Concours commun Mines-Ponts

DEUXIÈME ÉPREUVE. FILIÈRE MP

A. Préliminaires sur les matrices

- 1) Soit $S \in S_n(\mathbb{R})$. D'après le théorème spectral, S est orthogonalement semblable à une matrice diagonale réelle.
- Supposons que $S \in S_n^{++}(\mathbb{R})$. Soient $\lambda \in \mathbb{R}$ une valeur propre de S puis E un vecteur propre unitaire associé. $E^TSE = E^T(\lambda E) = \lambda \|E\|_2^2 = \lambda$. Puisque $E \neq 0$, on en déduit que

$$\lambda = E^{\mathsf{T}}SE > 0$$
.

Ceci montre que le spectre de S est contenu dans \mathbb{R}^+

 $\bullet \text{ Supposons que le spectre de } S \text{ soit contenu dans } \mathbb{R}^+. \text{ Posons } S = PDP^T \text{ où } D = \operatorname{diag}\left(\lambda_i\right)_{1\leqslant i\leqslant n} \in D_n\left(]0,+\infty[\right) \text{ et } P \in O_n(\mathbb{R}). \text{ Soient } X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\} \text{ puis } X' = P^{-1}X = P^TX = \left(x_i'\right)_{1\leqslant i\leqslant n}. \text{ Puisque } P^{-1} \in GL_n(\mathbb{R}), \text{ on a } X' \neq 0 \text{ puis } X' \in \mathbb{R}^+.$

$$X^TSX = X^TPDP^TX = \left(P^TX\right)^TD\left(P^TX\right) = X'^TDX' = \sum_{i=1}^n \lambda_i x_i'^2 > 0$$

car tous les termes de la somme sont positifs, l'un au moins d'entre eux étant strictement positif. Ceci montre que $S \in S_n^{++}(\mathbb{R})$.

 $\textbf{2)} \ \operatorname{Soit} \ S \in S_n^{++}(\mathbb{R}). \ \operatorname{Posons} \ PDP^T \ \text{où} \ D = \operatorname{diag}\left(\lambda_i\right)_{1 \leqslant i \leqslant n} \in D_n \left(]0, +\infty[\right) \ \operatorname{et} \ P \in O_n(\mathbb{R}). \ \operatorname{Soit} \ D' = \operatorname{diag}\left(\sqrt{\lambda_i}\right)_{1 \leqslant i \leqslant n}.$

$$S = PDP^{T} = PD'^{2}P^{T} = PD'D'^{T}P^{T} = (PD')(PD')^{T} = R^{T}R$$

où la matrice $R = \left(PD'\right)^T = D'P^T$ est inversible en tant que produit de matrices inversibles. On a montré que

$$\forall S \in S_n^{++}(\mathbb{R}), \ \exists R \in GL_n(\mathbb{R})/\ S = R^TR.$$

Réciproquement, soient $R \in GL_n(\mathbb{R})$ puis $S = R^TR$. S est symétrique réelle car $S^T = R^T \left(R^T\right)^T = R^TR = S$. De plus, pour $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$,

$$X^{T}SX = X^{T}R^{T}RX = (RX)^{T}(RX) = ||RX||_{2}^{2} > 0$$

car $RX \neq 0$ puisque $X \neq 0$ et $R \in GL_n(\mathbb{R})$. Par suite, $S \in S_n^{++}(\mathbb{R})$.

3) Soient $(S,S') \in (S_n^{++}(\mathbb{R}))^2$ puis $\lambda \in [0,1]$. Soit $S'' = \lambda S + (1-\lambda)S'$. S'' est symétrique réelle car $S_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathscr{M}_n(\mathbb{R})$. Pour $X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\}$,

$$X^{\mathsf{T}}S''X = \lambda X^{\mathsf{T}}SX + (1-\lambda)X^{\mathsf{T}}S'X > 0$$

car les deux nombres λX^TSX et $(1-\lambda)X^TS'X$ sont positifs, l'un d'entre eux est strictement positif. Donc, $S'' \in S_n^{++}(\mathbb{R})$. Ceci montre que $S_n^{++}(\mathbb{R})$ est convexe.

