 6330	data.sales.retail trade and 6568	data.sales.retail 1000%,
1	1992	trade 131244	services 147079	services, ex auto 115862	ex auto 100027
2	1992	142488	159336	124200	107352
3	1992	147175	163669	127587	111093
4	1992	152420	170068	133608	115960
5	1992	151849	168663	130274	113460
6	1992	152586	169890	132076	114772
7	1992	152476	170364	134928	117040
8	1992	148158	164617	128734	112275
9	1992	155987	173655	136917	119249

In [136]:

```
last_5_years = last_5_years[last_5_years['time.year'] >= 2012]
last_5_years.head(5)
```

Out[136]:

	time.year	data.sales.retail trade	data.sales.retail trade and food services	data.sales.retail trade and food services, ex auto	data.sales.retail trade, ex auto
240	2012	315626	355332	293066	253360
241	2012	331777	372782	302230	261225
242	2012	368818	414545	333112	287385
243	2012	349455	393289	319594	275760
244	2012	373374	418940	338945	293379

In [137]:

```
year = last_5_years.groupby('time.year')[retail_col].sum()
year
```

Out[137]:

	data.sales.retail trade	data.sales.retail trade and food services	data.sales.retail trade and food services, ex auto	data.sales.retail trade, ex auto
time.year				,
2012	4306237	4831131	3943141	3418247
2013	4469022	5011740	4049759	3507041
2014	4632289	5208443	4174533	3598379
2015	4699327	5321997	4215309	3592639
2016	350025	400249	319532	269308

In [138]:

```
fig, axes = plt.subplots(2,2, figsize=(15, 10))
sb.barplot(data = last_5_years, x = 'time.year', y = 'data.sales.retail trade', ax = axe
s[0,0])
sb.barplot(data = last_5_years, x = 'time.year', y = 'data.sales.retail trade and food s
ervices', ax = axes[0,1])
sb.barplot(data = last_5_years, x = 'time.year', y = 'data.sales.retail trade and food s
ervices, ex auto', ax = axes[1,0])
sb.barplot(data = last_5_years, x = 'time.year', y = 'data.sales.retail trade, ex auto',
ax = axes[1,1])
```

Out[138]:

<AxesSubplot:xlabel='time.year', ylabel='data.sales.retail trade, ex auto'>

What are the key differences between the Advance Monthly Retail Trade Survey (MARTS) and the Annual Retail Trade Survey (ARTS)?

MARTS is conducted on monthly basis whereas ARTS is conducted is on yearly basis.

MARTS is for short-term analysis whereas ARTS is for long-term analysis.

```
In [139]:
```

```
marts = pd.DataFrame(data.groupby('time.period')['data.sales.all department stores'].sum(
)).reset_index()
arts = pd.DataFrame(data.groupby('time.year')['data.sales.all department stores'].sum()).
reset_index()
marts = marts.sort_values(by = 'data.sales.all department stores', ascending = False)
arts = arts.sort_values(by = 'data.sales.all department stores', ascending = False)
```

In [140]:

```
plt.figure(figsize=[20,8])
sb.scatterplot(data = marts.head(20), x = 'time.period', y = 'data.sales.all department
stores')
```

Out[140]:

<AxesSubplot:xlabel='time.period', ylabel='data.sales.all department stores'>


```
28000 -
```

Dec2000 Dec1999 Dec2001 Dec1998 Dec1997 Dec2004 Dec1996 Dec2002 Dec2005 Dec2003 Dec2006 Dec1995 Dec1994 Dec2007 Dec1993 Dec2008 Dec1992 Dec2010 Dec2009 Dec2011 time.period

In [141]:

```
plt.figure(figsize=[20,8]) sb.scatterplot(data = arts.head(20), x = 'time.year', y = 'data.sales.all department sto res')
```

Out[141]:

<AxesSubplot:xlabel='time.year', ylabel='data.sales.all department stores'>

Can we identify any seasonal patterns or trends in monthly retail sales data?

