

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: H04L 29/00	A2	(11) International Publication Number: WO 00/78001	(43) International Publication Date: 21 December 2000 (21.12.2000)
(21) International Application Number: PCT/US00/15690		Published	
(22) International Filing Date: 07 June 2000 (07.06.2000)			
(30) Priority Data: 09/432,854 02 November 1999 (02.11.1999) US 60/139,137 11 June 1999 (11.06.1999) US 60/160,235 18 October 1999 (18.10.1999) US			
(60) Parent Application or Grant MICROSOFT CORPORATION [/]; O. GANDHI, Amar, S. [/]; O. LAYMAN, Andrew, J. [/]; O. WIGHT, Stephen, A. ; O.			

(54) Title: DATA DRIVEN REMOTE DEVICE CONTROL MODEL WITH GENERAL PROGRAMMING INTERFACE-TO-NETWORK MESSAGING ADAPTER
 (54) Titre: MODELE DE COMMANDE DE DISPOSITIF DISTANT GUIDE PAR DONNEES, AVEC ADAPTATEUR GENERAL DE MESSAGERIE ENTRE INTERFACE DE PROGRAMMATION ET RESEAU

(57) Abstract

A general programmatic interface-to-network messaging adapter exposes a suitable object integration interface or application programming interface to applications on a controller device and sends network data messages to invoke services or query status of a controlled device. The adapter maps application calls to the interface into network data messages according to service protocols of the controlled device. The general adapter provides the interface suitable to any specific service of a controlled device based on a data description of the interface, and converts the application calls to network data messages based on a data description of a protocol and format for network data messages to interact with the specific service. Once the interface/messaging description is obtained, applications on the controller device can programmatically interact with the adapter, and the adapter then handles appropriate message exchanges with the service of the controlled device. The general adapter allows controller device applications to be written using object-oriented programming, while avoiding code download.

(57) Abrégé

Cette invention se rapporte à un adaptateur de messagerie général entre interface programmatique et réseau, qui permet d'exposer une interface d'intégration d'objet ou une interface de programmation d'application appropriées à des applications sur un dispositif contrôleur et d'envoyer des messages de données de réseau pour requérir des services ou un état de demande d'un dispositif commandé. Cet adaptateur convertit par mappage les appels d'application adressés à l'interface en messages de données réseau en fonction de protocoles de service du dispositif commandé. Cet adaptateur général fournit l'interface appropriée à n'importe quel service spécifique d'un dispositif commandé sur la base d'une description de données de l'interface et convertit les appels d'application en messages de données réseau sur la base d'une description de données d'un protocole et d'un format pour les messages de données réseau, en vue de leur interaction avec le service spécifique. Une fois obtenue la description d'interface/messagerie, les applications sur le dispositif contrôleur peuvent interagir en mode programmatique avec l'adaptateur, et celui-ci gère les échanges de messages appropriés avec le service du dispositif commandé. Cet adaptateur général permet d'effectuer des opérations d'écriture dans les applications du dispositif contrôleur en utilisant une programmation orientée objet, tout en évitant le téléchargement de codes.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 December 2000 (21.12.2000)

PCT

(10) International Publication Number
WO 00/78001 A2

(51) International Patent Classification⁷:

H04L 29/00

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number:

PCT/US00/15690

(22) International Filing Date:

7 June 2000 (07.06.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/139,137 11 June 1999 (11.06.1999) US

60/160,235 18 October 1999 (18.10.1999) US

09/432,854 2 November 1999 (02.11.1999) US

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— *Without international search report and to be republished upon receipt of that report.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant: **MICROSOFT CORPORATION [US/US]**
One Microsoft Way, Building 114, Redmond, WA 98052
(US).

(72) Inventors: **GANDILI, Amar, S.**; 341A 2509 41st Avenue East, Seattle, WA 98112 (US). **LAYMAN, Andrew, J.**; 5261 148th Avenue S.E., Bellevue, WA 98006 (US).

(74) Agent: **WIGHT, Stephen, A.; Klarquist, Sparkman, Campbell, Leigh & Winston, LLP**. One World Trade Center, Suite 1600, 121 SW Salmon Street, Portland, OR 97204 (US).

WO 00/78001 A2

(54) Title: DATA DRIVEN REMOTE DEVICE CONTROL MODEL WITH GENERAL PROGRAMMING INTERFACE-TO-NETWORK MESSAGING ADAPTER

(57) Abstract: A general programmatic interface-to-network messaging adapter exposes a suitable object integration interface or application programming interface to applications on a controller device and sends network data messages to invoke services or query status of a controlled device. The adapter maps application calls to the interface into network data messages according to service protocols of the controlled device. The general adapter provides the interface suitable to any specific service of a controlled device based on a data description of the interface, and converts the application calls to network data messages based on a data description of a protocol and format for network data messages to interact with the specific service. Once the interface/messaging description is obtained, applications on the controller device can programmatically interact with the adapter, and the adapter then handles appropriate message exchanges with the service of the controlled device. The general adapter allows controller device applications to be written using object-oriented programming, while avoiding code download.

Description

5

10

15

20

25

30

35

40

45

50

55

5

10

**DATA DRIVEN REMOTE DEVICE CONTROL MODEL WITH GENERAL
PROGRAMMING INTERFACE-TO-NETWORK MESSAGING ADAPTER****TECHNICAL FIELD**

15

This invention relates generally to dynamic configuration of interconnectivity among distributed devices and services, and more particularly relates to providing a capability to access device- or service-specific operational information and perform remote automation and control of embedded computing devices using a data-driven remote programming model, such as in a pervasive computing environment

20

BACKGROUND AND SUMMARY

25

The cost of computing and networking technologies have fallen to the point where computing and networking capabilities can be built into the design of many electronic devices in the home, the office and public places. The combination of inexpensive and reliable shared networking media with a new class of small computing devices has created an opportunity for new functionality based mainly on the connectivity among these devices. This connectivity can be used to remotely control devices, to move digital data in the form of audio, video and still images between devices, to share information among devices and with the unconstrained World Wide Web of the Internet (hereafter "Web") and to exchange structured and secure digital data to support things like electronic commerce. The connectivity also enables many new applications for computing devices, such as proximity-based usage scenarios where devices interact based at least in part on geographical or other notions of proximity. A prevalent feature of these connectivity scenarios is to provide remote access and control of connected devices and services from another device with user interface capabilities (e.g., a universal remote controller, handheld computer or digital assistant, cell phones, and the like). These developments are occurring at the same time as more people are becoming connected to the Internet and as connectivity solutions are falling in price and

30

35

40

45

50

55

5

10 increasing in speed. These trends are leading towards a world of ubiquitous and pervasive networked computing, where all types of devices are able to effortlessly and seamlessly interconnect and interact.

15 In accordance with a new device connectivity architecture known as Universal Plug and Play, devices and services are controlled by exchanging well-defined XML-format data messages. At the programmatic level, on the other hand, it is useful and productive to work in an object-oriented framework.

20 Prior connectivity models are not adequate to bridge between object interfaces and the data messages exchanged with the controlled device over a network. Some
25 prior connectivity models require a controlling device to download the program code (such as a device driver, Jini code, etc.) for interacting with the controlled device or service from a networked source. Such a code download requirement is unsuitable to the Web and other ubiquitous computing scenarios. Other connectivity models require use of a custom-written object for specific classes of services. This approach leads to
30 deployment hassles (e.g., user setup and configuration) and also is unsuitable to ubiquitous computing.

35 In accordance with a technology described herein, a general programmatic interface-to-network messaging adapter (called a "rehydrator") is a module that exposes a suitable object integration interface or application programming interface to
40 applications on a controller device and sends network data messages to invoke services or query status of a controlled device. The adapter maps application calls to the interface into network data messages according to service protocols of the controlled device. The described adapter preferably is generic to all devices and services compatible with the connectivity model, and adapts itself to specific of the devices
45 based on an interface and message format/protocol description. In other words, this adapter operates as a universal module through which network data message-driven services on other networked computing devices can remote programmatic application

50

2

55

5

10 programming interfaces, including object integration interfaces according to an object model such as Microsoft's COM, CORBA, JAVA, and the like.

15

5 More specifically, this general adapter provides the interface suitable to any specific service of a controlled device based on a data description of the interface, and converts the application calls to network data messages based on a data description of a protocol and format for network data messages to interact with the specific service.

20

Once the interface/messaging description is obtained, applications on the controller device can programmatically interact with the adapter, and the adapter then handles appropriate message exchanges with the service of the controlled device. With the described adapter, no code download is required, only the interface/messaging description is needed. The description can be obtained from the controlled device, a network server computer, or by pre-loading or caching on the controller device. The technology allows controller device applications to be written using object-oriented programming, while avoiding code download.

25

10 Additional features and advantages will be made apparent from the following detailed description of the illustrated embodiment which proceeds with reference to the accompanying drawings.

30

BRIEF DESCRIPTION OF THE DRAWINGS

35

20 Figures 1 and 2 are block diagrams of a device architecture per Universal Plug and Play using user control points, controlled devices and bridges for connectivity between devices.

40

Figure 3 is a block diagram of a device model per Universal Plug and Play.

45

Figure 4 is a block diagram illustrating example devices conforming to the device model of Figure 3.

25 Figure 5 is a block diagram illustrating device state synchronization using a state table and eventing.

45 Figure 6 is a block diagram illustrating device addressing.

50

55

5

10 Figure 7 is a block diagram of a programmatic interface-to-network messaging adapter or Rehydrator in the device control model of Figure 3.

Figure 8 is a general data flow diagram of the Rehydrator of Figure 7 in the device control model of Figure 3.

15 5 Figure 9 is a block diagram of an implementation design of the Rehydrator of Figure 7.

20 Figures 10 and 11 are block diagrams illustrating an internal software architecture of the user control point and controlled device in the device control model of Figure 3.

10 10 Figure 12 is a block diagram illustrating an internal software architecture of a combined bridge and user control point in the device control model of Figure 3.

25 25 Figure 13 is a data flow diagram illustrating a typical browsing protocol sequence in the device control model of Figure 3.

15 15 Figure 14 is a listing showing a layout of a description document in the device control model of Figure 3.

30 30 Figure 15 is a listing of an exemplary icon list of a Description Document in the device control model of Figure 3.

Figure 16 is a listing of an exemplary service control protocol declaration in a Description Document in the device control model of Figure 3.

35 20 20 Figures 17, 18, and 19 are a listing of an exemplary contract in the device control model of Figure 3.

40 40 Figures 20 and 21 are a listing of an XML schema for a Service Control Protocol Declaration Language used in the device control model of Figure 3.

25 25 Figure 22 is a block diagram of an eventing model used in the device control model of Figure 3.

45 45 Figure 23 is a data flow diagram illustrating subscription, notification and unsubscription in the eventing model of Figure 22.

50

4

55

5

Figure 24 is a block diagram of a computer system that may be used in the
10 device control model of Figure 3.

Figure 25 is a block diagram of a device having embedded computing and
networking capability per universal-plug-and-play (UPNP) standards that may be used
5 in combination with the computer system of Figure 24 in the device control model of
Figure 3.

Figure 26 is a block diagram of a software architecture per UPNP standards in
the embedded computing device of Figure 25

20 Figure 27 is a data flow diagram of a process for automatic network introduction
10 of the embedded computing device of Figure 25 into an ad hoc computer network
environment per the UPNP protocol.

25 Figure 28 is a data flow diagram of a process for automatic network introduction
of the embedded computing device of Figure 25 into a configured computer network
environment per the UPNP protocol.

30 Figure 29 is a block diagram of a software architecture of a client device per
UPNP standards having embedded computing and networking capability that may be
used in the device control model of Figure 3.

35 Figure 30 is a block diagram of an exemplary home or office pervasive
computing environment having a variety of computers as per Figure 24 and embedded
20 computing devices as per Figure 25 interconnected per UPNP standards that may be
used in the device control model of Figure 3.

40 Figures 31 through 43 are program listings of interfaces used in the Rehydrator
implementation design of Figure 9.

45 Figures 44-46 are an XML format listing that depicts an exemplary contract for
25 interacting with a stock quote Service.

Figures 47-50 are an XML format listing that depicts an XML schema for
defining Contracts.

50

5

55

5

DETAILED DESCRIPTION

10

The following detailed description is directed toward a general programmatic interface-to-network messaging adapter (also known as a "rehydrator") in a device control model. In one described implementation, the rehydrator is used in a device architecture 100 (Figure 1), connectivity model, and device control protocol proposed by Microsoft Corporation, called Universal Plug and Play ("UPnP"). Although described in the context of a device control model, and specifically UPnP, the general programmatic interface-to-network messaging adapter of the invention also is more generally applicable in other distributed networking environments to provide an object-oriented or like application programming interface to applications for interacting remotely using network data messages.

25

Universal Plug and Play

30

Universal Plug and Play (UPnP) is an open network architecture that is designed to enable simple, ad hoc communication among distributed devices and services from many vendors. UPnP leverages Internet technology and can be thought of as an extension of the Web model of mobile web browsers talking to fixed web servers to the world of peer-to-peer connectivity among mobile and fixed devices. UPnP embraces the zero configuration mantra of Plug and Play (PnP) but is not a simple extension of the PnP host/peripheral model.

35

20 The cost, size and battery consumption of computing technology--including processing, storage and displays--continues to fall. This trend is enabling the evolution of stand-alone, single or limited function computing devices such as digital cameras, audio playback devices, smart mobile phones and handheld computers. Concurrent with this, the economical storage and transmission of digital audio, video and still images is enabling highly flexible models for managing entertainment content.