B. Autres préliminaires

- $\textbf{4) Soit} \ \ \varphi \ : \qquad \mathbb{R}^{n+1} \times E^{n+1} \qquad \rightarrow \qquad E \qquad \text{. Alors, } \operatorname{conv}(K) = \varphi(\mathcal{H} \times K^{n+1}).$ $\left(\left(\lambda_i \right)_{1 \leqslant i \leqslant n+1}, \left(x_i \right)_{1 \leqslant i \leqslant n+1} \right) \ \ \mapsto \ \ \sum_{i=1}^{n+1} \lambda_i x_i$
- L'hyperplan affine \mathcal{H}' d'équation $\lambda_1 + \ldots + \lambda_{n+1} = 1$ est un fermé de \mathbb{R}^{n+1} et $[0, +\infty[^{n+1}$ est un fermé de \mathbb{R}^{n+1} en tant que produit de fermés de \mathbb{R} . Donc, $\mathcal{H} = \mathcal{H}' \cap [0, +\infty[^{n+1}]$ est un fermé de \mathbb{R}^{n+1} en tant qu'intersection de fermés de \mathbb{R}^{n+1} . D'autre part, \mathcal{H} est une partie bornée de \mathbb{R}^{n+1} car pour tout $\lambda = (\lambda_i)_{1 \leq i \leq n+1} \in \mathcal{H}$, $\|\lambda\|_{\infty} \leq 1$. \mathcal{H} est donc un fermé, borné de \mathbb{R}^{n+1} qui est de dimension finie et donc \mathcal{H} est un compact de \mathbb{R}^{n+1} d'après le théorème de BOREL-LEBESGUE.
- $\mathcal{H} \times K$ est un compact de $\mathbb{R}^{n+1} \times E$ en tant que produit de compacts.

- L'application ϕ est 2n+2 linéaire sur l'espace de dimension finie $\mathbb{R}^{n+1} \times \mathbb{E}^{n+1}$ et donc l'application ϕ est continue sur $\mathbb{R}^{n+1} \times \mathbb{E}^{n+1}$.
- Finalement, $conv(K) = \varphi(\mathcal{H} \times K^{n+1})$ est un compact de E en tant qu'image directe d'un compact par une application continue.
- 5) Soit $\mathscr{B}=(e_1,\ldots,e_n)$ une base orthonormée de E. Posons $k=\|g\left(e_1\right)\|$. Soit $i\in [2,n]$. $\langle e_1+e_i,e_1-e_i\rangle=e_1^2-e_i^2=1-1=0$. Mais alors $\langle g\left(e_1+e_i\right)\rangle,g\left(e_1-e_i\right)\rangle=0$. Ceci fournit $(g\left(e_i\right))^2=(g\left(e_1\right))^2$ puis $\|g\left(e_i\right)\|=k$.

Soit alors $x = \sum_{i=1}^{n} x_i e_i \in E$. Puisque la famille $(g(e_i))_{1 \leqslant i \leqslant n}$ est orthogonale,

$$\begin{split} \|g(x)\|^2 &= \langle \sum_{i=1}^n x_i g(e_i), \sum_{j=1}^n x_j g(e_j) \rangle = \sum_{i=1}^n x_i^2 \|g(e_i)\|^2 \\ &= k^2 \sum_{i=1}^n x_i^2 = k^2 \|x\|^2, \end{split}$$

et donc, ||g(x)|| = k||x||.

Si k=0, alors g=0=0 o Id_E . Dans ce cas, g est la composée d'une homothétie et d'un automorphisme orthogonal.

Si $k \neq 0$, $\frac{1}{k}g$ conserve la norme. Donc, $\frac{1}{k}g$ est un certain automorphisme orthogonal h ou encore $g = kId_E \circ h$ où $h \in O(E)$. Dans ce cas aussi, g est la composée d'une homothétie et d'un automorphisme orthogonal.

- 6) On sait que $O_n(\mathbb{R})$ est un sous-groupe du groupe $(GL_n(\mathbb{R}), \times)$.
- $\forall A \in O_n(\mathbb{R}), \|A\|_2 = \sqrt{\operatorname{Tr}(A^T A)} = \sqrt{\operatorname{Tr}(I_n)} = \sqrt{n}$. Donc, $O_n(\mathbb{R})$ est une partie bornée de l'espace euclidien $(\mathcal{M}_n(\mathbb{R}), \langle \ , \ \rangle)$.

g est continue sur $\mathcal{M}_n(\mathbb{R})$ car linéaire sur l'espace de dimension finie $\mathcal{M}_n(\mathbb{R})$. h est continue sur $(\mathcal{M}_n(\mathbb{R}))^2$ car bilinéaire sur un espace de dimension finie.

 $f = h \circ g$ est donc continue sur $\mathscr{M}_n(\mathbb{R})$. Par suite, $O_n(\mathbb{R}) = f^{-1}(\{I_n\})$ est un fermé de $\mathscr{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un fermé par une application continue.

