IJRAR.ORG

E-ISSN: 2348-1269, P-ISSN: 2349-5138

INTERNATIONAL JOURNAL OF RESEARCH AND ANALYTICAL REVIEWS (IJRAR) | IJRAR.ORG

An International Open Access, Peer-reviewed, Refereed Journal

Factorisation of the sum of two non zero distinct squares into the product of two sums of two non zero squares: one of them is a prime number

Habib Lebsir Author, theorem holder

Abstract: This work has three parts:

- 1/ the Theorem whith proof calls upon two important results :
 - a/ Every sum of two non zero distinct squares is divisible by an odd prime number that is the sum of two coprime squares.

[Habib Lebsir's theorem]

- b/ Every divisor of the sum of two coprime squares is itself the sum of two non zero squares. [Fermat's theorem]
- 2/ the construction of infinite sequences of sums of two non zero distinct squares factorisable into the product of two sums of two non zero squares : one of them is an odd prime number.
- 3/ the List of the first twenty prime numbers sums of two squares :

Keywords: Factorisation, sum of two squares, distinct, non zero, prime, product, coprime, composite.

Introduction

In a previous publication, I proved the existence of an odd prime divisor of the sum of two non zero distinct squares $(a^2 + b^2)$ that is the sum of two coprime squares $(x^2 + y^2)$.

$$(a^2 + b^2) = (x^2 + y^2).q$$
; x and y coprime

Habib Lebsir's Theorem ,Ijr journal , ISSN 2438-6848 , Volum8-ISSue5 ,may 2021 In this publication I focus on the nature of the quotient q of the division of $(a^2 + b^2)$ by $(x^2 + y^2)$ and ask the following question :

what are the conditions on a and b that make

q expressed as the sum of two non zero squares?

the answer is given in the following pages.

HABIB LEBSIR

Preface

- ✓ the present work is a modest comtribution to the progress of mathematics and number theory in particular.
- ✓ It helps the interested readers to better undersland the divisibility in the set of the sums of two non zero distinct squares.
- ✓ I hope that all readers of the theorem will appreciate it.
- ✓ Note that,in the previous publication mentioned in the introduction,the phrase "prime between themeselves " means "coprime"

HABIB LEBSIR

Theorem:

Let a, b be two non zero distinct naturals and d their gcd.

 (a^2+b^2) is factorisable into the product of two non zero squares : one of them is a prime number if :

 $\begin{cases} or(a^2 + b^2)/d^2 \text{ is composite (non prime)} \end{cases}$

 $(a^2 + b^2)/d^2$ is prime and d^2 is expressed as the sum of two non zero squares

Proof:

1/ Suppose that $(a^2 + b^2)/d^2$ is composite

a/ Let a and b be coprime (d = 1)

 $a^2 + b^2$ is divisible by an odd prime number that is the sum of two coprime squares ($x^2 + y^2$) (as the sum of two non zero distinct squares).

[Habib Lebsir's Theorem] thus: $(a^2 + b^2) = (x^2 + y^2).q$

q is the sum of two non zero squares $(z^2 + t^2)$ [Fermat's theorem]

Therefore: $(a^2 + b^2) = (x^2 + y^2).(z^2 + t^2)$

 $x^2 + y^2$: odd prime; $z^2 + t^2$ sum of two non zero squares

Example:
$$(7^2 + 3^2) = 58 = 29 \times 2 = (2^2 + 5^2)(1^2 + 1^2)$$

b/ a and b are not coprime $(d \neq 1)$.

a = d.a', b = d.b' a' and b' are coprime.

 $(a^2 + b^2) = d^2 \cdot (a'^2 + b'^2)$; $(a'^2 + b'^2)$ is composite (non prime)

 $(a'^2 + b'^2)$ is divisible by an odd prime number that is the sum of two coprime squares $(x^2 + y^2)$ (as the sum of two non zero distinct squares)

[Habib Lebsir's Theorem].

$$(x^2 + y^2)/(a'^2 + b'^2)$$
 then $(a'^2 + b'^2) = (x^2 + y^2).q'$

q' is the sum of two non zero squares because $q'/(a'^2 + b'^2)$ and a' and b' are coprime.[Fermat's theorem]

Therefore: it exists two non zero naturals u, v such as: $u^2 + v^2 = q'$

so :
$$(a'^2 + b'^2) = (x^2 + y^2).(u^2 + v^2)$$

and
$$a^2 + b^2 = d^2(a'^2 + b'^2) = d^2(x^2 + y^2).(u^2 + v^2)$$

$$a^2 + b^2 = (x^2 + y^2)[(du)^2 + (dv)^2] = (x^2 + y^2).(z^2 + t^2)$$
 with : $z = du$, $t = dv$.

