可測基数ノート

でぃぐ

2023年2月12日

概要

本稿は可測基数についてのノートである.

目次

1 可測基数の初歩 1

2 正規フィルター 6

 $oldsymbol{3}$ 宇宙 V の超冪と,初等埋め込み

本稿の内容はほぼ Jech のテキスト [Jec06] を参考にしている.

1 可測基数の初歩

定義 1.1. S を無限集合とする. S 上の (一様かつ σ 加法的な確率) **測度**とは μ : $\mathcal{P}(S) \to [0,1]$ であって、次を満たすものである:

- (1) $\mu(\emptyset) = 0, \mu(S) = 1$
- (2) $X \subseteq Y \subseteq S$ なら、 $\mu(X) \leq \mu(Y)$
- (3) (一様性) 任意の $s \in S$ について $\mu(s) = 0$
- (4) $(\sigma$ 加法性) $X_n, n \in \omega$ が互いに素な S の部分集合たちであれば、

$$\mu\left(\bigcup_{n\in\omega}X_n\right)=\sum_{n\in\omega}\mu(X_n).$$

測度論で扱う測度は S 上のある σ 加法族を定義域とするものであったが,ここで扱う測度は定義域が $\mathcal{P}(S)$ なことに注意しよう.

定義 1.2. μ を S 上の測度とする. $A\subseteq S$ が原子であるとは, $\mu(A)>0$ かつ任意の $X\subseteq A$ に対して $\mu(X)=0$ または $\mu(X)=\mu(A)$ となるものである.原子が存在しない測度を原子なしの測度という.

- **定義 1.3.** (1) 基数 κ が**可測基数**であるとは、 κ 上の κ 完備な非単項超フィルターが存在することを言う.
 - (2) 基数 κ が**実数値可測基数**であるとは、 κ 上の κ 加法的測度が存在することを言う.

S上の非単項超フィルターを考えることと,S上の値域が $\{0,1\}$ である (つまり,2 値である) 測度を考えることは同じである.

実際, 非単項超フィルターUに対して

$$\mu(X) = \begin{cases} 1 & (X \in U) \\ 0 & (X \notin U) \end{cases}$$

で定義される測度を対応される写像と, 2 値測度 μ に対して非単項超フィルター

$$U = \mu^{-1}\{1\}$$

を対応させる写像は互いの逆写像である.

また,この対応において,超フィルターが κ 完備なことと測度が κ 加法的なことが対応する.よって,可測基数は実数値可測基数である.

定義 1.4. 集合 S 上のイデアル I で σ 飽和的であるとは,I に属さない S の部分集合族で互いに素なものはどれも,族の濃度が可算であることを意味する.

S上の測度 μ から来るイデアル $I_{\mu}=\mu^{-1}\{0\}$ は必ず σ 飽和的である.なぜなら,A が I に属さない(すなわち μ の測度が正な)部分集合で互いに素なものとしよう.このとき正の自然数 n に対して $\mu(A)>1/n$ を満たす $A\in A$ は n 個しかない.よって,A は有限集合の可算和であるから,たかだか可算濃度を持つ.

補題 1.5. 可測基数は到達不能基数である.

証明. κ を可測基数とする.

 κ の正則性を示す. κ 上の κ 完備な非単項超フィルター U を取る. κ が特異だとすると, κ の共終列 $\langle \lambda_i : i < \operatorname{cf}(\kappa) \rangle$ でおのおのの λ_i は κ 未満なものが取れる. 今, $\kappa = \bigcup_{i < \operatorname{cf}(\kappa)} \lambda_i$ である. 左辺 κ は U に属するが,右辺はおのおのの λ_i が U の意味で小さく,その $\operatorname{cf}(\kappa) < \kappa$ 個の和集合だから U の意味で小さい.矛盾した.なお,ここで,おのおのの λ_i が小さいのは各 1 点集合が小さく, λ_i はその $\lambda_i < \kappa$ 個の和集合として書けるからである.