C. Quelques propriétés de la compacité

7) Soient $\varphi: \mathbb{N} \to \mathbb{N}$ une application strictement croissante sur \mathbb{N} puis $(\nu_n)_{n \in \mathbb{N}} = (u_{\varphi(n)})_{n \in \mathbb{N}}$. Par hypothèse, pour tout $(n,p) \in \mathbb{N}^2$ tel que $n \neq p$, $\|\nu_n - \nu_p\| \geqslant \epsilon$. Si on suppose par l'absurde que la suite $(\nu_n)_{n \in \mathbb{N}}$ converge vers un certain élément ℓ de E, il existe un rang n_0 tel que pour $n \geqslant n_0$, $\|\nu_n - \ell\| \leqslant \frac{\epsilon}{4}$. Mais alors,

$$\|v_{n_0+1}-v_{n_0}\| \le \|v_{n_0+1}-\ell\| + \|\ell-v_{n_0}\| \le \frac{\varepsilon}{2} < \varepsilon,$$

ce qui contredit l'hypothèse. Donc la suite $(\mathfrak{u}_{\varphi(\mathfrak{n})})_{\mathfrak{n}\in\mathbb{N}}$ diverge.

8) On montre par l'absurde que pour tout $\epsilon > 0$, il existe $\mathfrak{p} \in \mathbb{N}^*$ puis $x_1, \ldots, x_\mathfrak{p}$ élément de K (erreur probable d'énoncé au vu de la suite) tel que $K \subset \bigcup_{i=1}^\mathfrak{p} B\left(x_i, \epsilon\right)$

Le résultat est immédiat si K est vide. On suppose dorénavant que K n'est pas vide.

 $\mathrm{Supposons\ par\ l'absurde\ qu'il\ existe\ }\epsilon>0\ \mathrm{tel\ que\ pour\ tout\ }p\in\mathbb{N}^*\ \mathrm{et\ tout\ }(u_i)_{1\leqslant i\leqslant p}\in K^p,\ K\not\subset\bigcup_{i=1}^pB\ (u_i,\epsilon).$

Construisons par récurrence une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de K telle que pour tout $(n,p)\in\mathbb{N}^2$ tel que $n\neq p, \|x_n-x_p\|\geqslant \epsilon$ (*).

- Puisque $K \neq \emptyset$, on peut choisir $x_0 \in K$.
- Soit $n \geq 0$. Supposons avoir construit des éléments x_k , $0 \leq k \leq n$, de K tels que si $(k,l) \in [\![0,n]\!]^2$ et $k \neq l$, alors $\|x_k x_l\| \geq \epsilon$. Par hypothèse, $K \not\subset \bigcup_{k=0}^n B\left(x_k, \epsilon\right)$. Donc, il existe un élément x_{n+1} de K n'appartenant pas à $\bigcup_{k=0}^n B\left(x_k, \epsilon\right)$ ou encore vérifiant pour tout $k \in [\![0,n]\!]$, $\|x_{n+1} x_k\| \geq \epsilon$.

On a construit par récurrence une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de K telle que pour tout $(n,p)\in\mathbb{N}^2$ tel que $n\neq p, \|x_n-x_p\|\geqslant 1$

Puisque K est compact, la suite $(x_n)_{n\in\mathbb{N}}$ admet une suite extraite convergente ce qui contredit le résultat établi à la question précédente.

On a montré par l'absurde que pour tout $\epsilon > 0$, il existe $p \in \mathbb{N}^*$ et x_1, \ldots, x_p des éléments de K tels que $K \subset \bigcup_{i=1}^n B_i(x_i, \epsilon)$.

9) Supposons par l'absurde que pour tout $\alpha > 0$, il existe $x_{\alpha} \in K$ tel que, pour tout $i \in I$, $B(x_{\alpha}, \alpha) \not\subset \Omega_i$. En particulier, pour tout $n \in \mathbb{N}$, il existe $x_n \in K$ tel que, pour tout $i \in I$, $B\left(x_n, \frac{1}{n+1}\right) \not\subset \Omega_i$. La suite $(x_n)_{n \in \mathbb{N}}$ est une suite du compact K. On peut en extraire une suite $(y_n)_{n\in\mathbb{N}} = (x_{\varphi(n)})_{n\in\mathbb{N}}$ convergente, de limite $y\in K$.

