

Europäisches Patentamt European Patent Office Office européen des brevets

11) EP 0 786 519 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 30.07.1997 Bulletin 1997/31

(51) Int Cl.6: C12N 15/00

(21) Application number: 97100117.7

(22) Date of filing: 07.01.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States:

AL LT LV RO SI

(30) Priority: 05.01.1996 US 9861

(71) Applicant: HUMAN GENOME SCIENCES, INC. Rockville, MD 20850-3338 (US)

(72) Inventors:

Kunsch, Charles A.
 Gaithersburg, Maryland 20882 (US)

 Chol, Gll H. Rockville, Maryland 20850 (US)

Barash, Steven C.
 Rockville, Maryland 20850 (US)

Dillon, Patrick J.
 Gaithersburg, Maryland 20879 (US)

Fannon, Michael R.
 Silver Spring, Maryland 20906 (US)

Rosen, Craig A.
 Laytonsville, Maryland 20882 (US)

(74) Representative: VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

(54) Staphylococcus aureus polynucleotides and sequences

(57) The present invention provides polynucleotide sequences of the genome of *Staphylococcus aureus*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynu-

cleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

Description

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Staphylococcus aureus*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

The genus Staphylococcus includes at least 20 distinct species. (For a review see Novick, R. P., The Staphylococcus as a Molecular Genetic System, Chapter 1, pgs. 1-37 in MOLECULAR BIOLOGY OF THE STAPHYLOCOCCI, R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.

The species Staphylococcus aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below.

Human Health and S. Aureus

15

10

Staphylococcus aureus is a ubiquitous pathogen. (See, for instance, Mims et al., MEDICAL MICROBIOLOGY, Mosby-Year Book Europe Limited, London, UK (1993)). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by *S. aureus* infection are burns, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis, osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below.

Burns

Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling, contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the burn surface ("eschar"), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicaemia. *S. aureus* is among the most important pathogens typically found in burn wound infections. It can destroy granulation tissue and produce severe septicaemia.

Cellulitis

Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by *S. aureus* in conjunction with *S. pyrogenes*. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of *S. aureus* and microaerophilic *streptococci*. It causes necrosis and treatment is limited to excision of the necrotic tissue. The condition often is fatal.

Eyelid infections

S. aureus is the cause of styes and of sticky eye" in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.

Food poisoning

Some strains of *S. aureus* produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin, in sufficient quantities, typically results in severe vomiting, but not diarrhoea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood.

Joint infections

S. aureus infects bone joints causing diseases such osteomyelitis.

55

Osteomyelitis

S. aureus is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in

children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysial growth plates in the end of long, growing bones.

Skin infections

10

20

30

S. aureus is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the nasal passages plague nasal carriers of S. aureus.

Surgical Wound Infections

Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient. S. aureus is the most important causative agent of infections in surgical wounds. S. aureus is unusually adept at invading surgical wounds; sutured wounds can be infected by far fewer S. aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe S. aureus septicaemia. Invasion of the blood stream by S. aureus can lead to seeding and infection of internal organs, particularly heart valves and bone, causing systemic diseases, such as endocarditis and osteomyelitis.

Scalded Skin Syndrome

S. aureus is responsible for "scalded skin syndrome" (also called toxic epidermal necrosis, Ritter's disease and Lyell's disease). This diseases occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce exfoliation(also called scalded skin syndrome toxin). Although the bacteria initially may infect only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.

Toxic Shock Syndrome

Toxic shock syndrome is caused by strains of *S. aureus* that produce the so-called toxic shock syndrome toxin. The disease can be caused by *S. aureus* infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxaemia and septicaemia, and can be fatal.

Nocosomial Infections

In the 1984 National Nocosomial Infection Surveillance Study ("NNIS") S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns.

Resistance to drugs of S. aureus strains

Prior to the introduction of penicillin the prognosis for patients seriously infected with *S. aureus* was unfavorable. Following the introduction of penicillin in the early 1940s even the worst *S. aureus* infections generally could be treated successfully. The emergence of penicillin-resistant strains of *S. aureus* did not take long, however. Most strains of *S. aureus* encountered in hospital infections today do not respond to penicillin; although, fortunately, this is not the case for *S. aureus* encountered in community infections.

It is well known now that penicillin-resistant strains of *S. aureus* produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally, typically on a plasmid, and often is only one of several genes on an episomal element that, together, confer multidrug resistance.

Methicillins, introduced in the 1960s, largely overcame the problem of penicillin resistance in *S. aureus*. These compounds conserve the portions of penicillin responsible for antibiotic activity and modify or alter other portions that make penicillin a good substrate for inactivating lactamases. However, methicillin resistance has emerged in *S. aureus*, along with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline, chloramphenicol, macrolides and lincosamides. In fact, methicillin-resistant strains of *S. aureus* generally are multiply drug resistant.

The molecular genetics of most types of drug resistance in *S. aureus* has been elucidated (See Lyon *et al., Microbiology Reviews* <u>51</u>: 88-134 (1987)). Generally, resistance is mediated by plasmids, as noted above regarding penicillin resistance; however, several stable forms of drug resistance have been observed that apparently involve integration of a resistance element into the *S. aureus* genome itself.

Thus far each new antibiotic gives rise to resistance strains, stains emerge that are resistance to multiple drugs and increasingly persistent forms of resistance begin to emerge. Drug resistance of *S. aureus* infections already poses significant treatment difficulties, which are likely to get much worse unless new therapeutic agents are developed.

Molecular Genetics of Staphylococcus Aureus

10

Despite its importance in, among other things, human disease, relatively little is known about the genome of this organism.

Most genetic studies of *S. aureus* have been carried out using the the strain NCTC8325, which contains prophages psi11 psi12 and psi13, and the UV-cured derivative of this strain, 8325-4 (also referred to as RN450), which is free of the prophages.

These studies revealed that the *S. aureus* genome, like that of other *staphylococci*, consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory genetic elements, such as prophages, plasmids, transposons and the like.

Physical characterization of the genome has not been carried out in any detail. Pattee *et al.* published a low resolution and incomplete genetic and physical map of the chromosome of *S. aureus* strain NCTC 8325. (Pattee *et al.* Genetic and Physical Mapping of Chromosome of *Staphylococcus aureus* NCTC 8325, Chapter 11, pgs. 163-169 in. MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R.P. Novick, Ed., VCH Publishers, New York, (1990) The genetic map largely was produced by mapping insertions of Tn551 and Tn4001, which, respectively, confer erythromycin and gentamicin resistance, and by analysis of Smal-digested DNA by Pulsed Field Gel Electrophoresis (*PFGE*).

The map was of low resolution; even estimating the physical size of the genome was difficult, according to the investigators. The size of the largest Smal chromosome fragment, for instance, was too large for accurate sizing by PFGE. To estimate its size, additional restriction sites had to be introduced into the chromosome using a transposon containing a Smal recognition sequence.

In sum, most physical characteristics and almost all of the genes of *Staphylococcus aureus* are unknown. Among the few genes that have been identified, most have not been physically mapped or characterized in detail. Only a very few genes of this organism have been sequenced. (See, for instance Thornsberry, J., *Antimicrobial Chemotherapy* 21 Suppl C: 9-16 (1988), current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. aureus* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by *S. aureus* infection involves the programmed expression of *S. aureus* genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of *S. aureus* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *S. aureus* would provide reagents for, among other things, detecting, characterizing and controlling *S. aureus* infections. There is a need therefore to characterize the genome of *S. aureus* and for polynucleotides and sequences of this organism.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS: 1-5,191.

The present invention provides the nucleotide sequence of several thousand contigs of the *Staphylococcus aureus* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-5,191.

The present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

The nucleotide sequence of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence which is at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequence of SEQ ID NOS:1-5,191 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to:magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence

information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Staphylococcus aureus* genome.

Another embodiment of the present invention is directed to fragments, preferably isolated fragments, of the Staphylococcus aureus genome having particular structural or functional attributes. Such fragments of the Staphylococcus
aureus genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter
referred to as open reading frames or ORFs," fragments which modulate the expression of an operably linked ORF,
hereinafter referred to as expression modulating fragments or EMFs," and fragments which can be used to diagnose
the presence of Staphylococcus aureus in a sample, hereinafter referred to as diagnostic fragments or "DFs."

Each of the ORFs in fragments of the *Staphylococcus aureus* genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

10

20

The present invention further includes recombinant constructs comprising one or more fragments of the *Staphylococcus aureus* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the Staphylococcus aureus genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to polypeptides and proteins, preferably isolated polypeptides and proteins, encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention can from cells which have been altered to express them.

The invention further provides polypeptides, preferably isolated polypeptides; comprising *Staphylococcus aureus* epitopes and vaccine compositions comprising such polypeptides. Also provided are methods for vacciniating an individual against *Staphylococcus aureus* infection.

The invention further provides methods of obtaining homologs of the fragments of the *Staphylococcus aureus* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the Dfs or antigens of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, antigens, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of bound antibodies, antigens or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of *Staphylococcus aureus* will be of great value to all.laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Staphylococcus aureus* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Staphylococcus aureus* researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes

has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Staphylococcus aureus genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Staphylococcus aureus relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR*) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against S. aureus sequences from Genbank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-5,191. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

25

35

40

In addition to the aforementioned Staphylococcus aureus polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-5,191, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-5,191" refers to any portion of the SEQ ID NOS:1-5,191 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are Staphylococcus aureus open reading frames (ORFs"), expression modulating fragment (EMFs") and fragments which can be used to diagnose the presence of Staphylococcus aureus in sample ("DFs"). A non-limiting identification of preferred representative fragments is provided in Tables

As discussed in detail below, the information provided in SEQ ID NOS:1-5,191 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of Staphylococcus aureus proteins.

While the presently disclosed sequences of SEQ ID NOS:1-5,191 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-5,191. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS:1-5,191 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-5,191 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-5,191 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

As discussed elsewhere hererin, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining

libraries and for sequencing are provided below, for instance. A wide variety of Staphylococcus aureus strains that can be used to prepare S aureus genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC*).

The nucleotide sequences of the genomes from different strains of *Staphylococcus aureus* differ somewhat. However, the nucleotide sequences of the genomes of all *Staphylococcus aureus* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-5,191. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQID NOS:1-5,191 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* <u>85</u>: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

10

The nucleotide sequences provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-5,191 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, Oprovided" refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-5,191. Such a manufacture provides a large portion of the *Staphylococcus aureus* genome and parts thereof (*e.g.*, a *Staphylococcus aureus* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Staphylococcus aureus* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-5,191 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul *et al.*, J. Mol. Biol. 215:403410 (1990)) and BLAZE (Brutlag *et al.*, Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the *Staphylococcus aureus* genome which contain homology to ORFs or proteins from both *Staphylococcus aureus* and from other organisms. Among the ORFs discussed

herein are protein encoding fragments of the *Staphylococcus* aureus genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Staphylococcus aureus* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

35

50

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Staphylococcus aureus* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Staphylococcus aureus* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990), was used to identify open reading frames within the *Staphylococcus aureus* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for

accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

30

Other embodiments of the present invention are directed to fragments of the *Staphylococcus aureus* genome, preferably to isolated fragments. The fragments of the *Staphylococcus aureus* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Staphylococcus aureus* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-5,191, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generated the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Staphylococcus aureus DNA can be mechanically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate an Staphylococcus aureus library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-5,191. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library of Staphylococcus aureus genomic DNA. Thus, given the availability of SEQ ID NOS:1-5,191, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-5,191 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2 and 3 list ORFs in the Staphylococcus aureus genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive or more selective lists.

Table 1 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are at least 80 amino acids long and over a continuous region of at least 50 bases which are 95% or more identical (by BLAST analysis) to an *S. aureus* nucleotide sequence available through Genbank in November 1996.

Table 2 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through Genbank by September 1996.

Table 3 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through Genbank by September 1996.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the reading frame, taking the first 5' nucleotide of the contig as the start of the +1 frame; the fourth column indicates the first nucleotide of the ORF, counting from the 5' end of the contig strand; and the fifth column indicates the length of each ORF in nucleotides.

In Tables 1 and 2, column six, lists the Reference" for the closest matching sequence available through Genbank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the numenclature are available from the National Center for Biotechnology Information. Column seven in Tables 1 and 2 provides the gene name" of the matching sequence; column eight provides the BLAST identity" score from the comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair" identified by the BLAST identity analysis.

In Table 3, the last column, column six, indicates the length of each ORF in amino acid residues.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions

1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list per cent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the per cent identity" of the highest scoring segment pair" in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Staphylococcus aureus* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Staphylococcus aureus* genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Staphylococcus aureus* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Staphylococcus aureus* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Staphylococcus aureus* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably 99% and most preferably 99.9% identical to SEQ ID NOS:1-5,191, with a sequence from another isolate of the same species.

Furthermore, to accomodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the nucleic acid sequences mentioned above. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (*i.e.*, sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Staphylococcus aureus* origin isolated by using part or all of the fragments in question as a probe or primer.

Each of the ORFs of the Staphylococcus aureus genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particular Staphylococcus aureus. Especially preferred in this regard are ORF such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Staphylococcus aureus. Also particularly preferred are ORFs that can be used to distinguish between strains of Sta-

phylococcus aureus, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56: 560 (1991) and OLIGODEOXYNUCLE-OTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

20

40

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK and KS (+ and -), pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacl, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- t. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immu-

no-affinity chromatography.

35

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Staphylococcus aureus* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

"Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancers and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokary-otic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of Staphylococcus aureus, E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Others

may, also be employed as a matter of choice.

10

15

40

55

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

An additional aspect of the invention includes Staphylococcus aureus polypeptides which are useful as immunodiagnostic antigens and/or immunoprotective vaccines, collectively "immunologically useful polypeptides". Such immunologically useful polypeptides may be selected from the ORFs disclosed herein based on techniques well known in the art and described elsewhere herein. The inventors have used the following criteria to select several immunologically useful polypeptides:

As is known in the art, an amino terminal type I signal sequence directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Such outermembrane polypeptides are expected to be immunologically useful. According to Izard, J. W. et al., Mol. Microbiol. 13, 765-773; (1994), polypeptides containing type I signal sequences contain the following physical attributes: The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus; the central region of the signal sequence must adopt an alpha-helical conformation in a hydrophobic environment; and the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.

Also known in the art is the type IV signal sequence which is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 174, 7345-7351; 1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, all type IV signal sequences contain a phenylalanine residue at the +1 site relative to the cleavage site.

Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)-(G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C. Lipoproteins in bacteria. J Bioenerg. Biomembr. 22, 451-471; 1990).

It well known that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than fifty such proteins from organisms such as *S. pyogenes, S. mutans, E. faecalis, S. pneumoniae,* and others, have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A. Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunity. ASM News 62, 405410; 1996). The conserved region is comprised of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins ex-

amined. The amino acid sequence of this region is L-P-X-T-G-X, where X is any amino acid.

20

25

Amino acid sequence similarities to proteins of known function by BLAST enables the assignment of putative functions to novel amino acid sequences and allows for the selection of proteins thought to function outside the cell wall. Such proteins are well known in the art and include "lipoprotein", "periplasmic", or "antigen".

An algorithm for selecting antigenic and immunogenic Staphylococcus aureus polypeptides including the foregoing criteria was developed by the present inventors. Use of the algorithm by the inventors to select immunologically useful Staphylococcus aureus polypeptides resulted in the selection of several ORFs which are predicted to be outermembrane-associated proteins. These proteins are identified in Table 4, below, and shown in the Sequence Listing as SEQ ID NOS:5,192 to 5,255. Thus the amino acid sequence of each of several antigenic Staphylococcus aureus polypeptides listed in Table 4 can be determined, for example, by locating the amino acid sequence of the ORF in the Sequence Listing. Likewise the polynucleotide sequence encoding each ORF can be found by locating the corresponding polynucleotide SEQ ID in Tables 1, 2, or 3, and finding the corresponding nucleotide sequence in the sequence listing.

As will be appreciated by those of ordinary skill in the art, although a polypeptide representing an entire ORF may be the closest approximation to a protein found *in vivo*, it is not always technically practical to express a complete ORF *in vitro*. It may be very challenging to express and purify a highly hydrophobic protein by common laboratory methods. As a result, the immunologically useful polypeptides described herein as SEQ ID NOS:5,192-5,255 may have been modified slightly to simplify the production of recombinant protein, and are the preferred embodiments. In general, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, are excluded for enhanced *in vitro* expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus are also excluded. Such truncated polypeptides include for example the mature forms of the polypeptides expected to exist in nature.

Those of ordinary skill in the art can identify soluble portions the polypeptide identified in Table 4, and in the case of truncated polypeptides sequences shown as SEQ ID NOS:5,192-5,255, may obtain the complete predicted amino acid sequence of each polypeptide by translating the corresponding polynucleotides sequences of the corresponding ORF listed in Tables 1,2 and 3 and found in the sequence listing.

Accordingly, polypeptides comprising the complete amino acid of an immunologically useful polypeptide selected from the group of polypeptides encoded by the ORFs identified in Table 4, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto, and most preferably at least 99% identical thereto form an embodiment of the invention; in addition polypeptides comprising an amino acid sequence selected from the group of amino acid sequences shown in the sequence listing as SEQ ID NOS:5,191-5,255, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto and most preferably at least 99% identical thereto, form an embodiment of the invention. Polynucleotides encoding the foregoing polypeptides also form part of the present invention.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, particularly those epitope-bearing portions (antigenic regions) identified in Table 4. The epitope-bearing portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983) "Antibodies that react with predetermined sites on proteins", Science, 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777.

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate S. aureus specific antibodies include: a polypeptide comprising peptides shown in Table 4 below. These polypeptide fragments have been determined to bear antigenic epitopes of indicated S. aureus proteins by the analysis of the Jameson-Wolf antigenic index, a representative sample of which is shown in Figure 3.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. See, e.g., Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides:

specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82: 5131-5135; this "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten et al. (1986). Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. See, for instance, Geysen et al., supra. Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C1-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

Table 4 lists immunologically useful polypeptides identified by an algorithm which locates novel *Staphylococcus aureus* outermembrane proteins, as is described above. Also listed are epitopes or "antigenic regions" of each of the identified polypeptides. The antigenic regions, or epitopes, are delineated by two numbers x-y, where x is the number of the first amino acid in the open reading frame included within the epitope and y is the number of the last amino acid in the open reading frame included within the epitope. For example, the first epitope in ORF 168-6 is comprised of amino acids 36 to 45 of SEQ ID NO:5,192, as is described in Table 4. The inventors have identified several epitopes for each of the antigenic polypeptides identified in Table 4. Accordingly, forming part of the present invention are polypeptides comprising an amino acid sequence of one or more antigenic regions identified in Table 4. The invention further provides polynucleotides encoding such polypeptides.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Staphylococcus aureus, of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Staphylococcus aureus is defined as a homolog of a fragment of the Staphylococcus aureus fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Staphylococcus aureus genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which prossess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-5,191 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS:1-5,191 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR PROTOCOLS, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-5,191 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5,191, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency

conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-5,191, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5,191, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacterias which are closely related to *Staphylococcus aureus*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

15

25

10

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Staphylococcus aureus* ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., Macmillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Staphylococcus aureus* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-5,191.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21: 79 (1986) and Voragen et al. in BIOCATALYSTS IN AGRICULTURAL BIOTECHNOLOGY, Whitaker et al., Eds., American Chemical Society Symposium Series 389: 93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Staphylococcus aureus*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1: 21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for

quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872: 83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman *et al.*, Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey *et al.*, Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner *et al.*, Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists:hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology* 136:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination. A variety of commercially important enzymes have previously been isolated from members of *Staphylococcus aureus*. These include Sau3A and Sau96I.

2. Generation of Antibodies

35

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., MONOCLONAL ANTIBODY TECHNOLOGY: LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256: 495-497 (1975)), the trioma technique, the human B- cell hybridoma technique (Kozbor et al., Immunology Today)

4: 72 (1983), pgs. 77-96 of Cole et al., in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc. (1985)).

Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175: 109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology. Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labelling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W. J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Staphylococcus aureus* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

10

20

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs,antigens or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies, or one or more of the DFs, or one or more antigens of the present invention and assaying for binding of the DFs, antigens or antibodies to components within the test sample.

Conditions for incubating a DF, antigen or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the Dfs, antigens or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry; PCT publication WO95/32291, and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985), all of which are hereby incorporated herein by reference.

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based

on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises:(a) a first container comprising one of the Dfs, antigens or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of a bound DF, antigen or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody, antigen or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed Dfs, antigens and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

30

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Staphylococcus aureus* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the Staphylococcus aureus genome; and
- (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated

to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

10

15

35

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of Staphylococcus aureus, or another related organism, in vivo or in vitro. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth or pathogenicity of *Staphylococcus aureus* or a related organism, *in vivo* or *in vitro*," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth or pathogenicity by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of vaccines derived from membrane associated polypeptides are well known in the art. The inventors have identified particularly preferred immunogenic Staphylococcus aureus polypeptides for use as vaccines. Such immunogenic polypeptides are described above and summarized in Table 4, below.

As used herein, a "related organism" is a broad term which refers to any organism whose growth or pathogenicity can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can

be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e. g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

55

45

25

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2: 231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P_0 , that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount; n, in nucleotides, of random sequence has been determined can be calculated by the equation $P_0 = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P_0 = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivilent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a .2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

25

50

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end. Staphylococcus aureus DNA was prepared by phenol extraction. A mixture containing 600 ug DNA in 3.3 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 30% glycerol was sonicated for 1 min. at 0°C in a Branson Model 450 Sonicator at the lowest energy setting using a 3 mm probe. The sonicated DNA was ethanol precipitated and redissolved in 500 ul TE buffer.

To create blunt-ends, a 100 ul aliquot of the resuspended DNA was digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 ul BAL31 buffer. The digested DNA was phenol-extracted, ethanol-precipitated, redissolved in 100 ul TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size was excised from the gel, and the LGT agarose was melted and the resulting solution was extracted with phenol to separate the agarose from the DNA. DNA was ethanol precipitated and redissolved in 20 ul of TE buffer for ligation to vector.

A two-step ligation procedure was used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contained 2 ug of DNA fragments, 2 ug pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and was incubated at 14°C for 4 hr. The ligation mixture then was phenol extracted and ethanol precipitated, and the precipitated DNA was dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder were visualized by ethidium bromide-staining and UV illumination and identified by size as insert (i), vector (v), v+i, v+2i, v+3i, etc. The portion of the gel containing v+i DNA was excised and the v+i DNA was recovered and resuspended into 20 ul TE. The v+i DNA then was blunt-ended by T4 polymerase treatment for 5 min. at 37° C in a reaction mixture (50 ul) containing the v+i linears, 500 uM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+i linears were dissolved in 20 ul TE. The final ligation to produce circles was carried out in a 50 ul reaction containing 5 ul of v+i linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture was stored at -20°C

This two-stage procedure resulted in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E.coli* host cells deficient in all recombination and restriction functions (A. Greener, Strategies 3 (1):5 (1990)) were used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells were plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating was carried out as follows. A 100 ul aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 ul aliquot of 1.42 M beta-

mercaptoethanol was added to the aliquot of cells to a final concentration of 25 mM. Cells were incubated on ice for 10 min. A 1 ul aliquot of the final ligation was added to the cells and incubated on ice for 30 min. The cells were heat pulsed for 30 sec. at 42° C and placed back on ice for 2 min. The outgrowth period in liquid culture was eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture was plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl₂ (1 M), and 1 ml MgSO₄/100 ml SOB agar. The 15 ml top layer was poured just prior to plating. Our titer was approximately 100 colonies/10 ul aliquot of transformation.

All colonies were picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

10

15

20

55

High quality double stranded DNA plasmid templates were prepared using an alkaline lysis method developed in collaboration with 5Prime → 3Prime Inc. (Boulder, CO). Plasmid preparation was performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Average template concentration was determined by running 25% of the samples on an agarose gel. DNA concentrations were not adjusted.

Templates were also prepared from a *Staphylococcus aureus* lambda genomic library. An unamplified library was constructed in Lambda DASH II vector (Stratagene). *Staphylococcus aureus* DNA (> 100 kb) was partially digested in a reaction mixture (200 ul) containing 50 ug DNA, 1X Sau3Al buffer, 20 units Sau3Al for 6 min. at 23 C. The digested DNA was phenol-extracted and centrifuges over a 10- 40% sucroce gradient. Fractions containing genomic DNA of 15-25 kb were recovered by precipitation. One ul of fragments was used with 1 ul of DASHII vector (Stratagene) in the recommended ligation reaction. One ul of the ligation mixture was used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract Phage were plated directly without amplification from the packaging mixture (after dilution with 500 ul of recommended SM buffer and chloroform treatment). Yield was about 2.5x10⁹ pfu/ul.

An amplified library was prepared from the primary packaging mixture according to the manufactureer's protocol. The amplified library is stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x109 pfu/ml.

Mini-liquid lysates (0.1ul) are prepared from randomly selected plaques and template is prepared by long range PCR. Samples are PCR amplified using modified T3 and T7 primers, and Elongase Supermix (LTI).

Sequencing reactions are carried out on plasmid templates using a combination of two workstations (BIOMEK 1000 and Hamilton Microlab 2200) and the Perkin-Elmer 9600 thermocycler with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers. Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. Modified T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are on a combination of AB 373 DNA Sequencers and ABI 377 DNA sequencers. All of the dye terminator sequencing reactions are analyzed using the 2X 9 hour module on the AB 377. Dye primer reactions are analyzed on a combination of ABI 373 and ABI 377 DNA sequencers. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences, and 375 bp for dye-terminator reactions.

4. Protocol for Automated Cycle Sequencing

The sequencing was carried out using Hamilton Microstation 2200, Perkin Elmer 9600 thermocyclers, ABI 373 and ABI 377 Automated DNA Sequencers. The Hamilton combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates were combined in the wells of a 96-well thermocycling plate and transferred to the Perkin Elmer 9600 thermocycler. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps were performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols were used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer was labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 or 377 DNA Sequencer for electrophoresis, detection, and base-

calling. ABI currently supplies premixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR-generated templates with both dye-primers and dye-terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions were loaded per ABI 373 Sequencer each day and 96 samples can be loaded on an ABI 377 per day. Electrophoresis was run overnight (ABI 373) or for 2 1/2 hours (ABI 377) following the manufacturer's protocols. Following electrophoresis and fluorescence detection, the ABI 373 or ABI 377 performs automatic lane tracking and base-calling. The lane-tracking was confirmed visually. Each sequence electropherogram (or fluorescence lane trace) was inspected visually and assessed for quality. Trailing sequences of low quality were removed and the sequence itself was loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence was removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 or ABI 377 were around 400 bp and depend mostly on the quality of the template used for the sequencing reaction.

INFORMATICS

15

20

30

10

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow whereever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was enployed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164: 765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain ranged of base pairs (definable for each clone based on the known clone size range for a given library).

3. Identifying Genes

50

55

The predicted coding regions of the Staphylococcus aureus genome were initially defined with the program zorf, which finds ORFs of a minimum length. The predicted coding region sequences were used in searches against a database of all Staphylococcus aureus nucleotide sequences from GenBank (release 92.0), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs of at least 80 amino acids that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases.

ORFs of at least 120 amino acids that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Staphylococcus aureus Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can by chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

15

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. *et al.* Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

30

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigenadministered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in:Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0. 1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in:Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, they are useful in various animal models of Staphylococcal disease known to those of skill in the art as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunothereapeutic reagent.

3. Preparation of PCR Primers and Amplification of DNA

55

Various fragments of the Staphylococcus aureus genome, such as those of Tables 1-3 and SEQ ID NOS:1-5,191 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approxi-

mately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

4. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the Staphylococcus aureus genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the *Staphylococcus aureus* genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of theLTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The *Staphylococcus aureus* DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the *Staphylococcus aureus* DNA and containing restriction endonuclease sequences for Pstl incorporated into the 5' primer and Bglll at the 5' end of the corresponding *Staphylococcus aureus* DNA 3' primer, taking care to ensure that the *Staphylococcus aureus* DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and ligated to pXT1, now containing a poly A addition sequence and digested Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Staphylococcus aureus* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Staphylococcus aureus* DNA.

Alternativly and if antibody production is not possible, the *Staphylococcus aureus* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the *Staphylococcus aureus* DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis *et al.*, cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using *in vitro* translation systems such as *in vitro* ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

50

45

5

20

25

55

us - Coding regions containing known sequer

Contig 1D	ORF ID	Start (nt)	Stop (nt)	match	satch gene name	percent	HSP nt length	ORF nt length
-	-	1419	1.257	emb K17301 SAIID	emb K17301 SAID S.aureus DNA for hld gene and for part of agr gene	801	663	663
-	~	3273	2452	emb x52543 SAAG	S. aureus agrk, agrB and hld genes	66	809	822
-	2	6418	15651	dbj D14711 STAH	dbj D14711 STAH Staphylococcus auxeus HSP10 and HSP60 genes	96	223	168
'n	_	1 807	439	emb X72700 SAPV	S.auraus genes for S and P components of Panton-Valentine leucocidins	81	216	369
•	-	5031	1756	emb x72700 sAPV	S. sureus genes for S and F components of Panton-Valentine laucocidins	95	434	1461
01		98	904	gb 1,25288	Staphylococcus sureus gyrass-like protein siphs and beta subunit (grlA and grl8) genes, complete cds	86	715	819
16	S	5302	6246	qb u35773	Staphylococcus aureus prolipoprotein discylglyceryl transferase (lgt) gene, complete cds	96	251	945
91	<u></u>	6249	7091		Stanhylonocous aureus prolipoprotein diacylglyceryl transferase (lgt) gene. complete cds	66	843	843
16		7084	7584	ן נירל צנט פסן	Staphylococcus sureus prolipoprotein discylglyceryl transferese ligt) gene, complete cds	66	342	105
20		995	249	[95[119300]	Staphylococcus aureus DMA sequence encoding three ORFs, complete cds; prophege phi-11 sequence homology, 5' flank	100	3	447
50	c:	1011	B41	 	Staphylococcus aureus DAA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5' flank	16	137	171
20		2010	1798	95 119300	Staphylococcus aureus DAA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5' flank	100	110	213
20	- -	5300	3825	[gb]H'6714[Staphylococcus aureus peptidoglycan hydrolasa gana, completa cds	100	876	1476
20	- 3	4788	4282	[gb] N71714]	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	100	309	507
36	-	7	145	gb U41072	Staphylococcus sureus isoleucyl-tRNA synthetase (iles) gene, partial cds	100	126	164
76	7	84	557	[gb]U41072]	Staphylococcur sureus isoleucyl-tRNA synthetase (iles) gene, partial cds	66	430	474
3.6	_	1 763	3531	emb X74219 SAIL	S. aureus gene for isoleucyl-tRMA synthetese	66	2769	2769
29	-	1261	4392	[ab]u6665	Staphylococcus aureus DNA fragment with class II promoter activity	100	117	3132
11	=	114977	13463	emb(x73889 SAP1	S. aureus genes P1 and P2	66	1381	1515
31	115	14241	13855	emb x73889 SAP1	S. sureus genes P1 and P2	98	258	780
38	-11	14284	13312	[gb]H12715]	S.aureus geh gene encoding lipese (glycerol ester hydrolase)	100	372	1173
38	61	13434	115518	gb r.2715	S. aureus geh gene encoding lipase (glycerol ester hydrolase!	100	2085	2085
					·	•		

aureus - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt.)	match	match gene name	percent ident	KSP nt length	ORF nt length
. 	~: 	<u>.</u>	1727	gis u73374	Stapinylucoccus anivus type B capsulo genes, cep8A, cap8B, cap8B, cep8B, cap8B,	£	1209	1209
9		1720	2295	gb U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	 6	376	376
9		2259	3182	95 073374	Staphylococcus aureus type B capsule genes, cap8A, cap8B, cap8C, cap8D, cap8R, cap8F, cap8G, cap8H, cap8L, cap8H,	- 16	926	924
\$	<u> </u>	6716	4498	gb U73374	Staphylococcus aureus type B capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8P, complete cds	86	1283	1326
9		4536	5720	gb U73374	Staphyloroccus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	8 6	1185	1185
\$		6455	6120	gb U73374	Stabhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8P, complete cds	66	278	336
€ 7	-	7	955	[gp[125893]	Staphylococcus aureus rech gene, complete cds	1 66	984	954
05	-	4465	2924	emb x85029 SAAH	8.aureus AhpC gene	1001	8.0	1542
05	-	4108	3515	emb x85029 SAAH	S.auraus AhpC gene	96	540	594
25	_	5074	3392	emb x62992 SAFN	emb X62992 SAFN S.aureus fnbB gene for fibronectin binding protein B	100	1668	1683
25	-	4865	4122	emb x62992 sAFN	emb X62992 SAFN S. aureus fnbB gene for fibronectin binding protein B	- 66	720	744
- 54	-	1 5056	4562	emb x62992 SAFN S.aureus	S. aureus fnbB gene for fibronectin binding protein B	100	463	495
25	9	11386	8300	gb J04151	S.sureus fibronectin-binding protein (fnbA) mRNA, complete cds	1001	3087	3087
SA	-	1743	2819	emt XA7104 SADN	emb XA7104 SADW S.aureus mdr, pbp4 and taqD genes (SG511-55 isolate)	- 68	89	1011
- SB	-·	2658	3280	emb x91786 SAPB	emb X91786 SAPB S.aureus abcA. pbp4. and tagū genes	66	423	423
88	s	\$009	4701	emb x91786 SAPB	S. aureus abch, pbp4, and tagū genes	66	1305	1305
95 	-	5677	8768	95 329478	Staphylococcus aureus ABC transporter-like protein AbcA (abcA) gene, partial cds	100	300	300
88	-	5086	6840,	eml: x91786 SAPB	emb X91786 SAPB S.aureus abcA, pbp4, and tagD genes	- 66	1755	1755
<u></u>		888	445	gb 121854	S.aureus agr gene encoding an accessory gene regulator protein, complete	8	444	***
72	7	2457	1453	emb x52543 SAAG S.aureus agra	S. aureus agrk, agr8 and hld genes	- 66	673	1005

TABLE 1

ORF ur. length HSP nt length \$ 20 percent | i \$ | 8 Skaphylococcus aureus ORPI, partial cds, ORP2, ORP3, autolysin (atl) genes, complete cds Staphylococcus aureus ORF1, partíal cds, ORF2, ORF3, autolysin (stl) genes, complete cds Staphylococcus aureus prolipoprotein signal pentidase (1sp) gens, complete cds Staphylococcus aureus isoleucyl-tRNA synthetase (iles) gene, partial cds [S.aureus rplL, orf202, rpoBfrIf) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta beta beta chains Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8E, cap8E, cap8H, Staphylococcus aureus typn 8 capsula genes, cap8A, cap8R, cap8C, cap8D, cap8E, cap8F, cap8H, cap8H, cap8H, cap8H, cap8H, cap8H, Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8B, cap8E, cap8F, cap8B, cap8H, Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8B, cap8E, cap8E, cap8E, cap8H, cap8I, cap8J, cap8H, Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8D, cap8D, cap8D, cap8D, cap8E, type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8H, c Staphylococcus aureus ribosomal protein S12 (rpsL) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds Staphylococcus aureus ribosomal protein S12 (rpsL) gene, complete cds, ribosomal protein S7 (rpsC) and ORF I genes, partial cds Staphylococcus aureus ribosomal protein S12 (rpsL) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds S.aureus gene for clumping factor Staphylococcus aureus type 8 cap8E, cap8E, cap8E, cap8H, cap8C, cap8E, cap8E, cap8E, cap8E, complete cds complete cds S. sureus DNA for rpoC gene | metch gene name cap8E, cap8F, emb | x64172 | SARP emb | X89233 | SARP emb 218852 SACF match acession |ab|u20869| |gb|U41072| |69|050|q6| | 6980ZO | 9B | 100 | 1073374 | |\$76670|48| |40 | U73374 |Pr(((n)|q5| 96 (073374) gb [141 499] |cf | L41499| | 0 p | M83994 | |96|U73374| Stop (nt) **\$**25 Start | **R87** -Contig ORF | ID | ID | ~ ~ F v ~ ~ ~ • ~ ~ | ~ Æ

S. aureus - Coding regions containing known sequences

5. aureus - Coding regions containing known sequences

118 4 3787 3440 analyzabolszam Staphylococcus aureus genes for OMETA, MESTA, MEST	Contig	ORF	Start (nt)	Stop (nt)	match	watch gene name	percent ident	HSP nt length	ORF nt length
4 2357 3460 mah N13790 SATH Standard Colored and LT-resistance planed DSKI DNA containing 78 5 31813 4185 cechi 16422 SADI S. autreas dire gene for dividiroficiate reduction 78 6 4108 5172 cechi 16422 SADI S. autreas dire gene for DNA gyrsas hand B. complete cds 79 7 5125 5200 cechi 16422 SADI S. autreas genes for DNA gyrsas hand B. complete cds 79 71 8 1166 2887 dob 1000489 STAG Standard Coccus autreas genes for DNA gyrsas hand B. complete cds 79 71 8 1166 1286 1084 dob 1000489 STAG Standard Coccus autreas genes for DNA gyrsas hand B. complete cds 79 71 8 1167 1287 gob U152779 Standard Coccus autreas genes for DNA gyrsas hand B. complete cds 79 71 8 1167 gob U152779 Standard Coccus autreas genes for DNA gyrsas hand B. complete cds 79 71 9 18 18 gob U152779 Standard Coccus autreas genes for DNA gyrsas hand B. complete cds 70 72 18 18 18 gob U152779 Standard Coccus autreas genes for DNA gyrsas hand B. complete cds 70 72 72 gob U152779 Standard Coccus autreas genes for DNA gyrsas hand B. complete cds 70 72 72 gob U152779 Standard Coccus autreas genes for Grandard Coccus autreas genes for Grandard Coccus autreas grandard Coccus autrea	118		1 3787	4254	db; b30690 STAN	Stabhylococcus aureus genes for ORF37; HSP20; HSP10; HSP10; ORF35, complete cds	66	467	468
5 111 4355 eab 214421[542] Staurous drib gene for dibydoctolate reductsee 99 111 112	130		2597	3640	i	Stabhylococcus arreus multi-resistance plasmid pSRI DNA containing transposon Tn4003	86	926	1044
6 1309 5172 cmb Z16422 SM01 Saurous dira genes for dihydrotolate reductate 4 5216 6207 cmb Z1043 SM02 Saurous genes for TDA gyrate A and B. complete cide 97 5 11660 8987 dbs D10149 STM0 Staphylococcus aurous genes for TDA gyrate A and B. complete cide 97 1 1352 11755 pb S17055 cacef Cluster: dhadroplathylococcus aurous genes for DNA gyrate A and B. complete cide 99 17 1 1352 11755 pb S17055 cacef Cluster: dhadroplathylococcus aurous genes for DNA gyrate A and B. complete cide 99 17 1 1352 1175 pb S17055 cacef Cluster: dhadroplathylococcus aurous genes for DNA gyrate A and B. complete cide 99 17 2 471 2857 pb U53139 Staphylococcus aurous G-adenopolyanyte carboxyklnase (pcks) gene, complete cide 100 12 3 471 471 471 pb U53131 Staphylococcus aurous G-adenopolyanytes carboxyklnase (pcks) gene, complete cide 100 12 4 1100 421 pb U53131 Staphylococcus aurous G-adenopolyanytes carboxyklnase (pcks) gene, complete cide 100 12 5 4234 4718 qb U53132 Staphylococcus aurous G-adenopolyanytes carboxyklnase (pcks) gene, complete cide 100 12 6 4234 4718 qb U53132 Staphylococcus aurous G-auccinylbentoic caid CoA ligase (enne), and G- 100 12 10 11222 9718 qb U53132 Staphylococcus aurous G-auccinylbentoic caid CoA ligase (enne), and G- 100 12 10 11222 9718 qb U53132 Staphylococcus aurous G-auccinylbentoic caid CoA ligase (enne), and G- 100 12 1 11222 9718 qb U53132 Staphylococcus aurous G-auccinylbentoic caid CoA ligase (enne), and G- 100 12 1 4818 6200 qenb X58414 SAP0 Staurous phis, phic and phin genes for pyrvate describoxylase auccinylbentoic acid Aprilees cide 100 12 12 12 12 12 12 1	000	5	1 3813	4265	emb 216422 SADI	dtrB	86	416	453
4 2356 2207 emb X71437 Skof S.aureus genes Gyrå, gyrå and recf (partial) 99 10 20 20 11666 6987 dbs D10469 STMG Staphylococcus aureus genes for Dbk Gyrsae A and B. complete cds 99 10 20 20 20 20 20 20 20	130	9	4309	5172	emb 216422 SADI	S.aureus dirb gene for dihydrofolate reductase	86	, 609	864
5 11566 5987 dobj dobj 510469 5744 Staphylococcus aureus genes for DNA system A and B. Complete cds 59 1 1 12592 1176 dobj 301469 5744 Staphylococcus aureus genes for DNA system A and B. Complete cds 59 1 1 12592 1176 dobj 510469 5744 staphylococcus aureus genes for DNA system Complete cds 59 1 1 1211 2167 dobj 510469 5745 staphylococcus aureus genes carboxykinase 59 1 2 4 1100 4281 dobj 512491 Staphylococcus aureus genes carboxykinase 50 1 3 471 2167 dobj 512491 Staphylococcus aureus genes carboxykinase 50 1 4 1100 4281 dobj 512491 Staphylococcus aureus genes carboxykinase 50 1 5 4254 4718 dobj 51212 Staphylococcus aureus genes carboxykinase 6 100 1 6 8181 dobj 51212 Staphylococcus aureus genecinylbanici caid CoA ligaes (mene), and complete cds 51249 4 10120 dobj 51212 Staphylococcus aureus genecinylbanici caid coA ligaes (mene), and complete cds 51249 dobj 51212 Staphylococcus aureus genecinylbanici caid coA ligaes (mene), and complete cds 51249 dobj 51212 Staphylococcus aureus genecinylbanici caid coA ligaes (mene), and complete cds 51249 dobj 51212 Staphylococcus aureus genecinylbanici caid coA ligaes (mene), and complete cds 51249 dobj 51212 Staphylococcus aureus genecinylbanici caid coaplete cds 51249 dobj 51212 Staphylococcus aureus genecinylbanici caid coaplete cds 51249 dobj 5	136	-	1 5296	6207			97	838	912
6 12866 10940 dby J1010489 STAD Staphylococcus aureus genes for DNA gyrses A and B, complete cds 99 11 1 12922 11765 gb J537055 red cluster dahkroplisose assembly protein. gyrs DNA gyrses hate 99 11 2 4 1100 4131 gb J53793 Staphylococcus aureus S-defense) actions: Complete cds 99 11 4 1100 4131 gb J53793 Staphylococcus aureus Gadensey) action of syntheses gene. Complete cds 99 11 5 4134 4118 gb J51132 Staphylococcus aureus phosphomology care carboxykinase (pcks) gene. Complete cds 100 11 6 5577 7251 gb J51132 Staphylococcus aureus chances from capitate carboxykinase (pcks) gene. Complete cds 100 12 10 9464 9418 gb J51132 Staphylococcus aureus chances from complete cds 100 12 11 11132 9148 gb J51132 Staphylococcus aureus chances from complete cds 100 12 12 10130 gb J51132 Staphylococcus aureus chances from complete cds 100 12 12 10130 991051132 Staphylococcus aureus chances from complete cds 100 12 12 10130 gb J51132 Staphylococcus aureus chances from complete cds 100 12 12 10130 991051132 Staphylococcus aureus chances from complete cds 100 12 13 1431 emb X58434 [SAP Startus pdfs price action complete cds 100 12 14 18 18 18 18 18 18 18	136	5	111680	8987	dbj 010489 STAG	a	100	2694	2694
7 12592 11765 pb 577055 cace clusteer dnah-repliacee assembly proceed. Genoelc. Seres. 1513 nr. 1 1267 pb 1015179 Staphylococcus aureus G-adenoeylasthicoid arghitese gans. Complee cde	136	9	112886	10940	db D10489 STAG	œ,	- 66	1947	1947
1 1110 12867 gp[1J8379] Stephylococcus aureus S-adenopylachionine synthetese gene, complete cds 100 1 4 1100 12881 gp[1J8243] Stephylococcus aureus (clone KN910) phosphoenolpyruvate carboxykinase 100 1 5 4724 4718 gp[1J312] Stephylococcus aureus phosphoenolpyruvate carboxykinase pckal gene, 100 1 10 9464 8361 gp[1J312] Stephylococcus aureus o-auccinylbenzole acid CoA ligase (mane), and o- 100 1 10 9464 8361 gp[1J312] Staphylococcus aureus o-auccinylbenzole acid CoA ligase (mane), and o- 100 1 10 10 10 10 10	136		12592	11765	gb 577055	recF cluster: dna=replisome assembly proteingyrB=DNA gyrase heta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 nt)	66	822	828
4 1100 4281 GPL42943 Staphylococcus aureus (Flome KIN90) phosphoenolpyruvate carboxykinase 100 1. 5 4254 4718 GPL421313 Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcks) gene, 100 1. 10 9464 8151 GPL91132 Staphylococcus aureus o-succinylberzoic edid CoA ligase (mene), and o- 100 1. 11 11312 9748 GPL91132 Staphylococcus aureus o-succinylberzoic edid CoA ligase (mene), and o- 100 1. 11 11312 9748 GPL91132 Staphylococcus aureus o-succinylberzoic edid CoA ligase (mene), and o- 100 1. 11 11312 9748 GPL91132 Staphylococcus aureus o-succinylberzoic edid CoA ligase (mene), and o- 100 1. 12 10739 10320 GPL91132 Staphylococcus aureus o-succinylberzoic edid genes, complete cds 100 1. 12 10739 10320 GPL91132 Staphylococcus aureus o-succinylberzoic edid genes, complete cds 100 1. 12 10739 10320 GPL91132 Staphylococcus aureus o-succinylberzoic edid genes, complete cds 100 1. 12 10739 10320 GPL91132 Staphylococcus aureus o-succinylberzoic edid genes, complete cds 100 1. 12 10739 10320 GPL91132 Staphylococcus aureus o-succinylberzoic edid genes, complete cds 100 1. 13 14810 Gene X58434 SARP Staureus philb, philo cand philb genes for pyruvate decarboxylase, 100 1. 13 13 13 13 13 13 13	143	-	4171	1 2867	6 L S C S C S C S C S C S C S C S C S C S	complete	66	1305	1305
5 4254 4718 gp [U31132] Staphylococcus aureus o-succinylbancolc acid CoA ligaze (mane), and o- 100 9 6977 7261 gp [U31132] Staphylococcus aureus o-succinylbancolc acid CoA ligaze (mane), and o- 100 10 9464 8161 gb [U31132] Staphylococcus aureus o-succinylbancolc acid CoA ligaze (mane), and o- 100 11 11212 9748 gp [U31132] Staphylococcus aureus o-succinylbancolc acid CoA ligaze (mane), and o- 100 12 10719 10320 gp [U31132] Staphylococcus aureus o-succinylbancolc acid CoA ligaze (mane), and o- 100 12 10719 10320 gp [U31132] Staphylococcus aureus o-succinylbancolc acid CoA ligaze (mane), and o- 100 12 10719 10320 gp [U31132] Staphylococcus aureus o-succinylbancolc acid CoA ligaze (mane), and o- 100 12 10719 10320 gp [U31132] Staphylococcus aureus o-succinylbancolc acid CoA ligaze (mane), and o- 100 12 10719 10320 gp [U31132] Staphylococcus aureus o-succinylbancolc acid coA ligaze (mane), and o- 100 13 4830 emb X58414 SAPD S.uureus pdhs, pdhc and pdhD genes for pyruvate decarboxylase, dhydrollpoantde acetyltransferase and dihydrollpoanide dhydrolmane 1 1807 1526 gp [U77055] reef cluster dna*rexplicame assembly protein gyrBaDNA gyrsas beta 1 1807 2152 gp [U77055] reef cluster dna*rexplicame assembly protein gyrBaDNA gyrsas beta 1 1807 2152 gp [U77055] reef cluster dna*rexplicame assembly protein gyrBaDNA gyrsas beta 1 1807 2152 gp [U77055] reef cluster dna*rexplicame assembly protein gyrBaDNA gyrsas beta 1 1807 1808 gp [U77055] reef cluster dna*rexplicame assembly protein gyrBaDNA gyrsas beta 1 1807 1808 gp [U77055] reef cluster dna*rexplicame assembly protein gyrBaDNA gyrsas beta 1 1807 1808 gp [U77055] reef cluster dna*rexplicame assembly protein gyrBaDNA gyrsas beta 1 1807 1808 gp [U77055] reef cluster dna*rexplicame assembly protein gyrBaDNA gyrsas 1 1808 gp [U77055] ree	143	- -	3100	1 4281	gb L42943	Staphy occorus aureus (clone KIN50) phosphoenolpyruvate carboxykinase (pcka) gene, complete cds	100	1170	1182
9 6977 7261	?		4254	4718	gb U51133	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene, complete cds	100	449	465
10 9464 8161 gp 1/51132 Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o 100 11 11212 9748 gb 1/51132 Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o 100 11 11212 9748 gb 1/51132 Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o 100 11 11212 10719 10320 gb 1/51132 Staphylococcus aureus o-succinylbenzoic acid complete cds 100 1	3		6977	7261	db US1132	(mene), cds	100	75	285
11 11232 9748 gp U51132 Staphylococcus aureus o-auccinylbensoic acid CoA ligase (mene), and o- 100 1 11232 10330 gb U51132 Staphylococcus aureus o-succinylbensoic acid CoA ligase (mene), and o- 100 102 10330 gb U51132 Staphylococcus aureus o-succinylbensoic acid CoA ligase (mene), and o- 100 102 10330 gb U51132 Staphylococcus aureus o-succinylbensoic acid CoA ligase (mene), and o- 100 102 10330 gb U51132 Staphylococcus aureus pdhb, pdhC and pdhD genes for pyruvate decarboxylase, gb 1030 genb X58434 SAPD S.aureus pdhb, pdhC and pdhD genes for pyruvate decarboxylase, gb 10300 gb U51005 gb X58434 SAPD S.aureus pdhb, pdhC and pdhD genes for pyruvate decarboxylase, gb 10300 gb U51005 gb U570055 recr cluster: dnaArreplisome assembly proteingyrashDNA gyrase beta 100 1526 gb U570055 recr cluster: dnaArreplisome assembly proteingyrashDNA gyrase beta 100 1	3	9	1996	9361	gb 051132 	o-succinylbenzoic acid CoA ligase (mene), and synthetase (menc) genes, complete cds	100	1104	1104
12 10739 10320 gb US1132 Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- 100 12 10739 10320 gb US1132 succinylbenzoic acid synchetase (menc) genes, complete cds 100 14 14820 amb XS8434 SAPD S. aureus pdhb, pdhC and pdhD genes for pyruvate decarboxylase, 100 15 1513 4820 emb XS8434 SAPD S. aureus pdhb, pdhC and pdhD genes for pyruvate decarboxylase, 100 16 1513 demb XS8434 SAPD S. aureus pdhb, pdhC and pdhD genes for pyruvate decarboxylase, 100 17 4818 6230 emb XS8434 SAPD S. aureus pdhb, pdhC and pdhD genes for pyruvate decarboxylase, 100 187 1526 gb S77055 recr cluster: dnaAareplisome assembly proteingyrasabWa gyrase beta 100 187 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabWa gyrase beta 100 187 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabWa gyrase beta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabWa gyrase beta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabAa gyrase beta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabAa gyrase beta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabAa gyrasabeta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabAa gyrasabeta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabAa gyrasabeta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly proteingyrasabAa gyrasabeta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly gyrasabAa gyrasabeta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly gyrasabAa gyrasabeta 100 2 1877 2152 gb L77055 recr cluster: dnaAareplisome assembly gyrasaba gyrasabata 100 2 1877	2	=_	11232	9768	gb US1132 	o-succinylbenzoic acid CoA ligase (mene), and synthetase (menc) genes, complete cds	100	1485	1485
5 2454 3437 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 98 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhD genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and angles for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhB genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhC and pdhB genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD S.aureus pdh8, pdhB genes for pyruvate decarboxylase, 99 1 1820 emb X58434 SAPD Emb X58434 SAP	3	2	110739	10320	gb US1132	CoA ligase (mene), and , complete cds	100	332	420
6 1513 4820 emb X58434 SAPD S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, 98 4818 6210 emb X58434 SAPD S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, 99 4818 6210 emb X58434 SAPD S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, 99 4818 1526 qb S77055 recF cluster: dnaArrepliscme assembly proteingyrasDNA gyrase beta 99 88187 2152 qb S77055 recF cluster: dnaArrepliscme assembly proteingyrasDNA gyrase beta 100 88187 2152 qb S77055 recF cluster: dnaArrepliscme assembly proteingyrasDNA gyrase beta 100 88187 2152 qb S77055 recF cluster: dnaArrepliscme assembly proteingyrasDNA gyrase beta 100 88187 88187 88188	152	<u></u>	2454	3437	emb X58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferese and dihydrolipoamide dehydrogemase	66	305	984
7 4818 6230 emb X58434 SAPD S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase, 99 99 91 91 92 92 93 94 95 95 95 95 95 95 95	152		3513	4820	emb X58434 SAPD	S. aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase. dihydrollpoamide acetyltransferase and dihydrollpoamide dehydrogenase	96	1308	1308
1 187 1526 qb S77055 recF cluster: dnaA=replisome assembly proteingyr8=DNA gyrase beta 99 subunit subunit Staphylococcus aureus, YB866, Genomic, 5 genes, 3573 nt 2 1877 2152 qb L77055 recF cluster: dnaA=replisome assembly proteingyr8=DNA gyrase beta 100 subunit Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt	152		4818	6230	emb X58434 SAPD	S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase. dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	66	1413	1413
2 1877 2152 gb 5/77055 recF cluster: dnaA-replisome assembly proteingyrB-DNA gyrasa beta 100 subunit (Staphylococcus aureus, Y8886, Genomic, 5 genes, 35/3 ntl	153	-	387	1526	gb S77055 	recF cluster: dnaA=replisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, YB866, Genomic, 5 genes, 3573 nt)	66	1140	1140
	153	~-	1877	2152	gb 577055	racF cluster: dnah-replisome assembly proteingyrB-DNA gyrase bata subunit (Staphylococcus aureus, YB866, Genomic, 5 genes, 3573 nt)	100	276	276

S. aureus - Coding regions containing known sequences

Contig	98 c	Start	Stop (nt)	match	match gene name	percent Ident	HSP nt Jength	ORF nt length
153		2143	2289	196 577055	reck cluster: dnam=replisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, YB686, Genomic, 5 genes, 3573 nt)	- 66	113	147
154	2	10792	9314	ab 1106451	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	91	154	1479
154	Ξ	9935	9615	195/006451	Staphylococcus aureus proline permesse homolog (put?) gene, complete cds	66	229	321
154	71	9943	110167	gb U06451	Staphylococcus aureus proline permesse homolog (put?) gene, complete cds	P6	123	225
154	=	110089	111501	195/006451	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	- 66	1326	1413
159	~	2195	1212	dbj D28879 STAP	Staphylococcus sureus gene for penicillin-binding protein 1, complete cds	100	1,	984
191		2596	2270	gb H83994	Stankylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete	92	203	327
162	-	1406	205	195 [122121]	Staphylococcus aureus hyaluronate lyase (hysA) gene, complete cds	100	702	702
91	-	1263	21.12	00,000 06	Stabhylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	96	127	510
164	-	1 4774	1 9117	db D86727 D867	Staphylococcus sureus DNA for DNA polymerase III, complete cds	66	3470	4344
168		7448	6447	959120 46	Stabhylococcus aureus Cmp-binding-factor 1 (cbf1) and ORF X genes, complete cds	100	1002	1002
168	5	9538	7961	95 021636	Staphylococcus aureus cmp-binding-factor 1 (cbf1) and OAF X genes, complete	6	1158	1578
273	•	9240	7801	gb J03479	S.aureus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	100	9	1440
671		11252	9522	gb J03479	S. aureus enzyme III-lac (lacf), enzyme II-lac (lacf), and phospho-beta- gelectosidese (lacG) genes, complete cds	66	1671	1671
£ £ £	œ. ——	R285	B704	gb J03479	5. Auxeus enzyme III-lac (lacF), enzyme II-lac (lacE), and pliospho-beta- galactosidase (lacG) genes, complete cds	100	420	420
271	<u>~</u> _	10168	9839	dp 103479	S.aureus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacG) gencs, complete cds	001	330	330
173	01	111815	110829	emt X14827 SALA	Staphylococcus aureus lacC and lacD genes	100	987	987
173	=	112721	111774	[emb X14827 SALA	Staphylococcus aureus lacC and lacD genes	100	948	948
נרו	7	12838	12305	gb M64724	S.aureus tagatose 6-phosphate isomerase gene, complete cds	100	534	534
671	2_	13243	12773	gb H32103	Staphylococcus auraus lac repressor (lacR) gene, complete cds and lacA repressor (lacA), partial cds	001	471	471
57.1	=_	114633	13866	gb H32103	Staphylococcus aureus lac repressor (lack) gene, complete cds and lack repressor (lack), partial cds	001	768	768

S. aureus - Coding regions contaming known sequences

	1 4					nerrent	HAP DE	ORF of
I ID IID	<u> </u>	(nt)	(ut)	acession	מסרוני אוום יימיוים	ident	length	length
178			959	 91\ U\$2961 	Scaphylococcus avreus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes. complete cds	100	115	654
178		2201	1482	 gb US2961	Stabbylococus aurous holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	100	720	720
178		2361	1909	gb U52961	Stabbylococcus sureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes.	100	453	453
RC1 1		1881	1 1853	gb U52961	Stephylococus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	001	303	303
178	-	3541	1772	95 [142945]	Staphylococcus aureus lytS and lytR genes, complete cds	66	765	265
178	9	1 3294	3025	gb L42945	Staphylococcus aureus lytS and lytR genes, complete cds	66	270	270
181	-	1114	590	gb M63177	S.aureus sigma factor (plac) gane, complete cds	- 66	499	\$28
1 182	-	-	ž	emb x61307 SASP	Staphylococcus aureus spa gene for protein A	98	7.7.2	339
1 182		069	2332	gb .701786	S. aureus spa gene coding for protein A, complete cad	6	1332	1623
182	-	1 5861	4251	emb X61307 SASP	Staphylococcus aureus spa gene for protein A	99	119	1611
			2	gb U31979	Staphylococcus aureus chorismate synthase (arcc) and muleoside diphosphate kinase (ndk) genes, complete cds, dehydroaulnate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds	06	132	852
191	-	841	1 2760	emb X17679 SAC0	emb X17679 SACO Staphylococcus aureus coa gene for coagulase	99	1920	1920
191	-	1 2967	25	emb X16457 SAST	Staphylococcus aureus gene for staphylocoagulase	99	177	177
161	- 5	1 5768	4566	emb X16457 SAST	Staphylococcus aureus gene for staphylocoagulase	66	250	1203
136		1741	872	gb L36472	Stephylococcus aureus lysy-thMA sythetase gene, complete cds, transfer RNA (trNA) genes, 55 ribosomal RNA (55 rRNA) gene, 165 ribosomal RNA (165 rRNA) gene, 236 ribosomal RNA (135 rRNA) gene	66	870	870
H61	-	16AR	1 2011	omb X93205 SAPT	S. aureus ptsk and pts! genes	66	324	324
	-	1 2005	2310	cmb x93205 SAPT	S.aurcus ptsii and ptsi genes	97	304	306
702		163	1305	emb x97985 SA12	S.aureus orfs 1,2,3 & 4	66	1143	1143
1 202	~	1303	2115	emb X73889 SAP1	enb X73889 SAP1 S.aureus genes P1 and P2	96	494	673
210	-	3114	1558	dbj D17366 STAA	dbj D17366 STAA Staphylococcus aureus atl gene for autolysin, complete cds and other ORFs	66	1552	1557
210		2939	2232	gb t41499	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	66	6.84	108
214	=_	7429	07.6	db3 D86240 D862	Staphylococus aureus gane for unknym function and dit operon dith, dith, dith, ditc and dith genes, complete cds	96	157	362

S. aureus - Coding regions containing known sequences

. 50

Contig	10 ORF	IF Start	rt Stop	p match	. match gene name	percent	HSP nt Jength	OXF nt length
216	-	1 398	1318	8 emb x72700 SAPV	S.aureus genes for S and F components of Panton-Valentine leucocidins	88	265	921
219		2 1810	0 1073	1 dbj b30690 STAN	Staphylococcus aureus genes for ORF37; HSP20; HSP40; HSP40; ORP35, complete	700	9	86.
219		3 2979	9 2035		Stophylococcus aureus ganes (or ORF37; HSP20; HSP40; HSP40; ORF35, complete cds	66	945	945
1 219		4359	9 3196	6 dbj b30690 sTAN	Staphylococcus aureus genes for ORF17; HSP20; HSP40; HSP40; ORF15, complete	65	1164	1164
612		5 7044	9/15	6 db.j b30690 sTAN	Staphylococcus aurvis gonos for ORF37; HSP20; HSP40; HSP40; ORF35, complete	# 6 	1869	1869
219		6 6557	7 5883	13 db5 D30690 STAN	Staphylococcus aureus genes for ORF37; HSP20; HSP40; HSP40; ORF35, complete cds	66	. 675	675
512		7 6801	1 6334	14 dbj 130690 STAN	Staphylococcus sureus genes for ORF37; HSP20; HSP40; HSP40; OKF35, cumplite	e: 6	468	468
22.		A 10816	6 10034	14 gb 1.19298	Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc)	91	67	783
223		1 2855	<u></u>		Staphylococcus avreus type 8 capsule genes, cap8A, cap8E,		102	1350
137	-	1 2	7861	17 emb x97985 SA12	S.aureus orfs 1,2,3 & 4	100	176	1356
1 234	-	2 1694	1 2485	15 emb x97985 SA12	S.eureus orfs 1,2,3 & 4	100	792	792
77	 	3 2648	=	16 emb x97985 SA12	S.aureus orfs 1,2,3 & 4	66	105	105
134	-	4 3120	0 4604	34 emb x97985 SA12	S.aureus orfs 1,2,3 & 4	66	1305	1485
1 236	-	6 3826	6 5322	12 gb U48B26	Staphylococcus aureus elsstin binding protein (ebpS) gene, complete cds	96	649	1497
248	-	1 - 2	- 603	- emblx62288 SAPE	S.aureus DNA for penicillin-binding protein 2	100	103	402
248		2 388	652		Stabhylococcus aureus penicillin-binding protein 2 (php2) gene. complete	6	465	594
1 253	-	2 1539	-	093 9b U46541	Staphylococcus auraus sark gene, complete cds	96	447	447
254	-	2 150	1835	12 gb U57060}	Staphylococcus sureus scdA gene, complete cds	*	142	1686
254	-	3 1973	13 2728	28 gb U\$7060f	Staphylococcus sureus scdA gene, complete cds	66 1	756	156
780	-	1 - 2	1900	00 [UI) M906931	Staphylococcus aurous glycerol ester hydrolase (lip) gene, complete cds	66	1213	1899
265		- 	1 942	db: p21131 STAS	Staphylococcus arreus gene for a participant in homogeneous expression of high-level methicillin resistance, complete cds	66	941	942
-	+							

S. aureus - Coding regions containing known sequences

.

13 11 12 1016 10111 1012 1012 10111 1012	Contig ORF	<u>8</u> 2	F Start (nt)	Stop (nt)	match	match gene name	percent	IISP nt length	ORF nt length
1018 db [01111] STA Staphylococcus aureas 1870 and 1876 genes 101 110	592	~-		476	dbj D21131 STAS	aurous gene for a participant thicillin resistance, complete	66	213	213
125 94 :72488 NeaB-portphobilinogen synthase (Staphy) occoccus aureus, SA1959, Genomic, 1007 100 110 125 95 :72488 NeaB-portphobilinogen synthase (Staphy) occoccus aureus, SA1959, Genomic, 1007 100 952 125 95 :72488 NeaB-portphobilinogen synthase (Staphy) occoccus aureus aureus aureus aureus halicase required for Ti81 replication (pcrA) gene, 98 167 125 95 :463176 Staphylococcus aureus halicase required for Ti81 replication (pcrA) gene, 99 979 125 95 :463176 Staphylococcus aureus halicase required for Ti81 replication (pcrA) gene, 99 167 125 95 :463176 Staphylococcus aureus halicase required for Ti81 replication (pcrA) gene, 99 167 125 95 :463176 Staphylococcus aureus halicase required for Ti81 replication (pcrA) gene, 99 167 125 95 :463176 Staphylococcus aureus halicase required for Ti81 replication (pcrA) gene, 99 167 125 95 :463176 Staphylococcus aureus halicase required for Ti81 replication (pcrA) gene, 99 167 126 95 :463176 Staphylococcus aureus genes hemolysin components A. B and C (higA, higb, 99 167	265			1765	db] D21131 STAS	in homogeneous expression	86	69	654
190 191 191 191 192 191 192 192 192 193 194 195	7 2 6 6	-	7	1018	dbj b14711 STAH	Staphylococcus aureus HSP10 and HSP60 genes	- 86	743	1017
	787	-		525	gb £72488	hema-porphobilinogen synthase (Staphylococcus aureus, SA1959, Genomic, 1087 nt]	100	110	\$25
10	282	~-	516	1502	QU S72488	hemB-porphobilinogen synthase (Staphylococcus aureus, SA1959, Genomic, 1087 nt	001	952	987
190	284		c 	170	95116	,	86	98	168
90 1453176 Staphylococcus aureus halicase required for Ti81 replication (pcrA) gene. 99 979 972 978	284	~-	282 	1034	90 M63176	aureus helicase required for Ti81 replication (pcrA)	100	217	153
99 187	284		1028	2026	gb M63176 	aureus helicase required for TiB1 replication (pcrA)	66	979	666
99 1318	244	- -	0661	2202	gu M63176	aureus helicase required for Ti81 replication (perA)	86	187	22
1343 94 L01055 Staphylococcus aureus gamma-hemolysin components A, B and C (higA, higB, 99 867 1871 94 L01055 Staphylococcus aureus gamma-hemolysin components A, B and C (higA, higB, 100 975 1872 94 L01055 Staphylococcus aureus gamma-hemolysin components A, B and C (higA, higB, 99 793 1872 94 L01055 Staphylococcus aureus atl gene for aurolysin, complete cds and other ORPS 99 1343 135 94 L01075 Staphylococcus aureus atl gene for aurolysin, complete cds and other ORPS 99 1343 135 94 L01075 Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORP, complete cds 100 106 10	289	<u></u>	1536	1991	gb M32470 	S. aureus SaulAI-restriction-enzyme and SaulAI-modification-enzyme genes, complete cds	66	338	456
	303		7	898	ap ro1055 	B and C	66	867	867
18 9p L01035 Staphylococcus aureus atl gene for autolysin components A, B and C (higA, higB, 99 793 793 793 794 794 794 795	300	~_	1409	23#3	95 1.01055	aureus gamma-hemolysin components A, B complete cds	100	976	87.6
	303			3161	95 101055	aurous gamma-hemolysin components A, B and C complete cds	6	193	795
	308	-	1 2707	1355	dbj D17366 STAA	complete cds	66	1343	1353
	331	-	2628	1335	[gb L42945]	aureus lyts and lyth genes,	96	1314	1314
Stabhylococcus sureus D-specific D-2-hydroxyacid dehydrogonase (ddh) gene, 98 996	312	-	7019	0 187 0	[gb]1,14017]	aureus methicillin-resistance protein (mecR)	7.4	351	852
17 (emb Y00356 SASP Staphylococcus aureus V8 serine protesse gene 88 emb X64389 SALE S.aureus leuF-P83 gene for F component of leucocidin R 088 cmh X64389 SALE S.aureus lauF-P83 gene for F component of leucocidin R	123		1998	1003	96 U31175 	Staphylococcus aureus D-specific D-2-hydroxyacid dehydrogonase (ddh) gene, complete cds	86	966	966
88 emb X64389 SALE S.aureus leuF-P83 gene for F component of leucocidin R	326	-	-	237	emb Y00356 SASP	aureus V8 serine protease	100	106	237
OMB כאוין אַפּלא אַאן SALE S. anreus JanF-PR) genc fur P. component of leucocidin א	338	=	687	388	emb x64389 SALE	gene for F component	98	259	300
	338	~	1 1828			S. aureus Janf-PA3 genc (ur F component of leucocidy) R	- 76	137	741

S. aureus - Coding regions containing known sequences

Contig	ORF ID	Start (nt)	Stop (nt)	match	, match gene name	percent	HSP nt length	ORF nt length
342	2	678	1754	pp;006462	Staphylococcus aureus SA4 FtsZ (ftsZ) gene, complete cds	100	1176	1176
344	~	517	1248	emb v01281 SANU	S. aureus mANA for nuclease	86	732	732
1 349	1	457	230	ab H20393	S.aureus bacteriophage phi-11 attachment site (att8)	96	172	228
353		1016	516	gb Mx3994 	Stephylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete cds	100	187	201
353	~	1582	1046	gb H83994 	Stephylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete	66	537	537
1356	-	-	674	[gb[u20503]	Staphylococcus aureus MHC class II analog gene, complete cds	1.57	671	672
361			803	gb L19298 	Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	86	747	106
361	~	1103	1507	gb L19298	Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	9.	80	405
1 373	7		1148	emb x62288 SAPE	S.aureus DNA for penicillin-binding protein 2	66	1146	1146
389	<u>-</u>	1904	1248	emb x62282 SATS	S.aureus target site DNA for 15411 insertion	97	349	687
400	-	-	540	eml: x61716 SAHL	emb X61716 SAHL S.aureus hlb gene encoding sphingomyelinase	66	389	540
00+	~	1693	1187	emb X13404 SAHL	emb X13404 SAHL Staphylococcus aureus hlb gene for beta-hemolysin	66	178	507
		1810	1049	gb S76213 	asp31-sikaline shock protein 23 (methicillin resistant) (Staphylococcus aureus, 912. Genomic, 1360 nt)	6	163	762
418		7	217	[gb]:.41499]	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	100	216	216
418	- 2	854	639	dbj D17366 STAA	Staphylococcus aureus atl gene for autolysin, complete cds and other ORFs	100	188	216
4 51	~	1262	2509	gb L43098 	Transposon in5404 and insertion sequences IS1181 and IS1182 (from Stephylococcus aureus) DNA	66	1248	1248
422	-	2 ·	325	gb K02985	S.aureus (strain RN450) transposon Tn554 insertion site	96	200	324
1 427	-	865	76	db3 028879 STAP	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	100	432	432
427	-	1829	1122	dbj 028879 STAP	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	100	151	708
435	-	~	808	dbj C86240 D862	Staphylococcus aureus gene for unknum function and dit operon ditA, ditB, ditC and ditD genes, complete cds	100	556	108
\$£	~	R32	999	dbj D86240 D862	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	100	134	168
436		1341	685	emb x17688 SAFE	S.auraus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end	97	657	657

3. aureus - Coding regions containing known sequence

1637 cmb N17688 SAFE 1300 cmb X72700 SAPV 2178 gb L019770 1078 gb L19770 1349 gb L25288 5479 gb L25288 5479 gb L25288 1350 gb L25288 1350 gb N83994 1370 gb N83994 1370 gb S752313 1270 gb S75213 1297 cmb X72014 SAFT 1297 cmb X72014 SAFT 1297 cmb X72014 SAFT 1092 db S75233 SAFT 1001 cmb X72013 SAFT 1001 cmb X72	match match gene name	percent HSP nt ident length	HSP nt ORF nt langth length
1 147 1100 cmb X72700 SAPV 2 1906 2178 gb LL01055 2 2 2 2 2 2 2 2 2	S.aureus factor essential for gene, complete cds, and trpA	100	294 747
1 167 1078 9b L01035 1 167 1078 9b L01035 1 167 1078 9b L01970 1 1784 9b L01970 1 1789 9419 94852 SACF 4 7896 5479 9b L25288 1 1 1 1 1 1 1 1 1	700 SAPV S.aureus genes for S and F components of Panton-Valentine leucocidins	96	204 954
1 167 1078 9b 013970	Staphylococcus hglC) genes,	86	187 273
2 1176 1784 QD U19770	<u>-</u>	100	514 912
3 7309 4319 6mb Z18852 SACF 4 7896 5479 4b L25288 2 566 889 6mb X53343 SAAG 4 1922 1560 6ma X64172 SARP 5 1244 1534 6mb X64172 SARP 6 1388 1188 9b 183394 7 1377 1370 9b U31221 8 1125 5700 9b S76213 9 145 1297 6mb X72014 SAFT 1 2150 1092 6mb X72013 SAFT 1 2150 1092 6mb X73013 SAFT 1 2150 1092 6mb X73013 SAFT 1 2150 1092 6mb 1736 STAAD 1 2150 1092 6mb 1736 STAAD 1 2150 1092 6mb 1736 STAAD 1 2150 1092 6mb 173013 SAFT 1 2150 1093 6mb 2mb		96	609 669
4	852 SACF S.auraus gene for clumping factor	75	653 2991
5 6120 6792 QD L25288	<u></u>	99	2418 2418
2 566 889 Janb X52343 SAAC 4 1922 1560 January X64172 SARP 5 1244 1534 January January 1 2737 1370 January January 2 1135 S53 January January 3 1613 1242 January 4 3122 2700 January January 5 758 1297 January January 7 758 1297 January January 8 1466 1801 January January 9 1456 1501 January January 1 2150 1092 January 1 2150 1092 January 2 2 2 2 2 2 2 2 3 4 2 2 2 2 2 2 4 3 3 3 3 3 3 5 5 5 5 5 3 3 6 6 6 6 6 6 6 7 7 7 7 7 7 8 7 7 7 7 9 7 7 7 7 1 1 2 7 7 1 2 7 7 7 1 2 7 7 7 1 2 7 7 7 1 2 7 7 7 1 2 7 7 7 1 2 7 7 7 1 2 7 7 7 1 2 7 7 7 1 2 7 7 7 1 2 7 7 7 2 7 7 7 1 7 7	<u>-</u>	99	1328 1329
4 1922 1560 emp X64172 SARP		100	76 324
5 1244 1534 emb X64172 SARP 2 1388 1188 9b H83994	S.aureus L7/L12, beta' c	001	250 363
2 1388 1188 9D H83994	<u>~</u>	000	224 291
1 2737 1370 2 1135 653 3 1613 2242 4 3122 2700 2 758 1297 3 1456 1801 '		86	72 201
2 1115 653 3 1613 2242 4 3122 2700 2 758 1297 3 1436 1801	Staphyl	99 1	1368 1368
1 1613 2242 4 3122 2700 2 758 1297 3 1436 1801 1	Staphylococcus aureus prolipoprotein signal peptidase (1sp) cds	100	108 483
4 3122 2700 2 758 1297 3 1436 1801 '	Staphylococcus avreus methicill unknown ORF, complete cds		323 630
2 758 1297 3 1436 1801 1 2150 1092		96	423 423
1 2150 1092	014 SAFI S. aureus fib gene for fibrinogen-binding protein	- 66	540 540
1 2150 1092	013 SAFI S.aureus fib gene for fibrinogen-binding protein	. – 66	221 366
	kibj 917366 STAA Staphylococcus aurous atl gene for autolysin, complete cds and other ORFs	66	641 1059

b. aureus - Coding regions containing known sequences

15 .

percent HSP nt ORP nt ident length	99 360	-	666	66	99 99 99 99 99 99 99 99 99 99 99 99 99	88 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	te 99 73 68 69 73 69 69 69 69 69 69 69 69 69 69 69 69 69	ds d	ds	te 99 432 te 99 432 te 99 432 te 99 432 te 99 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ds	te 99 432 te 99 432 te 99 432 te 99 432 te 99 905 75 905 100 196 196 196 196 196 196 196 196 196 196	ds	te 99 432 te 99 432 te 99 432 te 88 181 te 88 180 75 100 75 100 196 100 54 918 99 918	ds	te 99 432 432 432 432 432 432 432 432 432 432
	ree ORFs, complete cds,	ree ORFs, complete cds;		CC) and nucleoside diphosphate ate synthase (aroB) and og (gerCC) genes, partial cds	ate synthase (arca) and aute synthase (arca) and or (gerCC) genes, partial cds c) and nucleoside diphosphate ate synthase (arca) and or (gerCC) genes, partial cds	Act and nucleoside diphosphate date synthase (aroB) and og (gerCC) genes, partial cds con and nucleoside diphosphate date synthase (aroB) and con querCC) genes, partial cds con nucleoside diphosphate date synthase (aroB) and date synthase (aroB) and og (gerCC) genes, partial cds			phosphate and and and phosphate phosphate and rtisl cds rtisl cds and rtisl cds; cds; 3- cds; 3- cds; 3- cds; 3- cds; 3- cds; 3-	phosphate and ritial cds and phosphate and and ritial cds and ritial cds; 3-cds; 3-cds	phosphate and the phosphate and the phosphate and trial cds and trial cds; 3-cds; 3-cd	nd nucleoside diphosphate synthase (arob) and duncleoside diphosphate synthase (arob) and duncleoside diphosphate synthase (arob) and derCC) genes, partial cds synthase (arob) and gerCC) genes, partial cds synthase (arob) and gerCC) genes, pertial cds synthase (arob) and gerCC) genes, and cds; 3- gene, complete cds; gene, complete cds; gene, complete cds; capas, capac, capab, capas, capac, capab,	nd nucleoside diphosphare synthase (aroB) and dnucleoside diphosphare dnucleoside diphosphare synthase (aroB) and serCC) genes, partial cds synthase (aroB) and gene, J' end cds; J- gene, complete cds; b) gene, J' end cds; J- gene, complete cds; cap8B, cap8C, cap8D, spBL, cap8M, cap8N, sap8L, cap8M, cap8N, sap8L, cap8M, cap8N, sap8L, cap8M, cap8N, sap8L, cap8M, cap8N,	diphosphate diphosphate diphosphate partial cds partial cds partial cds diphosphate cds; 3- e cd	is phosphate and and and is and is and is and is and	and phosphate and partial cds inphosphate and
Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5: flank		Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, S' flank	Staphylococcus aureus chorismate synthase (arcc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds		Staphylococcus aureus chorismate synthase (aroc) end nucleoside diphosphate kinase (ndk) genus, complete cds, dehydroauinate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partiel cds	Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphates finase (aroB) and grannylgeranyl pyrophosphate synthatase homolog (gerC) genes, partial da Staphylococcus aureus chorismate synthates (aroc) and mucleoside diphosphate kinase (ndk) genes, complete acts synthate (aroc) and mucleoside diphosphate kinase (ndk) genes, complete acts dehydrocuinate synthase (aroB) and in-rannylgeranyl pyrophosphate synthatase (aroB) and	kinase (ndk) genes, complete cds, dohydroauinate synthase (aroB) and genesylgeranyl perophosphate cds, dohydroauinate synthase (aroB) and genesylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial c Stephylococcus aureus chorismate synthase (aroC) and nucleoside diphospha kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) and chyrloanyl pyrophysphate synthase shomolog (gerCC) genes, partial c Stephylococcus aureus dehydroquinate synthase (aroB) gene, 7 end cds; 1-phosphoshkimate-1-carboxyvinyltransferase (aroB) gene, complete cds	Staphylococcus aureus chorismate synthsee (aroc) and nucleoside diphoes that as funds (andk) genes, complete cds, chydrowuinte synthase (arob) and geranylgeranyl prophosphate synthase homolog (gerCC) genes, partia Staphylococcus aureus chorismate synthase (arob) and nucleoside diphoes kinase (ndk) genes, complete cds, dehydroeuinate synthase (arob) and inchase (arob) and cds; phosphosh kinate-1-carboxyvinyltransferase (arob) gene, inchase (arob) gene, inchase (arob) onlete cds; phosphosh kinate-1-carboxyvinyltransferase (arob) gene, inchase (arob) gene, complete cds; phosphosh kinate-1-carboxyvinyltransferase (arob) gene, complete cds; OWP), complete cds	Kinase (midk) genes, complete cds, chydroauinate synthase (aroB) at genes, complete cds, chydroauinate synthase (aroB) at genes, complete cds, chydroauinate synthase (aroB) and coroccus aureus chorismate synthase (aroC) and muslesside dip kinase (midk) genes, complete cds, dehydroauinate synthase (aroB) any:ranylgeranyl pyrophosphase synthase (aroB) gene, complete cds, complete cds, dehydroauinate synthase (aroB) gene, lend copposphoshikimate-1-carboxyvinyltransferase (aroB) gene, lend copposphoshikimate-1-carboxyvinyltransferase (aroB) gene, lend copplete cds Stephylococcus aureus dehydroquinate synthase (aroB) gene, lend copplete cds Stephylococcus aureus dehydroquinate synthase (aroB) gene, lend copplete cds Stephylococcus aureus dehydroquinate synthase (aroB) gene, lend copplete cds Stephylococcus aureus dehydroquinate synthase (aroB) gene, lend copplete cds Stephylococcus aureus dehydroquinate synthase (aroB) gene, lend copplete cds	nthase (aroc) and nucleoside dippinds (arob) at at as homolog (garCc) genes, par hase (arob) and nucleoside dippinds (aroc) and nucleoside dippinds) at as homolog (garCc) genes, par at as homolog (garCc) genes, par esynthase (arob) gene, 3' end conferase (arob) gene, 2' end conferase (arob) gene, 3' end conferase (arob) gene, 2' end conferase (arob) gene, 2' end conferase (arob) gene, 2' end conferase (arob) gene, complete conferase (arob) gene, comp	nthase (aroc) and nucleoside dippindy coultate synthase (aroB) and arase incoB) and nucleoside dippinds (garCC) genes, parthase (aroC) and nucleoside dippinds) garCC) genes, parters bomolog (garCC) genes, parters to synthase (aroB) gene, 3' end constant as synthase (aroB) gene, complete constant as synthase (aroA) gene, complete constan	chorismate synthase (aroc) and nucleoside dip complete cds, dhydroauinate synthase (aroB) a hosphate synthatase homolog (garcC) genes, par chorismate synthase (aroC) and nucleoside dip complete cds, dehydroeuinate synthase (aroB) a hosphate synthase homolog (garcC) genes, par hosphate synthase (aroB) gene, 1' end co arboxyvinyltransforase (aroB) gene, 1' end co dehydroquinate synthase (aroB) gene, 2' end co arboxyvinyltransforase (aroB) gene, 1' end co arboxyvinyltransforase (aroB) gene, 1' end co and gink genes and gink genes and gink genes and gink genes and gink cap81, cap81, cap82, cap82, cap82, cap84, cap81, cap81, cap81, cap81, cap61, cap6	nate synthase (aroC) and nucleoside dipp as a synthase (aroB) as a synthase homolog (gerC) genes, par atte synthase seroc) and nucleoside dipp acts, dehydroauinate synthase (aroB) gene, 3' end coquinate synthase (aroB) gene, 3' end coquinate synthase (aroB) gene, 3' end convictantiate synthase (aroB) gene, complete convictantiate synthase (aroB) gene, 3' end convictantiat	Staphylococcus aureus chorismate synthase (aroc) and nucleoside dip kinase (arob) ageranylgerenyl pyrophosphate synthase seroc) and nucleoside dip kinase (arok) pyrophosphate synthase (aroc) and nucleoside dip kinase (ndk) genes, complete cds, dehydroeuinate synthase (arob) at the arob a part phosphosphate synthase (arob) gene, 3 and cophosphoshitimate-1-carboxyvinyltransferase (arob) gene, complete cds Staphylococcus aureus dehydroquinate synthase (arob) gene, 3 and cophosphoshitimate-1-carboxyvinyltransferase (arob) gene, complete cds S.aureus (bb270) glnA and glnR genes CapBR, capBP, capRR, capRR, capRR, capRR, capRR, capRR, capRR, capRR, capRP, capRC, capRephylococcus aureus type 8 capsule genes, capRA, capRB, capRR, capR, capRR, capR, capRR, capR, capRR, capR, capRR, capRR	Staphylococcus aureus chorismate synthase (aroc) and nucleoside dipp kinase findk) genus, complete eds, dhydroauinate synthase (aroB) and geranylderany pyrophosphate synthetase homolog (gerCC) genes, par Staphylococcus aureus chorismate synthase (aroC) and nucleoside dip kinase findk) genes, complete eds, dehydroauinate synthase (aroB) gene, j' end criphosphate cus aureus dehydroquinate synthase (aroB) gene, j' end criphosphoshikanate-1-carboxyvinyltransferase (aroB) gene, j' end criphosphoshikanate-1-carboxyvinyltransferase (aroB) gene, j' end criphosphoshikimate-1-carboxyvinyltransferase (aroB), capB, c	nthase (aroc) and nucleoside dipplydroguinate synthase (aroB) and anthase (aroB) and anthase (aroB) and arobase homolog (garCC) genes, par acts bomolog (garCC) genes, par acts acts bomolog (garCC) genes, par acts acts bomolog (garCC) genes, par acts acts acts acts acts acts acts acts
series economic	mology, 5' flank	taphylococcus aureus DNA sequence encoding three prophage phi-11 sequence homology, 5' flank	mate synthase (aroc) is cds, dehydroauinate e synthetase homolog	mate synthese (aroC) e cds. debydroauinate	e synthetase homolog	a synthetase homolog mate synthase (aroc) e cds, dehydroeuinate e synthetase homolog	s synthetase homolog mate synthase (aroc) e cds, dehydroeuinate e synthatase homolog oquinate synthase (ar	s synthetase homolog mate synthase (arcc) e cds, dehydroeuinate e synthase homolog oquinate synthase (ar inyltransferase larox oquinate synthase (ar	s synthetase homolog mate synthase (arcc) e ords, dehydroeuinate e synthatase homolog organiate synthase (arc) injitransferase (arc) injitransferase (arc) organiate synthase (arc) injitransferase (arc)	es synthetase homolog cas, dehydroeuinate es synthase (arc) e cds, dehydroeuinate es synthase (arcinyltransferase (arcinyltran	e synthetase homolog cds, dehydroeuinate c synthetase homolog coquinate synthese (ar inyltransferase larox coquinate synthese (ar inyltransferase larox inyltransferase (ar inyltransferase	Geranylgeranyl pyrophosphate synthetase homolog (in the control of	mate synthase (arcc) e cds, dehydroeuinate e synthase (arcc) coquinate synthase (ar inyltransfarase (arcinyltransfarase (arcinyltransfarase (arcinyltransfarase (arcinyltransfarase (arcinyltransfarase (arcinyltransfarase (arccapsule genes, cap84, c	mate synthetase homolog e ods, debydroeuinate e synthetase homolog orgalinate synthese (arr inyltransferase (arr i	mate synthese (arcc) e cds, dehydroeuinate e synthese (arcc) coquinate synthase (ar inyltransfarase (arcinyltransfarase (arcapsule genes, cap8A, cap8I, cap8II, cap8III, cap8III, cap8II, cap8III, cap8III, cap8III, cap8III, cap8IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	mate synthase (arcc) e cds, dehydroeuinate e synthase (arcc) coquinate synthase (ar inyltransfarase (arcinyltransfarase (arcinyltransfarase (arcinyltransfarase (arcinyltransfarase (arcinyltransfarase (arcinyltransfarase (arccapsule genes, cap8A, cap8A, cap8A, cap8A, cap8A, cap8A, cap8A, cap8L, c
s DNA sequence	uence homology.	s DNA sequence uence homology,	s chorismate sy complete cds, phosphate synth	s chorismate sy	complete cds, o phosphate synth	complete cds, c	complete cds, chosphate synthy complete cds, complete cds, chosphate synthy complete cds, chosphate synthy complete carboxyvinyltra	complete cds, coopplete cds, coopplete cds, chosphete synth complete cds, complete cds, complete synth carboxyvinyltraicarboxy	complete cds, chosphate synth complete cds, complete cds, complete cds, camboxyvinyltraicarbox	complete cds, complete cds, complete cds, complete synth complete synth carboxyvinyltraicarbox	complete cds, complete cds, complete cds, chosphate synth dhosphate synth dhosphate synth debydroquinates bydroquinates carboxyvinyltraicarbox	pyrophosphate synth aureus chorismate synthese. aureus complete cds. pyrophosphate synth aureus dehydroquinate tte-1-carboxyvinyltraruces cds. aureus dehydroquinate cds. cds. aureus dehydroquinate cds. cds. aureus dehydroquinate cds. cds. cospect co	and and gink general type of a part of a pyrophosphate synth aureus denotates expanded and a pyrophosphate synth aureus dehydroquinate te-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carboxyvinyltrarecte-1-carbox-1-car	complete cds, complete cds, complete cds, chosphate synth carboxyvinyltrais dehydroquinate arboxyvinyltrais dehydroquinate arboxyvinyltrais dehydroquinate arboxyvinyltrais cap6H, cap8I, cap8I, cap8H, cap8II, cap8H, cap8II, cap8H, cap8II, cap8H, cap8II, cap8H, cap8II, cap8H,	complete cds, complete cds, complete cds, chosphate synth cds, complete cds, chosphate synth carboxyvinyltraic	complete cds, complete cds, complete cds, chosphate synth complete cds, chosphate synth carboxyvinyltraicarbox
	taphylococcus aureus DNA prophage phi-11 sequence	lococcus aureus	lococcus aureus e (ndk) genes, lylgeranyl pyrop		taphylococcus aureus kinase (ndk) genus, geranylgeranyl pyrop	e (ndk) genus, ylgeranyl pyrop lococcus aureus e (ndk) genes, ylgeranyl pyrop	kinase (ndk) genus kinase (ndk) genus geranylgeranyl pyrop tephylococcus auraus kinase (ndk) genes, dernylgeranyl pyrop rephylococcus auraus phosphoshikimate-1-c.	of (ndk) genes, ylgeranyl pyrop coccus aureus e (ndk) genes, ylgeranyl pyrop lococcus aureus hoshikiaate-1-c complete cds lococcus aureus hoshikiaate-1-c complete cds	itaphy lococcus aureus kinase (ndk) genus geranylgeranyl pyrop (taphy lococcus aureus kinase (ndk) genes, pranylgeranyl pyrop phosphoshi kinase-1-c (ngp), complete cds (taphy lococcus aureus phosphoshi kinase-1-c (ngp), complete cds (taphy lococcus aureus phosphoshi kinase-1-c (ngp), complete cds (ngp), c	Stably S	Stably S	10coccus aureus e (ndk) genes, ylgeranyl pyrop 10coccus aureus	Stabny Jococcus aureus Stabny Jococcus aureus Graphy Jococcus aureus Finase (fidk) genes, Franyl geranyl pyrop Staphy Jococcus aureus phosphosh kimate-1-c, ORP3, complete cds Staphy Jococcus aureus phosphosh kimate-1-c, ORP3, complete cds Staphy Jococcus aureus Phosphoshikimate-1-c, ORP3, complete cds Staphy Jococcus aureus Caphy Coccus aureus Staphy Jococcus aureus Capho, capho, capho, Staphy Jococcus aureus Capho, ca	l'ococcus aureus chor e (ndk) genes, comply ylgeranyl pyrophosph ylgerenyl pyrophosph ylgerenyl pyrophosph ylgerenyl pyrophosph ylgerenyl pyrophosph hosh kimate-1-carboxy complete cds lococcus aureus debyy hosh kimate-1-carboxy complete cds areus debyy hosh kimate-1-carboxy complete cds lococcus aureus debyy hosh kimate-1-carboxy complete cds lococcus aureus type cap6F,	abphylococcus aureus inase (ndk) genus, aphylococcus aureus aphylococcus aureus aphylococcus aureus aphylococcus aureus aphylococcus aureus aphylococcus aureus aureus (bb270) gina aphylococcus aureus au	Staphylococcus aureus chorisate
	Staphyl	Scaphyl	Staphyl kinase gerany	Staphyl	gerany	Staphyld kinase sprany	Staphylo stans sta	Staphylo kinase iprany Staphylo Staphylo Staphylo Staphylo ORP3, Corp. Staphylo ORP3, Corp.	Staphylc kinase irrany Staphylc Staphylc Dhosphy ORP3. ORP3.	Staphyl (staphyl (sta	Staphylo krase kra	Staphyl Fransy Frankl Staphyl Staphyl Phosph Phosphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl Staphyl	Staphyl Sta	Staphyli Frankli Staphyli Staphyli Staphyli Phosph ORF), ORF), Caphyli Caphyli Staphyli Caphyl	greany (staphyl staphyl phosph (okp),	graphyld phoaph on the phoaph
	91-119300{	qb t19300	6761tU dp	646 tEU 48		96/031979	gb U31379 gb L05004	gb U31979 gb L05004 gb L05004	gb[u31979] gb[u55004] gb[u55004] gb[u55004]	U31979 L05004 L05004 L05004	U31979 L05004 L05004 L05004 L05004 L05004	gb[L05004] gb[L05004] gb[L05004] gb[L05004] gb[L05004] gb[L05004]	gb[u31979] gb[u05004] gb[u05004] gb[u05004] gb[u05004] gb[u03074] gb[u73374]	9b U31979 gb L05004 gb L05004 gb L05004 gb U05004 gb U13374 gb U73374	9b U31979 9b L05004 9b L05004 9b L05004 emb X76490 SAGL emb X76490 SAGL 9b U73374 9b U73374	U31979 L05004 L05004 L05004 L05004 L05004 U73374 U73374 U73374 U73374 U73374 U73374
					-	-::										
6	-	2870		2395		2801	3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7 2 8 9 0	2 80 2 41 5 186 5 186	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 7 7 8 8 8 9 8 9 8 9 9 8 9 9 9 9 9 9 9 9	2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 8 0 1 2 2 8 0 1 2 2 8 0 1 2 2 8 0 1 2 2 8 0 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3484 3484 4792 5370 527 527 1252 1374 1374 1374
1098	1098			1211	2409	}	5690	3442	2690 2690 4790	3482	3 4790 33 4790	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 4 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	2690 2690 4790 3 3 3 3 3 2 2 175	2690 2690 4790 4790 727 727 1574 1574	2690 2690 4790 4790 4790 4790 1574 1574 1675
~ _		-		~			_	n •	n 4 5	7 4 5	2 4 5 9 - 7	7 7 9 9 7 7 7	2 2 2 2 2 2 2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	· · · · · · · · · · · · · · · · · · ·	
\$28		528	530	530	•	0.00	9 9	0 0 0			510 510	55.19				510 510 510 510 510 510 510 510 510 510

S. aureus - Coding regions containing known sequences

;	;	-:	:	; :	; ;	; ;	;	-:	:	:	:			- :	:	- :	: :	::	_;	: <u> </u>
ORF nt 1ength	766	913	639	1254	1032	666	213	1899	549	795	840	969	453	246	654	477	591	\$64	525	300
HSP nt Length	338	495	639	225,	818	066	194	489	\$49	795	478	456	369	246	653	136	534	564	195	280
percent ident	86	1001	\$	001		66	86	83	66	66	66	8	100	100	- 66	100	88	96	100	97
match gene name	Staphylococcus aurs gene for unknown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	S.aureus (bb270) ginA and ginR genes	Staphylococcus aureus lac repressor (lack) gene, complete cds and lack repressor (lack), partial cds	Stophylococcus aureus helicase required for Ti81 replication (pcrA) gene, complete cds	Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds	S. sureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end	Saureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end	S.eureus gene for clumping factor	S.a.u	S.aureus (RN1220) genes for potential ABC transporter and potential amembrane spanning protein	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5' flank	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	Staphylococcus aureus hlb gene for beta-hemolysin	Staphylococcus aureus hib gene for beta-hemolysin	Staphylococcus aureus hlb gene for beta-hemolysin	S.aureus sigma factor (plaC) gene, complete cds	Staphylococcus aureus type-I signal peptidase SpsA (spsA) gene, and type-I signal peptidase SpsB (spsB) gene, complete cds	Staphylococcus aureus type-I signal peptidase SpsA (spsA) gene, and type-I signal peptidase SpsB (spsB) gene, complete cds	S.aureus sigma factor (plac) gene, complete cds	S. aureus sigma factor (plac) gene, complete cds
match acession	dbj D86240 D862		gh 932103 	gb H63176	0b H63176	emb X17688 SAFE	emb x17688 SAFE	emb 218852 SACF	emb 230588 SAST	emb 230588 SAST	95 119300	gb L14017	emb x13404 SAHL	emb x13404 SAHL	enb X13404 SAHL	0b n63177	100059014161	000590 46	gb H63177	ob M63177
Stop (nt)	745	816	642	1255	2284	1001	1195	3228	5\$1	1323	1070	1105	456	475	1399	480	592	1153	527	784
Start (nt.)	~	1628	1280	2508	2166	1999	1407	5126	2	529	1909	1800	806	230	746	956	1182	1716	_	485
ORF ID	-			1	7					~_	-	~	1	~	-	-		~	-	~
Cont ig ID	605	609	614	626	626	629	629	631	632	769	651	657	662	662	662	682	685	6.85	697	697

aureus - Coding regions containing known sequences

Contig ORF	10RF	Start (nt.)	Stop (nc.)	match	ratch gene name	percent	HSP nt length	ORF nt length
710		15	503	dbj D86240 D862	Staphylococcus aureus gene for unknum function and dit operon ditA, ditB, ditC and ditD genes, complete cds	66	217	4 89
. 65		56	502	gb H80252	Stabhylococcus aurous norAll99 gene (which mediates active efflux of fluoroquinolones), complete cds	9,	091	081
741	-	1736	1197	dbj p83951 STAL	Stabhylococcus aureus DNA for LukM component, LukF-FV like component, complete cds	6	522	540
152	-	-	636	emb Y00356 SASP	Staphylococcus aureus VB serine protesse gene	66	618	636
152	~	1 548	986	emb Y00356 SASP	Staphylococcus aureus V8 serine protesse gene	66	340	369
954	_	1308	00L	emb x01645 SATO	Staphylococcus aureus (Wood 46) gene for alpha-toxin	96	567	600
111	<u>-</u>	1 1582	1 950	emb 249245 5A42	S. aureus partial sod gene for superoxide dismutase	66	429	633
180	-	1111	555	ab u20503	Staphylococcus aureus MKC class II enalog gene, complete cds	96	550	555
1 784	-	23	687	gb U63529	Staphylococcus aureus novel entigen gene, complete cds	66	998	615
797	-	1 182	1 544	dbj D14711 STAH	dbj Di4711 STAH Staphylococcus aureus HSP10 and HSP60 ganes	86	363	163
198		532	302	emb X58434 SAPD	S. eureus pdhB, pdhC and pdhD genes for pyruvate decarboxylass, dihydrollposmide acetyltransferase and dihydrollposmide dehydrogenase	98	196	233
823	-		467	95 877055	rece cluster: dnaAereplisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 nt)	66	156	465
£	-	348	271	gb L25288 	Stabhylococcus aureus gyrase-like protoin alpha and bota subunit (grlh and grlb) gones, complete cds	66	174	174
#	~	476	810	gb L25288 	Staphylococcus aureus gyrase-like protein siphe and beta subunit (griA and griB) genes, complete cds	100	171	159
99		792	397	emb x64172 SARP	S.aureus rpll, orizo2, rpoBiriii and rpoC genes for riboscmal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	55	\$ 60 0	396
863	-	-	285	dbj1090119 STM	S. aureus nork gene	96	131	385
88	-	909	72	emb;X52543 SAAG	emb X52543 SAAG S.aurous agrA, agrB and hld genes	98	265	273
#84	~	1116	523	emb X52543 SAAG	emb X52543 SAAG S.aurous agrA, agrB and hid genes	100	195	195
913	~-	517	681	emb z30588 sAST 	S.aureus (RM4220) genes for potential ABC transporter and potential membrane spanning protein	56	163	165
917	<u>-</u>	7	265	ab H64724	S. aureus tagatose 6-phosphate isomerase gena, complete cds	9.6	247	264
617	~	238	396	gb N64724	S. aureus tagatose 6-phosphate isomerase gene, complete cds	95 1	147	159
918	-	2426	1215	emt x93205 SAPT	emt X93205 SAPT S. aureus ptsH and ptsI genes	66	1212	1212

TABLE 1

S. aurous - Colling regions containing known sequences

Contig ONF	<u>8</u> 0	Start (nt)	Stop (nt)	satch	match gene name	percent ident	IISP nt Jength	ORF nt length
1 967	-	-	===	day 1990119 STAN	S. eureus nork gene	97	395	411
1 991	-	1 672	1 337	emb X52543 SAAG	S.aureus agrA, agrB and hld genes	66	336	336
1000	<u>-</u> -	1111	845	gb L14017	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	78	190	273
1001		498	265	dbj D86240 D862	Stabbylococcus aureus gene for unkown function and dit operon dith, ditb,	66	234	234
0101	-	-	1 285	gb U21221	Staphylococcus aureus hyaluronate lyase (hyak) gene, complete cds	99	224	285
1046	-	959	988	emb X72700 SAPV	S. aureus genes for S and F components of Panton-Valentine leucocidins	88	205	327
1060		480	286	emb X58434 SAPD	S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylsse, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	66	180	195
1073	-	1 1176	1 589	gb K02985	S.aureus (strain RN450) transposon Th554 insertion site	100	131	\$88
1079			730	dbj D86240 D862 	Staphylococcus aureus grate for unknown function and dit operon dith, dith,	66	228	228
1019		218	8	db; D86240 D862	Stephylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes,complete cds.	100	267	267
61.01		9	55	dbj pr6240 pr62	Straphylococcus aureus game for unkown function and dit operon dith, dite,	100	186	186
1092		289	9	emb x58434 SAPD	S. aureus pdhB. pdhC. and pdhD genes for pyruvate decarboxylase. dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	86	124	144
=	<u>-</u>	-	55	(gh M63177]	S.aureus sigma factor (plac) gene, completa eds	- 66	243	Ç
1157	-	~	901	amb 248003 SADN	S.aureus gene for DNA polymerase III	97	127	135
1189	-	1 720	1 361	gb \$74031	norA=MorA (ISP794) {Staphylococcus aureus, NCTC 8325, Insertion, 1820 nt]	66	360	360
1190		~	283	gb M21854	S. aureus agr gene encoding an accessory gene regulator protein, complete	100	282	282
1190	~	(211	888	emb X52543 SAAG	S. aureus agrA, agrB and hld genes	100	240	240
1225	-	~	163	ent X17679 SACO	Staphylococcus aureus coa gene for coagulase	97	124	162
1253		~	529	db3 D86240 D862	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes,complete cds	66	495	528
1244	_	-	210	1 911 574031	InorAeMorA (ISP194) Staphylococcus aureus, MCTC 8325, Insortion, 1820 nt	100	210	210
1301	-	7	472	emb x76490 sAUL	S. aureus (bb210) glnA and glnR genes	1 66	299	432

5. aurous - Coding regions containing known sequences

	:	: -	:	:	•	;	: -	:	: -	: -	:	:	•	:	•	• -	•	•	•
ORF nt length	309	174	672	321	192	180	345	402	207	402	153	399	181	396	291	369	780	111	171
HSP nt length	772	139	672	321	192	180	345	40	207	ic.	153	399	358	27.2	250	367	85	178	120
percent	86	8	8	6	86	001	- 66	001	- 66	1 66	- 66	66	100	97	86	- 86	68	88	9.
match gene name	S.aureus rpll., orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 4, beta' chains	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8H,	Staphylococcus aureus alpha-hemolysin gene, 3' end	S. aureus factor essential for expression of methicillin resistance (fema) gene, complete cds, and trpA gene, 1' end	Staphylococcus aureus novel antigan gene, complete cds	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	S.aureus signa factor (plac) gene, complete cds	Staphylococcus aurous DNA fragment with class II promoter activity	S. Aureus (Actor nasential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 1' end	Stabhylococcus aureus penicillin-binding protein 2 (pbp2) gene. complete	Stabhylococcus aureus genes for ORF37; HSP20; HSP40; ORF35, Complete cds	Stabhylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genos, complete cds, dehydroauinate synthase (arob) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds	Staphylococcus aureus coa gene for coagulase	Staphylococcus auraus methicillin-resistant ATCC 33952 clone RRNV30 165-235 rNNA spacer region	Staphylococcus aureus genes for OAF37; HSP10; HSP40; ORF35, Complete	Staphylococcus aureus genes for ORF37; HSP20; HSP10; HSP40; ORF35, complete
match	emb X64172 SARP	dh; D28879 5TAP	db.j DR6240 D862	gb[U73374]	dp H90536	emb X17688 SAFE	685090 95	 dby D86240 D862	gb H63177	ab U66664	cmb X17688 SAFE	gb 1,25426	dbj D30690 STAN	gb U51132	18/111979	emb X17679 SAC0	16,71110[46]	db) D30690 STAN	db; 030690 STAN
Stop (nt)	326	27.1	675	324	192	181	346	4 02	208	402	156	004	398	398	328	797	1784	E.	281
Start (nt)	e -	~	1346	6 6 4 4	-	n,	~		-	-	3d#	~	81.4		618	832	2170	474	451
Contig ORF		-		_	-		-		-	-		-				-			-
-	2161	1519	1663	1797	1857	1923	1957	1988	2100	2199	1517	2891	2950	2971	2978	2985	3006	3008	3008

TARIE

S aurous - Coding regions containing known sequences

					· · · · · · · · · · · · · · · · · · ·			
Contig	08 T	Start	Stop (nt)	match	match gene neme	percent	MSP length	ORF nt length
1100	-	1 793	198	emb x62992 SAFN	emb X62992 SAFN S. aureus fnbB gene for fibronectin binding protein B	1.6	2.	396
1 3019		~	235	gb[J03479	S. urreus enzyme III-lac (lacf), enzyme [I-lac (lacf), and phospho-beta- galactosidase (lacG) genes, complete cds	9.7	234	234
1 3023	-	18	233	[gh]v06451]	Staphylococcus avreus proline permesse homolog (putP) gene, complete cds	-	100	153
3029		06	287	dp 051333	Staphylococcus aureus phósphoenolpyruvate carboxykinase (pcka) gene, complete cds	100	, 201	198
9000		8-	791	gb{us1133	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene, complete cds	- 6	315	147
303		70	327	95(051133)	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene. complete cds	۲۲	181	258
3056			215	emb x64172 SARP	S. sureus rpll, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase bets & beta' chains	ŝ	213	213
3059			261	dbj 030690 sTAN	Staphylococcus auteus ganes for ORF37; HSP20; HSP70; HSP40; ORF35, complete cds	96	23.	261
1 3073	-	1 27	284	gb u06451	Staphylococcus aureus proline permease homolog (putP) gene, complete cds	9.6	229	258
3074		~	397	emb x64172 SARP	S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DMA-directed RMA polymersse bets theta' chains	8	250	396
3088	-	-	239	dbj 086727 D867	Staphylococcus aureus DNA for DNA polymerase III, complete cds	98	215	237
1 3097	-	444	÷ .	cmb 248003 SADR	S.aurnus gene for DMA polymerase III	- 6	160	201
3102		307	155	ob J03479	S.aureus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	- 6	142	153
3121		895	398	emb x58434 SAPD	S.aureus pdhB. pdhC and pdhD genes for pyruvete decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	100	88	171
3125	-	1 463	62	cmb x89233 SARP	emb 3A9233 SANP S.auraus DNA for rpoC gene	98	192	231
1 3133	-	7	27.	emb 218852 SACF	S.auraus gene for clumping factor	96	154	174
3160	-	420	117	db; 010489 STAG	dbj njn489 STAG Staphylococcus aureus genes for DNA gyrase A and B, complete cds	1 68	197	210
3176	-	-	378	emb \X38434 SAPD	emi X38434 SAPD S.aureus pdh8, pdhC end pdhD genes for pyruvate decarboxylase, dhydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	98	16	978
3192		420	211	[gb[J03479]	(S.aureus enzyme III-lac (lac?), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	86	2.	210
1 3210	-	<u> </u>	143	[gb]:1767144]	Staphylococcus aureus peptidoglycan hydrolese gene, complete cds	96	141	141

5. aureus - Coding regions containing known sequences

Contig	<u> </u>	Start (nt)	Stop (nt)	matc): ucession	match gene name	porcent	HSF nt length	ORF nt length
3232	<u>~</u> _	2106	1282		Stabhylococcus aurous methicillin-resistance protein (mecR) gene and unknown OMF, complete cds	17	257	825
1538	-	f: -	334	emb x89233 SARP	S. aureus DNA for rpoC gene	- 66	356	393
1343	-	1 392	654	195 1.11530	Staphylococcus aureus transfer RNA sequence with two rRNAs	66	102	243
1 3555	-	1 637	1 320	emb 218852 SACF	S. aureus gene for clumping factor	66	307	318
1559	-	~	182	emt X17679 SACO	emb X17679 SACO Staphylococcus auraus coa gene for coagulase	001	141	180
1559	~	28	213	emb X17679 SACO	euraus coe gene	1 96	174	219
3563	-	278	Ŧ	67,250 46	Stabbylococcus aureus proll; Protein diacylglyceryl transferase (igt) gene, complete cds	00	96	138
1363	~-	527	363	186[135773]	Stabhylococus aureus prolipoprotein diacylylyceryl transferase (1gt) gene, complete cds	86	162	165
3566	-	- -	422	emb X16457 SAST	Staphylococcus sureus gens for staphylocosgulase	1 88	175	420
3588		~	262	ap r41098	Transposon This of and insertion sequences ISI181 and ISI182 (from Staphylococcus aureus) DNA	66	253	261
1.6-21	-	-	130	cp Jep	S. aurous onzym III-lac (lacF), onzyme II-lac (lacF), and phospho-beta- galactosidase (lacG) genes, complete cds	66	345	348
3600	-	1 758	186	emb 218852 SACF	S. aureus gene for clumping factor	72	346	178
3602	_	188	396	emb 218852 SACF	S.aureus gene for clumping factor	1 86 1	319	193
1656	-	1013	528	emb 218852 SACF	S. aureus gene for climping factor	98	403	₽ ₽
3682	-	٦	236	c.ab x64172 SARP	S.aureus rplL, orf202, rpo8(rif) and rpoC genas for ribosomal protein L7/L12, hypothetical protein OMF202, DNA-directed RNA polymerase beta is beta' chains	8	2	534
3682	~	334	\$17	emb x64172 SARP	S.aureus rplL, orf202, rpo8(rif) and rpoC genes for ribosomel protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	100	112	192
1 3693	-	758	423	amb x62992 SAFN	S.aureus fnbB gene for fibronectin binding protein B	100	229	336
3702	-	593	154	[gh[r.11530]	Staphylococcus aurous transfer RMA sequence with two rRNAs	ž	81	240
3725	-	924	F 463	emb 218852 SACF	S.auraus gans for clumping factor	7.1	367	462
13761		609	450	ap r14011	Staphylococcus aurous methicillin-resistance protein (mecR) gane and unknown ORF, complete cds	£	333	360
1767		\	7	emt X64172 SARP	S.aureus rpli, orf202, rpoBirif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	8	187	403

.. aureus - Coding regions containing known sequences

2Ô

Contig	- 2 =	Start (nc)	Stop (nt)	match	match gene name	percent ident	IISF nt length	ORF nt length
3775		7	586	emb x64172 SARP	S.aureus rpil, orizoz, rpoB(rii) and rpoc genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RMA polymersse beta & beta' chains	100	227	285
3786	-	456	229	dbj b10489 STAG	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	1001	204	228
3786	~	542	366	dbj D10489 STAG	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	98	123	177
1398	-	n	1251	emb X17679 SACO	Staphylococcus aureus coa gene for coagulase	- 66	249 ,	249
1 3813	-	193	1 398	ab J04151	S. aureus fibronectin-binding protein (inbA) mRNA, complete cds	86	396	396
3819	-	184	402	emb X68425 SA23	S.aureus gene for 235 rRNA	- 66	161	219
384	-	932	897	gb U48826	Staphylococcus auraus elastin binding protein (abpS) gene, complete cds	87	204	465
3845		-	Ę.	emb x58434 SAPD	S. aureus pulb, pdhC and pulb genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	*	356	187
3856		198	0	gb 1.14017 	Staphylococcus auraus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	76	192	399
3859	-	1049	573	emb 218852 SACF	S.aureus gene for clumping factor	88	347	477
1736	-	650	יבנ	[gb]N76714]	Bureus	1001	299	324
3876	-	~	253	db. D10489 STAG	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	100	217	252
7486		572	268	gb J03479 	S.aureus enzyme llI-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds		209	285
387R	<u>-</u> _	-	23.7	emb X58434 SAFD	S. aureus pdhh, puhC and pdhb ganes for pyruvate docarboxylaso, dibydrollpoamido acotylcransferase and dibydrollpoamide debydrogenase	96	155	237
3696	-	-	173	emb x16457 SAST	emb X16457 SAST Staphylococcus aureus gene for staphylocoagulase	- 86	17.1	171
3893	<u>-</u>	-	1 1 8 3	emb x89233 SARP	emb X89233 SARP S.aureus DNA for rpoC gene	100	170	183
3893	~	181	157	emb x89233 SARP	emb X89233 SARF S.aureus DMA for rpoC gene	86	67	. 771
3894			4.85	emb x64172 SARP	S. sureus rpli, orf202, rpo8frit) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORP202, DNA-directed RNA polymerase beta & beta' chains	g 	450	483
3895	-	R36	420	195 3041511	S.uvreus (ibronectin-binding protein (InbA) mRNA, complete cds	- 66	411	417
3905		æ	239	8p r05004	Stephylococcus aureus dehydroquinate synthase (arob) gene, J' end cds; J- phosphoshikimate-1-carboxyvinyltransferase (aroa) gene, complete cds; ORFJ, complete cds	001	159	192
3905	~	ec.	400	gh 1.05004	Staphylococcus aureus dehydroquinate synthase (arob) gene, 3' end cds; 1- phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds; ORF3, complete cds	<u></u> -	8	213

aureus - Coding regions containing known sequences

ORP nt	357	000	345	192	1 691	345	375	429	303	345	300	276	402	181	162	23.1	264	357	294
HSP nt length	278	175	295	163.	339	221	1 172	429	198	- 721	227	276	307	157	99	100	150	297	740
percent ident	66	- 52	100	1 96	1 66	87	96	- 66	- 27	86	66	66	- *	86	8	1 66	- 68	6	86
match gene name	S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase. dihydrollpoamide acetyltransferase and dihydrollpoamide dehydrogenase	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORP, complete cds	Saureus gene for DNA polymerase III	Staphylococcus aureus gene for staphylocosgulase	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	S.aureus gene for clumping factor	S. aureus gene for clumping factor	S. aureus gene for DNA polymerase III	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	Staphylococcus aureus methicillin-resistant ATCC 33953 clone RRIVA2 165-235 rRNA spacer region	Transpason fin404 and insertion sequences 151181 and 151182 (from Staphylococcus aureus) HAA	S. aureus pohb, pohC and In. 10 genes for pyruvate decarboxylass, dihydrolipoamide acetyltransfersse and dihydrolipoamide dehydrogenase	S.aureus gene for clumping factor	Staphylococcus aureus dehydroquinate synthaso (aroll gene, 3' end cds; 3- inhosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds; ORF1. complete cds	Staniy Jocaccus aurous typo 8 capsule ganos, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	S.aureus fibronectin-binding protein (fnbA) mRNA, complete cds	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	S.aureus rplL, orf202, rpoB(rif) and rpoC genes (or ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta (S.aureus rpli, orf202, rpo8(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta i beta: chains
match	emb X58434 SAPD	95 1.14017	emb 248003 SADN	emt X16457 SAST	db D10489 STAG	emb 218852 SACF	emb :18852 SACF	emp 248003 SADM	gb £14017	ab U11786	gb[1.43098]	cml: X58434 SAPD	emb 218852 SACF	95 1.05004	וזינגיט מפ	95[304151]	gb L14017	emb x64172 SARP	emb[x64172[5ARP
Stop (at.)	359	330	347	390	17.6	348	375	432	304	402	101	7.7	402	402	10	247	366	398	294
Start (nt.)		-	691	199	_	69.	-	960	909	88	~	~	-	2	240	- 25	629	754	
ONF.		-	-	-	_	-	-	-				<u></u>	-			-			
Cont. ig 10	3910	3915	3964	4007	4036	4046	090+	1904	4062	4085	400	4093	4097	4116	4128	6717	151	25	4179

TABLE 1

3. aureus - Coding regions containing known sequences

40 .

Contig	10 GE	Start (nt)	Stop (nt.)	match	mutch yene name	percent	NSP ot length	ORF nt length
4203	-	1 -	255	emb x89233 SARP	S.aureus DMA for rpoC gene	- 66	239	255
4206	-	1 1	1 303	emb 218852 SACF	S.aureus gene for clumping (actor	100	236	303
4206	-	1 195	744	emb 218852 SACF	S.aureus gene for clumping factor	9.5	65	150
4208		108	314	emb 256434 SAPD	5. sureus pdhb, pdhc and phhb genes for pyruvate decarboxylase. dihydroliposmide acetyltransfersse and dihydroliposmide dehydrogenase	68 	96	207
4216		989	1330	emb X58434 SAPD	S. sureus pdhb, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	8 0	326	122
4226	-	1 894	298	ab L11530	Staphylococcus aureus transfer RNA sequence with two rRNAs	97	132	297
4260		216	183	ab U1194	Stabbylococcus sureus methicillin-resistant ATCC 33952 clone RRNV40 165-235 rabb specer region	2	7	168
1 4272	-	1 355	179	emt: 248003 SAUN	S.aureus gene for DNA polymerase III	100	164	17.1
1 4276	-	-	(11)	emb X16457 SAST	Staphylococcus aureus gene for staphylocoaquiase	9.6	150	174
4277			270	emt x64172 SARP	S.aureus rpli, orf202, rpo8(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DMA-directed RMA polymerase bota & beta' chains	6	265	07.2
4282		691	7.7.0	emb X64172 SARP	S.aureus rplL, orf202, rpoB[rif] and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	86	282	315
7581		379	191	emb x64172 SARP	S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta: chains	66	183	189
4295	-	-	329	emb X16457 SAST	Staphylococcus aureus gene for staphylocoagulase	96	144	327
4313	-	1 435	280	195[L11530]	Staphylococcus aureus transfer RNA sequence with two rRNAs	100	76	156
4315			185		S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- qalactosidase (lacG) genns, complete cds	100	158	183
4315	~	101	310	gb J03479	S.aureus enzyme III-lac (lacf), enzyme II-lac (lacf), and phospho-beta- galactosidase (lac6) genes, complete cds	86	۲.	210
4327		-	294	gb 1.43098 	Transposon Th5404 and insertion sequences 151181 and 151182 (from Staphylococcus aureus) DMA	96	294	294
4360	-	603	916	[016201]	Staphylococcus aureus ATCC 25923 165 rRNA gene, partial sequence	1001	116	285
4364		ń	146	emb x64172 SARP	S.aureus rplL, orf202, rpoBirlf) and rpoC genes for ribosomal protein 1.7/L12, hypothetical protein ORF202, DMA-directed RNA polymerase beta 6 beta' chains	s6	140	7
438R	-	167	310	emb x62992 SAFN	emb x62992 SafN S. aureus (nbB gene for fibronectin binding protein B		611	144

S. aurous - Coding regions containing known sequences

Cont ig	10 PF	Start (nt)	Stop (Int)	match acession	match gen name	percent ident	NSP nt length	ORF nt length
1077	<u></u>	~	1313	emb X62992 SAFN	emb X62992 SAFN S. aureus inbB gene for fibronectin binding protein B	- 6	243	312
4421		36	1 281	dbj D12572 STA3	Staphylococcus aureus rrnA gene for 23S ribosomal RNA	100	112	246
4426		_	1 293	emb 218852 SACF	S.aureus gene for clumping factor	1 85	185	291
4 4 2 8		6	2 2 8	emb x64172 SARP	S.aureus rplL. orf203, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta in beta' chains	100	139	246
4462		~	271	emb. x64172 SARP	S.aureus rplL, orf202, rpo8(rlf) and rpoC genes for ribosome1 protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta t beta: chains	6.	07.2	270
4466	1	-	240	emb Z18852 SACF	S. eureus gene for clumping factor	- 66	231	240
4469		-	<u> </u>	gb J03479	S. sureus enayme III-lac (lacf), enzyme II-lac (lacf), and phospho-bata- galactosidase (lacf) genes, complete cds	66	265	210
1485	-	-	62	ab C43098	Transposon Th3404 and insertion sequences IS1181 and IS1182 (from Staphylococcus sureus) DNA	86	259	261
4492		*	60	gb M86227	Stephylococcus aureus DNA gyrase B subunit (gyrB) Racf homologue (recf) and DNA gyrase A subunit (gyrA) gene, complete cds	88	701	728
4497	-	515	692	emb 218852 SACF	S. auraus guna for clumping factor	66	213	1 267
4529	2	7	27.1	emb x64172 SARP	 aureus rpli, orizol, rpoBirit, and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains 	001	151	171
4547	-	-	900	cmb x62992 SAFN	S. aureus fnbB gene for fibronectin binding protein B	1001	157	300
4554	-	318	160	emb 218852 SACF	S. aureus gene for clumping factor	- 84	126	159
4565	-	6	1 227	emb 218852 SACF	S. auraus gene for clumping factor	84	213	219
4569	-	92	223	emb 218852 SACF	S. aureus gene for clumping factor	86	127	144
4608		2	216	emb x58434 SAPO	[S. aurieus pdhB, pdhC and pdhB genes for pyruvate decarboxylase, dihydrollpoamide acetyltransferese and dihydrollpoamide dehydrogenase	92	168	\$61
4614	-	797	234	emb 218852 SACF	S. aureus gene for clumping factor	1 98 1	169	231
4623	-	105	302	gb J04151	S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds	66	152	198
4632		82 ——	306	db .703479	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	96	183	189
4646	-	-	1222	emb 218852 SACP	emb 218852 SACP S.aureus gene for clumping factor	84	100	222
4687	-	1 2	1 166	1441,30415.1	1S. aureus fibronectin-binding protein (fubA) mRNA, complete cds	96	156	165

Contig ORF Start Stop ID ID (nt) (nt)		match match acession ' '	match match gene name percent HSP nt ORF nt ength ldent langth langth langth langth langth langth	percent	percent HSP nt ORF nt ident length length	ORF nt length
	gr (1.14017)	017 Staph	15 114017 Staphylococcus arreus methicillin-resistance protein (mecR) gene and 75 155 156 15	25	155	156
	4703 1 153 cmb X58	3434 SAPD S.aur	cmb X58434 SAPD S. oursets pdths, pdthC and pdthD genes for pyruvate decarboxylase, 98 103 153 153 dihydroliposmide accetyltransferase and dihydroliposmide accetyltransferase and dihydroliposmide accetyltransferase	86	103	153

TABLE 2

23. = 19B Ξ 7. E - 66 \$ similar to trimethylamine DH (Mycoplasma capricolum) pir/S49950|349950 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum protein synthesis initiation factor 2 (infB) (Bacillus subtilis) g1[49319 IP2 gene product (Bacillus subtilis) Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi large submit of NAM: digwindent plutamate synthase (Plectonums horyanum) H. influenzas predicted coding region H10660 (Haemophilus influenzas) S. aurens - Putative coding regions of novel proteins similar to known pruteins Clp-like ATP-dependent protesse binding subunit [Bos taurus] excisionase (xis) (Staphylococcus bacteriophage phi 11] integrase (int) (Staphylococcus bacteriophage phi 11) integrase (int) (Staphylococcus bacteriophage phi 11) lint gene activator Rina - tacteriophage phi 11 protein kinase C inhibitor-I (Homo sapiene) nusG gene product (Staphylococcus carnosus) nusG gene product (Staphylococcus carnosus ORF1 (Staphylococcus bacteriophage phi 11) PET112-like protein (Bacillus subtilis). PET112-like protein (Bacillus subtilis) PET112-like protein (Bacillus subtilis) |polyprotein [Bean common mosaic virus] unknown (Staphylococcus haemolyticus) Lil protein (Staphylococcus carnosus) unknown (Staphylococcus haemolyticus) enolase (Becillus subtilis) S10 [Bacillus subtilis] match gene name |pir|849703|8497 match acession 91 1339950 1911:66161 191 | 1022726 191 | 1165302 9242201, 16 91,1354211 91 1204912 191 1373002 91 1354211 191 1354211 91 971784 91 | 51 1839 101 455128 91 | 426473 191 | \$81638 193 | 426473 191991|16 91 | 166159 91 | 166159 91 | 862933 91 460259 91 | 602031 ፤ R 50 # Ş Start (nt) 3.84 æ A30 Contig 30.85 £133 = **4**9

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	ORF TD	Start	Stop (nt)	acossion	natch dene name	E	1 Ident	length (nt)
4227	7	152	100	91 871764	CIp-like ATP-dependent protease binding subunit Bos taurus	96	91	180
4416	-	570	286	191 1022726	unknown (Staphylococcus haemolyticus)	96	98	285
22	-	858	430	191 511070	UreG (Staphylococcus xylosus)	\$6	88	429
2	-	4362	4036	1911581787	urease gasma subunit (Staphylococcus xylosus)	- 56	1 60	327
83	9	8794	9114	pir JG0008 JG00	ribosomal protein 57 - Bacillus stearothermophilus	95	83,	321
154	•	9280	1 7838	91 1354211	PET112-11ke protein (Bacillus subtilis)	95	92	1443
186	2	2798	2055	91 1514656	serine O-acetyltransferase (Staphylococcus xylosus)	- 56	- 68	744
502	s	4406	4014	gi 142462	ribosomal protein Sil (Bacillus subtilis)	95	88	393
505	-	1 5017	4793	101 (142459	initiation factor 1 (Bacillus subtilis]	95	-	225
. 205	• '	11365	10991	191 1044974	ribosomal protein Li4 (Bacillus subtilis)	- 56	- 6	375
259	s	7288	6644	sp P47995 YSEA_	HYPOTHETICAL PROTEIN IN SECA S'REGION (ORFI) (FRAGMENT).	28	95	645
302		795	1601	91 40186	homologous to E.coli ribosomel protein L27 [Becillus subtills] [143592 L27 ribosomel protein Bacillus subtills] [r/C21895 C21895 ribosomel protein L27 - Bacillus subtills p Pu5657 RL27_BACSU 50S RIGOSOMAL PROTEIN L27 (8L30) (BL24). 1 40175 L24 gene prod	35	66	303
310	-	579	1523	91 1177684	chorismate mutase (Staphylococcus xylosus)	36	92	945
414	-	2	163	pir C48396 C483	ribosomal protein L34 - Bacillus stearothermophilus	95	06	162
4185	- 3	125	772	191 1276841	glutamate synthase (GOGAT) (Porphyta purpurea)	98	98	153
22	-	1028	123	191 511069	[UreF [Staphylococcus xylosus]	76	- 16	306
1 22	\$	5046	3310	191 410516	urease alpha subunit (Stephylococcus xylosus)	7	- 8	1737
9	-	815	1372	191,666116	glucose kinase (Staphylococcus xylosus)	ž	87	558
i		10012	9536	01 1044978	ribosomal protein S8 (Bacillus subtilis)	76	78	477
326	-	3378	2542	91 557492	dihydroxymapthoic acid (DHNA) synthetase (Bacillus subtilis) gi 143186 dihydroxymapthoic acid (DHNA) synthetase (Bacillus ubtilis)	2	8	637
7	^	757	955	1011467386	thiophen and furan oxidation (Bacillus subtills)	76	77	219
426	_	2260	1823,	91 1263908	putative (Staphylococcus epidermidis)	76	87	438
534	-	7	355	1911633650	entyme II(mannitol) [Staphylococcus carnosus]	94	84	354
1017	- -	2	229	01 149435	putative [Lactococcus lactis]	96	73	228
3098	-	330	1B4	0: 413952	ipa-28d gens product (Bacillus subtilis)	96	80	147

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF ID	Start	Stop (nt)	natch ,	match gene name	e 1 1 1	* 1dent	length (nt)
13232	!	630	316	61 1022725	unknowm (Staphylococcus haemolyticus)	76	8	315
-	- 5	1 2089	1 2259	pir B48396 B483	ribosomal protein L33 - Bacillus stearothermophilus	93	18	171
101	-	1745	1383	91 155345	ersenic efflux pump protein [Plasmid pSK267]	93	82	363
1 205		124 12227	111865	sp P14577 RU16_	SOS RIBOSOMAL PROTEIN LIG.	93	63	363
1 259	-	8291	5673	-[91]499335	sech protein (Staphylococcus carnosus)	93	8.8	2619
275	-	1 2226	1111	1911633650	enzyme [1(mannitol) (Staphylococcus carnosus)	93	86	1113
÷	9	6207	1 5773	191 1022726	unknown (Staphylococcus haemolyticus)	93	81	435
167	-	152	622	gi 46912	ribosomal protein Lil (Staphylococcus carnosus!	93	80	471
1 607	9	1674	1 2033	91 1022726	unknown (Staphylococcus haemolyticus)	83	83	360
1 653	-	1 973	867	91 580890	translation initiation factor IF3 (AA 1-172) [Bacillus tearothermophilus]	93	רר	486
1864	-	6	194	01 306553	ribosmal protein small subunit (Nomo sapiens)		93	192
1 2997	-	- 30	300	91 111390	carbamyl phosphate synthetase (Bacillus subtilis)	93	82	273
3232	~	1 907	965	191 1022725	unknown [Staphylococcus haemolyticus]	93	94	312
1976	! -		1 621	91/1022728	unknown (Staphylococcus haemolyticus)	8	80	174
91			374	01 142781	putative cycopiassic protein, putative [Bacillus subtilis] sp[917934]uvas_macsu ExchucLease ABC Susunif B (DINA PROTEIN) FRACHENT).	92	8	272
-	-	: -	6124	91 1136430	KIAA0185 protein [Homo saplens]	92	99	210
\$	62	126483	(27391	91 467401	unknown (Bacillus subtilis)	92	80	606
69	9	5882	6130	91 530200	trophoblastin [Ovis aries]	92	S	249
165	-	1 2568	2038	91 1022725	unknown (Staphylococcus haemolyticus)	92	08	531
121	<u> </u>	1 2760	2362	91 517475	D-amino acid transaminasa (Staphylococcus haemolyticus)	92	98	399
1 205	2	1 7495	6962	91 49189	secy gene product (Stephylococcus carnosus)	92	85	534
1 205	119	110812	110255	gi 1044976	ribosomal protein L5 (Bacillus subtilis)	26	82	858
219	-	710	1 357	Q1 1303812	YqeV Bacillus subtilis]	92	88	354
344	-	1575	1805	9111405674	CspC protein [Bacillus cereus]	92	88	231
669	=	02	1 361	101 013999	[bp-75d gene product (Becillus subtilis]	93	8	342
Ger –	-	~	091	pir A45434 A454	ribosomal protein L19 - Bacillus stearothermophilus	92	84	159

FABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

' *25*

Contig	9 C	Start (nt)	Stop (nt)	metch	match gene name	8 . s	1 ident	length int)
1958	-	524	1 264	191:407908	Eliscr (Staphylococcus xylosus)	92	08	192
13578	- 2	917	386	91 1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	93	78	133
3585	-	644	324	1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	92	19	321
3640	-	-	1 402	91 1022726	unknown (Staphylococcus haemolyticus)	92	91	399
4362		=	178	91 450686	hadw gene of Ecopri gene product [Escherichia coll) pir [538437] 538437 hadw protein - Escherichia coll pir [509629 [509629 hypothetical protein A - Escherichia coll (508 40-520)	92	9 L	165
9777	-	358	182	[4] 1022725	unknown (Staphylococcus hemolyticus)	92	83	ניו
4549	-	462	232	91 1022726	unknown (Staphylococcus haemolyticus)	92	08	231
4626	-	-	1 224	91 1022725	unknown (Staphylococcus haemolyticus)	92	78	222
~	-	1 3980	4531	91 (535349	Codw (Bacillus subtilis	91	74	552
28	-	2	1126	191 1001376	hypothetical protein (Symechocyetis ep.)	16	9.	1125
09	-	1354	10/1	[91]1226043	orf? downstream of glucose kinase (Staphylococcus xylosus)	91	80	348
101	-	1 1989	1036	[91]150728	ersenic efflux pump protein [Plesmid p1358]	91	80	954
187	- 2	1 412	1194	91 142559	ATP synthase alpha subunit (Bacillus megaterium)	16	66	783
205	22	67511	11298	[g1]40149	S17 protein (AA 1-87) [Decillus subtilis]	91	93	282
206	-	8184	10262	91 1072418	glcA gene product (Staphylococcus carnosus)	16	63	2079
1 306	-	1 3885	2326	91 143012	GMP synthetase (Bacillus subtilis	16	96	1560
306	-	5319	3826	91 467399	IMP dehydrogensse (Bacillus subtilis)	16	66	1494
017	-	2194	1 3207	91 1177685	ccpA gene product (Staphylococcus xylosus)	16	18	1014
5	-	2974	3150	191 949974	sucrose repressor (Staphylococcus xylosus)	16	82	173
087	-	1606	3042	91 433991	ATP synthase subunit beta (Bacillus subtilis)	91	85	1437
536		2026	1280	91 143366	ademylosuccinate lyase (PUR-B) (Bacillus subtilis pir(C29336 WZBSDS ademylosuccinate lyase (DC 4.3.2.2) - Bacillus ubtilis	91	62	747
282		1064	615	91 297874	fructose-bisphosphate aldolase (Staphylococcus carnosus) pir [A49943] fructose-bisphosphate aldolase (EC 4.1.2.13) - taphylococcus carnosus (strain TH300)	16	66	\$ 20
657	-	-	1536	D. 163597	; -	16	96	1536
658	-	12	359	191 385178	unknown (Recillus subtilis)	16	99	339
*******			-					

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont to los	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Start (mt)	Stop (nt)	match	match gene name	e te	1 1dent	length (nt)
1327	-	339	530	[gi 496558	ortx (Bacillus subtilis)	91		192
2515	-	1 466	275	191 51 1070	UreG (Staphylococcus xylosus)	16	85	192
1 2594	-	7	707	91 146824	beta-cystathionase [Escherichia coli]	9.1	1.5	201
1 3764	-	847	425	91 1022725	unknown (Staphylococcus haemolyticus)	91	18	423
1 4011	-	127	495	gi 1022726	unknown (Staphylococcus hasmolyticus)	91	96	369
4337	-		177	91 296464	ATPase [Lactococcus lactis]	91	99	177
-	-	B15	1 1033	oi 520401	catalase [Haemophilus influentse]	90	96	219
18	-	1 3717	1 4607	191 580899	OppF gene product (Bacillus subtilis)	90	74	168
129	-	1 5317	4007	91 1146206	glutamate dehydrogenase (Bacillus subtilis)	90	94	1317
164	Ξ	16628	16933	sp P05766 RS15_	10S RIBOSONAL PROTEIN SIS (BS18).	90	74	306
171	- 5	2983	1 2819	91(517475	D-amino acid transaminase (Staphylococcus haemolyticus)	0.6	78	165
1 205	-	1 4497	13550	91 (142463	RNA polymerase alpha-core-subunit (Bacillus subtilis)	90	76	948
205	- 6	1748	450	91 1044989	ribosomal protein S13 (Bacillus subtilis)	90	13	600
1 205	2	7165	6404	gi 49189	secy gene product (Staphylococcus carnosus)	96	18	762
205	Ξ	6645	6472	91 49189	sect gene product [Staphylococcus carnoaus]	90	18	\$C1
502	27	113692 1	13345	91 7#6157	Ribosomal Protein S19 (Dacillus aulitilis]	0	19	348
1 205	=	15858 15496	13496	91 1165303	[L] [Bacillus subtilis]	0,	79	363
1 260	-	1 7023	5773	91 1161380	Icaa (Staphylococcus apidermidis)	0	78	1251
588	<u>-</u> -	87.66	1947	91 467440	'phosphoribosylpyrophosphate synthetase (Bacillus subtilis) gi[40218 PRPP synthetese (AA 1-317) [Bacillus subtilis]	Š.	78	570
320	-	1025	7171	01 312443	carbamoyl-phosphate synthase (glutamine-hydrolysing) (Becillus aldolyticus)	06	75	693
330	-	1 1581	1 1769	[gi 986963	beta-tubulin (Sportdiobolus pararosaus)	0	80	189
1 369		1 954	- 523	pir S34762 S347	L-serine dehydratase beta chain - Clostridium sp.	06	۲۲ ا	432
1 557	-	<u> </u>	881	91 1511589	M. Jannaschii predicted coding region MJ624 (Mathanococcus jannaschii)	8	2.5	186
663		1 667	1200	91 143786	tryptophanyl-tNAA synthetass (EC 6.1.1.3) [Bacillus subtilis] pir[JT048] WDS tryptophan-tRNA ligass (EC 6.1.1.2) - Bacillus ubtilis	Š.	5	534
717	-	-	192	91 143065	[hubst (Bacillus stearothermophilus)	0,	1 79	261
745	-	1059	- 865	61/1205433	H. influenzae predicted coding region Hill90 [Haemophilus influenzae]	06	18	195

S. aureus - Putative coding regions of novel proteins smillar to known profeins

.

Contig ORF	ORF	Start (nt)	Stop	netch ,	spech gene name	0 6 T	• Ident	length (nt)
1007		386	565	1011143366	admylosuccinate lyase (FUS-B) [Bacillus subtilis] pir[C29326]WZBSDS ademylosuccinate lyase (EC 4.3.2.2) - Bacillus ubtilis	06	<i>د</i> د	180
1054	-	625.	166	91 1033122	ONF_f729 [Escherichia coli]	8	95	249
1156	-	[11]	707	gi 1477776	Cipp [Bacillus subtilis]	06	0	591
1180	-	408	205	gi 1377831	unknown (bacillus subtilis)	90	y `	204
1253		-	462	91 40046	phosphoglucose isomerase A (AA 1-449) (Bacillus stearothermophilus) if [S15956]WUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	06	27	462
2951	<u>-</u>	-	269	91 144616	formylterrahydrofolate synthetase (FTHFS) (ttg start codon) (EC .3.4.3)	8	9/2	267
3140	-	726	166	91 1070014	protein-dependent [Becillus subtilis]	0.6	23	162
4594	-	-	22	01 871784	Clp-like ATP-dependent protesse binding subunit (Bos teurus)	06	76	231
1 87	-	1028	1750	191 467327	unknowm (Bacillus subtilis)	68	75	223
112	-	~	505	91(153741	ATP-binding protein [Streptococcus mutans]	69	۲۲	504
118	<u>-</u>	120	398	9111303804	YqeQ [Bacillus subtilis]	68	7.5	279
128	-	3545	13751	91 460257	triose phosphate (somerase (Bacillus subtilis)	60	70	213
	113	111667	112755	91 39954	IF2 (as 1-741) (Sacillus stearothermophilus)	68	80	1089
Suz	=	113 7875	7405	41 21633R	ORF for LIS ribosomal protein (Becilius subtilis)	69	76	124
205	2	116152	115823	91 1165303	L3 [Bacillus subtilis]	60	90	82
1 270	-	1 2407	1 2207	pir C01902 C419	arsenate raductase (EC 1 Staphylococcus xylosus plasmid pSX267	68	18	201
1 395	-	1 157	672	91 520574	glutamate racemase (Staphylococcus haemolyticus)	69	80	915
494	-	_	839	191 396259	protesse (Staphylococcus epidermidis)	68	77	637
\$10			:	101 40046	phosphoglucose isomerase A (AA 1-449) [Bacillus stearothermophilus] Ir[Si3936 NUBSSA glucose-6-phosphate isomerase (EC 5.1.1.9) A - cillus stearothermophilus	68	7.	: -
619	-	1 2124	1210	01 1303812	YqeV (Bacillus subtilis)	68	74	915
841	-	==	1341	ai 1165303	[L] [Bacillus subtilis]	68	90	324
111	-	1352	- 813	91 47146	thermonuclease (Staphylococcus intermedius)	68	70	462
1 1875	-	7 -	1 256	91 1205108	ATP-dapendent protesse binding subunit (Haemophilus influenzee)	68	82	255
1 2963	-	=	1 367	41 467458		60	8	157
	-							

Contig ORF	I D	Start int)	Stop (nt)	match	match gene name .	ais '	• ident	length (nt)
3020	<u></u>	06 1	362		hypothetical protein (Becillus subtilis)	69	99	273
3565	-	~	00+	01 1256635	dihydroxy-acid dehydratase (Bacillus subtilis)	89	- 22	399
3586	<u></u>	105	314	91 580832	AfP synthase subunit gamma (Bacillus subtilis)	89	82	210
3629	-	794	1 399	19111009366	Respiratory nitrate reductase (Bacillus subtilis)	6.8	18	396
3688	-	7	00+	91 1146206	glutamate dehydrogensse (Bacillus subtilis)	89	756	399
3699	-	764	1 399	191 11339950	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	68	1.5	396
4016	-	428	1 216	191 1009366	Respiratory nitrate reductase (Sacillus subtilis)	69	7.1	213
117	1-	127	1 301	91 149426	putative [Lactococcus lactis]	69	76	171
4436	1-	[60]	302	91/1022725	unknown (Staphylococcus haemolyticus)	89	80	300
4635	1-	320	162	91 1022725	unknown (Staphylococcus haemolyticus)	89	ונג	159
2	7	1 1330	2676	191 520754	putative (Bacillus subtilis)	88	76	1347
42	7	1 468	848	sp P42321 CATA_	CATALASE (EC 1.11.1.61.	88	96	381
\$	- 5	6389	1722	191 474177	alpha-D-1,4-glucosidase [Staphylococcus xylosus]	88	80	1668
26	9=	118018	118617	91 467411	recombination protein (Bacillus aubtilis)	88	וני	909
99	-	376	8	91 666116	glucose kinase (Stephylococcus xylosus)	8 B	ויי	468
6	~	1583	17	91 4095	replication initiator protein (Listeria monocytogenes)	88	74	339
2		111514	= =	pir A60663 A606	pir A60663 A606 translation elongation factor Tu - Bacilius subtilis	88	19	1206
101	- 1	6214	4191	101 167181	serine/threoning kinase receptor (Brassice napus)	88		213
ž	-	22.77	8232	91 1022726	unknown (Staphylococcus haemolyticus)	88	72	501
118	- 2	1 308	1 2011	9111303804	YqeQ (Bacillus subtilis)	88	۱ در	1704
141	-	1 657	1136	91 1405446	[transketolase (Bacillus subtilis]	88	72	480
8	-	5873	6116	191 1118002	dihydropteroate synthase (Staphylocnecus haemolyticus	88	7.0	246
165		1428	2231	191140053	phenylalanyl-tRNA synthetase alpha subunit (Becillus subtilis) ir 511710 YPDSA phenylalaninetRNA ligase (EC 6.1.1.20) alpha ain Becillus subtilis	æ	0	A0.
205	. 82	115027	14185	191 1165306	L2 (Bacillus subtilis)	88	82	843
325	-	1569	898	D 1303840	TqfS (Becilius subtilis)	88	78	672
235	-	- 2	1975	g1 452309	valy -tRNA synthetase [Bacillus subtilis]	88	96	1974

TABLE 2

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contin ORF	<u>8</u> 0	Start	Stop (nt)	metch ,	match gene name	e is	* ident	length (nt)
900	-	1 2060	1566	ai 1118002	dihydropteroate synthase (Staphylococcus haemolyticus)	88	7.3	495
\$	-	4325	1 2928	qi 558559	pyrimidine nucleoside phosphorylase (Bacillus subtills)	88	73	1398
\$32	-		419	91 143797	valy1-rrns syntherase [Bacillus steerothermophilus] sp[P11911 SYV_BACST VALYL-TRNS SYNTHETASE (EC 6.1.1.9) VALINE-TRNS LIGASE) (VALRS).	88	78	417
		2504	2968	91 153049	mannitol-specific ensyme-III [Staphylococcus carnosus] pir/J00088/J00088 phosphoreas/secase system ensyme II (EC 7.1.69), mannitol-specific, factor III - Staphylococcus carnosus sp[p1)7076/PTHA_STACA PTS SYSTEM, MANNITOL-SPECIFC IIA COMPONENT EIIA-PTL)	e e	8,	465
705		SB4	1 399	1911710016	initrite reductase (nirB) (Bacillus subtilis]	88	20	186
1000		1 1824	1309	[9: 1022726	unknown Staphylococcus haemolyticus	88	78	516
1299	-	1 587	324	1011401786	[phosphomennomutase [Mycoplasma pirum]	88	\$5	264
-		0,11	900	191 39963	ribosomal protein L20 (AA 1-119) (Bacillus steerothermophilus) ir 505348 R5B520 ribosomal protein L20 - Bacillus esrothermophilus	88	2	233
1386	-	17	214	pir 847154 8471	signal recognition particle Sex chain homolog Fth - Bacillus subtills	88	11	174
1386	-	183	533	pir 647154 8471	signal recognition particle 34k chain homolog Fith - Bacillus subtills	88	٤٢	351
2949	-	1 704	1 399	1911535350	codx Bacillus subtilis	88	6,	306
2984	-	s	691	10: 218277	[O-acetylearine(thiol) lyase (Spinacia pleracea)	88	70	165
1 3035	<u>-</u>		138	gi 493083	dihydroxyacetone kinase [Citrobacter freundil]	æ	69	138
3089	-	-	152	91 606055	Jose_1746 [Escherichia coli]	8.8	88	150
3917		1 817	410	91 143378		8	۲۲	408
4199	-	680	35	91 1405454	sconitase [Bacillus subtilis]	88	82	339
4201		734	369	p. 515938	glutamate synthase (ferredoxin) [Synechocystia sp.; pir 346957 946957 91utamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystia sp.	8	78	366
4274			336	191 515938	glutamate synthsse (ferredoxin) [Synethocystis sp.) pir 546957 546957 glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystis sp.	9		336
₩000	-	1 794	1 399	19111146206	glutamate dehydrogenase [Bacillus subtilis]	88	1,	396
	-	1 4570	0009	91 535350	[Codx (Bacillus subtilis]	87	70	1431
25		6781	6482	181 1064791	[function umknown (Bacillus subtills]	8,	99	300
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						: ; ;		

5. aureus - Putativa coding regions of novel proteins similar to known proteins

Contig ORF	10 PF	Start (nt.)	Stop (nt)	match	match gene name	G	1 ident	length (nt)
	2	1584	2480	91 142992	glycerol kinase (glpK) (EC 2.7.1.30) [Bacillus subtilis] pir [B45868] B45868 glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp P18157] GLPK_BACSU GLYCEROL KINASE (EC 2.7.1.30) (ATP:GLYCEROL -PHOSPHOTRANSPERASE) (GLYCEROKINASE) (GK).	6	22	692
86	112	8813	9100	91 467433	unknown (Bacillus subtills)	87	62	288
124	-	4265	2988	91 556886	serine hydroxymethyltransferase [Bacillus aubtilis] pir[849363]849363 serine hydroxymethyltransferase - Bacillus ubtilis	87		1278
124	9	1 4457	1 4032	gi 55683	Unknown (Bacillus subtilis)	1 87	99	426
148	-	3741	4559	1911667460	unknown (Becilius subtilis)	8)	100	819
164	2		13810	gi 39954	IF2 (as 1-741) (Bacillus stearothermophilus)	69	22	1101
117	~	1104	1 2126	91 467385	unknown (Bacillus subtilis)	69	94	1023
199	-	1987	1158	191 143527	iron-sulfur protein (Bacillus subtilis)	1 87		825
199	~	4717	2933	pir A27763 A277	succinate dehydrogenase (EC 1.3.99.1) flavoprotein - Bacillus subtilis	6	08	1785
205	2	111782	111543	91/1044972	ribosome protein 1.29 (Bacillus subtilis)	6	92	240
705	125	113275	12607	911163309	[53 [Bacillus subtilis]	87	75	699
1 222	-	1 2033	11107	91/11/1249	reclll gene product [Bacillus subtilis]	87	02	927
236	-	1635	1333	91 1146198	[ferredowin [Bacillus subtilis]	69	080	303
346	- 2	1 2585	1 2292	91 467373	ribosomal protein S18 (Bacillus subtills)	67	- 1.	294
360	-	4189	3422	91/1161382	IcaC (Staphylococcus apidermidis)	61	12	768
320	_	1696	2391	911312443	carbamoyl-phosphate synthase (glutamine-hydrolysing) (Recillus aldolyticus)	18	80	969
380	-	1165	1383	91 142570	ATP synthase c subunit (Bacillus firmus)	69	80	219
3	-	006	£ (01	gi 467386	thiophen and furan oxidation (Bacillus subtilis)	87	77	174
425	~	1003	794	91 1046166	pilin repressor (Mycoplasma genitalium)	187	69	210
4.6	-	1255	722	91 405134	acetate kinase (Bacillus subtilis]	- 87	25	534
480	-	-	111	91/142559	ATP synthase alpha subunit [Bacillus megaterium]	87	96	711
- 1	-	7	352	S.7 Q06797 RL1_B	SOS RIBOSOMAL PROTEIN LI (BLI).	F 8.7	72	151
1 677	~	1359	955	91 460911	[fructose-bisphosphate aldolase (Bacilius subtilis]	6	18	597
677	_	934	1284	191 (60911	[fructose-bisphosphate aldolase (Bacillus subtilis)	69	96	150
9.8	-	<u> </u>	1 452	gi 1146247	#	87	79	450

TABLE 2

1 1 1 1 1 1 1 1 1 1	Contig	ORF	Start	Stop (nt)	match	match gene name	e is	1 ident	(nt)
1 1 1 1 1 1 1 1 1 1	1376	-	426	214	91 1065555	product (Caenorhabditis	-68	75	213
1 1 10 10 10 10 10 10	2206	-		374	91 215098	excisionase (Bacteriophage 154a)	87	2	57.5
1 1 100 61 61 61 61 61	2938	-		290	gi 508979	GPP-binding protein (Bacillus subtilis)	87	69	288
1 3.7 273 10 10 10 10 10 10 10 10 10 1	3081	~	126	308	91 467399	IMP dehydrogenese (Becillus subtilis)	67	72	183
1 1, 14.7 27.5	1515	-		100	gi 1405454	scourtese (Becilius subtilis)	6	26	399
8 10477 8736 9716 10	4238	-	547	275	1911603769	Hutu protein, urocenase (Becillus subtills)	6	5	273
6 1100 1314	-	!	110427	1 8736	1911603769	HutU protein, urocanase (Bacillus subtilis)	986	72	1692
1 1346 1372 9 11289287	22	9	4190	3738	191 410515	urease beta subunit [Staphylococcus xylosus]	98	23	453
3 2336 1713 Gil55687 Urracil phosphoribosyltraniferase [Bacillus ubtilis 66 75 75 75 75 75 75 75	3		2480	1572	191 269287	UDP-glucose pyrophosphorylase (Bacilius subtilis)	98	70	606
1 1149 1446	124		2336	1713	14:1556887	uracil phosphoribosyltransferse Bacillus subtilis pir S49164 S49364 uracil phosphoribosyltransferse Bacillus ubtilis	98	*	624
4 1518 1359 9	148		1349	3448	191 467458	cell division protein (Bacillus subtilis	98	15	2100
1 1340 2086	148	-	1 3638	3859	gi 467460	unknown (Becillus subtilis)	86	67	222
18 17347 19467 Gi 184680 Polymuclectide phosphorylase (Bacillus subtilis) 86 72 72 73 73 73 73 73 73	152		1340	1 2086	gi 1377835		96	75	747
2 554 1159 G1 143467 Exbosomal protein L21 (Bacillus subtilis) 86 77 86 12950 G1 143464 Fibosomal protein L22 (Bacillus stanothermophilus) Fishel L22 (Bacillus stanothermophilus) Fishel L23 Fibosomal protein L24 (Bacillus stanothermophilus) Fishel L25 Fibosomal protein L25 Fishel L2	164		1	119467	91 1184680	polymuclectide phosphorylase (Bacillus subtilis]	98	22	1212
3 2966 2392 91 42464 Fibosomal protein L12 Bacillus stearothermophilus Ir S10612 510612 86 75 70 71 71 71 71 71 71 72 72	180	7	554	1 1159	1911143467	ribosomal protein S4 [Bacillus subtilis]	98	1 B0	909
126 13164 12990 151 40107 ribosomal protein L22 Bacillus searchemophilus Institution 151 1510612 510612 150 151 1510612 510612 150 151 1510612 510612 150 151 1510612 510612 150 151 1510612 510612 150 151 1510612 510612 150 151 1510612 510612 1510 1510612 510612 1510612 510612 1510612 510612 1510612 510612 1510612 510612 510612 1510612	205	-	1 2966	1 2592	1911142464	ribosomal protein 117 (Bacillus subtifis)	9.6	77	375
7 1165 1340 Gi 657375 Fibosome1 protein S6 [Bacillus subtilis] 1196 1340 Gi 139656 SpovG gene product Bacillus subtilis 1401 Gi 139656 SpovG gene product Bacillus subtilis 1402 Gi 1407	205	52	13364	112990	191 40107	protein L22	98	27	27.5
11196 1140 Gi 19656 spoyG gene product [Bacillus magaterium]	246	-	1 3463	1 3140	1011467375	ribosomal protein S6 (Bacillus subtilis)	98	02	324
7 1884 4345 gi 467440 'phosphotibosylpycophosphate synthetase [Bacillus subtilis] gi 40218 PRPP 86 78 5 2170 2323 gi 666993 purative ATP binding submit [Bacillus subtilis] 86 71 6 21487 1678 gi 1177684 Chorismate mutase (Staphylococcus xylosus) 86 77 7 1489 1109 gi 1118003 dihydromeopterin aldolase [Staphylococcus haemolyticus] 86 77 8 2124 3440 gi 1146219 188-21 of identity to the Escherichia coli GTP-binding protein Era; putative 86 77 7 2124 3440 gi 1146219 188-21 of identity to the Escherichia coli GTP-binding protein Era; putative 86 77 8 7 7 7 7 7 7 7 7 7	299	-	11196	1540	çi 39656	spoVG gene product (Bacillus megaterium)	989	0,	345
5 2170 2323 94 666993 Purative ATP binding submit [Bacillus subtilis] 86 65	299	-	3884	4345	191 467440	synthetase (AA 1-117) (Bacillus subtilis) gi 40218 PRPP synthetase (AA 1-117)	98	9,	462
2 1487 1676 91 1177684 Chorismate mutase (Staphylococcus xylosus) 86 78 86 77 89 1109 91 1118003 dihydronsopterin aldolase (Staphylococcus haemolyticus) 86 77 89 1109 91 1118003 dihydronsopterin aldolase (Staphylococcus haemolyticus) 86 77 87 87 88 77 89 1109 91 1118019 128.2% of identity to the Escherichia coli GP-binding protein Era; putative 86 73 86 73 86 74 86 75 86 75 86 77	304	- 2	2170	2523	191 666983	putative ATP binding subunit [Bacillus subtilis]	98	- 65	354
5 2086 3409 51 487434	310	- 2	1 1487	1678	91 1177684	Chorismate mutase (Staphylococcus xylosus)	98	12	192
2 1489 1109	137	-	2086	3405	51 487434	Isocitrate dehydrogenase (Bacillus subtilis)	98	1 78	1320
2 2124 3440 [9: 3146219 188.2% of identity to the Escherichia coli GTP-binding protein Era, putative 86 73	339	-	1 1489	1109	gi 1118003	dihydroneopterin aldolase (Staphylococcus haemolyticus)	98	77	181
	358		2124	3440	191 1146219	18.3% of identity to the Escherichia coli GTP-binding protein Era, putative (Becillus subtilis)	98		7161

Cont ig	108F	Start (nt)	Stop (nt)	metch acession	match gene name	E .	• idenc	length (nt)
404	~	1 1015	2058	191 1303817	YqfA (Bacillus subtilis)	98	1.07	1044
581	7	199	452	191 40056	phop gene product (Bacillus subtilis)	98	17	210
642	~	338	1075	19111176399	Epif (Staphylococcus apidermidis)	98	72	738
07.6	-	622	5	91 143328	phoP protein (put.); putative (Bacillus subtilis)	98	69	276
868	-	1771	H 90	91 1146247	[asparaginy]-tRNA synthetase [Bacillus subtilis]	98	X	68.89
898	7	1 963	611	gi 1002911	[transmembrane protein [Saccharomyces cerevisiae]	96	69	171
904	-	-	162	[41]1303912	(Yqhw (Bacillus subtilis)	98	72	162
989	-	35	3	91,1101993	Yqkt (Bacillus subtilis]	9.6	76	399
1212	<u>-</u>	296	150	911414014	ips-90d gene product {Bacillus subtlis}	A 6	104	147
1323	-	~	148	21 40041	pyruvate dehydrogenase (liposmide) [Bacillus stearchermophilus] ir S10798 DESSPF pyruvate dehydrogenase (liposmide) (EC 1.2.4.1) pha chain - Bacillus stearcthermophilus	& &	27	147
3085	~	540	310	191 1354211	PET112-like protein (Bacillus subtilis)	98	98	162
7847	_	-	22R	111 296464	ATPase (Lactococcus lactis)	96	69	228
4487	-	476	240	91 1022726	unknown Staphylococcus hasmolyticus	90		7.62
4583	-	372	187	91 1022725	(Staphylococcus haemoly	90	6.	186
25	~	4287	5039	0111502421	[3-ketoscyl-acyl cerrier protein reductase [Bacillus subtilis]	98	79	15.1
36			129395	gi 1408507	midine nucleoside transport protein (Bac	æ	69	1233
69	~	1 332	1192	91 467376	unknown Bacillus subtilis]	98	7	861
ت ت	~	980	1707	di 142992	glycerol kinase (glpk) (EC 2.7.1.30) [Bacillus subtilis] pir B4966 B45868 glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp P18157 GLFK_BACEU GLYCEROL KINASE (EC 2.7.1.30) (AFP:GLYCEROL -PHOSPHOTTANNSFERASE) (GK).	£	72	828
106	-	1505	3490	911143766	(thrsv) (EC 6.1.1.3) [Bacillus subtilis]	85	74	1986
124	~	1153	2202	91/311924	glycerladehyde-3-phosphate dehydrogenase [Clostridium pasteurianum] pir S34254 S34254 glyceraldehyde-3-phosphate dehydrogenase (EC .2.1.12) - Clostridium posteurianum		5	1050
129	-	6466	5252	g1 1064807	ORTHIMINE AMINOTRANSFERASE (Bacillus subtilis)	85	נג	1215
138		3475	5673	91 1072419	gicB gene product (Staphylacoccus carnosus)	85	14	2199
189	-	~	169	pi 467385	unknown (Becillus subtilis)	98	59	168
						• • • • • • • • •	+1114111111	*

)

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF 110	Start (nt)	Stop (nt)	acession .	match gene name		1 Ident	length (nt.)
-	115	8624	8106	gi 1044981	ribosomal protein 55 (Bacillus subtilis)	95	75	519
205	202	10928	110596	pir A02819 R5BS	pir A02819 R5BS ribosomal protein L24 - Dacillus stearothermophilus	85	21	333
220	9	6490	1 6101	91 48980	secA gene product (Becillus subtilis)	88	99	390
231	-	4877	3159	91 1002520	HutS Becillus subtilis	85	0٢	1719
243	6	8013	8783	91 414011	ipa-87r gene product (Bacillus subtilis)	8.	12	וינ
249	~	5894	3186	Q1 1405454	aconitase (Bacillus subtilis)	85	73,	2709
302	-	140	475	91 40173	homolog of E.coli ribosomal protein L21 (Bacillus subtilis) ir[s18413 S18419 Ribosomal protein L21 - Bacillus subtilis p p26908 RL21_BACSU 50S RIBOSOMAL PROTEIN L21 (BL20).	85	22	336
333	-	5445	1 2968	gi 442360	CipC adenosine triphosphatase (Bacillus subtilis	85	69	2478
364	9	6082	1 8196	91 871784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	88	89	2115
448	7	1 1992	1339	91 405134	ocetate kinase Bacillus mubtilis	BS	89	654
747		1251	853	gi 1373157	orf-x, hypothetical protein; Method: conceptual translation supplied by author (Bacillus subtilis)	£	13	399
984	-	159	1 467	191 541768	hemin permease (Yersinia enterocolitica)	8.5	\$5	309
1089	-	1208	909	pir 847154 8471	signal recognition particle 54% chain homolog Fith - Becillus subtilis	98	1,	603
1163		918	409	91/304355	disminopimalate decarboxylase Bacillus methanolicus sp P41023 DCDA_BACHT DIAMINOPIMELATE DECARBOXYLASE EC 4.1.1.20) DAP DECARBOXYLASE	85	62	408
1924	-	487	1 251	Q1 215098	excisionase [Bacterlophage 154e]	82	2	237
2932	-	9/1	1 390	191 1041099	Pyruvate Kinase [Bacillus licheniformis]	88	71	387
3030	<u> </u>		275	91 42370	pyruvate formate 1yase (AA 1-760) [Escherichia coli] ir 501788 501788 formate C-acetyltransferase (EC 2.3.1.54) - cherichia coli	82	74	273
1111	-	585	1 299	191163568	limb deformity protein (Gallus gallus)	88	88	1 297
3778	-	630	316	91 391840	beta-subunit of HDT (Pseudomonas fragi)	88	67	315
1 3835	-	-	1 387	9111204472	type I restriction enzyme ECDR124/3 I M protein [Hosmophilus influenzae]	88	95	387
4042	-	<u> </u>	386	91 18178	formate acetyltransferase [Chlamydomonas reinhardtii] ir 524997 524997 formate C-acetyltransferase (EC 2.3.1.54) - lamydomonas reinhardtii	85	0,	184 1
1 4053	-	35	340	91 1204472	type I restriction enzyme ECOR124/3 I M protein (Memophilus influenzee)	88	98	306
4108	-	7	181	01 1072418	glcA gene product [Staphylococcus carnosus]	98	61	180
7300	-	1 575	330	911151932	[fructose entyme II (Rhodobacter capsulatus)	88	65	246

TABLE 2

s - Putative coding regions of novel proteins similar to known br

Cont ig	100 101	Start (nt)	Stop (nt)	acession	match gene name	E E	1 ident	length I Int)
4392	-	627	355	191 1022725	unknown Staphy]ococcus haemolyticus	85	74	273
4408	-	~	235	91 871784	[CIp-like ATP-dependent protesse binding subunit (Bos taurus)	88	62	234
4430	-	578	1 291	94 1009366	Respiratory nitrate reductase (Bacillus subtilis)	85	80	288
4555		5	253	91 450688	IsadH gene of Ecoprit gene product [Escherichia coli) pir 538437 538437 hadH protain - Escharichia coli pir 509629 509629 hypothatical protain A - Escharichia coli (508 40-520)	8	25 ,	252
4611	-	18 7	242	91 1256635	dihydroxy-acid dehydratase [Becillus subtilis]	98	59	240
-		19001 01	10891	ti 469#2	tos8 gone product (Staphytococcus epideraidis)	78	E 9	165
2	~	1348	2711	- 	lahrC protein (Bacillus subtilia)	78	98	177
16	-	1803	4652	gi 1277198	DNA repair protein [Deinococcus radiodurans]	78	63	2850
77	_	1535	1128	lgi 511069	Uref (Staphylococcus xylosus)	78	£ .	408
53	_	5505	5306	91 603320	Yer082p (Saccharomyces cerevisiae)	8	79	252
2	Ξ	111597	111145	91 1303948	Yqiw (Bactilus subtilis)	-	89	1 453
ī,	<u>=</u> _	12 14059	01.21	4, 1162613	Infanched Chain alpha-keto acid dehydrogenase E2 (Nacillus subtilis) gi 1303944 BfmBB (Bacillus subtilis)	4	7.	1230
0,	-	1332	982	gi 46647	ORF (repE) [Staphylococcus aureus]	98	89	35.1
٤٢	-	2512	4311	91 142993	glycerol-3-phosphate dehydrogenase (glpD) (EC 1.1.99.5) [Bacillus ubtilis]	76	3.4	1800
86	^	4324	9609	191 467427	methionyl-tRNA synthetase (Bacillus subtilis)	£	99	1773
001	•	9501	8680	91/1340128	ORF1 (Staphylococcus sureus)	70	94	822
111	-	1934	3208	91(1237019	Srb [Bacillus subtilis]	94	89	1275
148	9	4720	5670	91 467462	cysteine synthetase A (Bacillus subtilis)	84	69	156
152	-	2064	2456	[q: 143377	pyruvate decarboxylase [E-1] alpha subunit [Bacillus subtilis] pir[836718]HEBSPA pyruvate dehydrogenase (lipoamide) (EC 1.2.4.1) lpha chain - Bacillus subtilis	2	9	393
169	۲	3634	3861	di 1001342	hypothetical protein (Symechocystis sp.)	9.	99	228
17.1	-	2992	2657	1911517475	Desmino acid transaminase (Staphylococcus haemolyticus)		1.	326
186	9	6941	6216	gi 467475	unknown (Bacillus subtilis)	94	٥٢	726
205	•	6261	2695	91 216340	ORF for adenylate kinase [Bacillus subtilis]	8	1,	570
224	~	915	1391	191 288269	beta-fructofuranosidase Staphylococcus xylosus	-	70	677
							,	

TABLE 2

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	ORF	Star!	Stop (nt)	match	match gene name	e is	1 ident	length (nt)
251	-	26	388	191 1303790	Yqel (Becillus subtilis)	84	69	297
282		1526	2836	91 143040	glutamate-1-semialdehyde 2,1-sminotransferase [Bacillus aubtilis] pir[042728]D43728 glutamate-1-semialdehyde 2,1-aminomutase [EC .4.3.8] - Bacillus subtilis	ø	27	1311
100	- 2	3138	1 2959	19111070014	protein-dependent (Bacillus subtilis)	96	62	180
320	-	2343	4229	gi 143390	carbamyl phosphate synthetase [Bacillus subtilis]	84	70	1887
27.6	-	6 1	296	191 1022725	unknown (Staphylococcus haemolyticus)	8	0,0	294
413	-	1 2201	1341	19111256146	YbbQ [Becilius subtilis]	98	65	198
439	-		392	gi 1046173	osmotically inducible protein (Mycoplasma genitallum)	8	23	060
461	2_	1362	2270	91 40211	threonine synthase (thrc) (AA 1-352) [Bacillus subtilis! ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacillus btilis	.	69	606
1 487	-	-	1 299	91 11144531	integrin-like protein alpha Intip Candida albicana	8	46	297
164	-	624	908	pir S08564 R3BS	ribosomal protein S9 - Bacillus stearothermophlius	5	69	282
167	-	836	(61	pir S08564 R3RS	ribosomal protein 59 - Bacillus stearothermophilus	. 84	רר	198
548	-		341	1416141111	macil permase (Bacillus caldulyticus)	84	74	339
728	- 7	1 2701	1748	gi 912445	DNA polymerase (Bacillus caldotenax)	8	9	954
1 769	-	-	1 257	41 1510953	cobalamin blosynthesis protein N (Methanococcus jannaschii)	84	38	255
1 254	-	308	951	191 1405454	aconiteco (Bacillus subtilis)	**	22	151
957			1 395	51 143402	recombination protein (ttg start codon) (Bacillus subtilis) gi 1303923 RecN [Bacillus subtilis]	8	6.9	393
978	-	- 1	452	9: 865934	ClpB Symechococcus sp.	- 84	0,	450
1585	-	-	1 257	1-11 510140	[ligoendopeptidase F [Lactococcus lactis]	76	\$6	255
2954	-	-	1323	91 603769	HutU protein, wrocenase (Becillus subtilis)	98	7.3	321
2996		059	348	91 18178	formate acetyltransferase [Chlamydomonas reinhardtil] Ir[524997 524997 formate C-acetyltransferase (EC 2.3.1.54) - lamydomonas reinhardtil	4	9	66
3766	-	137	1375	9: 517205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	. B.	72	363
1 4022	-	- 2	1 169 /	51 1146206	glutamate dehydrogenase (Becillus subtilis)	84	54	891
4058	-	620	312	91 151932	[fructose enzyme II [Rhodobecter capsulatus]	84	1,1	309
4108	- 5	106	1351	gi 1072418	glcA gene product Staphylococcus carnosus	78	7	246

3 aureus - Putalive coding regions of novel proteins similar to known proteins

Contid	Contig lost	Start	Stop (nt)	match , accession	match gene name	E	• ident	length (nt.)
4183	-		308	91 603769	NutU protein, urocanase (Bacillus subtilis	78	72	306
4726		\$	234	gi 146208		8	٤	180
72	-	2043	1576	191 393297	urease accessory protein (Bacillus sp.)	83	79	468
2	=	113 14722	13745	 9i 142612	branched chain alpha-keto acid dehydrogensse El-beta (Secillus ubtilis)	93	69	978
	9	13357	12872	[oi 143132	laccate dehydrogensse (AC 1.1.27) (Bacillus caldolyticus) pir[829704 829704 L-lactate dehydrogensse (EC 1.1.1.27) - Bacillus aldolyticus	2	99	4 86
99	-	1 3119	1 2274	1911303894	Yqhm (Bacillus subtilis)	83	63	946
99	-	1 611A	4643	191 1212730	Yqhk (Bacillus subtilis)	83	89	1476
10	-	1864	1523	91 44095	replication initiator protein [Listeria monocytogenes]	63	6.	342
8		37.7	1429	gi 155571	alcohol dehydrogensse I (adha) (EC 1.1.1.1) (Eymomones mobilis) pir a35260 a35260 alcohol dehydrogensse (EC 1.1.1.1) I - Zymomonas obliis	æ	0,	1053
95	~	1 708	1 2162	1931506381	phospho-beta-glucosidase (Becillus subtilis)	83	0,	1455
137	-	89	694	91 467391	initiation protein of replicaton [Bacillus subtilis]	83	در	627
140	-	1 3209	1 2742	91 634107	kdpB (Escherichia coli)	83	65	998
142	_	3468	2989	91 1212776	[lumazine synthese (b-subunit) [Becillus amyloliquefaciens]	63	69	480
191	=	1 5749	9699	91 903307	ORF75 (Bacillus subtilis)	63	99	948
164	_	9880	111070	91 49316	ORF2 gene product (Bacillus subtilis)	83	99	1191
164	=	114148	114546	[91]580902	ORF6 gene product [Bacillus subtilis]	83	09	199
170	~	3144	1 2467	9 520844	orf4 [Bacillus subtilis]	83	9	678
186	-	1 2029	1370	gi 269284	cysteinyl-tRNA synthetase (Bacillus subtilis)	8	72	099
1 205	=	1 7822	1 7607	91 216337	ORP for L30 ribosomal protein (Bacillus subtilis)	63	7.	216
237	-	3683	4540	ui 1510488	[imidazoleglycerol-phosphate synthase [cyclase] [Methanococcus jannaschil]	83	9	RSA
100	-	1 985	63	151 467419	unknown (Bacillus subtilis)	83	99	348
302	-	1421	2743	101 508979	GTP-binding protein [Bacillus subtilis]	83	89	1323
1321	-	1 3933	1756	191139844	[fumarase [citG] (as 1-462) [Bacillus subtilis]	8	99	363
1 367	-	- 2	352	17111039479	OMFU [Lectococcus lactis]	6	35	351

. sureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORP	Start	Stop (nt)	match	Patch gane hame	E 18	* ident	length (nt.)
387	<u>-</u>	_	662	191 806281	DNA polymerase I (Bacillus stearothermophilus)	2	100	099
527	7	916	1566	191 396259	protesse (Staphylococcus epidermidis)	83	67	651
55		355	179	9. 142455		6	99	771
536		1617	1438	91 143366	ademylosuccinate lyase (PDR-B) [Bacillus subtliss , ir C29336 WZBSDS ademylosuccinate lyase (EC 4.3.2.2) - Becillus ubtilis	63	6,	180
652	-	~	859	191 (520753	DWA topolsomerase I (Bacillus subtilis)	83	72	858
174	7	200	361	91 1522665	M. Jannaschil predicted coding region MJECL28 [Methanococcus jannaachii]	69	28	162
R9.7	-	120	296	91 1064807	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	3	1,6	17.1
1213	<u>-</u>	e -	491	91 289288	lexA (Becillus subtilis)	83	67	489
2529	-	296	150	91 143786	[ryptophany]-ERNA synthetase (EC 6.1.1.2) (Bacillus subtliis) pir[JJ0481 YW85 tryptophantRNA ligase (EC 6.1.1.2) - Bacillus ubtlils	8	69	147
1 2973	-	649	326	19111109687	Proz Bacillus subtilis	63	85	324
1001	- -	n ä.	99(141 142532	JORF_0294 (Eschotichia cotti	6	65	363
3035	~-	 \$	305	yi 950062	hypothetical yeast protein 1 Hycoplasma capricolum) pir[548578 548578 hypothetical protein - Hycoplasma capricolum SGC3) (fragment)	8	65	261
3061	<u>-</u>	62	303	191 (1353197	[thioredoxin reductase [Eubacterium acidaminophilum]	3	19	243
4458	-	1 540	172	191 397526	clumping factor (Staphylococcus aureus	3	#.	270
4570	-	464	223	91 1022726	unknown Staphylococcus haemolyticus	83	74	222
4654	-	6	198	g1 1072419	gleB gene product [Staphylococcus carnosus]	63	- 64	165
9.	~	295	1191	91 153854	luva402 protein (Streptococcus pneumoniae)	82	- 69	7.68
16	_	1193	1798	91 153854	uvs402 protein (Streptococcus pneumoniae)	83	70	909
	=	9644	8724	ci 1204400	N-acetylneuraminate lyase (Heemophilus influenzae)	62	85	126
. 7	-	986	2019	gi 841192	(catalase (Bacteroides fragilis)	83	0,	1032
.5	9	2590	3489	91 143607	sporulation protein [Bacillus subtilis]	82	69	006
98	Ξ	12270	13925	di 39431	oligo-1,6-glucosidase (Bacillus cereus)	82	09	1656
98	-15	117673	18014	gi 467410	unknown Bacillus subtilis	83	99	342
19	~	981	3313	911:43148	transfer RNA-Leu synthetage (Bacillus subtilis)	82	70	2433

IABLE 2

S, aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	10 GI	Start (nt)	Stop (nt)	match .	match gene name	a sin	* ident	Jength (nt)
		9162	11318	51 48240	elongation factor G (AA 1-691) (Thermus aquaticus thermophilus) in S15928 EFTWG translation elongation factor G - Thermus aquaticus p P1355 EFG_THETH ELONGATION PACTOR G (EF-G).	82	\$	2157
82	7	5470	1 3260	gi 143369	phosphoribosyltormyl glycinamidine synthetese II (PUR-Q) (Bacillus ubtilis)	92	99	2211
102	9	1 3662	1 5380	91 1256635	dihydroxy-acid dehydratase [Bacillus subtilis]	82	65	1719
111	-	3262	3633	pir A47154 A471	orfl 5' of fith - Bacillus subtilis	62	ý	152
128	9	4377	5933	91 460258	phosphoglycerate mutase [Bacillus subtilis]	82	99	1557
129	 -	1229	2182	91 403373	glycerophosphoryl diester phosphodiesters## [Becillus subtilis] pir 517251 537251 glycerophosphoryl diester phosphodiesters## - acillus subtilis	2	29	954
170	-	7	1001	gi 1377831	unknown (Bacillus subtilis)	62	67	1640
561	-	-	1094	gi 467386	thiophen and furan oxidation (Bacillus subtilis)	82	9	1092
- 3	-	1 3572	4039	911153566	ORF (19K protein) (Enterococcus (secalis)	62	65	899
189	-	4455	4225	91 1001878	[Spt protein [Listeria monocytogenes]	82	ָ נג	231
206	6	21166	120707	91 (473916	lipopeptide ant biotics trutin A (Bacillus subtilis) apinyladiupid_BACSU Lipopeptide antidiotics iturin a and surfactin iosynthesis protein.	83	05	099
221	~	808	1 1722	91 517205	67 kDa Myosin-crossreactive straptococcal antigen (Streptococcus yogenes)	82	63	918
223		3866	3651	qi 439619	0.5	82	69	216
7 260	_	5207	4296	[91]1161381		85	19	912
315	_	4864	2855	gi [143397	quinol oxidase (Bacillus subtilis)	82	67	2010
1250	2	8520	7945	9; [142981	ORF5; This ORF includes a region (as21-103) containing a potential ronsulphur centre homologous to a region of Rhodospirillum ruhrum nd Chromatium vinosum; putative [Racillum stearothermophilum] pir[PQ0239]PQ0239 hypothetical protein 5 (gldA) region) -	28	62	576
166	_	1055	1342	91 436574	ribosomal protein Li (Bacillus subtilis)	85	11	288
370	-	1 262	618	g± 1303793	Yqeb. (Bacillus subtilis	92	65	357
* 0 *	-	1 3053	403	9111303821	rqfE (Bacillus subtilis)	. 82	6.8	972
405	-	4440	3073	101011111	Yqhx [Bacillus subtilis]	82	63	1368
\$5		1 409 6	2864	91 149521	tryptophan synthase beta subunit [Lactococcus lactis] pir[5]5]529[5]5129 tryptophan synthase (EC 4.2.1.20) beta chain - actococcus lactis subsp. lactis	28		1233
-								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

S. auraus - Putative coding regions of novel proteins similar to known proteins

		-					•	
Contig	I I D	Start (nt)	Stop (at)	match scession	match gone name	£ .	• ident	length Int)
-	-	3394	1 2573	91 142952	glyteraldehyde-3-phosphate dehydrogenase (Bacillus tearothermophilus)	82	67	622
=	==	110415	111227	gi 1204354	spore germination and vegetative growth protein (Haemophilus influenzae)	83	67	613
446	=	-	161	91 143387	aspartate transcarbamylase [Bacillus subtilis]	82	99	189
462		1007	1210	91 142521	deoxyribodipyrimidine photolysse (Becilius subtilis) pir A37192 A37192 uvrB protmin - Bacilius aubtilis sp[P14951 UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C.	83	3 .	204
537	-	1 1560	184	qi 853767	UDP-N-acetylqlucosamine 1-carboxyvinyltransfersse (Bacillus ubtilis)	82	19	777
6R0	~	1 407	788	91 426472	sect gene product (Staphylococcus carmosus)	82	69	294
724	~_	565	386	91 143373	phosphorthosyl aminoimidazole carboxy formyl ormyltransferase/inosine monophosphate cyclohydrolass (PUR-H(J)) Bacillus subtilis]	83	89	180
1 763	-	1 422	1 213	191 467458	call division protein (Bacillus subtilis)	. 62	35	210
818	-	1 564	1 283	91 1064787	function unknown [Bacillus subtilis!	62	69	282
828		175	1176	41 143043	uroporphyrinogen decarboxylase (Bacillus subtlits) pir B47045 B47045 uroporphyrinogen decarboxylase (EC 4.1.1.37) - acillus subtlits	62	ני	1002
	-	-	1 599	19111027507	ATP binding protein [Borrelia burgdorfert]	82	72	597
926	-	<u> </u>	1 399	1911143795	transfer RNA-Tyr Synthetase (Bacillus subtilis)	82	09	190
196	-	7	1 306	(91 577647	gamma-hemolygin (Staphylococcus sureus)	8 2	69	306
1192	-	1 307	155	191/146974	NHJ-dependent NAD synthetase (Escherichia coli)	82	1,1	153
1111	-	49	375	911407908	Ellser (Staphylococcus xylosus)	82	72	327
1341			150	gi 39962	ribosomal protein 135 (AA 1-66) (Bacillus stearothermophilus) ir[505347]#58535 ribosomal protein L35 - Bacillus earothermophilus	83	89	150
1 2990	~_	567	349	91/534855	ATP SYNTHASE EPSILON CHAIN (EC.1.34).	8	Ç	219
3024	-	\$	727	91 467402	unknown (Bacillus subtilis)	82	9	180
3045	-	276	139	91 467335	ribosomal protein L9 (Bacillus subtilis)	82	09	138
3045	~	558	604	51 467335	ribosomel protein 1.9 (Bacillus subtilis)	#2	#2	159
1 3091	-	474	238	41 499335	seck protein (Staphylococcus carnosus)	83	78	237
9101		9	<u> </u>	Qi 546918	orfy 3. of comk [Bacillus subtilis, E26, Peptide Partial, 140 saj pir[st]st3612[st3612 hypochetical protein Y - Bacillus subtilis sp[e0398[HHXD_BACSU HYPOTHETICAL PROTEIN IN COHK 3.REGION (ORFY) FRAGHENT).	25	3	207
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				

TABLE 2

sim Vident length (nt)	82 75 318	81 64 702	81 59 318	81 62 1 300	81 55 1002	81 67 1131	81 66 1449	B1 65 639	01 64 1575	81 74 618	B1 54 492	81 70 372	64 1578	81 67 1494	R1 64 738	81 68 1029	81 61 618	81 65 783	81 54 225	81 63 678	69 631
match dene name	nitrate reductase alpha subunit (Escherichia coli) p 909152 MARO_ECOLI RESPIXATORY NITRATE REDUCTASE 1 ALPHA CHAIN (EC 7.99.4). (SUB 2-1247)	spsB (Sphingononas sp.)	lysine specific permease (Escherichia coli)	M. genitalium predicted coding region NG246 (Mycoplasma genitalium)	pir S16649 S166 dciAC protein - Bacillus subtills	YqjJ (Bacillus subtilis)	6-phosphogluconate dehydrogenase (Escherichia coli)	permease Bacillus subtilis	[gluconata kinasa [Bacillus subtilis]	pir A25805 A258 L-lactate dehydrogenase (EC 1.1.1.27) - Bacillus subtilia	[Nitu-related protein [Hasmophilus influentse]	ipa-93d gene product (Bacillus subtilis)	Initrate reductase beta subunit (Bacillus subtilis) sp[P42176 NARH_BACSU NITRATE REDUCTASE BETA CHAIN (EC 1.7.99.4).	GbsA (Bacillus subtilis	(riose phosphate (somerase (Bacillus megaterium)	alanine dehydrogenase (Bacillus subtilis)	Salmonella typhimurium 15200 insertion sequence from SARA17, artisl.], gene product (Salmonella typhimurium)	105 ribosomal protein [Pediococcus scidilactici] sp P49668 RS2_PEDAC 108 RIBOSOMAL PROTEIN S2.	short region of week similarity to tyrosine-protein kinese receptors in a fibromectin type III-like domain (Caenorhabditis elegans)	unknown [Bacillus subtilis]	succinateCoA ligase (GDP-forming) [Arabidopsis thaliana; ir 530579 SuccinateCoA ligase (GDP-forming) (EC 6.2.1.4) pha chain - Arabidopsis thaliana (fragment)
acession	gi [42086	[41]1199573	1911466778	91 1045937	pir S16649 S166	19111303961	91 1146930	gi 143016	191 143015	pir n25805 A258	91 11222302	[9] [414017	91/971342	gi 1524392	(0:(143319	0: (299163	9: 439619	91 697795	91 1125826	1011467404	gi 16510
(ut)	620	2574	321	4350	2579	1494	1767	10119	11786	13366	2217	374	4861	12338	4413	9280	5471	825	326	2677	2149
(11)	7	3275	638	1507	1578	354	9419	75.01	13360	13983	2708	745	6438	110845	1676	10308	6048	\$	450	2000	3081
<u> </u>		-	-	\$	•	~	E	6	9	-	7	-	•	115	5	-	•			~	~
2- 1	:	-:	_	-		23	53	7	25			9	6	120	128	=======================================	143	169	230	233	77

Contig ORF	ORF	Start	Stop	Batch	match gene name	m s s	. ident	length (nt.)
275	7	1728	3581	1911726480	L-glutaming-D-fructose-6-phosphate amidotransferase [Bacillus ubtilis]	91	89	1854
285	-	1466	735	191 1204844	H. influenzae predicted coding region HI0594 (Hammophilus influenzae)	18	63	732
,		66	1406	1911467328	adenylosuccinate synthetase (Bacillus subtilis)	81	67	1308
202		5590		oi 147485	ques [Escherichia coli]	18	9	300
	~	7611	1376	91 154961	resolvase (Transposon Tn917)	81	Ş	240
		1034	1342	191 405955	yeeD [Escherichia coli]	81	09	309
360	-	1404	2471	91 1204570	asperty -tRNA synthetase (Haemophilus influenzas	91	67	1068
364	\$	6251	5706	91 1204652	methylated-DNAprotein-cysteins methyltransferase (Haemophilus influentael	81	69	246
372	~	1707	125	91 467416	unknown (Bacillus subtilis)	81	65	573
1 392	-	=	603	pir 509411 5094	spoilie protein - Bacillus subtilis	81	99	. 561
707	-	5252	6154	1911606745	Dex (Bacillus subtilis)	81	9	903
426	~_	1727	6111	91 39453		. B	99	609
9		6597	SH 89	 	llypothatical protein If (ompil 3' region) - Salmonella typhimurium (fragment)	8	57	237
625	1-	1105	1 2070	191 1262360	protein kinase PknB (Mycobacterium leprae)	91	95	996
1354	- 7	504	1064	{gi 1303902	YqhU Bacillus subtilis]	18	1,1	198
H42	-	98	430	91 1405446	(transketolase (Bacillus subtilis)	16	H9	345
953	-	198	000	01(1205429	dipeptide transport ATP-binding protein (Haemophilus influentee)	10	52	399
196		252	104	91 487686	symergohymenotropic toxin Staphylococcue intermedius pir S44944 S44944	6	52	150
1035	-	7	189	gi 104613B	H. genitalium predicted coding region MG423 (Mycoplasma genitalium)	18	53	189
1280		670	449	91 559164	helicase [Autographs californica nuclear polyhedrosis virus] sp[P2407]v143_NPVAC HELICASE.	16	;	222
1766	-	89	241	91 1322245	sevalonate pyrophosphate decarboxylase [Rattus norvegicus]	18	62	174
3715	-	1 475	1 239	191 537137	ORF_1388 [Escherichia coli]	63	88	762
1908		~	325	gi 439619	Salmonella typhimurium 15200 insertion sequence from SARA17, artial. , gene product (Salmonella typhimurium)	ē	68	324
1940	-		401	19, 1296464	APPase [Lactococcus lactis]	18	69	1 399

TABLE 2

1 ident ç 89 | **\$** = diyearophosphoryl diester phosphodiesterss (Becillus subtills)
pir[53753153721 diyearophosphoryl diester phosphodisterss - acillus indolepyruvate decarboxylase (Enterobacter cloacae) pirįSi6013|S16013 indolepyruvate decarboxylase (EC 4.1.1.-) - nterobacter cloacae HutI protein, imidazolone-5-propionate hydrolase (Sacillus subtilis) gi|601768 HutI protein, imidazolone-5-propionate hydrolase Bacillus 3. aureus - Putative coding regions of novel proteins similar to known proteins helicase [Autographa californica muclear polyhedrosis virus] sp|p24307|v143_NPVAC HELICASE. high level kasgamycin resistance [Bacillus subtilis] pyruvate-formate-lyase (Clostridium pasteurianum) Na/H antiporter system (Bacillus alcalophilus) aspartate 1-decarboxylass (Bacillus subtilis) gluconate permesse [Bacillus licheniformis] ipe-57d gene product [Bacillus subtilis] unknown (Mycobacterium tuberculosis) gluconate kinase (Bacillus subtilis) function unknown (Bacillus subtilis) TVG [Thermoactinomyces valgaris] omidase [Moraxella catarrhalis] CapC (Staphylococcus aureus) CapB [Staphylococcus aureus] ORP_f356 [Escherichia coll] unknown (Bacillus subtilis) unknown (Bacillus subtilis) YqkN [Becillus subtilis] Prov (Sacillus subtilis) Proz [Bacillus subtilis] ORF (Nomo sapiens) , match gene name match 191 | 1109687 101 | 1303995 191 11072361 91 1224069 |gi|1524193 91 1064786 91 (403373 191 1109684 91 | 580875 141 | 506699 £17652 | 195 101 | 467428 91 467430 |gi |467431 94 | 506698 91 603768 91 | 559164 191 | 563952 191 | 854655 101 305002 Q1 | 21 1677 91 460689 Stop (nt.) Start | ---~ Ç : Ç ç

TABLE 2

| * ident | length ç \$: 2 ele s matches PS00017: ATP_GTP_A and PS00101: EPACTOR_GTP: similar to longation factor d, TetH/TetO tetracycline-resistance proteins Escherichia colij valy1-tRNA synthetase [Bacillus stearothsrmophilus] sp[P11931|SYV_BACST VALYL-TRNA SYNTHETASE (EC 6.1.1.9) VALINE-TRNA LIGASE) (VALAS). proton glutamate symport protein (Bacillus stearothermophilus)
pir[526.47] 526.47 glutamate/aspartate transport protein - Bacillus
tearothermophilus formyl-tetrahydrofolate synthetase (Streptococcus mutans) ribosomal protein L4 [Bacillus stearothermophilus putative ATP binding subunit (Bacillus subtilis) beta-fructofuranosidase (Staphylococcus xylosus) glutamyl-tRNA synthetase (Bacillus subtilis) 85-kDa surface antigen (Trypanosoma cruzi) acud gene product (Staphylococcus xylosus) acetyl-CoA synthetase [Bacillus subtilis] hypothetical protein [Bacillus subtilis] outer capsid protein (Rotavirus sp.) function unknown (Bacillus subtilis) unknown (Mycobacterium tuberculosis) function umknown (Sacillus subtilis) spec (Streptococcus pyogenes) putative (Bacillus subtilis) ORF_0470 [Escherichia coli) enolage (Bacillus subtilis) unknown [Bacillus subtilis] unknown (Bacillus subtilis) unknown (Bacillus subtilis) OMPX7 [Bacillus subtilis] YneF [Bacillus subtilis] , match gene name match acession {gi | 1483545 191 11405448 101 1146183 191 | 1064791 191 | 1064791 91 467448 |gi|288269 91 | 348053 1gi | 310325 91 304976 Jul | 529754 91 | 467418 [gi [537049 91 | 467385 |91 | 161953 91 289282 91 | 460259 91 410133 101 1143797 91 1143000 |gi | 709993 101 | 40103 13R9 126R 2 | 1449 3.60 ORF ~ •

aureus -

proteins

ដ

proteins similar

Putative coding regions of novel

S. aureus' - Putative coding regions of novel proteins similar to known proteins

Contig ORF	9 0	Start (nt)	Stop	match	match gene name	e in	* ident	length (nt)
745	~	188	414	191 1511600	coentyme PQC synthesis protein III (Methanococcus janneschiil	08	61	168
822	-	1 11	679	01 410141	ORFXI7 [Becillus subtilis]	80	99	(99
1 827	~	991	836	1)11205301	leukatoxin secretion ATP-binding protein [Haemophilus influenzae]	80	54	156
1044	<u>-</u>		149	101 60632	vp2 [Marburg virus]	90	55	147
1220	~	1 178	3	pir A61072 EPSG	pir A61072 EPSG gallidermin precursor - Staphylococcua gallinarum	- 08	2	159
6152	=	1 25	275	[91]147556	dp) (Escherichla coll)	02	Ş	201
1 2947	<u>-</u>	1 503	279	191 1184680	polymuclectide phosphorylase (Bacillus, subtilis)	1 08	62	225
3130	-	2	326	191 517205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	80	65	225
3191		294	148	91(151259	HMG-CoA reductase (EC 1.1.1.88) (Pseudomonas mevalonil) pir/a44756 A44756 hydroxymethylgluteryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	08	\$	
13560	~	285	5	91 217130	photosystem I core protein B [Symechococcus valcanus]	80	70	150
1 3655	1-	1 4	346	91 415655	deoxyribose aldolase (Mycoplesma hominis)	0.6	96	300
1 3658	7	324	584	165155136	2-nitropropane dioxygenese (Williopsis saturnus)	08	*	1 261
1 3769	-	1 79R	400	191 1339950	large subunit of MADH-dependent glutamate synthase [Plectonema boryanum]	08	89	399
1842	-	692	348	[94 166412	NADII-glutamate synthase (Medicago sativa)	80	62	345
3988	-	87	287	ai 1204696	fructose-permease 118C component [Heemophilus influentee]	90	69	240
4030	-	1 571	287	9111009366	Respiratory nitrate reductase (Bacillus subtilis)	02	9	1 285
4092	-	1 547	275	91 1370207	orf6 [Lectobecillus sake]	80	69	1 273
4103	-	089	25.	191 39956		0.0	65	600
14331	1-	692	348	91 269207	UDP-glucose pyrophosphorylase (Bacilius subtilis)	0.6	65	345
4265		595	299	91 603768	Hurr procesin, imidazolone-5-propionate hydrolase [Bacillus subtilis] gi 603768 Huri protein, imidazolone-5-propionate hydrolase Bacillus subtilis]	8	3	297
4504	-	1 498	250	91 1339950	large subunit of NADM-dependent glutamete synthese [Plectonema boryanum]	80	8.8	249
2		9665	6798	a 535351	Cody (Bacillus subtilis)	79	3	108
		8295	705 1	91 603768	Hutt procein, imidazolone-5-propionate hydrolase [Bacillus subtills] gi[601768 Hutl protein, imidazolone-5-propionate hydrolase Bacillus subtills]	6	2	1245
25	9	5273	5515	pir A36728 A367	pir A36728 A367 acyl carrior protein - Rhizobium meliloti	67	65	243

Cont 19	98 22	Start (nt)	Stop (nt)	match ,	. match gene name	# F	1 ident	length (nt)
65	7	1173	1424	01 147923	threonine dehydratase 2 (EC 4.2.1.16) [Escherichia coll]	79	75	252
9	-		204	91 666115	orfi upstream of glucose kinase [Staphylococcus xylosus] pir[552351[852351] hypothetical protein 1 - Staphylococcus xylosus	96	09	204
£ -	-	3002	1590	91 466882	[pps]; Bl496_C2_189 [Mycobacterium leprae]	79	39	1413
- 85	-	1 7023	6505	ai 143364	phosphoribosyl eminoimidazole cerboxylage I (PUR-E) (Bacillus ubtilis)	96	ç,	519
6	9	999	4554	01 114906	product homologous to E.coli thioredoxin reductame: J.Biol.Chem. 1988) 263:9015-9019, and to F52a protein of alkyl hydroperoxide eductase from S.typhimurium: J.Biol.Chem. (1990) 265:10515-10540; pen reading frame A [Clostridium pesteurianum]	61	35	1107
102	=	7489	8571	91 143093	Retol-seid reductoisomerase [Bacillus subtilis] sp P3725] ILVC_BACSU KETOL- ACID REDUCTOISOMERASE [EC 1.1.1.86] ACETOHYDROXY-ACID ISOMEROREDUCTASE] (ALPHA-KETO-BETA-HYDROXYLACIL EDUCTOISOMERASE).	96	3	1083
102	=	11190	112563	91 149 428	[Lactococcus lactis]	96	65	1374
127	- 6	17792	9372	91 458688	PrfC/RF3 [Diche]abacter nodosus]	1 61	89	1581
60	-	1 2540	1983	91 506697	Capa (Staphylococcus aureus)	- 61	\$\$	558
-	-	1644	1156	01 1498296	[peptide methionine sulfoxido reductase (Straptococcus pneumonise)	79	-	489
	~	529	1098	91 467457	hypoxanthine-guanine phosphoribosylteanferese [Backlius subtilis] gi 467457 hypoxanthine-guanine phosphoribosyltransferase (Backlius ubtilis)	er 	6 5	870
051	-	1 965	591	91 755602	unknown (Bacillus subtills)	67	61	375
176		1039	587	91 297874	[fructose-bisphosphate aidolase (Staphylococcus carnosus] pir[A49943] A49943 fructose-bisphosphate aidolasa (EC 4.1.2.13) - taphylococcus carnosus (strain TH300)	٤	65	453
186		75A4	6874	91 1314298	ORFS; putative Sms protein; similar to Sms proteins from Heamophilus influenzae and Escherichia coli [Listeria monocytogenes]	٤	•	1117
502	91	8887	8498	91 1044980	ribosomal protein L18 (Bacillus subtilis)	7.9	70	390
117	-	-	615	Jui 1303994	YokH (Bacillus subtilis)	6,	62	519
1 223	~	4183	2801	191 488430	[alcohol dehydrogenase 2 [Entamoeba histolytica]	6,	09	1383
543	æ	8915	7896	191 580883	[fpa-88d gene product [Bacillus subtilis]	79	09	1020
612	-	1226	4329	191 413930	ipa-6d gene product (Bacillus subtilis)	79	59	609
300	-	=	1393	191 403372	glycerol 3-phosphate permease [Bacillus subtilis]	79	62	1383
307		2930	1935	101 950062	hypothetical yeast protein 1 (Mycoplesma capricolum) pir \$48578 S48578 hypothetical protein - Mycoplesma capricolum SGC3) (fragment)	\$	9	966

TABLE 2

aureus - Putative coding regions of novel proteins similar to known proteins

15

Contig ORF	10RF	Start (nt)	Stop Intl	match ,	, match gene name	aia .	• ident	length (nt)
352	9	10106	8886	91 216854	P47K (Pseudomonas chlororaphis)	79	89	1221
412	-	1153	578	1911143177	[putative [Bacillus subtilis]	1 62	51	576
481	-	1 621	1124	191 786163	Ribosomal Protein LIO (Bacillus subtills)	19	99	204
516	-	1 702	352	191 805090	NisF [Lactococcus lactis]	79	48	151
\$28		2457	1426	01143371	phosphoribosyl aminoimidazole syntherase (PUR-M) (Bacillus subtilis) pir H29326 A3BSCL phosphoribosylformylglycinamidine cyclo-ligase BC 6.3.3.1) - Bacillus subtilis	67	61	1032
538	-	3.68	1 2825	91 1370207	(orf6 [Lactobacillus sake)	79	67	624
5.10	-	7 -	423	191 476160	arginina permease substrate-binding subunit (Listeria monocytogenes)	66	61	420
645	8	2663	3241	101 153898	transport protein (Salmonella typhimurium)	- 62	62	678
6.83	-	25.	374	191 1064795		96	62	300
B16	-	4100	1 3987	01 1407784	orf-1; novel antigen (Staphylococcus sureus)	96	62	114
2929	-	F -	10	19111524397	glycine betaine transporter OpuD (Bacillus subtilis	96	6 1	199
2937	-	1357	1 202	pir S52915 S529	nitrate reductese alpha chain - Bacillus subtilis (fragment)	96	96	156
2940	-	1 768	1 385	191 119429	putstive (Lactococcus lactis)	6.	72	384
2946	-	0.5	1 286	91 143267	[2-oxoglutarate dehydrogenase (odha; EC 1.2.4.2) (Bacillus subtills]	6.	19	285
2999	-	-	1 212	91710020	Intrite reductese (nirs) [Bacillus subtilis]	6£.	59	210
3022	-	1 514	1332	41 450686	[]-phosphoglycerate kinase [Thermotoga maritima]	19	19	183
3064	-	-	7.7	gi 1204436	[pyruvate formate-lyase [Neemophilus influenzae]	66	9	312
3083	-	- 2	1 220	191 1149662	hypD gene product (Clostridium perfringens)	66	96	219
3126	-	104	12	19:11339950	large subunit of NADH-dependent glutamate symthass (Plectonema boryanum)	6.	55	291
3181	-	1 607	326	19111339950	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	96	65	282
3345	-	-	476	g1 871784	Cip-like ATP-dependent protease binding subunit (Bos taurus)	79	69	47
3718	-	536	1 270	p.ir C36889 C368	leuB protein, inactive - Lactococcus lactis subsp. lactis (strain [L1403)	79	1,1	267
3724	-	159	- 100 -	91 1009366	Respiratory nitrate reductase [Bacillus subtilis]	- 62	94	243
3836	-	809	21.	pi 11524193	unknown [Mycobacterium tuberculosis]	19	65	297
3941	-	7	7	ai 415855		62	\$	2
=======================================	-	-	341	91 143015	[gluconate kinase (Bacillus subtilis]	66	6	2
				·				

Contig	ORF	Start	: —.	match	match gene name	min .	1 Ident	length
9	5	בן נו נו	(uc)					1 801
4501	-	909	607	191,1027,26	unknown Stabulytococcus naemoiycicus)			2
1 4612	=	7	1 238	91 460689	TVG [Thermoactinomyces vulgaris]	19	- 88	237
1 2	-	7	1213	91 520753	DNA topoisomerase I (Bacillus subtilis)	7.8	9	1212
· ·	~	2266	1220	91/216151	DNA polymerase (gene L; ttg start codon) [Bacteriophage SPO2] gl[579197 SP02 DNA polymerase (aa 1-648) [Bacteriophage SPO2] pir A21498 DJBPS2 DNA-directed DNA polymerase (EC 2.7.7.7) - phage PO2	82	ç,	1047
6 -	7	1340	! ~		function unknown (Bacillus subtilis)	78	57	252
22	- -	6803	7702	191 116974	NH3-dependent NAD synthetase [Eacherichia coli]	78	63	1 006
98	-	2941	1 3138	91 290503	glutamate permease (Escherichia coll)	18	53	198 1
3	125	17684	116221	91 1303941	Yqiv (Bacillus subtilis)	18	88	1464
52	=======================================	110520	12067	91 1072418	glcA gene product (Staphylococcua carnosus)	187	9	1548
99		679R	5812	gi 1212729	YqhJ (Bacillus subtilis)	187	67	987
67	-	4029	4376	911466612	nika (Becherichia coli)	78	7.1	348
16	6	10058	110942	91 467380	stage O sporultion (Bacillus subtilis)	18	20	985
102	=	8574	10130	911149426	putative (Lactococcus lactis)	78	19	1557
112	9	3540	1 4463	91 854234	cymC gene product [Klebsiella oxytoca]	78	96	924
721	~	1889	1061	191 405 622	unknown (Racillus subtilis)	7.8	09	A2.B
130	-	1805	1 2260	1911256636	[putative [Bacillus subtilis]	78	1.	456
601	1	151	1377	91 168060	lamb (Emericella nidulans)	86	59	375
991	=	1125	6163	91 451216	Mannosephosphate isomerase [Streptococcus mutans]	78	63	963
186	-	1586	795	91 289284	cysteinyl-tRNA synthetase [Bacillus subtilis]	78	63	792
195	-	2749	2315	91 1353874	unknown [Rhodobacter capsulatus]	78	28	435
66		4279	1 3623	91 143525	succinate dehydrogenase cytochrome b-558 subunit [Bacillus subtilis] pir[A19843]DEBSSC succinate dehydrogenase [EC 1.3.99.1] cytochrome 558 - Bacillus subtilis	86		657
199		7209	\$557	91 142521	decayribodipyrimidine photolysse Bacillus subtilis pir AJ192 AJ192 uvr8 protein	96	62	1653
223	2	3831	3523	111139596		78.	4.1	309

TABLE 2

TABLE 2

S. aureus - Putative coding regions of noval proteins similar to known proteins

10 .

Cont	Contig ORF ID ID	F Start	Stop	match	pacch gene name	e ia	• ident	Jength (nt)
1 299	-	1865	2149	gi;467439	temperature sensitive cell division (Banillus subtilis)	96	62	285
2		1734	7315	91 142979	ORP) is homologous to an ORP downstresm of the sport gene of E.colli, RPJ (Becillus stearothermophilus)	94	8	420
1352	-	1 3714	3964	191 349050	actin 1 (Pnaumocystis carinii)	18	42	231
323		7592	6093	1903587	NADH dehydrogenasa subunit 5 (Becilius subtilis) aç [P19755 NRM-, BACSU NADH DEHYDROGENASE SUBUNIT 5 (EC 1.6.5.1) NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5).	81.	8,	1500
376	-	~	1 583	191 551693	[dethiobiotin synthese [Bacillus aphaericus]	18	7	\$82
424	-	1595	1768	91 1524117	alpha-acetolactate decarboxylase [Lactococcus lactis]	78	89	174
430	_	1914	988	[gi] 1030068	NADIPIII oxidoreductase, isoflavone reductase homologue [Solanum tuberosum]	7.8	69	927
1 55R	_	762	1 562	01 1511588	bifunctional protein (Methanococcus jannaschii)	87	60	201
0.9	-	11152	1589	9111122759	unknown Bacillus subtilis	78	79	438
7.7	-	- 64	1 732	1911143460	17 kd minor sigma factor (rpof, sigB; ttg start codon) (Bacillus ubtilis)	78	57	699
-	-	-	1 368	191 1377833	lunknown [Bacillus subtilis]	78	65	366
1961	_	1381	692	91 143802	GerC2 [Bacillus subtilis]	ВĽ	99	9
566	-	978	1 727	191 296947	uridine kinase (Escherichia coli)	18	99	252
1045		-	- - -	qJ 1407784	orf-1; novel antigen (Staphylococcus aureus)	78	61	399
1163	~	368	186	191 410117	Ulaminopimelate decarboxylasa (bacillus subtilis)	7.8	20	183
1 2191	-	194	1399	51 215098	excisionase (Bacteriophage 154a)	96	65	960
1 2933	-	~	181	91 1204436	pyruvate formate-lyase (Raemophilus influenzae)	78	13	180
3041	~	129	716	191 624632	Clt. Escherichia coli /	7.8	53	189
3581	-	105	4 01	1011763186	1-ketoscyl-coa thiolass (Saccharomyces cerevisise)	78	\$5	297
9001	- 6	F -	1 230	191 1460689	TVG [Thermosctinomyces vulgaris]	96	88	228
3974	-	-	1 265	19.1558839	unknown (Becillus subtilis)	76	65	264
1980	-	<u> </u>	401	191 39956		78	62	399
9504	-	647	354	lgi 1256635	dihydroxy-acid dehydratase [Bacillus Subtilis]	78	55	294
7.10	-	630	316	pir 509372 5093	pir 509372 5093 hypothetical protein - Trypanosoma brucei	78	62	315
4185	- 1		6.1.	1011139950	large subunit of NADH-dependent glutamate synthase (Plectoneme boryanum)	78	28	177

S. aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig	<u> </u>	Start	Stop (nt.)	metch acession	mytch gene name	e in	, ident	Jength (nt)
4235	-		329	-	unknown (Becillus subtilis)	78	60	327
4352		241	302	91 603768	Hull protein, imidazolone-5-propionate hydrolase [Bacillus subtilis] gi[603768 Hull protein, imidazolone-5-propionate hydrolase Bacillus subtilis]	87		340
4368	-	1 612	307	91 1353678	heavy-metal transporting P-type ATPase (Proteus mirabilia)	- 82	89	306
1999		428	1 216	lq1 1276841	glutamate synthase (GOGAT) (Porphyra purpurea)	96	36 ,	213
4530	-	474	238	19956	IIGle [Becillus subtilis]	87	9	237
-	-	1 2969	2073	91 1109684	Prov (Bacillus subtilis)	77	56	697
12	7	2426	1965		ribosomal protein L9 (Bacillus subtilis)	77	89	462
27	-		388	91(1212128	Yqhi (Becillus subtilis)	7.	69	1 387
67	~	1 590	1252	191 40054	phenylalanyl-tRNA synthetese beta subunit (AA 1-804) (Bacillus btilis]	רר	09	663
7		2704	2931	91 606241	105 ribosomal aubunit protein S14 (Escherichia coli) sp/P02370[R814_ECOLI 105 RIBOSOMAL PROTEIN S14. (SUB 2-101)	۲,	S	228
÷	=	15459	16622	91 297798	Initochondrial formate dehydrogenase precursor (Solanum tuberosum) pir 1,002272 002272 formate delydrogenase (EC 1.2.1.2) precursor, itochondrial - potato	۲,	\$5	1164
100	-	4562	4002	9111340128	ORF1 (Staphylococcus aureus)	۲۲	24	561
102	-	1 5378	1 5713	9111311482	acetolactate synthase (Thermus aquaticus)	7.	57	336
601	-	1 4742	5383	191 10617	Unknown (Becilius subtilis	<i>دد</i> ا	95	642
-	-	~	1228	191 1237015	ORP4 (Bacillus subtilis)	77	53	1227
124	=	6323	7689	91 405819	[thymidine kinese [Becillus subtilis]	۳ ا	(9)	636
91	-	11146	988	191 849027	hypothetical 15.9-kDe protein (Bacillus subtilis)	77	7.6	162
152	=_	7354	1953	9111205583	spermidine/putrescine transport ATP-binding protein [Haemophilue] influenzae]	۲	25	009
169	-	1004	1282	gi 473825	elongation factor EF-Ts' (Escherichia coli)	۲۰	S	279
787	-	-	1147		esterase Sacillus stearothermophilus	7.	9	1 768
189	-	3296	3868	01 853809	ORP) (Clostridium perfringens)	۲۲	48	573
193	-	132	290	qi 1303788	YqeH (Bacillus subtilis)	۲۲	54	159
195	=	8740	8414	9111499620	W. jannaschil predicted coding region MJ0798 (Methanococcus janneschil)	77	7	1 327
205	-	5428	5204	191 216340	ORF for adenylate kinase (Bacillus subtilis)		19	225

. aureus - Putative coding regions of novel proteins similar to known proteins

J, - 1	Start (nt)	Stop (nt)	sotch Acession	match gene name	E .	dent	length (nt)
14795	!	114502	91786155	Ribosomal Protein L23 (Bacillus subtilis)	7.	62	294
: 5	1908	2084	191 410132	ONFX8 [Bacillus subtilis]	ונג	47	177
: =	3478	4416	91 496254	[fibronectin/fibrinogen-binding protein [Streptococcus pyogenes]	7.2	24	939
: ~	267	866	91 1407784	orf-1; novel antigen (Staphylococcus sureus)	۲۲	57	567
	1819	1346	901 1467 408	unknown (Becillus subtilis	77	- 19	474
	2661	2299	91 516155	unconventional myosin (Sus scrota)	7.	32	363
	89	169	01 467436	unknown (Bacillus subtilis)	77	3	102
:	1468	1283	01 950071	ATP-bind. pytimidine kinase (Mycoplasma capricolum) pir S48605 S48605 hypothetical protein - Mycoplasma capricolum SGC1) (fragment)	۲۲	\$	186
• ''	2741	3211	191 508980	phes (satilius subtille)	7.7	57	471
	3635	1 4863	91 147783	ruv8 protein (Escherichie coli	77	9	1029
,	5402	4797	91 1070015	protein-dependent (Becillus subtills)	۲۲	9	909
•	66	1391	91 143165	malic ensyme (EC 1.1.1.38) Bacillus stearothermophilus pir A33307 DEB5XS malate dehydronchase oxaloacetate-decarboxylating) (EC 1.1.1.38) - Bacillus tearothermophilus	۲۲	62	1293
• ~	1541	265	01 1399855	carboxyltransferase beta subunit (Symechococcus PCC7942)	ננ	88	903
i -	3666	4596	01 39644	[fumarase (citG) (aa 1-662) [Bacillus subtilis]	רר	99	1071
i	\$	\$68	911154634	Yman (Bacillus mubtilis)	1.1	ક	\$22
i	~	1021	gi 143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) Bacillus subtilis]	11	62	1020
į	-	708	91 1405446	transketolase [Bacillus subtilis]	7.7	19	108
	1128	265	91 533099	endonuclesse III (Bacillus subtilis)	7.7	6.3	264
ı -	594	1940	91 556014	UDP-W-accey] muramate-alanine ligase (Bacillus subtliis) sp P40778 MURC_BACSU UDP-W-ACETYLMURAMATEALANINE LIGASE (EC .1.2.8) (UDP-W- ACETYLMURANOVL-L-ALANINE SYNTHETASE) (FRAGHENT).	£	\$	1347
	4029	3570	91 1303913	Yqhw (Bacillus subtilis]	7.7	3	\$10
	1302		911432427	ORF1 gene product (Acinetobacter calcoaceticus)	"	\$	171
	~	562	pir(A01179 SYRS	pir A01179 SYNS tyrosingtRNA ligase (EC 6.1.1.1) - Bacillus stearothermophilus	7.7	5	198
	*						

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins.

Contig ORF	ORF	Start (nt)	Stop (nt)	match	. match gene name	E I) adent	length (nt)
523	~	1587	1351	91 1387979	(44) identity over 302 residues with hypothetical protein from Synechocystis sp. accession 56006_CD; expression induced by environmental stress; some similarity to olycosyl transferases: two potential membrane-spanning helices [Bacillus subtl]	5	6	237
536	~_	963	612	91/143366 -	adenylosuccinate lyase (PUR-B) [Bacillus subtilis] pir[C39136 WZBSDS adenylosuccinate lyase (EC 4.3.2.2) - Bacillus ubtilis		19	372
248	-	939	872	91/143387	aspartate transcarbamylase (Bacilius subtilis)		26	534
1 597	-	7	6	91 904198	hypothetical protein (Bacillus subtilis)	7.	33	480
633	~	1747	G C	191 387577	ORFIA [Bacillus subtilis]	44	79	435
642	-	. B.S	360	gi 46971	epiP gane product (Staphylococcus epidermidis)	7.	19	276
659 -	-	125	1219	91 1072381	glutamyl-aminopeptidase [Lactococcus lactis]	77	62	1095
029	-	1 1587	1820	91 1122760	unknown (Bacillus subtilit)	7.	88	234
789	-	7	391	9111377823	[aminopeptidase (Bacillus subtilis]	11	65	390
B15	-	10	573	191 1303861	Yogn (Bacillus subtilis)	7.	64	564
£ .	<u>-</u>	-	23.5	191 1204844	III. influenzam predicted coding region 110594 (Naemophilus influenzae)	77	\$\$	225
1 1083	-	_	188	91 460828	8969 Saccharomyces cerevisiae]	7.	99	186
1942		415	209	91 160047	pi01/acidic basic repeat antigen (Plasmodium (alciparum) pir A29232 A29232 101K malaria antigen precursor - Plasmodium alciparum (strain Camp)	۲.	38	207
1 2559	_	-	<u> </u>	191 1499034	M. Jannaschil predicted coding region NJ0255 (Methanococcus jannaschil)	77	61	171
2933	~	55	6	91 42370	pyruvate formate-lysse (AA 1-760) [Escherichis coli] ir 501788 501788 formate C-acetyltransferase (EC 2.3.1.54) - cherichia coli	۲۲	7.2	159
2966	_	95	1 292	91 11524397	glycine betaine transporter OpuD (Bacillus subtilis)	7.	45	782
2976		614	309	91 40003	oxoglutarate dehydrogenase (NADP+) [Bacillus subtilis] p[92)129[000].BACGU 2-0xoglutarate Dehydrogenase El Component (EC 2.4.2) (ALPHA- KETOGLUTARATE DEHYDROGENASE).	6.1	9	306
1 2979	~	678	\$	91 1204354	spore germination and vegetative growth protein [Haemophilus influenzae]	1.6	61	279
2988		109	718	91 438465	Probable operon with orff. Possible alternative initiation codon, ases [2131-213]. Howology with acetyltransferases.; putative Bacillus subtilis]	τ.	\$\$	225
2990		331	167	491 142562	ATF synthase epsilon subunit [Bacillus megaterium] pir[B2859]PPBSEH H+- transporting ATP synthase (EC 3.6.1.34) psilon chain - Bacillus megaterium	۲۲	3	165
3032	-		389	91 488430	alcohol dehydrogenase 2 [Entamoeba histolytica]	17	95	387
13057	-	-	198	91 468764	t (Rhizo	7.7	20	195
	,,,,,,,,							

TABLE 2

Contig ORF TO TO	ORF TD	Start int)	Stop (nt)	match acession	indich gene nome	e .	1 denc	(nt)
4008	-	726	00	91 603768	Hutt protein, imidatolone-5-propionate hydrolase [Bacillus subtilis] gi 603768 Huti protein, imidatolone-5-propionate hydrolase Bacillus subtilis	۴	52	727
4048	-	1 703	1 386	191 216278	granicidin S synthetase 1 [Bacillus brevis]	7.7	55	318
4110	-		1 368	pir 552915 5529	interate reductase alpha chain - Bacillus subtilis (fragment)	11	61	366
4115	-	1 1	348	191 517205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	-11	, 59	348
4225	-	230	1 297	[91]1322245	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)	۱ در	9	294
4611	-	1 494	1 327	191 508979	OrP-binding protein (Becillus subtilis)	77	5.1	168
4668	1-	1 361	182	pir 852915 8529	nitrate reductase alpha chain - Bacillus subtilis (fragment)	1.4	61	180
22	1-	. 7	1627	di 1150620	HmsA (Streptococcus pneumoniee)	96	\$.	1626
5	- 2	1488	7882	pir a43577 a435	pir A43377 A435 (regulatory protein pfoR - Clostridium parfringens	96	53	1050
25	5	1 2962	1404	19111111061	dioxygenese (Methylobecterium extorquens	76	62	1080
\$6	202	27389	= :	191 467402	unknown (Becilius subtilis)	76	56	267
52	15	112046	112219	gi 1206040	weak similarity to koratin [Caenorhabditis elegans]	76	0	174
16	- 2	1 1062	1 2261	[91 475715	acetyl cocnityme A acotyltransferase (thiolass) (Clostridium cetobutylicum)	76	53	1200
86	-	818	1624	91 467422	unknown (Becillus subtilis)	92	62	R07
9.8	-	2962	1 3228	101 497793	y98 gene product (Pediococcus acidilactici)	76	\$2	264
86	-	1 5922	1 6326	91 467427	[methiony]-tRNA synthetase (Bacillus subtills]	9,6	53	405
104		132	1885	91 (216151	INN. polymerase (gene L; ttg start codon) [Bacteriophage SP02] gi 579197 SP02 DNA polymerase (aa 1-648) [Bacteriophage SP02] pir A21498 DJBPS2 DNA- directed DNA polymerase [EC 2.7.7.7] - phage P02	92	9	264
124		8134	7055	91 83376	peptide chain release factor 1 Bacillus subtilis pir 855437 855437 peptide chain release factor 1 - Bacillus ubtilis	9,	88	1080
164	- 2	2832	1166	gi 1204976	prolyl-tRNA synthetase (Heemophilus influentee)	94	\$3	- #BO
168	- 5	2617	1841	91 1177253	putative ATP-binding protein of ABC-type (Bacillus subtilis)	76	28	ر در
189	- 2	1 163	888	91 467384	unknown (Bacillus subtilis)	94	9	726
235		2253	3518	1011142936	[clyl-polygluramate synthetese (Bacillus subtilis) pir 840646 840646 fold - Bacillus subtilis	92	23	1266
236	-	1335	928	[91 1146197	[putative (Bacillus subtills]	92	\$4	165
23.7	-	5323	1 5541	191 1279261	[F13G3.6 [Caenorhabditis elegans]	16	47	239

.

. aureus - Putelive coding regions of novel proteins similar to known protein

1	Contig	108F	Start (nt)	Stop Int)	metch	match gene name	E .	• ident	Jength (nt.)
1 12 1134 41 41 41 42 42 42 42 4	1 263	-	1 5490	1 4585	91 1510348	dihydrodipicolinate synthase (Methanocu.cus jannaschii	76	6	906
4 511 622 61 40556 year Caphophon-Privatchinasa 949 948	000		1001	1194	 gi 666982 	puretive membrane spanning subunit [Bacilius subtilis] pir 552382 852382 probable membrane spanning protein - Bacilius ubtilis	94	9	764
1 2 1905 91 105356 year Escherichia coli 76	112	-	3611	4624	01/143312	6-phospho-1-fructorinase (gtg start codon, EC 2.7.1.11) [Bacillus tearothermophlius]	76	56	1014
1 409 1701 501 395004 secty onnthline descetylase Escherichia colii 1 1 1 1 1 1 1 1 1	343	-	7	1,1036	{gi 405956	year [Escherichia coli]	9,6	, 65	1035
1 572 1307 51 1146213 193.01 Identity to the Eacherichia coli Si ribosomal protein putative 76 14 14 14 14 14 14 14 1	5	-	607	1701	191 396304	ecetylornithine descetylese [Escherichia colii	76	7.2	1293
1 1 222 0 237084 aliternate gene name moti CG Site No. 497 [Escherichia coli] 76 1 1 1 1 1 222 0 237084 aliternate gene name moti CG Site No. 497 [Eschrichia coli] 76 1 1 1 1 1 1 1 1 1	1358		672	1907	9111146215	19.0% identity to the Escherichia coli Si ribosomal protein; putative [Bacillus subtilis]	9,0	8	1236
4 4311 4858 GI 1472668 Gilhydrolipomalde transmedinfylaes loodhs, EC 2.3.1.61) [Bacillus ubtills] 76 1 1 2 307 Gi 180523 [ORF YKLOZOV [Saccharomyces Gerevisiae] 76 1 1 1 2 3 3 41150644 Alari [Bacillus aubtills] 76 1 1 1 1 2 3 3 4116062220 [Aut.S [Bacillus aubtills] 76 1 1 1 1 1 2 3 4116062220 [Aut.S [Bacillus aubtills] 76 1 1 1 1 1 2 3 4 4 4 4 4 4 4 4 4	12.			<u>~</u>	01 537084	alternate gene name met; CG Site No. 497 (Escherichia coli) pir S56468 S56468 mgtA protein - Escherichia coli	92	61	222
5 4022 4492 9411100823 Vagio Facchitus subtilis 76 1 2 107 Gail 186025 ORF YKLOZ'v Earccharomyces cerevisies 76 1 2 107 Gail 186025 ORF YKLOZ'v Earccharomyces cerevisies 76 1 273 993 Gail 19644 Ast Decilius subtilis 76 1 104 557 Gail 1000520 NutS Bacilius subtilis 76 1 16 135 Gail 2000 Opph hemologue Rhizobium 5P. 76 2 175 798 Gail 2000 Opph hemologue Rhizobium 5P. 76 3 477 290 Gail 2000 Opph hemologue Rhizobium 5P. 76 4 256 1302 Gail 2001 Opph hemologue Rhizobium 5P. 76 5 775 738 Gail 2001 Opph hemologue Rhizobium 5P. 76 6 758 1302 Gail 2001 Opph hemologue Rhizobium 5P. 76 7 758 758 Gail 2001 Opph hemologue Rhizobium 5P. 76 8 750 Gail 2001 Opph hemologue Rhizobium 5P. 76 9 9 9 9 9 9 9 9 9	976	-	4331	1 4858	91 143268	dihydroliposmide transsuccinylase (odhB; EC 2.3.1.61) [Bacillus ubtills]	96	61	528
1 2 107 91 186025 ORF YKLO27v [Saccharomyces cerevisies] 76 1 1 1 1 1 1 1 1 1	404	-	1 4022	4492	191 1303823	YqfG Bacillus subtilis	96	9	471
1 1356 2854 4 1405464	=	-	- 2	1 307	gi 186025	ONF YKLO27w [Saccharomyces cerevisiae]	9,	55	306
1 173 995 991 133821 atraptococcel pyrogenic exotoxin type C (spec) precursor Streptococcus 76 1 1054 557 991 1002520 MuLS Bacillus aubtilis 76 1 16 735 991 188534 ClpB Synechococcus sp. 76 2 175 798 991 1486422 OppD homologue Rhitoblum sp. 76 3 175 798 991 1486422 OppD homologue Rhitoblum sp. 76 4 2568 3302 991 140177 Apportation 100-cin	4.12	-	4356	2854	[91]1405464	AlsT [Decillus subtilis]	76	1 57	1503
1 164 557 gill002520 MutS [Bacillus aubtilis] 76 1 16 715 gil885914 ClpB [Synachococcus sp.] 76 2 175 798 gill486422 OppD homologue [Rhitablum sp.] 76 3 547 290 gil904199 Impothetical protein [Muman cytomegalovIrus] 76 4 2566 3102 gil904199 Impothetical protein [Bacillus subtilis] 76 5 256 3102 gil904199 Impothetical protein [Bacillus subtilis] 76 6 256 3102 gil9140177 Spoof gene product [Bacillus subtilis] 76 7 24 256 gil1511333 M. jannaschii prodicted coding region MJ132 [Mathanococcus jannaschii] 76 8 11 486 244 gil467154 No definition line found [Mycobacterium leprae] 76 8 259 266 gil1304984 YqkG [Bacillus subtilis] 76 9 182 gil56706 CapJ [Staphylococcus aureus] 76 9 187 gil57898 transport protein [Salmonella typhfmutium] 76	546		273	566	91 153821	streptococcal pyrogenic exotoxin type C (speC) precursor Streptococcus pyogenes)	94	36	123
1 16 735 91 885934 CipB Synethococcus sp.] 76 76 775 77	588	-	1054	1 557	91 1002520	MutS Becillus subtilis]	76	19	498
2 175 798 gil 1486422 OppD homologue [Rhitoblum sp.] 76 4 2568 3302 gil 330613 major capsid protein [Human cytomegalov[tus] 76 5 547 290 gil 330613 major capsid protein [Human cytomegalov[tus] 76 6 76 72 728 gil 40177 spoof gene product [Bacillus subtilis] 76 7 452 228 gil 40177 spoof gene product [Bacillus subtilis] 76 8 70 70 70 70 70 70 9 8 8 9 151133 Ph. januaschil predicted coding region MJ132 [Hathanococcus januaschil] 76 1 486 244 gil 467154 Nordefinition line found [Mycobacterium leprae] 76 1 529 266 gil 1303984 YqdG [Bacillus subtilis] 76 1 181 182 gil 506706 CapJ [Staphylococcus arrews] 76 1 187 gil 1513398 transport protein [Salmonella typhimutium] 76	165	-	91 -	135	91 [885934	Clp8 Synechococcus sp.]	96	7	720
2 547 290 91 310613 major capsid protein (Numan cytomegalovitus) 76 76 756 756 756 756 756 756 756 757 756 757 756 757 756 757	602	-	271	1 798	01 1486422	OppD homologue (Rhizobium sp.)	16	. 52	624
4 2564 3302 91 904199 Inypothetical protein [Bacillus subtilis] 76 76 76 76 76 76 76 7	619	-	547	1 290	191 330613	major capsid protein (Human cytomegalovirus)	9,	47	258
1 452 228 gil 40177 spoof game product [Bacillus subtilis] 76 76 76 76 76 76 76 7	099	-	1 2568	3302	91 904199	liypothetical protein (Bacillus subtilis)	9,6	55	135
1 24 206 gi 143443 adenylosuccinate synthetese (Bacillus subtilis) sp P39726 PURA_BACSU	1 677	-	452	1 228	[gi 40177	spoof gene product [Bacillus subtilis]	16	58	225
1 1156 580 gill511333 M. jannaschli predicted coding region MJ122 [Nethanococcus jannaschii] 76 1 486 244 gild67154 Nu definition line found (Mycobacterium leprae) 76 1 529 266 gill301984 YqkG [Bacillus subtlifs] 76 1 361 182 gil506706 CapJ [Staphylococcus aureus] 76 1 187 gil5153898 transport protein [Salmonella typhimurium] 76	962		7.	506	91 14243		76	63	183
1 486 244 poil 467154 Nor definition line found (Mycobacterium leptae) 76 76 1 1 259 266 poil 1303984 YqkG (Bacillus subtilis) 76 1 1 1 1 1 1 1 1 1	97R	-	1158	1 580	[91/1511333		96	98	579
1 529 266 91 1303984 YQKG [Bacillus subtlis] 76 1 1 1 1 1 1 1 1 1	1 997	-	486	744	, gi 467154	No definition line found [Mycobacterium leprae]	9,0	80	243
1 161 182	1 1563	-	1 529	1 266	91 1303984	YqkG [Bacillus subtilis]	96	52	264
1 1 387 gi 153898 transport protein (Salmonella typhimurium)	2184	-	1 361	182	191 506706	CapJ (Staphylococcus aureus]	96	38	180
	2572	<u> </u>	-	1 387	21 153898	transport protein (Salmonella typhimurium)	94	9	387

TABLE ?

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

35

10

Contig	98 G	Start (nt)	Stop (nt)	match	saft) gene name	E is	1 Ident	length (nt)
1 2942	-	1 29	00	ei 710020	nitrite reductase (nirB) [Bacillus subtilis	76	6.	372
2957	_	7.76	516	91 1511251	hypothetical protein (SP:P42404) [Methanococcus jannaschii]	76	42	162
1 2980	_	554	279	19111405464	AlsT (Bacillus subtilis)	9.	53	376
10015	<u>-</u> ,	649	326	91 408115	ornithine acetyltransferese (Bacillus subtilis)	9/	16	324
3124	-	1 13	174	1911882705	ORF_0401 (Escherichia coll)	76	, 59	162
6716			161	1911168477	ferredoxin-dependent glutamate synthase [Zea mays] pir[A]8596 A]8596 glutamate synthase (ferredoxin) (EC 1.4.7.]) - aize	76	53	159
3789	-	1 2	975	93139956	IIGIC (Bacillus subtilis)	76	55	378
3492	_	-	314	ai 1510398	[terripyochelin binding protein [Methanococcus jannaschii]	76	52	313
3926	-	1 798	007	gi 143016	[permease [Bacillus subtilis]	9,	89	199
4159	-	1 757	1 386	sp P80544 HRSP_	HETHICILLIN-RESISTANT SURFACE PROTEIN (FRAGMENTS)	76	99	372
4204	-	11	<u> </u>	g1 296464	Affase [Lactococcus lactis]	9,6	95	315
4398	_	494	549	191 987255	Menkas disease gene (Homo sapiens)	76	4.	246
4206	_	- 2	516	91 216746	D-lactate dehydrogenase [Lactobacillus planterum]	٦6	47	312
4546	-	477	247	1911133950	large subunit of NADM-dependent glutamate synthase (Plectonema boryanum)	91	19	231
4596	-	9.6	161	g1 560027	cellulose synthase [Acetobacter xylinum]	91	70	189
-	5	1 5257	1637	01 882532	OFF_0294 [Escherichia coli]	25	88	921
-	-	1 164	952	191140960	OfCase (Escherichia coli)	7.5	98	789
12	-	5935	3944	91 467336	unknown (Bacillus subtilis)	25	57	1992
- 23	=	118272	17310	01 1296433	O-acetylserine sulfhydrylage B [Alcaligenes eutrophus]	7.5	55	963
25	_	1 2356	1393	91 1502419	Plsx Bacillus subtilis	7.5	98	1038
36	-	1 5765	6037	91 1256517	unknown Schizosaccharomycas pombe	75	45	273
\$	2.	•	12058	gi 48972	nitrate transporter (Symechococcus sp.)	7.5	46	673
- 21		3474	13677	1911113607	sporulation protein (Bacillus subtilis)	75	61	204
	<u></u>	16850	16590	6590 ' gi 143402	recombination protein (ttg start codon). (Bacillus subtilis) gl 1303923 RecM	25	\$1	192
7	_	3572	2568	911204847	ornithine carbamoyltransferase (Haemophilus influenzae)	25	61	1005

Contig 1D	ONF TO	Start (nt)	Stop (nt)	match	match gee name	. sim	Lident	length (nt)
 &		462R	3930	91 (43368	phosphoribosylformyl glycinamidine synthetase I (PUR-L: gtg start odon) [Bacillus aubtilis]	75	69	669
æ	<u>~</u> _	5588	4878	91 143367	phosphoribosyl aminoidazole succinocarboxamide synthetase (PUR-C: tg start codon) (Bacillus subtilis)	75	\$	111
88	-	6625	1530	191 1303916	Yqia (Becillus subtilis]	7.5	cs l	906
R7	2	1 2340	3590	91 1064813	homologous to sp:PHOR_BACSU [Bacillus subtilis]	75	26.	1251
1 87	9	6084	9689	19111064810	[function unknown (Bacillus subtilis]	7.5	61	813
108	~	1844	1503	91 1001824	hypothetical protein (Synechocystis sp.)	75	51	342
110	2	1 1748	רברנ	[91]1147593	putative ppGpp synthetase (Streptomyces coelicolor)	75	25	1980
110	-		5252	191/11/7251	CIWD genn product (bacillus subtilis)	75	152	006
120	=	٠;	10649	91 1524394	ORF-2 upstream of gbsAB operon (Bacilius subtilis)	75	95	618
121	2	2050	4221	91 1154632	(NrdE (Bacillus subtilis)	75	25	2112
124	-	1 283	2	gi 405622	(unknown (Bacillus subtilis)	75	99	101
128	_	. B.	1139	91 143316	[lyhp] gane products (Racillus megaterium]	75	84	1059
130	e .	\$760	5903	gi 1256654 	S4.8% identity with Neissoria gonorrhoese regulatory protein Filb; putative	75	62	**
136	~	4480	3185	gi 467403	[sery]-tRNA synthetasa (Bacillus subtilis)	25	54	1296
191	01	5439	5798	191 1001 195	hypothetical protein (Synechocystis sp.)	75		360
172	-		2995	[91]755153	ATP-binding protein (Bacillus subtilis)	75	55	825
179	-	2024	1107	61 143037	porphobilinogen deaminase (Bacilius subtilis)	75	- 88	918
- 1	2	9529	9374	st 125745 YCFB_	HIVPOTHETICAL PROTEIN IN PURB 3'REGION (ORF-15) (FRACHENT).	25	0.9	156
200	-	2605	4596	gi 142440	ATP-dependent nuclease (Bacillus subtilis)	35	95	1992
206	2	0069	5620	191,1256135	YbbF (Bacillus subtilis)	75	5	1261
216	~	1 159	389	[91]1052800	unknown (Schizosaccharomyces pombe)	75	88	162
229		62	847	qi 1205958	branched chain aa transport system II Carrier protein (Naemophilus influenzee)	27	49	618
230	~	518	1714	101 1971337	initrite extrusion protein (Bacillus subtilis)	75	53	1197
231	-	2240	1122	q; 1002521	Huth [Becillus subtilis]	- 25	3.6	1119
233		233 [3 [1314 1		g1 467405	unknown (Becillus subtilis)	75	- 65	546
					· + =	********		

TABLE 2

10 10 10 10 10 10 10 10	Conti	Contig ORF ID ID	R Start	rt Stop	acession	match gene name	a ia	1 ident	Jength (nt.)
1 139 772 91131100 1 Januarathi predices coding reajon MDISI (Matchinecoccus Januarathii 73 73 73 73 73 73 73	1 269	-	1 325	-	19111511246	methyl coenzyme M reductase system, component A2 [Methanococcus jannaschil]	75	20	162
1 171 124 101 1024	1 292	-	-	-	_	M. Jannaschil predicted coding region MJ1651 (Methanococcus jannaschil)	25	9	618
1 131 138 61[126521 Undefiled Goom reading tense Bacillus Essectionarial 15 15 15 15 15 15 15 1	304	-	1177	-	Ϊ – .	surfactin [Haemophilus influenzae]	75	N N	689
1 55 6622 6603 [61] [001097] Pyrvoze Kinas [@cclilus apprincophilus] 75 75 75 75 75 75 75 7	1312	-	1 243	-	<u> </u>	[undefined open reading frame [Bacillus stearothermophilus]	25	. 62	951
1 135 677 61 121229 19th [Bacillos subtilia] 75 18 18 18 18 18 18 18 1	1 312	-	-	-	<u> </u>	Pyruvate Kinase (Bacillus psychrophilus)	25	. 57	1782
5 6321 5910 5641 [6] [600561 Oth-Pappy transferase [Bacillus subtilis] 75 6 5910 5642 [6] [41334 Oth-Pappy transferase [Bacillus subtilis] 75 2 665 1371 [6] [101334 Oth-Pappy transferase [Bacillus subtilis] 75 1 137 570 [6] [113339 Unknoom [Beachdoans structines] 75 2 1603 1379 [6] [113434 Unknoom [Beachdoans structines] 75 2 1603 1379 [6] [113434 Unknoom [Beachdoans structines] 75 2 1604 1379 [6] [113444 [d] thydroprocease [Bacillus subtilis] 75 1 1 144 249 [6] [113662 [6] [114762 [6] [114762 [6] [114762 [7] [144 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444 [7] [1444	1 319	-	1 353	-	-	YqhI (Bacillus subtilis)	25	\$	525
6 5000 5862 G 140334 Cittate synthate II Bacillus subtilis 73 73 73 73 73 73 73	120	-	5 632	-	! -	ONP decarboxylase (Lactococcus lactis)	75	\$6	111
6 1519 2088 91 487433 cittade synthase II Bacillus subtillis 2 663 1271 pij 1304976 matches P300017; AFP_CFP.A and P500101; EPACTOR_CFP; similar to longstion 73 1 127 570 pij 118339 unimone Featdamens sariginosi 75 2 1631 1922 pij 19211 Acctolatita synthase Richistal speameniae 75 3 176 1920 pij 19211 Acctolatita synthase Richistal speameniae 75 4 184	320	-	. – :	: – :	•	OMP-PRPP transferase [Bacillus subtilis]	75	09	633
1 127 530 [0] 113333 Unknown Pecudomonas aeruginose] 13 137 137 [0] 113333 Unknown Pecudomonas aeruginose] 13 137 130 [0] 113333 Unknown Pecudomonas aeruginose] 13 130 [0] 11431	, ,	-	-	-	. —	citrate synthase II (Bacillus subtilis)	7.5	98	570
1 127 570 [61]113539 [61] [60 60 60 60 60 60 60 6	394					matches PS00017: ATP_CTP_A and PS00101: EFACTOR_GTP; similar to longation factor G, TetH/TetO tetracycline-resistance proteins Escherichia colii	25	25	603
2 1603 1929 Gi 13241	423	-	<u>; </u>	-	!	unknown (Pseudowonas seruginose)	75	88	797
1 154 1540	63	-	91 2	-		acetolactate synthase [Klebsiella pneumoniae]	75	63	327
1 494 249 [91] 1149682 DOCF gane product (Clostfiddum perfilmenal) 75 75 75 75 75 75 75 7	977	-	- -	-	1	dihydroorotase Bacillus caldolyticus	75	62	1365
1 3 794 91 143582 3polIIRA protein (put.); putative (Bacillus subtilis) 75 75 75 75 75 75 75 7	486	-	767 1	-	-	potf gene product (Clostridium perfringens)	75	55	246
2 1061 1624 gi 143128 phoP protein (put.); putative (Bacillus subtilis) 75 75 75 75 75 75 75 7	4.6			1 794		spolIEEA protein (Sacillus subtilis)	25	s	792
2 1061 1624 gi 1387979 44% identity over 302 residues with hypothetical protain from Synachocystis 75 99, accession Dédobé_CD; expression induced by environmental stress; sone 10, and 10,	464	-	-	-	_	phop protein (put.); putative (Bacillus subtilis)	75	47	189
1 641 453 ptr JC4110 JC41 triacylglycerol lipase (EC 3.1.1.3) 2 - Mycoplasma mycoides subap, mycoides 75 15CC23 1	56					44% identity over 302 residues with hypothetical protein from Synachocystis sp. accession D64006_CD; expression induced by environmental strass; some similarity to glycosyl transfereses; two potential membrane-spanning helices (Bacillus subtil	25	21	564
2 430 233 gi 330993 tegument protein Baintfline herpesvirus 21 75 75 75 75 75 75 75 7	595						75	20	189
1 1 523 gil 529754 speC (Streptococcus pyogenes) 75	613	_	0 + 430	-		tegument protein (Saimirilne herpesvirus 2)	75	75	B61
5 1809 2474	621	-	-			speC Streptococcus pyagenes	35	43	\$25
1 1 1 1 1 1 1 1 1 1	642	-				EpiG Staphylococcus epidermidis	75	51	999
1 1 147 91 882541 ONF.0236 [Escherichia coli 1 1662 832 91 46971 OpiP gene product (Staphylococcus epidermidis) 75	9 9	-	1 454	-	7	ribonuclease P (Saccharomyces cerevisiae)	75	37	204
1 1662 832 91 46971 epiP gene product (Staphylococcus epidermidis) 75	1 657	-	_	347		ORF_0236 [Eschorichia coli]	75	43	345
	1 750	_	- 1			epiP gene product (Staphylococcus epidermidis)	75	53	831

5. aureus - Putative coding regions of novel proteins similar to known proteins

EP 0 786 519 A2

. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	08 G	Start (nt)	Stop (nt)	march	match gene name	E	1 ident	length (nt)
754	-	~	481	19111303901	Yqhf [Bacillus subtilis]	27	57	480
163	~	563	1 393	9111205145	multidrug resistance protein (Maemophilus influentae)	75	51	171
275	-	1961	482	pir B36889 B368	leuk protein, inactive - Lactococcus lactis subsp. lactis (strain IL1403)	1.5	63	087
793	-	-	180	191 143316	[gap] gene producte [Becillus megaterium]	1 75	57	180
800	-	316	160	91 509411	NFRA protein (Azorhizobium caulinodans)	27		159
-	<u>-</u>	7111	095	91 143434	Rho Factor (Bacillus subtilis)	25	- 09	558
940	-	493	920	91 1276985	arginase [Bacillus caldovelox]	35	20	165
106	~	76	282	1911001373	hypothetical protein (Synechocystis sp.)	27	88	216
1059	-	384	232	191 726480	1-glutamine-D-fructose-6-phosphata amidotransferase (Sacillus ubtilis)	35	67	151
109	~	219	374	91 143331	elkaline phosphatase regulatory protein (Becillus subtilis) pir[A27650]A27650 regulatory protein phoR - Bacillus subtilis sp[P21545]PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC 2.7.3).	27	2	156
1269		271	137	91 304135	ornithine acetyltransferase (Bacilius atearothermophilus) spigo1908 ARGJ_BACST_GUUTAMARE N-ACETYLRANSFERASE (EC 2.3.1.35) ORNITHINE ACETYLTRANSFERASE) (ORNITHINE TRANSACETYLASE) (OATASE) / HING-ACID ACETYLTRANSFERASE (EC 2.3.1.1) (N-ACETYLGUITAMATE YNTHA	75	63	135
1500	-	1 324	163	[91 1205488	excinuclesse ABC subunit B (Hasmaphilus influenzae)	15	57	162
1529	-	1 19 н	00+	gi 1002521	Mutt (Bacillus subtilis)	75	24	199
2010	-	07.6	180	191 1204435	pyruvate formate-lysse activating enzyme (Haemophilus influenzae)	25	8	384
3105	-	-	180	191 1041097	Pyruvate Kinase (Bacillus psychrophilus)	75	57	180
7111		£	212	91 899317	peptide synthetase module (Microcystis aeruginosa) pir[s49111 549111 probable amino acid activating domain - icrocystis aeruginosa (fragment) [SUB 144-528]	۶۲ - ا	Ţ	168
3139	7	139	345	91,145294	adenine phosphoribosyl-transferase (Escherichia coli)	7.5	99	207
3880	-	618	310	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	35	- 58	109
1166	-	£	401	91 433991	ATP synthase subunit beta (Bacillus subtilis)	75	99	354
1957	-	~	9.6		1-laopropylmalile debydrataso (EC 4.2.1.33) chain luuC - jactococcus lactis subsp. lactis (strain [L1403)	27	59	378
400\$	-	s	259	1911216746	D-lectate dehydrogenase (Lactobacillus plantarum)	27	87	255
4080	-	2	333	91 415855	deoxyribose aldolase (Mycoplasma hominis)	75	89	261

unknowm (Bacillus subtilis)

[61 | 1377833

 sim | virtent | length \$ 2 6.9 Ç 2 2 * 2 2 hsiby gene of Ecopril gene product [Escharichia coli] pir[538437|538437 hadby protein - Escharichia coli pir[509629|509629 hypothetical protein A - Escharichia coli (SUB 40-520) ATP binding protein of transport ATPases [Bacillus firmus] ir|S15486|S15486 ATP-binding protein - Bacillus firmus p|P26446|YATR_BACFI HYPOTHETICAL ATP-BINDING TRANSPORT PROTEIN. methylated-DNA--protein-cysteine methyltransferase (Haemophilus influentae) ribonucisoside triphosphate reductase [Escherichia coli] pir|a47331[a47331 annerobic ribonucisotide reductase - Escherichia oli large subunit of NADH-dependent glutamate synthase (Plectoneme boryanum) dipeptide transport system permease protein (Maemophilus influenzae) major surface glycoprotein (Pneumocystis carlnii) phosphoglycerate kinase (Bacillus megaterium) hypothetical protein (Bacillus subtilis) aspartate-tRNA ligase (Escherichia colii endoglucanase [Methanococcus jannaschii] DNA-binding protein [Bacillus subtilis] initrate transporter [Synechococcus sp.] devà gene product (Anabaena sp.) ttg start (Campylobacter coli) putative [Lactococcus lactis] histidase (Bacillus subtilis) putative (Lactococcus lactis) putative (tectococcus lactis) ATPase [Lactococcus lactis] Tree [Bacillus subtilis] YqhJ (Bacillus subtilis) NupC [Escherichia coli] O BTH match gene 91 450688 191 | 149435 match scession 91 11107528 191 1205430 5791 [91]1256653 (gi | 1239988 91 1212729 1691 1510631 0566661 | 136 91 | 1204652 191 | 1000451 191 | 143318 gi | 146970 5150 / |91 | 143076 1368 |91 |40773 |gi|443793 [81]149435 91 294260 |ai|41015 91 39478 91 | 48972 Stop (nt) Start (nt) 1 5961 <u>~</u> ~ Cuntig |ORF ID | 1D m _ _ • 9= ^ ~ € Ç

- Futative coding regions of novel proteins similar to known proteins S. autous

Contig ORF Start Stop match aapph gene name Lib Li	monthlus influences salcatophilus salcatophilus salcatorquens cillus subtilis cillus subtilis	# 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	34	length (nc) 312 486 453 1008 1008 1199 1239 1050 1050
10 11064 11375	(Rhizobium melloti) iporter system ONF2 (Bacilius alcalophilus) ical protein (SP:225745) (Heemophilus influenzae) (Bacilius subtilis) hickinase (Mathylobecterium extorquens) kread DNA binding protein (Bacilius subtilis) betaine transporter OpuD (Bacilius subtilis)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3	486 453 1008 1117 1118 1139 1239 1239
2 1109 2624	iporter system ORF2 (Bacilius alcalophilus) Leal protein (SP: 225745) (Heemophilus influenzee) I protein L6 (Bacillus subtilis) Hiokinase (Methylobecterium extorquens) Itend DNA binding protein (Bacillus subtilis) betaine transporter OpuD (Bacillus subtilis)		¥ 3 8 2 8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8	486 453 1008 1117 1118 507 1239 1239
1 11146 1013 91 91 91 91 91 91 91	iporter system ORF2 [Bacillus alcalophilus] Leal protein L6 [Bacillus subtilis] I protein L6 [Bacillus subtilis] Mickinase [Methylobecterium extorquena] Mickinase [Methylobecterium extorquena]	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	561 1108 1117 1118 507 507 1239 1050
11	leal procein (SP:225745) (Heemophilus influenzee) I procein L6 (Bacillus subtilis) Hokinase (Hethylobecerium extorquens) Irrand DNA binding protein (Bacillus subtilis) betaine transporter OpuD (Bacillus subtilis)		2 2 2 3 4 5 7 5 X	1008 1117 1117 1118 507 507 1239
17 9619 9059 Q1 1044979	us subtilis; cterium extorque otein [Bacillus OpuD [Bacillus s	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1137 1137 1239 1239 1050 1050
7 5574 6710 pt 1146207 pt	cterium extorque otein (Bacillus opub (Bacillus mithemi)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2	1137
3 4221 3334 94 494121 1 1 1 1 1 1 1 1 1	hiokinase (Methylobecterium extorquens) trand DNA binding protein (Bacillus subtilis) betaine transporter OpuD (Bacillus subtilis)	7 7 7 7 7	2 2 2 2 2 3 3	1188
6 1305 2739 91 467374 4 6551 5313 91 467374 4 6 5714 4 6 91 1204872 4 1 1220 6 6 91 1205579 4 1 1 1065 91 131389 4 1 1 1065 91 131389 4 1 1 1 1 1 1 1 1 1	Bacillus acillus	7 7 7 7	25 25 25 25 25 25 25 25 25 25 25 25 25 2	309
4 6551 5313 91 1524197 1 1 1 1 1 1 1 1 1	betaine transporter OpuD (Bacillus subtilis)	74 - 74 - 74 - 74 - 74 - 74 - 74 - 74 -	2 2 2 2	309
7 4389 4081 94 809542 1 1220 666 94 120579 1 1220 666 94 120579 1 1220	stein [Erwinia chrysanthem]	74 -	2 2 2	309
6 5714 4665 gi,1204872 1 1220 666 gi,1205579 1 1 1065 gi,143389 1 1 1 1065 gi,143389 1 1 1 1065 gi,143389 1 1 1 1 1 1 1 1 1		7 - 7	2 5	1050
1 1220 666 91 1205579 12 1473 862 91 143388 1 1 1065 91 143389 1 1 1 1065 91 143389 1 1 1 1 1 1 1 1 1	ATP-binding protein [Heemophilus influences]	74	53	
2 1473 862 91 143398 1 1 1 1065 91 143389 1 2 132 1128 91 143389 1 2 1742 1311 91 139315 1 1 1 942 91 413982 1 1 1 942 91 413983 1 1 1 942 91 413983 1 1 1 1 1 1 1 1 1	hypothetical protein (GB:U14001_302) [Haemophilus influenzae]			1 888
1 1 1065 9i 143389 128 9i 14457 128 9i 1544657 12 1442 1311 9i 1303915 12 13 13 9i 143982 1 1 1 1942 9i 140211	oxidase (bacillus subtilis)	74	57	612
2 182 1128 0i 514857 2 1742 1311 gi 1303915 5 2503 3270 Gi 473902 1 1 942 gi 473983 1 3 1193 gi 558494 2 1174 1407 gi 40211	ilutaminase of carbamyl phosphate synthetase (Bacillus subtilis) pir(E29845[E29845 carbamoyl-phosphate synthase glutamina-hydrolyzing) (EC 6.3.5.5), pyrimidine-repressible, small hain - Bacillus subtilis	7	9	1065
2 1742 1311 gi 1303915 5 2503 3270 gi 473902 1 1 942 gi 473982 1 3 1193 gi 558494 2 1174 1407 gi 40211	Arpase aubunit a (Bacillus stearothermophilus)	- 24	56	747
5 2503 3270 Q1 473902 1 1 942 91 413983 1 3 1193 91 58894 2 1174 1407 91 40211	scillus subtilis	-	65	432
1 1 942 91 413982 1 3 1193 91 558494 2 1174 1407 91 40211	alpha-acetolactate synthese [Lectococcus lactis]	74	56	168
1 3 1193 gi 558494 2 1174 1407 gi 40211	gene product (Bacillus subtilis)	74	52	942
2 1174 1407 91 40211	homoserine dehydrogenase [Bacillus subtilis]	10	51	1191
threonine synthase (EC 4.2.99.2)	threonine synthase (thrc) (AA 1-352) [Bacillus subtilis] ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacillus btilis	P.	26	234
462 2 402 734 91 142520 thioreduxin (Bacillus subtilis)	oxin (Becillus subtilis)	74	62	133
478 1 574 320 9! 1499005 91ycy1-tRNA synthetase Hethanococ	glycyl-tRNA synthetase (Methenococcus jannaschii)	74	52	255
501 2 739 1740 91 217040 acid glycoprotein (Streptococcus p	acid glycoprotein (Streptococcus pyogenes)	-	58	1002
551 2 4083 2791	glutamate-1-semialdahyde 2 1-aminottanafatase (Bacillus subtilis) pir[b42728 b42728 glutamate-1-semialdahyde 2,1-aminomutase (EC .4.3.8) - Bacillus subtilis			1293

TABLE 2

TABLE 2

D	ORF 110	(nt)	Stop (nt)	match	netch gene name	E is	1 Ident	length (nt.
573	-	-	477	19111006605	hypothatical protein (Symechocystis sp.1	74	45	477
596	~	1780	1298	19111303853	YooF (Bacillus subtilis)	74	55	483
619	~	2924	1758	91 1146237	[1]. (% of identity to trans-acting transcription factor of Secharomyces carevisiae; 25% of identity to sucrose synthase of Zea mays; putative [Bacillus subtilis]	*	\$	1167
629	~	1269	1595	91,1072380	ORF3 [Lectococcus lactis]	7	62	327
724	-	£7£	8	gi 143374 	phosphoribosyl glycinemide synthetese (PUR-D, gtg start codon) Bacillus subtilis!	7.	5.8 5.8	186
143	2	909	1209	91 153833	ORF1; putative (Streptococcus parasanguis)	7.	0\$	909
936		2	1259	91 143458	ORF V (Bacillus subtilis)	74	÷	25.H
989	~	443	724	91 1303994	YqkM (Bacillus subtilis)	7.	9	282
1106	-	-	492	191116970	epiD gene product [Staphylococcus epidermidis]	74	54	492
1135	7	575	528	gi 413948	ipa-24d gene product (Bacillus subtilis)	7.	60	156
1334	2	1 817	452	gi 495245	rocJ gene product (Erwinia chrysauthomi)	74	36	366
2586	-	~	238	91 111 9701	sbcC gene product Clostridium perfringens	74	63	752
2959	-	1 798	8	91 1405454	aconitase [Bacillus subcilis]	74	9	399
2962	-	650	1963	91 450686	1-phosphoglycorate kinase [Thermotoga maritima]	74	8.8	288
2983	1	-	161	191 1303893	Yaht (Bacillus subtilis)	74	96	189
3018		2	223	91;143040	glutamate-1-semialdabyde 2,1-eminotransfersse [Bacillus subtliis] pir[D42728 D42728 glutamate-1-semialdabyde 2,1-aminomutese (EC .4.3.8) - Bacillus subtilis	7	9,	222
3038	1	510	556	pir 552915 5529	Initrate reductase alpha chain - Bacillus subtilis (fragment)	74	٠,	255
3062	-	374	189	911107528	ttg start (Campylobacter coli)	74	51	186
4035	-	184	360	gi 1022725	unknown (Staphylococcus haemolyticus)	74	79	177
4045	-	1 607	305	19111510977	M. Jannaschii predicted coding region MJ0938 (Methanococcus jannaschii)	44	17	303
4283	-	173	304	gi 520844	orf4 (Bacillus subtilis)	7	88	168
4449	-	_	122	01628158	peptide-synthetese ORF1 [Bacillus subtilis]	74	54	219
4587	-	458	1331	9111370207	orf6 (Lactobacillus sake)	7	88	228
-						********		

TABLE 2

1257 1020 1554 996 186 183 792 1083 1005 583 177 R04 240 642 243 **R**19 729 915 894 975 498 792 950 1 1 ident | langth 5 37 42 55 54 55 59 25 88 53 3 ! -19 53 98 S 40 9 54 28 aie 1 7.3 73 5 5 5 Ę 73 ٤ 5 5 73 2 5 7 5 5 7,3 5 73 5 alpha-isopropylmalate isomerase (put.); putative [Rhizomucor ircinelloides] 3-isopropylmalate dehydrogenase (AA 1 - 365) {Bacillus subtilis} pir[A26522]A26522 3-isopropylmalate dehydrogenase (EC 1.1.1.85) - acillus subtilis ribonucleoside triphosphate reductase [Escherichia coli] pir|A47331|A47333 enserobic ribonucleotide reductase - Escherichia oli anserobic ribonucleoside-triphosphate reductase (Haemophilus influenzae) M. jannaschii predicted coding region MJ0775 (Methanococcus jannaschii) glutamate synthase large subunit (EC 2.6.1.53) (Escherichia coli) pir/a29617/a29617 glutamate synthase (NADPH) (EC 1.4.1.13) large hain Escherichia coli phosphoribosyl aminoimidazole carboxy formyl ormyltransferase/inosine meso-2,3-butanadiol dehydrogenase (D-acetoin forming) (Klebsiella monophosphate cyclohydrolase (PUR-H(J)) Bacillus subtilis) threonine dehydratase 2 (EC 4.2.1.16) (Escherichia coli) dihydroorotata dehydrogenase (Agrocybe aegerita) ornithine cyclodeaminase (Rhizobium meliloti) ipa-76d gene product (Bacillus subtilis) stage V sporulation (Bacillus subtilis) ipa-7d gene product (Bacillus subtilis) pepT gene product (Bacillus subtilis) murD gene product (Bacillus subtilis) mond gune product (Escherichia coli) putative (Bacillus subtilis) unknown (Bacillus subtilis) AppF (Bacillus subtilis) YbbF [Bacillus subtilis] Prow [Bacillus subtilis] yein [Escherichla coli] match gene name pneumoniae) match acession 191 1510849 |91|,256135 91 1468939 |gi|.429259 19111109685 | 6223 |gi|1204333 91 | 166338 191 405885 gi | 146208 |91|143727 gi | 143373 94 297060 95 467442 91 414000 91,168367 106[413931 91 677944 91 | 580932 91 146970 91 | 580895 101 111923 169095 | 18 191 42009 4896 16360 5756 Stop (nt) 1372 4635 4914 13794 2600 7162 1020 1273 7402 7562 8306 3080 2248 4238 214 184 330 860 Start | 2454 5426 6467 8658 39)1 7767 1458 4782 2024 7953 17379 7738 5041 2439 14036 1430 1375 3493 5726 692 53 366 <u>.</u> ~ Contig ORF 2 11 s ۰ ď 'n ~ œ = Ξ = <u></u> 4603 Ξ 29 Ŧ 7 ş 65 8 0 Ξ | 2 53 Ę 1, 5 3 65 109 120

10

15

20

25

30

35

40

45

50

to known proteins

proteins similar

nove!

ŏ

- Putative coding regions

aureus

.:

TABLE 2

Cont ig ID	ORF ID	Start Inc)	Stop (nt)	match	וושנבה קפחפ המשפ	e .	ident	length (nt)
132	- 2	14151	6363	01/871048	[HPSN2 - heavy chain potential motor protein (Giardia intestinalia)	23	7	213
140	9	5952	4324	91 634107	kdp8 Escherichie coli	67	65	1629
142	9 -	7060	5919	191 410125	riLi gene product [Nacillus subtilis]	ני	1 57	1122
149		1866	1717	q1 460892	heparin binding protein-44, HBP-44 [mice, Peptide, 360 aa] pir JX0281 JX0281 heparin-binding protein-44 precursor - mouse g1 220434 ORP [Mus musculus] (SUB 2-360)	ני		150
158	-	1	157	91 882504	ORP_f560 (Escherichia coli!	ני	1 57	161
174	9	5352	4525	91 1146240	ketopentnete hydroxymethyltransferase [Bacillus subtilis]	ا د	- \$5	A28
175	=	, tess	5178	9: 854657		52	95	360
186	2	6893	5493	191 467477	unknown [Bacillus subtilis]	£7	9,	1101
549	9	6283	5729	(9) 1524397	(glycine betaine transporter OpuD (Bacillus subtilis)	נג	98	555
265	-	1873	2280	101 39848	(U) [Bacillus subtilis]	<u>ت</u>	=	408
270	-	328	582	191 780461	220 kDa polyprotein (African swine fever virus)	ני	3	255
278	-	4283	3618	91 1204965	hypothetical 23.3 kd protein (Bacherichia coli)	5	\$	999
279	_	4984	1 3593	91 1185288	[isochorismate synthase [Bacillus subtilis]	55	85	1392
291	-	1207	1575	91 1511440	glutaminefructose-6-phosphate transaminase (Methanococcus jannaschii)	1 73	69	369
539	~	735	1166	191 467437	unknown (Bacillus subtilis	ני	88	432
562	-	1 2050	3234	91 467439	[temperature sensitive cell division [Bacillus subtilis]	23	53	1185
334	-	7621	1 728	191 536655	ORF YBR244w [Saccharomyces cerevisias]	נג	5	510
336	~	1827	1036	191 790943	ures amidolysse [Bacillus subtilis]	67	15	792
374	-	1 1389	1874	191 1405451	YneJ [Becillus subtilis]	ا د	\$5	486
433	*	1916	2554	191 473902	alpha-acetolactate synthase [Lactococcus lactis]	1 ت	24	639
\$00	~	11795	1028	91 467483	unknown (Bacillus subtilis)	1.73	96	768
513	-	1709	918	91 1146220	NAD+ dependent glycerol-J-phosphate dehydrogenase [Bacillus subtilis]	ני	95	792
233	~	239	733 ,	, [91 1510605	hypothetical protein (SP:P42297) [Methanococcus jannaschii]	ני	:	495
546	- 2	1148	2815	64 41748	hadW protein (AA 1-520) [Escherichia coll]	13	52	1668
549	-	1 762	382	91/1314847	CinA [Bacillus subtilis]	£7	1 57	381
267	-	1346	675	191 410137	ORFX13 (Bacillus subtilis)	67	- 88	672
*******			*****					

EP 0 786 519 A2

S. aurcus - Putative coding regions of novel proteins similar to known proteins

Contig ONF	- 08F	Start (nt)	Stop (nt)	match	match gene name	e in	1 ident	Jength (nt)
316	-	654	1112	91 1256623	exodeoxyribonuclesse (Bacillus subtilis)	73	95	459
27.2			673	91 142010	Shows 70.2% similarity and 48.6% identity to the EnvH protein of elmonella typhimurium (Anabaena sp.)	5	5	675
274	-	-	209	91 409286	ther (Becillus subtilis)	73	52	207
782	-	-	403	91/143320	[gap] gene products (Bacillus megaterium]	13	56	402
PRC -	~_	151	1 762	91 1063246	low homology to Pi4 protein of Hemmophilus influentar and 14.2 kDa protein of Escherichia coli (Bacillus subtilis)	3 د	95	210
964	-	-	116	191 453754	ABC transporter (Bacillus subtilis)	در ا	88	606
806		1209	949	91 143786	Lryptophanyl-tRNA synthetase (EC 6.1.1.2) [Becillus subtilis] pir[JJ0481] YMBS tryptophantRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	5	23	261
816	~	1 4839	1 3097	91 41748	hsdw protein (AA 1-520) [Escherichia coli]	٤٢	52	1743
629		1 798	9	21 886906	argininosuccinate synthetase [Streptomyces clavuligerus] pir [857659 557659] argininosuccinate synthese (EC 6.3.4.5) - treptomyces clavuligerus	t	59	399
1 857	-	C -	290	91 348052	scetoin utilization protein [Bacillus subtilis]	7.3	20	288
1008		790	398	91 40100	rodc (teg3) polypoptide (AA 1-746) [Bacillus subtilis] ir S06049[S06049] rodc procein - Bacillus subtilis p P13485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	ت ت	7	191
101	<u>-</u> -		527	qi 529357	No definition line found (Ceenorhabditis elegans) sp P46975 STT3_CAEEL OLIGOSACCHARYL TRANSFERASE STT3 SUBUNIT OHOLOG.	22	S	213
1033	-	-	164	1911142706	comcl gond product (Bacillus Bubtillu)	23	7	489
1174	-	1 395	704	qi 1149513	alphala subunit of laminin 5 (Nomo sapiens)	23	09	192
2411	-	655	1 329	191 (13817	'ORF' [Escherichia coli]	23	- 57	327
1187	-	-	1 209	191 580870	ipa-37d qoxA gene product (Bacillus subtilis)	73	52	207
1206		22	245	91 144816	formyleartahydrofolate synthetase (FTHFS) (ttg start codon) (EC .3.4.3) (Noorella thermoscatica)	5	\$	174
1454	-	1 423	1 241	0111213253	unknown (Schitosaccharomyces pombe)	در	53	183
1469	-	515	1 260	191 1303787	TqeG Bacillus subtilis	נג	\$\$	258
1961	-	374	1 1R9	5116 16 ,	Hst26Aa gene product [Drosophila simulans]	در	7	186
1849	-	1 467	1 243	91 162307	DNA toppisomerase II (Trypenosome cruzi)	در	09	225
2055	-	- 2	807	qi 559381	P47K pretein (Rhodococcus erythropolis)	1,	34	399
2556	-	~	744	91 145925	face [Escherichia coli]	5	62	243

EP 0 786 519 A2

. aureus - Putative coding regions of novel proteins similar to known proteins

	Contig	108	Start (nt)	Stop (nc)	match	match gene name	e is	* ident	length
	1 2947	- 3	549	907	911184680	polymucleotide phosphorylase (Bacillus subtilis)	5.	31	150
	1 2956	-	746	576	Q1 :43397	quinol oxidase (Bacillus subtilis)	۲.	58	1 276
	rear	-	1 655	1 329	191 113091	acetolactate synthase (Bacillus subtilis)	7.3	55	327
	3115		388	194	91 323866	overlapping out-of-phase protein (Eggplant mosaic virus)	۲.	53	192
٠.	1 3603		700	527	Oi 14.9521	glutaryl-CoA dehydrogenase precursor (Mus musculus)	נג	87	174
	3743		798	00	gi 450688	hady gene of Ecopril gene product [Bacherichia coli) pir [538437]538437 hady protein - Escherichia coli pir [509529]509629 hypothetical protein A - Escherichia coli (508 40-520)	د . 	\$.	1999
	13752	-	019	1 359	191 11524193	unknown (Mycobacterium tuberculosis)	73	ėć	282
	3652	-	7	181	gi 216746	D-lactate dehydrogenese [Lactobacillus plantarum]	13	89	180
	1 3914	-	1 475	239	pir 513490 5134	Hydroxymathylglutaryl-CoA synthase (EC 4.1.3.5) - Chicken (fragment)	73	5.3	237
	1 3914	~	1 570	25	91 528991	unknown (Bacillus subtilis)	6.	36	228
	4069		~	316	01 (40003	oxoglutarate dahydi ogenase (NADP+) [Bacillus subtilis) p[P23129] (DDD] BACEU 2-OXOGLUTARATE DEHYDROGENASF El COMPONENT (EC 2.4.2) (ALPHA- KETOGLUTARATE DEHYDROGENASE).	<u>ت</u>	ž.	315
	4165	-	1 715	365	91 1439521	glutary -CoA dehydrogenase precursor Mus musculus	ני	89	351
	4196			111	101 809660	decryribose-phosphate aldolase Bacillus subtilis pir S40455 S49455 decryribose-phosphate aldolase EC 4.1.2.4) - scillus subtilis	13	09	7.1
	4202	-	572	1 378	1011528991	unknown [Bactilus subtilis]	5	H.	193
	4314			181	91 436797	N-acyl-L-amino acid amidohydrolase Dacillus sterrothermophilus sp 937112 AMA_BACST N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC .5.1.14) (AMINOACYLASE).	£7.	Ç	192
	4393	-	-	1 263	91 216267	ORF2 Bacillus megaterium	73	47	261
	35	~	903	1973	194 1146196	[phosphoglycerate dehydrogenase [Baclllus subtilis]	72	53	101
		<u> </u>	19094	17877	k 602031		27	3	1218
	38	2	118134	119162	1011413968	[pa-44d gene product [Bacillus subtilis]	72	\$4	1029
	=	- 119	111895	12953	gi 516272	unknown [Bacillus subtilis]	2,	64	1059
	*	-	6248	7117	91 (43499	pyruvate synthase [Halobacterium halobium]	72	64	670
	05	_	6563	1 5691	191 1205399	proton glutemate symport protein (Heemophilus influentae)	22	53	673

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	98 CT	Start (nt)	Stop (nt)) metch	match gene name	. sin	• ident	length (nt)
S	6	110521	1 9259	gi 1303956	YqjE (Becillus subtilis)	72	52	1263
95	= =	29549	129995	191 467 471	unknown [Bacillus subtilis]	72	47	447
69	-	5298	1 4123	01 1354775	pfoS/R (Treponema pallidum)	72	9	1176
69	'n	14377	4982	(g1 90419B	hypothetical protein (Bacillus subtilis)	72	C	909
2	-	- 2	856	91 142997	glycerol uptake facilitator [Bacillus subtilis]	72	59,	855
86	=	9371	10258	91 167435	unknown [Bacillus subtilis	72	80	988
127			1593	91/217144		72	98	1593
<u>=</u>		5197	2600	91 153952	polymerase III polymerase subunit (dnaB) [Selmonella typhimurium) pir A45915 A45915 DNA-directed DNA polymerase (EC 2.7.7.7) III lpha chain - Salmonella typhimurium	5.5	28	2598
141	-	1040	1978	91 1405446	transketolase (Bacillus subtilis	72	18	939
149	-	1 2819	1 2535	1911606234	secy (Escherichia coli)	22	3	1 285
149	=	1 5472	5245	19111304472	DNA polymerase [Unidentified phycodnavirus clone OTU4]	72	55	228
154	-	- 1	210	91 1205620	ferritin like protein (Haemophilus influenzae)	72	Q	210
155		2207	1320	191 391610	farnesyl diphosphate synthase (Becilius stearothermophilus) pir JX0257 JX0257 geranyltranstransferese (EC 2.5.1.10) - Bacilius tearothermophilus	5	5	e 69
180	-	- 2	328	gi 433630	Aleo (Saccheromyces cerevisiae)	52	62	726
184	-	11145	1 3553	191 1205110	virulence associated protein homolog (Haemophilus influenzae)	72	67	2409
195	-	1923	1 1279	191 1001730	hypothetical procein (Synechocystie sp.)	22	45	645
506	=	114646	115869	91 1064807	ORTHININE AMINOTAANSPERASE (Bacillus subtilis)	72	05	1224
209	-	1 462	932	91 1204666	hypothetical protein (GB:X73124_53) [Haemophilus influenzae]	22	99	473
215		764	- 253	191 481513	insulin receptor homolog (Drosophila melanogaster) pir S57245 S57245 S57245 insulin receptor homolog - fruit fly (Drosophila elanogaster) (SUB 46-2146)	22	3	243
224	-	~ -	067	101,949974	sucrose repressor [Staphylococcus xylosus]	22	25	189
- 233	-	1526	1 765	{gi 1408493	homologous to SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis)	72	52	762
340	-	1 220	1485	91 537049	ORF_0470 (Escherichia coli)	72	52	1266
245	-	- n	1340	01 1204578	hypothetical protein (GB:U06949_1) [Haemophilus influenzae]	72	94	1338

 ${ t TABLE}$ 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	- CR	Start	Stop	match	nfalch gene name	E 18	* ident	length (nt)
259	-	2108	1 1245	gi 1340128	ORP1 (Staphylococcus aureus)	72	59	999
304	- 2	285	1094	91 1205330	glutamine-binding periplesmic protain (Maemophilus influenzae)	12	22	010
70r	2	5326	1 5039	191 1070015	protein-dependent (Bacillus subtilis)	72	53	288
315	1-	1 517	1 260	91 143399	quinol oxidase (Bacillus subtilis)	72	\$\$	258
911	Ξ	9622	9308	ui 1204465	hypothetical protein (SP:P27857) [Haemophilus influenzee]	72	, 3 5	315
5	-	926	1609	01 487433	citrate synthese II (Bacillus subtilis)	7.2	\$8	684
1 364	-	112538	10493	91 1510643	[ferrous iron transport protein B [Methanococcus jannaschii]	7.2	53	2046
609	- 2	340	1263	91 1402944	orfRM1 gene product (Bacillus subtilis)	12	67	924
=		7,12	1590	91 312379	highly conserved among subscierie (Clostridium ecatobutylicum) pir[534312]534312 hypothetical protein V - Clostridium cetobutylicum	22	Œ.	584
- 453	9	1 2654	2505	pir 500601 BXSA		- 27	0,	150
097	-	- 2	625	91 1016162	ABC transporter subunit (Cyanophore peradoxe)	- 22	51	624
•	 -	3253	1628	91 666014	The polymorphysm (RFLP) of this gene is associated with usceptibility to essential hypertension. The SA gene product has light homology to acetyl-CoA synthetase (Homo sopiens)	22	9	1626
480	-	1 3047	3466	81 433992	ATP synthese subunit epsilon (Becillus subtilis)	72	33	420
505	-	1086	586	gi 310859	ORF2 (Synechococcus sp.1	72	20	105
519	-	18	1184	91 1303704	YrkE (Bacillus subtills)	7.2	3	1104
655	-	-	1766	91 1107530	ceuD gene product (Campylobacter coli!	7.2	26	744
575	-	11142	573	gi 1303866	Yogs (Bacillus subtilis)	73	26	570
17.9	-	~	- 592	9: 1204497	protein-export membrane protein [Haemophilus influentee]	2	=	165
619	~	1 295	1351	gi 563258	virulence-associated protein E [Dichelobacter nodosus]	7.2	52	1 957
687	~_	295	957	91 1146214	44% identical amino acids with the Escherichia coll smba supress; putative (Becillus subtilis)	2	\$	663
1837	-	-	93	91 1146183	[putstive (Bacillus subtills)	22	*	435
898	-	150	1 788	91 1377842	unknown [Bacillus subtilis]	22	\$\$	639
922	_	130	- 433	91 1088269	unknown protein [Azotobacter vinelandii]	2,	58	303
176	-	7	238	gi 153929	NADPH-sulfite reducatase flavoprotein component (Salmonella yphimurium)	12	6,	723
986	<u>-</u>	- 840	<u> </u>	91 853767	UDP-N-acetylglucosamine 1-carboxyvinyltransfersse (Bacillus ubtilis)	7.2	- 89	420

Putative coding regions of novel proteins similar to known

Contig	Ig ORF	Start	Stop (nt)	seession	måtch gene name	E	1 ident	length (nt)
1209	-	383	1 213	91 144735	neurotoxin type B [Clostridium botulinum]	72	3	171
1469	- 5	1671	1 474	91 1205458	hypothetical protein (GB:D26562_47) [Haemophilus influenzae]	72	63	861
1956			165	91 154409	hexosephosphate transport protein [Salmonella typhimurium] pir[841853 841853 hexose phosphata transport system regulatory rotein uhp8 - Salmonella typhimurium	۲	₹	363
1 2101	-	-	6	1911303950	Yqir Bacillus subtilis	22	50	399
2503		595	399	91 149713	formate dehydrogenase (Methanobaccerium formicicum) pir (A42112 A42712 formate dehydrogenase (EC 1.2.1.2) - ethanobacterium formicicum	22	98	171
1 2967		-	1 158	191 1212729	YqhJ (Bacillus subtills]	72	9	153
1004	-	1 367	1 185	[gi]665999	hypothetical protein [Bacillus subtilis]	27	55	183
1 3109	-	1 278	141	91 413968		7.2	45	138
1716		-	287	91 51 5938	glutamate synthase (ferredoxin) Synethocystis sp. pir S46957 S46957 glutamate synthase (ferredoxin) EC 1.4.7.1) - ynechocystis sp.	27	\$2	285
נררג		76	1367	91 1408501	homologous to N-scyl-L-maino seid amidohydrolsse of Bacillus stearothermophilus (Bacillus subtilis)	75	G	342
13951	-	-	1 222	gi 1500409	[M. jannaschii predicted coding region MJ\$19 [Nethanococcus jannaschii]	73	38	222
4190	1	122	362	91 39956		72	57	360
-	-	- 3	1 347	191 1009366	Respiratory nitrate reductase [Bacillus subtilis]	72	\$\$	345
-	: -	===	1200	[ul 537095	fornithling Carbamoylitansformud (Ruchorithia coll)	Ξ	\$	570
=	115	11350	110859	gi 532309	15 kDa protein (Escherichia coli]	71.	47	492
167	- 2	1248	1 2435	91 1244574	D-elanine:D-alanine ligase (Entarococcus hirae)	11	52	1188
		868	1488	91 149629	anthranilate synthase component 2 [Leptospire biflexe] pir[C12840[C12840] anthranilate synthase (EC 4.1.3.77) component II Leptospire biflaxe	71	e S	591
- -	-	-	1 567	ui 1303983	York (Bacillus subtills)	11	- 59	195
	-	3192	1 2806	ui 1209681	glutamate-rich protein (Bacillus firmus)	11	05	1 387
-	81	12250	12462	91 927645	[arginy] andopeptidase (Porphyromonas gingivalis)	11	20	213
66	<u> </u>	1246	4433	pir S09411 S094	pir S09411 S094 spoiliB protein - Bacillus subtilis	11	69	3186
2	•	115770	114760	191 142611		11	88	101
-	i	111 113461	112625	01 143014	ont repressor (Bacillus subtilis)	1,	9#	1 837

TABLE 2

1	Cont 19 10	100	Start (nt)	Stop Int)	match acession	match gene name	E to	• ident	length (nt)
!	52		7152	2860	 gi 508175	EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia	נג	9	1293
!	52	81	13897	14334	91(1063247	high homology to flavohemoprotein (Meemoglobin-like protein) of Alcaligenes eutrophus and Saccharomyces cerevisies (Bacillus subtilis)	1	95	438
<u> </u>	62	9=	9831	10955	91 1303926	YqiG (Becillus subtilis)	71	24.	1125
<u> </u>	30	127	1 8505	9968	gi 147198	phnE protein (Escherichia coli)	11	38,	462
<u>:</u> _	86	2	2394	2089	gi 904205	hypothetical protein (Bacillus subtilis)	7.1	15	306
<u>:</u> _	96	-	1094	8269	191 709991	hypothetical protein (Bacillus subtilis)	1,	6	699
<u>!</u> _	100	9	4822	5931	91 1060848	Opine dehydrogenese (Arthrobacter sp.)	7.1	45	1110
!_	103	-	1062	532	gi 143089	lep protein [Bacillus subtilis]	1,1	=	531
<u>:</u> _	109	118	115312	15695	91 (413985		11	57	384
!_	13	-	1 630	316	ai 663254	probable protein kinase (Saccharomyces cerevisiae)	1.7	23	315
<u>:</u> _	114	- 5	6889	1 5603	911143156	membrane bound protein (Bacillus subtilis)	ונ	0.	966
<u>:</u> _	133	7	3087	5271	91 1303913	VqhX (Becilius subtilis)	11	- 53	1365
!_	149	129	6335	1 5895	91 529650	C40P Bacteriophage SPR1	1,1	15	441
<u>:</u> _	154	- 2	3635	1 3087	91 425488	repressor protein (Straptococcus sobrinus)	7.1	42	549
<u>:</u> _	164	=	11354	111689	191141318	ONF4 gane product (Nacillus subtilis)	7.1		316
<u>:</u> _	169	5	1936	1 2745	91/1403403	unknown (Mycobacterium tuberculosis)	7.1	96	810
<u>:</u> _	193	~	272	1334	19111303788	YqeH [Bacillus subtilis]	1,	49	963
<u>!</u> _	205	-	1743	695	91 1215694	Glng (Mycoplesma preumonles)	11	99	849
<u>:</u> _	233	-	1849	2022	91 633732	ORF1 (Campylobacter jejuni)	1,1	20	174
<u>:</u> _	23.7	-	4501	1 5169	gi .49364	HisIE (Lactococcus lactis	17	25	699
<u>!</u> _	272	-	1 2848	6722	191 709993	hypothatical protein (Bacillus subtilis)	12	8.	576
!	274		819	1496	91 143035	NADIP)H.glutamyl-transfer RNA reductase [Besillus subtilis] pir A35252 A35252 5-aminolevulinate synthame (EC 2.3.1.37) - acillus subtilis	11	S .	81 9
! —	276	-	1 3349	2720	gi 303562	ORF210 (Escherichia coli)	1,7	20	630
! —	287	-	136	099	101 310634	10 kDs protein (Streptococcus gordonii)	1,	5	\$25
! —	288	9	1 3322	1772	94 1256625	putative (Bacillus subtilis)	12	-	\$52
•									

S. sureus - Putative coding regions of novel proteins similar to known proteins

Contig	10 GR	Start (nt)	Stop (nt)	match	medch gene name	E ia	• ident	length (nt)
1 301	9 -	1 3492	1982	191 (467417	similar to lysine decarboxylase (Secillus subtilis)	1,	57	1032
306	-	1 6607	5222	191 1256618	transport protein (Bacillus subtilis)	1,	36	1386
1 307	-	1536	928	91 602683	orfc (Mycoplasma capricolum)	נג	45	612
310	- 5	1 5793	5146	gi 348052	ecetoin utilization protein (Bacillus subtilis)	1.1	51	648
322	-	- 2	1303	01 1001819	hypothetical protein (Symechocyetis sp.)	11	, 94	1302
1 333	-	1 4171	3995	91 467473	unknown (Bacillus subtilis)	1,1	57	דרו
350	- 2	548	922		ONF 1 (Lectococcus lactis)	1,	55	375
275	-	1 1860	1700	01 467447	[unknown (Bacillus subtilis)	11	5.7	1212
380	-	1560	2102	91 142557	Aft synthase b subunit (Bacillus megaterium)	11	‡	543
=	- 2	1 251	637	1911580904	homologous to E.coli rnpA (Bacillus subtilis)	11	69	387
724	-	1 335	1354	91 581305	[L-lactate dehydrogenasa [Lactobacillus plantarum]	71	57	1020
436	- -	13701	07.56	pir PN0501 PN05	phosphoribsaylanthranilate isomerase (EC 5.3.1.24) - Bacillus subtills (fragment)	11	99	432
1 482	-	-	1280	191 410142	ORFX18 (Becillus subtilis)	11	49	1278
525		2272	7	1911143370	phosphoribosylpyrophosphace smidotransferase (PUR-F; EC 2.4.2.14) Bacillus subtilis	ĭ.	98	4 29
529	-	66.72	1 2047	101 606150	ORF_(309 [Escharichia coli)	-	\$	169
1 563	-	1 22	696	191,1237015	ORP4 (Bacillus subtilis)	11	53	948
185	-	905	255	191 1301730	125G3.2 [Caenorhabditis elegans]	1,	47	252
1 612	-	1 1068	618	191 (153968	[fimbrise 2 [Salmonella typhimurium]	71	\$5	156
(613	-	- 1	1 654	191 466778	lysine specific permease [Escherichia coli]	71	05	654
1 618	-	1243	623	191 1146238	poly(A) polymerase (Bacillus subtilis	71	52	621
630	<u>-</u>	0711	1 586	gi 1486243	unknown (Bacillus subcilis)	71	\$	585
169	-	1126	641	191 289260	comE ONF1 (Bacillus subtilis)	11	15	486
P 69	~	57	423	12871	NADH dehydrogenase subunit V (AA 1-605) (Gallus gallus) ir 310197 S10197 NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain - chicken mitochondrion (SOC1)	11	5	279
21.6	-	169	777	191 1303830	Yqfi (Becillus subtilis)	112	53	609
1 746	- 2	1473	0.6	191 1377843	unknown (Bacillus subtilis)	7.8	52	504

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop (nt)	match	match gene name	e ie	• Ident	length (nt)
148	-	1437	802	91 1405459	Ynes (Becillus subtilis)	11	6.7	636
1 557		1018	1 524	91 1510389	H. Januaschii predicted coding region MJ0296 [Methanococcus Januaschii]	11	53	567
194	[-	-	1 215	01 475972	(pentafunctional enzyme (Pneumocystis carinii)	11	47	213
1 783	-	1 1203	1 703	91 536655	ORF YBR244w [Saccharomyces cerevisiae]	7.1	52	105
800	_	1292	1 987	1911:204326	LRNA delta(2) - isopentenylpyrophosphate transfersse (Haemophilus influentee)	71	, 8 9	306
908	-	1116	286	[91]1419075	chiM gene product [Methanobacterium thermosutotrophicum]	71	20	171
166	-	679	1 488	01 893358	PgsA [Bacillus subtilis]	11	98	486
1041	-		1 262	10111408507	pyrimidine mucleoside transport protein (Bacillus subtilis)	ιι	1	192
1070	-	2	172	191170993	hypothetical protein (Bacillus subtilis)	112	9#	171
1176	-	52	365	91 151259	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas meralonii] pir[A44756]A44756 hydroxymathylglutary]-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	ı,	5	309
1181	1-	1 366	184	01 46971	epip gene product (Staphylococcus epidermidis)	17	05	183
1281	1-	e	1 290	91 153016	ORF 419 protein (Staphylococcus aureus)	1,0	05	288
1348	-	456	1 229	91 602683	orfC (Mycoplasma capricolum)	1,1	48	228
2002	<u> </u> -	1 756	1 379	191 1008177	ORF YJL046w (Saccharomyces cerevisiae)	1,	87	378
9112	-	- 2	1 217	101 1046088	arginyl-tRNA synthetase (Mycoplasma genitalium)	1,	05	216
2418	-	-	320	gi 1499771	[H. jannaschil predicted coding region NJ0936 [Methanococcus jannaschil]	7.1	72	916
2961	-	2	187	91 312443	carbamoyl-phosphate synthase (glutemine-hydrolysing) (Bacillus aldolyticus)	1,	75	186
2999	~	67	306	91 710020	nitrite reductase (nirB) (Bacillus subtilis)	1,	0	240
2033	-1	- 2	184	1911262335	YmaA (Bacillus subtilis]	1,0	رج ا	183
1 3584	-	- 2	338	191 401716	[beta-isopropylmalate dehydrogenase (Neurospora crasse)	12	52	336
\$178	-	1 743	1 399	91 563952	gluconate permease Bacillus licheniformis	7	29	500
3785	_	077	387	91 47382	acyl-CoA-dehydrogenase (Streptomyces purpurascens)	12	57	384
3875	<u> </u> _	1 541	1 272	91 1001541	hypothetical protein (Symechocystis sp.]	11	38	270
4135	<u> </u>	637	320	95 1142695	S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase Bacillus megaterium	1,	25	318
4249	-	- 63	239	91 1205363	e e	1,	63	711
4508	1-	530	1 267	91 1197667	vitellogenin (Anolis pulchellus)	11	97	264
	1 1 1 1							

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont	Contig ORF	Start (nt)	Stop (nt)	match	match gene name	. sim	• ident	length (nt)
9	-	7651	12721	911321788	arginine ornithine antiporter [Clostridium perfringens]	- 0٢	24	1485
=	Ξ	1 6572	7486	91 216854	P47K (Pseudomonam chlororaphis)	70	4	915
- 1	-	1 2890	1891	igi 467330	replicative DNA halicase (Bacillus subtilis)	0,	6.	1410
15	-	1756	1 893	91 451216	Mannosephosphate Isomerase [Streptococcus mutans]	100	9.	864
51	-	1 1277	1050	191 476092	unknown [Bacillus subtilis]	70	20,	228
-	-	1 2132	1350	91 145402	choline dehydrogenase [Escherichla coli]	70	52	783
			925	gi 149516	anthramilate synthase alpha subunit (Lectococcus lactis) prr[335124 535124 535124 sabsp. anthramilate synthase (EC 4.1.3.27) alpha chain - actococcus lactis subsp. lactis	70	05	924
25	-	1 5580	6251	 	ORF3 (Secilius subtilis)	0,	52	672
	-	1,09	7423	19111303875	Yqhb (Bacillus subtilis)	10	51	1353
36	-	656	1594	gi 500755		- 0r	4.1	636
38	-	1 4901	1 5860	gil1408507	pyrimidine nucleoside transport protein (Bacilius subtilis)	10	\$	096
-	-	5312	1 5989	01 1006620	hypothetical protein (Synechocyatis sp.)	100	49	678
94	[-	0960	<u>:</u> —	191 1403126	crcD gene product (Alceligenes eutrophus)	100	45	101
25	7	1272	1900	91/1486247	unknown (Bacillus subtilis)	70	53	828
25		4048	4656	91 244501	esterese II-carboxylesterase (EC 3.1.1.1) (Pseudomonas fluorescans, eptido, 218 as)	0,	20	609
98	-	1 8460	1 9962	01/1339951	small subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	0,	51	1503
62	-	-	1 290	91 142702	A competence protein 2 (Bacillus subtilis)	70	47	243
3	-	0801	1 541	01 1204377	molybdopterin blosynthesis protein [Maemophilus influenzae]	0,	47	540
2	- 2	6612	1 3595	91 1204834	2',3'-cyclic-nuclectide 2'-phosphodiesterase (Haemophilus influenzee)	70	4.7	1545
	4	6677	5466	91 886471	methionine synthase [Catheranthus roseus]	7.0	96	2328
96	s – s	8754	-	pix B39096]B390	alkaline phosphatase (EC 3.1.3.1) III precursor - Bacillus subtilis	10	35	1500
011	-	196	1300	91 145294	adenine phosphoribosyl-transferase [Escherichia coli]	0,	15	534
116	-	1 7026	1 7976	911143607	sporulation protein (Bacillus subtilis)	102	80	951
121		1079	6969	91 1107528	ttg start (Campylobacter coli)	70	\$	588
=	-	1 6842	7936	91 1150454	prolidase PepQ (Lactobacillus delbrueckii)	70		1095

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Con	Contig ORF	÷	Start	Stop	match	match gene name	m a fm	1 ident	length
	_	- } ·	ָ בַּ	ָבֶּבְּי	- ACESSION				(30)
135			~	1489	91 311309	putative membrane-bound protein with four times repirition of ro-Sar-Ale at the N-terminus; function unknown (Alcaligenes utrophus)	0	60	9 1
138	-	-	418	717	1911904181	hypothetical protein (Bacillus subtilis)	0ر	46	297
164	-	-	9344	9874	91 (49315	ONF1 gene product (Bacillus subtilis)	0,0	5	162
164	-	116 115	15626	116618	91 1205212	hypothetical protein (GB:D10483_18) (Haemophilus influenzas)	100	50,	993
502			2735	1803	91/1215695	peptide transport system protein Sapf homolog; Sapf homolog (Mycoplasma	70	÷	933
1 209	-	3 - 6	910	1386	91 1204665	hypothetical protein (GB:X73124_26) [Haemophilus influenzas]	70	89	477
246		-	340	756	91 215098	(excisionase (Bacteriophage 154a)	7.0	98	417
1 263			7876	67.69	91 142540	aspartokinase II [Bacillus sp.]	0,	1 51	1128
1 268		-	3212	4117	911340128	ORF1 [Staphylococcus aureus]	10	80	906
302	-	9	3201	3827	gi 147782	ruvA protein (gtg start) (Escherichia coli)	70	94	627
302		91	5879	7051	pir c38530 c385	queuine tRNA-ribosyltransferase (EC 2.4.2.29) - Escherichia coli	0,	88	1173
1 313	-	-	2520	7.	91 1205934	aminopeptidase a/i [Haemophilus influenzae]	0,	99	1107
1 355	-	2	976	699	91 1070013	protein-dependent (Bacillus subtilis)	0,	87	291
403	-	-	1255	629	191 733147	GunF (Xanthomonas campestris)	0,	133	627
707	-	 	8770	£ 726	[iii]1204752	high effinity ribosa transport protein (Haemophilus influentae)	7.0	52	504
679		<u> </u>	7	1243	01 619724	Hots (Bacillus firmus)	0,	3	1242
472	~	-	637	320	01/727145	open reeding frame, putative [Bacillus smyloliquefaciens] pir[825091]829091 hypothetical protein [bglA region] - Bacillus myloliquefaciens (fragment)	0,		318
480	-	-	727	1608	1911142560	Aff synthase gamma subunit (Bacillus megaterium)	70	44	882
524	_	-	~	307	gi 602292	RCH2 protein (Bressice nepus)	70	. 65	306
525		-	823	5	91 143372	phosphoribosyl glycinamide formyltransferase (PUR-N) [Bacillus ubtills]	0,	52	7.7
265	<u> </u>	-	1625	2552	91 881434	ORFP [Bacillus subtilis]	0,	51	1074
1 607	_	-	629	1284	gi 1511524	hypothetical protein (SP:P37002) (Methanococcus jannaschiii	0,	05	456
633	-	-	1383	703	91,431231	uracil permesse (Bacillus caldolyticus)	70	53	681
- 646	2	-	1683	1309	91 467340	unknown (Bacillus subtilis)	0,	64	378
1 663	-	-	930	417	[9111303873	Y. (72 (Bacillus subtilis)	70	0.	414
	:		11421111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

aureus - Putative coding regions of novel proteins similar to known proteins

1	Contig ORF	- 08F	Start	Stop (nt)	match	match gene neme	# 8 1 # 1	• Ident	length (nt)
1 2 4.48 psj patsonjoan, physophetical 3-1.7 to Protein Web-Auda Improduct Section 3-1.9 70 70 70 70 70 70 70 7	681	-	1488	781	1911 (001678	hypothetical protein (Synachocystis sp.)	- 06	53	708
1 51 722 Gillonoset Prochemical Prochemical Sprachocystia sp.] 70 70 70 70 70 70 70 7	108	-	7	448	sp P33940 YOJH_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	100	51	447
1 1311 182 191 1815	725	-	51	227	91 1001644	hypothetical protein (Symechocyatis sp.)	1 01	87	672
1 230 783 94 552913 NAMM dehydrogenese (ndhy) (vicia febal 70 70 70 70 70 70 70 7	1 776		1761	197	gi 145165	[putative (Bacharichia coli]	70	4,	585
1 155 1565 1377 Gill1204656 Art-dependent haltesso [istamophilus intlumented] 70 70 70 70 70 70 70 7	834	-	250	783	91 552971	NADH dehydrogensse (ndhF) [Vicla febs]	10		534
1 315 265 9 1457344 Duth binding procein (probale) (hacilius subtilis) 70 70 70 70 70 70 70 7	865	7	1585	1379	; –	ATP-dependent helicase [Haemophilus influentae]	0,	45	207
1 3 572 [0] 1314647 [CirA [Becillus subtilis] 70 6 6 6 6 6 6 6 6 6	894	-	535	269	91 467364		100	;	267
1 3 572 [91] 1705931 [hypothetical protein [Bacillus subtilis] 70 70 70 70 70 70 70 7	616	-		711	91 1314847	CinA (Bacillus subtilis)	70	0	315
1 1 1 1 1 1 1 1 1 1	944	-	-	572		hypothetical protein (Bacillus subtilis)	0.0	7	870
1 1 13 1315	986	-	277	509	91,12441	ORF 3; putative [Bacillus subtilis]	0,	50	168
1 2 904 91 837354 ABC transporter [Bacillus subtilis] 70 70 70 70 70 70 70 7	1055	-	-	135	gi 529755	spec (Streptococcus pyogenes)	0,0	37	23.
1 1 1 1 1 1 1 1 1 1	1093	!	- 2	904	91 853754	ABC transporter (Bacillus subtilis)	0,0	64	903
1 468 215 pir[521416[5234 spi8 procein - Staphylococcus auceus] 70 70 70 71 71 71 71 71	1109	!	- 3	310	-	hypothetical protein (Symechocystis sp.)	70	42	309
1 73 348 94 153015 FemA protein (Staphylococcus aureus) 70 70 70 70 70 70 70 7	1220	-	468	235	<u> </u>	epi8 protein - Staphylococcus epidermidia	70	0	234
1 195 542 542 543 191776 PENICILLIN-BINDING PROTEIN IA (PBP-1A) PENICILLIN-DINDING PROTEIN A). 70 70 70 71 722 91 1246191 POLECTIVA Receptor (Homo saplens) 70 70 70 70 70 70 70 7	1279	-	2	348	<u> </u>	Foma protein (Staphylococcus aureus)	70	43	276
1 451 1272 402 gi 1146181 putative [Bacillus subtilis] 10 11 1272 gi 1219610 endothelin-A receptor [Homo sepiens] 10 10 11 12 1286 gi 1146243 122.4* identity with Escherichia coli DNA-damage inducible protein; 70 1 2 1286 gi 1146243 transmembrane protein [Lactococcus lactis] 70 1 2 139 gi 1140396 unknown [Hycobacterium tuberculosis] 1 2 139 gi 1140396 unknown [Hycobacterium tuberculosis] 1 1 2 139 gi 1134831 ATP binding protein [Phormidium laminosum] 1 794 1399 gi 1134831 ATP binding protein [Caenorhabditis elegans] 70 70 70 70 70 70 70 7	1336	-	195	545	sp P31776 PBPA_	PENICILLIN-BINDING PROTEIN IA (PBP-1A) (PENICILLIN-DINDING PROTEIN A).	10	90	348
1 451 272 94 219630 endothalin-A receptor (Homo saplens) 70 70 70 72.44 identity with Escherichia coli DNA-damage inducible protein	1537	· i –	1 232	402	91 1146181	putetive Becillus subtilis	70	\$0	171
1 690 346 94 1146243 22.4% identity with Eschericiae coll DMA-damage inducible protein; 70 putative (Bacillus subtilis) 70 70 70 70 70 70 70 7	1574	· }	451	272	i –	endothelin-A receptor [Homo sapiens]	ا 0ر	C	180
1 2 286	1640		069	346	!	23.4% identity with Escherichia coli DNA-damage inducible protein; putative (Bacillus subtilis)	00	9	345
1 564 301 91 508175 EIIC domain of PTS-dependent Cat transport and phosphorylation Escherichia 70 11 2 199 94 11440096 unknown (Mycobacterium tuberculosis) 70 70 70 70 70 70 70 7	1 2504	-	- 3	286	i –	transmembrane protein [Lactococcus lactis]	0,	15	285
1 2 199 gi 1340096 unknown (MyCobaccerium tuberculosis)	1 3061	<u></u>	264	<u> </u>	i	EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia coll;	0,	7	264
1 3 488 G1 515936 Glutamate synthase (ferredoxin) [Synechocystis sp.] pir[546957]646957 70 Glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynachocystis sp. 70 1 794 399 491 1154891 ATP binding protein (Phormidium leminosum) 70 1 599 399 399 391 529385 Chromosome condonsation protein (Ceanorhabditis elegans) 70	3128	-	~ -	199	<u> </u>	[unknown (Mycobacterium tuberculosis]	10	51	198
1 794 399 (gl 1154891 ATP binding protein (Phormidium Laminosum)	3218	<u></u>	m	488	i	glutamate synthase (ferredoxin) [Synechocystis sp.] pir 546957 546957 glutamate synthase (ferredoxin) [EC 1.4.7.1) - ynechocystis sp.	0,	8	486
1 599 399 131 529385 Chromosome condensation protein (Ceenorhabditis elegans)	1 3323	-	1 794	1 399	<u> </u>	ATP binding protein (Phormidium leminosum)	70	25	396
	1 3679	:	665	1 399	;	[chromosome condensation protein (Ceenorhabditis elegans)	90	30	201

aureus - Putative coding regions of novel proteins similar to known proteins

15,

Contig ORF	8 0	Start (nt)	Stop (nt)	match	match gene name	m is a	1 Ident	length (nt)
3841	-	1 706	1 398	91 1208965	hypothetical 23.3 kd protein [Escherichia coli]	- 0	47	309
1 3929	-		107	91 149435	putative (Lactococcus lactis)	٥٢	69	399
****		565	374	gi (602031	similar to trimethylamine DH Hycoplasma capticolum pir 549950 549950 probable trimethylamine dehydrogenase (EC .5.99.7) - Hycoplasma capricolum (SGC3) [fregment)	6 	Ç	222
4329	1-	558	1 280	1866561 199	small subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	- 0,	.64	279
4422	-	576	1 289	191 296464	ATPase [Lactococcus lactis]	70	57	288
4647	-	361	200	91 166412	NADH-glutemate synthase [Hedicago sativa]	- 07	89	162
91	8	1757	1 9031	[91]1499620	H. jannaschli predicted coding ragion MJ0798 (Methanococcus jannaschii)	69	74	1461
16	6	9080	110033	191 [1353197	(thioredoxin reductase [Eubacterium ecideminophilum]	69	54	954
05	-	1452	127	gi 1204910	hypothetical protein (GB:U1400)_102) [Haemophilus influenzae]	69	52	726
1 38	-	1023	1298	191 407773	devx gene product (Anebeene ap.)	69	7	9,2
3		5987	6899	91 1205920	molybdere uptake system hydrophilic membrane-bound protein [Haemophilus influenzae]	69	\$	609
62	115	9104	1 9475	91(385178	(unknown (Becillus subtilis)	69	=	27.6
99	-	1 2402	1 2803	91 1303893	Yahl (Bacillus subtilis)	69	51	402
1 67	115	114124	113627	91 149647	ORF2 Listeria monocytogenes	69	1,1	E9.8
63		114053	14382	191 305002	ORF_£356 (Escherichia coli)	69	49	930
69	61	115130	15807	91 1109684	Prov [Bacillus subtilis]	- 69	\$	879
87	-	1447	2126	gi 1256633	putative (Bacillus subtilis)	69	Ş	819
84	-	1 4513	1 3725	011103958	(YqjG (Bacillus subtilis)	69	32	769
98	-	4521	- 4213	pir E29326 E293	hypothetical protein (pur operon) - Bacillus subtilis	69	32	1 309
98	9	1 3253	1 2654	91 973332	(orfc Bacillus subtilis)	69	20	009
		96	210	gi 786468	All antigen, sporm toil membranc antigen-putetive sucrose-specific hosphotransferase enzyme II homolog [nice, testis, Peptide Partial, 72 as]	69	=	\$119
001	- 1	6023	1 7426	19111205355	Na+/ . antiporter (Heemoph) tus influenzae)	69	39	1404
102	-	2678	1650	01 561690	sialoglycoprotease (Pasteurella haemolytica)	69	4	1029
601	-	112241	1 8537	191 1009366	[Raspiratory nitrate reductase (Sacillus subtilis]	69	34	3705
103	Ξ	114987	112552	191710020	Intrite reductase (nirB) (Bacillus subtilis)	69	51	2436
	1							

S. aureus - Putativa coding regions of novel proteins similar to known proteins

							100000	
Contity ORF	98 J	Start (nt)	Stop (nt)	series ion	metch gene name	e is	• tdent	Jength (nt.)
112	=	87.08	10168	91 154111	hexosephosphate transport protein [Salmonalla typhimurium] pir[bal83][bal83] haxose phosphate transport system protein uhpT - almonella typhimurium	69	13	1461
112	97	16644	17414	91 1204435	pyruvate formate-lyase activating enzyme [Haemophilus influenzae]	69	90	17.1
611	~	ŝ	953	1911290509	ol07 (Escherichia col1)	69	£	921
114	~	1537	1058	pic A42771 A427	reticulocyte-binding protein 1 - Plasmodium vivex	69	39.	084
121	9	4309	5310	01 :154633	WrdF [Bacillus subtilis]	69	53	1002
125	- 2	1 267	854	91 413931	ipa-7d gene product (Bacillus subtilis)	69	43	568
149	132	10666	10000	pir 528089 5280	pir 538089 5280 hypothetical protein A - yeast (Zygosaccharomyces bisporus) plasmid pSB3	69	39	267
191	-	1598		91 1205538	hypothetical protein (GB:U14003_302) [Haemophilus influenzae]	69	41	786
165	-	1 2222	1 4633	191 40054	phenylalanyl-tRNA synthatase beta subunit (AA 1-804) (Bacillus btilis)	69	52	2412
169	-	1210	1941	191 296031	elongation factor 7s (Spirulina platensis)	69	\$	552
271	112	9898	8339	1911732682	FimE protein [Escherichia coli]	69	69	348
190		484	1671	sp P17731 HIS8_	HISTIDINOL-PHOSPHATE ANIMOTRANSFERASE (EC 2.6.1.9) (IMIDAZOLE ACETOL- PHOSPHATE TRANSAMINASE).	69	88	1188
306	-	1 5551	7,775	01 41750	hadR protein (AA 1-1033) (Escherichia coli)	69	67	2775
902	-	6038	1 5796	91 1256135	Ybhr [Bacillus subtilis]	69	5	243
243	<u>-</u>	969	617	191 1405456	Yner (Bacillus subitilo)	69	9	
1 302	-	4820	1 5776	[gi 1001768	hypothetical protein (Symechocystis sp.)	69	48	957
725	~	1 7384	1 3893	91 1256798	pyruvate carboxylase (Rhirobium etli)	69	53	3492
351	-	2098	1808	91 1491664	104Hl.4 [Caenorhabditis elegans]	69	30	162
990	-	2075	2305	91 336458	ORF (Balaenoptera acutorostrata)	69	19	162
1 392	-	1999	2424	91 556015	ORFI (Bacillus subtilis)	69	45	426
\$10	-	- 87	611	[91]155611	phosphoglyceromutase [Zymomonas mobilis]	69	88	(69)
421	-	1 2085	1129	91 1276985	arginase (Bacillus caldovalox)	69	\$	1 957
*	-	6713	1741	91 1221782	purine synthesis repressor [Hacmophilus influenzae]	69	0	1029
453	-	828	415	gi 1122758	unknown (Bacillus subtilis	69	57	777
694	-	3286	2246	01 1458228	muty homolog [Homo sepiens]	69	\$	1041

aureus - Putative coding regions of novel proteins similar to known proteins

Contig OKF	OKP LD	Start (nt)	Stop (nt)	match	i datch geno neme	E is .	Lident	Length (nt)
605	-	1730	1371	gi 49224	URP 4 [Synechococcus sp.]	69	9.6	360
520		1 3023	2823	91 726427	similar to D. melanogaster HST101-2 protein (PIR:S34154) Casnorhabditis elegans	69	39	201
1 531	-	1 26	1760	191 509672	repressor protein (Bacteriophage Tuc2009)	69		735
589	-	107	1 253	gi 169101	[17.9 kDa heat shock protein (hapl7.9) [Pisum sativum]	69	52	147
1 594	7	1 597	1391	gi 142783	DNA photolyase [Bacillus firmus]	69	80	795
604	-	2476	2114	91 413930	ipa-6d gene product (Bacillus subtilis	69	\$	363
607	-	~	G .	81 1236103	WOBD2.3 Caenorhabditis elegans]	69	47	312
1 607	7	590	312	91 536715	ORF YBR275c [Saccharomyces cerevisiae]	69	ĥ	978
1 734	-	1 864	5	91 467327	unknown (Bacillus subtilis)	69	7	432
139	-	- 3	338	101 1009367	Respiratory nitrate reductase (Bacillus subtilis)	69	80	336
194	~_	192	286	q1 3508 	Leuryl-tRMA synthetase (cytoplasmic) (Saccharomyces cerevisiae) 1370340 ORF YPL160w (Saccharomyces cerevisiae)	69	9	195
602	-	22	1013	91 143044	[ferrochelatase [Bacillus subtilis]	69	\$\$	943
816	-	1 2573	1368	191 1510268	restriction modification system S subunit (Nethenococcus janneschil)	69	\$	1206
A38		<u> </u>	187	191 1255371	coded for by C. elegans CDNA ykl489.5; coded for by C. elegans cDNA ykl49.1; Similar to guanylate kinase [Caunorhalalitis elimans]	5	9	255
8.1	~	245	1005	91 288998	secA gene product [Antithamnion sp.]	69	£.	797
867	-	535	1 269	191 1070014	protain-dependent Bacillus subtilis	69	4	267
1 995	-	1 954	478	1911/205569	transcription elongation factor (Maemophilus influenzae)	69	S	477
666	-	1000	206	191 899254	predicted trithorax protein (Drosophila virilis)	69	12	504
1127	-	1315	629	91 1205434	H. influenzae predicted coding region Mill91 (Haemophilus influenzae)	69	95	657
1138	-	1 248	460	91 1310646	N. jannaschil predicted coding region MJ0568 [Methanococcus jannaschil]	69	87	213
1 292R	_	-	70 7	91 290503	glutamate permesse Escherichia coli]	69	=	399
3090	-	1 44	8	[g1 12049B7	DNA polymerase III, alpha chain (Masmophilus influentae)	69	96	223
1 3817	-	2 -	000	91 1483199	peptide-synthetase {Amycolatopsis mediterranei]	69	Ş.	399
1 3833	-	667	1335	01 11524193	unknown Mycobacterium tuberculosis	69	98	333
					.	•		

EP 0 786 519 A2

		length (nt)	e	186	333	224	285	291	1110	519	2445	366	1530	240	597	987	810	1068	1038	957	174	1215	171	1011	
5		1 ident	30	29	36	Ş	3	Q	9	Ş\$	8	5.5	7	47	39	a S	9	43	57	\$\$	8	9.	8	20	
10		a in	6	69	69	69	69	69	89	89	89	В9	89	89	89	99	89	68	89	89	89	89	89	68	
15	roteins		140 aa] 111s 10N (ORFY)	occocns yogenes)		Jmonis) 30C3)		ita coli! PONENT				lbie rameshift,			Jenitalium}	-			1r A29277 A29277 1cus				SC 1.8.1.2) (SIR-		
20	lar to known p		Peptide Pertial 140 as] - Bacillus subtils - N IN COMK 3 REGION (ORFY	ntigen (Streptoco		(Mycoplasma pu ma pulmonis (S		tem enzyme II (Escherichia coli) FRUCTOSE-LIKE-2 IIC COMPONENT COMPONENT).				f start; possi		-	Mycoplesme g		-		obscrer calcoaceticus) ir A				A-COMPONENT (E		
25	proteins simi		111s, E26, Pe 1 protein Y - ICAL PROTEIN	reptococcal a	yetis sp.)	• subunit Ml in - Mycoplas	subtilis)	system enzyme EM, FRUCTOSE- C COMPONENT)		ise]		ar upstream o erichia coli	cholerae)	rooving virus	region MG246		-	11)		•	subtilis]		OPROTEIN ALPH	richia coli)	
30	- Putative coding regions of novel proteins similar to known proteins	กе กละค	rff 3: of comk [Bacillus subtlis, E26, Peptide Pertial, 140 as] pir[S43612]843612 hypothetical protein T - Bacillus subtliss ap[P40398]YHXD_BACSU HYPOTHETICAL PROTEIN IN COMK 3'REGION (ORFY)	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes	hypothetical protein (Synechocystis sp.)	restriction-modification enzyme subunit MI (Mycoplasma pulmonis) pir 849395 849395 HadMi protein - Mycoplasma pulmonis (GGC3)	<pre>[pa-43d gene product (Bacillus subtilis)</pre>	similar to phosphotransferase system ap P12672 PTWC_ECOLI PTS SYSTEM, FRU PHOSPHOTRANSFERASE DNZYME II, C COMP	Prow (Bacillus subtilis)	unknown (Saccharomyces cerevisiae)	ATPase [Enterococcus hirae]	ORF_6622; reading frame open far upstream of start; possible rameshift. linking to previous ORF [Escherichia colii	aldehyde dehydrogenase (Vibrio cholerae)	241k polyprotein (Apple stem grooving virus)	M. genitalium predicted coding region MG246 [Mycoplasma genitalium]	YqjA (Bacillus subtilis)	phnE protein (Secherichie coli)	35 kDe protein (Escherichia coli)	(aa -20 to 381) -epimerase (EC 5.)	MalC (Streptococcus pneumoniae)	sporulation protein (Bacillus subtilis)		SULPITE REDUCTASE (NADPH) FLAVOPROTEIN ALPHA-COMPONENT (EC 1.8.1.2) (SIR-PP)	argininosuccinate lyase [Escherichia coll	
35	tative cod	match gene name	orfy 3 of pir S43612 ap P40398 FRAGHENT)	67 kDe My	hypotheti	restrict pir \$493	1pa-43d g	similar sp P3267 PHOSPHOT	Prow Bac	unknown	ATPase (E	ORF_o622; linking	aldehyde	241k poly	M. genite	YqjA (Bac	phnE prot	35 kDa pr	precursor aldose 1	Malc (Str	sporulati	YqeR [Bac	SULPITE R	argininos	
40	S. aureus - Po	match	91 546918	91 517205	91/1208451	91 496158	101 413967	91 396296	91 1109685	191 807973	91 290642	91 606342	91 155276	91 285608	91 1045937	91 1303952	91 147198	91 145173	91 38722	91 153724	91 143608	91 1303805	sp P38038 CYSJ_	94 396307	
		Stop (nt.)	000	004	333	230	374	293	1193	2074	8772	750	8415	3404	4132	10685	9155	3962	1150	3622	8638	3698	1594	1011	
45	.•	Start (nt)	747	215	-	457	06	-	2302	2592	6328	5111	6886	3643	3536	11671	7346	1899	2187	2666	7865	2484	1424	-	*******
		OR OI OI		~	-	-			-	-	6	~	•		-	01	<u> </u>	-		5	_	<u>.</u>	~	-	
50		Contig	4019	4115	4139	4258	4317	2465	,	15	31	Ç	9.	48	9	65	0,	68	108	112	116	118	120	129	

S. auraus - Putative coding regions of novel proteins similar to known proteins

131 1 145 150 140					•				
1 1845 1912 1911/19155 Dub. recombinase (Enchrichia coli) 184	Cont.ig		:	Stop (nt)	adich acession	march gene name	ain .	1 jakent	length (nt.)
1. 1.0.1 1.0.1 1.0.1.1.1.1.1.1 1.0.1 1.0.1.1.1.1.1 1.0.1 1.0.1.1.1.1.1 1.0.1 1.0.1.1.1.1.1 1.0.1 1.0.1.1.1.1 1.0.1 1.0.1.1.1.1 1.0.1 1.0.1.1.1.1 1.0.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1.1.1 1.0.1 1.0.1.1 1.0.1.1 1.0.1.1 1.0.1 1.0.1.1 1.0	132	-	1 1867	1 2739	91 216267	ORF2 (Bacillus megaterium)	1 89	9	673
1. 1.15 1.	134	~	848	1012	91 147545	DNA recombinase (Escherichia coli)	69	05	165
1 1144 1350	141	~	1 372	614	91 872116	sti (stress inducible protein) (Glycine max)	3	36	243
1 134 132 132 14 1515539 10 10 10 10 10 10 10 1	149	-	1 2454	1 2260	911145774	hsp70 protein (dnaK gene) (Escherichia coli)	89	99	195
1 1856 1359 1310 131	155	7	1776	1534	91 216583	ORFI (Escherichie coli)	99	36	243
1 17.5 17.5 17.11 17	158	-	1826	3289	sp P33940 YOJH_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	89	- 15	1464
10 1154 7365	169	9	1 2749	3318	gii1403402	unknown [Mycobacterium tuberculosis]	89	9	570
7 4184 5314 Gillingsia 1-keroacyl-KCP synthase II (Vibrio harvayii 68 68 68 68 68 68 68	175	20	9158	7365	91 1072395	pheA gene product (Rhizobium meliloti)	89	5.	1794
1 907 1665 91 160383 PRAN binding procein (probable) (Bacillus subtilis) 66 65 68 68 68 68 68 68	188	-	4184	5434	91 1173843]-ketoacyl-ACP synthase II (Vibrio harveyi)	89	89	1251
5 7683 6003 GITTS61188 [Yabir Racillus subtilis] 8 10423 12176 [01]155891 [Paytuvate decarboxylass [Saccharomyces cerevisiae] 66 48 19 8 10421 1344 [01]155941 [c1] gene product [Baccharomyces cerevisiae] 66 48 19 8 10421 3447 6482 gil 140047 [ORF YORLSGE [Saccharomyces cerevisiae] 66 45 19 1 2507 3008 gil 140047 [ORF YORLSGE [Saccharomyces cerevisiae] 66 42 16 1 3 164 51 150644 [Academic paycophosphate decarboxylase [Saccharomyces cerevisiae] 68 46 47 1 3 164 51 150644 [Academic paycophosphate decarboxylase [Saccharomyces cerevisiae] 68 47 48 1 3 164 51 150644 [Academic paycophosphate decarboxylase [Saccharomyces cerevisiae] 68 49 49 1 3 164 51 150644 [Academic paycophosphate decarboxylase [Saccharomyces cerevisiae] 68 <td>189</td> <td>-</td> <td>1 907</td> <td>1665</td> <td> 91 467383</td> <td> DNA binding protein (probable) (Bacilius subtilis]</td> <td>89</td> <td>. 55</td> <td>759</td>	189	-	1 907	1665	91 467383	DNA binding protein (probable) (Bacilius subtilis]	89	. 55	759
8 10275 12176	1 206	- 5	1 7683	6009	91(1256138	[Ybbr [Becillus subtilis]	89	87	975
8 1321 1644 [01 1369341 [11 gene product [Baccharomyces cerevisiae] 68 45 1 1 1 1 1 1 1 1 1	1 206	8	110425	12176	101 452687	[pyruvate decarboxylase [Saccharomyces cerevisiae]	99	•	1752
8 5437 6462 Galil120467 ORF YOR196c (Saccharomyces cerevisiae) 66 65 67 4 2507 3088 Galil120467 ORF YOR196c (Saccharomyces cereviuloc) 68 66 67 5 5540 4542 Galil10974 4-oxalocrocous hirae) 68 67 6 1304 1318 Galil10974 4-oxalocrocous hirae) 68 67 7 1384 1318 Galil10974 4-oxalocrocous hirae) 68 70 8 1302 1319 Galil10974 PSR (Enterococcus hirae) 68 70 9 1319 Galil10974 PSR (Enterococcus hirae) 68 70 9 1319 Galil10974 Admine phosphoribosyltransferae (Bacillus subtilis) 68 69 1 1459 1646 Galil100643 7-oxalocrococcus hirae 70 1 1741 672 Galil100917 Yqlib (Bacillus subtilis) 68 67 1 1741 672 Galil101917 Yqlib (Bacillus subtilis) 68 67 1 1741 672 Galil101917 Yqlib (Bacillus subtilis) 68 67 1 1741 672 Galil101917 Yqlib (Bacillus subtilis) 68 68 1 1741 672 Galil101917 Yqlib (Bacillus subtilis) 68 69 1 1741 672 Galil101917 Yqlib (Bacillus subtilis) 70 1 1741 715 715 Galil101917 Yqlib (Bacillus subtilis) 70 1 1741 715 71	212	-	1 3421	3648	101 (1369941	cl gene product (Becteriophage Bl)	9	39	228
4 2507 3088 ji 19381	214	-	1 5457	6482	91 1420467		89	59	1026
5 5540 4542 91 1215684 mevalonate pyrophosphate decarboxylase [Saccharomyces cercviulace] 68 47 47 48 91 1147744 PSR [Enterococcus hires] 68 49 42 48 48 48 49 48 49 49 49	1 237	-	1 2507	3088	91 149381	HisH (Lactococcus lactis)	89	99	582
1 3 164 94 150974 4-oxalocrocours blrea 68 42 42 43 43 43 43 43 43	25	- 2	5540	4542	qi 1235684	mevalonate pyrophosphate decarboxylase [Saccharomyces careviviae]	89		666
2 1384 1118 gill107744 PSR (Enterococcus hitse)	1 262	-	r -	1 164	91 150974	4-exalecrotomate tautomerase [Pseudomonas putida]	9	42	162
6 1702 3119 Spp P1075G ABG_E ATP-BINDING PROTEIN ABC (FRAGRENT). 65145 5725 gi 1256617 Adenine phosphoribosyltransferase (Bacillus subtilis) 66 57 68 68 68 68 68 68 68 6	262	-	1984	1118	1911111144	PSR (Enterococcus hirae)	99	67	1967
6 6345 5725 gi 1256617 adenine phosphoribosyltransferase [8acillus subtilis] 68 53 53 5459 1850 gi 467473 unknown (Bacillus subtilis] 68 45 58 58 58 58 58 58 5	276	9-	1 3702	1 3139	sp[P30750 ABC_E	ATP-BINDING PROTEIN ABC (FRAGMENT).	9	0\$	964
3 4599 1850 94 467473 Unknown (Bacillus subtilis) 68 45 45 4818 91 110643 172283.3 (Genorhabditis elegans) 68 45 46 47 4818 91 1277026 DAPA aminotransferase (Bacillus subtilis) 1741 872 91 1303947 17418 (Bacillus subtilis) 1741 872 91 1311513 ABC transporter, probable ATP-binding subunit [Hethanococcus januaschii] 68 44 46 47 47 4818 4819 481	1 306	9	6345	5725	91 1256617	adenine phosphoribosyltransferase (Bacillus subtilis)	89	53	621
6 5017 4838 gill10643 T7283.3 (Genorhabditis elegans) 68 65 1 1 1741 872 01 1303917 YqlB (Bacillus subtilis) 68 67 1 1 1741 872 01 1303917 YqlB (Bacillus subtilis) 68 67 1 1 1741 872 01 1303917 YqlB (Bacillus subtilis) 68 67 1 1 1 1 1 1 1 1 1	1 333	-	4599	1 3850	91 467473	unknown (Bacillus subtilis)	99	45	750
2 549 1646 gi 1277026 DAPA aminotransferase [Bacillus subtilis] 68 51 1 1 1 1 1 1 1 1	1 365	9-	1 5017	4838	91 1130643	72283.3 (Caenorhabditis elegans	68	45	180
1 1741 872 Gi 1303917 YqlB (Bacillus subtilis) 2 853 539 Gi 1511513 ABC transporter, probable APP-binding aubunit [Methanococcus jannaachiil] 68 44 6 3558 339 Gi 162632 GitL (Escherichia coli) 6 3558 339 Gi 162632 GitL (Escherichia coli) 6 48 6 48 6 6 6 6 6 6 6 6 6	376	-	1 549	1646	gi 1277026	[DAPA aminotransferase [Bacillus subtilis]	6.9	2.5	1098
2 633 539 Gill511513 AGC transporter, probable ATP-binding aubunit [Nethanococcus jannaachiii] 68 44 6 1558 3391 Gild21632 GitL [Escherichia coli) 6 1558 1391 Gild21632 GitL [Escherichia coli) 68 48 68 43 68 43	405	-	1741	1 872	101 1303917	YqlB (Dacillus subtilis	8.9	47	870
6 1558 1191 Galdada Gatt [Escherichia coli] 68 68 68 68 63 1 108 1329 Galladada 68 63 63	907	1 2	853	539	(01/1511513	ABC transporter, probable ATP-binding subunit [Methanococcus januaschii]	89	*	315
1 108 329 g1 146923 nitrogenese reductes: [Escherichie coli]	426	9	3558	13391	191 624632	Gitt [Escherichia coli]	8.9	87	168
	1 438	-	108	329	191 146923	nitrogenase reductaso (Escherichia coli)	6.9	63	222

S. aureus - Putative coding regions of novel proteins similar to known proteins

	•		•	******			-	
Contig ORF	ORF ID	Start (nt)	Stop	metch	match gene name	E 50	, soenc	(nt)
443	-	476	240	191 515810	hippuricase Campylobacter jejuni	89	42	237
=	- 7	1 518	1015	19111204742	H. influenzae predicted coding region HI0491 (Haemophilus influenzae)	89	48	498
\$		445	9776	1011800660	decxyribose-phosphate aldolase (Ec 4.1.2.4) - acillus subtilis	99	\$\$	699
476		240	1184	91 571345	unknown, similar to E.coli cardiolipin synthase [Bacillus subtlis] sp[p44860 YWIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN. NARI-ACDA NTERGENIC REGION.	89	\$,	945
1 486	- 2	1876	1046	91 147328	transport protein (Escherichia coli)	- 89	=	831
1 517	-	1764	2084	911.523809	orf2 (Bacteriophage A2)	68	64	321
572	-	2	1 571	sp P19237 Y05L_	HYPOTHETICAL 6.8 KD PROTEIN IN NRDC-TK INTERGENIC REGION.	68		570
949	-	914	459	gi 413982	ipa-58r gene product (Bacillus aubtilis)	68	\$2	456
659	1	1 1668	1 1901	91 1107541	[C3]D9.8 [Caenorhabditis elegans]	89	36	234
864	5-	1510	9171	101 145774	hsp70 protein (dnaK gene) (Eacherichia culi)	69	5	207
1 920	-	1 860	432	[01 1710416	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	69	\$5	629
952	-	9601	1 611	01 603456	[reductase [Leishmania major]	89	46	989
970	-	16	402	191 1354775	pfos/R (Treponema pallidum)	89	97	312
1028	-	1 1064	534	191 (10117	diaminopimelate decarboxylase (Bacillus subtilis)	H9	47	53.
1029		428	216	gi 1335714	plasmodium falciparum RNA for asparagine-rich antigen (clone 1701) (Plasmodium falciparum)	E	1.	213
1058	-	692	348	gi 581649	epic gene product (Staphylococcus epidermidis)	89	9.	345
1096	~	1 665	1 465	gi 143434		89	43	201
1308	-	2	1 694	19111-69939	group B oligopeptidase.PepB (Streptococcus agalactiae)	89	20	693
1679	-	- 2	1 238	194 (5.17205	67 kba Hyosin-crossreactive streptococcal antigen (Streptococcus yugenes)	89	S	237
2039	-	-	1 383	91 153898	transport protein (Salmonella typhimurium)	6.8	51	381
1 2077	-	-	1 326	pir c33496 c334	hisc homolog - Bacillus subtilis	6.8	47	324
2112	-	613	374	gi 64884	lamin LII (Kenopus laevis)	8.9	05	240
2273	-	. 67	398	91 581648	epiB gene product (Staphylococcus epidermidis)	89	\$	396
2948		, 	385	01 216869	ibranched-chain amino acid transjort carrier [Pseudomonas aeruginosa] pir[A]85]4[A]85]4 branched-chain amino acid transport protein braZ Pseudomonas aeruginosa	5	=	184

TABLE 2

Contig	O. E.	Start (nt)	Stop (nt)	match	match gene name	e is	1 Ident	length Inti
1 2955	-	1 768	00.	1911204179	hypothetical protein (Bacillus aubtilia)	6.8	67	369
2981	-	572	288	1911508979	GPP-binding protein [Bacillus subtilis]	- 89	9,	285
1001	-	584	294	0111524394	ORF-2 upatream of gbsAB operon [Bacillus subtilis]	6.9	57	291
1 3082	=	336	169	91 1204696	[fructose-permease 118C component [Haemophilus influenzee]	68	53	168
3108	-	103	258	91 217855	heat-shock protein [Arabidopsis thaliana]	68	.89	156
1 3639	-	919	194	19111510490	nitrate transport permease protein [Methanococcus jannaschil]	89	4.	459
1 3657	-	-	088	[9:[155369	PTS enzyme-II [ructose (Xanthomonas campestris]	99	9	330
3423		780	391	n i 603768	Hut! protein, imidazolone-5-propionate hydrolase (Becillus subtills) gi 603768 Hut! protein, imidazolone-5-propionate hydrolase Bacillus subtilis	 E	54	390
1982	-	7	7.62	191 149435	putative (Lactococcus lactis)	68	43	376
4051		-	343	91 450688	hadw gene of Ecopril gene product [Escherichia coli] pir[5]8437 5]8437 hadw protein - Escherichia coli pir[509629 809629 hypothetical protein A - Escherichia coli (SUB 40-520)	89	æ	342
4089	-	112	1 209	91 1353678	heavy-metal transporting P-type ATPase [Proteus mirabilis]	99	47	198
4143	-	- 43	187	91 603769	HutU protein, urocanase [Bacillus subtilis]	68	\$5	141
		~	352	91 450688	hadw gene of Ecopril gene product (Escherichia coli) pir [538437 538437 hadw protoin - Encherichia coli pir 509629 509629 hypothetical protoin A - Escherichia coli (SUB 40-520)	89	5	351
4173	-	2 -	1 382	gi 1041097	Pyruvate Kinase (Bacillus psychrophilus)	89	84	181
4182	-	867	1 250	91 413968	ipa-64d gene product [Bacillus subtilis]	89	05	249
4362	~	148	318	91 450688	hadw gene of Ecopril gene product [Eacherichia coli] pir 538437 538437 hadw protein - Escherichia coli pir 509619 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	99	7	171
	=	1 9493	8300	1911103727	putative [Bacillus subtilis]	67	97	1194
12	=	110318	9833	91 216746	D-lactate dehydrogenase (Lectobacillus planterum)	67	=	486
32	-	1 1560	1155	1911098557	renal sodium/dicarboxylate cotransporter [Homo sapiens]	67	9	1596
32	- 2	1 4945	4165	gi 1510720	prephenate dehydratase (Methanococcus jannaschii)	63	15	108
36	<u></u>	5350	4268	911:46216	458 identity with the product of the ORF6 gene from the Erwinia herbicola carotenoid biosynthesia cluster; putative [Bacillus subtilis]	63	88	1083
-	-	4492	5304	101 1006621	hypothetical protoin (Synechocystis sp.)	67	\$	613

aureus - Putative coding regions of novel proteins similar to known proteins

1 1 1 1 1 1 1 1 1 1	Contig ORF	1085	Start (nt)	Stop (nt.)	match acession	match gene name		1 dent	(nt)
1 1922 4427 [011113149 0.1] [Bacillus subtilis] 67 64 64 65 64 64 64 64 64	96		3943	<u> </u>	911304131	large subunit precursor (Azospirillum brasilane) gjutamate synthese (NADPH) [EC 1.4.1.13] alpha hain lense	S	. 52	4539
1 11 11 11 11 11 11 11	36			14678	1000453	Tree (Bacillus subtilis)	67	9	. 756
13 1315 3317 6112014055 Na.PH antipoteter system (lactillus sitealphilus) influenced 67 69 59 59 59 59 59 59 59	62	:	5092	4757	91 1113949		63	\$	336
1 1313 1321	62	- 07	7570	6338	91 634655	Na/H antiporter system [Bacillus elcelophilus]	67	49	1233
13 14449 14049 [01145432 Diutative Inactionecces Inctis] 67 64 64 64 64 64 64 64	66	-	2119	3321	gi 1204349	hypothetical protein [GB:GB:D90212_3) [Hasmophilus influenzae]	62	20	1203
13 14419 14019 g 1400437 L 1590 gene product Recillus subtilis 67 49 49 40 40 40 40 40 40	102	6	5695	1716	91 149432	putative (Lactococcus lactis)	67	15	1482
15 14821 13194 91 413956	103	1			gi 1408497	LP9D gene product (Bacillus subtilis)	1 62	4.8	105
17 1911 15194 91 1262335 Ymah [Bacillus subtilis] 67 54 54 51 51 51 51 51 51	109	115	14821	13982	91 413976	ipa-52r gene product [Bacillus subtilis]	67	6.7	840
4 1713 2153 Gil 12623135 Yraah Bactilus subtilis 67 35 47 48 48 48 48 48 48 48	109	12	1	15194	91: 413983	ipa-59d gene product [Bacillus subtilis]	67	29	384
1 1 1149 4 141047	121	-	6171	1 2153	9111262335	(Ymak (Bacillus subtilis)	62	54	\$
5 4060 3318 gil 556865 Unknown (Bacillus subtilis)	122		-	11149	91 143047	ONFB Racillus subtilis	67	35	1149
2 4584 3389 grillod6081 hypochetical protein (GBiD26185_10) (Hycoplesma genitalium) 67 45 45 45 45 45 45 45 4	124	-	4060	3518	[91]556885	Unknown (Becillus subtilis	62	-	\$43
1 2499 2297	131	~	4584	3569	91 1046081	hypothetical protein (GB:DZ6185_10) [Mycoplasma genitalium]	69	30	966
4 5409 4198 gi 1212775 GTP cyclohydrolage II Bacillus amyloliquefacions 67 44	9	-	2499	72297	191 146549		67	45	603
5 2913 2374 gil 130709 Yrkii Bacillus subtilis 67 48 67 48 67 48 67 48 67 48 68 68 18 18 18 18 18	142	-	5409	4198	101 1212775	GPP cyclobydrolasc 11 Bacillus amyloliquefacions	6.1	\$	7121
6 1311 6673 92 137841	141	2	2913	2374	19111303709	YrkJ [Becillus subtilis]	69	7	240
4 2720 3763 91 996119 SphX (Synechococcus sp.) 67 47 67 47 68 1989 3428 91 995681 2-oxoglutarate/malate translocator (Spinacia olaracoa) 67 47 67 67 68 68 69 1245 12801 59 1245 12801 59 1245 12801 59 1245 12801 59 1245 12801 59 1245 12801 59 1245 12801 59 1245 12801 59 1245 12801 59 1245 12801 59 1245 12801 59 1	152	-	6341	1 6673	19: [1377841	unknown (Becilius subtilis)	67	48	25.
6 1989 3428 g1 595681 2-oxogluterate/malate translocator (Spinacia olaracea) 67 67 53	161	-	2720	1 3763	gi 496319	Sphx (Symechococcus sp.)	67	47	1044
3 1351 1626 gi 531101 shikimate 5-dehydrogenase (Methanococcus Jannaschii) 67 53 18 18 18 18 18 18 18 1	163	9	1989	3428	91 595681	2-oxoglutarate/malate translocator (Spinacia oleracea)	69	47	1440
2 917 2179 G1 142439 ATP-dependent nuclease [Bacillus subtilis] 67 48 41 42 42 42 42 42 42 42	183	-	1351	1626	191 1511101	shikimate 5-dehydrogenase (Methanococcus jannaschii)	63	53	276
10 12445 12801 5p p3347 YECD HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION. 67 47 46 41 13047 14432 gi 133833 branchad-chain amino acid carrier [Lactobacillus delbrueckii] 67 46 47 47 48 48 48 48 48 48	200	~	917	1 2179	191 142439	ATP-dependent nuclease Bacilius subtilis	67	68	1263
	1 206	=======================================	112445	112801	sp p37347 YECD_	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS S'REGION.	67	4.1	157
2 1321 809 91 1033037 100 kDa heat shock protein (Hsp100) [Leishmania major] 67 36 42 1039 2032 91 809542 CbrB protein (Erwinia chrysanthami)	506	Ξ		114432	g1 732813	branched-chain amino acid carrier Lactobacillus delbrueckii]	1 67	46	1386
3 1039 2052	208	-	1321	608	191 1033037	100 kDs heat shock protein (Hsp100) [Leishmanis major]	67	36	513
	238	-	1 1039	1 2052	gi 809542	CbrB protein (Erwinia chrysanthami)	- 67	42	1014

TABLE 2

aureus - Putative coding regions of novel proceins similar to known protein

Contig 10	ORF	Start (nt)	Stop (nt)	match	match gene name	E is	1. ident	Jength (nt)
246	-	; -	1 367	91 215098	exclaionase [Bacteriophage 154a]	67	37	192
276	7	1 2260	1413	91 303560	ORP271 (Escherichia coli)	67	20	849
762	-	1 2223	3086	91 142784	Ctak protein (Bacillus firmus)	67	9	934
1 307	-	1 5220	4186	91 11070013	protein-dependent (Bacillus subtilis)	67	Ç	1035
316	-	-	1028	9111161061	dioxygenase (Methylobecterium extorquens)	67	25	666
324	-	5650	5030	191 1469784	putative cell division protein ftaw Enterococcus hirse]	67	49	129
336	-	524	1 264	gi 173122	urea amidolyase (Saccharomyces 'cerevisiae)	62	\$	261
250	-	#0T -	1194	s_HY80053 sYH_S	HISTIDYL-THNA SYNTHETASE (EC 6.1.1.21) (HISTIDINKTHNA LIGAGE) (HISNS).	6.9	Ç	1287
364		4890	3592	91 151259	HMG-Coa reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756[A44756] hydroxymethyjgluteryl-Coa reductase (EC 1.1.1.88) Pseudomonas ap.	67	9	1299
1 365	-	1 2940	1 2113	01 1296823	orf2 gene product (Lactobacillus helveticus)	67	41	828
1 367	-	1 325	918	qi 1039479	ORFU [Lactococcus lactis]	67	Ç	\$94
395	-	999	1721	91 1204516	hypothetical protein (GB:U00014_4) [Haemophilus influenzee]	67.	\$\$	909
415	-	1800	106	91 382579	[CG Site No. 29739 [Escherichia coli]	67	46	900
419	-	1799	1 903	gi 520752	putative (Bacillus subtilis)	67	8	697
47.4		~-	196	91 886906	argininosuccinate synthetase (Streptomyces clavuligerus) pir S37659 S37659 argininosuccinate synthase (EC 6.3.4.5) - treptomyces clavuligarus	67	6.9	794
485	-	1921	1 2226	91 143434	Rho Factor (Bacillus subtilis)	67	7	306
1 596	-	1728	1 865	gi:1303853	YqgF [Bacillus subtilis]	67	47	964
1 200	-	- 433	1 218	gi 1204628	hypothetical protein (SP:P21498) [Haemophilus influenzae]	67	4.1	216
908	- 2	249	647	191 677947	AppC (Sacillus subtilis)	67	51	399
H28	-	340	006	gi 777761	lrrA (Symachococcus sp.)	67	٠,	\$61
833	-	1407	1 916	gi 142996	regulatory protein [Bacillus subtilis]	67	7	492
856	-	1 1555	1 779	gi 780224	ZK970.3 [Ceenorhabditis elegens]	63	1 38	יננ
A88	-	1 1614	1 850	gi 437315	TTG start codon [Bacillus licheniformis]	69	9	765
1034	-	1190	1 597	gi 1205113	hypothetical protein (GB:L19201_15) (Haemophilus influenzae)	63	\$	165
1062	-	1 636	319	19111303850	VqpC (Bacillus subtilis]	67	7	318
1067	-	918	1 460	pir A32950 A329	pir[Alloso Allo probable reductase protein - Leishmania major	69	24	459

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont lg	ORF	Start (nt)	Stop (nt)	acession	match gene name	e in	• ident	length (nt)
1358	-	î.	293	191 1001 369	hypothatical protein (Synachocystis sp.	1 67	:	291
2391	-	r	302	gi 1510416	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	67	8	300
3000	-	-	507	gi 517205	67 kDa Nyosin-crossreactive streptococcal antigen (Streptococcus yogenes)	67	26	507
3066	-	199	234	191 308861	GTG start codon (Lactococcus lactis)	67	46	231
1087	-	454	151	191 1205366	oligopeptide transport ATP-binding protein (Heemophilus influenzes)	67	77	304
1010	~	2	1.256	191 1531541	uroporphyrinogen III methyltransferase [Zea mays]	69	\$5	255
3598		728	293	91 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	67	98	336
3765	~	584	366	1011557489	menD (Bacillus subtilis)	19	45	219
1 3788	-	658	398	pir 552915 5529	intrate reductase alpha chain - Bacillus subtilis (fragment)	69	45	261
1 3683	-	~	265	191 704397	cystathioning beta-lyase (Arabidopsis thaliana)	19	46	264
3926	-	2	360	Qi 1463199	[peptide-synthetase [Amycolatopsis mediterrane]]	67	=	339
9417	-	82	396	191 1205337	ribonucleotide transport ATF-binding protein (Heemophilus influenzae)	69	99	318
2	-	3078	3989	101 535348	[codv [Bacillus subtilis]	99	7	916
15	9	1 2273	2542	101 46491	SmtB Synechococcus PCC7942	99	1	270
T.	6	8059	7826	Ui (292046	[mucin (Homo sapiens)	99	3	234
ā	01.	9034	9258	19111204545	mercury scavenger protein (Heemophilus influenzae)	99	5	22%
32	9	6347	\$283	01 998342	inducible nitric oxide synthese (Gallus gallus)	99	42	1095
7	2	8836	10124	191 1510751	molybdenum cofactor biosynthesis mosk protein (Methanococcus jannaschii)	99	46	1269
8	7	1276	2868	[91]150209	ORF 1 (Mycoplesme mycoides)	99	Ç	1593
88		8717	8428	gi 665999	hypothetical protein (Bacillus subtilis)	99	47	1251
62	۲	1 5143	4370	91 1072398	phaD gene product (Rhizobium maliloti)	99	40	3 CC
70	-	11693	10998	91 809660	deoxyribose-phosphate aldolase (Bacillus subtilis pir 849455 549455 deoxyribose-phosphate aldolase (EC 4.1.2.4) - acillus subtilis	99	\$	969
1 76	-	-	1305	91-1142440	ATP-dependent nuclease (Bacillus subtilis)	99	42	1305
16	9	9236	8205	1911704397	cystathionine beta-lyase (Arabidopsis thaliana)	99	Ĉ,	1032
102	5	3810	1 3265	gi 1204323	hypothetical protein (SP:P31805) [Haemophilus influenzae]	99	5	546
				::!				

