Epreuve écrite

Examen de fin d'études secondaires 2013	Numéro d'ordre du candidat
Section: B, C	
Branche: Physique	
1. Mouvement d'une particule dans le champ α a) Etablir les équations paramétriques et cartésie vitesse initiale, faisant un angle α avec l'horizontab) Lors d'une compétition de tir à l'arc, la flèche phorizontal. La flèche touche le centre de la cible à se trouve à 70 m du tireur à l'arc. Calculer la vitesse initiale que l'archer doit commangle de 5° avec l'horizontale, pour qu'elle heurte Calculer le temps de vol si la vitesse est 60,5 m/s On néglige tout frottement; $g = 9,81$ m/s/s.	nne d'une masse ponctuelle pénétrant avec une ale, dans un champ de pesanteur uniforme. (5) part d'une hauteur de 1,8 m au-dessus du sol à une hauteur de 1,3 m au-dessus du sol. La cible uniquer à la flèche, qu'il tire vers le haut avec un e la cible au centre.
 2. Les oscillations électriques (10) a) Etudier les oscillations libres électriques dans Etablir l'équation différentielle du circuit. Vérifier qu'une fonction sinusoïdale du temps est En déduire la période des oscillations. b) On veut réaliser un circuit oscillant électrique d'inductance 0,1 mH. Calculer la capacité du con Les oscillations de tension ont une amplitude de 2,53 μF. Calculer la charge maximale. c) Vrai ou faux? Justifier! Pour augmenter la fréq capacité du condensateur ou l'inductance de la base 	solution de l'équation différentielle. (4) de fréquence 10 kilohertz, avec une bobine densateur qu'on doit utiliser. (2) 5 V. Calculer l'énergie totale, si la capacité vaut (2) (1) uence des oscillations, on doit augmenter la
 3. Interférences lumineuses (10) a) Décrire l'expérience des fentes de Young en la b) Etablir une expression pour la différence de m de Young et déterminer la position des maxima de Définir l'interfrange. c) Calculer la distance entre les deux fentes, si distance de 5 m des fentes, une distance entre fi monochromatique d'un laser He-Ne de 632,8 nm d) Vrai ou faux? Justifier! Pour augmenter l'interfideux fentes. 	larche des deux ondes provenant des deux fentes d'interférence sur un écran. (5) on veut que sur un écran se trouvant à une ranges claires de 10 mm. On travaille en lumière n. (2)

1/2

*	
 4. Relativité restreinte de Einstein (10) a) Enoncer les postulats d'Einstein. b) Définir les temps propre et impropre et établir l'expression de la dilatation du temps. c) Etablir l'expression de la contraction des longueurs. d) Un vaisseau spatial a une longueur au repos de 10 m. Il se déplace par rapport à un obterrestre avec une vitesse de 86,6% de c. Calculer le temps de passage du vaisseau devant l'observateur terrestre. (3) 	(2) (3) (2) oservateur
 5. Effet photoélectrique (10) a) Expliquer l'effet photoélectrique et donner la condition pour que l'effet a lieu. b) Formuler l'hypothèse d'Einstein. 	(2) (2)
c) Définir le travail d'extraction d'un électron et obtenir une expression pour l'énergie cinéti l'électron.	
d) La longueur d'onde seuil pour extraire des électrons d'un certain métal est 800 nm. Calculer le travail d'extraction des électrons.	(-)
Calculer l'énergie cinétique des électrons en eV, si on illumine la plaque métallique avec u radiation de 400 nm.	(4)
6. Physique nucléaire(10)	
6.1 Ecrire la loi de la décroissance radioactive.	Définir
la demi-vie et établir la relation entre la demi-vie et la constante radioactive. Déf l'activité d'une source radioactive. (3)	Itili
6.2. Des sources radioactives de cobalt-60 étaient beaucoup utilisées en radiothérapie po certains cancers. La demi-vie du Co-60 est de 5,3 années. Le cobalt-60, en se désintégral un électron avec une énergie cinétique maximale de 310 keV et ensuite deux photons d'é 1,17 MeV et de 1,33 MeV.	nt, émet
a) Ecrire l'équation bilan de la désintégration du Co-60.	(1)
b) Calculer l'activité d'une source de Co-60, construite en 1960, dont l'activité aujourd'hui vaut 36 GBq. (2)	(en 2013)
c) Calculer l'énergie totale d'un électron émis avec une énergie cinétique de 310 keV et ca ensuite sa vitesse.	alculer (2)
6.3. Un neutron libre n'est pas stable et se désintègre. De la décomposition résulte un prostable. Ecrire l'équation bilan de la désintégration d'un neutron.	oton
Comparer la masse au repos d'un neutron à celle du proton. Calculer le défaut de masse	
MeV/c ² . Expliquez comment se manifeste cette différence de masse lors de la désintégrat neutron.	tion du (2)