 $y \in K \subset \bigcup \Omega_i \text{ et donc il existe } i_0 \in I \text{ tel que } y \in \Omega_{i_0} \text{ puis, puisque } \Omega_{i_0} \text{ est ouvert, il existe } r > 0 \text{ tel que } B(y,r) \subset \Omega_{i_0}.$

Les deux suites $\left(\frac{1}{\varphi(n)+1}\right)_{n\in\mathbb{N}}$ et $(\|y_n-y\|)_{n\in\mathbb{N}}$ convergent vers 0. On choisit alors $n_0\in\mathbb{N}$ tel que $\frac{1}{\varphi(n_0)+1}\leqslant\frac{r}{4}$ et $\|\mathbf{y}_{\mathfrak{n}_0} - \mathbf{y}\| \leqslant \frac{\mathbf{r}}{4}.$

Soit $z \in B\left(y_{n_0}, \frac{1}{\varphi(n_0) + 1}\right)$.

$$||z - y|| \le ||z - y_{n_0}|| + ||y_{n_0} - y|| \le \frac{1}{\varphi(n_0) + 1} + \frac{r}{4} \le \frac{r}{2} < r$$

 $\mathrm{et} \ \mathrm{donc} \ B\left(x_{\phi(\mathfrak{n}_0)}, \frac{1}{\phi(\mathfrak{n}_0) + 1}\right) \subset B(\mathfrak{y}, r) \subset \Omega_{\mathfrak{i}_0} \ \mathrm{ce} \ \mathrm{qui} \ \mathrm{est} \ \mathrm{une} \ \mathrm{contradit} \ \mathrm{le} \ \mathrm{fait} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ \mathfrak{i} \in \mathrm{I}, \ B\left(x_{\phi(\mathfrak{n})}, \frac{1}{\phi(\mathfrak{n}) + 1}\right) \not\subset \mathbb{I}$

On a montré qu'il existe $\alpha > 0$ tel que pour tout $x \in K$, il existe $i \in I$ tel que $B(x, \alpha) \subset \Omega_i$. D'après la question précédente, On a montre qu'il existe $\alpha > 0$ tot que pour total. \square on peut choisir $p \in \mathbb{N}^*$ puis x_1, \ldots, x_p éléments de K tels que $K \subset \bigcup_{k=1}^p B(x_k, \alpha) \subset \bigcup_{k=1}^p \Omega_{\mathfrak{i}_k}$.

10) Pour $i \in I$, posons $\Omega_i = {}^cF_i$ de sorte que pour tout i de I, Ω_i est un ouvert de E. Par hypothèse, $\bigcap_{i \in I} F_i = \varnothing$.

Par passage au complémentaire, $K \subset E = \bigcup_{i=1}^n \Omega_i$. D'après la question précédente, il existe $\mathfrak{p} \in \mathbb{N}^*$ puis $\left(\Omega_{\mathfrak{i}_1}, \ldots, \Omega_{\mathfrak{i}_\mathfrak{p}}\right)$

tels que $K \subset \bigcup_{k=1}^p \Omega_{i_k}$ ou encore $\bigcap_{k=1}^p F_{i_k} \subset {}^cK$. Puisque les F_{i_k} sont des parties de K, on a aussi $\bigcap_{k=1}^p F_{i_k} \subset K$ et donc $\bigcap_{k=1}^p F_{i_k} \subset K \cap {}^cK = \varnothing$. Finalement, $\bigcap_{k=1}^p F_{i_k} = \varnothing$.

D. Théorème du point fixe de MARKOV-KAKUTANI

11) Soit $x \in E$. Soit $f : \mathcal{L}(E) \mapsto$

l'espace de dimension finie $\mathcal{L}(E)$ car linéaire et on sait que h est continue sur l'espace vectoriel normé (E, || ||). Donc, $f = h \circ g$ est continue sur $\mathcal{L}(E)$.

 $\{\|u(x)\|, u \in G\} = f(G) \text{ est un compact de } \mathbb{R} \text{ en tant qu'image d'un compact de } \mathcal{L}(E) \text{ par l'application continue f. De}$ plus, G est non vide (car G est un groupe) et donc { $\|u(x)\|$, $u \in G$ } est non vide. Un compact étant borné, on en déduit que { $\|u(x)\|$, $u \in G$ } est une partie non vide et majorée de \mathbb{R} . Donc, $N_G(x)$ existe.

Vérifions que N_G est une norme sur E.