 $a^2 + b^2 = (x^2 + y^2).(z^2 + t^2)$; $x^2 + y^2$ is an odd prime number, x and y are coprime

Examples:

•)
$$6^2 + 8^2 = 100 = 5 \times 20 = (1^2 + 2^2).(2^2 + 4^2)$$

 $d = 2$, $d^2 = 4$, $5 = 1^2 + 2^2$ prime

••)
$$3^2 + 9^2 = 90 = 5 \times 18 = (1^2 + 2^2).(3^2 + 3^2)$$

d = 3, $d^2 = 9$, $5 = 1^2 + 2^2$ odd prime

 $2/(a^2 + b^2)/d^2$ is prime and d^2 is expressed as the sum of two non zero squares :

 $(a^2 + b^2)/d^2 = (a'^2 + b'^2)$ then : $a^2 + b^2 = d^2(a'^2 + b'^2) = (a'^2 + b'^2).(x^2 + y^2)$

 $(x^2 + y^2)$: sum of two non zero squares

 $(a'^2 + b'^2)$: odd prime number $(a' \neq b')$

Examples:

•)
$$a = 10$$
, $b = 15$, $d = 5$ $d^2 = 25$

$$a^2 + b^2 = 10^2 + 15^2 = 325 = 25 \times 13$$

$$d^2 = 25 = (3^2 + 4^2)$$
, $13 = (2^2 + 3^2)$ prime; $(10^2 + 15^2) = (2^2 + 3^2)(3^2 + 4^2)$

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)
••)
$$a = 10$$
, $b = 20$, $d = 10$, $d^2 = 100$
 $a^2 + b^2 = 10^2 + 20^2 = 500 = 100 \times 5$
 $d^2 = 100 = \left(6^2 + 8^2\right)$, $5 = \left(1^2 + 2^2\right)$ prime; $\left(10^2 + 20^2\right) = \left(6^2 + 8^2\right)\left(1^2 + 2^2\right)$

Remark 1:

We have : $5^2 = (3^2 + 4^2)$ then for every $n \in IN : (5n)^2 = (3n)^2 + (4n)^2$ non zero natural numbers of the form $(5n)^2$ are expressed as sums of two non zero squares, we can state:

If:
$$d = 5n \ (n \in IN)$$
 and $(a^2 + b^2)/d^2$ is a prime number
Then: $(a^2 + b^2) = [(3n)^2 + (4n)^2][a'^2 + b'^2]$
 $(a'^2 + b'^2)$ is an odd prime $(a' \neq b')$

Consequence:

Construction of infinite sequences of sums of two non zero distinct squares which terms are factorisable into the product of two sums of two non zero squares :one of them is an odd prime number.

let's consider the sequence :
$$[(3n)^2 + (4n)^2][x^2 + y^2]$$
, $n \in IN^*$ $x^2 + y^2$ an odd prime number (x and y are coprime) we have : $[(3n)^2 + (4n)^2] = 25 \cdot n^2 = (5n)^2$ then $[(3n)^2 + (4n)^2](x^2 + y^2) = (5n)^2 \cdot (x^2 + y^2) = (5nx)^2 + (5ny)^2 = (a_n)^2 + (b_n)^2$ with : $a_n = 5nx$; $b_n = 5ny$ d_n = 5n because $a_n/d_n = x$, $b_n/d_n = y$, and : x and y are coprime therefore : $(a_n)^2 + (b_n)^2 = (d_n)^2 (x^2 + y^2) = [(3n)^2 + (4n)^2][x^2 + y^2]$ (d_n)² = $(3n)^2 + (4n)^2$ is the sum of two non zero squares $(3n)^2$ and $(4n)^2$ $x^2 + y^2$ is an odd prime number

 $x^2 + y^2$ is an odd prime number

Example :

•)
$$[(3n)^2 + (4n)^2][1^2 + 2^2] = (5n)^2 + (10n)^2$$
; $1^2 + 2^2 = 5$ prime
••) $[(3n)^2 + (4n)^2][2^2 + 3^2] = (10n)^2 + (15n)^2$; $2^2 + 3^2 = 13$ prime
•••) $[(3n)^2 + (4n)^2][1^2 + 4^2] = (5n)^2 + (20n)^2$; $1^2 + 4^2 = 17$ prime

Remark 2:

Only sums of two non zero distinct squares and d² is not expressible as the sum of two non zero squares, are not factorisable into the product of two sums of two non zero squares.

Like:
$$6^2 + 9^2 = 117 = 9 \times 13 = 3^2(2^2 + 3^2)$$

d = 3; $d^2 = 9$ is not the sum of two non zero squares, 13 is a prime number. <u>In particular:</u> Every odd prime number that is the sum of two coprime squares is not factorisable into the product of two sums of two non zero squares because : if $p = x^2 + y^2$ is a prime number with x and y coprime then: $x^2 + y^2 = (x^2 + y^2) \cdot 1^2$ and 1^2 is not expressible as the sum of two non

zero squares.

<u>List of the first twenty prime numbers sums of two squares :</u>

01	$2 = 1^2 + 1^2$
02	$5=1^2+2^2$
03	$13 = 2^2 + 3^2$
04	$17 = 1^2 + 4^2$
05	$29 = 2^2 + 5^2$
06	$37 = 1^2 + 6^2$
07	$41 = 4^2 + 5^2$
08	$53 = 2^2 + 7^2$
09	$61 = 5^2 + 6^2$
10	$73 = 3^2 + 8^2$

11	$89 = 5^2 + 8^2$
12	$97 = 4^2 + 9^2$
13	$101 = 1^2 + 10^2$
14	$109 = 3^2 + 10^2$
15	$113 = 7^2 + 8^2$
16	$137 = 4^2 + 11^2$
17	$149 = 7^2 + 10^2$
18	$157 = 6^2 + 11^2$
19	$173 = 2^2 + 13^2$
20	$181 = 9^2 + 10^2$