Electrical Engineering Technology

R-L Storage Phase – In Class Problem

- 1. Find au
- 2. Find $i_{L1}(t)$, $t \ge 0$ (eq)
- 3. Find $v_{L1}(t)$ and $v_{R1}(t)$, $t \ge 0$ (eq)
- 4. Find i_L and v_L for 1τ , 3τ , & 5τ
- 5. Sketch $i_{L1}(t)$, $v_{L1}(t)$, & $v_{R1}(t)$, $t \ge 0$

R-L Storage Phase – In Class Problem

1.
$$au = \frac{L_1}{R_1} = \frac{0.25 H}{20 k \Omega} =$$
 12.5 μ s

2.
$$i_{L_1}(t) = \frac{E_1}{R_1}(1 - e^{-t/\tau})A, t \ge 0$$

$$i_{L_1}(t) = 2 \cdot 10^{-6}(1 - e^{-t/12.5 \cdot 10^{-6}})A, t \ge 0$$

1. Find Tau

Close at

- 2. Find $i_{L_1}(t)$, t ≥ 0
- 3. Find $v_{11}(t)$ and $v_{R1}(t)$
- 4. Find i_1 and v_1 for 1τ , 2τ , & 5τ
- 5. Sketch $i_{L1}(t)$ $v_{L1}(t)$, & $v_{R1}(t)$

3.
$$v_{L_1}(t) = E_1 e^{-t/\tau} V, t > 0$$
 (KVL)
$$v_{L_1}(t) = (40 \cdot 10^{-3}) e^{-t/\tau} V, t > 0$$

$$v_{R_1}(t) = i_{L_1} \cdot R_1$$

$$v_{R_1}(t) = E_1 (1 - e^{-t/\tau}) V$$

$$v_{R_1}(t) = 40 \cdot 10^{-3} (1 - e^{-t/12.5 \cdot 10^{-6}}) V, t > 0$$

Electrical Engineering Technology

R-L Storage Phase – In Class Problem

- 1. Find Tau
- 2. Find $i_{L1}(t)$, t ≥ 0
- 3. Find $v_{L1}(t)$ and $v_{R1}(t)$
- 4. Find i_{\perp} and v_{\perp} for 1τ , 2τ , & 5τ
- 5. Sketch $i_{L1}(t)$ $v_{L1}(t)$, & $v_{R1}(t)$

4.
$$i_{L_1}(t) = 2 \cdot 10^{-6} (1 - e^{-t/12.5 \cdot 10^{-6}}) A, t \ge 0$$

$$i_{L1}(au)=1.26\mu A$$
 63% of 2 μA

$$i_{L1}(3\tau) = 1.90 \mu A$$
 95% of 2 μA

$$i_{L1}(5 au) = 1.987 \mu A$$
 99.3% of 2 μA

$$v_{L_1}(t) = (40 \cdot 10^{-3})e^{-t/\tau}V, t > 0$$

$$v_{L1}(\tau) = 14.72 mV$$
 36.8% of 40 mV

$$v_{L1}(3\tau) = 1.99 mV$$
 4.98% of 40 mV

$$v_{L1}(5\tau) = 0.27 mV$$
 0.675% of 40 mV

Electrical Engineering Technology

R-L Storage Phase – In Class Problem

5. Sketch $i_{L1}(t)$, $v_{L1}(t)$, & $v_{R1}(t)$

$$i_{L_1}(t) = 2 \cdot 10^{-6} (1 - e^{-t/12.5 \cdot 10^{-6}}) A, t \ge 0$$

$$v_{L_1}(t) = (40 \cdot 10^{-3})e^{-t/\tau}V, t > 0$$

$$v_{R_1}(t) = 40 \cdot 10^{-3} (1 - e^{-t/12.5 \cdot 10^{-6}}) V, t > 0$$