40

25 While many of these devices are capable of useful stand-alone operation, seamless connectivity with the PC can enhance the value to the customer of both stand-alone devices and the PC. Good examples of this synergy are digital image capture

50

55

5

10 combined with PC image manipulation, storage and email transfer/web publishing and information synchronization between a PC and a handheld computer or smart mobile phone.

15 Since many of these devices, and the PC itself, are mobile, a suitable communication architecture must enable a highly dynamic connectivity model and must enable peer-to-peer operating among arbitrary combinations of devices.

20 The Internet has created a widespread awareness of the value of simple, universal communication that is independent of the underlying transmission technology and independent of technology from any single vendor.

25 10 UPnP makes it possible to initiate and control the transfer of bulk data (e.g. files) or A/V data streams from any device on the network, to any device on the network, under the control of any device on the network. UPnP enables the ad hoc addition or removal of devices on the network, and it enables multiple controlling devices to remain in sync with each other.

30 15 UPnP reuses existing protocols and technology whenever possible. The transition to this highly connected (and connectable) world will not occur overnight. UPnP builds on existing Internet protocols, but accommodates devices that cannot run the complete UPnP protocol suite. UPnP provides an architecture that enables legacy devices to communicate with UPnP devices.

35 20 IP internetworking has been chosen as a UPnP baseline due to its proven ability to span different physical media, to enable real world multiple vendor interoperation and to achieve synergy with the Internet and home and office intranets. Internet synergy enables applications such as IP telephony, multiple player games, remote control of home automation and security, Internet based electronic commerce, in 40 addition to simple email and web browsing. UPnP's scope includes remote control of 25 devices and bulk data transfer. But, it does not specify A/V streaming formats or protocols.

45

50

55

5

10 UPnP's media independence enables a great deal of flexibility in the packaging
of products. UPnP enables an A/V system to be controlled through an A/C power
communications technology, while the transmission of A/V streams among the
components is analog or digital. One of the controllers of this system could be on the
15 television, while another is on a PC, and yet another connected via radio or infrared.

20

Unlike Plug and Play, Universal Plug and Play is built on top of networking and
enables ad hoc peer-to-peer connectivity. Networking, in this context, describes a style
of connectivity that enables any networked device to initiate a communication with any
other networked device, without having established a prior relationship or maintaining a
25 persistent relationship between the devices. Networking also allows multiple devices to
establish one or more connections with a single device, and it allows for a device to be
capable of both initiating and accepting connections to/from other devices. The PnP, or
host/peripheral, model is suitable whenever there is a natural persistent relationship
30 between two devices (e.g. a keyboard, mouse and display maintain a persistent
relationship with a host computer). Even though networking does not mandate low
level persistent relationships, it provides the needed anchors (addresses) for applications
to choose to maintain associations as a convenience for the customer (e.g. remembering
commonly used networked printers).

35

In order to achieve multiple vendor peer-to-peer interoperation among devices,
20 vendors desirably agree on common technology and standards up to the highest level of
desired functional interoperation.

40

UPnP leverages formal protocol contracts to enable peer-to-peer interoperation.
Protocols contracts enable real-world multiple-vendor interoperation.
45 UPnP enables devices to expose a user interface by leveraging browser
technology. In this context, the browser can be considered to be a very rich remote
terminal. Current browser technology does not maintain a separation of presentation
from data, or in the case of devices, control. It is possible to hunt through a page of
HTML to extract data values, but it is not convenient or robust. UPnP leverages the

50

8

55

5

separation of presentation and data enabled by the use of XML, and it extends this
10 technology to the device control domain.

UPnP provides a device-driven auto-configuration capability that preserves the
experience that customers have on the web. Today, it is possible to navigate around the
15 web without loading programs beyond the browser itself. Since UPnP enables the
browser to be extended to control devices, and because UPnP devices are controlled
with explicit protocols, the browser must somehow learn how to talk to UPnP devices.
This learning process is driven entirely from the device itself and is accomplishing
20 entirely by uploading an XML document that describes the capabilities of the device.

10 The architectural component that enables device-driven auto-configuration is called the
Rehydrator. The job of the Rehydrator is to convert between APIs and protocols.

25 Since the auto-configuration process itself is driven only by the exchange of
formatted data, there is very little opportunity for a malicious attack from a hostile piece
of code.

15 There are some scenarios where the web UI model is not sufficient for a rich
customer experience. It would not be convenient to have a web for each light switch
30 in a house. To support a rich user interface and to enable the aggregation of devices
into a single UI, UPnP enables application control in addition to browser control of
devices. This is achieved simply by enabling applications to call the same Rehydrator
35 APIs that the browser does. Applications can also directly generate and consume the
raw UPnP control protocols, provided they are not interested in the device-driven auto-
configuration enabled by the Rehydrator.

40 UPnP assumes that there will be more than one device with UI that wants to
control other devices in any given network, and it provides a simple mechanism that
25 enables these control points to remain in sync. This mechanism can easily support
device front panels and wireless remotes that do not run UPnP protocols. The UPnP
control model is third-party control; any device can transfer bulk data (e.g. files) or A/V
45

50

9

55

5

10 data streams from any device on the network, to any device on the network, under the control of any device on the network.

Terminology

The detailed description that follows uses the terminology defined below.

15 5 Module. A component of a device, software program, or system that implements some "functionality", which can be embodied as software, hardware, firmware, electronic circuitry, or etc.

20 10 User Control Point. The set of modules that enable communication with a UPnP Controlled Device. User Control Points initiate discovery and communication with Controlled Devices, and receive Events from Controlled Devices. User Control Points are typically implemented on devices that have a user interface. This user interface is used to interact with Controlled Devices over the network. The modules minimally include a Discovery Client, a Description Client and a Rehydrator. User Control Points may also include Visual Navigation, an Event Subscription Client, Event Sink, a web browser and an application execution environment. User Control Points can add value to the network by aggregating the control of multiple Controlled Devices (the universal remote) or they can implement a function as simple as initiating the transfer of data to or from a Controlled Device. Examples of devices that could be User Control Points are the personal computer (PC), digital television (DTV), set-top box (STB), handheld computer and smart mobile phone, and the like. Nothing prevents a single device from implementing the functionality of a User Control Point and one or more Controlled Devices at the same time.

25 15 30 20 35 40

45

50

10

55

5

10 Controlled Device. The set of modules that enable communication with a User Control Point. Controlled Devices respond to discovery requests, accept incoming communications from User Control Points and may send Events to User Control Points. Devices that support Controlled Device functionality may also support local user
15 5 interfaces such as front panel displays or wireless remotes. The modules minimally include a Discovery Server, a Description Server and a Control Server. Controlled Devices may also include a Presentation (web) Server, Event Subscription Server and Event Source. Examples of devices that could be Controlled Devices are the VCR, DVD player or recorder, heating/ventilation/air-conditioning equipment (HVAC),
20 10 lighting controller, audio/video/imaging playback device, handheld computer, smart mobile phone and the PC, and the like. Nothing prevents a single device from implementing the functionality of a User Control Point and one or more Controlled
25 25 Devices at the same time.

30 15 Bridge. A set of modules that enables Bridged and Legacy Devices to interact with native UPnP devices. The bridge itself exposes a collection of UPnP Controlled Devices to User Control Points. The Bridge maps between native UPnP Device Control Protocols and the underlying protocols exposed by the Bridged and Legacy Devices. Optionally, such a device could expose UPnP Controlled Devices to Legacy Devices in the manner required by the Legacy Devices. Nothing prevents a single device from
35 20 implementing the functionality of a User Control Point, one or more Controlled Devices and a Bridge at the same time.

40 40 Service Provider. A module used by a UPnP Bridge that translates between UPnP protocols and the protocols used by Bridged and Legacy Devices. No Service Providers are required for communication among native UPnP devices.

45 25 Bridged Device. A device that cannot participate in UPnP at the native protocol level, either because the device does not have sufficient resources or because the underlying media is unsuitable to run TCP and HTTP. Examples of devices that could be Bridged Devices are power line-controlled A/V equipment, light switches,

50

11

55

5

thermostats, wristwatches and inexpensive toys. Bridged Devices are UPnP complaint
10 and are exposed to other UPnP devices through a UPnP Bridge.

Legacy Device. Any non-UPnP compliant device that must be exposed to other
UPnP devices through a UPnP Bridge.

15 5 Device Model. The UPnP model of Controlled Devices. The Device Model
includes the addressing scheme, Description Document, Devices and Services hierarchy
and the functional description of modules.

20 20 Device Control Protocol (DCP). A complete set of UPnP protocols and schemas
used to interact with a UPnP Controlled Device.

25 10 Device Definition. The formal definition of a Device Type. A Device Definition
includes a Device Type Identifier, the fixed elements in the Description Document, the
required set of Service Definitions in the Root Device, and the hierarchy of required
Devices and Service Definitions.

30 15 Service Definition. The formal definition of a Service Type. A Service
Definition includes a Service Type Identifier, definition of the Service State Table
(SST), definition of the Service Command Set, the Service Control Protocol (SCP) and
Service Control Protocol Declaration (SCPD).

35 20 Device. In the context of the Device Model, a container for Services. A Device
generally models a physical entity such as a VCR, but can also represent a logical
entity. A PC emulating the traditional functions of a VCR would be an example of a
logical device. Devices can contain other Devices. An example would be a TV/VCR
40 40 packaged into a single physical unit. UPnP enables the association of user interface
(display icon and root web page) with every Device, including Root Device.

45 25 Root Device. The topmost Device in a hierarchy of nested Devices. A Device
with no nested Devices is always a Root Device.

50

12

55

5

10 Device Type. A relatively high level classification of Devices with common
functionality. Device Type is intended to enable Devices to be simply and
automatically grouped for presentation. An example of a Device Type is "VCR".
Device Types are formally defined in terms of a required set of Service Definitions of
5 minimum version that a compliant Device must support. UPnP supports searches for all
Devices of a specified Device Type.

15 Device Type Identifier. A unique identifier that identifies a Device Definition.
This identifier adheres to the format of a Uniform Resource Identifier (URI). See, T.
20 Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic
Syntax", which can be found at IETF RFC 2396 (August 1998).

25 Device Friendly Name. A human readable string that is initialized by vendors at
the time of manufacturer of a Device. Every Device, including Root Devices, has a
Device Friendly Name. A typical Device Friendly Name will contain manufacturer and
model information, and is used to enable a more precise identification of a UPnP
30 Device from the set of discovered Devices. Once identified, the Unique Device Name
(UDN) can be used to unambiguously identify the same Device in the future. UPnP
enables Device Friendly Names to be changed by User Control Points. The Device
Friendly Name should not be used as device identifier.

35 Unique Device Name (UDN). The fundamental identifier of a Device. Every
20 Device, including Root Devices, has exactly one UDN. The UDN is globally unique
and permanent, even across power cycles and physical location changes. The UDN is
the only UPnP device identifier guaranteed never to change. UPnP enables searches for
40 devices by UDN.

25 Description Document. A structured unit of data that is used by a User Control
Point or UPnP Bridge to learn the capabilities of a Controlled Device. Description
Documents are retrieved from the Description Server on a UPnP Controlled Device.
45 There is one Description Document for every Root Device that describes the Root

50

13

55

5

Device and all non-Root Devices. Description Documents adhere to XML grammar.
10 To support localization, multiple Description Documents can exist. A User Control Point requests the preferred localized Description Document by using the standard HTTP "accept-language" header.

15 5 Service. The fundamental UPnP controllable entity (but not the finest level of control). An example of a Service is "Clock". Services are defined with a mandatory common base set of functionality. Vendors can extend the base set with proprietary extensions provided the base functionality is implemented. Service Definitions are versioned and later versions are constrained to be supersets of previous versions. UPnP
20 10 enables searches for all Devices that contain a specified Service of a minimum version. This search would find all clocks, regardless of their packaging. A search for Device Type "Clock" would be used to find only stand-alone clocks.

25 25 Service Type. A classification of Services by their function.

30 15 Service Type Identifier. A unique identifier that identifies a Service Definition. This identifier adheres to the format of a Uniform Resource Identifier (URI). See, T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifiers (URI): Generic Syntax, IETF RFC 2396 (August 1998).

35 20 Service State Table (SST). A logical table consisting of rows of [*Variable*, *Type*, *Legal Values*, *Default Value*, *Current Value*] that represents the current electrical, mechanical and/or logical state of a Service. SST instances are stored on the Controlled Device itself and are the ultimate authority of the state of the Service. All local user interface, such as front panels or wireless remotes are required to update the SST on UPnP compliant devices.

40 25 SST Definition:

45 25 Service Command Set. A set of Commands that can be invoked on a Service. Commands generally result in changes in the Current Value field of one or more rows of a SST. Commands are logically represented in the format *Command* (*Variable* =

50

14

55

5

10 *New Value, Variable = New Value, ...). Services must accept or reject the complete set of changes to a SST. There is a mandatory standard Query Command that is used to retrieve the Current Value of any row of a SST.*

15 Service Command Set Definition:

20 5 Service Control Protocol (SCP). The protocol used to invoke Commands against a Service and to return results. There is exactly one SCP per Service Definition. SCPs adhere to the grammar of SCP XML schema. SCPs can be generated by an automated tool that accepts a SST Definition and a Command Set Definition as input.