- D'après le début de la question, N_G est une application de E dans \mathbb{R}^+ .
- Soit $x \in E$. Si $N_G(x) = 0$, alors $\forall u \in G$, $||u(x)|| \leq 0$ puis u(x) = 0. G n'est pas vide et donc il existe $u_0 \in G$ tel que $u_0(x) = 0$. Puisque u_0 est un automorphisme, on en déduit que x = 0.
- $\bullet \ \, \mathrm{Soient} \,\, x \in E \,\,\mathrm{et} \,\, \lambda \in \mathbb{R}. \,\, \mathrm{Pour} \,\,\mathrm{tout} \,\, \mathfrak{u} \in G, \,\, \|\mathfrak{u}(\lambda x)\| = |\lambda| \|\mathfrak{u}(x)\| \leqslant |\lambda| N_G(x) \,\,\mathrm{et} \,\,\mathrm{donc} \,\, N_G(\lambda x) \leqslant |\lambda| N_G(x) \,\,(\mathrm{car} \,\, N_G(\lambda x)) \leqslant |\lambda| N_G(x) \,\,\mathrm{for} \,\, N_G($ $\mathrm{est}\ \mathrm{le}\ \mathrm{plus}\ \mathrm{petit}\ \mathrm{des}\ \mathrm{majorants}\ \mathrm{de}\ \{\|\mathfrak{u}(\lambda x)\|,\ \mathfrak{u}\in G\}).\ \mathrm{Inversement},\ \mathrm{si}\ \lambda=0,\ |\lambda|N_G(x)\leqslant N_G(\lambda x)\ \mathrm{et}\ \mathrm{si}\ \lambda\neq0,\ N_G(x)=0,\ \mathrm{si}\ \lambda\neq0,\ \mathrm{ot}\ \mathrm{si}\ \lambda\neq0,\ \mathrm{ot}\ \mathrm{ot}$ $N_G\left(\frac{1}{\lambda}\lambda x\right)\leqslant \frac{1}{|\lambda|}N_G(\lambda x) \text{ puis de nouveau } |\lambda|N_G(x)\leqslant N_G(\lambda x). \text{ Finalement, } N_G(\lambda x)=|\lambda|N_G(x).$

• Soit $(x,y) \in E^2$. Pour tout $u \in G$, $\|u(x+y)\| = \|u(x) + u(y)\| \le \|u(x)\| + \|u(y)\| \le N_G(x) + N_G(y)$ et donc $N_G(x+y) \le N_G(x) + N_G(y)$ (car $N_G(x+y)$ est le plus petit des majorants de $\{\|u(x+y)\|, u \in G\}$).

On a montré que N_G est une norme sur E.

12)

- $$\begin{split} \bullet & \text{ Soient } x \in E \text{ et } u \in G. \ N_G(u(x)) = \sup\{\|\nu(u(x))\|, \ \nu \in G\}. \ \text{Pour tout } \nu \in G, \ \nu \circ u \in G \text{ puis } \|\nu(u(x))\| \leqslant N_G(x). \\ \text{Ainsi, pour tout } x \in E \text{ et tout } u \in G, \ N_G(u(x)) \leqslant N_G(x). \ \text{Ensuite, pour } x \in E \text{ et } u \in G, \ u^{-1} \in G \text{ et donc } N_G(x) = N_G\left(u^{-1}(u(x))\right) \leqslant N_G(u(x)). \ \text{Finalement, pour tout } x \text{ de } D \text{ et tout } u \in G, \ N_G(u(x)) = N_G(x). \end{split}$$
- Soit $(x, y) \in E^2$ tel que $x \neq 0$. Alors pour tout $u \in G$, $u(x) \neq 0$ car $G \subset GL(E)$. Puisque, pour tout $z \in E$, l'application $f : \mathscr{L}(E) \mapsto \mathbb{R}$ est continue sur $\mathscr{L}(E)$ et que G est un compact de $u \mapsto \|u(z)\|$

 $\mathscr{L}(\mathsf{E}),$ pour tout $z\in \mathsf{E},$ il existe $\mathfrak{u}_z\in \mathsf{G}$ tel que $\mathsf{N}_\mathsf{G}(z)=\|\mathfrak{u}_z(z)\|.$ Par suite,

$$N_G(x+y) = ||u_{x+y}(x+y)|| \le ||u_{x+y}(x)|| + ||u_{x+y}(y)|| \le N_G(x) + N_G(y)$$

avec égalité si et seulement si chacune des inégalités écrites est une égalité. Puisque $\| \|$ est la norme euclidienne et que $u_{x+y}(x) \neq 0$, l'égalité $\|u_{x+y}(x) + u_{x+y}(y)\| = \|u_{x+y}(x)\| + \|u_{x+y}(y)\|$ impose l'existence de $\lambda \in \mathbb{R}^+$ tel que $u_{x+y}(y) = \lambda u_{x+y}(x) = u_{x+y}(\lambda x)$. Puisque u_{x+y} est un automorphisme, on en déduit que $y = \lambda x$.

Réciproquement, si $y = \lambda x$, $\lambda \in \mathbb{R}^+$, alors $N_G(x+y) = N_G((1+\lambda)x) = (1+\lambda)N_G(x) = N_G(x) + \lambda N_G(x) = N_G(x) + N_G(y)$.

13) $u^0(x) = x \in K$ puis par récurrence, pour tout $i \in \mathbb{N}$, $u^i(x) \in K$. Puisque K est convexe, pour tout $n \in \mathbb{N}^*$, $x_n = \frac{1}{n} \sum_{i=0}^{n-1} u^i(x) = \sum_{i=0}^{n-1} \frac{1}{n} u^i(x) \in K$.