LABLE

EP 0 786 519 A2

aureus - Putative codiny regions of novel proteins similar to known proteins

103	1			acess100	<u> </u>		_	Ē
601		3418	21.12	gi 971344	Interate reductase gamma subunit (Bacillus subtilis) sp P42177 NARI_BACSU NITRATE REDUCTASE GANNA CHAIN ISC 17.99.41. g 1009369 Respiratory nitrate reductase (Bacillus subtilis) (SUB -160)	99	8	687
-	<u>-</u> -	4243	4674	qi 170886	glucosamine-6-phosphate deaminas (Cendida albicans pir/a4652/a46652 glucosamine-6-phosphate isomerase (EC 5.3.1.10) - east (Candida albicans)	99	÷.	432
112	11	117491	11713	91 (1323179	ORF YGRIIIw [Saccharomyces cerevisiae]	99		222
1116	-	1 4667	2637	19111491813	gamma-glutamyltranspeptidase [Bacillus subtilis]	99	7	2031
120	-	1 1189		91 1146224	[putative [Bacillus subtilis]	99	30	201
172		3264	3662	gi 755152 	highly hydrophobic integral membrane protein (Bacillus subtilis) sp P41953 thGC_BACSU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN ACG.	99	;	399
174	- 5	4592	1 3723	91 1146241	pantothenate synthetase [Bacillus subtilis]	99	5	670
271	-	3209	1 2880	91 642 655	unknown (Rhizobium meliloti)	99	29	330
175	=	8743	1 7994	911854655	Na/H antiporter system [Becillus alcalophilus]	99	7	750
190	- 5	6707	1 5727	gi 451072	di-tripeptide transporter [Lactococcus lactis]	99	9	1353
195	115	11919	61761	191 1322411	unknown (Mycobacterium tuberculosis)	99	5	207
1 217	-	2822	1 2595	191 1143542	alternative stop codon (Rattus norvegicus)	9,9	36	22R
1 233	6	8117	6135	191 1458327	F08F3.4 gene product (Caenorhabditis elegans)	99	-	666
#1.2	<u> </u> -	=	1041	195 809541	ChrA protein (Brwinia chrysantiwal)	99	#	7
241	-	1 2102	1053	191 153067	peptidoglycan hydrolase (Staphylococcus aureus)	99	S	1050
1 261	-	1178	979	gi 1510859	N. jannaschil predicted coding region NJ0790 [Methanococcus jannaschii]	99	0	531
263	-	1 2731	2973	91 1205865	tetrahydrodipicolinate N-succinyltransferase [Haemophilus influenzae]	99	-	759
272		6548	2484	91 (882101	1 transp EU HIGH-	99	₹	1065
276	-	2805	2104	91 1208965	hypothetical 23.3 kd protein (Escherichia coll)	99	4.	702
1 278	~	1 2830	1784	gi 1488662	phosphatasa-associated protein (Bacillus subtilis)	99	88	1047
1 278	-	J 3830	2952	gi 303560	ORF271 (Escherichia coli)	99	45	879
279	~-	3894	2218	91 1185289	2-succinyl-6-hydroxy-2.4-cyclohexadiene-l- carboxylate synthase (Bacillus subtilis)	99	£	1677
288	-	2535	2275	gi 1256625	putative (Bacillus subtilis)	99	42	261
292	~	EC 1	962	191 1511604	M. Jannaschil predicted coding region MJ1651 [Methanococcus jannaschil]	99	000	192

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cant 19 OKF	<u>\$</u> =	31.0rt	Stop (nt)	match	delch gene name	ata 1	1 ident	length (nc.)
294	-	1116	1 559	91 216314	esterase (Bacillus stearothermophilus)	99	\$	858
297		2913	1978	91 994794	Cytochrome a assembly facto [Bacillus subtilis] sp P24009 COXK_BACSU PROBABLE CYTOCHROHE C OXIDASE ASSEMBLY PACTOR.	99	\$	936
316	-	1 2053	1 2662	191 1107839	(alginate lyase (Pseudomonas aeruginosa)	99	0,	630
BCC	-	2460	1 2302	gi 520750	biotin synthetase (Bacillus sphaericus)	99	98	159
1 339	-	1214	26.6	191 467468	7, 8-dihydro-6-hydroxymathylpterin-pyrophosphokinese (Bacillus ubtilis)	99	52	1 084
1 363	-	-	1 863	gi 581649	epiC gene product (Staphylococcus epidermidis)	99	47	861
366	- 2	232	1483	191 1103505	unknown [Schizosaccheromyces pombe]	99	53	252
1 367	-	1 2468	1845	sp P20692 TYRA_	PREPHENATE DEHYDROGENASE (EC 1.3.1.12) (PDH).	99	05	624
1 372	-	1 2150	1599	91 467416	unknown (Bacillus subtills)	99	38	552
378	-	1 212	1009	91 147309	[purine nucleoside phosphorylese [Bacherichia coli]	99	0\$	798
5			1 462	91 388263	p-aminobenzoic scid synthass [Streptomyces griseus] pir[JN0531[JN0531 p-aminobenzoic acid synthase - Streptomyces riseus	99	9	462
* 0	-	4826	1 5254	91 606744	cycidine deaminasa [Bacillus subtilis]	99	15	429
=======================================	- 2	1738	1103	91 1460081	unknown (Mycobacterium tuberculosis)	99	3	909
420	<u>-</u>	~	- 54	gi 1046024	Na+ ATPase subunit J [Hycoplasma genitalium]	99	49	540
=	<u> </u>	-	888	19111500008	M. Jannaschii prudicted coding region MJ1154 (Muthanococcus Jannaschiil	99	95	H.S.R.
-	-	6295	5299	gi 852076	MrgA (Becilius subtilis)	99	9	381
		3405	2413	91 153047	lysostaphin (ttg start codon) (Staphylococcus simulans pir Al2881 Al2881 Iyaostaphin precursor - Staphylococcus simulans ap P10547 LSTP_STASI LYSOSTAPHIN PRECURSOR (EC 3.5.1).	99	15	993
1 561	-	956	088	gi 1204905	DMA-3-methyladenine glycosidase I (Haemophilus influentael	99	45	77
1 \$62	-	9901	1 1383	91 1046082	N. genitalium predicted coding region MG372 [Mycoplesma genitalium]	99	52	318
925	-	=	724	91 305014	ORF_0234 [Escherichia coli]	99	•	714
577	-	0611	- 903	91 1001353	hypothetical protein (Symachocystis sp.)	99	52	288
584	-	- 2	166	6p P24204 YEBA_	INTPOTMETICAL 46.7 KD PROTEIN IN MSBB-RIJVB INTERGENIC REGION (ORFU).	99	48	330
265	-	0171	1 706	gi 928839	ORF266; putative [Lactococcus lactis phage BK5-7]	99	51	705
1 601	-	1433	720	91,1188695	novel antigen; orf-2 (Staphylococcus aureus)	99	55	714

EP 0 786 519 A2

. aureus - Putative coding regions of novel proteins similar to known proteins

10

15

sim 1 ident length	31.0	66 46 207	66 60 162	66 47 315	66 42 438	66 43 168	951 17 99	66 66 231	66 45 246	66 51 693	-	66 47 671	645 35 549	66 50 387	66 38 312	66 31 291	66 40 201	66 53 294	66 46 231	66 46 573	66 40 249	-	66 58 537	66 53 402
match gene name .	similar to M. musculus transport system membrane protein, Nramp PIR.A40739) and S. cerevisiae SMF1 protein (PIR:A45154) Caanorhabditis elegans)	unknown protein (Rattus norvegicus)	phosphatidylcholine binding immunoglobulin heavy chain IgH veriable region	argininosuccinate: lyase (Campylobacter jejuni)	alkaline phosphatese like protein [Lectococcus Lects] pir [539339 [839339] alkaline phosphatese-like protein - Lectococcus actis	CG Site No. 361 [Escherichia coli]	[ferrichrome-binding protein [Bacillus subtills]	[HCWVL77 (AA 1-642) [Human cytomegalovirus]	putative [Helicobacter pylori]	F7 (Bacillus subtilis)	aryl-alcohol dehydrogenese [Bacillus subtilis]	[disminopimelate decarboxylase [Bacillus subtilis]	orf145 Staphylococcus aureus]	uridine kinase (uridine monophosphokinase) [Haemophilus influenzae]	rhoptry protein [Plasmodium yoglii]	ORF_1356 (Escherichia coll)	Yqg7 [Bacillus subtilis]	unknown (Saccharomyces cerevisiae)	methylgalactoside parmesse ATP-binding protein [Mycoplasma genitalium]	hypothetical protein [Synechocystis sp.]	M. jannaschii predicted coding region MJ0255 (Methanococcus jannaschii)	DNA polymerase (g43) (Bacteriophage T4)	DNA-binding protein (Bacillus subtilis)	hypothetical protein (Symechocystis ap.)
match	91 746573	91 804808	91 1519085	191 1209272	91 435296	91 536955	91 289272	91 833061	91 149008	91 580842	91 790945	191 (410117	91 48713	101 1204390	fgi 457146	[61]305003	[91]1303853	[61]575913	91 1045799	gi 1001493	gi 1499034	91 215908	91 1256653	gi 1208474
Stop (nt)	845	355	512	317	747	171	158	232	247	233	1473	549	552	475	997	315	203	294	231	574	250	453	587	402
Start	89	561	673	-	310	338	-	462	-	1425	_	- 61	1100		1308	35 I	-	-	-	~	498	707	1123	_
10 T		~	~-	-		-	~	-	-	-	~	-	_	7	-	-	-		_	-	-	~	_	-
Contig	619	902	734	760	764	R52	A R 6	889	_		906	947	950	955	9#1	986	1057	1087	1105	-		-	1208	1342

S aureus - Putative coding regions of novel proteins similar to known proteins

Cont ig	ORF	Start	Stop (nt)	match	match gene name	, ain	1 ident	length (nt)
1983	-	489	251	191,1045935	DNA helicase II (Mycoplasma genitalium)	99	- 04	249
2103	~	176	400	191 929798	precursor for the major merozoite surface antigens (Plasmodium alciparum)	99	9.0	225
2341	-	6.73	188	gi 1256623	exodeoxyribonuclesse (Becillus subtilis)	99	38	186
2458	-	1 325	164	91 1019410	unknown (Schizosaccharomyces pombe)	99	4,	162
2505	-	468	235	91 11510394	putative transcriptional regulator (Methanococcus januaschii)	99	7,60	234
2525	-	558	280	191 1000695	cytotoxin L (Clostridium sordellii)	99	7	279
2935	-	· -	275	gi 765073	autolysin [Staphylococcus aureus]	99	+	273
3005	-	114	305	91 1205784	heterocyst maturation protein [Heemophilus influenzae]	99	99	192
3048	-	80	7.72	191 1303813	YqeW (Bacillus subtilis)	99	42	198
3071	~	~	189	gi 1070014	protein-dependent (Bacillus subrilis)	99	7	189
1 3081	-	404	225	91 984212	unknown (Schizosaccharomyces pombe)	99	•	180
1 3090	-	1 580	386	[41]1204987	DNA polymerase III, alpha chain (Haemophilus influentae)	99	8,	195
1 3318	-	-	387	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	99	6	187
9878 ,	-	1 798	000	gi 1109684	Prov [Bacillus subtilis	99	62	199
3796	-	1 402	202	191 853760	acyl-CoA dehydrogenase (Bacillus subtilis)	99	09	201
1924	-	505	347	191 563952	gluconate purmease (Bacillus licheniformis)	9	9	249
4240			350	gi 151259 	IMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44755 [A44756] hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	99	3	34R
4604	-	۲	234	ріг А26713 ВИНС	hemocyanin subunit II - Atlantic horseshoe crab	99	9	228
-	6	1 8845	9750	91 145646	cynk [Escherichia coll]	65	35	906
•	S .	2708	3565	91 887824	ORF_0310 [Escharichia coli]	69	47	858
=		1993	866	gi 143402	recombination protein (tig start codon) (Bacillus subtilis) gi[1303923 RecN [Bacillus subtilis]	92	\$	966
s1 –	-	2493	3524	91 1403126	cacD gane product (Alcaligenes eutrophus)	59	38	1032
18	-	1908	1372	91 (349187	acyltransferase (Saccharomyces cerevisiae)	65	05	537
		1467	2492	911149518	phosphoribosyl anthranilate transferase [Lactococcus lacris] pir S35126 S35126 anthranilate phosphoribosyltransferase (EC .4.2.18) - Lactococcus lactis subsp. lactis	\$9	52	1026
7 78	-	3374	4312	19111502420	malonyl-CoA:Acyl carrier protein transacylase (Bacillus subtilis)	65	7	939

, aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ig ORF	Start (nt)	Stop (nt)	match	south gene name	. s	1 ident.	tength (ni.)
1 27	-	1 390	929	Qi 1212729	YqhJ Becillus subtilis	65	45	712
7	-	111040	10387	91 509245	D-hydroxyisoceproste dehydrogensse (Lactobacillus delbrusckii)	99	7	654
86 -	~	119172	119528	gi 547:	[H-protein [Plaveria cronquistil]	65	4	357
=	-	1 790	1746	191 405882	yeix [Escherichia coli]	9	97	957
+	27	9326	8832	19111205905	molybdenum cofactor blosynthesis protein [Neemophilus influenzae]	65	90	\$25
+ +5	-	6635	1 7588	gi 493074	AppA protein (Salmonella typhimurium)	65	90	954
12	7	1 5A0	1503	191 580897	OppB gane product (Bacillus subtilis)	65	45	924
- 52	-	1 225	1 953	191 1205518	NAD[P]II-[lavin oxidoreductase [Haemophilus influentas]	65	Ç	729
55		6111	1 1058	pir A44459 A444	troponin T beta TnT-5 - rabbit	65	41	283
1 67	6-	1 7421	8272	91 143607	sporulation protein (Bacillus subtilis)	65	42	852
27	- 5	1 4446	\$768	01 1204896	[lysophospholipese L2 [Heemophilus influenzeo]	65	37	930
1	-	1 954	- 578	91 1204844	H. influenzae predicted coding region H10594 (Heemophilus influenzae)	65	05	477
رد ا	-	- 2	1 757	91 1046082	H. genitalium predicted coding region M0372 (Mycoplesma genitalium)	65	94	756
	7 2	1 795	153	91 1222116	permease (Haemophilus influentee)	65	٠,	639
16	_	1 4728	3454	91 1001708	[hypothetical protein (Symechocystis sp.)	65	67	2721
	-	1 BS48	1 8357	91 1399263	(cystathionine beta-lyase (Emericalla nidulana)	65	0	192
86	-	1 608	1986	191 467423	unknown (Becillus subtills)	63	38	381
86	-	-1 2250	1 2987	91 467424	unknown (Becilius subtilis)	65	\$	738
102		2598	2119	91/1511532	N-terminal acetyltransferase complex, subunit ARD1 Hethanococcus	\$	60	Q# 7
1 102	-	1 3647	-	gi 1204637	H. influenxee predicted coding region H10388 [Haemophllus influenxee]	65	32	786
		10081	9841	g1 142695 	S-adenosyl-t-methlonine:uroporphyrinogen III methyltransferase Bacillus megeterium]	S	5	1011
101	2	110439	-	191 710021	nitrite reductase (nirb) (Bacillus subtilis)	65	22	127
106	- 3	1 262	; –	194139881	ORP 311 (AA 1-311) (Bacillus subtilis)	65	*	679
109	<u> </u>	1 3909	; –	91 1204399	qlucosamine-6-phosphete desminase protein [Macmophilus influenzae]	65	;	1 360
109	!	1 7165	8898	01 536955	CG Site No. 361 [Escharichia coli]	68	7	1431
•		*******						

aureus - Putative coding regions of novel proteins similar to known proteins

	:					- Eis -	1 ident	length
Cont.ig	0 K.	Start (nt.)	Stop	acession	מובר וופווים			(36)
011		3688	3915	gi 407881	stringent response-like protein (Streptococcus equisialis) pir(s1997) (S1997) stringent response-like protein - Streptococcus quisialis	\$	\$	228
	-		4295		OAP1 (Streptococcus equisimilis	9	20	414
				1011119574	Or(2 Streptomyces griseus)	9	95	150
011	- -	1675		10111204521	H. influenzae predicted coding region H10318 (Hacmophilus influenzae)	65	23,	579
711	2 2	•		1911710496	reasoriptional activator protein (Bacillus brevis)	\$9	32	762
	= -	- 1		10111158	reneat organellar protein [Plasmodium chabaudi]	9	96	201
671	-		\$25	lail37589	precursor (Homo saptens)	59	46	420
	-			lai (1064809	homologous to sp:IITRA_ECOLI [Bacillus subtilis	\$9	7	1926
		•	7004		mutator mutf (AT-GC transversion) [Escherichia coli]	6.5	95	240
		1 3587	1 3838		D02_orf569 [Mycoplasma pneumoniae]	65	12	252
9		3482	1 2841	lgi 1146225	putative Bacillus subtilis	9	r	642
991		3858	1948	9: 1148304		65	05	11811
188		1 3195	4178	gi 151943	ORF3; putative (Rhodobacter capsulatus)	- 65	99	984
189	-	4982	47.85	tiji 58812	ONE IV (AA 1-489) (Figwart mosaic virus)	9	0 4 :	194
56	·	7908	5272	191 145220	alunyi-tana ayuthetasa (Escherichia cull)	59	₹	2637
561		-	1 8104	gi 882711	exonuclease V alpha-subunit [Escherichia coli]	59	38	1 2496
206	19		18191	95 468115	ornithing acetyltransferase (Bacillus subtilis)	- 65	53	1 1296
217	-	3844	3215	91 1205974	S'guanylate kinase (Haemophilus influentes)	- 65	4	630
320		5265	1375	91 580920	rodb (gran) polypeptide (AA 1-673) [Bacillus subtilis; pir S06048 S06048 probable roth protein - bacillus subtilis sp P13484 TACR_BACSU PROBABLE probable roth protein - bacillus subtilis sp P13484 TACR_BACSU PROBABLE polyfchyceRot-PHOSPHATE) LPHA-GLUCOSYLTRANSFEKASE (EC 2.4.1.52) [TECHOIC ACID BLOSYNTHESIS ROTHER B. B.	S	9	1515
326		1 2327	1 3709	gi 11146200	DNA or RNA helicase, DNA-dependent ATPAse (Bacillus subtilis)	- 65	46	1383
733	-	1 1902	1 2513	gi 149379	HisBd (Lactococcus lactis)	- 65	9	1 612
3	-	4968	1 4195	19111205308	ribonuclease HII (EC 31264) (RNASE HII) [Haemophilus influenzae]	99 -	95 -	1,1
252		1278	1 940	 G 1204989	hypothetical protein (GB:U00022_9) [Haemophilus influenzae]	- es	0	610
190	-	· i -	3794		fecD (Escherichia coll)	59	7	1 987
107	· -	}						

S aureus - Putative coding regions of novel proteins similar to known proteins

50

55

· 5

10

Contig		Start	Stop	match	match gene name	Bim	Lident	length
2,4	- -		278	1911496558	ork (Baci) lus subtilis)	6.5	42	276
100		982	818	911.67418	unknown (Bacillus subtilis)	65	\$	168
1 307	-	3586	2864	Qi 1070014	protein-dependent Bacillus subtilis	65 1	1 00	723
335		2286	1399	gi 146913	N-acetylglucosamine transport protein (Escherichia coli) pir B19895 MQEC2N phosphotransferase system ensyme II (EC. 7.1.69), N-acetylglucosamine-specific - Escherichia coli sp P09323 PTAA_ECOLI PTS SYSTEM, N-ACETYLGLUCOSAMINE-SPECIFIC 11ABC OMPONENT (ELIA	9	20	8 8 8 8
138	5	4120	0716	91 1277029	biotin synthase (Bacillus subtilis)	69	6.	951
1343	<u>.</u>	1490	2800	911143264	membrane-sesociated protein [Bacillus subtilis]	9	6	1311
344	-	19/2	12531	19:11050540	IRNA-glutamine synthetase (Lupinus luteus)	9	~	231
358	_	3421	1621	gi 1146220	NAD: dependent glycerol-3-phosphate dehydrogenase (Bacillus subtilis)	65	47	201
364	-	1 238	669	[gi [1340128	ORF1 [Staphylococcus aureus]	65	51	462
97.6		-	576	101 143331	alkaline phosphatase regulatory protein (Bacillus subtilis) pir[A27650 A27650 regulatory protein phoR - Bacillus subtilis spi2354 PHOR_BACSU ALKALINE PHOSPHATASE SYMINESIS SENSOR PROTEIN HOR (EC 2.7.31.	59	0	576
976	-	3666	4346	1911143268	dihydroliposmide transsuccinylass (odh8; EC 2.3.1.61) (Bacillus ubtilis)	65	20	189
428	-	187	483	191 (1420465	ORF YOR195w (Saccharomyces cerevisiae)	65	£	297
438		2.12	R.38	fgi 143498	degs protein (Bacillus subillis)	5	ž	267
**	Ξ	1 9280	10215	91 1204756	ribokinase [Haemophilus influenzae]	9	4.7	976
449	-	1241	1531	gi 59984B		65	=	291
478	~	1 1452	865	gi 1045942	qlycyl-tRNA synthetase Mycoplasma genitalium	65	39	588
479		1032	517	gi 1498192	putetive [Pseudomonas aeruginosa]	65	07	516
4 80	<u>•</u>	1312	5637	91 415662	UDP-N-ecetylolucosamine 1-carboxyviny] transferase (Acinetobacter	59	9	1326
7 8 9	-	٠,	430	gi)46551	transmembrane protein (kdpD) (Escherichia colii		7	429
499	-	54	932	lgi 603456	reductase (Loishmania major	65	53	679
505	-	1 914	459	[4] [15] [8]	josfA (Salmonella typhimurium)	65	39	456
172	~_	1509	883	gi 49399 	open reading frame upstream ging Escherichia coli ir 817754 517754 hypothetical protein XE (ging 5	\$9	8	627
611	7	506	1 270	gi 10961	RAP-2 (Plasmodium falciparum)	6.9	0	237

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	10 PF	Start (nt)	Stop (nt)	match	match gene name	e is	1 ident	Jength (nt.)
705	=	564	283	91 710020	nitrite reductase inirB) [Bacillus subtilis]	9	\$2	282
712	-	-	111	91/289272	[ferrichrome-binding protein [Bacillus subtilis]	65	37	771
712	~	961	354	91,1289272	[ferrichrome-binding protein [Bacillus subtilis]	6.5	7.0	159
743	_	2	631	191 310631	ATP binding protein (Streptococcus gordonii)	65	45	630
749	~	1 393	677	gi 167374	single strand DNA binding protein [Bacillus subtilis]	9	29'	387
762	-	1698	850	91 160399	multidrug resistance protein (Plasmodium falciparum)	99	87	849
788	-	88	318	91 1129096	unknown protein (Bacillus sp.]	6.5	35	231
850	-	-	408	19111006604	hypothetical protein (Synechocystis sp.)	1 59	37	409
904	-	-	424	91 1199546	[2362 (Saccharomyces cerevisiae)	9	99	777
928	-	-	174	gi 1256653	DMA-binding protein [Bacillus subtilis]	59	\$	174
1031		36	232	gi 238657 	AppC=cytochrome d oxidase, subunit I homolog (Escherichia coli, K12, eptide, 514 aa)	69	Ş	207
1037	-	+1+	1 262	91 1491813	gamma-glutamyltranspeptidase (Bacillus subtills)	1 59	46	153
1053	-	87.0	175	gi 642655	unknown Rhizobium melfloti]	9	34	174
1149	-	11399	752	1911162980	ribulosa-5-phosphate 3-epimerase [Spinacia .leracea]	65	40	648
1214	-	1881	495	91 1205959	lactam utilization protein [Haemophilus influenzae]	65	8	387
1276		476	276	pir 535493 5354	site-specific DNA-methyltransferase Stal (EC 2.1.1) - Streptococcus sanguis	5	£	201
1276	2	006	1577	91 (73794	'ORF' [Escherichia coli]	9	34	324
2057	-	272	138	61 633699	TrsH (Yersinia enterocolitica)	65	21	135
2521	-	336	169	9: 1045789	hypothetical protein (GB:U14001_76) (Mycoplasma genitalium)	65	1,	168
2974	-	290	297	ai 152052	enantiomerase-selective amidase (Rhodococcus sp.)	6.5	45	294
1691	-	901	154	pir JQ1024 JQ10	hypothetical 10K protein (LmRF140 5' region) - fruit (ly (Drosophila nelanoguster)	\$3	÷	153
3069	-	e	278	01 144906	product homologicus to E.coli thioredoxin reductase: J.Biol.Chem. 1988) 261:9015-9019, and to F52a protein of alkyl hydroperoxide eductase from S.typhimurium: J.Biol.Chem. (1990) 265:10535-10540; pen reading frame A	29	9	276
3146	-	282	142	[91 49315	ORF1 gene product (Racillus subtills)	65	47	141
3170	-	629	<u> </u>	111150711	indolepyruvate decarboxylase (Erwinia herbicola)	65	7	339

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gone name	e is	1 ident	length (nt)
3546		-	303	U1 450688	InsdM gene of Ecopril gene product [Escherichia coli] pir 538477 538437 hadM protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	65	42	303
3782	-	7 7	328	91 166412	[NADH-glutamate synthase (Medicago sativa]	65	45	327
1 3990	-	374	189	gi 1009366	[Respiratory nitrate reductase (Bacillus subtilis]	65	53	186
1 4032	-	613	308	91 1323127	ORP YGROB7c Saccharomyces cerevisiae	65	20	306
4278	7	726	364	191 1197667	vitellogenin (Anolis pulchellus)	65	42	363
61	-	4259	5518	1911145727	deaD [Escherichia coli]	99	ę.	1260
61	9	1 7639	6926	91 1016232	ycf27 gene product [Cyanophora paradoxa]	79	36	714
- 20		1 7053	6454	gi 765073	[autolysin [Staphylococcus aureus]	64	43	600
16	13	112706	111537	91 414009	ipa-85d gene product (Bacillus subtilis]	99	45	1170
 ca -	-	2388	4364	91 1204696	[fructose-permease IIBC component [Haemophilus influenzae]	64	43	1977
36	-	1181	1 3013	191 290503	glutamate permease (Escherichia coli)	99	0	1143
1 37	9	1 4065	4409	191139815	orf 2 gene product (Bacillus subtilis)	64	46	345
45	6	7852	1 8760	91 1230585	Inucleotide sugar epimerase (Vibrio cholerae 0139)	64	23	606
53	-	1540	1899	91 1303961	YqjJ (Bacillus subtilis)	99	90	360
96	9	4793	3855	gi 457514	gitC (Bacillus subtilis	64	45	919
95	124	130002	130247	91 (70331	[similar to zinc fingers [Caenorhabditis elegans]	64	4	246
62	-	2759	12421	91 642655	unknown (Rhizoblum meliloti	64	28	339
98	9 ,	7178	6027	91 157702	5-aminoimidazole ribonucleotide-carboxilase (Pichia methanolica) pir 539112 539112 phosphoribosylaminoimidazole carboxylase (EC .1.1.21) - yeast (Pichia methanolica)	4	9	1152
96	6	9251	10030	91 1511513	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	64	42	780
100	-	-	009	[gi 765073	autolysin (Staphylococcus aureus)	64	44	909
106	- 5	3868	4854	91 166778	Iyaine specific permease [Eschurichia coli]	9	46	987
123	7	828	554	93 467484	unknown (Bacillus subtilis)	54	47	285
127		7514	7810	91 210061	serotype-specific anigen African horse sickness virus pir 527891 827891 capsid protein VP2 - African horse sickness virus	2	38	297
131	- 2	7134	6721	191 1511160	[M. jannaschii predicted coding region MJ163 (Methanococcus jannaschii)	64	6	414

aureus - Putative coding regions of novel proteins similar to known proteins

1 1 1 1 1		11111				********		
Contig	ORF	Start (nt)	Stop (nt)	match	makch gene name	E	• ident	length (nt)
142		5455	4817	191 1173517	riboflavin synthase alpha subunit (Actinobacillus pleuropneumoniae)	64	7	619
1.5	-	709	356	pir A32950 A329	probable reductase protein - Leishmania major	64	52	354
671	=	1 3555	3295	191 398151	major surface antigen MSG2 [Pneumocystis carinii]	64	3	261
154	-	3134	2307	1911984587	DinP (Escherichia coli)	64	20	828
191	- 5	3855	4880	191 903 304	ORF72 (Bacillus subtilis)	64	37	1026
1 165	-	33	1 791	gi;467483	unknown (Bacillus subtilis]	3	38	759
175	9	1.6355	9: 29	91 1072398	phaD gene product (Rhizobium mellloti)	3	42	1512
188	<u>.</u>	2042	2500	1961001161	MHC class II analog (Staphyloroccus aureus)	99	45	459
195	=	113667	13446	91 396380	No definition line found (Escherichia coli)	20	47	222
1 206	115	16429	16938	91 304134	argC (Bacillus stearothermophilus)	99	69	510
215	-	095	1 282	gi 142359	ORF 6 (Azotobacter vinelandii)	3	39	279
243	~	7818	6928	01 414014	ipa-90d gene product [Bacillus subtilis]	79	69	891
1 258	7	1330	845	191 664754	Pl7 (Listeria monocytogenes)	64	38	486
1 259	- -	462	1 232	[gi 1499663	M. jannaschil predicted coding region MJ0837 (Methanococcus jannaschii)	49	52	231
592	• 	5959	5567	gi 142828	aspartate semialdehyde dehydrogenase (Becillus subtilis) spigo4797 nims_bacsu aspartate-semialdehyne deiiydrogenase (EC .2.1.11) (ASA DEHYNROGENASE).	2	48	666
1 271	-	6	1163	gi 467091	hflx; B2235_C2_202 (Mycobacterium laprao)	79	44	1911
280	-	1 173	1450	19111303839	YqfR (Bacillus subtilis)	79	43	1278
1 293	- -	2532	1267	91117345	primosomal protein n' (Escherichia coli)	79	45	1266
295	7	742	1488	91 459266	Potential membrane spanning protein (Staphylococcus hominis) pir S42932 S42932 potential membrane spanning protein - taphylococcus hominis	3	39	747
301	2	1 1625	1446	1911580835	lysine decarboxylase Bacillus subtilis]	64	35	180
1 315	-	•	3949	91 143396	quinol oxidase (Bacillus subtilis)	64	45	1116
321	-	1264	635	gi 710496	transcriptional activator protein [Bacillus bravis]	99	41	630
333	5	4520	4239	gi 1314295	ORF2; putative 19 kDa protein (Listeria monocytogenes)	64	43	282
342	-	-	549	191 142940	[fesA (Bacillus subtilis]	79	38	549
1353	_	2878	2324	91 537049	ORF_0470 [Escherichia coli]	1 +9	7	555
	-							

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF 110	Start (nt)	Stop	match	match gene name	sia .	I ident	length (nt)
1 379		827	1 3658	pic 825295 A328	axoglutarate dehydrogenase (lipoamide) (EC 1.2.4.2) - Bacillus subtilis	64	02	2832
404	9	4429	4839	pir A36933 A369	diacylglycerol kinase homolog - Streptococcus mutans	99	35	Ę
407	-	2020	1133	91 969026	[orfx [Bacillus subtilis]	3	- -	888
425	-	1109	1 891	91/1146177	[phosphotransferase system glucose-specific enzyme II (Bacillus subtilis)	99	7	819
443	9	4082	4798	91 147309	purine nucleoside phosphorylese (Escherichia coli)	9	51, 1	71.7
450	~	1035	1604	191 (06376	ORF_0162 [Escherichia coll]	79	38	570
470	- 5	1680	6107	91 1369948	host interacting protein (Bacteriophage Bl/	79	45	4428
486	- -	1161	1471	9111205582	spermidina/putrescine transport system persease protein (Heemophilus influenzee)	89	35	441
497	-	7122	1159	sp P36929 FKU_E	FNU PROTEIN.	79	1 38	6501
.501	-	e .	410	911142450	shrC protein (Bacillus subtilis)	199	38	80 9
916	-	6	290	gi 1204496	H. influenzae predicted coding region H10238 (Haemophilus influenzae)	79	34	288
1 \$51	-	1 3162	1323	191 1204511	bacterioferritin comigratory protein [Haemophilus influenzae]	79	7	162
603		759	926	1911755823	NADH dehydrogenase F (Streptogyna americana)	30	35	198
653	~	940	146	911.213234	dicerboxylic amino acids Dip5p permesse (Saccheromyces cerevisiae)	*9	=	195
660	~	3801	2257	sp P46133 YDAIL_	HYPOTHETICAL PROTEIN IN OGT 5' REGION (FRAGMENT).	3	1 60	1545
569	-	11	202	191 (1001383	hypothetical protein (Synachocystis sp.)	3	4	492
702	-	_	752	gi 142865	DNA primasa (Bacillus subtilis)	99	1 9	750
926	-	-	339	gi 971336	arginyl tRNA synthetase [Bacillus subtilis]	9	05	339
838	<u>-</u>	1831	917	191 1354775	pfos/R (Treponema pallidum)	3	7	915
999		675	346	gi 39833 	cyclomaltodextrin glucanotransferase Bacillus stearothermophilus 1 39835 cyclomaltodextrin glucanotransferase Bacillus earothermophilus	3	5	270
		-	677	gi 153002 	enterotoxin type E precursor (Staphylococcus aureus) pir [A28179 A28179 A28179 A28179 A28179 A28179 A28179 A28170 A	3	94	675
928	7	1172	963	gi 311976 	[[ibrinogen-binding protein [Stephylococcus aureus] pir 534270 534270 fibrinogen-binding protein - Stephylococcus ureus	2	4	210
1 1049	~	800	909	91 1049115		•	42	195
1067	~	666	748	191 1151072	HhdA precursor [Reemophilus ducreyi]	79	- 05	252

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

1120 1 50 202 71 12339 NtT-dependent nuclease Bacillus aubtilia 192 1 751 777 71 12346 90 8 gene product Staabylococcus apidernidia 1468 1 2 358 91 407382 Na - Arrasa subunit J Enterococcus hirea 292 1 320 356 91 304134 argC Bacillus staarotherophilus 1701 1 350 352 91 304134 argC Bacillus staarotherophilus 1701 1 346 274 91 304134 argC Bacillus staarotherophilus 1701 1 346 274 91 304134 ArgC Bacillus staurit Bacillus subtilis 1702 1703 191 304134 ArgC Bacillus subtilis 1703 191 304134 ArgC	match gene name	sin I	1 ident	length (nt)
1 751 377 91 581648 6 1 402 214 ptr A01365 TVMS 1 520 356 91 407282 N 1 520 356 91 304134 P 1 536 274 91 204349 N 1 536 274 91 216446 N 1 536 274 91 216446 N 1 1 1 1 1 1 1 1 1	ATP-dependent nuclease [Bacillus subtilis]	- 64	20	153
1 402 214	epiB gene product (Staphylococcus epidermidis)	- 54	-	375
1 2 358	transforming protein K-ras -	- 99	47	189
1 520 356 91 304134 a b b b b b b b b b	Na+ -ATPase subunit J [Enterococcus hirae]	-	36	357
1 630 352	arge (Bacillus staarothermophilus)	- 64	8	165
1 546 274	cytochrome oxidase subunit I (bacillus firmus)	- 79	- 22	279
1 613 308 91 1003366 FR 1 660 331 91 216746 PR 1 1 1 1 1 1 1 1 1	hypothetical protein (CB:CB:D90212_3) [Haemophilus influenzae]	-	2	273
1 90 362 91 1107839 8 1 1 1 1 1 1 1 1 1	Respiratory nitrate reductase (Bacillus subtilis)	64	99	306
2 82 288 941216746 D D D D D D D D D	alginate lyase (Pseudomonas aeruginosa)	- 64	43	273
1 1 1 1 1 1 1 1 1 1	[D-lactate dehydrogenase [Lactobacillus plantarum]	- 49	5	207
1 660 331 915532 8 1 112 378 91994688 W 1 1 2 349 911949435 P 1 2 349 911197667 W 1 2 307 911216267 W 1 2 307 911216267 W 1 2 307 911216267 W 1 390 911438228 D 1 390 911438228 D 1 390 911436943 W 1 390 911436943 W 1 390 911436963 W 1 390 91143498 W 1 390 911434398 W 1 390 911434398 W 1 390 911434398 W 1 390 911434398 W 1 390 9114343498 W 1 390 9114343498 W 1 390 9114343438 W 1 390 W 1 390 9114343438 W 1 390	[putative [Lactococcus lactis]	64	£ 4	312
1 1112 378 91 94688 94 94	acetyl-CoA acyltransferase (Yarrowia lipolytical	64	46	330
1 81 368 94 39322 97 11 2 307 91 216267 97 97 97 97 97 97 97	unknown (Saccharomyces cerevisiae)	64	4	267
1 2 349 gi 149435 pr pr pr pr pr pr pr p	greB gane product Bacillus bravis	- 64	4	288
1 2 307 91 216267 9 9 9 9 9 9 9 9 9	putative [Lactococcus lactis]	- 79	46	348
1 2 400 9411197667 V 1539 2438 94143828 9 1539 2438 94143828 9 1539 9 150943	ORF2 [Dacillus megaterium]	- 99	7	306
3 1539 2438 94438228 90 13591 1359 13591 135	vitellogenin (Anolis pulchellus)	- 79	\$	399
7 5611 5423 91 136943 8 1 1 1 1 1 1 1 1 1	סאר כ (Staphylococcus aureus)	63	32	006
1 1 190 9i 467441	al gene product (Bacteriophage Bl]	63	-	189
6 6329 5712 gi 496943 ORF (Saccharomyces cerevis 23 14669 15019 pir A04446 QQEC hypothetical protein F-92 6 4403 6350 gi 43498 pyruvate synthass (Halobac 5 3869 4738 gi 431967 ipa-43d gene product (Bach 6 6764 5742 gi 474176 regulator protein (Staphy)	expressed at the end of exponential growyh under conditions in which he entymes of the TCA cycle are repressed (Bacillus subtilis) gild67441 expressed at the end of exponential growyh under ondtions in which the entymes of the TCA cycle are repressed Bacil		5	190
23 14669 15019 pir A04446 QQEC hypothetical protein F-92 6 4403 6250 gi 43498 pyruvate synthase [Halobac 5 3869 4738 gi 411367 jps-43d gene product (Baci 6 6764 5742 gi 474176 regulator protein (Staphy)	ORF (Saccharomyces cerevisiae)	63	47	618
6 4403 6250 91 41498 5 3869 4738 91 413967 6 6764 5742 91 474176	hypothetical protein F-92	63	36 –	351
5 1869 4738 91 413967 6 6764 5742 91 474176	pyruvata synthasa (Kalobacterium halobium)	- 63	42	1848
6 6764 5742 91 474176	ipa-41d gene product (Bacillus subtilis)	- 63	- F	870
	regulator protein (Staphy)acoccus xylosus)	63	69	1023

${ t TABLE}$?

3. sureus - Putative coding regions of novel proteins similar to known proteins

Contig		Start	Stop	ratch	match gene name	ala 1	1 Ident	length
2	91	1	(j)	acession			_	(ut)
95	Ξ.	15880	117607	[gi 467409	Dain polymerase III subunit (Bacillus subtilis)	63	=	1728
۲۶	Ξ	7945	376	1911:37036	ORF_0158 Escherichia coli	63	39	570
62	-	2479	\$114	gi :42656	unknown (Ahizobíum meliloti)	63	6	366
07	8	6562	1353	91 1399821	PhoC (Rhizobium meliloti)	63	90	792
25	-	223	1 927	91 149376	HisG [Lactococcus lactis]	63	45	705
7#	- 2	4912	. 6403	191 41 3950	ipa-26d gene product (Bacillus subtilisi	63	42	\$10
16	- S	9006	7220	191 466997	metH2, 82126_C1_157 [Mycobacterium leprae]	6	÷	1857
16	80	10566	9448	191 1204344	cystathionine gamma-synthase [Haemophilus influenzae]	63	45	6111
120	-	21	1508	91 882657	sulfite reductase (NADPH) flavoprotein beta subunit (Escherichia oli)	63	46	1488
120	4	2722	4125	91 665994	hypothetical protein (Bacillus subtilis)	63	34	1404
127	-	₹909	7566	191 (40162	murE gene product [Racillus subtilis]	63	*	1503
149	9	2321	2106	911148503	dnaK Erysipelothrix rhusiopathiae	63	9	216
149	5	10445	10170	91 4870	ORF 2, has similarity to DNA polymerase (Secheromyces Kluyveri) r[S15961 S15961 hypothetical protein 2 - yeast (Saccharomyces yveri) plasmid pSKL	G	2	276
164	~ -	507	1298	191 145476	CDP-diglyceride synthetase [Escherichia coll]	6	*	792
991	9	guct	H164	[91]151932	[ructoso enzyma 11 (Khudobacter capsulatus)	5	-	1746
169	4	1704	1886	191 [152886	elongation factor 7s (tsf) (Spiroplasma citri)	69		183
188	<u>.</u>	3145	13951	19111114547	GIY COI 114 grp IB protein (Podospora anserina)	63	42	195
195	2	11767	12804	191,606100	ORP_o335 Escherichia coli	63	- 0+	1038
201	~_	607	2283	gi 433534 	arginyl-tRNA synthetase (Corymabactarium glutamicum) pir A49916 A49916 argininetRNA ligese (EC 6.1.1.19) - orymabacterium glutamicum	63	9	1677
206	<u>-</u>	15893	16489	g1 580828	N-acetyl-glutamate-gamma-semialdehyde dehydrogenase Bacillus ubtilis	63	49	597
1 220	~	991.	5766	9; [216334	sech protein (Bacillus subtilis)	63	42	2004
221	-	74	606	1911677945	AppA (Bacillus subtilis)	63	£	834
122	-	944	1708	[g1 1510558	cobyric acid synthase [Methanococcus jannaschii]	63	98	765
1 261	- 3	804	1070	91 486511	ORF YKROS4c [Saccharomyces cerevisiae]	63	45	267
269	~_	3606	1960	91 148221	DNA-dependent Arbase, DNA helicase (Escherichia coli) pir j350137 BVECRO recQ protein - Escherichia coli	29	2	1647

S. aureus - Putative coding regions of novel proteins similar to known proteins

:	:	;	match gene name	e sim	1 ident	length (nt)
gi e99273 cystathionin CYSTATHIONI LYASE].		cystathionin CYSTATHIONI	cystathionine gamma-synthase (Mycobacterium laprae) sp P46807 METB_MYCLE CYSTATHIONINE GAMMA-SYMTHASE (EC 4.2.99.9) O-SUCCINYLHONOSERIME (THIOL)- .LYASE].		=	1242
gt 405133 putative (Ba	_	putative (Ba	putative (Bacillus subtilis)	63	38	966
gi 1239983 hypothetica	_	hypothetica	hypothetical protein (Bacillus subtilis)	63	- -	747
gi 45302 carrier pr	<u> </u>	carrier pr	carriar protein (AA 1 - 437) (Pseudomonas aeruginosa) ir S11497 S11497 S11497 branchad-chain amino acid tr:port protein braß - eudomonas aeruginosa	3	36	987
SD +35136 SERA_ D-3-PHOSP	:	D-1-PHOSP	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95) (PGDH).	63	38	411
gi 1303816 Yqez Ba		Yqez (Ba	Yqez (Bacillus subtilis) '	59	35	726
gi 1303914 Yqhy Bac	-	YqhY (Bac	YqhY (Bacillus subtilis)	G	42	387
9i 142152 sulfate pir A303		sulfate p	sulfate permesse (gtg start codon) [Symachococcus PCC5101] pir A10101 GNYCS7 sulfate transport protein - Symechococcus sp. PCC 7942)	5	3	225
gi 1205402 transport		transport	transport ATP-binding protein [Haemophilus influenzae]	63	41	1671
gi 393268 29-kiloD		29-kiloD	29-kilobalton protein (Straptococcus pnaumoniae) sp P42162 P29K_STRPN 29 KD HEMBRANE PROTEIN IN PSAA S'REGION ORFI).	6	6	897
gi 1418999 orf4 Lac	_	orfe La	orf4 [Lactobacillus sake]	63	07	649
gi 546917 comK Ba	-	comK Ba	comK (Bacillus subtilis, E26, Peptide, 192 as)	63	1 35	573
gi 43985 nifs-1i	_	nits-11	nifS-like gene (Lactobacilius delbrueckii)	63	1 45	61.6
91 1510994 serine	_	serine	serine aminotransferase [Methanococcus jannaschii]	63	29	213
gi 517356 nitrate	-	Initrate	nitrate reductase (NADH) (Lotus japonicus)	63	52	228
gi 881940 Norg pro		Norg pro	NorQ protein [Paracoccus denitrificans]	63	41	390
g1 47168 open rea	-	open rea	open reading (rame (Streptomyces lividans)	- 63	35	399
gi 1261932 unknown	_	unknown	unknown [Mycobacterium tubarculosis]	63	41	285
gi 149445 ORF1 (La	_	ORF1 (LA	ORF1 (Lactococcus lactis)	63	22	300
91 1511235 W. janna	_	H. janna	M. jannaschii predicted coding region KJ1232 (Methanococcus jannaschii)	1 63	1 27	396
gi 1204277 hypothet		hypothet	hypothetical protein (CB:U00019_14) (Haemophilus influenzael	69	38	537
gi 790943 urea ami	_	ures ami	ures amidolyaso (Bacillus subtilis)	5	39	240
pir S49892 S498 regulati	_	regulati	regulation protein - Bacillus subtilis	63		480
yi 493017 endocar	-	endocar	endocarditis specific antigen [Enterococcus faecalis]	63	45	615

S. aureus - Putative coding regions of novel proteins similar to known proteins

			1 61.00	10000			i i ident	length
100	2		(ut)	acession				(ur)
1300	-	-	695	sp P33940 YOJII_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	63	91	69)
1325		-	204	91 928989	p100 protein (Borrelia burgdorferi)	63	0.0	504
1814	-	-	245	191 1303914	YqhY [Bacillus subtilis]	63	7	243
1202	=	B67	1 250	pir c33496 c334	hisC homolog - Bacillus subtilis	63	- 46	249
2328		2	193	191 436132	product is similar to fupA of transposon Tn554 from Staphylococcus uraus [Clostridium butyricum]	9	9	192
2335	-	-	195	91 1184298	[flagellar MS-ring protein (Borrelia burgdorferi)	63	1 47	195
2406	-	159	722	qi 1041785	rhoptry protein [Plasmodium yoslii]	G	1 33	225
1967	~	136	990	1911312463	carbamoyl-phosphate synthase (glutamine-hydrolysing) [Bacillus aldolyticus]	63	52	225
1 2965	-	-	1 402	191 1407784	orf-l; novel antigen (Staphylococcus aureus)	63	05	405
2987	-	583	1 293	91 1224069	amidose (Moraxella catarrhalis)	63	36	291
1 2994	-	1 266	501	91 836646	phosphoribosylformimino-praic ketoisomerase [Rhodobecter pheeroides]	63	25	132
3043	-	440	1 252	01 1480237	phanylacataldehyda dehydroganasa (Escherichia coll)	63	0+	189
3078	_	609	007	9111487982	intrinsic membrane protein (Mycoplasma hominis)	63	36	210
9000		~	212	B1 439126	glutamete synthase (NADPH) [Acospirillum beasilennes] pir[A69916[A89916] glutamete synthase (NADPH) (EC 1.4.1.13) - cospirillum brasilense	3	\$	216
1625	-		861	41 (423073	OHF160; parative theorerlophage th-H)	5	8,	16.
3658	-	-	399	19111303697	YrkA (Bacillus subtilis)	63	3.4	399
1 3659	-	-	1 395	9111256135	YbbF (Becillus subtilis)	63	8.4	393
1783		720	1961	91 11256902	Pyruvata decarboxylase isozyme 2 (Swiss Prot. accession number P16467) {Saccharomyces ceravisiae	63	*	360
3900	<u>-</u>	338	12.	sp 110537 AHYB_	BETA-ANYLASE (EC 3.2.1.2) (1,4-ALPHA-D-GLKCAN MALTOHYDROLASE).	63	54	168
4309	-	n.	9.11	pir A37967 A379	neural cell adhesion molecule Ng-CAM precursor - chicken	63	1 15	174
4367	-	- -	195	19111121932	Peróp gene product (Pichia pastoris)	63	30	195
4432	- 		216	91/151259	imsG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii) pir A44756 A44756 hydroxymethylglutæryl-CoA reductase (EC.1.1.1.88) Pseudomonas sp.	3	Ţ	312
4468	_	9	308	1011296464	ATPase [Lactococcus lactis]	63	36	303
6	_	1411	2400	gi 153675	tagatose 6-P kinase (Streptococcus mutans)	62	40	066
90	6	5985	6218	191 1490521		62	1.5	234

5. aureus - Putative colling regions of novel proteins similar to known proteins

-	Contita	LONE	Start	3100	l satch	Datch Come name			
- .			(uc)	(ut)	acession				(01)
	7.	-	- 2	1 721	[91 1107531	ceuE gene product (Campylobacter coll)	62	33	720
· — i	~	115	110912	11589	91 1222058	H. influenzae predicted coding region HIN1279 (Haemophilus influenzae)	62	38	678
_ :		22	119526	120329	gi 695280	ORF2 (Alcaligenes eutrophus)	62	41	908
·	5,	~	2523	1780	191 171234	orfl (Memophilus influentae)	62	55	744
	s,	6	6646	6350	91 508174	EIIB domain of PTS-dependent Gat transport and phosphorylation Escherichia	62	35	297
	80	 -	~	559	91/755152	highly hydrophobic integral membrane protein (Bacillus aubtilis) sp p41953 that Bacillus authunish	62	34	558
:	. 29	<u>-</u>	R250	9014	gi 4706#3	Shows similarity with ATP-binding proteins from other ADC-transport perons. Swiss Prot Accession Numbers P24137, 198807, P04185, P24136 Eacherichia colii	5		765
-:	69	6	8315	7494	191 46816	actVA 4 gene product (Streptomyces coelicolor)	62	44	822
- :	8	_	1 1793	1320	191 39993	UDP-N-acetylmuramoylalaninaD-glutamate ligase Bacillus subtilis	62	- 6	474
	۴,	_	7034	9205	191/217191	S'-nucleotidase precursor [Vibrio parahaemolyticus]	62	- 44 -	2172
-÷	100	_	4051	3089	19111511047	[phosphoglycerate dehydrogenase [Hethanococcus jannaschil]	62	42	963
3	102		~	520	gi 153655 	mismatch repair protein Streptococcus pneumoniae pir c28667 c28667 DNA mismatch repair protein hexA - Streptococcus neumoniae	62	 3	616
_ :	112	~	466	1068	91 [153741	ATP-binding protein (Streptococcus mutans)	- E3	1,1	(09
	114	,	6855	1562	gi 1204866	L-fucose operon activator [Haemophilus influenzae]	62	- F.	701
_ :	116	-	6823	5633	[gi[677947	AppC (Bacillus subtilis)	62	1,76	1911
	124		6855	6004	91 (853777	product similar to E.coli PRFA2 protein [Bacillus subtilis] pir 555438 555438 ywkE protein - Bacillus subtilis sp P45873 HEHK_BACSU POSSIBLE PROTOPORPHYRINGEN OXIDASE (EC .3.3).	62	4	852
:	148	-	24	554	gi 467456	unknown (Becillus subtilis)	62	20	531
:	149	50	7591	6725	gi 1205807	replicative DNA helicase (Haemophilus influenzae)	62		.867
-:	161	_	1503	1153	191140067	X geno product (Bacillus sphaericus)	62	~	151
- 3	164	- 51	114673	115632	gi 42219	P35 gene product (AA 1 - 314) [Eschorichia coli]	62	3.8	960
	91	~	1166	1447	91 403936	UA synthetase alpha subunit	62	·	282
	166	~	2084	5089	gi 30861	GTG start codon (Lactococcus lactis)	62	7	3006
- ;	171	_	1225	614	gi 1046053	hypothetical protein (SP:P12049) [Hycoplasma genitalium]	62	-	612

. aureus - Putativo coding regions of novel proteins similar to known proteins

Contig 15	ORF ID	Start (nt)	Stop (nt)	metch	march gene neme	o sia	* ident	length (nt)
. E	-	1 2521	1310	91 143045	hemy (Bacillus subtilis)	62	45	1212
200	-		986	91 142439	ATP-dependent nuclease (Bacillus subtilis)	62	1 22	954
237	-	935	1966	gi 41695	hisC protein (Escherichia coli)	62	*	1032
261	-	4008	2605	91/143121	ORF A: putative [Bacillus firmus]	62	42	1404
299		4477	4719	91 467441	expressed at the end of exponential growyh undur conditions in which he enzymes of the TCA cycle are repressed (Bacillus subtilis) gild6741 expressed at the end of exponential growyh under ondtions in which the enzymes of the TCA cycle are repressed Bacil	62		243
204	9	1 5018	3819	1911153015	FemA protein (Staphylococcus aureus)	62	\$	1200
324		~	262	191 142717	cytochrome as3 controlling protein (Bacillus subtilis) pir A33960 A33960 cta protein - Bacillus subtilis sp P12946 CTAA_BACSU CYTOCHROME AA3 CONTROLLING PROTEIN.	62	2	261
325	- 5	1 269	1207	91 (581088	methionyl-tRuh formyltransferase (Escherichia coli)	62	1 96	939
25.	9	4894	1691	91 1499960	uridine 5'-monophosphate synthase [Nethanococcus jannaschii]	62	36 1	564
355	-	2	370	[91]145925	[fecB [Escherichia coll]	62	32	369
365	8	6628	6804	gi 413943 -	ipa-19d gene product (Bacillus subtilis)	62	24	7.1
369	-	2744	1626	pir A43577 A435	regulatory protein pfoR - Clostridium perfringens	62	4	1119
3.0	-	7	1 264	91 40665	(hute-glucosidese (Cloutridium thermocollum)	62	1 45	
415	-	2709	3176	19111205401	transport ATP-binding protein [Haemophilus influenzae]	62	35	89
429	-	1578	190	gi :046024	Na+ ATPass subunit J (Mycoplasma genitalium)	62	•	789
ŧ	~	704	1369	91 581510	hodulation gene; integral membrane protein; homology to Rhizobium equainosarum nod! (Rhizobium lot!)	62	37	999
411	~	751	1869	pir A38440 A484	ring-infected erythrocyte surface antigen 2, RESA-2 - Plasmodium falciparum	62	-	6111
485	-	241	1707	91 11934	betaine eldehyd dehydrogenase (Beta vulgaris)	62	43	1467
487	_	1141	1311	91 149445	ORF1 (Lectococcus lactis)	62	- 17	171
494	~	1134	66	91 166835	ribulose bisphosphate carboxylase/oxygenase activasa (Arabidopsis haliana)	62	37	180
518	-	1 193	882	kg1 153491	O-methyltransferase (Streptomyces glaucescens)	62	39	069
\$34	-	369	2522	191 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	62	35	2154
551	9	4371	4820	191/511113	ferric uptake regulation protein (Campylobacter jejuni)	62	1,	450
574		-	072	911153600	enterotoxin B (Stephylococcus aureus)	62	3	\$70
							•••••••	

TARIF 2

Contig ORF	10 ORF	Start (nt)	Stop (nt)	acession	יישובלי לפוס חששם	. sim	Lident	length (nt)	
230	-	344	1711	191 49367	ORFC Clostridium acetobutylicum	62	1 37	808	: -
655	-	1 396	830	91 147195	phnB protein (Escherichia coli)	62	4	435	: —
656	-	2	478	191 1205451	cell division inhibitor (Heemophilus influentee	62	36	477	
676	-	692	348	91 1511613	[methy] coensyme H reductase system, component A2 [Hethanococcus jannaschii]	62	36	345	: -
1 687	-	493	248	91149272	Asparaginase (Bacillus licheniformis)	62	48	346	: -
700	7	1 267	944	91 1205822	hypothetical protein (GB:X75627_4) [Haemophilus influenzae]	62	0,	869	: -
840	~	2171	1001	91 1045865	M. genitalium predicted coding region MGIRI [Mycoplasma genitalium]	62	36	5.09	: -
1 464	-	898	1 1491	gi 1144332	deoxyuridine nucleotidohydrolase (Homo sapiens)	62	38	594	: —
916	-		00 +	gi 413931	ipa-7d gene product [Decillus subtilis]	62	45	996	: -
1001	-	-	177	9111510649	aspartokinase I (Methanococcus jannaschii)	62	0	177	:
1084	-	61	609	91 68011	Agx-1 antigen (human, infertile patient, testis, Peptide, 505 aa)	62	39	591	-
1103			203	91 581 261	ONF homologous to E.coli mote Hierpatosiphon aurantiscus pir 514030 514030 Hypothetical protein - Herpatosiphon aurantiscus fragment)	. 62	15	201	•
1217	<u>-</u>	463	1 233	91 460025	ONF2. putative [Streptococcus pneumoniae]	5	Ş	231	
1 1533	-	644	-	91 413968	lips-44d gene product (Bacillus subtilis)	62	8.8	231	
1537	_		257	gi 1510641	alanyl-tRNA synthetase (Methanococcus jannaschii]	62	23	255	•
22.87	-	_	161	191 485956	mrpc gene product [Protous mirabilis]	G	45	55.	•
2386	-		245	191 285708	nontoxic component (Clostridium botulinum	3	ī.	243	
2484	-	33.	167	gi 142092	DNA-repair protein (reca) (Anabaena variabilis)	62	35	165	• —
2490	-	198	00	91 581648	epi8 gene product (Staphylococcus epidermidis)	62	2	399	•
3006	-	596	300	1911/110022	uroparphyrinagen 111 Aacillus subtilis	62	22	762	• -
9116	-	-	213	gi 466883	nifS; B1496_C2_193 [Mycobacterium leprae]	62	*	213	• –
7620	-	823	5	91 475715	acetyl coenzyme A acetyltransferass (thiolass) (Clostridium cetobutylicum)	62	42	1.7	• -
3609		16	276	91 1408501	homologous to N-acyl-L-amino acid amidohydrolase of Bacillus stearothermophilus (Bacillus subtilis)	62		246	•
3665	~	584	402	gi 151259 	HMC-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	62	04	183	•
1 3733 1	-	76 6	374	19:(1353197	thioredoxin reductase [Eubacterium acidaminophilum]	- 29	42	372	•
									٠

. aureus - Putative coding regions of novel proteins aimilar to known protein

	Contig	ORF	Start	Stop	match	Match gene name	nis '	. ident	length
- : .									
_ :	3898		-	237	fgi 153675	tagatose 6-P kinase [Streptococcus mutans]	62	\$	237
_	4027		283	143	911330705	homologue to gene 30 (as 1-59); putative [Bovine herpesvirus 4]	62	Ç	141
-	4109	-	727	365	91 41748	hady protein (AA 1-520) [Escherichia coli]	62	\$	363
· –	4303	-		303	911303813	Yqew (Bacillus subtilis)	62	5	303
	4380	-	530	1 267	91 1235684	mevalonate pyrophosphate decarboxylase (Saccharomyces cerevisiae)	62	. 35	264
÷ –	4494	-	2	1 256	gi 510692	enterotoxin H (Staphylococcus aureus)	62	70	255
•	4598	-	Ę	1 223	91 763513	ORF4: putative [Streptomyces violaceoruber]	62	\$	189
• —	4624	-	-	222	91 41748	hedy protein (AA 1-520) [Escherichia coli)	62	45	222
-	8	5	4288	1912	91 928831	ORF95; putative [Lactococcus lactis phage BK5-7]	61	36	357
	=	-	320	162	pir c33356 c333	pir clllis6 clll prothymosin alpha homolog (clone ll) - human (fragment)	19	2.	159
• —	16	Ξ	16601	11938	10111205391	liypothetical protein (SP:P31995) (Haemophilus influenzae)	19	7	948
	75	-	183	104	91 1066504	cxo-bota 1,3 glucanaso [Cochliobolus carbonum]	19	20	519
		-	919	1107	19111510864	glutamine transport ATP-binding protein Q [Methanococcus jannaschil]	19	ţ	492
-	\$	-	3082	4038	911109686	Prox [Bacillus subtilis]	19	Ş	756
	-	8	1 7118	7504	[91]498839	ORF2 (Clostridium perfringens)	19	33	187
· —	7	6	4605	5570	191 388269	trac (Plasmid pAD1)	61	6	996
	09	9	1689	2243	91 1205893	hypothetical protein (GB:U00011_3) (Hacmophilus influenzae)	19	32	\$55
. —	62	6	5559	2215	91 854656	Ma/H antiporter system ORF2 (Bacillus alcalophilus)	61	8.	438
	67	5	4330	5646	911466612	nika Escherichia coll	19	36	1317
-	-	~	.2400	1504	9111204846	carbamate kinase [Haemophilus influenzae]	61	Q	1897
· –	88	-	2198	1011	gi 1498756	amidophosphoribosyltransferase PurF (Rhizobium etli)	19	;	1098
	98	-	5661	1582	582 91 1499931	M. jannaschil predicted coding region MJ1083 [Methanococcus jannaschil]	19	7	717
	97	<u>-</u>	7	649	9111518679	orf (Bacillus subtilis)	61	*	\$76
	66		2454	7 0661	19:1413958	[tpa-14d gene product (Bacillus subtilis]	61	18	465
	124	٠.	6223	5123	qi 556881	Similar to Saccharomyces cerevisiae SUAS protein [Bacillus subcilis] pir S49358 S49358 pc-29d protein - Bacillus subcilis sp P39153 YMLC_BACSU HYPOTHETICAL 37.0 KD PROTEIN IN SPOIIR-GLYC WTERCEMIC REGION	19	3	1101
• — ·	125	-	1668	2531	191 1491643	ORFA gene product (Chloroflexus aurantiacus)	- 19	5	198

S. aureus - Putative coding regions of novel proteins similar to known proteins

-		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			• • • • • • • • • • • • • • • • • • • •	
Contig	108F	Start (nt)	Stop (nt)	acession	hatch gene name	e e	1 ident	length (nt.)
132	<u>-</u>	1250	627	pir PQ0259 PQ02	hypothetical protein I - Enterococcus faecalis plasmid pAM-beta-1 (fragment)	19	\$	624
149	-	1 3617	3075	91/1144332	deoxyuridine nucleotidohydrolase [Nomo saplens]	1 19	40	543
149	<u>=</u> _	0698	7869	911160047	pi01/acidic basic repeat antigen (Plasmodium falciparum) prr 22922 A29332 101K malaria antigen precursor - Plasmodium alciparum (strain Camp)	5	S	822
168	_	1915	2361	91 1499694	HIT protein, member of the HIT-family (Methanococcus jannaschil)	61	, I	447
17.1	-	1 9675	7948	19: 1467416	similar to SpoVB (Bacillus subtilis)	19	8	1728
-	-	1042	2340	01 216374	Qlutaryl 7-ACA acylass precursor [Bacillus laterosporus]	61	6.	1299
190	-	5034	4111	9 1409286	bard (Bacillus subtilis)	61	37	924
917	<u>-</u>	7	190	91 415861	eukaryotic initiation factor 2 beta (eIF-2 beta) [Oryctolagus uniculus]	19	5.9	189
1 227	-	4161	5048	91 216341	ORF for methionine amino peptidase (Bacillus subtilis)	61	ŧ	688
238	-	1 1959	1 3047	191 409543	CbrC protein (Erwinia chrysanthemi)	19	0.8	1089
343	_	~	1.694	191 537231	ORF_[579 (Escherichia coli]	- 19	96	693
247	~	678	1034	91 142226	clivD protein (Agrobacterium tumefaciens)	61	0,	357
1 257	-	1 3523	2627	qi 699379	glvr-1 protein (Mycobacterium leprae)	61	Ç	697
1 268	~	3419	13051	91 40364	ORFA] [Clostridium acetobutylicum]	61	ŧ	369
1 275	-	1 4621	4827	91 1204848	hypothetical protein (GP:M87049_57) [Haemophilus influenzae]	- 19	36	207
2.		-	1845	gi 784897	beta-N-acetylhaxosaminidase (Streptococcus pneumoniae) pir[A56390 A56390 mannosyl-glycoprocein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	Ş	1845
278	-	8003	1 7032	91 467462	cysteine synthetase A (Bacillus subtilis)	19	÷	21.6
278	<u>-</u> _	9878	4535	91 1205919	No+ and Cl- dependent gamma-eminobutrylc acid transporter [Haemophilus influenze]	59	# C	1344
1 283	-	-	366	191 755607	polyA polymerase (Bacillus subtilis	- 19	36	366
288	~	1918	1496	91 388108	cell wall enzymenterococcus faecalis]	- 19	Ş	423
291	-	96	334	91 454265	FBP3 (Petunia hybrida)	61	38	249
318	-	1104	769	91 290531	similar to beta-glucoside transport protein [Escherichia coli] sp Pl1451 PrIB_ECOLI PrS SYSTEM, ARBUTIN-LIKE IIB COMPONENT PHOSPHOTRANSFERASE ENZYNE II, B COMPONENT] [EC 2.7.1.69).	5	Ç	‡
1330	-	1912	0611	191 1001 805	hypothetical protein (Symechocystis sp.)	19	4	123

15

20

30

35

45

55

Putative coding regions of novel proteins similar to known proteins

5. aureus

TABLE 2

612 789 225 376 621 922 159 273 315 1233 297 813 258 747 240 312 273 2 H 8 807 1381 A2A length (nt) 1 ident 39 12 36 1 92 -33 22 11 ? 5 19 19 glycerophosphoryl diester phosphodiestersse (Bacillus subtilis) ptr[8]37251[8]7251 glycerophosphoryl diester phosphodiestersse - acillus subtilis phosphatidylinositel-4,5-diphosphate 1-kinase (Dictyostellum iscoldeum) phosphetidylinositol-4,5-diphosphate 3-kinase (Dictyostelium iscoideum) [22.4% identity with Escherichia coli DNA-damage inducible protein ...; anthranilate synthase glutamine amidotransferase (Acinetobacter hypothetical protein (GB:U14001_297) [Mycoplasma genitalium] immunity repressor protein (Maemophilus influenzae) DNA polymerase I [Bacillus stearothermophilus] [CS]B7.5 gene product [Caenorhabditis elegans] SURVIVAL PROTEIN SURE HONOLOG (FRAGMENT). hypothetical protein [Bacillus subtilis] portal protein gp3 (Bacteriophage NK97) clumping factor (Staphylococcus aureus) ORF360; putative [Bacterlophage LL-H] B2235_C2_195 [Mycobacterium leprae] |OnaD protein (Bacillus subtilis) C33D9.8 [Caenorhabditis elegans] unknown [Mycoplasma genitalium] AbsA2 (Streptomyces coelicolor) Hmp (Vibrio parahaemolyticus) putative (Bacillus subtilis) putative (Bacillus subtilis) unknown (Bacillus subtilis) ORF_f470 (Escherichia coli) ORF 1 [Lactococcus lactis] YqoF |Bacillus subtilis| match gene name alcoaceticus] Sp | P36686 | SURE_ match acession 91 1293660 91 | 1123120 91 11146243 91 | 733522 [91 | 1303853 gi | 141800 91 11221602 91 1107541 91 | 1045964 94 | 533098 91 467090 91 | 403373 91 | 733522 |qi||623073 91 | 507738 91 (709992 91 609310 gi | 467484 91 143213 91 | 406397 [51 | 179373 181712 19 91 | 806281 1025 1296 1235 1101 1421 7357 1422 1567 260 792 857 803 157 542 276 290 808 1513 6077 1916 1711 1694 2467 1656 2313 1081 1580 1628 194 810 784 Ç \$54 961 805 61 5 46 ID I Cont 19 | 1124 2500 3076 1492 2968 1602 426 438 \$ 464 470 585 \$92 675 . [0. 128 128 856 923 385 509 \$55 569 603 699

: - Putative coding regions of novel proteins similar to known p

Contig	08F	Start (nt)	Stop (nt)	natch	match gene name	Eis	1 ident	length (nt)
1 3609		20.7	6	9111408501	homologous to N-scyl-L-smino soid amidohydrolase of Bacillus stearothermophilus (Bacillus subtilis)	19	6	195
3662	-	1477	740	91 1303813	Yqew [Bacillus subtilis]	19	42	738
3672		2	3	91 /84897	beta-N-acetylhoxosaminidase (Streptococcus pneumonias) pir[A56190]A56190 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	30	1 4
3724	-	2	220	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	61	7	219
1 3728	-		398	91 677943	Appb (Bacillus subtilis)	19	97	396
# # # # # # # # # # # # # # # # # # #			•	91 784897	beta N-scetylhaxosaminidase (Streptococcus pneumonias) pir A56390 A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	Ç	199
1766	/ -	n	383	91 784897	beta-N-scetylhaxosaminidase (Streptococcus pneumoniae) pir[A56990[A56990] mannosyl-glycoprotein ndo-beta-N-scetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	ş	181
4038	-	199	1359	191113399***	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	61	74	303
4041	- -	546	274	a1 413953	lipa-29d gene product [Bacillus subtilis]	19		273
1047	-	-	405	101 528991	unknown (Bacillus subtilis	19	42	402
4102	-	-	1 345	1911976025	IIsA (Escherichia coli]	61	9 9	345
4155			336	41 784897	heta-N-ecetylhexosaminidase (Streptococcus pneumoniae) pir[A56190[A56190] mannosyl-glycoprotein ndo-hota-N-acetylglucosaminidaso (EC 3.2.1.96) piecursor - treptococcus pneumoniae	19	20	336
4368	<u>-</u>	463	233	91 450688	hadh yene of Ecopril gene product [Escherichia coll) pir 538437 538437 hadh prutuin - Escherichia coli pir 609629 809629 hypothetical protein A - Escherichia coli (SUB 40-520)	19	88	231
424	-	242	273	91 784897	beta-N-scetylhexosaminidase [Streptococcus pneumonias] pir[A56390]A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	05	270
4389	-	2	271	gi 147516	ribokinase [Escherichia coli]	19	35	171
4621	-	~	268	gi 784897	beta-N-acetylhaxosaminidase (Streptococcus pneumoniae) pir A56390 [A56390] mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	Ç	267
1 4663	<u>-</u>	27	1 227	1911976025	KisA (Escherichia coli)	- 19	90	201
-	۰	6663	5536	91 1408501	homelogous to N-scyl-L-smino acid amidohydrolase of Becillus stearothermophilus (Bacillus subtilis)	ç	\$	1128

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont ig	10 E	Start (nt)	Scop	match	natch gene name	a is	• ident	length (nt.)
=====	•	3426	3725	91 410748	ring-infested erythrocyte surface antigen (Plasmodium (altipatum) pir[A25526[A25526 ring-infected erythrocyte aurface antigen recursor - Plasmodium falciparum (strain FC27/Papua New Guines) sp[P13830]RESA_PLAFF RING-INFECTED ERYTHROCYTE SURFACE ANTIGEN RE	9	34	300
=	!	11035	110313	191 1217651	carbony reductase (NADPH) [Rattus norvegicus]	0.9	28	723
91 1	=======================================	11917	12930	gi 1001453	hypothetical protein (Synachocystis sp.]	0.9		1014
2	-	36	469	gi 388109	regulatory protein (Enterococcus faecalis)	09	7	444
22	=	110011	1 9834	gi 1336656	Orf! (Bacillus subtilis)	09	0,	981
1 39	-	4364	4522	91 4872	ORF 4 Saccharomyces kluyveri	09	47	159
=	-	2047	1025	91 142822	D-alanine racemase cds (Bacillus subtilis)	09	39	1023
\$	-	2474	1 3607	91 468046	pere-nitrobenzy esterase (Bacillus subtilis)	09	0,7	1134
*	92	6756	1 7769	191 414234	thiF [Escherichia coli]	09	~ ~	1014
1	02	8874	9074	9: 343949	var1 (40.0) Saccharomycas caravistae)	60	7	201
95	=	27842	26430	91 468764	mocR gene product (Rhizobium meliloti)	09	15	1413
09	~	27.	188	1911303864	Yqq0 Bacillus subtilis	09		216
63	- 2	157	1619	01 467124	uraD; B229_C1_234 [Mycobacterium leprae]	9	\$	1263
69	-	787	195	19111518853	OafA (Salmonella typhimurium)	09	36	193
=	<u> </u> _	-	1388	gi 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	9	30	1188
6 -	9	4735	13881	91 349227	transmembrane protein (Escherichia coli)	9	37	855
92	_	9665	1923	91 466613		9	38	1074
16	-	676	476	91 1510925	coensyme Fe20-reducing hydrogenase, beta subunit [Methanococcus jannaschil]	99	27	424
96	ئـ	7366	F 1.	(91/972715	lavedssory protein (Carnobacterium piscicola)	9	0.	213
86	9	2175	4069	911467425	unknown (Bacillus subtilis)	09	42	858
100	<u></u>	82.1	7430	01 1143092	ecetolectete synthmse small subunit [Bacillus subtilis] sp PJJS21 ILWL_BACSU ACETOLACTATE SYNTHASE SHALL SUBUNIT (EC .1.3.18) (AHAS] (ACETOHYDROXY-ACID SYNTHASE SHALL SUBUNIT) (ALS).	9	22	נרג
601	=	9127	110515	191 1255259	o-succinylbenzoic acid (058) CoA ligase (Staphylococcus aureus)	09	28	1389
601	•		111656	91 141954	beta-ketothiolase (Alcaligenes eutrophus)	09	5	1158
611	~	1630	3134	9111524280	unknown (Mycobacterium tuberculosis)	9	S.	1497

EP 0 786 519 A2

. aureus - Putative coding regions of novel proteins similar to known proteins

: - -	Cont ig	OXF TO	Start (nt)	Stop (nt)	match	Barch gene name	E S S	1 ident	length (nt)
	121	_	6957	7646	491 1107529	ceuC gene product Campylobacter coli	9	35	069
! ·	140	_	7704	6033	91/146547	kdpA [Escherichia coli]	09	45	1692
!	145	_	~	103	19111460077	unknown (Mycobacterium tuberculosis)	9	23	102
<u>!</u>	150	_	2809	2216	19111146230	[putative (Bacillus subtilis]	9	00	594
- :	157	~	1389	196	19111303975	YqjX (Bacillus subtilis)	9	30,	429
-	158	\$	5125	1 4769	91 1449288	unknown Mycobacterium tuberculosis	9	36	357
<u>. </u>	159	_		257	gi 580932	murb gene product (Bacillus subtilis)	0,9	5	255
_ :	160	-	159	1187	91 1204532	hypothetical protein (GB:L19201_29) (Haemophilus influenzael	9	7	1029
	161	<u>*</u>	8249	7866	9; 1496003	ORF); PepY; putstive oligoendopeptidase based on homology with Lattococcus lactis PepF (GenBank Accession Number 232522) [Caldicellulosiruptor saccharolyticus]	09	\$	384
-	172	_	1331	2110	911485280	28.2 kDa protein (Streptococcus pneumoniae)	9	6	780
_	5	~	4082	2460	191 1524397	Olycine betaine transporter OpuD (Bacillus subtilis)	9	=	1623
_	2.7	-	6967	4953	19111100737	NANP depandent leukotreinu bi 12-hydroxydehydrogenase (Sus scroin)	9	7	1011
_ :	198	-	-	995	(01/413943	ipa-19d gene product (Bacillus subtilis)	9	5	993
	201	-	3641	(457)	Sp P37028 YADT_	HYPOTHETICAL 29.4 KD PROTEIN IN HEML-PPS INTERGENIC REGION PRECURSOR.	9	1 7.6	933
_ :	203	-	1269	2415	1911927798	[D9719.34p; CAI: 0.14 [Saccharomyces cerevisiae]	9	\$	855
:	206		12234	12515	sp P37347 YECD_	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION.	09	\$	282
_	212	-	1213	1410	911332711	hemagglutinin-neuraminidase fusion protein [Human parainfluenza irus 3]	9	*	198
_ :	214	-	S9	1153	9111204366	hypothetical protein (GB:U1400]_130) [Haemophilus influenzae]	9	36	1089
:	237	-	~	937	[91[149377	HisD [Lactococcus lactis]	9	•	936
_ :	543	9	5696	4998	91 1046160	hypothetical protein (GB:U00021_5) (Mycoplasma genitalium)	9	1 76	669
_ :	260	•	5919	6485	9/ 431950	similar to a B.subtilis gene (GB: BACHEHENY_5) (Clostridium asteurianum)	9	35	195
_	264	-	2432	1218	191 397526	clumping factor [Staphylococcus aureus]	9	53	1215
_ :	267	_	_	1409	91 148316	NaH-antiporter protein [Enterococcus hirse]	9	27	1407
	275	~	3804	4595	pir F3689 F368	leub 3'-region hypothetical protein - Lactococcus lactis subsp. lactis	9	55	192
!	291		0980	1198	911208889	contains CHI type zinc fingers	9	2	600

 ${ t TABLE}$ 2

TABLE 2

sim | 1 ident | Ç **\$** Ç ï Ξ 1 92 2 | 2 ŝ serine hydroxymethyltransferase (merine methylase) [Haemophilus influentae] alkaline phosphatase regulatory protein (Bacillus subtilis)
pir[A27650|A27650 regulatory protein phoR - Bacillus subtilis
sp[921545|PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR
2.7.3.-). adenylyl cyclase gene product [Saccharomyces kluyveri] r|JQ1145|OYBYK adenylate cyclase [EC 4.6.1.1] - yesst ccharomyces kluyveri) H. Influentae predicted coding region H10882 (Haemophilus influentae) membrane-associated component, branched amino acid transport system colicin V production protein (pur regulon) (Haemophilus influenzas) cobalt transport ATP-binding protein O (Methanococcus jannaschii) |single-stranded DNA-specific exanuclease [Escherichia coli] bicyclomycin resistance protein (Haemophilus influentae) |pir|S30782|S307 |integrin homolog - yeast (Saccharomyces cerevisies) glycogen phosphorylase [Saccharomyces cerevisiae] myosin heavy chain [Dictyostelium discoideum] Glucarate dehydratase (Bacillus subtilis) ipa-28d gene product (Bacillus subtilis) NADH oxidase [Methanococcus jammaschil] unknown protein [Staphylococcus aureus] tex gene product (Bordetella pertussis) adenylyl cyclase (Aeromonas hydrophila) HYPOTHETICAL 226 KD PROTEIN (ORF 1901). [protein-dependent [Bacillus subtilis] putative (Pseudomonas aeruginosa) unknown (Bacillus subtilis) unknown (Bacillus subtilis) (Haemophilus influenzae fecB (Escherichia coli) . match gene | 8p | P1 2222 | YCF1_ match scession 191 10070014 |gi|145925 91 | 1204484 91 | 1510732 pi | 1498192 91 | 1477402 91 | 1205129 |pi||1212755 94 | 1205449 91 1196899 1011151|101 91 | 1205483 91 1486242 191 | 1205136 91 413952 91 | 987842 91 | 709999 91 499700 91 467407 91 | 167835 91 | 143331 91 | 1857 Start (nt) 1 871 ~ ~ -<u>-</u> _ _ 'n ~ Contig

S. aureus - Putative coding regions of

aureus - Putative coding regions of novel proteins similar to known protei

Cont ig	10 C	Start (nt)	Stop (nt)	match	match game name	e i m	1 ident	length (nL)
686	-	1082	843	fgi 1205538	hypothetical protein (GB:U14003_302) (Haemophilus influenzae)	09	60	240
786	-	1 967	485	9111402944	orfRM1 gene product (Bacillus subtilis)	09	9+	483
=	-	588	346	gi 790943	ures amidolysse [Secillus subtills]	09	Q	243
851	-	-	726	91 159661	GNP reductase (Ascaris lumbricoides)	9	Ę	726
178	-	1746	874	91 1001493	hypothetical protein (Symechocystis sp.)	9	39,	(19
896 8		1558	839	91 604926	NADH dehydrogenase, subunit 5 [Schizophyllum commune] sp P50368 NUSH_SCHCO NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 (EC .6.5.3).	09	67	720
806		1 448	1753	911662880	novel hemolytic factor (Bacillus ceraus)	9	ĭ	306
979	-	1 2	585	91 1429255	putative: orf1 (Bacillus subtilis)	09	30	594
1078		699	203	91 581055	inner membrane copper tolerance protein [Escherichia coli] gi[87129] disulphide isomerase like protein [Escherichia coli] pir[647295]847295 inner membrane copper tolerance protein - scherichia coli	9	Ç	168
1112	-	1150	029	91 407885	ORF3 (Streptomycea griseus)	9	*	531
11.35	-	¥ -	275	91/1171407	Vps8p (Saccharomyces cerevisiae)	99	36	210
1146	-	-1	295	91 1239981	[hypothetical protein (Bacillus subtilis]	9	36	. 546
1291	-	1 716	360	pir 557530 5575	carboxyl esterase - Acimetobacter calcoaceticus	9	30	357
2001	-	336	169	9111222056	[aminotransferase (Naemophilus influentee]	9	3	168
1429	-	-	146	91 1205619	(erritin like protein [Weemophilus influenzae]	09	39	144
1722		570	286	91 240052	dhydroflavonol-4-reductase, DFR (Hordaum vulgare-barley, cv. Gula, eptide, 354 as)	60	36	285
2350	-	385	300	191 497626	ORF 1 [Plasmid pAQ1]	90	20	186
2936	-	519	310	186805 161	prephenata dehydratasa (Bacillus subtilis	60	8.9	210
7000	-	1 568	302	191 11146199	putacive (Bacillus subtilis	60	٠٤	267
3084	-	02	1 208	gi 1407784	orf-1; novel antigen (Staphylococcus aureus)	9	51.	189
3155	-	~	326	gi 1046097	cytadherence-accessory protein (Mycoplasma genitalium)	60	34	225
3603		368	186	91 510108	mitochondrial long-chain encyl-CoA hydratase/J-hydroxycyl-CoA ehydrogenase alpha-subunit (Rattus norvegicus)	9	42	183
3665		486	244	91/151259	HMG-CoA reductase (EC 1.1.1.88) (Pseudomonas mevalonii) pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	09	43	243
5747	-		1146	01 474192	liucC gene product (Escherichia coli)	09	36	144
			1	**************				

S aureus - Putativa coding regions of novel protains similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	natch	.metch gene name	E	\ ident	length (nt)
3912	-	_	335	911:48695	novel antigen: orf-2 (Staphylococcus aureus)	09	=	ccc
4072	-		272	gi 405879	veiH [Escherichie coli!	9	2	270
\$		510	352	911,80656	chemoreceptor protein (Rhisobium leguminosarum bv. viciae) gl/780656 chemoreceptor protein (Rhisobium leguminosarum bv. iciae)	9	28	159
4207	7	677	407	91 602031	similar to trimethylamine DH (Hycopleane capticolum) pir 84950 84990 probable trimethylamine dehydrogenese (EC .5.99.7) - Hycopleane capticolum (SGC3) (fragment)	6	5	276
42 43		127	324	01 899317	peptide synthetase module (Hicrocystis aeruginosa) pirįšs(9111 549111 probable amino acid activating domain - terocystis aeruginosa (fragment) (SUB 144-528)	9	3	864
4110	-	624	56	191 508980	pheB Bacillus subtilis	09	24	312
4345		343	173	9010181109	aitochondrial long-chain enoyl-Coa hydratase/l-hydroxycyl-Coa ehydrogenase alpha-subunit Rattus norvegicus	09	\$	171
4382	-	1 498	1 280	gi 47382	acyl-CoA-dehydrogenase (Streptosyces purpurascens)	9	8	219
***		8	223	901015 16	ong-chain enoyl-Coa hy [Rattus norvegicus]	9	\$	171
2	-	4518	1 3523	91 426446	Vips protein (Salmonella typhil	89	19	966
2	-	1 707	1483	ptr 548604 5486	hypothetics1 protein - Mycoplasma capricolum (SGC3) (fragment)	89	33	רנר
2	-	4651	1.5853	101 6721	F5982.3 [Ceenorhabditis elegans]	89		1203
2	~	אבבנ	12399	[41]142833	ORF2 [Dacillus subtilis]	89		910
5	<u>=</u>	16784	[16593	91 912576	BiP (Phaeodactylum tricornutum)	- 65	ş	192
25	_	1 2648	2349	91 536972	ORF_090a [Escherichia coli]	59	3	300
2	112	114181	113402	91 483940	transcription regulator (Bacillus subtilis)	59	1,00	081
75	-	1 4397	1 3339	191 508176	Gat-1-P-DH, NAD dependent [Escherichia coll]	59	0+	1059
99	-	986	1 495	191 1303901	YqhT (Bacillus subtilis)	59	34	492
67	_	6552	1 7460	1911912461	nikC (Escherichia coli)	59	. 37	606
0,	_	5383	9969	Q1 1399822	PhoD precursor (Rhizobium meliloti)	59	97	986
8		-	1449	91 971345	unknown, similar to E.coli cardiolipin synthase (Bacillus subtilis) sp P45860 YMIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA HTERGENIC REGION.	53	ў. М	1469
8	110	14329	115534	c 490328	LORP P (unidentified)	5	*	1206

2	10 110	Start (nt)	Stop (nt)	match	יוש לכון ספוס וששפ	e is	• ident	length (nt.)
68	~	1602	958	91 642801	unknown (Saccharomyces cerevisiae)	- 65	32	645
96	-	4940	503	911133802	protein of unknown function (Rhodobacter capsulatus)			534
86	-	2	820	1911467421	similar to B. subtilis DnaH (Bacillus subtilis)	65	~	819
119	-	166	1557	91 143122	ORF B; putative (Bacillus (irmus)	- 65	36	1392
120	2	6214	6756	91115354	ONF 55.9 (Bacteriophage T4)	65	39 ,	543
120	91	12476	13510	q1 1086575	BetA (Rhizobium meliloti)	- 65	77	1035
123	=	386	195	gi 984737	catalase Campylobacter eduni	25	38	192
000		370	645	91 125634	[25.8% identity over 120 as with the Symenococcus sp. MpeV protein; putative [Bacillus subtilis]	\$		276
121	-	5278	5712	9111510655	hypothetical protein (SP:P42297) [Methanococcus jannaschii]	59	60	435
194	-	-	509	gi 1001342	hypothetical protein (Symechocystia sp.)	65	₹	507
1 264	-	1529	2821	191 1205165	hypothetical protein (SP:P37764) [Haemophilus influenzae]	- 65	15	1293
164	62	119643	121376	19111001381	hypothetical protein (Symechocystis sp.)	ŝ	46	1734
641	_	4727	1111	01 1184121	auxin-induced protein (Vigna radiata)	59	20	101
179	~	2218	1688	91 143036	unidentified gene product (Becillus subtilis)	29	33	531
195	=	112669	111503	91 762778	NifS gene product (Anabaena azollae)	89	7	1167
1 201	- 2	4702	5670	91 1510240	hemin permease [Methanococcus jannaschii]	- 29	32	696
201	_	5719	6315	91 1511456	M. jannaschil predicted coding region MJ1437 (Methanococcus jannaschil)	59	, ¥	597
209	-	102	198	191 1204666	hypothetical protein (GB:X73124_53) [Haemophilus influenzae]	65	42	360
214	_	1050	2234	[61 (55153)	2-nitropropana dioxygenase (Williopsis saturnus)	59	36	1185
213	5	13293	4135	10111303709	YrkJ (Bacillus subtilis)	23	32	843
717	~	13381	2167	91 2 2 2 2 4 8 9	dfp (CG Site No. 18430) (Escherichia colii	8	7	1215
237	-	1 3078	37.85	1911149382	lish (Lactococcus lactis)	29	e .	708
251	~	376	096	1911303791	אַנין (Bacillus subtilis)	83	34	585
286°	-	1 1621	812	(gi 146551	transmembrane protein (kdpD) [Escherichia coli]	65	31	910
316	-	1 4978	3860	191 405879	yeiH (Escherichie coli)	29	32	1119
370	-	009	761	91 1303794	Yqem [Bacillus subtilis]	29	35	162

TABLE

372 186 ÷ × 2 2 ÷ 9 8 Ç ä \$ ş bromoperoxidase BPO-A1 [Streptomyces aureofaciens] sp[913912]8PA1_STRAU NON-HAEM BROMOPEROXIDASE BPO-A1 [EC 1.11.1.-! BROMIDE PEROXIDASE) (8PO1). mannitol-phosphate dehydrogenase [Streptococcus mutans] pir|C44798|C44798 mannitol-phosphate dehydrogenase MtID - treptococcus mutans |similar to eukaryotic Na+/H+ exchangers [Escharichia coli] |sp|p1270]|yJCB_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC | REGION (0549). homoserine kinase homolog (Streptococcus pneumoniae) H. Jannaschii predicted coding region MJIS77 (Methanococcus Jannaschii) iron[III] dicitrate transport ATP-binding protein PECE (Haemophilus influenzae) (38) -hydroxymyristol acyl carrier protein dehydrase (Haemophilus influenzael bacterioferritin comigratory protein (Haemophilus influenzae) group B oligopeptidase PepB (Streptococcus agalactiae) |staphylocoagulase - Staphylococcus aureus (fragment) homologous to sp:HTRA_ECOLI (Bacillus subtilis) Luke-PV like component (Staphylococcus aureus) pps1: B1496_C2_189 [Mycobacterium lepras] hypothetical protein (Bacillus aubtilis) clumping factor (Staphylococcus aureus) ORF238 gene product [Porphyra purpures] ORF YALO22 (Saccharomyces cerevisiae) trigger factor [Escherichia coll] integrase (Bacteriophage phi-LC3) comE ORP3 (Bacillus subtilis) orf3 (Haemophilus influenzae) ORF 3 [Spirochaeta aurantia] unknown (Bacillus subtilis) match gene name (SUB 2-275) |pir|A25620|A256 metch 91 1204610 91 1498295 181 | 1205311 [01]1469939 191 1204511 91 1262748 91 1122758 91 | 1500472 191 | 1064809 191 | 547513 |gi | 147989 91 133746 191 (293033 191 397526 101 | 289262 191 1152901 lgi | 709992 91 466882 91 386681 91 396400 91 | 522150 1.88 **\$** 19 _ ٠, ~ 'n **\$0** \$21

intative cuding regions of novel proteins similar to known proteins

801 018

aureus - Putative coding regions of novel proteins similar to known proteins

Cont ig	- 10 G	Start	Stop (nt)	match	match gene name	e i	* ident	length (nt)
1198	-	492	247	91 142439	ATP-dependent nuclessa [Bacillus subtilis]	. 68	56	246
1441	-	1 468	235	91 1045942	cyl-tRNA sy	59	37	234
2103	-	-	186	91 459250	triacylglycerol lipase [Galactomyces geotrichum]	65	23	186
2205	-	193	398	91 1303794	YqeM (Bacillus subrills)	59	38	960
2578		4 8	284	91 258003	Insulin-like growth factor binding protein complex acid-labile ubunit (rats, liver, Peptide, 603 as)	8	9	201
1 2967	-	145	348	91 1212730	Yqhk (Bacillus subtilis)	59	3	204
3012	-	3	248	1911773571	neurofilament protein NF70 [Hellx aspersa]	89	31	246
3544	-		Q	191 1055218	[crotonase [Clostridium acetobuty11cum]	88	42	399
1 3548	-		5	91 (1055218	crotonase (Clostridium acetabutylicum)	65	42	399
3580	-	698	351	91 1055218	crotonase [Clostridium acetobutylicum]	29	42	348
1 3720		227	363	91 1408494	homologous to penicillin acylase (Bacillus subtilis)	53	36	360
1111	<u> </u>	_	296	91 1055218	crotonase [Clostridium acetobutylicum]	89	42	294
4305	-	618	310	91 1524193	unknown (Mycobacterium tuberculosis)	59	39	309
81 81		1262	622	gi 146913	N-acetylglucosamine transport protein [Escherichie coli] pir BB9885[MgECIN phosphotransferase system entyme II (EC 7.1.69), N-acetylglucosamine—specific - Escherichia coli sp[P09123]PTAA_ECOLI PTS SYSTEM, N-ACETYLGLUCOSAMINE-SPECIFIC IIABC OMPONENT (EIIA	8	Ç	621
50	-	1 7020	S845	gi 50502	collagen alpha chain precursor (AA -27 to 1127) [Mus musculus]	88	20	11.76
21	s –	3234	3626	191 1054860	phosphoribosyl authunilate isomerase [Thermotoga maritima]	88	12	393
23	-	1 2841	1669	gi 1276880	EpsG (Streptococcus thermophllus)	88	29	1111
23	-10	1016	8090	[pir A31133 A311	diaminopimelate decarboxylasa (EC 4.1.1.20) - Pseudomonas aeruginosa	88	37	1212
38	67	122555	122884	91 973249	vestitone reductase (Medicago sativa)	88	. 37	330
:	-	~	406	gi 289272	ferrichrome-bluding protein (Bacillus subtilis)	58	33	405
\$		-	552	91 29464	embryonic myosin heavy chain (1085 AA) (Homo sapiens] ir 512460 812460 myosin beta heavy chain - human	88	11	552
55	2	159	538	gi 158852	glucose regulated protein (Echinococcus multilocularis)	28	32	222
62	2	8493	8908	101 (975353	kinase-associated protein B (Bacillus subtilis)	88	35	426
6	<u></u>	1553	1717	gi 166926 	Arabidopsis thallana unidentified mRNA sequence, complete cds.], ene	88	55	165
	1			<u> </u>				

TABLE 2

S. aureus - Putativa coding regions of novel proteins similar to known proteins

QI .	2	(nt.)	115	acession	-			1
67	51	113 12017 11229	11229	d 1228083	[NADR dehydrogenase subunit 2 (Chorthippus parallelus)	58	Ŧ	789
96		8208	9167	gi 709992	hypothetical protein [Bacillus subtilis]	88	42	096
101	~	2065	1364	91 806327	Escherichia coli hrpA gene for A protein similar to yeast PRP16 and RP22 [Escherichia coli]	88		702
112		4519	2613	91/155588	glucose-fructose oxidoreductase [tymomonas mobilis] pir [A4229] A42289 alucose-fructose oxidoreductase (EC 1.1) recursor - Zymomonas mobilis	88	e,	1095
Ξ	9	7318	6503	191 1377843	[unknown (Becillus subtilis]	88	38	916
5	~_	2261	1395	pir A45605 A456	nature-parasite-infacted erythrocyte surface antigen MESA - Plasmodium	85	5	867
3	~	717	950	gi 1370261	unknown (Mycobacterium tubarculosis)	85	7	234
154	9	6015	4627	191 1209277	[pCTHom1 gene product [Chlamydia trachomatis]	88	=	1369
154	91	114281	13541	91 146613	DMA ligase (EC 6.5.1.2) (Escherichia coli)	88	39	172
155	_	1 2269	1892	19111303917	Yqis (Bacillus subtilis	95	34	378
1.7	_	9501	539	[q1]904198	hypothetical protein (Bacillus subtilis)	88	92	828
189	-	1 1533	1769	1911467383	DWA binding protein (probable) (Bacillus subtilis)	58	23	רנג
102	-	1669	13307	[91]1511453	endonuclease III (Methanococcus jannaschii)	. 58	*	629
30A	-	7	238	191 1276729	hhycobilisome linker polypoptide (Porphyra purpurea)	88	29	725
320	Ξ	111 14575	13058	gi 397526	clumping factor (Staphylococcus aureus)	85	15	1518
102	_	1629	1474	191 1002520	HutS (Becillus subtills)	88	45	156
233	·•	1 4201	3497	91 1463023	No definition line found (Ceenorhabditis elegans)	88	39	705
	0.	_	10082	1911537207	ORF_[277 (Escherichia coll)	88	32	780
153	-	1331	1163	91 1340128	ORF1 (Staphylococcus aureus)	88	3	613
302	7	460	108	(91/40174	ORF X (Bacillus subtits)	88	34	342
	=	6984	6127	[gi 1303842	אַנָּט (Bacillus subtilis)	98	30	858
321	2	1914	1 2747	qi 1219996	[hypothetical protein [Bacilius subtilis]	. 88	=	834
7	.	2724	3497	1911454838	ORF 6; putative [Pseudomonas aeruginosa]	88	\$	174
348	-	-	663	91 467478	unknowm [Bacillus subtilis]	88	36	663
107	-							

TABLE 2

· ident | length (at) 4 4 6 % 1 2 E 7 Ç Ç 8.6 5.8 1 8 SA trna isopentenyl transferase (Saccharomyces cerevisiae) sp|P07884|HOD5_YEAST TRNA ISOPENTENYLTRANSPERASE (EC 2.5.1.8) ISOPENTENYL-DIPHOSPHATE: TRNA ISOPENTENYLTRANSFERASE) (IPP RANSFERASE) (IPPT). iles! sodium-dependent bile acid transporter |Rattus norvegicus| gi|677882 | iles! sodium-dependent bile acid transporter |Rattus orvegicus} rodD (gtaA) polypeptide (AA 1-673) [Bacillus subtilis] pir|S06048|S06048 probable rodD protein - Bacillus subtilis sp|P13484|TAGE_BACSU PROBABLE POLY (GLYCEROL-PHOSPHATE) LPHA-GLUCGSYL1:ANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E). restriction modification system S subunit (Spiroplasma citri) gi | 886052 | restriction modification system S subunit (Spiroplasma itri) ORF8; homologous to small subunit of phage terminases (Racillus ubtilis) [26.7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative [Bacillus subtilis] coensyme PQQ synthesis protein III (pqqIII) (Haemophilus influensse) to known proteins hypothetical protein (GB:L10318_61) (Haemophilus influenzae) nifS protein (AA 1-400) [Klebsiella pneumoniae] :. aureus - Putative coding regions of novel proteins similar orf268 gene product (Mycoplasma hominis) Integral membrane protein (Nomo sapiens) hypothetical protein (Symechocystis sp.) transaldolasa [Methanococcus jannaschii] hypothetical protein (Symechocystis sp.) hypothetical protein (Bacillus subtilis) |yjjG gene product [Escherichia coli] osmC game product [Escherichia coll] collagenase (Hasmophilus influentae) unknown (Schizosaccharomyces pombe) protein A (Staphylococcus aureus) unknown (Pseudomonas aeruginosa) HYPOTHETICAL HELICASE MG018. YqgS (Bacillus subrilis) match gene name |sf.|P47264|Y018_ match acession 191 | 1009455 91 | 1181839 191 | 1001353 91 1208474 91 1510995 91 | 1239999 191 | 581583 191 | 537214 191 | 453422 91 | 903 748 111 1204262 91 1205432 91 1204669 91 | \$80920 91 | 886052 91 677882 91 498817 [91 | 43831 Stop (nt.) 6 | 4182 ᆵ Contig ORF ID ID ~ ~ **\$ \$**3 \$

S. aureus - Putative coding regions of novel proteins similar to known proteins

6	10 HF	Start int)	St.op (nt.)	acession	match gene name	e in	1 ident	length (nt)
854	-	1108	509	91 466778	lysine specific permease (Escherichia coli)	28	7	504
985	_ _	481	_	91 861199	protoporphyrin IX Mg-chelatase subunit precursor (Hordeum vulgare)	58	33	240
891	-	•	_	91 1293660	AbsA2 (Streptomyces coelicolor)	88	31	525
942	-	931	-	91 405567	trak [Plasmid psk41]	88	30	465
1002	-	952		qi 577649	proliuka (Staphylococcus aureus)	58	7	432
E		-	261	91 581558	isoleucyl trna synthetase (Staphylococcus auraus) sp[P1366 SYIP.STANU ISOLeucyl-frna Synthetase, Hupirocin Resistant ec 6.1.1.5) (ISOLeucine-Trna Ligase) (ILERS) (Hupirocin Resistance Rotein).	88	ox.	261
1442	<u>-</u>	~	463	91 971394	similar to Acc. No. D26185 (Escherichia coll)	58	34	462
1873		480	241	101 (1339951	small subunit of NADM -dependent glutamate synthase (Plectonema boryanum)	85	er.	240
1876		-	158	gi 529216	No definition line found [Ceenorhabditis slegans] sp[P6550]YLX7_CAEEL HYPOTHETICAL 7.3 KD PROTEIN F23F12.7 IN HROMOSONE III.	88	£	156
1989	_ 	108	104	191 1405458	YneR Bacillus subtilis	88	73	294
2109	-			9111001801	hypothetical protein [Symechocystis sp.]	88	31	399
2473	-	288	145	191 510140	ligoendopeptidase F (Lactococcus lactis)	58	38	144
2523	_	452	228	91 644873	catabolic dehydroquinate dehydratase (Acinetobacter calcoaceticus)	28	ינ	225
3041	-	~	211	gi 1205367	oligopeptide transport ATP-binding protein (Haemophilus influenzae)	88	39	210
3094	_ 	-	263	1911185288	isochorismete synthase (Bacillus subtilis)	96	ac .	261
3706		2		91 456610	mevalonate kinase (Arabidopsis thallana)	58	4	3.8.1
3854		-	707	qi 808869	human gcp372 [Homo sapiens]	88	32	402
4082		15 .	224	91 508551	ribulose-1,5 bisphosphate carboxylase large subunit -methyltransferase [Pisum sativum]	80	7.	174
4278		c	206	91 180189	corebellar degeneration-related antigen (CDR14) [Homo sapiens] gi 182737 cerebellar degeneration-associated protein (Homo sapiens) pir A18770 A187770 A187770 A187770 A187770 A187770 A187770 A187770 A	80 80	ť	204
19	-	7818	7363	9111001516	hypothetical protein (Synechocystis sp.)	57	31	456
23	-	9663	~	991,606066	ORF_[256 [Escherichia coll]	57	29	192
31	_ _	4801	2402	[01]153146	ORF3 (Streptomyces coelicolor)	57	32	2400
	- :	111611	96	191 144859	ORF B (Clostridium perfringens)	57	31	916
	}	12063	13046	91 1001319	hypothetical protein (Synechocystis ap.)	57	35	984

Contia	ORF	Start	Stap	match	match dene hase	l sim	1 ident	length	
92	2	(at	(uc)	acession				(uc)	
15	-	1171	1187	pir 333856 3338	hypothetical 80K protein - Bacillus aphaericus	57	38	225	
35	-	-	453	91 684950	staphylococcal accessory regulator A (Staphylococcus aureus)	57	31	453	
25	==	-	239	9111000470	[C2787.7 [Ceenorhabditis elegans]	52	42	237	
8	- 5	3855	1 3061	91 143607	sporulation protein [Bacillus subtilis]	52	35	795	
96		4006	4773	91 1144297	acetyl estersse (XynC) [Caldocellum saccharolyticum] pir [837202 B37202 acetylestersse (EC 3.1.1.6) (XynC) - Caldocellum accharolyticum	52	,	768	
107	1	1480	1 2076	91 460955	TagE (Vibrio cholerae)	57	42	597	
109	-	5340	5933	Qi;1438846	(Unknown (Bacillus subtilis)	52	ŧ	594	
112	6	6.99	10/4	91 1486250	unknown (Bacillus subtilie)	57		1023	
		6384	4108	01 871456	puterive alpha subunit of formate dehydrogenease (Methanobacterium hermoautotrophicum)	53	r.	77.22	_
126	~	65	1053	91 288301	ONF2 gene product (Bacillus megaterium)	1 57	רנ	624	
- 12		1 6537	(123)	91 1511160	[H. Jannaschil predicted coding region MJ1163 [Methanococcus jannaschil]	ا 5،	38	261	
<u> </u>	-	2668	1 2201	g1 1303912	YqbW (Becillus subtilis)	. 22	9	468	
61 1	-	1383	1 2784	91 1221884	(ureal) smidolyase (Haemophilus influenzae)	1 57	37	009	
- 1	-	2164	1694	91 467469	Ę	75	33	471	
091	-	1293	1060	91 558604	chitin synthase 2 [Neurospore crassa]	57	2.R	234	
163	8	5687	4764	101 145580	rarD gene product (Escherichia coli)	- 57	38	924	
168	9	4336	5325	191 39782		1 57	32	966	
170	5	3297	1165	91 603404	Yer164p (Saccharomyres cerevisiae)	78	76	159	
1221	9	8026	6089	91 1136221	carboxypeptidase (Sulfolobus solfataricus)	57	32	1218	
228		1348	1671	91 288969	[fibronecin binding protein [Streptococcus dysgalactiae] plr [5]3850 [8]3850 [52	22	444	
263	-	4411	3686	91 1185002	[dihydrodipicolinate reductase (Pseudomonas syringae pv. tabaci)	57	42	726.	
1 276	-	1 494	1 255	91 396380	No definition line found (Escherichia coli)	1 57	40	240	
283	~	335	1324	[gi 773349	BirA protein [Bacillus subtilis]	1 57	32	066	
1 297	-	691	236 gi 1	91 1334820	freading frame V [Cauliflower mosaic virus]	57	91	234	
342	_	1 1993	2805	01 1204431	[hypothetical protein (SP: P33644) [Haemophilus influences]	5.	35	813	

$extsf{TABLE}$ 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	<u> </u>	Start (nt)	Stop (nt)	match	match gene name		• Ident	length (nt.)
275	9-	3340	3741	91 385177	cell division protein (Bacillus subtilis)	57	76	402
43	-	3286	4011	01 1524117	alpha-acetolactate decarboxylase (Lactococcus lactis)	57	Q	726
470	1	1 903	5	91 804819	protein serine/threonine kinase (Toxoplasma gondii)	57	30	243
1 487	-	1391	1 1723	191 (507323	ORFI (Bacillus stearothermophilus)	57	28	533
498	-	1 274	852	191 1334549	NADH-ubiquinone oxidoreductase subunit 4L (Podospore anserina)	57	34.	579
503	-	343	E	91 1502283	organic cation transporter OCT2 (Rattus norvegicus)	57	30	171
505	~	1 1619	1284	91 466884	B1496_C2_194 (Mycobacterium lepree)	57	0.9	336
519	~	1 1182	1 2549	191 1303707	YTKH (Bacillus subtilis)	57	34	1368
525	~	3234	1945	91 1064809	homologous to sp:HTRA_ECOLI (Bacillus subtilis)	57	96	1290
238	~	606	1415	qi 153179	phosphorinothyrcin n-acetyltransferase (Streptomyces coelicolor) pir[JN0246[JN0246 phosphinothricin N-acetyltransferase (EC 2.3.1) Streptomyces coelicolor	52	ę	507
547	-	968	486	191 467340	[unknown [Bacillus subtilis]	52	90	483
865	-	1 1062	532	sp 1/20692 TYRA_	PREPIENATE DELIYDROGENASE (EC 1.3.1.12) (PDH).	1 57	;	531
620	-	787	575	91 1107894	unknowm Schizosaccharomyces pombe	57	38	186
622	-	1600	1130	911173028	[thiorodoxin 11 [Saccharomyces cerevisiae]	5,	39	17.9
625	-	1 362	=	91 1262366	hypothetical protein (Mycobacterium leprae)	57	7	753
680			50 	91 143544	RNA polymerase signs-10 factor [Becillus subtilie] pir A28625 A28625 transcription initiation factor signs H - ecillus subtilis	53	30	204
069	-	-	629	191 466520	[pocR Salmonella typhimurium]	57	53	627
969	-	~	\$	191 413972	ipa-48r gene product [Bacillus subtilis]	(\$7	33	432
104	-	96 -	638	166661115	M. jannaschil predicted coding region MJ1083 (Methanococcus jannaschili	57	36	603
26.	-	1 2336	1 1621	191 1418999	orf4 [Lectobacillus sake]	57	37	969
1 746	-	1 451	1 227	91 392973	Rab) (Aplysia californica)	52	7	225
757		30	99	91 43979	L.curvetus small cryptic plasmid gene for rep protein (Lactobacillus rvetus)	52	\$	5
862	-	7	295	191 1303827	YqfI (Becillus subtilis)	57	21	294
1049	-	907	1 455	191 1510108	ORP-1 Agrobacterium tumefaciens)	57	35	453
1117	-	1 1387	69	91 896286	WH2 terminus uncertain (Leishmania tarentolae)	57	38	691
******	-							

i. aurous - Putative coding regions of novel proteins similar to known proteins

Contig ID	ID OR	Start (nt)	Stop (nt)	match	, wotch gene name	E is	• ident	length (nt)	
1136	7	~	322	91 1303853	YqgF [Bacillus subtilis]	57	38	321	_
1144	~	1033	119	911310083	voltage-activated calcium channel alpha-1 subunit (Rattus orvegicus)	57	3	423	
1172	-	1472	738	9111511146	N. jannaschii predicted coding region MJ1143 [Methenococcus jannaschii]	57	58	735	. — .
1500	~	746	558	91 142780	putative membrane protein; putative (Bacillus subtilis)	57	35	189	
1 1676	-	629	960	721813177	uracil permease [Escherichia coli]	57	, 11	261	-
2481	-	7	007	91 1237015	ORF# (Bacillus subtilis)	57	23	399	
6601	-		230	91 1204540	isochorismate synthase [Haemophilus influenzae]	57	95	328	
3122	-	360	181	91 882472	ORF_0464 [Escherichia coli]	57	Ç	180	_
1260	-	~	361	91,153490	tetracenomycin C resistance and export protein (Streptomyces laucescens)	57	37	360	-
3850		# 2 6	634	911155588	glucose-fructose oxidoreductass (Zymomonas mobilis) pir A42289 A42289 glucose-fructose oxidoreductass (EC 1.1) recursor - Zymomonas mobilis	57	07	423	
18931	-	704	254	gi 413953	ipa-29d gene product (Bacillus subtilis)	57	36	151	. —
1993		-	384	91 151259	ING-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	53	60	384	• •
4065	-	793	398	pir JV0037 PDEC	nitrate reductaso (EC 1.7.99.4) alpha chain - Escherichia coli	57	31	396	-
4100	_	596	300	191 1086633	T06C10.5 gene product (Caenorhabditis elegans)	S	42	782	
1163		152	782	91 21512	palatin (Solanum tuborosum)	G.	0,5	2A3	
1 4267	~	631	335	91 1000365	Spoiling [Bacillus subtilis	57	38	297	
4358		•	302	91 298032	EF (Streptococcus suis)	57	32	300	-
4389	~	108	290	91 405894	1-phosphofructokinase (Escherichia coli)	57	37	183	
4399		~	212	91 1483603	Pristinamycin I synthase I (Streptomyces pristinaespiralis)	57	35	231	
4481	-	572	288	91 405879	yein (Escherichia coli)	57	3	285	
4486		512	258	91 515938	glutamate synthase (forredoxin) (Synochocystis sp. pir 546957 546957 glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynchocystis sp.	52	4 5	255	:
1 4510	-	481	242	191, 1205301	leukotoxin secretion ATP-binding protein (Haemophilus influenzae)	57	38	240	. — .
1 4617	-	468	256	[91 1511222	restriction modification enzyme, subunit Mi [Hethanococcus jannaschii]	57	35	213	
•	=	12201	11524	gi 149204	hisridine utilization repressor G (Klabsiella aerogenes) pir (AJ6730 AJ6730 AJ67	10 10	16	678	

FABLE 2

TABLE 2

Cont ig	7 01 01	(nt)	Stop (nt)	match acession	r match gene name	E o	a saenc	length (nt.)
~~		4248	1 5177	1911132222	RACH1 (Homo sapiens)	95	2	930
38	28	(21179	22264	91 1480705	lipoate-protein ligase (Mycoplasma capricolum)	96	*	1086
7	-	1861	2421	91 490320	Y gene product (unidentified)	95	7	261
3	15	10103	10606	19111205099	hypothetical protein (GB:L19201_1) [Haemophilus influenzae]	95	66	\$04
Š	9	4820	5161	[91 209931	[fiber protein (Human adenovirus type 5]	95	. 87	342
a		2076	262	91 623476	transcriptional activator (Providencia stuartii) sp P43463 AARP_PROST TRANSCRIPTIONAL ACTIVATOR AARP.	98	000	689
67	9	9898	6594	gi 466613	nik8 (Escherichia coll)	95	7 77	939
g.		2364	1810	94 482922	protein with homology to pail repressor of B.subtills [Lactobacillus] elbrueckii]	98	6	555
96	-	203	616	44145594	CAMP receptor protein (crp) [Escherichia coli	95	35	1114
	121	18250	17866	Bi 1204367	hypothetical protein (GB:V14003_278) [Haemophilus influenzae]	98	1 22	405
-12	e	5611	6678	94 155588	glucose-fructose oxidoreductase (Zymomonas mobilis) pir A42289 A42289 glucose-fructose oxidoreductase (EC 1.1) recursor - Zymomonas mobilis	95	9	1068
131	2	6404	5100	91 619724	MgtE (Bacillus ffrmus)	95	000	1305
138	7	65	232	191 413948	ipa-24d gene product [Bacillus subtills]	95		168
138	-	823	1521	191 580868	ipa-22r gene product (Bacillus subtilis)	95	7	669
9	~	740	447	91 1046009	М. genitalium predicted coding region MG109 (Mycoplasma genitalium)	900	1,0	767
143	~	1639	1067	101/945380	torminase small subunit (Bacteriophage LL-II)	98	15	573
61	-	~	223	191 143947	[glucamine synthetese [Bacteroides (regills]	95	00	222
166	2	6745	6449	191 405792	ORF154 (Pseudomonas putida)	26	7 26	297
187	-	7	193	101 311237	Hittl-transporting ATP synthese (Zea mays)	36	30	363
190	-	~	נינ	191 1109686	Prox (Bacillus subtilis	26	1 35	27.0
191		11538	9943	191 581070	acyl coentyme A synthetase (Escherichia coli)	95	35	1596
195	_	1291	647	91 1510242	collagenase (Methanococcus jannaschii)	26	3.6	645
230	-	2323	2072	491140363	heat shock protein [Clostridium acetobutylicum]	95	39	252
238	5	3383	3775	gi 1477533	sarA (Staphylococcus aureus)	26	1.0	393
270	~	813	21.61	1911765073	autolysin (Staphylococcus aureus)	26	7	006
		-				1010000	*********	

aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF 1D ID	10 PR	Start (nt)	Stop (nt)	match	match gene name	E E	1 Ident	length (nt)
230	-	3221	1632	[91 [547513	orf3 [Waemophilus influenzae]	96	7	1590
297	- 5	1140	5781	94 1511556	N. Jannaschil predicted coding region MJ1561 (Methanococcus Jannaschil)	96	9	234
321	-	1 2947	1199	191 1001801	hypothetical protein (Synechocystis sp.)	9.6	7.	1149
359	~	1279	5	191 46336	noll gene product (Rhizobium meliloti)	36	7 92	639
17.6	~	1 360	1823	91 145304	[L-ribulokinase [Secherichia coll]	95	7 60	1464
391	-	1762	2409	19111001634	hypothetical protein [Synechocystis sp.]	95	34	648
ÇĢ	-	380	192	91 1438904	5-HT4L receptor (Homo sapiens)	86	49	189
416	-	2480	2109	ai 1408486	HS74A gene product [Bacillus subtilis]	86	.31	372
7.	_	1756	2334	91 142471	acetolactate decarboxylase (Bacillus subtilis)	95	32	\$79
457	-	1907	101	91 1205194	formamidopyrimidine-DMA glycosylase [Haemophilus influenzae]	9.5	36	168
45B	~	2423	1812	191115466	terminasa Bacteriophage SPP1	8	37	612
\$04	~	2152	1383	191 1142681	Lpp38 (Pasteurella heemolytica)	95	38	870
-	-	-	1284	[41 21 7049	brnQ protein Salmonella typhimurium	95	7.5	1284
611.1		1099	1011	91/467109	rim: 305 Ribosomal protein Si8 alanine acetyltransferase: 229_C1_170 (Mycobacterium leprae)	95	3	609
099	5	3547	3774	19111229106	[2K9]0.1 [Caenorhabditis elegans]	95	96	228
7.07	<u>-</u>	35	400	1911151929	NADP -sulfite reducatase flavoprotein component (Salmonella yphimurium)	95	80	366
109	~	1385	1095	[91]1510801	hydrogenase accessory protein [Nethanococcus jannaschii]	95	80	291
F 1.	-	-	495	01 413948	[ipa-24d gene product (Bacillus subtilis]	95	35	495
743	<u>-</u>	87	677	92836	repressor protein Lactococcus actis phage BK5-7	96	35	165
790	-	976	399	[91]1511513	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	95		378
795	-	~	407	91 [1205382	cell division protein (Raemophlius influenzae	96	36	405
R13	-	61	930	191 1222161	permease (Haemophilus influentae	26	28	912
RSS		n 	515	91 1256621	26.7% of identity in 165 am to a Thermophilic bacterium hypothetical protein 6; putative [Bacillus subtilis]	95	2	113
968	-	~	998	191 547513	orfl [Haemophilus influenzae]	26	1 27	465
678	~	1049	732	91 886022	MexR [Pseudomonas aeruginosa]	95	10	318
1203	-	2	223	191 184251	HHG-1 (Homo sapiens)	26	7,	219

TABLE 2

180 | * ident | length 2 2 2 2 2 | 2 \$ \$ 8 2 | 2 2:52 \$3 S \$3 e sia - Zymomonas mobilis glycerophosphoryl diester phosphodiesterase (Bacillus subtilis)
pir(817251{817251 glycerophosphoryl diester phosphodiesterase - acillus
subtilis spore germination and vegetative growth protein [Haemophilus influenzae] Putative orf YCLX8c, len:192 (Saccharomyces cerevisiae) r|553591|553591 | hypothetical protein - yeast (Saccharomyces evisiae) glucose-fructose oxidoreductase [tymomonas mobilis] pir[A42289|A42289 | glucose-fructose oxidoreductase (EC 1.1.-.-) recursor - tymomonas mob lysine-rich espertic acid-rich protein [Plasmodium chabaudi] r[S22183]S22183 lysine/aspertic acid-rich protein - Plasmodium baudi phosphoribosylformimino-praic ketoisomerase [Rhodobacter phaeroides] aureus - Putative coding regions of novel proteins similar to known proteins Similar to aldehyde dehydrogenase (Caenorhabditis elegans) long-chain acyl-CoA dehydrogenase (Nus musculus) acetyl-CoA C-acyltransferase (Mangifera indica) haloscetate dehalogenase H-1 (Moraxella sp.) No definition line found (Escherichia coli) penicillin V amidase (Bacillus sphaericus) Na./H. antiporter (Naemophilus influenzae) hypothetical protein (Symechocystis sp.1, hypothetical protein (Symechocystis sp.) hypothetical protein [Synechocystis sp.] luca gene product [Escherichia coli] unknown [Mycobacterium tuberculosis] GTG start codon (Lactococcus lactis) unknown [Bacillus subtilis] ORF_oll8 [Escherichia coli] YqjK (Bacillus subtilis) ORF4 (Bacillus subtilis) YqjQ (Bacillus subtilis) match gene name match acession 9086 16 91 | 5341 191 | 1205355 191 1340096 191 | 1303968 91 | 1303962 19 61 1001 1 16 | fg1 | 1001B19 91 11 66604 91 (1129145 91 [1001] 16 gi | 1204354 191 474190 |gi|466685 91 | 836646 91 | 143306 191 | 726095 91 155588 [61 | 216773 191 467337 91 403373 Stop (nt.) 10\$ Start (nt) 52 ~ Contig ORF ~ = • • _ s 31.89 Ç ž = _

Contig ORF	108	Start	Stop (nt)	match	מתנקון לפחפ ואתפ	E 18	1 ident	length (nt)
1 67	==	9968	9365	[gi 153053	norAll99 protein [Staphylococcus aureus]	88	23	009
27	-	881	1273	91 1:1698	L-histidinol: NAD+ oxidoreductase (EC 1.1.1.23) (sa 1-434) scherichia coli)	\$\$	13	393
- R2	-	115387	14194	91 (136221	carboxypeptidase (Sulfolobus solfatericus)	55	35	1194
- 87	-	7156	4917	19111064812	[function unknown (Bacillus subtilis]	55	26	1401
. B.	~	2711	1636	91 882463	protein-Nipil-phosphohistidine-sugar phosphotransferase (Escherichia oli)	55	, 5(465
92.	-	127	1 516	191 1377832	unknown (Becilius subtilis)	- 55	36	390
001	- 5	836	2035	d1 1370274	(zeaxanthin opoxidaso (Nicotiona plumbaginifolia)	55	36	1200
001	- 2	1 \$137	4658	191 396660	unknown open reading frame [Buchnera aphidicola]	55	29	480
108		4266	2986	Q1 1499866	H. janneschii predicted coding region MJ1024 (Methanococcus jannaschiil	- 55		1281
717	-	1 2616	1 1834	91 1511367	[formate dehydrogenase, alpha subunit (Methanococcus jannaschill	- 55	29	783
7	-	1 1805	1476	191 1100787	unkown Saccharomyces cerevisiae	55	35	330
165	- 5	6212	5508	91 1045884	M. genitalium predicted coding region MG199 (Mycoplasma genitalium)	- 55	27	705
189	-	1 2205	2576	1911112569	ATP synthase a subunit (Bacillus firmus)	55	35	372
161	9	9136	1 6857	91 559411	[B0272.3 [Caenorhabditis elegans]	1 55	60]	2280
194	-	1 364	636	911145768	K7 kinesin-like protein (Dictyostellum discoideum)	~	7.	273
1 209	-	1 1335	1676	1911473357	this gene product (Schizosaccharomyces pomba)	\$\$	35	342
1111	-	1693	11145	91 410130	ORFX6 (Bacillus subtilis)	55	76	549
1 213	~	644	2761	191 633 692	Trak (Versinia enterocolitica)	25	28	729
214	_	-	5481	gi 1001793	hypothetical protein (Symechocystis sp.)	- 55	96	1338
1 221	-	111473	1 9197	91;466520	poch [Salmonella typhimurium]	- 55	32	7722
- 23	-	1 5908	1 4817	gi 1237063	unknown (Nycobacterium tuberculosis)	- 55	28	1092
1 236	-	1375	1 2340	ai 1146199	putative (Bacillus subtilis)	55	32	996
243	~	1 380	1985	91 (459907	[mercuric reductase [Plasmid p1258]	- 85	1 29	1506
1 258	-	1 786	394	lgi 455006	ori6 (Rhodococcus fascians)	88	90	193
1 281	-	126	938	91 11408493	homologous to SwissProt: YIDA_ECOLI hypothetical protein (Bacillus subtilis)	\$5	35	813
1 316	-	1323	2302	91 1486447	LuxA homologue (Rhizobium sp.)	- 55	or .	180
326	2	1 2968	2744	[gi 1296824	proline iminopeptidese (Lectobacillus helveticus)	- 55	36	225
		COURT AT						

TABLE 2

.

- Putative coding regions of novel proteins similar to known proteins

EP 0 786 519 A2

aureus - Putative coding regions of novel proteins similar to known proteins

Cont ig	ONF	Start (nt)	Stop Int)	match	'waitch, gene name	e in	dident	longth (nt.)
351	~	2322	1429	91 1204820	hydrogen peroxide-inducible activator (Haemophilus influenzae)	25	28	7 6.0
1 353	-	2197	2412	gi 1272475	chitin synthase (Emericella nidulans)	55	20	216
380	-	=	978	91 142554	ATP synthese i subunit (Bacillus megaterium)	- 22	37	366
383	-	462	722	91 389272	[ferrichrose-binding protein [Bacillus subtilis]	35	36	231
386	-	_	938	gi 1510251	[DMA helicase, putative [Methanococcus jannaschii]	55	30	936
\$ 10	7	1208	1681	91 1205144	multidrug resistance protein [Haemophilus Influenzae]	85	27	9 89
483	~	7	833	1911/13934	ips-10r gens product (Sacillus subtilis)	\$\$	36	423
529	_	ררנו	163	911606150	ORF_[109 (Escherichia coli)	55	13	345
555	-	1088	!	1911143407	para-sminobenzoic acid synthase, component I (pab) (Bacillus ubtilis)	55	28	204
265	-	402	202	91 1223961	CDP-tyvelose epimerase (Yersinia pseudotuberculosis)	55	ŧ	201
S#2	-	151	\$25	91 1256643	[20.2% identity with NADH dehydrogeness of the Leishmania major mitochondrion; putative [Bacillus subtilis]	8	36	001
645	~	2260	2057	gi 210824	fusion protein F (Bovine respiratory syncytial virus) pir (J01481 VGM28A fusion plycoprotein precursor - bovine espiratory syncytial virus (strain A51908)	2	. \$5 ·	504
672	7	1 957	2216	[41]1511333	M. jannaschil predicted coding region MJ1322 [Methanococcus jannaschil]	55	36	1260
730	-	956	479	191 537007	ORF_1379 [Escharichia coli]	55	00	477
7.6.7	-	1859	5 6 1	[91]536963	CG Site No. 18166 (Escharichia coli)	\$\$	30	915
742	- 5	1 228	572	91 304160	product unknown (Becillus subtilis)	55	38	345
817	~	1311	903	191 1136289	histidine kinase A (Dictyostellum discoideum)	\$\$	59	309
1 R19	-	582	155	91[558073	polymorphic antigen (Plasmodium falciparum)	\$5	22	228
832	-	1152	124	[gi 40367	ORFC (Clostridium acetobutylicum)	55	32	429
840	-	694	1386	91 1205675	pseudouridylate synthase I [Haemophlius influenzae]	55	39	384
1021	-	23	529	91 48563	[beta-lactamase (Yersinia enterocolitica]	55	38	507
1026	-	9	133	ai 47804	Opp C (AA1-301) (Salmonelle typhimurium)	55	56	276
1525	-	-	282	101 1477533	sarA Staphylococcus aureus	55	29	282
1814	7	1224	985	qi 1046078	H. genitalium predicted coding region MG369 [Mycoplasma genitalium]	55	38	762
3254	-	427	254	91 413968	[fpa-44d gene product [Bacillus subtilis]	\$5	30	174
						•		

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	OR D	Start (nt)	Stop (nt)	match	יות בנין קפח החום	E I S	• ident	length (nt)
3695	-	989	345	gi 216773	haloacatate dehalogenase H-1 (Moraxella Sp.)	55	32	342
1272	-	-	312	91 42029	ORF1 gane product (Escherichia coli)	55	31	312
9671	-	_	272	91 42029	ORF1 gene product (Escherichia coli)	55	3.8	270
1 3889	-	2 -	- 423	91 1129145	acetyl-CoA C-acyltransferase (Mangifera indica)	\$\$	45	407
3916	-	~	385	911529754	spec (Streptococcus pyogenes)	55	38	384
1 3945	-	-	198	911476252	phase I flagellin (Salmonella enterica)	55	36	195
1 4074	-	488	346	91 42029	ORF1 gene product (Escherichia coli)	. 85	36	243
4184	-	~	30	91 1524267	unknown (Mycobacterium tuberculosis)	55	38	342
4284	-	=	208	191 1100774	[ferredoxin-dependent glutamate synthase [Synechocyatis sp.]	55	36	. 195
4457	~	644	378	91 180189		\$2	86	267
4514	-	~	244	1911216773	haloacetate dehalogenase H-1 (Moraxella sp.)	55	32	243
4599	-	432	1 217	gi 1129145	acetyl-CoA C-acyltransferase (Mangifera indical	\$\$	42	216
9094		416	210	911386120	myosin alpha heavy chain (52 subfragment) (rabbits, masseter, eptide Partiel, 234 aa)	\$	27	207
5	-	5348	4932	1911536069	ORF YBLD47c (Saccharomyces cerevisiae)	54	27	417
21 -	-	1 7166	6165	9111205504	homoserine acetyltransferase (Haemophilus influenzae)	. 54	36	1002
2	91	117086	115326	91 474192	lucC gane product [Escherichia coli]	3.4	10	1761
S		~	979	qi 48054	small subunit of soluble hydrogenase (AA 1-384) (Symechococcus sp.] Ir S06919 HQYCSS soluble hydrogenase (EC 1.12) small chain - inchococcus sp. (PCC 6716)	\$	36	97.6
137	=	9437	1 8667	1911537207	ORF_£277 [Escherichia coli]	54	38	17.1
r.	21	8165	8332	19111160967	palmitoy1-protein thioesterase [Homo sapiens]	54	37	168
9	=_	13025	13804	91 1438473	protein is hydrophobic, with homology to E. coll ProM: putative Bacillus subtilis!	3	28	780
95	7	1 203	1 736	491 1256139	[Ybb.] [Bacillus subtilis]	54	34	534
رد ا	2	11117 11017	110179	95 1151248	inosine-uridine preferring nucleoside hydrolase (Crithidia fasciculata)	54	32	939
99	2	516	611	191 1335781	Cap Drosophila melanogaster	54	29	618
70	92	8116	8646	494 1399823	PhoE [Rhizoblum meliloti]	54	31	531
					0 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =	P		

S. aureus - Putative coding regions of novel proteins similar to known proteins

1 ident length (nt)	29 756	1 266 166	717 16	1101 1041	30 1 1491	41 396		1 201 36	23 648	28 639	32 558	-	32 642	1434	1 28 513	36 816	22 660	1 35 405	1 1680	33	31 561	-	-	25 414
E	\$	35	28	3	\$	3	\$	82	35	3	\$	*	35	ž	\$	\$	š	25	3	2	34	2	35	*
'màtch gene name	TETRACYCLINE RESISTANCE PROTEIN.	[function unknown Bacillus subtilis]	oligopeptide transport ATP-binding protein (Haemophilus influenzae)	protein kinase (Bacillus brevis)	putative (Bacillus subtilis)	HalC {Streptococcus pneumonise}		pyruvate oxidase (Escherichie coli)	[unknown [Bacillus subtilis]	ORF73 (Bacillus subcilis)	phosphate transport system regulatory protein [Methanococcus jannaschii]	proly1-tRNA synthetaso (Haemophilus influenzae)	spoliiEA protein (Bacillus subtilis)	main gene products (Bacillus stearchermophilus) pir (543914 543914 hypothetical protein 1 - Bacillus tearcthermophilus	RO9E10.3 (Caenorhabditis elegans)	unknown [Bacillus subtilis]	ayosin II heavy chain (Naegleria fowleri)	gene 11-1 protein precursor - Plasmodium (alciparum (fragments)	Yqew (Bacillus subtilis)	arylamine N-acetyltransfersse (AA 1-200) [Gallus gallus] ir [506652 [XYCHV3 arylaming N-acetyltransfersse (EC 2.3.3.5) [Clone NAT-3] - chicken	InccE gene product (Escherichia coli)	ipa-27d gene product (Bacillus subtilis]	LORF F (unidentified)	myosin-like protein (Saccharomyces cerevisiae)
match	sp[P02983 TCR_S	191(1064811	9111205366	1911710495	191 143727	[91[153724	gi 144297	101 42473	9111377834	1911903305	96(151(19)	101 1204976	191 143582	1911436965	10111240016	1911467378	[91]1353761	pir 500485 5004	19111303813	gi 62964	[91]682769	gi 413951	191 490328	01 171959 -
Stop (nt)	11801	5706	2289	1556	2095	2732	2493	3306	27.11	5469	1251	4543	22243	4250	19720	1905	663	13059	3709	4219	4701	8742	2214	3614
Start	115 (12556	4915	3005	2596	3585	2337	1720	0091	525	4831	\$699	3263	21602	5683	119208	1090	1322		2030	5055	1717	6994	1377	1 3201
ORF ID	51	- 5	4	~	7		~	5	~	-	=	9	20	•	<u> </u>	~	1	=			_	110	_	-
Contig ORF ID ID	70	87	9.5	103	105	112	127	e :-	152	191		164	_	171		218	220		122	272	: :	316	338	341 4

Contig	08 01	Start (nt)	Stop (nt)	acession	natch gene name	e in	1 ident	length (nt.)
346		1820	912	91 396400	sim ar to eukaryotic N**/#+ exchangers (Escharichia coli) sp b12703 vJCs_ecoli Hypothetical 60.5 KD Profein in Soxr-ACS NTERGENIC REGION (0549).	8		909
348	-	623	1351	191 537109	ORF_(343a [Bscherichia coli)	7	34	729
378	-	1007	1942	sp[P02983 TCR_S	TETRACYCLINE RESISTANCE PROTEIN.	24		936
409	-	4351	5301	91 474190	liucA gene product (Escherichia coli)	3.4	79, 1	951
7	-	1934	BBS4	91 216267	ORF2 (Bacillus megaterium)	\$	32	921
1 463	2	7117	2229	191 304160	[product unknown [Bacillus subtilis]	54	So	489
1 502	~	1696	1133	91 1205015	[hypothetical protein (SP:P10120) [Haemophilus influenzae]	24	38	364
505	9	6262	5357	191 1500558	[2-hydroxyhepta-2,4-diene-1,7-dioate isomerase [Methanococcus jannaschii]	54	1,	906
250		2736	1522	91 40100	rodc (tag3) polypoptide (AA 1-746) [Bacillus subtilis] ir 506049 506049 rodc protein - Bacillus subtilis p Pli485 TAGP_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	24	35	1215
1 \$51	5	1 1305	4279	gi 950197	unknown Corynebacterium glutamicum	3	Ä	975
1 558	- 2	1356	958	91 485090	No definition line found (Caenorhabditis elegans)	\$	32	399
580	-	16	936.	91/331906	[tused envelope glycoprotein precursor [Friend spleen focus-forming irus]	3.4	.	846
603	2	554	137	91 1323423	ORF YGR314w (Saccharomyces carevistae)	,	36	204
617	_	s:	249	91 219959	ornithine transcarbamylase (Homo saplens)	36	G 7	225
622	_	1097	1480	6161303873	YqgZ (Becillus subtilis)	75	25	384
623	-		404	191,1063250	low homology to P20 protein of Bacillus lichiniformis and blaomycin acetyltransferase of Streptomyces verticillus (Bacillus subtilis)	54	45	402
689	-	1547	1011	911552446	NADH dehydrogenase subunit 4 [Apis mellifera ligustica] pir 552968 552968 NADH dehydrogenase chain 4 - honeybee itochondrion (SCC4)	24	30	537
725	~	686	11441	91 987096	sensory protein kinase (Streptomyces hygroscopicus)	34	76	756
956	-	_·	249	pir 530782 5307	pir S30782 S307 integrin homolog - yeast (Saccheromyces ceravisiae)	3	24	249
978	~	1137	1859	9111301994	ORF YML091w (Saccharomyces cerevisiae)	\$4	33	279
1314	-	-	281	9110011108	hypothetical protein (Synechocystis sp.)	>\$	33	279
2450	-	1	822	191 11045057	ch-f0G [Homo sapiens	25	32	228
2934	-	7	1 387	191 580870	ipa-37d goxA gene product (Bacillus subtilis)	36	96	387
2970	_	499	251	sp P3734P YECE_	SP P3734P YECE HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	34	42	249

TABLE 2

aureus - Putative coding regions of novel proteins similar to known proteins

length (nt)	309	456	330	399	273	207	282	270	219	1654	1263	\$01	801	1143	1575	225	465	1584	723	144	1029	336	618	
dent	33	ž.	98	29	30	36	30	38	38	. ž	32	36	רנ	07	29	32	39	30	31	96	32	36	25	
E 10	- 75	3	3	75	54	in .	, and	75	1 54	53	53	53	53	cs	53	53	\$	53	53	ß	53	53	83	
match gene name	The protein [Lactococcus lactis]	HKG-CoA reductase (EC 1.1.1.88) [Pseudosonas mevalonii] pir[A44756]A44736 hydroxysethylgiutaryl-CoA reductase (EC 1.1.1.88) Pseudosonas sp.	hadw gene of Ecopril gene product (Escharichia coll) pir 318471 538437 hadw protein - Escharichia coli pir 509629 509629 hypothetical protein A - Escharichia coli (SUB 40-520)	بدز	CENP-E (Homo sapiens)	glucan 1.4-beta-glucosidase (EC 3.2.1.74) - Pseudomonas fluorescens subsp.	unknown protein (Mycoplasma pneumonias)	hypothetical protein (GB:D26185_10) (Mycoplasma genitalium)	ORF2 (Bacillus magatarium)	lucC gene product (Escherichia coli)	ORF1 gene product (Escharichia col1)	c2 gene product (Bacteriophage Bi)	(unknown (Becilius subcilis)	yell (Escherichia coli)	thyroid sodium/iodide symporter NIS [Rattus norvegicus]	pir A54592 A545 110k actin filam - associated protein - chicken	alcohol dehydrogenase (EC 1.1.1.1) - fission yeast (Schizosaccheromyces pombe)	[putative transcriptional regulator [Bacillus stearothermophilus]	quinolone resistance norA protein protein [Methanococcus jamaschii]	arabinogalactan-protein, AGP (Nicotiana alata, cell-suspension culture filtrate, Peptide, 461 aa)	glucar.se (Anabaena variabilia	ATPase 1 [Plasmodium (alciparum)	ORF_o488 Escherichia coli	
match acession	gi 44027	91 151259	gi 450688	91 1322245	91 29865	pir s24325 5243	gi 1196657	91 1046081	91 21 6267	91 474192	91 62029	91 1369947	91 1486247	911405880	91 1399954	pir A54592 A545	pir A00341 DEZP	gi 1480429	91 1511555	91 1687017	91 1523802.	91 552428	191 337034	
Stop (nt)	309	79	Ē.	400	273	209	285	212	1 221	10685	113579	1 3940	4618	1 3998	1 7806	112100	4583	1 6932	110218	2382	1031	338	2524	
Start (nt)	-	-	27	198	-	-	999	_	-	112538	14841	440	3818	2856	9380	112324	5047	110515	9496	3125	7	673	1910	
08 I	-			-	-		-	1	1-	112	=		-	-	2	01	-	•	2		-	-	-	
9	3002	1361	3572	3829	3909	3921	4438	4459	4564	23	2	7.7	26		38	26	57	52	67	69	79	80	88	1

TABLE 2

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

(nt) 1179 1227 1227 1209 1309 1506 1605 1605 1605 1605 1605 1605 1605	3	
7 7	_ _	8 5
	34	S
- +	8	\$
:	2 2	8 5
	33	53
531	34	53
	34	53
	34	8
2	2#	S
_		
	36	\$
95	52	53
160	- ·	ñ
29.	*	53
450	32	ß
103	34	53
1209	32	53
1641	, ; ;	53
624	35	S
1227	30	53
1179	25	\$
366	£	53
ent.		_

TABLE 2

12. • ident | length 32, Ė 2 BE \$ 1 2 S S S S S S hsdM gene of Ecopril gene product (Escherichla coli) pir|538437|838437 hsdM protein - Escherichla coli pir|509629|509629 hypothetical protein A - Escherichla coli (SUB 40-520) similar to unidentified ORF near 47 minutes (Becherichia coll) sp|Pl1436|YICK_ECOLI HYPOTHETICAL 43.5 KD PROTEIN IN SELC-NLPA NTERGENIC REGION. toxic shock syndrome toxin-1 precursor (Staphylococcus aureus)
pir|A14606|XCSAS1 toxic shock syndrome toxin-1 precursor - taphylococcus
aureus ORF 1 (AA 1 - 121) (1 is 2nd base in codon) (Staphylococcus sureus) ir|S15765|S15765 hypothetical protein 1 (hlb 5' region) - aphylococcus 12.4% identity with Eacherichie coli DNA-demage inducible protein putative transcriptional regulator (Bacillus stearothermophilus) orfal; orfal forms an operon with orfal [Listeria monocytogenes] No definition line found (Genothabditie elegans) pilin biogenesis protein (Haemophilus influenzae) myosin heavy chain [Entemosbs histolytics] transmembrane protein [Lactococcus lactis] lipase-like enzyme (Alcaligenes outrophus) hypothetical protein (Symechocystis sp.) unknown (Schizosaccharomyces pombe) ORF 3; putative (Bacillus subtilis) transposase [Burkholderia cepacia] |SapA protein [Escherichia coli] Mmp (Vibrio parahaemolyticus) res gene (Bacteriophage P1) rat GCP360 [Rattus rattus] |YqiX [Becillus subtilis] EP (Streptococcus suis) Match gene neme match acession 91 | 1044936 91 | 1146243 91 | 1477486 91 1279400 91 1001774 91 | 1303949 91 | 1480429 121 1204551 |91 |868224 91 | 516826 [01 [153123 191 | 687 600 91 695278 91 298032 911:90508 191 | 142441 191 305080 93 | 450688 857705 | 191 91 46587 101 115140 Ç ÷ 2 | 339 Contig JORF

S. aureus - Putative coding regions of novel proteins similar to known proteins

5		length (nt)	165	1380	3459	921	606	450	519	750	1143	678	495	195	1608	1224	189	099	636	153	1569	432	816	1149	582	273
		1 ident	34	31	32	25,	29	36	25	32	23	7.2	25	72	30	25	36	56	42	96	30	32	38	36	33	33
10		a in	52	52	25	52	52	52	52	25	25	52	52	52	52	52	22	52	52	52	52	52	52	22	52	- 52
15	oteins				15] 5						n EDG-1.				anna schiil		1 r A44357 A44357 discoideum}				[un]			protein; putative		s jannaschii)
20	imilar to known pro		nage T4)	UDP-murnac-pentapoptide synthetase [Haemophilus influenzae]	redicted 86,4kd protein; 52kd observed (Mycobacteriophage 15; pir[53097][83097] gene 26 protein - Mycobacterium phage L5 sp[00523] VG26_RPML5 HINOR TAIL PROTEIN GP26, [8UB 2-837]				trinkae!		endothelial differentiation protein (edg-1) (Homo sapiens) pir[A35300[A35300 G protein-coupled receptor edg-1 - human sp[p21453]EDG1_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR EDG-1	8		2)	subunit alpha [Methanococcus jannaschil]	hypothetical protein (SP:Plill2) (Haemophilus influentee)	cytoplasmic dynein haavy chain (Dictyostellum discoldeum) r A44357 A44357 dynein heavy chain, cytosolic - slime mold ctyostellum discoldeum)		subtilis] .		amino acid permease Yeef like protein [Salmonella typhimurium]		F. B. J	25.8% identity over 120 as with the Synenococcus sp. MpeV protein; putative (Becilius subtilis)		M. jannaschii predicted coding region KJ0272 (Methanococcus jannaschii)
25	proteins si		(Bacteriop)	etase (Haem	d observed otein - Myc	jannaschii!	coelicolori	■ col1)	subunit 6 (Anopheles trinkae)		rotein (edg. coupled rec	lus subtili	meliloti)	occus PCC794	subunit alph	122) (Haemop	in [Dictyost ic - slime m	subtilis]	(Bacillus	rium leprael	protein (S	siae)	las gingival	ith the Syne	:1118]	g region KJ
30	ions of novel	 	start codon)	peptide synth	86.4kd protein; 52K 11 530971 gene 26 pr		Streptomyces	t (Escherichi	ise subunit 6	110	erentiation p 100 G protein- HUMAN PROBABI	dehydrogenese (Bacillus subtilis	gene product (Rhizobium meliloti)	se (Synechoco	(NADPH),	stein (SP:P31	sin heavy chal	t [Bacillus subtilis	rate reductase	ot (Mycobacter	ease Yeef like	romyces cerevisiae	: (Porphyromor	over 120 aa wi	(Bacillus subt	redicted codir
35	Putative coding regions of novel proteins similar to known proteins	match gene name	G41 protein (gtg start codon) [Bacteriophage T4]	UDP-murnac-penta	predicted 86.4td protein; 52kd observed predicted 86.4td protein predicted 80.513 4226_RPML5 HINOR TAIL PR	P115 protein Methanococcus	glucose kinase (Streptomyces coelicolor	moaE gene product (Escherichia coli)	NADH dehydrogenase	traC [Plasmid pAD1]	endothelial dif(pir A35300(A351 sp P21453 EDGL	sorbitol dehydro	phas gene produc	1	glutamate synthase	hypothetical pro	cytoplasmic dynein heavy chain dynein heavy chain, cytosolic	B65G gene product	Respiratory nitrate reductase (Bacillus subtilis)	ImbE gene product (Mycobacterium leprae)	amino acid perm	unknown (Saccharomyces	put gene product (Porphyromonas gingivalis)	25.8% identity over	PBSX terminane [Bacillus subtilis]	M. jannaschii pi
40	S. aureus .	natch	91 215966	91 1205379	91 579124	91 1500543	91 46851	91 42012	9111040957	91 388269	01 181949	gi 304153	91 1072399	191146485	9111211196	91 1204393	1911727	91 1408485	191 1009 368	gi 699274	91 1526981	91 732931	91 1296975	91 1256634	lgi (1225943	gi 1510368
45		Stop (nt)	1 2369	3808	3462	3935	1 9703	111066	521	6280	2826	£114	1 2870	13651	112962	118158	1661	110664	13351	13350	17300	1 981	1 1680	1807	583	4415
		Start (nt)	2205	1 2429	6920	3015	8795	110617	-	1 5531	3968	1 4850	3364	4445	111355	116935	2185	10005	1 3986	4102	15732	1412	1 865	659	1164	4687
50		ig lore In	- 5	<u> </u>		-	=	116	-	2	<u></u>	-	-	9	=	[2]		2	-	_	61	-	_		-	-
		Contig	15	=	7		B	-	*				- 62	- 62	1 67	1 67		96	100	109	109	121	125	061	149	149

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop	match	netch gene name	E T II	1 ident	length
167	- -	216	1001	91 146025	cell division protein [Escherichia coli]	25	Ç	786
		120	1256	91 474915	orf 337; translated orf similarity to SW: BCR_ECOLT bicyclomycin esistence protein of Escherichia coli [Coxiella burnetii] pir[544207]544207 protein of protein 337 - Coxiella burnetii (SUB -138)	\$	56	1137
195		9161	8760	91 3028	nitochondria outer membrane 72K procein [Heurospora crassa] r al6682 a36682 72K mitochondrial outer membrane protein - rospora crassa	S	25	402
7 200	-	1 2065	1 2607	91 142439	ATP-dependent nuclease (Bacillus subtilis)	52	35	543
1 203	-	1 2776	3684	gi 130369B	BltD Bacillus subtilis	\$2	25	606
1 227	6	5250	5651	191 305080	myosin heavy chain (Entamoeba histolytica)	52	24	402
242	-	21	1424	191 1060877	EmrY [Escherichia coli]	52	32	1404
249	2	4526	4753	pir c37222 c372	cytachrome P450 1A1, hepatic - dog (fragment)	52	23	228
1 255	-	1 2107	1055	911143290	penicillin-binding protein (Secillus subtilis)	52	28	1053
1 276	-	1 3963	3664	91 1001610	hypothetical protein (Synechocystis sp.)	52	30	300
1 276	-	4456	4055	91 416235	orf L3 (Mycoplasma capricolum)	52	56	402
1 289	7	1856	1449	191 150900	GTP phosphohydrolase [Proteus vulgaris]	52	7	408
325		-	279	91 1204874	polypeptide deformylase (formylmethionine deformylase) [Haemophilus] influenzee]	\$2	£	279
340		2017	1010	91 1215695	peptide transport system protein Sapf homolog; Sapf homolog [Mycoplasma pneumoniae]	52	ä	1001
375		340	1878	91 467446	similar to SpovB (Bacillus subtilis)	52	88	1539
424	-	4104	3262	Q1 1478239	unknown (Mycobacterium tuberculosis)	52	7	843
1 430	-	-	575	Dir A42606 A426	orfA 5' to orf405 - Saccharopolyspora erythreea (fragment)	52	88	573
707	-	4728	3712	91 1408494	homologous to penicillin acylase (Bacillus subtilis)	52	33	1017
4 6 5 5		1802	903	91 143331	alkaline phosphatase regulatory protein [Bacillus subtilis] pir{A27650 A27650 regulatory protein phoR - Bacillus subtilis sp P23545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (BC 2.7.3).	25	36	006
697	<u></u>	4705	4169	191 755152	highly hydrophobic integral membrane protein [Bacillus aubtilis] sg p42951 tagg BacsU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN AGG.	25	32	537
495	-	1262	633	gi 1204607	transcription activator (Haemophilus influenzae)	52	25	630
505	_	1 6004	5762	191 142440	ATP-dependent ruclease (Bacillus subtilis)	52	28	253

TARLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	10 10	Start (nt)	Stop (nt)	match	makdh gene name	e is	• Ident	length (nt)
517	~	1162	1614	91 166162	Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi	52	35	453
543	~	464	1295	gi 1215693	putativa orf; GT9_orf434 [Mycoplasma pnaumoniae]	52	25	652
586	-	-	336	91 581648	epi8 gene product [Staphylococcus epidermidis]	52	36	336
17.3	-	848	426	91,1279769	FdhC (Methanobacterium thermoformicicum]	52	30	423
1120	-	100	330	91 142439	ATP-dependent nuclease [Bacillus subtilis]	52	35	231
1614	-	169	347	91 289262	come ORP3 Bacillus subtilis	52	- 38	345
2495			324	91 21 61 51	DNA, polymerase (gene L; ttg start codon) (Bacteriophage SP02) gi[579197 SP02 DNA polymerase (aa 1-648) (Bacteriophage SP02) pir a21498 DJBPS2 DNA directed DNA polymerase (EC 2.7.7.7) - phage P02	52	38	324
1 2931	-	995	285	91,1256136	YbbG [Bacillus subtilis]	52	30	282
2943	-	577	320	101 11713	hisA ORF (AA 1-245) [Escherichis coli]	52	35	258
2993	-	588	295	91 298032	EF (Streptococcus suis)	52	34	294
1 3667	-	612	207	91 849025	hypothetical 64.7-kDa protein [Bacillus subtilis]	52	36	306
1944	-	478	7 260	91 1218040	BAA Bacillus licheniformis]	52	36	219
3954	- 2	613	347	Q1 854064	[US7 [Muman herpesvirus 6]	\$2	20	367
1986		8	ē	191 1205919	Na+ and Cl- dependent gamma-aminobutryic acid transporter laemophilus influenzae	52	<u>-</u>	312
4002			389	gi 40003	oxoglutarate dehydrogenase (NADP+) [Bacillus subtliis] p P23129 ODO1_BACGU	25	42	387
4020	-	-	249	91 159388	ornithine decarboxylase [Leishmania donovani]	52	4.7	249
8607	-	438	220	91 409795	No definition line found (Escherichia coli)	52	32	219
4248	-	- 3	22	191 965077	Adrép (Saccharomyces cerevisiae)	\$2	40	210
7	-	- 3	575	91 895747	putative cel operon regulator (Becillus subtilis)	51	2.8	573
- 21	-	1 2479	1326	91/1510962	indola-3-glycerol phosphate synthase (Nethanococcus jannaschii)	51	32 `	798
- 22	6	1 5301	9965	91 1303933	Yqin Bacillus subtilis	53	25	999
7	_	1516	1283	91 1519460	Srp1 Schizosaccharomyces pombe	51	31	234
*	117	111042	11305	19. (42011	moaD gene product [Escherichia coli]	51	35	264
- 51	=	6453	16731	191 495471	[vacuolating toxin [Helicobacter pylori]	51	37	279

. aureus - Putative coding regions of novel proteins similar to known proteir

Cont ig	ORF	Start (nt)	Stop (nt)	match	metch gene name	e sin	• ident	length (nt)
2		2537	2995	91 1256652	25% identity to the E.coli regulatory protein MprA; putative [Bacillus subtilis]	2	~~	629
25	2_	7331	6843	191 508173	BIIA domain of PTS-dependent Gat transport and phosphorylation Escherichia	25	32	489
65	-	62	1111	101 299163	alanine dehydrogenase (Bacillus gubtilis)	51	33	1083
69	120	15791	16576	191 1510977	M. jannaschii predicted coding region MJ0938 (Methanococcus jannaschii)	51	74,	186
69	7	1559	1218	01 467359	[unknown [Becillus subtilis]	51	76	342
12	-		1196	91 298032	EF (Streptococcus suis)	51	32	1194
1 78	~	349	176	01 1161242	proliferating cell nuclear antigen (Styela clava)	S	28	174
66	-	1 3357	4040	91 642795	PPIID subunit TAFII55 Homo saplens	31	25	684
100		2852	1428	91 580920	rodb (gran) polypeptide (A. 1-673) [Becillus subtills] pir SOGO48 SOGO48 probable rodb protein - Bacillus subtills sp p11484 TAGE_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).	21	27	1425
109	6	6007	1 6693	gi 1204815	hypothetical protein (SP:P32662) [Haemophilus influenzae]	51	23	687
112	-	• —	1 2352	plr s05330 s053	maltose-binding protein precursor - Enterobacter aerogenes	51	42	1287
717	=	114432	112855	911405857	yehU [Escherichia coli]	51	29	1578
=	-	1 9725	1 8967	g1 435098	orfl (Mycoplesma capricolum)	51	30	759
· • • • • • • • • • • • • • • • • • • •	· - -	-	912	Ξ	ORF YDLORSW (Saccharomycus curuvistau)	51	3.8	912
127	100	1 9647	110477	9111204314	H. influenzee predicted coding region HI0056 [Heemophilus influenzee]	51	37	100
152	-	6814	1356	91 431929	Huni regulatory protein [Mycoplasma sp.]	\$1	38	543
154	-	575	1153	91 1237044	unknown (Mycobacterium tuberculosis)	51	36	879
154	-	1 6587	5634	91 409286	[barU [Bacillus subtilis]	51	27	954
171	=	6943	6236	gi 1205484	hypothetical protein (SP:Pl)918) [Heemophilus influenzae]	15	32	40r
184	-	-	1 291	91 466886	B1496_C3_206 [Mycobacterium lepres]	- 21		291
212		1501	2139	pir A45605 A456	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium felciperum	51	2	639
228	-	707	1378	91 8204	[nuclear protein [Drosophila melanogaster]	51	27	672
236	-	8137	7481	gi 49272	[Asparaginase (Bacillus licheniformis]	15	10	657
243	-	1 4637	3546	94 1511102	melvalonate kinase (Methenococcus jannaschil)	15	29	1092

EP 0 786 519 A2

aureus - Putative coding regions of novel proteins similar to known proteins

Cont ig	10 GE	Start (nt)	Stop (nt)	match ression	י שתלב לי ספח חחשם	m s in	I ident	length (nt)
257	-	3540	נדנג	[gi]:204579	H. influenzae predicted coding region H10326 [Haemophilus influenzae]	51	22	168
258		2397	1609	91 160299	glutamic acid-rich protein Plasmodium (alciparum pr. 54554 154514 glutamic acid-rich protein precursor - Plasmodium alciparum	25	-	684
265	5	2419	3591	91 580841	(F) [Bacillus subtilis]	15	32	1173
298	~	518	748	91 1336162	SCPB Streptococcus agalactiae	51	76	231
316	6	1 5817	1049	91 113953	Ipa-29d gene product (Bacilius subtilis	15	39	1233
332	~	3775	2057	94 1209012	mutS (Thermus aquaticus thermophilus)	51	3.6	1719
364	-	3816	1667	91 528991	unknown (Bacillus subtilis)	15	32	1176
Ç 7	~	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	684	01 2819	(transferase (GALIO) (AA 1 - 687) (Kluyveromyces lactis) r[501407 XXVKG UDPglucose 4-epimerase (EC 5.1.3.2) - yeast uyveromyces marxianus var. lactis)	15	73	762
495	~	1353	11177	101 297861	protease G (Erwinia chrysanthemi)	15	3	1.17
495	-	2287	1718	[gi 1513317	serine rich protein [Entamoeba histolytica]	15	25	570
\$06	_	840	421	gi 455320	cII protein (Bacteriophage P4)	51		420
009		1474	683	91 587532	orf, len: 201, CAT: 0.16 [Saccharomyces cerevistae] pir [548818 548818 hypothetical protein - yeast (Saccharomyces erevisiae)	15	30	492
607		479	934	91 3511524	hypothetical protein (SP:P37002) (Methanococcus jannaschil)	51	0,	456
686	7	127	009	91 493017	endocarditis specific antigen (Enterococcus faecalis)	15	00	474
7.26	_	7	1 230	gi 1353851	unknown [Prochlorococcus marinus]	\$1	\$	194
198	-	176	652	gi 410145	dohydroquinate dehydratase {Bacillus subtilis}	15	ň	477
869		782	393	91 40100	rodc (tag3) polypeptide (AA 1-746) (Becillus subtilis) ir 506049 506049 rodc protein - Bacillus subtilis p Pl1485 TAGP_BACSU TECHOIC ACID BIOSYNTHESIS PROFEIN F.	51	23	390
1003	-	642	322	191 1279707	hypothetical phosphoglycerate mutase (Saccharomyces cerevisiae)	\$1	96	120
1046	~	866	.624	1911510257	glycosyltransferase [Escherichia coll]	51	29	263
1467	-	702	352	19111511175	M. jannaschli predicted coding region MJ117 (Methanococcus jannaschii)	- 51	32	151
2558	-	457	230	sp P10582 DPOM_	DNA POLYMERASE (EC 2.7.7.7) (S-1 DNA ORF 3).	15	26	228
3003	-	976	1 399	[gi]809543	CbrC protein (Erwinia chrysanthemi]	51	27	181
3604	-	-	139	pis JC4210 JC42]]-hydroxyacy]-CoA dehydrogenase (EC 1.1.1.35) - mouse	51	37	399
3732	-	~	316	91;145906	acyl-CoA synthetese (Escherichia colli	51		315
						*		

TABLE 2

TABLE 2

aureus - Putative coding regions of novel proteins similar to known proteins

Cont lg ID	ID OR	Start (nt)	Stop (nt)	metch acession	maich gene name	mis .	1 ident	length (nt)
1976		~	274	91 1061351	semaphorin III family homolog [Homo sapiens]	51	٠,	273
3995	-	\$	336	191 216346	surfactin synthetasa (Bacillus subtilis)	51	38	291
4193	-	612	307	qi 42749	ribosomal protein L12 (AA 1-179) [Excharichia coli) Ar[504776]XXECPL peptide N-acetyltransferase rimL (EC 2.3.1) - cherichia coli	ร	52	306
4539	-	367	185	01 1408494	homologous to penicillin acylase [Bacillus subtilis]	15	09	183
4562	-	442	239	9111458280	coded for by C. elegans CDNA cm01e7; Similar to hydroxymethylglutaryl-CoA symthase (Cacnorhabditis elegans)	15	35	204
-		3576	4859	94 559160	GRAIL score: null; cap site and late promoter motifs present petream; putetive (Autographa californica nuclear polyhedrosis Irus)	Ş	3	1284
=======================================	2	4044	5165	gi 1146207	putetive (Becilius subtilis)	05	35	1122
= -	12	60501	9696	91,1208451	hypothetical protein (Symechocystis sp. 1	20	39	1014
61	-	2034	1018	91 413966	ipa-42d gene product (Bacillus subtilis)	30	59	1017
:	=	8586	8407	91/1323159	ORF YGR103w (Saccharomyces cerevisiae)	80	28	180
24	2	5408	4824	g1 496280	structural protein [Bacteriophage Tuc2009]	90	. 29	585
7	-	1926	27.59	1911303966	Yqjo (Bacillus subtilis)	20	36	834
	000	122865	23440	91 1072179	Similar to dihydrollavonol-4-raductass (maize, petunia, tomato)	80	32	576
-	7	1705	1 2976	1911153015	FemA protein (Staphylococcus aureus)	\$0	29	1272
95 -	2_	15290	15861	960909 15	OMF_1167; end overlaps end of 0100 by 14 bases; start overlaps £174, ther starts possible [Escherichia coli]	DS.	ne.	Š
- 52	-	1 2135	1077	91 640922	xylitol dehydrogenase (unidentified hemisscomycete)	90	1 29	1059
- 58	7	628	1761	91/143725	putative (Bacillus subtilis)	90	29	1134
*	•	4393	3884	91 1072179	Similar to dihydroflavonol-4-reductase (maize, petunia, tomato) Csenorhabditis elegans	o O	32	\$10
68		3700	3356	gi 1276658	ORF174 gane product (Porphyra purpurea)	90	25	345
141	-	-	239	191 476024	carbamoyl phosphate synthetase II [Plasmodium (alciparum)	20	33	237
151	-	186	979	91 1403441	unknown (Mycobacterium tuberculosis)	20	35	1441
166	-	111065	9623	1911895747	putative cel operon regulator (Bacillus subtilis)	20	32	1463
201	9	5284	9605	191/160229	circumsporozoite protein [Plesmodium reichemowi]	20	62	189
206	77	30784 29555	129555	9: (1052754	LarP integral membrane protein (Lactococcus lactis)	90	24	1230

5		length (nt.)	405	985	663	1326	613	903	1668	459	738	225	1176	165	555	519	405	1668	1494	423	627	225	189	750	450
		1 ident	29	37	38	22 .	3.B	56	27	35	53	27	30	29	23	27	96	=	33	32	29	37	21	27	25
10		e is	20	20	20	20	80	50	20	20	20	\$0	05	00	20	Š	8	S	20	05	80	0\$	05	S.	S
. 15	roteins				pir S35835 S35835 (fragment) (SUB 1-												ive [Bacillus	AC40 of DNA ine]	opoisomerases	leukocidin F component (Staphylococcus aureus, MRSA No. 4, Peptide, 23 aal		ficans g1 45465 C29413 C29413 e c1 precursor -			000
20	- Putative coding regions of novel proteins similar to known proteins			AGNENT).	virus type 1] pi y virus ype 1 (f		cerevisiae)		(8)	ideum}		٠		-		:	25% identity to the E.coli regulatory protein MprA; putative [Bacillus subtills]	mutant of the subunit AC40 of DNA Saccharomyces cerevisiae	Trai protein shares sequence similarity with a family of opoisomerases [Plasmid pSK41]	Ireus, MRSA No. 4		ycochrome cl precursor (EC 1.10.2.2) (Paracoccus denitrificans gi 154 cytochrome cl (AA 1-450) (Paracoccus denitrificans pir C29413 C29413 ubiquinolcytochrome-c reductase (EC 1.10.2.2) ytochrome cl precursor Paracoccus denitrificans sp P13627 CY1	ena sp.)		tyrosine-specific transport protein (Meemophilus influenzae)
25	proteins si	·		S'REGION (FRAGMENT)	deficiency	btilis]	aromyces ce	enzae]	us aquaticu	elium disco	megaterium]	-	is colij	occus hirae			ulatory pro	6 11	imilarity w	lococcus av		(EC 1.10.2.2) [Paracoccus) [Paracoccus denitrifican reductase (EC 1.10.2.2) ; s sp[P13627[CY1	tein (Anaba	bt [] [8]	otein (Haem
30	egions of novel	94G	s subtilis}		nvelope protein (Human immunodeficiency virus type 1) envelope protein - human immunodeficiency virus ype 1 77)	gene product [Bacillus subtilis]	phosphoglycerate mulase (Saccharomyces	lipoprotein (Maemophilus influenzae)	DNA polymerase family X (Thermus aquaticus	G-box binding factor [Dictyostellum discoldeum]	gene product (Bacillus me	ORF2136 (Marchantia polymorpha)	UDP-sugar hydrolase (Escherichia coli	Na+ -ATPase subunit J (Enterococcus hirae)	cus lactis)	coccus aureus]	o the E.coli reg	weak suppressor of a polymerase I and III	hares sequence s	omponent (Staphy	cus suis]	i precursor (EC 1.10.2.2) (c1 (AA 1-450) (Paracoccus decytochrome-c reductase (EC denitrificans sp P13627 CV1	heterocyst differentiation protein (Anabaena sp.)	865G gene product Bacillus subtilis	fic transport pro
35	tative coding re	match gene name	ONFX7 (Bacillus subtilis)	HYPOTHETICAL PROTEIN IN ASPS	envelope prote envelope prote 77)	B65G gene prod	phosphoglycera	lipoprotein (16	DNA polymerase	G-box binding	ORF2 gene prod	ORF2136 (March	UDP-sugar hydr	Na+ -ATPase su	BglR Lactococcus lactis	CapE (Staphylococcus aureus	25% identity to subtilisi	selected as a se	Tral protein sha [Plasmid pSK41]	leukocidin F co	EF (Streptococcus suis)	cytochrome cl cytochrome cl ubiquinolcyl	heterocyst dif	B65G gene produ	tyrosine-speci
40	S. aureus - Pu	match	91 410131	sp P37348 YECE_	gi 313580	91 1408485	191) 84186	9688115	91 1526547	91 456562	191 288301	91 13665	911757842	gi 487282	91 551875	gi 567036	91 1256652	911295671	91 405568	91,410007	1911:38032	gi i 150572	91 142020	91 .408485	41 104727
45		Stop (nt)	1927	3295	4406	1723	984	1605	3802	1 1931	741	5523	1 1825	1 591	864	541	4 10	6029	1497	117	627	1711	683	752	
		Start (nt)	1523	2411	5068	1 3048	1616	1 2507	5469	1 3473	1478	5299	1 650	-	1418	23	v .	7726	2990	1113	-	947	1 1363	-	438
50		OR C	-	-		~	~	~	-	~	-	_	_	- -	-	_	-	<u></u>	- 	_	-		-	-	~
		Contig	211	216	228	272	1 273	1 32B	332	1 342	352	408	420	464	472	520	529	534	647	664	678	755	827	892	910

is - Putative coding regions of novel proteins similar to known pr

	Cont. 19 ID	10 de 1	Start (nt)	Stop (nt)	match	match gene name	mie •	• Ident	length (nt)	
-	933	-	1 524	1 760	di 1205451	cell division inhibitor (Maemophilus influenzae)	- 05	32	762	
• -	973	-	424	236	91 886947	orf3 gene product (Saccharomyces cerevisiae)	- 05	-	189	
-	1009	-	1 653	429	191 153727	H protein [group G streptococcus]	20	28	225	
• –	1027	-	115	1 257	91 413934	[tps-10r gene product (Bacillus subtilis]	80	25	255	
• –	1153	1 2	556	326	91 73676	ncca (Alcaligenes xylosoxydens)	20	36	231	
•	1222	-	1798	400	91 1408485	B65G gene product (Bacillus subtilis)	95	21	399	
• –	1350	-	692	399	gi 289272	[ferrichrome-binding protein [Bacillus subtilis]	50	32	294	
	2945	-	1 366	184	191 171704	hexaprenyl pyrophosphate synthetase (COQ1) [Saccharomyces erevisiae]	20	34	183	
	2968	-	1604	804	91 397526	clumping factor (Staphylococcus aureus)	50	ĸ	109	
• -	2998	- 2	1 657	394	91 495696	[P54E7.3 gene product (Caenorhabditis elegans]	05	0	264	
• -	3046	-	306	306		acyl cerrier protein - Anahaena veriabilis (fragment)	05	32	201	
	3063	-	547	275	gi 174190	iucA gene product (Escherichia coli)	ŝ	29	273	-
• –	3174	-	E -	146	911151900	alcohol dehydrogenase [Rhodobacter sphaeroides]	50	1.	144	
•	3792	-	625	314	9111001423	hypothetical protein (Synachocystis sp.)	50	35	312	
	3800			262	91 (144733	NAD-dependent beta-hydroxybutyryl coensyme A dehydrogenase Clostridium acetobutylicum	20	28	261	
	3946	-	1.33	188	911576765	cytochrome b {Myrmecia pilosula}	20	8.	9111	_
	3984	-	1 578	1 291	sp P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	50	٠,	288	
-	37	=	8250	7885	91 1204367	hypothetical protein (GB:U14003_278) [Haemophilus influenzae]	49	30	366	-
	9	116	113802	114848	c 466860	acd; B1308_F1_34 (Mycobacterium leprae)	69	74	1047	_
	65	-	1 2267	1 3601	gi 606304	ORF_0462 [Escherichia coli]	\$	27	1335	
	112	81	117884	118615	91 559502	ND4 protein (AA 1 - 409) (Caenorhabditis elegans)	64	25	132	
	138	6	(6973	1 7902	91 (30395)	esterase (Acinetobacter calcoaceticus)	64	29	930	
	217	9	4401	5138	91 496254	[fibronectin/fibrinogen-binding protein [Streptococcus pyogenes]	64	31	738	
	220	21	11803	112657	91 397526	clumping factor [Staphylococcus aureus]	6.7	16	855	
	228	-	1 1842	2492	pir S23692 S236	hypothetical protein 9 - Plasmodium falciparum	49	24	651	
	268	-	5016	2614	gi 143047	ORFB [Bacillus subtilis]	6.	26	2403	
•		-								

reus - Putative coding regions of novel proteins similar to known pro

Contig	ORF	Start (nt)	Stop (nt)	metch	match gene name	mie's	1 ident	length (nt)
1.72	~	1164	5751	91,1001257	hypothetical protein (Synechocystis sp.)	- 67	38	210
300		4340	3180	96(11310796	hypothetical protein (GP:X91006_2) (Methenococcus janneschii)	69	36	1161
181		2281	1142	91 396301	matches PS00041: Bacterial regulatory proteins, araC family ignature	\$	59	1140
1 466	=	1 3	947	8111303863	YqgP (Bacillus subctiis)	49	26	945
999	=======================================	1 976	161	191 633112	ORF1 (Streptococcus sobrinus)	49	59	189
670	~	1 403	1	9111122758	unknown (Bacillus subtilis)	6	32	612
604	-	1433	795	911143830	xpac [Bacillus subtilis	63	29	639
	-	1 943	43	91 401786	phosphomannomutase (Mycoplasma pirum)	64	29	4.11
1 1052	-	1 422	213	91 1303799		6+	21	210
1800		342	172	gi 216300	peptidoglycan synthesis ensyme [Bacillus subtilis] sp[PJ7585]MURG_BACSU HURG PROTEIN UPD-N-ACETYLGLUCOSAHINEN-ACETYLMURAMYL- PENTAPEPTIDE) PYROPHOSPHORYL-UNDECAPRENOL N-ACETYLGLUCOSAHINE RANSPERASE).	6	28	171
2430	-		376	sp P27434 YFGA_	HYPOTHETICAL 36.2 KD PROTEIN IN NDK-GCPE INTERGENIC REGION.	6.	36	375
3096	-	542	[12]	91 516360	surfactin synthetase (Bacillus subtilis)	64	25	270
25	-	1 1778	3100	91 1217963	hepatocyte nuclear factor 4 gamma (HNF4gamma) [Homo sapiens]	88	36	672
85 -	-	-	609	91 (1205790	H. influenzee predicted coding region HII555 (Haemophilus influenzae)	48	28	609
4	9	5021	6427	01/1524267	unknown [Mycobacterium tuberculosis]	48	20	1407
65	=	116346	31096	91 1197336	Lmp3 protein (Mycoplasma hominis)	88	28	14751
19	-		809	91 1511555	quinolone resistance norA protein protein (Methenococcus Jannaschill	48	30	909
19	-	3311	3646	91.1303893	Yqht (Bacillus subtilis)	8	29	336
=		8	418	gi 671708	surs) homolog: similar to Drosophila melanogaster suppressor of able (su(s)) protein, Swiss-Prot Accession Number 722293 Drosophila virilis)	8	52	318
121	-	1611	019	911314584	unknown Sphingomonas S88	89	29	\$22
136	-	2014	1280	91;1205968	H. influenzae predicted coding region H11738 (Naemophilus influenzae)	4	23	735
12.1	92	9220	1 9557	gi 1208454	hypothetical protein (Symechocystis sp.)	8.	34	1338
175		3625	1814	gi 396400	similar to sukaryotic Na·/H· exchangers [Escherichia coli] sp p12703 yJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC REGION (0549).		59	1812
194	-	2	385	gi 1510493	H. jannaschii predicted coding region MJ0419 [Methanococcus jannaschii]	8	25	384

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig 10	. <u>.</u>	(nt)	Stop Int.	metch	makçh gene name	E	1 Ident	length (nt)
197	-	106	452	91 1045714	spermidine/putrescine transport ATP-binding protein [Nycoplasma genitalium]	89	25	650
203	-	-	396	gi 940288	protein localized in the nucleoil of pes nuclei; ORF; putstive Fisum sativus)	2	53	396
204	-	1363	969	gi 529202	No definition line found [Caenorhabditis elegans]	8	25	999
506	120	14815	27760	gi 511490	gramicidin S synthetase 2 (Bacillus brevis)	89	22	1056
212	-	2	166	lgi [295899	nucleolin [Xenopus laevis]		7	165
220	01	~	111426	91146073	Secy protein [Lactococcus lactis]	8	7	1227
243	9	6450	5491	[gi 1184118	mevalonate kinase (Methanobacterium thermoautotrophicum)	87	ox	096
264	-	5434	3308	gi 1015903	ORF VJR151c (Saccharomyces cerevisiae)	•	56	2127
7	<u>-</u>	1532	768	91 142863	replication initiation protein (Bacillus subtilis) pir 826580 826560 replication initiation protein - Bacillus ubtilis	 20	2	765
777	-	3898	5298	gi 145836	[putative (Escherichia coli]	69	24	1401
484	~	1 388	1110	91 146551	transmembrane protein (kdpD) [Escherichia coli]	48	81	723
542	-	1 1425	2000	pir 528969 5289	N-carbamoylsarcosine amidohydrolase (EC 3.5.1.59) - Arthrobacter sp.	5	7.2	976
206	-	-	1019	gi 153490	tetracenomycin C vesistance and export protein (Streptomyces laucescens)	•	24	1017
611	-	7	730	gi 1103507	unknown (Schizosaccharomyces pombe)	9	38	729
624	-	1255	599	91/144859	ONF B (Clostridium perfringens)	4	56	591
846	-	1014	508	91 537506	paramyosin [Dirofilaria immitis]	4	2.1	507
1020	-	99	930	19111499876	magnesium and cobait transport protein [Methanococcus janusschii]	49	30	9#5
1227	-	-	174	gi 493730	lipoxygenase (Pisum sativum)	8	38	174
1266		-	405	qi 882452 	ORF_(211, elternate name yggA, orf5 of X14436 (Escherichia coll) gi 41425 ORF5 (AA 1-197) (Escherichia coll) (SUB 15-211)	9	77	405
2071	-	707	381	9111408486	HS74A gene product (Bacillus subtilis)	8	25	327
2398	_	1 463	233	gi 1500401	reverse gyrase (Methanococcus jannaschii)	8	Ç.	162
2425	-	476	246	pir H48563 H485	GI protein - fowlpox virus (strain HP444) (fragment)	4	40	231
2432	-	446	225	gi 1353703	Trio (Homo sapiens)	48	133	222
2453	-	794	399	gi 142850	division initiation protein (Bacillus subtilis)	48	29	396
2998	-	469	236	gi 577569	PepV (Lactobacillus delbrueckii)	e	12	234
******	-	********						

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF TD	Start (nt)	Stop int)	match	match gene name	• sim	• ident	length (nt)
1 3042	-	01	280	gi 945219	mucin [Homo sapiens]	89	35	267
3686	-		1 405	[91]145836	putative (Escherichia coli)	8.	25	405
4027	- 2	1 492	301	pir.S51177 S511	trans-activator protein - Equine infectious anemia virus	89	32	192
-	- 2	1 3641	2232	gi 1303989	YQKI (Bacillus subtilis)	4.7	24	1410
~	-	665	1084	91 540083	PC4-1 gene product [Bradysia hygida]	•	28	486
95	2	7524	6925	19111209223	esterase (Acinetobacter Iwoffii)		9,5	009
-	- 3	196	1884	91 1403455	unknown [Mycobacterium tuberculosis]	47	27	1689
=	:	1	115108	gi 1511555	quinolone resistence norA protein protein [Methanococcus jannaschii]	£2 ±	16	1011
69		141	6710	91 438466	Possible operon with orig. Hydrophilic, no homologue in the atabase; putative [Bacillus subtilis]	£	29	432
=	-	1 5022	4279	91 466882	-189	47	24	744
120	123	1 9135	1 8863	gi g27340	[D9509.27p; CAI: 0.12 (Saccharomyces cerevisiae]	47	38	273
142	-	1 2022	1174	191 486143	ORF YKL094w (Saccharomyces cerevisiae)	4.7	32	849
16A	-	1 2178	1 1093	91/1177254	hypothetical EcsB protein (Bacillus subtilis)	4 2	29	1086
263	-	1 1884	1 943	91 142822	D-alanine racemase cds [Bacillus subtilis]	\$	34	942
279	- 	1109	261	91 516608	2 predicted membrane helics, homology with B. subtilis men Orfl Rowland et. al. unpublished Accession number H74183), approximately 1 minutes on updated Rudd map; putative [Escherichia coli] sp[P37355 VFBB_ECOLI HYPOTHETICAL 26.7 KD PROTEIN IN MEND-MENB	5	16	549
145	- 5	1 2620	1676	91/1204835	hippuricase (Haemophilus influenzae)	47	28	945
389	-	152	007	91 456562	G-box binding factor [Dictyostellum discoideum]	47	32	249
1 391	-	1	833	91 (1420856	myo-inositol transporter [Schirosaccharomyces pombe]	47	19	831
707	-	1 2072	2773	91 1255425	[Cl]GB.2 gene product [Caenorhabditis elegans]	47	- 6.1	702
529	-	1 2145	3107	0111103973	Yqjv (Bacillus subtilis)	-	56	963
595	- 5	1 2321	1257	91 142824	processing protesse (Bacillus subtilis)	4.1	2.8	1065
654		962	483	91 243353	ORF 5 of ECRF3 (herpesvirus saimiri HVS, host-squirrel monkey, eptide, 407	-	23	480
692	-	1115	633	91 150756	40 kDs protein (Plasmid puM1)	4.7	25	519
1 765		1634	818	91 1256621	26.7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative [Bacillus subtilis]	5	28	816

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

914				acession		-	-	
_	~	117	1023	91;397526	clumping factor (Staphylococcus aureus)	- 5	32	833
	-	-	615	911558073	polymorphic antigen [Plasmodium falciparum]	47	7 67	615
9.01	_	_	753	91 1147557	Aspartate aminotransferase (Bacillus circulans)		2	753
1351	-	793	398	gi 755153	[ATP-binding protein (Bacillus subtilis)	-	- 02	396
- 7		_	293	91 145836	[putative (Escherichia coli)	47	74.	291
-	<u> </u>	4708	4361	91 305080	myosin heavy chain [Entamoeba histolytica]	9,	- 02	348
-	- -	1,112	3058	91 603639	YelO4Op (Saccharomyces cerevisiae]	- 99	28	282
46 11		10518	10300	91 1246901	ATP-dependent DNA ligase (Candida albicans)	99	28	219
5	-	1941	7930	1911298032	[EF (Streptococcus suis)	46	- 51	3930
132	-	; - ;	4093	191 1511057	hypothetical protein SP:P43869 [Methanococcus jannaschii]	46	25	916
-	_ -	4719	3652	pir 551910 5519	C4 protein - Sauroleishmenia tarentolee	9	7 92	1068
161	_	9543	8284	91 1041334	P54D5.7 (Caenorhabditis elegans)	9	25	1260
253	-	-	396	91 120449	dihydroliposmide acetyltransferase (Haemophilus influenzae)	9	35	396
	~	437	973	91 180189	cerebellar-degeneration-related antigen (CDR34) [Homo sapiens gi 182737 cerebellar degeneration-associated protein [Homo sapiens] pir A29770 A29770 cerebellar degeneration-related protein - human	9	29	537
273	_	485	285	gi 607573	envelope glycoprotein C2V3 region [Numan immunodeficiency virus type]	97	35	201
350	-	-	563	gi 537052	ORF_[286 [Escherichia coli]	46	15.	561
3#4	_		R62	19111221884	(urea?) amidolyasa (Heemophilus influenzae)	9	- 16	H61
410	-	1876	2490	gi 1110518	proton antiporter efflux pump [Mycobacterium smegmatis]	9	24	615
432		2663	1455	91 1197634	orf4; putative transporter; Method: conceptual translation supplied by author (Mycobacterium smegmatis)	9		1209
458	_	2419	1211	91 115470	portal protein (Bacteriophage SPP1)	9	- oc	1209
-	- 5	2477	4192	191 1523#12	orf5 [Dacteriophage A2]	9	23	1716
540	-	1512	1285	gi 215635	pacA (Bacteriophage Pl)	9	00	228
587	2 - 6	649	1242	91,537148	ORF_f181 (Escherichia coll	46	29	594
1218 1		747	391	911205456	single-stranded-DNA-specific exonuclesse (Haemophllus influenzae)	46	e e	357

S. aureus - Putative coding regions of novel proteins similar to known proteins

. 45

Contig	ORF	Start	Stop (nt)	match	match gene name	E	1 Ident	length (nt)
36.85			402	g1 450688	hadM gene of Ecopril gene product (Eacherichia coli) pir [538437 538437 hadM protein - Eacherichia coli pir S09629 S09629 hypothetical protein A - Escherichia coli (SUB 40-520)	9	3	4 02
4176	-	673	338	191 951460	[FIM-C.1 gene product (Xenopus leevis]	46	31	336
1 37	-	1 4813	1 5922	gi 606064	ORF_f408 Escherichia coll	45	24	1110
38	91	111699	12004	191 452192	protein tyrosine phosphatase (PTP-BAS, type 2) [Homo sapiens]	45	74	306
LB	7	1748	2407	9: (1064813	homologous to sp:PHOR_BACSU Bacillus subtilis	45	23	099
103	717	114182	113385	19111001307	hypothetical protein (Symechocystis ap.)	45	22	798
112	=	114791	13811	gi 1204389	H. influenzae predicted conting region HT0131 [Haemophilus influenzae]	45	23	186
145	-	4483	3462	191 220578	open reading frame (Mus musculus)	45	20	1023
170		6329	4965		AppC=cytochrome d oxidase, subunit I homolog (Escherichia coli. Kl2.	£	27	1365
1 206	-	5230	4346	91 1222056	aminotransferase (Haemophilus influentael	45	27	888
228		9	716	gi(160299	glutemic acid-rich protein (Plasmodium falciparum) pr 34514 A54514 glutemic acid-rich protein precursor - Plasmodium alciparum	\$	23	657
288	-	7	1015	91 1255425	[C33G8.2 gene product [Caenorhabditis elegans]	45	2	1014
313	-	1 4339	3128	1911581140	NADH dehydrogenase [Escherichia coli]	45	30	1213
1 332	-	914	459	1911870966	[P47A4.2 [Caenorhabulitis elegans]	45	20	456
344	-		727	(gi (171225	kinesin-related protein [Saccharomyces cerevisiae]	45	26	219
441		1501	1073	gi 162863	replication initiation protein (Bacillus subtills) pir B26580 B26580 replication initiation protein - Bacillus ubtills	2.	27	429
672	-	7	982	gi 1511334	M. jannaschii predicted coding region MJ1323 (Methanococcus jannaschii)	45	22	186
1 763	_	1345	851	di 606180	ORF_f110 (Escherichia coli)	5	24	495
A86		379	846	gi 726426	stailar to protein kinases and C. elegans proteins F37C12.8 and 37C12.5 [Caenorhabditis elegans]	4 5	30	468
948			473	91 156400	ayosin heavy chain (isozyme unc-54) (Gaenochabditis elegans) pir A91958 HWKW myosin heavy chain B - Caenorhabditis alegans sp p02566 HYSB_CAEEL MYOSIN HEAVY CHAIN B (MHC B).	\$	52	72
1158	-	7	376	gi 441155	ransmission-blocking target antigen (Plasmodium falciparum)	45	35	375
1 2551	-	7	285	191 1276705	ORF287 gene product (Porphyra purpurea)	5	28	282
13967	-	42	374	gi 976025	HrsA (Escherichia coli)	45	28	333

TABLE 2

Contig	ORF	Start	Stop	match	natch gene name	E S	• ident	length	
a s	2 2	(10)	5846	011467378	unknown (Bacillus subtilis)	=	22	1086	
138		6475	6849	91,173028	thioredoxin II (Saccharomyces cerevisiae	=	28	1376	_
221		7032	1 5617	gi 153490	tetracenomycin C resistance and export protein [Streptomyces laucescens]	7	21	1416	
252	7	1331	1122	91 1204989	hypothetical protein (GB:U00022_9) (Haemophilus influenzae)	=	.30	210	
263		3265	2093	91 1136221	carboxypeptidase (Sulfolobus solfataricus)	÷	792	1173	
365	-	4963	3524	91 1296822	orfl gene product [Lactobacillus helveticus]	7	ī.	1440	
543		3161	1833	g1 :063250	low homology to P20 protein of Bacillus lichtmiformis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus subtilis)	2	24	519	
544	-	3942	4.892	gi 951460	FIM-C.1 gene product Xenopus laevis	7	32	951	
192	-	1224	613	 gi 205680	high molecular weight neurofilament (Rattus norvegicus)	77	28	612	
	===	11303	11911	91 1511614	molybdopterin-guanine dinucleotide blosynthesis protein A [Methanococcus jenneschii]	£3	27	609	
- 59		1 3665	5128	911153490	tetracenomycin C resistance and export protein (Streptomyces laucescens)	43	1 2 1	1464	- •
65	01	1 5536	1527	91 153022	lipase (Staphylococcus epidermidis)	Ç	22	1992	
66	-	1346	189	19111419051	unknown (Mycobacterium tuberculosis)	63	717	999	
310	-	9402	112134	gi 397526	g fact	43	21	2733	
132	-	1 2782	1 2303	pir A60540 A605	sporozoite surface protein 2 - Plasmodium yoelli (fragment)	43	29	480	
519	<u></u>	1 2547	3122	sp Q06530 DHSU_	SULFIDE DENYDROCENASE (FLAVOCYTOCHRONE C) FLAVOPROTEIN CHAIN PRECURSOR (EC. 1.8.2) (FC) (FCSD).	Ç	2	576	
4	=-	12053	13321	191 295671	selected as a weak suppressor of a mutant of the subunit AC60 of DNA ependant RNA polymerase I and III (Saccharomyces cerevisiae)	42	8	1269	
1 94	- 2	1768	1 1091	gi 501027	ORF2 (Trypanosoma brucei)	43	7	678	
121	-	1 5791	4550	191 42029	ORF1 gene product (Escherichia coli)	42	21	1242	•
1 297	-	1515	1036	91 142790	ORF1; putative [Bacillus firmus]	7	25	480	
344		1 4097	13525	çi 40320	ORF 2 (AA 1-203) (Bacillus thuringiensis)	42	00	573	
512	-	1 2167	1115	91 405957	yeaf Escherichia coli	75	1 23	1053	
631		2434	1223	91 580920	rodD (gtaA) polypeptide (AA 1-673) [Bacillus subtilis] pir S06048 S06048 probable rodD protein - Bacillus subtilis sp P13464 raGE_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLJCOSYLTRANSFERASE (EC 2.4.1.52) [TECHOIC ACID BIOSYNTHESIS ROTEIN E].	\$	24	1212	

TABLE 2

_	length (nt.)	621	393	492	723	978	738	762	1011	474	402	258	303	105	2343	4530	\$601	1626
5 .	• ident	19	25	90	22	26	18	24	21	30	20	18	72	35	24	19	22	27
10 .	s sim	42	42	=	41	41	1	‡	1.	- -	Q	40	65	3,	1 36	36	35	22
51 proteins				pir S43430 S43430 (Nus saxicola)				Method: conceptual translation supplied by			asparagine-rich antigen Pfa35-2 [Plasmodium falciparum] pir [527826 827826 asparagine-rich antigen Pfa35-2 - Plasmodium alciparum (fragment)		by C. elegans CDNA alternatively spliced form					691 CSP_PLAFL
11ar to known	1 1 1 1 1 1 1 1		m discoideum)	Mus saxicola] - spiny ouse		15.)		ptual transla			n falciparum) ium alciparum		coded for by C. ykla9.5, altern	ins)				parum sp P05
5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	protein tyrosine phosphatase [Dictyostellum discoideum]	spermidine/spermine NI-acetyltransferase (Mus saxicola) spermidine/spermine NI-acetyltransferase - spiny ouse	orf4 gens product [Methanosarcina barkeri]	observed 35.2kd protein (Nycobacteriophage 15)	ca)		yoe111)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	aparagine-rich antigen Pfa35-2 (Plasmodium falciparum) asparagine-rich antigen Pfa35-2 - Plasmodium alciparum	- fowlpox virus		C33G8.2 gene product (Caenorhabditis elegans)	eichenowi]	1 1 1 1 1 1 1 1 1 1 1 1	cerevisiael	circumsporozoite protein (Plasmodium falciparum) sp P05691 CSP_PLAFL CIRCUMSPOROZOITE PROTEIN (CS) (FRAGMENT).
S O regions of nave	984	s subtilis)	ine phosphatase	ermine N1-acety	duct [Methanos	Kd protein (Ny	Trsa (Yersinia enterocolitica)	orf4; putative transporter; Meth author (Mycobacterium smegmatis)	rhoptry protein [Plasmodium yoelii]	at	ch antigen Pfa ich antigen Pf	protein 5 - fo	oded for by C. elegans CDNA ykl7g1.5; yksc9.5; coded for by C. elegans CDNA of F32C9.8b [Caenorhabditis elegans]	product (Caeno	STARP antigen (Plasmodium reichenowi)	occus suis]	ONF YJR151C (Saccharomyces cerevisiae)	ircumsporozoite protein (Plasmodium (alc CIRCUMSPOROZOITE PROTEIN (CS) (FRAGMENT)
25 24 ive coding	match gene name	[YqeD [Bacillus subtilis]	protein tyros	spermidine/sp	orf4 gene pro	observed 35.2	Trsa (Yersini	orf4; putativ	rhoptry prote	nucleolin - rat	asparagine-ri	hypothetical protein 5	coded for by yksc9.5; cod of F52C9.8b	C33G8.2 gene	STARP antiger	EF Streptococcus suis	ONF YJR151C	CIRCUMSPORO
nd - sna - 5.	match	1911303784	91 1022910	gi 309506	911124957	91 15873	91 633692	91 1197634	gi 457146	pir JH0148 JH01	g1 552184	pir S42251 S422	91 105 505 5	191 11255425	1911535260	191 298032	19111015903	91 552195
45	Stop (nt)	1739	395	88	114075	7216	1 2000	3386	1103	475	402	1 261	305	503	110636	8079	13601	3574
	Start (nt)	2359	787	1375	114797	2150	1263	2625	-	7	-	518		1003	8294 110636	3550	2507	1949
50	J ORF	-	-	~_	21	9	-					-		-	122	- 5	-	
	Contig	685	4132	98	191	212	213	409	542	924	1562	1 2395	407	41.6	. 65	[9]	544	5

` *55*

to known proteins																										٠			
similar																													
proteins not	Stop		692	2278	3032		1601	1111	4550	6422	8547	1982	1.96	5983	9619	6284	11211	4942	1862	1650	10835	917	7764	8230	8803	10470	139	5485	5942
of novel	Start		1234	1712	1703	13073	2539	1532	4741	9866	8711	2359	349	5144	\$968	6472		5352	9657	1695	1263	1093	9125	8571	9201	12158	674	6138	6376
lons	ORF	2	<u>- i</u>	_	-	-	~	_	_		2	-	-		6	91	9 2	s	9	2	2	~	<u></u>	97	2		_	9	80
Putative coding regions of novel	Contig	2	-	•	-	•	5	s.	s	2	•	9	•	11	17	11	=======================================	12	12	15	16	18	20	20	02	20	23	23	2
tative		- • ·	•			•	• —	•	•-	• —	• -	-	•		_	-	•-	• —	•-	•	•	-	-				. — `		_
1																													
S. Sureus																													

1	0

~~	
20	

2	5	
-	•	

3	0	

~-	
35	

Stop	6881	12830	4185	5241	2402	849	1524	3005	1388	8575	8728	9379	10067	1049	5801	7261	7621	2964	086	6868	16371	20804	21264	627	*
Start (nt)	7651	12618 1	1 9559	5642	1624	\$05	1177	2454	765	7952	8591	9738	_	1315	5226	1575	7424	3158	1585	6425	16982	0253	20722	-	
를 2	•	<u>5</u>	-	9	~	~	_	-	~	6	2	=	2	~	_	=	2	-	~	=	2	126	72	-	
Contig	R	ຂ	24	24	25	31	ä	ī	32	25	32	32	32	7.	36	36	36	7.5	38	38	38	138	38	39	

•	• - •	• - •	•		• - •			• - -			•	•		• —	• —	· —	• — ·			• •	.	• – •	• – •	• —	
Stop (nt)	3263	10129	13536	13994	6297	6520	92601	15424	1079	9777	962	1316	370	2245	287	6319	8709	326	786	261	1228	1560	18712	3521	5822	8553	1509
Start	2484	0587	3724	3596	6575	6365	6449	5032	188	7620	1612	1621	3.8	2520	422	6705	9014	592	1052	-	1881	1970	2606	3694	5436	8885	1366
10	- 2	=	20 -1	12	-		7 21	-11	-	-	-		_ 	-	_ 	-	-	-	-	-	_	-	12	-		6	
Contrib	\$	3	\$	7	45	9,	46	97	42	87		05	25	22	53	23	7	25	55	26	26	26	26	52	57	58	65
: <u>-</u> _	<u>:</u> —	! _ :	! _ ·	! —	: —	! _	! —	! —	! –	: –	! —	! —	! —	! –	! —	! — !	-	! —	: _ ·	! —	: —	! — ·		: —	: — .	: _ :	! —

not similar to known proteins
know
ţ
similar
, pe
g regions of novel proteins
novel
ŏ
suotbai
coding
Putative
٠

::-:	-;-	;-;	-:	-	-	<u> </u>	<u>-</u>	-	-	-	-	-	<u>-</u>	-	-	-	-	-	<u> </u>	-	- -	-	<u>-</u>	-	<u>.</u> – -
Stop (nt) 2802		8378	16403	1521	5757	336	1921	2610	3904	6955	326	6615	8645	1192	1228	1791	6	8653	8781	1232	9366	1922	191	4878	055
Start (nt) 3026	3770	7518	10401	2696	5440	-	006	1774	2591	2110	78	6761	8935	1590	1509	141	7	8300	8968	1426	9187	1620	-	5042	1098
6 II 0	- -	=	2	~	11	-	-	~	2	8	-	9	=	2	~	-	-	6	01	-		2	-	7	-
Contig PD S9		89	53	62	62	63	69	67	67	63	89	7.0	20		79	79	83	88	85	98	87	88	88	69	16
• • •		•-•		-	• — •	•		• —	• —	•	• —	•	•	• —	•	• — •	• —	•	• —	• —	• —	• —	• —	•	•

	proteins
	though .
	2
	similar.
	pot
	reus - Putative coding regions of novel proteins not similar to known proteins
	nove
	ď
	regions
	coding
	Purative
	•
	20.07

, 55

bro	
known	
ដ	
similar	
Jot.	
proteins	
novel	
ŏ	
regions	
coding	
Putative	
1	

				-																				·.				
t) (nt)	73 4462	9 66 6	13 10158	3	70 38	06	-	-	2648 3196	-	73 6438	5 1 1	667	~	24 729		6008 6463	- 10	19 1513	-	60 23	30 7586	7290 6502	27 640	1 511	2 1350	73 2540	
ID Int	3 62	8 1104		3.1	6 42	_	2 41		3 26	; \$	1 6 1 677	i -	1 1 2	2 51	3 112	1 - 3	09 4			23	12	1 7 8830	21 1 1	1 1/12	1 1 2	05 6	1 4 36	
-2	116	116	116	120			1 121		1 127		133		134	135	135	861	138	140	140	140	142	142	CP1	144	146	146	146	

5	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

	• —	• – :	• —	. _ .		• —	• —	•	• —	•											•			_	_		
Stop (nt)	1,000	339	3615	37.85	4145	4610	5049	\$491	7054	8521	9106	9897	1587	1508	6398	12147	12803	593	2232	1064	808	1808	4279	4540	tic.	\$638	840
Start (nt)	2874	-	3956	4036	4507	4807	2495	5739	7416	9276	9681	10679	2303	1795	6586	12704	13531	315	1183	151	452		4653	1003	9681	5817	1604
<u> </u>	\$	-	=	2	2	21	9	91	12	23	7	<u>~</u>	~	_	-	=	15	7	<u>.</u>	7		~				=	~
Cant ig	146	147	149	149	149	149	671	149	149	149	149	149	150	154	154	154	154	156	157	158	159	191	161	161	161	191	163
	. – .	. — .	• •				• —			-, •			-		•	-	• —						_	-	-	- :	_

		ı	
		t	
	,	١	

E S																													
Š				,																									
2018	† -		;-	1-	;-	;-	-	-	-		-	-	-	-	-	-	-	_	-	_	-	_	-	_	-	_	-	[-	_
proteins	Η.	Stop (nt)	2344	2647	5132	110	4824	2868	4158	2777	1450	11125	278	1149	108	3	1105	2890	2	450	4986	5702	175	299	303	356	153	699	1303
nove1		 Ľ -	-	-	-	-	-	8	- ·	-	_		-	-	_	_	-	~	-	<u>.</u>		_		5	_		-		90
ĕ		Sta	279		100	133	22.	250	359	251	227	1257	_	5	128	90	65	255	287	Š	5	9	121	78	5	6	_		1117
regions		ID OR	,	-	6	-	-	-	5	_	~	=	-	~	-			2				~	2	-	9	-	-	7	01
						_							_					5	5			-					1		
coding	i	25.	163	9	197	164	166	89	168	=	=	Ē	-	15	=	1.1	1	=	15	17	=	=	=	=	=	19	13	-	5
۷e د	•		· : -	- : -	· • —	÷-	<u>.</u> –	. —	-	÷ —	÷ —	•	• –	• –	• –	•	• –	• –	• –	• –	• –	•	• —	• –	•	•	•	• – ·	_
5																													

i	,	

1	5	

₽																			•								
೭																											
similar		-																									
s not							•					•							•								
=	;	-	-	-		-	-	-	i – i	_	-	-	-	-	; –	-	-	: — ·	-	_		-	-	_	-	; - ;	1-1
proteins	1 25 =			1932	N	-		. ~		36	9	1 2	116	1 ~	. 4		ı vo	. ~	6995	7469		افتا	I (1)	1369		1208	1999
novel	17-	: -	-	-	_	; -	;	-	-	_	-	:-	-	-	; — ·	-	- -	-	-	_	-	-	- -	-	-	-	1-:
of no	Star (nt)				2899	1016	170		8930	394	2	170	796	312	5				9		1927	~	i -	1881	3251	8275	10244
egions		=	-	_	•	~	-	~	٠		12	2	_	_	6	-	~	9	•	2	-	-	2	~	_	_	
34	5																										[-]
coding	1 12		192	195	195		201	203	206	306	206	212	212	212	31	1 1		· ~	7	2 3	217		. ~	220			02
Putative c			-	• •	. —.	• -	. —		• —	-	•	•	. –	• —		• — •	• —	• —	•	• —	. — 1		• —	. — .	· — ·		. — •
•																											

5	
_	

.

S. aureus - Putative coding regions of novel proteins not similar to known proteins

																							. <u> </u>	1			
Stop (nt)	2613	10757	629	1459	1961	487	975	2121	2345	3768	6367	2877	3526	3762	579	1391	905	4334	1363	576	647	1962	1258	215	1733	3712	ŀ
Start (nt)	3095	11428	_	2196	1476	~	097	1855	2052	4760	5591	2503	2846	3944	609	1975	1417	4495	1677	721	1291	3035	1614	69	738	3906	
R C	-	•	-	~		2	~	-	5	•	6	\$	9	۲	7	7	~	2	7	-	-	~	~	_	-		
Contig	221	221	226	226	326	227	227	227	722	227	1 227	228	228	233	236	238	1 239	1 241	242	243	244	244	1 245	246	246	249	

	156	1144	3227	1 0857	2606	3681	439	4533	5107	931	4700	779	1439	4909	6035	1901	553	3448	5127	736	1950	2276	1055	1932	622	2051	1349
	-	i wo	3700	4906	2196	3214	155	5252	4739	1323	2140	862	1200	1697	6949	1746	776	3299	4849	188	1756	2055	2107	2234	332	1545	1606
9 0 I	-	~	_	-	-	-	~	<u></u>	-	~	-	-	_	6	2	-	_	~	_	~	_	5	-	~	~	50	_
	254	256	257	260	261	261				267	268	272	272	272	272	276		276	278	285	288	288	289	290	291	291	295
•		•	_	-	-	. –	-		-	-	• —	-	•	-	_		• —	• —		-	-	-		•	•	. – .	-

																								•			
Stop	2141	2762	165	205	1928	2624	194	654	4257	339	1 3995		888	2332	1919	702	1341	3165	1114	3458	5217	6140	6794	543	7111	1467	469
Start (nt)		2220	788	1 ~	2380	2794		109	4036	674	3645	-	0211	2643	2316	9	985	2758	~	4570	5995	6319	7450	827	165	6111	936
SK.	-	~	~	-	~	-	_	_	2	-		-	~	-	~	-	~	•	-	~	-	_		~	~	~	-
Contig	295	295	297	298			304	306	306	307	307	308	308	308		314	316	316	317	317	321	321	321	323	326	326	328
•	•	• -	• —	• -	• –	•	• –	•	•	•-	• -	• —	• —	• -	• —	• —	• –	• —	• –	• —	• –	• —	•	•	• —	•	•

15	-
20	
25	
30	,
35	

																				-			:	:			
Stop	1 3276		1212					. ~	: 6	433	22	356	281	1 3192	3944	•	1 2889	1 768		1598	1765		B404		9884	546	656
Start (nt)	3452		781	1431				1764		864		1658		: 7	3618	3929	3197	1532		0171		7316	7967	رقة أ	10171	-	
80	5	-	~	_	_	_	_	_	~	_	~	~	-	_	'n	٠	5	-	~	-	~	_	_	_	_	-	-
Contig	320	. ~	329		330		332		. ~			070			341	341	344		346	350	352	35		. 25	352	359	362
· — ,	,			-	-			•	-	• -		• -	-	• —	• -		•			-	•-	-		• —			• —

.

																		•						• - -	•	• •	• —
Stop (nt)	1808	10714	1313	060+	6239	1719	1085	494	136	1097	276	877	1549	260	197	8901	1141	699	847	465	5370	2269	2672	4423	1890	488	320
Start (nt)		10974	1612	4680	4980	520	906	7 887	~	1381	: _	~	5.00	151	391	2132	1344	178	999	001	1955	3507	2875	3524	2111	880	607
28 CT	-	-	-	5	-	-	-	-	-	_	-	-	~	~	-	-	-	-	-					2	-	-	-
cqnt ig	364	364	365	365	365	366	367	368	375	380	389	390	390	191	395	396	398	399	4 01	402	404	408	\$ 0 \$	408	410	413	416
	-	-	• -	•	•	• –	• –	• —	•	• –	•-	•	•	• –	• –	•	•	• -	•,	•	• —	• –	• –	• —	•	• –	•

40,040		
1 1000		
144.14		
and a state of the		
ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:		

•			

15	

20	
20	

_	_	

- putative coding regions of novel proteins not similar to known proteins

3	0

																			٠.								
Stop (nt)	349	250	925	3372	3706	538	3694	5686	9181	5778	200	1017	267	760	2081	2332	4261	480	774	2112	359	675	520	1242	1521	346	4150
Start	654	~	1488	2386	3464	- 11	4098	6330	1351	8175	940	1562	0,	~	1764	2066	4016	956	613	1795	715	127	~	496	1149		4566
98 C	1-	1-	-	-	-	-	9		-	120	-	- 5	-	-	-	-	5	- 2	_		-	-	-	~	_	-	2
Contig	467	468	469	469	469	410	670	410	470	470	471	471	476	411	111	177	480	481	987	487	488	492	493	493	\$02	504	\$0\$
<u> </u>	: —	! —	÷-	:	- -	- –		÷ —	÷ —	÷ —	· -	: —	÷ —	• –	• -	-	+		• –	• –	•	• –	• –	•	• –	• —	٠-

knom
5
similar
nat
proteins
novel
ö
regions
coding
Putative

:-	: =	100	4444	2
1000 1000 1000		<u> </u>	(nt)	tut)
511		~	13741	1232
215		~	583	747
\$15		-	609	613
517		-	2179	2511
220		<u>.</u>	2097	2360
520		9	3908	3669
527		-	-	498
		-	637	335
	•	~	1679	1104
530	•	~	5296	5534
	:	1	308	156
538	:	-	1362	736
53A	:	_	2203	2880
	:	5	3531	
	!	9	8	11676
240	: :	-	966	664
\$60	:	~	1495	1001
24	:		6	433
145	: !	~	719	432
245		7	1048	1272
545		7		734
	!	-		1129
\$55	1	7	892	704
558		~	1357	1154
558	•	-	1760	1458
558	•	2	2105	1851
	1		2316	0.00

																					,						
top at)	i m	A02	453	21	485	96	1 902	1 66	53		200		39		1 216	554	34	141	75	122	- 06	435	69	469	89	326	_ =
Start Si	36 - 2	1053 2	1 986	6 50	1706 1	108	994 1	2 1	163	-	1784 1	1988 9	946 5	22 5	1896 1	1742 1		1455 1	2 7	817 1	87 6	1593 1	æ	1 1 1 1 1 1 1	7 226	1001	1029 5
-	-	-	•	-		-	-	-	~	-	~		1	- -	~	-	-		_ _	7	-		_ _	- \$	-	-	-
cqnt ig	558	558	558	560	565	11,5	571	5.7	\$77	579	675	583	285			588	290	592	593		565	965		603		607	610
•	• –	• -	• —	•-	• –	•	• –	• –	-	•		-	-	. –	-		•							,			

•	0	
۱		

1	٤	,		

•	^
_	v

2	?	5	,	

3	0	

¢	25	
·	·	

	^	
4	v	
	-	

5																												
ein9	:	<u> </u>	-	-	-	;-	-	:-	-	-	-	-	:-	-	-	-	-	-	-	-	<u>-</u> -	-	-	-	-	-	-	<u>:</u> –
prot	Stop (nt)	200	650	491	35	2549	210	\$2	00	759	368	1063	1994	1081	261	=	3	12.	1847	809	1758	2321	2488	1045	5	872	961	304
20.		-	-	-	<u>-</u>	 -	 	-	-	-	-	-	 	-	-	-	-	-	-	-	<u>-</u> -	-	-	-	-	-	-	<u> </u>
ot 10	Star (nt)	-	1991	736	36	2046	5	90	4789	1448	189	1929	2323	722	518	151	=	1615	2260	•	1534	2025	2940	~	٤	976	1725	8
glons	38.0	-	-	~	-	-	_	_	_	-	-	~	~	-	-	~	-	-	-	_	-	_	_	_	_	~	-	~
ž	5.0	_	_	_		_	_	_	_	_	36	_		_	39	_	_	~	~	_	_	_	_		_		_	
coding	r C	5	61	3	5	3	2	2	3	3	3	909	3	638	3	639	3	3	3	5	3	3	3	\$	999	9	9	9
9	·					-	_		-			-														• -	. – .	

1	0	

.

15	

•	•
~	u

2E	
20	

		_	
5	и	7	

S. aureus - Putalive coding regions of novel proteins not similar to known proteins

^-	
35	

4	0
•	_

L 00	2	1 -		-	18		906	32	1 740	-	32		149	1 6	67	- 7	02	83	29		22		88		82		200
5 - C	-	-	2 5	-	5 3	-	89 1	36 8	-			-	2	-	-	 -	-	-	Se - 8	_		-	-	-		-	-
35	-	-	- 8	_	98	-	115	12	1 -	_	18	-	-	_	-	-	=	94 -	91 -	=	7	92		-	_	-	_
rig OR	-	_	_		_	-	-	-	-	-		-	-	_	-	-	-	-	-	-	-		_			_	-
5.		99			67	- 67	- 6	89	- 8		69.	02	2	=	-	=	22	- 22	2	72	72	22	23	12		-	74

1	0

15	

20	

2	5	

30	

S. sureus - Putative coding regions of novel proteins not similar to known proteins

٠	٦.	£	•	
ú	7	ü	,	

A	n	
7	v	

					٠,																				•		
Stop	180	464	344	452.	522	918	400	746	405	373	534	905	1023	631	224	260	117	089	842	1112	1442	979	358	1104	1032	1419	1064
Start (nt)	1148	282	683	106	6	520	663	1033	-	7	1058	1735	1790	1260	_	15	304	-	219	2221	1774	38	7.	487	1529	1748	195
03.F.		~	_	_	_	~	-	~	-	-	-		-	_	_	-	_	-	_	_	~		-	~	~	-	-
Contig	745	748	749	751	755	755	758	164		768	171	178	785	787	191	199	804	808	809	810	810	912	817	818	819	619	820
			•	•	•	•		•	•	•	•				•				•		•		-	- ,-	-	. —	-

_		
0		

S. aureus - Putative coding regions of novel proteins not similar to known proteins

255		291	298	196	109	457	449	359	256	410	115	1628	588	454	294	1020	544	785	243	604	508	398	544	188		547
905	-	578	594	320	160	912	303	115			383	1676	-	906	584	1661	981	1567	-	389	2	293	852	נינ	-	1092
-	-	-	-	-	_	-	~	-	-	-	~	9	-	-	-	-	-	-	-	-	-	7	-	-	-	~
828	829	830	832	835	840	848	850	853	960	964	864	1 R64	870	673	875	7.68	878	879	1 881	882	1 890	1 905	906	912		616
	28 1 506 25	28 1 506 25 29 1 48 80	29 1 506 25 29 1 48 80 30 1 578 29	28 1 1 506 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	29 1 506 25 29 1 48 80 30 1 578 29 32 1 594 29 35 1 310 79	29 1 506 25 29 1 578 29 30 1 578 29 32 1 594 29 35 1 320 79 40 3 491 70	28 1 506 25 30 1 578 29 32 1 594 29 35 1 130 79 40 3 491 70 45 1 912 45	28 1 506 25 29 1 48 80 30 1 578 29 32 1 594 29 35 1 320 79 40 3 491 70 44 44	29 1 506 25 29 1 48 89 30 1 578 29 32 1 594 29 35 1 912 45 50 2 103 45 51 1 912 45 53 1 715 35	28 1 506 25 29 1 48 80 30 1 578 29 32 1 594 29 40 1 1320 79 40 3 491 70 40 3 491 70 50 2 1003 44 50 2 1003 44 53 1 115 13 60 1 1 2 25 60 1 2 25	28 1 506 255 29 1 48 800 30 1 578 291 32 1 594 295 40 3 491 705 40 3 491 705 40 1 912 455 50 2 1003 446 51 1 15 355 60 1 2 355 60 1 3 446 60 1 2 355 60 1 3 446 60 3 446 60 3 446 60 3 446 60 3 446 60 3 44	28 1 506 255 29 1 48 800 30 1 578 291 32 1 594 296 40 3 491 705 40 2 303 446 50 2 303 446 51 1 15 355 60 1 2 254 60 1 2 254	28 1 506 1 25 29 1 48 800 29 30 1 578 29 29 40 1 594 296 296 40 1 100 796 296 40 1 100 457 457 50 2 100 467 457 60 1 1 12 255 60 1 1 2 255 60 1 1 2 255 60 1 1 2 255 60 1 1 2 255 60 1 1 2 2 64 6 1676 18 71	28 1 506 1 25 29 1 48 800 29 30 1 576 29 29 40 1 594 296 29 40 1 100 79 46 50 1 100 79 46 50 2 100 46 46 50 1 1 2 25 60 1 1 1 2 25 60 1 1 1 1 1 1 64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 1 506 255 29 1 48 800 30 1 578 291 32 1 594 299 45 1 912 455 50 2 103 444 51 1 12 25 52 1 12 35 54 1 18 414 55 1 18 414 56 1 18 414 57 1 18 414 58 1 18 414 59 1 18 414 50 1 1 18 414 50 1 1 18 414 51 1 18 414 51 1 1 1 1 18 414 51 1 1 1 18 414 51 1 1 1 1 1 1 1 1 1	28 1 506 255 29 1 48 800 30 1 576 29 32 1 594 296 46 1 1320 795 45 1 1320 705 45 1 120 455 50 2 103 446 50 1 2 255 60 1 2 255 60 1 1 2 255 64 1 1 1 446 64 1 1 1 446 1 65 1 1 1 1 1 1 1 64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 1 506 255 29 1 68 800 30 1 578 291 32 1 594 298 40 3 491 709 40 3 491 709 40 3 491 709 40 3 491 709 40 3 419 449 50 2 103 449 50 2 103 449 60 1 715 1359 60 1 1 86 60 1 1 86 61 6 1676 1426 64 6 1676 1484 773 1 1 868 773 1 1 864 274 773 1 1 1 100 774 1 1 1 1	28 1 506 255 29 1 506 255 30 1 578 291 32 1 594 298 40 3 491 709 60 3 491 709 60 1 715 359 60 1 715 359 60 1 715 359 64 1 1 810 64 6 1676 1878 73 1 306 454 73 1 306 454 73 1 1 868 73 1 1 868 73 1 1 868 73 1 1 868 73 1 1 868 73 1 1 868 73 1 1 868 73 1 <t< td=""><td>28 1 506 255 29 1 506 255 30 1 578 291 35 1 594 298 40 1 1 709 40 1 491 709 40 1 491 709 40 1 1 256 50 2 103 449 60 1 2 256 64 1 1 810 64 1 1 810 64 1 1 810 64 1 1 810 64 1 1 810 64 1 1 1 65 1 1 1 67 1 1 1 84 1 1 1 87 1 1 1 87 1 1 1</td><td>28 1 506 255 29 1 48 800 30 1 574 291 32 1 554 291 45 1 100 796 45 1 100 796 45 1 100 796 45 1 100 449 50 2 100 449 50 1 100 449 64 1 100 449 66 1 1 2 256 64 2 100 454 10 66 1 1 1 888 10 67 1 1 100 454 10 68 1 1 100 454 10 69 1 1 100 454 10 60 1 1 100 454 10</td><td>28 1 506 255 29 1 68 800 30 1 574 291 32 1 534 291 46 3 491 709 46 3 491 709 48 1 102 449 50 2 303 449 50 2 303 449 60 1 2 256 60 1 1 2 256 60 1 1 1 1 1 60 1 1 2 2 2 2 2 60 1 1 1 1 1 1 1 1 1 60 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>28 1 506 255 29 1 506 255 29 1 578 291 32 1 594 298 40 3 491 709 60 3 491 709 60 3 491 449 50 2 303 449 60 1 715 359 60 1 715 359 60 1 1 810 60 1 1 810 60 1 1 810 60 1 1 810 60 1 1 810 60 1 1 102 60 1 1 102 60 1 1 102 60 1 1 102 60 1 1 102 60 1 1</td></t<> <td>28 1 506 255 29 1 506 255 29 1 594 298 35 1 594 298 40 3 491 709 40 3 491 709 40 3 491 709 40 3 449 256 50 1 1 2 256 60 1 1 2 256 64 1 1 1 15 158 60 1 1 2 256 1676 1872 64 1 1 1 1 1 2 64 1 1 1 1 2 1 64 1 1 1 1 2 1 65 1 1 1 1 1 1 775 1 1 1 1</td> <td>28 1 506 255 29 1 506 255 20 1 594 298 35 1 370 796 40 1 491 709 40 1 491 709 40 1 491 709 40 1 1 256 50 2 103 449 53 1 715 135 60 1 1 2 256 60 1 1 2 256 60 1 1 2 256 60 1 1 1 2 60 1 1 1 2 60 1 1 1 2 60 1 1 1 2 60 1 1 1 1 2 60 1 1 1 1<!--</td--><td>28 1 506 255 29 1 680 291 30 1 574 291 32 1 534 291 40 3 491 709 40 3 491 709 449 298 291 449 50 2 303 449 50 2 303 449 60 1 1 2 256 60 1 1 2 256 60 1 1 1 1 1 60 1 1 1 1 1 1 1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>28 1 506 255 29 1 506 255 20 1 578 291 32 1 594 298 40 1 100 796 40 1 100 796 40 1 100 70 40 1 100 70 40 1 100 449 50 2 100 449 50 1 100 449 60 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1</td></td>	28 1 506 255 29 1 506 255 30 1 578 291 35 1 594 298 40 1 1 709 40 1 491 709 40 1 491 709 40 1 1 256 50 2 103 449 60 1 2 256 64 1 1 810 64 1 1 810 64 1 1 810 64 1 1 810 64 1 1 810 64 1 1 1 65 1 1 1 67 1 1 1 84 1 1 1 87 1 1 1 87 1 1 1	28 1 506 255 29 1 48 800 30 1 574 291 32 1 554 291 45 1 100 796 45 1 100 796 45 1 100 796 45 1 100 449 50 2 100 449 50 1 100 449 64 1 100 449 66 1 1 2 256 64 2 100 454 10 66 1 1 1 888 10 67 1 1 100 454 10 68 1 1 100 454 10 69 1 1 100 454 10 60 1 1 100 454 10	28 1 506 255 29 1 68 800 30 1 574 291 32 1 534 291 46 3 491 709 46 3 491 709 48 1 102 449 50 2 303 449 50 2 303 449 60 1 2 256 60 1 1 2 256 60 1 1 1 1 1 60 1 1 2 2 2 2 2 60 1 1 1 1 1 1 1 1 1 60 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 1 506 255 29 1 506 255 29 1 578 291 32 1 594 298 40 3 491 709 60 3 491 709 60 3 491 449 50 2 303 449 60 1 715 359 60 1 715 359 60 1 1 810 60 1 1 810 60 1 1 810 60 1 1 810 60 1 1 810 60 1 1 102 60 1 1 102 60 1 1 102 60 1 1 102 60 1 1 102 60 1 1	28 1 506 255 29 1 506 255 29 1 594 298 35 1 594 298 40 3 491 709 40 3 491 709 40 3 491 709 40 3 449 256 50 1 1 2 256 60 1 1 2 256 64 1 1 1 15 158 60 1 1 2 256 1676 1872 64 1 1 1 1 1 2 64 1 1 1 1 2 1 64 1 1 1 1 2 1 65 1 1 1 1 1 1 775 1 1 1 1	28 1 506 255 29 1 506 255 20 1 594 298 35 1 370 796 40 1 491 709 40 1 491 709 40 1 491 709 40 1 1 256 50 2 103 449 53 1 715 135 60 1 1 2 256 60 1 1 2 256 60 1 1 2 256 60 1 1 1 2 60 1 1 1 2 60 1 1 1 2 60 1 1 1 2 60 1 1 1 1 2 60 1 1 1 1 </td <td>28 1 506 255 29 1 680 291 30 1 574 291 32 1 534 291 40 3 491 709 40 3 491 709 449 298 291 449 50 2 303 449 50 2 303 449 60 1 1 2 256 60 1 1 2 256 60 1 1 1 1 1 60 1 1 1 1 1 1 1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>28 1 506 255 29 1 506 255 20 1 578 291 32 1 594 298 40 1 100 796 40 1 100 796 40 1 100 70 40 1 100 70 40 1 100 449 50 2 100 449 50 1 100 449 60 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1</td>	28 1 506 255 29 1 680 291 30 1 574 291 32 1 534 291 40 3 491 709 40 3 491 709 449 298 291 449 50 2 303 449 50 2 303 449 60 1 1 2 256 60 1 1 2 256 60 1 1 1 1 1 60 1 1 1 1 1 1 1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 1 506 255 29 1 506 255 20 1 578 291 32 1 594 298 40 1 100 796 40 1 100 796 40 1 100 70 40 1 100 70 40 1 100 449 50 2 100 449 50 1 100 449 60 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1 100 454 70 1

15	
20	
25	
30	
50	
35	

		-	<u>. </u>	<u>.</u> –	<u>.</u> – .	· ·		· ·	<u>.</u> – .	<u>. </u>	<u>. </u>	-			. –	. –	-	·	<u>. </u>	<u>. –</u>	<u>.</u> –
ω ~ ·	161				385		90			919	645	1242	950	2	362	-	. .		346	909	302
Start (nt.)	9	169	126	1578	~	~	~	-	1052	7	520	679	1702	-	_	im	123	-		1079	_
20 C	-	7	-	-	-	-	-	-	-	-	-	~	-	_	-	-	-	-	-	-	-
Contig	915	\$16	921	927	928	626	932	934	936		945	945	946	949	126	955	096	963	965	996	969

	-	-	-	<u> </u>	-	-	-	-	-				-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-
Stop (n:)	467	325	569	3.5	6	ŝ	3	99	Ş	299	₹	138	179	199	569	399	159	75.	733	4 00	2	533	399	Ç	£	384	431
Start	_	_	920	557	624	~	288	1205	839	585	276	673	355	794	_	115	-	204	1233	~	~	769	707	- 6	88	-	246
10	-	-	_	-	-	-	-	-	-	-	~	-	_	_	-	~	-	-	~	-	_	~	-	_	-	-	~
Contig	987	993	984	1004	1014	1015	1016	6101	1022	1024	1024	1030	1032	1040	1043	1044	1047	1051	1051	1063	1069	1069	1075	1077	1061	1086	1087
	• -	• —	• —		• —	-	• -		•		-	-	. –	_	-	_			-			_	_				. –

1	o	

1	5	

2	?	ĺ)	

3	0	

S. aureus - Putativo coding regions of novel proteins not similar to known proteins

	4	4	5	
٠	,	٠,	,	

50

										_													•			•	
Stop (nt)		_	ià	=	=	353	194	·ě	. ~				Ē	376	225	280	153	818	330	186	254			1 1		169	
Start (nt)	-	5	: 5	2 2	1520	103	385	~		~	77	•	360		i 🐳				-	ž	- 62	- 61	108		1 50	-	=
ONE DI DI	_ _	-	_	-	7	-	-	-	_	-			<u>-</u>	_ 	-	-	_ 	-	_	-	-	-	~	-	-	-	-
= =	1088	8		1100	1100	1101	1102	1107	1	1115	1119	1129		6611	114	110	1153	1154	1159	1161	1164	1711	1711	1183	1195	1 6	1200
!	<u>-</u>	-	. –	<u>.</u>	٠-	: –	: —	-	-	-	: –	÷ —	<u>-</u>	: –	-	: –	: —	: –	<u>:</u> –	-		-	: —	<u>:</u> –	÷	! — .	<u>-</u>

1	0	

15	

	•
2	υ

25	

3	o	
_	_	

	•
	5
_	_

1	0	

tive	coding re	regions	of novel	proteins	s not si
•			- 1	•	
	Copyig	ORF	Start		
	2 :	2	וַיבּ		
	•	~	129		
•-	1222	~	105	401	
•	1232	-	1 -4	387	
• -	1240	-	1 (4	175	
•	1247	-	250		
•	1271	-		. ~	
-	1286	-	. ~	595	
• —	1295		-		
• –	1306	-	6.1	185	
• –	1314	~	158	631	
•	1316	-	85	570	
• —	1359	_	384		
• -	1370	-	-	402	
•	1371	_	-	345	
• –	1374	-	710	. ~	
• —	1378	1	~	000	
• –	1392	_	_	=	
• —	1411	-	202	432	
•	1433	-		167	
• —	1450	-	٦,	256	
•	1453	-		149	
•	1471	_	127	398	
• •	1477	-	869	639	
	1502	-	194	199	
• —	1518	-	126	449	
• •	1534		283	3	
-	1546	-	-	107	

	-
7	u
٠	•

1	5	

	2	•	٦	
4	•	ι	,	

n	e	
۷,		

S. auraus - Putative coding regions of novel proteins not similar to known proteins

35	
-	

A	^	
*	u	

45

	 -	<u>.</u> –	-	-	-		-	-	<u>. </u>	- -	-	<u>-</u>	<u>-</u>	; -	<u>-</u>	-	-	-	<u> </u>	<u>-</u>	<u>.</u> –	-	-	-	<u> </u>			· _
	Stop (nt)	255	350	563	679	4 05	\$12	7.	200	286	6.1	8	ž	401	167	763	339	283	9	ī	367	167	166	398	352	ą.	152	150
	Start (nt)	206	_	_	170	_	468	625	_	119	~	86.	1.5	252	155	523	194	264	218	492	587	-	330	229	\$	679	100	296
	8 a	-	-	-	~	-	-	-	-	~	_	-	7	~	-		-	-		_	-	-	_	~		_	-	-
•	Conc.19	1547	1583	1587	1602	1629	1665	1760	1762	1876	1895	1661	1976	2055	2056	2150	2157	2164	21.75	2212	2338	2342	2352	2352	2355	2356	2359	2421
	• ——	• -	•	• —	• -	• —		•	. –	• —	• –	•	•-	• –		• –	•-	•	-	•-	•-	•	-		-	-	, ,	_

	,			
ı)	١	

coding re	regions	of novel	proteins	s not si
Contig	ORP	Start	Stop	
₽	9	(nt)	(ut)	
3046	1	367	185	
3049	-	553	278	
3050	_		314	
1052	-	504	253	
3065	-	~	157	
3070	-	157	190	
1 3075	-	440	222	
3040	7	1	245	
1 3092	-	320	162	
1 3093	7	117	250	
3100	-	25	762	
1 3103	-	41	798 T	
1118	-	*	174	
3123	-	~	145	
1 3127	-	-	5	
3138	-	336	691	
3142	-	388	203	
3144	-	664	386	
3151	-	337	170	
3155	~	202	384	
3168	=	~	1.16	
3205	-	286		
3282	-	-	150	
3303	7	239	ę	
13371	7	211	199	•
1 3558	7	7	148	

S. aurous - Putative coding regions of novel proteins not similar to known proteins

			· • — .																									
Stop (nt)	185	278	314	253	157	190	222	285	162	250	23.	298	1.74	145	5	169	203	386	07.1	384	176	145	150	8	299	8	104	
Start (nt)	367	\$33	-	504	~	150	9	-	320	Ę	22	Ç	=	~	-	38	388	799	711	202	2	288	-	239	112	7	36	
ID I	-	-	-	-	-	-	-	_	-	-	_	-	_	-	-	-	~	-	-	~	-	-	-	~	~	-	~	-
Cont 19	3046	3049	3050	3052	3065	3070	3075	3080	3092	3093	3100	3103	3118	3123	3127	3136	3142	3144	3151	3155	3168	3205	3282	3303	1766	3558	3558	
- - -	. – .	-	. —	• •	. —	. –	• —	•	. – .		•	. –	• —	•	. —	• —	• •	. –	•	-	• —	•-	• —	• — ·	• —	• •	•	•

tive	coding re	regions	of novel	ů,	ns not similar to known proteins
•			1 % 5	3 3	•
	3568	-			• — ·
	i in	-		. ~	 .
	1 10	-			•
		~	-		•
	3622	-			• —
	3622	7		398	•
		-	1 60		• -
. —		-		398	•
	فتا	1	3		
		-	ivo	169	
-	10	-	Ň		
-	1 10	-	619	. ~	
_	12	-	-	۱ 🕶	•
		_		592	
-		-		1 10	
• -	3	-	ı in	im	
• –		-		135	
• –		-		i -	
•		~	638		
• —	. 40	-	7.5	797	
• –		=	453		
• –	• •	-		389	
•	3615	-	198	8	•
. —	. 60	-			·.
	00 1	-			
•	3853	-		399	
•	3855	-	-	324	

	_
1	0

1	5	

20

25	

3	(,	

~ ~
- -
~
- -
- -
-
-
~
-
-
_
-
-
~
-
~

			,																							•		
•		. – ·	-	-	-	-	; -	; -	-	-	-	: -	; -	; –	-	: -	; -	; —·	; —	-	-	: –	; –	-	: –	; -	; -	; –
1		359	368	782	306	286	339	372	230	341	166	415	381	206	254	256	348	356	296	174	323	334	144	304	163	319	305	186
	Start (nt)		72	507	-	570	629	740	_	-	~	768	-6	-	505	510	i 🗝	907	589		568	198	284	~	303	471	153	-
•	2 C	-	-	_	-	_	-	-	_	-	_	_	-	-	-	-	-	-	-	-	-	~	-	-	-	_	-	-
!		4083	4090	4101	4105	4107	4119	4121	4123	4127	4128	4130	4146	4157	4186	4224	4239	4242	4252	4253	4256	4258	4267	1727	4287	4289	4303	4304
•			•			•	•	• –	•		•	• —	• —	•	• —	• -	• —	• —	• —	• —	• —	• – ·	• —	_	· — ·	•	• —	-

15	proteins
20	- Putative coding regions of novel proteins not similar to known proteins
25	eins not simi
	f novel prot
30	g regions o
35	tative codin
	s - Pul

	 	<u> </u>	<u>-</u> -	-	-	-	-	-	-	-	; – ;	<u>-</u>	; - ·	. – ·	-	-	-	-	-	-		; - ·	_	; -·	-
Stop (nt)	7.	52	789	148	122	364	399	7.7	11	1 268	920	309	<u> </u>	546	328	711		1 398	364	m	138	215	25	122	582
Start (nt)	9	~	576	•	639	528		471	117	~	\$74		6	-	909	-	~	697	~	-	601	427	643	540	ខ្ព
10 T	-	-	-	_	-	~	-	-	~	_	-	-	-	-	-	-	-	~	-	-	_	-	-	-	<u>-</u>
Fontig	4304	4306	97.5	4322	4331			3.65		6373	4381	4384	4397	402	6	9044	4411	4411	4412	4418	. •	40		4478	4482

.

1ve	oding re	gions	of novel	itive coding regions of novel proteins r	not similar	2	know
	Contig	ORF TD	Start (nt)	Stop			•
• –	4495	1-	_	179			
-	4496	-	200	252			
. –	4500	1-	<u> </u>	306			
•	4511	-	8	248			
•	4518	-	-	246			
	4526	-	8	241			
-	4527	-	~	163			
	4532	-	-	239			
-	6542	-	=	175			
	1 4567	-	36	200			
	4573	-	-	231			
	4578	-	642	322			
-	4619	-		180			
	4620	-	349	176			
	4662	-	-	246			
	6994	-	2	157			
	4680	-	28	183			
	4690	1	344	174			

Table 4

	ORF	SEQ ID NO	BLAST	Antigenic	Regions		- ··· · · - · · ·
5		!	HOMOLOG	Region 1		Region 3	Region 4
-	168_6	5192	lipoprotein	36-45	84-103	152-161	176-185
-	238_1	5193	chrA :	21-39	48-58	84-95	232-249
-	51_2	5194	OppB gene product (B. sub	20-36	70-79	100-112	121-131
-	278_3	5195	lipoprotein 1	20-29	59-73	85-97	162-171
10	276_2	5196	lipoprotein	21-33	65-74	177-186	211-220
[-	45_4	5197	ProX	28-37	59-69	85-100	120-129
-	315_8	5198	hypothetical protein	45-54	88-97	182-192	243-253
-	154_15		unknown	31-40	48-58	79-88	95-104
į-	228_3	5200	unknown	25-38	40-52	64-74	80-89
15	228_6	5201	unknown	29-41	89-101	128-143	173-184
	50_1	5202	unknown	21-33	52-61	168-182	197-206
}-	112_7	5203	iron-binding periplasmic	21-31	58-67	92-101	111-120
j-	442_1	5204	unknown	30-39	91-100	122-137	182-192
·}-	66_2	5205	unknown	50-59	104-116	127-136	167-182
	304_2	5206	Q-binding periplasmic	19-28	48-57	75-84	103-116
20	44_1	5207	hypothetical protein	27-36	86-95	129-138	192-201
į.	161_4	5208	SphX	27-44	149-161	166-175	201-210
i	46_5	5209	cmpC (permease)	21-33	61-70	83-92	100-109
- 1	942_1	5210	traH [Plasmid pSK41]	83-92	109-118	127-142	
}-	5_4	5211	ORF (S. aureus)	12-22	87-96	111-120	151-160
25	20_4	5212	peptidoglycan hydrolase (S.	24-34	129-138	141-150	161-171
-	328_2	5213	lipoprotein (H. flu)	81-90	123-133	290-299	
ļ-	520 <u>2</u>	5214	fibronectin binding protein		63-79	81-90	95-110
- 1-	771_1	5215	emm1 gene product (S. py		65-82	96-106	112-121
}	999_1	5216	predicted trithorax prot. (D	7-16	120-129	157-166	· · · · · · · · · · · ·
30	853_1	5217	ORF2136 (Marchantia polyr	43-52	88-97	102-111	
}	287_1	5218	psaA homolog		28-44	72-82	114-124
ŀ	288_2	5219	cell wall enzyme	14-23	89-98	7202	
	596_2	5220	penicillin binding protein 2b	40-49	59-68	76-87	106-115
·	217_5	5221	fibronectin/fibrinogen bindii	28-37	40-49	62-71	93-111
l	217_6	5222	fibronectin/fibrinogen bp	10-19	31-40	54-62	73-92
35	528_3		myosin cross reactive prote	4-13	29-47	60-73	90-99
ŀ	171_11		EF	20-31	91-110	00 75	30 33
[.		5225	penicillin binding protein 2b	12-21	59-68	95-104	-
-	63_4 353_2	5226	pericular binding process 20	46-55	62-71	33.01	-
+	743_1	5227	29 kDa protein in fimA regi-	23-32	68-79	94-103	175-184
40	342_4	5228	Twitching motility	10-19	48-60	83-92	111-121
ł	69_3	5229	arabinogalactan protein	97-106	132-141		180-189
ŀ	70_6	5230	nodulin	36-45	48-57	137-160	179-188
ŀ	129_2		glycerol diester phosphodie	8-17	41-50	55-74	97-106
ŀ	58_5	5232	PBP (S. aureus)	26-35	70-79	117-126	152-161
45	188_3		MHC class II analog (S. aure		94-103	115-124	136-145
٠ .			histidine kinase domain (Dic	24-33	52-67	81-94	
ŀ	236_6		clumping factor (S. aureus)	59-71	77-86		118-127
ŀ	310_8	5235				33 102	
1	601_1	5236	novel antigen/ORF2 (S. aur	45-54	91-104	108-117	186-195
-	544_3		ORF YJR151c (S. cerevisae)	76-90		131-140	154-164
50	662_1		MHC class II analog (S. aure	22-32	71-80	89-98	114-122
	87_7		5' nucleotidase precursor ('	29-45	62-71	105-114	125-137
l	120_1	5240	B65G gene product (B. sub	102-111			

Table 4

Region 7 Region 8 Region 9 Region 10		ORF		Antigenic	Regions	(cont)		
238_1 260-269 291-301 308-317	5		Region 5			Region 8	Region 9	Region 10
238_1 260-269 291-301 308-317		168_6		303-315		ļ į		:
10		238_1	260-269	291-301	308-317			<u> </u>
10			140-152	188-208	211-220	256-266	273-283	
276_2 255-268	.40		198-209					
316_8	10							i
316_8		45_4	177-199	221-230	234-243	268-279	284-293	304-313
15			! !		!	i		
15		154_15	148-157	177-187	202-211			<u>. </u>
228_6 SO_1 112_7 136-149 197-211 218-229 253-273 442_1 199-210 247-257 264-277 287-309 66_2 304_2 178-187 250-259 44_1 161_4 46_5 131-141 162-176 206-215 243-252 264-273 285-294 260_4 202-212 217-234 260-275 314-336 366-373 380-391 328_2 520_2 520_2 571_1 145-154 999_1 853_1 287_1 154-164 288_2 596_2 121-130 217_5 244-253 259-268 288-297 302-311 217_6 144-158 174-183 188-197 207-216 226-242 528_3 371_11 46 3_4 333_2 2 342_3	15		101-119	139-154	166-181			:
50.1 112.7 136.149 197.211 218.229 253.273 442.1 199.210 247.257 264.277 287.309 66.2 304.2 178.187 250.259 304.21 304.2 178.187 250.259 304.21 328.2 264.273 285.294 44.1 46.5 131.141 162.176 206.215 243.252 264.273 285.294 942.1 5.4 189.205 230.239 246.264 301.318 340.354 378.387 20.4 202.212 217.234 260.275 314.336 366.373 380.391 328.2 520.2 771.1 145.154 999.1 363.31 366.373 380.391 288.2 399.1 853.1 388.2 388.2 388.2 388.2 388.2 217.6 144.158 174.183 188.197 207.216 226.242 226.242 528.3 171.11 63.4 333.2 342.4 333.2 342.4 334.33 358.371 390.414 40 363.4 335.2 195.211 70.6 206.215 263.272 291.301 331.340 358.371 390.414 45 70.6 206.215 263.272	,,,							
112_7								
442_1			136-149	197-211	218-229	253-273		
20 66_2 304_2 178-187 250-259 44_1 161_4 46_5 131-141 162-176 206-215 243-252 264-273 285-294 25 942_1 942_1 20_4 202-212 217-234 260-275 314-336 366-373 380-391 320_4 202-212 217-234 260-275 314-336 366-373 380-391 30 771_1 145-154 999_1 853_1 366-373 380-391 35 596_2 121-130 30 328_2 30 217_5 244-253 259-268 288-297 302-311 30 217_6 144-158 174-183 188-197 207-216 226-242 528_3 31 197-207 342_4 353_2 342_4 353_2 342_4 353_2 342_4 353_2 342_4 353_2 342_4 353_2 342_4 353_2 342_4 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 343_1 353_2 <td></td> <td>442_1</td> <td>199-210</td> <td>247-257</td> <td>264-277</td> <td>287-309</td> <td></td> <td></td>		442_1	199-210	247-257	264-277	287-309		
304_2	20							
44_1 161_4 162_176 206-215 243-252 264-273 285-294 942_1 5_4			178-187	250-259				
161 4								,
25								i
26 942_1 5_4 189-205 230-239 246-264 301-318 340-354 378-387 20_4 202-212 217-234 260-275 314-336 366-373 380-391 328_2 520_2 314-336 366-373 380-391 36 771_1 145-154 399_1 368-371 380-391 38_2 399_1 383-31 380-391 28_1 154-164 388_2 380-391 390-311 217_5 244-253 259-268 288-297 302-311 302-311 217_6 144-158 174-183 188-197 207-216 226-242 528_3 171_11 353_2 342_4 353_2 342_4 353_2 74_3_1 197-207 342_4 353_2 342_4 353_2 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 60		46_5	131-141	162-176	206-215	243-252	264-273	285-294
20_4	25							<u> </u>
328_2 520_2 777_1 145-154 999_1 853_1 287_1 154-164 288_2 7596_2 121-130 217_5 244-253 259-268 288-297 302-311 217_6 144-158 174-183 188-197 207-216 226-242 528_3 171_11 40 63_4 353_2 74\$_1 197-207 342_4 69_3 195-211 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7		5_4	189-205	230-239	246-264	301-318	340-354	378-387
S20_2		20_4	202-212	217-234	260-275	314-336	366-373	380-391
30 771_1 145-154 999_1 853_1 287_1 154-164 288_2 9 35 596_2 121-130 217_5 244-253 259-268 288-297 302-311 217_6 144-158 174-183 188-197 207-216 226-242 528_3 311_1 40 63_4 4 40		328_2						<u> </u>
771_1 145-154 999_1 853_1 287_1 154-164 288_2 35 596_2 121-130 217_5 244-253 259-268 288-297 302-311 217_6 144-158 174-183 188-197 207-216 226-242 528_3 171_11 40 63_4 353_2 743_1 197-207 342_4 69_3 195-211 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7			İ					
853_1 287_1 154-164 288_2 596_2 121-130 217_5 244-253 259-268 288-297 302-311 217_6 144-158 174-183 188-197 207-216 226-242 528_3 171_11 40 63_4 353_2 74\frac{1}{2} 197-207 342_4 69_3 195-211 45 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7	30		145-154					<u>i</u>
287_1		999_1					i 	!
288_2 596_2 121-130 217_5 244-253 259-268 288-297 302-311 226-242 217_6 144-158 174-183 188-197 207-216 226-242 528_3 171_11 226-242 353_2 743_1 197-207 342_4 353_2 342_4 69_3 195-211 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 208-218 327-336 352-361 55 87_7		853_1					<u> </u>	<u> </u>
35 596_2 121-130 217_5 244-253 259-268 288-297 302-311 217_6 144-158 174-183 188-197 207-216 226-242 528_3 171_11 207-216 226-242 40 63_4 353_2 207-216 226-242 743_1 197-207 342_4 353_2 342_4 69_3 195-211 319-207 342_4 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 208-218 274-287 327-336 352-361 55 87_7 87_7		287_1	154-164					
217_5		288_2						i
217_6	35 ´	596_2	121-130				ļ	<u> </u>
528_3 171_11 63_4 353_2 743_1 197-207 342_4 69_3 195-211 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7			244-253	259-268	288-297		İ	
40 171_11 63_4 353_2 743_1 197-207 342_4 99_3 195-211 390-414 199_2 117-127 141-157 168-183 202-211 222-231 261-270 <td></td> <td>217_6</td> <td>144-158</td> <td>174-183</td> <td>188-197</td> <td>207-216</td> <td>226-242</td> <td></td>		217_6	144-158	174-183	188-197	207-216	226-242	
40 63_4 353_2 743_1 197-207 342_4 69_3 195-211 45 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7		528_3	:				! !	<u> </u>
353_2		171_11	!				<u> </u>	!
743_1 197-207 342_4 69_3 195-211 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7	40		<u> </u>	·				ļ. <u></u> .
342_4 69_3 195-211 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7								
69_3 195-211 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7			197-207					1
45 70_6 206-215 263-272 291-301 331-340 358-371 390-414 129_2 117-127 141-157 168-183 202-211 222-231 261-270 58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 224-235 274-287 327-336 352-361 662_1 87_7					<u> </u>	<u> </u>	<u> </u>	<u>i</u>
70_6		69_3					·	i
58_5 184-203 260-269 275-299 330-344 372-381 424-433 188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7	45							330-114
188_3 236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7								
236_6 138-147 163-172 187-198 244-261 268-278 308-317 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 224-235 274-287 327-336 352-361 662_1 87_7 87_7			184-203	260-269	275-299	330-344	372-381	424-433
50 310_8 131-140 144-153 177-186 190-199 204-213 216-227 601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7					<u>i </u>	<u> </u>	<u>.</u>	
601_1 208-218 544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7	50							
544_3 170-179 184-193 224-235 274-287 327-336 352-361 662_1 87_7	50	310_8	131-140	144-153	177-186	190-199	204-213	216-227
662_1 87_7		601_1	208-218		<u> </u>	i		
55 87_7			170-179	184-193	224-235	: 274-287	327-336	352-361
55 87_7		662_1	:	·	1	·		
120_1	55		<u>i</u>					
		120_1			<u>:</u>	_!	i	

Table 4

_	ORF		Antigenic	Regions	(cont)		!
5		Region 11	Region 12	Region 13	Region 14	Region 15	Region 16
	168_6	İ				:	i
	238_1	:					
	51_2					1	:
10	278_3	l					!
10	276_2	i					
	45_4				<u> </u>	:	
	316_8	1			i		
	154_15	I			T	 	
15	228_3				i	<u> </u>	
15	228_6					 	
	50_1					<u> </u>	
	112_7				-	 	
	442_1					<u> </u>	·
20	66_2				 		
20	304_2	-				:	
	44 1					'	
	161_4						·
	46_5	306-315				-i	
25	942_1				+		<u> </u>
20	5_4	393-407	416-426	456-465		i i	
	20_4	396-405	410-419	461-481	1		
•	328_2		.,,,,,,,	.07 .01		İ	
	520_2						
30	771_1					:	-
	999_1				 	-	
	853_1						†
	287_1						
	288_2	 -			 	:	1
<i>35</i>	596_2				Ī	:	-
	217_5		i				
	217_6		i				i
	528_3	:				:	
	171_11					+	<u> </u>
40	63_4						
	353_2						
	743-1				!	1	:
	342_4				1		:
	69_3				 		į-·
45	70_6	453-471	506-515		 		
	129_2	296-315	300 313		-		
	58_5			·····	!		
	188_3		·		1		
	236_6	358-377	410-423	428-439	442-457	467-476	480-493
50	310_8	238-251	256-275		296-310	314-333	338-347
-	601_ 1		2002.0		1 2000		100011
ļ	544_3						
					!	·	- -
l	662_1						<u></u>
55	87_7						<u>:</u>
l	120_1				:		<u></u>

Table 4

_		1	Antigenic	Regions	(COIL)	!	
5		Region 17	Region 18	Region 19	Region 20	Region 21	Region 22
		i	• 1		•	<u>i</u>	
	230_1					1	
	51_2				!		,
	278_3	1					1
10	276_2	i			!		:
	45_4				!		!
	316_8				;		
	154_15	T			i	1	<u> </u>
	228_3	!			1	i	
15	228_6						i
	50_1						
	112_7				i		
	442_1	 			 		
	66_2		<u> </u>		 	†	i
?0	304_2					·	
	44_1				1		
	161_4					 	-i
	46_5	1	·		1	i	
	942_1				-i	 	
?5	5_4					 	
	20_4	<u>:</u>				 	
					<u>.</u>		
	328_2						
	520_2	<u> </u>				ļ	·
30	771_1					 	-¦
	999_1	!			<u> </u>		
	853_1						<u> </u>
	287_1				: .		<u> </u>
	288_2	<u>!</u>					<u> </u>
35	596_2	ļ	·		· · · · · · · · · · · · · · · · · · ·	 	
	217_5	1		·	·	 	· · · · · · · · · · · · · · · · · · ·
	217_6_				:	 	
	528_3	ļ			<u> </u>	<u>!</u>	<u>:</u>
	171_11	!			ı	<u> </u>	<u>.i</u>
0	63_4	1			•	<u> </u>	1
	353_2				<u> </u>		
	743_1	<u> </u>			: 	<u> </u>	!
	342_4	<u> </u>		<u>. </u>			<u> </u>
	69_3	<u>:</u>		! !			<u> </u>
5	70_6	<u> </u>				!	<u> </u>
·	129_2	:				·	-i
	58_5					1	
,						i	:
	236_6			i		i	
60		357-366	370-379	429-438	443-452	.478-487	\$\$1-560
•	601_1	!				!	
	544_3	!		·		:	
	662_1	·				-i	<u> </u>
		· · · · · · · · · · · · · · · · · · ·		-			
5	<u></u> -:			:			
ļ	120_1						

Table 4

5	ORF	i	Antigenic	Regions	(cont)		1
5		Region 23	Region 24	Region 25	Region 26	Region 27	Region 28
	168_6	1				1	!
	238_1	!			1	:	
	51_2	!			 	:	i
10	278_3	· · · · · · · · · · · · · · · · · · ·			 		i
10	276_2				 		
	45_4					:	!
		:				:	
	154_15			· -			i
15	228_3						
13		1			<u> </u>	!	
	. 50_1	 			1	i	
	11.2_7				 		
	442_1	 :					
20	66_2	! -			 		
20	304_2	 				<u> </u>	
	44_1	 			 	!	
	161_4					i	
	46_5	 :				:	
05	942_1	'			 	i	
25	5_1	 			 	 	
	20_4				-	 	
	328_2					 	
	520_2	 				1	
00	771_1	<u>:</u> :			-	:	
30		: : : : : : : : : : : : : : : : : : : 				·	
	853_1	 		· 			
	287_1	 				÷	
	288_2						
35	596_2	,			<u> </u>		
35	217_5				 		
	217_6	:		<u> </u>			 -
	528_3	: :			 	·	
	171_11	!			 	<u> </u>	<u> </u>
40	63_4	 				i	
	353_2	i -				i	
	743_1	 				!	
	342_4					:	
	69_3	 			 		
45	70_6		-		 		
45					·		
	129_2 58_5	····			:		·
	188_3			·	<u> </u>		
					<u>· </u>	<u> </u>	i — — — — — — — — — — — — — — — — — — —
50	310_8	 	670-685	708-718	823-836	858-867	877-886
30		, ,	070-003	700-710	1023-030		1
	601_1			. 	 	 	i
		1		·	 	:	!
	662_1	· · · · · · · · · · · · · · · ·			i		
55	87_7				<u>:</u>		
55	120_1						

Table 4

1	ORF	Antigenic	Regions	(cont)
5		Antigenic Region 29	Region 30	\ <u></u>
	168_6			· · · · · · · · · · · · · · · · · · ·
	238_1			: -
·	51_2			:
	278_3			:
10	276_2			
	45_4			
	316_8	•		·
	154_15		+	
	228_3		····	
15	228_6			
	50_1			
	112_7			
	442_1			·
20	66_2			
	304_2	'		
	44_1			
	161_4	,		
	46_5			
25	942_1	<u> </u>	··	
	5_4			i ————
	20_4	;	··	
	328_2			
	520_2	· · · · · · · · · · · · · · · · · · ·		:
30				
	853_1			1
	287_1			
	288_2			
35		:		
		1		
		:		
40	63_4	l		
	353_2 .			
		!		
•	342_4			
	69_3	•		!
45	69 <u>3</u> 70_6			
	129_2			!
i	58_5	:		:
:	188_3			
50	236_6			
	310_8			
	601_1			•
	544_3		· · · · · · · · · · · · · · · · · · ·	
	662_1		· · · · · · · · · · · · · · · · · · ·	
55	87_7			:
	120_1	·	· - 	
•				

Table 4

ORF	i	BLAST	Antigenic	Regions	!	
	i	HOMOLOG	Region 1	Region 2	Region 3	Region 4
46_1	5241	aldehyde dehydrogenase	8-17	36-52	83-96	112-121
63_4	5242	glycerol ester hydrolase (P.	9-26	57-73	93-107	123-133
174_6	: 524	3 ketopantoate hydroxymeth	71-80	203-212	242-254	265-274
206_16	5:5244	ornithine acetyltransferase	1-10	34-43	54-63	194-210
267_1	5245	NaH-antiporter protein (E. I	120-129	332-347	398-408	:- :- : - ! :
322_1	5246	acriflavin resistance protein	58-75	153-164	203-231	264-284
415_2	5247	transport ATP-binding prote	108-126	218-227	298-308	315-334
214_3	5248	2-nitropropane dioxygenase	123-136	216-233	283-292	297-306
587_3	5249	clumping factor	5-14	43-54	59-68	76-95
685_1	5250	signal peptidase	59-68	72-81	86-95	99-108
54_3	5251	fibronectin binding protein I	23-32	37-46	50-59	89-98
54_4	5252	fibronectin binding protein I	43-52	66-75	95-104	147-156
54_5	5253	fibronectin binding protein I	49-60	81-90		
54_6	5254	fibronectin binding protein I	55-71	82-97	139-158	175-186
328_1	5255	lipoprotein (H. flu)	11-20	61-70	96-105	

Table 4

25	

ORF	•	Antigenic	Regions	(cont)	1	<u> </u>
	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
46_1	215-242	333-352	376-385	1 416-432	471-487	!
63_4	145-154	191-202	212-223	245-265	274-283	291-300
174_6		!				<u> </u>
206_16	239-259	275-284				i
267_1		I		<u> </u>	<u>i</u>	<u> </u>
322_1	298-319	350-359	<u> </u>	<u> </u>	<u> </u>	ļ
415_2	344-353	371-380	395-404	456-465	486-495	518-527
214_3	318-337	365-375	<u>!</u>	<u> </u>		<u> </u>
587_3	106-115	142-151	156-166	173-182	186-198	204-213
685_1	113-122	130-145	! 		<u> </u>	
54_3	128-138	185-194	217-226	251-260	1268-277	295-305
54_4	175-188	191-200	203-212	220-229		
54_5	İ	Ĺ			<u>.</u>	.j
54_6	220-230	287-304	317-326	344-353	364-373	378-387
328 1	1		į.	1	1	

Table 4

	ORF		Antigenic	Regions	(cont)	1	1
		Region 11	Region 12	Region 13	Region 14	Region 15	Region 17
	46_1						
	63_4_	306-315	319-328	366-376	395-420	453-462	467-476
	174_6					1	
	206_16		:				İ
	267_1					<u>i</u>	1
	322_1		:	<u>i</u>			.i
	415_2	539-555					i
	214_3						<u> </u>
	587_3	217-226	278-287	318-327	332-342	351-360	377-386
	685_1	:		i		· · · · · · · · · · · · · · · · · · ·	<u> </u>
	54_3	316-325	329-345	355-372	387-396	416-425	438-448
	54_4	!	!		<u> </u>		
	54_5		,			<u> </u>	-l
_	54_6	396-407	427-436	514-531	541-550	569-578	612-622
	328_1	1	!	1		<u> </u>	!

Table 4

ORF	1	 Antigenio 	Regions	(cont)	·	!
	Region 18	Region 19	Region 20	Region 21	Region 22	Region 23
46_1		ı	.1		:	
63_4	485-500	513-525	:			
174_6						
206_16	:	:	1		_i	
267_1		i			1	:
322_1	i	:			<u> </u>	
415_2						.,
214_3					<u> </u>	:
587_3	396-405	1426-442	i459-470	485-494	505-514	531-562
685_1					<u> </u>	:
54_3	455-462	472-491	517-536			<u> </u>
54_4	1	!				
54_5						
54_6	639-648	673-681	703-715	723-732	749-760	772-788
328_1			!			<u>i</u>

Table 4

5	ORF		Antigenio	c Regions	(cont)	!	i
5		Region 24	Region 25	Region 26	Region 27	Region 28	Region 29
	46_1	!					
	63_4	•	i		i		1
	174_6		•			(i
10	206_16		1				
10	267_1		i	1			i
	322_1			:			
	415_2		1	i .		i	
•	214_3		i				
15	587_3	:567-578	584-601	607-840	844-854	858-870	877-886
15	685_1						
	54_3	•					i i
	54_4						
	54_5						
20	54_6	793-802	811-826	834-848	866-876	893-903	907-918
	328_1						

Table 4

25

30

35

40

45

50

ORF Antigenic Regions (cont) Region 30 Region 31 46_1 63_4 174_6 206_16 267_1 322_1 415_2 214_3 587_3 889-911 927-936 685_1 54_3 54_4 54_5 925-944 54_6 951-997 328_1

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue (C) CITY: Rockville (D) STATE: Maryland
15	(E) COUNTRY: US (F) POSTAL CODE: 20850
20	(ii) TITLE OF INVENTION: Staphylococcus aureus Poly- nucleotides and Sequences
	(iii) NUMBER OF SEQUENCES: 5255
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4 Mb storage (B) COMPUTER: HP Vectra 486/33 (C) OPERATING SYSTEM: MSDOS version 6.2 (D) SOFTWARE: ASCII Text
30	
	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/009,861 (B) FILING DATE: 05-JAN-1996</pre>
40	
	(2) INFORMATION FOR SEQ ID NO:1:

216

50

. 55

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5895 base pairs (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

,,							
	TCCATTATGA	AGTCACAAGT	ACTATAAGCT	GCGATGTTAC	CAATGTTTTT	TAAAATCCCA	6
	GTAATAAAAT	CAAAAAATAA	GTTAAATAAT	GTATTCATTT	TAAGTCCTCC	TTAATAAAGa	12
15	aaataGGTAA	TAATGTAATA	GCTTCTATTA	TGATGCCTAA	TTGAATGAAT	TGGGCAAATG	18
	GCTCTTTGAT	GATAAGTGTG	ATAATGAAAA	GGGTTAAACT	AACAATAATC	GCATAATATT	24
	TTTTTCGTTT	AATAAGTCGC	ACAGGAATGG	GCTTCTTTTT	AGTTGCTGCA	GGAGCATATA	30
20	CTGAGATTAC	ACCTAAAGAA	ATAACTGTTA	AAATAATCAT	AATTAAAAAG	TTAATATGAA	360
	AATTTACTAT	TACTAAAGGT	AAAAGTATAA	ATAGTATAAT	ACTTTCTACA	TAACACCAAA	420
25	AAGAAGAAGG	TGCATGTGCa	CCATGTGCAT	GtCTTCTTAT	TAAATAAAAT	GTTAAATTCG	480
	TAATTAACGT	AAACAGAAAA	ATGTTTAAAA	TATAGGCAAT	AGTATACATA	ACAATTAATT	540
	TACCTATATT	TTTAGCTAAG	ACCTGCATCC	CTAATCGTAC	TTGCAAAAAT	TGAATATGAT	600
30	CTAAGTTATT	TCTCTTTTGA	AGATACGTGG	CAAACTGGTC	AATTTTATTA	TCAAAATAAT	660
	TCAATTTTAC	ACCACTCTCC	TCACTGTCAT	TATACGATTT	AGTACAATCT	TTTATCATTA	720
	TATTGCCTAA	CTGTAGGAAA	TAAATACTTA	ACTGTTAAAT	GTAATTTGTA	TTTAATATTT	780
35	TAACATAAAA	AAATTTACAG	TTAAGAATAA	AAAACGACTA	GTTAAGAAAA	ATTGGAAAAT	840
	AAATGCTTTT	AGCATGTTTT	AATATAACTA	GATCACAGAG	ATGTGATGGA	AAATAGTTGA	900
	TGAGFTGTTT	AATTTTAAGA	ATTTTTATCT	TAATTAAGGA	AGGAGTGATT	TCAATGGCAC	960
40	AAGATATCAT	TTCAACAATC	GGTGACTTAG	TAAAATGGAT	TATCGACACA	GTGAACAAAT	1020
	TCACTAAAAA	ATAAGATGAA	TAATTAATTA	CTTTCATTGT	AAATTTGTTA	TCTTCGTATA	1080
1 5	GTACTAAAAG	TATGAGTTAT	TAAGCCATCC	CAACTTAATA	ACCATGTAAA	ATTAGCAAGT	1140
•	GAGTAACATT	TGCTAGTAGA	GTTAGTTTCC	TTGGACTCAG	TGCTATGTAT	TTTTCTTAAT	1200
	TATCATTACA	GATAATTATT	TCTAGCATGT	AAGCTATCGT	AAACAACATC	GATTTATCAT	1260
50	TATTTGATAA	ATAAAATTT	TTTCATAATT	AATAACATCC	CCAAAAATAG	ATTGAAAAA	1320
	TAACTGTAAA	ACATTCCCTT	AATAATAAGT	ATGGTCGTGA	GCCCCTCCCA	AGCTCGCGGC	1380
	CTTTTTTGTA	ATGAAGAAGG	GATGAGTTAA	TCATCATTAT	GAGACCCGCC	GTTAAAATAT	1440

	TCATTTGCAA	AGGGCGAAAT	GGGTTCTTAC	TGAGTTATCT	ATTATAAAAA	AATAAACATA	1560
	GACTTATGAA	AAATCTCTCA	TAAATCTATG	TTTAGTCATG	aCATGTGTTA	AATATTATTT	1620
5	CGGGCGCTTC	TTATTTATAC	AAATCTAATT	TAATACTTTT	AAATAÇAGGT	ATATTTTCgC	1680
	GTTGCTGTTC	TACTTCATTT	AAGTTTAAAT	CTACAGTCAA	AATATCTGCG	GATTCATTTA	1740
o	ATTCTCCAAC	TAAATCTCCA	TTTGGGTTTA	TAACTATCGA	ATGACCAGCA	TATTCTGTGT	1800
•	TACCATCGAA	TCCAGTGCTA	TTAGTTCCAA	TGACAAACAT	ATTATTTTCA	ATTGCACGTG	1860
	CCTTTAGTAA	TGAATGCCAA	TGTTGAAGAC	GTGACATAGG	CCATTGCGCC	ACATAAAATG	1920
5	CAATTTTAGC	ACCACTACGA	GCAGGATATC	TTAATAATTC	TGGAAAACGT	AAATCATAAC	1980
	AGATAAGTTG	GGTCACATAA	GTACCGTCAG	ACAATTGAAA	GGGTTCAGCT	ACGTATTCGC	2040
	CAGCGGTTAA	AAATTCATGC	TCTCTTAACA	TAGGAACTAA	ATGAACTTTG	TCGTATTCaT	2100
20	TAATCAGCTG	GCCACTTTTA	TTCACACTAA	AAGCTGTATT	AAATATTTGA	TTGTTTCTAA	2160
	TGTTAGAAAC	TGACCCAGCT	ACGATATCGA	CTTTATATTT	TTCAGCTAAA	TGTTTAATAA	2220
25	ATGAAAAACT	TTGTCCTAGA	TTATTATCTG	CTTTTTCATT	TAAATGCTCT	AAATCATAGC	2280
:5	CATTATTCCA	CATTTCAGGT	AAAACGACTA	CATCTACTTC	AGCATTCATA	TTTTTTTCGA	2340
	ACCATTGCGT	TATTTGAGTT	TCATTTTTAG	AACTATCTCC	AAAAACAATC	GGTAATTGAT	2400
30	AAATTTGGAC	TTTCATAACA	TCACATCCTT	GATAGATCTT	ATATATAACT	TACTAAAAGT	2460
	TATGTTGAAA	CGCAAAAAAC	GAGCACAAGA	CATAAAATCA	AAGTCCTAGG	CTCTACAAAG	2520
	TTATATTGAC	AGTAGTTGAT	GGGGCCCCAA	CATAGAGAAA	TTGGAACACC	AATTTCTACA	2580
35 .	GACAATGCAA	GTTGGGGTGG	GCTCTAACAT	AAAGAAATAC	TTTTTCTTTA	GAAATTAGTA	2640
	TTTCTTATAC	ATGAGTTTTA	CTCATGTATT	CCTATTCTTA	AGTGCACATT	AGCAGCGGCT	2700
	aatgtgtaag	AACTACTACA	TAATGAATAA	CTAATGATTC	TTTATCATTT	CTGTCCCATT	2760
10	CCTAACAATA	TATTGATTAT	TTTTTTTTTA	CGAAACGATC	TTCCACTGGA	TTAAATGTTT	2820
	TTTCGCCAGC	AGCTTCACGA	ATATCACCAA	ATGGCATTTG	AGÇAATAAGT	TTCCAACTTT	2880
15	TAGGAATATT	AAATTCATTT	GAAGTCATCT	CATCAACAAG	TGGATTATAG	TGTTGTAATG	2940
	AAGCACCTAT	GCCTTTAGTA	GCTAATGCAG	TCCAAATTGC	AAATTGATGC	ATGGCATTTG	3000
	TTTGAGTTGA	CCATATTGCA	AAATTATCAT	AGTAGTTTGG	CATTTGTTCT	TGTAAACCAC	3060
50	TTACAACATC	TTGATCTTCA	TAAAACAAAA	TTGTACCGTA	TGAATGTTTG	AAGTTATCAA	3120
	TTTTTTGTTC	AGTTGGCTCG	AAATCACGAT	TCTCTCCCAT	GACTTCTTTT	AAAATTGCTT	3180
	TTGTGTTATC	CCAAAATTTA	TTATTGTTGT	CATTTAACAA	GAGAACAATT	CTAGTTGATT	3240

	CATCGCTAAT	TGATATCGAA	TCTTTCAAAT	TATATATTGA	ACGTCTTTCT	TCCATTGCAT	3360
	TGTCAAAAGT	CATTGCTTTT	TTATCTTTTT	TAAATAAGCC	CATAATTATT	GCTCCTTCTT	3420
5	TAGTAAAGAA	TACTTAATAG	ACTAAGTATA	AAATTTATAC	TCGTACTTGT	AAAGCAATAT	3480
	TTACGAAAAT	TTCAAGAATA	TTAATATTCA	TTTTCAAATT	CCAAATATAA	ATGCATTTTC	3540
10	AACGCATATT	TATTATACTT	AGATTAATAC	TTACATGAAA	AAGGGAGGTG	TCTCGTGAAA	3600
	TGTCATATCA	TTGGTTTAAG	AAAATGTTAC	TTTCAACAAG	TATTTTAATT	TTAAGTAGTA	3660
	GTAGTTTAGG	GCTTGCAACG	CACACAGTTG	AAGCAAAGGA	TAACTTAAAT	GGAGAAAAAC	3720
15	CAACTACTAA	TTTGAATCAT	AATATAACTT	CACCATCAGT	AAATAGTGAA	ATGAATAATA	3780
	ATGAGACTGG	GACACCTCAC	GAATCAAATC	AAACGGGTAA	TGAAGGAACA	GGTTCGAATA	3840
	GTCGTGATGC	TAATCCTGAT	TCGAATAATG	TGAAGCCAGA	CTCAAACAAC	CAAAACCCAA	3900
20	GTACAGATTC	AAAACCAGAC	CCAAATAACC	AAAACTCAAG	TCCGAATCCT	AAACCAGATC	3960
	CAGATAACCC	GAAACCAAAA	CCGGATCCAA	AACCAGACCC	AGATAAACCA	AAGCCAAATC	4020
25	CGGATCCAAA	ACCAGATCCA	GATAACCCGA	AACCAAATCC	AGATCCAAAA	CCAGACCCAG	4080
20	ATAAACCAAA	GCCAAATCCG	GATCCAAAAC	CAGATCCAGA	TAAACCAAAG	CCAAATCCGA	4140
	ATCCAAAACC	AGACCCTAAT	AAGCCAAATC	CTAACCCGTC	ACCAGATCCC	GATCAACCTG	4200
30	GGGATTCCAA	TCATTCTGGT	GGCTCGAAAA	ATGGGGGGAC	ATGGAACCCA	AATGCTTCAG	4260
	ATGGATCTAA	TCAAGGTCAA	TGGCAACCAA	ATGGGAATCA	AGGAAACTCA	СААААТССТА	4320
	CTGGTAATGA	TTTTGTATCC	CAACGATTTT	TAGCCTTGGC	AAATGGGGCT	TACAAGTATA	4380
35	ATCCGTATAT	TTTAAATCAA	attaataagt	TGGGCAAAGA	TTATGGAGAA	GTTACTGATG	4440
•	AAGACATTTA	TAATATTATT	CGAAAACAAa	ATTTCAGCGG	AAATGCATAT	TTAAATGGAT	4500
40	TACAÃCAGCA	ATCGAATTAC	TTTAGATTCC	aatatttcaa	TCCATTGAAA	TCAGAAAGGT	4560
40	ACTATCGTAA	TTTAGATGAA	CAAGTACTCG	CATTAATTAC	TGGTGAAATT	GGATCAATGC	4620
	CAGATTTGAA	AAAGCCCGAA	GATAAGCCGG	ATTCAAAACA	ACGCTCATTT	GAACCGCATG	4680
4 5	AAAAAGACGA	TTTTACAGTA	GTTAAAAAAC	AAGAAGATAA	TAAGAAAAGT	GCGTCAACTG	4740
	CATATAGTAA	AAGTTGGCTA	GCAATTGTAT	GTTCTATGAT	GGTGGTATTT	TCAATCATGC	4800
	TATTCTTATT	TGTAAAGCGA	AATAAAAAGA	AAAATAAAA	CGAATCACAG	CGACGATAAT	4860
50	CCGTGTGTGA	TTCGTTTTTT	TTATTATGGA	ATAAAAATGT	GATATATAAA	ATTCGCTTGT	4920
	TCCGTGGCTT	TTTTCAAAGC	CTCAGGATTA	AGTAATTGGA	ATATAACGAC	AAATCCGTTT	4980
	TGTAACATAT	GGATAATAAT	TGGAACAGCA	AGCCGTTTTG	TCCAAACATA	TGCTAATGAA	5040

	AATATTAATG	AACTTACTGT	TGTAGCAATA	ATAAATGCCA	CGATACGATT	ACCTTTAATC	5160
	GCATTAAATA	ATTCTCCAAA	GATTACTTTT	CTGAATACAT	ATTCTTCTAA	TAAAGGACCA	·5220
5	ATAATAGATA	CAAAGAAGAT	AAATATAGGT	ATTTTTCGAG	CAATAATAAT	TAGCTTTTCT	5280
	GTATTAGGAC	TTACTTGTTG	TCCACCATAA	ATTTGCGTTA	ATACAATGCT	CACTACCATT	5340
10	TGATAAATCA	TTACCAATGC	AAATCCAAGC	AATGCCCATG	GAATGATATA	TTTTTTAGGT	5400
	TCTTTAACTT	CTAATTCTAA	TTTTGTTGGA	TTTTAATTT	TAAATTAATT	TAAAATAATC	5460
	GTCGTGGCGG	CGATTAAAAA	TAGAACAAGT	TGTATGTAAA	TGACTGCTTT	AGTCAGTTCT	5520
15	ATGCCACTAT	ATTGTACAAA	TGGTAATTTT	TTTACAATGA	GAAGCGGTAA	AAATTGAGAC	5580
	AATATATAA	TAATAACAGT	TAGCAATGAT	GCCCATAATC	tTGTCATAAT	TTTCCTCCAA	5640
	ATATTTGTTT	TTATTTAATA	TTATCGTAAA	TAACTTGAAG	TTACAAAACT	TAATTAAAAG	5700
20	GTTATGACTT	GAAATTTTGA	CCAAATTTGA	TTATTATAAA	TGTATGTTAG	CACTCTTTAA	5760
	TGTTAAGTGC	TAAACTTTAG	GTTTTTTAAG	GAGGAACAAT	CATGCTAAAA	CCAATTGGAA	5820
25	ATCGTGTGAT	TATTGAGAAA	AAAGAACAAG	AACAAACAAC	TAAAAGTGGn	ATTGTTTAAC	5880
	TGATAGTGCT	AAAGA			•		5895

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6796 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

35

40

45

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

TTTGAAAAAA	CAAGGTACGA	TTGGTTTAAT	AACATATATG	AGAACCGATT	CTACACGTAT	60
TTCaGATACT	GCCAAAGTTG	AAGCAAAACA	GTATATAACT	GATAAATACG	GTGAATCTTA	120
CACTTCTAAA	CGTAAAGCAT	CAGGGAAACA	AGGTGACCAA	GATGCCCATG	AGGCTATTAG	180
ACCTTCAAGT	. ACTATGCGTA	CGCCAGATGA	TATGAAGTCA	TTTTTGACGA	AAGACCAATA	240
CCGATTATAC	AAATTAATTT	GGGAACGATT	TGTTGCTAGT	CAAATGGCTC	CAGCAATACT	300
TGATACAGTC	TCATTAGACA	TAACACAAGG	TGACATTAAA	TTTAGAGCGA	ATGGTCAAAC	360
AATCAAGTTT	AAAGGATTTA	TGACACTTTA	TGTAGAAACT	AAAGATGATA	GTGATAGCGA	420
AAAGGAAAAT	AAACTGCCTA	AATTAGAGCA	AGGTGATAAA	GTCACAGCAA	CTCAAATTGA	48
ACCAGCTCAA	CACTATACAC	AACCACCTCC	AAGATATACT	GAGGCGAGAT	TAGTAAAAAC	54

	AAAGCGIAAC	TATGTCAAAT	TAGAAAGTAA	GCGTTTTGTT	CCTACTGAGT	TGGGAGAAAT	660
5	AGTTCATGAA	CAAGTGAAAG	AATACTTCCC	AGAGATTATT	GATGTGGAAT	TCACAGTGAA	720
Ū	TATGGAAACG	TTACTTGATA	AGATTGCAGA	AGGCGACATT	ACATGGAGGA	AAGTAATCGA	780
	CGGTTTCTTT	AGTAGCTTTA	AACAAGATGT	TGAACGTGCT	GAAGAAGAGA	TGGAAAAGAT	840
10	TGAAATCAAA	GATGAGCCAG	CCGGTGAAGA	CTGTGAAATT	TGTGGTTCTC	CTATGGTTAT	900
	AAAAATGGGA	CGCTATGGTA	AGTTCATGGC	TTGCTCAAAC	TTCCCGGATT	GTCGTAATAC	960
	AAAAGCGATA	GTTAAGTCTA	TTGGTGTTAA	ATGTCCAAAA	TGTAATGaTG	GTGACGTCGT	1020
15	AGAAAGAAAA	TCTAAAAAGA	ATCGTGTCTT	TTATGGATGT	TCGAAATATC	CTGAATGCGA	1080
	CTTTATCTCT	TGGGATAAGC	CGATTGGAAG	AGATTGTCCA	AAATGTAACC	AATATCTTGT	1140
	TGAAAATAAA	AAAGGCAAGA	CAACACAAGT	AATATGTTCA	AATTGCGATT	ATAAAGAGGC	1200
20	AGCGCAGAAA	TAATATTTT	ATTTCCTAGA	TACATTTTAA	GATTGTTAAA	TAGAATCATT	1260
	AGTGAATCTT	ATTTTAAAGA	TAGTAAAGGA	TTAATCTAAA	TAAGTGCGGA	TAATATAAAC	1320
25	ATAACAACAT	AATTAAmAGA	CATAAATGAC	aATAAAAGGA	GTATAGAAAT	GACTCAAACT	1380
	GTAAATGTAA	TAGGTGCTGG	TCTTGCCGGT	TCAGAAGCGG	CATATCAATT	AGCTGAAAGA	1440
	GGAATTAAAG	TTAATCTAAT	AGAGATGAGA	CCTGTTAAAC	AAACACCAGC	GCACCATACT	1500
30	GATAAATTTG	CGGAACTTGT	ATGTTCCAAT	TCATTACGCG	GAAATGCTTT	AACTAATGGT	1560
	GTGGGTGTTT	TAAAAGAAGA	AATGAGAAGA	TTGAATTCTA	TAATTATTGA	AGCGGCTGAT	1620
	AAGGCACGAG	TTCCAGCTGG	TGGTGCATTA	GCAGTTGATA	GACACGATTT	TTCAGGTTAT	1680
35	ATTACTGAAA	CACTTAAAAA	TCATGAAAAT	ATCACAGTTA	TTAATGAAGA	AATTAATGCC	1740
	ATTCCAGATG	GATACACAAT	TATCGCAACA	GGACCACTTA	CTACAGAAAC	CCTTGCGCAA	1800
40	GAAATAGTGG	ACATTACTGG	TAAAGATCAA	CTTTATTTCT	ATGATGCGGC	TGCTCCAATT	1860
	ATTGAAAAAG	AATCTATTGA	TATGGATAAA	GTTTACTTAA	AGTCCCGTTA	TGATAAAGGT	1920
	GAAGCTGCAT	ATTTAAACTG	TCCTATGACT	GAGGATGAAT	TTAATCGCTT	TTATGATGCA	1980
45	GTATTAGAAG	CTGAAGTTGC	GCCTGTAAAT	TCATTTGAAA	AAGAAAAATA	TTTCGAGGGT	2040
	TGTATGCCTT	TTGAAGTAAT	GGCAGAACGC	GGACGCAAGA	CATTACTATT	TGGACCAATG	2100
	AAACCAGTAG	GATTAGAAGA	TCCAAAGACT	GGGAAACGTC	CTTATGCGGT	GGTTCAATTA	2160
50	AGACAAGATG	ACGCTGCTGG	TACACTCTAC	AATATTGTTG	GCTTCCAAAC	GCATTTAAAA	2220
	TGGGGAGCTC	AAAAAGAAGT	CATTAAATTA	ATTCCAGGCT	TAGAAAATGT	TGATATTGTT	2280
55	AGATATGGTG	TGATGCATAG	AAATACCTTC	ATTAATTCAC	CGGACGTATT	AAACGAGAAA	2340
-							

	TATGTAGAAA	GCGCAgcTAG	CGGCTTAGTT	GCAGGTATCA	ATCTTGCGCA	ATTATAAAAT	2460
_	GGCAAGGGTG	AGGTAGTATT	TCCGAGAGAA	ACAATGATTG	GAAGTATGGC	TTACTATATT	2520
5	TCTCATGCTA	AAAACAATAA	GAATTTCCAA	CCTATGAATG	CTAACTTCGG	GTTATTACCA	2580
	TCTTTAGAAA	CTAGAATTAA	AGATAAAAAA	GAACGCTATG	AAGCACAAGC	TAATAGAGCT	2640
10	TTGGATTACT	TAGAAAATTT	CAAAAAAACT	TTATAAAATA	GTTAGAAAGA	CTAGATATGC	2700
	TATTCATTCT	TAAGTCATCA	ACGAGTAAGT	AATGACTTTC	TAAATGGAAA	ATACTTATCC	2760
	TAGTCTTTTT	AATTTTGGAA	TTGTTACGTA	TTTCTGACAA	TTTAGAATTC	GCATTCAAAA	2820
15	AATATCTAAA	TAAATAACAC	GCAATAAGTT	GATTGATGTA	ACATGTAAGA	GAATGTTTTA	2880
	AATAAACTTT	ATTTAAAAGG	CAATGAAATA	ATAAATGGCA	AGGCTATTAA	TAAAGACTTT	2940
	TAGTAATTAA	TTTAAAAAAG	AGGTATTCTA	ATTAACAGGT	TTTCCGATTA	GTTACAATTA	3000
20	TTTAATTCTC	AAAAGATTTA	GAATTGATTA	TCAAATTACT	GTAAGCCCTT	TGCTGTATAT	3060
	GCTACAATTC	TTATTGATGG	AGGGTAAATG	TATTGAATCA	TATTCAAGAT	GCGTTTTTAA	3120
25	ATACATTGAA	AGTTGAACGG	AATTTTTCGG	AACACACATT	GAAATCATAT	CAAGATGACT	3180
	TAATTCAGTT	TAATCAATTT	TTAGAACAAG	AACATTTAGA	GTTGAATACT	TTTGAATACA	3240
	GAGATGCTAG	AAATTATTTG	AGCTATTTAT	ATTCAAATCA	TTTGAAAAGA	ACATCTGTTT	3300
30	CTCGTAAAAT	CTCAACGTTA	AGAACTTTCT	ATGAATATTG	GATGACGCTT	GATGAGAACA	3360
	TTATTAATCC	ATTTGTTCAA	TTAGTACATC	CGAAAAAAGA	AAAATATCTT	CCGCAATTCT	3420
	TTTACGAAGA	AGAAATGGAA	GCGTTATTCA	AAACTGTAGA	AGAGGACACT	TCAAAAAATT	3480
35	TACGGGATCG	AGTTATTCTT	GAATTGTTGT	ATGCTACAGG	CATCCGTGTT	TCGGAATTAG	3540
	TAAATATTAA	AAAACAAGAT	ATAGATTTTT	ACGCGAATGG	TGTTACCGTA	TTAGGAAAAG	3600
40	GGAGCAAAGA	GCGCTTTGTA	CCGTTTGGTG	CTTATTGTAG	ACAAAGCATC	GAAAATTATT	3660
	TAGAACATTT	CAAACCAATT	CAGTCATGCA	ATCATGATTT	TCTTATTGTA	AATATGAAGG	3720
	GTGAAGCAAT	CACTGAACGC	GGTGTACGAT	ATGTTTTAAA	TGATATTGTT	AAACGAACAG	3780
45	CAGGCGTAAG	TGaGATTCAT	CCCCACAAGC	TCAGACATAC	ATTTGCAACG	CATTTATTGA	3840
	ATCAAGGTGC	AGACCTAAGA	ACAGTACAAT	CGTTATTAGG	TCATGTTAAT	TTGTCAACAA	3900
	CTGGTAAATA	TACACACGTA	TCTAACCAAC	AATTAAGAAA	AGTGTATCTA	AATGCACATC	3960
50	CTCGAGCGAA	AAAGGAGAAT	GAAACATGAG	TAATACAACA	TTACATGCAA	CAACAATTTA	4020
	TGCTGTAAGA	CATAATGGGA	AAGCAGCTAT	GGCTGGAGAT	' GGGCAAGTAA	CGCTTGGTCA	4080
	ACAAGTCATC	ATGAAACAAA	CGGCAAGAAA	AGTGCGACGT	TTATATGAAG	GTAAAGTGTT	4140

	ATTACAACAG	TTTAGTGGTA	ACTTAGAAAG	AGCTGCTGTT	GAATTGGCAC	AAGAATGGCG	4260
5	AGGCGATAAA	CAATTACGTC	AATTAGAAGC	TATGCTAATT	GTAATGGATA	AAGATGCTAT	4320
5	TTTAGTTGTC	AGTGGAACTG	GCGAAGTTAT	TGCTCCAGAT	GATGACCTTA	TCGCTATTGG	4380
	ATCAGGAGGC	AACTACGCAT	TAAGCGCAGG	ACGTGCATTG	AAACGCCATG	CATCGCATTT	4440
10	GTCTGCTGAA	GAAATGGCAT	ATGAGAGCTT	GAAAGTAGCG	GCTGATATTT	GTGTCTTTAC	4500
	CAACGATAAT	ATTGTTGTCG	AAACACTATA	ATAATCAGAG	CACGATAAAT	AATTACGAGC	4560
	TTTTAATTAA	AGTTAAAAGA	CGGAGGAATG	AAATTAATGG	ATACAGCTGG	AATAAGATTA	4620
15	ACTCCAAAAG	AAATCGTATC	TAAATTAAAT	GAATACATCG	TTGGACAAAA	TGATGCTAAA	4680
	CGTAAAGTGG	CAATTGCCCT	ACGTAATCGA	TACAGAAGAA	GTTTATTAGA	TGAGGAATCA	4740
00	AAGCAAGAAA	TTTCACCTAA	AAATATTTTG	ATGATTGGAC	CAACCGGCGT	TGGTAAAACT	4800
20	GAAATTGCAA	GAAGAATGGC	CAAAGTTGTC	GGCGCGCCAT	TTATĄAAAGT	AGAAGCTACT	4860
	AAATTTACTG	AGGTAGGTTA	TGTAGGACGA	GATGTTGAAA	GTATGGTTAG	AGATCTTGTT	4920
25	GATGTTTCAG	TAAGATTAGT	CAAGGCGCAG	AAAAAATÇAT	TGGTACAAGA	TGAAGCAACA	4980
	GCTAAGGCCA	ATGAAAAACT	TGTTAAGTTA	TTAGTTCCAA	GTATGAAAAA	GAAAGCGTCT	5040
	CAAACGAATA	ATCCTTTAGA	GTCACTTTTC	GGAGGTGCAA	TTCCAAATTT	CGGACAAAAT	5100
30	AACGAAGATG	AAGAAGAACC	ACCTACTGAG	GAAATTAAAA	CAAAACGTTC	TGAAATTAAG	5160
	AGACAGCTAG	AAGAAGGCAA	ACTTGAAAAA	GAAAAGGTAA	GAATTAAAGT	CGAACAAGAT	5220
	CCTGGTGCTT	TAGGTATGCT	AGGTACAAAT	CAAAATCAGC	AAATGCAAGA	GATGATGAAT	5280
35	CAATTAATGC	CTAAAAAGAA	AGTTGAGCGA	GAAGTTGCTG	TTGAGACGGC	AAGGAAAATC	5340
	TTAGCTGATA	GTTATGCGGA	TGAACTAATT	GATCAAGAAA	GCGCTAACCA	AGAAGCGCTT	5400
10	GAATTAGCAG	AACAAATGGG	TATCATCTTT	ATAGATGAAA	TCGACAAAGT	TGCGACGAAT	5460
	AATCATAATA	GTGGTCAAGA	TGTCTCAAGA	CAAGGTGTTC	AAAGAGATAT	TTTACCTATA	5520
	CTTGAAGGTA	GCGTTATTCA	AACCAAATAT	GGTACTGTGA	ATACTGAACA	TATGCTGTTT	5580
15	ATAGGTGCTG	GAGCTTTCCA	TGTATCTAAG	CCGAGTGACT	TGATACCAGA	ATTGCAAGGT	5640
	CGTTTTCCGA	TTAGAGTTGA	ACTTGATAGT	TTATCGGTAG	AAGATTTTGT	AAGAATTTTG	5700
	ACAGAACCAA	AATTGTCATT	AATTAAACAA	TATGAAGCAT	TGCTTCAAAC	AGAAGAAGTT	5760
50	ACTGTAAACT	TTACCGATGA	AGCAATTACT	CGCTTAGCTG	AGATTGCTTA	TCAAGTAAAT	5820
	CAAGATACAG	ACAACATTGG	TGCACGTCGA	CTTCATACAA	TTTTAGAAAA	GATGCTAGAA	5880
	GATTTATCAT	TCGAAGCACC	AAGTATGCCG	AATGCAGTTG	TAGATATTAC	CCCACAATAT	5940

	AAATATACAA	AAGGAGAAAA	ATTCATGAGC	TTATTATCTA	AAACGAGAGA	GTTAAACACG	6060
	TTACTTCAAA	AACACAAAGG	TATTGCGGTT	GATTTTAAAG	ATGTAGCACA	AACGATTAGT	6120
	AGCGTAACTG	TAACAAATGT	ATTTATTGTA	TCGCGTCGAG	GTAAAATTTT	AGGATCGAGT	6180
	CTAAATGAAT	TATTAAAAAG	TCAAAGAATT	ATTCAAATGT	TGGAAGAAAG	ACATATTCCA	6240
0	AGTGAATATA	CAGAACGATT	AATGGAAGTT	AAACAAACAG	AATCAAATAT	TGATATCGAC	6300
	AATGTATTAA	CAGTATTCCC	ACCTGAAAAC	AGAGAATTAT	TCATAGATAG	TCGTACAACT	6360
	ATCTTCCCAA	TTTTAGGTGG	AGGGGAAAGA	TTAGGTACAT	TAGTACTTGG	TCnAGTACAT	6420
5	GATGATTTTA	ATGAAAATGA	TTTGGTACTA	GGTGAATATG	CTGCTACAGT	TATTGGTATG	6480
	GAAaTCTTAC	GTGAGAAGCA	TAGTGAAGTA	GAAAnAGAAG	CGCGCGATAA	AGCTGCTATT	6540
	ACAATGGCAA	TTAATTCATT	ATCTTATTCT	GAAAAAGAAG	CGATTGAACA	TATCTTTGAA	6600
0	GAACTTGGCG	GTACGGAAGG	CCTATTAATC	GCATCAAAAG	TTGCAGATAG	AGTTGGTATT	6660
	ACTAGATCTG	TAATTGTAAA	TGCACTACGT	AAATTAGAAA	GTGCTGGTGT	AATTGAATCA	6720
r5	CGTTCTTTAG	GAATGAAAGG	TACTTTCATT	AAAGTTAAAA	AAGAAAAATT	CTTAGATGAA	6780
	TTAGAAAAA	GTAAAT					6796
	(2) INFORMA	ATION FOR SE	EQ ID NO: 3:	:			
00		EQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEL	2073 base pacleic acid	pairs	:		
15		(D) TOPOLOGY	: linear				
		4 · •				••	

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ATCCTAAAAT TMAAAATTAT CACGCCTTTT GAACAGCTTT GTAACCATCt GGACGATCAT 60 kAAATTCCAA TGTAAATCCT GGTTTAAAGT TGATCTTTAA CCTTATTTAA AYCACCAATT 120 GTACGTATAT TATGTTGTTT AGCAAAATCA CGTTTTACAG CTAAAGCATA CGTATTGTTA 180 TACTTCATTG GTTTTAACAT AGTCATTTGA TATTTCTTTT CAAGACTTTG CTTAGCTTGT 240 TCATAAACTT TTTTCTCTTC TTTTGACTTC AATGGTTCTT TTGTTAATTC ACCTAAAACT 300 GTTCCAGTAA ATTCTAAATA CCCATCTATA TCGTCAGATT TTAAAGCATT AAATAAAAAT 360 GCTGTTTTGC CCATACCATC TTTCACTTCT ACAGTATTTT TGGTCTCTTC TTCTATTAAA 420 ATTTTATACA TATTTGTAAT AATCGATGGC TCGGAGCCAA GCTTTCCAGC TAACGTAATT 480 TTATCACCTT TTTGTGCAAA CATAGGAATA GCGATAGCCA GTATAATAAT CATCACTATA 540

	TCAAATATAA	TTGCCAATAA	GGCTGCTGGA	ATTGCACCTA	ATAATATCAA	CGATGCATTG	660
	TTACGGTCTA	TACCTAATAA	AATTAAATCT	CCTAGTCCGC	CTGCACCAAT	TAATGCTGCT	720
5	AGTGTTGCTG	TACCTATAAT	TAATACCATA	GCCGTTCTTA	CACCAGCCAT	TATAACAGGC	780
	ATTGCTATCG	GAAGTTCGAC	TTTAGTTAAA	CGTCTAAATG	GTTTCATACC	TATACCTTTA	840
10	GCCGCTTCAA	TGAGTGATGG	ATCAACTTCT	TTAATTCCAG	TATACGTATT	CCTTAAAATT	900
10	GGTAACAACG	CATACACTAC	AAGTGCAATA	ATTGCTGGCA	CACGACCGAT	ACCAAATAAA	960
	GGAATCATTA	AACCTAATAA	TGCCAACGAT	GGTATGGTTT	GAAGAATTGC	CGCAATATTC	1020
15	ATTACGATTT	CAGATATCGT	TTTAGTCTTC	GTTAATAAAA	TACCTAATGG	TACCGCAATA	1080
	GCAGTTGCAA	TCAATAATGC	GATAAATGAT	ATTTGAATAT	GTTCTATCAT	TGTCGAAAAG	1140
	AGTTGCCCCT	TACGTTCACT	CAATATGTCg	AAAAAGTTAG	TCATGTTGAG	CTACCTCCTT	1200
20	TTTCTGGGAC	AAATATTTGA	AGATATCTTT	CCTATCAATA	ACATATTGAC	CTACGCTATC	1260
	TTCTTGCATG	ACAATGACAC	GCTCGCTCTC	TGATAAAAGT	TGATACAATA	CTTCAATTGG	1320
05	TTGATTGTCA	TAAACAATTG	GATAAGCGCT	CATAGATGTA	ACCTCATCGA	TTGGTTTCAT	1380
25	AATATCCAAG	TCACGGATAA	TTGCGTTCTC	TTCAACACAT	GGCGCATCAT	CTTCTAAATG	1440
	ACTACCCATA.	AATTGTTTAA	CAAATTCACT	TTGAGGATTA	TTTTTAAATC	CTTCTGGTGT	1500
30	GTCAATTTGT	TCAATATGCC	CTTCATTCAA	AAGACAAATC	TTATCACCAA	GTTTCATCGC	1560
	CTCTTGAATA	TCATGTGTAA	CAAATATGAT	TGTCTTCTTA	ATTTTAGTTT	GTAATTCAAT	1620
	TAAATCATCT	TGAAGTTTTT	CTCGGCTGAT	TGGGTCTAAT	GCACTAAACG	GTTCATCCAT	1680
35	TAAAATAACT	GGTGGATCAG	CTGCTAACGC	ACGTATAACT	CCTACACGTT	GTCGTTGCCC	1740
	CCCTGACAAT	TCATCAGGTT	TTCTGTTTTT	ATATTTTTCA	GGTTCTAATC	CAACCATTTC	1800
	AAGTAATTCA	TCTACTCTTT	TATCTATATC	TTTTTCTTTC	CACTITITCA	TTTGTGGCAC	1860
40	TTGTGCAAtA	TTTTCTTTGa	wTGTCaTATG	TGGGAATAAT	GCAATCTGCT	GCAATACGTA	1920
	TCCAATATCC	CAACkCATTT	CGTATACTGG	ATAATCACTT	ATTGGTTTAT	CTTTAAAATA	1980
45	AAȚATAACCT	TCACTTAAGT	GAATGAGTCG	ATTAATCATT	TTTAATGTCG	TAGTTTTTCC	2040
	ACAACCTGAA	GGTCCAATTA	GCACAAAAA	TTC			2073

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13321 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	ACTATTCTAG	CTTCATCAGT	TATCATATAT	TCTTTGAAAC	ACTTGTAAGA	AAATATAATG	60
5	AGTATTTACT	ACATAATGAT	ATTTCAAATT	AGAAAAAAGG	AAGTTATGAT	TTAATGGCCT	120
	TGAGCCTATC	ATAACTTCCT	TTTATCATTT	TATTGTTGTG	TTGATGTTTC	GATAACGTGG	180
	TACATCTTAT	CAAACATCAA	TTCGAAACCA	TGCACCATGG	CATCATGATA	TTCTTTTTTC	240
10	TTTTGCTTGT	ATTCTAAATT	AGTAAATCGT	CTTTCTTTTT	CAACTAATGA	ACGATAATAA	300
	AATAGCATTT	GGGTGCCACC	TGTTTCACGT	TCAAAAAATT	CTACCTCAAT	GACATCTTGC	360
15	GTTTCACTTA	GTCCAGGCAT	ACCGATAGTC	ATCTTAACGT	ATTCATCCAT	AACTAAAGAT	420
	TCATAAATGC	CTTCAATCAC	ATTTACTTTG	CCATTACGTT	GTTGATCTAC	AATACGATAT	480
	TTACCGCCTT	CTTTAACGTC	CGCTTCAATC	TCTTTATTCG	TTCTGGCTGA	TGTCATAAAC	540
20	CATTGTTTCA	ACAAATCTTT	CTTTGTCCAA	GCTTCGTATA	CTAACTCTGG	AGAAAATTTA	600
	TAAAGCTTTT	CAATTTCAAC	TTCGACATGT	TCATTCTCTA	CAŢŢAAATTT	TGCCACTGTT	660
	GTCCACCCAC	TTTCGCTCTT	ACTTTTATTT	TAACGTATTT	TTGCTCAGTT	CCAAACATAG	720
25	ATGATCATCA	TTTTTAAAAG	ATTAGCGTTA	TACGGTGAGT	ACAACATGAT	CTGTTAATAT	780
	AACAAGCCAC	CTTACTTGGC	TACATCGATA	TATTGTTAAG	CATTAATGTT	TCATTTCTTG	840
30	ACTAGTGTTC	TTTTTTAGCT	TTGGAAAATT	AAATAAAATC	GCAATAAGTC	CGCATACACC	900
	TAATAATATA	GGATAAATGC	TGTATGGGAA	TAACATTAAC	GGTGAAATAC	CAGCTACACC	960
	AGCCGCTGaA	ATGACTTGCG	GGCTATATGG	TAATAAACCT	TGGAAGCAGC	СТССАААТАТ	1020
35	ATCAAGAATA	CTTGCTGATT	TCCTTGAATC	TACATCATAT	TCATCTGCAA	TATTTTTAGC	1080
	TAAAGGACCT	GACATAATAA	TAGAGATGGT	GTTGTTTGCC	GTGGCAATAT	CTGCGACACT	1140
	TACCĀAACTA	GCAATTCCTA	ATTCTGCGCC	ACGCTTTGAT	TTCACTTTAG	AGCGAACAAA	1200
40	TTGCAACAAC	CATTCAATAC	CACCATTGTG	TTGAATAATA	CCGACTAAAC	CACCAATTAG	1260
	CAACGCAATC	ATAGCAATAT	CTTCCATGCT	TATAATACCT	TTGGACACTG	CATCTAGTAG	1320
45	CCCCATCCAA	CCGAATGAAC	CATCTATGAG	ACCAATGATT	CCGGCTAATA	ATGTTCCGCC	1380
	AATCAATACG	ATAATGACAT	TTACACCTAA	TAATGCTAAT	ACCAATACTA	AGATATACGG	1440
	TACAACTTTA	ATTAGATTAT	AATCATAGTt	TTTAGCATGA	TTTAAAGAAA	TGCCATTCGT	1500
50	TAAGAAATAC	AGAATAATAA	TCGTTAAAAT	AGCACCTGGC	AATACAATTT	TAAAGTTTAC	1560
	TCTGAATTTA	TCTTTCATTT	TCGTATGTTG	TGTTCTAACC	GCAGCAATTG	TTGTATCTGA	.1620
	AATCATTGAT	AGATTATCGC	CGAACATTGC	ACCTCCAACA	ACTGTAGCCa	tTGctAGCGC	1680

226

	TCCTACAGAC	GTCCCCATAG	ATATAGAAAC	AAACATACAA	ATCACAAACA	ATCCTACAAT	1800
_	AATTAAATTT	TCTGGGATTA	ATGATAGTCC	TAAATTAACT	GTCGACTTTA	CGCCACCCAT	1860
5	TTTTTCAGCT	GTATTTGAAA	ATGCACCTGC	AAAATAAAAT	ATCAACATCA	TTAAAACAAT	1920
	GTTTGAATGG	CCTGCACCTT	TCGTGAAGAC	CTCAACTTTT	TTAGCAAATG	ATTCTTTTCG	1980
10	ATTCATTAAT	AACGCCACAA	TTACCGTTAT	CGTAATTGCA	ACATTTAATG	GCATTGAAGT	2040
	AAAATCACCT	GTGATAATAC	CTACGCCTAA	AAACAACGCC	ACAAATAATA	ACAAGGGGAA	2100
	TAATGCCCAA	GCATTGCTCT	TTTTATGTAC	TTCCATCCTT	TTTACCTGCT	TTCCAATTAA	2160
15	AAATACCTCT	TTCTCACAAA	CGATGAAGAA	AGAGGTTTTC	ATGTGCTTTA	CCTGCTTATC	2220
	TTCAAACCAT	TACGGTTACT	GGAATTGGCA	CATTCGAGAT	GTTGCCGAGG	CTTCATAGGG	2280
	CCAGTCCCTC	CACCTCTCTA	GATAAGTGAT	GCTTATTTAC	GTTTACGTTA	CAAGATAATC	2340
20	CTTAGTACGT	CAATCATAAA	TTAATCAGGA	GTCGTATAAT	ATTTTTCATA	AACAATCATT	2400
	GCTACTGTAA	TAATAATCAA	AACAATAATG	CTAATAACAA	GTAAAAGCCA	CCATTTAAGC	2460
25	ATTAATGCAA	TAAAAATGAA	CACGATAGAC	ACACTTACTA	ATATTAATGA	TATGACTTTA	2520
٠	AATTGCTGAA	CACGTTGCTT	GGAGATGACT	TTCAACTGTT	TGTTTGATAG	ACGCGTATTT	2580
	TTTATACTGA	TTCCCAGTAT	ATTTTCTAAT	ATTTGAACCA	ATACGATACT	TATTGCAAAT	2640
30	ATAATAATTG	GTAAAACATC	ATAGCTCCCT	ATAGTTAATG	TATAAATTAC	AAATCCAATG	2700
	TAAAGTAACC	CTGAGACAAA	GGATAAAAAG	TATGCGACGT	ATTTGTTAAA	CTTAATGATA	2760
	TGCTTTTTAA	CGTTTTGATG	TGTAAACCAT	ACATTCGAAA	CGATCGCAAC	TGCTACAAAT	2820
35	AATGTGAATA	СТАТАТАТАА	TGGTAATTTT	TGTTCAGGAA	AAACAGTCGC	TATTCCAAAA	2880
	GCTAATGCTA	AAATCAAAAA	TAATATAGCT	CTAGATACTA	TTAATGCCAT	AATAACAACC	2940
40	CCTTTGTTTA	ATATCGAGTT	TGCAAATTTA	CGTTTATCAG	CGTTTCTATG	ATCAGTACTT	3000
	CTACGGGTAG	CGTTTCTATG	TAATTTACAT	CATCTTAACA	TATAAATACT	TCGCTATTTA	3060
	ATTGAAAACA	TATCCTATTA	TTCTTTGTCC	GTTCTGACGT	TTAATATCTA	GCCTTAGGCA	3120
45	TTTCACTTGT	TAATGAATTT	AACTTTCTTC	CACTAACCGT	CCCTAAACCC	AATCCCGCAA	3180
	CAGTTTTTAA	CTTTTTCGTT	GTTGTCCTGA	CATCCTCATT	AAGAAAGTTT	ATTCTGCTTA	3240
	AAACTTATAA	TCCACACCCT	GAGCAAACGC	TCCTTATGAC	AGAGTATTAA	AATAAGCCGA	3300
50	TAAAGATACA	CACCTTTACC	GACTATTTAA	AATACACTTC	ACCAATTCAT	TTTAATTTAA	3360
	TGGATTGAAG	TAACTAAATT	AATATTATGT	TGTTCAATTA	AAAGCTTCAT	ACAAACCTAA	3420
55	TCTATTTGCA	CTCCACCGCT	AACACCGAAC	ACTTGTCCGG	TTGTATAACT	TGATTCTTCT	3480

	GTTTTTTGAC	CAAATGTTGG	GATTTTACTT	TGAGGTTGTC	CACCAGAAAT	TTGTAATGGT	3600
	GACCAGAATG	GACCAGGCGC	TACACAGTTC	ACTCTAATTC	CTTTTGGTCC	TAATTCTTCT	3660
5	GAAAAACTTT	TAGTTAATGA	AATAATTGCT	GCTTTTGAAG	CGGCATAATC	ATGAAGAATA	3720
	GGACTAGGAT	TATAACCTTG	TACAGATGAT	GTCGTTGTAA	TTGACGCACC	CGGTTTTAAA	3780
40	TATTCCAATG	CTTTTTGAAC	TGTCCAAAAT	AGCGGATAGA	CATTCGTTTC	AAATGTTTCT	3840
10	GTAAATGCCT	CAGTTGTAAA	TCCATGAATA	TCATCATGAT	ACTGTTGATG	TCCAGCAACT	3900
	AAAGTAACAT	TATCTAAGCC	ACCTAATTGT	TGATATGCTT	GTTCAACAAG	GTCATAGTTG	3960
15	AACTGTTCAT	CTCTTATATC	ACCAGGAATT	AACACTGCCT	TTTGACCACT	TTCTTCAATC	4020
	ACTTGGCGTA	CTTCTTGTGC	ATCTTGTTCT	TCACTCGGAA	GATAGTTAAT	CGCTACATCT	4080
	GCACCTTCTT	TAGCATACGC	AATTGCTGCT	GCACGCCCTA	TTGCTGAGTC	ACCACCTGTG	4140
20	ACTAATATTT	TATAGCCTTG	TAAGCGTTGA	TGACCTTGGT	AAGACGTTTC	GCCACAATCG	4200
	GGTGCTGGCG	TCATTTCAGA	TTGTAAACCC	GGTACCTCTT	GTTCTTGTTT	TTCATAATCC	4260
	GTTGTTTTAA	ATTTTGTTCT	AGGATCTTGA	GCTGCCATTT	TTTTACATCT	CCTTATTCGC	4320
25	TTAATGGTTA	TTATTTACCC	AATCTTCCTA	GGAACTTAAT	CATGATTACA	СТААААТТА	4380
	CTTTCTTCTT	TATAAAAACA	AGCTCGAATT	ATTCATGCAA	TAGTCTCTTT	ACAAATTCAA	4440
30	CAAAATACTC	AGGTACTTTT	TCCAGAATCC	TTTCATCCGG	TTTATATTGA	GGATGATGTA	4500
	AATCATATTC	ACTATGAGAA	CCAATTAACG	CAAATACACT	TGGAAAATGT	TGACTATAAC	4560
	CTGAAAAATC	TTCTCCAATC	GTAAGCGGCT	GTTCCATCAT	TCCCACCTTA	TATCCAACAT	4620
35	GTTGGGCTAC	TGCAATTGCT	TTATGCGTCA	ATGCCTCATC	ATTCATCACA	GCGCCAGGTA	4680
	AATGCGTATA	ATTTAAATTTA	ATTTTCATAT	TATATGCTTG	AGCCAATCCG	TCCGCAATAT	4740
	CTTGTAATCG	TGTTTCTACA	AGCTTTCGTA	CCACAGGATC	AAAACTACGC	ACTGTGCCTT	4800
40	GTACATACGC	ATGATCAGCA	ATGACATTCC	AAGTATTACC	ACATGATATT	TGTCCAATTG	4860
	TTACTACCGC	TTCATCAAAC	GCAGATAGAT	TTCTACTAAC	TATGGATTGA	ATACTATTAA	4920
45	TCAATTGCGC	CAACACAATA	ACTGGATCGT	TGCATTGTTC	TGGcTTTGCA	GCATGACCAC	4980
	CCACGCCTTT	AATATGAAAC	TCAAAACGAT	CTACTGCTGA	TGTAATTGCC	CCTGTTTTGA	5040
	TTGCAAATGT	ACCTACCGAA	CGCGATGGGT	CATTATGAAA	ACCCAATACT	GCTTGTACAT	5100
50	CTTTTAATGC	ATGTGTTTCA	ATAATTTTAA	AAGCGCCATG	TCCTAGTTCT	TCTGCTGATT	5160
	GAAAAATGAA	TTTAACACGC	CCAGTAAGAG	TGCCCTCAAT	TTCTTTTAAT	TTTACAGCTG	5220
	TAGCCAAAAT	ACTAGCCATG	TGAATATCAT	GACCACACGC	ATGCATAACA	CCTTCATTTT	5280

	CAGCIAIACA	ACTCAGACCI	TGTCCCACTT	CAGCAACAAG	CCCAGTCGCA	AGIGGIAAGI	5,400
_	CTAATATTCT	AATATGATGT	TCTGTTAAAA	TATCTTTAAT	TTTTTGTGTA	GTCTTAAATT	5460
5	CTTTATCGGA	TAGTTCTGGA	AATTGATGAA	AATACCTTCT	CCAGGTAACA	GCTTGATCTT	5520
	TTAATCCCAT	CGGTCATTCC	CCTTCCTTAA	GTCAATGATA	TGTTGTCTAC	CCTACGATGA	5580
10	TCATCTTTGA	CTATTAAACG	ATGATTTCAC	AACAATGTAC	TCTTGTTAAT	TGCTTTCGTT	5640
	AATGATAGAC	AGTTGTTTAA	TAATATCGTA	ACACTGTTGT	CAAACTATTC	TAACTTTTAT	5700
	AATTGAGACT	CTATACAAAA	ACGTGTTCTC	GAATATACTT	GTTTTTACAA	ACCACAAAAA	5760
15	GCTCTAAACA	TTAGTTTAAA	CCAATGCTTA	GAGCTTTCTA	ATTATTTTAT	GCTTTAAAAG	5820
	ATACTGTGTT	ATCTACGATG	ACCTTACCGT	CTTTAATAAC	TTTTTCTGCG	TGATTGATAC	5880
	CAAAATGATA	TGGAATATAT	TCATGATTTG	GTGCATCCCA	AATTACTAAA	TTAGCCTTAT	5940
20	CACCTGTGTT	AATTGTACCC	GCGTTAATGT	CTATTGCTTT	AGCAGCATTG	ACCGTAACAG	6000
	CATTCCAAAC	TTCATTAGGT	GATAGCTTTA	ATTTCAAGGC	TGCAATCGCC	ATAACAAGTT	6060
25	GTAAGTTGTT	TGTGACACTA	CTACCAGGGT	TATAATCAGT	TGCTAATGCA	ATCGCACCGT	6120
	TATTGTCAAG	CATGCCTCTT	GCATCTGCAT	AATCTTCTTT	ACCTAAATAG	AACGTCGTTG	6180
	CAGGTAAGAG	GACAGCTACA	GTATCACTAT	TTCGCAACTT	TTCTTTTCCT	TTATCACTAG	6240
30	AAGCTACTAA	GTGGTCTGCT	GATATTGCTT	GTTCATCAAT	TGCTAATTCC	AGTCCGCCTA	6300
	ACGGATCAAT	TTCATCCGCA	TGTATTTCA	CTTTAAAACC	TGCTTCTTTG	GCTTTTTGCA	6360
	TATAATGTTG	CGATTGTTCT	ATTGTAAATA	CACCTGTTTC	ACAGAAAATA	TCCGCAAAGT	6420
35	CTGCATATTG	TTTTACTTCC	GGAAGTAACG	CAATCATTTC	TTCTAAAAAT	GCCTCATTTG	6480
	AACTTGCCTC	TTTAGGTACA	GCATGAGGCC	CTAGGAAAGT	ATGTTTCATG	TCTAAATCAT	6540
40	ATTTCTCAGC	TAAACGATTA	GACACTTTCA	ATTGCTTCAG	TTCATTTTCT	CTATCTAATC	6600
	CATAACCACT	CTTACTTTCA	ACTGCAAGCA	CGCCGTGTTT	AATCATAGTA	AGCAAATCAT	6660
	GCTCTGCTTT	TTTAAACAAG	TCATCTTCGG	ATGTTTCTCT	AGTAGCATTA	ACGGTAGATA	6720
45	ATATGCCACC	ACCCATTTCT	AATATTTCAA	GGTAAGACTT	ACCTTGACGT	TTTAATGACA	6780
	TCTCATGTTC	TCGAGATCCA	CCAAATGTTA	AATGGGTATG	TGCATCTACT	AATGCTGGGG	6840
	ACACTACCTT	CCCACTAGCA	TCAATCGTCT	CAGTCGCATC	GTAGTCATCT	GTATGTGTTC	6900
50	CAGCATATAC	AATTTTGCCA	TCTTTAATGA	CAACTGTACC	ATTTTTCACA	ACATTTAATT	6960
	CATCTAATTC	CTTACCCTTC	AAAGGTTTAT	CTGTTGATCT	CGGTAAAATT	AATTCTGCTA	7020
55	TATGATTAAT	TATTAAATCA	TTCATTACTT	ATCACCTGCT	TTATCAATCA	TTGGAATATG	7080

	AACACCCATA	CCTGGGTCAG	TCGTCAATAC	ACGTTCCAAT	CTTCTTTCAG	CACGCTCTGA	7200
	TCCATCTGCT	ACAACAACCA	TACCCGCATG	AAGTGAATAT	CCCATGCCAA	CACCGCCACC	7260
5	GTGATGGAAT	GAAATCCATG	AACCACCTGC	AGCTGTGTTA	ATGAGTGCAT	TCAATACAGC	7320
	CCAATCACCA	ACCGCGTCAC	TACCATCTTT	CATACTTTCT	GTTTCACGGT	TAGGACTAGC	7380
10	AACTGAACCA	GCATCTAAAT	GGTCTCGTCC	AATAACAATT	GGTGCTGAAA	TTTCACCGTC	7440
	ACGTACAAGA	CGATTTAAAG	CTAAGCCCAT	TTTCGCTCTT	TCTCCATAGC	CTAACCAAGC	7500
	AATACGTGAT	GGTAGTCCTT	GATATGAAAT	TTTTTCTTCA	GCTAAATCAA	GCCATCTTAA	7560
15	TAACTTTTCA	TTTTCTGGGA	AAAGTTTGCG	CATTTCTTCA	TCCGCACGCT	CGATATCTTT	7620
	TGGATCACCA	CTCAACGCAG	CAAAGCGGAA	TGGCCCTTTA	CCTTCACAGA	ATAATGGTCT	7680
	AATGTAAGCT	GGTACAAAGC	CTGGGAAGTC	AAAAGCATTT	TTCACTCCGT	TATTGAAGGC	7740
20	TACTTGACGA	ATATTGTTAC	CATAATCAAA	TGCTACAGCG	CCACGTTTTT	GGAATTCAAG	7800
	CATTAATTCA	ACATGCTTTG	CCATTGAAGC	TTGTGACAGT	TCAACATATT	TTTTCGGATC	7860
25	TTTTTCACGC	AATACTTTCG	CTTCTTCTAC	AGAGTATCCT	TGTGGCACAT	ATCCATTTAG	7920
	CGGATCATGT	GCACTTGTTT	GGTCAGTAAT	AATGTCAATT	TTAAATCCTT	TTTCTAGAAT	7980
	CGCTTGATGG	ATGTCTACAG	CATTTCCAAC	TAACCCGATT	GATAATCCTT	CTCCACGTTC	8040
30	TTTCGCCTCT	TCTGCTAATT	TTAATGCTTC	ATCTAAATCA	GCTGTTTTAA	CATCACAGTA	8100
	TTTCGTATCA	ATTCGCTTAT	CAACACGTGT	TTCATCAACA	TCCACGCAAA	TTGCTACCCC	8160
	ATGATTCATA	GTAATTGCTA	ACGGTTGCGC	ACCACCCATA	CCACCTAAAC	CTGCTGTCAG	8220
35	TGTAACAGTG	CCTGCTAAAT	CTCCATTAAA	GTGTTGATTA	CCTAGCTCGG	CAAATGTCTC	8280
	ATAAGTACCT	TGCACAATAC	CTTGAGAACC	AATATATATC	CAACTACCGG	CTGTCATCTG	8340
10	TCCATACATG	ATTAAACCTT	TTTTATCTAA	TTCATTAAAA	TGATCCCAGT	TTGCCCATTC	8400
40	AGGCACTAAT	ACTGAATTTG	AAATTAATAC	ACGTGGCGCT	TCTTCATGTG	TTTTAAATAC	8460
	AGCAACTGGC	TTTCCTGATT	GTACTAACAT	TGTCTCATCT	GATTCTAATT	CTCGTAACGT	8520
45	TTTCTCTATT	GCTTCAAAAG	CTTCCCAATT	ACGTGCTGCT	TTTCCAATAC	CACCATAAAC	8580
,;	AACTAAATCT	TCTGGTCTTT	CAGCAACTTC	TGGGTCTAAA	TTGTTGTATA	ACATTCTAAG	8640
	TACTGCTTCT	TGTTCCCAAC	CTTTACACTC	AATACTCAAA	CCTTTTTTTG	CTTGAATTTT	8700
50	TCTCATAAAA	TTCGCTCCTG	TTCTTTTAAG	AAGTTAATTC	CACTAAATTT	AAAACGCTTA	8760
	CATTATTATC	TTCAATATTC	ATTATAGTAT	GTTAAAATAT	AGCCAACAAA	TATAAATAAA	8820
	CTAATTATCC	ATAGCTTGAA	TCTATAAATA	AAAGGAGCAA	AACACATGAA	AATTATTCAG	888

	CATATTAGCC	AGCCATCTTT	AACTGCTACG	ATTAAAAAAA	TGGAAGCAGA	TTTAGGTTAT	9000
<i>5</i>	GACTTATTTA	CACGTTCAAC	AAAAGACATC	AAGATTACCG	AAAAAGGAAT	ACAGTTTTAT	9060
J	CGTTATGCGA	GCGAATTAGT	TCAACAATAT	CGATCCACGA	TGGAAAAAAŢ	GTATGATTTA	9120
	AGCGTTACAT	CAGAACCAAG	GATAAAAATT	GGGACTCTTG	AATCTACGAA	TCAATGGATT	9180
10	GCGAATTTAA	TTCGAAAGCA	CCATTCCGAC	TACCCTGAAC	AGCAATATCG	TTTATATGAA	9240
	ATACATGATA	AACATCAATC	TATAGAGCAA	TTACTGAATT	TTAATATTCA	TTTAGCTATA	9300
	ACAAATGAAA	AAATAACCCA	CGAAGATATA	AGATCCATTC	CTTTATATGA	GGAATCTTAC	9360
15	ATTTTATTAG	CACCCAAGGA	AACATTTAAA	AATCAAAATT	GGGTAGATGT	TGAAAATTTG	9420
	CCACTCATAT	TACCAAACAA	AAATTCTCAA	GTGCGCAAAC	ACTTAGATGA	CTATTTTAAT	9480
20	AGAAGAAATA	TTCGTCCAAA	TGTCGTTGTA	GAAACAGATC	GATTCGAATC	AGCAGTTGGA	9540
20	TTTGTTCATC	TCGGCTTAGG	TTACGCTATC	ATTCCGAGAT	TTTATTACCA	ATCATTTCAC	9600
	ACGTCTAATT	TAGAATATAA	AAAAATTCGT	CCAAACTTAG	GCCGAAAAAT	TTATATCAAT	9660
25	TACCATAAAA	AACGCAAACA	CTCCGAACAA	GTACATACAT	TCGTACAACA	ATGCCAAGAT	9720
•	TATTTATATG	GACTTTTAGA	GGCTCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9780
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9840
30	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9900
	CTCAGTCAAC	TGTATACCTT	TTTCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9960
25	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGTGCCTCT	TATGTAGTTG	10020
35	CGTAGTCAaC	TGTaTACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	10080
	CGCAGATCAT	CGTATAAAAA	TTAATGACGT	CATTTCAAAA	ATCGATACAA	AAATAATTTA	10140
10	TAAAAAAT	TCTAAGAAAG	AAGTGAAGCA	GATGTTAAAA	TCTATTAATC	ATATATGCTT	10200
	TTCAGTCAGA	AATTTAAACG	ATTCAATACA	TTTTTATAGA	GATATTTTAC	TTGGGAAATT	10260
	GCTATTGACT	GGTAAAAAA	CTGCTTATTT	TGAGCTTGCA	GGCCTATGGA	TTGCTTTAAA	10320
45	TGAAGAAAAA	GATATACCAC	GTAATGAAAT	TCACTTTTCA	TATACACATA	TAGCTTTCAC	10380
	TATAGATGAC	AGCGAATTTA	AATATTGGCA	TCAGAGGTTA	AAAGATAATA	ACGTGAATAT	10440
	TTTAGAAGGA	AGAGTTAGAG	ATATTAGAGA	TAGACAATCA	ATTTACTTTA	CCGACCCTGA	10500
50	TGGTCATAAG	CTAGAATTAC	ATACTGGCAC	ACTTGAGAAC	AGATTAAATT	ATTATAAAGA	10560
	GGCTAAACCA	CATATGACAT	TTTACAAATA	AGGTGTCATT	ATAAAAAGGC	CTCTTGAACT	10620
:6	CCGTTAAAAT	TTTAATTAAT	TATTATATAA	TAAGAGAACT	TTTCAAACAA	TACAGTTGTT	10680

	TTACTGCAAT	TATTTTCAA	ATATATCAAC	GTTAATATAA	CTTCTATTAA	GAAATACTCA	10800
_	CATTCTGCCC	TGCAATGCAA	ATCTCGTCAC	ATATAAATAT	TTTTAATTAT	TTAAAAAAT	10860
5	GATGCACTAA	ATTAGCAACG	AGCTTAGCAG	TTCTATTGTC	AGCGTCATAT	GTTGGATTCA	10920
	TCTCAGCAAT	ACTAACTGAA	GACACCTTAT	CACTTGGAAT	AATACGTTTT	GCTAATTCAA	10980
10	GAACAGTATG	TGGATACAAA	CCTAACACTG	CCGGCGCACT	TACCCCAGGC	GCAAACGCAC	11040
	TATCAATGAC	ATCCATACAA	ATCGTAAACA	TAATGACATC	ATGTTCATGT	ACAAAACGTT	11100
	CAATCATATC	TTTAATTGTT	GGTGATACGT	GACTCAATAA	TTCATCTGCA	AAGACATAAT	11160
15	CAATCTTTTT	CTCTTTAGCA	TAATCAAATA	AACTTTGCGT	ATTACCACCT	TGAGCAATAC	11220
	CAAGCACTAA	ATAATCTGTG	TTTTCATCTT	CTTCTAAAAT	TTGTCTAAAG	CTCGTTCCAG	11280
	ATGTAGATTG	TTGTTCAGCA	CGTGTATCAA	AATGCGCATC	AATATTTATC	ACACCAATAG	11340
20	ATTGTGTTGG	ATAGACTTTA	CGTGTTGCTA	AATATTGAGC	ATACGCAATA	TCATGTCCAC	11400
	CACCTAATAA	AAATGTTTGT	CTATGATTAG	CAATTGACTT	CGCTGCAAGC	ATAGCAAATT	11460
?5	CTTTTTGAGT	ATCAATTAAT	TCCTCATGAT	CATGATAAAC	ATTTCCGTAA	TCGACTAAAG	11520
	TTCACATTGA	TTCAAATCCG	GCAAACCTGC	AAATGCTTGT	TTAATCGCAT	CTGGTCCTTC	11580
	TTTTGCACCA	ATGCGCCCCT	TGTTTAAAGC	AACACCTTTG	TCAACAGCAT	AGCCTAATAT	11640
30	ACCGACCCCT	GATGGCATAC	TACTCTTTTC	CAGCTTAGAC	AAATCTTCAA	ATGTTACTGT	11700
	TTGAAAATGT	CTAAATTTTT	TCGGGTCTGT	TTCACTATCT	AACCTTCCAG	TCCATAAATT	11760
	TGGTTCACCT	TGCTTGTACA	CAGCATTTCC	CCCTCTTATT	TATGTGGCTT	ATTAACAATT	11820
35	AAAGTATAAC	GTATAGGAAA	TTTTGAATTC	AATTCATAGT	TAAATCCGTA	TCTTAAAAAT	11880
	ACTTATCTAC	ATTACTTTTA	CCCCTATTTT	CTATGTAATA	ACGAATACTT	AGCTGATTTA	11940
10	TGTTAATAAA	ATACGTCAAG	ACTATTACAT	TTTCATTAAT	ATTGACATAG	ACAATTTATC	12000
	TCTCGGCTTG	TAATATGTAT	AATTGTTACT	AAAAGATATT	TTGCTTGTTA	CCTAATGGAG	12060
	GTTACATATA	ATGAAGAACA	ATAAAATTTC	TGGTTTTCAA	TGGGCAATGA	CGATTTTCGT	12120
5	CTTCTTTGTC	ATTACAATGG	CGTTATCCAT	TATGCTCAGA	GATTTCCAGT	CTATAATTGG	12180
-	TGTCAAACAC	TTTATATTTG	AAGTTACAGA	TCTAGCACCA	TTAATTGCTG	CAATCATTTG	12240
	TATACTCGTT	TTCAAATATA	AAAAGGTCCA	ACTTGCAGGT	TTAAAATTCT	CAATCAGCCT	12300
· .	GAAAGTAATT	GAACGTCTAT	TGCTAGCTTT	AATTTTACCT	TTAATTATTC	TAATTATTGG	12360
	TATGTACAGC	TTTAATACAT	TTGCAGATAG	CTTTATTTTA	TTACAATCAA	CAGGCTTATC	12420
-	AGTACCTATT	ACACACATTC	TGATTGGACA	TATTCTGATG	GCGTTCGTAG	TAGAATTCGG	12480

	TGTTGTTGGT	TTGATGTATT	CAGTTTTCTC	AGCAAATACA	ACTTATGGTA	CAGAATTTGC	12600
	TGCTTATAAC	TTCCTTTATA	CATTCTCATT	CTCTATGATT	CTTGGTGAAT	TAATTAGAGC	12660
•	GACTAAAGGA	CGTACAATTT	ATATTGCAAC	GACATTCCAT	GCTTCAATGA	CATTCGGACT	12720
	TATTTTCTTG	TTTAGCGAAG	AAATCGGCGA	TCTATTTTCA	ATCAAAGTCA	TCGCCATTTC	12780
	AACAGCAATC	GTTGCAGTAG	GATACATTGG	TTTAAGCTTA	ATTATCCGAG	GTATTGCATA	12840
	TTTAACAACA	AGACGAAACC	TTGAAGAACT	TGAGCCTAAT	AATTATTTAG	ACCATGTCAA	12900
	TGACGATGAA	GAAACTAATC	ATACTGAGGC	TGAAAAATCT	TCTTCAAATA	TTAAAGATGC	12960
	TGAAAAAACA	GGTGTAGCTA	CTGCATCAAC	GGTTGGTGTT	GCTAAAAATG	ATACTGAAAA	13020
	TACAGTGGCT	GACGAACCAA	GCATTCATGA	AGGTACTGAA	AAAACAGAAC	CTCAACATCA	13080
	CATAGGTAAT	CAAACTGAAT	CTAATCATGA	TGAAGATCAt	GACATCACTT	CGGAGTCAGT	13140
	AGAATCAGCm	GaATCAGTTA	AACAAGCACC	ACmAAGTGAC	gATTTaACAA	ACGATTCAAA	13200
	TGAAGATGAA	ATAGAGCAAT	CATTANAAGA	ACCTGCGACT	TATAAAGAAG	ACAGACGTnC	13260
	ATCAGTTGTA	ATTGATGCAG	AAAAACATAT	CGAAAAAGCT	GAAGAnCAAT	CTTCAGATAA	13320
	A .						13321

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8549 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

45

50

5

10

15

20

25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATGTGTTGTA	AACTTTTATG	TTGAAAAAGC	TACTTATCTC	AATGAAAACA	AGTAGCATTT	6
AATAAATTAA	TTAGTATACA	GCTAGTTTTT	CTAATTGTTC	TTTAACTTGA	ATTAAGTTTG	12
ACCGTATTAG	AGAGGCAGAT	TGATCCATCG	TTTGAATTGC	TTGTCCTTCA	TTTTCGTTCA	18
AGCCATTACA	AACAACTTCA	AACTGTTGTG	CCATTTGATC	AAGACGCGCA	TGAGCTTGTG	. 24
TGTTTAAAAT	AAACATATCG	TCATAATGTG	ATGGCGAATA	GATAATTCGT	CGTTGTATAC	30
AAACGTATAA	AAACCTTGTC	ATATCAACGG	TTTTGGCATT	TTTAAACCTC	TGTGTTTTCC	36
ACGCATGTTT	GCCCTTATTT	AAATAATTTG	CCCTTTTTTC	GCCCCGAAAA	AAAAACACAA	42
AAAAATAACC	ACACTCCTAA	ATTAATAGGT	GGTGTGGTTT	TGTTGATTGT	AGGGGTATAA	48
AAATAACCGC	ATTATTAAAG	ATACGGTTAC	TCTGTTATCT	GTAAATATAA	TAGTAGTTTA	54

	AAACAGGACT	CCACATAAAA	ATCAACTCCT	TTATATACCA	TAATGATACT	ATATTTTCTA	660
-	GTTTATTTCA	ATTTTTCAGT	TTTTAAAAAT	GAGTTTCTGT	TTTTATTTAT	ACGCTTTTCT	720
5	GTTTTCTTTT	TAAATTTTAT	CTTTTTGTTA	TTCCATTCAT	TGTAAAATTC	TATTAAATTA	780
	ACATAAAATT	TTTCATGCCC	TATTTTATTT	GTTGATGAGA	TATCAATGTA	AAGACTCAAT	840
10	ATTGTTTTTA	AATAGATTTG	ATGCAACGAC	TGATAAACCG	TATTACTATC	TGCTATGTTA	900
	TTGGTAAAAT	GCATAGAAAA	ATATTCTAAT	TTATTCATGC	AATATATATG	GGTTTCATTA	960
	TACTTCTTAA	TGAGTGTATT	TATACCTTGC	AATACGTCAT	TACTTTTAAT	AACAATTTCT	1020
15	TTTTCACCTG	TCGAAAAAGT	CCACTGTTTA	TCTCCTATAT	TTTCTTTAAT	TGTTTTCTTG	1080
	TTGTCAAATT	CTAAAATTAT	AGCCCGTAAA	CACTCTTCTT	TATAATTCTC	GTTCTTGAAA	1140
	GTACGAAGCA	AAATTTTTAT	AAATTCGGTA	TTGGTGACTT	TTTTATAAGT	GTGATATTTT	1200
20	GCAATCTCTT	TATCAGTAAA	GACTGTTCTT	AGTTCGTGAT	TATCAAAACT	TAAATTCATC	1260
	TTATTCTCTA	ATTCATTAAT	TTTATCTTGC	AAACCAACAT	TTTCTAAAAT	TTTCTTGTTT	1320
25	ATCTCCCCTA	TATCAAAACT	CCTTTTCGAA	ATTAATTTTG	AAAACTCGTC	TGCCATTTCA	1380
	ACAGCCTTTT	CTTTCCTTTT	ATACCTTTTG	TTAAATTTAT	GAACCACCGT	TGCAGCATAA	1440
	TACGATATCC	CACCAGATAA	AATAGATGaT	ATTATCGGTA	TGTATATATC	ACCTTTCATA	1500
30	TTTCCACCTC	TTTTAACACA	ATTAAGTATT	ATGATACACA	ACTTGCGCAA	AAAGATGTAG	1560
	ACAGAACATA	ATGGCGAACA	AAAACAACCA	CCCAGTAACT	AGTATGGGTG	GCGTAGACTA	1620
	TAACAACTCT	ATGTTATCAA	GATATATGTA	TCGAGTGATG	GCAAGGAAGA	AGTCTCCTGC	1680
35 `	GGGACCAACA	GTCAGATATA	TGGCCTCTGC	CGGGCTATAT	AGTTCACTCC	TACTATATAA	1740
	AAGTAAGTAT	AACATAAAAA	GCACCCCGTA	AACTGTTATA	CGGGAATGCT	AAAGTCATAT	1800
40	ATACTACGGG	GAGTAGTATG	AAAACTATGC	TCTCTATCGT	AAGAAAAAAC	ACCCAGTGAC	1860
	ATGCTTGGGT	GAACAAGGAT	AGATGTAAAT	AGTTGATGCA	TGTGTAcACA	TCATAACAAA	1920
	AAACTAGCCC	GAAGCTAGCT	АТААСАТААА	AAAATAGGCA	AGTACCGAAG	TACCTGCCAG	1980
45	TTACGCACAT	TTAAATCTTG	AGAGTAATGT	TAAAAAGTGT	ATAGGAATAT	TAACATCCAT	2040
	CCAAATAGTT	ATTTAATAAC	TGTAAGATTC	ССТАТААТТА	ATGTAGCaAA	ATTTTTATTC	2100
	TAAGTAAATA	CTAAATCGTG	CTAAACTTAC	CAAAACTACT	TATTCTATTA	CCTGCCTTGT	2160
50	CTACCTCTCC	TGTCGCTATA	TAACGACGTT	GTCCACTATT	AGCAATATAA	GTAATCCATC	2220
	TATAGCCATT	GATGCAATAT	GCGCCGTCAT	ATTTAATTGT	TGCGTTATTA	GGTAATACAC	2280
55	CTGTAATTCT	TGAATTAGTT	GAATAGCCGT	CCCTTACGTT	ATTACCTTTA	ACATTGGCAA	2340

	CIGGLACIGG	TGGATTTTT	TGGTTTTTAG	CTGATGTTTT	AACATTACCA	GCTACCAAAC	2460
	CACCTATAGG	CTTACCATGA	ATCGCACCGG	CTATTAATTT	AGAATACAAG	TCATAGTTTT	2520
5	TCTTAATCCA	ATCCATATCA	TTTTTATTAG	TAATAAAACC	TAATTCAGAT	AAACGATAGT	2580
	TATATATTAT	TTCTGCTGAT	ACATTAACGT	TTAGTAAATC	ATTACGAGGT	GTTACACCTC	2640
10	TTATTTGTCC	TAAGTTATTT	TTAATAACAT	CTTGTATACT	TTTATCAATA	GTATCTGCAT	2700
	TGAATTGACT	TGAAATAATA	ACATGCCCAC	CACTTGCACT	TTCTCCTGCT	GCGTCTAAAT	2760
	GAATCTCTAG	AACAATGTCA	TACCCATGTG	ATTTAACCCA	ATATAAGCCA	TAATCTTTAT	2820
15	TATTTCCTAC	ATTAACACCG	TAAGCAGTAT	CTTGATACAT	ATCTTGTGAT	TGACTTGAGC	2880
	CACCATATAA	TGCAACTTCG	TGACCTGCAT	GTCTTAAATA	CTTAGCGATA	TTTGGTGTTA	2940
	TATATTTACG	GATAAAATCA	CGTTCATTTG	TTCCGTTTCC	GACTGCTCCA	GGATCGTTAT	3000
20	AACCATGACC	GGCTACAAGC	ATAATTTTTT	TAGGTTTAAT	TACTGCTTGC	TTTTTGGCAG	3060
	TTGCTTGCTT	AATAACGCTT	TTAGCTTTAT	CTCCAACACT	TACTTTATCT	GGGAAATTTA	3120
25	ATCTAATAAA	ATACATTGGG	TCATCGTAAT	AATGAACATG	TCTTGTAACG	GTTTCGGGAC	3180
	CCCAACCAGG	TTGCGCAACG	CCATTTGTCC	AACCTTTACC	ATTCCAATTT	TGGCCAAACG	3240
	ATGTGAAAGT	GTTTAGATTA	GCGCTCTCAA	CAATTTCAAC	ATGTCCaGct	CCGCCACCAT	3300
30	ACTTTGACGG	GAAAACGACA	ATGTCCAACT	TTTGCGGTAA	AAAGCTATCA	TAGTTTTTAA	3360
	TTATTTGCCC	GTATTTTTCA	ATCCTTGCTT	TATTATCAAA	TGGAATATTA	TAAGCGTATA	3420
	AACCTTGTAA	CcTTTCGCCT	GTTGCTATCA	TAAAAAACAT	ATTTGCGTAA	TCGTAACACT	3480
35	GAAATCCATA	AAACAAATCA	GGATTGAACT	GCTTCCCTAA	TGAATTATCA	AACCATTTTT	3540
	CTGCTTGGTT	TTTTGTTATC	AACATTGGTC	AACACCTACC	CTAAATCATT	TGTGTCGTTC	3600
40	ATATTCGTAG	GTGTCATTAC	TTCTTTAATT	GGCGCTTGCC	CTGTTGCTTT	TCTATACTTG	3660
	TTTTCAGCTT	TATATTTCTT	TAGCTTTTGA	TTTGCCCATT	TACCTTCTTG	AGATGTTGGA	3720
	TTATCTTTAT	ATGTAGTATA	TAAAGCAACA	ACTGTTAAGA	TAATCGATGA	AACACTTTCT	3780
45	TCATCTACTG	GTATCGGACT	TATACCTTTA	TTCGCTAAAA	ACTGATTGAC	TAATGCTAAG	3840
	ATCAATACGA	TGTATCTTGT	TATTACTTTT	GCATCCATTT	GTTTGCTCCT	TTTATCCAAA	3900
	ATAAAAAGCC	AGTGCCGAAG	CACTGACTCT	TAACTATTAC	TTACACTTAC	TAAACCAGAA	3960
50	ACACGACCAA	AAGCTATATC	CTAAAATTCC	CTTAAGCATG	GTAATCACCT	CCTTTAAATG	4020
	CCAAAAATAG	TTTTTAACAA	GGCTATAACA	AATGTACTTA	GAATCGTCCC	TATTAATCCT	4080
55	AGAATCCACA	TCTTGATGTC	TCTAATATTT	TTAGCATTTT	TCTCTTTATT	TTTTTCATCT	4140
-							