M: méga; 10⁶ G: giga; 10⁹

Relevé des principales constantes physiques

Grandeur physique	Symbole usuel	Valeur numérique	Unité
Constante d'Avogadro	N _A (ou L)	6,022·10 ²³	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	J K ⁻¹ mol ⁻¹
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	N m ² kg ⁻²
Constante électrique pour le vide	$k = \frac{1}{4\pi\varepsilon_0}$	8,988·10 ⁹	N m ² C ⁻²
Célérité de la lumière dans le vide	С	2,998·10 ⁸	m s ⁻¹
Perméabilité du vide	μ ₀	$4\pi \cdot 10^{-7}$	H m ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹
Charge élémentaire	е	1,602·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	9,1094·10 ⁻³¹	kg
•		5,4858·10 ⁻⁴	u
		0,5110	MeV/c ²
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷	kg
		1,0073	u
		938,27	MeV/c ²
Masse au repos du neutron	m_n	1,6749·10 ⁻²⁷	kg
		1,0087	u
		939,57	MeV/c ²
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷	kg
		4,0015	u
) 	3727,4	MeV/c ²
Constante de Planck	h	6,626·10 ⁻³⁴	Js
Constante de Rydberg de l'atome d'hydrogène	R _H	1,097·10 ⁷	m ⁻¹
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m
Energie de l'atome d'hydrogène dans l'état fondamental	E_1	-13,59	eV

Grandeurs liées à la Terre et au Soleil		Valeur util	isée sauf
(elles peuvent dépendre du lieu ou du temps)		indication	contraire
Composante horizontale du champ magnétique terrestre	B_h	2.10-5	T
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²
Rayon moyen de la Terre	R	6370	km
Jour sidéral	T	86164	S
Masse de la Terre	M_{T}	5,98·10 ²⁴	kg
Masse du Soleil	Ms	$1,99 \cdot 10^{30}$	kg

Conversion d'unités en usage avec le SI

1 angström = 1 \mathring{A} = 10⁻¹⁰ m 1 électronvolt = 1 eV = 1,602·10⁻¹⁹ J 1 unité de masse atomique = 1 u = 1,6605·10⁻²⁷ kg = 931,49 MeV/c²