25 10 Service Control Protocol Declaration (SCPD). A formal representation of the schema of a Service. The SCPD declares the rows of a Service's SST and the associated Command Set. SCPDs are uploaded from Controlling Devices in their Description Documents and enable User Control Points or Bridges to invoke Commands on the Service without any prior or persistent knowledge of the capabilities (or schema) of the Service. There is exactly one SCPD per Service Definition. SCPDs adhere to XML grammar. SCPDs can be generated by an automated tool that accepts a SST Definition and a Command Set Definition as input.

30 15 Event. An unsolicited message generated by a Controlled Device and delivered to one or more User Control Points. Events are used to maintain a consistent view of the state of Service across all interested User Control Points. UPnP leverages the GENA event architecture (see "Generic Event Notification") to transport event messages. All events are delivered using TCP/IP for reliability.

35 20 Generic Event Notification (GENA). An event transport protocol. GENA leverages TCP/HTTP as a transport. GENA has been submitted as an Internet Draft to the IETF. See, J. Cohen, S. Aggarwal, Y. Goland, General Event Notification Architecture Base: Client to Arbiter, IETF Internet Draft, "draft-cohen-gena-client-00.txt."

50

15

55

5

10 Simple Service Discovery Protocol (SSDP). A simple network device discovery
protocol. UPnP uses SSDP to allow User Control Points to find Controlled Devices and
Services. SSDP operates in a default, completely automatic multicast UDP/IP based
mode in addition to a server-based mode that uses TCP/IP for registrations and query.

15 5 Transitions between the default dynamic mode and server-based mode are automatic
and transparent. SSDP enables every Controlled Device to control the lifetime that its
Description URL is cached in all User Control Points. This enables a Controlled
Device to remain visible to User Control Points for a relatively long time (through
power cycles), in addition to enabling a Controlled Device to appear and disappear very

20 10 quickly, all under the control of the Controlled Device. SSDP and related Multicast and
Unicast UDP HTTP Messages specifications have been submitted as Internet Drafts to
the IETF. See, Y. Goland, Multicast and Unicast UDP HTTP Messages, IETF Internet
Draft, "draft-goland-http-udp-00.txt" and Y. Goland, T. Cai, P. Leach., Y. Gu, S.
25 Albright, Simple Service Discovery Protocol/1.0, IETF Internet Draft, "draft-cai-ssdp-
15 v1-02.txt."

30 Client. In the context of UPnP, Client refers to a module that initiates a
TCP/HTTP connection to a peer HTTP server.

35 35 Server. In the context of UPnP, Server refers to an HTTP server. This is a
module that accepts incoming TCP/HTTP connections and either returns a web page or
20 forwards the payload data to another module. Client and Server describe only the
direction of initiation of TCP/HTTP connections. There is no relationship between the
low level concepts of Client and Server and the high level concepts of User Control
40 Point and Controlled Devices. Logically, User Control Points always discover and
initiate communication with Controlled Devices, but this communication requires Client
25 and Server functionality on both sides.

45 45 Hostname. A Hostname is the Domain Name System (DNS) or NetBIOS Name
Service (NBNS) that, when resolved to an IP address, represents a network interface
that can be used to establish TCP/IP level connectivity to User Control Points.

50

16

55

5

10 Controlled Devices or Bridges. Hostnames can be used to provide persistent network level addressing on a network where IP addresses are dynamically assigned and of unknown lifespan or to integrate with an existing managed network. UPnP provides an algorithm for seeding a device's hostname from its UDN at manufacturing time.

15 5 Uniform Resource Locator (URL). A format for expressing web addresses. URLs minimally contain an identification of the protocol family that the URL is valid for, a Hostname, and a path. UPnP uses URLs as addresses whenever the module accepting the incoming connection is an HTTP server.

20 10 Description URL. The URL returned from a Controlled Device or Bridge in response to any UPnP SSDP query. This URL always points to a Description Server on the Controlled Device. An HTTP GET can be issued on this URL to retrieve the Description Document. This URL is valid as an address for the lifetime of the Hostname embedded in the URL.

25 15 Discovery Server. The module that runs in a Controlled Device or Bridge that responds to SSDP queries. This Server is unique in that it must support UDP/HTTP rather than just TCP/HTTP.

30 35 Discovery Client. The module that runs in a User Control Point that initiates SSDP queries.

40 20 Description Server. The module that runs in a Controlled Device or Bridge that responds to HTTP GETs and returns Description Documents. This service consists of a TCP/HTTP server that can retrieve and return a Description Document from persistent storage (like a filesystem).

45 25 Visual Navigation. User Control Point functionality that displays the icons of discovered Devices and enables the transfer of control to a browser or application to interact with the Controlled Device. In Windows, Visual Navigation could be implemented as a folder of icons.

50

17

55

5

10 Presentation URL. A URL that can be used by a User Control Point to navigate to the Presentation Server of a Controlled Device. This URL is returned in the Description Document and is valid as an address for the lifetime of the Hostname embedded in the URL. All Devices, including non-Root Devices, can have an
15 5 associated Presentation URL.

20 Presentation Server. A web server. The module that runs in a Controlled Device that responds to HTTP GETs or Presentation URLs and returns user interface using web technologies (JavaScript, Jscript®, ECMAScript, VBScript, ActiveX®, Java Applet, etc.).

25 10 Browser. The Presentation Client. A web browser extended with a Rehydrator.

30 25 Control URL. A URL that can be used by a User Control Point to navigate to the Control Server of a Controlled Device or Bridge. This URL is returned in the Description Document and is valid as an address for the lifetime of the Hostname embedded in the URL. All Services have an associated Control URL.

35 30 15 Control Server. The module that runs in a Controlled Device or Bridge that responds to Commands invoked on a Service by a User Control Point. Commands are encoded using the SCP specified in the Service Definition. This service consists of a TCP/HTTP server than passes control to the native control logic of a Service, updates the SST and generates an event if the SST changes.

40 40 20 Rehydrator. In UPnP, the Control Client. A User Control Point module that translates between native operating system APIs and SCPs and events. The Rehydrator uploads SCPDs from Controlled Devices and Bridges and generates appropriate SCPs in response to application API requests to invoke Commands.

45 45 25 Event Subscription URL. A URL that can be used by a User Control Point to navigate to the Event Subscription Server of a Controlled Device or Bridge. This URL is returned in the Description Document and is valid as an address for the lifetime of the

50

18

55

5

Hostname embedded in the URL. All Services have an associated Event Subscription URL.

10

5 Event Subscription Server. The module that runs in a Controlled Device or Bridge that responds to GENA SUBSCRIBE requests from User Control Points. A SUBSCRIBE informs the Controlled Device or Bridge of the User Control Point's desire to receive future events. This service consists of a TCP/HTTP server that adds the User Control Point's Event Sink URL to the list of destinations to be NOTIFY'd whenever the SST associated with the Service changes.

20

10 Event Subscription Client. The module that runs in a User Control Point that sends GENA SUBSCIBE messages to the Event Subscription Server.

25

25 Event Sink URL. A URL, supplied by a User Control Point, that is used as an address to send event NOTIFYs to. This URL is valid as an address for the lifetime of the Hostname embedded in the URL. There is no explicit relationship between Event Sink URLs and Subscription Identifiers.

30

15 Subscription Identifier (SID). A header in the GENA NOTIFY message that identifies the source of an event. In UPnP, the SID can be considered as an alias for the Event Source instance.

35

35 Event Sink. The module that runs in a User Control Point that accepts incoming GENA event NOTIFYs. This service consists of a TCP/HTTP server that passes the event information to interested applications running on the User Control Point.

40

20 Event Source. The module that runs in a Controlled Device or Bridge that sends GENA NOTIFYs to the Event Sink Servers of SUBSCRIBES User Control Points.

45 Domain Name System (DNS). A distributed system of servers that locates the IP addresses of other computers on a network based on their hierarchical names.

25 NetBIOS Name Server (NBNS). A server that locates the IP addresses of other computers on a network based on their flat NetBIOS computer names.

50

19

55

5

10 Multicast DNS (MDNS). A peer-to-peer translation scheme that does not require involvement of DNS servers.

UPnP Technologies Overview

15 An overview of technologies utilized in UPnP follows.

20 5 Device Discovery: Simple Service Discovery Protocol (SSDP)

25 TCP/IP provides the ability to initiate a connection with a specified application running on a specific device, provided both the network address of the device (IP address) and the application address (port) are known. Generally, application addresses (ports) are standardized and widely known, but the problem of learning the IP address of a device remains.

30 25 Simple Service Discovery Protocol (SSDP) is a protocol that enables devices to learn of the existence of potential peer devices and the required information (an IP address) needed to establish TCP/IP connections to them. The successful result of an SSDP search is a Uniform Resource Locator (URL). The Hostname embedded in the

35 30 15 URL can be resolved to an IP address that can be used to make a connection to the discovered device. The name to address resolution is outside of the functionality of SSDP.

40 35 SSDP specifies a default, completely automatic, best-effort multicast UDP-based operating mode, in addition to a server mode that uses TCP for registration and query. Fall-forward to server mode and fallback to the default dynamic mode can occur automatically and transparently as a server is added or removed from a network. Server mode can be used to reduce network traffic, to implement searches based on location or policy and to integrate with a directory system.

45 45 25 SSDP requires that all devices specify a maximum lifetime that SSDP level knowledge of the device will remain cached in other network devices. If a device does not refresh the cache of other network devices before this interval expires, the device will disappear from the network. This interval can be chosen to be larger than a typical

50

20

55

5

10 power down cycle to enable device visibility to persist for a relatively long time, or a smaller interval can be chosen to enable more dynamic visibility control. In all cases, devices that are abruptly removed from the network will eventually disappear from all networked devices.

15 5 In response to an SSDP search, UPnP devices return a Description URL in the SSDP Location and optionally the Alternate Location (AL) SSDP headers. An example location header is as follows:

Location: http://device.local/description/path/description.xml

20 10 In this example, the device.local is the Hostname of the Controlled Device, and the "description/path/description.xml" element of the URL is the path and name of the Description Document on the device.

25 **Eventing: Generic Eventing Notification (GENA)**

Eventing, in the context of UPnP, is the ability for a device to initiate a connection at any time to one or more devices that have expressed a desire to receive 15 events from the source device. Events are used to enable synchronization among multiple devices organized into a many to one relationship. UPnP events are mainly 30 used for asynchronous notifications of state changes.

35 20 TCP/IP provides the fundamental support for the connections that carry event information. Generic Event Notification (GENA) adds conventions for establishing relationships between interested devices and an addressing scheme to enable the unambiguous delivery of events. GENA leverages HTTP addressing and encapsulation.

40 **User Control Points, Controlled Devices and Bridges**

With reference now to Figures 1 and 2, UPnP is an application-level distributed 25 network architecture where the logical nodes on the network are User Control Points 104-105, Controlled Devices 106-107 and Bridges 120. These classifications refer to functionality rather than physical entities. The functionality of UPnP User Control 45 Points 104-105, Controlled Devices 106-107 and Bridges 120 can be packaged into physical entities (e.g., multiple function devices 102-103) in any combination.

50

21

55

5

The primary distinction between a User Control Point 104-105 and a Controlled Device 106-107 is that the User Control Point is always the communication initiator.
 10 After the initial communication, User Control Points can receive events from Controlled Devices.

15 Controlled Devices 106-107 are responsible for storing the state of Services. User Control Points are required to synchronize to the state on Controlled Devices and to share state directly among themselves.

20 User Control Points typically have user interface that is used to access one or more Controlled Devices on the network. Controlled Devices only have local user
 10 interfaces.

25 Bridges 120 (Figure 2) expose devices that do not expose native UPnP protocols as native UPnP Controlled Devices. The Bridge itself looks to other UPnP User Control Points like a set of Controlled Devices.

30 The following table lists the modules in the User Control Points 104-105 and
 15 Controlled Devices 106-107, along with their functions.

User Control Point		Controlled Device	
Function	Module	Function	Module
Initiate discovery of Controlled Devices.	Discovery Client	Respond to discovery requests.	Discovery Server
Retrieve Description Documents.	Description Client	Provide Description Documents.	Description Server
Display a folder of icons per discovered Device and allow transfer of control to a selected device.	Visual Navigation		

50

22

55

5

	View user interface exposed by a Controlled Device.	Web Browser	Provide user interface for remote User Control Points.	Presentation (Web) Server
10				
15	Execute applications.	Application Execution Environment		
20	Invoke Commands on a Controlled Device by sending Service Control Protocols in response to local API calls.	Rehydrator	Accept incoming Commands in SCPs	Control Server plus native control logic and execute them.
25				
30	Inform a Controlled Device of a desire to receive Events.	Event Subscription Client	Accept requests for Events and remember them.	Event Subscription Server
35	Receive an Event.	Event Sink	Send an Event.	Event Source

35

Device Model

The UPnP Device Model 200 shown in Figure 3 is the model of a UPnP Controlled Device or Bridge that is emulating native Controlled Devices. The Device Model includes the addressing scheme, eventing scheme, Description Document schema, Devices and Services schema and hierarchy, and the functional description of modules. The UPnP Device Model extends beyond simple API or a command and control protocol definitions to enable multiple User Control Points to have a consistent view of Controlled Devices. This requires that the state of running services be formally

50

23

55

5

10 modeled and that all state changes be visible to User Control Points. Central to the distributed UPnP architecture is the rule that Controlled Devices are the ultimate authority for the state of Services running on them.