٠.	IGCGITCICA	GACIGICIIC	IAIICIGICG	AATTTTTCAA	ACATAGTCTT	ATCATTTCT	4260
	TCTAATCGCG	TTAAACGCCA	ATCTTGTTCG	TGTCGTTTGG	TAAATCCAAA	CATTACACCA	4320
5	CCCACTTTAT	TCAAATTAAA	AAGCCATAAG	ATTATAACCT	ATGACTCTAG	ATTTTCTGGA	4380
	TACTTTTCTC	CTGTAATAAT	TGCATATTCC	тстттатста	TAACTTCCAT	ATCTACATAC	4440
10	CACGCTATAT	CTTCTTTACT	ATATTCTTTC	AATTGATACC	ATGTTTTAAT	ATCTTCGAAT	4500
	GTTGGTGAAA	TTAATTTAAG	CATTTTCAGT	СТСТССТТТА	ACCTCTTCTA	ATTTTTTATT	4560
	AAGTGTCACA	AGTTGTTTTG	CCATTAGTGC	ATTTTGCTTA	TTAACTTGCA	TCGATAACTT	4620
15	TGTACTTTGA	ACAACTTGTT	TCTGCATACT	AGCAACCATT	TTTCGTAAGA	TGTCATCAGA	4680
	AGCGACTGTG	TTTTGTTCTT	CACTGTCAAT	CTGTTGATGC	AAGTCATCTT	TTTCTTCTGA	4740
	ATAATCTTCG	TTAAAAACTA	TTTCCCCATT	TGAATATTTA	AAGGCTTTAG	GTCTAAAAAC	4800
20	TTGAGAGAAA	TTTTCTGGTA	AATTTTCAAT	ATCAATACCT	TCTTCAAAGC	CACCAATGAT	4860
	AGCGTATGAA	ATTATCTCAT	TACGCTTGTT	AACTAATATT	TGCATTATTT	TCTCACTCCT	4920
25	ATAATTTTGT	TAATTGTCCC	TCTATTTGCG	TTCGCACCAG	AGCCTCTTTG	ACTTCCTAAG	4980
	TCGAAATAGA	CATCGTTTGA	TATAGTTAAA	GATGTACGAC	TAGATTTAGT	TAATCCAAAC	5040
	TCATAAACAC	CTCCACCATT	TCCATCACCA	TCTGGAAGAT	TTGAGGGATT	CAATGAAATC	5100
30	TTTCCTCCTC	CAAAAGGACT	GCCAAACTCT	GTAAAGTCAC	CACCTGGAAA	AGTCCCATAA	5160
	AAAATTAATA	AAATAAATTG	GTCTAAACTC	TCATTTAAGT	ACAATGTAGA	GCCCACACCA	5220
	TTTGCTGTTC	CATCAAAAAT	AACCGAATAC	CTTTTATTAA	ACTTGTCATC	TGCGTATAAT	5280
35	TTAGCGTTAC	TTTCGGCCAT	ATTAGCTTTT	GATTGGGCAC	TTTGAACAGT	TTCAAAAGGT	5340
	GTATTGTAAT	CATTAATAGC	TAATTCTGAC	CACTCAGACC	ATGAACCCGC	TTCTTTTCTT	5400
40	TTAACAAATA	CTTTATTTGT	ACCGTTCGGT	CGATAAGTCA	TACGCTTGTA	ATCTGAAGTT	5460
	ACTACTAAAT	ATTCGACAGT	ACCGTTAGTA	CTAACACCTC	TTGGATAATT	TATAGCTTGC	、 5520
	GAAACATAAA	TAAATTGGGT	TGAATCACCT	ATTCTTTGTT	CTGGATTATT	AAAATCAAAT	5580
45	CCAGTAATCT	GCATTATCTT	ACCATCATCT	TTAGTAATCT	TAGCTTTTTG	CCAATTTGAA	5640
÷	GTAGAACCAC	TTGTGACTAA	ACCACCACTA	TTCACTGACT	GCTTGAAGGC	TTCATGTTTC	5700
	TCATCCATAT	ATCGCTTTTG	CTCATCGAAT	GTTCTTGAAT	ATGCTTGCGC	TTTATTTTCC	. 5760
50	AAATCAGATA	TATGGCTATT	AGCAAGTTGC	TTTAATTCAT	CTATACTTGA	AGATTTTGCT	5820
	ATTTGAATAT	CTGATAGACC	TTTTTCTTTA	GCTTTTTCAA	TCAGACTCGC	ATAATCTTCA	5880
55	CCATTTTTTA	TAGCCTCGTC	CATTGCTTTC	GCACGATCCA	TAATAGTTTT	TTCTAATTCC	5940

	TCAACGTTAA	ATGTGATAGT	TCTCTCGACA	ACTACCACGT	CTGAATTACC	TAATTCTGCA	6060
	ACCGAAACTT	GAGCTTGATA	ACTTCCATCT	CGTTTAATTA	CATCATTAGG	TAATTGAAAT	6120
5	TTTAAAATAC	CTTTAAATGG	ATCTAATATT	TCTAGTGGAG	CAACTACCAT	GACTCCTTTA	6180
	CCTCGAATCG	CTATTCGTGC	kTTGATATTT	tCTTCACTCA	ATAATAACGG	TTGATTATTT	6240
10	TTAGTGATAT	TAAAAAGAAG	AACAGAAGAA	TCACTCTCTC	CTGTTCTAAA	AGTTATATCT	6300
	AGATTTGAAA	TATTTCCATA	ATGCGCTGTG	TTTTCTAAAT	TTATAGCTAC	AGATTTCTCT	6360
	AAATTACTCA	TTAACTTATA	ATTCTCCCTT	CGTGTAAAGT	CCATGGCCCT	GAACTTGTTT	6420
15	TACTATCATA	ATTTTTCAAT	AGTATCTCAG	CAGATGCTGT	AACACTATTA	CGAACTAGCC	6480
	TATGAACAAA	GCCACCTGTG	TTTGAAGCTT	СТАСАТАТАА	GTTCCAACCA	GCTACCCCTT	6540
	TACGTTCAGT	TGGAAAATCT	GTAAAACGTT	TTGTATCATC	CGTAGTTAAA	TAAAACGACA	6600
20	TGCCTACTAT	GTTAATATCT	GACATTTTTG	TGATGAATGA	AGGTACTCTC	TCCCATTTAC	6660
	CACTATTTTT	AGGCACATAA	TTCCAGTCCG	AAATGTCTCC	AGTTCTTCCA	GAAAGCACCC	6720
25	TTTCAAAAGT	CATCATATTC	CTTGCATAAC	TATTACGCGT	CAATATCTGA	ATTACATCAC	6780
2.5	CGCCAGTTTG	TGGTGGCTTA	ACTTCCAAGA	ACCAACCTGC	ATCACGCCAT	TCTCTTGGTA	6840
	ATGGGAAATC	ATCGATTTGA	ACTGTATGAT	CAGTGTATAA	ATAGTAAAGA	CCTGGCTCTG	6900
30	TTAACATCCC	AAGATTCTTA	AGTTTATCAG	GCCTCATTGG	TAAAGGTTTA	ACTCTACCAC	6960
	CTGTGTCACT	Catgataaaa	GGAACGCCTC	TTGAGTGAAG	TATTTCTAAA	ATACCTCTTT	7020
	GCCCAATCAT	GAAAATACGA	TGTGTTCTAT	TTCCaTCACC	ACCGACAGTA	ACACCTAGCA	7080
35	TCAAAGCTTT	TTTACCACTA	TCTTTGTCAT	AGTATATTTG	CAAACCTTtC	TgCTTCCGCA	7140
	AATTCGCCAG	GAAATGAATC	tAgTGTTCCA	CCATAGTCAG	CATTAACCTG	ATACGCTTCT	7200
40	τ c τ c \tilde{c} τ G τ τ τ	CTAAATCGAA	AGCCGTTAAA	TAGTTTCTAT	TATTTGGATT	ACTGTCTCCT	7260
40	GTATACCAAT	ACAAGTATTT	TTCATCAAAA	GTCACACCCT	GCATTGGTTG	GGTTTCGTTT	7320
	GTTAGTCTCA	TAGGGATACT	GATTTTATGC	AAAACTTTAT	CAATATTTTT	ATCAACATCG	7380
45	TCTAAACTTC	TTATCTCTAT	ATAAnTCATT	GAGTTTTCAA	GTTCCCACTG	ACTTCTAGGT	7440
	CTCTCaATTC	TGTATAGAAT	TTTATTTTCT	TTTTCATTTA	TGACAGGGGT	GATGTAGGGT	7500
	TTTTCTGGGT	GTCCTGTAAA	TACATCTTGC	ATACCATACT	TGCCATAGCT	AATTTCCACA	7560
50	TTAGGCGTAT	ACTTGAAACG	AACTAATGTA	TTCTCATTAT	TACCATTTAA	GATAAAACTA	7620
	TAAATCCATA	ACTCATCATC	AATATATCTA	TAACCGTTAT	GTGTACCATG	ACCCCCACCT	7680
	ACAATCAATG	AGCTGTCTAT	AAATTGACCA	TTAGGTCTTA	GACGACTTAG	CATATAGCCA	7740

	ATTACTGCAT TTGTAAGAGG TGCAAGTTCT GTCACAAATA AAAATTCTTG CTTATCAGGT	786
· 5	TCAAAACGAT ACTCGATATC AAGAATTTCT TGTTTGGTCT TATTTAATTC TCTTATAGTT	792
5	TCCTCTTTAT TAATTTGAGT TITGGTTTCC CAATCGTCTA AATGTTCTTT TAATGTGTCA	798
	AAGGTTTCGC CGTTTACATT AACTCGAGCT TGAACAATCT CATTAGCACT GTTATTACGT	804
10	GGTGCCACAA CAAGTGCGTT AATTTGACTT TGTAAAGATT TGTTTACTGC TGCTTGCGAT	810
	CTACCATTAT AATAAATTTG CTCAGCGAAG TGTTGAATTG TTTTAGCTYT CTGATGCAAC	816
	TTAAACTCTG TTGTCAAGCC AAGCGCAAAT TGCTCTATTC TTTGTAAGTT TTGTATTTCC	822
15	TTAGCTCTAT AATCTCGACC TGCTAAAGCT CCCAAATCCT TTATTAAATA CAAATTTTCC	828
	ATAATGCACC TTCCTTTCTA ATAAAATAGC ACTGTACCAA GTTTCCCACT ATCGTCAACT	834
	GTTATTTTCC ACAATTTACC GTTTGGGGAT TTCTGTACAA TGCTATTTTG AATAATTgcC	840
20	TGCTTCGCCT ATTTTAAAT TATCTAATTT ATTTKTATCA TTTACCGAAA TGATACCGTC	8460
	TTGAGGCAAT CCATCAATAN CACTACTGCC TGCATAAGGT ATCCCATTTA TAGCTTTCCA	8520
25	ATGTGTAGCT GGAAAGTACT GTTTATCGT	8549
	(2) INFORMATION FOR SEQ ID NO: 6:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3601 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	AGGCGTGTAG TGACTTACGG nTAGGAAACT ATGTATCCGA ATGATTTATT GAGACCAAAA	. 60
40	AGGCATTAAA GTCCATTGAA ATATCHGGTA GCGMGTTGGT ACGTGGACGT GGGGGCCCTA	120
•0	GATGTATGAG TCAACCATTA TTCAGAGAGG ACATTTAACG TAATAAATTA TAGAMACGAG	180
	GGTGAAAATA ATGACAGAAA TTCAAAAACC GTATGATTTA AAAGGCAGAT CATTATTAAA	240
45	AGAAAGTGAT TTTACCAAAG CAGAATTCGA AGGACTTATT GATTTTGCAA TTACATTAAA	300
	AGAGTATAAG AAAAACGGTA TTAAGCATCA CTACTTATCT GGAAAAAATA TTGCACTACT	360
	ATTCGAAAAG AATTCGACGA GAACGCGTGC TGCGTTTACA GTTGCGTCTA TTGATTTAGG	420
50	TGCGCATCCA GAATTTTTAG GAAAAAATGA TATTCAATTA GGCAAAAAAG AATCTGTAGA	480
	GGATACTGCG AAAGTATTAG GTAGAATGTT CGATGGTATT GAATTCCGTG GTTTTTCACA	540
	ACAAGCTGTT GAAGATTTAG CGAAGTTCTC TGGTGTACCG GTGTGGAATG GATTAACAGA	600

	TCTAGAAGGA	ATAAACTTAA	CTTACGTTGG	AGATGGACGT	AATAATATTG	CGCATTCATT	720
	AATGGTAGCA	GGTGCTATGT	TAGGTGTTAA	TGTAAGAATT	TGTACACCTA	AATCATTAAA	780
5	TCCAAAAGAG	GCATATGTTG	ATATTGCAAA	rGAAAAaGCG	AGTCAaTATG	GTGGTYCAGT	840
	CATGATTACG	GATAATATTG	CAGArcCAGT	TGAAAaTwCm	GATGCTATAT	ATmCAGATGT	, 900
10	TTGGGTATCG	ATGGGTGAAG	AAÄGTGAATT	TGAACACGTA	TTAATTTATT	AAAAGACTAT	960
	CAAGTGAATC	AACAGATGTT	TGATTTAACA	GGTAAAGATT	CAACGATATT	CTTACATTGT	1020
	TTACCAGCAT	TCCATGATAC	AAATACACTT	TATGGACAAG	AAATTTATGA	AAAATATGGA	1080
15	TTAGCTGAAA	TGGAAGTTAC	AGACCAAATC	TTTAGAAGTG	AACATTCAAA	AGTGTTTGAT	1140
•	CAAGCTGAAA	ATAGAATGCA	TACAATTAAG	GCAGTAATGG	CAGCAACATT	GGGGAGTTAA	1200
	TCACTAAATG	GAACGATATG	AATATGATGT	GTCTGATGAT	ATAAGTGTCA	TGTACAGACA	1260
20	CCTCATATTG	GTATTAAAGG	AGAAATGAAT	ATGAACGAAT	CAGGAGATAA	CAAACTCAGT	1320
	AAATCTTCTT	TAATTGGACT	AGTTATAGGA	TCCATGATTG	GTGGCGGTGC	GTTCAATATA	1380
25	ATGTCTGATA	TGGGCGGTAA	AGCCGGTGGA	TTAGCCATTA	TTATTGGTTG	GATTATTACA	1440
	GCTATAGGAA	TGATTTCATT	AGCGTTCGTA	TTTCAAAATT	TAACCAATGA	ACGGCCGGAG	1500
	CTAGACGGTG	GTATTTATAG	TTATGmTCAA	GCAGGATTTG	GCGATTTTGT	AGGATTTATC	1560
30	AGTGmTTGGG	GATATTGGTT	CTCAGCGTTT	TTAGGCAATG	TTGCCTATGC	AACACTATTG	1620
	ATGTCAGCAG	TAGGTAACTT	TTTCCCGATT	TTTAAAGGAG	GCAACACATT	ACCAAGTGTT	1680
	ATTGTCGCCT	CGTTACTACT	CTGGGGTGTC	CATTTCTTGA	TTTTAAAAGG	CGTTGAAACA	1740
35	GCAGCATTTA	TCAATAGTAT	TGTTACTGTT	GCAAAGTTAA	TACCGATTTT	ACTTGTAATC	1800
	ATATGCATGA	TAATTGCATT	CAATTTTGAC	ACTTTTAAAA	CAGGCTTTTT	CAGTATGACG	1860
40	TCAÇÃGGGTG	TATTGCCATT	TAGTTGGGCG	AGCACAATGA	GCCaaGTtAA	AAGTACGrTG	1920
40	CTAGTGACAG	TTTGGGTGTT	TATCGGTATC	GAAGGTGCAG	TAATTTTTTC	TAGTAGAGCT	1980
	nAAAATGAGA	AAGATGTAGG	TAGTGCCACG	GTTATAGGAC	TTATATCAGT	TTTAATTATC	2040
45	TATYTCTTAT	TAACTGTATT	AGCTCAAGGC	GTGATTTTGC	AAAATCATAT	TTCGCAATTA	2100
	GATTCGCCAA	GTATGGCACA	GGTGCTTGCA	ACTATTGTAG	GTGGTTGGGG	ATCTACACTT	2160
	GTAAATATTG	GTTTAATTAT	TTCGGTACTA	GGTGCATGGT	TAGGATGGAC	ACTGCTTGCT	2220
50	GGTGAATTAC	CTTTCATTGT	TGCAAAAGAT	GGATTATTTC	CAAAATGGTT	TGCTAAAGAA	2280
	AATAAAAATG	GAGCACCTGT	AAATGCACTG	CTTATTACCA	ATATATTAGT	ACAATTATTT	2340
	TTAATAAGTA	TGCTATTTAC	ACAGAGTGCG	TATCAATTTG	CATTTTCACT	AGCATCAAGT	2400
<i>55</i>							

	CGACAGCAAG	CAACTACTAA	ACAATGGACG	ATTGGTATCA	TAGCCTCAAT	TTATGCTATA	2520
5	TGGCTTATAT	ATGCAGCAGG	TATCAATTAC	TTATTATTGA	CGATGTTACT	TTATATTCCA	2580
5	GCTCTTCTTG	TTTATACaAT	CGRTCMAAAG	rATwATCAGa	CACGTTTGAT	TAAATCAGrC	2640
	TATATTCtTT	TTATGATTAT	LATCGTACTT	GCAGTTATCG	GGTTAATTAA	GTTATTGATG	2700
10	GGAACGATAA	ATGTTTTTTA	AAAGGAGCGA	CAAAAATATG	AAAGAGAAAA	TTGTCATTGC	2760
	ATTAGGCGGT	AATGCGATAC	AGACAACAGA	AGCAACAGCT	GAAGCACAAC	AAACAGCTAT	2820
	TAGATGTGCG	ATGCAAAACC	TTAAACCTTT	ATTTGATTCA	CCAGCGCGTA	TTGTCATTTC	2880
15	ACATGGTAAT	GGTCCACAAA	TTGGAAGTTT	ATTAATCCAA	CAAGCTAAAT	CGAACAGTGA	2940
	CACAACGCCG	GCAATGCCAT	TGGATACTTG	TGGTGCAATG	TCACAGGGTA	TGATAGGCTA	3000
00	TTGGTTGGAA	ACTGAAATCA	ATCGCATTTT	AACTGAAATG	AATAGTGATA	GAACTGTAGG	3060
20	CACAATCGTT	ACACGTGTGG	AAGTAGATAA	AGATGATCCA	CGATTTGATa	ACCCAACTAA	3120
	Accaattggt	CCTTTTTATA	CGAAAGAAGA	AGTTGAAGAA	TTACAAAAAG	AACAGCCAGA	3180
25	CTCAGTCTTT	aAAGAAGATG	CAGGACGTGG	TTATAGAAAA	GTAGTTGcGT	CACCACTACC	3240
20	TCAATCTATA	CTAGAACACC	AGTTAATTCG	AACTTTAGCA	GACGGTAAAA	ATATTGTCAT	3300
	TGCATGCGGT	GGTGGCGGTA	TTCCAGTTAT	AAAAAAAGAA	AATACCTATG	AAGGTGTTGA	3360
30	AGCGGTTATA	GATAAAGATT	TTGCTAGTGA	GAAATTAGCA	ACGCTGATTG	AAGCAGATAC	3420
	CTTAATGATT	CTTACGAATG	TAGAAAATGT	ATTTATTAAC	TTTAATGAAC	CTAATCAACA	3480
	ACAAATCGAT	GATATTGATG	TAGCAACACT	GAAAAAAtAC	GCGGCACAAG	GTAAGTTTGT	3540
35	GGAAGGATCG	tGTTGCCAAA	AATAGAAGCT	GCGtACgtTT	GTTGAaAGtG	GGGaAACCAA	3600
	A _						360

(2) INFORMATION FOR SEQ ID NO: 7:

40

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 573 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

50	CGACACTATT	AAATGAATTA	GAGCACAATC	TAACAAATCA	AATTCATTTT	TCAAAAGATG	60
	AACGACTCAC	ACATATCGCT	TTAAAGTTAT	TCGAAACAAC	CGATCCTGTT	TCAACAAAGC	120
	AACTTGCGCA	AGATGTTAAT	GTTTCGCGTC	GGACAATTGC	AGATGATATT	AAAATGATTC	180

	TTATTGGTGA GGAAGATCAT TATCGTAAAG CGTATGCACA CTTTATACAT CAATATATGA	300
	AACAAGCTGC ACCTTTTATA GAGGCGGATA TCTTTAATTC AGAATCAATC GCATTGGTTC	360
5	GCCGTGCCAT TATTAAGACA TTAAATAGTG AAAATTATCA TTTAGTTCAG TCGGCTATCG	420
	ATGGCTTAAT CTATCATATA CTCATTGCCA TTCAGCGTTT AAATGAAAAT TTTTCGTTCG	480
	ATATACCTAT CAATGAAATT GATAAATGGC GACATACTAA TCAGTATGCn ATTGCTTCAA	540
0	AAATGATAGA AAACTTAGAA CGCAGTGTAA TGT	573
	(2) INFORMATION FOR SEQ ID NO: 8:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1221 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
0		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	TTGATATTTA TAACGTTATA TTTTAATAGT TCACCTGGAT TATTAAATAA ATAGTCCGCC	60
5	AAATTTTCTT TTTCTTTATC AATCTGATKG TAATTAACAC TTTCGACTTC TGTAGGAATT	120
	CTAATGTCAA CAGAAGCATT GATATAAGCT TGATGTTGCA TGCAATCACA CTCCTAATCC	180
0	TTCATmTmAA ACGGAGAAGT AAACCCGTCA CTATTCAAAT TCAATCCTTT TGCCCAATCA	240
	ACAGGCTTAT TCATGATAGT TTCGATTTCC TTAAGTCCAT TTGAACCTCT AGGTATTTCT	300
	ACAATTACTT CATCATGGAC ATGGCCAACT ATTTTAAAAC CTAATGCTTC AAGCCTTGCT	360
5	ATAGAAATCG CAAGTAAATC CCTTGCAGTT GCTTGAACAA TATTCTCGAC TAACTTCCCA	420
	CCATACGTTT TTAACTTTGA CCATTTACGG TTAAGATCTA ACCCCATAAA TTCAACAACT	480
^	TGACTACCCC AACTATTTC ACCAACTAAA GCTTTTGGAT AAGCTAAAGC TCTTCCACTA	540
J	GGCÁGTTCAA TCATTAGAAA ACCTTTTTTC ATATAAAATC TAAGTCCATG TGTATGATGC	600
	GTCTTTCGGG ATTTTACAGT ATTAATTGCA GCCTCTTGGC AAGCCTTCCA AAAATTAACT	660
5	ATGTTAGGAT TTGCGTTACG CCAACTATCA ACTAAACCTT GTAACTCGTT TTCTTCAATG	720
	CCCATTTCCA ATGCACCCAT TGCTTTTAAA GCTCCAGCGC CACCTTGATA GCCTAAAGCT	780
	AATTCGGACA CTTTTCCTTT TTGTCTGAGA GGGTCGCCTT TAGTTATGCT TTCTACCGGT	840
,	ACATTAAACA TTTGAGAAGC CGATGCTTCA TATATCTTTC CGTGTGTGTT GAATACATCT	900
	AAACGCCATT GTTCTTTTGC ATACCATGCT ATGACTCTTG CCTCTATTGC AGAAAAATCA	960
	CTTACTGCTA GTTCATTACC TTCTTCAGCA GTAAATGTCG TCCTAACTAA TTGACTTAAT	1020

	AGAICTOTIG CTATITOTAA TICAGIATOT GAAATATAAT GCTIIGITAA AITCIGAAGI	1140
	TGTACACCTC TACCTGCCCA TCTTCCAGTA CCGGCACCGT AAAATTGAAA CAGACCTCTT	1200
5	ACCCGTTCAT CACTGCACAT C	1221
	(2) INFORMATION FOR SEQ ID NO: 9:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1090 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	•
	TTTTGTTTGG TATGAGGTAG CAATGACGAC GTGTCATTGG TGGAGATTGT AAAAATACAT	60
20	AATAAAAAGA AGCGGCAATG TATACCGCTC CTTTTTTATA CTACATACCG ATTTTCAACC	120
	ATCTCTTTCT ACTTAGTAAT AAGACAATAG TATTAACTAT AAATAGAAGA ACGAAGAATG	180
25	ATACTATATT TATAATTTCA GTAGGACACA TAAATGTTGA CTCGTTATTC AATATTTTTT	240
23	CTACGGCACG ATACATCGTA TTGCTCGCCT CAAATGGAGC AACGATACCA AATATATTTT	300
	TATTAATGGC AACTAAGATG ACTGAACCAA TCCAATATAC AATGCTGATA CCTAAGCTGA	360
· 30	TTAAAATGTT AGGTQAAACC ATACTAATCG TTCCAACAAC TAAGATATAT TGTAAGATAA	420
	CGAGTGAAAA TAAGATTATT AATAGTAAGT AATGTGAGAA ATCCGAATAT ATAATTGAAA	480
	TAATAGTGAT ACTTAGAATT ATGAACACTA AACATTCAAA AAATAACACT GCTACCTTTT	540
35	TATAGAAGAA GGTAAAGATA TTATCGCCAA TCAATTTATA AAACAGGATA TTTTTATTCG	600
	AATACTCTTT ATTAATAAAA TATGCAATAA CAAATGAAAA TAGTAAGAAC CCTAATTGCG	660
	TTGCAACAGT ATATGAACTG AAGAAAAACT GGCTATAGCT TAAACTTTTA ACTTTGTCTA	720
40	TACCTATTGG TAAAAAATAC CCAAGTAAGA AAAGGAATGT GAATAGCACA ACAAGCGTGT	780
	AAATAATTIT ATTGGAAATA CTTTTTTAA ATTCTAATTT CAAAGTGGAC ACCTCAATTA	840
45	TAAATTAATG TAATCATTTA TGACTTCTTC TTTTGATTGG TACTCTTCTA TTTGAAGGTC	900
	TTTAAAAATA AAGTATTTAC CCGGCAAAGC ACTTAAATCG GATAAATTAT GTGTAATATT	960
	GATAATAGTT TTAGTTTGAT GGCTTTGAAT AAAATCATTT AAAAATTCAT AAATTTCATT	1020
50	AACTGTTTTC TTGTCTAAAG CGTTTGTAAC TTCATCTAAT ATGATTAAAT CATGATCTTC	1080
	CAATAAGAAA	.1090

242

(2) INFORMATION FOR SEQ ID NO: 10:

(A) LENGTH: 904 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
10	TTAGGACTAT TTTATCATAT TCATTTAAAT TACGGCTAAA AATTTTAAAA ACGGGGATTA	60
	ATATATGGAA TTAAGCTATG AAAGTTAATT GATACTTGCA TTTTACGCTG ATTTATATAA	120
	GAATAACTAT TGTATAGTTT TAAAAACGAA CGTACGTTTG CAGGAGGCGA AATCATTGGC	180
15	AATGAATAAA CAAAATAATT ATTCAGATGA TTCAATACAG GTTTTAGAGG GGTTAGAAGC	240
	AGTTCGTAAA AGACCTGGTA TGTATATTGG ATCAACTGAT AAACGGGGAT TACATCATCT	300
20	AGTATATGAA ATTGTCGATA ACTCCGTCGA TGAAGTATTG AATGGTTACG GTAACGAAAT	360
	AGATGTAACA ATTAATAAAG ATGGTAGTAT TTCTATAGAA GATAATGGAC GTGGTATGCC	420
	AACAGGTATA CATAAATCAG GTAAACCGAC AGTCGAAGTT ATCTTTACTG TTTTACATGC	480
25	AGGAGGTAAA TTTGGACAAG GCGGCTATAA AACTTCAGGT GGTCTTCACG GTGTTGGTGC	540
	TTCAGTTGTA AATGCATTGA GTGAATGGCT TGAAGTTGAA ATCCATCGAG ATGGTAATAT	600
	ATATCATCAA AGTTTTAAAA ACGGTGGTTC GCCATCTTCT GGTTTAGTGA AAAAAGGTAA	660
30	AACTAAGAAA ACAGGTACCA AAGTAACATT TAAACCTGAT GACACAATTT TTAAAGCATC	720
	TACATCATTT AATTTTGATG TTTTAAGTGA ACGACTACAA GAGTCTGCGT TCTTATTGAA	780
, 	AAATTTAAAA ATAACGCTTA ATGATTTACG CnwGGGTAAA GAGCGTCAAG AGCATTACCA	840
35	TTATGAAGAA GGGAtCaAAG rGTTgTTAGT atGTCCAaTG ArGGAAAAGA AGTTTTGCCT	900
	GACG	904
40	(2) INFORMATION FOR SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 11271 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
50	GATTTCTAAA TCAAGATCTG TTTTACGATA ACCATTCAAA CCTTGACGTT CATCTTCTTC	60
	AGGTTGATTT TGTTGCTGTG TGTCTTTGTT GTCAGAAGTC GCTACTGTTT TTTTATTATC	120
55	TGTTTCTTTA GTCATAACAA ACGCCTCCGT TATAAAACGC TATATTTAAT GATATGTGAT	180
~		

	TTAATAAGAC	GATTCAGCAA	GTTTTAAAGT	ATTATTTGAC	TATGTTGGAT	TAGGCATCTA	300
	GTCCTATAAT	ATCACTGACA	TTGTCAAAAT	GATGATCTTT	TAAGTAACGT	GCGATGCCTT	360
5	TGTTCATTTT	CTTAGTTAAA	CCTGGGCCTT	CAATAACAAG	TGATGAATAA	ATTTGAATAA	420
	GTGACGCACC	GTGACGCATC	ATTTTGATTG	CATCTTCAGT	ACTGAATACG	CCGCCTGTAC	480
10	СТАТААТТАА	AAATTCACCA	TTTGTTTGCT	GATAAgCATa	CTTAATCAAT	TTTAAATTAC	540
	GTTCAAATAA	TGGACGACCA	CTCAAACCGC	CTTCTTCGAC	TTTATTAGCA	GAAGTTAAAC	600
	CATCTCGTTG	TCGCGTTGTG	TTTGCTAAGA	TGATACCGTC	AAATGTCTCA	GTAATCGCTG	660
15	GTAATAGTGC	TTTTAAGCCA	TCGAAATCCA	TATCAGACGT	TAGTTTTAAA	TAAATTGGCA	720
	CTGTTACATC	ATGTTGTTTT	TTAAATGCTG	TTAAAGCTTG	GCATAACATT	GAAAATTCAT	780
	CTTTATCATG	GAAGTTTTGA	AGATTTTCAG	TATTTGGAGA	ACTGATGTTG	ACTGTGAAAA	840
20	ATGAAACGTC	GTGTTTAAAC	GTATCAATAA	CCTTTATATA	ATCTTGATAA	CGCGCTTCAT	900
	AAGGTGTCAT	TTTATTCACA	CCAACATTGA	TACCAACAGG	TACTTGATAA	GCATTTTTAC	960
	GCAAATGACT	TAGTGCTTTG	TTCATACCAA	TATTATTGAA	GCCCATTCGA	TTTATCAAGG	1020
25	CGTCATCTTC	TAATAATCTA	AACATGCGTG	GTTGAGGGTT	ACCCGGTTGA	GGTTTAGGTG	1080
	TGATACCACC	ТААТТСТААА	GCACCGAATC	CAAGGTGTTC	CAATGCTTTT	GGTACTTCGC	1140
30	AAGATTTGTC	GAAACCAGCT	GCTAAgCCAA	TTGGATTGTC	GTACGTATTA	CCTTGTATCG	1200
	TTTGTGATAA	CGTTGGATTC	TTATAAGTAA	ATAGTTTATC	GACGACTGGG	AATAAAACCG	1260
	Gaaacttttg	TaACGTTTTT	AATGCATCGA	TAGTTAGTCC	GTGTGCTTTT	TCGGGTTCGA	1320
35	TTTTGAATAA	GAAAGGTTTA	ATTAATTTGT	ACATGAGTAT	GCTCCTATTT	CATTATATTT	. 1380
	GAGGCTTACT	ATCCTCAACT	TAATATATGT	GAAATATATT	CTTTTAATAG	ACTAGCATTT	1440
	CCATĂCATAA	TTTCCTAGTT	AAAACTAAAA	AGTTTTGAAA	ATTGACGCAA	gtttgaataa	1500
40	CGTTTTTAAG	ATTAAATCAT	CCTAATTAGG	CAATATTATA	GTATAAAGTA	AGTAGATTGG	1560
	AAGGTGTTTG	TATGAATGAA	CAATGGTTAG	AGCATTTACC	TTTAAAAGAT	ATTAAAGAGA	1620
45	TTTCACCAGT	GAGTGGTGGT	GATGTAAACG	AAGCATATCG	AGTCGAAACA	GATACGGATA	1680
4 5	CATTTTTCTT	ACTTGTCCAA	CGTGGACGTA	AAGAATCATT	TTATGCTGCA	GAAATTGCAG	1740
	GTTTAAATGA	ATTTGAACGT	GCAGGTATCA	CGGCACCTAG	AGTAATTGCA	AGTGGCGAGG	1800
50	TTAACGGTGA	TGCGTATTTA	GTGATGACGT	ATTTAGAAGA	AGGGGCTTCA	GGGAGTCAAC	1860
	GCCAATTAGG	GCAACTCGTA	GCTCAATTAC	ACAGTCAGCA	ACAAGAAGAA	GGCAAATTTG	1920
	GCTTCTCATT	ACCTTATGAA	GGTGGCGATA	TTTCTTTTGA	TAATCATTGG	CAAGACGATT	1980

	GGCTATGGGA	TGCCAACGAT	ATCAAAGTAT	ATGACAAAGT	GCGACGTCAA	ATTGTGGCGG	2100
_	AATTAGAAAA	GCATCAAAGT	AAACCGTCTT	TATTACATGG	TGACCTATGG	GGTGGTAATT	2160
5	ATATGTTCTT	ACAAGATGGT	CGTCCGGCGT	TATTTGATCC	AGCGCCATTA	TATGGTGACA	2220
	GAGAATTCGA	TATCGGTATT	ACAACGGTAT	TTGGTGGTTT	TACGAGCGAA	TTTTATGATG	2280
10	CGTATAATAA	ACATTATCCA	CTCGCAAAAG	GTGCATCCTA	TAGACTTGAA	TTTTATCGTT	2340
	TATATTTATT	GATGGTCCAT	TTATTGAAAT	TTGGTGAGAT	GTACCGTGAT	AGTGTTGCGC	2400
	ATTCTATGGA	TAAGATTTTA	CAAGATACAA	CAAGTTAGTT	AAGACGTTAG	ATTGAGATAA	2460
15	ATAGATAATA	TGCACAGATA	TTTTTACAAT	GAGAAGCGAT	ACAGCTGCCT	CAATAAAAAT `	2520
	ATTTGTGCGT	TTTTATTGTT	GGAAAATAAA	ATTTTAATCG	CTATTGTTAA	TTTCTGTAAT	2580
	GTAAAACAAG	GTTGAGTTAC	AATAAAAGTG	ATTTTATAAC	TTTTTGTTCA	ATAAAATTCT	2640
?0	AGGAATGATA	CATATTTATT	GATACAATAA	TTTTGAATAT	AATCATAAAA	CAATATTTAA	2700
	GTATAATTGA	ATGTTTGAAT	ATCATATATT	GATACAGTTT	CTAATAATTT	TTAATAAATT	2760
?5	TAAATGGAGA	GAGGTGTAAA	TGATGAGTAC	AGTTCAAAGT	GATATTTTTA	AGACCAATAG	2820
:5	TGCATCATCA	TCTATTAAAA	GCGCTGTTGA	AACATGTAAT	AATGTGTCGA	AACCGGATAA	2880
	AGATGAAAGT	ACAACAGTAA	GTGGAAATAA	TAATGCTCAT	AGTGTGATAG	ATGATTTGAT	2940
30	GAGTAAGAAT	CAATCTGTTG	CTGAAGCAAT	ACGAACTGCG	AGCGATAATA	TACAAAAAGT	3000
	TGGTGAGGCT	TTTGACCAAA	CTGACGTAAT	GATTGGTAAT	GAAATTGGTA	AAAATTAAAA	3060
	CGTGGTGAAA	TGATGTCGAA	TAAACTGGAT	GAAATCAATA	AAATAATCAC	AGCGAAACAT	3120
35	GAGCAAATGG	ATGACTTATA	TGATGAAAAG	CGAGAGGTTA	AAGCATTGAT	AGATGAAAGT	3180
	GATGCGCTTA	ATCATTCGAT	AGATCAATTA	TATCAACATT	TAGGTGAGCG	TTATTATAGT	3240
	AGCAATATGG	CTAGTCGTAT	GGAACAGTTC	CGCGATGAAT	TTCATTTTGC	GAAACGACGT	3300
10	TCAACGGAAG	CGTTATACGA	GCAGCAACAG	CAAATTCAAC	ATGGCATTCG	TAAAGTGGAA	3360
	GAAGAGATGA	TTGACTTGGA	AATGCGAAGG	AATGTTGAAA	TTGAGACGGT	GACAAAGGAG	3420
15	GAAAATAAAT	GGAAACAATA	GGAAGCATTA	TTTATTTAAA	AGAAGGTTCG	CAAAAGTTAA	3480
	TGATTATTAA	TAGAGGMCCA	aTTGTAGAAA	TTGAAAATCA	AAAGTATATG	TTTGACTATT	3540
	CTGCATGTAA	ATATCCGATT	GGTGTTGTAG	AAGATGAAAT	TTATTATTTT	AACGAGGAAA	3600
50	ATATAGATTC	AGTTATTTTT	AAAGGTTATT	CTGATCAAGA	TGAGGTTAGA	TTTCAAGAGT	3660
	TGTTTGAAAA	TATGAAACAA	AATTTGGATA	GTGAAATACA	ACGTGGAGAA	GTTACACAAC	3720
	AATAAAGAAA	TACTTTTTCT	TTATTGGGGT	GGGACGACGA	AATAAATTTT	GTAAAAATAT	3780

	ATGTCATTCA	TAATCATTTG	AACTAAACGT	AGCAGCCTTA	AATTTTAAAA	AAAGACACAT	3900
	ACCAACTTCC	GAAATGTAGA	TGAATTCTCT	ACAATAACGG	AAGTTTTTCT	TTTAATATTG	3960
5	AAATTTCTCA	AGGATAGGTC	TATACTTTAT	AAATCGTAAT	TATTACGATT	TATAATCAAA	4020
•	AACAATAACT	TGAAATAGAT	CATTGAGGGA	GTGTTAATAT	GCAACATCAT	AAAGTGGCTA	4080
10	TTATCGGTGC	CGGTGCTGCA	GGTATAGGTA	TGGCCATTAC	CTTAAAAGAT	TTCGGTATAA	4140
	CAGATGTCAT	TATTTTAGAA	AAAGGAACAG	TAGGACATTC	ATTTAAACAT	TGGCCGAAAT	4200
	CGACCCGTAC	GATCACGCCA	TCATTTACGT	CTAATGGATT	TGGCATGCCT	GATATGAATG	4260
15	CAATTTCCAT	GGATACTTCA	CCAGCATTTA	CATTTAATGA	AGAACATATT	TCCGGAGAAA	4320
	CATATGCTGA	ATATTTACAA	GTGGTTGCCA	ACCATTACGA	GCTGAATATC	TTTGAAAATA	4380
	CAGTTGTCAC	AAATATATCT	GTAGATGATG	CATATTATAC	GATTGCAACG	ACAACAGAGA	4440
20	TATATCACGC	GGATTATATC	TTTGTCGCAA	CAGGTGATTA	TAATTTCCCT	AAAAAgCCAT	4500
	TTAAATATGG	TATTCATTAT	AGTGAAATTG	AAGACTTTGA	TAACTTTAAT	AAGGGGCaAT	4560
-	ATGTGGTTAT	CGGAGGTAAT	GAAAGTGGCT	TTGATGCTGC	ATATCAACTT	GCAAAAATG	4620
25	GCTCTGACAT	CGCACTTTAT	ACTAGCACAA	CCGGTTTAAA	TGATCCGGAT	GCTGATCCTA	4680
	GTGTTAGATT	GTCACCTTAT	ACACGTCAGC	GACTAGGTAA	TGTCATTAAG	CAAGGTGCTC	4740
30	GCATCGAAAT	GAATGTACAT	TATACAGTTA	AAGATATTGA	TTTTAACAAT	GGACAGTATC	4800
	ATATCAGTTT	TGATAGCGGA	CAAAGTGTGC	TTACACCTCA	TGAACCAATA	CTAGCAACTG	4860
	GCTTTGATGC	AACAAAAAAT	CCAATCGTTC	AACAATTATT	TGTGACAACA	AATCAAGATA	4920
3 <i>5</i>	TTAAATTAAC	AACACATGAT	GAATCGACAC	GTTATCCGAA	TATTTTTATG	ATTGGTGCAA	4980
	CAGTTGAAAA	TGATAATGCC	AAATTATGCT	ATATCTATAA	ATTTAGAGCG	CGATTTGCAG	5040
	TACTTGCACA	TCTTTTAACA	CAGCGGGAAG	GcTTACCAGC	, TAAAÇAAGAT	GTCATTGAAA	5100
40	ATTATCAAAA	AAATCAAATG	TATTTAGATG	ATTATTCATG	TTGTGAAGTG	TCATGCACAT	5160
	GTTAGAAGTG	AAATATGATA	TGAGAACTGG	GCATTATACG	CCCATACCTA	ATGAACCTCA	5220
45	TTATTTGGTT	ATTAGTCATG	CGGATAAACT	TACCGCAACA	GAAAAAGCGA	AATTAAGATT	5280
	ATTAATCATA	AAACAGAAAT	TAGATATTTC	ATTGGCAGAA	AGTGTAGTTT	CTTcGCCTAT	5340
	AGCGAGTGAA	CATGTGATAG	AACAATTGAC	ACTATTTCAA	CATGAGCGAC	GACATTTAAG	5400
50	ACCTAAAATA	AGTGCGACAT	TTTTAGCCTG	GTTGTTGATA	TTTTTAATGT	TTGCATTGCC	5460
	AATCGGTATC	GCTTATCAAT	TTTCAGATTG	GTTTCAAAAT	CAGTATGTGT	CAGCATGGAT	5520
	AGAATATTTA	ACTCAAACAA	CATTGCTCAA	TCACGATATA	TTACAGCATA	TATTATTTGG	5580

	ATTGATTAGT	TTATCAACTG	.CTATAATTGA	TCAAACAGGA	CTCAAATCAT	GGATGATATG	5700
_	GGCAATTGAA	CCGTCAATGT	TATGGATAGG	ATTACAAGGT	AATGATATCG	TGCCACTATT	5760
5	AGAAGGGTTT	GGATGTAATG	CAGCAGCTAT	TTCACAAGCA	GCACACCAAT	GCCATACCTG	5820
	CACGAAGACA	CAGTGTATGA	GTTTAATAAG	CTTTGGTAGT	TCTTGTAGTT	ATCAAATAGG	5880
10	TGCGACATTA	TCTATTTTTA	GTGTAGCTGG	AAAGTCATGG	CTATTTATGC	CGTACTTAAT	5940
	ATTAGTACTT	TTAGGTGGCA	TCTTACATAA	AGGATATGGT	TGAAAAAGAA	TGATCAACAA	6000
	CTTAGCGTTC	CGCTACCTTA	TGATAGGCAA	TTACATATGC	CAAATATACG	TCAAATGTTG	6060
15	CTACAAATGT	GGCAAAATAT	ACAAATGTTT	ATCGTTCAAG	CGCTACCTAT	TTTTATCACA	6120
	ATCTGTCTTA	TTGTTAGTAT	TTTATCACTA	ACGCCAATTT	TGAATGTTTT	ATCACAAATA	6180
	TTTACACCTA	TATTATCGTT	ATTAGGCATC	TCGTCAGAAT	TGTCACCAGG	GATTTTATTT	6240
20	TCAATGATTC	GÁAAAGACGG	CATGCTCTTG	TTTAATTTGC	ATCAGGGCGC	CTTATTACAA	6300
	GGAATGACAG	CAACACAGTT	ACTACTACTT	GTGTTTTTTA	GTTCAACATT	TACAGCGTGC	6360
25	TCGGTCACAA	TGACGATGCT	TTTGAAACAT	TTAGGTGGTC	AGTCAGCACT	TTAATTAAAA	6420
:5	GGAAAGCAAA	TGGTGACATC	ATTGTCTTTA	GTTATTGGTG	TAGGCATCAT	TGTTAAAATA	6480
	GTAATGCTGA	TTATTTAAAA	AAAATGAACT	ATAACTGAAT	ATAGAGTCAT	GTCAGTCAAT	6540
30	AGGAGATCTA	TCTTGGAATA	TGCTATTCAT	ATGAAGTATA	AGAGGAGAGT	CGCAGATGAA	6600
	AATAGTTATT	ATAGGTGGGT	TTTTAGGTGG	CGGTAAAACG	ACTGTCTTAA	ATCATTTGCT	6660
	CGCTGAATCA	TTAAAGGAAT	CGCTGAAACC	AGCAGTCATC	ATGAATGAAT	TTGGGAAAAT	6720
35	GAGTGTTGAT	GGTGCCTTAG	TATCTGAAGA	CATACCTTTA	AGTGAACTGA	CAGAGGGGTG	6780
30 35	TATCTGTTGT	GCAATGAAAG	CAGATGTATC	AGAACAGTTA	CATCAATTAT	ATTTAAAAGA	6840
	GCAACCAGAC	ATTGTATTTA	TTGAATGTAG	TGGGATTGCA	GAACCGGTCT	CTGTCTTAGA	6900
10	TGCTTGTTTA	ACGCCTATTT	TAGCTCCGTT	TACAACAATT	ACACATATGA	TTGGTGTAAT	6960
	AGACGCAAGC	ATGTATAAAC	ACATTAAATC	ATTCCCTAAA	GACATCCAAG	GCTTATTTTA	7020
15	TGAGCAATTA	GCATATTGTT	CTGTCTTATT	TGTTAATAAA	ATAGATTCAG	CAGATGTTGA	7080
•	AACAACGAGC	AAACTATTGA	aagatttaga	AGTTATTAAC	CCAGAGGCCG	ATATACAAGT	7140
	CGGTATGCAT	GGCAGCGTCA	CTTTGCCAAT	ATCAGTTAGA	CAAATGACAG	CAACTTCTGA	7200
50	CAATAAACAT	AAGTCTTTAC	ATCAAATGAT	TAATCATCAA	TTTGTGCAAT	CACCAGTCAA	7260
	ATGTACTAAA	GCAGAGTTTA	TAAAACGTTT	AGCATGCCTT	CCGTCTCATA	TTTATAGGTT	7320
	GAAAGGGTTT	ATGACATTTG	AAGACACCGC	ACATACGTAT	CTCATTCAAT	TTACACAAGG	7380

	CGGAAAGGGT	ATTTCAAAAG	AAGACTATCA	ATGTTTGGAA	CAGTAGTGTT	TTCAGTGGAA	7500
	GAGAATGGTT	AACATGCCTT	CATGTATAAT	AACGAGTTGA	TTTGAACGTT	TAAGCGTAAA	7560
<i>s</i> ′	TAAAAATAAG	CTTGGTCAGC	CATCAAATAT	AATTTGAAAA	CTGTCCAAGC	TGTTTTATTA	7620
	GAGAACAATC	AATTAACCCC	ACATATTTAA	TAATACATCA	GCAAAGCCTT	CAGGTTTTTG	7680
10	AATATAACCT	AAGTGACCGC	CTGGAATATC	TACAATAGGT	ATGCCAGTTT	CTTTATTTAT	7740
U	ATAAAAGTTA	ACATCTTGTG	GGAAGGAGCC	TCTAGAATCT	GTCCCATTTA	GTAGGGTGAT	7800
	TTTATCGCTG	TATTTTGTGA	AATCATCCAA	AGTAATATCT	GAATGCGTAT	ATTGTCTAAT	7860
15	TTCAAATTCT	GACCAGAACA	TCGTACGTTT	GTACTGTTCT	ATACGTCCTT	CTTCAGTATC	7920
	AGCAGGTTGA	GACATCATTT	TTGCATCAAT	TGGTGCGATA	TTTAATGTTT	CGCCAAATGT	7980
	TTTCATGCCT	TTTTCTAAGC	CTTCTGTTAA	AATTTGATGC	ACAATGTCAT	CATTTTTATC	8040
20	TTTCCAATAA	GTACTGTCTG	GTAAAAATGT	ATTAATTGGT	GGTTCGTGAA	ATGCAATCTT	8100
	TTTAACGACT	TCAGGGTAAT	CTTTTAACAC	ATGCATCGCA	ACGATTGAAC	CTGAACTTGA	8160
	ACCTAATATA	TAGACAGGTT	CATCACTTAA	TGACTTTGCA	AGTTCGGCAA	TGTCCTGTGC	8220
25	GTCGCGTTTG	ACACGATAAT	CACTGTCAGG	GTTTGAAGCG	GAATCAGGGA	GTGGTTCAGT	8280
	TAACTCGCTT	TCTCCATAAT	CACGACGATC	AACGGCTACA	ACAGTAAAAT	GGTCTTTTAA `	8340
30	CTGTTCTGCA	AGAGGCAGAA	AAATGTCTCC	GGTACCGTTT	GCACCAGGAA	TAAAGATGAG	8400
	CACGGGTCCT	TGTCCGACTT	GGTGGTATCG	TAATTTAGCG	CCTTGTAATT	CTAAAGTTTC	8460
	CATATTCAAT	GACCTCCATT	TGTTAATTGT	TAGGTGATAA	ACCTAATAAT	TTAGCACCAT	8520
35	TTGTATAACT	TATTTTCTCT	TTTTCTTCAT	CTGTTAAACC	CAGTTCATCT	AAAAATACAC	8580
	CTAATTTTTC	AGGCTCAATA	TATGGATAAT	CAGCAGCATA	AAGAATTCTA	TCAATACCTA	8640
•	CTTCTTTCTT	GACTAAATCA	AACTGTGGCT	TCGTTAACAT	GCCACTCGGT	GTGATATAAA	8700
40	AATTATTTTT	AAAGTAATAG	CTTACAGGGT	GGTTCAAATG	TTCAGCGAAT	AAAGCTTCAT	8760
	CCATACGTTC	TAAGAAGAAT	GGGATAAACT	CACCCCAATG	TCCAATAATC	ATATTTAACT	8820
45	TTGGATAACG	ATCAAAAATA	CCAGATAATA	CTAGATGTAT	TGTATGAATG	CCGACATCAA	8880
	TGTGCCAACC	ATAACCAAAA	CAAGCAAATG	TTGCCGCAGT	TACTTCAGGA	TAATTTCCTT	8940
	TATAGTATGA	TTGATAAATG	TCACTGTTAA	CTGGCGCGGG	ATGTAGATAA	ATCGGTACGT	9000
50	CTAAATTTTC	AGCTGTTTTG	AAAATAATGT	CATATTTGTC	TTGATCAAGA	AAACCATCTT	9060
	GTGCACGTCC	CATAATGAGC	GCACCTTTGA	ATCCTAAATC	ATTGATGCAA	CGTTCGAATT	9120
	CTCCCCCTGC	GGCTTCAGGC	TCATTGATAG	GTAAAGTTGC	AAAGCCTACA	AAGCGATTGG	9180

	TCTGACCAAC	CAAATTTGAA	GGAGAACCAT	TTCCATAAGA	TAAGACTTGA	ATTTGAACGT	9300
	CTTGATTATT	CATAAATTGG	ATACGTTCAT	CATGATGTGA	TAATTCGTCG	GCATTTGTAA	9360
5	AACCTGTCTT	TTTTTCAAGG	CCTTCTAACA	TTACTTTCAT	CGGTACACCT	TTAGGATCTG	9420
	CTGATATCGC	ATTCATCGTT	TCTTTTTGAA	TATCTTCAAT	GACATAATGT	TCTTCAAACG	9480
10	TAATACTTTT	CATTTACTTC	GCCTCCATAT	TGTATTGCAT	GTTTATTGCA	TCTATTGCAG	9540
	AAGCATTTTT	TATATACCTC	TAATTTCAAT	GTTTGTAACA	TAAAATTGAT	CTACCAAGGC	9600
	ATCTCTCCAT	CGCCATTAAT	AAATGTACCT	GTTGGGCCAT	CTGCACCAAT	CGTTGCTAAT	9660
15	TGAATGATTG	GCTTGATTCC	TTCAGAAACG	TGTTTGGAAT	TATTACTAAA	ATCACCAACT	9720
	AAATCAGTAT	TTGTAGCGCC	TGGATCAGCA	GCATTGATTT	GCATGTTAGG	TAATCCTTTA	9780
	GCGTATTGTA	GCGTTAGCAT	TGTTACTGCC	GATTTAGACG	AACAATAAGC	TAATGAATTC	9840
20	ACTTTAGATT	CAGCTGTTTC	GGGGTTTGTA	ACCATTCCAA	ATGAACCTAA	ACCACTTGAT	9900
	ACGTTGACGA	CAACAGGTTG	TTCAGATTTT	TCTAAGAGAG	GGACGAATGT	ATTCATCATT	9960
25	CGTACGATAC	CGÁATACATT	CGTTTGATAT	ACTTCTTCAA	CGTCACGAGG	TGTCAATTTG	10020
23	GAAGGTGCTG	AAAATTGACC	AGATATACCT	GCATTGTTAA	TGAGGATATC	AAGACGGCCT	10080
	TCTTTTTCAG	CAATCATGTT	ATAAGCATTT	TTGACTGAGT	AGTCACTTGT	AACATCTAAT	10140
30	TGTACATAAT	GAACACCTAA	TTTTTGTGAT	GCTTGTTGTC	CTCTTACATC	ATTCCGAGAA	10200
	CCTATATAAA	CTTTGTAACC	CAATGCTTTA	AGTGCCTCTG	CACTTGCATA	GCCTAACCCT	10260
	TTATTGCCTC	CTGTGATTAA	CACAATTTTA	GTCATTACGT	CCCACCTCAT	CTAAATAAAT	10320
35	GTTTAATAAA	TAATTTCTGT	ACGCTTCAAT	TGAAATATGG	CGATGCTCTA	TTTGGAAGGC	10380
	AAATACACTA	GTTGATAATG	ATTGCAACAG	CATATCTGTT	TTGAAtTCGT	GTAAGTGTCG	10440
	TCATÉGCTTT	TAAATAAGTC	AAAAATAAAA	TCAAATAATT	CTTGATAAAA	TGCGCTTTGG	10500
40	TAAAAACGTA	ATTTATTGTT	GCCTGCTTCA	ATACATTGCA	GTAGTGCCTT	ATTATCGATT	10560
	TTAAATTGTA	AAAGATAATC	TAACGACACT	TGCATAACCT	CATAATTAGA	ATGATAGTCA	10620
45	TCTTTAATTT	GCTTAAAATG	AGTGATAAAA	ATATCAAGGT	CTCTTTGTAT	GACGTAGTAG	10680
	CATAAATCGC	TTTTATCTTT	GAAATGTCGA	TACAATGTCC	CCATACCGAT	ACCTAGTTCT	10740
	TTAGCAATAC	GATTCATACT	AATGTTTTCA	ACGCCTTCTT	CATCAAAAAG	TTTGTGCGCT	10800
50	ATTTCTTCAA	TTCGTTGCCT	ATTCTCTTTT	GCATCTTTTC	GCATGATTAC	ACCTACTTAA	10860
	AATTCTCTAA	AATTGACAAA	CGGATAACTC	TCCGTTTATT	ATAAAACGTG	TTAAGAAAGT	10920
	TAGCAATGAA	TTTGCAATAA	СТАТТАААТА	TCATAAAAGA	AAAGAGTGTT	GATAATGTCT	10980

ACCTTATCGG TTCAAATGAT TGCTGAAAAA CTGAATGTCA CTACAGAAGA TGTGGAAAAA 11100
GTATTAGCTA TGACAGCGCC ACTAGGCATT TTTAGTCATC AATTACAACG ATTTATTCAT 11160
TTAGTATGGG ATGTCAGAGA TGTAATAAAC GACAATATTA AAGGAAATGG ACAAACACCA 11220
GAACCATATA CGTATTTAAA AGGTGAAAAA GAGGACTATT GGTTTTTAAG A 11271

(2) INFORMATION FOR SEQ ID NO: 12:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6261 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

15

20

25

30

35

40

45

50

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

	CAACCCGTTC	AGAACAAAAT	AAAAACCGTA	CAATTTTATC	ATCTTAATGA	TTATTGTACG	. 60
	GAAAAACTTT	TTTACATCAT	ATCTGCATGT	GCATAATCGA	TATCGGTAAA	TTTATTATAT	120
,	TGTTTCATAA	AATGTAACTT	AACTGTGCCT	GTTGGACCGT	TACGTTGCTT	AGCAATGATA	180
,	ATTTCAATTT	CACCGTTTTC	ATCATTCGTT	TGTGGCTCGA	AACCACCATC	ATCGTCATCA	240
,	TCTTCATCGC	CGCCACGGTT	ATAGTAATCA	TCACGGTATA	AGAATGCAAC	GATATCGGCA	300
,	TCTTGCTCAA	TCGAACCAGA	TTCACGAATA	TCACTCATCA	TTGGACGTTT	ATCTTGTCGT	360
	TGTTCAACAC	CACGAGATAA	CTGACTTAAT	GCGATAACTG	GACATTTTAA	TTCACGGGCT	420
	AATGCTTTTA	ATGTACGAGA	GATTTCAGAA	ACTTCCTGTT	GTCTGTTATC	GGACGCACGT	480
,	GAACCACTAC	CTTGAATCAA	CTGTAAGTAG	TCAATCACAA	TCATGTCTAA	GCCATGTTCT	. 540
,	TGCTTTAATC	GACGACATTT	AGAACGTAAA	TCATTAATTC	GAATACCCGG	TGTATCATCA	600
	АТАА ААТСТ	TCGTACGTGA	TAATTTACCT	ACCGCTATAG	TAAAACGACT	CCAATCTTCC	660
	TCAGTCATAG	TACCCGTTCT	TAAGCGGTTT	GAGTCAACAT	TTCCAGAACT	ACAAATCATA	720
	CGTGTGGCTA	ACTGATCAGC	ACCCATCTCT	AGCGAGAAAA	TACCAACTGT	ATACATATCT	780
	TCATGCGTTG	CAACTTTTTG	TGCAATATTA	AGTGCGAACG	CAGTCTTACC	TACAGATGGA	840
	CGCGCTGCAA	GGATAATTAA	ATCATTTCGG	TTGAACCCTG	CTGTCATTTG	GTCTAAATCT	900
	CGATATCCTG	TAGGTATACC	TGGTGTTTGA	CCACTATTTT	GATCAAGCTC	TTCAGCTGTT	960
	TCATACACTT	GTCCTAAGAC	GTCTCGAATG	TCTTTAAAGC	CATCGCTTTC	ACGAGAAGAT	1020
,	GATAGCTCTA	AAATTCGACG	TTCTGCATCA	CTTAAAATCG	CATCTAGTTC	AAGTTCATCA	1080
	TTATATCCAT	CATTGGCAAT	ACTATCTGCA	GTTTGAATCA	ATCTACGTTT	TAATGCATGC	1140

	TCTGCAAGAT	ATTGCGGGCC	ACCCGCTTCA	TTCAACGTAC	CTTCCGTCGA	TAATTGATCC	126
	ATCAATGTTA	CAACATCAAT	TTCTTTATTA	TCTTCATTTA	AGTGCATCAT	TGCACGGAAA	132
5	ATATGTTGAT	GGGCACCCCT	ATAAAACGAC	TCAGGAAGCA	AAACTTCCTG	AGTAGTATTA	138
	ATCAATTCTG	GATCTATAAT	AATTGAACCT	AAGACAGACT	GTTCAGCTTC	ATTGTTATGC	144
10	GGCATTTGAT	TTTGCTCATA	CATTCTATCC	ATGAATGGTT	ACACCTCTTA	TTTCAATCCA	150
	ACTTTATTGT	TCAACTGTGT	GTACGCGAAT	TGTACCTTCA	ACTTCTTTAT	CTAATTTAAC	156
	AGGTACATTC	GTATATCCTA	GGGAATGAAT	TCCATTTGGT	AAATCCATTT	TACGTTTATC	162
15	AATTTTAATA	TCATGTTGTG	CTTTTAGTGC	TTCGGCAATT	TGTTTTGTAC	TTACTGACCC	168
	AAACAATTTA	CCACCTTCAC	CAGTTTTTGC	TGATACTTCA	ACTTCAATGT	TTGATAACGT	174
	TTCTTTTAAT	GCTTTAgCAT	CTTCAATTTC	TTGTTGGCGT	TCTTGTTTTG	CACGTTTTTT	180
20	CTGTAACTCT	AATTGTTTAA	GGTTACCTGG	TGTTGCTTCT	ACAGCATAAT	TCTTTTTCAA	186
	TAAGAAGTTA	TTTGCATAAC	CTACTGGTAC	TTCTTTAACT	TCACCTTTTT	TACCTTTACC	1920
25	TTTACCTTTA	ACATCTTGTG	TAAAAATTAC	TTTCATGCAT	CTTCACTCCT	ACTTAATTGT	1980
20	TCTGTAATTG	CTTGTTGTAA	TTGTGCTATC	GCCTCTTCGA	CTGTCACACC	TTTAAGTTGT	2040
	GTTGCCGCAT	TGGTTAAATG	TCCACCGCCA	CCAAGTGCTT	CCATTGTTAA	CTGGACATTT	2100
30	ACTGAACCGA	GTGAACGCGC	AGATATACCA	ATCAGATTAT	CTTCACGTCT	CGCAACAACA	2160
	TATGATGCTT	CAATACCTTC	TAAACTTAAC	AGTTCATCTG	CTGCTTGTGC	AACTGTTACT	2220
	GGATGATAAA	TTTTATCGTC	TGAACCATGC	GCAATGGCTA	TGCCATTATC	TTCAACTTTT	2280
35	ACAGTTCGAA	TTAATTCAGA	TCGATTAATG	TAAGTATCCA	CATCATCTTT	TAAGAAATGT	- 2340
	TGCGTTAAAA	TCGTATCTGC	ACCATGTGCA	CGTAAATAAC	TCGCTGCATC	GAATGTTCTT	2400
•	GATCCTGTTC	GTAATGTAAA	GTTTCTTGTA	TCTACAATAA	TACCTGCATA	CATCACTGTT	2460
40	GATTCAAGAC	GTGTTAAACG	TTGTTCTGTT	GGTTGATATT	CCAGTAACTC	TGTTACCAAT	2520
	TCAGCTGTCG	AACTTGCGTA	TGGTTCCATA	TATATCAACA	ATGGATTAGA	GATGAAGCTT	2580
45	TCACCACGTC	TATGATGATC	GATAACAACT	TTACGGTTTG	CTTTATTTAA	GACATTTTCA	2640
	TCTAÁAACCA	GTTCCGGTTT	ATGCGTATCA	ACAATCACTA	CGGTTGTCTT	AGATGTCATC	2700
	ATATCCCAAG	CATCATCTGA	TGTAATAAAT	CGCTCTCTTA	ACTCTGGCTT	TTTATCTATT	2760
50	TCGTTCATCA	CGCGTCGTAA	TGTTGGATCA	ATGTCAGTCT	CATTTAATAC	GATGTATGCT	2820
	TCTAAATTAT	TCATCATTGC	AAATCTAGAC	ACACCGATTG	CTGCACCAAT	TGCATCTAAG	2880
	TCAGGACGTT	TATGTCCCAT	GATAATGACT	TTGTCACCCT	CTGCAAGGAT	ATCTTTTAAC	2940

	CCATAGAAAC	GCACATTACC	ATTAATACTT	TTAATTGCAA	CTTGGTCGCC	ACCGCGTCCT	3060
	AATGCTAAGT	CTAGGCCTGA	TTGTGATAAT	TCACCTAAGT	CGATTAAATT	TTCAGTACCT	3120
5	TCACCAACAC	CGATACTTAA	TGTTAATTGG	GCACGATAAC	CAACACTTTT	TTCACGTAAT	318
	TGACTCAAGA	TATCAAATTT	AGATTCTTCT	AAGTCAGCTA	ATATTTTTTG	ATTTAAATAG	3240
10	GCTACGAATT	GATCGGAACT	GTATCTTTTG	TATATAAAAA	TATACTCAGT	TGCCCATCGA	3300
,,	CTAATGACAC	GCGTTACCAT	TGAGTTGATT	TCCGAACGCT	GCGTATCATT	CATATTTTGC	3360
	GTAATCTCAT	CGTAGTTATC	TAAAAATAAT	GTCGCAATGA	TTGGTTTAGA	ATTTTCATAT	3420
15	AGTTCATTTG	TTTGTACTTG	TTCAGTTATA	TCAAAGAAAT	AGAGGCAGTG	ATCATTCTCA	3480
	GAATAACGTA	CTTGGAAATG	ATACTGATTA	TATTCTATTT	CAACGGATTT	CACTCTATCT	3540
	AATTGCTTTA	AAATGTTTGG	AAATACTTCA	TTTACAGATT	CAGAAATGAC	ATTCGCTTCC	3600
20	ATATGATCTG	TCATAAATTG	GTTAACCCAT	TCGATGTGAT	CATTTTCATC	TAAAACAATG	3660
	ATACCAATTG	GTAAATGTTT	GATTGCTTTA	TTATTTGTTG	TTGAAATTTG	AGCACTCAAA	3720
	CCATCTACAT	AACTATCCAT	TTTCATTAAA	GCTTGTCTGA	ATAAAATGAT	GCTAACAATA	3780
25	ATCATCACGA	CAAGAACGAT	AGATGCAATT	AGTGCTATAA	GACTATTAAA	GATAAACCAT	3840
	ACACCCATTA	AAACAATTGC	TGTGATGATC	ATGATGACAA	ATGGTATTAG	TAAAGCTTTC	3900
30	TTAGTGGACT	GCCGATTCAT	TATTCCACCT	CTATTCACTT	TTTAGAATTA	TTTTTCATGA	3960
	TTCGCTTCAA	ATTCAAACTT	AAATCGATAA	CACCAAGTAG	TCCTACAATA	TGTGTCGTAG	4020
	GTGTCAGTAT	TGTACCGATA	ACCAATAGTA	AAATCGTTAC	TGCATTCGGC	AAACCTTTCG	4080
35	CTTTACCAAA	GAAATGAATA	ACACTTAAAC	CTTGAATATA	CATTACTAAT	GATAACACAA	4140
	GTTGGAAGTT	TAAAAGAATG	CTCTGGAACA	CACTCGGTTG	ACCTGTAAAT	AATAAACATA	4200
	TGAŢAACAAT	AATGTATATC	CATAATAAAA	TACCGCTCAT	TTGCCACGCG	AAAAGTGGCT	4260
40	TAAATACAGG	TGTAGCGATT	TTAAATTTTC	GTAAAATCGG	AAATGTAACG	ATTAAGTTAA	4320
	TTAAGACGAT	TAAAAATGTA	ATGATAATGA	TGAAACCTGG	TAATTGAACG	GTCGCTTGTC	4380
	TAAACCCTTC	TTCTAATATT	TGGGTCATAT	TCGCATCGGC	ACCGCTCATC	GTAATCGCTT	4440
45	CATGTAATGT	TTGCTTGAAA	GGTTTTACTA	TGCTCGCTGA	TGGTGGAATC	CTTCCGAATG	4500
	TTTGTAGTAA	CATAAAAGCG	ATTAATGAAA	TTnArCTCAT	CGCTACTGTT	GTTACGTATA	4560
50	ATATTCTTTC	TTTAGACGTT	CTTTCTTTGA	GCAATTGACC	AATAATTAAA	CTTGCAATTA	4620
	AGACTAATAT	GATGGCACTT	AAAACGAAAG	TATTACCTAA	AACAGTTGTT	ATAATTACTG	4680
	TAATAACTCC	A CTA ATCCCC	እ እ እ C እ ምጥር ጥ እ	יויים עיניים עיניעים איניעים	CCATAAAACC	ATTACCTCCTA	4740

	CAAATACCAA	CGCAATCGTT	GCAATTATTG	TTGCTTTAGG	TTGTATTTTT	GAAAACACAT	4860
	AAGCCACTCC	CATATTTTTA	ACTATAGCTA	TTATTTTAAC	CTCTTTAATG	AAAATTAACA	4920
5	ATTTATAGAT	TGTATGCTTC	TATTTCATTT	AATTGAAŢĄA	TAACTTTCAT	GTTTTATAAG	4980
	TAATTAACAT	ACTCATTTGA	ATCGCTTTTG	TGTGCTTTCA	TTTTCAACAT	GATTATTTAA	-5040
0	TCCCACTACA	TAGCAATCAA	GCTTGATTTA	GATTTACAAT	ACATTTCCAC	TCTCATGTAC	5100
U	TCTAGATGTT	TTTGAATATG	ATAACTGTGA	TTTAGTGGCT	TCATTCTTTG	AAAATATATA	5160
	TTATTACTTA	CGCTTAAAAT	GCTTTAAATT	TAAGAAATGA	TATAAGTTAG	GTGCCCAGGT	5220
5	ACTAAAGTTT	AGTAGGAATC	CATCATGCCC	AACATTATCA	GGCACGAAGA	AATGACGATG	5280
	ATATTTAAAA	CGTTCACCTA	ATGCACGAAC	TTGATCATCC	GGATATAGCA	AATCATCTAT	5340
	GAACCCCATC	GTTAACACTT	TTGTTTCTAA	AAAATTTTTA	ACATGCGTTA	CGTCTGTGCG	5400
20	ACCTCGGTCA	ATGTTGTGAC	TATCCAATAC	ATCTAGCAGT	GTCAGATAAC	AATTCAAATC	5460
	AAAATGTTCT	TTAAATTTAT	TACCTTGATG	TTGTTGGTAT	GCGACTACTT	CATCCGGCGT	5520
	AAAACGTTCA	TCATAACTTT	TTGATGATCG	ATATGTCAAA	AAACCTAATT	GGCGTGCAAT	5580
25	ACTTAGACCT	TCCTTACCAC	CAAGATGAAT	GGCTTGCCTT	GCAATTTCAT	TGAAAGCTCT	5640
	ACTATAAGAT	GATGTTCGAC	TTGTTGCAGC	AAGGATAATG	GCTTTATCTA	CTTCAAACTG	5700
10	TTGATTGTAG	AGTAGTTCCA	TTGCTTGCAT	ACCTCCAAGA	CTTCCCCCTA	TTAAAATTT	5760
•	AATCTTATCA	TAACCAAGGG	CTTGTATACC	TCGTTCATTC	GCTCTGACTA	TATCTCTTAA	5820
	TGTTAATTTT	TTAGGAAAAT	GAGGGTCGTT	TAAAGGTGAA	CTTGAACCGA	AAGGACTACC	5880
5	AATAACATCA	AATGTTAAAA	ATTGATAATC	GTGAATGGGT	ATATATCCCC	CATCAATAAT	5940
	TTCTCGCCAC	CAACCCGGAT	AATCATCTGT	TCCATATGTT	AAATGATTGC	CAGTTAATGC	6000
	ATGAÇAAACT	ACAACTAATG	GTTGTCCATG	ATAACCGACA	TGCTCATATC	TCAAACGCAA	6060
0	GTNATCTATG	ACTTCCCCAG	ATTCTGTAAT	AAATTCCCCT	aäatttaaag	TATCTACTGT	6120
	GTAATTTGTC	ATTGTTCTTT	CCTCCTTAAA	CAAAAAAACT	TCTCACCCTA	TTGAAAAGTA	6180
_	AGAAGTCTTT	ATACTTATCA	TTCGAGTAAC	TCGTTGGTTT	TAGCACCGTG	CTATAAAGTC	6240
5	GGTTGCTGAA	GTATCACAGG	G				6261

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1222 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

	(xi)	SEQUENCE DES	SCRIPTION: S	SEQ ID NO:	13:		
	ATGCGATTAA	CTCTGGAAAT	ATCTTTTCCA	TATTTACGTn	TTAAATTATT	CAGCAAATTC	60
5	ATACGAGATT	CATACTCGTT	yAACACTTGT	TCGTCGAATT	CTGTATTAGC	CATTTCATCA	120
	TATAACTCAT	GTTTTGCATC	TTCTAAAATG	TAGTAAAATT	GATCAATATC	TTCTTTTAAT	180
	TTGTCATATT	TGTTTGGAAC	TATATCGTTT	ATTGTTAACA	AATGGTTGCT	TAGTTCATAT	240
0	AAACGATCAG	TGATAGCATT	TTCATCCGTT	AATGTCATAT	ATGCGTTATT	AAGCGCTAAG	300
	CTTAATTTTT	CAGAGTTTTG	AATGCGTTTA	ATATCTATTT	CAAGTTGCTC	TATTTCGCCT	360
5	TCTTTTAGAT	GTGCTTCAGA	CAATTCTTCT	AATTGGAATT	TCATTAAATC	TAAACGCTGT	420
	AGCAATGCTT	GGTCTGCTGA	TTCTAAATCT	TCTAACTCTT	GCTTTTTGGC	TTTATATTT	480
	TGAAAAGTTT	GGTGATATTT	ATCCAACAAA	TCTTGATAAC	GTGATTCTGC	GTAATTATCC	54
20	AATAATGTTA	AATGGTATTT	TTGTTTCAAC	AAAGACTGCG	TTTCATGTTG	GCCATGAATA	60
	TCTAATAATT	CTTGCATAAC	TTTTCGTAAA	TCTTGTAAAG	TAACTGTTTG	TTAATTAATT	66
	TTACAAAGAC	TTTTACCAGA	GCTGAAAATT	TCCCGTTTAA	СТААТАААА	ATCTTCATCT	72
?5	ACATCAATAT	CCATATTTTT	CAATATATGT	ATAGCATCTT	TACTCTCGTC	AATATCAAAT	78
	ATACCTTCGA	TGACAGCCTT	TTTTTCACCA	TGTCTTACAA	AATCAGATGA	AGCTCTCATT	84
	CCAATTAATT	GTCCAATTGC	ATCTATAATA	ATTGACTTAC	CTGAACCCGT	TTCACCACTT	90
30	AAAACAGTTA	AACCATCAGA	AAATTGAATT	TCTAATTCTT	CAATAATAGC	AAATTGCTTG	96
	ATTGATAAGG	TTTGTAACAT	AAACTCATCG	CATCCTTATA	ACAAATTGAA	AATTCTTGAC	102
35	TTGATTTCAT	CACTTGCCTC	TTTGCTTCGA	CAAATAATTA	AACAAGTATC	ATCACCACAA	108
	ATTGTGCCTA	GTACTTCTTC	CCAATTGATT	TGGTCTAATA	TAGCTCCAAT	AGATTGTGCA	114
•	TTACEAGGTA	TGTTTTTAGA	ACAAGTAAAT	TATCAGTACC	ATCTATATTA	ACAAAGGAAT	120
10	CCATTAAATA	ACGTCCCAAT	TT				122

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1021 base pairs
(B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TTTGTTATTA TTACNTNAAA TAATTGCATT ACTTTTTACT GATGGTACAA CTTTCCATCC 60

55

180

420

TTCTTTTGGC ACGACATAAT TGTCTTTATC TTGAACTAAA TATCCGCCAG ATACTGAAAC

	AAACTCTTCT TCGTTACTGT CTATAGTCAT ATCAATTTCT AATAATCTTA CATTCTTCTT	240						
5	TTGTTTTAAA ATATCTAATG CTTCATCTGT AAATTTTGGT GCAATAATGA CTTCCAAAAA	300						
٠	GATACTATGC AATTGCTCTG CTAACTCAGG TGTTACAGCT CGGTTTAATG CAACAATTCC	360						
	ACCAAATATT GATTGACTAT CCGCTTCATA CGCATGTTGA AATGCTTGTT CTATCGTGTC	420						
10	ACCGATACCA ACACCACATG GATTCATGTG TTTAACCGCA ACTGTAGCAG GTGTATCAAA	480						
	CTTTTTAACT AAAGCTAGTG TAGCATCTGC ATCTTTAATA TTGTTATAGC TTAATTGTTT	540						
15	CCCATGTAAT TGTTTAGCGC CTGCAATCGT GTGCTTAGCA TTCGAAGTTC TCACAAAATA	600						
	CGCTGATTGT TGTGGATTTT CTCCATATCT TAAAGTTTCT TTATCCCCTT TAAAGAAACG	660						
	TACAATCGCT TCATCATATT CTGCAGTATG CTCAAAAACT TTAATCATTA ATGATTGTCT	720						
20	ATATGACTCA TCTAACGAAT CGTTTCTTAA TCGCGTCAAT ACTTCTTGAT AATCTGCCGG	780						
	ATGTACAATT GTTGTTACAT GTTTATAGTT TTTAGCTGCA GCACGTAACA TTGTTGGACC	840						
	ACCAATATCA ATATTTTCAA TTGCTTCGTC CATCGTCACA TCAGGGTTTG CAACAGTTTG	900						
25	TTGGAATGGA TATAAATTAA CTACTACCAT ATCAATTAAA TCTATATGTT GTTCTGATAA	960						
	TTCATTTAAA TGCTGCGGTT TATTTCGATC AGCTAAAATG CCACCATGAA CAGCCGGATG	1020						
	T	1021						
30	(2) INFORMATION FOR SEQ ID NO: 15:							
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3759 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear							
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:							
	TCATTCACTC CTAAATTGTT ATTACACTAT TACACATAGC TAATCATCAA TGTGAAATCA	60						
	CCTTCAAAGA CACTATCCAA ATCTTCAGAA GTCAAAATAA AGTTTGTACC AGTAGTCAGT	120						
45	TIGAAAATTI CACCATCGAC AATCATTTGC CCTTCGCCTT CCAACACTGT AACTAAACAG	180						
	AACTCTCTAG GCTTCATATA ATTTAACGTG CCAGAAATTT CCCATTTAAC CAATGTAAAG	240						
	AAATCATTCG ATACAATGTG TGTACACTTA TGGTTTTCAA TAATTTCGCT TTCAGGCAAA	300						
50	ATATTAGGTA ATGGTGCATT GTACTGAATA ACGTCTAAAG CTTTTTCAAT ATTTAACGGT	360						

255

CTATCATTAT ATTGATTATC TTGACGATTG AAATCATAAA GTCTATATGT AATGTCTGAC

	ATAAAAtAGa	ATTCYCCAGG	kTTTACtTTA	AtatATCyAA	gTAtCGaCtC	tATCGTTCCG	540
	TGTTGAACAT	GATTCGCAAC	TTCTTCTCTA	GACTCTGCTA	ATGTCCCLAT	AACTATTTCT	600
5	GCATCTTCTT	CTGCATCTAT	AATATACCAA	CATTCAGATT	TGCCATATTG	CCCgTTTTCA	660
	TGCTCATAAG	CATAAGAATT	ATCAGGGTGC	ACATGAATAG	AAAGTGATTC	TCTTGCATCC	720
	ACTATTTTAG	TTAGAAGCGG	AAAATCTTTG	CTTGGGAAAT	CACCAAACAA	TTCACGATGT	780
10	TCTGACCAAA	TACGGTCTAA	TGTTTGACCT	TGATATGGTC	CATTAATAAT	CTCGCTCGTA	840
	CCATTTGGAT	GTGCTGACAC	ACACCAACAT	TCCCCCAGTT	GTATCATTGT	CTAATTGATA	900
15	TCCAAACTCA	CTTAGACGTT	GACCGCCCCA	TAATTTTGTT	TTTAAAATTG	GTTGTAAAAA	960
	TAATGGCATT	GTTGCACCTC	CATTGTGATT	AAGTAAGCAA	TAGAACTCTG	ATGTTGTTGT	1020
	TCCATTATAT	TTTGATTTTG	TTCTCATTTA	CATCGTATTA	TTAACTTCCA	CATTTCAAAT	1080
20	TAACTATTAG	TGATTGTACC	ATATTTACTA	ACATTGCAGT	ACTGCCAATT	AAAAGnGCTT	1140
	CACTTAAATT	TACAGTACTT	TAACATTTTC	AAAAATTTAT	AGCATAGAGA	TTATATCTCT	1200
	CTTACATTTG	TACATATTTC	CCTTTAAATT	TACTCGCCCA	TTATACCAAT	TAATAaACAA	1260
25	CTTTAATAGT	TGTGCCATAC	ATTGTTCAAA	TTCTTTGTAA	AACGCATAGA	CAATACGTAC	1320
	TTATTCATAC	TTATAATTCA	TCATTTTCAA	AAAATAACGA	GTTACGAAAA	AGTAACCCGC	1380
••	TTCAAATCAT	ATTTACTATC	CTTATTAATC	CGTTTCATTT	TCAAATTGAG	TTAAAGCATC	1440
30	TTTAATGTCC	TGATCACCAC	TAATAATTTG	AAACTCTTGG	TGATTAAAAT	GATTGGATGT	1500
	GACAATTTCT	TTTAATACTG	TCGCAACATC	TTCTCTAGGA	ATTTCACCTT	TACCATCAAA	1560
35	ATATTGTGCA	GCTTCTATCT	TTCCAGATCC	TGCTGCATTT	GTAAGTGCCC	CTGGATGTAA	1620
	AATTGTATAA	TTCAAACCTG	nAACGTCTTA	AATAGTCATC	AGCGTAATGT	TTAGCTATTG	1680
	TATATGGCTT	TAAATCACCG	CTATCATCAA	AAGCCTGACG	TCTCGAATCA	TATGTTGAAA	1740
40	CCATGACATA	GTGTTTAATA	TTGGCCTCTT	TACTCGCAAT	CATTGATTTA	ACAGCACCAT	180
	CTAAATCGAC	AATAATTGTT	TTATCTGCAC	CCGTGTTCCC	TCCAGAACCT	ACTGAAAAGA	186
	TAACTTTATC	GAATGGTTTA	AACGTCTCAG	TTAAAGTCTC	TATTGAATCA	TTTTCAACAT	192
45	CAACAAGAAT	TGCTTTCATA	CCTTGTGATT	TTAACGCATT	AAGTTGATCT	GATTGCCTAA	198
	CACCAGCAGT	AAATGGTACA	TTTTCTTTTG	CTAATTGTTG	CACTAGTAAC	GAACCTACAC	204
50	CGCCATTAGC	ACCTATAACC	AAAATATŢCA	TTTACAACAC	TCTCCTATkT	ATTATTCTCT	210
50	ATGCCATACC	ACTTTATGAG	ATATGTAAAA	CTTGTTACAA	CTATAAAAAT	CAATTGACAT	216
			TOTAL A TEATRA TO	************	CATATCAAAC	Саттутсата	222

	tCaAGGCATT	AGCGATTACA	ATCGAATACG	TATCATGGAA	TTGTŢATCaG	TCAGCGAAgC	2340
_	AAGTGTTGGT	CACATTECAC	ATCAATTGAA	TTTATCTCAA	TCAAATGTCT	CGCACCAATT	2400
5	AAAATTACTT	AAAAGTGTGC	ATCTTGTGAA	AGCAAAACGA	CAAGGCCAAT	CAATGATTTA	2460
	TTCATTAGAT	GACATCCACG	TAGCAACTAT	GTTAAAGCAA	GCCATACATC	ACGCGAATCA	2520
10	TCCTAAAGAA	AGTGGGTTAT	AATATGTCTC	ATTCACATCA	TCATCATGAC	CATATGCATA	2580
	GTCATGTAAC	TACAAATAAT	AAGAAAGTAT	TGTTTATATC	GTTTTTAATA	ATCGGTCTAT	2640
	ATATGTTTAT	CGAAATCATC	GGCGGTCTCC	TTGCTAACAG	CTTGGCATTA	CTATCTGACG	2700
15	GTATCCATAT	GTTTAGCGAC	ACATTCTCAT	TAGGTGTTGC	ACTTGTCGCA	TTTATTTATG	2760
•	CTGAAAAGAA	TGCCACAACT	ACAAAAACAT	TTGGTTATAA	ACGTTTCGAA	GTACTCGCAG	2820
	CGTTATTTAA	CGGTGTAACG	CTTTTTGTAA	TAAGTATTTT	GATTGTTTTT	GAAGCGATTA	2880
20	AACGTTTCTT	TGTTCCTTCT	GAAGTTCAAT	CAAAAGAAAT	GTTAATCATT	AGTATTATCG	2940
	GTTTAATTGT	CAATATCGTT	GTTGCATTCT	TTATGTTTAA	AGGCGGCGAC	ACTTCACACA	3000
	TATAAATTTA	GCGTGGTGCT	TTTCTACATG	TTATCGGAGA	CTTATTAGGT	TCAGTTGGCG	3060
25	CCATTACTGC	AGCTARTTTA	ATTTGGGCAT	TTGGATGGAC	AATCGCCGAT	CCTATCGCAA	3120
	GTATTTTAGT	TTCCGTTATT	AAAAATTTTA	GTGCTTGGGG	TATCACAAAA	TCTTCAATTA	3180
30	ACATTTTAAT	GG&AGGCACA	CCAAGTGATG	TTGATATAGA	TGAAGTTATA	ACTACTATTA	3240
	AAAAGGATTC	ACGAATACAA	AGTGTGCATG	ATTGCCATGT	TTGGACAATT	TCAAATGATA	3300
	TGAATGCATT	GAGTTGTCAT	GTTGTTGTAG	ACCATACATT	GACAATGAAA	GAATGTGAAT	3360
35	TATTATTAGA	AAaCATTGAG	CATGATTTAT	TACATTTAAA	TATTCACCAT	ATGACTATTC	3420
	AATTAGAAAC	GCCTAATCAC	AAACATGATG	AATCGATTAT	ATGTTCAGGA	ACACATAGTC	3480
	ATTCĀCATAA	CCATCATGCT	CATCATCACG	CGCATGTACA	TTAATAATTT	TAACCTACTG	3540
40	CCATTGCATC	GATTAAACTT	TTCAATGGCA	GTAGGTTTTT	TATGTCTTTA	TGGCGACTTG	3600
	TTTGGTCTTT	GATGATGCAA	TGTTTATTAA	CAAATTTTCA	ACTATTATTT	CTTACATTAG	3660
	TCATATTTTT	GACAATTTAC	TATTATAATT	CTCTAACTTT	AGTCACTTTA	TTTTTAATTT	3720
45	ATTAGATATT	AATATGAAAA	TAACGTGTTT	TTTGTTATT	* •		3759

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13086 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

	TAATTATCGC	GCATAACAAA	ACATTAGCAG	GACAATTATA	TAGTGAGTTT	AAAGAATTTT	6
5	TTCCTGAAAA	CAGGGTGGAA	TACTTTGTAA	GTTACTATGA	TTATTATCAn	CCAGAGGCAT	120
	ACGTACCGTC	TACTGACACT	TTTATTGAAA	nAGATGCCTC	AATCAnTGAT	GAAATTGATC	180
	AACTACGACA	TTCTGCTACA	AGTGCATTAT	TTGAACGCGA	TGATGTAATT	ATTATTGCTA	241
10	GTGTAAGTTG	TATATATGGT	TTAGGTAATC	CTGAAGAATA	TAAAGATTTA	GTAGTAAGTG	300
	TTCGAGTTGG	TATGGAAATG	GATAGAAGTG	AATTACTTAG	AAAACTTGTC	AGATGTGCAA	360
15	TATACACGAA	ATGACATCGA	TTTcCAACGA	GGAACGTTTC	GAGTGCGTGG	TGATGTAGTG	420
	GAAATATTCC	CAGCCTCTAA	AGAAGAACTT	TGTATAAGGG	TTGAGTTTTT	CGGCGATGAG	480
	ATTGACCGTA	TCCGAGAAGT	TAACTACCTA	ACAGGTGAAG	TGTTGAAAGA	AAGAGAACAT	540
20	TTTGCGATAT	TCCCAGCTTC	TCACTTCGTA	ACACGTGAAG	AAAAGTTGAA	AGTTGCGATT	600
	GAACGTATTG	AAAAAGAATT	GGAAGAACGA	TTGAAAGAAT	TACGAGATGA	GAATAAATTA	660
	CTAGAAGCGC	AAAGGTTAGA	ACAGCGTACC	AACTATGATT	TAGAAATGAT	GCGAGAGATG	720
25	GGATTCTGTT	CAGGAATTGA	AAACTATTCC	GTACATTTAA	CTTTGCGACC	ACTGGGTTCG	780
	ACACCATATA	CTTTATTGGA	TTACTTTGGC	GATGATTGGT	TAGTAATGAT	TGATGAATCA	840
	CATGTGACAT	TACCGCAAGT	TCGAGGCATG	TATAACGGAG	ACAGAGCGCG	TAAACAAGTT	900
30	TTGGTGGATC	ATGGGTTTAG	ATTACCGAGT	GCATTAGATA	ACCGTCCACT	TAAATTTGAA	960
	GAATTTGAAG	mAAAGACAAA	ACAACTTGTG	TATGTATCTG	CAACGCCTGG	ACCATACGAA	1020
35	ATTGAACATA	CGGATAAGAT	GGTTGAACAA	ATTATTCGTC	CTACTGGTTT	ACTGGATCCT	1080
55	AAGATTGAGG	TTAGACCTAC	TGAAAATCAA	ATTGACGATT	TATTAAGTGA	AATTCAAACA	1140
	AGAGTGAGCG	TAATGAACGC	GTACTTGTTA	CAACGCTCAC	TAAAAAGATG	AGTGAAGATT	1200
10	AACCACATAC	ATGAAAGAaG	CGGGTATTAA	aGTtAATTAT	CTGCATTCAG	AAATCAAGAC	1260
	ATTAGAACGA	ATTGAAATAA	TTAGAGACTT	ACGAATGGGT	ACATATGATG	TTATCGTAGG	1320
	TATTAATTTA	TTAAGAGAGG	GTATTGATAT	ACCAGAAGTT	TCTCTAGTTG	TCATATTAGA	1380
15	TGCAGATAAA	GAAGGGTTTT	TACGTTCTAA	CCGCTCATTA	ATTCAAaCAA	TAGGTAGAgC	1440
	TGCGCGTAAC	GATAAaGGTG	AAGTCATTAT	GTATGCCGAT	AAAATGACTG	ATTCGATGAA	1500
	GTATGCAATT	GATGAGACAC	AACGTCGTCG	AGAAATACAG	ATĢAAACATA	ATGAAAAACA	1560
50	TGGTATTACA	CCTAAAACAA	ттаатааааа	AATACATGAT.	TTAATTAGTG	CTACTGTTGA	1620
	AAATGACGAA	AATAATGACA	AAGCACAAAC	TGTGATACCT	11011000000	~~~~~~	3.600

	TTTCGAGAAA	GCTACAGAAT	TAAGAGATAT	GTTATTTGAA	TTAAAAGCAG	AAGGGTGACA	180
	AGTAAATGAA	AGAACCATCC	ATAGTAGTAA	AAGGTGCTCG	TGCGCATAAC	TTGAAAGATA	186
5	TTGATATCGA	ACTACCTAAA	AATTAAATTAA	TTGTTATGAC	AGGTTTATCT	GGGTCAGGTA	192
	AATCGTCATT	AGCATTCGAT	ACTATATATG	CTGAAGGACA	ACGACGTTAT	GTTGAATCAT	198
	TAAGTGCCTA	TGCGCGTCAA	TTTTTAGGCC	AAATGGACAA	ACCAGATGTT	GATACAATTG	204
10	AAGGATTATC	GCCAGCAATT	TCAATAGATC	AAAAAACAAC	AAGTAAAAAT	CCAAGATCAA	210
	CTGTAGCAAC	AGTAACAGAA	ATATATGATT	ATATACGTTT	GTTATATGCA	CGTGTTGGTA	216
15	AACCTTACTG	TCCAAATCAC	AATATAGAAA	TTGAATCGCA	AACAGTACAA	CAAATGGTTG	222
	ACCGCATTAT	GGAATTAGAG	GCACGTACAA	AGATTCAATT	ATTAGCACCT	GTCATCGCTC	228
	ATCGTAAAGG	TAGTCATGAA	AAGCTAATCG	AAGATATTGG	TAAAAAAGGT	TATGTACGTT	234
20	TAAGAATCGA	TGGCGAAATT	GTTGATGTAA	ATGATGTACC	TACTTTAGAT	AAGAACAAGA	240
	ATCATACAAT	AGAAGTTGTT	GTAGACCGAT	TAGTTGTTAA	AGATGGAATT	GAAACACGAC	246
	TAGCTGACTC	TATAGAAACT	GCCTTAGAGC	TTTCAGAAGG	ACAATTAACA	GTCGATGTCA	252
25	TTGACGGGGA	AGACCTTAAG	TTTTCAGAAA	GCCATGCTTG	TCCTATATGT	GGATTTTCAA	258
	TCGGAGAGTT	AGAACCAAGA	ATGTTTAGCT	TTAACAGTCC	TTTTGGTGCT	TGTCCGACAT	264
	GTGATGGCTT	AGGCCAAAAG	TTAACAGTCG	ATGTAGACTT	GGTTGTTCCC	GACAAAGATA	270
30	AGACGCTAAA	CGAAGGTGCA	ATAGAACCTT	GGATACCGAC	GAGTTCTGAT	TTTTATCCAA	276
	CATTGTTAAA	ACGTGTTTGT	GAAGTTTATA	AAATCAATAT	GGATAAACCT	TTTAAAAAGT	282
95	TAACAGAACG	TCAACGTGAT	ATTTTATTGT	ATGGTTCTGG	TGACAAAGAA	ATTGAATTTA	2886
35	CATTTACACA	ACGTCAAGGT	GGTACTAGAA	AACGAACAAT	GGTTTTCGAG	GGTGTAGTTC	2940
	CTAATATAAG	TAGACGATTC	CATGAATCTC	CTTCAGAATA	TACACGTGAA	ATGATGAGTA	3000
40 .	AATATATGAC	TGAACTACCT	TGCGAAACTT	GTCATGGAAA	GCGATTGAGT	CGTGAAGCKT	3060
•	TATCTGTTTA	TGTAGGTGGT	TTAAATATTG	GTGAAGTAGT	CGAATATTCA	ATCAGTCAAG	3120
	CGCTGAACTA	TTATAAAAAC	ATTGATTTGT	CAGAACAAGA	TCAAGCGATT	GCAAATCAAA	3180
45	TATTGAAAGA	AATTATTTCC	CGACTCACTT	TTTTAAATAÁ	TGTGGGACTT	GAATATTTAA	3240
	CGTTAAACAG	AGCTTCAGGT	ACACTTTCAG	GTGGTGAAGC	ACAACGTATT	CGATTAGCAA	3300
	CGCAAATTGG	GTCGCGTTTG	ACTGGTGTCT	TATATGTATT	AGATGAGCCA	TCAATTGGAC	3360
50	TGCATCAAAG	AGATAATGAT	CGATTAATTA	ATACACTTAA	AGAAATGAGA	GATTTAGGAA	3420
	ΑΤΑ ΟΤΤΤΑΑΤ	ТСТАСТТСАА	СУССУДСУДС	አጥአሮአአጥሮሮ ር	тессестелт	דא ריידיא בידיביב	3480

	AGGTAATGAA	AGATAAAAA	TCATTAACAG	GACAATACTT	GAGTGGTAAG	AAACGTATTG	360
	AAGTACCTGA	ATATCGCAGA	CCGGCTTCAG	ATCGTAAAAT	TTCTATACGT	GGAGCTAGAA	366
5	GCAACAATCT	TAAAGGGGTT	GATGTGGACA	TACCACTATC	AATCATGACG	GTTGTTACAG	372
•	GTGTATCAGG	TTCTGGTAAA	AGCTCATTAG	TAAATGAAGT	ATTATACAAA	TCATTAGCTC	378
	AAAAAATTAA	TAAATCTAAA	GTAAAGCCAG	GATTGTACGA	TAAGATTGAA	GGTATTGATC	384
10	AACTTGATAA	AATTATTGAT	ATTGATCAAT	CACCAATAGG	TAGAACGCCA	CGCTCTAATC	390
	CAGCAACATA	TACTGGTGTG	TTTGATGATA	TACGTGATGT	GTTTGCGCAA	ACAAATGAAG	396
15	CTAAAATTCG	AGGATATCAA	AAAGGGCGTT	TTAGTTTTAA	TGTAAAAGGT	GGACGCTGTG	402
	AAgcTTGTAA	AGGTGACGGT	AAAATTATTA	TTGAAATGCA	TTTTTTACCT	GATGTTTATG	408
	TTCCTTGTGA	AGTGTGTGAT	GGTAAACGAT	ATAATCGTGA	GACACTAGAG	GTTACTTACA	414
20	AAGGTAAAAA	TATTGCTGAC	ATTTTAGAAA	TGACTGTTGA	AGAAGCAACA	CAATTTTTTG	420
	AAAATATTCC	TAAGATTAAG	CGCAAGTTAC	AAACACTAGT	TGATGTTGGT	CTTGGATACG	426
	TCACATTAGG	TCAACAAGCT	ACAACGTTAT	CAGGTGGTGA	GGCTCAACGT	GTGAaACTTG	4320
25	CATCTGAACT	TCATAAACGT	TCAACTGGTA	AATCTATTTA	TATCCTAGAT	GAACCGACAA	4380
	CAGGGTTACA	TGTTGACGAT	ATTAGTAGAT	TATTAAAAGT	ATTAAACCGA	TTAGTTGAAA	4440
	ATGGTGATAC	TGTTGTAATT	ATTGAACATA	ACCTAGATGT	TATCAAAACA	GCAGACTATA	4500
30	TTATAGACTT	AGGTCCTGAA	GGTGGTAGTG	GCGGTGGTAC	TATTGTTGCG	ACTGGCACAC	4560
	CCGAAGATAT	TGCTCAGACA	AAGTCATCAT	ATACAGGAAA	GTATTTAAAA	GAAGTACTTG	4620
35	AACGAGATAA	ACAAAATACT	GAAGATAAAT	AAGATTAAAA	GAAGTGAAGG	ATGTTATAAA	4680
<i></i>	TTTATCCTTC	GCTTCTTTTT	ATTAATTTAG	TAATGAATAG	TAGAAAGAAA	AGATGCGTAA	4740
	AAAGÃATTAT	GTTAAGATAG	GGTCAATCTA	GAGTAGTTAA	ACATAAATCG	AACTGGGAGT	4800
40	GGGACAGAAA	TGATAAAGAA	TCACTAATGA	TTTATTATGT	AGTGGTTCTT	TGTCATTAGC	4860
	CACAGCTATT	GTGTACTTAA	AAATAGGaat	GCaTgAGTGC	AACTCATGCA	TAAGaAATAC	4920
	TAATTTCTAA	AGAAAAAGTA	TTTCTTTATG	TTGGGGCCCC	GCCAACTTGC	ATTGTTTGTA	4980
15	GAATTTCTTT	TCGAAATTCT	TTATGTTGGG	GCCCCGCCAA	CTTGCATTGT	TTGTAGAATT	5040
	TCTTTTCGAA	ATTCTTTATG	TTGGGGCCCC	GCCAACTAAT	TCCAATATAT	CATTGTAGAG	5100
	CTTAGGTCAT	TGATTTTTGG	CTCGGACTTT	TATGGCGATA	TGAACCATGT	AAATTAAGCA	5160
50	AGCAATAAAT	TAATGATTGA	TATTGACTTG	ТААААТААТА	ACAATAATGA	ACAATTAATA	5220
	TTTATTTTAG	CTTTTCAATG	TAGATTGGTG	THATATAT	САТАТСАТАА	GAAGAGATTGT	5290

	ACATTAAAGT	TAGATTTAAT	CGCTGGTGAA	GAAGGACTAT	CGAAGCCAAT	TAAAAATGCT	540
	GATATATCAA	GACCGGGCTT	AGAGATGGCA	GGTTATTTTT	CACATTATGC	GTCAGATAGA	546
5	ATACAACTAT	TAGGAACAAC	GGAACTATCG	TTTTACAATT	TATTACCAGA	TAAGGATCGC	552
	GCAGGTCGTA	TGCGTAAACT	ATGCAGACCA	GAAACGCCTG	CAATTATTGT	GACACGTGGA	558
	TTGCAGCCAC	CAGAAGAATT	AGTTGAAGCT	GCAAAAGAAT	TAAATACCCC	ACTTATAGTT	564
10	GCTAAAGATG	CGACTACAAG	TTTAATGAGT	CGCTTAACAA	CGTTTTTAGA	GCATGCACTT	570
	GCAAAGACGA	CATCTTTACA	TGGTGTTTTA	GTAGATGTTT	ACGGTGTTGG	TGTACTAATT	576
15	ACCGGTGATT	CAGGAATAGG	TAAAAGTGAG	ACTGCGTTGG	AATTAGTTAA	ACGTGGGCAT	582
	AGATTAGTAG	CAGATGATAA	TGTAGAAATA	CGTCAAATTA	ATAAAGATGA	ACTAATAGGG	5886
	AAACCACCAA	AGTTAATAGA	ACATCTATTA	GAAATACGTG	GACTAGGTAT	TATCAATGTT	594
20	ATGACTTTAT	TTGGCGCGGG	TTCAATATTA	ACTGAAAAAC	GAATTAGATT	TAATTATAAA	6000
	TTGGAAAACT	GGAACAAGCA	AAAGTTATAT	GACCGCGTAG	GTCTTAATGA	AGAGACGCTA	6060
	AGTATTTTAG	ATACTGAAAT	CACTAAAAAA	ACAATACCTG	TAAGACCTGG	TAGAAATGTT	6120
25	GCGGTAATTA	TTGAGGTCGC	TGCAATGAAC	TATCGATTAA	ATATCATGGG	CATTAACACG	6180
	GCCGAAGAAT	TTAGTGAAAG	ATTAAATGAA	GAAATTATCA	AGAACAGTCA	TAAGAGTGAG	6240
	GAGTAGGTTG	AATGGGTATT	GTATTTAACT	ATATAGATCC	TGTGGCATTT	AACTTAGGAC	6300
30	CACTGAGTGT	ACGATGGTAT	GGAATTATCA	TTGCTGTCGG	AATATTACTT	GGTTACTTTG	6360
•	TTgCACAACG	TGCACTAGTT	AAAGCAGGAT	TACATAAAGA	TACTTTAGTA	GATATTATTT	6420
	TTTATAGTGC	ACTATTTGGA	TTTATCGCGG	CACGAATCTA	TTTTGTGATT	TTCCAATGGC	6480
35	CATATTACGC	GGAAAATCCA	agtgaaatta	TTAAAATATG	GCATGGTGGA	ATAGCAATAC	6540
	ATGGTGGTTT	AATAGGTGGC	TTTATTGCTG	GTGTTATTGT	ATGTAAAGTG	AAAATTTAA	6600
40	ACCCATTTCA	AATTGGTGAT	ATCGTTGCGC	CAAGTATAAT	TTTAGCGCAA	GGAATTGGAC	6660
	GCTGGGGTAA	CTTTATGAAT	CACGAGGCAC	ATGGTGGATC	GGTGTCACGC	GCTTTTTTAG	6720
	AACAATTACA	TTTGCCTAAT	TTTATAATAG	AAAATATGTA	TATTAACGGC	CAATATTATC	6780
45	ATCCAACATT	CTTATATGAA	TCCATTTGGG	ATGTCGCTGG	ATTTATTATC	TTAGTTAATA	6840
	TTCGTAAACA	ATTAAAATTT	GGAGAAACAT	тсттттата	TTTAACTTGG	TATTCAATTG	6900
	GTCGATTCTT	TATAGAAGGA	TTACGTACAG	ATAGCTTAAT	GCTCACAAGT	AATATTAGAG	6960
50	TTGCACAATT	AGTATCAATT	CTTTTAATTT	TAATAAGTAT	AAGTTTAATT	GTATATAGAA	7020
	GGATTAAGTA	TAATCCACCG	TTGTATAGCA	AAGTTGGGGC	GCTTCCATGG	CCAACAAAAA	7080

	TTATGGCGTG	TATACCGTCT	TGTTAAATTT	TCGAAAGTTT	TTAAGAATGT	AATTATCATT	7200
	GAATTTTCGA	AATTTATTCC	AAGTATGGTA	CTGAAAAGAC	ATATATAA	ACAACTTTTA	7260
5	ATATTATA	TCGGTAATCA	ATCGTCGATA	GCTTATAAAG	TAATGTTAGA	TATTTTTAC	7320
	CCAGAACTGA	TTACGATTGG	TAGTAACAGT	GTTATTGGTT	ACAATGTAAC	AATTTTGACG	7380
	CATGAAGCAT	TAGTTGATGA	ATTTCGTTAT	GGACCAGTGA	CGATAGGATC	TAACACTTTG	7440
10	ATTGGTGCAA	ATGCTACCAT	TTTACCCGGT	ATAACGATTG	GTGACAATGT	AAAAGTTGCA	7500
	GCTGGTACGG	TTGTTTCAAA	AGATATACCG	GATAATGGAT	TTGCATATGG	CAACCCTATG	7560
15	ТАТАТАААА	TGATTAGGAG	GTGACAATTT	TATGGCGCAA	AAGAATAATA	ATGTAATTCC	7620
-	AATGACTTTT	GATGATGCAT	TTTATCGTAA	AATGGCTAAA	CAGAAGTTTA	AACAAAGAGA	7680
	ATATAAACGA	GCTGCTGAAT	ACTTTGAAAA	agtgttagaa	TTGTCACCTG	ATGATCTGGA	7740
20	AATTCAAATT	GATTATGCAC	AATGTCTAGT	GCAACTTGGT	ATTGCTAAAA	AAGCAGAACA	7800
	TTTATTTTAT	GACAATATTA	TTTATAATAG	GCATCTAGAA	GATAGCTTTT	ATGAATTGAG	7860
	TCAGCTCAAC	ATTGAAGTTA	ACGAACCAAA	CAAGGCATTC	TTGTTTGGTA	TTAATTATGT	7920
25	TATTGTTAGC	GACGACCAAG	ATTATAGAGA	TGAATTAGAT	CAAATGTTTG	ATGTGAAATA	7980
	TCAAAGTGAA	GAACAAATTG	AACTTGAAGC	TCAATTGTTT	GTAGTTCAAA	TACTATTCCA	8040
	ATATCTTTTT	TCTCAAGGTC	GATTAAAAGA	TGCAAAGAAT	TATGTCTTAC	ATCAACCACA	8100
30	AGAAGTTCAA	GATCATCGTG	TAGTACGTAA	TTTATTGGCA	ATGTGTTATT	TATATCTCGG	8160
	TGAATATGAT	ACGGCTAAAG	CATTGTACGA	aGCACtATTA	CAAGAGGATA	GTACaGATAT	8220
or	ATATGCATTA	TGCCATTATA	CTTTGCTACT	TTATAACACT	AAGGAAAATG	AACAATATCA	8280
35	AAAATATTTA	AAAATATTAA	ACAAAGTTGT	ACCTATGAAT	GACGATGAAA	GTTTTAAATT	8340
	AGGŢĀTTGTA	TTAAGTTATT	TAAAGCAGTA	TCGTGCATCA	CAACAATTGT	TGTACCCTTT	8400
40	АТАТААААА	GGGAAATTTT	TATCAATTCA	AATGTACAAT	GCTTTAGCAT	ATAATTATTA	8460
	TTATTTAGGT	GAAGAAGACG	AAAGTCATTA	CTACTGGGAT	AAATTGAAGC	AAATTTCTAA	8520
÷	AGTGGAAATT	GGACATGCGC	CTTGGGTAAT	TGAAAATAGC	AAAGAAGTTT	TTGACCAACA	8580
45	TATTTTGCCA	TTACTTCAAA	GTGATGACAG	TCATTATCGT	TTATATGGTA	TTTTTTTATT	8640
٠	GGATCAATTA	AATGGTAAAG	AAATTGTGAT	GACGGAAAGT	ATTTGGCAGG	TTTTGGAAAA	8700
	TCTAAATAAT	TATGAGAAAT	TGTATTTAAC	GTATTTAGTT	CAAGGTTTAA	CGCTCAATAA	8760
50	ATTAGACTTC	ATTCATCGCG	GCTTATTAAC	GCTTTACCAT	AATGAATTAT	TTGTAAGTGA	8820
	A A A TOO A TOO IN	A TO COTTO CO A TO	CCATTAATCA	A COMO A A COO	a ma a mmoomo	2222200000	0000

	TCGAAACGTT	ACAAAGAAGC	AAATTACAAC	ATGGTTAGGC	ATAACACAAT	ATAAACTGAA	9000
	CAAAATGATT	GAATTTCTCT	TGAGCATATA	GATTTATGAA	AAGTTAGATT	TATTATATAA	9060
5	TGCGCATAAT	GATTAATAAT	GAGGAGGCGT	TAATAAAATG	ACTGAAATAG	ATTTTGATAT	9120
	AGCAATTATC	GGTGCAGGTC	CAGCTGGTAT	GACTGCTGCA	GTATACGCAT	CACGTGCTAA	9180
	TTTAAAAACA	GTTATGATTG	AAAGAGGTAT	TCCAGGCGGT	CAAATGGCTA	ATACAGAAGA	9240
10	AGTAGAGAAC	TTCCCTGGTT	TCGAAATGAT	TACAGGTCCA	GATTTATCTA	CAAAAATGTT	9300
	TGAACACGCT	AAAAAGTTTG	GTGCAGTTTA	TCAATATGGA	GATATTAAAT	CTGTAGAAGA	9360
15	TAAAGGCGAA	TATAAAGTGA	TTAACTTTGG	TAATAAAGAA	TTAACAGCGA	AAGCGGTTAT	9420
15	TATTGCTACA	GGTGCAGAAT	ACAAGAAAAT	TGGTGTTCCG	GGTGAACAAG	AACTTGGTGG	9480
	ACGCGGTGTA	AGTTATTGTG	CAGTATGTGA	TGGTGCATTC	TTTAAAAATA	AACGCCTATT	9540
20	CGTTATCGGT	GGTGGTGATT	CAGCAGTAGA	AGAGGGAACA	TTCTTAACTA	AATTTGCTGA	9600
	CAAAGTAAÇA	ATCGTTCACC	GTCGTGATGA	GTTACGTGCA	CAGCGTATTT	TACAAGATAG	9660
	AGCATTCAAA	AATGATAAAA	TCGACTTTAT	TTGGAGTCAT	ACTTTGAAAT	CAATTAATGA	9720
25	AAAAGACGGC	AAAGTGGGTT	CTGTGACATT	AACGTCTACA	AAAGATGGTT	CAGAAGAAAC	9780
	ACACGAGGCT	GATGGTGTAT	TCATCTATAT	TGGTATGAAA	CCATTAACAG	CGCCATTTAA	9840
	AGACTTAGGT	ATTACAAATG	ATGTTGGTTA	TATTGTAACA	AAAGATGATA	TGACAACATC	9900
30	AGTACCAGGT	ATTTTTGCAG	CAGGAGATGT	TCGCGACAAA	GGTTTACGCC	AAATTGTCAC	9960
	TGCTACTGGC	GATGGTAGTA	TTGCAGCGCA	AAGTGCAGCG	GAATATATTG	AACATTTAAA.	10020
	CGATCAAGCT	TAATTCGAAG	TCGAATTAAG	ATGTTGAGCT	GTAAATTATT	TGGATATTTA	10080
35	TTTTAATAGT	GTCATCACAG	CGTTAAAATA	ATGTCTTACT	AATTAAATTTA	AGCAAATTAT	10140
	ATAGAAACT	AGAACTTAGT	ACGTATCATT	TGTGCGTTTC	AATGAGTTCT	AGTTTTTTTA	10200
10	TATGTTATAT	TAAACTTATA	ACTTTATGGG	AGTGGGACAG	AAATGATAAA	GAGCCACTAA	10260
	TGATTTATTA	TGTAGTGGTT	CTTAAACATT	AGCCACAGCT	AATGTGTACT	TAAAAATAGG	, 10320
	AATACATGAG	TAAAACTCAT	GCATAAGAAA	TACTAATTTC	TATAGAAAAA	GTATTACTTT	10380
15	ATCGTTGTCC	CACCCCAACT	TGCACATTAT	TGTAAGCTGA	CTTTCCGCCA	GCTTCTGTGT	10440
•	TGGGGCCCCG	CCAACTTGCA	CATTATTGTA	AGCTGACTTT	TCGTCAgCTT	CTGTGTTGGG	10500
	GCCCCGCCAA	CTTGCACATT	ATTGTAAGCT	GACTTTTCGT	CAGCTTCTGT	GTTGGGGCCC	10560
50	CGCCAACTTG	CATTGTCTGT	AGAAATTGGG	AATCCAATTT	CTCTATGTTG	GGGCCCACAC	10620
	CCCAACTCCC	ammerement	ር እ አጥጥጥርጥጥጥ	TOO A A A TOTAL	CONCORDO CO	0000101000	10000

	ACTCGCATTG	CCTGTAGAAT	TTCTTTTCGA	AATTCTCTGT	GTTGGGGCCC	CTGACTAGAG	1080
	TTGAAAAAAG	CTTGTTGCAA	GCGCATTTTC	ATTCAGTCAA	CTACTAGCAA	TATAATATTA	10860
5	TAGACCCTAG	GACATTGATT	TATGTCCCAA	GCTCCTTTTA	AATGATGTAT	ATTTTTAGAA	10920
	ATTTAATCTA	GACATAGTTG	GAAATAAATA	TAAAACATCG	TTGCTTAATT	TTGTCATAGA	10980
10	ACATTTAAAT	TAACATCATG	AAATTCGTTT	TGGCGGTGAA	AAAATAATGG	ATAATAATGA	11040
10	AAAAGAAAAA	AGTAAAAGTG	AACTATTAGT	TGTAACAGGT	TTATCTGGCG	CAGGTAAATC	11100
•	TTTGGTTATT	CAATGTTTAG	AAGACATGGG	ATATTTTTGT	GTAGATAATC	TACCACCAGT	11160
15	GTTATTGCCT	AAATTTGTAG	AGTTGATGGA	ACAAGGAAAT	CCATCCTTAA	GAAAAGTGGC	11220
	AATTGCAATT	GATTTAAGAG	GTAAGGAACT	ATTTAATTCA	TTAGTTGCAG	TAGTGGATAA	11280
	AGTCAAAAGT	GAAAGTGACG	TCATCATTGA	TGTTATGTTT	TTAGAAGCAA	GTACTGAAAA	11340
20	ATTAATTTCA	AGATATAAGG	AAACGCGTCG	TGCACATCCT	TTGATGGAAC	AAGGTAAAAG	11400
	ATCGTTAATC	AATGCAATTA	ATGATGAGCG	AGAGCATTTG	TCTCAAATTA	GAAGTATAGC	11460
	TAATTTTGTT	ATAGATACTA	CAAAGTTATC	ACCTAAAGAA	TTAAAAGAAC	GCATTCGTCG	11520
25	ATACTATGAA	GATGAAGAGT	TTGAAACTTT	TACAATTAAT	GTCACAAGTT	TCGGTTTTAA	11580
	ACATGGGATT	CAGATGGATG	CAGATTTAGT	ATTTGATGTA	CGATTTTTAC	CAAATCCATA	11640
	TTATGTAGTA	GATTTAAGAC	CTTTAACAGG	ATTAGATAAA	GACGTTTATA	ATTATGTTAT	11700
30	GAAATGGAAA	GAGACGGAGA	TTTTCTTTGA	AAAATTAACT	GATTTGTTAG	ATTTTATGAT	11760
	ACCCGGGTAT	AAAAAAGAAG	GGAAATCTCA	ATTAGTAATT	GCCATCGGTT	GTACGGGTGG	11820
35	ACAACATCGA	TCTGTAGCAT	TAGCAGAACG	ACTAGGTAAT	TATCTAAATG	AAGTATTTGA	11880
	ATATAATGTT	TATGTGCATC	ATAGGGACGC	ACATATTGAA	AGTGGCGAGA	AAAAATGAGA	11940
	CAAATAAAAG	TTGTACTTAT	CGGTGGTGGC	ACTGGCTTAT	CAGTTATGGC	TAGGGGATTA	12000
10	AGAGAATTCC	CAATTGATAT	TACGGCGATT	GTAACAGTTG	CTGATAATGG	TGGGAGTACA	12060
	GGGAAAATCa	GAGATGAAAT	GGATATACCA	GCACCAGGAG	ACATCAGAAA	TGTGATTGCA	12120
	GCTTTAAGTG	ATTCTGAGTC	AGTTTTAAGC	CAACTTTTTC	AGTATCGCTT	TGAAGAAAAT	12180
15	CAAATTAGCG	GTCACTCATT	AGGTAATTTA	TTAATCGCAG	GTATGACTAA	TATTACGAAT	12240
	GATTTCGGAC .	ATGCCATTAA	AGCATTAAGT	AATTTTAA	ATATTAAAGG	TAGAGTCATT	12300
	CCATCTACAA .	ATACAAGTGT	GCAATTAAAT	GCTGTTATGG	AAGATGGAGA	AATTGTTTTT	12360
50	GGAGAAACAA	ATATTCCTAA	AAAACATAAA	AAAATTGATC	GTGTGTTTTT	AGAACCTAAC	12420
	GATGTGCAAC	CAATGGAAGA	AGCAATCGAT	Gርግግሞል አርርርር	እ እ ር ር እ ር አ ተመተ ሞ	A A TOCOMORO	10400

GCGTTAATTC	ATTCTGATGC	GCCTAAGCTA	TATGTTTCTA	ATGTGATGAC	GCAACCTGGG	12600
GAAACAGATG	GTTATAGCGT	GAAAGATYAT	ATCGATGCGA	TTCATAGACA	AGCTGGACAA	12660
CCGTTTATTG	ATTATGTCAT	TTGTAGTACA	CAAACTTTCA	ATGCTCAAGT	TTTGAAAAAA	12720
TATGAAGAAA	AACATTCTAA	ACCAGTTGAA	GTTAATAAGG	CTGAACTTGA	AAAAGAAAĞC	12780
ATAAATGTAA	AAACATCTTC	AAATTTAGTT	GAAATTTCTG	AAAATCATTT	AGTAAGACAT	12840
AATACTAAAG	TGTTATCGAC	AATGATTTAT	GACATAGCTT	TAGAATTAAT	TAGTACTATT	12900
CCTTTCGTAC	CAAGTGATAA	ACGTHAATAA	TATAGAACGT	AATCATATŢA	TGATATGATA	12960
ATAGAGCTGT	GAAAAAAATG	AAnATAGACA	GTGGTTCTAA	GGTGAATCAT	GTTTTAAATA	13020
AGAAAGGAAT	GACTGTACGA	TGAGCTTTGC	ATCAGAAATG	AAAAATGAAT	TAACTAGAAT	13080
AGACGT						13086
(2) INFORMS	TION FOR CE	O TO NO. 15	, , , , , , , , , , , , , , , , , , ,			

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1350 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

CATTAGTCAT G	AAAATAGCC	GACAACTTCA	TCTGTGAAAT	CACCGGCCTT	TTATTTTAGC	60
TAACTTTATT T	CTGATTTTA	CGATTTTAAT	TGATCATACA	GAGAAAGTGA	TCTTTTTACA	120
ATTTCTAAAA A	CTCATGATC	TATATTGGAC	ATTTGATGAA	AATAAGACAA	AATGTTTTCT	180
GTTAGCTTCT C	TTGTTTTGG	GAATGAATCA	TCTTCTTTAA	TCCAAATCGC	TAATTCGCCT	240
AATĢĒTGTTT T	ATCATCTTT	AAATGTTTGT	ATATATTCGT	AAAAGCTCAT	AGTATTCCTT	300
CTCTCAATTT A	CTTATATAA	ATCCTACCAC	GAAAGCTTTC	AAGAAAACAC	AATTAAATGT	360
CTATTTAGTG A	ACTTTTTAA	GGTTGTGCAC	TCTTTTAATG	TCTGCCAATT	AGGTCAATTA	420
ATCATCACAA TO	GTACAATTA	ACTCTATTTT	CAGTTCATAT	ACTCACACAC	CGTTTTTGAA	480
CAACACATTA A	CTTCTCATT	TAGATAAAAC	GCAAAAAAGC	CTGGCACCAA	TACAATAGAT	540
GCCAGACTAA G	AGTCTACTA	ATTŢAAAŢŢŢĀ	TTTAGCGTAT	GGTTTTACTT	CGATTGCACC	600
TTCATTTTCA TO	CATGAACAC	CATGCTTATA	ATAATCAATA	TATTGTGGCT	CTAAAGGCTT	660
TCTGCCACGT AT	TAATGTCTG	CTGCTTTTTC	AGCTAACATT	AAAACAGGTG	CGTGTATATT	720
GCCATTTGTC G	TACGTGGCA	TAGCTGATGC	ATCAACTACA	CGTAAATTTT	CCATACCGTG	780

10

15

20

25

35

40

	ACTACAAGAT GGGTGTAATG CTGTTTCACC ATCTCTACGA ACCCAATCAA GAATTTCTTC	900
_	GTCTGTTTGC ACTTCTGGTC CTGGTGAAAT TTCTCCACCA TTGAATGGAT CCATTGCTTT	960
5	TIGAGATAAG ATATTTCTTG CTACACGAAT TGCTTCTACC CATTCTTTT TATCTTCTTC	1020
	TGTTGATAAA TAATTAAAGC GGATACTTGG TTTTTCGAAT GGATCTTTAG ATTTGATTTT	1080
10	CAAGCTACCA CGAGAGTTTG AATACATTGG TCCTACGTGA ACTTGATAAC CATGTGCGAC	1140
	CGCTGCCTTT TGACCATCAT ATCTTACAGC TATTGGTAAG AAATGGAACA TTAAGTTAGG	1200
	ATAALCAACT TCGTTATTTG AACGTACAAA TCCGCCACCT TCAAAATGGT TAGATGCTGC	1260
15	TGCACCTGTA CGTGTGAAAA TCCATTGTAA ACCAATAAAT GGCATGCGCT TGALATCTAA	1320
	GCTTGGCtGt AATGATACAG GTTCCTTACA	1350
	(2) INFORMATION FOR SEQ ID NO: 18:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1376 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
	TAATGCTATT GGCAACACCA TATATGAAAn CTCCAAACGA TCCTAAACCG ACTATAGATT	60
30	CACCAAATTT NACAATCCAT GAATAAAGTA GTGGCCATAA GAATAACAAT ATGACAACTA	120
	AAAATGTACA GTAAAATGCA GTCATAATTG GAACTAGACG TTTACCACTA AAAAATGATA	180
35	ATGCTAATGG TAATTCTGTT TCACTAAACT TATTGTATGC ATAAGCTGCT ATTAAACCTA	240
	TTACAATACC AACAAAGACA TTGCCATTAT TCATCTTTTC AAAAGCTGAA TTTATTTCCG	300
	AFGCTITCAT TCCTAATAAA GGCGCTAATT TCATTGGTGA TAATACAACT GTAACTAAAA	360
40	AATATCCTAA CGTrGCTGCA rGCGsGACTG CACCATCATT TTTCTTTGCC ATTCCTATAG	420
	CTACACCAAT TGCAAATAAA ATACCTAATT GCTCTAAAAT CGTAGTACCT ACCGTAGTAA	480
	AGAACATTGC GATTTTCGGC GTCGCATGAA GTGCATTTAA CGTATTACCA ATTCCGGCAA	540
45	TAATTGCTGC AGCCGGTAAA ATGGCAACTG GTAACATTAA CGAACGCCCT AAATTTTGGA	600
•	AAAATTTATA CATTGAATGT CATCCTTCTT AAAATAATGT AGAAATATAA AGATTACTAA	660
	TGTAACTAGA ATAACTACTT CGATACTCCG TTATAGTCAC CTAGGCTTAC TAACCAGCTA	720
50	TATTTCTACC TCAAGTTATT TTATAAACTT TTTACAATTT CATGCAATTC TTGTTGTAAC	780
	TITGCTGTTC GTGTTTCAAT CTCTTTTGTA ATATAATCGA TACGCTCGTT TCGTTTTAAA	840

	AAAGACCGTG AATCTTAGTA GGACCAACAT AAGCAACAGG TAATATTGGT GACTTACTTA	96
	ACATTGCAAT TGTTGAAGCA CCACGTTTCA AAGGTGCACC TTCTTGCGAT GTGCGAGAAC	102
5	CTGTTGGGAA GATACCAACT GTCTTATTAT CTTTCAACAA ATTGATTGGG CGTTTTAAAG	108
	TACTAGGTCC TGGATTITCA CGATCTACAG GAAATGCATT TAAAGACGTT AAAAATTTAC	114
	CAATCCATTT ATTITTGAAT AATTCTTTTT TAGCCATATA ATGAATTTGA TTAGGATATA	120
10	ATGCCATACC TAGCATAATG ACTTCGTTAT AACTTTCATG CGTACAAGTT ACGACATATT	126
	TACTATCCTT AGGAATATTA TCTTTACCGA TTACGTATAA TGATTTTGAC ATTTTAACTA	132
15	AAATGAAATT CAAAATCTTA CTAATCACTG AATACATTGT GCCACCTACT TAACTT	137
	(2) INFORMATION FOR SEQ ID NO: 19:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7363 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	TTGTCATACC AATATTTTGT AAAATATGGA ACACAAGTAA AGTGACGAAA CCAACGATAA	6
	AGATTTTGTT AAATTGATCT TCAATTTTCG CAGCTAATCT TATTAGATGG AAGATTAAAA	12
30	ATAAAAATAT TAAGATCAAT ATGACAGAAC CGATAAAGCC AAGTTCCTCT CCAATCACTG	18
	AAAAGATAAA GTCAGTATGA TTTTCAGGTA TATAAACTTC ACCGTGATTG TATCCTTTAC	24
	CTAGTAACTG TCCAGAACCG ATAGCTTTAA GTGATTCAGT TAAATGATAG CCATCACCAC	30
35	TACTATATGT ATAGGGGTCA AGCCATGAAT TGATTCGTCC CATTTGATAC AGTTGGACAC	36
	CTAATAAATT TTCAATTAAT GCGGGTGCAT ATAGAATACC TAAAATGACT GTCATTGCAC	42
40	CAACAATACC TGTAATAAAG ATAGGTGCTA AGATACGCCA TGTTATACCA CTTACTAACA	48
	TCACACCTGC AATAATAGCA GCTAATACTA ATGTAGTTCC TAGGTCATTT TGCAGTAATA	54
	TTAAAATACT TGGTACTAAC GAGACACCAA TAATTTTGAA AAATAATAAC AAATCACTTT	60
45	GGAATGATTT ATTGAATGTG AATTGATTAT GTCTAGAAAC GACACGCGCT AATGCTAAAA	66
•	TTAAAATAAT TTTCATGAAT TCAGATGGCT GAATACTGAT AGGGCCAAAC GTGTACCAAC	72
	TTTTGGCACC ATTGATAATA GGTGTAATAG GTGACTCAGG AATAACGAGC AAGCCTATTA	78
50	ATAATAGACA GATTAAGAAA TACAATAAAT ATGTATAATG TTTAATCTTT TTAGGTGAAA	84

55

TAAACATGAT GATACCTGCA AAAATTGCAC CTAAAATGTA ATAAAAAATT TGTCTGATAC

	TTGCTAAAAC	AGCTATAGTG	GCTACTAATA	CCCAGTCTAC	TTTGCGAAnC	aATGCTTATC	1020
	CGGCTGTTGA	CGAGATGAAT	AATTCATTGC	AAACTCCTTT	TATACTCACT	AATGTTTATA	1080
5	TCAATTTTAC	ATGACTTTTT	AAAAATTAGC	TAGAATATCA	CAGTGATATC	AGCTATAGAT	1140
	TTCAATTTGA	ATTAGGAATA	AAATAGAAGG	GAATATTGTT	CTGATTATAA	ATGAATCAAC	1200
	ATAGATACAG	ACACATAAGT	CCTCGTTTTT	AAAATGCAAA	ATAGCATTAA	AATGTGATAC	1260
10	TATTAAGATT	CAAAGATGCG	AATAAATCAA	TTAACAATAG	GACYAAATCA	ATATTAATTT	1320
	ATATTAAGGT	AGCAAACCCT	GATATATCAT	TGGAGGAAAA	CGAAATGACA	AAAGAAAATA	1380
15	TTTGTATCGT	TTTTGGAGGG	AAAAGTGCAG	AACACGAAGT	ATCGATTCTG	ACAGCACAAA	1440
	ATGTATTAAA	TGCAATAGAT	AAAGACAAAT	ATCATGTTGA	TATCATTTAT	ATTACCAATG	1500
	ATGGTGATTG	GAGAAAGCAA	AATAATATTA	CAGCTGAAAT	TAAATCTACT	GATGAGCTTC	1560
20	ATTTAGAAAA	TGGAGAGGCG	CTTGAGATTT	CACAGCTATT	GAAAGAAAGT	AGTTCAGGAC	1620
	AACCATACGA	TGCAGTATTC	CCATTATTAC	ATGGTCCTAA	TGGTGAAGAT	GGCACGATTC	1680
	AAGGGCTTTT	TGAAGTTTTG	GATGTACCAT	ATGTAGGAAA	TGGTGTATTG	TCAGCTGCAA	1740
25	GTTCTATGGA	CAAACTTGTA	ATGAAACAAT	TATTTGAACA	TCGAGGGTTA	CCACAGTTAC	1800
	CTTATATTAG	TTTCTTACGT	TCTGAATATG	AAAAATATGA	ACATAACATT	TTAAAATTAG	1860
	TAAATGATAA	ATTAAATTAC	CCAGTCTTTG	TTAAACCTGC	TAACTTAGGG	TCAAGTGTAG	1920
30	GTATCAGTAA	ATGTAATAAT	GAAGCGGAAC	TTAAAGAAGG	TATTAAAGAA	GCATTCCAAT	1980
	TTGACCGTAA	GCTTGTTATA	GAACAAGGCG	TTAACGCACG	TGAAATTGAA	GTAGCAGTTT	2040
	TAGGAAATGA	CTATCCTGAA	GCGACATGGC	CAGGTGAAGT	CGTAAAAGAT	GTCGCGTTTT	2100
35	ACGATTACAA	ATCAAAATAT	AAAGATGGTA	AGGTTCAATT	ACAAATTCCA	GCTGACTTAG	2160
	ACGAÃGATGT	TCAATTAACG	CTTAGAAATA	TGGCATTAGA	GGCATTCAAA	GCGACAGATT	2220
40	GTTCTGGTTT	AGTCCGTGCT	GATTTCTTTG	TAACAGAAGA	CAACCAAATA	TATATTAATG	2280
	AAACAAATGC	AATGCCTGGA	TTTACGGCTT	TCAGTATGTA	TCCAAAGTTA	TGGGAAAATA	2340
	TGGGCTTATC	TTATCCAGAA	TTGATTACAA	AACTTATCGA	GCTTGCTAAA	GAACGTCACC	2400
45	AGGATAAACA	GAAAAATAAA	TACAAAATTG	ACTAACTGAG	GTTGTTATTA	TGATTAATGT	2460
	TACATTAAAG	CAAATTCAAT	CATGGATTCC	TTGTGAAATT	GAAGATCAAT	TTTTAAATCA	2520
	AGAGATAAAT	GGAGTCACAA	TTGATTCACG	AGCAATTTCT	AAAAATATGT	TATTTATACC	2580
50	ATTTAAAGGT	GAAAATGTTG	ACGGTCATCG	CTTTGTCTCT	AAAGCATTAC	AAGATGGTGC	2640
		mmmn = m < 2 2 2 2	CACCCACACC	mama camora a	3 3 0000 3 3 000	OCCOMA MINA III	2200

	AAACCCTAAA	GTAATTGCCG	TCACAGGGTC	TAATGGTAAA	ACAACGACTA	AAGATATGAT	282
	TGAAAGTGTA	TTGCATACCG	AATTTAAAGT	TAAGAAAACG	CAAGGTAATT	ACAATAATGA	288
5	AATTGGTTTA	CCTTTAACTA	TTTTGGAATT	AGATAATGAT	ACTGAAATAT	CAATATTGGA	294
	GATGGGGATG	TCAGGTTTCC	ATGAAATTGA	ATTTCTGTCA	AACCTCGCTC	AACCAGATAT	300
10	TGCAGTTATA	ACTAATATTG	GTGAGTCACA	TATGCAAGAT	TTAGGTTCGC	GCGAGGGGAT	306
,,	TGCTAAAGCT	AAATCTGAAA	TTACAATAGG	TCTAAAAGAT	AATGGTACGT	TTATAȚATGA	312
	TGGCGATGAA	CCATTATTGA	AACCACATGT	TAAAGAAGTT	GAAAATGCAA	AATGTATTAG	318
15	TATTGGTGTT	GCTACTGATA	ATGCATTAGT	TTGTTCTGTT	GATGATAGAG	ATACTACAGG	324
	TATTTCATTT	ACGATTAATA	ATAAAGAACA	TTACGATCTG	CCAATATTAG	GAAAGCATAA	330
	TATGAAAAAT	GCGACGATTG	CCATTGCGGT	TGGTCATGAA	TTAGGTTTGA	CATATAACAC	336
20	AATCTATCAA	AAAAATTTAA	ATGTCAGCTT	AACTGGTATG	CGTATGGAAC	AACATACATT	342
J.	AGAAAATGAT	ATTACTGTGA	TAAATGATGC	CTATAATGCA	AGTCCTACAA	GTATGAGAGC	348
	AGCTATTGAT	ACACTGAGTA	CTTTGACAGG	GCGTCGCATT	CTAATTTTAG	GAGATGTTTT	354
25	AGAATTAGGT	GAAAATAGCA	AAGAAATGCA	TATCGGTGTA	GGTAATTATT	TAGAAGAAA	360
	GCATATAGAT	GTGTTGTATA	CGTTTGGTAA	TGAAGCGAAG	TATATTTATG	ATTCGGGCCA	3666
	GCAACATGTC	GAAAAAGCAC	AACACTTCAA	TTCTAAAGAC	GATATGATAG	AAGTTTTAAT	3720
30	AAACGATTTA	AAAGCGCATG	ACCGTGTATT	AGTTAAAGGA	TCACGTGGTA	TGAAATTAGA	3780
	AGAAGTGGTA	AATGCTTTAA	TTTCATAGAG	ATTAGTCGAG	GGACCTTTTA	СТТАТААААА	3840
35	TGATTTGAAT	ТААТАСТААА	AGATTACAAA	GAAGAGGTGG	TTTTGTGTGT	AAATACAAAA	3900
	TTGCCTTTTT	CTTTTTATGT	TAAATCTATA	AATTTGAAAC	TAAATCAAGG	TTAATTCTAT	3960
	GTAÇÃCACTT	TATATAGGAA	GTAGTTTGAA	TGTTTATATA	ATGTTTTACA	AAAAGATGTA	4020
10	GTATTATAAT	GTCTAATTTC	ACATGTGTTT	CAGTAAAATT	TGTTGTGGAA	TGTTAACGAT	4080
	ATACGTATTT	TATAAAAaAT	TTTTTTATAAT	GATTATTCGA	ATGATGCGTA	ACGCTTACAT	4140
	CTTATCTAAT	GCTAGCTTTT	TGACAAAAAT	ATGACAATCA	ATTAATGTGA	TTCTAATAAA	4200
1 5	TATTCGCAAA	TTGCTTTATT	GCGATTAAAT	TTTTTTGGTG	GTACTATATA	GAAGTTGATG	4260
	AAATATTAAT	GAACTTATAT	GCAAAAGTAT	ATTGAGAAAT	AAACAGGTAA	AAAGGAGAAT	4320
	TATTTTGCAA	AATTTTAAAG	AACTAGGGAT	TTCGGATAAT	ACGGTTCAGT	CACTTGAATC	4380
50	AATGGGATTT	AAAGAGCCGA	CACCTATCCA	AAAAGACAGT	ATCCCTTATG	CGTTACAAGG	4440
	א אידיר אידיר א מ	CTTCCCCCAAC	CTCAAACCCC	ጥልሮልሮሮሞል እ እ	ACACCACCAT	TCCCTATTCC	4500

	AGAATTGGCA	ATGCAGGTAG	CTGAACAATT	AAGAGAATTT	AGCCGTGGAC	AAGGTGTCCA	4620
	AGTTGTTACT	GTATTCGGTG	GTATGCCTAT	CGAACGCCAA	ATTAAAGCCT	TGAAAAAAGG	4680
5	CCCACAAATC	GTAGTCGGAA	CACCTGGGCG	TGTTATCGAC	CATTTAAATC	GTCGCACATT	4740
	AAAAACGGAC	GGAATTCATA	CTTTGATTTT	AGATGAAGCT	GATGAAATGA	TGAATATGGG	4800
10	ATTCATCGAT	GATATGAGAT	TTATTATGGA	TAAAATTCCA	GCAGTACAAC	GTCAAACAAT	4860
	GTTGTTCTCA	GCTACAATGC	CTAAAGCAAT	CCAAGCTTTA	GTACAACAAT	TTATGAAATC	4920
	ACCAAAAATC	ÀTTAAGACAA	TGAATAATGA	AATGTCTGAT	CCACAAATCG	AAGAATTCTA	4980
15	TACAATTGTT	AAAGAATTAG	AGAAATTTGA	TACATTTACA	AATTTCCTAG	ATGTTCATCA	5040
	ACCTGAATTA	GCAATCGTAT	TCGGACGTAC	AAAACGTCGT	GTTGATGAAT	TAACAAGTGC	5100
	TTTGATTTCT	AAAGGATATA	AAGCTGAAGG	TTTACATGGT	GATATTACAC	AAGCGAAACg	5160
20	TTtAGAAGTA	TTanAGAAAT	TTAAAAATGA	CCAAATTAAT	ATTTTAGTCG	CTACTGATGT	5220
	AGCAGCAAGA	GGACTAGATA	TTTCTGGTGT	GAGTCATGTT	TATAACTTTG	ATATACCTCA	5280
	AGATACTGAA	AGCTATACAC	ACCGTATTGG	TCGTACGGGT	CGTGCTGGTA	AAGAAGGTAT	5340
25	CGCTGTAACG	TTTGTTAATC	CAATCGAAAT	GGATTATATC	AGACAAATTG	AAGATGCAAA	5400
	CGGTAGAAAA	ATGAGTGCAy	TcGTCCACCA	CATCGTAAAG	AAGTACTTCA	AGCACGTGAA	5460
	GATGACATCA	AAGAAAAAGT	TGAAAACTGG	ATGTCTAAAG	AGTCAGAATC	ACGCTTGAAA	5520
30	CGCATTTCTA	CAGAGTTGTT	AAATGAATAT	AACGATGTTG	ATTTAGTTGC	TGCACTTTTA	5580
	CAAGAGTTAG	TAGAAGCAAA	CGATGAAGTT	GAAGTTCAAT	TAACTTTTGA	AAAACCATTA	5640
35	TCTCGCAAAG	GCCGTAACGG	TAAACCAAGT	GGTTCTCGTA	ACAGAAATAG	TAAGCGTGGT	5700
	AATCCTAAAT	TTGACAGTAA	GAGTAAACGT	TCAAAAGGAT	ACTCAAGTAA	GAAGAAAGT	5760
	ACAÃAAAAAT	TCGACCGTAA	AGAGAAGAGC	AGCGGTGGAA	GCAGACCTAT	GAAAGGTCGC	5820
40	ACATTTGCTG	ACCATCAAAA	ATAATTTAATA	GATTAAGAGC	TTAAAGATGT	AATGTCTTGA	5880
	GCTCTTTTTT	GTTTTCAATA	ATTGATTCTC	TGTAGATATC	aAAGTaCTAA	CGTTTTAAAG	594
	GTTAAATATT	TAATTGGATT	GAGATCTGTA	TGCGGTTATA	TCaTTCTGTG	TAAATATGGT	6000
45	TCTCCACCAA	ATGTGGTGAG	TATATAATTT	AAAGAACTAT	TTTTAAATTA	AGAATAATCG	606
٠	AACATAAATA	AACTTTATGA	AATTTCAGTA	TCATGTTCTT	ATAAAAAACA	ATAGGGCTTT	612
	TTGctGACGC	TAGTGCGCGA	TAAATAATAA	GTTGAATATA	AAAAAGATCA	CTGCCAATCA	618
50	TTCGTTTAAT	GGCAGCGATC	TTTTTTTTTT	AATTATTTCT	CTTTCCACTG	CAACATTTGA	624
	TAACCAATGC	стесьтетет	מידא אידא אידי	TO THE PROPERTY OF THE PROPERT	ССТСАТСАСА	ттстса а аст	630

	CCATATATTC	GTTTTAATAT	CATCTCATAA	GTGAGTACTT	TTCCTTTATG	ATTTGACAAT	6420
-	AGTTCTAACA	AGCTAAATTC	ATTTGGCGTC	AAATGTACCT	CCTGATTATT	AATAACAACA	6480
•	GATTTGGAGC	CAAAGTCGAT	GCTTAGCAAA	CCGTTAGTAA	ATACAATGTT	AGTTTCTTGA	6540
	TGTGACTTAG	CGATTCTCTC	GATGACTCGT	ATTCGTGCCC	GAAGCTCATC	AACATTAAAA	6600
0	GGTTTAGTCA	TATAGTCATT	CGCACCGTTA	TCTAAAGCTT	GAATAATTGT	TTGTTCTTCT	6660
	TGTCTTGCAC	TTATTACAAT	GATAGGAATG	TCAGTATGTT	GCCTGATTTC	TGAAATCAAA	6720
	CATAATCCAT	CTTTATCTGG	TAAACCTAAA	TCTAATAAAA	TGACATCTGG	TTTATCAATT	6780
5	TGAATTTTAA	AGTGTGCTTG	TGTGGCATTG	TCGGCTGTAG	TTACATTGTA	ATAATCTAAA	6840
	GTTAATGCAA	CATCAAGTAA	ATGTGTGATT	GCGTGATCAT	CTTCAATTAT	CAATATTTTA	6900
	GATTGCATTA	TACGTCTCCT	TCGTTAAAGT	CTGTATATAT	ATTGAAATAG	AATATACTGC	6960
0	CGTGTGGTTG	GTTCGGTTTA	TATTGTAAGT	TTGATTGATG	TTTGTGTAGG	ATAGTCTGTA	7020
	СТАААТАТАА	GCCTAGTCCC	ATGCTTTCTT	TTTGGTTATC	TTTAAAATAT	TTATTTGATC	7080
	CTGTGTAAAA	AGGCTCGAAT	ATCTTTTGTt	GTTCTTCTAA	ACTAATTCCA	GGTCCTTCGT	7140
5	CTATAACGGC	AAATTCGATT	TGTTCATAGC	TAGCATAACG	aatagataaa	TTGATTTTGG	7200
	TGTCAGTAGA	AGTGTGTTTA	ACTGCATTTT	CAATCAAATT	GAAtAAAgCT	TGTAAAATCA	7260
	ACTTACTGTC	AATGTGTATA	AACtGTAAAT	TTACTGAGGA	TGATACAGTT	ATACGCTTTT	7320
0	TTAAATGGCG	ACGTTCTAAA	ATACATATCG	ATTTCTTATA	CTA		7363
	(2) INFORMA	TION FOR SE	Q ID NO: 20	:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10470 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

45

50

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TTAACAATCG	ATAACCACAA	TACTTCTATT	GTAATTGTTT	AACGATTTCn	CGATTAAAAT	60
CATCTAAATC	GTCTGGTACT	CGACTTGTTA	CAATATTGTT	GTCTACACTA	CTGACTCATC	120
AACTACATGT	GCGCCTGCAT.	TTGATAAATC	TTTGCGTACA	TTTAATACTG	CTGTTAACGT	180
ACGACCTTTT	AAATCGTCTG	TATCTATTAG	TATTTGTGGC	CCATGACAAA	TGGCAAATGT	240
TGGTACATCA	TTTTTAGTAA	AGTATTTAGC	AAATGTGCCA	TATCGACCTT	CTGTATCTCC	300
ACGTAAATGA	тстсстсььь	ATCCTCCAGG	ΑΑΤΤΑΑΤΑΑΤ	CCATCATAAT	سستان الماليات	360

	ATTTGCAGTA	TCTCCAATCA	CTACAGTATT	AAAGCCTGCA	TTCTCTAATG	CCTCTTTAGG	48
	GCTTGAATAT	TCTATATCTT	CAAATTCGTT	TGCTAGAATA	ATTGCTACTT	TTTTAGTCAT	54
5	TGAAAATCAC	CTTTCTATAT	ATCATTGATA	TAATTACTAT	AGACAAGTAA	ATCAGTGATT	60
	AAACATACAA	GATATAAAAA	ATATTAAGCG	ACTGTCGCGA	TATCTAACCC	TAACACATCT	66
10	TATGTGGCAT	TTACTTAGAT	ACTAATTTAA	CCTTTTCTTC	AAGCTGATCT	AACAATCCAA	72
	TCCATTCATC	TATATCTTCA	ACACGTACTT	CATCAGGATT	TACATGATCG	ATATCCTCAA	78
	TAAACTTATT	TAAACGCGCT	TTTATCTGTT	CGATTGTTTG	CTGTTCATTC	ATAAAAAGTT	84
15	AACTCCTTTT	ATTTTGTTTT	CTTTTTCATT	ATTATCCTAA	CAGAAATTGC	GTTAAAGCGA	900
	TATAATCTTA	GCTATATTTA	TGACATTCAA	ATTATTTTGA	CTTTTAAAAA	TCCCCTTTTC	96
	AATTAACTAA	AATTAAGAGA	TAATTTGTTA	CGAGTGATAA	TACGAaGkGG	TaTCATACCG	102
?0	ATATGAACCA	aatagaaaga	AGGAAGTTTA	AGACGATGAA	TAGCGTCAAA	TTGAAGCAAC	108
	CTGTTAGCAT	TTACAATGAT	CCATGGGAAG	TGAAATTTAT	ATACATTTAA	ATTTCATGAG	114
	ACAATAAACG	TTGATTTAAT	GCGTTTTTTT	GCCTTTTTTA	TTTTCCTTAT	TTTTTCTGTT	1200
?5	TTACAACAAA	ATGGTATCAA	AAATGGTATC	ATTTGTAGTT	ATTTTAGCTT	CACATATTAA	126
	AACAACCACA	CTCCTAAATT	AATAGGTGGT	GTGGTTTTGT	TGGTTGTGTG	GGGATAAAAA	1320
	TAACCGCATC	AGTTAAGATG	CGGTTATCTA	GCAAGGGCCA	CGTATTTATA	AATACGTTTA	1380
30	GAATCTCTTC	GGCAACTTTG	CTATAGACAG	TCTATGCTGT	TACTAAATTA	TACCACCACA	1440
	CAAACCTACT	CCCATTCAGG	AACACAGAGC	TTTGTCGCTC	GTCAGCAACG	TCATATGAAT	1500
35	TCTCAGTTCA	TGTTGTGGTG	ACACTTTAAA	CGGTCTGTGC	CAGTAGCGAC	CGAGTCATTT	1560
	CAAGAATGAC	CATTTCACAT	TTATATTATA	ACACTTGTCG	TGCGTAACTG	TATAGTTTTT	1620
	CAGTTGTATT	TAAAGTTAAG	TTATCTACTT	CGCGCTTTCC	TTGCCTTAAT	TGTGAAATTA	1680
10	CATATTGCGC	TACGCCAGTT	TGTTTGTGAA	TTTGGTAACC	TGTTATATCA	CTTTTGATCA	1740
	ATTCAATTAT	TTTTAATTTA	TAATCACTCA	TATTATCTAC	GTCCATTCTT	TTTATCTAAA	1800
	CAATAAAAAT	GTGTCTTTCT	CCCGATAAAT	AATAACAATG	GTAGGCTTAA	TAAAAACAAT	1860
15	ATTAAATACA	TTTGTTCTGT	CATAATTGAA	AACCTCCAAA	TAATATTATA	TTATATAAGT	1920
*	GTAAGGAGGA	GCCATCAGGC	TCCAAGCATA	ATGTTAATCT	TTGTTGTTTG	GCTTTCGGTC	1980
	TAGGTAGCCG	AGATGCCaTT	CTCTAAGTTG	TTTTAACACT	TCTGGAATTA	TCAGTACTGC	2040
50	CAATACTTGA	TGTTCTAGAA	GTGTTTTTAT	TATGTCTAGC	ATGAGGCTTT	TCACCTCCTT	2100
	3 C 3 C 3 C 3 C 3 C T T	TOTA SOTOST	C3 3 C023 3 C00	3 C 3 3 3 C 3 C 3 C 3	THE TRACE AND A A	CB B B MOMENTS	22.0

	GTTATCTACA	TTTAAATCTT	GAGAGAAATG	TTAAAAAGTT	CTAGTAAAAT	AATAGCACAT	2280
	TTTATCTTTA	AATGTAAATA	GAAAGCAGGT	ATGTAACGCA	CCTGCTTAAA	TAGACATGAC	2340
5	TATGTCATTC	TAACTGATTT	CTCCCCATAA	GTCACCTAAT	ATCTGATTAG	GTGGGGCAGA	2400
	ACCATTCCAT	GTTCTAATAG	GCAAGTAATA	ACGTTGCCCC	TCCCATGTAT	ATCCTACCCA	2460
10	AACATGACCA	TCTTGTAACA	TCACTTCTGT	ATAATCACAA	TACCCACCAG	GTTGGAACTG	2520
	ATAACCCACT	GGACAAGATA	AGAATGGCCC	CACTTTTCTT	ACTGTGATTG	GTTGATTGCC	2580
	GTTTGTGAAT	CTAGCACTTT	CTTCCATGTA	GTAAGTACCA	TATTTATTAC	GTTTCCATGC	2640
15	ACTTGCAACT	GGTTTAACTG	TATTACTTGA	AGCGCTTGAC	TCATTAGAGA	CAGTGGCAAC	2700
	CGGTATTTTA	CCATCCATGT	ACGCCCTAAT	CTGCTTGATA	AAGTAGTCTT	TAAGTTGCAA	2760
	CCGCTTGTCT	TCTGGCAATA	GACCGCGAGT	TACTGGGTCA	AAACCAGTGT	GTAAAACCGA	2820
20	ACTTCTATGA	GGGCATGATG	TTGAAGTAAA	TTCATTGTGC	AATCTGATTG	TATTTCTGTT	2880
	TGCTGGTAAT	CCCCATTTTT	TCAACAATCT	AGCGCATTCT	TGGAAAGTTG	CCTGTTCATT	2940
	TTTTAAGAAT	GTCGCGTTAT	CTGCGCCCAT	TGATTGACAT	ACTTCAATAC	CGTAATAATA	3000
25	TTTATTACCT	ATTTGATTAG	CGGTATGCCA	ACCTACTTGT	GATTCATCTA	AGGCTTGCCA	3060
	AACTGTGTTG	CCTGATACGT	AACTATGCGC	AATGCCCGCT	TCTAATCTTG	ATAAAGGTGC	3120
	ATTTACTAAT	CCGTTACGAT	ATGCTTCAGC	AGTCGCCCCT	TTGCTCCCTG	CGTCGTTGTG	3180
30	TATAACTATA	CCTTTAGGGT	TACTACCACG	CTTAGGTAGG	TCATAACCTT	TAACCACATC	3240
	TTTGATGATT	TTAAGTTCTA	CTGCTTTAGG	TTGTGGCTTA	GCTGTTTCTT	TTTTAGGTGC	3300
35	TTGTGTAGGA	GATTGAACTG	ATCGTGGCGC	TGTCTCACTT	TTAAAATTCG	GACGGATAAA	3360
	CCACATAGGG	AAATCATAAG	CATGTTGTCG	TCTTGTAACT	TTTTCCCAAC	CCCAGCCGGG	3420
	TTGTFCGATT	CCGTCAGTCC	AGCCACCGCC	TAGCCAATTC	TGCTCATATA	CAATGATGTA	3480
10	ATCTAAAGTT	GCTTCAATTA	CCCATGCAAC	GTGACCATAT	CCAGCACCGT	AGTTGCTACC	3540
	GAATACCACC	ATGTCGCCAG	GTTGTGCTAA	GAAGTCCGGT	GTATTTTGGT	ATACAGTAGC	3600
	TAATCCGTCG	AAGTTGTTAG	CGAACGGAAT	ATCTTTTGCA	CCTAAACCTT	TTAGAAGTAA	3660
15	TCCAAACAAA	ACTITICCAAC	CAGCATTGGC	ATAATCAAAG	CATTGAAATC	CATACCATAA	3720
	GTCCACATTG	AATTGTTTTC	CCTCAGAAGT	TTTCAACCAC	TCTATAAACT	CATTTTTAGT	3780
	TAATTTTGCT	TGCATTGTCG	CCACCTCCAT	GATGATACTC	ATTCACATCA	AAGCCAACAT	3840
50	CGTTAGAGGC	GTCTGTGAAA	GGTTGTGATG	TATCATATTC	TTTTGGTGcT	TTCGCGCTTA	3900
	**************************************	T > > > CT > CTC	mammama a ma	1 mmmc 01 00m	> > commonmon	m.com.com.com	

	TTGGGTCAGT	AATAACGCCA	ATACCTGTAA	GTAACGTGAG	GATAGCGCCT	ATAATTGCGC	4080
	TAGCTTGATT	TAATTGAGTA	GATAAATCTA	ATCCGAATAA	ATCCGTGACT	TGCTTGATAA	4140
5	ATAGCAACAA	TGCTCCAACT	AAACCAGTTA	GTACTGCTTT	GTTTTTGAAT	CTCAATTTCC	4200
	AGTTAATATC	CATTTGTTTG	CTCCTTTTAT	CCAAAATAAA	AAAACGACTA	AAAATTAGTC	4260
_	GTTTAAAATT	ATTCAATGGT	CAATGTCGGA	GATCCTGAAT	AAACATCACT	TATAGTGACG	4320
10	TACAACATCC	CTGAAGGATT	ACTAAAGTTG	ATATTTTTAC	TTGCAACTCC	GCTATTGACT	4380
	CCTGATATTC	CTAAATCACT	TGACCCTAAA	TTAGTTTGCG	AAATCCTCAT	TATACCGCTA	4440
15	CGTACATTTT	CTATTGTCAC	CTGATAACTT	TTATTGGGTT	CAACTCCATT	TATTGTCCAT	4500
	TTTGCTGTTG	ATTCTTCTAT	GCTATCCGGA	TATTTATTTT	TAGGTAAGGG	TTTTATTACA	4560
	AAAGATGAAG	GCTTTTTCCA	TACTTGGATA	TTTCCAGCAT	ATACTTTTGT	ATATTCTTCA	4620
20	CCTTCGTAAA	TAAACTTCTT	TACATTTTTA	AAATTACCTT	CCATAAAAAT	CACCCTTTAA	4680
	AATATAA	CGTATTCGGG	TCTTTTTGAT	ATATATAGTT	ATATTCATTT	TCTGTTCCTG	4740
	TCCAAATTTT	AACCGTCGGT	TGAGATGCGC	TTTTTAGTTG	ATTAAATTA	TCCGCTTGTT	4800
25	GTTTAGTAAA	AGCTTGAGAT	GACAAAACAT	ACCGCTCGTC	ATGATTATGA	TTTTTTGGAG	4860
	CATATAAATC	ATTTAGTGTT	TGTTTGAATT	CCTCAAAATC	TTCTGTATTA	ACTTTTGAGC	4920
	CAATCTGTTG	CAATACACTT	TCTGAAATAG	AGTTGTTTTG	TATTGCTTCT	GCTAATTCTC	4980
30	TTAATGTGTT	CATAGATTCA	GGCGCGCTAT	CAACTAGTTC	AGCAATTTTT	GTATCCGTAT	5040
	ACGTTTTAGA	GTCGTTGAGA	GTTGTATCTT	TGATTTTTTC	AACTTCTTGC	AATTTATTTT	5100
	CTAACCCTTC	AACATTTGCG	ATATTGATTT	TGTCCAATAA	CTCAGGTTCT	GCTTTGATAT	5160
35	CTGTATCTTT	ACCATCAATT	TGCCACATTT	TAGTGTCAGG	ATTGATTGAT	ACTACAGTAC	5220
	CGTTTTTACC	GGGTGCGCCT	TGTTCTCCTT	TTTTACCTGC	TTCACCTTTT	GCTCCAGGTT	5280
40	GTCCCGGTTC	ACCTTTATCA	CCTTTCGCAC	CTTTAAATCT	ACTTTCATTC	TTTTCGATGT	5340
•	AAGAAATGAC	ATCTTTATCT	ATTTTCTCTT	TAAAGTCTTT	GCTCAATAAA	TCTGTCGCGT	5400
	TATCTTTTAA	AATTCTCGTA	ATAGCATCAT	CTACCAATTT	AACATCGATT	TCTTTTGCTA	5460
45	CAGCAGATTC	AATACCACTA	TCAACGATAT	TGAAAGAAAA	GTTTGCGACA	TGTATTTTTT	5520
	CTTCTTCTTT	CTCTAAAAAC	AGCTTACAGC	GAACATAACC	AGCGTGTTTG	ATAACCTTTT	5586
	TAGGTATCTT	GTAGGTAAGG	AAACCTTTTA	CAACATCGTC	GATAATAAGG	GGCTCATTTT	564
50	TGAATATAGA	GCCATCTTCC	ATAAACAAAT	GTAATCTAGG	TGTTAAGCCA	TGTGCTTTTA	570
	CATCCATACC	y COMMONWELL	ጥር አጥጥር አጥአር	CTATTCTTAT	ACATCCTCTA	بالمليك لا بالمليك	576

	CAACATCTTT	TATTTTGTAC	ATTTACACAC	CTCTTTATTT	ATATTTATCC	CTTGTGAAGT	5880
_	AGATACCTTT	TAAGCCGATT	TGTTTATATA	ACTTAGCGAT	TGTACTTGCT	TGATGTTGGC	5940
5	ACCACTCTAT	AGCAGTAGCG	TATTGGTGGG	TAGCTGGATT	CTTAGGATTC	CATCTAATTC	6000
	GGTACAATGT	GTTTTGACCT	TTATTGATGT	AATCCTTTCT	TACGAAGCTA	GCACCĢCCCA	6060
10	TGATTGCTTT	TGCTGGAGAT	GTCCAACCTT	TATTCCTTGC	AAACGTCATT	GCGTAGTTAG	6120
	GATTGTTGTC	GTAAGCGCCA	ATGCCGAAGT	AGTTGTATAC	TCCATCTTTT	CCGTTAGCGA	6180
	AGTTACTTGT	TCCATATCCA	CTTTCTAAGA	AAGCATGCGC	GATTAAATAA	ATTTCATTAA	6240
15	TGTTGTGCTT	TTTACAAGCT	TCTGCGAACG	CTTTACCTTG	ATTATTCAAT	GTTCCCTTAC	6300
	CTTTAAGTAT	CTTATTAAGT	GCGCTAACTG	AAACACCTTG	ATACTTGCCT	AAATTAAGCA	6360
	TTTGGTAGCA	TTGTGTGTTA	CTTTCCCATA	TACGCTTTAC	ATTCATTGCT	GAACTCGTTT	6420
20	GTGCTCGTGT	AGCGTTASCC	AACCCCAAGC	ATTAGATTTT	TTCGGGTTAC	CTCTTGCCAT	6480
	TTGTTTATCC	AGTGCTTGTT	TGAATGTATA	AGGACTCGTT	TCTGTTATGA	TCTGCGGTTG	6540
	TTTAGATGCC	GAACCATTGT	TGGCTGTTGG	TGACGAGTCT	CTTACATTAG	CTATATCAGC	6600
25	GTTTTTATTA	TCTACCATAA	CTTTTATTCT	AGATTTTGTT	ACTGTTGGCT	TAGTTATAGA	6660
	TAATAATT	TTTTCTCTGT	TATAAATAT	ATTAAGTAAT	GCCTTTTCTA	ATGCTTCGTA	6720
	TTTATCTTTA	GGAGGAACAC	CGTTGTCAAT	CATATTCCAA	TTAACATGTT	CCAACATTGA	6780
30	ACGCCAAATG	CTGTCGTCTA	CTTTTAAATT	TTCAATACTT	AGAGGTATCT	CATATTTGGC	6840
	CATCATATCT	ACAGCTACAA	CCATTGCGTG	AATCTCATTA	ТТАААТАААТ	CATTTTTACT	6900
35	CGCACTATAA	TCTTCACATA	CGTCTATAAC	TATATAATCA	GGTTCATTAG	GAACTTCAAA	6960
33	TACAGCTCTT	CTAGGTGCCC	AAATATTATG	TCTATCAACA	TAAAAGTGGG	GATATTCTAC	7020
	ATCCTGTTTG	TATTTCTTCC	TACTGTTATA	TAAACTTTCT	ACCGAGCTCA	TCGTTTGTGC	7080
40	GTTTCTAATC	ATTATTCCTT	TAGGTTTTTC	GAGTCGTCGA	TTACCTTCTA	CTATAAAGTG	7140
	ATAAATATAT	TCTGGATAAT	TAACCTCTTG	GCTAGAAATA	GTGTACTTTA	TAGTTGTTAC	7200
	ATCTTTCCAA	ATTGGAACTT	TTTTATTATT	TTTTTCGTTA	TCATCACTAT	CATCTTCTGG	7260
45 .	TTTAGGTGCC	GGTGTAGTTT	TGTCTGGATG	ATATGGTGGT	СТААСААААТ	ATTTAACCCC	7320
	TCCACCTGGT	CCATCATGAT	AAGAGTGTTT	AATTTTATAA	GGTGGACTTC	CTGTTGCGTT	7380
	ATTTGTATAC	CAGTTTTGAT	CTACGCCATA	CCAATAGTCT	TTTGTGCATG	GTCCCACTAC	7440
50	AATGTTTACA	TGTCCTGCCC	AACCACCAGT	CCAAACACCC	CAGTCGCCTG	GTTGTGGTAC	7500
	יייייייייייייייייייייייייייייייייייייי	א איזיטישייטישיא א	ው የ ድርብ መስመር ያ	እጥርጥር ጥአ ሪርጥ	CTATATTCC	እጥጥጥጥር እርር	7560

	TAAATCCCAG	CATTGTGCTC	CCATTCCAGA	ACCAGGTACA	TCAATAGCTA	TTTTGTTTTT	7680
	AGCGATATAT	AACGCCCATT	CAACCACTTC	ACTAGCTGTG	GGCTTTCTAT	TTTTCGGATT	7740
5	AGGTAATCCC	ATGTATGCAC	CTCATTTCAA	TCAAAATAAA	AAGCCAGTGC	CGAAGCACTG	7800
	ACTCTTAACT	GTTATTTACA	TTTACCAAAC	CAGAAGCACG	CCCAGAAGCT	АТАТССТААА	7860
	ATCCCTTTAA	GCATGGTAAT	CACCTCCTTT	AAATACCAAA	AACAGTTCTT	AGTAAAGCTA	7920
10	TGACAATCGT	ACTGAAGATA	GTCCCTATCA	AACCTAGAAT	CCACATTTTT	ATGTCTCTAA	7980
	TATTCTTGGC	ATTCTTTTCT	TTATTCTTTT	CATCTTCTAC	CTTGTCGCGC	TTTAATTCTT	8040
15	CAAAATTTCT	ATCTAATTTG	TCATAAATCT	TTTCTTGCGC	TCTAAGACTA	TCTTCTATTC	8100
,,,	TGTCGAATTT	TTCAAACATA	GTCTTATCAT	TTTCTTCTAA	TCGCGTTAAA	CGCCAATCTT	8160
	GTTCATGTCG	TTTGGTAAAT	CCAAACATTA	TGCCACCCAC	TTTATTCAAA	TTAAAAAGCC	8220
20.	ACAAGCATTA	CACCTGTGAC	TTTTCATCTT	TTGTTTCTGG	ATATTTTTCT	CCAGTGATTA	8280
	AAGCGTATTC	TTCTTTATCG	ATTAAACCCT	TGTCTACGTA	CCACTTAATT	TGCTCGTTTT	8340
	TATAGTAACC	CCAAACATAA	AAAGTTTTAA	TGTCTTTAAA	AGTTGGATAA	ATCATCTTCA	8400
25	TTATTTAAAC	GTCCCCCTCA	GTACTTGTTT	TGTTAGTTTT	CAGTTCAGTC	AACTGTTGTG	8460
	TTAACATAGC	GTTTTGTTGA	GCTAATTCCA	TTGTTAATAC	GTTTACTTGT	GCCACCTGCA	8520
	TTTGCATACT	CGCAACCATT	CCGCGAAGTT	CCTCATCACT	TAAATCTGAC	GCACTTTGTT	8580
30	GGTTTGATGC	ATTCGGTACG	TCTTCTTTTT	CGAAATTGCT	ATTGTATTTA	ATTTCGCCGT	8640
	TAGTGAAAAC	AAACTTTCTA	GGTTCGAACT	CTTCTTTAAA	TTTAATAGGC	ACATTGTTAT	8700
	CATCTACATC	TAAACTATTG	CGTAAACCGC	CAGTATTAAC	GAATCCGATA	ACTTCGTTTT	8760
35	TATCGTTTAC	TGTGATTTTC	ATTATTTCCA	CCCCATAATT	TTAGTTATAG	TAACTTTGTT	8820
	GGCATTCGCT	CCAGAACCTG	ATGTTTTACC	TAAATCAAAG	TACACATCGT	TATCTATTCT	8880
40	TAAAGTAGTG	CTACTTGTTT	TGGATAGTAA	GCACTCATAA	ATACCGCCAC	CGTTGCCGTC	8940
40	TGAGTCAACT	ACATTCGCTT	TACTCAATTG	AATCGCGTTA	GGTAATGCGG	TTAGTCCGAA	9000
	TCCCTCAATA	ACGCCACCTG	GATAAGTTCC	ACTTACCAAC	AAAATAGAAT	AGTTTGTGTA	9060
45	CGGTTCAGTT	AGATTGATTG	TTGTACCTAC	ACCATTTGCG	CCACCGTCGA	ACAATACCGT	9120
	TGATTTATGT	TCATTAGGAA	CTGTCCACTG	TTGCTCAAGT	CTGCCGTTTG	TGATTGATCG	9180
	TGTGTAAATC	TTTTTAGAGT	TATAAGGTGT	GAAGTTAAAT	AGCTTGTTTG	TATCATCTTT	9240
50	AACGAATACC	GATAAATAAC	CCTCATAACT	TTCAACGCTA	CCTGGTAAAT	CCGGCACTCT	9300
	かいかかいことがある	TANTTACCAC	Састтааата	TOCONNATOS	CCTTGCGCAT	ጥል ምምፕ ል ልርምም	9360

	GAATTTATCA	TCTACATACT	GCTTAGCTTG	ATTTAAAGCG	TTGTTAGACG	TTTCTTCAAC	9480
	AAATTGCTTA	GTTAAGTTTC	CATCATTCTT	TTTATAAAAC	GGGTACCATG	TGCCGTAGAT	9540
5	TTTGTATTTT	GTGTACTCAT	CGTTTGAATC	GTCTGGGTAC	CATGTTGCAC	GAGCAGTATT	9600
	ATTATCAACA	ACATAAACAA	CTAACACACC	AGATTTGCTT	GATGTATAAG	TTGATTCATC	9660
•	GAACGAAGAA	CCGTCATCAA	CACCATCTTG	TCCAGGCTTC	TCTAACGTGC	CTATATCCGT	9720
0	CTTTTCTGGC	GCATCTGTTG	CATTAGTAAT	ATGAATAATC	CTAGATGTGT	TAACTGCGCT	9780
	TAAAACGCTA	TCTATGGACT	GCTCATACGA	TTCAATTGCT	TTACCGTAAT	CATCTGTAAG	9840
5	TTTAGACTTT	TGCCAATTCG	TTGTTGAATT	ACCTTTAACA	AGGTCAGCGC	CATTGATTTG	9900
	TTGTTCAACT	TCGTTAACAC	GTTCAAAAAT	CGCTTGCTCT	TTTTCAACTA	TTTTATCGAA	9960
	TTCAGCTGTA	ACAGCTTGTG	TTGCACTAGT	TTGCGTCGCA	GTAATAGCTT	GTATAGCTTC	10020
0	GTTTTGCTTG	ATTTCGATTT	GTTGAATGCC	TTTTGTCGCA	CTATCATTCA	CTTTTGCTAT	10080
	TAACGTTTGT	GTATCAGCCA	TATTTTGCTT	TAATTGGTTA	AAATCTTTAC	CGACAGCTTC	10140
	GATAGTATCT	TGAATAGATT	TGATATAAAC	AAGCTTTGTT	ATACCATCAA	ACCCACTAAC	10200
5	TAAATCATTT	TCAATATTGA	AGCTAAATTG	ACGTTCAACA	ACAACATTAT	TACTCCCGTT	10260
	TTGTGTAAAG	AATGCCTGAG	CATGCACCTT	GCCTGAATGT	TTTAAAAATT	CATTCGGTAT	10320
	CACATACTGC	AAACGCCCAT	TAATTGCGTC	TACTATCGTT	AATTCGTCTG	AAATATAAGC	10380
0	GCCTCTATCT	ACGTTATAAT	CATCGGTTTT	TAAnaCGATA	GATGTTTTAA	CATGTTCAGA	10440
	ACTTATAGAT	AAGGGTCTGT	TATECTTAGE				10470
	(2) INFORMA	TION FOR SE	Q ID NO: 21	· ·			
		QUENCE CHAR A) LENGTH:					

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

ATCAGATCTT GAGAATCGAG TTATTAAGTC TATCGAAGAC TTAACTAAAA TCCAACCATT 60 CATGCCTACA CAAGATTTTG ATTTTAAAAC TAAAGAAATT CAATCAAACA TTTCTGAAGA 120 AAGATTTATC GAAATGATTC AGTATTTCAA AGAGAAAATA ACAGAAGGGG ATATGTTCCA 180 AGTTGTGCCA TCAAGAATTT ACAAATATGC GCATCATGCT AGTCAGCATT TAAATCAACT 240 TTCGTTTCAA CTGTATCAAA ATTTAAAACG ACAAAACCCA AGTCCATATA TGTATTATCT 300

	TCAAATTGTA	ACAACTAATC	CTATTGCAGG	TACGATTCAA	CGTGGTGAGA	CGACACAAAT	420
	AGATAATGAG	AATATGAAAC	AACTACTTAA	TGATCCAAAA	GAATGCAGCG	AACATCGTAT	480
5	GCTAGTTGAT	TTAGGACGTA	ATGATATTCA	TAGAGTAAGT	AAAATCGGTA	CCTCAAAAAT `	540
	TACTAAATTA	ATGGTTATTG	AAAAATATGA	ACATGTTATG	CATATCGTAA	GTGAAGTCAC	600
	AGGTAAAATA	AATCAAAATT	TATCGCCAAT	GACAGTTATT	GCGAATTTAT	TACCAACAGG	660
10	TACCGTTTCA	GGTGCACCAA	AATTACGTGC	aattgaaaga	ATATATGAAC	AATATCCACA	720
•	TAAACGGGGC	GTTTATAGTG	GTGGTGTTGG	ATACATAAAT	TGTAATCATA	ACTTAGATTT	780
15	TGCATTAGCA	ATTCGAACGA	TGATGATAGA	TGAGCAGTAT	ATÇAACGTAG	AAGCTGGTTG	840
,,,	TGGCGTTGTA	TATGATTCTA	TTCCTGAAAA	AGAACTGAAT	GAAACGAAAT	TGAAAGCTAA	900
	AAGCTTATTG	GAGGTGAGCC	CATGATCTTA	GTTGTAGATA	ATTATGATTC	CTTTACATAT	960
20	AACCTAGTGG	ATATTGTTGC	TCAACATACT	GACGTCATTG	TTCAATACCC	TGATGATGAT	1020
	AATGTGCTGA	ATCAATCGGT	GGACGCTGTT	ATTATATCTC	CTGGTCCAGG	GCATCCATTA	1080
	GACGATCAAC	agttaatgaa	AATCATATCA	ACCTATCAAC	ACAAACCCAT	TTTAGGTATT	1140
25	TGTTTAGGGG	CTCAGGCACT	GACTTGTTAC	TACGGTGGAG	AAGTCATTAA	AGGCGACAAG	1200
	GTTATGCACG	GCAAAGTTGA	TACACTAAAG	GTTATATCGC	ATCATCAACA	TCTGTTATAT	1260
	CAAGATATAC	CAGAACAGTT	TTCAATTATG	AGATATCATT	CATTAATAAG	TAACCCTGAC	1320
30	AATTTTCCAG	AAGAATTGAA	AATTACTGGA	CGTACCAAAG	ATTGTATACA	GTCATTCGAG	1380
	CATAAAGAAA	GACCGCATTA	TGGTATTCAG	TACCATCCTG	AATCATTTGC	TACAGACTAT	1440
•	GGTGTCAAAA	TAATTACAAA	TTTCATTAAT	CTAGTGAAGG	AAGGATGAAA	ACCATGACAT	1500
35	TACTAACAAG	AATAAAAACT	GAAACTATAT	TACTTGAAAG	CGACATTAAA	GAGCTAATCG	1560
	ATATÁCTTAT	TTCTCCTAGT	ATTGGAACTG	ATAAATTATA	TGAATTACTT	AGTTCCTATT	1620
40	CGGAGCGAGA	AATCCAACAA	CAAGAATTAA	CATATATTGT	ACGTAGCTTA	ATTAATACAA	1680
40	TGTATCCACA	TCAACCATGT	TATGAAGGGG	CTATGTGTGT	GTGCGGCACA	GGTGGTGACA	1740
	AGTCAAATAG	TTTCAACATT	TCAACGACTG	TTGCTTTTGT	TGTAGCAAGT	GCTGGCGTAA	1800
45	AAGTTATAAA	ACATGGLAAT	AAAAGTATTA	CCTCaAATTC	aGGTAGTACG	GATTTGtTAA	1860
*	ATCAAATGAA	CATACAAaCA	ACAACTGTTG	ATGATACACC	TAACCAATTA	AATGAnAAAG	1920
	ACCTTGTATT	CATTGGTGCA	aCTGAATCAT	ATCCAATCAT	GAAGTATATG	CAACCAGTTA	1980
50	GAAAAATGAT	TGGAAAGCCT	ACAATATTAA	ACCTTGTGGG	TCCATTAATT	AATCCATATC	2040

	AAGCAACACT	ATCTGGTGAT	AATTTGATAT	ATGAATTGAC	TGAAGATGGA	GAAATCAAAA	2220
	ATTACACATT	AAATGCGACT	GATTATGGTT	TGAAACATGC	GCCGAATAGT	GATTTTAAAG	2280
5	GCGGTTCACC	TGAAGAAAAT	TTAGCAATCT	CCCTTAATAT	CTTGAATGGT	AAAGATCAGT	2340
	CAAGTCGACG	TGATGTTGTC	TTACTAAATG	CGGGTTTAAG	CCTTTATGTT	GCAGAGAAAr	2400
	TGGATACCAT	CGCAGAAGGC	ATAGAACTTG	CAACTACATT	GATTGATAAT	GGTGAAGCAT	2460
10	TGGAAAAATA	CCATCAAATG	AGAGGTGAAT	AATATGACGA	TTTTATCAGA	AATTGTTAAA	2520
	TATAAACAGT	CACTTTTACA	AAATGGCTAT	TATCAAGACA	AACTTAATAC	CTTGAAAAGT	2580
15	GTGAAGATTC	AGAATAAAA	ATCTTTTATA	AACGCAATTG	AGAAAGAACC	AAAGCTAGCA	2640
	ATTATTGCAG	AAATTAAATC	GAAGAGTCCT	ACAGTTAATG	ACTTACCTGA	ACGAGATTTA	2700
	TCGCAACAAA	TCTCAGATTA	TGACCAATAT	GGTGCAAATG	CCGTGTCCAT	TTTAACTGAT	2760
20	GAAAAGTACT	TTGGTGGTAG	TTTTGAAAGA	TTACAAGCAT	TGACGACAAA	AACAACATTA	2820
	CCCGTATTAT	GCAAAGACTT	TATTATAGAC	CCGCTTCAAA	TTGATGTTGC	TAAACAAGCT	2880
	GGTGCATCTA	TGATTTTATT	GATCGTTAAC	ATCTTATCTG	ATAAACAATT	GAAAGATTTA	2940
25	TATAACTACG	CTATATCGCA	AAATCTAGAA	GTGTTAGTTG	AAGTACATGA	TCGCCATGAA	3000
	TTAGAACGTG	CCTATAAGGT	TAATGCTAAA	TTGATTGGTG	TAAATAACAG	GGACTTAAAA	3060
	CGATTTGTTA	CAAATGTGGA	ACATACAAAT	ACTATTTTAG	AAAATAAAA	AACAAATCAT	3120
30	TATTATATTT	CTGAAAGTGG	TATTCACGAT	GCATCTGATG	TAAGAAAAAT	CTTGCATAGT	3180
	GGTATCGATG	GCTTACTAAT	AGGTGAGGCG	CTTATGCGTT	GTGACAATCT	ATCTGAATTT	3240
	TTACCACAAC	TGAAAATGCA	AAAGGTGAAG	TCATGATGAA	ATTGAAATTT	TGTGGCTTTA	3300
35	CATCAATAAA	GGATGTTACA	GCGGCCAGTC	AATTACCTAT	TGATGCGATA	GGTTTCATCC	3360
	ATTATGAAAA	AAGTAAAAGG	CATCAAACAA	TTACCCAAAT	AAAAAAGTTA	GCGTCTGCTG	3420
40	TTCCAAATCA	TATCGATAAA	GTATGTGTCA	TGGTAAATCC	TGATTTAACA	ACAATTGAAC	3480
40	ACGTATTAAG	CAATACGTCA	ATTAACACAA	TACAGTTACA	CgGCACAGAA	TCTATTGATT	3540
	TTATACAGGA	AATTAAAAAG	AAATATTCAA	GCATTAAAAT	CACTAAAGCT	TTAGCTGCaG	3600
45	ATGGAAAACm	TWATCCCAAA	caTtAAtnAA	tnTTAgGGGG	TCCGTGG		3647

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5966 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

						-	
	CCACCTTGAC	CACCTTTACG	TGGAATCTTT	TCmCCTkGAG	CAACaTCGaT	AATATATATT	60
5	GAAAgTCAAC	AAGTTCTGGA	CTAAATGTTG	CTGCTAAGTT	ATCGCCACCA	GATTCTATGA	120
	AAATTAGTTC	TATATCGTCA	TGACGTTCTA	ATAATTCGTC	TATTGCTGCA	AAGTTCATAG	180
40	ATGCATCTTC	ACGAATCGCA	GTATGAGGAC	ATCCACCAGT	TTCAACACCA	ATGATACGAC	240
10	TTTCAGGTAG	AACTCCTGAA	TTTACTAATA	TCTTTTCGTC	TTCTTTTGTA	TATATATCAT	300
	TTGTAATAAC	GCCGATACTC	ATTTCTTTTG	AAAGACGTTT	TACAACTTTT	TCAATTAATT	360
15	GTGTTTTACC	TGCACCTACA	GGACCACCAA	TACCAATTTT	AATCGGATTT	GCCACAATTA	420
	TAACCTCCTA	TGATATGAAA	tTCTAACATT	GaCGTTCTCA	TGCGCCATTT	GATTTAGTTC	480
	TAAACCAGGC	GCTGTCATGC	CAAAATCTGC	TTCTTTTAAT	TCGAAAATCT	GCTTTCTTGT	540
20	TCCTTCTATA	TAAGGAATCA	TGTGAGTAAC	TATCTTTTGA	CCAGCAGTTT	GTCCAAGTGG	600
	AATAGCACGA	ACAGCATTTT	GAGTTAAACT	TGAAACATTT	TGATATAAAT	AGTAATCAAT	660
	AATCGTTTCA	ATATCTACAC	CTAAATGATG	GCCTAGCATA	GTAAAACAAA	TAGCTGGATT	720
25	TnACTTTGCT	TTCTTATCTT	GCATTTGTTG	ATGATACCAA	GCAATCCATG	GGCTATTATA	780
	AAGTTCTAAA	GCCAATTTAA	CCATGCGAGT	CCCCATTTGT	kttgcaccaa	CACGTGTTTC	840
30	TTTAGGTAAG	TTTTGrACAr	ACATCAGTTT	ATCTATGTGT	AATACTTTTT	GTGTATCATC	900
	ATTTTCCAAT	GCATCATAAA	CTAaACGCAT	GGCTAAACCA	TCAGAATAGG	TAAGTTGCTC	960
	TTGTAAAAAC	ATTTTTAACC	AAGCAATAAA	AGTATGATCG	TCATGAATTA	TATTTCGTTG	1020
35	AATATATGTT	TCAAGACCAA	ATGAATGACT	GAAAGCACCT	GTTGGAAACT	GTGAATCACA	1080
	GAACTGAAAT	AATCTTAAGT	GTGTATGATC	AATCATGAGA	ATGCCCTATA	TGTCTGAAAG	1140
	CCTTATTAAC	TTTACGGTCT	TCTCGAACAT	ATGGGATGCC	TAAACTTTTT	AATAAATCTT	1200
40	СААСТАААТА	ATCATATTGT	ACTAGCATTT	CAGTCTCTGT	AAATTGTGCT	GGCAAATGAC	1260
	GATTTCCTAA	TTGATGGGCT	ATATCTCCCA	TTTCTTGCAA	TGTTCTTGGT	TGAATCACTA	1320
45	AAAGATCTTC	TGAATTAACA	TCCACAATAA	TCATATTATG	GTCATCTGCG	TATAAAATAT	1380
45	CTCCATATTG	TAAGTCAATA	GGTTGTTTTA	AACGAATGCC	TATTTCAGTG	CCATGGTCTG	1440
	TAACGACTCT	TTGAATACGT	TTAACAAGAT	CTGAATTTTC	AAGGTATACT	TTTTCGACGT	1500
50	GCTTTTGTTT	TTCTGAATTT	GACAAATTGG	CAATATTGCC	TTGGATTTCT	TCAACAATCA	1560
	TTCTATGTTC	CTCCTAGAAT	AAGAAGTATC	TTTGAGTTAA	TGGTAACTCA	GTTGCTGCAT	1620
	TACTTGTAAT	TTTTTCTCCA	TCTACATATA	CTTCATATGT	TTGTGGATCA	ACGTCTAATT	1680

	GACGCACCAT	GCGTTTTAAA	TTTAATGCAC	GATTGATACC	ATTITCATAA	GCAGTTTTAG	1800
_	ACACGAATGT	CATTGACGTA	CTTGTAAGGT	TTCCGCCGTA	TTGACCATAC	ATTTTACGGT	1860
5	ACTTCATCGG	TTCAGATGTA	GGTATAGAAC	CATTTGCATC	GCCATTTACG	GCAGAGTTAA	1920
	TTAATCCGCC	CTTTACAACT	AATTCAGGTT	TAACCCCAAA	GAAAATTGGG	TCCCATAAGA	1980
10	CAATGTCAGC	TAGTTTGCCC	GGCTCGATAG	ATCCTACATA	TTCAGAAATA	CCATGTGTAA	2040
	TTGCTGGGTT	AATTGTATAT	TTAGCGATAT	AACGTTTGAT	GCGATTATTA	TCATTATGTT	2100
	CAAAATCACC	ATCTAAAGGA	CCACGTTGTT	CTTTCATGCG	ATGTGCTACT	TGCCATGTTC	2160
15	GTGTAATTAC	TTCACCTACA	CGGCCCATTG	CTTGTGAATC	GGAACTAATC	ATACTGAATA	2220
	CACCCATATC	TTGCAGAACA	TCTTCTGCTG	CAATCGTTTC	TTTACGAATA	CGTGAATCTG	2280
	CGAATGCGAT	ATCTTCAGGA	ATAGCCGCAT	TTAAATGGTG	AGTAATCATT	ACCATATCTA	2340
20	AATGTTCATC	TACAGTATTA	TGTGTATAAG	GCAAAGTTGG	ATTTGTAGAT	GAAGGTAAAA	2400
	TATTTGAAAA	TGCAGCGGAT	TTAATTAAAT	CAGGCGCATG	ACCGCCACCA	GCACCTTCAG	2460
25	TATGGTACAT	ATGAAGTACA	CGGTCTTTAA	CAGCAGCCAT	TGTGTCTTCC	ATAAATCCTG	2520
	CTTCATTTAA	AGTATCTGCA	TGTAATGCAA	TTTGAACATC	AAATTCATCA	GCAACATCTA	2580
	ATGCATGACT	CAAAGCAGAT	GGTGTTGCAC	CCCAGTCTTC	ATGTACTTTT	AATCCAATTG	2640
3 <i>0</i>	CTCCGGCATT	GATTTGTTCA	ATGAGTGCAG	TTGGATTTGT	TGCTTGTCCT	TTACCTGTAA	2700
	AACCGACATT	AATCGGTAAA	CcTTCGGCAG	CTTCTAACAT	TCTATGAATA	TGCCATGGAC	2760
	CTGGAGTTAC	AGTTGTTGCT	TTAGAACCTT	CTGAAGCACC	AGTACCACCA	CCAATATGAG	2820
35	TCGTAATACC	ACTTTCTAAT	GCGACCTCTG	CTTGTTCAGG	AAAATAAATA	TGAACATGAG	2880
	TATCAATACC	ACCAGCAGTG	ACGATTTTAC	CTTCAGCGGC	AATGATATCT	GTTGTTGAAC	2940
	CTAȚÂATAAT	GTCGACATTA	TCCATTATAT	CTGGGTTGCC	GGCATTACCT	ATGGCGAAAA	3000
10	TATAACCATT	TTTAATGCCT	ATATCAGCTT	TAACCACTTT	ATCGTAATCG	ATAATAACGG	3060
	CATTAGAAAT	GACAAGGTCT	GCAACGTTCA	CGTCATCACG	TGTTACACGA	GGATTTTGCG	3120
15	CCATACCGTC	TCTAATAGAT	TTACCACCAC	CAAAAGTAGC	TTCTTCACCA	TAAACCGCAT	3180
	AGTCTTTTTC	TATTTGAGCA	AATAGATTCG	TATCACCTAA	ACGAATGGAA	TCTCCAACAG	3240
	TTGGACCGTA	TAAGCTCGTA	TATTGATTTT	GCGTCATTTT	AAAGCTCATG	ATCTTTTTCC	3300
50	TCCTTTTTTA	TTCACGTTTT	CAGCACCGTT	ATCTCCGAAT	ACACCTGCAT	ATTCATCATT	3360
	TTCATCAGTT	GGGCGATAGA	CACGTGACTC	ATCGATAGGA	CCATTGACCA	TACCACGAAA	3420
	ACCAAAAATT	TTACGTTTGC	CAGCATATTC	AACTAATTGA	ACTTCTTTTT	TATCCCCAGG	3480

	TTCGAAATCT	AATGCTGCAT	TTGCTTCATA	AAAATGAAAA	TGTGAGCCCA	CTTGAATTGG	3600
_	TCGATCTCCT	GTATTTTCAA	CTTCGATAAC	TGTTTCAGGA	TGATGGTTAT	TAATTTCAAC	3660
5	CTCTGTACTT	TTTGTAATAA	TTTCTCCTGG	TATCATTTGA	CTGCCTCCTT	TAAACAATAG	3720
	GGTGATGTAC	TGTGATTAAC	TTAGTACCAT	CGGGGAACGT	AGCCTCGATT	TCGATATCTG	3780
0	TAATCATGTG	TTCGACACCA	TCCATGACAT	CTTCTTTGTT	TAGAATTTGT	CTACCATAAC	3840
	TCATTAACTC	TGCAACGGTC	TTACCATCGC	GTGCACCTTC	TAATAATTCA	TCGCTGATTA	3900
	AAGCTAATGC	CTCAGGATGA	TTTAGTTTCA	AACCACGTGC	TTTACGACGA	CGTGCAACTT	3960
15	CCGCCGCCAC	TACAATCATT	AATTTGTCTT	GCTCTCGTTG	TGTAAAATGC	AAATTAAAAC	4020
	CCCCAATTTC	ATATTAGATA	Caatttacaa	TTATATTAA	AATCCTAATT	GTTGTGATAA	4080
	ACAAGTAATA	TACAAAGTTC	AATGTGTAAT	TAGAAAATTA	TATTTTTAGC	ATATCCGATA	4140
?0	TTGAAGCAAA	CAATCTAATC	GAAAACAAAT	AGTGGAATAT	ATTTATGTAA	AAACCAAAAT	4200
	AGTTTTTAAT	ATAACTTTTC	ATAGAATAGT	AGTATATTAA	TGAGTAATGA	TTCAAAGGAA	4260
25	AGGTGAAAGA	TTTGAAGATA	ATAGATGTGC	TTTTGAAAAA	TATATCTCAG	GTTGTGTTAA	4320
	TTAGTAATAA	ATGGACAGGA	TTATTTATCT	TAATAGGATT	ATTTGTAGCC	GATTGGACAA	4380
	TTGGATTAGC	GGCTATTGTA	GGTAGCÁTCA	TCGCCTATAC	TTTTGCGCGT	TTTATAAATT	4440
30	ATAGTGAGGC	AGAGATTAAT	GATGGGTTAG	CTGGATTTAA	TCCAGTGCTA	ACTGCCATTG	4500
	CGTTAACAAT	CTTTTTAGAT	AAGTCAGGAT	TAGATATTGT	TATAACAATG	ATAGCAACTT	4560
	TATTAACGTT	ACCAGTTGCT	GCTGCAGTGA	GAGAAGTTTT	AAGACCATAT	AAAGTTCCGA	4620
35	TGCTGACGAT	GCCTTTTGTC	ATTGTGACTT.	GGTTTACAAT	TTTACTTTCA	GGACAGGTTA	4680
	AATTTGTAGA	TACATCGTTA	AAGTTAATGC	CTCAAAACAT	TGAAACGGTT	AATTTTAGCA	4740
40	ACAATGATAG	AATaCATTTC	ATTCAGTCAT	TATTTGAAGG	ATTCAGTCAA	GTATTTATCG	4800
	AAGCGAGTGT	AATTGGTGGC	GTATGTATTT	TAATCGGCAT	ATTGATAGCA	TCAAGAAAAG	4860
	CAACACTCTT	AGCTGTTATA	GCTAGTTTGT	TAAGCTTTAT	CATTGTAGCT	CTATTAGGTG	4920
45	GTAATTATGA	TGATATTAAT	CAGGGATTAT	TCGGTTATAA	CTTTGTATTA	ATGGCAATCG	4980
	CACTAGGATA	TACATTTAAA	ACAGCGATTA	ACCCTTATAT	TTCGACTTTT	TTAGGTGTGT	5040
	TATTAACAGT	AGTGGTGCAA	CTAGGTACAA	CAACATTGCT	TGAACCGTTT	GGCTTACCTG	5100
50	CATTAACATT	GCCATTTATT	ATCGTGACAT	GGATTTTATT	ATTTGCTGGT	ATTAAACATG	5160
	ACAAAGTAGA	TGCTTGATAG	TTAAATCAAA	CCTAATATTG	TTTGAATATC	ACCTTAAACT	5220
	ATACAGCGAA	TTGTATAGTT	TAAGGTGTAT	TTTTATGGAT	AAAATTAAGT	GCATACTTAA	5280

	GTGTTAAACT AGGAATAAAT AATTTATATT GTGTGTTGTG TGGGGTGACT AATATGAATG	5400
	ATATGGATAA TTCCTTTTTA ATAACAACGG AAATTCAAAG AAAATGGATT GAAAAATTCA	5460
5 .	AAGTAATTAG AGATACATTT AAGGCTAAAG CTGAATATAA TGATCAACAT AGCCAATTTC	5520
	CATATAAAAA TATTGAATGG TTAATTAAAG AAGGTTATGG AAAATTAACG TTACCAAAAG	5580
0	CATATGGTGG TGAAGGTGCG ACCATAGAAG ACATGGTTAT TTTGCAATCA TTTTTAGGCG	5640
U	AACTTGATGG TGCCACAGCA TTATCTATTG GTTGGCATGT GAGTGTCGTA GGACAAATTT	5700
	ATGAACAGAA ATTATGGTCT CAAGATATGT TGGAGCAATT TGCTGTTGAA ATTAATAATG	5760
5	GTGCATTAGT TAATAGAGCA GTTAGTGAAG CTGAAATGGG TAGTCCAACA AGAGGGGGAA	5820
	GACCAAGTAC ACATGCTGTT AAAGCTGATG ATGGGTATAT TTTAAATGGT GTGAAGACAT	5880
	ATACATCAAT GAGTAAAGCA CTAACACATA TTATTGTTGC TGCTTATATA GAAGAATTAG	5940
o	AAAGTGTTGG TTTTTCTTA GTAGAC	5966
	(2) INFORMATION FOR SEQ ID NO: 23:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17310 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
o		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	CTGTGTCATC GCGAAATAGT TAGGGTCATT CATTAATCCT TTTGAACGTA TTTCATCAAA	60
5	ATATAACAAT TTCATTAGTA AAGGGGACTT GTTCAAACCA GCTATAATAC AAAATAGACC	120
	TATAGTCACA CTGCTTATAA TATAAGAGGT AACGATCACT TTTTTGCTAT TACCTAACTT	180
	AAAGATGATC ATCCCTAAAT AGAAATAAAT GACTACAAAT GCATATTTAA CTGTAGATGC	240

45

40

AAGAACTTCC TTAACCGTAA TAAATATCAA ATCATCAAAA AATaGCAAAC AArGCGTAAT 300 AATCATACGA TATGTATACA AAATAATGAM AAACTGTMAA AAATGATTTG CCTTTAATAA 360 ATGGTTAGCG AAAAACAGTA AATAAACTAA TATTAGTAAT GTGATAAAGT CAGCTATAGA 420 AACATTCACA CCGGCAATAA CCGAAGATTG CTGAATAAAA ACCGCTAAAC CGATAAGTAA 480 CAATGTTAGT AATTTACTAT TGTGTTGATT TTCCATTATA AACGTCTTCC ACTTCTTTAA 540 TCATTTTCTC CTCAGTAAAA CATTCTAAAT AACGTTTTCT AGATTGATTA CTCATTTTGA 600 TGTAATCACT GTCTATTAAA TATTTTTCCA GGACTTTAGC AATAGTTTCG GGTTGGTTGT 660 TCATCATACA TATACCATTA TCAGCTACTA ATTCTGAAAT ACCGCCAACA TGACTGGCTA 720

	TAAAATT	AAACGTATCG	TATTGTGATA	ATAAATGACT	CGCATTAATG	ACATTGCCCA	840
	AAAATGTGAC	ATCATTTTCT	AACCCAGCTT	GTACAACTTG	TTGCTGACAA	TCATTTAATG	900
5	TAGGTCCATC	GCCTATAAAT	GTAAAATGCG	CATGATTACT	GTTATGTAAT	TTCAATATCT	960
	CTATTGCCGC	GATTAGATTT	TGTGGCAATT	TTGGATAAGC	AAATCTTGCA	ATCATAACAA	1020
10	ATTGATGCTT	TGTCGGGGCA	TTAATCTGTA	AATCTTGTTT	ATTAGGCAAC	ATTCCAACTA	1080
	CTTCGCCAAT	ATTGTTATGT	GATTGGCTTT	TTAGCGTTTG	CTTAACAGCG	GGAACATCTG	1140
	CAATACCATT	ATGTATTGTG	GTTAATTTCA	ATCGATTAAA	TCGATATTTT	AACGCTAACT	1200
15	GTTTATCGAA	ATCTGAAACA	CAAATAATGC	TATCTGTAAT	AAGTGACATT	AATTTTTCGA	1260
	TAACTAAATA	TAGAAATTTT	TTAGCTGGTT	TAACACCCTC	TGTAAAAGCC	CATCCATGTG	1320
	CAGTAAAAAC	TATACGTGTG	TCTTTCGATT	TCGAAATGAa	CTtCGCAATT	CGTCcGACCG	1380
20	TECCAGCTTT	GGAAGAATGT	AAATGGATAA	CATCAGGTTT	AATTTTCGAG	AATAACTGTG	1440
	CTAACACTTT	GACAGCTAAA	ATATCTTGTT	TAAAGTCAAT	TGGACCTACT	AAATGTTCGA	1500
25	TAATAATTAC	ATTAACTCTT	GCATCTAGTT	GTTCAATCAT	TGGTCCATGA	TTGCCTACAA	1560
	TGACATAAAC	ATCATTGTGT	ACGCAAAAAT	GGTTGGCGAG	TTGAATGAGA	TGTGTTTGTG	1620
	CACCACCATT	GTCTGCTTTA	GTAATACAAT	ATATAATTTT	CAACTGTTAC	AAACCCCTTT	1680
30	AATGCTATAC	TTTCAATTTC	TTAACATGGC	TATCTCATCA	GATGAATAGT	ATTTATAGCC	1740
	ATGCAAATCA	ATGATGGCAC	ATATTTCTTA	ATGCCATTTG	ATACTGTCTC	AAGGGATTCC	1800
	TCGTTATACT	GTAACAATTG	GTCACAATCT	TTAAAATATA	ACTTTTATTT	GAACTTATTA	1860
35	AGTAAATTAA	GACTACCTTG	AGCCTTCCCC	TGTAATAACA	ACCATCAATG	TTCTAATTGA	1920
	TATATATAGT	TCCATCATTA	AACTACCTTT	ATGTATATAT	TTCATGTCAT	ATTTCAGTTT	. 1980
	TTGTTGCGGT	GTTAAGTCAT	ATCCACCTTG	AATTTGCGCA	AGTCCTGTTA	ACCCTGGTGT	2040
40	AACAAGACAT	CTTTGCTCGA	AACCTATCAC	TTCTGAACTA	AATAATTCTA	CAAATTCCGG	2100
	ACGTTCCGGG	CGTGGTCCAA	TAAAACTCAT	TTCCCCTTTA	ACAACATTAA	TTAGTTGTGG	2160
45	TAATTCATCA	ATGCGTGTTT	TACGAATAAA	CTTCCCGACA	TTTGTTATAC	GATCATCATC	2220
	TTTATCAGCC	CATTGCGCAC	CGTTTTTCTC	TGCGTTTTTG	CACATCGAAC	GTAATTTGTA	2280
	TATTTTAATT	AATTTACCCA	TCTTCCCAAC	TCTAACCTGA	CTATAAATAG	GGTTTCCTGG	2340
50	CGAATCTATG	ACGATAGCAA	TGGCGAATAT	AACCATAATC	GGTAAAGTTA	AATAATAA	2400
	AACAATGCTT	AAAATTAAGT	CAATCGCACG	TTTAATTGGG	TAATAGCTTT	TTCTCACTTC	2460
	TTCTAGTTTG	TCTAATTTTC	TTTGATAGGC	ATAACCCTTA	TTATTATGGA	CAGCTTCAAT	2520

	AATTAAAGTA	ATCCTTTAAA	CCTGTTTCTA	CTGTATATTT	AGGAACAAAT	CCTAATGCCT	264
_	TTAAGTTAGA	AATATCTGCA	TAAGAATGCT	TAATATCTCC	TTTTCGTGCT	TCTTTAAATT	270
5	CATGCTCGAC	TGATTTTCCA	TATAATTCAC	CAATAATACG	ATAAACCTCT	AATAAATTAG	276
	TAAAAGTGCC	TGTACCAATG	TTATAACCGT	GTCCAATTGC	ATCTTTGTGT	TCCATAATTA	282
10	AGCGTACAGA	TTGAACAACA	TCATATACAT	ATACAAAATC	TCTAGTTTGC	AGTCCGTCAC	288
	CAAAAAATGT	AAATGGCTTG	TTATGCTCAA	ATGAATCGAA	CATCTTTGAA	ATCACACCTG	294
	AATATTGTGA	CTTAGGATCC	TGTCTTGGCC	CAAATACATT	ATTTAAAAAA	ACAACCGCTG	3000
15	TTGGTATGTT	ATATAACGAA	CAATAATTTA	ATGTCGTCCG	TTCGCCGTAA	TATTTATCTA	3060
	TTGCATATGG	TGATAATGGT	AAGATTAATG	ATTGATCACT	TTTAGGCAAA	TCAGGAAGAT	3120
	CACCATAAAC	AGCTGCTGAC	GAAGCAAAGA	TAAAACGTTT	TATATGATTA	TTATATTTT	3180
20	TAATGATTTC	TAACAATCTT	AATGTTGCTA	CGACGTTTAT	TTCTTGAGAT	AAGATAGGTT	3240
	TCTCAACCGA	CTCAGCAACA	CTAACTAATG	CTGCTAAATG	AATAACATAA	TCAAATTGAT	3300
25	ATGTCTTCAT	GATTTGTTCA	ACTGCATCAT	ATTCACGAAT	ATCTAATTCA	AACACATGAT	3360
	CGTCAGCCAA	ACTTTTAATA	TTTTCTCGTT	TACCTGTTCT	ATAGTTATCT	AGAACATAAA	3420
	CATCATAATC	TTGTTGTAAA	TCATCTACTA	AATGCGACCC	AATAAAACCA	GCCCACCAG	3480
30	TTATCAAAAC	TCTTTCCAAA	TCTTCCACCT	CATTTATACA	TATAAAATT	ATCATAAAAA	3540
	CATAAAGTAT	TGTAAGCTTT	TTATCGATAT	TTTTTTTTTA	TAAAAATAAA	ATGAGATAAC	3600
	TTTGTGAATT	TTTATTGAGA	TAAATTAGAT	AGTGGTGTTT	TTGTGATGTT	TTATAATATC	3660
35	TTGGGTGTGT	TAATACTAAT	AATGCTTTCA	ACTGATGCAT	TAGACTGTGA	CATCATAACT	3720
	CACTTAAGAA	CTTCGCTTAT	TAATTTTCTA	CCAATACACT	CCCTTCTAAG	TGCACTAAAA	3780
	AATCETTACT	GCTAAGTGAT	TAAACTTAAC	AATAAGGATT	TATTTATCAT	TAGTGGATGA	3840
10	TTATTAACGG	AATCTCATAC	CACCATCTAC	AATAATTGTT	TGTCCAGTAA	TGTAATCAGA	3900
	GTCTTTACCA	GCTAAGAAGC	TCACTACATT	TGAAACATCT	TCTGGTTGAG	AAACTCTGCC	3960
15	CAAAGCAATC	TGACTTGTAA	ATTGTTCCCA	ACCCCATGCT	TCAGGTTTAC	CTGCTTCTTC	4020
	GGCTGTTGCC	ACTGCGATAC	TTTCCATCAT	TGGTGTTTGA	ACGATACCAG	GTGCGAATGC	4080
	ATTCACAGTA	ATACCTTCAG	ACGCTAAATC	TTGTGCGGCT	ACTTGTGTTA	AACCTCGCAC	4140
50	TGCGAATTTT	GTACTGCAAT	ATAAAGACAA	GCCTGGGTTA	CCCTCAACGC	CTGCTTGAGA	4200
	TGTTGCATTG	ATAATTTTAC	CGCCATGATT	GAATTTTTTA	AATTGTTCAT	GTGCGGCTTG	4260
	AATACCCCAT	AGCACACCTG	CAACCTTCAC	СССАТАТАСТ	בידידידים אורידי	CTTCTTC NCT	4320

	GCCAAATTGC	GCGGCAGTTT	GTCTTAcTGC	GTTAAATACA	TCATCACGGT	TTGATACATC	4440
_	TGCTTTGATA	GCAATAGCTT	TTGTACCATC	ACTTGATAAT	TTAAGTGCAG	CTGCTTTTGC	4500
5	CCCTTCTTCA	TTGAAATCAA	CAACTGCTAC	TTTGAAACCA	TCTTCCACTA	AACGTTCTGC	4560
	AAATTTTAAA	CCAATCCCTT	GTGcTCCGCC	AGTTACTAAT	GCTACTTTGT	TGTTTGTCAT	4620
10	AAAGATCACT	CCTCAAATTT	CTTTCCTTTA	ATTACATTTT	ACTCCTCTTC	ATTTGAATAG	4680
	TACAACAAAG	GTAGCTCCAT	TTAACAAAAT	ATTCAGATAT	TTAAGGTATA	GTTAAACGCA	4740
	CTACCATTAG	TGATTGGCAA	TGCGTTTAAA	TGTCGTTTTA	AAAGTTCTTA	TGTTGAATAT	4800
15	TATTTTTTTA	AGTCTCTCGA	TTAGTTTGTC	ATCAATCTTT	TTTCGAGACA	TGGTCTTTTG	4860
	ATTCAATAGG	CGGTTCCGTG	TTATCACTGA	CAACTTTAGT	TGTAGCTTCA	TCTTTATGTA	4920
	TTTCTTCGTT	AAATCCTTCA	AGGTTTTTAG	TCGTGGGATT	TTTAACCTCA	GGATGTTCCA	4980
20	TCATGTCTTG	ACTATCAAGT	TCCTTTTTAC	ACGTGTCTTT	ATGTGATGCT	TGATTTGCGT	5040
	TCCCTTTACT	TTTTTGAATA	GTGGTAGTAT	CTGCTGCAGC	TACTAATTTT	TTTCTACCTA	5100
or	AAATAGATAT	GGCTGAAACA	AACCAGAGTA	TTGCAGATAC	AAAGTTGCAT	AATACTAAAG	5160
25	CGATAATAGC	CAATACAATT	AATATGACAC	CTTTTGAAAT	CCTTTCTTTA	AATAAGTCAG	5220
	ATGCCAATAC	GATGACAGGT	ACGATTGAAA	GTATAATTAC	AAATATAGAA	ATTATTGCCG	5280
30	ATATAACTAT	TGTTACTATT	AAATAATCAG	CTCTGCTACC	TGATAATAAA	TAGAAAAGGC	5340
	CGAAAATTAG	TCCATAGCAA	ATTACAAACC	CACATAAAGT	TATAGCCATG	AGTACTATAT	5400
	AAGCTATTTG	AAAATATAAA	CCTATCTTTA	TGAATGATTT	TTCTACATTT	TTTTCCATGT	5460
35	CTATTCCCCA	TTTATTTAAA	ATTTATACTT	TACCTTAAAT	ATTCTCTTTA	TTCTTTAGTG	5520
	ATTTTATCTT	TAGATTCAAA	TTGATTCTCT	GTACTTTCAA	TATCAACTTT	TTCATTTTCG	5580
	TCTGTCGATT	CATCTTTTGA	GTATTTATTC	CAAATCAGCA	AAATACCACC	AATCAGCCAT	5640
40	AAAATTGACG	AAAGGAAATT	ATATAAACAC	AGTGCAATAA	TAGCATAAAC	AATAAAAAGT	5700
	GCACCTCCGA	TTACAGAGTA	ACTTTCCATA	TAAATCGCAG	TAAAGATGGT	TGGTAAAACA	5760
45	GTGAAAAGAG	CCAATATTAA	тсстаатааа	AAAATTGTTT	CGTAATCAGA	TCCTCCAGCA	5820
	ATATTAATAG	ATATCATCCT	AACAAAAACG	ACACTAAAAT	ATATTTGAGC	TACGATGCCT	5880
	ATCCAAATTG	CTATTTTTCC	TATAATTGAG	CTCATACTCA	TTCCCCATTT	ATTTAAAATT	5940
50	TATACTTTAC	CTTAATATAC	CTTATTTTAT	TTAATTTTTA	TATGCAAAAT	ACAAAAATGG	6000
	AGAACTTCAA	TATTTATAAA	ATATCAAAAG	TTCTCCACAC	TATATTGTTT	TATTATATTT	6060
	TCGCTATCAA	TACGCTAAAT	CATCATATTT	CCCTCAACAT	CACAGTAAAA	CTATTGCTCC	6120

	TTCCAATTGC	GCAGTTGTTC	AACATCATCA	TCTTGTTTAA	GTAATGCCAG	TGGTACTTGA	624
5	AGATTAAGAC	ATCGTCCTGA	AATATTAAAG	CGTGTCACAC	CTGCTGGCAC	AGTTTCCCCT	630
	TTATGAACAA	CCGCTTCAAT	TTCCTTATAA	CTCAATGGCT	GATACTTCAT	GAGTACATCT	636
	TGTTGAGAAA	GACAAGGATA	TGTACCTTGT	GCAATTCTCT	CTACAGAACA	ACAACCACTA	642
10	TAACTTGCGA	CAACCTTTTC	CCATACTTGA	AAATGTGCTT	CGCCTAAATC	TTTTGTATAC	648
	AAATATTGTT	CTGTATCACC	ATGACACATT	GTAATAAATG	GCGCTTCTTG	TCTTGTCTCA	654
	GTAGTCCATG	GCAAGCGATG	TTCTTGTTGT	AACGTTTCCC	ACCACACACC	AAATGGAACT	660
15	TTATGTTGCC	ATGTACTAAT	TGAATATTGT	GTTTCATGGA	TTTCTTGCAC	TGGAACTTTC	666
	TTACATCCTA	ACGCTTTCAA	ACTTGTATAC	CGATGCACAC	CATCTATAAC	CATATATCTA	672
	CCATGTTGCA	TCGCTGTCAC	TAAAATAGGA	TGACGTATAA	AATCATCTGC	TTCAATACTA	678
20	CTTTTCGTTT	TTTCCAATCT	TAAAGGTTCG	AATGTTTCGT	GAAGATCAAT	CTTATCTACT	684
	GGTACCAATT	TTAAATGTTC	ATGAATATGA	TTCAATAGTT	ATTCATCCTC	CTTTGTTTGT	690
0 F	GTTAAATAAA	TAAATTCAGG	ATGTGGATGG	CTTAAGAAAT	CGTGATGTGA	AATAGACCAT	696
25	CCGTATGCAC	CTGCATATTT	GAAAACAATA	ACGTCGCCTG	TACTGATTGC	GTCTATCTGT	702
	ACTTCTCTAG	CAAAGACATC	TTTCGGTGTA	CATAATTGAC	CGACTAACGT	TGTGTCCTGT	708
30	CTCGAAATTG	AAACTTTTTC	AAATGAATAT	GGATTGTCCT	TATAGCGATA	AATGTCAAAA	714
	GGATGGTTAT	GTTGCCAAGA	TACCGGCAGT	CTAAATTGTT	GCGTACCTCC	TCTTAATATG	720
	GCATACCAAG	CACCATGTAC	TTTCTTAATG	TCTAGCACTT	CTGTCACATA	GTAACCAATA	726
35	TGTGCCACAA	TAAAGCGCCC	ACATTCAAAG	TTCAATGTCA	CATCTTCCAT	TTCTTGCTCA	7320
	ACGATAAGTG	TTTTAAAACG	TTCTACAAAA	TTATCCCATT	CAAATTGGTT	AGTTAAATCT	738
	GCATĀGTTAA ·	CGCCTATGCC	ACCACCAAGA	TTGATATGTT	TGAGTGGAAA	TCGATGTTTT	7440
40	TCAGACCATG	CCTTTGCTTT	TTTAAAATAA	AGTTTCACTA	CATCGACATG	TAAATTCGAG	7500
	TCTAAATTGT	TAGAAATAGA	ATGAAAATGA	AATCCATCTA	GATGAATCTT	TGGCATTGCG	7560
45	AGCGCAgcTT	CAATGACATC	ATCAACTTCG	TCTTCAGAAA	TACCAAATTG	TGTTGGGCGT	7620
	CCTGCCATAT	GCAACGTTGC	ATTGGGAAAT	GGTCCTGCTA	AATTAACACG	CAATAAAATG	7680
50	TGTTGTGTCT	TATCTTCATC	TTCTAAGATG	GCATTTAGCC	GTTGTAATTC	ATGCATACTT	7740
	TCAACATGAA	TACGCTGAAC	ACCTTCACTT	ACTGCATATC	TTAGTTCCTC	GTCTGTCTTA	7800
	CCAGGGCCAC	CAAAAATAAT	ATGATTTGCT	GGTTTAAAAG	CAAGACCTTT	TGCTATTTCA	7860
	CCTTGAGATG	CAACTTCGAA	TCCTTCAACA	TACTGACTAA	TTGTATCTAG	GATTTTTCGT	7920

	TGTTGCAAAT	GATGTTCCAG	TCCGACTAAA	TCATAGATAT	AATGACAAAC	TGGATGAGAT	8040
5	TGTGCTTTTA	ATTGTTCAAT	AACAGGTTGA	ACTATACGCA	TTAGCCTTCA	TCCCCTTTCT	8100
	GTTTAGACGT	CGCTAGAGAT	GCACTTAAAT	GGCGATATAT	TTTTCCGCGA	TCATCACCTA	8160
	AAATAAATGT	TTGTACACCT	TGTGCCTGCC	ATTTTGCAAT	ATCTTCATCT	TCACGTGGTA	8220
10	ATGCACAAAA	ATGTTTACCA	TGTGCATTCA	CAACTTCAAA	AATATGTTGA	ACATGTGATG	8280
	TTACTTGATC	ATCACGCGTT	TGCCATGGTA	TGCCAAGTGA	CTGCGATAAA	TCTGCGGCAC	8340
15	CTTCGACTAT	CATGTCTAAA	CCTTCGACTT	GTGCTATATC	GTCAATGGCC	ATAACCCCTT	8400
	CAACATCTTC	TATCATGGCA	ATCACCATAA	TATGCTCATT	AGCCATCTCC	ATTGCATCAA	8460
	GTAATGGTGT	ACGTCCAAAT	CTTGCCATGC	GACCACCATT	CAAACTTCTT	AATCCTTGCG	8520
20	GGTAATAACG	ACTTAATTTC	ACAATATGCT	CAACTGTCTC	ACGATCTTTA	ACGTGTGGCA	8580
	CAATAATACC	TCTCGCACCC	ATATCCAACA	CTTTAATGAT	ATCTCTATCT	ATCACTGCAG	8640
	TGACACGTAC	AATTGGTATA	ATATGCGCTG	CTTCAGCTGC	ACGAATTAAA	TGCGCTAGTG	8700
	TCTCATCATT	AATCGCCACG	TGTTCTGTAT	CAATCACAAC	AAAGTCATAC	CCGCTTGCTG	8760
25	CGATAACCTC	GATCATCAAT	GGGTCCGGTA	TAGAATTAAA	AATGCCATAA	ACTGAATCAC	8820
30	CATTGTTTAA	TCTATGTTTC	AGAGATAGTT	GTTGCATCAT	TGATACCTCC	TACACCTAAT	8880
	GGATTTGTAA	CATGATGAAT	TCTTAACTCG	GAGTCACTTA	ATAATCGACG	TGTCGTTAAC	8940
	TTTTCAACTT	GAATCGTAGG	TTCAAACAAA	TCGAAATGTT	GATAGTTATT	CAACTCTGGA	9000
35	AATGCTTCTŢ	GATACGCCTC	GATGATGCCT	TTAACCCATT	GCCATTGCAG	CTCCTCATCG	. 9060
	ATACCATATT	GCTTTTCAAT	AAATAAGATG	ATTTCGGCGA	TATTAATAAA	GAAAAATGCA	9120
	TCATGTAAAA	AGTCGCGTAC	TAAACGTTCG	TCATCTGTTT	CAATAAATGA	ATTACTATTC	9180
40	ACTTTTTTAT	GTGCTTCTGG	CATTGGCTTT	AATGTCAGGT	GTGAAGCAGC	TTCACTTAAA	9240
	TGCtCACGCT	TAAAACGAAC	ACCATCATGG	AAATCTTTTA	AGGCAATACG	TGTAGGCCAA	9300
	CCATTTTCAT	GAATGAGCAT	CATATTTTGT	GCATGCGATT	CAAAGGCAAT	ACCGTGATAA.	9360
45	TAAAGCATAT	GAATCATTGG	ACGAATCGCT	ACAGCTAAAA	ATTGCTTTGT	CCAAGCTTCA	9420
	GAACCATATT	GTTTAATCCA	ATTTTCAATG	AATGGTACAC	CATCCTTATC	ACTTGCATAA	9480
	AGTGCATTAA	ATGGTATCGC	ATCCTCTTCA	TCGATTAACA	TATGATATAT	ATTTTCACGC	9540
50	CATATAACAC	CTAACGCACC	ATAAACTTGA	GTTTGTTTAT	AAGGCGAAAG	TTGTGTATTT	9600
	AAATAAGACT	GTCCTAAGAC	TTCCCCTAGA	AAAACTGTCT	TTAATTCATC	TTTTAAATAC	9660
	ATATCTTGTT	GCTGTATCTG	CTTTAACCAA	TCCGTAATTT	GCGCTGCATT	TTCAATTGTA	9720

	TATTTTGTCG	TGTCTATTGG	CGACATCGTA	CGAATCGATT	GTTGAGGGTG	ATATAGCTCA	9840
	TCACTTTCCC	CTAACCATAG	TACTGTGCCA	TTAAGCCTTT	CTTCAGCCAA	ATCAACTTGG	9900
5	ATGACATGTT	CAAACTGCCA	TGGGTGTACA	GGTATCATCT	CAACATCATT	TACATGTTTG	9960
	CCAGATGCTT	CAATTTGCTG	TACAAAATGT	TCATAAGTCT	TATCGCCAAC	TTGTTGACGT	10020
,	AACATTTCGT	TAACTACAAC	ATTTCTTGAT	ACCGTCGTTT	CTACTTTATC	TTTGTCGATA	10080
10	GCTAACCACT	GCAGTTTAAC	GTTTGGTACA	AAATCAGGAC	CAAATTTCAA	ATTATCACTC	10140
•	AACGTAAATC	CTAAACGTGA	TTTGTAACTT	GGATGATACT	GATGCCCTTC	CATCGCATAA	10200
15	AATTCATAGT	CGTTAAATGT	CTCAGGTGTT	GCTGGTGGGT	TTGATTCTCG	ATACTGCATA	10260
	CTTTGCGTAT	CTTTTAATTC	TGTCTGTAAT	AACTCGACAA	TAAATTGTTC	TAGCTTTTCA	10320
	TCATTTTTAG	GAAATGTAAA	TACAACCTCT	CTCAATAATT	GTGTATAGTC	TGTTGTTGTA	10380
20	TCTGCCTCAT	CTCCTACGAC	ACGCTCAATT	GGTGATGTGA	TACGTATACG	ATCAAAGCTA	10440
	TGTGTCTTTT	CAGCAGTAAA	ACGATACTCT	GAATCATGTC	CTTCTATTGT	AAAATGACCG	10500
	ACACCGTCTT	GATATGACGC	TTTATACACA	ACAATATTCT	CATAAATAAG	TGATGATACC	10560
25	AGTTGGTGCA	TCACTCTAGT	CTTTACACGA	TTAAGAATTG	TTTGATTCAC	AATACGATAC	10620
	CTCCTTGTTA	TGACAAATTG	GATTTGGTAT	ATGTGTATAA	ATAGGGTTTG	CACCACAATC	10680
30	ATTCAATTTA	CTCATCAAAT	TCGCTTTAGC	CGCAATGGTC	GGCGTTTGAT	ATAAATCTTC	10740
	TACACAGTCA	ACAAATACTG	CGTTATTCGC	GTATTCTTTT	TTCCAAGTCA	TAAGACGATG	10800
	CGCTACAAGT	TGCCATAACA	CAACTTCATT	TCTAGTCGCT	TTACCAATAG	TTGATACTAA	10860
35	ATGTCCTAAG	TGATTTACTA	CAACGTAATA	TTTAAGACGA	TGCCATGCTT	CATCATGTGC	10920
	ATATACAACA	GGGCTTGATG	CTGCCACAAC	ATTTGGCACA	AGCTGTTTTT	CAGTAGCAAT	10980
	CGTTCTAGAT	AGACAAATGC	CTTCAAGATC	TCTGACAAAG	CATACGTCGG	GTATGCCATC	11040
40	TTTTAATTCA	ATTAATGTAT	TTTGTACATG	TGCTTCTAGA	CTAATGCCTG	TGTTACTAAA	11100
	CAGCTTTAAT	ATCGGCAATA	ATGTACGATT	CAAATAACAT	TCAAGCCATG	CTTCTGGTGC	11160
45	TAAACCACTT	TGCTCAATCA	CTTGTGATAA	CTTAGACATC	GGTGAATCAG	GCATCGTTTC	11220
45	AAATAATGAC	GCCAATACAT	GAATATCTTT	ATCAGCATGG	TAATTCGGTA	TCCCTTCACG	11280
	AACAATCATG	GCACTATTTG	TTAATAAATC	CATTTCAGGT	TCAACTGTTT	GCCCTAATGG	11340
50	ATTCGGTAAC	AATGCACGAT	ATCCTTCTTC	AAACATCAAT	TTAAAATGGG	GTGTTTCAAC	11400
	CTCATCTTTG	ACTGATGCGA	TAACTTGCGC	GGCATCAATT	GTCCGTTCAA	TCTGTTCAAG	11460
	GTCATTCGTA	CGTATAAAAT	TAGTGATTTT	AACGTGTATC	GGTAATTTTA	AATAAATGTT	11520

	GCCAAGGTCT	TTTATTAAAC	CTTGTTCACT	ATATTGCATA	TACTGTGGAT	GCTGTCGCAA	11640
	CACATTGATT	TGATAAGGAT	GTGTTGGTAA	ТААААТАААА	TCTTTGGGTA	TCTCTGATAT	11700
5	ATCTATGTCT	GCTAATTGAT	ACAACACTTT	CTCAACCTGA	TCTTCTTTAC	CTTCTACATA	11760
	GCGCGTGAGC	AGAACATCTT	GATGCACAGC	TAAATAATGC	AATTGGAATG	ATGTATGACA	11820
10	TTCGGGTGCA	TATTTCTCTA	AATCTGCTTC	TGAAAACCCA	CTTGCACTCT	TAGGAGTCGG	11880
	ATGAAATGGA	TGACCTAAGT	ATAAAGATTG	TTCTGAAACG	ATATAACGAT	CCTCTACGTA	11940
	GTCTATTGTG	TTACTTTGCA	AATAACGTGC	CGTGCGATGA	ATGCTATTAT	CGATGTCAGA	12000
15	CATAATTTGC	GCCATATGTT	GTTGCACTGC	CGTTTGATTA	TCTGCACTTT	GAGCCATATG	12060
	TTGCAAAATA	CGCGCAATTG	CTTCTTTATA	AGTTGTTATT	TTTTTACTTT	TTCCATCGAT	12120
	AAGCCATACC	TCTGGATGAT	ACATATGATG	CCCCATCGCA	GACCAATAGC	GAAATTCACC	12180
20.	CGTTAAAGTT	TCGAGCTCTG	ATAATTGTAT	AGACCATTGA	TGATTTTGAG	GTGGTACTTG	12240
	ATATAAATTT	TCTTCTCTAA	AATATTCATT	TAAAATGCGT	TCGATAGCCG	CATACGCTGC	12300
25	ATGTTGTATT	AATTCTTTAT	TTTGCACTTT	TTTGTTTCAA	CTCCCATAAT	TTCATTAATG	12360
	TGTGATCGTT	GATTTGATTA	GTGATGGTTG	AACAAATTAA	AAATAAACTA	CTTACTGCAA	12420
	ATACTACGCC	CATAACGATA	AACGTAGTAG	CTGGTGTAGT	ATAACTTGTA	ATGGCAGCGC	12480
30	CACTAAGACT	GCCAATAATT	TGACCAACAA	CTAACATACT	GTTCGTCGTT	CCAACAAATG	12540
	TGCCTTTAAG	TTGTTGATGA	CACGCATTCA	CGACAACAAA	CATGACACTT	TGAATCAATG	12600
	CACTATATGT	TAATCCTTGA	AGTATTCTTG	CAGCCATTAA	AAACTCTATA	TTCGTCGCTA	12660
35	AACCTTGCAG	TATCGCACTA	CAACCACATG	CAATCGTGGC	AAATATATAT	ACTGATTTAA	12720
	CATATGATTT	ATCATTAAAG	CGTCCCCATA	AAGGCGCGCT	TAATATCGAA	GCCGTCCAAA	12780
	ATGCGGACTG	ТАААААТССА	ATCACACTAC	GGTCATCTAT	CGCTGTATGA	TTCACTGATG	12840
40	AAGCAAGTGG	TGATAATGCA	GTTAGCATGC	CATACATAGC	AAAGTTTGCT	AAAACGCCAA	12900
	CGATAATAAA	TCGACATGTT	TGTTGTGTGC	ATAATAGACA	TTGAAATGAA	CGGCGAATAC	12960
1 5	CTTTATTAAT	ATTTGGTGTT	TGTGATTTTG	GCATATGTGT	CGTTTCAATC	AATTTTAATG	13020
	CACCGAAAAT	ACAGACAATA	AAAGTAATAA	CGGCAATACT	CATCAGTAAC	GCACTAAAAC	13080
	CTAATATCGA	AGCTGTAACA	CCGCCAATTA	ATGGCCCCAC	AAGAGACCCT	GCGCTGACTG	13140
50	AACTTTGCAG	TCTTCCTAAT	ACCTTTCCAC	GATCTTCAGC	TGGCGCCTCT	GCACTCGCAA	13200
	ACGCACTTGA	TGCATCAACA	ACACCACCAA	ATAGTCCCTG	CAATAACCTC	ACAAGTACAA	13260
	ACTGTAATGG	TGTCGTACAC	AATGCCATTA	AAAATAAGCA	TACCGCCAAA	CCAAGTAACG	13320

	CLATCATCGT	CGTTACAGCT	GGAGCAGCAA	TCGCTATACC	ACTCCACAAC	TGTATTTCTA	13440
5	CGACTGATAG	ATTTTGTAGT	GATGCCATAT	AAATTGGCAA	TAATGGCACA	AGTACTGTCA	13500
	GTCCAGCAAT	CGCTATAAAC	TGACTGAGCC	ATAAAATGCG	AAAGTTACTG	CGCCATATAG	13560
	ACTGATTAAT	CATATGTCAC	CATTGGATTT	GGTACGGTAG	TTAAACCTGA	AGGCATACTA	13620
10	CCTCCACCAC	TATCACGTTG	ATATAGCAAT	GGTAATAAAA	TTTGTTTGAA	TGGCCACGTC	13680
	TGTTTATCAA	ATAAAATGTG	TCTGACAGCT	AGCTGATCAG	TTGTAACCCA	GGAAATAGTT	13740
	GCCACTTCAT	TTTTTAAAAT	TTGTTTTAAC	AACGACATAA	GTTCATGCTC	ACTTACACCA	13800
15	AATAAATCTT	GAATTGCATC	AATAATGGCA	TATAGATTTA	CCGATACAGC	TAATGTTTGA	13860
	AAATAAGCAA	AGAATGTTTC	CAAATCCTCA	TTAATTAGCG	TATTAGGTGT	ATCTTCTCTG	13920
20	ACGACATACT	TCGGCAATGA	AAGCTGATGT	GCTGTTAGCC	ATGGTTTATA	AATTCTGACA	13980
20	GTATCATGAT	CACGTAACAC	GCATTTTTGT	ACACGTCCAT	CTTCAAATGA	CAACAATATA	14040
	TTTTGACCAT	GCAACTCTGG	TAATGCGCCG	TATTGCATAA	ATGATAGTGT	TACCTTTAAA	14100
25	AAGACTTGCG	CGATATCTTC	AAATAACGTC	ATGACATCAT	TTTTAGAAAT	ATTATCTTTT	14160
	CCACAAATCA	TTTGATATAA	AGTGCGATCA	TTTGCCGCGA	GTGCTGCCAT	TGACACTAGC	14220
	TGTTGCGTAT	CATTTTTGGC	TAGCACTTCG	GGATACTTTC	TTAGCTGAAC	AGTTAGATGA	14280
30	CCTAATTGAT	CTTTGAAAAT	ATCATTATCT	TGACCCATAT	ATGACCACCA	AGCTGTTTCA	14340
	TCACAAACCA	TGACATACTT	AGCTAGTGCT	TCATCTTTTT	CTATAAGCTG	ACGTAATAAT.	14400
	TGTTCTGCTT	GTTCTCCGTT	TTTCATGTAA	CGCGTAGGCG	TTAGCCTTAA	TGCGCCTAAT	14460
35	GACTGCATTG	CAAATGGTAC	TTTGACATGG	TTATACGGTG	CGCCAATATC	AATTAATGAA	14520
	CGCATACTTG	AAGACGACAG	ATAATCTCCA	AATTTTAACG	GTAATAGTAC	AACCAACTTT	14580
40	TCACTAATCT	CTTTCGCAAA	GACGTTCGGC	AGAATATGCT	GATATTGCCA	AGGATGTACC	14640
	GGAAATAGTA	CATAGTCATC	TATTGATAAC	CCTTGATCAT	TTAACATGTC	TGTCGCTTGT	14700
·	TCTTTTATAG	GTACTGTCAA	ATTTTCTAAT	TCATCGATAT	TTGCAGTATC	GCCATGAATC	14760
45 .	ATATGTGTCT	TTTTAACTGC	TGCAACCATT	AAAGGAAATG	ATTGATTTAA	TTCAGCTTGA	14820
	TACACTTGAT	AATCCGCTTC	TCTTAATCCT	CTTTTTTCTT	TAGCTAATGG	ATGAAATGGA	14880
	CGATCTTTTA	AACTTGCAAA	CTGCTCTGAC	ATCACAAAAG	GATGTGACGC	TAAATCTAAT	14940
50	TCTGATAATT	GTTTAGCAAG	CTGTGTGGCA	GCAGTAGTCA	GTCCTTCTTC	AACGCGAGCC	15000
	ACTTCCCATT	CATGACTTAG	ATCACAATTC	ATATTAGCAA	TTGTTTGCCA	AAATTCAGCT	15060
	GCCGTTAAAG	GTTGCTTAGA	CACCCTTCCC	TCTATCGTAA	TTGGTTGTGA	ACTTTCGTAA	15120
55							

	TATATCAAAA	GCGTTTGTCC	GTTTTCTTTA	GTAATCTCAC	TATTCGATAC	AATTCCGGCT	15240
	ATATCTTCAA	ATAATAATGC	ATCAACTAAA	TCTCTTAATA	TTATCGCTTG	TGCTGTATTG	15300
5 .	ACTGCTGTAT	GATTCTGCAA	TGTTCAGACA	CCTCGCATTC	TTAATATAGG	TTCAATGTTG	15360
	TCCCAATATT	TTGTTGTTGT	GCCTGTTGAT	AAATAAAATA	AGCACTTGAA	ATATCTTCGA	15420
10	TAGCCATACC	CATCGGATTA	AGTAATATGA	TCTCATCATC	GTCTTCACGT	CCTGGTATGT	15480
	CACCTGTCAC	AAGTTGTCCT	AGTTCAGCAT	GAAGAGCTTC	TTTGCTGAAT	TTACCTTCTA	15540
•	ACACCAATTG	GTTAATAGTT	TTCTTTTCTC	GATTACATTG	TGACCAGTCA	TCTACTACGA	15600
15	CTTTGTCAGC	TTTAATAAAG	ACTTCTTTAT	GCACATCCAT	GATAGAAATG	TTGCTAATAA	15660
	ATGCACCCTT	TTGTAACCAA	TCATATTCAA	TGTATGGTTG	ATCCGTTACG	GTACATGTAA	15720
	TGACTACTTC	ACCATTTGAT	ACTGCTTCTT	TAGCATTTTC	TGTCGCAATA	AAATTAATTT	15780
20	CCGGACGCTG	TTGTTGCCAT	CTATCAACAA	AGCGTGCACA	TGCTTCAGAG	AATTGATCGT	15840
	AAACAAACAC	GCGTTCAATA	TGATCGAATT	GCTCTAACAT	ACTTTGTAAT	TGCTTGTCTC	15900
25	CGATTAGCCC	GCATCCAATG	ATTGTTAAGT	CTTTAAATCC	TTTTTTAGCC	AAATGCTTTG	15960
-	CTGCAATCAC	TGAAACTGCT	GCAGTACGCA	TACTACTAAT	TAAACTTGCT	TCCATAACTG	16020
	CAATTGGATA	ATTCGTTTCT	GGATCATTCA	AAATAATGAC	GCCACTTGCA	CGCTCCATAT	16080
30	TACGTTTCGA	TGGATTGTCG	TGCTTACTAC	CTATCCACTT	AATACCTGAA	ATTGCGTGTT	16140
	CACCACCGAT	ATGACTTGGC	ATTGCAATAA	TTCGATCTGC	GATGTGTCCA	TTTTCAGGAT	16200
	CCtGTCTTAA	ATACGGCTTA	AGCGGTTGTA	CAAAATCATT	GTGCGCATGG	GCTGTTAATG	16260
35	CTTCTGTTAA	TGCGTCCACA	TAAACTTGTG	AATGATTACC	TCCCGCTTGT	TCAATATCTG	16320
	ATCTATTTAA	ATACAACATC	TCTCTatTCa	TTCTGaTTTA	ACTCCTTGTC	TTGATTTCAT	16380
10	TTTTTCTAAC	CATGTATCTG	ААТАААСТАА	ATCTAAGTAA	CGATCGCCTC	GATCTGGTAA	16440
10	AATCGTGACA	ATTGTTGCAC	CTTCTTCAAT	TGACGTTATC	AACTGCTCAA	TCGCTGCAAT	16500
	AATCGAACCT	GTTGAAcCTC	CGGCAAATAT	GCCTTCATAA	TCAATCAGTT	TTCGACAGCC	16560
15	CAAAGCAGAT	TGATAATCAT	CTACATGGAT	CACTTGATTA	ATTTCTGATC	TATTCAATAT	16620
	TTCGGGTACA	CGACTAGCAC	CGATACCAGG	TAATTCTCTA	TTAATAGGTT	TGTCACCAAA	16680
	AATGACTGAC	CCTTTCGCAT	CAACAGCAAC	AATTTGTGCG	TTTGGATGCA	CTTCTTTTAT	16740
0	TTTTCTACTC	ATACCCATAA	TGCTACCTGT	CGTGCTGACT	GGCGCGACAA	AATAATCTAT	16800
	AGGTTGCTTA	ATTGTTTCAA	CAATCTCTGT	GCCTGCACCA	TGATAATGGG	ATTGCCAATT	16860
	TAACTCATTC	GCATATTGAT	TAATCCAATA	TGCATCGTCA	ATAGTGGCTA	ACAGTTCTTG	16920

TACATTGGCA CCATAACTTT TAATAATTTT CAAATTTGTT GGTGATATTT TAGGATCAAC 17040 AACACACGTG AGTTTTAATC CCTTGATTTT AGCTATCATT GCCAACGCAA TGCCTAAATT 17100 ACCAGAAGTA CTTTCAATTA AATGTGTATT CTCAGTGATT AAACCATGTT TAATACCATG 17160 TTCAATGATG TACTTGGCAG GTCGATCTTT CATGCTGCCT CCAGGATTCA TATACTCTAA 17220 CTTTGCAAAC ACTTCATGTT TCGGAAATAG TTGATGAAGT TGAACCATAG GTGTTTGCCC 17280 TACAGAATCT AACAATGAAT CGTGCACATG 17310 (2) INFORMATION FOR SEQ ID NO: 24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5423 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24: ATACTAGTAA GCGCATCGGT TATTGACATC GAATTCAACT TTAACAGTTT TCATGTTCGG 60 TGATGTTTCa ATAGAATGTG TGTGTTGTAC TTGCGCATTT ATATTTCCAC CTAAATTACT 120 TAAGTITCCT GTAATACTAG AAATGTCAGG TGCGTTTAAT GTAGGTTGAA ATGCATCAAC 180 TACTTTATCT GCAACATTAG AAACATTACG GATAACTTTA CTTGAATGAT TATCTATACC 240 TTTAACGAAA CCTAACATTG AATACATACC AACATCCATG AATTCACGTG AAGGTGAGTG 300 AATACCTAGC GCTCTTTTGG CTGCATTTAA AGCACCTTTT GCTACACTAG CTGCTTTTTC 360 35 . AGCTAAGTCT CTAGCCATAT TACCAATACC TCTCATCAAA CCACGGATCA TATCAGCACC 420 TGCTGATACA AAGTCATCCA CAAAGCTTTT AACTTTATTT ACTGCATTTG TCATACCTTG 480

40

10

15

20

25

30

45 50

55

ACTCCATGCC GCTTGTAACG CAGTAGATAT AGCTGTAGTG ATAGCGTTCC AAACCTTAGT TGCCACAGTA ACTATAGTGT TCCACAACGT TTGTAAGAAC GTCCAAATAG CGTTCCAAAT TGTTATTGCG ATAGTCATAA TTGTGGTAAA CACTGTAGTT ATTACAGTGA CTAACAAATT

ACTAACTTTG TTTACAACAT TAACGAATCC TTGAACAACT CTATTAACAA rGTTAATTAG

CGTACLTGTL ATAGTAGATA CCCATNGCAT ACCTTTAGTG ACMATGAAGT TCCAAGCTTG

AGACATTTTG TCTGATATAG TTGAAACAAC TTGTGTGAAT ATGCTTACAA CTTTATTCCA

AATTGTCGTT AATATACCAG ATAAGAAACT CCAAATCGTA TTCCATATAT TAGAAATAAA

AGCTGTCCAT ATCGTCATAA CTATTGTCAT TATCGTCGTG AAAACAGTTG TAATGATTGT

CCAAATCGTA GTAGCGATTG TAATTATCGT ATTCCAGATT GTACTTAAGA ACGTCCAAAT

540

600

660

720

780

840

900

960

1020

	ATAAGCGACT	ATTTGATTCC	AAACAATCAT	TATAAAATTG	TAAACATTCG	ATACTGCTGT	1140
5	AGTGATAGCT	GTTAAAATAG	CATTCCATAC	AACCGAAGCT	ACAGCTTTTA	ATACATTCCA	1200
•	AACATTAACC	ATAAACGTTT	TTATCGCATT	CCAAGCATTT	ATAATAAAGT	TTCTGAATCC	1260
	TTCATTTTTA	TTCCACAATA	AAACGAATAT	AGCTATTAAT	GCAGCAATTA	CACCAATTAC	1320
10	TATTGTTATT	GGACCGCCTA	AAATACCAAA	CACAGTTACT	AGTCCTGTGA	TAGCATTTCT	1380
	AATTAATCCA	ATCTTACCGA	ATAACAATTG	GAATATAACT	GATATAATTT	TTAATGGTCC	1440
	TTTTAATAAC	ATGAACGCAC	CTTTTAAAAT	TGTTAATCCC	GCTCTTAATA	AACCGAACTT	1500
15	ACTTACTAAT	GCAATGTTTC	TACCTATTAA	TCCGCCACCC	ATAAAGTTAG	ATACAGCAAG	1560
	AATAATCGGT	ATTAAAAATC	TAAATGCACC	AACTAAAGTT	ATAATGACAC	CAACTAATTG	1620
	TGCTGTAGCT	GGATGCGCCT	CAAACAAGTT	AGCTATCCAA	CCAGTTATTG	CAACTGCAAC	1680
20	GCGTAATACT	GCACTAGCTA	TAGGAGCCAT	TGCTGTTGCG	AATGCArmTA	ATCCTCTTGC	1740
	GATGTTTCCA	ATCAATTGCA	TTATTAGTGG	TCCATTTGTT	TGTATATAAC	TGACAAAGTC	1800
25	TTTAAACCCT	TGAGATTGTC	CTACTTGTTC	AGACCATTCC	CTAAACTTAG	CTGTCATTTG	1860
	TTCAAGAGAT	TGGAATATGC	CAGTTGATGA	TCCGCTGAAT	GCATTCATCA	AATTGTTAAT	1920
	TCCAACGAAA	ACATTTTTGA	AAATATTACC	AATGATAGGT	AAGTTTGTTT	TTGTGTATTC	1980
30	AATAAAACGA	GTTATCGAAT	TTTCTCCAGC	TGCACTATTA	GCCCAGTTAG	AGAAAGATTG	2040
	ACCTAATCTA	TCCAACCAAT	CAGCCGACCA	TTGAAACAGT	GGTGCTAATT	GCGTGAATAC	2100
	ATTGACTAAT	CCGTCACCAA	AACCACCTGC	AGCACTTAAT	AGCTTGTTAA	ATACCGAAAC	2160
<i>35</i> -	ACCCGTTGTA	TTCÁTCATAT	TAAAGAATCT	TGAAGCTACA	CTGCTATTTT	CAGCCCATTT	2220
	AAGCACGCTT	TGAGACGCTT	CTTCCATTCC	TCTTGAAATA	ССАСТААААА	ACGGTTGTAA	2280
40	GCTCTGCATT	GCAGTTTTAA	CAGTATTTAA	ACCATTTGCA	AGAGTTGTGA	AGATAGCGGA	2340
70	TTGATTTTGC	TTTATAATAT	CAGTCCATGC	TGACTTTACG	CCATCTAACG	CTTTTTTGTA	2400
	TTCGTTTGTT	GCTGAGCTAG	CTTGTAAAGT	GCCATCATTA	AGCATCTTTA	TAGCGCTGAT	2460
45	AGCCATTGCG	CCAAACGCTA	CAAATCCTGC	TCCCGCTATT	GCTACGGCAC	CACCTAAAGC	2520
	AAGTACACCA	CCAGTTAACA	CTTTGATAGC	GTTTAATAGC	GCAAATACTA	CAGGTACTAC	2580
	GCTCGCTATT	ACAGGTATTA	AGATACTAAA	AGATGATGTA	AGTAATCCAC	CAACCATATT	2640
50	AGAACCTACA	GTACCGAACA	CACGGAACAT	ATTAGCTAAA	TTCCCCATCT	GTCTTTGAAA	2700
•	ATTGTCATTT	GCTTTTATTA	TGTAGGCATA	AGCTTTCTTT	AAACCATTAG	TATCGACATC	2760
	TACCTTTGTT	GTTTTTTTGT	TCGGCAATGC	GTCTAATGAT	TTTTTAAACG	CATAAATAGT	2820
55							

	AAGTTCTTCT	TTAGTACGTT	TGATTTTAGA	GTTAGCAACA	CCATTGTCCA	CGTCTATAAT	2940
	AGCTTTGGCT	TTAGACCTAT	TTAATGCTTC	GAGACTAGCT	TTAGATACTT	TTAACACTCG	3000
5	ATTGAATTTA	CTGTTATCTG	CATTGACGTC	AATATTGACA	CGTTTCTTTT	CTAATTCTGA	3060
	TAATTTAGCT	TCTGTTTCAG	CGATATCTTT	AATCAACTTT	TGTTTTTGCA	ACTTAACTTC	3120
10	TGGTGTAACT	TCTTTAGAGT	TTAGTTTGTC	TAGTTCAAAA	TTCGATTCTA	GTACCTTTTG	3180
	TTGTAAATCT	TGTATACTAG	CATCTAATTT	AGCTTTTACA	TTTTTGTTAC	TAAAGGCATC	3240
	TAAAGACTTT	TTAGCAACTT	TGATAGTTTT	TTGTAAATTT	TTATCGTTAG	CGTTTAATTC	3300
15	AACATCTTTA	GTTTGATCTG	CTACTCGTTT	AAATCTTTGC	ACAGACTTAA	CCGCACTATC	3360
	AATTTGCCTT	TTGAATTTGG	CTACACTAGC	TTCAATAGTC	GCTTTAATTT	TATATTCCGT	3420
	CACATTAACA	CCTCTCTTTC	TATTGCTTAT	TAAATTCTGC	TATAACTTTA	AAGAATTCAT	3480
20	TATTTTGTGG	TTCGTATTCA	TCACGTTCGC	TACTAAATCT	TATATCTTTA	CCTTCGTTAA	3540
	GCCGTTGGAT	ATTITCTTCA	TAAGGCAATA	CGTCGTTTGC	ATTGTTAAAA	ACATATTCCT	3600
05	CTTTAGGTTT	ATTTTCTGTC	CCAACATTTT	TAGTAGCTGC	AGCATCACGA	ATAGCAAACG	3660
25	CAAGTTTGTA	ACGTTCGAAT	TCTTGGGTTA	GCATTTCATA	CTCTTTCGCA	TACATTCGAT	3720
	AGTTATATTC	TGTTAATGTC	ATTTGCTCAA	TAACGTTCAA	ATCTGTAATA	CCAAGTGTTG	3780
30	ACATACAAGT	TATAACGATT	CTGTCGTAAG	TTATTAGGCT	TCCGCTGGTT	TTTCTTCCGT	3840
	TTCCACTACT	TCGACTAGGT	TTCGGGTCAT	AGGTCGCTTT	CCCAACTCCG	TTAAAATATC	3900
	CGAACCGAAT	TCTTCTAGTC	CGATATTTTC	TGCGATTTCA	TCTAATGCTT	CATCAATGTT	3960
35	ATTAATAGTA	ATTGCTTGTT	TTTTTAAGTG	AGATGTAGCT	GCGATTAAAA	CTTCGCCAAT	4020
	CACAACCGGA	TTTCCACTTT	CTAAACCTAC	AGGCAACATT	GATACACCTT	GACCGATAGA	4080
	AGCTŦGTTCA	ACTTTTAAAC	CTAATCGGTT	ATCGATTTCT	CTTAAAAATT	TAAAACCAAA	4140
40	ACTTAATTCT	AATGACTTTC	CGTTAATTTC	TACATTCATA	ACTTAAAATC	TCCATTCATA	4200
	ATTAATTTAA	ACAAAATAAA	margcttaac	GCCCTATTTT	TATACCTCTC	TTGGTGCAAC	4260
45	CGGTGGTGAA	TCTACTTTAG	GTTGTGGAAT	TGCTGTTAAA	TCTTCGCCAG	TTAATGCATC	4320
	TGCTTTTGTA	GTGTCGTGGA	ATCTGTATCC	AGTCGCCTTA	AGTTTCTTTG	TTACAGCCTC	4380
	AGGTAGTGTT	GCAAATCCAC	GTTGGAAACG	ACCATTCACT	CCATATTCAT	ATTCATATTC	4440
50	ATCAATACCG	TTAGCTTCTG	CTTTTAATTC	AAATTTATTG	TGGAAACCTT	GGAAATATTT	4500
,	CGCTTTAAAT	TTAGCGGAAT	CCCCATTTTT	GCCTGGTATT	CTACTTTCAA	CTTCCCAAGC	4560
	TTCATACAAT	ACGCGATCTA	CAACTGCATC	TTCAATTTCA	TCTGCAAAAT	CGTCACCATA	4620

	GTCCATTGTA TCCTCTGTAT CTGTATCAGC TTCATGTGAT AAGCCGTATT CAGTTAAAAA	4740						
	AAGCATTTTA GTAGCATCTA CTTTTTCGCC AGCTTTTCTA AATAAAATAA	4800						
;	ACTATTTTC ATATTTGCCA TTCAATATTC CTCCGTTTTT TAAAATGTTT TGTAAGATAT	4860						
	CGTTACTGAT GTGTGTAGCA ATTCTTGATT GGTAGTATCA TCAACTAACT GTGTGATGTT	4920						
0	AGTATCTTCT TCTTCAAAGT CATAATCGTT TGTTTTAACG CTAGGTGTTA AATCATCAAT	4980						
	ACATCTTTTA ACAAGTCCGT CATGATGTCC TAAATCATCG CTTACACTCC AAATATCAAT	5040						
	AACTAAATTC GTATCGCCAG AATAACTATC AAACGTGTAC TTACTTCTAT TTGACTCCGG	5100						
5	CATTTTATT ACAAAAAAG GATACGGAAT CTCTTGTTGC ATCTCTTTAC GAGAAATAAC	5160						
	AGGGAATCCA TATCCTTGTA GCGTTTCATA CGCTTTATTA TAAAGTTGTA AGTTCGGTGT	5220						
	CATGCTTTTA TCTCCTATTC AAACAACGCT TTCAATTCTT CTACAGTTGA TTTCCTAATC	5280						
0	ACTTCGTATA CCGGCCACAT AAAAGGTTCA GCCTCCATGT ATCGAGTACC AAATTCTAAG	5340						
	AAACCACTAT AAGCTGCGTG CGATGTGATA GTGTATTGCA AATCGCCAGT TTTTTTATAT	5400						
5	CTGATATTGC GTGATAAATT ACC	5423						
3	(2) INFORMATION FOR SEQ ID NO: 25:							
o	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear							
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:							
	AAACGCAGAT GTTCAATTAG AACCAGTCTA TCGTATTAAG GAAGGTATTA AACAAAAGCA	60						
	AATACGAGAC CAAATTAGAC AAGCGTTAAA TGATGTGACA ATTCATGAAT GGTTAACTGA	120						
· ·	TGAACTAAGA GAAAAATATA AATTAGAGAC CTTGGACTTT ACTTTGAACA CATTACATCA	180						
	TCCTAAAAGT AAAGAGGATT TATTACGTGC TCGTAGAACC TATGCATTTA CTGAACTGTT	240						
_	TTTATTCGAA TTACGTATGC AATGGCTAAA TAGATTAGAA AAGTCATCTG ACGAAGCAAT	300						

TGAAATTGAT TATGACATAG ACCAAGTTAA ATCATTTATT GATCGTTTAC CTTTTGAACT

AACTGAAGCA CAGAAATCCA GTGTTAATGA AATTTTTAGA GATTTAAAAG CACCAATACG

TATGCATCGA TTACTTCAAG GTGATGTAGG TTCAGGAAAA ACAGTAGTTG CTGCAATTTG

TATGTATGCG TTAAAAACTG CTGGTTATCA ATCAGCATTG ATGGTACCAA CTGAAATTTT

AGCAGAGCAA CATGCTGAAA GTTTAATGGC TTTATTTGGA GATTCTATGA ACGTTGCATT

360

420

480

540

600

55

	TACGATTGAT	TGTTTAATTG	GAACCCATGC	TTTGATTCAA	GATGATGTGA	TTTTCCATAA	720
	TGTTGGTTTA	GTAATTACAG	ATGAACAACA	TCGATTTGGT	GTGAATCAAC	GCCAGCTTTT	780
5	AAGAGAAAA	GGTGCAATGA	CGAATGTGTT	ATTTATGACA	GCAACGCCGA	TACCAAGAAC	840
	ACTAGCAATA	TCAGTTTTTG	GTGAGATGGA	TGTGTCTTCA	ATTAAACAAT	TACCAAAAGG	900
10	TCGTAAACCT	ATCATTACTA	CTTGGGCAAA	GCATGAGCAA	TACGATAAAG	TTTTGATGCA	960
	AATGACCTCA	GAGTTGAAAA	AAGGTCGTCA	AGCATATGTC	ATTTGCCCGC	TAATAGAAAG	1020
•	TTCTGAGCAT	CTCGAAGATG	TTCAAAATGT	TGTCGCATTG	TACGAGTCTT	TACAACAGTA	1080
15	TTATGGTGTT	TCCCGTGTAG	GGTTATTGCA	TGGTAAGTTA	TCTGCCGATG	AAAAAGATGA	1140
	GGTCATGCAA	AAGTTTAGTA	ATCATGAGAT	AAATGTTTTA	GTTTCTACTA	CTGTTGTTGA	1200
,	AGTAGGTGTT	AATGTACCGA	ATGCAACTTT	TATGATGATT	TATGATGCGG	ATCGCTTTGG	1260
?0	ATTATCAACT	TTACATCAGT	TACGCGGTCG	TGTAGGTAGA	AGTGACCAGC	AAAGTTACTG	1320
	TGTTTTAATT	GCATCCCCTA	AAACAGAAAC	AGGAATTGAA	AGAATGACAA	TTATGACACA	1380
	AACAACGGAT	GGATTTGAAT	TGAGTGAACG	AGACTTAGAA	ATGCGTGGTC	CTGGAGATTT	1440
.5	CTTTGGTGTT	AAACAAAGTG	GaTTGCCAGA	TTTCTTAGTT	GCCAATTTAG	TTGAAGATTA	1500
	TCGTATGTTA	GAAGTTGCTC	GTGATGAAGC	AGCTGAACTT	ATTCAATCTG	GCGTATTCTT	1560
30	TGAAAATACG	TATCAACATT	TACGTCATTT	TGTTGAAGAA	AATTTATTAC	ATCGTAGTTT	1620
	TGACTAATTG	CCATGCTGAT	TTGTCAATTT	GAGTGCAACa	CTTCGTTAAT	TGAGTGATAT	1680
	GACACTTGAA	CTATTTAAAT	GTAAAGTGGT	ATTTTAACAA	TTTATAAATT	TTCGACTAAA	1740
35	TAATAGCTAA	ATATTACAGT	TATTTGTTGA	GTCGGTTAAA	TAGAAAGTGT	TATGATATGT	1800
	GAGGAATGTT	TAAGACTAGG	TACTAAAAAA	TGAGGGGTGA	GACGTTGAAA	CTAAAGAAAG	1860
	ATA Ã CGTAG	AGAAGCAATC	AGACAACAAA	TTGATAGCAA	TCCCTTCATC	ACAGACCATG	1920
10	AACTAAGCGA	CTTATTTCAA	GTGAGTATAC	AAACAATTCG	TTtAGaTCGC	ACTTATTTAA	1980
	ACATACCAGA	ATTAAGGAAG	CGTATTAAAT	TAGTTGCTGA	AAAGAATTAT	GACCAAATAA	2040
15	GTTCTATTGA	AGAACAAGAA	TTTATTGGTG	ATTTGATTCA	AGTCAATCCa	AATGTTAAAG	2100
	CGCAATCAAT	TTTAGATATT	ACATCGGATT	CTGTTTTTCA	TAAAACTGGA	ATTGCGCGTG	2160
	GTCATGTGCT	GTTTGCTCAG	GCAAATTCGT	TATGTGTTGC	GCTAATTAAG	CAACCAACAG	2220
50	TTTTAACTCA	TGAGAGTAGC	ATTCAATTTA	TTGAAAAAGT	AAAATTAAAT	GATACGGTAA	2280
	GAGCAGAAGC	ACGAGTTGTA	AATCAAACTG	CAAAACATTA	TTACGTCGAA	GTAAAGTCAT	2340
	ATGTTAAACA	TACATTAGTT	TTCAAAGGAA	ATTTTAAAAT	GTTTTATGAT	AAGCGAGGAT	2400

	TTAGAAGCCG	TACAAAAGGC	TGTTGAAGAC	TTTAAAGATC	TAGAAATTAT	ACTTTTCGGT	2520
_	GACGAAAAA	AGTATAATCT	GAACCATGAA	CGAATCGAAT	TTAGACATTG	TTCTGAAAAG	258
5	ATTGAAATGG	AAGATGAGCC	TGTTAGAGCG	ATTAAACGTA	AAAAAGATAG	CTCAATGGTA	264
	AAAATGGCTG	AAGCTGTGAA	ATCTGGTGAA	GCAGATGGAT	GTGTGTCAGC	AGGTAATACT	270
10	GGTGCTTTAA	TGTCAGCTGG	TTTATTCATT	GTTGGACGTA	TTAAAGGTGT	AGCTAGACCG	276
	GCTTTAGTAG	TAACATTGCC	AACGATTGAT	GGAAAAGGTT	TTGTCTTTTT	AGACGTTGGT	2820
	GCAAATGCTG	ATGCTAAACC	TGAACACTTA	TTACAGTATG	CGCAACTAGG	GGATATTTAT	288
15	GCTCAAAAAA	TTAGAGGTAT	TGATAATCCG	AAAATCTCAT	TATTAAATAT	AGGAACCGAG	294
	CCAGCTAAAG	GTAATAGTTT	AACGAAAAA	TCATATGAGT	TATTAAATCA	TGATCATTCA	3000
	TTGAATTTTG	TTGGGAATAT	TGAAGCGAAG	ACATTAATGG	ATGGCGATAC	AGATGTTGTA	3060
20	GTTACCGATG	GCTATACTGG	GAACATGGTC	CTTAAAAATT	TAGAAGGTAC	TGCAAAATCA	3120
	ATCGGTAAAA	TGTTAAAAGA	TACGATTATG	AGTAGTACTA	ТТАААТАААА	AGCAGGTGCA	3180
25	ATATTGAAGA	AAGATTTAGC	TGAATTCGCT	AAAAAGATGG	ATTACTCAGA	ATACGGTGGT	3240
	TCCGTATTAT	TAGGATTGGA	AGGTACTGTA	GTTAAAGCAC	ACGGTAGTTC	AAATGCTAAA	3300
	GCTTTTTATT	CTGCAATTAG	ACAAGCGAAA	ATCGCAGGAG	AACAAAATAT	TGTACAAACA	3360
30	ATGAAAGAGA	CTGTAGGTGA	AtCAAATGaG	Taaaacagca	ATTATTTTTC	CGGGACAAGG ·	3420
	TGCCCAAAAA	GTTGGTATGG	CGCAAGATTT	GTTTAACAAC	AATGATCAAG	CAACTGAAAT	3480
	TTTAACTTCA	GCAGCGAACA	CATTAGACTT	TGATATTTTA	GAGACAATGT	TTACTGATGA	3540
35	AGAAGGTAAA	TTGGGTGAAA	CTGAAAACAC	ACAACCAGCT	TTaTTGaCGC	aTAGTTCGGC	360
	ATTATTAGCA	GCGCTAAAAA	ATTTGAATCC	TGATTTTACT	ATGGGGCATA	GTTTAGGTGA	3660
	ATATTCAAGT	TTAGTTGCAG	CTGACGTATT	ATCATTTGAA	GATGCAGTTA	AAATTGTTAG	372
10	AAAACGTGGT	CAATTAATGG	CGCAAGCATT	TCCTACTGGT	GTAGGAAGCA	TGGCTGCAGT	3780
	ATTGGGATTA	GATTTTGATA	AAGTCGATGA	AATTTGTAAG	TCATTATCAT	CTGATGACAA	3840
1 5	AATAATTGAA	CCAGCAAACA	TTAATTGCCC	AGGTCAAATT	GTTGTTTCAG	GTCACAAAGC	3900
	TITAATTGAT	GAGCTAGTAG	AAAAAGGTAA	ATCATTAGGT	GCAAAACGTG	TCATGCCTTT	3960
	AGCAGTATCT	GGACCATTCC	ATTCATCGCT	AATGAAAGTG	ATTGAAGAAG	ATTTTTCAAG	4020
50	TTACATTAAT	CAATTTGAAT	GGCGTGATGC	TAAGTTTCCT	GTAGTTCAAA	ATGTAAATGC	4.080
	GCAAGGTGAA	ACTGACAAAG	AAGTAATTAA	ATCTAATATG	GTCAAGCAAT	TATATTCACC	414
	AGTACAATTC	ATTAACTCAA	CAGAATGGCT	AATAGACCAA	GGTGTTGATC	ATTTTATTGA	4200

	AACATCAATT	CAAACTTTAG	AAGATGTGAA	AGGATGGAAT	GAAAATGACT	AAGAGTGCTT	4320
	TAGTAACAGG	TGCATCAAGA	GGAATTGGAC	GTAGTATTGC	GTTACAATTA	GCAGAAGAAG	4380
5	GATATAATGT	AGCAGTAAAC	TATGCAGGCA	GCAAAGAGAA	AGCTGAAGCA	GTAGTCGAAG	4440
	AAATCAAAGC	TAAAGGTGTT	GACAGTTTTG	CGATTCAAGC	AAATGTTGCC	GATGCTGATG	4500
10	AAGTTAAAGC	AATGATTAAA	GAAGTAGTTA	GCCAATTTGG	TTCTTTAGAT	GTTTTAGTAA	4560
	ATAATGCAGG	TATTACTCGC	GATAATTTAT	TAATGCGTAT	GAAAGAACAA	GAGTGGGATG	4620
	ATGTTATTGA	CACAAACTTA	AAAGGTGTAT	TTAACTGTAT	CCAAAAAGCA	ACACCACAAA	4680
15	TGTTAAGACA	ACGTAGTGGT	GCTATCATCA	ATTTATCAAG	TGTTGTTGGA	GCAGTAGGTA	4740
	ATCCGGGACA	AGCAAACTAT	GTTGCAACAA	AAGCAGGTGT	TATTGGTTTA	ACTAAATCTG	4800
	CGGCGCGTGA	ATTAGCATCT	CGTGGTATCA	CTGTAAATGC	AGTTGCACCT	GGTTTTATTG	4860
20	TTTCTGATAT	GACAGATGCT	TTÄAGTGATG	AGCTTAAAGA	ACAAATGTTG	ACTCAAATTC	4920
	CGTTAGCACG	TTTTGGTCAA	GACACAGATA	TTGCTAATAC	AGTAGCGTTC	TTAGCATCAG	4980
	ACAAAGCAAA	ATATATTACA	GGTCAAACAA	TCCATGTAAA	TGGTGGAATG	TACATGTAAT	5040
25	ATATTTGAGC	TAAAGCTCAT	TGACGCAGTG	GTTGACTGGT	CATCCAATGG	AGAATTGTCT	5100
	GACCTAGTCA	ACTTTGCGGG	GGAAATTCTA	AGCAACCTAG	ATAAGGTTCC	AGAATTTCTC	5160
30	CCTAAGAAAC	ACTAATCAAT	aAATTGwTAA	GTGTTTCTAA	AATTTCTACT	TGTTTTTAG	5220
	TAAAATTTAA	GGGAAAATAT	AGTAGTCTAT	GTATAGGCAT	TTTTAAAGGA	GGTGAATCGA	5280
	CGTGGAAAAT	TTCGATAAAG	TAAAAGATAT	CATCGTTGAC	CgTTTAGGTG	TAGACGCTGA	5340
35	TAAAGTAACT	GAAGATGCAT	CTTTCAAAGA	TGATTTAGGC	GCTGACTCAC	TTGATATCGC	5400
	TGAATTAGTA	ATGGAATTAG	AAGACGAGTT	TGGTACTGAA	ATTCCTGATG	AAGAnGCTGA	5460
	AAAAATCAAC	ACTGTTGGTG	ATGCTGTTAA	ATTTATTAAC	AGTCTTGAAA	TAAATAATAA	5520
40	CTTACATCTG	GGTCGTCAGT	ATTGTCGACT	CAGTTTTTTŢ	CTTTAATTAT	CAATAGTTTT	5580
	AACGTAAAAT	TAAAGATGAT	TCAAGAGCAA	CACATAAAGG	AGATAAAATA	ATGTCTAAAC	5640
45	AAAAGAAAAG	TGAGATAGTT	AATCGTTTTA	GAAAGCGCTT	TGATACTAAA	ATGACAGAGT	5700
.•	TAGGCTTTAC	TTATCAAAAT	ATTGATTTAT	ACCAACAAGC	ATTTTCGCAT	TCGAGTTTTA	5760
	TTAATGATTT	TAATATGAAT	CGTTTAGACC	ATAATGAGCG	TTTAGAGTTT	TTGGGTGATG	5820
50	CGGTATTAGA	ATTGACGGTT	TCACGATATT	TATTTGATAa	ACATCCCAAC	TTGCCAGAAG	5880
	GGAATTTAAC	AAAAATGCGT	GCCaCTATTG	TATGTGAGCC	CtCACTkGTA	ATATTTGCGA	5940
	ATAAAATTGG	ATTGAACGAA	ATGATTTTAC	TTGGTAAAGG	TGAAGAGAAA	ACAGGGGGAC	6000

ATCAAGGACT AGATATAGTT TGGAAATTTG CTGAGAAAGT CATTTTCCCA CATGTAGAAC	6120
AAAATGAGTT ATTAGGCGTG GTAGATTTTA AAACACAATT CCAAGAATAT GTGCACCAGC	6180
AAAATAAAGG TGATGTAACC TATAATTTAA TAAAAGAAGA GGGACCGGCA CATCATCGTC	6240
TATTCACTTC A	6251
(2) INFORMATION FOR SEQ ID NO: 26:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4920 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
ACCTACTGAA GTTGCTAATT TTTTGGAGCA ACTAAGCACT GAAATTGAAC GTCTTAAAGA	. 60
AGATAAAAA CAACTTGAAA AAGTAATCGA AGAGAGAGAT ACTAATATTA AGTCTTATCA	120
AGACGTGGCA TCAATCTGTA AGTGATGCTT TGATACAAGC TCAAAAAGCT GGTGAAGAAA	180
CTAAGCAAGC TGCAGAGAAA CAAGCTGAAG CGATTATAGC TAAGGCAGAA GCGCAAGCTA	240
ATCAAATGGT TGGTGACGCG GTAGAAAAAG CACGCCGTTT AGCATTCCAG ACTGAAGATA	300
TGAAACGTCA ATCAAAAGTA TTTAGATCGC GTTTCCGTAT GTTAGTTGAA GCGCAATTAG	360
ACTTATTAAA AAACGAAGAT TGGGATTACT TGTTGAATTA TGATTTAGAC GCTGAACAAG	420
TGACGCTTGA AAATATTCAT CATTTGCATG AAAATGATTT AAAGCCAGAT GAAGTTGCAG	480
CAAATGCACA AAATAATGCA TCAAATACAC CAGACAATAA TCAACAATCC AATGATTCAG	540
AAACAACTAA GAAGTAAGAA TTAAATAAAG ACAGACGCGT AATATACATT TAACTTTTCA	600
CAGCGAATTA GGTAATGGTG AGAGCCTAGT AAAAGCATGT ATGTTATATC ACTGGCTTTT	660
TAATATTTAA ATAATGTAAT GAGAGAACTC TAAGTTGAGT TAATAAGGGT GGTACCGCGA	720
GCAATCGTCC CTTTTAATTT AACTTAGAGT TTTTTAAATT TTTAAGGAGT GAAAAAAATG	780
GATTACAAAG AAACGTTATT AATGCCTAAA ACAGATTTCC CAATGCGAGG TGGTTTACCA	840

AACAAGGAAC CGCAAATTCA AGAAAAATGG GATGCAGAAG ATCAATACCA TAAAGCGTTA

GAAAAAAAA AAGGTAACGA AACATTCATT TTACATGATG GCCCACCATA CGCGAATGGT

AACTTACATA TGGGACATGC CTTGAACAAA ATTTTAAAAG ACTTTATTGT ACGTTATAAA

ACTATGCAAG GGTTCTATGC ACCATACGTA CCAGGTTGGG ATACACATGG TTTACCAATT

GAACAAGCAT TAACGAAAAA AGGTGTTGAC CGAAAGAAAA TGTCAACAGC TGAATTCCGT

	TTAGGTGTTC	GTGGTGACTT	TAATGATCCA	TATATTACAT	TAAAACCTGA	ATACGAAGCT	1260
_	GCACAAATTC	GTATTTTTGG	AGAAATGGCA	GATAAAGGTT	TAATTTATAA	AGGTAAAAAG	1320
5	CCAGTTTATT	GGTCTCCTTC	AAGTGAGTCT	TCATTAGCAG	AAGCAGAAAT	TGAATATCAC	1380
٠	GATAAACGTT	CAGCATCAAT	TTACGTTGCA	TTTGACGTTA	AAGATGACAA	AGGTGTCGTT	1440
10	GATGCAGATG	CTAAATTTAT	TATCTGGACA	ACAACGCCAT	GGACAATTCC	ATCAAATGTT	1500
	GCGATTACCG	TTCATCCTGA	ATTAAAATAT	GGTCAATACA	ATGTAAATGG	CGAAAAATAT	1560
	ATTATTGCAG	AAGCCTTGTC	TGACGCTGTA	GCAGAAGCAC	TGGaTTGGGA	TAAAGCATCA	1620
15	ATCAAATTAG	AAAAAGAATA	CACAGGTAAA	GAATTAGAGT	ATGTTGTAGC	ACAACATCCA	1680
	TTCTTAGACA	GAGAATCGTT	AGTGATTAAT	GGTGATCATG	TTACTACAGA	TGCTGGTACA	1740
	GgTTGTGTAC	ATACAGCACC	AGGTCACGGG	GAAGATGACT	ATATTGTTGG	TCAAAAATAT	1800
20	GAATTGCCAG	TAATTAGTCC	AATCGATGAT	AAAGGTGTAT	TTACTGAAGA	AGGCGGCCAA	1860
	TTTGAAGGGA	TGTTCTATGA	TAAAGCTAAT	AAAGCCGTTA	CTGATTTATT	AACAGAAAAA	1920
?5	GGTGCACTAT	TAAAATTAGA	CTTTATTACA	CATAGCTATC	CACACGACTG	GAGAACAAAA	1980
	AAACCTGTAA	TCTTCCGTGC	TACACCACAA	TGGTTTGCCT	CAATCAGTÄA	AGTAAGACAA	2040
	GATATTTTAG	ATGCAATCGA	AAATACAAAC	TTCAAAGTAA	ATTGGGGTAA	AACACGTATT	2100
30	TACAATATGG	TTCGTGACCG	TGGCGAATGG	GTTATTTCTC	GTCAACGTGT	GTGGGGTGTA	2160
	CCGTTACCAG	TATTTTATGC	TGAAAATGGC	GAAATTATCA	TGACGAAAGA	AACAGTGAAT	2220
	CATGTTGCTG	ATTTATTTGC	AGAACACGGT	TCAAATATTT	GGTTTGAAAG	AGAAGCGAAA	2280
35	GACTTACTAC	CAGAAGGATT	TACACATCCA	GGCAGCCCTA	ACGGTACATT	TACTAAAGAA	2340
	ACAGACATTA	TGGACGTTTG	GTTTGATTCT	GGTTCATCAC	ACCGTGGCGT	GTTGGAAACA	2400
	AGAÇÇGGAAT	TAAGTTTCCC	AGCGGATATG	TATTTAGAAG	GTAGTGACCA	ATATCGTGGT	2460
10	TGGTTCAACT	CTTCTATCAC	AACTTCAGTT	GCTACAAGAG	GAGTATCACC	TTATAAATTC	2520
	TTACTTTCTC	ATGGTTTTGT	TATGGACGGT	GAAGGTAAGA	aaatgagtaa	ATCTTTAGGT	2580
15	AATGTGATTG	TACCTGACCA	agtggttaaa	CAAAAAGGTG	CTGATATTGC	GAGACTTTGG	2640
~	GTAAGTAGTA	CGGACTATTT	AGCTGATGTT	AGAATTTCTG	ATGAAATTTT	ААААСАААСА	2700
	TCTGATGTTT	ATCGTAAAAT	CAGAAATACA	TTAAGATTTA	TGTTAGGTAA	CATTAACGAT	2760
60	TTCAATCCTG	ACACAGATAG	CATTCCTGAA	TCAGAGTTAT	TAGAAGTGGA	TCGTTACTTG	2820
	CTAAATCGTT	TACGTGAATT	TACTGCAAGT	ACGATTAACA	ACTATGAAAA	CTTTGACTAC	2880
	TTAAATATTT	ATCAAGAAGT	TCAAAACTTT	ATCAATGTTG	AGTTAAGTAA	TTTCTATTTG	2940

	CAAACAGTGT	TATATCAAAT	TTTAGTTGAT	ATGACGAAGT	TGTTAGCACC	AATCTTAGTG	3060
5	CATACAGCTG	AAGAAGTTTG	GTCTCATACA	CCACATGTTA	AAGAAGAAAG	TGTTCACTTA	3120
5	GCAGACATGC	CTAAAGTTGT	AGAAGTAGAT	CAAGCTTTAT	TGGATAAATG	GCGTACATTT	3180
	ATGAATTTAC	GTGATGATGT	GAACCGTGCA	TTAGAAACTG	CTCGTAATGA	AAAAGTTATT	3240
10	GGTAAATCAT	TAGAAGCTAA	AGTTACGATT	GCTAGTAACG	AATTTAA	TGCATCTGAA	3300
	TTCTTAACTT	CATTTGATGC	ATTACATCAA	TTATTTATCG	TGTCACAAGT	TAAAGTTGTA	3360
	GATAAGTTAG	ACGATCAGGC	AACAGCTTAT	GAACATGGTG	ATATTGTCAT	CGAACATGCA	3420
15	GATGGTGAAA	AATGTGAAAG	ATGTTGGAAC	TATTCAGAGG	ATCTTGGTGC	TGTTGATGAA	3480
	TTGACGCATC	TATGTCCACG	ATGCCAACAA	GTTGTAAAAT	CACTTGTATA	ATTGAAATTG	3540
	TATAAAGTAC	TCATACAGAT	GATATAAATT	AAAGCTCTCT	TCATAATCAT	GTTGTAGTTT	3600
20	TTGTTGACAT	GATGAAGAGA	GTTTTTTTGT	GAATAAAAA	ATGACCAAGT	TACCGGTCAT	3660
	ATATGTAAAA	AATGTGCGAT	TTACTAAAAT	TTATTAAAAA	CAGGAATGGT	ACAAATTCTC	3720
25	TGAGGCATAT	AAATGCGTTA	TAGTTGCTAT	TCTCAATTAT	GTTCGCGATA	ATTTTAAGTA	3780
	AAAGTAAGCA	CAGATATTGA	ATTTGATAGG	AGTTAATTGA	ATGTATCATA	ACAGTAACGC	3840
	AAACTTTGTC	AATGGTATCA	CTTTAAATGT	GAGAGATAAG	AATGAATTAA	AGCCATTTTA	3900
30	TGAGGACATA	TTAGGATTAA	AAATATATA	TGAGACATTA	ACATCGATAC	AATATGAAGT	3960
	AGGTCAAAAT	AATCATGTCA	TTACACTTGT	TGAATTACAA	AATGGACGTG	AACCTTTAAT	4020
	GTCCGAAGCG	GGACTGTTTC	ATATCGCAAT	TAAACTACCT	CAAATTAGTG	ATTTAGCTAA	4080
35	TTTACTAATT	CATTTAAGCG	AATATGATAT	TCCAGTTAAC	GGAGGTATAC	AGCCTGCTTC	4140
	GTTATCATTA	TTTTTTGAAG	ACCCGGAAGG	AAACGGTTTT	AAATTTTATG	TTGATAAAGA	4200
40	CGAAGCGCAA	TGGACGAGGC	AAAATAATTT	AGTAAAAATT	GATATTAGAC	CATTAAATGT	4260
70	ACCGAGATTA	GTGAGTCATG	CAACAAAATT	GTTATGGTTA	GGTATTCCAG	ATGACGCTAT	4320
	TATAGGTGCA	TTGCATATTA	AGACAATTCA	TTTATCAGAG	GTAAAAGAGT	ACTACCTCGA	4380
45	TTATTTTGGA	TTAGAGCAAT	CGGCATATAT	GGATGATTAT	TCAATATTTT	TAGCATCGAA	444(
*	TGGCTATTAT	CAACATTTGG	CCATGAATGA	TTGGGTATCA	GCAACGAAAC	GTGTAGAAAA	4500
	TTTTGATACG	TATGGATTAG	CAATTGTTGA	CTTTCATTAT	CCTGAAACAA	CACATTTAAA	4560
50	TTTACAAGGT	CCGGATGGTA	TCTATTATCG	CTTTAATCAT	ATCGAAGTTG	AAGATTAGTA	4620
	TATACTTTGA	ATGGACGAAC	CATATAATGA	ATCGTTTTTA	ATGATCTTTT	TATACAAGTT	4680
	ATGAAGGAGG	CTGGGACATT	AAGTTCTTAG	GCAATGTAAA	AAGCTGATTT	CTATTAATTA	474
<i>55</i>							

	TITICCITAL ATTACTIGGE ATTACTACAA AACCTAGGIC ICGITTAACT TTATTTATTC	4860
	CTCGAACTGA CATTCGNGTG AACTCAAAAT NGCCTACTTN CTTAAATTAC CAATATCTAT	4920
5	(2) INFORMATION FOR SEQ ID NO: 27:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 626 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	TGGATTGCCA TTACATGGAC AAGATTTAAC TGAATCAATT ACACCATATG AAGGTGGTAT	60
	CGCTTTTGCA AGTAAACCAT TAATTGATGC TGATTTTATT GGTAAATCTG TATTAAAAGA	120
20	TCAAAAAGAA AATGGTGCAC CAAGAAGAAC AGTGGGATTA GAATTACTTG AAAAAGGAAT	180
	TGCAAGAACT GGTTATGAAG TTATGGATTT AGATGGAAAT ATTATTGGAG AAGTAACTTC	240
25	AGGAACACAG TCTCCATCAT CAGGAAAATC AATTGCACTT GCAATGATAA AAAGAGATGA	300
23	GTTTGAAATG GGTAGAGAGT TGCTTGTTCA AGTTCGTAAG CGTCAATTAA AAGCGAAAAT	360
	TGTTAAGAAA AATCAAATTG ATAAATAATT AAAAAGGGGT GTGCATTGTG AGTCATCGTT	420
30	ATATACCTTT AACTGAAAAA GACAAGCAAG AAATGTTACA AACAATTGGT GCAAAATCTA	480
	TAGGAGAATT ATTCGGTGAT GTACCAAGTG ACATTTTATT AAATAGAGAT TTAAATATTG	540
	CTGAAGGCGA ACGGAGAACA ACGTTACTTA GAAGATTNAA TCGCATTGCA AGCAAGAGTA	600
35	TCACTAGAGG AACGCGTACA TCGTTT	626
	(2) INFORMATION FOR SEQ ID NO: 28:	
40	<pre>(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear</pre>	·
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	•
	nggaagtggt gtatatattt gtaatgagtg tattgaatta tgctcagaaa tcgtcgaaga	60
50	AGAATTAGCT CAAAACACTT CTGAAGCGAT GACAGAATTA CCTACTCCTA AAGAAATTAT	120
	GGATCATTTA AACGAATATG TTATTGGTCA AGAAAAAGCT AAAAAATCTT TAGCTGTAGC	180
EE	TGTTTATAAC CACTATAAGC GTATTCAACA ATTAGGACCA AAAGAAGATG ATGTTGAATT	240
55		

	AACCTTAGCC	AAGACGTTGA	ATGTACCATT	TGCAATTGCA	GATGCGACAA	GTTTAACTGA	360
_	AGCTGGTTAT	GTAGGCGATG	ATGTTGAAAA	TATCTTGTTG	AGATTAATTC	AAGCAGCTGA	420
•	CTTTGACATT	GATAAAGCCG	AAAAAGGTAT	TATTTATGTA	GATGAAATTG	ATAAAATTGC	480
	ACGTAAATCT	GAAAACACAT	CTATAACACG	TGACGTTTCA	GGTGAAGGTG	TTCAACAAGC	540
0	ATTGCTTAAA	ATCTTAGAAG	GTACGACTGC	AAGTGTTCCG	CCACAAGGTG	GACGCAAACA	600
•	TCCAAACCAA	GAAATGATTC	AAATTGATAC	AACAAATATC	TTATTTATTC	TTGGTGGTGC	660
	CTTTGATGGT	ATTGAAGAAG	TGATTAAGCG	CCGTCTTGGT	GAAAAAGTTA	TTGGTTTCTC	720
5	AAGCAATGAA	GCTGATAAAT	ATGACGAACA	AGCATTATTA	GCACAAATTC	GCCCAGAAGA	780
	TTTGCAAGCC	TATGGTTTGA	TTCCTGAATT	TATCGGACGT	GTGCCAATTG	TAGCTAATTT	840
	AGAAACATTA	GATGTAACTG	CGTTGAAAAA	CATCTTAACG	CAACCTAAAA	ATGCACTTGT	.900
0	GAAACAATAT	ACTAAAATGC	TGGAATTAGA	TGATGTGGAT	TTAGAGTTCA	CTGAAGAAGC	960
	TTTATCAGCA	ATTAGTGAAA	AAGCAATTGA	AAGAAAAACA	GGTGCGCGTG	GTTTACGTTC	1020
5	AATCATAGAA	GAATCGTTAA	TCGATATTAT	GTTTGATGTG	CCTTCTAACG	AAAATGTAAC	1080
	GAaGGTAGTT	ATTACAGCAC	AAACmATTAA	TGTAGAACTG	AACCAG	•	1126
	(2) INFORM	ATION FOR S	EQ ID NO: 2	9:			
10	•	EQUENCE CHAI (A) LENGTH: (B) TYPE: no	4392 base pucleic acid	pairs			

(D) TOPOLOGY: linear

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

ATTGACTTCT TAGCAATNAA TATGAGTGAA GAACGTACTG TTGAAGTACC AGTTCAATTA 60 GTTGGTGAAG CAGTAGGCGC TAAAGAAGGC GGCGTAGTTG AACAACCATT ATTCAACTTA 120 GAAGTAACTG CTACTCCAGA CAATATTCCA GAAGCAATCG AAGTAGACAT TACTGAATTA 180 AACATTAACG ACAGCTTAAC TGTTGCTGAT GTTAAAGTAA CTGGCGACTT CAAAATCGAA 240 AACGATTCAG CTGAATCAGT AGTAACAGTA GTTGCTCCAA CTGAAGAACC AACTGAAGAA 300 GAAATCGAAG CTATGGAAGG CGAACAACAA ACTGAAGAAC CAGAAGTTGT TGGCGAAAGC 360 AAAGAAGACG AAGAAAAAC TGAAGAGTAA TTTTAATCTG TTACATTAAA GTTTTTATAC 420 TTTGTTTAAC AAGCACTGTG CTTATTTTAA TATAAGCATG GTGCTTTTTG TGTTATTATA 480 AAGCTTAATT AAACTTTATT ACTTTGTACT AAAGTTTAAT TAATTTTAGT GAGTAAAAGA 540

55

	CTTACTAAGC	TAAAGAATAA	TGATAATTGA	TGGCAATGGC	GGAAAATGGA	TGTTGTCATT	660
_	ATAATAATAA	ATGAAACAAT	TATGTTGGAG	GTAAACACGC	ATGAAATGTA	TTGTAGGTCT	720
5	AGGTAATATA	GGTAAACGTT	TTGAACTTAC	AAGACATAAT	ATCGGCTTTG	AAGTCGTTGA	780
	TTATATTTTA	GAGAAAAATA	ATTTTTCATT	AGATAAACAA	AAGTTTAAAG	GTGCATATAC	840
10	AATTGAACGA	ATGAACGGCG	ATAAAGTGTT	ATTTATCGAA	CCAATGACAA	TGATGAATTT	900
	GTCAGGTGAA	GCaGTTGCAC	CGATTATGGA	TTATTACAAT	GTTAATCCAG	AAGATTTAAT	960
	TGTCTTATAT	GATGATTTAG	ATTTAGAACA	AGGACAAGTT	CGCTTAAGAC	AAAAAGGAAG	1020
15	TGCGGGCGGT	CACAATGGTA	TGAAATCAAT	TATTAAAATG	CTTGGTACAG	ACCAATTTAA	1080
	ACGTATTCGT	ATTGGTGTGG	GAAGACCAAC	GAATGGTATG	ACGGTACCTG	ATTATGTTTT	1140
	ACAACGCTTT	TCAAATGATG	AAATGGTAAC	GATGGAAAAA	GTTATCGAAC	ACGCAGCACG	1200
20	CGCAATTGAA	AAGTTTGTTG	AAACATCACG	ATTTGACCAT	GTTATGAATG	AATTTAATGG	1260
	TGAAGTGAAA	TAATGACAAT	ATTGACAACG	CTTATAAAAG	AAGATAATCA	TTTTCAAGAC	1320
25	CTTAATCAGG	TATTTGGACA	AGCAAACACA	CTAGTAACTG	GTCTTTCCCC	GTCAGCTAAA	1380
	GTGACGATGA	TTGCTGAAAA	ATATGCACAA	AGTAATCAAC	AGTTATTATT	AATTACCAAT	1440
	AATTTATACC	AAGCAGATAA	ATTAGAAACA	GATTTACTTC	AATTTATAGA	TGCTGAAGAA .	1500
30	TTGTATAAGT	ATCCTGTGCA	AGATATTATG	ACCGAAGAGT	TTTCAACACA	AAGCCCTCAA	1560
	CTGATGAGTG	AACGTATTAG	AACTTTAACT	GCGTTAGCTC	AAGGTAAGAA	AGGGTTATTT	1620
	ATCGTTCCTT	TAAATGGTTT	GAAAAAGTGG	TTAACTCCTG	TTGAAATGTG	GCAAAATCAC	1680
35	CAAATGACAT	TGCGTGTTGG	TGAGGATATC	GATGTGGACC	AATTTCTTAA	CAAATTAGTT	1740
	AATATGGGGT	ACAAACGGGA	ATCCGTGGTA	TCGCATATTG	GTGAATTCTC	ATTGCGAGGA	1800
	GGTATTATCG	ATATCTTTCC	GCTAATTGGG	GAACCAATCA	GAATTGAGCT	ATTTGATACC	1860
10	GAAATTGATT	CTATTCGGGA	TTTTGATGTT	GAAACGCAGC	GTTCCAAAGA	TAATGTTGAA	1920
	GAAGTCGATA	TCACAACTGC	AAGTGATTAT	ATCATTACTG	AAGAAGTGAT	CAGCCATCTT	1980
4 5	AAAGAAGAGT	TAAAAACTGC	ATATGAAAAT	ACAAGACCCA	AAATAGATAA	ATCAGTGCGC	2040
	AATGATTTGA	AAGAAACGTA	TGAAAGCTTT	AAATTATTCG	AAAGTACATA	CTTTGATCAT	2100
	CAAATACTAC	GTCGCTTAGT	AGCGTTTATG	TATGAAACAC	CTTCGACAAT	TATTGAGTAT	2160
50	TTCCAAAAAG	ATGCAATCAT	TGCAGTTGAT	GAATTTAATC	GTATTAAAGA	AACTGAAGAA	2220
	AGTTTAACAG	TAGAGTCTGA	TTCGTTTATT	AGCAATATTA	TTGAAAGTGG	TAATGGATTT	2280
	ATAGGACAAA	GTTTTATAAA	ATATGATGAT	TTTGAAACAT	TGATTGAAGG	CTATCCTGTC	2340

	TCATGTAAAC	CTGTCCAACA	ATTITATGGG	CAATATGACA	TTATGCGTTC	TGAATTTCAA	2460
	CGATATGTTA	АТСААААСТА	TCATATCGTG	GTTTTGGTCG	AAACCGAAAC	TAAAGTTGAA	2520
5	CGTATGCAAG	CGATGTTAAG	TGAAAtGCAT	ATTCCATCAA	TAACAAAATT	GCATCGCTCA	2580
	ATGTCATCGG	GGCAAGCAGT	GATTATTGAA	GGCAGTTTAT	CTGAAGGATT	TGAACTACCT	2640
10	GATATGGGAT	TAGTTGTCAT	TACTGAGCGT	GAGCTTTTTA	AATCAAAACA	GAAAAAGCAA	2700
	CGAAAACGTA	CGAAAGCTAT	CTCAAATGCT	GAAAAAATTA	AGTCTTACCA	AGATTTAAAT	2760
	GTGGGAGATT	ATATTGTTCA	TGTGCATCAT	.GGTGTTGGTA	GATATTTAGG	TGTTGAGACG	2820
15	CTCGAAGTGG	GGCAAACGCA	TCGTGATTAT	ATTAAATTGC	AATATAAAGG	TACGGATCAA	2880
	CTATTTGTTC	CAGTAGATCA	AATGGATCAA	GTTCAAAAAT	ATGTAGCTTC	GGAAGATAAG	2940
	ACGCCAAAAT	TAAATAAACT	CGGTGGCAGT	GAATGGAAAA	AAACAAAAGC	TAAAGTTCAA	3000
20	CAAAGTGTTG	AAGATATTGC	TGAAGAGTTG	ATTGATTTAT	ATAAAGAAAG	AGAAATGGCA	3060
	GAAGGTTATC	AATATGGGGA	AGACACAGCT	GAGCAAACAA	CATTTGAATT	AGATTTTCCA	3120
25	TATGAACTTA	CGCCTGACCA	AGCTAAATCT	ATCGATGAAA	TTAAAGATGA	CATGCAAAAA	3180
25	TCGCGTCCAA	TGGATCGCTT	GCTATGTGGT	GATGTTGGTT	ATGGTAAAAC	TGAAGTTGCA	3240
	GTGAGAGCAG	CATTCAAAGC	TGTAATGGAA	GGAAAGCAGG	TTGCATTTTT	AGTTCCTACA	3300
30	ACTATTTTAG	CTCAGCAACA	TTATGAGACG	TTAATTGAGC	GTATGCAAGA	TTTTCCTGTT	3360
	GAAATTCAAT	TAATGAGTCG	TTTTAGAACG	CCTAAAGAGA	TAAAACAAAC	TAAGGAAGGA	3420
	CTTAAAACTG	GATTTGTTGA	CATAGTTGTT	GGTACACACA	AATTACTTAG	TAAAGATATA	3480
35	CAGTATAAAG	ATTTAGGGCT	GTTGATTGTA	GATGAAGAAC	AACGATTTGG	TGTACGCCAT	3540
						TGCAACCCCA	3600
	•					GATTGAAACG	3660
40						GAGTTTTATC	3720
	AAAGAAGCTT	TAGAAAGAGA	ACTATCCCGI	GATGGCCAAG	TGTTTTATCT	TTATAATAAA	3780
45	GTGCAATCCA	TTTATGaAAA	ACGAGAACAA	CTCCAGATGT	TAATGCCAGA	TGCTAACATT	3840
•	GCAGTTGCTC	ATGGACAAAT	GACAGAGCGC	GATTTAGAAG	AAACGATGTT	AAGTTTTATC	390
	AATAATgAAT	ATGATATTT	AGTAACGACG	ACGATTATTG	AAACAGGTGT	CGATGTCCCA	396
50						GTTGTATCAA	402
						ACATCCAGCA	408
	AATAAGGTAG	TAACTGAGAC	TGCAGAAGAT	CGATTACAAG	CGATTAAAGA	ATTTACGGAG	414

	TTAGGTAAAC AACAGCACGG CTTTATTGAT ACAGTTGGAT TTGATTTGTA CAGTCAAATG	4260
_	TTAGAAGAAG CTGTAAATGA AAAACGTGGT ATTAAGGAAC CAGAATCTGA GGTGCCAGAA	4320
5	GTCGAAGTTG ATTTAAACTT GGATGCATAT TTGCCAACAG AATATATTGC AAATGAACAA	4380
	GCTAAAATTG AA	4392
10	(2) INFORMATION FOR SEQ ID NO: 30:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 729 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
20	TTTCTTTTGA ATCTATATCG AGGTGGTTGG TAGGTTCATC TAAAATAAGT ACATTGTCAC	60
	GTTGCAACAT AAGTAGTGCT AGTTGTAAAC GTGCTTTTTC ACCACCAGAT AAATCATTAA	120
0.5	TTATCTTTTT AACATCGTCT TGTACAAATA AGAAACGTCC AAGAACTGCT CGAATATCTT	180
25	TTTCATTCAT TAACGGATAT TGATCCCACA CATAATCTAA AATCGTTTTA CTAGATTTAA	240
	ATTCTGCTTG CTTTTGATCA TAATAACCAA TTTGTAAATT TGCGCCGAAA GTAATATCGC	300
30	CATTAAGCGC TTTTTGTTGA TTAGCAATAG TTTTAATTAA GGTCGATTTT CCAATACCAT	360
	TTGGCCCAAT GATTGCTATA TGATCGCCTT TAGAGACCTC TATACTCATA GGTTTGGTAA	420
	TTGCAGTTTG ATAACCGATT TCTAAATTTT TTACATGCAT GACGTCATTA CCTGTATTCC	480
35	GGTCAAAGCC AAATTGAATA TTTGCACTTT TGGCATCTAA CATTGGTTTA TCAATGCGTT	540
	CCATTTTTC TAAAATCTTA CGTCTACTTT TTGCCATTCC ACTTGTTGAA GCACGGGTAA	600
	TATTTTTCTC AACAAAAGTT TCTAATCGTT TTATTTCTGC TTGTTGACTT TCATATTCTT	660
40	GCATTCGTTT TTGATAATAT AAATCCCGTT GCTGTATAAA TTCCTCGTAA TTACCAACAT	720
	AGCGTTTGA	729
45	(2) INFORMATION FOR SEQ ID NO: 31:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13856 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	·	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

	TGATGTTTCG	ATACATTTGT	TGCACCTTGT	GGATATACTT	TAAAGGTTGT	GTCGTATGTT	120
	TCCTTACTAT	CTTTAGCTTC	AGATTCCTGT	GATTCAACCG	TTTTATATTT	TTCAAGTGCA	180
5	TGTCCTTCAA	TATCAACTCG	TGGAATAATG	CGATTCAACC	ATGCTGGTAA	ATACCACGAA	240
	CCTTTtCCAA	ACAATTTCGt	TAATGCAGGA	ATTAACATCA	TECTGACTAC	GAAGGCATCA	300
0	AAGAGTACAC	CAAACGCTAA	TGCCATACCC	ATTGATTTAA	TCATGACATC	TTCTTGGAAT	360
U	ACAAACGCAA	AGAAGACACT	AAACATAATT	AATGCAGCTG	CTACAATAAC	AGGACCGCTT	420
	TCTTTCAATC	CTACTTTGAT	AGAATAATCA	TTATCCCCTG	TTTTACTATm	yyCTTCATGr	480
15	ATTCGCGACA	TAAGGAAGAC	TTCATAATCC	ATCGCTAATC	CAAATAAGAT	ACCTATAGTA	540
	ATAACCGGTA	AAAATGCTAG	CATTGGTCCT	GTCGTTTCAA	TACCAAACAG	ACCTTTCATA	600
	AAACCATCTT	GCATTACTAA	TGTTGTAAAT	CCTAATGTTG	CCATTAATGA	CAAGACGAAT	660
20	CCTAAAACTG	CTTTTAATGG	TATTAGAATT	GAACGGAAGA	CAATCATTAA	TAAGAAAAAT	720
	GCTAATACAA	CAATGACTGA	GGCAAATAAA	GGTATCGCCT	CATTTAACTT	TTTAGACATA	780
	TCAATATTAA	TGACACTTTG	TCCCGAAATC	TCCGTTTTGA	ACCCATATTT	ATCTTGTGCA	840
25	TCTTTATGAT	AATCTCGTAA	ATCATGCACT	AAATCATTTG	TACTCTCTGC	ATTAGGCCCT	900
	TGCTTAGGTA	TCACGACCAT	CAAAGCGTAA	TCATTATCTT	TACTCATTTG	TGGTGGCGTA	960
30	ACGATATCTA	CATTTTTCTT	ATCTTTAATA	TCTTTATATA	CAGACTGTAA	ATCTTGTTGT	1020
•	AATCCTTGTG	GATCATCCTT	TTTATCTTTC	ACATTTATCA	ACATCGGTAT	TTGGCCATTA	1080
	AATCCTTCAC	CAAATTTATC	CGAGATAATA	TCGTAAGCTT	TTTTCTGTGT	AGAATCTGCT	1140
35	GGTTTAACAC	CGTCATCTGG	AATACCAAGT	CGCATATGAC	TAACTGGTAT	TGCAGCTGCT	1200
	ACTAATATGA	TTAAACCTAG	TAATACTGCC	GCAAGTGCAT	TTCCTGTAAT	AAATTTAGAC	1260
	CATÇCCGTAT	CAATATCTTT	TTTGAATTTA	GACTGTAATT	TATTCACTTT	AATGCGTTLA	1320
40	TGGAAAATGC	TTATTAATGC	AGGTAATAAA	GTTAAAGCGC	TAAGTACTGC	AAAAACAACA	1380
	CTAATTGCCG	AAGCAAATCC	CATTACCGCT	AAGAAGTCAA	TGCCTACTAA	TGATAAACCA	1440
45	CATACTGCAA	TTACAACTGT	TACACCAGCA	AAAACAACTG	CACTACCTGC	TGTTCCTATT	1500
40	GCAAGACCAA	TGCCTTTAAT	GTAATCTGTT	TCAGTTTTCA	TAACTTGTCG	ATATCTGAAT	1560
	AAAATAAATA	ATGCATAATC	GATACCAACT	GCTAGTCCAA	TCATTACGGC	TAATGTCAGT	1620
50	GTGACATTTG	GTATATCGAA	TGCATAAGTT	AACAAACTGA	TAATACCTAC	ACCAGAGGCT	1680
	AGACCAATCA	ATGCACTTAT	AATTGGTAAT	CCTGCAGCAA	TGACTGAACC	GAATGTGATT	1740
	AACAGTACAA	CAAATGCAAC	AATAATACCA	ACTAGTTCAG	AATTACCGCC	TACTTCTGTA	1800

	AAATGACTTT	TAACATTATC	TCTAGAGCCA	TCTTTTAAAG	ATGTTTGACT	AACGTCATAT	1920
	GTGATATCTG	CAAATGCAGT	TGTTTTATCT	TTACTAATTT	GCTTATTTTC	ATAAGGATCT	1980
5	GATATTITAT	CAATGTGCTT	GTCATCTTTT	TTAATATCAT	CTAACGTTTT	CTTAATATCT	2040
	TTAGTAATGT	TCGGTTGCAC	AATACCATCA	TCTTTAGTCG	TCTTAAAGAC	AACACGTATT	2100
10	TGTGCCTTTT	CACTATCTTG	ATTAAAATGT	TTTTCAATCT	TTTTATTCGT	ATCTAACGAC	2160
	TCTAATCCTG	TCATTTTAAT	ATCATTGTCA	AATTTCGGTG	CATTTGTAGC	AAGTGGTATC	2220
	AATATTGCAG	CTACAATCAC	TATCCATGCA	ATGACCGCGG	ACCATTTATG	TTTTGCGATG	2280
15	AATGTCCCCA	TCTTATATAA	AAATTTTGCC	AAAGTATATT	GCCTCCTTTT	AAAATCAACG	2340
	TTATAGTTTA	AATATACAGT	GTAGATTATT	GTTCGATTAT	AGTATCTATC	CCCGACCTCT	2400
	TAAAGAATCA	ATTGGAAAAT	TTTGTATATT	AAACTACACA	CAAAGGAGAA	ATGTAGATGA	2460
20	AAGAGACTGA	TTTACGAGTT	ATAAAGACAA	AAAAAGCATT	GTCGAGTAGC	TTGCTACAAT	2520
	TGTTAGAACA	GCAATTATTC	CAAACGATTA	CTGTCAATCA	AATTTGCGAC	AACGCACTCG	2580
25	TACACCGTAC	AACATTTTAT	AAACATTTTT	ATGATAAATA	TGATCTTCTA	GAGTACTTGT	2640
	TCAATCAATT	GACTAAAGAC	TACTTTGCTA	GAGATATCAG	TGACCGTCTT	AATCATCCAT	2700
	TCCAAACGAT	GAGTGATACG	ATAATAATTA	AAGAGGATTT	GAGAGAAATC	GCAGAATTCC	2760
30	AAGAAGAAGA	CGCTGAATTT	AATAAAGTAT	TAAAAAATGT	CTGCATTAAA	ATTATGCATA	2820
	ACGATATCAA	AAATAATAGA	GACCGTATCG	ATATTGACAG	CGACATCCCA	GATAATCTCA	2880
	TATTTTATAT	TTATGACTCG	TTGATTGAAG	GTTTTATACA	TTGGATAAAA	GATGAAAAA	2940
35	TTGATTGGCC	TGGCGAAGAT	ATTGATAACA	TTTTCCATAG	ATTAATCAAT	ATTAAGATTA	3000
	AATAGTAGAT	GAGAAACTCA	TGAGCGTTAC	CAACATTCAT	AATAAAAACG	ATAGTGKACA	3060
	CGTTĀATGAA	TTCGTGTACT	ACTATCGTTT	TTTATTTTTA	TCGTGCTTAT	CGCTATTAAA	3120
40	ACAACTGATA	CACAACACAT	AAACTATGAA	GAAAAAAATA	AATCCGCTAT	CTAAATGACT	3180
	TTGACTCAGT	TGTTTAAATG	ACCAAATTGC	TAATACAATT	CCCATTATTA	TTGAAATAAC	3240
45	GTATCTCACA	TTCTTATACC	TATAATCCTT	TTCTAAAAAT	ATGGTTGCTA	TTACTTAATT	3300
	TTTAAAGTTA	AAAATAAAA	GAGCCAACCG	CAATGGATGG	CCCTTGTTCA	TTATGAAGCA	3360
	TTAGAACATT	TCTGAAACAA	CCTTTTGTTC	TAAGAAGTGT	AATAAGTAGT	CTGGACTACC	3420
50	TGTTTTAGCG	TCCGTACCTG	ACATTTTGAA	ACCACCAAAT	GGATGGTATC	CAACAACTGC	3480
	TGAAGTACAG	CCTCTGTTAA	GGTATAAATT	GCCTACATÇA	AATTCGTTTA	CCGCTTTAAT	3540
	CCAATGCTCG	CGATTATTTG	TAATCACTGC	ACCAGTTAAA	CCGTAATCTG	TATCATTTGC	3600

	TTCTTCTTGC	ATGATTCTAT	CTTTAGATTT	AAGTCCTGAA	ATGATTGTTG	GTTCTACAAA	3720
	GTAACCTTTT	GAATCATCAG	TGCCGCCACC	TTGTTCTAAT	TTACCTTCTT	CTTTACCAAT	3780
5	CTCAATATAA	TTTTTAATCT	TATCAAATTG	TTTTTTATTA	ATAACTGGGC	CCATATACGT	3840
	ATTGTCTACA	GTATTGCCCA	ACGTTAATTC	TTTTGTTAAT	TTGATTGATT	TCTCTAATAC	3900
o	TTCGTCATAA	ACGTCTTTAT	GCACAATTGC	ACGTGAACAT	GCTGAACATT	TTTGACCAGA	3960
U	AAAACCAAAT	GCTGACGTTA	CAATAGCTTC	TGCTGCCATA	TCTGTATCAA	TATTTTCATC	4020
	AACTACAATG	GCATCTTTAC	CACCCATTTC	AGCGATAACA	CGTTTCAAGA	AGTTTTGACC	4080
5	TTCTTGAACA	ACGGCACTAC	GTTCATAAAT	TCTAGTACCT	GTCGCACGTG	ATCCTGTAAA	4140
	TGTAACGAAA	TGCGTATCTT	TATGATCAAC	TAAGTAATCA	CCAATTTCTT	TCGGATCACC	4200
	AGGAACAAAG	TTAACTACGC	CTTTTGGTAA	TCCTGCTTCT	TCTAAAATTT	CCATTAATTT	4260
20	ATAAGCGATA	TAAGGTGTAT	CCTCAGCAGG	TTTCAATAAC	ACTGTATTAC	CTGCCACAAC	4320
	TGGTGCTAAA	GTTGTACCAG	CCATAATCGC	AAACGGGAAG	TTCCACGGCG	GAATTGTAAC	4380
	ACCTGTACCA	ATTGATTTAT	AGAAATATTT	ATTGTGTTCA	CCTTCACGAT	CAAGTACTGG	4440
?5	CTTACCTTGA	GCCAAGTCCA	TCATTGAACG	TGCATAGTAT	TCAATAAAAT	CAATACCTTC	4500
	AGCTGCATCA	CCAACTGCTT	CATCCCATGG	CTTACCTGCT	TCATAAACCA	TAATTGCTGC	4560
30	AATTTCCGCT	TTTCGACGAC	GAATAATTGC	CGAAACACGT	AACATAAGCT	CTGCACGATC	4620
	ATTTGCTGAC	CATGTTTTCC	AAGATTTATA	AGCTTCGTTT	GCTGCTTTAA	ACGCATCTTC	4680
	AACATCTTGT	TTTGTTGCCT	TTGATGCATT	TGCAATCACT	TGTGATGTGT	CTGCAGGATT	4740
35	GATTGATTTA	ATTTTGTCAT	CTTTGAAAAT	CTTCTCTCCA	TTAATCACTA	ATGGTATGTC	4800
	TTGACCTAAT	TCTTTTTCCA	CGTCTTTCAA	TGCTTTCTTA	AACATATCCA	CATTTTCTTG	4860
	GACTGAAAAA	TCGTAACCAG	GTTCATTTTT	AAATTCTACT	ACCATGTACA	CTTACCCCCT	4920
40	ATAAATTTTG	AAAGTGGTTT	AACCCTTTGA	TTTAATGATA	TAACATCATT	TAAACTCATT	4980
•	TTACTATGAT	TAAGGTTAGT	TTTGCAATCG	CTTTCATTTT	TATGTTTTAT	CACTTATTCT	5040
45	CAAGTATTTT	GAAATTGATT	GGTTACTTTT	TAAAATTTAT	ATGGGTCGCA	ACTGCTACTT	5100
	TATCGTTTCG	TCATTTAATG	TTTCGGATGG	TAGGTCATTA	TCAATTTTAC	GAACGACTTT	5160
	ACAAGGGTTT	CCAACCGCTA	AGCTGTGTGG	CGGAATATCT	TTAGTGACAA	CACTACCAGC	5220
50	ACCAATCACA	CTGCCTTCTC	CAATCGTCAC	CCCTGGTAAC	ACGGCTACAT	GACCGCCAAA	5280
	CCAAGTATTA	CTGCCAATAT	GAATGGGTCC	GGCTTTTTCA	AAACCTTCAT	TTCTATGATG	5340
	GAAATTAAGT	GGATGTGTCG	CTGTGTAGAA	TCCACAATTA	GGTCCTATAA	AAACATTATC	5400

	TCCTAGTTTA	ACGTTCCAAC	CATAATCTGT	ATCAAAAGGA	ATCGAAATAC	TTACATTGTC	5520
5	TGTTGTTGTT	TGAAATAATT	GATCAATTAA	TTCCTTTCTT	TTATTTGTAG	CACTCGGTCT	5580
5	TGTATGATTT	AATTCAAAGC	AAATATCTTT	CGCTCGTGCA	CGTTCATTGA	TTAAGTATTG	5640
	ATCAAAGTTT	GCATCGTACC	ATTTTTCTGC	TAACATTTTT	TCTTTTTCAG	TCATTACACC	5700
10	TTTCAACTCC	TAATAACTTA	TTTACTTGTT	TAAAAGTTAA	TCAAATAAAC	CTTCGCCTAT	5760
	GCAACTAATA	CGCTATAACA	TTATGAAATC	ATGACCTTAT	CACCCTTATC	TATACAATTC	5820
	TCGCATCAAA	TACTGCTAAA	GTAGTAGATA	AATTCAATAC	TACAGACGCA	TTCATTTTTT	5880
15	AATCTATTAA	CGTACAATGT	GAGTAAGAGA	AATATAAAGG	AGTATGATAG	CGATGAGAAT	5940
	ATTAATTACA	GGCACAGTTG	CTATCTTAAT	CATTCTAGGT	TTGGTCAAAA	CGATACAAGA	6000
	TTACGAAATG	ACAAACGACA	CGAGTCGTcA	GTTGTCAGAC	AACAAAGATG	ATGATAAAGT	6060
20	CATCCATCTT	AATAATTTA	AAAATTTACA	TGCGAAAGAA	TTTAACCCAT	CTGATTTCTT	6120
	TTAAGTCACC	TAAGAATTGC	AAATCCAGAA	GTCATTTAAG	TTTTACCTTT	CATTCATACA	6180
25	TCCTTTAATA	TTAATTACGA	CTTCTTTTAT	ATAGATGCTA	AGTAGAGAGA	TTGTTGTGCA	6240
	ATGTTTGCAC	GGCAATCTCT	CTTTTTCTTT	TTAAAATTGG	TAAAAGTAAA	ACGCAACGAT	6300
	TGACTTATAT	ACCTATAGGG	GGTACATTAG	ACGTGTAACA	ATGAATCACA	GGGAGGCAAT	6360
30	AATGTGGCTA	ATACGAAAAA	AACAACATTA	GATATCACTG	GTATGACTTG	TGCCGCATGT	6420
	TCAAATCGTA	TCGAAAAGAA	ACTGAATAAA	CTTGATGACG	TTAATGCCCA	AGTGAATTTA	6480
	ACTACAGAGA	AAGCAACTGT	TGAGTATAAC	CCTGATCAAC	ATGATGTCCA	AGAATTTATT	6540
35	AATACGATTC	AACATTTAGG	TTACGGTGTC	GCTGTAGAAA	CTGTCGAATT	AGACATTACA	6600
	GGTATGACTT	GTGCTGCATG	CTCAAGCCGT	ATTGAAAAAG	TGTTAAATAA	AATGGACGGC	6660
40	GTTCAAAATG	CAACGGTCAA	TTTAACAACA	GAGCAAGCTA	AAGTTGACTA	TTATCCTGAA	6720
••	GAAACAGATG	CTGATAAACT	TGTCACTCGC	ATTCAAAAAT	TAGGTTATGA	CGCGTCTATT	6780
	AAAGATAACA	ATAAAGATCA	AACGTCACGC	AAAGCTGAAG	CGCTACAACA	TAAATTGATT	6840
45	AAGCTTATCA	TATCAGCAGT	ATTATCTTTA	CCACTATTAA	TGTTAATGTT	TGTACATCTT	6900
	TTCAATATGC	ATATACCAGC	ACTATTTACG	AATCCATGGT	TCCAATTTAT	TTTAGCTACA	6960
	CCTGTACAAT	TTATTATTGG	ATGGCAATTT	TATGTAGGTG	CTTATAAAAA	CTTAAGAAAT	7020
50	GGTGGCGCCA	ATATGGATGT	ACTTGTTGCT	GTTGGTACAA	GTGCAGCATA	TTTTTACAGT	7080
	ATTTATGAAA	TGGTTCGTTG	GCTAAATGGC	TCAACAACGC	AACCGCATTT	ATACTTTGAA	7140
	ACAAGCGCCG	TACTAATTAC	CTTAATCTTA	TTCGGTAAGT	ATTTAGAAGC	TAGAGCGAAG	7200

	TTAAAAGATG	GTAATGAAGT	GATGATTCCT	CTAAATGAAG	TACATGTTGG	AGATACACTT	7320
	ATCGTTAAAC	CAGGTGAAAA	GATACCTGTT	GATGGCAAAA	TTATTAAAGG	TATGACTGCC	7380
5	ATCGACGAAT	CTATGTTAAC	AGGTGAATCT	ATCCCTGTTG	AGAAGAATGT	TGATGATACT	7440
	GTAATTGGTT	CAACGATGAA	CAAAAACGGT	ACTATTACTA	TGACAGCAAC	AAAAGTTGGC	7500
10	GGGGACACTG	CGTTGGCAAA	TATTATTAAA	GTTGTCGAAG	AAGCTCAAAG	TTCTAAAGCG	7560
10	CCGATTCAAC	GATTGGCAGA	TATTATTTCT	GGTTATTTCG	TTCCTATCGT	TGTTGGTATC	7620
	GCACTATTAA	CATTTATCGT	GTGGATTACT	TTAGTTACAC	CAGGTACATT	TGAACCTGCA	7680
15	CTTGTTGCGA	GTATTTCCGT	TCTCGTCATT	GCTTGTCCAT	GCGCATTGGG	ACTTGCTACA	7740
	CCAACTTCTA	TTATGGTAGG	TACTGGTCGC	GCTGCTGaAA	ATGGTATTTT	ATTTAAAGGT	7800
	GGCGAGTTTG	TTGAACGCAC	ACATCAAATT	GATACCATCG	TTTTAGATAA	GACGGGTACC	7860
20	ATTACAAATG	GTCGTCCAGT	CGTGACAGAT	TATCATGGTG	ACAATCAAAC	GCTACAACTA	7920
	CTTGCTACTG	CTGAAAAAGA	TTCTGAACAC	CCATTGGCAG	AAGCCATTGT	CAATTATGCA	7980
05	AAAGAAAAGC	TTATAATAAT	AACTGAGACA	ACAACATTTA	AAGCAGTACC	TGGCCATGGT	8040
25	ATTGAAGCAA	CGATTGATCA	TCACCATATA	TTGGTTGGTA	ACCGTAAATT	AATGGCTGAC	8100
	AATGATATTA	GCTTGCCTAA	GCATATTTCT	GATGATTTAA	CACATTATGA	ACGAGATGGT	8160
30	AAAACTGCTA	TGCTCATTGC	TGTTAATTAT	TCATTAACTG	GTATCATCGC	AGTGGCAGAT	8220
	ACTGTCAAAG	ATCATGCCAA	AGATGCTATA	AAACAATTGC	ATGATATGGG	CATTGAAGTT	8280
	GCCATGTTAA	CTGGCGATAA	TAAAAACACT	GCTCAAGCCA	TTGCAAAACA	AGTAGGCATA	8340
35	GATACTGTTA	TTGCAGATAT	TTTACCAGAA	GAAAAAGCTG	CACAAATTGC	GAAACTACAG	8400
	CAACAAGGTA	AGAAGGTTGC	GATGGTTGGT	GACGGTGTAA	ATGATGCACC	TGCATTAGTT	8460
	AAAGCTGATA	TCGGTATCGC	CATTGGTACA	GGTACAGAAG	TTGCCATTGA	AGCAGCTGAT	8520
40	ATTACTATTC	TTGGTGGCGA	CTTGATGCTT	ATTCCTAAAG	CCATTTATGC	AAGTAAAGCA	8580
	ACCATTCGTA	ATATTCGTCA	AAATCTATTT	TGGGCATTCG	GCTATAATAT	TGCCGGTATC	8640
45	CCTATAGCTG	CATTGGGCTT	ACTTGCGCCA	TGGGTTGCTG	GTGCTGCAAT	GGCACTAAGT	8700
	TCAGTAAGTG	TTGTCACAAA	CGCACTTAGA	TTGAAAAAGA	TGCGATTAGA	ACCACGCCGT	876
	AAAGATGCCT	AGATTCCTTA	ATAATGAAGG	ATTCGTTGGT	GATTCTGAGA	TAGGCTAGTG	882
50	ATTGGCTCTA	TAATGTCGCG	GTTTAyaGTt	GGATCTTCGC	TCCAACTGCA	TATATAGTnA	888
	CACTTTTCGC	TTGGCGAATT	AGTGTATCTT	ACCTAATAGC	TCCGCCTATT	AGGTTCCATC	894
	ATTATTATAA	ATAATAAGTA	CACTACGGtT	TACAGTTGGA	TCTTCGCTCC	AACTGCATAA	9000

	GAAATTTTAA	ATGTTGAAGG	TATGAGCTGT	GGTCACTGCA	AAAGTGCTGT	TGAATCTGCA	9120
	TTAAATAATA	TTGACGGTGT	CACTTCAGCT	GACGTTAACC	TTGAAAATGG	TCAAGTAAGT	9180
5	GTTCAATATG	ATGACAGTAA	AGTTGCTGTA	TCTCAAATGA	AAGACGCAAT	TGAAGATCAA	1 9240
	GGTTACGATG	TCGTTTAATT	AGGCAATATT	CAACGTCATC	AACACCAAAT	TAAAAAATCG	9300
10	AACTGATGAG	AATCCCAACA	ATCCAAATTA	TCTCATCAGT	TCGATTTTTA	ATTTACTCGT	9360
	AACCTAGTAT	CTCCAGTCTG	CAATACATCT	AATGTTGCAT	CTAATGCATC	GACAATTAGA	9420
	TTTTTAACTG	CAGCTTCAGT	ATAAAACGCA	ATATGTGGTG	TTAATATGAC	ATCTTCCCTG	9480
15	TCAATCAACG	ATTCTAACAA	TGGATCGTTC	AGTGTTTTGC	CCCTTTGATC	ACTTGGGAAA	9540
	AGTTTGCGTT	CAAATTCATA	CGTATCAAGT	GCTGCACCTT	TAATCACACC	ATTGTCTAAT	9600
	GCGTCTAATA	ACGCCTTAGT	ATCTACTAAA	GAACCTCTCG	CACAATTGAC	AAATACTGCG	9660
20	CCCTTTTTAA	AATGTTTAAA	TAATTCAGCA	TTAAATAGAT	AATGATTATA	TTTCGTTGCA	9720
	GGTACATGTA	ATGTCACGAT	ATCAGCACCT	TCAACCGCTT	CCTCAATCGT	ATCTTTGTAA	9780
25	TCGACATACG	TTGCAATTTT	AGCATTAGGA	AACGGtCGTA	TGCGACCACA	TCACTTTGAT	9840
23	AACCATTGGC	AAATATATCG	GCTACTACAC	GGCCAATTCG	ACCTGTACCA	ATAACAGCTA	9900
	CTTTTAAATC	TTTAATGGAT	TTCGATAAAA	TAGTAGGTTC	CCATCTAAAA	TCATGCTCCC	9960
30	GCACTTTCGT	TTGAATTTGA	TTAAAATGAC	GAACCACATT	AATAGCCTGG	TTCACAGCAA	10020
	ACTCCGCAAT	TGAATTCGGA	GAGTATGACG	GCACATTTGA	CACAATAAAG	TTATACTTGT	10080
	TTGCTAACTC	CAAATCATAT	GTATCAAATC	CAGCACTACG	TTGTGCGATT	TGTTTAATAC	10140
35	CTAGTTCATT	TAATCGTTTA	TAAACATGCT	CTGATAATGG	TATTTGTTGT	GATAGCGATA	10200
	AGCCATCATA	ACCAGCGACA	CCTTCAACAT	TGTCATCAGT	TAATGCTTCT	TTAGTAATAT	10260
	CTACCTCAAC	ATGATGTTTC	TCTGCCCACG	CCTTGATATA	AGGCATATCT	TCATCACGTA	10320
40	CACTCATGAT	TTTAATTTTT	GTCATTTTAA	CATCACCCTT	AACTTTATTA	TTCATATAAA	10380
	TATGCTAGTT	CTGTTAATCT	TATTGCAGCT	TCGTCTAATT	TCTGGTCATC	TAACGCCAAT	10440
45	GAAATTCTCA	CATAACGATT	ACCATTCTCT	CCAAATGGTT	TCCCTGGAGC	AACAAGTATT	10500
	GACTTCTCTT	GCACTAAAAA	TTGCTCAAAT	TGCTCGCTGT	CATAACCAGG	CGGTGTTTCC	10560
	AACCATACAT	ATATGCCACC	TTTAGCATGA	ACAAATGGCA	AATCAGCTTT	TGCAAGCATG	10620
50	GCTTCGAATC	GGTCACGACG	TGTTTTAAAT	ACATTGCTTT	GTTCTTCTAA	AAAATCATCA	10680
	TAATGATTCA	AAGCATATAT	TGCGGCATCT	TGTAATGCAC	CAAACATCCC	AGCATTTGTG	10740
	TGCGTTTGGT	ACTITITCAA	AGCTTGAATC	ATATCTTTAT	TACCAACTGC	AAAACCGACT	10800

	CCATTTTCCG	AAGCAAGTAT	ACTAGGATTT	TTAGCGTCGA	AACCGAAAGC	ACCATAAGCA	10920
	AAATCATGCA	CGATTTTAGT	GTCTGTACCT	TTAAATTTAG	CTATCGCTTC	ATCAAAAACT	10980
5	TCTTTCGTAG	CTGTCGATCC	agttggatta	TTTGGATACG	TTAAATAAAT	GAGTTTTGTT	11040
	TTATCTATTA	TTTGTGAATC	AACTTTGGAC	CAATCTGGCA	AATAATGTGG	CGGTTCTAAA	11100
10	TTAAGCGGGA	CTGGCTTGCC	ATCAGCTAAA	AGTACACCTG	CTAAATAATC	CGTGTAGCCT	11160
10	GGATCAGGTA	GTAATACATA	GTCTCCTGGA	TTGATAACAC	ATGTTGGTAC	TGCCACTAAT	11220
	CCATTTTTTG	TACCATATAA	AATGCATACT	TCATCTTCTT	TATCTAACGT	CACATTATAT	11280
15	TGTCTTTGAT	AAAAATCTAC	AATAGCTTGC	TTGAACGCTT	CTTTACCATG	AAAAGCACCA	11340
	TATTTTTGAT	TTTCAGGAAT	AGTTAGTGCT	TTTTGAAAAT	GATCAATAAT	ACCTTGTGGC	11400
	GTGGGCCCAT	CAGGGATTCC	AACTGCCATA	TTAATTAATG	GCAATGGTCC	ATGTTCGATT	11460
20	TTACGTCCCA	TCGTTTTCCC	GAAATAACTA	TCAGGGATAT	TTGCTAATTT	GTTAGAGATC	11520
	ATCAAATTCC	TCCTCTATCA	TTAAACATAG	CCTGGGCGAC	TATCATAATC	CTAACAACTT	11580
	GTATCACTCT '	CATTTAGATG	GTTACAATGA	CATCGCCATT	CACCGTTATG	TTCAACAGAA	11640
25	CTTATGACAC	ACGTTGTATT	GAATGAATTT	ATTTTCATTT	TAGGTAGGTA	TAATATTATT	11700
	GTCAATATTA	GGAATTTTCA	GATTAATATG	CACTCAATCG	TTATGATTTA	ACTGTCATGC	11760
30	ATATCCGCAT	GCGCAACCAG	TTAGATATGC	TTATATAAAG	TATAACGCCC	ATCAAGGTAC	11820
	GTATTCAAAC	GTGAACCTTA	ACAGGCGTCA	TTCATTGTTA	AATAAAACTT	CTTAAGCACA	11880
	TACTTATTTC	ACTATGCCTT	TTACGTTCCC	CTTATACTTT	TCTCACATCT	TTCTCTTAGA	11940
35	CTACTCCCTT	ATACGCCCCG	CTCAATATCT	TTAATCATTT	CATCTACAGT	TATTTTCGCA	12000
	CTCGTTAAGA	CAATAGGAAC	GCCTGCACCT	GGATGCGTAC	TTGCACCTGC	AAATATAAA	12060
	TCTTTATAAT	CTCGCGATAC	ATTTTGTGGA	CGATAATAAT	TACTTTGCGC	TAAAGTTGGC	12120
40	ATTAAACCGA	ATGCCGAACC	AAATTTCGCA	TGATACGTTT	GCTCAAAATC	ATTTGGCGTA	12180
	AAGATTGTTT	CTGAAACAAT	ATGCGATTTT	ATATCTTCAA	ATACTTCAAT	CGTTGCTAAT	12240
45	TTACGATAÀA	TAATTTCCTT	TATTTGTTGC	GTCAAAGCTI	CATCTGACCA	ATCGATTCCG	12300
10	CTACCTGTTT	TAAGTTCCGG	CGTCGGCATT	AGCACATAAA	TACCAGTTTT	GCCTTCTGGC	12360
	GCAAGTGATT	TATCAGCGAC	CGCTGGTACA	A TACACATAAA	TAGAAGGATO	ATATGATAAA	12420
50	CGTCCCTCAA	ATATTTCTTC	AATATTGCCT	CTAAAGTCAT	CTGAAAAAA	AACATTATGA	12480
	AGTCTCACTT	GATCTGTCAC	ATCAATATC	r ATACCGATAT	CACATTAAAA	TGCTGAACAA	12540
	GAGTAATCTA	AGTCTGCAAT	TTTATGTGG	GGATACTTT	TAATAGGTG	AAAATCTGGC	12600

	ATGTCACCAT	TCACTTTTAT	CGCATCGGCC	CGTTTGAATT	TAGGATCAAT	AATAATTTGC	12720
	TCAATTTCAG	CATTTAGTTC	AATATTAACG	CCTAAGTCTT	TATTTAATTG	CGCTAGcCCT	12780
5	TGAGCCATGC	CATACATACC	GCCTTTAATA	AAATGCACAC	CAAACATCAT	TTCAATCATA	12840
	GGAATAATTG	AATATAGTGA	CGGGCCTCGT	TTTGGATCAA	TTCCTATGTA	TAACGTTTGA	12900
10	AACGCTAAAA	GCTTTTGTAT	CTTTTCGTTA	TCAATATAAT	GTTCAATTAG	CTGATCTGCA	12960
	TGATTTAACG	TTTTTAACTT	AGCACCTTGC	ACAAGTGACG	TCATATTATA	AAAGTCACTC	13020
•	GGTTTGCGAT	ACGTTCTTTC	TAAGAAATAG	CGACGTGCAA	TTTCATATTT	TTTATAAACA	13080
15	TCCGTTAAAA	AGGACATAAA	ACCATGCGTT	GAACCAGGTT	CTATACTTTC	TAGCATTTGC	13140
	TGTAATTCAG	CTAAATCTGT	AGGCACCGTT	ATACGATCAT	CGTGGTCAAA	ATACACATCG	13200
	TAAATATAAC	GTAATTGTCT	CAATTCAATA	TAATCTTCAT	AATTTTTACC	ACACGCTGTA	13260
20	AAAACATCTT	TATAAACATC	TGGCATCATG	ACAATTGTGG	GACCCATATC	AAATGTAAAG	13320
	CCGTCTTTCT	TTAATTGATT	CATACGCCCG	CCTACATTAT	TATTTTTTC	AAATATCGTC	13380
	ACTTCATGAC	CTTGAGAAGC	AATACGGGCT	GCCGCTGCTA	ATCCTGTGAC	ACCTGCACCA	13440
25	ATTACTGCAA	TCTTCATTAT	TCAACCACCT	ATATTCTATG	ATATTTACTA	TTTATTTCAT	13500
	GAAACAACTT	TGCCTTTTTC	CTCTTATCCA	CAAAAACACG	TTCATGTAAT	GTATAGTTAG	13560
30	CCTGTCTCAC	TTCGTCCAGT	ATTTCAATAT	ATATACGTGC	TGCTAATTCT	ATGATTGGTT	13620
	GTGCTTCAAT	АСТАВАТАСТ	TTGATTTGAT	CCATAACATC	TTGAAAATCT	TTTTCTGCGA	13680
	TAGCTGCATA	ATATTCCCAT	AAGTCAATAT	AATGATTATT	AACACCATTT	TGGTACACTT	13740
35	CAGCAATATC	AACTTCATAT	TGCTTTAATC	GTTGCTTACT	AAAATATATC	CGTTCATTGT	13800
	CAAAATCTTC	ACCGACATCT	СТТААТАТАТ	TAAnGGGATC	CTCTAGAGTC	GACCTG	13856
	(2) ÎNFORMA	ATION FOR SE	Q ID NO: 32	2:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10088 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ATATATAAAT ATAGATTAAG TATATAGATT AATCAACTTT TTTGGAAGAG CAAATCACGC 60 AATCAACAAA TAATATAAGA AGTTTTTGCG ATAGTTTTAA AATAGCTGTA ATAGAATACT 120 AAATGTGACA AACTTAGAAC TAATATCAAG TGTTGATGTT TTGAATATAA AAATGCTAAT 180

	ATAATTGGTT	AATATATGAG	TAATTAGAAA	ATAGACAAAG	GATGACGATT	TATGTATATC	300
	AATATGAAAG	ATTATGGGTT	AACAGGCATA	AACAAAACTA	AAGATACTCG	AGCAATACAA	360
5	CGTGCGTTAA	ATCGTGGAAG	ATGTAAACCA	ACGACAGTTT	ATATACCGAA	AGGGACGTAT	420
٠	GATATTTGCA	AACCATTAAC	GATATATGGC	AATACAACAC	TTTTGTTAGA	TAATGAAACT	480
	ATTTTACGCC	GATGTCATTC	TGGTCCTTTA	TTAAAAAATG	GTCGTCGCTT	TGGTTTTTAT	540
0	CGTGGTTATA	ATGGACACAG	TCATATTCAT	ATTAAAGGCG	GCAAGTTTGA	TATGAATGGT	600
	GTATCGTATC	CTTATAACAA	TACAGCTATG	TGCATTGGGC	ATGCTGAAGA	TATTCAATTA	660
5	ATAGGTGTGA	CCATTAAGAA	TGTAGTGAGT	GGTCATGCAA	TTGATGCTTG	TGGGATTAAC	720
	GGACTCTATA	TTAAAAGCTG	TTCATTTGAA	GGATTCATAG	ACTATAGTGG	CGAACCTTTT	780
	ATTCTGAAGC	AATACAATTA	GACATTCAAG	TACCTGGTGC	TTTTCCAAAA	TTCGGAACGA	840
PO-	CAGATGGTAC	GATAACGAAA	AATGTCATTA	TCGAAGATTG	TTATTTTGGA	CCTTCAGAAT	900
	TGCCCGAAAT	GGGAAGTTGG	AATCGTGCTA	TTGGCTCACA	TGCAAGTAGA	CATAATCGAT	960
	ACTATGAGAA	TATTCATATT	AGAAATAATA	TATTTGAAGA	TATACAAGGT	TATGCATTAA	1020
25 .	CTCCCTTGaA	GTATAAAGAT	GCTTTCATTA	TTAATAATAA	GTTTATTAAC	TGTGaGGGTG	1080
	GCATTAGATA	TTTAGGAGTT	AGAGATGGTA	AAAATGCAGC	AGATGTGaTG	ACAGGaAAAG	1140
30	ACTTAGGTTC	CCAAGCAGGC	ATAAATATGA	ATATAATTGG	AAATGAATTT	AAAGGATCAA	1200
	TGTCTAAAGA	TGCGAŤACAT	GTACGTAATT	ATAATAATGT	TAAACATAAA	GATGTATTAA	1260
	TCGTTGGGAA	TACATTCAAT	AATTCGACTC	AATCAATTCA	TTTAGAAGAT	ATTGATACAG	1320
35	TGTTTTTAAG	TCCTGTTGAA	GCGGGTATTC	AAGTTACTAC	AATCAATGTA	GATGAAATAA	1380
	AAAAGTAAAA	AGTTTCGCAT	GACATTAGGA	TTAAGAATAG	TAGATAATTT	TTGAAAGCGC	1440
	ATTÉATAAAA	CGGTATAAAT	ATGCTATAAT	AAACCCAATT	ATCTGATAAA	AGGGGTATTT	1500
10	TGACGGTAAT	GATAATACAA	GATAGACAAC	TTTCTATACT	CTAATATAGT	GAGTTGAAGT	1560
	AGCTTGTCAT	AATCATCATG	AGGGGGAAAT	TTATGGCTTA	TTTCAATCAA	CATCAATCAA	1620
45	TGAȚATCGAA	AAGGTATTTA	ACATTCTTTT	CAAAATCAAA	GAAAAAGAAA	CCGTTTAGTG	1680
	CGGGACAACT	TATTGGACTA	ATATTAGGTC	CATTACTTTT	CCTATTAACA	TTATTATTCT	1740
	TTCATCCACA	AGACTTACCT	TGGAAAGGCG	TCTATGTTTT	AGCGATTACT	TTATGGATTG	1800
50	CGACTTGGTG	GATTACTGAA	GCAATTCCTA	TTGCAGCAAC	GAGCTTATTA	CCAATTGTGT	1860
•	TATTACCATT	AGGTCATATA	CTTACACCAG	AACAAGTATC	ATCCGAATAT	GGCAATGATA	1920
	TTATCTTTTT	GTTTTTAGGT	GGATTTATTT	TGGCAATTGC	AATGGAAAGA	TGGAATTTAC	1980