La suite $(x_n)_{n\in\mathbb{N}^*}$ est une suite d'éléments du compact K. On peut en extraire une sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}^*}$ convergente, vers un certain élément \mathfrak{a} de K.

Soit $n \in \mathbb{N}^*$. $u(x_n) - x_n = \frac{1}{n} \sum_{i=0}^{n-1} u^{i+1}(x) - \frac{1}{n} \sum_{i=0}^{n-1} u^i(x) = \frac{1}{n} \sum_{i=0}^{n-1} \left(u^{i+1}(x) - u^i(x) \right) = \frac{1}{n} \left(u^n(x) - x \right)$. Puisque x et $u^n(x)$ sont dans K,

$$\|u(x_n) - x_n\| = \frac{1}{n} \|u^n(x) - x\| \leqslant \frac{\delta(K)}{n}.$$

En particulier, $\forall n \in \mathbb{N}^*$, $\|u(x_{\varphi(n)}) - x_{\varphi(n)}\| \leq \frac{\delta(K)}{\varphi(n)}$. On en déduit que la suite $(u(x_{\varphi(n)}) - x_{\varphi(n)})$ converge vers 0. D'autre part, u est un endomorphisme de l'espace E qui est de dimension finie. On en déduit que u est continu sur E et en particulier en a. Donc, la suite $(u(x_{\varphi(n)}) - x_{\varphi(n)})$ converge aussi vers u(a) - a. Finalement, u(a) = a.

- 14) Soit $x \in K$. Pour tout $i \in [1, r]$, $u_i(x) \in K$. Puisque K est convexe, on en déduit que $u(x) \in K$. Donc, K est stable par u. D'après la question précédente, il existe $a \in K$ tel que u(a) = a.
- $\textbf{15)} \ \text{D'après la question 12, pour tout } i \in \llbracket 1, p \rrbracket, \ N_G\left(u_i(\alpha)\right) = N_G(\alpha) \ \text{puis } \frac{1}{r} \sum_{i=1}^r N_G\left(u_i(\alpha)\right) = \frac{1}{r} \sum_{i=1}^r N_G\left(\alpha\right) = N_G(\alpha).$ Donc,

$$N_G\left(\frac{1}{r}\sum_{i=1}^r u_i(\alpha)\right) = N_G(u(\alpha)) = N_G(\alpha) = \frac{1}{r}\sum_{i=1}^r N_G(u_i(\alpha)).$$

On en déduit encore $N_G\left(\sum_{i=1}^r u_i(a)\right) = \sum_{i=1}^r N_G\left(u_i(a)\right)$.

Soit $j \in [1, r]$.

$$\begin{split} N_G\left(\sum_{i=1}^r u_i(\mathfrak{a})\right) &\leqslant N_G\left(u_j(\mathfrak{a})\right) + N_G\left(\sum_{i\neq j} u_i(\mathfrak{a})\right) \\ &\leqslant \sum_{i=1}^r N_G\left(u_i(\mathfrak{a})\right) = N_G\left(\sum_{i=1}^r u_i(\mathfrak{a})\right). \end{split}$$

$$\mathrm{Donc},\ N_G\left(\sum_{i=1}^r u_i(\mathfrak{a})\right) = N_G\left(u_j(\mathfrak{a})\right) + N_G\left(\sum_{i\neq j} u_i(\mathfrak{a})\right).$$

 $\textbf{16)} \ \mathrm{Mais} \ \mathrm{alors}, \ \mathrm{d'après} \ \mathrm{la} \ \mathrm{question} \ 12, \ \mathrm{si} \ u_j(\mathfrak{a}) \neq \emptyset, \ \mathrm{il} \ \mathrm{existe} \ \lambda_j \in \mathbb{R}^+ \ \mathrm{tel} \ \mathrm{que} \ \sum_{i \neq j} u_i(\mathfrak{a}) = \lambda_j u_j(\mathfrak{a}) \ \mathrm{ou} \ \mathrm{encore} \ ru(\mathfrak{a}) - u_j(\mathfrak{a}) = u_j(\mathfrak{a}) + u$

 $\lambda u_j(\alpha) \text{ ou enfin, } u(\alpha) = \frac{\lambda_j + 1}{r} u_j(\alpha).$

Le résultat reste clair si $u_j(a) = 0$ car alors a = 0 (u_j étant un automorphisme).