15

5 Service
The fundamental controllable entity in UPnP is a Service 210-217. Every
running instance of a Service includes:

20

• A Service State Table (SST) 230, which represents the current state of the Service.
The SST 230 can be used to represent the operational mode of device or to act as an information source or sink for structured data or simple files. The SST of a

25

10 VCR 254 (Figure 4) could represent the current transport mode, tuner channel selection, input and output switch selections, audio and video decoding format and current timer program. The SST of clock 251 (Figure 4) would likely represent the current time. The SST of an image rendering device could implement a video frame-buffer that can accept raw pixel information or formatted JPG files. The SST of an audio or video playback device could implement a transfer buffer or queue of material to be played. The SST of PDA could implement a collection of formatted data that has changed and needed to be synchronized with another device, in addition to a transfer buffer for accepting incoming formatted data.

30

15 The logical structure of a SST published in the Service Definition, but the actual storage format of an instance of a SST is entirely up the device. The only interaction with a SST is through a formal application level network protocol.

35

20 • A Control Server 232, which accepts incoming Commands expressed in the Service's Service Control Protocol (SCP). The Control Server passes the command to the Service's native command processing logic and waits for command completion. When the command is completed successfully, the SST is updated, an event is generated, and a successful response is returned to the User Control Point. In the event of an illegal command or unsuccessful command, no changes are made

40

45

50

55

5

10 to the SST and a failure response is returned. The Command and response sequence
is payload to a TCP/HTTP request/response.

- An Event Subscription Server and Event Source 234. The Event Subscription Server accepts incoming GENA SUBSCRIBE messages from User Control Points and adds them to a list of User Control Points interested in SST change events from the Service. The Event Source initiates a TCP/HTTP connection to each interested User Control Point and sends a GENA NOTIFY each time the Service's DST changes. The NOTIFY payload includes the changed contents of the DST.
- A Control URL that identifies the Control Server.
- 10 • An Event URL that identifies the Event Subscription Server.

The formal definition of a Service (Service Definition) includes:

- The definition of the SST. SST layouts are logically specified in terms of rows of [*Variable*, *Type*, *Legal Values*, *Default Value*]. The actual instance of a SST would also include a *Current Value* field in every row.
- 15 • The definition of the Service Command Set that can be invoked against the Service's SST. Commands are logically specified in terms of *Command* (*Variable* = *New Value*, *Variable* = *New Value*, ...). If a Command results in more than a single Variable change, the updates are atomic and the Command will fail if it is illegal to make the specified change to any one Variable.
- 20 • The definition of a structured unit of data called a Service Control Protocol Declaration (SCPD). SCPD is used to advertise the layout (schema) of the SST and Command Set of the Service to a User Control Point or Bridge. The SCPD enables the User Control Point to invoke Commands (through the Rehydrator) on the Controlled Device without any prior or persistent knowledge of the capabilities of the device. The SCPD is uploaded from the Controlling Device as part of the Description Document. An automated tool that accepts the SST definition and Command Set definition as inputs can generate the SCPD for a Service.

50

25

55

5

10 • The definition of a network protocol used to invoke Commands against the SST
 associated with a Service and to return results. An automated tool that accepts the
 SST definition and Command Set definition as inputs can generate the SCP for a
 Service. The SCP can also be generated from the SCPD. The Rehydrator's job is to
15 5 convert SCPDs into SCPs. The reason for a formal SCP specification is to enable
 the implementation of the Control Server itself and to enable simple peer-to-peer
 device interoperation using only published protocols.

20 • An identifier, called the Service Type Identifier, that identifies a unique Service
 Definition. Service Definitions are versioned in controlled manner. Every later
 10 version of a Service must be proper superset of the previous version.

25 Device

According to the device model 200 shown in Figure 3, a UPnP Device 202-205
(e.g., multiple function devices 102-103 of Figure 1 and bridged devices 122-123 of
Figure 2) is a logical container of one or more Services 210-217. Generally a Device
15 15 represents a physical entity such as a VCR. Typical Services in the VCR Device
example might be "TRANSPORT", "TUNER", "TIMER" and "CLOCK". While
Devices are often physical entities, a PC emulating the traditional functions of a VCR
could also be modeled in the same way as the stand-alone VCR. Devices can contain
other Devices. An example would be a TV/VCR 250 (Figure 4) packaged into a single
35 20 physical unit. A Device (e.g., devices 202-203) may also be a logical container of other
Devices. The top-most Device in a hierarchy of nested Devices 203-205 is called the
Root Device 202. A Device with no nested Devices is always a Root Device.

40 The UPnP Device Model was designed to be general and flexible. It should be
possible to model an entire Nuclear Power Plant as a single Service or as a deeply
25 25 nested hierarchy of Devices and Services. In general, a Service 210-217 is cohesive set
of functions that enables flexible packaging into a variety of Devices. Services can be
versioned independently of Devices.

50

26

55

5

All Devices, including Root Devices belong to one or more Device Types.

10

Device Types are intended to enable instances of Devices to be simply and automatically grouped for presentation. An example of a Device Type is "VCR" 254 (Figure 4). Device Types are formally defined in terms of a minimal set of versioned Services that a Device of *Device Type* must support. Device Types are not formally versioned. Device Type is a relatively high level grouping. A Device of *Device Type* only ensures that minimal set of Services of a minimal version is present. There can be other Services, higher versioned Services and Services with vendor extensions present on such a Device.

20

10 UPnP enables SSDP level searches for a unique instance of a Device (by UDN), all Devices of type *Device Type* and all Devices that contain at least one Service Type of minimum version. The result of an SSDP search is always a URL that points to the Description Document contained in the Root Device. In the event that matching Device is not the Root Device, the Description Document has a tree of nested Devices that can be traversed to find the matching Device.

30

Every Device includes:

- One or more Device Types.
- One or more Services.
- Optionally, one or more Devices.

20 • Optionally, a Presentation (web) Server 220-223 that can be used to expose Device user interface. Every Presentation Server has an associated Presentation URL.

35 • A globally unique identifier called the Unique Device Name (UDN). The UDN is the fundamental identifier of an instance of a Device. Every Device, including Root Devices, has exactly one UDN.

40

25 Every Root Device 202 also includes the Description Document 226 and Description Server 228 for all Devices under and including itself.

45

The formal definition of a Device (Device Definition 226) includes:

- The fixed elements of the Description Document that describe the Device.

50

27

55

5

- The required hierarchy of Devices and Service Definitions.

10

There can be many Device Definitions that belong to a single Device Type.

Device Types

The formal definition of a Device Type includes:

15

- A Device Type Identifier.
- The required hierarchy of Devices and Service Definitions of minimum versions.

20

Service State Table

A Service State Table (SST) logically consists of rows of:

25

Variable, Type, Legal Values, Default Value, Current Value

10 Although entries of the Service State Table in UPnP consist of these five items, the state table alternatively can contain fewer or additional items. Generally, each entry will minimally consist of a Variable name or identifier, and its current value.

The following table lists various Types available in UPnP.

30

Type	Description	Example
String	A sequence of UNICODE characters.	
Number	A number, with no limit on digits; may potentially have a leading sign, fractional digits, and optionally an exponent. Punctuation as in US English.	15, 3.14, -123.456E+10
Boolean	TRUE or FALSE.	
DateTime	A date in ISO8601 format, with optional time and optional zone. Fractional seconds may be as precise as nanoseconds. See, "Data elements and interchange formats – Information interchange – Representation of	19941105T08:15:5 +03

40

45

50

55

5

10

dates and times", which can be found at
<http://www.iso.ch/marke/8601.pdf>.

ByteBlock An unstructured sequence of bytes.

15

The ByteBlock is essentially a data buffer. In one use, a variable of this type can be used to effect transfer of a file from the Controlled Device to the User Control Point. The file to be transferred is kept in the Service State Table as the current value of this variable. On a change in the file, the file is transferred to any subscribing User Control Point in an event notification.

20

The reason for representing Services this way is to ensure that the state of a Service is easily available in a common way to multiple User Control Points.

25

An SST can be used to represent the current operational mode of device, act as an information source or sink and/or simply be a repository for commands. The SST of a VCR Service could represent the current transport mode, tuner channel selection, input and output switch selections, audio and video decoding format and current timer program. Alternatively, the VCR 254 could be represented as a Transport Service 260, Tuner Service, I/O Switch Service, A/V Decoding Configuration Service and Programmable Timer Service 261.

30

The SST of a clock 251 would likely represent the current time. Additionally an alarm clock could include Service Variables to configure the clock.

35

The SST of an image rendering device could implement a video frame-buffer that can accept raw pixel information or formatted JPG files. The SST of an audio or video playback device could implement a transfer buffer or queue of material to be played. The SST of PDA could implement a collection of formatted data that has changed and needed to be synchronized with another device, in addition to a transfer buffer for accepting incoming formatted data.

45

50

29

55

5

User Control Point Synchronization

10 In accordance with an device state and eventing model illustrated in Figure 5, UPnP rules require that every change to an SST generate a corresponding event to announce the change to the all interested User Control Points.

15 Device Addressing

With reference now to Figure 6, UPnP is built on top of HTTP and leverages the native address format of the web, Uniform Resource Locators (URLs). URLs minimally contain an identification of the application protocol family ("http") that the URL is valid for, a Hostname and a path. In the context of UPnP, the path part of a URL can represent either a filesystem path or simply an identifier of the local system module and context that can process incoming messages.

20 While UPnP modules are described as HTTP servers, there is no requirement that implementations be based on actual web servers. In most cases, the job of the HTTP server is simply to accept the incoming connection, look at the local destination 10 part of the address (the path) and forward the payload to another module. UPnP 25 enables, but does not require, that all HTTP Servers be based on a common software implementation or runtime instance. Controlled Devices and Bridges can include a 30 TCP port specification as part of a URL to override the default value of 80.

35 The successful result of a UPnP SSDP level search is always one or more 20 Description URLs. These URLs can be used to navigate to the Description Document of a Controlled Device or Bridge. A User Control Point uploads the Description 40 Document and extracts the URLs of the Servers running on the Controlled Device or Bridge.

45 All URLs returned in the Description Document have a lifetime equal to the 25 lifetime of the Hostname embedded in them. User Control Points can store these URLs as addresses without going through a search sequence first. Once they have been advertised in a Description Document, Controlled Device and Bridges cannot arbitrarily change Server URLs.

50

30

55

5

10

Whenever a Hostname changes, all URLs associated with all Devices addressed by that Hostname are invalidated. The UDN is the only UPnP identifier guaranteed never to change. Any persistent associations maintained by applications should at least store the UDN to able to unambiguously identify the target Device.

15

5 The lifetime of a Description URL is determined by Controlled Device or Bridge that advertises it. If a Controlled Device or Bridge allows an SSDP advertisement of a Description URL to expire, the URL is invalidated.

20

User Control Points use the Event Subscription URL returned by the Controlled Device or Bridge to connect to the Event Subscription Server. This server does the 10 housekeeping of remembering all User Control Points that are interested in receiving Events on a Service. The Event Subscription Server needs an address to send the events back to. This address is called the Event Sink URL, and is supplied to the Controlled 25 Device or Bridge in the GENA SUBSCRIBE message. The lifetime of an event subscription, and the Event Sink URL, is determined by the timeout on the 15 SUBSCRIBE message.

30

Further details of UPnP addressing are listed in the following table.

35

40

45

50

31

55

5

<i>UPnP Addresses</i>		
	URL	Function
10	Description URL	Points to the Description Server and Document path on a Root Device. This URL is returned by the Description Server as part of the discovery process.
15	Presentation URL	Points to a Presentation (web) Server on a Controlled Device. There is one Presentation URL per Device, including Root Devices. This URL can be entered into the address bar of a web browser to navigate to the root web page of a Device. This URL is returned in the Description Document.
20	Control URL	Points to the Control Server implementing a Service on a Controlled Device. There is one Control URL per instance of a Service. This URL is returned in the Description Document.
25	Event	Points to an Event Subscription Server on a Controlled Device.
30	Subscription URL	This URL is returned in the Description Document.
35	Event Sink URL	Points to an Event Sink (an HTTP Server) on a User Control Point. This URL is specified by the User Control Point in the GENA SUBSCRIBE message.

40

Device Discovery and Identification
 UPnP enables SSDP searches for a unique Root or non-Root Device by UDN.
 5 devices of a specified Device Type and devices containing a Service of a specified Service Type.

45

50

55

5

UPnP SSDP Level Searches and Results

10	Search for	Returns
	A unique Root Device (by UDN)	A single Description URL pointing to the Description Server and Document path on the Root Device.
15	A unique non-Root Device (by UDN)	A single Description URL pointing to the Description Server and Document path on the Root Device that contains the non-Root Device.
20	Type of Device	A set of Description URLs pointing to the Description Servers/Document paths of all Root Devices that match the Device Type, or contain a non-Root Device that matches the Device Type.
25	Type of Service	A set of Description URLs pointing to the Description Servers/Document paths of all Root Devices that contain a matching Service, or contain a non-Root Device that contains a matching Service.

30

SSDP specifies Service Type (ST), Notification type (NT), and Unique Service Name (USN) header fields for queries and for announcements. UPnP uses the ST or NT header to carry one of the UPnP defined identifiers. A unique USN is required for each unique SSDP announcement.

40

Multiple instances of the same Service Type within a Controlled Device 106-107 or Bridge 120 are not independently announced.