	TTGGATTCAT	GGTGGCAACA	GGATTCTTAT	CTATGTTTGT	ATCGAACACT	GCAGCTGTAA	2100
	TGATTATGAT	TCCGATTGGT	TTAGCAATTA	TTAAGGAAGC	ACATGATTTA	CAAGAAGCCA	2160
5	ATACGAATCA	AACAAGTATT	CAAAAGTTTG	AAAAATCTCT	AGTTTTAGCA	ATTGGCTATG	2220
	CAGGTACGAT	TGGTGGCTTG	GGTACATTAA	TCGGAACCCC	GCCATTAATT	ATTTTAAAAG	2280
10	GACAATACAT	GCAACATTTT	GGACATGAAA	TTAGTTTTGC	TAAATGGATG	ATTGTAGGGA	2340
10	TTCCAACGGT	CATTGTTTTG	TTAGGTATTA	CTTGGCTCTA	TTTAAGATAT	GTTGCGTTTA	2400
	GACATGATTT	GAAATATTTa	CCTGGTGGTC	AGACGTTAAT	TAAACAAAAG	TTAGACGAGC	2460
15	TTGGCAAAAT	GAAGTATGAA	GAAAAGGTAG	TACAAACTAT	CTTTGTACTT	GCTAGCTTAT	2520
	TATGGATTAC	AAGAGAGTTT	CTTCTGAAAA	AATGGGAAGT	TACGTCATCT	GTTGCAGATG	2580
	GTACGATTGC	TATTTTTATA	TCAATATTAT	TATTTATTAT	TCCAGCTAAA	AATACTGAAA	2640
20	AACATCGCCG	TATCATTGAC	TGGGAAGTTG	CAAAAGAGCT	CCCTTGGGGT	GTATTAATTT	2700
	TATTTGGTGG	CGGTTTAGCA	TTAGCGAAAG	GTATTTCTGA	AAGTGGTTTA	GCAAAATGGT	2760
	TAGGCGAACA	GTTGAAATCA	TTAAATGGTG	TTAGTCCGAT	TCTTATTGTA	ATTGTCATAA	2820
25	CAATCTTTGT	CTTATTTTTA	ACTGAAGTGA	CATCTAATAC	TGCAACTGCA	ACGATGATTT	2880
	TACCGATTTT	AGCAACGTTG	TCTGTTGCTG	TTGGAGTGCA	TCCATTACTA	CTTATGGCAC	2940
30	CTGCAGCTAT	GGCGGCTAAC	TGTGCATACA	TGTTACCAGT	AGGGACACCA	CCGAATGCAA	3000
	TTATCTTTGG	TTCTGGTAAA	ATATCTATCA	AACAAATGGC	ATCAGTAGGA	TTCTGGGTAA	3060
	ACTTAATCAG	TGCAATAATT	ATTATTTTAG	TCGTGTATTA	TGTAATGCCT	ATAGTTTTAG	3120
35	GTATTGATAT	AAATCAACCA	CTGCCATTGA	AATAGTAATT	GCAGATTAGA	ACGAAAAATA	3180
	AAAGGTTACA	TTAGCAATTG	CTTGGACGAG	TGGTAACGAA	ACGTATACCG	CAGCATCGTG	3240
	TAASAACAAT	ACAAACAAAA	GAAAGTCAAC	CAAGGATGGA	TTCCTATTTT	AATCCTTGGT	3300
40 .	TGACTCTTTA	TTTTATTTAA	ATTGTAGAAC	CTAGAAAATA	AAGTTTAATT	AAAAGCACCA	3360
	ATCATTTCTA	CTTTGAAATC	TAAGGTTTCT	AAAATAGCAA	TGACTTTCTT	TATATCGGTT	3420
45	GTAATTGCAG	AATCAGCCTG	AACGAAAAAT	CGATACATAC	CTAATTGTGT	TTTTAAAGGA	3480
,	CGAGACTCAA	TCCAGGATAA	ATTAATATTA	AACAAAGCAA	ATGTATTAAG	CACACTTGCT	3540
	AACAACCCAG	GTTTATCATG	CATTGGTGTA	ATTAAAAACA	TCAATGATGT	CGCATTTTGA	3600
50	TCAAATTGCT	GCTGATTTTT	TATAACTAAA	AAACGTGTCA	CGTTATGTGG	ATAGTCTTCA	3660
	ATATGTGTAT	CAATAGGTGT	AAAACCATAA	GCTCGCCAC	TACCTAAAGG	TGCAATTGCT	3720
	GCAACGCCAT	TTTCAATTTT	AGTCAAACTT	TGAATTGTAC	TGTCGACATA	АТСАТАСТСА	3790

. 317

	TTTTTAATAT	CAGAAATGGA	ATCTGTTCCA	TTACCATATA	ATGCAAAGTT	AATATCTAAA	3900
_	CGTATTTCAC	CGTGTGCAAA	GACATCTTGC	TGTGCAAGTG	CATCTGCCAC	AATGTTGATT	3960
5	GTTCCTTCTA	TAGAATTTTC	AATAGGGACA	ACACCAATCG	ATGTGTCATC	ATCTGCAACT	4020
	GCCTTGATGA	CTTCAAATAA	ATTTGACTTT	GGTTGAAAAG	TTGCTTCATT	TTCAGAAAAA	4080
10	TACTGACGAC	AAGCCAAATA	TGAAAATGTA	CCTTTAGGGC	СТАААТААТА	TAATTGCATA	4140
	TGCTACACCT	CTACTAACTT	AATGATGGAA	AGGGCACTGG	TTAGCATTTG	ATTCTTTCTT	4200
	TTTATAGAAA	AAGTTTGGAT	CTTTTACTGT	ATTGTCATAT	CCGTGATGAT	AATTTGACGT	4260
15	CAATGTTGGA	GATAATGGCG	GTGCTAGCCA	AGACCATTTT	CCGGTAACTT	GACGACCTTG	4320
	TTGTGCTTCG	TTACGTTCGA	ATAGTTCGAA	TTGCTTTGCA	GCGGTCAAAT	GATCGACAAT	4380
	TGATACGCCT	TCTTTTTTAA	AGGAATGATA	CACAGCATAG	TTCAATTCAA	CAAGTGCTCG	4440
20	ATCTTTATTA	AATGAATTAT	TTTTAAGTGT	ATCAAATTCA	AACGCATCTG	CAACTTTTTC	4500
	TAGTAAATTG	TAACGGTAAT	CATCAATAAA	GTTACGTACG	CCAATTTCAG	TTACCATATA	4560
25	CCAACCGTTA	AAGGGTGCAG	TTGGATATAC	AATGCCACCG	ATTTTTAAGT	CCATATTGGA	4620
	AATGATAGGG	ACTGCATACC	ATTTTAAGTT	CAATTTTCTT	AATTTTGGAT	AATGATTATG	4680
	TTCAATAGGT	ACTTCTTTAA	TTAATGAAGT	AGGATATTCG	TAAAATTTAA	CTGACTCATT	4740
30	AGGTAATTGG	TAAATCAGTG	GTAACACGTC	AAAATTAGTA	CCTTTTCCTT	TCCAACCTAA	4800
	GTGATTTGCT	AAGCGTGTAA	CTTCTTTTTC	AGCAGGATCA	CCACAATTGT	CATAGCCAGC	4860
	ATAGCGAATT	AATTGATTGT	TGAAAATTTT	AGGTCCATCC	TTTGGAGCAT	ATATAGTAAT	4920
35	ATACGGCTTT	AATTTACCTT	CATTTGTAGC	CTGTGTAATA	TGATAAGTAA	TTGATGATAA	4980
	GAACGATGCT	TCGTCAGTAA	CATCTCTTGC	ATCAATGACA	TTTAACGAAT	CCCAAAATAA	5040
40	ACGACCAATG	CAACGATTTG	AATTACGCCA	AGCCATTTTA	GCACCATAAA	TAAGTTCTTC	5100
40	TTCTGTATGT	GTATATGTCC	CAGTTTCTTT	TATTTCTAGT	TCAATGTCAT	GTAAACGTTT	5160
	ATTGATAATT	TGCGTTTCAT	AATGACACTC	TTTATACATG	TTTTCTATGA	AAGCTTGAGC	5220
45	CTCTTTAAAT	AACATTAACA	ACACCTCGCT	TTATATTATA	GTCTACATTA	ТТААААТАСТ	5280
	СТТАААААТТ	ATGTATATGT	CATTAAATTG	TTGGTTGATT	TTAATTAAAA	GTATGGAAAT	5340
	TAAGGGGCTC	TTATGTATAT	AAAAAAATGA	ATTATGATAA	AATGTAAGAA	AATATTTAGG	5400
50	TCGATTGGAG	AGATACAAGT	GTACCAATTA	GAAGACGACA	GTTTAATGTT	ACATAATGAC	5460
	TTATATCAAA	TAAATATGGC	TGAAAGTTAT	TGGAATGATA	ATATTCATGA	AAAAATGGCT	5520
	GTATTTGATT	ТСТАТТТТАС	AAAAATGCCA	ተተተልል ተልርጥር	GCTATGCTGT	ጥጥጥል ልጥረርጥ	5580

	TTAAAGTCTA	TTGGCTACAA	GGATGATTTC	TTATCATATT	TAAAAGATTT	AAAATTCACA	570
5	GGCAGCATCC	GTTCGATGCA	AGAAGGCGAA	TTATGCTTTG	GTAACGAACC	ATTGTTACGC	576
5	GTAGAAGCAC	CATTGATTCA	AGCGCAATTA	ATAGAAACAA	TTTTATTAAA	CATTGTAAAT	5820
	TTCCATACAT	TAATTACAAC	AAAGGCTAGC	AGAATTCGTC	AAATTGCATC	AAATGATAAA	5880
10	TTAATGGAGT	TTGGTACACG	TCGTGCGCAA	GAAATTGATG	CAGCATTGTG	GGGCGCTAGA	5940
	GCTGCTTACA	TCGGGGGCTT	TGATTCTACA	AGTAATGTTA	GGGCGGGGAA	ATTATTTGGT	6000
``	ATACCTGTGT	CTGGTACACA	TGCACATGCA	TTTGTCCAAA	CTTATGGAGA	CGAATATGTT	6060
15	GCCTTCAAAA	AATATGCTGA	AAGACATAAA	AATTGTGTGT	TCCTAGTAGA	TACATTCCAT	6120
	ACTTTAAAAT	CTGGCGTGCC	AAATGCAATA	AAAGTTGCAA	AAGAATTAGG	TGACAAAATT	6180
	AACTTTGTAG	GTATTCGATT	AGATTCTGGA	GATATCGCTT	ATTTATCTAA	AGAGGCAAGA	6240
20	CGTATGCTTG	ATGAAGCAGG	ATTTACTGAA	ACTAAAATTA	TCGCGTCTAA	TGATTTGGAT	6300
	GAAGAAACGA	TTACGAGTTT	GAAAGCACAA	GGTGCAAAAG	TAGATTCTTG	GGGCGTTGGT	6360
?5	ACAAAGCTGA	TTACAGGATA	CGATCAACCA	GCATTAGGTG	CAGTATATAA	ACTTGTAGCT	6420
	ATTGAAAATG	AAGATGGTTC	ATATAGTGAT	CGTATTAAAT	TATCAAATAA	CGCTGAAAAG	6480
	GTTACGACGC	CAGGTAAGAA	AAATGTATAT	CGCATTATAA	ACAAGAAAAC	AGGTAAGGCA	6540
30	GAAGGCGATT	ATATTACTTT	GGAAAATGAA	AATCCATACG	ATGAACAACC	TTTAAAATTA	6600
	TTCCATCCAG	TGCATACTTA	TAAAATGAAA	TTTATAAAAT	CTTTCGAAGC	CATTGATTTG	6660
	CATCATAATA	TTTATGAAAA	TGGTAAATTA	GTATATCAAA	TGCCAACAGA	AGATGAATCA	6720
35	CGTGAATATT	TAGCACTAGG	ATTACAATCT	ATTTGGGATG	AAAATAAGCG	TTTCCTGAAT	6780
	CCACAAGAAT	ATCCAGTCGA	TTTAAGCAAG	GCATGTTGGG	ATAATAAACA	TAAACGTATT	6840
10	TTTGAAGTTG	CGGAACACGT	TAAGGAGATG	GAAGAAGATA	ATGAGTAAAT	TACAAGACGT	6900
10	TATTGTACAA	GAAATGAAAG	TGAAAAAGCG	TATCGATAGT	GCTGAAGAAA	TTATGGAATT	6960
	AAAGCAATTT	ATAAAAAATT	ATGTACAATC	ACATTCATTT	АТААААТСТТ	TAGTGTTAGG	7020
15	TATTTCAGGA	GGACAGGATT	CTACATTAGT	TGGAAAACTA	GTACAAATGT	CTGTTAACGA	7080
	ATTACGTGAA	GAAGGCATTG	ATTGTACGTT	TATTGCAGTT	AAATTACCTT	ATGGAGTTCA	7140
	AAAAGATGCT	GATGAAGTTG	AGCAAGCTTT	GCGATTCATT.	GAACCAGATG	AAATAGTAAC	7200
50	AGTCAATATT	AAGCCTGCAG	TTGATCAAAG	TGTGCAATCA	TTAAAAGAAG	CCGGTATTGT	7260
	TCTTACAGAT	TTCCAAAAAG	GAAATGAAAA	AGCGCGTGAA	CGTATGAAAG	TACAATTTTC	7320
	AATTGCTTCA	AACCGACAAG	GTATTGTAGT	AGGAACAGAT	CATTCAGCTG	AAAATATAAC	7380

	TAAACGACAA	GGTCGTCAAT	TATTAGCGTA	TCTTGGTGCG	CCAAAGGAAT	TATATGAAAA	7500
	AACGCCAACT	GCTGATTTAG	AAGATGATAA	ACCACAGCTT	CCAGATGAAG	ATGCATTAGG	7560
5	TGTAACTTAT	GAGGCGATTG	ATAATTATTT	AGAAGGTAAG	CCAGTTACGC	CAGAAGAACA	7620
	AAAAGTAATT	GAAAATCATT	ATATACGAAA	TGCACACAAA	CGTGAACTTG	CATATACAAG	7680
10	ATACACGTGG	CCAAAATCCT	AATTTAATTT	TTTCTTCTAA	CGTGTGACTT	AAATTAAATA	7740
	TGAGTTAGAA	TTAATAACAT	TAAACCACAT	TCAGCTAGAC	TACTTCAGTG	TATAAATTGA	7800
	AAGTGTATGA	ACTAAAGTAA	GTATGTTCAT	TTGAGAATAA	ATTTTTATTT	ATGACAAATT	7860
15	CGCTATTTAT	TTATGAGAGT	TTTCGTACTA	TATTATATTA	ATATGCATTC	ATTAAGGTTA	7920
	GGTTGAAGCA	GTTTGGTATT	TAAAGTGTAA	TTGAAAGAGA	GTGGGGCGCC	TTATGTCATT	7980
	CGTAACAGAA	AATCCATGGT	TAATGGTACT	AACTATATTT	ATCATTAACG	TTTGTTATGT	8040
20	AACGTTTTTA	ACGATGCGAA	CAATTTTAAC	GTTGAAAGGT	TATCGTTATA	TTGCTGCATC	8100
	AGTTAGTTTT	TTAGAAGTAT	TAGTTTATAT	CGTTGGTTTA	GGTTTGGTTA	TGTCTAATTT	8160
25	AGACCATATT	CAAAATATTA	TTGCCTACGC	ATTTGGTTTT	TCAATAGGTA	TCATTGTTGG	8220
25	TATGAAAATA	GAAGAAAAAC	TGGCATTAGG	TTATACAGTT	GTAAATGTAA	CTTCAGCAGA	8280
	ATATGAGTTA	GATTTACCGA	ATGAACTTCG	AAATTTAGGA	TATGGCGTTA	CGCACTATGC	8340
30	TGCGTTTGGT	AGAGATGGTA	GTCGTATGGT	GATGCAAATT	TTAACACCAA	GAAAATATGA	8400
	ACGTAAATTG	ATGGATACGA	TAAAAAATTT	AGATCCGAAA	GCATTTATCA	TTGCGTATGA	8460
	ACCTCGAAAC	ATACATGGTG	GATTCTGGAC	TAAAGGCATT	CGTCGTAGAA	AGCTTAAAGA	8520
35	TTATGAACCA	GAAGAACTGG	AAaGTGTAGT	AGAaCATGAA	aTTCmAAGTA	AaTGAGAaTG	8580
	AAmCAATtGC	TGATTGTTTG	TCACGAATGA	AAtGCAAGGG	TATATGCCGG	TAAAACGTAT	8640
	TGAAAACCC	GTGTTTCAAG	AGCAAAAAGA	TGGCACGGTT	GAAGTATCAC	ATCAAGAAAT	8700
40	CGTTTTTGTA	GGTAAGAAAA	TCCAATAACA	TAATCCAATT	TAAATAAAGA	CTATTTGAAG	8760
	AGGAAAGGCT	ATTCAAAGTT	TGAGTAATTT	TACTTTGAAT	AGCCTATTTG	TTTATACATG	8820
1 5	CAAGATGCTC	GATCCATATT	GTATGAGAAA	CCCCCAGCAA	GCTATATAAA	GCATATGCTG	8880
,	GGGGTTCTTA	ATATTTTAAA	AATTATTGTT	AGATTATATA	TATCGTCGCT	TTTTCTAAAA	8940
	CAATCTCATC	GCATGAAATT	TTTTCTTCCT	AGAGACCTTT	AATAAGATTA	ATAGTTTACT	9000
50	TAATCATATC	TAGATAGTCT	TATGACTTAT	GCTTAATGAA	AGTCATTCTA	GGAGAAGTTC	9060
	CCAAAGCTTC	TGTGTTCATA	ATTGTTAGTA	GTATTTTATT	ATCATTTGGT	TTTATAAATA	9120
	CAATAACAAT	TGAGCTATTA	TTTTTTATTAT	ATAATGTGAG	TTGTTTGTGT	TCTGTATTTA	9180

CATTTAAATC	TTGAGGATGC	CATTCTCCCT	CAATAATATT	AAGATAATAC	TTAGCCTCTG	9300
AATTACATTT	GAATTTATCA	ATACTAAATA	ATTCAATTTG	TTCCATAATA	TTATTTACCT	9360
TTCTAAAATA	CAAATTTTAA	TAACCATAAA	TAGATGAATA	CCATCGATAA	TGGTCGCCAT	9420
TGGATACTGG	AATAACATTG	TTTTTAGCAT	CTTGAGTCAT	AAAACCATTA	TCCCATGGAT	9480
TCCATATAAT	TATAACCTCT	TGTCCATTAT	CTAATTTAGC	GTTCCCAACA	ACTGCCATGG	9540
CATGCCCTGC	GTGCATACCA	TTTCTTGATT	CTACTCTACT	ACCTAAAACA	GCAATTCCTT	9600
TATTATTTTT	AGTAAGATTG	TCAACTTCAT	TATATGŢAGT	CATTCTATTA	AGAAGTTGTG	9660
GACTTCTTCC	CTGAGTTTGT	ССААААТААА	TCATCTCTCT	TGGCGTTAAA	CCAGTAAATT	9720
GGAATCGTTG	TCCTTGTAAG	TTTGGGTGTA	AAAATCTCAT	CACAGCTTCT	GCATGATATT	9,780
TGTTAGTATT	ATAAGTCGCA	TTTAGTAATT	CAGACATCGT	ATAGCCTGCA	CACCAACCAT	9840
TGTTACCTTG	AGTTTCTCTT	ATCTTGAAAT	TCTCAAGTTT	ATTTATATAT	TGsTCGTTGT	9900
AAGTATAATT	ATTACTTTTA	AATTGACTAG	TTGGCATAGT	GACAGAAGCT	TTTTGCTTTA	9960
GTTGCGTTAC	ATTATTGCCA	GTAGGTATAC	TCTCAGTCTT	TnTnAACTnT	nTATCTTCTA	10020
GACGTGGTGT	TTTTAGTACT	AGTTTAGCTT	TATGATTTTG	AGTACCACAT	AGTAACCTTT	10080
TGAGTTGT						10088

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7563 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

[(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGGAAACGnA	CCCnATGCGT	ATGCTTGACG	TGCCAAAATT	AAATACGAAG	TTCATAGCTT	60
TGAGGTACCA	GAAGAACATT	TATCTGGTCA	AGAAGTCGCA	GnACTCATAC	AAGCAAATGT	120
TAAAACAGTA	TTTAAAACGC	TTGTTCTAGA	AAATACAAAA	CATGAACATT	TTGTATTTGT	180
TATCCCAGTA	AGTGAAACTT	TAGATATGAA	AAAGGCAGCT	GCTTTGGTTG	GAGAGAAGAA	. 240
ATTGCAGCTT	ATGCCTTTAG	ATAATTTGAA	AAATGTAACG	GGATACATTC	GTGGTGGGTG	300
TTCGCCTGTT	GGTATGAAAA	CATTGTTTCC	AACAGTCGTT	GACAAATCGT	GTGAAAATTA	360
TAGTCATATC	AGTGTGAGTG	GTGGGCTTCG	AACAATGCAA	ATCACAATAG	CTGTTGAGGA	420
TTTGATTACA	ATAACTAAAG	GCAAAATTGG	AGCAGTTATC	CATGAATGAT	TAATAACAAC	480

	TGCCACACTC	CTTTTTGATT	GAATTAGCAT	TTTACGATCA	TAAACAGTCA	TTATAATTGA	60
	GTATTTGAAC	ATAAAAATGT	AATTTTATCG	TAACAATTTG	AGTGTTTGTG	ATTGTTTTTG	66
5	GTAATTTATG	ATTGAAAAGT	GAAAGCGTAC	TCATTATAAT	ACAAAGTGAG	ATGGGGTGAT	72
	GATGATAATT	ACTGaAAAAA	GACACGAGTT	AATATTAGAA	GAACTTTCGC	ACAAAGATTT	78
10	TTTGACTTTA	CAAGAATTAA	TAGATCGAAC	TGGTTGCAGT	GCTTCAACAA	TACGArGAGA	84
	TTTATCTAAA	CTACAACAAT	TAGGGAAATT	GCAACGTGTG	CATGGTGGTG	CAATGTTAAA	90
	AGAAAATCGT	ATGGTTGAGG	CGAATTTAAC	TGAAAAATTA	GCAACGAATC	TTGATGAAAA	96
15	GAAAATGATT	GCTAAAATAG	CAGCTAATCA	AATCAACGAT	AATGAATGCT	TATTTATCGA	102
	TGCTGGTTCA	TCTACATTGG	AGCTAATTAA	ATATATTCAA	GCGAAAGATA	TCATTGTGGT	108
	AACCAATGGT	TTAACACATG	TAGAAGCTTT	ACTTAAAAAA	GGTATTAAAA	CAATTATGCT	114
20	AGGTGGTCAA	GTTAAAGAAA	ATACACTTGC	TACGATTGGT	TCTAGTGCTA	TGGAGATATT	120
	AAGACGATAT	TGTTTCGATA	AAGCTTTTAT	CGGGATGAAT	GGATTAGATA	TTGAACTTGG	126
	ATTAACTACT	CCCGATGAGC	AAGAGGCATT	AGTTAAACAA	ACAGCAATGT	CATTAGCCAA	132
25	TCAATCATTT	GTACTTATAG	ATCATTCTAA	GTTTAATAAA	GTATATTTTG	CTCGTGTACC	138
	TTTGCTAGAA	AGTACGACAA	TCATCACATC	TGAAAAAGCA	TTAAATCAAG	AATCGTTAAA	144
30	AGAATACCAA	CAAAAGTATC	ACTTTATAGG	AGGGACTTTA	TGATTTATAC	AGTGACTTTC	150
	AATCCTTCAA	TTGACTATGT	CATTTTTACG	AATGATTTTA	AAATTGATGG	TTTGAACAGA	156
	GCAACAGCAA	CATATAAATT	CGCTGGGGGG	AAAGGTATTA	ATGTCTCGCG	CGTCTTAAAG	162
35	ACATTGGATG	TTGAGTCAAC	TGCCTTGGGA	TTTGCAGGTG	GATTTCCTGG	GAAATTCATT	168
	ATAGATACAT	TAAATAACAG	TGCAATTCAA	TCGAATTTTA	TTGAAGTTGA	TGAAGATACA	174
	CGTATTAATG	TGAAATTAAA	AACAGGACAA	GAAACAGAAA	TCAATGCACC	GGGTCCTCAT	180
10	ATAACGTCAA	CACAATTTGA	ACAACTGTTA	CAACAAATTA	AAAATACAAC	AAGCGAAGAT	186
	ATAGTTATTG	TTGCTGGAAG	TGTACCAAGT	AGTATTCCAA	GCGATGCGTA	TGCGCAAATT	192
4-	GCACAAATTA	CAGCACAGAC	AGGTGCTAAA	TTAGTAGTCG	ACGCTGAAAA	AGAATTGGCT	198
15	GAAAgCGTTT	TACCATATCA	TCCACTATTT	ATTAAACCTA	ATAAAGATGA	ATTAGAAGTG	204
	ATGTTTAATA	CAACAGTGAA	CTCAGACACA	GATGTTATTA	AATATGGTCG	TTTGTTAGTT	210
50	GATAAAGGTG	CGCAATCTGT	TATTGTCTCG	CTTGGCGGTG	ATGGTGCTAT	TTATATTGAT	216
	AAAGAAATCA	GTATTAAAGC	AGTTAATCCA	CAAGGGAAAG	TGGTTAATAC	AGTTGGCTCT	222
	ССТСАТАСТА	CACTTGCAGG	сатестесст.	ССААТТССТТ	САССТТТААС	CATTCAAAAA	228

	CGGGACGCTA	TAGAAAAAT	AAAATCACAA	GTTACGATTA	GCGTACTTGA	TGGGGAGTGA	240
	AAATAATGAG	AGTAACAGAG	TTATTAACAA	AAGATACAAT	AGCAATGGAT	TTAATGGCAA	246
5	ATGACAAAAA	TGGTGTTATT	GATGAGTTAG	TAAATCAATT	AGACAAAGCA	GGTAAATTAA	2520
	GTGATGTCGC	GTCATTTAAG	GAAGCGATTC	ACAATCGAGA	ATCACAAAGT	ACAACTGGTA	258
	TCGGCGAAGG	TATTGCCATT	CCACATGCCA	AAGTGGCCGC	AGTTAAGTCA	CCAGCTATTG	264
10	CGTTTGGTAA	ATCTAAAGCA	GGCGTAGATT	ATCAAAGTTT	GGATATGCAA	CCAGCACACT	2700
	TATTCTTTAT	GATTGcAGcG	CCAGAAGGTG	GCGCCCAAAC	ACATCTAGAT	GCTTTAGCTA	276
15	AGTTGTCTGG	TATTTTAATG	GATGAAAATG	TACGTGAGAA	ATTATTACAT	GCTTCATCAC	2820
	CTGAAGAAGT	ACTAGCGATC	ATAGATGAGG	CTGATGATGA	AGTGACAAAA	GAAGAAGAGG	2880
	CAGAAGCTGA	AGCACAACAA	GTTGCAACTG	CAGAACAATC	ATCTAAACAA	TCTAATGAGC	2940
20	CATATGTGTT	AGCAGTAACT	GCTTGTCCAA	CAGGTATTGC	ACACACATAT	ATGGCACGTG	3000
	ATGCATTGAA	AAAGCAAGCG	G ATAAAATG G	GTATTAAAAT	TAAAGTAGAA	ACGAATGGTT	3060
	CAAGCGGCAT	TAAAAACCAT	TTAACTGAAC	AAGATATTGA	AAATGCAACA	GGTATCATTG	3120
25	TTGCTGCTGA	TGTTCATGTT	GAGACGGATC	GCTTCGATGG	TAAAAATGTC	GTAGAAGTAC	3180
	CAGTAGCAGA	TGGTATTAAA	CGCCCAGAAG	AATTAATTAA	TAAAGCATTA	GATACAAGTC	3240
30	GTAAACCTTT	TGTTGCCCGT	GATGGTCAAA	GAAAAGGTAA	CTCAAATGAC	AGTCAAGAAA	3300
	AATTAAGCCC	AGGTAAAGCA	TTCTATAAAC	ACTTAATGAA	CGGTGTTTCT	AACATGTTGC	3360
	CACTTGTAAT	ATCTGGTGGT	ATTTTAATGG	CAATTGTATT	TTTATTTGGA	GCAAATTCAT	3420
35	TTAATCCAAA	AAGCTCAGAG	TACAATGCGT	TTGCAGAGCA	GCTTTGGAAC	ATTGGTAGTA	3480
	AAAGTGCATT	CGCGTTAATC	ATTCCAATTT	TATCTGGATT	CATTGCACGT	AGTATTGCGG	3540
	ATAAACCTGG	TTTCGCTTCA	GGTCTTGTAG	GTGGTATGTT	AGCAATTTCA	GGTGGTTCAG	3600
10	GATTTATTGG	TGGTATTATT	GCAGGTTTCT	TAGCAGGTTA	CTTAACACAA	GGTGTTAAAG	3660
	CCATGACACG	TAAGTTACCA	CAAGCATTAG	AGGGATTAAA	GCCAACATTA	ATTTATCCAC	3720
	TATTAACAGT	GACGGCTACA	GGCTTATTGA	TGATTTATGC	CTTTAATCCA	CCAGCATCTT	3780
15	GGTTAAATCA	TTTGTTATTA	GATGGATTAA	ACAATTTATC	AGGTTCTAAT	ATTGTATTAT	3840
	TAGGTTTAGT	TATTGGCGCT	ATGATGGCGA	TTGATATGGG	CGGTCCATTC	AACAAAGCGG	3900
50	CATATGTTTT	TGCAACAGGT	GCGTTGATTG	AAGGTAATGC	AGCACCAATT	ACAGCTGCAA	3960
· -	TGATTGGTGG	TATGATTCCA	CCGTTAGCAA	TTGCGACAGC	GATGTTAATT	TTTAGACGTA	4020
	እ አጥጥጥ እ <i>ር</i> ንአ እ አ	101101000	COMMON NAMES	macama a ama	mamax maaam	ATCTICA TOTALA	4000

	TGATTGGTTC	AGGTATAGGT	GGCGCAATTG	CTTTAGGCTT	AGGTTCACGA	ATTACTGCGC	4200
	CACATGGTGG	TATTATTGTA	ATTGTTGGTA	CTGATGGTGC	ACACTTACTT	CAAACTCTTA	4260
5	TTGCACTTCT	AGTTGGCACA	TTAGTTTCAG	CATTAATTTA	CGGTTTAATC	AAACCAAAGT	4320
	TAACTGAAAC	AGAAATCGAA	GCTTCAAAAT	CAATGGACGA	GTAGTTTTAA	TGATGTAAAA	4380
10	TGATTGTTAG	CAAAGAGCTT	CATATTAAGT	TGTATGTTCA	ATGAATATAT	GTTAGTTTTA	4440
	TATATCGTGT	TAACGGTAGC	TTATACAAAG	CTGTAAAAAC	ACTTTCTATT	AATTCAGTTT	4500
	TTATGAATTG	ATATGAAAGT	GTTTTTATTT	TTAGATAAAT	GAATGAAGAA	ATAGACACCA	4560
15	CAAATGTATA	GACTTTTTTA	ATATTTTGCA	AAAAGTTATG	CCAAACGAAG	CAGATATAGT	4620
	AAAATATGAG	TGTCTTAAAG	TGAAAATTTA	TAAATAAAGA	AGGGTTTATA	CGTGTCAGAA	4680
	TTAATTATAT	ATAACGGCAA	AGTITATACT	GAAGATGGCA	AAATCGATAA	TGGTTACATT	4740
20	CATGTGAAAG	ATGGACAGAT	TGTTGCAATT	GGAGAAGTGG	ATGATAAAGC	AGCAATTGAT	4800
	AATGATACGA	CAAATAAAAT	TCAAGTGATT	GATGCTAAAG	GTCATCATGT	ATTACCAGGT	4860
	TTTATTGATA	TACATATTCA	TGGTGGTTAT	GGTCAAGATG	CAATGGATGG	GTCATACGAT	4920
25	GGCTTAAAAT	ATCTATCCGA	AAATTTGTTG	TCTGAAGGGA	CGACATCATA	CTTGGCCACT	4980
	ACAATGACGC	AATCGACTGA	TAAAATAGAT	AATGCACTTA	CAAATATTGC	TAAATATGAA	5040
30	GCGGAGCAAG	ATGTTCACAA	TGCAGCGGAA	ATTGTAGGTA	TACATTTAGA	AGGACCATTT	5100
	ATATCTGAAA	ATAAAGTTGG	TGCTCAACAT	CCGCAATACG	TTGTACGCCC	ATTTATCGAT	5160
	AAAATTAAAC	ATTTTCAAGA	GACTGCTAAC	GGATTAATAA	AGATTATGAC	GTTTGCACCT	5220
35	GAAATTGAAG	GTGCAAAAGA	AGCGCTTGAA	ACGTATAAAG	ATGACATTAT	TTTTTCAATT	5280
	GGTCATACAG	TAGCAACATA	CGAAGAAGCA	GTTGAAGCTG	TTGAGCGAGG	AGCTAAACAT	5340
	GTCACGCATT	TATATAATGC	AGCGACGCCA	TTCCAACATA	GAGAACCAGG	TGTTTTTGGA	5400
40	GCAGCATGGT	TGAATGATGC	TCTACATACC	GAAATGATTG	TTGATGGCAC	TCATTCTCAT	5460
	CCGGCATCGG	TTGCAATTGC	TTACCGTATG	AAAGGTAATG	AACGTTTTTA	TTTAATTACC	5520
	GATGCAATGC	GTGCAAAAGG	TATGCCTGAA	GGAGAATATG	ATTTGGGTGG	ACAAAAGTA	5580
45	ACTGTTCAAT	CGCAACAAGC	ACGTCTTGCA	AATGGTGCGC	TTGCTGGTAG	TATTTTAAAA	5640
	ATGAATCATG	GGTTACGTAA	CTTAATATCA	TTTACAGGTG	ATACATTAGA	TCATTTATGG	5700
50	CGAGTAACAA	GTTTAAATCA	AGCCATTGCA	TTAGGTATCG	ATGATAGAAA	AGGTAGTATT	5760
	AAAGTAAATA	AGGATGCAGA	TCTTGTTATT	CTAGATGATG	ATATGAATGT	AAAATCTACA	5820
	ATAAAACAAG	GCAAGGTTCA	CACATTTAGC	AATAAATAAT	TCATAATTAA	ATGTATGCAA	5880

	1111016666	GIGICIAAAI	GGGAAGGCGA	TAACATGTAG	TTGTAATTTA	AGTCATAGTG	6000
	ATAAATTTGA	ATGCGTGTTA	CCCATGAGTG	ACACATATAA	CATGGAGGTG	AATCCCTAGA	6060
5	AATAGGGAAT	TAATTGGAAA	CTTCGACCAT	AATTAGTTTG	ATTATATTA	TTCTATTAAT	6120
	TGCATTAACC	ACTGTATTTG	TTGGTTCAGA	ATTTGCATTA	GTAAAAATTA	GAGCAACAAG	6180
	AATTGAACAG	CTAGCAGATG	AAGGAAATAA	ACCTGCTAAA	ATAGTAAAAA	AGATGATTGC	6240
10	TAATCTAGAT	TATTATCTTT	CTGCTTGTCA	GTTAGGTATA	ACAGTAACAT	CTTTAGGGTT	6300
	AGGTTGGCTT	GGTGAACCAA	CGTTTGAAAA	GCTATTACAC	CCAATATTTG	AAGCAATCAA	6360
15	TTTACCAACT	GCATTAACGA	CGACGATTTC	GTTTGCAGTG	TCATTTATAA	TCGTTACGTA	6420
	TTTGCATGTA	GTACTTGGTG	AATTAGCGCC	TAAATCTATA	GCTATTCAAC	ATACTGAAAA	6480
	GCTTGCTTTA	GTATATGCAA	GACCATTGTT	CTATTTCGGT	AACATTATGA	AACCATTGAT	6540
20	TTGGCTGATG	AATGGTTCTG	CACGTGTTAT	TATTAGAATG	TTTGGTGTAA	ATCCTGATGC	6600
	CCAAACTGAT	GCAATGTCAG	AAGAAGAAAT	CAAAATTATT	ATTAACAATA	GTTATAATGG	6660
	TGGAGAAATC	AACCAAACTG	AATTGGCATA	TATGCAAAAT	ATCTTTTCAT	TCGATGAAAG	6720
?5	ACATGCAAAA	GATATAATGG	TACCTAGAAC	TCAAATGATT	ACACTAAATG	AACCTTTTAA	6780
	TGTAGACGAA	TTACTAGAAA	CAATAAAAGA	ACATCAATTT	ACGCGTTATC	CAATTACTGA	6840
	TGATGGTGAT	AAAGACCACA	TTAAAGGATT	TATTAACGTC	AAAGAATTTT	TAACTGAATA	6900
30	CGCTTCTGGA	AAAACGATTA	AAATAGCAAA	CTATATACAT	GAGTTGCCAA	TGATTTCAGA	6960
	GACAACACGT	ATCAGTGATG	CATTAATTAG	AATGCAACGT	GAACATGTAC	ATATGAGTCT	7020
35	TATTATAGAT	GAATATGGTG	GAACGGCAGG	TATTTTAACG	ATGGAAGATA	TTTTAGAAGA	7080
	AATCGTTGGA	GAAATTCGTG	ATGAATTTGA	TGATGATGAA	GTGAATGATA	TCGTTAAAAT	7140
,	TGATAATAAG	ACATTCCAAG	TAAATGGCAG	AGTACTATTG	GATGATTTAA	CTGAAGAGTT	7200
10	CGGTATAGAA	TTTGATGACT	CTGAGGATAT	TGATACGATA	GGTGGATGGT	TACAATCTCG	7260
	TAATACCAAT	TTACAAAAAG	ATGATTACGT	GGATACAACT	TATGATCGCT	GGGTTGTTTC	7320
	AGAAATCGAT	AACCACCAAA	TTATTTGGGT	GATATTAAAC	TATGAATTTA	ATGAAGCGAG	7380
15	ACCTACTATC	GGACAGTCTG	ATGAAGATGA	AAAATCAGAA	TAGATATTAA	TATATAAACC	7440
	AACTAAGAAT	GATTTAATTC	ATTTTTGGTT	GGTTATTTTT	TTGACTAAAA	TTAAnGAAAA	7500
-0	GTGAAAATAG	TATTGGAACT	СААТАТСТТТ	AATGÄTTTAA	TGAATAAnTT	TTATTGAAAG	7560
50	CGA .						7563

(2) INFORMATION FOR SEQ ID NO: 34:

(A) LENGTH: 3492 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

10	TTATATCAAC	TTCATGGCGG	AACCATTGAT	GACCCATTAG	ACGAAACAAT	AAGCGCATTT	60
	satgaattga	AACAAGAAGG	AATTATACGT	GCTTACGGTA	TTTCTTCTAT	TCGCCCAAAT	120
	GTAATTGATT	ATTATTTAAA	ACATAGTCAA	ATCGAAACGA	TAATGTCTCA	ATTCAATTTG	180
15	ATTGATAATC	GTCCAGAATC	ATTATTAGAT	GCAATTCACA	ACAATGATGT	TAAAGTATTG	240
	GCAAGAGGAC	CTGTGTCTAA	AGGATTATTA	ACTTCAAACA	GTGTTAATGT	GCTCGACAAT	300
	AAATTTAAAG	ATGGTATTTT	TGATTATTCT	CATGATGAAT	TGGGTGAAAC	AATAGCCTCT	. 360
20 .	ATTAAAGAAA	TTGAAAGTAA	TTTATCTGCA	TTGACATTTA	GTTATTTAAC	ATCACATGAC	420
	GTGCTTGGTT	CCATCATTGT	AGGTGCAAGT	AGCGTCGACC	AATTAAAAGA	AAATATTGAA	480
25	AACTATCATA	CTAAAGTTAG	TTTAGATCAG	ATTAAAACAG	CAAGAGCTCG	TGTAAAGGAT	540
	TTGGAATATA	CCAATCATTT	AGTGTAGAAG	TCATTTTCAG	TAATAAAAAC	AGCAGCATGA	600
	GGCGTTTCAT	TATAAAAATG	CCTTACTGCT	GTTGTTTATG	TACAATTCGC	TATAATTTAT	660
30	GATTATGATT	ACTCACTTAT	GATAGAAATT	AAAGCGTTGT	CCTCACGCAT	CAGTATTTAG	720
	TAATTTCGCC	TTGCGGCATT	GCCTTAAGCA	AACTTCTGCC	ACTTCATCTC	TTAATAATTT	780
	TATTAAAACA	TCTTTCTATA	TTTCACTTCG	CATGTTGATT	CATCATTATT	AGTTATTATT	840
35	TGTACACCCA	GCACATTTCC	TTGCAACACA	AGTAGTTTGA	ATTTTTCACA	AGTATAATAT	900
	AATGTACCGT	CTGAAATTTG	GTCTACAGAA	ATATCGCCTA	AAATATCCAG	CACTGTAAAT	960
10	TCTTCAAATA	CTGATAGTTG	TTCCGCATAT	CGTACACAAA	GTCTTACCAC	ACTCTCCGAT	1020
10	TGACAGTTCA	TTGCCATCCC	ACCTATTTAT	GCTTTATTTT	TAAATAATTT	AGGGAAACAT	1080
	CGTTCAAAAA	ATCTAGGCGC	AATTTGATAC	ATTTTCAACG	CATGATGCAT	CCATTTAGGC	1140
15	CGATTAATTT	CCAATTGTTT	TGTTTTAATG	CCATAAATGA	TATCTTCTGC	AAGCTGATTA	1200
	GCATCAAGCA	TAATTTCCCC	CATCTTTTTA	gCATACTTCA	TTGATGGGTC	GGCTTTTTGA	1260
	TGAAAAGGTG	TATCAATCGG	GCCAACATTA	ACTGTCATGA	TATGTAAGTT	TGGTGACTCT	1320
0	AGTCTTAAAG	CATTCATTAA	TGCATAAAAC	CCTGCTTTCG	ATGCCCCATA	ATGTGCAGCA	1380
	TTTGCTTGTG	TGGAAAATGC	AGCTTGACTT	GAAATACCTA	CAATATGTGC	GTTAGATGTT	1440
	AAATATGGTC	TCAACACAGT	ATATAAAACA	TTAAAACTAA	TTAAATTAAG	CTGATACGTT	1500

	TAAATGAATC	CATCGAATGA	TGTATTGTCT	TCAAATTGCA	GTGCCTGTAT	CGACTTCAAA	162
_	TCATTTAAGT	CACAAGGAAT	AACATTTATA	GTTTTCCCCA	ATTCCTGTTC	AAAGATTCTA	168
5	GTTGCTTTAT	CAACATCACG	CACCAACAAC	GTTACATGCA	CTTTATTTTC	TAGTAACTTT	174
	CGGACAATCG	ATAAACCTAA	ACCACTCGTA	CCACCAGTCA	CTATAAAATG	TTGTCCTTTC	180
10	. ATCAATTAAC	CTTCCTTTTC	AATTATATAG	AATGCAATTŢ	ATCAACTTTA	CATAATTGAG	186
	ACAAGTTGAT	TATCTTTCCT	AATATATATA	CAATAATAAG	AAAATATAAC	ATACAAATCA	192
	AAAACTAAAG	GGATGTGaCG	TTAATGrAAC	TCGTATTTTA	TGGAGCTGGT	AATATGGCAC	1986
15	AAGCTATATT	TACAGGrATT	ATTAACTCMA	GCAACTTAGA	TGCCAATGAT	ATATATTAA	2040
	CAAATAAATC	TAATGAACAA	GCTTTAAAAG	CATTCGCTGA	AAAACTAGGT	GTTAACTATA	210
3	GTTATGALGA	TGCGACATTA	TTAAAAGATG	CAGAYTATGT	ATTTTTAGGT	ACCAAACCAC	2160
20	ATGACTTTGA	TGCTCTAGCA	ACACGCATCA	AACCACATAT	TACAAAAGwC	AATTGCTTCA	2220
	TTTCAATTAT	GGCAGGTATT	CCGATTGATT	ATATTAAACA	ACAATTAGAA	TGCCAAAATC	2280
	CaGTTGCTAG	AATTATGCCA	AACACAAATG	CGCAAGTTGG	ACACTCTGTT	ACTGGCATTA	2340
25	GTTTTTCAAA	CAACTTTGAC	CCTAAATCTA	AAGATGAAAT	TAACGATTTA	GTTAAAGCAT	2400
	TTGGTTCTGT	AATTGAAGTA	TCAGAAGATC	ATTTACATCA	AGTAACAGCT	ATCACCGGAA	2460
30	GCGGCCCAGC	AŢŢŢŢŢĀŢĀŢ	CATGTATTCG	AGCAATATGT	TAAAGCTGGT	aCsAAACTTG	2520
	GTCTAGAAAA	AGAACAAGTT	GAAGAATCTA	TACGCAACCT	TATTATAGGT	ACAAGTAAGA	2580
	TGATTGAACG	TTCAGALTTG	AGCATGGCTC	aattaagaaa	AAATATTACC	TCTAAAGGTG	2640
35	GTACGACACA	AGCTGGCCTT	GATACATTGT	CACAATATGA	TTTAGTATCT	ATTTTCGAAG	2700
	ATTGTCTAAA	CGCTGCCGTC	GACCGTAGTA	TTGAACTTTC	TAATATAGAA	GACCAATAAA	2760
	AACABACCCG	CCAACACATG	TATGCATCAT	CGCAAGCACT	GTGTTTGACG	GGTTATTTTT	2820
40	ATAATTTATT	GTTATTTGGC	AAGCATTGTT	TATTACTTTG	TCATTAGATT	TTAAAACTAT	2880
	CAAAATCTTT	TACAAAATTA	AAATTAGGTG	TATCTTCATT	TTGTATCAAT	GTTTGATAAA	2940
	TTTCATTTAT	ATCTTCTGTA	TTATAGCGAT	TGCTCAAATG	TGTAATCAAC	GTACGTTTAA	3000
45	CATTGGCTTC	TTTTATCAAT	GCAAATACGT	CTTCAATATG	GCTATGATGA	TAATTGTTGG	3060
	CTAAATGCTT	TTCACCATCT	ATATAGGTCG	CTTCATGTAC	CATCACATCA	GCATCTCTAG	3120
50	AAATCACACG	TTCATTAGAA	CATGGTTTTG	TATCACCAAA	AATTGCTACA	ACTGGACCCT	3180
	GTTTGGACTC	ACCTCTAAAA	TCTTTTGATT	GATAAACTTG	ACCATTATGT	TCAAATGTAT	3240
	СУДСУСУДДА	עי א רייייירי אייירי א	ייא מיייייי א ריי א ריי	CTCCTTCAAC	3 CC3 3 MCMMM	Man s co com	2200

	CATGATTAAG TAAATGCGCC TCTACAGTAA AACCATCCAT GATGATATGT CAGATGATCA	3420
	TCGATTTCAA TATATGLAAT TGGATAGTTT AAATGTGACT CTGATAAATT CATAGACATT	3480
5	TCCACATATG CT	3492
	(2) INFORMATION FOR SEQ ID NO: 35:	
0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1973 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	ATCTAGCGGT ACAAGCGTCT TGGAGGCTAG TATGTTGAAC ATTGTAAACC CTGAAGATCA	60
20	CTTCGTTGTC ATTGTTTCAG GTGCCTTTGG TAACCGATTT AAACAAATTG CACAAACTTA	120
	TTACAAAAAT GTGCATATTT ATGACGTAAC ATGGGGAGAA GCTGTAGATG TCAAAGATTT	180
	CATCAATTTC CTTTCAACTT TAAATGTTGA AGTTAAAGCA GTATTTAGTC AATATTGCGA	240
?5	AACATCTACG ACAGTGCTAC ACCCTATTCA CGAGTTAGGA AATGCCATTA ATCAATTTAA	300
	TAGTAATATT TATTTTGTAG TTGACGGCGT AAGTLGCATT GGTGCTGTTG ATGTTGACAT	360
	TAACAAAGAT AAAATTGATG TACTTGTTTC TGGTAGTCAA AAAGCAATTA TGTTACCTCC	420
30	AGGATTAGCT TTTGTAGCTT ATAGCCACCG TGCAAAAGAA CATTTCAAAG AAGTAACTAC	480
	GCCAAAATTT TATCTAGACT TAAATAAATA CATTTCGTCA CAAGCTGACA ATTCTACACC	540
o.c	GTTCACACCA AATGTGTCTT TATTTAGAGG TGTAAATGCA TACGTTGAAA CCGTAAAAGC	600
35	AGAAGGTTTC AATCACGTAA TAGCACGACA CTATGCAATT AGAAATGCAT TAAGAAGCGC	660
	CTTAMAAGCA TTAGATTTAA CTTTATTAGT CAATGATAAA GATGCATCTC CAACGGTTAC	720
10	AGCATTCAAA CCTAATACAA ATGATGAAGT GAAAATAATC MAAGATGAAC TTAAAAATnG	780
	CTTTAAAATA ACAATTGCnG GTGGTCAAGG CCATCTTAAA GGTCAAATTT TNAGAATTGG	840
	TCATATGGGG AAAATTAGTC CTTTCGATAT TTTATCGGTA GTATCTGCTT TAGAAATTAT	900
45	TTTAACTGAA CACCGTAAAG TTAACTATAT CGGTAAAGGT ATATCAAAAT ATATGGAGGT	960
	TATTCATGAA GCAATTTAAT GTACTCGTTG CAGATCCCAT ATCAAAAGAT GGTATCAAAG	1020
	CATTATTAGA TCACGAACAA TTCAATGTAG ATATTCAAAC TGGCTTGTCC GAAGAAGCAT	1080
50	TAATCAAAAT TATACCITCA TACCATGCTT TAATCGTTCG TAGTCAAACT ACGGTTACTG	1140

55

1200

AAAATATCAT AAATGCTGCT GATTCTTTAA AAGTAATCGC ACGCGCCGGT GTTGGTGTAG

	GTAATACGAT TTCAGCTACT GAACATACAC TGGCAATGTT ATTATCAATG GCACGAAATA	1320
	TTCCGCAAGC ACACCAATCA CTTACAAATA AAGAATGGAA TCGAAATGCA TTTAAAGGTA	1380
5	CTGAGCTTTA TCATAAAACA TTAGGTGTCA TTGGTGCTGG TAGAATTGGT TTAGGTGTTG	1440
	CTAAACGTGC GCAAAGTTTC GGAATGAAAA TACTAGCTTT TGACCCTTAC TTAACGGATG	1500
10	AAAAAGCAAA ATCTTTAAGC ATTACGAAGG CAACAGTTGA TGAGATTGCC CAACATTCTG	1560
	ATTTCGTTAC ATTACATACA CCACTAACAC CTAAAACAAA AGGCTTAATT AATGCTGTCT	1620
	TTTTTGCCAA AGCAAAACCT AGTTTGCAAA TAATCAATGT GGCACGTGGT GGTATTATTG	1,680
15	ATGAAAAGGC GCTAATAAAA GCATTAGACG AAGGACAAAT TAGTCGGGCA GCTATCGATG	1740
	TGTTTGAACA TGAACCTGCA ACTGACTCGC CTCTTGTTGC ACATGATAAA ATTATTGTTA	1800
	CACCTCATTT GGGTGCTTCA ACAGTCGAAG CTCAAGAAAA AGTGGCAATT TCTGTTTCAA	1860
20	ATGAAATCAT CGAAATTITA ATTGATGGTA CTGTAACGCA TGCAGTGAAT GCACCTAAAA	1920
	TGGACTTAAG CAATATAGAT GATACTGTAA AATCATTCAT CAATTTAAGC CAA	1973
	(2) INFORMATION FOR SEQ ID NO: 36:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
35	GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA	60
	TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT	120
•	AAATAAACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA	180
40	TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT	240
	GTCATAATCA TTGGAAATAA CATTGTTCTT GATATATCGT GAAATCTTCG AACGCACAAC	300
	GCTAAATTTG GAATAAACGT TGCCAAACTA TAGACAAAAG TATACACAGA TGTAAGGATA	360
45	ATCATCAATA TACTCATAAC TATTAATGTT TCGTTATCCG CCGCTATAGA AATAAAGAAT	420
	AGAAATAGGT TTATTATTAG CACACACA GCTGGAACCA TAAGTATCAA ATGCCATAGT	480
50	GCCATATACC AATATTCACT ACGTCTTGAT CTCCCCTTAA AATTTACATA ATTTTTCCAA	540
	AATAAAACGA ATGATTTCAT AAAACCTACT TGAGGTAATT GTTCCATTGT AATCTCCCTT	600
	TCGTTAATCA TATTTATATT TTTAATTATT CTTACCCTTA TAATTTACAA CATTCATT	

	GTAAAATGAA	AACCCGCTAC	AAGTACACAT	CTATATGGAG	ACTCATTTGA	AAGTCAACGC	780
	TTCGTTAACT	АТАСТААААА	TATGTCATAC	TGCAATGTTC	ACGTTTAAAA	GAGTCTCAAT	840
5	CTATGCAAAT	AAAATATTCC	ATAACAAAGT	ATATACTITA	CATTTTTATA	ATTCTTAACA	900
	ATACTATTTT	ATCAAACATT	TACCACAATA	AAAATATCTT	TTTCATTTTT	ATTTAAATTTA	960
10	ATCATATAAT	TGCGAGGAGA	ATATTATGGA	TTTCGTTAAT	AATGATACAA	GACAAATTGC	1020
10	талаластта	TTAGGTGTCA	AAGTGATTTA	TCAGGATACC	ACTCAAACGT	ATACAGGCTA	1080
	CATCGTGGAA	ACGGAAGCTT	ACTTAGGTTT	GAATGATCGT	GCGGCTCATG	GCTATGGCGG	1140
15	TAAAATAACA	CCTAAAGTCA	CGTCATTATA	TAAACGTGGT	GGTACAATTT	ATGCACATGT	1200
	CATGCATACG	CATTTACTCA	TTAATTTTGT	AACAAAATCT	GAAGGTATAC	CTGAAGGCGT	1260
	ACTTATCCGC	GCAATTGAAC	CAGAAGAAGG	TTTATCCGCT	ATGTTCCGTA	ACAGAGGTAA	1320
20	GAAAGGCTAC	GAGGTAACGA	ATGGCCCAGG	AAAATGGACT	AAGGCATTTA	ACATTCCACG	1380
	GGCTATCGAT	GGCGCTACGT	TAAATGACTG	TAGATTGTCT	ATTGATACTA	AGAATCGTAA	1440
	ATATCCTAAA	GATATTATTG	CTAGTCCACG	AATCGGTATT	CCAAATAAAG	GTGATTGGAC	1500
25	ACATAAATCT	TTACGTTACA	CAGTGAAAGG	TAATCCATTT	GTGTCTCGCA	TGCGTAAATC	1560
	AGATTGTATG	TTTCCCGAAG	ATACTTGGAA	ATAAATGCCA	TCTTTCATTG	ATTACTATCA	1620
20	TGAAAATGAA	ATCTATCTCC	TTATAAGTCA	ATCAATCGTG	CCGTCAACAT	GCGGATGGGT	1680
30	TGATTGTTTT	TCTTTGTATC	CATCATATTT	TTTGATTCAT	CTCCTCTTAT	TGAACTTGTT	1740
	CTTAATTATA	AAATATAACA	ATAGAATTAT	TTATAATTAT	TAAATTTAGA	TGCATTAATA	1800
35	TTATTGATAT	TATTTTCAAA	AACTAGAAAT	ATTGATTTGT	TGCATGTATA	ATGTTAAAAG	1860
	CGCCCTTTTA	TAACGCTTAC	ATATAAAAGC	TTATTTAGGG	AGAGGGATAT	TCAACAAGGG	1920
	GGATTTGAAA	ATGATAGAAC	TTAATGCAAT	TACAACATTA	TGTTTAGCTT	GTATCCTTTA	1980
40 -	TTTACTTGGT	AAGGCTATCG	TTAATCACGT	TAATTTTTTA	AAACGTATTT	GTATACCAGC	2040
	ACCAGTGATT	GGCGGCTTAA	TCTTTGCTAT	TTTAGTTGCG	GCTTTGGATT	CATTTGGCAT	2100
	GGTTAAGATT	AAATTAGATG	CTTCATTCAT	TCAAGATTTC	TTCATGTTAG	CATTCTTTAC	2160
45	GACAATCGGT	CTTGGTGCAT	CATTGAAATT	ATTTAAATTA	GGTGGCAAAG	TCTTGCTATT	2220
	ATACTTTATG	TTTTGTGCTA	TCATTTCAGT	CATTCAAAAC	ATAGTTGGTG	TATCACTAGC	2280
50	AAAAGTATTA	AATATTAAAC	CTTTGTTAGG	ATTAACAGCA	GGTTCCATGT	CTATGGAAGG	2340
50	CGGTCATGGT	AATGCTGCTG	CTTATGGTÄA	GACAATTCAA	GATTTAGGTA	TTGATTCGGC	2400
	A CTC A CA CCC	CCTCTTCCAC	CTC C A A CTTTT	ACCOPCOTO TO	יייייייייייייייייייייייייייייייייייייי	ምምእምረረር ም ረር	2460

	ATTTAAAGAT	TATAGCCAAG	TAGCATATAA	CGAACATTTA	CATAGTAAAT	TTAATGCCAC	258
5	TGAAGTATTC	TTCATTCAAT	TTACAATCGT	TGTATTCTGT	ATGGCAGTTG	GAAGTTATTT	264
3	CAGTCATTTG	TTTACAGCTC	AAACAGGGAT	TAATGTTCCA	ATTTACGTTG	GCTCATTATT	270
	TGTAGCTGTT	ATTGTCCGAA	ATATCTCTGA	AAGTTTTAAT	TTTAATATTG	TAGATTTAAA	276
10	AATTACTAAT	CAAATTGGCG	ATGTCGCATT	AGGTATTTTC	TTATCTCTTG	CGCTAATGAG	282
	CATTCAATTA	ATCGAAATIT	ATAAACTTGC	TATACCTCTT	ATTATTATCG	TTTTAGTTCA	288
	AGTTGTCGTT	ATGATTTTAT	TTGCTGTTTT	AATTTTATTT	AGAGGTTTAG	GAAAAGATTA	294
15	TGATGCTGCA	GTAATGGTAG	GTGGTTTTAT	CGGTCATGGG	CTTGGTGCAc	GCCAAATGCC	3000
	ATGGCAAATT	TAGATGTTAT	TACTAAAAAA	TATGGAAACT	CACCTAAAGC	ATATTTAGTT	3060
	GTACCTATTG	TTGGTGCATT	CTTAATCGAT	TTAATTGGTG	TTATAGTCAT	TATGGGATTC	3120
20	ATACAATGGT	TTAGTTAAAC	ACCAAACTCA	TAAATAAAAG	AGGAGGCCTT	CGCCTCcTcT	3180
	TTTATTTATC	CTCGATGTAT	ATTCAAGTTA	CGTTGTTCTA	TCCATGACAA	TATTTCCGGA	3240
25	CTAAATACGA	TTTGTTTTTG	TGTTAAGTCG	TCAATATTTT	TAGCATCTAA	CATCGTCATT	3300
25	ATTGATTTCA	TGTGTTCAAT	AAATGATTCT	ACATAAGCTA	CTGTATGTGC	AATGCCATTA	3360
	TTTTCAACTT	GATTTAAAAA	CGGACGTGAC	ATACCAGTTG	CCTTTGCACC	AAGTGCTAAA	3420
30	CTTTTAATTG	CATCGAGTGG	TGTACGTAAA	CCACCACTCG	CGAAAACTGA	AATTTCGCTT	3480
	TGATAAGCCG	TTGTTTCAAG	TAATGACTCA	ACTGTAGACT	GTCCCCATGA	TGATAAGTAA	3540
	TCCATATCTT	TATTTGCACG	ACGTTCATTT	TCAATATCTA	CAAAGTTAGT	ACCACCTTTG	3600
35	CCACTAACAT	CGACATACTT	GACGCCTATT	TGTTGTAAGT	CATGCATTAA	TTCTTTGCTC	3660
	ATACCAAATC	CAACTTCTTT	TATAATGACT	GGAACAGACA	CTCGTGATAC	AATCGACGCT	3720
	ATATTATCTA	ACCAAGTCAC	AAATTCACGA	TTCCCTTCAG	GCATAACTAA	TTCTTGAGGA	3780
10	GAATTAACAT	GGATTTGTAA	CGCTTGTGCC	TCAAGTAATT	CAACTGCTTC	CAAAGCCTTT	3840
	TCTACTGGTA	CGTCCGCACC	AACATTGCTA	AAAATCATGC	CTTCAGGATT	CATTTTTCGC	3900
	GCAATCGTAA	ACGTCTCAGC	CATGCGTGGA	TTTCTCAATG	CCGCATGTGT	TGATCCAACT	3960
15	GCCATCGCTA	AGCCAGTTTC	TCTTGCAACT	ACAGCTAGCT	TTTCATTGAT	GTTTTTCGTC	4020
	CACTCGCTAC	CACCCGTCAT	TGCATTAATA	TAAACCGGAT	ATGCCATCGT	TAAGTCAGGC	4080
50	GTCTGTGATG	TCAAATCGAT	ATCATTTACA	TTAATTGATG	GGATAGAATG	ATGCACAAAA	4140
-	CGCATCTTAT	CAAAATCTGA	ATGCATTGCG	TCAGATTGGG	CCATTGCTAT	TTCAACATGT	4200
	TCATTTTTTC	TCTGTTCTCT	TTGAAAATCA	CTCATGATTA	AACCTACCTT	TTCGTCATTT	4260

	ATTACAGCTA	AGCAAATATA	ATATCCATAA	TGTAAATGTA	ATGCCGGCAT	ATTTACAAAG	4380
.	TTCATACCAT	AAATCCCAGC	TATGAATGTT	ĀACGGTGAAA	ATATAACTGA	TACTAATGTC	4440
5	AGTACTTGCA	TAATACTATT	CATTCTAAAT	GACGTGTATG	ACTCAAAATT	TTCTCGTATT	4500
	TCGTTTGTCA	TTTCTTGAGC	AGTACGAATG	ATATTACGTT	GCTTAATCAA	GTGGTCATCG	4560
10	ATATGTTGAA	TGTATAGCGA	ATGTTTATTA	TCTATAATCA	AATCACCATT	TTGTTTCATT	4620
	GTATCAATTA	GCTCTTGCAT	AGGAAACAGT	ACACGTTTTA	CTTTAATCAA	ATCCGAACGT	4680
	AACTTAAAGA	CACTATCCAT	GACCATTTTA	TTAAAGCGAT	CATCTACATG	GCGGTCTTCA	4740
15	AAATGATAAA	CACTATCTTC	AAGTGCATAT	ACAAAGTTGA	AATATTTATC	AACCATCATA	4800
	TCTAAAATTA	ATATGACGAC	ATCTGCACAA	TCTAATTCTG	CATCTAATGT	ATTCATATAC	4860
	TTATAGACTA	CTTTATTTAA	TGATTCCAAC	GTTTGATGAT	GATATGTTAC	TAATACATTG	4920
20	TCTTGTATAA	AAATATTTAG	TGCTATTGGT	GAATAGTTTG	ACCCCATAAT	ACTATGGAAT	4980
	ACTAAGTATT	GATAATCTTT	ATAAGATTTA	TATTTAGCTC	GTGGCATACC	GTTAATTGCA	5040
	TCATCCACTT	CTAAATCATT	AAAATTAAAA	TGTGCTTTAA	ACCATTCATT	TTCTTGTTCA	5100
25	TTCGGTTCAT	CAAAATCATA	CCAAACAATA	GTCGCATCTT	TTGGTATCTC	TTTGATATCA	5160
	TCAACTACTT	TAAACGGTTC	ATATGTAGTT	TGATACCGTA	TCTTTAAAGC	CATCGATACT	5220
30	CCCCCTAAAT	AACGAATTCT	CTATTATTTT	ATCATGAATT	AAATAACGTG	TATGTCTTAA	5280
	TTTATTTTAG	TATGATAGTC	ACTAAGGAGA	TGGTTATTAT	CAAACAACTT	TTTACACATA	5340
	CTCAAACCGT	AACATCTGAA	TTCATTGACC	ATAACAATCA	TATGCATGAT	GCAAATTATA	5400
35	ATATCATTTT	TAGTGACGTC	GTGAATCGTT	TTAATTACAG	CCACGGTCTT	TCTTTAAAAG	5460
	AACGCGAAAA	TTTAGCATAT	ACGCTATTTA	CACTAGAAGA	ACATACGACA	TACCTCTCAG	5520
	AATTGTCTCT	TGGCGATGTA	TTTACTGTTA	CTTTATATAT	TTATGATTAC	GATTATAAGC	5580
40	GGTTGCATTT	ATTTTTAACA	TTAACTAAAG	AAGATGGTAC	ACTAGCATCA	ACAAATGAAG	5640
	TAATGATGAT	GGGAATTAAT	CAGCACACAC	GTCGTTCTGA	TGCTTTTCCT	GAATCATTTT	5700
	CAACACAAAT	AGCACACTAT	TATAAAAATC	AATCAACTAT	CACTTGGCCT	GAACAATTAG	576
45	GACATAAAAT	AGCAATTCCA	CACAAAGGAG	CATTAAAATG	ACAGATGCAT	TACAACAAAA	582
•	GATTCATATC	GAATTACTAG	ATTTATTAGA	TGATGTTAAG	TTTGAATTAA	CAGAATTAAA	588
50	TGCACAAAAA	GGGTTATACA	TTAACGGACC	AGCAAATCAG	CTACTTAAGC	GTGGCGTGCA	594
	TATGGCTTAT	GTTCAAGGAC	AAAAGCAAGC	CATCGATAAT	ATTATGACTA	TTGTGGAACA	600
	ACAGCTTGAA	AGATCAACAT	ттсстадаас	ATTATGATAA	ATTTCAAAAT	GAGGTTGCTC	606

	WINNITITITY	AGRICARIII	INICAMAIIA	MAGGGCAATA	CITTATCATC	ACACATATCA	6180
5	ATACACTTAT	TGGTGATTTT	CACTCAGAAG	CTCATTAACA	ATTAGTCTAT	ATAACCCTTG	6240
5	CTATATTTTC	AAAAACAAAA	CCCAATTACG	TTTTCATGTC	AAATATCATC	TTGCATGAAA	6300
	TCGTAACTGG	GTCATTTATA	TGTTATTAGT	TATTTTGTGT	TACATCCTCA	TCTATCGATT	6360
10	TGGCAATTTG	TTTAATAGCT	TTATGTGATT	GTCTAATTGG	ATAAATTGGA	AAATCATGTA	6420
	CCATCTTAGG	ATAATCATAA	AACTCAATGT	ATTGATGATG	TTGCAACATC	ATTTGTTCAA	6480
	ATAGCTTCAT	ATCAGGATGT	GTCATTTCAC	GTCCACCACC	AAACATATAA	ACTGGTGGCA	6540
15	ATCCTTCTAT	TGTGCCATTA	ATTGGCGATA	TGCGCTTATC	TGTTAATGGT	AGGCCATTCG	6600
	CCCATTTTTT	CATAATCTCA	TTGACACCAA	ACTGACTTAG	aACCGCATCT	TGTTCGATTA	6660
	AGGCGTCCGA	AATATCTTTA	TTAGATAGTG	TTGCATCTAA	AATTGGTGAG	ATTAAATACA	6720
20	ATTTATTCGG	TAATGGCTGT	TGATTAKCTA	AAAGAGATTG	TACAAAGGAT	AATGCCAGTG	6780
	CACCACCTGA	ACCATCACCC	ATGACTACGA	CATTTTGATG	TCCTACTTCA	GATACTAATT	6840
	Gatcataaac	ACGTTGTATC	GCTTGGnAAA	GTATCGTCaA	TATGNAAACT	CTGGTGTCTT	6900
25	TGGATAGATA	GGCAGTACAA	CCTCATATAA	TGtACTTAAA	GTGATTTTAT	CCCAACAATC	6960
	TCCAATGGAA	CGGTGATGGT	TGTAGTGCAT	TGAATCCACC	GTGAATATAT	AAAATTTTCT	7020
30	TATCAATTTG	ATGTCTGAAA	TTAAAGCGAA	AGACTTGCAT	ATCATCTAAT	GACAATTTTT	7080
	CTAAATTTGC	TTTAACATTT	AATGTTGAAG	GCTGCTTATG	TTTTTTTCTA	TTTTCAATTT	7140
	СТСТТТТАТА	AAAAAATCTT	TCAACATCTT	GATCATTTTT	AAACATAATC	GAGCGATTGT	7200
35	GAAGCAAATA	TTTATTGACA	ACGCTATTCA	TAACACGGTT	TCTAATCAAT	GTCTTAACCT	7260
	ACCTTTATAT	ATTTTATGTA	TCCAATGATK	GTCTATCCCC	TACATTCTTT	GCCAAAAAAA	7320
	GTATATAATG	TAGAAGATAT	TTTCTTTTTC	ACTITICAAAT	TTAAGACTAC	AATTGAACAG	7380
40	TGATTTTTCA	TCATTATAAC	AGACAACTAG	ACATATTGAT	AAGTAAAGAA	AAGAACTTTA	7440
	TACGGAGGTA	CCTTGCATGA	CAAATCCAAA	TCAACGATTA	GAACCATTTG	ATGAGACATT	7500
	TCAACAACCG	AATATTCATC	GTGGTAAGCG	ATATGGTAAG	AAAAAACGTT	CATTGGTAAG	7560
45	CATGATTATT	CAAATCATTG	TTGTWATATT	AACCACCATC	GCTGGAATAC	AGCATGGTGG	7620
	(2) INFORMA	ATION FOR SE	Q ID NO: 37	7:		*	

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9834 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

50 °

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

	GTCATLACCG	amTTTCtTAG	Aatcatttaa	AGATGATAAA	TATACAAACG	TTGGTAATTT	60
5	AAAAGAAGTG	AATTTTGATA	AAATTGCTGC	GACGAAACCC	GAAGTAATCT	TTATCTCTGG	120
	ACGTACAGCT	AATCAAAAGA	ATTTAGATGA	ATTCAAAAAA	GCTGCACCTA	AAGCGAAAAT	180
	TGTTTATGTT	GGTGCAGATG	AAAAGAACTT	AATTGGTTCA	ATGAAACAAA	ACACTGAAAA	240
0	TATCGGAAAA	ATTTACGATA	AAGAAGATAA	AGCTAAAGAA	TTAAATAAAG	ATTTAGATAA	300
	CAAAATTGCT	TCAATGAAAG	ATAAAACGAA	AAACTTCAAT	AAAACTGTTA	TGTATTTACT	360
5	AGTTAACGAA	GGTGAATTAT	CAACATTTGG	ACCTAAAGGT	CGTTTTGGTG	GATTAGTTTA	420
5	CGATACATTA	GGATTCAATG	CAGTTGATAA	AAAAGTAAGT	AATAGCAATC	ATGGACAAAA	480
	TGTTTCTAAC	GAATATGTTA	ATAAAGAAAA	TCCAGATGTT	ATTTTAGCGA	TGGATAGAGG	540
20	TCAAGCGATA	AGTGGTAAAT	CAACTGCGAA	ACAAGCATTA	AATAATCCTG	TATTAAAAAA	600
	TGTTAAAGCA	ATTAAAGAAG	ACAAAGTATA	TAATTTAGAT	CCTAAATTAT	GGTACTTTGC	660
	AGCTGGATCA	ACTACAACTA	CAATTAAACA	AATTGAGGAA	CTTGATAAAG	TTGTAAAATA	720
?5	ATTTTAAAAG	AGGGGAACAA	TGGTTAAAGG	TCTTAATCAT	TGCTCCCCTC	TITTCTTTAA	780
	AAAAGGAAAT	CTGGGACGTC	AATCAATGTC	CTAGACTCTA	AAATGTTCTG	TTGTCAGTCG	840
	TTGGTTGAAT	GAACATGTAC	,TTGTAACAAG	TTCATTTCAA	TACTAGTGGG	CTCCAAACAT	900
30	AGAGAAATTT	GATTTTCAAT	TTCTACTGAC	AATGCAAGTT	GGCGGGGCCC	AAACATAGAG	960
	AATTTCAAAA	AGGAATTCTA	CAGAAGTGGT	GCTTTATCAT	GTCTGACCCA	CTCCCTATAA	1020
	TGTTTTGACT	ATGTTGTTTA	AATTTCAAAA	TAAATATGAT	AGTGATATTT	ACAGCGATTG	1080
35	TTAAACCGAG	ATTGGCAATT	TGGACAACGC	TCTACCATCA	TATATTCATT	GATTGTTAAT	1140
	TCGTGTTTCC	ATACACCGCA	TAAGATTGCT	TTTTCGTTAA	ATGAAGGCTC	AGACCAACGC	1200
40	TTAATGGCGT	GCTTTTCAAA	CTCATTATGG	CACTTATAGC	ATGGATAGTA	TTTATTACAA	1260
	CATTTAAATT	TAATAGCAAT	AATATCTTCT	TCGGTAAAAT	AATGGCGACA	scgTGTTTCA	1320
	GTATCGATTA	ATGAACCATA	AACTTTAGGC	ATAGACAAAG	CTCCTTAACT	TACGATTCCT	1380
45	TTGGATGTTC	ACCAATAATG	CGAACTTCAC	GATTTAATTC	AATGCCAAAT	TTTTCTTTGA	1440
	CGGTCTTTTG	TACATAATGA	ATAAGGTTTT	CATAATCTGT	AGCAGTTCCA	TTGTCTACAT	1500
	TTACCATAAA	ACCAGCGTGT	TTGGTTGAAA	CTTCAACGCC	GCCAATACGG	TGACCTTGCA	1560
50	AATTAGAATC	TIGTATCAAT	TTACCTGCAA	AATGACCAGG	CGGTCTTTGG	AATACACTAC	1620
	СВСВТСВВСС	አጥአ <i>ር</i> ጥርጥል እ እ	CCTTCTTTAG	ል ተተርተርተልርና	ттстсттала	TCATCCATTT	1680

	AGTGTTCTTT	TTGAATAATG	CTATTACGAT	AATCTAACTC	TAATTCTTTT	GTTGTAAGTT	180
	TAATTAACGA	GCCTTGTTCG	TTTACGCAAA	GCGCATAGTC	TATACAATCT	TTAACTTCGC	186
5	CACCATAAGC	GCCAGCATTC	ATATACACTG	CACCACCAAT	TGAACCTGGA	ATACCACATG	192
	CAAATTCAAG	GCCAGTAAGT	GCGTAATCAC	GAGCAACACG	TGAGACATCA	ATAATTGCAG	198
	CGCCGCTACC	GGCTATTATC	GCATCATCAG	ATACTTCGAT	ATGATCTAGT	GATAATAAAC	204
10	TAATTACAAT	ACCGCGAATA	CCACCTTCAC	GGATAATAAT	ATTTGAGCCA	TTTCCTAAAT	210
	ATGTAACAGG	AATCTCATTT	TGaTAGGCAT	ATTTAACAAC	TGCTTGTACT	TCTTCATTTT	216
15	TAGTAGGGGT	AATGTAAAAG	TCGGCATTAC	CACCTGTTTT	AGTATAAGTG	TATCGTTTTA	222
	AAGGTTCATC	AACTTTAATT	TTTTCATTTG	GGATAAGTTG.	TTGTAAAGCT	TGATAGATGT	228
	CTTTATTTAT	CACTTCTCAG	TACATCCTTT	CTCATGTCTT	TAATATCATA	TAGTATTATA	234
20	CCAATTTTAA	AATTCATTTG	CGAAAATTGA	AAAGAAAGTA	TTAGAATTAG	TATAATTATA	240
	AAATACGGCA	TTATTGTCGT	TATAAGTATT	TTTTACATAG	TTTTTCAAAG	TATTGTTGCT	246
	TTTGCATCTC	ATATTGTCTA	ATTGTTAAGC	TATGTTGCAA	TATTTGGTGT	TTTTTTGTAT	2520
25	TGAATTGCAA	AGCAATATCA	TCATTAGTTG	ATAAGAGGTA	ATCAAGTGCA	AGATAAGATT	258
	CAAATGTTTG	GGTATTCATT	TGAATGATAT	GTAGACGCAC	CTGTTGTTTT	AGTTCATGAA	264
	AATTGTTAAA	CTTCGCCATC	ATAACTTTCT	TAGTATATTT	ATGATGCAAA	CGATAAAACC	270
30	CTACATAATT	TAAGCGTTTT	TCATCTAAGG	ATGTAATATC	ATGCAAATTT	TCTACACCTA	276
	CTAAAATATC	TAAAATTGGC	TCTGTTGAAT	ATTTAAAATG	aTGctACCGC	CAATATGTTT	2820
35	TGTATATTTT	ACTGGGCTGT	CTAAGAGGTT	GAATAATAAT	GATTCAATTT	CAGTGTATTG	288
55	TGATTGAAAA	CAATTAGTTA	AATCACTATT	AATGAATGGT	TGAACATTTG	AATACATGAT	294
	AAAÇTCCTTT	GATATTGAAA	ATTAATTTAA	TCACGATAAA	GTCTGGAATA	CTATAACATA	3000
40	ATTCATTTTC	АТААТАААСА	TGTTTTTGTA	TAATGAATCT	GTTAAGGAGT	GCAATCATGA	3060
	AAAAAATTGT	TATTATCGCT	GTTTTAGCGA	TTTTATTTGT	agtaataagt	GCTTGTGGTA	3120
	ATAAAGAAAA	AGAGGCACAA	CATCAATTTA	CTAAGCAATT	TAAAGATGTT	GAGCAAAAAC	3180
45	AAAAAGAATT	ACAACATGTC	ATGGATAATA	TACATTTGAA	AGAAATTGAT	CATCTAAGTA	324
	AAACTGATAC	AACTGATAAA	AATAGTAAAG	AATTTAAGGC	ACTACAAGAA	GATGTTAAAA	3300
	ACCATCTCAT	ACCTAAATTT	GAAGCATATT	ATAAGTCAGC	AAAAAATTTG	CCTGATGATA	3360
50	CAATGAAAGT	TAAGAAATTA	AAAAAGAAT	ATATGACGCT	TGCAAATGAG	AAGAAGGATG	3420
	CCAMAMAMCA	************	TTC 3 T 3 C C TT	TATCTA ATCA	ATCTATCA & C	TATA A CON A C	240/

	AATTAGCTGA	TAATAAAAGT	GAAGCAACTA	ATCTTACGAC	AAAATTAGAA	CATAATAATA	3600
	AAGCGTTAAG	AGATACTGCG	AAGAAGAACC	TAGATGATAG	TAAAGAAAAT	GAAGTAAAAG	3660
5	GCGCGATTAA	AAATCACATT	ATGCCAATGA	TTGAAAAGCA	AATTACCGAT	ATTAACCAAA	3720
	CTAATATTAG	TGATAAGCAT	GTTAATAATG	CAAGGAAAAA	CGCAATAGAA	ATGTATTACA	3780
	GTCTGCAGAA	CTATTATAAT	ACACGTATTG	AAACAATAAA	GGTTAGTGAG	AAGTTATCAm	3840
0	AAGTCGATGT	AGATAAGTTG	CCGAAAAAGG	GTATAGATAT	AACTCACGGC	GATAAAGCCT	3900
	TTGAAAAAAA	GCTTGAAAAA	TTAGAAGAAA	AATAACTATA	ATCATTTTTC	AAAGTTAAAA	3960
15	ATTTTGAATT	TATGGTTAAC	ATGTCAACTT	ACTATGTGTA	TAATGGTAAA	CATTGATATT	4020
	AACTATATGT	ATAAAAATGT	CACGCAGATG	CTATTTAAAT	GTGATAAATA	TTTTTAGAGG	4080
	TGAATAGAGT	GGCTATAAAG	CTAAGTTCAA	TTGACCAATT	TGAACAGGTT	ATTGAGGAAA	4140
20	ATAAATATGT	TTTTGTATTA	AAACATAGTG	AAACTTGTCC	AATATCGGCA	AATGCGTACG	4200
	ATCAATTTAA	TAAATTTTTA	TATGAACGCG	ATATGGACGG	TTATTATTTG	ATTGTCCAAC	4260
	AAGAACGCGA	TTTGTCAGAT	TATATTGCTA	AAAAAACGAA	CGTTAAACAT	GAATCACCTC	4320
25	AAGCATTTTA	TTTTGTAAAT	GGTGAAATGG	TTTGGAATCG	AGACCACGGT	GATATCAATG	4380
	TGTCGTCATT	AGCACAAGCA	GAAGAATAAT	GAAACTATAG	GGTTGGAACA	TTTTGCCTTA	4440
	CACTACTAGA	CGTGAATAGC	ACAACTTAAA	TTCGTGTGAA	TCAGAGTAGT	TTGGCTATAA	4500
30	TGATGTTCTG	ACCTTTTATT	TTATGTCACC	TTTAGAAGCA	GTTAAGTTAG	TACTTTTTTA	4560
	CAAACATATG	TATAATATAT	TCGAGTATTT	TTATTGAAAa	tATTTTGGAA	AACGACGAAT	4620
35	CCAATAAGAA	AATTTAAACA	TGATTTGTAA	GTTAGTTTAA	TAGGAAATAT	ATGCTAAACC	4680
	AAAAGAAGCA	TATTGTTATT	TACTGGAATA	ATTAATAATC	ATGTCATGTT	AAATGTTAGC	4740
	ATATAATCAC	GAGATAAAAT	CTAAAAȚTTA	AGATTAATCT	TTTATGAATA	AAAAACGTAT	4800
40	CACAACAAAT	AATAAAGTAA	GGTGGTCAAG	GTTATGAAAG	TATTAGTAGC	CATGGATGAG	4860
	TTTCATGGAA	TTATTTCAAG	TTATCAAGCT	AATAGATATG	TTGAAGAGGC	AGTTGCAAGC	4920
	CAAATTGAAA	CTGCAGATGT	AGTTCAAGTA	CCATTGTTTA	ATGGAAGACA	TGAATTATTA	4980
45	GATTCTGTAT	TTTTATGGcm	ATCTGGGcaA	AAGTATCGTA	TACCAGTACA	TGATGCAGAT	5040
•	ATGAATGAAG	TTGAAGGTGT	TTACGGACAA	ACTGATACAG	GGATGACCGT	TATCGAGGGG	5100
	AATTTATTTT	TAAAAGGTAA	AAAACCAATT	GTTGAACGAA	CAAGTTATGG	TTTAGGAGAA	5160
<i>50</i>	ATGATTAAAC	ATGCATTAGA	TAACGACGCA	AAACATGTTG	TAATTTCACT	AGGTGGGATT	5220
	CATACTTUTC	ATCCTCCTCC	ACCTATCTTA	CAAGCATTAG	CTCCTCAATT	CTATCATCAC	5280

	GATATGTCGA	ACTTACACCC	TAAAATGGAA	ACAGCAAGAA	TTCAAGTAAT	GTCGGATTTT	5400
	TCAAGTCGAT	TATATGGTAA	GCAAAGTGAA	ATCATGCAAA	CTTATGATGC	GCATCAGTTG	5460
5	AATCATAATC	AAGCAGCAGA	AATCGATAAT	TTAATTTGGT	ATTTTAGTGA	GTTATTTAAA	5520
	AGTGAATTGA	AAATTGCAAT	TGGTCCAGTT	GAACGTGGTG	GTGCTGGTGG	TGGAATTGCA	5580
	GCAGTCTTGA	ATGGACTGTA	TCAAGCTGAA	ATATTAACCA	GTCATGCATT	AGTAGACCAA	5640
10	CTAACACATT	TAGAAAATTT	AGTTGAACAA	GCGGATTTAA	TTATTTTTGG	AGAAGGATTA	5700
	AATGAAAATG	ATCAGTTGCT	AGAAACGACA	ACATTGCGTA	TTGCAGAACT	TTGTCATAAA	5760
15	CATCAAAAGG	TTGCCATTGC	AATTTGTGCA	ACTGCTGAAA	AGTTTGATTT	ATTTGAATCA	5820
	CAAGGGGTTA	CAGCAATGTT	TAATACATTT	ATCGATATGC	CAGAAACTTA	TACTGACTTT	5880
	AAAATGGGtT	ACAAATTAGG	CATTATACGG	TTCAGTCTTT	AAAACTGTTG	AAAACACATT	5940
20	TTAATGTTGA	GGTTTAGTAA	AGAAGGACTA	AATTGGTGAT	GCTGTCATGA	TGGTTAATAA	6000
	CATTTATGAT	GGTTAGCAAA	ACGAATTAGA	AGATCGAAAG	TATAÇGTAAA	AAATATGAAA	6060
	AATCACGCTA	TCATTGCACT	GAATGTTAGC	GTGATTTTTA	TATATTAATT	AAGCCTGAGT	6120
?5	TGAACTAGTA	TATAATCGTT	GGTTTTTAGT	GATTTTCAGC	GATATCTTCT	ACAATTCCAA	6180
	TGATTACTTG	TACTGCTTTT	TCCaTAACAT	CAATGGATGC	aTATTCATAT	GGGCCGTGGA	6240
	AGTTACCGCA	ACCTGTAAAG	ATGTTTGGAG	TTGGTAACCC	CATAAATGAC	AATTGTGAAC	6300
30	CATCTGTACC	ACCGCGAATA	GGTTCAGTGT	TTGCTGGAAT	ATCTAATTTG	GCAAAGACAC	6360
	GTTTAGGTAT	ATCAATAATA	TGAGGCAATG	GTAATATTTT	TTCTGCCATA	TTGAAATATT	6420
15	GATCCGATAT	ATCAACTTTA	ACTGGATAAT	TTTCAAAATG	GGCATTGATA	TCGTCACGTA	6480
	TTTCTAAAAT	ACGTTTCTTA	CGCAATTCGA	ATTGTTTTTT	ATCATGATCA	CGAATAATGT	6540
	ATTGCAAAGT	TGCTTTTTCA	ACAGTTCCTT	CAAAGTTCAT	TAAGTGATAA	AAGCCTTCGT	6600
0	ATCCTTCTGT	TCGCTCCGGA	ACTTCACTAT	CAGGTAGCAA	ACTATCGAAT	TGTTCACCTA	6660
	AACGTATTGC	GTTTACCATT	GCATTTTTAG	CTGAACCAGG	ATGAACATTT	ACACCGTGGC	6720
	ATGTAATAAC	CGCTTCAGCA	GCGTTAAAGC	TTTCATATTG	TAATTCTCCA	TATTGACTAC	6780
5	CATCCATAGT	ATAAGCAAAA	TCAGCATTGA	AGCGGTCAAC	ATCAAATTTA	TGTGGACCAC	6840
	GACCGATTTC	TTCGTCTGGT	GTAAATCCAA	TGCGAATGGT	ACCATGTTTA	ATTTCTGGAT	6900
	GTTCTTGTAA	ATAACAAATA	GCTTCCATAA	TTTCCACAAT	ACCCGCTTTA	TCGTCTGCAC	6960
0	CTAGTAACGA	TGTACCATCA	GTTACCATTA	ATGTATGACC	AACTAAACTG	TTAAGTTCTG	7020
	САДАТАСТТ	ስርር ስጥርጥ አ ስር	3 C 3 C C TTTT 3 C	T'A THTCCCTTAC	TTTTTCTT TO CC		

	GCGCCAAAAA	TCCAACTGTT	GGGACGTCGA	CATCGATGTT	ACTITCTAAT	GTAGCAAATA	7200
	AGTAGCCATT	TTCATCTAAA	TCAGTTGGCA	ATCCTAATTG	TTGTAATTCT	TTTTCTAATA	7260
5	AATGTAACAA	ATCCCATTGC	TTTTCAGTTG	AAGGTGTTGT	TGTAGATTTT	GGATCAGATT	7320
	GCGTATCAAT	TGTCGTATAT	CTTGTTAATC	TATCTATCAA	TIGGTICITC	ATTATATTCG	7380
	ACCCCTTAAA	CTCTATTATT	CATGTTGTAA	GATTTTTTAT	ATGTCTTACC	TTTGATTTTA	7440
10	CCATACAGTT	GTTTGATACG	TGTGTATAGG	TAATATAGAA	TTTCAGAAAC	TAATATACCG	7500
	AAAGCAATCG	CACCTGAAAT	CAGTGTACTT	CTAAAAATGT	ATTTACAGCA	CTTGTATAAT	7560
15	CATTTGATAC	TAAAAAACGA	GTCGCTTGAT	AAGCTGCACC	ACCAGGTACT	AATGGTATAA	7620
	TGCCTGGCAC	TATGAATATA	ATTACCGGTC	GTTTATATCT	GCGACTCATA	GTATGACTCA	7680
	TTAAGCCTAA	AATTAAGCTT	CCCAAAAATG	AAGCGCCAAC	TTTTCCAAAC	TCTAAATCTA	7740
20	CCGTTAATTG	GTAAATCGTC	CATGCAATGG	CACCCACAAA	TCCACATGCT	ACTAAGAGGC	7800
٠	GTTTGGGTGC	ATTGAAAATG	ATAGAGAAAA	GTACTGTTGA	TATAAAGCTG	ATTGTAAAAT	7860
	GAAATAAATA	AAATAGCATG	CTTTAACAGT	CCTTCCTTAA	ATGATTAATA	AAACGATTGC	7920
25	GACACCAGCA	CCGATTGCGA	ATGCTGTTAA	TGCAGCTTCA	ACACCGCGAG	ACATACCTGC	7980
	AAGTAATTCA	CCCGCTAATA	AATCTCGAAT	GGCATTGGTA	ATTAATATAC	CAGGGACAAG	8040
	TGGCATGACA	CTGGCTATAG	TAATGATATC	TTGATTGGTT	GCAATGCCTA	ATTTAGTAAA	8100
30	TGTGGCTGCA	ATGGATATGA	CCACAGCGGC	TGCAACAAAC	TCTGAGAAAA	ATTTAATTTG	8160
	TATATAGCGT	tGCACAAAGC	TGAATGTTAA	AAATGCGGAT	CCGCCAGCAA	TGACTGCAAT	8220
ac	CCAACAATCT	GATGCGACAC	CACCAAACAT	AAATAGGAAG	AAGCCACATG	CAATGGCAGC	8280
35	TGCAAAGAAA	TTCGTTAAAA	AAGAATATTG	TAATGATGCA	TGCTGTAAAT	GAATAAATTC	8340
	AGATTTAGCT	TCATCAATTG	TGAGTTCTTT	ATTTGATATT	TTACGTGAAA	GACTATTCGT	8400
40	TAAAGCGATT	TTCTCTAAAT	CTGTTGTACG	CTCTTGTACA	CGAATTAATC	TTGTACTTGT	8460
	TCGATCGTTT	AATGAAAAA	TAATTGCAGT	TGAACTGACA	AAACTATATG	TATTATGAAG	8520
	ACCATAACTA	TGTGCGATAC	GGTTCATTGT	ATCTTCAACT	CGATATGTTT	CAGCACCTGA	8580
45	TTCaAGTAAA	ATTCTACCTG	CAATTAATAC	AACATCAATC	ACTITGTTTT	CATCTATAAT	8640
	TGTGATTGAA	TCTGGCATAT	CAATTCACCT	CCAATGATAT	GTGTTATTTA	TTTGAACAAT	870
	TGAAGTTTAC	AACTTGTTGT	TACAACTTTC	AATAGTGAGA	CTTTGTGTTA	GTATGATGAA	8760
50	CTTGTATGGT	TCAAATTTAA	ATAAGAAAAA	CTGTTAATCT	TTGCTATTAT	ACTATGATTT	882
	AATAATAGCA	AAGGATTAAC	AGTTTTGTCG	TTGTTATAAA	TTGATAATAG	GGTTAAACAT	888

	TTTACGCTGT	GATTTTGGAT	CGTCATCTGT	TAAATAACCA	ACACCGATAG	ACACTGACAA	9000
	TTTAATAACT	TCTTTGTTTG	GTAAATGGAA	TGATGATTTT	TCAACACCCG	AACGAATATT	9060
5	TTCAGCTAAT	TTAACACTTT	GATCAAGTGA	ATAATTGTGA	ATGACAACTG	AGAACTCTTC	9120
	GCCACCATTT	CTAAAAATTT	TAAATTGATT	CGGCACATAG	TTTTTAAGTA	ATTGAGACAT	9180
	TTGTTTTAAT	ACAGCATCAC	CTGATTTGTG	TGAGTAGGTA	TCATTGaCAT	CTTTAAATCC	9240
10	ATCGATATCG	ATTAATAATA	ATGCGATACT	TTGATGTTCT	TTTTCAGCTT	TTCGTGAAAT	9300
	TTCATTTAAA	TGTCTATCAA	ATTCTTTTAC	ATTACCTAAG	CCTGTTAAGT	AATCATATTT	9360
15	ATCTTCGTTT	TCATAACGAT	TTACGAGTGA	GAAGAAATGC	CAAATATCGA	CAAATGTTAT	9420
5	CGCTGAAGCT	AAAGTGATAA	TTAATGAAAT	TGGTATTAAA	ATGATAACTT	CCGATAGTGT	9480
	GTAAATAGGA	CTCACTAACG	CGACACCAAA	TAAAATGATT	ATTGTAACAA	CATTAAGTAT	9540
20	TAATAATGAT	AGCACATCAT	TTTGTTTTAA	AAATGGTCCA	ATAGCACTTG	TTACTGCAGC	9600
	AATAACAATC	AACGTAACAC	CGTACATAAT	CGAGTTGTTA	AATACTACAA	TTTCAACAAT	9660
	TGCTACAATT	ACTGTGGCAG	ATAATGTATA	GACCATATTT	GTAAATCTAC	СТАААААСАА	9720
25	TAAAGGAACG	AATGTTAAGT	GAATTAAATA	ATCTTCACGA	TAAGGGATAG	GGTAGACAGA	9780
	TAATAATAAT	GATACGATTG	TCATTAAAAC	AGTGACATAA	GCCTTAGAAA	AAAC	9834
	(2) INFORMA	TION FOR SE	Q ID NO: 38	:			
30	(QUENCE CHAR A) LENGTH: B) TYPE: nu	23439 base				

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

45

-(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

TCTCAATCAG ATGAAAAATT GCATATCGTA GGTTTTACAG AAAGTGCAAA ATATAATGCG 60 TCATCAGTCA TTTTCACGAA TGACGCTACC ATTGCCAAGA TCAATCCTAG ATTGACTGGA 120 GATAAAATTA ATGCAGTTGT TGTACGTGAT ACAAATTGGA AAGACAAAAA ATTAAACCAA 180 GAGCTTGAAG CGGTAAGTAT TAATGACTTT ATTGAAAATT TACCAGGTTA TAAACCACAG 240 AACTTAACAT TAAACTTTAT GATTTCATTC TTATTTGTCA TTTCAGCTAC AGTTATAGGC 300 ATTITCCTAT ATGTCATGAC ATTACAAAAG ACGAGTTTAT TTGGCATATT AAAAGCTCAA 360 GGATTTACGA ATGGCTATTT GGCGAATGTG GTAATTTCGC AGACGGTCAT ATTAGCACTA 420 TTTGGTACGG CATTTGGCTT ACTGTTAACA GGCGTTACAG GTGCATTTTT ACCTGATGCA 480

55

	TCTGTATTAG	GAAGTTTATT	CTCCATTTTA	ACAATTAGAA	AAATAGATCC	GTTAAAGGCG	600
	ATTGGGTAGG	AGGTGTAGCA	aatgttgaaa	TTTGAAAATG	TAACAAAGTC	ATTTAAAGAT	660
5	GGGAATCGTA	ACATTGAAGC	GGTTAAAGAT	ACAAATTTTG	AGATAAATAA	AGGTGATATT	.720
	ATAGCATTGG	TTGGACCTTC	TGGCTCTGGT	AAAAGTACAT	TTCTAACTAT	GGCAGGTGCT	780
	TTACAAACAC	CGACATCTGG	GCACATTTTA	ATCAATAACC	AAGATATTAC	GACAATGAAG	840
0	CAAAAAGCAT	TGGCAAAAGT	TAGAATGTCT	GAAATAGGTT	TTATTTTACA	AGCTACAAAC	900
	CTTGTACCAT	TTTTAACGGT	AAAGCAACAA	TTTACATTAT	TGAAAAAGAA	AAATAAGAAT	960
15	GTTATGTCTA	ATGAAGACTA	TCAGCAACTT	ATGTCACAAT	TAGGTCTAAC	TTCATTGCTT	1020
3	AATAAGTTAC	CTTCAGAAAT	TTCAGGTGGT	CAGAAACAAC	GTGTGGCGAT	AgCaAAGCGT	1080
	TATATACGAA	TCCGTCGATT	ATTTTAGCGG	ATGAACCTAC	CGCGGCGTTA	GATACTGAAA	1140
20	ATGCGATTGA	AGTCATTAAA	ATTCTACGTG	ATCAAGCCAA	ACAAAGAAAG	AAAGCATGTA	1200
	TTATTGTTAC	ACATGATGAA	CGACTTAAAG	CATATTGTGA	TCGTTCATAT	CATATGAAAG	1260
	ATGGCGTCCT-	·TAATCTTGAA	AATGAAACAG	TAGAATAGTT	TTATTAAGCC	GGTACATCAT	1320
25	GTGCCGGTAT	TTTTATGTTT	ATGTATTATT	TGAATAAACT	TTCACATTCA	ATTAATAATA	1380
	ATTATTATCG	AAAATCAGAA	ATATTCCGTG	ATATATAAA	TTTTTTGTAG	TAAAATGGCC	1440
	TCTAAGTATT	CAATATTTAA	ATATGGGGAT	TGAATATAAA	ATTATCGTAA	TGGGGGTCAA	1500
30	TGGTTATGGA	TTTATTGATA	GGTACTTTAT	TTTTATTTTT	GGTCTTAGTG	ATTTTTACAT	1560
	TATTTACATA	TAAAGCGCCT	AATGGTATGC	GTGCCATGGG	AGCATTAGCT	AATGCAGCAA	1620
	TCGCAACATT	TTTAGTGGAA	GCATTTAATA	AATATGTTGG	TGGCGAAGTA	TTCGGTATTA	1680
35	AATTTTTAGA	AGAGCTAGGA	GACGCTGCGG	GAGGTCTAGG	TGGTGTCGCT	GCCGCTGGAT	1740
	TAACAGCATT	AGCTATCGGT	GTGTCACCAG	TATATGCATT	AGTTATAGCA	GCCGCGTGCG	1800
40	GTGGTATGGA	TTTATTACCA	GGTTTCTTTG	CGGGTTATAT	GATTGGATAT	GTGATGAAAT	1860
-	ATACAGAGAA	ATATGTGCCG	GATGGTGTCG	ACTTAATTGG	ATCGATTGTC	ATCTTAGCGC	1920
	CATTAGCTCG	TCTTATTGCA	GTATTATTAA	CGCCAGTAGT	GAATAGTACA	TTGATTCGAA	1980
45	TTGGTGATAT	TATCCAAAGT	AGTACGAATA	CGAATCCAAT	TATCATGGGT	ATCATTTTAG	2040
	GTGGTATTAT	TACGGTTGTC	GGCACAGCGC	CATTGAGTTC	AATGGCATTG	ACAGCATTAT	2100
	TAGGTTTAAC	GGGTGTACCT	ATGGCTATTG	GTGCCATGGC	AGCATTTAGT	TCGGCATTTA	2160
50	TGAATGGGAC	GCTATTCCAT	CGCTTAAAAT	TAGGTGATCG	TAAGTCTACG	ATTGCAGTAA	2220
	CITE A TISTIC N N CC	ምምም አምር አ <i>ር</i> አ እ	CCACATATTC	TATCACCCAA	ጥርርን አጥጥርርን	א ידיים איזי א ידיים א	2280

	ATGCGACAGG	TACAGCTACA	CCGATTGCAG	GATTTTTAGT	TATGTTTGGA	TTTAATCATC	2400
	CGACGACAAT	TGTGATTTAT	GGTGTAGTAA	TGGCGATTGT	AGGTGCGCTT	GCAGGTTATC	2460
5	TTGGTTCAAT	TGTATTTAAA	AAATATCCAA	TTGTTACTAA	GCAAGACATG	ATTAATCGAG	2520
	GTGCAGTAGA	CGCATAGCAT	CATCATATTG	AATAGTAAAA	ACAAATAAAA	CATAGTAACG	2580
	TGATTCAGTC	GATGTAACAG	TCGATAATGA	GTCACGTTTT	TTTATAGAAA	AATACAAGAC	2640
10	ATAAAAATGT	CATAATTTAT	TGTCGACAAA	TATCATACTG	TATAAACATT	TATCATTTTC	2700
	TCAAGTACCT	TTTACACGAT	GGAATGAACT	TACTTTTTAC	GAAATTATGC	GTATTTTATA	2760
15	AACAAATATC	ATTGATATAA	CGGTAAATGT	AAGCGTTTAC	AACAGAAATA	ACAGCATGCT	2820
15	ACGATATTTT	TGTAAATTCA	CTGATTCAAG	TATTTTAAGT	CAATATGAGG	AGGGATGTTA	2880
	TGAGCGATTC	TGAGAAAGAA	ATTTTAAAAA	GAATTAAAGA	TAATCCGTTT	ATTTCACAAC	2940
20	GTGAACTTGC	TGAGGCAATT	GGATTATCTA	GACCCAGCGT	AGCAAACATT	ATTTCAGGAT	3000
	TAATACAAAA	GGAATATGTT	ATGGGAAAGG	CATATGTTTT	AAATGAAGAT	TATCCTATTG	3060
	TTTGTATTGG	CGCAGCGAAT	GTAGATCGTA	AGTTTTATGT	GCATAAAAAT	TTAGTTGCAG	3120
25	AAACATCAAA	TCCTGTAACG	TCAACACGCT	CTATTGGTGG	CGTAGCAAGA	AATATTGCTG	3180
	AGAACTTAGG	TAGGCTTGGC	GAAACGGTCG	CTTTTTTATC	TGCTAGTGGA	CAAGATAGTG	3240
	AATGGGAAAT	GATTAAACGA	TTGTCCACAC	CATTTATGAA	TTTGGATCAT	GTTCAACAAT	3300
30	TTGAAAATGC	GAGTACAGGT	TCATATACAG	CTTTAATTAG	TAAAGAAGGC	GACATGACAT	3360
	ATGGCTTaGC	AGATATGGAA	GTGTTTGACT	ACATTACGCC	TGAATTTTTA	ATTAAGCGTT	3420
	CACACTTATT	GAAAAAGGCT	AAGTGCATTA	TTGTAGATTT	GAATTTAGGC	AAAGAGGCAT	3480
35	TAAACTTCTT	ATGTGCCTAT	ACCACGAAAC	ATCAAATCAA	ATTAGTTATC	ACCACGGTTT	3540
	CTTCCCCAAA	AATGAAAAAT	ATGCCTGATT	CATTACATGC	TATTGATTGG	ATTATCACGA	3600
40	ATAAAGATGA	AACAGAAACA	TACTTAAATT	TAAAAATAGA	ATCTACTGAT	GATTTAAAAA	3660
40	TAGCTGCTAA	ACGCTGGAAT	GATTTAGGTG	TTAAAAATGT	TATTGTGACA	AATGGCGTGA	3720
	AAGAACTCAT	TTATCGAAGT	GGTGAGGAAG	AAATCATTAA	GTCAGTTATG	CCATCAAATA	3780
45	GTGTGAAAGA	TGTTACAGGT	GCAGGCGATT	CATTCTGTGC	TGCAGTAGTG	TATAGCTGGT	3840
	TAAATGGGAT	GTCTACTGAA	GATATATTAA	TTGCTGGTAT	GGTTAACGCA	AAGAAAACGA	3900
	TAGAAACGAA	ATATACAGTT	AGGCAAAACC	TAGATCAACA	GCAACTTTAT	CACGATATGG	3960
50	AGGATTATAA	AAATGGCAAA	TTTACAAAAG	TATATTGAGT	ATTCTCGAGA	AGTTCAGCAA	4020
	4545557455	ACANTCANCO	Саттстасса	TTACAATCAA	CA A TETTA TETTO	CC1 mccm1 mc	

	GCCATTCCAG	CAACCATAGC	CATTATAGAT	GGCAAAATTA	AAATTGGTTT	AGAAAGCGAA	4200
	GATTTAGAAA	TACTGGCAAC	TAGTAAAGAC	GTTGCTAAAG	TATCTAGAAG	GGATTTAGCA	426
5	GAAGTTATTG	CGATGAAGTG	TGTTGGTGCT	ACTACTGTAG	CGACGACGAT	GATATGTGCT	4320
	GCAATGGCTG	GTATTCAATT	TTTTGTTACA	GGAGGTATTG	GGGCGTCCA	TAAAGGTGCA	4380
	GAACATACGA	TGGACATTTC	AGCAGACTTA	GAAGAACTGT	СТААААСААА	TGTCACTGTT	444
10	ATCTGTGCAG	GTGCCAAATC	AATTTTAGAC	TTACCTAAGA	CGATGGAGTA	TTTAGAAACA	450
	AAAGGCGTTC	CAGTTATTGG	ATATCAAACG	AATGAATTGC	CAGCATTCTT	CACTCGCGAA	4560
15	AGCGGTGTTA	AGTTAACAAG	TTCGGTTGAA	ACGCCAGAAC	GACTTGCTGA	CATTCATTTA	4620
	ACAAAACAGC	AGTTAAATCT	TGAAGGTGGC	ATTGTTGTTG	CTAATCCAAT	TCCATATGAG	468
	CATGCCTTAT	CAAAAGCATA	TATTGAGGCA	ATCATAAATG	AAGCTGTTGT	TGAAGCGGAA	474
20	AATCAAGGTA	TTAAAGGTAA	GGACGCCACA	CCGTTCTTGT	TAGGGAAAAT	TGTAGAAAAA	480
	ACGAATGGTA	AAAGTTTAGC	AGCAAATATA	AAACTTGTTG	AAAACAATGC	GGCGTTGGGT	486
	GCTAAAATTG	CTGTCGCTGT	TAATAAATTA	TTGTAGGTGA	TGATACATGA	ATATTTTATT	492
25	CGCTATCACA	GGGATAGCAT	TTGCACTATT	TGTTGCGTTT	TTATTCAGTT	TTGATCGTAA	4986
	AAAAATAGAC	TTCAAAAAGA	CGTTAATAAT	GATATTTATT	CAAGTGTTGA	TCGTGTTATT	5040
	TATGATGAAC	ACAACGATTG	GTTTGACAAT	TTTAACTGCA	CTAGGTTCAT	TTTTTGAAGG	510
30	GCTAATAAAT	ATTAGTAAAG	CAGGCATAAA	TTTTGTTTTT	GGAGATATAC	AAAATAAAA	516
	TGGCTTTACG	TTCTTTTTAA	ACGTATTACT	GCCATTAGTT	TTTATTTCTG	TATTAATAGG	522
ac.	CATCTTTAAT	TATATTAAGG	TATTACCATT	TATTATCAAA	TATGTAGGTA	TCGCTATTAA	528
35	TAAAATAACT	AGAATGGGGC	GCTTAGAAAG	TTATTTTGCT	ATTTCAACAG	CAATGTTTGG	534
	GCAACCAGAA	GTATATTTAA	CAATAAAAGA	TATTATTCCA	AGATTATCTA	GAGCGAAATT	540
40	ATATACAATT	GCGACGTCTG	GTATGAGTGC	TGTTAGTATG	GCAATGCTAG	GTTCATATAT	546
٠	GCAGATGATT	GAACCCAAGT	TCGTAGTTAC	AGCAGTAATG	TTAAATATTT	TTAGTGCGCT	552
	TATCATCGCC	AGTGTAATCA	ATCCCTATAA	ATCTGATGAT	ACTGATGTTG	AAATTGATAA	558
45	CTTAACGAAA	TCCACAGAAA	CTAAAACATT	GAATGGAAAA	ACAGGAAAAC	CTAAGAAAGT	564
•	TGCCTTTTTC	CAAATGATTG	GTGATAGTGC	GATGGATGGG	TTTAAAATCG	CTGTTGTAGT	570
	AGCCGTAATG	TTGTTAGCAT	TTATTTCATT	AATGGAAGCA	ATTAATATCA	TGTTTGGTAG	576
50	TGTTGGTTTG	AACTTTAAAC	AGCTTATTGG	CTATGTGTTT	GCACCAATCG	CATTCTTAAT	582
	CCCCATTCCA	TOCACOGAAC	TOTTOCACOT	СССТСТТТВ	тесесатель	ATTAATTACA	588

	CAAGGTATC	A TITCAGTITA	A CTTAGTAAG	TTCGCTAAT	I TTGGTACGGT	TGGTATCATC	6000
_	GTAGGTTCA	A TTAAAGGCAT	TAGTGATAAA	CAAGGAGAA	A AAGTTGCATC	CTTTGCAATG	6060
5	AGGTTGCTA	TTGGTTCAA	TCTAGCTTCA	ATCATTTCA	G GATCAATCAI	TGGCTTAGTA	6120
	TTGTAAATG	A ATCGAAGTAC	CTAAATTAAA	TTCATGGCA	A AGCTAAACCC	CGTCACCAAG	6180
10	TTGGCGCAAC	AGCGcATgcA	TAACTTAGTG	ACGGGGTTT	T ATCATAACAA	TCTACTTTTT	6240
	CGTAGCCGTT	TTTGAAATGI	ATGTTGATGG	TTTATCTTT	TCAAAAATTG	TTAATCCCGT	6300
	TATATCTTT	TTATGTTTTG	AAGGGACAAT	GAAGCTAAGI	T ATATAAGCAA	AGACAAAAGC	6360
15	AACTGTAAAT	GAAATGGTAG	ATACATAGAA	AGGTGAGTTA	CCTTTGCCAA	CACCATTATA	6420
	GACATAAGCA	AAGATGATAC	CCAATATTAA	TCCACAAATA	ACACCGAATG	TATTCGTACG	6480
	TTTAGTGAAA	ATACCAACTG	CAAATACACC	AGCCAATGGA	ACGCCGAATA	ATCCAGTCAC	6540
20	AAACAAGAAT	AAATCCCATA	AGTCATTTGA	ATTAGAAGCA	ATTAAGTATA	GTGACATTCC	6600
	AAAACCGAAA	ATACCTGCAA	TGATAATAAT	GAAACGTGCA	AAGTTAACTT	CGTGTCGCTC	6660
	GCTACCTTTT	CCGAAGAAGC	GTTGCTTAAT	GTCGATTGAA	ATACAAGCAG	ATATAGAATT	6720
25	TAAACTAGAT	GAAATGGTAG	ACTGTGCAGC	GGCGAAAATG	GCTGCAATAA	GTAATCCTGC	6780
	TACAAATGGT	GGCATCTCAG	TCAAAATGAA	ATATGGCACT	ACAGATGATG	TATTGAAGCC	6840
30	TTTTGGTAAA	ACAGCTTCAT	GTGTATAAAA	TGAATACAGC	ATTGTACCCA	TACCATAAAA	6900
30	TAAGGGTGCT	GAAATTAAAG	CTAGGATACC	ATTTGTCCAT	AACGATTTAT	TTGTTTCTTT	6960
	TAAACTATCA	GAAGCTTGAT	AACGCTGCAC	GACGTCTTGA	CTCGCTGTGT	ATTGATACAA	7020
35	GTTGTTGAAA	ATATTTCCTA	GGAAAATAAT	TGGAATGGCA	GCTGCCGCAG	TATTTAGTTT	7080
	CCAATTGTCT	GCACTAATTA	ATTTTTTGTG	CTCAATCGCA	TCTGCAAAGA	CAGTGCCGAA	7140
	ACCGCCTTTA	ATGTTCACAA	CACCTAGAAT	AATAATAACT	AAAGCGCCGC	СТААТААААТ	7200
40	GACGCCTTGA	ATGAAATCAC	TCCAAACCAC	ACCTTCGAAA	CCACCTAAAA	ATGTATATAA	7260
	AATACATAGT	AAACCAACGA	GTGATGCAAC	GATATAAGGG	TTCATGTCTG	ATACAGATGT	7320
	GATTGCTAAT	GTTGGTAAGT	AGATAACAAT	TGCAACACGC	CCTAAATGGT	AAACGACAAA	7380
45	TAATAATGAG	CCAATGACAC	GTATGCTAGG	GCCAAATCTA	GCTTCTAAAT	ATTCATATGC	7440
	AGATGTTACC	TTTAACTTTT	TAAAGAAAGG	GACATAGAAA	TAAATAAGTA	ATGGAATAAT	7500
	TGCGACGATA	GCAATGTTAC	CAGCGATATA	TGACCAATCT	GTTAAAAATG	CTTTCTCTGG	7560
50	TGTCGACATA	AATGTAATCG	CACTTAACGT	AGTAGCATAA	ATTGAAAAGC	CAACTACCCA	7620
	AGATGGCAAG	CGACCACTTG	CGGTAAAGAA	АСТАТТССТА	CTTTCCCTCC	CCCCCTTTCCT	2500

	TGTGCCAAAT	CCAACTTCTT	TCATGGGCAA	CATCCCCTTT	ACAATGTATT	GATTCTTTGA	780
	TGTCTATAAA	TCGTATTTTG	CAATGAGTTG	ATCTAATGTT	TGTCGATGTG	CTTCGTTAAA	786
5 .	AGGTTTGAAA	GGTCTTTTCG	GTAATCCTGC	ATCAATGCCA	CGATGACGTA	ATATTTCTTT	792
	CAATGTTGGA	TAAATCCCCA	TTGATAACAC	TGTTTCGATA	ATGTCGTTTG	AATCATGTTG	798
	CAGTTGGTAA	GCTTCTTGAA	TTTGACCTTG	TCGTGCTAAG	TCGAAGATTT	TTCTTGCACG	804
10	GCGACCATTA	ACGTTATATG	TAGAACCAAT	TGCACCATCT	ACGCCAGAAA	TCGTAGCTTG	810
	AACTAACATT	TCATCAAAGC	CAGATAAGAT	TAATTTGTCT	GGGAATGCTT	TTCTAATACG	816
15	TTCGAGTAGG	AAGAAGTTTG	GCGCTGTATA	TTTAACACCA	ACAATTTTTT	CATGATTAAA	8220
	TAGCTCGCTG	AATTGTTCAA	TAGAAATATT	CACACCTGTT	AAATCTGGTA	TTGCATAAAT	8280
	AATCATATTG	TTCTGAGTTG	CTTCGATAAT	ATCGAAATAG	TAATCTCTAA	TTTCTTCAAA	8340
20	AGTAAATGGA	TAGTAGAATG	GTGTTACGGC	AGAAAGTGCA	TCATAACCGA	GTTCTGTGGC	8400
	ATATTTTCCA	AGTTCAATGG	CTTCATTTAA	ATCTAACGAA	CCTACTTGAG	CAATCAATTT	8460
	CACTTTATCC	CCAACTGCCT	CTTTGGCAAC	CTTGAAAACT	TGCTTCTTCT	GCTCTGTATT	8520
25	TAATAAAAAG	TTTTCGCCTG	AGCTACCATT	TACATAAAGA	CCGTCTAATT	CTTCAGTTTC	8580
	AATGGCATTT	TGAGCAATTT	GTTTAAGTCC	TTGTTCATTT	ACTTGACCAT	TTTCATCAAA	8640
	AGGAACGAGT	AACGCTGCAT	ATAAACCTTT	TAAATCTTTG	TTCATTATGA	AGTCCCTCCA	8700
30	AAAATCATTT	GATAATATAG	TTTACAGCTA	TAATTGTAAA	CGCTATCATA	AAATGTAACA	8760
	ATATCTTTTT	GAAAATTGTA	GTCATATTTA	TGTATAATTA	atgaaaatgt	TTTTCAAAAT	8820
	CAATAGAAAT	GGAGTGAGTA	AGGTGTATTA	CATCGCAATC	GATATTGGAG	GCACTCAAAT	8880
35	TAAATCGGCA	GTTATTGATA	AGCAATTGAA	TATGTTTGAC	TATCAACAAA	TATCAACGCC	8940
	GGACÃACAAA	AGTGAGCTTA	TTACTGACAA	AGTATATGAG	ATTGTAACAG	GATATATGAA	9000
40	GCAATATCAG	TTGATCCAAC	CTGTCATAGG	TATTTCATCA	GCAGGCGTTG	TTGATGAACA	9060
	AAAAGGCGAA	ATTGTATACG	CAGGGCCAAC	CATTCCGAAT	TATAAAGGTA	CTAATTTTAA	9120
	GCGATTATTA	AAATCACTGT	CTCCTTATGT	CAAAGTAAAA	AATGATGTAA	ACGCTGCATT	9180
15	ACTAGGCGAA	TTGAAATTAC	ATCAATATCA	AGCAGAACGG	ATCTTTTGTA	TGACGCTTGG	9240
	TACAGGCATT	GGGGGTGCGT	ACAAGAATAA	TCAAGGTCAT	ATTGATAATG	GTGAGCTTCA	93,00
	TAAGGCAAAT	GAAGTTGGGT	ATTTATTGTA	TCGTCCAACT	GAAAATACAA	CGTTTGAGCA	9360
50	ACGTGCTGCA	ACGAGTGCAT	TGAAAAAGCG	CATGATTGCC	GGAGGATTTA	CGAGAAGCAC	9420
	АСАТСТСССА	حصصت عند المعالم	3 3 C C 3 C C C C C C S	3.C3.3.CCMC3.M	01 m1 mm o e 1 1		

	AGGGCTTATA	TTAATTGGGG	GCGGTATATC	TGAACAAGGA	GATAATCTCA	TTAAATATAT	9600
_	CGAGCCGAAA	GTTGCACACT	ATTTACCAAA	AGACTATGTT	TATGCACCAA	TACAAACGAC	9660
5	TAAGAGTAAA	AATGATGCAG	CATTATATGG	CTGTTTGCAA	TGATAGTTGA	AAGAAGGAGT	9720
	CATTCTAAAA	TAGAATTTGA	AACCGTTACG	AGAGATGAGA	GCTGTTGTTA	GTTCCACACA	9780
10	TCACACTCTA	TCTAGGACCA	АТСТАААСТА	TATCAACCAA	CAGTGTGCCA	CGGGCAAATT	9840
	AAATTGAAGA	AGCTGAGATA	TTAAAATTTT	AGAAAATGTA	AAAAAATATT	TGGTATTGAA	9900
	ATTAAAAAAG	CACCTAGCAA	CTCGTTGGGA	CAATCACGAT	GATTGTCTAC	AGTTGCAGGT	9960
15	GGATTTGAAT	ATACTACTAG	TTATTTGTTG	TCTAGGATAA	TAGATTTAGT	ATGTTGATAA	10020
	GTTTGACTCA	GATTCGTATT	TTCTAATAAA	TGATAACTCA	CGATATCGAT	TAAAAAGAGT	100,80
	GTCGCAATTT	GTGTGTTGAT	AAATTGATGG	TCGGTATTAC	GCGATTGATC	CGTTGTTAAA	10140
20	AGTACTAAAT	CTGCACAATC	TGTAAGTTTA	CTACCTTCAA	AATTTGTGAT	GGCAACGACA	10200
	TATGCACCAT	GAGATTTGGC	GACTTCCGCT	GCAGAAATTA	ATTCCGAAGT	ATTACCACTA	10260
	TTTGACATAG	CAATAAACAT	ATCCGAATGA	GATAGTAGGG	ATGCCGATAT	TTTCATTAAA	10320
<i>25</i>	TGTGAATCGG	TAGTAACATT	ACCTTTTAGC	CCCATACGAA	TCATACGATA	ATAAAATTCA	10380
	GTCGCTGATA	AACCAGAGCT	ACCTAGTCCA	GCAAAGAGTA	TATGTCGACT	TGATTGAAGT	10440
	TTGTCGATAA	AGGTTTGGAT	AATGTCGTTA	TCAATAAATT	CACCAGTTTG	TTGAATGATT	10500
30	TGTTGATGAT	ATTTATGAAT	TCTTTGAATA	ATTGGGCTAT	TTTCAATAAC	TGTCTCTGTC	10560
	ATTTCTTGTT	GAATATTAAA	TTTTAAATCT	TGGAAATTCT	CATAATCCAG	CTTATGACTA	10620
35	AAGCGTGTCA	TCGTTGCTGG	TGATGTACCA	ATCGCATGGG	CTAAGGAGTT	AATCGTTGAA	10680
	AAGGCATCGC	TATAACCATT	TTGTCTTATA	TAATTGACGA	TGCGTTTATC	AGTTTTTGTA	10740
	AATAAATGTT	GATAACGTTG	AACACGATTC	TCAAATTTCA	TTGTGTCACC	CCTTCATCTT	10800
40	AATGATTACT	ATTATATATG	AAAAATATTT	TCAAGATAGT	AAAAAGCATT	GATAAAAATT	10860
	ATCTTAATGA	TATATTGTAA	ATGACTTTAC	GTGAAAAAAC	GACTTATGGA	GTGAGGAATA	10920
	ATGTTACCAC	ATGGATTAAT	AGTATCTTGT	CAGGCACTAC	CAGATGAACC	ATTGCATTCA	10980
45	TCTTTTATTA	TGTCGAAAAT	GGCATTAGCT	GCGTATGAAG	GTGGTGCTGT	TGGTATTCGC	11040
	GCAAATACTA	AGGAAGACAT	TTTAGCAATT	AAAGAAACGG	TAGATTTACC	AGTTATTGGC	11100
	ATTGTGAAAC	GTGACTATGA	TCACTCAGAT	GTTTTCATTA	CTGCAACGTC	AAAAGAAGTT	11160
50	GATGAACTGA	TAGAAAGCCA	ATGTGAAGTC	ATTGCATTGG	ATGCAACGTT	ACAGCAACGT	11220
	CCGAAAGAAA	CGTTAGACGA	ATTAGTATCA	TATATTAGAA	CACATGCACC	GAACGTTGAA	11280

-55

	TATATTGGCA	CGACGTTACA	TGGCTATACT	AGTTATACGC	AAGGACAATT	ACTTTATCAA	11400
	AATGACTTCC	AATTTTTAAA	AGATGTACTA	CAAAGTGTTG	ATGCAAAAGT	TATTGCGGAA	11460
5	GGTAATGTCA	TTACACCGGA	TATGTATAAA	CGTGTGATGG	ACTTAGGCGT	TCATTGTTCA	11520
	GTCGTTGGTG	GTGCGATAAC	ACGACCAAAA	GAAATTACGA	AACGTTTTGT	TCAAATTATG	11580
10	GAAGATTAAA	TGATAACGAT	AAAAAAACGA	GATGACCATC	ATTAATTAAA	GGCACCTAAT	11640
10	TATCTTAGGT	GGCTGAATGA	ATGTAATGGG	TTCATCTCGT	TTTGTTTGTT	TATGATAGTG	11700
	ATTTTATTTT	CAACTTTATC	CAAAAATAAG	TAAAGCGACG	GGGATGGTGA	TTAATAGCGA	11760
15	CAACGCCACG	CGTAAAAACC	AAATGATGAT	GAGTTTCCAG	ACAGGTATTT	TAATTTCAGT	11820
	TGCTAGTATA	CATGGCACTA	ATGCTGAGAA	AAAGATAATG	GCTGATACGC	TTACTACACC	11880
	GACGACAAAT	TTAGTACTCA	TTGCAGCTTT	AGTTACTAAC	AAAGATGGTA	GAAACATCTC	11940
20	TACAATAGAA	AckCTGACGC	TTTTGCTAGT	AAAGCCTGAT	CAGCAATTGG	GAAAATATAA	12000
	ATAAATGGAT	AGAAGATATA	GCCAAGCCAA	TCAATGAATG	GTGTATAGTT	CGCTACAATC	12060
	AGTCCTAAAA	AACCAATCGA	TAATATAGAA	GGTAAAATAC	CAACAGTCAT	TTCTAAACCG	12120
25	TCTTTCAAAT	TGTCCCAAAC	GTTCTTCACG	AGAGATGGTG	TTAATGCATT	TTGTTTCATC	12180
	GCCTCTGCAT	ATGCAGTTTT	CAGTCTGCTT	CCTTCAATAG	CAACTTCTTG	TTCTCCTTCT	12240
	TGTCCGTTAT	AATATTCTGT	TGATTCATTG	CTGATTGGCG	GTAGCCATGC	AGTAATTGCA	12300
30	GTCACGACAA	ATGTGATGAC	TAAAGTTATC	CAAAAGTATA	AATTCCAATG	CGGCATTAAT	12360
	CCTAAAGTTT	TAGCAACGAT	AATCATAAAA	GTTGCTGAAA	CTGTTGAAAA	GCCAGTCGCA	12420
oc.	ATAATCGTGG	CTTCTCGTTT	GTTGTACATC	CCTTGCTTAT	AGACACGATT	AGTAATCAAT	12480
35	AATCCTAAGG	AATAACTGCC	GACAAACGAA	GCCACTGCAT	CGACAGCGGA	TTTTCCTGGT	12540
	GTTTTAAAAA ·	TAGGTCTCAT	AATAGGCTCC	ATATAAACAC	CGACAAATTC	TAATAAGCCA	12600
40	TAGCCCACTA	ATAAAGAAAG	CGCAATTGCA	CCTACTGGAA	TTAAGATACT	TAATGGCATC	12660
	ATTAATTTT	САААСААААА	CGGACCATAG	TTAGCTTTAA	ATAGTATTGA	TGGACCGATT	12720
	TTAAATACAT	ACATTATACC	GATCATTGCA	CCTGCAACTT	TAAATAATGT	AATGACCAAG	12780
45	TTTGTGATTG	AAGTCATAAA	AGTACGTCTC	ACTATTGGTA	ACGCTGTACC	AATTAAAATC	12840
	ATAATCAGTG	CAACATAGGG	CATAAGTGGA	CCTATGATTG	AGCGAATGGC	TAGATGAACA	12900
	TGATCGACGA	AAATAGTGTT	GTTACCATTA	ATCGTAAAAG	GAATAAAGAA	ACATAGTATG	12960
50	CCCACTAAAC	TATAGACAAA	AAAACGCCAT	GCACTTGGTT	GTTGTGCATT	AGAATGATAT	13020
	TGATTCATTA	AAGCAACCCC	TTTGTTTAAA	TGAATACACA	AAACTGTATG	ATGCATCTTC	13080

	ATAGTTTGAA	TTATTTTCAT	ACCAATACAA	ATTAACTAAT	TATATATAGA	TTGAAACTAT	13200
	ATTACTTAAT	AAAATATTTA	TCTTAAATGT	TGTTGTGTTG	ATTCAAÇACC	ACAACTAAAA	13260
5	GTGTTTATAA	ATTATTTGGA	AATACACATA	TTTGTAAATG	ATTAGTATCG	ATTTAATATC	13320
	GTATTATTAA	ATTTTTATTA	ATTTTGTAGT	CTTAATCMAA	АААТААТАТА	TGTCATGTTA	13380
	TATTGAAGGT	GCAGTTGTTT	TTCATTCTCA	AGAGGGGGTC	AAAAAAATAC	TTTTGAGGTG	13440
10	ATTATATGTT	AAGAGGACAA	GAAGAAAGAA	AGTATAGTAT	TAGAAAGTAT	TCAATAGGCG	13500
•	TGGTGTCAGT	GTTAGCGGCT	ACAATGTTTG	TTGTGTCATC	ACATGAAGCA	CAAGCCTCGG	13560
15	AAAAAACATC	AACTAATGCA	GCGGCACAAA	AAGAAACAÇT	AAATCAACCG	GGAGAACAAG	13620
	GGAATGCGAT	AACGTCACAT	CAAATGCAGT	CAGGAAAGCA	ATTAGACGAT	ATGCATAAAG	13680
	AGAATGGTAA	AAGTGGAACA	GTGACAGAAG	GTAAAGATAC	GCTTCAATCA	TCGAAGCATC	13740
20	AATCAACACA	AAATAGTAAA	ACAATCAGAA	CGCAAAATGA	TAATCAAGTA	AAGCAAGATT	13800
	CTGAACGACA	AGGTTCTAAA	CAGTCACACC	AAAATAATGC	GACTAATAAT	ACTGAACGTC	13860
	AAAATGATCA	GGTTCAAAAT	ACCCATCATG	CTGAACGTAA	TGGATCACAA	TCGACAACGT	13920
25	CACAATCGAA	TGATGTTGAT	AAATCACAAC	CATCCATTCC	GGCACAAAAG	GTAATACCCA	13980
	ATCATGATAA	AGCAGCACCA	ACTTCAACTA	CACCCCCGTC	TAATGATAAA	ACTGCACCTA	14040
	AATCAACAAA	AGCACAAGAT	GCAACCACGG	ACAAACATCC	AAATCAACAA	GATACACATC	14100
30	AACCTGCGCA	TCAAATCATA	GATGCAAAGC	AAGATGATAC	TGTTCGCCAA	AGTGAACAGA	14160
	AACCACAAGT	TGGCGATTTA	AGTAAACATA	TCGATGGTCA	AAATTCCCCA	GAGAAACCGA	14220
25	CAGATAAAAA	TACTGATAAT	AAACAACTAA	TCAAAGATGC	GCTTCAAGCG	CCTAAAACAC	14280
35	GTTCGACTAC	AAATGCAGCA	GCAGATGCTA	AAAAGGTTCG	ACCACTTAAA	GCGAATCAAG	14340
	TACAACCACT	TAACAAATAT	CCAGTTGTTT	TTGTACATGG	ATTTTTAGGA	TTAGTAGGCG	14400
40	ATAÁTGCACC	TGCTTTATAT	CCAAATTATT	GGGGTGGAAA	TAAATTTAAA	GTTATCGAAG	14460
	aattgagaaa	GCAAGGCTAT	AATGTACATC	AAGCAAGTGT	AAGTGCATTT	GGTAGTAACT	14520
	ATGATCGCGC	TGTAGAACTT	TATTATTACA	TTAAAGGTGG	TCGCGTAGAT	TATGGCGCAG	14580
45	CACATGCAGC	TAAATACGGA	CATGAGCGCT	ATGGTAAGAC	TTATAAAGGA	ATCATGCCTA	14640
-	ATTGGGAACC	TGGTAAAAAG	GTACATCTTG	TAGGGCATAG	TATGGGTGGT	CAAACAATTC	14700
	GTTTAATGGA	AGAGTTTTTA	AGAAATGGTA	ACAAAGAAGA	AATTGCCTAT	CATAAAGCGC	14760
50	ATGGTGGAGA	AATATCACCA	TTATTCACTG	GTGGTCATAA	CAATATGGTT	GCATCAATCA	14820
	CAACATTAGC	AACACCACAT	AATGGTTCAC	AAGCAGCTGA	TAAGTTTGGA	AATACAGAAG	14880

	ATTTAGGATT	AACGCAATGG	GGCTTTAAAC	AATTACCAAA	TGAGAGTTAC	ATIGACTATA	15000
	TAAAACGCGT	TAGTAAAAGC	aaaatttgga	CATCAGACGA	CAATGCTGCC	TATGATTTAA	15060
5	CGTTAGATGG	CTCTGCAAAA	TTGAACAACA	TGACAAGTAT	GAATCCTAAT	ATTACGTATA	15120
	CGACTTATAC	AGGTGTATCA	TCTCATACTG	GTCCATTAGG	TTATGAAAAT	CCTGATTTAG	15180
o	GTACATTTTT	CTTAATGGCT	ACAACGAGTA	GAATTATTGG	TCATGATGCA	AGAGAAGAAT	15240
	GGCGTAAAAA	TGATGGTGTC	GTACCAGTGA	TTTCGTCATT	ACATCCGTCC	AATCAACCAT	15300
	TTGTTAATGT	TACGAATGAT	GAACCTGCCA	CACGCAGAGG	TATCTGGCAA	GTTAAACCAA	15360
5	TCATACAAGG	ATGGGATCAT	GTCGATTTTA	TCGGTGTGGA	CTTCCTGGAT	TTCAAACGTA	15420
	AAGGTGCAGA	ACTTGCCAAC	TTCTATACAG	GTATTATAAA	TGACTTGTTG	CGTGTTGAAG	15480
	CGACTGAAAG	TAAAGGAACA	CAATTGAAAG	CAAGTTAAAT	TCATCTTCTG	AATTTAATAT	15540
0	GCTATGTAAA	TCGTGCTGTT	ATCATGGCAC	ATCAGATATA	AGTAGCATCA	CAGTGTTGAA	15600
	TTTAAAAATA	GTAAAGTGAA	ATAAAGCGCC	TGTCTCATTA	GCGAAAACTA	AAGGGACAGG	15660
	CGTATCTGTT	TATGAGCTTA	ATAAATTGTA	TGAATAATAT	GGTTGATCGA	ATAACTGTTT	15720
5	ATCATGATGA	TAAATTGAGT	TTTTTAAAAT	AATGATATAT	TACATCATTG	TTATAGCGTT	15780
	TAAGAAATCA	ACAACTTTAC	GATAAATAGT	GATTGCTTCG	TCATTAGGTC	TACGATCAAA	15840
	ATCATGCTCG	TTTTTATTCA	CGCGTTCAAA	TGTTGAATGT	GGAACATGAT	TCATGATATG	15900
	TTCGCTTTCC	TCAACGGGAA	CATCATAATC	GCCATTACAA	TGCGCAATGA	AAACAGGTGG	15960
	AAGTGTTTTA	AGTTCATCTG	GTGCAATATT	ATATTTTGAA	TTAGTATAAT	CAGCAATGTT	16020
5	AATCATATTT	ATCCATTTAC	CTGTGCCACG	TGCATAAACG	TAGATTAAAA	AACGTTGTGC	16080
3	GATTTGATCT	TGAACAACCG	GTGTTGGTGA	AGTGAGTTGT	GCAATCATTG	TTTCGTTTAC	16140
	GCTTTGAGCT	ATTTTTGCGT	AATAACTATT	AGTTGTTTTA	AAAGGTTČAG	TGTTGATGCG	16200
o	ACTATAACCA	TAAAAATCAA	TAACACCATC	AATATCTCTG	TCTCGTGCAA	TTAATAGACT	16260
	TAAATATGCA	CCTGATGATC	TGCCAAAGGT	AAAAATAGGG	CAATTAGAAT	ATTGTGATTG	16320
	AATCGCATCG	AATGAtGCgn	AGNACATCCT	CAATAATGCA	ATCGAGACTT	ACTTCTGGTA	16380
5 .	ATAAACGATA	ACTTAGTTGA	ATTAAATCGT	AATGTTCCGT	AAGATATCGA	TATACTGTGG	16440
	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	CAATAGCGCC	16500
	TTTTGTTGGT	TGATTTTTTG	CTTTAATAAT	TGTGTAAGGT	AATGCAAATG	CATCTTTAGT	1656
o	AATTACTTTA	TCTTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTATTTTT	GATATTGATG	1662
				*********	m>>0>00>m0	3.CMC3'MC3.M3	1.000

	CATCATTTTA	ACAATATCTT	TAAAAGCAGC	ATGTGGAATG	GCTAAATCTT	CTAAATCTGC	16800
_	CATAGAAAAT	TCAAGATTGA	TATCATGTGG	TCGCTGTTCA	GCAAGTTTAT	GCACAAAGTC	16860
5	AGGTTCTGTG	ACAAAAGGCG	AAGACATGCC	GACCATATCT	GCATGTTGTA	AAGCATCTAA	16920
	AGCAGACTCT	GGAGAATTAA	TCCCGCCACT	TGCAATTAAA	GGGATACGAC	CTGCTAAATG	16980
10	TTCATAGACA	ATTTGGTTAA	CTGGTCGACC	GAAATGATCA	CCTGGTGTAC	GAGACGTATT	17040
	TTGATAAATA	TGTCGACCCC	AGCTAGCGAT	TGCTAAGTAT	TGGATGTTTG	AAACGTCCAT	17100
	GACCCAATTG	ATTAATTGGT	TGAACTCGTC	AATGGTATAT	CCTAAATCAC	TGCCTCTGGT	17160
15	TTCTTCTGGC	GTTGCTCGAA	ATCCTAAAAT	AAAATTGTCA	GGTGCTTCTT	TATCAATCAC	17220
	TTCTTGTACC	GCACGCATAA	CTTCTAAACA	TAATCTTGCA	CGATTTTTTA	ATGAGTCGGC	17280
	ACCGTAATGG	TCTGTACGTT	TATTCGAAAA	AGTTGAGAAA	aatgtttgaa	TCAGCAAACG	17340
20	TTGTGCAATC	GAAATTTCCA	CACCATCAAA	ACCTGCTTTA	ATCGCGCGTA	ATGTAGCATC	17400
	GCGATACTGC	TGAATGATGC	TATTGATTTT	CTCATGAGAC	ATGGCGATAA	CATCGTGTTC	17460
	AATCGGTGAA	TGCAATGTCA	TAGGGCTTGG	TCCATACACC	TTTCCAAAAT	TTAAAATGGC	17520
25	TTGATTTGAA	AAACGACCAG	CATGCGCTAg	CTGGATAATA	GCGAGGCTAC	CATGTTGTTT	17580
	CATCGTAGAT	GCCATGTTAG	TTAATCCAGG	GATACAAGCA	TCATGATCAA	TATTAAAGCC	17640
	ATATTCAAAC	AATTGACCAT	AAGGTTCAAT	GTAAGCAGCG	CCGGTGACTT	GCATTCCAGC	17700
30	TGAATTAGAG	CGACGTGCAG	CATAAGCCAA	GTCTTCTTTT	GTAATATAGC	CTTCTTTTGT	17760
	TGATGTGTTT	ACGGTCATTG	GTGATAATAC	AAAGCGATTC	GAAATTTTGA	TGCCATTAGG	17820
35	TAAGTGGATT	GATTGTAAAA	GTGGTTTGTA	TCGGTACATA	CTATGATTCC	TTTTCTATTC	17880
	AATATTGTTT	TCAAAGTACC	ATGGAAAGAA	TGAATAATCA	ATGATGAACA	GTCTTGATAG	17940
	AATAGAATTG	GTACATGGAA	AGTATTTTTA	AAATTAAACT	AATGAATGGC	ATTTGTAGGT	18000
40	CTGAAAATAT	GAATATGAAA	AAGAAAAATA	AAGGCGAAAA	GATATAAAAG	TTAATTGAAA	18060
	AACGTTATCA	TATACGTGGG	TATATGAAGA	GGGAATGGTA	TTAAGAACGC	TAAAATGTTA	18120
	TGTCGGTTTG	ACATGACAGG	ATAAGTTTGG	AGATGACGGA	TTGGTTAAAT	TAAGCGTATT	18180
45	AGACTATGCC	TTAATAGATG	AAGGTAAGGA	TGCACAAAAG	GCATTGCAAG	ATTCAGTGAC	18240
	ACTTGCAAAA	TTAGCAGATC	GACTTGGCTT	TAAGCGAATT	TGGTTTACGG	AACATCATAA	1830
	TGTACCAGCG	TTTGCGTGTA	GTAGTCCAGA	ACTITTGATG	ATGCATACAT	TGGCGCAGAC	18360
50	AAATCACATA	CGAGTTGGCT	CTGGTGGTGT	GATGCTGCCG	CACTATCGAC	CTTATAAAAT	1842
	TGCTGAGCAT	тттасаатса	ТСССАСССТТ	ATATCCABAT	CGTATTGATT	TAGGTATTGG	1848

55 ·

	TAGTTACGAT	GAATCGATTT	CGTTATTACG	TGATTATCTT	ACAATAAAGG	ATAAACCAAG	18600
	TGCGCATACG	TTAGGTGTCC	AACCACACAT	TGATCATTTT	CCAGAAATGT	GGTTATTAAG	18660
5	TAGTAGCGCA	ACATCTGCCA	AAATAGCTGC	CGAACTAGGT	ATAGGGCTTT	CTGTTGGAAC	18720
	ATTTTTGCTA	CCAGATATAA	ATGCGATACA	TACAGCGAAG	GATAACATTG	ATATTTACAA	18780
10	AAAACATTTC	CAAGCATCAA	CGATTAAAAT	GGACGCAAAG	GTGATGGCAT	CTGTATTTGT	18840
10	CATTGTAGCT	GATAACGAAG	CGGAAGTAGC	AGCATTACAA	CATGCCTTAG	ATGTTTGGTT	18900
	ATTAGGTAAA	TTACAATTTG	CAGAATTTGA	AGATTTTCCT	TCAGTAGACA	CAGCACAAAA	18960
15	GTATAAGCTT	AATGATCGAG	ACAAAGAGAT	GATTCAAGCA	CATCAAGCAC	GCATCATTGC	19020
	AGGTACACAA	GAAAAGGTTA	AAGCACAATT	AGATGATTTC	ATTGCTACGT	TTGAAGTTGA	19080
	TGAGGTGTTA	GTAGCACCGC	TTATTCCAGG	TATTGAACAG	CGTTGTAAAA	CATTAAAATT	19140
2 0 .	ACTCGCGGAA	ATTTATTTGT	AGCATTTTAA	ATAGAAGAGA	AAGGATGAAG	ATAAGATGAA	19200
	AAAGTTAGCC	AATTATTTAT	GGGTAGAAAA	AGTAGGAGAT	TTGTATGTGT	TTAGTATGAC	19260
	ACCTGAATTG	CAAGATGATA	TTGGGACAGT	AGGTTATGTT	GAATTCGTAA	GTCCAGATGA	19320
25	AGTTAAAGTG	GATGATGAAA	TTGTGAGTAT	CGAAGCATCG	AAAACGGTCA	TTGATGTGCA	1,9380
	AACGCCATTG	TCAGGAACGA	TTATTGAGCG	AAATACAAAA	GCGGAAGAAG	AACCGACAAT	19440
	TTTAAACTCT	GAAAAACCAG	AAGAAAATTG	GTTGTTCAAA	TTGGATGATG	TCGATAAAGA	19500
30	AGCATTCCTA	GCATTACCGG	AGGCTTAAAT	GGAAACGTTA	AAATCAAATA	AAGCGAGACT	19560
	TGAATATTTA	ATCAATGATA	TGCATCGAGA	GAGAAATGAC	AATGACGTAT	TGGTAATGCC	19620
	ATCTTCATTT	GAAGATTTGT	GGGAATTATA	TCGAGGCTTA	GCAAATGTCA	GACCGGCATT	19680
35	ACCTGTAAGT	GATGAATATT	TAGCTGTACA	AGATGCTATG	TTAAGTGATT	TGAATCGTCA	19740
	ACATGTTACG	GATTTGAAGG	ATTTGAAGCC	GATAAAAGGT	GACAATATCT	TTGTTTGGCA	19800
10	AGGTGATATC	ACGACGTTAA	AAATCGATGC	TATTGTTAAT	GCTGCAAATA	GTCGTTTTCT	19860
	AGGATGTATG	CAAGCTAATC	ATGACTGCAT	TGATAATATT	ATTCATACAA	AAGCGGGTGT	19920
	TCAAGTTCGA	CTTGATTGTG	CAGAGATCAT	TCGACAACAA	GGGCGCAATG	AAGGTGTAGG	19980
15	TAAAGCCAAA	ATAACACGTG	GATATAATTT	GCCAGCAAAG	TATATAATTC	ATACGGTTGG	20040
	TCCGCAAATA	CGTCGATTGC	CTGTTTCAAA	GATGAATCAG	GACTTGTTAG	CTAAATGTTA	20100
	TCTTAGCTGT	CTTAAATTGG	CTGATCAACA	TAGTTTAAAT	CATGTCGCTT	TTTGCTGTAT	20160
50	ATCTACAGGT	GTATTTGCTT	TTCCTCAAGA	TGAAGCAGCA	GAAATTGCTG	TTCGAACAGT	20220
	AGAAAGCTAT	CTCAAAGAAA	CAAATTCAAC	ATTGAAAGTC	GTGTTCAATG	ТАТТТАСАСА	20280

	CAATGTCTCT	GTTAATGGAT	GACAAGACAA	AGCAGGCTGA	AGTATTGCGT	ACIGCGATIG	20400
	ATGAAGCAGA	TGCGATAGTG	ATTGGAATTG	GTGCAGGCAT	GTCTGCATCT	GACGGATTTA	20460
5	CATATGTAGG	AGAGCGTTTT	ACGGAAAATT	TCCCAGATTT	TATTGAAAAA	TATCGCTTCT	20520
	TTGATATGTT	GCAAGCGAGT	TTACATCCTT	ATGGCAGTTG	GCAAGAGTAT	TGGGCATTTG	20580
	AGAGTCGTTT	TATTACATTA	AACTATTTAG	ATCAACCTGT	AGGTCAGTCT	TACCTCGCTT	20640
10	TAAAATCCTT	GGTGGAAGGT	AAACAGTACC	ACATTATAAC	TACGAATGCA	GATAATGCTT	20700
	TCGATGTAGC	TGATTATGAT	ATGACTCATG	TATTTCATAT	ACAAGGGGAG	TATATACTGC	20760
15	AACAGTGTAG	CTCAGCATTG	TCATGCTCAA	ACGTATCGCA	ATGATGATTT	AATTCGTAAA	20820
	ATGGTTGTTG	CGCAACAAGA	TATGCTTATA	CCTTGGGAGA	TGATTCCAAG	ATGTCCAAAA	20880
	TGTGATGCCC	CAATGGAAGT	GAATAAACGT	AAAGCGGAAG	TTGGGATGGT	TGAAGATGCT	20940
20	GAATTTCATG	CGCAACTACA	TCGTTATAAT	GCTTTTCTAG	AGCAACATCA	AGATGATAAA	21000
	GTGTTGTATT	TGGAAATTGG	AATTGGTTAT	ACTACACCAC	AATTTGTGAA	GCATCCTTTT	21060
	CAGCGTATGA	CACGTAAAAA	TGAAAATGCC	CTTTATATGA	CGATGAATAA	AAAGGCATAT	21120
25	CGCATTCCGA	ATTCAATTCA	AGAACGTACC	ATACATTTAA	CTGAGGATAT	CTCAACATTG	21180
	ATTACAGCAG	CACTCCGGAA	CGACAGCACA	ACGAAAAATA	ACAACATTGG	AGAGACAGAA	21240
	GATGTACTTA	ATAGAACCGA	TTAGAAATGG	AGAATATATT	ACTGATGGTG	CGATTGCACT	21300
30	CGCTATGCAA	GTTTATGTTA	ACCAGCATAT	CTTTTTAGAT	GAAGATATTT	TATTCCCTTA	21360
	TTATTGTGAT	CCAAAAGTGG	AAATTGGACG	TTTTCAAAAT	ACTGCTATAG	AAGTGÄATCA	21420
	AGATTATATA	GATAAACACA	GTATTCAAGT	AGTTCGCCGA	GATACTGGTG	GTGGCGCTGT	21480
35	GTATGTTGAT	AAAGGTGCCG	TTAATATGTG	TTGTATTTTA	GAACAAGACA	CTTCAATTTA	21540
	TGGTĞATTTT	CAACGATTTT	ATCAACCAGC	TATAAAGGCG	TŢGCATACAT	TAGGTGCAAC	21600
40	AGATGTGGTA	CAAAGCGGTA	GAAATGATTT	AACATTGAAT	GGTAAAAAAG	TGTCAGGCGC	21660
	CGCAATGACA	TTAATGAATA	ATCGTATTTA	TGGCGGTTAT	TCGCTATTAC	TTGATGTTAA	21720
	TTATGAAGCA	ATGGATAAAG	TGTTAAAGCC	TAATCGCAAA	AAGATTGCAT	CGAAAGGGAT	21780
45	TAAATCTGTG	CGCGCACGTG	TTGGTCATCT	TAGAGAAGCA	CTGGATGAAA	AGTATCGTGA	21840
•	TATAACCATT	GAAGAATTTA	TAATTTAAA	GGTGACGCAG	ATTTTGGGAA	TCGATGACAT	21900
	TAAAGAGGCG	AAACGATATG	AATTAACGGA	TGCAGATTGG	GAAGCGATTG	ATGAATTAGC	21960
50	TGATAAAAAG	TATAAAAATT	GGGATTGGAA	TTATGGCAAG	TCACCCAAAT	ATGAATACAA	22020
	тесьветсьв	עריי עריי עריי ע	CACCTACCCT	DGDCDTAACA	ארדירידירידירים ארדירידירים	AACAAAATCG	22080

	AGAAGCATTA	CAAGGAACAA	AAATGACAAG	AGAAGATTTA	ACGCATCAGT	TAAAGCAATT	22200
	AGACATCGTT	TATTATTTTG	GCAATGTTAC	GGTAGAAGCA	TTAGTGGATA	TGATTTTAAG	22260
5	TTAATATTGT	TATTTTATGT	ATGCTGAATC	ATTGGAAGTG	TTTGCTTGCT	CTTGAAAAGG	22320
	TGACAATAGT	GTTTGGTGAA	GGTTGAACAT	ATGAGTGGAA	ATTATTGCCT	TTAACTATTC	22380
10	AAAGTATGAT	ATATATATGG	TTTTTGTTTC	TAAATGATTG	GGTATTTGAA	AATAGATGAG	22440
,,	TTTAATATTT	TAAGGAATAT	AATGATGTTT	ACTITITATAA	TTCATATAGA	ATATTAAGCA	22500
	ATATAAGTCT	GTTGATATAT	ACAAAATATA	ATGACTGCTA	TAATGAGTAA	TCAATAGACA	22560
15	CAAAGAGGAG	ATTATGTGAT	GAATAATAAA	GTATTAGTAA	CCGGTGGTAC	AGGGTTTGTT	22620
	GGCATGCGAA	TTATTTCACG	ATTATTAGAA	CAAGGTTATG	ACGTACAAAC	GACGATACGT	22680
	GATTTAAGTA	AAGCTGATAA	AGTAATTAAA	ACAATGCAAG	ACAATGGCAT	TTCCACAGAG	22740
20	CGATTAATGT	TTGTCGAAGC	GGATTTATCA	CAAGATGAAC	ATTGGGATGA	AGCAATGAAA	22800
	GATTGCAAGT	ATGTCTTGAG	TGTAGCATCT	CCGGTGTTTT	TCGGTAAAAC	AGACGATGCA	22860
	GAAGTGATGG	CGAaCTGcAA	TTGAAGGTAT	ACAACGTATT	TTAAGAGCTG	CAGAACATGC	22920
25	GGGTGTTAAA	CGTGTGGTAA	TGACTGCAAA	CTTTGGTGCA	GTTGGTTTTA	GTAATAAAGA	22980
	TAAAAATTCA	ATCACAAATG	AAAGTCATTG	GACAAATGAA	GATGAACCAG	GCTTATCAGT	23040
	ATATGAAAAA	TCAAAATTGT	TAGCTGAAAA	GGCAGCGTGG	GATTTTGTTG	AGAATGAAAA	23100
30	TACAACAGTA	GAATTTGCCA	CAATCAATCC	AGTTGCAATT	TTTGGGCCAT	CATTAGATGC	23160
	ACACGTTTCA	GGAAGCTTTC	ATTTATTAGA	AAATTTATTG	AATGGTTCAA	TGAAACGTGT	23220
35	ACCGCAAATT	CCGTTAAATG	TTGTTGATGT	GAGAGACGTA	GCTGAACTGC	ACATTTTGGC	23280
	AATGACAAAT	GAACAAGCTA	ATGGCAAGCG	ATTTATTGCG	ACGGCTGATG	GACMAATTWA	23340
	tTTGTTGGGA	ATTGcCAAAt	TAATTAAAGA	AAAGGGCCTG	GAAATAGCTC	CAAAAGTTCC	23400
40	TACTAAAAAA	TTACCCAGCT	TTATTTTGAG	CnAnGnGCC			23439

(2) INFORMATION FOR SEQ ID NO: 39:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4522 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCCTTTGAGA GTATATCATC TAGTCAAATT ATGCCTGTCA TTAGAGCGAC TAGCTTTGAT 60

55

50

	TATTATGCAG	TCGATTTAGG	GAAATCATAT	' CGTCTAATTG	ACGAAAGCAT	GTTAGAGGAT	18
	TTGAAGTTAA	CTGAACAACA	AATAAGAGAA	ATGTCTCTGT	TTAATGTTAG	AAAATTGTCA	24
5	AATTCATATA	CGACTGATGA	AGTAAAAGGT	AATATTTTTT	ATTTTATTAA	CTCAAATGAC	300
	GGGTATGATG	CAAGTAGGAT	ACTAAATACT	GCATTTTTAA	ATGAAATTGA	GGCACAATGT	360
	CAAGGCGAAA	TGCTCGTAGC	AGTGCCACAC	CAAGATGTGT	TAATTATTGC	AGATATACGC	420
10	AATAAAACAG	GATATGATGT	GATGGCACAT	TTAACAATGG	AATTTTTCAC	TAAAGGTCTA	480
	GTTCCAATTA	CATCATTATC	CTTTGGATAT	AAACAGGGTC	ATCTTGAACC	GATATTTATT	540
15	TTAGGTAAAA	ATAATAAACA	AAAAAGAGAT	CCAAACGTGA	TTCAGCGTTT	AGAAGCAAAT	600
	CGTCGTAAAT	TTAATAAAGA	TAAATAGAAA	TAATTGGATA	AGGAGTTTTG	TCATAATGAA	660
	TTTATTTTAC	AATCCTAAAT	ATGTAGGAGA	TGTCGCATTT	TTACAAATTG	AACCAGTTGA	720
20	AGGTGAATTA	AACTACAATA	AAAAAGGTAA	TGTTGTTGAA	ATTACLAATG	AAGGTAATGT	780
	TGTAGGTTAT	AATATTTTTG	AAATTTCAAA	AGATATAACA	ATTGAAGAAA	AAGGTCATAT	840
	TAAATTAACT	GATGAACTTG	TAAATGTATT	CCAAAAGCGT	ATTTCAGAAG	CTGGTTTTGA	900
25	TTATAAATTA	AATGCTGATC	TATCACCGAA	ATTTGTAGTT	GGCTACGTTG	AAACTAAAGA	960
	CAAACATCCT	GATGCAGATA	AATTAAGTGT	ACTAAATGTA	AACGTTGGAA	ATGACACATT	1020
	ACAAATTGTA	TGTGGCGCGC	CTAACGTTGA	AGCTGGACAG	AAAGTTGTTG	TTGCTAAAGT	1080
30	AGGTGCAGTG	ATGCCTAGCG	GTATGGTAAT	TAAAGATGCT	GAATTACGTG	GTGTTGCCTC	1140
	AAGCGGTATG	ATTTGTTCAA	TGAAAGAATT	GAATTTACCT	AATGCACCTG	AAGAAAAAGG	1200
	TATTATGGTA	TTAAATGACA	GCTATGAAAT	TGGACAAGCA	TITTTGAAT	AATTAAGGAA	1260
35	GGTAGTGAAA	ATATGAGCTG	GTTTGATAAA	TTATTCGGCG	AAGATAATGA	TTCAAATGAT	1320
	GACTIGATIC .	ATAGAAAGAA	AAAAAGACGT	CAAGAATCAC	AAAATATAGA	Tracgatcat	1380
40	GACTCATTAC	TGCCTCAAAA	TAATGATATT	TATAGTCGTC	CGAGGGGAAA	ATTCCGTTTT	1440
	CCTATGAGCG	TAGCTTATGA	AAATGAAAAT	GTTGAACAAT	CTGCAGATAC	TATTTCAGAT	1500
	GAAAAAGAAC	AATACCATCG	AGACTATCGC	AAACAAAGCC	ACGATTCTCG	TTCACAAAAA	1560
45	CGACATCGCC	GTAGAAGAAA	TCAAACAACT	GAAGAACAAA	ATTATAGTGA	ACAACGTGGG	1620
•	AATTCTAAAA	TATCACAGCA	AAGTATAAAA	TATAAAGATC	ATTCACATTA	CCATACGAAT	1680
	AAGCCAGGTA	CATATGTTTC	TGCAATTAAT	GGTATTGAGA	AGGAAACGCA	CAAGCCAAAA	1740
50	ACACATAATA	TGTATTCTAA	TAATACAAAT	CATCGTGCTA	AAGATTCAAC	TCCAGATTAT	1800
	CACAAAGAAA	GTTTCAAGAC	TTCAGAGGTA	CCGTCAGCTA	TTTTTGGCAC	AATGAAACCT	1860

	AAACAAAAAT	` ATGATAAATA	TGTAGCTAAG	ACGCAAACGT	CTCAAAATAA	ACAATTAGAA	198
	CAAGAAAAAC	AAAATGATAG	TGTTGTCAAA	CAAGGAACTG	CATCTAAATC	ATCTGATGAA	204
5	AATGTATCAT	. CYYCYYCYYY	ATCAATGCCT	AATTATTCAA	AAGTTGATAA	TACTATCAAA	210
	ATTGAAAATA	TTTATGCTTC	ACAAATTGTT	GAAGAAATTA	GACGTGAACG	AGAACGTAAA	216
	GTGCTTCAAA	AGCGTCGATT	TAAAAAAGCG	TTGCAACAAA	AGCGTGAAGA	ACATAAAAAC	222
10	GAAGAGCAAG	ATGCAATACA	ACGTGCAATT	GATGAAATGT	ATGCTAAACA	AGcGGAACgC	228
	TATGTTGGTG	ATAGTTCATT	AAATGATGAT	AGTGACTTAA	CAGATAATAG	TACAGATGCT	2340
4.5	AGTCAGCTTC	ATACAAATGG	CATAGAGAAT	GAAACTGTAT	CAAATGATGA	AAATAAACAA	240
15	GCGTCAATAC	AAAATGAAGA	CACTAATGAC	ACTCATGTAG	ATGAAAGTCC	ATACAATTAT	2460
	GAGGAAGTTA	GTTTGAaTCA	AGTATCGACA	ACAAAACAAT	TGTCAGATGA	TGAAGTTACG	2520
20	GTTTCGAATG	TAACGTCTCA	ACATCAATCA	GCACTACAAC	ATAACGTTGA	AGTAAATGAT	2580
	AAAGATGAAC	TAAAAAATCA	ATCCAGATTA	ATTGCTGATT	CAGAAGAAGA	TGGAGCAACG	2640
	aATAAAGAAG	AATATTCAGK	AAGTCAAATC	GATGATGCAG	AATTTTATGA	ATTAAATGAT	2700
25	ACAGAAGTAG	ATGAGGATAC	TACTTCAAAT	ATCGAAGATA	ATACCAATAG	AAACGCGTCT	2760
	GAAATGCATG	TAGACGCTCC	TAAAACGCAA	GAGTACGCAG	TAACTGAATC	TCAAGTAAAT	2820
	AATATCGATA	AAACGGTTGA	TAATGAAATT	GAATTAGCAC	CGCGTCATAA	AAAAGATGAC	2880
30	CAAACAAACT	TAAGTGTCAA	CTCATTGAAA	ACGAATGATG	TGAATGATAA	TCATGTTGTG	2940
	GAAGATTCAA	GCATGAATGA	AATAGAAAAG	AATAACGCAG	AAATTACAGA	AAATGTGCAA	3000
	AACGAAGCAG	CTGAAAGTGA	ACAAAATGTC	GAAGAGAAAA	CTATTGAAAA	CGTAAATCCA	3060
35	AAGAAACAGA	CTGAAAAGGT	TTCAACTTTA	AGTAAAAGAC	CATTTAATGT	TGTCATGACG	3120
	CCATCTGATA	AAAAGCGTAT	GATGGATCGT	AAAAAGCATT	CAAAAGTCAA	TGTGCCTGAA	3180
	TTAAAGCCTG	TACAAAGTAA	GCAAGCTGTG	agtgaaagaa	TGCCTGCGAG	TCAAGCCACA	3240
10	CCATCATCAA	GATCTGATTC	ACAAGAGTCA	AATACAAATG	CATATAAAAC	AAATAATATG	3300
	ACATCAAACA	ATGTTGaGAA	CAATCAACTT	ATTGGTCATG	CAGAAACAGA	AAATGATTAT	3360
15	CAAAATGCAC	AACAATATTC	AGAGCAGAAA	CCTTCTGTTG	aTTCAACTCA	AACGGAAATA	3420
	TTTGAAGAAA	GTCAAGATGA	TAATCAATTG	GAAAATGAGC	AAGTTGATCA	ATCAACTTCG	3480
	TCTTCAGTTT	CAGAAGTAAG	CGACATAACT	GAAGAAAGCG	AAGAAACAAC	ACATCCAAAC	3540
50	AATACTAGTG	GACAACAAGA	TAATGATGAT	CAACAAAAAG	ATTTACAGTC	ATCATTTTCA	3600
	DTAAAAATG	AAGATACAGC	Таатсаааат	ACA COTOCO	CC) C) mammaa	

. 55

	CCAAGTGTTT	CATTACTAGA	AGAACCACAA	GTTATTGAGT	CGGACGAGGA	CTGGATTACA	3780	
	GATAAAAAGA	AAGAACTGAA	TGACGCATTA	TTTTACTTTA	ATGTACCTGC	AGAAGTACAA	3840	
5	GATGTAACTG	AAGGTCCAAG	TGTTACAAGA	TTTGAATTAT	CAGTTGAAAA	AGGTGTTAAA	3900	
	GTTTCAAGAA	TTACGGCATT	ACAAGATGAC	ATTAAAATGG	CATTGGCAGC	GAAAGATATT	3960	
	CGTATAGAAG	CGCCTATTCC	AGGAACTAGT	CGTGTTGGTA	TTGAAGTTCC	GAACCAAAAT	4020	
10	CCAACGACAG	TCAACTTACG	TTCTATTATT	GAATCTCCAA	GTTTTAAAAA	TGCTGAATCT	4080	
	AAATTAACAG	TTGCGATGGG	GTATAGAATT	AATAATGAAC	CATTACTTAT	GGATATTGCT	4140	
15	AAAACGCCAC	ACGCACTAAT	TGCAGGTGCA	ACTGGATCAG	GGAAATCAGT	TTGTATCAAT	4200	
15	AGTATTTTGA	TGTCTTTACT	TAAAAAAT	CATCCTGAGG	AATTAAGATT	ATTACTTATC	4260	
	GATCCAAAAA	TGGTTGAATT	AGCTCCTTAT	AATGGTTTGC	CACATTTAGT	TGCACCGGTA	4320	
20	ATTACAGATG	TCAAAGCAGC	TACACAGAGT	TTAAAATGGG	CCGTAGAAGA	AATGGAACGA	4380	
	CGTTATAAGT	TATTTGCACA	TTACCCATGT	ACGTANTATA	ACAGCATTTA	ACnAAAAAGC	4440	
	CCCATATGAT	GAAAGAATGn	CAAAAATTGT	CATTGTAaTT	GATGAGTTGG	CTGATTTAAT	4500	
25	GATGATGGTC	CGCAAGAAGT	TG				4522	
	(2) INFORMATION FOR SEQ ID NO: 40:							
	/i) cr	OUTNOE CUNE	A CTED T CTT AC	•				

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 751 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

ICAAGITIAC	GGATACGTAT	AIAIIITGCA	TGACATTTAG	TGCAATAATA	TTCATAATTT	60
GCCCGTTGTT	GATAGCTTTC	AATGCTGTTA	CAAAATCTAG	GCGCTCCAAC	CTGTTGGCTC	120
AATCGTTTAA	AATCTTGATC	TTTATGTTGA	TAACCTTTAC	CAGCAATATG	CAAGTGATAA	180
TGACACAATT	CGTGCAGTAT	AATTTTTACA	ACAGCATCTT	CTCCATAATG	CTCATATTGT	240
TTTGGATTAA	TTTCAATATC	ATGGGACTTT	AAAAGATAAC	GTCCGCCTGT	TGTACGTAAC	300
CTTTTATTAA	AATATGCACA	ATGTCGAAAC	GTACGTCCAA	ATTTTTCTTC	CGAAAGATTC	360
TCAACCATTC	GCTGAAGTTT	GTCATTATTC	ATGTGGATCA	ATCATCGTTA	ATGATACTTT	420
GTCTTTATTT	TTGTCAATAC	TGTAAATCCA	AACGTCAACG	ATATCACCAA	CACTGACAAT	480
ATCCATTGGA	TTTTTTACGA	ACTTCTTAGA	AAGTTTCGAA	ACATGGACAA	GTCCATCTTG	540

55

30

40

	TTTCATTCCT TCTTGTAAAT CTTCAATTGA TAGCACATCG GATTTAAGGA TTGGTGTTTC	660
_	AAACTCGTCC CTTGGATCTC GATTAGGTGC GTTCAAGGAT TTAATAATAT CCTCTAATGT	720
5	AGGTACACCG ACTTGTAATT CAATCGCCAG T	751
	(2) INFORMATION FOR SEQ ID NO: 41:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1076 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	TCTCCAGCTT TAACTTGATC TGGCACTTTA ACAATTGTCT GATCCATACA TACGCGACCA	60
20	ATAACTTCGC ATTGATGACC ATTTACATTT ACAAAGCTAC CTTGCATTAT GCGTAAATGG	120
	CCATCTGCAT ATCCAATAGG TAACAATGCT ATTGTAGTTG GGTCAGTAGC TGTATAAGTT	180
	GCACCATAAC TTACAGACTC ACCCGCTTGT AGCGTCTTTG TTTGAACTAC ATTAGCAATT	240
25	AATTGCACAC TTGGTTTAAG GTGTACTTTA ACTTTTTGCT GTACATACTC TGATGGATAA	300
	TATCCATAAA GGGAAATTCC TGGTCTTATT GCATTACAGA ATTGGCAATC CATTAATAGA	360
	GAGCCTGCTG AGTTCTGACA ATGTATATAT TCAGGTTTAA TTGCTTCATT GACCATATCT	420
30	TTAAAACGTT GATATTGTTC AGTTGTCATA TCTCCTGGTT CGTCAGCACA GGCAAAGTGT	480
	GTAAACACGC CTTCAAATAC AAGTTGCTCA TATTGTTGAA TGATTTCAAT CACTTCTTGA	540
	TACGTTTTAG TATCTTTAAT ACCTAAACGT CCCATTCCTG TATCTAATTT AATGTGCAAC	600
35	CATAACTITT TCTCTTGCTC ACCAGAAATG TTTTTAATTG CTTCTTTCAA CCACTGTTTA	660
	GACGGAACCG TTAAGGCAAC TCGGTGTTGT ATCGCTTTAT CAATATCTTT AGCTGGTAAC	720
40	ACACCTAAGA CTAAAATTTT AGCAGTAATC CCATGCATTC TAAGTTCTAT CGCTTCATCT	780
	AACGTTGCTA CAGCAAAAAA TGTGGCGCCA TTTTCCATTA AATGACGTGC TACTTTAACA	840
	CTACCTAGTC CATAGGCATT GGCTTTAACG ACAGCCATCA CTGTTTTATT TGGATGCAAT	900
45	GTACTGAATA CTTTGAAATT TGATGCAACA GCGTTTAAAT CTACATTCAT ATACGCAGAT	960
	CTATAATATT TATCCGACAT ATTACTTCCT CCTGTAATTC CCACACGTTT TAAAACTAGA	1020
	TCTTAATTAT CATTGTATAA CAAATTTAAA ATGCTGACTT TTCTAAAACA ACTTGG	1076
50	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2930 base pairs	

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	12:		
	TGACCACAAT	GCCCAATACA	ACCATCCCAT	GGTAAAGCCA	AGAGATGAGT	CAATAAAGCG	60
10	TGTTGAATAA	GAGCTGAATG	AACCTGATAC	TGGATAAAAT	GTTGCCAACT	CTCCAATTGA	120
	TGACATTAAG	AAATATAGCA	TGACACCAAT	AACAAGATAA	GCGAGTATAG	CGCCTCCAGG	180
	ACCAGCTTGA	GAAATGATAT	TACCAGTAGC	TACAAATAGA	CCAGTCCCAA	TTGCACCACC	240
15	TATAGCAATC	ATGGAAATGT	GTCTTGAGTT	AAGACTACGG	TTCATTTTAT	TATCTTCCAT	300
	ATTTAGTCTC	CCATCTATTT	AAATATACCC	ATTATTGŢAA	GCTTTTTAAG	TGTACTATTC	360
•	AATAACTATT	TAGTACTGTA	AAGCGAAAAA	TTTAAAATTT	TCTGATTTTT	TAATCATCTT	420
20	GAGCATGTTT	AATTGTAATT	TTGATGGGGT	AATATAAAT	TATGTATTAA	ATTATAATTA	480
	TnATAAATTG	TGGAGGGaTG	ACTATGTCAC	AACAAGACAA	AAAGTTAACT	GGTGTTTTTG	540
	GGCATCCAGT	ATCAGACCGA	GAAAATAGTA	TGACAGCAGG	GCCTAGGGGA	CCTCTTTTAA	600
25	TGCAAGATAT	TTACTTTTTA	GAGCAAATGT	CTCAATTTGA	TAGAGAAGTA	ATACCAGAAC	660
	GTCGAATGCA	TGCCAAAGGT	TCTGGTGCAT	TTGGGACATT	TACTGTAACT	AAAGATATAA	720
	CAAAATATAC	GAATGCTAAA	Atattctctg	AAATAGGTAA	GCAAACCGAA	ATGTTTGCCC	780
30	GTTTCTCTAC	TGTAGCAGGA	GAACGTGGTG	CTGCTGATGC	GGACGTGACA	TTCGAGGATT	840
	TGCGTTAAAG	TTCTACACTG	AAGAAGGGAA	CTGGGaTTTA	GTAGGGAATA	ACACACCAGT	900
25	ATTCTTCTTT	AGAGATCCAA	AGTTATTTGT	TAGTTTAAAT	CGTGCGGTGA	AACGAGATCC	960
35	TAGAACAAAT	ATGAGAGATG	CACAAAATAA	CTGGGATTTC	TGGaCGGGTt	TCCAGAAGCA	1020
	TTGCACCAAG	TAACGATCTT	AATGTCAGAT	AGAGGGATTC	CTAAAGATTT	ACGTCATATG	1080
40	CATGGGTTCG	GTTCTCACAC	ATACTCTATG	TATAATGATT	CTGGTGAACG	TGTTTGGGTT	1140
	AAATTCCATT	TTAGAACGCA	ACAAGGTATT	GAAAACTTAA	CTGATGAAGA	AGCTGCTGAA	1200
	ATTATAGCTA	CAGATCGTGA	TTCATCTCAA	CGCGATTTAT	TCGAAGCCAT	TGAAAAAGGT	1260
45	GATTATCCAA	AATGGACAAT	GTATATTCAA	GTAATGACTG	AGGAACAAGC	TAAAAACCAT	1320
	AAAGATAATC	CATTTGATTT	AACAAAAGTA	TGGTATCACG	ATGAGTATCC	TCTAATTGAA	1380
	GTTGGAGAGT	TTGAATTAAA	TAGAAATCCA	GATAATTACT	TTATGGATGT	TGAACAAGCT	1440
50	GCGTTTGCAC	CAACTAATAT	TATTCCAGGA	TTAGATTTTT	CTCCAGACAA	AATGCTGCAA	1500

55

1560

GGGCGTTTAT TCTCATATGG CGATGCGCAA AGATATCGAT TAGGAGTTAA TCATTGGCAG

	GGTCAAATGC	GCGTAGTTGA	CAATAACCAA	GGTGGAGGAA	CACATTATTA	TCCAAATAAC	1680
	CATGGTAAAT	TTGATTCTCA	ACCTGAATAT	AAAAAGCCAC	CATTCCCAAC	TGATGGATAC	1740
5	GGCTATGAAT	ATAATCAACG	TCAAGATGAT	GATAATTATT	TTGAACAACC	AGGTAAATTG	1800
	TTTAGATTAC	AATCAGAGGA	CGCTAAAGAA	AGAATTTTTA	CAAATACAGC	AAATGCAATG	1860
	GAAGGCGTAA	CGGATGATGT	TAAACGACGT	CATATTCGTC	ATTGTTACAA	AGCTGACCCA	1920
10	GAATATGGTA	AAGGTGTTGC	AAAAGCATTA	GGTATTGATA	TAAATTCTAT	TGATCTTGAA	1980
	ACTGAAAATG	ATGAAACATA	CGAAAACTTT	GAAAAATAAA	TTTGATATGT	AGTTTCTATA	2040
	TTGCGTAGTT	GAGCAGTTTA	TGATATCATA	ATAAATCGTA	AAGATTCCTA	ACAAGAGAGG	2100
15	GTGTTTAACG	TGCGCGTAAA	CGTAACATTA	GCATGCACAG	AATGTGGCGA	TCGTAACTAT	2160
	ATCACTACTA	AAAATAAACG	TAATAATCCT	GAGCGTATTG	AAATGAAAAA	ATATTGCCCA	2220
20	AGATTAAACA	AATATACGTT	ACATCGTGAA	ACTAAGTAAT	TCTTATCATT	CAAATACGAC	2280
20	GATTTGAAAA	TAAAGCGGGC	TTACCTATTA	TATTGGGGAG	CTCGCTTTTT	TATGAAATTT	2340
	TTGTGAAGAG	TGATTAATGG	ATTGAGTTTC	ATCGGTAGAA	CAATATATGA	TTATATTAGT	2400
25	TGTTACTTTA	TTAAAATTTG	AGAATATTTA	TAGAAGGAAA	TAGATTACTG	ATTTTATAAA	2460
	GTCACTTTGT	TAGCGAATGC	TTGAAAGAGT	ATTTAATATA	GTAGAATTTA	AAATTTCAAA	2520
	GCGGAATTTA	ATAAGTACGA	AGTAGTTCTG	GGTATGTTTT	ATAAATGTTC	GATAATACAC	2580
30	TTTAATCTTA	AATATGATGG	TTTAGAAAAT	GATTTAACAA	AGAAATGAaA	CTTTACTGTT	2640
	GAATTATGTG	AGGATTGTGT	AATATATAA	ATCGTAATAA	TTACGATTTG	ATAAAAAGTG	2700
	AGGTAACTAT	ATATGGCTAA	GAAATCTAAA	ATAGCAAAAG	AGAGAAAAAG	AGAAGAGTTA	2760
35	GTAAATAAAT	ATTACGAATT	ACGTAAAGAG	TTAAAAGCAA	AAGGTGATTA	CGAAGCGTTA	2820
	AGAAAATTAC	CAAGAGATTC	ATCACCTACA	CGTTTAACTA	GAAGATGTAA	AGTAACTGGA	2880
	AGACCTAGAG	GTGTATTACG	TAAATTTGAA	ATGTCTCGTA	TTGCGTTTAG		2930
40	(2) INFORMA	TION FOR SE	Q ID NO: 43):			

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3606 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

CTTCTTGCCA TGGCTCTCTT TATTTAAAAA TGCTTCCAAC TTGTCCATTT GATTGTTTCT 60

55

	TTATAAAAAA	CTAATTTTAC	AAATGCTTTT	GCGTTCTTAC	AAAAAATGCA	TTTGACTATT	180
	ATTATAATAA	GCGTATAATT	GTCGCATATT	ATTTTTTGTA	TTTTTGGCAA	TAACGAAGGA	240
5	GTATTTATGA	ATAAAGACAA	GCAATTGCAC	AACGACAAAA	TCAATCTATC	CCAATTAGTC	300
	TTATTAGGGT	TAGGCTCTTT	AATAGGATCT	GGTTGGCTAT	TTGGTGCGTG	GGAAGCATCA	360
	TCAATAGCTG	GACCAGCAGC	AATCATATCA	TGGGTTCTTG	GATTCCTAGT	CATTGGAACC	420
10	ATTGCCTATA	ACTACATTGA	AATCGGCACA	ATGTTTCCTC	AATCAGGTGG	CATGAGTAAC	480
	TATGCCCAGT	ATACACATGG	CTCATTATTA	GGCTTTATTG	CTGCTTGGGC	GAATTGGGTG	540
	TCTTTGGTGA	CAATAATACC	TATCGAAGCT	GTGTCAGCTG	TTCAATATAT	GAGTTCTTGG	600
15	CCGTGGCATT	GGGCGAAACC	AATGAGATAT	TTAATGGAAA	ATGGCTCTAT	TAGCACATAC	660
	GGATTGCTAG	CTGTATATCT	CATCATTGTT	ATTTTTTCAT	TATTAAACTA	TTGGTCCGTA	720
20	AAACTTTTAA	CATCATTTAC	GAGTTTAATT	TCTGTATTTA	AATTAGGCGT	ACCCATGTTA	780
20	ACCATCATCA	TGTTGATGCT	ATCAGGATTC	GACACTTCAA	ATTACGGCCA	TTCGGCAAGC	840
	ACATTTATGC	CTTACGGAAG	TGCACCGATT	TTTGCTGCAA	CAACAGCATC	AGGGATTATT	900
?5	TTTTCATTCA	ATTCATTCCA	GACAATTATT	AATATGGGTT	CAGAAATTAA	AAATCCTGAA	960
	AAAAATATCG	CAAGAGGCAT	CGCTATCTCA	CTGTCAATCA	GTGCAGTGTT	GTACATCATT	1020
	TTACAAAGTA	CGTTTATCAC	TTCTATGCCT	CAATCAATGT	TACAACATAG	TGGATGGAAT	1080
30	GGCATCAACT	TCAATTCACC	ATTTGCTGAT	TTAGCTATCT	TATTAGGAAT	TAATTGGCTC	1140
	GCAATTTTAC	TATACATTGA	AGCTTTTGTA	TCACCATTCG	GTACTGGCGT	GTCATTTGTC	1200
	GCCGTTACAG	GTCGAGTTTT	ACGAGCAATG	GAGAAAAATG	GACATATCCC	TAAATTTCTT	1260
35	GGGAAGATGA	ATGAAAAATA	TCATATCCCA	CGTGTAGCAA	TCATCTTTAA	TGCCATCATT	1320
	AGTATGATTA	TGGTTACATT	ATTTAGAGAT	TGGGGTACGC	TAGCAGCAGT	TATTTCTACT	1380
	GCAACTTTAG	TAGCCTATTT	AACTGGCCCA	ACGACAGTGA	TTGCATTAAG	AAAAATGGGA	1440
10	CCAACAATGA	CTCGTCCATT	TAGAGCAAAA	ATTTTAAAAG	TAATGGCACC	ATTATCATTT	1500
	GTATTAGCTT	CATTAGCTAT	ATATTGGGCA	ATGTGGCCAA	CAACGGCTGA	AGTTATTTTA	1560
	ATCATTATAC	TTGGATTACC	AATCTACTTC	TTCTATGAAT	ATCGTATGAA	TTGGCGTAAT	1620
15	ACAAAGAAAC	AAATTGGTGG	TAGCTTATGG	ATTATTGTAT	ATTTAATCGT	GCTATCAATA	1680
	CTGTCATTTA	TAGGAAGCAA	AGAATTTAAA	GGCTTAAATA	TGATTCACTA	TCCATTTGAC	1740
	TTTATCGTTA	TTATTATTGT	GGCACTTATC	TTCTATTACA	TCGGTACAAC	GAGTTCATTT	1800
0	GAAAGCGTCT	ATTTCCGTCG	CGCAACACGA	ATCAATACGA	AGATGCGTGA	GTCACTAAAT	1860

	CACACACATT	AACCAACCAT	TGATTTCAAC	ATCTTGGTTG	GTTTTTTATT	TTGAAAATCG	1980
5	GTTATAAATA	ACTAACATAA	CAAGATGATG	ATCAGGCTGG	GACATAAATC	AATGTTCTAT	2040
	GCTCTACGAA	gTTATATTGG	CAGTAGTTGA	CTGAACGAAA	ATGCGCTTGT	AACAAGCTTT	2100
	TTTCGATTCT	AGTCAGGGGC	CCCAACACAG	AGAATTTCGA	AAAGAAATTC	TACAGGCAAT	2160
10	GCAAGTTGGG	GTGGGACGAC	GATAAAGAAA	TACTTTTTCT	ATAGAAATTA	GTATYCCTTA	2220
	TGCATGAGTT	TTACTCATGT	ATTCATATTT	TTAAGTACAC	ATTAGCTGTG	GCTAATGTAT	2280
	AAGAACCACT	ACATAATAAA	TCATTTGTGG	CTCTTTATCA	TTTCTGTCCC	ACTCCCGTAG	2340
15	AAGTACATCA	TATAATGCTG	AAAATGGTTT	GAGTTAAAAC	AGATATCAAG	CTCGTCTGAT	2400
	TCAGTCACAA	AATTGTCTTG	TTATACTTGT	CACCTATCAT	CTATAGACCG	TGGTATGATT	2460
	AAATTGGGGA	TGATAAAGGA	GGTTAATAAA	TATGAAGATT	AATACTACAG	GTGGTCAAAT	2520
20	TCATGGTATT	ACACAAGATG	GTTTAGATAT	CTTCTTAGGC	ATTCCTTATG	CAGAACCACC	2580
	AGTTCATGAC	AATCGCTTTA	AACATTCTAC	GTTAAAAACA	CAATGGTCAG	AGCCAATTGA	2640
	TGCAACTGAA	ATACAACCCA	TCCCACCGCA	ACCAGACAAC	AAATTAGAAG	ATTTTTTCTC	2700
25	CTCACAATCT	ACAACTTTTA	CTGAACATGA	AGACTGTTTA	TATCTAAATA	TTTGGAAACA	2760
	ACATAATGAT	CAGACGAAGA	AACCTGTCAT	CATTTATTTT	TATGGTGGTA	GTTTTGAAAA	2820
	TGGTCATGGT	ACAGCCGAAC	TCTATCAACC	GGCACATTTA	GTACAAAATA	ACGACATTAT	2880
30	CGTTATTACA	TGCAATTATC	GTTTAGGCGC	ATTAGGATAT	TTAGACTGGT	CATATTTTAA	2940
	TAAAGATTTT	CATTCCAATA	ATGGCCTTTC	AGATCAAATC	AATGTCATAA	AATGGGTGCA	3000
<i>35</i>	TCAATTTATT	GAATCCTTCG	GTGGCGACGC	TAATAACATT	ACTTTAATGG	GTCAGTCTGC	3060
	AGGCAGTATG	AGCATTTTGA	CTTTACTTAA	AATACCTGAC	ATTGAGCCAT	ACTTCCATAA	3120
	AGTCGTTCTA	CTAAGTGGCG	CACTACGATT	AGACACCCTT	GAGAGTGCAC	GCAATAAAGC	3180
	ACAACATTTC	CAAAAAATGA	TGCTCGATTA	TTTAGATACA	GATGATGTTA	CATCATTATC	3240
	GACAAATGAT	ATTCTTATGC	TGATGGCGAA	gctaaaacaa	TCTCGAGGAC	CTTCTAAAGG	3300
	GCTTGATTTA	ATATATGCGC	CTATTAAAAC	AGATTATATA	CAAAATAATT	ATCCAACAAC	3360
45	GAAACCAATT	TTTGCATGTT	ATACAAAAGA	TGAAGGCGAT	ATTTATATTA	CTAGTGAACA	3420
	GAAAAAATTA	TCGCCGCAAC	GCTTTATCGA	CATTATGGAA	TTAAATGATA	TTCCTTTAAA	3480
	ATACGAAGAT	GTTCAGACGG	CGAAGCAACA	ATCTTTAGCG	ATTACACATT	GTTATTTCaA	3540
	ACAGCCGATG	aAGCAATTTT	TACMACMACT	CAATATACMA	GATTCCAACC	GCACCAACTA	3600
50	TGGCTT						3606

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15109 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

10	GAAATTAAAA	AAGCAATTGG	nACAAGATGC	AACAGTGTCA	TTGTTTGATG	AATTTGATAA	60
	AAAATTATAC	ACTTACGGCG	ATAACTGGGG	TCGTGGTGGA	GAAGTATTAT	ATCAAGCATT	120
	TGGTTTGAAA	ATGCAACsAG	AACAACAAAA	GTTAACTGCA	AAAGCAGGTT	GGGCTGAAGT	180
15	GAAACAAGAA	GAAATTGAAA	AATATGCTGG	TGATTACATT	GTGAGTACAA	GTGAAGGTAA	240
	ACCTACACCA	GGATACGAAT	CAACAAACAT	GTGGaAGAAT	TTGAAAGCTA	CTAAAGAAGG	300
	ACATATTGTT	AAAGTTGATG	CTGGTACATA	CTGGTACAAC	GATCCTTATA	CATTAGATTT	360
20	CATGCGTAAA	GATTTAAAAG	Amaaattaat	TAAAGCTGCA	AAATAATTCA	GCTATATAAG	420
	TTAGTGAAAT	GAGAGTCTGA	AACATATCAA	TCTTTTGATA	TTGTATTAGG	CTCTTATTTT	480
25	TATAGCTAGA	AAGTTAGATA	TTTGTATTTT	TTTAAATAAT	AAGTGCCGTT	GTTATCGTTC	540
25	ATTTAATTA	ATGATAGATT	AGTATTATTA	TAGCTAAAGT	AGTATACCTG	AGAAAATAGC	600
	TCAATGTATC	TCTTTATTAA	TAAGTTATAT	CATAATTATT	TTAGTGCATA	CTTTATGGAA	660
30	GGGATATCAG	GGAATGGCTT	TCAATTAAAG	AAGAGGTTTA	AAAGGATTAC	AACAGAATGT	720
	TATGATTTTG	TAGAAAGATA	TATAACAACG	TTTTATAAAA	ACATAATATT	GTTAATGGAA	780
	AATGAAATGT	AAGGGGGATT	TCGAGTGACT	AAGAAAGTTT	ATTTTAACCA	CGATGGTGGT	840
35	GTAGATGATT	TAGTATCTCT	ATTTTTATTA	TTACAAATGG	AAAACGTTCA	ATTGATAGGG	900
	GTCÁGTACAA	TTGGTGCTGA	TTGTTATTTA	GAGCCATCTT	TGAGCGCATC	AGTAAAAATT	960
	ATTÄATCGTT	TTTCAAATGA	AGATATTCAA	GTTGCGCCAT	CATATGAACG	AGGAAAAAAT	1020
40	CCATTTCCTA	AAGAATGGCG	TATGCATGCC	TTTTTTATGG	ACGCATTGCC	AATTTTAAAT	1080
	GAGCCAGTCA	AACATGTTGC	TTCAAATGTG	AGCGACAAAG	AAGCCTTTGA	AGACATTATT	1140
	CAAACTTTAA	AGAGACAATC	AGAAAAAGTA	ACATTATTAT	TTACAGGCCC	GCTTACAGAT	1200
45	TTAGCAAAAG	CACTACAAAA	AGATTCATCT	ATCGTTCAGT	ATATAGAAAA	ATTAGTTTGG	1260
	ATGGGTGGCA	CCTTTTTACC	AAAAGGAAAT	GTTGAAGAAC	CTGAGCATGA	TGGTTCTGCA	1320
	GAATGGAATG	CATATTGGGA	TCCAGAAGCG	GTTAAAATTG	TTTTTGATAG	CGATATAGAG	1380
50	ATTGATATGG	TTGCTTTAGA	AAGTACGAAT	CAAGTACCGC	TAACGTTAGA	TGTTAGACAA	1440

	GTACCACCAT	TAACACACTT	TATAACAAAT	TCTACTTACT	TTTTATGGGA	TGTTTTAACG	1560
	ACTGCTTATA	TTGGTAACAA	GGACTTGGTT	CATTCAATTG	AGAAAAAAGT	CGATGTAATA	1620
5	AGTTATGGAC	CAAGTCAAGG	TAAGACATTT	GAGTGTAAAG	ATGGGCGCAA	AATTAATGTC	16,80
	ATAAATCATG	TAGATAACAA	CGCATTTTTT	GATTATATAA	CTGCACTTGC	TAAAAAAGTA	1740
	AATTAACAGC	TGTGTAGAAT	AATTAAGGTT	TTAATTTATA	TAGAACAACT	TATTGTAAAC	1800
10	TTTTCATTTC	TTAAAGTTTA	CAATGGTGCT	ATAATAATGG	TCATGAAATA	CGAAAGGAAG	1860
	TAAAAAATGA	CAACAAAACA	GTTAGTATAT	ACAGCTTTAA	TGACAGCGAT	TATCGCTATT	1920
	TTAGGATTGG	TACCGGTAAT	TCCACTACCA	TTTTCTTCAG	TACCAATTGT	ACTTCAAAAC	1980
15	ATTGGTATTT	TCTTAGCAGG	TGCGATTTTA	GGACGTAAAT	ATGGCACATT	AAGTGTTATC	2040
	GTCTTTTTAT	TATTAGTAGT	TGCTGGCTTG	CCATTGTTAT	CAGGTGGTCG	CGGTGGCATC	2100
	GGTGTATTCG	CAGGTCCTTC	AGCAGGGTTT	TTACTATTAT	ATCCAGTTGT	AGCATTCATG	2160
20	ATTGGGGCGA	TTCGAGATAG	ATTCATCAAT	GAAATTAATT	TCTGGATTTT	ATTCGTTGGT	2220
	ATTTTAGTTT	TTGGTGTTAT	AGCATTAGAT	GTTATTGGTA	CATTGATTAT	GGGCATGATT	2280
	ATTAACATAC	CATTTACGAA	AGCTATTTCA	ATTTCATTAG	CTTATTTGCC	TGGTGATATA	2340
25	TTAAAAGCAA	TTGTAGCAAG	TTTGATTGGT	ACAGCTTTAC	TTAATCACTC	GCAGTTTCGT	2400
	CAAATTATGG	GAATAAAATA	ATCATATTTA	AGATAGTAAA	GTAATTGAAT	AAGTTGCTTT	2460
30	GAAATTTATA	AAAGTGAAAG	GAGTAGGTGT	CAATGGCTAG	TATAAGTATG	TCAGATATAT	2520
30	ATTGTAACGG	CACTATATTT	GAAAATGACG	ACGAGCAGTT	GATTTATTTA	ACGCCTTCTT	2580
	TTCCACAACG	ATACACAAGT	AACACATGGA	TATATAAAAA	GACGCCTACC	CAAGAGCGAT	2640
35	GGCTGAAAGA	CTTAGAACGT	CAACATCAAT	TACATACAAA	TCAAGGTTCA	AATCATTATG	2700
	CGTTTAGTTT	CCCGGAAAAT	GAACAACTTG	ATAATCATTG	GATGGCTATG	TTTAAAGATA	276
	TGAATTTTGA	ACTAGGTATT	ATGGAATTGT	ATGCCATAGA	AAGTGATGCG	CTTGCCAATT	2820
40	TGCCGCGTAA	CTCTGACGTT	GAAATTGCCA	TCGTTGACGA	GTCGCATATA	GATGCCTATT	2880
`	TAAAAGTTGC	ATATCAGTTT	AGTTTGCCAT	TTGGAAAAGA	CTATGCAGAT	GCACATGAAG	2940
	AAATGGTAAG	GGAACATTAT	CAAAAAGATG	TGATTAAACG	CTTAGTAGCT	TATTTAAATA	3000
45	ATGAACCTAT	TGGCGTTGTA	GATGTCATTG	AAAGTGAAAA	TTACATTGAA	TTAGATGGAT	306
•	TTGGTGTATT	AGAACAATTT	CGGCACCAAG	GAATTGGATC	TACAATTCAA	TCGTTGATAG	312
	GTGAATACGC	CATATCAAAA	AATCACAAAC	CAATCATATT	AGTTGCAGAT	GGTGAAGATA	318
	a. aa	MATTERNATURE CO.	3 3 C C 3 3 C C C C C C C C C C C C C C	***************	ى ئىرىلىلىلىلىلىلىلىلىلىلىلىلىلىلىلىلىلىلى	татсааатат	324

	TAAGCTGGTT	TCGAGTAGAA	ATCAACTTAC	TGCTTTTTAA	ATTGTTTTGA	GCTACTTATA	3360
	CTTATAAAAA	TAGTGCGTTT	AAATTGTTGA	TTCATGTAGA	ATATCGTTCA	TTATGACACA	3420
5	CTATAATGAA	TATGTTATTG	TTCAGAATCA	ATGATACGTT	CTGGATGACT	GTATATATTA	3480
	AAGCCACCAT	TTCGAATAAA	TCCAACTGCC	GTAATATTTA	GGTCATTAGC	TAAGGTTACA	3540
10	GCAAGCGTTG	TCGGAGCTGA	TTTAGATAAA	ATGACGCCAA	CACCAATTTT	TGCGGCTTTA	3600
,,	ATTAAAATTT	CTGATGAAAT	ACGTCCACTA	AAAATTAATA	CTTTATCTCG	GACAGTAATA	3660
	TGTCGCTGAA	TACAAAATCC	ATATAATTTA	TCTAGAGCGT	TATGTCTACC	AATGTCTTGT	3720
15	CGATGTACAA	AAAATGTCAA	ACCATCGCTT	ATAGCAGCAT	TATGTAAGCC	ACCTGTTTCT	3780
	TGGTAAATAT	GACTTGCACT	TTGTAATCGA	GTCATCATGT	TAATAATTTG	CATTGGAGTT	3840
	AAAGTGATTT	TAGACATAGA	TGTTTTAGCG	ATAGCAGCAT	CATTTTGAAA	ATAAAACTCA	3900
20	CGACTCTTTC	CGCAACAAGA	TGCAATCATT	CGTTTTGTGG	AATATTGAAA	GCGATCGCCT	3960
	AAATCTTTAT	TAAGTTCAAC	ATGGGCAAAA	CCTTTACTAT	CATCAATCAG	TACAGATTTT	4020
	AATTCATCTC	GCTTTAAAAT	GGCACCTTCC	GAAGCCAGAA	ATCCAATGAC	TAACTCCTCA	4080
25	AGGTTTGTTG	GACTGCATAT	AACAGTCGCA	AATTCTTCAC	CATTCACCAT	AATTGTAAGT	4140
	GGAAATTCTG	TCACATATTG	ATCTGTTGTA	TTGAATAATT	TTCCATCTTC	ATATCTAACA	4200
30	ATTGGTTGAC	CTAAAGATAC	ATCTTTGTTC	ATTATCTAAC	CCCTTTAATT	AGCTTAAACT	4260
	TTATTTTAAA	GCAATTTGCT	TAAAATTTTA	ACATATTTGC	TTAAGTTTGA	AATTTGATTG	4320
	ATTAAAAATA	ATAGCGAGCA	ATCTGTTTGA	TTTAAATTGA	ATTCGAGAAT	ATACATACTA	4380
35 .	GGGCATCAAT	TAATAAATAT	CAATCTTATG	CAAATTTGAC	AATTGTTTGA	ATCAATATAT	4440
	AAACAGGCAA	CGGTTCTTTT	CAAATATAAT	AGTAAGTGTA	TAATGAAAAT	GTAAATATTA	4500
	TTAAĀAATGG	GGGTTCACTC	AATGAAATTG	AAACGTTTAT	TTGCTGTTGT	GATTGCAATG	4560
40	CTTTTAGTAT	TAGCTGGTTG	CTCTAATTCT	AACGATAATA	ATGAAAGTAA	AAAAGATGAC	4620
	GCAGACAATG	GTAAGAAACA	AGAGATTCAA	GTTGCAGCGG	CAGCAAGTTT	AACAGATGTA	4680
	ACCAAGAAAT	TAGCTTCAGA	AAAAATTTA	GAGCATAAAA	ATGCTGATAT	TAAATTTAAC	4740
45	TATGGTGGAT	CAGGGGCATT	AAGAAAACAA	ATTGAATCAG	GCGCACCTGT	TGACGTATTT	4800
	ATGTCTGCAA	ATACTAAAGA	TGTAGATGCA	TTAAAAGACA	AGAATAAAGC	GCATGATACA	4860
	TATAAATATG	CGAAAAATAG	TCTAGTATTA	ATTGGTGATA	AAGATTCAAA	TTACACTTCA	4920
50	GTAAAAGACT	TAAAAGACAA	TGATAAATTA	GCATTAGGTG	AAGTGAAAAC	TGTACCAGCA	4980
	GGAAAATATG	CGAAACAGTA	ТТТАСАТААС	ТАТТОАТТАТ	ттааасааст	ሮ ር እ አ ድሞ አ አ አ	5040

	CAAGGTTTTG	TGTATAAAAC	TGACTTATAT	AAACAAAATA	AAAAAATTGA	TACTGTAAAA	5160
	GTAATTAAAG	AAGTAGAACT	TAAGAAGCCA	ATCACATACG	AAGCTGGTGC	TACATCAGAT	5220
5	AGTAAATTAG	CAAAAGAGTG	GATGGAATTC	TTAAAATCAG	ATAAAGCTAA	AGAAATACTA	5280
	AAAGAATACC	ACTTTGCAGC	ATAAGGAGTT	GTAATCCATG	CCTGACTTAA	CACCTTTTTG	5340
	GATATCAATA	CGAGTTGCTG	TAATCAGTAC	GATTATTGTA	ACGGTTTTAG	GTATTTTAT	5400
10	ATCTAAATGG	TTGTATCGTC	GTAAGGGTTC	GTGGGTTAAA	GTATTGGAAA	GTTTATTGAT	5460
	ATTACCTATT	GTTTTGCCGC	CAACGGTATT	AGGTTTTATT	CTATTAATCA	TCTTCTCGCC	5520
. =	AAGAGGACCA	ATCGGTCAAT	TCTTTGCGAA	TGTACTACAT	TTACCTGTAG	TGTTCACTTT	5580
15	GACAGGTGCT	GTGATAGCAT	CTGTCATTGT	TAGTTTTCCA	CTAATGTATC	AACATACTGT	5640
	GCAAGGCTTC	AGAGGTATAG	ACACGAAAAT	GATTAATACA	GCTAGAACGA	TGGGAGCAAG	5700
20	TGAAACGAAA	ATTTTCCTCA	AATTAATTTT	ACCATTAGCT	AAACGCTCTA	TTTTAGCAGG	5760
	TATAATGATG	AGTTTTGCTC	GTGCATTAGG	TGAGTTTGGT	GCTACATTAA	TGGTTGCAGG	5820
•	ATATATTCCA	AATAAAACGA	ATACACTACC	TTTAGAAATA	TACTTCTTAG	TGGAACAAGG	5880
25	TAGAGAAAAT	GAAGCGTGGT	TATGGGTATT	AGTGCTAGTC	GCATTCTCTA	TTGTGGTTAT	5940
	ATCTACAATT	AATTTATTGA	ATAAAGATAA	ATATAAGGAG	GTCGACTAGA	TGCTTAAAAT	6000
	CAATGTGAAA	TATCAATTAA	AGAACACTTT	AATTCGCATC	AATATAGATG	ATACTGAACC	6060
30	TATTTAAAAA	GCAGTTCGTG	GTCCATCTGG	CATTGGTAAA	ACTACTGTTT	TAAATATGAT	6120
	TGCCGGATTA	CGTAAAGCAG	ATGAAGCTAT	TATCGAAGTG	AATGGGCAAT	TACTTACTGA	6180
	TACGGCAAAA	AACGTGAATG	TTAAAATTCA	ACAACGACGT	ATTGGATATC	TGTTTCAAGA	6240
35	CTACCAATTG	TTTCCTAATA	TGACGGTCTA	TAAAAATATT	ACTTTTATGG	CTGAACCATC	6300
	TGAACATC	GATCAATTAA	TTCAAACTTT	AAACATTGAT	CATTTGATGA	AACAATATCC	6360
40	TATGACATTG	TCAGGTGGAG	AGGCACAACG	TGTAGCACTT	GCACGTGCAC	TTAGCACTAA	6420
	ACCAGATTTA	ATTTTATTAG	ATGAACCTTT	TTCTAGTTTG	GATGATACTA	CAAAAGATGA	6480
	GAGTATTACA	TTAGTTAAAC	GTATTTTCAA	CGAATGGCAA	ATACCAATCA	TATTTGTGAC	6540
45	ACATTCAAAC	TATGAAGCAG	AACAAATGGC	TCATGAAATT	ATTACAATTG	GGTAATCATT	6600
	TATTTGCCAT	TAAAGAGTTT	AGAACGTATT	TAAAATTGTA	GAAGTGAATG	CTTCTATCAG	6660
	CATTTTAATG	ATGTTTTAAA	CTCTTTTTTA	GGGGCAGTTT	TTTTGAGAGA	CATTGACGCG	6720
50	CGTCATATAA	TGAAAGTAAT	GATAAAAAGA	AAGGATAACT	TAATGTGAGT	CAAGAACGTT	6780
	ATTCAACCCA	א א א א א א א א א א א א א א א א	AAACAAATAG	GTGA AATAGG	тсавассава	ATABATCAAA	6840

	GAGCAGGCAT	TGCCAAACTA	ATCATTGTTG	ATAGAGATTA	TATTGAATTT	AGTAATTTAC	6960
	AAAGACAAAC	ATTGTTTACT	GAAGAAGATG	CTTTGAAAAT	GATGCCTAAG	GTGGTTGCAG	7020
5	CTAAAAAGCA	TTTGCTAGCG	TTACGTAGTG	ATGTTGÄTAT	TGATGATTAT	ATTGCCCATG	7080
٠.	TGGATTATTA	TTTTTTGGAA	ACACATGGAC	AGGACGTTGA	CGTTATTATT	GATGCAACCG	7140
	ATAACTTTGA	AACACGACAA	CTGATTAATG	ATTTTGCATA	TAAATATCGT	ATACCTTGGA	7200
10	TTTATGGTGG	TGTTGTACAG	AGTACATATA	CAGAAGCTGC	ATTTATACCT	GGTAAAACAC	7260
	CTTGCTTTAA	CTGTTTGGTA	CCACAATTGC	CAGCATTAAA	TTTAACATGT	GATACAGTAG	7320
15	GGGTCATTCA	ACCTGCCGTG	ACGATGGCAA	CAAGTTTACA	ATTAAGAGAT	GCGATGAAAG	7380
	TATTAACGGA	ACAACCAATT	GACACAAAAA	TAACTTATGG	CGATATTTGG	GAAGGTAGTC	7440
	ATTATTCATT	TGGTTTCAGT	AAAATGCAAC	GTTCAGACTG	TACAACTTGT	GGAGATGTAC	75,00
20	CAAGTTATCC	GTATTTAAAC	AAGAATGAAC	AACGTTATGC	AACATTGTGT	GGTAGAGACA	7560
	CTGTACAGTA	TGAAAATGCA	TCAATTACAC	ACGACATTCT	TGTTCAATTT	TTAAAACAAC	7620
	ATCAGTTAAA	TTATCGCAGT	AATTCGTATA	TGGTTATGTT	TGAATTTAAA	GGACACCGCA .	7680
25	TTGTTGCTTT	TAAAGGTGGA	AGGTTTTTAA	TACATGGCAT	GACACGCACA	TCAGATGCCA	7740
-	CACATCTAAT	GAATTTATTG	TTTGGATAAA	AAAAGATAAG	ACAAAAGGAG	TGTAATATTA	7800
	TGGGCGAACA	TCAAAACGTT	AAATTGAATC	GTACAGTTAA	AGCAGCCGTA	CTAACGGTAT	7860
30	CAGATACTAG	AGACTTTGAT	ACAGATAAAG	GTGGTCAATG	CGTGCGCCAA	CTATTACAAG	7920
	CAGATGACGT	TGAAGTGAGT	GACGCACATT	ATACAATTGT	GAAAGATGAA	AAAGTAGCCA	7980
35	TCACGACGCA	GGTGAAGAAG	TGGTTAGAAG	AAGATATTGA	TGTCATCATT	ACGACTGGTG	8040
	GAACAGGTAT	TGCACAACGT	GATGTGACGA	TTGAAGCAGT	AAAACCACTT	TTAACTAAAG	8100
	AGATAGAAGG	CTTTGGGGAA	TTGTTTAGAT	ATTTGAGTTA	TGTTGAAGAT	GTTGGCACGC	8160
10	GTGĊATTATT	GTCTCGTGCT	GTAGCAGGTA	CAGTTAATAA	TAAATTGATA	TTTTCGATTC	8220
	CAGGATCAAC	AGGCGCAGTT	AAATTAGCAT	TAGAAAAGCT	CATTAAACCA	GAATTAAATC	8280
	ATCTGATTCA	TGAGCTTACA	AAATAATTTA	TTGATTTGAT	TGGCGTTGAA	AATCTCCAGA	8340
15	TTTACCGCCA	GACTTGCTTT	CAAGGTAGGT	TTCGCCAATA	ATCATACCTT	TATCAACTGC	8400
	TTTCGTCATG	TCGTAAATGG	TTAAAGCCGT	TGCTGATGCA	GCGGTTAAAG	CTTCCATTTC	8460
	AACACCGGTT	TTGCCAGTTG	TAGAGACAGT	TGTTTGAATG	TTTAAAGTAT	AAAGGGGTGC	8520
50	ATTTGTTTCA	TCCCAGCTGA	AGTGAACATC	TATGCCAGTC	AATGGTAATG	GATGGCACAT	8580
	СССЛАТЛАСТ	CTTCNTCTNT	TTTTCCCACC	CATA ATA CCA	CCCAMMONCAC	C) OFFICER ON A	0540

	AATGCTTGAA	TGAGCGACAG	CAGTTCTTTT	TGTAATTTGT	TTGTCTGATA	CATCGACCAT	8760
	TTTGGCGTGG	CCTTGTTGAT	TAATATGAGT	AAACTCAGTC	ATTTTACCCC	TCCTAGTGCA	8820
5	TCTAGTATAT	CATGAAAAAA	TAAAAGTTTT	GGAGATGATT	TTTAATGGTA	GTAGAAAAA	8880
	GAAACCCAAT	CCCAGTTAAA	GAAGCAATTC	AACGTATCGT	TAATCAGCAG	AGTTCAATGC	8940
	CGGCAATTAC	GGTAGCACTT	GAAAAAAGTC	TAAATCATAT	CTTAGCAGAA	GATATTGTAG '	9000
0	CTACTTATGA	TATACCAAGG	TTTGATAAAT	CACCTTATGA	TGGTTTTGCA	ATTCGCAGTG	9060
	TTGATTCACA	AGGGGCAAGT	GGTCAGAATC	GCATTGAGTT	TAAAGTGATT	GATCATATTG	9120
15	GTGCAGGTTC	AGTTTCTGAT	AAATTAGTTG	GGGATCACGA	AGCGGTGCGT	ATTATGACTG	9180
	GAGCACAAAT	ACCTAATGGC	GCAGATGCTG	TTGTTATGTT	TGAACAAACG	ATTGAACTAG	9240
	AAGATACATT	TACAATTCGT	AAACCATTTT	CAAAAAATGA	AAATATATCT	TTAAAAGGTG	9300
20	AAGAAACAAA	GACAGGCGAT	GTTGTTCTAA	AAAAAGGACA	AGTAATTAAT	CCAGGGGCTA	9360
	TCGCGGTCCT	TGCAACATAT	GGCTATGCAG	AGGTTAAAGT	TATTAAGCAA	CCGAGTGTCG	9420
	CTGTTATTGC	AACAGGAAGC	GAATTATTAG	ATGTTAATGA	TGTATTAGAA	GATGGGAAAA	9480
25	TTCGTAACTC	TAATGGCCCA	ATGATTCGTG	CCTTAGCAGA	AAAATTAGGT	CTTGAAGTTG	9540
	GTATTTACAA	AACACAAAAA	GATGATTTAG	ATAGTGGCAT	CCAAGTCGTT	AAAGAAGCTA	9600
	TGGAAAAACA	TGATATCGTT	ATTACAACGG	GCGGAGTTTC	TGTTGGAGAT	TTTGACTATT	9660
30	TACCTGAGAT	TTATAAGGCT	GTAAAGGCGG	AAGTGTTATT	TAATAAAGTA	GCAATGCGTC	9720
	CTGGTAGCGT	AACAACGGTT	GCATTTGTAG	ATGGaAAGTA	TTTGTTTGGa	TTATCTGGAA	9780
05	ATCCATCAGC	TTGTTTTACA	GGATTTGAAC	TATTTGTGAA	nccagctgtt	AAACATATGT	9840
35	GTGGCGCACT	AGAAGTCTTC	CCGCAAATAA	TTAAAGCAAC	ATTAATGGAA	GATTTTACCA	9900
	AGGGAAACCC	ATTCACACGA	TTTATACGTG	CTAAAGCAAC	GTTAACAAGT	GCTGGAGCTA	9960
40	CTGTAGTACC	TTCAGGATTC	AATAAATCAG	GTGCGGTTGT	AGCGATTGCA	CATGCTAACT	10020
•	GTATGGTCAT	GTTACCAGGA	GGGTCACGTG	GTTTTAAAGC	GGGGCATACA	GTAGATATTA	10080
	TATTGACTGA	ATCTGACGCT	GCTGAAGAGG	AACTTCTTTT	ATGATTTTAC	AAATTGTAGG	10140
45	TTACAAAAAG	TCTGGTAAGA	CAACATTGAT	GAGGCATATT	GTCTCTTTCT	TAAAGTCACA	10200
	TGGTTATACA	GTTGCTACTA	TTAAACATCA	TGGGCATGGT	AAGGAAGATA	TTCAATTACA	10260
	GGATTCAGAC	GTCGATCACA	TGAAGCATTT	TGAAGCGGGG	GCAGATCAAA	GTATTGTACA	10320
50	AGGTTTTCAA	TATCAGCAAA	CTGTAACACG	TGTAGATAAT	CAAAATCTTA	CTCAAATTAT	10380
	ТСАВАВАТСТ	GTTACAATTG	ACACCAATAT	CGTATTAGTT	GAAGGCTTTA	AAAATGCTGA	10440

	GAATGTTTGT	TATAGCATTA	ATGTAAGGGA	GCATGAAGAT	TTTACAGCAT	TTGAGCAATG	10560
	GTTATTAAAT	AAAATTAAAA	ATGATTGTGA	TACACAATTA	ACATAGAGGA	TTGAAATGAA	10620
5 ·	TGAAACAATT	TGAAATCGTG	ACAGAACCGA	TACAAACAGA	ACAATATCGT	GAATTCACTA	10680
	TAAATGAATA	TCAAGGTGCA	GTAGTTGTTT	TTACCGGTCA	TGTTCGCGAA	TGGACTAAAG	10740
	GCGTCAAAAC	GGAATATTTA	GAATATGAAG	CGTATATTCC	AATGGCTGAA	AAGAAATTGG	10800
10	CACAAATTGG	AGATGAAATA	AATGAAAAAT	GGCCTGGAAC	GATAACGAGT	ATTGTTCATA	10860
	GAATAGGGCC	ATTACAAATT	TCAGATATCG	CTGTATTAAT	TGCGGTTTCT	TCACCGCATC	10920
15	GTAAAGATGC	CTATCGAGCA	aatgaatatg	CAATTGAGCG	TATAAAAGAA	ATTGTTCCGA	10980
. •	TTTGGAAAAA	AGAAATTTGG	GAAGATGGTT	CAAAATGGCA	AGGGCATCAA	AAAGGGAATT	11040
	ATGAAGAAGC	AAAGAGGGAG	GAATAAGAGA	GATGAAGGTA	CTTTACTTCG	CAGAAATTAA	11100
20	AGATATATTA	CAAAAAGCAC	AGGAAGATAT	TGTGCTTGAA	CAAGCATTGA	CTGTACAACA	11160
	ATTTGAAGAT	TTATTGTTTG	AACGTTATCC	GCAAATCAAT	AATAAAAAGT	TTCAAGTTGC	11220
	TGTAAATGAG	GAATTTGTAC	AAAAATCGGA	TTTCATTCAA	CCTAATGATA	CTGTTGCATT	11280
?5	AATTCCACCG	GTTAGTGGAG	GTTAAGGGAG	CATGAAAGCA	ATAATTCTTG	CAGGTGGTCA	11340
	TTCAGTGCGA	TTTGGTAAGC	CCAAAGCTTT	TGCGGAAGTG	AACGGTGAGA	CCTTTTATAG	11400
	TAGAGTAATT	AAGACATTAG	AATCAACAAA	TATGTTCAAT	GAAATTATTA	TTAGTACAAA	11460
30	TGCGCAATTG	GCAACGCAAT	TTAAATATCC	AAATGTTGTT	ATAGATGATG	AGAATCATAA	11520
	TGATAAAGGT	CCATTAGCAG	GAATTTATAC	AATCATGAAG	CAACATCCTG	AAGAAGAATT	11580
	GTTTTTTGTC	GTTTCTGTTG	ATACACCAAT	GATTACTGGT	AAAGCTGTAA	GCACGTTGTA	11640
35	TCAGTTTTTA	GTTTCTCATC	TTATTGAAAA	TCATTTAGAT	GTCGCAGCTT	TTAAAGAAGA	11700
	TGGACGTTTT	ATTCCAACAA	TTGCATTTTA	TAGTCCGAAT	GCATTAGGCG	СТАТААСТАА	11760
10 .	AGCACTACAT	TCTGATAATT	ACAGTTTTAA	AAATGTATAT	CATGAATTAT	CAACGGATTA	11820
	TTTGGATGTA	AGGGATGTAG	ATGCGCCCTC	ATATTGGTAC	AAAAATATAA	ATTATCAGCA	11880
	TGATTTGGAC	GCTTTAATTC	AAAAATTGTA	AGCTGTTAGG	AGGTCCACAA	ATGGTAGAAC	11940
15	AAATAAAAGA	TAAACTAGGA	CGTCCCATCC	GTGACTTACG	GTTATCTGTG	ACAGATCGGT	12000
	GTAACTTTAG	GTGTGATTAT	TGCATGCCTA	AAGAGGTATT	TGGAGATGAT	TTCGTATTTT	12060
	TACCTAAAAA	TGAACTTTTA	ACGTTTGATG	AAATGGCTAG	AATCGCTAAG	GTATATGCAG	12120
50	AATTAGGTGT	AAAAAAATA	CGCATTACAG	GTGGAGAACC	ATTGATGCGA	CGGGATTTAG	12180
	ልጥርጥልሮጥጥልጥ	מריים מ מייים	AATCAAATCG	ÀTCCTATTCA	асататтсст	ጥጥር እ ሶ ጥ እ ሶ እ አ	12240

	ATGTCAGTTT	GGATGCTATT	GATGATACGC	TATTTCAATC	AATCAATAAT	CGTAATATTA	12360
	AAGCGACTAC	GATTTTAGAA	CAAATTGATT	ACGCGACGTC	TATTGGTTTG	AATGTAAAAG	12420
5 .	TAAATGTTGT	TATACAAAAA	GGTATTAACG	ATGATCAAAT	CATACCAATG	CTTGAATATT	12480
	TTAAAGATAA	ACATATAGAG	ATTCGATTTA	TAGAATTTAT	GGATGTTGGT	AATGATAATG	12540
	GATGGGATTT	CAGTAAAGTT	GTAACTAAAG	ATGAAATGCT	TACAATGATA	GAGCAGCACT	12600
0	TTGAAATCGA	TCCTGTAGAA	CCAAAATATT	TTGGGGAAGT	AGCAAAATAT	TATCGCCATA	12660
	AGGATAATGG	TGTTCAATTT	GGTTTGATTA	CAAGTGTTTC	ACAATCATTT	TGTTCTACAT	12720
_	GTACACGCGC	AAGGCTGTCA	TCAGATGGGA	AGTTTTACGG	ATGTTTATTT	GCAACTGTCG	12780
5	ATGGATTTAA	CGTTAAAGCG	TTTATTCGTT	CTGGCGTGAC	CGACGAAGAA	TTAAAAGAAC	12840
	AATTTAAAGC	TTTATGGCAA	ATAAGAGATG	ATCGATATTC	AGATGAGAGA	ACTGCTCAAA	12900
20	CAGTTGCCAA	TCGTCAACGT	AAAAAGATAA	ACATGAATTA	TATTGGTGGT	TAATGTGTAG	12960
	GGACCACTAC	ATATTAAATC	ATTAGAGATG	TTTTAATATT	TCTGTCTTAC	TCCCTAAAAT	13020
	ACAATATTAT	TTATTAAAGT	AAAAACGGTC	ATATCTATGC	CAGATTTAAT	AGAAATGATC	13080
25	GTTTTTAAAG	TTTTTACAAG	TTGGCGGGGC	CCCAACACAG	AAGCTGACAG	AAAGTCAGCT	13140
	TACAATAATG	TGCAAGTTGG	CGGGGCCCCA	ACATAGAGAA	TTTCAAAAAG	AAATTCTACA	13200
	GACAATGCAA	GTTGGGGAAC	GGGGCCCCAA	CACAGAAGGT	GACGAAAAGT	CAGCATACAA	13260
30	TAATGTGCAA	GTTGGCGGGG	CCCCAACATA	GAGAATTTCA	AAAGAAATTC	TACAGACAAT	13320
	GCAAGTTGGG	GATCAACGAA	ATAAATTTA	TGAGAATATC	ATTTCTATCC	CACTCTTAAG	13380
	AATCACTACA	TAATAAATCT	TTAGTGGTTC	TTTAACATTG	ATGTCACACT	CCATGCCATT	13440
35	GAGTTGTAAT	ATATCTTTTT	TAGGTATAAA	TGTTGTCGAA	TAAACAACAA	GTTGTCCAAA	13500
	agataítaaat	CTAAACAAGA	TATAGCCAGC	AATTTAATAT	TTGTAATAGA	TAAAATGCTA	13560
	AGTTTGATAT	ATAATAAATT	TAAGTAATTG	TATAATAATA	TGAATTACAA	ACATCTAAGA	13620
40	AGAAACATAG	GAGGCATCAT	ATTATGAGTA	ATAAAGTTCA	ACGTTTTATA	GAAGCAGAAA	13686
	GGGAGTTAAG	TCAGTTAAAG	CACTGGTTAA	AAACAACACA	TAAGATTTCA	ATTGAAGAAT	1374
45	TTGTAGTCCT	TTTTAAAGTG	TATGAAGCTG	AAAAGATTAG	CGGTAAAGAA	TTGAGGGATm	1380
	CATTACATTT	TGAAATGCTA	TGGGATACAA	GTAAAATCGA	TGTGATTATC	CGTAAAATCT	1386
	ATAAAAAAGA	GCTTATTTCT	AAATTGCGTT	CTGAAACGGA	TGAAAGACAA	GTATTCTATT	1392
50	TCTATAGTAC	TTCTCAAAAG	AAATTGTTAG	ATAAAATTAC	TAAAGAAATA	GAAGTGTTAA	1398
	ር/ር/ተተልሮ <u>አ</u> አ አ	ריים אם אמרייים	a A A A A G C a TG	ССААТСТСТА	TTCATCATAA	TTGCGTCTTG	1404

	GTTCATGGCA TTTCTAGTTA CATGACGTCC ATGAATTAAG AAGTAAACAA GCATAGTAAT	14160
	GATTGCTAAA GCGGCCATAA AGCCGAAGAT TTCACTATAT GAAAACATAT GAGTAAATAA	14220
5	CCCAAGGAAT GATGGACCGA AGCCGACACC TGCATCTAGA CCAACGTAAA AAGTAGATGT	14280
	CGCGATACCA TATTTAATCG GGGGTGAGAC TTTTATCGCA ATAGATTGCA TTGCAGATGA	14340
	TAAATTTCCA TACCCTAAAC CTAGGCAAGC ACCAGCAAGT AATATTAACC AGCTTTGATA	14400
10	GCTTGAAATT AAGCATACAA ATGAAAGGAA AAGCATGATA AATGCTGGGT AGACAATAAT	14460
	ATTTCATTT TTATCATCCA TCAATCTACC AGCAATAGGT CTAGTAATTA ACGATGCTAT	14520
15	AGCATAGCAA ATAAAGAAAT AGCTTGCTGC AGTGACTAGG TGTCGCTCTA AAGCAAATGC	14580
15	TTGTAAATAA GTTAGGATGG ACGCATAGGT AACGCCAATT AAAAGCATAA TTACAGCAAC	14640
	AGGAATGGCC TCTTTTGCAA TAAATTGATG AATACTAAAT CTTGGTTTAT CAATGACATT	14700
20	AGTTTCAGTT TTGTTATTTG TTACTTCGAA ATCAACTTTT ATAAATAATG AGATAATGAG	14760
	TCCGAGTATG CCTAATATGA CACAAATAAT AAACAGTAAG TCAATTGCGT ATTTTGTAAT	14820
	AAGTAACATG CCTAGAAATG GGCCAATCGC TGTACCTAAT ACTAAACTTA AGGAAAATAA	14880
25	ACTGATGCCT TCACTTTTTC TATTAACAGG GGTAACGTAT GCCGCAATAG TACCTGTTGC	14940
	AGTTGTCACA ACTGCAGTTG CGATACCGTT TATGAGACGT ACAAAGATTA AAAAAGCTAA	15000
	AGATCCATCA ATAAAATAAA GTAATTGCGT GATAATTAAA GCAATTAAAC CAATAAATAA	15060
30	TAATCGTTTA GGTCCrATTT SATTTACAAA TTTACCTGTA GCAAATCGA	15109
	(2) INFORMATION FOR SEQ ID NO: 45:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9072 base pairs	

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

GAGAGTCAAT	GGCAAGAAGA	ATATAAATAT	TTGAGAGCGT	TAATCTTTAA	TGAAACAGAA	60
TTAGAGGAAG	CGTATAAATG	GATGCATCCT	TGTTACACGT	TGAATAATAA	AAATGTAGTA	120
CTTATCCATG	GCTTCAAAAA	TTATGTTGCA	CTATTATTTC	ATAAAGGTGC	CATTTTGGAG '	180
GATAAATATC	ATACACTCAT	TCAACAGACT	GAAAAGGTGC	AAGCAGCTCG	TCAGTTACGA	240
TTTGAAAATT	TAACAGAGAT	TCAAGCACGT	ACCGAAGAAA	TTAAATATTA	TCTAGCCGAA	300
GCAATTAAAG	CTGAAAAAGC	TGGTAAAAA	GTTGAAATGA	AGAAAACAGA	GCAATATCTT	360

	AAATTAACGC	CAGGCAGACA	ACATCAATAT	ATATATCATA	TTGGACAAGC	TAAACGCAGT	. 480
	GgAACAAGAC	AAAAGCGTGT	TGAAAAGTAT	ATTAACCAAA	TACTAGAAGG	TAAAGGGATG	540
5	CATGATAAGT	AATTAATGAG	TAAAGCATAC	CGGTTATACA	ACAACATACA	AGATGACACG	600
	AAACAACCAA	TGGCTCATGC	TGTTGGTTGT	TTTTTTAGGT	GTGTCTGTCA	TGGGCAACAC	660
	TTTGACGTTG	GAATTCCGTT	ACAGGCTTGG	GAGTAGAAAA	TGTTAGCAAA	AGGCAAGGGT	720
o	GTCTACAATG	AATGATGAAG	TAAAATTATA	ATAAGGATGA	CTTTGTGAGT	GGCGGATGGG	780
	CGGTTGTCCG	TCTGTAACAA	TGGATGCGTG	TGCATTATTA	CAAAAATTCG	ACTTTTGTAA	840
	TAATATTTCA	CATTTTCGAC	ACTTTTTTGC	TATAAAACAA	CCAATTGAGC	GATAATAAAT	900
5	TCGCTTTTAA	AAAATATGAG	TTATCTATTT	AGTTGCCAAA	GATAAAATAA	TAATGTTTAA	960
,	TAACATCATA	TAGAGTATGT	TAGTTTTAAA	TGTCGAATAT	ACGAATGTGC	AAACAAAGTA	1020
20	ATCGGTAGAA	ATTCAACATA	CATAGCGCCG	TTTACTGTTA	AGTATTCACA	TTACAGATGA	1080
.0	AAATATAAA	ATTCTACATA	ATCAAGACCA	TGATGTGTAC	TTGTTTAACT	TATGACTCTA	1140
	TTTGTTTAAC	AATTGCGATA	ATGGTCTTTT	TATTTTATGC	GTATCATTCG	TCATATTTTT	1200
25	TATGAGGAAG	GAGAAATGAT	TATGTTAAGT	ATTAAGCATT	TAACGAAAAT	TTATTCTGGT	1260
	AATAAAAAGG	CAGTAGATGA	CATCTCTTTA	GATATTCAAT	CTGGGGAATT	TATCGCATTT	1320
	ATTGGAACCA	GTGGAAGTGG	CAAAACGACT	GCTTTAAGAA	TGATAAACCG	TATGATTGAA	1380
30	GCGACAGAAG	GACAAATTGA	AATTGATGGT	AAAGATGTTC	GGAGTATGAA	TCCTGTCGAA	1440
	TTGCGTAGAA	ATATTGGCTA	TGTTATTCAA	CAAATTGGCT	TAATGCCTCA	TATGACGATT	1500
	AAAGAGAATA	TTGTGTTGGT	ACCCAAATTG	TTGAAATGGA	CTAAAGAGGA	AAAGGATAAA	1560
35	CGTGCAAAGG	AATTAATTAA	ACTTGTGGAT	TTACCGGAGT	CATTTTTAGA	GCGTTATCCA	1620
	GCAGAACTAT	CAGGTGGGCA	ACAACAACGT	ATCGGTGTTG	TAAGAGCACT	TGCGGCCGAA	1680
	CAAGATATTA	TTTTAATGGA	TGAACCTTTT	GGTGCATTGG	ATCCTATTAC	GAGAGATACG	174
40	TTACAAGATT	TAGTTAAAAC	GTTACAACGA	AAATTAGGCA	AGACGTTTAT	CTTTGTAACA	180
	CATGATATGG	ATGAAGCGAT	TAAATTAGCA	GACAAAATTT	GTATTATGTC	AGAAGGTAAG	186
45	GTGGTGCAAT	TTGATACGCC	AGACAATATT	TTAAGACATC	CCGCAAATGA	TTTTGTACGT	1920
	GATTTTATAG	GACAAAATAG	ACTGATTCAA	GACCGTCCCA	ATGACAAGAC	TGTAGAAGGT	198
	GTAATGATTA	AACCAATCAC	GATACAAGCA	GAAGCAACAC	TGAATGACGC	CGTTCATATT	204
50	ATGAGACAAA	AACGTGTTGA	TACTATTTTT	GTAGTAGATA	GTAATAACCA	TTTACTAGGT	210
	TTCTTACACA	ттсаасатат	AAATCAGGGT	ATACGTGGAC	ACAAAAGTTT	ACGAGACACC	216

	ATTTTAAAAA	GAAACGTTAG	GAATGTACCT	GTCGTAGATG	ATCAACAGCG	TTTAGTAGGA	228
	CTGATTACGC	GTGCCAATGT	TGTTGATATT	GTATATGACA	CGATTTGGGG	CGATAGTGAG	2340
5	GATACAGTGC	AAACAGAACA	TGTGGGGGAA	GACACTGCGT	CCTCAAAAGT	GCATGAGCAA	2400
	CACACTACTA	ATGTCAAAGT	ACGTGACATA	GGAGATGATA	AATCATGATT	GAGTTCCTAC	2460
	ATGAACATGG	TGGACAGTTG	ATGTCGAAAA	CACTGGAACA	TTTCTATATT	TCTATAGTGG	2520
10	CATTATTACT	TGCCATCATT	GTTGCAGTAC	CTATAGGCAT	TTTATTATCA	AAAACAAAGC	2580
	GAACTGCCAA	TATTGTATTA	ACTGTGGCAG	GTGTCTTACA	AACTATTCCA	ACACTAGCTG	2640
15	TACTTGCTAT	TATGATACCG	ATTTTTGGTG	TTGGTAAAAC	GCCTGCAATT	GTAGCGCTAT	2700
	TTATTTATGT	ATTATTACCT	ATTTTAAATA	ACACGGTACT	CGGTGTTCAA	AATATTGATA	2760
	GCAACATTAA	AGAAGCTGGA	AAAAGTATGG	GAATGACACA	ATTTCAATTG	ATGAAGGATG	282
20	TTGAATTGCC	GTTAGCATTG	CCGCTTATCA	TTGGTGGCAT	TCGTTTGTCA	TCTGTGTATG	2880
	TAATTAGTTG	GGCTACACTT	GCAAGTTATG	TAGGTGCGGG	TGGATTAGGT	GATTTCATTT	2940
	TCAATGGTTT	AAATTTATAT	GATCCACTGA	TGATTGTAAC	TGCAACGGTA	CTCGTTACTG	3000
25	CACTAGCATT	AGGTGTTGAT	GCCTTATTAG	CTTTAGTTGA	AAAATGGGTA	GTTCCCAAAG	3060
	GCTTAAAAGT	ATCTGGATAA	TTAGGAGGCT	AAGATAATGA	agaaaattaa	ATATATACTT	3120
	GTCGTGTTTG	TCTTATCGCT	TACCGTATTA	TCTGGATGTA	GTTTGCCCGG	ACTAGGTAGT	3180
30	AAGAGCACGA	AAAATGATGT	CAAAATTACA	GCATTATCAA	CAAGCGAATC	GCAAATTATT	3240
	TCACATATGT	TACGGTTGTT	AATAGAGCAT	GATACACACG	GTAAGATAAA	GCCAACATTA	3300
	GTAAATAATT	TAGGGTCAAG	TACGATTCAA	CATAATGCCT	TAATTAATGG	GGATGCTAAT	3360
35	ATATCAGGTG	TTAGATATAA	TGGCACAGAT	TTAACGGGAG	CTTTGAAGGA	AGCACCAATT	3420
	AAAAATCCTA	AGAAAGCAAT	GATAGCAACA	CAACAAGGAT	TTAAAAAGAA	ATTTGATCAA	3480
40	ACGTTTTTTG	ATTCGTATGG	TTTTGCGAAT	ACGTATGCAT	TCATGGTAAC	GAAGGAAACC	3540
	GCTAAAAAAT	ATCATTTAGA	GACAGTTTCA	GATTTAGCAA	AGCATAGTAA	AGATTTACGT	3600
	TTAGGTATGG	ATAGTTCATG	GATGAATCGT	AAAGGCGATG	GCTATGAAGG	AAAAATTTA	3660
45	GAGTATGGTT	TTGACTTTGG	TACAGTGAGA	CCAATGCAAA	TAGGTCTAGT	CTACGACGCA	3720
	TTAAACTCAG	AGAAGTTAGA	CGTTGCATTA	GGTTATTCTA	CAGATGGTCG	AATTGCGGCG	3780
	TATGATTTGA	AAGTACTTAA	AGATGATAAA	CAATTTTTCC	CACCTTATGC	TGCGAGTGCT	3B40
50	GTTGCAACAA	ATGAATTATT	ACGGCAACAC	CCAGAACTŢA	AAACGACGAT	TAATAAGTTG	3900
	ACAGGAAAGA	TTTCCACTTC	асасатесаа	СССТТСАВТТ	7TC77CCC7	TCCTA A A CCT	2000

	AAAGGTGGTC	ATAAGTAATG	GAAGGTAATT	TATTACAGCA	ATTATTCAAT	TATTATGTTA	4080
	CGAACTTTGG	TTATCTATGG	GATTTATTTT	TCAAACACTT	ATTAATGTCT	GTCTATGGTG	4140
5	TGCTGTTTGC	AgCTTTAATT	GGTATTCCAT	TGGGAATCTT	GCTTGCaAGA	TACACAAAAC	4200
	TTTCTGGATT	TGTAATTACA	ATTGCAAATA	TAATTCAAAC	AGTTCCAGTC	AŢŢĠĊĀĀŢĠŢ	4260
	TAGCTATTTT	AATGTTAGTC	ATGGGCTTAG	GTTCAGAAAC	AGTAGTTTTA	ACAGTGTTTT	4320
0	TATATGCGTT	ACTTCCAATT	ATAAAAAACA	CTTATACTGG	TATAGCTAGT	GTTGATGCGA	4380
	ATATTAAGGA	TGCTGGCAAA	GGTATGGGAA	TGACACGCAA	TCAAGTGCTA	CGAATGATTG	4440
15	AATTACCGTT	ATCTGTTTCG	GTTATTATCG	GTGGCATTCG	TATTGCCTTG	GTTGTTGCGA	4500
	TAGGTGTTGT	TGCCGTTGGA	TCATTTATAG	GAGCACCTAC	GCTTGGTGAC	ATTGTGATTC	4560
	GTGGTACAAA	TGCGACGGAT	GGCACAACGT	TTATTTTAGC	AGGTGCGATT	CCGATTGCTA	4620
20	TCATTGCAAT	CGTCATTGAT	GTACTATTAA	GATTTTTAGA	AAAACGATTA	GACCCAACAA	4680
	CACGACATCG	TAAAAATCAA	TCTAATCATC	GGCCGCAAAG	TATTAATATG	TAATAGTAGA	474
	AGATGTTTAT	AATTTAGCGA	TTTCGTTTCA	TGATTTATAA	AAAATGAGGC	TACTCAAGGA	4800
25	GCTCAAATAA	TCTTTGAGTA	GCCTTTTTAT	AGGTTGTGTT	TGTATGCGTT	TACACTAAAA	4860
	TAGCAATTAT	TATCATGAAA	GTTTTTGGAT	AAAAAGCGTT	AATTATTGTA	AAAATACTAA	4920
	AAAATGAGAT	GTTTTATTTA	TAATTTTCTG	CAAATTTATG	ATATTGTTTC	TTAATATATC	4986
30	ATATTAAAAA	TTTGTTTTTC	TTAAACATAG	GAGGCTTATC	TAATTCATGG	ACACATCAAA	504
	ACAATTTAGA	GGTGACAACC	GATTGCTTTT	GGGTATCGTT	TTAGGGGTTA	TTACCTTTTG	510
	GCTATTCGCG	CAGTCACTTG	TTAATCTTGT	TGTCCCATTA	CAATCAACAT	ATAGTAGTGA	516
35	CGTTGGAACG	ATAAATATCG	CTGTTAGCTT	ATCTGCCTTA	TTTGCTGGTT	TGTTTATCGT	522
	AGGTGCTGGT	GATGTTGCTG	ATAAATTTGG	TCGCGTCAAA	ATTACTTATG	TAGGATTGAT	528
40	ATTAAATGTT	GTAGGTTCAT	TACTCATCAT	CATTACACCT	TTGCCAGCAT	TTTTAATTAT	534
40	AGGTAGAATA	ATTCAAGGTT	TGTCTGCAGC	ATGTATTATG	CCATCAACAC	TTGCTATTAT	540
	TAACGAATAT	TATATTGGTA	CAAGAAGACA	ACGTGCCTTA	AGCTATTGGT	CTATTGGTTC	546
45	TTGGGGTGGT	AGTGGTATTT	GTACGTTGTT	TGGTGGCTTA	ATGGCTACAT	ATATAGGTTG	552
	GCGTTCAATA	TTTGTTGTTT	CAATTCTATT	AACATTATTA	GCAATGTACT	TAATCAAACA	558
	TGCACCTGAG	ACTAAAGCAG	AACCAATCAA	AGGTATGAAA	GCAGAAGCTA	AAAAGTTTGA	564
50	CGTTATTGGT	TTAGTCATTT	TAGTAGTGAC	GATGTTAAGT	TTAAATGTAA	TCATCACACA	570
	CACCTCTCAT	TTTCCTTTLAC	TATALCYCCCAA	ል ልጥተርተተልርርጥ	ተተልልተተ ርተተር	ጥር ጥጥ ተለጥር	576

	AATTTTTAAA	AATAGAGGAT	ACAGTGGTGC	AACTATTTCA	AACTTCTTAT	TAAATGGTGT	5880
	AGCAGGTGGT	GCACTTATCG	TTATTAACAC	GTATTATCAA	CAACAATTAG	GATTTAATTC	5940
5	TTCGCAAACG	GGTTATATTT	CATTAACGTA	TTTAATAACA	GTGTTGTCAA	TGATTCGTGT	6000
	AGGTGAAAAG	ATTTTATCTC	AACATGGTCC	GAAGCGCCCA	CTATTACTAG	GAAGTGGCTT	6060
	TACAGTGATT	GGGTTAATCT	TATTGTCGTT	AACATTTTTA	CCAGAAGTGT	GGTATATCAT	6120
10	ATCTAGTATA	GTTGGATATT	TATTGTTTGG	TACTGGTTTA	GGATTATATG	CTACACCATC	6180
	AACTGATACA	GCAGTTGCTA	GTGCGCCAGA	TGATAAGTCG	GGTGTTGCTT	CAGGTGTGTA	6240
15	TAAAATGGCG	TCATCATTAG	GAAATGCATT	TGGAGTAGCA	GTATCTGGTA	CGGTTTATAC	6300
15	TGTGTTAGCA	GCTAATTTAA	ATTTGAACTT	AGGTGGTTTC	ACAGGTATGA	TGTTTAATGC	6360
	CTTGCTAGCA	ATTGTTGCAT	TTTTAGTCAT	TTTACTATTA	GTTCCTAAAA	ATCAAACGAA	6420
20	TTTGTAAAAC	TGAAATGAAA	GCAAGTTATT	ATGTAGGGAT	TTTAAAGGAA	ATTTTGTGAA	6480
	AGTAAGTTTA	TCATACACAC	TTAATGTTGC	GTATTGACGT	TTAATGTTAG	GTGTGTTCTT	6540
	TTATAGACGA	TAAAAGCTGT	GTGCATATTA	AGCGAATGAT	TTTCAAATTG	ACGCTAATAT	6600
25	GCGAAAGTAG	TATTTTTAAA	ATGAACAACA	ACGATGAAGA	GGGGTTTATA	GGATGAAAAT	6660
	TGCAATTGCT	GGATCGGGTG	CATTAGGTAG	TGGCTTTGGT	GCCAAACTAT	TTCAAGCAGG	6720
	ATATGATGTC	ACACTTATTG	ACGGATATAC	ATCTCATGTT	GAAGCGGTTA	AGCAACATGG	6780
30	ATTAAATATA	ACGATTAATG	GAGAGGCATT	CGAGTTAAAC	ATTCCGATGT	ATCATTTTAA	6840
	TGATCAACCG	GACGAAAGCA	TTTACGATGT	TGTCTTTCTA	TTTCCAAAGT	CTATGCAATT	6900
	AAAAGAAGTG	ATGGAAGATA	TGAAGCCACA	TATTGATAAT	GAAACGATCG	TCGTATGTAC	6960
35	GATGAATGGT	CTGAAGCATG	AAGAAGTCAT	TGCGCAGTAT	GTTGCTCAAT	CACAAATTGT	7020
	CAGAGGTGTT	ACGACTTGGA	CGGCAGGTCT	TGAAAGCCCT	GGACACAGTC	ATTTACTTGG	7080
40	TAGTGGACCA	GTTGAAATAG	GTGAACTAGT	GGATGAAGGT	AAAGAAAATG	TTATAAAAGT	7140
40	TGCTGATTTA	CTTAACGAAG	CGGAATTGAA	TGGTGTCATT	AGTAAAGATT	TATACCAATC	7200
	GATTTGGAAA	AAGATTTGTG	TTAATGGTAC	GGCAAATGCA	TTAAGCACAG	TGTTGGAGTG	7260
45	TAATATGGCA	TCGCTGAATG	AAAGTAGTTA	TGCGAAGTGT	TTGATTTATA	AATTAACGCA	7320
-	AGAAATAGTG	CATGTAGCGA	CGATTGATAA	TGTTCATTTA	AATGTTGATG	AAGTATTTGA	7380
	ATATTTAGTT	GATTTAAATG	AAaAAGTTGG	TGCGCATTAT	CCATCCATGT	ATCAAGATTT	7440
50	AATTGTTAAT	AATAGAAAAA	CTGAAATTGA	TTATATTAAT	GGCGCAGTTG	CAACATTAGG	7500
	TABACAACCT	Cathatercaac	CCCCACTCAA	macamma mm	1 CTC 1 CTC 1		

	CAATCACGTG	ATATTACGGT	CATTATTAAG	ATTGAAATGT	AATAAATAAA	GAACAGCAGI	7000
	AAGGTACTTT	CAAATTGAAA	TGATCTTGGT	GCTGTTTTTC	TTGATTGATC	TTCGTCATAA	7740
5	TTCAGATTTG	TCATAGGCTA	CGACATACTA	TTAGTATTTA	CTAGACAGTT	TTTACGACGA	7800
	CACTTTGAAA	AATTTTGAGG	CAAATCATTT	GGAAGTCTCA	CGTGAATTTT	GTAAACTCAT	7860
	CAAGCAAGTA	ATTATATTAA	AAAGACAAAT	AGAGAAAAGG	TGTTTATAAT	GAGTAAAATT	7920
10	TTTGTAACTG	GTGCAACGGG	CCTTATTGGC	ATTAAATTAG	TTCAAAGACT	AAAAGAAGAG	7980
	GGGCATGAGG	TTGCTGGTTT	TACTACATCT	GAGAATGGTC	AACAAAAGCT	AGCTGCTGTT	8040
15	AATGTAAAAG	CATATATTGG	TGATATATTA	AAAGCTGATA	CTATTGATCA	AGCGTTAGCA	8100
	GATTTTAAAC	CAGAAATCAT	TATCAATCAA	ATTACGGATT	TAAAAAATGT	TGATATGGCA	8160
	GCAAATACGA	AAGTACGTAT	TGAAGGTTCT	AAAAACCTAA	TTGATGCGGC	GAAAAAGCAT	8220
20	GACGTTAAGA	AAGTAATTGC	CCAAAGTATT	GCCTTTATGT	ATGAACCTGG	CGAAGGATTA	8280
	GCAAATGAGG	AAACTTCACT	TGATTTTAAC	TÇAACTGGCG	ATAGAAAAGT	AACGGTTGAT	8340
	GGTGTGGTTG	GTTTAGAAGA	AGAAACGGCT	CGTATGGATG	AATACGTTGT	TTTACGTTTT	8400
25	GGCTGGTTAT	ATGGCCCAGG	TACTTGGTAC	GGAAAAGATG	GCATGATTTA	TAATCAATTT	8460
	ATGGATGGTC	AAGTGACACT	TTCAGATGGC	GTAACATCAT	TTGTGCATCT	TGATGATGCA	8520
	GTTGAAACAT	CTATTCAAGC	TATTCATTTT	GAAAATGGTA	TCTATAATGT	AGCAGATGAT	8580
30	GCACCTGTTA	AAGGTTCTGA	ATTTGCAGAA	TGGTATAAAG	AACAACTTGG	TGTTGAACCA	8640
	AATATTGATA	TTCAACCTGC	GCAACCATTT	GAACGTGGCG	TAAGCAATGA	GAAGTTTAAA	8700
	GCGCAAGGTG	GTACTCTGAT	TTATCAAACT	TGGAAAGATG	GCATGAATCC	AATTAAATAA	8760
35	TAATTTATCC	GTTTAATATA	CAAAGAATAA	AGACTTGGTC	GAATCGTGGA	TGATATATTA	8820
	TCAAACGCAC	GGCTCGAACA	AGTCTTTTTT	ATTATGTCTT	CGTTATCTTT	GTATGAAGGA	8880
40	ATAACAGAAT	TACAATTAAT	GTACTGAATA	ATGCAATTAA	TGTTGTGATT	AGTGCTAATT	8940
70	TAATTTCTAT	TGGTAGCCAA	GTCAGTACAA	AAGACCAATT	ATTGCTACCG	AGAATGAGAT	9000
	ATGGTAATGC	ATATAATATG	AGCGCTAAAG	CGATACATAT	ACATAATGAT	AACCAACTCA	9060
	ATACAGCAAT	· cc					9072

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 16826 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

	GTGGAACAGC	TGTAACTATA	TCATTTCTTT	CAACATTTAT	TGGGAAAATG	TTAGCTACAT	6
5	TTCTATATCC	GATTAATAAT	GTAGTACTT	CATATATNTC	TGTAAATGAA	AGTGACAATA	12
	TAAAGAAGCA	ATATTTGaAA	ACTAATCTAA	TTGCTATAGC	TGCCCTATGT	TTAGTCATGA	18
	TTATATGTTA	TCCAATTACA	ATAATTATTG	TCTCTTTACT	GTATAACATT	GATTCAAGTT	24
10	TATATTCGAA	GTTTATTATT	TTAGGTAATA	TAGGTGTTTT	ATTCAATGCA	GTGAGTATTA	30
	TGATCCAAAC	TTTAAATACA	AAACACGCAT	CAATAACATT	ACAAGCGAAT	TATATGACGC	36
15	TTCACACGAT	TACATTTATA	TTCATAÁCTA	TTTTAATGAC	AATTGCGTTT	GGTCTAAATG	42
15	GATTCTTTTG	GACAACGCTG	TTCAGCAACA	TTATTAAGTA	TGTGATTTTA	AATATTATAG	48
	GTTTAAAGTC	TAAATTCATT	AATAAAAAGG	ACGTCGATTA	GATGAGTGAA	AAAAAGATTT	54
20	TGATTTTATG	TCAGTATTTT	TATCCGGAAT	ATGTATCTTC	TGCGACGTTA	CCAACTCAAT	600
	TGGCGGAAGA	TTTAATTGCG	AATCACATTA	ATGTCGATGT	CATGTGTGGA	TGGCCATATG	660
	AATATAGTAA	TCATAAACAG	GTTTCTAAAA	CCGAGATGCA	TCGTGGTATT	CGCATTCGAC	720
25	GTCTCAAGTA	TTCGAGGTTT	AATAACAAAA	GTAAGGTTGG	AAGGATCATC	AATTTCTTTA	780
	GTTTATTTTC	AAAATTCGTG	ATTAATATAC	CTAAAATGTT	GAAATATGAT	CAGATTCTTG	840
	TTTACTCTAA	TCCACCAATC	TTGCCATTAA	TACCAGACGT	TTTACACAGA	CTGCTTAAGA	900
30	AAAAATATTC	TTTTGTGGTG	TATGATATAG	CACCTGATAA	TGCGATTAAG	ACAGGTGCAA	960
	CTCGTCCAGG	TAGCATGATT	GATAAGCTGA	TGCGTTAÇAT	TAATAGACAT	GTCTACAAGA	1020
	ATGCTGAAAA	TGTCATTGTC	CTTGGTACGG	AAATGAAAAA	СТАСТТАСТА	AATCATCAAA	1080
35	TTTCTAAAAA	TGCTGACAAT	ATCCATGTGA	TTCCTAACTG	GTATGACATG	CGTCAATTAC	1140
	AAGACAATCG	TATCTATAAT	GACACATTTA	AAGCTTACCG	TGAGCAATAC	GACAAAATTT	1200
	TATTGTATAG	CGGTAATATG	GGGCAGTTAC	AGGATATGGA	GACACTTATC	TCATTTTTAA	1260
40	AATTAAATAA	GGATCAGTCT	CAAACGTTAA	CAATACTTTG	TGGTCATGGT	AAGAAATTTG	1320
	CAGATGTCAA	AACGGCAATA	Gaagaccatc	GTATTGAAAA	TGTTAAAATG	TTTGAGTTTT	1380
45	TAACAGGTAC	AGACTATGCT	GACGTATTAA	AAATTGCGGA	TGTATGTATT	GCATCGCTGA	1440
	TTAAAGAAGG	CGTCGGTTTA	GGCGTGCCGA	GCAAGAATTA	TGGCTATCTT	GCAGCTAAGA	1500
	AAGCGTTGGT	ACTCATCATG	GATAAGCAAT	CTGATATCGT	TCAACATGTT	GAACAATATG	1560
50	ATGCGGGTAT	CCAAATTGAT	AATGGCGATG	CACATGCCAT	TTATAACTTC	ATCAACACTC	1620
	ACTCGAGTAA	GGAATTGCAC	GAGATGGGTG	AGCGCGCACA	TCAACTGTTT	АААСАТАААТ	1680

	AAGCGATTAT	TCGATGTAGT	GAGTTCAATA	TATGGTTTAG	TAGTTTTAAG	TCCGATTCTG	1800
	TTAATTACAG	CATTACTAAT	TAAAATGGAa	TCACCTGGAC	CAGCCATTTT	CAAACAAAAA	1860
5	AGACCGACGA	TTAATAATGA	ATTGTTTAAT	ATTTATAAGT	TTAGATCAAT	GAAAATAGAC	1920
	ACACCTAATG	TTGCAACTGA	TTTAATGGAT	TCAACATCGT	АТАТААСААА	GACAGGGAAG	1980
	GTCATTCGTA	AGACCTCTAT	TGATGAATTG	CCACAATTAT	TGAATGTTTT	AAAAGGAGAA	2040
10	ATGTCAATTG	TAGGTCCTAG	ACCAGCGCTT	TATAATCAAT	ACGAATTAAT	CGAAAAACGT	2100
	ACAAAAGCGA	ACGTGCATAC	GATTAGACCA	GGTGTGACAG	GACTAGCTCA	AGTGATGGGG	2160
15	AGAGATGATA	TCACTGATGA	TCAAAAAGTA	GCGTATGATC	ATTATTACTT	AACACATCAA	2220
	TCTATGATGC	TTGATATGTA	TATCATATAT	AAAACAATTA	AAAATATCGT	TACTTCAGAA	2280
	GGTGTGCATC	ACTAATGAGA	AAAAATATTT	TAATTACAGG	CGTACATGGA	TATATCGGTA	2340
20	ATGCTTTAAA	AGATAAGCTT	ATTGAACAAG	GACATCAAGT	AGATCAAATT	AATGTTAGGA	2400
	ATCAATTATG	GAAGTCGACC	TCGTTCAAAG	ATTATGATGT	TTTAATTCAT	ACAGCAGCTT	2460
	TGGTTCACAA	CAATTCACCT	CAAGCAAGGC	TATCTGATTA	TATGCAAGTG	AATATGTTGC	2520
25	TGACGAAACA	ATTGGCACAA	AAGGCTAAAG	CTGAAGACGT	TAAACAATTT	ATTTTTATGA	2580
	GTACTATGGC	AGTTTATGGA	AAAGAAGGTC	ATGTTGGTAA	ATCAGATCAA	GTTGATACAC	2640
	AAACACCAAT	GAACCCTACG	ACCAACTATG	GTATTTCCAA	AAAGTTCGCT	GAACAAGCAT	2700
30	TACAAGAATT	GATTAGTGAT	TCGTTTAAAG	TAGCAATTGT	GAGACCACCA	ATGATTTATG	2760
	GTGCACATTG	CCCAGGAAAT	TTCCAACGGT	TAATGCAATT	GTCAAAGCGA	TTGCCAATCA	2820
	TTCCCAATAT	TAACAATCAG	CGCAGTGCAT	TATATATTAA	ACATCTGACA	GCATTTATTG	2880
35	ATCAATTAAT	ATCATTAGAA	GTGACAGGTG	TGTACCATCC	TCAAGATAGT	TTTTACTTTG	2940
	ATACATCGTC	AGTAATGTAT	GAAATACGTC	GCCAATCACA	TCGTAAAACG	GTATTGATCA	3000
40	ACATGCCTTC	AATGCTAAAT	AAGTATTTTA	ATAAGTTGTC	GGTCTTTAGA	AAATTATTCG	3060
40	GCAATTTAAT	ATACAGCAAT	ACGTTATATG	AATAATAAA	TGCACTTGAA	ATTATTCCTG	3120
	GAAAAATGTC	ACTTGTTATT	GCGGACATCA	TGGATGAAAC	GACAACCAAA	GATAAGGCAT	3180
45	AAGTCATCTA	AAAATAAATT	TCAACATACA	AATCGTTTTA	TTTGGAGGTT	ATAGTATGAA	3240
	GTTAACAGTA	GTTGGCTTAG	GTTATATTGG	TTTACCAACA	TCAATTATGT	TTGCAAAACA	3300
	TGGcGTCGAT	GTGCTTGGTG	TTGATATTAA	TCAGCAAACG	ATTGATAAGT	TACAAAGTGG	3360
50	TCAAATTAGT	ATTGAAGAAC	CTGGATTACA	AGAGGTTTAT	GAAGAGGTAC	TGTCATCGGG	3420
	AAAATTGAAG	GTATCTACAA	CGCCAGATGC	ልጥርጥርልጥርጥጥ	ጥጥልጥርልጥጥር	CCCTTCCCAC	3400

	TAGTATTTTA	TCATTTTTAG	AAAAAGGAAA	TACCATTATT	GTAGAGTCGA	CAATTGCGCC	3600
	TAAAACGATG	GATGATTTTG	TAAAACCAGT	CATTGAAAAT	TTAGGGTTTA	CAATAGGTGA	3660
5	ÄGATATTTAT	TTAGTGCATT	GTCCAGAACG	TGTACTGCCA	GGAAAAATTT	TAGAAGAATT	3720
	AGTTCATAAC	AATCGTATCA	TIGGCGGTGT	GACTGAAGCT	TGTATTGAAG	CGGGTAAACG	3780
	TGTCTATCGC	ACATTCGTTC	AGGGAGAAAT	GATTGAAACA	GATGCACGTA	CTGCTGAAAT	3840
10	GAGTAAGCTA	ATGGAAAACA	CATATAGAGA	CGTGAACATT	GCTTTAGCTA	ATGAATTAAC	3900
	AAAAATTTGC	AATAACTTAA	ATATTAATGT	ATTAGATGTG	ATTGAAATGG	CAAACAAACA	3960
15	TCCGCGTGTT	AACATCCATC	AGCCTGGTCC	AGGTGTAGGC	GGTCATTGTT	TAGCTGTTGA	4020
	TCCGTACTTT	ATTATTGCTA	AAGACCCTGA	AAATGCAAAG	TTAATTCAAA	CTGGACGTGA	4080
	AATTAATAAT	TCAATGCCGG	CCTATGTTGT	TGATACAACG	AAGCAAATCA	TCAAAGTGTT	4140
20	GAGCGGGAAT	AAAGTCACAG	TATTTGGTTT	AACTTATAAA	GGTGATGTTG	ATGATATAAG	4200
	AGAATCACCA	GCATTTGATA	TTTATGAGCT	ATTAAATCAA	GAACCAGACA	TAGAAGTATG	4260
	TGCTTATGAT	CCACATGTTG	AATTAGATTT	TGTGGAACAT	GATATGTCAC	ATGCTGTCAA	4320
25	AGACGCATCG	CTAGTATTGA	TTTTAAGTGA	CCACTCAGAA	TTTAAAAATT	TATCGGACAG	4380
	TCATTTTGAT	AAAATGAAGC	ATAAAGTGAT	TTTTGATACA	AAAAATGTTG	TGAAATCATC	4440
	ATTTGAAGAT	GTATCGTATT	ATAATTATGG	CAATATATTT	AATTTTATCG	АСАААТАААА	4500
30	TGTGTCAAAC	TAGGGCATAC	ATGATTAAGG	AAAGATAAGC	TGTCATGTGT	TTGAACTTCA	4560
	GAGAGGATAA	TGTTATGAAA	AAAATTATGG	TTATTTTCGG	TACGAGACCC	GAAGCAATAA	4620
	AAATGGCACC	ATTAGTAAAA	GAAATTGATC	ATAATGGGAA	CTTTGAAGCG	AACATTGTGA	4680
35	TTACAGCACA	ACATAGAGAT	ATGTTAGATA	GTGTGTTAAG	TATATTTGAT	ATTCAAGCTG	4740
	ATCATGATTT	AAATATTATG	CAAGATCAAC	AAACATTAGC	AGGCCTTACG	GCGAATGCAC	4800
40	TTGCTAAACT	TGATAGCATC	ATTAATGAGG	AACAACCGGA	TATGATTTTA	GTACATGGTG	4860
40	ATACTACAAC	GACTTTTGTA	GGAAGTTTGG	CAGCATTTTA	TCATCAAATT	CCGGTCGGAC	4920
	ATGTAGAAGC	TGGACTTCGA	ACACATCAGA	AATACTCACC	ATTTCCTGAA	GAGTTAAATC	4980
45	GAGTCATGGT	AAGTAATATT	GCTGAATTGA	ATTTTGCGCC	AACAGTAATT	GCAGCTAAAA	5040
	ATTTACTTTT	TGAAAACAAA	GACAAAGAGC	GTATCTTTAT	TACTGGAAAT	ACAGTTATTG	5100
	ACGCATTGTC	AACAACAGTT	CAAAATGATT	TTGTTTCAAC	GATTATTAAT	AAACATAAAG	5160
50	GCAAGAAAGT	TGTTTTACTA	ACAGCGCATC	GTCGTGAAAA	TATTGGGGAA	CCGATGCATC	5220
		3.CC3.CM3.3.C3	CX THE COOK	3.000 3.003 003 3	3.C3.TICTTCTC		

	GGATTGAATT	AATTGAGCCA	TTAGATGCGA	TTGAGTTCCA	TAATTTTACA	AATCAATCGT	540
	ACCTCGTGCT	GACAGATTCT	GGTGGTATTC	AAGAGGAGGC	TCCTACATTT	GGAAAACCTG	546
5	TGTTGGTATT	AAGGAATCAT	ACAGAGCGTC	CCGAAGGCGT	TGAGGCGGGA	ACATCGAGAG	552
	TAATTGGCAC	AGATTATGAC	AATATTGTTC	GAAATGTGAA	ACAATTGATT	GAGGATGATG	558
	AAGCGTATCA	ACGTATGAGT	CAAGCGAATA	ATCCATATGG	TGATGGACAA	GCATCACGAC	564
10	GTATTTGTGA	AGCAATAGAA	TATTATTTTG	GATTGCGCAC	AGACAAGCCG	GATGAATTCG	570
	TACCTTTACG	TCACAAATAA	TAAAAAACCC	CTAATCATGA	AGTTGGTTTA	GACAACCAGC	576
15	GGTGACTAGG	GGTTTTTAAT	ATATTTATTT	TTGATAGTGG	TAGCCAATAT	CATATTTGAA	5820
	TACTTTATTT	GATAATATTG	GACTTTGCTG	TCCATCGTCA	TCACTTTTTA	AACGTACATT	5886
	TTTATGAGCT	TCTTTAAATA	CATCGGAATT	CAACCAATTA	TTAAAGCTAT	CTTCAGATTC	5940
20	CCAAATAGTT	AAGATTTTAA	CTTCGTCTGT	ATCCTCGGTA	TTTAATGTTT	TAGTGACAAA	6000
	CATTTGTTGG	AAGCCTTCAA	TAGTTTCAAT	ACCTTGTCTA	TTGTAAAAAC	GTTCAATCGT	6060
	TTCTTCCGCA	CTGCCTTTTT	GTAATTGTAA	TCTATTTTCT	GCCATAAACA	TGGGCAATCA	6120
25·	CTCCTCTATT	TTATGATTTG	ATTTGGGTAA	TGTTTTTACA	AATGTAAAGA	GTACAGCGGT	6180
	TTGTATGATA	ACCATTATGA	TTAATCCTAC	ACGGACTGCA	AGAACATCCA	CCATATAAAT	6240
•	TGAAAAACCT	ATTACAATGT	ATAAGCTAAT	TAAAATTTTA	ATTTTCTGTT	GTAGCGTGTA	6300
30	GCCTCGATGT	AAATAAAAGT	TTTCTACATA	TTCTTTATAA	ATTTTTTGAT	TAATAAGCCA	6360
	ATTGTAAAAG	CGATCTGAAC	TTCGAGCAAA	GCAAAAAACT	GCTACGAGTA	AAAAAGGGGT	6420
	CGTTGGCAGT	AAAGGTAATA	CGGCACCTGC	AATACCAAGC	GCTGTAAATA	TTAAGCCAAT	6480
35	GACGATTAAA	ATAAGTCGCA	TTGAAAAAAC	TCCATTCTAG	TACTAATGCG	CATGTAATAT	6540
	TGTTTTAGTA ·	ATATAACTCA	TGCTAAATAT	AATGTGTATG	ATAAGTGCAA	TGACTCAGTA	6600
40	AAATGAAACG	ATGTTGAATT	ATCCTTGTCA	CATTAACGCA	TTTTAAGCGC	GACTTTCATA	6660
	ACAACCAAAC	TATTTAATGA	GAATTATTCT	CAAGTATTAT	AGTTATATTA	TGTGTTTTAT	6720
	TTTTGAAAAG	TGCAATATGT	TTTCGAAAAT	AAGATTATTT	TTATGTGCAA	AAACGACGCA	6780
45	AAAGTTTTAA	AAATGAGACT	TCTGTGAGCT	GATTATTTTA	TAAAATGTAA	ACGCTTACTA	6840
	TATAATGTGA	ATCATATCGT	TTAAAAGCAT	TATTAAATAT	GATGCTAAGA	GATTTATATT	6900
	ATAGCCAATA	AACAAAGGAG	AGATAATATG	GCAGTAAACG	TTCGAGATTA	TATTGCAGAG	6960
50	AATTATGGTT	TATTTATCAA	TGGGGAATTT	GTTAAAGGTA	GCAGTGACGA	AACAATCGAA	7020
	GTGACTAATC	CAGCAACTGG	AGAAACACTA	TCACATATTA	CAAGAGCAAA	AGATAAAGAT	7080

.

	TCAGAACGTG	CACAAATGTT	GCGTGATATT	GGTGATAAAT	TAATGGCACA	AAAAGATAAA	720
	ATTGCAATGA	TTGAAACATT	AAATAATGGT	AAACCGATTC	GTGAGACAAC	AGCAATTGAT	726
5	ATTCCATTTG	CTGCAAGACA	TTTCCATTAT	TTCGCAAGTG	TTATTGAAAC	AGAAGAAGGT	732
	ACAGTGAATG	ATATCGATAA	AGACACAATG	AGTATCGTAC	GACATGAGCC	GATTGGCGTC	7386
10	GTAGGTGCTG	TTGTTGCTTG	GAACTTCCCA	ATGCTATTAG	CTGCATGGAA	GATTGCGCCA	744
10	gCCATTGCTG	CAGGTAATAC	AATTGTGATT	CAACCTTCGT	CTTCAACACC	ATTAAGTTTA	7500
	TTGGAAGTTG	CTAAAATTTT	CCAAGAGGTA	TTACCTAAAG	GTGTTGTCAA	TATACTAACG	7560
15	GGTAAAGGTT	CAGAATCAGG	TAATGCAATT	TTCAATCATG	ATGGTGTAGA	TAAATTATCA	7620
	TTTACGGGCT	CAACTGATGT	AGGTTATCAA	GTTGCCGAAG	CTGCAGCAAA	ACATCTAGTA	7680
	CCCGCTACAT	TAGAGCTTGG	TGGTAAAAGC	GCCAATATCA	TATTAGATGA	TGCTAATTTA	774
20	GACCTTGCAG	TTGAAGGTAT	TCAGTTAGGT	ATTTTATTCA	ACCAAGGTGA	AGTATGTAGT	7800
	GCAGGTTCTC	GATTATTAGT	TCATGAAAAA	ATTTATGATC	AATTGGTGCC	ACGTTTACAA	7860
	GAGGCATTTT	CAAATATTAA	AGTTGGAAAT	CCACAAGATG	AAGCTACACA	AATGGGTAGT	7920
25	CAAACTGGTA	AGGATCAATT	AGATAAAATT	CAATCATATA	TTGATGCAGC	AAAAGAATCA	7980
	GATGCACAAA	TTTTAGCAGG	CGGTCATCGC	TTAACTGAAA	ATGGATTAGA	TAAAGGGTTC	8040
	TTCTTTGAGC	CGACATTAAT	TGctGTGCCA	GACAATCATC	ACAAATTAGC	ACAAGAAGAA	8100
30	ATATTTGGAC	CAGTGTTAAC	agtgattaaa	GTGAAGGACG	ATCAAGAAGC	AATTGATATA	8160
	GCTAATGATT	CTGAGTATGG	TTTAGCAGGC	GGTGTATTTT	CTCAAAATAT	CACACGTGCA	8220
	TTAAATATTG	CTAAAGCTGT	ACGTACAGGA	CGTATTTGGA	TTAACACTTA	CAACCAAGTA	8280
35	CCAGAAGGCG	CACCATTTGG	TGGTTATAAA	AAATCAGGTA	TCGGTCGAGA	AACTTATAAA	8340
	GGTGCGTTAA	GTAACTATCA	acaagttaaa	AATATTTATA	TTGATACAAG	CAATGCTTTA	8400
40 .	AAAGGTTTGT	ACTAGAATAA	ATATCGTTTC	TGAAGCGTGT	TTGTAGGTCA	GTCTAGCGGT	8460
••	AAGTCTTAAC	ATTTAACGGC	GTTGTTTAGA	TTTTAAGCAA	AACAAAATAT	ATAGGAACAC	8520
	GTATCATGAT	ATTAGGATAT	AATGACTAAA	ATAATAGCAG	TAGGATGGTT	TTTAATTGCA	8580
45	AATCATCTTA	CTGCTGTTTT	TAATTATGCT	AATTTGCGAT	GCGGCTATTA	TAAGGACAGA	8640
	GTTGTTTATT	AATTATGGTG	ATTTAGAAAT	ATGAAGTTCA	ATATGCAAAG	TCATCGTTTG	8700
	TTTTAATATG	CGGAACAATC	ATTAAAGTTA	TTGCGATTTT	TTGAACTTAA	TGAAACTAAA	8760
50	CAATAAATTT	GAGATACTTT	TTTGTCATTT	TTATGTAACT	AACACAATAA	TCTCGTACAT	8820
	יידממממיידמד	ም ምም የተመሰው ነ	тассаатааа	GCAAAGCGCG	AGTGTGCTGT	ል ል ል ል ርሳምምምምም	2000

	GATGATGTAT	AAATCATGGT	TAATTACGGA	AGCATTAATA	TTAACCTGAG	AAGCTATAAA	900
	GAATTATTTT	TAAAAGCGAC	AATATTAAAT	ACGACGCATT	TATTTAGGAG	TGGCAAACGT	906
5	ATGAATGGGA	AAAAGGCGAA	TACGATAAAC	AGATACAAAT	ATTTTCATCA	TGTCAATCAT	912
	CAAAAAATTC	AACAAAGTTC	TAAAAAGACG	CTGTGGGCAT	CACTAATCAT	CACATTGTTA	918
	TTTACAGTGA	TTGAATTTGT	CGGAGGTTTA	GTATCTAATt	CATTGGCATT	ACTGTCAGAT	924
10	TCATTTCATA	TGCTTAGTGA	TGTATTAGCA	CTTGGTTTAT	CTATGTTGGC	CATTTATTTT	930
	GCAAGTAAAA	AGCCGACTGC	ACGATACACA	TTTGGATATT	TAAGATTTGA	GATATTAGCT	936
15	GCATTTTTAA	ATGGTTTAGC	ATTAATTGTA	ATTTCAATCT	GGATTTTATA	TGAAGCTATT	942
	GTACGTATTA	TTTATCCGCA	ACCAATTGAA	AGTGGCATTA	TGTTTATGAT	TGCTAGTATT	948
	GGTTTACTCG	TCAATATTAT	TTTGACTGTT	ATCCTTGTAA	GGTCTTTAAA	ACAAGAAGAC	954
20	AATATCAATA	TTCAAAGTGC	ATTATGGCAT	TTCATGGGAG	ACTTATTGAA	CTCTATTGGT	960
	GTCATCGTTG	CAGTTGTATT	GATTTACTTT	ACAGGATGGC	GCATCATCGA	CCCAATCATT	966
	AGTATTGTAA	TTTCACTCAT	CATTTTACGT	GGTGGTTATA	AAATTACGCG	TAATGCgTGG	972
25	LTAATTTTAA	TGGAAAGTGT	GCCTCAACAT	TTGGATACTG	ATCAAATTAT	GGCAGATATT	978
	AAAAACATAG	ATGGCATATT	AGATGTACAT	GAATTTCATT	TGTGGAGTAT	TACAACAGAG	984
	CATTATTCAT	TAAGTGCCCA	TGTTGTGTTA	GATAAAAAAT	ATGAGGGTGA	TGATTATCAA	990
3 <i>0</i>	GCGATTGATC	AAGTATCATC	ATTGTTGAAA	GAAAAATATG	GCATTGCACA	TTCAACGTTG	9960
	CAAATTGAAA	ACTTGCAATT	GAATCCATTA	GATGAGCCAT	ACTTCGACAA	ATTAACATAA	10020
	ATAAAACATT	GTAGCGCCTA	AAACATTAAT	CTATGTCATA	GGCGCACGTT	TCGTTTTATA	1008
35	CTTATGTTGC	ATCATTTAAA	TGATTTTCGT	CAATTTCTTT	GATGCTATCT	ACATCTAACA	10140
	CGACÃTCTTT	AGGTTTCAAA	ATATGAATAT	GTTTTTCATC	ATTTGTATGT	AAAATGCGTT	10200
	CTATGATGTA	CCTTTGACCG	GCCATTGTTT	CTACAGCAAT	CTTTTTGTTT	CTAGCTAAAC	10260
10	TTGCTACGAC	AGATTCTTTA	TCCATAATGA	TAGCCCCCTA	TATATATGTT	TATTTACTTA	10320
	TACCCTAACA	TGATTTTTAT	ACTCTTTGAA	AATATATTTT	ACAGAATTTT	ATCTAAATAT	10380
` 15	TTAAAAAAAT	ATCTTAATAT	CCTTGTAATC	CGATAAGAAT	TATAGTAATA	TTTTTTCAAC	10440
,	CATTGTTATA	GGAGGTCTTA	TTAATGACAT	TATTTTTATT	AGAAGCTAAC	AATCTTGATT	10500
	TTGCATCAAC	GAAAGAAGAA	CTAGAAGCAA	AGGCAGCATC	ACTATCTACG	AAGACAATTC	10560
50	CAACATTAAT	TGAAGTACAA	GCTACTGAAA	ATTTAACTCA	TGGTTATTTT	ATTGTGGAAG	10620
	a ma aa.						

	TTGATTACCT	TGTAACTTGG	AACATTCCGG	AAGGCATTAC	GATGGATCAA	TATTTAGCAC	10800
_	GTAAAAAGAA	AAATTCTGTT	CATTATGAAG	AAGTGCCAGA	AGTTGAATTT	AAACGCACAT	1086
5	ATGTATGTGA	AGATATGTCT	AAATGTATTT	GTTTATACAA	CGCACCTGAT	GAAGAAGCGG	1092
	TACGTCGCGC	GCGCAAAGCA	GTTGATACAC	CGATTGATGG	CATCGAAAAA	CTTTAATAAG	1098
10	ACAACAAGTT	GATGAGATAT	ATGTATATAG	GTTTGGCATG	GATTTCGATT	GCAGTTAATT	1104
	AGAATAGCTC	AATGCTATAA	ATGTAAGTAG	TTGATATGAA	GAAACTAATG	AACTAAATGC	1110
	AAGTATTGTC	TAAAACAATC	ATTTTATTGA	AATTTAGTAG	AGCTGAAATT	AATATAACGT	1116
15	CGTTAATTGA	ÀTAACGCTTA	TGTTATAAGA	GCACTCATAC	CAAACCATAA	TCATCTATAG	1122
	ATATAACAAT	TCACGATATA	AGGGCTGTGT	TTGGCATAGC	CCTTTAGATA	TACACTTAAT	1128
	TCCTATTAAA	ATAGTAGGGA	TTAAAAGGGG	GCTTGTCATG	ATTAAAATTC	AACAATTACA	1134
20	ACATCACTTT	GGATCACATA	AAGTAATTCA	TAACTTTAAT	TTGGACATTA	GCAAGGGAGA	1140
	AATAGTCACT	TTCATAGGGA	AAAGTGGTTG	CGGAAAGTCT	ACTTTACTCA	ATATTATCGG	1146
	TGGATTTATT	CATCCATCGT	CTGGTCGTGT	CATTATTGAT	AACGAAATTA	AACAACAGCC	1152
25	ATCTCCAGAT	TGTTTAATGC	TATTTCAACA	TCATAATTTG	CTGCCATGGA	AAACGATTAA	11580
	TGACAACATT	AGGATTGGAT	TACAACAGAA	AATTAGTGAT	GAAGAGATTA	ACGCACAGCT	11640
	TAAATTAGTT	GATTTAGAAG	ACAGGGGAAA	GCATTTTCCC	GAGCAACTGT	CCGGGGGTAT	1170
30	GAAACAACGT	GTGGCACTAT	GTCGAGCGCA	TGTGCATAAG	CCTAACGTTA	TATTGATGGA	11.76
	TGAGCCATTA	GGTGCATTAG	ATGCATTTAC	ACGTTATAAA	CTTCAGGATC	AACTAGTGCA	1182
	aCTAAAACAT	AAAACGCAAT	CAACTATTAT	TTTAGTGACG	CATGACATTG	ATGAAGCTAT	11880
35	TTATCTTTCC	GACCGCATTG	TTCTGTTAGG	TGAAGGGTGC	AATATTATTT	CTCAATATGA	1194
	AATTACAGCA	TCACATCCAC	GCAGTCGTAA	TGATAGCCAC	CTACTTAAGA	TTCGTAATGA	12000
40	AATTATGGAA	ACATTTGCAT	TGAATCATCA	TCAAGTTGAA	CCTGAATATT	ATTTATAAGG	1206
••	AGTGAGTGAC	GATGAAAAGG	TTAAGCATAA	TCGTCATCAT	TGGAATCTTT	ATAATTACAG	1212
	GATGTGATTG	GCAAAGGACG	TCTAAAGAAC	GGTCTAAAAA	TGCCCAAAAT	CAGCAAGTGA	1218
1 5	TTAAAATTGG	ATATTTGCCG	ATTACACATT	CAGCTAATTT	GATGATGACT	AAAAAATTAT	1224
	TATCACAATA	CAATCATCCG	AAATATAAAC	TAGAATTAGT	TAAATTCAAT	AATTGGCCAG	1230
	ATTTAATGGA	CGCATTAAAC	AGTGGTCGTA	TTGATGGTGC	ATCAACTTTA	ATAGAGCTAG	12360
50	CGATGAAATC	AAAACAGAAG	GGCTCAAATA	TAAAGGCTGT	GGCATTGGGC	CATCATGAAG	12420
	GCAATGTCAT	TATGGGACAA	AAAGGTATGC	ACTTAAATGA	ATTTAATAAT	AATGGCGATG	12480

	GTAAACAATT	AAAGATTAAA	CCGGGGCATT	TTAGCTATCA	TGAAATGTCG	CCAGCAGAAA	1260
	TGCCAGCCGC	ATTGAGTGAA	CACAGAATTA	CAGGGTATTC	TGTAGCCGAA	CCATTCGGTG	1266
5	CACTGGGTGA	AAAGTTAGGC	AAAGGTAAGA	CTTTGAAACA	TGGTGATGAC	GTTATACCTG	1272
	ATGCGTATTG	CTGTGTGCTA	·GTACTGAGAG	GGGAATTGCT	TGATCAACAC	AAGGATGTAG	1278
	CGCAAgCATT	TGTACAAGAT	TATAAAAAGT	CTGGCTTTAA	AATGAATGAT	CGCAAGCAAA	1284
10	GTGTAGACAT	TATGACGCAT	CATTTTAAAC	AAAGTCGTGA	CGTTTTAACA	CAGTCAGCGG	1290
	CATGGACATC	CTATGGTGAT	TTAACAATTA	AGCCATCCGG	CTATCAAGAA	ATTACGACAT	1296
15	TGGTAAAACA	ACATCATTTG	TTTAATCCAC	CTGCATATGA	TGACTTTGTT	GAACCGTCAT	1302
	TGTATAAGGA	GGCATCGCGT	TCATGACACG	TCCCACAAAT	AACAAATTTA	TATTACCTAT	1308
	TATCACATTT	ATTATTTTCT	TAGGCATTTG	GGAAATGGTC	ATTATTATTG	GGCATTACCA	1314
20	ACCTGTATTG	TTACCGGGTC	CTGCTCTTGT	AGGAAAAAGT	ATATGGTCTT	TCATTGTTAC	1320
	TGGAGAAATT	TTCCAACATT	TAGCAATTAG	TTTATGGAGA	TTTGTAGCGG	GCTTTGTTGT	1326
	CGCATTGTTG	GTTGCTATTC	CATTGGGCTT	CTTGCTTGGA	AGGAATCGTT	GGCTATACAA	1332
25	CGCTATCGAA	CCGCTATTTC	AATTGATTAG	GCCGATATCT	CCGATAGCAT	GGGCACCATT	1338
	TGTTGTTCTA	TGGTTTGGTA	TTGGTAGTTT	GCCAGCGATT	GCGATTATTT	TTATCGCTGC	1344
	TTTTTTCCCA	ATTGTGTTCA	ATACTATTAA	AGGCGTTAGA	GACATTGAAC	CTCAATATTT	1350
30	AAAAATAGCA	GCAAATTTAA	ATTTAACTGG	GTGGTCATTG	TATCGCAATA	TATTATTTCC	1356
	CGGGGCATTT	AAACAAATCA	TGGCTGGGAT	ACATATGGCG	GTAGGAACAA	GTTGGATATT	13620
•	TTTAGTTTCT	GGTGAAATGA	TTGGTGCACA	ATCGGGATTA	GGTTTTTTAA	TCGTTGATGC	13680
35	ACGAAATATG	TTGAACTTAG	AAGATGTTTT	AGCAGCAATA	TTCTTTATCG	GATTATTTGG	1374
	TTTTATTATT	GATCGATTCA	TTAGTTATAT	TGAGCAGTTT	ATACTTAGAA	GATTTGGTGA	13800
	ATAAGGAGAG	ATGATGATGA	CTTTAGAAAC	GCTTATCAAA	GAACAATTAG	ATCCTCATTT	13860
10	AGTAGAAGTT	GATGAAGGGA	CGTATTATCC	GAGAACATTT	ATTCAGCAAT	TATTTGTAGA	13920
	TGGTTATTTC	GGTGAGGCGG	CATTGAGAAA	AAATGCTGAA	GTAATCGAAG	CTGTATCGCA	13980
15	GTCTTGTTTG	ACAACAGGAT	TTTGTTTATG	GTGCCAATTA	GCTTTTTCAA	CGTATTTAGA	14040
	AAATGCCACG	CAGCCACATT	TAAATAATGA	CTTACAACAG	CAATTGTTAT	CTGGAGAAAT	14100
	ATTAGGTGCT	ACCGGATTGT	CTAATCCGAT	GAAGTCATTT	AATGATTTAG	AAAAGTTGAA	14160
50	CCTTGAACAC	ACTTATGTTG	ATGGACAATT	GGTTGTCAGT	GGACGTATGC	CAGCTGTAAG	14220
	TAATATTCAA	GAAGACCATT	ATTTTCCTCC	GATTTCGAAA	САТСАВТСВТ	САСАТСААТТ	14280

	TTTAGGAGTC	AACGGGTCAG	CAACGTATCA	AATCACATTG	AATCAAGTCG	TAGTGCCACA	14400
	ATCACAAATT	ATCACGCATG	ATGCGAAGCA	GTTTGCGGCA	ACTATTCGCC	CGCAATTTAT	14460
5	TGCTTACCAA	ATTCCAATAG	GATTAGGCTC	AATTAAAAGT	TCTTTAGAGT	TAATTGATGC	14520
	ATTTTCAAAT	GTGCAAAACG	GAATAAATCA	ATATTTAGAG	TATGATGTTG	AAGCTTTTAA	14580
10	AAAACGTTAT	CGTCAACTTA	GAGAGGAATA	TTATGCAATA	TTAGATGACG	GTAACTTAAC	14640
10	TTCACATTTA	AATGAATTAA	TATCATTGAA	GAAGGACATC	GGCTATTTAT	TGTTAGATGT	14700
	AAATCAAGCT	TCTGTTGTCA	ATGGTGGTTC	TAGAGCGTAC	ACACCATATT	CGCCACAAGT	14760
15	TCGCAAGTTA	AAAGAAGGAT	TCTTCTTCGC	AGCATTGACA	CCGACATTAA	GACATTTAGG	14820
	TAAACTTGAA	GCAGAGTTGA	AGGGGTAAGT	GTGATAAGCT	GATTTTTTGT	TTAGATGCGT	14880
	TTGTTGAAAC	ATTTTTTAAA	АТААТАТААА	TCTTAGTTTA	TAAACATTTT	CTGTTAATTT	14940
20	GTTATATCCT	TTTAACTAGG	AAAATATACA	TTTCGTAATA	ATAATAATCG	TTATCATTGA	15000
	AAAAGTGTTA	ATAAGGTGTA	TAATGAAAAT	GTGAACAATT	AATGAACTTC	AAATTTTAAA	15060
	GAAGGTGAAT	ACTATAGATA	CGCATACTAA	AGAACAACAA	TTCTCGAATC	TAGTAAGATC	15120
25	TTATCGTAAA	GAATACGTGG	GTAAAGGACC	CAATAGTATT	CGAGTGTCGT	TTAAAGATAA	15180
	TTGGGCGATT	GCACATATGA	CAGGTGTTTT	GAGTAAAGTT	GAGAGTTTTT	ACCTAAACGA	15240
	CAAACGCAAT	GAATCGATGC	TCCATTATAC	ACGCACAGAG	AAGATTAAAC	AGATGTATAA	15300
30	AGAAATAGAT	GTAAATGAGA	TGGAAAGTCT	TGTAGGCGCT	AAGTTTGTAA	AATTATTTAC	15360
	AGATATTGAT	TTGAATGATG	ATGAAGTCAT	TTCAATATTT	GTTTTCGATA	AGTCAATAGA	15420
	ATAAGTGTTG	CTGGTGTAAG	GTACACGGTG	CTGTTTGCTA	ACTTCGCTTT	GAATTTAACA	15480
35	ATAATTCAAG	GGGGTGGTAT	GTCAAACGGT	GCCGTTTTTT	TGTCATATTT	TTAAAACAAG	15540
	CAACATGCAA	CACGTACTTT	AAGGAAGTCA	AAATTTATCA	TTTAGGAGAG	ATGGATATGA	15600
40	AAAŤCGTAGC	ATTATTTCCA	GAAGCAGTAG	AAGGTCAAGA	AAATCAATTA	CTTAATACTA	15660
40	AAAAAGCATT	AGGATTAAAA	ACATTTTTAG	AGGAAAGAGG	ACATGAGTTC	ATTATATTAG	15720
	CAGATAATGG	TGAAGACTTA	GATAAACATT	TACCAGATAT	GGATGTGATT	ATTAGTGCGC	15780
45	CATTTTATCC	TGCATATATG	ACTCGTGAAC	GTATTGAAAA	AGCACCGAAC	TTGAAATTAG	15840
•	CAATTACAGC	AGGTGTAGGA	TCTGACCATG	TAGATTTAGC	GGCAGCAAGT	GAACACAATA	15900
	TTGGTGTCGT	TGAAGTTACA	GGAAGTAATA	CAGTTAGTGT	GGCAGAACAT	GCGGTTATGG	15960
50	ATTTATTAAT	ACTTCTTAGA	AACTATGAAG	AAGGTCATCG	TCAATCAGTA	GAAGGTGAAT	16020
	CC 3 3 COMO MO	man namacam	3 3 00 2 00 00 00 00	አጥሮ አክሞሞ አሮ አ	******	A THAT COTT A CHART	1600/

TACAACACTA TGATCCAATC AATCAACAAG ACCATAAATT GTCTAAATTT GTAAGCTTTG 16200 ATGAACTTGT TTCAACAAGT GATGCGATTA CAATTCATGC ACCATTAACA CCAGAAACTG 16260 ATAACTTATT TGATAAAGAT GTTTTAAGTC GTATGAAAAA ACACAGTTAT TTAGTGAATA 16320 CTGCACGTGG TAAAATTGTA AATCGCGATG CGTTAGTTGA AGCGTTAGCA TCCGAGCATT 16380 TACAAGGATA TGCTGGTGAT GTTTGGTATC CACAACCtGC ACCTGCTGAT CATCCATGGA 16440 GAACAATGCC TAGAAATGCT ATGACGGTTC ACTATTCAGG TATGACTTTA GAAGCACAAA 16500 AACGTATTGA AGATGGAGTT AAAGATATTT TAGAGCGTTT CTTCAATCAT GAACCTTTCC 16560 AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTGCTAG TAAAAGTTAT ACAGCTAAAT 16620 AGAATAAGGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA 16680 GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTATG ATTACATCTA AGTATAGTCA 16740 CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT 16800 TGANAAATNT CATTCATGTG GNAATC 16826

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4012 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

TTCAATGAGA GTAGTGGGCT GATGTTTAGC GATATCGCGT AAGATTAACC ATTGGCCATA 60 ATATATTG TGTTTTTCTA AAATCGGCTC GGCTAATTTT AAATAGGGGC GATATATTGT 120 TATAAAACTA TTGAAAAATT CTTGTGATAG CATAGTGACA TCTCCTAAGA CAAAATAGTT 180 AGCTTAGCTA MCCTTTTTAC AACAATAGTA ATTATAAAAC GGGAGCAATT AGAAATCAAT 240 ATATAATTAT TAAGAGCAAA AATAATTATA CTTTGTTAAA ATAAGCGTAA TTACATGTAA 300 ATAGGGGGAT ACTAATGATA TTGAAATTTG aTCACATCAT TCATTATATA GATCAGTTAG 360 ATCGGTTTAG TTTTCCAGGA GATGTTATAA AATTACATTC AGGTGGGTAT CATCATAAAT 420 ATGGAACATT CAATAAATTA GGTTATATCA ATGAAAATTA TATTGAGCTA CTAGATGTAG 480 AAAATAATGA AAAGTTGAAA AAGATGGCAA AAACGATAGA mGGCGGAGTC GCTTTTGCTA 540 CTCAAATTGT TCAAGAGAAG TATGAGCAAG GCTTTAAAAA TATTTGTTTG CGTACAAATG 600 ATATAGAGGC AGTTAAAAAT AAACTACAAA GTGAGCAGGT TGAAGTAGTA GGGCCGATTC 660

	ATCAGGATGA	TGATGAAATT	AAGCCACCAT	TTTTTATTCA	ATGGGAAGAA	AGTGATTCCA	780
	TGCGTACTAA	AAAATTGCAA	AAATATTTTC	AAAAACAATT	TTCAATTGAA	ACTGTTATTG	840
5	TGAAAAGTAA	AAACCGATCA	CAAACAGTAT	CGAATTGGTT	GAAATGGTTT	GATATGGACA	900
	TTGTAGAAGA	GAATGACCAT	TACACAGATT	TGATTTTAAA	AAATGATGAT	ATTTATTTTA	960
	GAATTGAAGA	TGGTAAAGTT	TCAAAATATC	ATTCGGTTAT	CATAAAAGAC	GCACAAGCAA	1020
10	CTTCACCATA	TTCAATTTTT	ATCAGAGGTG	CTATTTATCG	CTTTGAACCA	TTAGTATAAA	1080
	TATACGTAAG	TGCTATGAGC	GAGAATGCCC	ATATGAATAA	TGACAAGCAC	AATGGAAAGA	1140
15	ATCGTTAATA	TATTATTTAA	TCGTGATGAC	ТТААТТАААА	TGAAAAAGAT	TGATAATATA	1200
15	AATGTGAAAA	AGATAAGTAT	AACCCGTAAA	CTAAAGTAAT	TCACGGTGAG	AGGTTGACTC	1260
	AATGTCATAA	TGATTGCAAC	GATGTTCATA	ATTATAAATA	GACTTAAAAT	AATTGTTCTC	1320
20	ATATCAAACA	CCTCATTGTT	AGATTATTGA	CATTATAACA	GGGGTAATTG	TATATGAACA	1380
	TTAATGTGGT	TGCTTGAGGA	AAAATTTATT	CATTGAAGTC	AAGTTGGTTC	ATTTTAGAAA	1440
	TGAATATCGT	GTTAGATGAT	GAAAGTATAT	TGAAGTATAG	GTAACTAGTT	GAAAAGTATT	1500
25	AATTGTACGA	TAACATTAAA	TTTAACACGA	AACATAGATA	TAAAATGATT	CACAATTAAA	ຸ1560
	ATGGGTAAAT	TTGAACTTGC	TAAACTATTA	ATTGGAGCAT	GGACATTTCA	AAAATAAGAG	1620
	TTCAAATCTT	ACACAAGCTC	TGAATCGACA	CTATAAGATA	CAAACTGTAT	AATTAAAGGT	1680
30	ATTGTTAAAT	AGAAGGAGAT	ATCATAAATC	ATGGAAAAGA	TGCATATCAC	TAATCAGGAA	1740
	CATGACGCAT	TTGTTAAATC	CCACCCAAAT	GGAGATTTAT	TACAATTAAC	GAAATGGGCA	1800
	GAAACAAAGA	AATTAACTGG	ATGGTACGCG	CGAAGAATCG	CTGTAGGTCG	TGACGGTGAA	1860
35	GTTCAGGGTG	TTGCGCAGTT	ACTTTTTAAA	AAAGTACCTA	AATTACCTTA	TACGCTATGT	1920
	TATATTTCGC	GTGGTTTTGT	TGTTGATTAT	agtaataaag	AAGCGTTAAA	TGCATTGTTA	1980
	GACAGTGCAA	AAGAAATTGC	TAAAGCTGAG	AAAGCGTATG	СААТТААААТ	CGATCCTGAT	2040
40	GTTGAAGTTG	ATAAAGGTAC	AGATGCTTTG	CAAAATTTGA	AAGCGCTTGG	TTTTAAACAT	2100
	AAAGGATTTA	AAGAAGGTTT	ATCAAAAGAC	TACATCCAAC	CACGTATGAC	TATGATTACA	2160
	CCAATTGATA	AAAATGATGA	TGAGTTATTA	AATAGTTTTG	AACGCCGAAA	TCGTTCAAAA	2220
45	GTGCGCTTGG	CTTTAAAGCG	AGGTACGÀCA	GTAGAACGAT	CTGATAGAGA	AGGTTTAAAA	2280
	ACATTTGCTG	AGTTAATGAA	AATCACTGGG	GAACGCGATG	GCTTCTTAAC	GCGTGATATT	2340
50	AGTTACTTTG	AAAATATTTA	TGATGCGTTG	CATGAAGATG	GAGATGCŢGA	ACTATTTTTA	2400
	CTAAACTTCC	ATCCABAGA	AAATATAGGG	A A A C T A A A T C	****	TO A COUTO A TO	2460

	CAAAATATGA	TTAATGATGC	GCAAAATAAA	ATTGCTAAAA	ATGAAGATTT	AAAACGAGAC	2580
	CTAGAAGCTT	TAGAAAAGGA	ACATCCTGAA	GGTATTTATC	TTTCTGGTGC	ACTATTAATG	2640
5	TTTGCTGGCT	CAAAATCATA	TTACTTATAT	GGTGCGTCTT	CTAATGAATT	TAGAGATTTT	2700
	TTACCAAATC	ATCATATGCA	GTATACGATG	ATGAAGTATG	CACGTGAACA	TGGTGCAACA	2,760
10	ACTTACGATT	TCGGTGGTAC	AGATAATGAT	CCAGATAAAG	ACTCAGAACA	TTATGGATTA	2820
10	TGGGCATTTA	AAAAAGTGTG	GGGAACATAC	TTAAGTGAAA	agattggtga	ATTTGATTAT	2880
	GTATTGAATC	AGCCATTGTA	CCAATTAATT	GAGCAAGTTA	AACCGCGTTT	AACAAAAGCT	2940
15	AAAATTAAAA	TATCTCGTAA	ATTAAAACGA	AAATAGATTA	ACGACTGAAA	TCTGAACGCT	3000
	CATAAGACTG	TCATTTGCGT	TCAGATTTTT	TTACACAATA	TAGAATGGTT	GAGTAAAATA	3060
	TTTTTGAATA	TAGTGAAAGA	GGGGGAAGTA	CTGTGATAAA	AAAGCTATTA	CAATTTTCTT	3120
20	TAGGGAATAA	GTTTGCTATC	TTTTTAATGG	TTGTTTTAGT	TGTCTTGGGC	GGTGTATATG	3180
	CGAGTGCTAA	ATTGAAATTA	GAATTACTAC	CAAATGTACA	AAATCCAGTT	ATTTCAGTTA	3240
	CAACAACAAT	GCCGGGTGCA	ACGCCACAAA	GTACCCAAGA	TGAAATAAGT	AGTAAAATTG	3300
25	ACAATCAAGT	AAGATCATTG	GCATATGTGA	AAAATGTTAA	AACGCAATCC	ATACAAAATG	3360
`	CTTCAATTGT	AACAGTTGAA	TATGAAAATA	ATACAGATAT	GGATAAAGCA	GAAGAACAGC	3420
	TTAAAAAAAGA	AATCGATAAA	ATTAAATTTA	AAGATGAAGT	TGGTCAACCA	GAATTAAGAC	3480
30	GTAATTCGAT	GGATGCTTTT	CCGGTTTTAG	CATATTCATT	TTCAAATAAA	GAGAATGACT	3540
	TGAAAAAAGT	AACGAAAGTA	CTGAATGAAC	AATTAATACC	AAAATTGCAA	ACGGTAGATG	3600
	GTGTGCAAAA	TGCGCAATTA	AATGGGCAGA	CGAACCGTGA	AATCACCCTT	AAATTTAAGC	3660
35	AAAATGAACT	TGAAAAATAT	GGGTTGACTG	CTGATGATGT	AGAAAACTAT	CTAAAAACGG	3720
	CAACÃAGAAC	AACGCCACTT	GGATTGTTCC	AATTTGGTGA	TAAAGATAAT	CAATTGTTGT	3780
	TGATGGTCAA	TATCAATCTG	TTGATGCTTT	TAAAAACATA	AATATTCCAT	TAACGTGGCA	3840
40	GGAGGACCAA	GGGCATCTCA	TCCCAAAGTG	ACCATAAACC	AAATTCAGCC	ATGTCAGACG	390
	TTATCAGGCA	TCACCACAGC	AAATTCAAAG	CGTCAGCnCC	AATATATAGT	GGATGCCGCA	396
	nGAACTAGGG	GTTTAGCGnT	ATCAGTGGTG	TGGCGACTCT	ATTCTAAACG	AT	401

(2) INFORMATION FOR SEQ ID NO: 48:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7778 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

	CAATATAGGT	CGCCGAGTTT	CAACTACATC	AACTGGTTCA	GTTACATTAG	ATAATGCGCT	6
5	AGGTGTAGGT	GGCTATCCTA	AAGGACGAAT	TATTGAAATT	TATGGTCCTG	AAAGTTCTGG	120
	TAAGACAACA	GTAGCGCTTC	ACGCTATTGC	TGAAGTACAA	AGTAATGGCG	GGGTGGCAGC	. 180
10	ATTTATCGAT	GCTGAACATG	CTTTAGATCC	AGAATATGCT	CAAGCATTAG	GCGTAGATAT	240
10	CGATAATTTA	TATTTATCGC	AACCGGATCA	TGGTGAACAA	GGTCTTGAAA	TCGCCGAAGC	300
	ATTTGTTAGA	AGTGGTGCAG	TTGATATTGT	AGTTGTAGAC	TCAGTTGCTG	CTTTAACACC	360
15	TAAAGCTGAA	ATTGAAGGAG	AAATGGGAGA	CACTCACGTT	GGTTTACAAG	CTCGTTTAAT	420
	GTCACAAGCG	TTACGTAAAC	TTTCAGGTGC	TATTTCTAAA	TCAAATACAA	CTGCTATTTT	480
	CATCAACCAA	ATTCGTGAAA	AAGTTGGTGT	TATGTTCGGT	AATCCAGAGA	CTACACCAGG	540
20	TGGACGTGCA	TTAAAATTCT	ATAGTTCAGT	AAGACTAGAA	GTACGTCGTG	CAGAACAGCT	600
	TAAACAAGGA	CAAGAAATTG	TAGGTAATAG	AACTAAAATT	AAAGTCGTTA	AAAATAAAGT	660
	GGCACCACCA	TTTAGAGTAG	CTGAAGTTGA	TATTATGTAT	GGACAAGGTA	TTTCTAAAGA	720
25	GGGTGAACTT	ATTGATTTAG	GTGTTGAAAA	CGACATCGTT	Gataaatcag	GAGCATGGTA	780
	TTCTTACAAT	GGCGAACGAA	TGGGTCAAGG	TAAGGAAAAT	GTTAAAATGT	ACTTGAAAGA	840
	AAATCCACAA	ATTAAAGAAG	AAATTGATCG	TAAATTGAGA	GAAAAATTAG	GTATATCTGA	900
30	TGGTGATGTT	GAAGAAACAG	AAGATGCACC	AAAGTCATTA	TTTGACGAAG	AATAGTACAC	960
	AAATTTATAT	CTATAGTTAA	ACTTAGCAAA	TATCCTTATA	GGATTGATTG	AAAGTGATAT	1020
	TCATCTCATA	AAGCTAGAAT	AATATCTAAC	TTTATGGGAT	ACACTACAAA	TCGAGACTAT	1080
35	AAGGTTTTTT	ATTTTATTTA	TTATTACATT	ATCAATAGTT	TTATAATCGA	GCTTCAAAAC	1140
	TTTAĞAAAAT	AGTAGAAATA	GCATTCAATA	TAGTGCAAAA	GTGCAAATTG	ATAACTTGAC	1200
	ACTTATCTCC	TATAAACCGT	ACAATTAATT	TGTATGATTT	ATATATAATT	TCATAAAGTC	1260
10	ATATTGAATT	TCATATAAAG	AGCAAACCCT	AGAAAAGGAG	GTGTTTGTGT	GAATTTATTA	1320
	AGCCTCCTAC	TCATTTTGCT	GGGGATCATT	CTAGGAGTTG	TTGGAGGGTA	TGTTGTTGCC	1380
15	CGAAATTTGT	TGCTTCAAAA	GCAATCACAA	GCTAGACAAA	CTGCCGAAGA	TATTGTAAAT	1440
	CAAGCACATA	AAGAAGCTGA	CAATATCAAA	AAAGAGAAAT	TACTTGAGGC	AAAAGAAGAA	1500
	AACCAAATCC	TAAGAGAACA	AACTGAAGCA	GAACTACGAG	AAAGACGTAG	CGAACTTCAA	1560
50	AGACAAGAAA	CCCGACTTCT	TCAAAAAGAA	GAAAACTTAG	AGCGCAAATC	TGATCTATTA	1620
	CATAAAAAA	3 mas as more	1010011111	~~~~~			

	CGCATCTCCG	GTCTCACTCA	AGAAGAAGCT	ATTAATGAGC	AACTTCAAAG	AGTAGAGGAA	1800
	GAACTGTCAC	AAGATATTGC	AGTACTTGTT	AAAGAAAAAG	AAAAAGAAGC	TAAAGAAAAA	1860
5	GTTGATAAAA	CAGCAAAAGA	ATTATTAGCT	ACAGCAGTAC	AAAGATTAGC	AGCAGATCAC	1920
	ACAAGTGAAT	CAACGGTATC	AGTAGTTAAC	TTACCTAATG	ATGAGATGAA	AGGTCGAATC	1980
	ATTGGACGAG	AAGGACGAAA	CATCCGCACA	CTTGAAACTT	TAACTGGCAT	TGATTTAATT	2040
10	ATTGATGACA	CACCAGAAGC	GGTTATATTA	TCTGGTTTTG	ATCCAATAAG	AAGAGAAATT	2100
	GCTAGAACAG	CACTTGTTAA	CTTAGTATCT	GATGGACGTA	TTCATCCAGG	TAGAATTGAA	2160
15	GATATGGTCG	AAAAAGCTAG	AAAAGAAGTA	GACGATATTA	TTAGAGAAGC	AGGTGAACAA	2220
,,,	GCTACATTTG	AAGTGAACGC	ACATAATATG	CATCCTGACT	TAGTAAAAAT	TGTAGGGCGT	2280
	TTAAACTATC	GTACGAGTTA	CGGTCAAAAT	GTACTTAAAC	ATTCAATTGA	AGTTGCGCAT	2340
20	CTTGCTAGTA	TGTTAGCTGC	TGAGCTAGGC	GAAGATGAGA	CATTAGCGAA	ACGAGCTGGA	2400
	CTTTTACATG	ATGTTGGTAA	AGCAATTGAT	CATGAAGTAG	AAGGTAGTCA	TGTTGAAATC	2460
	GGTGTAGAAT	TAGCGAAAAA	ATATGGTGAA	AATGAAACAG	TTATTAATGC	AATCCATTCT	2520
25	CATCATGGTG	ATGTTGAACC	TACATCTATT	ATATCTATCC	TTGTTGCTGC	TGCAGATGCA	2580
	TTGTCTGCGG	CTCGTCCAGG	TGCAAGAAAA	GAAACATTAG	AGAATTATAT	TCGTCGATTA	2640
	GAACGTTTAG	AAACGTTATC	AGAAAGTTAT	GATGGTGTAG	AAAAAGCATT	TGCGATTCAG	2700
30	GCAGGTAGAG	AAATCCGAGT	GATTGTATCT	CCTGAAGAAA	TTGATGATTT	AAAATCTTAT	2760
	CGATTGGCTA	GAGATATTAA	AAATCAGATT	GAAGATGAAT	TACAATATCC	TGGTCATATC	2820
	AAGGTGACAG	TTGTTCGAGA	GACTAGAGCA	GTAGAATATG	CGAAATAATT	TTTGTCTCCC	2880
35	TCACAAATTA	GTGAGGGAGC	TTTTTTAAGT	TGTAGTCTTA	Atctagttag	ACAGCACTTT	2940
	ATCGGTAATA	ACTATATTAA	ACAGTAGTTA	TTTGAAAGTA	AGACGGACCT	TATATTAAAT	3000
	AAGAAGTTAT	TGCTTTTAAT	AAAAATGTTT	TAGGCTTCGT	AATTACTATA	TATTATATT	3060
40	GTAAACCTAT	AAAGATGATT	GGTTTTCTAT	CCAATAAAAA	AGAAGAGAAG	ATGTAACACA	3120
	TCTTCTCTTC	yGCAATATTA	ATTAGGATTT	ATTTCTAAGT	TGAGTTATTT	TAATTGTAAA	3180
45	TCTGTTTTCT	TTAATTCTTT	TATAACTTCT	GCAGTATCAT	AACAATTTGT	TGCAATTGTT	3240
	GAATATCTCT	CTGCTAAACG	ATATGCATTA	ATGTAAAGCT	TTAAACTTTC	TTTAGCTATA	3300
	TCCTCTGCAT	CTTCGAATTT	TGATGGGTTA	GACATAACCA	CTAATTCTGC	AAATTTTTCT	3360
50	GGATCAATAT	TAATAGACAT	GTATTTATTT	ACAACTCCTA	TTTATTTTGA	TGTCTTAATA	3420
		a	G1G111GE11		m.,mma.,.c.	1111M11M00	3400

	GGATGAACAA	AACATGAGAA	TAATGTTTAT	AGGGGATATC	GTAGGTAAAA	TTGGACGAGA	3600
	CGCAATTGAA	ACGTACATAC	CTCAACTGAA	GCAAAAGTAT	AAACCAACAG	TTACAATTGT	3660
5	AAATGCTGAA	AATGCAGCAC	ATGGTAAAGG	TTTGACTGAA	ATATATAAA	AACAATTACT	3720
	AAGAAATGGT	GTAGATTTCA	TGACTATGGG	TAATCACACA	TATGGTCAAC	GTGAAATTTA	3780
,	TGATTTTATA	GATGAAGCAA	AACGACTAGT	AAGACCAGCG	AATTTTCCGG	ATGAAGCGCC	3840
10	GGGAATTGGT	ATGAGATTTA	TACAAATTAA	TGATATTAAA	CTTGCAGTTA	TTAATCTGCA	3900
	AGGAAGAGCG	TTTATGCCAG	ATATTGATGA	TCCTTTTAAA	AAGGCAGATC	AATTAGTCAA	3960
15	GGAAGCACAA	GAACAAACTC	CGTTTATATT	TGTTGATTTT	CATGCAGAAA	CAACTTCTGA	4020
	AAAGTATGCA	ATGGGATGGC	ATTTAGATGG	TAGASTAGCG	CTGTTGTTGG	AACGCATACA	4080
	CACATTCAAA	CAGCAGATGA	ACGTATTTTA	CCAAAGGGGA	CAGGGTATAT	AACGGATGTT	4140
?0	GGTATGACAG	GTTTTTATGA	TGGCATTTTA	GGAATAAATA	AAACAGAGGT	AATTGAGCGT	4200
	TTTATCACTA	GTTTGCCACA	AAGACATGTT	GTTCCAAATG	AAGGTAGAAG	TGTATTATCT	4260
	GGTGTTGTTA	TTGATTTAGA	CAAAGAAGGT	AAAACAAAGC	ACATCGAACG	TATATTGATA	4320
?5	AATGATGACC	ATCCATTTTC	AACATTTTAA	AATTACGTAA	GTAAACATTC	GAATTGGACC	4380
	CTATCGTCCA	TTAGTATGAA	TTTAATATAG	TACCACTGTT	TACATAGTAA	ATCGGTGGTT	4440
	CTTTTTGTTA	TCATTTAATA	TGAAATATAT	CCATAGGAGG	САТАТААСТА	TGAAACCACA	4500
80	ATTATCGTGG	AAAGTTGGCG	GTCAACAAGG	CGAAGGTATT	GAATCAACTG	GGGAAATCTT	4560
	CGCTACGGCT	ATGAATAGAA	AAGGATATTA	TTTATATGGA	TATAGACATT	TTTCAAGTCG	4620
	TATCAAAGGT	GGACATACGA	ATAATAAAAT	TAGAGTTTCT	ACGACGCCTG	TTCATGCAAT	4680
35	TAGTGATGAT	TTAGATATTT	TGATTGCATT	TGACCAAGAA	ACAATTGATG	TTAACCATCA	4740
	TGAAATGAGA	GAAGACAGTA	TTATTTTArC	TGATGCCAAG	GCTAAACCTG	TGAAaCCAGA	4800
10	AGGÄTGTCAT	GCACAGCTTA	TTGAATTACC	TTTTACAGCA	ACCGCTAAAG	AATTAGGTAC	4860
	AGCATTAATG	AAAAACATGG	TTGCAATAGG	TGCTACTAGC	GCATTGATGA	ATTTGAATAC	4920
	AAATACATTT	GAAGAACTTA	TTACTAATAT	GTTTTCTAAA	AAAGGTGACA	AGGTAGTTGA	4980
5	AGTCAATATC	CAAGCATTAA	ACGAAGGTTA	TCAATTAATG	CAATCTCGCT	TACCTGAAAT	5040
	CTACGGGGAC	TTTGAATTAG	AGTCAACAGA	TGCACTACCA	CATCTATATA	TGATTGGTAA	5100
	CGATGCCATT	GGATTAGGTG	CAATTGCTGC	AGGTTCACAA	TTTATGGCGG	CATATCCTAT	5160
0	TACACCTGCG	TCTGAAGTTA	TGGAATATAT	GATTGCCAAT	ATATCTAAAG	TAAACGGAGC	5220
	COMMA MMCA A	1010110100	3 3 3 mmc 0mc 0	more a oma mo	COMP MMCCMC	C111mm1mcc	

	TGGATTATCT	GGTATGACTG	AAACGCCATT	AGTCATTATT	AATACCCAAC	GAGGTGGACC	5400
5	TTCTACTGGA	TTACCTACGA	AACAAGAACA	GTCAGATTTA	ATGCAAATGA	TTTATGGTAC	5460
-	ACATGGTGAT	ATTCCAAAAA	TTGTTGTAGC	ACCAACAGAT	GCAGAAGATG	CATTTTATTT	5520
	AACTATGGAA	GCATTTAATT	TAGCAGAACA	ATATCAATGC	CCTGTTATAG	TTCTAAGTGA	5580
10	TTTGCAATTA	TCTTTAGGTA	AACAAACTGT	TGAAAAATTA	GATTATAATC	GTATTGAAAT	5640
	TAAACGTGGT	GAAATCATTC	AATCTGATAT	TGAACGTGAA	GAAGATGATA	AAGGTTATTT	5700
	CAAGCGTTAT	GCGTtAACAT	CCGATGGTGT	TTCTCCTAGA	CCTATCCCCG	GTGTTAAAGG	5760
15	AGGTATTCAT	CATATAACTG	GTGTGGAaCa	CAATGAAGAA	GGTAAACCTA	GTGAATCTGC	5820
	GTCAAATAGA	CAACAACAAA	TGGAAAAACG	AATGCGTAAA	ATTGAGCAGT	TACTAATTGA	5880
	ATCGCCAGTA	GAAGCTAACT	TACAACATGA	GGATGCAGAT	ATTCTTTATA	TCGGTTTTAT	5940
20	TTCTACAAAA	GGTGCAATTC	AAGAAGGTAG	TAACCGTTTG	AATCAACAAG	GCATAAAAGT	6000
	TAACACTATA	CAAATTAGAC	AATTGCATCC	ATTCCCAACA	AGCGTTATTC	AAGATGCAGT	6060
?5	TAATAAAGCG	AAGAAAGTCG	TTGTAGTGGA	GCACAATTAT	CAAGGACAAT	TGGCTAGTAT	6120
	TATAAAAATG	AATGTCAATA	TTCATGATAA	GATTGAAAAT	TATACAAAGT	ATGATGGGAC	6180
	ACCTTTCCTA	CCACATGAAA	TCGAAGAAAA	AGGCAAAATA	ATTGCTACTG	AAATAAAGGA	6240
30	GATGGTATAG	ATGGCGACAT	TTAAAGATTT	TAGAAATAAT	GTTAAGCCTA	ACTGGTGCCC	6300
	CGGATGTGGC	GATTTCTCAG	TACAAGCTGC	AATTCAAAAA	GCAGCCGCAA	ATATAGGGTT	6360
	AGAACCTGAA	GAAGTAGCTA	TCATCACCGG	TATAGGATGT	TCTGGCCGTC	TTTCAGGATA	6420
35	TATTAATTCT	TATGGCGTTC	ATTCTATTCA	CGGACGTGCA	TTACCTTTAG	CTCAAGGTGT	6480
	AAAAATGGCG	AATAAAGATT	TAACTGTTAT	TGCATCGGGA	GGAGATGGTG	ATGGTTATGC	6540
10	TATAGGTATG	GGGCATACAA	TCCATGCTTT	AAĞAAGAAAT	ATGAACATGA	CGTATATAGT	6600
	CATGGATAAT	CAAATTTATG	GTTTGACAAA	GGGACAAACA	TCGCCGTCAT	CAGCAGTAGG	6660
,	ATTTGTTACT	AAAACAACGC	CAAAAGGTAA	TATAGAAAAA	AATGTTGCGC	CTTTAGAATT	6720
15	AGTATTATCA	TCTGGTGCCA	CATTTGTAGC	CCAAGGTTTT	TCAAGCGATA	TTAAAGGATT	6780
	AACAAAACTA	ATTGAAGATG	CAATTAATCA	TGATGGATTT	TCATTCGTTA	ATGTCTTTTC	6840
	ACCATGTGTG	ACTTATAATA	AAATTAACAC	ATACGATTGG	TTTaAAGAAC	ATTTAACAAG	6900
50	TGTTGATGAC	ATTGAAAATT	ATGATTCTAC	AGATAAACAA	TTAGCGACTA	AAACTGTTAT	6960
	TGAACATGAA	TCTTTAGTAA	CTGGTATTGT	TTATCAAGAT	AAAGAAACAC	CATCATATGA	7020
	ATCtCAAATT	AAAGAGTTAG	ATGATmCACC	ACTTGCTAAA	AGAGATATCa	AAATTaCTGA	7080

	TGTATTTATA ACAGATCCAT TTATGCTACT CAGTTTTTA CTATTACAAA AAATAAAGGA	720
£	GTTTTTAAAA ATGAAAGACA CATTAATGAG TATACAAATA ATTCCTAAAA CACCAAACAA	726
5	TGACAATGTT ATACCTTACG TAGACGAGGC GATTAAAATA ATTGACGAAT CTGGTTTGCA	732
	TTTTAGAGTA GGTCCGTTAG AAACGACAGT ACAAGGAAAT ATGAATGAAT GTTTAATTTT	738
10	AATACAATCA TTAAATGAAC GAATGGTGGA ACTTGAATGT CCAAGTATTA TTAGCCAAGT	744
	TAAGTTTTAT CATGTGCCAG ATGGCATCAC TATTGAAACT TTAACTGAAA AATATGATGA	750
	ATAACATTAA AAGTGAAGTA AACTGGATTT GAATTGGCTT GTTAGAGATG ACGTATAACT	756
15	TTAACTGTTT TTGCACTTTA TAGTTAAATT TAATATAATT ATTAAATGAT ACGGGCAAAT	762
	AGAAAGGATT TTGTAAAGTG AACGAAGAAC AAAGAAAAGC AAGTTCTGTA GATGTTTTAG	768
	CTGAGAGAGA TAAGAAAGCA GAAAAAGATT ATAGTAAATA TTTTGAACAT GTTTATCAGC	774
20	CGCCTAATTT AAAAGCAAGC GCAAAAAAAG AGGThAAA	777
	(2) INFORMATION FOR SEQ ID NO: 49:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1128 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG	60
35	TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC	120
	ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT	180
40	CGATÉTITT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT	240
40	GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG	300
	CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC	360
45	AAATCAATGC CTTTAAAATG AGTAGGCATT TGGAACGTTT GTGCTAATGG TTGGTAGTAC	420
	CTACCACCTA ATAAATGATA TTTTAAAAAT GCTTCTGTAA CTTCCTGTTG GCTAGCACCA	480
	ATTGCGACGG ATCCTTGTGC AATTTTATTA AAACGAACGA TTTGTTCTTT ATAAAAACTT	540
50	GTCACAAGAA CGCGGTCAAA TGCTTGATTT TCTGCAATTG TATCAAACAT AATTTGTGGT	600
	GCGATTGAGC CTTCATAGGA TTCAGGAGCA TCTTTTAAGT CTACGTTTAT ATACATATCA	660
55	GGATATTGCT TCAGCAACTC ATCGAAGGTT AGTATAGCTG TGTGTGCATG ACCACGATAT	720

AATGTATGGG CACTAACTTT	TCCAGAGCCG	TTCGTCGTTC	TATCAACAGT	TGCGTCATGA	840		
AAAACGATAA GCTGTTGATC	TTTTGTGAGT	CTCACATCTG	TTTCAAAGCC	ATCAACGCCT	900		
AATTGTTTAG CATAGTCAAA	TGCAAGTTGC	GTTTGCTCTG	GTCTTAAAGC	CATACCACCG	960		
CGATGCGCAA ATATATATGG	TGCATTGCCT	TTGAAAAAAG	CAGGGATGGT	TTGCTTTTTA	1020		
GTAATCACTT TATTTTATT	GATCATTAAT	AGACTACTTA	AAAATCCAGC	ACCGACTAGT	1080		
ACCGCATTTA AAATGTTTCT	GTTTACnTTT	TTCATAAAAA	ATTCCTCC		1128		
(2) INFORMATION FOR S	EQ ID NO: 5	0:			•		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6252 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear							

.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

	CAAGCAAACA	ATCGTCGATA	AAATTGCTAA	AAAATAATAA	GTAATTCGAA	CTTTCATCAT	60
	GATCATCCTT	TGTTTATAGA	GTCAATATAA	GTATGGAATA	TGTTAGGTAT	ATAGTCAAAT	120
	GCGTCAACTA	ATGGGAATTT	TGGCATAGAT	AGAGAATTTA	AGGCAATTAA	AAAGGCATCA	180
	AACAGTAATA	TGCTGCTTGA	TGCCCAAATG	ATGACTTTAG	CTAAATTGAT	TAGTCACTTT	240
	TAAAGATAAA	GAATTGTCAT	GAATTAAAAC	TCATGTAATG	ATGTGTTACA	TTTCGCAATG	300
	ATGGCTTTCA	GTTATTTATC	GATAACATCA	CTCTTGATAC	CTTTAGATTT	TAAGAAATCT	360
	TTAATTTTAT	CTTGTTGCTT	TTTATTAACA	TCACCGGCAT	ATTTTGTTGG	CACGTCGACA	420
	ACATTGATTT	TATTTTGCGG	TTGATAGCTA	AGCTTTTCAA	TATCTTCATC	AACATTGGCG	480
	ATTGTACTAT	TTAAAGCTTT	GAAGTAATTC	ATCATTAATT	CAACGGGTTT	CTTATATTCT	540
	TTAGGAATAT	TGTTTTCAGT	GACAAATTTC	TTGAAATGCA	AATCGTTTTT	AACAGCTAAG	600
•	TTAGATAAGT	GGCTAAGTGT	TTCTGCTTGT	TTTTCAGTCA	CTTTTGTTTG	ACTGTCAATT	660
	TGTTTATCTA	GTTTATGTTG	CATAATATAT	TTGTTATCAA	GTATATCGCT	ATTTACAGAC	720
	AAATACTTTT	CTATAGCTTG	CTTCATCTCT	GCATCACTAA	TATCACTATT	TTTCTTATCT	780
	GAGTTAAAGA	TATCTTTTGT	tTCTAATTTT	TTAGCGCTTT	TAGGTGCATG	GATGCCAGTA	840
	CTTGTATGAT	GATCTTCGTT	ATCAGATTGA	TCGGACGCGC	AACCTGTAAG	AATTAATGTC	900
	GATGCTAAAA	ATGTACTTAG	TAGTAATCTC	TTTTTCATAA	TGTAATATAA	CTCCTTAGTT	960
	TATCTTTAAT	TGAAAAAATA	TGTATTCATG	TTTAATAGAG	TAACATTGAA	TTAGTTTGGA	1020

	,	AIGCAICAII	TIGGACGIIG	TTAAGGATAG	CITIAICIAI	AAATAACTGC	1140
5	ATAATTGGTT	GTACTAATTT	AGACGTAGGT	ATCGTACGTA	AAAGCATAAT	AATTTCGTTC	1200
5	ACATACTTTT	CTTTCTCAAT	ATCATTTTC	ATATTGATTT	GTTTGCGAGA	GGTACATACT	1260
	TTAAGCATTA	TCGCACATCT	CGTTGTATAT	ATTAAGTTTA	TCATAACATG	ATTTTATGTC	1320
10	GGGATAAAAA	AATAACAGCA	TCTTAACAAA	TGTAAGATAC	TGTCAGTGAA	ATGAATGAAA	1380
	CTTTAGTTTC	TGaTAATATA	GTCAAAGGCA	TTTAATGCTG	CATTTGCACC	AGCGCCCATT	1440
	GAAATGATAA	TTTGTTTGTT	CTTCTGATCT	GTGACATCGC	CAGCAGCAAA	TATTCCAGGA	1500
15	ACATTCGTAT	TATTGTTACG	ATCAATCACA	ATTTCACCAC	GTTCGTTTAA	TTCAACAGCA	1560
	TCGTTTAACC	ATGATGTGTT	TGGAAGTAAA	CCAATTTGAA	CAAAGATACC	ATCTAAGTTA	1620
•	AGTAGATGTT	CTTCGCCGGT	GTTCATGTCT	TCGTAACGTA	TACCTGTAAC	ATGGTCTTCT	1680
20	CCGACAACTT	CAGTAGTTTT	GGCATTTGTT	TTGATATCAA	CATTTGATAA	AGAACGTAAA	1740
	CGATCTTGTA	ACACGTTGTC	TGCTTTTAAT	TCGCTAGCGA	ATTCGAATAA	TGTAACATGA	1800
25	TTAACGATAC	CAGCAAGGTC	AATTGCTGCT	TCAACCCCAG	AGTTACCGCC	ACCGATAACT	1860
	GCTACGTCTT	TATTTTCAAA	TAGAGGTCCG	TCACAGTGAG	GGCAGAATGC	AACACCTTTA	1920
	TTAATCAATT	GCTCTTCACC	TGGAATGTTT	AGCTTACGCC	AACCTGCACC.	AGTAGCAATA	1980
30	ATGACTGTTT	TACTTTCTAA	GACAGCACCG	TTTTCTAACG	TAACTTTAAT	TGCTTCGTCA	2040
	GTCTTTTCGA	TATCTGTAGC	ACGTATACCT	GTCATTGCAT	CAATGTCATA	TTGATCAATG	2100
	TGCGCTGCTA	AGTTAGAAGA	AAATTCAGAA	CCAGTTGTTT	CTTTAACAGT	AATGAAGTTC	2160
35	TCAATACCAG	CAGTATCATT	AACTTGGCCA	CCGATACGAT	CAGCAACTAT	ACCAGTACGT	2220
	AAACCTTTAC	GTGCTGTGTA	AATCGCTGCA	CTACCACTAG	CAGGACCACC	ACCAACGATT	2280
40	AAGĀCATCAT	AAGGTŢCTTT	ATTTTCAAAC	TCAGATGCAT	CTGCCGTACT	GCCTAGTTTC	2340
	GAAAGAATAT	CTTGGATTGT	CATACGACCA	TTGCCAAATT	CTTCGCCATT	TAAAAAGACA	2400
	GCAGGGACTG	CCATGATGTT	TTCAGATTCT	TCACGGAACA	CTGCACCATC	AATCATAGAA	2460
45	TGCGTGATGT	TAGGGTTGAT	CACACTCATT	AAGTTAAGTG	CTTGAACGAC	ATCAGGACAT	2520
	TTTTGACACG	ттааастаат	GAATGTTTCA	AAATGGAATG	AACCTTCTAA	TTTTTTAATT	2580
	TGGTCAATGA	TTGACTGTTT	TTCTTTAGGT	GCACGACCAC	TAACCTGTAA	AATTGCTAAA	2640
50	ACAAGTGAGT	TAAACTCGTG	ACCTAATGGA	ATACCTGCAA	ATGTTACACC	TGTTTCTTCG	2700
	CCAGGACGAT	TGACTGAGAA	ACTTGGTGTA	CGTTTTAAAG	ATTTTTCAGA	AAGAGATAGT	2760
	CTAGGTGACA	TATCAGTAAT	TTCTGTCAAC	AAATCTTTAA	GTTCTTTGGA	TTTATCATCT	2820

	TGTTGTTTTA	AATCAGCATT	AAGCATGGTT	GTAATGCCTC	CTTAGATTTT	ACCTACTAAA	2940
_	TCTAAACCAG	GTTGCAATGT	TTTAGCGCCT	TCTTCCCATT	TAGCTGGGCA	TACTTCGCCA	3000
5	GGGTTTTTAC	GAACATATTG	AGCTGCTTTG	ATTTTGTGAG	CTAATGTACT	AGCGTCACGG	3060
	CCAATTCCGT	CAGCGTTAAT	TTCAGATGCT	TGTACAACAC	CGTCTGGGTC	GATAATGAAT	3120
10	GTACCACGTT	GAGCTAAACC	AGTAGCTTCA	TCTAATACAT	CAAAATTACG	AGTGATTGTT	3180
	TGTGATGGGT	CACCAATCAT	AGTGTAAGTG	ATTTTGCTAA	TTGCATCTGA	ATGGTCATGC	3240
	CATGCTTTGT	GTACGAAGTG	AGTATCAGTT	GATACTGAGA	ATACATTTAC	GCCTAATTTT	3300
15	TGTAATTCTT	CATATTGGTT	TTGTAAGTCT	TCTAATTCAG	TTGGACAAAC	GAATGAGAAG	3360
	TCAGCAGGAT	AGAAGCATAC	TACGCTCCAA	GAACCTTTTA	AATCTTCTTG	TGTAACTTCT	3420
	TTAAATTGAT	CTTTTTTTGG	ATCGAAArCT	TGCGCTGTAA	ATGGTAAGAT	TTCTTTGTTA	3480
20	ATTAATGACA	TAAATATCTT	CCTCCTAAGA	ATTTAAGTAT	GAATTAGAAC	TATCAATTGA	3540
	TTGCGCTTAA	TTATAATAAT	TCTAATCTCT	TAGTTAGCAT	TATTACATTT	TGATCCAGAA	3600
25	TAGTCAACTG	GATAACTTTG	TAAAĞTGAAT	GATTACTTTT	AAAATAAAGA	AAGATAATAT	3660
	AAAGTGCTTT	GATAATGGAT	TTTGTAGTTG	ATGATTTAAA	AGGTTGTGTC	TATATTTAAT	3720
	ATCTTGATTT	TAATGTAAAA	AATGTAAAAA	AAGAAGATTT	GTATTCTCAA	CTAAGTCAAC	3780
30 .	CTTATTGATA	ATGGTATGAG	AATATTTGTT	CGAGATGGAT	GAAGGTAATG	AGTGAGAAAC	3840
	TGGATTTTTA	AAGTATGAGA	CAATATTTTA	AAAAGTTCAA	TTATTAACTT	ATAAGCAAAT	3900
	AATTGCTATA	AAAAAGTTTG	GACGTGTACA	ATTGCAATAT	GAAGATTTTA	AATTAATTGT	3960
35	AAAGTATCGA	GGAGTGGGTA	ACGTGTCAGA	ACATGTATAT	AATCTTGTGA	AAAAGCATCA	4020
	TTCTGTTAGA	AAATTTAAGA	ATAAACCTTT	AAGTGAAGAC	GTTGTTAAGA	AATTGGTAGA	4080
40	AGCTGGACAA	AGCGCTTCGA	CGTCAAGTTT	CCTGCAAGCA	TACTCAATTA	TTGGTATCGA	4140
	CGATGAGAAG	ATTAAAGAAA	ATTTACGAGA	AGTTTCTGGA	CAACCTTATG	TTGTAGAAAA	4200
	TGGCTATTTA	TTCGTCTTTG	TTATTGATTA	TTATCGTCAT	CATTTAGTTG	ATCAACATGC	4260
45	TGAAACTGAT	ATGGAAAATG	CATATGGTTC	AACGGAAGGT	TTGCTAGTAG	GTGCAATCGA	4320
	TGCAGCATTA	GTTGCCGAAA	ATATTGCGGT	AACTGCTGAA	GATATGGGGT	ATGGCATTGT	4380
	CTTTTTAGGA	TCATTAAGAA	ATGATGTTGA	ACGCGTTCGA	GAAATTTTAG	ACTTACCTGA	4440
50	CTATGTCTTC	CCGGTATTTG	GTATGGCAGT	AGGGGAACCC	GCAGATGACG	AAAATGGTGC	4500
	AGCCAAGCCA	CGCTTACCAT	TTGACCATGT	CTTCCATCAT	AATAAGTATC	ATGCTGATAA	4560
55	GGAAACACAG	TATGCACAAA	TGGCAGATTA	CGACCAGACA	ATCAGCGAGT	ACTATGATCA	4620
-							

	CAAAGCAAGA	TTAGATATGT	TAGAACAATT	GCAAAAATCA	GGCTTAATAC	AGCGATAGCA	4740
	AGATACCAAA	ATAACCCGCC	CCCCTCTAGC	TTAAAATGAT	AAGTATAGCT	AGAGGGGGCG	4800
5	GGTATTTCTT	GCAATGAATT	AGTGTGAAGT	TAATGCAGCA	TTATCATTTG	AATCGAAAGT	4860
	ATCTTTATCC	CAATGTTTAG	TTAACTTGGC	GGTACCTGTA	CCAGCTAGCA	TTGAATCGTT	4920
10	CACGTTTAAT	GCTGTTCTAC	CCATGTCAAT	CAATGGTTCA	ACGGAGATGA	GCACGCCGGc	4980
	TAAAGCGACT	GGCAAGTTTA	ACGTTGACAA	CACCAATATG	GATGCAAATG	TAGCCCCGCC	5040
	ACCGACGCCA	GCAACGCCGA	ATGAACTAAT	AATCACGACA	GCGATTAACG	TTACAATAAA	5100
15	TTGTAAATCA	ATTTCTACAT	TAGCGACGGG	TGCGACCATA	ATTGCAAGCA	TGGCAGGGTA	5160
	AATGCCTGCA	CAACCATTTT	GTCCAATCGA	CAATCCAAAT	GTCGCAGCGA	AATTGGCAAT	5220
	ACCTTCTGGC	ACGCCTAGAC	GTCTTGTTTG	TGTTTGTACA	TTCAATGGTA	AGGCACCCGC	5280
20	GCTTGAGCGT	GATGTGAATG	CAAAGATTAA	TACTTCCAAA	GTCTTTTTAA	CATAGCGAAT	5340
	TGGGCTAATA	CCTAACAGGC	TTAAAATAAT	TAAGTGAATG	ATATACATCG	TAATTAATGC	5400
25	AGCGTACGAT	GCGATTAAGA	ATTTTCCTAA	AGTCCAAATG	GCGCCAAAGT	CACTTGTCGA	5460
	TAATGTGTTG	GCCATAATTG	CTAATACACC	GTATGGCGTT	AAACGTAAGA	CGAACGTCAC	5520
	AATCGCCATT	ACTAGTGAAT	AGATAGCGTC	AATCGCACGC	TTAAGCAATT	CACCATGATC	5580
30	AGGTTGTTTG	CGTnTACGCG	TAAATAAGCA	AATCCTATAA	ACGAAGCAAA	TATCACGACA	5640
	GCAATCGTGG	aAGTTGCACG	TTGTCCaGTG	AAATCTAAGA	ATGGATTTTT	AGGCAATAAT	5700
	TCCAAAATTT	GTTGTGGTAA	CGTATGTGCT	GTTAAATCTT	TCGCTTGTTT	AGCAATTTCG	5760
35	CTTCCACGTG	CTTGTTCAGC	GTTACCAAGG	TTAATTGTTG	ATGCATCTAA	ACCAAACACC	5820
	AAGGCATACA	CAACACCAAC	AATCGCAGCA	ATGGTGACAG	TGCCAATTAA	AAAGATAAAA	5880
	ATGAGACTAC	CAATTTTAGC	AAACTTTTCT	CCGATTTGAA	TTTTAGTGAA	TGCAGCTACA	5,940
40	ATAGAAATGA	AAATTAAAGG	CATAACAATC	ATTTGCAACA	ATGCAACGTA	ACCTTGTCCG	6000
	ACAATGTTGA	ACCAGTCACT	TGTTGATGTA	ATAACATTCG	AATGTGTGCC	ATAAATAAGA	6060
45	TGCAATAACA	CACCGAATAC	TATACCAATC	CCTAAAGCTG	TAAACACACG	TTTCGCAAAA	6120
	GATATATGTT	TGCGAGCCAT	CATGTGCAAT	ATTACGATGA	AAATCACCAA	TACAATAATA	6180
	TTAATCAGTG	TAAGAAAAGC	ATTCATGAAC	GTCACTCCTT	AAATTTTTGA	ATATAATTCC	6240
50	GACTAGTATG	CT				,	6252

(2) INFORMATION FOR SEQ ID NO: 51:

55

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6730 base pairs

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

5

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

	. (3127			-			
10	ATCAAATCnC	ATTTATAAAA	TTAATnAnAA	GGGGATTATC	CaTGTgAGAA	ACAAAGTAAT	60
	GCTCTTTTTT	TACCTCTTGT	GGGTTGAAAA	aTGGATCATC	AGAGATAGAC	TTCTTCTTTT	120
	TCGAAGATGA	CATTTGATAC	TTTAATCTTC	TAAAACCATA	ACTTGTCGCA	TCAAAAATGC	180
15	CTTCTTGTAC	AAGTAAAATC	AAAAATATGC	TAAAAAAT	AATTAATGAA	ACATAAAACA	240
	АТАТАТТТАА	ATATGTAATG	ATAGTATGGC	TATTAAAAAG	ССАТАТААТА	AACGTTAATA	300
	TTGGCGTTAT	TAGTGCCATT	CCAAGCCATT	TTTTCAACAT	TTGATCACTC	CCACTTATAG	360
20	AAAACTCTTA	CGCATAGTTT	ACATTAAAAT	CAGACATTGA	GGAATGATTT	TTTAATTTCT	420
	TCAGCTTTAT	TGAAATTCTA	AAATCAATCA	TTCTTCATTA	GTTTAAAGCA	ТТАТААААА	480
	GATATATAGT	aaatattgta	TATATAATAT	TAGTTAAGAT	TTCaGAAAAT	TTTGAAGGGA	540
25	ATGGAAATTT	AGAAATCGGA	ATTTGTTAGA	GGAGGGGATT	AGATGGGGAA	ATATATTTTC	600
	AAACGATTTA	TTTATATGCT	TATTTCTTTA	TTTATTATTA	TTACAATTAC	ATTTTTCTTA	660
	ATGAAATTAA	TGCCAGGTTC	GCCATTTAAC	GATGCTAAAT	TAAATGCTGA	ACAAAAAGAA	720
30	ATTTTAAATG	AAAAATATGG	ATTAAATGAT	CCTGtAGCTA	CGCAGTATTT	ACATTATTTA	780
	AAAAATGTTG	TTACAGGCGA	TTTTGGTAAT	TCATTCCAGT	ATCATAATCA	ACCTGTGTGG	840
35	GATTTGATTA	AACCGAGACT	ACTACCTTCT	TTTGAAATGG	GTCTTACAGC	AATGTTCaTC	900
	GGTGTGATAC	TGGGACTTAT	TTTAGGTGTT	GCAGCAGCTA	СТАААСАААА	TTCTTGGGTT	960
	GACTATACAA	CTACAGTTAT	TTCAGTTATT	GCAGTATCTG	TACCATCTTT	TGTACTTGCT	1020
40	GTACTTTTAC	AATATGTATT	TGCAGȚTAAA	TTAAGATGGT	TCCCAGTAGC	TGGATGGGAA	1080
	GGTTTTTCGA	CCGCGGTATT	ACCGTCACTT	GCATTATCTG	CAGCTGTTTT	AGCAACTGTC	1140
	GCCAGATACA	TAAGAGCAGA	GATGATAGAG	GTATTAAGTT	CAGACTATAT	TTTATTAGCG	1200
45	AGAGCTAAAG	GTAATTCGAC	AATGCGTGTA	CTTTTTGGAC	ATGCACTTAG	AAATGCTTTA	1260
	ATTCCAATTA	TTACAATTAT	CGTTCCCATG	TTAGCAAGTA	TTTTAACAGG	CACTTTAACA	1320
50	ATTGAAAATA	TTTTTGGAGT	TCCTGGATTA	GGGGATCAAT	TCGTACGTTC	AATTACAACA	1380
	AATGATTTCT	CAGTAATCAT	GGCAATCACA	CTATTATTTA	GCACACTGTT	TATCGTTTCT	1440
	ATTTTTATTG	TAGATATTTT	GTACGGTGTG	ATAGATCCAC	GAATTCGTGT	TCcAAGgAGG	1500
	AATAAAAAT	TGGCTGAAAA	TAAAAACAAT	TTGTCGATTA	ACGACGATCA	TTCTAATGCA	1560

	TGAATCAGGA	ACCTGAAATG	CAACGAGAAA	GCAAAAACTT	TTGGCAAGAT	GCTTGGGCTC	1680
5	AGTTAAAACG	AAATAAGTTA	GCTGTTGTCG	GTATGATAGG	TTTAATTATC	ATTGTAATAT	1740
•	TTGCTTTTAT	CGGTCCAGTT	ATAAATAAAC	ATGATTATGC	TGAACAAAAT	GTAGAACATA	1800
	GAAATCTTCC	GGCAAAAATA	CCTGTATTAG	ACAAAGTTCC	ATTTTTACCT	TTTGATGGTA	1860
10	AAGATGCAGA	TGGCAAGGAT	GCTTATAAAG	CAGCAAATGC	TAAAGAAAAT	TATTGGTTTG	1920
	GTACTGATCA	GTTGGGTCGA	GATTTATGGA	CAAGAACATG	GAAAGGTGCT	CAAATTTCAT	1980
	TGTTTATCGG	TGTTGTTGCA	GCGATGTTAG	ATATTTTTAT	TGGTGTTGTA	TATGGTGCGA	2040
15	TTTCTGGATT	CTTCGGTGGA	CGTGTCGATA	CGATTATGCA	ACGTATACTT	GAAGTCATAG	2100
	CATCTATTCC	GAATTTAATT	GTCGTAATTT	TATTTGTATT	AATTTTTGAA	CCATCCATTT	2160
	GGACAATTAT	ATTGGCTATG	TCTATCACAG	GCTGGTTAGG	CATGAGCAGA	GTTGTACGTG	2220
?0	GAGAATTTTT	AAAATTAAAA	AATCAAGAGT	TTGTCATGGC	TTCGAAAACA	TTGGGGGCTT	2280
	CAAAATTCAA	ATTGATATTT	AAGCATATTT	TACCTAATAC	ATTAGGTGCT	ATCGTGGTTA	2340
?5	CATCAATGTT	TACAGTACCT	AGTGCTATTT	TCTTCGAAGC	ATTTTTAAGT	TTCATTGGTA	2400
	TAGGTGTACC	CGCACCTCAA	ACATCGTTAG	GGTCATTAGT	AAATGATGGG	CGCGCAATGT	2460
	TATTAATTTA	TCCACATGAA	TTATTTATAC	CAGCAATGAT	TTTAAGTTTA	TTAATTCTAT	2520
30	TCTTTTACTT	ATTTAGTGAT	GGATTACGTG	ATGCATTTGA	TCCGAAAATG	CGTAAATAAA	2580
•	AAGGGGGCAT	AGCATATGAC	TGAAAGAATA	TTAGAAGTAA	ATGATTTGCA	TGTTTCCTTT	2640
	GATATTACAG	CAGGGGAAGT	GCAGGCAGTG	AGAGGCGTAG	ATTTTTTTT	GAACAAAGGG	2700
35	GAAACATTGG	CAATTGTTGG	TGAATCAGGT	TCAGGTAAAT	CTGTAACAAC	AAAAGCAATT	2760
	ACAAAATTAT	TCCAAGGGGA	CACAGGAAGA	ATTAAAAAGG	GAGAAATTTT	ATTTTTAGGG	2820
10	GAAGĀTTTAG	САААААААСС	TGAAAATGAG	TTGATTAAAT	TACGTGGCAA	AGATATTTCA	2880
10	ATGATCTTTC	AAGATCCAAT	GACATCTTTA	AACCCAACGA	TGCAAATTGG	TAAACAAGTC	2940
	ATGGAACCAT	TAATTAAGCA	CAAAAATTAT	AGTAAAGCAC	AAGCTAAAAA	GCGCGCATTG	3000
15	GAAATACTAA	ATCTTGTAGG	TTTACCAAAT	GCAGAAAAA	GATTTAAAGC	ATATCCTCAT	3060
	CAATTTTCAG	GTGGACAAAG	GCAAAGAATT	GTTATTGCAA	CCGCATTAGC	TTGTGAACCT	3120
	AAAGTGCTCA	TTGCTGATGA	ACCAACGACT	GCATTAGACG	TAACGATGCA	GGCACAAATT	3180
50	TTAGATTTAA	TGAAAGAACT	ACAACAAAAA	ATCGATACAG	CAATTATTTT	TATAACGCAT	3240
	GATTTAGGGG	TTGTTGCGAA	TATTGCTGAT	AGAGTGGCAG	TTATGTATGG	TGGTCAAATG	3300
	GTTGAAACAG	GAGATGTTAA	CGAAATATTT	TATGATCCAA	AGCATCCATA	TACATGGGGA	3360

