

GTÜ BİL MUH BİL 495

BIL 495 İlk Sunum

Gökhan HAS

Proje Danışmanı: Dr. Burcu YILMAZ Kasım 2020

İçerik

- Projenin Şeması ve Tanımı
- Proje Tasarım Planı
- Proje Gereksinimleri
- Başarı Kriterleri
- Kaynaklar

Proje Şeması ve Tanımı

Kanunlarda varlık isimlerinin derin öğrenme ile tespiti

Projede verilen kanun metni içeriğinden varlık isimlerinin (kişi, yer, kurum vb.) çıkarılmasının yapılması planlanmaktadır.

Proje Tasarım Planı

4. MODEL EĞİTİLMESİ

Proje Gereksinimleri - 1

- "Kanunlarda Varlık İsimlerinin Derin Öğrenme İle Tespiti" projesi için:
 - Derin öğrenme yöntemleriyle varlık isimlerini tanıyacak algoritma geliştirmeliyim.
 - En uygun derin öğrenme algoritmasını kullanarak, projemin doğruluk oranını arttırmalıyım.
 - Kanun metinlerinden etiketlenmesi mümkün kelimeleri çıkarmalıyım.
 - Çıkardığım kelimeleri teker teker cümlelerdeki anlamlarına göre etiketleyerek bir veri seti oluşturmalıyım.
 - Oluşturduğum bu veri setinde tüm etiketlerden yeteri kadar kelime bulundurmalıyım.
 - Modelimin eğitim sonuçlarına göre veri setimi büyültüp, genişletmeliyim.

Proje Gereksinimleri - 2

- Kullanabileceğim derin öğrenme yöntemleri
- BERT (Bidirectional Encoder Representations from Transformers)
- Bi-LSTM

Proje Gereksinimleri - 3

 Yazılım dili olarak Python ve modülleri olan Tensorflow, Keras, Pytorch kütüphaneleri kullanılabilir.

- Derin öğrenme modelini eğitmek ve test etmek için online olarak Google Colab veya Kaggle Kernels kullanılabilir.
- Veri kümesi olarak kanun metinlerindeki kelimelerin etiketli halleri bulunan bir veri kümesi oluşturulup, kullanılacaktır.

BİL 495/496 Bitirme Projesi

Başarı Kriterleri

VALIDATION ACCURACY	F1 SCORE	VALIDATION ERROR
> 60 %	> 50 %	< 20 %

$$\frac{TP + TN}{TP + FP + TN + FN}$$

GTÜ - Bilgisayar Mühendisliği Bölümü

Recall =
$$\frac{TP}{TP + FN}$$

$$F_1 = 2*\frac{precision*recall}{precision+recall}$$

Kaynaklar

- 1. https://www.kaggle.com/pendu777/bert-for-named-entity-recognition? select=ner_dataset.csv
- https://app.diagrams.net/
- 3. https://data.mendeley.com/datasets/cdcztymf4k/1
- 4. http://www.madeinturkeydergisi.com/kanunlar/
- 5. https://www.mevzuat.gov.tr/#kanunlar
- 6. https://www.kaggle.com/abhishek/entity-extraction-model-using-bert-pytorch
- 7. https://www.kaggle.com/shoumikgoswami/ner-using-random-forest-and-crf