45 UPnP search identifiers are used during the discovery process. The result of a successful discovery is one or more Description URLs. The format for search identifiers is:

50

```
upnp:searchtype:[ allformat | UDNformat | srvformat | devformat ]
15      searchtype     = [ UDN | SrvType | DevType | all ]
```

55

5

10 *allformat* = all
 5 *UDNformat* = UDN:*namespace:uniqueid*
 namespace = [GUID | IEEEMAC | 1394]
 15 *srvformat* = SrvType:servicetype:version
 devformat = DevType:devicetype

10 **UPnP Search Identifiers**

		Format		Example
20	all	upnp:all		upnp:all
	Unique Device Name (UDN)	upnp:UDN: <i>namespace:uniq</i> <i>ueid</i>	upnp:UDN:IEEEMAC:0C0099 123456	
25	Device Type	upnp:DevType: <i>devicetype</i>		upnp:DevType:vcr
	Service Type	upnp:SrvType: <i>servicetype:v</i> <i>er</i>		upnp:SrvType:clock:l

30

SSDP specifies that SSDP announcements must be made for all SSDP
 searchable values. The SSDP announcements with "all" as the notification header value
 must carry the Root Device UDN as the USN header value. SSDP announcements for
 35 15 Device Types must carry the UDN of the Root Device concatenated with the Device
 Type URI as the USN header value. SSDP announcements for a Service Type will
 carry the UDN of the Root Device concatenated with the Service Type URI value as the
 40 15 USN header value. SSDP announcements of UDNs will repeat the UDN value as the
 USN header.

45

50

34

55

5

10

UPnP SSDP Announcements

Announcement	UPnP Notification	SSDP USN
	Type	
	"all"	Root Device UDN
15	Unique Root Device	Root Device UDN
	Unique non-Root Device	Non-Root Device UDN
20	Device Type	Root Device UDN + Device Type Identifier
		Identifier
25	Service Type	Root Device UDN + Service Type Identifier
		Identifier

30

UPnP Bridges 120 (Figure 2) announce Bridged Devices 122-123 and associated Services using SSDP. The identifiers associated with the Bridged Devices are unique for the device, and they do not duplicate identifiers for Controlled Devices and Services directly available on the Bridge itself. This means that a Bridge that is also a Controlled Device must announce Bridged Devices and local Controlled Devices independently, with appropriate unique identifiers, Description Documents and associated URLs.

40

10 **Description**
 The UPnP Description Document 226 (Figure 3) provides the information necessary to identify, describe, connect and control a UPnP Controlled Device 106-107 or Bridge 120 from a User Control Point 104-105.

45

15 The Description Document is an XML document. UPnP defines the use of HTTP and XML for the Description Document and wire protocols. UPnP adheres to

50

35

55

5

10 the schema declaration rules of XML-Data and Y. Goland, "Flexible XML Processing Profile."

The top level XML elements are separated into three categories: per Device, per Service and shared.

15 5 **Rehydrator**
With reference now to Figure 7, all (UPnP) Controlled Devices 106-107 (Figure 1) or Bridges 120 (Figure 2) expose one or more Services 210-217 (Figure 3) that can be controlled remotely. Controlling such Services involves a message exchange between a User Control Point 104 and the device 106. This message exchange happens according to a specific Service Control Protocol (SCP) 402, which specifies the content and sequence of the messages exchanged.

20 10
25 User Control Points 104 are not required to have any prior knowledge of the SCPs 402 required to control the Services on the various devices. Therefore, a Controlled Device or Bridge must be able to describe to a User Control Point the protocols required to control its Services, such that the User Control Point will be able to implement these protocols dynamically. This requires a standard way of declaring Service Control Protocols in a concise and unambiguous fashion. UPnP introduces a technique for declaring Service Control Protocols using a series of XML documents.

30 15
35 20 A Rehydrator 410 is a module that exposes a suitable API to applications and either invokes Commands on a Service or queries the state of that Service, or receives and responds to events. The primary job of the Rehydrator is to map between API calls and the Service Control Protocol sequence that invokes the Command.

40 25 As part of the Service Definition 406, a Service State Table 230 and Command Set 408 are defined. These things can be combined in a deterministic way defined by UPnP to produce a Service Control Protocol Definition (SCPD) 406, which includes a Service Control Declaration 404 and a Service Control Protocol 402. The SCPD 406 is a representation of the schema of a Service. It is possible to reconstruct the SST, Command Set and SCP from the SCPD.

50

36

55

5

10 The SCPD is directly embedded into the Description Document 226 of a
Controlled Device. When the Description Document is uploaded into the User Control
Point 104, the Rehydrator 410 can extract the SCPD from it. At this point, the
Rehydrator has enough information to issue Service specific SCPs 402.

15

5 General Operation of the Rehydrator

20

More generally with reference to Figure 8, the Rehydrator 410 operates as a
universal adapter to provide a programmatic interface to any service-specific protocol
of a remote computing device. The Rehydrator 410 simply obtains a data description or
declaration of the methods, properties and events of the remote service, as well as a
10 definition of the protocol of network data messages through which the Rehydrator
invokes the methods, queries or sets the properties, and receives event notifications. In
UPnP, this data description takes the form of the Description Document 226, which
25 contains a Contract 412. The Contract defines network data packets 413 (e.g., XML
data), request/response patterns, and protocol (e.g., GENA, HTTP, SSDP) via which the
15 packets are exchanged. This information is sufficient for the Rehydrator to exchange
the appropriate network data packets to interact with the Controlled Device Service,
including to invoke commands, query and set properties, and receive and respond to
events, without download of any executable code to the User Control Point 104 device
30 and with a zero installation or configuration experience.

35

20 The Description Document 226 also includes a declaration of the methods,
properties and events for the Service. Based on this declaration, the Rehydrator
produces a corresponding programmatic interface for use by applications at the User
Control Point. The programmatic interface is an application programming interface that
40 can be in the form of an object integration interface of an object-oriented programming
model, such as Microsoft COM, CORBA, Java classes, and scripting engine name
25 extensions. In the example illustrated in Figure 8, the Rehydrator 410 exposes a COM
object integration interface ("IClock" interface 414), with methods `getTime()` and
45 `setTime()`, for a Controlled Device having a "Clock" Service with `GetTime` and

50

37

55

5

10 SetTime commands. The Rehydrator 410 converts calls of an application program 416
to the IClock interface 414 into the network data messages specified in the Contract to
invoke the corresponding commands of the Clock Service. The Rehydrator 410
likewise creates suitable further programmatic interfaces for other Services (e.g.,
15 5 Services 210-217 of Figure 3) based on the Description Document of their respective
Controlled Devices.

20 Accordingly, the Rehydrator operates as a universal proxy object with data-
driven conversion of programmatic interfaces to network data messages. Further, the
Rehydrator produces the programmatic interface at the User Control Point based solely
on an XML data description. This operation allows the Rehydrator to produce just-in-
time transient interfaces to remote device Services without the complexity of code
25 downloads and installation or configuration. Upon a later release of the interface by the
application, the Rehydrator destroys the interface without need to de-install or clean up
persistent configuration data in a registry or configuration file of the operating system
15 or object execution run-time.

30

Rehydrator Implementation

35

Summary. With reference to Figure 9, a preferred implementation 440 of the
Rehydrator 410 is as an internal Microsoft Windows component that routes service
control requests from the UPnP API to devices. Applications wishing to control a
20 service on a UPnP device obtain a Service object through the UPnP API and use the
methods of this object to query the state variables of the service and invoke its actions.
Those methods use the private Rehydrator API to turn the service control requests into
40 network messages that travel to the UPnP device. In this sense, the Rehydrator
performs a mapping between API calls and network protocols.

45

Basic Functionality. The preferred implementation of the Rehydrator is able to
translate a service control call to the UPnP API into the appropriate network messages
defined by the Service Control Protocol.

50

38

55

5

10 Asynchronous Event Notification. The preferred implementation of the
Rehydrator is able to notify UPnP API clients of any asynchronous events generated by
the devices they are controlling. Event notification is done by means of the event
interfaces defined below.

15 5 Error Reporting. For a variety of reasons, state variable queries and action
invocations may fail. The preferred implementation of the Rehydrator is able to provide
a way to communicate the success or failure status of such operations to the parties
initiating them.

20 10 Rehydrator Implementation Design. As illustrated in Figure 9, the preferred
implementation of the Rehydrator is used in two ways. First, the Device Finder 450
uses it to create Service objects 460. Then, these Service objects use it to carry out
service control operations (querying state variables and invoking actions).

25 15 Creating Service Objects. When the Device Finder 450 creates a Device object,
it invokes the Rehydrator 410 to create Service objects 460 for each of the service
instances on that device. Each service instance supports a particular Service Control
Protocol and the Rehydrator needs a description of this protocol in order to create a
properly hydrated Service object.

30 20 The Service Control Protocol is declared in two separate XML documents: the
DCPD and the Contract. The Rehydrator needs the information in both documents.
These two documents are passed to the Rehydrator as *IXMLDOMDocument* interface
pointers in the *RehydratorCreateServiceObject()* API call.

35 25 HRESULT
40 40 RehydratorCreateServiceObject(
25 45 IN IXMLDOMDocument *pDCPD,
 IN IXMLDOMDocument *pContractDocument,
 OUT IUPnPService **pNewServiceObject);

45 45 This API returns a pointer to an *IUPnPService* interface on a newly created
30 50 Service object. In addition to the creating the Service object, the Rehydrator sets up its

50

39

55

5

internal data structures so that it can properly handle requests to control the service.
10 Specifically, it creates a list of the properties and actions exported by the service. Since
all service instances of the same service type export the same properties and the same
actions, this information is kept only once for each service type and is indexed by
5 Service Type Identifier.

15 The Rehydrator stores the information that is specific to a particular service
instance as private data within the Service object itself. This includes the control URL
and information about the control server 232 (such as the HTTP verbs it supports). The
20 Service Type Identifier is the link between the Service object that represents one
10 instance of a service type and the Rehydrator internal data structures that contain
information common to all instances of that service type. The Service Type Identifier is
stored as a private data member in the Service object.

25 Querying Service Properties. Applications can query the values of service
properties by invoking the *IUPnPService::GetProperty()* method on a Service object.
15 Internally, this method makes a call to the *RehydratorQueryStateVariable()* function.

30

```
HRESULT  
RehydratorQueryStateVariable(  
    IN     LPCTSTR    lpszVerb,  
    IN     LPCTSTR    lpszControlURL,  
    IN     LPCTSTR    lpszSTI,  
    IN     LPCTSTR    lpszVarName,  
    OUT    VARIANT    *pValue);
```

35
25 The first two parameters to this function supply the service instance specific
40 information: the HTTP verb to use and the control URL to which the network messages
will be targeted. The third parameter is the Service Type Identifier that will be used to
locate the Service Control Protocol information in the Rehydrator's internal data
structures. The fourth parameter is the name of the variable that is being queried (the
45 30 Rehydrator will validate this against its internal list of state variables exported by the

50

40

55

5

10 service) and the final parameter is the address of a *VARIANT* structure in which the
Rehydrator will place the variable's value.

15 This function will generate an HTTP request to the control server on the device.
The body of this request will be an XML fragment containing a XOAP-encoded request
5 for the variable's value. The following is an example of such a request (the exact
header and payload format of this message is defined in the service contract):

20 10 M-POST /clockService HTTP/1.1
Host: spather-xeon:8586
Content-Type: text/xml
Man: "http://www.microsoft.com/protocols/ext/XOAP"; ns=01
01-MethodName: queryStateVariable
01-MessageType: Call
Accept-Language: en-gb, en;q=0.8
25 15 Refcrer: http://myhouse/VCR1Presentation
Content-Length: 84
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Connection: Keep-Alive
30 20 <queryStateVariable>
<variableName>currentTime</variableName>
</queryStateVariable>

35 25 The control server will respond to this message with another XML fragment: the
XOAP-encoded method response. The following is an example of such a response:

40 30 HTTP/1.1 200 OK
Connection: Close
Cache-Control: private
Date: Mon Oct 11 12:13:38 PDT 1999
Expires: Mon Oct 11 12:13:38 PDT 1999
Content-Type: text/xml
Content-Length: 62
45 35 Man: "http://www.microsoft.com/protocols/ext/XOAP"; ns=01
01-MessageType: CallResponse
<queryStateVariableResponse>

50

41

55

5

10 <_return>12:13:28</_return>
 </queryStateVariableResponse>

5 The rehydrator will extract the return value from this XML fragment, place it in
 the *VARIANT* structure whose address was passed as the last parameter to
 RehydratorGetServiceProperty() and then return.
 15

20 10 *Invoking Service Actions.* The process of invoking a service action is very
 similar to querying a state variable. An application calls *IUPnPService::InvokeAction()*
 on a Service object, passing it the name of an action to invoke, and an array of
 arguments to the action. Internally, *IUPnPService::InvokeAction()* calls
 RehydratorInvokeServiceAction(), declared as shown below.

25 25 HRESULT
 RehydratorInvokeServiceAction(
 IN LPCTSTR lpszVerb,
 IN LPCTSTR lpszControlURL,
 IN LPCTSTR lpszSTI,
 IN LPCTSTR lpszActionName,
 30 IN SAFEARRAY*saActionArgs,
 20 OUT LONG *pStatus);

35 35 As was the case for querying state variables, the service instance specific
 information is passed in the first two parameters, followed by the Service Type
 Identifier in the third. The action name and an array of arguments are passed as the next
 25 two parameters, and the final parameter is the address of a variable in which to store the
 status of the operation.

40 40 *RehydratorInvokeServiceAction()* will send an HTTP request to the control
 server identified by the second parameter. As before, the body of this message will be
 an XML fragment containing a XOP-encod ed method call. An example HTTP
 30 request to invoke an action is shown below.