	GGAGCGCCAC	CTGATTTATT	ACACCCACCT	AAAGGTGATG	CATTIGCGAG	ACGTAGCAAT	3460
-	ATGCATTAGA	TATTGATTTT	AAAGTAGAAC	CACCGTGGTT	TAAAGTTTCA	CCGACACATT	3540
•	TTGTGAAATC	TTGGTTATTA	GACGCACGTG	CACCAAAAGT	TGAACTACCC	GAGCTGGTAA	3600
	AACAACGTAT	GAAACCGATG	CCTAATAATT	ATGAAAAACC	ACTCAAGGTA	GAAAGGGTGT	3660
0	CGTTCAATGA	AAAATGATGA	AGTGCTATTA	TCTATTAAAA	ATTTAAAGCA	ATATTTTAAC	3720
	GCAGGAAAGA	AAAACGAAGT	GgaGCGATTG	AAAATATTTC	GTTTGATATA	TACAAAGGGG	3780
	AAACATTAGG	TTTAGTAGGA	GAATCGGGGT	GTGGTAAATC	TACAACTGGT	AAATCAATTA	3840
5 .	TTAAACTTAA	TGATATTACA	AGTGGAGAAA	TTTTGTATGA	GGGTATTGAT	ATACAAAAGA	3900
	TTCGTAAACG	TAAAGATTTG	CTTAAATTTA	ATAAAAAGAT	ACAGATGATT	TTTCAAGACC	3960
	CATATGCGTC	TTTAAATCCT	AGGTTAAAAG	TAATGGATAT	AGTAGCTGAA	GGTATTGATA	4020
ro	TCCATCATTT	AGCAACTGaT	AAGCGTGACC	GAAAAAAACG	TGTCTATGaT	TTACTTGaAA	4080
	CTGTTGGATT	AAGTAAAGAA	CATGCCAATC	GCTATCCTCA	TGAATTTTCA	GGTGGaCAAC	4140
25	GCCAACGTAT	TGGaATTGCC	CGTGCATTAG	CCGTTGaACC	AGAATTCATT	ATCGCGGACG	4200
	AACCAATATC	GGCATTGGAT	GTTTCAATCC	AAGCTCAAGT	AGTTAATTTA	TTATTAAAAT	4260
	TACAACGTGA	AAGAGGGATT	ACGTTCCTAT	TTATAGCTCA	TGATCTATCA	ATGGTGAAGT	4320
30	ATATTTCAGA	TCGTATTGCA	GTCATGCATT	TTGGGAAAAT	AGTTGAAATT	GGACCGGCAG	4380
	AAGAAATTTA	TCAAAATCCA	TTACACGATT	ATACTAAGTC	TTTATTATCA	GCCATTCCAC	4440
•	AACCTGATCC	TGAATCAGAA	CGCAGTCGCA	AACGATTTAG	TTATATTGAT	GATGAAGCAA	4500
35	ATAATCATTT	AAGACAATTA	CATGAAATTA	GACCGAATCA	CTTTGTCTTT	AGTACTGAAG	4560
	AAGAAGCGGC	ACAACTACGA	GAAAATAAAT	TGGTGACACA	AAATTAAGGG	GAAGGGGGAA	4620
	ATGCAATGAC	GAGAAAATTT	AGAACACTTA	TTTTAATTTT	GATTGCTACA	ATTGCATTAA	4680
10	GTGGTTGTGC	TAATGACGAT	GGTATTTATT	CAGATAAAGG	TCAAGTATTC	AGAAAATTT	4740
	TGTCATCAGA	CTTAACATCC	CTTGATACAT	CATTAATAAC	GGATGAAATA	TCTTCTGAAG	4800
1 5	TGACTGCGCA	AACATTCGAA	GGTTTATACA	CATTAGGAAA	AGGTGACAAA	CCGGTGTTAG	4860
	GTGTTGCGAA	AGCTTTTCCT	GAAAAGAGTA	AAGATGGTAA	AACTITAAAG	GTTAAATTAA	4920
	GAAGCGATGC	TAAATGGAGC	AATGGTGACA	AAGTGACTGC	ACAAGACTTT	GTTTATGCTT	4980
50	GGAGAAAAAC	AGTTGACCCT	AAAACAGGTT	CTGAATTTGC	ATACATTATG	GGGGACATTA	5040
	AAAATGCGAG	TGATATTAGT	ACTGGTAAGA	AACCTGTAGA	GCAATTAGGT	ATCAAAGCAT	5100
	TAAATGATGA	AACATTACAA	ATTGAATTAG	AAAAGCCGGT	TCCATATATT	AATCAATTAT	5160

	ACGGTACGGC	AGCTGATAGA	GCGGTATACA	ATGGTCCaTT	TAAAGTTGAT	GATTGGAAAC	5280
5	AAGAAGATAA	AACCTTACTA	TCTAAAAATC	AGTATTATTG	GGATAAAAAG	AATGTAAAAT	5340
	TAGATAAAGT	GAATTATAAA	GTTATTAAAG	ACTTACAAGC	CGGTGCATCA	TTGTATGATA	5400
	CTGAATCAGT	AGATGACGCA	TTTATTACTG	CAGATCAAGT	TATAAATAA	AAAGACAACA	5460
10	AAGGATTAAA	CTTTGTGTTA	ACGACTGGGA	CATTTTTTGT	AAAAATGAAT	GAAAAACAAT	5520
	ATCCTGATTT	TAAAAACAAA	AATTTAAGAT	TGSTATCGCA	CAAGCAATAG	ATAAAAAAGG	5580
	ATACGTTGAT	TCAGTGAAAA	ACAATGGCTC	AATTCCTTCC	GATACACTAA	CAGCCAAAGG	5640
15	AATTGCGAAA	GCGCCTAATG	GCAAAGATTA	TGCGAGTACC	ATGAATTCGC	CTTTAAAATA	5700
	TAATCCTAAA	GAAGCAAGAG	CACACTGGGA	CAAAGCTAAA	AAAGAGTTAG	GTAAAAATGA	5760
20	AGTGACATTT	TCAATGAACA	CAGAAGATAC	ACCAGATGCA	AAAATATCTG	CTGAATATAT	5820
20	CAAATCGCAA	GTTGAGAAAA	ATTTACCAGG	AGTTACTTTG	AAAATTAAGC	AATTACCGTT	5880
	TAAACAAAGA	GTATCACTAG	AACTGAGTAA	CAATTTTGAA	GCATCACTTA	GTGGTTGGTC	5940
25	TGCAGATTAC	CCTGATCCTA	TGGCTTATTT	AGAAACAATG	ACCACAGGTA	GCGCACAAAA	6000
	TAATACAGAC	TGGGGTAATA	AAGAATATGA	TCAATTACTT	AAAGTAGCAA	GAACCAAATT	6060
	GGCACTTCAA	CCGAACGAAC	GATATGAAAA	CTTGAAAAAA	GCAGAAGAAA	TGTTCCTAGG	6120
30	AGATGCACCG	GTAGCACCAA	TTTATCAAAA	AGGTGTTGCA	CATTTAACAA	aTCCTCAAGT	6180
	AAAAGGATTA	ATTEACCÁTA	AATTTGGTCC	AAATAACTCA	CTTAAACATG	TATATATTGA	6240
	TAAATCGATA	GATAAAGAAA	CAGGTAAGAA	GAAAAAATAA	TATGCTTTGT	AAATTAGGCT	6300
<i>35</i>	GGAGACATAT	CTCCAGTCTT	TTTGTGTTGG	ATAAAAaCTT	TGGGAATAAA	AATTTAAAAT	6360
	AAGTCGTTTT	TTAAATTACT	GAAATTGATT	AAATGCATAA	ATAACTGAAT	АТТСТААААА	6420
40	TAAACTTGTA ·	ATAATTTTTT	CTATGAGTAA	ACTAAAAAGA	AAAAATTAGA	TTGAAAGTAG	6480
	GAGĞCATATG	TATGGGGAAG	CTAATTAAAT	ATATTTCAAT	ACTTCTTATT	GTCGTTTTAG	6540
`	TGTTGAGTGC	TTGCGGAAAA	AGCAGTAATA	AAGATGAAGG	AGTAAAAGAT	GCTACTAAAA	6600
45	CGGAAACCTC	AAAACATAAA	GGTGGTACCT	TAAATGTAGC	ATTAACAGCA	CCGCCAAGTG	6660
	GTGTTTATTC	TTCGTTATTA	AATAGTACAC	ATGCAGATTC	TGTAGTTGAG	GGATATTTTA	6720
	ACGAAAGCTT					,	6730

(2) INFORMATION FOR SEQ ID NO: 52:

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6482 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

5	AATTTTTGTC	AAAATTATTA	ACCTCGCTTT	TAAAAGATTG	AAAAGTAAAT	GAGTGAAATT	60
	AAAGATTATG	CACATTAAAA	TCACGCCACA	ATTTAATTGT	GAAAAATATC	ACAAATATAT	120
	TATAACACTA	AATTTCCCAA	AATTCAAAAG	TGTGTTTTAT	TGCAGAAAAC	TTATAACAyG	180
0	TGCACAAGTT	ATAGTGAATT	GCAAACGGAT	TACTTTAGTC	TTTTTAAAAC	ATGAAGTATA	240
	ATTTGTATAG	CAATAAATAT	AAAAATGGGA	GGCTATGTTC	AATGAGCAAT	ATGAATCAAA	300
	CAATTATGGA	TGCATTTCAT	TTCAGACATG	CGACTAAGCA	ATTCGATCCA	CAAAAGAAAG	360
5	TTTCGAAAGA	AGATTTTGAA	ACAATATTAG	AGTCAGGTAG	ATTGTCTCCA	AGTTCTCTTG	420
	GGTTAGAACC	TTGGAAGTTT	GTCGTGATTC	AAGATCAAGC	GTTACGTGAT	GAATTAAAAG	480
	CGCACAGTTG	GGGCGCAGCA	AAACAATTAG	ATACAGCGAG	CCATTTTGTG	CTAATTTTTG	540
20	CGCGTAAAAA	TGTAACGTCA	AGATCACCGT	ATGTACAACA	TATGTTAAGA	GATATTAAAA	600
•	AATATGAGGC	ACAAACGATT	CCAGCTGTTG	AACAAAAATT	CGATGCATTC	CAAGCAGATT	660
?5	TCCATATTTC	TGATAATGAT	CAAGCCTTGT	ATGACTGGTC	AAGTAAACAA	ACGTATATTG	720
	CATTAGGCAA	TATGATGACG	ACAGCCGCAT	TGTTAGGTAT	TGATTCATGT	CCGATGGAAG	780
	GTTTTAGTCT	GGATACAGTG	ACAGACATTT	TAGCAAATAA	AGGGATCTTA	GATACTGAGC	840
30	AATTTGGTTT	ATCAGTGATG	GTCGCATTTG	GCTACAGACA	ACAAGAGCCA	CCGAAAAATA	900
	AAACACGCCA	AGCTTATGAA	GATGTTATTG	AATGGGTTGG	ACCAAAAGAA	TAAATAGAAT	960
÷	ACCGTATGTC	TAAATATATA	AAATTAAAAA	GTTAGCAATA	AAAAAGCCTG	CGATTACATA	1020
35	AATGAATCGC	AGGCTTTTGC	GTGAAAAAT	TGTATTAATA	AAGTATGGAT	GATTATTTTT	1080
	CTGGÆACAAG	GTCAGTATTT	GAATGAACTG	TGATGTCAAA	CCCTTCTGGT	GCCGTAAATG	1140
	TATGTGTTGA	GGCGTCGGGT	TGATAAATAT	CAACATGTGT	TAATCCATAA	CTTTGTGAAT	1200
40	TGTTTTGTCT	TGCTTGATTG	GATTGCCAAG	TATTAGCAGC	AATATGATGG	TGATAATGAT	1260
	TCGTTGACAT	AAATAGCGCA	CGTGGAAAAT	CAGACACATG	TTGGAATCCT	AATTGTTCAA	1320
45	TGTAACATTG	ATATGCTGCG	TCTAAATCAT	GTGTTTTTAA	ATGTAAGTGT	CCAATCATGC	1380
	CTTTTGCTGG	CATTCCTTGC	CAACCTTCAT	CAGTACGATG	TGTTAATAAG	GTTTGGCTAT	1440
	CAACTTCTAA	AGTATCCATT	TTAACTTTGC	CATTTTGCCA	TTCCCATGAA	GATGAAGGTC	1500
50	TATCGCGATA	GACTTCAATA	CCATTACCTT	CGGGGTCGTT	GAAATATAAA	GCTTCACTTA	1560
	СТАЗАТСАТС	ACCAGCGCCG	ATGCCCATAT	TTTTTTGTGC	CACGAAATAT	AAGAAGTTAG	1620

	aAGTCTGACG	GCCGTCTTCT	AATAAATGTA	ACGTTAGAGT	ATGGCCACCA	GTCCCAACAG	174
_	ATAATACGGT	TGTATTATCG	TCAGAACTTT	TAACGGATAG	TCCTAAAATG	TTTTTGTAAA	180
5	ATGTTGTCAT	TAAGTCTAAG	TCTCTTACGT	TCAGTACAAT	GTTTGTCACT	TGTGTTGCTG	186
	TTTTATCGTG	AAATGCCATT	ATGCATCGCC	TCTTTTTCTA	TTTTTCTATA	AGTTAGTATA	192
10	AAAAGTATAC	CAGAAAAGAA	AATGAATTGA	TAGCATAAAG	TTTGAAATGC	AAAATAACTA	198
	GTCGTTTTGC	AATTTTALAT	TGATGCGAAC	AAAAAAGCGA	TGGTACAGTT	GCACCATCGC	204
	AAAATTTATT	TAACCAAGAT	ATACATCTTG	ATATGAATCT	TCTTTTTCTA	ACATATGTTT	210
15	GGCAAATGAA	CATGAGGCAA	TAATTTTCAA	ATTATTTTCT	CGAGCGTGTT	CAACAACTGC	216
	TTTAAGTAGT	TTTTTGCCAA	CACCTTGACC	ACCAAGTTCA	TCAGATACGC	CTGTATGATC	222
	AATGTTAATT	TCATTATTAT	CCACAAAACG	GTATGTGATT	TCAGCTAAAG	CATTATTTTC	228
20	ATCATCACCA	ATATAGAATT	TGTTCTCGCC	TTGTTTGATT	TCAAGGTTAC	TCATACATAT	234
	CAACTCCTAT	CATGATTGAT	TATAGTATTT	CCCTATTCTA	TTTTAACTTA	AACGAAGTCA	240
	AAGGTGCATG	ACAGTCATGT	GACGACATTG	CCACATCTAT	GTAGTCGTTT	TTATTAAGCA	246
25	CAGTTTGAAA	TGAAGATGAA	AACACGTATC	TTGACATTAA	ATCTATTCAG	CTATATAATT	252
	TATCTCGAAA	TCGAAATAAA	ATAAAAAAGT	TGGTGATCAT	ATGGATCGAA	CGAAACAATC	258
30 .	TCTCAATGTT	TTTGTCGGAA	TGAATAGGGC	GTTAGACACA	TTAGAGCAAA	TTACAAAAGA	264
	AGACGTAAAG	CGATATGGCT	TAAATATTAC	TGAATTTGCA	GTGCTCGAGT	TGCTTTATAA	270
	TAAAGGTCCG	CAACCAATTC	AACGTATTAG	AGACCGCGTA	TTAATTGCAA	GTAGCAGCAT	276
35	TTCATATGTT	GTAAGTCAAT	TAGAGGACAA	AGGTTGGATT	ACACGTGAAA	AGGATAAAGA	2820
	TGATAAACGT	GTATATATGG	CTTGTTTAAC	TGAAAAAGGT	CAAAGTCAAA	TGGCAGATAT	288
	TTTÇECTAAG	CATGCTGAGA	CATTAACAAA	AGCGTTTGAT	GTGTTAACAA	AGGATGAATT	294
40	AACAATCTTA	CAACAAGCGT	TTAAGAAACT	AAGTGCACAA	TCTACAGAAG	TGTAAGGCGT	3000
	GCACTAAAAA	TTTACATTAA	AGTATCTCGA	TTTCGAGATA	AATGCACTAA	AAATATAAAG	3066
	AGGGTATATA	aaatgataaa	TAATCATGAA	TTACTAGGTA	TTCACCATGT	TACTGCAATG	312
1 5	ACAGATGATG	CAGAACGTAA	TTATAAATTT	TTTACAGAAG	TACTAGGCAT	GCGTTTAGTT	318
	AAAAAGACAG	TCAATCAAGA	TGATATTTAT	ACGTATCATA	CTTTTTTTGC	AGATGATGTA	324
50	GGTTCGGCAG	GTACAGACAT	GACGTTCTTT	GATTTTCCAA	ATATTACAAA	AGGGCAGGCA	3300
	GGAACAAATT	CCATTACAAG	ACCGTCTTTT	AGAGTGCCTA	ACGATGACGC	ATTAACATAT	3360
	TATCAACACC	CCTTTCATCA	CTTTCCTCTT	A A A C A C C A A C	CTATTCAACA	A THE A THEORY OF THE	2426

	TTAAATGAAG	GGGTAGCACC	TGGTGTACCT	TGGAAGAATG	GACCGGTTCC	AGTAGATAAA	3540
	GCGATTTATG	GATTAGGCCC	CATTGAAATT	AAAGTAAGTT	ATTTTGACGA	CTTTAAAAAT	3600
5	ATTTTAGAGA	CTGTTTACGG	TATGACAACT	ATTGCGCATG	AAGATAATGT	CGCATTACTT	3660
	GAAGTTGGCG	AAGGAGGCAA	TGGTGGCCAG	GTAATCTTAA	TAAAAGATGA	TAAAGGGCCa	3720
10	GCaGCACGTC	AAGGTTATGG	tGAGGTACAT	CATGTGTCAT	TTCGTGTGAA	AGATCATGAT	3780
	GCAATAGAAG	CGTGGGCAAC	GAAATATAAA	GAGGTAGGTA	TTAATAACTC	AGGCATCGTT`	3840
	AATCGTTTCT	ATTTTGAAGC	ATTATATGCA	CGTGTGGGGC	TAATTTTATA	AGAAATTTCA	3900
15	ACAGATGGAC	CAGGATTTAT	GGAAGATGAA	CCTTATGAAA	CATTAGGCGA	AGGGTTATCC	3960
	TTACCACCAT	TTTTAGAAAA	TAAAAGAGAA	TATATTGAAT	CGGAAGTTAG	ACCTTTTAAT	4020
	ACGAAGCGTC	AACATGGTTA	ATTGGAATGA	GGAGGATTTG	TGATGGAACA	TATTTTAGA	4080
20	GAAGGACAAA	ATGGTGCGCC	AACACTAATA	TTATTGCATG	GTACAGGTGG	TGATGAGTTC	.4140
	GATTTATTAC	CGTTAGGCGA	AgcATTGAAT	GAAAATTATC	ACTTGTTAAG	TATTAGAGGA	4200
	CAAGTTTCAG	AAAATGGGAT	GAACCGTTAT	TTCAAACGTC	TTGGTGAAGG	TGTTTATGAT	4260
25	GAAGAAGATT	TGGCATTTCG	TGGACAAGAA	TTGTTGACGT	TCATTAAAGA	AGCTGCTGaA	4320
	CGTTATGATT	TTGaTATTGA	AAAAGCAGTA	CTTGTTGGAT	TTTCAAATGG	ATCAAATATA	4380
30	GCGATTAACT	TAATGTTGCG	TTCAGAAGCA	CCATTTAAAA	AAGCATTGTT	ATATGCACCG	4440
	TTATACCCAG	TTGAAGTAAC	GTCAACAAAG	GATTTATCAG	ATGTCAGTGT	GTTGCTTTCT	4500
	ATGGGGAAAC	ATGATCCAAT	TGTGCCATTA	GCTGCAAGTG	AACAAGTCAT	TAACTTGTTT	4560
35	AATACACGTG	GGGCACAAGT	CGAAGAAGTT	TGGGTGAAGG	GCCATGAAAT	TACAGAAACT	4620
	GGATTAACGG	CTGGTCAACA	AATACTTGGG	AAATAACAGT	TCTATTAAGA	AGCGGACAGA	4680
	TGGAÃAAGAT	TTTTACTTTT	CATCTGCCCG	CTTTTTTGAT	TTTGAAGTGC	TGTACTAAAT	4740
40	TTTACAATAG	TATAGATATT	TTAATCGATA	TGAGATTTGC	CGGTAATACG	CTTAATTAAA	4800
	CCTTTATAGA	GTACAGGTAT	GAGTAAGATG	AAACCGAACA	ATCCCATAAT	AGGGAATACT	4860
45	TTTCCAATTA	ATGAAATGAa	ACCGATAAAT	GTACTAATAT	AAGTGATGAC	AGCCATTGTA	4920
43	ATAATAATGA	TGAAGTAACG	TCTGCTGAAT	GGAACGCTGA	AACGTGACGC	AAATGCATAC	4980
	ATTAATCCAA	CAACAGTATT	GTAGATGACA	AGTATCATAA	TGACAGACAT	AATAATACCA	5040
50	ATTGACGGAG	ACATTTGTGT	CGCTAATTTT	AATGTAGGTA	GATCTACGTG	TTTAATTTTA	5100
	TCGAATTGAG	AAATTAAACC	TAGATTAATC	ATCATGAGTA	AAAATGTAAT	GATTAAACCG	5160
	CCAATCAAGC	CCCCGTATAA	CGTTGAGTCA	CGATATTTAA	CTTTACTACC	CATCACTGAT	5220

	CCAGGTGATA	ATGATTTCTG	CTTATGAATC	TGAGCATCAT	TATTAGCGGC	AGTAAAATCA	5340
	AGATGACTTG	TTGTGAAATA	GTAGACCGCA	ATCATAATGA	CAATCGCAAT	TAAAAATGGG	5400
5	GTAACACCĠC	CAAGCACAGC	AATTAAACGA	TCGAATTTTA	GAAACAGTGT	TGCTAAAATA	5460
	AAGGCGACTA	ATATGAGTGC	GCTCAGCCAA	TACGGTAAGT	TGAAACTTTG	ATGAATGGTT	5520
10	GACGCACCAC	CTGCAGTCAT	AATAATAGCT	AAAGACAACA	TAAACATTGT	таааатаата	5580
,,	TCAAAACCTC	TTGCAATAGA	GGGGTATAAG	AAATAGTTAA	TTGAATCAGA	ATGATTTCTG	5640
	GACTTTAGAT	GATGACCTGT	ATGCATGACA	ACCATTCCAC	CTAAAGTAAT	CAATAGTCCT	5700
15	GTTACAATAA	TGCCTGAAAT	GCTATATGCG	CCATGACTTG	TGAAAAACTG	GAAAATTTCT	5760
	TGACCAGTAG	CAAAGCCGGC	ACCAACGACA	ACACCAACAA	AGGCAAATGC	CACAATAATG	5820
	GACTCTTTTA	AGATACGCAT	GATTTAAAAA	TGTCCCTTCG	TAATTTTAAG	TAATATAGAA	5880
20	AATGTAACAT	ACATGTTAAT	GAAAAATATA	GTACTAATAT	AGTATTTTGT	TAAATTGGAG	5940
	TAGAAGCGAG	GGTGTCGGTC	ATTTCATTAA	TTTATTAGTT	GATTTTGCAT	TTTTTTGCTG	6000
	TAAAGTTGTT	ATAATACAGT	TAACAGGAAT	TAGCATAGAT	ACACCAATCC	CCTCACTACT	6060
25	CGCAATAGTG	AGGGGATTTT	TTTCGGTGTA	GCTAGGTCGC	CTATTTATCA	TCGTGTTTGC	6120
	GTAgCaATGC	GTAAACACAG	TACCACTAAA	TAAGTGCACG	ATACATGCAT	CAAATGTCGT	6180
30	CTTTAGTCTA	AGTAACGATC	ATGCATTAAC	ATTTTCAAAA	TATCTATTTG	AGCTTGAAGA	6240
	TCTTTACCAA	TATTGGTATC	ACGAATCTTC	TTACGTTGTA	ATTCTTTATC	TACGACGCGC	6300
	TTTATAGAAA	GTTCATCGAT	ACCTTCGGAA	AGTATTTTTn	CTTTAGCGTT	AAATTGTTGG	6360
35	TGTGCAACGA	GTTGCATACC	GAATGAATTA	TACAATAGTG	TATAGCCTGC	AATGCCAGTn	6420
	GTTGACTGAT	AAGCTTTTGA	AAAGCCACCA	TCAATGACAA	GCATCTTTCC	ATCAGCCTTG	6480
	AT =						6482
40	(2) INFORM	ATION FOR SE	EQ ID NO: 5	3 :			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16592 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

ATTTAAGGCG ATTGCTTGTG TATTTCTCTC TTTTGTAGGC AAACCTGCAC TCGTTCCAAA 60

AAATGTAACT TCCATATATG CCCCTCCTTT TCTTCAATTC ATTTTATCAT AAAATTTGTA 120

55

45

	AATTTTTCTA	ACTTTAACGT	AGACATAACT	ATATAAATTT	TGATAATTAC	GTTATACTTA	24
_	TCATTAATAA	GTATCACATT	AAACATGATA	CATGAATCGA	TATTTCATTT	AAGACACTGC	30
5	ATACAGTCGA	GCATATTGTA	TGACCTACTG	AATGGATTAT	СТТАТААТАА	TAAATCATAT	36
	ATCTAATTAA	GAATTGAGGT	TTTAATCTTG	AGTACTAAAA	ACAAACACAT	CCCATGTTTA	42
10	ATCACAATCT	TTGGTGCACT	GCGTGACTTA	AGCCATCGTA	AGTnGTTTCC	ATCAATATTC	48
	CATCTCTACC	AACAAGACAA	TTTAGATGAA	CATATTGCCA	TCATCgGTAT	TGGACGTCGT	54
	GACATkwnTA	ATGATGATTT	CCGTAATCAA	GTAAAATCAT	CAATTCAAAA	GCACGTAAAA	60
15	GATACAAACA	AAATTGACGC	GTTTATGGAA	CATGTCTTCT	ATCATAGACA	TGATGTTAGT	66
	AATGAAGAAA	GCTATCAAGA	ATTACTAGAT	TTTAGTAATG	AATTAGATAG	CCAATTTGAA	72
	TTAAAAGGTA	ATCGACTATT	CTATTTAGCA	ATGGCACCAC	AATTCTTTGG	CGTTATTTCT	78
20	GATTATCTAA	AATCTTCTGG	TCTTACTGAT	ACAAAAGGAT	TTAAACGCCT	TGTTATCGAA	84
	AAACCATTCG	GTAGTGATTT	AAAATCAGCC	GAAGCATTAA	ACAATCAAAT	TCGTAAATCA	900
	TTTAAAGAAG	AAGAAATTTA	TCGTATTGAC	CACTATTTAG	GAAAAGACAT	GGTTCAAAAT	96
25	ATCGAGGTAT	TACGTTTTGC	GAATGCGATG	TTTGAACCAT	TATGGAATAA	CAAATATATT	102
	TCAAACATCC	AAGTTACATC	TTCTGAAATA	CTAGGTGTTG	AAGATCGTGG	TGGTTATTAT	1080
30	GAATCAAGTG	GCGCGCTAAA	AGATATGGTG	CAAAACCACA	TGTTACAAAT	GGTTGcATTA	1140
	TTAGCTATGG	AAGCACCTAT	TAGTTTAAAT	AGTGAAGATA	TCCGTGCTGA	GAAAGTAAAA	1200
,	GTACTTAAAT	CACTGCGTCA	TTTCCAATCT	GAAGATGTTA	AAAAGAACTT	TGTTCGTGGT	1260
35	CAATATGGCG	AAGGCTATAT	CGATGGTAAA	CAAGTTAAAG	CATACCGTGA	TGAAGATCGC	1320
	GTTGCAGATG	ACTCTAACAC	ACCTACCTTT	GTTTCAGGTA	AATTAACAAT	TGATAACTTT	1380
	AGATGGGCTG	GTGTACCATT	CTATATTCGT	ACTGGTAAAC	GTATGAAATC	TAAAACAATT	1440
40	CAAGTTGTCG	TTGAATTTAA	AGAAGTACCA	ATGAACTTAT	ACTATGGAAA	CTGaTAAACT	1500
	GTTAGATTCA	AACCTATTAG	TAATCAATAT	CCAACCTAAT	GAAGGTGgTA	TCTTTLACAT	1560
	Ctaaatgcta	AGaAAAATAC	ACAAGGTATC	gAAACAGrAC	CTGtCCmATT	GtCTTACTCm	1620
45	ATGAGCGCTC	aAGaTAAAAT	Gaatactgta	GATGCATATG	AAAATCTATT	ATTTGATTGT	1680
	CTTAAAGGTG	ATGCCACTAA	CTTCACGCAC	TGGGAAGAAT	TAAaATCAAC	ATGGAAATTT	1740
50	GTTGATGCAA	TTCAAGATGA	ATGGAATATG	GTTGaTCCAG	AATTCCCTAA	CTATGAATCA	1800
	GGTACTAATG	GTCCATTAGA	AAGTGATTTA	CTACTTGCTC	GTGATGGTAA	CCATTGGTGG	1860
	GGACGATATT	СААТААТТСА	ATTAAAACGC	асатсттава	CAAAAAAAA	TGAGCGAATG	1920

	TATATTATGA	AATTATATTT	TACAATGCCC	AAAACTATTT	TAATAATCAT	TGAACAAATG	204
	GGTGTATAAT	TTATAGAAAT	AATGTAGAAT	AAAAATAAAT	GATTGAATTA	ATTGGAGTGA	210
5	AAGTTTTGGA	CGTTATCAAG	CAAATACAAC	AGGCAATTGT	TTATATTGAA	GATCGTTTAT	216
	TAGAGCCTTT	CAATTTGCAA	GAATTAAGTG	ATTACGTTGG	TCTTTCGCCA	TACCATCTTG	222
10	ATCAATCATT	TAAAATGATT	GTCGGCTTAT	CTCCAGAAGC	TTATGCACGC	GCGCGTAAAA	228
10	TGACACTCGC	TGCAAATGAT	GTGATTAATG	GTGCTACACG	ACTTGTAGAT	ATCGCTAAAA	234
	AATATCACTA	TGCAAATTCA	AATGATTTTG	CAAATGATTT	TAGTGATTTT	CACGGCGTAT	240
15	CACCTATTCA	AGCCTCTACT	AAAAAAGATG	AATTACAAAT	TCAAGAGCGA	TTATATATCA	246
	AATTATCAAC	TACTGAGAGA	GCACCTTATC	CATACAGATT	AGAAGAGACA	GATGATATTT	2520
	CATTGGTTGG	ATATGCACGA	TTTATAGACA	CTAAGTATTT	GTCACATCCT	TTTAATGTTC	2580
20	CGGATTTTT	AGAAGACTTG	CTCATTGATG	GTAAAATTAA	AGAGTTACGA	CGATATAATG	2646
	ACGTTAGTCC	ATTTGAACTA	TTTGTTATTA	GTTGTCCTCT	TGAAAATGGT	TTAGAAATAT	270
	TTGTAGGTGT	ACCAAGTGAA	CGTTATCCTG	CACACTTAGA	AAGTCGATTT	TTACCTGGCA	2760
?5	AACATTGTGC	GAAATTCAAT	TTACAAGGTG	AAATTGATTA	TGCAACTAAT	GAAGCTTGGT	2820
	ACTATATTGA	ATCAAGTTTG	CAGTTAACAT	TGCCATATGA	ACGAAATGAT	TTATATGTTG	2880
30	AAGTGTACCC	TCTCGATATT	TCATTTAATG	ACCCATTCAC	TAAAATTCAG	CTTTGGATTC	2940
,,,	CTGTTAAACA	GAGTCCTTAT	GACGAAGATT	AAATAATAAA	AAACAAAGAA	GCCCCTAAT	3000
	ATATCTATAG	GTCTACAAAT	GGCCTTAGAT	TCTATTAGGG	GGCATATTAA	TATGTTAATT	3060
35	TAGTTCGATA	ACACATGCTT	CATATGGACG	TAACTGTTTT	AAATTAACTT	TGGCATCATA	3120
	ATTAAATAGC	TTTACTTCTC	CATGGCTTAA	ATCAAATGGT	ACAGTTAATT	CTGCTTCGTG	3180
	GTTAGTAAGA	TTACCTACAA	TAAGAACTTG	CTTTTCATTT	AATGTTCTCG	TGTACGCAAA	3240
10	AACTTGTGAA	TTTTCAGCAT	CTACTAAATC	AAATTGACCA	TATACGTATA	CATCATTAGA	3300
	CTTTCTTAAT	TGAATTAAAT	CTTTATAAAA	TTGTAATACT	GAATGCTCAT	CTTCTAATTG	3360
	TTGTGCAACA	TTGATAGTTT	TATAATTCGG	ATTCACTGGG	AACCACGGTT	CACCATTTGT	3420
15	AAATCCTCCA	TTTAACGTAT	CATCCCATTG	CATTGGTGTG	CGAGAATTAT	CTCGGTTCTC	3480
	ATCTTTATAT	TTCGCAAGTA	AAGCGTCTAC	ATCTCCACCT	TGAGCTTTCA	CTATTTGATA	3540
io	GTCATTTTTA	ACAGCAACAT	CGTTAAACGT	TTCAATACTT	TCAAATGGAT	AATTCGTCAT	3600
-	ACCAATTTCT	TGACCTTGAT	AAATGAATGG	CGTACCTTGT	TGCAAGAAAT	AAACAGCTGC	3660
	ል ፕሮልርጥፕሪጥጥ	ССТС АТТСА Т	ассаата стт	CTCATCCTCA	CCCCACGTCG	ATACACCTCC	3720

	CCATCTATTT	AATACAGATT	TATACGAATT	TACATCAAAG	TGAGAATCAC	CACTATTCCA	3840
	CAGTCCCAAA	TGTTCAAATT	GGAATATCAT	ATTAAATTTA	CCATTTTCTT	CCCCGACCCA	3900
5	GTCATCAGCA	TCATCAGGGC	TTACACCATT	CGCTTCACCA	ACAGTCATAA	TGTCATACTT	3960
	ACTTAATGAG	CGATCTTTCA	TCTCTTGTAA	CCAAGTTTGT	ATACCTGGCT	GATTCATATC	4020
	TACATCAAAT	GCTGGGGCAT	ATGTTTTACC	CTCAGGTACA	GGTAAGTCAC	CCGCTTCAAA	4080
10	CGTCTTCTTA	ATATGCGTAA	TTGCATCTAC	TCTAAATCCA	TCAATGCCTT	TATCAAACCA	4140
	CCAGTTCATC	ATTTCAAATA	CAGCATCTCT	AACTTCCGGA	TTACCCCAAT	TCAAATCAGG	4200
15	TTGTTTTTTA	CTGAATAAAT	GGAAATAATA	TTGCTCAGTA	TTAGCATCAT	ATTCCCATGT	4260
	AGATCCATTA	AATATACTTT	CCCAGTTGTT	AGGTTCAGAG	CCATCTGGCT	TTGGATCTTG	4320
	CCAAATGTAC	CAATCACGTT	TGGGATTGTC	TTTACTAGAT	TTGGATTCTA	TAAACCAAGG	4380
20	ATGTTCATCA	GATGTATGAT	TTACAACTAA	ATCTAAAATA	AGCTTCATGC	CTCTATCATG	4440
	AACACCTTTT	AATAAACGAT	CAAAGTCTTC	CATCGTTCCA	AATTCATCCA	TAATCTCTTG	4500
	GTAGTCACTA	ATATCATAAC	CATTGTCATC	ATTAGGTGAT	TTAAACATTG	GACTGAGCCA	4560
25	AATGACATCG	ATACCGAAAT	CTTTTAAGTA	GTCCAATTTA	TCAATCATTC	CAGGTAAATC	4620
	CCCAATACCA	TCGTGATTAC	TATCATTAAA	ACTTCTTGGA	TATACTTGAT	ATGCTACTGC	4680
	TTCTTTCCAC	CATTGCTTAT	TCATTTTAAA	ACTCCTTTGC	TATCGCTGTG	TTGATTTTCT	4740
30	TATTTTTAAT	TCTGTATCTA	TAATGACGAG	TTCAATAACA	TCCTGTGCTT	TGTTTTTCAA	4800
	TATATTTAAA	ATTGCTGCAC	CAGCCTGTTG	ACCTAACATT	CGAGGCTTGA	TGTCAATACA	4860
35	GGTTTGTGGT	GGTGACGCAA	TTTCGGTTAA	ATAAGAATCA	TTGAACGTTG	CTGTCATTAC	4920
	ATCTTTCGGA	ATTTCAATAT	TAAGTTCATA	TAGGACACTT	AAAATCGCTA	AATGTAACAT	4980
	AGCATCTAAC	GAAATGATTG	CCTGTTTAAT	ATTTGGGTCC	TTCAAACGCG	TATGTAGATT	5040
40	TTGCATGTAA	TTAAAAATAA	CTTCTCTTTC	ATTACTAGTC	TCAATAATTT	GATAATTAAT	5100
	TTTATTTTGA	GAAGCTATCG	TTTCAAATCC	TTGAATTCTA	TCTTTTGAAA	CTTCAAAATT	5160
	TCCTTTTTCT	GTAATAAATA	TTAATTCATC	TACACCTTGT	TCAATAACAT	GTCGTGTCAA	5220
45	ATTTTCAGAA	GCTAATATAT	TATCATTATC	TATATGTGTA	AATTGATGAT	CTATATCCGA	5280
	TGTAGGCTTA	CCAATCACAA	TAAATGGCAT	GCTTTCATCA	ATTAACATTT	GTTTAATCGG	5340
	ATCATTTTCT	TTTGAATAGA	GCAGTATAAA	CGCATCAACC	ATTCGTTGTT	TAATCATTTT	5400
	ATAAACTTCA	TCCATTAAAT	CATTCATATT	ATTTGAGACT	GTCGTTTG TG	TACCATAGCC	5460
	ATGCTGGTTA	CACGTTTCAG	AAATTCCTAG	CAATACATTG	ATGTAGAATG	GATTCAGTCG	5520

	AGTTCTAGCA	GCGGTATTAG	GAAAATAATT	CAATTCTTCC	ATAACTTTCT	TCACTTTTGA	5640
	AATTGTCGCT	TCGCTAATAC	GTTGATTTCC	TTTTATAACT	CTTGAAACTG	TCGAAGGAGA	5700
5	AACACCGGCT	TTTAGTGCAA	CATCTTTAAT	CGTAACCATT	TAATCACCTC	CTGTTAATTT	5760
	CTGCATCGGA	AAACGCTTCC	AACCACTGTA	TAATACCAGT	TTAGTCACAC	TTTCTAAAAA	5820
10	AGTCAAAAGA	TTTGTGCAAA	CGATTGCATA	AAACGATAAA	AATAAAACCT	TCATACTGAA	5880
	ATTCAATCCG	AAAATCAATA	TAAAGGTTTG	TATAAATATT	AAAATCGATT	GTTTAGTCAC	5940
	TAACTGCAAA	ATAGTTACCT	TGGCCATCTT	GAAAATTAAA	TACACGTTGA	CCATTCATTT	6000
15	CTACTATATC	ATGCCCAGTT	AAACCTAAAT	CATTTAATTT	TGAGTATAAT	GCATCAAAGT	6060
	TTTTCTCTTT	AAACATTAAA	GATGGTGTTC	CTAGGTTCAC	TTCCGGGCTA	TGCTTTTCAA	6120
	TAAATTCTTT	TGCCATAATC	GTCAATGACG	TTTCAGCATC	TTTGGTAGGT	GATACTTCAA	6180
20	CTGCAACATA	GTCCTCAGCT	AACGGTGTTT	CACTTACAAC	AACAAATTCT	AAAGTTTCTG	6240
	TCCAAAATGC	TTTCGCTTTT	TCGACATCAT	CAACATATAA	CATAACTTGA	TTTAACTTTT	6300
	CCATAAAATA	GTACCTCTAT	TTCTCTATAG	TACATGCTAT	CATAACACAG	TAAATATTTT	6360
25	ATTACTTCAC	AAAATGCTTA	AAAATATGGC	GGGATGCTTT	TAAGGTCAAG	GATAATACTT	6420
	GTGTAATTTT	TTATAGGTTG	TAGCTACTCT	ATCACACTCT	CTTTTATATT	TATCAAAAGA	6480
30	TATAAAAAAG	GATAGTATCT	TTCAACTATC	CTTTAATCAA	TATTATTCTT	CAATCCATTG	6540
	TGTATGGAAT	ACGCCtTCTT	TATCTTTTCT	TTCGTACGTA	TGAGCACCGA	AGTAGTCACG	6600
	TTGTGCTTGA	ATTAAGTTTG	CAGGTAAATC	AGCAGCACGG	TAACTATCAT	AGTAATTAAT	6660
35	ACTTGATGAG	AAACCAGGTG	TTGGTACACC	ATTTTGAACA	CCAGTTGCGA	CAACATCACG	6720
	TAACGCATCT	TGATATTCAG	TAACGATGTT	TTTAAAGTAA	GGATCTAGCA	ATAAGTTTTG	6780
	TAATCCTGGA	TTATTATCGT	AAGCATCTTT	GATCTTTTGT	AAGAATTGTG	CACGGATAAT	6840
10	GCAACCTTCT	CTCCAAATCA	TAGCTAAATC	ACCAAGTTTT	AAATTCCATT	CATTATCTTC	6900
	ACTTGCTTTA	CGCATTTGcG	CGAAACCTTG	TGCATAAGAA	CAAATTTTAC	TCATATATAA	6960
	TGCTTTACGA	ATTTTTTCTA	AAAAGTCTTT	CTTGTCACCA	TCAAATGATG	CTTTTGGACC	7020
15	ATTTAATTCT	TTAGAAGCAT	TTACGCGCTC	TTCTTTGaTT	GAAGAGATAA	AACGTGCAAA	7080
	TACAGATTCA	GTAATGATTG	TTAATGGAAT	ACCTAATTCT	AATGCGTTAA	TTGAAGTCCA	7140
-0	TTTTCCTGTA	CCTTTTTGaC	CTGCAGTATC	AAGAATTTTT	TCAACTAATG	CTTCTTTATT	7200
50	TTCATCTAAT	TTCATGAAAA	TATCACCAGT	GATTTCAATT	AAATAACTTT	CTAATTCACC	7260
	ACCATOCCAC	ጥርጥጥጥር እ አ ርርር	תייריים מכורם איני	CTCTTCATCA	сасатесста	יידייירייריירייריירייריירייריירייריירייר	7320

	CATTTTCACA	TAGTGTCCAG	CACCATTAGG	TCCAATATAA	GTAACACATG	AAGCACCGTC	7,440
	TTTTGCCTTT	GCAGCAATTG	CATCAAGAAT	ATCTGCAACT	TTGTTATAAG	CTTCTTCTTG	7500
5	TCCACCCGGC	ATTAATGACG	GACCAGTTAA	CGCTCCAATT	TCACCACCAG	AAACGCCCAT	7560
	ACCAATAAAG	TTGATTGCAC	TTTGTGywAA	TGCTTTATTA	CGTCTGATAG	TATCTTGATA	7620
	GTTTGTATTA	CCACCATCAA	TTAAAATATC	TCCATCATCT	AATAAAGGTA	ACAAACTATC	7680
10	AATCGTTGCG	TCCGTAGCTT	TACCTGCTTG	AACCATTAAT	AAAATTTTAC	GTGGTTTTTC	7740
	TAAAGAATTA	ACAAATTCTT	CCAATGAATA	CGTTGGATGA	ATATTTTTCC	CTTTTGATTC	7800
15	TTCAACCATT	AAATCAGTTT	TTTCACTTGA	GCGGTTAAAT	ACAGATACAC	TATATCCGCG	7860
	TGATTCAATA	TTCCAAGCTA	GGTTTTTACC	CATAACGGCT	AAACCAATAA	CTCCAATTTG	7920
	TTGTGTCATA	TTACTTACCT	CACTTGTTGA	TTTTTCATTA	GTATTGTATC	ACAAAATAGA	7980
20	CATACACTAC	ACTAAATCAT	TTCGAATGTC	GCGCAACTAT	TTTGATTATT	TCTAACACTT	8040
	GACTTGCAAG	CAAGTTCAAT	GATTTAATCG	GCATTCTCTC	ATTTGTTGTA	TGGATTTTTT	8100
	CATAACCCAC	TCCTAAAATG	ACTGAAGGAA	TACCAAATGT	ATTAATAATA	CTGCCGTCTG	8160
25	AACCGCCACC	AGAAATAATT	GTATTTGCAG	ATAATCCTAA	ATTACGAGCA	CTTTCTTGTG	8220
	CAATTTTAAC	AACCGCTTCA	TTATCATTAA	TTTTAAATCC	TGGATAACTT	TGCTCCACTG	8280
	TAACTACTGC	TTTCCCACCT	AATTCTGATG	CAGTAGTTTC	AAACACATCA	GTCATATGTT	8340
30	TGACTTGTGT	TITTATTCTT	TCTGGATCGT	GAGAACGTGC	CTCTGCTTCT	AAAATGACTT	8400
	CATCTGCAAC	AATATTCGTA	GCTGAACCGC	CATGAAACTT	ACCAATATTG	GCAGTAGTTA	8460
35	TTTCATCAAC	TTGTCCTAAT	TTCATTCGAC	TAATTGCTTT	CGCCGCAATA	TTAATAGCAC	8520
	TAACACCCTC	TTTTGGCGTA	CTTGCATGAG	CCGTTTTGCC	ATTTTAAAAA	GCTGAAATTA	8580
	ACATTTGCGT	CGGTGCACCT	ACAACCGTAG	TACCGACATC	AGCACTTGCA	TCAATAGCAT	8640
10	AACCAAAGTC	CGCGTCCAAC	AACTCTGAAT	TTAATTCTTT	AGCACCAATT	AAACCTGATT	8700
	CTTCTCCAAC	AGTAATCACA	AATTGAATTT	GTCCATGTGG	GATTTGTTGT	TCCTTTATCA	8760
	CTTGCAAAAC	TTCAAGCATC	GCTGATAATC	CTGCTTTATC	ATCTGCACCT	AGAATAGTCG	8820
15	TACCATCAGA	GTATATGTAG	CCGTCATCTT	TTACAATTGG	CTTTACATTA	ATTGCGGGTA	888
	CAACAGTATC	CATATGGCTC	GTCAAATATA	ATTTAGGTAC	TTCGCCTTCT	TCGATAGTAC	8940
	TATTCATTGT	ACACACTAGA	TTATTGGCAC	CTAATTTAGG	ATGTTTAGCC	GCTTCATCTT	9000
50	CTTTAACATC	TAACCCTAAT	GCTATGAATT	TTTCTTTTAA	AATAGGTTGG	ATTGTTGATT	9060
	CATTCCCTCT	CTCACAATCG	A THE PROPERTY AND A	CTTCAAAAA	ССТАТТАВСТ	እ አጥር ጥጥ ርርጥ	9120

	GATGAAATAA	AATGTTACAG	TAATTGACGT	TACACAGATT	TATCAGGTTT	GTAAATTGTG	9240
	TCATATTATT	TTCAATTTAT	TATATATAAT	TATTGTAACT	CAAACTAAGC	TTTGTCAAAA	9300
5	ATATATTGAT	TGATTTTTCA	AAGATATCGT	ATAATGAGGA	AAATGACATA	AGCAAACTTA	9360
	CTCATGTTTT	TTATTATATT	CCTTTATGAT	GATTGCTAGT	TATATCGTCT	CAAGTTAAAA	9420
10	GTTTTATATC	TTATGTCGTA	ATTATTAATA	CAAAGGTTAT	TCATTTGGAG	GCACACAAAA	9480
10	TGCAAAATAA	AGTTTTAAGA	ATTATCATTA	TCGTTATGCT	TGTATCAGTT	GTATTAGCAT	9540
	TGTTATTAAC	GAGTATCATT	CCAATTTTAT	AAACTATATC	TCAACTACCT	ATACAAAATC	9600
15	ATACAATTAA	AAATCCATCC	ATTATAAACG	CATGTATTAA	TAAGTTATCG	TATTGCAACG	9660
	ATTACTTTCA	AACATGGGTC	ATACGGATGG	ATTATTTTTT	AAGCTACTTC	ACTATGCATT	9720
	TTCAATGAAC	CAAATTGCGA	TTTGATTTGT	AAATATTCTT	CTAATTCATT	TAATATTTGA	9780
20	ATAATACTTG	CTCTCGAGTT	AAGCGCTTTG	TGTGTTGTTG	GCAATGGCAG	TTCATCCAAT	9840
	TTCAAACGCG	TCTCATACAA	ATTGTGTAAA	CGCATTGCTG	TATAGTCATT	ACTATTCACA	9900
	TTTAGACCAA	TTTCTTTCAG	CAGTGACGCA	ACATCATTTA	AAAGCGGATC	TTTATGACAG	9960
25	ATACTTTCGA	TGAGCGGTTT	CATTCTCATT	AACAATTCCA	CTTGCTCTTC	TCGCATATCA	10020
	AAATAATGAT	AGTATGAATT	TTCGTTTCTA	ACAAAATGAT	TTTTAACATC	TCGGAACGCG	10080
	ATAGACTECG	CCTTTTTAAT	ATTTAAAAGT	AACACTTCAA	ATTCAATCGC	AATGGTATCT	10140
30	TCATATTTTT	CACAAATATA	ACTATATTTA	CTAAAAATAT	CAGCAATTTG	TTGCTCAATT	10200
	TTACATTTGT	ATTCGTCtAG	TTGTTTGTCT	AAACTTGGCA	TCATTAAATT	Cattgtaaat	10260
35	GCAATGCTTA	GTCCAATTAA	CAGTAATAAT	GTTTCATTAA	CAATTAAATG	TGCATCAATT	10320
	GATTTTGCAT	TAAAAACATG	AAGTAATATA	ACGCAACTCG	TAATGACACC	TTCTTGTACT	10380
	TTTAATACGA	CAGTTAATGG	TATAAATAAC	AATACGATAA	TACCGAGTAC	AATTGGACTC	10440
10	TGACCTAATA	AACTAAATAT	TGCTGAACCT	AAAAACAATA	СТААААААСА	TGATACTAAT	10500
	CTTGAAATAA	TCGCTTGTAG	CGAATGTACT	TTTGTATGTT	TAATACATAA	TACGACTAAT	10560
	ATGGCGCTTG	AAGCATAATT	ATCTAAACCT	AACAGCTTAC	TAATAATTAC	ACCTAAAGTC	10620
15	ATACCCACTG	CTGTTTTTAT	TGTTCTAAAT	CCAATCTTGT	AAGGATTTAA	CTTTAACATG	10680
	GGTTAGCGCC	TCTTATCTTT	CTTCACAATA	TTTATTGAAT	AATGTTTGTA	ATTGATTAAT	10740
	TACGTTCATC	ACATCATGAC	CTTCGATTTG	ATGTCTTTCA	ATCATTTCTG	TAATCTTTCC	1,0800
50	ATCTTTTACT	AATGCAAATG	ACGGACTTGA	AGGCGCATAA	CCTTCGAAGT	ATTCACGCGC	10860
	TCTTTGTGTC	GCTTCTTTAT	CTTGTCCAGC	AAATACTGTC	ACTAGACGAT	CAGGTAATAC	10920

	AGAATTGATC	ATAACTAGTG	TTGTACCATC	TTGTTTAAGA	ACTTTGTCAA	CATCTTCTGC	11040
5	AGTAGTTAAT	TGCTCATATC	CCGCAGATTC	AATTTCATTC	CTTGCTTGTT	CTACAACACC	11100
	GTTCATGTAT	AAATCGAAAT	TCATGnCCAT	AAGTTCAATC	ACCTATCCCT	TTATATTTAA	11160
	ACTALCCTCA	TTCTACTAAT	TAATAACATA	TTGTTCAATA	AACTAATCTG	AATCACACCT	11220
10	ATATTTAGAC	ACAATTTTAA	CAATATACCA	AACATTATTG	TGCTTAAAAT	CATGGTAACT	11280
	AATTTGTTCA	CATGTTTTCA	TTAATATGTT	TCAAGTATGA	TGTCTTATTT	TGACTTTACT	11340
	GCAAAAATGC	ATTCAACCAT	GTTGATTATT	GTTCTTTATC	TTTTTTGAAT	ATATTGCACA	11400
15	TATTTTAGTG	CCAAAAAATA	ATACATCCAT	CGACAAGAAC	AAGATAAAAC	AAGTTGTCGA	11460
	TAGATGCATC	TATGTTATCA	CTAATATATA	TTTGTATTTT	CTAAAGTATA	CTGTTCGATA	11520
	CGCTGTTTAA	TATGATTCAT	Aratttacct	GTTTGTAAAC	CATCTAAAAT	ACGATGATCA	11580
20	ATTGAAATAC	ATAAATTAAC	CATGTTACGA	ATTGCAATCA	TATCATTAAT	TACTACTGGC	11640
	TTTTTAACGA	TTGATTCTAC	TTGTAAAATC	GCTGCTTGTG	GATGATTTAT	AATACCCATT	11700
	GATGATACTG	AACCAAATGT	ACCAGTATTA	TTTACCGTAA	ATGTACCGCC	CTGCATATCT	11760
?5	TCAGCTGTCA	ATTGCTTATT	ACGCGCTTTC	GTTGCTAAAG	TATTAATTTC	TCTAGCTATA	11820
	CCTTTGATTG	ACTTTTCGTC	TGCATGCTTA	ATCACAGGTA	CGTATAATTT	ATTTTCATCA	11880
30	GCAACAGCAA	TTGAAATATT	AATGTCTTTA	TGTAAGACAA	TTTCATTTCC	TTGCCAGCTA	11940
	CTATTTAATA	AAGGATATGC	TTTTAAAGCA	TCTGCTACAG	CTTTTACAAA	GAAAGCAAAG	12000
	AACGTTAGAT	TATATCCTTC	TTTATTTTTA	AAGCTGTTTT	TATAATGATT	TCTCGTATTC	12060
35	ACAAGATTTG	TAGCATCTAC	TTCAATCATC	ATCCATGCAT	GTGGAATCTC	TGTTACACTA	12120
	TTAACCATAT	TTTGCGCAAT	TGCTTTACGC	ACACCATTTA	CTGGTATTGT	GCTGTTTTCA	12180
	CTATTGTCTT	CAGATGATTG	GTTACTTGAT	GTATCTACTG	ATGTTGATTT	TGTTTGAACT	12240
10	TGTTTGTCAG	ATTGAGCTGT	GGTACCACCA	TTTTCAATAA	CTGACATTAT	ATCCTTCTTA	12300
	GTTACACGAC	CTTCAAATCC	ACTACCTACA	ACTTGTGATA	AATCAATGTC	ATGCTCTGAA	12360
	GCGAGTTTAA	ATACAACAGG	TGAAAAGCGA	CCATTATTAC	GTGGTTGATT	TTGTTTAGCA	12420
15	GTAGATGTCT	GTTCCACTGT	TGCACTAGCT	TTTTTAGTAG	ATTTCTGAGT	ATGCTCATCC	12480
	ACTTTTGCTT	GTATCTCTTC	AGTTGTTTCA	TTTGTCTTTT	CATCAGCAGT	TTCAATTTTA	12540
50	CAGATAATTG	TATCAATAGC	TACTGTCTGC	CCCGCTTCAA	CTAAAATTTC	TGTAATTGTT	12600
,	CCTGATATCG	TGGAAGGGAC	TTCAGCTGTC	ACTITATCTG	TAATAACTTC	ACATAATGGT	12660
	TCATATTCAT	CAATATGATC	ACCAACAGAA	ACTAACCATT	GTTCAATGGT	GCCTTCATGA	12720

	AATTCACGCA	TTTTATTTAA	GATTTTTTCT	GGATTCATCA	TAATTTCATT	TTCTAATACA	12840
_	GGAGAAAATG	GCATAGATGG	TACALCTGGA	GCAGCTAAAC	GCATGATTGG	TGCATCTAAA	12900
5	TCGAACAAGC	AATGCTCTGC	AATAATCGCT	GACACTTCTG	ACATAATACT	ACCTTCTAAA	12960
	TTATCTTCAG	TTACAAGTAA	AACTTTACCT	GTATGTTTAG	CACGATCAAT	AATTGTTTCT	13020
10	TTATCTAATG	GATAAACAGT	TCGTAAATCA	ACGACTTCAA	CATTGATACC	GTCTGCAGCT	13080
	AAAATATCCG	CTGCTTGTAA	ACAATAATTG	ACCATTAATC	CATAACAAAA	TACTGTTAAA	13140
	TCTTCACCTT	CACGTTTCAC	ATCTGCTTTT	CCTAAAGGTA	CAGTGTAATA	TTCTTCTGGC	13200
15	ACTTCTTCCT	TTAAGAAACG	ATAAGCTTTT	TTATGCTCAA	AGTACAATAC	TGGATCATTT	13260
	GATTCGATAG	ATGATAATAA	AAGCCCTTTA	GCATCATACG	GTGTGGAAGG	AATAACAATT	13320
	GTTAAACCTG	GCGATGAAGC	AAATATACTT	TCAATACTTT	GTGAATGATA	TAGTCCTCCG	13380
20	TGAACACCGc	CACCAAATGG	TGCACGAATC	GTTAATGGGC	ATTGCCAATC	ATTATTTGAA	13440
	CGATAACGCA	TTTTCGCAGC	TTCACTAATA	ATTTGATTTG	TCGCAGGTAA	AATAAAATCT	13500
	GCAAATTGAA	TTTCTGCAAT	TGGTCTTTTA	CCTACCATAG	CTGCACCAAT	GGCAGTTCCA	13560
25	ACAATATTTG	ACTCAGCTAA	TGGCGTATCG	ATAACTCTGT	CTTCACCATA	TTTTTGTTGC	13620
	AGTCCTTGAG	TAGTACCAAA	TACGCCACCT	TTTCTACCAA	CATCTTCACC	AAGAATAAAC	13680
30	ACATCTTTAT	TTTGTTGTAA	TGCTAAGTCT	TGTGCCtGcG	TATCGCCTCT	AAATAAGATA	13740
	ATTTAGCCAT	TAGTTAAGAC	TCCCTTCTTC	GTACACAAAT	GCATAGGCTT	CTTCGACACT	13800
	TGGATATGGC	GCGTCTTCAG	CAGCCTTTGT	CGCTTTATTG	ATGATGTCTT	TnATgTCCGC	13860
35	TTCTATTTCT	GCCAACCAAG	CATCATCGAT	AATGCCAGCT	GAAAGCAACT	CTTTTTTGAA	13920
	CTTTTCATTG	CAGTCTGCTT	TTTTAAGcGT	TTCACGCTCT	TCTTTCGTAC	GATATTGGTC	13980
	GTCATCATCT	GATGAATGAG	CTGTCATACG	ACTTGTTACT	GCTTCAATCA	AAGTTGAACC	14040
10	TTGÁCCAGAA	ATAGCTCGAT	CTCTTGCTTC	TTTCATCGCT	TTATACATTG	CTAATGGATC	14100
	ATTACCATCT	ACTTGTTCAC	CATGTATACC	GTAACCAAGT	GCTCTATCCG	ATAATTTTC	14160
	AGCTGCGTAT	TGTAATGAAT	CAGGTACTGA	AATTGCATAT	TTATTATTTA	TAATGACACA	14220
15	TACAAAAGGA	AGTTTGTGTA	CACCCGCGAA	GTTTAAACCT	TCATGGAAGT	CACCTTGGTT	14280
	TGAGCTACCT	TCACCAACAG	TTGCTGTTGC	AATTTTCTTC	TTACCATCCA	TTTTTAAAGC	14340
	TAAAGCAGCA	CCAACAGCAT	GGGGTATTTG	AGTTGCTACC	GGTGAACTTT	GAGACAAAAT	14400
50	ATTCTTAGCT	СТАСТАСТАА	AGTGTGATGG	CATTIGTTTT	CCACCAGAGT	TAACATCGTC	14460
	ТТТСТТТССА	ATACTCATA	AAAACGTATC	АТАСССТСАС	ътъ СССътът	A A C TT A C C TT A	3.4535

	AATCTGAGTT	GCTTCTTGTC	CTTGACCACT	TACAACAAAT	GGAATTTTAC	CTGCACGGTT	14640
-	CAATAACCAC	AGTCTTTCAT	CTATTTTTCT	ACCTAAATCC	ATCCATTTAT	ATATTACTTT	14700
5	TAGGTCTTCT	TCGCTAAGGC	CTAATGATTT	ATAATCAATC	ATGTTAAATC	CTCCTATTTA	14760
	TACGTGAATA	GCTCTACTTT	CTGCTTTCAA	TCCTAATTCC	ATCAACACTT	CAGAGATGGA	14820
10	AGGATGTGCG	TGTGTTGTTA	GTCCTAATTC	TAATGCCGAG	CCATTCATGA	ACTGTAACAG	14880
	TGATGCCTCA	TTAATCAATT	CTGTTACATG	TGGACCAATC	ATATTAATAC	CCACAATTTC	14940
	TTCAGTTGAT	TGATCAATCA	CCATTTCGCT	ATACCCTTCG	TTTGTGTCAT	GGCTATCAAT	15000
15	CACTGCTTTA	CCAATTGCTT	TAAATGGTAC	TTTAAAACTT	TTAACTTTCA	TTCCCTCTGC	15060
	CTTTGCTTGT	TCAATGTTTA	AACCGATAGA	AGCAATTTCA	GGTTGTGAAT	AAATACACTT	15120
	AGGCATCATG	TTATAGTTTA	CTGGGATTGG	GTTCCCCTCA	AACATATGAT	CAACAGCCAC	15180
20	AACACCTTCT	TTTGATCCAA	CATGTGCCAA	TTGTAATTTT	CCTATACAAT	CACCAGCTGC	15240
	ATAAATATGT	TTATCTTCAG	TTTGTTGAAA	TTCGTTCGTT	AAAATATGTC	CTGATGTTGa	15300
	AAGTTTTATT	TTAGTGTTGT	TTAAACCAAT	ATCTGATGTG	TTAGGTTTTC	TACCAATCGA	15360
25	TAGCAACACT	TTATCTACTT	TAATTATGTC	TGAGGAAATT	TCAAACGTAA	CACCATCTTC	15420
	GTTAACATTT	ATATCATTTT	CAGAAAGTTT	TATTCCCTCA	TAGAATTTAA	CACCACGTGC	15480
30	TGACAATGAT	TTTTTTTAATA	GTTGTGAAGC	TTGTTTACTT	TCAGTTGGTA	AAATTCTTTC	15540
	ACCTGCTTCT	ATAACTGTTA	CGTCAACACC	TAAATCTATC	ATCAATGATG	CAAATTCCAT	15600
	TCCGATAACA	CCACCACCAA	TAATACCAAT	ACTTGATGGT	AACGTCTTTA	ATGATAATAT	15660
35	ATCATCGCTA	GATAAAATTT	TATCATGATC	AAATGATAAG	AATGGCAACT	CTGCAGGCGA	15720
	AGAACCAGTT	GCAATTAATA	CAAATTGGTT	GGGTAATAAG	TCTGATTCAC	CATCTTCATA	15780
	TTCGACAGAA	ATTGTGCCAC	TTTGAGGTGA	AAATATAGAT	GTACCTAGAA	TACGTCCCGT	15840
10	GCCATTATAA	ATGTCAATGT	GATTGTGTTG	CATTAAATGC	TTTACACCTT	GATACATTTG	15900
	ATTAATAATG	TCTTCTTTTC	GTGCCAACAT	ATTTTCAAAA	TTAACATTAG	CATCTTTGAC	15960
	ATCAACGCCA	AACATTGCTG	CCTGTTTTAC	TGTTTGAAAT	ACTTCAGCAG	ATTTAAGCAG	16020
	CGATTTAGTA	GGAATACAAC	CTTTATGGAG	ACAAGTACCT	CCTAATAGTT	GTCGTTCTAC	16080
	TATTGCCACT	TTTTTACCTA	ATTGAGACGC	ACGTATCGCA	GCAACATATC	CTGCAGTACC	16140
60	TCCACCGAGA	ACGACTAAAT	CATATTGTTT	CTCTGACATG	TTCTTACTCC	TAACTAATGA	16200
-	TATATATCCA	TTGAAAATTT	ATTAATACAT	AGTTTTCATG	TCCATTAATT	ACCTATTTTA	16260
	CATGATTGTC	ተልጥተልርተተ ቸ	GAATGCACAT	AAATAAATCC	ATAAATGAGT	ΔΤΤ ΓΔΑΓΔΓΔ	16320

TAAATCAGTA ACACTTGCAC CTGAAATCAT TCGTGCAATT TCATCTACTT TATCATCGCT 16440 AATTAACTCT TGAACTTGTG TTGTTGTACG ATCATCTTTT GATGATTTCG AAATTAATAA 16500 ATGATGGTCG CTCATCGATG CAACTTGTGG TAAGTGAGAG ATACAAATAA CTTGTATATA 16560 TTCTGCTaTA TCTCGCATTT TCTCTGCCAT TT 16592 (2) INFORMATION FOR SEQ ID NO: 54: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13794 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: 20 CCAATACAAC GTAAAAAGAT TGCTTGTGTT ATTAATGAGT TAGATAAAAT AATTAAAGGA 60 TTTAATAAGG AAAGAGACTA CATAAAATAT CAATGGGCTC CAAAATATAG CAAAGAnTTT 120 180 25 ACATTTCTTG ATTTATCTAT CTTATATGTA ATATCATCTC GAAAAAATGA GATACTAAAT 240 TTAAAAGATT TGTTTGAAAG TATTAGATTT ATGTATCCTC AAATTGTTAG GTCAGTTAAT 300 AGATTAAATA ATAAAGGTAT GCTAATCAAA GAACGATCCC TTGCAGATGA AAGGATTGTG 360 30 TTAATCAAAA TAAATAAAAT ACAATATAAC ACTATTAAAA GCATATTCAC AGATACTTCC 420 AAGATTCTCA AACCAAGAAA ATTTTTCTTT TAAATTTAAA CAGATTTACC TCTTGATAAA 480 ATAAATAAGC AATCATACTA CTTCTCAATT TAGTATAAAT AAAAATACAT AATTAACTTT 540 35 CTTTTGTTTT TATATTATTT CAATACCCTA CTATATATCA CAACACATAA ATTAAGCATG 600

45

40

TTCAACAAC TTTTTCACTT CATACTGACG TCCGTTTTTA GTTAATGGGT CAATAATTCC

ACACTCATTC AATTTAGTTC ACCATTTCGT GTTCCAATTT TACTGAGTAT CATGCTTTTA

ATGTTATAAA CCTAATGCTT TAATAAATCG TGTTAATTCT TCTCGCATAC TGTCATCTTT

CAATGCATAT TCTATGGTAG TTTTAACGAA GCCTAATTTT TCTCCAACGT CATAACGTTC

GCCTTCGAAG TCATATGCAT ACACTTGGTT ATCATTATTC ATACGTTCAA TCGCATCTGT

TAACTGAATT TCGTTACCTG CGCCTTCTTT TTGCGTTTTT AAATAATCGA AAATTTCAGG

CGTTAATACA TAACGTCCCA TAATAGCTAG GTTTGATGGT GCCGTACCTT GTGCTGGCTT

ATAACGATGA GTATCTGCTT CCGGAACTTC TTGGACACCT ATAACTGAGT GCCCTGTTTC TTCATAAACG TCAATCAACT GTTTCACTGC TGGCACTTCA GATTCAACAA TATCGTCACC

1080 1140

660

720

780

840

900

960

1020

	TAAACCTTTT	TGTTCTTTCT	GCCTTACATA	AAAAATATTC	GCAAGTTCCG	TTGAATACTG	1260
	AACTTTCTCT	AGTAATTCAG	ATTTACCTTT	TTCTTTTAAC	ACCATTTCTA	ATTCTTTTTG	1320
5	ACTATCAAAA	TGATCTTCAA	TCGCGCGTTT	GTGGCGACCT	GTCACTATAA	TAATATCTTC .	1380
	AATTCCAGCT	CTTGCAGCTT	CTTCAACGAT	ATATTGTATT	GTGGGTTTAT	CTAAGATAGG	1440
	AAGCATTTCC	TTTGGCATCG	CTTTAGTTGC	TGGTAAAAAT	CTAGTCCCTA	AACCAGCAGC	1500
10	GGGAATGATT	GCCTTTTTTA	TTTTTTCAA	AGTTAATGTG	CTCCTTTTCC	TAAGTATTAA	1560
	ATCTATGTAT	CAACGTCATT	TTAACACTAA	TTAGAACGCC	TTCATAGTGT	CATTGAGTAT	1620
15	GTAATTATTT	CTTGGGAAAT	TTGTTTTAAT	TTTAAAAAAC	AGGCTTACTT	CATATAATTT	1680
	ATGAAATAAA	CCTGTCAATT	TTGGATTGAT	TATGCTTTGT	GATTCTTTTT	ATTTCTGCGT	1740
	AATAACGCTA	AACCTAAAAT	GCTAAATAAT	CCGCCGAACA	ACATGCCGTT	GTTTGTTGAT	1800
20	TCTTCTCCAC	CTGTTTCAGG	TAGTTCAGAT	TTCTTAGATT	GTGCTTTTT	AGTTGGTACC	1860
	ACTGCTTTAA	CCTTTTCATT	GATTTCAATA	ACAGGTGTTA	CTACTTTACC	TTGTTCCACT	1920
	GGTTTAGAAG	GTTTTTTAGG	TTCTTCTTTA	GCAGGTGGTA	TTGGTTTACC	AGGTTCAGTT	1980
25	GGTACCTCTG	GCGTTGGCGG	TGTTGGTGTT	TCCGGCTCGC	TTGGTACTTC	TGGTGTCGGT	2040
	GGTGTTGGTG	TTTCCGGCTC	GCTTGGTACT	TCTGGTGTCG	GTGGCGTTGG	TGGCACGATT	2100
	GGAGGTGTTG	TATCTTCTTC	AATCGTTTGT	TGACCTTCAT	TATGACCACT	TACTTGTGGA	2160
30	AGTGTATCTT	CTTCAAAGTC	AACACTATTG	TGTCCACCGA	ATTGATAATT	TGGTTTATCT	2220
	TTATTTGTAT	CTTCTTCAAT	AATTTCAGTG	TGCTTATTGA	ATCCGTGAAT	ATGTGGCACA	2280
35	CTGTCGAAGT	CGATATCAAT	GATATTACCA	CCTTGTTCAT	ACTTAGGTTT	GTCTTTCTCT	2340
~	GTATCTTCTT	CGAATGATTG	GTTACCATTA	TTTTGACCAT	GAATTTGAGG	TACACTATCG	2400
	AAATCGATAT	CTACGATATT	GCCACCTTGT	TCATATTTCG	GTTTATCTTC	TTCTGTGTCT	2460
10	TCCTCAAATG	ACTGATTACC	GCTATTTTGG	CCACCTTCGT	AACCTAATTC	ACTCTTAATA	2520
	TCCACGTGGC	TATTTTCTTC	GATTTCTTCA	ATCACGCCAT	AATTACCGTG	ACCATTTTCA	2580
	GTTCCTAAAC	CAGAATGAGA	AATATGATGA	TTGTTTTCAG	TAATTTCCTC	GATTGGTCCT	2640
45	TGCGCTTGAC	CATGTTCTTC	AGGTAGTTCA	TCTACTAGTT	CAATCAGATT	ACTTTCAGTC	270
	GTATATTCTT	TCGTATCTTC	AATTGTTGTA	TGATCGCTAA	CAGCACCAGT	TACAATACCT	2760
	TTTGTAGAAT	CTTCGTCAAA	TTCAACTAGG	TTAGACTCAG	TAGTAACCTG	ACCACCACCT	2820
50	GGGTTTGTAT	CTTCTTCATA	TTCAACAACA	TCAGCATGAT	GTTTTGAATT	TTCATGTGTC	2880
	03.mmommos s	3.000003.03.00	3303033000	monmon comm	CA A TOCOTTA CO	TOTOTO CA TO A	204

	TCTTCGATTG	TACCAGTCAA	TTCATGCTTC	TCCACTGGCG	GCTCTGATTT	AAATTCAAGT	3060
	TCGATAGGAG	TACTATGTTC	TATAATAGGT	TCCTTTAGTT	TATCTTTGCC	GTCGCCTTGA	3120
5	GCGTTATTAG	AGTAAAATGC	AACGCCATTT	TTCCaAGTTA	AATTACTTGT	ATAATAATAG	3190
	TTATAATATC	CAAAAAGGTG	TGTTTGAAAT	TCTAAGTTGC	TAGCATTTGA	ATCATAATAC	3240
10	CCTTCATATT	TTATTACATA	ATTTTTACTT	TGGTCTAAAT	TATTAAAGTT	TAAAGAATAA	3300
	CCACCATTAG	TATCAAAATC	TAAACTCATA	TTATCAGTCA	CATCTTCAAA	TTTGCTGACA	3360
	TCATCAAGCT	TTGCATAnTn	AgctTTCAGC	TAAATCGTCT	GAACCAATGT	GTTTATATAC	3420
15	CTTAACTGTT	GGATTATTAA	CCCCTGGTTT	ATTTCCTTTA	GTTACTTGAC	CAGTTACTGT	3480
	CACAGAGCTT	AACGACTGGT	TGTTAGGTTT	CATGTACGCA	AAATGACTAA	ATTTCCCATC	3540
	TACTTTATTT	AAAGTATCAA	TTCGACCATT	AGCTGTTACT	CCCCAATTAT	CTCTAACTCC	3600
20	ACCTAAATAT	TGAATATTAA	ATATTTTGCT	AACCGTAGTC	TCACCCAATT	TAACTTCAAC	3660
	ATTTTGGTTA	CCTTTTTGCG	TCACTGTTGT	AGGATCAATA	AATAGATTTA	AAGATAATTC	3720
	AGCAGTTAAA	TCTTTCTTTT	CTTGTACATA	TTCTTTAAAC	GTATATCTAA	CTTTTCTTTC	3780
25	TCCAATTATT	TCTCCTGTCG	CCATAACTTG	ACCATCTGTA	CTTTTTATCT	CCGGAACTTT	3840
	ACGCAGTGTT	GAGATACCAT	GAGTTTCAAC	ATTATCGCTT	AATGTGAAAT	CAAAATAATC	3900
30	TCCCGCCTTA	ATTCCTTCTC	CAAATTTCCA	TTTATATTTC	AAGGTTACTC	TTTCTGCGTT	3960
	ATGAGGATTT	ACAACATTCG	TATCTTGTTT	ATGTCCTACA	ATTTCACTAC	CTTCTTCTAC	4020
	TTCCACTTTA	TTTGTTACAT	CTGTACCTGT	CGCTTTAGTT	TCTTCCACTA	CTTCTTTCTC	4080
35	TGCAACTGCT	GTAACGTCAt	TGatCTTTTC	ATTCTTGGTT	TAATTTCTGA	GACGTTACTT	4140
	GGTTGAGCTA	TGTCAACTTG	AGTTCCTGTA	GTTTCCTTAT	CAGCAACTTT	TTCCGATGGC	4200
	AAAŢCAACTC	GCGAAgTTTC	TACTTTTGGT	GCTTGCAcAG	TTTTCGGTGC	TTCTTCTGTT	4260
40	GTTACTTGTG	TTGATTGTGA	TGGTTGCTCA	GTTGATGTCG	CGCTGTATGA	TTGTGTTTCA	4320
	TCTATTGTAT	TAACGTTATT	TGTAGTTGTT	TGTGTTTCGC	TTGCTTTACT	TTCAGTAGCT	4380
	GAACTCCCAC	TTTCCTCTAC	TGTAGTATTG	TTTTGTTCCG	ATGCTGCAGC	TTCTTTTTCT	4440
45	TGTCCCATTC	CAACAACGAT	CATTGTTCCT	AAGAATACTG	AGGCCGCTCC	CAATTTGTGT	4500
	TTTCTTATGC	CGTATCTAAG	ATTGCTTTTC	ACTATAATAT	TCTCCCTTAA	ATGCAAAATT	4560
50	CATTTATTTT	TAAAACTCAA	TAAATGCAAT	TCTATATTGT	TCGGTTTTTA	AAAGCAATGA	4620
	AAAAAAGCGA	GTTAATAAAA	AGTTAAGATT	GTTGTTAACT	TTATGTATAA	TGAGTTTTTT	4686
			> # > # * # * * * * * * * * * * * * * *	CARACOMON	CA A CA COUNTY	3 T 3 T 3 T 3 C 3 C C	474

	TACTAAACCA	TACATAATAA	TCGCCTGTAC	AATGCATCAT	TAACAAGTCA	CTGAAACGCC	486
	TTTCATTGTA	TTAATAACGT	CACTATAATT	TTTATATCGT	TCGGTTTTTG	TTTGATTTTA	492
5	ATGATTATTT	ATACAAAAAC	AGCCGTATTT	CAAGCCGACA	TTTTAAATTT	AACTAAATTT	498
	GCATCTAGTT	AATAATTGCÁ	TTTATCAAAT	TTGTCTTATT	GATCCAATCT	AATTTGTACT	504
10	CACAAACTAG	TTTAAAATTC	TAACTTTATC	TCTCAGTTCG	TTATCAATCA	TCAGACATAA	510
,,	ACCAATGAAG	CAATCAGAAA	ACACTCTAAT	TTTCTATTAG	AAATTTGATT	TAATATAAAA	516
	AAACAGGCTT	ACTTCATATA	ATTTATGAAA	TAAACCCGTC	AATTTTTGTT	TAATTATGCT	522
15	TTGTGATTCT	TTTTATTTCT	GCGTAATAAT	GCTAAACCTA	GAATGCTGAA	TAATCCGCCG	528
	AACAACATAC	CTTTGTTTGT	TGATTCTTCT	CCACCTGTTT	CAGGTAGTTC	AGATTTCTTA	534
	GATTGTGGTT	TTTTAGTTGG	TGCCACTGCT	TTAACCTTTT	CATTGATTTC	AATAACAGGT	540
20	GTTACTACTT	TACCTTGTTC	CACTGGTTTA	GAAGGCTTTT	TAGGTTCTTC	TTTGGCAGGT	546
	GGTACTGGTT	TACCAGGTTC	AGCTGGTACC	TCTGGTGTTG	GCGGTGTTGG	AGTTTCTGGC	552
	TCACTCGGCA	CTTCTGGTGT	CGGTGGTGTT	GGTGTTTCCG	GCTCACTTGG	TACTTCTGGT	558
25	GTTGGTGGCG	TTGGTGTTTC	CGGCTCACTT	GGTACTTCTG	GTGTCGGTGG	CGTTGGTGGC	564
	ACGATTGGAG	GTGTTGTATC	TTCTTCAATC	GTTTGTTGAC	CTTCATTTTG	GCCGCTTACT	570
30	TTTGGAAGTG	TATCTTCTTC	AAAGTCAACA	CTATTGTGTC	CACCGAATTG	ATAACTTGGT	5760
, o	TTATCTTTAT	TTGTATCTTC	TTCAATAATT	TCAGTGTGCT	TATTGAATCC	GTGAATATGT	5820
	GGCACACTGT	CGAAGTCGAT	ATCAATGATG	TTACCGCCAT	GTTCATACTT	AGGTTTGTCT	5880
35	TTTTCTGTAT	CTTCCTCGAA	TGACTGATTA	CCTTTATTTT	GACCATGAAT	TTGAGGTACA	5940
	CTATCAAAAT	CGaTATCTAC	GATATTGCCA	CCTTGTTCAT	ATTTAGGTTT	GTCTTCTTCT	6000
	GTGTCTTCCT	CGAATGACTG	GTTACCGCTA	TTTTGGCCAC	CTTCATAACC	TAATTCACTC	6060
10	TTAATATCAA	CGTGGCTATT	TTCTTCGATT	TCTTCAATCA	CGTCATAATT	CCCGTGACCA	6120
	TTTTCAGTTC	CTAAACCAGA	ATGAGAAATA	TGATGATTGT	TTTTAGTAAT	TTCCTCGACT	6180
	GGTCCTTGTG	CTTGACCATG	CTCTTCAGGT	AATTCATCCA	CTAATTCAAT	CAGATTACTT	6240
15	tCAGTTGTAT	ATTCTTTCGT	ATCTTCAACT	GTTGTATGAT	CGCTCACLGC	GCCAGTTACA	6300
	ATACCTTTTG	TAGACTCTTC	GTCAAATTCA	ACTAAGTTAG	ACTCAGTAGT	AACCTGACCA	6360
-0	CCACCTGGGT	TTGTATCTTC	TTCATATTCA	ACAACATCAG	CGTGATGTTT	TGAATTTTCA	6420
50	TGTGTAGATT	CTTCAAAGTC	AATTGGATTT	GATTCCTCAG	AGGACTCAGT	GTATCCTCCA	6480
	ACGTGACCTG	CETCGCTATC	САСАССАСТА	тестьатесь	татсаатасс	TCATCAATCC	CEAS

	TGGTAATCAA	TGTCAAGAGT	TGATGAATCA	TATTCCTCTT	CAACAGTAGT	TACTAAATTC	6666
	TTATCATATT	GACCTGTAAG	AGTITCTTTA	ATTGTATCTT	CTTTATATTC	AAATTTATTA	6720
5	TTTTGAATAA	TCGGACCATT	TTTCTCATTT	CCGTTCGCTT	TATTACTGTA	ТААААСТААА	6780
	CCATTATCCC	AAGTTAAGGT	ATATCCTCTA	TCATAATAAT	ACTTATAAAG	TTGCTCTGGA	6840
10	TGTCCTACCA	TTTGTGTTCT	AAAATCAACT	TCATCAGTAC	CATTTAAATA	CTCTCCATCA	6900
,,	TAGTGAACAA	CATAAGTTTT	ATCTAGATTT	TCTATATTCA	ATGAATAGCT	TCCATTATTT	6960
	TGTAAATTCA	AATTCCCACT	CATATTACTT	GTGACTTCTT	TAAATTTAGA	AGTATCTGTC	7020
15	GTATTTGCAT	ATACACTCTT	CGCTATGTCT	TCATTATTAC	CCAAGTATTC	AAATATCCTA	7080
	ACTTTTGGTT	GATTTCCATT	CTGATTACTA	CCTTTCATTA	AAGTTCCAGT	AACAGTCACA	7140
	CTTGTCGTTT	TACCATTATT	AGGTTTAATA	AATGCAACAT	GCGAAAATCT	ATTATTCGCT	7200
20	TTATTAAATG	TCTCAATCGA	TCCATTTAAA	TTGGCATAAT	AATTCCCAAT	ACCATCTTTA	7260
	TATTTAACAT	CTAATTCCTT	TGAAGTTTGT	TCTTCATTTA	GTGTTGAAGT	TATAGTTTGA	7320
	TTTCCATTAG	TTTGTACAGT	TTTAGGATCA	ATAAATAAAT	TAATTTCTAG	TTCAGCCGTT	7380
25	ACATCAACCT	TATCTTCAAT	ATCATTTGTA	AATGTATATC	TAATCTTTCC	ACCTTCTAAA	7440
	ACTTCACCTG	TCGCCATTAC	GACTGAACCA	TTTTTAATTT	CTGGTACTTT	TCTAGCAGTT	7500
~~	GATACGCCAT	GCGTATTTAC	ATTATTTGAT	AAAGTAAAGT	CAAAGTAGTC	ACCTTGATGT	7560
30	AAACCATTCT	CAAATTTCAA	CTTATATTTT	AGTACCGCTC	GTTGTCCTGC	ATGAGGTTCT	7620
	ACTTTATTTG	TATTGTTATG	CCCCTCAATA	GAACCAATTT	CTACTGTAAC	TTTACTTGTT	7680
35	ACATCTGTAC	CCGTTTCCAC	TTTCGCGTTA	CTAGCTTCCT	TAGCTTCCGC	TACATCTGCT	7740
	GATCTTGTCA	CACGTGGCTT	ACTTTCTGAT	GCCGTTCTTG	GCTGTGCCAC	TTCAACTTGT	7800
	GTTTCTGCGA	CTTGATTTTG	TGTAGCCTTT	TTAGGTGTTA	AATCTACTTG	TCTTTGATCT	7860
40	CCGCTATTGT	CTTGAGATTG	TGTTGTTTCC	TTAACTTGAG	GTTTCGCTTC	TTCCTTAACT	7920
	ACCTCTTCTT	TAACTGTTTC	TATATTTGCT	GGTTGTGCAG	TTTGTGGTGC	TTGTACTGCT	7980
	TTTGGTGCTT	CTTCAGTTGT	TACTTGTGTT	GCGTTTGACG	GTTGTTCTGT	TACTGTTGCG	8040
45	TTATATGATT	GAGTTTCTTC	TATATGATTA	ACGTTAGTTG	CAGTTGTTTG	TGTTTCACTT	8100
	GTTTTATTAT	CAGTAGCTGA	ATTCCCATTT	TCTTCTACTG	TAGTTGTCTT	TTGTTCTGAT	8160
	GCTGCAGCTT	CTTTGTCTTG	TCCCATCCCA	ACAACGATCA	TTGTTCCTAA	GAATACTGAT	8220
50	GCTGCTCCCA	ATTTATGTTT	TCTAATGCCG	TACCTAAGAT	TGTTTTTCAC	TATAATATCT	8280
	CCCTTTAAAT	GCAAAATTCA	TTAATTTTTT	AAACTTAATA	AATGCAAGTC	TATATTGTTC	8340

	ATGTTAATTG	TATTTTAT	TATTTGAAAT	ATACCTATAA	ATTGTATTCA	AGTCATCAGA	8460
	AACCCTTGTC	ACACAAGGCT	TGTATTTTT	ATACTTATTT	TTTAAATTAA	ATTCATCATT	8520
5	ATCTAATTTA	AAACAATATA	CTAAACGTTT	CATAATTATC	GCCTGTACAA	TACGCACAAA	8580
	AACATGTCTT	GAAACGCCTT	TCATTACTCT	AAAATACCCA	ATATACTTTT	TATATCGTTC	8640
_	GGATTCTGAG	TATTTCAGAC	GATTTTCTGC	АТАААААТАА	ACGTGTTTCA	AGGCAATATA	8700
0	TTGCAATTAC	CTAAAAACAC	GTTTACTTAA	TATTTAGTTA	AACAAATAAG	CTAATGAATA	8760
	AAATGAAGAT	GATACCTGAA	ACGGAAATAA	TCGTTTCTAA	TAATGACCAT	GTTAAGAATG	8820
5	TTTCTTTTAC	AGTTAAACCA	AAATATTCTT	TAAACATCCA	AAATCCTGCG	TCATTTACAT	8880
	GAGACAAAAT	CACACTACCT	GCACCTATCG	CAAGTACAAC	TAATGCAACA	TTTACATCTG	8940
	ATGATTGTAA	TAATGGTAAG	ACAATACCTG	TAGTTGAAAT	CGCAGCTACT	GTAGCCGAAC	9000
20	CTAATGCGAT	ACGTAGCACA	GCTGCAACAA	TCCATGCTAG	TAAAATCGGA	GACATCTCTG	9060
	TACCTTCAAA	CATTTTAGCA	ATTGTATTTC	CGACACCGCC	GTCAATTAAT	ACTTGTTTAA	9120
	ATGTACCGCC	ACCGCCAATA	ATCAATAACA	TCATTCCGAT	TGGATAAATC	GCATTCGTCA	9180
25	CTGATTCCAT	AATATGATTC	ATCTTACGCT	TTCTCATTAA	TCCCATCGTA	ACGATTGCAA	9240
	ATAATACTGC	TATTAGCATG	GCTGTCCCTG	CTGTTCCTAT	CATATAAATG	ATAGATTCAA	9300
	ATAGATTTGT	AGGTTTGTCA	TGCCCAGTTA	CAAGTTGCGT	TATCGTAGAC	ACTAACATTA	9360
30	ATATGACTGG	TAATGTTGCT	GTTAATAAAC	TCATACCAAA	TCCTGGCATC	TCTTGATCCG	9420
	TAAATTCTTT	TTGTGCACCT	AACGCTGAAA	TATCGCCTTC	TCGTGTATAC	GCAGACGGAA	9480
35	TCATTTTTTG	TGCAcTTTGT	TAAATATAGG	CCCTGCAATG	AGTGTAACTG	GaATGGCAAT	9540
,	AATCATACCA	TACAGTAATA	CATCTCCAAC	ATTTGCCTTT	AATTCTTTTG	CGATGACTAC	9600
	CGGTCCTGGA	TGTGGTGGTA	AAAAGCCATG	TGTCACTGAT	AAAGCTGTTA	CCATAGGTAG	9660
40	TCCTAGTTTT	AACACTGAAA	CATTTGCGCG	TTTTGCTACT	GTAAATACTA	ATGGAATCAG	9720
	TAAGACTAAA	CCTACTTCAA	AGAACAATGC	AATACCGACG	ATAAATGCTG	CAACAAGCAT	978
	TGCCCATTGT	ACATGTTTTT	GACCAAATTT	TTGAATCAAC	GTGTCTGCGA	TTCGAGTTGC	984
45	ACCACCACCA	TCAGCAAGCA	ATTTCCCAAG	TATGGCACCT	AAACCGAATA	TCAGTGCAAT	990
	GTGGCCGAGC	GTACTGCCCA	TTCCTTTCTC	AATCGTCTCC	ATAATTTTAG	TCAATGGTAT	996
	ACCTAGCATT	AACGCTGTAA	TCATCGATGT	GATAATTAAT	GAAATAAATG	TATTTAATTT	1002
50	AAACCCAATA	ATTAATACTA	ATAAAATAAC	GATACCTAAA	ACAACACTGA	TTAACGGCCA	1008
	ተል ሞሞርርሞታል	AACATGACAT	TCCCCTCTTT	CTCTTTTCAA	TAGAATGTAA	CACCGTCGTC	1014

	GAGTGACGTA	TTTATTGTGT	TTTATTTTCA	GCGATATGTT	GGCGTTGAAA	ATCTGCAATT	10260
_	TGTTCATAAT	TCTCTGTTAA	AGAACGACTT	AAATTGATAA	AAATGGATAC	GATCTCTTGG	10320
5	TAAACAGTGA	CATTTTCTTC	AATCGGCGTA	TGATTGTTTG	TGGCACCGAC	CATCGATGAA	10380
	ACGATTGAAA	AATCTTCAAT	GTCACCTACA	GCTTTAAGTC	CGAGCACGCA	GGCACCTAAG	10440
10	CATGAACTTT	CATAACTTTC	AGGAACCACT	AACTCTGTGT	CAAATATATC	TGACATCATT	10500
	TGACGCCATA	CTTCACTTTT	CGCAAAACCA	CCTGTTGCTT	TTATCATCTT	AGGTGTTTCA	10560
	TTCATTACTT	CAATAAGCGC	AAGATAGACG	GTATACAAAT	TGTAAAGAAC	ACCTTCTAAT	10620
15	GCAGCGCGAA	TCATATGTTC	TTTTTTATGA	GATAAAGTTA	AACCGAAGAA	TGAACCTCTT	10680
	GCATTTGCGT	TCCAAAGCGG	CGCACGTTCT	CCTGCTAAAT	AGGGATGGAA	TATTAAACCA	10740
	TCTGCACCTG	GTTTAACACG	CTTTGCAATT	TGAGTTAAGA	CATCATAAGG	ATCAACACCG	10800
20	AGACGTTTCG	CAGTTTCGAC	TTCACTCGCT	AGCAACTCGT	CGCGCAACCA	TCTCAATACG	10860
•	ACACCACCAT	TATTTACAGG	ACCTCCGATG	ACGTAGTGGT	CCTCTGTTAA	GACATAACAA	10920
	AATATTCTAC	CTTTGTAATC	AGTACGCGGT	TTATCTATCA	CAGTACGAAT	CGCCCCAGAT	10980
25	GTACCGATTG	TGACAGCAAC	TTCTCCTTTA	CCAACACTAT	TGACACCTAA	ATTAGAAAGG	11040
	ACCCCATCAC	TCGCACCAAT	AACAAACGGT	GTATCTTTAT	TAAGCCCCAT	TAATGTTGCA	11100
30	TAACGTTCTT	TCATACCTTT	CALCACATAC	GTTGTTGGAA	CTAATTCCGG	CAACATTTCC	11160
50	TTGGAAATAC	CCAGCAGTTC	TAATGCCTCA	ACATCCCAAT	CTAATGTTTC	TAAATTAAAC	11220
	ATCCCTGTTG	CGGAAGCCAT	TGAATAATCA	ATGATATATG	TATCAAATAA	ATGATAGAAA	11280
35	ATGTATGTTT	TAATATCTGC	AAACTTAGCA	GTACGTTGAA	ATACATCTTG	CCATTCATGT	11340
	TTCATCCAAA	AAATCTTCGC	TAATGGCGAC	ATAGGATGAA	TCGGTGTGCC	TGTTCGCTGG	11400
	TAAÃTCGCAT	TGCCATCATG	CACTTCATTT	ATTACTGTTG	CATATTTTGC	AGCGCGGTTA	11460
40	TCTGCCCAAG	TAATATTATT	TGTTAATCTT	TGATGTTGCT	GATCCATCGC	AATCAAGCTA	11520
	TGCATTTGCG	CACTAAATGA	CACAAACTTA	ATGTCGTCTT	TATTAACTTT	GGATTCTCTC	11580
	ATAACATATT	TAATAGTCAT	TAGTACTGCA	TCAAATAATT	CATCTGGGTT	TTCTTCTGAG	11640
45	ACATCAACGT	TTGGTGTGTG	TAAATCATAG	CCTATTTGAT	GTTTCATGAT	AAAAGTTCCA	11700
	TTTTCATCAT	ATAAGACTGA	CTTGGTACTC	GTCGTTCCAA	TGTCGACACC	AATCATATAT	11760
	TTCATGATAA	ATCCTTCTTT	CTTTCATTTT	AATTCAACCA	AAATCCTTCA	ATATCTTTAC	11820
50	CAACATCGTC	GAAATTTAAA	TGAAACGCTT	CTTTCAAAAT	TTGACTGTCG	TATTGTTCCA	11880
	CTGCATCAAT	AAACACTTGA	TGATTATGAT	GTATGCGTTC	AAAATCTTGC	GGGTTCTGTT	11940

	AAAATGAGTT	TAAATATTGA	TGATTAGATG	CTTTGATTAA	TGTTTCATGA	AATTCAAAGT	12060
	CATGCTTCGT	AAATGATTCT	GCATCCTCAA	ATTTTACTGC	CACTTTCATC	ATTTCAAGTT	12120
5	GTTTCTTCAT	TTCTTTTACG	ATAGGTAGTC	GCTCTTGATT	TTTAACTCTT	GAAAATGCAA	12180
	ATGACTCTAA	CATCAGTCGC	AAATCATACA	TTTCTTTCTT	TTCTTGTTCC	CCAAACGGCA	12240
o	ACACATGTGC	ACCCATTCTT	TCTAATTGGA	TGAGTTGATT	TTGTTGCAAT	AATTTAAATG	12300
	CATCTCGAAT	TGGCGAACGA	CTCACATTAA	ATTGCTTTGC	CATTTGATTT	TCAGTGAGTA	12360
	ACGTACCTTC	AGCTATGTGA	CCATTCACAA	TGCCTAAGCG	TAATTCTGCC	GCGATACCTT	12420
5	CTCCAGTTGT	CATACCTTCC	AACCATTTCT	CTGGATATCC	ATACATCATC	AAAGTCACTC	12480
•	CTTCATTACA	CGACATACTT	GTATACAAGT	ATGTTAATAT	AGTTATTATG	AGTTTGCAAG	12540
	CGCTTTCTTT	ACGAGCACTA	AAATAGTGAC	CACCCCTTTT	CGATTTAAAT	TTAAAGGAAA	12600
20	TGGTCACTAT	CACACGAATG	ATTTAATTGT	TATGTTGTAT	GTGGGATATT	TCTAATTGTT	12660
	CTGTACTCAT	ATGCGCTTTA	GGTACTTCAA	TGCAATAATG	CGTTTCATGA	CAGTTTGGAC	12720
	ATTCGAATCG	ACGTGTTGTC	GCTGTATGTT	TCGCTTTGAT	AACTGCCCAC	AAAGATGGTG	12780
?5	AGAATATATG	CTGGCAGTTA	GGACATAAAT	AGGCAACCTT	TTGTTGGTAA	TAAAAAGTAA	12840
	CACCAATGCC	ATAACCAATC	ATAAATGGTA	AAGCAATTAA	AAACGGCCAT	TTATTTTCA	12900
	TCAAAATTGC	ACTTATAATG	CTAGAATATT	GAATTATTCC	TATAATACCA	GCACTAATCC	12960
30	AAATGTTACG	ACGAATACTT	TTCATTTCAG	CTGATTTACT	CATGACATGC	TCTATGTCTT	13020
	TTAAGTGTGT	GATTGGAGAC	GTCGACGCTT	CATTTACGTA	ATATTGAACA	TTTTAATTT	13080
35	TGTTTAATAC	CGCTTGTTGC	TGTTTAACTT	GTTGGTTAAT	TTCTTGTTGT	TTCATAGTTA	13140
	GTAAAGTATT	GAGCGTCTTC	AAAGTACCTT	CACCTTTTAG	CAACATATCI	ATATCGCTTA	13200
	ACGCACAACC	TAAATCTTTA	AGCAATAAGA	TTAACTCTAA	TGTTTGTCGC	TGTTGTTCTG	13260
40	TATACACACG	ACGCTTTCCT	TCTGTAAATC	CTTGTGGTTT	CAAAATACCI	TTGCGATCAT	13320
	AATATTGAAT	CGTTCGTGTT	GTCACATTG	ATAATTTTGC	GAGTTCTCC	GTCGAATAGT	13380
	TAGACATAGA	TTCCACCTCC	TATAATTACO	ATAGTTGATG	ACCCGACGT	ACGAGCAAGT	13440
45	ACAATTTCCA	CATTTTAAAG	AAATTTATT	TACTAGGCGT	CTTATTTTI	A TGATTTCGTA	1350
•	CCATGTTGAT	TTACAAACTC	: ACTCAAACTA	A AGTAACACAC	CTACTAAAC	TCTACTCTGT	1356
	TATTTCAGAA	TGAATTTGTT	GTAATTTAT	TTCAACTTC	GTAATCTCTC	G TCGCACATTC	1362
50	TTTCAGTAAA	TCTCGATACT	TTTCCGTCT	TGCATTGTT	TTATAACGT	A TTTTATGTTC	1368
**	ሞክ አስርጥጥር <i>ብር</i>	י הארמיתמייררי	. ተልሮሮተልሞር ር	r TCTAATTTGA	ATTTCAACAG	GCAATACCTC	1374

(2) INFORMATION FOR SEQ ID NO: 55:

(i)	SEQUENCE	CHARACTERISTICS	:
-----	----------	-----------------	---

(A) LENGTH: 1059 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

15

20

25

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

	GGATAAGTTC	AGGTAAATTC	ATTTCTTTTT	CAATTTTGAT	TTTCATTGTT	TCCGCCCTTT	60
	TAAAATAAAG	TTAGTTGCTT	CTGTTCCTCA	TATTCCAAAT	CACTTTGCTT	TATATATGTT	120
	TCAAGCTCTT	CCGCTGTATC	AAATGTCTTT	TTCACACCTT	GCCAACCTGG	CACGATATGA	180
	CCGTGAAAGT	AATAAGTGCC	ATTTACTACA	TGGATATGTG	CCACTCGTTC	GTTATCCTGA	240
	TACAGATATC	TCTTAGATCC	AAAGAATTGA	TTTAGGTATT	CTTTACGCGC	GCTATCTGTC	300
	ATGGTCATCA	CTCCTTTTAA	CAATTAGGCA	GACCAAACGA	CATGCATTCG	TCGTATAGCT	360
	CTTCATTACT	TATGCTTGCC	TTATAGTTTT	CAATCACATT	GCTAACTTCT	TTATGACTCA	420
	TTGCTTTAAC	TTGTTCGTCT	GTATATTTTT	CGCAGTCTTC	TAATTCCAGT	TGCTCCTGTA	480
	ATGACATCAC	ATATTCAACT	TGTCTTTGGG	TTGCCATCGT	TAACCCTCCC	ACAAGTCAAA	540
	AGCTCTTTGG	ACGTAAAACT	TCGCCTTTGC	TAAATCCTCA	TGACCATTCT	TTAACGGTGC	600
	TCTAGACATG	TATTTGATTG	CATTACCTAT	TGCGAATGCŤ	AGTTGAGGTG	GATACTGTGC	660
	CGTAACCTGT	TCGATAAAAT	CTATAATTTC	AATGTCGCCG	TATGTGTAGT	GCGCTGGTTG	720
•	CTTAACATTG	TCTTGCGCTT	CGTTCATATC	TACTTTTCTG	TTACTGATTA	CGCTCATTAT	780
	GCTTCACTCC	ATTTCTTGAA	CATTTGGTTA	TAAGTGACAT	CGAACCAGTA	CGGATCACGT	840
	GAATGTTTTT	GTGGCGTTCC	ATCATAAAGC	CATGGTCTTA	ATCTTCTCTT	TCTTTCCTGT	900
	TCATATTCCG	CTCTCACATT	TCGTTGGTAT	CGGTTCAAAA	TCGCTTTTTT	TCTGATTTTT	960
	TCTCTCCCTT	TTTCTTCATC	TTTnATtTGA	CTCTnCATAT	ATTCAACTTC	TTCTGTAGAT	1020
	nTTGAGTCCT	TTCTTCCACA	CAATAATTCA	nCGCCGCGC			1059

(2) INFORMATION FOR SEQ ID NO: 56:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30246 base pairs
 - (B) TYPE: nucleic acid /
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

	GAAGTAAAAG	AAGAATTAAA	TTTAACATTA	ACAATGGATG	AAATTGAATA	TGTCGGGACA	60
•	ATTGTAGGTC	CTGCATATCC	ACAACAGGAT	ATGTTAACTG	AGTTAAATGG	ATTTCGCGCA	120
5	TTAACCAAAA	TCGATTGGGA	AAÁCGTAACT	ATCAATAATG	AAATTACGGA	TATACGCTGG	180
	ATTGATAAAG	ATAATGATGC	GTTGATTGCG	CCTGCTGTCA	AAGTTTGGAT	TGAAACTTAT	240
_	GGTGGTAAAC	ATGACAAATA	ATGACACCAT	CATGTTACGA	CATTATGTCC	CACAAGATTA	300
0	TTCGATGTTA	GAAGCTTTTC	AATTAAGTGA	AAGTGATTTG	AAGTTTGTTA	AAACGCCAGA	360
	GGAAAATATT	ACAGCTGCAA	TGTCTGATAA	TGAAAGGTAT	CCCATCGTTG	TAATGGATGG	420
15	CAGGCAATGT	GTGGCCTTTT	TTACATTACA	TCGTGGAAAA	GGGGTCGCAC	CATTTAGCGA	480
	TAACCAAGAT	GCAGTATTTT	TCAGGTCATT	TAGTGTTGAT	CAACGTTATC	GTAATAGAGG	540
	AATAGGTAAA	GTGGTAATGG	AAAAATTGGC	GTCATTTATC	ACTTCAACAT	TTCAGGATAT	600
20	TAATGAGATT	GTGTTAACGG	TTAATACTGA	CAATCCACAT	GCCATGGCAC	TTTATCGCCA	660
	ACAAGGATAT	CAATATATGG	GAGATAGTAT	GTTCGTCGGA	AGACCTGTTC	ATATTATGGC	720
	GTTAACTATA	AAATAAATTA	AATTTAAAAG	CATCTTTACT	CATCGTCGAC	CACAACAATT	780
25	AATGATGAAT	AAAGGTGCTT	TTTGTTATAG	ATCATCGGAC	AATTTACTAT	AGTAAAAAGC	840
	GACCTAGTGA	ACAATTGACA	TATATCCACA	GGTCGCTTAA	CTTAAGTTAT	ATTGCTAGTT	900
	GCGATTAATT	GATAGACTCA	TCATTTTTGC	GCTGTCGAGA	TGGTCTTTTT	ATTAAAAATG	960
30	CCGTAATCCA	AGCCGTAATC	GGAATACTGA	TTGCAACGGC	AATACCGCCT	AAAATAATAG	1020
	AAATAAATTC	TTGGGCAAAT	ATTITCGAGT	TTATAATATG	ACCAAATGAA	TATTTAAGTT	1080
ac .	TGAAAAACCA	ААТАААТААА	GCAAGTTGGC	CACCAAAAAA	GGCAAGGTAA	ATCGTGTTCG	1140
35	CAGATGTCGC	TAAAATTTCT	CTACCAACAC	GCATGCCAGA	TTGGAATAAT	TCGTATTGCG	1200
	TAACGTTgGA	TTCACTTGAT	GCAATTCATA	AATGGGTGAA	CTAATGGTAA	TTGTTAAATC	1260
40	TATCACAGCT	GCAATAACAG	CAAGAATAAT	AGTGAACACC	ATAAATTGAA	CCATATCAAT	1320
	GCCAATATTC	ATTGAATACA	CATATGTTTC	ATCTTGTTGT	TCGGTTGaAA	AGCCTTGTAG	1380
	ATGACCGAAG	TAGACCGATA	AATAAATGAG	TGTAATCAAC	AATATTGTTG	TAACGATAgT	1440
45	GCtGgATAAA	TGCaGCTTGT	GTTTTAACAT	TGTAACTATT	GAGTACGAAT	AAATTACAAG	1500
	CGCCAATAAT	' AATGCAGAAA	AAGAATGTGA	CGACATAAAT	CGGTACGCCA	AAAATAATCA	1560
	АТАСААТАСТ	' AATAATTAAA	ATAGCGAAAT	TTAAAAATAG	GGTTAAATAA	GAGATGAATC	1620
50	CCTTTTTACC	TCCGAAAATT	ATCATCAGAA	AGAGGAGCAA	TAACGCCAAT	ATAAATACAG	168
	САТТСАТТСТ	י יייירכררייירר	TTAATGTTT	AAATATTTCC	ATAAACAATA	TTGTGATAGG	174

	CATCGAAATA	GTATAAGTCA	CTGTATTGGC	ATTTTTTAAA	AAGATTAAAA	ACATAGGTAG	1860
•	TGCACCGGAT	AAATATGAGA	ATAATAAGAT	GTTAGTCATT	GTTCCCATAA	TATCTTGGCC	1920
5 .	GATGTTTCGC	CCAGCAAGCG	CCCATCTCCT	CATTGAAATG	TGTGGCGTAC	GCTGTAAAAT	1980
	TTCATGCATA	CCACTAGCAA	TTGTAATTGC	AACATCCATA	ATAGCGCCAA	GTGAACCTAT	2040
	TAACACTGAG	GCTAGGAAGA	TATCTTTCGG	TGGTAATGAT	AAAAAGTTCA	TCGTTTCATA	2100
10	TTTAATGCCT	TTACCATCTG	TCATATATAT	GATTAATTCT	GTTAAACCTA	TACTCAAAAA	2160
	AGTTCCGATA	ATTGTACTGG	CTATGGTAAT	GAGTGTACGC	ATATGCCAGC	CTGTAACGAG	2220
15	CAATAAAGTG	AGTATTGTTG	AACAGATCAT	GGCAATGGTC	ATGAGTAAGA	TAATTAAT	2280
	ATTGCTATGT	TGAATATGAA	TGTAAATTGC	GATTAATATG	GCAATAGAAT	TCAAGATTAA	2340
	CGATAAAATC	GATTGCAGTC	CGACTTTGCG	ACCAACCAAT	AATACAGTTA	ATAAGAACAA	2400
20	ACCAGTGATG	ATAACCGTTA	AGGTATCACG	CTTCTTTTCT	ATAATATAAG	CATCACTCGG	2460
	CTTGTTAGAA	ATATGTAATA	ATACTTTTTC	GTGTGTGCGA	AATGCCTCAG	AATCTGCTTG	2520
	CGATTTGACG	TACTGATGAT	TAATCGTCGT	CGTTTCTCCA	GCAAATTGAC	CATTTAATAT	2580
?5	TTTGACTTTT	AATTGATTTT	TATATTTAAT	ATCACGATTA	TTTTGTGCAT	CTTTTGTAGG	2640
	TGTCGAAGAA	ACATGTTTGA	CATCTATAAT	TTGACCAATT	GGTTTGTTGT	AAAAGTTCTC	2700
	ATTATTGAAT	GTAAATAAAA	TAGCACCAAT	GAATGCGATG	CAGAACAAAC	CTAAAATTAT `	2760
30	ATTAAATGGC	TTTGTAAATA	AATTTCTATA	TTTCAAAAAC	AAAACCCCAA	TTCTATGAAT	2820
	GAATTAATAT	GGTGATTATA	CGCCCTTAAT	TTTTTATTTT	CAAAGATATT	ACTGCTAAGT	2880
_	GTAAAACGAA	AATCATCATT	GATAGCATCG	AATTACTTAA	TGGAATGTAG	ACGTTTTAGT	2940
35	CATTAATTGC	TGAATAAGTG	TTAATAATAT	GCCAATATCA	CTCTTTGTAT	AAGGCTCCTT	3000
	TGTAATAGCA	CATATCGTTC	TTTTTAATTC	AGTATGATCT	AATTTTATAT	CTATCCATGA	3060
10	TTTAGATTCT	GGTAAATGTA	TATTTTGTGA	TGAAATGATG	TAACCTTCTT	TTTGACGAAG	3120
	GAGATACTGC	GCAAGTGGTT	GGCTACTGAT	TGTGTATACA	TCTGATTTAG	TAATCTTGCG	3,180
	CAATTGTTTT	TTTACAGTTT	CGGCAAATGG	TGCCAAGCAA	TAAATATGAC	TATGCTCAAA	3240
15	CTGAATTAAT	GGTGGGTGTG	TCGCCATCGT	AATTGGATCG	TCTGAAGGCG	CATATAAATG	3300
•	ATAGTGCTCT	TCGAATAAAG	GTAGCATATG	TAATTGTTTG	TGTTTACGTA	TTTCTGGTGT	3360
	AAGTTCCGTG	AAACCAATGT	CTATATTCCC	ATTTAATACG	СТАТТТАТАА	TTGTGTCATG	3420
60	TTCTAATAAG	CTCGGTATGA	CATGTGTATC	ATTTTGTAAA	TGAAACGTTT	GGATAAGTGG	3480
	ТАСТААСАТС	тесертрест	САСТСТСАТС	ATACCCA ATC	ייי אייי אייי אייי אייי	TA TERRITOR AND	3540

	TICATTAAAT	AATAATTTCC	CTTCAGATGT	GAGCGTAATA	TIGCGTCCTT	GCTTTTTAAA	3660
	TAAAGACACA	TTAAGTTCTT	GTTCTAATAA	TGTAATTTGA	CGGCTTATCG	CTGATTGAGC	3720
5	AATGTTTAGT	TCAAGTGCTG	TTTCGGAGAT	ATGTTCTCTT	TTAGCGACCT	CGATAAAATA	3780
	TCTTAATTGT	TTAATTTCCA	TAGCGATATA	GGCACCTCCA	aaaatgagtg	TTTTGTAACT	3840
10	ATTATAGCAA	TATTATTGAT	AAATGTTCTA	TTTTTTAGAT	GAATATCTTC	TATTTTATAT	3900
10	ATTGAACAGA	TAAATTTTTT	AGATTATAGT	AATTATCATT	AATAACTAAT	ATCAGAATAT	3960
	TCTAAAAAAG	GGGTGTGCAT	CATGCACAAT	GAGAAATTAA	TTAAAGGCTT	ATATGACTAT	4020
15	CGTGAGGAAC	ATGATGCGTG	TGGTATTGGT	TTTTATGCGA	ATATGGATAA	TAAAAGGTCT	4080
•	CACGACATCA	TTGATAAATC	GCTTGAAATG	TTGCGACGCT	TAGATCACAG	GGGCGGGGTC	4140
	GGCGCAGATG	GCATCACTGG	TGATGGCGCA	GGTATTATGA	CTGAAATACC	TTTTGCATTT	4200
20	TTCAAACAAC	ATGTAACGGA	CTTTGATATC	CCAGGTGAAG	GTGAATATGC	CGTGGGGTTA	4260
	TTTTTTTCCA	AAGAACGCAT	TTTAGGTTCT	GAACATGAAG	TAGTTTTTAA	AAAATATTTT	4320
	GAAGGCGAAG	GGTTATCAAT	TCTTGGTTAT	CGTAATGTAC	CAGTTAATAA	AGATGCCATT	4380
25	GCTAAACATG	TAGCAGATAC	GATGCCAGTC	ATTCAACAAG	TGTTTATTGA	TATTAGGGAC	4440
	ATTGAAGATG	TTGAAAAGCG	TTTGTTTTTA	GCGAGAAAAC	AATTAGAGTT	CTATTCGACT	4500
	CAGTGCGATT	TAGAATTGTA	TTTTACGAGC	TTATCACGCA	AAACAATTGT	ATATAAAGGT	4560
30	TGGTTACGAT	CAGACCAAAT	талалалста	TATACAGATT	TATCGGATGA	TTTATATCAA	4620
	TCAAAGCTAG	GGTTAGTGCA	TTCGAGATTT	AGTACGAATA	CATTCCCGAG	TTGGAAAAGG	4680
	GCACATCCTA	ACCGTATGTT	AATGCATAAT	GGTGAGATTA	ACACGATTAA	AGGTAATGTA	4740
35	AACTGGATGC	GAGCACGCCA	ACATAAATTA	ATCGAAACAT	TATTTGGCGA	GGATCAACAT	4800
	AAAGTGTTTC	AAATTGTCGA	TGAGGATGGT	AGTGACTCTG	CCATTGTAGA	TAATGCGCTA	4860
40	GAGTTCTTAT	CGTTAGCCAT	GGAGCCAGAA	AAGGCAGCGA	TGTTACTCAT	ACCTGAACCT	4920
	TGGTTATATA	ATGAAGCGAA	TGATGCAAAT	GTACGTGCGT	TTTATGAATT	TTATAGTTAT	4980
	TTAATGGAAC	CGTGGGATGG	TCCTACAATG	ATTTCGTTCT	GTAACGGTGA	CAAACTTGGC	5040
45	GCGCTTACAG	ATAGAAATGG	ATTACGTCCA	GGTCGTTATA	CGATTACTAA	AGATAACTTT	5100
	ATTGTCTTTT	CATCTGAAGT	GGGTGTTGTG	GACGTACCTG	AAAGTAATGT	TGCTTTTAAA	5160
	GGTCAATTGA	ATCCTGGAAA	GTTATTGCTT	GTTGATTTTA	AACAGAATAA	AGTCATTGAA	5220
50	AATAATGATT	TAAAAGGTGC	GATTGCTGGA	GAATTACCAT	ATAAAGCGTG	GATTGATAAC	5280
	01m1110mm0	3 COMMO 3 TOTAL	mc>>>	C33E3EC33C	3 0000000 3 3 000	CARACATCAC	5246

	CAGGAACTIG	TAGAAGGTAA	GAAGGATCCT	ATCGGTGCAA	TGGGATATGA	TGCGCCAATT	5460
5	GCAGTGTTGA	ACGAGCGACC	AGAATCACTA	TTTAATTACT	TTAAACAGCT	GTTTGCACAA	5520
	GTTACGAATC	CACCAATTGA	TGCGTATCGT	GAAAAAATCG	TAACGAGTGA	ACTTTCTTAT	5580
	TTAGGTGGCG	AAGGTAACTT	ACTAGCACCT	GACGAAACGG	TTTTAGATCG	TATTCAATTG	5640
10	AAAAGGCCGG	TATTGAATGA	ATCACACTTA	GCAGCGATTG	ATCAGGAACA	TTTTAAATTA	5700
	ACTTATTTAT	CAACGGTATA	TGAAGGGGAT	TTGGAAGATG	CGTTAGAAGC	ATTAGGCCGA	5760
	GAAGCAGTGA	ATGCTGTAAA	GCAAGGCGCT	CAAATTCTAG	TGTTAGATGA	TAGTGGATTA	5820
15	GTTGATAGCA	ATGGCTTTGC	AATGCCGATG	TTACTCGCAA	TAAGTCATGT	GCATCAATTA	5880
	CTTATTAAAG	CAGATTTACG	TATGTCTACA	AGTTTAGTCG	CTAAATCTGG	TGAGACACGA	5940
	GAAGTGCATC	ATGTTGCTTG	TTTACTCGCA	TATGGCGCGA	ATGCAATTGT	GCCATACCTA	6000
20	GCGCAACGTA	CAGTTGAACA	ACTGACATTG	ACAGAAGGGT	TACAAGGCAC	CGTTGTCGAT	6060
	aatgttaaga	CATATACGGA	TGTATTGTCA	GAAGGTGTCA	TTAAAGTAAT	GGCTAAGATG	6120
	GGAATTTCGA	CAGTGCAAAG	TTATCAAGGG	GCACAAATAT	TTGAAGCGAT	TGGCTTGTCT	6180
25	CATGATGTGA	TTGATCGTTA	TTTTACTGGG	ACACAGTCTA	AGTTATCTGG	TATTTCGATT	6240
	GATCAAATTG	ATGCTGAAAA	TAAAGCACGT	CAACAAAGTG	ATGATAATTA	TCTTGCATCA	6300
	GGTAGTACAT	TCCAATGGAG	ACAACAAGGT	CAACATCATG	CTTTTAATCC	GGAATCTATT	6360
30	TTCTTATTGC	AGCACGCATG	TAAAGAAAAT	GACTATGCGC	AATTTAAAGC	ATACTCTGAA	6420
	GCGGTGAACA	AAAATAGAAC	AGATCACATT	AGACATTTAC	TTGAATTTAA	AGCATGTACA	6480
35	CCGATTGACA	TCGACCAAGT	TGAACCGGTA	AGTGACATTG	TCAAACGCTT	TAATACAGGG	6540
	GCGATGAGTT	ATGGATCGAT	TTCAGCGGAA	GCACATGAAA	CGTTAGCACA	AGCCATGAAC	6600
	CAATTAGGTG	GAAAGAGTAA	TAGTGGTGAA	GGTGGCGAAG	ATGCAAAACG	TTATGAAGTA	6660
40	CAAGTTGATG	GAAGCAACAA	AGTAAGTGCG	ATTAAACAAG	TTGCTTCTGG	GCGTTTTGGT	6720
	GTAACTAGTG	ATTATTTACA	ACATGCCAAA	GAAATTCAAA	TTAAAGTTGC	GCAAGGTGCA	6780
	AAGCCTGGTG	AAGGTGGTCA	ATTACCTGGT	ACTAAGGTAT	ATCCGTGGAT	TGCGAAGACA	6840
45	AGAGGGTCAA	CGCCAGGTAT	CGGTCTGATT	TCACCACCGC	CACATCATGA	TATTTATTCA	6900
	ATAGAAGATT	TAGCGCAACT	GATACATGAT	TTGAAAAATG	CGAATAAAGA	TGCAGATATC	6960
	GCGGTAAAAT	TAGTTTCGAA	AACAGGTGTT	GGTACCATTG	CATCTGGGGT	GGCAAAAGCA	7020
50	TTTGCAGATA	AAATTGTCAT	CAGTGGTTAC	GATGGTGGTA	CAGGGGCTTC	ACCCAAAACG	7080
	3.0T3.TT03.C3	AMCCCCCTCT	macmmacaa a	3 mmccmm= 0	C1C111C1C1	## Table 1 1 1 1 1 1 1 1 1 1	

	AAAGATGTAG	CGTACGCATG	TGCGCTTGGA	GCGGAAGAAT	TTGGATTTGC	AACTGCACCA	7260
	TTAGTGGTGT	TGGGCTGTAT	TATGATGCGT	GTATGCCATA	AAGATACATG	TCCAGTAGGA	7320
5	GTTGCAACTC	AAAACAAAGA	TTTACGTGCT	TTATATAGAG	GTAAAGCACA	TCATGTTGTT	7380
	AATTTTATGC	ATTTTATTGC	ACAAGAATTA	AGAGAAATTT	TAGCATCTTT	AGGTTTGAAA	7440
	CGTGTAGAAG	ACTTAGTTGG	aagaactgat	TTATTACAAC	GATCATCAAC	ATTAAAAGCG	7500
0	AATAGCAAAG	CGGCTAGTAT	TGATGTTGAA	AAACTGTTAT	GTCCTTTCGA	TGGGCCAAAC	7560
	ACAAAAGAAA	TTCAACAAAA	TCATAATCTT	GAGCATGGAT	TTGATTTAAC	TATATTTAAA	7620
	GAAGTAACGA	AGCCATATAT	TGCTGAAGGG	CGTCGCTATA	CAGGTAGCTT	TACAGTAAAT	7680
15	AATGAACAAC	GTGATGTAGG	GGTTATTACA	GGTAGTGAGA	TTTCGAAACA	ATATGGAGAA	7740
	GCAGGACTTC	CTGAAAATAC	AATTAATGTT	TATACGAATG	GTCATGCTGG	TCAAAGTCTT	7800
20	GCAGCATATG	CACCGAAAGG	CTTAATGATT	CATCATACTG	GAGATGCGAA	TGACTATGTT	7860
	GGTAAAGGAT	TATCTGGTGG	TACGGTCATT	GTCAAAGCAC	CTTTTGAAGA	ACGACAAAAT	7920
	GAAATTATTG	CTGGTAACGT	CTCATTCTAT	GGTGCGACAA	GTGGTAAGGC	ATTTATTAAC	7980
25	GGTAGTGCAG	GAGAAAGATT	CTGTATTAGA	AATAGTGGTG	TAGATGTTGT	CGTTGAAGGT	8040
	ATCGGCGACC	ATGGATTAGA	GTATATGACT	GGTGGACATG	TCATTAATTT	AGGTGATGTA	8100
	GGTAAGAACT	TCGGTCAAGG	TATGAGTGGT	GGTATTGCTT	ACGTTATCCC	GTCTGATGTA	8160
30	GAAGCTTTTG	TTGAAAATAA	TCAACTAGAT	ACGCTTTCGT	TTACAAAGAT	TAAACACCAA	8220
	GAAGAAAAG	CATTCATTAA	GCAAATGCTG	GAAGAACATG	TGTCACACAC	GAATAGTACG	8280
	AGAGCGATTC	ATGTGTTAAA	ACATTTTGAT	CGCATTGAAG	ATGTCGTCGT	TAAAGTTATT	8340
35	CCTAAAGATT	ATCAATTAAT	GATGCAAAAA	ATTCATTTGC	ACAAATCATT	ACATGACAAT	8400
	GAAGATGAAG	CGATGTTAGC	TGCATTTTAC	GATGACAGTA	AAACAATCGA	TGCTAAACAT	8460
	AAACCAGCCG	TTGTGTATTA	AGGAAAGGGG	GAGATACGAT	GGGTGAATTI	AAAGGATTTA	852
40	TGAAGTATGA	CAAACAGTAC	TTAGGTGAAT	TATCACTGGT	AGACCGTTTC	AAGCATCATA	8586
	AAGCATATCA	ACAACGATTI	ACTAAAGAAG	aTGCCTCTAT	CCAAGGTGC	CGATGTATGG	864
45	ATTGTGGAAC	GCCGTTTTGT	CAAACCGGAC	AACAGTATGO	TAGGGAAAC	ATAGGTTGTC	870
43	CAATTGGAAA	CTACATTCCT	GAATGGAAC	ACTTAGTGT	TCATCAAGAT	TTTAAAACTG	876
	CTTATGAACG	CTTAAGCGAP	ACAAATAAC	TTCCTGACT	TACAGGGCG	GTATGTCCTG	882
50	CACCATGCG	AAGTGCTTGT	GTGATGAAG	A TTAATAGAGA	A ATCGATTGC	ATTAAAGGTA	888
	TTGAACGCAC	AATTATTGAT	GAAGCTTTT	AAAATGGTT	GGTAGCGCC	AAAGTTCCGA	894

	CIGAAGAACT	TAATCTACTA	GGATATCAAG	TAACTATTTA	TGAACGTGCT	AGAGAATCAG	9060
	GCGGTTTATT	AATGTATGGT	ATTCCGAATA	TGAAACTTGA	TAAAGATGTG	GTTCGACGTC	9120
5	GTATTAAGTT	AATGGAAGAA	GCGGGCATTA	CTTTCATTAA	TGGTGTTGAA	GTCGGTGTTG	9180
	ATATTGATAA	AGCAACGTTA	GAATCTGAGT	ATGATGCCAT	TATATTATGT	ACTGGTGCAC	9240
	AAAAAGGTAG	AGATTTACCT	TTAGAAGGAC	GCATGGGTGA	TGGTATACAT	TTCGCTATGG	9300
10	ATTATTTAAC	TGAACAAACG	CAGTTGTTAA	ATGGAGAAAT	TGATGATATA	ACAATAACTG	9360
	CAAAAGATAA	GAATGTCATT	ATCATTGGTG	CTGGTGATAC	AGGGGCAGAC	TGTGTAGCGA	9420
15	CAGCATTAAG	AGAAAATTGT	AAATCGATTG	TTCAATTTAA	TAAATATACG	AAATTGCCAG	9480
.0	AAGCAATTAC	ATTTACAGAA	AATGCATCAT	GGCCTTTAGC	AATGCCGGTG	TTTAAAATGG	9540
	ACTATGCGCA	CCAAGAGTAC	GAAGCTAAGT	TTGGTAAGGA	ACCACGTGCA	TATGGTGTTC	9600
20	AAACAATGCG	TTACGATGTT	GACGATAAAG	GACACATACG	TGGTTTGTAT	ACTCAAATTT	9660
	TAGAGCAAGG	CGAAAATGGT	ATGGTCATGA	AAGAAGGACC	TGAAAGATTT	TGGCCTGCTG	9720
	ACCTTGTATT	ATTATCAATC	GGCTTCGAAG	GTACAGAACC	AACAGTACCG	AATGCTTTTA	9780
25	ACATTAAAAC	GGATAGAAAT	CGAATCGTGG	CGGATGATAC	AAACTATCAA	ACTAATAATG	9840
	AAAAGGTATT	TGCTGCTGGA	GATGCTAGAC	GTGGTCAAAG	TTTAGTTGTA	TGGGCAATTA	9900
	AAGAAGGTAG	AGGCGTAGCG	AAAGCAGTAG	ATCAGTATTT	AGCTAGTAAA	GTTTGTGTAT	9960
30	AATCTTTGTA	TGGAAATGGT	GGTTACGTTG	ACGTTGTGAC	ATGCTGAATC	GAGTTTGAAA	10020
	AAATCTAGTA	TCTATCAACG	TCACATGCCA	TCTTTGTAAC	CTAAAAACAA	AGGTTTGTAA	10080
	GACAACAAAT	AGATTAATTA	TAAGTAGTGA	TTTTTTACAT	TCGTTTATAG	GTCAACTGTA	10140
35	GTGGAAGACA	ATGATTTGTG	GTAATCATGT	AATGCTTAAA	AACAATATTG	ACTTTTACAG	10200
	AACGTTCATA	TATGATAAAT	ATTGTGTTTA	GGAGGAATAC	CCAAGTCCGG	CTGAAGGGAT	10260
	CGGTCTTGAA	AACCGACAGG	GGCTTAACGG	CTCGCGGGGG	TTCGAATCCC	TCTTCCTCCG	10320
	CCATCAATAT	TTATATTAAA	TTCTATATAT	AATGAAGGTA	AGTGCTCAAA	TTTTGAGTAT	10380
	TTACCTTTTT	TATTTGTCTT	TGAATGGCTC	GTAATTTTTG	ATAATAGAAA	TGATAAGGCA	10440
45	TTGAGATTGG	AAGGGCATTT	GGCTTGTGCA	ATATACATAG	CTAAATGTCT	TTTTTGTTTT	10500
	GTGAAATATG	ATGGATGGCT	TGTGTGGACA	AGTTTGCTAT	TTATAGATAT	GCATTTTTCA	10560
	ATTTAGGAGT	TGGCCATGCA	TCTACACTTT	ATAATGGTGA	GAGCGTGGTG	AGGTATTGTT	10620
50	AATAACGCAA	TTGTAGCGAG	GAGTTATTGC	TACATATGTC	GTTATGGCTC	ATTGATTTTC	10680
	TON NATOCOT	ACCCCACATA	***********	*****	ተተተተረተተረ እ አ	N C C COTOTO N C N	10740

	TAAAAAGAGA	AGATGTAAAA	GCCATCGTAA	CCGCTATTGG	GGGAAAAGAA	AATCTTGAAG	10860
	CTGCAACGCA	TTGTGTAACA	CGATTACGTT	TAGTGCTGAA	GGATGAAAGT	AAAGTTGATA	10920
5	AAGACGCATT	AAGTAATAAC	GCGTTGGTCA	AGGGGCAGTT	TAAAGCAGAC	CATCAATATC	10980
	AAATTGTCAT	TGGTCCAGGA	ACAGTCGATG	AAGTGTATAA	GCAGTTTATT	GATGAAACAG	11040
	GTGCTCAAGA	AGCTTCGAAA	GATGAAGCGA	AACAAGCAGC	TGCACAAAAA	GGGAATCCAG	11100
o	TACAACGTTT	GATCAAATTG	TtGGGGGATA	TTTTTATACC	AATATTACCT	GCGATTGTGA	11160
	CAGCTGGTTT	GTTAATGGGA	ATCAATAATT	TACTTACAAT	GAAAGGTTTA	TTTGGTCCAA	11220
	AAGCACTTAT	TGAGATGTAT	CCACAAATTG	CTGATATTTC	AAACATCATT	AATGTGATTG	11280
5	CGAGTACGGC	ATTTATTTTC	TTACCAGCAT	TAATTGGTTG	GAGTAGTATG	CGTGTATTTG	11340
	GTGGTAGTCC	GATTCTAGGC	ATAGTCTTAG	GTTTGATTTT	AATGCATCCG	CAATTAGTAT	11400
20	CTCAGTATGA	TTTGGCAAAA	GGGAATATTC	CGACGTGGAA	CTTATTTGGC	TTAGAGATTA	11460
au .	AGCAGTTGAA	TTACCAAGGT	CAAGTGTTGC	CAGTETTAAT	TGCAGCTTAC	GTTCTAGCTA	11520
	AAATTGAAAA	AGGATTAAAT	AAAGTCGTTC	ACGATTCGAT	AAAAATGTTG	GTCGTTGGAC	11580
?5	CCGTAGCGCT	TTTAGTTACT	GGATTTTTAG	CATTTATTAT	CATTGGACCA	GTTGCGTTAT	11640
	TGaTTGGTAC	AGGTATTACA	TCTGGTGTTA	CATTTATATT	CCAACATGCA	GGATGGCTTG	11700
	GCGGAGCAAT	ATATGGATTG	TTATATGCAC	CACTTGTAAT	TACAGGACTA	CACCATATGT	11760
30	TTTTAGCAGT	AGATTTCCAA	TTGATGGGTA	GCAGCTTAGG	CGGTACGTAT	TTATGGCCAA	11820
	TTGTTGCGAT	TTCCAATATT	TGTCAGGGCT	CTGCAGCATT	TGGAGCATGG	TTTGTCTATA	11880
	AACGTCGTAA	AATGGTTAAA	GAAGAAGGCT	TGGCATTAAC	ATCTTGTATT	TCTGGTATGT	11940
35	TAGGTGTTAC	TGAACCAGCC	ATGTTCGGTG	TGAACTTACC	TCTGAAATAT	CCATTTATCG	12000
	CTGCGATATC	AACGTCTTGT	GTATTGGGGG	CAATCGTTGG	TATGAATAAC	GTACTTGGAA	12060
	AAGTTGGTGT	TGGTGGCGTG	CCAGCATTCA	TTTCAATTCA	AAAAGAATTT	TGGCCAGTAT	12120
40	ATCTTATTGT	GACAGCTATT	GCTATTGTTG	TACCATGTAT	ACTAACAATT	GTGATGTCTC	12180
	ATTTTAGTAA	ACAAAAAGCG	AAAGÁAATTG	TTGAAGATTA	ATAAAATAAA	AAAGGGGCGT	12240
	TCGTTATTTG	GACGTCCTTT	ATTACGTTAT	AAGGTGGTAA	TTGTGTGTCG	AAAGAAATAG	12300
45 ,	ATTGGAGAAA	ATCCGTTGTA	TATCAAATTT	ATCCTAAGTC	GTTTAATGAT	ACGACGGGGA	1236
	AŢGGTATAGG	AGATATCAAT	GGAATTATAG	AAAAATTGGA	TTATATCAAG	TTATTGGGTG	1242
50	TTGATTATAT	TTGGTTAACA	CCAGTGTATG	AATCACCGAT	GAATGATAAT	GGCTATGATA	1248
-	MONOCA ATTEN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ATC A A C A CT	TTCCAACCAT	CCATCATTT	GADAGTTAA	12546

	CGACGGAGCA	TGaATGGTTT	AAAGAAGCCC	GTAAATCTAA	AGATAACCCY	TATAGAGATT	1266
	ATTACTTTTT	CAGATCATCT	GAAGACGGGC	CGCCAACAAA	TTGGCATTCT	AAATTCGGTG	1272
5	GTAATGCATG	GAAGTAŢGAT	TCTGAGACAG	ATGAATATTA	TTTACATTTA	TTTGATGTCA	1278
	GTCAAGCTGA	TTTAAATTGG	GATAATCCGG	AAGTACGTCA	ATCGTTATAT	CGCATAGTCA	12840
	ATCATTGGAT	AGACTTCGGC	GTTGATGGTT	TTCGATTTGA	TGTCATTAAC	TTAATTTCTA	1290
10	AAGGTGAATT	TAAGGACTCT	GACAAAATAG	GTAAAGAATT	TTATACGGAT	GGTCCTAGAG	12960
	TGCATGAGTT	TCTGCATGAA	TTAAATCGTC	AAACGTTTGG	TAACACTGAC	ATGATGACTA	13020
	TAGGAGAAAT	GTCTTCGACG	ACGATTGAAA	ATTGTATTAA	GTATACACAA	CCAGAACGCC	13080
15	AAGAATTGAA	TAGTGTTTTT	AATTTTCATC	ATCTAAAGGT	TGATTATGTT	GATGGTGAAA	13140
	AGTGGACAAA	TGCGAgcTTG	nATTTTCATA	AGTTAAAGGA	AATTCTGATG	CAATGGCAAC	13200
20	GAGGTATTTA	TGACGGTGGC	GGATGGAACG	CGATTTTCTG	GTGTAATCAT	GATCAGCCAC	13260
	GGGTAGTGTC	TAGATTTGGT	GATGATACGT	CGGAAGAGAT	GAGGATACAA	AGTGCTAAAA	13320
	TGTTAGCTAT	CGCACTGCAT	ATGTTGCAAG	GGACGCCATA	TATTTACCAA	GGTGAAGAAA	13380
25 .	TTGGTATGAC	GGACCCACAT	TTTACATCAA	TAGCACAATA	TCGTGATGTT	GAATCGATTA	13440
	ATGCCTACCA	TCAGTTGTTA	AGTGAAGGGC	ATGCTGAAGC	GGATGTGTTA	GCGATTTTAG	13500
	GACAGAAGTC	ACGAGACAAT	TCGAGAACGC	CTATGCAATG	GAGTGATGAT	GTTAATGCTG	13560
30	GATTTACAGC	TGGTAAnCCT	TGGATTGATA	TTTCGGAAAA	TTATCATCAG	GTCAACGTTA	13620
	GACAAGCACT	TCAGAATAAA	GAGTCTATTT	TCTATACGTA	TCAAAAATTA	ATACAATTAA	13680
	GACATACGCA	TGATATTATT	ACGTATGGAG	ACATTGTGCC	ACGTTTTATG	GATCATGATC	13740
35	ATTTATTTGT	TTATGAACGT	CATTATAAGA	ATCAACAATG	GCTAGTAATT	GCGAATTTCT	13800
	CAGCATCGGC	TGTTGATTTG	CCAGAAGGAT	TGGCTAGAGA	AGGTTGTGTT	GTGATTCAAA	13860
	CAGGCACAGT	GGAAAATAAT	ACGATAAGCG	GGTTTGGTGC	AATTGTAATC	GAAACAAACG	13920
10	CGTAAAATAA	ATTGAGTGGA	TGCGTTTATA	TGGCGAAACA	AAAAAAGTTT	ATGAAGATTT	13980
	ATGAGGCGTT	GAAAGAAGAT	ATATTAAACG	GGCAGATTCA	ATATGGTGAA	CAAATTCCGT	14040
15	CTGAACATGA	TTTGGTGCAA	TTGTACCAGT	CATCTCGAGA	GACCGTGCGT	AAGGCATTAG	14100
	ATTTGTTGGC	ATTAGACGGC	ATGATTCAAA	AGATTCATGG	TAAAGGGTCA	CTTGTCATTT	14160
	ATCAGGAGGT	TACAGAGTTT	CCATTTTCTG	AACTTGTTAG	TTTTAAAGAA	ATGCAAGAAG	14220
50	AAATGGGCGT	CGCATATTTA	ACTGAAGTTG	TTGTGAATGA	GGTTGTTGAA	GCGCATGAAG	14280
	mmcc	maxx ax maam					

	TTGTTTCAGA	TATAGGTAAT	GATGTTGCGA	GTGATTCTAT	TTATGATTAT	TTGGAAAAGG	14460
	TATTAAATCT	TAATATTAGT	TATTCAAGTA	AGTCTATTAC	TTTTGAACCG	TTTGATGAAC	14520
5	AAGCATATCA	ATTGTTTGGT	GATGTATCGG	TGGCTTATTC	AGCAACAGTT	CGAAGTATTG	14580
	TGTATTTAGA	AAATACAATG	CCGTTTCAAT	ATAATATTTC	AAAACATCTT	GCAAATGAAT	14640
	TTAAATTTAA	TGACTTCTCA	AGACGTCGTA	TAAAGTAAAC	AATGATATAA	ATGATTTATA	14700
0	CTTGCAATTA	ACTATTAAAA	TATAGTAATA	TATATCTTGC	CGTGCTAGGT	GGGGAGGTAG	14760
	CGGTTCCCTG	TACTCGAAAT	CCGCTTTATG	CGAGGCTTAA	TTCCTTTGTT	GAGGCCGTAT	14820
_	TTTTGCGAAG	TCTGCCCAAA	GCACGTAGTG	TTTGAAGATT	TCGGTCCTAT	GCAATATGAA	14880
5	CCCATGAACC	ATGTCAGGTC	CTGACGGAAG	CAGCATTAAG	TGGATCATCA	TATGTGCCGT	14940
	AGGGTAGCCG	AGATTTAGCT	AACGACTTTG	GTTACGTTCG	TGAATTACGT	TCGATGCTTA	15000
20	GGTGCACGGT	TTTTTATTTT	TTAAATATTA	AACCGATTAT	TAAGAGTTGA	AATATATAA	15060
.0	TTATAGAAGC	TACTTTCTTG	AAGACAATTC	AGCGTATTAT	ACGTGGAACA	TGTTTGTGGG	15120
	AAGTAGCTTT	TTTATATGTG	AAGTTTGATT	CAAGTGAACT	CGATGTGCAG	TTTGAATGAT	15180
25	TTTTGTGTCA	ATGAAAAGTA	AGAAGTTATA	ATTTGATGAT	AAAGAAATGA	TGGTGAAATG	15240
	AGGGGGAGTA	TCTTACAATA	GAATTATTAA	TGAGATACGT	TATGATTATT	GACAATCAAA	15300
*	TGCCTACGGA	GGACATATGC	AAATATATTT	AAGTACTTTA	ACAGAGTTAG	ATTATGATAA	15360
30	ATCTTTAAAT	AGTATTGAAG	AAAGTTTTGA	TGATAATCCT	GAAACGAGTT	GGCAAGCACG	15420
	TGCGAAAGTA	AAACATTTAA	GAAAATCTCC	TTGCTATAAT	TTTGAATTAG	AAGTAATAGC	15480
	GAAAAATGAA	AATAACGATG	TCGTTGGACA	CGTTTTATTA	ATTGAAGTAG	AAATTAATAG	15540
35	TGATGATAAG	ACGTATTATG	GTTTGGCGAT	TGCCTCTTTA	TCAGTTCATC	CTGAATTACG	15600
	TGGACAAAAA	TTAGGTCGTG	GCTTGGTTCA	AGCAGTAGAA	GAGCGTGCCA	AAGCACAAGA	15660
	GTATAGTACG	GTTGTTGTAG	ACCATTGTTT	TGACTACTTT	GAAAAGTTGG	GTTATCAAAA	15720
10	TGCTGCTGAG	CATGACATTA	AATTAGAATC	TGGTGATGCA	CCGTTACTTG	TAAAATATTT	15780
	ATGGGATAAT	TTGACGGATG	CACCACACGG	AATCGTAAAA	TTTCCAGAAC	ATTTTTATTA	15840
	ATTGTTCAAT	TAAGAAGTAA	AGGTATTATC	ATGCTATAAT	GAGAGGTAAT	TGTTTATGGA	15900
15	GGTGCTAACT	TGAATTATCA	AGCCTTATAT	CGTATGTACA	GACCCCAAAG	TTTCGAGGAT	15960
	GTCGTCGGAC	AAGAACATGT	CACGAAGACA	TTGCGCAATG	CGATTTCGAA	AGAAAAACAG	16020
50	TCGCATGCTT	ATATTTTTAG	TGGTCCGAGA	GGTACGGGGA	AAACGAGTAT	TGCCAAAGTG	16080
	OTTO COTTO A A A C	CAATCAACTC	TOTA 3 3 TACO	~ A COUC A OCC A C	3.3.CCTTCT3.3	TO A ATOTO A T	16146

	AATAATGGCG	TTGATGAAAT	AAGAAATATT	AGAGACAAAG	TTAAATATGC	ACCAAGTGAA	16260
	TCGAAATATA	AAGTTTATAT	TATAGATGAG	GTGCACATGC	TAACAACAGG	TGCTTTTAAT	16320
5	GCCCTTTTAA	AGACGTTAGA	AGAACCTCCA	GCACACGCTA	TTTTTATATT	GGCAACGACA	16380
	GAACCACATA	AAATCCCTCC	AACAATCATT	TCTAGGGCAC	AACGTTTTGA	TTTTAAAGCA	15440
	ATTAGCCTAG	ATCAAATTGT	TGAACGTTTA	AAATTTGTAG	CAGATGCACA	ACAAATTGAA	16500
10	TGTGAAGATG	AAGCCTTGGC	ATTTALCGCT	AAAGCGTCTG	AAGGGGGTAT	GCGTGATGCA	16560
	TTAAGTATTA	TGGATCAGGC	TATTGCATTT	GGTGATGGTA	CGTTAACATT	GCAAGATGCG	16620
15	TTGAATGTCA	CAGGTAGCGT	ACATGATGAA	GCGTTGGATC	ACTTGTTTGA	TGATATTGTA	16680
15	CAAGGTGACG	TACAÁGCATC	TTTTAAAAAA	TACCATCAGT	TTATAACAGA	AGGTAAAGAA	16740
	GTGAATCGCC	TAATAAATGa	TATGATTTAT	TTTGTCaGAG	ATACGATTAT	GAATAAAACA	16800
20	TCTGAGAAAG	ATACTGAGTA	TCGAGCACTG	ATGAACTTAG	AATTAGATAT	GTTATATCAA	16860
	ATGATTGATC	TTATTAATGA	TACATTAGTG	TCGATTCGTT	TTAGTGTGAA	TCAAAACGTT	16920
	CATTTTGAAG	TGTTGTTAGT	AAAATTAGCT	GAGCAGATTA	AGGGTCAACC	ACAAGTGATT	16980
?5	GCGAATGTAG	CTGAACCAGC	ACAAATTGCT	TCATCGCCAA	ACACAGATGT	ATTGTTGCAA	17040
	CGTATGGAAC	AGTTAGAGCA	AGAACTAAAA	ACACTAAAAG	CACAAGGAGT	GAGTGTCGCT	17100
	CCTGTTCAAA	AATCTTCGAA	AAAGCCTGCG	AGAGGCATAC	AAAAATCTAA	AAATGCATTT	17160
30	TCAATGCAAC	AAATTGCAAA	AGTGCTAGAT	AAAGCGAATA	AGGCAGATAT	CAAATTGTTG	17220
	AAAGATCATT	GGCAAGAAGT	GATTGATCAT	GCCAAAAATA	ATGATAAAAA	ATCACTCGTT	17280
	AGTTTATTGC	AAAATTCGGA	ACCTGTGGCG	GCAAGTGAAG	ATCACGTACT	TGTGAAATTT	17340
35	GAGGAAGAGA	TCCATTGTGA	AATCGTCAAT	AAAGACGACG	AGAAACGTAG	TAGTATAGAA	17400
	AGTGTTGTAT	GTAATATCGT	таатааааас	GTTAAAGTTG	TTGGTGTACC	ATCAGATCAA	17460
	TGGCAAAGAG	TTCGAACGGA	ATATTTACAA	AATCGTAAAA	ACGAAGGCGA	TGATATGCCA	17520
10	AAGCAACAAG	CACAACAAAC	AGATATTGCT	CAAAAAGCAA	AAGATCTTTT	CGGTGAAGAA	17580
	ACTGTACATG	TGATAGATGA	AGAGTGATAC	ATGACAAGCG	ATATAATCGT	ATGTATAATG	17640
	AAAGAAACAT	CATTTTATTG	ATAAATATTT	ATTGATTTTC	AAGGAGGAAA	TGGAATATGC	17700
15	GCGGTGGCGG	AAACATGCAA	CAAATGATGA	AACAAATGCA	AAAAATGCAA	AAGAAAATGG	17760
	CTCAAGAACA	AGAAAAACTT	AAAGAAGAGC	GTATTGTAGG	AACAGCTGGC	GGTGGCATGG	17820
:0	TTGCAGTTAC	TGTAACTGGT	CATAAAGAAG	TTGTCGACGT	TGAAATCAAA	GAAGAAGCTG	17880
-	TAGACCCAGA	CGATATTGAA	ATGCTACAAG	ACTTAGTGTT	AGCAGCTACT	AATGAAGCGA	17940

	TCCCTGGAAT	GIGATCATAG	ATGCATTATC	CAGAACCTAT	ATCAAAACTT	ATTGATAGCT	1806
	TTATGAAATT	GCCAGGCATT	GGTCCAAAGA	CAGCCCAACG	TCTGGCTTTT	CATACCTTAG	1812
5	ATATGAAAGA	AGACGATGTT	GTTCAGTTTG	CCAAAGCATT	AGTAGATGTT	AAGAGAGAAT	1818
	TAACATATTG	TAGCGTATGT	GGTCACATTA	CTGAAAATGA	TCCATGTTAT	ATTTGTGAAG	1824
٠	ATAAGCAAAG	AGATCGTTCA	GTTATTTGTG	TTGTGGAAGA	TGACAAAGAT	GTCATAGCTA	1830
10	TGGAAAAAAT	GAGAGAATAC	AAAGGTTTAT	ATCACGTTTT	ACATGGGTCT	ATTTCGCCTA	1836
	TGGATGGCAT	TGGACCAGAA	GATATTAATA	TTCCTTCATT	GATTGAACGC	TTGAAAAACG	1842
	ATGAAGTTAG	CGAATTAATC	TTAGCTATGA	ACCCGAACTT	AGAGGGGGAA	TCTACAGCCA	1848
15	TGTATATTTC	TAGATTAGTT	AAGCCTATAG	GTATCAAAGT	GACGAGATTA	GCACAAGGGT	1854
	TATCGGTAGG	TGGCGATTTA	GAGTATGCTG	ACGAAGTAAC	ATTATCTAAA	GCAATCGCAG	1860
20	GTAGAACAGA	AATGTAATKT	CTTCTATTAA	ACATTTTTGA	TTTTAATACT	ATAGTAAGAA	1866
20	AAGTCACAGT	GTAATCATTG	TGGCTTTTTT	TATGGTGTGG	TGTGATGTAC	TACTTTATTT	1872
ı	GCGGTGTGGC	GGTGGTATGG	TTTACCTAGT	TTTACTGAGG	GATGGGTAAT	CTTTAGGAAG	1878
25	CAAGCCGTTG	GTTGTGATTT	GTTACTTCTA	ATAGTAATGA	TGTGAATTGG	ATTATCGAAT	1884
	TAGATCTATG	GTTATGGTGT	GTTGGTGCTA	TTAATTTGAT	AAATGCGGTT	AATGACTATG	1890
	CAAATGAAAT	TCTTTTGTAA	TTGAAATGAT	AGATGCTGGC	TTAGTAAGTT	GTACTTCTTT	1896
30	GGTCTAAAGC	TTATTAAATC	AGCCTGTATA	GCGGTGTTTT	GAGAGATTAT	TTAAAACTTG	1902
	TAAATTTATT	TTTAATTTCT	GGTAAAAAAA	TAACGTTCTG	TTTTGCGTTT	TTTTTGATTG	1908
	ATATGGTTAG	AGAAAAATCT	GTTTCTTGTT	CTAAAAAACG	TACTATTTAT	AAGTGGGGAT	1914
35	TTTTTAAGTT	CGATTTTTAG	GATAAGGGCG	TTCAGTACAG	ATGACAAAGG	TGTAATTTTT	1920
	ACTGTTGTTA	AGCAGTTTGA	AAGCCTGTAT	AGTATTTATT	TGTTGAGGCA	AACAAAACAA	1926
	CTCAACTTAA	GAAATAACTT	GAATTACTAA	CGAAAATTAA	TTTTAAAAAG	TTATTGACTT	1932
40	AAATGTTAAT	AAAATGTATA	ATTAATTCTT	GTCGGTAAGA	AAAATGAACA	TTGAAAACTG	1938
	AATGACAATA	TGTCAACGTT	AATTCCAAAA	AACGTAACTA	TAAGTTACAA	ACATTATTTA	1944
	GTATTTATGA	GCTAATCAAA	CATCATAATT	TTTATGGAGA	GTTTGATCCT	GGCTCAGGAT	1950
45	GAACGCTGGC	GGCGTGCCTA	ATACATGCAA	GTCGAGCGAA	CGGACGAGAA	GCTTGCTTCT	19560
	CTGATGTTAG	CGGCGGACGG	GTGAGTAACA	CGTGGATAAC	CTACCTATAA	GACTGGGATA	1962
	ACTTCGGGAA	ACCGKAGCTA	ATACCGGATA	ATATTTTGAA	CCGCATGGTT	CAAAAGTGAA	19680
50							

	GAGACACGGT	CCAGACTCCT	ACGGGAGGCA	GCAGTAGGGA	ATCTTCCGCA	ATGGGCGAAA	19860
	gCtGaCGGAG	CAACGCCGCG	TGAGTGATGA	AGGTCTTCGG	ATCGTAAAAC	TCTGTTATTA	19920
5	GGGAAGAACA	TATGTGTAAG	TAACTGTGCA	CATCTTGACG	GTACCTAATC	AGAAAGCCAC	19980
	GGCTAACTAC	GTGCCAGCAG	CCGCGGTAAT	ACGTAGGTGG	CAAGCGTTAT	CCGGAATTAT	20040
•	TGGGCGTAAA	GCGCGCGTAG	GCGGTTTTTT	AAGTCTGATG	TGAAAGCCCA	CGGCTCAACC	20100
10	GTGGAGGGTC	ATTGGAAACT	GGAAAACTTG	AGTGCAGAAG	AGGAAAGTGG	AATTCCATGT	20160
	GTAGCGGTGA	AATGCGCAGA	GATATGGAGG	AACACCAGTG	GCGAAGGCGA	CTTTCTGGTC	20220
	TGTAACTGAC	GCTGATGTGC	GAAAgCGTGG	GGATCAAACA	GGATTAGATA	CCCTGGTAGT	20280
15	CCACGCCGTA	AACGATGAGT	GCTAAGTGTT	AGGGGGTTTC	CGCCCCTTAG	TGCTGCAGCT	20340
	AACGCATTAA	GCACTCCGCC	TGGGGAGTAC	GACCGCAAGt	TGAAACTCAA	AGGAATTGAC	20400
20	GGGGACCCGC	ACAAGCGGTG	GAGCATGTGG	TTTAATTCGA	AGCAACGCGA	AGAACCTTAC	20460
20	CAAATCTTGA	CATCCTTTGA	CAACTCTAGA	GATAGAGCCT	TCCCCTTCGG	GGGACAAAGT	20520
	GACAGGTGGT	GCATGGTTGT	CGTCAGCTCG	TGTCGTGAGA	TGTTGGGTTA	AGTCCCGCAA	20580
25	CGAGCGCAAC	CCTTAAGCTT	AGTTGCCATC	ATTAAGTTGG	GCACTCTAAG	TTGACTGCCG	20640
	GTGACAAACC	GGAGGAAGGT	GGGGATGACG	TCAAATCATC	ATGCCCCTTA	TGATTTGGGC	20700
	TACACACGTG	CTACAATGGA	CAATACAAAG	GGCAGCGAAA	CCGCGAGGTC	AAGCAAATCC	20760
30	CATAAAGTTG	TTCTCAGTTC	GGATTGTAGT	CTGCAACTCG	ACTACATGAA	GCTGGAATCG	20820
	CTAGTAATCG	TAGATCAGCA	TGCTACGGTG	AATACGTTCC	CGGGTCTTGT	ACACACCGCC	20880
	CGTCACACCA	CGAGAGTTTG	TAACACCCGA	AGCCGGTGGA	GTAACCTTTT	AGGAGCTAGC	20940
35	CGTCGAAGGT	GGGACAAATG	ATTGGGGTGA	AGTCGTAACA	AGGTAGCCGT	ATCGGAAGGT	21000
	GCGGCTGGAT	CACCTCCTTT	CTAAGGATAT	ATTCGGAACA	TCTTCTTCAG	AAGATGCGGA	21060
	ATAACGTGAC	ATATTGTATT	CAGTTTTGAA	TGTTTATTTA	ACATTCAAAT	ATTTTTTGGT	21120
40	TAAAGTGATA	TTGCTTATGA	AAATAAAGCA	GTATGCGAGC	GCTTGACTAA	AAAGAAATTG	21180
	TACATTGAAA	ACTAGATAAG	TAAGTAAAAT	ATAGATTTTA	CCAAGCAAAA	CCGAGTGAAT	21240
	AAAGAGTTTT	AAATAAGCTT	GAATTCATAA,	GAAATAATCG	CTAGTGTTCG	AAAGAACACT	21300
45	CACAAGATTA	ATAACGCGTT	TAAATCTTTT	ТАТААААСАА	CGTAACTTCA	TGTTAACGTT	21360
	TGACTTATAA	AAAŤGGTGGA	AACATAGATT	AAGTTATTAA	GGGCGCACGG	TGGATGCCTT	21420
	GGCACTAGAA	GCCGATGAAG	GACGTTACTA	ACGACGATAT	GCTTTGGGGA	GCTGTAAGTA	21480
50	A COMMON A MO	CACACACTOC	CCAATCCCCA	******	CACOONTO	3 000003 00003	21546

	GAGGAAGAGA	AAGAAAATTC	GATTCCCTTA	GTAGCGGCGA	GCGAAACGGG	AAGAGCCCAA	2166
	ACCAACAAGC	TTGCTTGTTG	GGGTTGTAGG	ACACTCTATA	CGGAGTTACA	AAGGACGACA	2172
5	TTAGACGAAT	CATCTGGAAA	GATGAATCAA	AGAAGGTAAT	AATCCTGTAG	TCGAAAATGT	2178
	TGTCTCTCTT	GAGTGGATCC	TGAGTACGAC	GGAGCACGTG	AAATTCCGTC	GGAATCTGGG	2184
	AGGACCATCT	CCTAAGGCTA	AATACTCTCT	AGTGACCGAT	AGTGAACCAG	TACCGTGAGG	2190
10	GAAAGGTGAA	AAGCACCCCG	GAAGGGGAGT	GAAATAGAAC	CTGAAACCGT	GTGCTTACAA	2196
	GTAGTCAGAG	CCCGTTAATG	GGTGATGGCG	TGCCTTTTGT	AGAATGAACC	GGCGAGTTAC	2202
	GATTTGATGC	AAGGTTAAGC	AGTAAATGTG	GAGCCGTAGC	GAAAGCGAGT	CTGAATAGGG	2208
15	CGTTTAGTAT	TTGGTCGTAG	ACCCGAAACC	AGGTGATCTA	CCCTTGGTCA	GGTTGAAGTT	2214
	CAGGTAACAC	TGAATGGAGG	ACCGAACCGA	CTTACGTTGA	AAAGTGAGCG	GATGAACTGA	2220
••	GGGTAGCGGA	GAAATTCCAA	TCGAACCTGG	AGATAGCTGG	TTCTCTCCGA	AATAGCTTTA	2226
20	GGGCTAGCCT	CAAGTGATGA	TTATTGGAGG	TAGAGCACTG	TTTGGACGAG	GGGCCCCTCT	2232
	CGGGTTACCG	AATTCAGACA	AACTCCGAAT	GCCAATTAAT	TTAACTTGGG	AGTCAGAACA	2238
25	TGGGTGATAA	GGTCCGTGTT	CGAAAGGGAA	ACAGCCCAGA	CCACCAGCTA	AGGTCCCAAA	2244
	ATATATGTTA	AGTGGAAAAG	GATGTGGCGT	TGCCCAGACA	ACTAGGATGT	TGGCTTAGAA	2250
	GCAGCCATCA	TTTAAAGAGT	GCGTAATAGC	TCACTAGTCG	AGTGACACTG	CGCCGAAAAT	2256
30	GTACCGGGGC	TAAACATATT	ACCGAAGCTG	TGGATTGTCC	TTTGGaCAAT	GGtAGGAGAG	22620
	CGTTCTAAGG	GCGTTGAAGC	ATGATCGTAA	GGACATGTGG	AGCGCTTAGA	AGTGAGAATG	2268
	CCGGTGTGAG	TAGCGAAAGA	CGGGTGAGAA	TCCCGTCCAC	CGATTGACTA	AGGTTTCCAG	2274
35	AGGAAGGCTC	GTCCGCTCTG	GGTTAGTCGG	GTCCTAAGCT	GAGGCCGACA	GCGTAGGCGA	2280
	TGGAŢAACAG	GTTGATATTC	CTGTACCACC	TATAATCGTT	TTAATCGATG	GGGGGACGCA	2286
	tAGGATAGGC	GAAgcGTGcG	ATTGGATTGC	ACGTCTAAGC	AGTAAGGCTG	AGTATTAGGC	2292
40	AAATCCGGTA	CTCGTTAAGG	CTGAGCTGTG	ATGGGGAGAA	GACATTGTGT	CTTCGAGTCG	22980
	TTGATTTCAC	ACTGCCGAGA	AAAGCCTCTA	GATAGAAAAT	AGGTGCCCGT	ACCGCAAACC	23040
	GACACAGGTA	GTCAAGATGA	GAATTCTAAG	GTGAGCGAGC	GAACTCTCGT	TAAGGAACTC	23100
45	ggcaaaatga	CCCCGTAACT	TCGGGAGAAG	GGGTGCTCTT	TAGGGTTAAC	GCCCAGAAGA	23160
	GCCGCAGTGA	ATAGGCCCAA	GCGACTGTTT	АТСАААААСА	CAGGTCTCTG	CTAAACCGTA	23220
	AGGTGATGTA	TagGGcTGAC	GCCTGCCCGG	TGCTGGAAGG	TTAAGAGGAG	TGGTTAGcTT	23280
50	CTCCCA A ~CT	3.CC3.3.ECC3.3	CCCCCACTA	*************	maacmamaac	000000000000	

	TGTCTCAACG	AGAGACTCGG	TGAAATCATA	GTACCTGTGA	AGATGCAGGT	TACCCGCGAC	23460
	AGGACGGAAA	GACCCCGTGG	AGCTTTACTG	TAGCCTGATA	TTGAAATTCG	GCACAGCTTG	23520
5	TACAGGATAG	GTAGGAGCCT	TTGAAACGTG	AGCGCTAGCT	TACGTGGAGG	CGCTGGTGGG	23580
	ATACTACCCT	AGCTGTGTTG	GCTTTCTAAC	CCGCACCACT	TATCGTGGTG	GGAGACAGTG	23640
	TCAGGCGGGC	AGTTTGACTG	GGGCGGTCGC	CTCCTAAAAG	GTAACGGAGG	CGCTCAAAGG	23700
10	TTCCCTCAGA	ATGGTTGGAA	ATCATTCATA	GAGTGTAAAG	GCATAAGGGA	GCTTGACTGC	23760
	GAGACCTACA	AGTCGAGCAG	GGTCGAAAGA	CGGACTTAGT	GATCCGGTGG	TTCCGCATGG	23820
15	AAGGGCCATC	GCTCAACGGA	TAAAAGCTAC	CCCGGGGATA	ACAGGCTTAT	CTCCCCCAAG	23880
15	AGTTCACATC	GACGGGGAGG	TTTGGCACCT	CGATGTCGGC	TCATCGCATC	CTGGGGCTGT	23940
	AGTCGGTCCC	AAGGGTTGGg	CTGTTCGCCC	ATTAAAGCGG	TACGCGAGCT	GGGTTCAGAA	24000
20	CGTCGTGÄGA	CAGTTCGGTC	CCTATCCGTC	GTGGGCGTAG	GAAATTTGAG	AGGAGCTGTC	24060
	CTTAGTACGA	GAGGACCGGG	ATGGACATAC	CTCTGGTGTA	CCAGTTGTCG	TGCCAACGGC	24120
	ATAGCTGGGT	AGCTATGTGT	GGACGGGATA	AGTGCTGAAA	GCATCTAAGC	ATGAAGCCCC	24180
25	CCTCAAGATG	AGATTTCCCA	ACTTCGGTTA	TAAGATCCCT	CAAAGATGAT	GAGGTTAATA	24240
	GGTTCGAGGT	GGAAGCATGG	TGACATGTGG	AGCTGACGAA	TACTAATCGA	TCGAAGACTT	24300
	AATCAAAATA	AATGTTTTGC	GAAGCAAAAT	CACTTTTACT	TACTATCTAG	TTTTGAATGT	24360
30	ATAAATTACA	TTCATATGTC	TGGTGACTAT	AGCAAGGAGG	TCACACCTGT	TCCCATGCCG	24420
	AACACAGAAG	TTAAGCTCCT	TAGCGTCGAT	GGTAGTCGAA	CTTACGTTCC	GCTAGAGTAG	24480
	AACGTTGCCA	GGCAAAAAAT	GGATGCGATG	AGCCGCATTG	AGACCGCAAG	GTCTCTTTTT	24540
35	TTTATGTCTA	AAACGTCAAA	ATAAAAAGCA	AACACAAAGA	AAAATGGCTT	GGCGAAGTGA	24600
	AAACGTTTGA ·	ATCTGACGAA	ACGAGAAAAG	Arcgcaacga	GTTTAGTAGA	GCTAAATGAG	24660
	TAAGyGAGAG	CCGAAGrAGA	GGAAAGAAGC	AAGCGATTGT	CACAAGTCAA	GAAAGGTTCT	24720
40	TAGCGASGAT	GGTAGCCAAC	TTACGTTCCG	CTAGAGTAGA	ACTGGAAATG	TAATTTAATA	24780
	AATGTACACT	TTCGATTGTC	TAAGTATGTA	CAACTTTAAT	TTTGTGTTTA	TATAAATTTA	24840
. ·	AAATGATATC	ATCGAAAACA	AAATATTGTA	TAAATAGAGA	AGAGCAGTAA	GACGGTATCT	24900
45	AATTGAAAAT	GATCTTACTG	CTCTTTTATA	TACTTTATTG	AAATACAAAA	AGGAAATTAA	24960
	TTATTATACA	ATAGACAAGC	TATTGCATAA	GTAACACTAA	CTTTTATCAA	AGAAGTGTTA	25020
50	CTTTATAATT	AATGATTTTA	TTAGAGCGTC	TACATGCGGT	TTTAAAGCAT	CATCGTCTAT	25080
	ACCCCCN AAC	CCTSSTSTSS	A TOTAL COCOT	mmmomma ma o	mommo a mo a m	a.ma	05140

	TCCATTTTT	ACTGTAATTG	TAAAATGCAT	ACCCGTTTCA	GCACCTTGAA	TATCAAGCTG	25260
	CTCTTTGTAA	GGTTTCAATC	TTTTTAAAAT	ATAGGTTAGT	TTTCTACGAT	AAATTCGTCT	25320
5	CATTTTATTT	AAATGCCTTT	CAAAACCACC	GGAAGATATA	AACGTTGCAA	TAAGGTTTTG	25380
	CATATGAACA	GGTACAGTGT	TGCCTTCAAT	GTGATTTTGA	GAATGATATT	TTTTCATTAT	25440
	AGAATAGGGT	AACACCATAT	ATGCAACTCG	ACAGCTAGGA	AAAATAGACT	TTGAAAATGT	25500
10	ACTGATATAA	ATCACTTTTT	CTCCTCTTGA	ATATAGACCT	TGAATTGCTG	GAATGGGTTT	25560
	GCCGAAATAT	CTAAACTCGG	AATCATAATC	ATCTTCTATA	ATAAATCGTT	CTTCTTTTTC	25620
	TTGAGCCCAT	TGTATTAATT	GAGTTCGTTT	TTTTAAGTCC	ATCACATATC	CAGTTGGAAA	25680
15	TTGATGGGAA	GGCGTTATAT	ATACTATATT	TTTTTGTGAT	TTAATAACTT	CATCTACGTT	25740
	TATTCCATTA	TCTTCAACTT	CAATTTGTTC	ATATTCAACT	TGTTTTTTAT	CTAAAATATT	25800
20	TTTGATTGGT	GGATAACTAG	GTTTTTCGAT	AATAAATGTT	GAAGTATAAA	GTAAATCGAC	25860
20	TAATTGATTT	ACTAATTGTT	CGGTAGATGA	GCCAATTATA	ATTTGATTAG	GATCACAAAT	25920
	TACGCCACGA	TTAGTAAATA	AATAAAATGC	CAGTTGAAAC	CGCAAATGTA	ATTCTCCTTG	25980
25	AAAATGTCCT	CTACGTAATT	GATTTAAATG	ATTTGTATCA	TAAAGATCTT	TGGAATACTT	26040
	TCTGAAAAGT	TCTATAGGGA	AATGTTTCGT	ATCTATTTCA	TCCAAATTAA	AAGCATAATC	26100
	ATAAGCTTCA	TCACTCGCTT	TTGGTTTATA	TGAATCATCA	TCAAAAAGAG	AGGGGATAGG	26160
30	TTGATTGTTT	AAAATTGTTA	AAGATTCAAT	TTCGGACACA	AAATATCCAG	AGCGAGGTCT	26220
	TGAATAAATG	TAACCTTCGT	CTAATAGAAG	TTGATATGCA	TGCTCTACGG	TTGTTTGGCT	26280
	AATAGATAAA	TGTTTGCTTA	ATTGTCTTTT	AGAATAAAAT	TTATCGCCTT	CTTTAAATTG	26340
35	ACCTTCAATT	ATTTGTTTTT	TTAATTTTTC	ATAAAGTTGA	TGGTATAAAG	TGTTTTTCAA	26400
	TTTTATAACT	GACCTCCTAA	ATTTATCTTA	TTTTGTACCT	TTTTAAATAT	CAGTTTATAC	26460
	ATTACAATGT	ATTTAATCAA	CTTGAAAAGG	GGTTTTATGT	ATAATGAGTA	AAATTATTGG	26520
40	ATCAGACAGA	GTCAAAAGAG	GTATGGCTGA	AATGCAAAAA	GGCGGCGTTA	TTATGGATGT	26580
	CGTTAATGCT	GAGCAAGCAA	GAATTGCAGA	AGAAGCTGGC	GCGGTAgCAG	TTATGGCATT	26640
	AGAACGAGTA	CCTTCTGATA	TTAGAGCTGC	TGGTGGTGTT	GCACGTATGG	CAAACCCTAA	26700
45	aattgtagaa	GAAGTAATGA	ATGCTGTTTC	TATTCCAGTC	ATGGCTAAAG	CACGTATTGG	26760
	TCATATCACT	GAAGCAAGAG	TATTAGAGGC	GATGGGTGTT	GACTATATTG	ATGAATCAGA	26820
	AGTGTTAACA	CCAGCAGATG	AGGAATATCA	CTTAAGAAAA	GATCAATTTA	CAGTACCATT	26880
50	TGTATGTGGA	TGTCGTAATT	TAGGTGAAgm	TGCGCGTAGA	ATTGGTGAAG	GTGCTGCTAT	26940

	ACAAGTTAAT	TCAGAAGTTA	GTCGATTGAC	TGTAATGAAT	GATGATGAGA	TTATGACTTT	27060
	TGCGAAAGAT	ATCGGTGCGC	CTTATGAAAT	TTTAAAACAA	ATTAAAGACA	ATGGTCGTTT	27120
5	ACCGGTAGTT	AACTTTGCAG	CTGGTGGCGT	TGCGACTCCT	CAAGATGCTG	CTTTAATGAT	27180
	GGAATTAGGT	GCTGACGGTG	TATTCGTTGG	ATCAGGTATT	TTTAAATCAG	AAGATCCAGA	27240
10	AAAATTTGCT	AAAGCAATTG	TTCAAGCAAC	AACACATTAC	CAAGACTATG	AACTAATTGG	27300
10	AAGATTAGCA	AGTGAACTTG	GCACTGCTAT	GAAAGGTTTA	GATATCAATC	AATTATCATT	27360
	AGAAGAACGT	ATGCAAGAGC	GTGGTTGGTA	AGATATGAAA	ATAGGTGTAT	TAGCATTACA	27420
15	AGGTGCAGTA	CGTGAACATA	TTAGACATAT	TGAATTAAGT	GGTCATGAAG	GTATTGCAGT	27480
	TAAAAAAGTT	GAACAATTAG	AAGAAATCGA	GGGCTTAATA	TTACCTGGTG	GCGAGTCTAC	27540
	AACGTTACGT	CGATTAATGA	ATTTATATGG	ATTTAAAGAG	GCTTTACAAA	ATTCAACTIT	27600
20	ACCTATGTTT	GGTACATGCG	CAGGATTAAT	AGTTCTAGCG	CAAGATAȚAG	TTGGTGAAGA	27660
	AGGATACCTT	AACAAGTTGA	ATATTACTGT	ACAACGAAAC	TCATTCGGTA	GACAAGTTGA	27720
	CAGCTTTGAA	ACAGAATTAG	ATATTAAAGG	TATCGCTACA	GATATTGAAG	GTGTCTTTAT	27780
25	AAGAGCCCCA	CATATTGAAA	AAGTAGGTCA	AGGCGTAGAT	ATCCTATGTA	AGGTTAATGA	27840
	GAAAATTGTA	GCTGTTCAGC	AAGGTAAATA	TTTAGGCGTA	TCATTCCATC	CTGAATTAAC	27900
30	AGATGACTAT	AGAGTAACTG	ATTACTTTAT	TAATCATATT	GTAAAaAAAG	CATAGCTTAA	27960
50	TGTATGCTAA	ATCAACGAAT	TATTGATATT	TATAGATTTG	TTGAGAAGAA	AATATCTCCT	28020
	TCAAACTTAG	CTTTGGAGGA	GTTATTTTTT	ATGTCAAAAT	TAAAAATGAT	AAAAAAAA	28080
35 .	GCTATACATA	AGAAAAAAAC	CCTTCAAAGA	GACTGAGAAT	AGTCAAAATT	TTGAAGGGGT	28140
	TAATTCGATG	TTGATGTATT	TGTTAAATAA	AGAATCcAGC	GATTGCAGCT	GAAATGAAAG	28200
	ATACTAGTGT	tGCACCGAAT	AATAATTTCA	AACCAAAGCG	GGCAACTGTA	TCTCCTTTTT	28260
40	TGTCATTAAG	TGATTTAATC	GCACCTGAAA	TAATACCGAT	AGAGCTAAAG	TTAGCAAATG	28320
•	ATACTAAGAA	TACAGATGTA	ACACCTTTTG	CGTGTTCAGA	тааатсаста	AGTTTACCAA	28380
	GTGCTTGCAT	TGCTACAAAT	TCGTTAGATA	ATAGTTTTGT	CGCCATAACT	GAACCGGCTT	28440
45	GAACTGCATC	TTGCCATGGC	ACACCGACTA	AGAATGCAAA	TGGTGCAAAG	ACAAAACCAA	28500
	TTAATGTTTG	GAAATCCCAA	GAAATAGCGC	CACCTGAAAC	TGTACTAAAG	ATATTGCTTA	28560
	CAATTCCATT	TAATAGAGCG	ATAATGGCAA	TGTATCCGAT	TAACATTGCG	CCTACAATGA	28620
50	CAGCTACTTT	AAATCCATCT	TTATATAAAA	CTCCTAGCAT	TTCGAAGAAT	GATTGTTGTC	28680
	тттсттсьст	ጥጥጥጥሮ እ እ ርጥ	ייבידירית מדממ		TOTAL COMPANY	TA A CCCTTTA A	20740

	TAGGTTCAAT	TAAGGTAAAG	TATGCACCGA	TAATTGAAGC	AGAAACAGTC	GACATTGCTG	28860
	AAGCTGTTAA	TGTGTATAAA	CGTTGCTTAG	GTATGTATGG	TAATTGTTTT	TTAATTGAAA	28920
5	TAAATACTTC	AGATTGTCCC	AAAATTGCTG	CAGCAACTGC	ATTGTATGAT	TCTAAACGTC	28980
	CCATACCATT	AATTTTAGAA	ATTAAGAATC	CTAAAACATT	AATGATTAAA	GGTAAAATCT	29040
10	TTGTGTATTG	AAGGATACCG	ATAATCGCTG	АААТАААТАС	GATAGGTAAT	AATACACTGA	29100
10	AGAAGAATGG	TGGTTGCTTA	GGATCGATAT	ATTGAATACC	ACCGAATACA	AAGTTAACAC	29160
	CATCTGCTGC	TTTTAATAAT	AAGTAGTTAA	AACCGTTTGA	AATACCACCA	ATAACCTTGA	29220
15	TTCCCATTGT	AGTTTTAAGC	AAGATAAATG	CAAAGATAAG	CTGAATTGCA	AGTAAAATTC	29280
	CTACATATTT	CCAGCGAATA	TTTTTCCTGT	CTGAGCTAAA	TAGAAACGCA	AGTGCTAAAA	29340
	AGAAGATAAT	TCCGATAATC	CCAATTAGAA	TATGCATATA	TTTCTCATTC	CTTTAGTTTT	29400
20	TTCTACaATc	TATCATACAA	TAAAATGGAA	GGGCTAACAT	CATAAATTTT	TGAAAATATA	29460
	AAAACAAATT	AATTGAAAAA	GGTCAAAATA	GGTCATATAA	TATAGTCAAA	GAAGGTCAAA	29520
	AAGGGGTGAT	ATACATGCAC	AATATGTCTG	ACATCATAGA	ACAATAaTCA	AACGTTTATT	29580
25	TGAAGAGTCG	AATGAAGATG	TCGTTGAAAT	TCAGAGAGCG	AATATCGCAC	AGCGTTTTGA	29640
	TTGCGTACCA	TCACAATTAA	ATTATGTAAT	CAAAACACGA	TTCACTAATG	AACATGGTTA	29700
20	TGAAATCGAA	AGTAAACGTG	GTGGTGGTGG	TTACATCCGA	ATCACTAAAA	TTGAAAATAA	29760
30	AGATGCAACA	GGTTATATTA	ATCATTTGCT	TCAGCTGATT	GGACCTTCTA	TTTCTCAACA	29820
,	ACAAGCTTAT	TATATTATTG	ATGGGCTTTT	AGATAAAATG	TTAATAAATG	AACGTGAAGC	29880
35	TAAAATGATT	CAAGCAGTTA	TTGATAGAGA	AACGCTATCA	ATGGATATGG	TTTCTAGAGA	29940
•	TATTATTAGA	GCAAATATTT	TAAAACGTTT	GTTACCAGTT	ATAAATTATT	ACTAAATGAA	30000
	ATGAGGTGTT	GAAGTGCTTT	GTGAAAATTG	TCAACTTAAT	GAAGCGGAAT	TAAAAGTTAA	30060
40	AGTTACAAGT	AAAATAAAA	CAGAAGAAAA	AATGGTGTGT	CAAACTTGTG	CTGAGGGGCA	30120
	CCATCCGTGG	AATCAAGCTA	ATGAACAACC	TGAaTATCAA	GAACATCAAG	ATAATTTCGA	30180
	AGAAGCATTT	GTTGTTAAGC	AAATTTTACA	ACATTTAGCT	ACGAAACATG	GAATTAATTT	30240
45	TCAAGA						30246

(2) INFORMATION FOR SEQ ID NO: 57:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14333 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

	TATTCCCCCA	TCGGTTTATT	AAATCGTCCA	TTTCAATACT	GTTTTTCCCC	AAGATGTCGA	6
5	TAAATCCATT	TCAAACGCTT	GGACGATATC	TTGCATCGTA	CATACATTAA	TTTCATGTCC	120
	TTTTAATAAT	GCTAACTTTT	CAACTATGTC	TGGGTACTTA	CGATATAAAT	CAACAACTTG	180
0	CTCAAAATCT	TTAGAGCCGC	TTCGACTACT	ACCAATCAAC	GTTAATCCTT	TTTCAAGTAC	240
-	TAATCGTGTA	TTCACTTCCA	CGGGTAATTC	ACTTACGCCT	AACAAAGCAA	TACTGCCTTC	300
	TGGTGAAATA	TGTTCAACTA	TTTGTTGAAG	TGCAACTTGA	CTTCCTTTAC	CTCCAACACA	360
5	TTCAAATGCA	TGATCAATTT	TAAGATCATC	TGGTATTTGA	TTTACTGTAA	AGATGTCATC	420
	TACAAATGAA	AAATGACTTA	ATTTATAGTC	TGTCTTACCA	AATACATAAG	TTTTAGCTTC	480
	TGGGTACAAC	TTACGTAGCA	AAATAGCAGT	AATATAACCT	AAGTTACCAT	CACCCCAAAT	540
20	ACCAAAGCTG	GTTTTCAAAG	GTATAGATTT	ACGTTCAAAT	CGTTGTATAG	CATGATAACT	600
	TACTGACACT	AACTCTGTGT	ATGAAATCGT	ACTCAAATCA	ATGTCATTAG	GCAGCGGAAC	660
	GATACGATCA	TGTGCCATCA	CAACGTAGTC	TTGCATAAAA	CCATCATAAC	CACTAGATCT	720
25	AAAATAACTA	GAGGCTAAGT	AATTCTCCGC	AATAATATGA	TGTTGCTCTG	TAGGTGTATT	780
	CGGTACCATT	ACTACTTTCG	TACCTTTTTC	AAATACCCCT	TTACTATCAA	ATACAACTTC	840
10	ACCAACAGCT	TCATGAACTA	ATGACATTGG	TAATTTTTTG	CGTAGTACAT	TTTCATCTCT	900
	TCGACCTGTG	TAATACCTTT	GATCAGCTGC	ACAAATAGAC	AAGTATAAAG	GTCTTACGAT	960
	GACATGATTA	CCATAAATAT	CAACATTATT	ATATGTGACG	TCGAACTGTC	TCGGTGCAAC	1020
15	GAGTTGATAT	ACTTGATTAA	TCATCGGCAA	TATCACCTTG	AATAATGGCA	TTTGCTACTT	1080
	TTAAATCATA	CGGTGTTGTC	ACTTTAATGT	TGTATAGTTC	TCCaCGTACC	AATTTAACTG	1140
	CATGTCCAGA	TTCGACAATG	ATTTTACATG	CATCTGATAA	GATTTCTTTT	TGTTCACTAC	1200
0	TTAAGGCGCG	ATAACTATCT	TGTAATAATT	TAATATTAAA	TGATTGTGGT	GTTTGGCCTT	1260
	GATACATTTC	ATTCCTTACA	GGGATACTGT	GTATGTTCTG	TTTATCTTTA	GACATTACAA	1320
	TCGTATCAAT	TGCTTCAATG	ACTGTATCTA	CTGCACCATA	TTTTGCTGCT	ACTTCAATGT	1380
5	TCTCTTTAAT	AATACGTTGA	GTTAAAAATG	GTCTTACGGC	ATCATGAGTT	ACAATCACAT	1440
	CATCATTATT	AATTCCATTT	ACATTGCGAA	TATGGTCGAT	AATGTTCATA	ATTGTTTCAT	1500
	TTCGATCCGT	ACCACCTGCA	ACTACTTTGA	CACGTTGATC	TGTAATGTTA	TATTTTTTTA	1560
ю	AAATATCCTG	TGTATGGGAA	ATCCACTGTG	CTGGCGTTGC	GATAATAATC	TCATTAAATT	1620
	CACTCACTAA	AATGAACTTC	TCAATTGTAT	GGATTAAAAT	CGGTTTATTA	ТСААТАТСТА	1680

	CTGCATAAAT	CATGTTGTCC	TCCATTCTGT	CATTACATCA	TTTCCATTTA	TACATTACTG	1800
	ACCTATGCCC	GCACATAAGC	CTAACCTATT	GCTCACTTGC	CTCTTTTATT	AATCCAAAGA	1860
5	TAGTTGTCAC	AATAGTGTGA	TAATTTTTTA	TAAAAATGTA	TTTTTGTAAC	TGACCATTCT	1920
	AAGTTGTTTT	GCCATGCAGT	TAATCATTAA	CTCTGACGAT	ATTAAATTGT	TAAAGGTATT	1980
10	AATGTTTACT	CTTTTTCAAA	TTCATTATTA	CTGCCATCAT	TTTACCATAT	ATTATAATAA	2040
,,	ATTTATCTTA	TTAAGTGGCT	GTACTTGATT	TTCACTTTAA	AAATTATCAA	ATATTGCCAT	2100
	CTCATTTTAA	GTATACAAAA	TGCAAAACAA	CCGATTCACA	AGCATATTTC	ACACAAGTAA	2160
15	ACCGGCTATT	TATCAACGTA	TATTCGAAGA	TGAATTATTT	CGATAGTATC	TATAGACCAG	2220
	ACGGCATTCG	CACTTTCATA	GCTATAACTA	TACCAGCGTT	TTCGTCCTCA	AAGGTGCATA	2280
	CTAATAAATC	GTAAACATGA	CTTTATCAAA	TCGTTCTTTC	TTGTTAACTA	ATTTATCAAA	2340
20	TGTCTCCGGG	CCTTTTTCTA	ACGGTAAAAA	ATGAGAAATA	ATAGGCTTTA	CATTAATATC	2400
	TTTCGTCTTC	ATATAATGTA	AGGTTGCCGT	CCACTCTTTG	CCCGGAAAAT	TACTGGACAA	2460
	ACAGTTCCAA	GAGCCACATA	CTGTCAACTC	GTTACGCAGA	ATTTTTTCAA	AATGAACGCG	2520
25	ATCAATCTCA	ATATCATCAT	ATGGTATTCC	GAGTAATACC	ACCTCGCCAC	CTTTTTTAGG	2580
	TAGCGTCAAT	ATTTGACCAA	TCGTAACTTT	AGCACCTGAT	GATTCTATAG	CTAAATCGAT	2640
30	TTGATTGGCG	TAATGATTTT	CGATGAATTT	CTCAAGATTT	TCTTCTTTTG	AATTGATTGT	2700
50	TTGATGTGCG	CCCAATGATG	TTGCAATATC	TAGTTTATGC	GCATCTATAT	CTATAGCGAT	2760
	GATATGTGCA	GCACCAAATA	TTCGTGCCCA	TTGAATAGCT	AACAAACCTA	TACTGCCACA	2820
35	CCCCATTACT	GCAACAGTCA	TACCAGGTTG	TATATTCGAT	TTATAAAACC	CATGCGCAAC	2880
	AACGGCTGAT	GGCTCAACCA	TTGCTGCTTC	AATGTAATCA	ACATTGTCTG	GAACCTTTAA	2940
	AACATTTTGC	GCTGGCAATT	TGACATATTC	CGCGAACGAT	CCAGGTTCAT	ATGAGCCAAT	3000
40	GACGAATAAC	TTTTCACATC	GTGCATATTC	ACCTTTTAAA	CAATACTCGC	ATTGATAACA	3060
	AGGTATTGCT	GGGCAACCTG	TCACTTTGTC	GCCCACATTA	ACATGCGTAA	CATCACTTCC	3120
	AATGGCATCT	ACTACACCTG	AAAATTCATG	ACCAAATGGC	ATACCTTTAA	TGTATGGCCC	3180
45	CATTTTTTTG	TATCGTGACG	TGTCTGAACC	ACATATGCCA	GTCGCTCGTA	CTTTAATAAT	3240
	AACGTCATTC	GCACTTTCAA	TGACTGGCTT	TTCATTATCC	TCATACCGTA	AATCTTCCAC	3300
50	GCCATATAAT	TTCAATGCTT	TCACTTGTAA	ATCACCTCAA	ATTTGATTTA	ATTCACAACT	3360
50	TTTTTCTTTT	TAAAAATACC	TGTCGCAAAA	TAACCTGCAA	TGACAATGGA	ATTACTTACG	3420
	AGTAAATGTT	ССВТАТАВА	ATCAGTGATT	ተርተርተተል ልጥር	GCCCAACCAT	እ እ እ እርምም አ <i>ር</i> ር	2400

	TGCTTTAATA	CCTTCGCCGG	ATTTTAAATG	TTGATACGCC	TCGTCCCATT	TCGAAATATC	3600
	ATATATTTT	GTCACCAAAG	CTTCAGCATT	TACTAAACCA	TCCGCCATAA	GTTGCAATGA	3660
5	AGGTTCCCAA	TCTGCTGGCT	TTTGACTTCT	ACTACCAACA	ACTGTTATTT	CTTTTTGAAT	3720
	CACTTTTTCC	ATATCAAATG	GAATTTCAGC	ATCCTTAAAA	ATACCTATTT	GACTGTAGAA	3780
	ACCTTTTTTG	CGTAAAATAT	CCAAACCTTG	TCGTGCTGCT	GGAACTGCAC	CTGAACATTC ·	3840
10	AACAACAACA	TCTGCACCGT	AACCGTCTGT	AATTCCATTG	ATATACGTTT	TTAAGTCTGT	3900
	TTGTTGTAAA	TTGACTACAT	AATCCATGTG	CAATGCTTCT	GCTTTATCTA	ATCTGACTTT	3960
15	GTCATTGTCC	AATCCAGTTA	CCACAACAGT	TGCGCCTTTA	CTTTTTAACA	CTTGTGCTAC	4020
	AAGTAATCCG	ATTGGCCCAG	GTCCCATTAC	AACTGCTACA	TCGCCTGAAT	TGACTTGAAT	4080
	CTTAGAAACG	CCATGATGTG	CACATGCTAA	TGGTTCTGTC	ATAGCTGCAG	ACTGATACGA	4140
20	TALTCGTCTG	GAATATGATG	CAAACTTTCT	TCACGTGCAA	TGACATAATŢ	AGTAAATGCG	4200
	CCATCAACTT	GTGTTCCAAT	ACCTTTTCGA	TGGTTGCATA	AATTATAGTC	TTTTGATTTA	4260
	CAGTATTCAC	ACTCATTACA	AACATAGAAT	GTCGTTTCAG	aTGtGACACG	GTCACCAACT	4320
25	TTAAAATCTT	TAACGTCTGC	TCCAACTTCA	ACGATTTCAC	CAGAAAATTC	ATGACCTAAT	4380
	GTCACTGGAA	AATTAACTTT	ATAATGACCT	TCATAAGTAT	GAATATCTGT	GCCACAAATT	4440
	CCTGCATAAT	GTACTTTAAT	CTTTACTTTA	TCATCTAGCG	GTGTTGCAAC	TTCTTTATCA	4500
30	AGAAGTTCTA	AGTTGCCATG	TCCTTCTCTT	GTTTTTACTA	AAGCTTTCAC	CACAAACACC	4560
	TCGATTTTTA	attgaataga	CTAAATAGTT	TAAAGATAAG	ATAGTTAACG	ATATTACCAC	4620
35	CTTGATCAAT	ACTTGAAATT	TCAGATGAAC	CTTTTGGCAT	TTGTACATTC	GTACCTTTCG	4680
	CCATATCTGT	GAAAATGGGT	GCTACGTCTG	TTGCAATATA	TAGTGAAATT	GCAATCATAA	4740
	TCGTACCCAC	AATGACAGAA	TGAATAATGT	TTCCTCTTGC	TGCACCAACA	ATAAACGCGA	4800
40	CAACAAATGG	TATCGTTGCT	AAGTCACCAA	AAGGTAGTAC	TTGGTTTCCT	GGTAAAATAA	4860
	CGGCTAATAA	AACAGTGATA	GGTACTAAAA	TTAATGCTGT	CGAAATAAĆT	GCTGGATGAC	4920
	CTAATGCTAC	AGCCGCATCC	AATCCAATAT	AAATTTCACG	TTCGCCAAAA	CGTTTATTTA	4980
45	GCCATGTTCT	TGCAGACTCT	GAAACTGGCA	TTAAACCTTC	CATTAAGATT	TTTACCATTC	5040
	TAGGCATTAA	TACCATTACT	GCAGCCATTG	ACATTCCTAA	ATTAATGATG	TCTCCAGGTT	5100
	TGTAACCTGC	TAACACACCA	ATACCTAAAC	СТААААТТАА	GCCGACAAAT	ATAGACTCTC	5160
50	CAAATGCGCC	AAAACGTTTT	TGAATTGTTT	CAGGATCAGC	ATCTAACTTA	TTCAGACCGG	5220
	GTACTTTTC	מדדדממיממי	ACTABGTAAA	ምል ርርጥርርጥር ር	7TX 7CX 7 7T	CER COMO COMO	

	CTACTTTCAA	ACAGATAATT	TGGAAAATAA	CTGCTGCTAA	TAACGCTTGC	CAAATACTGC	5400
5	CTGATACGGC	ATAAACCATT	GCTGCTGTAA	ACGTATAATG	CCAAAAATTC	CAAATATCTA	5460
J	CATTCATCGT	CTTTGTCACT	TTAGTTACTA	GCAATACAAC	GTTAACTATG	ATTCCGAGTG	5520
	GAATAATAAA	TGCTGCGACA	GATGATGCCC	AAGCGATAGA	TGATGTTGCT	GGCCAACCTA	5580
10	CATCAATCAC	ATTCAGACTG	ACGCCTAAAT	TTTTAACCAT	CGCTTGTGCT	GCTGGCCCTA	5640
	AATTTTTAAC	TAATAAATCG	ATGACTAAGA	AAATCCCTAC	AAAAGCCACA	CCTATTGTTA	5700
	AACCAGACCT	AAATGCCGCT	CCAATTTTCT	GCCTAAAGAA	TAGGCCAAGC	AAGAATATGA	5760
15	CAACCGGTAA	AATAACAGTt	GCACCTAAAT	CTAAAAATCC	CCTTACAAAA	TCAGTGAAGT	5820
	AACTCATATT	TAAACCCTCC	CTGTTATATA	TGCATTGTCA	CGATACTTTC	CGATTGTGAT	5880
	TACATTTGAC	GTTACAGTCA	TTTCAACGAC	AACCCTTGCT	AAATTCGACT	GCAGTCCTTT	5940
20	TGAATTACAG	tCACTGCGTT	TCTATGTCAT	CAACAATCAT	TTGTCGTGAT	AGTCATTTAT	6000
	ATGCAATTTG	CATATATTAA	TATGTTATCG	ACCCACGTTA	CATATCAATT	CCGTTATTTT	6060
	TGTAACTCTG	TTAAGATTTG	TTGTTTTGTT	TCTTCAATAC	CAATACCAGT	TAAGAAATTA	6120
25	CGTGCGTTGA	TAACTGGGAA	TTTATATTCT	TTTTTTGTCA	TTGCAGTTGT	AACTAATAAA	6180
	TCTGCAGTGT	CTTCATAAGG	TCCAACTTCT	GTAATTTTGA	TTTGTTTAAT	ATCTACTTTA	6240
30	ATATTGTGTT	CCTTTGCCAT	TTCTTCAATT	GCATTATTTA	CTACTGTTGA	CGTTGCAATA	6300
	CCTGCACCAC	ACGCTACTAA	TACTTGTTTC	ATTTTCAATT	CCTCCAATTA	ATTTTTAGTT	6360
•	ATATTCCAAA	TAATCATTGA	TTAGTGTTGC	TAAAATTGTT	TCATCTTTCG	TTCGTAGAAT	6420
35	CTGCTCCAAT	TTTTCTTCAC	TTTGAAAAAT	TTGCATCAAC	TGTTGTAACA	GCTTAAGTTG	6480
	ATCATCTACT	TTATCCATTG	CTAACATAAA	AACGATTTTC	ACTTCTGTCT	GTTGATCAAG	6540
	TGTTCCCATT	TCAATAAACG	GCACTTCTTT	TTCTAGAACA	GCCACACCTA	TCGTTCTATG	6600
40	GTTAATATGT	TCGACATCTG	TATGCGGTAT	AGCGACCGAA	CATAGATGCG	TTGGTAAACC	6660
	AGTAGCAAAT	TCTTTTTCTC	TGTCGATGAC	TGCATCTTTA	AACGTTGACT	TCACGAACCC	6720
	ATTTTGAAAT	AACACATCTG	ACATITGTGA	CAATACGGAT	TCTTTATCAG	TTGCCGACAA	6780
45	ATTGAGCATT	ATATTTTCTT	TATGCACTAA	TTGCTGTCCC	ATCCATTTTC	CCTCGCTTCT	6840
	TTATTTGAAT	AATTTTTAA	AATCTCATTT	ACATCAGAAT	TTTTGCGACT	TTGTATGATG	6900
50	CGCTTAATTG	CGTCATTGTC	TTGCGCCACA	TCTCTCAATT	GTAGTAACGC	TCTTAAGTGT	6960
50	GTCACTTTAT	CAACAGCAGC	AATAGGTACA	ATAATATGGA	TTGCTGTGCC	ATCTGACATG	7020
	ТАТАТТССТТ	בייים איניים איניים	C	3 TO COTO TOTAL	TATCTA CATC		

	TGCATCTCAT	GAATATATTT	AATATCAATA	AAATGATTAG	CAACTAACAC	ATCACTTGCT	720
5	TTAGCAATAG	CTTCATCAAT	ATTTTCAACA	TGATGCATTC	TTTTCACGTG	CCTTGCCGGT	726
5	ATCAAGTCAG	СТАААТСТАА	TGYCTWATTT	tGTGtGACaA	TCGATCCATT	AATGGTTGAA	732
	ATTGAATTAT	AATTGGCAAT	AAAATCTTCT	AAACCATCAC	GTAGTCTGTA	ATGTCATTAA	738
10	CTGTCGTTGT	GCGTTCAATT	AATGCCATTA	ACTTGTTTAT	TTCCTTATCA	ATGTCAGCCG	744
	ATTCCTTATT	AATGTACTTC	ATCACTTCTT	TACGTAACTT	TCGTTGCTCA	TTTTCAGATA	750
	AAGCTACTTT	TGTGATAAAT	AATTTTTTAT	GTGTTAGGAC	AAACATTGGT	GAAAAGACGA	756
15	TGTCATAATC	TAATGTGTAA	TTTTCAAATG	TTCTAAGTGA	AATCGCATCT	AAGAAAATAA	762
	TTTCTGGAAA	TAAGTTTCGC	AACTCGTATA	ACATCATTTG	TGATACTGAC	GTGCCTTGTG	7680
	TACACACGAT	AATAGCTTTT	ATCTTGCCAT	CGAAGTTTTC	ATCTTGACGT	CTCAAACTAC	7740
20	CTCCGAACAA	CATGGTTAAA	TATGCTATTT	CATTATCAGG	CAACGATTTT	CCGAAATATT	7800
	CAGTTAACGA	TTGACATGAT	TGTTTCACCA	TATGAAATAA	GGATTGATAA	TTTCCTTGTA	7860
	AAGGATTTAT	TAATTCATCA	CGATCCGTTA	AGTTATATTT	AATCCTATAA	AAAGCAGGCG	7920
25	TTAAATGTAA	CAAGAGTTGC	TGTGATAATT	TCTCCTTATC	TTCAATGTTA	ATAAAAGTGA	7980
	TTTGTTCAAA	ATGGTGAATC	ATTTGAGCGA	TGGCCATCGT	TAAATTCGAT	ATGCTATCTG	8040
30	ATTCTTGCAA	ATCAGTCCAT	TGCACACTTG	TTGAAAGTAA	GTGTAATGTC	AAATATAACT	8100
50	TTTCCGCTTC	TGGCAAATCC	GGCTCATGTT	GCGTCATAAT	CTCCGTTGCT	TGATATTCTT	8160
	TCGTATCCCT	CAAATACTGA	TAATTAATAT	TTAATGGATT	CATCACATGA	CCACTTTGAA	8220
35	TTCGTCTACG	AATCACACAA	AGGACATAAG	GCAATGAACT	AAGTGATTTG	TCTATAAAGC	8280
	GACTCTTCAA	AAATTGTTCT	ACCTGTTTGA	TCTTGTCTTT	TTGATATGCG	ATATCTTCGA	8340
	ATGTTAAGTT	GAGCGCCTTT	AAAACTTCAC	TTTTAGTAAT	ATCATGATTC	AACCTTTGAT	8400
40	CAATCAACTT	aatgaagaaa	CGGCGAACTT	CAAATTCATC	ACCAACAATT	TCATAACCAT	8460
	GTTTTCGAGA	ATACTTAAGT	GACAAACCAT	GATTTTCCAA	TTGCTCTTTC	ACATGATTTA	8520
	TATCGTGAAT	GACAGTATTT	TTACTGACTT	GTAAATCAAT	TGAAAAATGG	TTTAGAGACA	8580
45	TTGCGTTTTC	СТТАСТАААА	AGCATGAGCA	TTAAATAATA	ACGACGTGTT	TCTATGCTAA	8640
	AAATGACATT	GTTGCCGTTT	AACATTTGCT	GCTCCGATAC	ATCTCGCTTG	AATAACGTCA	8700
	TGATTTCAGA	ACTTACAATA	AAATTTCCTT	GGCTTGTTCT	TTCAAGTTTT	GGATAACCCT	8760
50	CTTGTTCAAG	CCACAAATTG	ATTTTTTGAA	TGCGATATCC	TAGTTGTCTA	CGAGACAAAC	8820
	CAAATATCCA	ጥጥሮል ልርጥጥሮጥ	TTACCATCAA	でも なでもなる。	~ N N T N ~ N N T T	TOTOTOTOTOTO	0000

	TCAATCGTCA	CACCGATGTA	CACACTTTGA	ACACATATTT	TCAAAATGAG	CATGTACATC	9000
	ATTGTGATGT	TTTAACAACA	TTTCAATTAT	ATCTATATTT	TTTGTGATTT	TAATCTTTTA	9060
5	AAATAAAGCA	ATTGAAATTT	TTGCATATAT	TTTTGTGTTT	TGTGTTTTTT	TGAAGCATTT	9120
	TTAACATACA	TATCTCAATC	ATTATCAAAT	TGTCATGACC	ATTGTAACCC	AATACAAAAA	9180
10	CCCTAAGGAC	GCTTATATCA	GGCGCCTTAG	GGTTAACTGT	ATCTATTTAA	TTAAGTATTA	924
	TTATTCGTAT	GTACGTAACT	TATGGTCTAT	CAAGTTCCAC	ACTTCTTCAA	CATCAACTGC	9300
	TGTAGCAAAA	TAAGCATTGG	CAGGCTTACC	TGTAACATGA	TTTAAATCGA	CAGCCATAGT	9360
15	GCCATAAGTT	AGTGGACTTT	GATGTTCAAT	GTCGATATTA	ACGGGTACCA	TTGTAAACAA	9420
	TTCTGGTTGT	AACAAATACA	AAATTGTACA	AGCATCATGT	ATTGGACCAC	CATCCATATT	9480
	AAAGTGAGTC	TTGTATGTCT	TCTTAAAGAA	TTGCAATAAT	TCTACGACGA	ACTGTGCAAC	9540
20	AGGATTATTG	ATACTTTCAA	AGCGTTCAAT	CACGTGATCG	TCGGCTAAAA	CTTGATGTGT	9600
	TACATCTAAA	CCAAACACAT	TTATAGTAAT	CCCACTTTCA	AAAACACGCT	TCGCTGCTTC	9660
	AGCATCTACC	CAAATATTGA	ATTCTGCTGT	AGGCGTCCAA	TTTCCAAATG	TACCACCACC	9720
25	CATCAAAGTA	ATAGATTCAA	TATGCTCAGC	GATTCTTGGC	TCACGAATCA	ATGCCGTTGC	9780
	TACATTCGTA	AGAGGACCTG	TCGCTACAAT	TGTTACAGGT	GTATCACTCG	TCATCACTTT	9840
	GTTTATAATC	ACATCTGATG	CTGGCATTGC	AACTGCTTGA	CGTGATGGTG	TCGACGGTAG	9900
30	TTTCGGACCA	TCTAATCCAG	ATTCCCCATG	TATTTCAGAA	GCAAAGGCAG	CTGGTTTAAT	9960
	TAACGGCCTA	TCCGCACCTT	TCGCTACTGC	TATATCTTGG	CGTCCCATAA	TATCCAATAC	10020
35	GTTCAAGGCG	TTTGTCGTAT	TCTTGTCAAC	TGATTGATTA	CCTGCGACTG	TTGTTACAGC	10080
·	TAATATCTCT	AGTGGACTGT	CAATTGCCCC	CGCTAAAATT	AATGCTATTG	CATCATCGTG	10140
	TCCTGGATCA	CAATCCATAA	TAATCTTTCT	TTTCATTTAT	ATATCCACCT	TTCTTAAGTT	10200
10	GTTATCGATA	GCTTATGTAT	ATTTATTTAT	GTGGTGAATC	ATGTTTATTT	TGAAAAATAG	10260
	TTTTAACTTT	CTCATATTTT	TGGATACAAA	CACTATTTAT	CTATTTTATG	GCTTATAAAT	10320
	TTATCCGATA	TGCCTTATCA	ACCTACCTCG	CTAAAAATAG	GATGTCTACA	TATCTATACC	10380
15	GACTTTTGTC	AACTCATTTT	CACAACAATA	TAAACAGCAA	TTTATATGAT	TGTTACATGA	10440
	TTCAAACAAT	TTTTATGAAA	AATATTTTCA	TACACAGAAT	ATATATTGAT	ATTAAATTTC	10500
	TCAAAAGCTA	TATTGAGAAT	AATTAGGAGG	GATGTTGATG	AAATCTTTAT	TTGAAAAAGC	10560
50	ACAGCAGTTC	GGCAAGTCCT	TTATGTTACC	TATCGCAATC	TTACCAGCTG	CAGGTCTATT	10620
	GTTGGGTATC	GGTGGTGCAT	TAAGTAATCC	AAACACCGTT	AAAGCATACC	СТАТТТТАСА	10680

	AAATTTACCG	GTCATCTTTC	CAATTGGTGT	CGCAATCGGA	TTATCTAGAA	GCGATAAAGG	10800
	TACTGCAGGT	'tTAGctGCGC	TGCTCGGTTT	CTTAATTATO	AACGCAACTA	TGAATGGCTT	10860
<i>5</i>	ATTAACTATO	ACGGGCACAT	TGGCAAAAGA	TCAGCTTGCA	CAAAATGGAC	AAGGCATGGT	10920
	GCTCGGTATA	CAAACGGTTG	AAACCGGTGT	TTTTGGCGGG	ATTATCACAG	GTATTATGAC	10980
10	CGCAATACTT	CACAACAAAT	ATCACAAAGT	GGTATTACCA	CCGTATTTAG	GTTTCTTTGG	11040
10	TGGCTCTAGA	TTTGTCCCTA	TTGTCACAGC	ATTTGCCGCA	ATCTTTTAG	GTGTATTGAT	11100
	GTTTTTCATT	TGGCCAAGCA	TACAAGCCGG	CATTTATCAT	GTTGGTGGAT	TTGTAACGAA	11160
15	AACAGGTGCC	ATCGGTACTT	TTGTTTATGG	CTTCATCTTA	AGATTGTTAG	GTCCACTCGG	11220
	TTTACACCAT	ATTTTTTACT	TACCGTTTTG	GCAGACGGCA	CTTGGTGGTA	CTTTAGAAGT	11280
	CAAAGGGCAC	TTAGTTCAAG	GTACGCAGAA	CATCTTCTTT	GCTCAACTTG	GTGATCCAGA	11340
20	TGTGACGAAG	TATTATTCAG	GTGTGTCACG	CTTTATGTCA	GGCCGTTTTA	TTACGATGAT	11400
	GTTCGGCTTA	TGTGGTGCCG	CACTTGCAAT	TTATCACACA	GCTAAACCTG	AACATAAAAA	11460
	AGTTGTCGGC	GGTTTAATGT	TATCCGCTGC	ACTCACTTCA	TTTTTAACAG	GTATTACCGA	11520
25	ACCTTTAGAG	TTTAGTTTCT	TGTTTGTCGC	ACCTATTCTT	TATGTAATCC	ATGCCTTCTT	11580
	TGATGGATTA	GCATTTATGA	TGGCAGACAT	TTTCAACATT	ACAATTGGTC	AAACCTTCAG	11640
	TGGAGGCTTT	ATCGATTTCT	TACTCTTTGG	TGTGCTACAA	GGTAATAGTA	AAACAAACTA	11700
30	CCTATACGTC	ATACCTATTG	GAATTGTGTG	GTTCTGTTTG	TATTACATCG	TTTTCAGATT	11760
	CTTAATTACG	AAATTTAATT	TCAAAACACC	TGGTCGAGAA	GATAAAGCTG	CAGCACAACA	11820
35	AGTTGAGGCT	ACTGAAAGAG	CACAAACTAT	TGTTGCTGGT	TTGGGAGGCA	AAGATAACAT	11880
	TGAAATCGTT	GACTGTTGTG	CAACGAGACT	ACGCGTCACA	CTTCATCAAA	ATGACAAAGT	11940
	CGATAAAGTA	TTACTCGAAA	GTACTGGTGC	CAAAGGTGTA	ATCCAGCAAG	GCACTGGTGT	12000
40 ·	GCAAGTAATT	TATGGGCCTC	ACGTTACAGT	TATCAAAAAT	GAAATTGAAG	AATTGCTCGG	12060
	GGATTAAGAC	TAACCGAAAT	ATCAACAGAA	CTAATGGCAA	CGATGTACGA	AGTAAGAAGT	12120
	GACATCGTTG	CTTTTATTTT	TAATGTTACA	TTTGAAGCAT	TAAGTTCATC	ATGCACTGTA	12180
45	GTGAGCCCGC	AAATCGCCTC	TGCTAGACAA	TCATCTTAAT	GCTATGATTA	AAGCTTAAGT	12240
	GCCAGATTTG	AATTTAATTT	CAACAACGAC	TTTCACTACA	TTAAAAATAG	GGCCACTCGA	12300
	CACATATAGT	TGTATCAAAT	AGCCCTTTAT	ACAATTTTTT	GGGTAAGGTT	TTACAATTTT \	12360
50	TGGGATGGTA	TAGATTTTAT	AAAAAGTTAT	TTAAGTTCTT	CTGCTTCAGC	CATAATATCT	12420
	TTTAATGTTT	TAGCTGAATG	TGCGAACTTG	CTTTGTTCTT	CGTCGTTTAA	TGGGATTTCT	12480

	TCCTCATATT	CGCCTTCTAA	TAATGCTGAT	ACAGTCAATA	CGGCATCTTC	ATTTCTGAAA	12600
	ATCGCTTCAG	TAATTCTAGC	TAATCCCATT	GCAACACCAT	AATAAGTGGC	ACCTTTAGCT	12660
5	TGAATAATGT	CATATGCTGC	ATCACGTGTT	TGAACAAAAA	TTTGTTCAAT	TTGCGCTTTG	.12720
	CCCTCAGGAC	GTTGTTCAAG	TAATGTCTTC	AAAGGTTGAC	CCGCAATATT	AGCGTGTGAC	12780
10	CATACTGGTA	ATTCAGTGTC	ACCATGTTCA	CCAATAATTT	GAGCATCGAC	GCTACGTGGC	12840
	GCAACATCGn	AcgyTcGCTT	AACAATAATC	TAAAGCGTGC	AGAGTCTAAA	ATTGTACCAG	12900
	AACCTATAAC	ACGTTCTTTA	GGTAAACCAG	AGAATTTCCA	TGTTGCATAC	GCTAAAATAT	12960
15	CAACAGGATT	TGTAGCTACC	AAGAAAATAC	CATCAAATTT	TGATGCCATT	ACTTCACCAA	13020
	CAATTGATTT	GAATATTTTC	AAGTTTTTAG	ATACTAAATC	TAAACGTGTT	TCTCCAGGTT	13080
	TTTGTGCAGC	ACCAGCACAG	ATGACAACTA	GATCCGCATC	ATGACAATCA	CTGTATTCGC	13140
20	CAGCTTTCAC	ACGAACTGTT	GTTGGAGAAT	ATGGTGTGGC	ATGTTTTAAA	TCCATAACAT	13200
	CTCCTCGAAC	TTTTTCAGTG	TCTAAATCAA	TGATGACTAA	TTCATCAACA	ATGCTTTGGT	13260
	TCACTAATGA	AAATGCGTAG	CTTGAACCTA	CTGCACCATT	ACCTATTAAT	ACAACTTTGT	13320
25	TCCCTTTAAA	TTTGTTCATT	ACAAAAACTC	CCTTATGATT	AATTCACTAA	CATACATGTA	13380
	GCTTCAAATA	TGTTAGTTTA	ATGCTGCTTA	TTGACGATAC	AAAAGCAAAT	AAACATCTCT	13440
20	TTTATTTTCA	ACGCATAACT	TAAAAGGTCA	TGTGTCATCC	GCTTTTAAGT	TTGTGATTTA	13500
30	TTTCACATAT	AAAATGTAAC	ATGCATTAAG	TACTGGGTCA	ATATTAAATT	GTGATTTATT	13560
	TCACATTTTA	TTTTAATTTT	TACACCTTTT	TAATTTGTAT	mCGATTACAT	CTTAGATGTC	13620
35	TTTAGTCTTC	GTACTTCGCC	AGTGATTATT	TACACTTTCA	CATTTTTATT	ATCATGTTTA	13680
	CTTTTTTCTA	GGAAAACAAC	AATGTTTTTT	GAATTAGTCA	AATAAATGCG	CTCAATCGTC	13740
	GGTGTGCAAA	CAGACAATTG	TACACAATGC	TTATTGATAA	GTATTTAAAA	AATTAAAAAT	13800
40 、	GTCATACAAT	TATCAAATTT	GCCATTTTAT	TTATATTTTC	TCAAACCAAT	TAATTGAATA	13860
	TCGAAATTTT	TAGTAGAATA	ATCAAAATAT	ACAGATTAAA	GGAGGAGTAT	CATGCTTACA	13920
	GAACAAGAGA	AAGACATTAT	CAAACAAACG	GTGCCTTTAC	TTAAAGAGAA	AGGGACAGAA	13980
45	ATTACGTCAA	TCTTTTATCC	AAAAATGTTT	AAAGCGCATC	CTGAACTTTT	AAACATGTTT	14040
	AATCAAACGA	ACCAAAAACG	AGGCATGCAA	TCTTCAGCAT	TAGCACAAGC	TGTAATGGCC	14100
	GCAGCGGTTA	ATATCGATAA	CTTAAGTGTT	ATTAAACCAG	TCATTATGCC	AGTCGCATAT	14160
50	AAAČACTGCG	CACTACAAGT	TTATGCTGAA	CATTATCCAA	TTGTGGGGAA	AAATTTATTA	14220
	AAAGCCATTC	AAGACGTGAC	AGGATTAGAA	GAAAATGACC	CTGTCATTCA	AGCTTGGGCA	14280

(2) INFORMATION FOR SEQ ID NO: 58:

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

- (A) LENGTH: 8779 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

· company						
GGTATTTTNG	GANGGGTACC	TAAAGCAATT	CCGGCAAAGG	GTnAATCCAG	GTACCGAAAT	60
GGACTTCCCG	TTATCGATAA	TACCGACATA	TATTGTGACA	AGTAGATTTT	ATGGACATTT	120
AGGCTTACTT	TTACTTGTGA	TAATTGCATG	TATGTTTACT	GGTATTTALC	Catcaataca	180
TATCATTCAA	TTATTGATAT	ATGTACCGTT	TIGTTTTTC	TTAACTGCCt	CGGTGACGTT	240
ATTAACATCA	ACACTCGGTG	TGTTAGTTAG	AGATACACAA	ATGTTAATGC	AAGCAATATT	300
AAGAATATTA	TTTTACTTTT	CACCAATTTT	GTGGCTACCA	AAGAACCATG	GTATCAGTGG	360
TTTAATTCAT	GAAATGATGA	AATATAATCC	AGTITACTTT	ATTGCTGAAT	CATACCGTGC	420
AGCAATTTTA	TATCACGAAT	GGTATTTCAT	GGATCATTGG	AAATTAATGT	TATACAATTT	480
CGGTATTGTT	GCCATTTTCT	TTGCAATTGG	TGCGTACTTA	CACATGAAAT	ATAGAGATCA	540
ATTTGCAGAC	TTCTTGTAAT	ATATTTATAT	GACGAAACCC	CGCTAACCAT	TAATAAATGG	600
AAGTGGGGTT	CATTTTTGTT	TATAATTTAA	GTAAATAACA	TATTAAGTTG	GTGTATTATG	660
AACGTTTTAA	TAAAGAAATT	TTATCATTTG	GTAGTTCGAA	TACTTTCTAA	ÄATGATTACG	720
CCTCAAGTGA	TTGATAAACC	GCATATCGTA	TTTATGATGA	CTTTTCCAGA	AGATATTAAG	780
CCTATCATCA	AAGCATTAAA	TAATTCGTCG	TATCAGAAAA	CTGTTTTAAC	AACACCAAAA	840
CAAGCGCCTT	ATTTATCTGA	ACTTAGCGAC	GATGTTGATG	TGATAGAAAT	GACTAATCGA	900
ACATTGGTAA	AACAAATTAA	GGCTTTGAAA	AGCGCGCAGA	TGATTATTAT	CGATAATTAT	960
TACCTATTGC	TAGGTGGATA	TAATAAGACT	TCTAATCAAC	ACATTGTTCA	AACGTGGCAT	1020
GCAAGTGGTG	САТТАААААА	CTTTGGCTTA	ACAGATCATC	AAGTCGATGT	GTCTGACAAG	1080
GCAATGGTTC	AGCAGTACCG	TAAAGTTTAT	CAAGCGACGG	ATTTTTACTT	AGTGGGTTGT	1140
GAACAAATGT	CACAATGTTT	TAAACAGTCT	TTAGGTGCAA	CAGAAGAGCA	AATGCTGTAT	1200
TTTGGGCTTC	CGAGAATTAA	TAAATATTAC	ACAGCTGATA	GAGCAACGGT	TAAGGCAGAG	1260
TTAAAGGATA	AATATGGAAT	TACAAATAAG	TTGGTATTAT	ATGTACCAAC	ATATAGAGAA	1320
GATAAAGCAG	ATAATAGGGC	TATTGATAAA	GCTTATTTTG	AAAAATGTTT	ACCAGGATAT	1380

	ATCGACACGT	CTACATTAAT	GCTAATGTCA	GATATAATTA	TTAGCGACTA	TAGTTCGCTG	1500
	CCAATAGAAG	CTAGCTTGTT	AGATATTCCA	ACTATATTTT	atgtgtatga	TGAAGGAACA	1560
5	TATGATCAGG	TGAGAGGCCT	GAATCAATTT	TACAAAGCAA	TACCGGATAG	CTACAAAGTG	1620
	TATACTGAAG	AAGATTTAAT	AATGACGATA	CAAGAAAAAG	AACATCTATT	AAGTCCGTTA	1680
~	TTTAAAGATT	GGCATAAGTA	TAATACTGAT	AAAAGTTTAC	ATCAGCTCAC	AGAATATATA	1740
10	GATAAGATGG	TGACAAAATG	AGGTTTACGA	TAATCATACC	TACATGTAAT	AATGAGGCAA	1800
	CAATTCGACA	ATTGTTAATA	TCTATTGAGA	GTAAAGAACA	CTATAGAATC	CTTTGTATTG	1860
15	ATGGTGGTTC	TACTGATCAA	ACAATTCCTA	TGATTGAACG	GTTACAAAGA	GAACTCAAGC	1920
.5	ATATTTCATT	AATACAATTA	CAAAATGCTT	CGATAGCTAC	GTGTATTAAT	AAAGGTTTGA	1980
	TGGATATCAA	AATGACAGAT	CCACATGATA	GTGACGCATT	TATGGTCATA	AAACCAACAT	2040
20	CAATCGTATT	GCCAGGTAAA	TTAGATAGGT	TAACTGCTGC	TTTCAAAAAT	AATGATAATA	2100
	TTGATATGGT	AATAGGGCAG	CGAGCTTACA	ATTACCATGG	TGAATGGAAA	TTGAAAAGTG	2160
	CTGATGAGTT	TATTAAAGAC	AATCGAATCG	TTACATTAAC	GGAACAACCA	GATTTGTTAT	2220
25	CAATGATGTC	TTTTGACGGA	AAGTTATTCA	GTGCTAAATT	TGCTGAATTA	CAGTGTGaCG	2280
	AAACTTTAGC	TAACaCATAC	AATCACGCAA	TACTTGTCAA	GGCGATGCAA	AAAGCTACGG	2340
	ATATACATTT	AGTTTCACAG	ATGATTGTCG	GAGATAACGA	TATAGATACA	CATGCTACAA	2400
30	GTAACGATGA	AGATTTTAAT	AGATATATCA	CAGAAATTAT	GAAAATAAGA	CAACGAGTCA	2460
	TGGAAATGTT	ACTATTACCT	GAACAAAGGC	TATTATATAG	TGATATGGTT	GATCGTATTT	2520
	TATTCAATAA	TTCATTAAAA	TATTATATGA	ACGAACACCC	AGCAGTAACG	CACACGACAA	2580
35	TTCAACTCGT	AAAAGACTAT	ATTATGTCTA	TGCAGCATTC	TGATTATGTA	TCGCAAAACA	2640
	TGTTTGACAT	TATAAATACA	GTTGAATTTA	TTGGTGAGAA	TTGGGATAGA	GAAATATACG	2700
40	AATTGTGGCG	ACAAACATTA	ATTCAAGTGG	GCATTAATAG	GCCGACTTAT	AAAAAATTCT	2760
	TGATACAACT	TAAAGGGAGA	AAGTTTGCAC	ATCGAACAAA	ATCAATGTTA	AAACGATAAC	2820
	GTGTACATTG	ATGACCATAA	ACTGCAATCC	TATGATGTGA	CAATATGAGG	AGGATAACTT	-2880
45	AATGAAACGT	GTAATAACAT	ATGGCACATA	TGACTTACTT	CACTATGGTC	ATATCGAATT	2940
	GCTTCGTCGT	GCAAGAGAGA	TGGGCGATTA	TTTAATAGTA	GCATTATCAA	CAGATGAATT	3000
	TAATCAAATT	AAACATAAAA	AATCTTATTA	TGATTATGAA	CAACGAAAAA	TGATGCTTGa	3060
50	ATCAATACGC	TATGTCGATT	TAGTCATTCC	AGAAAAGGGC	TGGGGACAAA	AAGAAGACGA	3120
	TCTCCAAAAA	тттсатстас	ATGTTTTGT	TATGGGACAT	GACTGGGAAG	GTGAATTCGA	3180

	TAAAATCAAA	CAAGAATTAT	ATGGTAAAGA	TGCTAAATAA	ATTATATAGA	ACTATCGATA	330
	CTAAACGATA	AATTAACTTA	GGTTATTATA	AAATAAATAT	AAAACGGACA	AGTTTCGCAG	3360
5	CTTTATAATG	TGCAACTTGT	CCGTTTTTAG	TATGTTTTAT	тттстттттс	TAAATAAACG	3420
	ATTGATTATC	ATATGAACAA	TAAGTGCTAA	TCCAGCGACA	AGGCATGTAC	CACCAATGAT	3480
	AGTGAATAAT	GGATGTTCTT	CCCACATACT	TTTAGCAACA	GTATTTGCCT	TTTGAATAAT	3540
10	TGGCTGATGA	ACTTCTACAG	TTGGAGGTCC	ATAATCTTTA	TTAATAAATT	CTCTTGGATA	3600
	GTCCGCGTGT	ACTTTACCAT	CTTCGACTAC	AAGTTTATAA	TCTTTTTTAC	TAAAATCACT	3660
15	TGGTAAAACA	TCGTAAAGAT	CATTTTCAAC	ATAATATTTC	TTACCATTTA	TCCTTTGCTC	3720
,,,	ACCTTTAGAC	AATATTTTTA	CATATTTATA	CTGATCAAAT	GAGCGTTCCA	TTAATGCATT	3780
	CCCCATCATA	TTACGTTGCT	TCTCGCCACC	AAGGTTTTTA	TAGTCTCCTG	CACCCATGAT	3840
20	AACTTGATTA	ATTCTAAATT	TACCTCGTTT	GGTAGTAATC	GTATGGTTGT	AATTTGCTGT	3900
	ATCACTTGAT	CCAGTTTTTA	AACCATCTGT	ACCCGGCAAA	CTCATTTTTG	CACCTTCCAA	3960
	TGAAAAGTTG	AATGTGTAAT	ACGTAACTGC	ATGCGTTGTT	GGTGCTAACT	GCTTTGTAAA	4020
25	GTCTAATATT	TTAGGTGTCT	CTTTAATCAC	GTGTAAATCT	AAAATGGCAT	AGTCTCTAGC	4080
	AGTCGTTACA	GTACGTTCTT	GGTCTTTATA	CTTTGTTGGT	GCAAATGTAC	GTAATCTTGA	4140
	ATTTTCAGCA	CCCGTTGGAT	TGACGAAATG	TGTATTTTTC	ATTCCGATAG	CTTTAGCTTT	4200
30	GTTATTCATT	AAATCAACGA	AATCGCTGGT	GTTTTTTGAA	ACCTTCTTAG	СТААААТТАА	4260
	TGCCGCGGCA	TTACTAGAAT	TAGATACTGT	AATTTGTAAT	AGGTCTGCGA	TTGTCCATAC	4320
	TTGTCCAGGA	TATAGTTTCG	TATTACTCAA	CTCAGGTAGT	GTAGACATAA	TATATTCTTT	4380
35 ·	GTTCGTCATT	GTGACTGTGT	CATCAAGTGA	AAGCTGCCCC	TTATTTACAG	CTTCCAATGT	4440
	TAAGTACATT	GTCATTAATT	TAGTCATAGA	CGCTGGALTC	CACTTAGTAT	CGATATTGTA	4500
40	TTGATACAGT	AATTGTCCAG	TTTGACTTAC	ATTAACAGCA	CTCGTCGGTT	CGTATGCAGC	4560
	CGACAAACCT	GCATAACCAT	ATTGATTTGC	TGCTTGTACA	GGGGTTACGT	CACTGTTAGT	4620
	AGCTTGTGCA	TATGGTGTCA	TAATACTTAA	TGTTAAACAT	AAAATGATGA	TAATAGATAT	4680
45	TAAATTTTTC	ATAAAGCGTT	AATCTTCCCT	TTTCCAATTC	TTAAATATTC	CCTAAAAGCA	4740
	ATGGTTATTC	CTACTTACGG	AAATCATTGC	TAATTCACTT	CACCTTAATT	AAATTGTTGA	4800
	AAATAAAGTT	TTCTGCAGTT	AATTTGAAAA	ATAATGCAAA	TATATTACGT	GTGTAGCTAA	4860
50	AGGTGTTATA	ATGTTTGTAC	GAAGAGCAAA	CTTACTCAAA	AGCGATTAAT	TTTCATGTTT	4920
	ጥ ለ ለጥለጥለ አል <i>ሮ</i>	A COMPTO A CARA	CTT ATT ACA A	******		71 7 7 7 7 7 7 7 7 7 7	

	AAGTATATGA	TAGAAÀTGCA	TGTATCTATC	TAAATGAATT	AACTATAAAT	TTCAAACAGA	5100
	AGAGGTAAAA	CTATGAAACG	AGAAAATCCA	TTGTTTTTCT	TATTTAAAAA	ACTATCATGG	5160
5	CCAGTGGGTC	TTATCGTTGC	AGCTATCACT	ATTTCATCAC	TAGGGAGCTT	AAGTGGACTA	5220
	TTAGTGCCAC	TGTTTACTGG	ACGAATTGTA	GATAAATTTT	CCgTGAGCCA	TATCAATTGG	5280
	AATCLAATCG	CATTATTTGG	TGGTATCTTT	GTCATCAATG	CTTTATTAAG	CGGATTAGGT	5340
0	TTATATTTAT	TAAGTAAAAT	TGGTGAAAAG	ATTATTTATG	CGATACGCTC	AGTTTTATGG	5400
	GAGCATATCA	TACAATTAAA	AATGCCATTC	TTTGACAAAA	ATGAAAGTGG	TCAATTAATG	5460
5	AGTCGATTAA	CTGACGATAC	GAAAGTGATA	AATGAATTTA	TTTCACAAAA	GCTACCTMAC	5520
	TTATTACCAT	CAATCGTTAC	ATLAGTTGGG	TCACTAATCA	TGTTATTTAT	TTTAGATTGG	5580
	AAAATGACAT	TATTAACATT	TATAACGATA	CCGATATTCG	TATTAATTAT	GATTCCTCTA	5640
20	GGTCGTATTA	TGCAAAAGAT	ATCGACAAGT	ACACAATCTG	AAATTGCAAA	CTTCAGTGGT	5700
	TTGTTAGGGC	GTGTCCTAAC	TGAAATGCGT	CTTGTTAAAA	TATCAAATAC	AGAGCGTCTT	5760
	GAATTAGATA	ATGCACATAA	AAATTTGAAT	GAAATATATA	AATTAGGTTT	AAAACAGGCT	5820
?5	AAAATTGCGG	CAGTTGTACA	ACCAATTTCA	GGTATAGTTA	TGTTGCTAAC	AATTGCAATT	5880
	ATTTTAGGTT	TTGGTGCATT	AGAAATTGCG	ACTGGTGCAA	TCACTGCAGG	TACATTAATT	5940
	GCAATGATAT	TTTATGTTAT	TCAGTTATCT	ATGCCTTTAA	TCAATCTTTC	CACGTTAGTT	6000
30	ACAGATTATA	AAAAGGCAGT	CGGTGCAAGT	AGTAGAATAT	ACGAAATCAT	GCAAGAACCT	6060
	ATTGAACCGA	CAGAAGCTCT	TGAAGATTCT	GAAAATGTAT	TAATTGATGA	CGGTGTATTG	6120
35	TCATTTGAAC	ATGTAGACTT	TAAATATGAT	GTGAAGAAAA	TATTAGATGA	TGTGTCGTTC	6180
	CAAATCCCAC	AAGGTCAAGT	GAGTGCTTTT	GTAGGCCCTT	CTGGGTCTGG	TAAAAGTACG	6240
	ATATTTAATC	TGATAGAACG	TATGTATGAA	ATTGAGTCAG	GTGATATTAA	ATATGGCCTT	6300
40	GAAAGTGTCT	ATGATATCCC	GTTATCTAAG	TGGCGACGCA	AAATTGGATA	TGTTATGCAA	6360
	TCAAATTCGA	TGATGAGTGG	TACAATTAGA	GACAATATTT	TATACGGAAT	TAATCGTCAT	6420
	GTTTCAGATG	AAGAACTTAT	TAATTATGCT	AAATTAGCGA	ACTGTCATGA	TTTTATCATG	6480
45	CAATTTGATG	AAGGATATGA	CACGCTTGTA	GGTGAACGAG	GATTGAAACT	GTCTGGCGGA	6540
	CAACGTCAAC	GTATTGATAT	TGCTAGAAGT	TTTGTTAAAA	ATCCTGATAT	TTTGTTACTT	6600
	GATGAAGCAA	CAGCTAATCT	CGATAGTGAA	AGTGAATTGA	AAATTCAAGA	AGCTTTAGAA	6660
50	ACATTGATGG	AAGGTAGAAC	AACGATTGTC	ATTGCGCATC	GTTTGTCTAC	AATTAAAAA	6720
	GCCGGTCAAA	TTATATTCTT	AGACAAAGGA	CAGGTAACAG	GTAAAGGTAC	GCATTCAGAA	6780

	TTTTATATAT	ATAAGTAAGC	TTGGAGCAAA	TACACATATA	CCATCGAGGA	AATTAAAGTG	6900
	TGGCACATTG	ATGGATATAG	ATGTTAATAA	ATTGCTTCAA	GCTTTTGTCT	ATTTTAAATC	6960
5	ATTTGAGAAG	TTACGACATA	ATAATTCTTA	AATTAATGAA	ATCGATATTT	TAAGAAAAA	7020
	ATGCTCATGG	TATAATACAA	GTTATAAGCA	AACATACATA	TATTAAATAC	TGTAGCCACG	7080
	AGTCATAATT	CTTCATATTT	TACATAGCAA	TTTAACTGAT	TTTAGAGTCC	ACGGTACAGA	7140
10	AGTTTGATAT	TTCAATGTTT	CTAAATTTTT	AAAAAATTAA	ATCATAGGTG	GGTGCCAAAT	7200
	GTTTTTATTA	ATCAACATTA	TTGGTCTAAT	TGTATTTCTT	GGTATTGCGG	TATTATTTTC	7260
15	AAGAGATCGC	AAAAATATCC	AATGGCAATC	AATTGGGATC	TTAGTTGTTT	TAAACCTGTT	7320
75	TTTAGCATGG	TTCTTTATTT	ATTTTGATTG	GGGTCAAAAA	GCAGTAAGAG	GAGCAGCCAA	7380
	TGGTATCGCT	TGGGTAGTTC	AGTCAGCGCA	TGCTGGTACA	GGTTTTGCAT	TTGCAAGTTT	7440
20	GACAAATGTT	AAAATGATGG	ATATGGCTGT	TGCAGCCTTA	TTCCCAATAT	TATTAATAGT	7500
	GCCATTATTT	GATATCTTAA	TGTACTTTAA	TATTTTACCG	AAAATTATTG	GAGGTATTGG	7560
	TTGGTTACTA	GCTAAAGTAA	CAAGACAACC	TAAATTCGAG	TCATTCTTTG	GGATAGAAAT	7620
25	GATGTTCTTA	GGAAATACTG	AAGCATTAGC	CGTATCAAGT	GAGCAACTAA	AACGTATGAA	7680
	TGAAATGCGT	GTATTAACAA	TCGCAATGAT	GTCAATGAGC	TCTGTATCGG	GAGCTATTGT	7740
	AGGTGCGTAT	GTACAAATGG	TACCAGGAGA	ACTGGTACTA	ACGGCAATTC	CACTAAATAT	7800
30	CGTTAACGCG	ATTATTGTGT	CATGCTTGTT	GAATCCAGTA	AGTGTTGAAG	AGAAAGAAGA	7860
	TATTATTTAC	AGTCTTAAAA	ACAATGAAGT	TGAACGTCAA	CCATTCTTCT	CATTCCTTGG	7920
	AGATTCTGTA	TTAGCAGCAG	GTAAATTAGT	ATTAATCATC	ATCGCATTTG	TTATTAGTTT	7980
35	TGTAGCGTTA	GCTGATCTAT	TTGATCGTTT	TATCAATTTG	ATTACAGGAT	TGATAGCAGG	8040
	ATGGATAGGC	ATAAAAGGTA	GTTTCGGTTT	AAACCAAATT	TTAGGTGTGT	TTATGTATCC	8100
40	ATTTGCGCTA	TTACTCGGTT	TACCTTATGA	TGAAGCGTGG	TTGGTAGCAC	AACAAATGGC	8160
	TAAGAAAATT	GTTACAAATG	AATTTGTTGT	TATGGGTGAA	ATTTCTAAAG	ATATTGCATC	8220
	TTATACACCA	CACCATCGTG	CGGTTATTAC	AACATTCTTA	ATTTCATTTG	CAAACTTCTC	8280
45	AACGATTGGT	ATGATTATCG	GTACATTGAA	AGGCATTGTT	GATAAAAAGA	CATCAGACTT	8340
	TGTATCTAAA	TATGTACCTA	TGATGCTATT	ATCAGGTATC	CTAGTTTCAT	TATTAACAGC	8400
	AGCTTTCGTT	GGTTTATTTG	CATGGTAATA	TGTCGAAGAG	TGACTATGAT	AATACATTTT	8460
50	AACTAATAAA	TATGTCCAGG	CATGTCGTCT	ATTGATATAG	GTGAGATGCT	TGGACTTTTT	8520
	ጥ አጥጥ አጥጥር አጥ	3/03 3 3 C/C/03/0					

8700

GACAGTAAGG ACTAGGTACA GTCATAGTAC TTCGAGCAAA ATTTGTTTTG TTATTATAAA

	CAACACAAAG GAGATAACTT CTCTAnTGAA GAAGTTAAAA ACATTATAGC AGACAATGAA	876
5	ATGAAAGTAA ATTAAAAAT	877
	(2) INFORMATION FOR SEQ ID NO: 59:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31096 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
	GTTGCAGTAG TCAAAGAATT AAACAAGGTG AAGGCGTGTA GCTTGCACAC CCGAAAATGT	6
20	GCGTAAGTTA aCGGATGCAG GACATAAAGT AATTGTTGAA AAAAATGCTG GCATTGGTTC	, 12
	AGGATTTTCT AACGATATGT ATGAAAAAGA AGGCGCTAAG ATCGTAACTC ACGAACAAGC	18
	ATGGGAAGCT GATCTTGTTA TCAAAGTAAA AGAACCTCAT GAAAGCGAAT ATCAATATTT	24
?5	CAAAAAGAAT CAAATTATCT GGGGATTTTT ACATCTAGCA TCTTCAAAAG AAATAGTAGA	300
	AAAAATGCAA GAAGTTGGTG TAACTGCGAT TAGTGGTGAA ACCATTATAA AAAATGGAAA	360
	AGCAGAATTA TTAGCGCCAA TGAGTGCTAT AGCAGGTCAA CGCTCAGCAA TTATGGGAGC	420
30	TTACTACTCT GAAGCACAAC ATGGTGGTCA AGGTACTTTA GTGACTGGTG TACATGAAAA	480
	TGTGGATATA CCTGGTAGTA CATATGTGAT TTTCGGTGGT GGAGTAGCAG CAACAAATGC	540
35	AGCAAATGTT GCCTTGGGAC TAAATGCTAA AGTAATCATT ATCGAGTTAA ACGATGACCG	600
	CATTAAATAT CTTGAAGATA TGTATGCAGA AAAAGATGTC ACAGTAGTCA AATCAACACC	660
	AGAAAATTTA GCAGAACAAA TTAAGAAAGC AGATGTATTT ATTTCTACAA TTTTAATTTC	720
10	AGGTGCGAAA CCGCCAAAAT TGGTTACTCG TGAGATGGTT AAATCAATGA AAAAAGGTTC	780
	AGTATTAATC GATATAGCTA TTGACCAAGG TGGAACTATT GAAACAATTA GACCAACTAC	840
	AATTTCTGAT CCAGTGTATG AAGAAGAAGG TGTGATTCAT TATGGTGTAC CAAATCAACC	900
15	AGGAGCAGTC CCAAGAACTT CAACAATGGC ATTAGCACAA GGAAATATTG ATTATATATT	960
	AGAAATTTGT GACAAAGGCT TAGAACAAGC AATTAAAGAT AATGAAGCCT TAAGTACTGG	1020
	TGTAAACATT TACCAAGGAC AAGTGACAAA TCAAGGATTA GCTTCATCAC ATGACCTAGA	1080
50	TTATAAAGAA ATATTAAATG TTATCGAATA GATAGTAATT TAAATGAAAT TGAGTGAAAT	1140
	GAATATTTTA AATATAGCAT TATAGTTTGG ACTAAAAATT TACAAAACGG AAGGATGTAA	1200

	TCGAAGAAGC	TAAAGCAAGC	ATTAAACCAT	TTATTCGTCC	AACACCTCTA	ATTAAATCAA	1320
	TGTATTTAAG	CCAAAGTATA	ACTAAAGGGA	ATGTATTTCT	AAAATTAGAA	AATATGCAAT	1380
5	TCACAGGATC	TTTTAAATTT	AGAGGCGCTA	gCAATnAAA	TTAATCACTT	AACAGATGAA	1440
	CAAAAAGAAA	AAGGCATTAT	CGCAGCATCT	GCTGGGGAAC	CATGCACAAG	GTGTTGCTTT	1500
	AACAGCTAAA	TTATTAGGCA	TTGATGCAAC	GATTGTAATG	CCTGAAACAG	CACCACAAGC	1560
10	GAAACAACAA	GCAACAAAAG	GCTATGGGGC	AAAGGTTATT	TTAAAAGGTA	AAAACTTTAA	1620
	CGAAACTAGA	CTTTATATGG	AAGAATTAGC	GAAAGAAAT	GGCATGACAA	TCGTTCATCC	1680
15 ·	ATATGACGAT	AAGTTTGTAA	TGGCAGGCCA	AGGAACAATT	GGTTTAGAAA	TTTTAGATGA	1740
	TATTTGGAAT	GTGAATACAG	TCATCGTACC	AGTTGGCGGT	GGAGGATTAA	TTGCAGGTAT	1800
	TGCCACCGCA	TTAAAATCAT	TTAACCCTTC	AATTCATATT	ATCGGTGTTC	AATCTGAGAA	1860
20	TGTTCATGGT	ATGGCTGAGT	CTTTCTATAA	GAGAGATTTA	ACTGAACATC	GAGTGGATAG	1920
	CACAATAGCA	GATGGTTGTG	ATGTAAAAGT	TCCTGGTGAA	CAAACATATG	AAGTAGTTAA	1980
	ACATTTAGTA	GATGAATTTA	TTCTTGTTAC	TGAAGAAGAA	ATTGAACATG	CTATGAAAGA	2040
25	TTTAATGCAG	CGTGCCAAAA	TTATTACTGA	AGGTGCAGGC	GCATTACCAA	CAGCTGCAAT	2100
	TTTAAGTGGA	AAAATAAACA	ATAAATGGCT	TGAAGATAAA	AATGTTGTTG	CATTAGTTTC	2160
	AGGCGGGAAT	GTTGACTTAA	CTAGAGTTTC	AGGTGTCATT	GAACATGGAC	TGAATATTGC	2220
30	AGATACAAGC	AAGGGTGTGG	TAGGTTAAAA	CATTTAATCT	TAAAAATGAG	GTGTAATTAT	2280
	GTCAAATGGT	AAAGAATTAC	AAAAAAATAT	AGGTTTCTTC	TCAGCGTTTG	CTATTGTTAT	2340
ne	GGGGACAGTT	ATTGGTTCAG	GAGTATTCTT	TAAAATATCA	AACGTAACAG	AAGTAACAGG	2400
35	AACAGCAGGA	ATGGCCTTGT	TTGTATGGTT	CCTAGGCGGC	ATCATTACCA	TTTGTGCGGG	2460
	GTTAĀCAGCA	GCAGAACTTG	CTGCTGCAAT	CCCTGAAACA	GGTGGCTTAA	CGAAGTATAT	2520
10	AGAATATACA	TACGGTGATT	TCTGGGGCTT	CCTATCAGGT	TGGGCGCAAT	CATTTATTTA	2580
					ACACAGCTAA		2640
	CCATTTATCT	ATAGGTTCGT	TAATACCAAT	AGCAATCGCA	TCTGCGTTAT	CTATTGTGTT	2700
15	GATAAATTTC	CTAGGTTCAA	AAGCAGGCGG	AATTTTACAA	TCAGTTACTT	TAGTAATTAA	2760
	ACTGATTCCA	ATCATCGTTA	TTGTAATTTT	TGGTATTTT	CAATCTGGAG	ATATCACTTT	2820
	TTCATTAATT	CCAACTACAG	GTAATTCaGG	AAATGGCTTC	TTTACÀGCAA	TTGGTAGTGG	2880
50	TTTATTAGCA	ACTATGTTTG	CATATGATGG	TTGGATTCAT	GTAGGAAATG	TTGCGGGGGA	2940
	ACTTAAAAAT	CCTAAACGCG	עיובעי ערבעיע	אכרכאששיירא	CONTOCOTA TICO	CAMCAN AMA	

	TGGTAATTTA	AATGCAGCTT	CAGATACATC	AAAAATATTA	TTTGGTGAAA	ATGGCGGTAA	3120
	GATTATTACA	ATCGGTATAT	TAATTTCTGT	TTATGGTACG	ATCAATGGCT	ATACTATGAC	,3180
5	TGGTATGCGC	GTACCATATG	CAATGGCTGA	AAGAAAATTA	TTGCCATTTA	GCCATTTATT	3240
	CGCAAAATTA	ACAAAATCTG	GCGCACCATG	GTTTGGCGCA	ATTATACAAC	TTATAATCGC	3300
	TATCATCATG	ATGTCAATGG	GAGCATTTGA	TACAATTACA	AATATGTTAA	TCTTTGTTAT	3360
10	TTGGTTGTTC	TATTGTATGT	CATTTGTTGC	GGTAATAATT	TTAAGAAAAC	GTGAACCAAA	3420
	TATGGAACGA	CCATATAAAG	TACCGTTATA	TCCGATCATA	CCTTTAATTG	CTATTTTGGC	3480
15	AGGATCATTT	GTATTAATTA	ATACACTGTT	TACACAATTT	ATATTAGCAA	TCATTGGAAT	3540
,,,	TCTAATAACA	GCACTTGGTA	TACCAGTTTA	TTACTATAAA	AAGAAACAAA	AAGCAGCATA	3600
	AGGTAAGATA	ACTAGCATTG	AGAATAAATG	GATGGACTAC	TTTAAATAAT	AAAGTTTTAC	3660
20	ACATTAAAAT	CAAAAACCAT	TCAATTATTC	TATGGAACAG	ACAAATTTCT	GTTATGGAAT	3720
	TIGTCTGTTT	TTCAAAAGTA	TAGGGAGGCA	AATAGAGATG	GAAAAGCCGT	CAAGAGAGGC	3780
	ATTTGAAGGC	AATAATAAGT	TGTTAATAGG	AATTGTTCTA	AGTGTAATAA	CGTTTTGGCT	3840
25	ATTTGCACAA	TCATTGGTTA	ATGTTGTACC	AATACTTGAA	GATAGTTTCA	ATACAGATAT	3900
	TGGAACGGTT	AATATCGCCG	TTAGTATAAC	TGCTTTATTT	TCAGGAATGT	TTGTAGTAGG	3960
	AGCAGGTGGT	CTTGCTGATA	AATATGGCAG	AATTAAACTC	ACGAACATTG	GTATTATCTT	4020
30	ATATATAAA	GGTTCATTAT	TAATCATTAT	TTCAAATATT	CCTTTATTAC	TTATTATAGG	4080
	AAGATTAATT	CAAGGACTTT	CAGCAGCATG	TATTATGCCT	GCAACTTTGT	CTATTATTAA	4140
	GTCATATTAC	ATTGGGAAAG	ATAGACAACG	CGCTTTAAGT	TATTGGTCAA	TTGGCTCATG	4200
35	GGGCGGCTCT	GGTGTTTGTT	CATTTTTTGG	AGGTGCAGTT	GCAACGCTTT	TAGGTTGGCG	4260
	TTGGÁTTTTC	ATCCTATCAA	TTATAATTTC	ATTAATTGCA	CTGTTTCTTA	TTAAAGGCAC	4320
40	ACCTGAAACT	AAATCTAAAT	CGATTTCTCT	TTTAAATAAA	GACATTAAAG	GTCTGGTTCT	4380
	TTTAGTCATT	ATGCTCCTCA	GTTTAAATAT	TTTAATTACT	AAAGGATCAG	AATTAGGTGT	4440
	AACCTCACTT	CTTTTTATTA	CTTTATTAGC	TATTGCAATT	GGATCTTTTA	GTTTATTTAT	4500
45	AGTTCTTGAA	AAGCGTGCTA	CAAATCCTTT	AATCGATTTT	ATTTATTAAA	AAAATAAAGC	4560
	TTACACAGGT	GCAACAGCTT	CAAACTTTTT	GTTAAATGGT	GTTGCAGGAA	CATTAATAGT	4620
	AGCCAACACA	TTTGTTCAAA	GAGGTTTAGG	ATATTCTTCA	TTGCAAGCAG	GAÀGTTTATC	4680
50	AATCACTTAT	TTAGTAATGG	TACTAATTAT	GATTCGTGTT	GGTGAAAAGT	TACTTCAAAC	4740
	ACTCGGATGC	AAGAAACCAA	TGTTAATTGG	AACAGGAGTT	CTTATTGTCG	GAGAATGTCT	4800

	ATTCTTTGGT	TTAGGACTAG	GGATATATGC	TACACCATCA	ACAGATACAG	CAATTGCAAA	492
	TGCACCGTTA	GAAAAAGTAG	GCGTTGCTGC	AGGTATCTAT	AAAATGGCTT	CTGCATTAGG	498
5	TGGAGCATTT	GGCGTCGCAT	TGAGTGGTGC	AGTATATGCA	ATCGTATCAA	ATATGaCAAA	504
	CATTTATACA	GGTGcAATGa	TTGnCATTAT	GGTTaAATGC	AGGTATGGGa	ATATTATCAT	510
	TCGTTATCAT	TTTGtTACTT	GTGcCTAAAC	mAAACGACAC	TCAATTATGA	TAATTGAGAA	516
10	TTAAATTGAA	ATCATACAAG	TCGCTACAAT	ATTAAACAAA	AATATAAACC	GATTCTTATG	522
	TGTCATTATT	TTAAATGAAC	ATAGGGATTG	GTTTTTTATT	ACTCTTTTAC	GCTACTTTAT	528
15	TTATAATTAT	TATAAATTGT	CACAAATTCA	ATTTACCTTA	CAATATATTT	TGTGTTATTA	534
	TATTCTGGAG	САТАААТААА	TTGTTCAACA	CATAGTTGTA	ATGTGTTTCA	ATACTTTTTG	540
	GATAGATTGC	GAAATTGTAT	TGAATCGTCA	TCGTTTTAAA	TTTTTAAATG	AGAATGGAAT	546
20	GAGCATTACA	ATACACAAGC	AATCAAAAGT	AAATACATTC	ACAACACAAC	AGAGACATAA '	552
	CAACAAGATA	AGGAGTGAAC	AATAGCTGTG	AATTATCGTG	ATAAAATTCA	AAAGTTTAGT	558
	ATTCGTAAAT	ATACAGTTGG	TACATTTTCA	ACTGTCATTG	CGACATTGGT	ATTTTTAGGA	564
25	TTCAATACAT	CACAAGCACA	TGCTGCTGAA	ACAAATCAAC	CAGCAAGCGT	GGTTAAACAG	570
	AAACAACAAA	GTAATAATGA	ACAGACTGAG	AATCGAGAAT	CTCAAGTACA	AAATTCTCAA	576
	AATTCACAAA	ATGGTCAATC	ATTATCTGCT	actcatgaaa	ATGAGCAACC	AAATATTAGT	5820
30	CAAGCTAATT	TAGTAGATCA	AAAAGTAGCG	CAATCATCTA	CTACTAATGA	TGAACAACCA	588
	GCATCTCAAA	ATGTAAATAC	AAAGAAAGAT	TCGGCAACGG	CTGCGACAAC	ACAACCAGAT	594
35	AAAGAACAAA	GTAAGCATAA	ACAAAACGAA	AGTCAATCTG	СТААТАААА	TGGAAACGAC	6000
	AATAGAGCGG	CTCATGTAGA	AAATCATGAA	GCAAATGTAG	TAACAGCTTC	AGATTCATCT	6066
	GATAATGGTA	ACGTACAACA	TGACCGAAAT	GAATTACAAG	CGTTTTTTGA	TGCAAATTAT	612
40	CATGATTATC	GCTTTATTGA	CCGTGAAAAT	GCAGATTCTG	GCACATTTAA	CTATGTAAAA	6186
	GGCATTTTTG	ATAAGATTAA	TACGTTATTA	GGCAGTAATG	ATCCAATAAA	CAATAAAGAC	624
	TTGCAACTTG	CATACAAAGA	ATTGGAACAA	GCTGTTGCTT	TAATTCGTAC	AATGCCTCAA	630
1 5	CGTCAACAGA	CTAGCCGACG	TTCAAATAGA	ATTCAAACGC	GTTCGGTTGA	GTCAAGAGCT	636
	GCAGAGCCTA	GATCAGTATC	AGACTATCAA	AATGCAAATT	CATCATATTA	TGTTGAAAAT	642
	GCTAATGATG	GTTCGGGCTA	TCCTGTTGGT	ACATATATCa	ATGCTTCTAG	TAAAGGGGCG	648
50	CCATATAATT	TACCAACTAC	ACCATGGAAT	ACATTGAAGG	CCTCTGACTC	AAAGGAAATT	654
	CCTCTTATCA	CAGCGAAACA	AACTGGAGAC	CCCTACCAAT	CCCTTATTAA	GTTTAATAAA	660

	GTAGGAAGAA	CTGACTTTGT	AACAGTTAAT	TCAGATGGAA	CAAATGTACA	ATGGAGTCAT	6720
	GGAGCAGGAG	CAGGTGCAAA	TAAACCACTT	CAACAAATGT	GGGAATATGG	AGTAAATGAT	678
5	CCTCATCGTT	CACATGACTT	TAAAATAAGA	AATAGAAGTG	GCCAAGTAAT	ATATGACTGG	6840
	CCAACTGTCC	ATATTTATTC	TTTAGAAGAT	TTATCTAGAG	CGAGTGATTA	TTTTAGTGAA	690
	GCTGGAGCGA	CACCTGCTAC	TAAAGCTTTT	GGTAGACAAA	ATTTTGAATA	TATTAATGGT	6960
10	CAAAAACCTG	CTGAATCACC	GGGTGTTCCT	AAAGTTTATA	CTTTCATCGG	TCAAGGTGAT	7020
	GCAAGTTATA	CAATTTCATT	TAAAACACAA	GGTCCAACTG	TTAATAAATT	GTACTATGCA	7080
. . .	GCAGGTGGGC	GTGCTTTAGA	GTACAATCAA	TTATTTATGT	ACAGTCAACT	ATACGTCGAA	7140
15	TCAACGCAAG	ACCATCAACA	ACGTCTTAAT	GGTTTAAGAC	AAGTGGTTAA	TCGTACATAT	7200
	CGCATAGGTA	CAACTAAACG	TGTAGAAGTG	AGTCAAGGAA	ATGTACAAAC	GAAAAGGTA	7260
20	TTAGAAAGTA	CAAACCTAAA	TATAGATGAT	TTTGTTGATG	ATCCTTTAAG	TTATGTTAAG	7320
	ACGCCGAGTA	ATAAAGTGTT	AGGATTTTAT	TCGAATAATG	CAAATACTAA	TGCTTTTAGA	7380
	CCGGGTGGAG	CCCAACAATT	AAATGAATAT	CAATTAAGTC	AATTATTTAC	TGATCAAAAA	7440
25	TTACAAGAAG	CAGCAAGAAC	TAGAAACCCA	ATAAGATTAA	TGATTGGTTT	CGACTATCCT	7500
	GATGCTTATG	GTAATAGTGA	ACTTTAGTTC	CTGTTAACTT	AACGGTATTA	CCTGAAATCC	7560
	AACATAATAt	TaAATTCTTT	AAAAATGACG	ATACTCAAAA	TATTGCTGAA	AAACCATTTT	7620
30	CAAAACAAGC	TGGGCATCCA	GTTTTCTATG	TATATGCAGG	TAACCAAGGG	AATGCTTCCG	7680
	TGAATTTAGG	TGGTAGCGTA	ACATCTATTC	AACCATTACG	TATTAATTTA	ACAAGTAATG	7740
	AGAATTTTAC	AGATAAAGAT	TGGCAAATTA	CAGGTATTCC	GCGTACATTA	CACATTGAAA	7800
35	ACTCGACAAA	TAGACCTAAT	AATGCCAGAG	AACGCAATAT	TGAACTTGTT	GGTAACTTAT	7860
	TACCAGGGGA	TTACTTTGGA	ACGATACGTT	TTGGACGTAA	AGAACAATTA	TTCGAAATTC	7920
40	GTGTTAAACC	ACATACACCA	ACAATTACAA	CGACAGCTGA	GCAATTAAGA	GGTACAGCAT	7980
••	TACAAAAAGT	GCCTGTTAAT	ATTTCGGGAA	TACCGTTGGA	TCCATCGGCA	TTGGTTTATT	8040
	TAGTTGCACC	AACAAATCAA	ACTACGAATG	GTGGTAGTGA	GGCAGATCAA	ATACCATCTG	8100
45	GTTATACGAT	ACTTGCGACT	GGTACACCTG	ATGGGGTGCA	TAATACAATT	ACTATACGAC	8160
	CGCAAGATTA	TGTTGTATTC	ATACCACCTG	TAGGTAAACA	AATTAGAGCA	GTAGTTTATT	8220
	ATAATAAAGT	AGTTGCATCT	AATATGAGTA	ATGCTGTTAC	TATTTTGCCA	GATGACATTC	8280
50	CACCAACAAT	CAATAATCCT	GTTGGAATAA	ATGCCAAATA	CTATCGAGGC	GACGAAKCAA	8340
	COMPANY CON NOTICE	CCTCTCTCTCTC	1.01.01.00m.a	maam\m\\\			

	TACAGGTAGA	GTGAGTATGA	ATCAGGCATT	TAACAGTGAT	ATTACATTTA	AAGTGTCAGC	8520
	GACAGaCAAT	GTCAATAATA	CGACAAATGA	TAGTCAATCT	AAACATGTTT	CAATTCATGT	8580
5	AGGTAAAATT	AGTGAAGATG	CTCATCCGAT	TGTATTAGGA	AATACTGAGA	AAGTTGTAGT	8640
	AGTCAATCCG	ACTGCTGTAT	CTÀATGATGA	AAAGCAAAGC	ATAATTACTG	CCTTTATGAA	8700
	TAAAAACCAA	AATATAAGAG	GATATTTAGC	ATCAACTGAT	CCAGTAACTG	TCGATAATAA	8760
10	TGGTAATGTC	ACATTACATT	ACCGTGATGG	CTCATCGACA	ACGCTTGATG	CTACAAATGT	8820
	GATGACATAC	GAACCAGTTG	TGAAACCTGA	ATACCAAACT	GTCAATGCTG	CTAAAACAGC	8880
15	AACGGTAACG	ATTGCTAAAG	GACAATCATT	TAGTATTGGT	GATATTAAAC	AATATTTTAC	8940
	TTTAAGTAAT	GGACAACCTA	TTCCAAGTGG	CACATTTACA	AATATTACAT	CTGATAGAAC	9000
	TATTCCAACT	GCACAAGAAG	TTAGTCAAAT	GAACGCAGGC	ACGCAGTTAT	ACCATATAAC	9060
20	TGCTACAAAT	GCGTATCATA	AAGATAGTGA	AGACTTCTAT	ATTAGTTTGA	AAATCATCGA	9120
	TGTGAAACAA	CCAGAAGGCG	ATCAACGTGT	ATATCGTACA	TCAACATATG	ATTTAACTAC	9180
	TGATGAAATC	TCAAAAGTAA	AACAAGCATT	TATTAATGCA	AATAGAGATG	TAATTACGCT	9240
25	TGCCGAAGGT	GATATTTCAG	TTACAAATAC	ACCTAATGGT	GCTAATGTAA	GTACTATTAC	9300
	AGTAAATATT	AATAAAGGTC	GATTAACGAA	ATCATTCGCG	TCAAACCTAG	CTAATATGAA	9360
	TTTCTTGCGT	TGGGTTAATT	TCCCACAAGA	TTATACAGTG	ACATGGACGA	ATGCAAAAAT	9420
30	TGCAAACAGA	CCAACAGATG	GTGGTTTATC	ATGGTCTGAT	GACCATAAAT	CTTTAATTTA	9480
	TCGTTATGAT	GCTACATTAG	GTACTCAAAT	TACGACGAAT	GATATTTTAA	CAATGTTAAA	9540
35	AGCAACAACT	ACAGTGCCTG	GATTGCGAAA	TAACATTACT	GGTAATGAAA	AATCACAAGC	9600
00	AGAAGCTGGC	GGAAGACCTA	ACTTTAGAAC	GACTGGTTAT	TCACAATCAA	ATGCGACAAC	9660
	TGATGGTCAA	CGTCAATTTA	CGTTGAATGG	TCAAGTGATT	CAAGTGTTAG	ACATCATCAA	9720
40	CCCTTCAAAC	GGTTATGGTG	GGCAACCTGT	TACAAATTCA	AATACTCGTG	CAAACCATAG	9780
	TAACTCAACT	GTTGTTAACG	TAAACGAACC	GGCAGCTAAT	GGTGcTGGCG	CATTTACAAT	9840
	TGACCACGTT	GTAAAAAGTA	ATTCTACACA	TAATGCAAGT	GATGCAGTTT	ATAAAGCACA	9900
45	GTTATACTTA	ACGCCATATG	GTCCAAAACA	ATATGTTGAA	CATTTAAATC	AAAATACAGG	9960
	AAATACTACT	GACGCTATTA	ACATTTATTT	TGTACCAAGT	GACTTAGTGA	ATCCAACAAT	10020
	TTCAGTAGGT	AATTACACTA	ATCATCAAGT	GTTCTCAGGT	GAAACATTTA	CAAATACTAT	10080
50	TACAGCGAAT	GATAACTTTG	GTGTGCAATC	TGTAACTGTA	CCAAATACAT	CACAAATTAC	10140
	ACCTA CTCTT	CATAATAACC	ATCA ACATOT	TTCTCCNACC	CCACCAAATC	TC N C N TC N C C	10200

	GTTCAATGTA	ACAGTGAAAC	CTTTGCGTGA	TAAATATCGA	GTTGGTACTT	CATCAACGGC	10320
	TGCTAATCCT	GTGAGAATTG	CCAATATTTC	GAATAATGCG	ACAGTATCAC	AAGCTGATCA	10380
5	AACGACAATT	ATTAATTCGT	TAACGTTTAC	TGAAACAGTA	CCAAATAGAA	GTTATGCAAG	10440
	AGCAAGTGCG	AATGAAATCA	CTAGTAAAAC	AGTTAGTAAT	GTCAGTCGTA	CTGGAAATAA	10500
	TGCCAATGTg	CACAGTAACT	GTTACTTATC	AAGATGGAAC	AACATCAACA	GTGACTGTAC	10560
0	CTGTAAAGCA	TGTCATTCCA	GAAATCGTTG	CACATTCGCA	TTACACTGTA	CAAGGCCAAG	10620
	ACTTCCCAGC	AGGTAATGGT	TCTAGTGCAT	CAGATTACTT	TAAGTTATCT	AATGGTAGTG	10680
5	ACATTGCAGA	TGCAACTATT	ACATGGGTAA	GTGGACAAGC	GCCAAATAAA	GATAATACAC	10740
5	GTATTGGTGA	AGATATAACT	GTAACTGCAC	ATATCTTAAT	TGATGGCGAA	ACAACGCCGA	10800
	TTACGAAAAC	AGCAACATAT	AAAGTAGTAA	GAACTGTACC	GAAACATGTC	TTTGAAACAG	10860
20	CCAGAGGTGT	TTTATACCCA	GGTGTTTCAG	ATATGTATGA	TGCGAAACAA	TATGTTAAGC	10920
	CAGTAAATAA	TTCTTGGTCG	ACAAATGCGC	AACATATGAA	TTTCCAATTT	GTTGGAACAT	10980
	ATGGTCCTAA	CAAAGATGTT	GTAGGCATAT	CTACTCGTCT	TATTAGAGTG	ACATATGATA	11040
?5	ATAGACAAAC	AGAAGATTTA	ACTATTTTAT	CTAAAGTTAA	ACCTGACCCA	CCTAGAATTG	11100
	ACGCAAACTC	TGTGACATAT	AAAGCAGGTC	TTACAAACCA	AGAAATTAAA	GTTAATAACG	11160
	TATTAAATAA	CTCGTCAGTA	AAATTATTTA	AAGCAGATAA	TACACCATTA	AATGTCACAA	11220
30	ATATTACTCA	TGGTAGCGGT	TTTAGTTCGG	TTGTGACAGT	AAGTGACGCG	TTACCAAATG	11280
	GCGGAATTAA	AGCAAAATCT	TCAATTTCAA	TGAACAATGT	GACGTATACG	ACGCAAGACG	11340
_	AACATGGTCA	AGTTGTTACA	GTAACAAGAA	ATGAATCTGT	TGATTCAAAT	GACAGTGCAa	11400
35	CAGTAACAGT	GACACCACAA	TTACAAGCAA	CTACTGAAGG	CGCTGTATTT	ATTAAAGGTG	11460
	GCGACGGTTT	TGATTTCGGA	CACGTAGAAA	GATTTATTCA	AAACCCGCCA	CATGGGGCAA	11520
10	CGGTTGCATG	GCATGATAGT	CCAGATACAT	GGAAGAATAC	AGTCGGTAAC	ACTCATAAAA	11580
	CTGCGGTTGT	AACATTACCT	AATGGTCAAG	GTACGCGTAA	TGTTGAAGTT	CCAGTCAAAG	11640
	TTTATCCAGT	TGCTAATGCA	AAGGCGCCAT	CACGTGATGT	GAAAGGTCAA	AATTTGACTA	11700
15	ATGGAACGGA	TGCGATGAAC	TACATTACAT	TTGATCCAAA	TACAAACACA	AATGGTATCA	11760
	CTGCAGCATG	GGCAAATAGA	CAACAACCAA	ATAACCAACA	AGCAGGCGTG	CAACATTTAA	11820
	ATGTCGATGT	CACATATCCA	GGTATTTCAG	CTGCTAAACG	AGTTCCTGTT	ACTGTTAATG	11880
50	TATATCAATT	TGAATTCCCT	CAAACTACTT	ATACGACAAC	GGTTGGAGGC	ACTTTAGCAA	11940
	GTGGTACGCA	AGCATCAGGA	TATGCACATA	TGCAAAATGC	тастосттта	CCAACAGATG	12000

	TGAATAAACC	GAATGTGGCT	AAAGTCGTTA	ACGCAAAATA	TGACGTCATC	TATAACGGAC	1212
	ATACTTTTGC	AACATCTTTA	CCAGCGAAAT	TTGTAGTAAA	AGATGTGCAA	CCAGCGAAAC	1218
5	CAACTGTGAC	TGAAACAGCG	GCAGGAGCGA	TTACAATTGC	ACCTGGAGCA	ÀACCAAACAG	1224
	TGAATACACA	TGCCGGTAAC	GTAACGACAT	ACGCTGATAA	ATTAGTTATT	AAACGTAATG	1230
	GTAACGTTGT	GACGACATTT	ACACGTCGCA	ATAATACGAG	TCCATGGGTG	AAAGAAGCAT	1236
10	CTGCAGCAAC	TGTAGCAGGT	ATTGCTGGAA	CTAATAATGG	TATTACTGTT	GCAGCAGGTA	1242
	CTTTCAACCC	TGCTGATACA	ATTCAAGTTG	TTGCAACGCA	AGGAAGCGGA	GAGACAGTGA	1248
15	GTGATGAGCA	ACGTAGTGAT	GATTTCACAG	TTGTCGCACC	ACAACCGAAC	CAAGCGACTA	1254
	CTAAGATTTG	GCAAAATGGT	CATATTGATA	TCACGCCTAA	TAATCCATCA	GGACATTTAA	1260
	TTAATCCAAC	TCAAGCAATG	GATATTGCTT	ACACTGAAAA	AGTGGGTAAT	GGTGCAGAAC	1266
20	ATAGTAAGAC	AATTAATGTT	GTTCGTGGTC	AAAATAATCA	ATGGACAATT	GCGAATAAGC	1272
	CTGACTATGT	AACGTTAGAT	GCACAAACTG	GTAAAGTGAC	GTTCAATGCC	AATACTATAA	1278
	AACCAAATTC	ATCAATCACA	ATTACTCCGA	AAGCAGGTAC	AGGTCACTCA	GTAAGTAGTA	1284
25	ATCCAAGTAC	ATTAACTGCA	CCGGCAGCTC	ATACTGTCAA	CACAACTGAA	ATTGTGAAAG	1290
	ATTATGGTTC	AAATGTAACA	GCAGCTGAAA	TTAACAATGC	AGTTCaAGTT	GCTAATAAAC	1296
	GTACTGCAAC	GATTAAAAAT	GGCACAGCAA	TGCCTACTAA	TTTAGCTGGT	GGTAGCACAA	1302
30	CGACGATTCC	TGTGACAGTA	ACTTACAATG	ATGGTAGTAC	TGAAGAAGTA	CAAGAGTCCA	13080
	TTTTCACAAA	AGCGGATAAA	CGTGAGTTAA	TCACAGCTAA	AAATCATTTA	GATGATCCAG	13140
35	TAAGCACTGA	AGGTAAAAAG	CCAGGTACAA	TTACGCAGTA	CAATAATGCA	ATGCATAATG	13200
	CGCAACAACA	AATCAATACT	GCGAAAACAG	AAGCACAACA	AGTGATTAAT	AATGAGCGTG	13260
	CAAÇACCACA	ACAAGTTTCT	GACGCACTAA	CTAAAGTTCG	TGCAGCACAA	ACTAAGATTG	13320
10	ATCAAGCTAA	AGCATTACTT	CAAAATAAAG	AAGATAATAG	CCAATTAGTA	ACGTCTAAAA	13380
	ATAACTTACA	AAGTTCTGTG	AACCAAGTAC	CATCAACTGC	TGGTATGACG	CAACAAAGTA	13440
	TTGATAACTA	TAATGCGAAG	AAGCGTGAAG	CAGAAACTGA	AATAACTGCA	GCTCAACGTG	13500
15	TTATTGACAA	TGGCGATGCA	ACTGCACAAC	AAATTTCAGA	TGAAAAACAT	CGTGTCGATA	13560
	ACGCATTAAC	AGCATTAAAC	CAAGCGAAAC	ATGATTTAAC	TGCAGATACA	CATGCCTTAG	13620
	AGCAAGCAGT	GCAACAATTG	AATCGCACAG	GTACAACGAC	TGGTAAGAAG	CCGGCAAGTA	13680
50	TTACTGCTTA	CAATAATTCG	ATTCGTGCAC	TTCAAAGTGA	CTTAACAAGT	GCTAAAAATA	13740
	GCGCTAATGC	ተልተተልተተር ልል	DAGCCAATAA	GAACACTACA	ACAACTCCAA	ጥርጥርርርጥጥል እ	12000

	CTGATAATAG	TGCTTTAAAA	ACTGCTAAGA	CGAAACTTGA	TGAAGAAATC	AATAAATCAG	13920
	TAACTACTGA	TGGTATGACA	CAATCATCAA	TCCAAGCATA	TGAAAATGCT	AAACGTGCGG	13980
5	GTCAAACAGA	ATCAACAAAT	GCACÁAAATG	TTATTAACAA	TGGTGATGCG	ACTGACCAAC	14040
	AAATTGCCGC	AGAAAAAACA	AAAGTAGAAG	АААААТАТАА	TAGCTTAAAA	CAAGCAATTG	14100
	CTGGATTAAC	TCCAGACTTG	GCACCATTAC	AAACTGCAAA	AACTCAGTTG	CAAAATGATA	14160
10	TTGATCAGCC	AACGAGTACG	ACTGGTATGA	CAAGCGCATC	TATTGCAGCA	TTTAATGAAA	14220
	AACTTTCAGC	AGCTAGAACT	AAAATTCAAG	AAATTGATCG	TGTATTAGCC	TCACATCCAG	14280
15	ATGTTGCGAC	AATACGTCAA	AACGTGACAG	CAGCGAATGC	CGCTAAATCA	GCACTTGATC	14340
	AAGCACGTAA	TGGCTTAACA	GTCGATAAAG	CGCCTTTAGA	AAATGCGAAA	AATCAACTAC	14400
	AACATAGTAT	TGACACGCAA	ACAAGTACAA	CTGGTATGAC	ACAAGACTCT	ATAAATGCAT	14460
20	ACAATGCGAA	GTTAACAGCT	GCACGTAATA	AGATTCAACA	AATCAATCAA	GTATTAGCAG	14520
	GTTCACCGAC	TGTAGAACAA	ATTAATACAA	ATACGTCTAC	AGCAAATCAA	GCTAAATCTG	14580
	ATTTAGATCA	TGCACGTCAA	GCTTTAACAC	CAGATAAAGC	GCCGCTTCAA	ACTGCGAAAA	14640
?5	CGCAATTAGA	ACAAAGCATT	AATCAACCAA	CGGATACAAC	AGGTATGACG	ACCGCTTCGT	14700
	TAAATGCGTA	CAACCAAAAA	TTACAAGCAG	CGCGTCAAAA	GTTAACTGAA	ATTAATCAAG	14760
	TGTTGAATGG	CAACCCAACT	GTCCAAAATA	TCAATGATAA	AGTGACAGAG	GCAAACCAAG	14820
30	CTAAGGATCA	ATTAAATACA	GCACGTCAAG	GTTTAACATT	AGATAGACAG	CCAGCGTTAA	14880
	CAACATTACA	TGGTGCATCT	AACTTAAACC	AAGCACAACA	AAATAATTTC	ACGCAACAAA	14940
	TTAATGCTGC	TCAAAATCAT	GCtGCGCTTG	AAACAATTAA	GTCTAACATT	ACGGCTTTAA	15000
35	ATACTGCGAT	GACGAAATTA	AAAGACAGTG	TTGCGGATAA	TAATACAATT	AAATCAGATC	15060
	AAAATTACAC	TGACGCAACA	CCAGCTAATA	AACAAGCGTA	TGATAATGCA	GTTAATGCGG	15120
10	CTAAAGGTGT	CATTGGAGAA	ACGACTAATC	CAACGATGGA	TGTTAACACA	GTGAACCAAA	15180
	AAGCAGCATC	TGTTAAATCG	ACGAAAGATG	CTTTAGATGG	TCAACAAAAC	TTACAACGTG	15240
	CGAAAACAGA	AGCAACAAAT	GCGATTACGC	ATGCAAGTGA	TTTAAACCAA	GCACAAAAGA	15300
15	ATGCATTAAC	ACAACAAGTG	AATAGTGCAC	AAAACGTGCA	AGCAGTAAAT	GATATTAAAC	15360
	AAACGACTCA	AAGCTTAAAT	ACTGCTATGA	CAGGTTTAAA	ACGTGGCGTT	GCTAATCATA	15420
	ACCAAGTCGT	ACAAAGTGAT	AATTATGTÇA	ACGCAGATAC	TAATAAGAAA	AATGATTACA	15480
50	ACAATGCATA	CAACCATGCG	AATGACATTA	TTAATGGTAA	TGCACAACAT	CCAGTTATAA	15540
	СУССУУСТСУ	ТСТТААСААТ	GCTTTATCAA	ATGTCACAAG	TAAAGAACAT	GCATTGAATG	15600

	ATTTAAATAA	TGCACAACGT	CAAAACTTAC	AATCGCAAAT	TAATGGTGCG	CATCAAATTG	15720
	ATGCAGTTAA	TACAATTAAG	CAAAATGCAA	CAAACTTGAA	TAGTGCAATG	GGTAACTTAA	15780
5 .	GACAAGCTGT	TGCAGATAAA	GATCAAGTGA	AACGTACAGA	AGATTATGCG	GATGCAGATA	15840
	CAGCTAAACA	AAATGCATAT	AACAGTGCAG	TTTCAAGTGC	CGAAACAATC	ATTAATCAAA	15900
	CAACAAATCC	AACGATGTCT	GTTGATGATG	TTAATCGTGC	AACTTCAGCT	GTTACTTCTA	15960
10	ATAAAAATGC	ATTAAATGGT	TATGAAAAAT	TAGCACAATC	TAAAACAGAT	GCTGCAAGAG	16020
	CAATTGATGC	ATTACCACAT	TTAAATAATG	CACAAAAAGC	AGATGTTAAA	TCTAAAATTA	16080
15	ATGCTGCATC	AAATATTGCT	GGCGTAAATA	CTGTTAAACA	ACAAGGTACA	GATTTAAATA	16140
	CARCGATGGg	TAACTTGCAA	GGTGCAATCA	ATGATGAACA	AACGACGCTT	AATAGTCAAA	16200
	ACTATCAAGA	TGCGACACCT	AGTAAGAAAA	CAGCATACAC	AAATGCGGTA	CAAGCTGCGA	16260
20	AAGATATTTT	AAATAAATCA	AATGGTCAAA	ATAAAACGAA	AGATCAAGTT	ACTGAAGCGA	16320
	TGAATCAAGT	GAATTCTGCT	AAAAATAACT	TAGATGGTAC	GCGTTTATTA	GATCAAGCGA	16380
	nCAAaCAGCA	AAACAGCAGT	TAAATAATAT	GACGCATTTA	ACAACTGCAC	AAAAAACGAA	16440
25	TTTAACAAAC	CAAATTAATA	GTGGTACTAC	TGTCGCTGGT	GTTCAAACGG	TTCAATCAAA	16500
	TGCCAATACA	TTAGATCAAG	CCATGAATAC	GTTAAGACAA	AGTATTGCCA	ACAAAGATGC	16560
	GACTAAAGCA	AGTGAAGATT	ACGTAGATGC	TAATAATGAT	AAGCAAACAG	CATATAACAA	16620
30	CGCAGTAGCT	GCTGCTGAAA	CGATTATTAA	TGCTAATAGT	AATCCAGAAA	TGAATCCAAG	16680
	TACGATTACA	CAAAAAGCAG	AGCAAGTGAA	TAGTTCTAAA	ACGGCACTTA	ACGGTGATGA	16740
35	AAACTTAGCT	GCTGCAAAAC	AAAATGCGAA	AACGTACTTA	AACACATTGA	CAAGTATTAC	16800
	AGATGCTCAA	AAGAACAATT	TGATTAGTCA	AATTACTAGT	GCGACAAGAG	TGAGTGGTGT	16860
	TGATACTGTA	AAACAAAATG	CGCAACATCT	AGACCAAGCT	ATGGCTAGCT	TACAGAATGG	16920
10	TATTAACAAC	GAATCTCAAG	TGAAATCATC	TGAGAAATAT	CGTGATGCTG	ATACAAATAA	16980
	ACAACAAGAG	TATGATAATG	CTATTACTGC	AGCGAAAGCG	ATTTTAAATA	AATCGACAGG	17040
	TCCAAACACT	GCGCAAAATG	CAGTTGAAGC	AGCATTACAA	CGTGTTAATA	ATGCGAAAGA	17100
15	TGCATTGAAT	GGTGATGCAA	AATTAATTGC	AGCTCAAAAC	GCAGCGAAAC	AACATTTAGG	17160
	TACTTTAACG	CATATCACTA	CAGCTCAACG	TAATGATTTA	ACAAATCAAA	TTTCACAAGC	17220
	ŢACAAACTTA	GCTGGTGTTG	AATCTGTTAA	ACAAAATGCG	AATAGTTTAG	ATGGTGCTAT	17280
50	GGGTAACTTA	CAAACGGCTA	TCAACGATAA	GTCAGGAACA	TTAGCGAGCC	AAAACTTCTT	17340
	CCATCCTCAT	CACCAAAAAC	CTAATCCATA	СВАТСВАССТ	CTATCACCAC	CCCDAACCAT	17400

	TGTTAATAAT	GCGAAACATG	CATTAAATGG	TACGCAAAAC	TTAAACAATG	CGAAACAAGC	17520
	AGCGATTACA	GCAATCAATG	GCGCATCTGA	TTTAAATCAA	AAACAAAAAG	ATGCATTAAA	17580
5 .	AGCACAAGCT	AATGGTGCTC	AACGCGTATC	TAATGCACAA	GATGTACAGC	ACAATGCGAC	17640
	TGAACTGAAC	ACGGCAATGG	GCACATTAAA	ACATGCCATC	GCAGATAAGA	CGAATACGTT	17700
	AGCAAGCAGT	AAATATGTTA	ATGCCGATAG	CACTAAACAA	AATGCTTACA	CAACTAAAGT	17760
10	TACCAATGCT	GAACATATTA	TTAGCGGTAC	GCCAACGGTT	GTTACGACAC	CTTCAGAAGT	17820
	AACAGCTGCA	GCTAATCAAG	TAAACAGCGC	GAAACAAGAA	TTAAATGGTG	ACGAAAGATT	17880
15	ACGTGAAGCA	AAACAAAACG	CCAATACTGC	TATTGATGCA	TTAACACAAT	TAAATACACC	17940
	TCAAAAAGCT	AAATTAAAAG	AACAAGTGGG	ACAAGCCAAT	AGATTAGAAG	ACGTACAAAC	18000
	TGTTCAAACA	AATGGACAAG	CATTGAACAA	TGCAATGAAA	GGCTTAAGAG	ATAGTATTGC	18060
20	TAACGAAACA	ACAGTCAAAA	CAAGTCAAAA	CTATACAGAC	GCAAGTCCGA	ATAACCAATC	18120
	AACATATAAT	AGCGCTGTGT	CAAATGCGAA	AGGTATCATT	AATCAAACTA	ACAATCCGAC	18180
	TATGGATACT	AGTGCGATTA	CCCAAGCTAC	AACACAAGTG	AATAATGCTA	AAAATGGTTT	18240
25	AAACGGTGCT	GAAAACTTAA	GAAATGCACA	AAACACTGCT	AAGCAAAACT	TAAATACATT	18300
	ATCACACTTA	ACAAATAACC	AAAAATCTGC	CATCTCATCA	CAAATTGATC	GTGCAGGTCA	18360
	TGTGAGTGAG	GTAACTGCTA	CTAAAAATGC	AGCAACTGAG	TTGAATACGC	AAATGGGTAA	18420
30	CTTGGAACAA	GCTATCCATG	ATCAAAACAC	AGTTAAACAA	AGTGTTAAAT	TTACTGATGC	18480
	AGATAAAGCT	AAACGTGATG	CGTATACAAA	TGCGGTAAGC	AGAGCTGAAG	CAATTCTGAA	18540
	TAAAACGCAA	GGTGCAAATA	CGTCTAAACA	AGATGTTGAA	GCGGCTATTC	AAAATGTTTC	18600
35	AAGTGCTAAA	AATGCATTGA	ATGGTGATCA	AAACGTTACA	AATGCGAAGA	ATGCAGCTAA	18660
	AAATGCATTA	AATAACTTAA	CGTCAATTAA	TAATGCACAA	AAACGTGACT	TAACAACTAA	18720
‡0	AATTGATCAA	GCAACAACTG	TAGCTGGTGT	TGAAGCTGTA	TCTAATACGA	GTACACAATT	18780
	GAALACAGCG	ATGGCTAACT	TGCAAAATGG	TATTAATGAT	AAAACAAATA	CACTAGCAAG	18840
	TGAAAACTAT	CATGATGCTG	ATTCAGATAA	GAAAACTGCT	TATACTCAAG	CCGTTACGAA	18900
15	CGCAGAAAAT	ATTTTAAATA	AAAATAGTGG	ATCAAATTTA	GACAAAACTG	CCGTTGAAAA	18960
•	CGCGTTGTCA	CAAGTTGCTA	ATGCGAAAGG	TGCCCTAAAT	GGTAACCATA	ATTTAGAGCA	19020
	AGCTAAATCA	AATGCAAACA	СТАСТАТААА	CGGACTTCAA	CATTTAACAA	CTGCTCAAAA	19080
50	AGATAAATTG	AAACAACAAG	TGCAACAAGC	ACAAAATGTT	GCAGGTGTAG	ATACTGTTAA	19140
	AMON ACTOCO	******	NTCCTCCTNT	CCCTACCTTA	ACAAATACCA	ፕልሮአ ክርአፕልአ	19200

	TAACAATGCT	GTTGATAGTG	CTAATGGTGT	CATTAATGCA	ACAAGCAATC	CAAATATGGA	19320
	TGCTAATGCA	ATTAACCAAA	TCGCTACACA	AGTGACATCA	ACGAAAAATG	CATTAGATGG	19380
5	TACACATAAT	TTAACGCAAG	CGAAACAAAC	AGCAACAAAT	GCCATCGATG	GTGCTACTAA	1944
	СТТАААТААА	GCGCAAAAAG	ATGCGTTAAA	AGCACAAGTT	ACAAGTGCGC	AACGTGTTGC	19500
	AAATGTAACA	AGTATCCAAC	AAACTGCAAA	TGAACTTAAT	ACAGCTATGG	GTCAATŢACA	19560
10	ACATGGTATT	GATGATGAAA	ATGCAACAAA	ACAAACTCAA	AAATATCGTG	ACGCTGAACA	19620
	AAGTAAGAAA	ACTGCTTATG	ATCAAGCTGT	AGCTGCTGCG	AAAGCAATTT	TAAATAAACA	19680
15	AACAGGTTCA	AATTCAGATA	AAGCAGCAGT	TGACCGTGCA	TTACAACAAG	TAACAAGTAC	19740
	GAAAGATGCA	TTGAATGGTG	ATGCAAAACT	GGCAGAAGCG	AAAGCGGCAG	CTAAACAAAA	19800
	CTTAGGCACT	TTAAACCATA	TTACGAATGC	ACAACGTACT	GACTTAGAAG	GCCAAATCAA	19860
20	TCAAGCGACG	ACTGTTGATG	GCGTTAATAC	TGTAAAAACA	AATGCCAATA	CATTAGACGG	19920
	CGCAATGAAT	AGCTTACAAG	GTTCAATCAA	TGATAAAGAT	GCGACATTAA	GAAATCAAAA	19980
	TTATCTTGAT	GCGGATGAAT	CAAAACGAAA	TGCATATACG	CAAGCTGTCA	CAGCGGCTGA	20040
25	AGGCATTTTA	AATAAACAAA	CTGGTGGTAA	CACATCTAAA	GCAGACGTTG	ATAATGCATT	20100
	AAATGCAGTT	ACAAGAGCGA	AAGcGgCTTT	AAATGGTGCT	GACAACTTAA	GAAATGCGAA	20160
	AACTTCAGCA	ACAAATACGA	TTGATGGTTT	ACCTAACTTA	ACACAATTAC	AAAAAGACAA	20220
30	CTTGAAGCAT	CAAGTTGAaC	AAGCGCAAAA	TGTAGCAGGT	GTAÀATGGTG	TTAAAGATAA	20280
	AGGTAATACG	TTAAATACTG	CCATGGGTGC	ATTACGTACA	AGTATCCAAA	ATGATAATAC	20340
35	GACGAAAACA	AGTCAAAATT	ATCTTGATGC	ATCTGACAGC	AACAAAAATA	ATTACAATAC	20400
~	TGCTGTAAAT	AATGCAAATG	GTGTTATTAA	TGCAACGAAC	AATCCAAATA	TGGATGCTAA	20460
	TGCGÄTTAAT	GGCATGGCAA	ATCAAGTCAA	TACAACAAAA	GCAGCGTTAA	ATGGTGCACA	20520
10	AAACTTAGCT	CAAGCTAAAA	CAAATGCGAC	GAACACAATT	AACAACGCAC	ATGACTTAAA	20580
				AGTTAACAAT			20640
	AAATAACGTT	CAACACACTG	CAACTGAATT	GAACAGTGCG	ATGACAGCAC	TTAAAGCAGC	20700
15	TATTGCTGAT	AAAGAAAGAA	CAAAAGCAAG	CGGTAATTAT	GTCAATGCTG	ATCAAGAAAA	20760
	ACGTCAAGCG	TATGATTCAA	AAGTGACTAA	CGCTGAAAAT	ATCATTAGTG	GTACACCGAA	20820
	TGCGACATTA .	ACAGTCAATG	ACGTAAATAG	TGCGGCATCA	CAAGTCAATG	CGGCTAAAAC	20880
50	AGCATTAAAT	GGTGATAACA	ACTTACGTGT	AGCGAAAGAG	CATGCCAACA	ATACAATTGA	20940
	CGGCTTAGCA	CAATTGAATA	ATGCACAAAA	AGCAAAATTA	AAAGAACAAG	TTCANACTCC	21000

	GAAAGGCTTA	AGAGATAGTA	TTGCGAATGA	AGCAACAATT	AAAGCAGGTC	AAAACTACAC	2112
	TGACGCAAGT	CCAAATAATC	GTAACGAGTA	CGACAGTGCA	GTTACTGCAG	CAAAAGCAAT	2118
5	CATTAATCAA	ACATCGAACC	CAACGATGGA	ACCAAATACT	ATTACGCAAG	TAACATCACA	2124
	AGTGACAACT	AAAGAACAGG	CATTAAATGG	TGCGCGAAAC	TTAGCTCAAG	CTAAGACAAC	2130
	TGCGAAAAAC	AACTTGAATA	ACTTAACATC	AATTAACAAT	GCACAAAAAG	ATGCGTTAAC	2136
10	GCGTAgcATT	GATGGTGCAA	CAACAGTAGC	TGGTGTAAAT	CAAGAAACTG	CAAAAGCAAC	2142
	AGAATTAAAT	AACGCAATGC	ATAGTTTACA	AAATGGTATC	AATGATGAGA	CACAAACAAA	2148
15	ACAAACTCAG	AAATACCTAG	ATGCAGAGCC	AAGTAAGAAA	TCAGCTTATG	ATCAAGCAGT	2154
15	AAATGCAGCG	AAAGCAATTT	TAACAAAAGC	TAGTGGTCAA	AATGTAGACA	AAGCAGCAGT	2160
	TGAACAAGCA	TTGCAAAATG	TGAACAGTAC	GAAGACGGCG	TTGAACGGTG	ATGCGAAATT	2166
20	AAATGAAGCT	AAAGCAGCTG	CGAAACAAAC	GTTAGGTACA	TTAACACACA	TTAATAATGC	2172
,	ACAACGTACA	GCGTTAGACA	ATGAAATTAC	ACAAGCAACA	AATGTTGAAG	GTGTTAATAC	2178
	AGTTAAAGCC	AAAGCGCAAC	AATTAGATGG	TGCTATGGGT	CAATTAGAAA	CATCAATTCG	2184
25	TGATAAAGAC	ACGACGTTAC	AAAGTCAAAA	TTATCAAGAT	GCTGATGATG	CTAAACGAAC	2190
	TGCTTATTCT	CAAGCAGTAA	ATGCAGCAGC	AACTATTTTA	AATAAAACAg	CTGGCGGTAA	2196
	TACACCTAAA	GCAGATGTTG	AAAGAGCAAT	GCAAGCTGTT	ACACAAGCAA	ATACTGCATT	22020
30	AAACGGTATT	CAMAACTTAG	ATCGTGCGAA	ACArGCTGCT	AACACAGCGA	TTACAAATGC	22080
	TTCGGACTTA	AATACAAAAC	mAAAAGAAGC	ATTAAAAgCA	CAAGTAACAA	GTGCAGGACG	22140
	TGTATCTGCA	GCAAATGGTG	TTGAACATAC	TGÇGACTGAA	TTAAATACTG	CGATGACAGC	22200
35	TTTAAAGCGT	GCCATTGCTG	ATAAAGCTGA	GACAAAAGCT	AGTGGTAACT	ATGTCAATGC	22260
	TGATGCGAAT	AAACGTCAAG	CATATGATGA	AAAAGTTACA	GCTGCCGAAA	ATATCGTTAG	22320
40	TGGTACACCA	ACACCAACGT	TAACACCAGC	AGATGTTACA	AATGCAGCAA	CGCAAGTAAC	22380
	GAATGCTAAG	ACGCAGTTAA	ACGGTAATCA	TAATTTAGAA	GTAGCGAAAC	AAAATGCTAA	22440
	CACTGCAATT	GATGGTTTAA	CTTCTTTAAA	TGGTCCGCAA	AAAGCAAAAC	TTAAAGAACA	22500
15	AGTGGGTCAA	GCGACGACGT	TGCCAAATGT	TCAAACTGTT	CGTGATAATG	CACAAACATT	22560
	AAACACTGCA	ATGAAAGGTC	TACGAGATAG	CATTGCGAAT	GAAGCAACGA	TTAAAGCAGG	22620
	TCAAAACTAC	ACAGATGCAA	GTCAAAACAA	ACAAACTGAC	TACAACAGTG	CAGTCACTGC	22680
50	AGCAAAAGCA	ATCATTGGTC	AAACAACTAG	TCCATCAATG	AATGCGCAAG	AAATTAATCA	22740
	AGCGAAAGAC	CAAGTGACAG	ДОВОДВЕТО	AGCGTTAAAC	CCTCAACAAA	እ <i>ር</i> ም የአለር አለር	22000

	AGATGCAGTG	AAACGTCAAA	TCGAAGGTGC	AACGCATGTT	AATGAAGTAA	CACAAGCACA	22920
	AAATAATGCG	GATGCaTTAA	ATACAGCTAT	GACGAACTTG	AAAAATGGTA	TTCAAGATCA	22980
5	GAATACGATT	AAGCAAGGTG	TTAACTTCAC	TGATGCCGAC	GAAGCGAAAC	GTAATGCATA	23040
	TACAAATGCA	GTGACGCAAG	CTGAACAAAT	ТТТАААТААА	GCACAAGGTC	CAAATACTTC	23100
	AAAAGACGGT	GTCGAAACTG	CGTTAGAAAA	TGTACAACGT	GCTAAAAACG	AATTGAACGG	23160
10	TAATCAAAAT	GTTGCGAACG	CTAAGACAAC	TGCGAAAAAT	GCATTGAATA	ACCTAACATC	23220
	AATTAATAAT	GCACAAAAAG	AAGCATTGAA	ATCACAAATT	GAAGGTGCGA	CAACAGTTGC	23280
15	AGGTGTAAAT	CAAGTGTCTA	CAACGGCATC	TGAATTAAAT	ACAGCAATGA	GCAACTTACA	23340
. •	AAATGGTATT	AATGATGAAG	CAGCTACAAA	AGCAGCGCTT	AATGGTACTC	AAAACCTTGA	23400
	AAAAGCTAAA	CAACACGCAA	ATACAGCAAT	TGACGGTTTA	AGCCATTTAA	CAAATGCACA	23460
20	AAAAGAGGCA	TTAAAACAAT	TGGTACAACA	ATCGACTACT	GTTGCAGAAG	CACAAGGTAA	23520
	TGAGCAAAAA	GCAAACAATG	TTGATGCAGC	AATGGACAAA	TTACGTCAAA	GTATTGCAGA	23580
	TAATGCGACA	ACAAAACAAA	ACCAAAATTA	TACTGATGCA	AGTCAGAATA	AAAAGGATGC	23640
25	GTACAATAAT	GCTGTCACAA	CTGCACAAGG	TATTATTGAT	CAAACTACAA	GTCCAACTTT	23700
•	AGATCCGACT	GTTATCAATC	AAGCTGCTGG	ACAAGTAAGC	ACAACTAAAA	ATGCATTAAA	23760
	TGGTAATGAA	AACCTAGAGG	CAGCGAAACA	ACAAGCGTCA	CAATCATTAG	GTTCATTAGA	23820
30	TAACTTAAAT	AATGCGCAAA	AACAAACAGT	TACTGATCAA	ATTAATGGCG	CGCATACTGT	23880
	TGATGAAGCA	AATCAAATTA	AGCAAAATGC	GCAAAACTTA	AATACAGCGA	TGGGTAACTT	23940
	GAAACAAGCG	ATAGCTGACA	AAGATGCTAC	GAAAGCGACA	GTTAACTTCA	CTGATGCAGA	24000
35	TCAAGCAAAA	CAACAAGCAT	ATAACaCTGC	TGTTACAAAT	GCTGAAAATA	TCATTTCAAA	24060
	AGCTÁATGGC	GGCAATGCAA	CACAAGCTGA	AGTTGAACAA	GCAATCAAAC	AAGTTAATGC	24120
10	TGCAAAACAA	GCATTAAATG	GTAATGCCAA	CGTTCAACAT	GCAAAAGACG	AAGCAACAGC	24180
	ATTAATTAAT	AGCTCTAATG	ACCTTAACCA	AGCACAAAAA	GACGCATTAA	AACAACAAGT	24240
	TCAAAATGCA	ACTACTGTAG	CTGGTGTAAA	CAATGTTAAA	CAAACAGCAC	AAGAGTTAAA	24300
15	CAATGCTATG	ACACAATTAA	AACAAGGCAT	TGCAGATAAA	GAACAAACAA	AAGCTGATGG	24360
	TAACTTTGTC	AATGCAGATC	CTGATAAGCA	AAATGCATAT	AATCAAGCAG	TAGCGAAAGC	24420
	TGAAGCATTA	ATTAGTGctA	CGCCTGATGT	TGTCGTTACA	CCTAGCGAAA	TTACTGCAGC	24480
50	GTTAAATAAA (GTTACGCAAG	CTAAAAATGA	TTTAAATGGT	AATACAAACT	TAGCAACGGC	24540
	GAAACAAAAT (GTTCAACATG	CTATTGATCA	ATTGCCAAAC	TTAAACCAAG	CGCAACGTGA	24600

	AGCGGCGACA	ACGCTTAATG	ACGCGATGAC	ACAATTGAAA	CAAGGTATTG	CGAATAAAGC	24720
	ACAAATTAAA	GGTAGCGAGA	ACTATCACGA	TGCTGATACT	GACAAGCAAA	CAGCATATGA	24780
5	TAATGCAGTA	ACAAAAGCAG	AAGAATTGTT	AAAACAAACA	ACAAATCCAA	CAATGGATCC	24840
	AAATACAATT	CAACAAGCAT	TAACTAAAGT	GAATGACACA	AATCAAGCAC	TTAACGGTAA	24900
	TCAAAAATTA	GCTGATGCCA	AACAAGATGC	TAAGACAACA	CTTGGTACAC	TAGATCATTT	24960
10	AAATGATGCT	CAAAAACAAG	CGCTAACAAC	TCAAGTTGAA	CAAGCACCAG	ATATTGCAAC	25020
	AGTTAATAAT	GTTAAGCAAA	ATGCTCAAAA	TCTGAATAAT	GCTATGACTA	ACTTAAACAA	25080
	TGCATTACAA	GATAAAACTG	AGACATTAAA	TAGCATTAAC	TTTACTGATG	CAGATCAAGC	25140
15	TAAGAAAGAT	GCTTATACTA	ATGCGGTTTC	ACATGCAGAA	GGTATTTTAT	CTAAAGCAAA	25200
	TGGCAGCAAT	GCAAGTCAAA	CTGAAGTGGA	ACAAGCGATG	CAACGTGTGA	ACGAAGCGAA	25260
20	ACAAGCATTG	AATGGTAATG	ACAATGTACA	ACGTGCAAAA	GATGCAGCGA	AACAAGTGAT	25320
	TACAAATGCA	AATGATTTAA	ATCAAGCAAT	GACACAATTG	AAACAAGGTA	TTGCAGATAA	25380
	AGACCAAACT	AAAGCAAATG	GTAACTTTGT	CAATGCTGAT	ACTGATAAGC	AAAATGCTTA	25440
25	CAACAATGCG	GTAGCACATG	CTGAACAAAT	AATTAGTGGT	ACACCAAATG	CAAACGTGGA	25500
	TCCACAACAA	GTGGCTCAAG	CGTTACAACA	AGTGAATCaA	GCTAAGGGTG	ATTTAAACGG	25560
	TAACCATAAC	TTACAAGTTG	CTAAAGACAA	TGCAAATACA	GCCATTGATC	AGTTACCAAA	25620
30	CTTAAATCAA	CCACAAAAAA	CAGCATTAAA	AGACCAAGTG	TCGCATGCAG	AACTTGTTAC	25680
	AGGTGTTAAT	GCTATTAAGC	AAAATGCTGA	TGCGTTAAAT	AATGCAATGG	GTACATTGAA	25740
	ACAACAAATT	CAAGCGAACA	GTCAAGTACC	ACAGTCAGTT	GACTTTACAC	AAGCGGATCA	25800
35	AGACAAACAA	CAAGCATATA	ACAATGCGGC	TAACCAAGCG	CAACAAATCG	CAAATGGCAT	25860
	ACCAÁCACCT	GTATTGACGC	CTGATACAGT	AACACAAGCA	GTGACAACTA	TGAATCAAGC	25920
40	GAAAGATGCA	TTAAACGGTG	ATGAAAAATT	AGCACAAGCG	AAACAAGAAG	CTTTAGCAAA	25980
••	TCTTGATACG	TTACGCGATT	TAAATCAACC	ACAACGTGAT	GCATTACGTA	ACCAAATCAA	26040
	TCAAGCACAA	GCGTTAGCTA	CAGTTGAACA	AACTAAACAA	AATGCACAAA	ATGTGAATAC	26100
45	aGCaATGAGT	AACTTGAAAC	aAGGTATTGC	aAACAAAGAT	ACTGTCAAAG	CAAGTGAGAA	26160
	CTATCATGAT	GCTGATGCCG	ATAAGCAAAC	AGCATATACA	AATGCAGTGT	CTCAAGCGGA	26220
	AGGTATTATC	AATCAAACGA	CAAATCCAAC	GCTTAACCCA	GATGAAATAA	CACGTGCATT	26280
50	AACTCAAGTG	ACTGATGCTA	AAAATGGCTT	AAACGGTGAA	GCTAAATTGG	CAACTGAAAA	26340
	CCANANTCCT	*********	TARCTCCCAM	03.0003.00003	3.3.003.m0.0m0	*****	06400

	AGCAACGAGC	CTAGATCAAG	CAATGGATCA	ATTATCACAA	GCTATTAATG	ATAAAGCTCA	26520
	AACATTAGCG	GACGGTAATT	ACTTAAATGC	AGATCCTGAC	AAACAAAATG	CGTATAAACA	26580
5	GGCAGTAGCA	AAAGCTGAAG	CATTATTGAA	TAAACAAAGT	GGTACTAATG	AAGTACAAGC	26640
	ACAAGTTGAA	AGCATCACTA	ATGAAGTGAA	CGCAGCGAAA	CAAGCATTAA	ATGGTAATGA	26700
	CAATTTGGCA	AATGCAAAAC	AACAAGCAAA	ACAACAATTG	GCGAACTTAA	CACACTTAAA	26760
10	TGATGCACAA	AAACAATCAT	TTGAAAGTCA	AATTACACAA	GCGCCACTTG	TTACAGATGT	26820
	CACTACGATT	AATCAAAAAG	CACAAACGTT	AGATCATGCG	ATGGAATTAT	TAAGAAATAG	26880
15	TGTTGCGGAT	AATCAAACGA	CATTAGCGTC	TGAAGATTAT	CATGATGCAA	CTGCGCAAAG	26940
10	ACAAAATGAC	TATAACCAAG	CTGTAACAGC	TGCTAATAAT	ATAATTAATC	AAACTACATC	27000
	GCCTACGATG	AATCCAGATG	ATGTTAATGG	TGCAACGACA	CAAGTGAATA	ATACGAAAGT	27060
20	TGCATTAGAT	GGTGATGAAA	ACCTTGCAGC	AGCTAAACAA	CAAGCAAACA	ACAGACTTGA	27120
	TCAATTAGAT	CATTTGAATA	ATGCGCAAAA	GCAACAGTTA	CAATCACAAA	TTACGCAATC	27180
	ATCTGATATT	GCTGCAGTTA	ATGGTCACAA	ACAAACAGCA	GAATCTTTAA	ATACTGCGAT	27240
25	GGGTAACTTA	ATTAATGCGA	TTGCAGATCA	TCAAGCCGTT	GAACAACGTG	GTAACTTCAT	27300
	CAATGCTGAT	ACTGATAAAC	AAACTGCTTA	TAATACAGCG	GTAAATGAAG	CAGCAGCAAT	27360
	GATTAACAAA	CAAACTGGTC	AAAATGCGAA	CCAAACAGAA	GTAGAACAAG	CTATTACTAA	27420
30	AGTTCAAACA	ACACTTCAAG	CGTTAAATGG	AGACCATAAT	TTACAAGTTG	СТААААСААА	27480
	TGCGACGCAA	GCAATTGATG	CTTTAACAAG	CTTAAATGAT	CCTCAAAAAA	CAGCATTAAA	27540
	AGACCAAGTT	ACAGCTGCAA	CTTTAGTAAC	TGCAGTTCAT	CAAATTGAAC	AAAATGCGAA	27600
35	TACGCTTAAC	CAAGCAATGC	ATGGTTTAAG	ACAGAGCATT	CAAGATAACG	CAGCAACTAA	27660
	AGCAÃATAGC	AAATATATCA	ACGAAGATCA	ACCAGAGCAA	CAAAACTATG	ATCAAGCTGT	27720
40	TCAAGCCGCA	AATAATATTA	TCAATGAACA	AACTGCAACA	TTAGATAATA	ATGCGATTAA	27780
	TCAAGCAGCG	ACAACTGTGA	ATACAACGAA	AGCAGCATTA	CATGGTGATG	TGAAGTTACA	27840
	AAATGATAAA	GATCATGCTA	AGCAAACGGT	TAGTCAATTA	GCACATCTAA	ACAATGCACA	27900
45	AAAACATATG	GAAGATACGT	TAATTGATAG	TGAAACAACT	AGAACAGCAG	TTAAGCAAGA	27960
	TTTGACTGAA	GCACAAGCAT	TAGATCAACT	TATGGATGCA	TTACAACAAA	GTATTGCTGA	28020
•	CAAAGATGCA	ACACGTGCGA	GCAGTGCATA	TGTCAATGCA	GAACCGAATA	AAAAACAATC	28080
50	CTATGATGAA	GCAGTTCAAA	ATGCTGAGTC	TATCATTGCA	GGATTAAATA	ATCCAACTAT	28140
	CAATAAAGGT	AATGTATCAA	GTGCGACTCA	AGCAGTAATA	TCATCTAAAA	АТССАТТАСА	28200

	TCAATTAACA	CCAGCTCAAC	AACAAGCGCT	AGAAAATCAA	ATTAATAATG	CAACAACTCG	28320
5	TGATAAAGTG	GCTGAAATCA	TTGCAĆAAGC	GCAAgCATtA	AATGAAGCGA	TGAAAGCATT	28380
	AAAAGAAAGT	ATTAAGGATC	AACCACAAAC	TGAAGCAAGT	AGTAAATTTA	TTAACGAGGA	28440
	TCAAGCGCAA	AAAGATGCTT	ATACGCAAGC	AGTACAACAC	GCGAAAGATT	TGATTAACAA	28500
10	AACAACTGAT	CCTACATTAG	CTAAATCAAT	CATTGATCAA	GCGACACAGG	CAGTGACAGA	28560
	TGCTAAAAAC	AATTTACATG	GTGATCAAAA	ACTAGCTCAA	GATAAGCAAC	GTGCAACAGA	28620
	AACGTTAAAT	AACTTGTCTA	ACTTGAATAC	ACCACAACGT	CAAGCACTTG	AAAATCAAAT	28680
15	TAATAATGCA	GCAACTCGTG	GCGAAGTAGC	ACAAAAATTA	ACTGAAGCAC	AAGCACTTAA	28740
	CCAAGCAATG	GAAGCTTTAC	GTAATAGCAT	TCAAGATCAA	CAGCAAACGG	AAGCGGGTAG	28800
	CAAGTTTATC	AATGAAGATA	AaccacmAAA	AGTTGCTTAC	CAAGCAGCAG	TTCAAAATGC	28860
20	AAAAGATTTA	ATTAATCAAA	CTAACAATCC	AACGCTTGAT	AAAGCACAAG	TTGAACAATT	28920
	GACACAAGCT	GTTAACCAAG	CTAAAGATAA	CCTACACGGT	GATCAAAAAC	TTGCAGACGA	28980
25	TAAACAACAT	GCGGTTACTG	ATTTAAATCA	ATTAAATGGT	TTGAATAATC	CGCAACGTCA	29040
	AGCACTTGAA	AGCCAAATAA	ACAACGCAGC	AACTCGTGGC	GAAGTAGCAC	AAAAATTAGC	29100
	TGAAGCAAAA	GCGCTTGATC	AAGCAATGCA	AGCATTACGT	AATAGTATTC	AAGATCAACA	29160
30	ACAAACAGAA	TCTGGTAGCA	AGTTTATCAA	TGAAGATAAA	CCGCAAAAAG	ATGCTTACCA	29220
	AGCAGCAGTT	CAAAATGCAA	AAGATTTAAT	TAACCAAACA	GGTAATCCAA	CACTCGACAA	29280
	ATCACAAGTA	GAACAATTGA	CACAAGCAGT	AACAACTGCA	AAAGATAATC	TACATGGTGA	29340
35	TCAAAAACTT	GCTCGTGATC	AACAACAAGC	AGTAACAACT	GTAAATGCAT	TGCCAAACTT	29400
	AAATCATGCA	CAACAACAAG	CATTAACTGA	TGCTATAAAT	GCAGCGCCTA	CAAGAACAGA	29460
	GGTTGCACAA	CATGTTCAAA	CTGCTACTGA	ACTTGATCAC	GCGATGGAAA	CATTGAAAAA	29520
40	TAAAGTTGAT	CAAGTGAATA	CAGATAAGGC	TCAACCAAAT	TACACTGAAG	CGTCAACTGA	29580
	TAAAAAAGAA	GCAGTAGATC	AAGCGTTACA	AGCTGCAGAA	AGCATTACAG	ATCCAACTAA	29640
45	TGGTTCAAAT	GCGAATAAAG	ACGCTGTAGA	CCAAGTATTA	ACTAAGCTTC	AAGAAAAGA	29700
	AAATGAGTTA	AATGGTAATG	AGAGAGTCGC	TGAAGCTAAA	ACACAAGCGA	AACAAACTAT	29760
	TGACCAATTA	ACACATTTAA	ATGCTGATCA	AATTGCAACT	GCTAAACAAA	ACATTGATCA	29820
50	AGCGACGAAA	CTTCAACCAA	TTGCTGAATT	AGTAGATCAA	GCAACGCAAT	TGAATCAATC	29880
	TATGGATCAA	TTACAACAAG	CAGTTAATGA	ACATGCTAAC	GTTGAGCAAA	CTGTAGATTA	29940
	CACACAAGCA	GATTCAGATA	AACAAAATGC	ттаталасаа	GCTATTGCTG	ATGCTGAAAA	30000

	TGCAAAACAA	GCATTAAATG	GTGATGAACG	TGTAGCACTT	GCTAAAACAA	ATGGTAAACA	30120
	TGACATCGAC	CAATTGAATG	CATTAAACAA	TGCTCAACAA	GATGGATTTA	AAGGTCGCAT	30180
5	CGATCAATCA	AACGATTTAA	ATÇAAATCCA	ACAAATTGTA	GATGAGGCTA	AGGCACTTAA	30240
	TCGTGCAATG	GATCAATTGT	CACAAGAAAT	CACTGACAAT	GAAGGACGCA	CGAAAGGTAG	30300
	CACGAACTAT	GTCAATGCAG	ATACACAAGT	CAAACAAGTA	TATGATGAAA	CGGTTGATAA	30360
0	AGCGAAACAA	GCACTTGATA	AATCGACTGG	TCAAAACTTA	ACTGCAAAAC	AAGTTATCAA	30420
	ATTAAATGAT	GCAGTCACTG	CAGCTAAGAA	AGCATTAAAT	GGTGAAGAAA	GACTTAATAA	30480
5	TCGTAAAGCT	GAAGCATTAC	AAAGATTGGA	TCAATTAACA	CATCTAAACA	ATGCTCAAAG	30540
-	ACAATTAGCA	ATCCAACAAA	TTAATAATGC	TGAAACGCTA	AATAAAGCAT	CTCGAGCAAT	30600
	TAATAGAGCA	ACTAAATTAG	ATAATGCAAT	GGGTTCAGTA	CAACAATATA	TTGACGAACA	30660
0	GCACCTTGGT	GTTATCAGCA	GCACAAATTA	CATCAATGCA	GATGACAATT	TGAAAGCAAA	30720
	TTATGATAAT	GCAATTGCGA	ATGCAGCACA	TGAGTTAGAT	AAAGTGCAAG	GTAATGCAAT	30780
	TGCaAAAGCT	GAAGCAGAGC	AATTGAAACA	AAATATTATC	GATGCTCAAA	ATGCATTAAA	30840
5	TGGAGACCAA	AACCTTGCAA	ATGCCAAAGA	TAAAGCAAAT	GCGTTTGTTA	ATTCGTTAAA	30900
	TGGATTAAAT	CAACAGCAAC	AAGATCTTGC	ACATAAAGCA	ATTAACAATG	CCGATACTGT	30960
	ATCAGATGTA	ACAGATATTG	TTAATAATCA	AATTGACTTA	AATGATGCAA	TGGAAACATT	31020
0	GAAACATTTA	GTTGACAATG	AAATTCCAAA	TGCAGAGCAA	ACTGTCAATT	ACCAAAACGC	31080
	TGACGATAAT	GCTAAA				•	31096

(2) INFORMATION FOR SEQ ID NO: 60:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2243 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

ATGACAGAAT GGGAGCGAGG ACTTAGAATG TTTCCTAAAT CAGGTTTATT AAATTTTGAG 60
TTAGCGATAG MAAATCGTTC ATTAAATGAT GATGAAAAAG CATTAAAATA TGTGCGTAAA 120
GCATTAAATG CAGACCCTAA AAATACAGAT TATATTAACT TAGAAAAAGA GTTGACTAAA 180
TCAAATGAGT CGAAAAATAA ATAACTTTTA TGATGTACAA CAGTTATTGA AAAGTTACGG 240
ATTTCTAATA TATTTTAAAA ATCCAGAAGA TATGTACGAA ATGATTCAAC AGGAGATTTC 300

	TAATCAGAGA	AGGAATGAAC	AGAAATGACA	AAAATTATTT	TAGCAGCTGA	TGTAGGCGGG	420
	ACGACTTGTA	AATTAGGTAT	TTTCACACCT	GAATTAGAAC	AATTACATAA	ATGGTCTATT	480
5	CACACTGATA	CATCTGATAG	TACAGGATAT	ACACTTTTGA	AAGGAATTTA	TGATTCGTTT	540
	GTTGAAAAAG	TAAATGAAAA	TAATTATAAT	TTTTCAAATG	TACTTGGCGT	AGGTATTGGT	600
40	GTACCAGGTC	CTGTTGACTT	TGAAAAAGGT	ACAGTAAATG	GAGCAGTAAA	CTTATATTGG	660
10 .	CCAGAAAAAG	TTAATGTACG	TGAGATTTTT	GAACAATTCG	TTGATTGTCC	AGTGTATGTA	720
	GATAATGATG	CTAACATAGC	TGCTTTAGGG	Gagaaacaca	AAGGTGCTGG	TGAAGGTGCC	780
15	GATGATGTTG	TTGCCATCAC	ACTTGGTACA	GGTCTAGGTG	GAGGAATTAT	TTCCAAATGG	. 840
	TGAAATCGTA	CATGGTCATA	ATGGCTCtGG	CGCAGAAATA	GGTCATTTTA	GAGCAGACTT	900
	CGATCAACGA	TTTaAATGTA	ATTGTGGTCG	TTCTGGATGT	ATTGAAACAG	TTGCTTCaGC	960
20	GACAGGCGTT	GTTAACTTAG	TTAACTTCtA	CTATCCGAAG	TTGACGTTTA	GATCTTCTAT	1020
	ATTAGAATTG	ATTAAAGAAA	ATAAGGTtAC	aGCAAAAGCT	GTTTTTGATG	CGGCAAAAGC	1080
	TGGTGACCAA	TTCTGTATTT	TCATTACTGA	AAAGGTTGCA	AACTATATTG	GATATTTATG	1140
25	TAGTATTATT	AGTGTTACAA	GTAATCCGAA	ATATATCGTT	CTAGGTGGAG	GAATGTCTAC	1200
	TGCAGGACCT	ATTTTAATTG	AAAATATTAA	AACAGAATAT	CATAATTTAA	CATTTGCACC	1260
	TGCTCAATTT	GAAACTGAAA	TTGTACAAGC	GAAATTAGGT	AATGATGCAG	GTATTACAGG	1320
30	AGCAGCAGGA	TTAATCAAGA	CCTATGTATT	AGATAAAGAG	GGGGTAAAAT	AATGGCTATT	1380
	GTTGATGTGG	TTGTTATTCC	AGTTGGAACG	GAAGGTCCGA	GTGTTAGTAA	ATATATTGCA	1440
. <i>35</i>	GATATTCAGA	AAAAACTTCA	AGAATATAAA	GCAATGGGTA	AAATTGATTT	TCAATTAACA	1500
. 00	CCAATGAATA	CTCTAATTGA	AGGTGAATTA	AGCGATGTAT	TAGAAGTTGT	GCAAGTGATA	1560
	CATGAATTAC	CTTTTGATAA	AGGTTTAAGT	AGAGTTTGTA	CAAATATCCG	TATTGATGAC	1620
40	CGACGAGACA	AATCTAGAAA	AATGAATGAT	AAACTAACAT	CAGTACAAAA	ACATTTAGAA	1680
	AATAGTGGTG	AAAACCTATG	AGGATTTCAA	GCTTAACTTT	AGGCTTAGTT	GATACTAATA	1740
	CGTATTTCAT	CGAAAATGAC	AAAGCTGTTA	TTCTGATTGA	CCCTTCAGGT	GAAAGTGAAA	1800
45	AATTATTAA	AAAATTAAAC	CAAATAAATA	AACCGTTAAA	AGCTATTTTA	TTAACACATG	1860
	CACACTTTGA	TCATATCGGA	GCAGTCGATG	ATATAGTTGA	TCGATTCGAT	GTCCCGGTTT	1920
	ATATGCATGA	AGCAGAGTTT	GATTTTCTAA	AAGATCCCGT	TAAAAATGGG	GCAGATAAAT	1980
50	TTAAGCAATA	TGGATTACCA	ATTATTACAA	GTAAGGTAAC	TCCTGAAAAG	TTAAmCGAAG	2040
	CTACCACACA	AATAGAAGGA	ייייים אַ בייייים אַ	DAVETGT=CA	CACACCTGGA	CATTCACCAG	2100

	GAATCGGACG TACAGATTTA TATAAAGGTG ATTATGAAAC GCTAGTTGAT TCTATTCAAG	2220
	ATAAAATATT TGAATTAGAA GGC	2243
5	(2) INFORMATION FOR SEQ ID NO: 61:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8009 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
15	TTGGnATCAT tyAcgGTAAA AAGAATAAaG CAAGATTEAT TTCATTAGTA CTAATTTGTG	60
	CAATGTTTGC AATTTGTTGG GTTGCATATA TTCAATGGGA GTCTACAATC GCTTCATTTA	120
20	CACAATCTAT TAATATTTCa ATGGCACAAT ATAGTGTTTT ATGGACAATT AACGGAATAA	180
	TGATTTTAGT AGCACAACCA TTAATTAAAC CGATTCTCTA TCTGTTAAAA GGAAACTTAA	240
	AGAAGCAAAT GTTTGTCGGC ATCATCATTT TTATGTTGTC GTTCTTTGTC ACGAGTTTTG	300
25	CCGAAAACTT TACAATATTT GTTGTCGGTA TGATTATTTT AACTTTTGGA GAAATGTTTG	360
	TATGGCCAGC AGTTCCAACT ATAGCCAATC AGTTAGCGCC AGATGGTAAG CAAGGACAGT	420
	ACCAAGGTIT IGIGAATICA GCIGCTACAG TAGGAAAAGC ATTIGGICCA TITCTIGGIG	480
30	GTGTATTAGT TGATGCGTTT AATATGCGCA TGATGTTTAT CGGTATGATG CTACTACTTG	540
	TATTTGCATT AATATTATTA ATGGTTTTCA AGGAGAATAA TACGCAACCT AAAAAAATAG	600
	ATGCATAATG AGTAAATAGA ATTAACGTTA TAGACTTGAA ATAAATGTCG TTATAACATA	660
35	ATATTAATTT GTATAATTTA ATTTCGTTTG GAGCTTTTCT ACAGAAAGCT AGTGATGCTG	720
	AGAGCTAGTG TTAAGGACTA AATGTAAATC GTATTAATTT TAAATTGAAT GAATGACATC	780
40	TCTTACTATT AAAATGAGTG CACAATTTTT GTGAAATAGG GTGGTAACGC GGCAAATGTC	840
	GTCCCTATGT AAATAGAATA GTTAGAGGTG TCTTTTTTAT TGAATAGGAG GAAATGTGTT	900
	GAATTACAAC CACAATCAAA TTGAAAAGAA ATGGCAAGAC TATTGGGACG AAAATAAAAC	960
45	ATTTAAAACA AATGATAACT TAGGTCAAAA GAAATTTTAT GCTTTAGACA TGTTTCCATA	1020
	TCCATCAGGT GCTGGTTTAC ATGTTGGACA TCCTGAGGGC TATACAGCAA CAGATATCAT	1080
	TTCAAGATAT AAAAGAATGC AAGGATATAA TGTATTACAT CCGATGGGGT GGGATGCATT	1140
50	CGGATTACCA GCAGAGCAAT ATGCTTTAGA CACTGGCAAC GACCCACGTG AATTTACAAA	1200
	GAAAAATATC CAAACTTTTA AACGACAAAT TAAAGAATTA GGGTTCAGTT ATGATTGGGA	1250

	GTTATATAAC	AAAGGTTTAG	CATACGTTGA	TGAAGTTGCA	GTTAACTGGT	GTCCAGCATT	1380
	AGGCACTGTT	TTATCTAACG	AAGAAGTGAT	TGATGGTGTC	TCTGAACGTG	GTGGACATCC	1440
5	AGTTTATCGT	AAGCCGATGA	AACAATGGGT	ACTTAAAATC	ACAGAATATG	CAGATCAATT	1500
	ATTAGCAGAT	TTAGATGATT	TAGATTGGCC	TGAGTCTTTA	AAAGATATGC	AGCGCAATTG	1560
	GATTGGACGT	TCTGAAGGGG	CCAAAGTTTC	ATTTGATGTA	GATAATACGG	AAGGAAAAGT	1620
10	AGAAGTATTT	ACGACTAGAC	CAGATACAAT	CTATGGTGCA	TCATTCTTAG	TCTTAAGTCC	1680
	TGAACATGCA	TTAGTTAATT	CAATTACAAC	AGATGAATAT	AAAGAAAAAG	TAAAAGCTTA	1740
15	TCAAACAGAA	GCTTCTAAAA	AGTCAGATTT	AGAACGTACA	GATTTAGCAA	AAGATAAATC	1800
	AGGTGTATTT	ACTGGTGCAT	ATGCAACTAA	TCCTTTATCT	GGTGAAAAAG	TACAAATTTG	1860
	GATTGCTGAT	TATGTATTAT	CAACATATGG	TACTGGAGCA	ATTATGGCAG	TACCAGCGCA	1920
20	TGATGACAGA	GATTATGAÁT	TTGCTAAAAA	GTTTGATTTG	CCAATCATTG	AAGTCATCGA	1980
	AGGTGGAAAT	GTTGAAGAAG	CAGCATACAC	TGGTGAAGGT	AAACATATTA	ATTCTGGTGA	2040
	ACTTGATGGT	TTAGAAAATG	AAGCGGCAAT	TACTAAAGCT	ATTCAATTAT	TAGAGCAAAA	2100
25	AGGTGCTGGC	GAAAAGAAAG	TTAATTACAA	ATTAAGAGAT	TGGTTATTCA	GTCGTCAGCG	2160
	TTATTGGGGC	GAACCAATTC	CTGTCATTCA	TTGGGAAGAT	GGAACAATGA	CAACTGTTCC	2220
	TGAAGAAGAG	CTACCATTGT	TGTTACCTGA	AACAGATGAA	ATCAAGCCAT	CAGGGACTGG	2280
30	TGAGTCTCCA	CTAGCTAATA	TTGATTCATT	TGTAAATGTT	GTAGATGAAA	AAACAGGTAT	2340
	GAAAGGACGT	CGTGAAACAA	ATACAATGCC	ACAATGGGCA	GGTAGTTGTT	GGTATTATTT	2400
35	ACGTTACATC	GATCCTAAAA	ATGAAAATAT	GTTAGCAGAT	CCTGAAAAAT	TAAAACATTG	2460
35	GTTACCTGTT	GATTTATATA	TCGGTGGAGT	AGAACATGCG	GTTCTTCACT	TATTATATGC	2520
	AAGATTTTGG	CATAAAGTCC	TTTATGATTT	GGCTATCGTA	CCTACTAAAG	AACCTTTCCA	2580
40	TTTATTAAAA	AACCAAGGTA	TGATTTTAGG	AGAAGGTAAT	GAGAAGATGA	GTAAATCTAA	2640
	AGGAAATGTA	ATCAATCCTG	ATGATATAGT	ACAGTCTCAT	GGTGCAGATA	CTTTGCGTCT	2700
	TTACGAAATG	TTTATGGGAC	CTTTAGATGC	TGCAATTGCA	TGGAGTGAAA	AAGGATTAGA	2760
45	TGGGTCTCGT	CGATTCTTAG	ATCGCGTATG	GCGTTTAATG	GTAAATGAAG	ATGGGACATT	2820
•	GAGTTCAAAA	ATTGTAACTA	САААТААТАА	ATCTTTAGAT	AAAGTTTATA	ACCAAACTGT	2880
	TAAAAAGGTA	ACAGAAGACT	TTGAAACATT	AGGATTTAAT	ACTGCTATTA	GTCAATTAAT	2940
50	GGTATTTATT	AATGAGTGTT	ATAAAGTTGA	TGAAGTTTAT	AAACCTTACA	TTGAAGGCTT	3000
	CGTTAAAATG	TTAGCACCTA	TTGCACCACA	TATCGGTGAA	GAATTATGGT	CAAAATTAGG	3060

	TGATGAAGTA	GAAATCGTTG	TTCAAGTGAA	TGGTAAATTG	AGAGCTAAAA	TTAAAATTGC	3180
	TAAAGATACA	TCAAAAGAAG	AAATGCAAGA	AATTGCCTTA	TCTAATGACA	ATGTTAAAGC	3240
5	GAGTATTGAA	GGTAAAGACA	TCATGAAAGT	CATCGCTGTT	CCTCAAAAAT	TAGTCAATAT	3300
	TGTAGCTAAA	TAATGTTTTA	AGGAGGACTT	TGAAATGAAG	TCAATTACTA	CAGATGAATT	3360
	AAAAAATAAA	CTTTTAGAAT	CTAAACCAGT	TCAAATTGTT	GATGTTCGTA	CTGATGAAGA	3420
10	AACAGCAATG	GGATATATTC	CTAATGCAAA	GTTAATTCCA	ATGGATACCA	TTCCGGATAA	3480
	TTTAAATTCA	TTTAATAAAA	ATGAAATATA	TTATATTGTA	TGTGCTGGTG	GAGTTCGAAG	3540
15	CGCTAAAGTT	GTAGAATATT	TAGAGGCAAA	TGGCATTGAT	GCCGTAAATG	TCGAAGGCGG	3600
	CATGCACGCA	TGGGGCGATG	AAGGTTTGGA	AATAAAAAGT	ATTTAAAGTA	GTGACATAAT	3660
	TAAAAATAT	ATTACATTTG	TAATGACACC	AAGTAACGTT	TCGGTTGCTT	GGTGTTTTTT	3720
20	GGTATGAATT	ACTTTCTGTT	ACAAAACAAT	CTAAAGCGTT	CTTGTTATGT	TTTATTAAGA	3780
	TTTTAATTAC	AAAACGGAAA	CTAAATTGTA	ATAAAATAA	ACTTTATTTT	ATAAAATGAT	3840
	GATGATAAAA	TTGAGTGAAC	TTAAAATATT	GTACAAAATA	ATATAGCTAT	AAATATAATA	3900
25	TAGCTATAAA	TATAATATGA	GGGAGCGTAT	ATTTTTAGCA	TAATTCTTAA	CAACACAGCA	3960
	GAGAACAGAC	AACCAGGAGG	AAAATGAAAT	GAATTTGTTA	AAGAAAAATA	AATATAGTAT	4020
	TAGGAAGTAT	AAAGTAGGCA	TATTCTCTAC	TTTAATCGGA	ACAGTTTTAT	TACTTTCAAA	4080
30	CCCAAATGGT	GCACAAGCCT	TAACTACGGA	TAATAATGTA	CAAAGCGATA	CTAATCAAGC	4140
	AACACCTGTA	AATTCACAAG	ATAAAGATGT	TGCTAATAAT	AGAGGTTTAG	CAAATAGTGC	4200
•	GCAGAATACA	CCTAATCAAT	CTGCAACAAC	CAATCAAGCA	ACGAATCAAG	CATTGGTTAA	4260
35	TCATAATAAT	GGTAGTATAG	TAAATCAAGC	TACGCCAACA	TCAGTGCAAT	CAAGTACGCC	4320
	TTCAGCACAA	AACAATAATC	ATACAGATGG	CAATACAACA	GCAACTGAGA	CAGTGTCAAA	4380
40	CGCTAATAAT	AATGATGTAG	TGTCGAATAA	TACCGCATTA	AATGTACCAA	CTAAAACAAA	4440
	TGAAAATGGT	TCAGGAGGAC	ATCTAACTTT	AAAGGAAATT	CAAGAAGATG	TTCGTCATTC	4500
	TTCAAATAAA	CCAGAGCTAG	TTGCAATTGC	TGAACCAGCA	TCTAATAGAC	CGAAAAAGAG	4560
45	AAGTAGACGT	GCGGCACCGG	CAGATCCTAA	TGCAACTCCA	GCAGATCCAG	CGGCTGCAGC .	4620
	GGTAGGAAAC	GGTGGTGCAC	CAGTTGCAAT	TACAGCGCCA	TATACGCCAA	CAACTGATCC	4680
	TAATGCCAAT	AATGCAGGAC	AAAATGCACC	TAACGAAGTG	CTGTCATTTG	ATGACAATGG	4740
50	TATTAGACCA	AGTACCAACC	GTTCTGTGCC	AACAGTAAAC	GTTGTTAATA	ACTTGCCGGG	4800
	СТТСАСАСТА	ATCANTGGTG	CCAAACTACC	CCTCTTTACT	CATGCAATGG	TANCANCCAG	4860

	TCGTATACAT	GGAACTGATA	CGAATGACCA	TGGCGATTTT	AATGGTATCG	AGAAAGCATT	498
	AACAGTAAAT	CCGAATTCTG	AATTAATCTT	TGAATTTAAT	ACAATGACTA	CTAAAAACGG	504
5	TCAAGGCGCA	ACAAATGTTA	TTATCAAAAA	TGCTGATACT	AATGATACGA	TTGCTGAAAA	510
	GACTGTTGAA	GGCGGTCCAA	CTTTGCGTTT	ATTTAAAGTA	CCTGATAATG	TGAGAAATCT	516
	CAAAATTCAA	TTTGTACCTA	AAAATGACGC	AATAACAGAT	GCGCGTGGCA	TTTATCAACT	522
10	AAAAGATGGT	TACAAATACT	ATAGCTTTGT	TGACTCTATC	GGACTTCATT	CTGGGTCACA	528
	TGTTTTTGTT	GAAAGACGAA	CAATGGATCC	AACAGCAACA	AATAATAAAG	AGTTTACTGT	534
15	AACAACATCA	TTAAAGAATA	ATGGTAATTC	TGGTGCTTCT	CTAGATACAA	ATGACTTTGT	540
.5	ATATCAAGTT	CAATTACCTG	AAGGTGTTGA	ATATGTGAAC	AATTCATTGA	CTAAAGATTT	546
	TCCAAGTAAC	AATTCAGGCG	TTGATGTTAA	TGATATGAAT	GTTACATATG	ATGCAGCAAA	552
20	TCGTGTGATA	ACAATTAAAA	GTACTGGAGG	AGGTACAGCA	AACTCTCCGG	CACGACTTAT	558
	GCCTGATAAA	ATACTCGATT	TAAGATATAA	ATTACGTGTA	AATAATGTGC	CGACACCAAG	564
	AACAGTAACA	TTTAACGAGA	CATTAACGTA	TAAAACATAT	ACACAAGATT	TCATTAATTC	5700
25	AGCTGCAGAA	AGTCATACTG	TAAGTACAAA	TCCATATACT	ATCGATATCA	TCATGAATAA	5760
	AGATGCATTA	CAAGCCGAAG	TTGACAGACG	TATTCAACAA	GCTGATTATA	CATTTGCGTC	582
	ATTAGATATC	TTTAATGGTC	TGAAACGACG	CGCACAAACG	ATTTTAGATG	AAAATCGTAA	5880
30	CAATGTACCA	TTAAATAAAA	GAGTTTCTCA	AGCATATATT	GATTCATTAA	CTAATCAAAT	5940
	GCAACATACG	TTAATTCGAA	GTGTTGATGC	TGAAAATGCA	GTTAATAAAA	AAGTTGACCA	6000
05	AATGGAAGAT	TTAGTTAATC	AAAATGATGA	ATTGACAGAT	GAAGAAAAAC	AAGCAGCAAT	606
35	ACAAGTTATC	GAGGAACATA	AAAATGAAAT	AATTGGTAAT	ATTGGTGACC	AAACGACTGA	6120
	TGATGCCGTT	ACTAGAATCA	AAGATCAAGG	TATACAGACC	TTAAGTGGGG	ATACTGCAAC	6180
40	ACCGGTTGTT	AAACCAAATG	CTAAAAAAGC	AATACGTGAT	AAAGCAACGA	AACAAAGGGA	6240
	AATTATCAAT	GCAACACCAG	ATGCTACTGA	AGACGAGATT	CAAGATGCAC	TAAATCAATT	6300
	AGCTACGGAT	GAAACAGATG	CTATTGATAA	TGTTACGAAT	GCTACTACAA	ATGCTGACGT	6360
45	TGAAACAGCT	AAAAATAATG	GCATCAATAC	TATTGGAGCA	GTTGTTCCTC	AAGTAACTCA	6420
	TAAAAAAGCT	GCAAGAGATG	CAATTAACCA	AGCAACAGCA	ACGAAAAGAC	AACAAATAAA	6480
	TAGTAATAGA	GAAGCAACTC	AGGAAGAGAA	AAATGCAGCA	TTGAACGAAT	TAACTCAAGC	6540
50	AACCAACCAT	GCTTTAGAAC	AAATCAATCA	AGCAACAACA	AATGCTAATG	TTGATAACGC	6600
	CAAAGGAGAT	GGTCTAAATG	CCATTAATCC	AATTGCTCCT	СТААСТСТТС	TTAAGCAAGC	6660

	TGATGCGACT	CAAGAAGAAA	GACAAGCAGC	AATTGACAAA	GTGAATGCTG	CTGTAACTGC	6780
•	AGCAAACACA	AACATTTTAA	ACGCTAATAC	CAATGCTGAT	GTTGAACAAG	TAAAGACAAA	6840
5	TGCGATTCAA	GGAATACAAG	CAATTACACC	AGCTACAAAA	GTAAAAACAG	ATGCAAAAAA	6900
	TGCCATCGAT	AAAAGTGCGG	AAACGCAACA	TAATACGATA	TTTAATAATA	ATGATGCGAC	6960
	GCTCGAAGAA	CAACAAGCAG	CACAACAATT	ACTTGATCAA	GCTGTAGCCA	CAGCGAAGCA	7020
10	ТААТТАТАА	GCAGCAGATA	CGAATCAAGA	AGTTGCACAA	GCAAAAGATC	AGGGCACACA	7080
	AAATATAGTA	GTGATTCAAC	CGGCAACACA	AGTTAAAACG	GATACTCGCA	atgttgtaaa	7140
15	TGATAAAGCG	CGAGAGGCGA	TAACAAATAT	CAATGCTACA	ACTGGCGCGA	CTCGAGAAGA	7200
,,	GAAACAAGAA	GCGATAAATC	GTGTCAATAC	ACTTAAAAAT	AGAGCATTAA	CTGATATTGG	7260
	TGTGACGTCT	ACTACTGCGA	TGGTCAATAG	TATTAGAGAC	GATGCAGTCA	ATCAAATCGG	7320
20	CGCAGTTCAA	CCGCATGTAA	CGAAGAAACA	AACTGCTACA	GGTGTATTAA	ATGATTTAGC	7380
	AACTGCTAAA	AAGCAAGAAA	TTAATCAAAA	CACAAATGCA	ACAACTGAAG	AAAAGCAAGT	7440
	GGCTTTAAAT	CAAGTGGATC	AAGAGTTAGC	AACGGCAATT	AATmATATAA	ATCAAGCTGA	7500
25	TACAAATGCG	GAAGTAGATC	AAGCGCAACA	ATTAGGTACA	AAAGCAATTA	ATGCGATTCA	7560
	GCCAAATATT	GTTAAAAAAC	CTGCAGCATT	AGCACAAATC	AATCAGCATT	ATAATGCTAA	7620
	ATTAGCTGAA	ATCAATGCTA	CACCAGATGC	AACGAATGAT	GAGAAAAATG	CTGCGATCAA	7680
30	TACTTTAAAT	CAAGACAGAC	AACAAGCTAT	TGAAAGTATT	AAACAAGCTA	ACACAAATGC	7740
	AGAAGTAGAC	CAAGCTGCGA	CAGTAGCAGA	GAATAATATC	GATGCTGTTC	AAGTTGATGT	7800
	agtaaaaaa	CAAGCAGCGC	GAGATAAAAT	CACTGCTGAA	GTGGcGAacG	TATTGAAGCG	7860
35	GTTAAACAAA	CACCTAATGC	AACTGACGAA	GAAAAGCAGG	CTGCTGTTAA	TCAAATCCAA	7920
	TCAĄCTTTAA	AGATTCAAGC	AATTTAATCC	AAATTTAATC	CAAAACCCAA	ACAAATGGAT	7980
	TCAGGGTAGG	ACACCACTTA	CAAATCCAA				8009

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10953 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

ACCCACCCCN TGGGGATANT TTACCTGGTG GGGCCTTCGA TTGCCTTTAG GTGAAACCAG

55

	AGATGAATGC	TAACCATATT	CATTCTGCTA	AAGATGGTCG	TGTTACTGCG	ACAGCTGAAA	180
	TTATTCATCG	AGGTAAGTCG	ACACATGTAT	GGGATATAAA	AATTAAGAAT	GACAAAGAAC	240
5	AATTAATTAC	AGTTATGCGT	GGTACAGTTG	CTATTAAACC	TTTAAAATAA	AAGAACTGCT	300
	AGCTGAAATG	TTATGAGATA	TTCATAACTA	CGGCTAGCAG	TTTTTTTATG	CGCTATATTG	360
	TTGTAGTTTT	AGAAATGCTT	GTTCAATGCG	TTCGGCAGCT	TTACGGCCAC	CCATAACATT	420
10	TCTACCAAAT	GGTCCTAATT	CTAAGTCTGC	AAAGCATCCT	GCGACAAATA	GATTTGGTAT	480
	CCATTCTAAT	TTTTCGGAAA	TAACAGGGTA	ATTACATTCG	TTGATAGGTG	CATCATAATT	540
15	TTGTATTAAT	TGCTTAATAA	GTGGTTGTGA	CATAAAATCT	TGTTCAAAAC	CAGTTGCAAC	600
	CATAATCTGT	TGATATGGAA	CAGAATCATT	TTCAGTGTTA	ATTACACCAC	CACTAATTTG	660
	AGTGATAGGT	GTTTTATGCa	CATTTATACG	ACCATTTTTA	ATATGTTTTT	TAAGGCGTAA	720
20	GTACAGTTCG	TGAGGCATTG	ATCCTTTATG	ACGTTCGCGT	TGTACAATGG	CATTTCTTTC	780
	AGGCATGCTT	TTAGTACTTA	AAAATGAAGA	CATATTTTTC	GGACCTAACC	AACCAGGATC	840
	AGCATCAAAG	TCATGTATTT	CAATATCTTT	ATTTAGCCAT	AAATGAATCT	TTTTATCGTT	900
25	ATCATGATTT	AACAATTTAA	GTGCAAGATG	TGCAGCAGTa	ATGCCGCTAC	CAACGATATG	960
	ATCGGTCTTA	TCATATACTA	CTTGATCAAG	TTCTTTCTCG	AAGATATGAT	TTACATTCTG	1020
	TTTGTCTTTT	AAAATGTCAG	GCATAAACGG	AATATTTGTA	CTGCCTATTG	CAATAACGAC	1080
30	GCAATCTGTA	GTGATAATTT	GTCCATCTTC	TAACTTGATA	TGCCATTTGT	CTTCTTGTTT	1140
	ATCTAAAGTT	TGAACTAAAC	CTTGAACCAA	GCAATCCTCT	AATTGATATT	GTTTAGAAGC	1200
~-	ATGTGCAATA	TGATCCATAA	ACATTGTCAA	TTCAGGTCGT	TGATAAGGAC	CATAAAAAGC	1260
35	ATTTGTATAT	TGGTGCTGTT	TAGCGAATTG	TTTTAGATGG	AACGGTTGTG	GATGTACGTG	1320
	ATGTACAATC	GGTGATCTTA	AATAAGGCAT	TTCTATTCGA	TTTGTATATG	AGTTAAACCT	1380
40	TTGGCAAAAA	GTTTCGTGTG	GGTCAATGAT	TGTTAATCGG	TCTGTTGTTA	ATCCGCTTGA	1440
	TAATAGTTTT	TGTGCGATTG	CAGTTCCCTG	TATGCCACCG	CCGATAATTG	TCCAATGCAT	1500
	AATAAAACCT	CTCTCTTTTT	AAAACGTAAT	AGTTACGATT	TATAATTATT	ATTATCATAA	1560
45	TACATAACGA	CATGAAAGGC	ATTAAATTA	AAGAGATATA	TGTAGATAGG	GCGAATCTGT	1620
	AGTCAAAGAA	AAAATCATTG	AAAAAGAGGT	AACAATGTCA	AAAGAWAACA	GCAGTAAAAT	1680
	CATTCCTAAT	TTGGAATCAT	CTTACTGCTG	TTTGTTGTTG	ATTTATATTC	ATGATTTTGT	1740
50	TATATAATCT	ACAATTTTGT	GTCTTTTAAG	TCTTCCGAAA	TTTCATCGAC	TTTAGTCTTT	1800
	TTAGTATAAG	ТААТТТЭЭЭ	ΔΤΤΔΤΔΤΩΓΓ	מ משמש השלים	теататеает	TCAAACACCA	1060

	GCAATAAAAT	ATAAAAACGT	ACCAAATAGT	AATGACATTG	CACCTAATGT	TGATGCTTTT	198
	CCGGCAGCAT	GTGCACGTGA	ATATACATCT	TCAAGTCTCA	ATAATCCTAT	AGCTGCTAGG	204
5	GCGCTAATTA	AAGCACCGAT	GATAACAAAG	ATAAGTGCAA	GACTAATCAG	TATGATTTTG	210
	ATCATGTTCA	ATCACCTTAC	CTTTGTCCAT	AAATTTAGAG	AATACTGCAG	TACCTAAAAA	216
	AGCTAATATA	CCAATCATCA	TAATAACGAC	AATCATGTAT	TTAATATTTA	ATAAAATACT	222
10	GAATAATGCT	ATAACTGCCA	TTAATTGAAG	ACCAATCGCA	TCTAATGCGA	CAACACGATC	228
	GGCAAGTGAT	GGGCCTAGCA	CAACGCGAAT	GAGCATAGCT	AACATAGAAA	TGACAACTAT	234
15	GATTAATGCA	ATAACGATAA	TAACATTATG	ATTCATTATA	TTTCGCCCAC	CTCTCTTACA	240
,,,	ATTTTCTCTA	ATGATGTTTT	AATACTTTCT	ACTTCTTGCT	CTTTAGTTGA	AAAATCTATG	246
	GCATGAATAT	AAATTTTTGT	ACGATCGTCA	CTTACACCAA	GCACTACAGT	ACCAGGTGTT	252
20	AATGTAATTA	AATTAGACAG	CAAGACAATT	TGCCAATCTT	TTTTTAAATC	TGTGTGATAA	258
	ACAAAGAATC	CTGGTTCATT	TTTAATCGAA	GGTTTAATAA	TAATTTTCAA	AACATCAAAA	264
	TTAGCTTTAA	TCAGTTCGAT	TAAGAAAATA	ATAACTAATT	TAATAATACG	ATATAGCGTG	270
25	ATGACATAAA	ATCTACCTGG	TAACACTCTG	TGTAAGAGGT	AAACAAGAAC	TAGGCCAAAG	276
	ATGAAACCTA	ACACAAAGTT	ATTTGTTGTG	TAACTATTTG	TCACAAACAA	CCAAAACACT	282
	GCGATAATAA	AGTTTAATAC	TAATTGTACA	GCCATGTTAT	TTACCTCCTA	ATACAGCTTT	288
30	AACGTAGGTT	GATGGATTGT	AGAATGTTTC	TGCACCAGCT	TTTACCATTG	GATATAAGTA	294
	ATCTGCTGAC	AATCCATATA	AAACAGTTAT	CACAACTGCA	ACGATTGCAA	TCGTAGTTAA	300
a.c.	ATATTTGACG	TCGACTTTGT	TATTAAGATC	ATATCCTTTT	GGTTGACCGA	AAAAGCCTTG	306
35	TAGGAATATG	CGAATGACAG	AATATAATAC	GACTAAACTT	GATAATAAGA	CGATGACACC	312
	ACTTAAATAA	AATCCTCTTT	CAAATGTTGA	TTGGACAATA	AAAAATTTTC	CATAAAAGCC	318
40	ACTGAGTGGG	GGAATGCCAG	СТАААСТТАА	TGCTGCGATA	AAGAATGACC	AACCAAGTAC	324
•	AGGATATCGT	TTAATTAAGC	CACCAAATTG	TCTTAAATCA	GCAGTGCCTG	TAATTTTAAT	330
	CATAATTCCG	ATAAGCAAGA	ATAATGCAAG	TTTTACTAAC	ATGTCGTGCA	ATGTATAGTA	336
45	AATAGCCCCA	ATCATACCTG	ACTCTGTCAT	CATTGCAACG	CCGACTAAGA	TCACACCTAC	342
	AGCAATCATG	ACATTGTATA	GGATGATTTT	TTTAATGTTG	GCATATGCAA	CAGCACCGAC	348
	ACAACCAAAG	ATGATCGTTA	ATAGTGCTAA	GAATAAAATG	ACATAATGTG	AAAAGCTTAC	354
50	ATTATCACTA	AAGAATAGGC	TCAATGTTCT	AGCGATTGCA	TAAACACCAA	CTTTTGTTAA	360
		****	max mmaa.	maamaaa.			