 κ の強極限性を示す.背理法で,ある $\lambda<\kappa$ について, $2^{\lambda}\geq\kappa$ だと仮定する.集合 $S\subseteq\{0,1\}^{\lambda}$ で $|S|=\kappa$ となるものを取る.集合 S 上の κ 完備な非単項超フィルター U を取る.各 $\alpha\in\lambda$ について集合 $X_{\alpha}\subseteq S$ を

$$\{f \in S : f(\alpha) = 0\}$$
 \$ \(\mathbf{L} \left\) \(\left\) \(\frac{1}{2} \) \(\frac{1}{2} \)

でUに属する方とする. 集合Xを

$$X = \bigcap_{\alpha < \lambda} X_{\alpha}$$

で定めると $X \in U$ であるが、明らかに X は 1 点集合である.これは U の非単項性に矛盾.

- **補題 1.6.** (1) κ を次を満たす最小の基数とする:非単項 σ 完備な超フィルターが存在する.U をそのような超フィルターの一つとする.このとき,U は κ 完備である.
 - (2) κ を次を満たす最小の基数とする: κ 上の測度が存在する. μ をそのような測度とする. このとき測度 0 集合のイデアル I_{μ} は κ 完備である.
 - (3) κ を次を満たす最小の基数とする: κ 上の σ 完備かつ σ 飽和的イデアルが存在する. I をそのようなイデアルとする. このとき I は κ 完備である.

証明. (1). U が κ 完備でないと仮定する. すると κ の分割 $\{X_\alpha: \alpha<\gamma\}$ があって, $\gamma<\kappa$ かつ各 X_α は U の意味で小さい. 関数 $f\colon \kappa\to\gamma$ を次で定める:

$$f(x) = \alpha \iff x \in X_{\alpha}.$$

つまり,各入力 $x<\kappa$ について,x が何番目のピースに属しているかを返す関数である. γ 上の超フィルター D を

$$D = \{ Z \subseteq \gamma : f^{-1}(Z) \in U \}$$

で定める. U が σ 完備なので,D も σ 完備である.D は非単項でもある:なぜなら,各 $\alpha < \gamma$ について $f^{-1}\{\alpha\} = X_{\alpha} \notin U$ より $\alpha \notin D$ だからである.したがって,D は γ 上の単項 σ -完備な超フィルターだが, $\gamma < \kappa$ より,これは κ の最小性に矛盾.(2). I_{μ} が κ 完備ではないと仮定する.すると測度 0 集合の族 $\{X_{\alpha}: \alpha < \gamma\}$ で, $\gamma < \kappa$ かつ,それらの和集合 $X = \bigcup_{\alpha < \gamma} X_{\alpha}$ は測度正なものがとれる. X_{α} たちは互いに素であると仮定しても良い. $f: X \to \gamma$ を

$$f(x) = \alpha \iff x \in X_{\alpha}$$

と定め、 γ 上の測度 ν を

$$\nu(Z) = \frac{\mu(f^{-1}(Z))}{\mu(X)}$$

と定める. ν は σ 加法的である. また, ν は一様である, なぜなら, 各 $\alpha<\gamma$ について $\nu(\{\alpha\})=\frac{\mu(X_\alpha)}{\mu(X)}=0$ だからである. これは κ の最小性に反する.

$$(3)$$
 の証明は (1) や (2) と同様である.

 μ を集合 S 上の測度とし, I_{μ} を測度 0 集合のイデアルとすれば, μ が κ 加法的なら, I_{μ} が κ 完備なことは明らかである.逆も言える:

補題 1.7. μ を集合 S 上の測度とし, I_{μ} を測度 0 集合のイデアルとする.このとき,もし I_{μ} が κ 完備なら, μ は κ 加法的である.