45

M-POST /clockService HTTP/1.1

50

42

55

5

10 Host: spather-xeon:8586
 Content-Type: text/xml
 Man: "http://www.microsoft.com/protocols/ext/XOAP"; ns=01
 01-MethodName: invokeAction
 01-MessageType: Call
 Accept-Language: en-gb, en;q=0.8
 Referer: http://myhouse/VCR1Presentation
 Content-Length: 119
 User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
 10 Connection: Keep-Alive

20 <SerializedStream main="invokeAction">
 <invokeAction id="invokcAction">
 <actionName>setCurrentTime</actionName>
 15 <actionArg>15:41:29</actionArg>
 </invokeAction>
 </SerializedStream>

25 The encoding of the body of this message is again specified in the service
 20 contract. The Rehydrator will wait for the HTTP response to this request, which would
 look something like the example below.

30 HTTP/1.1 200 OK
 Connection: Close
 Cache-Control: private
 25 Date: Mon Oct 11 15:22:38 PDT 1999
 Expires: Mon Oct 11 15:22:38 PDT 1999
 Content-Type: text/xml
 Content-Length: 50
 Man: "http://www.microsoft.com/protocols/ext/XOAP"; ns=01
 30 01-MessageType: CallResponse

40 <invokeActionRspnsc>
 <_return>0</_return>
 </invokeActionResponse>

35 After receiving a response such as this, the Rehydrator will extract the return
 value, place it in the out parameter it was passed, and then return.

45 Figures 31 through 43 are program listings defining various interfaces used in
 the preferred implementation of the Rehydrator, including an IUPNPDevice interface,

50

43

55

5

10 an IUPNPPropertyBag Interface, an IUPNPService Interface, an IUPNPDevices
Interface, and an IUPNPServices Interface.

Description Document

15 With reference to Figure 13, User Control Points 104 can retrieve a Description
5 Document 226 by issuing an HTTP GET on a Description URL. This URL is returned
in the location header of either an SSDP announcement or an SSDP query response.

20 The HTTP GET must include an accept-language header that is used to request
the preferred language of the response. If the requested language is not supported, a
Description Document in the default language supported by the Controlled Device or
10 Bridge may be returned.

25 An HTTP GET is used to retrieve sub elements of a Description Document that
are expressed as URLs.

URL Handling

30 URLs embedded in Description Documents 226 take one of 3 forms: a fully
15 qualified URL or a relative URL.

Fully qualified URLs take the form:

http://devicename pathname

The devicename part of the URL is a Hostname or IP address and the pathname
35 is a filesystem path or equivalent. A fully qualified URL is used "as is" to establish an
20 HTTP connection to a device.

A relative URL does not contain the ":" character and is of the form:

pathname
/pathname

40 Relative URLs are a compact representation of the location of a resource
25 relative to an absolute base URL. All relative URLs in a Description Document are
appended to the value of the Description Document element <URLbase> to form fully
45 qualified URLs.

50

44

55

5

Binary Data

10 Some elements of a Description Document are binary. XML does not directly support the embedding of binary data. In order to include binary data directly in a
15 Description Document, one must convert the data to text using the Base 64 encoding scheme. This tends to increase the size of the data by 25% on the average. Much of this overhead can be eliminated if the binary data is passed by reference instead of by value. To reference binary data, a URL to the data is provided in a Description Document. The binary data can be retrieved by doing a HTTP GET with that URL.

20 As an example, consider the 
</icon>
<icon>
<size>32</size>
<color>0</color>
<depth>8</depth>
<imageType>PNG</imageType>

</icon>
<icon>
<size>48</size>
<color>0</color>
<depth>8</depth>
<imageType>PNG</imageType>

</icon>
<icon>
<size>16</size>
<color>1</color>
<depth>8</depth>
<imageType>PNG</imageType>

</icon><device>
<icon>
<size>32</size>
<color>0</color>
<depth>8</depth>
<imageType>PNG</imageType>

</icon>
<icon>
<size>48</size>
<color>0</color>
<depth>8</depth>
<imageType>PNG</imageType>

</icon>
...
</iconList>
...
</device>
```

FIG. 16

```
<?xml version="1.0"?>
<scpd xmlns="x-schema:scpdI-schema.xml">
  <service StateTable>
    <stateVariable>
      <name>currentChannel</name>
      <dataType>number</dataType>
      <allowedValueRange>
        <minimum>0</minimum>
        <maximum>55</maximum>
        <step>1</step>
      </allowedValueRange>
    </stateVariable>
  </serviceStateTable>

  <actionList>
    <action>
      <name>ChannelUp</name>
    </action>

    <action>
      <name>ChannelDown</name>
    </action>

    <action>
      <name>SetChannel</name>
      <argument>
        <name>newChannel</name>
      <relatedStateVariable>
        currentChannel
      </relatedStateVariable>
      </argument>
    </action>
  </actionList>
</scpd>
```

FIG. 17

```
<contract>
  <protocol id="protocolDef">
    <HTTP version="1.1">
      <URL></URL>
      <M-POST>
        <MAN>http://www.microsoft.com/protocols/ext/XOAP</MAN>
      </M-POST>
      <HEADER name="Content-Type" value="text/xml" />
      <!-- Need to put in extension headers here -->
    </HTTP>

  </protocol>

  <RequestResponse name="queryStateVariable">
    <protocol is="protocolDef">
      <in is="queryStateVariable">
      <out is="queryStateVariableResponse">
      <error is="queryStateVariableResponse">
    </RequestResponse>

    <RequestResponse name="invokeAction">
      <protocol is="protocolDef">
        <in is="SerializedStream">
        <out is="invokeActionResponse">
        <error is="invokeActionResponse">
      </RequestResponse>

    <Schema name="upnp_scpd"
      xmlns="urn:schemas-microsoft-com:xml-data"
      xmlns:dt="urn:schemas-microsoft-com:datatypes">

      <!-- Common -->
      <ElementType name="_return" content="textOnly" dt:type="string" />
      <ElementType name="_fault" content="textOnly" dt:type="string" />

      <!-- Query State Variable Call -->
      <ElementType name="variableName" content="textOnly" dt:type="string" />
      <ElementType name="queryStateVariable" content="eltOnly" model="closed">
        <element type="variableName" />
      </ElementType>

      <!-- Query State Variable Response -->
    ...
```

FIG. 18

```
...
<ElementType name="queryStateVariableResponse" content="eltOnly"
model="closed">
  <group order="one">
    <element type="_return">
      <element type="_fault">
    </group>
  </ElementType>

<!-- Invoke Action Call -->

<AttributeType name="main" dt:type="idref" />
<AttributeType name="headers" dt:type="idref" />
<AttributeType name="id" dt:type="id" />

<ElementType name="sequenceNumber" content="textOnly" dt:type="int">
  <Attribbute name="dt" dt:type="string" dt:values="int" />

  <attribute type="dt" />
</ElementType>

<ElementType name="headers" content="eltOnly" model="closed">
  <attribute type="id" required="yes" />
  <element type="sequenceNumber" />
</ElementType>

<ElementType name="actionName" content="textOnly" dt:type="string" />
<ElementType name="actionArg" content="textOnly" dt:type="string" />

<ElementType name="invokeAction" content="eltOnly" model="closed">
  <attribute type="id" required="yes" />

  <element type="actionName">
    <element type="actionArg" minOccurs="0" maxOccurs="*"/>
  </ElementType>
...
```

FIG. 19

```
...
<ElementType name="SerializedStream" content="eltOnly" model="closed">
  <attribute type="main" required="yes" />
  <attribute type="headers" required="yes" />

  <element type="headers">
    <element type="invokeAction">

    </ElementType>
    <!-- Invoke Action Response -->

    <ElementType name="invokeActionResponse" content="eltOnly" model="closed">
      <group order="one">
        <element type="_return">
        <element type="_fault">
      </group>
    </ElementType>
  </Schema>
</contract>
```

FIG. 20

```
<?xml version="1.0"?>
<Schema name="upnp_scpd"
  xmlns="urn:schemas-microsoft-com:xml-data"
  xmlns:dt="urn:schemas-microsoft-com:datatypes">

  <!-- Common Elements and Attributes -->

  <ElementType name="name" content="textOnly" dt:type="string" />

  <!-- Service State Table -->

  <ElementType name="minimum" content="textOnly" dt:type="number" />
  <ElementType name="maximum" content="textOnly" dt:type="number" />
  <ElementType name="step" content="textOnly" dt:type="number" />

  <ElementType name="allowedValueRange" content="eltOnly" model="closed">
    <element type="minimum" />
    <element type="maximum" />
    <element type="step" minOccurs="0" />
  </ElementType>

  <ElementType name="allowedValue" content="textOnly" />

  <ElementType name="allowedValueList" content="eltOnly" model="closed">
    <element type="allowedValue" minOccurs="1" maxOccurs="*" />
  </ElementType>

  <ElementType name="dataType" content="textOnly" dt:type="string" />

  <ElementType name="stateVariable" content="eltOnly" model="closed">
    <element type="name" />
  ...
```

FIG. 21

```
...
<element type="dataType" />

<group minOccurs="0" maxOccurs="1" order="one">
    <element type="allowedValueRange" />
    <element type="allowedValueList" />
</group>
</ElementType>

<ElementType name="deviceStateTable" content="eltOnly" model="closed">
    <element type="stateVariable" minOccurs="1" maxOccurs="*" />
</ElementType>

<!-- Action List -->

<ElementType name="relatedStateVariable" content="textOnly" dt:type="string" />

<ElementType name="argument" content="eltOnly" model="closed">
    <element type="name" />
    <element type="relatedStateVariable" />
</ElementType>

<ElementType name="action" content="eltOnly" model="closed">
    <element type="name" />
    <element type="argument" minOccurs="0" maxOccurs="*" />
</ElementType>

<ElementType name="actionList" content="eltOnly" model="closed">
    <element type="action" minOccurs="0" maxOccurs="*" />
</ElementType>

<!-- Root Element -->

<ElementType name="dcpd" content="eltOnly" model="closed">
    <element type="deviceStateTable" />
    <element type="actionList" />
</ElementType>
</Schema>
```

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 30

FIG. 31

```

[
object,
uuid(<foo>),
dual,
helpstring("IUPNPDevice interface"),
pointer_default(unique)
]
interface IUPNPDevice : IDispatch
{

    [propget, id(DISPID_UPNPDEVICE_DESCRIPTIONDOCUMENT),
     helpstring("returns the document from which the properties of this device are
being read")]
    HRESULT DescriptionDocument([restricted, hidden, out, retval]
IUPNPDDescriptionDocument ** ppuddDocument);
        purpose: returns the document from which the properties of this device are
being read.
        parameters: ppuddDocument, A reference to the description document
object from which data about the device is being read. This must be freed when no
longer needed.
        return values: S_OK, ppuddDocument is a reference to the device's
description document.

    [propget, id(DISPID_UPNPDEVICE_ISROOTDEVICE),
     helpstring("denotes whether the physical location information of this device can
be set")]
    HRESULT IsRootDevice([out, retval] VARIANT_BOOL * pvarb);
        parameters: pvarb, the address of a VARIANT_BOOL that will receive the
value of VARIANT_TRUE if the current device is the topmost device in the device
tree, and will receive the value of VARIANT_FALSE otherwise.
        return values: S_OK, varb is set to the appropriate value
        note: if a device is a root device, calls RootDevice() or ParentDevice() will
return NULL

    [propget, id(DISPID_UPNPDEVICE_ROOT),
     helpstring("returns the top device in the device tree")]
    HRESULT RootDevice([out, retval] IUPNPDevice ** ppudDeviceRoot);
        purpose: returns the top device in the device tree
...
}

```

FIG. 32

...
parameters: ppudDeviceRoot, On return, this refers to the "root" device of the current device tree. The root device is the topmost parent of the current device. If the current device is the root device this method will set *ppudDeviceRoot to null, and return S_FALSE.

return values: S_OK, *ppudDeviceRoot contains a reference to the root device. S_FALSE, the current device is the root device. *ppudDeviceRoot is null.

[propget, id(DISPID_UPNPDEVICE_PARENT),
helpstring("returns the parent of the current device")]
HRESULT ParentDevice([out, retval] IUPNPDevice ** ppudDeviceParent);
parameters: ppudDeviceParent, On return, if the device has a parent, this is the address of a IUPNPDevice object which can describe the parent. This must be released when no longer needed. If the device has no parent (it is a "root" device), than this value will be set to null.

return values: S_OK, ppudDeviceParent contains a reference to the device's parent. S_FALSE, the current device is the root device, which has no parent. *ppudDeviceRoot is null.

[propget, id(DISPID_UPNPDEVICE_CHILDREN),
helpstring("returns a collection of the children of the current device")]
HRESULT Children([out, retval] IUPNPDevices ** ppudChildren);
parameters: ppudChildren, On return, this is the address of a newly-created IUPNPDevices collection that can enumerate this device's children. This must be released when no longer needed. If the device has no children, this method will return a collection object with a length of zero.

return values: S_OK, ppudChildren contains a list of the device's children.

[propget, id(DISPID_UPNPDEVICE_UDN),
helpstring("returns the UDN of the device")]
HRESULT UniqueDeviceName([out, retval] BSTR * pbstrUDN);
parameters: pbstrUDN, On return, this contains the address of a newly-allocated string which contains the device's Unique Device Name (UDN). The UDN is globally unique across all devices - no two devices will ever have the same UDN. This value must be freed when no longer needed.

return values: S_OK pbstrUDN contains the UDN of the device

...

FIG. 33

```
[propget, id(DISPID_UPNPDEVICE_DISPLAYNAME),
 helpstring("returns the (optional) display name of the device")]
 HRESULT DisplayName([out, retval] BSTR * pbstrDisplayName);
 parameters: pbstrDisplayName, On return, this contains the address of the
 device's display name. This value must be freed when no longer needed. If the
 device does not specify a display name, this parameter will be set to null.
 return values: S_OK, bstrDisplayName contains the display name of the
 device. pbstrDisplayName must be freed. S_FALSE, the device did not specify a
 display name. *pbstrDisplayName is set to null.
 note: it is possible for multiple devices to have the same display name.
 Applications should use UniqueDeviceName() to determine if two device objects
 refer to the same device.