	ATATTGACTA	AGCCACTGTC	ATGCGCTGAA	AGGTTAGCTA	ATTTATTGCT	TATATCTGCT	378
	AGATTCAATG	TTCCTACTAC	TGAATATAAA	ATCGCTACAC	CCATTACGAA	GAAGGATGAC	384
5	GATACAACGT	TAACAAGAAC	ATATTTTATT	GTTTCTTGTA	GTTGAATTTT	TGTAGAACCA	390
	ATTACTAATA	AGAAATAAGA	TGACATTAAA	AATACTTCGA	AAAATACGAA	TAGGTTGAAA	396
	ATGTCACCAG	TTGTGAATGC	ACCAATGATA	CCTATTAACA	TAAATAGTAC	TGAAAATAA	402
10	TAATAATATC	TTTCACGTTC	AATACCAATT	GTTTGGTATG	AATATAAAAT	CACAATAGCT	408
	GTAATAATAA	TACTAGTAAT	TATTAGTAGG	GCACTGAATA	TGTCTAATAC	AAAGACAATA	414
15	CTGTATGGTG	CTTTCCATGA	ACCTAGCTCT	ACGCGTATTG	GTCCATGTTT	AACAACATTT	420
70	GCTAAATTGA	TAATTGCCGC	GACCAAGGTT	AATAATGTAC	CGCCTAGTGC	GACATAACGC	426
	TTTATAATAG	GACGCTTTCC	AATAAAGACA	AGTAATATGG	CTGTAATTAC	TGGAATAACT	432
20	AGCGTTAACA	CAAGCATATT	ACTTTCAATC	ATCTTCTGGA	ACTCCTTTCA	TACTCTCAAC	438
	GTTATCTGTG	CCTAATTCTT	TATATGTTCT	AAATGCTAAT	ACTAAGAAAA	AGGCTGTTGT	444
	CGCAAgGCGA	TAACGATTGC	TGTTAAAATA	AGTGCTTGCG	GGaTAGGaTC	AACATAGCTT	450
25	TTTACGTTCG	CTTCATAAAT	TGGAACAGTA	CCATGTTTAA	GTCCGCCCAT	AGTTATTAAA	456
	AATAAATTTG	CTGCATGTGT	TAATAGTGTA	GTTCCCATAA	CAATTCGTAT	CAGACTTTTA	462
	GACAAAACGA	GATAGACACT	AATTGCTGTG	AGAATACCAC	TAACAAAAAT	CATAATAATT	468
30	TCCACTATTC	GTTCTCTCCA	ATCGAAATAA	TAATTGTCAT	GACAGTACCA	ACTACTGCAC	474
	ATAAAACACC	GAAATCAAAG	AATACTGCTG	TTGTCATATG	AACAGGTTCT	AATATAAATA	480
	ACGGTATATC	AAATGTGACA	TGCGTAAAGA	AATTTTTGCC	TAAAAACCAA	CTTGCGATAG	4860
35	GCGTCGCAAT	ACAAAAAACT	AATCCGATAC	CTATCAAGAT	TTTAAAATCT	AATGGGAAAA	4920
	TTTTÄCGCAT	TGTTTCTATA	TÇAAATGCAA	TCGTAATGAT	AACAAGTGAA	CTTGCGAATA	4980
40	ATAATCCGCC	GACGAAACCG	CCACCAGGTG	TATAATGTCC	TGCTAAGAAA	AGTGAAAAAC	5040
	CAAAGACCAT	TACCATGAAA	AAGATAATAA	CTGCAGCAAA	TTGCAAAATT	AGATCATTTT	5100
	GTTGTCTATT	CATGATTTTT	CACCTCGTTA	CCTTGCGTTT	GACGCTTTTT	ACGTAATTTA	5160
45	ATCATTGTAT	ATACAGCTAA	TCCTGCGATA	CCAAGCACAG	ATGACTCGAA	TAAAGTATCC	5220
	ATACCACGGA	AATCAACAAG	TATGACGTTT	ACCATGTTTT	TACCGTGAGC	taaatcataa	5280
	ACGTGCTCTT	GATAAAACTT	AGATATCGAT	TCAAAATGTC	TATTTCCGTA	TGCAATTAAA	5340
50	CCGATAATAA	TGACGGACAA	ACCAACACCA	CCAGCAATTA	AAGCATTAGT	AAGCTGGAAT	5400
	CACCCCCCCCC	CATTATAAA	ACCURA A ACCURA	COME E COCO		611611611	- 4

	ATAAACAATA	CAGACACAGC	ATATCCAACT	GCACTTAACA	TAATGATGCT	AAATAATCTT	5580
	GATTTAGCGA	AAAGAATTAA	AAAGGCAGCA	СТТААТААТА	AAATTACGAT	ACAAACTTCG	5640
5	AAAATTCTAA	TCGGACTAAC	GTCTTTAAAA	TTAATGTTGA	AAGGTACTGA	GAATATAGTG	5700
	ACAAATGTTA	AATTAAAATA	TGCACCAAAA	ATGATAACTA	AATTATTACG	TGAATAATCG	5760
	GTAACATAGC	TATTCGTCAT	CTTTTCAGAG	TAGTTTGGAA	TAACATTTGC	ACTTCTGTTG	5820
10	TACCAATAAT	TGAATGTTAG	TTTACCAGGT	TGTCGTTGCA	ACAATTTCAC	CCAATAACTA	5880
	AATGTCACAA	TTAGTAAGAT	ACCTAAAATA	TAAATCACTA	ATGTTGATAA	AAAGGCAGGC	5940
15	GTTAATCCAT	GGAACATATG	GAATTCAACA	TCATCAATTA	CCGTATGATT	AATCGAAGag	6000
	TnAGCTGGTT	CAATAATCGA	ATTAGTTAAA	ATGCCAGGGA	ATAAACCAAA	TACAATTACT	6060
	AATGTAGCTA	AAATAGCTGG	TGATAAAAGC	ATTAATATTG	ATACTTCGTG	TGCTTTTTTA	6120
20	GGTAATTGTT	CAGGTTTATA	TTGTCCGAAA	AATATATGCA	TTATAAATTT	AATTGAATAT	6180
	ACAAATGTGA	AGACACTGCC	CACTATACCA	ATGATTGGGA	ATAGGTAGCC	TAATGTATCA	6240
	ACACTGAATA	AATTTGCTTG	GCTTGCTGTA	AATGTTGTTT	CTAAAAATGA	TTCTTTTGAT	6300
25	AAGAAACCAT	TGAACGGTGG	TACACCAGCg	CATACTTAAT	GCTGTAATAA	CAGTGATTGT	6360
	AAATGAAATA	GGCATAATTG	TTAGTAAGCC	ACCTAATTTC	TTAACATCAC	GTGTACCAGT	6420
	AGAATGATCC	ACTGCACCTG	TAATCATAAA	TAGGGCACCT	TTAAATGTTG	CATGGTTGAT	6480
30	TAAATGGAAT	ATTGCAGCCG	TAAATGCAGC	AGCATATATT	TTGCTATCAT	CGCCTTGATA	6540
	GTGATAACTA	ATGGCACCGA	TTCCAAGCAT	CGCCATAATC	ATACCTAATT	GGGATACTGT	6600
35	TGAAAATGCC	AGTATACCTT	TCAAGTCTTG	TTGTTTTGTT	GCGTTTAGCG	AAgCCCAGAA	6660
33	TAATGTAATT	AAACCAACGA	GTGTGACAGT	CCATACCCAA	CCTTGCGATG	CTGCGAAGAT	6720
	TGGTGTCATT	CGAGCGATTA	AATATAACCC	TGCTTTAACC	ATTGTTGCTG	AATGAAGATA	6780
40	AGCACTGACT	GGTGTAGGTG	CTTCCATTGC	ATCTGGTAGC	CAAATATAAA	ATGGAAACTG	6840
	AGCAGATTTT	GTAAAAGCAC	CAATCATGAT	TAAAATCATC	GCAAAAATGA	AGAATGGGCT	6900
	ATTTTGAATT	TCAGAAGCAT	GTTGAATCAT	GTACTGAATG	CTAAATGATT	GTGTTGGTAT	6960
45	AGCGAGTAAG	ATGATACCAC	CTAATAATGA	TAGACCACCA	AATACTGTGA	TTATGAGCGA	7020
	TTTTTGAGCA	CCATATATAG	ATGCTTGTCG	TTCGCGCCAG	AATGAAATAA	GTAAAAAACT	7080
	AGAAAATGAC	GTTAGCTCCC	AGAATAAATA	TAGAATAATA	ACATTATCTG	AAAGTACGAC	7140
50	ACCTAACATT	GCACCCATAA	ATAGTAATAA	ATAACAATAA	AAATTCCCTA	GTTGTTCTGA	7200
	СТТАСТТААС	ТАССССАТТС	סמדמדמדמכ	ТАСТАААСТС	СССВТТССТС	AAATAACCAA	7260

•	CCAATTTAAG	GTTTTCATTA	CAGTATTACC	TGACATCGTC	GTTTTAATTA	ATGTAAGCAT	738
	TAAATAAATA	ATGACGATAG	GGACAGGTAA	TACGAACCAT	CCTAAATGTA	TACGTTTAAA	744
5	AAATCTATAC	AGGATAGGAA	TAATGAGTGC	GAATATTAAC	GGTAATATCA	CCGCAATATG	750
	TAACAAACTC	ACTATGTTGT	CCTCCTTTAA	AAAATATTTA	TGTTATTCAT	TATACATGAA	756
	TGATATAGTT	CTGAAAAACG	TACACACTCC	TTGTTGTGCT	TTATTTTCAG	AaGTATTTAA	762
10	ATAAGAAGAA	ACACGTCATT	TTTTATTTAA	AATTTTCTTT	GTATTGAAGT	GAATAATCTT	768
	CTTTTAAGCG	TGCTAAACTA	GCTAAAGACA	TTTCAGCATG	TTTTGTTTGC	TGAGCTTTAA	774
15	GTTTAGTTTC	TAAATCTGTA	ATTGCTTGTT	GAAGTGAATC	TTCATAGCGC	AATACATCAA	780
,,	CATTGAAGTC	GCGTAATTGT	GAACGTTTCG	TATAGCGTTT	TTCAAAATGG	CTTAATGCTT	786
	TGCGGTCATG	GAAAAATACA	CCTTCAGTTT	CAGTAGGGTT	ATGTAAATCA	CCTTGTTTCG	792
20	GGTGTTTGAT	AACTTGTTCA	ACTTTAACAA	GGACATCGTC	TCCATTTTCT	TCAACAATCG	798
	TGACACCATA	GCTACCTGTT	TTGTGTGAAA	ATCGATATAG	CTTCATGCTA	TTTTCCTCCC	804
	TTAAAAGTAT	GTTAATATAT	ATGTATCATA	ACATGAATGG	AGAATATAAA	TGGCTAACTA	810
25	TCCACAGTTA	AACAAAGAAG	TACAACAAGG	TGAAATCAAA	GTGGTTATGC	ACACAAATAA	816
	AGGTGACATG	ACATTCAAAT	TATTTCCAAA	TATTGCACCA	AAAACAGTTG	AAAATTTTGT	8220
	GACACATGCA	AAAAATGGTT	ATTATGATGG	AATCACATTC	CACCGTGTCA	TTAATGACTT	8280
30	CATGATTCAA	GGTGGCGATC	CAACAGCTAC	TGGTATGGGT	GGCGAAAGTA	TTTATGGCGG	8340
	TGCTTTTGAA	GATGAATTTT	CATTAAATGC	ATTTAACTTA	TATGGCGCAT	TATCAATGGC	8400
	TAACTCAGGA	CCTAATACTA	ATGGTTCACA	ATTTTTCATT	GTTCAAATGA	AAGAAGTACC	8460
35	TCAAAATATG	TTAAGTCAAC	TTGCAGATGG	TGGCTGGCCT	CAACCAATCG	TTGATGCATA	8520
	TGGCGAAAAG	GGTGGTACAC	CATGGTTAGA	TCAAAAACAT	ACAGTATTCG	GTCAAATCAT	8580
40	TGATGGTGAA	aCTACATTAG	AAGATÁTTGC	АААТАСАААА	GTGGGACCAC	AAGATAAACC	8640
	ACTTCATGAT	GTTGTAATTG	AATCTATTGA	TGTTGAAGAA	таататстаа	ACATAATTAA	8700
	CTACCAACAT	TTTAAACTCG	GATAAAGCTA	ATTTATGAAT	GGATTAGTAT	ATATTCCAAC	8760
45	gaaaataaat	AAACTAATAT	GATGAGCAAT	CTCAATATAT	TTATCaAGAA	AGCACAGTTT	8820
•	TTAAATAGAT	GTGTATTTTA	AAGATAATAG	TTGAGGTTGC	TTTTTATGTT	TTTACAGAGA	8880
	ATTGCTATTC	AAATAGTAAA	TAAATTGAAA	ACAAAGTAGC	TGGATATCAT	ATTGATTTAG	8940
50	ATAGGAATTT	GTTGCTAATT	TTATTTGTAA	ATCCAAGTTT	GTAGAATTCT	TATTCATTTA	9000
	ТАААТААТА	ТТССТАТСАТ	THE THEFT	ΔΑΨΤΛΩΤΩΩ	ССУДДЕССУД	ттатастыта	9060

	AACATATCAA	GGTGCGTGTA	CTGGTATTCA	ACCATACGGT	GCGTTTGTTG	AGACCCCTAA	9180
	TCATACTGAA	GGACTGATTC	ATATATCAGA	AATTATGGAT	GACTACGTTC	ATAATTTGAA	9240
5	GAAATTTCTA	TCAGAAGGCC	AAATTGTTAA	AGCTAAAATT	TTGTCTATAG	ATGATGAAGG	9300
	AAAGCTTAAT	CTATCATTAA	AGGATAATGA	TTACTTCAAA	AATTATGAGC	GTAAGAAGGA	9360
•	AAAACAATCA	GTATTAGATG	AAATCAGAGA	AACAGAAAAA	TATGGGTTTC	AAACACTTAA	9420
10	AGAACGCTTA	CCAATCTGGA	TAAAACAGTC	AAAGCGAGCA	ATTCGAAACG	ACTAAAGGAA	9480
	CAGATAAATC	GTACCGAAAA	TCATACAAAG	GGTCTGAAAT	GAAAGTTTCT	TAGACTATAA	9540
15	AAGAGATTAG	TATCTATTAA	ATTTTATTAG	ATACTAATCT	CTTTTTGTCT	ACGATAACGT	9600
	AATATGaTTG	ATTCTATTTA	CACGTACAAA	TGGTTTAAGG	TGACATATCC	ATTATCTTTG	9660
	TTAGATAGAA	TCGTTGATTT	GCaATATTGT	ATGTGGATTT	GTTTTTTTA	TTTATTTTAG	9720
20	AAATGAGAAC	TACAACTTAA	AGTATTAAAC	GAATTGCAAC	TATATAAACA	GATAATTGGA	9780
	GAATGAAAAA	ATTACATGTT	ATAGTCAACT	CAATAATTTT	AAGGAGGAAT	TAAGTAATGA	9840
	AAAGTAAATA	CGAACCATTG	TTTGATAAAG	TAGAATTACC	AAATGGAGTA	GAGTTGAGAA	9900
25	ATCGATTTGT	GTTAGCCCCT	TTAACACATA	TTTCTTCAAA	TGATGATGGT	ACTATTTCAG	9960
	ATGTAGAACT	TCCTTATATT	GAAAAGCGTT	CACAAGATGT	TGGTATTACA	ATTAATGCTG	10020
	CGAGTAATGT	GAGTGATGTC	GGAAAAGCAT	TTCCAGGACA	GCCATCAATC	GCGCATGACA	10080
30	GTAATATTGA	AGGACTAAAA	CGATTAGCTA	CAGCAATGAA	GAAAAACGGT	GCCAAAGCAC	10140
	TCGTACAAAT	ACATCATGGC	GGTGCACAAG	CATTGCCTGA	ATTAACACCT	GATGGAGACG	10200
	TCGTAGCACC	AAGTCCAATT	TCTTTAAAAA	GTTTTGGTCA	GAAACAAGAA	CATAGTGCTA	10260
35	GAGAAATGAC	GAATGAAGAG	ATTGAACAAG	CAATCAAGGA	TTTTGGTGAA	GCAACGCGAC	10320
	GTGCĀATTGA	AGCAGGGTTT	GATGGTGTTG	AAATACATGG	CGCGAATCAT	TACTTAATTC	10380
10	ATCAATTTGT	ATCACCATAC	TATAATAGAA	GAAATGATGT	ATGGGCAAAT	CAATATAAAT	10440
	TCCCGGTCGC	TGTGATTGAA	GAAGTACTTA	AAGCGAAAGA	AGCGTATGGC	AATAAAGACT	10500
	TTATAGTTGG	ATACAGATTA	TCTCCAGAGG	AAGCGGAGTC	TCCAGGAATC	ACAATGGAAA	10560
15	TTACAGAGGA	ACTCGTTAAT	AAAATTAGCC	ATATGCCAAT	CGACTATATT	CATGTTTCAA	10620
	TGATGGATAC	GCATGCAACG	ACACGTGAAG	GTAAATACGC	TGGACAAGAA	AGACTGCCTT	10680
	TAATTCACAA	ATGGATAAAT	GGTCGTATGC	CACTTATCGG	TATTGGTTCA	ATTTTCACAG	10740
50	CTGACGAAGC	TTTAGATGCA	GTTGAAAATG	TTGGTGTTGA	CTTAGTAGCC	ATTGGTAGAG	10800
	AGCTACTACT	GGATTATCAA	TTTGTTGAAA	AAATTAAAGA	TGGACGGGAA	GATGAAATTA	10860

E E

AATTTAATGA AGGGTTTTAT CCATTACCAC GTA

10953

(2) INFORMATION FOR SEQ ID NO: 63:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8155 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

15	TTTGATAnAA	AACTGAATnA	ATTAAATGTA	TCGATTCAAC	CTAATGAAGT	GAATTTACAA	60
	GTTAAAGTAG	AGCCTTTTAG	CAnAAAGGTT	AAAGTAAATG	TTAAACAGAA	AGGTAGTTTA	120
	GCAGATGATA	AAGAGTTAAG	TTCGATTGAT	TTAGAAGATA	AAGAAATTGA	AATCTTCGGT	180
20	AGTCGAGATG	ACTTACAAAA	TATAAGCGAA	GTTGATGCAG	AAGTAGATTT	AGATGGTATT	240
	TCAGAATCAA	CTGAAAAGAC	TGTAAAAATC	AATTTWCCAG	AACATGTCAC	TAAAGCACAA	300
	CCAAGTGAAA	CGmAGGCTTA	TATAAATGTA	AAATAAATAG	СТАААТТААА	GGAGAGTAAA	360
25	CAATGGGAAA	ATATTTTGGT	ACAGACGGAg	TAAGAGGTGT	CGCAAACCAA	GAACTAACAC	420
	CTGAATTGGC	ATTTAAATTA	GGAAGATACG	GTGGCTATGT	TCTAGCaCAT	AATAAAGGTG	480
	AAAAACACCC	ACGTGTACTT	GTAGGTCGCG	ATACTAGAGT	TTCAGGTGAA	ATGTTAGAAT	540
30	CAGCATTAAT	AGCTGGTTTG	ATTTCAATTG	GTGCAGAAGT	GATGCGATTA	GGTATTATTT	600
	CAACACCAGG	TGTTGCATAT	TTAACACGCG	ATATGGGTGC	AGAGTTAGGT	GTAATGATTT	660
	CAGCCTCTCA	TAATCCAGTT	GCAGATAATG	GTATTAAATT	CTTTGGATCA	GATGGTTTTA	720
35	AACTATCAGA	TGAACAAGAA	AATGAAATTG	AAGCATTATT	GGATCAAGAA	AACCCAGAAT	780
	TACCAAGACC	AGTTGGCAAT	GATATTGTAC	ATTATTCAGA	TTACTTTGAA	GGGGCACAAA	840
40	AATATTTGAG	СТАТТТАААА	TCAACAGTAG	ATGTTAACTT	TGAAGGTTTG	AAAATTGCTT	900
70	TAGATGGTGC	AAATGGTTCA	ACATCATCAC	TAGCGCCATT	CTTATTTGGT	GACTTAGAAG	960
	CAGATACTGA	AACAATTGGA	TGTAGTCCTG	ATGGATATAA	TATCAATGAG	AAATGTGGCT	1020
45	CTACACATCC	TGAAAAATTA	GCTGAAAAAG	TAGTTGAAAC	TGAAAGTGAT	TTTGGGTTAG	1080
	CATTTGACGG	CGATGGAGAC	AGAATCATAG	CAGTAGATGA	GAATGGTCAA	ATCGTTGACG	1140
	GTGACCAAAT	TATGTTTATT	ATTGGTCAAG	AAATGCATAA	AAATCAAGAA	TTGAATAATG	1200
50	ACATGATTGT	TTCTACTGTT	ATGAGTAATT	TAGGTTTTTA	CAAAGCGCTT	GAACAAGAAG	1260
	GAATTAAATC	ТААТААААСТ	AAAGTTGGCG	ACAGATATGT	AGTAGAAGAA	ATGCGTCGCG	1320

	CTGGTGATGG	TTTATTAACT	GGTATTCAAT	TAGCTTCTGT	AATAAAAATG	ACTGGTAAAT	144
	CACTAAGTGA	ATTAGCTGGA	CAAATGAAAA	AATATCCACA	ATCATTAATT	AACGTACGCG	150
5	TAACAGATAA	ATATCGTGTT	GAAGAAAATG	TTGACGTTAA	AGAAGTTATG	ACTAAAGTAG	156
	AAGTAGAAAT	GAATGGAGAA	GGTCGAATTT	TAGTAAGACC	TTCTGGAACA	aACCATTAGT	1620
	TCGTGTCATG	GTTGAAGCAG	CAACTGATGA	AGATGCTGAA	aGATTTGCAC	AACAAATAGC	1680
10	TGATGTGGTT	CAAGATAAAA	TGGGATTAGA	ТАААТАААТА	CTGTATTACA	AATGAGCCGA	1740
	TGCGTATGCA	nTcgtTTTTT	GTGTTTGTAG	AAATAATTTA	TAGTACAAAC	GTAAAATGAT	1800
15	ATAAACAAAA	TAAAAACAAA	GTAATCAATA	TGTAATATAA	AATACACTGG	TACTCAATAT	1860
	ATAATGATGA	TAAAATTAAT	TTTAATTAGA	TAGAGTTGCT	TTGTGTTTTT	AACGCAGATG	1920
	CTACTACTTA	TCTTAACAGT	TGATTAAGTG	AAATCATTTA	ACAGCGAGAA	TAATCAACCA	1980
20	GGAGGATGAC	TTAATGAATT	TATTCAGACA	ACAAAAATTT	AGTATCAGAA	AATTTAATGT	2040
	CGGTATTTTT	TCAGCTTTAA	TTGCCACTGT	TACTTTTATA	TCTACTAACC	CGACAACAGC	2100
	GTCTGCAGCA	GAGCAAAATC	AGCCTGCACA	AAATCAACCA	GCACAACCAG	CTGATGCCAA	2160
25	TACACAGCCT	AACGCAAATG	CTGGTGCTCA	AGCTAATCCT	ACAGCACAGC	CAGCTGCACC	2220
	TGCCAACCAA	GGACAACCAG	CAGTACAACC	AGCAAACCAA	GGTGGACAGG	CTAATCCAGC	2280
	AGGAGGAGCA	GCACAACCAA	ATACACAACC	AGCTGGACAA	GGTGATCAAG	CTGATCCGAA	2340
30	TAACGCTGCA	CAAGCACAAC	CTGGAAATCA	AGCAACACCG	GCAAACCAAG	CAGGTCAAGG	2400
	AAATAACCAA	GCAACACCTA	ATAATAATGC	AACACCGGCA	AATCAAACAC	AGCCAGCGAA	2460
35	TGCTCCAGCA	GCAGCGCAAC	CAGCAGCACC	TGTAGCAGCA	AACGCACAAA	CTCAAGATCC	2520
<i></i>	AAATGCTAGC	AATACTGGTG	AAGGCAGTAT	TAATACGACA	TTAACATTTG	ATGATCCTGC	2580
	CATATCAACA	GATGAGAATA	GACAGGATCC	AACTGTAACT	GTTACAGATA	AAGTAAATGG	2640
40	TTATTCATTA	ATTAACAACG	GTAAGATTGG	TTTCGTTAAC	TCAGAATTAA	GACGAAGCGA	2700
	TATGTTTGAT	AAGAATAACC	СТСААААСТА	TCAAGCTAAA	GGAAACGTGG	CTGCATTAGG	2760
	TCGTGTGAAT	GCAAATGATT	CTACAGATCA	TGGTAACTTT	AACGGTATTT	CAAAAACTGT	2820
45	AAATGTAAAA	CCAGATTCAG	AATTAATTAT	TAACTTTACT	actatgcaaa	CGAATAGTAA	2880
	GCAAGGTGCA	ACAAATTTAG	TTATTAAAGA	TGCTAAGAAA	AATACTGAAT	TAGCAACTGT	2940
	AAATGTTGCT	AAGACTGGTA	CTGCACATTT	ATTTAAAGTA	CCAACTGATG	CTGATCGTTT	3000
50	AGATTTÁCAA	TTTATTCCTG	ACAATACAGC	AGTTGCTGAT	GCTTCAAGAA	TTACAACAAA	3060
	TAAAGATGGT	TATAAATACT	ATTCATTCAT	TGATAATGTA	GGTCTATTCT	CACCATCACA	3120

	TAATACTGAA	ATCGGTAACA	ATGGTAATTT	TGGTGCTTCA	TTAAAAGCAG	ATCAATTTAA	324
	ATATGAAGTA	ACATTACCAC	AAGGTGTAAC	TTACGTTAAT	AATTCATTAA	CTACAACATT	330
5	CCCTAATGGT	AATGAAGACA	GTACAGTATT	GAAAAATATG	ACTGTTAATT	ATGATCAAAA	. 336
	TGCAAATAAA	GTTACATTTA	CAAGCCAAGG	TGTGACAACG	GCACGTGGTA	CACACACTAA	342
	AGAAGTTTTA	TTCCCAGATA	AATCTTTAAA	ATTATCATAT	AAAGTTAATG	TTGCGAATAT	348
10	CGATACACCT	AAAAATATTG	ATTTTAATGA	AAAATTAACA	TATCGTACTG	CTTCAGATGT	354
	TGTAATTAAT	AATGCGCAAC	CAGAAGTaCA	CTAACTGCAG	ATCCATTTTC	AGTAGCGGTT	360
15	GAAATGAACA	AAGATGCGTT	GCAACAACAA	GTAAACTCAC	AAGTTGATAA	TAGTCATTAC	366
	ACAACAGCAT	CAATTGCAGA	ATACAATAAA	CTTAAACAAC	AAGCAGATAC	TATTTTAAAT	372
	GAAGATGCGA	ATCATGTTAA	AACTGCAAAT	CGTGCATCTC	AAGCGGATAT	TGATGGTTTA	378
20	GTAACTAAAT	TACAAGCTGC	ATTAATTGAT	AATCAAGCAG	CAATTGCTGA	ATTAGATACT	384
	AAAGCTCAAG	AAAAGGTTAC	AGCAGCACAA	CAAAGTAAAA	AAGTTACGCA	AGATGAAGTT	390
	GCAGCACTTG	TAACTAAAAT	TAACAATGAT	AAAAATAATG	CAATCGCAGA	AATTAATAAA	396
25	CAAACTACAG	CACAAGGTGT	CACAACTGAA	AAAGATAATG	GTATCGCAGT	GTTAGAACAA	4020
	GATGTGATTA	CACCAACAGT	TAAACCTCAA	GCGAAACAAG	ATATTATCCA	AGCAGTTACA	4086
	ACTCGTAAAC	AACAAATTAA	AAAGTCAAAT	GCATCATTAC	AAGATGAAAA	AGATGTAGCA	414
30	AATGATAAAA	TTGGTAAAAT	TGAAACAAAG	GCAATTAAAG	ATATTGATGC	AGCAACAACA	420
	AATGCACAAG	TAGAAGCCAT	TAAAACAAAA	GCAATCAATG	ATATTAATCA	AACTACACCT	4260
	GCTACAACAG	CTAAAGCAGC	AGCTCTTGAA	GAATTTGACG	AAGTTGTTCA	AGCACAAATT	4320
35	GATCAAGCAC	CTTTAAATCC	TGATACAACA	AATGAAGAAG	TAGCGGAAgC	TATTGAACGT	4380
	ATTAATGCAG	CTAAAGTTTC	TGGTGTTAAA	GCAATTGAAG	CGACAACGAC	TGCACAAGAT	4440
10	TTAGAAAGAG	TTAAAAACGA	AGAAATCTCA	AAAATTGAAA	ATATTACTGA	CTCTACGCAA	4500
	ACAAAAATGG	ATGCCTATAA	TGAAGTTAAA	CAAGCTGCAA	CAGCTAGAAA	AGCTCAAAAT	4560
	GCTACAGTTT	CAAATGCAAC	AAATGAAGAA	GTAGCAGÀAG	CTGATGCAGC	AGTAGATGCA	4620
15	GCTCAAAAGC	AAGGTTTACA	TGACATCCAA	GTTGTTAAAT	CAAAACAGGA	AGTTGCTGAT	4680
	ACAAAATCAA	AAGTATTAGA	TAAAATCAAT	GCAATTCAAA	CACAAGCAAA	AGTTAAACCT	4740
	GCAGCTGATA	CGGAAGTAGA	AAACGCATAT	AATACACGTA	AACAAGAAAT	TCAAAATAGC	4800
50	AATGCTTCAA	CTACAGAAGA	AAAACAAGCT	GCATATACAG	AATTAGATAC	TAAAAAGCAA	4860
	GAAGCAAGAA	САВАТСТТСА	ጥርርጥርርር ስ አ ኣጥ	ACA	አጥሮሞን አሮአ አማ	ACCTA A ACAG	4000

	GCGGAAATCG	CTCAAAAAGC	AAGTGAACGT	AAAACAGCAA	TTGAAGCAAT	GAATGATTCG	5040
	ACTACTGAAG	AACAACAAGC	AGCGAAAGAC	AAAGTGGATC	AAGCAGTAGT	TACTGCAAAC	5100
5	GCTGATATAG	ATAATGCTGC	AGCAAACAAT	GATGTGGATA	ATGCAAAAAC	TACAAATGAA	5160
	GCTACAATCG	CAGCCATTAC	ACCTGATGCA	AATGTTAAAC	CAGCAGCAAA	ACAAGCAATT	5220
	GCAGATAAAG	TACAAGCTCA	AGAAACAGCA	ATTGATGGAA	ATAACGGCTC	AACAACTGAA	5280
10	GAAAAAGCAG	CTGCTAAACA	ACAAGTTCAA	ACTGAAAAA	CAACAGCTGA	TGCCGCAATA	5340
	GATGCAGCAC	ATACAAATGC	GGAAGTTGAA	GCGGCTAAAA	AAGCAGCAAT	TGCTAAAATT	5400
4.5	GAAGCGATTC	AGCCAGCAAC	AACAACTAAA	GATAATGCGA	AAGAAGCAAT	TGCTACGAAA	5460
15	GCGAATGAAC	GTAAAACAGC	AATCGCTCAA	ACGCAAGACA	TTACTGCTGA	AGAAATTGCA	5520
	GCGGCTAATG	CGGACGTAGA	TAATGCTGTG	ACACAAGCAA	ATAGCAACAT	TGAAGCTGCT	5580
20	AATAGTCAAA	ATGATGTAGA	CCAAGCGAAA	ACGACAGGTG	AAAATAGTAT	TGATCAAGTA	5640
	ACACCAACAG	TTAATAAAA	AGCAACTGCA	CGTAATGAAA	TCACAGCAAT	TTTAAATAAC	5700
	AAATTGCAAG	AGATTCAAGc	tACGCCAGAT	GCAACAGATG	AAGAAAAACA	AGCAGCTGAT	5760
25	GCTGAAGCAA	ATACTGAAAA	TGGTAAAGCA	AATCAAGCCA	TTTCAGCAGC	AACTACTAAC	5820
	GCACAAGTTG	ATGAAGCTAA	AGCAAATGCA	GAAGCAGCGA	TTAATGCGGT	AACACCAAAA	5880
	GTTGTGAAGA	AACAAGCGGC	TAAAGATGAA	ATTGATCAAT	TACAAGCAAC	GCAAACAAAT	5940
30	GTTATCAATA	ATGATCAGAA	CGCTACAACA	GAAGAAAAAG	AAGCAGCTAT	TCAACAATTA	6000
	GCAACAGCAG	TTACAGACGC	GAAAAATAAT	ATTACAGCTG	CAACTGATGA	TAATGGTGTA	6060
	GATCAGGCGA	AAGACGCTGG	AAAGAATTCA	ATTCAAAGCA	CGCAACCAGC	AACAGCGGTT	6120
35	AAATCAAATG	CTAAAAATGA	TGTTGATCAA	GCTGTGACAA	CTCAAAATCA	AGCAATTGAT	6180
	aataéaactg	GTGCTACAAC	TGAAGAGAAA	AATGCAGCAA	AAGATTTAGT	TTTAAAAGCT	6240
10	AAAGAAAAAG	CGTATCAAGA	TATCTTAAAT	GCACAAACAA	CTAATGATGT	TACGCAAATT	6300
ıu	AAAGATCAAG	CAGTTGCTGA	TATTCAAGGT	ATTACTGCAG	ATACAACAAT	TAAAGATGTT	6360
	GCGAAAGATG	AATTAGCAAC	AAAAGCAAAC	GAACAAAAAG	CGCTTATTGC	ACAAACTGCA	6420
15	GATGCGACTA	CTGAAGAAAA	AGAACAAGCA	AATCAACAAG	TAGACGCACA	ATTAACACAA	6480
į	GGTAATCAAA	ATATTGAAAA	TGCACAGTCA	ATCGATGATG	TAAACACTGC	AAAAGATAAT	6540
	GCAATTCAAG	CAATTGACCC	AATTCAAGCA	TCAACAGATG	TTAAAACGAA	TGCAAGAGCG	6600
50	GAATTGCTAA	CTGAAATGCA	АААТААААТА	ACTGAAATAC	TTAATAATAA	TGAGACTACT	6660
*	AATGAAGAAA	AACGTAACGA	ጥል ተጥርር እርር እ	GTTAGAGCAG	СЭТЭТСЬВСЬ	ስርር-ምምን እ አጥ	6720

CAAGCTGCAG CTGATAAGAA AACACAAATA GAACAAACAC			69.00
C NTTNNTCATC CARARCARON ACTION OF THE CO.	AAGCGAAAAC		
5 ATTAATGATG CAAAACAAGA AGTTGATACT GAATTAAATC 1		AAATGTCGAT	6960
CAATCATCAA CAAATGAATA TGTTGATAAT GCAGTTAAAG	AAGGAAAAGC	TAAAATTAAT	7020
GCAGTTAAAA CATTTAGTGA GTACAAAAAA GATGCTTTAG	CTAAAATTGA	AGATGCATAT	7080
AATGCTAAAG TAAACGAAGC GGATAACTCT AACGCATCGA (CTTCAAGTGA	AATTGCTGAA	7140
GCGAAACAAA AACTTGCTGA ATTAAAACAA ACTGCGGATC	AAAATGTTAA	TCAAGCTACT	7200
TCTAAAGATG ACATTGAAGT TCAAATTCAT AATGACTTAG	ATAATATTAA	CGATTACACA	7260
ATTCCAACAG GTAAAAAAGA ATCAGCTACA ACAGATTTAT A	ATGCTTATGC	AGATCAGAAG	7320
AAAAATAATA TTTCAGCTGA CACTAATGCA ACACAAGATG	AAAAGCAACA	AGCAATTAAG	7380
CAAGTTGACC AAAATGTTCA AACTGCATTA GAAAGCATTA A	ATAATGGTGT	GGATAATGGT	7440
GACGTTGATG ATGCATTAAC ACAAGGTAAA GCAGCAATTG	ATGCTATTCA	AGTAGATGCT	7500
ACTGTTAAAC CTAAAGCGAA CCAAGCTATT GAAGTTAAAG C	CAGAAGATAC	GAAAGAATCT	7560
25 ATTGATCAAA GTGACCAGTT AACTGCTGAA GAAAAAACTG A	AAGCATTAGC	AATGATTAAA	7620
CAAATTACAG ATCAAGCTAA ACAAGGTATT ACTGATGCAA C	CAACAACTGC	TGAAGTTGAA	7680
AAAGCGAAAg cTCaAGGACT TGAAGCATTT GATAACATTC A	AAATCGACTC	AACAGAAAAA	7740
30 CAAAAAGCTA TCGAAGAATT AGAAACTGCA CTAGACCAGA T	TTGAAGCAGG	TGTAAATGTC	7800
AACGCTGATG CTACAACTGA AGAAAAAGAA GCGTTTACGA A	ATGCTTTAGA	AGACATTTTA	7860
TCAAAAGCAA CTGAAGATAT TTCTGATCAA ACTACAAATG C	CAGAAATCGC	TACTGTCAAA	7920
AATAGTGCGC TTGAACAACT TAAAGCACAA CGTATTAATC C	CTGAAGTTAA	GAAAAATGCT	7980
TTGGAÃGCAA TCAGAGAAGT GGTTAACAAG CAAATAGGAA t	AATTAAAAA	TGCAGATGCA	8040
GATGCATCGG CGGAAAGANA TTGCACGTAC GGGATTTAGG T	FAGATATTT	GGACCGATTT	8100
GCTGGATAAA TTTAGGGTnA AACCCCAACC AATGCCGAAG T	PTGCCTGAAT	TACCA	8155

(2) INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1630 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

	CTGTTTTATT	TGCAGCACCC	ATACTGGAAA	TCACTTTAAT	CCCTCGGTCA	AGACACTCTT	120
	TCATTAAGTG	TACTTTGTAC	ATTATTGTAT	CACTTGCATC	TACAAAATAA	TCTATATCGT	180
5 .	AGTTATCGAA	AATTTCTTCA	TATGTCTCTT	CTGTATAAAA	CATATGTAAG	GGCGTGACTT	240
	TACAATCTGG	ATTAATTAAT	TTAATACGTT	CTTCCATCAA	AGAAACTTTA	CTTTGTCCTA	300
	CCGTTGTAGT	TAAAGCGTGT	AATTGTCTGT	TTACATTTGT	AATATCAACA	TCATCTTTAT	360
10	CTATTAATAT	AATATGACCA	ATATTCGTTC	TTGCTAATGC	TTCAGCAGCA	AAŢGAACCAA	420
	CACCTCCAAC	GCCAAGTATG	ACAACAGTTT	GTTGCTTCAA	ТАААТСТААА	CCTTGTTGTC	480
15	CAATCGCTAG	TTCATTTCTT	GAAAATTGAT	GTTTCATTAT	TTTACCTCTT	TCACTGATTT	540
15 .	ATACATAAGT	ACATAGTAAC	TTAAAATTTT	ATATTTAGCA	TTATCACTTT	GATTATTTTC	600
	CCAAAATTCA	ACGAGGAAAC	ATTTATTAAA	CGCTATAAAA	CCCAACTAAT	TCTTTATTAA	660
20	AAACTTAAAG	AAACGCATAA	AAATACGCAA	GACAAAGTCT	TGCGTATCGA	TAGAGTCCGT	720
	ATTGCCGTAG	TTATAATAGC	TTGATCATTC	GGCCTGTTAT	ATACAGGTGG	GTGCCCTGTT	780
	TCTTGTTTTG	TACGTCCTTC	ATATAAGGCG	TGTACGCTGC	AAGAAAACCC	ATTGGGCTCC	840
25	CTTGATCAAA	GAGTGTTAGG	CCCAAATTAA	AAAGCAAACT	TACGAACAAC	TCAGATGACT	900
	ATCTTATGAT	GTTATATTAC	CACATAATTA	AAATTAATGA	AATTATAACA	AACCAAAGTT	960
	TATTGATTTT	TTAAAATTTA	GTGACGAATT	CGCAAAGAAA	GTTCTTCTAA	TTGTTTATCA	1020
30	GAAACTTCAC	TAGGCGCATT	CGTTAATAAA	CATGTAGCAG	ATGCTGTTTT	AGGGAATGCG	1080
	ATTGTATCTC	TCAAGTTTGT	TCTATTAGTC	AATAACATGA	CTAATCGGTC	tAATCCTAAT	1140
	GCAATACCGC	CATGTGGTGG	TGCACCATAT	TTAAATGCAT	CTAGTAAGAA	GCCGAACTGT	1200
35	TCCTgTGCTT	GTTCTTTAGT	AAATCCAAGA	ACTTCGAACA	TTTTTTCTTG	TAACTCACCA	1260
	TCATGAATTC	TGATTGAACC	GCCACCTAAT	TCATAACCAT	TTAATACTAT	GTCATAAGCA	1320
40	TTTGCCTCAG	CTTCLTCTGG	CGCAGTGCCA	AGCTTAGCAA	TATCAGCTTC	TTTTGGAGAT	1380
	GTAAATGGAT	GATGTGCTGC	AACGTAACGT	TTCGCATCTT	CATCATATTC	TAATAATGGC	1440
	CAATCTGTCA	CCCATAAGAA	GTTTAATTTT	GTTTCATCGA	TTAAACCTAA	TTCTTTAGCT	1500
45	AATTTGACAC	GTAATGCACC	TAAACTTTGT	GCAACGACAT	TTGGTttGTC	TGCAACAAAC	1560
	ATTACTAAGT	CACCAGCTTC	AGCACCAGTT	AATGTAAGTA	ATGTTTCAAC	ATTTTCTGTT	1620
	CAAAGAAACG						1630

(2) INFORMATION FOR SEQ ID NO: 65:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 732 base pairs

(C) STRANDEDNESS: double

	(D) TOPOLOGY: linear	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	CAATTGGACA TCTTGTATGA AAAGGACAAC CTTGCGGCGG ATTACTTGGC GAAGGTAATT	60
10	CTCCTTTTAA TATAATTCTA TTGTTATTAT GTTTATCAAT TTGTGGTATT GATGAAATCA	120
	ACGCTTTTGT ATATGGATGT TTGGGATTTT CATAAATTTC TTTATCAGAT GCGATTTCAA	180
	CTATATGACC TAAATACATA ACTCCAATGA CATCACTTAT ATGTTTTACT ACACTTAAAT	240
15	CATGTGCGAT AAATAAATAG CTTAAGTTAA ATTGTTCTTG TAAATCTTTT AATAAATTCA	300
	GTACTTGAGA TTGAACAGAT ACATCTAATG CACTTACAGG CTCATCAGCA ACAATTAAAC	360
	TCGGACGCAA AGCCAATGCT CTTGCAATTC CCACTCTTTG TCTCTGTCCA CCTGAAAATT	420
20	CATGTGCATA TTLATAATAT GCATCTTCAC TTAGGCCAAC ACATTTTAAT AAATATAGTA	480
	CTTCTTTTTT TATTTCTTCT TTTGGCAATT TTTTATAATT TAAAATAGGT TCTGAAATGA	540
25	TATCTCCAAC CATTTGCATC GGATTCAATG ATGCATACGG ATCTTGAAAT ATCATCTGAT	600
	ATTGTTGTCG TGATTTTCTG AGTTTTTTAC CTTGTAATCT TGTTATATCT TCACCATTAA	660
	CAATTATTGA GCCTGAAGTT GCATCTTCAA GCCTGATAAT CACTTTACCT AACGTTGACT	720
30	TACCACAACC CG	732
	(2) INFORMATION FOR SEQ ID NO: 66:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5838 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
	AATATATTCA TATGTTTCAT CAACAATATT AGCTGCTTTT TGAATTAAAG CAATTTCGTC	60
45	AGCATCTTTG ACGTCTCTAA TTTTATCTAC AGTATTAGAA ATGCTTATTA ATGATATACG	120
45	GCTTTTATTT AATTCAAGGT ATGTATCATA ACTTACATGA TGCCCCTCAA AACCTACATT	180
	TTCAAAATTT TCTTGGTGTA GCAATTCTTT AATCTCACCA ATAATAGTAG ATTTACGATT	240
50	AATAATTTCA TAATTTGGCG CCTGCTTAGT TGCTTGATCA ATATATCTAA AGTCTGTTAT	300
	CAAATATTGT TJATCTTTAG ATATGATAAG TGCTCCACTG GTACCAGTAA AACCTGATAA	360
	ATATCTTCTA TTGTAATCCG AAAGAATGAT AATCGCATCT AAATGTTTTT GTTCTAAAAT	420

*	CAACTTTATA	CATTAAAATA	ATATCATAAT	AAGGATAAAA	AATAATAGAT	ATTGATTTTA	540
	GGGAGATAGT	AATGAAAAA	TTGGTTTCAA	TTGTTGGCGC	AACATTATTG	TTAGCTGGAT	60
5	GTGGATCACA	AAATTTAGCA	CCATTAGAAG	Anaaaacaac	AGATTTAAGA	GAAGATAATC	66
	ATCAACTCAA	ACTAGATATT	CAAGAACTTA	ATCAACAAAT	TAGTGATTCT	AAATCTAAAA	720
	TTAAAGGGCT	TGAAAAGGAT	AAAGAAAACA	GTAAAAAAAC	TGCATCTAAT	AATACGAAAA	. 780
10	TTAAATTGAT	GAATGTTACA	TCAACATACT	ACGACAAAGT	TGCTAAAGCT	TTGAAATCCT	840
	ATAACGATAT	TGAGAAAGAT	GTAAGTAAAA	ACAAAGGCGA	TAAGAATGTT	CAATCGAAAT	900
15	TAAATCAAAT	TTCTAATGAT	ATTCAAAGTG	CTCACACTTC	ATACAAAGAT	GCTATCGATG	960
	GTTTATCACT	TAGTGATGAT	GATAAAAAA	CGTCTAAAAA	TATCGATAAA	TTAAACTCTG	1020
•	ATTTGAATCA	TGCATTTGAT	GATATTAAAA	ATGGCTATCA	AAATAAAGAT	AAAAAACAAC	1080
20	TTACAAAAGG	ACAACAAGCG	TTGTCAAAAT	TAAACTTAAA	TGCAAAATCA	TGATAGGAGT	1140
	CTTTTAATGC	GTAATATAAT	ATTTTATCTT	GTACTTATTA	TTGCTGCGAT	TGGATTAGTA	1200
	ATGAATCTAG	ATGCCTTTAT	TTTTTCAATC	GTCAGAATGT	TAATCAGCTT	TGcgTAaTAG	1260
25	CTGGTATTAT	TTATCTGATT	TATTATTTCT	TCATCTTAAC	TGAAGACCAA	CGCAAATATC	1320
	GCAAAGCAAT	GCgTrAaGTA	TAAAAGAAAT	CAAAGAAGAA	AATAGATAAA	AAAACGGAAG	1380
	CACTTGTAGG	TAAAATAGTC	TACGTGCTTC	CATTTTTTAT	TCTAAAAACT	ACTTTCTAAA	1440
30 '	CATCCATTCA	TCTGAACGAT	ATTTTTCAGT	TAATTCTTCC	ACTTCTGCCA	ATTGAGCTTC	1500
	TGtTAATTCA	AGTGGCTTTA	ATTCTATATT	TAAACCTTTC	TTAAAACCTT	TCTCGAAAGC	1560
35	TTCTTCCATT	TGACTAATAG	TAATGTGTTC	ATCTGAAATA	TCATTGATGG	CAACTGCTTT	1620
,5	TTCAACGAAT	GCCTCTTTCA	TTTTTAATTT	TAATCTTTCA	AAATATTTT	Traacatatc	1680
	AAACĀGTTCA	TCAATATCAA	TATCTTGTAA	AATCGAACCG	TGTTGGAGGA	TTACGCCCTT	1740
10	TTGTCTCGTT	TGAGCACTCC	CAGCAATCTT	ACGGCCTTCA	ACAACTAGCT	CATACCAACT	1800
	TGGTGCATCA	AAACACACTG	AACTTCGAGG	TTGTTTTAAT	TTTTGACGCT	CTTCAGGCGT	1860
	TTTAGGTACC	GCAAAATAAG	TATCAAATCC	TAAGTTTTTA	AATCCTTCTA	ATAATCCTTG	1920
15	TGAAATCACT	CTGTACGCTT	CTGTAACTGT	AGAAGGCATA	TTCGGATGCG	ATTCAGGCAC	1980
	AATCACACTG	TAAGTTAACT	CTTTATCATG	TAGCACCCCA	CGGCCACCAG	TTTGACGCCT	2040
	TACGAGACCA	AAACCTTTCT	CTTTAACCTT	ATCAATATCA	ATTTCTTTTT	GTAGCCTTTG	2100
50	GAAATACCCT	ATTGATAATG	TTGCAGGATT	CCATGTGTAA	AAACGTATAA	CTGGATCAAT	2160
	TTCACCTCTA	GAGACAAAAT	TTAATAACGC	TTCATCCATT	GCCATATTAT	AATATGCGTC	2220

	AAATGTATAA	TATTTGATTC	GCTAATTAAT	CAATTTAACT	AAATGAATAA	TAATTGCAAT	2340
	TCTTTAGTGA	AATATTTTGA	TAATTTGACC	TAACAGTCTT	ATAATTATAT	TATCGTTTAA	2400
5	TTAGGGAGGA	TGCAAGATGA	GTGCTAGTTT	GTACATCGCA	ATAATTTTAG	TTATAGCAAT	2460
	TATTGCTTAT	ATGATTGTTC	AACAAATTCT	TAACAAGCGA	GCTGTTAAAG	AATTAGATCA	2520
10	AAATGAATTC	CATAATGGGA	TTAGAAAAGC	TCAAGTCATC	GATGTTAGAG	AGAAAGTTGA	2580
10	CTATGACTAC	GGTCACATTA	ATGGGTCTCG	CAATATTCCT	ATGACAATGT	TCAGGCAACG	2640
	ATTCCAAGGA	TTAAGAAAAG	ATCAACCGGT	ATACTTATGT	GATGCCAATG	GGATTGCTAG	2700
15	CTATAGAGCC	GCTCGTATTT	TGAAAAAGAA	TGGATATACA	GATATCTATA	TGTTAAAAGG	2760
	CGGCTATAAA	AAATGGACTG	GAAAAATAAA	GTCTAAAAAA	TAGTTTTTGT	ATATTTAAA	2820
	TACGATTTAA	TAAAATCTGA	GTGTTAATTG	ATCATCAATA	ACAATACTCA	GATTTTAATT	2880
20	TTTTAACAAA	GTCTGTTACT	ATATTTCTCT	AGCTTCACTG	ATCATTAAAC	TTAGTTTCAG	2940
	CATAATAAAG	AAAGTTCAGC	TCATTTTCAA	TACGATTCAA	TTACCGCAAT	CTAAAAAATG	3000
	AAAAGACAAT	TTCTATGAAA	GAATAATACC	AAACCCTAAG	AGTTATTACT	TCGGTTTAGT	3.060
25	TTTCTTGTTT	AAATAGAAAT	TGTCTTTTTC	AATTGATTTT	GAAACCATTA	TCCTTAAATC	3120
	TTCATACAAA	GTTAGAATAA	TAATTCTCGG	AATATGTGTT	TAATACTTTA	TTTTTCCTGT	3180
30	TTAAGATTTT	CAAACTTTAA	TATTGGTTTA	CGAGCAGCTG	TAGCTTCGTC	TAATCGATCA	3240
30	ATCACAGTTG	TATGTGGTGC	TTCTAGCacT	TTATCAGGAT	CATTTTTAGC	TTCTTCAGCA	3300
	ATACTAATTA	ATGTATCGAT	AAAATAATCA	AGTGTTTCTT	TAGACTCTGT	CTCAGTCGGT	3360
35	TCAATCATCA	TACCTTCTTC	AACATTTAAT	GGGAAGTATA	TTGTTGGTGG	ATGTACACCG	3420
	AAATCTAATA	ATCGCTTAGC	CATGTCTAAA	GTACGTACAC	CAAATTCTTT	TTGACGCACA	3480
ŕ	CCACTTAACA	CAAACTCGTG	TTTACAATAT	TGTTTATAAG	GTATTTCAAA	GTGTTTAGAT	3540
10	AAACGTGCTT	TAATATAATT	CGCATTAAGA	ACCGCTGCTT	CAGAAACCTC	TTTAAGTCCA	3600
	GTTGCTCCCA	TAGTTCGAAT	ATACGTATAA	GCTCTTAAGT	AAATACCAAA	GTTACCATAA	3660
	AATGGTTTTA	CACGTCCGAT	AGAATTTTTA	ATGTCATTAT	CATATTTAAA	TTTGTCGCCA	3720
15	TCTTTAATAA	CCATTGGCTT	TGGTAAGTAA	CTTGCTAGTT	CTTTTACTAC	ACCGACTGGA	3780
	CCTGAACCAG	GACCGCCACC	ACCATGTGGA	CCAGTAAATG	TTTTATGCAA	GTTTAAATGA	3840
- 0	ACAGCATCAA	ATCCCATATC	TCCTGGGCGA	ACTTTGTCCA	TAATAGCGTT	TAAATTCGCA	3900
50	CCATCATAAT	ATAATAGACC	ACCAGCATTA	TGGACGATTT	CACGGATTTC	CATAATATTT	3960
	TTTTCCAAAA	TACCTAAACT	COMPACE A THE A	CTTARCATAR	тасстсстст	እ ጥጥተጥ ለ ጥጥጥ	4020

	GATTTAAATC	CTGCAAATGa	AGCTGAGGCT	GGaTTCGTAC	CATGCGCAGA	ATCTGGcACA	4140
	ATGACTTCAT	CACGATGACC	TTCACCATTA	TTCTCATGGT	AAGCTTTAAA	TATCATCAAT	4200
5	GCAGTCCATT	CACCATGTGC	GCCAGCAGCT	GGTTGTAATG	TCACCTCATC	CATACCAGTA	4260
	ATTTCTTTTA	ATTCTTCTTG	CAAACTATAA	ATAATTTCTA	ATGAACCTTG	AACTTGATCT	4320
	TCATCTTGTA	ATGGATGTGA	TTCACTAAAT	CCTGGTATTC	TAGCAACCTT	TTCATTAATT	4380
10	TTAGGGTTAT	ACTTCATCGT	ACATGAACCC	AATGGATAAA	ATCCGTTGTC	TACACCGAAA	4440
	TTTTTATTTG	AAAGTTCAGT	ATAATGACGT	ACTAAGTCTA	GTTCAGCAAC	TTCAGGAAAC	4500
15	TCCGCTTTGT	TTTTACGAAT	AAATTTATCA	TCTAACAATG	ACTCAACAGA	ATTTGTTTTA	4560
	ATATCACTTT	TTGGTAATGA	ATATGCATAT	CTGCCTTCAC	GAGATCTTTC	TAATTAAAA	4620
	GGACTTGATT	TACTAGTCAT	TTAACTCACC	AGCCTTTTCT	ACAAATGTAT	CGATTTCATC	4680
20	TTTTGTTCTT	AATTCAGTTA	CAGCTATTAA	CATGTGATTT	TTAAAGTCGT	CTGAAACAAC	4740
	ACCTAAATCA	AAACCACCGA	TAATATTGTA	CTTCACTAAT	TCCTCGTTAA	CTTGTTGAAT	4800
	TGGTTTGTCA	AATTTGACTA	CAAACTCATT	GmnAAGnTGT	ACCATCTAAT	ACTTCAAAAC	4860
25	CTTTTTTAAT	AAATTGTTGT	TTAGCATAGT	TAGCATGTTC	TATATTTTGA	ACTGCAATAT	4920
	CATAGATACC	TTGTTTACCA	AGTGCTGACA	TTGCAATTGA	TGaCGcTAAA	GCATTTAATG	4980
	CTTGGTTAGA	ACAAATATTA	GATGTCGCTT	TATCGCGTCG	AATATGTTGT	TCACGTGCTT	5040
30	GTAATGTTAA	TACAAAGCCA	CGATTACCTT	CATCATCTTG	TGTTTGACCG	ACTAATCTAC	5100
	CTGGCACTTT	ACGCATTAAC	TTTTTCGTCG	TTGCAAAATA	TCCACAATGT	GGCCCACCGA	5160
35	ATTGAGCAGG	AATTCCGAAT	GGCTGAGTAT	CACCTACAAC	AATATCTGCA	CCAAATGAAC	5220
55	CTGGAGGTGT	AAGTAATCCC	AATGCTAATG	GATTTGCATA	TACGATAAAT	AATGCTTTTT	5280
	TATCTTCAAT	AAAGCTATGA	ATCTTTTCAA	GATCTTCAAT	TGAACCGTAA	AAGTTTGGAT	5340
40	ATTGTACTGC	AACAGCTGCT	GTTTCATCAT	CCACTGCTGC	TTCTAATTTT	TTCAAATCTG	5400
	TAACAGTGCC	ATCTAAATCG	ATTTCCACTA	CTTCGAATTC	CTTACGCGTC	TTAGCATAAG	5460
	TATGAAGTAC	TTGTAATGCT	TGATAATGTA	AACCTTTTGA	GACTACAATT	TTATTTTCT	5520
45	TTGTTTGACT	AAATGCTAAG	ATACATGCTT	CAGCAAAGCT	AGTCATCCCA	TCATACATAG	5580
	AAGAATTTGC	TACATCCATA	TCTGTTAATT	CACAAATTAA	AGTTTGGAAC	TCAAAAATGG	5640
	CTTGTAATTC	ACCTTGAGAA	ATTTCCGGTT	GATATGGCGT	ATATGCTGTG	TAAAATTCTG	5700
50	ATCTTGAAAT	CATAGCATCC	ACAACTGATG	GCGCGTAATG	ATCATAAACA	CCAGCACCCA	5760
	rAAATGATGT	ATGCGTTTCT	TTAGTGATAT	tCTTGCTkGC	AATGGGGATT	TAAACnTCTA	5820

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUEN	NCE CHAR	ACTERI:	STICS:
------------	----------	---------	--------

- (A) LENGTH: 18355 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

GTACGAAATT GTACAAAGCT TTTTTGGTGC GTATTGTATG GGCAACAACT TGACGATGAA AATCCGTTAC AGGATTGGTA ATAGGAAATG TTAGCGAAAG ACAAGGGTAT CCATTGTAGA TTAACAAAAG GACGTTTCCA CAAGTGTGGG TTATTCTCAC TAAAGCAATA CGCAGAGACA ACTTACGTAA AATTTTGAAC TGACTAGAAC GGAACTTCTA CTCAATTATT GATAAAAATT TTCAAAAAAGA CTTGAATGTG CTGAGAATAC GAAGTTTATG GAAGGATTAT CAAAAATATAA ATGTGCATTC ATTTACAACC TTTATTGACA ATGATTCTCA ACTAATATAG TATATAATCA AATCGTAATA GTTACGATTT GTTTTCTGCA ACTTTTTTGA AGTTTTAGTT GAGGTGAAAA CAATAAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TCCATTCAAA ACAGTGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA ACACTGCATA	
GTACGAAATT GTACAAAGCT TTTTTGGTGC GTATTGTATG GGCAACAACT TGACGATGAA AATCCGTTAC AGGATTGGTA ATAGGAAATG TTAGCGAAAG ACAAGGGTAT CCATTGTAGA TTAACAAAAG GACGTTTCCA CAAGTGTGGG TTATTCTCAC TAAAGCAATA CGCAGAGACA ACTTACGTAA AATTTTGAAC TGACTAGAAC GGAACTTCTA CTCAATTATT GATAAAAATT TTCAAAAAAGA CTTGAATGTG CTGAGAATAC GAAGTTTATG GAAGGATTAT CAAAAATATAA ATGTGCATTC ATTTACAACC TTTATTGACA ATGATTCTCA ACTAATATAG TATATAATCA AATCGTAATA GTTACGATTT GTTTTCTGCA ACTTTTTTGA AGTTTTAGTT GAGGTGAAAA CAATAAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TCCATTCAAA ACAGTGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA ACACTGCATA	60
AATCCGTTAC AGGATTGGTA ATAGGAAATG TTAGCGAAAG ACAAGGGTAT CCATTGTAGA TTAACAAAAG GACGTTTCCA CAAGTGTGGG TTATTCTCAC TAAAGCAATA CGCAGAGACA ACTTACGTAA AATTTTGAAC TGACTAGAAC GGAACTTCTA CTCAATTATT GATAAAAATT TTCAAAAAGA CTTGAATGTG CTGAGAATAC GAAGTTTATG GAAGGATTAT CAAAATATAA ATGTGCATTC ATTTACAACC TTTATTGACA ATGATTCTCA ACTAATATAG TATATAATCA AATCGTAATA GTTACGATTT GTTTTCTGCA ACTTTTTTGA AGTTTTAGTT GAGGTGAAAA CAATAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGGAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCAATCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CAACATCCAAAAAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CAACATCCAAAAAAAAAAAAAAAAAAAA	120
TTAACAAAAG GACGTITCCA CAAGTGTGGG TTATTCTCAC TAAAGCAATA CGCAGAGACA ACTTACGTAA AATTTTGAAC TGACTAGAAC GGAACTTCTA CTCAATTATT GATAAAAATT TTCAAAAAAGA CTTGAATGTG CTGAGAATAC GAAGTTTATG GAAGGATTAT CAAAAATATAA ATGTGCATTC ATTTACAACC TTTATTGACA ATGATTCTCA ACTAATATAG TATATAATCA AATCGTAATA GTTACGATTT GTTTCTGCA ACTTTTTTGA AGTTTTAGTT GAGGTGAAAA CAATAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC ETCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	180
ACTTACGTAA AATTTGAAC TGACTAGAAC GGAACTTCTA CTCAATTATT GATAAAAATT TTCAAAAAGA CTTGAATGTG CTGAGAATAC GAAGTTTATG GAAGGATTAT CAAAATATAA ATGTGCATTC ATTTACAACC TTTATTGACA ATGATTCTCA ACTAATATAG TATATAATCA AATCGTAATA GTTACGATTT GTTTTCTGCA ACTTTTTTGA AGTTTTAGTT GAGGCCACA CAATAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CACACTGCTA TAGATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCCGCAA	240
TTCAAAAAGA CTTGAATGTG CTGAGAATAC GAAGTTTATG GAAGGATTAT CAAAATATAA ATGTGCATTC ATTTACAACC TTTATTGACA ATGATTCTCA ACTAATATAG TATATAATCA AATCGTAATA GTTACGATTT GTTTCTGCA ACTTTTTTGA AGTTTTAGTT GAGGTGAAAA CAATAAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CACATGCTATA	300
ATGTGCATTC ATTTACAACC TTTATTGACA ATGATTCTCA ACTAATATG TATATAATCA AATCGTAATA GTTACGATTT GTTTTCTGCA ACTTTTTTGA AGTTTTAGTT GAGGTGAAAA CAATAAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CAACAGCTCT AGTGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CAACAGCTCT AGTGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	360
AATCGTAATA GTTACGATTT GTTTTCTGCA ACTTTTTGA AGTTTTAGTT GAGGTGAAAA CAATAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CACACTGCTA TAGAATAGCA TTTTCTAAGT CATCTATCGC CAATCAGTTG ATGGCCGCAA	420
CAATAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	480
AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	540
ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC TTCTAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	600
TTCTAAAAAA TTACAGTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	660
GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT CATCTTCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGcTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	720
CATCITCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGCTTCGCA ACAACTGCAT AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CACATCTATC	780
AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	840
TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA CACATGATGC GGGGAATATG ATGGCCGCAA	900
TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA 10	960
Clarent management and appropriate the contract of the contrac	.020
CACATGTATG CTGTGAACAG GTAGGCTTTA TAGTATCAAC ACAAAATGAT GATGGTAATG	.080
1,	.140
ATTITCACTT AGTTATGAGC GGTAATGAAT TTTGCGGTAA TGCGACGATG TCATATATAC 12	200
ATCATTTGCA GGAAAGTCAT TTGCTTAAAG ACCAACAGTT TAAGGTGAAG GTGTCTGGCT	.260
	320
	380

	TTCAACATTT	GGTTGAAGCG	TTTGTGCGTG	AgcAACAATG	GAGTCACAAA	TATAAAACAG	1500
	TAGGTATGAT	GCTTTTTGAT	GAACAACGTC	AATTTTTACA	GCCATTAATC	TATATACCAG	1560
5	AAATTCAAAG	TTTAATTTGG	GAAAATAGCT	GTGGTTCTGG	TACAGCATCA	ATTGGGGTTT	1620
	TTAATAATTA	TCAACGTAAT	GACGCATGCA	AAGATTTTAC	AGTACATCAG	CCAGGGGGCA	1680
	GTATTTTAGT	GACATCAAAG	CGATGTCATC	AATTGGGATA	TCAAACTTCA	ATTAAAGGAC	1740
10	AGGTTACAAC	TGTAGCTACA	GGaAAAGCAT	ATATAGAATA	AGGAGCCTAC	AATGAATAAC	1800
	TTTAATAATG	AAATCAAATT	GATATTACAA	CAATATTTAG	AAAAGTTTGA	AGCGCATTAC	1860
15	GAGCGTGTAT	TACAAGACGA	TCAATATATC	GAAGCATTAG	AAACATTGAT	GGATGACTAT	1920
	AGTGAATTTA	TTTTAAATCC	TATTTATGAA	CAACAATTTA	ATGCTTGGCG	TGACGTTGAA	1980
	GAAAAAGCAC	AATTAATAAA	ATCACTGCAA	TATATTACAG	CGCAGTGTGT	TAAACAAGTG	2040
20	GAAGTCATTA	GAGCGAGACG	TCTATTAGAC	GGACAGGCGT	CTACCACAGG	TTACTTTGAC	2100
	AATATAGAAC	ATTGTATTGA	TGAAGAGTTŢ	GGACAATGTA	GTATAGCTAG	CAATGACAAA	2160
	TTATTGTTAG	TTGGTTCAGG	TGCATATCCA	ATGACGTTAA	TTCAAGTAGC	AAAAGAAACA	2220
25	CCTCCTTCAG	TTATCGGTAT	TGATATTGAT	CCACAAGCCG	TTGACCTAGG	GCGCAGAATC	2280
	GTTAACGTCT	TAGCACCAAA	TGAAGATATA	ACAATTACGG	ATCAAAAGGT	ATCTGAACTT	2340
	AAAGATATCA	AAGATGTGAC	GCATATCATA	TTCAGCTCGA	CAATTCCTTT	AAAGTACAGC	2400
30	ATTTTAGAAG	AATTATATGA	TTTAACAAAT	GAAAATGTCG	TAGTTGCAAT	GCGCTTTGGT	2460
	GATGGCATCA	AAGCAATATT	TAATTATCCG	TCACAAGAAA	CAGCGGAAGA	TAAGTGGCAA	2520
35	TGTGTGAATA	AACATATGAG	ACCACAGCAA	ATTTTTGATA	TAGCACTTTA	TAAAAAAGCA	2580
	GCTATAAAGG	TAGGTATTAC	GGATGTCTAA	ATTATTAATG	ATAGGCACTG	GTCCgGTCGC	2640
	AATGCAATTA	GCGAATATTT	GCTATTTAAA	ATCAGATTAT	GAGATTGATA	TGGTTGGACG	2700
10	TGCCTCAACA	TCAGAAAAAT	CAAAACGCTT	ATATCAAGCG	TATAAAAAAG	AGAAACAATT	2760
	TGAAGTCAAA	ATACAAAACG	AGGCGCATCA	ACATCTGGAA	GGTAAGTTTG	AAATTAATCG	2820
	TTTGTATAAA	GATGTTAAAA	ACGTTAAGGG	TGAATACGAA	ACGGTTGTCA	TGGCATGCAC	2880
45	AGCAGATGCT	TATTATGACA	CACTACAGCA	ATTGTCGTTA	GAAACTTTGC	AAAGTGTCAA	2940
	ACATGTCATT	TTAATATCAC	CGACATTTGG	TTCGCAAATG	ATTGTCGAAC	AATTTATGTC	3000
	TAAATTTAAT	AAAGATATCG	AAGTGATTTC	ATTCTCAACT	TATCTTGGCG	ATACACGTAT	3060
50	TGTTGATAAA	GAAGCGCCTA	ATCATGTGTT	GACAACAGGT	GTAAAAAAGA	AATTGTACAT	3120
	GGGATCGACA	CATTCAAACT	CAACAATGTG	TCAACGAATC	TCTGCTTTAG	СТСАССААТТ	3180

	TTATGTGCAC	CCACCACTAT	TTATGAATGA	CTTTTCATTG	AAAGCCATTT	TCGAAGGAAC	330
	AGATGTACCG	GTTTATGTGT	ATAAGTTATT	TCCTGAAGGA	CCGATAACGA	TGACACTAAT	3360
5	CCGTGAAATG	CGTTTAATGT	GGAAGGAAAT	GATGGTTATT	TTACAAGCAT	TTAGAGTGCC	3420
	GTCAGTCAAC	CTGCTTCAAT	TTATGGTGAA	GGAAAATTAT	CCAGTACGTC	CTGAAACTTT	3480
	GGATGAAGGT	GATATTGAGC	ATTTCGAAAT	CTTGCCAGAT	ATCTTACAAG	AATATCTGCT	3540
10	TTATGTAAGA	TATACCGCAA	TCCTCATTGA	TCCATTTTCA	CAGCCAGACG	AAAACGGACA	3600
	TTACTTTGAT	TTTTCAGCTG	TACCATTTAA	GCAAGTCTAT	AAAAATGAAC	AGGATGTTGT	3660
15	TCAAATTCCA	AGAATGCCAA	GTGAAGATTA	TTACAGAACG	GCGATGATTC	AGCATATTGG	3720
	GAAAATGCTA	GGTATCAAAA	CGCCAATGAT	TGATCAGTTC	CTAACTCGCT	ATGAAGCAAG	3780
	TTGCCAGGCG	TACAAGGATA	TGCATCAAGA	TCAACACTTA	TCTTCTCAAT	TTAATACAAA	3840
20	TCTATTTGAA	GGAGATAAAG	CACTCGTCAC	AAAATTTTTG	GAAATCAATA	GAACGCTTTC	3900
	ATAATAAGGG	TTTGAAGTTT	TATAATAGAA	AAAAATTATT	GAATTATGTT	TGACATTTAC	3960
	ATAAAAATA	GCAAATAATT	GAGAAAAATA	ATCATTACGA	TTTGATTAAG	TAATGCAACT	4020
25	TATCAATTTA	GAAAGAGGAA	AAGCAAATĠA	GAAAACTAAC	TAAAATGAGT	GCAATGTTAC	4080
	TTGCATCAGG	GCTAATTTTA	ACTGGTTGTG	GCGGTAATAA	AGGTTTAGAG	GAGAAAAAG	4140
20	AAAACAAGCA	ATTAACGTAT	ACGACGGTTA	AAGATATCGG	TGATATGAAT	CCGCATGTTT	4200
30	ACGGTGGATC	AATGTCTGCT	GAAAGTATGA	TATACGAGCC	GCTTGTACGT	AACACGAAAG	4260
	ATGGTATTAA	GCCTTTACTA	GCTAAAAAGT	GGGATGTGTC	TGAAGATGGG	AAGACATACA	4320
35	CGTTCCATTT	GAGAGATGAC	GTTAAATTCC	ATGATGGTAC	GCCATTTGca	TGCtGACGCA	4380
	GTTAAGAAAA	ATATTGACGC	Agttcaagaa	AACAAAAAAT	TGCATTCTTG	GTTAAAGATT	4440
	TCGACATTAA	TTGACAATGT	TAAAGTTAAA	GATAAGTACA	CGGTTGAATT	GAATTTGAAA	4500
40	GAAGCATATC	AACCTGCATT	GGCTGAATTA	GCGATGCCTC	GTCCATATGT	ATTTGTGTCT	4560
	CCAAAAGACT	TTaAAAACGG	TACAACAAAA	GATGGCGTTA	AAAAGTTCGA	TGGTACTGGT	4620
	CCATTTAAAT	TAGGTGAACA	CAAAAAAGAT	GAGTCTGCAG	ACTTTAACAA	AAATGATCAA	4680
45	TACTGGGGCG	AAAAGTCTAA	ACTTAACAAA	GTACAAGCAA	AAGTAATGCC	TGCTGGTGAA	4740
	ACAGCATTCC	TATCAATGAA	AAAAGGTGAA	ACGAACTTTG	CCTTCACAGA	TGATAGAGGT	4800
	ACAGATAGCT	TAGACAAAGA	CTCTTTAAAA	CAATTGAAAG	ATACAGGTGA	CTATCAAGTT	4860
50	AAGCGTAGTC	AACCTATGAA	TACGAAAATG	TTAGTTGTCA	ATTCTGGTAA	AAAAGATAAC	4920
	CCTCTCACTC	ACAAAACACT	CAGACAAGCG	ል ተተርርተር አጥ	теставасьс	ስርስ ጥል ል ል ጥጥ	4000

	ACAGACATTA	ATTTCGATAT	GCCAACACGT	AAGTATGACC	TTAAAAAAGC	AGAATCATTA	5100
	TTAGATGAAG	CTGGTTGGAA	GAAAGGTAAA	GACAGCGATG	TTCGTCAAAA	AGATGGTAAA	5160
5	AACCTTGAAA	TGGCAATGTA	CTATGACAAA	GGTTCTTCAA	GTCAAAAAGA	ACAAGCAGAA	5220
	TACTTACAAG	CAGAATTTAÁ	GAAAATGGGT	ATTAAGTTAA	ACATCAATGG	CGAAACATCA	5280
	GATAAAATTG	CTGAACGTCG	TACTTCTGGT	GATTATGACT	TAATGTTCAA	CCAAACTTGG	5340
10	GGATTATTGT	ACGATCCACA	AAGTACTATT	GCAGCATTTA	AAGAGAAAAA	TGGTTATGAA	5400
	AGTGCAACAT	CAGGCATTGA	GAACAAAGAT	AAAATATACA	ACAGCATTGA	TGACGCATTT	5460
15	AAAATCCAAA	ACGGTAAAGA	GCGTTCAGAC	GCTTATAAAA	ACATTTTGAA	ACAAATTGAT	5520
	GATGAAGGTA	TCTTTATCCC	TATTTCACAC	GGTAGTATGA	CAGTTGTTGC	ACCAAAAGAT	5580
	TTAGAAAAAG	TATCATTCAC	ACAATCACAG	TATGAATTAC	CATTCAATGA	AATGCAGTAT	5640
20	AAATAAAGGA	GCAATTAGAT	GTTCAAATTT	ATCTTAAAAC	GTATTGCGCT	CATGTTTCCA	5700
	TTGATGATTG	TAGTAAGTTT	TATGACATTT	CTATTGACGT	ATATTACAAA	TGAAAATCCA	5760
	GCTGTGACAA	TTTTACATGC	ACAAGGGACG	CCAAATGTAA	CACCAGAGTT	GATTGCAGAA	5820
25	ACGAATGAGA	AGTACGGTTT	CAATGATCCA	TTATTAATTC	AAAAATAAAA	TTGGTTACTT	5880
	GAAGCGATGC	AATTTAATTT	TGGTACAAGC	TACATTACAG	GTGACCCAGT	TGCTGAACGT	5940
	ATTGGTCCAG	CATTTATGAA	TACATTGAAA	TTAACAATAA	TTTCAAGTGT	TATGGTGATG	6000
30	ATTACATCAA	TTATTTTAGG	TGTAGTTAGT	GCATTAAAAA	GAGGAAAGTT	CACTGATCGT	6060
	GCGATACGTT	CAGTGGCTTT	CTTTCTAACT	GCATTACCAT	CATATTGGAT	AGCTTCAATA	6120
	CTTATTATTT	ACGTTTCAGT	GAAGTTAAAC	ATATTGCCGA	CTTCTGGATT	AACAGGTCCA	6180
35	GAAAGTTACA	TATTGCCAGT	GATCGTTATT	ACGATTGCCT	ATGCTGGTAT	TTACTTTAGA	6240
	AATGTTAGAC	GCTCGATGGT	GGAACAATTA	AATGAAGATT	ATGTACTTTA	TTTAAGAGCA	6300
40	AGCGGTGTGA	AATCTATCAC	ATTAATGTTG	CATGTGTTGC	GTAATGCTTT	AÇAAGTTGCG	6360
	GTATCAATCT	TTTGTATGTC	TATACCAATG	ATAATGGGTG	GACTAGTTGT	TATCGAGTAT	6420
	ATCTTTGCAT	GGCCTGGACT	AGGTCAATTA	AGTTTAAAAG	CAATACTTGA	ACACGATTTT	6480
45	CCAGTCATTC	AAGCATATGT	ATTAATTGTA	GCGGTATTAT	TTATTGTATT	TAATACATTA	6540
	GCAGATATCA	TTAATGCGCT	ATTAAATCCA	AGATTAAGGG	aGGGCGCACG	ATGATAATTT	6600
	TAAAmCGATT	ATTmCArGwT	AAAGGTGCAG	TAATTGCTTT	AGGCATTATT	GTATTATATG	6660
50	TCTTTTTAGG	ATTAGCAGCA	CCACTTGTGA	CATTTTATGA	TCCTAACCAT	ATCGATACAG	6720
	CAAACAAATT	TOTTOTOTO	א כיוושושנייני כיא א כי	አጥርም እርጥ አርርር	THE COURT OF A COURT	TTACCTACAC	6700

	TATTTGTTTC	TGTACTTATT	GGATCTATTT	TAGGATTCTT	ATCAGGATAT	TTCCAAGGGT	6900
	TTGTTGACGC	CTTAATCATG	CGTGCGTGTG	ATGTTATGTT	GGCATTCCCA	AGTTATGTTG	6960
5	TAACGTTAGC	ATTAATTGCA	TTGTTTGGAA	TGGGTGCCGA	AAATATTATC	ATGGCATTTA	7020
	TTTTGACGCG	TTGGGCATGG	TTCTGTCGTG	TTATACGTAC	AAGTGTTATG	CAGTACACTG	7080
	CTTCTGACCA	TGTAAGATTT	GCTAAAACAA	TCGGTATGAA	TGATATGAAA	ATTATTCACA	7140
	AACATATTAT	GCCATTAACA	TTAGCAGATA	TTGCTATCAT	CTCTAGTAGC	TCGATGTGTT	7200
	CAATGATCTT	GCAAATATCT	GGCTTTTCAT	TTTTAGGATT	AGGTGTCAAA	GCGCCTACTG	7260
15	CAGAGTGGGG	CATGATGCTT	AACGAaGCTA	GAAAAGTGAT	GTTTACACAT	CCTGAAATGA	7320
.5	TGTTTGCGCC	AGGTATTGCC	ATAGTGATTA	TAGTGATGGC	ATTTAACTTC	TTATCCGATG	7380
	CTTTACAAAT	TGCTATTGAT	CCCCGCATCT	CTTCTAAAGA	TAAACTTCGT	TCTGTGAAAA	7440
20	AAGGAGTGGT	GCAATCATGA	CATTGTTAAC	AGTTAAAĆAT	TTGACGATTA	CAGATACCTG	7500
	GACAGATCAA	CCACTCGTGA	GTGATGTGAA	TTTTACATTA	ACTAAGGGTG	AAaCTTTAGG	7560
	CGTTATTGGA	GAAAGTGGTA	GTGGTAAATC	AATCACTTGT	AAATCGATTA	TTGGTTTGAA	7620
25	TCCCGAACGA	CTCGGGGTGA	CAGGTGAAAT	TATCTTTGAT	GGTACAtCAA	TGTTGTCATT	7680
	ATCTGAATCG	CAATTGAAAA	AGTACCGTGG	TAAAGACATT	GCGATGGTCA	TGCAACAAGG	7740
	TAGTCGTGCC	TTTGACCCAT	CAACTACTGT	CGGTAAACAA	ATGTTTGAGA	CTATGAAAGT	7800
30	ACATACGTCA	ATGTCTACAC	AAGAAATTGA	AAAGACATTG	ATTGAATATA	TGGATTATTT	7860
	AAGTTTGAAA	GATCCTAAAC	GTATATTAAA	ATCATACCCT	TACATGTTAT	CAGGAGGAAT	7920
	GTTACAGCGA	TTGATGATTG	CTTTAGCGTT	AgcTTTgAAA	CCAAAGTTAA	TCATTGCTGA	7980
35	TGAGCCGACA	ACGGCTTTAG	ATACAATTAC	ACAATATGAT	GTACTGGAAG	CATTTATAGA	8040
	TATTAAAAAA	CACTTTGACT	GTGCGATGAT	TTTCATTTCA	CATGATTTAA	CGGTTATTAA	8100
40	CAAGATTGCA	GACCGTGTTG	TTGTGATGAA	AAATGGTCAG	CTTATTGAAC	AAGGGACACG	8160
	TGAATCAGTC	TTGCATCATC	CAGAACATGT	TTATACGArt	ATTKTATTAT	CAACGAAGAA	8220
	GAAGATTAAT	GATCATTTTA	AACATGTGAT	GAGGGGTGAT	GTACATGATT	AAAATTAAAG	8280
45	ATGTTGAAAA	GTCATATCAA	AGCGCACATG	TTTTTAAGCG	TCGTCGAACA	CCTATCGTGA	8340
•	AAGGTGTGTC	ATTTGAGTGT	CCAATCGGTG	CGACGATTGC	GATTATCGGA	GAAAGTGGTA	8400
	GCGGTAAATC	GACGTTGAGT	CktATGATAT	TAGGTATTGA	GAAACCGGAT	AAAGGTTGTG	8460
50	TAACCTTAAA	TGATCAACCG	ATGCATAAGA	AGAAAGTGAG	ACGTCATCAA	ATTGGTGCTG	8520
				a> mmma> a> a	mamma and a	N COOR N COOR	0500

	TGTTGGAAGA	AGTCGGTCTA	TCTAAGGCAT	ACATGGATAA	ATATCCTAAT	ATGTTATCAG	8700
	GTGGAGAGGC	GCAACGTGTT	GCGATTGCGC	GTGCAATATG	TATTAACCCT	AAATATATTT	8760
5	TGTTTGATGA	AGCCATTAGT	TCACTCGACA	TGTCAATTCA	AACACAAATA	TTAGATTTAT	8820
	TGATTCATTT	ACGTGAAACG	CGTCAGTTGA	GTTATATTTT	TATCACACAT	GATATTCAAG	888
	CTGCCACGTA	TTTATGTGAT	CAATTAATTA	TTTTTAAAAA	CGGAAAAATA	GAAGAACAAA	8940
10	TTCCGACAAG	CGCATTGCAT	AAAAGTGACA	ATGCTTATAC	AAGAGAATTA	ATAGAAAAAC	9000
	AACTATCATT	CTAAGGAGTG	AGATAATGAA	AGGTGCAATG	GCTTGGCCCT	TTTTGAGATT	9060
15	ATATATATTA	ACATTGATGT	TCTTTAGTGC	CAATGCAATC	TTAAACGTGT	TTATACCTTT	9120
	ACGAGGGCAT	GATTTAGGCG	CAACGAATAC	GGTTATCGGT	ATCGTTATGG	GGGCATACAT	9180
	GTTAACAGCA	ATGGTATTTC	GACCATGGGC	AGGACAAATT	ATTGCTCGTG	TCGGTCCCAT	9240
20	TAAAGTATTA	AGAATTATTT	TGATTATCAA	TGCCATAGCT	TTAATTATTT	ATGGTTTTAC	9300
	TGGCTTAGAA	GGTTATTTCG	TAGCACGTGT	TATGCAAGGT	GTGTGTACGG	CATTCTTTTC	9360
	TATGTCTTTA	CAGCTAGGTA	TTATTGATGC	ATTACCAGAG	GAACATCGTT	CTGAAGGTGT	9420
25	ATCATTGTAC	TCGCTATTTT	CAACGATTCC	AAACTTAATC	GGACCATTAG	TTGCCGTAGG	9480
	TATTTGGAAT	GCAAATAATA	TTTCACTATT	TGCAATTGTC	ATTATCTTTA	TCGCATTAAC	9540
	AACAACATTC	TTTGsTATCG	CGTGACCTTT	GCTGAACAGG	AACCCGATAC	GTCAGATAAG	9600
30	ATTGAAAAAA	TGCCGTTTAA	CGCTGTAACT	GTTTTTGCGC	AATTTTTCAA	AAATAAAGAG	9660
	TTGTTGAACA	GTGGTATTAT	CATGATTGTT	GCATCGATTG	TATTTGGTGC	AGTTAGTACA	9720
	TTTGTACCGT	TATACACAGT	GAGTTTAGGA	TTCGCGAATG	CGGGAATCTT	TTTGACAATA	9780
35	CAGGCCATCG	CAGTTGTTGC	GGCAAGATTT	TACTTAAGGA	AATACATTCC	GTCAGATGGT	9840
	ATGTGGCATC	СТАВАТАТАТ	GGTATCTGTA	CTATCATTAT	TAGTAATCGC	GTCATTTGTA	9900
10	GTGGCATTTG	GTCCGCAAGT	AGGTGCAATT	ATTTTCTATG	GTAGTGCGAT	ATTAATAGGA	9960
	ATGACGCAAG	CAATGGTGTA	CCCAACATTA	ACATCATACT	TAAGCTTCGT	CTTACCAAAA	10020
	GTAGGTCGTA	ATATGTTGTT	AGGTTTATTT	ATTGCCTGTG	CAGACTTAGG	TATATCGTTA	10080
15	GGTGGCGCAT	TGATGGGACC	TATTTCCGAT	TTAGTAGGAT	TTAAATGGAT	GTATCTAATT	10140
	TGTGGTATGT	TAGTCATTGT	AATAATGATT	ATGAGTTTCT	TGAAAAAGCC	AACACCACGT	10200
	CCAGCGAGTA	GTCTTTAATG	AAGTGAATTA	AAGCATATTA	agttaatgaa	TATTTAAATT	10260
50	TTAAAAGGTA	TATTGAGCAT	GGCGATTCAT	GTGCTTCATG	CTAGGACATG	AAACATTCTA	10320
	TATGGCTCGT	TTTTAGAACG	ACALATATCT	AAATAAAGCA	CGCTTATAAG	ТСАСТТТТСА	10380

	TTACATGAAA	ATATGCAAAA	CGAGTATAAC	TGCTAATTGA	TAGAAATAGC	TCACCATAAA	1050
	ATTACGGTAT	GATTTTAAAT	ATAAGTAAGT	CGCACTACCT	GCTAGTATCA	ATGCTGGAAT	1056
5	GAATTCCCAC	CATGTATTAA	TGTATGGATA	GTAGAACAGA	GTTTCAAGGA	TAATGGACAA	1062
	TACTATTGTA	ATCTTTAAAG	GTATTAATCT	GCTTAATTCT	TGAATTAAAA	TATGACGGAA	1068
	AATAAGTTGA	CAAATCAAAG	TATTTAATAT	AATGGTTAAC	GAAAATATAG	CTATTAAACT	1074
10	GATGGAaCCA	TACCCTTTAA	TGAGCGGGTA	AATGTCAAAG	ACAGTAAAGG	AATCTACATT	1080
	TAGTGCGAAA	ATATTGAAAT	GATTTAAAAG	TAAAAAGAGT	ACGACACTTA	GTGTAAATGA	1086
15	TATAAGAATA	TGCCATTTAT	ATTTAGCACT	AGCAACGATT	TGCGAACGTA	TCATTGGAAT	1092
	AAACGCATCT	TCATGCATCA	GACGAAAAAT	AGCTAGTGAA	ATAATAACTG	CGAGTAAATA	1098
	GCTAATGTTC	ATTGAAATAG	GAAAAGAGAA	ACCCCACGGA	GCTTGTTGAG	TGAATACAGC	1104
20	TACTAACCCA	AAAGTTAAAA	AGACGATAAT	GATCGGCAAG	ATGTTAACCA	AAAATATGTA	11100
	AAGGAAAATA	AATCCAATAT	CACGTTTGAA	AAAACGCGAT	TGTTCGGTAG	CGTATTCTTC	11160
	TTCTATGTAA	TGTTTATTTG	TATTTGACAT	AGTATACCTC	TTAAATAGTT	GTATTATATA	11220
25	GATACTTTAG	CACATATTAC	TTTGTATTGT	ATGTTTTATA	CATTAAAATT	TAAAATGAAA	11280
	AACATATCAT	AAAATTGTTT	TATAAAATGA	AGCGCTTCCA	TTGTGTTTTG	TTTTGTAAGG	11340
	TGTATCATAA	ATATTGAATT	GAAATTTTGG	GGGGAGGTAT	TGTAATGACG	TTTCTTACAG	11400
30	TCATGCAATT	TATAGTTAAC	ATTATCGTTG	TAGGATTCAT	GCTTACGGTT	ATTGTTATCG	11460
	GGCTTATTTG	GTTAATTAAA	GATAAAAGAC	AATCACAACA	TAGTGTATTA	AGGAATTATC	11520
35	CTTTACTAGC	ACGTATTAGA	TATATTTCAG	AAAAAATGGG	ACCGGAATTA	CGTCAGTATT	11580
	TATTTTCTGG	GGATAATGAA	GGGAAACCTT	TTTCACGTAA	TGATTATAAA	AATATCGTTT	11640
	TGGCTGGAAA	АТАТААСТСТ	CGTATGACCA	GCTTCGGTAC	TACTAAAGAT	TATCAAGACG	11700
40	GCTTTTACAT	ACAGAACACA	ATGTTTCCGA	TGCAACGTAA	TGAGATTTCA	GTAGATAATA	11760
	CAACATTGTT	ATCAACATTC	ATTTATAAAA	TCGCGAATGA	GCGTTTATTT	AGTCGTGAAG	11820
	AATATCGTGT	GCCGACAAAG	ATTGATCCGT	ATTACTTAAG	TGATGACCAT	GCAATAAAAT	11880
45	TAGGTGAACA	TTTAAAACAT	CCATTTATTT	TAAAACGTAT	CGTAGGACAA	TCTGGTATGA	11940
	GTTATGGCGC	TTTAGGAAAA	AATGCCATTA	CAGCTTTATC	TAAAGGTCTA	GCTAAAGCGG	12000
	GCACTTGGAT	GAATACAGGT	GAAGGTGGCT	TATCAGAATA	TCATTTAAAA	GGTAATGGGG	12060
50	ATATCATTTT	CCAAATTGGT	CCCGGTTTAT	TTGGTGTTCG	TGATAAAGAA	GGTAATTTTA	12120
	GTGAAGGTTT	ATTTAAAGAG	GTTGCACAGT	ТАТСТААССТ	ACCCCCATTT	GAGCTGAACT	12100

	TTGCTAAAAT	CCGAAATGTT	GAACCTTATA	AAACAATCAA	TTCACCTAAC	CGTTACGAAT	12300
	TTATTCATAA	TGCTGAAGAT	TTGATTCGTT	TCGTCGATCA	GTTGCAGCAA	TTAGGTCAAA	12360
5	AACCAGTAGG	ATTCAAAATT	GTAGTAAGCA	AAGTTTCAGA	AATTGAAACA	CTTGTACGTA	12420
	CGATGGTGGA	ACTAGATAAG	TATCCAAGCT	TTATTACGAT	TGATGGTGGT	GAAGGTGGTA	12480
10	CTGGTGCAAC	ATTCCAAGAA	TTACAAGATG	GTGTTGGCTT	ACCGCTATTT	ACAGCTCTAC	12540
10	CTATTGTGTC	TGGCATGTTA	GAAAAATATG	GTATTCGAGA	TAAAGTGAAA	TTGGCGGCAT	12600
	CTGGTAAGTT	AGTGACACCA	GATAAAATTG	CGATTGCACT	AGGTTTAGGT	GCAGATTTTG	12660
15	TAAATATCGC	ACGTGGGATG	ATGATTAGTG	TCGGTTGTAT	AATGAGTCAA	CAATGTCACA	12720
	TGAATACGTG	TCCTGTAGGT	GTTGCAACGA	CAGATGCGAA	GAAAGAAAA	GCATTGATTG	12780
	TTGGAGAAAA	GCAATATCGT	GTCACAAACT	ATGTAACAAG	TTTGCATGAA	GGCTTATTCA	12840
20	ATATTGCAGC	AGCTGTTGGC	GTATCCAGTC	CTACAGAAAT	TACTGCTGAT	CATATTGTAT	12900
	ATCGAAAAGT	CGATGGTGAG	TTACAAACGA	TACATGATTA	AAATTAAAT	CTCATTAGTT	12960
	AACTTAATTA	TTTCGGGAAA	TTGAAAGCAG	CGGATTTTAG	CGTTACTGCA	AATAATTTTA	13020
25	TATTAGTAGT	GGATGCTGGT	CACACAAGAA	CTTCAAATAT	TAAAGCCCTC	AGAATATGAA	13080
	TTAAGGTTTG	TAACCTTAGT	CTTATCTGAG	GGCATTTTTA	AGTTATAAAC	TATTTGTCGT	13140
	CCATTTTATC	TTTTTCTTTT	AAACCTCTGT	GCTTTAATTG	CTTTTCAAGT	TTTTCAAAAC	13200
30	TAATATCTTT	ATTTTCTT;TA	GTCGAAACAC	CAAGACGTTT	ATTTAATTTT	TTCATGTCAA	13260
	CTTCTGTGTA	ATCTATGTCT	AAGTGYTCAA	TTGCTTTTTT	ATCTTTATAG	TCTACTTTGT	13320
25	ATTTTACGCC	TTTAAGGTCT	TTGAAAATAC	TTTCAGATTT	GGCGAATAAC	TTTTTGGCTT	13380
35	CGTCTTTATC	CATACCTAGA	TCGTCATATT	TAATTGTGTT	GATTGTAGAC	TGTTTTAAAA	13440
	CTTTATCATC	TTTATATGTG	ATAGAAGTTA	GTACATGTTT	ACCACTAACA	TCACCWTCAT	13500
40	ATGÎTTTGGT	TTGTTCTTTA	CCACAAGCTG	ATAATGCAAT	GATACAAACT	AATGCTACTA	13560
	CAATTAATGA	ACATAATTTT	TTCAAAGTCA	GTCGCCTTCT	TTCGATATTT	GTATTATAAA	13620
	GAAATTATAA	CATTTACTAA	AAAATGATGT	таттсааааа	TTTAAATTTT	GTCATTTTTT	13680
45	TTGAAGATAT	GAGTTTTTTT	AAGCGGATTC	CTCACAAAAT	тттааааата	TTTAAGCCTk	13740
	AAAATGATAA	AGCGKTAGGG	AACGTTTTTC	TGAAAGTTAG	TGATACAATA	GTTTTAAGTT	13800
	GAAATACAGG	AGGATGAATA	ACATGAATCA	GTCAGTCAAA	TTACTTAAAC	ATTTAACAGA	13860
50	TGTAAACGGC	ATTGCTGGTT	ATGAAATGCA	AGTTAAAGAA	GCAATGCGTa	ACTATATAGA	13920
	GCCTGTCAGT	GATCAAATTA	TTGAAGATAA	CTTGGGTGGC	ATTTTTGGAA	AGAAAATGC	13980

	AACAAAGATT	GATAAACATG	GTTTTATTTC	ATTTACGCCA	kTgGTGGATG	GTGGAATCAA	14100
-	GTCATGCTAT	CTCAAAAAGT	AACGATTACA	ACAGATTCGG	GCAAAGAAAT	TAGAGGTATC	14160
5	ATCGGTTCTA	AACCGCCACA	TGTCTTAACG	CCTGAAGAAC	GTAAAAAGCC	AATGGAAATC	14220
	AAAAATATGT	TTATAGATAT	TGGTGTTAGT	AGCAAGGAAG	AAGCTGAAGA	AGCTGGCGTT	14280
10	GAAGTAGGCA	ATATGGTTAC	GCCATATAGT	GAATTTGAAG	TGCTTGCAAA	TGATAAATAT	14340
	TTAACTGCGA	Arcatttgat	AATCGCTATG	GCTGTGCATT	AGCTATTGAG	GTATTAAAAC	14400
	GTTTAAAAGA	TGAAAATATT	GGCATTAACT	TATACAGTGG	TGCCACAGTG	CAAGAAGAAG	14460
15	TTGGTTTGCG	TGGTGCGAAA	GTGGCAGCGA	ATACGATTAA	ACCAGACTTG	GCGATAgcTG	14520
	TCGATGTAGG	TATTGCTTAT	GATACCCCAG	GTATGTCAGG	TCAAACGAGC	GATAGTAAAC	14580
	TAGGCGGTGG	TCCAGTTGTC	ATTATGATGG	ATGCTACAAG	TATTGCTCAC	CAAGGTTTGC	14640
20	GAAAgcATaT	TAAAGATGTA	GCTAAGGAAC	ATAACATCGA	AGTACAATGG	GATACGACAC	14700
	CAGGTGGAGG	TACAGATGCG	GGAAGTATTC	ATGTCGCAAA	TGAAGGTATT	CCAACGATGA	14760
	CAATCGGTGT	TACGCTGCGA	TACATGCATT	CTAATGTTTC	AGTGCTCAAT	GTAGATGATT	14820
25	ATGAAAATTC	TATCCGTCTT	GTTACTGAAA	TTGTCCGTTC	ATTGAATGAT	GAAAGTTATA	14880
	AAAATATCAT	GTGGTAATCA	AATCCATAAA	TAATAAAGAA	TCCTTTTAAT	ATGGTAGGTT	14940
	GTTAAACAAT	TGTCTAATTT	TAATTCTTAG	TCATTAGACA	GTATCCATGT	TAATAGGATT	15000
30	TTTTGTTTTT	AATTTAAATG	CTGAAAATCA	ATTATGCCTA	AATTTTGATA	TTACAAGAAA	15060
	ATGATTTTTT	CTTAAATGTA	ATTGCACTAA	AAACCAAAAA	AACGGGAATA	ATATACCTGA	15120
35	TATATTACAT	GAGGAGCGGT	GCAAATGTTG	TTAGAAATTA	AAGATTTAGT	GTATAAAGCG	15180
	AGCGATAGAA	TCATACTAGA	TCATATCAGT	CTAAAAGTAG	ATAAAGGCGA	GAGTATTGCC	15240
	ATTATAGGTC	CATCAGGTAG	TGGTAAAAGT	ACATTTCAAA	AGCAAATATG	TAATTTGTTT	15300
10	AGTCCAACTA	GTGGAGAACT	TTATTTTAAA	GGTAAACCCT	ATAATGATTA	TGACCCGGAA	15360
	GAATTGCGTC	AACGAATCAG	TTATTTGATG	CAGCAAAGTG	ACTTGTTTGG	TGAAACGATT	15420
	GAAGATAACA	TGATATTCCC	ATCACTTGCA	CGTAATGATA	AATTTGATAG	AAAACGTGCA	15480
15	AAGCAATTAA	TTAAAGATGT	CGGTTTGGGA	CATTATCAAT	TAAGTTCGGA	AGTGGAAAAT	15540
	ATGTCGGGTG	GTGAGCGGCA	AAGAATTGCT	ATAGCGCGCC	AACTGATGTA	TACACCGGAT	15600
	ATTCTTTTAT	TAGATGAATC	GACCAGTGCA	TTAGACGTTA	ATAATAAAGA	AAAGATAGAA	15660
50 ·	AATATCATTT	TTAAATTAGC	AGATCAAGGC	GTGGCAATTA	TGTGGATTAC	CCACAGCGAT	15720
	GACCAAAGTA '	TGCGACACTT	TCAAAAGCGT	ATAACAATTG	TTGATGGTCA	ΑΑΤΤΤΟΤΑΑΤ	15780

	CATTCCGATT	ATCATTTCAT	ATAAAGAAGG	TTTACATATT	ATTAAAGATT	TAATTGTTGC	15900
	GACATTACGA	GCAGTTGTGC	AATTAATCAT	TTTGGGATTT	TTGCTGCATT	ATATTTTTAA	15960
5	AATAAACGAT	AAATGGCTGC	TTATTTTATG	TGTATTGGTC	ATTATTATTA	ATGCATCATG	16020
	GAATACAATT	AGTCGAGCAT	CACCAGTGAT	GCATCATGTG	TTTTGGATAT	CATTTCTAGC	16080
	TATCTTCATT	GGAACGGCAT	TACCGCTTGC	AGGTACTATT	GCGACAGGGG	CCATTCAATT	16140
10	TACCGCAAAT	GAAGTTATAC	CTATCGGCGG	CATGCTTGCA	AATAATGGCT	TGATTGCAAT	16200
	TAATTTAGCT	TACCAGAATT	TAGATCGTGC	ATTCGTACAA	GATGGTACTA	ATATTGAATC	16260
15	TAAATTATCA	CTTGCAGCTA	CACCTAAATT	GGCTTCTAAA	GGTGCAATAC	GTGAAAGTAT	16320
	TCGTTTAGCT	ATAGTGCCAA	CTATTGATTC	GGTTAAAACA	TATGGGCTTG	TGTCGATTCC	16380
	TGGTATGATG	ACAGGCTTAA	TTATTGGTGG	CGTACCACCT	TTACAAGCGA	TTAAATTTCA	16440
20	ATTGTTAGTC	GTGTTTATTC	ATACAACTGC	GACCATTATG	TCTGCTTTGA	TTGCGACATA	16500
	TTTAAGCTAT	GGTCAATTTT	TCAATGCAAG	ACATCAATTA	GTAGCACGAA	ATACTGATGT	16560
	TAAGAGTGAA	TCATGATAGA	TTTTACTGCA	TCAGATTTAG	GCATTAGTTT	TAATTGGAAA	16620
25	TGAAGTGACG	CGCACATATA	GTATCGCTAT	TCATTAGCGC	AGCGAAAATA	TTCATAAAGG	16680
	CACGCATACT	TTGTAGTCAG	TTATCTGTTC	TGACATATAA	AGCGTGCGTG	CTTTTTTGGA	16740
	GTTATTGTTG	AAACTGAAGT	AATTATACAT	AAATTATTAAA	TGACATACTT	GTGTTAATTT	16800
30	TTCAAATACT	GAAAAACAAT	TTCAATAATT	TTCCaATTAA	GCACAGAAAA	TTAAAGCAAA	16860
	ATATTATATA	ATAGAACGGT	TATATATAAA	nATTngTgCA	CACATTTTTT	AATAAATCGT	16920
o.c	TATTCTAAGG	GAAATGAATA	TCGGAAATTT	TGTTTGAAAG	GAGTTTTAAA	TTGTCAATCA	16980
35	TGCGACTATT	TACATTCATT	TTAAGTATTT	TTATCGTAGG	aatggttgaa	ATGATGGTTG	17040
	CAGGÃATTAT	GAACTTGATG	AGTCAGGACT	TACATGTATC	AGAAGCTGTC	GTTGGTCAAT	17100
40	TAGTGACAAT	GTACGCTTTA	ACATTTGCGA	TATGTGGACC	TATTCTGGTT	AAATTAACGA	17160
	ACCGTTTTTC	ATCAAGGCCT	GTATTATTAT	GGACATTACT	TATATTTATC	ATTGGTAATG	17220
	GCATTATTGC	TGTAGCGCCA	AATTTTTCaA	TATTAGTAGT	TGGTAGAATT	ATCTCATCTG	17280
45	CAGCAGCAGC	ACTAATTATC	GTAAAAGTAT	TAGCTATTAC	AGCGATGTTA	TCAGCACCTA	17340
	AAAATCGTGG	TAAAATGATT	GGACTTGTCT	ATACAGGGTT	TAGTGGTGCT	AATGTTTTTG	1,7400
	GTGTACCAAT	TGGAACGGTT	ATCGGCGATT	TAGTAGGTTG	GCGCTATACA	TTTCTATTCT	17460
50	TAATTATTGT	GAGTATTATT	GTTGGCTTCT	TGATGATGAT	CTATTTACCG	AAGGATCAGG	17520
	AAATACAACC	ACCCCCTCTC	3 3 TC 3 TC 3 C 3	CACCATCTCA	ጥሮ እ እ እ አጥሮ እጥ	CTTT A CTTTCC A	17500

	CAAACTCAGT	GACATTCGTC	TTTATAAATC	CACTTATTTT	ATCTAATGGT	CATGATATGT	17700
	CATTCGTTTC	ATTAGCACTT	CTAGTAAATG	GAATCGCTGG	CGTTATTGGA	ACATCATTAG	17760
5 .	GTGGTATATT	CTCCGATAAA	ATTACAAGTA	AGCGTTGGTT	AATGATTTCT	GTTTCTATTT	17820
	TTATCGTCAT	GATGTTACTT	ATGAATTTAA	TCTTACCTGG	TTCAGGTCTA	TTGTTAGCAG	17880
10	GACTATTTAT	TTGGAATATC	ATGCAATGGA	GTACTAATCC	AGCAGTGCAA	AGCGGTGTGA	17940
10	TTCAACATGT	TGAAGGCGAC	ACAAGCCAAG	TAATGAGTTG	GAACATGTCT	AGTTTAAACG	18000
	CTGGTATTGG	TGTTGGAGGC	ATTATTGGAG	GCTTGGTCAT	GACACATGTT	TCTGTTCAAG	18060
15	CTATCACATA	TACGAGTGCC	ATCATTGGCG	CATTAGGATT	AATCGTTGTT	TTCACATTGA	18120
	AAAATAATCA	TTATGCTAAA	ACATTTAAAT	CATCATAATT	CTCATATGAm	AAGCACGCCT	18180
	GCTATCAAAT	TCAGGTGTGC	TTTTTTAGAT	GCGATAACGT	TATTGATATG	TGCGATAATA	18240
20	GCGACGTTCA	TTATGATACA	TCGGCCAAGG	CATTTTACCG	CTTTTAGCAA	AATTAGCTAA	18300
	ATCATTTTGC	ATTTGTCGAC	TTAAAAATTT	AAGGTGaGCA	GTTGTTGGaT	ATGAT	18355
	(2) INFORMA	ATION FOR SE	Q ID NO: 68):			
25	· (i) SE	QUENCE CHAR	ACTERISTICS	:			

25

- (A) LENGTH: 1192 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

30

35

40

45·

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

CGCAAAGAAG	TACAAAAAAT	GTTTTTACAA	GAAGGTATTA	AAACACCTCA	ACCAATTATG	60
ACTGCTTATA	ATCATAGTGA	AAACGgTGTT	TAGTAGTTTA	TAATACATGG	AGGTCATATT	120
TAATGGCGTC	AAAATATGGA	ATAAATGATA	TAGTAGAAAT	GAAAAAACAA	CATGCGTGTG	180
GAACAAACCG	TTTTAAGATT	ATTAGAATGG	GTGCAGACAT	AAGAATTAAA	TGTGAAAATT	240
GTCAAAGAAG	TATTATGATT	CCACGTCAAA	CGTTTGATAA	AAAACTTAAA	AAAATCATCG	300
AATCTCATGA	TGATACACAA	AGATAGGAGA	ATGATTAATG	GCTTTAACAG	CAGGTATCGT	360
TGGATTGCCA	AACGTTGGTA	AATCAACATT	ATTTAATGCA	ATAACAAAAG	CAGGTGCTTT	420
AGCAGCGAAC	TATCCATTCG	CTACGATTGA	TCCTAATGTA	GGGATAGTAG	AAGTGCCAGA	480
TGCTAGATTA	CTTAAATTAG	AAGAAATGGT	TCAACCTAAA	AAGACATTGC	CGACTACATT	540
TGAATTTACA	GATATCGCTG	GTATTGTGAA	AGGTGCTTCA	AAGGGAGAAG	GGTTAGGTAA	600
TAAATTCTTA	TCACATATTA	GAGAAGTAGA	TGCGATTTGT	CAGGTCGTTC	GTGCATTTGA	660

55

	TAATATGGAA	TTAGTACTAG	CGGACTTAGA	ATCTGTTGAG	AAACGTTTGC	CTAGAATTGA	780		
	AAAATTAGCA	CGTCAAAAAG	ATAAGACTGC	TGAAATGGAA	GTACGTATTT	TAACAACTAT	840		
	TAAAGAAGCT	TTAGAAAATG	GTAAACCCGC	TCGTAGTATT	GACTTTAATG	AAGAAGATCA	900		
	AAAATGGGTG	AATCAAGCGC	AATTACTGAC	ТТСТАААААА	ATGCTTTATA	TCGCTAATGT	960		
	TGGTGAAGAT	GAAATTGGTG	ATGATGATAA	TGATAAAGTA	AAAGCGATTC	GTGAATATGC	. 1020		
	AGCGCAAGAA	GACTCTGAAG	TGATTGTTAT	TAGTGCAAAA	ATTGAAGAAG	AAATTGCTAC	1080		
	ATTAGATGAT	GAAGATAAAG	AAATGTTCTT	AGAAGaTTTA	GGTATCGaAG	AACCAGGATT	1140		
	AGATCgrTTA	ATTAGGAMCA	cttatgaatt	ATTAGGnTTA	TCCACCATAA	TT	1192		
(2) INFORMATION FOR SEQ ID NO: 69:									
	(i) SEQUENCE CHARACTERISTICS:								

- (A) LENGTH: 7494 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

60	AAATATCAGT	ATTCCGGTTT	TGTATAATCA	TCGTTTCATT	CAATAGCATC	AATATAGCTG
120	TTTCAATCGT	GAATGAGTCG	AACACTGCCG	GATTAAAAAT	GCACGACACA	GTGAACGTAA
180	TATCAACAAA	AATACTCACT	TGCGTCCGAT	ATCGATTTTT	ACTCTAGCAA	CGCTtCCAAA
240	GCCCCCACTT	CTCCTAAAAA	AATGTATCTA	AATAACGAAG	AATAACCTGA	CTTGTTATTA
300	CCTCAATCCA	CTGCGAATGC	ATTCCTATAA	ATAAATAATG	CATTCAAGTG	AACCATTGTG
360	GTCTTTTGTA	AACGTTTAAA	ATTTTTTCTA	CGGGGAATAC	GTAAGTATCG	TCTAATCCAG
420	CAATATTTTT	TAGTATATCA	CTCTATTTTG	ATTTATTTT	TAAACGCCCC	TCCATGTTAA
480	AGATAGTTTT	CCCTTAATTA	ATTGATTTAA	aTTTTCATTA	TATTGCACTG	GAAAÂTAAAA
540	AAACCACATA	TCATTACTGC	ACAGTTGATT	AACAATTATT	TTAAGTAGAA	AAATTTTTTA
600	TTTTAGCAAA	ATTCTTGAAT	ATTATCATAG	CATAACATAG	GATTTTACTA	TAAATTTGTC
660	TTATGCATCT	GTTTTATATT	AAAAAGGTTC	ATTTTTACAA	TTTTCATTAT	ATAACTGTTA
720	TTTATATAAT	TTTTTCAAAA	TCGAATATAC	GATATGCTAT	GAATCATTAA	TACTGTAACA
780	ATGTAAACCA	CTATCCTCTA	GAAATGCAGC	AAAAAAAAGC	ACATGTATTG	GAATAAATTA
840	AAATGAATAT	GTCACTTTTA	AACGCTATGT	TTTATATTTA	CTCGTCAGAC	AACGATATAT
900	TTCTGTAATA	TCTTTTAAAT	ATCGAATTAA	TTATTATTGC	GTCATATCAA	TACTAAGATT

	ACGGAAGTCA	TTATTAGAAT	AAAAATACTG	TGCACTAATA	AATTTATCAA	TTGTTCCTAA	1020
	ATAAATACCA	TCGATATTTT	GTTCTTTACA	TGTCATTATA	ACTTTATCTA	AAAGTTTTTT	1080
5	ACCTATTTTT	AAATTCCTAT	AACCTTTATC	AACAAACATT	TTTTTAAGTG	CAGACATATT	1140
	ATTATCTAGT	CTAATCAAAC	CTATAGTACC	AACAATATTT	TGaTGATTGT	TTATTGCAAG	1200
10 ·	CCAAAATgCC	CTCCATTATT	CAAATAGTTA	TGTTCGATGT	TCTCCAAATC	AGGTTGATCA	1260
,,,	TCTCTATCAA	ТТТТТАТАТа	AATTCATTTT	TTTGAATCGA	TAAAATAAAC	TCGATTAGCT	1320
	CTTCCTTATA	AGACCTATTA	TATTCAATTA	TGTTTATAGC	CATTTTTATC	TCCTTTTTCA	1380
15	TTTAATTTAA	TTATAAAATG	TGCGTTTAGT	TTGTATCTAG	TGTACTCAGT	ACAGCCTCAA	1440
	ATGAAGTTTC	ATTCCACTTG	GCACTTAATA	AAGACAAGTA	TTTTAGCAGT	AATACAATAA	1500
	AGTCCAATAA	ATTTCCCTAA	CTTCAATATC	CACTTTTTAA	AAAATGTATT	TTTAATTAAT	1560
20	AAAAAAACTC	TCCCCAATTT	CTATGGGAAG	AGCTATATAT	TTAATGTCTA	AACATTACTT	1620
	TTATTTATTA	TGAAGGAATT	AGAATCCCCA	AGCACCTAAA	CCTTGTGCTT	TGTATGCTTT	1680
	AACAGCTGCG	TTGATTTGTT	GGTCAACAGT	GTTTGTTGGA	CCCCAACCTG	GCATAGTTTG	1740
25	GAATAAACCT	GAAGCACCTG	ATGGGTTGTA	AGCATTTACT	TGACCATTTG	ATTCACGAGC	1800
	GATGATTGCA	GCCCATGTAG	AAGCTGAAAC	ACCAGTACGT	TGAGCCATGA	TTTGAGCTGC	1860
	TGATGAACCA	GTAGCACCTG	CAGTATTACC	ATTGCTTAAT	CTCACTGAAC	TTGAAGTAGT	1920
30	TGAAGTGCTG	TAGTTATGGT	AAGTTGGAGC	TGAAACAGCT	TCAACGTtTG	AGTTACTTGA	1980
	TTGTGCATTG	TAGCTTACTG	ATTGTACATT	TGAACCTTGG	TTGTATGAAG	TAGTGTAGTC	2040
35	TGCACCTGCA	ACGTTTGAGA	AACCAGCAGT	TTGACCATTA	GCTGCTTCAT	AGCTCCATGA	2100
,	CCATGTAGTA	CCATTTGAAG	TGAAGTTATA	TTGGAAACCA	TCTTTTACAA	AGTGGATGTC	2160
	ATATGCACCA	TCTTTGATTG	GAGCTGCATT	TAATTGATCT	TGGTGATTAT	GCGCTAAGTC	2220
40	AACTAAGTGT	GCTTGATCAA	CGTTTACTTC	AGCAGCGTGT	GCTTGATGTC	CTGTACCTGC	2280
	TGCGTAACCT	GTTACACCTA	ATGCCACTGC	TAATGATGAT	GCCATAATTG	TCTTTTTCAT	2340
	AGTAAAAAAT	CCTCCAGTAA	TAATTGTnAG	TTTATGTTTT	TAGTAATTAT	AtTTTGaATT	2400
45	TGAATGTCGT	AGTgCAAGTT	TAAATTGTCT	TTTATTTCTT	TCaACGGTAC	TCACTATATC	2460
	АСАаААААСС	AGCCAGTAAA	TTACACTTTC	TTTACAAAAC	ATTACAATAT	CAAGTGTTAT	2520
	TTGtAATGTT	GAAATATGGC	TGTTTTATAC	TGTAATGTGA	AATATGTGCC	CTTTAGAATC	2580
50	CAATCAACCC	TTGAAATAGT	CTTTAACACA	TAAGATTTTT	ACTATATTTA	GCTCAACTAT	2640
	TACAGCTTTC	GTAATATTAC	AGATTGTATT	ТТТСТТАСАТ	ACCTCTAATA	ጥልጥርጥር አ ርአጥ	2700

	TACACATGTA	TTGATTGCTA	TTATTGTTGT	ATATTCAAAG	TTTTAAAACA	CACATCTTTT	282
	GTGAATTGTC	TTATCTTTTA	TTAGCGCAAA	TAAACTGCAG	CTCAATTATA	TTGTTCAACT	288
5	TCATTCTCGC	AATTCACAAT	AACATTAAAT	AATTTTTGGT	CTCATATTTT	CAAAAAACAT	294
	ACTGTTATTA	TCCCATGAAT	TTAAAAATAT	CATTAGTATA	TAAACGAAAC	ACTTTACGAT	300
10	AAATGATATC	TGCAAGCCAA	GCTGTTACAA	ATGGTACAAC	AAAGAACGCT	ACTACAATTA	306
10	GTAAGACACT	CAACCAAGCA	GAATCAACCT	CCATAAATTT	AAATGCATTA	ATCGGTCCTA	312
	CCATTCCTAT	AAAACCAAAT	CCAGCTGACT	CTTTCGTTCC	ATGAATACCT	ACTAATGCTG	318
15	ATACCAAACC	TGATACAATG	GCTGTCGTTA	ATATTGGTAA	CATAAGAATT	GGATATTTCA	3,24
	CCATATTAGG	TATCATCATT	TTAACGCCTC	CAAAGAAGAC	GGATAACGGC	ACCCCTAAAC	330
	GATTCACTTT	ACTTGTACCA	ATTATCAATA	CTGCTTCAGT	CGCGGAGATA	CCAATTGACG	336
20	CTGATCCAGC	TGCTAAACCT	GTAATACCTA	TCGCAAAGGC	AATGGCCACA	GTTGATAGTG	342
	GCGAAATAAT	AATAAGACTA	AATACCATTG	AAATCAAAAT	ACTCATGACA	ATCGGTTGTA	348
	ATTCTGTAAA	ACCATTAACC	ATATTACCGA	TGGCTGTTGT	AATCATTTTC	GTATACGGCA	354
25	ATATTAAAAC	ACCAATTGCA	CCTGAAATAC	CGCCAACAAC	TGTTGGGAAT	ACAATCAATG	3600
	CCATACTACC	TACGCGATGT	TGAATAAGTA	AAATGAATAA	CACTGCAATC	GCTGCTGTAA	3660
	TCATTGTATT	AATTAAATCA	CCAATACCCG	TAATCATCCA	AGCACCATTT	TTAAACTGCG	3720
30	CTGCACCGCT	TCCTACATAT	GCTGCACTTG	CCACAACAGC	AATTGCTAAT	GGCGATAGGT	3780
	CAAATTTCAT	GGCAACCAAT	GCACCAATCA	AAGCAGGTAC	TGTAAATTGA	ATTGCAACGA	3840
35	CAACGCCTAA	TAACGTTTTA	AAAATCGGAT	GATAATCCAT	aaagtattta	AAAATTTCTC	3900
	CAAGTATCGC	ATTAGGAACT	AAACCCGCAA	CAATACCTAT	GGCGACACCT	GATAAAACTC	3960
	TAAATATAAA	ATCTTTGGGT	GTAATTGTTT	TAATTGATGT	CATAATATCA	TCCTTCCATT	4020
40 [°]	TATGTATATA	CATCTGTATG	CAAATAATAA	AGAGCCTTAA	GTTATAAGCT	GCCACTAGCT	4080
	TAAATTCTAA	GATGTGCATG	CCGATGTTGT	TATATTTAGG	CTAGCAGTAT	CATCTATAAC	4140
	TCAAGACTAT	GAAAAATAGT	ATATCACAAA	ATTCTGAATT	TTTAGATAAA	TAAATTGGCA	4200
45	ATTTTTCAAA	CATATTGTTA	CAATACACTT	TTATTTTATC	TTCATTTTTA	AAATCCATTA	4260
	ATACAATAGA	AGAAAGACAT	TCAAATGCTT	ACCAAAAAGG	TACATTATTT	GTTAGGAGCG	4320
	TATCAGCaCT	TACATATCAT	CAACACAATT	GACAATATAA	TAGAAGATAC	TGATAATAAG	4380
50	TGTTAAAACA	ACAGATGTTA	GGTAGTGAAC	AAATGATGGA	AAGTAAATCC	ATAGATCCAA	4440
	GAATCGTTAG	AACCAAACAA	ምጥረ-ምጥረ ም ረ ረ	ATTCCTTTTTCT	TA	ACACAAAACA	4500

	TTTACGCTCA	TTTCGCTGAT	AAAGAAGACC	TCCTAGACTA	CACATTATCT	GTAACCATTT	4620
_	TAAAAGACTT	GAATGATAAT	TTGAGCATTT	CTAATGTCAT	TAATGAAAAG	GTTCTGCGTA	4680
5	ATATTTTCAT	TTCAATTGCG	AGTTATATCA	AAGATGCTGC	AAAGTCTTGC	GAATTAAATA	4740
	GTGAAGCATT	TTGCAACAAA	GCACATCAAC	GTATTAATAA	TGAATTAGAA	GATATTTTTG	4800
10	CGATTATGTT	AGAAAACAGC	TATCCGGAGC	ATCAACGAGA	TATCATTGTA	AATAGTGCGA	4860
	GTTTTTTAGC	AGCTGGTATC	TCAGGCTTAG	CATTACATTG	GTTTAACACG	AGTCAAGAGA	4920
	CAGCCGATGT	GTTTATCGAT	CGCAACCTTC	CATTTTTAAT	TCATCATATA	GCACATTTTT	4980
15	AATAAAACTT	GGTATTTAGT	CATGCATCTT	GAAATCACTA	TGTGACTTAG	GTTCATACTT	5040
	GTACACACAA	TAAAATTTAA	CGTATTACGA	TTGATTAGCC	GTGTCTAGGA	CATAAATCAA	5100
,	CGTCCTATAC	TCTACAATGT	CATATTAGCA	GTCGTTAACT	GAATGAAAAT	AAGCTTGTCA	5160
20	TTAAAACATA	TAGATTTTAG	TGACAAGCAT	TTTTGTTTTT	GCGTACTTAA	ACAACACTTC	5220
	AGGCAATATG	TTGTTTAGGC	AACAAATGAT	ATGTGCGTGT	TTATTGGCAA	ACGTACGACA	5280
	TAGTAGTATA	GTATGTCTAA	ACAACATATG	TTGCATAGTT	GATATGCGTT	GTTTAAATAC	5340
25	TAAGATAGGA	GGGATTGACG	TGAGCGAGAC	AGATGAACCT	CAGGGGTTTG	AACGCACGCA	5400
	TAATATATTA	AATATTAATC	AGAGTAGTCT	GGGTGTAGTG	ACATACATTA	CAAATAAATT	5460
20	AAAGTCGACG	TTGAAGCAAC	ACATAATAAT	TGCTCGTGGT	AAAAAGCGAA	TCGACTATCG	5520
30	ACTGTCGTAT	AACTTTTACA	TACGTATTAT	GATAATGTAG	AAATCAAGAA	AATCGACTGT	5580
	GAATATACCT	ATGCTATGCC	CATTGCAATT	TTAATAAGAC	ACACGATGTC	ATTCGACAAT	5640
35	GCTCATTTCT	TTGCTCAGTT	ACGTCATCCT	GTCTTATAAA	ACAACATTGC	AGACATGTAT	5700
	ATCAAACGAC	ACTTCAATAA	CATCACTTTG	CCCATCGTAC	TACTAGTAAA	ATCGTGTCTC	5760
	AAATECCTTA	TTTTAATTCC	AAAAALCTGC	TGGTCAAAAG	ACCGAGAAAC	TAAAAACATT	5820
40	ACTTAATGTG	TTGATAAATT	ACCATATAAA	AATAATCTCA	AAATATATCA	ACACTTGATT	5880
	CTAAGGAGGA	TATGACAATA	TGAAAATTTT	AGATAGAATT	AATGAACTTG	CAAATAAAGA	5940
•	AAAAGTACAA	CCACTTACTG	TAGCTGAAAA	ACAAGAACAA	CATGCATTGC	GTCAAGACTA	6000
15	CTTAAGCATG	ATCCGAGGAC	AAGTATTAAC	AACATTTTCC	ACAATAAAAG	TGGTTGATCC	6060
	AATCGGTcAG	GATGTCACAC	CAGATAAAGT	TTATGATCTT	CGCCAACAAT	ACGGTTATAT	6120
	TCaAAATTAA	tATTTGCTCA	CGAGGTATTG	CACTTAAGGT	GCCAACTGAC	CTCATAAACA	6180
50	AAGCCCATAC	TGATTGAAGA	CACTAATGTG	tCsaCCATGG	TGCACATTAC	GCTTCATCTC	6240
	тстатессст	ידי מידיידי מידיידידידי	TCTTTCACA	ماملمان لا تاملمان لا	ACCACACCAA	8 8 8 8 mm 8 8 8 8	C200

	TGAACGACTG	TGCCACCCGC	TTCTTTCACT	TTATTCACCA	ACTGGTCAAC	TTCTTCATTT	6420
	GTGTTCACAC	CTAGAGAAAT	CATCACTTCA	TTTGGTTCAG	TATTAAGGCT	TTGCTGACTT	6480
5	ACATTTTGAA	AATGCTTGTn	TTCTATTAAA	ATTACGGRTG	tTTGACCTAT	tTGAATGCCG	6540
,	ACCATTTTAT	CTAACATTTG	TGGGTTTCTA	TTTATTTTAA	ATCCTAACGC	TTTATAAAAC	6600
10	TGTGCGCTCT	TTTCTAAATC	TTGCACATGC	AAATTAAACC	ACATTGATTG	AATCATGATT	6660
70	GCACCCCATT	CATTACTTAT	TATAGTTTTG	GACTTTAAGC	CAATCACTTA	ATGATAATCT	6720
	TGTTGGATTT	ATTTCAGCCA	TTAATTCAAA	GTCTACTTCA	TAACCTTTTT	CTTCCAACCA	6780
15	TTGCTTTTCT	GCAACACCAC	TAACAAATTC	TCCTTCTATA	ACAGTAGATT	TACCTGTCAC	6840
	TTCACTAAAA	ATTGTTGCTG	CTTCACTTAA	TGTAACTTCA	TCGGAACCAA	TCTCTATTGA	6900
	TTGATGCGTA	AAGCTTTGTG	GATGTGCAAA	AATATACGAT	GCAATTTTAG	CTATATCAAT	6960
20	AGAAGAAATC	ATTGTGAATT	TTATATTCGG	ATTAATAAAT	TCTGGTAATG	TAATACGTTC	7020
	ATCTTCGACT	TTAGCAATGC	GTAAAAAATT	ATCCATAAAG	AATGATGGTT	TGATAACTGT	7080
	TGCATTTATA	TTAGATTCCA	TTAATCTATT	TTCTATTTTT	GCTAGTACTT	CAAAGTGTGG	7140
25	GCCAGTTCGA	TTTCGATTAA	CCCCTCCCGC	AGTACTATAC	ACAATATGTT	GAATATTTTC	7200
	TTGCTCAGCT .	ATTTCAATTA	TCTTCATACC	TTGTCTTAAT	TCTTCGCTAA	CATCATCTTT	7260
	AACGATTGGC	TGAATACTGT	ATAAGCCATA	CTTACCTTTC	ATCGCTGATT	GCAAACTAAC	7320
30	ATTATCACTC .	AGATCACCTT	CArCGATTGA	TAAATGCGGA	TGTCCTATGT	CTGAAAGTTT	7380
	ACGATTATTC	TTATTTCTAG	TTAATGCACT	TACATACCAT	CCATCCTCTA	ACAACTGTTT	7440
35	TACAACTGCA	TTACCTTGCT	TCCCTGTTGC	GCCTATTACn	AAAATATCTT	TCAT	7494
,	(2) INFORMA	TION FOR SE	Q ID NO: 70) <u>:</u>			
			ACTERISTICS 11802 base				
40	(1	B) TYPE: nu		_			
		D) TOPOLOGY					
					•		
45	(xi) Si	EQUENCE DES	CRIPTION: S	EQ ID NO: 7	70 :		
	AATTTATTTC (GCCGTCCCAC	CCCAACTTGC	ATTGTCTGTA	GAAATTGGGA	ATCCAATTTC	60
	TCTTTGTTGG (GCCCcGCCC	CAACTCGCAT	TGCCTGTAGA	ATTTCTTTTC	GAAATTCTCT	120
50	GTGTTGGGGC	CCTGACTAG	AATTGAAAAA	AGCTTATTAC	AAGCGCATTT	TCGTTCAGTC	180

AATTACTGCC AATATAACTT CGTAGATCAT AGAACATTGA TTTATTTCCC AGCCTATTCT

	AGCAAAGGTA	ATAATGATAT	TAATAATGTA	CAAAAAATAT	AAATCAAATC	GACATCCTTA	360
	TAAAACATCA	GAACCACTAA	AAACAAAAA	GCACAAAATA	AAATTAAATT	TAAAATAAAC	420
5	GACCACTTTT	САААААААТС	TCtTTTCaTa	TTTCCACCCC	TAATTTTAAT	AAGCATTATT	480
	TTATATTCTC	TTTTAAGTTT	ATTATTCAAA	AGGAAAACAG	AAATATCTTT	Caatattatt	540
10	ATAAACATTT	CAACTACTTT	TAAAAACCAA	САААААААТА	СТТАТТТТАА	GTAGATGAGC	600
. •	ATAAGTGAAC	ATAGTTCTTT	AGTTATAATA	ATTAATTCAA	CCAAAAGTCG	ATTTGTTTTT	660
	GCAATTGGTT	TTCATTTCCT	CTTAAAGATA	TTTTCATTAA	ATCTGTCAAA	TCAATAGACG	720
15	CTATATTTTT	CAACTTATCT	CTATATTTAT	TTTTAGTACG	TCTTTCTAAA	TTTCCCCATT	780
	CCTCTTCTTC	GTGAGTTAAT	AAATGAAGCA	TTGCTCGTTC	TTGTATATTT	TCAATCATTT	840
*	TTAAATTCGG	TTTTAAAATA	TGCAAATCAT	CAAAACAATC	TTTCCAACAA	TCAACCATAT	900
20	CTCGTTTTAA	TTCAATTTCC	ACACGCCATA	GAAATGTTGA	ATCAATTTCA	ACATCTGCAT	960
	TATCTTTACG	TTCTTGTTTT	TATTATAAAT	CCGAATAAAC	CTATCACTAT	TACGCACACC	1020
25	AAAATATTTT	GTTTCTGGTT	TTACATTACG	TCCATAAAAT	ATAGTTTTCT	TTACCGACTT	1080
.5	ATCTGACAAT	GCATAATAGT	CATTTAAATC	AAATTCAAAA	TCAAAAGCCA	AATCTAATCT	1140
	CGTAAAACTA	ACATCGTCCA	AATAACTGAT	GATATTTTGT	TTTAACCAAA	GCACTTCATC	1200
30	ATGCGAAAGC	TTATTAGGAT	TAAATTCAAC	GCGCATALAC	GTCTATTCCA	AAGAGTTGCT	1260
	TTTATTTTGT	CATATTCAAT	ATAAACTTTT	TCTTTAAGAG	CTTTAGCTTT	AAAGTTTGTT	1320
	TGTAAAATAT	CCCAAAGCCG	AATTTCAGGA	TTAGTACTCA	TAAAATGTGA	AAGTCTCTCT	1380
35	GCGTTAGACA	TGCTAAGATT	CCCAACAATC	GTTATAGCGT	CAAAAGACAA	TTTTGGAATA	1440
	GCTAGTGACA	TCCTATGTCG	ATTTAACCGG	CTATTACCGG	ATATTAGAGT	ATCCAGTTTT	1500
10	ACAAATGGAT	GAAACGAAAT	TCAAAACACT	AAAAAATATG	TTCCACTAAC	AGCAAAAAA	1560
10	TACCATTATG	TTCCTACTAA	ААААСУАААА	ATACTGGAGA	ACAAATGTCA	GGATATAACT	1620
	TAGGATACTA	TGTAATAAAA	ATTTACAATA	AAAAAACAGG	AAAACAAATT	TCAAGTAAAA	1680
15	GmATACCCAT	ACAAAGAGGA	TAAAATAAAA	AACCTCGAAC	TGaAATGATG	ATCTTTTCAG	1740
	CTCGAGGTTT	AAATATTGGT	GCCTTATTTA	TATAGATTCG	TTATATTATA	TTCTCTATTT	1800
	TCATTAACmT	AATCCTTAAA	GAGTTTTAAA	TTAATACCTG	CTAGATGATT	CAAAAATGTT	1860
50	TCATCAACTT	TTAAATAATT	CAATAATTTT	TGTGGTGTCA	GTAAATnTCT	ATCAAAATAC	1920
-	AACTTTAATA	AACTATTCAT	TTTGACAGGA	CGTGACATTT	CAATCACGTC	GTCTAAAGAT	1980
	AATACTTTCT	CGCTTTAnac	AAAnACAAAA	ACTTACCCGA	TTAAAATCAA	GTAAGTTTTA	2040

	TATTTGATAA	AAAATCAATA	AGTAATTGTG	CGCCTTCAAC	TTGAATATCT	TTTACAACTG	2160
_	GCGCGTCGAT	ATACATATCA	TACTGACCAC	CGCCTACTGC	ACGATAATTA	TTTACACAAA	2220
5	TTGTATATGT	CTGCTTTAAA	TCAACTGCGT	GACCTTGAAT	CATCATATTG	CTCACACGTT	2280
	GTCCCTTTGG	TCTTCCAACA	TGAATGGTAT	AACTTACGCC	ACCATATATA	TCATAATTAA	2340
10	AGTGTTGTGG	TTTGGGTTCA	AGGAAGTCTG	CGCTCACACT	AACTTCATCA	TTTTTCACGT	2400
	CAAAATATTC	TGCTGATCGT	TCAATGGCTT	CTTTAAGTTT	GGCACCACTT	ACAGCTAAAA	2460
	CTTTAAATGT	ATTTGGAAAT	GGGTAATTGT	TAATAACATC	TCGCATCGTC	ACGACTTGCT	2520
15	TGAAACCACT	AGCAGAATCA	AACAAAGCTG	TACAGGCAAC	ATCTGCGTCA	CTTTTTTCTA	2580
	ATAAAGCGTA	ATTCATAAAA	TTTGTAAAAG	GATGCGGTGC	CACACGTGCC	TCAAATGCAT	2640
	GATTAATCGT	CATATCATAT	GGCAATGTAG	TAATTTCGTA	ATCTAACCAG	TCCTCTAACT	2700
20	GCTTTCGTAA	ATGTTGGTCA	TCTTCATCAA	TAGTAAATGT	GGAATCATCT	ATAACAGGAA	2760
	GTAATTCACA	TGATTCAACG	GATAGATTTT	CATATTCATC	AGTACTCAAG	ACTACTCTGC	2820
25	CTACAGTTGT	ACCTCTCGTA	CCAGGTTGAA	TCACAGCCGT	TTGCTTAAAC	CTTTCAGCAA	2880
	TTTGTCGATG	TTGGTGACCC	GTAATAAAGA	TATCTATATC	TTTAGAAAAC	GCTTCTAACA	2940
	TGGCATATCC	TTCATTTTCA	CCCGTTAATA	CTTCGGTCGG	CGTACCACTT	TCTAAATCCT	3000
30	TTTCAAATCC	ACCATGGTAA	CAAACCACAA	TGATATCTGC	ATGTCGCTTC	ATTTCAGGTA	3060
	AGTATTGTTG	AAGTATTTCA	AAAGCACTAT	GAAACGTArT	GnCnTGAATA	TGCTCTGGTT	3120
	GTTCCCAATG	GGGAATAAAT	TGTGTCGTTA	AACCTATCAC	ACCAACAGTT	TGATCTCCAA	3180
35	CCTGAAAATA	CTTCACACCG	TTATCAGTCA	ATGTACTATC	ATTTTCATAT	ATATTAGCGC	3240
	ACAAAACTGG	ATAATTGAGT	CTGCGTAAAG	TGTCTTTTAA	GTATGGTAAT	CCATAATTAA	3300
40	ATTCATGATT	ACCAAGCGTA	CCAAAGTCGA	ATGCCATTCG	ATTATAAAAA	TCAACTAAAG	3360
40	GCTGGCTACT	GCCGCTATGC	GCGATTAAGT	AATTACAAAA	TGGTGACCCT	TGCAAAAAT	3420
	CACCATTATC	TATTTTAAAA	CTTTGGTCAT	ACTGCCTTCT	GTSTTGTTCT	ATAACATGAT	3480
45	TCGCTAGTAA	CAATCCCATA	GGTTGATATT	GATTTCTACT	CGTAAAATCT	GTTGGGAAAA	3540
	TATAACCATG	TACGTCACTC	ACGACATAAA	ATGCTATGTT	TGACATCCTC	ACTCACTCCT	3600
	TCAATCACAA	ACATCTTTCT	TATTTCTATT	TATTTTTAT	TTGAAGTCTG	TTGTAATCAA	3660
50	GGTTTTGTCA	CCGAGTTTTA	AACGAATCTT	TGAACCTTCC	ATACTTTCAA	GTACTTTAGC	3720
	ATTGACCTTA	ATTGTGACAT	TTCCGTTTTC	ATCTGCTTTA	ACTGTTGGCA	AAGTACTGTA	3780
	ACCTGGTGGG	TTATAATCGT	TATCTTTACT	TGAAAATTGT	CCGATTTGAC	GTCCGCCTTC	3840
55							

	TATTGTCATT	TCAAATGGCT	CATTTACAGA	AACATTTTGC	GGGATATCAA	ATGTTACTTT	396
_	TTCGTTCTGA	TTTGGTGGTG	TATGATCATC	TGGTGTGTTT	GGCTGAGGAT	CTGCGCCTTT	4020
5	TTCGCTGCCA	TAACTACCTG	CTTTAAATGT	TGTTGGATCA	TACCATTTAT	AACCACTCGG	408
	CGGTTGTGAC	CATGGCTCTT	TTTCAGGCTC	AGTTGAACGC	TCTGGTCGTT	CAAAATCAAG	4140
10	CAACTTAGTC	TTTGTATCTA	ATGTTAGGCT	ACTCGCCTTA	AGTGATTTCC	CATCATTATC	4200
	TTTAGACATC	CAAGCCGTTA	TATTATTTAA	TAGCTTACCG	TTGTCTTGTT	CTTTAAAACC	4260
	ATCATATGTT	TTCTTCTTTT	CTCCATTATC	TTCTCTTACA	TATTTGGGCG	AACTATCTTC	4320
15	CACAAGTGAT	GAATCACCGA	TAAATGCTGC	TTTACCTTTT	CCAACTTTAG	AAATTGCTAC	4380
	ATAGGGGCCT	TCTGCTTTAC	CGCCCCCATT	ATAAATACCT	TGATCTACAG	CATGTGACCA	4440
	TITACTTTTC	GCTGGCAATT	GTTCTGGTGT	ATACACAATA	CCTTTTGCTT	TCTCTGGATT	4500
20	AGTAATTGCT	AATGTCGATC	CGGCATGCAT	AGAGACAGAT	TTCACACCTT	CAGTAATACC	4560
	GAAACTTTCT	TTTGAAGAAA	CAATATTGCT	CGTATTTAAA	TCACCTAGTG	CATTATATCG	4620
25	AAAACGTACG	CCAAAGTTTG	TAGATAACCA	ATCTGAACTT	TTCACACCTT	GCATTGCAGT	4680
	AGAACTTTTT	TCTTCTGCAT	TCATACCTTT	CGACATATCT	TCATATGCTC	CACGTCGATA	4740
	ACCATTCATT	GCCTCCGATG	AATCAATACG	ATTTAAATTT	CGGTCAGCAT	TGTAATGATC	4800
30	TGAAATAAAG	ACAACATTGC	CACCTTGTTt	CACATATTTA	ACAATTGCTG	CCTGTTCTGA	4860
	TTCTTTGAAA	GGAATGTTAG	CCTCAGGAAT	TACAAATATT	TTGGAACTTT	TCAAACTTGC	4920
	TTCTGTTATG	TTCGAATGAC	CATCAATAGC	TTTAACGTCA	TAACCTTGTT	TTTGTATTGA	4980
35	ATCCGCATAA	TCTGAAAATG	CACCATCACT	AACCCAATCT	GCAGCACCAG	CTGTTTGACC	5.040
	ATGAGAACGA	TCGAATAATA	CCGTTCGCTG	TTGCTTTGTA	GGTTGCGATT	CATGCGTTAT	5100
40	AGCTAAAGAT	TGCGGTAAAG	CACTTAATGA	TACCGTTGCA	ACAATTGCAG	AGACAGTTAA	5160
40	TGACTTATAT	ATTTTTTCA	TTTTGTGAGG	CTCCTTTTAA	AATAAATTTG	TTCTTGAATT	5220
	ATAGGATAAA	AATTCGTTGC	ATATGAGCAA	TTTAACGAAA	AATTTACAAA	ATCTTATCAA	5280
45	ACTCTTAAAG	AAAGTTATTA	AAATTCATTT	ТТАТААААТА	CTTTTTAACA	TTTAAATGTG	5340
	GTACGCTATA	AGTGTAATTT	CATTGCATAC	ATATTACACG	ATTAAGAATG	TGAAGGGGAC	5400
	AGTTATCAAA	TGAAAAATTT	TAAGTGTTTA	TTTGTATTAA	TGTTAGCAGT	CATTGTTTTT	5460
50	GCAGCAGCAT	GTGGAAACTC	AAGTTCTTTA	GATAATCAAA	AGAACGCTAG	TAATGATTCG	5520
	GATTCTAAAT	CAGGAGGATA	CAAACCTAAA	GAATTAACCG	TTCAATTTGT	ACCTTCGCAA	5580
	AATGCTGGAA	CATTAGAAGC	TAAAGCAAAA	CCATTAGAAA	AATTACTATC	TAAAGAATTA	5640
<i>55</i>							

	TCTAAAAAAG	TTGATGTTGG	TTTCTTACCA	CCAACGGCAT	ACACATTAGC	ACATGATCAA	5760
	AAAGCAGCTG	ATTTATTATT	ACAAGCACAA	CGTTTCGGTG	TAAAAGAAGA	TGGTTCAGCA	5820
5	AGTAAAGAAC	TTGTAGATAG	TTATAAATCA	GAAATTCTTG	TTAAAAAAGA	CTCAAAAATT	5880
	AAAAGCTTGA	AAGATTTAAA	AGGTAAGAAA	ATTGCCTTAC	AAGATGTAAC	ATCAACTGCT	5940
10 ·	GGATATACAT	TCCCACTTGC	GATGTTAAAA	AACGAAGCAG	GTATTAATGC	AACTAAAGAT	6000
	ATGAAAATTG	TGAATGTTAA	AGGTCATGAC	CAAGCAGTTA	TCTCATTATT	AAATGGAGAt	6060
	GTAGATGCTG	CGGCTGTATT	TAACGATGCA	CGTAATACTG	TGAAAAAAGA	CCAACCAAAT	6120
15 .	GTATTTAAAG	ACACACGAAT	TTTAAAATTA	ÁCACAAGCTA	TTCCGAATGA	CACAATTTCT	6180
	GTAAGACCAG	ATATGGATAA	AGATTTTCAA	GAAAAATTGA	AAAAAGCTTT	TATAGACATT	6240
	GCTAAATCAA	AAGAAGGTCA	CAAAATTATT	AGCGAAGTTT	ATTCACATGA	AGGATACACA	6300
20	GAAACGAAAG	ATTCAAATTT	CGACATTGTA	AGAGAGTACG	AAAAATTAGT	TAAAGATATG	6360
	AAATAATCAT	TATTTAACAA	ATGAATCATT	AGCGAATTTG	GTATTAAAAG	CTTTCGTTCA	6420
25	ATAGATATAT	TCTAGATTAA	TATTGAAAAG	CTAGGCGCTA	AACTGAAACA	GATATAGAAA	6480
-	GGTGTCGCTG	TACATTTGAA	ACCATTTGTA	CACAGAAACC	CAATGTCTAT	GATATTTCAG	6540
	TTTACCTTGG	CTTTTCTTTA	TTAAAGAAAG	GTGTCAAACA	TGAGTCAAAT	CGAATTTAAA	6600
30	AACGTCAGTA	AAGTCTATCC	TAACGGTCAT	GTAGGCTTGA	AAATATTAA	СТТАААТАТТ	6660
	GAAAAAGGTG	AATTTGCAGT	TATTGTCGGA	CTATCTGGTG	CTGGGAAATC	CACGTTATTA	6720
	AGATCTGTAA	ATCGTTTGCA	TGATATCACG	TCAGGTGAAA	TTTTCATCCA	AGGTAAATCA	6780
35	ATCACTAAAG	CCCATGGTAA	AGCATTATTA	GAAATGCGCC	GAAATATAGG	TATGATTTTC	6840
	CAACATTTTA	ATTTAGTTAA	ACGGTCAAGT	GTATTACGAA	ATGTACTAAG	TGGACGTGTA	6900
40	GGTTÄTCACC	CTACTTGGAA	AATGGTATTA	GGTTTATTCC	CAAAAGAAGA	CAAAATTAAG	6960
+0	GCAATGGATG	CACTAGAACG	CGTCAATATC	TTAGATAAAT	ATAATCAACG	CTCTGATGAA	7020
	TTATCAGGTG	GCCAACAACA	ACGTATATCT	ATTGCACGTG	CGCTATGCCA	AGAATCTGAA	7080
45	ATTATTCTTG	CAGATGAACC	AGTTGCTTCA	TTAGACCCAT	TAACTACGAA	ACAGGTTATG	7140
	GATGATTTAA	GAAAAATCAA	CCAAGAATTA	GGCATCACAA	TTTTAATTAA	TTTACATTTT	7200
	GTTGACTTGG	CAAAAGAATA	TGGCACACGC	ATCATTGGTT	TACGTGATGG	TGAAGTTGTC	7260
50	TATGATGGTC	CTGCATCTGA	AGCAACAGAT	GACGTATTTA	GTGAAATATA	TGGACGTACA	7320
	ATTAAAGAAG	ATGAAAAGCT	AGGAGTGAAC	TAACATGCCT	TTAGAAATAC	CTACAAAGTA	7380
	TGACTCCCTT	TTAAAGAAAA	AGGTTTCTTT	AAAAACGAGT	TTTACCTTCA	TGTTAATCAT	7440

	AATACCTCAA	ATAGGTGATC	TATTCAAACA	AATGATTCCA	CCTGATTTCG	AGTATTTACA	7560
	ACAAATTACA	ACGCCAATGT	TAGATACCAT	TCGAATGGCT	ATCGTAAGTA	CAGTATTAGG	7620
5	TAGCATCGTT	TCAATACCAA	TTGCGTTATT	ATGTGCTAGC	AATATCGTTC	ATCAAAAGTG	7680
	GATTTCAATA	CCCTCGCGCT	TTATTTTAAA	TATAGTTCGT	ACTATTCCAG	ATTTGTTATT	7740
10	AGCAGCAATC	TTTGTGGCTG	TATTTGGAAT	CGGTÇAAATT	CCAGGGATAT	TAGCACTGTT	7800
	TATTTTAACT	ATCTGTATTA	TTGGAAAATT	ATTATATGAA	TCATTGGAAA	CGATAGATCC	7860
	AGGTCCAATG	GAAGCAATGA	CGGCTGTTGG	CGCTAATAAA	ATAAAATGGA	TTGTTTTCGG	7920
15	TGTTGTACCA	CAAGCCATAT	CGTCATTTAT	GTCATACGTA	TTATATGCAT	TTGAAGTAAA	7980
	TATACGTGCT	TCAGCTGTGC	TTGGATTAGT	CGGCGCTGGC	GGTATTGGAT	TGTTTTATGA	8040
	TCAAACACTT	GGTTTATTTC	AATATCCAAA	AACAGCAACG	ATTATTTTAT	TTACTTTAGT	8100
	TATCGTCGTC	GTCATTGATT	ACATCAGTAC	GAAAGTGAGG	GCACATCTCG	CATGACACAG	8160
	GAAATAGCAA	AATATAATGT	TCACACAAAA	GCACACAAAC	GAAAATTGAT	TAAAAGATGG	8220
	CTTATTGCAA	TTGTCGTCTT	AGCTATTATC	ATCTGGGCAT	TTGCAGGTGT	ACCAAGTTTA	8280
25	GAACTTAAAA	GTAAATCATT	AGAAATCTTA	AAATCCATAT	TCAGCGGATT	ATTCCATCCT	8340
	GATATCAGCT	ATATCTATAT	ACCAGATGGC	GAAGACTTAT	TACGTGGTTT	ACTTGAAACC	8400
30	. TTTGCGATAG	CCGTTGTAGG	TACTTTCATC	GCCGCAATTA	TCTGTATTCC	ATTAGCATTT	8460
	CTAGGTGCAA	ATAATATGGT	AAAGCTACGC	CCAGTTTCAG	GTGTTAGCAA	ATTTATTTTA	8520
	AGTGTTATAC	GTGTCTTCCC	AGAAATTGTA	ATGGCACTTA	TATTTATCAA	AGCTGTTGGC	8580
35	CCAGGTTCAT	TTTCAGGTGT	ATTAGCTTTA	GGTATCCATT	CCGTAGLATG	CTTGGGAAAC	8640
	TTTTAGCTGA	AGATATTGAA	GGTCTAGATT	TCAGTGCTGT	AGAATCATTA	AAGGCCAGTG	8700
	GTGCGAATAA	GATTAAAACA	CTCGTATTTG	CAGTCATACC	ACAAATTATG	CCTGCCTTTC	8760
40	TATCACTCAT	ACTTTATCGC	TTTGAACTAA	ACTTACGTTC	AGCTTCTATA	CTGGGGCTAA	8820
	TTGGGGCTGG	TGGTATCGGG	ACACCACTCA	TATTTGCCAT	TCAAACACGT	TCTTGGGACC	8880
45	GTGTAGGTAT	TATATTAATC	GGTTTAGTAC	TAATGGTCGC	AATTGTCGAT	TTAATTTCCG	8940
	GTTCAATCCG	AAAACGTATT	GTTTAACATT	AAATCAGGAT	ACTCCTAAAT	AAGAAGTCCT	9000
	ACCGTCTTAC	GTTTCTCTAT	AAAATAATAT	ACAGCAGTGA	AGAAAACTAT	TGTTATAGTT	9060
50	AACTTCACTG	CTGTTTTTAT	AATATCTAAA	TTTATTCTAT	TTCAATTCCT	ТТАААТААСТ	9120
	TTTACCGAAC	TCTGGTAATG	TTACGTTGAA	ATTATCTGCT	ATAGTTGCAC	CGATAGAACT	9180
	GAATGTAGTA	TCACTTTCTA	GTGCATGACC	ACCTTTAAAT	TTCGGACTGT	ACATAATTAC	9240

	TGTAATAATT	ACTAAATCGT	CTTCTTTTAA	GTTGCTAAAC	AGTTCTGGCA	AGCGATCATC	9360
	GAAATCTTTA	ATTGCTTGTG	CATAACCTGG	TTTATCACGA	CGATGACCGT	ATAATGCATC	9420
5	AAAGTCTACT	AAGTTTAAGA	AGCTAATACC	TGTGaAATCT	TTCTTAACAA	TTTTCATCAA	9480
	TTGATCCATA	CCGTCCATGT	TACTCTTCGT	ACGAACCGCT	TCTGTTACAC	CTTCACCATC	9540
10	ATAAATGTCA	TTAATTTTAC	CGATGGCAAT	AACATCATAA	CCACCGTCTT	TCAAATGATC	9600
	TAAGACAGTT	TTACCAAAAG	GTTTTAACGC	ATAGTCATGT	CGATTAGATG	TACGTGTAAA	9660
	GTTTCCTGGT	TCACCAACAT	ATGGACGTGC	GATAATACGA	CCAATTAAAT	ATTTAGGGTC	9720
15	TTTTGTCAAC	TCACGAACCT	TTTCACAAAT	ATCATATAAC	TCTTCTAATG	GGATAATGTC	9780
·	TTCATGTGCA	GCAATTTGCA	ATACTGGGTC	TGCACTTGTA	TAAACAATTA	AGTCACCAGT	9840
	TTTCATTTGG	TGCTCGCCCC	ACTCATCGAT	AATTTGCGTA	CCCGATGCCG	GTTTGTTAGC	9900
20	AACAACTTTA	CGACCTGTCA	TTTCTTCAAT	TTGTTGAATT	AACTCTTCAG	GGAATCCATT	9960
	AGGGTATACT	TTAAAAGGTT	GCATAATATT	TAATCCCATA	ATTTCCCAGT	GACCAGTCAT	10020
	TGTATCTTTA	CCAACTGAAG	CTTCACTCAA	TTTAGTATAG	TATGCTTCTG	GTTGTTCAAC	10080
25	TGCATTTACT	ACTGGTAATT	TATCGATGTT	CCCTAGACCT	AACTTTTCAA	GGTTTGGTAA	10140
	AGTTTGATCG	AAACCTTCTA	AGGTATGTCT	TAAAGTATGT	GAACCTTCAT	CTTTAAAATC	10200
30	AGCTGCGTCT	GGCGCTTCAC	CAATACCTAC	TGAATCCATT	ACGATTAAAT	GTACACGATT	10260
	AAATGGTCTT	GTCATAGCTA	TCACTCCCAA	AATTTATATA	TATTÄGTAAT	CTGAATCTGC	10320
	TTCTAAACCT	TGCATAATTT	GAACACCTGC	GCTCGCACCA	ATACGTGTCG	CACCTGCTTC	10380
35	AACCATTTTA	TTGAAATCTT	CTAAATTACG	TACGCCACCT	GATGCTTTTA	CTTCTACATC	10440
	AGCACCTACT	GTATCTTTCA	TTAATTTAAC	GTCTTCTGCA	GTCGCACCGC	CACCTGCAAA	10500
	ACCTGTTGAA	GTTTTAACGA	AGTCCGCACC	AGCCGCTTTT	GTTAATTCAC	TCGCTTTTAC	10560
40	AATTTCGTCA	TGGTCCAACA	ATACCGTCTC	AATAATCACT	TTTACTGTGT	GACCTTTCGC	10620
	AGCTTTAACC	ACTGCTTCAA	TGTCTTGTTG	TACATCATCA	AAACGTCCAT	CTTTTAATGC	10680
	GCCGATGTTG	ATGACCATGT	CAATTTCATC	TGCACCATTT	TGAATTGCAT	CTTCTGTTTC	10740
45	AAATĢCTTTC	GTTGCAGTTG	TCGACGCACC	TAATGGGAAT	CCTATTACCG	TACAAACGAG	10800
	CACCTCTGAA	TCAGCTAGTC	GCTCTGCTGC	ATATTTAACA	TGTGTTGGAT	TCACACATAC	10860
5 <i>0</i>	AGATTTAAAA	TTGTATGctT	TCGCTTCATC	GATGATTTGA	TCGATTTGCG	TACGTGTTGA	10920
	CTCAGGCTTC	AATAAAGTGT	GATCTATATA	TTTCTCAAAT	TTCATACTTA	CTACTCCTCG	10980
	TGTTATATAA	TCTCTTTATT	TAATTTTACT	ATAAATACGA	ATATATCTCG	CGAATTTATA	11040

	ATACTCATTA AACCTAAAAT AATTAAAATA ATACCGAAAT GTGAACTTAA TGCATCATTG	11160
_	CCTGGGAAAT TTAATGCTTT AAAATCGATT AGAGCCGCAG CAATCGCAAT ACCTACAGAT	11220
5	ACCGCCACAT TAATAATTAA ATTATAAAAA CCAATAGCCA CACCTGTCAT ATTAAGATCT	11280
	ATTGTTTTAA TGGCTTCGTT AAGTAAAGGT GCATACATTA AAGCAAAGCT ACCTGCAAAG	11340
10	AATATCATAG AAATGACGAA GATTGAAATG TGATTACCTA CTGCAAATGC AGGTAAAATC	11400
	AAGCTCAGTG CTATTAAAAT AATTGCTGTG ATAATCGCTT GTTTTGAATT CAGATATTCG	11460
	CCGATTTTAC CACTTAGTGC ACCAACAATG ACTGCTACTA TATAACCCGG TACTAATAAC	11520
15	AGTGATGTTG TGTCTAGTTG CAGATGATAA ATTTGCTCCA TTATGAATGG GAACGTAAAA	11580
	ATATAACCCA ATTGGATAGC ATACATTACA AATACTATAA ATAAAAATGA AGCATAACGT	11640
	TTATTTTGGA AAAATGATTT ATTTACTAAT GGACGTTGCG CATTTTTAAT ATATAGCGCA	11700
20	AAAACGATAA TCGCAATTAA GGCACCAATC ATATATAACC AATTAAAGTT CGTAATAAAC	11760
	AGCATGACTG TTGTAGCAGG GGATCCTCTA GAGTCGAnCC TG	11802
?5	(2) INFORMATION FOR SEQ ID NO: 71:	
00	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
35	CTAAAGAAGA TGCGAAACAA GATGTTGATA AACAAGTTCA AGCTTTAATT GACGAAATCG	60
	ATCAAAATCC AAATCTAACA GATAAGGAAA AACAAGCACT TAAAGATCGT ATTAATCAAA	120
	TACTTCAACA AGGTCATAAC GACATTAACA ATGCGATGAC AAAAGAAGCA ATTGAACAAG	180
10	CAAAAGAACG TTTAGCGCAA GCATTGCAAG ACATCAAAGA TTTAGTGAAA GCTAAAGAAG	240
	ATGCGAAAAA TGATATTGAT AAACGTGTAC AAGCTTTAAT TGACGAAATC GATCAAAATC	300
	CAAATCTAAC AGATAAGGAA AAACAAGCAC TTAAAGATCG AATTAATCAA ATACTTCAAC	360
15	AAGGTCATAA CGACATTAAC AATGCGCTGA CTAAAGAAGA AATTGAGCAG GCAAAAGCAC	420
	AACTTGCACA AGCATTGCAA GACATCAAAG ATTTAGTGAA AGCTAAAGAA GATGCGAAAA	480
10	ATGCAATAAA AGCCTTAGCT AATGCGAAGC GTGATCAAAT CAATTCAAAT CCAGATTTAA	540
	CACCTGAGCA AAAAGCAAAA GCGCTCAAAG AAATTGACGA AGCTGAAAAA CGAGCACTAC	600
	AAAACGTTGA GAATGCTCAA ACTATAGATC AATTAAATCG AGGATTAAAC TTAGGTTTAG	660

TTGAAGCAAC ACCTGAGCAA ATCCTAGTTA ATG	GTGAACT CATTGTACAT CGTGATGACA 780						
TCATTACAGA ACAAGATATT CTTGCACACA TAA	ACTTAAT TGATCAGCTT TCAGCAGAAG 840						
TCATCGATAC ACCATCAACT GCAACGATTT CTG	ATAGCTT AACAGCAAAA GTTGAAGTTA 900						
CATTGCTTGA TGGATCAAAA GTGATTGTTA ATG	TTCCTGT AAAAGTTGTA GAAAAAGAAT 960						
TGTCAGTAGT CAAACAACAG GCAATTGAAT CAA	TCGAAAA TGCGGCACAA CAAAAGATTA 1020						
ATGAAATCAA TAATAGTGTG ACATTAACAC TGG	AACAAAA AGAAGCTGCA ATTGCGnAAG 1080						
TTAATAAGCT TAAACAACAA GCAATTGGAT CAT	GTTMAAC AATGGCACCT GGATGTTCCA 1140						
TTCAGTTGAA GGAAATTTCA ACAACAAGGA ACAA	AGCGCCn GATTGGAACA ATTTGA 1196						
(2) INFORMATION FOR SEQ ID NO: 72:							

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1519 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

CAAT	CGIIIC	AACGCIAIIA	ICITIAGACA	ACAATIGIAA	GCGIGIAIGI	GCAGTTTCTA	60
AACA	GTCTAT	AATTCGAGTT	CTTAATTCAG	CTGGATCATC	TTTAAAAATA	AAATCCATCG	120
CTGC	AACTTT	GTAGACAAAT	GTTAAATAGG	TAAGTTCACT	GTGACTCGTA	ACGAAAATAA	180
TGTT	ACCAAC	TGGGTCATGC	TTACGAATTT	CACTGCCTAA	TTTGATACCA	TTAATATCAG	240
TTGA	AAGTTG	AATATCTAAA	AAGTAACAGC	CTATGTCATT	CATATTTTTA	GCTTGCTCAA	300
GCAC	CTCATA	AGGATTATCA	GTTGCGAGGG	CAATTTCCAT	AGGCTTTTCT	TCTATCATTA	360
TATA	- ATTTTT	AATAATGGTA	ACCATGTTTT	CTCTTTGTTT	TGGATCGTCT	TCGCAAATGA	420
AAAT	ITTCAT	ACATTCACAT	CCTTATGGCT	AGTTGTTAAT	AATTTCAACT	TTTTGAATAA	480
AGAA	ACCATT	TTCGATAATT	GTATCTAATA	AGACATTGTC	TGCATTATCA	GCAATTTCTT	540
TTAA	AGTTGA	TAGACCTAAA	CCACGACCTT	CACCTTTAGT	AGAAAAACTT	TCTTGGAACA	600
ATTC	ATGAAT	GCGTGGTATA	TCATCAGCGC	ATTTATTCAT	AACAATAAAC	GTTACTGAAT	660
TTTC	ACTTTC	AATAAATGCA	ACGCGAATGA	TAGGGTCATC	AATTTCAGTT	GATGCCTCAA	720
TTGC	ATTATC	AAGAATAATA	CCAATACTGC	GACTTAAATC	GATCATATTC	AAGTTAATGC	780
TACT	FACTTC	ATCGGGTATT	TCGATACTAA	TCGGAATATT	CATTTCTTGT	GCACGTAAAA	840
TTTT	CGCAGT	AATTAAGCCT	TTAATTTCAC	GTACTTTAAG	ATTCTCGATA	CCATTTAATT	900

GTAGGCCAGG	CATGTCATCT	TCTCGAATGT	ATTCTGAAAG	TGTCGTTAAG	ATATTGACAT	1020
AATCATGACG	GAACTTGCGC	ATTTCGTTGT	TGATAGCTTC	AATCTTCAAT	GTATATTCAT	1080
AATAGGTTTC	AATTTCTTCT	TGATTACGTT	TATATTTCAT	CTCTTTAAGG	AGAAATTGAG	1140
AAATAACAAA	TGTTAATATA	CTTAAAAATA	TAGTGATACC	AATAAAAATA	AAAGAATACT	1200
GCCTTATTAC	TTTAGCTTCA	TCCGAGTTTA	TTTGTGAATA	AAAGAAAAAT	AATGAAAAAG	1260
TAAGCAGTAA	GATAGTCGAA	ATAACTATTA	AAAATCCTTT	GTTTAGTATT	AGATATGGTG	1320
TGCTAATTTT	TTTGAGAACT	CTATTTATTA	TATATGAGAA	TAGTATACTA	ATAGTCACAT	1380
AAACTACAAA	AAAGCTAGGG	AATATTACAA	ATATACTATC	AGAAATTTTG	GTGGATATAT	1440
GCATATATAA	СТАТАТАССТ	GTAGTTAGCA	CnGTnATAGG	AATAATCnGG	CGAGGTCCAT	1500
AATCCACCAA	AATAGAATA					1519
(2) INFORMA	TION FOR SE	O ID NO: 73	•			

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5445 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

GTAGGAATCT	CTTTGTCTTT	TTGGGAGGAC	ATTTAATATG	AATGTATATT	TAGCAGAATT	60
CCTAGGAACT	GCAATCTTAA	TCCTTTTTGG	TGGTGGCGTT	TGTGCCAATG	TCAATTTAAA	120
GAGAAGTGCT	GCGAATGGTG	CTGATTGGAT	TGTCATCACA	GCTGGATGGG	GATTAGCGGT	180
TACAATGGGT	GTGTTTGCTG	TCGGTCAATT	CTCAGGTGCA	CATTTAAACC	CAGCGGTGTC	240
TTTAGCTCTT	GCATTAGACG	GAAGTTTTGA	TTGGTCATTA	GTTCCTGGTT	ATATTGTTGC	300
TCAAATGTTA	GGTGCAATTG	TCGGAGCAAC	AATTGTATGG	TTAATGTACT	TGCCACATTG	360
GAAAGCGACA	GAAGAAGCTG	GCGCGAAATT	AGGTGTTTTC	TCTACAGCAC	CGGCTATTAA	420
GAATTACTTT	GCCAACTTTT	TAAGTGAGAT	TATCGGAACA	ATGGCATTAA	CTTTAGGTAT	480
TTTATTTATC	GGTGTAAACA	AAATTGCCGA	TGGTTTAAAT	CCTTTAATTG	TCGGAGCATT	540
AATTGTTGCA	ATCGGATTAA	GTTTAGGCGG	TGCTACTGGT	TATGCAATCA	ACCCAGCACG	600
TGATTTAGGT	CCGAGAATTG	CACATGCGAT	TTTACCAATA	GCTGGTAAAG	GTGGTTCAAA	660
TTGGTCATAT	GCAATCGTTC	CTATCTTAGG	ACCAATTGCC	GGTGGTTTAT	TAGGTGCAGT	720
GGTATACGCT	GTATTTTATA	AACATACATT	TAATATTGGT	TGTGCAATTG	Crattgttgt	780

	CGAATCAATT	TACTAAAATA	AAAAGAAACG	TAAATAGCAT	AATTTAACAT	GTTTGATTCA	90
	TGGATTATGC	TATTTTTTCG	CCAAAATTTA	ACAGATTTTG	TACAATGGGT	TAGCGATTAT	96
5	AATAATTITT	AGGAGATACT	ACTAATGGAA	AAATATATT	TATCTATAGA	CCAAGGAACA	102
	ACAAGCTCAA	GAGCGATTTT	ATTCAATCAA	AAAGGGGAAA	TTGCAGGGGT	AGCACAACGT	108
	GAGTTTAAGC	AATATTTTCC	ACAATCAGGT	TGGGTTGAAC	ATGATGCAAA	TGAAATTTGG	114
10	ACATCTGTGT	TAGCTGTAAT	GACGGAAGTA	ATTAATGAAA	ATGATGTTAG	AGCTGATCAA	120
	ATTGCAGGTA	TCGGTATTAC	AAACCAACGT	GAAACAACGG	TTGTTTGGGA	CAAaCATACT	126
15	GGCCGCCCAA	TTTATCACGC	AATTGTTTGG	CAATCACGTC	AAACACAATC	AATTTGTTCA	132
	GAATTAAAAC	AACAAGGATA	TGAACAAACA	TTTAGAGATA	AGACAGGATT	ACTTTTAGAT	1380
	CCGTATTTTG	CAGGTACAAA	AGTTAAATGG	ATTCTAGACA	ATGTTGAAGG	TGCACGAGAA	1440
20	AAAGCAGAAA	ATGGCGATCT	ATTATTTGGA	ACGATTGATA	CTTGGTTAGT	ATGGAAATTA	1500
	TCaGGaAAAg	CtGCGCATAT	TACTGATTAT	TCaAATGCGA	GTCGTACATT	AATGTTTAAT	1560
	ATCCATGATT	TAGAATGGGA	CGATGAGTTA	TTAGAACTAt	TACAGTACCT	AAAAATATGT	1620
25	TGCCAGAAGT	TAAAGCTTCG	AGTGAAGTAT	ATGGTAAGAC	AATTGATTAC	CACTTCTATG	1680
	GTCAAGAAGT	ACCAATCGCT	GGAGTAGCTG	GTGATCAACA	AGCAGCATTA	TTTGGACAAG	1740
	CTTGCTTCGA	ACGTGGTGAC	GTGAAAAACA	CATATGGAAC	TGGTGGCTTC	ATGTTAATGA	1800
30	ATACAGGTGA	CAAAGCGGTT	AAATCTGAAA	GTGGTTTATT	AACAACAATT	GCTTATGGTA	1860
	TTGATGGAAA	AGTAAATTAT	GCGCTTGAAG	GTTCCATCTT	TGTTTCGGGT	TCAGCAATCC	1920
35	AATGGTTACG	TGATGGATTA	AGAATGATTA	ATTCAGCACC	ACAATCAGAA	AGTTATGCGA	1980
	CACGAGTTGA	CTCTACTGAG	GGTGTTTATG	TTGTTCCAGC	TTTTGTAGGT	TTAGGAACAC	2040
	CATATTGGGA	TTCTGAAGCA	CGTGGTGCGA	TTTTCGGTTT	AACACGTGGA	ACTGAAAAAG	2100
40	AGCACTTTAT	CCGTGCAACT	TTAGAATCAC	TATGTTACCA	AACTCGTGAC	GTTATGGAAG	2160
	CAATGTCAAA	AGACTCTGGT	ATTGATGTCC	AAAGTTTACG	TGTCGATGGT	GGTGCAGTTA	2220
	AAAATAACTT	TATTATGCAG	TTCCAAGCAG	ACATTGTTAA	TACTTCTGTT	GAAAGACCTG	2280
45	AAATTCAAGA	AACTACAGCT	TTAGGTGCTG	CATTTTTGGC	AGGTTTAGCA	GTTGGATTCT	2340
	GGGAGAGTAA	AGATGATATC	GCTAAAAACT	GGAAATTAGA	AGAAAAATTC	GATCCGAAAA	2400
50	TGGATGAAGG	CGAAAGAGAA	AAATTATATA	GAGGTTGGAA	AAAAGCTGTT	GAAGCAACAC	2460
50	AAGTTTTTAA	AACAGAATAA	ACTTGTAGAT	TAGACTTTTG	TATAAACATT	GTGATACAAT	2520
	C2 2 0000 2 2 CC	MANGE TO THE STATE OF THE STAT	>maa.a.	03 C3 C3 C	mm.co. > co = co	m1 01 1 mm 01 1	250/

	GCATTGTCTA	CTTTTAAGAG	AGAACATATT	AAAAAGAATT	TAAGAAATGA	TGAATATGAT	2700
	TTAGTAATTA	TTGGTGGCGG	TATTACAGGT	GCAGGTATTG	CACTAGACGC	GAGTGAAAGA	2760
5	GGAATGAAAG	TTGCATTAGT	TGAAATGCAA	GACTTTGCAC	AAGGAACAAG	CTCAAGATCT	2820
	ACAAAATTAG	TCCATGGTGG	TTTGCGTTAC	TTAAAACAAT	TCCAAATTGG	AGTAGTTGCC	2880
10	GAAACTGGTA	AAGAACGTGC	GATTGTTTAT	GAAAATGGGC	CTCATGTTAC	GACTCCAGAG	2940
	TGGATGCTTT	TACCAATGCA	TAAAGGTGGA	ACATTTGGTA	AATTCTCAAC	ATCAATTGGT	3000
	TTAGGAATGT	ATGATCGTTT	AGCAGGTGTT	AAGAAGTCTG	AACGTAAAAA	AATGTTATCT ·	3060
15	AAAAAAGAAA	CTTTAGCTAA	AGAACCATTA	GTTAAAAAAG	AAGGTCTAAA	AGGCGGCGGT	3120
	TACTATGTTG	AATATCGTAC	TGACGATGCG	CGTTTAACTA	TTGAAGTTAT	GAAGCGTGCT	3180
	GCTGAAAAAG	GCGCAGAAAT	TATCAACTAT	ACTAAATCTG	AACACTTCAC	TTATGATAAA	3240
20	AATCAACAAG	TAAATGGTGT	TAAAGTTATA	GATAAATTAA	CTAATGAAAA	TTATACAATT	3300
	AAGGCTAAAA	AAGTGGTTAA	TGCAGCAGGT	CCATGGGTTG	ATGATGTTAG	AAGTGGTGAT	3360
	TATGCACGCA	AAAAATAATA	ATTACGTTTA	ACTAAAGGTG	TACATGTTGT	TATTGATCAA	3420
25	TCAAAATTCC	CATTAGGTCA	AGCAGTATAC	TTTGATACTG	AAAAAGATGG	AAGAATGATT	3480
	TTTGCAATTC	CACGTGAAGG	AAAAGCGTAT	GTAGGTACTA	CAGATACATT	CTATGACAAT	3540
30	ATCAAATCTT	CACCATTAAC	TACACAAGAA	GACAGAGACT	ATTTAATCGA	TGCGATTAAT	3600
, o	TACATGTTCC	CTAGTGTTAA	TGTTACAGAT	GAAGATATTG	AATCAACATG	GGCAGGAATT	3660
	AGACCATTAA	TTTACGAAGA	AGGCAAAGAC	CCTTCTGAAA	TCTCTCGTAA	GGATGAAATT	3720
35	TGGGAAGGTA	AATCAGGTTT	ATTAACTATT	GCAGGTGGTA	AATTAACAGG	CTATCGTCAC	3780
	ATGGCTCAAG	ACATTGTTGA	TTTAGTATCT	AAACGCTTGA	AAAAAGACTA	CGGTTTAACA	3840
	TTTAGTCCAT	GTAATACAAA	AGGTCTGGCA	ATTTCAGGTG	GCGATGTAGG	TGGTAGCAAG	3900
10	AACTTTGATG	CGTTTGTAGA	GCAAAAAGTA	GATGTAGCTA	AAGGATTCGG	CATTGATGAA	3,960
	GATGTTGCAA	GACGTTTAGC	ATCTAAATAT	GGTTCAAATG	TTGATGAATT	GTTCAACATT	4020
	GCGCAAACAT	CTCAATACCA	TGATAGCAAG	TTACCATTAG	AAATTTATGT	AGAACTTGTT	4080
15	TATAGTATTC	AACAAGAAAT	GGTATACAAA	CCTAACGATT	TCTTAGTTCG	TCGTTCTGGT	4140
	AAAATGTATT	TCAATATTAA	AGATGTATTA	GATTATAAAG	ATGCTGTCAT	CGATATTATG	4200
50	GCAGATATGC	TTGATTACTC	TCCAGCTCAA	ATTGAAGCAT	ATACTGAAGA	AGTTGAGCAA	4260
~	GCAATTAAAG	AAGCGCAACA	TGGaAATAAT	CAACCAGCAG	TTAAAGAATA	AtTAATTTGT	4320
	ACAATCATAA	ACTEGTETE	TGTTTTAAGG	CCATCACTTT	מביי מיים מיים ייים ייים	Chmbchmmac	4300

	GTTATTAAAG	GTGTGAGATG	ATGACTGAAA	AACAATTTAA	ATTAACTGTA	CAAGATAATA	4500
	CGAATATTGA	AGTTAAAGTG	AATTTTACAG	ATGTAGATTC	AAAAGGAATT	ATTCATATAT	4560
5	TTCATGGTAT	GGCTGAACAT	ATGGAACGTT	ACGATAAATT	AGCACATGCA	CTTTCAAAGC	4620
	ATGGCTTCGA	TGTGATACGT	CATAATCATC	GAGGACATGG	TATTAATATT	GATGAATCAA	4680
	CAAGAGGGCA	TTACGATGAT	ATGAAACGAG	TTATCGGTGA	TGCCTTTGAA	GTAGCGCAAA	4740
10	CAGTGAGAGG	CAATGTTGAT	AAACCATACA	TTATAATCGG	ACATTCAATG	GGATCCGTTA	4800
	TAGCTAGATT	GTTTGTAGAA	ACATATCCGC	AATATGTTGA	TGGTCTAATT	TTAAGTGGTA	4860
15	CTGGTATGTA	TTCATTATGG	AAAGGTTTAC	CAACCGTTAA	AGTGTTACAA	CTGATTACAA	4920
	AAATTTATGG	TGCTGAGAAA	CGAGTTGAAT	GGGTTAACCA	GTTAGTATCA	AATAGTTTTA	4980
	ATAAAAnnAT	ACGTCCATTA	CGTACACAAA	GTGATTGGAT	TTCTAGTAAT	CCAATTGAAG	5040
20	TAGATAACTT	TATTAAAGAT	CCATATAGTG	Gatttaatgt	GTCAAATCAA	TTATTATATC	5100
	AAACAGCCTA	TTATATGCTA	CATACATCAC	AATTAAAAAA	TATGAAAATG	TTAAaTCATG	5160
	CCATGCCTAT	ATTATTAGTT	TCAGGATATG	ACGATCCTTT	AGGTGATTAT	GGTAAAGGGA	5220
25	TTTTAAAATT	GGCGAATATA	TATAGAAACG	CTGGCATnAA	AAATGTTAAA	GTGAATCTTT	5280
	ATCATCATAA	ACGTCATGAA	GTGTTATTTG	AAAAnGATCA	TGACHAAATT	TGGGAAGACT	5340
	TGTTTAAATG	GTTGAATCAA	TTTTATAAAA	aataaagaaa	GTGGAATTAA	ATATGAATAA	5400
30	AAATAAGCCT	TTTATTGTAG	TAATTGTGGG	GCCAACTGCT	TGCAG		5445
	(2) INFORMA	TION FOR SE	O TO NO. 74	1.			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2569 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

45

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

TGGCTTGAAC TACGCCAATA AGTCCCCCTA GTACAAGAAT GAATACCATG ATATCGACCG 60 CTTCTATCGT ACCTTCAACC ATGCTACTTG TTATTTGTTC TGGTCCAGCT GGATGTTGCT 120 TTAATCTTTC ATAAGTATTC GGAATTGATA CCGGCTTATT AATTGCACCT GATTTAAATT 180 GTTCAATCTT AATTTTAACC CCCATTTTGT CTAGTTCCTG TTGCGTACCC GGAACCTTTT 240 TCACTTGGTT ATGAGGGTTA ACTATCTTTA GTTCTTGGGA TGAAGGTTCG TAAGAAAGTT 300 TAGAATATGC ACCAGCAGGA ATAACCCATG TTGCTATAAC TGCAACAACC GTTAAAATGA 360

	TAATTGTATT	TTCCACGGTT	TCATCTCCTT	CGACATTTAA	CCTAGCATTT	CTACCTTAAA	48
	GATTTTATAA	ATATAAATTA	AGAAAGTGCA	CCCCGCATCA	AAATAGAGGC	ATTATTTTCA	54
5	GGGGGTGCAC	АТАААТААТА	AAAATCATGC	ATTTGACATA	TAGTAATTGA	AAAGCGTTTC	60
	AATTCAATTA	CTTTTTAATC	ACAGTACCTA	CTTTACCCTC	TAAGGCAGCA	TCTAATTCAT	66
10	TTAATGATGT	TATAAGCACA	CTTCCTTTTG	GATTGTTTTC	AATAAATGAT	ATGGCTGCTT	72
	CAATTTTTGG	TAACATACTT	CCTTTTGCAA	ATTGATTTTC	GTCTATATAT	CGTTTTAATT	78
	CATCAACATT	TGTTGTTTTC	AAAGGCTGTT	GGTTTTCAGT	GTTAAAATTA	ATATATACAT	84
15	AATCAATTGC	TGTTAAAATA	ATCAATTGAT	CGCATTGAAT	ATTAGCACCC	AACAACGCAC	90
	TTGTTTTATC	TTTGTCTATA	ACTGCATCAA	TACCTTTAAA	ACCATCATGT	TGCTCTCTAA	96
	TTACTGGTAT	ACCTCCACCA	CCAGCAGCAA	TAACGAGTGT	ATCATTTTTA	ATAAGTGTTT	102
20	TAATACTCTC	TAATTCAATA	ATAGAGATGG	GTTGTGGTGA	AGGAACAACG	CGTCTATATC	108
	CTCTTCCAGC	ATCTTCAACA	AATATAAATC	CTTTTTCTTT	TTGAATTTGT	TCAGCTTCTT	114
	CTTTGTTGTA	AAATAACCCA	ATTGGTTTTG	AAGGATTGTT	AAATGCCGGA	TCATTTTCAT	120
25	CAACTTCAAC	TTGTGTCACT	AGTGTTACCA	CTTGTTTATC	CATTCCAATA	GAATGCAATT	126
	CATTTTGTAA	GCTTTCTTGT	AATTGATAGC	CGATGTAAGC	TTGACTCATT	GCGCCACATT	132
30	CAGCAAATGG	AAATGCCGGA	CCTTGGTTAT	GTTCTGCAGC	ATAGTTAAGT	CCCAAATTAA	1380
	TGCTTCCAAC	CTGTGGTCCA	TTACCATGAC	TAATAACAAT	CTCATGTCCT	TTTGTnATTA	1440
	Аусстастаа	TGATTLCGCA	GTATTTTTAA	CAAGCTCGAG	TtGgTyCTTG	aGGTGATTTn	1500
35	CCTAAAGCAT	TACCACCTAA	TGCTACTACT	ATTTTCGCCA	TCATATTCAC	TTCCTTATAT	1560
	CATTTAAAAT	TCACCCAATG	TAGCAACCAT	GaCTGCTTTG	ATTGTATGCA	TTCTGTTCTC	1620
	AGCTTCTTGG	AATACAACTG	AAGCTTTACT	TTCGAATACT	TCATCTGTAA	CTTCCATTTC	1680
40	TCGAATACCA	TATTTTTCAA	AAATTTGTTG	ACCTATTTTC	GTATCAGCAT	TATGGAAAGA	1740
	TGGTAAGCAA	TGCTCAAAAA	TAACATTTGG	ATTACCAGTT	TTATCCATTA	TTTCTTTATT	1800
	TACTTGATAT	GGTTTCAATA	ATTCAAGTCG	TTCTTTCCAT	ACTTCATCAG	GTTCACCCAT	1860
45	TGATACCCAA	ACATCAGTGT	AAATTACATC	CGAACCTTTT	ACaCCTTGGT	Caatatcatc	1920
	TGTGATTAAT	ATGTTGCCaC	CATTTTCaGC	GGCAATATTT	TTACAGCGAT	TTAATAATTC	1980
50	ATCTGTTGGA	TTTAATTCTT	TTGGACAAAC	TAAATGGAAG	TTCATACCCA	TAATGGCAGC	2040
	ACCTTGCATT	AATGCATTTG	CAACGTTATT	ACGACCATCT	CCAACATATG	TAAAGTTAAT	2100
	ATTOTO CATAR			maamamma a.a.	B B B TO C B CO B B	03 3 0mma 3 0m	

TTCTACTGTT	CTTTGTGAAA	AACCACGGTA	TTCAATGCCA	TCATACATTC	CACCAAGCAC	2280
ACGTGCAGTA	TCTTTAGTTG	TTTCTTTTT	ACCCATTTGT	GATCCAGTTG	GGCCTAAATA	2340
AGTTACATTT	GCACCTTGAT	CATGCGCTGC	AACTTCAAAT	GCACATCGCG	TTCTTGTAGA	2400
ATCTTTTTCA	AATAACAGTG	CAATATTTTT	ATTTTTTAAC	ATAGGCTTTT	CAGTGCCAAT	2460
ATATTTAGCA	CGTTTTAAAT	CCTCGGAGAG	TGTTAATAAG	GTTCTACCTC	TTGTCGTGAA	2520
AAGTCTAATA	aagttaaaaa	ACTTCTGTTT	CGTANATTTT	TCATTAAnA		2569

(2) INFORMATION FOR SEQ ID NO: 75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1273 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20

25

30

35

40

45

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

CCTGGAACCA TCCaATCGtG CaAATCtTGa AAGaGAATAC GCAACAACAA TTAAATGTAT 60 TGGAACACTA TATTCCAAAT GACCATCCAG CACTCGTTGA ATTAAAAATA TGGGAACGTT 120 GGTTACATAA ACAAGGTTAC AAAGACATCC ATTTAGATAT TACTGCGCAC CACCTAGATC 180 CTATTACACA GGTTTATTTA TTCAATGTCA TTTTGCTGAA AATGAATCTC GAGTTTTAAC 240 AGGTGGTTAT TACAAAGGAA GCATCGAAGG GTTTGGATTA GGATTAACAC TTTAAGTAAG 300 GGAGTATGCA CAATGTTAAG AATCGCCATA GCCAAAGGAC GTCTAATGGA TAGTTTAATT 360 AACTATTTAG ATGTAATTGA ATATACGACA TTATCAGAAA CATTAAAAAA TAGAGAACGC 420 CAATTATTAT TAAGTGTAGA TAATATTGAA TGCATTTTAG TAAAAGGAAG TGACGTGCCA 480 ATCTATGTGG AACAAGGAAT GGCAGACATA GGCATTGTTG GTAGCGACAT ATTAGATGAG 540 CGCCAATATA ATGTTAATAA TTTGTTGAAT ATGCCTTTTG GAGCATGTCA TTTTGCGGTT 600 GCAGCGAAAC CTGAAACGAC CAATTATCGT AAAATCGCAA CGAGTTATGT TCATACTGCT 660 GAAACATATT TTAAATCAAA AGGTATTGAT GTCGAATTGA TTAAATTGAA TGGCTCTGTT 720 GAATTGGCCT GTGTTGTAGA TATGGTAGAC GGAATTGTCG ACATCGTTCA AACAGGTACT 780 ACGCTAAAAG CGAACGGACT GGTTGAAAAG CAACATATTA GTGATATCAA TGCAAGATTA 840 ATAACTAATA AAGCAGCTTA TTTTAAAAAA TCACAATTAA TAGAGCAATT TATTCGCTCT 900 TTGGAGGTGT CTATTGCCAA TGCTTAATGC ACAACAATTT TTAAATCAAT TTTCATTAGA 960 AGCACCATTA GATGAGTCAT TGTATCCAAT TATTCGCGAT ATTTGTCAGG AAGTTAAAGT 1020

55

	TTTAGAAATT AGTCATGAMC AAATTAAAGC AGCATTTGAC ACATTAGATG AAAAAACAAA	1140
	ACAAGCATTA CAACAAAGTT ATGAAAGAAT TANAGCATAT CAAGAAAGTA TtaAACAGaC	1200
5	GAATCAACAG TTAGAAGAAT CAGTGGAGTG tTrTGAAATA TACCATCCMC taGaAAGTGT	1260
	CGGTATTTAT GTG	1273
	(2) INFORMATION FOR SEQ ID NO: 76:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1308 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
20	GTTGATAAAT TAAAAATGTT TTTATCAGAT ATTCAAAGTT ACCAACAATA TAGTAAAGAT	60
	CATCCGGTGT ATCAGTTAAT TGATAAATTT TATAATGATC ATTATGTTAT TCAATACTTT	120
	AGTGGACTTA TTGGTGGACG TGGACGACGT GCAAATCTTT ATGGTTTATT TAATAAAGCT	180
25	ATCGAGTTTG AGAATTCAAG TTTTAGAGGT TTATATCAAT TTATTCGTTT TATCGATGAA	240
	TTGATTGAAA GAGGCAAAGA TTTTGGTGAG GAAAATGTAG TTGGTCCAAA CGATAATGTC	300
	GTTAGAATGA TGACAATTCA TAGTAGTAAA GGTCTAGAGT TTCCATTTGT CATTTATTCT	360
30	GGATTGTCAA AAGATTTTAA TAAACGTGAT TTGAAACAAC CAGTTATTTT AAATCAGCAA	420
	TTTGGTCTCG GAATGGATTA TTTTGATGTG GATAAAGAAA TGGCATTTCC ATCTTTAGCT	480
35	TCGGTTGCAT ATAGAGCTGT TGCCGArAAA GAACTTGTGT CAGAAGAAAT GCGATTAGTC	540
	TATGTAGCAT TAACAAGAGC GAAAGAACAA CTTTATTTAA TTGGTAGAGT GAAAAATGAT	600
	AAATCATTAC TAGAACTAGA GCAATTGTCT ATTTCTGGTG AGCACATTGC TGTCAATGAA	660
10	CGATTAACTT CACCAAATCC GTTCCATCTT ATTTATAGTA TTTTATCTAA ACATCAATCT	720
	GCGTCAATTC CAGATGATTT AAAATTTGAA AAAGATATAG CACAAATTGA AGATAGTAGT	780
	CGTCCGAATG TAAATATTTC AATTGTGTAC TTTGAAGATG TGTCTACAGA AACCATTTTA	840
15	GATAATGATG AATATCGTTC GGTTAATCAA TTAGAAACTA TGCAAAATGG TAATGAAGAT	900
	GTTAAAGCAC AAATTAAACA CCAACTTGAT TATCGATATC CATATGTAAA TGATACTAAA	960
	AAGCCCTCAA AACAATCTGT TTCTGAATTG AAAAGACAAT ATGAAACAGA AGAAAGTGGC	1020
	ACAAGTTACG AACGAGTAAG GCAATATCGT ATCGGTTTTT CAACGTATGA ACGACCTAAA	1080
	TTTCTAAGTG AACAAGGTAA ACGAAAAGCG AATGAAATTG GTACGTTAAT GCATACAGTG	1140

	GATGGATTAA TCGATAAACA TATTATCGAA GCAGATGCGA AAAAAGATAT CCGTATGGAT	1260
	GAAATAATGA CATTTATCAA TAGTGATTAT ATTCGATATT GCTGAAGC	1308
5	(2) INFORMATION FOR SEQ ID NO: 77:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1431 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
	GATGCCATTN ATNNGTATGC AAGAAGTTGT TCCGGGTTCA GGTGGATTAC CAGTTGGTAC	60
	TGGTGGTAAG ACGTTACTAA TGCTTTCAGG CGGTATAGAC TCACCAGTTG CTGGGATGGA	120
20	AGTGATGAGA CGTGGCGTAA CAATTGAAGC GATTCATTTC CATAGTCCAC CATTTACAAG	180
	TGATCAAGCA AAAGAAAAAG TTATTGAATT GACACGTATT TTAGCTGAAC GTGTTGGACC	240
	AATTAAATTG CATATTGTAC CATTTACAGA ATTGCAAAAA CAGGTAAATA AAGTTGTACA	300
25 .	TCCAAGATAT ACAATGACTT CAACGAGACG TATGATGATG CGTGTTGCTG ATAAATTAGT	360
	ACATCAAATA GGGGCTTTAG CTATTGTAAA TGGTGAAAAC CTAGGGCAGG TAGCCAGTCA	420
30	AACACTTCAT AGCATGTATG CAATTAATAA TGTAACTTCT ACTCCTGTAT TACGTCCTTT	480
	ATTAACTTAC GATAAAGAAG AAATTATTAT TAAATCGAAA GAAATTGGTA CATTTGAAAC	540
	ATCTATTCAA CCATTTGAAG ATTGTTGTAC AATTTTCACC CCTAAAAATC CAGTAACCGA	600
35	ACCAAACTTT GATAAGGTAG TCCAATATGA AAGTGTCTTT GATTTTGAAG AGATGATTAA	660
	TCGTGCTGTT GAAAATATTG AAACACTTGA AATAACTAGT GATTATAAAA CTATTAAAGA	720
	ACAGCAAACA AACCAATTAA TAAACGACTT TTTATAAATA AAATCCTAGA GTAAATTTAA	780
40	ACATAAGGGG ATGTTAAACT ATGGATTTGA ACTTAACGAT GATTATAATC ATAATTTTAT	840
	TTGGTTTTAT CGCGGCGTTT ATAGATTCGG TTGTAGGGGG TGGCGGTTTA ATTTCTACGC	900
	CAGCATTATT AGCAATCGGT CTACCACCAT CTGTGGCTTT AGGTACAAAT AAATTGGCAA	960
45	GTTCGTTTGG TTCTTTAACT AGTACGATAA AGTTTATAAG GTCCGGTAAA GTGGACTTAT	1020
	ATGTTGTTGC CAAATTATTT GGTTTTGTAT TTTTGGCATC TGCATGTGGC GCATATATTG	1080
50	CAACGATGGT TCCGTCACAA ATATTGAAAC CTTTAATCAT CATTGCACTT TCGTCGGTGT	1140
	TTATATTCAC ATTACTTAAA AAAGATTGGG GCAATACACG CACGTTTACT CAATTTACAT	1200
	TTAAGAAAGC CATAATATTT GCAGCACTTT TTATATTAAT CGGCTTTTAT GATGGATTTG	1260

TAAGTGCAGC AGGAAATGCT AAAGTTTTGA ACTTTGCTTC TAATATAGGT GCGCTTGTAT	1380
TATTTATGGT ATTAGGACAA GTAGATTATG TAATAGGTTT AATTATGGCT A	1431
(2) INFORMATION FOR SEQ ID NO: 78:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4403 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

60	ATTCGCCTTT	TAAACTTATT	GCATTTATTT	ATTTATTGGT	TAAATTCAAT	AATATTATTT
120	ACTAGTCTTA	GGGCTTGGTT	AATTCTATCT	ACGTTCTGCC	TCATGGAAAG	ACCATTATTT
180	AATTCAACGT	TAGGACGACA	TACTTACTAT	CTTCATTTTA	CTTTATTCGG	GTTTTCTTGC
240	CGTTGATGAG	TAGAGTTAAT	AAAAAAGGAT	TAAGGAAGAT	TCAAAATTGA	GACCAAATTT
300	TGTAAAATTT	ATTATCAAAT	TCAAATTCCA	TGAAAACTTT	СТТТАААААА	CAATTAGCTG
360	AGACAACGAT	TTTTAACAAC	AACGCAGCAT	GTTATATAAT	TTCAAATGTT	AAAGAAATGA
420	CATCCGTAAT	TAATACAAGA	TTTGATGACC	CCAAGAAAA	ACACAGACGG	TTArrrrtAT
480	AGGTCGTACC	ATGATGAATT	ATTATTCAAA	TCAGTACTAT	ATATTCATTT	GCTACTGATT
540	TCTTTATGAT	AAGTTAAAAT	CAAGGTGTAG	AAAAGCGGAA	AACTTGGTAA	ATTTTAAATG
600	TAAAGGTGGA	CGTTTCGCAA	GGCTTACGCC	GCGTAAAAA	CTCGTGGACT	GACATGGGTT
660	GAACAATCGA	ACTTGCGTAT	CCTTTAATTA	ATCAAAATTA	CATTTTTCCC	CATGCTGAAG
720	TTTTAATGTT	ATGTTGGTGG	CAAATTGGAT	AATAGATGGG	AAATTGTTGT	AACCATCGAA
780	GCATTTACGA	GGCGAGATAC	TTCGGCTATT	ATCAAAAAAA	ACTTAGGTAA	GGTGÃTGAGT
840	GAATTCACAA	TTCTAGATTG	TTACGATTTA	TGCATTGCAA	ATGCAGTGAA	ATTGTCGGGG
900	TTCTGGTGGA	CAGATGTAAA	CGTTATTTCC	CTATGATGAT	ACCACATCTC	GCCACACGTG
960	GATTAAATAC	AATGGGAACA	CCTGACGAAG	TTCTAGTGGT	TTCAAATAGC	ACAATTGGCG
1020	TCCCTATTTC	ATATTCAATC	AAATCGATTT	ATCTGCTAAA	AAATGATTTC	GGCTATTTGA
1080	TGTTGATGTC	CATTAGGTGG	AAAATTGCGG	AGATTCTATT	AAGCCTTTTT	ATACCTGATC
1140	TTTAAAAAAT	TTTGGGCTAC	CCGTTTGTTT	ACCTGACCAT	TTCCTAATAA	AATATCATGA
1200	CTTTTTACAC	ACGACAATGG	GTATTTCACT	CGGTGTTAAA	TATTAGATGC	GCAGCATCCT
1250	татесассат	GAACAGCTAA	GCAAGTGTGG	тсатсаватт	TTGTTATAGA	TCAAAAACAC

	AAATTAAAAC	AAGCTTTTAT	AGATGATTTA	GCAGTATCTT	CTGAATTAAC	AAAAGCACGT	1380
	TATGCTAAGC	GAAGTCTTTG	GATTAAATTT	AAAGAAGGTA	TTTCACAATT	ATTGTCACCT	1440
5	ATCTTATAAA	ATAGAAATAT	GAGGAGTGTA	aCTTTAATGC	AACAATCAGA	CGTCATTAGT	1500
	GCTGCCAAAA	AATATATGGA	ATCTATTCAT	CAAAATGATT	ATACAGGCCA	TGATATTGCG	1560
10	CATGTATATC	GTGTCACTGC	TTTAGCTAAA	TCAATCGCTG	AAAATGAAGG	TGTTAATGAT	1620
	ACTTTAGTCA	TTGAACTCGC	ATGTTTGCTT	CATGATACCG	TTGACGAAAA	AGTTGTAGAT	1680
	GCTAACAAAC	AATATGTTGA	ATTGAAGTCA	TTTTTTATCTT	CTTTATCACT	ATCAACCGAA	1740
15	GATCAAGAGC	ACATTTTATT	TATTATTAAT	AATATGAGCT	ATCGCAATGG	CAAAAATGAT	1800
*	CATGTCACTT	TATCTTTAGA	AGGTCAAATT	GTCAGGGATG	CAGATCGTCT	TGATGCTATA	1860
	GGCGCTATAG	GTGTTGCACG	AACATTTCAA	TTTGCAGGAC	ACTTTGGTGA	ACCTATGTGG	1920
20	ACAGAACATA	TGTCACTAGA	TAAGATTAAT	GATGATTTAG	TTGAACAGTT	GCCACCATCT	1980
	GCAATTAAAC	ATTTCTTTGA	AAAATTACTT	AAGTTAGAAT	CTTTAATGCA	TACAGATACG	2040
	GCGAAGATGA	TTGCTAAAGA	ACGTCACGAC	TTTATGATGA	TGTACTTGAA	ACAGTTTTTT	2100
25	ACGGAATGGA	ATTGTCACGA	CTAGACATTG	AAGTTGTAGT	ATGATGATGC	GATGTAÄTGG	2160
	CGTGTTGTTG	TGGAAGCTTG	GTGTCATGCC	ATGTTACTTT	GATGTGTTGT	TGTGGGAGCT	2220
30	TGGTGACATG	TCATGCTACT	TTGATGTGCT	GGTACCACGA	TGCGTCTTGA	TGTAGTGCTA	2280
50	TGATGTGGCA	TTGCGGTGTT	ATGGTGTTAT	AGACAGGTTT	GGCGTTGATG	CCATGTTACT	2340
	TTGATGTGCT	GGTACCACGA	TGCGACTTGA	TGTAGTGCTA	TGATGTGGCA	TTGCGGTGTT	2400
35	ATGGTGTTAT	AGACCGGTTT	GATGTTGATG	CCATGTTACT	TTGATGTGCT	GGTGCTACGA	2460
	TGCGACTTGA	TGTAGTGCTA	TGATGTGGCG	TTGCGCTGTT	ATGGTGTTAT	AGCCAGGTTT	2520
	GGTGTTGATG	TCATGCCGTT	ACGATTCTAT	GATATGTTGT	TGGGACGTTG	CAATGTGTAT	2580
40	TATGCCGTTG	TGACGTTATT	ATTTCACACT	GTTACATGTA	TAAGTGAATT	GCTGTGGAAA	2640
	TTTGCGACAT	ATACTGCTAC	ACTGATGAAT	CATTGTGTCA	AGATGACATT	GCGATGAAGA	2700
	ATGACAACTC	TGTTATTAAC	CACTTTTTAC	ATACTGAAAA	CTCGTTAATA	TTATTTCAAA	2760
45 ·	TAAAAACAGC	AGTAGGATGA	CTTTCACATT	TGAAATCATC	TTACTGCTGT	TTCTATTTAT	2820
	CACATATTGT	ATAATGTGAC	ACTAAGTTTC	GCTATTGAAG	CGAAAAATAA	TGTGCGCCCT	2880
6 0	ATAAAGTTAA	AATTATCTTC	AACTTTTAGG	GTGCACATTA	TTTGGACTTG	CTAAGGTTAT	2940
50	TTCTTTTTCT	TTTTAGACAC	AACTTGTGTG	TTTTTGCCTT	TTTTATTGct	GCCGCCGTTG	3000
	TGCTCTCTTT	CATACGCTTC	AATGAAAGGT	TGTACTTCTT	TTTTAGCGAC	TTTTTCATAA	3060

	CCAAGTGCTG	ATGCTGAGCT	TAATGAAATC	CAGATAATCA	TAATTGGTGA	AATGACCATC	3180
	ATCATGTAAC	CCATTTGACG	TTGTTCGTCT	GGCATCGTTT	TACTTGATAC	ATATGCTTGG	3240
5	ATAAAGTATA	AAACACCGGC	AATAATTGTA	ATCCAAATAT	CAGGACGTCC	TAAATCGAAC	3300
	CATAAGAAGT	GTGGATATTT	AAACAAACCA	TCTACAAGTT	GGTCTTTAAG	TACAAAGTAT	3360
•	AATCCCATGA	TGATTGGTAA	TTGGATTAGC	ATTGGTAAAC	AACCCAACAT	ACTCTTAATC	3420
0	GGGTTCATGT	CATACTTTTT	ATATACTTGC	ATTAATTCTT	GGTTTGCAGC	CATTTTTCT	3480
	TCTTGTGTAC	GCGnCaCGTT	CACTTTTTCT	TGAATTTTTT	CAACTTCTGG	CTTTGCAACT	3540
5	TTCATTTTTT	GACGCATCAT	ATGACTATTT	TTATAGTTTG	ACAACATGAA	TGGTAATAAA	3600
	ATAATACGAA	TTACCAATAC	AAGGATAATA	ATAGCTAAAC	CATAATTGTC	GTTTAATAAG	3660
	TTATTTCCCA	ACCAATCCAA	TACATTTTTC	ATTGGATCTA	CGAATGTATT	GTAGAAAAAy	3720
О	CWCtACGTTT	TTCAGGTTTA	GAATAGTCAC	AACCAGCCAA	AAAGACCATA	ATACCTAAAA	3780
÷	ATAATGGTAG	TAACGCTTTT	TTCTTCATTT	TTCCACCTCT	ATCATTATAT	TCACATAGGA	3840
	TTTATTCTAT	CACATTAATG	AGTACGTATG	AAACAATAAG	TGGAAAAATT	TAACTAATTA	3900
5	TTAAAAAAAT	CTTTGAATCG	ATTAACAGTC	TTTTCAATAT	TTTCACTTTT	AGAAATGGCT	3960
	GAAATGACTG	AAATTCCATT	GGCACCTGCT	TCTACAATCG	GCGCCACATT	ATTAGTATTG	4020
_	ATACCGCCAA	TAGCTACAAT	CGGTAGTTGC	GGATTCATTT	CTTTAAACGT	TGCAATCATT	4080
0	TCTGGACCTA	CTGGTATATG	CGCGTCATGC	TTCGACGGCG	TAGGATAGAT	TGGTCCAACA	4140
	ССТАТАТААТ	CmACATGAGT	TAAATCAGAT	TTTGCATACT	CATCTAAATC	ACTAATACTA	4200
5	AGTCCAATAA	TTTTATCAGT	GAAATATTGT	GCTATCTCTT	TGACTTTCGC	ATCATCTTGA	4260
	CCGACATGTA	TACCATCCGC	GTTAATTTCT	TTTGCCAAGG	ATACATCATC	ATTAACGATA	4320
	AAAGGCACAT	CATATTGATG	ACAGAGATGC	TGTAATTCTT	TAGCTAATAC	AAGTTTATCG	4380
0	TTTCCTTTTA	AAGCTGATTC	ACC				4403
	(2) INFORMA	TION FOR SE	Q ID NO: 79	:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1808 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

TGGANCCAAT ATTAGAAATG ATTAAAACAT TAACAGGTAT TAATAGTCCT TCAGGAGNCA 60

55

	TAACAAATAA	AGGTGCGTTA	TTAATAACAG	TGCCAGGCAA	AAATGATGAA	GTACAACGCT	18
E	GTATTACTGC	TCATGTTGAT	ACTTTAGGTG	CaATGGTTAA	AGAAATTAAA	GAAGATGGTC	24
5.	GCTTaGCAAT	AGAATTAATT	GGAGGATTCA	CGTATAACGC	GATTGAGGGT	GAATATTGCC	30
	AAATTAAAAC	TGATGCTGGT	CAAATATATA	CAGGAACAAT	TŢGTCTGCAT	GAAACAAGTG	36
0	TTCATGTATA	TAGAAATAAT	CATGAAATAC	CTAGAGATCA	AAAGCATATG	GAAATAAGAA	42
	TTGATGAAGT	AACTACATCA	GAAGAAGATA	CAAAGAGTTT	AGGTATTTCA	GTAGGTGATT	48
	TTGTTAGCTT	TGATCCACGT	ACAGTTATCA	CGTCATCAGG	TTTTATTAAA	TCTCGTCATT	54
5	TAGATGATAA	AGCTAGCGTA	CGgTtGATAC	TACAATTACT	AAAGAAATTA	AAAGAAGAGC	60
	AAATAATATT	ACCACATACA	ACGCAATTTT	ATATTTCTAA	TAACGAAGAA	ATAGGTTACG	66
	GTGCAAATGC	ATCAATTGAT	TCGAAAATCA	AAGAATATAT	TGCATTAGAT	ATGGGCGCGT	720
20	TGGGAGACGG	TCAAGCATCG	GATGAATATA	CAGTTTCTAT	TTGTGCCAAA	GATGCTTCAG	780
	GTCCATATCA	TAAGCAATTG	AAATCGCACC	TAGTTAATCT	TTGCAAAATA	AATAACATTC	840
_	CATATAAAGT	AGACATATAT	CCATATTATG	GTTCAGATGC	TTCAGCAGCT	TTACATGCTG	900
? 5	GTGCGGATAT	CAGACATGGT	TTATTTGGCG	CTGGCATTGA	ATCATCTCAT	GCAATGGAAC	960
	GAACACATAT	TGATTCTATT	AAAGCGACAG	AGAAATTACT	ATATGCATAT	TGCTTATCAC	1020
30	CAATTGAGTA	AACAATTAGT	GTTGACAAAT	GTGaACGACC	TATGTAATAT	AATGAACTAT	1080
	AAAAATAATT	AGAATTTTCT	aaagaaatag	TAGCAGATAT	GAAACGTAGC	AAATAGAAAG	1140
	CTAATGGGTG	ATGGGAATTA	GCACGCCATA	TCTTGTGAAT	TGGACTTTGG	AAAACAATTG	1200
15	AATGAGTTTT	GAAAGTGAAC	ATGAATTATG	TTAACTAAGG	TGGCACCACG	GTAACGCGTC	1260
	CTTACAGGTA	TATGCGTTAT	GTGGTGTCTT	TTTATTTAGA	CAAAATGTAG	TAGTTAATTA	1320
	AAGGTAGCAA	CAGAAAGTTA	GTGGATGATG	TGAACTAACA	CCGAGATTAA	TGAAATTGGG	1380
10	TTTTGTCTGC	AACAGAAAAA	TTATATATAG	TAAAGAGTGA	ACTATGAATA	TTTCGAATAT	1440
	TCGGTTAATT	TAGGTGGTAC	CACGCGTCAc	nTCCTTTATA	TTGATAAGGA	TGCTGGCGCT	1500
	TTTTTGAAAG	GAGCGTATAG	AATGGATATA	TTTTATAAAA	AAATAAAAGC	AAATGTAACG	1560
	CCCGAAGTTT	TAGCACAACT	TCATTCCAAG	AAGaTCATTT	TGGAAAGTAC	AAATCAACAA	1620
	CAAACTAAAG	GTCGCTATTC	AGTTGTTATT	TTTGATATTT	ATGGCACTTT	AACTTTAGAT	1680
10	AATGATGTAT	TATCAGTAAG	TACTTTAAAA	GAATCGTATC	AAATCACTGA	AAGACCGTAC	1740
-	CATTATTTAA	CGACTAAnAT	AAATGAAGAC	TACCATAATA	TTCCAAGATG	AGGCAACTTA	1800
	አርጥሮአሞሞአ						

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1320 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

	TGGTCGTCAA	TTTCTTGATT	ATATCTATAA	TCCTCATTTT	CAATATTAGA	GTCTGTAGAA	60
	TCATCGATAT	TATTATCATT	CGCATGACTA	GAAGCAGAAT	CATTATTTTT	ATCATTGCTT	120
15	TCTTCTTTTT	TGAAGTCTTT	ATTTATCAAG	TAAATTTCTT	CATCAAAATC	AGCTTGTTGA	180
	GATGTATCAT	CTTTATTTTG	ATTAGAAAAA	TGTGTAGCCT	TTGATCTTTT	TCTTTGCCGT	240
	CTTTTCTTAG	ATGTATTCCT	CGTAAATAAT	TCTAATTCAT	CTTTATCTTC	ATTTGATTCT	300
20	TGTTGATCGT	TCTTCGTTTT	ATCATCCATC	AATACTCACA	CCCTTTAATA	AGATGGTAAA	360
	TGGGCACGGA	ATCTTTCAAT	AAATTTCTCT	CCACGCTCTT	CAAAAGTACT	ATATTGATCC	420
	CAACTCGCAC	AAGCAGGTGA	CAATAATACA	ACATCATTTG	GTTCTATAAT	ATCTTGTACT	480
25	TTATCAACAG	CGTCTTCGAC	ATTGTTCGCT	TCAATGACCG	ATTTCCCTTG	ACTATTACCT	540
	AGTTTAGCAA	ACTTAGCTTT	CGTTTGTCCG	AATACAACCA	TCGCGCGAAC	ATTTTCCATA	600
30	TAAGGAATGA	GTTCGTCAAA	TTCATTCCCT	CGATCCAAAC	CACCACATAA	CCAAATGATT	660
00	GGTTGATTAA	ATGAATTTAA	GGCAAACTGT	GTTGCTAGCG	TGTTTGTTGC	TTTGGAATCA	720
	TTATAATATT	TATTAGTTCT	ATTAGTACCA	ACATATTGCA	ATCTATGCTC	TATTCCTGAA	780
35	AATGTAGTTA	AACTATCAAT	AATTGCTTTA	ATAGGTACAC	CAGCanAATA	CAAGCAAGCA	840
	CAGCTGCTAA	TATATTTCTA	AATTATGTTC	ACCAGGCAAT	ACTAGALCTT	CAGTGTTAAT	900
	AATaCGAACA	CCTTTATAAA	CGATAAAACC	ATCTTtAATA	TAAaTACCAT	CArCTtCTTG	960
40	TTGAGTTGAG	AAATACAATG	TCTTAGCTTT	TAATTCTTCC	GACTCTATCA	CTTGTCTTTG	1020
	ATGATAATTA	САААТСАААТ	AATCCTCTTC	CGTTTGATTT	TTATATATTT	GCTTTTTAGC	1080
	ATTTTGATAG	TTTTCTAAAT	TTTCATGGTA	ATCTAGATGC	GCCGAATAAA	TGTTAGTAAT	1140
45	TATAGCAATG	TGTGGTTTAT	ACTTTTCGAT	TCCAAGTAAC	TGGAATGACG	ACAACTCTGT	1200
	AACTAAATAA	TCTGTAGGCT	TTACTTCTTG	TGCTACTTTA	GATGCAACAT	AACCAATATT	1260
50	GCCGGATAAT	CTTCCAGTTA	AGCGACTTTT	TTTAAACATA	TCTCCAATTA	GAGAAGTAAC	1320
55							

(2) INFORMATION FOR SEQ ID NO: 81:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4280 base pairs

55

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

	TTTACACCAA	TCAAAAAATC	GAACTGATAT	AAATAAGTAC	AAAGCTTATC	TATCAATCCG	60
10	ATTTAGTTAT	ААААСААААА	AAGCCACAGT	AATGTGGCTT	TTTGTTATAT	TCAGTATCAA	120
	AATGGTATCA	ATAGCCATTT	TCGGAAGTCA	AGAATGGCTT	AACAACGCGG	TTTAAAGCTA	180
	TCCAATACTA	CCTTCCATTT	CGAACTTGAT	TAAACGGTTC	ATTTCGACCG	CGTATTCCAT	240
15	TGGAAGTTCT	TTTGTAAATG	GTTCGATGAA	TCCCATAACA	ATCATTTCTG	TCGCTTCTTC	300
•	TTCAGAAATA	CCACGACTCA	TTAGATAGAA	TAATTGTTCT	TCAGAAACTT	TTGAAACCTT	360
	GGCTTCATGT	TCTAATGATA	TTTGATCGTT	GAATACTTCG	TTATATGGAA	TTGTATCTGA	420
20	TGTTGATTCG	TTATCTAAGA	TTAATGTATC	ACATTCAATA	TTTGAACGAG	CACCTTTTGC	480
	TTTACGTCCA	AAATGAACAA	TACCGCGATA	AATAACTTTA	CCACCATTTT	TAGAAATAGA	540
05	TTTAGAAACA	ATTGTAGAAG	ATGTATTAGG	TGCTTTATGA	ATCATTTTAG	CACCGGCATC	600
25	TTGAACTTGT	CCTTTACCAG	CAAATGCAAT	AGATAATGTA	CTACCTTTTG	CACCTTCACC	. 660
	TAAAAGAACA	CAGTTTGGAT	ATTTCATCGT	TAACTTAGAA	CCTAAGTTAC	CATCTACCCA	720
30	TTCCATATTT	CCGTTTTCAT	AAACAAAAGT	ACGTTTTGTA	ACTAAATTGT	ATACATTGTT	780
	CGCCCAGTTT	TGAATCGTAG	TATAACGAAC	GTGCGCATCT	TTATGCACAA	TGATTTCCAC	840
	AACAGCAGAG	TGTAAAGAAC	TAGTTGTATA	AACTGGTGCA	GTACAACCTT	CTACGTAATG	900
35	TACAGAAGCA	CCTTCATCAG	CAATGATTAA	TGTACGTTCA	AATTGACCCA	TGTTCTCAGA	960
	GTTAATACGG	AAATAAGCTT	GTAGTGGCGT	ATCTAGTTTG	ATATTTTTAG	GTACATAAAT	1020
	GAAGGAACCA	CCTGACCATA	CTGCTGAGTT	TAACGCCGCA	AATTTGTTAT	CTGCTGCAGG	1080
40	TACTACAGAA	GCAAAGTATT	TTTTGAATAA	TTCTTCATTT	TCTTGTAAAG	CACTATCTGT	1140
	ATCTTTAAAG	ATAATACCTT	TTTCTTCAAG	TTCTTTTTCC	ATATTATGGT	ÄAACAACTTC	1200
	AGATTCATAT	TGAGCAGAAA	CACCAGCTAA	ATATTTTTGT	TCAGCTTCAG	GAATTCCTAA	1260
45	TTTATCGAAA	GTTCTTTTAA	TTTCTTCTGG	CACTTCATCC	CATGAACGTT	CAGCTTGTTC	1320
	TGAAGGCTTT	ACATAGTAAG	TAATGTCATC	GAAATTCAAT	TCTGATAAGT	CGCCACCCCA	1380
50	TTGAGGCATT	GGCATTTTAT	AAAACAATTT	TAATGATTTA	AGACGGAAAT	CTAACATCCA	1440
	TTCCGGCTCA	TTTTTCATGT	TAGAAATTTC	TCTAACGATA	TTCTCAGTTA	AACCACGTTC	1500
	TGATCTGAAA	ATGGACACAT	CATCGTCGTG	GAATCCATAT	TTATAATCCC	CAACATCAGG	1560

	TTTAATTCAT	GATGTAAACC	ATATTATAAC	AATGACATGA	CATCTTATAA	AAATTTTTAT	168
	ACTITTATAT	GTCTAATATC	AAAATTATCT	ATGATTAACA	GCATTCTATT	CTTCTTCAGT	174
5	CGTACCTTCT	GCTTTACCTT	CTTTAGCAAC	AGTACCTTTT	TCCAATGCTT	TCCAAGCTAA	180
	TGTGGCACAT	TTAATACGAG	CTGGGAATTG	AGATACACCT	TGCAATGCTT	CAATATCTCC	186
10	CATTTCTTCT	GTAATCACAT	AGTCTTCACC	AAGCATCATT	TTCGTAAATT	CTTGGCTCAT	192
10	TTGCATTGCT	TCTCCAAGTG	AATGACCTTT	AACAGCTTGT	GTCATCATCG	ATGCACTTGC	198
	CATTGAAATC	GAACAACCTT	CACCTTCAAA	CTTAGCATCT	TTTATAATGC	CGTCTTCTAT	204
15	ATCAAATGTT	AGTCGTATAC	GGTCACCGCA	TGTCGGGTTA	TTCATATCTA	CTGTCATAGA	210
	CCCGTTATCT	AATACACCTT	TATTTCTAGG	AATTTTTAA	TGATCCATAA	TGACAGATCT	216
	ATATAATTGA	TCTAGATTAT	TAAAATTCAT	AAGAGAAAAA	CTCCTTCGTT	TGTTTCAAGG	222
20	CATTTATTAA	CTGATCAACG	TCTTCTTTCG	TGTTGTATAT	ATAAAAACTC	GCTCTAGCTG	2280
	TTGAAGACAC	ATTTAACCAT	TTCATTAACG	GTTGCGCACA	ATGATGCCCA	GCTCTAACCG	2340
	CTACACCTTC	TGTATCTACG	GCTGTAGCAA	CATCGTGTGG	ATGTACATCT	TGTAAATTAA	2400
25	ACGTTATTAC	ACCTGCACGA	CGATCCTTTG	GCGGGCCATA	AATTTCAATT	CCTTCAATTG	2460
	CAGACATTTG	CTCATAAGCA	TATATCGTTA	ATTCTTGTTC	ATATTTATGA	ATTGCATCAA	2520
	AACCTATGCG	TTCTAAATAG	CGAATAGCTT	CTGCAAGCCC	AATTGCTTGA	GCAATTAATG	25,80
30	GAGTACCCGC	CTCAAATTTA	GTAGGTAAAT	CAGCCCATGT	TGCATCATAC	TTACTTACAA	2640
	AATCAATCAT	GTCGCCACCG	AACTCAATCG	GTTCCATTTT	TTGTAGTAAC	TCACGTTTAC	2700
35·	CAAATAATAC	GCCAATACCT	GTTGGTCCAA	GCATTTTATG	ACCACTAAAA	СТАТАААААТ	2760
,	CAGCATTCAT	TTCTTGCATA	TCAAGTTTCA	TATGTGGTGC	TGctTGCGCC	CCATCAACAC	2820
	TGATAATTGC	ACCATGTTGA	TGAGCTATTT	CTGCAATGGT	TTTAACATCA	TTAATTGTAC	2880
40	CGAGCACATT	AGATATATGT	GCAATAGCAA	CGATCTTTGT	TTTATCATTA	ATCGTTTGCT	2940
	TAATATCCTC	GATGTTTAAT	TCACCGTCAG	CTGTCATTGG	TATAAATTTC	AATGTCGCAT	3000
	TTTTACGCTT	TGCTAACTGT	TGCCAAGGAA	CAATATTGGC	ATGATGTTCC	ATTTCAGTGA	3060
45	CAACAATTTC	ATCGCCCTCT	TCAACATTTG	CATCACCATA	GCTATGTGCT	ACAAGGTTAA	3120
•	TCGACGCAGT	TGTTCCGCGT	GTAAAAATGA	TTTCTTCAAA	ATACTTCGCA	TTAATAAAAC	3180
	GACGAACGGT	TTCACGGGCA	TTTTCATAAC	CATCAGTTGC	CAATGATCCT	AATGTATGAA	3240
50	CACCACGATG	AACGTTTGAA	TTATAACGCT	TGTAGTAATC	TTCTAAAACA	TTTAACACTT	3300
	GCACAGGCGT	TTGACTTGTC	GCTGTTGAAT	CAAGATATGC	TAAACGTTTG	ССУДТСУСТТ	3360

	CTTCATTCAC GACCTTTCTT AAATAAAAAT CCTAATCATT TAAATACTGA CGTTGTATTA	3480
	GTCTTATACC AATATCGACA GTCTATATCT ATTACAAACT TTTATTTTCA AAATATTATT	3540
5	TAGAAACTTT GCGTTCAATT ACTTCTCTCA ATTGACGTTT AACGTCTTCG ATAGGTAATT	3600
	CACGTACTAC TGGATCTAAG AAACCATGTA TAACAAGACG TTCCGCTTCT CTTTGAGAAA	3660
10	TACCACGACT CATTAAATAG TAAAGTTGAT CTGGATCAAC ACGACCTACT GATGCAGCAT	3720
10	GACCAGCTTG TACATCATCT TCATCAATTA ATAAAATAGG ATTCGCGTCA CCACGAGCAT	3780
	GTTCAGATAA CATTAATACA CGTGATTCCT GATTAGCAAT TGATTTAGTT CCACCATGCT	3840
15	TAATGTAGCC GATACCATTA AATACAGACG ATGCATGTTC TTTCATAACA CCATGTTTAA	3900
	GGATATAACC ATCTGTTTCT TTACCATATT GTACGATTTT AGATGTTAGA TTAATTTTTT	3960
	GTTCGCCTGT ACCTACAACT ACTGATTTAA GTGAACTTGT TGAACGATCA CCAAATAAAT	4020
20	TTGTTGTATT ATCAATAATT TGGCTACCCT CATTCATTAA ACCTAGTGCC CAATTAATTG	4080
	AGGCATCCGC TTCAGTAATA CCACGTCGAA TGATATGACC TGTAAAGCCT TTATCCATAT	4140
	AGTCCACTGA GCCATATGTG ATATTTGAAT TTGCACCAGC AATCACTTCA GAAATAATAT	4200
25	TEAATTGATT TCCTTCACCA GATGCATTTG mTAAGTAATT TTCAACATAT GTGACTTCGG	4260
	CGCTTTCTTC AGTAACGATG	
	COCTTETE AGIANCIATO	4280
	(2) INFORMATION FOR SEQ ID NO: 82:	4280
30	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS:	4280
30	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid	4280
	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs	4280
<i>30</i>	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	4280
	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	4280
	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	4280
35	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82: TCnGACTCGA ACGGTGMAAC TATTCCGTTG TAATTCCGGA GGAASCAAGG TATGCCCATC	60
35	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82: TCnGACTCGA ACGGTGMAAC TALLCCGTTG TAATTCCGGA GGAASCAAGG TATGCCCATC TGCAAAGAAA GAATGSAATG AACTTTTTGG AAATGTAGAA GTGGTAAATA AAGATAAAGG	60
<i>35</i>	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60 120 180
<i>35</i>	(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82: TChGACTCGA ACGGTGMAAC TALLCCGTTG TAATTCCGGA GGAASCAAGG TATGCCCATC TGCAAAGAAA GAATGSAATG AACTTTTTGG AAATGTAGAA GTGGTAAATA AAGATAAAGG ATATTACATT CTGAGAAGTA TAAAAGCTTG AAATGAAATG	60 120 180 240

55

480

GAATTTCAGA AGTATTAGAA TTACCAAACT TAATAGAAAT TCAAACTAAA TCTTACGAGT

	CTGGTAATTI	GTCATTAGAG	TTTGTGGATT	ACCGTTTAGG	AGAACCAAAA	TATGATTTAG	600
	AAGAATCTAA	AAACCGTGAC	GCTACTTATG	CTGCACCTCT	TCGTGTAAAA	GTGCGTCTAA	660
5	TCATTAAAGA	AACAGGAGAA	GTTAAAGAAC	AAGAAGTCTT	TATGGGTGAT	TTCCCATTAA	720
	TGACTGATAC	AGGTACGTTC	GTTATCAATG	GTGCAGAACG	TGTAATCGTA	TCTCAATTAG	780
40	TTCGTTCACC	ATCCGTTTAT	TTCAATGAAA	AAATCGACAA	AAATGGTCGT	GAAAACTATG	840
10	ATGCAACAAT	TATTCCAAAC	CGTGGTGCAT	GGTTAGAATA	TGAAACAGAT	GCTAAAGATG	900
	TTGTATACGT	ACGTATTGAT	AGAACACGTA	AACTACCATT	AACAGTATTG	TTACGTGCAT	960
15	TAGGTTTCTC	AAGCGACCAA	GAAATTGTTG	ACCTTTTAGG	TGACAATGAA	TATTTACGTA	1020
	ATACTITAGA	GAAAGACGGC	ACTGAAAACA	CTGAACAAGC	GTTATTAGAA	ATCTATGAAC	1080
	GTTTACGTCC	AGGTGAACCA	CCAACTGTTG	AAAATGCTAA	AAGTCTATTG	TATTCACGTT	1140
20	TCTTTGATCC	AAAACGCTAT	GACTTAGCAA	GCGTGGGTCG	ТТАТААААСА	AACAAAAAT	1200
	TACATTTAAA	ACATCGTTTA	TTTAATCAAA	AATTAGCTGA	GCCAATTGTA	AATACTGAAA	1260
	CTGGTGAAAT	TGTAGTTGAA	GAAGGTACAG	TGCTTGATCG	TCGTAAAATC	GACGAAATCA	1320
25	TGGATGTACT	TGAATCAAAT	GCAAACAGCG	AAGTGTTTGA	ATTGCATGGT	AGCGTTATAG	1380
	ACGAGCCAGT	AGAAATTCAA	TCAATTAAAG	TATATGTTCC	TAACGATGAT	GAAGGTCGTA	1440
	CGACAACTGT	AATTGGTAAT	GCTTTCCCTG	ACTCAGAAGT	TAAATGCATT	ACACCAGCAG	1500
30	ATATCATTGC	TTCAATGAGT	TACTTCTTTA	ACTTATTAAG	CGGTATTGGA	TATACAGATG	1560
	ATATTGACCA	TTTAGGTAAC	CGTCGTTTAC	GTTCTGTAGG	TGAATTACTA	CAAAACCAAT	1620
35	TCCGTATCGG	TTTATCAAGA	ATGGAAAGAG	TTGTACGTGA	AAGAATGTCA	ATTCAAGATA	1680
55	CTGAGTCTAT	CACACCTCAA	CAATTAATTA	ATATTCGACC	TGTTATTGCA	TCTATTAAAG	1740
	AATICTTTGG	TAGCTCTCAA	TTATCACAAT	TCATGGACCA	AGCAAACCCA	TTAGCTGAGT	1800
40	TAACGCATAA	ACGTCGTCTA	TCAGCATTAG	GACCTGGTGG	TTTAACACGT	GAACGTGCTC	1860
	AAATGGAAGT	ACGTGACGTT	CACTACTCTC	ACTATGGCCG	TATGTGTCCA	ATTGAAACAC	1920
	CTGAGGGACC	AAACATTGGA	TTGATTAACT	CATTATCAAG	TTATGCACGT	GTAAATGAAT	1980
45	TCGGCTTTAT	TGAAACACCA	TATCGTAAAG	TTGATTTAGA	TACACATGCT	ATCACTGATC	2040
	AAATTGACTA	TTTAACAGCT	GACGAAGAAG	ATAGCTATGT	TGTAGCACAA	GCAAACTCTA	2100
	AATTAGATGA	AAATGGTCGT	TTCATGGATG	ATGAAGTTGT	ATGTCGTTTC	CGTGGTAACA	2160
50	ATACAGTTAT	GGCTAAAGAA	AAAATGGATT	ATATGGATGT	ATCGCCGAAG	CAAGTTGTTT	2220
	CAGCAGCGAC	AGCATGTATT	ССАТТСТТАС	ADDATEDTEA	СТСАВАСССТ	CC3 TTC 3 TCC	2200

	CAGGTATGGA	ACACGTTGCA	GCACGTGATT	CTGGTGCGGC	TATTACAGCT	AAGCACAGAG	2400
	GTCGTGTTGA	ACATGTTGAA	TCTAATGAAA	TTCTTGTTCG	TCGTCTAGTT	GAAGAGAACG	2460
5	GCGTTGAGCA	TGAAGGTGAA	TTAGATCGCT	ATCCATTAGC	TAAATTTAAA	CGTTCAAACT	2520
	CAGGTACATG	TTACAACCAA	CGTCCAATCG	TTGCAGTTGG	AGATGTTGTT	GAGTATAACG	2580
10	AGATTTTAGC	AGATGGACCA	TCTATGGAAT	TAGGAGAAAT	GGCATTAGGT	AGAAACGTAG	2640
,,,	TAGTTGGTTT	CATGACTTGG	GACGGTTACA	ACTATGAGGA	TGCCGTTATC	ATGAGTGAAA	2700
	GACTTGTGAA	AGATGACGTG	TATACTTCTA	TTCATATTGA	AGAGTATGAA	TCAGAAGCAC	2760
15	GTGATACTAA	GTTAGGACCT	GAAGAAATCA	CAAGAGATAT	TCCTAATGTT	TCTGAAAGTG	2820
	CACTTAAGAA	CTTAGACGAT	CGTGGTATCG	TTTATATTGG	TGCAGAAGTA	AAAGATGGAG	2880
	ATATTTTAGT	TGGTAAAGTA	ACGCCTAAAG	GTGTAACTGA	GTTAACTGCC	GAAGAAAGAT	2940
20	TGTTACATGC	AATCTTTGGT	GAAAAAGCAC	GTGAAGTTAG	AGATACTTCA	TTACGTGTAC	3000
	CTCACGGCGC	TGGCGGTATC	GTTCTTGATG	TAAAAGTATT	CAATCGTGAA	GAAGGCGACG	3060
	ATACATTATC	ACCTGGTGTA	AACCAATTAG	TACGTGTATA	TATCGTTCAA	AAACGTAAAA	3120
25	TTCATGTTGG	TGATAAGATG	TGTGGTCGAC	ATGGTAACAA	AGGTGTCATT	TCTAAGATTG	3180
	TTCCTGAAGA	AGATATGCCT	TACTTACCAG	ATGGACGTCC	GATCGATATC	ATGTTAAATC	3240
	CTCTTGGTGT	ACCATCTCGT	ATGAACATCG	GACAAGTATT	AGAGCTACAC	TTAGGTATGG	3300
30	CTGCTAAAAA	TCTTGGTATT	CACGTTGCAT	CACCAGTATT	TGACGGTGCA	AACGATGACG	3360
	ATGTATGGTC	AACAATTGAA	GAAGCTGGTA	TGGCTCGTGA	TGGTAAAACT	GTACTTTATG	3420
35	ATGGACGTAC	AGGTGAACCA	TTCGATAACC	GTATTTCAGT	AGGTGTAATG	TACATGTTGA	3480
	AACTTGCGCA	CATGGTTGAT	GATAAATTAC	ATGCGCGTTC	AACAGGACCA	TATTCACTTG	3540
	ttaçãcaaca	ACCACTTGGC	GGTAAAGCGC	AATTCGGTGG	ACAACGTTTT	GGTGAGATGG	3600
40	AGGTATGGGC	ACTTGAAGCA	TATGGTGCTG	CATACACATT	ACAAGAAATC	TTAACTTACA	3660
	AATCCGATGA	TACAGTAGGA	CGTGTGAAAA	CATACGAGGC	TATTGTTAAA	GGTGAAAACA	3720
	TCTCTAGACC	AAGTGTTCCA	GAATCATTCC	GAGTATTGAT	GAAAGAATTA	CAAAGTTTAG	3780
45	GTTTAGATGT	AAAAGTTATG	GATGAGCAAG	ATAATGAAAT	CGAAATGACA	GACGTTGATG	3840
	ACGATGATGT	TGTAGAACGC	AAAGTAGATT	TACAACAAAA	TGATGCTCCT	GAAACACAAA	3900
	AAGAAGTTAC	TGATTAATAC	GCAATTTACA	AAACAGGCAA	AAAGATACTA	AGCTGAATTT	3960
50	TATTGATGAT	TCAGTTTAGT	ACTTTAAGCC	ATTTTAAATA	AATGCAAATC	AATCAAATAG	4020
	CACACCTAAT	CT 3 3 3 TTC 3 3	CONCCUNCCC		አጥር ጥስ አልጥል አ	TOTAL CONTRACT	4000

	AAACCTGAAA	CAATCAACTA	CCGTACATTA	AAACCTGAAA	AAGATGGTCT	ATTCTGTGAA	420
	AGAATTTTCG	GACCTACAAA	AGACTGGGAA	TGTAGTTGTG	GTAAATACAA	ACGTGTTCGC	426
5	TACAAAGGCA	TGGTCTGTGA	CAGATGTGGA	GTTGAAGTAA	СТАААТСТАА	AGTACGTCGT	432
	GAAAGAATGG	GTCACATTGA	ACTTGCTGCT	CCAGTTTCTC	ACATTTGGTA	TTTCAAAGGT	438
10	ATACCAAGTC	GTATGGGATT	ATTACTTGAC	ATGTCACCAA	GAGCATTAGA	AGAAGTTATT	444
70	TACTTTGCTT	CTTATGTTGT	TGTAGATCCA	GGTCCAACTG	GTTTAGAAAA	GAAAACTTTA	450
	TTATCTGAAG	CTGAATTCAG	AGATTATTAT	GATAAATACC	CAGGTCAATT	CGTTGCAAAA	4560
15	ATGGGTGCAG	AAGGTATTAA	AGATTTACTT	GAAGAGATTG	ATCTTGACGA	AGAACTTAAA	4620
	TTGTTACGCG	ATGAGTTGGA	ATCAGCTACT	GGTCAAAGAC	TTACTCGTGC	AATTAAACGT	4680
	TTAGAAGTTG	TTGAATCATT	CCGTAATTCA	GGTAACAAAC	CTTCATGGAT	GATTTTAGAT	4740
20	GTACTTCCAA	TCATCCCACC	AGAAATTCGT	CCAATGGTTC	AATTAGATGG	TGGACGATTT	4800
	GCAACAAGTG	ACTTAAACGA	CTTATACCGT	CGTGTAATTA	ATCGAAATAA	TCGTTTGAAA	4860
	CGTTTATTAG	ATTTAGGTGC	ACCTGGTATC	ATCGTTCAAA	ACGAAAAACG	TATGTTACAA	4920
25	GAAGCCGTTG	ACGCTTTAAT	TGATAATGGT	CGTCGTGGTC	GTCCAGTTAC	TGGCCCAGGT	4980
	AACCGTCCAT	TAAAATCTTT	ATCTCATATG	TTAAAAGGTA	AACAAGGTCG	TTTCCGTCAA	5040
	AACTTACTTG	GTAAACGTGT	TGACTATTCA	GGACGTTCAG	TTATTGCAGT	AGGTCCAAGC	5100
30	TTGAAAATGT	ACCAATGTGG	TTTACCAAAA	GAAATGGCAC	TTGAACTATT	TAAACCATTC	5160
	GTAATGAAAG	AATTAGTTCA	ACGTGAAATT	GCAACTAACA	TTAAAAATGC	GAAGAGTAAA	5220
35	ATCGAACGTA	TGGATGATGA	AGTTTGGGAC	GTATTGGAAG	AAGTAATTAG	AGAACATCCT	5280
	GTATTACTTA	ACCGTGCACC	AACACTTCAT	AGACTTGGTA	TTCAAGCATT	TGAACCAACT	5340
	TTAGTTGAAG	GTCGTGCGAT	TCGTCTACAT	CCACTTGTAA	CAACAGCTTA	TAACGCTGAC	5400
40	TTTGACGGTG	ACCAAATGGC	GGTTCACGTT	CCTTTATCAA	AAGAGGCACA	AGCTGAAGCA	5460
	AGAATGTTGA	TGTTAGCAGC	ACAAAACATC	TTGAACCCTA	aagatggtaa	ACCTGTAGTT	5520
	ACACCATCAC	AAGATATGGT	ACTTGGTAAC	TATTACCTTA	CTTTAGAAAG	AAAAGATGCA	5580
45	GTAAATACAG	GCGCAATCTT	ТААТААТАСА	AATGAAGTAT	TAAAAGCATA	TGCAAATGGC	5640
	TTTGTACATT	TACACACTAG	AATTGGTGTA	CATGCAAGTT	CGTTCAATAA	TCCAACATTT	5700
	ACTGAAGAAC	AAAACAAAAA	GATTCTTGCT	ACGTCAGTAG	GTAAAATTAT	ATTCAATGAA	5760
50	ATCATTCCAG	ATTCATTTGC	TTATATTAAT	GAACCTACGC	AAGAAAACTT	AGAAAGAAAG	5820
	ACACCAAACA	Camarancar	CCATCCTACA	A COMPANY COMP	1100m001mm		

	GAAGTATTCA	ACAGATTTAG	CATCACTGAT	ACATCAATGA	TGTTAGACCG	TATGAAAGAC	6000
	TTAGGATTCA	AATTCTCATC	TAAAGCTGGT	ATTACAGTAG	GTGTTGCTGA	TATCGTAGTA	6060
5	TTACCTGATA	AGCAACAAAT	ACTTGATGAG	CATGAAAAAT	TAGTCGACAG	AATTACAAAA	6120
	CAATTCAACC	GTGGTTTAAT	CACTGAAGAA	GAAAGATATA	ATGCAGTTGT	TGAAATTTGG	6180
	ACAGATGCAA	AAGATCAAAT	TCAAGGTGAA	TTGATGCAAT	CACTTGATAA	AACTAACCCA	6240
10	ATCTTCATGA	TGAGTGATTC	AGGTGCCCGT	GGTAACGCAT	CTAACTTTAC	ACAGTTAGCA	6300
	GGTATGCGTG	GATTGATGGC	CGCACCATCT	GGTAAGATTA	TCGAATTACC	AATCACATCT	6360
15	TCATTCCGTG	AAGGTTTAAC	AGTACTTGAA	TACTTCATCT	CAACTCACGG	TGCACGTAAA	6420
	GGTCTTGCCG	ATACAGCACT	TAAAACAGCT	GACTCAGGAT	ATCTTACTCG	TCGTCTTGTT	6480
	GACGTGGCAC	AAGATGTTAT	TGTTCGTGAA	GAAGACTGTG	GTACTGATAG	AGGTTTATTA	6540
? 0 .	GTTTCTGATA	TTAAAGAAGG	TACAGAAATG	ATTGAACCAT	TTATCGAACG	TATTGAAGGT	6600
	CGTTATTCTA	AAGAAACAAT	TCGTCATCCT	GAAACTGATG	AAATAATCAT	TCGTCCTGAT	6660
	GAATTAATTA	CACCTGAAAT	TGCTAAGAAA	ATTACAGATG	CTGGTATTGA	ACAAATGTAT	6720
?5	ATTCGCTCAG	CATTTACTTG	TAACGCACGA	CATGGTGTTT	GTGAAAAATG	TTACGGTAAA	6780
	AACCTTGCTA	CTGGTGAAAA	AGTTGAAGTT	GGTGAAGCAG	TTGGTACAAT	TGCAGCCCAA	6840
	TCTATCGGTG	AACCAGGTAC	ACAGCTTACA	ATGCGTACAT	TCCATACAGG	TGGGGTAGCA	6900
30	GGTAGCGATA	TCACACAAGG	TCTTCCTCGT	ATTCAAGAGA	TTTTCGAAGC	ACGTAACCCT	6960
	AAAGGTCAAG	CGGTAATTAC	GGAAATCGAA	GGTGTCGTAG	AAGATATTAA	ATTAGCAAAA	7020
	GATAGACAAC	AAGAAATTGT	TGTTAAAGGT	GCTAATGAAA	CAAGATCATA	CCTTGCTTCA	7080
35	GGTACTTCAA	GAATTATTGT	AGAAATCGGT	CAACCAGTTC	AACGTGGTGA	AGTATTAACT	7140
	GAAGGTTCTA	TTGAACCTAA	GAATTACTTA	TCTGTTGCTG	GATTAAACGC	GACTGAAAGC	7200
10	TACTTATTAA	AAGAAGTACA	AAAAGTTTAC	CGTATGCAAG	GTGTAGAAAT	CGACGATAAA	7260
	CACGTTGAGG	TTATGGTTCG	ACAAATGTTA	CGTAAAGTTA	GAATTATCGA	AGCAGGTGAT	7320
	ACGAAGTTAT	TACCAGGTTC	ATTAGTTGAT	ATTCATAACT	TTACAGATGC	AAATAGAGAA	7380
15	GCATTTAAAC	ACCGTAAGCG	TCCTGCAACA	GCTAAACCAG	TATTACTTGG	TATTACTAAA	7440
	GCATCACTTG	AAACAGAAAG	TTTCTTATCT	GCAGCATCAT	TCCAAGAAAC	AACAAGAGTT	7500
	CTTACAGATG	CAGCAATTAA	AGGTAAGCGT	GATGACTTAT	TAGGTCTTAA	AGAAAACGTA	7560
50	ATTATTGGTA	AGTTAATTCC	AGCTGGTACT	GGTATGAGAC	GTTATAGCGA	CGTAAAATAC	7620
	CDDDDDDCDC	СТАВАССАСТ	TOCAGAAGTT	СВВТСТСВВВ	СТСААСТААС	GGAATAACAA	7680

	ATGTTGACGA	ATTCTCTTGT	TCAATGTTAA	TATATTAAAG	GTTGATGCAA	GCAGAACTTT	7800
	GGAGGATAAA	TTATTGTCTA	AGGAAAAGT	tGCACGCTTT	AACAAACAAC	ATTTTGTAGT	7860
5	TGGTCTTAAA	GAAACGCTTA	AAGCGTTAAA	GAAAGATCAA	GTTACATCTT	TGATTATTGC	7920
	TGAAGACGTT	GAAGTATATT	TAATGACTCG	CGTGTTAAGC	CAAATCAATC	AGAAAATAT	7980
	ACCTGTATCT	TTTTTCAAAA	GCAAACATGC	TTTGGGTAAA	CATGTAGGTA	TTAACGTCAA	8040
10	TGCGACAATA	GTAGCATTGA	TTAAATGAGA	ATTAGTAAGT	GTTTTACTTA	CTAAATTTTA	8100
	TTTAACCTAA	AAATGAACCA	CCTGGATGTG	TGGGATTAAA	AAGTGAAGAG	AGGAGGACAT	8160
15	ATCACATGCC	AACTATTAAC	CAATTAGTAC	GTAAACCAAG	ACAAAGCAAA	ATCAAAAAAT	8220
	CAGATTCTCC	AGCTTTAAAT	AAAGGTTTCA	ACAGTAAAAA	GAAAAAATTT	ACTGACTTAA	8280
•	ACTCACCACA	AAAACGTGGT	GTATGTACTC	GTGTAGGTAC	AATGACACCT	AAAAAACCTA	8340
?0	ACTCAGCGTT	ACGTAAATAT	GCACGTGTGc	gTtTATCAAA	CAACATCGAA	ATTAACGCAT	8400
	ACATCCCTGG	TATCGGACAT	AACTTACAAG	AACACAGTGT	TGTACTTGTA	CGTGGTGGAC	8460
	GTGTAAAAGA	CTTACCAGGT	GTGCGTTACC	ATATTGTACG	TGGAGCACTT	GATACTTCAG	8520
?5	GTGTTGACGG	ACGTAGACAA	GGTCGTTCAT	TATACGGAAC	TAAGAAACCT	AAAAACTAAG	8580
	AATTTAGTTT	TTAATTAAAT	CTTAAACTTA	AATTTATAAA	TATAAGGAAG	GGAGGATTTA	8640
	CATTATGCCT	CGTAAAGGAT	CAGTACCTAA	AAGAGACGTA	TTACCAGATC	CAATTCATAA	8700
30	CTCTAAGTTA	GTAACTAAAT	TAATTAACAA	AATTATGTTA	GATGGTAAAC	GTGGAACAGC	8760
	ACAAAGAATT	CTTTATTCAG	CATTCGACCT	AGTTGAACAA	CGCAGgtTCG	TGATGCATTA	8820
35	GAAGTATTCG	AAGAAGCAAT	CAACAACATT	ATGCCAGTAT	TAGAAGTTAA	AGCTCGTCGC	8886
55	GTAGGTGGTT	CTAACTATCA	AGTACCAGTA	GAAGTTCGTC	CAGAGCGTCG	TACTACTTTA	8940
	GGTTTACGTT	GGTTAGTTAA	CTATGCACGT	CTTCGTGGTG	AAAAAACGAT	GGAAGATCGT	9000
10	TTAGCTAACG	AAATTTTAGA	TGCAGCAAAT	AATACAGGTG	GTGCCGTTAA	GAAACGTGAG	9060
	GACACTCACA	AAATGGCTGA	AGCAAACAAA	GCATTTGCTC	ACTACCGTTG	GTAAGATAAA	9120
	AGCTTTTACC	CTGAGTGTGT	TCTATATTAA	TGAATTTTCA	TTAAGCGTTC	ATGCTTAGGG	91/80
15	CATCGCCATA	TCTATCGTAT	TTATTCAGTA	ATATAAACTG	GAAGGAGAAA	AAATACATGG	9240
٠	CTAGAGAATT	TTCATTAGAA	AAAACTCGTA	ATATCGGTAT	CATGGCTCAC	ATTGATGCTG	9300
	GTAAAACGAC	TACGACTGAA	CGTATTCTTT	ATTACACTGG	CCGTATCCAC	AArGknGGTG	9360
50	AAaCACACGA	AGGTGCTTCA	CAAATGGACT	GGATGGAGCA	AGAACAAGAC	CGTGGTATTA	9420
	CTATCACATC	TGCTGCAACA	ACAGCAGCTT	GGGAAGGTCA	CCGTGTAAAC	ΑΤΤΑΤΟΘΑΤΑ	9480

	CAGTTACAGT	ACTTGATGCA	CAATCAGGTG	TTGAACCTCA	AACTGAAACA	GTTTGGCGTC	9600
	AGGCTACAAC	TTATGGTGTT	CCACGTATCG	TATTTGTAAA	CAAAATGGAC	AAATTAGGTG	9660
5	CTAACTTCGA	ATACTCTGTA	AGTACATTAC	ATGATCGTTT	ACAAgCTAAC	GCTGCTCCAA	. 9720
	TCCAATTACC	AATTGGTGCG	GAAGACGAAT	TCGAAGCAAT	CATTGACTTA	GTTGAAATGA	9780
	AATGTTTCAA	ATATACAAAT	GATTTAGGTA	CTGAAATTGA	AGAAATTGAA	ATTCCTGAAG	9840
10	ACCACTTAGA	TAGAGCTGAA	GAAGCTCGTG	CTAGCTTAAT	CGAAGCAGTT	GCAGAAACTA	9900
	GCGACGAATT	AATGGAAAAA	TATCTTGGTG	ACGAAGAAAT	TTCAGTTTCT	GAATTAAAAG	9960
15	AAGCTATCCG	CCAAGCTaCt	ACTAACGTAG	AATTCTACCC	AGTACTTTGT	GGTACAGCTT	10020
	TCAAAAACAA	AGGTGTTCAA	TTAATGCTTG	ACGCTGTAAT	TGATTACTTA	CCTTCACCAC	10080
	TAGACGTTAA	ACCAATTATT	GGTCACCGTG	CTAGCAACCC	TGAAGAAGAA	GTAATCGCGA	10140
20	AAGCAGACGA	TTCAGCTGAA	TTCGCTGCAT	TAGCGTTCAA	AGTTATGACT	GACCCTTATG	10200
	TTGGTAAATT	AACATTCTTC	CGTGTGTATT	CAGGTACAAT	GACATCTGGT	TCATACGTTA	10260
•	AGAACTCTAC	TAAAGGTAAA	CGTGAACGTG	TAGGTCGTTT	ATTACAAATG	CACGCTAACT	10320
25	CACGTCAAGA	AATCGATACT	GTATACTCTG	GAGATATCGC	TGCTGCGGTA	GGTCTTAAAG	10380
	ATACAGGTAC	TGGTGATACT	TTATGTGGTG	agaaaaatga	CATTATCTTG	GAATCAATGG	10440
	AATTCCCAGA	GCCAGTTATT	CACTTATCAG	TAGAGCCAAA	ATCTAAAGCT	GACCAAGATA	10500
30	AAATGACTCA	AGCTTTAGTT	AAATTACAAG	AAGAAGACCC	AACATTCCAT	GCACACACTG	10560
	ACGAAGAAAC	TGGACAAGTT	ATCATCGGTG	GTATGGGTGA	GCTTCACTTA	GACATCTTAG	10620
05	TAGACCGTAT	GAAGAAAGAA	TTCAACGTTG	AATGTAACGT	AGGTGCTCCA	ATGGTTTCAT	10680
35	ATCGTGAAAC	ATTCAAATCA	TCTGCACAAG	TTCAAGGTAA	ATTCTCTCGT	CAATCTGGTG	10740
	GTCGTGGTCA	ATACGGTGAT	GTTCACATTG	AATTCACACC	AAACGAAACA	GGCGCAGGTT	10800
40	TCGAATTCGA	AAACGCTATC	GTTGGTGGTG	TAGTTCCTCG	TGAATACATT	CCATCAGTAG	10860
	AAGCTGGTCT	TAAAGATGCT	ATGGAAAATG	GTGTTTTAGC	AGGTTATCCT	TTAATTGATG	10920
	TTAAAGCTAA	ATTATATGAT	GGTTCATACC	ATGATGTCGA	TTCATCTGAA	ATGGCCTTCA	10980
45	AAATTGCTGC	ATCATTAGCA	CTTAAAGAAG	CTGCTAAAAA	ATGTGATCCT	GTAATCTTAG	11040
	AACCAATGAT	GAAAGTAACT	ATTGAAATGC	CTGAAGAGTA	CATGGGTGAT	ATCATGGGTG	11100
	ACGTAACATC	TCGTCGTGGA	CGTGTTGATG	GTATGGAACC	TCGTGGTAAT	GCACAAGTTG	11160
50	TTAATGCTTA	TGTACCACTT	TCAGAAATGT	TCGGTTATGC	AACATCATTA	CGTTCAAACA	11220
	СТСААССТСС	СССТАСТТАС	а <i>с</i> татстаст	TOGATOACEA	тостов встт	CCADADTCAD	11280

	GCCTAGGTTA	AAATACAAGG	TGAGCTTAAA	TGTAAGCTAT	CATCTTTATA	GTTTGATTTT	11400
	TTGGGGTGAA	TGCATTATAA	AAGAATTGTA	AAATTCTTTT	TGCATCGCTA	TAAATAATTT	11460
5	CTCATGATGG	TGAGAAACTA	TCATGAGAGA	TAAATTTAAA	TATTATTTT	AATTAGAATA	11520
	GGAGAGATTT	TATAATGGCA	AAAGAAAAAT	TCGATCGTTC	TAAAGAACAT	GCCAATATCG	11580
	GTACTATCGG	TCACGTTGAC	CATGGTAAAA	CAACATTAAC	AGCAGCAATC	GCTACTGTAT	11640
0	TAGCAAAAA	TGGTGACTCA	GTTGCACAAT	CATATGACAT	GATTGACAAC	GCTCCAGAAG	11700
	AAAAAGAACG	TGGTATCACA	ATCAATACTT	CTCACATTGA	GTACCAAACT	GACAAACGTC	11760
15	ACTACGCTCA	CGTTGACTGC	CCAGGACACG	CTGACTACGT	TAAAAACATG	ATCACTGGTG	11820
-	CTGCTCAAAT	GGACGGCGGT	ATCTTAGTAG	TATCTGCTGC	TGACGGTCCA	ATGCCACAAA	11880
	CTCGTGAACA	CATTCTTTTA	TCACGTAACG	TTGGTGTACC	AGCATTAGTA	GTATTCTTAA	11940
20	ACAAAGTTGA	CATGGTTGAC	GATGAAGAAT	TATTAGAATT	AGTAGAAATG	GAAGTTCGTG	12000
	ACTTATTAAG	CGAATATGAC	TTCCCAGGTG	ACGATGTACC	TGTAATCGCT	GGTTCAGCAT	12060
	TAAAAGCTTT	AGAAGGCGAT	GCTCAATACG	AAGAAAAAT	CTTAGAATTA	ATGGAAGCTG	12120
?5	TAGATACTTA	CATTCCAACT	CCAGAACGTG	ATTCTGACAA	ACCATTCATG	ATGCCAGTTG	12180
	AGGACGTATT	CTCAATCACT	GGTCGTGGTA	CTGTTGCTAC	AGGCCGTGTT	GAACGTGGTC	12240
	AAATCAAAGT	TGGTGAAGAA	GTTGAAATCA	TCGGTTTACA	TGACACATCT	AAAACAACTG	12300
30	TTACAGGTGT	TGAAATGTTC	CGTAAATTAT	TAGACTACGC	TGAAGCTGGT	GACAACATTG	12360
	GTGCATTATT	ACGTGGTGTT	GCTCGTGAAG	ACGTACAACG	TGGTCAAGTA	TTAGCTGCTC	12420
	CTGGTTCAAT	TACACCACAT	ACTGAATTCA	AAGCAGAAGT	ATACGTATTA	TCAAAAGACG	12480
35	AAGGTGGACG	TCACACTCCA	TTCTTCTCAA	ACTATCGTCC	ACAATTCTAT	TTCCGTACTA	12540
	CTGAÉGTAAC	TGGTGTTGTT	CACTTACCAG	AAGGTACTGA	AATGGTAATG	CCTGGTGATA	12600
10	ACGTTGAAAT	GACAGTAGAA	TTAATCGCTC	CAATCGCGAT	TGAAGACGGT	ACTCGTTTCT	12660
	CAATCCGTGA	AGGTGGACGT	ACTGTAGGAT	CAGGCGTTGT	TACTGAAATC	ATTAAATAAT	12720
	TTCTAATTTC	TTAGATTTTA	TATAAAAAGA	AGATCCCTCA	ATCGAGGGGt	CTTTTTTTAA	12780
45	TGTGTAAATT	TTGTAATGGC	TATTCGATTT	AGAAGAACAA	TAATTGATGA	AAGACTGACT	12840
	AATAAAACTT	ATAACTGATA	ATACTGTTTA	aataaaattg	TTGAGTCTTG	GACATTGTAA	12900
	AATGCTCCCT	TCAAAGTTTT	CATTTTTTCa	ATGTCTACTT	TGAAGGGAGC	ATTTCATTAG	12960
50	TTTATGTCTC	AGATTCATAT	CTTTCAATTA	ATTTAAATGC	TTAATTTGTT	TTAAATACTT	13020
	CCTCTAATTC	ጥልጥርልጥጥጥ ጥ	раратасас	СТАСАСССТА	ттттаатсат	тттсатсаа	13080

	TCAGAAAGAA	TGCACCTGGT	CGTACTTTCA	AATAATGTGA	AAAATCTTCT	CCAATCATCA	13200
5	TTAAATCTGA	TTCATTAAAG	CGTACATGTA	AGTCATTTGT	TGCTTCTTTA	ATAACTTGAT	13260
	ATGCTTTCTC	GTTATTATGG	ACAGGCAAAT	ACCCTTTAAT	ATAATTCAAA	TCATAGTTAA	13320
	TATCATTTGC	TATTGCTAAA	CCTTGTAGAA	GCTTATCCAT	TTTGTCCATT	ACATGATTCT	13380
	GTATATCTGA	ATCGAAAGTT	CTAACTGTAC	CTTTACAAAA	TGCTTGATCA	GGAATAACGC	13440
10	TATCTGTGGT	GCCTGCTTGA	ATCATTCCAA	ATGAAAGTAC	AGCTTGTTTA	ACTGGATCGA	13500
	TCGTACGTGA	AATTATTTT	TGTGCACTTA	AAATGAACTC	TGCCATGATT	ACTATTGGGT	13560
15	CAATGGTTTC	ATGAGGTTTG	GCACCATGAC	CACCACGACC	TTTAAATGTG	ACGCTAAATT	13620
-	CATCTGGAGA	GGCCATGATT	GCCCCGCAC	GTGAATGAAT	AGTTCCAGTA	GGATAACCAC	13680
	TCCATAAATG	TGTACCGTAA	ATTCTATCTA	CATTTTCCAG	ACATCCAGCA	TCTATCATTT	13740
20	CTTGAGAACC	ACCTGGCATG	ATTTCTTCAC	CGTACTGGAA	TATTAATACA	ACATTACCTT	13800
	CTAATAAATG	TTTATGTTCA	TCTAAAATCT	CTGCTACAGT	AAGTAAAATT	GCTGTATGAC	13860
	CATCATGCCC	ACACGCATGC	ATACATCCTG	GATTTTTAGA	CTTATAAGGC	ACATCGTTTA	13920
?5	ATTCCTCGAC	AGGTAACGCA	TCAAAGTCAG	CTCTTAATGC	AATGGTAGGT	CCTGTGCCCA	13980
	AGCCTTTAAA	TGTGGCTTTG	ATACCATTGC	GGCCGATAGG	AGTTTCAATA	TCACAAGATA	14040
	ACTGGCTTAÄ	TTGGTTAACA	ATATAATCAT	GTGTTTGAAA	TTCTTCAAAA	GATAACTCAG	14100
30	GATATTGGTG	TAAATAACGT	CTGAGTTGAA	TTGTTTTATT	TTCTTTATTA	TTTGCTAGTT	14160
	GGAACCAATC	TAACACCCTT	ATCACTACTT	TCTAAAATAA	TGTTTATAGT	ATAACATTTT	14220
	ATGAAATTAT	CGTACTAAAT	GATTGCTTTG	AGATATTTTA	TCTATGAATG	ATAAGGCTTT	14280
35	CAAGTTATGT	AGAATTACTG	TATGATAAAG	GTATTACCAA	ACAATACTTA	AGGGGGATTA	14340
	TATACTGTGG	TTCAATCATT	ACATGAGTTT	TTAGAGGAAA	ATTAAATTA	TCTAAAAGAA	14400
10	AATĠGTTTGT	ATAATGAAAT	AGATACAATT	GAAGGTGCAA	ACGGACCAGA	AATCAAAATC	14460
	AATGGGAAAT	CATACATTAA	CTTATCTTCA	AATAATTATT	TAGGACTAGC	AACAAATGAA	14520
	GATTTGAAAT	CaGctGCAAA	AGCAGCTATT	GATACACATG	GTGTAGGTGC	AGGCGCTGTT	14580
15	CGTACAATCA	ATGGTACATT	AGATTTACAC	GACGAATTAG	AAGAAACACT	AGCAAAATTT	14640
	AAAGGAACAG	AAGCTGCAAT	AGCTTATCAA	TCAGGATTTA	ATTGTAATAT	GGCTGCTATT	14700
	TCAGCTGTCA	TGAATAAAAA	TGATGCTATT	TTATCAGATG	AGCTTAATCA	TGCATCAATT	14760
50	ATTGATGGAT	GTCGCTTATC	TAAAGCTAAA	ATTATTCGAG	TTAACCATTC	AGACATGGAT	14820
	GATTTACCTC	CCAAACCAAA	ACAACCACTT	GAATCAGGTC	ΑΑΤΑΓΆΑΤΑΑ	AGTGATGTAT	14890

ATTGCAGAAG	AATTTGGTTT	ATTAACTTAT	GTTGACGACG	CTCATGGTTC	AGGTGTTATG	15000	
GGTAAAGGCG	CTGGTACGGT	TAAACATTTT	GGTTTACAAG	ATAAAATCGA	TTTCCAAATA	15060	
GGTACGCTTT	CTAAAGCAAT	TGGTGTCGTT	GGCGGTTATG	TAGCAGGTAC	AAAAGAGTTA	15120	
ATAGATTGGT	TAAAAGCACA	ATCACGACCA	TTCTTATTCT	CTACATCATT	AGCACCTGGG	15180	
GATACCAAAG	CAATAACTGA	AGCAGTTAAA	AAGTTAATGG	ATTCAACTGA	ATTACATGAT	15240	
AAATTATGGA	ACAATGCACA	ATATTTAAAA	AATGGATTGT	CAAAATTAGG	ATATGATACA	15300	
GGTGAGTCAG	AAACTCCAAT	TACACCAGTA	ATTATTGGTG	ATGAAAAAAC	AACTCAAGAA	15360	
TTTAGTAAGC	GTTTAAAAGA	CGAAGGTGTC	TATGTGAAAT	CTATCGTTTT	CCCAACAGTA	15420	
CCAAGAGGTA	CAGGACGTGT	AAGÄAATATG	CCTACAGCTG	CACATACAAA	AGACATGTTA	15480	
GATGAAGCAA	TTGCGGCTTA	TGAAAAAGTA	GGAAAAGAAA	TGAAGTTGAT	TTAATATTTA	15540	
TTTATTCCCA	CGGCAAATAT	TGTCGTGGGC	TAATTTTTTT	GTTTAGTTTA	TTAACAGT	15598	
(2) INFORMATION FOR SEC ID NO. 82.							

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 661 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

10

15

20

25

35

40

45

50

AAGTAAATCA ACTTACTGGG ATAAGAATAA AGGCGATTAT AGTAACAAGT TGATTTTATT 60 CGAAAAACAT TTTGAACCGG TTCTGGGTAT CAAGATGCAA CATAGTGGAG GTCATAGCTT 120 TGGCCACACG ATTATTACGA TTGAAAGTCA AGGAGATAAA GCAGTTCATA TGGGTGATAT 180 ATTCCCAACT ACTGCACATA AAAATCCTCT ATGGGTAACG GCATATGATG ATTATCCTAT 240 GCAATCGATT CGTGAAAAAG AACGCATGAT ACCATATTTT ATTCAGCAAC AATATTGGTT 300 CTTGTTTTAT CATGATGAAA ACTACTTTGC TGTAAAATAC AGCGATAATG GTGAAAACAT 360 AGATGCATAT ATTTTACGTG AAACATTAGT TGATAATAAC TAAAATAAAG ATGTATTACT 420 AAACAAATTT TCAAAAATAA AAAATTGAGC CACATCCAAT CTTACTAATT AGGGTGTGGC 480 TCATTTTTAA GTTTTACGAT CCAAATCAAA TATGGATAAA ATTCGTATTA ACGCTCTACA 540 ATGLTAATGA CTTCACCAGT ATATGCATCT GCATAAAAAT CATAATGAAT ATTTTGACCA 600 TTTTTAATAG TTGTAATTCC ACCTTGATAA ACTAAACGGT ATTTATCAGT TTCAGGATGA 660

55

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5738 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

10	GCAGACGGTA	CAGCAGTTAA	AGTCGCACCA	AaACTGTAGT	GAATCTAATC	GGTGCATTCT	. 60
	TTTTAGGATT	AGTTGTCGCG	СТТАТАТАТА	TCTTCTTCAA	AGTAATTTTC	GATAAGCGAA	120
15	TTAAAGATGA	AGAAGATGTA	GAGAAAGAAT	TAGGATTGCC	TGTATTGGGT	TCAATTCAAA	18
15	AATTTAATTA	AGGATGGTTG	CTACTTATGT	CAAAAAAGGA	AAATACGACA	ACAACACTAT	24
	TTGTATATGA	AAAACCAAAA	TCAACAATTA	GTGAAAAGTT	TCGAGGTATA	CGTTCAAACA	30
20	TCATGTTTTC	AAAAGCAAAT	GGTGAAGTAA	AGCGCTTATT	GGTTACTTCT	GAAAAGCCTG	360
	GTGCAGGTAA	AAGTACAGTT	GTATCGAATG	TAGCGATTAC	TTATGCACAA	GCAGGCTATA	420
	AGACATTAGT	TATTGATGGC	GATATGCGTA	AgcCAACACA	AAACTATATT	TTTAATGAGC	480
25	AAAATAATAA	TGGACTATCA	AGCTTAATCA	TTGGTCGAAC	GACTATGTCA	GAAGCAATTA	540
	CGTCGACAGA	AATTGAAAAT	TTAGATTTGC	TAACAGCTGG	CCCTGTACCT	CCAAATCCAT	600
	CTGAGTTAAT	TGGGTCTGAA	AGGTTCAAAG	AATTAGTTGA	TCTGTTTAAT	AAACGTTACG	660
30	ACATTATTAT	TGTCGATACA	CCGCCAGTTA	ATACTGTGAC	TGATGCACAA	CTATATGCGC	720
	GTGCTATTAA	AGATAGTCTG	TTAGTAATTG	ATAGTGAAAA	AAATGATAAr	AATGAAGTTA	780
ne	AAAAAGCAAA	AGCACTTATG	GAAAAAGCAG	GCAGTAACAT	TCTAGGTGTC	ATTTTGAACA	840
35 _.	AGACAAAGGT	CGATAAATCT	TCTAGTTATT	ATCACTATTA	TGGAGATGAA	TAAGTATGAT	900
	TGATÃTTCAT	AACCATATAT	TGCCTAATAT	CGATGACGGT	CCGACAAATG	AAACAGAGAT	960
10	GATGGATCTT	TTAAAACAAG	CGACAACACA	AGGTGTTACA	GAAATCATTG	TAACATCACA	1020
	TCACTTACAT	CCTCGATATA	CCACACCTAT	AGAAAAGTG	AAATCATGTT	TAAACCATAT	1080
	TGAAAGCTTA	GAGGAAGTAC	AAGCACTAAA	TCTAAAGTTT	TATTATGGTC	AGGAAATAAG	1140
15	AATTACCGAT	CAAATCCTTA	ATGATATTGA	TCGAAAAGTT	ATTAACGGTA	TTAATGATTC	1200
	ACGCTATTTA	CTAATAGAAT	TTCCATCAAA	TGAAGTTCCA	CACTATACTG	ATCAATTATt	126(
	TTTCGAATLA	CAGAGTAAAG	GCTTTGTACC	GATTATTGCA	CATCCAGAGC	GGAATAAAGC	1320
50	AATAAGTCAA	AACCTTGÁCA	TACTATACGA	TTTAATTAAC	AAAGGTGCTT	TAAGTCAAGT	1380
	GACAACGGcG	TCATTAGCGG	GTATTTCCGG	TTAAAAAATT	AGAAAATTAG	CAATTCAAAT	1440

	GTTCTTAATG	AAAGACTTAT	TTAATGATAA	GAAATTACGT	GATTATTATG	AAGATATGAA	1560
	CGGATTTATT	AGTAATGCGA	AGTTAGTTGT	TGATGATAAA	AAAATTCCTA	AACGAATGCC	1620
5	ACAACAAGAT	TATAAACAGA	AAAGATGGTT	TGGGTTATAA	ACAGCAAATG	AGGGGTTTTA	1680
	TGGCACATTT	ATCTGTGAAA	TTGCGGCTTT	TAATACTAGC	ATTAATCGAT	TCACTGATAG	1740
10	TGACATTTTC	AGTATTCGTA	AGTTATTACA	TTTTAGAACC	GTATTTCAAA	ACATATTCTG	1800
10 .	TCAAATTATT	AATATTGGCA	GCTATATCAC	TATTCATATC	GCATCATATT	TCaGCATTTA	1860
	TTTTTAATAT	GTATCATCGA	GCGTGGGAAT	ATGCCAGTGT	GAGTGAATTG	ATTTTAATTG	1920
15	TTAAAGCTGT	GACGACATCT	ATCGTTATTA	CGATGGTGGT	CGTGACAATT	GTTACAGGCA	1980
	ATAGACCGTT	TTTTAGATTG	ATTTAATTA	CTTGGATGAT	GCACTTGATT	TTAATAGGTG	2040
	GCTCAAGGTT	ATTTTGGCGT	ATTTATCGGA	AATACCTTGG	AGGTAAGTCA	TTTAATAAGA	2100
20	AGCCAACTTT	AGTTGTTGGT	GCTGGTCAAG	CAGGTTCAAT	GCTGATTAGA	CAAATGTTGA	2160
	AAAGTGACGA	AATGAAACTT	GAACCGGTAT	TAGCAGTCGA	TGATGACGAA	CATAAACGCA	2220
	ATATCACAAT	TACTGAGGGT	GTAAAAGTCC	AAGGTAAAAT	TGCGGATATT	CCAGAACTAG	2280
25	TGAGGAAATA	TAAGATTAAA	AAAATCATCA	TTGCAATTCC	AACTATTGGT	CAAGAGCGTT	2340
	TGAAAGAAAT	TAATAATATT	TGCCATATGG	ATGGCGTTGA	GTTATTGAAA	ATGCCAAATA	2400
	TAGAAGACGT	CATGTCTGGT	GAGTTAGAAG	TGAACCAACT	TAAAAAAGTT	GAAGTAGAAG	2460
30	ATTTACTAGG	CAGAGATCCT	GTTGAATTAG	ATATGGATAT	GATATCAAAT	GAATTGACGA	2520
	ATAAAACTAT	TTTAGTTACG	GGTGCAGGTG	GTTCAATAGG	ATCAGAAATT	TGTAGACAAG	2580
) E	TTTGTAATTT	CTATCCAGAA	CGTATTATTC	TACTTGGCCA	TGGTGAAAAC	AGTATTTATT	2640
35	TAATCAATCG	TGAATTGCGA	AATCGCTTCG	Gwaaaaatgt	TGATATCGTT	CCTATTATAG	2700
	CGGAŤGTGCA	AAATAGAGCG	CGTATGTTTG	AAATTATGGA	AACGTATAAA	CCATACGCAG	2760
10	TTTATCATGC	AGCAGCACAC	AAGCACGTGC	CGTTAATGGA	AGACAACCCT	GAAGAAGCAG	2820
	TACGTAATAA	TATTTTAGGT	ACGAAAAATA	CTGCTGAAGC	TGCTAAAAAT	GCAGAGGTAA	2880
	AGAAATTCGT	TATGATTTCT	ACGGATAAAG	CCGTTAATCC	GCCTAATGTC	ATGGGAGCTT	2940
15	CAAAGCGAAT	TGCAGAAATG	ATTATTCAAA	GTTTAAATGA	TGAAACGCAT	CGAACAAATT	3000
•	TTGTTGCAGT	GAGATTTGGT	AATGTACTTG	GATCGAGAGG	ATCTGTGATT	CCACTTTTCA	3060
	AAAGTCAAAT	TGAAGAAGGT	GGGCCAGTTA	CTGTGACACA	TCCTGAAATG	ACACGTTACT	3120
50	TTATGACAAT	TCCTGAAGCT	TCTAGACTAG	TTTTGCAGGC	AGGGGCATTA	GCAGAAGGTG	3180
	GCGAAGTATT	ТСТССТАСАТ	ATGGGAGAAC	САСТСАВАВТ	ጥርጥልርልጥጥጥ	ርርአ ርርሞአ እምም	2240

	CCGGCGAAAA	AATGTTTGAA	GAGCTTATGA	ATAAAGATGA	GGTTCATCCT	GAACAAGTAT	3360
	TTGAAAAAAT	TTATCGTGGC	AAAGTACAAC	ATATGAAATG	TAATGAAGTT	GAAGCGATTA	3420
5	TTCAAGACAT	CGTCAATGAC	TTTAGTAAAG	AAAAAATTAT	TAACTATGCC	AATGGCAAAA	3480
	AGGGAGATAA	TTATGTTCGA	TGACAAAATT	TTATTAATTA	CTGGGGGCAC	AGGATCATTC	3540
10	GGTAATGCTG	TTATGAAACA	GTTTTTAGAT	TCTAATATTA	AAGAAATTCG	TATTTTTCA	3600
,,	CGCGATGAGA	AAAAACAAGA	TGACATTCGA	AAAAAATATA	ATAATTCAAA	ATTAAAGTTC	3660
	TACATTGGTG	ATGTGCGTGA	TAGTCAAAGT	GTAGAAACAG	CAATGCGAGA	TGTTGATTAC	3720
15	GTATTCCATG	CAGCAGCTTT	AAAACAAGTG	CCGTCATGTG	AATTCTTTCC	AGTTGAGGCA	3780
	GTGAAGACAA	ATATTATTGG	TACAGAAAAT	GTCTTACAAA	GTGCTATTCA	TCAAAATGTT	3840
	AAAAAAGTCA	TATGTTTATC	TACAGATAAG	GCAGCGTATC	CTATTAATGC	TAGGGGTATT	3900
20	TCAAAAGCAA	TGATGGAAAA	AGTATTCGTA	GCCAAATCAA	GAAATATTCG	TAGTGAACAA	3960
	ACGCTTATTT	GTGGTACAAG	ATACGGTAAT	GTGATGGCTT	CAAGAGGATC	AGTAATACCT	4020
	TTGTTTATCG	ACAAAATCAA	AGCTGGAGAA	CCTTTAACGA	TTACAGATCC	TGATATGACA	4080
25	AGATTTTTAA	TGAGCTTAGA	AGATGCGGTA	GAACTAGTTG	TTCATGCATT	TAAGCATGCA	4140
	GAGACAGGAG	ATATTATGGT	TCAAAAAGCA	CCAAGCTCAA	CGGTAGGGGA	TCTTGCGACC	4200
	GCATTATTAG	AATTGTTTGA	AGCTGATAAT	GCAATTGAAA	TCATTGGTAC	GCGACATGGA	4260
30	GAGAAAAAG	CAGAAACATT	GTTGACGAGA	GAAGAATACG	CACAATGTGA	AGATATGGGT	4320
	GATTATTTTA	GAGTGCCGGC	AGACTCCAGA	GATTTAAATT	ATAGTAATTA	TGTTGAAACC	4380
35	GGTAACGAAA	AGATTACGCA	ATCTTATGAA	TATAACTCCG	ATAATACACA	TATTTTAACG	4440
,	GTGGAAGAGA	TAAAAGAAAA	ACTTTTAACA	CTAGAATATG	TTAGAAACGA	ATTGAATGAT	4500
	TATAAAGCTT	CAATGAGATA	GGAGAGATTG	ACGTTGAATA	TTGTAATTAC	AGGAGCAAAA	4560
40	GGTTTTGTAG	GAAAAAACTT	GAAAGCAGAT	TTAACTTCAA	CGACAGATCA	TCATATTTTC	4620
	GAAGTACATC	GACAAACTAA	AGAGGAAGAA	TTAGAGTCAG	CATTGTTGAA	AGCAGACTTT	4680
	GTCGTGCATT	TAGCGGGTGT	TAATCGACCT	GAACATGACA	AAGAATTCAG	CTTAGGAAAC	4740
45	GTGAGTTATT	TAGATCATGT	ACTTGATATA	TTAACTAGAA	ATACGAAAAA	GCCAGCGATA	4800
	TTATTATCGT	CTTCAATACA	AGCAACACAA	GATAATCCTT	ATGGTGAGAG	TAAGTTGCAA	4860
	GGGGAACAGC	TATTAAGAGA	GTATGCCGAA	GAGTATGGCA	ATACGGTTTA	TATTTATCGC	4920
50	TGGCCAAATT	TATTCGGCAA	GTGGTGTAAG	CCGAATTATA	ACTCAGTGAT	AGCAACATTT	4980
	TGTTACAAAA	TTGCACGTAA	CGAAGAGATT	CAAGTTAATG	ATCCCAATCT	TGAACTAACG	5040

ATTGAAAATG GTGTACCTAC AGTACCAAAC GTATTTAAAG TGACATTGGG AGAAATTGTA 5160 GATTTATTAT ACAAGTTCAA ACAGTCACGT CTCGATCGAA CATTGCCGAA ATTAGATAAC 5220 TTGTTTGAAA AAGATTTGTA TAGTACGTAT TTAAGCTATC TACCTAGTAC aGACTTTAGT 5280 TAYCCCTTAC TTATGAATGT GGATGATAGG GGTTCTTTTA CAGAATTTAT AAAAACACCG 5340 GATCGTGGTC AAGTTTCTGT AAATATTTCT AAACCAGGTA TTACTAAAGG TAATCACTGG 5400 CATCATACTA AAAACGAAAA ATTTCTAGTC GTATCAGGTA AAGGGGTAAT TCGTTTTAGA 5460 CATGTTAATG ATGATGAAAT CATTGAATAT TATGTTTCTG GCGACAAATT AGAAGTTGTA 5520 GACATACCAG TAGGATACAC ACATAATATT GAAAATTTAG GCGACACAGA TATGGTAACT 5580 ATTATGTGGG TGAATGAAAT GTTTGATCCA AATCAGCCAG ATACGTATTT CTTGGAGGTA 5640 TAGCGCATGG AAAAACTGAA rTTAATGACA ATAGTTGGTA CAAGGCCTGA AATCATTCGT 5700 5738 TTATCATCAA CGATTAAAGC ATGTGATCAA TATLTTAA

(2) INFORMATION FOR SEQ ID NO: 85:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9062 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

ATCATCAACA AGAATGATAT TTTTCCCATC TACTATATCT TTTACCGCAG ATAACTTCAC 60 TCTCACACCT TGCTCACGTA ATTCTTGAGT TGGTTGAATA AATGTTCTTG CAACATATTG 120 ATTTTTAACT AGTCCCATTT CATATGGCAA ACCTATTTCT TCAGCATAAC CACTCGCAGC 180 TGATAGCGAT GAATTGGGTA CACCGATGAC CATATCAGCA TTTACAGGGC TTTCTTGGGC 240 TAATTTTTTA CCAGAAGCTT TACGTACTGC ATGGACATTT TTACCAGCTA TTGTTGAGTC 300 TGGTCTAGCA AAATAAATAT ATTCCATCGC AGAAATTGCA GTTGTCGTAT GATGTGTATA 360 AGATTTAACT GTAATACCTT TATCGTTAAT CACGACATAT TCACCTGCAT GAATATCTTG 420 AACAAATTCT GCACCTAACA CATCTATTGC ACATGTTTCA CTTGCAAGGA TGTATGTCCC 480 ATCTTTCATT TTACCTACAA CAAGTGGTCT GATAGCATTT GGATCTACTG CGCCATATAA 540 CGCATCTTTA GTTAAAATCG CAAATGTAAA ACCGCCTTTA ACTTTTCGCA AACTTTCTTT 600 CAACGCTTCC TCAAAAGTAG GAGCTTTACT TCGACGTATC AAATGCATAA TGACTTCAGT 660 ATCAGAAGAC GAATGGAAGA TAGCACCTTG TTTTTCTAAA TTCTGACGCA ATGATTTAGC 720

55

	CGGTTGAATA	TTTTCAATAC	CTTTATTACC	TGAAGTAGCA	TAACGGACGT	GACCAATTGC	840
	ATGTTGATAT	CCTTTTAATC	GTTCCATTTG	ATCATCTTTA	ATCGCTTCAG	TTAGTAAGCC	900
<i>5</i>	TAATCCTCGC	TCGCCTTTTA	ATTCATTTTG	ATCAGAAACA	ACTATACCTG	CACCTTCTTG	960
	ACCACGATGT	TGCAAACTAT	GAAGTCCCAT	ATAtGTTAGT	TGCGCTGCtT	CaGGATGATT	1020
40	CCAAATACCA	AACACGCCAC	ATTCTTCGTT	TAATCCTGAG	TAGTTAAACA	TTGaGCAATT	1086
10	GCCCCtTCCC	ATATTTGTTT	AATATCTGAA	ACATTTTCAC	TAATCTCTGT	aTATGGTGTT	1140
	GTTACCTTGr	aATTATCACT	ATCTGTTAAA	AGTCCAATTT	CTATTGCATT	ATCAATATTT	1200
15	AAAGTTTTAC	CTGATTTAAC	AGAAACAACA	TATCGGCCTT	GCGTCTCACT	AAACAATTGT	1260
	GCATTTGTTA	TATCTATTGA	AGATTTTAAT	CCTAAACCGT	AATGCGCACT	TAGTTTAGCT	1320
	AAGGTAATCA	GTAAGCCACC	TTTACCAACT	GTTTGAACAT	GTGATAATAG	TCCTTCACGA	1380
20	ATAGCGGTCT	TGATTGATTC	ACCTTTTTCA	ACTTCTGAAC	TCAAATCTAA	TGACTCAAAT	1440
	TCATGATTAA	CTTTGCCATA	AATTAACTTT	TCAAGTTGAC	TACCACCAAA	GTCGTCCTTA	1500
	GTATCACCGA	AATATAA	TTTATCTCCA	ACTTGAGGTT	CAAAATCATT	TAAATAATTT	1560
25	ACATITTCAA	TCAAACCTAC	CATTCCAACA	ACTGGTGTTG	GGAAAATAGA	AGTACCTTTC	1620
	GTTTCGTTAT	ATAAAGATAC	ATTACCAGAA	ACTACTGGTG	TCTTAAGAAT	GTCGCATGCT	1680
	TCTGCCATAC	CTTTCGTTGA	ATCTATCAAC	TGTTGATAGA	TTTCTTTCTT	TTCAGGAGAA	1740
30	CCATAATTTA	AACAATCTGT	CATTGCTAAT	GGTGTTGCAC	CCACGGCAAT	TAAATTTCGA	1800
	TAAGCTTCAG	CTACTACCAT	CTTTCCACCT	TCATATGGAT	TGTTATATAC	ATAACGCGCT	1860
35	TCACCATCAA	TTGTTGAAGC	AATTGCCTTA	TTTGTGCCTT	CCACACGTAC	TACCGATGCT	1920
35	TGAAGTCCTG	GCTTAATTAT	CGTATTGGCA	CCAACTTGTT	GGTCGTATTG	ATCATATAAA	1980
	TAGTGTTTAG	ATGCTATAGT	CGGATGCTTA	AGTAATTTAA	AGAAAGTATC	TTTAACATCG	2040
40	ATGTGTGTAT	AATCATTTTT	AGAAGTATTA	TAATCTTTTT	CTTCTCCTTC	TAAAATATAT	2100
	ACAGGTGCTT	CATCAGCTAG	TGGTTCAACT	GGAATGTCAG	CATAAACTTC	GTCATCATAT	2160
	GTTAAAACAA	AACGATTTGT	ATCTGTAACT	TCACCTATAA	CAGCACTATC	CAATTCGTGC	2220
45	TTATCAAATA	AATCTAAGAA	TTTTTGTTCA	GTACCTTTTT	CAACAACTAG	TAACATACGT	2280
	TCTTGAGTTT	CTGAAAGCAT	CATTTCATAA	GGAGAAATAC	CTGGCTCACG	TGTTGGCACT	2340
	TGTTCTAATC	TCAAATGTAA	CCCACTACCA	CCTTTTGCCG	CCATTTCAGA	CGATGAAGAT	2400
50	GTTAAACCAG	CAGCACCCAT	ATCTTGAATA	CCAACTAATT	CATCAAATGT	AATTGCTTCA	2460
	ACTCTTCCTT	ССУТТУУТТ	тттасстаса	AATGGATCAC	ССВТТТСТВС	аса асстост	2520

	CGACCAGTTT	TCAAACCAAC	ATAAATGACC	GAATTACCTA	CACCTTTTGC	TGTGCCTTTT	2640
	TGAATCATGT	CGTGATTGaT	AACACCAACA	CACATTGCAT	TAACAAGTGG	ATTGCCATCA	2700
5	TAACGTTCAT	CAAATTCGAT	TTCACCAGCA	GTTGTTGGaA	TACCAATGCA	GTTACCATAA	2760
	CCTCCGATAC	CCTTTACAAC	ACCTTTAAGT	AATCTTTGGT	TTTGTTTATT	ATCTAATTCT	2820
	ССАААТСТАА	GACTGTTTAA	CAAATTAATA	GGTCTAGCCC	CAATAGAGAC	AATGTCACGA	2880
10	ATGATTCCAC	CAACGCCTGT	AGCAGCCCCT	TGATATGGTT	CAATTGCTGA	TGGATGATTG	2940
	TGAGACTCTA	CTTTAAATAC	TACGGCTTGA	TTATCACCTA	TATCGACTAC	CCCTGCACCT	3000
15	TCACCAGGCC	CCATAAGCAC	ATGGTCACCT	GACGTAGGAA	ATTGCTTTAA	AAACGGTTTA	3060
. •	GAATGTTTAT	AAGAGCAATG	TTCACTCCAC	ATAACAGAAA	AGATACCTGT	TTCTGTAAAG	3120
	TTAGGTTGTC	TGCCTAAAAT	ATCGCAAACT	TTTTCATATT	CTTGATCaCT	TAATCCCATA	3180
20	TCTTGATATA	CTTTTTCAAG	TTTAATTTCT	TCAACGCTTG	GTTCGATAAA	TTTAGACATG	3240
	TTGTTCCCTC	CAACTTTTTA	CCATCGCTTC	AAATAATTTC	ACACCACTAT	CAGTACCTAA	3300
	CAACGTTTCT	AAAGCTCTTT	CagGATGtGG	CATCATGCCA	CATACATTGC	CTTTTTCGTT	3360
25	AACAATTCCT	GCAATATCAT	CATATGAACC	GTTCGGATTA	TTCACATATT	TCAGAATAAT	3420
	TTGATTGTTA	GCTTTTAATT	GTTGATATAT	TTCATCAGTA	CAATAATAAT	GACCTTCACC	3480
	GTGAGCTACA	GGATATATAA	CTTTTTCACC	TTGTTCATAA	AGATTTGTAA	ATGCCGTTTG	3540
30	ATTATTCACT	ATTTCTAACT	CTTCATTTCT	ACTAATAAAT	AAATGTGAAT	CGTTATGCAA	3600
	TAATGCACCA	GGTAATAAGC	CTATTTCAGT	TAAAATTTGA	AACCCATTAC	AAACACCTAA	3660
	TACTGGCTTA	CCTTCAGCTG	CAAGACGTTT	AACTTCCGAA	ATAATCGGsG	CTACACTAGC	3720
35	CATTGCCCCA	GATCTTAAGT	AATCCCCGAA	TGAAAATCCA	CCAGGAATAA	GTACGCCATC	3780
	AAATĒCACTT	AGTGATGTTT	CTCTATAATC	TACATATTCC	GCTTCAACAC	CACTTTTAAT	3840
40	AGCAGCATTA	AACATGTCTC	TATCACAATT	CGAACCTGGA	AAAACAAGAA	CCGCAAATTT	3900
	CATTTTATGC	ATTCTCCTTT	TCATCATCTA	ACACTTTATA	GCTATATTCT	TCAATCACTG	3960
	TATTTGCAAA	CAATTTTTCA	CTTAGAGTTG	TAATAATGTT	GTGTACCTTT	TCATCACTAA	4020
45	CCTCATCCAC	TGTCATATAT	AATACTTTTC	CTACACGAAT	ATCATTCACT	TGTGCATAAC	4080
•	CTAAGTCATG	TACAGCTCGA	GTAAGCGTTT	GTCCTTGCGT	ATCTAATACT	TGTGGTTGTA	4140
	ATGTGATATG	TAGTTCAATT	GTTTTCATTA	TTTTAAATCC	TCCAATTTGT	TTAAAAATAT	4200
50	TTGATATGTT	TCAATCAGTG	ATCCAGTGTT	ATTTCTATAT	ACATCTTTAT	CAAAGTTTGC	4260
	ATTGGTAGCT	ΤΤΑΤΟΟΟΑΑΑ	TTCGACATGT	ATCTGGAGAT	ATTTCATCCG	CTAACAAAAT	4320

	ATCCATTAAT	TGTTTCAACA	CATTATTAAT	CTTTAATGCT	TTGGATTTTA	GTATTTCAAT	4440
•	ATCTTCATCT	GATGCTATAT	TGAGCAATTT	AACATGGTCA	TCCGTTATCA	ACGGATCATT	4500
5	TAACGCATCA	TTTTTATAGA	AAAATTCTAC	AAGTGGTTCT	CTAAAAACTT	CACCATTTTC	4560
	AAAACCTAAA	CGCTTTGTAA	TAGATCCACT	AGCAATATTA	CGAACAACTA	CTTCTAATGG	4620
	AATTATTTTC	ACAGGCTTAA	CTAATTGTTC	TGTTTCAGAT	AATTGTTTAA	TAAAGTGACT	4680
10	TTCTATTCCA	TTTTCTTGTA	AAATTTTAAA	TATAATAGAA	GTAATTTGAT	TATTTAATCG	4740
	CCCCTTACCT	GCCATTGTGT	CTTTCTTAGC	CCCGTTTCCA	GCAGTAACTT	CATCTTTATA	4800
15	TTCAACTCTT	AATTCATTTT	CTTGATTTGT	TGAGAAAATG	CGCTTCGCTT	TTCCTTCATA	4860
	TAATAATGTC	ATGCTTTAAT	TACTCCCCTC	AAATTTAGCG	TACATATCTT	GTTCAGTTTG	4920
	GTTTACATCA	TTCGTTAGTA	CAGTCATATG	CCCCATTTTT	CTGCTATCTT	TACGCTCAGA	4980
20	CTTACCATAA	ATATGTAAGT	GCCACTCTGG	ATGTTCATTA	AATTCATTTT	CCAATAAATC	5040
	TAAATCTTTA	CCTAGTAAGT	TCATCATGAC	TGCTGGCTTT	AATAATTCAA	TTGAATTTGG	5100
	TAATGATTGT	CCGGTAACTG	CTAAAATATG	AGTATCAAAT	TGTGAATAAT	CACATGCTTC	5160
25	AATTGAATAA	TGTCCGGAAT	TGTGAGGCCT	TGGTGCTATC	TCGTTCACAT	ACAATTGGTT	5220
	GTTACTATCT	ATAAAAAATT	CAACTGTAAA	TGTTCCAATG	AAATGAATCG	ATTGGATAAT	5280
	TTTATTAACT	TGCTCTTTCG	CCTCAGCTGT	TTTATCTATT	CTCGCTGGAA	CAATTGTTTT	5340
30	GAAAAGTATT	TGATTTCTAT	GCTCATTTTC	TTGTAATGGG	AAAAAGTGA	TTTGATTGTT	5400
	GTTTCCTCTT	GTAACAGTAA	GAGATACTTC	TTTCTTGATA	TTCAAATATT	TTTCAGCTAC	5460
o <i>E</i>	GCATTCACTA	GTTTCAATTA	ATTTAAAACC	TTCTTGTAAG	TCTTTTTCGT	TGTTAATTAA	5520
35	AACTTGACCT	TTGCCATCGT	AGCCACCAAA	TCTAGTTTTT	ACAATAAAAG	GATATCCTAA	5580
	TGTTTCAATT	GCTTTGTCAA	TATCTGTAGA	TTCTTTTACT	GAAATGAACG	GGACAACTTT	5640
40	GGTACCAGCA	CTTTTTAATG	TTTCTTTTTC	AGTTAAGCGA	TCTTGTAATA	ACTGTATAGC	5700
	TTGGTAACCT	TGCGGAATAT	TGTACTTTTC	ACATAATAGT	TTTAATTGTT	GGGCTGAAAT	5760
	GTTTTCAAAT	TCATAAGTAA	TCACATCACA	TTTTTGTCCT	AATTGATTGA	GTGCCTTTTC	5820
15	ATCGTCATAC	TTGGCTTGTA	TAAATTCGTG	TGCAACGTAT	CTACATGGAC	AATCTTCAGA	5880
	AGGATCCAAT	ACAACCACTT	TATAACCCAT	TTTTTGAGCT	GATTGTGCCA	TCATCTTTCC	5940
	AAGCTGACCA	CCACCAATAA	TGCCAATAGT	CGCACCAAAC	TTTAATTTAT	TGAAGTTCAT	6000
50	TTTGCATGTC	CTCCACTTTT	TGAATTAACG	AAGATTCATA	CTGATTTAGT	TTTTCAACTA	6060
	AAGAAGGATT	TTGAATACTT	AACATTCTTG	CTGCAAGTAT	ACCTGCGTTT	ፐጥልርር አርርጥር	6120

	AAGAATCTAT	ACCCTTTAAA	CTTTTTGTTT	CAATCGGCAC	TCCAATAACT	GGTAGCGTCG	6240
	TTAATGATGC	AACCATACCT	GGTAAATGTG	CCGCACCGCC	AGCGCCTGCA	ATGATAATGT	6300
5	TTATACCTCT	TTCTCTCGCT	TCAGAAGCAA	ATTGAACCAT	CATTTTTGGC	GTACGATGTG	6360
	CGGATACTAC	TTGTTTTTCG	TACGGAATTT	СААААТААТС	CAACATGTTA	CAACTCTCTT	6420
40	GCATAATTTT	CCAATCGGAA	GAACTGCCCA	TAATGACTGC	TACTTTCACT	TTGTACACCC	6480
10	TTTCAAAAGT	TTGAATTGTG	AATTACTTTA	GTTGTATATT	ATAGATATAG	CATAACAAGC	6540
	AATTTCTGCT	TTTTCAATCA	AAAATCGAAC	TTTATTTTGA	TTTTTTATTT	GAATTTACGT	6600
15	CTTTTGCTAT	GTAAATTAGT	TTTATAAACT	AACAAAGTTA	GGATATTGAC	AATAGGAGGA	6660
	GAAGTTTTTA	TGGTTGCTAA	AATTTTAGAT	GGTAAACAAA	TTGCCAAAGA	CTACAGACAG	6720
	GGGTTACAAG	ATCAAGTTGA	AGCGCTAAAA	GAAAAGGGTT	TTACACCTAA	ATTATCCGTT	6780
20	ATATTAGTTG	GTAATGATGG	CGCTAGTCAA	AGTTATGTTA	GATCAAAAAA	GAAAGCAGCT	6840
	GAAAAAATTG	GTATGATTTC	AGAAATCGTA	CATTTGGAAG	AAACAGCTAC	TGAAGAAGAA	6900
	GTATTAAACG	AACTAAATAG	ACTAAATAAT	GATGATTCTG	TAAGTGGTAT	TTTGGTACAA	6960
25	GTACCATTAC	CAAAACAAGT	TAGCGAACAG	AAAATATTAG	AAGCAATCAA	TCCTGAAAAA	7,020
	GATGTGGACG	GTTTTCATCC	ATAAATAA	GGGAAATTAT	ATATCGATGA	ACAAACTTTT	7080
	GTACCTTGCA	CACCGCTCGG	CATCATGGAA	ATATTAAAAC	ATGCTGATAT	TGATTTAGAA	7140
30	GGTAAAAATG	CAGTTGTAAT	TGGACGAAGT	CATATTGTCG	GACAACCAGT	TTCTAAGTTA	7200
	CTACTTCAAA	AAAATGCATC	AGTAACAATC	TTACATTCTC	GTTCAAAAGA	TATGGCATCA	7260
35	TATTTAAAAG	ATGCTGATGT	CATTGTCAGT	GCAGTTGGTA	AGCCTGGTTT	AGTAACAAAA	7320
	GATGTGGTCA	AAGAAGGAGC	AGTAATTATC	GATGTTGGCA	ATACGCCAGA	TGAAAATGGC	7380
	AAATTAAAAG	GTGACGTTGA	TTATGATGCG	GTTAAAGAAA	TTGCTGGAGC	TATTACACCA	7440
10	GTTCCTGGTG	GCGTTGGTCC	ATTAACAATT	ACTATGGTAT	TAAATAATAC	TTTGCTTGCA	7500
	GAAAAAATGC	GTCGAGGTAT	TGATTCGTAA	AGAGCCTGAG	ACATAAATCA	ATGTTCTATG	7560
	CTCTACAAAG	TTATAATGGC	AGTAGTTGAC	TGAACGAAAA	TTCGCTTGTA	ACAAGCTTTT	7620
15	TTCAATTCTA	GTCAACCTTG	CCGGGGTGGG	ACGACGAAAT	AAATTTTACG	AAAATATCAT	7680
	TTCTGTCCCA	CTCCCTAATA	ACTGAGTTTT	AATGAAGTCT	TTTAACCCAC	ATTAAATATT	7740
	ATTTTGCAAT	TGCAATGAAT	AACAAGAAAA	ATCTGGGACA	TTAATCGATC	AAATGCTCCC	7800
50	TTCAAAGTAG	ACATTGAATA	AATGAAGGCT	TTGAAGGGAG	CATTTCACTT	TGTACTTGGC	7860
	TCAACAATTT	TATATAGACA	GTAGTTAATT	тааааэтааэ	<u>እ</u> ልርርጥጥርጥ አ አ	CA ACTEURITOR	7000

	GTTGGGGATG	GGCCCCAACA	CAGAAGCTGT	GACTATGATA	AAGTACTACT	ACATAGTTAA	8040
	TCATTAGTGG	TTCTTTATCA	TTTTCGCCTC	CCTTTTCTTA	TTGTTTTGAT	ACACAAAAAT	8100
5	TTAAGTTCAA	ACTGTCGAAT	AAAGTTATAT	TTGATTTCAA	ATTATCCCTA	AATTATTAAT	8160
	TRTACAATTG	TGGCAGATTT	TCAAAATAAT	AATTATTTCC	TCATTATTTA	ATATTTAAAT	8220
0	TTTAAATTTC	ATTCTTTATA	GGGTAAGATT	AGGACTATAG	TATGATGTGT	AFATAATATA	8280
•	AATTAAGGTA	TAGTAAAGCT	AACTCAGAAA	TGACTTATCA	TTCGGAGGTT	ACATTATGAA	8340
	TAAACTATTA	CAGTCATTAT	CAGCCCTCGG	TGTTTCTGCT	ACACTAGTAA	CACCAAATTT	8400
5	AAATGCAGAT	GCAACGACGA	ATACTACACC	ACAAATTAAA	GGCGCTAATG	ATATCGTTAT	8460
	TAAGAAAGGT	CAAGATTATA	ACCTTCTAAA	CGGCATAAGT	GCATTTGATA	AAGAAGATGG	8520
	AGATTTAACC	GATAAAATTA	AAGTCGATGG	CCAAATTGAT	ACATCTAAAT	CTGGTAAATA	8580
0	TCAAATTAAA	TATCATGTCA	CTGATTCAGA	TGGTGCAATT	AAAATTTCCA	CTAGGTATAT	8640
	TGAGGTTAAA	TAGCCCTCAT	CACTATACTG	CAAATAAAAT	GGTAGCAAAC	GAACATGTTT	8700
	TGCTACCATT	TTATTTGTTA	TTCTAACTTC	ATCTGCAACT	TTAACCCAAA	TATTGTATTT	8760
5	TTTCTGTATA	CCAAAGGACT	ACCTATCAAA	TTATTAAAAC	TTAACTGCTC	TTTTTAAAAA	8820
	AATGTTTTGA	TTTTGAACAA	ACAAATTTCC	ACTITICATI	GTTTAACGAT	AAATTACTTT	8880
_	TGGCAAATTC	CTTATTAAAA	TGTTTGCGCT	TCCTTTCAAT	CAACTAGCCA	TCATTTTCAA	8940
0	TTTATTAGAC	AATTTCAAAC	TTTTTTTTTT	TTCATTCAAT	TAACCTTTAA	TTGAAAGCTA	9000
	TTCTCAACTT	TCCTTTTAAA	TATGAAGCAA	TTTTTTCAAA	AACGCTATTA	GTCACAAAAT	9060
_	GT			•			9062

35

40

(2) INFORMATION FOR SEQ ID NO: 86:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2738 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

AAATATTTT	TCAAAACTAT	GTGAAAATGG	aCCATGTCtA	aatcatgtaa	TAATGCAGyA	60
CATAATGCCA	ACGGTCTmTC	TTTATTGTCC	CATGCATCAT	GACCAATAAA	TGACTCATCA	120
ATTAATCGTC	TAACTATTTC	ATACACACCT	AAAGAATGTC	CAAAGCGACT	ATGTTCTGCT	180
GTGTGAAAAG	ATAGGTACAG	TGTTCCTAGT	TGTCTAATTC	GACGTAACCT	TTGGAATTCC	240

	TCTTTAAAAA	CTTTTTCTTC	TACTAATTTT	AAATCTACAT	ATGCGTTAGT	CATTATTCCC	360
	CTCCTTTTCG	TTTAATATAA	TATTTAATTT	ACTTAAAATG	CTTTGTACAT	AAGTGCTAAG	420
5	TCTAACTTTT	CGCCATACAT	TTCTGGCTCA	TAAGAGCGTA	AGATTGTAAA	ACCTTGCTCT	480
	TTATAGTAAG	CTACTGCTTC	TTCATTTTTA	TTATCTACTT	CTAAGTAAAC	ACCTTCAAAT	540
	TTATCTTCAA	AACGTGATAA	TCCTTCATTT	AACAATGCTG	TACCATAACC	TGTATGTTGC	600
10	GATTCTGGTT	TAACATAATG	AGCTGATAAA	TATAATTCTT	CACCGTAAAT	AAAGTTAGCA	660
	AAGCCAACGA	TGTCATTACC	TTCTTCAACG	ACTAAGAATA	ATTGTTCTTG	AAGTCTTTTC	720
15	TTTAAATGAT	GTTCATTATA	TGAAGCTtCT	AACAAGTGAT	TAACTGTTGT	CGCAGCGTAT	780
	ATATTTAAGT	ATGTATTAAA	CCAAGCTTTA	GTTGCGACAT	CTCTAATTTG	AACAACATCT	840
	TTTTCAGTTG	CTTGTCTTAC	CTTGAACATG	ACTTTCTCCC	CTTATTAACA	AGTTTTAATA	900
20.	ACGGCATTAT	ACCACAACTT	GCTCAATACT	TAATAAACAA	TGATTGTCTA	TTCAATTTAT	960
	ATATETATAT	TTTCCGTTAA	TAAAAATTAA	AAAAAATAAC	GAAGCAAAAA	AtCACTTCGT	1020
	TTAGTATGAG	GTATGTCTTA	TTGCAATATA	CTATTCCACT	CAGTTGCACG	TGCTAAGGCA	1080
25	TAGTTGTCTT	TCATGATGTC	ACCAGGCTTT	TCAGCAGTTC	CAATAATATA	ACCATTTAAA	1140
	GTGGCACCTA	raaagtctaa	ACTATATTTC	ATTTGCGTAA	TTGCTGGTTC	GCTTTTATTT	1200
•	TTGGACAATC	TCCACCAACT	AAAATAACTC	TAAAATCCTT	TTCGGCCATT	TGTGCCTTAA	1260
30	AATTAGGATA	TCGTTTATCT	TGTAATGTTT	CTGACCAATG	TTCGATAAAT	GCTTTCAATG	1320
	GTGCTGAAAT	GCTATACCAA	TACACTGGTG	ATGCAAAAAT	AATTGTATCA	CTAGCCAATA	1380
	TTTTATCTAG	AATCGGCAAA	TAGTCATCGT	CATATGAAGT	AATAGTCTCT	GCTGTATGTC	1440
35	TCACGTCACG	TATCGGTTTA	AACTGATGTT	GTGTCACGTC	AATCCATTGA	TACTCTAAAT	1500
	CTTGCAAAGC ·	GAATTTTGTT	AATTGTGCAG	TATTACCGTT	TGGTCTACTC	CCACCAAACA	1560
10	AAACAGTAAT	CATTTTAGCC	TAACCTCACT	TTTGATTAAT	AAATATCTGT	GTTTTTCGTT	1620
	ACCTAATTAT	ACTATCATAA	GCTTTGCCTA	CCGAATAGTA	AAACGCTTAC	AACTTTTATA	1680
	TAAATTTGAC	GAAATTTCGT	CATGCCTTAT	ATAACGTCGT	TTGTGATACG	GGGCTAATTC	1740
15	ATGATGAAAT	TAGATACATA	TATCACCATT	AAATACAATT	CATTTAGTCT	TCAATCGGAA	1800
	ACAGTTCATC	GATATATTGA	ATCTCATCAT	CTGATAAAAC	GATATCTGCA	GCTTTAATAT	1860
	TTTCAACGAC	TTGTTCTGCA	CGTTTTGCAC	CAGGAATAAT	CACATCGATA	GCTGGTCTCG	1920
50	TTAAATAAAA	TGCTAATACA	ATGTTCGCAA	TTGAAGTTTG	ATGTGCTGCA	GCTATGCTTT	1980
	ССВВВССТТТ	TACGCGACGC	ΣΟΣΤΈΤΕΓΕ	СРВИТАСРСС	ΤΕΕΤΤΉΝΑΑΑ	TCACCACCTC	2040

	GCTAATGGGA	AATATGGAAT	AAATGTGATT	TGGTGATCAA	CACAATATTG	TAATACTGCC	2160
	TCATTTTCGC	GATGCAATAA	ATTATATTCT	AACTGTACAA	CATCAACGTA	ACCATCTTTA	2220
5	TTTGCTTCTT	TAAGTTGATC	TAATGTGAAA	TTTGATACAC	CAATTGCTTT	AATCTTCCCT	2280
	TGTTCCTTAA	GCTCTTGTAA	TGCTGCAACT	GCTTGATCTT	TCGGAGTGTT	GTTATCCGGA	2340
_	AAATGAATAT	AATATAAATC	GATATAATCA	GTTTGTAGAC	GTTTCAAACT	ATTCTCAACT	2400
0	TGTTGTTTTA	AATATTCCGG	TTGATTGTTC	TGATGTACTT	CTTGATTTTC	ATCAAATTCA	2460
	TGAGACCCTT	TCGTAGCAAT	TTTAATTTGC	TCTCGCGGAT	ATTCTTTAAC	AACTTCTCCA	2520
5	ACCAATTCTT	CTGATCGTTC	TGGCCCATAA	ATATATGCCG	татстаатаа	ATTAATACCA	2580
	TGATTAATGG	CTTGACGAAC	AACATCTTTT	CCTTGTTCTT	CATCTAAGTT	CGGATATAAA	2640
	TTATGCCCAa	CCTAtGCGTT	CGTCCCAAGT	GCGATTGGAA	ACACTTCAAC	ATCAGATTTA	270,0
0	CCTAAGTTTA	CAAATTGCTn	CATTAGACCC	AGCnCCTT			2738
	(2) INFORMA	ATION FOR SE	Q ID NO: 87	7 :			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9425 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87: GATTAGATGA TATTTAACGA AAATTAAGTT GMAATACTTG AATGTATGAA GTCTGATGTC 60 GAAAATAGCT ATTAAAATAG AGTAGACGTA ATGLAAATGA AAGCACCTAA AATAGAAAAA 120 35 TTTCAAAAAT AGCGTAATTA TTATAATAAA TAGACTGCCA ATAAAATGCA ATTTTTCACT 180 TATAACATTC TTCAAAAAAT AATAGCAAAA TTATGTAAAA AATATCTTGT CATGGCAAGA 240 TTGGCTGTGC TATAATCTAT CTTGTGCTTA AGAACGGCTC CTTGGTCAAG CGGTTAAGAC 300 40 ACCGCCCTTT CACGGCGGTA ACACGGGTTC GAGTCCCGTA GGAGTCACCA TTTTTTAGGT 360 CTCGTAGTGT AGCGGTTAAC ACGCCTGCCT GTCACGCAGG AGATCGCGGG TTCGATTCCC 420 GTCGAGACCG TACAAATGCC TATCCAAGAG GATAGGCATT TTTTTGCGTT TAATATTATA 480 TTAATAAAAG ATATATGGAC GAATGATAAT CATATTGATT TATCTGTTCG TCCATTTTCT 540

TTAAAATGTA TGAACCTCAA GTAACTTAGT GGTTGGATAT GAAAGATAAA CGTAGACAAT 600

AAAATCTTTA TTAGACGTAC AAACATATGC TACTGTCAAC ATATTTCTTC GTTGTGATAT 660

GCCACCAGTC CTCCATAACA TCAATTGTTA AAGTAACGAA TAACGAATAA TGATATTTAT 720

55

50

	GACCTCATCA	TTGTGTTAAA	TATCATTGTC	ACAATCCGCC	GTGAGAAACT	TAAAAATAA	840
	AGTAATATAT	AAGTTTATAT	TGGAAAATAG	AATTAATAGC	TTATAAATGG	TAAATTATAT	900
5	AATAGGTTAC	TATACGTTAT	AAGACGGAAA	ATGCGCACAA	TAACAAAAAT	AGTAAGCGAC	960
	ATCCTGTGAT	TTTTTACACA	AACATAAACG	ATAAAGAACA	AAAAATGATA	TTATAATAAA	1020
	AATGATTTAA	GAAAAGAGGT	TTATGCAAAT	GGCTAGAAAA	GTTGTTGTAG	TTGATGATGA	1080
10	AAAACCGATT	GCTGATATTT	TAGAATTTAA	СТТАААААА	GAAGGATACG	ATGTGTACTG	1140
	TGCATACGAT	GGTAATGATG	CAGTCGACTT	AATTTATGAA	GAAGAACCAG	ACATCGTATT	1200
15	ACTAGATATC	ATGTTACCTG	GTCGTGATGG	TATGGAAGTA	TGTCGTGAAG	TGCGCAAAAA	1260
15	ATACGAAATG	CCAATAATAA	TGCTTACTGC	TAAAGATTCA	GAAATTGATA	AAGTGCTTGG	1320
	TTTAGAACTA	GGTGCAGATG	ACTATGTAAC	GAAACCGTTT	AGTACGCGTG	AATTAATCGC	1380
20	ACGTGTGAAA	GCGAACTTAC	GTCGTCATTA	CTCACAACCA	GCACAAGACA	CTGGAAATGT	1440
	AACGAATGAA	ATCACAATTA	AAGATATTGT	GATTTATCCA	GACGCATATT	CTATTAAAAA	1500
	ACGTGGCGAA	GATATTGAAT	TAACACATCG	TGAATTTGAA	TTGTTCCATT	ATTTATCAAA	1560
25	ACATATGGGA	CAAGTAATGA	CACGTGAACA	TTTATTACAA	ACAGTATGGG	GCTATGATTA	1620
	CTTTGGCGAT	GTACGTACGG	TCGATGTAAC	GATTCGTCGT	TTACGTGAAA	AGATTGAAGA	1680
	TGATCCGTCA	CATCCTGAAT	ATATTGTGAC	GCGTAGAGGC	GTTGGATATT	TCCTCCAACA	1740
30	ACATGAGTAG	AGGTCGAAAC	GAATGAAGTG	GCTAAAACAA	CTACAATCCC	TTCATACTAA	1800
	ATTTGTAATT	GTTTATGTAT	TACTGATTAT	CATTGGTATG	CAAATTATCG	GGTTATATTT	1860
	TACAAATAAC	CTTGAAAAAG	AGCTGCTTGA	TAATTTTAAG	AAGAATATTA	CGCAGTACGC	1920
35	GAAACAATTA	GAAATTAGTA	TTGAAAAAGT	ATATGACGAA	AAGGGCTCCG	TAAATGCACA	1980
	AAAAGATATT	CAAAATTTAT	TAAGTGAGTA	TGCCAACCGT	CAAGAAATTG	GAGAAATTCG	2040
40	TTTTATAGAT	AAAGACCAAA	TTATTATTGC	GACGACGAAG	CAGTCTAACC	GTAGTCTAAT	2100
40	CAATCAAAAA	GCGAATGATA	GTTCTGTCCA	AAAAGCACTA	TCACTAGGAC	AATCAAACGA	2160
	TCATTTAATT	TTAAAAGATT	ATGGCGGTGG	TAAGGACCGT	GTCTGGGTAT	ATAATATCCC	2220
45	AGTTAAAGTC	GATAAAAAGG	TAATTGGTAA	TATTTATATC	GAATCAAAAA	TTAATGACGT	228
	TTATAACCAA	ATAAATAATT	TAAATCAAAT	ATTCATTGTT	GGTACAGCTA	TTTCATTATT	2340
	AATgCACAGT	CATCCTAGGA	TTCTTTATAG	CGCGAACGAT	TACCAAACCA	ATCACCGATA	240
50	TGCGTAACCA	GACGGTCGAA	ATGTCCAGAG	GTAACTATAC	GCAACGTGTG	AAGATTTATG	2460
	GTAATGATGA	AATTCCCCAA	ттасстттас	αστασταο	СТТСТСТАЛА	CGTGTACAAG	2520

	GTGATGGTAT	TATTGCAACA	GACCGCCGTG	GACGTATTCG	TATCGTCAAT	GATATGGCAC	2640
	TCAAGATGCT	TGGTATGGCG	AAAGAAGACA	TCATCGGATA	TTACATGTTA	AGTGTATTAA	2700
5	GTCTTGAAGA	TGAATTTAAA	CTGGAAGAAA	TTCAAGAGAA	TAATGATAGT	TTCTTATTAG	2760
	ATTTAAATGA	AGAAGAAGGT	CTAATCGCAC	GTGTTAACTT	TAGTACGATT	GTGCAGGAAA	2820
10	CAGGATTTGT	AACTGGTTAT	ATCGCTGTGT	TACATGACGT	AACTGAACAA	CAACAAGTTG	2880
	AACGTGAGCG	TCGTGAATTT	GTTGCCAATG	TATCACATGA	GTTACGTACA	CCTTTAACTT	2940
	CTATGAATAG	TTACATTGAA	GCACTTGAAG	AAGGTGCATG	GAAAGATGAG	GAACTTGCGC	3000
15	CACAATTTTT	ATCTGTTACC	CGTGAAGAAA	CAGAACGAAT	GATTCGACTG	GTCAATGACT	3060
	TGCTACAGTT	ATCTAAAATG	GATAATGAGT	CTGATCAAAT	CAACAAAGAA	ATTATCGACT	3120
	TTAACATGTT	CATTAATAAA	ATTATTAATC	GACATGAAAT	GTCTGCGAAA	GATACAACAT	3180
20	TTATTCGAGA	TATTCCGAAA	AAGACGATTT	TCACAGAATT	TGATCCTGAT	AAAATGACGC	3240
	AAGTATTTGA	TAATGTCATT	ACAAATGCGA	TGAAATATTC	TAGAGGCGAT	AAACGTGTCG	3300
	AGTTCCACGT	GAAACAAAAT	CCACTTTATA	ATCGAATGAC	GATTCGTATT	AAAGATAATG	3360
25	GCATTGGTAT	TCCTATCAAT	AAAGTCGATA	AGATATTCGA	CCGATTCTAT	CGTGTAGATA	3420
	AGGCACGTAC	GCGTAAAATG	GGTGGTACTG	GATTAGGACT	AGCCATTTCG	AAAGAGATTG	3480
	TGGAAGCGCA	CAATGGTCGT	ATTTGGGCAA	ACAGTGTAGA	AGGTCAAGGT	ACATCTATCT	3540
30	TTATCACACT	TCCATGTGAA	GTCATTGAAG	ACGGTGATTG	GGATGAATAA	TAAGGAGCAT	3600
	ATTAAATCTG	TCATTTTAGC	ACTACTCGTC	TTGATGAGTG	TCGTATTGAC	ATATATGGTA	3660
35	TGGAACTTTT	CTCCTGATAT	TGCAAATGTC	GACAATACAG	ATAGTAAGAA	GAGTGAAACG	3720
	raacctttaa	CGACACCTAT	GACAGCCAAA	ATGGATACAA	CTATTACGCC	ATTTCAGATT	3780
	ATTÇATTCGA	AAAATGATCA	TCCAGAAGGA	ACGATTGCGA	CGGTATCTAA	TGTGAATAAA	3840
40	CTGACGAAAC	CTTTGAAAAA	TAAAGAAGTG	AAGTCCGTGG	AACATGTTCG	TCGTGATCAT	3900
	AACTTGATGA	TTCCTGATTT	GAACAGTGAT	TTTATATTAT	TCGATTTTAC	GTATGATTTA	3960
	CCGTTATCAA	CATATCTTGG	TCAAGTACTG	AACATGAATG	CGAAAGTACC	AAATCATTTC	4020
15	AATTTCAATC	GTTTGGTCAT	AGATCATGAT	GCTGATGATA	ATATCGTGCT	TTATGCTATA	4080
	AGCAAAGATC	GCCACGATTA	CGTAAAATTA	ACAACTACAA	CGAAAAATGA	TCATTTTTTA	4140
	GATGCATTAG	CAGCAGTGAA	AAAAGATATG	CAACCATACA	CAGATATCAT	CACAAACAAA	4200
50	GATACAATTG	ATCGTACGAC	GCATGTTTTT	GCACCAAGTA	AACCTGAAAA	GTTAAAAACA	4260

	GCAAACTATA	ACGATAAAAA	TGAAAAATAT	CATTATAAAA	ACCTGTCCGA	AGATGAAGCG	444(
	AGTTCCAGCA	AAATGGAAGA	AACGATTCCA	GGAACCTTTG	AATTATTAA	TGGTCATGGT	4500
5 .	GGTTTCTTAA	ACGAAGACTT	TAGATTGTTT	AGTACGAATA	ATCAGTCAGG	CGAGTTAACA	4560
	TATCaACGTT	TCCtTAATGG	TTATCCAACG	TTTAATAAAG	AAGGTTCTAA	TCAAATTCAA	4620
	GTCACTTGGG	GTGAAAAAGG	CGTCTTTGAC	TATCGTCGTT	CGTTATTACG	CACCGACGTT	4680
10	GTTTTAAATA	GTGAGGATAA	TAAATCGTTG	CCGAAATTAG	AGTCTGTACG	TTCAAGCTTA	4740
	GCGAACAATA	GTGATATTAA	TTTTGAAAAA	GTAACAAACA	TCGCTATCGG	TTACGAAATG	4800
15	CAGGATAATT	CAGATCATAA	TCACATTGAA	GTGCAGATTA	ACAGTGAACT	CGTACCGCGT	4860
. •	TGGTATGTAG	AATATGATGG	CGAATGGTAT	GTTTATAACG	ATGGGaGGCT	TGAATAAATG	4920
	AACTGGaAAC	TGACAAAGAC	ACTITICATI	TTCGTGTTTA	TTCTTGTCAA	CATCGTGTTA	4980
20	GTATCGATTT	ATGTTAATAA	AGTCAATCGC	TCACACATTA	ATGAAGTCGA	GAGTAACAAT	5040
	GAAGTTAATT	TTCAGCAAGA	AGAAATTAAA	GTACCGACTA	GTATATTGAA	TAAATCAGTT	5100
	AAAGGTATAA	AATTAGAGCA	AATTACAGGG	CGATCAAAAG	ACTTTAGTTC	TAAAGCTAAA	5160
25	GGCGATTCGG	ATTTGACCAC	ATCAGATGGT	GGAAAATTAT	TGAATGCGAA	CATTAGTCAA	5220
	TCGGTAAAGG	TCAGTGACAA	TAACTTAAAA	GATTTGAAAG	ATTATGTTAA	CAAGCGCGTA	5280
	TTTAAAGGTG	CTGAATATCA	ATTAAGCGAG	ATTAGTTCAG	ATTCTGTAAA	ATATGAACAA	5340
30	ACGTATGATG	ATTTTCCGAT	TTTAAATAAC	AGTAAAGCGA	TGTTAAACTT	TAATATAGAA	5400
	GATAACAAAG	CGACTAGTTA	TAAACAATCA	ATGATGGATG	ACATTAAGCC	CACAGATGGT	5460
	GCAGATAAGA	AGCATCAAGT	GATTGGTGTG	AGAAAAGCAA	TCGAGGCATT	ATATTATAAT	5520
35	CGTTACTTGA	AAAAAGGTGA	TGAAGTCATT	AATGCTAGAC	TCGGTTACTA	CTCAGTCGTG	5580
	AATGĀAACGA	ATGTTCAATT	GTTACAACCA	AACTGGGAAA	TTAAAGTGAA	GCATGACGGT	5640
10	AAGGATAAAA	CGAATACTTA	CTATGTCGAA	GCGACAAATA	ATAACCCTAA	AATTATTAAT	5700
	CATTAATATG	AATCGTAATA	AGCTAGCATT	GCAAGCTCAT	CATATGTGAG	AAGCGGTGCT	5760
	AGCTTTTTTG	CTGGTACGGT	TTATTATGGC	TGATGTTTTT	GCGTCTCCAA	CGTGCGCATT	5820
1 5	TATTCATATT	TTAAGTAGAA	CCGCATTGTA	AAATTAGTGT	AACTGTTATT	TTAAAAACTT	5880
	TAGTATTTGT	CTAATCATTG	TTATAATAAT	TAAGAAATTC	ATTGCACGTG	ATTATCAAAA	5940
	TTTAAATATA	AGAAACCGGT	CGATGAACTA	AAGTTACATA	ATAGGAAAGG	TATACAAAAC	6000
50	AGCTAATATA	CTGATAGTTT	CTGTAGGGAA	AATCGTATAT	TTGCACTGAT	GTATATTGCA	6060
	GTCATATAGA	CACATTCACT	CTTTALAGAC	AAACCATCAC	ССССТТСАТА	CCCATCACTC	6120

	TAGTTGATGT	TGGTTTGACT	GGAAAGAAAA	TGGAAGAATT	GTTTAGTCAA	ATTGACCGTA	6240
	ATATTCAAGA	TTTAAATGGT	ATTTTAGTAA	CCCATGAACA	TATTGATCAT	ATTAAAGGAT	6300
5	TAGGTGTTTT	GGCGCGTAAA	TATCAATTGC	CAATTTATGC	GAATGAAAAA	ACTTGGCAGG	6360
	CAATTGAAAA	GAAAGATAGT	CGCATCCCTA	TGGATCAGAA	ATTCATTTTT	AATCCTTATG	6420
	AAACAAAATC	TATTGCAGGT	TTCGATGTTG	AATCGTTTAA	CGTGTCACAT	GATGCAATAG	6480
10	ATCCGCAATT	TTATATTTTC	CATAATAACT	ATAAGAAGTT	TACGATTTTA	ACGGATACGG	6540
	GTTACGTGTC	TGATCGTATG	AAAGGTATGA	TACGTGGCAG	CGATGCGTTT	ATTTTTGAGA	6600
15	GTAATCATGA	CGTCGATATG	TTGAGAATGT	GTCGTTATCC	ATGGAAGACG	AAACAACGTA	6660
	TTTTAGGCGA	TATGGGTCAT	GTATCTAATG	AGGATGCGGC	TCATGCAATG	ACAGACGTGA	6720
	TTACAGGTAA	CACGAAACGT	ATTTACCTAT	CGCATTTATC	ACAAGACAAT	AACATGAAAG	6780
20	ATTTGGCGCG	TATGAGTGTT	GGCCAAGTAT	TGAACGAACA	CGATATTGAT	ACGGAAAAAG	6840
	AAGTATTGCT	ATGTGATACG	GATAAAGCTA	TTCCAACGCC	AATATATACA	ATATAAATGA	6900
	GAGTCATCCG	ATAAAGTTCC	GCATTGCTGT	GAGACGACTT	TATCGGGTGC	TTTTTTATGT	6960
25	TGTTGGTGGG	AAATGGCTGT	TGTTGAGTTG	AATCGGCTTG	ATTGAAATGT	GTAAAATAAT	7020
	TCGATATTAA	ATGTAATTTA	TAAATAATTT	ACATAAAATC	AATCATTTTA	ATATAAGGAT	7080
	TATGATAATA	TATTGGTGTA	TGACAGTTAA	TGGAGGGAAC	GAAATGAAAG	CTTTATTACT	7140
30	TAAAACAAGT	GTATGGCTCG	TTTTGCTTTT	TAGTGTAATG	GGATTATGGC	AAGTCTCGAA	7200
	CGCGGCTGAG	CAGCATACAC	CAATGAAAGC	ACATGCAGTA	ACAACGATAG	ACAAAGCAAC	7260
	AACAGATAAG	CAACAAGTAC	CGCCAACAAA	GGAAGCGGCT	CATCATTCTG	GCAAAGAAGC	7320
35	GGCAACCAAC	GTATCAGCAT	CAGCGCAGGG	AACAGCTGAT	GATACAAACA	GCAAAGTAAC	7380
	ATCÇÃACGCA	CCATCTAACA	AACCATCTAC	AGTAGTTTCA	ACAAAAGTAA	ACGAAACACG	7440
10	CGACGTAGAT	ACACAACAAG	CCTCAACACA	AAAACCAACT	CACACAGCAA	CGTTCAAATT	7500
	ATCAAATGCT	AAAACAGCAT	CACTTTCACC	ACGAATGTTT	GCTGCTAATG	CACCACAAAC	7560
	AACAACACAT	AAAATATTAC	ATACAAATGA	TATCCATGGC	CGACTAGCCG	AAGAAAAAGG	7620
15	GCGTGTCATC	GGTATGGCTA	AATTAAAAAC	agtaaagaa	CAAGAAAAGC	CTGATTTAAT	7680
	GTTAGACGCA	GGAGACGCCT	TCCAAGGTTT	ACCACTTTCA	AACCAGTCTA	AAGGTGAAGA	7740
	AATGGCTAAA	GCAATGAATG	CAGTAGGTTA	TGATGCTATG	GCAGTCGGTA	ACCATGAATT	7800
50	TGACTTTGGA	TACGATCAGT	TGAAAAAGTT	AGAGGGTATG	TTAGACTTCC	CGATGCTAAG	7860
	MN - MN N C C TT	ጥእጥአአአርአጥር	CANARCCCCC	CONTRA A COCOR	TONDOCATTO	TARCARARA	7920