証明. $\gamma < \kappa$ とし、 $\langle X_\alpha : \alpha < \gamma \rangle$ を互いに素な S の部分集合の族とする. X_α たちが互いに素なので、そのうちたかだか可算個が正の測度を持つ. よって、

$$\{X_{\alpha}:\alpha<\gamma\}=\{Y_n:n\in\omega\}\cup\{Z_{\alpha}:\alpha<\gamma\}$$

と書くことができる. ここに各 Z_{α} は測度 0 集合. よって,

$$\mu(\bigcup_{\alpha < \gamma} X_{\alpha}) = \mu(\bigcup_{n \in \omega} Y_n) + \mu(\bigcup_{\alpha < \gamma} Z_{\alpha})$$

を得る. μ が σ 加法的なので,

$$\mu(\bigcup_{n\in\omega}Y_n)=\sum_{n\in\omega}\mu(Y_n)$$

である. また, I_{μ} が κ 完備なので,

$$\mu(\bigcup_{\alpha<\gamma} Z_{\alpha}) = 0$$

である. 以上より,

$$\mu(\bigcup_{\alpha < \gamma} X_{\alpha}) = \sum_{\alpha < \gamma} \mu(X_{\alpha})$$

を得る.

- 補題 1.8. (1) ある集合上の原子なしの測度が存在するとき、ある基数 $\kappa \leq 2^{\aleph_0}$ 上に測度が存在する.
 - (2) I を集合 S 上の σ 完備 σ 飽和的イデアルとする.このとき,ある $Z\subseteq S$ に対して $I\upharpoonright Z=\{X\subseteq Z:X\in I\}$ が極大イデアルであるか,または, σ 完備 σ 飽和的イデアルがある $\kappa\leq 2^{\aleph_0}$ 上に存在するかのどちらかが成り立つ.

証明. (1). μ をそのような測度とする. S の測度正な部分集合からなり,逆向きの包含関係で順序付けられた木 T を構成する. T の根は S である. 各 $X \in T$ について,X の測度正な集合への分割 $X = Y \cup Z, Y \cap Z = \varnothing$ を取り,この 2 つを X の直後の元とする. α が極限順序数のとき T の第 α レベルにはすべての共通部分 $X = \bigcap_{\xi < \alpha} X_{\xi}$ であって, $\langle X_{\xi} : \xi < \alpha \rangle$ は $T \upharpoonright \alpha$ の増大鎖で X_{ξ} は第 ξ レベルの元,X は測度正なものたちを置く.

T のどの枝も可算である:なぜなら、 $\langle X_{\xi}: \xi < \alpha \rangle$ が枝ならば、 $\langle X_{\xi} \setminus X_{\xi+1}: \xi < \alpha \rangle$ は測度正な集合の互いに素な族となるからである.

同様に、T のどのレベルも可算であることも分かる. よって、T はたかだか 2^{\aleph_0} 個の極大枝を持つ (4 $\alpha < \omega_1$ について高さ α の極大枝の個数はたかだか 2^{\aleph_0} . よってそれらの ω_1 個の和集合でたかだか 2^{\aleph_0} 個となる).

 $\{b_{\alpha}: \alpha < \kappa\}, \kappa \leq 2^{\aleph_0}$ をすべての極大枝 $b = \{X_{\xi}: \xi < \gamma\}$ であって, $\bigcap_{\xi < \gamma} X_{\xi}$ が非空なものの枚挙とする.各 $\alpha < \kappa$ について $Z_{\alpha} = \bigcap b_{\alpha}$ とおく. $\{Z_{\alpha}: \alpha < \kappa\}$ は S の測度 0 集合への分割となる(Z_{α} が測度 0 でないとすると,一個高さを上げることができ枝の極大性に反する;また,互いの異なる極大枝 b_{α} と b_{β} はどこかで枝分かれしているはずだから,後続ステップでの構成の仕方より, $X_{\alpha} \cap X_{\beta} = \emptyset$ を得る;覆っていることは $s \in S$ を任意に取るとき,s が入っている集合を根から追跡することにより,ある X_{α} に s が入っていることがわかるからよい).あとは $f \colon S \to \kappa$ を $f(x) = \alpha \iff x \in Z_{\alpha}$ とおき, κ 上の測度 ν を $\nu(Z) = \mu(f^{-1}(Z))$ とおけば, ν は一様な σ 加法的測度である.

系 1.9. κ が実数値可測基数ならば、 κ は可測基数か、 $\kappa \leq 2^{\aleph_0}$ である.より一般に、 κ が κ 完備 σ 飽和的イデアルを持つと、 κ は可測基数であるか、 $\kappa \leq 2^{\aleph_0}$ である.