In [142]:

```
group = pd.DataFrame(data.groupby('time.period')['data.sales.all department stores'].sum(
))
group = group.sort_values(by = 'data.sales.all department stores', ascending = False).re
set_index()
group.head(10)
```

Out[142]:

time.period data.sales.all department stores

0	Dec2000	35437
1	Dec1999	35002
2	Dec2001	33838
3	Dec1998	33509
4	Dec1997	32783
5	Dec2004	32593
6	Dec1996	32246
7	Dec2002	31987
8	Dec2005	31821
9	Dec2003	31697

In [143]:

```
plt.figure(figsize=[20,10]) sb.barplot(data = group.head(10), x = 'time.period', y = 'data.sales.all department stor
```

```
es', palette = 'copper')
plt.title('December is the month with most sales in different years', fontdict={'fontname
': 'Monospace', 'fontsize': 20, 'fontweight': 'bold'})
plt.xlabel('Month', fontdict={'fontname':'Monospace', 'fontsize': 15,})
plt.ylabel('Sales', fontdict={'fontname':'Monospace', 'fontsize': 15,})
```

Out[143]:

Text(0, 0.5, 'Sales')

In [144]:

group = group.sort_values(by = 'data.sales.all department stores', ascending = True)
group.head(10)

Out[144]:

time.period data.sales.all department stores

288	Jan1992	10560
287	Jan2016	10571
286	Jan2014	10879
285	Jan2015	11083
284	Jan1993	11429
283	Feb2015	11466
282	Feb1992	11549
281	Feb1993	11595
280	Jan2013	11621
279	Jan2012	11659

In [145]:

```
plt.figure(figsize=[20,10])
sb.barplot(data = group.head(10), x = 'time.period', y = 'data.sales.all department stor
es', palette = 'Dark2')
plt.title('Top 10 months with low sales in different years', fontdict={'fontname': 'Monos
pace', 'fontsize': 20, 'fontweight': 'bold'})
plt.xlabel('Month', fontdict={'fontname':'Monospace', 'fontsize': 15,})
plt.ylabel('Sales', fontdict={'fontname':'Monospace', 'fontsize': 15,})
```

Out[145]:

In [146]:

```
month_retail = pd.DataFrame(data.groupby('time.month name')[retail_col].sum())
month_retail = month_retail.reset_index()
month_retail
```

Out[146]:

	time.month name	data.sales.retail trade	data.sales.retail trade and food services	data.sales.retail trade and food services, ex auto	data.sales.retail trade, ex auto
0	Apr	6481734	7230380	5638605	4889959
1	Aug	6854640	7641463	5958068	5171245
2	Dec	7880138	8656280	7177051	6400909
3	Feb	5797595	6477927	5071056	4390724
4	Jan	6164222	6896777	5479533	4746978
5	Jul	6691865	7472735	5815511	5034641
6	Jun	6688287	7453211	5802005	5037081
7	Mar	6578999	7340909	5680510	4918600
8	May	6852754	7639097	5967901	5181558
9	Nov	6710011	7439880	6027567	5297698
10	Oct	6595930	7365613	5841473	5071790
11	Sep	6391135	7131338	5616310	4876107

In [147]:

```
plt.figure(figsize=[18,6])
sb.barplot(data = month_retail, palette = 'Accent')
plt.title('Retail Sale Monthly Trend', fontdict={'fontname': 'Monospace', 'fontsize': 20
, 'fontweight': 'bold'})
plt.xlabel('Months', fontdict={'fontname':'Monospace', 'fontsize': 15,})
plt.ylabel('Sales', fontdict={'fontname':'Monospace', 'fontsize': 15,})
```

Out[147]:

```
Text(0, 0.5, 'Sales')
```

```
Retail Sale Monthly Trend
```


How does e-commerce activity compare to traditional retail sales on a quarterly basis?

```
In [173]:
```

```
data1 = data.copy()
data1 ['time.period'] = pd.to_datetime(data['time.period'])
data1['Quarter'] = data1['time.period'].dt.to_period('Q')
```

In [177]:

```
ecommerce_sales = data1.groupby('Quarter')['data.sales.electronic shopping and mail-order
houses'].sum()
traditional_sales = data1.groupby('Quarter')[retail_col].sum()
ecommerce_sales.index = ecommerce_sales.index.to_timestamp()
traditional_sales.index = traditional_sales.index.to_timestamp()
```