	TGAAGGCATT	AAAGGCGTTG	AATTTAGAGA	TCCATTACAA	AGTGTGACAG	CGGAAATGAT	8040
	GCGTATTTAT	AAAGACGTAG	ATACATTTGT	TGTTATATCA	CATTTAGGAA	TTGATCCTTC	8100
5	AACACAAGAA	ACATGGCGTG	GTGATTACTT	AGTGAAACAA	TTAAGTĆAAA	ATCCACAATT	8160
	GAAGAAACGT	ATTACAGTTA	TTGATGGTCA	TTCACATACA	GTACTTCAAA	ATGGTCAAAT	8220
10	TTATAACAAT	GATGCATTGG	CACAAACAGG	TACAGCACTT	GCGAATATCG	GTAAGATTAC	8280
10	ATTTAATTAT	CGCAATGGAG	AGGTATCGAA	TATTAAACCG	TCATTGATTA	ATGTTAAAGA	8340
	CGTTGAAAAT	GTAACACCGA	ACAAAGCATT	AGCTGAACAA	ATTAATCAAG	CTGATCAAAC	8400
15	ATTTAGAGCA	CAAACTGCAG	AGGTAATTAT	TCCAAACAAT	ACCATTGATT	TCAAAGGAGA	8460
	AAGAGATGAC	GTTAGAACGC	GTGAAACAAA	TTTAGGAAAC	GCGATTGCAG	ATGCTATGGA	8520
	AGCGTATGGC	GTTAAGAATT	TCTCTAAAAA	GACTGACTTT	GCCGTGACAA	ATGGTGGAGG	8580
20 ⁻	TATTCGTGCC	TCTATCGCAA	AAGGTAAGGT	GACACGCTAT	GATTTAATCT	CAGTATTACC	8640
	ATTTGGAAAT	ACGATTGCGC	AAATTGATGT	AAAAGGTTCA	GACGTCTGGA	CGGCTTTCGA	8700
	ACATAGTTTA	GGCGCACCAA	CAACACAAAA	GGACGGTAAG	ACAGTGTTAA	CAGCGAATGG	8760
25	CGGTTTACTA	CATATCTCTG	ATTCAATCCG	TGTTTACTAT	GATATAAATA	AACCGTCTGG	8820
	CAAACGAATT	AATGCTATTC	AAATTTTAAA	TAAAGAGACA	GGTAAGTTTG	AAAATATTGA	8880
	TTTAAAACGT	GTATATCACG	TAACGATGAA	TGACTTCACA	GCATCAGGTG	GCGACGGATA	8940
30	TAGTATGTTC	GGTGGTCCTA	GAGAAGAAGG	TATTTCATTA	GATCAAGTAC	TAGCAAGTTA	9000
	TTTAAAAACA	GCTAACTTAG	CTAAGTATGA	TACGACAGAA	CCACAACGTA	TGTTATTAGG	9060
35	TAAACCAGCA	GTAAGTGAAC	AACCAGCTAA	AGGACAACAA	GGTAGCAAAG	GTAGTAAGTC	9120
	TGGTAAAGAT	ACACAACCAA	TTGGTGACGA	CAAAGTGATG	GATCCAGCGA	AAAAACCAGC	9180
	TCCAGGTAAA	GTTGTATTGT	TgtAGCGCAT	AGAGGAACTG	TTAGTAGCGG	TACAGAAGGT	9240
40	TCTGGTCGCA	CAATAGAAGG	AGCTACTGTA	TCAAGCAAGA	GTGGGAAACA	ATTGGCTAGA	9300
	ATGTCAGTGC	CTAAAGGTAG	CGCGCATGAG	AAACAGTTAT	TTCATAATCA	ACAGTCATTG	9360
	ACGTAGCTAA	GTAATGATAA	ATAATCATAA	ATAAAATTAC	AGATATTGAC	AAAAAATAGT	9420
45	AAATA						9425

(2) INFORMATION FOR SEQ ID NO: 88:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 3886 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

	AGTTGTAATG	TCACATTTCC	AGAGTCTGAA	ATTATCTTTA	TCACGTTACA	TTTACTAGGC	60
5	TCTAAAATGA	CTGAACATAC	AGCATCTTCA	ATTACCTTTG	AATACCATGA	TTTATCGCAA	120
	AATATACATG	AATTGATCAC	TTGTGTTAGC	CAAGAATTAG	GCATTGATAT	GTCAAAAGAC	180
	AACAAGTTAC	ATACCAGTCT	GATCACACAT	ATCAAACCAG	CTATACATCG	TATTAAATAC	240
10	GATATGCTAC	AACCTAATCC	TTTGAGGCAA	GAAGTTATGC	GTCGCTATCC	TCAAATCATT	300
	GAAGCCGTTA	GCAAGCATAT	TAGTCCAATT	GAACAAGATG	CTGCTATTCG	CTTCAACGAA	360
15	GATGAATTAA	CATACATTAC	AATTCACTTC	GCATCAAGTA	TAGAGCGTGT	TGCAACACAT	420
.5	AAACAATCAA	TGATTAAGGT	TGTCTTACTA	TGTGGTTCTG	GTATAGGCAC	GTCACAACTT	480
	TTAAAATCAA	AACTAAATCA	CCTGTATCCT	GaGTTnCACA	TTTGGGAtGc	CTATTCCATT	540
20	TaTcAATTGG	aAGaAAGTCG	ATTATTGCAA	GATAACATTG	ATTATGTCAT	TTCAACAGTA	600
	CCTTGTGAAA	TATCAGCTGT	ACCAGTTATT	CATGTCGATC	CATTTATCAA	TCAACAATCT	660
	CGTCAAAAAT	TGAATCAAAT	TATCAATGAC	TCAAGAGAAC	AACGAGTCAT	GAAAATGGCA	720
25	ACTGATGGCA	AGTCACTCGC	AGATTTATTG	CCTGAACATC	GCATCATTAT	AAATAAACAA	780
	CCATTATCAA	TTGAATCCGC	AATTGCAGTG	GCTGTGCAAC	CTTTAATCAA	TGATGGCATT	840
	GTCTATTCAA	ATTATACAGC	TGCAATTTTA	AAACAATTTG	AACAATTCGG	GTCATATATG	900
30	GTCATTAGTC	CACATATTGC	ACTTATTCAC	GCTGGTACTG	ATTATGTACA	GAATGGTGTA	960
	GGTTTCGCAC	TAACATATTT	CACTGAAGGG	ATTATCTTTG	GTAGTAAAGC	TAACGATCCC	1020
	GTTCACCTTG	TAATTACATT	AGCAACGGAC	CACCCCAATG	CACATTTAAA	GGCATTGGGA	1080
35	CAGTTAAGCG	AATGCTTAAG	CAACGACTTA	TATCGACAAG	ATTTCTTAGA	TGGGAATATT	1140
	TTTAAAATTA	AACAACACAT	TGCTTTAACT	ATGACAAAGG	AGGCTTAATA	ACGTGTCATT	1200
	AGACATTTTG	TCAACAACAC	GCATCATTGT	AAAAGAACAA	GTAAATGATT	GGACTGAAGC	. 1260
	TATAACTATA	GCTTCTCAGC	CATTACTACA	AGAACAAATT	ATTGAACAAG	GCTATGTTCA	1320
	AGCAATGATT	GATAGCGTTA	ATGAACTTGG	ACCTTATATC	GTTATCGCAC	CTGAAATTGC	1380
15	AATTGCACAT	GCAAGACCGA	ACAATGACGT	ACATCAAGTT	GGTTTAAGTC	TATTAAAGTT	1440
	GAATCAACAT	GTGGCATTTT	GTGATGAAGA	TCACTACGCA	TCTCTCATTT	TTGTATTGAG	1500
	TGCCATCGAC	AATCATTCAC	ACTTATCTGT	ATTACAAAAT	TTAGCAACCG	TACTGGGCGA	1560
50	TAACCAAACA	GTCCAGCAAC	TATTAACTGC	AACAAATGCA	CAAGACATTA	AAAACATTTT	1620
	AAAGGAGCAT	GATTAATATG	AAAATTTTAG	TAGTATGTGG	CCACGGTTTA	GGAAGTAGTT	1680

	AAGTTGAACA	TAGTGACATT	ATGACAGCAA	GTCCAGAGAT	GGCTGACTTG	TTTATTTGTG	1800
	GTAGAGATTT	AGCTGAAAAT	GCCGAACGTC	TAGGGGATGT	CTTAGTTCTT	GATAATATTT	1860
5	TAGATAAAGC	TGAATTACAA	CAAAAGCTCT	CAGAAAAATT	ACAACAACTT	AACATGATTT.	1920
	AAAGGAGGTA	CGACCTATGC	AAGCAATCCT	TAATTTTATA	GTCGATATTT	TAAGTCAACC	1980
10	AGCCATTCTT	GTTGCACTGA	TTGCCTTTAT	AGGTTTAATC	GTTCAGAAAA	AACCTGCCGC	2040
70	AACGATCACT	TCAGGAACCA	TTAAAACGAT	ATTAGGCTTC	TTAATTTTAA	GTGCAGGTGC	2100
	TGATGTCGTC	GTTCGATCTC	TTGAACCATT	CGGCAAAATA	TTCCAACACG	CATTTGGTGT	2160
15	GCAAGGTATC	GTACCTAACA	ACGAAGCTAT	CGTCTCACTA	GCCTTAAAAG	ATTTTGGAAC	2220
	AACAGCTGCA	CTCATCATGG	TCTGTGGCAT	GATTGTTAAT	ATTTTAATTG	CCCGCTTCAC	2280
	TAATTTAAAA	TATATCTTTT	TAACAGGTCA	TCATACATTT	TACATGGCTG	CGTTTTTAGC	2340
20	AATCATTTTA	ACAGTCAGTC	ATATTAAAGG	CTGGCTAACG	ATTGTTATCG	GCGCACTCGT	2400
	ATTAGGATTA	ATCATGGCAG	TATTACCTGC	ATTACTCCAA	CCTACGATGC	GAAAAATTAC	2460
	AGGGAATGAC	CAAGTAGCTT	TAGGTCATTT	TGGCTCAATC	AGTTACTTTG	CCGCAGTGCT	2520
25	GTAGGTCAAT	TATTCAAAGG	TAAGTCTAAA	TCAACGGAAG	AGATTAAATT	TCCAAAAGGC	2580
	TTAAGTTTCT	TACGAGAAAG	TACAATTAGT	ATCTCGATTA	CGATGGCATT	ACTTTACTTC	2640
•	ATCGCATGCT	TATTTGCGGG	CGTTAGTTAT	GTACACGAAT	CTATTAGTGA	TGGTCAAAAC	2700
30	TTTATTGTCT	TTTCATTAAT	TCAAGGTGTG	ACATTTGCTG	CTGGTGTATT	TATTATTTTA	2760
	ACGGGCGTTC	GTTTAATCTT	AGCTGAAATC	GTCCCAGCAT	TTAAAGGAAT	TTCTGAAAAG	2820
35	CTTGTACCAA	ATTCTAAACC	TGCATTAGAC	TGCCCTATTG	TGTTCCCTTA	TGCACAAAAT	2880
	GCAGTATTAA	TTGGATTCTT	TGTCAGCTTT	ATTACAGGTG	TCATCGGTAT	GTTTATCTTA	2940
	TTCTTATTTG	GTGGCGTCGT	CATTTTACCT	GGCGTAGTTG	CACACTTCTT	CTTAGGTGCA	3000
40	ACGGCTGCTG	TATTCGGTAA	TGCAAGAGGC	GGTATTAAAG	GTGCTATTGC	TGGCGCCGCT	3060
	CTAAATGGTA	TCCTAATCAC	GTTTTTACCA	TTATTATTCT	TGCCATTTTT	AGGCGAATTA	3120
	GGTGGTGCTG	CAACAACATT	CTCAGATACA	GACTTTTTAG	CTGTCGGTAT	CGTGTTCGGT	3180
45	AACGCAGTAA	AATATATGGG	ATTATTTGGT	GCGATTCTAT	TTATTATTAT	CGTAGGTGCG	3240
	ACAACAATTT	TATTAAAAGG	CCGTCAAAAA	GAACAGCAAT	AGTGTTAACG	TAGAAATATA	3300
	AAACACCGTC	ACATATTGAG	TGAATGCCCC	TTTtATCAAG	AGGAAAGCCA	CTTACTTATG	3360
50	GACGGTGTTT	TGTATTATAT	TAAATGATAC	TTAGCCATAC	TATCGACAGC	TGCTAAAATT	3420
	GCTTCTTCTT	GTGTCGCAAT	CGGTTCCCAA	CCAAGTAATG	TTTTTTTCACG	TTCGTTACTT	3480

. *55*

CCTAGACTCA AAATAAAGTC TGGTAATTTT TTAGTAGAAA CTTTTTGAGC TATTTCAGGT 3600 CTCTTTCTT TAATTAATTT TGCAATTTCC AACAAATTAA TTTGTCCATC AGCCGTCGCA 3660 ATAAATCGCT TGCCATTAGC TTGTTCATTT GTCATTGCCA AAATGTGCAG TTCAGCTACG 3720 TCTCTCACAT CAACAACATT TAACGGAATT TGCGGTACAC GTTTCATTGA ACCATTCAAT 3780 AAATTTTCTA ATAAATGAAA GCTTCCTGAA ACGTGTGCAT CTAATGATGG CCCAAAAATT 3840 GCAACTGGAT TGATTGTGGC AAATTCTACT GTTGTATTTT CATTCT 3886

(2) INFORMATION FOR SEQ ID NO: 89:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4879 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20

30

35

40

45

5

10

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

GTCATCTATC AAAAATTTGG TATACAGACC GACAATTATT AATTAATAAT TTAATTTCCC 60 25 AGGCAATACC AGTGATTAAA TATCCACAAA TACAACATAA AGAACAACCA TTAGAATCTA 120 TTTCACAACT TATATTGTCT AAGATGACAT CTAATCAATA GTGTTTAAAT TTCTCAGTGG CTGTGAATGA GGTTTAAAAG TACTATAAAA CGTAAACTTT GATACTTTAA AATACGCAAA 240 AAACGGTAAA CCCTAATTCA TATTATAGAG TTTACCGTTT TATTTTTTAA CTTGCATCAT 300 AGTTATATTA ACATTATTGT TGGTAGTTTG GATCAGTAAC CATTGCTTGT CCAGTATAAT 360 CAACCGTTAC AATTGAATAT TTTCCATTTG CATTTGGGTC TTTAAAACTA AACACATACT 420 TATAGTTGCC ATTATGTTCT TCAATAGAAT AATCATTATA CACTTTATTA TTACTACCAA 480 ATTTATTTGC TTCATTATTA GCCGCATTTA AAGCTGTTTG GAAATTTGGC AATTGCTGTA 540 AAGCTTGATT TTTATTTCCA TTAAACGGAT AAATTTGACG TGCAACCGGC GCGGCATTTT 600 GNCCATAATA TGGTGCAACG TAACTTGATT TTTGATTATT ATTCGCTTGG TTATTACTTG 660 ATTGGTTATT ATTTGTTTGG TITTGGTCAT TGTTTGTTGC ATTTGAATTA GATTGTTGCT 720 GGTTATCGTT TGCACTATTA TCTTTATTAT CTTTGTTTAC GTCTTTACTA TCATCTTTAT 780 TATCTTTCTT ATCTTTAGAT GAATCATTTG TTTTTTTATC TTGTTGTTCA GTTTTCGCTT 840 TATCATCTTT TTCTTTATTA CCGTCTTTTT GTTGGTCACT ATCTTGACCA CATGCAGCTA 900 AAAATAATGA TAATGCTAGT AACCCTGTAA CTAATCTTTT CATACATATC TCCTCCTATA 960 ATTCGATATT CATTGAATAA TCTTGAAATA CATATCTACC ATGTGTATCT TTTCATGGCT 1020

	TAAGGTTCTT	TTTATTATAC	CCTAATTTTT	GTTCATTATT	ATTTAATTTT	TGTGAATTTT	1140
	ATGLTTKCTA	TAAATTTAAT	TATTTTACTT	TAACAATTCA	TTACGCATTT	AGCATTTCAA	1200
5	GGTATACACA	ATATTTATTA	CTATGATTTC	ATTTTATCTG	CTGCAAAAAC	AATCATTATA	126
	ACTCTTTTTC	CATAATTAAA	TCTGTATCCG	TTACATCACC	TGTTTGAAAA	TGATGTTCAC	1320
	CAACCACTTT	AAATCCATGA	CGTTTATAAA	ATGCTTGAGC	ACGAGGATTA	TGCTCCCAAA	1380
10	CTCCTAGCCA	AATTTTATGT	TTATTATGTT	CTTGAGCAAT	TTTTTCGGCC	AATTCTATCA	1440
	ATTGTGAACC	TCTTCCGCCA	CCTTGAAAGT	CTTTCAAAAA	ATATATGCGC	TGCACTTCTA	1500
15	AATAGGTCTC	CCCCATTTCT	TCAGTTTGAG	CACTATTAAT	ATTCATCTTT	ATATAACCAA	1560
	CATTCGCACC	ATCTTCTTGa	TAAAAATAAT	GAAATGAATC	TACATGGTTA	ATCTCTTGTG	1620
	TAAATTTCTC	TACAGTATAA	TTGTCTTTAA	AAAATTGATC	AAAATCTTTG	TCATCATAGT	1680
20	AAGAACCAAA	CGTGTCATAA	AATGTTCTAG	TTGCTAATTC	AACTAATTCA	CTAGCATTTT	1740
•	GTTCTGAAAT	TTCTTTGATT	ATCCCAGCCA	TATAAATCCT	CCAATAAACA	GTGATCGAAT	1800
	CAAAATATTA	CTTATGTTAT	TTTTCAGCCA	AAACTATTTA	AAAATACATT	AACACAAATC	1860
25	AATTACAAAT	TGTATTGATT	GTGTGTAACA	TCAATAAATG	ATACATTTAT	TCCAGTAAAA	1920
	TGGCCGTATT	TTCAAAAGAG	AAAAAGAGAG	GATGTATCGT	TGTGATAGAA	ACATTTAAAG	1980
	CGTTTGTAAT	TGATAAAGAT	GAGAGTGGTA	AAGTGACACC	AACTTTCAAA	CAATTATCGC	2040
30	CTACTGATTT	ACCTAAAGGA	GATGTGCTGA	TTAAAGTACA	TTACTCTGGT	ATAATTATA	2100
	AAGATGCTTT	AGCGACTCAA	GATCATAATG	CAGTCGTAAA	ATCGTATCCT	ATGATTCCAG	2160
25	GAATAGATTT	AGCTGGAACA	ATTGTTGAAT	CCGAAGCACC	AGGCTTTGAa	AAAGGAGAAC	2220
35	AAGTAATTGT	AACGAGTTAT	GACCTAGGTG	TCAGCCATTA	TGGCGGTTTT	AGTGAATATG	2280
	CGCGTGTAAA	ATCAGAATGG	ATTATCAAGC	TTCCTGATAC	TTTAACATTA	GAAGAATCAA	2340
40	TGATATATGG	CACAGCTGGT	TATACTGCCG	GTTTAGCAAT	TGAAAGACTT	GAAAAGTTG	2400
	GAATGAATAT	TGAAGATGGT	CCTGTACTCG	TTCGCGGTGC	TTCAGGTGGT	GTCGGTACTT	2460
	TAGCAGTACT	CATGCTTAAT	GAACTTGGTT	ATAAAGTTAT	CGCAAGTACA	GGTAAACAAG	2520
1 5	ATGTTAGCGA	TCAATTACTT	GAACTTGGTG	CCAAAGAAGT	TATCGATCGA	CTTCCTGTTG	2580
-	AAGATGATCA	TAAAAAGCCA	CTCGCATCAT	CAACTTGGCA	AGCTTGTGTA	GACCCTGTTG	2640
	GTGGCGAAGG	TATTAATTAT	GTTACAAAGC	GTTTAAATCA	TAGTGGGTCA	ATTACAGTTA	2700
50	TTGGTATGAC	TGCCGGTAAT	ACTTATACTA	ATTCTGTATT	CCCTCACATT	TTAAGAGGTG	2760
	TAAACATTTT	AGGAATTGAC	тесстаттта	СТССТАТСАА	ATTAACACAC	CCCCTTTCCC	2920

	TTGATGAACT	TCCAGAACAA	CTTAACAAAG	TAATTAAACA	TGAAAATAAA	GGGCGCATTG	2940
	TTATCGATTT	CGGTGTAGAT	AAATAGTATT	CATGAAAAAG	ACATCCCGTT	ATGCGAGATG	3000
5	TCTTTTTTAA	TTTAGTATTT	GATATACATA	CCGCCTGAAT	CTGGTTCGGT	AGGTATAAAT	3060
	CCAAATTTTG	TATATAATTT	ATCCGCTGGG	TAGTCTGCAA	TCAGACTAAC	GTATGTACTC	3120
	TCAACAGCCA	CACCTTTAAT	ATATTGCATA	ATATGCTCCA	TAATTAGACT	GCCGTAACCT	3180
10	TGACCTTGGT	AACTTTTCAA	AACTGCAATA	TCAACAATTT	GAAAAACAGT	TCCGCCATCG	3240
	CCAATCACTC	TACCCATACC	AATTAACCGA	TCTTTATCAT	ACAAGGTTAC	TGTAAATAAG	3300
15	GCATTAGGTA	ATCCTTTTTC	aGCTGTTCGC	GCGTCTTTGG	ACTCATACCT	GCGTTAATCC	3360
15	TTAATGCGCA	ATAATCCTCG	CAAGTCGGAA	TATCATATGT	CACTTTAACC	ATTATTTACC	3420
	CCACTTTTCA	TCACACAATA	TATCAACCTA	GTATAAATGT	TTATTTACAA	TAGTCTTATT	3480
20	CGCTTCTTTA	AACACTTCAT	GATGACTTGA	AACATAACCC	TCTGCATTCG	CATCTGGTTG	3540
	GATATATGTT	TTAGCAAGGT	TCGCTGCATT	TGCACCATCA	CTAAATGCAC	TTGCAATTAG	3600
	ATGTGATTTT	GCATCATGAT	AAACAATATC	TCCACACGCA	TAGATACCAG	GTATACTAGT	3660
25	TGTCGTATTA	CCAAATCCTT	TAACACGACA	ATCATCATGC	ATATCTAGCT	TTGAAGATGT	3720
	TECACTCAAT	AATGTATTAC	AACGATCAAA	CCCATGACTA	ATAATGACAT	CGTCAAATTT	3780
	AACTGTATGC	CTATCGCCAC	TTTCAACATG	TTCCAAAACA	ACTTCACTTA	TATGCGTTTC	3840
30	ATCATCATTG	CCGACCAAGT	ATTTAATACG	TGTTTTTGGG	CATAGTTTCA	CATTTAAATC	39,00
	TGTCACCAAC	GTTTTCATCG	CTTCATGACC	ACTTACATCT	TCTTTTCGAT	AAACAACTGT	3960
	CACGCTTTTA	GCAATCTTGG	CAATATCATG	CGCCCAATCT	AATGCTGTAT	TTCCTCCACC	4020
35	TGATATTAAT	ACATCTTTAT	CTTTGAAACG	TCTGTAACTT	TGTACAACAT	AATGTAAATT	4080
	AGTTAATTGA	TATCTCTCTA	CACCTTTAAC	ATCTAATTGT	TTTGGATTAA	TAATACCCGC	4140
40	ACCAATTGCA	ATGATAACTG	CTTTCGATGT	ATATATTTCT	CCCGCTTCTG	TTTCAACTTC	4200
•0	GAAATGACGT	TCTGCCTTTT	TCCTAATATC	TACCACACGT	TCATTCAAAT	GAACTTCCGG	4260
	TATAAAATAT	AATCCTTGCT	TAATTGTATC	TTTTAAAATT	TCATGACAAG	GTTTTGGCGC	4320
15	AATGCCGCCA	ATATCCCAAA	TAATTTTTTC	AGGGTAAATT	CTCATCTTAC	CCCCTAATTC	4380
	AGATTGAACA	TCTATCAATC	TTACAGACAT	ATCTCGCAAT	CCAGCATAAA	AGCTTGCATA	4440
	CAAACCAGAC	GGACCGCCAC	CAATGATTGT	AACATCTTTC	ATTATGTGCC	TCCTATGACT	4500
50	CTCTATATTC	ATTTCTTTCA	TTAACGTGCT	CAAATTGATA	ATTATTATCA	TTTAAAGCCA	4560
	TTATACTATT	AATATTTATA	TTGTTAAAAT	AAATCGCATA	GTTAGCCATG	AATTATCAAT	4620

GAAAGATGTG TATATTTTTT AGTTCTAGTT ATATTATTTT TTAAAAGACT CATCACGTGG 4740 TTCTTTAAGA ATTGCTTGTC TTAAAAGGAA AAATAGCAAC AATAAACCTG CAAGCATACC 4800 TGTGTGCCCA ATACCTGCAA AGCCTGCNAA TGCTTCTGGA GAGTATGATT TACCAGTGAC 4860 TTGGAAGAAT CCTTTTGTC 4879 (2) INFORMATION FOR SEQ ID NO: 90: 4 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1560 base pairs

10

5

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

15

20

25

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

60	TAATCTGTAS	GAAATTAAAT	TAATTTTTTT	GGAGTTTTTT	AGATTGATTG	ATAATGTCTT
120	CTTTGTGAAT	TAGCTAYATA	TTTTTGATCA	CTGACACAYT	ATTTGAATAA	YTAATAAAA
180	ТАТАААТАА	AATnATCTTT	GAGTATTATA	GTGAAGATAA	TATAATAAGA	TAATTCACAT
240	AACATATTAA	CATTTCkTTT	CGATTATGgT	GTTAGCATAT	AAAATTACAC	ATGTGAAGTA
300	CAGTAGTATG	AACAAGGTCA	TCYAACLAAA	ACGGRTGATA	TTAAAAGTTA	CTgGGGaACG
360	TTTCTTTTTT	AATTATTCGT	TTACATCTAT	CAAATAAAAA	GCGTCTATTA	TTTTAATCTG
420	ACATTATTAT	TATAAGGAGG	CTGGAGTGAC	ATCATACATA	GCCAATTAAT	GAAAGTAATA
480	AGTTAAGAGC	GAGGACAAAA	AGTAAGTATT	AAGATCACAA	GTTGTAACGA	GAGAGCAGCA
540	ATACCGATTT	GGCGTTTGTC	GGAATATTGT	TGGTACAAAC	GGTGAAGCGT	TTTAAAACCT
600	ATGAAGGTAT	ACTTTAGGTC	TACAGGCGTT	TTGGTGATGT	AATGCTGATT	ACATGTTAAG
660	ACCGTGTGTC	AAAATTGGAG	AGAATCATTA	CGGAAGATGT	ATCGAAGTTG	TGGŢĀAAGTC
720	GTCGTGAAAC	TGTACAACAG	ATGTGAATAT	GCTGTGGAAG	ATGTTCGAAA	TATCGCTTGG
780	CTGAACAAGT	GGTGCAATGG	TACAGTAGAT	ATGCTGGTTA	AGTGTGAAAA	ACTTTGCCGT
840	CAGCAGCGTC	TTAGATCCAG	ACCTGAAAAA	CTGTGAAAGT	GCAGACTATG	TATTGTTACT
900	ATGTAAAACC	aaagtaagta	TAAAGCTGTA	TGACAACTTA	TGCGCAGGTG	TTCTATTACA
960	TACAATATGC	AACCTAGCTT	TGGTTTAGGT	TTGGTATAGG	TTAGGTGTTT	TGGACAATGG
1020	AATTAGCATT	AATGATGATA	CTTCGACATC	AAATTGTTGC	ATGGGGGCTA	TAAAAACGTT
1080	CAGTTGCAGA	GATGTTGATC	TAATTCTAAA	ATGCTATTAT	TTAGGTGCTG	CGCGAAAGAA
1140	CAGTTGCTAA	GTGGTAACTT	AGATGCAACA	ACAAAGGATT	TTAACTGATA	AGTTATGAAA

50

TTTACCTGTT GATAAAATGA ACTTAGATAT CCCAAGATLA GTGCTTGATG GTATTGAAGT

AGTAGGTTCA CTTGTTGGTA CAAGACAAGA CTTACGTGAA GCGTTTGAAT TTGCTGCTGA

AAATAAAGTA ACACCTAAAG TTCAATTAAG AAAATTAGAA GAAATCAATG ATATTTTTGA

AGAAATGGAA AATGGTACTA TAACTGGTAG AATGGTTATT AAATTTTAAA AATATCAACT

GACTATATAG ATAAAGAAGG TAGTGCTCTG AACACTATCA TTATTAATCA AACCCCGAGG

TTTTCCTGAA AAGATAGTGG NAAATCCCCG TGTTTTTTGG GTTTGAGGNG GTTGTNTGTA

(2) INFORMATION FOR SEQ ID NO: 91:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11014 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20

25

30

35

40

45

5

10

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

GTCCTGTnGC TGCAATGAAT ACGCCTAAAA ATCCAGGGAT GTAATGGATA CTTTGTGGTA 60 GTACTAATGA TAGAAATGAT AAAAATGAAA TCACAAAGGC TACGCTCGCA AAAGCTTGAC 120 ATGTACGCTT ATCGCCATAA TCTAACCCTG TACGTATATG TAATAAATAC TGTAATCCGA 180 TACTTAAATA CATAATTGCC ACGCATAAGA AGAATGGGAA GAATGTCTTT TCAAAGTCCG 240 GATATAGGCT GTTAGATAGG AAGACCATGA TGAACATATT AAACATCATA AACGAGACGT 300 CTTTGAATGT AACTTGACCA AATCGATTTG TAAAAAATGT TTGATGAGAC CACATTAACC 360 ATAAGAACAA ACTCATGACG ATGTATTTGA AAAATAAATC AGCTGAAATG GAACCGTTTT 420 GTGTTGTTAA AATCACATGT GCAATTTTTT GAATGGCATA GACGAAAATT AAATCAAAGA 480 ACARCTCATG GAATCCTGCA CGCTTTTCAG CTAAATGTTT TGGTGTTAAT GCATTAACCA 540 TAAAATTTTA ACTCCTTTAA GATGTGTAAT TAATTTACTA AGTATACTAT TTATTTTTC 600 TAGTGAATAG GGGCAGATTT GGCGATGAAG TGGAAGGAGA GGTGACTGCA AGGTAATTGC 660 GGAATTAACA ATCATCAGCG ATTTAATATT TGACTGGAGA CGTCATGGTA ATAAAAAATT 720 GATGAGAAAT TGATGGTGAA ACCAGCTGTG AATASCGATG CAATGATrsA TAGAATTTAA 780 TTAGAGTCAT TACGCGAAAT GATTAATGAT AATTTGTGGT AAATCAAAGC ATAATTTTGT 840 900 ACTATAGATG AGGATGATAG AGCATATTTA AGAGGGTGAA ATGTTAAAGT GAAACCGTTT ACGTTTCCGA TTGCCCAAAC AAATTACATC ATTGTATAAT ATGATTTGTT AAATGCATAA 960 1020 CAAGAATGAA AATGTAACAT ACGTAGCAAT TGGTTTCATA AATTGGATGT TAGTGGCGTA

55

	TGACGAGAGT	CGTATTAGCA	GCAGCATACA	GGACACCTAT	TGGCGTTTTT	GGAGGTGCGT	114
	TTAAAGACGT	GCCAGCCTAT	GATTTAGGTG	CGACTTTAAT	AGAACATATT	ATTAAAGAGA	120
5	CGGGTTTGAA	TCCAAGTGAG	ATTGATGAAG	TTATCATCGG	TAACGTACTA	CAAGCAGGAC	126
	AAGGACAAAA	TCCAGCACGA	ATTGCTGCTA	TGAAAGGTGG	CTTGCCAGAm	ACAGTACCTG	132
10	CATTTACGGT	Gaataaagta	TGTGGTTCTG	GGTTAAAGTC	GATTCAATTA	GCATATCAAT	138
	CTATTGTGAC	TGGTGAAAAT	GACATCGTGC	TAGCTGGCGG	TATGGAGAAT	ATGTCTCAAT	144
	CACCAATGCT	TGTCAACAAC	AGTCGCTTTG	GTTTTAAAAT	GGGACATCAA	TCAATGGTTG	150
15	ATAGCATGGT	ATATGATGGT	TTAACAGATG	TATTTAATCA	ATATCATATG	GGTATTACTG	156
	CTGAAAATTT	AGTAGAGCAA	TATGGTATTT	CAAGAGAAGA	ACAAGATACA	TTTGCTGTAA	162
	ACTCACAACA	AAAAGCAGTA	CGTGCACAGC	AAAATGGTGA	ATTTGATAGT	GAAATAGTTC	168
20	CAGTATCGAT	TCCTCAACGT	AAAGGTGAAC	CAATCGTAGT	CACTAAGGAT	GAAGGTGTAC	174
	GTGAAAATGT	ATCAGTCGAA	AAATTAAGTC	GATTAAGACC	AGCTTTCAAA	AAAGACGGTA	180
	CAGTTACAGC	AGGTAATGCA	TCAGGAATCA	ATGATGGTGC	TGCGATGATG	TTAGTCATGT	186
?5	CAGAAGACAA	agctaaagaa	TTAAATATCG	AACCATTGGC	AGTGCTTGAT	GGCTTTGGAA	192
	GTCATGGTGT	AGATCCTTCT	ATTATGGGTA	TTGCACCAGT	TGGCGCTGTA	GAAAAGGCTT	1986
	TGAAACGTAG	TAAAAAAGAA	TTAAGCGATA	TTGATGTATT	TGAATTAAAT	GAAGCATTTG	204
30	CAGCACAATC	ATTAGCTGTT	GATCgTGAAT	TAAAATTACC	TCCTGAAAAG	GTGAATGTTA	210
	AAGGTGGCGC	TATTGCATTA	GGACATCCTA	TTGGTGCATC	TGGTGCTAGA	GTATTAGTGA	2160
15	CATTATTGCA	TCAACTGAAT	GATGAAGTTG	AAACTGGTTT	AACATCATTG	TGTATTGGTG	2220
	GCGGTCnAAC	TATCGCTGCA	GTTGTATCAA	AGTATAAATA	ATAAGAAAAC	AGGTTATCAC	2280
	AACAGTATTA	ATLACATGTT	GGCATAACCT	GTTTTTATTT	GTTTATGGAT	TTATTGGGTA	2340
0	ATATTAGTCA	TTTGATGGTT	TAATTGCAAA	TGCTCTAACA	GGGAACCCAG	GTGCATCTTT	2400
	TGGTTTAGGG	CTGATAGCGT	AAATGATGGC	GCCACGAGTT	GGTAATTGAT	CTAAATTAGT	2460
	TAATAACTCG	ACTTGGTATT	TATCCTGACC	AAGAATATAA	CGTTCGCCAA	CTAAATCACC	2520
5	ATTTTTTACA	ACGTCCACAG	ATGCATCGGT	ATCGAATGTT	TCATGACCAA	CAGCTTCAAC	2580
	ACGACGTTCT	TCAATTAAGT	ACTTCAAAGC	ATCTAATCCC	CAACCCGGTG	CATGTTGTTG	2640
	TCCGTTCGCA	TCTTTGTTTT	CAAACTTTTC	AATATTAGGC	CAACGTTTTG	ACCAATCGGT	270
o :	ACGAAGTGCA	ACAAAAGTGC	CAGGTTCAAT	AGTACCATGC	TCTTTTTCCC	ATGCTTCTAT	2760
	ATGCGCACGT	GTTACGATGA	AATCATTGTT	GTTCGCTACT	TCTGTTGAAA	AGTCTAATAC	2820

	AAAGTGAATT	GGTGCATCAA	TGTGAGTACC	ATATTGCGTT	ACAATATTCC	AACGTTGCAC	2940
	ATAGAAACCA	TGATCTTTAA	CCGTGAATAA	AGTTGAAACT	TCGCCTTTTT	CAAACTCACT	3000
5	AAAACGTGGT	ATTTCCGGAT	CAAATGTATG	CGTTAAATCA	ACCCAAGTTG	CTTGTTTTAA	3060
	AGTATTTAAT	TGTTGCCATA	AAGGATATTG	TĢTCATAAAA	TCACCCGTTT	TTAGTTTATT	3120
10	ATATGATAAA	TGCTGCGATT	ATTCTTGGCG	TTTAGCTTTA	ACAGCATTCA	CAAGCACAGT	3180
10	CAATGCATCT	TTAACTTCTT	CTTCTTTTCG	CGTTTTTAAA	CCACAGTCAG	GGTTTACCCA	3240
	GAATAATGAG	CGGTCGATTT	GTTGTAGTGA	ACGATTGATT	GCTGTAGTAA	TTTCTTCTTT	3300
15	TGTTGGAATA	CGTGGACTAT	GAATATCATA	TACACCTAGA	CCAATACCTA	AATCATAATT	3360
	AATATCTTCA	AAGTCTTTAA	TTAAATCACC	ATGGCTACGA	GATGTTTCAA	TTGAAATAAC	3420
	ATCAGCATCT	AAGTCATGAA	TAGCATGAAT	GATTTGACCG	AATTGAGAAT	AACACATATG	3480
?0	TGTATGGATT	TGAGTTTCAT	CACGAACTGA	AGACGTTGCA	AGTTTAAATG	ATAAAACAGC	3540
	ATCTTTAAGA	TATTGTTCGT	GATATTCAGA	GCGTAATGGT	AAGCCTTCAC	GTAATGCAGG	3600
	TTCGTCAACT	TGGATAACTT	TGATTCCTGC	AGCTTCAAGT	GCTAATACTT	CTTCGTTGAT	3660
?5	TGCTAAAGCA	ATTTGATCTT	GAACGACTTT	ACGTGGTAAA	TCAACACGTT	CAAATGACCA	3720
	GTTTAGAATT	GTTACAGGTC	CAGTTAACAT	ACCTTTAACT	GGTTTATCTG	TTAAGCTTTG	3780
	TGCATAAACT	GTTTCATCAA	CAGTTAAAGG	CGCTGTCCAT	TTTACATCAC	CATAAATGAT	3840
30	TGGTGGTTTT	ACGGCACGTG	AACCATATGA	TTGCACCCAA	CCGAATTTAG	TTACTAAGAA	3900
	ACCTTGTAAT	TTTTCTCCGA	AGAATTCAAC	CATGTCATTA	CGTTCAAATT	CACCGTGAAC	3960
35	TAATACATCT	AAGCCAATGT	CTTCTTGAAT	TTTAATCCAT	CGAGCAATTT	CATTTTTTAA	4020
	GAATGTTTCA	TATGCTTCGT	CTGTAATGCG	TTTGTTCTTC	CAATCTGCAC	GGTATTTTCG	4080
	AACTTCTCGG	CTtTGTGGGA	ATGATCCAAT	AGTTGTTGTT	GGTAAATCCG	GTAAGTTCAA	4140
10	ACGTTTTTGT	TGTTGTTCAA	TACGTTGCGC	GAATGGTGAT	TGTCTTGAAG	TACGCACGCT	4200
	TTCGAAATCA	TAATCTAAGT	TTTTGAATGA	TTGATTTTGG	AAACGCTCAT	AACGTGCTTT	4260
	TAATTTATCA	TATTTAACAC	TATCGTTTTG	ATTAAATAGG	CGACGCAATG	CATCTAATTC	4320
5	GTCTAATTTT	TCAGTTGCAA	AGCTTAAGCC	TTCGCCAACA	CTTGTATCTA	ATGTTTCATC	4380
	ATCTAAAGAT	ACTGGAACAT	GTAATAATGA	AGATGATGGT	TGAATGACAA	GTTCATTAGT	4440
	GTGTGCTAAC	AATTTATCGA	TTAAGACTTT	TTTAGCTTCA	ATGTCACTTG	CCCATACATT	4500
ю.	ACGACCATCA	ATAATTCCAG	CGTATAATGT	TTTTGATTTA	TCAAAATCTC	CAGCTTCAAT	4560
	TTCTTTD ACC	TTTNTNCCCNT	TATCATCCAC	A A A CTIOTTA A A	COTATACCAC	CARCACCTAA	4620

	AACACCAGCT	TTTTCGAAAT	AGTCATAAGC	TTCACGTGTA	ATATTTTCAT	AGCTTTCGCT	4740
_	GTCGTCTGTA	ACTAAGATTG	GCTCATCAAC	TTGAATGTAC	TCAGCACCTG	CATCAATTAA	4800
5	TGATTCAAAC	ACTTCTTTAT	AAAGTGGTAA	TAACGTTTTA	ACTTTTTCTT	CAAAAGTTTG	4860
	GTGACCGCCT	TTTGATAATT	TAACAAAAGT	AATCGGACCA	ACAATGACAG	GGTGAGCGTT	4920
10	AACGTTTAAA	GATTGGGCAT	ATTTAAAGCG	ATCTAATAAT	ACATTGCGAC	TCACTTTAGG	4980
	CTCAACATTG	TCCCATTCAG	GTACGATGTA	ATGATAGTTA	GTGTTAAACC	ATTTTATAAG	5040
	TGCACTTGCA	ACATGGTCTT	TATTACCGCG	AGCAATATCA	TAAATAATAA	CATCATCAAT	5100
15	AGTTCTTCCT	TGGAAACGTT	CAGGGATGAT	GTTGAATAAT	AATGACGTAT	CTAATATATG	5160
	GTCATATAAA	GAGAAATCAC	CAACTGGGAT	GCTATCTAAG	TGATAGTACT	TTTGLAATAA	5220
	TAAATTTYCT	TTATGTAGAT	CAGTTAATGT	TTGATCTAAT	TCTTCTTTAG	AAATCTTCTT	5280
20	TGCCCAATAA	CTTTCGATGG	CTTTTTTCCA	TTCTCTTTTT	CTACCTAATC	TTGGGAATCC	5340
	TAAGTTTGAT	GTTTTAATTG	TTGTCATAAT	ATTGCCTCCT	TGTGAGCAGT	AATAGATTTT	5400
	GAGTATGCTG	CAAGTTCTAA	TGAATCTTCG	ACATTTTGAA	ACGGTGTGAT	AATGTATAAA	5460
25	CCATTAAAAT	ATTCATGAAC	AGTATCGATT	AAATCCTTTG	AAAGCTTAAG	ACTTAGTTCT	5520
	CGTGTTTTGG	CTTTATCATC	TTTAACTGCT	TCAAATTGTT	GTAAAATTTC	ATCTGACATC	5580
	TTGATTCCTG	GCACTTCATT	ATGCAAAAAG	AGTGCGTTTT	TGTAACTTGC	GATAGGCATA	5640
30	ATGCCTATGA	AAAATGGTTT	GTTCAAGTGC	TTAGTGGCAT	GGTAAATTTC	AATGATTTTC	5700
	TCTTTGCTGT	ACACGGGTTG	TGTTATAAAA	TAAGACATTC	CGCTTTCTAT	CTTTTTCTCT	5760
35	AATCTTTTGA	CGGCACCATA	TAATTTACGA	ACATTAGGGT	TAAAGGCGCC	AgcGATGTTG	5820
55	AAGTGTGTAC	GTTTCTTCAG	CGCATCACCG	TCAGTGTTAA	TACCTTGATT	AAATCTTAGA	5880
	GCGAGTTCAG	TTAATCCTTT	AGAATTAACA	TCATAGACAT	TGGTTGCACC	TGGTAAGTGA	5940
40	CCAACTTTTG	AAGGATCACC	AGTTATGGCT	AATATTTCGT	TAACGCCAAT	GAGCGATAAT	6000
	CCAAGTAAAT	GGGACTGCAA	GCCGATTAAG	TTTCGGTCTC	GACATGTAAT	ATGTACGAGT	6060
	GGTTCAATAT	TGTAATATTG	CTTAATTAAG	CTAGCAGCAG	CAATATTGCT	AATTCTGACA	6120
45	GTTGCCAATG	AATTATCTGC	GAGTGTTACC	GCATCTACAT	TAGCTTTATC	AAGTTTAGCG	6180
	ATATTTTCAA	AAAATCTATC	CGTGTCTAAA	TGTTTCGGTG	TATCCAATTC	GATAATAACG	6240
	GTTGGACGTT	CTTGAACCTT	AGATGTTAAT	GATTGTCTAA	CTTTATTTTG	AGATGGATTG	6300
50	AAAAGTGCTT	TCGTTGGTAT	CGGAATCACT	TTTTTGTCAT	TAACAGGTTT	AAGTGTCTGA	6360
	ATAGATTCTT	ТЕЛЕГЕТ	GATGTGCTCT	GGCGTTGTAC	CACAGCAACC	ассааттава	6420

	TACTTAAATT	CACTATTTTC	AATATCTAAT	AAGCTGGCAT	TTGGATAACA	AGATAAGAAT	6540
	GCGTGCTCTG	GTAATTCAAT	ATGTGTGAAA	GAÇTCTTGCA	TATGGTGCGG	GCCATGATGA	6600
5	CAATTGAGTC	CCACGATGTT	TGCACCACAT	TGAACGAGTT	GTTTTAATCC	TTCATTGATT	6660
	GCCTGACCAT	TAACTAAGTA	ATTTGTGTTT	GAAGCGGTTA	ATTGAGCAAT	GATTGGAATG	6720
4.5	TCGTATTTCT	TTCTCGTTCG	TGAAATGACA	TTTGTTAACT	CTTCTAGGTC	GTAATACGTT	6780
10	TCGAAAAGTA	GCGCGTCAAC	GCCTTCTTCA	ATTAAGGTGT	CTATTTGAAT	TTCAGTATGA	6840
	TAAAGAATAG	TTTGTAAGCT	GATATCCTCT	TGTTTGATAC	CTCTAAACCC	ACCAACTGTG	6900
15	CCTAATATAT	ACGTATCTTT	ATTTGCTGCT	TTTTTTGCGA	TGCGAACGGC	GGCTTGATGT	6960
	ATTGCTTTAA	CTTTATCTTC	AAGACCGAAT	CGTTTTAACT	TTTCAAAATT	TGCACCATAA	7020
	GTATTGGTTT	GAATGACATC	AGCACCGGCT	TCAATATATG	AACGATGGAT	GCGTTCAACT	7080
20	TTATCTGGAT	GGCTAAGATT	ATATGCTTCT	GGACAGGTGT	CTAATCCTTC	AGAGTATAAA	7140
	ATGGTTCCTA	TAGCGCCATC	AGCTACTAAA	ACATTATCTT	TCAATTGTGT	GAGGAATTGA	7200
	CTCATTGAAT	GCCTCCTTTA	ATGCGTATTT	GATGTCTGCA	ATGAGTTCAT	CAGGATCTTC	7260
25	GAGACCAACA	CTTAATCGGA	ATAGACCGAA	AGTGATACCA	CGTTCTTGTC	TCACTTCTTC	7320
	AGGTAGTGCA	GCGTGAGACA	TTGTTGCTGG	ATGTGAAAGG	ATCGTTTCAA	CACCGCCCAG	7380
	ACTCACTGAA	ACGAGTGGTA	ATGTCAGTGC	ATCGACAAAT	TGTTGTGCTT	TAGACTCATC	7440
30	AGCTAAACGA	AAGCCAATAA	CGGCACCGCC	ATTTTTAGCT	TGTTCTAAAT	GAGCAGTAGT	7500
	GAGTCCCGGA	TAATAAACTT	CTGAAATTTC	ATCTTGCTTT	attaaaaatg	ACACGATTTT	7560
25	TTGAGCGTTT	TCGACAGATT	GTTTAAATCT	GATTGGAAAA	GTTTTTAAAT	GTTTAGCAAG	7620
35	TGTCCAGCTA	TCCTGAGCAG	ATAACATATT	GCCTGTACCA	TTTTGTATTA	AATAAAGAGC	7680
	GTCACTAATT	GCCTCATTAT	TAGTTATGAC	AGCACCAGCA	ATTAAATCGC	TATGTCCACT	7740
10	TAAAAATTTT	GTAGCACTAT	GAATGACAAT	ATCAGCGCCA	AGTAATAAAG	GTGATTGACc	7800
	TAACGGTGTC	ATAAATGTAT	TGTCCACAGC	TACCAGTAGT	TCATGCTTTT	CGGCTATTTT	7860
	AGAAACAGCT	TTGATATCAG	TAATTTTAAA	ACAGGGATTC	GATGGTGTTT	CGATATAAAT	7920
15	TAATTTTGTG	TTTGATTGAA	TGGCACCCTC	GATTTGTTCG	AGCTTTGTAG	TATCTACGGT	7980
•	TGTAAATTCA	ATATTAAATÇ	GATTCAAAAT	TTGCTCAGTG	AGGCGAAAAG	TACCGCCATA	8040
	TACATCATCG	GGTAAGATGA	CATGATCACC	AGATTTGAAA	GTCAAAAGTA	CTGCTGAAAT	8100
50	AGCAGCAATA	CCTGATGCAA	AAGCAAAAGC	GAATTTTCCC	TGTTCTAATC	GTGCTAACTT	8160
	CTCTTCTAAA	AGTTCACGGT	TAGGGTTGCC	CTTCGTGCAT	AATCATATTT	AACATCGCCA	8220

	TCCACACCTC	TACGCCAATC	GAATATCACT	TCTGTCTCTT	TTGAAAGTGT	CATACAATCT	8340
<u>_</u>	CTCCAATCTG	AGCTTTATCT	AATGCTTGGA	TGATATCGCG	TTCGATGTCT	TCATAATTTT	8400
5	CAACACCTAG	TGATAAGCGG	ATTAAATACT	CATCAATGCC	ACGTTTATCT	TTTTCAGCAT	8460
	CTGGCATATC	AACATGTGTT	TGGGTGTAAG	GGAAGGTCAC	TAATGTTTCA	GTACCTCCTA	8520
10	AACTTTCTGC	AAAAATGCAA	ATGTCTAAAT	TTTCTAATAA	TTTAGCGACG	CTATAGGCCT	8580
	TGTTAAGTCT	TAAACTAAGC	ATGCCAGTTT	GCCCGCTATA	TAGTACTTCG	TCAATTGCTT	8640
	GAAGTGACTG	ACATTITITA	GCAAGTTTTC	TAGCGTTTGA	TTGCGCACGC	TCAATGCGTA	8700
15	AATGCAAAGT	TTTAAGTCCA	CGTAACAACA	AATAACTATC	TATTGGTGAA	AGTGTTGCGC	8760
	CAGTCATGTT	GTGAAAATCA	AACAACTGTT	GCGCGAGTGA	TTCATCTTTG	ACGGTTACGA	8820
	CACCTGCTAG	TACATCGTTA	TGTCCGCCAA	TATATTTCGT	GGCTGAATGT	AAGACTATAT	8880
20	CAGCACCTTC	TGCTAGTGGT	GTTGAAAGAT	AAGGTGTTAA	AAAAGTATTG	TCGATAATTG	8940
	ACAATAAGCC	TTTAGCTTTA	CAAAGTTGAT	AGTATGGCTT	TACATCAATA	GCAATCATTT	9000
	GTGGGTTAGA	TATTGGTTCA	ATGAATAATG	CAACTGTTTT	ATCAGTGATT	TCTTTTTCAA	9060
25	CTTGTTCATA	ATCTGTAAAA	TCAACGTACT	TAAATTTGAT	ATCGTATTGT	TGCTCGTAAA	9120
	ATTCAAATAA	TCTAAATGTG	CCACCATATA	AATCGAATGA	AACTAAAATT	TCATCATGAG	9180
••	GTTTAAATAG	ATTACATATT	AATTGAATGG	CTGACATTCC	ACTTGATGTA	GCGAATGATG	9240
30	CAATACCATG	CTCAAGTTTG	GCAAAACAGG	TTTCAAATGT	TGAGCGTGTA	GGATTTTTAG	9300
	TACGTGTATA	ATCAAAACCT	GTCGATTGTC	CTAGTTTTGG	ATGCTTGTAG	GCAGTAGATA	9360
35	AATGGATTGG	ATTCGCTATA	GCACCGGTTG	AATCATCGGT	TAATGTGATT	TGGGCTAACT	9420
	GTGTATCCTT	CATATTAAGA	CCCTCCTATA	AGAAAAAATA	AAAAAAGCTT	CCGTCCTTCG	9480
	TACCCGAATG	AATCGGATAA	AAAGGACGAA	AGCTTATGTT	TCGCGGTACC	ACCTTTATTT	9540
10	GTTATTCCAT	CGCTGAAATA	ACCTTATTCA	GTACGCATTA	AAAGTAAATA	TGCTTACTGA	9600
	ACAATTATCA	CAATTAAAGT	CAGTAAGTAA	GGATATAGTA	ATGTGCTATC	CCATACTTAT	9660
	TAACAAAAA	TCGTGCGTAA	AGAATCCAGT	ACGCCATTTA	ACATCAATGT	TAATACTGTA	9720
1 5	TCGCTATAAC	GGGCGAACCC	GTAGACACCT	CATATTGGCA	TCAACACTCC	AAGGCCATTT	9780
	TCAAACACGC	TTTCAAAATC	TTCTCTCAGC	TACTAAAGAC	TCTCTGTATA	AGCAGGGTGT	9840
	GTTTTACTTY	CCTCTTTATT	GTGTTTACGT	TTCATTAAAC	TGTTATAAGA	TATTAATTAG	9900
50	CTTACAGAGT	AAAAAAAGAT	TTGTCAACAA	TTATTCAGAA	AATTTTGATT	TAAAAGTTAA	9960
	TTTCTTCTC	אמדדר ממ	тестатетте	AAGTTGAAAA	ATCAATTATT	ΤΤΤΤΑΑΑΤΑΑ	1002

	TCAAATAAAA	AGTGATGTGA	GTGAATTGTC	AAAAAGTGAA	GATCAACGTA	TTACTAAAAC	10140
	AAAAGATGAA	CAAATTAAGC	AAATAGATAT	ATCGGATATC	AAACCGAATC	CGTATCAGCC	10200
5	CCGAAAAACT	TTCGATGAAA	ATCATTTAAA	TGATTTGGCA	GATTCAATTA	AGCAATATGG	10260
	AATTTTGCAA	CCAATTGTGC	TTAGAAAAAC	AGTTCAAGGT	TATTACATTG	TAGTTGGTGA	10320
o	AAGAAGGTTT	AGAGCTTCGA	AAATTGCTGG	TCTAAAATAC	GTATCAGCGA	TTATCAAAGA	10380
U	TTTAACAGAT	GAAGATATGA	TGGAACTGGC	GGTCATCGAA	AATTTACAAC	GAGAAGACTT	10440
	AAATGCGATT	GAAGAAGCTG	AAAGTTATCA	ACGTTTGATG	ACAGATTTGA	AAATTACACA	10500
5	ACAAGAAGTA	GCGAAACGAT	TGAGTAAGTC	GCGCCCGTAT	ATAGCGAATA	TGTTGAGGTT	10560
	ATTACATTTG	CCGAAAAAGA	TTGCTGACAT	GGTAAAAGAT	GGGCGACTGA	CAAGTGCACA	10620
	TGGACGAACG	TTATTGGCAA	TTAAAGATGA	ACAACAAATG	CTTAGGTTAG	CGAAACGGGT	10680
Ò	TGTTAAAGAA	AAGTGGAGTG	TCAGATATTT	AGAAAACCAT	GTTAATGAAT	TAAAAAATGT	10740
	TTCGTCAAAG	TCGGAAACAG	ACAAAGTAGA	TATAACTAAG	CCTAAATTTA	TAAAGCAGCA	10800
	AGAACGACAG	TTGCGAGAAC	AGTATGGTAC	CAAAGTAGAT	ATATCAATAA	AAAAATCGGT	10860
5	TGGTAAAATC	TCATTTGAGT	TTGATTCACA	AGAAGATTTT	GTGAGAATAA	TTGAACAATT	10920
	AAATCGTAGG	TATGGTAAAT	AGTTACACAA	TTTTATATAA	TAACTCTTTG	TGCAAGTGTA	10980
	AATAAATTGT	AATCAGTGAC	ATTTGATTCT	AGAT			11014

(2) INFORMATION FOR SEQ ID NO: 92:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6022 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

Ξ.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

TCCCCTTATG GAATTTCACA TTCTAGTTTA CATAATATAT ATTATAGGAA GTTATATGTG 60
TGTAACGCAA AAGGTACCCT ACATCATAAT CATTATCTAA TATCGTCACA TAACTTACTT 120
ATGCTATAAT CATGGTATTA TATTGTTTGG AGTGATTTGA TGAGATTTGT CTTTGATATT 180
GATGGTACGC TTTGTTTTGA CGGCCGATTA ATTGACCAGA CTATTATTGA TACATTGTTA 240
CAATTACAAC ATGATGGTCA TGAACTTATA TTTGCATCAG CACGTCCGAT TCGTGATTTG 300
TTGCCAGTTT TACCATCAGT ATTTCATCAG CACACATTAA TTGGCGCAAA TGGTGCTATG 360
ATTTCACAGC AATCAAAGAT TTCTGTTATC AAACCAATTC ATACTGATAC ATATCATCAT 420

55

30

35

40

	GCTGCACAAC	TTGACGCTGn	AGAACGCGAT	TTTTGAGCGT	TTAGATCCAC	ATAAGCTGGC	540
	CAGTTGTATT	GATGTTGCAA	ATATCGACAC	GCCAATCAAG	AKTATTTTAT	TAAATATAGA	600
5	CCCGGCACAA	ATTACAACTA	TATTAGACGA	GCTAGATAAA	TACCATCAAG	AATTGGAAAT	660
	GATTCACCAT	TCAAATGAGT	ATAACATTGA	TATAACAGCG	CAAAATATTA	ACAAATATAC	720
	TGCATTACAA	TATATATTTG	ATGCAGATGT	TAAATATATA	GCATTTGGTA	ATGACCACAA	780
10	TGATATTGTC	ATGTTACAAC	ATGCTAGTAG	TGGCTATATT	ATAGGACCAT	CAGAAGCATA	840
	CACACACGCA	ATATTGAAAC	TTGATAAAAT	CAAACACATC	AATAATAATG	CACAAGCTAT	900
	TTGCAAAGTC	TTAAAATCAT	AAAATAAATA	ACACCCCTAT	CAAATGATAA	TCATTATCAA	960
15	TCGATAGGGG	CTATTTTAAT	AAAATTCGTC	CTCGAACATT	TCTTCCTCTT	CATCTAATCC	1020
	AAATAATTCT	GCCATTTCTC	CATGTTCAAT	TAACATGTTT	AAATATGCAT	CGCGGAGTTC	1080
20	TTCTTCACTC	ATATCATTAA	TCATTTCTTT	AAGACTATCA	ATCCACATAT	TTCTGCGTAA	1140
20	TTGATAGTCT	TCTTCAACTT	CGTTTAACAT	CATTATATGT	TTATTTGCTG	CTTCTGGACT	1200
	AGCTGTAAAG	AGTAATGCAA	TCATATGTTT	ACATATCACT	CGTCTTCCAT	CAGCATGAGG	1260
25	ACAATTACAT	ATGGATTTTC	TAGGATGTTC	CATATCAATA	TAACAACGAT	ATACTTTGTT	1320
	GCCACTGCCC	TTTACTTCAG	CCTCATGCTG	CGTTTCTGAA	AATGATTTTA	AGTTAATGAC	13,80
	GCATTCACTT	TGATAATAAT	TAAAGCCTCT	TTCTATAGAA	CGAATACTTG	CAATATCAAG	1440
30	TAATCCCATT	AATGaTACTC	CTTTTTATTA	TTATTTTTAA	ATAAAGAaAA	TAAAATAGAT	1500
	AAGTGTCTAG	ATTAAAATAC	TTGATTTATC	TATATTTTAT	AACAAGTCTA	GAATTATCGC	1560
	ATTCTTAAAT	AACTAATATG	AAAATGcTTG	CACTAATTCt	TTTGTATAAG	GGTGTCTATC	1620
35	AACATTAAAT	AATTCCtCTA	TTGCAAAATC	ATCGACTATC	ATGCCATCCT	TAAGAACGAT	1680
	AATTČTATTA	ACTAAGCGTT	GTAACACGGA	TAAATCATGA	GAAATAACGA	TAAAATGATT	1740
	TAAGTTCGTA	ATCGTTTGCG	CTTTTAATAT	ATTGATTACA	TTTTGTTCAG	CTATAACATC	1800
40	TAAATTTGAA	GTTATCTCAT	CACATATTAA	AACGCGAGGC	TGTGCTAATA	ACGAACGCAT	1860
	GACATTAAAT	CTTTGTAATT	GTCCGCCACT	CACTTCGCTT	GGTAATTTAG	TCAATAATTG	1920
	CGCGTTTAAC	TCAAAAGTAG	ATAAATGTTG	TAATAATAAT	TGATCCTGAG	CAGTATTATC	1980
45	AGTTAGACCT	CTGTAATAAT	ATAACGCTTC	TTTTAATGAG	GTCTCAATCG	TCCAATCAGG	2040
	GTTAAAGCTA	GTTAAAGGGT	GTTGGAAAAT	CGGTAACACA	GCATTGTCAC	TTAAGTAAAT	2100
50	CTCTCCTTTA	ACAGGTTTAA	ACAAGCCAAG	AACCAATGAA	GCGAGCGTAC	TTTTACCACA	2160
						me sms memme	2220

	CCCTCTTTAA	TTGTGTTCTA	TATTTAATTA	GACGTTCAGT	ATACGGATGC	AAATGCTCAT	234
	ACTTGAAATG	ATTAATATTA	CCTCGTTCAA	TGATTTGACC	TTCTTTTAAA	ACATAAATGT	240
5	ACTGACAATA	TTTCAATACA	TGACTTAAGT	TATGTGTGAT	TAATAAATAA	GTTTGACCAT	246
•	GTTCTAATAC	AATATGCTGT	AATAAATCCA	TCACTTGATT	ACCGTTCAAA	GCATCCAATG	252
	ATGCAACTGG	TTCGTCTGCA	ATGATTAATT	TAGGCTCCAA	CATGAGAACG	CTTGCTATGT	258
10	ATACGCGTTC	AAGTTGGCCC	CCAGAAAGTT	GGAAACTATA	TTTATTTAAT	ATATCTTTGC	264
	TTTGTAAATT	AACCCACGAC	AAAGCCTTAT	CAACTTTGGA	CAAAGCCTCT	TCTTTACTAC	270
	CTTTATAATG	CTTACGATAA	ATCGCAGTTA	ACTGTTTACC	TAATTTAGTA	TGGTCGTTAA	276
15	AACTTTCTGC	ATAATTTTGA	GAAATATAGC	CAATTGTATG	ACCATAATAT	TGACTCAATC	282
	TACTAACATT	TTCCCCATCA	AATTGGTACG	AATCATACGT	GCAGCTTAAA	TCAAATGGTA	2880
20	AATATTCAAG	TAAAGCTTTA	GCAATCAAAC	TTTTTCCAGC	GCCGCTCTCT	CCAATCAAGG	294
20	CATTAATCTG	TTGACTAAAA	ATTTTCAAAT	CAATCCCTTT	AATAAGAGAT	TTCTCACTAG	3000
	TATTCTTTAT	TGTTAAATTT	TGTATATCAA	TGAGACTCAT	CATATTCACC	CCGTTGTTTC	3060
25	AGCAATCTAT	CTCTTAGTGC	ATCACCGGTT	AAATTAAAA	TTAAAATAGT	TATAGCAATG	3120
	ACTGAAGCAG	GTGCAATCAA	CATAATTGGA	TGAGACGAAA	TAAAATCACG	ACCTTGTTGC	3180
	AACATAGCGC	CCCaCTCTGG	TGTTGGCGGT	TGTGCACCTA	ACCCAATAAA	TGATAGTGAA	3240
3 <i>0</i>	CTTATATATA	GAATGATTTT	ACCGAAATCA	ACGACCATCA	AAACGATAAT	AGCCGGTATA	3300
	ATTTTAGGTG	TTAAATGACG	TATTAATATT	GTTCTTGTTG	GTACATGAAA	TAATTGTGCC	3360
	ATTTTTTATAT	AAGGCTTATT	CATTTCGCTA	TTAACTATAC	TTCTAGTCAA	CCTTGTGTAA	3420
35	TTCATCCATT	TTATTAATGT	AATTGAGATA	ACTAAATTCC	ATAAAGATGG	TTGAAAAAA	3480
	CTTGCTAAAG	CAATCATGAT	GATAAATTCT	GGAATACTTA	GACCAACATC	AATAAACCTT	3540
•	AACACTAATC	GTTCAATCCA	CCCTTTTTTG	TATCCGGCAA	ATAGACCTAG	TGTAACACCT	3600
10	ATGACAACGA	TAGCTATTAA	TGTTAAAACA	GTAACAAACA	ATGTTGAACG	TGCACCGATA	3660
	ATAATTCGGG	TAAATAAATC	TCTCCCATAA	TCATCAGTTC	CTAATAAATG	CAACCAACTA	3720
	ATAGGTTCAA	AAGTTTGTGA	TAAATTGACT	TTGGTTGCAT	TTTCACTACT	GACAAAGAAT	3780
15	TGCAGTACAA	TTACCACAAA	AATAAATGCA	ACGAATACAA	AAAATATCAG	GTTATTCTTT	3840
	GAAAATATTT	TATGCATGAC	GGTCACTACT	TTCTGATATC	AATGGTGTAT	TGGTTTTGAT	3900
20	TTTTGGATTT	CCTAATTGTA	AACGCTGCTT	CGGATCAAGT	AATAACGTTA	ATAAATCAGC	3960
50	3 3 TOOT 3 TOO	*******	CC 3 2 2 2 C C C	3 3 m 3 3 3 m 3 3 m	3.CCC3.TCCTTT	033833030	4000

	ATTTTCAATC	ACTACAGTAC	CACCTATTAG	ACTGCCAAGT	GAAATCCCTA	GTAATGGGAT	4140
	AATCGGCAAA	ATTGTTGGTT	TTAGTAAATC	ATGAATTAAA	ATATAACGTT	CATTCATACC	4200
5	GCGTAATCTT	GATGCTTGTA	CGATATTACT	TTGCAATAAC	ATCAATAAAT	TAGAACGCAC	4260
	TAAACGAATG	ATGTATGCAC	ACATACCTAA	AGATAGCGTG	ATTACAGGTA	ATATAAACTG	4320
	ACTTAGTATA	ACGCTATCTA	TATTCATTAA	ATTTGTGACA	ATAAATAATA	AAATAATACC	4380
10	GATAAAGAAC	GCTGGTAAAC	TAATCGATAG	TGTTGAGATC	ACTCTAATCA	CTTTATCCGT	4440
	CCACTTATGA	AATCGTTTGG	CTGCTATAAT	GCCGAGCGGT	ATAGATATGC	ATAACGACAC	4500
15	TACTAATGTT	GAAAATGATA	TGAGTAATGT	TATGGGTGCA	TAGTTGAATA	ATATCTGTGT	4560
15	TACCGGTTCT	TTTGATTCAA	AACTTTTTCC	ТАААТТАААА	TGTAATAAAT	GATTCATCCA	4620
	ATGCCACCAC	TGTACCAATA	AAGAATCATT	TAATCCCAAT	TTATCTTTGG	TTGCATTTAT	4680
20	TTGTTCCGTC	GACACTTGTG	CTACATCAAG	ATGTAATATT	TTATCAACAG	GATTGCCTGG	4740
	TGATAATTTC	ATTAAAATGA	ATGTAAGTGT	AGAAATAACA	AATAAAACAA	CTATCATTTG	4800
	CATCAGTCTA	TACAACATAG	ACTTTATTAT	GAACATAATA	GTCCCCCTCC	TTGTGTAAGT	4860
25 .	TACTAACACT	TTCTTTTTAC	ATGAGAATGG	CGCATGTATA	TGCAACTTAC	ATATTAAGAA	4920
	CTAACGTTCA	TTATAGTATT	ATCCATAAAG	AAATTGAAGT	ATATTTAATT	TTTTAACAAA	4980
	ATCATTATAA	TATATATAT	TTTGAATCAA	GTCAACCATG	AATATAA	AAAAGTCAAA	5040
30	ACAÄAAACAA	CTATAGCACT	GTATTCCATC	TCTTTCGAAA	TAATTGTTAC	TGCAGTGTAA	5100
	CTTAAAAGTC	GATGATTTTG	TGCATATAGT	TGTCGAATAT	TATTTTTTAT	CTTTACGGCG	5160
	AAGTTCAGCG	CCCTCATAGC	CGTATTTTTC	AATTTGCTTT	TCTAATTTAC	GCGCTTTTCT	5220
35	TTCTTTACGC	CAATTTCTAG	TAAAATACCA	TAATAGAAAA	CTAATTAATA	AACTCATAAT	5280
	CGCTAAAAAT	GCAGCGTATC	CTAATAATGG	TTGATATTTT	ATATCTTGAA	AATTTGGAAT	5340
	AAAAAATGCA	AGCACACCTA	ATATAACAAA	TGTAATTACT	GCAGATACAA	ACCATTTATT	5400
40	TAAAACTAAG	CAACAGAATA	TTGTTAATAA	AATCATTATT	AATGTTGTGA	TCCATAAATA	5460
	ATTAGGCATA	TCGAATAATG	TCATATTCAT	TCTCCTTTTA	TTTCATTACT	TTCCTTGTAT	5520
45	ACATTTTATT	ATAAATTTTT	AAAAACTTAA	ACAATAGCAG	TCAGTTTCAA	GCAATATTCT	5580
	ATCTACTAAT	AGAAAAATCA	TTGTTCCTTG	CGACATGGAA	ATCGTAACAT	TATCGTTTAG	5640
	GAGACAAAAT	TATGTATAAT	GAATGTATTA	TACCAAAGGA	GTGATTATAT	GTCTCAAGGT	5700
50 ·	TTACCTTTAA	GAGAAGATGT	TCCTGTTTCA	GAAACATGGG	ATTTAGTAGA	CTTATTTAAA	5760

	GAAAATATTT TAATTGCCTT AGATCGCTTA AGTAATTATG CAGAACTACG TTTAAGTGTA	5940
	GATACTAGTA ATATCGAGGC ACAAGTATTG AGCGCTAAAT TATCTACTAC ATACGGTAAA	6000
5	ATTGTTAAGC CAATTATCCT TT	6022
	(2) INFORMATION FOR SEQ ID NO: 93:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 476 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
	CCATCAATAA TGTATACATG ATTGGCATCA TATTCCCCTT TAATTAGAGA GCTACGTACA	60
20	GTTTGTYTTA TTAAAGTAGA ACTAATAAAT AACCATCTCT TATGTGCACA AACACTTCCC	120
	GCAACAATTG ATTCAGTTTT ACCAACCCGT GGCATACCTC TAATGCCAAT CAACTTATGA	180
	CCTTCTTCTT TGAACAATTC AGCTAAAAAG TCTACTAACA AGCCTAAATC TTCACGCTCA	240
25	AATCGAAAGG TTTTCTTATC TTTTGCATCT TGCTCAATAT ATCTTCCATG TCTTACTGCA	300
	AGACGGTCTC TTAATTCTGG TTTTTTAAGC TTTGTTATTT CAATTTCATT TATACCACGA	360
	GCTATTTGCT CAAAACGTTC AACTTTTTCA AGATTGTCTG TTTTAATTAA AAGGCCTCGT	420
30	TTACCTTGAT CAACACCATT AATTGTAACA ATACTTATAC CTAACATACC TAATAA	476
	(2) INFORMATION FOR SEQ ID NO: 94:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3633 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
	AGAAATACAA CGAAGCATAT AAATATAACC GATCTTTTTT CTAATTGAAT ATTAAGTAAG	60
	TGTATGTACT TTCTGGAAGT AGCACCTAGT rGGATTGTLC CTCCTACAAC AGGCCAAAAA	120
45	TTTTTATTTT TAACTGGCTT AACAGTGTTC AGTTTTTCAT ACTCTTCTCT ACTAATTTTG	180
	GCGCACCTTT TTGGAATGAA CCAATTAATA AATGGAAAAA AGTATACAAG CCAAGTTCTT	240
50	ATTACATCGA CCATTAAATA CTCATCATCA TACTTAATAA CTCTGTATTT CGGATTTTTA	300
	TIGATAATIT CGGTTTCACA AAGCAATAAT TATCACTTCC TATTAATAAC AAATTCACAC	360

	TTATATGACC	TATATATAT	AACATGAATC	TTTTTGTCTA	TTATTGAAGA	CATATTTATA	480
	AAGAAAAATA	GCATTGTCAT	AATAACCCAA	GCAATAAATA	CTATAATATT	TTGGATAGAT	540
5	AAACTAATCA	TTACATCTAA	GAACATGATT	gATAATCCAC	CACAGAAAAA	ATAAGAAAAT	600
	AGTACAAAGC	AAAGATTCTT	GAATGATGGA	AAAATCATAA	TTTTTCCATT	GCTACTCCGA	660
10	TCATTATAGA	TAGATAACTT	TACTTTCTGA	TTTAAATATA	TATAAAACAC	TAGAATACTT	720
	AAAATAATAA	CCGAACAAAT	GATAATAACG	CAATTTTTT	CTAAATGAGA	ATCAGGTATA	- 780
	TATATTTTAT	CTCTAAACAT	AGTGCCAAAT	AAAAGTATGC	TACCTATAGC	TGGCCATAAA	840
15	GCTTTaTTTT	TAACTGGTTT	GACAATATTT	AAATTATCAA	AATCTTCTCT	GCTGATTTGG	900
	ACATATTTTT	TTGGTATTAA	CCAATTAATA	AACGGAAAGA	ACAAAACTAA	CCAGGTGCTT	960
	ACTAAATCAA	TCATCAGATA	GTCGTTTTTA	TATTTAATAA	TTCTATATCT	GGGATTTTTG	1020
20	TTTACAACTC	TAACCTCGCA	AAGCAATATC	TCCACTTCCG	TCTCGTTGGT	TTTATATCTA	1080
	ATACACTTTC	AGATACTTTA	TAAGTGTTTT	GTATITTAGT	AACATACTAT	TTTCCTGTTT	1140
?5	ATTACTTAAC	TTACGAACTA	CAATCTAAGT	TTAGTAATTT	CTATTGCTTT	TTAAGTTTGG	1200
	CATAAACCTT	TTTATTACTA	ATTGAGCCCA	TGCTTATTAG	AAAGAAAAA	ATTGTAATAA	1260
	TAATCCACAT	AATAAATACC	AGTAGATTTT	GAGGTTTTAT	AGTCATTAGC	CATATTAAAA	1320
30	ATAATATAGA	ACAACCTCCT	AATAATAGAT	ATGTGAAAAC	TATAAAACTT	CCATCTTTAA	1380
	AAGTAGGCAC	TAATATAACC	CTATTTTCAT	TATCTAGATT	ATCATCATAT	ATCTTTAGTT	1440
	TAAGCTTTTT	ATTTAAGTAA	ATGTAAAATG	CTGCAATACC	TATAAATCCT	ATAAAACATA	1500
35	AAGATATTAA	AATCTTATTA	TCTAATTGAA	CTTCAAACGT	ATGTACATAT	TTCCGTAAAA	1560
	TAACTACAAA	TAAAAACGAA	CTACCAGTAA	CTGGCCAGAA	AATATTATTT	TTATTTTGTT	1620
	TATCÁACATT	TAAATTTTCA	AGTTCCTTCT	CACTAAGTTT	TGCATACCTT	TTGGGAATGA	1680
10	ACCAATTAAT	AAAAGGAAAA	AAGTATACAA	GCCAAGTGCT	TACTAAATCA	ATTAACAAAT	1740
	ACTCATCATT	ATATTGAACG	ACTTTATATC	TCGGATTTTT	ATTAATAACC	TTAATATTAA	1800
15	AAAGCAAAAC	TCACCACGCC	CATTTCATTG	GATTTATATG	ATTGCTAATA	ATATTTTTAG	1860
	CTTCACTAAC	AGCATTCCCA	ACACTATCCA	TGGATTTTTC	TGTAGTTTTT	TTAACAACAT	1920
	CTATACTATT	ATCGATTTTA	TGCCCTACCC	AGTCTACTTT	ATCTTTTAAT	CCAAAAATAT	1980
50	TATTTTGATA	AATTAAATCT	GTTCCTAATG	CAAATACTGT	ACTCATAGCC	AAACCTGCTA	2040
	AAATCACCCA	TCCTACTGGA	TTACTTCCTA	AAACAAAAGT	CGCTAATCCA	GCTCCAACTG	2100
	CTGTCCCTGC	AGATCCAGCT	GCAAGCGTgC	ATACCATTAT	GCGACAACGC	CTCTCCAAAT	2160

	CCTTTACCTA	GGTATTTTCC	GCCTTTTGCA	AATTTACTAC	CATTTTCTAT	AAACACATTA	2280
	CCTGATGTAC	GTTTGACTTC	CACAAATGAA	TTTGGACCTG	CTGGGCCTTT	CACTCCACCT	2340
5	GCTGTATTGa	TAAATACACC	GAATTTACTT	GCATTTATAC	CGTCTTGCTC	TAAAAGTGTT	2400
	GACGTAATAT	CTAATCCTAT	ATCTCTTTTA	ATACTGTCTT	TATTGTCATT	TATATATTTC	2460
10	AATATACTTT	TCGGGATATC	GTCTTCTGGA	TGTTCTTTGG	CATATGCCTT	TATAACAGCA	2520
	AAGTCTGCTT	TATTTAAAGT	TTCTTTCTCT	GCTTTATGTT	CAATTTTCCC	CATAGCAACT	2580
	TTCAAATATT	TTTCATGACT	TGCTTTGGCC	CAATCAAGTT	CTTTACCTGA	AGGAATATTA	2640
15	AATTGATTTG	TTGAAAAGTT	CCAAAAATTC	TGCGCTTGGG	TAAGTCCTTG	TTGGACAATT	2700
	TTTTGAAATT	CTTCAACTTC	TTTAAATATT	TCTGGTGATT	TTTGATTAAA	CTCACGCAAT	2760
	TTGCGTAGCT	TCTCTTCTAA	TTCATGTTTT	TGTTGACCTA	ATGTTCGTAT	TATTTGTTGG	2820
20	TTCGATGAAA	TGGCTTGCTG	ATTATCGGAA	GCATGCTTTT	TCAAATTGTT	ATTCAAATTT	2880
	TCATATCGCG	TAATTTGTTG	ACTTAATGAT	CTGATATCTT	CTTCAAGCTC	TGATTCTTTT	2940
05	AAAGATATGC	TATCAACCTC	ACTCGTATAA	CGTGACACAA	AATTaTCGCA	AGCTTGCTTC	3000
25	GTTAAATCAC	TCAATGTTTT	CATACTTGTT	GATAATGGAA	TTAACACCGT	ACTAAAAAAT	3060
	TGCTTAGCTG	ACGTATACGC	TTTCCCTTTA	AGCGCATCAT	CATTAATAAA	TTGAGTAATT	3120
30	GCTTTTTCCA	ACGCATCATA	ATTTGAATTC	ATTGTTTGAC	TCAAATTCCC	CACACTTGAA	3180
	GCTTGGTTTC	GAGATCTGTC	TAAATACATG	TCAATACTCA	TCGGCATGCT	CCTTTTTCAA	3240
	AAATATATGA	TTTTCAAACT	ATTTAAAATC	AAATGCTTTT	TACATCTACA	AAGTTGTAAA	3300
35	ATTTTAAAAC	TCGGCGATGA	TTATTTCTTA	TGTAAAGGAG	TCTAGATGCA	GGTAAATTGA	3360
	GATAACATGT	CGCCTTTTTT	CTTATTTTAG	CATATGGATA	TAATGGTGTC	TTTGTATATT	3420
	CGCAATTAAT	CAATAAAAAT	TATCTTTCAA	TATTTTAATT	TTATTGCGAC	AACATCCTTA	3480
40	ACATTAAATA	TATTAATATC	TCAAAATATA	TTCACTATTA	AAATATGTCA	TCAGTTGTTA	3540
	AAAGTATTTC	CTCATCATGC	GAAATATCAA	AACGTATCTA	AAATACGAAT	AAGTTTATAC	3600
45	AATCACACAA	CATCATCATT	CAAAATTTTA	TTG			3633

(2) INFORMATION FOR SEQ ID NO: 95:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2365 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

	TGATACGAAL	GCATTACAAT	TCATATGCAA	CATACAATTC	CTTCTACAGC	AAATGAAGTG	6
	AAACAAATAG	TTGATGTGAC	ATCTGTAGCA	GAAAATGATA	CGCATTAGTC	ATAAAATTAA	12
5	ATGGAAATGT	CGATGAAGTG	TATCAGCAAT	TACAGCGATT	AATTAAGAAT	GCTAATGTCG	18
	AAGAGAGTGA	GAATACTGAC	AATATTAATA	GTCAAGATAC	AAGTTATACA	CCTCAAGTAA	24
	AAGTAACAAC	ACCAATITTA	GTGAAAGCAC	CAATCGCTGG	TCGTCGTATT	TTACTTAAAG	30
10	AAGTAAGAGA	TTCAATTTTT	AGAGAGAAAA	TGGTAGGTGA	AGGCTTAGCA	ATCAAAGCTC	36
	ATGAAGAATC	CAAAGTAATC	GCACCGTTCA	ATGGTTTAAT	ATCTATGATT	GTACCAACTA	42
15	AGCATGCAGT	TGGTATTCAA	TCAGAAGACG	GTGTGGACAT	AGTCATTCAT	ATTGGCGTGA	48
	ATACAGTTGA	CTTGGAAGGT	AAAGGGTTCA	AGTGCTTTGT	AAAGCAAAAT	GATCATGTTG	54
	AAGCAGGGCA	AACGTTGTTG	CAATTCGACC	AGCAATATAT	ACAACAACAA	GGCTACAATG	60
20	CTGACGTTAT	TGTCGTTATT	AGCAACTCTG	CCGATTTAGG	AAAAGTAGAA	CTGACAATGA	660
	ATGAAATCAT	TACGACTGAA	GATGTTATTT	TTAAAATATT	TAAAAACTAG	GAGTGTGTTG	72
	TAATAATGAC	AAAATTACCG	CAAAATTTCA	TGTGGGGTGG	CGCTCTTGCC	GCAAATCAAT	780
25	TTGAAGGTGG	ATATGATAAA	GGTGGTAAAG	GGTTAAGTGT	AATTGATGTT	ATGACGAGTG	840
	GTGCACATGG	CAAAGCACGT	CAGATTACAG	AATCTATAGA	TCCCAATCAC	TATTATCCAA	900
30	ATCATGAAGG	TATTGATTTT	TATCATCGTT	ATAAGGAAGA	TATTGCCTTG	TTTAAAGAAA	960
<i>.</i>	TGGGATTGAA	ATGTTTACGT	ACGTCGATTG	CGTGGACACG	TATCTTTCCG	AATGGGGATG	1020
	AAGATGTGCC	AAATGAAGAA	GGACTCGCCT	TTTATGATCG	TATCTTTGAT	GAATTAATTG	1080
35	CACAAGGTAT	TGAACCTGTT	GTGACGTTAT	CACATTTTGA	GATGCCACTT	CATTTAGCGA	1140
	AACATTATGG	TGGATTTAGA	AATAGAGAAG	TTGTCGATTA	TTTTGTGCAT	TTTGCGCGTG	1200
	TTGTATTTGA	AAGATATAAA	GATAAAGTTA	CATATTGGAT	GACGTTTAAT	GAAATTAATA	1260
40	ATCAGATGGA	CACATCAAAT	CCTATCTTTT	TATGGACGAA	TTCTGGGGTA	GCATTGACAG	1320
	AAAATGATAA	TCCTGAAGAA	GTCYTGTATC	AAGTAGCACA	TCATGAACTT	TTAGCCAGTG	1380
	CYTTAGCAGT	TCGTCTTGGT	AAAGaGATtA	ATCCgAaGTT	TAAGATTGGr	ACMATGATTL	1440
15	CAmaTGTACC	CmTTTATCCa	TAWTCGTGTC	ATCCGAAAGA	TATGATGGAA	GCACAAATTG	1500
	CGAATCGCTT	ACGTTTCTTT	TTCCCGGATG	TCCAAGTGAG	AGGTTATTAT	CCAAGCTATG	1560
50	СТААААААТ	GTTGGCACGA	AAAGGATATG	ATGTTGGATG	GCAAGAAGGG	GACGACAGTA	1620
	TTTTACAGCA	GGGCACGGTT	GATTATATTG	GCTTTAGTTA	TTACATGTCT	ACGGCTGTAA	1680
	AACATCATCT	TO A TEA COTA CA	COTCABBA	N C N T C C T C N N	acama ammona	A A TOO A TOTAL CONC.	1740

C	SATATACATT	GAATGTGTTA	TATGATCGTT	ATCAGTTACC	ACTTTTTATT	GTGGAAAATG	186
C	TTTTGGTGC	AGTTGATGAA	GTGGTAGATG	GACATATTCa	TGATGATTAT	CGCATTGAAT	1920
P	ATTTAAAAGC	ACATATTACA	GCAGCGATAG	AAGCAGTTGA	TCAAGATGGT	GTAGATTTAA	1980
1	CGGTTATAC	ACCGTGGGGA	ATCATTGATA	TTGTTTCATT	TACAACCGGT	GAAATGAAGA	204
		,				ATGGAACGCT	2100
					ATCAAATGGA		2160
						ATAGTAGGAC	2220
					•	TTCtAcAGGT	2280
				AATTCGAAAA	GAAATTCTAC	AGGTAATGCA	2340
A	GTTGGGGAA	GGACAGAAAT	AAATT				2365

(2) INFORMATION FOR SEQ ID NO: 96:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11050 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

60	AATTTAGAGC	TATCATTACC	ACAAAAAGT	AGTGGGGAAA	ATTTGTTGAA	CTGCGATACG
120	CACTTTATCA	TCACATGTAG	GTACACACAT	GGTAATAAAG	AGCTTTGATT	AGGCATACGA
180	TCTGCTGACA	GAAAAAGTTG	TGATTCAAAT	GTTTCTCCGT	CATTAAATAT	CGCGACAAAA
240	GTAGAAATAA	TTTATTTTGG	GACAGAAAAC	TTTAACTTAT	TTTGAAGGAG	CTTTGCAAGG
300	ATAGTATATT	AATATACCAT	AGATTACATT	AGGCATTAGC	CATGAACTAA	TAAATTAGAA
360	TTATTTATTT	AAAGGCCAAG	ACATTATACG	GTTTTGTCAG	CAAAGTGAAT	ACAACCATAT
420	TTAGAGAACA	GGTAACATTA	TTTAATTGAA	ATATTTACTT	GAAAGTAGCA	TTCGCCACAA
480	TATTTCCAAT	GAGCAAGTAT	TTTTAATAAA	TATATCGTTA	AATGGAGATG	TTACAATCAA
540	CCGATTGTAC	ACAGCATTAA	CGAATTGTGT	AAGAGGTTAA	TTTCATCCGA	CAGTAACTTA
600	ATGATATATT	AAAGCTAATG	CTTTTTGTGC	AATTGATGGC	TTGCCTAGAG	AGTTCTTGGA
660	ATAACATGGC	CACATGAACT	TGAGCAGCAA	TAAATGATAA	TTTGCATTAA	TTTGACACTT
720	TATGTCAGAC	ATATGCCATC	TATCAAATTG	AAGATCGAAT	AAATTTGCTA	ATTAACAAGT
780	TTCAACtCAT	TTTTTTAACTA	AATCAAACAG	AATTTTATGA	GATCAAGATG	AGTAGGATAC

50 .

15

20

25

	TGAAAAACTT	GTTGTTAAAG	ATCATAAAAA	TTGGTTAGTA	AGCAAACATT	TATTCAATGA	900
	TGTATGTGTT	TAATATACAA	TGTAAAATGA	ATAAGTTGAA	CATGAGGTCT	AACGTACATT	960
5	TATACGTTAG	GCCTTTTTTG	CTAGCATGAT	GAATAATTTA	AAATGTTAGT	TAAATTTGAT	1020
	TGTTGAAATT	ACAGTAAAAT	TTAAGGTGAT	GAAAAATTTA	GAACTTCTAA	GTTTTTGAAA	1080
	AGTAAAAAAT	TTGTAATAGT	GTAAAAATAG	TATATTGATT	TTTGCTAGTT	AACAGAaAAT	1140
10	TTTAAGTTAT	ATAAATAGGA	AGAAAACAAA	TTTTACGTAA	TTTTTTCGA	AAAGCAATTG	1200
	ATATAATTCT	TATTTCATTA	TACAATTTAG	ACTAATCTAG	AAATTGAAAT	GGAGTAATAT	1260
15	TTTTGAAAAA	AAGAATTGAT	TATTTGTCGA	ATAAGCAGAA	TAAGTATTCG	ATTAGACGTT	1320
	TTACAGTAGG	TACCACATCA	GTAATAGTAG	GGGCAACTAT	ACTATTTGGG	ATAGGCAATC	1380
	ATCAAGCACA	AGCTTCAGAA	CAATCGAACG	ATACAACGCA	ATCTTCGAAA	AATAATGCAA	1440
20	GTGCAGATTC	CGAAAAAAAC	AATATGATAG	AAACACCTCA	ATTAAATACA	ACGGCTAATG	1500
	ATACATCTGA	TATTAGTGCA	AACACAAACA	GTGCGAATGT	AGATAGCACA	ACAAAACCAA	1560
	TGTCTACACA	AACGAGCAAT	ACCACTACAA	CAGAGCCAGC	TTCAACAAAT	GAAACACCTC	1620
25	AACCGACGGC	AATTAAAAAT	CAAGCAACTG	CTGCAAAAAT	GCAAGATCAA	ACTGTTCCTC	1680
	AAGAAGCAAA	TTCTCAAGTA	GATAATAAAA	CAACGAATGA	TGCTAATAGC	ATAGCAACAA	1740
20	ACAGTGAGCT	TAAAAATTCT	CAAACATTAG	ATTTACCACA	ATCATCACCA	CAAACGATTT	1800
30	CCAATGCGCA	AGGAACTAGT	AAACCAAGTG	TTAGAACGAG	AGCTGTACGT	AGTTTAGCTG	1860
	TTGCTGAACC	GGTAGTAAAT	GCTGCTGATG	CTAAAGGTAC	AAATGTAAAT	GATAAAGTTA	1920
35	CGGCAAGTAA	TTTCAAGTTA	GAAAAGACTA	CATTTGACCC	TAATCAAAGT	GGTAACACAT	1980
	TTATGGCGGC	AAATTTTACA	GTGACAGATA	AAGTGAAATC	AGGGGATTAT	TTTACAGCGA	2040
	aGTTACCAGA	TAGTTTAACT	GGTAATGGAG	ACGTGGATTA	TTCTAATTCA	AATAATACGA	2100
40	TGCCAATTGC	AGACATTAAA	AGTACGAATG	GCGATGTTGT	AGCTAAAGCA	ACATATGATA	2160
	TCTTGACTAA	GACGTATACA	TTTGTCTTTA	CAGATTATGT	AAATAATAAA	GAAAATATTA	2220
	ACGGACAATT	TTCATTACCT	TTATTTACAG	ACCGAGCAAA	GGCACCTAAA	TCAGGAACAT	2280
45	ATGATGCGAA	TTATTAATTAT	GCGGATGAAA	TGTTTAATAA	TAAAATTACT	TATAACTATA	2340
	GTTCGCCAAT	TGCAGGAATT	GATAAACCAA	ATGGCGCGAA	CATTTCTTCT	CAAATTATTG	2400
50	GTGTAGATAC	AGCTTCAGGT	CAAAACACAT	ACAAGCAAAC	AGTATTTGTT	AACCCTAAGC	2460
	AACGAGTTTT	AGGTAATACG	TGGGTGTATA	TTAAAGGCTA	CCAAGATAAA	ATCGAAGAAA	2520
	GTAGCGGTAA	AGTAAGTGCT	ACAGATACAA	AACTGAGAAT	TTTTGAAGTG	AATGATACAT	2580

	ACCAATTTAA	AAATAGAATC	TATTATGAGC	ATCCAAATGT	AGCTAGTATT	AAATTTGGTG	. 270
	ATATTACTAA	AACATATGTA	GTATTAGTAG	AAGGGCATTA	CGACAATACA	GGTAAGAACT	276
5	TAAAAACTCA	GGTTATTCAA	GAAAATGTTG	ATCCTGTAAC	AAATAGAGAC	TACAGTATTT	282
	TCGGTTGGAA	TAATGAGAAT	GTTGTACGTT	ATGGTGGTGG	AAGTGCTGAT	GGTGATTCAG	288
	CAGTAAATCC	GAAAGACCCA	ACTCCAGGGC	CGCCGGTTGA	CCCAGAACCA	AGTCCAGACC	294
10	CAGAACCAGA	ACCAACGCCA	GATCCAGAAC	CAAGTCCAGA	CCCAGAACCG	GAACCAAGCC	300
	CAGACCCGGA	TCCGGATTCG	GATTCAGACA	GTGACTCAGG	CTCAGACAGC	GACTCAGGTT	306
15	CAGATAGCGA	CTCAGAATCA	GATAGCGATT	CGGATTCAGA	CAGTGATTCA	GATTCAGACA	312
	GCGACTCAGA	ATCAGATAGC	GACTCAGAAT	CAGATAGTGA	GTCAGATTCA	GACAGTGACT	318
	CGGACTCAGA	CAGTGATTCA	GACTCAGATA	GCGATTCAGA	CTCAGATAGC	GATTCAGACT	3,24
20	CAGACAGCGA	TTCAGATTCA	GACAGCGACT	CAGATTCAGA	CAGCGACTCA	GACTCAGATA	330
	GCGACTCAGA	CTCAGACAGC	GACTCAGATT	CAGATAGCGA	TTCAGACTCA	GACAGCGACT	336
	CAGACTCAGA	CAGCGACTCA	GACTCAGATA	GCGACTCAGA	TTCAGATAGC	GATTCAGACT	342
25	CAGACAGCGA	CTCAGATTCA	GATAGCGATT	CGGACTCAGA	CAGCGATTCA	GATTCAGACA	348
	GCGACTCAGA	CTCGGATAGC	GATTCAGATT	CAGATAGCGA	TTCGGATTCA	GACAGTGATT	354
00	CAGATTCAGA	CAGCGACTCA	GACTCGGATA	GCGACTCAGA	CTCAGACAGC	GATTCAGACT	360
30	CAGATAGCGA	CTCAGACTCG	GATAGCGACT	CGGATTCAGA	TAGCGACTCA	GACTCAGATA	366
	GTGACTCCGA	TTCAAGAGTT	ACACCACCAA	ATAATGAACA	GAAAGCACCA	TCAAATCCTA	372
35	AAGGTGAAGT	AAACCATTCT	AATAAGGTAT	CAAAACAACA	CAAAACTGAT	GCTTTACCAG	378
	AAACAGGAGA	TAAGAGCGAA	AACACAAATG	CAACTTTATT	TGGTGCAATG	ATGGCATTAT	384
	TAGGATCATT	ACTATTGTTT	AGAAAACGCA	AGCAAGATCA	TAAAGAAAAA	GCGTAAATAC	390
40	TTTTTTAGGC	CGAATACATT	TGTATTCGGT	TTTTTTGTTG	AAAATGATTT	TAAAGTGAAT	396
	TGATTAAGCG	TAAAATGTTG	ATAAAGTAGA	ATTAGAAAGG	GGTCATGACG	TATGGCTTAT	4020
	ATTTCATTAA	ACTATCATTC	ACCAACAATT	GGTATGCATC	AAAATTTGAC	AGTCATTTTA	4080
45	CCGGAAGATC	AAAGCTTCTT	TAATAGCGAT	ACAACTGTTA	AACCATTAAA	AACTTTAATG	4140
	TTGTTACATG	GATTATCAAG	TGATGAAACG	ACATATATGA	GATATACAAG	CATAGAAAGG	4200
50	TATGCGAATG	AACACAAATT	AGCTGTGATT	ATGCCCAATG	TGGATCATAG	CGCATATGCT	4260
50	AACATGGCAT	ATGGTCATAG	CTATTATGAT	TATATTTTGG	AAGTGTATGA	TTATGTTCAT	4320
	רא א א די א ייידיירי	CACTOTOCCAA	3 3 3 C C C C C S M	CB CB a moreon	m> 00> 00mo>	CTCTN TOOCS	420

	TTATCTGCTG	TGTTTGAAGC	GCAAAATTTA	ATGGATCTA	G AGTGGAATGA	TTTTTCAAAA	4500
	GAGGCCATAA	TTGGCAATCT	TTCAAGTGTT	AAAGGAACTO	AACATGATCO	GTATTACTTG	4560
5	CTAGACAAAG	CTGTAGCTGA	AGATAAACAA	ATTCCAAAA1	TGCTCATTAT	GTGTGGTAAA	4620
	CAAGACTTTT	TATATCAAGA	CAACTTAGAT	TTTATCGATT	ATTTATCACG	CATAAATGTT	4680
	CCTTATCAAT	TTGAAGATGG	ACCAGGAGAT	CATGATTATO	CATATTGGGA	TCAAGCGATT	4740
10	AAGCGTGCTA	TAACATGGAT	GGTGAATGAT	TAATTATTTC	TTGGAAAATA	TGTGGCTGCA	4800
	TTAAATACAC	AGAGTGAGAG	ATACAAACTA	TTTACGCACG	ACTAACATTT	CTAAGTGTTT	4860
15	AAATTATTTT	TGTATTAATA	TGATTGGCGC	AATTTGCTGA	TACACAAAAA	TGTTTCTCGT	4920
	GAAACTTAGA	TTTAGCTTAT	AGTTTTATCA	TCATTTGTAT	GACTTACATT	ATTAAATT	4980
	TTATAATGAG	GTTAACGCTT	TGAAAGGAGT	CATCATCATG	TCGACCAATA	AAAACGATTA	5040
20	TGAGCATATG	TTGTTTTATT	TTGCATATAA	AACCTTTATT	ACTACCGCTG	ATGAAATTAT	5100
	AGAGAAGTAT	GGTATGAGTC	GTCAGCATCA	TCGTTTTTTG	TTTTTTATCA	ATAAATTACC	5160
	TGGTATTACT	ATTAAATCAT	TACTAGAAAT	ATTAGAAATT	TCTAAmCAAG	GATCACATGC	5220
25	AACACTTCAA	AAATTAAAAG	AGCAAGGTCT	CATTATTGAA	AAAGTTTTAG	AGACTGATCG	5280
	ACGTGTCAAA	AAATTATATT	CGACGGATAA	AGGCGATCAA	CTCATTGCTĢ	AATTGAACAA	5340
20	GGCGCAAGAT	GAATTATTGC	AAAATATATA	TCAACAAGTC	GGTTCGGATT	GGTATGATGT	5400
30	GATGGAAGCA	TTGGCTAAAG	GgCGACCTGG	CTTTGATTTT	ATTAAGCATT	TGAAAGATGA	5460
	AAAAGAAAGC	TAGCATCAGA	AATGTTAAAA	ATCTTCGCAT	TCTTAAATTT	AAAAAATATG	5520
35	TCAAAAAGTG	TATAATAAAA	ACATATAATT	TAATTGAACT	CAGTTTCAAC	ACATCTTAGA	5580
	AAGGAGTTTG	AATGATGAAA	AAATTAGCAG	TTATTTTAAC	ATTAGTTGGC	GGTTTATACT	5640
	TCGCATTTAA	AAAATACCAA	GAACGTGTTA	ACCAAGCACC	TAACATTGAG	TACTAAATTA	5700
10	AACCATAAAA	AATTCCCGAA	CACCTTGTTA	TAGTGCTCGG	GAATTTTTT	ATGCTTTACT	5760
	TGAATATATC	TTATTATAAA	TTTGCGCTTT	CTGTATTTTC	GATATTACCA	CTAAATGATT	5820
	CTGATCTAGG	TCCGTAAGCG	TAGGTATTAA	CATCCTCGCC	TGTATGTCCA	TCGGAAGTCC	5880
15	ACCCTGTATA	AGATTTATCA	TTTACTGGCT	TCTGAATAGC	GTGTTGTAGG	GCTTTTGTTT	5940
·	GCGTTTCTAC	TTCTGCGGAT	TTTTCGTCTT	TTTCTTTTTT	AAGTAGTCTT	TTTAGCTTTT	6000
50	TATTCTCTTT	TTTAACCTTT	TTCATATCAT	CTTGTGAAAA	TTCAAATCCA	TAACCTTCAT	6060
	TAATAACTTT	TTCAGGGTCT	TCACCTTTAG ·	CCATTTTTTC	TGTCATATAT	GATCCAGAGT	6120
	GTTTCATAGA	TTTAATCGGT	TGAGGATTCC .	ATTCGTATCC	TTTATCTTTA	CCAATTGTTA	6180

	ATTGAATGGC	GTCATCGAAT	GCTTTTTCAA	AACCTTCCAT	TTCAGACATA	ACGCCTGTAA	6300
	TATCGTTGGA	ATGCGCTGAT	TTATCTATAG	AAGCACCTTC	GACCATTAAA	AAGAATCCTT	6360
5	TTTTATTGCG	CTCAAGCTTA	CTAAGTGCAC	TTTGTTGCAT	ATCAGCTAAT	GATGGTTCGT	6420
	CTTTAGAAGC	ATCTATTGCA	AGTGGCATAT	TTTTATCTGC	AAACAAACCA	AGAACTTTAT	6480
	CTTTATCAGA	TTTTGATAAC	TCCTTACTGT	TCGTGGCAAG	GTCGTAACCA	TCTTTTTTGA	6540
10	ATTTTTTATC	TAAATTGCCA	TTACTTTTAC	CGAAATATTT	AGCGCCGCCG	ССТААТАААА	6600
	CATCAACTTT	ATGCTTTCCG	TTGATTTTAT	СТТТАТАААА	TTGTTTAGCG	ATTTCGTTTT	6660
15	TATCATCTCT	AGAAGTCACG	TGTGCAGCAT	ATGCTGCTGG	TGTTGCATCT	GTTAATTCAG	6720
	CTGTTGAAAC	AAGACCAGTC	GACTTACCTT	TTTCTTTTGC	ACGTTCAAGC	ACCGTCTTTA	6780
	CTTTCTGCTT	GTTACTGTCA	ACACCGATGG	CACCATTATA	TGTCTTATGA	CCAGAACTAA	6840
20	AGGCTGTTCC	GCCAGCTGCA	GAATCAGTAA	TATTCTGTTT	TGGGTCATTT	GAATATGTAC	6900
	GATTTGTGCC	TATAAATAT	GAATCAAAAG	CAGTAGGGGT	CATTTCTTTA	GCATGCGGAT	6960
	CATTTTTATA	ATAACGATAA	GCTGTGTTAA	ATGATGGACC	CATGCCATCG	CCAACTAAAA	7020
25	AGATAACATT	TTTTGGATTT	TTAGTATTAC	CAACCGCGAA	ACTTTCATCT	TTAGAACTTT	7080
	TATCGGATTG	CGCAATTGCA	GGTGTGACAG	AACTAAAAAC	CGTTGACACG	ATAATAAGGT	7140
30	TAGCAACTGC	AAATTTTGTG	GCTTTTTTAA	CTGATAACAT	AAGACATCCT	CCTGAGTATA	7200
50	TGACTATGTC	TTCAGTGTAA	AAGAGGAATT	TtGAGCAATT	ATGTAGTTTT	AGTTANAAAT	7260
	ATGTAAACAG	AGTGATTTAG	AATAACAAAA	aATGAATATA	TATGACAATT	TGTTATAGAA	7320
35	AGCGTTAGAA	TAGAAGCGTG	TGAAAATATA	GAATTAAATA	TAATTTGAGG	TGGAAAAATG	7380
	ATACTAGTAA	TGTTATCTCC	ATTATTAATC	ATATTCTTTA	TAGTGTTGTC	TATTTTAGAA	7440
	GAGCGTAAAC	GTACGAAGAA	AAAGCAACTC	GAGAAAGAAA	AAGCAAATAC	ACTAAATCAA	7500
40	AATACAAATG	ACACGGAAAG	TTCAAATCAA	GAGCCGTCAT	TGCAGCAGGA	TAAAGAACAA	7560
	AAAGATAACA	AAGGATAATT	CAATTGAAGG	AAGAAGATTA	TAGATGAAAA	TATTAATTGT	7620
	TGAAGATGAT	TTTGTTATAG	CAGAGAGTTT	AGCATCTGAA	CTTAAAAAAT	GGAATTACGG	7680
45	TGTTATTGTC	GTTGAACAAT	TTGATGATAT	ACTGTCTATC	TTTAACCAAA	ATCAACCTCA	7740
	GCTTGTATTG	CTAGATATTA	ATTTGCCAAC	GTTAAATGGT	TTTCATTGGT	GTCAAGAAAT	7800
50	CCGAAAAACA	TCTAATGTGC	CAATTATATT	TATTAGTTCC	CGTATTGATA	ATATGGACCA	7860
	AATTATGGCA	ATACAAATGG	GGGGAGATGA	TTTTATCGAA	AAGCCATTTA	ACTTGTCATT	7920
	AACGATTGCC .	AAAATTCAAG	CATTATTGAG	ACGAACTTAT	GACTTGTCAG	ТАССТА АТСА	7980

. 55

	ACAAAACATA	CAGCTATCTT	TGACTGAATT	ACAAATATTA	AAGTTATTAT	TTCAAAATGA	810
	AGaTAAATAT	GTAAGTAGrA	CTGCTTTAAT	TGaAAAATGT	TGGGaATCAG	AAAACtTCAT	816
5	AGATGATAAC	ACATTAGCTG	TTAACATGAC	GCGCCTGCTG	AATTAAAAAA	ATACTATTGG	822
	CGTTAATGAT	TTTATCATTA	CAAAGAAAAA	TGTCGGATAT	AAAGTATAGG	GTGAATGCAA	828
	TGACCTTTCT	TAAAAGTATT	ACTCAGGAAA	TAGCAATAGT	CATAGTTATT	TTTGCTTTGT	834
10	TTGGCTTAAT	GTTTTACCTG	TATCATTTGC	CATTAGAAGC	ATATTTACTA	GCACTTGGCG	840
	TTATTTTATT	ATTATTACTC	ATATTCATAG	GTATTAAATA	TTTAAGTTTT	GTAAAAACTA	846
15	TAAGCCAACA	ACAACAAATT	GAAAACTTAG	AAAATGCGTT	GTATCAGCTT	AAAAATGAAC	852
	AAATTGAATA	TAAAAATGAT	GTAGAGAGCT	ACTTTTTAAC	ATGGGTACAT	CAAATGAAAA	858
	CACCCATTAC	TGCAGCACAA	CTGTTACTTG	AAAGAGATGA	GCCTAATGTT	GTTAATCGTG	864
20	TTCGTCAAGA	GGTTATTCAA	ATTGaTAACT	ATACAAGTTT	AGCACTTAGT	TATTTAAAGT	870
ě.	TATTAAATGA	AACTTCTGaT	ATTTCTGTCA	CTAAAATTTC	GATTAATAAT	ATCATTCGCC	876
	CAATTATTAT	GAAATATTCA	ATACAGTTTA	TTGATCAAAA	AACAAAAATC	CATTATGAAC	882
25	CTTGTCATCA	CGAAGTATTA	ACTGACGTTA	GATGGACCTC	TTTAATGATA	GAACAATTAA	888
	TAAATAATGC	ACTTAAGTAT	GCGAGAGGTA	AAGATATATG	GATTGAATTT	GATGAGCAAT	894
30 ·	CCAATCAATT	ACACGTAAAA	GATAATGGTA	TCGGTATTAG	TGAAGCGrAC	TTGCCTAAAA	900
30 .	TATTTGATAA	GGGCTATTCA	GGTTATAATG	GCCAGCGCCA	AAGTAACTCA	AGTGGGaTTG	906
	GTTTATTTAT	CGTAAAACAA	ATTTCAACAC	ACACAAACCA	TCCTGTTTCA	GTCGTATCTA	912
35	AACAAAATGA	GGGTACAACA	TTTACGATTC	AATTTCCAGA	TGAATAAAAA	CTTTCAATAT	918
	TGTAAGTATA	CTAGTAACAT	TTTTTTACTA	ATTTAAATGT	TATTAGTATT	TTTTTGTTTT	924
	AATATAGAAC	TAACAAAGAA	ATGAGGTGCA	TGCCATGTTG	CTAGAAGTGn	AACATGTAAA	930
40	AAAGGTTTAT	GGTAAAGGTT	TGAATGCTAC	GACAGCACTT	AATCAAATGA	ATTTATCAGT	936
	TGGAGCTGGT	GaATTTGTTG	Caattatggg	TGAGTCTGGG	tCAGGGAAGT	CTACACTACT	942
	AAATTTAATT	GCtTCTTTTG	ATGGACTAAC	TGAAGGTGAC	ATTATTGTGG	ATGGCGCACA	948
45	TTTAAATAAT	ATGAAAAATA	AAAGTAAAGC	ATTGTATCGT	Caacaaatgg	TAGGTTTTGT	954
	TTTTCAAGAT	TTTAATCTTT	TACCAACAAT	GACGAATAAA	GAAAATATAA	TGATGCCATT	960
50	AATTTTAGCT	GGTGCTAAAC	GAAAAGATAT	AGAACAAAGG	GTACATCAGT	TGGCAGTACA	966
	ATTACATTTA	GAGGGATTCT	TAAACAAGTA	TCCTTCTGAA	ATCTCTGGGG	GTCAGAAGCA	972
	1 CC C1 PPC CC	3 mmo 03 00m0	C3.0003.00003.0			555175115	

	TCAATTGGAA	CAGACAATTT	TAATGGTAAC	TCATTCAAAT	ATCGATGCGT	CTTATGCAGA	990
	GCGAGTCATT	TTTATTAAAG	ATGGGCGTCT	ATATCATGAA	ATATATCGTG	GTGAAGAAAG	996
5'	TCAATTAGCT	TTTCAACAAC	GAATAACAGA	TAGCTTAGCA	CTTGTGAATG	GAGGAAGTGT	1002
	CAATATATGA	AGTTAAGATT	GTTATGNACA	TAGTGCGACG	TCAATTTATT	ACGCAGCGAC	1008
	TTGTAATCAT	TCCATTCATT	TTAGCGGTAA	GTGTACTATT	CATGATTGAA	TATACGCTTG	1014
0	TGTCAATTGG	GTTAAATAGC	TACATAAAAC	AGAAGAATGA	CTTCCTAGTA	CCATTTATTA	1020
	TCATAGCTAA	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	GCGCTTTTAA	CTTTTATTTT	TATTTTCTAT	GCAAATCACT	1026
5	TTATGATGTC	ACAAAGACGA	AAAGAGTTTA	GCATTTTTAT	GACATTGGGC	ATGACCAAGA	1032
-	AAAGTATGCG	TTTAATTGTA	GTGATGGAAA	CTATCTTACA	ATTTGTGATA	ATTTCAGTCG	1038
	TTAGTATTGC	CGGCGGATAC	TTACTTGGTG	CGATATTTTT	CTTGTTTATA	CAGAAAATAA	1044
0	TGGGCAGTGA	AGTTGCGACG	TTAAGGTATT	ATCCATTTGA	CTCTGTAGCG	ATGTTTATTA	10500
	CTTTGATTAT	CATTGCTGTA	TTAATGGGCA	TGCTACTTAT	ATTCAACTTG	TTTAGTATTA	10560
	ATTTTCAACG	GCCGATAACT	TATCAACATC	GTTCCGATTC	TAGTGTCATA	TCACGATGGT	1062
5	TGCGTTACGT	TTTAATTGTT	ATAGGAAGCG	CANACTATAT	TTAGGTTACT	TTATTGCATT	1068
	ACAACAAGAT	ACGACGTTTG	GTGCCTTTTT	TAAAATATGG	ATTGTCATAG	GATTAGTTAT	1074
	TATCGGTACT	TATGCATTTT	TTGTAGGTAT	AAGTGAAATA	ATTATTAGTA	TATTGCAGCA	10800
0	GGTATCAAAA	GTTTACTATC	ATCCACGGTA	TTTTTTGTG	GTAGTTGGGA	TGCGTGTACG	10860
	TCTTAAAATG	AATGCAGTCA	GTCTTGCAAC	AATCACTTTG	CTGTGTACAT	TTTTGATTGT	10920
5	AACGCTCACA	ATGACATTAA	CAACCTATCG	TGATATGAAT	CATACCATTA	CGAAATTGAT	1098
	TACGAATGAT	TakGATTTGT	CATTTAGCGA	CAATTCTAAG	TCACAAaTAG	AACGTCAACA	11040
	AACĀATTGAG						11050

(2) INFORMATION FOR SEQ ID NO: 97:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 983 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

CGACATAACG AGGCAAGGGT ACATGATACT TTAGCCTCGT TTTTGATATG TATTTTTCTG 60

AATATAAGGG CAATAGATGG TATTTTATAW TTTTTTTAAG GTAGTGATTA ACATAGATAT 120

55

	TCAAGCGGAA CAGCATTATG CACCAGTATT AACGCATTTT TTAGATCCAA GAGGGCAATA	24
	TATATTGGAA GTGATTTGTG GCAGTTATGA AGATTTAAAC GTATCTTTTT ATGGTGGACC	300
5	TAATGCTGAA AGAAAAAGAG CAATCATTTC GCCGAACTAT TATGAACCTA AAGAAAGCGA	360
	CTTTGAATTA ACTTTAATGG AAATAGATTA TCCTGAAAAA TTCGTCACTT TAAAACATCA	420
10	ACATATTTTA GGGACATTAA TGTCTTTAGG TATCGAACGC GAACAAGTTG GAGATATAAT	480
70	TGTGAATGAA CGAATTCAAT TTGTTTTGAC AAGTAGATTG GAATCATTTA TTATGTTAGA	540
	ATTACAACGT ATTAAAGGCG CATCAGTTAA ACTTTATACT ATTCCAGTAA CAGATATGAT	600
15	ACAATCTAAT GAGAATTGGA AAAATGAAAG TGCACAGTTA GTTCTTTAAG GTTAGATGTT	660
	GTTATTAAAG AAATGATACG TAAATCACGT ACGATTGCGA AACAACTAAT CGAAAAAAAA	720
	CGTGTTAAAG TGAATCACAC TATTGTTGAT TCAGCAGATT TTCAATTACA AGCAAATGAT	780
20	TTAATATCCA TCCAAGGTTT TGGTAGAGCA CACATTACTG ACTTAGGTGG TAAAACTAAA	840
	AAAGATAAAA CGCACATTAC CTATAGAACA TTATTCAAAT AGTAATGATT TAAGGAGGAT	900
	AACAAATGCC TTTTACACCA AATGAAATTA AGAATAAAGA GTTTTCACGT GTAAAGAATG	960
25	GTTTTAGAAC CTACTGNAGT TGG	983
	(2) INFORMATION FOR SEQ ID NO: 98:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10322 base pairs	

- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

TTTTGCAAAG	CTTATTTTAT	GTCAAACAGA	TAGTCAATGT	GAAACAAAGG	TTAGTACATA	60
TAATCATCCA	GACTTTATGT	ATATATCAAC	AACTGAGAAT	GCAATTAAGA	AAGAACAAGT	120
TGAACAACTT	GTGCGTCATA	TGAATCAACT	TCCTATAGAA	AGCACAAATA	AAGTGTACAT	180
CATTGAAGAC	TTTGAAAAGT	TAACTGTTCA	AGGGGAAAAC	AGTATCTTGA	AATTTCTTGA	240
AGAACCACCG	GACAATACGA	TTGCTATTTT	ATTGTCTACA	AAACCTGAGC	AAATTTTAGA	300
CACAATCCAT	TCAAGGTGTC	AGCATGTATA	TTTCAAGCCT	ATTGATAAAG	AAAAGTTTAT	360
AAATAGATTA	GTTGAACAAA	ACATGTCTAA	GCCAGTAGCT	GAAATGATTA	GTACTTATAC	420
TACGCAAATA	GATAATGCAA	TGGCTTTAAA	TGAAGAATTT	GATTTATTAG	CATTAAGGAA	480
ATCAGTTATA	CGTTGGTGTG	AATTGTTGCT	TACTAATAAG	CCAATGGCAC	ттатасстат	E40

55

	GAATGGTTTC	TTCGAAGATA	TCATACATAC	AAAGGTAAAT	GTAGAGGATA	AACAAATATA	660
	TAGTGATTTA	AAAAATGATA	TTGATCAATA	TGCGCAAAAG	TTGTCGTTTA	ATCAATTAAT	720
5	TTTGATGTTT	GATCAACTGA	CGGAAGCACA	TAAGAAATTG	AmTCAAAATG	TAAATCCAAC	780
	GCTTGTATTT	GAACAAATCG	TAATTAAGGG	TGTGAGTTAG	ATGCCAAATG	TAATAGGTGT	840
10	TCAGTTTCAA	AAAGCGGGAA	AATTAGAATA	TTATACACCT	AATGATATAC	AAGTAGATAT	900
	AGAAGACTGG	GTAGTTGTCG	AATCTAAAAG	AGGCATAGAG	ATAGGTATTG	TTAAAAATCC	960
	ATTAATGGAT	ATTGCTGAAG	AGGATGTTGT	GTTACCTCTT	AAAAATATTA	TTCGCATTGC	1020
15	TGATGACAAA	GATATTGATA	AATTTAATTG	TAATGAACGA	GATGCTGAAA	ATGCATTAAT	1080
	ACTATGTAAA	GACATTGTAA	GAGAACAAGG	TTTGGACATG	CGTTTAGTCA	ATTGCGAATA	1140
	TACATTAGAT	AAATCGAAAG	TTATTTTTAA	TTTTACGGCG	GATGATCGTA	TTGATTTTAG	1200
20	AAAATTAGTA	AAAATATTAG	CGCAACATTT	AAAAACACGT	ATCGAGTTGA	GACAAATTGG	1260
	TGTAAGGGAT	GAAGCCAAAT	TGCTTGGCGG	TATCGGACCT	TGTGGTAGGT	CGTTATGTTG	1320
	TTCTACATTT	TTAGGGGATT	TTGAACCAGT	ATCGATTAAG	ATGGCTAAGG	ATCAAAATTT	1380
25	ATCATTAAAT	CCAACTAAAA	TTTCTGGTGC	ATGTGGTCGT	TTGATGTGTT	GTTTAAAATA	1440
	TGAAAATGAC	TATTATGAGG	AAGTACGTGC	ACAATTACCT	GATATTGGTG	AAGCAATTGA	1500
30	AACGCCTGAT	GGTAACGGGA	AAGTAGTTGC	TTTAAATATA	TTAGACATTT	CTATGCAGGT	1560
	GAAGCTTGAG	GGACATGAAC	AGCCACTTGA	ATATAAATTA	GAAGAAATAG	AAACTATGCA	1620
	TTAAGGAGGC	ATTATTACAT	TTGGATCGCA	ATGAAATATT	TGAAAAAATA	ATGCGTTTAG	1680
35	AAATGAATGT	CAATCAACTT	TCAAAGGAAA	CTTCAGAATT	AAAGGCACTT	GCAGTTGAAT	1740
	TAGTAGAAGA	AAATGTAGCG	CTTCAACTTG	AAAATGATAA	TTTGAAAAAG	GTGTTGGGCA	1800
	ATGATGAACC	AACTACTATT	GATACTGCGA	ATTCAAAACC	AGCAAAAGCT	GTGAAAAAGC	1860
40	CATTACCAAG	TAAAGATAAT	TTGGCTATAT	TGTATGGAGA	AGGATTTCAT	ATTTGTAAAG	1920
	GCGAATTATT	TGGAAAACAT	CGACATGGTG	AAGATTGTCT	GTTCTGTTTA	GAAGTTTTAA	1980
45	GTGATTAATC	AAGCACACTC	AAATAGTGTT	ATAATTATAA	ATGAATATGG	TTTGGATAAG	2040
45	TCTGAGACAA	TGCATGTTTC	AGGCTTTAAT	TGTGTATAAA	GTTTTGGTGA	TTGCATAAGA	2100
,	GATGGCGGTA	CTAAATGTTA	TTATTAAGTG	TGCACGCAgT	ATCaTTAGTT	ATAAAATGTA	2160
50	GCTGTTAAAA	GTCAAAAATA	CATCGAATGT	AGTTAGGCAT	ATAATATAAA	AAGAGTTTTC	2220
	AATTACTCAA	TAGAAAAAGG	TTGTCTTCAT	AGGAGTTAAA	AATGTTAAAA	GAGAATGAAC	2280
	GATTTGATCA	ACTAATCAAA	GAAGATTTTA	GTATTATTCA	AAATGATGAT	СТТТТТСАТ	2340

	TGGACTTATG	TTCAGGCAAT	GGGGTGATAC	CCTTGTTATT	GTTTGCGAAA	CATCCACGAC	2460
_	ATATAGAAGG	TGTTGAGATT	CAAAAAACAC	TTGTCGATAT	GGCGCGACGC	ACATTTCAAT	2520
5	TCAATGATGT	TGATGAATAT	TTAACAATGC	ATCACATGGA	TTTGAAAAAC	GTTACTAAAG	2580
	TATTTAAACC	TTCACAATAT	ACTTTAGTAA	CGTGTAATCC	GCCTTATTTT	AAAGAGAATC	2640
10	AGCAACACCA	ACATCAAAAA	GAAGCACATA	AGATAGCGAG	ACATGAGATT	ATGTGTACAC	2700
	TTGAAGATTG	CATGATTGCA	GCCCGTCATT	TATTAAAAGA	AGGTGGCAGG	CTAAACATGG	2760
	TACATCGTGC	AGAGAGACTA	ATGGATGTCT	TGTTTGAAAT	GAGAAAAGTG	AATATTGAAC	2820
15	CTAAGAAAGT	CGTTTTTATA	TATAGTAAAG	TAGGGAAATC	AGCACAAACG	ATAGTAGTAG	2880
	AAGGTCGAAA	AGGTGGAAAT	CAAGGTTTAG	AAATCATGCC	CCCATTTTAT	ATTTATAATG	2940
	AAGATGGTAA	TTATAGCGAA	GAAATGAAGG	AAGTATATTA	TGGATAGTCA	TTTTGTATAT	3000
20	ATTGTAAAAT	GTAGTGATGG	AAGTTTATAT	ACAGGATACG	CTAAAGACGT	TAATGCACGT	3060
	GTTGAAAAAC	ATAACCGÀGG	TCAAGGAGCC	AAATATACGA	ÄAGTAAGACG	TCCGGTGCAT	3120
	TTAGTTTATC	AAGAAATGTA	TGAGACAAAG	TCTGAAGCAT	TGAAGCGTGA	ATATGAAATT	3180
?5	AAAACTTATA	CCAGACAAAA	GAAATTGCGA	TTAATTAAGG	AGCGATAGTA	TGGCTGTATT	3240
	ATATTTAGTG	GGCACACCAA	TTGGTAATTT	AGCAGATATT	ACTTATAGAG	CAGTTGATGT	3300
30	ATTGAAACGT	GTTGATATGA	TTGCTTGTGA	AGACACTAGA	GTAACTAGTA	AACTGTGTAA	3360
	TCATTATGAT	ATTCCAACTC	CATTAAAGTC	ATATCACGAA	CATAACAAGG	ATAAGCAGAC	3420
	TGCTTTTATC	ATTGAACAGT	TAGAATTAGG	TCTTGACGTT	GCGCTCGTAT	CTGATGCTGG	-3480
35	ATTGCCCTTA	ATTAGTGATC	CTGGATACGA	ATTAGTAGTG	GCAGCCaGAG	AAGCTAATAT	3540
	TAAAGTAGAG	ACTGTGCCTG	GACCTAATGC	TGGGCTGACG	GCTTTGATGG	CTAGTGGATT	3600
	ACCTTCATAT	GTATATACAT	TTTTAGGATT	TTTGCCACGA	AAAGAGAAAG	AAAAAAGTGC	3660
10	TGTATTAGAG	CAACGTATGC	ATGAAAATAG	CACATTAATT	ATATACGAAT	CACCGCATCG	3720
	TGTGACAGAT	ACATTAAAAA	CAATTGCAAA	GATAGATGCA	ACACGACAAG	TATCACTAGG	3780
5	GCGTGAATTA	ACTAAGAAGT	TCGAACAAAT	TGTAACTGAT	GATGTAACAC	AATTACAAGC	3840
	ATTGATTCAG	CAAGGCGATG	TACCATTGAA	AGGCGAATTC	GTTATCTTAA	TTGAAGGTGC	3900
	TAAAGCGAAC	AATGAGATAT	CGTGGTTTGA	TGATTTATCT	ATCAATGAGC	ATGTTGATCA	3960
ю	TTATATTCAA	ACTTCACAGA	TGAAACCAAA	ACAAGCTATT	AAAAAAGTTG	CTGAAGAACG	4020
	ACAACTTAAA	ACGAATGAAG	TATATAATAT	TTATCATCAA	ATAAGTTAAT	CACTTTATCG	4080
	ATTATATGAA	ATTTTAAACG	AAATTTTAAAA	CGCAAGCTGT	TAAATTTTAA	GGTAAGTTAT	4140

	GTTTTTTAAT	GTAAAATAAA	TACATTGAAA	GTAATAAATA	CCTTAACATT	GAATAAGATG	4260
	AAAATGAGAT	GACGAGATAA	ATGTTCGCGT	CCGTTGAAAT	GCATAGAAAT	CTTAGATATT	4320
5	ATTTGAAGTG	AGACATTACG	AGGAGGAACA	GTTATGGCTA	AAGAAACATT	TTATATAACA	4380
	ACCCCAATAT	ACTATCCTAG	TGGGAATTTA	CATATAGGAC	ATGCATATTC	TACAGTGGCT	4440
10	GGAGATGTTA	TTGCAAGATA	TAAGAGAATG	CAAGGATATG	ATGTTCGCTA	TTTGACTGGA	4500
	ACGGATGAAC	ACGGTCAAAA	AATTCAAGAA	AAAGCTCAAA	AAGCTGGTAA	GACAGAAATT	4560
	GAATATTTGG	ATGAGATGAT	TGCTGGAATT	AAACAATTGT	GGGCTAAGCT	TGAAATTTCA	4620
15	AATGATGATT	TTATCAGAAC	AACTGAAGAA	CGTCATAAAC	ATGTCGTTGA	GCAAGTGTTT	4680
	GAACGTTTAT	TAAAGCAAGG	TGATATCTAT	TTAGGTGAAT	ATGAAGGTTG	GTATTCTGTT	4740
	CCGGATGAAA	CATACTATAC	AGAGTCACAA	TTAGTAGACC	CACAATACGA	AAACGGTAAA	4800
20	ATTATTGGTG	GCAAAAGTCC	AGATTCTGGA	CACGAAGTTG	AACTAGTTAA	AGAAGAAAGT	4860
	TATTTCTTTA	ATATTAGTAA	ATATACAGAC	CGTTTATTAG	AGTTCTATGA	CCAAAATCCA	4920
	GATTTTATAC	AACCACCATC	AAGAAAAAŤ	GAAATGATTA	ACAACTTCAT	TAAACCAGGA	4980
25	CTTGCTGATT	TAGCTGTTTC	TCGTACATCA	TTTAACTGGG	GTGTCCATGT	TCCGTCTAAT	5040
	CCAAAACATG	TTGTTTATGT	TTGGATTGAT	GCGTTAGTTA	ACTATATTTC	AGCATTAGGC	5100
30	TATTTATCAG	ATGATGAGTC	ACTATTTAAC	AAATACTGGC	CAGCAGATAT	TCATTTAATG	5160
	GCTAAGGAAA	TTGTGCGATT	CCACTCAATT	ATTTGGCCTA	TTTTATTGAT	GGCATTAGAC	5220
	TTACCGTTAC	CTAAAAAAGT	CTTTGCACAT	GGTTGGATTT	TGATGAAAGA	TGGAAAAATG	5280
3 5	AGTAAATCTA	AAGGTAATGT	CGTAGACCCT	AATATTTTAA	TTGATCGCTA	TGGTTTAGAT	5340
	GCTACACGTT	ATTATCTAAT	GCGTGAATTA	CCATTTGGTT	CAGATGGCGT	ATTTACACCT	5400
	GAAÇCATTTG	TTGAGCGTAC	AAATTTCGAT	CTAGCAAATG	ACTTAGGTAA	CTTAGTAAAC	5460
40	CGTACGATTT	CTATGGTTAA	TAAGTACTTT	GATGGCGAAT	TACCAGCGTA	TCAAGGTCCA	5520
	CTTCATGAAT	TAGATGAAGA	AATGGAAGCT	ATGGCTTTAG	AAACAGTGAA	AAGCTACACT	5580
45	GAAAGCATGG	AAAGTTTGCA	ATTTTCTGTG	GCATTATCTA	CGGTATGGAA	GTTTATTAGT	5640
45	AGAACGAATA	AGTATATŢGA	CGAAACAACG	CCTTGGGTAT	TAGCTAAGGA	CGATAGCCAA	5700
	AAAGATATGT	TAGGCAATGT	AATGGCTCAC	TTAGTTGAAA	ATATTCGTTA	TGCAGCTGTA	5760
50	TTATTACGTC	CATTCTTAAC	ACATGCGCCG	AAAGAGATTT	TTGAACAATT	GAACATTAAC	5820
	AATCCTCAAT	TTATGGAATT	TAGTAGTTTA	GAGCAATATG	GTGTGCTTAA	TGAGTCAATT	5880
	ATGGTTACTG	GGCAACCTAA	ACCTATTTTC	CCAAGATTGG	ATAGCGAcGG	Anaattgcat	5940

	AACCTCAAA1	TGATATTAAA	GACTTTGATA	AAGTTGAAAT	TAAGGCAGCA	ACGATTATTG	606
	ATGCTGAACA	TGTTAAGAAG	TCAGATAAGO	TTTTAAAAAT	TCAAGTAGAC	TTAGATTCTG	612
5	AACAAAGACA	AATTGTATCA	GGAATTGCCA	AATTCTATAC	ACCAGATGAT	ATTATTGGTA	618
	AAAAAGTAGO	AGTTGTTACT	AACCTGAAAC	CAGCTAAATT	AATGGGACAA	AAATCTGAAG	624
10	GTATGATATT	ATCTGCTGAA	AAAGATGGTG	TATTAACCTT	AGTAAGTTTA	CCAAGTGCAA	630
	TTCCAAATGG	TGCAGTGATT	AAATAACTGT	ATTTTTAAAA	ATTAGGAGAG	ATAATTATGT	6360
	TAATCGATAC	ACATGTCCAT	TTAAATGATG	AGCAATACGA	TGATGATTTG	AGTGAAGTGA	6420
15	TTACACGTGC	TAGAGAAGCA	GGTGTTGATC	GTATGTTTGT	AGTTGGTTTT	AACAAATCGA	6480
	CAATTGAACG	CGCGATGAAA	TTAATCGATG	AGTATGATTT	TTTATATGGC	ATTATCGGTT	6540
	GGCATCCAGT	TGACGCAATT	GATTTTACAG	AAGAACACTT	GGAATGGATT	GAATCTTTAG	6600
20	CTCAGCATCC	AAAAGTGATT	GGTATTGGTG	AAATGGGATT	AGATTATCAC	TGGGATAAAT	6660
	CTCCTGCAGA	TGTTCAAAAG	GAAGTTTTTA	GAAAGCAAAT	TGCTTTAGCT	AAGCGTTTGA	6720
	AGTTACCAAT	TATCATTCAT	AACCGTGAAG	CAACTCAAGA	CTGTATCGAT	ATCTTATTGG	6780
25	AGGAGCATGC	TGAAGAGGTA	GGCGGGATTA	TGCATAGCTT	TAGTGGTTCT	CCAGAAATTG	6840
	CAGATATTGT	AACTAATAAG	CTGAATTTTT	ATATTTCATT	AGGTGGACCT	GTGACATTTA	6900
30	AAAATGCTAA	ACAGCCTAAA	GAAGTTGCTA	AGCATGTGTC	AATGGAGCGT	TTGCTAGTTG	6960
	AAACCGATGC	ACCGTATCTT	TCGCCACATC	CGTATAGAGG	GAAGCGAAAT	GAACCGGCGA	7020
	GAGTAACTTT	AGTAGCTGAA	CAAATTGCTG	AATTAAAAGG	CTTATCTTAT	GAAGAAGTGT	7080
35	GCGAACAAAC	AACTAAAAAT	GCAGAGAAAT	TGTTTAATTT	AAATTCATAA	AGTTAAAAGT	7140
	GAGAAAGATC	ACCGCCATAA	ATGTAAACGA	TGCTATATTC	GTTTAATATG	CTATGGTTCT	7200
	TTCTCACTTT	TTTAAATTAA	AATATCGTGC	ATGTGGAATA	CGTGCGATAG	AGATGGTTAG	7260
40	AGCTTTGAAA	TTAAGAATTG	TAGGAAGGCG	TTTTAAATGA	AAATCAATGA	GTTTATAGTT	7320
	GTAGAAGGAC	GAGATGATAC	TGAGCGTGTT	AAACGAGCTG	TTGAATGTGA	TACGATTGAA	7380
45	ACGAATGGTA	GTGCCATCAA	CGAACAAACT	TTAGAAGTAA	TTAGAAATGC	TCAACAAAGT	7440
••	CGAGGCGTTA	TTGTATTAAC	AGATCCAGAT	TTCCCAGGAG	ATAAAATTAG	AAGTACAATT	7500
	ACTGAACATG	TCAAAGGTGT	TAAACATGCG	TATATTGATA	GAGAAAAAGC	TAAAAATAAA	7560
50	AAAGGGAAAA	TTGGTGTTGA	ACATGCCGAC	TTAATTGATA	TTAAAGAAGC	GTTAATGCAT	7620
	GTTAGTTCAC	CCTTTGATGA	AGCTTATGAA	TCAATTGATA	AATCTGTGCT	AATAGAGTTG	7680
	GGGTTAATTG	TTGGGAAAGA	TGCAAGGCGC	CGTAGAGAAA	TTTTAAGTAG	AAAATTGCGA	7740

	GCGGATGTAA	GGCAAGCTTT	AGAAGATGAA	TGAGGAAGTG	AAAATGTTGG	ATAATAAAGA	7860
	TATTGCAACA	CCATCAAGAA	CGCGAGCGTT	GTTAGATAAA	TATGGCTTTA	AAAAATTTTA	7920
5	AAGTTTAGGA	CAGAACTTTT	TGATAGATGT	GAATATCATT	AATAATATCA	TTGATGCAAG	7980
	TGATATTGAT	GCACAAACTG	GGGTGATTGA	AATTGGTCCA	GGCATGGGGT	CATTGACAGA	8040
10	ACAATTGGCC	AGACATGCTA	AAAGAGTATT	GGCATTTGAA	ATTGATCAAC	GTTTAATACC	8100
	TGTATTAAAT	GATACACTAT	CACCTTATGA	TAATGTGACG	GTGATTAATG	AAGATATTTT	8160
•	AAAAGCGAAT	ATTAAAGAAG	CTGTTGAAAA	TCATTTACAA	GATTGTGAAA	AAATAATGGT	8220
15	TGTTGCAAAC	CTGCCGTACT	ATATTACGAC	GCCAATTTTA	TTAAATTTGA	TGCAACAAGA	8280
	TATACCAATT	GATGGCTACG	TGGTGATGAT	GCAAAAAGAA	GTGGGCGAAC	GCTTAAATGC	8340
	TGAAGTAGGT	TCAAAAGCAT	ATGGTTCGTT	ATCAATTGTC	GTACAATACT	ATACAGAGAC	8400
20	TAGTAAAGTA	TTAACGGTAC	CTAAATCTGT	ATTTATGCCA	CCACCTAATG	TTGATTCAAT	8460
	AGTTGTAAAA	CTGATGCAGA	GAACTGAACC	GTTAGTAACA	GTAGATAACG	AGGAAGCATT	8520
	CTTTAAGTTA	GCAAAAGCAG	CATTTGCACA	AAGAAGAAAG	ACAATTAACA	ATAACTATCA	8580
25	AAATTATTTT	AAAGATGGTA	AACAACACAA	AGAAGTGATT	TTACAATGGT	TGGAACAAGC	8640
	AGGTATTGAT	CCAAGACGTC	GCGGTGAAAC	GCTATCTATT	CAAGATTTTG	CTAAATTGTA	8700
30	TGAAGAAAAG	AAAAAATTCC	CTCAATTAGA	AAATTAAATG	ATTGACAAAG	CAAAGCACTA	8760
	TTGTTAAAAT	TTAAATTTTG	TTTGACGAAA	ACGTTGCAAA	TATGGTATTA	TGTAACTTGT	8820
	AGCGAGGTGG	AGCAATATGC	CAAAATCAAT	TTTGGACATC	AAAAATTCTA	TTGATTGTCA	8880
35	TGTAGGAAAT	CGTATTGTAC	TGAAaGCCAA	TGGAGGCCGT	AAGAAAACAA	TAAAACGTTC	8940
	TGGAATTTTA	AAAGAAACAT	ATCCGTCAGT	TTTCATTGTT	GAGTTAGATC	AAGACAAACA	9000
	CAACTTTGAG	AGAGTATCTT	ATACATACAC	TGATGTGTTA	ACTGAAAATG	TTCAAGTTTC	9060
40	ATTTGAAGAG	GATAATCATC	ACGAATCAAT	TGCACACTAA	ATAAGACATA	TAGAGATGTT	9120
	AGACGTTTCT	TAGTATAAGA	AGTAAATATT	ATGATAATTA	TTTGAGTGTT	GGGCATTATG	9180
45	TTCAATACTC	TTTTTATTTA	CAAAATGTTT	AACACTGATG	TTTCGCTTAT	AGATTTTTCA	9240
15	GTAAATGGAT	AATTGTATTT	ATAAACACAA	ATACAAGTAA	ATACTAAGTA	ATTAGATGGA	9300
	GAAAATTACT	TTTTTATTAA	AAAAACACTA	AAAAACAAAT	TAAAATGTCA	TTAATTATAA	9360
50	CTCTTTATGT	TAAAATCATC	ATATTAAGAT	AACGAAAAGA	GGGCGGAAAA	TGATATATGA	9420
	AACGGCACCA	GCCAAAATTA	ATTTTACGCT	CGATACACTT	TTTAAAAGAA	ATGATGGCTA	9480
	TCATGAGATT	GAAATGATAA	TGACAACAGT	TGATTTAAAT	GATCGTTTAA	CTTTTCATAA	9540

	AAATCTCGCA	TATCGTGCAG	CGCAACTATT	TATTGAGCAA	TATCAACTAA	AGCAAGGTGT	9660
_	AACAATTTCT	ATCGATAAAG	AAATACCTGT	TTCTGCTGGC	TTAGCTGGAG	GTTCGGCTGA	9720
5	TGCAGCAGCA	ACGTTAAGAG	GATTGAATCG	ACTTTTTGAT	ATAGGGGCGA	GTTTGGAAGA	9780
	ATTGGCTCTA	CTAGGCAGTA	AAATCGGGAC	AGATATTCCG	TTTTGTATTT	АТААТААААС	9840
10	TGCACTATGT	ACTGGAAGAG	GAGAGAAAAT	CGAGTTTTTA	AATAAACCAC	CTTCAGCTTG	9900
	GGTGATTCTT	GCTAAACCAA	ACTTAGGCAT	ATCATCACCA	GATATATTTA	AGTTGATTAA	9960
	TTTAGATAAG	CGTTACGACG	TACATACGAA	AATGTGTTAT	GAGGCCTTAG	AAAATCGAGA	10020
15	TTATCAACAA	TTATGTCAAA	GTTTGTCTAA	TCGATTAGAG	CCAATTTCTG	TTTCAAAACA	10080
	CCCACAAATC	GATAAATTAA	AAAATAATAT	GTTGAAAAGT	GGTGCAGATG	GTGCGTTAAT	10140
	GAGTGGAAGC	GGACCTACTG	TGTATGGGCT	AGCACGAAAA	GAAAGCCAAG	CAAAAAATAT	10200
20	TTATAATGCA	GTTAACGGTT	GTTGTAATGA	AGTGTACTTA	GTTAGACTAT	TAGGATAGAA	10260
	GGGTTGAAAA	GATGAGATAT	AAACGAAGCG	AGAGAATTGT	TTTTATGACG	CAATATTTGA	10320
	TG						10322
25	(2) THEODAS	TION DOD OF					

(2) INFORMATION FOR SEQ ID NO: 99:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5614 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

GATTGATTAA	ATGTTTTAAT	CCACTTCAAT	GCCTTCGATA	AACTCTACAA	TCGCGCTATT	60
CATATAATTA	TTCGATTTCA	TTTGTTCAGC	ATATGTCTCA	TTAAATCCAG	ACATAACTTT	120
TTTAAAwGCG	AAAATTGAAA	TTGGTATCGT	TACTAATAAG	GCACTAGCCA	TACGCCAATC	180
AATGAGCATT	ATGTATAAAA	AGATAGCAGC	TGACAAAAGT	AAGTTTCCTA	TAACTTCAGG	240
AATCATATGT	GCTAAAGGTA	ATTCTATTGT	TTCAACCTTA	TCGACAAATA	TATTTTTAA	300
TTCACCTATT	TTCTTAGATT	CCaCTACGCC	TAAAGGGAGA	CGCATTAATT	TTTGAGCTAA	360
TTTTTTACGA	ATTTCAGATA	AAATTTCATA	TGCCGTAATA	TGTGATAGCA	TCGTTGACGC	420
TCCAAAACAA	CACACTTGTG	AAATATAAGC	GATTAAAGCA	ATAAAGATAT	AAACCATAAT	480
CGAATTAATC	GTATATGTAT	TGTTAATCAT	САТТААААТА	ATTTTAAATA	CTGCCCAATA	540
AGGAACTAAT	CCAGAAAAGA	CACTGATGAT	AGACAACAAA	ATTGATAACA	TAATTTTCCA	600

55

30

35

45

50

	ATATGTAACT	CCTRTCAATT	AATAATCTAA	ATTAAGCCGC	TTATATTATT	TATTTCACTG	72
	GATGATATAC	ATAATATAAA	TTTGTTATTT	GTTAAAAATT	AATACTTATT	ACAAGTACAT	78
5	CATATATTAG	TTGATAACGA	TTATCAATGT	CGCGTGGATT	TGTGACACAT	TTCTTTTAAA	84
	AATTCACAAG	GTTATGGGGC	AGAAATGATA	AAGAGCCACT	AATGATTTAT	TATGTAGTGG	90
10	TTCTGGGAGT	GGGACAGAAA	TGATATTTTC	ACAAAATTTA	TTTCGTCGTC	CCACCCCAAC	96
	TTGCATTGTC	TCTAGAAATT	GGGAATCCAA	TTTCTCTTTG	TTGGGTCCCT	GAATATAGCC	102
	TTGTAGAGTC	TAGTACATTG	ATTTGTATCC	CAATGTCCCT	ATAATTGATT	ATTCGCTTTA	108
15	TCTAATGATC	CTATGACTCA	ACTATTAAAT	CATTTTTCGA	AATACTTAAT	TCTAATATAA	114
	TTAAATTCAT	TTATTGTAAT	ATTGCAAAAA	TACATTGCAC	ACCITGTTCA	TCAATGCTAT	120
	AATTAATTAC	TTAATAATT	GAACATCTAA	ATACACCAAA	TCCCCTCACT	ACTGCCATAG	126
20	TGAGGGGATT	TATTTAGGTG	TTGGTTATTT	GTCACCTTTT	TTATTGTTGC	GCGTTCGTAA	132
	CCAATGTGCA	AAAAACGCAA	CAAGACAGCC	GCTTATAGCT	GAAGTCATGA	TGTTAATTAA	1380
	TAAATTGAAC	ATCCGTCATA	CACCTCCTCT	CTGCGTTAAA	GTAACGCCCG	AGATGTTAGG	1440
25	CGACCATCAT	ATTATATCAT	TTATTTATTA	TATTTCACGC	AATATTAAGG	CTTAAGTAAA	1500
	GTTTTTTTTA	GTGGTTTACG	CTACTTTAAT	TGCTATCTTT	TAAAATCCAT	TTAGATAATA	1560
30	TAAATGTGAT	GGGTATCGTA	ATAATTAAAC	CAGCAAATGG	TGCAATTTCT	GCTGGCAAAT	1620
	TTAGCCAGGA	TACAAATACA	TATAATAAAA	CTGTTTGTAA	GCTTACGTTG	ACAATCTGCG	1680
	TAATTGGAAA	ACTAATGAAT	TTTCTCCAAG	TAGGTTTTAC	CCTGTAAACA	AAATAACAAT	1740
35	TCAAATAATA	TGAAATCACA	AAAGCGACTA	GAAATCCGGT	AATATGACTA	ATCATATATT	1800
	CAATGTGTAA	TAATTTTAAC	AGCAATAAAT	AGACAACATA	ATAATTTAAC	GTATTAATGC	1860
	CGCÇÃACAAT	GATAAATTTT	AAAATTTCAG	CATGCGTTTG	TGTTAGTTTC	ATATGTGTAC	1920
40	TCCTCAACAT	CAAAATATAT	GCATAACTAC	GTTCTCGAAC	ATACTCGAAT	ATGCGAGCCA	1980
	ATCCGCTTCA	CTTCAAATAT	GCTTATTTCA	ATCTTTATAC	CCTTTCACAG	CAAATTTAGT	2040
45	CTCTTTCCCC	TCATCCTTAT	ACGCCATTAT	AATGTAACTG	ATTTATCGCG	TGACTCATTA	2100
45	GCACTATAGA	GATTACTTTA	GTTCACTAGT	AATTTTATAT	ACAATAAGAG	CGACAACAGT	2160
	AATGAGAGGA	TGTCTACTAT	GCAATTACAA	AAAATTGTCA	TCGCTCCTGA	CTCATTTAAG	2220
50	GAAAGTATGA	CCGCACAGCA	AGTTGGCAAT	ATTATAAAAC	AGGCTTTTAC	TAATGTTTAT	2280
	GGGAATACCC	TTCATTATGA	TATCATTCCG	ATGGCTGATG	GTGGTGAAGG	TACCACAGAT	2340
	GCTTTAATGC	ATGCAACAGG	TGCCACTAAG	TATACAGTCA	TCGTTAATGA	CCCTTTAATG	2400

	GCGGCAGCGT	CAGGTTTGGA	TTTATTAGAA	AAAGAGGAAC	GTAATCCTTT	ATACACATCA	2520
	TCATATGGTA	CCGGTGAACT	AATTAAAGAT	GCATTAAATC	ATGGTGCTAA	GACCATTATT	2580
5	TTAGGGATTG	GTGGCAGTGC	AACAAATGAT	GGTGGTACAG	GTATGCTAAG	TGCACTAGGC	2640
	GTAAAGTTTA	CTGATGTAAA	CGGGGACTTA	TTACAAATGA	ATGGTGCTAA	TCTTGCTCAC	2700
	ATTGCACAAA	TCGATATAAC	CAATCTAGAT	TCGCGATTAA	AAGAGGTGAC	CTTTAAAGTG	2760
10	GCCTGTGATG	TTTCAAATCC	TTTATTGGGT	GAAAATGGTG	CTACCTATAT	TTATGGTCCT	2820
	CAAAAAGGCG	CTGATGCAAA	GATGATACCA	AAGTTGGATT	TCGCAATGTC	GCATTATCAT	2880
15	GATAAGATAA	AAATGTGCAC	AGGAAAGTCC	GTTAATCAAA	TACCAGGTTC	TGGTGCAGCT	2940
	GGCGGTATGG	GCGCAGCATT	ATTAGCGTTT	TGTGAGACAA	CTTTAACAAA	AGGTATTGAT	3000
	GTCGTCTTTG	ACATTACAGA	TTTTCATCAA	AGAATTAAAG	ATGCAGACCT	CGTTATTACT	3060
20	GGAGAAGGAC	GCATGGATTA	TCAGACCATC	TTTGGTAAAA	CACCCGTAGG	CGTTGCGTTA	3120
	GCTGCAAAAC	AATATCATAT	TCCTGTCATC	GCGATTTGTG	GCAGTCTAGG	CGAAAATTAT	3180
	CAACATGTTT	ACGATTTCGG	TATTGATAGT	GCCTATTCTA	TAATCTCTTC	ACCTAGCACT	3240
25	TTAGAAGATG	TCCTACAAAA	TAGCGAACAA	AATTTATTAA	ACACTGCAAC	TGACATTGCT	3300
	CGTATTCTGA	AATTACAATA	ATGTCAAAGT	AAATCATCAG	CTTTATTATT	TGCAGTTAAA	3360
	ACTTGAATGA	GGTGAAACCC	ATGAAAAGAA	CTGATAAATA	CCGTGATTCA	TATCAATACG	3420
30	ACAATCAAAA	CCAAAATCAT	CGTCGTCAAT	CTGAAGACGC	ATCGTATAGA	CAACAATATG	3480
•	CTAAAGGCGA	TCCTGAAGAA	CACCCGGAAC	GATACTATAA	TGGTAGAGAT	TATCGAAGAG	3540
35	AACAAATTCT	TGAAGAAGAA	AACGAGAAAT	CCCGCCGTTC	AAAAAAATGG	TTATATATCA	3600
	TTATTGCCAT	TCTCTTAATT	ATTGTCGCTA	TTTTTGTCAC	ACGCGCCTTA	CTTAACAATG	3660
	ATAGÉGATAA	AGTTAGTAAT	GACCCTAAAG	TCTCTCAAAA	ТТАТАААААА	CAAGTTGAAA	3720
10	ATCAAGACGG	CCAAATTAAC	CAGCAAGTAG	ATAATGCTAA	AGAAAATATT	AAAAACAACC	3780
	AAAAAACTGA	TGACATTATT	AAAAATTTAC	AAAATCAAAT	CGACAACTTG	AAGCAGCAAG	3840
	AACAAAACAA	AGCTGATTCT	AAGCTAACTC	AATTTTATCA	AGACCAAATC	AACAAATTGA	3900
15	CAGAGGCAAA	TAATGCACTT	AAAAACAATG	CAAGCCAAGG	TAAAATTGAA	AGCATGTTAA	3960
•	ATGATATTAA	TACAAAATTC	GACAGTATTA	AATCTAAATT	AGAAAGCTTA	TTTAAAGATG	4020
	ACAATGGTGG	CGCTAATTAA	TTATTACACC	TGCTTTGATG	ATAAACATTA	ATTCCCTATA	4080
50	CTTTATCTGT	ATCACTACGT	TATTCGTGAT	GATGCATTAA	GAGTATAGGG	ATTTTTTATA	4140
	TAAACTTGTA	TTCTAACTAC	ATACAAATAC	ACACAAAACG	TATATAATTT	ATATAATTAT	4200

	TTATTGCTAA	TTACGTTAGG	CGTCATGACC	GCTTTTGGCC	CACTAACTAT	AGATATGTAC	4320
	GTACCATCAT	TACCTAAAGT	GCAAGGTGAT	TTTGGTTCTA	CTACATCAGA	AATTCAATTA	4380
5	ACATTATCAT	TCACAATGAT	TGGTCTTGCA	CTAGGCCAAT	TTATCTTTGG	ACCTTTATCC	4440
	GATGCTTTTG	GTCGCAAACG	GATTGCTGTA	TCCATTTTGA	TCATTTTCAT	TTTGGTATCA	4500
	GGTTTGTCTA	TGTTTGTTGA	TCAATTGCCA	TTATTCTTAA	CTTTACGATT	TATTCAAGGT	4560
10	TTAACTGGTG	GTGGCGTCAT	CGTGATTGCA	AAAGCCTCTG	CTGGTGATAA	ATTTAGTGGC	4620
	AACGCACTCG	CTAAATTTŤT	AGCATCTTTA	ATGGTAGTTA	ATGGCATCAT	CACTATTCTT	4680
15	GCACCATTAG	CCGGTGGATT	AGCTTTATCC	GTAGCAACAT	GGCGTTCTAT	TTTCACAATT	4740
	TTAACTATTG	TGGCACTCAT	CATTTTAATT	GGCGTCGCTT	CTCAATTACC	TAAAACATCT	4800
	AAAGATGAAT	TAAAGCAGGT	GAATTTTAGT	AGCGTCATTA	AAGATTTTGG	AAGTCTTTTG	4860
20	AAAAAACCAG	CATTTATTAT	TCCAATGCTA	TTACAAGGWT	TAACTTATGT	AATGCTATTT	4920
	AGTTATTCAT	CTGCATCGCC	ATTTATTACT	CAAAAATTGT	ATAATATGAC	ACCCCAACAA	4980
	TTTAGTATCA	TGTTTGCTGT	TAACGGTGTA	GGTTTAATCA	TTGTCAGTCA	AGTCGTTGCT	5040
25	TTATTAGTAG	AAAAATTACA	TCGCCACATA	TTATTAATCA	TTTTAACTAT	TATACAAGTG	5100
	GTAGGTGTTG	CTTTAATTAT	CCTGACACTT	ACATTCCATT	TACCACTTTG	GGTCTTACTC	5160
	ATCGCATTCT	TCTTAAATGT	GTGTCCTGTG	ACGTCAATTG	GACCGCTTGG	TTTCACAATG	5220
30	GCTATGGAAG	AACGAACAGG	TGGCAGTGGT	AACGCATCAA	GTTTACTTGG	CTTATTCCAA	5280
	TTTATCTTAG	GTGGCGCTGT	TGCACCATTA	GTTGGCTTAA	AAGGCGAATT	TAATACATCA	5340
35	CCATATATGA	TTATTATCTT	CATTACAGCC	ATTCTATTAG	TCAGTCTACA	AATCATTTAC	5400
	TTTAAAATGA	TTAAAAAGCA	ACATGTCGCA	TAACACTTCA	ACATAATTAG	AACCCTAGCA	5460
	AAGATATCTA	TCTTTGTCAG	GGTTCTTCTT	TATGAATTAT	GAGATCGAAT	CTTCAACTAA	5520
40	AATTACGCCT	TCATAGCAAG	GACATTTCTA	TTCAATCACC	CTTTAACAGG	CATCCAAATT	5580
	TCTGTAATAT	ATTTTTCACT	TGTAGTATCA	CCAT			5614

(2) INFORMATION FOR SEQ ID NO: 100:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9179 base pairs(B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

	AAAGACAATG	ATATGAAGTA	TATGGATATC	ACAGAAAA	G TGCCAATGTC	GGAATCTGAA	120
	GTTAACCAAT	TGCTAAAAGG	TAAGGGGATT	TTAGAAAAT	GAGGGAAAGT	TTTTCTAGAA	180
5	GCTCAAGAAA	AATATGAGGT	TAATGTCATT	TATCTTGTT	GCCATGCATT	AGTAGAAACA	240
	GGTAACGGCA	AATCAGAATT	AGCAAAAGGC	ATTAAAGAT	GGAAAAAACG	CTATTACAAC	300
10	TITTTTGGTA	TAGGAGCATT	CGATAGTAGT	GCTGTTCGT	GTGGGAAAAG	TTATGCTGAA	360
10	AAGGAACAAT	GGACATCACC	AGATAAGGCG	ATTATTGGTG	GTGCAAAGTT	CATTCGTAAT	420
	GAATATTTTG	AAAACAATCA	ACTGAATTTA	TATCAAATGO	GATGGAATCC	AGAAAATCCT	480
15	GCGCAACATC	AATATGCGAG	TGACATTCGC	TGGGCAGATA	AAATTGCCAA	ATTAATGGAT	540
	AAATCCTATA	AGCAGTTTGG	TATAAAGAAA	GATGATATTA	GACAAACATA	TTATAAATAA	600
	GACATCGGTG	CTTAAAGGAG	CTGGAACAAT	TTATTGTTTC	GAGCTCCTTT	AGCGCATTCT	660
20	GAGTGTGTTA	GTTAAATGGA	TTTTAACCTA	ACAAAAAACG	CTATATAGCA	TCAAATATGC	720
	TATATCCCAC	ATCATTGTTA	CAAATGTACA	TGATGTAAAT	GAATATTGCT	GTCTAAATGT	780
	GCATGTAATA	TACAATGGTG	CAGATAATAC	ACTTAAGTCC	TTAAAAATGA	AACGTTAgTT	840
?5	CCAAGAGTCA	TTTTTAAACA	ATAGTGCATG	TGATAAAATA	GAAAAGAATG	AAAAATATAG	900
	AGGTGACAAT	ATGAAGATAG	CAATTATAGG	TGCAGGCATC	GGTGGATTAA	CAGCTGCTGC	960
	ATTATTACAA	GAACAAGGTC	ATACTATTAA	AGTCTTTGAA	AAAAATGAGT	CAGTTAAAGA	1020
30	AATTGGCGCT	GGGATTGGTA	TCGGAGATAA	TGTGCTTAAA	AAACTAGGTA	ATCATGACTT	1080
	AGCTAAAGGT	ATTAAAAATG	CTGGGCAAAT	CTTATCTACA	ATGACAGTGT	TAGATGACAA	1140
35	AGATCGCCTG	TTAACTACTG	TTAAATTAAA	AAGTAATACA	TTGAATGTGA	CGTTACCACG	1200
	CCAAACATTA	ATTGACATTA	TTAAATCTTA	TGTAAAAGAT	GACGCAATAT	TTACAAATCA	1260
•	TGAAGTCACG	CATATAGATA .	ATGAGACAGA	TAAAGTTACC	ATACATTTCG	CGGAACAAGA	1320
ю	AAGTGAAGCA	TTTGATTTAT	GTATTGGTGC	TGATGGAATT	CATTCTAAAG	TGAGACAATC	1380
	TGTAAATGCT	GACAGTAAAG	TATTATATCA	AGGGTATACA	TGCTTTAGAG	GTTTAATTGA	: 1440
	TGATATTGAT	TTAAAGCATC	CGGaTTGTGC	AAAAGAATAC	TGGGGaAGAA	AAGGaAGAGT	1500
5	AGGTATTGTT	CCGTTATTAA	ATAATCAAGC	ATATTGGTTC	ATTACAATTA	ACTCGAAGGA	1560
	AAACAATCAT	AAATATAGTT (CGTTTGGTAA	ACCTCATTTG	CAAGCATACT	TTAATCACTA	1620
	TCCAAATGAA	GTTAGAGAGA :	ICTTAGACAA	ACAAAGTGAA	ACAGGTATCT	TATTGCATAA	1680
io ,	TATTTATGAT	TTGAAACCAC	CAAATCTTT	TGTTTATGGT	CGTACTATTT	TACTAGGAGA	1740
	TGCAGCACAT	GCGACAACGC (CTAATATGGG	GCAAGGTGCT	GGACAAGCAA	TCCAACATCC	

	TAAAATACGT	GTCAAACATA	CTGCAAAAGT	AATTAAGCGT	TCTAGAAAAA	TCGGTAAAAT	1920
	TGCCCAATAT	CGTAGTCGTT	TATTTGTTGC	AGTTAGAAAT	CGTATTATGA	AAATGATGCC	1980
5	AAATGCATTA	GCAGCTGGAC	AAACTAAATT	СТТАТАТААА	TCGAAAGAAA	AATAATACAA	2040
	CAATATGAAA	ACCCCCGTAT	GTTGAAACGA	GAGCTCAACA	TATGGGGGTT	CTTGTTTTTA	2100
10	TAATGTTATT	ATAATAAATT	CAATTATTAG	TTAACGACAA	ATTGTGGTTT	CTCACCTTGA	2160
	ACGGCACTAA	TTGCAGCATT	AGCAACAATT	TTAGACATCA	TGTCACGTGC	TTCAAATGTA	2220
	GCATTACCAA	TATGCGGTGT	TAATACTACA	TTATTAAGTG	ATTTTAAGTC	ATCGGTAATA	2280
15	TCTGGTTCAA	ATTCATATAC	ATCAAGTGCA	GCACCTTCAA	TTTCATTATC	TTTCAATGCT	2340
	TGCACTAGTG	CTTGTTCGTG	CACGATTGGA	CCACGAGAGG	CATTGATTAA	ATACGCCGTA	2400
	GATTTCATCA	TTTTAAATTG	TTCTGTATCA	ATTAAATGAT	GCATTTTAGG	ATTATAAGCA	2460
20	GCGTTGATAG	TGATAAAATC	TGCATTCTTT	AATAGTGTAT	CTAAATCTAC	ATATTTTGCA	2520
	CCGATTTCTC	GTTCTTTTTC	TTCTTTGCGA	TTAGGTCCAG	TGTATAGCAC	ATCCATGTCA	2580
	AATGCTCTTG	CACGACGAGC	TACTGCACTA	CCAATTTCAC	CTAAACCGAT	AATGCCGATT	2640
25	GTTTTCCCAG	ATACTTCTCT	ACCTCTGAAA	AATAAAGGTG	CCCATCCATC	AAATCCAGTT	2700
	GTACGTGATA	ATTGGTCCCC	TTCAACAATA	CGACGCGCTA	CTGCAAGTAC	TAATCCAATT	2760
30	GTTAAATCAG	CAGTCGCGTT	TGTTGATGCT	TTAGGTGTGT	TTGTAACATC	TATACTTTTT	2820
	TCTCGGGCAT	ACTCGATATC	AATATTATTA	AAACCAGCGC	CATAGTTGGC	AATGATTTTT	2880
	AAGTCTTTAC	CAGCATCGAT	AACATCTTTA	TCAACGTTTG	TAGATAATAA	ACTAATTAAG	2940
35	GCAGTCGCGT	TTTTAACACC	TTTAATTAAA	GTGTCTTTAT	CGACTAATCC	TTTACCTTCA	3000
	TACATTTCAA	CTTCAAAATG	TTCTTGTAAA	AGTTTTAAAC	CTACTTCTGG	TATEGCACCA	3060
	gCAACATAAm	CTTTTtCCAT	AAAAGAtCAC	TCCTTTTATC	TTAGTATAGT	AGAAGATTAG	3120
40	ACAGTATACA	ACTATGTCAT	GATGTCTTGT	GTATCAATGA	TGTAAGCGCG	TACTTTTGAT	3180
	GGAGGCGATA	TAACTTAGGC	ACTGTAGAAC	TATGAATATT	GTAATGTGGA	AAAACTGGAT	3240
	CAATTAAATT	AGATAACGTA	GTTTTAAAGT	TAATAGTATT	AGAAAAAATT	AATATTTTGA	3300
45	ATATGGGAGG	AAATATAAAT	AAGTAGGTGG	CAACGAAAAA	TAGCAAAAA	AGAGCTTCTC	3360
	CTATAAAGGA	AAGCTCAAAG	TTTTTTGATG	ACATATGTAC	TAGAATTAAG	TTTCAAGACA	3420
50	ATATGTATCA	TCGTGTTTAT	ATTAAATATG	GATGTAGTTG	TAGTTACCTG	CTTCACTTGC	3480
	AGAAATAGTT	CTAGAACTTA	CTGAGAAAGG	TCCGCCACTA	TAATTCATTT	CTGAAATTGT	3540
	NACTCA ACCA	телететт	СУСФТТСТУС	АТАТССААСС	тсассаватс	CTCCTTCAGA	3600

	AGCAGCAGCC	CAATTATTAG	CATTTCCCCA	AGTAGAACCG	ATTTCTCCGC	CAACTTTATC	3720
	ATATACATAC	CAAGTACATT	GTCCTGCAGT	GTATAAGTTA	CCAGAATGTG	AAATTGATGA	3780
5	TGTAGTTGTC	GTAGTTGTCG	TAGTCGTTGT	AGTTTGAGTC	GTGTTGTAGT	TATAGTTGTT	3840
	GTAATTTGTA	TAATTTTCAG	CAGCATCTGC	ATGATGTGCT	TGACCTACTA	ATGCTGTGCC	3900
10	GATTCCTGCT	GTTAACGTAG	TTGCTGTTAC	TAATTTTTC	ATGAATAAAG	TCCTCCAAAG	3960
10	TTCTATATCT	TTTTTTATAA	ATAAAACGTA	GCGACTGTTT	TATTCTCACA	TCTCGAATTG	4020
	ATGACAATAG	TTACTTTAAC	AAAATtAATG	cTTCTTGTGG	GGAATGTTAT	TGATTTGTAA	4080
15	aagaataaaa	AAACTTTGAC	TAATTTTGTA	АТАААААТТА	GTCAAAGTTA	CAATGAGATT	4140
	AACAGATAAT	TAATAGGAAA	TATTTATTTG	TAATATGTTT	AAATAAATCG	AATTGTTAAA	4200
	GGTATTATAT	ATTCTTGGCC	ATTATAATAT	TTGACACACG	CAATAATTGT	GAATACAAAA	4260
20	GATAATATTG	AGAAAGCGAA	TATGGATAAA	ATACCGATAA	ACGTAATGAT	GAAACCTATA	4320
	ATAATAATGA	AATCAATATC	TGTAGCAATT	AGGAAAACGC	CTATTAAAGT	GATAACGACT	4380
	AAAACGATAG	ACCAAATAAT	ATAAGAAATC	GTATAGTTAA	GATAATTTT	TCCAGCACGA	4440
25	TCAACTAGTT	TCGATTCATC	TTTTTTCAAT	AACCATATTA	TCAGTGGACC	AATAATAGAT	4500
	GTGAATAAAC	TTAATAAATA	GATAAGCATC	GCCATAATGT	TCTCATCATT	GGATTTGCGA	4560
•	TTCGGTTGAT	GATTTGTTAC	GTCGTTCATT	TCAGTTGTCA	TATTAGACAC	TCCTTTGAAA	4620
30	ATTGTAATAT	TATCTTTAAC	TATAACAAAA	TATAATCAAA	AATAAACATG	TTTATTAAAC	4680
	AATTATTAAA	ATAAAATAA	ATTGGTGGAC	GTCGGCGTTT	AAATAGGTTA	ATTTAAGGTT	4740
35	ATATATACTT	AACATTTATA	ATGATGCGTA	ATGAATTCGC	ATCATTTTTA	TATTGTCTTA	4800
	CGTATAATTT	GTTTTTAATT	TTAACCAAAG	ATAGAAAGAG	GGTTGTTTAT	GAAAATAGCA	4860
	ATTGTAGGAT	CAGGAAATGG	CGCAGTTACG	GCAGCAGTAG	ATATGGTGAG	CAAAGGCCAC	4920
40	GATGTTAAAT	TATATTGTCG	TAATCAATCT	ATAAGTAAGT	TTCAAAACGC	AATCGAAAAG	4980
	GGCGGATTTG	AATAATTTA	TGAAGGTGAT	GAACGTTTCG	TAAAATTCAC	TGATATTAGT	5040
	GATGATATGG	AATATGTTTT	AAAAGATGCT	GAAATTGTTC	AAGTGATTAT	TCCATCTTCA	5100
45	TACATAGAGT	ATTATGCTGA	TGTAATGGCA	GAGCATGTAA	CTGATAATCA	GTTGATATTC	5160
•	TTCAACATGG	CTGCAGCAAT	GGGGTCAATT	CGTTTTATGA	ATGTTTTAGA	AGATAGACAT	5220
	ATTGAAACAA	AACCACAACT	AGCGGAAgcT	AATACGTTGA	CGTATGGTAC	GCGTGTCGAT	5280
50	TTTGAAAATG	CAGCAGTTGA	тттатстста	AATGTACGTC	GTATCTTCTT	TTCAACATAT	5340
	GATAGAAGCT	GTCTAAATCA	ጥጥርምተልጥር ልር	አአአርጥጥጥ የአአ	ርም አጥጥጥ አጥር አ	ጥር እ ምምጥ እርጥ እ	E400

	CCAACATTAT	'TGAATGTCGG	TCGCATTGAT	TATGCTGGCG	AGTTCGCTTT	ATATAAAGAA	552
	GGAATTACTA	AACATACAGT	TAGATTACTT	CATGCAATCG	AATTAGAACG	TTTGAATTTA	558
5	GGCCGTAGAT	TAGGTTTTGA	ATTATCAACA	GCTAAAGAAT	CACGTATTGA	ACGTGGTTAT	564
	TTAGAACGTG	ATAAAGAAGA	TGAACCATTA	AATCGTTTGT	TTAATACAAG	CCCAGTATTT	570
	TCACAAATTC	CAGGACCAAA	TCATGTAGAA	AGCAGATATT	TAACTGAAGA	TATTGCATAT	576
10	GGTTTAGTAC	TATGGTCAAG	CTTAGGTCGT	GTTATTGATG	TACCGACACC	AAATATAGAT	582
,	GCAGTAATTG	TAATTGCATC	AACCATTTTA	GAGAGAGACT	TCTTTGAGGA	AGGCTTAACA	588
15	GTTGAAGAAA	TTGGTTTAGA	TAAGCTTGAT	TTAGAAAAAT	ATTTAAAATA	AATGATGGCT	594
	TGAAGATAGA	AAAGGATATA	GCATTATGCA	AAAGCAATAA	ATTGAAGAAA	AGAGGTTTCT	600
	CATCAATAAG	CGnAGGGGAC	GATAGATGAT	GAAAAGAAAA	CCCACCTTTT	TAGAATCAAT	6066
20	TTCGACAATG	ATTGTAATGG	TTATTGTTGT	TGTAACAGGC	TTTGTGTTTT	TTGATATTCC	612
	AATTCAAGTA	TTATTAATTA	TTGCCTCAGC	ATATGCCACA	TGGATTGCAA	AACGTGTAGG	6180
	CTTAACATGG	CAAGATTTAG	AAAAAGGCAT	TGCAGAACGT	TTAAATACTG	CAATGCCTGC	624
25	AATTTTAATT	ATACTAGCGG	TAGGAATTAT	AGTAGGCAGT	TGGATGTTTT	CTGGCACAGT	6300
	GCCAGCCTTG	ATTTATTATG	GCTTAGATTT	ATTGAATCCA	AGCTATTTTT	TAATATCAGC	6360
	CTTTTTTATA	AGTGCTGTTA	CATCTGTAGC	AACTGGTACA	GCATGGGGCT	CTGCATCAAC	6420
30	TGCAGGGATT	GCACTTATTT	CTATTGGTAA	TCAATTGGGG	ATTCCTCCAG	GGATGGCAGC	6480
	GGGTGCTATT	ÄTAGCAGGGG	CTGTGTTTGG	CGATAAAATG	TCACCATTAT	CAGATACAAC	6540
35	TAATTTAGCG	GCGCTTGTTA	CTAAAGTTAA	TATATTTAAA	CATATACATT	CGATGATGTG	6600
	GACGACGATA	CCTGCATCAA	TCATAGGTTT	ATTAGTATGG	TTTATTGCTG	GATTTCAATT	6660
	TAAAGGGCAT	TCAAATGATA	AACAGATTCA	AACTTTGTTA	TCAGAGCTTG	CACAGATTTA	6720
10	TCAAATTAAC	ATATGGGTCT	GGGTTCCCTT	AATTGTGATC	ATTGTTTGTT	TGCTATTTAA	6780
	AATGGCTACA	GTGCCAGCTA	TGCTAATATC	AAGCTTTTCT	GCCATTATAG	TGGGGACTTT	6840
	TAATCATCAT	TTCAAAATGA	CAGATGGTTT	CAAAGCAACA	TTTAGTGGTT	TTAACGAATC	6900
15	AATGATACAT	CAGTCTCATA	TTTCATCCAG	TGTGAAAAGC	TTGTTAGAAC	AGGGTGGTAT	6960
*	GATGAGTATG	ACCCAAATAT	TAGTAACGAT	ATTTTGCGGA	TATGCATTTG	CAGGTATTGT	7020
	AGAAAAAGCA	GGATGTTTAG	AAGTCTTATT	AACTACTATT	TCTAAAGGCA	TCCATTCTGT	7080
50	AGGAAGTTTA	ATATGTATTA	CTGTTATTTG	TTGTATTGCG	CTTGTATTCG	CTGCAGGTGT	7140
	ጥርርጥጥርርልጥ፣	מייים מייים מייים	TO CONCORDE	COTTANTONNA	~ 3 mm m omm o ~	>>>>	

	AATACCATGG	GGAACATCAG	GTATTTACTA	TACGAATCAA	CTTCATGTCT	CTGTTGAAGA	7320
	ATTTTTCATA	TGGACAGTAC	CATGTTATTT	ATGCGCAATT	ATAGCAATTA	TCTATGGTTT	7380
5	TACAGGGATA	GGTATTAAAA	AGTCATCGAA	TTCACGTTTA	ACTTAATGTG	AGCGTGGAAT	7440
	ATATATAATA	TGTTGAAACA	CTTTAATCAT	TTATAATTGT	AGCGGTTATA	ATTTGAAAAG	7500
10	GTTTTAACTT	AGAATAAATA	TCCTCTATGC	ATATACTGAA	TATGTTTTGT	AGCGGAACAT	7560
10	GTTGATATAT	GTAATGTAAG	TTTTATGTCA	TGATTTGTAA	TGACTAAATT	AATTGAGAAT	7620
	TTGAAGGCAA	GTATATTTGT	AAGTACTTTA	ACTAAAAATT	TATCAATGTA	TAGCCGATTT	7680
15	GACATGCCTA	AATTTGGGTG	TGTCAATGGC	TGTATGTTGT	TTATTCTTTA	TTACAGAGTG	7740
	AATCGGATTG	GTGAAAATCG	AAATTTTGAG	ATTTTTACCA	ATTCGATTTT	TTTCATAGAA	7800
	ATTAAAAAAG	CCAACAAGGC	TCTTGAAACC	TTGTTGGCGT	AAACATAGCC	ATCACTAATT	7860
20	AGTGAATGAA	GTTATAACCA	GCAGCTTGGC	TAGCTGAGAT	TGTACGTGAA	GTTACAACAC	7920
	CTGGGCCATA	ACCATAGTTC	ATTTCTGAAA	CTCTTACTGA	ACCATTGCTG	TTAACACTTT	7980
	CAACGTATGC	AACGTGACCG	TATGCACCTT	GAGTTGTTTG	CATAATTGCA	CCAGCTTTTG	8040
25	GTGTATTGTT	CACTGTGTAA	CCAGCTCTTG	CAGCTGCGTT	AGCCCAGTTA	CTTGCATTGC	8100
	CCCAAGTTGA	ACCGATTTTA	CCACCTACAC	GATCAAATAC	GTAGTATGTA	CATTGACCAG	8160
30	AAGTGTATAA	GTTACGTCCT	GAAGTATAAC	CACTTGAGAT	TGAACGGCCA	TTTGATGATG	8220
30	GAGCCATAGT	TGTAGTTACT	TGAACATTGT	TGCTTGAAGT	GCTGTAGCTT	GCACCTAAAC	8280
	CACCAGTACG	GTAGCTGTTT	GTGTTGTAAC	TATTATAGTT	ATTGTAGTTA	TATGATTGAT	8340
35	TATTATTTGA	GTAGTTGTTG	TAACGGCTGT	AGTTATTGTA	GCTATAACCG	TTGTTGTAAT	8400
	TGTTATAGTT	ATTGTAACCA	TTGTAGTAGT	AATAGCTGTA	GTAGCCATTA	TCTTGGTTTA	8460
	ATTGACTTGG	ATGCCAGTTA	CCTTTCCATG	TGTAATGGTA	GTTACCTTGT	GCATCAATAG	8520
40	TGTAAGTATA	GCTATATGAT	GTTGGGTCGT	TTGGATTATA	ACCGTAGTTA	TCTTGCTCAG	8580
	AAGCATGAGC	TTGATTTCCT	GATGCAATTG	CGATTGTAGC	GAATCCTGCA	GTTGCGATAG	8640
	TAGCTGTAGC	GATTTTCTTC	ATTTTAAAAA	TATCCTCCTA	AAAATTTTAA	ATCTAAAATA	8700
45	TTTTCGTAAT	GTCCGTGTGA	CAAAATTAAT	GTTATAAGTT	ATCTCTCGTA	ATTAAACGAC	8,760
	AAGAAAGACT	ATAACAGAAA	TTAGCGTCCT	TGTGTGCTTT	GTTAACGTTT	TGTAATTTTT	8820
50	TGCTAATATC	TTGACACAAT	AGAATTTTAA	AAGTATAGAA	ATTTGCATTT	TGCAAAACTT	8880
	ATAACTACGG	CATTCTTTGT	GAAAACTGAA	TGTTTCGAAA	ATAAGTCTGT	TACAAATTTG	8940
	TAATATTACT	GAAAATTCTA	AATGTATATT	TTGTGCATAA	TATAGGACTT	ТТААТСАСАА	9000

GGATGAAAAT GTATATTAA TGGATAAAAT ATCCTAATTT AGCATAAAAA AATGTTTTAA	9120
TAAAAGTATT ATTTGATATA ATCGATTTAT GTTTTGTTAC TGCTAAAAAA CATGTGGCG	9179
(2) INFORMATION FOR SEQ ID NO: 101:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1868 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

60	TGTTTTTTA	TAAAATAAAT	CCTGTACATA	ACATGAGTTG	TITIGACTICG	CCTTCAGCCA
120	CCTATGAGGG	TAGATACAAC	TGATAAGTGT	AATTAAAATA	TCTCCTAATT	GTCATAACAA
180	CCCCAAGAAA	AAAGTATGTG	TACCAGTTTT	GTAATGATGA	TACTGGAATT	TTATAAATAG
240	GAGCCTATCG	TGTAGCTAAA	ACCACAGTAA	AAGACGTGTA	TTTTTGtGTT	TCTTAACATC
300	CCTTCTTTTA	ATAAATTAGG	TAACATTCGC	TCAGAACCGA	TGGACCTAAA	GTGTAATTTT
360	GTAGGCATAT	TATTAAAACT	CAATCGCATC	TGACCAATAG	GACATTTGAT	ACATGCCATG
420	GTGCTAAATA	TCCCAAAATA	TGAAGCCCAT	AACGCTGAAA	TGATGATAAA	TATTCATTAT
480	CCAGCATTTC	TAAAGTAATG	TAGCCAATAT	TCTAATATTT	GGAAATATAT	GACCGTAATT
540	CAAGGTGCGC	TACTATATTC	TTGAAAATAA	TACATACCAA	TACGACGATA	TTAAGCCGAA
600	AGAAAAATAA	AGCCAACATT	TTGATTTACG	TTTACAGCAT	TTGCTTAATA	CCTTAATGAC
660	ATTAGATAGC	AAATTTACTG	GAATTTTAGT	ATTGATACCG	TCCAGTGAAA	AAGCAATGAT
720	TCATTAATGG	TAGCTTTAAA	AAATTTTAAA	ACAATCCaTG	TATAACTAGA	CGAAAAGTAA
780	TTTCTAAAAT	AGGTATCGCT	CAAACGTTTT	TTATTATCAT	ATGCTTTATA	CATCTTTAGG
840	ATCATTCTAC	ATTAGGTATA	GCGAGAATAA	CTTGCTAAAA	TACTATAATA	ATAACCACAA
900	ACTAGATTGC	TATAATATTC	AATCAGCAGA	ACATGAAAAT	AACGAATCCT	TAAAATATCG
960	ATNAAAGGGA	ACTCGCAATA	CTATAAAACC	GTTGTGTCAG	AGGTAAAGAA	TCACGATTAA
1020	GGCGTTAAGA	TAATACAATA	TAACCATCGC	CCTATATTTT	CTTACTAAAA	ATATGGCCCG
1080	ATATGATATA	GCACCCAATA	AGCAACAATG	CGAAAAATGC	CCATCATTTG	TTAAcGTGCG
1140	CTGACCATTC	ATGTGAATAG	AGCATGAAGC	TGCCTTTTGA	TTTAAACCAT	AACGAACATT
1200	AAGTCAAAGT	ACTGAGACAA	AATAAGAATG	ATATTAATGA	ACTTTATCTA	GAATAATCCA
1260	САССАСТААТ	AAACTTACAA	AACATCGGAA	TTACTTCGAA	ACAATACCTG	AGCATTCCAA

20 `

TAATACAAAT	AATAAAGTTA	CTAGAAAAAT	GAGTGTCGCT	AAAGTTGTCA	TCATTAGCAT	1380
TCACCAGTCT	TAAGGTTATG	ACAAATACAT	CGTTGGTTAG	AGGTATGAAC	CTTAGACAAG	1440
TTATTAATTA	CGGACTCAAA	AATATTATGA	TTgAGCTGGT	ATAAATGTTT	ATTTCCGATT	1500
TTTCGTGTCG	TAACTAAGTT	GGTTTTTACT	AATGCTTTCA	TATGYTAGCT	AAGTGTAGGT	1560
TGAGAGAATT	GAAAATGTGC	TAACAAATCA	CAAGCGCATA	ACTCTCCACA	AGAAAGTAAA	1620
TCTAGTATTT	CTAATCTGCT	TGAATCTGAT	AAAACTTTTA	AAAATGTTGC	TAGTTCTTTA	1680
TACGTCATAA	CATACCTCCT	AGACGTTAAA	TAGATTATCA	TCTATATAGA	TGAATGTCTA	1740
TGTTCCTTTG	GTATATTACA	CGATATGACT	ATGTAATTTA	AATTTGGTTT	TAGTATTAAA	1800
AGGGTATTAA	AGATAAATTA .	TAGATATTGA	TTTTGCAAAA	TATACTCTTT	GTTCTGCATT	1860
GAAAAAGG						1868

(2) INFORMATION FOR SEQ ID NO: 102:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15249 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

ATTTATGAAA	TCCATAGCNA	TAAACATTAT	TCTTGCATCG	GCTATACAAA	CAGTTACCGC	60
AAGCAAATTT	GTATATCAAC	CTGGAATTGT	GTTCACGTCA	ATGGCaAATG	CCGATGATGT	120
GTTATCAGGC	GATAGTTATT	TTATGGCTGA	ATTAAAATCT	ATTAAGCGTA	TTGTTGAAAT	180
TCCAGATAAT	CAAAAAATAT	ACTGCTTTAT	AGATGAAATT	TTTAAAGGTA	CCAACACAAC	240
TGAAÇGAATT	GCCGCTTCAG	AATCAGTACT	ATCATTTTTA	CATGAAAAAT	CTAACTTTAG	300
AGTTATTGCA	GCAACACATG	ATATTGAGTT	AGCTGAACTC	TTAAAACAAC	GTTATGAAAA	360
TTACCATTTC	AATGAGGTAA	TAGAAAATAA	TAACATACAT	TTTGATTACA	AAATTAAGCC	420
TGGCAAAGCA	AATACACGTA	ATGCCATCGA	ATTATTAAAA	ATCACTTCAT	TTCCAGCAAA	480
AATATATGAA	CGAGCAAAAG	ATAATGTCCC	GAAAATTTAG	CATTTAACTT	TAAACATAAA	540
AACGTCAGCT	ATCACATGAC	AGAAGACTAT	GAACAGTTTC	AATAATGTTC	ATAGTAATCA	600
TGTTAATAAC	TGACGTTTAT	TTTATTCTGC	AGAATACTCT	тстааатста	TATTGCTGTG	660
CCCATTTAAT	GCTAAATCAG	CAAATCGACC	TTGCTGATAC	AAATAGTGGC	CGGCAACGCC	720
TATCATTGCA	GCATTATCTG	TGCATAATTT	AGGACTTGGG	ATAGTTAATT	GAATGTCATT	780

	AACAATTAAT	CGCTGAACAC	CATATTCTTT	ACAAGCTTGA	ATAGCTTTAA	ACGTGAGCAC	900
	CTCTACAACA	CTGTTTTGAA	AGCTCGTTGC	TACGTTAGCT	TCAATGATTG	GaATATTTT,	960
5	TTGTCGTTGA	TTGTGAAGTT	GATTGATTAC	GGCACTTTTC	AACCCACTAA	AACTAAAATC	1020
	ATAACTATCT	TTATCCAACC	AAACACGAGG	GAATGAATAA	GTATCTTCAC	CTTCAGCAGC	1080
10	CAACCGATCA	ACTTGTGGAC	CACCTGGATA	ATTTAAACCA	ATTGTTCGTG	CCACTTTATC	1140
,,	ATAAGCCTCA	CCTACTGCGT	CATCTCGTGT	TTCACCAATG	ACTTCAAATG	ATAAATGATC	1200
	CTTCATATAA	ACTAATTCAG	TATGTCCACC	TGAAACAATA	AGTGCAATTA	GCGGGAATGT	1260
15	TAATGGCTCT	TCTATGTGAT	TAGCATATAT	ATGTCCTGCA	ATATGATGAA	CAGGAATAAG	1320
	TGGCTnATCG	TAAGCAAATG	CCAATGCTTT	GGCTGCATTA	ACACCTATTA	GTAACGCACC	1380
	AATTAGTCCA	GGGCCTTCTG	TAACCGCTAT	GGCATCAATA	TCTTCTATTG	ATACATCGGC	1440
20 -	ATCCCCTAGA	GCCTCGTTTA	TTGTTGCTGT	TATACCTTCA	ACGTGATGTC	TACTTGCCAC	1500
	TTCGGGAACG	ACACCGCCAA	ATCGTTTATG	ACTTTCAATC	TGACTTAAAA	CTGTATTTGA	1560
	TAAAATATCT	CTGCCATTTT	TTATAACACT	AACGCTTGTT	TCATCACAAC	TTGTTTCAAC	1620
25	AGCTAGTATT	AATATATCTT	TAGTCATTTA	AATTCACCCA	CATAACCATT	GCGTCCTCAC	1680
	CTTCACCATA	ATTTTTAATA	CGTTTACCAC	CATATTGAAA	TCCTAAATTT	TCATATACAT	1740
30	GTTGTGCCAC	TTTATTATTA	ACTCTTACTT	CTAAACTCAT	CACATCACAA	GTGTGACTTG	1800
50	CATAGTTTAT	TCCGTATTTT	AAAAGCATTT	GACCTAAACC	ATAGCCTCTA	TAATTATCAT	1860
	CGATTGCAAC	TGTTGTAATT	TGAGCTTGAT	CGATAACAAT	CCATAAACCT	AAATAACCAA	1920
35	TAATTTGTTG	TTCAAATTCt	AAGACAAAAT	ATTTCGCAAA	GTTATTTTGC	TCTATTTCAT	1980
25 30 35	GATAAAATGC	GTCAATTGTC	CAAGAACTGT	CATTGAAACT	CCGACGCTCA	AGATCAAAGA	2040
	CTTGTGGCAC	ATCTTCTTTA	GTCATCTCTC	TAATGTTTAA	TTGTTCTTTT	GACTGTTGAT	2100
40	CCAATTTCGT	TCCGCCTCAG	CTAATTTATG	GTATTTAGGA	GTAAATGTAT	GTACGTCTGA	2160
	AGGTTTATCT	AGCAATTGAT	ACATGACTGA	TGCATTTGGT	AGCTGCGCAA	TCACTTCACC	2220
	TTGTAATTCA	TCTTGTAATT	TTACAGTATC	TTTCCCAATA	TAAATAAATG	GTTGGTTTAA	2280
45	ATCTTCTAAA	AAAGCTCGCA	ATGCCTCTAT	CGACATATAT	TGATCTTCTA	AAATAGTCAC	2340
	TAATTGACCA	TTTTGCCACT	GGAATATGCC	TGTATAAACT	GCTTGTCGTC	TTGCATCAAA	2400
	CACAGGAACC	TATTAATAA	CAGTATGATC	GATTGTTGCT	GCCAATGCCT	TTAATGATGA	. 2460
50	AACACCATAT	AATTTAACAT	CTAACGCATA	CGCTAATGTT	TTAGCAACAG	TAACACCGAT	2520
	ACGTAAGCCA	GTATATGAAC	CAGGACCTTC	AGCAACAATA	ATCGCATCTA	ATTGCTGTTT	2580

	TTGTTTAGAA	TCCGTAGTTA	TTTCAGCTAA	AACTTCATCG	TTTTGCATCA	ATGCTACTGA-	2700
	TAATGGTTGA	TTCGATGTAT	CAATGAGCAG	CGAATTCATG	GATAATTGCC	TCCTTAATTT	2760
5	GTTCATAATG	TTCTCCTTGC	GCGAACAACT	CAATTTGTCT	TGTATTTCA	GATATTGTTG	2820
	AAATGTTAAT	AGATAAATGC	GTCGCTGGAA	GTAAATCTTT	TATAAATTGA	CTCCATTCAA	2880
10	TAACAGTAAT	TGCCTGATCT	TCGAAAAATT	CATCAAATCC	TAAATCTTCA	TCAGAATCTT	2940
10	CTAAGCGATA	ACAATCCATA	TGATGCAATT	TTAAATTTTT	ACCCCTATAT	GATTTAATGA	3000
	TGTTAAATGT	CGGGGAATTA	ATCGTACGTC	TTACACCAAG	AGCTTTTCCT	ATAAATTGCG	3060
15	TTAACGTTGT	TTTACCTGCT	CCTAAATCTC	CGTTAAGTAA	AATCAAATCA	CCACTTTTCA	3120
	ATTGCTCAAC	ТАААААТАТА	GCAAATTGAT	TCATTTCATC	TAAATTATTT	ATCTTTATCA	3180
	ATGTTGATTC	TCCTATATTA	TGCTTTTCAT	TCATAAAAAT	GATTATCCAT	TGTTCAATCG	3240
20	TATCTAACTT	TATATTTAAC	CTTTATATTG	TAACAAATTT	CAACTTAAAT	TTCTTATCTT	3300
	TGAAACAGAT	TATCTATTCA	AAGTTAATTG	TAAGAAAATT	TTAAAAAT	GTTGACATAC	3360
	TAAAGCAGAT	ATAGTAAATT	AAATTTATCA	AATTTTTAGA	CAATTCTAAC	TATTAAAGTG	3420
25	ATATATACCA	TTCACGGAAG	GAGTATAATA	AAATGCTTAA	TCAATATACT	GAACATCAAC	3480
	CGACAACTTC	TTATTATAAA	ATTTTATTAT	ACTCTTTAGG	ACTCGAACGT	TAGTAAATAT	3540
	TTACTAAACG	CTTTAAGTCC	TATTTCTGTT	TGAATGGGAC	TTGTAAACGT	CCCAATAATA	3600
30	TTGGGACGTT	TTTTTATGTT	TTATCTTTCA	ATTACTTATT	TTTATTACTA	TAAAACATGA	3660
	TTAATCATTA	AAATTTACGG	GGGAATTTAC	TATGCGAaCG	AgcATGATCA	AAAAAGGAGA	3720
35	TCACCAAGCA	CCAGCAAGAA	GTCTTTTACA	TGCCACGGGC	GCGCTAAAAA	GTCCAACTGA	3780
	TATGAACAAA	CCATTTGTAG	CTATTTGTAA	CTCTTATATT	GATATTGTTC	CTGGACATGT	3840
	TCACTTGAGA	GAGCTTGCAG	ATATAGCTAA	AGAAGCAATT	AGAGAAGCCG	GTGCCATTCC	3900
40	ATTTGAATTC	AATACAATTG	GTGTTGATGA	TGGAATAGCT	ATGGGACATA	TCGGAATGCG	3960
	ATATTCTCTA	CCATCACGTG	AAATTATTGC	AGATGCAGCT	GAAACTGTAA	TTAACGCTCA	4020
	TTGGTTTGAC	GGCGTATTTT	ACATTCCTAA	TTGTGACAAG	ATTACACCCG	GTATGATTTT	4080
45	AGCAGCCATG.	AGGACAAACG	TACCAGCTAT	CTTTTGCTCT	GGTGGACCAA	TGAAAGCTGG	4140
•	CTTATCTGCA	CATGGAAAAG	CATTAACACT	TTCATCAATG	TTTGAAGCAG	TCGGCGCATT	4200
	TAAAGAAGGA	TCGATTTCTA	AAGAAGAATT	TTTAGATATG	GAACAAAATG	CCTGCCCTAC	4260
50	TTGTGGTTCA	TGTGCTGGGA	TGTTTACTGC	AAATTCAATG	AACTGTTTGA	TGGAAGTTTT	4320
	AGGTCTAGCA	TTACCATACA	ACGGTACTGC	ACTTGCAGTC	AGTGATCAGC	GACGAGAAAT	438n.

	TATCGTTACT	CGCGAAgCAA	TTGATGATGC	ATTTGCACTT	GATATGGCTA	TGGGTGGTTC	4500
	AACAAACACG	GTACTGCATA	CGTTAGCCAT	TGCCAATGAA	GCTGGTATTG	ATTATGACTT	4560
5	AGAGCGCATT	AATGCTATTG	CCAAACGCAC	GCCATATTTA	TCAAAAATAG	CACCTAGTTC	4620
	ATCGTATTCA	ATGCATGATG	TGCATGAAGC	TGGTGGCGTC	CCAGCAATTA	TTAATGAATT	4680
10	GATGAAGAAA	GATGGCACGT	TACACCCAGA	TAGAATCACA	GTTACTGGCA	AAACGTTACG	4740
,,	TGAAAATAAC	GAAGGCAAAG	AAATTAAGAA	CTTTGATGTC	ATTCACCCTC	TTGATGCACC .	4800
	ATATGATGCA	CAAGGCGGTT	TATCTATCTT	ATTTGGTAAT	ATCGCCCCTA	AAGGCGCAGT	486
15	TATTAAAGTT	GGCGGCGTTG	ATCCATCTAT	CAAAACATTT	ACTGGGAAAG	CAATTIGTTT	4920
	CAATTCGCAT	GATGAAGCTG	TTGAAGCAAT	AGACAATCGT	ACCGTTCGTG	CAGGCCACGT	4980
	CGTTGTCATT	AGATATGAAG	GACCTAAAGG	TGGACCAGGT	ATGCCTGAAA	TGTTAGCACC	5040
20	TACTTCCTCT	ATTGTTGGTC	GCGGCTTAGG	TAAAGATGTT	GCATTAATTA	CTGATGGGCG	5100
	TTTTTCCGGT	GCCACAAGAG	GTATTGCAGT	TGGTCATATT	TCCCCTGAAG	CTGCATCTGG	5160
	TGGACCAATT	GCCTTAATTG	AAGATGGTGA	TGAGATTACT	ATTGATTTAA	CAAATCGTAC	5220
25	ATTAAACGTA	AACCAGCCTG	AAGATGTTCT	AGCGCGTCGC	CGAGAATCTT	TAACACCATT	5280
•	TAAAGCGAAA	GTAAAAACAG	GTTATCTAGC	TCGTTATACT	GCCCTAGTAA	CTAGCGCAAA	5340
30	TACAGGTGGC	GTCATGCAAG	TCCCTGAGAA	TTTAATTTAA	TTTATTTTTA	TATTGGAGAT	5400
,	GGTTAAAATG	TCTAAAACTC	AACATGAAGT	AAACCAAAAT	ATTGACCCTT	TAAAAATGGC	5460
	TGAATCACTT	GAACCTGAAC	AACTAAATGA	AAAAACTTTA	AATGATATGC	GTTCAGGATC	5520
35	AGAAGTGCTA	GTAGAAGCTC	TACTTAAAGA	AAATGTGGAT	TATTTATTCG	GTTATCCTGG	5580
•	TGGTGCCGTA	CTACCTTTAT	ATGACACGTT	TTATGATGGT	AAAATCAAAC	ATATTTTAGC	5640
	AAGACACGAA	CAAGGTGCTG	TTCATGCTGC	AGAAGGTTAT	GCACGTGTAT	CTGGTAAamT	5700
40	GGCGTCGTTG	TAGTTACAAG	CGGTCCaGGT	GCAACTAATG	TAATGACAGG	TATTACGGAT	5760
	GCACATTGCG	ACTCTTTACC	TCTAGTTGTA	TTCACTGGAC	AAGTTGCTAC	ACCAGGCATT	5820
	GGTAAAGATG	CATTCCAAGA	AGCGGATATT	CTATCTATGA	CTTCACCAAT	TACAAAACAA	5886
15	AATTATCAAG	TGAAACGTGT	TGAAGATATC	CCTAAAATCG	TACACGAAGC	TTTCCATGTA	594
	GCTAATTCTG	GACGCAAAGG	TCCTGTAGTG	ATTGATTTTC	CAAAAGATAT	GGGTGTTTTA	6000
	GCTACAAATG	TGGATTTATG	CGACGAAATC	AATATTCCAG	GTTATGAAGT	TGTTACAGAA	6066
50	CCAGAAAATA	AAGACATTGA	CACTTTCATC	TCACTTTTAA	AAGAAGCGAA	AAAGCCTGTC	6120
	CM1 MM1 CCCC	COCCNOCONN	m> > ma> > ma>	******	א מיושו מיושו א כי	A CA COMPONIO	630

	GATACACTAT	TTTTAGGTAT	GGGAGGAATG	CATGGTTCTT	ATGCTAGTAA	CATGGCATTA	6300
	ACTGAGTGTG	ATTTACTCAT	TAATTTAGGT	AGCCGCTTCG	ATGATAGATT	AGCAAGCAAA	6360
5	CCTGATGCCT	TTGCACCTAA	CGCCAAAATT	GTACATGTAG	ATATTGATCC	TTCAGAAATC	6420
	AATAAAGTTA	TTCATGTAGA	TTTAGGTATT	ATTGCAGACT	GTAAAAGATT	TTTAGAATGT	6480
10	TTAAATGATA	AAAATGTTGA	GACTATAGAA	CACAGTGACT	GGGTTAAACA	TTGTCAAAAT	6540
,	AATAAGCAGA	AACACCCATT	TAAACTTGGT	GAAGAAGATO	AAGTATTTTG	TAAGCCACAA	6600
	CAAACAATCG	AATATATCGG	CAAAATTACA	AATGGTGAAG	CAATTGTTAC	TACAGACGTG	6660
15	GGACAACATC	AAATGTGGGC	AGCTCAATTT	TATCCATTTA	AAAATCACGG	ACAATGGGTT	6720
	ACAAGCGGTG	GTTTAGGAAC	AATGGGATTC	GGTATTCCTT	CGTCAATTGG	TGCCAAATTA	6780
	GCTAATCCTG	ATAAAACAGT	CGTATGTTTC	GTCGGTGACG	GTGGTTTCCA	AATGACAAAC	6840
20	CAAGAAATGG	CACTTTTACC	CGAATATGGT	TTAGATGTCA	AAATCGTACT	AATCAATAAT	6900
	GGAACATTAG	GTATGGTTAA	ACAATGGCAA	GATAAGTTCT	TTAATCAACG	CTTCTCACAC	6960
	TCAGTATTTA	ATGGTCAACC	TGATTTTATG	AAAATGGCAG	AAGCATATGG	CGTCAAAGGT	7020
25	TTCTTAATCG	ATAAGCCAGA	ACAACTGGAA	GAACAATTAG	ATGCAGCGTT	TGCTTATCAA	7080
	GGACCAGCTT	TAATTGAGGT	TCGTATTTCC	CCTACTGAAG	CTGTAACCCC	AATGGTTCCG	7140
20	AGTGGCAAAT	CAAATCATGA	AATGGAGGGC	TTATAATGAC	AAGAATTCTT	AAATTACAAG	7200
30	TTGCGGATCA	AGTCAGCACG	CTAAATCGAA	TTACAAGTGC	TTTTGTTCGC	CTACAATATA	7260
	ATATCGATAC	ATTACATGTE	ACACATTCTG	AACAACCTGG	GATTTCTAAC	ATGGAAATTC	7320
35	AAGTCGATAT	TCAAGATGAT	ACATCACTTC	TATTTATTA	TAAAAAATTA	AAACAACAAA	7380
	TTAATGTTTT	AACGGTTGAA	TGCTACGACC	TTGTTGATAA	CGAAGCTTAA	TTTTAAGACA	7440
	AAGGÇAATGA	TGCGCTAATT	AGTTATAGAT	ATATCATAGG	CTGCTAGTTA	ACATCTGCCA	7500.
10	CTATTACAAA	GTTATATTTC	AGAATTTTCG	AAACACAAAA	ATTAATTA	TTTGGAGGAA	7560
	TTTATTATGA	CAACAGTTTA	TTATGATCAA	GATGTAAAAA	CGGACGCTTT	ACAAGGCAAA	7620
	AAAATTGCAG	TAGTAGGTTA	TGGATCACAA	GGTCACGCGC	ATGCACAAAA	CTTAAAAGAC	7680
15	AATGGATATG .	ATGTAGTCAT	CGGCATTCGC	CCAGGTCGTT	CTTTTGACAA	AGCTAAAGAA	7740
	GATGGATTTG .	ATGTGTTCCC	TGTTGCAGAA	GCAGTTAAGC	AAGCTGATGT .	AATTATGGTG	7800
	CTATTACCTG .	ATGAAATTCA	AGGTGATGTA	TACAAAAACG	AAATTGAACC .	AAATTTAGAA	7860
50	AAACATAATG	CGCTTGCATT	TGCTCATGGC	TTTAACATTC	ATTTTGGTGT	TATTCAACCA	7920
	CCAGCTGATG '	TTGATGTATT	TTTAGTAGCT	ССТАВАССАС	CGCGTCATTT	ለርም የአር አርርም	2000

	CAAGCACGTA	ATATTGCTTT	AAGTTATGCA	AAAGGTATTG	GTGCAaCTCG	TGCAGGTGTT	8100
	ATTGAAACAA	CATTTAAAGA	AGAAACTGAG	ACAGATTTAT	TTGGTGAACA	AGCAGTACTT	8160
5	TGCGGTGGTG	TATCGAAATT	AATTCAAAGT	GGCTTTGAAA	CATTAGTAGA	AGCGGGTTAT	8220
	CAACCAGAAT	TAGCTTATTT	TGAAGTATTA	CATGAAATGA	AATTAATCGT	TGATTTGATG	8280
	TATGAAGGCG	GTATGGAAAA	TGTACGTTAC	TCAATTTCAA	ATACTGCTGA	ATTTGGTGAC	8340
10	TATGTTTCAG	GACCACGTGT	TATCACACCA	GATGTTAAAG	AAAATATGAA	AGCTGTATTA	8400
	ACTGATATCC	AAAATGGTAA	CTTCAGTAAT	CGCTTTATCG	AAGACAATAA	AAATGGATTC	8460
15	AAAGAATTTT	ATAAATTACG	CGAAGAACAA	CATGGTCATC	AAATTGAAAA	AGTTGGTCGT	8520
	GAATTACGCG	AAATGATGCC	TTTTATTAAA	TCTAAAAGCA	TTGAAAAATA	AGATAGACCT	8580
•	ACAATGAGGA	GTTGTTAAAT	ATGAGTAGTC	ATATTCAAAT	TTTTGATACG	ACACTAAGAG	8640
20	ACGGTGAACA	AACACCAGGA	GTGAATTTTA	CTTTTGATGA	ACGCTTGCGT	ATTGCATTGC	8700
	AATTAGAAAA	ATGGGGTGTA	GATGTTATTG	AAGCTGGATT	TCCTGCTTCA	AGTACAGGTA	8760
	GCTTTAAATC	TGTTCAAGCA	ATTGCACAAA	CATTAACAAC	AACGGCTGTA	TGTGGTTTAG	8820
25	CTAGATGTAA	AAAATCTGAC	ATCGATGCTG	TATATGAAGC	AACAAAAGAT	GCAGCGAAgC	8880
	CGGTcGTGCA	TGTTTTTATA	GCAACATCAC	CTATTCATCT	TGAACATAAA	CTTAAAATGT	8940
	CTCAAGAAGA	CGTTTTAGCA	TCTATTAAAG	AACATGTCAC	ATACGCGAAA	CAATTATTTG	9000
30	ACGTTGTTCA	ATTTTCACCT	GAAGATGCAA	CGCGTACTGA	ATTACCATTC	TTAGTGAAAT	9060
	GTGTACAAAC	TGCCGTTGAC	GCTGGAGCTA	CAGTTATTAA	TATTCCTGAT	ACAGTCGGCT	9120
35	ACAGTTACCA	TGATGAATAT	GCACATATTT	TCAAAACCTT	AACAGAATCT	GTAACATCTT	9180
	CAAATGAAAT	TATTTATAGT	GCTCATTGCC	ATGACGATTT	AGGAATGGCT	GTTTCAAATA	9240
	GTTTÄGCTGC	AATTGAAGGC	GGTGCGAGAC	GAATTGAAGG	CACTGTAAAT	GGTATTGGTG	9300
40	AACGAGCAGG	TAATGCAGCA	CTTGAAGAAG	TCGCGCTTGC	ACTATACGTT	CGAAATGATC	9360
	ATTATGGTGC	TCAAACTGCT	CTTAATCTCG	AAGAAACTAA	AAAAACATCG	GATTTAATTT	9420
	CAAGATATGC	AGGTATTCGA	GTGCCTAGAA	ATAAAGCAAT	TGTTGGCCAA	AATGCATTTA	9480
45	GTCATGAATC	AGGTATTCAC	CAAGATGGCG	TATTAAAACA	TCGTGAAACA	TATGAAATTA	9540
	TGACACCTCA	ACTTGTTGGT	GTAAGCACGA	CTGAACTTCC	ATTAGGAAAA	TTATCTGGTA	9600
	AACACGCCTT	CTCAGAGAAG	TTAAAAGCAT	TAGGTTATGA	CATTGATAAA	GAAGCGCAAA	9660
50	TAGATTTATT	TAAACAATTC	AAGGCCATTG	CGGACAAAAA	GAAATCTGTT	TCAGATAGAG	9720
	3 m3 mm a3 maa	~> ~~~ ~					

	AAGAGGGTCA	TATTTACCAG	GATTCAAGTA	TTGGTACTGG	TTCAATCGTA	GCAATTTACA	9900
	ATGCAGTTGA	TCGTATTTTC	CAGAAAGAAA	CAGAATTAAT	TGATTATCGT	ATTAATTCTG	9960
5	TCACTGAAGG	TACTGATGCC	CAAGCAGAAG	TACATGTAAA	TTTATTGATT	GAAGGTAAGA	10020
	CTGTCAATGG	CTTTGGTATT	GATCATGATA	TTTTACAAGC	CTCTTGTAAA	GCATACGTAG	10080
10	AAGCACATGC	TAAATTTGCA	GCTGAAAATG	TTGAGAAGGT	AGGTAATTAA	TTATGACTTA	10140
	TAACATTGTT	GCCCTACCTG	GTGATGGAAT	CGGTCCAGAA	ATTTTGAACG	GATCTCTATC	10200
	ATTGCTTGAA	ATTATAAGTA	ATAAATATAA	CTTTAATTAT	CAAATAGAGC	ACCACGAATT	10260
15	TGGTGGTGCC	TCTATTGATA	CATTCGGCGA	GCCTTTAACT	GAGAAAACCT	TAAATGCGTG	10320
	TAAAAGAGCA	GATGCTATTT	TACTGGGTGC	AATCGGTGGA	CCTAAATGGA	CAGATCCTAA	10380
	CAATCGACCA	GAACAAGGAT	TATTAAAATT	GCGTAAATCC	TTAAATTTAT	TTGTAAATAT	10440
20	ACGCCCCACT	ACCGTTGTCA	AAGGCGCTAG	TTCTTTATCA	CCTTTAAAGG	AAGAACGCGT	10500
	TGAAGGCACA	GATTTAGTTA	TAGTCCGTGA	ATTGACAAGT	GGTATTTATT	TTGGAGAACC	10560
	TAGACATTTT	AATAATCACG	AGGCCTTAGA	TTCTCTTACT	TATACAAGAG	AAGAAATAGA	10620
25	ACGCATTGTT	CACGTAGCAT	TTAAATTGGC	CGCTTCAAGA	CGAGGAAAAC	TAACATCAGT	.10680
	TGATAAAGAA	AATGTATTAG	CTTCTAGTAA	ATTGTGGCGC	AAAGTCGTAA	ATGAAGTAAG	10740
30	TCAATTATAT	CCAGAAGTAA	CAGTAAATCA	CTTATTTGTT	GATGCTTGTA	GTATGCATTT	10800
	AATCACAAAT	CCAAAACAAT	TTGACGTCAT	CGTATGTGAA	AACTTATTTG	GCGATATTTT	10860
	AAGTGATGAA	GCTTCAGTGA	TTCCTGGTTC	ACTTGGTTTA	TCACCTTCTG	CTAGTTTTAG	10920
35	TAACGATGGT	CCAAGATTGT	ATGAGCCTAT	TCATGGATCA	GCACCAGATA	TTGCAGGTAA	10980
	AAACGTTGCC	AATCCATTTG	GAATGATTCT	ATCTTTAGCG	ATGTGTTTAC	GTGAAAGCTT	11040
	AAATCAACCA	GATGCTGCAG	ATGAATTAGA	ACAACATATT	TATAGCATGA	TTGAACATGG	11100
40	GCAAACGACA	GCAGATTTAG	GCGGCAAATT	GAATACTACT	GATATTTTCG	AAATTCTATC	11160
	TCAAAAATTG	AATCACTAAG	GGGGAGATGT	AAATGGGTCA	AACATTATTT	GACAAGGTGT	11220
	GGAACAGACA	TGTGTTATAC	GGGAAATTGG	GCGAACCGCA	ACTATTATAC	ATTGATTTAC	11280
45	ACCTTATACA	TGAAGTTACT	TCTCCTCAAG	CATTTGAAGG	ACTTAGGCTT	CAAAACAGAA	11340
	AATTAAGACG-	CCCAGATTTA	ACATTTGCAA	CACTCGATCA	CAATGTTCCT	ACTATTGATA	11400
50	TATTCAATAT	TAAAGATGAA	ATTGCAAACA	AACAAATCAC	AACATTACAA	AAAAACGCCA	11460
50	TAGATTTTGG	GGTGCATATT	TTTGATATGG	GTTCTGATGA	ACAAGGTATT	GTTCACATGG	11520
	TAGGACCTGA	GACAGGACTT	ACACAGCCTG	GCAAGACAAT	CGTTTGTGGT	GACTCTCACA	11580

	ATGTTTTCGC	AACTCAAACG	CTATGGCAAA	CAAAACCCAA	AAACTTAAAA	ATCGATATTA	11700
	ATGGTACCTT	ACCAACAGGC	GTCTATGCTA	AGGACATTAT	TCTGCATTTA	ATTAAAACGT	11760
5	ATGGTGTTGA	CTTTGGTACA	GGCTATGCTT	TGGAATTTAC	TGGCGAAACA	ATTAAAAACC	11820
	TTTCAATGGA	TGGTCGAATG	ACTATTTGTA	ACATGGCTAT	CGAAGGTGGT	GCCAAATACG	11880
	GCATAATCCA	ACCTGATGAT	ATAACATTTG	AATATGTTAA	AGGGAGACCA	TTTGCCGATA	11940
10	ACTECGCTAA	ATCAGTTGAT	AAGTGGCGTG	AgCTATATTC	TGATGACGAC	GCGATATTTG	12000
	ATCGTGTAAT	TGAACTTGAT	GTTTCAACAT	TAGAACCACA	AGTGACATGG	GGAACTAATC	12060
15	CTGAAATGGG	TGTTAATTTC	AGTGAACCAT	TCCCTGAAAT	CAATGATATC	AACGATCAAC	12120
	GTGCGTATGA	TTATATGGGG	TTAGAACCAG	GTCAAAAAGC	TGAAGACATC	GACTTAGGGT	12180
	ATGTTTTTCT	CGGTTCATGT	ACAAATGCTA	GACTATCAGA	TTTGATTGAA	GCTAGTCATA	12240
20	TTGTTAAAGG	AAATAAAGTT	CATCCAAATA	TTACAGCTAT	TGTCGTACCA	GGTTCTCGTA	12300
	CAGTAAAAA	AGAAGCAGAA	AAATTAGGTC	TAGATACTAT	CTTTAAAAAT	GCAGGATTTG	12360
•	AATGGCGTGA	ACCAGGATGT	TCAATGTGTT	TAGGCATGAA	TCCTGACCAA	GTACCTGAGG	12420
25	GCGTACATTG	TGCATCTACA	AGTAATCGAA	ACTTTGAAGG	ACGACAAGGC	AAAGGTGCAA	12480
	GAACACATTT	AGTATCCCcT	GCTATGGCAG	CAGCAGCAGC	TATTCATGGT	AAATTTGTGG	12540
	ACGTAAGAAA	GGTGGTTGTT	TAAATGGCAG	CAATCAAACC	TATTACAACA	TATAAAGGTA	12600
30	AAATAGTCCC	TCTCTTCAAC	GACAATATCG	ATACAGACCA	AATCATTCCT	AAGGTACACT	12660
	TAAAGCGTAT	TTCAAAAAGT	GGCTTTGGTC	CATTTGCTTT	TGATGAATGG	CGGTACTTAC	12720
35	CTGATGGTTC	AGATAATCCT	GATTTCAATC	CTAACAAACC	ACAATATAAA	GGGGCTTCTA	12780
	TTTTAATTAC	TGGAGATAAT	TTTGGATGTG	GTTCAAGTCG	TGAACATGCT	GCTTGGGCTC	12840
	TTAAGGACTA	TGGTTTTCAT	ATTATTATTG	CAGGAAGTTT	CAGTGACATA	TTTTATATGA	12900
40	ATTGCACTAA	AAATGCGATG	TTGCCTATCG	TTTTAGAAAA	AAGTGCCCGT	GAACATCTTG	12960
	CACAATATGT	TGAAATTGAG	GTCGATTTAC	CAAATCAAAC	TGTGTCATCA	CCAGACAAGC	13020
	GTTTCCATTT	TGAAATTGAT	GAAACTTGGA	AGAATAAACT	TGTAAATGGC	TTAGATGACA	13080
15 .	TTGCAATCAC	CCTACAATAT	GAATCATTAA	TAGAAAAATA	TGAAAAATCa	CTTTAAGGGA	13140
	GTTGAATATT	ATGACAGTCA	AAACAACAGT	TTCTACGAAA	GATATCGATG	AGGCATTTTT	13200
	AAGACTTAAA	GATATTGTCA	AAGAAACACC	TTTACAATTA	GACCATTACT	TATCTCAAAA	13260
50	GTATGATTGT	AAAGTCTATT	TAAAACGAGA	AGATTTACAA	TGGGTACGTT	CTTTTAAATT	13320
	AAGAGGTGCT	TACAACGCTA	ԱՎՆԻՆԻՆԻՆԻ	ATCAGATGAA	ССТАВАВСТВ	አ ልርርጥአጥጥልር	13390

	AAACGCTGTT	ATCTTTATGC	CAGTCACTAC	ACCTTTACAA	AAGGTAAATC	AAGTAAAGTT	1350
	CTTTGGAAAT	AGTAACGTTG	AAGTTGTACT	CACTGGTGAT	ACATTTGATC	ACTGTTTAGC	13560
5	TGAAGCTTTA	ACTTATACAA	GTGAACATCA	AATGAACTTT	ATAGATCCAT	TCAATAATGT	13620
•	TCATACAATT	TCTGGACAAG	GTACGCTTGC	TAAAGAAATG	CTAGAACAAG	CAAAGTCTGA	13680
	CAATGTTAAC	TTTGATTATC	TATTTGCCGC	AATTGGTGGT	GGCGGTTTAA	TTTCAGGTAT	13740
10	TAGTACTTAC	TTTAAAACCT	ATTCACCTAC	CACGAAAATT	ATAGGTGTTG	AACCTTCAGG	13800
	TGCAAGTAGT	ATGTATGAAT	CTGTTGTGGT	AAATAATCAG	GTAGTCACAT	TGCCTAATAT	13860
15	CGATAAATTT	GTGGACGGTG	CATCTGTAGC	TAGAGTTGGC	GATATTACAT	TTGAAATTGC	13920
	AAAAGAAAAT	GTAGATGATT	ACGTTCAAGT	AGATGAAGGT	GCAGTTTGTT	CTACGATTTT	13980
	AGATATGTAT	TCAAAACAAG	CAATTGTAGC	AGAACCTGCT	GGCGCATTAA	GTGTAAGTGC	14040
20	GCTTGAAAAC	TATAAAGATC	ATATTAAAGG	TAAAACAGTG	GTTTGTGTCA	TTAGTGGTGG	14100
	TAATAATGAT	ATTAATCGAA	TGAAAGAAAT	TGAAGAACGT	TCATTACTAT	ACGAAGAAAT	14160
	GAAGCATTAC	TTTATCTTAA	ATTTCCCTCA	ACGTCCAGGT	GCATTGAGAG	AATTTGTAAA	14220
25	TGACGTATTA	GGACCTCAAG	ACGATATTAC	TAAATTTGAA	TACTTAAAAA	AATCTTCTCA	14280
	AAATACAGGT	ACTGTCATTA	TTGGTATTCA	ACTTAAAGAT	CATGATGATT	TAATACAACT	14340
	CAAACAACGT	GTAAAtCATT	TCGATCCTTC	CAATATTTAT	ATTAATGAAA	ATAAGATGTT	14400
30	ATATTCATTG	TTAATTTAAC	ACATAGTAAG	AAAAACAGTC	ATAAATTGAT	TTCTAATTGA	14460
	AATCATCTTA	TGACTGCTTT	TTATTATACT	TTACATTTCT	CGTTTCGTCA	GATTCAAACG	14520
35	TTTTCACTTC	GCCAAGCCAT	CTTTCTTTGT	GTTTGCTTTT	aTTTTGACGT	TTTAGACATA	14580
	AAAAAaGAGA	CCTTGCGGTC	TCAATGCGGC	TCATCGCATC	CACTTTTTGC	CTGGCAACGT	14640
	TCTACTCTAG	CGGAACGTAA	GTTCGaCTAC	CATCGACGCT	AAGGAGCTTA	ACTTCTGTGT	14700
40	TCGGCATGGG	AACAGGTGTG	ACCTCCTTGC	TATAGTCACC	AGACATATGÀ	ATGTAATTTA	14760
	TACATTCAAA	ACTAGATAGT	AAGTAAAAGT	GATTTTGCTT	CGCAAAACAT	TTATTTTGAT	14820
	TAAGTCTTCG	ATCGATTAGT	ATTCGTCAGC	TCCACATGTC	ACCATGCTTC	CACCTCGAAC	14880
45	CTATTAACCT	CATCATCTTT	GAGGGATCTT	ATAACCGAAG	TTGGGAAATC	TCATCTTGAG	14940
	GGGGGCTTCA	TGCTTAGATG	CTTTCAGCAC	TTATCCCGTC	CACACATAGC	TACCCAGCTA	15000
	TGCCGTTGGC	ACGACAACTG	GTACACCAGA	GGTATGTCCA	TCCCGGTCCT	CTCGTACTAA	15060
50	GGACAGCTCC	TCTCAAATTT	CCTACGCCCA	CGACGGATAG	GGACCGAACT	GTCTCACGAC	15120
	GTTCTGAACC	CACCTCCCCT	ACCICCOTOTO A	TOCOCOCAROS	CCCCN N CCCC	TCCCACCCAC	

	GTGGAACTT	15249
	(2) INFORMATION FOR SEQ ID NO: 103:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14051 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
15	GTGGCAATAT TTCTAGTTCT CGTTTTGATA AGATTTTAAA AGGATCTGTT GTGTTTGCAG	60
	TGTCCTGATT TGAATTAGAT ACAAATTCAT TCACTAAAGA TGTTGTAAGT TTCATATCTA	120
	CATATGTTTC ACCTTTATAT ACAGTTCGAA TAGCTAACAA TAATTGTTCA TCAGGTGCAT	180
20	TTTTCAATAT GTAACCTTTC GCACCATTAC GCAACACATG GAACAAATAC TCCTCATCAT	240
	CAAACATTGT TAATATTAGT ATTTTAGTTT CAGGAAAACT GTCAGCAATT TTACTCGTAG	300
	CGATAAGACC TGACTCACCT GGTGGCATAC TTAAATCCAT TAGTAACACA TCAGGTTTAL	360
25	ATTCCATTAC TTTTTGGTAA GCTTCGACGC CATCTGCAGC CGTTGCAACA ACTTCCATAT	420
	CATTTTGATA ATTTAAAATC ATAGAGAACC CCGTACGGAC AACAGCGTGA TCATCGGCAA	480
	TGACTATTTT CAATTTTATT CCCCCAATGT ATGTTTCAAA TTGGAATGTT CAATGTAACA	540.
30	TTGGTACCCT CACCAATTTT CGTTTCAATA TTGACGCTAC CGCTGACTAA CTCAGCTCGC	600
	TCATTCATTC CATATAAACC GAGTCCAGAA CCTTTAGGCT TAGAACTTGG ATCAAAACCA	660
35	TTTCCCGCAT CTATCACTTC TGCTACCAAA TGGCGCCCAG TTTGACGGAT ACCTACATTT	720
55	ATTTCATTTA CATCAGCGTA TTTCAACGCA TTTAAAATAG CTTCTTGCAC TACTCGATAA	780
	ACAACCGTTT CAATATCACT ATCAAAGCGA GTATTTTTAA TATTTGATGT ATATATGATT	840
40	TTTATTCCAT AATTTTCTTC AAACTGTTTA AAATATGATT TAAAAGCTGC TTCAAGGCCT	900
	AGATCATCCA AAGAAGCGGG TCTTAATTCA ACCGACATAT TACGTATATC ATCAATTAAT	960
	TTAGCGACAA TATATTCAAT ATTTTCTGCG TCTTCCAAAA GCTTAGTTGT ATCTTCTTGA	1020
45	TATTTTAATA ATCTCAATTG AACATCTACA TTGAGCATTT CTTGAATCAC ACTATCATGT	1080
	AACTCTCTAG AAATTCGCTT TCTTTCATTT TCTTGGGCTG AGATTGTTTT ACGCATCATA	1140
	CGTTGTTGAT GCAATTTCTC TTGCTGTTCA ATTTGTGATG AAACATTTTG AAGCGTAAAT	1200
50	GCATGAATTC CCCTGTCTTG ATCAATCAAC TGATATGTTG CTGTAAATGG CATCACTTTT	1260

55

1320

TGATCTTTCG TCTTCATAAA TACTTGGAAA TTCGTAGCTT GTACTTGCAT CGATTCTAAG

•	ATCGCATTCG	CCACAGCACT	GTAATTATCT	TCTTCAGATA	ATATATCTTT	AGCAGCATCA	1440
	TTCATTGCAA	TAATTTTACC	GTTATCATCA	GCAAAAACTA	TCTTTTCGAT	TGAATGCTCA	1500
5	TAATATTTT	TCAATAAAGT	ATCTAACTGT	ATACTGTCCT	CATTAATCAT	GACTTACACC	1560
	CTAATTCATC	TCATTATTTA	TCATCATTGA	AAATACCAAA	CTTACGTTGA	ATATCATCAT	1620
	TATCAAATAT	TTTTGGTAAA	GGACGACCAT	CTCTTTGACC	- AAATAATAGT	ACGCCATACA	1680
10	CTTGATTCTT	ATACCAAAGC	GGCACTGCTA	AAACTGCTGT	TAATGATTCG	СТСААТАААА	1740
	TTGGATAGTC	AATCTTTTCT	TCAGGCCCTA	AAGCTAAACC	AACATTGGCT	ATTACCATAC	1800
15	GCTTTCCTGT	TTTCATAACA	GTTCCAGCTA	ATCCACGACC	TTTTCTTAAA	ATAATCAATT	1860
	TAAATCGATT	ATTTTTATTA	CCTGAAACAT	AGTGCCATTT	TATTGGAGAT	GATGGTTTGT	1920
	TAGATTCATA	GAAAGCGATT	GCCGCAAAAT	CATAACCCTC	TTCTTTGCGT	ATTTTATCTA	1980
20	ATGTCTCTTG	AAATCTACGA	TCTTCAATTA	TTGCTTCTGG	TGTCAAATCC	TTTCACCTCT	2040
	TATGCTTACA	CTTTATTCTT	ACGGTAAATA	ATATATCTGC	GATTTATATA	TGTCAAAGGT	2100
	ACACTCCAAA	CATGCACCAA	ACGTGTAAAT	GGCCAACAAG	CCATAATAGT	GAAACCTAAC	2160
?5	AATATATGCA	TTTTAAATGC	AATCGGCACA	CCACTCATCA	ATGACGCATC	TGGTTTTAAC	2220
	ATAAATAATT	GTCTAAACCA	AATTGATAAT	GAAGTTCTGT	AGTTAAAGTC	TGGATGTTGT	2280
	ATATTTGTTA	CTAATGTTGC	GTAACATCCC	ATAAATACGA	TAAGTAATAA	TAAGAAATTT	2340
30	ACAAATATAT	CCGACGCTGA	ACTTAATCTT	CGAATACTTT	TCGTAGTAAC	ACGTCTCGCT	2400
	GTTAATAAAA	ACATCCCTAT	CAAAGTTATT	ATACCAAAGA	TGCTACCAAT	ATAAACAGCG	2460
15	CCTATATGAT	ATAAATGCTC	AGACACACCC	ACTGCATCCA	TCCATGGTTT	CGGTATTAAC	2520
•	AATCCAACTA	CGTGTCCAAA	AAACACTGGA	ATAATACCTA	agtgaaataa	TAAACTTCCC	2580
	CACATCAACC	TTTTTCTTTC	TATTAATTCA	CTAGATTTAG	CTGTCCAAGA	AAATTTATCA	2640
0	TAACGATAAC	GTGCAATATG	ACCTGCGACA	AAGACAACTA	AACATAAATA	CGGAAATATA	2700
	ACCCATAAAA	ACTGATTAAG	CATGATGTTT	CACTCCTTTT	GGTGATGTCA	AACATAATTT	2760
	CAATGTTTTT	CTAAGTGCTT	GAATCACATA	GGCATATGGA	TTGTTATCTT	CACCAAGTGC	2820
5	ATTCGCCATC	ACATATGTTC	CATCCTCAAT	AATCATAATG	ATTAATTGAA	TATTCTCTTC	2880
•	AGCTCTTGGA	TCATTTCGCC	ATTCTGCCAC	TTGCAAAAAT	TGAAGCATCA	ACGGTAGATA	2940
	ATCAGAAAGT	TCATTATCTA	CCATTTCTAG	TCCAAACATT	TCATATAATA	CCTTTAATTT	3000
0	AGCTAACATT	TGCCCACGTT	CTTTTTGCGT	ATCAAATTTG	TTATACGTCA	TATATAATGG	3060
	TGCTTTTTTC	GTAAAATCAA	ATGTATCTGT	ATAAATCGCT	TTGATTTCTG	ATAATGAAAA	3120

	TGTTTCTTCA	AAAGTTTTTG	GATGAAAAGT	TAATTTTTCT	GGAAAACATA	ACTGTTGTGC	3240
	CATATATCCA	AAACTTTCTT	GATATTTTT	AAAATTATCG	AAATTAATCA	CGGAAAATCC	3300
5	CTCCATAGAA	ATTCTCATTA	TAAATTTCTT	GACCAGTTTT	CCCTGAACCT	ACTGCAACGC	3360
	CACAGCCTTC	ACAGTTATCT	CCAAAATGCT	CGCCGCCGTA	ATTGTATCCT	GTACTACCTT	3420
10	GTGCGTGATA	CGTATCTAAA	TAGGTTTCTT	TGTGTGATGT	TGGAATAACA	AATCGATCTT	3480
	CATATTTGGC	TAGTCCTAAT	AAACGATACA	TGTCTTTAGT	TTGGCGCTCG	GTTATACCTA	3540
	ATCGCTCTAA	TCGAGACGTG	TCAAATGGCT	GTTGAGTAAC	TTGAGATCTC	ATATAACTTC	3600
15	TCATCATTGC	CATACGTTGT	AGGGCTCCTT	TTACTGGCTC	TGTATCTCCT	GCAGTGAAAA	3660
	TATTAGCTAA	GTATTCAATA	GGTAAACGCA	TTTCTTCAAT	GGCTGGGAAA	ATCGCATCTG	3720
	GATTTTGAGT	TGTATTTTTA	CCTTCAAAAT	AGCTCATAAT	TGGGCTAAGT	GGTGGGCAAT	3780
20	ACCAAACCAT	CGGCATCGTT	CTAAATTCAG	GATGTAACGG	AAATGCAAGT	TTATATTCAA	3840
	TTGCTAACTT	ATAAATTGGA	GAGTTTTGTG	CAGCTTCAAT	CCAATCGTAA	CCAATACCAT	3900
	CTTTTTCAGC	TTGAGCAATG	ACTTCTTCGT	CAAATGGGTT	TAAGAATATA	TCTAATTGTT	3960
25	TITCATATAA	ATCTTTCTCG	TCTACTGCTG	AAGCTGCTTC	ATGAACTCGA	TCTGCATCAT	4020
	ATAATAAAAC	ACCTAAGTAA	CGCATACGTC	CTGTACAAGT	TTCAGAGCAT	ACCGTAGGCA	4080
30	TACCCGCCTC	GATTCTCGGG	AAACAGAAAG	TACACTITTC	AGCTTTGTTC	GTTTTCCAAT	4140
50	TGAAGTAAAC	TTTCTTATAT	GGACAACCTG	TCATACAGTA	ACGCCATCCA	CGACATGCGT	4200
	CTTGGTCAAC	TAATACAATG	CCATCTTCAT	CACGTTTATA	CATAGCACCT	GAAGGACACG	4260
35	ATGCAACGCA	ACTTGGATTC	AAGCAATGTT	CACATAAACG	TGGTAAATAC	ATCATAAAAG	4320
	TTTCGTCAAA	TTGGAATTTA	ATATCTTCTT	CTATTTTTTG	GATGTTAGGA	TCTTTTGGAC	4380
	CTGTAACATG	ACCACCTGCT	AAGTCATCTT	CCCAGTTAGG	TCCCCATTCA	ATTTCAATGT	4440
40	TATCCCCCGT	AATTTCTGAA	TACGCTCTAG	CAACTGGCGA	ATGCTTCCCT	GATTTCGCAG	4500
	TTGTTAAATG	TTCATAATTA	TAGTTCCATG	GCTCATAATA	ATCTTTAATT	AATGGCATAT	4560
	CTGGGTTATA	ATTTTAAAAA	CCTAAAGCAA	TTTTTGAAAT	TCTACTTCCA	GATTTTAATT	4620
45	CAAGTTTCCC	TTTACGATTT	AGTACCCAAC	CACCTTTGTA	GTGTTCTTGG	TCTTCCCAAC	4680
	GTTTCGGATA	CCCTACACCT	GGCtTCGTTT	CTACGTTGTT	GAACCACATG	TACTCAGCAC	4740
Ė	CTGGACGATT	TGTCCaAGTG	TTTTTACATG	TCACACTACA	CGTATGGCAT	CCTATGCATT	4800
50	TATCTAAATT	TAATACCATC	GCAACTTGCG	CTTTAATCTT	CAAGCCAATT	AACCTCCTTC	4860
	ATCTTTCTAA	CTGCTACATA	TAAATCCCTT	TGGTTCCCAA	TTGGTCCATA	ATAATTAAAG	4920

	GGCGCGTTGT	GTGAACCACC	ACGTGTATCT	GTAATTTCTC	ACCCAGGCGT	TTGAATATGT	5040
	TTATCTTGTG	CATGATACAT	AAACATTGTA	CCTTTAGGCA	TACGATGCGA	AATAACTGCT	5100
5	CTTGCCGTTA	CAACACCATT	ACGGTTATAC	ACTTCTAGCO	AATCATTATC	TTGGATATCG	5160
	TGTTTTTCAG	CATCTTCATT	TGATATCCAA	ACCGTTGGAC	CACCTCTAAA	TAGTGTCAAC	5220
	ATATGCTTAT	TATCTTGATA	CATTGAGTGT	ATATTCCATT	TTCCATGAGG	CGTTAAATAA	5280
10	CGCAGTACCA	AAGCATCTGT	ACCACCTTTA	ATTTTCTTAT	CTCTATTCCC	AAATACCATT	5340
	GGCGGCAATG	TCGGTTTATA	TACTGGTAAG	CTCTCCCCAA	ATTGTTGGAA	AACTTCGTGA	5400
15	TCCACATAAT	AACTTTGACG	TCCTGTTAAT	GTTCTAAAAG	GTACTAGACG	TTCTATATTC	5460
	GTTGTAAATG	GTGAATATCG	TCGACCTTGT	TTATTTGAAC	CTGGGAATAC	TGCTGTCGGT	5520
	ATTACTTCTC	GTGGTTGTGA	AGTTATATTT	AAAAACGAAA	TTTTCTCAGC	AGCGCGTTCG	5580
20	CTAGAAATAT	CTTTTAACGG	CATTCCAGTT	TGTTCTTCGA	GATCTTCATA	TGATTTTTGT	5640
	GATAATTTAC	CATTCGTAGC	AGATGAAATA	CTTAGTATTG	CATCAGCTAC	ATTACGTGCT	5700
	GTATCAATAC	GTGGACGATT	CGCTCTCACA	GAATCATCAT	TTGTATCACT	CCACGTACCT	5760
25	AACATACTTT	TTAATTCTTC	ATATTGTTCA	CTGACACCGA	AACTTACACC	ATGTGCTCCA	5820
	ACTTTCCCTT	TTTCAAGTAC	AGGACCAAGC	GTGACATATT	TGTCGTAAAT	TTTAGTGTAG	5880
	TCGCGTTCTA	CAATTGCAAA	GTTAGGCATT	GTACGTCCAG	GTACCGCTTC	AATTTCACCC	5940
30	TTCGACCAAT	CTTTCACTAC	GCCGTATGGT	GTTGAAATTT	CTTGCTTTGT	ATCATGACTA	6000
	AGTGGAGTTG	TCACAACATC	TTTAAACGTT	CCAGGTAAAT	AGTCTTTTGC	CATTTCTGAA	6060
35	AATGCTTTTG	CCAACGTTTT	ATAAATATCC	CAGTCTGAAC	GCGATTCCCA	TAACGGATCA	6120
55	ATGGCAGGAT	TGAAAGGATG	TACATATGGA	TGCATATCCG	TTGATGATAA	ATCATGTTTT	6180
	TCATACCAAG	TCGCTGCCGG	CAAAACAATG	TCAGAATATA	ACGGTGTTGC	CGTCATTCTG	6240
40	AAGTCTAAAG	AGACCACTAA	ATCTAACTTA	CCTGTTGTTT	CTTCACGCCA	CGTAATTTCT	6300
	TCTGGCTTTT	CATCTTCATT	TGGTGTAGCT	AATAACCCTG	ATTTTGTGCC	AAGTAAATGC	6360
	TTCATAAAGT	ATTCTTGACC	TTTTGCAGAA	CTTGAAATTA	AGTTTGAACG	CCATATAAAT	6420
45	AATGATTTTG (GATGATTCTT	TTTCAAATCA	GGATCTTCTA	TTGCAAATTG	TGTTTGTTTT	6480
	GATTTCACTT (CATCAATTGC .	ACGTTGCAAA	ATCGCTTCAT	TTGAATCTAT	ACCTTCATCT	6540
	TTAGCTTCTT (CTGCAAACAA	CAAACTATTT	TTAAATT	GTGGATATGA	TGGTAACCAA	6600
50	CCAAGTCTAG (CTGCTAAAAC	ATTATAATCA	GCTGGATGTT	GATGCTTTAA	CTCCTCTGTT	6660
	TTAGCTAATG (GAGATTTTAA	ACGATCTACA	TTTGACTCTT	CATATTTCCA	TTGGTCTGTT	6720

	AATGCGACAG	TACTCCATCC	TTCAATCGGA	CGACATTTTT	CTTGTCCCAC	ATAGTGAGCC	684
	CAACCGCCAC	CATTCACACC	TTGACAGCCA	CATAACATAA	CTAAGTTTAA	GATTGAACGA	690
5	TAAATCGTAT	CTGAGTTAAA	CCAATGGTTA	ATACCCGCAC	CCATGATAAT	CATTGAACGC	696
	CCTTCAGTAT	CGATAGCGTT	TTGCGCAAAT	TCTTTCGCTA	CTTGAATGAC	AACACTTTGT	702
10	TTTACGCCTG	AAATGGCTTC	TTGCCAAGCA	GGTGTATATT	TTGATTCTGC	ATCGTCGTAT	708
10	CCTTTTGATT	CTAATTTATG	ATCAAAACGA	CGCACGCCAT	ATTGACTTGC	CATTAAGTCA	714
	AAAATTGTAG	CAATACGGAC	TTTGTCACCA	TTTGCTAAAG	TGACTTGTCG	AGTTGGAATT	720
15	GGACGATTGA	ATATCCCATC	TCCATCACTA	TCAAAGTATG	GGAATTGAAT	TGTTTCTAAT	726
	TCGTATCCAC	CTTCTGTCAT	TGATAATGTA	GGGTTAATTT	TAGAACCATC	TTCTGTTTCT	732
	AGTTTTAAGT	TCCACTTCTT	ACCTTCTTCC	CAACGTTGAC	CCATTGTGCC	ATTAGGTACT	738
20	ACTAAACTAT	CGCTGATTGC	ATCATGAATA	ACTGGCTTCC	ATTCGCCTTG	CTCTGTTGTT	744
	TGACCTAAGT	CACTCGCTCT	TAAAAATCGA	CCCGCTTTAT	ATCCATTTTC	ATCTTCATCC	750
	AGCATGATAA	GAAACGGCAT	ATCTGTATAT	TGTTTAGCGT	AAATTTAAA	GCGTTCATTA	756
25	GGTTGATTAA	CATAATGTTC	TTGTAAAATA	ACATGCGTCA	TTGCTTGTGC	AATTGCAGCA	762
	TCTGAACCAG	GATTCGGTGC	TAGCCAGTTA	TCTGCAAATT	TCACATTTTC	TGCGTAATCT	768
	GGTGCTACTG	AAATGACTTT	TGTACCTTTA	TAGCGGACTT	CAGTCATAAA	ATGTGCATCC	774
30	GGAGTACGTG	TTAAAGGTAC	ATTAGAGCCC	CACATAATAA	TGTATGATGC	GTTATACCAG	780
	TCACTTGATT	CAGGCACATC	TGTTTGCTCT	CCCCAAATTT	GTGGAGAGGC	AGGTGGTAAA	786
35	TCTGCATACC	AGTCATAAAA	ACTAAGCATT	TCACCACCAA	GCAAATTGAT	GAATCGAGCA	792
	CCTGCTGCAT	AACTAATCAT	TGACATCGCT	GGAATAGGTG	TAAATCCTGC	GATTCGATCT	7980
	GGAČCATATT	TTTTTATTGT	ATACAGTAAT	TGTGCTGCGA	TTATCTCTGT	AACGTCTTTC	804
40	CAATTTGAAC	GCACGTGCCC	TCCCATACCT	CGGGCTTGCT	TATATTGTTT	GGCTTTGTCT	8100
	TCATTTTCAA	CAATAGACGC	CCATGCAGCA	ACGCGATTAC	CATTGTTTTC	TTCTAATGCT	8160
	TCAGTCCATA	AATCCCAGAG	TTTTCCACGA	ATATATGGAT	ATTTGATTCG	AAGCGGACTG	8220
45	TATTCATACC	AAGAGAATGA	CGCACCTCGT	GGACATCCTC	TCGGTTCATA	TTCAGGCATA	8280
	TCCGGACCAC	AACTTGGATA	GTCAGTTTGT	TGATTTTCCC	AGGTAATCAC	ACCATTTTC	8340
	ACAAATACTT	TCCAAGAACA	TGAGCCTGTA	CAGTTAACAC	CATGTGTTGT	TCTTACTTCT	8400
50	TTATCGTGGC	TCCAACGTTC	TCTGTACATT	TTTTCCCATT	CTCTACTTTT	ACTTTCTAGG	8460
	み ででこれでであるか	TCCCDTTD N N	معدد الشار المرامل الم	CCCTTANA	N N TWT C N N T C C	3 3 3 TTTTTTTCCC	050/

	TAAAATGCCC	AAGACTATTG	CTTTAATTAG	ATTGTACATT	TTTTCACAAA	CATAAAATAT	864
	TAGGGAATCA	CCTAATTACT	TAAGGAATTT	CCCTATCAAT	AACGGGATTT	CATTGAAATA	870
5	ATACACAATC	ATGTATGGTC	ATGCTTATTG	CCAATCTAAA	TCGTTCAAAT	TTGGCACAAC	876
	GACAAATAAG	GCTTCAACAC	GAATATATTC	TCTCGGTTGA	AACCTTACTT	ATTCATTTAT	882
10	TTTTTATAAA	TTAGTGACAT	AACACTGTAT	TAGCATCTGC	ACGATCGGTT	GAAATATATG	888
10	TTACATTTTC	TTGCTGCTTA	ATAAATGCAT	CATAGTAATC	ATATTGCGAC	GAATGATATG	894
	TGCCATTCGA	TGTATCATTT	GGGTTTAGCA	AACAGCCATA	ACCTTCGTCA	TATAAATGTT	900
15	CACAGAGCAT	AAGGGCGTCA	TGTTTAGAAC	CACTTACTAC	ATAAAATTGC	TTCATAGGAT	906
	CATATGATTT	AGGAGTGTTT	TCAGTATAAT	CAACAACTTC	СССТАТААТА	CATATACCTG	912
	GTTTCGCCTC	AATTGAATAG	TGTTGCAATT	TTGAAATAAT	ATTACTTAAA	CGCCCCTTAA	918
20	CAACAAACTC	GTTAAAACAC	GATGCTTGAA	AGACAATCGC	TATCGGGTAA	TCAATATCTG	924
	TGTATTGTTG	TATCTGTGTG	ATAATTTTCC	CTAAACGTTT	TACCCCCATA	TAAATTGCTA	9300
	ACGTGCCACC	ATTCACTAAG	GAATTGACAT	CCACTTCATT	TTCTTCTGAA	TCTTTAAAGT	9360
25	GACCTGTAGA	AAATGTCACA	CTTTTAGCAA	CTGTACGCAT	TGTCAAACCT	GTCTGCATAG	9420
	TAGCAACTGC	tGCGCTCGCT	GATGTCACCC	CTGGTACAAT	TTCAAACGCA	ATATGATGTT	9480
20	CATTTAGTAT	GTCGACTTCT	TCTTGCACAC	GACCAAATAT	CGCTGGATCG	CCACCTTTAA	9540
30	GTCTAACAAC	CTTGTTATAT	CGACGCGCTG	CTTCCACGAT	ACAGTCATTT	ATTTTTTCTT.	9600
	GCTGAATATG	TTTTGCATAC	GGCTTTTTAC	CAACATCGAT	AATTTCAGTA	GTCAAATTCG	9660
35	CATATTGTAA	AATTAACGGA	TTCACTAATC	GATCATATAG	AATGACATCC	gCTTCACGTA	9720
	TTAAACGCTC	AGCCTTTTTC	GTCAAATAAT	TCGGATTACC	TGGACCCGCA	CCTATCAAGT	9780
	AAACCTTGCC	ATATTCCTCT	ACAGACATAT	ATATACGTTC	CCGTCTGTAA	CTTCTACCTC	9840
40	ATAAACATCT	ACACAACCTT	CATCAGGTTC	TTGAACAATA	CCTGTATTTA	AATCAATTTT	9900
	TTGATCGTGG	AGCGGGCAAA	ATACATATTC	CCCACTCACT	GTCCCTTCAG	ACAATGGTCC	9960
	TTGTTTGTGT	GGACAGATAT	TGTGAATCGC	ATGAATTTTG	CCACTTTCTG	TTAAAAACAA	10020
45	CCCTACCTCT	TTGCCTTTGA	CAATAACCTT	TTTTCCAATT	AGGGGTGTTA	ATTCATCTAT	10080
	AGTTGTCACT	TTAATTTTTT	CTTTTGTTTC	CATGTATTAC	ACCTTCTCCA	CTTCAAAAAT	10140
	TCTACGTGCT	TGAGCATTGC	TAGTTATTGC	TTCCCAAGGT	TCAGCTTCGA	CTGCTTTTTT	10200
50	AGCATCCATA	ATGCGTTCAA	ATAGTTCATT	TTGTCTTTCT	GGGTCAAGTA	AGACTTCTTT	10260
	TACATTTTCA	AATCCAAGTC	ТТСТТААССА	TGGCGCTGTT	ביייייר אניר איר	ልጥልጥል ርርዊዊ	10320

	AGIIGIIAAA	AATTCAGCTT	TTTCAACTTC	TGTACCACCA	TTACCACCGA	TATAGATTIG	1044
	GAATCCATTT	TCAACTGAGA	TAATACCAAA	ATCTTTAACA	CCTGATTCAA	CACAACTTCT	1050
5	TGGGCAGCCT	GATACACCCA	TTTTGAATTT	ATGAGGTGTA	TCGATGTATT	CAAATGTTTT	1056
	TTCTAAACGA	ATGCCAAGTC	GTGTCGTGTA	TTGCGTACCA	AATCGACAAA	ACTCTTTACC	1062
	AACACAGCTT	TTAACTGAGC	GTGTTTTCTT	ACCATAAGCT	GATGCTGAAC	GCATACCTAG	1068
10	GTCTTCCCAT	AŤATTTGGTA	ATTCTTCTTT	TTTAACTCCA	TACAAACCAA	CACGTTGTGA	1074
	ACCTGTCACT	TTAACTAGTG	GCACATGATA	TTTCTTAGCC	ACTTCTCCTA	GACGAATCAG	1080
15	TTGGTCTGCA	TCTGTAACAC	CCCCACGCAT	TTGAGGTATA	ACAGAAAATG	TACCATCATT	1086
,	TTGAATATTC	GCATGGTAAC	GTTCGTTAGC	AAATCTTGAT	TCTCTTTCAT	CTTCATGATC	10920
	ATGTGGATAA	ACCATGTTTA	AATAATAGTT	GATTGCTGGT	CGACATTTTG	GACATCCACC	1098
20	TTTATTTTTA	AAGTTTAAAA	CATGTCGAAC	TTCTTTAGAT	GTTTTTAAAC	CTTTCGCTCT	11040
	TATTTGCGTT	ACTATTTGAT	CGCGTGTCAA	ATCAGTACAA	CCACATATAC	CAGCAGGTTT	11100
	TGCGGCAACA	AAGTCATCTC	CTAAGGTGTG	CTGCAATATT	TGAGCAATTT	GCGGTTTACA	11160
?5	TTTACCACAT	GAATTCCCCG	CTTTTGTTTT	AGCCGTTACT	TCTTCAACTG	TTGTAAAGCC	11220
	ATTTTCCGTA	ATCGCATTTA	CTATAGTACC	TTTATCAACA	CCATTACAAC	CACAAATTGT	11280
	TTCATCATCA	GCCATATCAG	CAATTGATAG	CGATGCCTCT	TCTCCACCTT	TAGTAAGCAA	11340
30	TGATACAAGT	GTGTAATCTT	CAGTGGATTC	ACCTTTTTTC	ATCATGTTAT	AAAAGCGTGA	11400
	ACCATCATCG	ATATCACCAT	ATAGTACTGC	ACCAACTACA	TTACCGTCTT	TTAAAAAGAT	11460
35	TTTTTTATAG	TTATTATCAA	CACTATTAAA	TATTTCAATA	CCTTTAATTT	CTGCATTTTC	11520
	TACAATTTGA	CCAGCACTAT	ACAAGTCACA	CCCAGAAACT	TTTAATGACG	TAAATGTTGT	11580
	TGATCCCTTG	TATCCGTTCG	TTTCTTTATT	TGTTAAATGA	TCAGCTAATA	CTTTACCTTG	11640
10	TTCATATAGT	GGTGCAACGA	GTCCATAAAC	TTTGCCGTTA	TGTTCTGCAC	ATTCACCAAC	11700
	TGCATATACA	TTGCTATCAC	TTGTTTGCAT	CACATCATTG	ACAACAATAC	CACGATTAAC	11760
	ATCTAGACCT	GATTCTTTGG	CTACTTCTGT	GTATGGTCGT	ATACCTACTG	CCATAACAAC	11820
15	TAAGTCTGCC	GGAATCTCGC	GTCCATCAGC	CAATTTAACA	CCCTCAACAT	CATCTTCTCC	11880
	TAAGATTTCA	GTTGTGTTGG	CTTGCATTTC	AAACTTCATA	CCTTGCTTTT	CTAGATCTGC	11940
	TTTAAGCATA	TTTCCAGCTT	TACGGTCTAG	TTGCATTTCC	ATCAACCATT	CAGCTAAATG	12000
50	TAACACCGTT	ACTTCCATAC	CTTGATCTAA	TAAACCACGT	GCACACTCTA	AACCTAGTAA	12060
	TCCTCCACCA	አጥጥአርስአጥጥር		እርጥርጥሞአርርርአ	እጥርጥጥር እጥር እ	Terrory company com	12120

	GAATGCTTTA	GAACCTGTCG	CAAAAATCAA	TTTATCGTAT	GATACTTCAA	TACCATTIGC	12240
	AGTAGTAACT	GATTGATTTG	CTCTATCTAC	TTCAATTACA	GGATCATTTG	TAATTAACTC	12300
5	GATACCATGT	TCCTCATACC	ACTCATATGG	ATTCATAATT	GTTTCTTCAA	CTGTCATTTT	12360
	ATTTTGTAAA	ATATTTGAAA	GCATGATGCG	GTTATAGTTT	GGATAAGGTT	CTTTACCTAT	12420
10	TACCGTAATA	TCATATAAAT	CGTTGGCGCG	CTCTAATATT	TCTTCGATTG	TTCGAATGCC	12480
10	CGCCATACCG	TTACCAATCA	TTACTAGTTT	TTGCTTTGCC	ATAAAATATG	CCCCTTTACT	12540
	CCATAATATT	TATTTCAAAA	AAAGGTATTA	ATTTTTCGTT	AGTGCTTTTA	TATTTTCATT	12600
15	GGAATCATTA	AGCTTTCTAA	TCTATCGTTA	ATGATTTGCT	TTAAAATTGG	GTCGAAGTTA	12660
	ATTGAAGGTG	TGAAGTGTAT	ATCTGTATTA	ATAACCATGT	CATTCATTTG	CTGCTTCACT	12720
	TTGTTAACAA	GTCTTCCGTC	ATATAAAAAT	AATGGTACGA	CAATCAATTT	TTGATACCGT	12780
20	TTCGAGATGC	TTTCTAAATC	ATGTGTAAAA	CTAATCTCTC	CATATAGCGT	TCTCGCATAT	12840
	GTCGGCTTGC	TAATTTGCAA	ATTTTGAGCG	CATATTTGTA	ACTCTTCGTG	TGCCTTAGTA	12900
	AACTTTCCAT	TAATATTGCC	GTGTGCAACA	ACCATAACTC	CAACTTGTTG	TTCGTCACCT	12960
25	GCTAATGCGT	CACAAATACG	TTGTTCAATT	AATCGTCTCA	TTAAAGGATG	TGTGCCAAGT	13020
	GGCTCGCTTA	CTTCTACCTT	TATGTCTGGA	TACCGTCGTT	TCATTTCATG	AACGATATTC	13080
	GGTATATCCT	TGAGATAATG	CATTGCACTA	AAGATTAGCA	ATGGTACAAT	TTTAAAATGG	13140
30	TCAACCCCAC	TTTGAATCAA	CGTCGTCaTT	ACCGTCTCTA	AATCCtGATG	CTCACTTTCt	13200
	AAAAACGCAA	TATCATAGTG	ATGTATATCA	TCTTTTACTA	ATTCAGAAAT	AAATGCTTCT	13260
35	AACGCTTGaT	TCTGTCGTCC	GTGCCTCATG	CCATGTGCAA	CAATGATATT	CCCATTCACA	13320
	TTTACCAACC	CTTTCACACG	TATTGTATAC	ÇAAATCATTT	TGTTTTTGTG	AAAAGAATCA	13380
	CATTĂTAATG	TAAAATCAGG	GAATTCCCTG	ATGCCTGTAG	TCATGCATAT	TCCTTATACA	13440
10	TTTTCCCTTT	TTGTTAAATC	AAAAAAAGCG	ACCGATATAT	GAATCCCTAC	TCAACATTTA	13500
	TTTGAGCAAG	CATTAATATA	TCGGTCGCTT	GTAGTGTATA	TTATTATCTT	AAAATGGTGG	13560
	TTGGCCTAAT	ATTGTTTCGT	CAAAGCGCTC	GGGTATCAAT	ACTTTGCGCA	TGATCACACC	13620
15	TAAATCGCCA	TCATCATTTT	CATGTTCGCT	GTATATTTCA	TAACCTCTTT	TTTCATAAAT	13680
•	TTTAAGTAAC	CACGGATGCA	ATCTTGCAGA	TGTACCTAAA	GTAACTGCCG	CTGACTTTAA	13740
	CGTATCTCGC	AAAAATGCTT	CTTCAACATA	AGTAAGTAAT	TGGCTACCAT	AGCCTTTCCC	13800
50	TTCATACTCA	GGATTTGTCG	CAAACCACCA	GACAAAAGGA	TAACCCGAAA	TACTTTTCAC	13860
	A COTOCCCO A	CCBTBTCTBB	CCCTA ATCCT	ACATATAATT	TCATCATCA A	TTTCTC3TC3C	12020

CCAATCAATA	CCTAGTTCTC	TTAGAGGCGT	AAATGCTTCA	TGCATGAGTT	CTTGCAATTT	14040
TTCTGCATCT	T					14051
(0) ********						

(2) INFORMATION FOR SEQ ID NO: 104:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1885 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

TAATCCTCAA CITHGATTAT ATGGCTTGGG CGCATATGAA CTGCTTAGTT TAGTGTATGA 60 CATTCATACA GTTCGCATGA CTATCATACA ACCTCGAATA GATAACTTTT CTACTGAAGA 120 GTTACCAATC TCAAGATTAC TTCAATGGGG AACCGATTTT GTTAAACCCT TAGCCAGACT 180 TGCTTATAAC GGTGAAGGTG AGTTTAAAGC AGGTAGTCAT TGTAGATTCT GTAAGATAAA 240 GCATTCATGT AGAACACGTG CAGAATACAT GCAAAATGTG CCTCAAAAGC CACCACATTT 300 GTTGAGTGAT GAAGAGATTG CAGAACTTTT ATATAAACTG CCTGATATCA AAAAATGGGC 360 TGATGAAGTA GAGAAATATG CGTTAGAACA AGCGAAAGAG AATGATAAAA CGTATCCAGG 420 TTGGAAGCTA GTCACGGGAC GTTCAAGGAG AGTGATAACT GATACAAAAG CAGTCCGAGA 480 CAGGTTAGTT GAAGCGGGTT ATAAACCTGA AGATATTACA GAAACCAAGT TACTTAGCAT 540 TACGAATTTA GAAAAATTAA TCGGCAAAAA AGCATTTTCT AAAATTGCAG AAGGCTTTAT 600 AGAAAAGCCG CAAGGTAAAT TAACACTTGC TACCGAGTCT GATAAACGAC CAGCTATAAA 660 GCAATCTGCT GAAGATGATT TTGACAAACT ATAAAAATTA AAAAGGACGG TATATAAACA 720 TGAAAGCAAA AGTATTAAAT AAAACTAAAG TGATTACAGG AAAAGTAAGA GCATCATATG 780 CACATATTTT TGAACCTCAC AGTATGCAAG AAGGGCAAGA AGCAAAGTAT TCAATCAGTT 840 TAATCATTCC TAAATCAGAT ACAAGTACGA TAAAAGCCAT TGAACAAGCT ATAGAAGCTG 900 CTAAAGAAGA AGGAAAAGTT AGTAAGTTTG GAGGCAAAGT TCCTGCAAAT CTGAAACTTC 960 CATTACGTGA TGGAGATACT GAAAGAGAAG ATGATGTGAA TTATCAAGAC GCTTATTTTA 1020 TTAACGCATC AAGCAAACAA GCACCTGGTA TTATTGACCA AAACAAAATT AGATTAACGG 1080 ATTCTGGAAC TATTGTAAGT GGTGACTATA TTAGAGCTTC AATCAATTTA TTTCCATTCA 1140 ACACAAATGG TAATAAGGGT ATCGCAGTTG GATTGAACAA CATTCAACTT GTAGAAAAAG 1200 GCGAACCTCT TGGCGGTGCA AGTGCAGCAG AAGATGATTT TGATGAATTA GACACTGATG 1260

55

10

15

20

25

30

35

45

TTGAGGTGTC AAGAATTTGA AATTTATGAA TATAGATATT GAAACATACA GCAGTAACGA 1380 TATTTCGAAA TGTGGTGCCT ATAAATACAC AGAAGCTGAA GATTTCGAAA TTTTAATTAT 1440 AGCTTATTCG ATAGATGGTG GAGCGATTAG TGCGATTGAC ATGACTAAAG TAGATAATGA 1500 GCCTTTCCAC GCTGATTATG AGACGTTTAA AATTGCTCTA TTTGACCCTG CTGTAAAAAA 1560 GTATGCATTC AATGCTAATT TCGAAAGAAC TTGTCTTGCT AAACATTTTA ATAAACAGAT 1620 GCCACCTGAA GAATGGATTT GCACAATGGT TAATTCAATG CGTATTGGCT TACCTGCTTC 1680 GCTTGATAAA GTTGGAGAAG TTTTAAGACT ACAAAGCCAA AAAGATAAAG CAGGTAAAAA 1740 TTTAATTCGT TATTTCTCTA TACCTTGTAA ACCAACAAA GTTAATGGAG GAAGAACrAG 1800 AAACCTACCT GAACATGATC TTGAAAAAtg GCAACAATTT ATAGATTaCT GTATTCGAGA 1860 TGTAGAAGTA GAAATGGCGA TTGCT 1885

20 (2) INFORMATION FOR SEQ ID NO: 105:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2656 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

TAATCCTTAG TTCACTGnCA AATTTCAAAA CACCAGTTCC CTCTATCTGC ATCCATAGAA 60 ACTGNATGTT TGTGTCAATA ACCGGATTAT ATTGTGATGN TGTTTGTAAC TCGATTAAGT 120 TATCATCTTT CGAAAAATTA TCTACTACCA TTATTCAACC ACCTTTCCTT CGAATAAACT 180 CCATTTACCA ACKCCACCAG TACCAAAGTT TCTAACTAAA AATTGATGTG CAGACGGGAA 240 GTTATTACGT CTTAATACTT GTGTTGTATT ACCTGGTGTA TTCGATTTTA CTTCTAATAT 300 CCAACCTGCA ATACCTTTAA AGTCTTTAGG AAAATCAGTA AATCGGTTTG ATTCTTCAGT 360 AGTGATATAG AAATCTAAAC CAACGATTTT TAAATCTGAT AATTTTGTAA TACTCTTAGG 420 GATATGTTCC CAATAACCGG CGTTTTGCGG GCAGAAATTC CATGCTCCGT TGTTTTTCTT 480 ATTGAAAATG TCAATGACAC GTTCGAATTT AAGCATATTT CTACCTGTGC TGTTTCTGGt 540 AAGTACTTGT CTTAGAGCAC CATTATAGTG TCCAGGCAGT ACATCCAAGA ACCACCCTGC 600 ATCTCTAAAC GCTTTCGGTA ACGGGAAATC TAATGCATTT TGTGTGTCTT GaCGTATAGA 660 TATAGTAATG ACCAACTTCC GTAATATCAC TTAGATATGC TGGGTTCTGT ATTGGTAACG 720 GTTTAACACG TCCGCCTGAA TCAGTCATTG ATACTTGAGG TGCGATGTTT TTCAAGAATT 780

55

5

10

15

25

30

35

40

45

	TAGTTACCCC	GATTAGAAGT	GCTTTACGTC	CTGTTTCTAG	ATCGTAATAC	ATATCTAGAC	90
	CCTCAGCCTC	TTGGAAATCT	CCTTTAAAGT	TGTTATTCAC	ACCGCCTATA	TCGATGCGAC	96
5	GTTTAAATAA	CAATTCTTTC	GTTTTGATAT	CGAAGCCTTG	TAAGTAGTTA	GGGTTGGCTG	102
	TATTCGAATC	ACCTGTATAC	CAATATAAGA	TACCTGCATC	ATAAGTGATA	CCTTGCATAG	108
	GTTGTGTATC	TGAAGTGTAT	TCCATAGGTA	TATCCATTTG	ATACAATACT	TTGTCTATAC	114
10	CTTTATCAAT	ATCGTCAGCA	CTTCTAACCT	CAACAAAGTT	CAACGAATTC	TTAAGTTGTC	120
	TTTCAGTGGG	TTTATATTCA	CGTCTAAAAA	TCATTAAATT	TTCTACCGGA	TTATAAATCG	126
15	CTGACGTATA	TCTGTCGTTA	AATATATTCG	GCATGACATC	TTGCATTTCA	TTACCATAAG	1320
	TTATTTCTCC	AGTTCTATAT	TGGAAACGTA	CAAACTTGTT	GTTTTTGTTA	CTGTCCAATA	1380
	CAGCTGAATA	AATCCATAAT	TCTCCATCAA	TGTATCTATA	CGCATTGTGT	GTACCGTGAC	1440
20	CGCCGTTTTT	AACAAGCAAT	СТАТСААТАА	ATTGTCCGTT	GGGCTTCAAT	CTAGATAACA	1500
	TGTAATGATT	ACCTGGACGA	GCTTGCGTCA	TAATAAATAT	TTTCGTTCTA	GGGTCTACCC	1560
	AAAATGATTG	CATTACTGCA	TTTGTATATG	GCGATAAATC	AGTGATAAAT	TCCGGTTCTT	1620
25	GCTCTTTTGG	TTCGAATCGG	TATTCTGTCG	CTCGATATTC	TTTATAGTGT	TCATCTACAG	1680
	CTTTCTCAAC	CTTTTTAGTG	AAAACATCTA	GTGTTGAATA	ATCATGATAC	AAACGATCTT	1740
	GCAATGTCTT	ATGACCATAA	CCTGTATTAT	CAACGCGCGC	GTCTTTTACT	TCGTTGATAC	1800
30	CGTCGCCGTT	ATGACCTAGT	ACCATGTTGC	TAAATCGACC	GTTTAAATAT	GTTAAAAAGT	1860
	CAGAGACGTT	ACTTGTAACA	TTTAAATGTT	CATACTTTAT	TTGTTCTCCA	TCATGTGCGA	1920
35	ATACCTCTTT	ATTTCTGTGG	TATTCAAGAG	AGAAATTAAA	ATCCGTCAGC	ATGTCTGAAA	1980
55	TAAGTTTAAA	GTTATACTCA	TTTTCATCTA	CATATCTGTA	GTCAAAGACT	CTACTTAAAT	2040
	CTGTAATTAG	TTTATTACTC	ATGTTTTCCT	CCTTTACTAT	CCATAAAACT	GATMATAATT	2100
1Ó	TTTAATAAGC	TCATACATAA	TAACTTCAŤG	ACCTCTTTCA	TTAGGATGTA	ATCCATCAGG	2160
	CATGCTAGAT	TTTCTAAATG	CTGGATTATA	TGGTTTGAAA	TAATCTGTGT	GATAAGCATC	2220
	ATATACTGGT	ACATCCAATT	CACTACAAGC	CAATATCTGA	GCATTGACAT	AATCCTCTAA	2280
15	AGTTAACCCT	AGTITGTTTT	TGTCCGTATC	TTTACGGCGT	ATCGTTGTAC	CACTCATAGG	2340
	GCATTGCCTA	GTAGCTGTCA	TTACAAGTAT	TTTTGAAGCT	GGATTATTTT	TCCTGATAAC	2400
	TTCAATTGCA	GAACAAAAGG	CGCCGTAAAA	CGTTTTAGTG	TCGGTTTTAT	CAGTGCCTAT	2460
50	CGGTACGCCT	GCCCAATAAC	CATGTAACCA	GTCATCATCT	GTACCTTGTA	ATATGATTAG	2520
	GTCTCCTCTT	ATTTGCTCTG	CTTGTCTaTA	AATGCTGTTT	тстасссстт	Стита Сстат	2590

	CTTGCCTAAC ATTTCT	2656
	(2) INFORMATION FOR SEQ ID NO: 106:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4854 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 	
10	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:	
15	AAAATGAGGG TTCTAGCGGA AATTACCAAA AGCGTGGTTC ATACTATGGG CAGCGTAATC	60
-	GTATTTCAAA AGAAAAAACA CCTAAATGGT TAGAAAATAG AGATAAACCT AGTGAAGAAG	120
	ATTCGGCTAA AGATAATAGC GTAGATGATC AACAATTAGA GCAAGATCGA CAAGCATTTC	180
20	TAGATAAATT ATCTAAAAAA TGGGAGGAGG ACAGTCAATA ATGAAGCAAT TTAAAAGTAT	240
	AATTAACACG TCGCAGGACT TTGAAAAAAG AATAGAAAAG ATAAAnCAGA AGTAATCAAT	300
	GACCCAGATG TTAAGCAATT TTTGGAAGCG CATCGAGCTG AATTMACGAA TGCTATGATT	. 360
25	GATGAAGACT TAAATGTGTT ACAAGAGTAT AAAGATCAAC AAAAACATTA TGACGGTCAT	420
	AAATTTGCTG ATTGTCCAAA TTTCGTAAAG GGGCATGTGC CTGAGTTATA TGTTGATAAT	480
	AACCGAATTA AAATACGCTA TTTACAATGC CCATGTAAAA TCAAGTACGA CGAAGAACGC	540
30	TTTGAAGCTG AGCTAATTAC ATCTCATCAT ATGCAACGAG ATACTTTAAA TGCCAAATTG	600
	AAAGATATTT ATATGAATCA TCGAGACCGT CTTGATGTAG CTATGGCAGC AGATGATATT	660
	TGTACAGCAA TAACTAATGG GGAACAAGTG AAAGGCCTTT ACCTTTATGG TCCATTTGGG	720
35	ACAGGTAAAT CTTTTATTCT AGGTGCAATT GCGAATCAGC TCAAATCTAA GAAGGTACGT	780
	TCGAČAATTA TTTATTTACC GGAATTTATT AGAACATTAA AAGGTGGCTT TAAAGATGGT	840
40	TCTTTTGAAA AGAAATTACA TCGCGTAAGA GAAGCAAACA TTTTAATGCT TGATGATATT	900
	GGGGCTGAAG AAGTGACTCC ATGGGTGAGA GATGAGGTAA TTGGACCTTT GCTACATTAT	960
	CGAATGGTTC ATGAATTACC AACATTCTTT AGTTCTAATT TTGACTATAG TGAATTGGAA	1020
45 ·	CATCATTTAG CGATGACTCG TGATGGTGAA GAGAAGACTA AAGCAGCACG TATTATTGAA	1080
•	CGTGTCAAAT CTTTGTCAAC ACCATACTTT TTATCAGGAG AAAATTTCAG AAACAATTGA	1140
	ATTITAAAAT GATTGGTGTA TAATGAATAC AAATCTAAAT CGTTTAAATG ATTGAAGACA	
50		1200
	AGATGATCTA ATCAATATTA CACAGAAAGC CATTGTTTGA TGAGAATATG GTTAATAAAT	1260

55

1320

TAGATGATTA CTACTTCATT TATGGTATTT GTAATGAATA CCCGGATCAA GACCGTTATC

	CTCGTCCCTT	GTATAGGGGC	GGGATTTTTT	GTTTTTTCA	GACATAAATG	TTTGTTGGTG	1440
	TCATAAATTC	CCTGTTTATT	GTTAATAGGT	TTAATGTTAA	AACGATGATT	GTTGTTCAAT	1500
5	TTTTTAACGA	GGTCAGATAA	AAGTATTTAT	AAAGCAAATA	GGAGGGTTTA	ACATGGAACA	1560
	AATTAATATT	CAATTTCCAG	ATGGTAATAA	AAAGGCGTTT	GATAAAGGTA	CTACTACTGA	1620
10	AGATATAGCA	CAATCAATTA	GTCCTGGATT	ACGTAAAAA	GCTGTTGCCG	GCAAATTTAA	1680
,,	CGGGCAACTT	GTAGATTTAA	CTAAACCGCT	TGAAACTGAT	GGATCAATTG	AAATTGTGAC	1740
	ACCAGGTAGT	GAAGAagcGT	TAGAGGTATT	ACGTCATTCT	ACTGCACATT	TAATGGCACA	1800
15	CGCGATTAAA	AGGTTATATG	GTAATGTTAA	ATTTGGTGTA	GGTCCTGTAA	TAGAAGGTGG	1860
	ATTCTACTAT	GACTTCGACA	TTGACCAAAA	CATCTCATCT	GATGACTTTG	AACAAATTGA	1920
	AAAAACAATG	AAACAAATCG	TTAACGAAAA	TATGAAAATC	GAACGAAAAG	TGGTTTCACG	1980
20	AGATGAAGTG	AAAGAGTTAT	TCAGCAATGA	TGAATACAAA	TTAGAATTAA	TCGACGCGAT	2040
	TCCTGAAGAT	GAAAATGTAA	CATTATATAG	TCAAGGTGAT	TTTACTGATT	TATGTCGTGG	2100
	AGTTCACGTT	CCATCAACAG	CTAAAATTAA	AGAGTTTAAA	CTATTATCTA	CAGCAGGTGC	2160
25	ATACTGGCGT	GGAGATAGTA	ACAACAAAAT	GTTACAACGT	ATATACGGTA	CTGCTTTCTT	2220
	TGATAAAAA	GAATTGAÄAG	CACATTTACA	AATGTTAGAA	GAGCGTAAAG	AACGTGATCA	2280
	TCGTAAAATT	GGTAAAGAGT	TAGAACTATT	CACAAATAGC	CAATTAGTTG	GTGCTGGTTT	2340
30	GCCATTATGG	TTACCTAACG	GTGCAACAAT	TAGACGTGAA	ATTGAACGTT	ACATTGTTGA	2400
-	TAAAGAAGTT	AGCATGGGAT	ATGACCACGT	TTATACACCA	GTACTTGCTA	ATGTTGATTT	2460
35	ATACAAAACA	TCTGGTCACT	GGGATCACTA	TCAAGAAGAT	ATGTTCCCAC	CAATGCAGTT	2520
,	AGATGAAACT	GAATCTATGG	TATTACGTCC	AATGAACTGT	CCACATCATA	TGATGATTTA	2580
	TGCGÄATAAA	CCACATTCAT	ATCGTGAATT	ACCTATCCGT	ATCGCTGAGC	TAGGAACGAT	2640
40	GCATAGATAT	GAAGCAAGTG	GTGCTGTATC	AGGATTACAA	CGTGTTCGTG	GTATGACTTT	2700
	AAATGATTCA	CATATCTTTG	TTCGACCTGA	TCAAATTAAA	GAAGAATTCA	AACGCGTTGT	2760
	AAACATGATT	ATTGATGTGT	ATAAAGACTT	TGGTTTCGAG	GATTATAGCT	TTAGATTAAG	2820
45	TTATAGAGAC	CCTGAAGATA	AAGAAAAGTA	CTTTGATGAT	GATGATATGT	GGAATAAAGC	2880
	TGAAAATATG	CTTAAAGAGG	CAGCGGATGA	GCTTGGCTTA	TCGTACGAnG	AAgCGATTGG	2940
	TGAAgCGGCA	TTCTATGGTC	CGAAACTAGA	TGTTCAAGTT	AAAACAGCGA	TGGGTAAAGA	3000
50	AGAGACATTA	TCAACAGCAC	AACTTGATTT	CTTATTACCA	GAACGTTTTG	ATTTAACTTA	3060
	TATTCCTCAA	CATCCTCAAC	አጥርአጥርርጥርር	እርብላተርብላዮ እ ጥጥ	CATCCTCCTC	TOTO TO A TOTO A TOTO	2120

	AGCGCCAAAA	CAAGTTCAAA	TCATTCCAGT	TAACGTTGAT	TTACATTATG	ATTATGCGCG	3240
	CCAATTACAA	GATGAATTGA	AATCTCAAGG	CGTTCGTGTA	AGTATTGATG	ACCGTAATGA	3300
5	AAAAATGGGT	TATAAAATCA	GAGAAGCTCA	AATGCAAAAA	ATACCTTATC	AAATCGTAGT	3360
	TGGGGATAAG	GAAGTTGAAA	ATAATCAAGT	GAATGTGCGT	CAATATGGAT	CGCAAGACCA	3420
10	AGAAACAGTT	GAAAAAGATG	AATTTATCTG	GAATCTAGTT	GATGAAATTC	GTTTGAAAAA	3480
,,	ACATAGATAG	ACAGTTGTCG	CAATAAAATG	CTTTAAAACT	TTTATTGCGT	ATCAAGTTTT	3540
	ACAGGGTTGA	TTATGCGTGA	TGAATCCTGT	ATATTACAAG	TTAGTTAAAA	TATTAAATTG	3600
15	AGTTAGAGGT	TGCATGTTTA	ATTAGTAACT	TGTCAGAAGT	ATTTATGGTA	CATAAGTTGA	3660
	ACAAGTGAAA	GGTAAAGATG	CCGAAATAGA	TATAAACCAT	AAATTATATC	TATTGGGACA	3720
	GTTTTCGAAT	AGGAACTGTA	CTGTCACAGA	ATGTGATGTG	CTACCTTATA	TAGATAATTG	3780
20	CCAAAGTGGT	TGCATATCTT	AAAGGTATGT	AGCCACTTTT	TTACTTTTAA	TATCACTATG	3840
	TTCTGTAAAA	AAGGGTATGA	AAGTGAATAA	AGGTTATTTA	TTTCTTGGCC	TCTAAAACAT	3900
. •	GGAAAGGGAG	CTTATATGTC	AAAAGTTCAA	AATGAAAGTA	ACAATGTTGT	CAAAAGGGGA	3960
25	CTTAAAGATC	GTCATATTTC	TATGATTGCG	ATTGGGGGTT	GTATTGGTAC	AGGTTTATTT	4020
	GTAACTTCTG	GTGGAGCAAT	TCATGATGCA	GGTGCTTTGG	GTGCATTAAT	AGGATACGCA	4080
	ATTATCGGAA	TAATGGTATT	TTTCTTAATG	ACGTCACTTG	GCGAAATGGC	TACGTATTTG	4140
30	CCAGTATCAG	GTTCATTTAG	TACATATGCT	ACAAGATTTG	TTGATCCATC	TTTAGGGTTT	4200
	GCGCTTGGTT	GGAACTATTG	GTTTAACTGG	GTAGTGACTG	TAGCAGCAGA	TATTACGATT	4260
35	GCAGCACAAG	TCATTCAATA	TTGGACACCA	TTGCAAGGCA	TACCCGCTTG	GGCATGGAGT	4320
50	GCGTTGTTCT	TAGTTATAAT	TTTTAGTCTG	AATTCGTTAT	CAGTTCGCGT	CTATGGTGAA	4380
	AGTGAATACT	GGTTGGCATT	GATAAAAGTG	GTTACAGTTA	TTGTTTTCAT	TGCAATTGGT	4440
40	TTATTAACGA	TTGTCGGAAT	CATGGGTGGT	CATGTTGTAG	GATTCGAAAT	ATTTAATAAA	4500
	GGTGAAGGTC	CAATTCTTGG	TGGCAACTTA	GGAGGAAGTT	TGTTATCAAT	TCTAGGTGTA	4560
	TTCTTAATCG	CTGGTTTCTC	ATTCCAAGGT	ACTGAGTTAA	TTGGTATTAC	GGCTGGTGAA	4620
45	TCAGAAAATC	CTGAACGTGC	TGTGCCGAAA	GCAATTAAAC	AAGTATTCTG	GAGAATTTTA	4680
	TTATTTTACA	TTTTAGCCAT	TTTTGTTATC	GGTATGTTAA	TTCCTTATGA	TAGTAGTGCA	4740
	TTAATGGGGG	GTAGTGATAA	TGTAGCAACG	TCTCCATTCA	CATTAGTGTT	TAAAAATGCT	4800
50	GGATTTGCGT	TTGCAGCATC	ATTTATGAAT	GCAGTCATTT	TAACGTCTGT	GTTA	4854
	(2) THEODMA	TION FOR CE	O TO NO. 10	.7.			

(A) LENGTH: 2488 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

10	ATCAAAAATT	GATTGTTTTC	nATTTTTTGT	TTCAGCGCGG	GATCTTTTAC	GTCTTTTGTG	60
	AAAACGaTTT	TATTATTAAC	TACTTTTACT	GGATAACTTT	TGTATGTCGA	GTCAGTAGCA	120
	TTTTTTTTAT	CGTTTGTAGT	TGTGTCATAT	TCACCAGTTA	TTTTATGTGT	GTTCTTATCT	180
15	ACCTTTAACA	ACATACGGTC	TTCTTTTAAA	AGCTCATCTG	ATCCAACAAC	TGAATAAGAG	240
	GATTCTATAT	ACCATGTGTC	TTGATCATTA	TTTTCATAAT	GGGGATTATC	GTGACCATCA	300
	ATTTCATAAA	GCGTTTCTAA	GTTTTTAATA	GGATACGTAC	TTAGTACTTT	TTTAAGACCA	360
20	TCTTTCAAAT	GAATTTGTTC	CCACTTCATT	GCCAAAAACA	TATCGCCACT	GACTACAATT	420
	GAAATAATAA	TAATTGCTGC	TAAGTTTAAC	CAGAAAATTT	TATGTGCTTT	CATACATTCC	480
	CACCGTTTCT	CAAAATACTT	CATTAACACT	ATAATAATAT	ATTTTGAAAA	ATATTTACAT	540
25	CAGTATTAAA	GTGAATATCA	AATTTTAAAT	TTATGAAAAT	AATAGATATT	TATAAAAAGC	600
	GGAAAAGAGA	TACAATAAAA	AACTGCATGA	CGTTTGAGAC	GTCACACAGT	GTAACTAAAA	660
30	ATTTAAAAAG	TTGTTGCTAA	TTTTTCAGCA	TTATTAATAC	TAGTTGCTTT	AATTTCTTCA	720
	GTCTTATGAG	GTTCAGCATT	GTGTCCTTCA	ATAATGATTG	TTTCATATGA	TGGCACACCT	780
	AAGAATGTCA	TAATTGTTCT	TAAATAACGG	TCACCCATTT	CAAAATCAGC	AGCAGGTCCT	840
35	TCAGTATAAT	ATCCACCACG	TGATTGAATG	TGTAATACTT	TTTTGTCAGT	TAGTAAACCT	900
	TGTGGTCCTT	CAGCAGAATA	TTTAAAAGTT	TTACCTGCAA	TTGAAATAGC	ATCAATATAT	960
	GCTTTAACTA	CAGGTGGGAA	AGAAAGGTTC	CACATAGGCG	TTACAAATAC	ATATTTATCT	1020
40	GCACTTAAAA	ATTCTTCTAA	AATGTCACTC	AATCTTGAAA	CTTTCATTTG	TTCATCATCA	1080
	GTTAACGTTT	CGCCATTACT	CATTTTTCCC	CAACCAGTTA	ATACATCTTT	GTCAATAACT	1140
	GGAATATAAG	TTTCArATAA	ATCAATATGT	TTCACTTCAT	CATCAGGATG	TTGTTGTTGA	1200
45	TATGTTTCGA	TAAATGCTTT	ACCAGCCGCC	ATAGAATTTG	ATACCAGTTC	ATTAAAAGGG	1260
	TGTGCTGTAA	ТАТАТААТАС	TTTTGCCATT	TGAAAATTCT	CCTCTGkTTC	TGTTATTTTC	1320
	TTAAGTATAA	TTATTATACT	CGATATAAAA	TTTAATATCA	АТСААААТАТ	TCAAATTACC	1380
50	ATCATTTTCT	TCATCTATAT	nTGGCAGTAC	TACTAAAGTA	TGAGTGCATT	TAATTATGAa	1440
	ATAGTTGATT	TaGAATAtAT	ACTTAATACC	СААААТАТАТ	GAAGGATGGA	TGCCACTATG	1500

	ATTATTTATA	TAGATGACAT	TCAAAAATGG	TTTAACCAAT	ATACCGATAA	ATTGACACAA	1620
	AATCATAAAG	GACAAGGACA	CTCAAAATGG	GAAGACTTTT	TTAGAGGGAG	TCGGATTACT	1680
5	GAGACTTTTG	GTAAATATCA	ACATTCACCA	TTTGATGGTA	AGCATTATGG	CATTGATTTT	1740
	GCATTGCCAA	AAGGTACACC	AATTAAAGCG	CCGACGAATG	GTAAAGTAAC	ACGTATCTTT	1800
10	AATAATGAAT	TGGGCGGCAA	GGTATTACAG	ATTGCCGAAG	ACAATGGAGA	ATATCACCAG	1860
70	TGGTATCTAC	ACTTAGACAA	ATATAATGTC	AAAGTAGGTG	ATCGAGTCAA	AGCAGGTGAT	1920
	ATTATTGCAT	ATTCAGGCAA	TACAGGTATA	CAAACGACAG	GCGCACATTT	ACATTTTCAA	1980
15	AGAATGAAGG	GTGGCGTAGG	TAATGCATAT	GCAGAAGATC	CAAAACCGTT	TATCGATCAG	2040
	TTACCTGATG	GGGAACGTAG	CCTATATGAT	TTGTAGTTAT	AGAAGGGTGC	CCGCAGTCTA	2100
	AAAAATTAAG	CAATCATTGT	GTGAGTATGA	TACTTACATA	ATGGTTGCTT	TTTTCAATGA	2160
20	AAATCGTAAT	GCTAAGTCAT	ACTTGTTTGA	TTTAGATATT	ACTTAAAATG	TAAGACAAGG	2220
	TTGTTAGCAT	TGGCAGTGAA	ATATCGCACA	TAAAAAACAT	TATTGTCACA	CTAGAAAATA	2280
0.5	GTTGTGCACT	ATATCAATTT	TCTGTATAAA	AGTTTAATTC	TGACAGTAAT	GTAAACGTTT	2340
25	ACAATTTATG	ATTGACATTA	ATAATGACTG	AATATATGAT	TTATGTAAGT	ATTTGTGCAA	2400
	CGTTTTCACA	AAGTGTATTG	CACaAyCAAA	CTGtAAACaA	aGTATGGGGg	GCCATAACAT	2460
30	GGCAGAACTA	AGTTAGAGCn	TATTAAAA				2488
	(2) INFORMA	TION FOR SE	Q ID NO: 10)8 :			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4093 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

45

50

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:

IIIICIIIAI	TICAMICIGI	AIAIIAAIGA	IGICACTICA	IIIGAIACGA	TICTIGATAA	60
CCTATTCAAA	ATTCCGCCAA	ATAACATAAA	TATTATATAA	ATGCCGATAC	TTTTAATCAT	120
TTTCTACTTT	TTCTTCGATA	CGGAAACTTG	TTTTCGAATT	GÁACACTTCA	CCAGCTTTTA	180
AAATTGACGG	TGCTTTTTCA	CCATATAAAT	TAATATCATT	TGGTAAAAAT	TGTGTTTCTA	240
ATGTAAAGCC	AGAATGTGGT	TTATAAATAT	TAAATGGACT	ATCCCACTCA	TCAGGCTGGT	300
TAAAAGTAAA	GAACACAACA	TGAGGCATAT	CTGTATCGAC	CTCTAACATA	AATTCATGAT	360
TTTCAACATA	CATTTTATGT	TCACCAACTG	TAAATGGGTG	ATCGAGACCA	CCAAAACGTG	420

•	TATCTTCAAA	CACTTCATGT	AAATCTAGAA	TATCACCTGT	AACAATATTT	CGCTCATCTA	54
	ATACATACAT	ATCTAATTGA	TTACTTGAAA	TGCGATGATT	ATCAACGACA	TTATTATCTC	60
5	GATTCAAATT	GAAGTACACA	TGATTCGTAG	GACTAAACAA	TGTGTCTTCT	GATGCAACTG	66
	CTTCGTATTC	AATCGACCAT	TGGTGATCCG	CATCATAAAT	ATGTGTAATC	GTCACATCGA	72
10	TATCACCCGG	GAAATGATCA	TCAGCTGATT	TCAACACCGT	СТТАААТАТА	ACTTTAATTT	78
	GAGCAATTTC	ATTTCTAATT	TCATAATCAA	ATAACTTATT	GTCCAAACCA	TGACATCCAC	840
	CATGTAAATG	ATGTTCACCG	TTGTTTTTT	CTAACTGATA	TTCTTTACCT	TTCAACTTAA	900
15	ATTTAGCATT	ATCAATTCTA	CCGCTATATC	TTCCTATAGA	AGCACCAAAT	TTAAAAGGAT	960
	TACTATGATa	AAATTCATCC	GCTTCAACAA	CATTTCCAAG	AACAATATTA	TTATCATGAT	1020
	ATTTCCAAGA	CACTACTCTT	GCTCCATAAT	TCGTAAAAAT	AATTTTAGTT	TCATCATTAT	1080
20	CAATTTTGAT	TAAATCTACA	CCTTGTCTTT	GGTGCTCAAC	TTCAACTATC	ATTTTTACTT	1140
	CTCCCTTCTA	ACCACAAGTG	TTCAAGCTCT	GCTGGGTAGC	AACATTACTA	AAACACCTAC	1200
25	AATACAAATG	ATTGCACCGA	TAACATCATA	TTTATCTGGC	ATTTGTTTAT	CTACGACCAT	1260
	CGCAAAAATC	AAACTCATGA	TGATAAATAC	GCCACCATAT	GCTGCATATA	CTCTTCCGAA	1320
	TGATGGAAAT	GATTGAAATG	TCGCAATGAC	ACCATATAAC	ATGAGTATCG	CACCGCCTAT	1380
30	TAGCCCAACA	AGTGAAGACT	GTCCTTCCCT	AAGCCACAGC	CAAATCAGGT	ATCCCCCACC	1440
	TATTTCACAT	AAGCCAGCTA	ATATAAATAT	AAAAATCGGA	TATAACATGA	AATCACTCCA	1500
	TCACACATTT	GCTATCAATA	ATCTATCGGC	TACATATCAT	TTGTTTACAT	TTCTTCTTAC	1560
35	TTCACATTCC	CATTTTAAAA	AGTTCGTTTT	CACATTCATA	TTGTACACTT	TTTTAGACAT	1620
	TATTCTATAG	СТАААТАТАА	AAAAATAAGA	GTAACACGCT	TTCATCATCA	TTTTATATGA	1680
40	TAAATGTGTG	TCACTCTCAT	CAATTTTATT	TTTTAAATAC	ACGTTTCATT	GAATTAAATA	1740
40	AGCCACGTTC	AAATGTAAGT	ACTGAATCTT	TATATGTTTT	AATTGCAATC	CATATCAAGA	1800
	CAGCTACCAT	TACAATTGAG	ATTAAAGAAC	TTAAGATGAC	CTCATATATT	TGAAGCCCTG	1860
1 5	AAGTTTGAGC	GCGTACAACT	AATTGAAATG	GCGCTAAAAA	CGGAATATAA	CTTGTGATTA	1920
	AAGCAAGTTG	TCCATCAGGA	TTATTTATCG	TGAATATCGC	GATATAAAAT	GCAATCATAC	1980
	CAAGTAATGT	CAGTGGCATC	AAAGATTGAT	TTAAATCTTC	TATTCTAGAT	GTTAATGATC	2040
50	CGAGGATGGC	TGCAAGTAAT	ACATACGCCG	TAATTCCAAC	AATACTACTT	ATAATTCCGA	2100
	CAATAATAAT	TTGCCAAGAC	AATTGATTCA	TTTCCACGTT	AAAACCTTGT	AGCAAGTCTT	2160
	TTAAGTCAAA	GGCAAAAATG	CATATAACTG	CCATCAATAC	AATTAAAATA	ATCTGAGTCA	2220

	TAATAATCAT	TTCAATGACA	CGCGATGTTT	TCTCACTAGC	AATTTCCATA	GCTATTTGAG	2340
	ATGCATAATT	TAAAACAATG	AAGAACATTA	GAAAGATAAT	GCCATmaGcT	AAAGCATAGT	2400
5	TGAAAATCTT	TTGTCCTTCT	GATACTTTAT	CGACTTCATC	ATTAGAAATC	ACCTTATTAT	2460
	CAACTTTACT	TTGTGCTTGT	AATTTTTGTA	AGTCTTCTTT	GTTGATATTT	AATTCCCCGG	2520
10	CTACCATATT	TGTTTGAATA	GCTGTAAGCA	GTGCTTGTAC	TTTTTGTGAA	TCTTCATGAC	2580
10	TTACTCGCTT	CTCACTAATG	ATTGTCCCTT	GTAACGTGCG	ATTTTGATTC	ACCTTGATAA	2640
	TATAAGCTTT	ATCAAGTTTA	TGTTTTTTA	CTTCTTTTTC	AGCATCTTCT	ATAGAAACTT	2700
15	TAGTAAACTT	AGCATCACTA	TGAAATGTAT	TCGCCTGTTG	CTTGAAAACC	TTATAGATTT	2760
	GTTCATTCGG	TGCTGCTACA	CCAATTTTAT	CTGGACCATC	ATCAAACATG	TTAATAATCT	2820
	TATCAATGTT	AGATAGGCCA	ATCATTAAGG	CAGCAATAAT	AATCATAAAA	ATTACAAATG	2880
20	ATTTAGCTTT	AATTTTTTTG	ATATATGTCA	AAGTAAATGT	CGCCCAAAAC	TTATGCATCC	2940
	TTGCCACCAA	CCTTCTCAAT	GAATATATCT	TGTAATGATG	GTTCTACAAC	TTGGAATCGT	3000
	TTAACATAAC	CTTGATGTGC	CACAACTTGA	TAAATATCTT	TGGCTACGTC	TTCATTCTCA	3060
25	ATCGTCAACT	GAAGACCTTG	CTTCATGTTT	TCACTATGAA	TGATGCCTCT	AATGTTTGTT	3120
	AAATCTGGTA	GTGTTGTTTC	TGATTCAATG	ACAACTTTCT	TGTTACCATT	AGATGCACGT	3180
30	ACATGATTGA	TATCACCAGA	AACAACAAGT	TGACCTTTAT	CTAAAATACA	AACATCATCA	3240
	CATAATTCTT	CAACATGCTC	CATACGGTGA	GAACTATAAA	CGATTGTACT	GCCCCAATCA	3300
	TTTAAGTCTT	TAACTGCTTc	TTTTAATAAC	TCAACATTAA	CTGGGTCTAG	ACCACTGAAA	3360
35	GGCTCATCTA	ATATTAGTAA	TTCTGGTTTA	TGTAACATAC	TTGCTAACAG	CTGAATTTTT	3420
	TGTTGATTCC	CTTTTGATAG	ACTATCAATT	CGTTTTTTGC	GGTTTTCAGT	AATATCAAAA	3480
	CGCTCAAGCC	AATACGATAT	TTGCTGTTGT	ATTTCTGTTT	TTGACATTCC	CTTTAAAGTT	3540
40	GCCAAATATT	TCAATTCTTC	TTCAACTGTC	AATTTCCCAT	GTAAACCGCG	TTCTTCCGGT	3600
	AAATAACCAA	TACGATTGTA	CATTGTTTTA	TCTAGTTTTT	TACCGTTATA	CGTrrTGTGT	3660
45	CCTTCAGTTG	GTTCACTTAA	GCCTAAAATC	ATACGAAATG	TCGTTGTTTT	ACmTGCACCA	3720
,	TTTCTTCCTA	GAAAACCTAA	CATTTTACCT	GATTCTAACT	TTAATGAAAT	ATCATTTACT	3780
	GCCGTCATCT	TGCCAAAACG	TTTCGTAACA	TGTTCAATTA	CAAGTCCCAT	ACTTTGCCTC	3840
50	CTAAAAAnAT	ATGTATTTAT	СТТААТАТАА	CATTTCCATT	СТСТАТАААТ	GCAATATTTT	3900
	TAAAATGAAT	TTATTTTTAA	AATTTCTGAA	ATTGAAAAAT	TTAAATAGTG	CCATTTTTGC	3960
	ATGTTAAGTA	TCATTAGCAC	TAGATATGTT	TTTTCCATGC	CTTTATTGCC	TTATTTGTAA	4020

4093

CTTnCCGGTG TTT

	(2) INFORMATION FOR SEQ ID NO: 109:	•
<i>5</i>	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17846 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
	(wil SECUENCE PROGRESSION OF THE	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:	
15	TGCCAAACTA CCTTTTGACA GTCGTTGCTG TACTTCAGGA TGATCAATCA CATATnT	
	TTTATCAAAT AGGGCATCTT CATCATTTTT AGTAATTAAA TAACCATTGA AATCTGA	
	AATCAGTTCG TTAGGTCCAT ATTTAATATC ATAACTAATA ACTGGAACAC CATGTGC	
20	AGATTCAAGT AGCGCTAAAG AGAAACCTTC CATGTTACTT GTTATTAAAC TCAAATA	GGC 240
	ATCGCTATAT TCTTGGTCTA GATTGCTTAA AAAGCCGCGT AAGTAAACAT GATTTTC	CAA 300
25	TCCATATTT TGTATCAATT CATTTAATTT TTTACTTTCA GAaCCAAAAC CATACAT	ATG 360
23	AAGCTCTATT TTTGGGACAT ACGATACTAA GCGTTTAATT AATTCAATTT GTTGATG	TAA 420
	TTGTTTTCA GGTGAATAAC GAGCAACGGA AATTAATTTA ACACTGCGCT GATCTAA	IGT 480
30	TTGGACTGGT GTATCAATTG TTTCACTATA GCCGACAGGA ATATTAACAA CTGGAATA	AGT 540
	ATGGTTAATA CGTTTTTCAA CATCTAATTT TTGCTGCTCA GTAGAAACGA TAATTGC	ACG 600
	ATATCGAGAT AAATTTTCAA ACATCGCTTT ATATACATTT TTAAATGGCG ATGAATC	TAA 660
35	TGCATCAATA TTTTTAATGT GTGTACTGTG AAGCACAGCT ACTACTGGGA TTGACTCA	AGG 720
	CGTTAAGTTG AAAATAGGTG CTGTGTACAC ATTACGATCA CTGAAAAATA AATCCCCA	ATG 780
	TTGATATAGT TGTTTAATGA AAAATGCGCC TAATTCCGTT TCATTATTAA AGAAATAT	FTG 840
40	TTTGTTAGCA TAGTAAACAA TAATTTTTTG TACTTCTGGT TTGCCATCCT TGTAAGAA	AAA 900
	ATACTTTCT AATTTGTGT CACCTTCTGG ATTATAGAAA AATTCACATA ATGTTTGT	TTG 960
	TTTATCAACA AGAATCCTAC TACAACTTAA AAAGCCACGC ACATCATAAA AATCACGT	TT 1020
45	TACTTETCGT CTTTGACTAT CAAAATGATT TACATAATCT AATATACGAT ATTTAGGA	
	TTGAAAATGG GCATACATTA AGAAACGCTC TTGATCATAT ATTCTAAAGT CATGACTA	
50	TTCAACATGT TTTAAAGTAT AATGACATTC ATCAGTCCAA TACGACAACC AGTCAAAT	
	TTCATTGCGT TCTAAATATG TTGCTTCTTG GAAGAAATCA TACATATTAA TATAGTCA	
•	ACTAGTAATA TAATTTTGGG CATTTCTATA TAAATATCTA TTCCATGACA GAAATACA	CA 1320

	CCCAGTTAAA	TTAACACCTA	AACTATTACC	TACAAAATAA	TTCATTTACA	ACACCACTTA	1440
	TATCTATTTT	TATAATATT	ATCACATAAT	ATTTAATTAC	TTCTTTTAAC	TGGAAGATGT	1500
5	GTTTATTTAT	AAAACAACAA	ATTTTGATAT	TTATAATGAT	AGTAGTTATT	CAATCACTAC	1560
	GACCCAATAT	ATCATKGTAG	AGCTTAGGAT	ATTGATTTAT	GACTCAGGCA	CATCAAATGa	1620
10	GAgGATTTAT	AAArGAGATA	TACAACTCTA	GAAGGTATAA	TAAAAACGCG	CAACTAATGT	1680
10	TACGCGTTTG	AATTAATCAT	ATGATATTAT	TTGCGATACT	TTAATTTAGC	GAAAgcATCA	1740
	TGTTGATGGA	TAGACTCTTC	ATTACGACAT	TCGATATCGA	AACCGTCTAA	CCAATCAAAT	1800
15	TCAACTAAGT	CCGCGGCAAT	TAAACGAATT	AAGTCTTCGA	CAAAACGTGG	ATTTTCATAT	1860
	GCACGCTCTG	TCACACGTTT	TTCATCAGGA	CGTTTTAAAA	TAGGGTATAG	AATTGAACTT	1920
	GCATTAGCTT	CCATTGCATC	TAAAATTTTA	TTTTTATAGT	CATCAACTAT	GTCTTGATCT	1980
20	TTATTAATAT	ATGTTTTAAC	AGTGACAACA	CCACGTTGGT	TGTGCGCTGA	ATACTCACTT	2040
	ATTTCTTTTG	AACAAGGGCA	TAGCGTTGTG	ACAGTTGCTT	CAATAGTAAG	TTCTTTACGT	2100
	GTAnCTTTAT	CACCGTCAAT	TGCTAATCCA	TAAGTGACAT	CGGCATTACC	AACTGCTTTA	2160
25	ATATTTGTGG	TTGGACTATA	GCGATCAAAG	AACCATTTCC	CAGAAACATC	AACGCCTGCC	2220
	GCATTTTGTT	TCATATTCGT	TTGTAAAGTG	CGTAACACCT	GATAAAGTGT	ATTAAATTCA	2280
30	AGTTCAATAC	CATTATCATA	GTGCTTTTCA	ACACTTTCGA	TTATACGGCT	CATATTAATA	2340
	CCTTTTTCGT	CTTTTGTTAA	ACTTGTTGAA	AAACTAAATG	TGCCAGCTGT	TTGATACTGG	2400
	TCAACAAGTA	CAGGGTACAC	TAAGTTTTTA	ATACCAACTT	CTTCTATTTC	AAATAAAA	2460
35	TCTTTATGTG	TACTTTGTAA	ATCTGTCATT	TCGTTCTTAG	TAGTAGGTTT	CGTGCCTTCA	2520
	ATAGGATCTA	CGGAACCAAA	GTGTTTCCAA	CGACCTTCTC	GTGTCGATAA	ATCAAATTCA	2580
	GTCATTTTTT	TCCTCCGTTA	AGATTTAAAG	TGATATGTCC	AATATGGTTC	GACTGTTAAA	2640
40	AAGCTGTGTT	GTTTACCATC	GATTTCAGGA	CTTGCTAATT	GTTTTAAAAA	TGGACCTGTT	2700
	TGAGAAGCAT	GTGCTTCAAA	TGCCTTAATT	TTAAGTTCTT	TAAAATCTGT	AATATCATTT	2760
4-	TGAATATCAG	GTTCTCCAAG	AGCTTCGGTT	GCATCATTAC	TGAACGCAAC	TAAAGTTAAA	2820
45	CGAGGGCGTT	CTTCTTTAGG	CATGCGTTCA	ACCGTTCGAA	TTACAGCGTC	TGCTGTTGCT	2880
	TCGTGATCAG	GATGTACTGC	ATATCCAGGA	TAAAATGAAA	TAATCAATGA	TGGATTTGTA	2940
50	TCATCGATTA	AAGATTTAAT	CATACCATCT	ATATGTTCAT	AGGGTTCAAA	TTCGACAGTT	3000
	TTGTCACGTA	AACCCATTTT	TCTTAAATCA	GTAATACCGA	TAACTTTACA	AGCTTCTTCT	3060
	AGTTCACGCT	CACGAATACT	TGGTAATGAT	TCGCGTGTTG	CAAATGGGGG	ATTACCTAAA	3120

	TAATTTGCTA	ATGTGCCTGC	AGATGAGAAG	GTTTCATCAT	CAGGATGTGG	AAATATTACT	324
	AATACATGTC	TTTCGTCAGT	CATGTTGATG	CCTCCTCTAT	AAATTAAATG	GTCGCTCACT	330
5	AATTTGAAGT	GCTGCAGCGA	GTTGACCTTC	GTAATTAAAA	CCTGCAATTA	AAAATTCATC	336
	ATGCTCATTG	ACCTCAAAAT	GCGTTAGACC	TTGTACATAA	ACCCAACCAC	CATTTGATAG	342
10	TTTAAGACCA	ATGCGATAAG	GTTCTTTATT	ACCACCTTTT	AGTTGTGCAT	GCGTATATGT	348
	TATTTGTATG	TTTCTTAAAA	AAGTACCAGC	ATTAAAAACA	CGTTGATCGA	AATGGTTCGC	354
,	ATAGGCCCCA	TTTGTCGTTT	CAACATGCAG	ATACACAGGT	TTATGTTCAA	AAGAAGCAAG	360
15	TAAATCTATA	ACTTCTTGTT	CTTTAATTGG	TTCCAACACG	TTCACTCCTT	ACACTATCAA	366
	TGTGTTTATC	TTTCTATTTT	ACTAAAAACT	ATTCGATAAT	TGTATACGAT	TGCTCAATTA	3720
	TTAAATTT	AATTTTCATG	AAGGGTAATT	ACTCAGGATT	ACGTAATCAT	ACAGCATTAG	378
20	TTTTTTACTT	TTAAAAATCA	AAAATTTGTT	GGAATTTGAA	AAGTGTTAAA	CATTAAAAAT	3840
	GATGCTATAT	TAATGGTGTA	TGAATGAATT	CATAAGTTTT	TAAAATGTAT	TAAATTTGTG	3900
	GAGGCATGTA	AACAATGAAA	GTATTAAACT	TAGGATCGAA	AAAACAAGCA	TCATTCTATG	3960
25	TTGCATGTGA	GTTATATAAA	GAGATGGCAT	TTAATCAGCA	CTGTAAACTA	GGTTTAGCAA	4020
	CTGGTGGTAC	AATGACAGAT	TTGTATGAAC	AACTTGTTAA	GTTGTTAAAT	AAAAATCAGT	4080
30	TAAACGTAGA	CAATGTATCC	ACGTTTAATT	TAGACGAATA	TGTAGGTTTA	ACCGCATCAC	4140
	ATCCGCAAAG	TTATCACTAT	TATATGGATG	ACATGCTTTT	CAAACAATAT	CCTTATTTTA	4200
	ATAGAAAGAA	CATTCATATT	CCAAATGGAG	ATGCCGATGA	TATGAATGCG	GAAGCGTgCA	4260
35	AAATATAATG	ACGTTTTAGA	ACAACAAGGT	CAACGTGATA	TTCAAATTTT	AGGTATTGGT	4320
	GAAAATGGTC	ATATTGGATT	TAATGAACCT	GGTACGCCGT	TTGATAGCGT	TACTCATATC	4380
	GTTGÄTTTGA	CTGAAaGTAC	TATTAAGGCT	AATÄGTCGAT	AAAAATTTTA	CGAaGATGAT	4440
10	GTTCCAAAGC	AAGCCATTTC	GATGGGACTT	GCTAATATTC	TTCAAGCCAA	ACGTATCATT	4500
	TTACTCGCAT	TTGGTGAAAA	GAAACGTGCT	GCTATTACAC	AAATTATTAAA	TCAGGAAATT	4560
1 5	TCTGTTGATG	TTCCAGCCAC	ATTACTTCAC	AAACACCCGA	ATGTTGAGAT	ATATTTAGAC	4620
•0	GACGAAGCTT	GCCCGAAAAA	TGTTGCGAAA	ATTCATGTCG	ATGAAATGGA	TTGATTGCAA	4680
	TGTTTAATTA	AGAAATGCCT	CGGGAAAGGT	TCCAATAGAA	agataaaag	CATTGGAAGG	4740
50	ATGATTTTTA	GTGGAATTAC	AATTAGCAAT	TGATTTATTA	AACAAAGAAG	ACGCGGCTGA	4800
	GTTAGCAAAT	AAAGTAAAAG	ATTATGTAGA	TATCGTAGAA	ATCGGTACGC	CAATCATTTA	4860
	CAACGAAGGT	TTACCAGCAG	TTAAACATAT	GGCAGACAAC	ATTAGTAATG	таааастатт	4920

	CGCGGATGTA	ATTACAATAC	TAGGTGTTGC	AGAAGATGCA	TCAATTAAAG	CAGCTATTGA	5040
	AGAAGCTCAT	AAAAATAATA	AACAATTACT	AGTTGATATG	ATTGCTGTTC	AAGATTTAGA	5100
5	AAAACGTGCA	AAAGAACTAG	ATGAAATGGG	TGCTGATTAT	ATTGCAGTAC	ACACTGGTTA	5160
	TGATTTACAA	GCAGAAGGGC	AATCACCATT	AGAAAGTTTA	AGAACCGTTA	AATCTGTTAT	5220
10	TAAAAATTCT	AAAGTTGCAG	TAGCAGGTGG	AATTAAACCA	GATACAATTA	AAGATATTGT	5280
	CGCTGAAAGT	CCTGATCTTG	TTATTGTTGG	TGGCGGAATC	GCAAATGCAG	ATGATCCAGT	5340
	AGAAGCTGCG	AAACAATGTC	GCGCTGCAAT	CGAAGGTAAG	TAATATGGCT	AAATTTAGTG	5400
15	ACTATCAATT	AATTCTAGAT	GAATTAAAGA	TGACTTTGTC	ACATGTTGAA	GCGGATGAGT	5460
	TTTCAACTTT	TGCATCCAAA	ATACTACATG	CTGAACATAT	ATTTGTAGCT	GGCAAAGGAC	5520
	GTTCAGGATT	CGTGGCGAAT	AGTTTTGCAA	TGCGCTTAAA	TCAGCTCGGC	AAACAGGCAC	5580
20	ATGTTGTTGG	AGAATCAACG	ACACCTGCGA	TTAAGTCGAA	TGATGTATTT	GTAATTATCT	5640
	CTGGTTCAGG	TTCCACGGAA	CATTTAAGAT	TATTAGCAGA	CAAAGCAAAA	TCAGTAGGTG	5700
	CTGACATCGT	ATTAATTACT	ACAAATAAAG	ATTCTGCAAT	AGGCAATCTA	GCTGGGACGA	5760
25	ACATCGTTTT	GCCTGCAGGT	ACAAAATATG	ATGAACAAGG	CTCGGCACAA	CCATTAGGAA	5820
	GTTTGTTTGA	ACAAGCATCT	CAATTATTTT	TAGATAGTGT	TGTAATGGGA	TTGATGACTG	5880
30	AAATGAATGT	TACGGAACAA	ACGATGCAAC	AAAATCATGC	TAATTTAGAA	TAAAATAAAG	5940
	ATAGTCGATA	ATATGATGCC	TAGGCAGAAA	TATTATCGAT	TATTTTTTA	TAATAATTT	6000
	AAATTATAGT	ATAATATCAA	TAATAAACGA	ATAGGGGTGT	TAATATTGAA	GTTTGACAAT	6060
35	TATATTTTTG	ATTTTGATGG	TACGTTGGCA	GACACGAAAA	AATGTGGTGA	AGTAGCAACA	6120
	CAAAGTGCAT	TTAAAGCATG	TGGCTTAACG	GAACCATCAT	CTAAAGAAAT	AACGCATTAT	6180
	ATGGGAATAC	CTATTGAAGA	ATCATTTTTA	AAATTAGCAG	ACCGACCATT	AGATGAAGCA	6240
10	GCATTAGCAA	AGTTAATCGA	TACATTTAGA	CATACATATC	AATCTATTGA	AAAGGACTAT	6300
	ATTTATGAAT	TTGCGGGTAT	AACTGAAGCC	ATTACAAGTT	TGTATAACCA	AGGGAAAAA	6360
	CTTTTCGTGG	TGTCTAGTAA	GAAGAGTGAT	GTATTAGAAA	GAAATTTATC	GGCTATTGGA	6420
15	TTAAATCACT	TGATTACCGA	AGCTGTTGGA	TCCGATCAAG	TAAGTGCATA	TAAACCAAAT	6480
	CCTGAAGGCA	TACACACAAT	TGTGCAACGC	TACAATTTAA	ATAGCCAACA	AACGGTGTAT	6540
50	ATTGGTGATT	CAACGTTTGA	TGTTGAGATG	GCACAACGTG	CTGGTATGCA	ATCTGCAGCT	6600
	GTCACTTGGG	GTGCACATGA	TGCAAGGTCA	TTACTTCATT	CAAATCCGGA	TTTTATTATT	6660
	AATGATCCAT	רמכמממדדממ	ፐ ልሮርር ፓልተጥአ	ጥ አ አ አ ራጥጥራጥ	TN N N N C N C N C	1 1 m 2 d d 2 m d d	

	ATAAAATTA	AATATTTATT	AAACATTATG	AATTTTTAA	A GAGTAATGTC	TGACTCGTTG	6840
	ATAATTTATT	TTTGTAAAAA	TAAATTAAAG	TAATGACAA	A GTTATTGAAG	TAAATTGAGT	6900
5	ATAAACATTT	AAATACGATG	TCGAAAATGG	CGATAGCATA	TCACTTACAT	GAAGTTGTGT	6960
	GCLATCGCTA	TTTTTAGTTA	TAATTCCAAA	AAGTTAATCO	TTCGATGATT	TAAGAATTAT	7020
10	TATTGTTTAA	TTCAAATGTA	TGAGGGTATA	AAATCATTGA	ATTTAATTCG	ATAAAGCGAA	7080
	ATTTTTGAAC	AAACATACTT	TTGTATTTAT	ATAAAAGTTT	AAATTCTTAT	AAATTTGACA	7140
	AAACTAATTA	ACTCCGTATA	ATTATGAAAC	ATACAAGAGG	GAGTGTATGA	ATTCATGGAT	7200
15	TTTAATAAAG	AGAATATTAA	CATGGTGGAT	GCAAAGAAAG	СТААААААА	CGTTGTTGCA	7260
	ACCGGTATCG	GTAATGCAAT	GGAATGGTTC	GATTTTGGTG	TCTATGCATA	TACAACTGCG	7320
	TACATTGGAG	CGAACTTCTT	CTCTCCAGTA	GAGAATGCAG	ACATTCGACA	AATGTTGACT	7380
20	TTCGCAGCAT	TAGCCATTGC	GTTTTTATTA	AGACCAATTG	GTGGTGTCGT	ATTTGGTATT	7440
	ATTGGTGACA	AATATGGACG	TAAAGTTGTA	TTAACATCTA	CAATTATTT	AATGGCATTT	7500
	TCAACATTAA	CCATTGGATT	ATTGCCAAGC	TATGATCAAA	TTGGACTTTG	GGCACCAATA	7560
25	CTATTATTGC	TTGCAAGAGT	ACTACAAGGG	TTTTCAACAG	GTGGAGAGTA	TGCGGGGGCA	7620
	ATGACATATG	TTGCCGAATC	ATCTCCAGAT	AAGCGTCGTA	ACTCATTAGG	TAGTGGACTA	7680
30	GAAATTGGGA	CATTATCAGG	TTACATAGCT	GCTTCAATTA	TGATTGCTGT	ATTAACATTC	7740
	TTTTTAACAG	ATGAACAAAT	GGCATCATTT	GGTTGGAGAA	TCCCATTCTT	ACTCGGTTTA	7800
	TTCCTAGGAT	TATTCGGCTT	ATATTTACGT	CGTAAGCTGG	AAGAATCACC	AGTTTTCGAA	7860
35	AATGATGTTG	CAACACAACC	AGAAAGAGAT	AACATTAACT	TTTTACAAAT	CATCAGATTT	7920
	TATTACAAAG	ATATATTTGT	ATGTTTTGTA	GCTGTTGTAT	TCTTCaATGT	TACAAACTAT	7980
	ATGGTAACTG	CATATTTACC	AACCTATTTA	GAACAAGTTA	TTAAATTAGA	TGCAACGACA	8040
10	ACAAGTGTAT	TAATTACTTG	TGTCATGGCA	ATAATGATTC	CATTAGCATT	AATGTTTGGT	8100
	AAGTTAGCGG .	ATAAAATAGG	TGAAAAGAAA	GTATTTCTAA	TTGGTACTGG	TGGGCTAACA	8160
1 5	TTATTCAGTA	TCATCGCATT	TATGTTATTA	CATTCACAAT	CATTTGTTGT	AATAGTAATC	8220
	GGTATATTTA	TATTAGGATT	TTTCTTATCA	ACTTACGAAG	CGACAATGCC	AGGGTCGTTA	8280
	CCAACGATGT '	TTTACAGTCA	TATAAGATAT	CGAACTTTAT	CAGTAACATT	TAATATCTCT	8340
50	GTTTCGATAT	TTGGTGGTaC	GaCGCCATTA	GTkGCAmCaT	GGTTaGTTAC	GAAAACTGGA	8400
	GATCCATTAG (CMCCTGCGTA	TTATTTAACA	GCAATCAGTG	TTATTGGCTT	TTTAGTTATT	8460
	ACATTCTTAC	ם מדים בעדים ב	AGCAGGAAAA	ጥርጥርጥል ል ል አ ር	СТТССТАТОС	3.3.3.00m3.cs.m	

	GAACGTAAGA	ATTAGAGATT	TTAATaAAAA	GTATAAATCA	ATCGTATATA	AGCACTTTAA	864
	AGCTAGTAGG	TTCTGCTAAC	TTTAAAGTGC	TTTTTAAATT	GAGAACTGTA	ATTAGCCGTA	870
5	ATAAAGTTTT	TGTATATACA	TAAACCCCCA	CTGCAATGAT	TATCGCAATG	GGGGAAAGAG	876
	GGGACTTAAA	GCATATGTTT	AGCTTTGAAT	ACTTAAAATT	CTCTTGCTAT	TGAAATGTTA	882
	GGATGTAAAT	ATGTCTTAGA	GTATTTTGTC	CAACGCAATT	AATATTGAGA	CTCTAACCTT	888
10	CAATATTATT	ATAGAGAACA	CAAACTTAAA	TAGATTGGGT	GACTTATTTG	TGTCAGTTAT	894
	TGCGATTGCG	ATAACTTCTT	TTCTCTATAT	ACATATAGTA	ACGTCTTATC	TAATAAAAA	900
1 5	CATGGTACTA	CAGTATCAAA	TTTATCTAGG	GCTTAAGTTT	GATTTTTATA	ATAGGCAGGT	906
	TTACCTGATA	AAAATACTTA	TTCATTATAT	AATGTTAACA	ATATGTATTT	TAAAGTTTAC	912
	ATTGAGTGAG	GGATATTGAT	GAACGTAATT	TTAGAACAGT	TGAAAACACA	ТАСТСААААТ	918
20 .	AAACCTAATG	ACATAGCATT	ACATATCGAT	GATGAAACAA	TTACATATAG	TCAACTAAAT	924
	GCCCGCATCA	CTAGCGCAgT	TGAATCTTTG	CAGAAATATT	CACTTAACCC	TGTCGTTGCT	930
	ATTAATATGA	AATCACCGGT	GCAAAGTATT	ATTTGTTATT	TAGCTTTGCA	TCGTTTACAT	936
25	AAAGTGCCTA	TGATGATGGA	AGGTAAATGG	CAAAGTACTA	TACATCGTCA	ATTGATTGAA	942
	AAATATGGTA	TTAAAGATGT	AATTGGAGAT	ACAGGTCTCA	TGCAGAATAT	AGACTCACCG	9480
	ATGTTTATTG	ATTCAACGCA	ATTACAGCAC	TACCCCAATT	TATTACATAT	TGGTTTTACT	9540
30	TCAGGGACAA	CTGGACTGCC	AAAAGCATAT	TATCGTGATG	AAGATTCATG	GTTGGCTTCT	9600
	TTTGAAGTTA	ATGAAATGTT	GATGTTAAAA	AATGAAAATG	CAATAGCAGC	CCCTGGACCA	9660
35	CTATCGCACT	CGTTAACATT	ATATGCGTTA	TTGTTTGCTT	TAAGTTCCGG	TCGTACTTTT	9720
55	ATAGGACAGA	CCACTTTTCA	TCCTGAAAAG	TTACTTAATC	AATGTCATAA	AATATCATCA	9780
	TACAAAGTTG	CTATGTTTCT	TGTTCCAACG	ATGATTAAAT	CATTATTGTT	AGTTTACAAC	9840
40	AATGAACATA	CAATCCAATC	ATTTTTTAGC	AGTGGAGATA	AGCTGCATTC	TTCTATTTTT	9900
	aaaagataa	AAAATCAAGC	AAATGACATA	AATTTGATTG	AATTTTTTGG	TACATCGGAA	9960
	ACCAGTTTTA	TCAGCTATAA	CTTGAATCAG	CAAGCACCAG	TTGAATCAGT	AGGTGTGCTA	10020
45	TTTCCAAATG	TGGAATTGAA	AACAACGAAT	CACGATCACA	ATGGTATAGG	AACTATTTGT	10080
•	ATAAAAAGTA	ATATGATGTT	TAGTGGCTAT	GTAAGTGAAC	AATGTATAAA	TAATGATGAA	10140
	TGGTTTGTTA	CTAATGATAA	TGGCTATGTA	AAAGAGCAGT	ATTTATATTT	AACGGGACGT	10200
50	CAACAGGATA	TGTTAATTAT	TGGTGGTCAA	AATATATATC	CAGCACATGT	TGAACGCCTT	10260
	TTAACGCAAT	CTTCGAGCAT	TGATGAAGCA	ATTATCATCG	СТАТТССААА	тсассстттт	10320

	CAATTTTTAA	AAAAGAAAGT	GAAaCgnTaT	GAAATTCCAT	CGATGATTCA	TCATGTAGAA	10440
	AAGATGTATT	ACACTGCAAG	tGGTaAAATT	GCTAGAGAAA	AAATGATGTC	GATGTATTTG	10500
5	AGAGGTGAAT	TATAATATGA	ATCAAGCAGT	CATAGTTGCA	GCTAAACGAA	CTGCATTTGG	10560
	GAAATATGGT	GGCACTTTAA	AACATTTAGA	GCCaGAACAA	TTGCTTAAAC	CTTTATTCCA	10620
	ACATTTTAAA	GAGAAGTATC	CAGAGGTAAT	АТСТААААТА	GATGATGTAG	TTTTAGGTAA	10680
10	TGTTGTTGGG	AATGGTGGCA	ATATTGCAAG	AAAAGCATTG	CTTGAAGCGG	GGCTTAAAGA	10740
	TTCAATACCT	GGCGTCACAA	TCGATCGCCA	ATGTGGGTCT	GGACTTGAAA	GTGTTCAATA	10800
15	TGCATGTCGC	ATGATCCAAG	CCGGAGCTGG	CAAGGTATAT	ATTGCAGGTG	GTGTTGAAAG	10860
	TACAAGTCGA	GCACCTTGGA	AAATCAAACG	ACCGCATTCT	GTGTACGAAA	CAGCATTACC	10920
	TGAGTTTTAT	GAGCGTGCAT	CATTTGCACC	TGAAATGAGC	GACCCATCAA	TGATTCAAGG	10980
20	TGCTGAAAAT	GTGGCCAAGA	TGTATGATGT	TTCAAGAGAA	TTACAAGATG	AATTTGCTTA	11040
	TCGAAGTCAT	CAATTGACAG	CGGAAAATGT	AAAGAATGGA	AATATTTCTC	AGGAAATATT	11100
	ACCTATAACC	GTTAAAGGAG	AAATATTCAA	CACTGATGAA	AGTCTAAAAT	CACATATTCC	11160
25	GAAAGATAAC	TTTGGCCGAT	TTAAGCCCGT	GATCAAAGGT	GGGACCGTTA	CCGCTGCGAA	11220
	TAGTTGTATG	AAAAATGATG	GTGCAGTTTT	ATTGCTTATT	ATGGAAAAAG	ATATGGCATA	11280
20	CGAATTAGGT	TTCGAGCATG	GTTTATTATT	TAAAGATGGT	GTTACGGTAG	GTGTTGATTC	11340
30	TAATTTTCCT	GGCATTGGTC	CAGTACCAGC	CATTTCCAAC	ТТАСТАААА	GAAATCAATT	11400
	AACGATAGAA	AATATTGAAG	TCATTGAAAT	TAACGAAGCG	TTCAGTGCAC	AGGTAGTTGC	11460
35	CTGCCAACAA	GCTTTAAATA	TTTCAAATAC	GCAATTAAAT	ATATGGGGTG	GTGCATTAGC	11520
	ATCAGGTCAT	CCATACGGTG	CAAGCGGTGC	CCAATTAGTG	ACTCGATTAT	TTTATATGTT	11580
	TGAÇAAAGAG	ACTATGATTG	CATCTATGGG	GATAGGGGGA	GGTCTAGGAA	ATGCAGCATT	11640
40	ATTTACTCGA	TTCTAACCAG	CGATTAAATG	TGTCATTTTC	TAAGGATAGT	GTGGCTGCAT	11700
	ATTATCAGTG	TTTTAACCAA	CCTTATAGAA	AAGAAGTACC	ACCATTAATG	TGTGCGTCAT	11760
	TATGGCCAAA	ATTTGATTTA	TTTAAAAAAT	ATGCAAATAG	CGAACTGATT	TTAACAAAAT	11820
45	CAGCAATTAA	TCAAACTCAA	AAGATAGAAG	TAGACACAAT	ATATGTAGGG	CATTTAGAAG	11880
	ATATTGAATG	CCGACAGACT	CGCAATATCA	CACGTTATAC	AATGGCTTTA	ACATTAACTA	11940
	AAAATGATCA	ACATGTCATA	ACGGTLACAC	AAACTTTTAT	TAAGGCGATG	AAGTAGAGAT	12000
50	GGAGTTTAAT	GAGATATGGA	TAAATGAATA	TTTGGCGCTC	GTAAATGATG	ATAATCCAAT	12060
	ACATAATGAG	АТТСТСССАС	САСААТТАСТ	GACTCAAATC	ATCCTCATCC	COLVE COLUMN TARREST	12120

	ATTCATTGAA	CAACACGAAC	ACGAAATTAT	AGCAATTAAT	GACGATGGAG	AGATTAAAAT	1224
_	AAAAATTTCT	TTGAGCACAA	AAAAATAACC	GATATTAGCT	GCATGAACGC	ATATTAATTA	1230
5	GGAGATGAAA	GGACAGCTAA	TATCAGTTAT	GTATTGTTAT	TATTATTGGG	AACAGAGATG	1236
	AATATAGGTT	ACGTTTCTTT	CTTTGCACGG	GGATGCATTA	АТСТААААТА	АТААТААСАА	1242
10	CTATATCAAT	GTTTAATAAA	TTCTGGATTA	TTGGAACGAT	TAGTCAATTT	AACTAACTTT	1248
	CATATGATCT	ATATCGTCTT	GTAATAAAGA	GAGCAATTTG	AATATTTCAG	TATCACTAAA	1254
	TGAATCGTCA	CATTTAATTG	AAACATGCTG	AAACGTTTTG	GTTATAATTT	CATAAACTGG	1260
15	TGCGCCTTCA	TGGTGATACT	GTCGATAAAT	AATCATAACC	TATATTACCT	CCTTTGCTAC	1266
	TCTATGGTTA	TATTATAAAT	AACATTTTTA	TGTGTGACAT	CAACCTTAAG	TATCAACTTT	1272
	TTATCAGACA	TAGAACGTAT	GATTTACTAA	GACTATTTAT	GTATAAAAGT	ТСТАААТААА	1278
20	TATATATTTA	TAGAGTCGCC	TGGCAGTCAT	TTGGGaaata	TAACATATAT	GATTAGAGAG	1284
	GCATCTATCG	CAAAAGAATG	ATAATGATAG	AGGTATTGAG	CATATAGATG	AGTTTAAGTT	1290
	CATCTTGAAA	ATAAAGGGTT	ATTTAGTCAT	AGATGTAGAT	GTATAGGAAA	TATTTGTATG	1296
25	TATTGTTCGA	TATGTATGAA	ATTTTCAATA	AAAGCTAATA	ACGCTTATAT	GTAACTTTCA	1302
	AATTTAAATT	ATATACAGAG	CATGATGATT	ТААААААТА	AACCACATCA	CATAAATTGA	1308
30	GTTCATACCC	AATTTAAGTG	GTGTGGCTAA	TAATGTTGAT	TTATAGATGA	ACCGCCTAAT	1314
	CGTTAAACCT	CTGTTACTTC	AACATCGATA	TGTTCAATAC	GGTTGTATGC	ACCGTGATCC	1320
	ACAGGACCAA	CAAAATCATT	CATTTTCCAA	CCGTTTTTAA	TAGCAGAAGC	GACGAAAGCT	1326
35	TTCGCGCTAA	TCACAGCTTC	TTTCGGTGAC	TTACCGTTAG	CTAAATATGC	AGTTGTTGCC	13320
	GCAGCAAATG	TACAACCAGC	ACCATGGTTA	TAACTTTGTT	GGAACATGTC	TGTTGTTAGT	13380
	TGATĀAAATG	TTTGACCATC	ATAGTATAAG	TCATACGATT	TATCTTGATC	TAAAGCTTTG	13440
40	CCACCTTTAA	TGATGACATG	CTGTGCGCCT	TTATCAAAGA	TAATTGTTGC	AGCCTTTTTC	13500
	ATATCTTCAA	TTGAATTTAA	TTTACCTAAT	CCTGATAATT	GACCCGCTTC	AAATAAGTTT	13560
	GGTGTCACTA	CCGTTGCTTT	AGGTAGTAAA	TATTTAATCA	TCGCCTCAGT	ATTTCCAGGA	13620
45	TTAAGCACTT	CATCTTCGCC	TTTACAAACC	ATGACAGGAT	CTACTACAAA	ATATTGTGCA	13680
	TTAGATGCCT	CATATACTTC	TCCAGCACGT	TTGATTATCT	CCTCAGTACC	TAACATACCT	13740
50	GTTTTAATAG	CATCAGGTCC	GATTGATAAA	GCCGTTTCAA	GTTGTTTTTC	AAATACATCC	13800
	ATTGGTAATG	GTGTAACATC	GTGTGACCAT	GTATCTTTAT	CCATAGTAAC	GATGGCAGTT	13860
	AAAGCGACCA	TGCCATACGT	АТСТААТТСТ	TGGAACGTTT	TCAAATCTGC	ፐፐርርል ፕል <i>ርሮ</i> ጥ	13920

	CACTCCTACA	TAATAATATT	GTATTCATCA	TATCATTTTT	AACCTAATTG	ATTATAAAAA	14040
	AGCATTCAAT	ATTTGATGAT	TGTTGAAATG	AATCATTCAT	ACTATTGTAA	CTTTTGAAAA	14100
5	TGTCATTCAC	TTTAGATAAG	TGTGATATGT	TAAAATATGT	CCTGAGGTGA	GATTGAATGG	14160
	AATGGTCGCA	AATTTTTCAT	GACATAACAA	CGAAACATGA	CTTTAAAGCT	ATGCATGATT	14220
	TTTTAGAAAA	AGAATATTCG	ACTGCAATCG	TATACCCTGA	TAGGGAAAAT	ATATATCAAG	14280
10	CGTTTGATTT	AACACCGTTT	GAAAATATCA	AAGTTGTTAT	ATTAGGACAA	GACCCGTATC	14340
	ATGGTCCAAA	CCAAGCACAT	GGATTAGCAT	TTTCAGTGCA	ACCTAACGCA	AAATTCCCTC	14400
15	CATCTTTACG	TAATATGTAT	aaagaattag	CAGATGATAT	TGGATGCGTT	AGACAAACAC	14460
	CGCATTTACA	AGATTGGGCA	AGAGAAGGCG	TCTTGTTATT	GAATACAGTT	TTAACCGTAA	14520
	GACAGGGTGA	AGCAAATTCT	CATCGTGATA	TTGGTTGGGA	AACATTTACT	GATGAAATTA	14580
20	TTAAAGCAGT	GTCTGATTAT	AAAGAACATG	TTGTCTTTAT	TTTGTGGGGG	AAACCTGCAC	14640
	AGCAAAAAAT	AAAGCTTATC	GATACATCTA	AACATTGTAT	TATAAAATCA	GTGCATCCTA	14700
	GTCCACTGTC	TGCATATAGA	GGATTCTTTG	GATCAAAACC	GTATTCCAAA	GCGAATGCCT	14760
25	ATTTAGAGTC	AGTAGGAAAA	TCACCAATTA	ATTGGTGTGA	AAGTGAGGCG	TAGATGTTGA	14820
	ATAGAGAAAC	TTTAATAGCA	CGAATTGAGC	AAGAATTAGT	ACAAGCAGAG	CAGGCACAGC	14880
	ATGACCATGA	CTTTGAÄAAA	CATATGTATG	CCATACATAT	ATTAACATCT	TTATATGCTT	14940
30	CAACATCAAA	TACACCACAT	ATTGGTGAAC	AACAAATGAA	TCGTCGTATT	GCTAACCATA	15000
	ATCAAATGCC	ACAATCACAA	ATAACGCAGC	CAACTCATCA	AGTGACAGTT	GCTGAAATTG	15060
35	AAGCGATGGG	TGGTAAAGTA	AATACGCATT	CAGCACATCA	TCATAATAAG	TCATATTCAC	15120
	AACCTTCAAA	CCAACAACAA	AGATTAGCGA	CAGATGATGA	CATTGGCAAT	GGTGAATCCA	15180
•	TATTTGATTT	TTAAAAAGCA	ACAATGAAAC	ATAATTACTT	AATAGCTTGT	TAAGTATGTA	15240
10	GGTŤAATAAT	CAAGACGCAT	ATACTTTTAT	TCGAGTGTTC	GGATTTAAAC	ATTTATTAAT	15300
	ACTGAATTAT	ATAAGGAGAG	GTAGCAATGA	AATTATTTAT	TATTTTAGGT	GCATTAAACG	15360
	CGATGATGGC	TGTCGGTACA	GGTGCATTTG	GTGCGCATGG	TTTACAAGGA	AAAATAAGTG	15420
15	ATCACTATTT	ATCAGTATGG	GAAAAAGCAA	CGACGTATCA	AATGTACCAT	GGCTTAGCAT	15480
	TATTAATTAT	AGGTGTAATT	AGTGGTACAA	CTTCAATCAA	TGTTAACTGG	GCTGGCTGGT	15540
_	TAATATTTGC	TGGTATTATT	TTCTTTAGTG	GATCATTATA	TATTTTAGTA	TTAACTCAAA .	15600
50	TTAAAGTTTT	AGGTGCGATT	ACGCCAATTG	GTGGCGTATT	GTTCATCATT	GGATGGATAA	15660
	TGTTAATCAT	TGCGACATTC	AAATTTGCTG	GTTAAATTTT	AAAACTTTAG	ATTACCTATG	15720

	TGGGTATAGA	ATACCTTCGA	GGTGAGTTTT	TATTTATGGA	AAAAAAGAAT	AAGCAAATAG	15840
	ATAGAGGCGA	TTTAAAACAA	AACCTATCTG	AAAAGTTTGT	ATGGGCGATT	GCATATGGTT	15900
5	CATGTATCGG	ATGGGGCGCA	TTCATCTTAC	CAGGAGACTG	GATTAAGCAG	TCAGGTCCGA	15960
•	TTGCAGCATC	AATTGGTATA	GTTATTGGTG	CATTATTAAT	GATATTAATT	GCGGTTAGTT	16020
10	ATGGCGCATT	AGTAGAGAGA	TTTCCAGTAT	CAGGGGGCGC	GTTTGCCTTT	AGTTTCTTAA	16080
10	GTTTCGGCAG	ATATGTGAGT	TTCTTCTCAT	CATGGTTTTT	AACTTTTGGT	TATGTCTGTG	16140
	TCGTTGCTTT	AAAtGCGACC	GCATTCAGTT	TACTAGTTAA	ATTCTTATTG	CCAGATGTCT	16200
15	TAAATAATGG	GAAACTATAC	ACCATTGCGG	GCTGGGACGT	TTATATTACG	GAAATCATTA	16260
	TTGCGACCGT	ATTACTACTT	GTATTCATGC	TAGTAACGAT	TCGTGGCGCA	AGTGTATCTG	16320
	GATCATTACA	ATATTATTTC	TGTGTGGCGA	TGGTAATCGT	CGTATTATTG	ATGTTCTTTG	16380
20	GTTCATTCTT	TGGTAATAAT	TTTGCACTTG	AAAATTTACA	ACCGTTAGCT	GAACCTAGCA	16440
	AAGGATGGTT	AGTGTCTATT	GTGGTTATTG	TATCCGTGGC	ACCATGGGCA	TATGTTGGAT	16500
	TTGATAATAT	TCCACAAACA	GCAGAAGAGT	TTAACTTTGC	ACCAAACAAG	ACATTTAAGC	16560
25	TTATCGTGTA	CAGTTTATTA	GCAGCATCAT	TAACTTATGT	TGTCATGATT	TTATACACTG	16620
	GTTGGTTATC	AACAAGTCAT	CAAAGTTTAA	ATGGGCAGTT	GTGGTTAACA	GGTGCTGtTA	16680
30	CACAAACAGC	ATTTGGTTAT	ATTGGATTAG	GTGTATTAGC	AATTGCAATT	ATGATGGGTA	16740
50	TATTTACTGG	TTTAAATGGA	TTCTTGATGA	GTTCAAGTCG	CTTGTTATTT	TCTATGGGAC	16800
	GTTCAGGTAT	TATGCCAACA	ATGTTTAGTA	AATTACATAG	TAAATACAAA	ACACCATATG	16860
35	TCGCAATCAT	ATTCCTAGTA	GGAGTGTCGT	TAATTGCACC	TTGGCTAGGA	AGAACTGCAT	16920
	TGACTTGGAT	TGTAGATATG	TCATCTACTG	GTGTATCCAT	TGCCTACTTT	ATTACATGTT	16980
	TGTCTGCAGC	GAAATTATTC	AGTTATAACA	AACAAAGTAA	TACGTATGCA	CCGGTTTACA	17040
10	AAACGTTTGC	TATTATCGGC	TCATTTGTAT	CATTCATTTT	CTTAGCGTTG	TTATTAGTGC	17100
	CAGGTTCTCC	TGCAGCACTG	ACTGCACCGT	CTTATATTGC	ATTACTTGGA	TGGTTAATCA	17160
	TCGGTTTAAT	ATTCTTTGTG	ATTCGATATC	CTAAATTGAA	AAATATGGAT	AATGATGAAT	17220
15	TAAGTCGCTT	GATTTTAAAT	AGAAGTGAAA	ATGAAGTTGA	TGATATGATT	GAAGAACCTG	17280
	AAAAAGAAAA	AACTAAATAA	TAAAAGAATC	GCACAATAAA	CCTTCTTCAT	TCGGAGGCGT	17340
50	ATCGTGCGAT	TTTTTGTATT	ATAAATTGAC	ATTTAAGACG	AGGCAGCTGA	ACCTTATATA	17400
•	TAATTGCTAA	GAGTTAGGGC	TGAGCCATTT	CTAACAAATA	TTTATAATCG	TTTAAAAGAT	17460
	TTCACGAACC	САСАААСААТ	ת מ ביידיירים ביים	ATTTCCTCCC	ממדממדממם	ACCTAATGCG	17520