17) Soit $j \in [1, r]$. L'égalité u(a) = a fournit

$$N_{G}(a) = N_{G}(u(a)) = N_{G}\left(\frac{\lambda_{j}+1}{r}u_{j}(a)\right) = \frac{\lambda_{j}+1}{r}N_{G}\left(u_{j}(a)\right) = \frac{\lambda_{j}+1}{r}N_{G}\left(a\right)$$

(d'après la question 12). Si a=0, a est un point fixe de chaque élément de G. Sinon, on obtient $\frac{\lambda_j+1}{r}=1$ puis $u_j(a)=a$. Dans tous les cas, a est un point fixe de u_j .

On a montré que \mathfrak{a} est un point fixe $\mathfrak{u}_1, \ldots, \mathfrak{u}_r$.

18) Posons $G = (u_i)_{i \in I}$ puis pour $i \in I$, posons $F_i = \{x \in K / u_i(x) = x\} = \operatorname{Ker}(u_i - Id_E) \cap K$. Pour chaque $i \in I$, F_i est un fermé de E contenu dans K. Si par l'absurde $\bigcap_{i \in I} F_i = \emptyset$, alors d'après la question 10, il existe une sous-famille finie

 $(F_{i_1}, \dots, F_{i_r})$ telle que $\bigcap_{i=1}^r F_{i_k} = \emptyset$. Ceci contredit le résultat de la question précédente car toute famille finie d'éléments de G admet un point fixe commun dans K.

Donc, il existe $a \in K$ tel que, pour tout $u \in G$, u(a) = a.

E. Sous-groupes compacts de $GL_n(\mathbb{R})$

- **19)** Soit $A \in G \subset GL_n(\mathbb{R})$. Pour tout $M \in \mathscr{M}_n(\mathbb{R})$, $\rho_{A^{-1}}\left(\rho_A(M)\right) = \left(A^{-1}\right)^TA^TMAA^{-1} = M$ et donc $\rho_{A^{-1}} \circ \rho_A = Id_{\mathscr{M}_n(\mathbb{R})}$. Donc, $\rho_A \in GL\left(\mathscr{M}_n(\mathbb{R})\right)$ et $(\rho_A)^{-1} = \rho_{A^{-1}}$.
- Ainsi, $H \subset GL(\mathcal{M}_n(\mathbb{R}))$. De plus, I_n est dans le sous-groupe G et donc $Id_{GL_n(\mathbb{R})} = \rho_{I_n} \in H$.
- Il est clair que pour tout $(A, A') \in G^2$, le produit AA' est dans le sous-groupe G puis $\rho_A \circ \rho_{A'} = \rho_{AA'} \in H$.
- Pour tout $A \in G$, A^{-1} est dans le sous-groupe G puis $(\rho_A)^{-1} = \rho_{A^{-1}} \in H$.

Ainsi, H est un sous-groupe de $GL(\mathcal{M}_n(\mathbb{R}))$.

Comme à la question 6, l'application $\rho:A\mapsto \rho_A$ est la composée d'une application bilinéaire et d'une application linéaire en dimension finie. L'application ρ est donc continue sur $\mathscr{M}_n(\mathbb{R})$. Par suite, $H=\rho(G)$ est un compact de $\mathscr{L}(\mathscr{M}_n(\mathbb{R}))$. Finalement, H est un sous-groupe compact de $GL(\mathscr{M}_n(\mathbb{R}))$.

20) Soit $f: A \mapsto \rho_A(I_n) = A^T A$. f est continue sur $\mathscr{M}_n(\mathbb{R})$ et donc $\Delta = f(G)$ est un compact de $\mathscr{M}_n(\mathbb{R})$. D'après la question 2, pour tout $A \in G$, $A^T A \in S_n^{++}(\mathbb{R})$. Ainsi, Δ est un compact contenu dans $S_n^{++}(\mathbb{R})$.

Mais alors, $K = \operatorname{conv}(\Delta)$ est compact d'après la question 4 et $K = \operatorname{conv}(\Delta)$ est contenu dans $S_n^{++}(\mathbb{R})$ d'après la question 3.

Soit $(A, A') \in G^2$. $\rho_{A'}\left(A^TA\right) = A'^T\left(A^TA\right)A' = (AA')^T(AA') \in \Delta \operatorname{car} AA' \in G$. Donc, Δ est stable par tous les éléments de H. Par linéarité, $K = \operatorname{conv}(\Delta)$ est stable par tous les éléments de H.

21) K est un compact convexe de $\mathcal{M}_n(\mathbb{R})$, stable par tous les éléments du groupe H. D'après la question 18, il existe $M \in K \subset S_n^{++}(\mathbb{R})$ tel que $\forall A \in G$, $\rho_A(M) = M$.