In [201]:

```
plt.figure(figsize=[18,6])
plt.plot(ecommerce_sales.index, ecommerce_sales, label='E-commerce Sales')
plt.plot(traditional_sales.index, traditional_sales, label='Traditional Retail Sales')
plt.title('E-commerce vs Traditional Retail Sales', fontdict={'fontname': 'Monospace', 'fontsize': 20, 'fontweight': 'bold'})
plt.xlabel('Quarter', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.ylabel('Total Sales', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.legend()
plt.show()
```


Are there any specific retail sectors that have shown significant growth or decline in recent years?

```
In [186]:
```

```
data_copy = data.copy()
data_copy['time.index'] = pd.to_datetime(data['time.index'])
```

In [200]:

```
grouping = data_copy.groupby('time.index')[retail_col].sum()
grouping = grouping.reset_index()
grouping.head(2)
```

Out[200]:

	time.index	data.sales.retail trade	data.sales.retail trade and food services	data.sales.retail trade and food services, ex auto	data.sales.retail trade, ex auto
0	1970-01-01 00:00:00.000000001	130683	146376	116565	100872
1	1970-01-01 00:00:00.000000002	131244	147079	115862	100027

In [202]:

```
plt.figure(figsize=[18,6])
plt.plot(grouping)
plt.title('Growth/Decline', fontdict={'fontname': 'Monospace', 'fontsize': 20, 'fontweig
ht': 'bold'})
plt.xlabel('Retail Sectors', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.ylabel('Growth', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.show()
```

No handles with labels found to put in legend.

What is the overall contribution of retail trade to the United States' GDP?

In [205]:

```
data_copy['gdp'] = (data_copy['data.sales.retail trade'] / 1000000) * 100
plt.figure(figsize=[18,6])
plt.plot(data_copy['time.year'], data_copy['gdp'])
plt.title('Contribution of Retail Trade to the US GDP', fontdict={'fontname': 'Monospace', 'fontsize': 20, 'fontweight': 'bold'})
plt.xlabel('Year', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.ylabel('Contribution', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.show()
```

Contribution of Retail Trade to the US GDP


```
20-
15-
1995 2000 2005 2010 2015
Year
```

How do retail operating expenses vary across different types of businesses?

```
In [225]:
```

Out[225]:

	data.inventories.all department stores		other merchandise stores	and other electronics stores		data.im
time.year						
1992	0	0	0	0	0	
1993	0	0	0	0	0	

2 rows × 64 columns

In [226]:

```
zero_cols = [ col for col, is_zero in ((diff == 0).sum() == diff.shape[0]).items() if is
_zero ]
diff.drop(zero_cols, axis=1, inplace=True)
diff.head(2)
```

Out[226]:

data.inventories.building				
materials and garden				
supplies dealers				

data.inventories.clothing data.inventories.food stores and beverage stores

data.inventories.furniture, home furn, electronics, and appliance stores

data.inventories.ge merchandise :

time.year

1992	246458	313147	326498	180985	5
1993	263226	335570	330438	202594	6
4					·····•

In [233]:

```
plt.figure(figsize=[10,8])
sb.scatterplot(data = diff)
plt.xlabel('Year', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.ylabel('Count', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.show()
```

```
1e6

7 - data.inventories.building materials and garden supplies dealers
data.inventories.clothing stores
data.inventories.food and beverage stores
data.inventories.furniture, home furn, electronics, and appliance stores
data.inventories.general merchandise stores
data.inventories.motor vehicle and parts dealers
data.inventories.non-leased department stores
data.inventories.retail trade
data.inventories.retail trade, ex auto
```


Is there a relationship between e-commerce sales and brick-and-mortar retail sales?