証明. 補題 1 の証明より, μ が S 上の原子なしの測度なら,S のたかだか 2^{\aleph_0} 個への測度 0 個の分割が存在することがわかる.つまり, μ は $(2^{\aleph_0})^+$ 加法的ではない.したがって,原子なしの κ 加法的測度 κ が持つとき, $\kappa \leq 2^{\aleph_0}$ である (結論の否定を取ると, $\kappa \geq (2^{\aleph_0})^+$ だが,これと κ 加法性より $(2^{\aleph_0})^+$ 加法性が出るから).後半の主張も同様.

補題の (1) の主張の結論には「原子なし」が含まれていなかったが,これは実際には「原子なし」と結論付けられる.なぜなら,原子があると κ は可測基数となるが,補題 1.5 より,それは $\kappa \leq 2^{\aleph_0}$ と相容れないからだ.

定義 1.10. (\aleph_1, \aleph_0) -Ulam 行列とは, ω_1 の部分集合の族 $\langle A_{\alpha,n} : \alpha \in \omega_1, n \in \omega \rangle$ であって,次の 2 条件を満たすものである.

- (1) 各 $n \in \omega$ と異なる $\alpha, \beta \in \omega_1$ について $A_{\alpha,n} \cap A_{\beta,n} = \emptyset$ である.
- (2) 各 $\alpha \in \omega_1$ について、集合 $\omega_1 \setminus \bigcup_{n \in \omega} A_{\alpha,n}$ はたかだか可算集合である.

補題 1.11. (\aleph_1, \aleph_0)-Ulam 行列は存在する.

証明. 各 $\xi \in \omega_1$ に対して $f_{\xi} : \omega \to \omega_1$ を $\xi \subseteq \operatorname{ran}(f_{\xi})$ なるものとする. 集合 $A_{\alpha,n}$ を

$$\xi \in A_{\alpha,n} \iff f_{\xi}(n) = \alpha$$

と定める.

 $\xi \in A_{\alpha,n} \cap A_{\beta,n}$ なら $\alpha = f_{\xi}(n) = \beta$ となるので、Ulam 行列の条件 (1) が成り立っていることがわかる.

 $\alpha \in \omega_1$ とする. $\xi > \alpha$ に対して、 f_{ξ} の取り方より、 $f_{\xi}(n) = \alpha$ となる $n \in \omega$ が存在する. よって、

$$[\alpha+1,\omega_1)\subseteq\bigcup_{n\in\omega}A_{\alpha,n}$$

なので条件(2)も成り立っている.

演習問題 1.12. (\aleph_1, \aleph_0) -Ulam 行列の定義において、「各行は可算集合を除いてほとんど ω_1 を覆っている」という条件を「各行は ω_1 を (完全に) 覆っている」と変更したバージョンは存在しないことを示せ.

補題 1.13. ω_1 上の σ 完備 σ 飽和的イデアルは存在しない. 特に ω_1 上の測度は存在しない.

証明. そのようなイデアル I が存在したと仮定する.また, $\langle A_{\alpha,n}:\alpha\in\omega_1,n\in\omega\rangle$ を (\aleph_1,\aleph_0) -Ulam 行列とする.I の σ 完備性と Ulam 行列の条件(2)より,各 α について自然数 n_α があって, $A_{\alpha,n}$ は I-正である.したがって,鳩の巣原理より, $W\subseteq\omega_1$, $|W|=\aleph_1$, $n\in\omega$ があって,すべての $\alpha\in W$ について $n_\alpha=n$ である.すると $\{A_{\alpha,n}:\alpha\in W\}$ は互いに素(by Ulam 行列の条件(1))な非可算な I-正集合の族となる.これは I の σ 飽和性に矛盾する.

以上の ω_1 を一般の後続基数に一般化できる. 証明は同様なので省略する.

定義と補題 1.14. λ を基数とする.

(1) (λ^+, λ) -Ulam 行列とは, λ^+ の部分集合の族 $\langle A_{\alpha,\eta} : \alpha \in \lambda^+, \eta \in \lambda \rangle$ であって,次の 2 条件を満たすものである.