D'après la question 2, il existe $N \in GL_n(\mathbb{R})$ telle que $M = N^TN$. Pour tout $A \in G$,

$$\begin{split} A^T M A &= M \Rightarrow A^T N^T N A = N^T N \Rightarrow \left(N^{-1}\right)^T A^T N^T N A N^{-1} = I_n \Rightarrow \left(NAN^{-1}\right)^T \left(NAN^{-1}\right) = I_n \\ &\Rightarrow NAN^{-1} \in O_n(\mathbb{R}). \end{split}$$

Donc, il existe $N \in GL_n(\mathbb{R})$ telle que pour tout $A \in G$, $NAN^{-1} \in O_n(\mathbb{R})$.

Soit $G_1 = NGN^{-1}$. G_1 est un sous-groupe de $(O_n(\mathbb{R}), \times)$ (image du groupe G par le morphisme de groupes $A \mapsto NAN^{-1}$) tel que $G = N^{-1}G_1N$.

$$\textbf{22)} \, \left(g \circ \sigma_P \circ g^{-1}\right) \circ \left(g \circ \sigma_P \circ g^{-1}\right) = g \circ \sigma_P^2 \circ g^{-1} = Id_{\mathbb{R}^n}. \; \mathrm{Donc}, \; g \circ \sigma_P \circ g^{-1} \; \mathrm{est \; une \; symétrie}.$$

Notons S_P la matrice de σ_P dans la base canonique de \mathbb{R}^n . La matrice de $g \circ \sigma_P \circ g^{-1}$ dans la base canonique est alors NS_PN^{-1} . Puisque la base canonique est orthonormée, $S_P \in O_n(\mathbb{R})$. Mais alors, par hypothèse

$$NS_PN^{-1} \in NO_n(\mathbb{R})N^{-1} \subset NKN^{-1} \subset O_n(\mathbb{R}).$$

Ainsi, $NS_PN^{-1} \in O_n(\mathbb{R})$. Puisque la base canonique est orthonormée, $g \circ \sigma_P \circ g^{-1}$ est un automorphisme orthogonal de \mathbb{R}^n et donc une symétrie orthogonale.

Puisque g est un automorphisme, g(P) est un hyperplan de \mathbb{R}^n . Si $x \in g(P)$, il existe $y \in P$ tel que x = g(y) et donc

$$g \circ \sigma_P \circ g^{-1}(x) = g(\sigma_P(y)) = g(y) = x.$$

Donc, tout x de g(P) est invariant par la symétrie orthogonale $g \circ \sigma_P \circ g^{-1}$. On en déduit que $g \circ \sigma_P \circ g^{-1} = \sigma_{g(P)}$ ou $g \circ \sigma_P \circ g^{-1} = Id_{\mathbb{R}^n}$. Mais si $g \circ \sigma_P \circ g^{-1} = Id_{\mathbb{R}^n}$, alors $\sigma_P = Id_{\mathbb{R}^n}$ ce qui n'est pas. Donc, $g \circ \sigma_P \circ g^{-1} = \sigma_{g(P)}$.

Soit $x \in E \setminus 0$. Soit $P = x^{\perp}$. P est un hyperplan de \mathbb{R}^n et P est constitué des vecteurs orthogonaux à x. Pour tout $y \in P$,

$$\sigma_{q(P)}(g(y)) = g(y)$$

et

$$\sigma_{g(P)}(g(x)) = g \circ \sigma_P \circ g^{-1}(g(x)) = g\left(\sigma_P(x)\right) = -g(x).$$

Donc, puisqu'une réflexion est un automorphisme orthogonal,

$$\langle g(x), g(y) \rangle = \langle \sigma_{P}(g(x)), \sigma_{g(P)}(g(y)) \rangle = \langle -g(x), g(y) \rangle = -\langle g(x), g(y) \rangle,$$

et finalement, $\langle g(x), g(y) \rangle = 0$. Ainsi, l'image de tout vecteur orthogonal à x par g est un vecteur orthogonal à g(x). Ceci montre que g conserve l'othogonalité.

Puisque g conserve l'orthogonalité, d'après la question 5, il existe $k \in \mathbb{R}^+$ et $h \in O(\mathbb{R}^n)$ tels que g = kh. Puisque $g \in GL(\mathbb{R}^n)$, $k \neq 0$ puis $g^{-1} = \frac{1}{k}h^{-1}$. En notant N' la matrice de h dans la base canonique, $N' \in O_n(\mathbb{R})$ (car la base canonique est orthonormée).

On a alors $NKN^{-1}=kN'K\frac{1}{k}N'^{-1}=N'KN'^{-1}$ et donc $N'KN'^{-1}\subset O_n(\mathbb{R})$ puis $K\subset N'^{-1}O_n(\mathbb{R})N'\subset O_n(\mathbb{R})$. Puisque d'autre part, $O_n(\mathbb{R})\subset K$, on a montré que

$$K = O_n(\mathbb{R}).$$