TABLEAU PÉRIODIQUE DES ÉLÉMENTS

1.0079

PÉRIODE

GROUPE

http://www.ktf-split.hr/periodni/fr/

18 VIIIA 2 4.0026

-	H			Z	NUMÉRO DU GROUPE	ROUPE		NUMÉRO	NUMÉRO DU GROUPE	, mark								He
	HYDROGÈNE	2 114		RECOM	MANDATION (1985)	RECOMMANDATIONS DE L'IUPAC (1985)		HEMICAL AB	CHEMICAL ABSTRACT SERVICE (1986)	VICE		[13 IIIA	IIIA 14 IVA 15	15 VA	VA 16 VIA 17 VIIA	7 VIIA	HÉLIUM
	3 6.941	4 9.0122				<i>/</i> '	13 IIIA	,					5 10.811 6		12.011 7 14.007 8	15.999	9 18.998	18.998 10 20.180
7	L.	Be			NOMBRE ATOMIQUE –	_	5 10.811	– MASSE AT	– MASSE ATOMIQUE RELATIVE (1)	CATIVE (1)			B	ر ک	Z	0	1	Ne
	LITHIUM	BÉRYLLIUM			S	SYMBOLE —	m H						BORE	CARBONE	AZOTE	OXYGÈNE	FLUOR	NÉON
	11 22.990	11 22.990 12 24.305					BORE	– NOM DE L'ÉLÉMENT	ÉLÉMENT				13 26.982 14 28.086 15 30.974 16 32.065 17 35.453 18 39.948	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
e	Na	Mg	*										A	Si	_	S	ご	Ar
	SODIUM	MAGNÉSIUM 3		IIIB 4 IVB 5		VB 6 VIB 7 VIIB	7 VIIB			10	11 IB 12		IIB ALUMINIUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	19 39.098 20 40.078 21 44.956 22 47.867 23 50.942 24 51.996 25 54.938 26 55.845 27 58.933	25 54.938	26 55.845	27 58.933	28 58.693	28 58.693 29 63.546 30	30 65.39	65.39 31 69.723 32	32 72.64	72.64 33 74.922 34 78.96	34 78.96	35 79.904	36 83.80
4	×	Ca	Sc	Ï	>	Cr	Mn	Fe	ပိ	Z	Cn	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANE	VANADIUM	CHROME	MANGANÈSE	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
	37 85.468 38	38 87.62	39 88.906		40 91.224 41 92.906 42	42 95.94 43	43 (98) 44	101.07	45 102.91	46 106.42	47 107.87	48 112.41	46 106.42 47 107.87 48 112.41 49 114.82 50 118.71 51 121.76 52 127.60 53 126.90 54 131.29	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
Ŋ	Rb	Sr	X	Zr	NP	Mo	N N	Ru	Rh	Pd	Ag	Cd	In	Sn	Sp	Te	Π	Xe
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDÈNE	MOLYBDÈNE TECHNÉTIUM RUTHÉNIUM	RUTHÉNIUM	RHODIUM	PALLADIUM	ARGENT	CADMIUM	INDIOM	ETAIN	ANTIMOINE	TELLURE	IODE	XÉNON
	55 132.91	55 132.91 56 137.33	57-71	72 178.49	73 180.95	72 178.49 73 180.95 74 183.84 75 186.21 76	75 186.21		77 192.22	190.23 77 192.22 78 195.08 79 196.97 80 200.59 81 204.38 82 207.2 83 208.98	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209) 85	(210)	86 (222)
9	CS	Ba	La-Lu	Hf	La	*	Re	Os	Ir	Pt	Au	$H_{\mathbf{g}}$	I	Pb	Bi	Po	At	Rn
	CÉSIUM	BARYUM	Lanthanides	HAFNIUM	TANTALE	TUNGSTËNE	RHÉNIUM	OSMIUM	IRIDIUM	PLATINE	OR	MERCURE	THALLIUM	PLOMB	BISMUTH	POLONIUM	ASTATE	RADON
	87 (223) 88	88 (226)	89-103	104 (261)	105 (262)	104 (261) 105 (262) 106 (266) 107 (264) 108	107 (264)	108 (277)	109 (268)	(277) 109 (268) 110 (281) 111 (272) 112 (285)	111 (272)	112 (285)		114 (289)				
7	Fr	Ra	Ac-Lr	RAF		M M	Bh		Mit	Umm	Umm	Ump		Umd				
	FRANCIUM	RADIUM	Actinides		RUTHERFORDIUM DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	HASSIUM MEITNERIUM UNUNNILIUM UNUNUNIUM UNUNBIUM	UNUNUNIUM	UNUNBIUM		UNUNQUADIUM				

La masse atomique relative est donnée avec 6 cinq chiffres significatifs. Pour les éléments qui n'ont pas de nucléides stables, la valeur entre parenthèses indique le nombre de masse de l'isotope de l'élément ayant la durée de vie la (1) Pure Appl. Chem., 73, No. 4, 667-683 (2001)

Toutefois, pour les trois éléments Th, Pa et U qui ont une composition isotopique terrestre connue, une masse atomique est indiquée.

Copyright @ 1998-2002 EniG. (eni@ktf-split.hr) 69 168.93 70 173.04 71 174.97 YTTERBIUM THULIUM Tm 68 167.26 因 ERBIUM 65 158.93 | 66 162.50 | 67 164.93 Ho HOLMIUM DYSPROSIUM Dy TERBIUM 57 138.91 58 140.12 59 140.91 60 144.24 61 (145) 62 150.36 63 151.96 64 157.25 SAMARIUM EUROPIUM GADOLINIUM 因 Sm PROMÉTHIUM Pm NÉODYME Z PRASÉODYME CÉRIUM Lanthanides LANTHANE La

93 (237) 94 (244) 95 (243) 96 (247) 92 238.03 89 (227) 90 232.04 91 231.04 Pa Ac

Actinides

BERKÉLIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELÉVIUM NOBÉLIUM LAWRENCIUM

100 (257) 101 (258) 102 (259)

(252)

(251) 99

97 (247) 98

Mid

Film

H S

BK

Amm

CURIUM

NEPTUNIUM PLUTONIUM AMÉRICIUM

THORIUM PROTACTINIUM URANIUM

ACTINIUM

Editor: Michel Ditria