 [propget, id(DISPID_UPNPDEVICE_CANSETDISPLAYNAME),
 helpstring("denotes whether the physical location information of this device can
 be set")]
 HRESULT CanSetDisplayName([out, retval] VARIANT_BOOL * pvarb);
 parameters: pvarb, the address of a VARIANT_BOOL. This is true (!=0) on
 return when the device's display name can be set (via SetDisplayName)
 return values: S_OK      varb is set to the appropriate value

 [id(DISPID_UPNPDEVICE_SETDISPLAYNAME),
 helpstring("sets the display name on the device")]
 HRESULT SetDisplayName([in] BSTR bstrDisplayName);
 parameters: bstrDisplayName, the value to set the device's display name to.
 return values: S_OK, varb is set to the appropriate value.
 note: On success, this method sets the display name used by a device.
 Note that this method changes the display name on the device itself, not simply on
 the local object. This will block while the name is being set.
 Additionally, this change will be made on the device alone, and will not be reflected
 in the current device object. After a successful call to this method, DisplayName
 will continue to return the 'old' value). To read the device's current name, the caller
 must re-load the device's description.

 [propget, id(DISPID_UPNPDEVICE_DEVICETYPE),
 ...]
```

FIG. 34

```
...  
    helpstring("returns the device type URI")]  
    HRESULT Type([out, retval] BSTR * pbstrType);  
    parameters: pbstrType, On return, this contains the address of a newly-allocated  
    string containing the device's type URI. This value must be freed when no longer  
    needed.  
    return values: S_OK, bstType contains the type URI of the device, and must be  
    freed when no longer needed.  
  
    [propget, id(DISPID_UPNPDEVICE_SERVICES),  
     helpstring("returns the collection of services exposed by the device")]  
    HRESULT Services([out, retval] IUPNPServices ** ppusServices);  
    parameters: ppusServices, On return, this is the address of a newly-created  
    IUPNPServices collection that can enumerate the services exposed by the device.  
    This must be released when no longer needed. If the device exposes no services, this  
    method will return a collection object with a length of zero.  
    return values: S_OK, pusServices contains a list of the device's children.  
  
    [propget, id(DISPID_UPNPDEVICE_SERVICEIDENTIFIER),  
     helpstring("returns the (optional) service identifier of the device")]  
    HRESULT ServiceIdentifier([out, retval] BSTR * pbstrServiceID);  
    parameters: pbstrServiceID, On return, this contains the address of a newly-allocated  
    string containing the contents of the device's ServiceIdentifier element, if the  
    device specifies one. This value must be freed when no longer needed. If the device  
    does not specify a ServiceIdentifier value, this parameter will be set to null.  
    return value: S_OK, bstrServiceID contains the service identifier of the device.  
    pbstrServiceID must be freed. S_FALSE, the device did not specify a service identifier.  
    *pbstrServiceID is set to null.  
    note having a ServiceIdentifier is mutually exclusive with having services. Any  
    device will either have a list of services or a ServiceIdentifier, but not both.  
  
    [id(DISPID_UPNPDEVICEDESCRIPTION_LOADSMALLICON),  
     helpstring("loads a small (titlebar-sized) icon representing the device, encoded in the  
     specified format")]  
    HRESULT LoadSmallIcon([in] BSTR bstEncodingFormat,  
    [out, retval] BSTR * pbstrIconURL);  
    parameters:  
    ...
```

FIG. 35

```
...
bstrEncodingFormat, A string containing the mime-type representing the desired
encoding format of the icon. pbstrIconURL, On return, *pbstrIconURL contains a
newly-allocated string representing the URL from which the icon can be loaded.
This string must be freed when no longer needed.
    return values: S_OK, *pbstrIconURL contains a reference to an icon,
encoded in the desired encoding format.

[id(DISPID_UPNPDEVICEDESCRIPTION_LOADICON),
 helpstring("loads a standard-sized icon representing the device, encoded in the
specified format")]
HRESULT LoadIcon([in] BSTR bstrEncodingFormat,
 [out, retval] BSTR * pbstrIconURL);
    parameters: bstrEncodingFormat, A string containing the mime-type
representing the desired encoding format of the icon. pbstrIconURL, On return,
*pbstrIconURL contains a newly-allocated string representing the URL from which
the icon can be loaded. This string must be freed when no longer needed.
    return values: S_OK, *pbstrIconURL contains a reference to an icon,
encoded in the desired encoding format.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_PRESENTATIONURL),
 helpstring("obtains a presentation URL to a web page that can control the
device")]
HRESULT PresentationURL([out, retval] BSTR * pbstrURL);
    parameters: pbstrURL, on return, the address of a newly-allocated string
containing the web-page-based control URL. If the device did not specify a
presentation URL, an empty string ("") will be returned.
    return values: S_OK, bstrURL contains a newly-allocated URL that must be
freed when no longer needed. S_FALSE, the device does not have a presentation
URL. pbstrURL is set to null.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_PHYSICALLOCATION),
 helpstring("a set of properties describing the device's physical location")]
HRESULT PhysicalLocation([out, retval] IUPNPPPropertyBag * pupl);
    parameters: pupl on return, the address of a newly-allocated
UPNPPPropertyBag object which contains information about the device's physical
location
    return values
...
...
```

FIG. 36

...
S_OK upl contains a newly-allocated object that the caller must free when it is no longer needed.

note: if the object does not provide any description information, an empty property bag will be returned. See SetPhysicalLocation for a listing of defined values in a physical location property bag.

```
[propget,
id(DISPID_UPNPDEVICEDESCRIPTION_CANSETPHYSICALLOCATION),
helpstring("denotes whether the physical location information of this device can be set")]
HRESULT CanSetPhysicalLocation([out, retval] VARIANT_BOOL * pvarb);
parameters: pvarb the address of a VARIANT_BOOL. This is true (!=0) on return when the device's physical location can be set (via SetPhysicalLocation)
return values: S_OK varb is set to the appropriate value
```

```
[id(DISPID_UPNPDEVICEDESCRIPTION_SETPHYSICALLOCATION),
helpstring("writes a set of properties describing the device's physical location to the device")]
HRESULT SetPhysicalLocation([in] IUPNPPPropertyBag * pupl);
parameters: pupl A UPNPPPropertyBag object which contains the name-value pairs representing the device's current location. the function will not free the object.
```

return values: S_OK the device has been updated with the supplied physical location information

note: the following are standard values in the physical location property bag: country, campus, building, floor, wing, room, latitude, longitude, altitude. These values can be used programmatically to implement sorting or filtering functionality based on the device's location. Additionally the property bag supports the following value: description, which contains a user-displayable string representing a device's location which does not have programmatic significance. Additionally, the physical location update will be made on the device alone, and will not be reflected in the current device object. After a successful call to this method, PhysicalLocation will continue to return the 'old' value. To read the device's current name, the caller must re-load the device's description.

}

...

FIG. 37

```
...  
[propget, id(DISPID_UPNPDEVICEDESCRIPTION_PRODUCTNAME),  
 helpstring("a displayable string containing the product name")]  
HRESULT ProductName([out, retval] BSTR * pbstr);  
parameters: pbstr on return, the address of a newly-allocated string  
containing the product name of the device.  
return values: S_OK pbstr contains a newly-allocated string that must  
be freed when no longer needed.  
  
[propget, id(DISPID_UPNPDEVICEDESCRIPTION_DESCRIPTION),  
 helpstring("displayable summary of the device's function")]  
HRESULT Description([out, retval] BSTR * pbstr);  
parameters: pbstr on return, the address of a newly-allocated string  
containing a short description of the device meaningful to the user.  
return values: S_OK pbstr contains a newly-allocated string that must  
be freed when no longer needed.  
  
[propget, id(DISPID_UPNPDEVICEDESCRIPTION_MODELNAME),  
 helpstring("displayable model name")]  
HRESULT ModelName([out, retval] BSTR * pbstr);  
parameters: pbstr on return, the address of a newly-allocated string  
containing the manufacturer's model name of the device.  
return values: S_OK pbstr contains a newly-allocated string that must  
be freed when no longer needed.  
  
[propget, id(DISPID_UPNPDEVICEDESCRIPTION_SERIALNUMBER),  
 helpstring("displayable serial number")]  
HRESULT SerialNumber([out, retval] BSTR * pbstr);  
parameters: pbstr on return, the address of a newly-allocated string  
containing the manufacturer's serial number of the device.  
return values: S_OK pbstr contains a newly-allocated string that must  
be freed when no longer needed.  
note: a device's serial number is not guaranteed to be globally unique. The  
DeviceUniqueName should always be used to distinguish devices.  
  
[propget, id(DISPID_UPNPDEVICEDESCRIPTION_MANUFACTURERNAME),  
 helpstring("displayable manufacturer name")]  
HRESULT ManufacturerName([out, retval] BSTR * pbstr);  
parameters  
...  
...
```

FIG. 38

pbstr, on return, the address of a newly-allocated string containing the name of the device's manufacturer.

return values: S_OK, pbstr contains a newly-allocated string that must be freed when no longer needed.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_MANUFACTURERURL),
helpstring("URL to the manufacturer's website")]

HRESULT ManufacturerURL([out, retval] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated string containing the URL of the manufacturer's website.

return values: S_OK, pbstr contains a newly-allocated string that must be freed when no longer needed.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_MODELNAME),
helpstring("displayable model name")]

HRESULT ModelName([out, retval] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated string containing the manufacturer's model name for the device.

return values: S_OK, pbstr contains a newly-allocated string that must be freed when no longer needed.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_SUPPORTLIST),
helpstring("technical support contact information")]

HRESULT SupportList([out, retval] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated, multi-line string containing phone numbers and other information that can guide the user to technical support. This string must be freed when no longer needed.

return values: S_OK, pbstr contains a newly-allocated string that must be freed when no longer needed.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_FAQLIST),
helpstring("FAQ access display information")]

HRESULT FAQList([out, retval] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated, multi-line string containing FAQ information that can provide the user with URLs at which device FAQs may be located.

return values: S_OK, pbstr contains a newly-allocated string that must be freed when no longer needed.

...

FIG. 39

```
...
[propget, id(DISPID_UPNPDEVICEDESCRIPTION_UPDATELIST),
 helpstring("information explaining where the user can update the device's
 firmware")]
HRESULT UpdateList([out, retval] BSTR * pbstr);
parameters: pbstr, on return, the address of a newly-allocated, multi-line
string containing information and URLs from which the user can download updates
for the device's firmware.
return values: S_OK, pbstr contains a newly-allocated string that must be
freed when no longer needed.
```

FIG. 40

```
[object,
uuid(FDBC0C73-BDA3-4C66-AC4F-F2D96FDAD68C),
dual,
helpstring("IUPNPDevices Interface"),
pointer_default(unique)
]
IUPNPPPropertyBag
{

    [propget, id(DISPID_UPNP_PROPERTYBAG_READ),
     helpstring("reads a value from the property bag")]
    HRESULT Read([in] BSTR bstrName, [out, retval] VARIANT * pvarResult);
        parameters: bstrName, name of the property to read. case is ignored.
        pvarResultvalue of the property. if the property dose not exist, this is of type
        VT_EMPTY
        return values: S_OK, the value was found in the property bag, and returned
        in pvarResult. S_FALSE, there was no value with the given name in the property
        bag. *pvarResult is of type VT_EMPTY

    [propget, id(DISPID_UPNP_PROPERTYBAG_WRITE),
     helpstring("writes a value to the property bag")]
    HRESULT Write([in] BSTR bstrName, [in] VARIANT * pvarValue);
        parameters: bstrName, name of the property to write. case is preserved
        when writing. The supplied value will replace any other values of the same name,
        even if they differ in case.. pvarValue, value of the property to write.
        return values: S_OK, the value was written to the property bag, replacing the
        value currently associated with this property, if it existed.

    [propget, id(DISPID_UPNP_PROPERTYBAG_DELETE),
     helpstring("removes a value from the property bag")]
    HRESULT Delete([in] BSTR bstrName);
        parameters: bstrName, name of the value to remove from the property gab.
        case is ignored when finding a value to remove.
        return values: S_OK, the value has been removed from the property bag.
        S_FALSE, the value was not found in the property bag.