In [234]:

```
corr = data['data.sales.electronic shopping and mail-order houses'].corr(data['data.sales
.hardware stores'])
print("Correlation is", corr)
```

Correlation is 0.791367000392785

In [236]:

```
plt.figure(figsize=[10,8])
sb.scatterplot(data = data, x = 'data.sales.electronic shopping and mail-order houses',
y = 'data.sales.hardware stores')
plt.title('Relationship', fontdict={'fontname': 'Monospace', 'fontsize': 20, 'fontweight
': 'bold'})
plt.xlabel('E-commerce Sales', fontdict={'fontname': 'Monospace', 'fontsize': 15})
plt.ylabel('Brick-and-Mortar Retail Sales', fontdict={'fontname': 'Monospace', 'fontsize
': 15})
plt.show()
```


How accurate are the monthly estimates compared to the annual survey data?

In [237]:

Monthly survey is performed 12 times a year whereas annual survey is performed only onc e at then end of year.

By performing monthly survey we can clear insights about the data and the changes which might occur whereas in

annual survey data can be unreliable as changes might happen throughout the year & it c an be complex as well.

Can we identify any correlations between retail sales and macroeconomic indicators such as unemployment rates or consumer sentiment?

Can we identify any discrepancies between the retail data collected by MARTS, MRTS, ARTS, and the Economic Census of Retail Trade?

How do the retail sales patterns differ between rural and urban areas?

Are there any geographical variations in retail sales trends across different states or regions?

What is the market share of e-commerce sales compared to traditional retail sales?

How have retail operating expenses changed over the past decade?

What insights can we gain from comparing the detailed business operating expenses collected in the Business Expenses Supplement with other retail data sources?

In [238]:

Data is not provided for the above tasks

What are the main factors influencing fluctuations in monthly retail sales data?

In [241]:

sb.heatmap(data=diff.corr().round(2), cmap='coolwarm', annot=True, annot_kws={"size":8})
plt.show()

Can we predict future retail sales based on historical data and other relevant factors?

```
In [242]:
```

```
# Yes, by applying ML algorithms
```

Can we identify any outliers or anomalies in the retail sales data that require further investigation?

```
In [255]:
```

```
def cal outliers(data):
   q1 = data.quantile(0.25)
    q3 = data.quantile(0.75)
    iqr = q3 - q1
    lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
    result = data[(data < lower_bound) | (data > upper_bound)]
    return result
data1 = diff.keys()
result = cal_outliers(diff[data1])
result
```

Out[255]:

	data.inventories.building materials and garden supplies dealers	data.inventories.clothing stores	data.inventories.food and beverage stores	data.inventories.furniture, home furn, electronics, and appliance stores	data.inventories.ge merchandise s
time.year					
1992	NaN	NaN	NaN	180985.0	
1993	NaN	NaN	NaN	NaN	
1994	NaN	NaN	NaN	NaN	
1995	NaN	NaN	NaN	NaN	
1996	NaN	NaN	NaN	NaN	
1997	NaN	NaN	NaN	NaN	
1998	NaN	NaN	NaN	NaN	
1999	NaN	NaN	NaN	NaN	
2000	NaN	NaN	NaN	NaN	
2001	NaN	NaN	NaN	NaN	
2002	NaN	NaN	NaN	NaN	
2003	NaN	NaN	NaN	NaN	
2004	NaN	NaN	NaN	NaN	
2005	NaN	NaN	NaN	NaN	
2006	NaN	NaN	NaN	NaN	
2007	NaN	NaN	NaN	NaN	
2008	NaN	NaN	NaN	NaN	

2009 2010	NaN data.inventories.building materials and ga rden supplies dealers	NaN data.inventories.clothing stores	NaN data.inventories.food and beverage stores	NaN data.inventories.furniture, home furn, electronies, and appliance stores	data.inventories.g
2011 time.year	NaN	NaN	NaN	NaN	
2012	NaN NaN	NaN-	NaN-	NaN-	
2013	NaN	NaN	NaN	NaN	
2014	NaN	NaN	NaN	NaN	
2015	NaN	NaN	NaN	NaN	
2016	NaN	51397.0	45124.0	26479.0	79
4					Þ

What are the most significant challenges in reconciling the monthly and annual data for retail economic activity?

In [256]:

Direct Comparison Monthly and annual data as timeframes vary.

Consistency between monthly data and annual data can be complex as in monthly survey data is revised at the end of each month.

In []: