หน่วยที่ 1

แนะนำ Internet of Things

ผู้ใช้คำว่า "Internet of Things (IoT)" เป็นคนแรก

Kevin Ashton

"I was talking about the supply chain being a 'Network of Things,' and the Internet being a 'Network of Bits,' and how sensor technology would merge the two together. Then I thought of an 'Internet of Things,' and I thought, 'That'll do – or maybe even better.' It had a ring to it. It became the title of the presentation."

https://blog.avast.com/kevin-ashton-named-the-internet-of-things

Internet + Things

- Internet = network of network
 - สื่อกลางในการเชื่อมต่อ
 - สถาปัตยกรรม
 - โพรโทคอล
- Things = anything, everything
 - แต่ในความเป็นจริง เมื่อพูดถึง IoT เราจะไม่ได้หมายความรวมถึงเครื่อง คอมพิวเตอร์ หรืออะไรที่คล้ายกัน (เช่น เครื่อง smartphone)

Internet of Things

- •IoT เชื่อมโลก physical และโลก digital เข้าด้วยกัน
- •IoT เชื่อมโลก physical ด้วย sensor, actuator, data converter
- •IoT เชื่อมหากันด้วย network รูปแบบต่างๆ
- •IoT เก็บข้อมูลจาก sensor ไว้ในโลก digital
- •IoT น้ำข้อมูลจากโลก digital ไปสู่โลก physical ผ่าน actuator

Automatic system

- รับรู้สภาพแวดล้อมด้วย sensor
 - แสงมาก แสงน้อย มีแสง ไม่มีแสง
- ควบคุมระบบโดย actuator
 - รีเลย์ตัดต่อวงจรหลอดไฟส่องสว่าง

IoT

E..., Digital, Internet, Cyber, ...

Sensor

Control Center

Actuator

Temperature sensor detects heat.

Sends this detect signal to the control center.

Control center sends command to sprinkler.

Sprinkler turns on and puts out flame.

Sensor to **Actuator** Flow

เทคโนโลยีที่เกี่ยวข้องกับการพัฒนา IoT

เทคโนโลยี Internet/Web

- •Internet ทำงานบน protocol มาตรฐาน
 - เพื่อความ compatible กับทั้งอุปกรณ์ในอดีตและอนาคต
- •Internet มี services มาตรฐาน (ทำงานบน cloud)
- •Network จะทำงานบน stack ที่หลากหลาย
- Physical device เดียวกันอาจทำงานได้บนหลาย logical device
 - เช่น network interface card อาจทำงานได้ทั้ง IPv4 และ IPv6

Networking standard & technology

เทคโนโลยีการเข้าถึง network ในระดับชั้น physical

- LPWAN
- Cellular
- Bluetooth Low Energy (BLE)
- ZigBee
- NFC
- RFID
- Wi-Fi
- Ethernet

LPWAN (Low Power Wide Area Network)

- ออกแบบมาเพื่อใช้กำลังงานต่ำ แต่มีระยะทางในการสื่อสารที่ไกลมาก (low-power, long-range wireless communication)
- เหมาะที่จะใช้กับอุปกรณ์ IoT กำลังงานต่ำ เช่น wireless sensors (network)
- ตัวอย่างเทคโนโลยี LPWAN
 - LoRa (Long-Range physical layer protocol
 - Haystack
 - SigFox
 - LTE-M
 - NB-IoT (Narrow-Band IoT).

Cellular (เครือข่ายโทรศัพท์เคลื่อนที่)

- ออกแบบมาเพื่อใช้งานร่วมกับเครือข่ายโทรศัพท์เคลื่อนที่ มีระยะทางในการสื่อสาร ครอบคลุม cell site
- LTE-M และ NB-IoT เป็น long range communication ที่ใช้ cellular เป็นสื่อกลาง
- ตัวอย่างเทคโนโลยี cellular
 - 2G (GSM) (อยู่ในสถานะเตรียมเลิกให้บริการ)
 - Code-division multiple access (CDMA) (อยู่ในสถานะเตรียมเลิกให้บริการ)
 - 3G (อยู่ในสถานะเตรียมเลิกให้บริการ)
 - 4G (เป็นระบบหลัก และเตรียมเลิกใช้เมื่อมีระบบ 5G)
 - 5G

Bluetooth Low Energy (BLE)

- ออกแบบมาเพื่อใช้งานในระยะใกล้ (ไม่เกิน 100 เมตร)
- Bandwidth ประมาณ 270 kbps
- มี topology แบบ star คือมีอุปกรณ์ primary หนึ่งตัวเชื่อมต่อกับ secondary หลายตัว
- BLE ทำงานใน 2 layers ของ OSI Model
 - Layer 1 : PHY
 - Layer 2 : MAC
- BLE เหมาะกับระบบที่ส่งข้อมูลไม่มาก และส่งเป็นช่วงๆ (bursts)
- ตัวอย่างเทคโนโลยี BLE
 - หูฟัง
 - อุปกรณ์สวมใส่เพื่อสุขภาพ

ZigBee

- ZigBee ทำงานบนความถี่ย่าน 2.4 GHz
- ออกแบบมาเพื่อใช้งานในระยะไม่เกิน 100 เมตรในที่โล่ง
 - ในอาคารประมาณ 10-20 เมตร
- Bandwidth ประมาณ 250 kbps
- มี topology แบบ mesh (อุปกรณ์ทุกตัวสามารถคุยกันได้ทั้งหมด)
- อุปกรณ์ ZigBee สามารถทำงานได้หลายหน้าที่ เช่นเป็น device ธรรมดา, controller หรือ router
- ZigBee ถูกออกแบบมาใช้กับงาน Home automation

NFC (Near Field Communication)

- NFC ออกแบบมาเพื่อใช้งานในระยะสั้น ประมาณ 4 เซนติเมตร
- ส่วนใหญ่มีลักษณะเป็น tag หรือ card
- นิยมใช้ในระบบ payment, check-in, asset tracking

RFID (Radio Frequency Identification)

- RFID tags ทำหน้าที่เก็บข้อมูล (ID)
- ออกแบบมาเพื่อใช้งานในระยะสั้น (ประมาณ 1 เมตร)
- RFID tag มีทั้งแบบ active และ passive
 - Active RFID tag ต้องการแบตเตอรี่ แต่สามารถใช้งานที่ระยะไกลกว่า
 - Passive RFID tag ทำงานได้โดยไม่ต้องใช้แบตเตอรี่
- RFID tag นิยมใช้งานในลักษณะคล้ายกับ NFC

Wi-Fi

- Wi-Fi เป็นมาตรฐานของ network ที่ใช้คลื่นวิทยุ
- ทำงานบนข้อกำหนด IEEE 802.11a/b/g/n
 - /n จะมีอัตราข้อมูลสูงสุด แต่กินกำลังมากที่สุด
 - ระบบ IoT นิยมใช้ 802.11/b หรือ /g เพื่อประหยัดกำลังงาน
- •มีแนวโน้มที่ Wi-Fi จะถูกแทนที่ด้วยเทคโนโลยีที่กินกำลังต่ำกว่า

Ethernet

- เป็นระบบสื่อสารข้อมูลแบบใช้สายที่ได้รับความนิยมสูง
- ทำงานบนข้อกำหนด IEEE 802.3
- เหมาะกับระบบ IoT ที่อยู่กับที่ (Stationary) เช่นภายในอาคาร
- มีคู่แข่งที่สำคัญได้แก่ Power Line Communication (PLC)

Internet Layer IoT Network Technologies

- Internet layer technologies (OSI Layer 3) ทำหน้าที่ในการ identify และ route แพตเกจข้อมูลใน network
- เทคโนโลยีที่ IoT ใช้ใน layer นี้ได้แก่ IPv6, 6LoWPAN, และ RPL

IPv6

- ภายใต้ Internet layer หมายเลขประจำตัวของอุปกรณ์ทุกตัวจะถูกกำหนดด้วย IP addresses
- ในระบบ IoT จะนิยมใช้การอ้าง address แบบ IPv6 มากกว่า IPv4
 - IPv4 จะถูกจำกัด address ไว้ที่ 32-bit (ประมาณ 4,300 ล้านอุปกรณ์)
 - IPv6 ใช้ address ขนาด 128-bit (ประมาณ 340 ล้านล้านล้านล้านอุปกรณ์)
- แต่โดยทั่วไปแล้ว IoT devices มักจะไม่ต้องการใช้ public addresses
 - ส่วนใหญ่จะเข้าถึงโลกภายนอกผ่าน gateway

6LoWPAN

- 6LoWPAN มาจาก IPv6 Low Power Wireless Personal Area Network
- 6LoWPAN เป็นมาตรฐานที่อนุญาตให้ใช้ IPv6 บน 802.15.4 wireless networks.
- 6LoWPAN นิยมใช้กับ
 - wireless sensor networks
 - home automation devices

RPL

- RPL ออกเสียงว่า "ripple"
- IPv6 ที่ออกแบบมาเพื่องาน Low-Power มักจะมีลักษณะเป็น Lossy Networks
 - ทำงานกับ wireless sensor network ที่ไม่ได้มีการเชื่อมต่ออย่างต่อเนื่อง
 - มีปริมาณ packet loss ที่ไม่สามารถคาดเดาได้
- RPL สามารถคำนวณเส้นทางที่เหมาะสมสำหรับการสื่อสารข้อมูล โดยสร้างกราฟขึ้น จาก node ใน network แบบ dynamic
 - โดยคำนึงถึงการใช้พลังงานน้อยที่สุด (minimize energy) และเสียเวลาในการสื่อสารน้อย ที่สุด (minimize latency time)

เทคโนโลยีในระดับ Application Layer

- โดยปกติ แอปพลิเคชันที่ใช้งานทั่วไปบนอินเทอร์เน็ตคือ HTTP และ HTTPS ซึ่งใน IoT ก็เป็นความจริงเช่นกัน
 - แต่จะใช้อินเทอร์เฟซ RESTful HTTP และ HTTPS ซึ่งผ่านการปรับแต่งแล้ว (CoAP)
 - มีลักษณะเป็น HTTP ขนาดย่อส่วนที่ใช้ร่วมกับ 6LoWPAN บน UDP
- นอกจากนี้ ยังมีโปรโตคอลที่นิยมใช้ ได้แก่
 - MQTT
 - AMQP
 - XMPP

MQTT (Message Queue Telemetry Transport)

- MQTT เป็นโพรโทคอลแบบ publish/subscribe-based messaging
- ถูกออกแบบมาให้ใช้กับระบบที่ใช้ bandwidth ต่ำและไม่เน้นเสถียรภาพในการ เชื่อมต่อ

AMQP (Advanced Message Queuing Protocol)

- AMQP เป็นโพรโทคอลแบบ open standard messaging
- เป็นโพรโทคอลที่ใช้กับ message-oriented middleware.
- AMQP ได้รับการพัฒนาโดย RabbitMQ

XMPP (Extensible Messaging and Presence Protocol)

- XMPP ถูกออกแบบมาเพื่อใช้กับระบบสื่อสารแบบ real-time สำหรับมนุษย์ (real-time human-to-human communication)
- แต่แล้วโพรโทคอลนี้ก็ถูกปรับมาใช้สำหรับการสื่อสารระหว่างเครื่อง (machine-to-machine (M2M) communication)
- วัตถุประสงค์หลักคือเป็นส่วนทำงานและส่งผ่าน XML data
- XMPP นิยมใช้กับเครื่องใช้อัจฉริยะ

https://en.wikipedia.org/wiki/XMPP#/media/File:Wie_ein_Jabber-Transport funktioniert.svg

ความท้าทายในการสร้างระบบ IoT

ต้องมี Internet hardware/protocols ที่หลากหลาย

- ระยะทางในการรับส่งข้อมูล (range)
- Bandwidth
- กำลังงานที่ใช้ (Power usage)
- ลักษณะการเชื่อมต่อ เช่นเชื่อมต่อตลอดเวลาหรือ ad hoc
- การทำงานร่วมกับระบบอื่น ๆ (interoperability)
- ความปลอดภัย (security)

ระยะทางในการรับส่งข้อมูล (range)

- ระยะทางในการรับส่งข้อมูล (range) คือระยะห่างระหว่างอุปกรณ์ IoT oy[เป็นปัจจัยสำคัญในการเลือก (ออกแบบ) ระบบ IoT โดยเราต้องเลือกให้ เหมาะสมกับ Application ที่ต้องการ
- ขนาดของเครือข่าย IoT แบ่งตามระยะห่างระหว่างอุปกรณ์ได้ดังนี้
 - PAN (Personal Area Network)
 - LAN (Local Area Network)
 - MAN (Metropolitan Area Network)
 - WAN (Wide Area Network)

PAN (Personal Area Network)

- PAN เป็นเครือข่ายที่มีระยะทางระหว่างอุปกรณ์สั้นที่สุด มีระยะไม่กี่เซนติเมตรถึงไม่กี่ เมตร
 - เช่น อุปกรณ์ติดตามข้อมูลสุขภาพ (wearable fitness tracker device)
 - เชื่อมต่อกับ smartphone ผ่าน BLE

LAN (Local Area Network)

- LAN เป็นเครื่อข่ายที่มีระยะห่างระหว่างอุปกรณ์ในช่วงสั้นถึงช่วงกลาง
- สื่อสารข้อมูลได้ในระยะไกลหลายร้อยเมตร
 - เช่น ระบบอัตโนมัติภายในบ้านหรือเซ็นเซอร์ที่ติดตั้งภายในโรงงานผลิต
 - สื่อสารผ่านสาย Ethernet หรือ Wi-Fi
 - อุปกรณ์ที่ทำหน้าที่เกตเวย์มักจะติดตั้งอยู่ภายในอาคารเดียวกัน

MAN (Metropolitan Area Network)

- MAN จัดเป็นเครื่อข่ายการสื่อสารระยะไกล (Long range)
- อาณาเขตของ MAN ครอบคลุมระดับเมือง (city-wide)
- มีระยะทางได้มากหลายกิโลเมตร
 - เช่น เซ็นเซอร์จอดรถอัจฉริยะติดตั้งทั่วเมือง ที่เชื่อมต่อในโทโพโลยีเครือข่ายแบบเมช

WAN (Wide Area Network)

- WAN จัดเป็นเครื่อข่ายการสื่อสารระยะไกล (Long range)
- อาณาเขตของ WAN มักจะวัดกันในหน่วยกิโลเมตร
- มีระยะทางได้มากหลายกิโลเมตร
 - เช่น เซนเซอร์ทางการเกษตร ที่ติดตั้งในฟาร์มขนาดใหญ่ หรือระบบเครือข่ายพยากรณ์อากาศ ที่ครอบคลุทระดับภูมิภาคของประเทศ

Bandwidth

- Bandwidth วัดจากจำนวนข้อมูลที่สามารถส่งได้ต่อหน่วยเวลา
- Bandwidth เป็นตัวกำหนดอัตราข้อมูลที่สามารถรวบรวมข้อมูลจากอุปกรณ์ IoT และ ส่งไปยังปลายทาง
- ปัจจัยที่ส่งผลกระทบต่อ Bandwidth :
 - ปริมาณข้อมูลที่แต่ละอุปกรณ์ IoT รวบรวมมาได้และส่งเข้าสู่เครือข่าย
 - จำนวนอุปกรณ์ IoT ที่ใช้งานต่อระบบ
 - รูปแบบการส่งข้อมูลในระบบ (ส่งด้วยอัตราคงที่ ส่งเป็นช่วงๆ หรือส่งตามเหตุการณ์ที่สนใจ)

Bandwidth

- การเลือกระบบที่มี bandwidth ที่ไม่เหมาะสม อาจจะไม่ก่อให้เกิดปัญหาร้ายแรง แต่ทำให้ ต้องใช้ความพยายามเพิ่มขึ้น
 - ถ้าข้อมูลจากอุปกรณ์ IoT มีขนาดเล็กกว่า packet ต้องเติมด้วยข้อมูลบางอย่าง (padded with empty data)
 - ถ้าข้อมูลจากอุปกรณ์ IoT มีขนาดโตกว่า packet ต้องแบ่งออกเป็นหลายส่วน แล้วทยอยส่งใน ระบบ
- Bandwidth ของฝั่งรับและส่งอาจจะไม่เท่ากัน
 - เช่น download 10MBps, Upload 2MBps

*** ในกรณีที่ข้อมูลไม่ match กับ bandwidth การจัดการทุกอย่างให้เหมาะสม จะใช้ ทรัพยากรทั้งหน่วยความจำและการประมวลผลที่เพิ่มขึ้น

กำลังงานที่ใช้ (Power usage)

- การส่งข้อมูลจากอุปกรณ์ IoT ต้องใช้พลังงาน
 - การส่งข้อมูลในระยะไกลต้องการพลังงานมากกว่าระยะสั้น
- ในบางกรณี เราอาจต้องใช้แบตเตอรี่ โซลาร์เซลล์ หรือตัวเก็บประจุขนาดใหญ่ (Super capacitor)
- การใช้พลังงานอย่างประหยัด
 - ช่วยให้ระบบมีอายุการูใช้งานที่นานขึ้น
 - มีความน่าเชื่อถือมากขึ้น
 - ลดต้นทุนการดำเนินงานอีกด้วย
- เทคนิคการลดใช้พลังงาน
 - ทำให้อุปกรณ์เข้าสู่โหมดสลีปเมื่อไม่ได้ใช้งานเลือกเครือข่ายที่เหมาะสม

 - เลือก Bandwidth ที่เหมาะสม

ลักษณะการเชื่อมต่อ

- อุปกรณ์ IoT อาจจะไม่ได้เชื่อมต่อกับเครือข่ายตลอดเวลา
 - ในบางกรณี อุปกรณ์ได้รับการออกแบบมาเพื่อเชื่อมต่อเป็นห้วง ๆ
 - บางครั้งเครือข่ายที่ไม่มีเสถียรภาพ อาจทำให้อุปกรณ์หลุดออกมา
- ปัญหาการเชื่อมต่ออาจจะมีสาเหตุมาจาก
 - คุณภาพของบริการ
 - สัญญาณรบกวนและการรบกวน
 - การแบ่งช่องสัญญาณโดยใช้คลื่นความถี่ที่ใช้ร่วมกัน
- การออกแบบระบบอาจจะต้องออกแบบให้รองรับการเชื่อมต่อได้ในหลาย ๆ รูปแบบ

การทำงานร่วมกับระบบอื่น ๆ

- อุปกรณ์ IoT จำเป็นทำงานร่วมกับอุปกรณ์ เครื่องมือ ระบบ และเทคโนโลยีอื่น ๆ ที่มี อยู่หรือเกิดขึ้นในอนาคต
- ความท้าทายอยู่ที่เราต้องสามารถทำให้อุปกรณ์ IoT ทำงานร่วมกันได้
 - ใช้โพรโทคอลมาตรฐาน (ถ้าโพรโทคอลที่มีอุยู่เดิมใช่ได้ดี ก็ใช้ต่อไป)
 - หลีกเลี่ยงการออกแบบด้วยมาตรฐานที่หลากหลาย
 - แต่บางครั้งกระบวนการสร้างมาตรฐานก็ต้องดิ้นรนเพื่อให้ทันนวัตกรรมและการเปลี่ยนแปลง ทำให้ผู้สร้างมาตรฐานต้องเขียนและเผยแพร่ตามกรอบเวลา ทั้ง ๆ ที่มาตรฐานยังคงมีการ เปลี่ยนแปลง
- พิจารณาระบบนิเวศโดยรอบว่าควรกำหนดระบบ IoT ของเราไปในทิศทางใด

ความปลอดภัย (Security)

- ความปลอดภัย (Security) เป็นสิ่งสำคัญ
 - ควรเลือกใช้เทคโนโลยีเครื่อข่ายที่สามารถรักษาความปลอดภัยแบบ end-to-end
- ตัวอย่างความปลอดภัย
 - การตรวจสอบสิทธิ์ (Authentication)
 - การเข้ารหัส (Encryption)
 - การป้องกันการละเมิดด้วยการเปิดพอร์ต (Port protection)

การตรวจสอบสิทธิ์

- การตรวจสอบสิทธิ์ ใช้โปรโตคอลที่ปลอดภัยเพื่อรองรับการรับรองความถูกต้องสำหรับ
 - อุปกรณ์ (Devices)
 - เกตเวย์ (Gateways)
 - ผู้ใช้ (Users)
 - บริการ (Services)
 - และแอพพลิเคชั่น (Applications)
- พิจารณาใช้มาตรฐาน X.509 สำหรับการรับรองความถูกต้องของอุปกรณ์

การเข้ารหัส

- ถ้าระบบ IoT ของเราใช้ Wi-Fi
 - ให้ใช้ Wireless Protected Access 2 (WPA2) สำหรับเครือข่ายไร้สาย
 - หรือใช้ไพรเวท Pre-Shared Key (PPSK)
- เพื่อให้มั่นใจว่าในความเป็นส่วนตัวและความสมบูรณ์ของข้อมูลสำหรับการสื่อสาร ระหว่างแอปพลิเคชัน
 - ทำให้แน่ใจว่าได้ใช้ TLS
 - หรือใช้ Datagram Transport-Layer Security (DTLS) ซึ่งอิงตาม TLS แต่ได้รับการ ดัดแปลงเพื่อใช้กับการเชื่อมต่อที่ไม่น่าเชื่อถือ (ซึ่งทำงานผ่าน UDP)

Port protection

- การป้องกันพอร์ตช่วยให้เรามั่นใจได้ว่า เฉพาะพอร์ตที่จำเป็นสำหรับการสื่อสารกับเกต เวย์หรือแอปพลิเคชันหรือ upstream เท่านั้น ที่สามารถเปิดให้ภายนอกติดต่อเข้ามา ได้
- พอร์ตอื่นๆ ที่เหลือทั้งหมดในอุปกรณ์ควรปิดใช้งานหรือป้องกันโดย Firewall
- พอร์ตของอุปกรณ์ของเราอาจถูกเปิดเผยจากช่องโหว่ของ Universal Plug and Play (UPnP) ดังนั้นควรปิดการใช้งาน UPnP บนเราเตอร์ด้วย

The IoT World Forum (IoTWF) Standardized Architecture

IoTWF Standardized Architecture

- ในปี 2014 คณะกรรมการสถาปัตยกรรม IoTWF (นำโดย Cisco, IBM, Rockwell Automation และอื่น ๆ) เผยแพร่แบบจำลองสถาปัตยกรรม IoT เจ็ดชั้น
- โมเดล อื่น ๆ ของ IoT ที่มีอยู่ ก็ได้รับการทำให้เรียบง่ายและชัดเจนโดย IoTWF เช่น
 - edge computing
 - การจัดเก็บและการเข้าถึงข้อมูล
- สถาปัตยกรรม IoT ช่วยให้มองภาพ IoT จากมุมมองทางเทคนิคที่กระชับขึ้น
- แต่ละชั้นแบ่งออกเป็นฟังก์ชันเฉพาะ
- มีการรักษาความปลอดภัยครอบคลุมทุกชั้นของทั้งโมเดล

Cisco's IoT security reference model

Levels Collaboration & Processes Data at (Involving People & Business Processes) Center Rest Application (Reporting, Analytics, Control) **Data Abstraction** (Aggregation & Access) Data in Motion Data Accumulation (Storage) Edge (Fog) Computing (Data Element Analysis & Transformation) Connectivity (Communication & Processing Units) **Edge** Sensors, Devices, Machines, **Physical Devices & Controllers** (The "Things" in IoT) Intelligent Edge Nodes of all types

Internet of Things Reference Model: Security

Levels **Identity Management** Center (software) Collaboration & Processes Authentication/Authorization (software) **Application** Secure Storage Data (hardware & software) **Abstraction Tamper Resistant** Data (software) Accumulation Secure Communications (protocols and encryption) Edge (Fog) Computing Secure Network Access Security (hardware & protocols) Connectivity Secure Content **Physical Devices** (silicon) & Controllers Edge

IoT Reference Model ช่วยอะไรแก่เราบ้าง

- แบ่งระบบ IoT ออกเป็นส่วนย่อย ๆ ระดับย่อย ๆ สามารถแก้ปัญหาได้ง่ายขึ้น
- ระบุเทคโนโลยีต่าง ๆ ของอุปกรณ์ที่ใช้ในแต่ละชั้นและความสัมพันธ์ซึ่งกันและกัน
- กำหนดระบบที่ผู้ขายแต่ละรายสามารถจัดหาชิ้นส่วนต่าง ๆ ให้เราได้
- มีกระบวนการกำหนดอินเทอร์เฟซ ที่นำไปสู่การทำงานร่วมกันของอุปกรณ์ต่าง ๆ
- กำหนดรูปแบบการรักษาความปลอดภัยในแต่ละระดับ รวมถึงรูปแบบที่บังคับใช้ใน การสื่อสารข้อมูลระหว่างระดับ

Layer 1: Physical Devices and Controllers Layer

- ชั้นที่ 1 ของแบบจำลองอ้างอิง IoT คือ
 - Physical devices
 - Controller
- ชั้นนี้เป็นที่ตั้งของ "สิ่งของ: Thing" ใน Internet of Things รวมถึงอุปกรณ์ปลายทางต่างๆ
 - sensor และ actuator ที่ส่งและรับข้อมูล
- ขนาดของ "สิ่งของ" เหล่านี้มีตั้งแต่
 - เซนเซอร์ขนาดเล็กระดับมิลลิเมตรถึงนาเมตร
 - เครื่องจักรขนาดยักษ์ในโรงงาน เครื่องบิน รถไฟฟ้าความเร็วสูง ดาวเทียม สถานีอวกาศ
- หน้าที่หลักคือ การสร้างข้อมูล สามารถสอบถาม และ/หรือควบคุมผ่านเครือข่ายได้

Layer 2: Connectivity Layer

- ชั้นที่ 2 ของแบบจำลอง จะโฟกัสอยู่ที่การเชื่อมต่อ
- หน้าที่ของชั้นนี้คือ
 - การส่งข้อมูลที่เชื่อถือได้และทันเวลา (สำคัญที่สุด)
 - การรับ-ส่งข้อมูลระหว่างอุปกรณ์ในชั้นที่ 1
 - การรับ-ส่งข้อมูลระหว่างเครือข่ายต่างชนิดในชั้นที่ 2
 - การรับ-ส่งข้อมูลระหว่างเครือข่ายกับการประมวลผลข้อมูลที่เกิดขึ้นในชั้นที่ 3 (edge computing)
- ชั้นการเชื่อมต่อนี้ ครอบคลุมองค์ประกอบเครือข่ายทั้งหมดของ IoT

Connectivity
(Communication and Processing Units)

Layer 2 Functions:

- Communications Between Layer 1 Devices
- Reliable Delivery of Information Across the Network
- Switching and Routing
- Translation Between Protocols
- Network Level Security

IoT Reference Model Connectivity Layer Functions

Layer 3: Edge Computing Layer

- ชั้นที่ 3 เป็นที่ตั้งของส่วนประมวลผล ขนาดย่อม ดังนั้นจึงถูกเรียกว่า fog computing (หน่วยประมวลผลหมอก) ซึ่งเล็กกว่า cloud (เมฆ)
- บทบาทสำคัญคือการการลดขนาดข้อมูลและแปลงกระแสข้อมูลเครือข่ายให้เป็นข้อมูล ที่พร้อมสำหรับการจัดเก็บและประมวลผลโดยชั้นที่สูงขึ้น
- ชั้นที่สามนี้ จัดเป็นส่วนประมวลผลข้อมูลที่ใกล้กับอุปกรณ์ที่ปลายทางของเครือข่าย มากที่สุด (จึงได้ชื่อว่า "edge computing layer")

③ Edge (Fog) Computing (Data Element Analysis and Transformation)

Upper Layers: Layers 4–7

- ชั้นบนของแบบจำลอง มีหน้าที่จัดการประมวลผลข้อมูล IoT ที่สร้างขึ้นโดยชั้นล่าง
 - Layer 4: Data Accumulation Layer
 - Layer 5: Data Abstraction Layer
 - Layer 6: Application Layer
 - Layer 7: Collaboration Layer

Layer 4: Data Accumulation

- ทำหน้าที่ตรวจจับและเก็บข้อมูลที่จำเป็นสำหรับ Application
- แปลง event-based data เป็น query-based processing

Layer 5: Data Abstraction Layer

- หลอมรวมข้อมูลหลาย format ให้เป็นข้อมูลที่ใช้งานได้และสอดคล้องกัน
- ตรวจสอบความสมบูรณ์ของ dataset

Layer 6: Application Layer

- แปลความหมายของข้อมูล โดยใช้ software application
- Application สามารถ monitor, control และทำรายงานบนข้อมูลที่วิเคราะห์แล้ว

Layer 7: Collaboration and processes Layer

- ใช้งานและแจกจ่าย application information
- ในการแจกจ่าย IoT information อาจจะต้องมีการประมวลผลเพิ่มเติมอีกหลาย ขั้นตอน
- ในชั้นที่ 7 นี้อาจจะมีกระบวนการเพิ่มเติม เพื่อให้ได้ประโยชน์สูงสุดจากระบบ IoT ระบบนี้

หน่วยการเรียนรู้ถัดไป

- สถาปัตยกรรม IoT
- IoT Devices
 - Microcontroller
 - Sensor
 - Actuator

คำถาม