Poliechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Raport Zarządzanie Projektami

$\mathsf{PLANTIE}^{\mathsf{TM}}$

Autorzy: Kamil Choiński Oskar Stabla

Spis treści

1	Kar	ta projektu			
	1.1	Cele projektu			
	1.2	Produkty projektu			
	1.3	Uproszczony harmonogram			
		1.3.1 Miesiąc 1			
		1.3.2 Miesiąc 2			
		1.3.3 Miesiąc 3			
		1.3.4 Miesiąc 4			
		1.3.5 Miesiąc 5			
	1.4	Budżet projektu			
	1.5	Uproszczony opis zespołu projektowego			
2	Opi	Opis merytoryczny			
	2.1	Stan wiedzy w dziedzinie objętej projektem - podobne projekty			
		2.1.1 Trutina			
		2.1.2 Arduino Irrigator System			
	2.2	Opis działań przeznaczonych do realizacji			
	2.3	Uzasadnienie innowacyjności podjętych działań			
	2.4	Spodziewany efekt			

1 Karta projektu

1.1 Cele projektu

Nasz projekt ma na celu pomóc zabieganym ludziom, którzy nie mają czasu na zajmowanie się swoją roślinką przez swój częsty brak pobytu w domu. Wystarczy dostęp do internetu, nic więcej.

Powstała koncepcja opiera się na systemie zdalnego zarządzania rośliną. Chcemy mierzyć parametry gleby i otoczenia takie jak wilgotność, nasłonecznienie, a nawet poziom wody w zbiorniku do podlewania. W zależności od odczytanych wartości przez płytkę rozwojową UNO połączoną z modułem ESP8266, będzie możliwe sterowanie pompką wody i oświetleniem rośliny. Postanowiliśmy utworzyć panel sterowania na stronie internetowej.

1.2 Produkty projektu

- Zespół urządzeń akwizycyjno-wykonawczych
- Panel sterowania na stronie internetowej
- Aplikacja mobilna

1.3 Uproszczony harmonogram

1.3.1 Miesiąc 1

Pomysł, przegląd podobych rozwiązań dostępnych na rynku. Próba dopasowania się do konkurencji z własnym rozwiązaniem.

Przeanalizowanie współpracy płytki rozwojowej UNO, modułu komunikacyjnego ESP8266, czujnika wilgotności gleby, czujnika wilgotności powietrza i czujnika nasłonecznienia oraz rozwiązanie techniczne doświetlania rośliny.

1.3.2 Miesiąc 2

Stworzenie schematu elektrycznego projektu. Testowanie poprawności działania posiadanych czujników w warunkach domowych. Implementacja komunikacji z modułem ESP8266. Dopasowywanie czasów działania.

Równoczesne tworzenie aplikacji zajmującej się zarządzaniem zapytaniami i realizującej funkcję komunikacji z użytkownikiem opartej o websocket. Tworzenie aplikacji zajmującej się identyfikacja rodzaju rośliny.

1.3.3 Miesiąc 3

Realizacja połączeń elektrycznych na płytce stykowej i ostateczne testowanie poprawności działania aplikacji. Realizacja montażu systemu doświetlania. Przeniesienie projektu na płytkę uniwersalną i zaprojektowanie własnej płytki.

Połączenie systemu wykrywania rośliny i systemu zarządzania.

1.3.4 Miesiąc 4

Przygotowanie obudowy i instrukcji użytkowania. Planowanie i realizacja produkcji.

1.3.5 Miesiąc 5

Testowanie produktu przez użytkowników pre-orderowych, marketing. Ostateczne poprawy błędów. Prezentacja gotowego projektu.

1.4 Budžet projektu

Komponent projektu	Cena
Części do testów	1 000 PLN
Wynajem biura	15 000 PLN
Licencje oprogramowania	5 000 PLN
Wynagrodzenie dla specjalistów	150 000 PLN
Marketing	10 000 PLN
Produkcja i koszty magazynowania	50 000 PLN
Suma	231 000 PLN

Same komponenty projektu zostaną sprowadzone z Chin.

1.5 Uproszczony opis zespołu projektowego

- Stefan (35zł/h) Team lead, odpowiedzialny za organizację pracy zespołu
- Janusz (25zł/h) Marketing manager, odpowiedzialny za marketing
- $\bullet\,$ Jeff (24zł/h) Elektronik, odpowiedzialny za układy cyfrowe
- Kamil (22zł/h) Mechanik/Web Designer, odpowiedzialny za projekt strony i nadzór konstrukcji obudowy
- Oskar (26zł/h) Programista wysokopoziomowy, odpowiedzialny za software od strony serwerowej do systemu przetwarzania danych
- Tomasz (26zł/h) Programista aplikacji mobilnych i systemu przetwarzania informacji wizyjnych

2 Opis merytoryczny

2.1 Stan wiedzy w dziedzinie objętej projektem - podobne projekty

2.1.1 Trutina

'Trutina' z Gremon Systems przedstawiony na Rysunku nr 1, pozwala na automatyczne podlewanie danej rośliny, a także na pomiary parametrów za pomocą sensorów wbudowanych w urządzenie takich jak: pyranometer, E-box, GS3 które wysyłając pomiary, kontroluje system i wybiera kiedy podlać roślinę.

System posiada także aplikację na telefon, dzięki której możemy podglądać graficznie mierzone parametry, a także kontrolować system podlewający.

Różni sie od naszego projektu aplikacją, gdyż otrzymujemy wszystkie pomiary na stronie internetowej i samoistnym wyborem kiedy będzie włączone podlewanie. Jest to także dużo większy projekt od naszego gdyż jest przystosowany do pracy w warunkach terenowych, nasz zaś do domowych.

Rysunek 1: Trutina [1]

2.1.2 Arduino Irrigator System

Ten projekt przedstawiony na Rysunku nr 2, bazuje na płytce rozwojowej Arduino UNO i ma na celu automatyzację procesu pomiarów parametrów rośliny i jej podlewaniu. System bada wilgotność gleby i włącza pompę wodną jeśli wilgotność spadnie poniżej pewnego poziomu. Kiedy system wykryje wartość powyżej ustalonej wyłączy pompę. System posiada także wyświetlacz LCD 16x2 na którym są wyświetlane: poziom wody w zbiorniku, status czy pompka jest włączona, wilgotność gleby.

Projekt różni się od naszego sposobem wyświetlania danych - różnica wyświetlaczy, a także brakiem zapisywania pomiarów i połączeniem z siecią Wi-Fi.

Rysunek 2: Arduino Irrigator System [2]

2.2 Opis działań przeznaczonych do realizacji

- Zebranie drużyny projektowej
- Przegląd dostępnych rozwiązań
- Dopasowanie do rynku
- Realizacja projektu
- Marketing

2.3 Uzasadnienie innowacyjności podjętych działań

Nasz produkt oferuje możliwość rozpoznawania rodzaju rośliny poprzez przesłanie zdjęcia jej liścia do osobnej aplikacji zajmującej się identyfikacją. Dzięki temu możliwe jest dopasowanie harmonogramu podlewania i doświetlania w zależności od wymagań danej rośliny.

2.4 Spodziewany efekt

Przyjecie produktu przez rynek, zadowolenie konsumenta. Wykup projektu przez większą firmę.

Literatura

- [1] Trutina z Gremon Systems gremonsystems.com/blog-en/things-you-didnt-know-about-automatic-watering-systems/
- $\label{lem:comparison} \begin{tabular}{l} [2] Arduino Irrigator System $http://www.circuitstoday.com/arduino-irrigation-plant-watering-using-soil-moisture-sensor \end{tabular}$