If $(x_k)_{k \in \mathbb{N}}$ is a sequence in \mathbb{R}^n , then for every $k \in \mathbb{N}$ we have

$$X_k = \begin{pmatrix} X_{k,1} \\ \vdots \\ X_{k,m} \end{pmatrix} \in \mathbb{R}^m,$$

which means that, for every $j \in \{1, ..., m\}$, we can consider the real-valued sequence of j-th coordinates $(X_{k,j})_{k \in \mathbb{N}}$.

Theorem 1. Let $(X_K)_{K\in\mathbb{N}}$ be a sequence in \mathbb{R}^m and $X\in\mathbb{R}^m$. Then $(X_K)_{K\in\mathbb{N}}$ converges to X if and only if all its coordinate sequences $(X_{K,i})_{K\in\mathbb{N}}$ converge to $X_{i,j}$, $j\in\{1,\dots,m\}$.

Proof. The proof follows immediately from the viegualities

$$|X_{k,j} - X_{j}| \le \left(\sum_{\nu=1}^{m} (X_{k,\nu} - X_{\nu})^{2} \right)^{\frac{1}{2}} = \|X_{k} - X\|$$

$$\le \sum_{\nu=1}^{m} |X_{k,\nu} - X_{\nu}| \quad j \in \{1, ..., m\}. \quad \square$$

Examples. i) Let (XK) KEN be a sequence

of vectors in \mathbb{R}^3 defined by $X_k = \left(\frac{1}{k}, 1 + \frac{1}{k^2}, e^{-k}\right)^T, k \in \mathbb{N}.$

Theorem 1 allows us to study the convergence of (XK)KEIN by studying the coordinates separately:

 $X_{k,7} = \frac{1}{k}$, $X_{k,2} = 1 + \frac{1}{k^2}$, $X_{k,3} = e^{-k}$.

We observe: limi $X_{k,7} = 0$, limi $X_{k,2} = 1$ $k \to \infty$

and $\lim_{k \to \infty} x_{k,3} = 0$, so we conclude

 $\lim_{k \to \infty} x_k = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$

ii) Let us consider $X_k = (-1)^k, \ k \in \mathbb{R}^2, \ k \in \mathbb{N}.$

We observe $X_{R,1} = (-1)^k$, $k \in \mathbb{N}$, and this sequence is not convergent. Hence, using Theorem 1, we conclude that $(X_R)_{R \in \mathbb{N}}$ is not convergent.

Next we turn to important "topological" properties of the Euclidean space.

Definition. A set $A \subset \mathbb{R}^m$ is bounded if there exists a positive number $\tau > 0$ such that $\|x\| \leq \tau$ for all $x \in A$.

Examples. i) The whole space \mathbb{R}^n is not bounded because for every $\tau > 0$ we find a vector $x \in \mathbb{R}^n$ with $\|x\| > \tau$.

- ii) The set Rx {0} cR2 is not bounded.
- iii) Open, half-open and closed intervals of the form (a,b), (a,b], [a,b) and [a,b] with a,beR are bounded subsets of R.
- iv) For $a \le b$ and $c \le d$ the set $[a,b] \times [c,d]$ is a bounded subset of \mathbb{R}^2 .
- Definition. Let $\tau > 0$ and $y \in \mathbb{R}^m$. We define the open ball centered aby with radius τ by $U_{\tau}(y) := \{x \in \mathbb{R}^m : ||x-y|| < \tau \}$. We define the closed ball centered at y with radius τ by radius τ by

 $\mathcal{B}_{\tau}\left(\gamma\right):=\left\{ x\in\mathcal{R}^{n}:\left\Vert x-\gamma\right\Vert \leq\tau\right\} .$

- Moteover, a set $A \subset \mathbb{R}^m$ is called <u>open</u> if for every $x \in A$ there exists some t > 0 such that $\mathcal{U}_{\tau}(x) \subset A$. A set $A \subset \mathbb{R}^m$ is <u>closed</u> if its complement $A \subset \mathbb{R}^m \setminus A$ is open.
- Examples. i) Open intervals (a,b) are open subsets of R, but intervals of the form [a,b] or [a,b] are meither open mor closed.
- ii) The empty set and Rⁿ both are open and closed subsets of Rⁿ. Such sets are called "clopen".
- iii) Open balls are open and closed balls are closed.
- iv) The upper half-plane $\{(x_1) \in \mathbb{R}^2 : X_2 > 0\}$ is an open subset of \mathbb{R}^2 .
- Remark. It is important to observe that the intersection of finitely many open sets gives an open set, and that the union of an arbitrary number of open sets gives an open set.
- <u>Definition</u>. Let $A \subset \mathbb{R}^m$ be an arbitrary subset. A point $x \in \mathbb{R}^m$ is a

- i) limit point of A if for every $\varepsilon > 0$ $(A \setminus \{x\}) \cap \mathcal{U}_{\varepsilon}(x) \neq \emptyset,$
- ii) boundary point of A if for every $\varepsilon > 0$ $A \cap \mathcal{U}_{\varepsilon}(x) \neq \emptyset \text{ and } A' \cap \mathcal{U}_{\varepsilon}(x) \neq \emptyset,$
- iii) interior point of A if there exists &70 such that $U_{\varepsilon}(x) \subset A$,
- iv) isolated point of A if there exists $\varepsilon > 0$ such that $A \cap \mathcal{U}_{\varepsilon}(x) = \{x\}.$

Moreover, we define

 $A' := \{ x \in \mathbb{R}^m : x \text{ is a limit point of } A \}$ "set of limit points of A'',

A:= {x \in R^m: x is an interior point of A}

"set of interior points of A",

DA:= {x \in R^n: x is a boundary point of A}

11 boundary of A",

 $\overline{A} := A \cup \partial A$ "closute of A".

Examples. i)
$$M = 1$$
, $A := \{0, 1] \cup \{2\}$

Then we have A' = [0,1], $\stackrel{\circ}{A} = (0,1)$, $\overline{A} = [0,1] \cup \{2\}$, and x = 2 is an isolated point.

(i)
$$m=2$$
, $A:=\{(x_1)\in\mathbb{R}^2: x_1^2+x_2^2<1\}\cup\{(1),(1)\}$

Then we have $A' = \{ (x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \leq 1 \}$,

$$A^{\circ} = \{ \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \in \mathbb{R}^{2} : x_{1}^{2} + x_{2}^{2} < 1 \} ,$$

$$\partial A = \left\{ \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \in \mathbb{R}^2 : X_1^2 + X_2^2 = 1 \right\} \cup \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\},$$

$$\bar{A} = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : \ \ x_1^2 + x_2^2 \leq 1 \right\} \cup \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\},$$

and (1), (-1) are isolated points.

Remarks. i) It follows from the definitions that a set $A \subset \mathbb{R}^m$ is open if and only if $A = \mathring{A}$.