- (a) 各 $\eta \in \lambda$ と異なる $\alpha, \beta \in \lambda^+$ について $A_{\alpha,\eta} \cap A_{\beta,\eta} = \emptyset$ である.
- (b) 各 $\alpha \in \lambda^+$ について、集合 $\lambda^+ \setminus \bigcup_{n \in \lambda} A_{\alpha,n}$ は λ 以下の濃度を持つ.
- (2) (λ^+, λ) -Ulam 行列は存在する.
- (3) λ^+ 上の λ^+ 完備 σ 飽和的イデアルは存在しない.

系 1.15. 任意の実数値可測基数は、弱到達不能基数である.

証明. κ を実数値可測基数とする. 正則なことは補題 1.5 と同様の証明でよい. 後続基数でないことは、定義と補題 1.14 から分かる.

以上より次が結論付けられる:ZFC に「ある集合上の測度が存在する」という命題を加えた公理系の無矛盾性の強さは ZFC より真に強い.なぜなら「ある集合上の測度が存在する」からはその測度が原子ありかなしかに応じて,到達不納基数か弱到達不能基数のどちらかが出て,どちらも ZFC の無矛盾性を出すからである.

2 正規フィルター

フィルターが**正規**であるとは,それが対角共通部分を取る操作で閉じていることであった.また, κ 上の κ 完備な超フィルター U に対しては,U が正規であることと任意の押し下げ関数 $f\colon X\to\kappa$, $X\in U$ に対して,ある $Y\in U$ について f が Y 上で定数関数となることと同値であった.

定理 2.1. 任意の可測基数の上に正規超フィルターが存在する.

証明. U を κ 上の非単項 κ 完備超フィルターとする. $f,g \in \kappa^{\kappa}$ に対して,

$$f = g \iff \{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in U$$

という同値関係を入れる. また,

$$f <^* g \iff \{\alpha < \kappa : f(\alpha) < g(\alpha)\} \in U$$

という擬全順序関係を入れる.

無限下降列 $f_0>^*f_1>^*f_2>^*\dots$ は存在しない.実際,それがあれば $X_n=\{\alpha:f_n(\alpha)>f_{n+1}(\alpha))\}\in U$ だが,U が σ 完備なので, $X=\bigcap_{n\in\omega}X_n\in U$ であり,特に X は空でない. $\alpha\in X$ を一つ取ると,順序数の無限下降列 $f_0(\alpha)>f_1(\alpha)>f_2(\alpha)>\dots$ ができて矛盾である.

したがって、<* は擬整列順序である.

 $f:\kappa\to\kappa$ を次を満たす (この擬整列順序で) 最小の関数とする:任意の $\gamma<\kappa$ に対して, $\{\alpha:f(\alpha)>\gamma\}\in U$ である.このような f は少なくとも 1 つ存在する.たとえば対角関数 $d(\alpha)=\alpha$ は条件を満たす.

 $D = f(U) = \{X \subseteq \kappa : f^{-1}(X) \in U\}$ とおく. D が κ 上の正規超フィルターなことを示そう.

各 $\gamma<\kappa$ に対して, $f^{-1}\{\gamma\}\not\in U$ である($f^{-1}[\gamma+1,\kappa)\in U$ だから). よって, $\gamma\not\in D$ なので, D は非単項である.

D の正規性を示そう。h を $X\in D$ 上の押し下げ関数とする。h が D のあるメンバー上で定数なことを示さなければいけない。 $g\in\kappa^{\kappa}$ を $g(\alpha)=h(f(\alpha))$ で定義される関数とする。 $g(\alpha)< f(\alpha)$ が

すべての $\alpha\in f^{-1}(X)$ で成り立つ. よって, $g<^*f$ である. f の最小性より,ある $\gamma<\kappa$ に対して $Y:=\{\alpha:g(\alpha)=\gamma\}\in U$ となる. したがって,D の定義より $f(Y)\in D$ であり,また,h は f(Y) 上で定数 γ を取る.

3 宇宙 *V* の超冪と,初等埋め込み

参考文献

[Jec06] Thomas Jech. Set Theory: The Third Millennium Edition, revised and expanded. Springer Monographs in Mathematics. Springer Berlin Heidelberg, 2006.