};
```

FIG. 41

```
[  
object,  
uuid(A295019C-DC65-47DD-90DC-7FE918A1AB44),  
dual,  
helpstring("IUPNPService Interface"),  
pointer_default(unique)  
]  
interface IUPNPService : IDispatch  
{  
[id(1), helpstring("method GetProperty")]  
HRESULT GetProperty(  
[in] BSTR bstrPropertyName,  
[out, retval] VARIANT *pValue  
);  
  
[id(2), helpstring("method InvokeAction")]  
HRESULT InvokeAction(  
[in] BSTR bstrActionName,  
[in] VARIANT saActionArgs,  
[out, retval] long *plStatus  
);  
  
[propget, id(3), helpstring("property DCPI")]  
HRESULT DCPI(  
[out, retval] BSTR *pVal  
);  
  
[propget, id(4),  
helpstring("returns a manufacturer-defined extension property")]  
HRESULT VendorExtension([out, retval] VARIANT * pvarValue );  
parameters: pvarValueOn return, this variant is filled with the value of the  
"extension" element. If none exists, pvarValue is set to VT_EMPTY  
return values: S_OK, varValue is set to the extension element. S_FALSE,  
no vendor extension element exists. pvarValue is VT_EMPTY
```

FIG. 42

```
[  
object,  
uuid(FDBC0C73-BDA3-4C66-AC4F-F2D96FDAD68C),  
dual,  
helpstring("IUPNPDevices Interface"),  
pointer_default(unique)  
]  
interface IUPNPDevices : IDispatch  
{  
[propget, id(1), helpstring("property Count")]  
HRESULT Count(  
[out, retval] long *pVal  
);  
  
[propget, id(DISPID_NEWENUM), helpstring("property _NewEnum")]  
HRESULT _NewEnum(  
[out, retval] LPUNKNOWN *pVal  
);  
  
[propget, id(DISPID_VALUE), helpstring("property Item")]  
HRESULT Item(  
[in] long lIndex,  
[out, retval] VARIANT *pVal  
);  
};
```

FIG. 43

```
[  
object,  
uuid(3F8C8E9E-9A7A-4DC8-BC41-FF31FA374956),  
dual,  
helpstring("IUPNPServices Interface"),  
pointer_default(unique)  
]  
interface IUPNPServices : IDispatch  
{  
[propget, id(1), helpstring("property Count")]  
HRESULT Count(  
[out, retval] long *pVal  
);  
  
[propget, id(DISPID_NEWENUM), helpstring("property _NewEnum")]  
HRESULT _NewEnum(  
[out, retval] LPUNKNOWN *pVal  
);  
  
[propget, id(DISPID_VALUE), helpstring("property Item")]  
HRESULT Item(  
[in] long lIndex,  
[out, retval] VARIANT *pVal  
);  
};
```

FIG. 44

```
<contract>

<protocol id="protocolDef">
<HTTP version="1.1">
<URL> http://investor.msn.com/stockquote </URL>
<M-POST>
<MAN> http://www.upnp.org/service-control/m-post </MAN>
<M-POST>
<HEADER name="Content-Type" value="text/xml" />
</HTTP>
</protocol>

<RequestResponse name="getQuote">
<protocol is="protocolDef" />
<in   is="symbol" />
<out  is="stockQuote" />
<error is="error" />
</RequestResponse>

<RequestResponse name="getQuotes">
<protocol is="protocolDef" />
<in   is="symbols" />
<out  is="stockQuotes" />
<error is="error" />
</RequestResponse>

<!-- // schema definition follows -->

<schema xmlns="urn:schema-microsoft-com:xml-data"
         xmlns:dt="urn:schema-microsoft-com:datatypes">

<ElementType name="symbol" dt:type="string" />

<ElementType name="symbols">
<element type="symbol" maxOccurs="*" />
</ElementType>

<ElementType name="stockQuote">
<element type="company" />
<element type="ticker" />
...

```

FIG. 45

```
...
<element type="previousClose" />
<element type="openingTrade" />
<element type="lastTrade" />
<element type="volume" />
</ElementType>

<ElementType dt:type="string" name="company" />
<ElementType dt:type="string" name="ticker" />
<ElementType dt:type="string" name="previousClose" />
<ElementType dt:type="string" name="openingTrade" />
<ElementType dt:type="string" name="lastTrade" />
<ElementType dt:type="string" name="volume" />

<ElementType name="stockQuotes">
<element name="stockQuote" maxOccurs="*" />
</ElementType>

<ElementType name="error">
<element type="reason" />
</ElementType>

<ElementType dt:type="string" name="reason" />

</schema>

</contract>
Request for "getQuote"

M-POST /stockquotes HTTP/1.1
Host: amarg5:8586
Content-Type: text/xml
Man: "http://www.upnp.org/service-control/m-post"; ns=01
01-MethodName: getQuotes
01-MessageType: Call
Accept-Language: en-gb, en;q=0.8
Referer: http://amarg5/uPnPService/Services/Stock/Client/ticker.htm
Content-Length: 327
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Connection: Keep-Alive

...
```

FIG. 46

```
...
<symbol>MSFT</symbol>
Response for "getQuote"

HTTP/1.1 200 OK
Connection: close
Cache-Control: private
Date: Mon Aug 16 15:37:35 PDT 1999
Expires: Mon Aug 16 15:37:35 PDT 1999
Content-Type: text/xml
Content-Length: 7912
Man: "http://www.upnp.org/service-control/m-post"; ns=01
Ext:
01-MessageType: CallResponse

<stockQuote>
<company>Microsoft%20Corporation</company>
<ticker>MSFT</ticker>
<previousClose>84%2011/16</previousClose>
<openingTrade>85%201/16</openingTrade>
<lastTrade>84%205/16</lastTrade>
<volume>28.66%20Mil</volume>
</stockQuote>
```

FIG. 47


```
<!-- XDR Schema for protocol section of contract -->

<schema name="contract"
  xmlns="urn:schema-microsoft-com:xml-data"
  xmlns:dt="urn:schema-microsoft-com:datatypes">

  <ElementType name="contract"
    xmlns:protocolNS="contract-protocol"
    xmlns:msgPatternNS="contract-msgPatterns"
    xmlns:schemaNS="urn:schema-microsoft-com:xml-data">

    <element type="protocolNS:protocol" />

    <element type="msgPatternNS:RequestResponse" minOccurs="0"
    maxOccurs="*" />
      <element type="msgPatternNS:SolicitResponse" minOccurs="0" maxOccurs="*"
    />

    <element type="schemaNS:schema"           minOccurs="0" maxOccurs="*" />

  </ElementType>

</schema>
...
```

FIG. 48

```
...
Protocol
<!-- XDR Schema for protocol section of contract -->

<schema name="contract-protocol"
  xmlns="urn:schema-microsoft-com:xml-data"
  xmlns:dt="urn:schema-microsoft-com:datatypes">

  <ElementType name="protocol">

    <!-- ID -->
    <AttributeType name="id" dt:type="id" />
    <Attribute type="id" />

    <group order="one">
      <element xmlns:http="contract-protocol-HTTP" type="http:HTTP" />
      <element xmlns:gena="contract-protocol-GENA" type="gena:GENA" />
      // other protocol definitions go here
    </group>

  </ElementType>
</schema>
...
```

FIG. 49

```
HTTP
<!-- XDR Schema for HTTP section of contract -->

<schema name="contract-protocol-HTTP"
  xmlns="urn:schema-microsoft-com:xml-data"
  xmlns:dt="urn:schema-microsoft-com:datatypes">

  <ElementType name="HTTP">

    <!-- HTTP version -->
    <AttributeType name="VERSION" dt:type="string" default="1.1" />
    <Attribute type="VERSION" />

    <!-- The Verb to use -->
    <group order="one">
      <element type="GET" />
      <element type="POST" />
      <element type="M-POST" />
    </group>

    <!-- The protocol data -->
    <element type="URL" />
    <element type="QUERY" minOccurs="0" />
    <element type="HEADER" minOccurs="0" />

  </ElementType>

  <ElementType name="URL" dt:type="string" />

  <ElementType name="QUERY">
    <attribute type="name" />
    <attribute type="value" />
    <attribute type="required" />
  </ElementType>

  ...

```

FIG.50

```
<ElementType name="HEADER">
  <attribute type="name" />
  <attribute type="value" required="yes" />
</ElementType>

<!-- Verb declarations -->
<ElementType name="GET"/>

<ElementType name="POST">
  <element type="PARAM" minOccurs="0" maxOccurs="*" />
</ElementType>

<ElementType name="PARAM">
  <element type="name" />
  <element type="default" />
  <element type="value" />
  <element type="required" />
</ElementType>

<AttributeType name="name" dt:type="string" required="yes" />
<AttributeType name="default" dt:type="string" />
<AttributeType name="value" dt:type="string" />
<AttributeType name="required" dt:type="boolean" default="no" />

<ElementType name="M-POST">
  <element type="MAN" />
</ElementType>

<ElementType name="MAN" dt:type="string" />

</schema>
```

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
21 December 2000 (21.12.2000)

PCT

(10) International Publication Number
WO 00/78001 A3

(51) International Patent Classification⁷: H04L 29/06 (74) Agent: WIGHT, Stephen, A.; Klarquist, Sparkman, Campbell, Leigh & Whinston, LLP, One World Trade Center, Suite 1600, 121 SW Salmon Street, Portland, OR 97204 (US).

(21) International Application Number: PCT/US00/15690 (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 7 June 2000 (07.06.2000) (82) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English (26) Publication Language: English

(30) Priority Data:

60/139,137	11 June 1999 (11.06.1999)	US
60/160,235	18 October 1999 (18.10.1999)	US
09/432,854	2 November 1999 (02.11.1999)	US

(71) Applicant: MICROSOFT CORPORATION [US/US]; One Microsoft Way, Building 114, Redmond, WA 98052 (US).

(72) Inventors: GANDHI, Amar, S.; 341A 2509 41st Avenue East, Seattle, WA 98112 (US). LAYMAN, Andrew, J.; 5261 148th Avenue S.E., Bellevue, WA 98006 (US).

Published:
 with international search report
 with amended claims

[Continued on next page]

(54) Title: GENERAL API FOR REMOTE CONTROL OF DEVICES

WO 00/78001 A3

(57) Abstract: A general programmatic interface-to-network messaging adapter exposes a suitable object integration interface or application programming interface to applications on a controller device and sends network data messages to invoke services or query status of a controlled device. The adapter maps application calls to the interface into network data messages according to service protocols of the controlled device. The general adapter provides the interface suitable to any specific service of a controlled device based on a data description of the interface, and converts the application calls to network data messages based on a data description of a protocol and format for network data messages to interact with the specific service. Once the interface/messaging description is obtained, applications on the controller device can programmatically interact with the adapter, and the adapter then handles appropriate message exchanges with the service of the controlled device. The general adapter allows controller device applications to be written using object-oriented programming, while avoiding code download.

(88) Date of publication of the international search report:
16 August 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Date of publication of the amended claims: 18 October 2001

AMENDED CLAIMS

[received by the International Bureau on 25 May 2001 (25.05.01);
original claim 1 amended; new claims 3-12 added; remaining claim unchanged (3 pages)]

1.. A computing device providing a user control point with connectivity to at least one controlled device via a networking medium, the computing device comprising:

5 a controlled device description document having a service control protocol declaration for at least one service provided by the at least one controlled device;
and

10 a general programming interface-to-network messaging adapter operating based on the controlled device description document to provide a programming interface to application programs running on the computing device, and to convert calls to the programming interface into networking messages according to a service control protocol defined per the controlled device description document, and to issue the networking messages via the networking medium to the controlled device to invoke commands of the at least one service.

15 2.. The computing device of claim 1 wherein the programming interface is an object integration interface according to an object-oriented programming model.

20 3.. A method for a client program on a first computing device to programmatically control a service of a logical device realized on a remote computing device on a data communications network via peer-to-peer networking connectivity from the first computing device on the data communications network, the method comprising:

25 obtaining a description document via peer-to-peer networking from the remote computing device, the description document defining a service-specific protocol involving an exchange of data messages via peer-to-peer networking connectivity with the remote computing device for controlling the logical device service on the remote computing device;

30 based on the description document, dynamically generating an instance of a programmatic interface for invocation by the client program to initiate service-specific operations for remote control of the logical device service;

on invocation of the method members by the client program, translating the client program's programmatic interface invocation into the exchange of data messages via peer-to-peer networking connectivity in accordance with the description document for effecting control of the logical device service.

5

4. The method of claim 3 wherein the programmatic interface is an object integration interface of an object-oriented programming model.

10 5. The method of claim 3 wherein the data messages are in a mark-up language and exchanged via a hypertext transport protocol.

6. The method of claim 3 wherein the service-specific operations include invoking commands of the service, querying a state of the service, and receiving and responding to events of the service.

15

7. The method of claim 3 wherein the service has a set of properties defining a state of the service, and the service-specific operations include querying and setting values of the set of properties.

20

8. A computer-readable medium carrying computer-executable software program code thereon for executing on a first computing device on a data communications network to perform a method for a client program on the first computing device to programmatically control a service of a logical device realized on a remote computing device on a data communications network via peer-to-peer networking connectivity from the first computing device on the data communications network, the method comprising:

25 30 obtaining a description document via peer-to-peer networking from the remote computing device, the description document defining a service-specific protocol involving an exchange of data messages via peer-to-peer networking connectivity with the remote computing device for controlling the logical device service on the remote computing device;

based on the description document, dynamically generating an instance of a programmatic interface for invocation by the client program to initiate service-specific operations for remote control of the logical device service;

5 on invocation of the method members by the client program, translating the client program's programmatic interface invocation into the exchange of data messages via peer-to-peer networking connectivity in accordance with the description document for effecting control of the logical device service.

9. The computer-readable medium of claim 8 wherein the programmatic interface is an object integration interface of an object-oriented programming model.
10

10. The computer-readable medium of claim 8 wherein the data messages are in a mark-up language and exchanged via a hypertext transport protocol.

15 11. The computer-readable medium of claim 8 wherein the service-specific operations include invoking commands of the service, querying a state of the service, and receiving and responding to events of the service.

12. The computer-readable medium of claim 8 wherein the service has a
20 set of properties defining a state of the service, and the service-specific operations include querying and setting values of the set of properties.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.