AAGACTAAAT TTTTTGTAGC ATCGTATGCT AAGCCACCAG GTACTAATGG AATGATACCC 17640
GTTACCATAA AAATGATGGC AGGTTCTTTT TGTTTACGAG CCATATAATG ACTTAACAAG 17700
CCTAATGCTA AACTACCAAA GAAACTAGAG TATATAGTGT GCACATTAAA GCCGTTGAAG 17760
AATAAGGTGT AAACCATCCA TCCACACGTA CCAACGAAAC CACATGATAG ATATAATTTT 17820
CTAGGTGCAT CAAAAATGAC GCAGAA 17846

10

15

(2) INFORMATION FOR SEQ ID NO: 110:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5544 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20

25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

60	ACTTAGAACC	CAAAATGGAC	GCTATTTTGG	ATATCGCCGC	GGTGAAAGTA	ATTGACACTT
120	ACGAATGGAA	GKTCAAATCA	ATTAGGATCT	CAATTAATAT	GATGAACAGC	TGAGTTACAA
180	AGCAAATATT	ATGAATGAAC	AGATATTGCG	TAATTATTCA	TCACCGCAAA	TGGTAATCAA
240	ATATTGTCGT	AATGATGAAA	TTTTACAGAA	AAAGTTTACC	AGTAAGCGAA	AGATTATAGA
300	GTGAAGAAAT	TATTATTATG	TGCGAATGAA	ATAAAGTAAA	CCTAAAAGTG	GCTTATTCAT
360	AAGACTTGTC	ACGTCAATGG	AGATTTACCA	TAGTATTAAG	ACTGATAAAG	TAAACAACAA
420	ATAATCATTC	GTTTTGCAAC	ACTTTATATA	AATTTTCTCA	CAACAACTGC	TAATTCCTTG
480	AAGCATTAAT	AAGTGTTATA	TATTTTTAAA	CTAATATGGA	GATGGTATAC	GATTTACTTC
540	ATTTAAGTGT	TTGTGTCAAC	GGGTATGTTA	TCCAGAAAGA	GAAACAAATA	AACTAAACAA
600	TTGTAACACA	GACTTAAAAT	AGTTTTCTTA	TCATGTTGAA	ACACTTAAAT	GAAACCAGAT
·660	ATTCCAGCAA	AGATCGATTG	ACCTGATAAA	TCAATCAACA	TTAATTCGAA	AGAAGATGGT
720	ATCAAGATTT	CAATTATTAT	TGTTGAAAAG	AACGTÄTGGA	TTAAGACAAC	AGTATATCAA
780	AGGAAATATT	GCAATTTAGG	ATTGTCGTGA	TAAAGTCACA	AAAAATTGGA	TTCAGAAATA
840	GTGTTAGTTT	CCGAAACCAG	TCAAGATTGG	TATCAGAAGT	AAGCAATACG	AATGGATTTA
900	CAGATAAAAT	GGCTATGCAA	TGAAGCATAT	TGGATAATGG	ACTACAATTA	CAAGGATATT
960	CGCGTGGCTT	GGACCTGAAG	TATCGTTGTA	GAGATGTTGA	GCAAAAGACA	TGTAGAATAC
1020	TTAGAAAAGA	TTTGCACCTG	GGGGATTGGC	CTTATTCAAT	TGTCCTGTAG	TATCATTGGC
1080	GTACAAATGT	CTAGAATATG	TGAGTATGAC	TCATTCGTTA	CCTCGTGmAG	AGGGAAATTA

50

	ATTAGCTACT	GGTGGTACGA	TTGAAGCAGC	ATTAAAATTA	GTTGAAAAAT	TAGGCGGTAT	120
	CGTAGTAGGT	ATTGCATTTA	TAATTGAATT	GAAATATTTA	AATGGTATTG	AAAAAAAA	126
5	AGATTACGAT	GTTATGAGTT	TAATCTCATA	CGACGAATAA	TAAATAATAT	AATTTTATCA	132
	AATGAAATCC	TTCATCAAAT	GTATAAGAAC	CAATGACTTA	ATTAAAAAAG	TTGTTTAAGT	138
10	TTTCTTAACA	TGAGATGTTA	GGATTTTTTA	TTTACTGAAA	ATGTTAGATG	ATTGAGCATT	144
,,	ATACCTTAAT	AACATCGTTT	ATTTATTTCA	TAAATTGTAG	TATCATAGAA	CTAATATTTA	150
	AAAAATGAAA	CAGTAGATTT	AGGTCGAATT	TTTGTAAAAG	TTTTAAAAGT	AGGAATAGTA	156
15	TACAAATTAA	ACTCGCTCAA	GTAAAATTAA	TATTACGATT	AATGACGACA	GGATAAATAT	162
	TTATCGTCGA	CGGACGTATG	ATTGGTGTGG	GACAAATACT	ATTCAACAAG	AGTACCTAAA	168
	TCATTGTTTA	AGGCGAAGTA	ATAAATATGA	ATGGGGTGTA	TCATATAATG	AACAACGAAT	174
20	ATCCATATAG	TGCAGACGAA	tTCTTCACAA	AGCAAAATCA	TATTTGTCAG	CAGATGAATA	180
	TGAGTATGTT	TTAAAAAGCT	ATCATATTGC	TTATGAAGCA	CATAAAGGTC	AGTTCCGAAA	186
	AAACGGATTA	CCATACATTA	TGCATCCTAT	ACAAGTTGCA	GGTATTTTAA	CAGAAATGCG	1920
25	ATTAGACGGA	CCGACGATTG	TCGCAGGTTT	TTTGCATGAT	GTAATTGAAG	ATACACCGTA	1980
	TACATTTGAA	GATGTAAAAG	AAATGTTCAA	TGAAGAAGTT	GCTCGAATTG	TTGATGGTGT	2040
30 ·	GACGAAGCTT	AAAAAAGTAA	AATACCGCTC	AAAAGAAGAA	CAACAAGCTG	AAAATCATCG	2100
50	CAAGTTATTT	ATTGCGATTG	CCAAAGATGT	ACGCGTAATT	TTGGTGAAAT	TAGCAGACAG	2160
	ATTACATAAT	ATGCGTACCT	TGAAAGCCAT	GCCGCGCGAA	AAACAAATTA	GAATTTCTCG	2220
35	AGAAACATTA	GAAATTTATG	CACCATTAGC	ACATCGTCTT	GGTATTAATA	CAATCAAATG	2280
	GGAACTAGAA	GATACGGCTC	TTCGTTATAT	TGATAATGTG	CAATATTTTA	GAATAGTCAA	2340
	TTTAATGAAG	AAGAAACGTA	GTGAACGTGA	AGCGTATATC	GAAACGGCTA	TTGATAGAAT	2400
10	ACGTACTGAA	ATGGACCGAA	TGAATATCGA	AGGCGATATA	AATGGTAGAC	СТАААСАТАТ	2460
	TTACAGTATT	TATCGGAAAA	TGATGAAGCA	GAAAAAACAA	TTTGATCAAA	TTTTTGATTT	2520
	GTTGGCGATA	CGTGTTATTG	TCAATTCTAT	TAATGATTGT	TATGCGATAC	TTGGGTTGGT	2580
15	GCATACGTTA	TGGAAACCGA	TGCCAGGACG	TTTTAAAGAT	TATATTGCAA	TGCCTAAACA	2640
	AAATTTGTAT	CAGTCATTGC	ATACTACAGT	AGTAGGCCCA	AATGGAGACC	CGCTCGAAAT	2700
io	CCAAATACGA	ACGTTTGATA	TGCACGAAAT	TGCTGAGCAT	GGTGTTGCAG	CACACTGGGC	2760
	TTACAAAGAA	GGTAAAAAAG	TAAGTGAAAA	AGATCAAACT	TATCAAAATA	AGTTAAATTG	2820
	GTTABAAGAA	ጥጥል ርርጥር አልር	CCCATCATAC	ATCCTCTCAC	CCTCDACAAT	TTATCCAAAC	2006

•	TGAGTTGCCA	TATGGTGCTG	TGCCGATTGA	TTTTGCTTAT	GCGATTCACA	GTGAAGTAGG	300
	TAATAAGATG	ATTGGTGCCA	AGGTGAATGG	CAAAATTGTA	CCAATTGACT	ATATTTTACA	306
5	AACAGGCGAT	ATTGTTGAAA	TACGTACTAG	TAAACATTCA	TATGGACCAA	GTCGTGÄTTG	312
	GTTGAAAATT	GTTAAATCGT	CTAGTGCCAA	AGGTAAAATT	AAAAGTTTCT	TCAAAAAACA	318
10	AGATCGTTCA	TCTAATATTG	AAAAAGGCCG	AATGATGGTT	GAAGCTGAAA	TAAAAGAGCA	324
10	AGGATTTAGA	GTCGAAGATA	TTTTGACAGA	GAAAAATATT	CAGGTTGTTA	ATGAAAAATA	330
	TAACTTTGCA	AATGAAGATG	ATTTATTCGC	AGCTGTAGGA	TTTGGCGGCG	TGACATCCTT	336
15	ACAGATTGTT	AATAAATTAA	CTGAAAGACA	ACGTATTTTA	GATAAACAAC	GTGCTTTAAA	342
	TGAAGCACAA	GAAGTTACGA	AATCATTGCC	TATTAAAGAC	AACATCATTA	CTGATAGTGG	348
	TGTCTATGTA	GAAGGTTTAG	AAAATGTACT	TATCAAGTTG	TCAAAATGTT	GTAATCCTAT	354
20	ACCAGGTGAT	GATATTGTAG	GTTATATCAC	CAAAGGTCAC	GGTATTAAAG	TACATCGCAC	360
	TGATTGCCCA	AATATTAAGA	ACGAAACTGA	ACGACTAATT	AATGTTGAAT	GGGTAAAATC	366
•	AAAAGACGCA	ACTCAAAAAT	ATCAGGTTGA	TTTAGAGGTA	AtGCGTATGA	CCGAAATGGC	372
25	TTGTTGAATG	AAGTACTACA	AGCTGTTAGC	TCGACAGCCG	GCAATTTAAT	TAAAGTTTCA	378
	GGACGTTCAG	ATATTGATAA	AAATGCAATA	ATAAATATTA	GTGTCATGGT	GAAAAACGTG	384
22	AATGATGTTT	ATCGTGTGGT	AGAAAAGATC	AAACAACTTG	GTGATGTTTA	TACAGTAACA	390
30	AGAGTTTGGA	ACTAGAGGTG	CAAAATATGA	AAGTAGTTGT	ACAAAGAGTT	AAAGAAGCAT	3960
	CGGTGACGAA	TGATACATTA	AATAATCAAA	TCAAAAAAGG	ATATTGTTTA	TTAGTCGGTA	4020
35	TCGGTCAGAA	CTCTACAGAG	CAAGATGCAG	ATGTAATTGC	AAAGAAAATT	GCTAATGCAA	4080
	GATTATTTGA	AGATGACAAT	AATAAATTAA	ACTTTAATAT	CCAACAAATG	AATGGTGAAA	4140
	TACTATCAGT	TTCACAATTT	ACTCTCTATG	CAGATGTAAA	AAAAGGTAAC	CGTCCAGGTT	420
40	TCTCAAATTC	TAAAAATCCT	GATCAAGCGG	TAAAAATTTA	TGAGTATTTT	AATGCaTGCG	4260
	CTACGAGCGT	ATGGTCTTAC	TGTGAAAACA	GGTGAATTTG	GAACACACAT	GAATGTTAGC	4320
	ATAAATAATG	ATGGTCCAGT	CACTATTATT	TATGAAAGTC	AGGACGGCAA	AATTCAATGA	4380
45	AAAAAATAGA	GGCATGGTTA	TCTAAAAAGG	GTCTTAAAAA	TAAACGTACT	CTAATAGTAG	4440
	TGATTGCCTT	TGTCTTATTT	ATCATCTTTT	TATTTTTATT	GCTGAATAGC	AATAGTGAAG	4500
50	ATAGTGGGAA	CATCACGATA	ACTGAAAATG	CTGAATTACG	TACAGGTCCA	AACGCTGCGT	4560
50	ATCCAGTCAT	ATATAAAGTT	GAAAAAGGTG	ACCATTTTAA	AAAGATTGGT	AAAGTAGGTA	4620
	*********	30000033030	* C* TOO C OT	20022222200	mmcc	001 5000101	

	TAGTGCTTGA	TCCTGGTCAT	GGAGGTAGTG	ACCAGGGTGC	TTCAAGCAAT	ACTAAATATA	480
	AAAGTTTAGA	AAAAGATTAT	ACGTTGAAAA	CAGCAAAAGA	ATTGCAGCGT	ACTTTAGAAA	486
5	AAGAAGGCGC	AACTGTTAAG	ATGACAAGAA	CAGACGATAC	ATATGTTTCA	CTAGAAAATC	492
	GTGATATCAA	AGGCGATGCC	TATTTGAGTA	TACATAATGA	TGCGTTAGAA	TCATCTAATG	498
o ·	CAAATGGAAT	GACAGTTTAT	TGGTATCATG	ATAATCAAAG	AGCTTTAGCA	GATACGTTAG	504
υ	ACGCTACGAT	TCAGAAGAAA	GGTCTACTTT	CTAATCGCGG	TTCAAGACAA	GAAAATTATC	510
	AAGTGTTAAG	ACAAACAAAA	GTTCCTGCTG	TTTTATTAGA	ATTAGGTTAT	ATTAGTAACC	516
5	CAACTGATGA	AACGATGATT	AAAGATCAAT	TACATAGACA	AATTTTAGAA	CAAGCAATTG	522
	TTGATGGCCT	TAAAATTTAT	TTTTCTGCGT	AGGGCTTGCA	AAAATATGTG	AAAGTAGTTA	528
	TCATTGATAT	TGAATTTTAT	AACTAAAACC	GTTAGTATTC	TTGAAATGGT	AAATGAAATA	534
ro	GGTAGCAATC	TAACTAAGAT	TGTGTAGGAA	TATAATCCAT	AGACTGAAAG	ATTATGCTGA	540
	GTAGTTTATA	TACATTGAAC	ACAAGAAGAG	GTGCTTTATG	AAAAGTAAAG	CCGTTAAACG	546
	TACGTTaAAC	GTTTTGAGTG	GGTTTATTAA	ATGCACGCTT	ATAAAAAGTA	ATGATGATTA	552
25	CAATTAGGCA	TGTTTTTTAA	ACCA				554
	(2) INFORM	ATION FOR SE	EQ ID NO: 1	11:			
30		EQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEI (D) TOPOLOGY	1067 base pucleic acid	pairs			
15					÷		
	1	DOLLENIAR PRO	COTTON ON	TD NO -			

AAAAGATTGC	TAAATATAAA	GGCATGTTTA	ATATGTTAGA	ACAACAAATC	ATTCATAGCC	60
AAGATATGGC	TCATTTTAGA	AGTGAATTTT	TTTACGTCAA	TCATGaGCAT	CGAGAAAACT	120
ATGAAgCACT	CCTAATTTAT	TACAAAAATA	GTATCGACAA	TCCTATTGTA	GATGGTGCAT	180
GTTATATTTT	AGCCCTACCT	GAAATTTTCA	ATAGTGTTGA	TGTTTTCGAA	TCAGAGTTAC	240
CATTTTCATG	GGTATATGAT	GAAAATGGCA	TTACCGAAAC	AATGAAATCA	CTTAGCATTC	300
CATTACAATA	TTTAGTTGCA	GCAGCTTTAG	AAGTAACTGA	TGTGAATATA	TTTAAGCCTT	360
CAGGATTTAC	AATGGGAATG	AATAATTGGA	ATATTGCTCA	AATGCGAATC	TTTTGGCAAT	420
ATACAGCAAT	TATTAGAAAA	GAAGCACTAT	AACATTAATA	ATTAATTAGC	TATAAAGATG	480
מחדר מר ממר מ	ΔΤΟΔΤΟΤΤΤΔ	Тапитититит	ΔΤΩΤΩΤΆΔΤΤ	ATTTTTGAGG	AAAATmACAA	540

AATTTTATGT	TTTCAAAAGT	AAACAATCAA	AAGATGTTAG	AAGATTGCTT	CTATATAAGA	660
AAGAAAGTGT	TTGTAGAAGA	ACAAGGCGTC	CCTGAGGAAA	GTGAAATTGA	TGAATATGAA	720
TCTGAATCTA	TTCACCTCAT	TGGATATGAT	AATGGACAGC	CAGTTGCCAC	TGCTCGAATA	780
CGCCCTATTA	ATGAAACAAC	TGTCAAAATA	GAACGAGTAG	CTGTGATGAA	ATCACATCGT	840
GGACAAGGAA	TGGGTAGAAT	GCTTATGCAA	GCTGTAGAAT	CATTAGCTAA	AGATGAAGGT.	900
TTTTACGTAG	CTACTATGAA	TGCCCAATGT	CATGCTATCC	CATTTTATGA	AAGTTTAAAC	960
TTTAAAATGA	GAGGTAATAT	ATTTCTTGAG	GAAGGCATCG	AGCATATTGA	AATGACAAAA	1020
AAGTTAACCT	CGCTTAATTA	AAAAAAGTTG	TATCTATTTT	AGAAACA	·	1067
(2) INFORM	ATION FOR SE	EQ ID NO: 1	12:			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18613 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

AAGACGLALG	ATAACAACAA	TACGTGTAGT	GAAAGATTTT	AATCTACATA	TTACTGACAA	60
AGAATTCATT	GTATTTGTTG	GACCATCGGG	ATGTGGTAAA	TCAACAACAT	TACGAATGGT	120
TGCTGGACTA	GAGTCTATCA	CATCTGGAGA	TTTTTATATT	GATGGGGAAC	GCATGAACGA	180
TGTTGAACCA	AAGAATAGAG	ATATTGCGAT	GGTATTTCAA	AACTATGCAT	TATATCCACA	240
TATGACTGTT	TTTGAAAATA	TGGCATTTGG	GCTAAAGCTA	CGTAAAGTAA	ataaaaaga	300
GATTGAACAA	AAAGTTAATG	AAGCAGCTGA	AATATTAGGA	TTAACTGAGT	ATCTTGGTCG	360
тааа́ссаааа	GCGTTATCTG	GCGGACAGCG	TCAACGTGTT	GCTTTGGGCA	GAGCTATTGT	420
TAGGGATGCG	AAAGTCTTTT	TAATGGATGA	ACCATTATCG	AATCTTGATG	CGAAyTtCGA	480
GTACAAATGC	GCACAGAAAT	ATTGAAATTA	CATAAGCGAC	TTAATACTAC	GACAATTTAT	540
GTTACACATG	ATCAAACTGA	AGCATTGACG	ATGGCTAGTC	GAATTGTTGT	TTTGAAAGAT	600
GGCGACATTA	TGCAAGTCGG	CACACCTAGA	GAAATATATG	ATGCCCCTAA	TTGCATATTT	660
GTGGCGCAAT	TTATCGGCTC	ACCAGCAATG	AATATGTTGA	ATGCTACAGT	TGAAATGGAC	720
GGATTGAAGG	TAGGAACACA	CCATTTTAAA	TTACATAATA	AAAAATTTGA	AAAGTTAAAA	780
GCTGCTGGCT	ACTTAGACAA	GGAAATTATT	TTAGGTATTC	GAGCTGAAGA	CATTCATGAA	840
GAACCAATAT	TTATTCAAAC	TTCTCCAGAG	ACACAATTTG	AATCTGAAGT	AGTTGTATCC	900

	AAATTAGATT	CAAGAACTCA	AGTGATGGCG	AACGACAAGA	TTACACTAGC	ATTTGATATG	1020
	AATAAGTGTC	ACTTTTTGA	TGAAAAAACA	GGAAATCGTA	TCGTCTAAGG	GGGAGTATTC	1080
5	ATGTCTAAAA	TTTTAAAATG	TATCACGTTA	GCCGTGGTAA	TGTTATTAAT	CGTAACTGCA	1140
	TGTGGCCCTA	ATCGTTCGAA	AGAAGATATT	GATAAAGCAT	TGAATAAAGA	TAATTCTAAA	1200
	GACAAGCCTA	ACCAACTTAC	GATGTGGGTG	GATGGCGACA	AGCAAATGGC	GTTTTATAAA	1260
10	AAAATTACGG	ATCAATATAC	TAAAAAAACT	GGCATCAAAG	TAAAGCTTGT	AAATATTGGT	1320
	CAAAATGATC	AACTAGAAAA	TATTTCGCTA	GACGCTCCTG	CAGGAAAAGG	TCCAGATATC	1380
15	TTTTTCTTAG	CACATGATAA	TACTGGAAGT	GCCTATCTAC	AAGGCTTAGC	TGCTGAAATC	1440
	AAATTATCAA	AAGATGAGTT	GAAAGGTTTC	AATArGCAAG	CACTTAAAGC	GATGAATTAT	1500
	GACAATAAGC	AACTAGCATT	GCCAGCTATC	GTTGAAACAA	CCGCACTTTT	AAATAATT	1560
20	AAATTAGTGA	AAAATGCACC	GCAAACGTTA	GAAGAAGTTG	AAGCTAATGC	TGCCAAACTA	1620
	ACTGATAGTA	AAAAGAAACA	ATACGGTATG	TTATTTGATG	CTAAAAATTT	CTATTTTAAT	1680
	TATCCGTTTT	TATTCGGCAA	TGATGATTAT	ATTTTCAAGA	AAAATGGCAG	TGAATATGAT	1740
25	ATTCATCAGC	TAGGACTAAA	TTCAAAACAT	GTCGTCAAGA	ATGCTGAACG	ATTACAAAAA	1800
	TGGTACGACA	AAGGGTATCT	TCCTAAGGCA	GCAACACATG	ATGTCATGAT	TGGTCTTTTT	1860
	AAAGAAGGAA	AAGTAGGACA	ATTTGTCACT	GGACCGTGGA	ACATTAATGA	ATATCAAGAA	1920
30	ACGTTTGGTA	AAGATTTAGG	AGTAACAACA	TTACCTACAG	ATGGTGGCAA	ACCTATGAAA	1980
	CCATTTCTAG	GTGTACGTGG	TTGGTATTTA	TCTGAATATA	GTAAACATAA	GTATTGGGCT	2040
35	AAAGATTTAA	TGCTGTATAT	CACTAGTAAA	GATACATTAC	AAAAATATAC	AGATGAAATG	210
	AGCGAAATTA	CTGGACGTGT	TGACGTGAAA	TCATCTAATC	CAAATTTAAA	AGTGTTTGAA	2160
	AAGÇAAGCAC	GTCATGCTGA	ACCGATGCCT	AATATTCCTG	AAATGCGACA	AGTTTGGGAA	222
40	CCGATGGGCA	ATGCAAGCAT	ATTTATTTCA	AATGGTAAGA	ATCCTAAACA	AGCGTTAGAT	228
	GAGGCGACGA	ATGATATAAC	GCAAAATATT	AAGATTCTTC	ATCCATCACA	AAATGATAAG	234
	AAAGGAGATT	AGTTATGACG	AAACGTAACC	CTAAATTAGC	GGCATTATTA	TCTGTTATAC	240
45	CTGGTTTGGG	ACAGTTTTAT	AATAAAAGAC	CCATTAAAGG	GACGATATTT	TTTATCTTTT	246
•	TCATCAGTTT	TATTTCTGTT	TTTTATAGCT	TTTTAAATAT	TGGTTTTTGG	GGATTGTTCA	252
	CATTAGGGAC	AGTACCTAAG	TTAGACGATT	CTCGTGTCTT	ACTTGCACAA	GGTATTATTT	258
50	CTATCTTACT	CGTTGCTTTC	GCAATCATGC	TATATATCAT	TAATATTTA	GATGCATATC	264
	GTAATGCTGA	ACGATTTAAT	CGCAATGAGG	AAATAAAGGA	TCCGAAGCGC	GTATGGTGGC	270

	TGTAGTTGTA	TTTCCATTAA	TAYYTATGTT	TGGAGTAGCA	TTTACAAATT	ACAATTTATA	2820
	CAACGCGCCT	CCGAGACACA	CATTAGAATG	GGTTGGTTTA	GATAACTTTA	AAACGTTATT	2880
5	CACAATTGGC	GTTTGGCGTA	AAACATTTTT	CAGTGTTATT	ACTTGGACAT	TAGTATGGAC	2940
	GCTTGTTGCA	ACGACACTTC	AAATTGCATT	AGGGCTGTTT	TTGGCAATTA	TTGTAAATCA	3000
	CCCTGTCGTC	AAAGGTAAGA	AATTTATCCG	TACTGTGTTA	ATCCTACCTT	GGGCTGTACC	3060
10	ATCATTTGTG	ACAATTTTAA	TATTTGTAGC	GTTATTTAAT	GATGAATTTG	GTGCGATAAA	3120
	TAATGATATT	TTGCAACCTT	TATTAGGTGT	AGCACCAGCA	TGGTTAAGTG	ATCCGTTTTG	3180
i5	GGCAAAAGTG	GCATTAATCG	GCATTCAAGT	ATGGCTTGGA	TTCCCATTTG	TCTTTGCACT	3240
	GTTCACTGGA	GTACTGCAAA	GTATTTCATC	AGATTGGTAC	GAAGCAGCAG	ATATGGATGG	3300
	TGCGTCTAGT	TGGCAAAAGT	TTAGAAACAT	CACATTCCCG	CATGTCATTT	ACGCCACAGC	3360
20	GCCATTGTTA	ATTATGCAAT	ATGCAGGTAA	TTTCAATAAT	TTTAATCTTA	TTTATCTATT	3420
	TAATAAAGGC	GGTCCACCAG	TGTCAGGGCA	GAATGCTGGT	AGTACAGATA	TCTTGATATC	3480
	TTGGGTGTAT	AATCTGACAT	TTGAGTTTAA	CAACTTCAAC	ATGGGTGCAG	TTGTGTCATT	3540
?5	AATTATTGGA	TTTATTGTTG	CTATTGTCGC	ATTTATTCAA	TTCAGACGTA	CAAGTACGTT	3600
	TAAAGATGAG	GGAGGTTTAT	AAGATGACAA	AGAAGAAAA	CATATTAAAA	GCAATCGGTA	3660
	TTTACAGTTT	TATAGCGATG	ATGTTTGTCA	TCATTTTATA	TCCACTACTG	TGGACATTTG	3720
30	GCATTTCCCT	TAATCCAGGT	ACGAACTTGT	ATGGTGCCAA	AATGATACCA	GACAATGCAA	3780
	CATTTAAAAA	TTATGCATTC	TTACTATTCG	ATGACAGTAG	TCAATACCTG	ACTTGGTATA	3840
35	AAAATACGCT	TATCGTAGCA	TCTGCAAATG	CACTGTTTAG	TGTGATATTT	GTCACGTTAA	3900
	CAGCATATGC	TTTTTCTAGA	TATCGCTTTG	TTGGTCGTAA	ATACGGGCTG	ATTACATTTT	3960
	TGAȚTTTACA	AATGTTCCCT	GTATTAATGG	CAATGGTCGC	AATCTATATT	TTGCTAAATA	4020
10	CAATTGGATT	ATTAGATTCT	TTATTTGGAC	TAACACTGGT	ATATATTGGT	GGATCAATAC	4080
	CGATGAATGC	CTTTTTAGTG	AAAGGTTACT	TCGATACGAT	TCCAAAAGAA	CTTGATGAAT	4140
	CTGCCAAAAT	TGATGGTGCA	GGGCATATGC	GTATTTTCTT	ACAAATTATG	CTTCCATTAG	4200
	CTAAGCCGAT	TTTAGCAGTT	GTTGCTTTGT	TCAATTTTAT	GGGGCCATTT	ATGGACTTTA	4260
,	TATTACCTAA	AATACTATTA	AGAAGTCCTG	AAAAATTCAC	ATTAGCAGTT	GGATTGTTCA	4320
· n	ACTTTATTAA	TGATAAGTAT	GCAAATAATT	TCACAGTGTT	TGCAGCAGGG	GCAATTATGA	4380
50	TTGCAGTACC	TATAGCAATC	GTATTCTTGT	TCTTGCAACG	CTATTTAGTA	TCAGGTTTAA	4,440
		63.63333.66m	m> commo	mma.coa.cmcc	CCCACAAMMC	NWN N N C N N C C	450/

	GGGTGTGGTG	GTATTGCGAA	TGGCAAGCAC	ATGCCAAGTT	TACAAAAAGT	TGAAAATGTT	4620
	GAAATGATCG	CATTTTGTGA	CGTAGACATT	TCGAAAGCAG	CGAGTGCGGC	AGAAGCATAC	4680
5	GGAACTGACA	ATGCAAAGGT	TTATGATGAT	TACAAAGCAT	TGTTAAAAGA	TGACACGATT	4740
	GATGTTATCC	ATGTTTGTAC	GCCAAATGAC	TCGCATTGTG	AAATTACTGT	AGCAGGGTTG	4800
10	CATGCTGGTA	AACATGTGAT	GTGTGAAAAA	CCAATGGCTA	AAACGACAGC	AGAAGCTCAA	4860
10	AAAATGATAG	ATACAGCTAA	ATCAACAGGT	AAAAAATTAA	CAATAGGTTA	TCAAAATCGT	4920
	TTCCGAGCAG	ATAGTCAATT	TTTACATCAA	GCAGCGCAAC	GTGGCGACTT	AGGAGACATT	4980
15	TACTTCGGAA	AGGCACATGC	CATTCGTCGT	CGAGCAGTAC	CAACATGGGG	TGTCTTTCTA	5040
	GACGAAGAAG	CTCAAGGTGG	AGGACCATTA	ATCGATATCG	GTACACACGC	TTTAGATTTA	5100
	ACGTTATGGA	TGATGGATAA	TTATGAACCA	GAATCAGTGA	TGGGTTCAAC	ATTCCATAAA	5160
20	TTAAATAAAC	AGCATCATGC	GGCAAACGCT	TGGGGTTCAT	GGAATCCAGA	TGAATTTACA	5220
	GTTGAAGATT	CTGCGTTTGG	AAATTATTTA	ATGAAGAATG	GAGCGACGAT	CATTTTAGAA	5280
	TCCGCTTGGG	CGATTAATTC	TTTAGAAGTG	GATGAGGCAA	AATGTTCATT	ATCAGGAACT	5340
25	AAAGCAGGTG	CTGATATGAA	AGATGGTCTA	CGTATTCATG	GTGAAGACAT	GGGTACACTT	5400
	TATACCAAAC	ACGTTGAATT	GGAAAACAAA	GGCGTCGACT	TTTATGAAGG	TAATGAAGTG	5460
20	GATGAAGCTG	AAGAAGAAGC	AAAAGCTTGG	ATTGATGCAG	TTGTAAATGA	TACTGAACCA	5520
30	GTTGTGAAAC	CGGAACAAGC	AATGGTAGTT	ACAAAAATTC	TTGAAGCGAT	TTATCAGTCT	5580
	GCAAAATCAG	GCAAAGCAAT	TTACTTTGAA	TAACATCATA	CGGTAAGGAG	GCACATCATG	5640
35	ACAAAATTAA	AAGTTGGTGT	GATAGGTGTT	GGTGGTATTG	CACAAGACCG	TCATATTCCA	5700
	GCATTGCTGA	AACTCAAAGA	CACAGTCTCA	TTAGTTGCAG	TACAAGATAT	TAATACAGTG	5760
	CAGATGATTG	ATGTTGCGAA	gCGCTTTAAT	ATACCTCATG	CAGTTGAGAC	ACCTAGCGAG	5820
40	CTGTTTAAAC	TTGTTGATGC	GGTGGTCATT	TGTACACCTA	ATAAATTCCA	TGCTGATCTT	5880
	TCTATAGAAG	CATTGAACCA	TGGTGTCCAT	GTATTGTGTG	AAAAGCCAAT	GGCGATGACG	5940
	ACGGAAGAGT	GTGATCGCAT	GATTGAAGCG	GCTAATAAAA	ATCACAAATT	ATTAACTGTC	6000
45	GCATATCATT	ATCGTCACAC	AGATGTGGCA	ATTACTGCTA	AAAAAGCAAT	TGAATCAGGT	6060
	GTGGTTGGTA	AACCTTTAGT	AGCACGTGTA	CAAGCGATGC	GTAGGCGTAA	AGTGCCTGGC	6120
en	TGGGGTGTTT	TTACCAATAA	AGCGTTGCAA	GGTGGCGGTA	GTTTAATCGA	TTATGGTTGC	6180
50	 CACTTGTTAG	ACTTATCTTT	GTGGCTACTA	GGTAAAGATA	TGGTGCCGCA	TGAAGTGCTA	6240
	CCNNNNNCNT	אייים ארור א היית א	GAGCAAACAA	CCGAATCAAA	ጉጉል አጥር አጥጥ ር	GGGAACATTT	6300

	GCAAGCATGC	AGTTTGAATG	TTCGTGGTCT	GCAAATATCA	AAGAAGATAA	GGTTCACGTT	6420
	AGTTTATCAG	GAGAAGATGG	CGGTATCAAT	TTATTTCCAT	TTGAAATATA	TGAGCCCCGC	6480
5 .	TTTGGAACTA	TTTTTGAAAG	CAAAGCTAAT	GTTGAGCATA	ACGAAGACAT	TGCTGGTGAG	6540
	AGACAGGCGC	GTAACTTTGT	CAATGCGTGT	TTAGGGATAG	AAGAGATTGT	GGTGAAACCG	6600
	GAAGAAGCAC	GCAATGTAAA	TGCCCTTATA	GAAGCGATTT	ATCGTAGCGA	TCTTGATAAC	6660
10	AAGAGCATAC	AACTTTAATG	ATTATCATAT	ATGATACAAA	ATTCTCAATA	TAAAAAGAAG	6720
	GAGTGCTTTT	CAATGAAAAT	AGGTGTATTT	TCAGTATTAT	TTTACGATAA	AAATTTTGAA	6780
15	GATATGTTAG	ATTATGTCTC	AGAATCTGGA	TTGGATATGA	TTGAAGTTGG	AACAGGTGGT	6840
	AACCCAGGAG	ATAAATTTTG	TAAGTTAGAT	GAGTTGTTAG	AAAATGAAGA	CAAGCGCCAA	6900
•	GCATTTATGA	AGTCAATCAC	AGACAGAGGC	TTACAAATAA	GTGGTTTCAG	TTGTCATAAC	6960
20	AATCCAATTT	CTCCAGATCC	GATAGAAGCG	AAAGAAGCCG	ATGAAACGTT	ACGTAAAACA	7020
	ATCCGTTTAG	CAAATCTATT	AGACGTGCCA	GTTGTTAATA	CATTTTCTGG	CATTGCAGGA	7080
	TCAGATGATA	CCGCTAAAAA	GCCTAATTGG	CCTGTTACAC	CTTGGCCAAC	AGCCTACTCT	7140
25	GAAATTTATG	ATTATCAGTG	GAATGAAAAG	TTGATACCAT	ATTGGCAAGA	TTTAGCTGAG	7200
	TTTGCAAAAG	AGCAAGATGT	AAAAATTGCC	ATAGAGTTGC	ATGCAGGATT	TTTAGTGCAT	7260
20	ACACCATATA	CAATGTTGAA	GTTACGTGAG	GCTACAAATG	AATATATCGG	TGCTAACTTA	7320
30	GATCCTAGTC	ATCTATGGTG	GCAAGGTATT	GACCCAATTG	CTGCGATTCG	CATATTAGGC	7380
	CAAGCAAATG	CAATTCATCA	CTTCCATGCT	AAAGATACGT	ATATTAATCA	AGAAAATGTA	7440
35	AATATGTATG	GTCTAACTGA	TATGCAACCA	TATGGTAACG	TTGCGACAAG	AGCATGGACA	7500
	TTCCGTACAG	TTGGTTATGG	ACATAGTCCA	TATGTATGGG	CAGATATCAT	AAGTCAACTT	7560
	ATTATTAATG	GATATGATTA	TGTATTAAGT	ATTGAACATG	AAGATCCTAT	TATGTCAGTA	7620
40	GAAGAAGGTT	TCCAAAAAGC	TTGTCAAACT	TTGAAATCTG	TTAATATTTA	CGACAAGCCA	7680
	GCAGACATGT	GGTGGGCATA	ATACGAACTC	GAGGTTAGTC	TGAAGTTTGT	CTGAAGTAAG	7740
	ACTGGTGGCA	GTGTTGAATA	AATGCATATG	TCGCCAAGCC	ATTGCCAAAA	ATTTCACACC	7800
15	TTAAATCAAG	TCATTGTTTG	TAAAGAAGGT	GTACTTTATA	TAAGTATATA	GCGATGGTCA	7860
	TACCCATTCA	CAGTAACAAT	CCTCACCATT	GAAAAGAGTA	TATAACCTTT	TCAATAGTGA	7920
-0	GGTATATGAT	AATAAAAAA	GCCTGTTGTC	ACAATGGTCA	TAGACACGAC	ATACTTTAAA	7980
50	GGTTTCTGAA	TATAATATTT	CAGAATGCAC	TTTAAAGATG	GACGTCGATG	TAGACTAAAG	8040
	TGATGACAGG	CTTTCATCTT	TTTAAATATT	CATTAATTTC	TCTTCTTGTT	TAATACGTAC	8100

	TAATACACCG	ATTAATTCAG	GAATGATGTT	TAAGAAGTAA	TTTGGGTGTT	TTGTAATTTT	B220
	ATATAATCCA	GATTTAATAA	TAGGATGGTT	AGGTAAAATG	AATAATTTTA	ATGTCCAAAT	828
5	ACCACCTAAA	GTTTTAATAA	ССАТАААТАА	CATGATATAA	GCAAAGATTA	ATATAACTAA	834
	GCCAATACCA	TTTGCAAAGC	TAAATGTATC	TTTATTAATA	AATGCCTCTA	CACCAGCCAA	840
	TACATAAATT	AAAACGTGTG	TTATTGCTAA	AAACTTCGAA	TTTTTAACGC	CATATTCAAC	846
10	TGCACCGTCT	GCTTTTAATT	GTTTTGAGTG	ATTAATAGAT	ATCTTTAAGC	TGACAAGTCT	852
	GATACAGAAA	AAGATAAGTA	ATATAGATAG	AATCATGATG	TCCTCCGTCA	TTATGTCATA	858
15	TGTATAAGCG	TTGATTTTGA	CAACATAAAG	TATTTTATAG	ATAAAGCTTG	TCAAATACTA	864
	TTAACTATTT	ATTAATTTA	GTACATAAAT	ATGTTTCTAA	GTATGTGTTT	ATGTTCAGTA	870
	TTTTGGATAA	TTTAATAATT	TTAAGGATAT	TAAGCGCTTA	CACCGACGTG	ATATATTTGG	876
20	CTTAACGAAA	ATGATTGAGG	TGACAGAGAT	GAACTTTTTT	GATATCCATA	AGATTCCGAA	882
	CAAAGGCATT	CCATTATCGG	TACAACGTAA	ATTATGGCTT	AGAAACTTCA	TGCAAGCTTT	888
	CTTCGTAGTG	TTCTTTGTTT	ATATGGCTAT	GTATTTAATT	CGAAACAACT	TTAAGGCGGC	894
25	ACAACCGTTT	TTAAAAGAGG	AAATTGGATT	ATCTACATTA	GAACTTGGTT	ATATCGGATT	900
	AGCATTTAGT	ATCACGTACG	GTTTAGGAAA	AACATTACTT	GGATATTTTG	TCGATGGACG	906
	TAACACAAAA	CGTATTATCT	CGTTCTTACT	TATCTTATCT	GCGATTACAG	TTTTAATTAT	912
30	GGGATTTGTT	TTAAGTTACT	TTGGTTCTGT	AATGGGATTA	TTAATTGTAC	TTTGGGGACT	918
	TAACGGGGTG	TTCCAATCAG	TTGGTGGACC	TGCAAGTTAT	TCAACGATTT	CAAGATGGGC	924
35	GCCAAGAACĠ	AAACGTGGCC	GATACTTAGG	ATTCTGGAAT	ACATCACATA	ATATCGGTGG	930
	TGCCATAGCA	GGTGGTGTTG	CACTTTGGGG	TGCTAATGTA	TTCTTCCATG	GAAATGTTAT	936
	AGGGATGTTC	ATTTTCCCAT	CGGTGATTGC	ATTACTTATT	GGTATCGCAA	CATTATTTAT	942
40	CGGAAAAGAT	GATCCGGAAG	AATTAGGATG	GAATCGTGCT	GAAGAAATTT	GGGAAGAGCC	948
	GGTCGATAAA	GAAAATATTG	ATTCTCAAGG	TATGACGAAA	TGGGAGATCT	ТТАААААТА	954
	TATCCTGGGA	AATCCTGTTA	TATGGATTCT	ATGTGTTTCA	AACGTCTTTG	TATACATTGT	960
45	ACGAATCGGT	ATTGATAACT	GGGCACCGTT	ATATGTGTCA	GAGCATTTAC	ACTTTAGTAA	966
	AGGCGATGCA	GTTAATACGA	TATTCTACTT	TGAAATTGGT	GCATTAGTTG	CAAGTTTATT	972
50	ATGGGGCTAC	GTATCAGACT	TATTAAAAGG	TCGTCGTGCA	ATTGTAGCTA	TTGGCTGTAT	978
50	GTTTATGATT	ACATTTGTTG	TCTTATTCTA	CACAAATGCT	ACAAGTGTCA	TGATGGTTAA	984
					C2 2 (1971) (1971) 2	mmoomom>mo	

	CGCGTATCTA	TTCGGTGACT	CAATGGCGAA	AGTTGGTTTG	GCGGCTATTG	CTGATCCAAC	10020
5	ACGTAACGGT	TTAAACATCT	TTGGATATAC	ATTAAGTGGA	TGGACAGATG	TTTTCATCGT	10080
	CTTCTATGTT	GCATTATTCC	TAGGCATGAT	TCTATTAGGA	ATCGTTGCTT	TCTATGAAGA	10140
	AAAGAAAATT	AGAAGTTTAA	ATAATTTAAA	TAAATCGGAT	TAAAAGTATC	GCCAATCTAT	10200
10	TGCAATATAG	TTGGCAATCC	TGCCCCGACG	GCATGTGCGT	GAAGAGATGA	AAGATACTGC	10260
	TTCTACCCTT	GCAAATATAT	CATCTCTATG	TCTCGGGGCA	GATCATAATT	CCCTGTTATG	10320
	AAGTATCCTT	ATTTGCCCGA	CTTAGGGTGA	CTCAATGAAT	TTACTCCTTA	CAATAAAGAC	10380
15	ATATAGCGGT	GTCAATATTG	TAGGGAGTAT	TGTTTTATAT	TTAAACTCTC	TAAAAAGCGG	10440
	ACTGAAAGAA	AAGTGAAAAC	TTCTCTATCA	GTCCGCTTTT	TCATAGAACA	AAATGGAGGC	10500
	GCCATAATCA	TTAGTTATGT	GCTAATCTAT	TTTGCTTGCT	TACAATAATC	ACTTGGCGAC	10560
20	ATTTGTAAAT	ATTTTTTAAA	ATGATAGCTA	AACATTTTAT	ACTCTGAAAA	GCCTACTTTG	10620
	TCTGCAATTT	CATAGTGTTT	GTAATGTCGA	TCTAACAATT	GCAGAGATTG	TAAAATACGA	10680
	TAGCGATTTA	AATAATCGAC	AATTGTAATA	CCAACATGAT	CTTTAAATGT	TCGCATCGCA	10740
25 .	TACGATTCAC	TAACATCGAT	ATGTTGAATT	AAATCTGAAA	CAGLCACTTT	CGTTTGATAA	10800
	GATTGCTTAA	TTTGATCCAC	AATCTGGTTT	ACATAATAAT	CATCGTATTC	TACTTTTAAT	10860
30	AGTGGTTGGA	AGGCATCATG	ACAAGATGCT	AAGCTACGGC	CGTTCTGTGA	TTGTTGCTCT	10920
	AATAAGGTAC	GGACAAGTCT	TCCTAAAATA	ACTTCTAATT	GTGCATGGTC	TACTGGTTTT	10980
	AATAAATAAT	CAAGAACATG	ATGTTGAATG	CCGGCTTTCA	TATATTCAAA	GTCATCGTAA	11040
35	CTCGATAATA	TGATGACATT	ACAATCTAGA	TGCGCAATAT	CATTGAGTAA	ATCGACGCCA	11100
	TTTTTACGTG	GCATACGAAT	ATCAGTAATT	ACTAATTCTG	GCTGATGTTG	TTGAATTAGT	11160
40	GATAATGCTT	CAACACCATC	TTTAGCAGTG	TATATTGTAT	TGAAATGATA	GTCTCCCCAA	11220
	GGAATGATTT	GCTTTAATCC	TTCTCGAATA	ATTCGTTCAT	CATCACAAAT	AACTACCTTA	11280
	AACATCTACA	TTCCCCCTTG	AAAGTGGTAT	TTTATAACAA	ATTAACGTAC	CTTGATTACG	11340
	CTTTGAAAAA	ATATGGAGTC	GTGCATGTGA	ACCATATTGA	ATCATTGCTT	TATTGTGTAA	11400
45	ATGATTTAAT	CCCAAATGCT	TAGTATCAAA	TACATCATTA	TTAAGAGATT	GGCGTACATA	11460
	TTGCAGGCGA	GATGACGACA	TCCCGATACC	ATTGTCGCAA	ACTAAAACAT	GTAAATTCTG	11520
50	ACGTGCCAAT	GTCAGGCGTA	TAGTAATGTC	CAATGACTCA	GTATCTCTAC	CATGTTTAAT	11580
	AGCATTTTCT	ATGAGTGGCT	GAAGCATCAT	TTTACCAATT	GTCTGGTGAC	GCGCTTCTTC	11640
		101 maga agam	M11 Ma1 M 0 M 0	3003333000			

	GTAACGTAAC	ATTTGCGATA	ATTGTTGGAC	CACAGTTLGT	GCTAATTTCG	GAGATAACGT	1182
5	AATTAAATAT	TGTATTGTTT	GCATCGTATT	GAATAGGAAA	TGAGGCTGGA	ATTGGCGTTC	1188
	TATTTCCTTT	AACTGAATAT	CACGCAAGCG	ACGTTCTGTA	TGCTCGATAG	AATGGATCAG	1194
	TTGCTCATTT	GATTCAAATA	AATCGTAAAT	ATAATTATTA	ATTTCTTCTA	GTTCACTGTT	1200
10	GTTTTTTAAA	GGCGTATATG	TACCTAGATG	ACGATTTTTG	GCATAGTAAA	TTTTTTGAAT	1206
	AATCGTTTCG	ATATCTTTTG	TTTGTCGTTT	AGCCATATTA	TCTGCGCTAA	TGAAACCAAA	1212
	TATTACTAGT	AAAACAAGAA	CTACGGCCAT	AACAATTAAC	AACGTGATAC	CATCTTCAAT	1218
 15	GTTTTCATGT	ATATCTTTAT	AAATAATGAG	ACGATGGTCA	GCATGGTTTA	ATTTTACAGA	1224
	TTCATTCATA	AATCCGAATT	GTTGTGGTcT	ATACTTTTCA	CCTATAGTAA	AACGGTCATC	1230
20	GTTGGCGTAT	AAAATATTGT	CATATTGATC	AmCGATAAGT	GCGAATTGTC	GGTTATCTTT	1236
	CtTAATTTCA	CTTAAACGTG	GGGTGTtAGC	CATATAAATt	TTAAGCATAT	ATGTACTATT	1242
	TTTGAATTTA	AGCTGATGCG	TTGAAAATAA	ATACATATTT	TTAGTGTTTA	AATGTTCATA	1248
	ATTATTGGTT	ATAAACTGAT	TTGGTCCAGA	TAATTCATAA	TAAAGTGTTG	CGGGCTGTTG	12540
25	GKGTATTAAT	TTTAATAATT	CACGTTTTGT	AGCGGTCACA	TCATGATGAT	TTGYTAAATC	1260
	GAGCTCTTGA	AACGAATTAT	TATGCTGTGT	AATAAATGTC	TGAATCTGCT	TTTCAGTATG	12660
	ATGTAAAGAT	GACTGACTTT	CATCAACATG	TTGATGAATC	GTACGATGCT	CAATCCAAAT	1272
30	ATAGATGGCA	TAGAAGCTTA	CTAGTCCAAT	AATAATGACT	AAAAATACTG	GAAAAATAGT	1278
	AGACnCAAAT	AACGATCGTC	TTAATTGATG	TCTATAAGGT	TTGTATGCCn	TCATTGAATC	1284
35	ATCTCCAAAA	ATTTATGATG	TGGAATATCC	GGTAATTTAG	ATTTCGGTAT	TAAAGGTATG	12900
	TTCTTAAGAT	TTTCGATAGA	CTGATCGCTT	TGTTCACTAA	CATCCTTTCG	AATTGACTTG	12960
40	GCATCGAACT	CTGCAACTAA	TCGTtGTTGT	ACTGAGCGGC	TTGTTAAATA	TTGCACTAAC	13020
	TTTTTACGCT	TAGGATGAGG	GTGTGCATTT	TTAACTAAAG	CAATICCATC	AACATTTAAC	13080
	ATTGTTCCTT	CAATTGGATA	AACGATTGAT	ACAGGATAAC	CTTTGTTTTT	CCATGTGCGT	13140
45	GCATCTTGTT	CGTAGCTTAG	ACCTGCGTAA	TATTTACCTT	TTGCAACATC	TTCAATGACT	13200
	TTAGACGTCT	TTGACAGTTG	CATCGCATGG	TTTTGGAATT	GATGCACATC	ACTTACTCGA	13260
	TGATGCATGC	TATAAATAGC	ACGCATATGT	TGATAGCCTG	TCGTTGTTGT	ATTTGGATTT	13320
50	GAGTACGCAA	TTTTACCTTT	AAGTATAGGT	TGTAATAAAT	CTTGATAACC	TCGAATCTTA	13380
	ATATCTCCTT	GTAAATCTGA	ATTCACTACT	ATAACTGTTG	GCATTAATAG	AAAACTAGTA	13440
	ACATATTTAT	TGTTCGAGCG	ATAATCCTCT	AATTGCTGTG	TTACAGATGT	ATCTTGATAG	13500

	CCACGCTCCG	AAAAATCTTC	GTTATGCAAG	TTTGAAAGCA	GTACTTGAGT	AGATCCGTGT	1362
_	TTAATTTCAA	TTTTGACATG	CTCTTGTTTT	TCAAATTCAT	TTAAAATTGG	ACGAATCAAG	1368
5	TTTGATTGAT	ACGGAGAATA	AACTGTTAAT	ACATTTTTAT	CGGATTCAGA	GTGACGCGTA	1374
	TTAGCGCATG	CTGaTAAAAA	AATGAGAAAT	AATAGCAAGA	TATAAATTTT	TGATTTCATG	1380
10	ATATCCCATC	AATTCTATGT	ATATTTTAAT	ACAATAATTT	TAGCAATAAA	TGACGCATAA	1386
	GTAATGTTAA	ATATTTAGAA	ATGTTTATAG	ATGACTTGTT	AAGACGTTGC	AAATGTTGTG	1392
	ATAGCACAAA	ATTTTTGTTT	GTCAAGACGA	TTTACCGAGG	CTGTAAAATC	AAACTGTTAT	1398
15	ATTTTATTTG	TAGCTGTTAT	ATAAAAATCG	GCAAGATATT	GAACGGTTCA	AAAGTGAATT	1404
	TTTACGTCAA	TAAAAGTATT	TAATCCAGTC	TCTTCATATA	TAAAAGTAAA	TCTTTCTAAG	1410
	TGTTGATTTA	ACGCTTATCA	ACAATCATTT	TTTATAAACA	AATATATACT	CCTAAATTAA	14,16
20	CTTTTAAAGC	AATGAAAATA	GTGAACATTA	TAACTGTTGT	GTAACAGAAT	GCAATTAGCA	14220
	TATTACTGTT	ACACAAATTA	GTACAGTTTC	TATGTTTTGA	CATACATTTG	ATGAAAATTG	1428
	TACATAATTT	atgtgaaaaa	AATCACAACA	AACATGCTAC	AATGACTATG	AAAACGTTAA	14340
25	CATAGCATTT	CAAATTCACA	ACATTATACA	GATGGAGGCG	TTTAGTATGT	TAGAAACAAA	14400
	Taaaaatcat	GCAACAGCTT	GGCAAGGATT	TAAAAATGGA	AGATGGAACA	GACACGTAGA	1446
30	TGTAAGAGAG	TTTATCCAAT	TAAACTACAC	TCTTTATGAA	GGTAATGATT	CATTTTTAGC	14520
	AGGACCAACA	GAAGCAACTT	CTAAACTTTG	GGAACAAGTA	ATGCAGTTAT	CGAAAGAAGA	14580
	ACGTGAACGT	GGCGGCATGT	GGGATATGGA	CACGAAAGTA	GCTTCAACAA	TCACATCTCA	14640
35	TGATGCTGGT	TATTTAGACA	AAGATTTAGA	AACAATTGTA	GGTGTACAAA	CTGAAAAGCC	14700
	ATTCAAACGT	TCAATGCAAC	CATTCGGTGG	TATTCGTATG	GCGAAAgcAG	CTTGTGAAGC	14760
	TTACGGTTAC	GAATTAGACG	AAGAAACTGA	AAAAATCTTT	ACAGATTATC	GTAAAACACA	1482
40	TAACCAAGGT	GTATTCGATG	CATATTCTAG	AGAAATGTTG	AACTGCCGTA	AAGCAGGTGT	14880
	AATCACTGGT	TTACCTGATG	CATACGGACG	TGGACGTATT	ATCGGTGACT	ATCGTCGTGT	14940
	AGCTTTATAT	GGTGTAGATT	TCTTAATGGA	AGAAAAAATG	CACGACTTCA	ACACGATGŤC	15000
45	TACAGAAATG	TCAGAAGATG	TAATTCGTTT	ACGTGAAGAA	TTATCAGAAC	AATATCGTGC	15060
	ATTAAAAGAA	TTAAAAGAAC	TTGGACAAAA	ATATGGTTTC	GATTTAAGCC	GTCCAGCAGA	15120
50	AAACTTCAAA	GAAGCAGTTC	AATGGTTATA	CTTAGCATAC	CTTGCTGCAA	TTAAAGAACA	15180
	AAACGGTGCA	GCAATGAGTT	TAGGTCGTAC	ATCAACATTC	TTAGATATCT	ATGCTGAACG	15240
	mes demms s s	~~~~~~~~	mm> 0ma> > > a	CON A COMON A	0111mm1mma		

	AGACCCAACT	TGGGTAACTG	AATCTATCGG	TGGTGTAGGT	ATTGACGGAC	GTCCACTTGT	15420
	TACGAAAAAC	TCATTCCGTT	TCTTACACTC	ATTAGATAAC	TTAGGTCCAG	CTCCAGAACC	15480
5	AAACTTAACA	GTATTATGGT	CAGTACGTTT	ACCTGACAAC	TTCAAAACAT	ACTGTGCAAA	15540
	AATGAGTATT	AAAACAAGTT	CTATCCAATA	TGAAAATGAT	GACATTATGC	GTGAAAGCTA	15600
	TGGCGATGAC	TATGGTATCG	CATGTTGTGT	ATCAGCGATG	ACAATTGGTA	AACAAATGCA	15660
10	ATTCTTCGGT	GCACGTGCGA	ACTTAGCTAA	AACATTACTT	TACGCTATCA	ATGGTGGTAA	15720
	AGATGAAAA	TCTGGTGCAC	AAGTTGGTCC	AAACTTCGAA	GGTATTAACA	GCGAAGTATT	15780
15	AGAATATGAC	GAAGTATTCA	AGAAATTTGA	TCAAATGATG	GATTGGCTAG	CAGGTGTTTA	15840
, •	CATTAACTCA	TTAAATGTTA	TTCACTACAT	GCACGATAAA	TACAGCTATG	AACGTATTGA	15900
	AATGGCATTA	CATGATACAG	AAATTGTACG	TACAATGGCA	ACAGGTATCG	CTGGTTTATC	15960
20	AGTAGCAGCT	GACTCATTAT	CTGCAATTAA	ATATGCACAA	GTTAAACCAA	TTCGTAACGA	16020
	AGAAGGTCTT	GTAGTAGACT	TTGAAATCGA	AGGCGACTTC	CCTAAATACG	GTAACAATGA	16080
	CGACCGTGTA	GATGATATTG	CAGTTGATTT	AGTAGAACGC	TTCATGACTA	AATTACGTAG	16140
25	TCATAAAACA	TATCGTGATT	CAGAACATAC	AATGAGTGTA	TTAACAATTA	CTTCAAACGT	16200
	TGTATACGGT	AAGAAAACTG	GTAACACACC	AGACGGACGT	AAAGCTGGCG	AACCATTTGC	16260
	TCCAGGTGCA	AACCCAATGC	ATGGCCGTGA	CCAAAAAGGT	GCATTATCTT	CATTAAGTTC	16320
30	TGTAGCTAAG	ATCCCTTACG	ATTGCTGTAA	AGATGGTATT	TCAAATACAT	TCAGTATCGT	16380
	ACCAAAATCA	TTAGGTAAAG	AACCAGAAGA	TCAAAACCGT	AACTTAACTA	GTATGTTAGA	16440
35	TGGTTACGCA	ATGCAATGTG	GTCACCACTT	AAATATTAAC	GTATTTAACC	GTGAAACATT	16500
00	AATAGATGCA	ATGGAACATC	CAGAAGAATA	TCCACAGTTA	ACAATCCGTG	TATCTGGTTA	16560
	CGCTGTTAAC	TTCATTAAAT	TAACACGTGA	ACAACAATTA	GATGTAATTT	CTCGTACATT	16620
40	CCATGAAAGT	ATGTAACAAA	ATTTAAGGTG	GGAGCACTAT	GCTTAAGGGA	CACTTACATT	1668
	CTGTCGAAAG	TTTAGGTACT	GTCGATGGAC	CGGGATTAAG	ATATATATA	TTTACACAAG	1674
	GATGCTTACT	TAGATGCTTG	TATTGCCACA	ATCCAGATAC	TTGGAAAATT	AGTGAGCCAT	1680
45	CAAGAGAAGT	CACAGTTGAT	GAAATGGTGA	ATGAAATATT	ACCATACAAA	CCATACTTTG	1686
	ATGCATCGGG	TGGCGGTGTA	ACAGTCAGTG	GTGGCGAACC	ATTGTTACAA	ATGCCATTCT	1692
	TAGAAAAATT	ATTTGCAGAA	TTAAAAGAAA	ATGGTGTGCA	CACTTGCTTA	GACACATCGG	1698
50	CTGGATGTGC	TAATGATACA	AAAGCATTTC	AAAGGCATTT	TGAAGAATTA	CAAAAACATA	1704
	03.03.00m03.0	200020002020	BMB 5 5 5 CBM5	THE TATE AND A	CAAACATTATT	ACATTCACAC	1710

	TATGGATTCG	ACATGTCCTT	GTGCCTGGTT	ATTCTGATGA	TAAAGACGAT	TTAATTAAAC	1722
	TAGGGGAATT	TATTAATTCT	CTTGATAACG	TCGAAAAGTT	TGAAATTCTG	CCATATCATC	1728
5	AGTTAGGTGT	TCATAAGTGG	AAAACATTGG	GCATTGCATA	TGAATTAGAA	GATGTCGAAG	1734
	CGCCCGATGA	TGAAGCTGTT	AAAGCAGCCT	ACCGTTATGT	TAACTTCAAA	GGGAAAATTC	1740
10	CCGTTGAATT	ATAAATACAA	TTCAGACCGA	AAAGAAAGCA	TATGCAACTT	CAAGAGTGAA	1746
10	GGGGCATATG	CTTCTTTTTC	AATTGAGTAT	TGAGTATTAG	CAAGACGTAG	TAAGTATATG	1752
	AGACAACTTC	TACAATGGTT	GAAGGAAGAC	GTTTTTGTAA	GTAGCTATGC	TGATAAAGAA	1758
15	TGTGATGTCT	TGTTAAAGGT	GGGGTTCCAA	TATCATCATT	TAGCTGATGT	TGAATGGGTT	1764
	ATTATTTGCT	ACTTGCATAT	GAATATGAGT	CTTTTCAAAT	TTTTATTGAC	CCTGAGTAAT	1770
	GAAAAATATT	AAGATGAAAC	AATTATAATT	AgCAATGCGG	AGCGTGATTA	TGAAGAGAAT	1776
20	TAGTAAAGAT	ATATGGGCAG	TATTTAAATT	ACTGTATCAA	AATAAAGGGC	GTTTTAGCAT	17820
	TAATGCCTTA	CTATTGCAGT	TAATCATGAT	TTTTATTAGT	AGTACATACT	TAATTTTACT	17886
	ATTTAATATG	ATGTTAAAAG	TAGCTGGCAA	AGCCAACTTA	CGATTAACAA	TTGGACGGAA	17940
25	ATCGTTAGTC	ATCCCGCCAG	TGTGATACTT	CTTATTATAT	TCATATTAAG	TGTTGCCTTT	18000
	CTGATTTATG	TAGAGTTTTC	ATTGTTAGTT	TATATGGTTT	ATGCCGGCTT	TGATCGACAG	18060
30	ATTATTACAT	TTAAATCCAT	TAAAAAT	GCCTTTGTAA	ATGTGCGTAA	ACTCATAGGT	18120
	GTACCAGTTA	TTTTCTTTGT	CATTTATTTA	ATGTTAATGA	TACCCATTGC	CAACCTAGGA	18180
	CTAAGTTCAG	TATTAACAAA	AAATATTTAC	ATACCTAAAT	TTTTAACGGA	AGAACTTATG	18240
35	AAAACGACGA	AAGGTATAAT	CATTTACGGT	ACCTTTATGA	TTGCTGTATT	TAAATTATAT	18300
	TTTAAATTAA	TATTTACTCT	ACCGTTAACG	ATTTTAAACC	GCCAGTCGTT	TAAAAAT	18360
	ATGAGACTAA	GTTGGCAAAT	TACGAAGCGA	AATAAGTTTC	GGCTTGTTAT	AGAAATAGTT	18420
40	ATATTAGAAC	TCATCATTGG	TGCGATTTTA	ACATTAATTA	TTTCAGGAGC	AACATATCTT	18480
	GCTATTTGTG	TAGATGAAGA	AGGAGATAAG	TTTTTAGTCT	CATCAATTTT	ATTTGTTGTA	18540
	TTGAAAAGCG	CATTGTTCTT	CTATTATKTA	TTLACGAAAT	TATCATTAAT	CAGTGTGTTA	18600
45	GTACTGCACT	TAA					18613

(2) INFORMATION FOR SEQ ID NO: 113:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1214 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

	(X1) :	SEQUENCE DES	SCRIPTION: S	SEQ ID NO:	113:		•
	AAAGTTTTAA	AAGGGGTGAG	ATACTTGGCG	AATAATCCAT	TCCAGCTTTG	CGTTTAAAAG	60
5	GAATTATACT	TGCCATTGTC	GGTGCTTGTT	TATGGGGATT	AGGTGGTACT	GTTTCTGATT	120
	TCTTGTTCAA	ATATAAGAAT	ATTAATGTCG	ATTGGTACGT	CACTGCTCGA	CTTGTAGTCA	180
	GTGGTGTTTT	CTTACTTATT	ATGTACAAAA	TGATGCAACC	CAAACGTTCA	ATATTTAGCG	240
10	TATTCCAAGA	TCGACGTATG	TTAGGCAAAT	TACTTATCTT	CAGTATACTG	GGCATGTTAG	300
	TAGTACAATA	TGCTTATATG	GCATCTATTA	ATACAGGTAA	TGCTGCGATT	GCAACATTAC	360
15	TACAATACAT	TGCGCCAGTT	TATATTATTA	TTTGGTTTGT	CATAAGAGGC	GTTGCAAAAC	420
	TAACATTATT	TGATGTGCTT	GCTATTATCA	TGACACTATT	AGGAACATTT	TTATTATTAA	480
	CAAATGGTTC	ATTTTCTAAT	TTAGTCGTCA	ATCCTGCAAG	TTTATTCTGG	GGTATTTTAG	540
20	CTGGTGTAGC	ACTCGCTTTT	TACACAATTT	ATCCTTCAGA	CCTACTTAAC	CGCTTCGGTT	600
	CGATTCTAAT	TGTCGGGTGG	GCAATGCTTA	TTTCTGGTGT	TGCGATGAAT	TTACGCCATC	660
`	CAATTTGGCA	CATTGATATC	ACTAAATGGG	ACATATCAAT	TATATTATTT	TTAATCTTTG	720
25	GTATTATCGG	TGGTACCGCA	CTCGCATTTT	ATTTCTTTAT	CGACAGTTTA	CAATACATAT	780
	CAGCGAAAGA	AACAACATTA	TTCGGAACTG	TTGAACCTGT	CGTAGCCGTT	ATCGCAAGCA	840
	GTCTATGGTT	ACATGTGGCA	TTCAAACCAT	TTCAAATCGT	AGGCATCATT	CTTATTATGA	900
30	TTTTAATTTT	ATTACTATCA	CTTAAAAGAC	AACCTGAAAC	ATTAGATGAA	TAAGAAAACT	960
	CTGATAATCA	CTTTAGCAAG	TAACTATTAT	TTAACAACGT	AGTTACCTTA	TAGGTGATAT	1020
35	CAGAGTTTTT	TATTTTAGTT	AATAATATTT	TTCACTTGGT	ATAAAAAaGC	GTCGTCGCTC	1080
	TGGTÄATCGG	AAATACTGGA	ATAAAATATG	GAATTGGGTA	ATAATCCCAG	GTAnTAAAAG	1140
	TCCATGTTCC	GATAnCCTnT	CCGCAnCTCC	AACCAAATTT	GCCGATAAGG	TTCCAAAAGG	1200
40	CATCCTGGGG	GTAC .					1214

(2) INFORMATION FOR SEQ ID NO: 114:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9458 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114: ATTTTGGTTT CATTCACGAT GGGGTNATAC AGCAAACACA NCTAAAATAA CTATCAATAG 60

55

45

	CTTAGACAAT	AAAAAATATG	CCACTACAAT	CGCTAATATT	ACGATTAAAA	AAGAAGCGTT	18
	AACGATTACT	TTCATCGTTG	TTCTATCTCT	GAACATCATA	TTAAAGACAA	CTAGACTAAT	24
5	TGATAATGAA	ACAGCAAAAA	AAGTAATAGC	TAACACTAAT	TTCATCATAA	ATAGACAGAC	30
	TAAACCTATG	ACTAATAATG	TATTAGAAAT	TACAGCTGAC	GTTTTTAACA	TTCTCGaATT	. 36
	AATATGCACT	CACCCTTTTT	ATTTAAATAA	CTTACATAAT	САТААТААТА	CATGATGTTT	42
10	CATAGGCCTG	TCGATGATTG	ATTCACAATA	GCACGTGATT	TTTTTGTTTT	TCAATATTAT	48
	TCATTTATTC	CATCAAAAAC	ACCCTTTTTA	ATTTTTACAA	AAATTAAAA	AAGTGCTCCT	54
15	ACACTGCTTG	CATGTAGAAA	CACTITITCA	TTGTAATGTT	ATTCTTCTCG	AGACATACCT	. 60
	TTTAGCATAT	TAAGCATGTA	TGTTAAACTA	CGGTTCATGT	CGTCATCTTT	CAATACGCCC	66
	AATAGACTTC	TTATAGTTGT	CTTAGCATTT	GGACTCGCTT	GATTGGCAAC	GTGTAATCCT	. 72
20	TTATTAACTT	TATTTAGGAA	GTCGCTTAAA	TCTGATACAT	TGAGTTCACC	ТААТААААТ	. 78
	ACCATTGAAG	CCATATTAGA	TAATAGCCCT	GTATAAATAT	CTTTATTAAG	TTCAACTGCA	84
	AATTTATTTA	TGATGACTTG	ACGTCCTCGA	ATTGCACCAT	TTAAAGCATC	TAATAGTTTT	90
25	GCATCATCTA	ATGTTTTAAT	AAGCTTGATT	GCTTTTAATA	TACTATCTTT	ATTCGCTGCA	96
	ATTGCCTCTG	TAACTTCATT	TAAACTTTCT	AACTTAATŤT	GTTCTTCTGA	TTTTTCTAAG	102
	CGTCTAATTT	TAGAAGATAT	TCTCTCAGCC	ATTATTTATC	CACCTGATTT	CCCGGGAAAA	108
30	CATAATCTGA	ACGTTCCCAT	TTTTTCTGTA	CTTGAACACT	GTACTGCGGT	TGACGTTTTT	114
	TATTGACACG	GAAATTATTA	GGGTTCAACG	GTGACTTACC	ACGTTTCGTA	ATTACCTCCA	120
35	AACGACAGCT	AGTACGTTTA	TAAGATGGTG	TATCCGTGTA	TTGATCAACA	TCACTATTAG	1260
	TTAATAAGTT	AATTGCACCT	AGATCTCCAT	TTTCCATCGC	aTCaTTATTT	AATGGAATAT	1320
	AGATITCTTT	ACCTTTAACA	CGATCTGTCA	CGTGAACTTG	TAATACCGCT	TCTCCTGTyT	1386
40	CAGÂAATCAG	CTTAACTTCT	GCACCTTCAT	GAATGCCTCT	ATCTTCAGCA	AGCTCTGGAG	1440
	AAATTTCAAC	AAATGCACGT	GGCACTTTGT	ATTTAATCAT	TGGTGTTTGA	TAAGTCATAT	1500
	TACCTTCATG	GAAGTGCTCT	AACAATCGAC	CATTGTTTAC	ATGAATATCA	TAAATTTCAT	1560
45	CTTGCTTAAA	GTAATTATCA	aatgataatg	GGAATAATTT	TGCTTTACCA	TTATCAAAAT	1620
	TGAATCCTTC	TAAGTATAGA	ATAGGCTCAT	CAGTACCATC	AGGTTGTACT	GGCCATTGTA	1680
	AACTATTGAA	TCCTTCTAAA	CGATCATAAC	TTACCCCAGC	ATATAGAGGT	GTTAAGCGTG	1740
50	CTACTTCATC	CATAATTTCA	CTAGGATGCT	TGTAATTCCA	ATCAAATCCT	AATCTATTAG	1800
	CAATTCCTTC	CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	СУСТСУСС Т С	ተ ሞ ኤ አ ተር አ ር ር	A A C A C C TTT C TT	3 3 TO COMPCOR	3.06

	TTGCTGGCAA	TACAACATCT	GCGTATGTTG	CTGTGAATGT	TAAAAATTCA	TCTTGGACTA	198
	CCATGAAATC	TAATTTTTCA	AACGCAGCTT	GTACAAAATT	AATATTTGAA	TCCACAATAC	204
5	CCGTATCTTC	ACCATATAAG	TACAATGAGT	GTACTTCTCC	GTCATGTATA	CCTTCTACCA	210
	TTTCATGATT	ATCTTTACCA	GCTTTTGGAT	TCAATTTAAC	GCCATATTCT	TTTTCAAATT	216
10	TAGCGCGAAT	ATCATCCGCT	TCAATACTTT	GATAACCAGT	AATCTTATCA	GGCATACTTC	222
	CCATATCACT	ACATCCTTGA	ACATTATTAT	GTCCACGTAA	TGGATACGCA	CCAGTACCAG	228
	GACGACGATA	ATTACCTGTT	ACTAATAATA	AGTTTGAAAT	CGCTGTACTT	GAGTCACTAC	234
15	CAATGTCTTG	TTGTGTAATA	CCCATTGCCC	AACAAATTAC	AACAGATTCA	GCTTTAGCAC	240
	ATTCTTCAGC	AAATTTAATC	AATTCTGATT	CAGGAATACC	TGTTGCTTCT	TCAGCAAAAG	246
	CCATTGTAAA	TGTTTCTAAT	GATTTGTAAT	ATTCATCAAA	ATCATCTACC	CACTCATCAA	252
20	TAAATGCTTT	ATCGTGTAAA	TCATGATCAA	TAATATACTT	AGTCACTGCA	CTTAACCACG	258
	CTAAATCCGT	ACCTGGTTTA	GGTTGATAAA	AACGATCCGC	ACGTTCTGCC	ATTTCATGTT	264
	TTCTAATATC	AAATACATGT	ATTTTTTGAC	CAAATAATTT	TTGTGCACGT	TTCATGCGTG	270
25	ATGCGATAAC	TGGATGAGCT	TCGGCTGTAT	TAGTACCTAT	CAATACAGAC	ATTGCCGCTT	276
	TTTCTAAATC	TTCAATACTA	CCTGAGTCAC	CGCCGTGTCC	AACCGTTCTA	AATAAGCCTT	282
30	TTGTTGCAGG	TGCTTGGCAA	TATCTTGAAC	AGTTATCAAC	GTTATTTGTG	CCAATAACTT	288
50	GTCTTGCTAA	TTTTTGCATT	AAATACGATT	CTTCATTCGT	CGCTTTAGAA	GAAGAAATGA	294
	ATGATAGTGC	ATCTGGGCCA	TGCTTTTCTT	TAATAGCTGT	AAAATTATCT	GCAATGACGT	300
35	TTAAAGCTTC	ATCCCATTCT	ACTTCATGGA	ACTCACCATT	TTTCCTTACT	AGTGGTTTAG	306
•	TTAATCGTTG	ATCTGAATTA	ATATGTCCCC	ATGAAAACTT	ACCTTTAACA	CAAGTCGCAA	312
	TTTTATTTGC	TGGAGAATCA	TGTGATGGTT	GTACTTTTAA	AATTTCTCTA	TCTTTAGTCC	318
10	AAACTTCAAA	TGAACAACCC	ACACCACAAT	AAGTACACAC	TGTTTTAGTT	TTCTTAATAC	324
	GCTCTTTACG	CATTTCTGCT	TCTGAATCTG	AGATTGCAAA	TAGTGGACCA	TAACCAGGTT	330
	CIGCTITITI	AGTTAAATCA	ATCATTGCTG	CTAATGAACC	AGGTTCCGTA	TCAGTCATAT	336
1 5	AACCCGCATT	ACCTTCCATA	TTCACTTCCA	TCATGGCATT	ACATGGACAT	ACCGTCGCAC	342
	ATTGACCACA	AGATACACAT	GAAGACTCAT	TAATCGGTAC	ATCATTATCC	CAAATAACAC	348
	GTGGATGTTC	ACGATCCCAA	TCAATTCTAA	TAGTTTCATT	CACTTCGATA	TCTTGACATG	354
50	CTTCTACACA	ACGCCCACAT	AAGATACATT	GATTTGGATC	ATAACGATAA	AATGGGCCGT	360
	א א ידי ביייין אין א	CTATCCCTTC	ער איז איז איז איז איז איז איז איז איז איז	CATACCTTTC	ATCOTO A ACC	CCCCATCCAT	366

	TATGCTTTTC	TAAAATTCGA	TCAAGCGCTT	CTTTTTGAGC	ATCTTTCACA	TCATTGTTCA	378
	CAGTATTTAC	AGTCATTGGA	CGATCAATCA	CCGTACTACA	TGAACGTTCA	ATTTTACCGT	384
5	CAATCTCAAC	AGTACATGTA	TCACATGTTT	GAATTGGTCC	CATCGACTCG	TTATAACAAA	390
	TTGAAGGTAC	AAAAGTATCT	TGTGATTTAA	TAAATTCAAG	TAAATTCGTA	CCTGGTTCTA	396
10	CAAGATAATC	TTTTCCATCA	AGTGTAACCA	CCAAATGTTC	TTGCATATTA	CTCACCCCGT	402
10	CTATATATAT	TTTCCGTAAA	TGACTTTTAA	TAAATTGCTC	ATATCCACCT	AAAATAACGA	408
	TGCCCCACAC	ATCTTTCAGA	TAGAATTAAT	TTAATTGTAT	TACTTTATGT	ACTAGTTGTT	414
15	AAGTAAAATT	TIGTATITIG	CCTTTTTACA	ATCATTTTTA	TTTGAAATAT	TTTGCGCGAA	420
	ATTAAATCAT	CTTTTTGTTT	AATTGAAAAT	AATTATCATT	ATTAGTTTTC	CAATTATCTG	426
	TTTCACGCTT	TTTGCCATAT	CTTTCACAAC	CTTATTAATG	ACAATATTTA	ATAATCACCT	432
20	CACCTAAAAA	TCGTTATACT	TAAATTTTA	ACCCTTTTTC	TGAAAATTAA	TAACCCAAGT	438
	TTGATAAATA	TCTACTATCA	TTTAGAAGGT	AATATTTATC	AATTAAATTTA	ATTTGTAATG	444
	GATTAATTTA	TAAAAATCAA	ATCAGGCATT	ATAAAATAA	GCCCATAAAT	ACAAAGTGTT	450
25	ATCACCTTCT	ATTTACGGGC	TATTAGTTCT	ATTCGTTATT	CTATTTACAG	ATCATTCTAT	456
	CTAATTAATT	TGTGTACAAT	TTTGATAACT	TATTTTCCCT	TAGTTTACTA	CTCTAGATTA	462
20	TCTTTTAATA	ACTTAGTACT	TTCAGCTTTT	GACTGCTCAC	TAGGAATGAA	GTAGTACAAT	468
30	CCGTCACTTT	GAATGCCGCC	TTGACCACTC	AATTGATGTT	TATTAATCGT	GTCATTAGCA	474
	TCTTTATAAT	TGCTTCTAAT	CGTATTCAAA	TCACCTAATG	TTAAATCTGT	TTTAACATTA	480
35	TTTTGAATTT	CATTCATTAG	ACTATTAAAA	TGTGTAATCG	ATGATGGGCT	TGCAATCTTA	486
	TTGGCCATCG	CTTCAAGCAC	AATTTGCTGA	CGTTGTTGTC	GACCAAAGTC	ACCACCAGCA	492
	cciiciicii	TACGACTTCT	AATAAACTTC	AATGCTTGAT	CACCATTTAC	ATGTGTCTGC	498
40	TGTCCTTTTG	TAAAACGAAC	ACCATCAACA	GTGAATGTAT	CATTACTTAC	TACATCAACA	504
	CCGCCGATGC	TATCTATCAT	ATTATGCAAA	CCATCCATAT	CGATTGTCGC	ATAATGATCA	510
	ATTGGCACAT	TCATTAATTT	TTCAAGTGAT	TTAACAGCCA	TATTTGGTCC	ACCATATGCA	516
45	TAGGCATGTG	CAATTTTTTC	AGTAGTACCA	CGGCCAACAA	TTTCCGCTCT	TGTATCACGC	522
	GGTATACTTA	CTATTTCAGT	TTTCTTCGTT	TTAGGGTTGA	TAGATAAAAT	CATAATACTA	528
	tCACTACGCT	CTCCGCCACC	CTTTTTCTTA	CGATCAGCAT	CTGAATCGAC	ACCAAATAAA	534
50	GCGATTGTGA	ATGGATCACC	ATCGTTTAAA	CTCACTTTTT	TATCTCTTAA	TTCTGAATGA	540
	ттсссатста	ACGGATTGTG	TATCTTATTA	CCAGTAATAA	AAATTTTAGC	AGCTACATAC	546

	GGTAGGCTCA	TTTTACTTTT	AGACGAACGT	TTCAATCCCA	CCACTCCTTT	ACTATTCCTT	558
	ACATACTTTG	TCTGTTTTCT	CTATTTATTA	TATAGTAAAA	TAATTTTTTT	ACTATACTTC	564
5	TGTAGACGTA	TAACTATTTT	TTATCATTTT	TTATCTCTAG	AGAATATCTA	TCTGTATTTT	570
	TGATAACCAC	CATTTGCATT	TAAAATTTTA	AGTACCGTTT	CATGACATGC	TTTATTACTT	576
40	ATAATAAAAG	GTGCACCCTT	TAAATGATCA	ATTGCCTTAC	CATCTAAAGT	CGTCATTTTT	582
10	AGATTCAATA	GTTCTGCAAA	TAAAAACTGT	GCAGCAATGT	CCCAAGGTTT	AGGATTTGTA	588
	TTAATATGTG	CCCCAAATTG	ACCTTTTGCC	ACTCGCATAG	AATCTAATCC	GCAAGCACCA	594
15	ACTAAACGAT	AACTAAATGA	GGCGTCAAAT	AAATCTTGCA	CCGTATCTAG	ATTCATCACT	600
	TGTGCATTAA	ACGATATAAT	AGCGTCTTCC	AATTTTAACG	ATGGTGGTTC	TTCCATCTTA	606
	ATTCCATTAC	AAAAAGCACC	TTCTCCTCGT	ATTGCTTTAT	AAAGCTTTTT	ATGCGGATAA	612
20	TCATATACGT	ACGATAACAT	TGGTTTACCT	TCATAAAAAT	ACGCCAATAT	AATACAATAA	618
	TCTTCTTGCT	GTTTTACTAA	ATTGGCAGTT	CCATCAATGG	GATCCATAAT	CCATAAATGA	624
	TTAATTTCAT	TCGTAATCAT	TTCATTACTT	TTTTCTTCCG	CTAATAGTTG	GTGTTCCGGA	630
25	AAATGTGTTG	CTAAAAATTG	TTGGAATTGT	TGTTGAATCT	GTTTATCTAC	ATTTGTAACT	636
	AAATCAAATC	GATGACGCTT	AGTTTCTGTA	GTCATTTCCA	TAATTAATTG	CGGAATAACA	642
	TTGTCTATTT	GTTTCAACCA	CGAACATATT	AACTTATCTA	TTTGCTGTAA	TGTTTTATCT	648
30	GTCATTTCGT	CCACCACTTC	TCATATCATT	ATCATTTTAT	TATTACCCTA	TATTAAAAGA	654
	ATCAACAATA	CAACTGAAGA	CTTCTTCATT	TTATGCATAA	AAAAATCGGC	TAGTCACGTG	660
05	CTAGCCGACA	AATAGAAAGG	AAAGTAAGTA	ATAAATATTG	AAGATGTTGT	GATGTAACTT	666
35	GAACGATTAA	AAGCTATCTG	TTATATAGCT	CTACCCCTTT	GTTTAATCGC	TCCCCCTGTT	672
	acaagtaata	TCATAGCACA	ATCTTTTTTA	AAATGTAAGC	GTTTTCCACA	AAATTTTTAC	678
40	GATTTTTTTA	AAAAGATATT	GAAAATGTCC	TCATTGTCAC	TCTTATGTTA	TACTTTGTGT	684
	AATATATCAT	CTTTTAGGAG	GTGGCTGTCA	TGAATAAAGC	TGAAAGGCAA	AATTTAATAA	690
	TTACTGCAAT	TCAACAAAAT	AAAAAATGA	CCGCTTTAGA	ATTAGCTAAA	TATTGCAACG	696
45	TATCCAAACG	CACAATTTTA	AGAGATATTG	ATGATTTAGA	AAATCAAGGT	GTTAAAATTT	702
-	ATGCGCATTA	TGGGAAAAAT	GGTGGTTACC	AAATACAACA	AGCACAATCT	AAAATTGCAT	708
-	TAAACTTATC	TGAAACACAA	TTATCAGCCT	TATTTTTAGT	GCTTAATGAA	AGTCAGTCGT	714
50	ACTCGACATT	ACCATATAAA	AGCGAAATCA	ACGCAATTAT	AAAACAATGT	TTAAGTCTTC	720
	CACAAACACG	CTTAAGAAAA	TTGCTTAAAC	GCATGGACTT	TTATATTAAA	TTTGATGACA	726

	ATGTGATGTT	AGTAGATCAT	AGGGTTGATG	AATTATAA	AGCTGAAAAC	GTTATATTTA	738
	TTGGCCTTTT	GTGTAAACAT	GGACATTGGC	ATGCAGTCAT	TTATGACATT	GCTCAAGACA	744
5	AAACTGCCGA	ACTCGAAATT	GAAAATATTA	TAGATATTTC	GTATTCATTC	GGTAAGACGA	750
	TTCAAACCAG	AGACATATCC	ATTGATAACT	ATCATCAATT	TTTAAACCCC	ATCGATTCCT	756
	AAAAAACAGC	AGTAAGATGA	TTTTCAATTA	GAAAATATCT	TGCTGCTGTT	CTCTATTTAT	762
10	ACAATACTTC	GTATTGAATG	GnTTCGCTTT	CCTAGGGTGC	CGTCTCAGCC	TTGGTCTTCG	768
	ACTGGCACTG	CTCCCTCAGG	AGTCTCGCCA	TTAATACTAC	GTATTAACAT	GTAATTTTAC	774
15	TTTGAAATAC	TTAAAAAAAT	AAAACACTTT	GCCCAACTTA	CACTACCAAT	AGAAACTGCT	780
	GTTAGAATTC	CTCAAAATGA	TATTTCGCGA	TATGTTAATG	AAATTGTTAA	AAAGATAGCT	786
	GATAGCGAAT	TCGATGAATT	CAGACATCAT	CGTGGCGCAA	CATCCTATCA	TCTAAAAATG	792
20	ATGTTAAAAA	TCACCTCATA	TTCATATACT	CAATCTGAAT	TTTCTGGCCG	TAGAATAGAA	.798
	AAATTACTTC	ATAACAGTAT	TCGAATGATG	TGGTTAGCTC	AAGATCAAAC	ACCTTCTTAT	804
	AAAACTATTA	ATCTTTTTAG	AGTGAATCCT	AATACTGATG	CGCTAATTGA	ATCTTTATTT	8100
?5	ATTCAGTTTC	ATAATAAAAT	GCATATCAAA	AAAGCTGATT	TCTATCAAAT	AATTAATAGA	816
	AATCAGCTTT	TTTCaTTGCC	TAAAAACTTA	ATGTCCCGAC	CTCTTTATCT	ACGCATAAAT	8220
	ACTTATTACT	GATATAACGA	AAGAAACAAA	ATTATTTGCT	atatgtaatg	CAATTGTTGA	8280
30	ACCTAGGTTT	CTTCCAGATT	TTAAATAAGT	GAAAACTAAT	ATGATGGATA	GTATGAGATA	8340
	TGGACCAAAC	TCAAACGGCG	ACTTTGCATC	AGTCACATGA	ATAAATGCAA	ATAAGAACAC	8400
35	CGAAACAATA	CTCATAGCTA	TAAAATTAAA	CTTCTTACCT	AATTCTCCAA	TTAAAATATG	8460
.5	TCTAAATACG	ATTTCTTCAA	CTATTGGACC	TACAATCACA	ATTAATAAGA	ATGCTACAGG	8520
	TAAAAATGCA	GGCACTTCAA	ACATTTTATT	TAGCTCAAGT	TCATTGGCTG	TTtCACTATA	8580
10	TTGCAAATGT	TTAGGTAGAA	ACTGTGTCAT	ATATTCATAT	GTATAAATTA	AGATGAGAGC	8640
	AATAATATAC	GTTATTGACA	ATCTAAGCCA	ATATTTTTTG	ATATACGCAA	AACCAGCTCG	8700
	AAGCCTTGAT	GGCATCACTT	TTAAATGAAA	TAAATAAAAT	GCGCCAATCC	CAATCGTATA	8760
15	TGCTAAAGCT	TGTGTGATAG	TCGCTACAAA	TATCAGATTA	CTATCGATTT	CATAATAACC	8820
	AAACAAAATT	GGTCCTATGT	AAGCTGCAAT	TGTGAGTGCA	ТААААТАТАА	CACCTATAAT	888
	TGGAATTATA	AGCAAATCTC	TCCATGCTAT	ATCTTTAAAC	GTGTATTTCT	TTTTTTCATT	8940
50	TTCCaCTGTT	ATATCCTTTC	CTGTTTAATA	ATTGATTTTT	GGAGGTACTT	CTACATGATA	9000
	DACCADACTA	астататсас	ACAACAAATT	ACTA ATTTCA	TTC3 8 8 TC8 T	ጥር እጥ አ ር ር እጥጥ	9066

	ATAGTTACTA ATGAATTGAA TAAGTTCAAA GGCTTTGAAA CATCATATAT AATAAACGAA	9180
	AATCAAGTTT CCTATTATGA AATTATAACA CTACTTAATA AACGTCCCCT CGACAAGTCG	9240
5	ACTATGGTAA CAAAATTCAA TATCTTAATT TTTATCATAC AGAACTATCT AACGCATTAT	9300
	TTGCAATTAA ATTTGCCCAT TAACCTATTT TTCATAAAAT GTCATTTAAA CAAGTTATTT	9360
	ATTAAAATTC ACTTTATTAC ATAAATTATA CAATTALAAA GTTTCTTCAA ATTGTAAAGA	9420
10	TGCATTAATC GAGTTATAAT CATAATGATT AAGATGGT	9458
	(2) INFORMATION FOR SEQ ID NO: 115:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 910 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
	ANGCGTATCA TGTCACGCAT TTTAACTACT TCTTTACCAC AAGATTATAC AGTCACATTA	60
25	GTTGATCGTA TGCCATTTCA TGGATTGAAA CCAGAATTTT ATGCTTTAGC TGCGGGCACG	120
	AAATCAGATA AAGATGTTCG TATGAAATTC CCTAATCATC CACAAGTGAA TACAGTTTAT	180
30	GGTGAAATTA ACGACATAGA TTTAGATGCT CAAATTGTCT CAGTCGGTAA TTCTAAAATT	240
	GATTATGATG AGCTAATCAT TGGTTTAGGA TGTGAAGATA AATATCATAA CGTTCCAGGA	300
	GCCGAAGAAT ATACACATAG TATTCAAACA CTCTCAAAGG CTCGGGATAC TTTCCATAGT	360
35	ATTAGTGAAC TACCAGAAGG TGCTAAAGTC GGTATCGTTG GTGCTGGATT AAGCGGCATA	420
	GAACTTGCCA GCGAATTAAG AGAAAGTAGA TCAGACTTGG AAATATATCT TTATGACCGT	480
	GGGCEGCGAA TTTTAAGAAA TTTTCCAGAA AAATTAAGTA AGTATGTTGC GAAATGGTTC	540
40	GCCAAAAATA ATGTTACCGT TGTTCCAAAT TCAAATATTA ATAAAGTTGA ACCTGGTAAA	600
	ATATATAACT GTGATGAACC TAAAGATATT GATTTAGTTG TATGGACAGC AGGAATTCAA	660
45	CCTGTTGAAG TTGTTCGTAA CTTGCCGATT GATATAAATA GTAATGGACG CGTGATAGTT	720
40	AACCAGTATC ATCAAGTACC AACATATCGT AACGTCTATG TAGTTGGTGA TTGTGCTGAT	780
	TTACCACATG CGCCAAGTGC TCAGTTAGCC GAAGTTCAAG GTGATCAAAT TGCCGATGTG	840
50	CTTAAAAAGC AATGGCTAAA TGAACCATTA CCTGACAAAA TGCCGGAACT AAAGGTACAA	900
	GGTATCGTTG	910
	(2) INFORMATION FOR SEQ ID NO: 116:	

(A) LENGTH: 10182 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

10	TTTTTGATTC	AAAGTGGTGA	TTTAACAAGC	ATTTTAAATA	GCAATGATTT	GAAAGTCACA	60
	CATGATCCTA	CCACTGATTA	TTATAATTTA	TCTGGTAAGT	TGTCGAACGA	TAATCCAAAC	120
	GTTAAACAAT	TAAAACGTAG	TTATAATATT	CCTAAAAACG	CATCAACAAA	GGTGGAATTA	180
15	AAGGGAATGA	GTGATTTAAA	AGGCAATAAT	CATCAAGATC	AGAAACTTTA	TTTTTATTTT	240
	TCAAGTCCTG	GAAAAGACCA	AATCATTTAT	AAAGAAAGCC	TTACTTATAA	TAAAATAAGT	300
	GAACATTAAT	ACTTATGCTG	TAATTATAGA	AACATCCAAA	TCATCTATTA	nAATCCTATA	360
20	TTATAAAAnC	ACCTCACATA	ACTCGTTCAA	CTGTACCAAA	CCACATTACA	TTAGATTTTA	420
	GGCTAACTAT	TGTGATGTAC	ATCAAAAACG	AATTTGTGAG	GCGTTGTATA	TTTTACAAAG	480
25	GTGACTAGCG	TTTCGTATAG	CATTTCCAAC	ATTACTACAC	TCAAGCGTCA	CGCTAAAGTT	540
	CGAAATCGAA	TCCTTTCATT	CAACAAAAGC	TCATATCCAC	TACAAACTTC	ATATCAAGCG	600
	TATAAACTAT	CTTGTGATAC	TATCTCGATC	ATATCTATAG	TATGCATTTG	TGTTCCGTTT	660
30	CACTGAAGTA	TATGTATCAT	CAGTTAAGTA	TAAACCGTCA	TCCTTCAATG	TTACTTGATA	720
	AGCATATTTC	CGTGCTAACC	AGGCAATATC	TATATAATTT	TCTCCTGCGT	TTTCATAACT	780
	TCTTAAATCT	TCAATATGTG	CACTAACTTC	AGGGaAAATG	ATTCTAACAA	CACTTTCATC	840
35	AACCCAATAT	TTGTCATGCA	TCCATCGCAC	TTGATCTGCC	AATAAAGGTA	ACTGCACATC	900
	ATTGAAATAT	AGACGAAAGC	CGTCACTATC	ATACATTTGC	CGATATGGTA	ATGGCTGTTT	960
	TCTAATCACT	AACACCTCGC	CACCCATTAC	GGTGCCTTCT	CTAGTATCAT	CACTTCCACC	1020
40	CGAAGCTTCA	TACGTTGTTG	GGTCAACCTG	TAGTCCATGT	ACATCTCCAA	TATAAGCATC	1080
	TGGTTTATGT	TCCATTGCAT	GTCCATGTGC	AATCAATGCT	AATATTGTAG	ATTGTGAAAA	1140
45	TTGAGGCTCC	CATTCAATGC	GATTAGGATG	GCTACTATAA	ATTCTAGGTT	CATCTATAGC	.1200
	CTGCTGAATA	TCCATGCCAA	ACACTAATAC	ATTGATTAAT	GTTTGCGCAA	CACTAGCAAT	1260
	GATACTTATG	GCACCAGGTG	CACCTACTGT	TAATATTGGC	TTCCCGTGAT	ACATCACAAT	1320
50	CGTTGGAGCC	ATGTTACTTA	GTGGTCGTTT	ATATGGTGCA	ATTTCGTTAA	TACCACCATC	1380
	TACTACATCA	AAGCCATCCA	TTGTCGTATT	CAATAACACA	CCGTAGCCTG	GAATCGTGAT	1440
	ACCTGAACCA	TAAATCATAC	CAATTGATGT	CGTAAATGAA	GCAATATTAC	CTTCCTTATC	1500

	ATCAGACACA	ACACCATGCT	CTATATCAAT	ATTTGCTTTA	TTGCTATCAA	TGAGCGTACT	1620
	GCGTGCTTTT	AAATAATCAT	CATCAATTAA	TGACTGTACA	GGCACCTCAT	GAAAATTATC	1680
5	ATCCGCCAAG	TATTGCGCAC	GATCACTATA	TGCTAAATGC	ATCGCTTGTA	TCAAATGATG	1740
	CAAGTAATCA	ACAGATCTTG	GACCCATAGA	TGGTAAATCG	ACATGTTCTA	ATAACTTCAA	1800
10	TATTTGAATT	ACCGTGATAC	CGCCAGAACT	AGATGGTCCC	ATTGAATAAA	TGTCATAGTC	1860
	TTTAAATGTT	GCACTGATTG	GCGCTTTAAT	CTGAATGTCA	TATTTGGCTA	GATCCTCTAA	1920
	AGTGATTGTC	CCACCACATG	CTTTGACAAC	ATTGACTAAT	TGTTŢCGCAA	TGTCACCTTT	1980
15	ATAAAATGCA	TTAAACCCTT	GTTCTCTTAA	TATTTGAAAT	GTCTTACCTA	ATTCGGGTTG	2040
	TACAATCCAA	TCACCTTCAC	GCCAATATTG	ATTTTCATGC	GTAAATACTT	GTGCCGTTTC	2100
,	ATGATACTTT	GTCAATCGTG	CGTGTTGCTG	GCGCGAATAT	TTTTCAGTAG	CCCAATTGGC	2160
20	TGCATGACCT	TCAATGGCTA	GTTCAATTGC	AGGATTAATT	AAATCTTCCA	ATGACAATTT	2220
	AGCATAACGC	TTGTGAATAT	AATCAAACAG	CTTTGGAATT	GCTGGCACAG	CGACAGTTTT	2280
	ACCATGTGTA	GTCATATCAA	AAAATGATTT	ATATTCGCCT	GAATCATCTA	GATAAAATTG	2340
25	TTTGTCTACA	TGTTCAGGTG	CTGTCTCACG	TGCATCAAAC	GCAGTTATAC	TGCCAGTACT	2400
	TTGCTCATAA	TATAGCAAAT	ACCCGCCACC	ACCAATACCT	GATGCAAATG	GTTCTACCAC	2460
3 <i>0</i>	ATTCAATGCC	AGTTGAATTG	CAATCACTGC	ATCCATGGCG	TTGCCACCTT	GATCTAATAC	2520
	ATCCTTACCA	ATTTTAGCCG	CAAGAGGATG	TGATACGGAA	ATTAACCCTT	CTTTAGATGT	2580
	TTTTGTCTGT	TTGTCATTTA	AGTTAATGAC	CATACTATAT	CCTCCTACTT	TCTGTTAAAT	2640
35	ATTTAAAACA	TTATTGATTA	ATGGCTTTTT	CTACTTTTTC	TAAATCTTGA	CGTTGCTCGT	2700
	TACCAGTATC	GACAAGTGGT	GTAATCGGTG	ATGCAATTTT	AAATTTATCG	CCACGATAAA	2760
	ACTTAATAAA	TTGATCCTGA	TCTATCGCAT	TAACTACTGC	TTGTCTCAAG	TTTGGATGCG	2820
10	TCTTAAATAT	ACCTTTTTTA	ATATTTAGCA	TTAAAAAGAC	TGACTTGCGT	CCATTTTTGC	2880
	GAATAATGCT	TAAATTTTTA	TCCGACTTAA	TTAAATCAAA	ATGTTTTTGA	TTCACATCTG	2940
	CCAACATATC	AATTGAATGA	TTTCTAAGTT	CTGACAATGC	ATTATTCGGG	TCACCATTAA	3000
15	ACTTCAATGT	AATATTTTTA	ATTTTAGCTG	GTCCATAACT	ACCTTTTTCT	GTTTCGTTGA	3060
	ATCCTGGATT	ACGTTGAAAC	GTTGCTTGAT	ATGCATTTTT	CTGTGTCATA	ATGTATGCGC	3120
50	CACTTGCATA	CAGCGCATTT	TTCCCATCTG	AATTTGCAGG	AATTGTACTG	CTATCCCCAT	3180
	ATCCTTTTGG	ATATTCTTGA	TTTACTTGAT	TAACAAATTT	TTTAGATAAA	ATGCCTGCCG	3240
	AAGAGTGTGT	TAAGTAATTT	ACCTCTCGAG	GCATCGATTG	ATCTGTCGTA	ATTTTAACAA	3300

	TATAAGCTTT	AATCAACTTA	TCATAGATTG	ATTTATCGTC	CTTGTCTTTC	TCTTTACGCA	342
	ACTGATCGAT	GTCCTCATCT	TTTAATATCT	TGATGTCATT	TATATGTTTG	TGCATATTGT	348
5	AAGTATTATT	GTTAGGCACA	GACTTTTTAT	CACGTGCTCT	ATCTAAAGAA	AACTTAACAT	354
	CTTCAGCCGA	TACACGCTCT	CCAGTATTAC	GTGCTTGTCC	ATTGACCACT	TTCGCAAAAT	360
	AATCATCATC	TCTTAACAAG	AAATAAAATG	CTTTATTGTC	CTTATTCACA	GCATAATCAT	366
10	GACTTAACGA	ACCTTTCGTT	GTTAAATGAT	CATTTTCATC	TAATAATAAT	AACCTTGTGT	372
	ACATATTCAT	ATTAATTGAA	TATACTGACG	GCGCAATTGA	ACGTATTGGA	TCCAATGTAG	378
15	GAATTTCACC	ATCTTGTTGT	GTCATCACAA	GTGGCCGCGT	ATCTCGTTCT	CTACTATTGT	384
	TGTAATCAAA	TTGTTGCCAT	ATTAATGCAC	GTGAATTTGG	CAATCCAACA	CTATTTTTAT	390
	CTAACACTTT	ATTGTCATAT	ACTAAATTCT	TTTTTGATCC	ATATAAAGGC	GCCATATACC	396
20	CTTTATCAAA	TACAACTTCA	TCTTCAATTT	GCTTATATGT	TTGTTTAACA	TCTGCTTCAT	402
	TTTGAGTAGA	AGCTTTATTT	AACAACTGGT	CTACATGTTT	ATCTTTCAAT	AAACTATTTG	408
	ATCCTGTAGA	ACTAAATAAT	GCCGTCATAG	CATAGTTCGG	GTCACCAAAC	ACTGTCATCC	414
25	AGTCATCAAT	TTGGATATCA	TAATTGCCGG	CTTGACGTTG	TGTACGATAG	CTACCATAAT	420
	CTGGTTGGAT	ATTCATCTTC	ACGTTAAATC	CTGCATTTTC	CAATTGATCT	TTAACGATAT	426
30	TCATATCATT	TTCATAACTT	GCTTGTCCTA	GGAAATGTAT	TGTTGGTCGC	TCGCCTTTCA	432
30	CTTCAACTTT	CGATGACTTT	TGAGCCACTT	CTGATTTCGT	AGGGACACCA	CAACCACTTA	438
	ATACCAACGC	TAAAACTATA	ATTGCGATAC	TAATGATTTT	CTTCACATCT	ATCCCTACCT	444
35	TTTTAATGAA	TTCTTGGATC	TAGTGCATCA	CGCACTGCAT	CACCTATAAA	ATTAAATGCT	450
	AAAACGACGA	ACATAATACA	AACACCAGGT	ACAATAGCTA	AATTACTGTG	CGTTTCCAAG	456
	TAGTTACTAC	CGGTACGTAA	AATGTTGCCC	CATTCAGCTA	CATCAGGTGC	AACACCAAGT	4620
40	CCTAGGAAAC	TTAAACTACT	TGTTGTTAAT	ACAACCACAC	CTATATTTAA	TGAAAAACGT	4680
	ACAATCATAG	GCGCAATCGC	ATTCGGTAAA	ATATAACGCC	ATATGATATT	CCAAGTGTTT	4740
	TCACCAGTGA	TACGTGCTGC	ATCTACATAT	TCCATGCGTT	TAATTTCTAA	AACACTGGCA	480
45	CGCATTGTCC	GTGCAAATGA	TGGTATATTA	CCGATACTTA	AAGCAATAAT	TAAATTTGGA	4860
	ATACTTGCTC	CAAATGATGC	AATAATTGCC	ACCGCTAACA	ATAATGATGG	AATTGCAAAC	4920
50	ACTACATCTA	AAATTCGCAT	TATTAAATTA	TCAATATGAT	TAAAATAACC	TGCGATAGTG	4980
	CCTAGTAACA	CACCAAAAAT	AACTGCAATA	ACTACTGAAA	TAATTGAAAT	TGAAAATGTC	5040
	N.C.COOM.C.COM.C.C.	cm, c, , cm, c	CCCTCT111	> > cmcmcm > c	00111000		

	GTATCAAATG	TAAATTGTGA	CACAATTGAT	' AATGTCAGCA	TGTAGACTAA	AATAAGTAAC	522
	CCGATAATCG	CAATACGATG	TCTAGTAGTT	TTTCGTATAA	ACGATTCCCA	CCCGTTATAA	528
5	CTATGTATTT	GCGATGTACG	TTGGTAACGT	CTAATACTTA	CAAACATTAA	TAATGTAAAT	534
	ACGTTGCCTG	TTAATGTCAT	CAACAATAAC	AACACTTCGA	CGATACGTCG	CCATAGGTCA	540
4.0	TGATGCTTCC	ATGTTTGTTC	CGTTGTTAAA	АТААТААТТА	AAATGATGGT	TAAAACGATT	546
10	AGCAATGTTT	CAGCAATATA	GAACGTATCG	GCCACATAAC	CTTTAAAAAG	ATTTAATGCA	552
	CTCGTTAATA	TAACTAAAAT	ATAAGTTGCT	ATGGCGTAAC	TTGCGAATAA	TTTTAAGGAA	558
15	GCTATCTTTG	AATTAAGTTG	TGCCATATGC	CTCACTTCCT	TTCGTTGATT	TCACTACGTA	564
	ATTITGGATC	GATTAAAGCA	TAAAATATAT	CAATAATTAA	GTTTGCTAAA	GATATTACAA	570
	TTGATATATA	TACGACCCCA	CCCATGACTG	CTGGAATATC	AGGTATTAGT	TGTTTTTGGA	576
20	CGATATAACG	CCCGATACCA	TTAATGTTAA	ATACTTGTTC	CGTCACTGCT	GAACCGCCTA	582
	GTAACTCTGC	CACTAGAAGA	CCAACTAACG	TTACAATTGG	AATAATGGCA	TTTTTCAAAA	588
	TATGTTTAAT	AACAACTTGT	GTCGTCGATA	ATCCTTTTGC	ATAAGCAGTT	AAAACATAAT	594
25	CGctGCGCAT	TACTTCAAGT	ACAGAAGACC	TTGTCATACG	CGTGATAGAA	GCAGCAATAC	600
	TTGTTCCAAT	GACAAGTACA	GGTAAAATCA	ACGATATTGG	ATGTTCTGGC	ATATAAGATG	606
30	GTGGCAAAAT	ATCCAATTTC	AATGAGAACG	CTAAAATGAA	TAATAGCCCT	TGCCAGAAAC	612
	TTGGAATAGA	TAAACCAATT	AATGCAATTA	TCATTAACGT	GATATCAAGC	CAACTATTTC	618
	GCTTCATCGC'	ACTGATAATA	CCAATTGGTA	TTGCAATAAT	TAATGCCACC	ATTAGCGCTA	624
35	ATACTGCGAC	AATTATTGTA	ATTGGAATTC	TTTCGCCAAC	TGCTTTAGTC	ACAACCTCAT	6300
	TCCCTTTGTA	AGTCGTACCT	AAGTCAAAGG	TAAAAACACC	CTTGATGGTA	TCCCACAATT	6360
	GAATAAAATA	AGGTTCGTTA	AGATGATGTA	ATACATTGAA	TTGATGTATC	TGTGCCTTTG	6420
40	TTGCATTTTG	TCCCAGTATG	CTATAAGCCG	CATCAAGCGG	TGAAAAATAC	AGAATGGTAA	6480
	ACACACTGAC	AATAACACCA	ATGATGACAA	TCACAGCCAT	GACAATTCGT	TCAAAAATAT	6540
	ATCTAACTAA	TGGCTGTAAA	TAAAAAGTCA	ATAAGATGAA	CATCGGCAAG	GCCAATATCA	6600
45	CTTTGATCAT	GATGAACTTA	TGAAATAATA	CATTTTCAAA	GTATGTTGAA	AAATGTGCTT	6660
•	GTTCAATATT	CTTTGAACTC	GTATTAGAAC	TTTGTGCCTT	GAATATTTTT	AATGCTTCTT	6720
50	TATGTATTTG	TGTGGATGAC	TTTTGCTGCG	ATAAATATTT	ATATTTTGA	TGTAACGCCT	6780
	GTTCAATTTC	TGAAATTTCA	GAATTATTAG	CGTAAAAATT	TTTCCTCTTA	GCAGAAAAGA	6840
	ת איניייייייייייי א א א א	CACTCCATAT	2222000000	0033000033			

	CTTGTAAAAT	AATCTTGAGT	AGATTACTAT	GATATACAAA	AGTATAGAAT	AAATTTACAC		7020
	ATTTGTGaAT	AGGGAGGCAC	AACATCATGT	CAAATTTATT	AGAAGTCAAC	AGTCTGAATG	,	7080
5	TACAATTCAA	TTATGATGAA	ACTACAGTTC	AAGCGGTAAA	AAACGTCTCT	TTCGAATTAC	,	7140
	GAAAAAAACA	TATCCTAGGT	ATTGTTGGTG	AATCAGGATC	AGGAAAAAGT	ATTACCGCTA		7200
10	AATCTATTTT	AGGGCTACTA	CCAGATTATC	CAGATCACAC	ATTAACAGGA	GAAATTATTT		7260
10	TTAATGGGCA	ATCGTTAAAT	AATTTATCAA	CTTCAGCGTT	ACAACAAATT	CGAGGTAAGG	٠.	7320
	ATATTTCAAT	GATTTTTCAA	GATCCACTCT	CTTCGTTGAA	TCCAAGATTA	ACGATTGGCA	,	7380
15	AACAAATTAC	AGAAGTAATA	TTTCAACATA	AACGTGTATC	TAAATCTGAA	GCAAAGTCGA		7440
	TGACAATAGA	CATTTTAGAA	AAAGTAGGTA	TAAAACATGC	AACTCGACAA	TTTGATGCTT		7500
	ATCCACATGA	ACTTTCTGGT	GGTATGCGTC	AACGTGTCAT	GATAGCAATG	GCATTGATTT		7560
20	TAAAGCCACA	AATTTTAATC	GCAGATGAaC	CAACAACGGC	ATTAGATGCC	AGTACACAAA		7620
	ATCAATTACT	GCAGTTAATG	AAGTCCCTTT	ATGAGTACAC	AGAAACATCT	ATTATTTTTA	ι.	7680
	TCACTCACGA	TTTAGGCGCT	GTGTATCAAT	TTTGCGACGA	TGTGATTGTA	ATGAAAGATG		7740
25	GAAGTGTCGT	TGAAAGTGGC	ACGGTTGAAA	GTATTTTTAA	ATCGCCACAA	CATACCTATA		7800
	CAAAACGCTT	AATAGATGCG	ATTCCTGATA	TTCATCAAAC	GCGTCCGCCA	AGACCGTTAA	•	7860
30	ACAATGATAT	AAAATTATTT	TTCGATCGCG	TGAGyGgGAT	TACACATCAC	CGAGTGGCAG		7920
30	CCTATACCGA	GCAGTTAATG	ATATTAACTT	GGCTATTAGA	AAAGGCGAAA	CATTAGGCAT	•	7980
	TGTCGGTGAA	TCAGGGTCAG	GGAAATCGAC	ATTAGCTAAG	ACGGTCGTCG	GTCTAAAGGA	1	8040
35	AGTGTCAGAA	GGCTTTATTT	GGTATAACGA	ATTACCATTA	AGTTTATTTA	AAGATGATGA		B100
	ATTGAAATCT	TTACGACAAG	AGATACAAAT	GATTTTTCAA	GATCCATTCG	CATCTATTAA	. 6	3160
	TCCÁAGATTT	AAAGTCATTG	ATGTGATTAA	ACGACCACTA	ATCATTCATG	GGAAAGTCAA	8	3220
40	AGATAATGAT	GACATTATTA	AAACTGTCGT	ATCGTTGTTA	GAAAAGGTTG	GCCTAGATCA	8	3280
	AACTTTCTTA	TATCGCTATC	CACACGAATT	ATCTGGTGGG	CAACGTCAGC	GTGTAAGTAT	6	3340
	CGCGAGAGCA	CTTGCTGTTG	AACCTAAAGT	GATTGTTTGC	GACGAGGCAG	TGTCCGCTTT		3400
45	AGACGTTTCA	ATTCAAAAAG	ATATCATCGA	GTTATTAAAA	CAATTACAGT	TAGACTTCGG	8	3460
	CATCACTTAT	TTATTCATCA	CACATGACAT	GGGTGTTATC	AATGAAATAT	GTGATCGCGT	8	3520
50	TGCAGTTATG	AAAAATGGCG	AAATCGTTGA	ACTGAATAAC	ACAGAAGATA	TTATCAAACA	8	35.80
	TCCGCAGTCA	GACTATGCAA	AGCAACTTAT	TTCAGAAGTA	GCAGTTATTG	СТАААТАААА	٤	3640
	CTCATCCCTT	Citicicia y Cataran	ATICA CITIZITATI	CCTCTCAAAT	እ እ አጥጥር ር ርርርር	N COMPANDA NO		2200

	TATCAAGTTT	TAGGTGCTTT	GCCATGATTT	AAGAGTCACC	CCCATACTTT	GGGCATTTTA	8820
5	ACGCCAGAAT	AAATCCCCCG	CCACTATGTG	AAGTGTGGGG	GATTATTTAT	ATTTTATTAG	8880
5	AATATTCAGA	TTTTTGAGTG	TGTCAACTTA	GCTTAGTCAA	TGTATATTTA	ACGTCACTTA	8940
	CTCTTTTTCT	TTCATAATTA	ACACATTCAA	ATAAACTTTG	ATCAAAAAAC	ACAAAGTTAA	9000
10	AAGTACCATC	TTGTAATATG	CTCTCATACA	TTATCCCGTC	ATATTTAAGG	CTTCGAATAT	9060
	AATCAGCTAA	ATATTGAAAT	GGCAAATAAT	CTATTCCTTG	TTCATCGCTT	GGATTTGTTA	9120
	TTCCTTTATG	AATCTTTTTT	AATGTTTGGT	AATTTACAAA	ATACTTTCTA	AATCCATCAT	9180
15	CGCCAGCTTT	GATTGCATTA	CTAGTTAAAT	TAGTTAAATT	CGCAATTTTC	AATTTCTCTT	9240
	TTGTCACGTT	TTTTTGTAAC	TTAACCTTAC	CTATATAAAT	AATGTCATTA	TGCTTAGGTT	9300
	TAACTTCTTC	TATACTGACC	TGTTCTTTTG	TACTAAGGTA	TAATACGCTT	ATCCATTTAG	9360
20	AATTCAATCT	TCCTGCCGTT	GCAAATCCCT	TTGGTGGTGA	CATTAGTTCA	CTTTTCTCTG	9420
	TAATGAACTT	AACTATTCTA	GATCTATATA	ATGGTTCAAA	TCTTTCTCTA	AATTCCTCAA	9480
25	TACTATAGTA	ATTAGTAGTG	ATATCGAGAA	AGAACGCTAA	ATTCTCTAAA	TTGATCATAT	9540
	TTTTATGAAA	TCTATTTTTA	TACTTCAAGC	TCTCACAAAA	TCCATCCCAG	TCATTATTTG	9600
	CTACAATTAG	ATTTTTATTT	GTATATTTTT	TATCGTTTAT	GATTTTAGCG	CCTACTAAAT	9660
30	CTTCCAACAC	TCGTCTATCT	AAATTTTCAT	CATCTTTAAA	AAGTTCATTT	AAAATACAAC	9720
						ATTTCAATCT	9780
				•		TATAATTCTA	9840
35						GTCGTATCAA	9900
						CTATTTATCA	9960
40	•					TTTCATTTTG	
40						TTTTAATTAA	10080
						AGCGCATAAG	
45	ATCTATTTTT	AATATCTAAG	TTTTTTGACC	ATGTTACTAA	TT		10182

(2) INFORMATION FOR SEQ ID NO: 117:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3491 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

	AACTCAGGCA	ATTGAAACAG	CATTAGGTGC	TTCATTACAA	CATGTCATTG	TAGATTCAGA	6.0
	AAAAGATGGA	CGCCAGGCTA	TTCAATTTTT	AAAAGAACGT	AATTTAGGTC	GTGCGACGTT	120
5	TTTACCATTA	AATGTTATAC	AGAGTAGAGT	GGTAGCGACT	GATATTAAAT	CTATTGCTAA	180
	AGAGGCAAAC	GGATTTATTA	GTATCGCTTC	GGAAGCAGTT	AAAGTAGCAC	CAGAATATCA	240
10	AAATATTATC	GGGAATTTAT	TAGGTAATAC	GATTATCGTT	GATCATTTAA	AGCATGCAAA	300
,,,	TGAATTGGCA	CGTGCGATTA	AATATCGAAC	TCGTATTGTT	ACTTTGGAAG	GTGATATTGT	360
	AAATCCTGGT	GGETCTATGA	CTGGTGGTGG	CGCTCGTAAG	TCAAAAAGTA	TTCTGTCTCA	420
15	AAAAGACGAG	TTGACAACAA	TGAGACACCA	ATTAGAAGAT	TACTTGCGTC	AAACAGAATC	480
	ATTTGAACAA	CAATTTAAAG	AGTTGAAGAT	AAAAAGTGAT	CAATTAAGTG	AACTGTATTT	540
	TGAAAAAAGT	CAAAAGCATA	ATACACTTAA	AGAGCAAGTG	CATCATTTTG	AAATGGAGCT	600
20	CGATAGATTA	ACTACACAAG	AAACACAAAT	AAAAAATGAT	CATGAAGAAT	TCGAATTTGA	. 660
	AAAAAATGAT	GGTTATACGA	GTGACAAAAG	TCGACAAACT	TTGAGTGAAA	AAGAAACTTA	720
	TCTAGAAAGT	ÄTTAAAGCAT	CTTTAAAACG	ACTAGAAGAT	GAAATTGAAC	GCTACACAAA	780
25	ACTTTCTAAA	GAAGGTAAGG	AAAGCGTTAC	TAAAACACAA	CAAACCTTAC	ATCAGAAACA	840
	ATCTGATCTT	GCTGTGGTTA	AAGAGCGTAT	TAAAACACAA	CAACAGACAA	TAGATCGATT	900
30	AAATAATCAA	AATCAACAAA	CTAAACATCA	ATTAAAAGAT	GTTAAAGAAA	AAATTGCATT	960
	CTTTAATTCG	GATGAAGTGA	TGGGCGAACA	AGCTTTTCAA	AATATTAAAG	ATCAAATTAA	1020
	TGGTCAACAA	GAAACGAGAA	CACGCTTATC	AGATGAATTA	GATAAATTGA	AACAACAACG	1080
35	TATTGAGTTG	AATGAACAAA	TCGATGCGCA	AGAAGCTAAA	CTACAAGTTT	GTCACCAAGA	1140
	TATTTTAGCT	ATCGAAAATC	ACTACCAAGA	TATTAAAGCT	GAACAATCAA	AGCTAGATGT	1200
	ATTAATTCAT	CATGCGATAG	ATCATTAAAT	GATGrATATC	AATTGACTGT	TGAACGTGCG	1260
10	Aratctgaat	ATACGAGTGA	TGrATCGATg	ACGCATTACG	TAAAAAAGTT	AAGTTAATGr	1320
	AGaTGyCGAT	TGATGrACTA	GGTCCTGTAA	ACTTAAATGC	AATTGAACAA	TTTGAAGAGT	1380
	TAAATGAACG	TTATACATTT	TTAAGTGAAC	AACGTACAGA	TCTTCGTAAA	GCTAAAGAAA	1440
15	CATTAGAGCA	AATTATAAGT	GAAATGGATC	AAGAGGTTAC	TGAAAGATTT	AAAGAAACTT	1500
	TCCATGCTAT	TCAAGGACAT	TTTACAGCTG	TGTTCAAACA	ATTGTTTGGT	GGAGGCGATG	1560
50	CAGAATTGCA	ATTAACTGAA	GCCGATTATT	TAACAGCTGG	TATTGATATT	GTGGtACAAC	1620
	CACCGGGTAA	AAAGTTGCAA	CATTTATCGT	TACTGAGTGG	TGGTGAGCGT	GCATTAACTG	1680
	. CTA TTC: CTTT	actatttcca	ATTTTAAAAG	таасатстсс	ער הוה באור באור באור באור באור באור באור באור	ስጥስ ጥጥስ /~ጥ/	1740

	TATCAGACGA	AACACAATTC	ATTGTTATTA	CACACCGTAA	AGGAACAATG	GAATTTGCAG	1860
	ATAGGTTATA	CGGTGTAACA	ATGCAAGAAT	CAGGTGTTAC	TAAACTTGTG	AGTGTGAATT	1920
<i>5</i>	TAAATACAAT	AGATGATGTG	TTGAAGGAGG	AGCAATAATG	AGCTTTTTTA	AACGCTTAAA	1980
	AGATAAGTTT	GCAACAAATA	AAGAAAATGA	AGAAGTTAAA	TCCTTAACAG	AAGAACAAGG	2040
10	TCAAGACAAA	TTAGAAGATA	CACATTCTGA	AGGTTCAACG	CAGGACGCAA	ATGATTTAGC	2100
,,,	AGAAAATGCT	GAAGTGAAAA	AGAAGCCACG	CAAGTTGAGT	GAAGCGGATT	TTGATGACGA	2160
	TGGCTTAATA	TCAATTGAAG	ATTTTGAAGA	AATTGAAGCT	CAAAAAATGG	GTGCTAAATT	2220
15	TAAAGCAGGA	CTCGAAAAAT	CTCGTCAAAA	TTTCCAAGAA	CAATTAAATA	ATTTGATAGC	2280
	GAGATATCGT	AAAGTAGATG	AAGACTTTTT	TGAAGCTTTA	GAAGAAATGT	TAATCACTGC	2340
	AGACGTCGGT	TTTAATACAG	TGATGACGTT	AACTGAAGAA	TTACGTATGG	AAGCACAACG	2400
20	ACGTAATATT	CAAGATACTG	AAGATTTGCG	TGAAGTCATT	GTTGAAAAGA	TCGTAGAGAT	2460
	TTACCATCAA	GAAGATKATA	ATTCAGAAGC	TATGAACTTA	GAAGATGGTC	GTTTAAATGT	2520
	CATTTTAATG	GTTGGTGTGA	ATGGTGTTGG	TAÄAACAACA	ACAATTGGAA	AATTAGCTTA	2580
25	CCGATATAAA	ATGGAAGGTA	AAAAAGTAAT	GTTAGCTGCG	GGCGATACTT	TTAGAGCGGG	2640
	TGCTATTGAT	CAATTGAAAG	TTTGGGGCGA	ACGTGTTGGT	GTAGACGTAA	TTAGCCAAAG	2700
30	TGAAGGTTCT	GATCCAGCTG	CTGTTATGTA	TGATGCgATT	AATGCCGCTA	AAAACAAAGG	2760
	TGTTGATATT	TTAATCTGTG	ATACCGCTGG	ACGTTTACAA	AATAAmaCAA	ATCTAATGCm	2820
	AGAATTAGAA	AAAGTTAAGC	GTGTAATTAA	TCGAGCAGTG	CCAGATGCGC	CTCATGAAGC	2880
35	ATTACTATGT	TTAGATGCTA	CAACTGGTCA	GAATGCGTTG	TCACAAGCTA	GAAACTTTAA	2940
	AGAAGTAACA	AATGTTACAG	GTATTGTATT	AACGAAATTA	GATGGTACAG	CCAAAGGTGG	3000
	TATCGTATTA	GCCATTCGTA	ATGAATTGCA	CATCCCAGTT	AAATATGTAG	GTTTAGGTGA	3060
40	GCAATTAGAT	GACTTACAAC	CATTTAACCC	TGAAAGTTAT	GTCTACGGCT	TATTCGCTGA	3120
	TATGATTGAA	CAAAATGAAG	AAATAACAAC	AGTTGAAAAT	GATCAAATTG	TAACAGAAGA	3180
	AAAGGACGAT	AATCATGGGT	CAAAATGATT	TAGTTAAAAC	GTTACGAATG	AATTATTTGT	3240
45	TTGATTTTaT	CAATCCTTAT	TGACGAATAA	ACAACGTaAT	TATTTGGAAT	TATTTTATCT	3300
	TGAAGATTAT	TCTTTAAGTG	AAATCGCAGa	TACTTTTAAT	GTGAGTAGaC	AAGCAGTTTA	3360
50	TGATAATATA	AGAAGAACTG	GCGATTTAGT	TGAAGATTAT	GAAAAGAAAT	TGGAATTATA	3420
	CCAGAAATTT	GAGCAACGCC	GAGAAATATA	TGATGAAATG	AAACCACATT	TAAGTAATCC	3480
	AGAACAAATA	С					3491

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4253 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

10							
	AGTACGTTTT	ATAATTATAA	GTACGTAATT	AACATATTAA	CATATCGCAA	GTATGTATTT	6
	AAATAAgatt	GTTATAATTT	CAAAGTTCAT	CCAAGaTTAT	GGCGTTTGCA	TTTACCTATT	12
15	AAAAACGTTA	TTATATCAAA	GATGCGAAAG	ATAATACGGG	TTTATTTTAT	GAAAGTGAGA	18
	AGGATAAAAT	GGATAATGAG	CAACGCTTAA	AAAGAAGAGA	GAATATAAGG	ÀATTTCTCGA	24
	TTATAGCACA	TATTGACCAC	. GGAAAATCTA	CATTGGCTGA	TAGAATTTTA	GAAAATACCA	30
20	AATCAGTTGA	AACAAGAGAT	ATGCAAGATC	AGTTACTAGA	TTCAATGGAT	TTAGAAAGAG	360
	AACGTGGTAT	TACAATCAAA	TTAAACGCgT	ACGTTTAAAG	TACGAAGCTA	AAGATGGAAA	420
	TACTTATACA	TTCCATTTAA	TCGATACGCC	TGGACACGTC	GATTTTACAT	ATGAAGTGTC	. 480
25	ACGTTCTTTG	GCAGCTTGTG	AGGGCGCGAT	TTTAGTAGTA	GATGCGGCTC	AAGGTATCGA	540
	AGCACAAACA	TTAGCAAATG	TTTATTTAGC	ATTAGATAAT	GAGTTAGAGT	TATTGCCTGT	600
	TATTAACAAA	ATTGATTTAC	CTGCTGCAGA	ACCTGAACGC	GTGAAACAAG	AAATTGAAGA	660
30	TATGATAGGT	TTAGACCAAG	ACGATGTTGT	TTTAGCAAGT	GCTAAATCTA	ACATTGGAAT	720
	TGAAGAGATA	CTAGAGAAAA	TAGTTGAAGT	TGTGCCAGCT	CCAGATGGTG	ACCCAGAAGC	780
35	ACCACTAAAA	GCGTTAATAT	TTGATTCTGA	GTATGATCCA	TATAGAGGGG	TAATTTCATC	840
00	GATAAGAATT	GTGGACGGTG	TTGTTAAAGC	CGGAGATAAA	ATTCGAATGA	TGGCCACTGG	900
	TAAAGAGTTC	GAAGTAACAG	AAGTTGGAAT	TAATACACCT	AAGCAGCTTC	CAGTTGATGA	960
40	ATTÄACAGTT	GGTGATGTTG	GTTATATTAT	TGCAAGTATT	AAAAATGTTG	ATGATTCTAG	1020
	GGTTGGTGAC	ACCATCACAT	TAGCTAGTAG	ACCTGCATCA	GAACCATTGC	AAGGTTATAA	1080
						ATTATAATGA	1140
45						TTGAGCCTGA	1200
						TACACATGGA	1260
		GAAAGAATTG					1320
50		CAATGTGTTT	•			*	1380
		CGTGATAAAA				•	1380

	TATAAATATG	GACTATTTAG	ATGATATTCG	TGTAAATATT	GTTTATGAAT	TACCTTTAGC	1560
-	TGAAGTTGTA	TTTGATTTCT	TCGATCAACT	TAAATCTAAT	ACTAAAGGAT	ATGCATCATT	1620
5	TGATTATGAA	TTCATCGAAA	ATAAAGAAAG	TAATTTAGTC	AAGATGGATA	TTTTATTAAA	1680
	TGGTGATAAA	GTGGATGCGC	TAAGCTTCAT	AGTTCATAGA	GATTTTGCAT	ATGAACGTGG	1740
10	TAAAGCATTA	GTTGAAAAAC	TTAAAACGTT	AATTCCAAGA	CAGCAATTTG	AAGTACCTGT	1800
	ACAGGCTGCA	ATAGGACAAA	AAATTGTAGC	GCGTACAAAT	ATTAAATCAA	TGGGTAAAAA	1860
	CGTTTTAGCT	AAATGTTATG	GCGGTGACAT	AAGCCGTAAA	CGTAAATTAC	TTGAAAAACA	1920
15	AAAAGCAGGT	AAAGCTAAGA	TGAAAGCAGT	TGGTAATGTT	GAAATTCCAC	AAGATGCTTT	1980
	CTTGGCTGTA	TTGAAAATGG	ATGATGAATA	AAAAATTTTA	ATCAATTAAC	AATTTACAAT	2040
	GAATAAAGTT	TAATAACTAA	AAAGAGGGAG	CCTAGGATAA	ATTAACGTCC	TGGGCTTTAC	2100
20	AATGTTATAT	TGGCAGCCAT	CGACAGAGTT	AAAATGAGCT	TATAACAATG	GGGCCCCAAC	2160
	ACAGAAGCTG	ACGAAAAGTC	AGCTTACTAT	AATGTGCAAG	TTGGGGTGGG	GCCCCAACAT	2220
?5	AGAGAATTTC	GAAAAGAAAT	TCTACAGGCA	ATGCAAGTTG	GGGTGGGACG	ACGAAATAAA	2280
.5	TTTTGCGAAA	ATATCATTTC	TGTCCCACTC	CCTTATGCAT	GAGTTTTACT	CATGTAATTT	2340
	TATTTTTAAG	GACATATTAC	ATCTGGCTAA	TGTGTAAGAG	CCACTACATA	ATAAATCATT	2400
30	AGTGGTTCTT	TATTATTTCT	ATCTCACTCC	CTCTAAACAA	GAATAAATAT	TAAAATGAAT	2460
,	CGATATATTA	GACAATCATT	GATTAAACGT	TAAAGTTAAA	AGTAAGAATA	ATTGCAGATA	2520
	GTCCAACAGG	ATATAGCCGA	TTGGATAAAA	AGTCTGAGAA	GCGGGGCATT	AAAATGACGG	2580
	TACAAAGTGC	ATATATACAT	ATTCCATTTT	GTGTAAGAAT	ATGTACATAT	TGTGATTTCA	2640
	ATAAATATTT	TATACAGAAT	CAACCTGTAG	ATGAGTACTT	AGATGCACTA	ATCACAGAAA	2700
	TGTCTACAGC	AAAATATAGG	ATCTTAAAGA	CCATGTATGT	AGGTGGCGGC	ACACCAACGG	2760
10	CCCTTTCTAT	TAATCaGTTG	GAAAGATTAC	TTAAAGCAAT	ACGTGATACG	TTTACAATCA	2820
	CAGGCGAGTA	TACATTTGAA	GCAAATCCTG	ATGAGTTAAC	TAAAGAGAAA	GTCCAACTAT	2880
5	TAGAGAAATA	TGGAGTAAAA	AGGATTTCAA	TGGGCGTTCA	AACATTCAAG	CCGGAGTTAT	2940
	TGTCTGTTTT	AGGTAGAACG	CACAATACTG	AAGATATTTA	CACTTCGGTG	TTAAATGCTA	3000
	AAAACGCAGG	TATTAAATCA	ATCAGTTTAG	ATTTAATGTA	TCATTTACCG	AAACAGACGA	3060
o	TTGAAGATTT	TGAACAAAGT	TTAGATCTAG	CTTTAGATAT	GGATATTCAA	CATATTTCGA	3120
	GTTACGGCTT	AATACTTGAA	CCTAAAACCC	AATTTTATAA	TATGTATAGA	AAAGGCTTGC	3180
	TCAAACTTGC	TAATGAGGAT	TTAGGTGCTG	ACATGTATCA	GTTGCTGATG	TCTAAGATAG	3240

	AACATAATAA	GGTTTACTGG	TTTAATGAGG	AATATTATGG	ATTTGGAGCA	GGTGCAAGTG	3360
5	GTTATGTAGA	TGGTGTGCGT	TATACGAATA	TCAATCCAGT	GAATCATTAT	ATCAAAGCTA	3420
5	TAAATAAAGA	AAGTAAAGCA	ATTTTAGTAT	CAAATAAACC	TTCTTTGACT	GAGAGAATGG	3480
	AAGAAGAAAT	GTTTCTTGGG	TTGCGTTTAA	ATGAAGGTGT	GAGTAGTAGT	AGGTTCAAAA	3540
10	AGAAGTTTGA	CCAATCTATT	GAAAGTGTCT	TTGGTCAAAC	AATAAATAAT	TTAAAAGAGA	3600
	AGGAATTAAT	TGTAGAAAAG	AACGATGTGA	TTGCACTTAC	AAATAGAGGG	AAAGTCATAG	3660
	GTAATGAGGT	TTTTGAAGCT	TTCCTAATAA	ATGATTAAAA	AAAATTGAAA	TTTCGAGTCT	3720
5	TTAACATTGA	CTTACTTTGA	CCAATTTGAT	AAATTATAAT	TAGCACTIGA	GATAAGTGAG	3780
	TGCTAATGAG	GTGAAAACAT	GATTACAGAT	AGGCAATTGA	GTATATTAAA	CGCAATTGTT	3840
	GAGGATTATG	TTGATTTTGG	ACAACCCGTT	GGTTCTAAAA	CACTAATTGA	GCGACATAAC	3900
20	TTGAATGTTA	GTCCTGCTAC	aattagaaat	GAGATGAAAC	AGCTTGAAGA	TTTAAACTAT	3960
	ATCGAGAAGA	CACATAGTTC	TTCAGGGCGT	TCGCCATCAC	AATTAGGTTT	TAGGTATTAT	4020
ne	GTCAATCGTT	TACTTGAACA	AACATCTCAT	СААААААСАА	ataaattaag	ACGATTAAAT	4080
25	CAATTGTTAG	TTGAGAATCA	ATATGATGTA	TCATCAGCAT	TGACATATTT	TGCAGATGAA	4140
	TTATCAAATA	TATCTCAATA	TACAACTTTA	GTTGTTCATC	CTAATCATAA	ACAAGATATT	4200
30	ATCAATAATG	TACACTTGAT	TCGTGCTAAT	CCTAATTTAG	TTATAATGGT	TAT	4253
	(2) INFORMA	TION FOR SE	Q ID NO: 11	19:			
			ACTERISTICS				
15	(B) TYPE: nu	cleic acid				
	•	D) TOPOLOGY		·e			
	=	•					
0	(xi) s	EQUENCE DES	CRIPTION: S	SEQ ID NO: 1	.19:		
	TCCCTAATCG .	AACAAAATTA	TGCGCATAAA	CAAAGTAGAT	TGATATAAAA	TTCTTAATTA	60
	TCAGAATATA	TTTACAAATC	TGAATTTTAT	TAGTATATTG	GrTAGTrTTC	ATAGAGGCAT	120
5	GACGGTaTTT	GAGCAGGATT	TTAAATCGGg	TAATATTTA	CGATTTAAGA	GAGGCCACtT	180
	TGCTTGcACA	TTAATACTGT	CAATGGGAGG	GGAATGTATA	TGAGTYAAGC	ACATCAATTA	240
	ATTCAAGAGG	מדיים מבידם	ТТТСССААА	TCAGGACGTA	ТТДАДТАТТД	TCCGTTAGTG	300

55

ATTGATCATG GATATGGAGC AACATTGGTT GATATTGAGG GGAAGACATA TATCGATTTG

TTATCGAGTG CGAGTTCTCA AAACGTAGGT CATGCACCTA GAGAAGTAAC AGAAGCGATA

3.60

	GIACGITIAG	CTAAGAAGCT	TIGIGAGATI	GCACCIGGAG	ATTTTGAAAA	AAGAGTGACC	540
5	TTCGGATTAA	CCGGATCAGA	CGCAAATGAT	GGCATCATTA	AATTTGCCAG	AGCATATACA	600
5	GGGCGTCCTT	ATATCATTAG	TTTCACTAAT	GCATATCATG	GTTCAACTTT	TGGCTCATTG	660
	TCTATGTCAG	CTATTAGTTT	AAATATGCGC	AAACATTATG	GTCCGTTATT	GAATGGTTTT	720
10	TATCATATTC	CGTTTCCAGA	TAAATATCGT	GGTATGTACG	AGCAGCCACA	AGCTAATTCA	780
	GTAGAAGAAT	ATTTAGCACC	CTTAAAAGAA	ATGTTTGCGA	AGTATGTACC	TGCTGACGAA	840
	GTAGCATGTA	TTGTTATTGA	AACGATACAA	GGCGATGGTG	GACTTTTAGA	ACCAGTTCCA	900
15	GGGTATTTTG	AAGCGTTAGA	AAAGATTTGT	CGTGAACATG	GTATTTTAAT	CGCTGTCGAT	960
	GATATTCAAC	AAGGTTTTGG	GAGAACAGGT	ACATGGAGTT	CAGTCTCGCA	TTTTAATTTT	1020
•	ACGCCTGATT	TAATCACTTT	CGGAAAATCC	TTAGCAGGTG	GTATGCCTAT	GTCAGCAATT	1080
20	GTTGGACGCA	AAGAGATTAT	GAATTGTTTA	GAAGCACCAG	CACATTTATT	TACAACAGGT	1140
	GCTAATCCAG	TTAGTTGTGA	AGCTGCATTA	GCCACAATTC	AAATGATTGA	AGATCAGTCG	1200
	CTTCTTCAGG	CTAGTGCGGA	AAAAGGGGAA	TATGTTAGGA	AACGAATGGA	TCAATGGGTA	1260
25	TCTAAATACA	ATAGTGTAGG	CGATGTTAGA	GGTAAAGGTC	TGAGCATTGG	TATTGATATT	1320
	GTTTCCGACA	AAAAACTCAA	AACACGTGAT	GCCAGTGCGG	CACTTAAAAT	TTGTAATTAC	1380
30	TGCTTTGAGC	ATGGCGTAGT	TATTATAGCT	GTAGCAGGAA	ATGTGTTGCG	ATTCCAACCG	1440
	CCATTGGTAA	TAACATATGA	GCAATTAGAC	ACGGCGTTAA	ACACTATAGA	AGATGCACTG	1500
	ACTGCTTTGG	AAGCAGGTAA	CTTAGATCAA	TATGACATAT	CTGGACAAGG	TTGGTAATAG	1560
35	CGATTATCTT	TAAAATATAA	AAAAAATCAT	TTCCACATCT	GGATGTTAAT	CAGATGGGAA	1620
	ATGATTTTTT	TTATTTTTTA	TTTTGGTGGG	TGGTATTCAG	CTACGTCATT	TTTCTTAGAA	1680
	TGTGTAAGTC	CATAACTTAA	ATATAGGATG	ATACCAACAA	TAAACCAAAT	TAAAGTGTAT	1740
10	AATTTCGCTT	CGAATCCTAA	TCCCCAGAAT	ACTAGCAATA	СТААААСААА	TGTAATTGCT	1800
	GGTAACACAG	GATATAAAGG	TAATTTAAAT	GCAGGAATTG	GTAGATCTTT	ACCTTCACGC	1860
_	TTTCTCAAAC	GATACATTGC	TAATGAAACG	AACATAAATG	CAACAAGTGT	ACCTGCTGAA	1920
	ATTAATTGTG	CTAAAAATGC	GAATGGGAAC	ATAGAACCAA	TTAAAACACC	AATAATAGTA	1980
	AGTATAACTA	GTGCGCGATT	AGGTAAATGT	TTGTCGTTTA	AGTGGCTTAA	CCATGAAGGT	2040
50	AATAAGCCGT	CACGTCCAAA	TGAATAAAGT	AAACGTGAGC	CTGCTAACAT	CATACCAATT	. 2100
•	AATGCTGTAA	ACATACCGAT	AACAGAGATA	GCTTGAACAA	TAGCTGCTAC	AACACCATGA	2160
	ССАСТТТСАС	GTAAAGCCCA	ACCAACAGGT	торсорттст	TTGCGTATTG	TGAGTAATGG	2220

	CCAAGAATAC	CTCTAGGCAT	TGTCTTTTGA	GGATCAAGTG	CTTCTGCTGA	GTTTGCTGCG	2340
	ATAGAATCGA	AACCGATATA	CGCTAAGAAA	ATCATTGAAA	CACCAGCATA	TATGCCTTGC	2400
ţ	CATCCACCAA	AGTCACCTGT	AGCAGTTACT	TTGTGTTCTG	GAATAAATGG	CACATAGTTA	2460
	CTAACATTTA	TTGCTGTTAA	ACCTACGATG	ACAAATAAAA	TAATAGCTAA	TACTTTTAAA	2520
0	ATAACTAAAA	TATTTTCCAT	ACGAGCTGCT	TCCGACATAC	CACGTGATAG	TAATAATGCA	2580
	GTTAATAAAA	TAACGATAGC	AGCAATAATA	TCGATAAAAC	CGCCATTTGT	ACCAAATGGA	2640
	TTTGATAATG	CTGCAGGTAA	TTCGATGCCA	ATTGGTTTCA	CAAGTCCGCG	TAAATTCGCT	2700
5	GAGAATCCTG	ATGCAACAAA	GGCTACGGCG	TTAAAATAT	CAGCTAATAG	AGCCCAACCG	2760
	GCAACCCATC	CAAAAAATTC	ACCAAATAAT	ACATTGACCC	AAGAATAGGC	TGAACCTGCA	2820
	AATGGCATAG	CGGCAGCCAT	TTCTGCATAA	GTAAATGCAA	CTAAACCAGC	AACAATAGCA	2880
0	GCGAGTAAGA	ATGATAACGC	AACGGCCGGT	CCTGCATGTT	CTGCAGCAAC	AATGCCAGGT	2940
	AGCGTAAAGA	TAGATGTCGA	TACAATTGTT	CCTACACCTA	AAGCTAAGAA	ATCACGCACC	3000
_	CGAAGTGTAC	GCTTTAAATG	ACCATCTTTA	TTTTGATAGA	TAGCCGGATC	CTCTTTTCGT	3060
5	GCTATTTTAT	TGAAAAAACT	TCCCATAAAC	TTTCCTCCCA	AACATTCATA	AACAATTCTA	3120
	TACGGTGTTT	TTTAATATGT	TATATCATAG	CACAAATAAT	CAATATTTTG	TCTAAAAATT	3180
,	CTGAAAAATC	ACAACTTTAT	GTTACGTATT	AATGACTTGT	CTTGATAACA	TCCATAGATT	3240
	TTTTAAATGA	TAAAACTGAT	TATAACAGAT	ATTAAATGAA	TAAGTACTAT	TTTTTGCnAA	3300
	TTTTCTAACA	ATTTTGCACA	TTATATGTTT	AAAATCAATT	TCATGTTTAT	GGTCTGATTG	3360
5	GCTAGTGTGT	ATGAAATGTA	Antctttgac	TnnGA			3395
	(2) INFORMA	TION FOR SE	Q ID NO: 12	0:			
,	· (QUENCE CHAR A) LENGTH: B) TYPE: nu C) STRANDED D) TOPOLOGY	13508 base cleic acid NESS: doubl	pairs	·		

45 (x

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

ATCAGGTAAT GCCATGCGTT TAGCTGAAAA TTTTTTCAGA ACGTTTAAGT GATATCGGAC 60
ATCAAGTTGT TTTGATGTCA ATGGATGAAT ATGATACGAC AAACATCGCG CAGTTAGAAG 120
ATTTATTTAT TATTACGTCT ACTCATGGTG AAGGAGAACC GCCTGATAAT GCATGGGATT 180
TCTTTGAATT TTTAGAAGAC GATAACGCAC CTAATTTAAA TCATGTGAGA TATTCAGTAC 240

	TACTAGAAAA	TCTAGGCGCT	GAGCGTATAT	GTAAGCGTGT	AGATTGTGAT	ATTGATTATG	36
	AAGAAGACGC	AGAAAAGTGG	ATGGCAGACA	TCATTAATAT	TATTGATACC	ACATCAGAAG	42
5	GTATTCAAAG	TGAATCGGTG	ATAAGTGAAT	CAATTAAGTC	TGCCAAAGAA	AAGAAATATT	48
	CTAAATCAAA	TCCATACCAA	GCAGAAGTAT	TAGCGAATAT	CAATTTAAAT	GGTACCGATT	54
10	CAAATAAAGA	AACACGACAT	ATAGAATTTT	TACTTGATGA	TTTTAGTGAA	TCATATGAAC	60
,,	CAGGAGATTG	TATAGTAGCA	TTACCGCAAA	ACGACCCTGA	ATTGGTTGAA	AAACTAATAT	66
	CCATGTTAGG	TTGGGATCCG	CAATCTCCGG	TGCCAATTAA	TGATCATGGT	GATACAGTTC	72
15	CTATTGTTGA	AGCACTAACA	TCACATTTTG	AATTTACTAA	ATTAACATTG	CCATTATTGA	78
	AAAATGCAGA	TATCTATTTT	GACAATGAAG	AATTATCTGA	ACGTATTCAA	GATGAGTCAT	84
,	GGGCGCGTGA	ATATGTTATA	AATCGGGACT	TTATAGATTT	AATAACAGAT	TTTCCAACTA	90
20	TAGAATTACA	ACCTGAGAAT	ATGTATCAAA	TCCTTAGAAA	ATTACCACCA	AGAGAGTATT	960
	CGATTTCTAG	TAGTTTTATG	GCAACGCcAG	ATGAAGTGCA	TATTACCGTT	GGTACGGTTC	1020
	GTTATCAAGC	ACATGGACGT	GAGAGAAAAG	GTGTATGCTC	GGTTCATTTT	GCTGAGCGAA	1080
25	TTAAACCAGG	CGATATAGTA	CCAATTTATT	TGAAGAAAA	TCCGAACTTC	AAATTTCCGA	1140
	TGAAGCAAGA	TATACCGGTT	ATTATGATTG	GACCAGGTAC	TGrAATTGCT	CCTTTTAGAG	1200
30	CATATTTACA	AGAACGTGAA	GAACTTGGTA	TGACTGGAAA	AACATGGTTG	TTCTTTGGTG	1260
50	ATCAACACCG	TAGTTCTGAC	TTTTTATATG	AAGAAGAAAT	AGAAGAATGG	CTTGAAAATG	1320
	GAAACTTAAC	ACGCGTAGAT	TTAGCATTTT	CAAGAGACCA	AGAACACAAA	GAATATGTAC	1380
35	AGCATCGTAT	AATGGAAGAA	AGTAAACGTT	TCAATGAATG	GATTGAGCAA	GGCGCACAAT	1440
	CTATATTTGT	GGCGATGAAA	AATGTATGGC	GAAAGATGTC	CATCAAGCCA	TTAAAGATGT	1500
	ATTGGTAAAA	GAACGTCATA	TTTCTCAAGA	AGAAGCAGAG	TTATTATTGC	GACAAATGAA	1560
40	ACAACAACAA	CGCTATCAAC	GTGATGTTTA	TTAGCGATTG	GTGTTAAATA	TTTTAAGGTG	1620
	TAATGATGTA	AAAAGATATA	AAGGATGTTG	CTCAACATGA	ATATGCCATT	AATGATAGAT	1680
	TTAACAAATA	AAAATGTCGT	CATAGTTGGT	GGAGGCGTCG	TTGCAAGTCG	TCGGGCACAA	1740
45	ACATTAAATC .	AATACGTTGA	ACATATGACG	GTCATCAGTC	CGACAATCAC	TGAAAAACTT	1800
	CAAAATATGG	TAGATAACGG	TGTCGTCATA	TGGAAAGAAA	AAGAATTTGA	ACCAAGCGAT	1860
	ATTGTAGACG	CGTATCTAGT	TATTGCAGCA	ACCAATGAGC	CACGTGTCAA	TGAAGCGGTA	1920
50	AAAAAAGCCT	TACCTGAGCA	TGCCCTTTTT	AATAATGTTG	GAGATGCATC	AAATGGCAAT	1980
	GTTGTATTTC	СХАСТССАСТ	ACACCGCGAC	እ አ <i>ርነር</i> ሞክ አ <i>ር</i> ሞአ	ምር እርጥር ጥ አጥር	3.3.CTC.3.TCCTT	2040

	TACAGTTCGT	ATATCGACTT	TTTATATACT	TGCCGACAGA	AAATAAAAGI	ACTTGATATA	2160
	ACATATAACG	AAAAGCAACA	GTTACTGTCA	CAAATTGTGT	CACAAGAATA	TTTAAATCAT	2220
5	GACAAACAAG	CTCAATTTTT	AGCGTGGTTG	GATGTAAGAT	AATAATAGCG	GACCGTCTAA	2280
	CCGTCTAAGG	TAAGTCTTCT	TATTTTAACT	TTAACGCTTA	ATCATTGAAA	TTAAGACATG	2340
10	GCCGCTTTG	TGAATAGTCT	AATAATGAAG	GATTTAAGCG	ATAATGATAT	GCGTTTTAAA	2400
	TATGAATATT	ACAATAGAGA	AAAAGATACG	TAGAACAAAC	TTAATAAAAT	AGGTGGATAA	2460
	ATTGAAATCT	GGTTGAAGTC	GTTACTATCA	TAGCGACCTT	TAGCCAGATT	TTTTGTGCAA	2520
15	TAGAAAGCAA	TAATAAAAT	GATAGATCAA	AATGAAATAC	AGGACAGGAT	ATACAAGGAT	2580
	TAGTCATGCC	ATGTTATCAA	GTAGGAAAAT	CAAACTTCAC	TATTGATAGT	TACGCAAAAA	2640
	AGATTTTTTT	GATAAAATGA	GATAACTTAA	АТАТААААА	TTATATTAAT	TATAATATTT	2700
20	AAGTTAAAGA	GGGGGATTAT	GTAAATTGTA	TTAAAAGTGG	AGGGAGAAAA	TAATATGAAT	2760
	AGTGATAATA	TGTGGTTAAC	AGTAATGGGG	CTCATTATTA	TTATTTCAAT	TGTAGGTTTA	2820
	CTCATTGCCA	AAAAGATAAA	TCCAGTTGTA	GGTATGACAA	TCATACCTTG	CTTAGGGGCA	2880
25	ATGATTTTAG	GATATAGTGT	GACAGATTTG	GTTGGATTTT	TTGCTAAAGG	GTTAGATCAA	2940
	GTCATCAACG	TTGTTATTAT	GTTTATCTTT	GCCATTATTT	TCTTTGGCAT	CATGAACGAT	3000
30	AGTGGTTTAT	TCAAGCCGCT	TGTCAAACGC	TTAATATTAA	TGACACGAGG	CAATGTCGTC	3060
	ATTGTCTGTG	CAATGACAGC	TTTAATTGGC	ACAATAGCCC	AATTAGATGG	GGCCGGTGCG	3120
	GTAACATTTT	TGCTTTCTAT	TCCTGCATTA	TTACCTTTAT	ATAAAGCGTT	AAATATGAAT	3180
35	AAATATTTAT	TGATTTTACT	ATTAGCATTA	AGCGCGGCGA	TTATGAACAT	GGTACCTTGG	3240
	GGAGGTCCAA	TGGCTCGTGT	AGCTGCAGTG	TTAAAAGCCA	AAAGTGTCAA	TGAATTATGG	3300
	TATGGATTAA	TACCTATTCA	AATAATAGGT	TTCATTCTTG	TTATGTTGTT	TGCGGTATAT	3360
40	CTTGGATTTA	AAGAACAGAA	ACGTATCAAA	AAAGCAATAG	agagaaatga	ATTACCGCAA	3420
	ACACAAGATA	TAGATGTACA	TAAATTAGTT	GAAGTATATG	AACGAGATCA	AGATGTAAGG	3480
	TTTCCTGTAA	AAGGACGTGC	AAGAACAAAA	TCATGGATAA	aatgggtgaa	TACAGCTTTA	3540
45	ACTTTAGCTG	TTATTCTATC	GATGTTAATA	AATATTGCGC	CACCTGAATT	TGCATTCATG	3600
	ATAGGTGTTY	CGTTGGCACT	TGTTATTAAT	TTTAAATCAG	TGGATGAACA	AATGGAACGA	3660
50	TTAAGAGCgC	ATGCGCCGAA	TGCATTAATG	ATGGCTGCAG	TGATTATTGC	AGCAGGTATG	3720
	TTTTTAGGTG	TACTAAATGA	AACCGGTATG	CTTAAAGCGA	TTGCGACCAA	TTTAATCAAA	3780
	GTGATTCCTG	CAGAAGTAGG	ACCATACTTG	CATATTATTG	TAGGTTTACT	TGGCGTACCA	3840

	ACAGCAGGGC	AATTTGGTGT	ACCGTCTGTA	TCAACAGCT	T ATTCAATGG	r catagggaat	3960
	ATTATAGGTA	CATTTGTCAG	CCCATTTTCA	CCAGCCTTA	r ggttggcaa	T TGGTTTAGCA	4020
5	GAGGCAAACA	TGGGCACGTA	TATTAAGTAT	GCATTCTTT	r ggatttggg	3 ATTCGCTATC	4080
	GTTATGTTAG	TAATTGCAAT	GTTGATGGGC	ATTGTGACGA	A TTTAAGTATO	S AAAAAATAGA	4140
10	AACTATGGTC	ACGTTGCAAA	ATGAAATAAT	AGTTGCATA	A ACATGTCGA	ATGACGGACG	4200
	AATCTTTAAA	CAATTTTAAA	AATTAATGAA	ATAATTGTG	AGAAATATGA	ATTTCACTAA	4260
	ATGTTAATAA	CTTTGTGACG	TTTTAGTTAA	CAGACTAATA	AAAATTTGAA	AATACTATAT	4320
15	ATAGTGGTAT	AACGTAATGA	GTAGACACAA	TATATAGGA	GAAGGGGTAA	AATGAATCAA	4380
	ATCGAAGAAG	CATTAACGGG	TTTGATTTCT	AAAGATCCTG	CTATTGTTAA	CGAAAATGCT	4440
	AACAAAGATA	GTGATACATT	TTCAACAATG	AGAGATTTAA	CAGCAGGTAT	CGTTTCTAAA	4500
20	TCTTACGCAT	TAAATCATTT	ATTACCAAAG	CACGTTGCAG	ATGCACATCA	AAGAGGGGAC	4560
	ATACATTTTC	ACGACTTAGA	TTATCATCCA	TTCCAACCGT	TAACTAACTG	TTGTTTAATA	4620
	GATGCTAAAA	ATATGCTACA	TAATGGATTT	GAAATAGGCA	ACGCGAATGT	AACTTCACCA	4680
25	AAATCAATAC	AAACTGCATC	AGCGCAGCTT	GTACAAAŢTA	TAGCCAATGT	TTCTAGCAGT	4740
	CAATATGGTG	GCTGTAcGGT	TGACCgCGTT	GACGAATTAC	tTAGTACATA	TGCACGACCA	4800
20	TAATGAAGAA	CAACATAGGA	ATATSCGCAA	AGCAATTTGT	CAAAGAATCT	GAAATTGATC	4860
30	GTTATGTTGA	TCAACAAGTC	ACTAAAGACA	TCAATGATGC	GATTGAAAGT	TTAGAATATG	4920
	AAATTAATAC	CTTATATACA	TCTAATGGAC	AGACACCTTT	TGTAACATTA	GGATTCGGCT	4980
35	TAGGTACAGA	TCATTTAAGT	CGCAAAATTC	AACAAGCTAT	CTTAAATACT	CGTATCAAAG	5040
	GCTTAGGAAA	AGACCGCACG	ACAGCGATTT	TCCCGAAACT	TGTATTTTCA	ATTAAAAAAG	5100
	GAACÇAACTT	TAGTCCGCAA	GATCCGAACT	ATGACATTAA	ACAACTAGCA	TTAAAGTGTT	5160
10	CAACGAAACG	TATGTATCCA	GATATTTTAA	ATTATGACAA	ACTCGTAGAA	ATATTAGGTG	5220
	ATTTCAAAGC	GCCAATGGGT	TGTCGTTCAT	TTTTACCAAG	TTGGAAAGAT	GCGGAAGGTC	5280
	ATTTTGAAAA	TAATGGTCGT	TGTAATCTTG	GTGTTGTTAC	ACTTAATTTA	CCTAGAATGG	5340
15	CATTAGAATC	TGCCGGTAAT	ATGACGAAAT	TCTGGGAAAT	CTTTTATGAA	CGTATCGATG	5400
	TGTTACATGA	TGCATTACTT	TATCGTATAA	ATCGTTTGAA	AGATGCTGTA	CCGAATAACG	5460
	CACCGATTTT .	ATATAAAAGT	GGCGCATTTA	ACTATAAATT	AAAAGAAACA	GATGATGTTG	5520
	CTGAGTTATT	TAAAAATAAA	CGTGCAACGA	TTTCAATGGG	CTATATAGGG	TTGTATGAAA	5580
	CAGCTACTGT '	TTTCTATGGT	ССВСВСТССС	משתתתמממ	ACA ACCA A A A	CCAMMONACCO	

	GGTTCAGTAT	TTmCAGTACG	CCGAGTGAAT	CGCTACGGAT	CGTTTTTGTC	GTTTAGACCA	576
	AGAGAGATTT	GGAGATATTA	AAGACATTAC	AGATAAAGGA	TATTATCAAA	ACTCTTTCCA	582
5	TTATGATGTA	CGTAAAGATG	TTACACCTTT	TGAAAAGTTA	GATTTTGAAA	AAGATTATCC	588
	TTATTATGCG	AGTGGTGGTT	TCATTCACTA	TTGTGAGTAT	CCGAAATTGC	AACACAATTT	594
10	GAAAGCACTA	GAAGCGGTAT	GGGACTACTC	TTATGACAAA	GTTGGTTACT	TAGGTACAAA	600
	TATTCCGATT	GATCATTGTT	ATGAATGTGA	TTACGATGGA	GATTTTGAAG	CAACTGAAAA	606
	AGGATTTAAA	TGCCCGAACT	GTGGCAATGA	TAATCCTAAA	ACAGTTGATG	TCGTTAAACG	612
15	AACATGTGGT	TACCTAGGCA	ATCCAGTTCA	ACGTCCAGTA	ATTAAAGGCC	GTCATAAAGA	618
	AATTTGCGCA	CGAGTAAAAC	ATATGAAAGC	GCCTAAAGAA	TGATACTTTT	AGACATTAAA	624
,	CAAGGACAAG	GTTATATTGC	TAAAATAGAA	TCAAATAGCT	TTGTTGACGG	TGAAGGAGTA	630
20	AGATGCAGTG	TTTATGTATC	AGGATGTCCA	TTTAATTGTG	TTGGATGTTA	TAACAAAGCC	6360
	TCACAAAAGT	TCAGATATGG	CGAGAAATAC	ACTGATGAAA	TATTAGCAGA	AATATTAGAT	6420
	GATTGCGATC	ATGATTATAT	ATCTGGGCTA	AGTCTATTAG	GTGGCGAACC	ATTTTGTAAT	6480
25	TTGGATATTA	CATTAAATCT	TGTCAAAGCA	TTTCGAGCAC	GTTTTGGAAA	TACAAAGACA	6540
	ATTTGGGTAT	GGACTGGATT	TTTATATGAA	TATTTAGCAA	ATGATTGTAC	AGAACGTCGA	6600
30	GAGTTATTAT	CATACATTGA	CGTTTTAGTA	GATGGTCTAT	TTATACAACA	CTTATTCAAA	666
50	CCTGATTTAC	CATATAAAGG	TTCTTTAAAT	CAACGCATTA	TAGATGTACA	ACAATCACTC	672
	TCGCATGCGC	GTATGATTGA	ATATATAGTT	AGTTGAATAT	GTATTAGAAG	TCAAGGTAAC	6780
35	ATTCGTTGCC	TTGGCTTCTT	TTTAGGTTAG	GTACATAATT	GAAAGTTAAT	AAAAGCAATT	6840
	CTTTATAAAA	ATATATTGAT	AGAATATGAC	CTAACAATCA	TTTTGATACC	ААТАСТАААА	6900
	GTTĢCATATC	CGTTTTTTAA	AAAAGTTGAA	AGAGAAAAGT	GGTATTTTAG	TGGGAAGGAA	6960
40	GTCTAACTTT	TTGGTAGCGT	TTTACAATAA	ATAAATATTC	GTTAATAACG	TATAAATATT	7020
	CTTAAATGCC	ATTCTAGTAA	AATTTGTTAA	ATTCGTTAAA	TCGTAACTTA	ACACTGTTAT	7080
	TTTAGCGCTA	TTAAGGTTTT	GTTTATTACG	GGAAAAATTA	TATAAATATT	CAATAATTGC	7140
45	CAAGTTTCAA	ATTGTATGAA	ATTTGCATTA	TTATTAAATG	TTAGTTATTG	TCAATTTTGT	7200
	GAATCAATAT	AATTATTACA	TTTTGAGATA	AATCGAAACA	GGATTCATAA	TAATTAAT	7260
50	TAGGGGGAGC	ACAATTGAAA	AAAGAGAAAG	TTATGGACTG	GACGACCTTT	ATAGGGACAG	7320
50	TAGCTGTACT	TCTTTTTGCA	GTTATACCTA	TGATGGCTTT	TCCAAAAGCA	AGTGAAGATA	7380
	TCATCACTCC	הטעדעעבער	СССУППТСТС	ΔΤΤΟΔΔΤΤΟΩ	ттссататат	ጥጥልጥጥጥነልጥር/ር	7440

	TTGGTAAAGC	AAGTGATAAA	CCAGAATTTA	ATACATTTAC	ATGGGCGGCA	ATGCTGTTTT	7560
£	GTGCAGGCAT	AGGCTCTGAT	ATTTTATACT	GGGGCGTTAT	TGAATGGGCT	TTTTACTATC	7620
5	AAGTTCCACC	AAATGGCGCG	AAAAGTATGA	GTGATGAAGC	ACTCCAATAT	GCGACGCAAT	7680
	ATGGTATGTT	CCACTGGGGG	CCAATTGCTT	GGGCTATTTA	TGTTCTACCA	GCATTACCAA	7740
10	TTGGTTATTT	AGTATTTGTT	AAAAAACAAC	CGGTGTATAA	AATTAGTCAA	GCTTGTCGTC	7800
	CGATTTTAAA	AGGTCAAACA	GATAAATTTG	TAGGTAAAGT	TGTAGATATC	TTATTTATCT	7860
	TTGGATTGCT	AGGTGGTGCG	GCAACATCAC	TAGCGTTAGG	TGTGCCATTA	ATTTCTGCAG	7920
15	GCATAGAAAG	ATTAACTGGT	TTAGATGGTA	AAAATATGAT	TTTACGTTCG	GCCATTTTAT	7980
	TAACAATCAC	GGTTATATTT	GCCATTAGTT	CATATACAGG	ATTGAAAAAA	GGTATTCAAA	8040
	AGTTAAGTGA	TATCAACGTT	TGGCTATCCT	TTGTACTTTT	AGCCTTTATA	TTTATTATTG	8100
20	GACCGACTGT	TTTTATTATG	GAAACGACAG	TGACAGGGTT	CGGAAATATG	TTGAGAGATT	8160
	TCTTTCATAT	GGCAACATGG	TTAGAACCAT	TCGGTGGTAT	TAAAGGTCGA	AAAGAAACGA	8220
	ATTTCCCACA	AGACTGGACA	ATATTCTACT	GGTCATGGTG	GTTAGTATAT	GCGCCATTTA	8280
?5	TCGGTTTATT	TATCGCTAGA	ATTTCAAAAG	GTCGACGCCT	TAAAGAAGTC	GTGCTAGGAA	8340
	CAATTATTTA	TGGAACGCTT	GGATGCGTAT	TATTCTTTGG	TATTTTTGGT	AACTATGCTG	8400
30	TGTATTTAÇA	AATTTCTGGA	CAGTTTAATG	TAACACAATA	TTTAAATACA	CATGGTACAG	8460
	AGGCAACCAT	TATTGAAGTG	GTGCATCATT	TACCATTCCC	ATCATTGATG	ATTGTACTAT	8520
	TCTTAGTATC	TGCTTTCTTA	TTCTTAGCAA	CAACATTTGA	TTCGGGTTCA	TATATTTTAG	8580
35	CGGCAGCATC	TCAGAAAAA	GTGGTAGGCG	AACCATTACG	TGCCAATCGT	TTATTCTGGG	8640
	CATTTGCATT	GTGCTTATTG	CCATTTTCAT	TGATGCTAGT	TGGTGGTGAA	CGTGCATTAG	8700
	AAGŢĀTTGAA	AACTGCTTCA	ATACTGGCAA	GTGTGCCATT	AATTGTTATT	TTTATTTTCA	8760
10	TGATGATATC	ATTTTTAATC	ATTTTAGGGC	GCGATAGAAT	TAAACTTGAA	ACGCGTGCTG	8820
	AAAAATTAAA	AGAAGTTGAA	CGTCGTTCAT	TGCGAATCGT	TCAAGTATCa	GAAGAAGAAC	8880
	AAGACGATAA	TTTATAATTC	AAAGCGGGTC	TGGGACGACG	AAATGaATTT	TGTGAAAATA	8940
	TCATTTCTGT	TCCaTTCCCC	TTTTTTTAGT	AGCATTGTAG	GATGAACTTT	TAGGTTTTCA	9000
•	TTAATGTTGT	ACTAAAAGAT	TTAATTTTTT	AGTGCTCCAA	GTACTTATTT	ATTGTATGAA	9060
0	GCATATTCTA	AATCGAAGTT	TGAAAGACTC	TCATTGATTA	TTAAATTAAA	TAAAGGGTAT	9120
	GCGTATGTAC	AATTCAAATT	AATCGAAGGA	TGAAATAAAA	TGACTAATCA	TAAAAAT	9180
	AAACAGTCCA	AATTACATGA	CAGTTTAGAA	тссатсасаа	מדמידיםמממ	TCCCACACCT	9240

	ACAGAATATT	GTTATCTATC	ATTCCGGACA	CTTAGGTGAC	TCCCAACAAG	ACATTGCATC	9360
_	ATTAGGTGGT	GTTTCAAAAG	TATTGATGAA	TCATGATCAT	GAATCTATAG	GAGGTTCTAA	9420
5	TCAAGTTGAA	GCCCCTTACT	TTATACATGA	AAATGATGTG	GCTGCACTGA	AACATAAGAT	9480
	TTCTGTTCAA	AAACAATTTA	GTAATCGTGT	AATGTTGGAT	AAGGATTTAG	AAGTTATTCC	9540
10	CGCGCCTGGA	CATACACCAG	GGACGACACT	ATTTTTATGG	GATGATGGTC	ATCACCGTTA	9600
	CTTATTTACT	GGAGATTTTA	TATGTTTTGA	AGGGAAGAGA	TGGCGTACAG	TTATATTAGG	9660
	TTCAAGTGAT	AGAGAAAAAT	CTATTCAAAG	TTTAGAGATG	GTTAAAGAAT	TAGATTTTGA	9720
15	TGTACTTGTA	CCTTGGGTTA	CTATCAAAGA	TGAACCGTTA	GTTTATTTTG	TAGAAAATGA	9780
	ATATGAAAAA	CGTGAACAAA	TACAAAATAT	TATTGATAGA	GTACGTGAGG	GCGAGAATAG	9840
	CTAATTGAAA	TATATTGGCG	AAgCAATGTA	ACGAATCTAA	GAAAGCCCTA	GAAAATACCT	9900
20	CCATAATTGA	TTGTCATATA	AAACAAAAAC	GGTAATTTCT	ATTTATTGAG	ATAGAAATTA	9960
	CCGTTTATTT	CGTGGACCTA	TTGCATTGTT	TTTATCATGC	ATAATCATCA	TTGTCGTTGT	10020
	TTGAGTCAAT	TTTAATTTTC	AGAATCAGAA	GGCTGTTCTG	GAATTGGGAA	ATATTTGAAA	10080
25	ATTTCACCGC	TTTCAATCGC	TTCGGTTAAC	TGTTCTAACC	ATTCGTAATA	AACATGTGTA	10140
	TGATCAAGCT	GAGCTTTAAT	TTTTTGTGCC	TCTTGTGTTT	CAGCTTCAGT	TAAATCACTG	10200
30	CTTTCAAGTA	ATGGATTGAT	AATAGCTTGA	GCATCTTTTA	CTGCTTCGAC	ATTGATGTCA	10260
50	ATTTCACGCT	GGAATTTTTT	agtgaaaaag	TTTCGGÄAAA	AGATGAAAAA	GTCTTTCTCG	10320
	GCGATAAAAT	GTTGTTTGCG	GCTTCCTCTC	GTAAATTGTT	GTTTAACAAT	ATCAAATTCC	10380
35	TGCAATTTCT	TAACGCCAGC	ACTCATACTT	GGTTTGCTCA	TTTGCAATTG _.	ATGACGCATT	10440
	TCATCAAGCG	TCATACTGCC	TTCAAACACC	ATTGTGCCAT	ATAAGTTTCC	TACACTTCTA	10500
	TTAGTGCCAT	ACAAATCCAT	TGTCTGTCCA	ATTGAATTAA	TTACAATATC	TTTTGCTTGT	10560
40	TCTAATTGTT	GCTGTTTGTT	CTGAGAACGA	GTCATCATTG	CACCTCCGTA	CATCATTTTG	10620
	GTCACGTTAA	AATAAATACT	AATACATTAT	AAAACCTTTT	CTAAAAAAAG	ACATTAAAAA	10680
	TATTTAAAGC	ATTAAAGTTA	AATGTTTCGT	TAAATAAAA	TCTAACGAAC	TTACAAAACT	10740
45	TAATTCTTGA	GTTGTTTTGT	AAATTGACAC	ATTTTTCATT	TCTATGCTAA	CATAAGTnTG	10800
	TAAAATTcGT	TAAATAAAAA	TTTAACAAAC	TTAACGGrGG	TTGTTGAAkG	Gracttttaa	10860
	aACATTTATC	TCAGCGTCAA	TATATTGATG	GTGAGTGGGT	TGAAAGCGCG	ATAAAAATA	10920
50	CAAGAGATAT	TATCAATCCT	TACAATCAAG	AAGTGATATT	TACGGTTTCT	GAAGGGACAA	10980
	AAGAGGATGC	AGAACGTGCA	አጥር ተሞኒ አርርጥር	CANCACCTCC	CURTAINCY CONCAIN	<i>ርርሞር</i> እ አጥርርም	77040

	AACATCgCGA	AgCgTTAGCA	CGATTAGAAA	CATTAGATAC	TGGAAAAACG	TTAGAAGAAT	1116
5	CATATGCAGA	TATGGATGAT	ATTCATAATG	TGTTTATGTA	TTTTGCTGGA	TTAGCAGATA	1122
3	AAGACGGTGG	CGAAATGATT	GATTCACCAA	TTCCAGATAC	AGAAAGCAAA	ATTGTTAAAG	1128
	AACCAGTAGG	TGTAGTTACA	CAAATTACAC	CTTGGAATTA	TCCGTTATTA	CAAGCATCAT	1134
10	GGAAAATTGC	GCCAGCGCTT	GCTACGGGTT	GTTCACTAGT	TATGAAACCA	AGTGAAATTA	1140
	CACCATTAAC	AACAATACGT	GTTTTTGAAT	TAATGGAAGA	AGTTGGTTTC	CCTAAAGGAA	1146
	CAATTAATCT	TATTCTAGGT	GCAGGTTCTG	AAGTTGGTGA	CGTAATGTCA	GGTCATAAAG	1152
15	AGGTTGACCT	TGTATCATTT	ACAGGTGGCA	TTGAGACTGG	TAAGCATATT	ATGAAAAATG	1158
	CTGCTAATAA	TGTTACGAAT	ATTGCCŤTGG	AACTTGGCGG	TAAAAATCCA	AACATTATCT	1164
	TTGATGATGC	TGATTTTGAA	TTGGCAGTAG	ACCAAGCGTT	AAATGGTGGA	TATTTCCATG	1170
20	CAGGTCAAGT	TTGTTCAGCA	GGATCAAGAA	TATTAGTACA	AAACAGTATT	AAAGACAAAT	1176
	TTGAGCAAGC	ACTTATTGAT	CGCGTGAAAA	AAATCAAATT	AGGTAATGGT	TTTGATGCTG	1182
	ATACTGAAAT	GGGACCAGTG	ATTTCAACAG	AACATCGTAA	TAAGATCGAA	TCTTATATGG	11886
?5	ATGTAGCTAA	AGCAGAAGGC	GCAACAATTG	CTGTTGGTGG	TAAACGTCCA	GATAGAGATG	11940
	ATTTAAAAGA	TGGTCTATTC	TTCGAGCCAA	CAGTCATTAC	AAATTGTGAT	ACGTCAATGC	12000
30	GTATTGTACA	AGAAGAGGTT	TTCGGACCTG	TCGTTACTGT	AGAAGGCTTT	GAAACTGAAC	12060
	AAGAAGCGAT	TCAATTAGCG	AATGATTCTA	TATATGGTTT	AGCAGGTGCT	GTATTTTCTA	12120
	AAGATATTGG	AAAAGCACAA	CGCGTTGCTA	ACAAGTTGAA	ACTTGGAACG	GTGTGGATTA	12180
35	ATGATTTCCA	TCCATATTTT	GCACAAGCGC	CATGGGGTGG	ATACAAACAA	TCAGGTATCG	12240
	GTAGAGAATT	AGGCAAAGAA	GGCTTAGAAG	AGTACCTTGT	TTCAAAACAC	ATTTTAACAA	12300
	ATAÇÃAATCC	ACAATTAGTG	AATTGGŤTTA	GCAAATAAAA	attagataag	GTGAGTGCCA	12360
10	TTGTAAGAAC	ACAAGACACT	CACTTTGTTT	TGTATAAGTG	GCGAAATGTT	GATTGATAAT	12420
	TTGGACTAAA	CGCAAAATGA	ATCATAGATT	ATTTCATTAC	TGTTAGTAAC	AATCGTAAAA	12480
	GGAAAAGCGA	GTGTTTTGGT	TAGCTAAGTT	TAGCAATTCA	ACGATAACCA	ATCAGCCACT	12540
15	AACAAATATT	TCATGCAATA	CTCACTTTGA	AATACAACAA	ACTTTGGAGG	TCATAACGAT	12600
	GAGTAACAAA	AACAAATCAT	ATGATTATGT	CATCATTGGA	GGAGGCAGTG	CAGGTTCTGT	12660
·a	ACTAGGTAAT	CGTCTGAGTG	AAGATAAAGA	TAAAGAAGTC	TTAGTATTAG	AAGCGGGTCG	12720
	CAGTGATTAT	TTTTGGGATT	TATTTATCCA	AATGCCTGCT	GCGTTAATGT	TCCCTTCAGG	12780
	CAATAAATTT	TACGATTGGA	тттаттсаас	асатсаасаа :	ССАСАТАТСС	CCCCTCCTA A	12040

TCAACGTGGT AATCCAATGG ACTATGAAGG CTGGGCAGAA CCAGAAGGTA TGGAAACTTG 12960 GGATTTTGCG CACTGTTTAC CGTATTTTAA AAAATTAGAA AAAACATACG GTGCAGCGCC 13020 TTATGATAAA TTTAGAGGCC ATGATGGACC AATTAAGTTA AAACGAGGGC CAGCAACGAA 13080 TCCTTTATTC CAGTCATTCT TTGATGCAGG TGTTGAAGCA GGCTATCATA AAACACCTGA 13140 TGTGAATGGA TTTAGACAAG AAGGTTTTGG ACCGTTCGAT AGTCAAGTAC ATCGTGGTCG 13200 CCGAATGTCA GCTTCAAGAG CATATTTACA TCCAGCGATG AAGCGTAAAA ACTTAACCGT 13260 TGAAACACGT GCCTTTGTAA CTGAAATTCA TTATGAAGGT AGAAGAGCAA CTGGTGTTAC 13320 GTATAAGAAA AATGGCAAAC TACATACCAT CGATGCTAAT GAAGTCATTT TGTCTGGTGG 13380 GGCATTCAAT ACGCCACAAT TACTACAATT ATCTGGTATC GGTGATTCAG AGTTCCTAAA 13440 ATCAAAAGGC ATTGAGCCAC GTGTTCATTT ACCTGGTGTG GGTGAAAACT TTGAAGATCA 13500 CTTAGAGG 13508

(2) INFORMATION FOR SEQ ID NO: 121:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7646 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30

35

40

45

50

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

GTAAGTATTG TCTTGATTTC CTAATAAAGT TATATCTTGT AATTCATCTT GTTGACGGCC 60 ATGTGCCATA TAAAGCGCTC CTTTAAATTT ATTTTTTAT TATTTTGGCG TCTCGGCGTG 120 CTTTTTCAAA CATGTAATAA CTTGCACCGA TAATAACGAC GTAACCTAAT GTTGCATAGA 180 AATCTGGAGA TTCTCCGAAT AGAATAAATC CAAGTATTGC TGTGAAAATT ATAGATGCAT 240 ACGTAAAAAT AGAAATATCT TTTGCTGCTG CAAAACTATA TGCTAAAGTA ACACCAATTT 300 GACCCACAGC GGCAGCTAAG CCAGCCCCTA ATAGATAAAG TATTTGCATC TGACTCATTG 360 GTTCATAAGT ATATGCAGTG AAAGGTATTA AAACGATGAC AGAAAATAAG GAGAAGTAAA 420 ATACTATAGT ATATGGTGCT TYTCTTGTAC TAAGTGCTCG AACACATGTA TATGCTGATG 480 CTGCAAAAAT ACCTGAGAAT AAGCCAGCTA ATGATGGAAT CATAGATGAT GAAAATTCAG 540 GTTTCACTAT TAANAGCAAC CTAAAATAGC AATTATCATT GCTGTAATTT GATACTTCCT 600 TACCTTTCA TGLAAGAAA CAATGCTTAA TAAAATCGTC CAGAAAGGAT TGAGTTTCAT 660 TAATGAATCG GCATCACTAA GTACCATATG ATCAATGGCA TAAATATTTA ACAATACACC 720

	TGGCTGATGG	TATTTATATA	TAAAAAATAA	TGGAATAAAC	ATTGCTACTA	AGTTTCGTGC	84
5	TAATGATTTT	TGAAAAACAG	GAAGGTCACC	TGCAAGTCTG	AAAAACACTG	ACATAAAACT	90
	GAAACCAATA	GCCGAAATTA	AAATGGCAAT	GATACCTTTT	ACTTTAGGAT	TCAATTTTAT	. 96
	CGCCTCTTTT	ATATAAAATT	AACGTATTTA	TATTAGCATA	AAACAACATG	TTGTGCATAA	102
10	ATAGTTGAAA	TTTACTATAA	AAAGACTATA	ATAGACTGTA	GCGAACAAAC	GTTCTGTGTT	108
	TATTTGTCGG	AATAATAGGG	CATTACACTT	TTATGAATGT	TTGTGTTATT	ACATAAAACA	114
	AATATCAATT	CAGTATCAAG	CTAATAAGCT	TTTTCTTGAT	TTCTGTTGAT	ACAATTGAGA	120
15	TTGACACAGA	AAAAAAATTT	TCAAGTGATA	TCTACTAAAA	AATTTTTTTA	AATTTGTTCA	126
	AGTTTTTCTA	ATTTAGTATT	GGTGCCTAGT	TGGAACGTTT	TACGAACATT	CGATTAGAAA	132
	ATGGCACTTT	AAATCATAGT	GTGTCTTATG	TATAATGAAA	CACATAATAT	AGTGTTGGTG	138
20	AAACGAAAAA	gacacaatat	CTTGTGTTTT	GTATGCAAAT	GCTTTATTTA	TGAAGAAATT	144
	ACATTTAAAA	GTAATTTAAC	ACAGAAATTT	AATAGTTATT	ATCAATTAAT	AGTCATATTT	150
	TTAGAAAATG	TACTGAGCAA	ATGGAAGATA	TCCAATGATG	TAAACACTAC	ATATAGTGAT	156
25	TTTTATACAT	TCAACCCATA	TAAGCTACTA	TTTTCTCAAA	TATAAATCTA	TGCAATTGGT	162
	TTACATTTGA	GAAAATAAGT	AGCTTCATTA	TAGTTAATAC	AATGCTGAGA	TAACCATAGT	168
30	AACCATGTTG	TTAAAGCATT	TTTTAATTGG	AATGACTACT	TTATTTAAAA	GGGTTGAAGA	1740
	AAGAAGGTGA	TCCAATGAAA	TTATATATA	TTTCATTTAC	TGGAAATGTC	CGTCGTTTTA	1800
	TTAAGAGAAC	AGAACTTGAA	AATACGCTTG	AGATTACAGC	AGAAAATTGT	ATGGAACCAG	1860
35	TTCATGAACC	GTTTATTATC	GTTACTGGCA	CTATTGGATT	TGGAGAAGTA	CCAGAACCCG	1920
	TTCAATCTTT	TTTAGAAGTT	AATCATCAAT	ACATCAGAGG	TGTGGCAGCT	AGCGGTAATC	1980
	GAAATTGGGG	ACTAAATTTC	GCAAAAGCGG	GTCGCACGAT	ATCAGAAGAG	TATAATGTCC	2040
10	CTTTATTAAT	GAAGTTTGAG	TTACATGGAA	AAAACAAAGA	CGTTATTGAA	TTTAAGAACA	2100
	AGGTGGGTAA	TTTTAATGAA	AACCATGGAA	GAGAAAAAGT	ACAATCATAT	TGAATTAAAT	2160
	AATGAGGTCA	CTAAACGAaG	AGAAGATGGA	TTCTTTAGTT	TAGAAAAAGA	CCAAGAAGCT	2220
15	TTAGTAGCTT	ATTTAGAAGA	AGTAAAAGAC	AAAACAATCT	TCTTCGACAC	TGAAATCGAG	2280
	CGTTTACGTT	ATTTAGTAGA	CAACGATTTT	TATTTCAATG	TGTTTGATAT	TTATAGTGAA	2340
50	GCGGATCTAA	TTGAAATCAC	TGATTATGCA	AAATCAATCC	CGTTTAATTT	TGCAAGTTAT	2400
	ATGTCAGCTA	GTAAATTTTT	CAAAGATTAC	GCTTTGAAAA	CAAATGATAA	AAGTCAATAC	2460
	ттасаасаст	ATABTCABCA	CCTTCCCNTT	CONTOCONORIA	3.CCT3.CC3.3.3	macma ama a a	2522

	ACATTTTTAA	ACGCAGGCCG	TGCGCGTCGT	GGTGAGCTAG	TGTCATGTTT	CTTATTAGAA	2640
	GTGGATGACA	GCTTAAATTC	AATTAACTTT	ATTGATTCAA	CTGCAAAACA	ATTAAGTAAA	2700
5	ATTGGGGGCG	GCGTTGCAAT	TAACTTATCT	AAATTGCGTG	CACGTGGTGA	AGCAATTAAA	2760
	GGAATTAAAG	GCGTAGCGAA	AGGCGTTTTA	CCTATTGCTA	AGTCACTTGA	AGGTGGCTTT	2820
10	AGCTATGCAG	ATCAACTTGG	TCAACGCCCT	GGTGCTGGTG	CTGTGTACTT	AAATATCTTC	2880
	CATTATGATG	TAGAAGAATT	TTTAGATACT	AAAAAAGTAA	ATGCGGATGA	AGATTTACGT	2940
	TTATCTACAA	TATCAACTGG	TTTAATTGTT	CCATCTAAAT	TCTTCGATTT	AGCTAAAGAA	3000
15	GGTAAGGACT	TTTATATGTT	TGCACCTCAT	ACAGTTAAAG	AAGAATATGG	TGTGACATTA	3060
	GACGATATCG	ATTTAGAAAA	ATATTATGAT	GACATGGTTG	CAAACCCAAA	TGTTGAGAAA	3120
	AAGAAAAAGA	ATGCGCGTGA	AATGTTGAAT	TTAATTGCGC	AAACACAATT	ACAATCAGGT	3180
20	TATCCATATT	TAATGTTTAA	AGATAATGCT	AACAGAGTGC	ATCCGAATTC	AAACATTGGA	3240
	CAAATTAAAA	TGAGTAACTT	ATGTACGGAA	ATTTTCCAAC	TACAAGAAAC	TTCAATTATT	3300
	AATGACTATG	GTATTGAAGA	CGAAATTAAA	CGTGATATTT	CTTGTAACTT	GGGCTCATTA	3360
25	AATATTGTTA	ATGTAATGGA	AAGCGGAAAA	TTCAGAGATT	CAGTTCACTC	TGGTATGGAC	3420
	GCATTAACTG	TTGTGAGTGA	TGTAGCAAAT	ATTCAAAATG	CACCAGGAGT	TAGAAAAGCT	3480
30	AACAGTGAAT	TACATTCAGT	TGGTCTTGGT	GTGATGAATT	TACACGGTTA	CCTAGCAAAA	3540
	AATAAAATTG	GTTATGAGTC	AGAAGAAGCA	AAAGATTTTG	CAAATATCTT	CTTTATGATG	3600
	ATGAATTTCT	ACTCAATCGA	ACGTTCAATG	GAAATCGCTA	AAGAGCGTGG	TATCAAATAT	3660
35	CAAGACTTTG	AAAAGTCTGA	TTATGCTAAT	GGCAAATATT	TCGAGTTCTA	TACAACTCAA	3720
	GAATTTGAAC	CTCAATTCGA	AAAAGTACGT	GAATTATTCG	ATGGTATGGC	TATTCCTACT	3780
	TCTGAGGATT	GGAAGAAACT	ACAACAAGAT	GTTGAACAAT	ATGGTTTATA	TCATGCATAT	3840
40	AGATTAGCAA	TTGCTCCAAC	ACAAAGTATT	TCTTATGTTC	AAAATGCAAC	AAGTTCTGTA	3900
	ATGCCAATCG	TTGACCAAAT	TGAACGTCGT	ACTTATGGTA	ATGCGGAAAC	ATTTTACCCT	3960
	ATGCCATTCT	TATCACCACA	AACAATGTGG	TACTACAAAT	CAGCATTCAA	TACTGATCAG	4020
45	ATGAAATTAA	TCGATTTAAT	TGCGACAATT	CAAACGCATA	TTGACCAAGG	TATCTCAACG	4080
	ATCCTTTATG	TTAATTCTGA	AATTTCTACA	CGTGAGTTAG	CAAGATTATA	TGTATATGCG	4140
	CACTATAAAG	GATTAAAATC	ACTTTACTAT	ACTAGAAATA	AATTATTAAG	TGTAGAAGAA	4200
50	TGTACAAGTT	GTTCTATCTA	ACAATTAAAT	GTTGAAAATG	ACAAACAGCT	AATCATCTGG	4260
	ТСТСААТТАС	CAGATGATTA	САСТССТАТС	ጥርጥርጥልጥጥፕር	בידי מידים מכיד	እርጥ እ <i>ር</i> እጥጥ እ	4220

	ATGTTTTGGA	GACAAAATAT	ATCTCAAATG	TGGGTTGAAA	CAGAATTTAA	AGTATCAAAA	4440
	GACATTGCAA	GTTGGAAGAC	TTTATCTGAA	GCTGAACAAG	ACACATTTAA	AAAAGCATTA	4500
5	GCTGGTTTAA	CAGGCTTAGA	TACACATCAA	GCAGATGATG	GCATGCCTTT	AGTTATGCTA	4560
	CATACGACTG	ACTTAAGGAA	AAAAGCAGTT	TATTCATTTA	TGGCGATGAT	GGAGCAAATA	4620
10	CACGCGAAAA	GCTATTCACA	TATTTTCACA	ACACTATTAC	CATCTAGTGA	AACAAACTAC	4680
	CTATTAGATG	AATGGGTTTT	AGAGGAACCC	CATTTAAAAT	ATAAATCTGA	TAAAATTGTT	4740
	GCTAATTATC	ACAAACTTTG	GGGTAAAGAA	GCTTCGATAT	ACGACCAATA	TATGGCCAGA	4800
15	GTTACGAGTG	TATTTTTAGA	AACATTCTTA	TTCTTCTCAG	GTTTCTATTA	TCCACTATAT	4860
	CTTGCTGGTC	AAGGGAAAAT	GACGACATCA	GGTGAAATCA	TTCGTAAAAT	TCTTTTAGAT	4920
	GAATCTATTC	ATGGTGTATT	TACCGGTTTA	GATGCACAGC	ATTTACGAAA	TGAACTATCT	4980
20	GAAAGTGAGA	AACAAAAAGC	AGATCAAGAA	ATGTATAAAT	TGCTAAATGA	CTTGTATTTA	5040
	AATGAAGAGT	CATACACAAA	AATGTTATAC	GATGATCTTG	GAATCACTGA	AGATGTGCTA	5100
	AACTATGTTA	AATATAATGG	AAACAAAGCA	CTTTCAAACT	TAGGCTTTGa	ACCTTATTTT	5160
25	GAGGAACGTG	AATTTAACCC	AATCATTGAG	AATGCCTTAG	ATACAACAAC	TAAAAACCAT	5220
	GACTTCTTCT	CAGTAAAAGG	TGATGGTTAT	GTATTAGCAT	TAAACGTAGA	AGCATTACAA	5280
30	GATGATGACT	TTGTATTTGA	CAACAAATAA	CAATTAAATT	AAAAGACCTT	CACATGTAAA	5340
	GGGAAATAGC	GATTCGTTTC	GTCTTGTCTC	CTACATGTTG	AAGGTCTTTT	TTTATGTGTA	5400
	TCTAACTCAT	TATGAGTCTG	AGTAAGAAAT	CAATGCTCTA	AGATGTACAA	TGCTATTTAT	5460
35	ATTGGCAGTA	GTTGGCGGGG	CCCCAACACA	GAAGCAGGCG	GAAAGTCAGC	TAACAATATT	5520
	GTGCAAGTTG	GCGGGGCCCC	AACATAGAAG	CAGGCGGAAA	GTÇAGCTAAC	AATAATGTGC	5580
	AAGTTGGCGG	GGCCCCAACA	TAAAAGCAGG	CGGAAAGTCA	GCTAACAATA	TTGTGCAAGT	5640
40	TCGGgCGGGG	CCCCAACATA	AAGAAAAACT	TTTTCCTTTA	GAAATTATCA	CTTCCaCaTG	5700
	AGTTTTACTC	ATGTATTCCT	ATTTTTAAGT	ACACATTAGC	TGAGGCTAAT	GTTAAGAACC	5760
	ACTACTTAAT	CAATCATTAG	TAGTTTTTAT	CATTTCCACT	ATTCCCaGAC	ATCAAAATCT	5820
15	TAAGTGTTCT .	ATTTTACTTT	AAGTAAACAA	AATACACATT	CCGAAAAATT	AAATTTCAGT	5880
	TTAATTGCAA .					-	5940
50	TCAAAAAACG			•			6000
	AGGGAGAAAA	ATTTGTAATG	AAGTATTTAT '	TAAAGGGAAA	TATTTTGCTT	CTATTACTAA	6060
	TATTCTTCAC	באיייייית מייית מ	TTCTTCATAC	CTCTC SCTC S	3 Cm3 mc3 3 mm		

	GTATTTTAAT	TGCTGGAAGT	TCGTTGGCTT	TAGCAGGCTT	GATAATGCAA	CAAATGATGC	6240
	AAAATAAGTT	TGTTAGTCCG	ACTACAGCTG	GAACGATGGA	ATGGGCTAÄA	CTAGGTATTT	6300
5	TAATTGCTTT	ATTGTTCTTT	CCAACCGGTC	ATATTTTATT	AAAACTAGTA	TTTGCTGTTA	6360
	TTTGCAGTAT	TTGCGGTACG	TTTTTATTTG	TTAAAATCAT	TGATTTTATA	AAAGTGAAAG	6420
10	ATGTCATTTT	TGTACCGCTT	TTAGGAATTA	TGATGGGTGG	GATTGTTGCA	AGTTCACAAC	6480
	CTTCATCTCA	TTGCGCACGA	ATGCTGTTCA	AAGCATTGGT	AACTGGCTTA	ACGGGAACTT	6540
	TGCCATTATC	ACAAGTGGAC	GCTATGAAAT	TTTATATTTA	AGTATTCCTC	TTTTAGCATT	6600
15	GACATATCTT	TTTGCTAATC	ATTTCACGAT	TGTAGGAATG	GGTAAAGACT	TTACTAATAA	6660
,	TTTAGGTTTG	AGTTACGAAA	AATTAATTAA	CATCGCATTG	TTTATTACTG	CAACTATTAC	6720
	AGCATTGGTA	GTGGTGACTG	TTGGAACATT	ACCGTTCTTA	GGACTAGTAA	TACCAAATAT	6780
20	TATTTCAATT	TATCGAGGTG	ATCATTTGAA	AAATGCTATC	CCTCATACGA	TGATGTTAGG	6840
	TGCCATCTTT	GTATTATTTT	CTGATATAGT	TGGCAGAATT	GTTGTTTATC	CATATGAAAT	6900
	AAATATTGGT	TTAACAATAG	GTGTATTTGG	AACAATCATT	TTCCTTATCT	TGCTTATGAA	6960
25	AGGTAGGAAA	AATTATGCGC	aACAATAATA	TAATAAAAA	GCTTTTAATT	GCAGTAACGT	7020
	TATTAATTAG	TATGCTGTAC	TTATTTGTAG	GTATTGATTT	TGAAATATTT	GAATATCAAT	7080
30	TTTCAAGTCG	TTTAAGAAAG	TTCATATTAA	TTATTTTAGT	AGGTGCTGCC	ATTGCAACTT	7140
	CAGTGGTGAT	TTTTCAAGCG	ATTACAAATA	ACCGTCTATT	GACACCATCA	ATAATGGGGT	7200
	TAGATGCAGT	TTATTTATTT	ATCAAAGTAT	TGCCAGTCTT	TTTATTTGGA	ATTCAATCGG	7260
35	TATGGGTTAC	TAATGTATAT	TTGAACTTTA	TATTAACACT	TATAACGATG	GTGTTATTCG	7320
	CACTAATCCT	ATTCCAAGGT	ATCTTTAAAA	TCGGACATTT	TTCAATTTAT	TTTATCTTAC	7380
	TTATTGGTGT	CCTTTTAGGA	ACATTTTTTA	GAAGCATAAC	AGGTTTTATT	CAACTGATTA	7440
40	TGGATCCTGA	GTCATTTTTA	GCAATACAAA	GTAGTATGTT	TGCTAATTTT	AATGCTTCTA	7500
	ATTCGAATTT	AGTTACTTTC	TCAGCAGTGC	TATTAGTAAT	CTTATTAGTC	ATTACAATTT	7560
	TACTATTGCC	TTATTTAGAŢ	GTATTGCTTT	TAGGTCGTGC	TGAAGCAATT	AATCTTGGGA	762
45	TATCGTATGA	AAAATTAACG	CGAATT				764

(2) INFORMATION FOR SEQ ID NO: 122:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1194 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	122:
	<u> </u>					

	ATGAATATAT	TTnnAAATAA	ATTATTATGG	ATTGCACCAA	TnGCCACTAT	GATTATCTTG	60
5	GTAATCTTTT	CTTTAGCTTT	TTATCCTGCA	TATAATCCTA	AACCAAAAGA	TTTACCAATT	120
	GGTATATTAA	ACGAGGATAA	AGGTACAACG	ATTCAAGATA	AAAATGTTAA	CATTGGTAAA	180
10	AAATTAGAGG	ATAAATTATT	AGATAGTGAT	ТСТААТААА	TTAAATGGGT	TAAGGTTGAT.	240
	AGTGAAAAAG	ACCTTGAAAA	AGATTTGAAA	GATCAAAAAA	TCTTTGGAGT	AGCTATTATT	300
	GATAAAGACT	TTTCAAAAGA	TGCTATGAGT	AAAACACAAA	AAGTAGTTAT	GGATAGTAAA	360
15	AAAGAAGAAA	TGCAACAAAA	AGTTGCTTCA	GGTGAAATTC	CGCCACAAGT	GGTTCAACAA	420
	ATGAAACAAA	AAATGGGGAA	TCAACAAGTA	GAGGTTAAGC	AGGCTAAATT	TAAAACGATT	480
	GTAAGTGAAG	GATCAAGCTT	ACAAGGTTCA	CAAATTGCAT	CAGCTGTGTT	AACTGGTATG	540
20	GGTGATAATA	TTAATGCTCA	AATTACGAAG	CAAAGTTTGG	AAACATTAAC	GAGTCAAAAT	600
	GTTAAAGTCA	ATGCCGCGGA	CATCAATGGT	TTGACGAATC	CAGTAAAAGT	GGATAATGAA	660
	AAACTTAATA	AAGTTAAAGA	TCACCAAGCA	GGTGGTAATG	CACCATTCCT	AATGTTTATG	720
25	CCAATTTGGA	TAGGTTCAAT	CGTAACGTCT	ATCTTATTGT	TCTTTGCATT	TAGAACTAGT	780
	AACAATATCG	TCGTGCAACA	TCGTATCaTT	GCtTCAATTG	GACAGATGAT	ATTTGCAGTT	840
	GTTGCAGCAT	TTGCAGGTAG	CTTTGTTTAT	ATTTATTTCA	TGCAAGGCGT	TCAAAGATTT	900
30	GATTTTGACC	ATCCAAATCG	TATCGCAATT	TTTGTAGCAT	TTGCGATTCT	TGGTTTCGTG	960
	GGCCTTATTT	TAGGTGTTAT	GGTATGGCTA	GGTATGAAGT	CAGTTCCAAT	TTTCTTCATT	1020
35	TTAATGTTCT	TTAGTATGCA	ACTTGTAACG	TTACCTAAAC	AAATGTTGCC	TGAAAGTTAT	1080
-	CAAAAATATG	TATATGATTG	GAATCCATTC	ACACACTATG	CAACAAGTGT	AAGAGACTAT	1140
	TATACTTGAA	TCATCATATT	GAATTAAATA	GTACAATGTG	GATGTTTATA	GGGT	1194

(2) INFORMATION FOR SEQ ID NO: 123:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 558 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

50	GACCGACCTA	TACATCCGTA	TAAGTATTTC	TTGATATAAG	TCTTCTAAAT	CATAATGATT	6
	AAATCCAAAT	GTTTTGATGC	GTCGAATAAT	TAATGGTTGT	AGATCCATTA	CTAACTTTTC	12

	GTATTTCAAA TATTAAACTA ACCCCTTCTA TCTAAAATTT AAGGTTAGTT TAATATTGTT	240
	ACATTCAAAA TITCAAGATG ACGGAAATGT CATTTCTTAT GATGTCCTCT TCGTATTTTT	300
5	TCAAATTCTG CAAGGATTTC AGAAGATAAC GGAATTCGAG TTCTTGGCTT GTTTTCACTT	360
	ATATCATCTA ATGATTTACT CACATCAATT TCATTTTCTT TTAAATCTCT CCACATTTCG	420
	CGAGATGATA TTCTATATGC ACCTGATCCA AAGATAGCAT GTTGCTCACT CATATCACTT	480
10	GTTACAACTG TAATATGCTT AGLATGCTTG LCATAAAGLT CATAAACCAT AACGGTTCTA	540
	ATGGAAACCA ATCAGCTG	558
15 20	(2) INFORMATION FOR SEQ ID NO: 124: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7762 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·.
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
25	GCTTCAGACA THTGATGATA TAATCTCTCA TCATCGATTA ATTCTTTTGC AGCTTGATAC	60
	ACATHTTGCT TATTTGTTCC AATGACTTTT AATGTGCCAG CTTCAACACC TTCAGGACGT	120
	TCTGTAACAC TTCGCCAAAA CTAAAACTGG CTTATTAAAT GATGGCGCTT CTTCCTGAAT	180
30	TCCACCTGAA TCTGTCAAAA TAAAATAAGA TTTTnTAGCA AAATTATGGA AATCTATACG	240
	TCCAAAGGTT CAATCAATTC AATTCTGTCA TGACTACCTA AAATCTTTTG AGCCACCTCT	300
05	CGAACTTTCG GGTTTTTATG CATTGGATAT ACCAGTGCTA AATCAGTATA CTCATCTATT	360
35	AAGCGTCTAA CCGCTTTAAA TATATTTTCC aTGGGTTTCC CGATATTTTC TCGTCGGTGT	420
•	GCTGTCATra GAATGAATTT KTEGTCATGG TATTTATCCA TGATGTTAGA TTTATAATTG	480
40	TCATCAACTG TATATTTCAT AGCATCAATC GCAGTATTAC CAGTGACAAC AACACTTTCT	540
	GAATATTTCC CTTCACTTAA CAAATGCGAT GCAGCATTTT TAGTAGGTGC AAAATGTAAG	600
	TCAGCTAATA CACCAACTAA TTGTCTATTC ACCTCTTCTG GAAAAGGTGA ATATTTATCA	660
45	TAACTTCTAA GCCCTGCTTC AACGTGTCCA ATCGGCACTT GGTTATAAAA TGCCGCTAAA	720
	CCACCTGCAA ATGTCGTCAT CGTATCACCA TGTACAAGTA CCATGTCTGG TTTTTCTAAT	780
	TGAATCACTT GTTCTAATTG AGTGATTGAT TTAGAAGTTA TCTCAGAAAG TGTCTGTCCT	840
50	GATTTCATAA TATTCAAATC GTATTTTGGT TTGATTTCAA AGGTACTTAA TACTGAATCA	900
	AGCATTTCTC TATGCTGTGC TGTAACAACA ACAATTGGCT CGAGCATTTT TTCTTGTTCC	960

	ATCTTTTTCA	TCAAACTACT	TATCTCCGAT	TCTTCTATTT	AGTACCAAAC	AATCTATCTC	1080
	CAGCGTCGCC	TAACCCTGGT	GTGATATATG	CTTTGTCATT	aGCTTTTCAT	CAAGTGCAGC	1140
5	AATATAAATA	TCTACATCTG	GATGTGCTTC	ATGCATCTTT	TCTACGCCTT	CTGGTGCTGC	1200
	AATTAAACAC	ATGAAGCGAA	TATTTTTAGC	GCCACGTTTC	TTCAATGAAG	TAATAGCTTC	1260
•	AATTGCTGAT	GCGCCTGTTG	CTAACATAGG	ATCAACAACA	ATGATTTGTC	TTTCAGTAAT	1320
10	ATCTTGAGGT	AACTTAGCAA	AATACTCTAC	AGCCTTTAAT	GTTTCGGGAT	CTCGATATAA	1380
	ACCGATATGT	CCAACTCTGG	CTGCAGGTAC	TAAACTTAAA	ATACCATCAG	TCATACCTAA	1440
15	ACCAGCTCTT	AAAATTGGAA	CGATAGCTAA	TTTTTTACCA	GCTAATCGTT	TAGCCGTCAT	1500
,,	TTTAGTTACA	GGCGTTTCAA	TATCAACATC	CTGAAGCTCT	AAGTCTCTAG	TTACTTCATA	1560
	TGCCATCAAC	ATACCAACTT	CGTCTACAAG	TTCTCTAAAT	TCTTTAGTAC	CTGTATTTAC	1620
20	ATCTCTAATA	TAGCTTAGTT	TGTGTTGAAT	TAATGGATGA	TCGAAAACGT	GTACTTTACT	1680
	CATAAAAATT	ACTCCTATCT	TTGTGTATGT	TTATTGATAT	AGAGGATATT	CAGCTGTTAA	1740
	TTTCGCAACG	CĠTTCTTTAG	CTTGTTGTAA	TTTTTCTTCA	TCTTTACTAT	TTTTCAATGC	1800
25	TAAACTGATG	ATTTTTGCAA	CTTCCTCAAA	AGCTTTTTCA	TCAAATCCAC	GCGTTGTTGC	1860
	AGCAGGTGTA	CCTAAACGTA	TACCACTCGT	TACAAAAGGT	TTTTCTTGAT	CGAACGGAAT	1920
	GGTATTTTTG	TTACATGTGA	TACCAACTGA	ATCTAAAGTC	TCTTCAGCTT	CTTTACCAGT	1980
30	AAGTCCTATA	GACCCTTTTA	CATCAACAGC	TACTAAGTGA	TTATCTGTAC	CGCCAGAAAC	2040
	AATTCTAAAT	CCTTCATTAA	TTAATGCTTC	TGCAAGAACT	TTTGCGTTTT	TAACCACTTG	2100
	TTGTTGATAC	GTTTTGAAAT	TATTTTCTAA	CGCTTCTCCA	AAAGCAACTG	CTTTtGCTgC	2160
35	AATAACATGC	TCAAGAGGTC	CACCTTGAAT	ACCAGGGAAA	ATTGTTTTAT	CTATGTCTTT	2220
	TTTATATTCT	TCCTTACATA	AAATCATACC	ACCACGEGGT	CCGcGTAATG	TTTTGTGTGT	2280
10	TGTAGTTGTT	ACAAAATCAG	CATATTCTAC	TGGATTTGGA	TGTAAACCTG	CCGCTACTAA	2340
	TCCTGCAATA	TGTGCCATGT	CTACCATTAA	CTTAGCGTTT	ACTTCATCTG	CGATTTCTTT	2400
	AAACTTTTTG	AAGTCAATTG	TTCTTGAATA	TGCTGATGCT	CCTGCCACAA	TAAGCTTAGG	2460
15	CTTATGCTCT	AACGCTAATT	TACGAACTTC	ATCATAATTG	ATTCGTTCTG	TGTCTTTATC	2520
	TACTCCATAT	TCAACGAAAT	TGTAGAATTT	ACCACTAAAA	TTAACAGGCG	CTCCATGTGT	2580
	CAAGTGACCA	CCATGACTCA	AATTCATACC	TAAAACTGTG	TCGCCCATTT	CTAATGCAAC	2640
50	TAAGTAAACA	GCCATGTTCG	CTTGTGAACC	TGAATGTGGT	TGAACATTGA	CATGTTCAGC	2700
	TOONNACART	CCTTTTACCAC	CAMCAAMMOO	C N TO COTTONIC N	OM 1 (1 MOM 1	C1110mo101	

	TIGIGCIICC	ATAACCGCTT	CCGATACAAA	ATTTTCCGAT	GCGATTAACT	CTATGTTGCT	2880
	ATTTTGTCTC	TGAAATTCTC	TCTCGATTGC	TTCTGCGATA	ACTTTATCTT	GCTTGGTGAT	2940
5	ATAAGACATA	AAATCTCCCC	TTCTTTCAAA	AAAACTTATT	GGTATTTAGC	ACGTTCGCCA	3000
	CCAATCTTTT	TCGGCCTAGA	TGTGGCAATA	GTTACAATTG	CCTGTCCTAC	TTGCTTTACT	3060
	GAGGTCCTTA	CAGGTACACA	TACATGTTTA	ATATGCATGC	CTATTAACGT	TTGACCAATA	3120
10	TCAATTCCAC	AAGGAACAGT	AATATGTTCG	ACCACGATCG	GATCCTTCAT	ATGCTGAAAA	3180
	GCGTATGTTG	CCAAACTCCC	TCCAGCATGT	ACATCTGGAA	CGACGGAAAC	TTCTTCCATT	3240
15	GTTAATGGAT	TATACTGAGA	TTTTTCTATT	GTTATCGCTC	TGTTGATATG	TTCACATCCT	3300
	TGAAAAGCAA	AAGTAACGCC	TGTCTCTTTA	CTCACAACAT	CTAATGCATT	AAAAATAGTT	3360
	TCTGCAACTT	CCaTCGAACC	GACAGTCCCT	ATTTTTTCGC	CAATGACTTC	CGATGTTGAA	3420
20	CATCCAATTA	AACATATATC	TCCTTTATTA	AAAAAGGACA	TATCTTTTAA	TTCGTCTAAT	3480
	AACATTGTCA	AATCTTTCAT	AAAAGCCCAC	CCTTCCTAAA	AATAAAAAAG	GAATATAGCA	3540
	AAGTGCTACA	CTCCTCTATT	ATAACTTATT	TAACTGTTAÂ	CATATACTAA	TTATACAGAA	3600
25	TTCCTACTAG	CAAATAATAT	CTTTTAATTT	TAAAATTAAA	CTTACAAGTT	CTTCATAGGT	3660
	ATGTACATAC	ATTTCTTTTG	TTCCACCGTA	TGGATCTATA	ACTTCTCCTG	CTTCTTTtAC	3720
	ATATTCATGC	AATGTGAAAA	CATGATTTTG	CAAACCAAAG	TGTGCCTCTA	TTAATTCTTT	3780
30	GTGCGAATAC	GACATCGTCA	AAATAATATC	TGCTTTCAAA	TCTGCTTCAG	TAAATTGTTG	3840
	CGATAAGGTC	GTTTCAGCTA	AATGATGTTC	TTCAACTAAG	TCTTCAACAT	AATTCGAAAC	3900
	ACCTTGATTG	TTCACAGCGA	ATATACCTCT	TGATTCAAAT	TGATGATTTG	GCATAACCTC	3960
35	TTTTGCAATA	CTTTCCGCTA	ATGGGCTACG	ACATGTGTTA	CCTGTACAAA	CGAATAAAAT	4020
	CTTCATAGTT	CACATCCTTT	AATAATGTGA	TTACCTGCAG	CTTTTAACAT	GCGATTCATA	4080
10	ATTGCTTCTG	TATTATCATT	CAGCTCAAAG	CCGTATATAT	ACGCCGCTGA	AATATTTTCA	4140
	TTTTCATCAA	GTGAATGTAA	CACATCATAA	AGATTATGAC	TTGCTTGTTT	AACATCATTG	4200
	TCATCCTGAC	ATAATTGAAT	GAATTGCGCT	TCACTTGGTA	TAAACGCCAC	CTTATTACTC	4260
15	GGCACAATAA	AAGCTATAGA	AGACCAATCT	TTACCGTCAT	TTCCAATTTT	GCTCTCAATA	4320
•	TCTGTAATAA	TTGTAAGTGG	TGTATTGGGT	GAGTAATGCT	TATACTTCAT	ACCTGGTGCA	4380
	ATTGGCTGTT	CAGTATCATT	ATAATCAGCA	TGGGCGATAC	TATTCGGAAG	TATTTCTGTA	4440
50	ATCATTGCTG	CTGTTATAGA	ACCAGGTCTT	GCAATTTTAT	AAGGAAAAGA	TGTGCAATCT	4500
	AAAACCGTAC	тттстаатсс	ΤΤΟΣΟΤΤΟΣ	ጥርጥጥር ልርርጥጥ	GAACAATACC	ATCGATACCG	4560

	GCACTTGGAG	CAGCTAGAGG	TTCATTTATG	ATTTGTAATA	ATTGTCTACC	TACAGAATGG	468
	CTTGGCATTC	TAACAGCAAC	TGATGATAAA	CCTCCAGAAA	CTTTTCGACA	TAGATAGCCT	474
5	AGCTTTAACG	GCAATATAAA	CGAAATAGGG	CCCGGCCAGA	ATGCCTGCAT	TAACTTTTCT	480
	ACGCGTGGAT	CCAAAGTATA	TGTAAAATCT	TTTAATTGAC	CTTTACTGTG	TATATGAACA	486
	ATAAGCGGAT	TGTCAGATGG	ACGGCCTTTA	GCTTCATATA	TTTTAGCTAC	AGCTTCTTCA	492
10	TCTGTCGCAT	TTGCTGCAAG	TCCATAAACT	GTTTCAGTTG	GTAAACCTAT	TAAACCACCG	498
	TTTAAAACAA	TGTCTTTTAT	TTCATTAATT	TTAGGATATT	GCTGTAAATC	TTCATTATAT	504
	TCTCTAACAT	CCCAAATTTT	AGTATCCAAC	TTAATCACGC	CTTTCTTATT	TATCATAATA	510
15	TAAAGCAAAA	AGCTATGCAC	TTAACTAATC	ATAGCAAAGG	CATAACTTCT	AATTACCATT	516
	TAAATGAGAC	GATTCGATCG	TGGCCATTTA	TATCTTTAAT	AATGTCGATT	TTTTTGTCAG	5220
20	GAAATTTATT	TTATTAAAAT	GATTTAAGTG	CCTCACCTTG	ATTGTAACCA	ATTTCAAAAA	5280
	CAACTGGGCT	GCCTTTTTCC	ATAACGTGAG	GTAAATCTTC	AATGATTGAT	TCATAAATAG	53,40
	CATATCCATG	GTTATCTGCA	AACAATGCCT	GATGTGGTTC	GAATCTCGTA	ACCGTTGGAG	5400
25	ACATCGTAAC	CATATCTTTT	TCATCTATAT	ATGGTGGATT	AGATATCAAG	CCGTTCAACT	5460
	TGATACCTTC	ATTAATTAAG	GGCTTTAATG	CATCCCCTGT	TAAAAATTGT	ATTTGTGATT	5520
	GATGCTTCTC	AGCATTATTA	CGAGCCATAT	TCATTGCTTC	AAGTGAAATA	TCAGTAGCAA	5580
30	TAACATTTAA	ATCCGGCTTT	TCACATTTCA	AAGTAATTGC	AAGTACACCA	CTACCCGTTC	5640
	CGATATCTAC	GATTGTTGCA	TCATCTTCTA	ACTGTTGTAA	GAAATGCAAC	ATTACTTCTT	5700
	CAGTTTCAGG	TCTTGGTATC	AAACAATTTG	AGTTTACATC	AAACGTTCTA	CCATAAAATG	5760
35	AGGCAAAGCC	AACTATATAC	TGTATAGGCT	СТССТААТАА	CATACGTTGT	AATGCTAAGT	5820
	CGAACTTCAT	AATCATCGCT	TTCGGCATAT	CATCATGCAT	GTGGACTACA	AAGTCCGTAC	5880
40	GCGTCCATTG	AAATACATCT	AACATTAACC	ATTCAGCTCG	TGTTTGTTCA	AACCCTTTTT	5940
40	GTTGTGTTAA	ATGAATTGCT	TCATCTAACT	TTTCTTTATA	ATTCACCATT	ATTAAGTTCT	6000
	TTCAATTTAT	CTGTCTGCTC	TGATAAAGTC	AGTGCATCTA	TAATTTCTTC	TAAATGGCCT	6060
45	TCCATAATTT	GCCCTAATTT	TTGAAGCGTT	AGACCTATAC	GATGGTCTGT	TACACGGCTT	6120
	TGTGGATAAT	TATAAGTTCG	AATACGTTCT	GAACGATCAC	CAGTACCGAC	TGCTGATTTA	6180
	CGTTGTGACG	CATACTTTTG	TTGTTCTTCT	TGAACTTTCA	TATCGTATAA	ACGTGCTTTT	6240
50	AACACTTTCA	TTGCTTTTTC	ACGGTTTTGA	ATTTGAGACT	TCTcAGAAGA	TGTTGCAATG	6300
	ACACCACTTC	CTAAATCCCT	እ እጥአ <i>ር</i> ርጥአርጥ	CCACACRCAC	THE THE PERSON PROPERTY OF	CMCCMC> CC>	

	TTGTACATGA	ACAATTATTT	TA				7762
40	TCGCTTTATT	ATATCATATT	TCAAATATTC	ATAAATGTCT	TTnTCATAAT	TATATCGATA	7740
	TCTATCCAAC	CGGAATGGTA	AGTTTCATAC	ATTGAGAGTn	CCACCTTTTT	CAAAACATAA	7680
35	CTTCTTAGAC	GTCTTATTAG	TTCTTCGGAT	TTACCGCTAA	ACATACTACC	TGTAATACAT	7620
	TGATATCGAT	CATCAATCGC	CGGTTTAAAT	ACAACGACTT	TTTGTTTAGC	GTATATACCC	7560
	GCTTTAGAAA	TATTAATCGC	TTCAATGGCA	TTACCATTAT	GAGAGACCAC	TTTTTCTTTA	7500
30	TGCAcTTCGT	CTATTCCTAT	AACATCAACA	TTAGTTAAGT	CGTGCGTCAT	AATTTCACTT	7440
	ACACGGTGTC	CATCTGCTGA	TAGTTTTTCT	ACTATACTTA	CAATTTCATC	GTCAAAAAAT	7380
	AATTTAGGCA	TTGGTTCGAA	CGGTTCGCCC	СТААААТССА	TATCTAATCC	AGCAACAATA	7320
25	GAAGAACCAC	AAACAGCACA	AACTGCTTGA	AGTTTCGTTA	CTTGTTCACT	GACAGCCATC	7260
	ATAATCGGAT	CATCGATTTT	AGCTGGTTTA	CCATTTATTA	ATCGTTGCGT	TCTACTAGAT	7200
	GGTGCTACGA	TATGGTGCGC	GCGACAACGT	GGCTCATAAC	TTTCATTGGC	ACCTACTAAG	7140
20	CTTTCTTCTA	СААТАТСТАА	TTGATCAAAC	ACTTATAATT	CCTCCTTATT	ATTATCACTA	7080
	AATTTATCTG	AATCATTTAC	AACATCTGGG	TCACTTAACA	GTTCATTTAA	CTGTTCGTAT	70,20
15	TAGTTACGAT	AAACATCTAC	AGTTTTTTGT	AAATCAGCTT	GCTCTTTAGA	ATATTTACGT	6960
15	TTATCATCAG	TCTCACTTAA	CATTTCTTCA	ATATCAGCTA	ATTCTTCTTT	TTTAGCTTTA	6900
	agatttggaa	GTTCAGCTTT	AATACCATTA	СТСТССТСТТ	TTAACATTTC	TACTTCTTCT	6840
10	ATAACGTCTT	TGTCATCATT	AGGATCTTTA	GGAATCAATA	ATATTTTAAG	CTCTTCTTCA	6780
	ATTAAATCAC	CAGCAAAAAT	CGCAGCCTCA	TCACCACCTG	CTGCTGCTCT	TATTTCTACA	6720
	GACGCTTCTA	CTATTTCAGT	TTTGAATCCT	TGTGATTCAG	CATACTTTGA	ATACATACGC	6660
5	TACGCGCCAT	TACCAGAAAC	TGAGAAACTA	ATTTCTTTGT	AACCACCATG	GTCACTTTCA	6600
	GATTCTGTTT	CAGGCACACG	TTGAACGCGG	TGCGCACCAT	TTTCAAATTT	CAATTTACTA	6540
	ACATCTTCAA	CTTCTGGTAA	AACTGCCACT	GTAGCTGTTG	AAGTATGAAT	ACGTCCACCT	6480

(2) INFORMATION FOR SEQ ID NO: 125:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2583 base pairs
- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

	IAMAMAAII	ATTATCAATG	ATGAACTAGA	ATTGACTGAA	TTCCACCAAG	AACTTACTTA	12
	TATTTTAGAC	AACATAnAAG	GGAATAATAA	TTATGGTAAG	GAATTTGTTG	CAACCGTTGA	18
5	AGAAACATTC	GACATTGAAT	AaAGCGGGGT	GgaAGCACTA	TGAATCAATG	GGATCAGTTC	24
	TTAACACCTT	ATAAGCAAGC	GGTTGATGAG	TTGAAAGkGA	AcTTaAAGGC	ATGCGCAAAC	30
	AATATGAAGT	TGGTGAACAA	GCGTCGCCAA	TAGAATTTGT	TACTGGTCGT	GTTAAACCAA	36
10	TCGCTAGTAT	TATAGATAAG	GCAAACAAAC	GACAAATACC	ATTTGATAGG	TTAAGAGAAG	42
	AAATGTACGA	TATCGCTGGT	TTAAGAATGA	TGTGCCAATT	TGTTGAAGAT	ATTGATGTTG	48
15	TCGTCAATAT	TTTAAGACAA	AGAmAAGATT	TTAAAGTAAT	TGAAGAACGA	GATTATATTC	54
,,	GTAACACTAA	AGAAAGTGGT	TACCGCTCGT	ATCATGTCAT	TATTGAATAT	CCAATTGAAA	60
	CATTACAAGG	CCAAAAATTT	ATATTGGCTG	AGATTCAGAT	TCGTACATTA	GCAATGAATT	66
20	TCTGGGCAAC	GATTGAACAT	ACTTTACGAT	ATAAATATGA	TGGTGCTTAT	CCGGATGAAA	72
	TTCAACATCG	TTTGGAAAGA	GCGGCAGAAG	CAGCGTATTT	ACTTGATGAA	GAGATGTCTG	78
	AAATTAAAGA	TGAAATTCAG	GAAGCTCAAA	AATATTACAC	GCAAAAACGT	TCTAAAAAAC	84
25	ATGAAAATGA	TTAACGAGGT	GTTATAAATC	ATGCGTTATA	CAATTTTAAC	TAAAGGTGAC	90
	TCCAAGTCTA	ATGCCTTAAA	GCATAAAATG	ATGAACTATA	TGAAAGrTTT	TcGCATGaTT	96
	GaGGATrGTG	AAAaTCCTGA	AATTGTTATT	YCAGTTGGTG	GTGACGGTAC	ATTACTACAA	102
30	GCATTCCATC	AGTATAGCCA	CATGTTATCA	AAAGTGGCAT	TTGTTGGAGT	TCATACAGGT	108
	CATTTAGGAT	TTTATGCGGA	TTGGTTACCT	CATGAAGTTG	AAAAATTAAT	CATCGAAATT	114
	AATAATTCAG	AGTTTCAGGT	CATTGAATAT	CCATTGCTTG	AAATTATTAT	GAGATACAAC	120
35	GACAACGGCT	ATGAAACAAG	GTATTTAGCA	TTAAATGAAG	CAACGATGAA	AACTGAAAAT	126
	GGCTCAACAC	TTGTTGTGGA	TGTTAACTTA	AGAGGGAAAC	ACTTTGAGCG	ATTTAGAGGC	132
10	GATGGATTAT	GTGTATCAAC	ACCTTCGGGT	TCAACGGCTT	ATAACAAAGC	GCTAGGTGGC	138
	GCACTGATAC	ATCCTTCACT	TGAAGCAATG	CAAATTACAG	AAATTGCCTC	GATAAATAAT	144
	CGTGTGTTTA	GAACGGTAGG	ATCACCACTT	GTATTACCAA	AGCATCATAC	ATGTTTAATA	1500
15	TCACCAGTTA	ATCATGATAC	CATTAGAATG	ACGATAGATC	ATGTTAGTAT	CAAACATAAA	1560
	AATGTTAATT	CAATACAATA	CCGTGTAGCA	aatgaaaaag	TGAGGTTTGC	ACGTTTTAGA	1620
	CCATTCCCAT	TCTGGAAACG	TGTGCACGAT	TCTTTCATAT	CAAGTGATGA	AGAACGATGA	1680
50	AATTTAAGTA	TCATATATCA	CAACAAGAAA	CTGTTAAAAC	TTTTTTAGCA	CGACATGATT	1740
	TTTCTAAGAA	GACAGTGAGC	GCCATTAAAA	ATAATGGCGC	ТТТ Д ДТТСТТ	AATCATCAAC	1000

	AAATACCGAG T	GTTAATTTA	ATACCTTATG	CTCGTAAGCT	AGAAGTATTG	TATGAAGATG	1920
	CTTTTATCAT C	ATAGTTACT	AAACCAAACA	ATCAAAATTG	TACGCCTTCG	AGAGAACATC	1980
5	CTCATGAAAG T	TTAATCGAA	CAAGTACTAT	ATCATTGTCA	GGAACATGGT	GAAAATATTA	2040
	ACCCACATAT T	GTTACGCGT	CTAGATCGTA	ATACAACTGG	TATTGTGATA	TTCGCTAAAT	2100
	ATGGACATAT C	CATCATTTA	TTTTCTAAAG	TAAACTTGAA	ТАТАТАААА	ACTTGCCTTG	2160
0	TATATGGTAA A	ACCCATACA	TCTGGTATTA	TTGAAGCTAA	TATTAGACGG	TCAAAGGATA	2220
,	GGATTATAAC T	AGAGAAGTT	GCCTCGGATG	GTAAATACGC	TAAAACATCT	TATGAAGTAA	2280
5	TAAATCAGAA T	GATAAATAC	AGTTTATGCA	AAGTTCATTT	GCATACGGGA	CGTACACATC	2340
-	AAATTCGTGT A	CATTTTCAA	CATATTGGGC	ATCCAATTGT	GGGAGATTCT	TTGTATGATG	2400
	GTTTTCATGA C	AAAATTCAT	GGTCAAGTAC	TGCAATGTAC	GCAAATATAT	TTTGTTCATC	2460
ro	CAATCAATAA G	AACAATATT	ТАТАТТАСАА	TTGATTATAA	GCAATTACTT	AAATTATnCA	2520
	ATCAACTCTA A	TnCACACAG	GGGGTGTAAG	TATGTCAATG	AnCACAGATG	AAAAAGAGCG	2580
	TGT						2583
25	(2) INFORMAT	ION FOR SE	Q ID NO: 12	6 :			
	(i) SEQ	UENCE CHAR	ACTERISTICS	:			

- (A) LENGTH: 1818 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:

ATCAAGTGAT ACATTTAACT GGTAAAGGAT TAANAGATGC TCAAGTTAAA AAATCNGGAT 60 ATATACAATA TGAATTTGTT AAAGAGGATT TNACAGATTT ATTNGCAATT ACGGATACAG 120 TAATAAGTAG AGCTGGATCA AATGCGATTT ATGAGTTCTT AACATTACGT ATACCAATGT 180 TATTAGTACC ATTAGGTTTA GATCAATCCC GAGGCGACCA AATTGACAAT GCAAATCATT 240 TTGCTGATAA AGGATATGCT AAAGCGATTG ATGAAGAACA ATTAACAGCA CAAATTTTAT 300 TACAAGAACT AAATGAAATG GAACAGGAAA GAACTCGAAT TATCAATAAT ATGAAATCGT 360 ATGAACAAAG TTATACGAAA GAAGCTTTAT TTGATAAGAT GATTAAAGAC GCATTGAATT 420 AATGGGGGGT AATGCTTTAT GAGTCAATGG AAACGTATCT CTTTGCTCAT CGTTTTTACA 480 TTGGTTTTTG GAATTATCGC GTTTTTCCAC GAATCAAGAC TTGGGAAATG GATTGATAAT 540 GAAGTTTATG AGTTTGTATA TTCATCAGAG AGCTTTATTA CGACATCTAT CATGCTTGGG 600

55

35

40

	CTCATGTTAA	AGCGCCACAA	AATTGAAGCA	TTATTTTTTG	CATTAACAAT	GGCATTATCT	720
	GGAATTTTGA	ATCCAGCATT	ATATAAAAA	TTCGATAGAG	AAAGACCTAC	ATTGCTGCGT	780
5	TTAATTGATA	TAACAGGATT	TAGTTTTCCT	AGCGGTCATG	CTATGGGATC	AACTGCATAT	840
	CTCATGTTAA AGCGCCACAA AATTGAAGCA TTATTTTTTE CATTAACAAT GGCATTATCT GGAATTTTGA ATCCAGCATT AAAAAATATA TTCGATAGAG AAAGACCTAC ATTGCTGCGT TTAATTGATA TAACAGGATT TAGTTTTCCT AGCGGTCATG CTATGGGATC AACTGCATAT TTTGGAAGTG GTATCTATCT ATTAAATCGA TTAAATCAAG GTAATTCAAA AGGTATCTT ATAGGGTTAT GTGCAGCTAT GATTTATTG ATTTCCATAT CACGTGTATA TCTAGGTGTA CATTATCCAA CAGATATTAT TGCCGGCATT ATTGGTGGAT TATTTTGCAT TATTTTATCA ACGTTATTAC TTAGAAATAA ATTAATAAAT TAAATAGTAA AAAAACAAAA GCAGTAAACC TAAAGTGTCG TAAGGGTTTA CTGCTTTTAT AAAACGTTGT TATAACGTAT ATTGCTTTTT ACGGGCATAT AANAGGGGAA TATTTGANAA TGACCAATCC AACAAGAACG AAACGTTGTG GGGGGGATGT TCTATGTGGT ATTGATAATC ATTTTCAACT ACTATTATAC ATTAGTGAGA ATCATTGTCA ATTAGAAACT AAAACTTTTT TTGAATATTT TTTAAGAATA GTAAATAAAA CGCATGATTA CGCTATTTTA GAAAATAAAA AAATTTGTAT TTCTCATTAG AATTAGAATA TTTAAAAAGTG ATGAGGTTA AACATTATAT TGTTTACATA CTCCTTTTGA ATTCATACAT TATGAAATGT LACTTCCAAG TTCAAAATCG CACATTGAAA TGATGTGTGA AATGTTTAAA CTACGGTCAT LTTGTGTAAAA TAAAGTTAAT AACTATTCAT TTTACAATAG TGAAAAGTCA GTATATGACA ACAATTAATA TTGCGGTAAG GCCTTGTGTT ACAGTATTCT ATATTTAAGT ACTGCAATCA GAATTAACAG AATGCCATTA ACTGTTTAT TAAAATTTTAA GTTAAAAAT AATTAACAT TGTAGCTTGA AAAATTTAAA ACATGGTTAT TAAAATTTTAA GTTAAAAATT AATTAACATA TGTAGCTTGA AAAATTTAAA ACATGGTTAT TGATTTGTGA TAAAATTTAA ACTGCAATCA GAATTAACAG AATGCCATTA ACTGGTTAT TGATTTGTGA TAAAATTTAA ACTGCAATCA GAATTAACAG AATGCCATTA ACTGGTTAT TGATTTGTGA TAAAATTTAA ACTGCAATCA GAATTAACAG AATGCCATTA ACTGGTTAT TGATTTGTGA TAAAATTTAA ACTGCAATCA ACTAATTTAA AAAGCAACTA TTGTATAGAA AAATACAAAA TTTAAAATAT ATTACCTTAT TAGAAAAAA (2) ÎNFORMATION FOR SEQ ID NO: 127: (1) SEQUENCE CHARACTERISTICS:	9,00					
	ATAGGGTTAT	GTGCAGCTAT	GATTTTATTG	ATTTCCATAT	CACGTGTATA	TCTAGGTGTA	960
0	CATTATCCAA	CAGATATTAT	TGCCGGCATT	ATTGGTGGAT	TATTTTGCAT	TATTTTATCA	1020
	ACGTTATTAC	TTAGAAATAA	TAAATAAAT	TAAATAGTAA	AAAAACAAAA	GCAGTAAACC	1080
5	TAAAGTGTCG	TAAGGGTTTA	CTGCTTTTAT	AAAACGTTGT	TATAACGTAT	ATTGTCTTTT	1140
	ACGGGCATAT	AAnAGGGGAA	TATTTGANAA	TGACCAATCC	AACAAGAACG	AAACGTTGTG	1200
	GGGGGGATGT	TCTATGTGGT	ATTGATAATC	ATTTTCAACT	ACTATTATAC	ATTAGTGAGA	1260
ro.	ATCATTGTCA	ATTAGAAACT	AAAACTTTTT	TTGAATATTT	TTTAAGAATA	GTAAATAAAA	1320
	CGCATGATTA	CGCTATTTTA	GAAAATAAAA	AAATTTGTAT	TTCTCATTAG	AATTAGAATA	1380
	TTTAAAAGTG	ATGAGGTTTA	AACATTATAT	TGTTTACATA	CTCCTTTTGA	ATTCATACAT	1440
25	TATGAAATGT	tACTTCCAAG	TTCAAAATCG	CACATTGAAA	TGATGTGTGA	AATGTTTAAA	1500
GGAATTTGA ATCCAGCATT AAAAAATATA TTCGATAGAG AAAGACCTAC ATTGCTGCGT TTAATTGATA TAACAGGATT TAGTTTTCCT AGCGGTCATG CTATGGGATC AACTGCATAT TTTGGAAGTG GTATCTATCT ATTAAATCGA TTAAATCAAG GTAATTCAAA AGGTATTCTT ATAGGGTTAT GTGCAGCTAT GATTTATTG ATTTCCATAT CACGTGTATA TCTAGGTGTA CATTATCCAA CAGATATTAT TGCCGGCATT ATTGGTGGAT TATTTTGCAT TATTTTATCA ACGTTATTAC TTAGAAATAA ATTAATAAAT TAAATAGTAA AAAAACAAAA GCAGTAAACC TAAAGTGTCG TAAGGGTTTA CTGCTTTTAT AAAACGTTGT TATAACGTAT ATTGTCTTTT ACGGGCATAT AANAGGGGAA TATTTGANAA TGACCAATCC AACAAGAACG AAACGTTGTG GGGGGGATGT TCTATGTGGT ATTGATAATC ATTTTCAACT ACTATTATAC ATTAGTAGAA CGCATGATTA CGCTATTTTA GAAAATAAAA AAATTTGTAT TTTTAAGAATA GTAAATAAA	1560						
	GTATATGACA	ACAATTAATA	TTGCGGTAAG	GCCTTGTGTT	ACAGTATTCT	ATATTTAAGT	1620
0	ACTGCAATCA	GAATTAACAG	AATGCCATTA	ACTGATTATT	AAATATTTGA	GTTAATAAAT	1680
	AATTAATGAT	TGTAGCTTGA	AAAATTTAAA	ACATGGTTAT	TGATTTGTGA	TAAAATTTAA	1740
E	ACGTAAACAA	ACTAATTTAA	AAAGCAACTA	TTGTATAGAA	AAATACAAAA	TTTAAAATAT	1800
5	ATTACCTTAT	TAGAAAA					1818
	(2) INFORM	ATION FOR SE	EQ ID NO: 12	27:			
o		-					

(A) LENGTH: 12658 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

TGTTTAAACA	ATAGGGGGAA	TCTTATGATT	GAAAAATTAG	TAACCTTTTT	AAATGAGGTT	60
GTTTGGAGTA	AGCCATTAGT	TTATGGTTTG	CTAATTACTG	GTGTGCTATT	TACATTGCGT	120
ATACCA TITT	TTCAACTTAC	ασατττααα	CAAATCATTC	САТТАВТСТТ	TCARGAGAG	180

55

	GGTACAGGTA	ATATTGTCGG	TGTATCTACT	GCAATATTTA	TAGGAGGACC	TGGTGCAGTA	300
	TTTTGGATGT	GGATTACTGC	GTTTTTAGGT	GCAAGTAGTG	CTTTTATTGA	ATCTACACTT	360
5	GGTCAAATAT	TCAAGAGAGT	TGAAAATAAT	GAATACCGTG	GTGGACCAGC	GTATTATATT	. 420
	GAATATGGTA	TTGGTGGTAA	ATTTGGTAAA	ATTTACGGAA	TTATCTTTGC	TATTGTTACG	480
10	ATTATCTCAG	TAGGTCTATT	GCTTCCTGGT	GTGCAATCTA	ACGCTATAGC	AAGTTCTATG	540
,,,	CATAATGCGA	TTCATGTTCC	ACAATGGTTA	ATGGGTGGTA	TTGTTGTAGT	TATTTTGGGA	600
	TTAATTATTT	TTGGTGGTGT	ACGTATTATT	GCCAATGTTG	CAACAGCCGT	TGTACCATTT	660
15	ATGGCAATTA	TTTACATACT	GATGGCTGTC	ATTATCATTT	GTATCAATAT	ACAAGAAGTG	720
	CCAGCGTTAT	TTGCATTAAT	TTTCAAATCA	GCATTTGGAT	TACAATCTGC	TTTTGGTGGT	780
	ATCGTTGGCG	CAATGATAGA	GATTGGTGTT	AAACGTGGAT	TATATTCAAA	TGAGGCTGGT	840
20	CAAGGTACAG	GTCCACACGC	AGCAGCGGCa	gcAGaAGTAT	CACATCCAAG	TAAACAAGGT	900
	CTAGTACAAG	CATTTTCAGT	TTATATTGAT	ACATTATTTG	TATGTACTGC	AACTGCTCTG	960
	ATTATACTTA	TTTCTGGTAC	ATATAATGTG	ACTGATGGTA	CGGTTAATGC	GAATGGCACA	1020
25	CCGCATTTAA	TTAAAGATGG	CGGTATTTAT	GTTgAAAATG	CAACAGGTAA	AGATTATTCÁ	1080
	GGTACTGCGA	TGTATGCACA	AGCCGGCATt	GATAAAGCGT	TCCATGGCAG	TGGTTATCAA	1140
	TTTGATCCTA	CTTTCTCTGG	CGTAGGTTCG	TACTTTATTG	CATTTGCTTT	ATTCTTCTTT	1200
30	GCATTTACTA	CAATTTTGTC	GTACTACTAC	ATTACAGAAA	CAAATGTTGC	TTATTTAACG	1260
	CGTAATCAAA	ATAATCAAGT	TTCATCGATA	TTTATTAATA	TTGCTCGTGT	GATTATTTTG	1320
35	TTCGCTACAT	TTTACGGTGC	AGTTAAAACA	GCTGATGTAG	CATGGGCATT	CGGTGATTTA	1380
55	GGTGTAGGTC	TAATGGCTTG	GTTAAATATC	ATTGCGATTT	GGATTTTACA	TAAGCCTGCC	1440
	GTANATGCTT	TAAAAGATTA	TGAAATTCAA	AAGAAACGTT	TAGGCAACGG	TTATAATGCA	1500
40	GTTTATCAAC	CTGATCCGAA	TAAATTACCT	AATGCTGTCT	TTTGGTTGAA	GACGTATCCA	1560
	GAACGTTTAA	AACAAGCACG	TGCCAAAAAG	TAATCTACTT	TTGTTTATAG	TATATGTAGT	1620
	GATCATTTGA	TAAAAAAGAA	AAGTATTGAG	AATTTTAGGt	GCTCAGAAAT	TTGAATTTTA	1680
45	AAAATATAGT	GTCTCTTGGT	ACAATAACAA	TACAACTACT	AGGGGCACTT	TTTTATGTCA	1740
	GAATTTAAAA	CTGGTAAGAT	TAATAAACAT	GTTTTATATA	GTAATATTTT	AAATAGAGAT	1800
	GTCACGTTAA	GTATTTATTT [*]	ACCAGAATCT	TATAATCAAC	TTGTTAAATA	TAATGTCATT	1860
50	CTTTGCTTTG	ACGGATTAGA	TTTTTTACGT	TTCGGGAGAA	TACAACGTAC	ATATGAATCG	1920
	ምምእአም ሮእአአር	አ አ ር ር ር ር ር ር ጥ አ ጥ	ምር እጥር እጥር ርር	አጥሮ አመመርመጥር	CATTCCATTA	TC N N C N C C C C C C C C C C C C C C C	1000

	GTCGGTAAAG	AAATATTGCC	ATTTATTGAC	TCGACGTTTT	CTACACTGAA	AGTAGGTAAT	2100
	GCAAGGTTAT	TAGTAGGGGA	TAGTTTAGCG	GGTAGTATTG	CCTTATTAAC	GGCGTTGACC	2160
5	TATCCAACGA	TTTTTAGTCG	TGTAGCAATG	TTAAGTCCAC	ATTCAGATGA	AAAAGTATTA	2220
	GATAAGCTAA	ATCAATGTGC	AAATAAAGAA	CAATTGACAA	TTTGGCATGT	CATTGGTCTA	2280
	GATGAAAAAG	ATTTTACTTT	ACCAACAAAT	GGTAAGCGTG	CCGATTTCTT	AACACCGAAT	2340
10	AGAGAATTAG	CTGAACAAAT	TAAGAAATAT	AATATAACTT	ATTATTACGA	TGAATTTGAT	2400
	GGTGGTCACC	AATGGAAAGA	TTGGAAACCA	TTGCTGTCAG	ATATATTATT	GTATTTTTTA	2460
15	AGTAAAAACA	CAGATGATCA	ACTTTATGAA	TAATTTACAT	TAGTAGATTT	AGTATGAATT	2520
	GTCTTCATAT	AGTCTGGTCT	TAATATAAT	TTATAAAAGA	TTTTACTGTT	TAATTTAATT	2580
	TAAATTTGAC	GAAATTGCAA	AAGATGTATA	ATGAATTATT	TTTAATGTAA	CGGTTTTCAA	2640
20	AGAAATTTGA	TATAATAGCA	ATAGGTTAAA	CAAAGGAGGA	ATTCAGATGA	TTTTAGGATT	2700
	AGCATTAATT	CCATCAAAGT	CATTTCAAGA	AGCGGTGGAT	TCTTACCGTA	AAAGATATGA	2760
	TAAACAGTAT	TCACGAATTA	AACCACATGT	GACAATTAAA	GCGCCATTTG	AAATTAAAGA	2820
25	TGGTGATTTA	GATTCTGTCA	TTGAACAGGT	TAGAGCTCGT	ATTAATGGTA	TACCAGCAGT	2880
	AGAAGTTCAT	GCTACAAAAG	CTTCTAGCTT	CAAACCAACG	AACAATGTGA	TTTACTTTAA	2940
	AGTTGCGAAG	ACGGACGACT	TAGAAGAATT	GTTTAATCGC	TTTAATGGAG	AAGATTTCTA	3000
30	TGGAGAAGCT	GAACATGTTT	TTGTGCCACA	CTTTACAATA	GCACAAGGAC	TATCTAGCCA	3060
	AGAATTCGAA	GATATTTTTG	GTCaAGTAGC	ATTAGCTGGG	GTAGACCATA	AAGAAATTAT	3120
	CGATGAATTA	ACTTTGTTAC	GTTTTGACGA	TGACGAAGAT	AAATGGAAAG	TTATTGAAAC	3180
35	GTTTAAATTA	GCTTAAGTAA	CATAATAGTA	TTGTTAATCG	TAGTATGTTT	GAATTAATAA	3240
	GAAAATGGTC	ATTTTTATTG	AATGTAATAA	AAATGACCAT	TTTCTTTATT	TTAAAATACG	3300
10	TTTTAACCTT	ACTTAGCTTT	TTCTCTATTT	ACTATAAAGT	rGCTTCCATA	AAATACAGCT	3360
+0	AAGACTAAAA	AGATTAATGC	CGAGAAATAA	AATGTATTGT	TTAAATTGTT	GGTAAATTGT	3420
	GTAATTAATC	CGCCAAATAA	TGGCCCTATC	ATTGAGCCGA	ATCCTTGGAT	ACTATTAAAA	3480
15	ACACCCCAAG	TTTCTTCTTG	TTCATCTGAT	TTGATAAATC	GTGCCATAAA	GGTATTCCAT	3540
	GCTGGTAATA	AGATGCCATA	CATTAGACCG	ATAGCTAAAG	CGATAATCCA	CAAGATGTGA	3600
	ATATTAACAA	TCATAGATAG	AGTAAAAATT	AATATCATGT	ATAAAATAAA	TCCGCTTAGA	3660
50	ATAACACCAT	ACATAAAGTT	TCTGCTGCGG	ТТАТСТАТТА	GTTTCGATAA	AAATAGCATC	3720
	GAAACTGCAC	AGCCGATACC	ACCAATAATG	ATTGCAACAG	TATATTCAAT	тстссттасс	3780

	TGTAAAAGAA	TACCAGGGAA	CAACAATAAA	TGGcGCTTTG	TCACATCAAC	AATTTGTCTC	3900
	AATTGAGCTT	TAACTGGACG	AGTATTATAA	TTTGTTAACT	TTACATCGAC	AAAATAATAT	3960
5	AATATCCATG	CAATTAAAAC	GACTAAAGAC	ATCATGAAGG	CAAAGCGTGT	TGGGTGCACT	4020
	TTGATAAGTA	GATTCATAAA	AACCATACCT	ACCAATAGGC	CTAACAACCA	TGAAAAATAA	4080
	ACATAGCCCA	TTTGTTTGCC	ACGTTTATCT	TCTTCAACAC	TGGATAACAT	AATGACCCAA	4140
10	ATAGGACTAA	CTGCAATACC	GAGCATCATA	GCACTAAATA	TGATTACAAA	AGGTGATGCT	4200
	GGAAACCAAA	ТААСТААААА	TAAACTTGTA	AATGCTAAAA	TAAATCCAGT	CGTTAAAACG	4260
15	ATTTTTGTGC	CGAATTTTTT	CAGTAAAAAT	CCTATAACAA	AGTTTGTAGA	TGCATCAGCA	4320
	ATAAAATGTA	TTGAAAATGC	TAGAGACGTT	ATTGCTACAG	CAATGGATGT	AACTGTTGGC	4380
	AAGAAATTAA	TATAGCTTAG	GATATACATG	CCTCTCGCAA	ATTCCATTAA	AAATAAGATA	4440
20	ATAAGCATTA	AAATGAAATT	TTTATGATTA	GCGTAATTAT	TTAACGAAGA	ATCTTGCATA	4500
	TAAAGGAACC	TTTCCATAAA	TCTCTTGTGG	TTGTGATGAA	TGACCGATTA	AATCAAGTAA	4560
	GTCTCGACAT	ATTGTCTGTG	TAGCATACTT	AATTTTATCT	TGTTCCATTG	TACTAATCAT	4620
25	GTTAGTTAAT	TGCTCATTAC	CGTTAGTTAA	ACTTGCTACA	ATTTTTATTG	CTTCTTCTGG	4680
	AGTATCAGCG	ATTTTACCAA	AACCTTTTTC	TTCAAAGTAA	AGGGCATTTT	CAAGCTCTTG	4740
	ACCAGGTGCA	GGATTTAGGA	AAATCATTGG	AATACAACGG	GCGAAACCTT	CAGTTATTGT	4800
30	GATACCACCA	GGTTTCGTAA	TCATAAGTTG	ACTTGATGCC	ATCCATTCAT	TCATGTGTTT	4860
	GGTATAACCT	AGAATCAATA	CATTCTCGTT	AGATTTAAAC	TTAGCTGTTA	AAGAACGCTT	4920
	TAGCTCTTTG	CTCTTACCAC	AAATCATAAC	TACTTGTGCA	TTTGCaCTTT	tCGCTAATAT	4980
35	ATCAGTAATC	ATCGTGTCAA	AACCTTTAGA	TACACCAAAT	GCACCAGCTG	aCATTAAAAT	5040
	agtīfīgctta	TCTGGATCTA	AGTTGTTGTC	TATTAACCAC	TGCTTTTGAT	TAATAGGCGT	5100
40 ·	TTCAAATTTG	TTATCAATAG	GAATACCTGT	CaCTTTAACT	GTTGAAGGAT	CAATACCTAC	5160
••	GTCTATGAAG	TCTTGTTTCG	TTTCTTTTGT	TGCCACATAA	TATCTTGTTG	AATACGGCGT	5220
	AATCCAGTTT	TTATGTAAGC	GATAGTCTGT	CATCACTGTA	GCAACTGGAA	TATTAATGTT	5280
45	AAATTGCTCA	GTTAGTACCG	ACATAACTGG	TGTAGGAAAC	GTTAATAATA	TTAAATCTGG	5340
	CTTTTCTTTT	ATCAATAAAT	TAATTAACTT	ATTAAGTCCA	TAGTATTTGT	AAAAACATTT	5400
	GTCTAGTTTA	TCTGGGCGGC	TGTAATAAAA	CCCTTTGTAC	ATATTTCTAA	AATTTTAAA	5460
50	GCTATTGATA	TACCATTTTT	TACAAATAGA	AGTCAAAATT	GGATGAGCTT	CCATAAATAA	5520
	ATCGTGCTCA	ATGACGCTTA	AATGGTCTAG	ATTCATATCA	TTAAGTTGAT	TAACGATACT	5580

	TTGAGTAACC	ATTAATAGCC	ACCCTCCGTT	' AGTTTGAAAA	TTTTATTTAA	GTGTAACTTA	570
	TTTTACGGCA	TTATAAAAGA	AATAAAGACG	CAAAGTCGTT	ACATTTATAG	CAATTTTAAT	576
5	CTATAGATGA	ATTGATACAA	AATAAAACGT	TATTTTATAA	AGCAATTTAT	TGTTCTATGT	582
	TTTATTTGTA	TATTTAAAAT	TATCCAGTAT	ACAATTATAG	CATATTTTTG	GAAACAATTA	588
40	TGATATTATA	CCATGTTACA	AGATGGTTTT	AATAATTTAA	GATGAGCCAT	AATTGTAAAA	594
10	CTAATTCATA	ATACCGTATG	TTTTATTTT	AATAGTAGAA	ATTAGAAAAT	GCTGATTAGT	600
	AGGATATAAC	AGTGAAATTA	TAAATTTATT	AACATCAACA	AAACGTGTAT	AATAAACATA	606
15	TTGTAGAAAA	AGGAGCGGTT	CAGTTTGGAT	GCAAGTACGT	TGTTTAAGAA	AGTAAAAGTA	6120
	AAGCGTGTAT	TGGGTTCTTT	AGAACAACAA	ATAGATGATA	TCACTACTGA	TTCACGTACA	618
	GCGAGAGAAG	GTAGCATTTT	TGTCGCTTCA	GTTGGATATA	CTGTAGACAG	TCATAAGTTC	6240
20	TGTCAAAATG	TAGCTGATCA	AGGGTGTAAG	TTGGTAGTGG	TCAATAAAGA	ACAATCATTA	6300
	CCAGCTAACG	TAACACAAGT	GGTTGTGCCG	GACACATTAA	GAGTAGCTAG	TATTCTAGCA	6360
	CACACATTAT	ATGATTATCC	GAGTCATCAG	TTAGTGACAT	TTGGTGTAaC	GGGTACAAAT	6420
25	GGTAAAACTT	CTATTGCGAC	GATGATTCAT	TTAATTCAAA	GAAAGTTACA	AAAAAATAGT	6480
	GCATATTTAG	GAACTAATGG	TTTCCAAATT	AATGAAACAA	AGACAAAAGG	TGCAAATACG	6540
	ACACCAGAAA	CAGTTTCTTT	AACTAAGAAA	ATTAAAGAAG	CAGTTGATGC	AGGCGCTGAA	6600
30	TCTATGACAT	TAGAAGTATC	AAGCCATGGC	TTAGTATTAG	GACGACTGCG	AGGCGTTGAA	6660
	TTTGACGTTG	CAATATTTTC	AAATTTAACA	CAAGACCATT	TAGATTTTCA	TGGCACAATG	672C
	GAAGCATACG	GACACGCGAA	GTCTTTATTG	TTTAGTCAAT	TAGGTGAAGA	TTTGTCGAAA	6780
35	GAAAAGTATG	TCGTGTTAAA	CAATGACGAT	TCATTTTCTG	AGTATTTAAG	AACAGTGACG	6840
	CCTTATGAAG	TATTTAGTTA	TGGAATTGAT	GAGGAAGCCC	AATTTATGGC	TTATAAAAAT	6900
40	CAAGAATCTT	TACAAGGTGT	CAGCTTTGAT	TTTGTAACGC	CTTTTGGAAC	TTACCCAGTA	6960
	AAATCGCCTT	ATGTTGGTAA	GTTTAATATT	TCTAATATTA	TGGCGGCAAT	GATTGCGGTG	7020
	TGGAGTAAAG	GTACATCTTT	AGAAACGATT	ATTAAAGCTG	TTGAAAATTT	AGAACCTGTT	7080
45	GAAGGGCGAT	TAGAAGTTTT	AGATCCTTCG	TTACCTATTG	TATTAATTAT	CGATTATGCA	7140
	CATACAGCTG	ATGGTATGAA	CAAATTAATC	GATGCAGTAC	AGCCTTTTGT	AAAGCAAAAG	7200
	TTGATATTTT	TAGTTGGTAT	GGCAGGCGAA	CGTGATTTAA	CTAAAACGCC	TGAAATGGGG	7260
50	CGAGTTGCCT	GTCGTGCAGA	TTATGTCATT	TTCACACCGG	ATAATCCGGC	AAATGATGAC	7320
	CCGAAAATGT	TAACGGCAGA	ATTAGCCAAA	GGTGCAACAC	ΔΤΌΔΔΔΔΌΤΔ	יייידי א א באדי א מי	7200

	GTTTTAGCAT	CAAAAGGAAG	AGAACCATAT	CAAATCATGC	CAGGGCATAT	TAAGGTGCCA	7500
	CATCGAGATG	ATTTAATTGG	CCTTGAAGCA	GCTTACAAAA	AGTTCGGTGG	TGGCCCTGTT	7560
5	GATTAATAAA	AGATTTATTG	ATGAAGGTAA	AACTATTGAT	GTTTATTTAT	TCGAAGCATT	7620
	ÄAATAACCAG	ATAATCATTG	CTATACCAGA	TTGGTTTTGG	TCATATCAGA	TGGCAATGAC	7680
	ATTAGATGAA	GAAACTTGTT	TTGAAGCAAT	ACTCATGCAA	TTGTTTGTTT	TTAAAGAAGA	7740
10	GGAAGAGGCA	GAATCGATTG	CATCACAACT	AACAGATTGG	ATAGAAACAT	ATAAAAAGGA	7800
	GAAAGACTAA	TGAACTTAAA	GCAAGAAGTT	GAGTCTAGAA	AGACTTTTGC	GATTATTTCA	7860
	CATCCCGATG	CAGGGAAAAC	AACGTTAACT	GAAAAACTAT	TGTACTTCAG	TGGTGCTATT	7920
15	CGTGAAGCGG	GTACAGTTAA	AGGGAAGAAG	ACTGGTAAAT	TTGCGACAAG	TGACTGGATG	7980
	AAAGTTGAAC	AAGAGCGTGG	TATTTCTGTA	ACTAGTTCAG	TAATGCAATT	TGATTACGAT	8040
20	GATTATAAAA	TCAATATCTT	AGATACACCA	GGACATGAAG	ACTTTTCAGA	AGATACGTAT	8100
·	AGAACATTAA	TGGCAGTTGA	CAGTGCTGTC	ATGGTCATAG	ACTGTGCAAA	AGGTATTGAA	8160
	CCACAAACAT	TGAAGTTATT	TAAAGTTTGT	AAAATGCGTG	GTATTCCAAT	CTTTACATTC	8220
25	ATTAATAAAT	TAGACCGAGT	AGGTAAAGAA	CCATTTGAAT	TATTAGATGA	AATCGAAGAG	8280
	ACATTAAATA	TTGAAACATA	CCCTATGAAT	TGGCCAATTG	GTATGGGACA	AAGTTTCTTT	8340
	GGCATCATTG	ATAGAAAGTC	TAAAACAATT	GAACCATTTA	GAGATGAAGA	AAATATATTA	8400
30	CATTTGAATG	ATGATTTTGA	GTTGGAAGAA	GATCATGCAA	TTACAAATGA	TAGTGATTTT	8460
	GAACAAGCGA	TTGAAGAATT	AATGTTGGTT	GAAGAAGCGG	GTGAAGCCTT	TGATAATGAC	8520
	GCGCTGTTGA	GTGGAGACTT	AACACCTGTA	TTTTTCGGTT	CAGCTTTAGC	TAACTTTGGT	8580
35	GTACAAAATT	TCTTAAATGC	ATATGTTGAT	TTTGCGCCAA	TGCCAAATGC	GAGACAAACA	8640
	AAAGAAGACG	TTGAAGTAAG	CCCGTTTGAT	GATTCATTTT	CAGGATTTAT	CTTTAAAATT	8700
	CAAGCCAACA	TGGACCCTAA	ACACCGTGAT	AGAATTGCCT	TTATGCGTGT	CGTTAGTGGT	8760
10	GCATTTGAAC	GTGGTATGGA	TGTTACTTTG	CAACGTACTA	ATAAAAAGCA	AAAGATCACA	8820
	CGTTCAACGT	CATTTATGGC	AGACGATAAA	GAAACTGTGA	ATCATGCTGT	AGCAGGCGAT	8880
1 5	ATCATTGGAC	TATATGATAC	TGGTAATTAT	CAAATTGGAG	ATACTTTAGT	TGGTGGAAAA	8940
.•	CAAACCTACA	GTTTCCAAGA	TTTACCACAA	TTTACGCCAG	AAATTTTTAT	GAAAGTTTCT	9000
	GCTAAAAACG	TCATGAAACA	GAAGCATTTC	CATAAAGGTA	TTGAACAATT	AGTACAAGAA	9060
50	GGTGCGATTC	AATACTATAA	AACATTACAC	АСАААССААА	TTATTTTAGG	TGCTGTTGGT	9120
	CACTTACAAT		0011010101	>ma>>>>			

	AAGATGAACA	CATCAAGATO	GATTTTAGTG	AAAGATAGAT	TATGACGATTT	AGTATTCTTA	9300
	TTTGAAAATG	AATTTGCAAC	AAGATGGTTT	GAAGAGAAAT	TCCCTGAAAT	TAAATTGTAT	9360
5	AGTTTACTTT	AACAGCTCAA	TTGTATAATC	GAATTTGTTA	CATTAAAAAT	AATTGTTTCG	9420
	TTGAAGAAAA	ATAAATTGTA	TATTTTAAAA	GAAAAAGGTA	TACTATGATG	TATCAAATGA	9480
10	ATAACCTATG	GCATTTTGTC	AGAGGGGAGT	AACTTAAGAA	TCATGACCGT	ATAAATGaTT	9540
10	CGACACTTTA	TCGTCATTAC	GArGATATCT	TCCGGTAAAG	TGGGCAATTT	AAATTGCTTA	9600
	GTGAGACCTT	TGCTATTTAT	TTAGCATAGG	TCTTTTTGTT	TGTACTTAAC	TTATTTATTT	9660
15	AAAGGAGTTG	TACATGTTAA	TGGATCCAAG	TTTGATCTTA	CCTTATTTAT	GGGTACTTGT	9720
	CGTTTTAGTA	TTTTTAGAAG	GCTTATTAGC	AGCAGATAAC	GCGATTGTTA	TGGCTGTAAT	9780
	GGTTAAGCAC	TTACCACCCG	AACAACGTAA	AAAAGCTTTG	TTTTACGGTT	TGTTAGGTGC	9840
20	ATTTGTATTT	AGATTTTTAG	CATTATTCTT	AATTAGTATT	ATCGCGAACT	TTTGGTTTAT	9900
	TCAAGCTGCA	GGAGCGGTTT	ACTTAATTTA	TATGTCAATC	AAAAATCTGT	GGCAGTTCTT	9960
	TAAACACCCA	GAAATTGAAA	GTCCTGAAGC	TGGAGATGAT	CATCATTATG	ATGAATCTGG	10020
25	TGAAGAGATT	AAAGCAAGTA	ACAAATCATT	CTGGGGAACT	GTGTTGAAAA	TAGAATTTGC	10080
	AGATATCGCA	TTTGCCATTG	ATTCTATGCT	TGCTGCTTTA	gCTATTGCTG	TAACACTTCC	10140
3 <i>0</i>	TAAAGTTGGT	ATTCACTTTG	GTGGTATGGA	CTTAGGTCAG	TTCGTAGTCA	TGTTCCTAGG	10200
,,,	TGGAATGATT	GGTGTTATTC	TAATGCGTTA	TGCAGCAACA	TGGTTTGTAG	AGCTATTAAA	10260
	CAAATATCCA	GGACTTGAAG	GTGCAGCCTt	CGCGATCGTT	GGTTGGGTAG	GTGTTAAATT	10320
3 5 .	AGTTGTCATG	GTATTAGCGC	ACCCAGACAT	CGCTGTATTG	CCTGAGCACT	TCCCACATGG	10380
	CGTATTATGG	CAATCTATTT	TCTGGACAGT	ACTAATTGGA	TTAGTAATTA	TCGGTTGGTT	10440
	AGGTTCAGTT	GTTÄAAAATA	AAAAATCGCA	TAAATAATTG	ATGTGAAGCG	GACAATCTTA	10500
10	ATTTAGTTTA	AGGTTGTCCT	TTTTCATTTA	ATTGAGTGAT	TTATGAAAAA	TGGATTTTGA	10560
	AGAATGTGAA	TCAAAAGATG	CGATATAGTA	TTAAGAAAAT	GTGCCTTTTA	TATTTAGCAT	10620
	TTTTTCAATA	GAAATTATAT	AGATTTTAAA	GCAAATTAGG	TGTTAATGTG	TCATAATGAT	10680
15	AAGTGATTTT	ATTGAATGGA	GTGGACATTA	GTGGATATTG	GTAAAAAACA	TGTAATTCCT	10740
	AAAAGTCAGT	nACCsaCGTA	AGCGTCGTGA	ATTCTTCCAC	AACGAAGACA	GAGAAGAAAA	10800
50	TTTAAATCAA	CATCAAGATA	AACAAAATAT	AGATAATACA	ACATCAAAAA	AAGCAGATAA	10860
-	GCAAATACAT .	AAAGATTCAA	TTGATAAGCA	CGAACGTTTT	AAAAATAGTT	TATCATCGCA	10920
	TTTAGAACAG .	AGAAACCGTG	ATGTTAATGA	GAATAAAGCT	GAAGAAAGTA	AAAGTAATCA	10980

	AAATTCATTA	GATTCAGTGG	ACCAAGATAC	AGAGAAATCA	AAATATTATG	AGCAAAATTC	11100
	TGAAGCGACT	TTATCAACTA	AATCAACCGA	TAAAGTAGAA	TCAACTGAAA	TGAGAAAGCT	11160
5	AAGTTCAGAT	AAAAACAAAG	TTGGTCATGA	AGAGCAACAT	GTACTTTCTA	AACCTTCAGA	11220
	ACATGATAAA	GAGACTAGAA	TTGATTCTGA	GTCTTCAAGA	ACTGATTCAG	ACAGCTCGAT	11280
10	GCAGACAGAG	AAAATAAAA	AAGACAGTTC	AGATGGAAAT	AAAAGTAGTA	ATCTGAAATC	11340
	TGAAGTAATA	TCAGACAAAT	CAAATACAGT	ACCAAAATTG	TCGGAATCTG	ATGATGAAGT	11400
	AAATAATCAG	AAGCCATTAA	CTTTACCGGA	AGAACAGAAA	TTGAAAAGAC	AGCAAAGTCA	11460
15	AAATGAGCAA	ACAAAAACCT	ATACATATGG	TGATAGCGAA	CAAAATGACA	AGTCTAATCA	11520
	TGAAAATGAT	TTAAGTCATC	ATATACCATC	GATAAGTGAT	GATAAAGATA	ACGTCATGAG	11580
	AGAAAATCAT	ATTGTTGACG	ATAATCCTGA	TAATGATATC	AATACACCAT	CATTATCAAA	11640
20	AACAGATGAC	GATCGAAAAC	TTGATGAAAA	AATTCATGTT	GAAGATAAAC	ATAAACAAAA	11700
	TGCAGACTCG	TCTGAAACGG	TGGGATATCA	AAGTCAGTCA	ACTGCATCTC	ATCGTAGCAC	11760
O.E	TGAAAAAAGA	AATATTTCTA	TTAATGACCA	TGATAAATTA	AACGGTCAAA	AAACAAATAC	11820
25	AAAGACATCG	GCAAATAATA	ATCAAAAAAA	GGCTACATCA	AAATTGAACA	AAGGCCCCC	11880
	TACGAATAAT	AATTATAGTG	ACATTTTGAA	AAAGTTTTGG	ATGATGTATT	GGCCTAAATT	11940
30	AGTTATTCTA	ATGGGTATTA	TTATTCTAAT	TGTTATTTTG	AATGCCATTT	TTAATAATGT	12000
	GAACAAAAAT	GATCGCATGA	ATGATAATAA	TGATGCAGAT	GCTCaAAAAT	ATACGACAAC	12060
	GATGAAAAAT	GCCAATAACA	CAGTTAAATC	GGTCGTTACA	GTTGAAAATG	AAACATCAAA	12120
35	AGATTCmTCA	TTACCTAAAG	ATAAAGCATC	TCAAGACGAA	GTGGGATCAG	GTGTTGTATA	12180
	TAAAAAATCT	GGAGATACGT	TATATATTGT	TACGAATGCA	CACGTTGTCG	GTGATAAAGA	12240
	AAATÉAAAA	ATAACTTTCT	CGAATAATAA	AAGTGTTGTT	GGGAAAGTGC	TTGGTAAAGA	12300
40	TAAATGGTCA	GATTTAGCTG	TTGTTAAAGC	AACTTCTTCA	GACAGTTCAG	TGAAAGAGAT	12360
	AGCTATTGGA	GATTCAAATA	ATTTAGTGTT	AGGAGAGCCA	ATATTAGTCG	TAGGTAATCC	12420
45	ACTTGGTGTA	GACTTTAAAG	GCACTGTGAC	AGAAGGTATT	ATTTCAGGTC	TGAACAGAAA	12480
	TGTTCCTATT	GATTTCGATA	AAGATAATAA	ATATGATATG	TTGATGAAAG	CTTTCCAAAT	12540
	TGATGCATCA	GTAAATCCAG	GTAACTCGGG	TGGTGCTGTC	GTCAATAGAG	AAGGAAAATT	12600
50	AATAGGTGTA	GTTGCAGCTA	AAATTAGTAT	GCCAAACGTT	GAAAnTATGT	CATTTGCA	12658

. (2) INFORMATION FOR SEQ ID NO: 128:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6048 base pairs

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128: TGAAATNGAA TAGTACTATT GCAAGTGTAA AGAGGTTAAT TTTTGCCNCA CGCGGGACTT 60 AAAAAGGCAA CCACTGGTTG TGACATATCC TTATTTACAT TTATAAATAT AAGGAGGAGG 120 10 TAGTAGTGAA AGACTTATTG CAAGCACAGC AAAAGCTTAT ACCGGATCTC ATAGATAAAA 180 TGTATAAACG TTTTTCTATT CTTACTACTA TCTCAAAAAA TCAGCCTGTC GGACGTCGAA 240 15 GTTTAAGCGA ACATATGGAT ATGACTGAAC GTGTACTGCG TTCTGAAACA GATATGCTTA 300 AGAAACAAGA TTTGATAAAA GTTAAGCCTA CCGGAATGGA AATTACAGCT GAAGGTGAGC 360 AACTGATTTC GCAATTGAAA GGTTACTTTG ATATCTATGC AGATGATAAT CGTCTGTCAG 420 20 AAGGTATTAA GAATAAATTT CAAATTAAGG AAGTTCATGT TGTTCCTGGT GATGCTGATA 480 ATAGTCAATC TGTTAAAACA GAATTAGGTA GACAAGCAGG TCAATTACTT GAAGGCATAT 540 TACAAGAAGA CGCGATAGTT GCTGTAACTG GCGGATCCAC GATGGCATGT GTTAGTGAAG 600 25 CAATTCATTT ATTACCATAT AATGTATTCT TCGTACCAGC CAGAGGTGGA CTAGGCGAAA 660 ATGTTGTCTT TCAGGCAAAC ACAATTGCAG CCAGTATGGC aCAACAAGCT GGCGGTTATT 720 ATACGACGAT GTATGTACCT GATAATGTCA GTGAAACAAC ATATAATACA TTGTTGTTAG 780 30 AGCCATCAGT CATAAACACT TTAGACAAAA TTAAACAAGC AAACGTTATA TTACACGGCA 840 TTGGTGATGC GCTGAAGATG GCGCATCGAC GTCAATCACC TGAAAAGGTC ATTGAACAAC 900 35 TTCAACATCA TCAAGCTGTC GGAGAGGCAT TTGGTTATTA TTTTGATACA CAAGGTCAAA 960 TTGTCCATAA GGTTAAAACA ATTGGACTTC AATTAGAAGA CCTTGAATCA AAAGACTTTA 1020 TTTTTGCAGT TGCAGGAGGC AAATCGAAAG GTGAAGCAAT TAAAGCATAC TTGACGATTG 1080 40 CACCCAAGAA TACAGTGTTA ATCACTGATG AAGCCGCAGC AAAGATAATA CTTGAATAAG 1140 AGATAAAAG TTTAATACTT TTTAAATATC ATTTTAAAGG AGGCCATTAT AATGGCAGTA 1200 AAAGTAGCAA TTAATGGTTT TGGTAGAATT GGTCGTTTAG CATTCAGAAG AATTCAAGAA 1260 45 GTAGAAGGTC TTGAAGTTGT AGCAGTAAAC GACTTAACAG ATGACGACAT GTTAGCGCAT 1320 TTATTAAAAT ATGACACTAT GCAAGGTCGT TTCACAGGTG AAGTAGAGGT AGTTGATGGT 1380 GGTTTCCGCG TAAATGGTAA AGAAGTTAAA TCATTCAGTG AACCAGATGC AAGCAAATTA 1440 CCTTGGAAAG ACTTAAATAT CGATGTAGTA TTAGAATGTA CTGGTTTCTA CACTGATAAA 1500

55

1560

GATAAAGCAC AAGCTCATAT TGAAGCAGGC GCTAAAAAAG TATTAATCTC AGCACCAGCT

	ACAGTTGTTT	CAGGTGCTTC	ATGTACTACA	AACTCATTAG	CACCAGTTGC	TAAAGTTTTA	168
	AACGATGACT	TTGGTTTAGT	TGAAGGTTTA	ATGACTACAA	TTCACGCTTA	CACAGGTGAT	174
5	CAAAATACAC	AAGACGCACC	TCACAGAAAA	GGTGACAAAC	GTCGTGCTCG	TGCAGCGGCA	180
	GAAAACATCA	TCCCTAACTC	AACAGGTGCT	GCTAAAGCTA	TCGGTAAAGT	TATTCCTGAA	186
10	ATCGATGGTA	AATTAGATGG	TGGTGCACAA	CGTGTTCCTG	TAGCTACAGG	TTCATTAACT	192
	GAATTAACAG	TAGTATTAGA	AAAACAAGAC	GTAACAGTTG	AACAAGTTAA	CGAAGCTATG	198
	AAAAATGCTT	CAAACGAATC	ATTCGGTtAC	ACTGAAGACG	AAATCGTTTC	TTCAGACGTT	204
15	GTAGGTATGA	CTTACGGTTC	ATTATTCGAC	GCTACACAAA	CTCGTGTAAT	GTCAGTTGGC	210
	GACCGTCAAT	TAGTTAAAGT	TGCAGCTTGG	TATGATAACG	AAATGTCATA	TACTGCACAA	216
	TTAGTTCGTA	CATTAGCATA	CTTAGCTGAA	CTTTCTAAAT	AATTTTAGTA	TAGTTTTTAT	222
20	TCAAATACGC	TAGTGCTCAG	AACTATTTAG	CATTAATTAA	AGCTTATGAG	TAAGCGGGGA	228
	GCACAAACGC	TTCTCCGCTT	ATTTTTATAT	AAAATTTCCT	AATTACAAGG	AGGAAACACC	234
	ATGGCTAAAA	AAATTGTTTC	TGATTTAGAT	CTTAAAGGTA	AAACAGTCCT	AGTACGTGCT	240
25	GATTTTAACG	TACCTTTAAA	AGACGGTGAA	ATTACTAATG	ACAACCGTAT	CGTTCAAGCT	246
	TTACCTACAA	TTCAATACAT	CATCGAACAA	GGTGGTAAAA	TCGTACTATT	TTCACATTTA	252
30	GGTAAAGTGA	AAGAAGAAAG	TGATAAAGCA	AAATTAACTT	TACGTCCAGT	TGCTGAAGAC	258
	TTATCTAAGA	AATTAGATAA	AGAAGTTGTT	TTCGTACCAG	AAACACGCGG	CGAAAAACTT	264
	GAAGCTGCTA	TTAAAGACCT	TAAAGAAGGC	GACGTATTAT	TAGTTGAAAA	TACACGTTAT	270
35	GAAGATTTAG	ACGGTAAAAA	AGAATCTAAA	AATGATCCAG	AATTAGGTAA	ATACTGGGCA	276
	TCTTTAGGTG	ATGTGTTTGT	AAATGATGCT	TTTGGTACTG	CGCATCGTGA	GCATGCATCT	282
	AATĢTTGGTA	TTTCTACACA	TTTAGAAACT	GCAGCTGGAT	TCTTAATGGA	TAAAGAAATT	288
40	AAGTTTATTG	GCGGCGTAGT	TAACGATCCA	CATAAACCAG	TTGTTGCTAT	TTTAGGTGGA	2940
	GCAAAAGTAT	CTGACAAAAT	TAATGTCATC	AAAAACTTAG	TTAACATAGC	TGATAAAATT	3000
4-	ATCATCGGCG	GAGGTATGGC	TTATACTTTC	TTAAAAGCGC	aaggtaaaga	AATTGGTATT	3060
45	TCATTATTAG	AAGAAGATAA	AATCGACTTC	GCAAAAGATT	TATTAGAAAA	ACATGGTGAT	3120
	AAAATTGTAT	TACCAGTAGA	CACTAAAGTT	GCTAAAGAAT	TTTCTAATGA	TGCCAAAATC	318
50	ACTGTAGTAC	CATCTGATTC	AATTCCAGCA	GACCAAGAAG	GTATGGATAT	TGGACCAAAC	324
	ACTGTAAAAT	TATTTGCAGA	TGAATTAGAA	GGTGCGCACA	CTGTTGTATG	GAATGGACCT	330
	ATGGGTGTAT	TCGAGTTCAG	ТААСТТТССА	CAAGGTACAA	TTGGTGTATG	ТАААССААТТ	336

	TCTTTAGGTT	' TTGAAAATGA	CTTCACTCAT	ATTTCAACTG	GTGGCGGCGC	GTCATTAGAG	348
	TACCTAGAAG	GTAAAGAATT	GCCTGGTATC	AAAGCAATCA	АТААТАААТА	ATAAAGTGAT	354
5	AGTTTAAAGT	GATGTGGCAT	GTTTGTTTAA	CATTGTTACG	GGAAAACAGT	CACAAGATGA	360
	CATCGTGTTT	CATCACTTTT	САААААТАТТ	TACAAAACAA	GGAGTGTCTT	TAATGAGAAC	366
10	ACCAATTATA	GCTGGTAACT	GGAAAATGAA	CAAAACAGTA	CAAGAAGCAA	AAGatTCGTC	372
	AATACATTAC	CAACACTACC	AGATTCAAAA	GAAGTAGAAT	CAGTAATTTG	TGCACCAGCA	378
	ATTCAATTAG	ATGCATTAAC	TACTGCAGTT	AAAGAAGGAA	AAGCACAAGG	TTTAGAAATC	384
15	GGTGCTCAAA	ATACGTATTT	CGAAGATAAT	GGTGCGTTCA	CAGGTGAAAC	GTCTCCAGTT	390
	GCATTAGCAG	ATTTAGGCGT	TAAATACGTT	GTTATCGGTC	ATTCTGAACG	TCGTGAATTA	396
	TTCCACGAAA	CAGATGAAGA	AATTAACAAA	AAAGCGCACG	CTATTTTCAA	ACATGGAATG	402
20	ACTCCAATTA	TATGTGTTGG	TGAAACAGAC	GAAGAGCGTG	AAAGTGGTAA	AGCTAACGAT	408
	GTTGTAGGTG	AGCAAGTTAA	GAAAGCTGTT	GCAGGTTTAT	CTGAAGATCA	ACTTAAATCA	414
	GTTGTAATTG	CTTATGAACC	AATCTGGGCA	ATCGGAACTG	GTAAATCATC	AACATCTGAA	420
25	GATGCAAATG	AAATGTGTGC	ATTTGTACGT	CAAACTATTG	CTGACTTATC	AAGCAAAGAA	4260
	GTATCAGAAG	CAACTCGTAT	TCAATATGGT	GGTAGTGTTA	AACCTAACAA	CATTAAAGAA	4320
30	TACATGGCAC	AAACTGATAT	TGATGGGGCA	TTAGTAGGTG	GCGCATCACT	TAAAGTTGAA	4380
	GATTTCGTAC	AATTGTTAGA	AGGTGCAAAA	TAATCATGGC	TAAGAAACCa	ACTGCGTTAA	4440
	TTATTTTAGA	TGGTTTTGCG	AACCGCGAAA	GCGAACATGG	TAATGCGGTA	AAATTAGCAA	4500
35	ACAAGCCTAA	TTTTGATCGT	TATTACAACA	AATATCCAAC	GACTCAAATC	GAAGCGAGTG	4560
	GCTTAGATGT	TGGACTACCT	GAAGGACAAA	TGGGTAACTC	AGAAGTTGGT	CATATGAATA	4620
	TCGGTGCAGG	ACGTATCGTT	TATCAAAGTT	TAACTCGAAT	CAATAAATCA	ATTGAAGACG	4680
40	GTGÄTTTCTT	TGAAAATGAT	GTTTTAAATA	ATGCAATTGC	ACACGTGAAT	TCACATGATT	4740
	CAGCGTTACA	CATCTTTGGT	TTATTGTCTG	ACGGTGGTGT	ACACAGTCAT	TACAAACATT	4800
	TATTTGCTTT	GTTAGAACTT	GCTAAAAAAC	AAGGTGTTGA	AAAAGTTTAC	GTACACGCAT	4860
45	TTTTAGATGG	CCGTGACGTA	GATCAAAAAT	CCGCTTTGAA	ATACATCGAA	GAGACTGAAG	4920
	СТАААТТСАА	TGAATTAGGC	ATTGGTCAAT	TTGCATCTGT	GTCTGGTCGT	TATTATGCAA	4980
50	TGGATCGTGA	CAAACGTTGG	GAACGTGAAG	AAAAAGCTTA	CAATGCTATT	CGTAATTTTG	5040
	ATGCCCCAAC	TTATGCAACT	GCCAAAGAAG	GTGTAGAAGC	AAGCTATAAT	GAGGGCTTAA	5100
	CTGACGAATT	CGTAGTACCA	ттсатсстис	ACAATCAAAA	TCACCCTCTT	A A TO A TO COA CO	E1 C0

	CGAACAGAGC ATTCGAAGGC TTTAAAGTTG AACAAGTTAA AGACTTATTC TATGCAACAT	5280
_	TCACTAAGTA TAATGACAAT ATCGATGCGG CTATCGTCTT CGAAAAAGTT GATTTAAATA	5340
5	ATACAATTGG TGAAATTGCA CAAAATAACA ATTTAACTCA ATTACGTATT GCAGAAACTG	5400
	AAAAATACCC TCACGTTACT TACTTTATGA GTGGTGGACG TAACGAGGAA TTTAAAGGTG	5460
0	AACGCCGTCG TTTAATTGAT TCACCTAAAG TTGCAACGTA TGACTTGAAA CCAGAAATGA	5520
-	GTGCTTATGA AGTTAAAGAT GCATTATTAG AAGAGTTAAA TAAAGGTGAC TTGGACTTAA	5580
·	TTATTTTAAA CTTTGCTAAC CCTGATATGG TTGGACATAG TGGTATGCTT GAGCCGACAA	5640
5	TCAAAGCAAT CGAAGCGGTT GATGAATGTT TAGGAGAAGT GGTTGATAAG ATTTTAGACA	5700
	TGGACGGTTA TGCAATTATT ACTGCTGACC ATGGTAACTC TGATCAAGTA TTGACGGATG	5760
	ATGATCAACC AATGACTACG CAWACAACGA ACCCAGTACC AGTGATTGTA ACAAAAGAAG	5820
o	GCGTTACACT TAGAGAAACT GGTCGCTTAG GTGACTTAGC ACCTACATTA TTAGATTTAT	5880
	TAAATGTAGA ACAACCTGAA GATATGACAG GTGAATCTTT AATTAAACAC TAATATTGTA	5940
	AAAGATGTTA AGTAAACGCT TAATGACACT TATTTTTTGA AAATAATAGT AATATCNTTT	6000
5	TGTTAAATGA AAGAATAAAG CTATAATAAT TATAGAATAA CTATTTAn	6048
	(2) INFORMATION FOR SEQ ID NO: 129:	
0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5602 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:	
	AAAGAAGTGC AAGATATCAT CGCATTAATT AAGTCGTTAC AAAGTGTAAT TGTAGACATC	60
0	GCTTCCAATA ATGTTGATAC AATTATGCCT GGTTATACTC ATTTACAGCG TGCACAGCCA	120
	ATTTCATTTG CACATCATAT TATGACTTAT TTTTGGATGT TACAACGAGA CCAACAACGA	180
_	TTTGAAGATA GTTTAAAACG AATCGATATT AATCCTTTAG GTGCAGCAGC CTTAAGTGGT	240

ACCACATACC CTATCGATAG ACACGAGACA ACAGCATTGT TGAACTTTGG CAGTCTCTAT

GAGAATAGCC TAGATGCTGT TAGTGACAGA GACTATATTA TTGAAACATT GCATAATATT

TCTTTAACGA TGGTTCACTT ATCACGCTTT GCAGAGGAAA TTATTTTCTG GTCCACAGAC

GAAGCTAAAT TCATTACATT ATCAGATGCA TTTTCAACTG GCTCATCTAT TATGCCACAA

AAGAAAAATC CTGATATGGC AGAATTAATT AGAGGTAAAG TTGGTCGAAC GACTGGTCAT

300

360

420

480

540

55 -

	GAAGATAAAG	AAGGTTTATT	CGATGCTGTC	CATACAATTA	AAGGTTCTTT	ACGTATTTTC	660
5	GAAGGTATGA	TTCAAACGAT	GACAATTAAT	AAAGAACGAC	TCAATCAAAC	TGTTAAAGAA	720
5	GATTTTTCAA	ATGCAACGGA	ACTAGCAGAT	TATTTAGTA	СТАААААТАТ	TCCATTTAGA	780
	ACTGCACATG	AAATTGTAGG	AAAAATCGTC	TTAGAATGTA	TACAACAAGG	TCATTATTTA	840
10	TTAGATGTTC	CTTTAGCAAC	ATATCAACAA	CATCATTCTA	GTATTGATGC	CGATATTTAC	900
	GATTATTTGC	AGCCTGAAAA	TTGTTTAAAA	CGACGTCAAA	GTTACGGTTC	AACAGGTCAA	960
	TCATCGGTCA	AACAACAACT	TGATGTTGCT	AAACAATTAC	TATCACAATA	AATACGTTAA	1020
15	TCTACCTACC	CACAATGTCT	ATTAAAATTA	CATTGTGGGT	ATTTTAATGC	TCTCTTCGTC	1080
	TTGTTGAACA	TCACATTTTT	AAGATTCCTA	AAATGTTTGA	TAATTCTTTT	AAATTTATAT	1140
	TACAAAAATG	TTATAAATTG	TAAAAGAAAT	GTGTAAAGCG	TTTTCACAAG	CAGGTTTTTG	1200
20	TAGTATTTTA	AAATTGTTAG	ACTACAAATA	AAGAGATGAA	AGGATAAAGA	CTATGACTAA	1260
	CTCTTCGAAA	AGCTTCACTA	AATTTATGGC	TGCTTCTGCT	GTTTTTACTA	TGGGATTTTT	1320
	ATCAGTACCT	ACTGCTGGCG	CTGAACAAAC	AAATCAAATT	GCAAATAAAC	CTCAGGCTAT	1380
25	TCAATGGCAT	ACAAATTTAA	CGAATGAGCG	ATTCACTACT	ATCGCACATC	GTGGCGCAAG	1440
	TGGCTATGCA	CCCGAGCATA	CGTTTCAAGC	ATATGATAAG	AGTCATAATG	AGTTAAAAGC	1500
30	ATCTTATATC	GAAATTGATT	TACAACGTAC	CAAAGATGGC	CATTTAGTTG	CTATGCATGA	1560
	TGAAACTGTT	AACCGTACAA	CAAATGGACA	CGGTAAAGTT	GAGGATTATA	CCCTTGATGA	1620
	ATTAAAACAG	TTAGATGCAG	GAAGTTGGTT	ТААТААААА	TATCCAAAAT	ACGCAAGAGC	1680
35 .	AAGTTATAAA	AATGCTAAAG	TACCCACTTT	AGATGAAATT	TTAGAACGTT	ATGGCCCGAA	1740
	TGCAAACTAT	TATATTGAAA	CAAAGTCACC	TGATGTATAC	CCAGGAATGG	AAGAACAATT	1800
	ATTAGCTTCA	TTGAAAAAGC	ATCACCTTTT	AAATAACAAT	AAATTAAAA	ATGGACATGT	- 1860
40	AATGATTCAA	TCATTTTCTG	ACGAAAGTTT	AAAGAAAATT	CATCGTCAAA	ATAAGCATGT	1920
	GCCATTAGTA	AAATTAGTTG	ATAAAGGTGA	ACTACAACAA	TTTAACGACC	AACGCTTAAA	1980
	AGAGATACGC	TCTTATGCGA	TTGGATTAGG	TCCTGATTAT	ACAGATTTAA	CTGAACAAAA	2040
15	TACCCATCAT	TTAAAAGACT	TAGGATTTAT	AGTACATCCT	TATACAGTGA	ATGAAAAAGC	2100
•	TGATATGTTA	CGATTAAATA	AATATGGCGT	TGATGGTGTC	TTTACAAATT	TCGCTGATAA	2160
50	ATATAAAGAA	GTCATTAAGT	AGTAATGTTA	aactagaaaa	CATAAATACA	AAAATATAGC	2220
	TATTACTATA	AAAAACAGCA	GTAAGATATT	TCCAAATTGA	AATTATCCTA	CTGCTGTCTT	2280
	TTTGGGAGTG	GGACAGAAAT	GATATTTTCG	CAAAATTTAT	TTCGTCGTCC	CACCCCAACT	2340

	TIGICIGIAG	AAATTGAGGA	GCTAATTTCT	CTGTGTCGGG	GCTCCACCCC	AACTTGCACA	246
_	CTATTGTAAG	CTGACTTTCC	GCCAGCCTCT	GTGTTGGGGC	CCCGCCAACT	TGCACACTAT	252
5	TGTAAGCTGA	CTTTCCACCA	GCCTCTGTGT	TGGGGCCCCG	ACTATTTTTG	AAAAGAGCGT	258
	GTTACACGGG	CATTGTTTTA	CAGTCAACTA	CTGCTAAAAT	AAAATTAACG	AGCTTAGGGC	264
10	TTTGTTTTCT	GTCCCAAGCT	CGTTAAATCA	CATATGATAA	TTAATTATGC	CCAACCACGA	270
	TATCTAGCTG	CTTCTGCTGT	ACGTTTAATA	CCTATGATAT	ATGCTGCAAG	TCTCATATCT	276
	ATTTTTCGGT	TTTGAGACAA	TTCGTAAATC	GTATCAAATG	CCCCTTCTAA	TTTTTCACGT	282
15	AGCTTTTCAT	TAACTTCTTC	TTCAGACCAA	TAATAACCTT	GATTATTTTG	TACCCATTCG	288
	AAGTAAGAAA	CCGTEACACC	ACCAGCACTT	GCTAATACGT	CTGGAACTAA	TAATATACCA	294
	CGTTCAGTTA	AAATACGTGT	TGCTTCTGGT	GTTGTAGGTC	CATTAGCAGC	TTCAACAACG	300
20	ATACTAGCTT	TAATATCATG	TGCATTGTCT	TCTGTAATTT	GGTTTGAAAT	AGCCGCTGGT	306
	ACTAAAATGT	CACAATCTAA	TTCAAACAAT	TCTTTATTIG	AGATTGTTTC	TTCAAATAAA	312
	TTTGTTACCG	TACCAAAACT	ATCACGACGG	TCTAATAAAT	AATCTATATC	TAAGCCATTT	318
25	GGATCGTGTA	ATGCACCGTA	AGCATCAGAG	ATACCTACAA	TTTTTGCACC	TAAATCATAT	324
	AAGAATTTAG	CTAAGAAACT	TCCGGCATTA	CCGAAACCTT	GAATAACAAC	CTTGGCACCT	330
30	TCAATTTGCA	TATTACGACG	TTTTGCAGCT	TGTTCAATTG	CAATAACTAC	ACCTAGTGCA	336
	GTTGATCTGT	CGCGTCCATG	AGAACCACCC	AATACAATTG	GTTTACCTGT	GATGAAACCT	342
	GGTGAATTAA	ATTTATCTAA	TGCACTATAT	TCATCCATCA	TCCAAGCCAT	AATTTGTGAG	348
35	TTTGTAAATA	CATCTGGTGC	TGGAATATCT	TTGTTCGGAC	CTACGAATTG	TGAAATTGCT	354
	CTTACATATC	CGCGTGATAA	ACGTTCAACT	TCATGAATGC	TCATTTGACG	TGGATCACAA	3600
	ACGATACCAC	CCTTACCACC	ACCGTATGGT	AAGTTTACAA	TGCCACATTT	CAAAGTCATC	3660
10	CACATTGATA	ATGCTTTTAC	TTCTTCTTCA	TCAACATCTG	GGTGGAAACG	CACGCCCCCT	3720
	TTTGTTGGTC	CAACAGCATC	ATTATGTTGC	GCACGGTAAC	CTGTGAATGT	TTTTACTGTG	3780
	CCATCATCCA	TTCGTACAGG	GATACGCACT	TGTAACATTC	TTAAAGGTTC	TTTAATTAAA	3840
15	TCGTACATTC	CTtCGTCAAA	TCCCAATTTA	TGCAATGCTT	CTTTAATAAT	TCCTTGAGTA	3900
	GAAGTTACTA	AATTATTGTT	CTCAGTCATG	ATCCTTTTCG	CCTCTTCTTT	ACCTAATGAT	3960
50	TTCGCTTTCA	AACATATTGT	AACATAACGT	ATTCCTTTTT	AAAGCCCTTA	CAAACTGATT	4020
	GTTACAACTT	TTTGACATTA	TTGAAATACA	TGTCTTATTT	TTTCAAGTGC	AAGGTCCAAT	4080
	TCTTCTTTAG	ТААТААТТАА	тестестесь	ADDCCADTCA	СВСТВТСВТС		4141

	ACACCTATAA	ACAAACCACG	TCCACGGACT	TCTTTAATTG	ATGGATGATC	AATTTGCTTT	4260
	AATTGTTCTT	TAAAATAATC	TCCTAATTCT	AAAGAGCGGC	CTGGTAAATC	CTCATCAACG	4320
5	ATAACATCTA	ATGCAGCAAT	TGATGCAGCA	CAAGCAAGTG	GATTACCACC	AAATGTTGAA	4380
	CCATGTGAGC	CAGGTGTAAA	GACATCTAAT	ACTTCTTTAT	CTGCTAATAC	AACAGAAATT	4440
	GGGAAGACTC	CACCACCTAG	TGCTTTACCT	AAAATATAGA	CATCAGGTTT	TACATTATCC	4500
10	CAATCCGTAG	CAAATAATTT	ACCCGAACGA	CCTAATCCTG	CTTGGATTTC	GTCAGCAATA	4560
	AATAAGACAT	TATGTTCATC	ACATAATTCT	CTAATTGCTT	TCAAATATCC	TTCTGGCGGT	4620
15	ATATTTATAC	CCGCTTCACC	TTGAATTGGT	ТСТАСТАААА	CTGCTGCAGT	ATTTTCATTA	4680
10	ATTGCAGCTT	TCAATGCATC	TACATCTCCA	AAATCAACTT	TTCTAAATCC	ATCTAATAAC	4740
	GGACCATAAC	CACGTTGGTA	TTCTGCTTCT	GAAGATAATG	AAACTGGCGC	CATTGTTCGA	4800
20 '	CCATGGAAGT	TACCATTAAA	TGCAATGATT	TCTGCTTTAT	TTGGCTCAAT	TCCTTTAACA	4860
	TCGTATGCCC	AGCGTCGTGC	TGCTTTCAAA	GCTGTTTCTA	CTGCTTCAGC	ACCTGTATTC	4920
	ATTGGTAAAG	CTTTATCTTT	ACCTGCCAGT	TTACAAATTT	TTTCGTACCA	TTCACCTAAG	4980
25	TTATCACTAT	GAAAAGCACG	TGAAACTAAA	GTCACTTTAT	CAGCTTGATC	TTTTAATGCT	5040
	TGAATAATTT	TCGGATGTCT	ATGACCTTGG	TTAACAGCGG	AATATGCAGA	TAACATATCC	5100
	ATATATTTAT	TGCCTTCAGG	ATCTTTAACC	CATACCCCTT	CAGCTTcTGa	AATGaCAATT	5160
30	GGCAATGGTA	AATAATTATG	TGCTCCGTAA	TGATTTGTTA	ACTCAATAAT	TTTTTCAGAT	5220
	TTAGTCATCA	TATCTCCCCT	TTTCATCATT	TATAACTATT	ATACATGAAA	CATTATCCAA	5280
35	ATAATTACAT	TAGTTTTCAA	AGCAGATACT	TTTCCACCAA	AAAAGATGAA	ATAATCACTA	5340
33	AGTITCATTA	AATTTGTCTA	TTTTGAAAAC	CCTTACATTT	ATAATGACAT	AATTACTTAA	5400
	ATGATTACAA	GCAAAAGAAT	TGATAATTTT	ACACTTAATC	AAAAGTATAT	TTTACTAAGA	5460
40	ATATTTTTAT	TTATAAATAT	TGAAAACCAC	TAACAAATTG	CATACACAAT	ATCATTAGTG	5520
	GTAACAGTTA	AACACTTATT	TATCTTTACG	GGGTAATGGG	TTAAAACCCT	TnCATTAAAA	5580
	TTGGATGnCC	ATAAAATTAG	GG				5602

(2) INFORMATION FOR SEQ ID NO: 130:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5924 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

55

50

	TAACCCCATT	TTACCTGGAA	AAATCgTTTG	CGATGCaATm	GCaTTtGaAT	ATAAATACAT	60
	TTTACGTATa	GAATTATAAA	AgGTTTCATT	Caaatcttag	GGTCAAAAAT	GTTATAATAT	120
5	TTTTATGTCA	AATTTAAAAC	AGTAACACTT	ATTTACAAGG	TTGCAATATT	TTGAAGTAAT	180
	AAAGGAAGTG	TCGCGTATTT	TAACTTTTTC	AGAGCAAAAT	GCACTCGCGA	AAATAGATGA	240
10	TTTAATGAAT	ACTTATTGCA	ATCAATGTCC	AATCAAAACT	CGTCTGCGTA	AATTAGAGGG	300
	GAAAACGAAG	GCGCATCATT	TTTGTATCAA	TGAGTGTTCA	ATAGGGAAAG	AAATAAAACA	360
	ATTAGGAAAT	GAACTTCAAT	AGGAGGAAGT	CAAATGAAAA	TTATATCTAT	ATCAGAAACA	420
15	CCGAACCACA	ACACAATGAA	GATTACACTT	AGTGAAAGCA	GAGAAGGTAT	GACATCAGAT	480
	ACGTATACTA	AAGTTGATGA	TTCACAGCCA	GCATTTATTA	ATGACATCTT	AAAGGTTGAA	540
	GGCGTTAAAT	CAATTTTCCA	TGTTATGGAC	TTTATTTCAG	TAGATAAAGA	AAATGACGCA	600
20	AATTGGGAAA	CAGTATTGCC	AAAAGTAGAG	GCTGTATTCG	TTTTAAATAA	TCATCAACTA	660
	GTATTCGGGG	GGAATAAAGT	ATATGGAAAT	TTTACGTATA	GAGCCAACAC	CAAGTCCAAA	720
	TACAATGAAA	GTTGTTTTGT	CATATACAAG	AGAAGACAAG	TTATCTAATA	СТТАТААААА	780
25	AGTAGAAGAA	ACACAACCAA	GATTTATAAA	TCAGTTGTTA	TCTATAGATG	GTATCACTTC	840
	CATTTTTCAT	GTCATGAACT	TCTTAGCTGT	TGATAAGGCA	CCAAAAGCTG	ATTGGGAAGT	900
30	CATATTACCT	GATATTAAAG	CTGCTTTTTC	TGATGCGAAT	AAGGTTTTAG	AATCTGTAAA	960
30	TGAACCTCAA	ATTGACAATC	ATTTTGGTGA	AATTAAAGCT	GAATTATTAA	CTTTTAAGGG	1020
	TATACCGTAT	CAAATTAAGC	TAACTTCTGC	TGACCAAGAA	TTAAGAGAAC	AATTACCACA	1080
35	AACATATGTT	GACCATATGA	CTCAAGCGCA	AACAGCACAT	GACAATATTG	TTTTTATGCG	1140
	TAAATGGCTA	GATTTAGGAA	ATCGCTATGG	AAATATTCAA	GAAGTAATGG	ATGGTGTCCT	1200
	AGAAĞAAGTG	CTAGCTACCT	ATCCAGAATC	ACAGTTACCC	GTATTGGTAA	AACATGCTTT	1260
40	AGAAGAAAAT	CACGCAACTA	ATAATTATCA	TTTCTATCGA	CATGTCTCTT	TGGATGAATA	1320
	TCATGCAACT	GATAATTGGA	AGACTCGATT	ACGAATGTTA	AACCATTTTC	CAAAGCCGAC	1380
	TTTTGAAGAT	ATACCGCTGC	TTGATTTAGC	TTTATCTGAT	GAAAAAGTAC	CGGTTAGACG	1440
45	TCAAGCGATT	GTATTATTAG	GTATGATTGA	aagtaaagaa	ATTTTACCGT	AATATATTA	1500
	GGGGCTTCGT	GATAAAAGTC	CTGCTGTAAG	AAGAACAGCA	GGGGATTGCA	TAAGCGATTT	1560
50	AGGGTATCCA	GAGGCACTAC	CAGAAATGGT	GCTACTATTA	GATGATCCAC	AGAAAATCGT	1620
<i>50</i>	TAGGTGGCGT	GCTGCTATGT-	TTATCTTTGA	TGAAGGTAAT	GCAGAGCAGC	TTCCCGCACT	1680
	AAAAGCCCAT	ስጥፕልስ ጥ ርስርል	ATTCCCTTTTCA	አርነጥጥ አስ አጥጥ አ	CARATTCARA	TCCCCAMATIC	1740

	AATTTAATTG	GAGGAATTAA	ATATGAATGC	ATATGATGCI	TATATGAAAG	AAATTGCGCA	1860
_	ACAAATGCGT	GGCGAATTAA	CTCAAAATGG	TTTTACAAGT	TTAGAAACGA	GCGAACAGct	1920
5	ATCGGAGTAT	ATGAACCAAG	TAAATGCTGA	TGACACTACT	TTTGTAGTTA	TTAACTCTAC	1980
	ATGCGGCTGT	GCAGCTGGAT	TAGCAAGACC	AGCTGCAGTA	GCAGTTGCAA	CACAAAATGA	2040
10	ACATAGACCT	ACAAATACAG	TTACAGTTTT	TGCTGGGCAA	GATAAAGAAG	CAACTGCTAC	2100
	AATGCGAGAA	TTCATTCAGC	AAGCACCATC	TAGTCCTTCG	TATGCTTTAT	TCAAAGGTCA	2160
	AGATTTAGTT	TATTTTATGC	CTAGAGAATT	TATCGAAGGT	AGAGATATTA	ATGACATTGC	2220
15	AATGGACTTA	AAGGATGCCT	TTGACGAAAA	TTGTAAATAG	TACACATAAA	TAAATATAAA	2280
	GGTTAACACA	TTTTATAATA	TTAAAAATGG	TGTCTGTCAT	TGAAAATAGA	GAATATAGTT	2340
	GTATTCTATT	TGTTAAATAA	AGTCCGTTTT	TACCAACTAT	ATTTTCTAGA	AATTTAACTG	2400
20	TTTTAATAGG	ACATCAAACA	TAATATTCaA	ATCaTGTGTT	AACCTCTTTT	TTAAAATTTT	2460
	TTAGCATTAA	AGTTATAGAT	TTGGGTAAAC	AATTACCAAT	TGGAAACATA	TATCACGTTA	2520
	CGATGGGGTA	GGTACTTAAT	CAGCATTTTA	TAAATAAAGT	AACGGAATTC	ATGATATTAA	2580
25	TATCATATTC	CTAAAATGAG	TGATAACAAA	ATGCTACATA	AAGTTAAGTT	ATATCAAACT	2640
	AAATATACAT	ACTATAAATA	ATGAAAATGA	GGTGTTATCG	CATATGTTGA	ATTCATTTGA	2700
30	TGCAGCATAT	CACAGTCTTT	GTGAAGAAGT	TTTAGAAATA	GGAAATACAC	GAAATGATCG	2760
	CACAAATACA	GGTACGATTT	CGAAATTTGG	TCATCAACTT	CGCTTTGACT	TATCTAAAGG	2820
	ATTTCCACTA	TTAACGACAA	AGAAAGTTTC	TTTTAAATTA	GTAGCAACCG	AATTATTATG	2880
35	GTTCATTAAA	GGAGATACAA	ACATCCAATA	CTTATTAAAA	TATAATAATA	ATATATGGAA	2940
	CGAATGGGCT	TTTGAAAATT	ATATCAAATC	AGACGAGTAT	AAAGGTCCAG	ATATGACAGA	3000
	TTTCGGGCAT	CGTGCATTGA	GTGATCCTGA	ATTTAACGAA	CAATATAAAG	AACAAATGAA	3060
40	ACAATTTAAG	CAACGTATTC	TTGAAGATGA	TACATTTGCG	AAGCAATTCG	GGGATTTAGG	3120
	AAATGTTTAT	GGTAAACAAT	GGCGAGATTG	GGTTGATAAA	GATGGTAATC	ATTTTGATCA	3180
	ACTTAAAACA	GTAATTGAAC	AAATTAAGCA	TAATCCAGAT	TCAAGGCGAC	ACATCGTATC	3240
45	TGCATGGAAT	CCAACAGAAA	TTGATACAAT	GGCACTTCCG	CCTTGTCATA	CCATGTTCCA	3300
	GTTTTATGTC	CAAGATGGTA	AGTTAAGTTG	CCAGTTATAC	CAACGTAGCG	CAGATATCTT	3360
50	TTTAGGTGTG	CCATTTAATA	TCcGCagctA	CGCTTTATTG	ACACACCTTA	TTGCCAAAGA	3420
	ATGTGGACTT	GAAGTGGGTG	AATTTGTGCA	TACATTTGGA	GATGCACATA	TTTATTCAAA	3480
	TCATATTGAT	GCGATTCAAA	CACAATTAGC	ACCTGAAACC	ጥጥር እ አጥር ርጥር	CAACATTAAA	3540

	TGAATCACAT	CCAGCAATAA	AAGCTCCAAT	AGCAGTGTAG	TCATTGCATA	GTTAGCTAAC	3660
	CATATAGACA	TCAAAATGAC	ATCATAGTAT	TTTCAAGTGC	AAAAAAGTAC	TTTTTTGTGT	3720
5 .	TAAACGTTTT	CATAAATTAT	GCAAAATCAT	TATTTCTATC	ACACTTTATG	ATAAAAATTG	3780
	TGTTAAATTA	AAGATAACTT	AGTAATAAA	AATGAAATGA	TAGAAGAAGG	AGGATAATTA	3840
	TGACTTTATC	CATTCTAGTt	GCACATGACT	TGCAACGAGT	AATTGGTTTt	GAAAATCAAT	3900
10	TACCTTGGcA	CCTACCAAAT	GATTTGAAGC	ATGTTAAAAA	ATTATCAACA	GGTCATACTT	3960
	TAGTAATGGG	TCGTAAGACA	TTTGAATCGA	TTGGTAAACC	ACTACCGAAT	CGTCGAAATG	4020
15	TTGTACTTAC	TTCAGATACA	AGTTTCAACG	TAGAnGGCGT	TGATGTAATT	CACTCTATTG	4080
	AAGATATTTA	CCAACTACCG	GGCCATGTTT	TCATATTTGG	AGGGCAAACA	TTATTTGAAG	4140
	AAATGATTGA	TAAAGTGGAC	GACATGTATA	TTACTGTTAT	TGAAGGTAAA	TTCCGTGGTG	4200
20	ATACGTTCTT	TCCACCTTAT	mCATTkGAgr	CTGGGAAGTT	GCCTCTTCAG	TTGAAGGTAA	4260
	ACTAGATGAG	AAAAATACAA	TTCCACATAC	CTTTCTACAT	TTAATTCGTA	AAAAATAAGG	4320
	GGGAAAACGA	CCATGACAAA	ACAGATTATA	GTAACAGACT	CAACATCCGA	TTTATCTAAA	4380
25	GAATACTTAG	AAGCAAACAA	CATTCATGTA	ATTCCTTTAA	GTTTAACTAT	TGAAGGAGCT	4440
	TCATACGTTG	ACCAAGTAGA	TATTACATCA	GAAGAATTTA	TTAATCATAT	TGAAAATGAT	4500
20	GAAGATGTAA	AGACAAGTCA	GCCAGCCATA	GGTGAATTTA	TATCTGCTTA	TGAAGAACTA	4560
30	GGAAAAGATG	GCTCTGAAAT	CATAAGTATT	CATCTTTCTT	CAGGATTAAG	TGGTACATAT	4620
	AACACTGCTT	ACCAAGCAAG	TCAAATGGTA	GATGCTAATG	TAACTGTTAT	TGATTCAAAA	4680
35	TCTATTTCTT	TTGGTTTAGG	GTATCAAATA	CAACACCTAG	TAGAGCTTGT	AAAAgAaGGT	4740
•	GtCTCAACTT	CTGAAATAGT	TAAAAAGTTA	AATCATTTAA	GAGAAAACAT	TAAATTATTT	4800
	GTAGTTATAG	GGCAATTGAA	TCAATTAATT	AAAGGTGGCA	GAATTAGTAA	AACAAAAGGT	4860
40	TTGÄTTGGTA	ATCTTATGAA	AATTAAACCA	ATTGGTACAC	TAGATGATGG	TCGCTTAGAG	4920
	CTTGTGCmCA	ATGCGAGAAC	TCaAAATTCk	AGTATCCAAT	ACTTGAAAAA	GGAAATTGCT	4980
	GAATTTATAG	GAGATCATGA	AATCAAATCC	ATTGGTGTCG	CACATGCTAA	CGTCATTGAA	5040
45	TATGTTGATA	AATTGAAGAA	AGTTTTTAAT	GAAGCTTTTC	ATGTGAATAA	TTACGATATA	5100
	AATGTAACTA	CACCAGTTAT	TTCTGCACAT	ACTGGTCAAG	GTGCGATTGG	CCTCGTAGTC	5160
. .	CTTAAGAAGT	AAATTTAATC	TTTTCAGTGT	TAATTACTTC	CATTTCAATC	CTTTATAGAC	5220
50	TAAATTTATA	ATTAGATAGA	TAGAGGAGGT	AATTCATATG	ACAAAAGAAT	ATGCAACATT	5280
				·			

	GAATCAAACC GGCCATGTCG AAGCAGTACA AATTACGTTT GATCCAGAGG TTACTTCCTT	5460
	TGAAAATATA TTAGACATAT ATTTCAAAAC ATTTGACCCA ACTGATGATC AAGGGCAATT	5520
5	TTTCGATAGA GGCGAAAGCT ATCAACCAGT CATTTTCTAT CATGATGAAC ATCAGAAAAA	5580
	GGCTGCTGAG TTTAAAAAGC AACAATTAAA TGAACAAGGT ATTTTCAAGA AACCAGTGAT	5640
10	TACACCTATT AAACCATATA AAAATTTCTA TCCAGCTGAA GACTACCATC AAGATTATTA	5700
	CAAAAAGAAC CCGGTACATT ATTACCAATA TCAACGTGGT TCAGGTAGAA AAGCGTTTAT	5760
	AGAATCACAT TGGGGGAATC AAAATGCTTA AAAAAGATAA AAGTGAACTA ACAGATATAG	5820
15	AATATATTGT TACACAAGAn AACGGCACTG AACCACCATT TATGAATGAA TATTGGAATC	5880
	ATTTTGCTAA AGGATTTATG TAGATAAANT TCNGGTAAAC CTTG	5924
	(2) INFORMATION FOR SEQ ID NO: 131:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9280 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	
30	GGCCGTTHAA AATCTCCAAA ATAHAAAAAC CCATCTTGTT CCAATGTTTT AAAATCGCCa	60
	TCCaACACTT GaTCaATAGC TTGCAACAAC GTTGAACGTG TTTTaCCAAA AGCATCaAAC	120
	GCTCCCACTA AAATCAGTGC TTCAAGTAAC TTTCTCGTTT TGACTCTCTT CGGTATACGT	180
35	CTAGCAAAAT CAAAGAAATC TTTAAATTTG CCGTTCTGAT AACGTTCATC AACAATCACT	240
	TTCACACTTT GATAACCAAC ACCTTTAATT GTACCAATTG ATAAATAAAT GCCTTCTTGG	300
	GAAGGTTTAT AAAACCAATG ACTTTCGTTA ATGTTCGGTG GCAATATAGT GATACCTTGT	360
40	TTTTTTGCTT CTTCTATCAT TTGAGCAGTT TTCTTCTCAC TTCCAATAAC ATTACTTAAA	420
	ATATTTGCGT AAAAATAATT TGGATAATGG ACTTTTAAAA AGCTCATAAT GTATGCAATT	480

45

TCCGCTTCAC CATAACTGAA GTTTGCAAAT GTGCTCGCTA TTTGCATAAT TTGCTCTTGA TAAATAATAA CACCGTAAGT ATTTTTTAAT ATAGGTTCTA AATGCGGATG TAAATATTGA

TTAGAATAGC TGACAGCATG TGCTCTAGGA AAACCATAAT CAGCAAATTT CAGAATCAAA

TCAAATATTT GCTTACTAAT GTCTTCGTGA TAACCATTTT GCTTTGCACC TTCTATAAAA

TGTTGACGCT CACTTTCAAG AACAGCTCTA TTTTTTTTTAC TCATTGCTCT TCTTAAAATA

ACTITGCTTG GATCATGTCT TCTTGTAATG TAAGTTGGAA TTTCTTCCAT TGGACCTGGT 840

540

600

660

720

780

	ACACTTCTTA	CACCGTCAGA	CTCTAATTGG	AATATGCCAG	TCGTATCTCC	TTGCGACAAC	960
	AATTCAAACA	CTTTTTGATC	ATCAAACGGA	ATCTTTTCGA	TATCAATATT	ААТАССТААА	1020
5	TCTTTTTTGA	CTTGTGTTAA	GATTTGATGA	ATAATCGATA	AGTTTCTCAA	CCCTAGAAAA	1080
	TCTATTTTA	ATAACCCAAT	ACGTTCGGCT	TCAGTCATTG	TCCATTGCGT	TAATAATCCT	1140
	GTATCCCCTT	TCGTTAAAGG	GGCATATTCA	TATAATGGAT	GGTCATTAAT	AATAATTCCT	1200
10	GCCGCATGTG	TAGATGTATG	TCTTGGTAAA	CCTTCTAACT	TTTTACAAAT	ACTGAACCAG	1260
	CGTTCATGTC	GATGGTTTCG	ATGTACAAAC	TCTTTAAAAT	CGTCAATTTG	ATATGCTTCA	1320
	TCAAGTGTAA	TTCCTAATTT	ATGTGGGATT	AAACTTGAAA	TTTCATTTAA	TGTAACTTCA	1380
15	TCAAACCCCA	TAATTCTTCC	AACATCTCTA	GCAACTGCTC	TTGCAAGCAG	ATGACCGAAA	1440
	GTCACAATTC	CAGATACATG	TAGCTCGCCA	TATTTTTCTT	GGACGTACTG	AATGACCCTT	1500
20	TCTCGGCGTG	TATCTTCAAA	GTCAATATCA	ATATCAGGCA	TTGTTACACG	TTCTGGGTTT	1560
	AAAAAACGTT	CAAATAATAG	ATTGAATTTA	ATAGGATCAA	TCGTTGTAAT	TCCCAATAAA	1620
	TAACTGACCA	GTGAGCCAGC	TGAAGAACCA	CGACCAGGAC	CTACCATCAC	ATCATTCGTT	1680
25	TTCGCATAAT	GGATTAAATC	ACTTACTATT	AAGAAATAAT	CTTCAAAACC	CATATTAGTA	1740
	ATAACTTTAT	ACTCATATTT	CAATCGCTCT	AAATAGACGT	CATAATTAAG	TTCTAATTTT	1800
	TTCAATTGTG	TAACTAAGAC	ACGCCACAAA	TATTTTTTAG	CTGATTCATC	ATTAGGTGTC	1860
30	TCATATTGAG	GAAGTAGAGA	TTGATGATAT	TTTAATTCTG	CATCACACTT	TTGAGCTATA	1920
	ACATCAACCT	GCGTTAAATA	TTCTTGGTTA	ATATCTAATT	GATTAATTTC	CTTTTCAGTT	1980
	AAAAAATGTG	CACCAAAATC	TTCTTGATCA	TGAATTAAGT	CTAATTITGT	ATTGTCTCTA	2040
35	ATAGCTGCTA	ATGCAGAAAT	CGTATCGGCA	TCTTGACGTG	TTTGGTAACA	AACATETTGA	2100
	ATCCAAACAT	GTTTTCTACC	TTGAATCGAA	ATACTAAGGT	GGTCCATATA	TGTGTCATTA	2160
40	TGGGTTTCAA	ACACTTGTAC	AATATCACGA	TGTTGATCAC	CGACTTTTTT	AAAAATGATA	2220
••	ATCATATTGT	TAGAAAATCG	TTAATAAT	TCAAACGACA	CATGTTCTAA	TGCATTCATT	2280
,	TTTATTTCCG	ATGATAGTTG	ATACAAATCT	TTTAATCCAT	CATTATTTT	AGCTAGAACA	2340
45	ACTGTTTCGA	CTGTATTTAA	TCCATTTGTC	ACATATATTG	TCATACCAAA	AATCGGTTTA	2400
	ATGTTATTTG	CTATACATGC	ATCATAAAAT	TTAGGAAAAC	CATACAATAC	ATTGGTGTCA	2460
	GTTATGGCAA	GTGCATCAAC	ATTTTCAGAC	ACAGCAAGTC	TTACgGCATC	TTCTATTTTT	2520
50	AAGCTTGAAT	TTAACAAATC	ATAAGCCGTA	TGAATATTTA	AATATGCCAC	CATGATTGAA	2580
	TCCCCCCCC	COLD DOD COME) Ommonose e				

	CAATATCATT	AATAATCAAT	TGCCCTTTAG	AACGTAATCG	ACATCTGATT	TCATTACCTT	276
	CATCGACTGC	AAATACCCAT	ATTTTCAAGC	CTTTGATGTC	AGCAATTGTA	TTAACAAACT	2820
5	GAGATGCTTC	ATTTGGCTGA	ATACCGAATT	GCTCCAATAC	ATCTTCAGTT	ATTTTAACTT	2880
	GGCAGAATCC	ATCATCCATA	AGTTCGAAAT	GTTGTAAAAC	ATAACCTTGA	AACGGCAACA	2940
10	TTTTTGGGTC	CTTCTCCATC	ATTTTATTTA	AAAGCGCATT	ATGATCAATA	TCATGCCCAA	3000
10	TTAACTTTCC	AGCAATTTCC	ATAGTATGTT	CTGAGGTATT	GTTAAAAAGG	AATCGCCCAG	3060
	TATCACCGAC	GATACCAAGA	TATAAAACGC	TCGCGATATC	TTTATTAACA	ATTGCTTCAT	3120
15	CATTAAAATG	TGAGATTAAA	TCGTAAATGA	TTTCACTTGT	AGATGACGCG	TTCGTATTAA	3180
	CTAAATTAAT	ATCACCATAC	TGATCAACTG	CAGGATGATG	ATCTATTTTA	ATAAGTTTAC	3240
	GACCTGTACT	ATAACGTTCA	TCGTCAATTC	GTGGAGCATT	GGCAGTATCA	CATACAATTA	3300
20 ·	CAAGCGCATC	TTGATATGTT	TTATCATCAA	TGTTATCTAA	CTCTCCAATA	AAACTTAATG	3360
	ATGATTCCGC	TTCACCCACT	GCAAATACTT	GCTTTTGCGG	AAATTTCTGC	TGAATATAGT	3420
	ATTTTAAACC	AAGTTGTGAA	CCATATGCAT	CAGGATCTGG	TCTAACATGT	CTGTGTATAA	3480
25	TAATTGTATC	GTTGTCTTCG	ATACATTTCA	TAATTTCATT	CAAAGTACTA	ATCATTTTCA	3540
	TACTCCCTTT	TTTAGAAAAG	TTGCTTAATT	TAAGCATTAG	TCTATATCAA	AATATCTAAA	3600
	TAAAAAAT	TGTTACTACC	ATATTAAACT	ATTTGCCCGT	TTTAATTATT	TAGATATATA	3660
30	TATTTTCATA	CTATTTAGTT	CAGGGGCCCC	AACACAGAGA	AATTGGACCC	CTAATTTCTA	3720
	CAAACAATGC	aAGTTGGGGT	GGGGCCCCAA	CGTTTGTGCG	AAATCTATCT	TATGCCTATT	3780
35	TTCTCTGCTA	AGTTCCTATA	CTTCGTCAAA	CATTTGGCAT	ATCACGAGAG	CGCTCGCTAC	3840
	TTTGTCGTTT	TGACTATGCA	TGTTCACTTC	TATTTTGGCG	AAGTTTCTTC	CGACGTCTAG	3900
	TATGCCAAAG	CGCACTGTTA	TATGTGATTC	AATAGGTACT	GTTTTAATAT	ACACGATATT	3960
40	TAAGTTCTCT	ATCATGACAT	TACCTTTTTT	AAATTTACGC	ATTTCATATT	GTATTGTTTC	4020
	TTCTATAATA	CTTACAAATG	CCGCTTTACT	TACTGTTCCG	TAATGATTGA	TTAAAAGTGG	4080
	TGAAACTTCT	ACTGTAATTC	CATCTTGATT	CATTGTTATA	TATTTGGCGA	TTTGATCGTT	4140
45	AATTGTTTCA	CCCATCTGAG	GCTGTCTTCC	TAAAAGTTGC	ATAGACTTTA	AAACATCTTG	4200
,	TCTATTAATC	ACACCCACTG	TCTTTTTATT	ACTCGAAACG	ACAGGAATCA	ATTCAATACC	4260
	TTCCCAAATC	ATCATATGCG	CACAACTTGC	TACTGTACTC	ATAGCATTTA	CATAAATAGG	4320
50	ATTTCGCGTC	ATCACTTTAT	CTATTTCGTC	GTCGTCCTTT	GTATTAATCA	TCTCTCGACT	4380
	TOTAL CARTA	COMA COMA A COM	mama oca omo	> mmo> om> oo	00111momma	m> mcccco	

	ATCTAATGGC	GTCATTATAT	CTTGAACTAT	TAAGATATCT	TTTCGTATTT	TCTGATTAAA	456
	AAGTGCTTTG	TTGATAATAT	TTGCAACTAG	GAATGTATCA	TAACTTGATG	ATAGAACAGG	462
5	TAAATCATGT	TCATTCGCAA	AATTAATAAC	TTTATTAGAT	GGCTTAAATC	CACCAGTAAT	468
	TAATATAGCC	GTACCTCTTT	TTAAAGCTTC	AATCTGCACA	TCTTCACGAT	TTCCGACAAT	474
	CAATAATGTC	TTTGGACCAA	TATACTTTAA	AATATCTTTG	AGTTCCATTG	CTCCAATTGC	480
10	AAATTTAGAT	ACCATCTTAG	TGATACCTTT	GTTGCCACCT	AACACTTGGC	CATCAATAAT	486
	ATTGACAATT	TCATTAAAAG	TTAAATGTTC	AATTTCATTA	CGATTACGTT	TTTCGATTCG	492
. -	AACCGTACCA	ACACGATCTA	TCGTTGCGAC	CATGCCCATT	TTATCAGCAT	CTTTmATTGc	498
	ACGATATGCT	GTCCCytCaG	ATACGTTTAA	AAATTTAGCG	ATTTTACGCA	CCGAAATTTT	504
	AGAGCCTATA	GATAACGATT	CAATATAATC	TAAAATTTGT	TCATGTTTTG	TCATTCTTTA	510
20	CCTCTTCTTT	TCGAACAGTA	TTAACTACAT	TATAACTTTA	TTTTGGATAA	AAAGCATTGA	516
	AGTGAAATGA	AATAATGATC	GTTtCACCTA	TTTTATTTTT	TGAAAATATA	CAACAAACAC	5220
	AÄAGATCACA	AAATCTTTAA	TTTTAAATGG	AAAAATCCAT	TATTATTTAT	TAGAATGTAA	528
25	GTGAGGAGGG	ATGTACTAAT	GTATAAAAAT	ATATTACTTG	GTGTAGACAC	TCAGTTAAAA	5340
	AATGAAAAAG	CACTAAAAGA	AGTGTCTAAA	TTAGCTGGCG	AAGGTACAGT	CGTAACAGTT	5400
	TTAAACGCAA	TCAGCGAACA	AGaTGCTCAA	GCATCAATTA	AAGCAGGTGT	TCATTTAAAC	5460
30	AAACTTACTG	AAGAACGAAG	CAAGCGATTG	GAAAAAACAC	GCAAAGCTTT	AGAAGATTAT	5520
	GGTATTGATT	ATGACCAAAT	AATTGTTCGT	GGTÄATGCAA	AAGAAGAACT	ATTAAAACAT	5580
	GCTAATAGCG	GTAAATATGA	AATTGTTGTT	TTÄAGTAACC	GTAAAGCAGA	AGACAAAAAG	5640
35	AAATTTGTAC	TTGGAAGTGT	CAGCCACAAA	GTAGCAAAAC	GTGCGACTAT	CCCTGTATTA	5700
	ATCGTTAAAT	AAAATTTTTA	TCCAGAATCA	CAAATAATCT	TTCAATCATG	ATGCAGTCTC	5760
	AAACGACTGA	GTAAATACAA	GAAACGATTA	TGACTGTGGT	TCTGGATTTT	TTATATCGTA	5820
40	GTAAATTTAT	AATCAATGTC	TAATTGTATA	AAACTAAAAT	TACGAGAGTA	GGTCAGAAAT	5880
	GATAAAGAAC	CACTGATGTC	CCCCGTCCAC	GTCGTAACTG	AATCAGTAGA	АТАТАААААС	5940
45	ACCCACTAAA	AATATGCAGA	CGATAACTTC	CACATAGATT	AGCGAGGTGT	TTTTTAGTGT	6000
•	AAAATCTATA	TTCTATTTAA	AACTGAACAG	ATTCACCTGG	TTTTAAAATT	TGCACGTCCC	6060
	CTACATTAAC	AGCATCTTTA	AATTGTTGTG	GATCTTGTTC	GATTAATGGG	AATGTATCAT	6120
50	AATGAATCGG	TACAGAAATT	TTTGGTTTAA	TAAATTCATT	AATAGCATAA	CTTGCATCAT	6180
	СВАТАСССАТ	ССТАВАВТТА	TOTOCAATTC	GTACAAAACA	TACATCAACT	CCATCACCTT	5240

	TTCAACTTCA	AACACGATAC	CCATTGGCAT	ACCTAAATAA	ACTGGGAATA	CCATTTTCAT	636
	GTGTAAAACT	TGAACTATGA	AATGCTTGAA	CAAATTTAAC	GCTTCCGAAA	TCAAaGTTTG	642
5	CTTTACCACC	Aatattcata	CCATGAACAT	TTTCAACACC	GTGATATGAA	GAAAGATAGT	648
	CAGCCATTTC	TGCACTTCCA	ATTACTGTTG	CTCCTGTTTT	CTTTGCTAGT	TCCACAACAT	654
	CACCAAAATG	ATCAAAATGA	CCGTGCGTTA	AAACGATATA	GTCTACCTGC	ACTGTTTCAA	660
10	TATTCAAATC	ACACTTAGGG	TTATTTGAAA	TAAACGGATC	TACGATAACC	TTTTTGTTGT	666
	TCCCTTCTAA	ATAAATCGTT	GATTGACCAT	GAAATGATAA	CTTCATTTGA	GCATCCTCCT	672
15	ATCAATTACT	ATATAAATTT	AGTACCCTTT	TGCCACTTAA	TTATAACAAA	TTCTCAAATT	678
	TTAAAAATTG	AAAATCTAGT	TAATGTATTA	GCTCGATTTT	GAAATCTAAT	AATAATTGGC	6840
	ATAAAATGGA	AGTAATATTA	TGTTGAGGAG	TGTTTATAAA	ATGACAAAA	TATCAAAAAT	6900
20	AATAGACGAA	TTGAACAATC	AACAAGCTGA	TGCAGCATGG	ATTACAACAC	CGTTGAATGT	6960
	ATATTATTTT	ACTGGATACC	GTAGCGAACC	CCATGAAAGA	TTATTTGCAT	TATTGATTAA	7020
	GAAAGATGGT	AAACAAGTAC	TATTTTGTCC	AAAAATGGAA	GTCGAAGAAG	TCAAAGCATC	7080
25	ACCTTTCACA	GGTGAAATCG	TTGGATATTT	AGACACTGAA	AACCCTTTTT	CACTTTATCC	7140
	TCAAACAATC	AATAAATTAC	TAATTGAAAG	CGAGCACTTA	ACAGTAGCAC	GCCAAAAACA	7200
	ATTAATCTCT	GGTTTCAATG	TCAATTCATT	CGGAGATGTT	GATTTAACAA	TCAAACAATT	7260
30	GAGAAATATT	AAATCCGAAG	ATGAAATTAG	CAAAATACGT	AAAGCTGCTG	AGTTAGCAGA	7320
	TAAGTGTATC	GAAATAGGTG	TTTCTTATTT	AAAAGAAGGT	GTGACTGAAT	GTGAAGTAGT	7380
25	CAACCATATT	GAGCAAACTA	TCAAACAATA	TGGCGTCAAT	GAAATGAGTT	TTGATACGAT	7440
35	GGTTTTATTT	GGAGATCATG	CCGCATCACC	TCATGGCACA	CCAGGAGATC	GCAGATTAAA	7500
	aagćaatgaa	TATGTACTAT	TTGATTTAGG	TGTAATTTAT	GAGCATTATT	GTAGCGATAT	7560
40	GACACGTACT	ATTAAATTTG	GTGAACCTAG	CAAAGAAGCA	CAAGAAATTT	ATAATATTGT	7620
•	ATTAGAAGCA	GAAACATCTG	CAATCCAAGC	AATTAAACCT	GGAATACCAT	TAAAAGATAT	7680
	CGATCATATC	GCTAGAAATA	TTATTTCAGA	AAAAGGTTAT	GGTGAATATT	TCCCTCATCG	7740
45	CTTAGGTCAT	GGCCTAGGAT	TACAAGAACA	TGAATATCAA	GATGTTTCAA	GTACTAATTC	7800
	TAATTTGTTA	GAAGCTGGCA	TGGTTATTAC	AATCGAACCA	GGTATTTATG	TACCTGGTGT	7860
	TGCAGGTGTA	AGAATTGAAG	ATGACATACT	TGTCACTAAT	GAAGGATATG	AAGTATTAAC	7920
50	ACATTACGAA	AAATAAGGAG	TGGGATAAAA	ATGAAAAGCT	TGTTACAAGC	GCATTCTCAT	7980
	TCACTCAAAC	A CTCCCA ATTA	TA A CA TTCTA	CCCCCCT > C >	C1 = 1 1 1 = = = = =	E1 E221 1 2 = 2	

	TGTAATGAAT	CAAATCAATA	TCATTCATGT	TCGATGATTT	CTTCGCATTG	TTTCTAGCTT	8160
	TAATTTATCA	TTATTTAATT	TTAATAACCA	AGGAGATGAT	AACGTCATTC	TTTAGTACGC	8220
5	TGTAATCCAT	TCCCTTTTCA	TCAAATTCAA	ATTATAATTG	TAATGCTTCT	TCTACAGATT	8280
	TATATTCCAT	TTCAAATGCC	TCTGCAACGC	CTTTATTGGT	TACGTGACCT	TTGTAAGTAT	8340
	TTAAACCTAA	TGATAATGGT	TGATTTGATT	TAAATGCTTC	TCTATACCCT	TTATTAGCTA	8400
10	GCATGAGCGC	ATAAGGTAGC	GTAgCATTAT	TTAAAGCTAA	CGTCGAAGTA	CGCGGTACTG	8460
	CACCTGGCAT	ATTTGCAACT	GCATAATGAA	CCACACCATG	CTTAATATAT	GTAGGATCAT	8520
15	CATGTGTCGT	AATTTTATCA	GTTGETTCAA	AAATACCGCC	TTGATCAATA	GCAATGTCAA	8580
15	TAATAACTGA	CCCATTTTTC	ATTTGTTTAA	TCATGTCTTC	TGTTACAAGT	CTTGGCGCTT	8640
	TAGCACCTGG	AATTAAAACT	GCACCTATTA	CTAAATCACT	TTGTTTAACA	TACAACTCAA	8700
20	TATTCAACGG	ATTTGACATA	ATTGTATGTA	CACGTCCACC	GAATAAATCA	TCTAATTGTT	8760
	GTAAACGCTT	TGGATTAACA	TCTAAAATCG	TAACATCTGC	ACCTAGTCCT	AGTGCAATTT	8820
	TAGCTGCATT	TGTTCCTGCT	TGACCACCAC	CGATAATAGT	TACTTTACCC	TTAGGTACTC	8880
25	CTGGGACACC	ACCTAGTAGA	ATTCCCATAC	CACCATTAAG	TTTTTGTAGG	AACTCTGCGC	8940
	CAACTTGAGC	TGACATTCTT	CCTGCTACCT	CACTCATTGG	TGATAACAAT	GGTAAAGATC	9000
	GGTCTGGTAA	CTGCACAGTC	TCATATGCAA	TACTAATTAC	TTTTCTATCT	ATCAAAGCTT	9060
30	GTGTTAATTT	TTCTTCATTT	GCTAAATGAa	gatAaGTGAA	TAATACAAGC	CCTTCTTTAA	9120
	AATATGGATA	TTCAGATTCA	AGTGGTTCTT	TAACTTTAAT	AACCATATCC	ACATCCCAAA	9180
	CTTTTGCTTG	TTCAGCAACA	ATCTCAGCAC	CTGCTTCTTT	GTAATCTACA	TCTTCAAAGA	9240
35	ATGATCCTGA	ACCCGCATTT	GTTTCCACTA	AAACAGTATG			9280

(2) INFORMATION FOR SEQ ID NO: 132:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4669 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

45

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

CTGATTAATC	TCTTGTTGTC	GTGTATTTAC	TAATTGAATC	GTTGGTGTCT	GAACACGTCC	60
CAGGGATAGC	TGTGCATCAT	ACTITGTTGT	TAGTGCACGC	GTTGCATTAA	TCCCAACAAT	120
CCAATCTGCC	TCACTTCTCG	CTAACGCTGC	ATAATACAAA	TCGTTATATT	GACGACCGTC	180

	ACGGATTGGC	TTTTTGTTAC	CAACITTATC	CAAAATCAAT	CTTGCAACTA	GTTCACCTTC	300
	TCGTCCaGCA	TCTGTTGCAA	TAATAATATC	TTTCACTTTA	TTATCTAAAA	TTAACGCTTT	360
5	TACTGTTTTA	AATTGTTTGC	TTGTTTTACC	AATAACAACA	GTTTTCATAT	ATTTAGGTAT	420
	AATTGGAAGG	TCTTCTAATC	GCCATTCCTT	TAAATTTTTA	TCGTATTGTT	CAGGTGTCGC	480
	ATTTGTCACT	AGATGACCTA	ACGCCCACGT	GACAATATAT	TGGTTATTTT	CAAAGTAACC	540
10	ATTACGCTTC	TGATTTATTT	GTAAAGCATC	AGCAATATCT	CTTGCGACTG	ATGGTTTTTC	.600
	AGCTAATATT	AAAGATTTCA	TAAATTATCC	TTTCTCATAC	GTTCTTTTAT	TTCGAACGTG	660
15	CTTCATCTAT	TCCACTAATC	TTTGATTTAA	ATTCAATGAT	TGCAAATGAT	GTGTTAAATG	720
,,,	TATTGTAACA	TGTTAATATC	ACTATTAACT	TTCATTTCAG	TTGAAATACT	ATATAATAAA	780
	AGTAACAAAA	AGTACGGAGG	TAATGACATG	AGCATAGTTC	AGTTATATGA	TATTACACAA	840
20	ATAAAATCGT	TCATTGAACA	TTCGAATTAT	GAATCAGCAT	CATACTTATA	TAAACTTCCT	900
	CAACAGTACA	ATGAAATAGA	TGTATTAATA	ACCGATGCGA	TTGAATCACC	TGGTGTATTT	960
	TCGATTAAAG	AAAACGATTC	AATCAAAGCA	ATCATATTGT	CTTTTGCATA	CGATAAAAAT	1020
25	AAATTCAAAG	TCATAGGCCC	TTTCGTGGCT	GACAATTATG	TATTATCTGT	CGATACGTTT	1080
	GAAACGCTAT	TTAAAGCAAT	GACTTCGAAC	CAACCTGACG	ATGCCGTCTT	TAACTTTTCT	1140
	TTTGAAGAAG	GCATTCAACA	ATACAAACCA	TTAATGAAAG	TTATTCAAGC	AAGTTATAAC	1200
30	TTCACTGACT	ATTACATAGA	AGCCCGTACA	AGATTAGAAG	AAGATATGCA	CCAACCAAAT	1260
	ATCATTCCTT	ATCACAAAGG	GTTTTATCGT	GCTTTCAGCA	AATTACACAC	AACTACATTT	1320
	AAATATCAGG	CACAGTCACC	ACAAGATATC	ATTGATAGTT	TAGACGACCA	TCATCATTTG	1380
35	TTTTTATTTG	TTAGCGAAGG	TTTACTTAAA	GGTTATTTAT	ACCTTGAAAT	TGATTCACAA .	1440
	CAGTCAATCG	CCGAGATTAA	ATACTTCAGT	TCTCATGTAG	ATTACCGTTT	GAAAGGTATC	1500
10	GCTTTCGAGT	TGCTTGCGTA	TGCATTGCAA	TATGCTTTTG	ATAATTTTGA	TATTAGAAAA	1560
	GTTTATTTTA	AAATTCGTAA	TAAAAATAAT	AAACTCATCG	AACGATTTAA	TGGTCTAGGT	1620
	TTCCATATCA	ACTATGAGTA	CATTAAATTC	AAATTCGAAT	CACGTAACGT	AAAAGATCAA	1680
1 5	ACAATCCCTG	AATAAAACAC	CAAGCAAATA	CCCTACAGTA	CATCATTAGC	ATGTATTGTG	1740
•	GGTTTTTCTA	CTTTTTGTAA	ATATTGAAAA	TTATAAGTAG	TTGTTTTTTA	CTATTAGGGC	1800
	AGAATGCTTT	ACAATAACAT	GCAAGTGTCA	attaagggga	GCACTTGCAT	AAATAGTATA	1860
50	GGAGAGTGAG	TAGTCTTGCA	ATTTCTTGAT	TTCTTAATCG	CACTTTTACC	TGCTTTATTC	1920
	TGGGGAAGTG	יי ע יייטייטינייט דע	ጥል አ ጥርጥርጥጥር [*]	CTCCCCCCTC	CA COMPA CA A	CC1 1 1 mm ccm	

	TTCAATAATC	CTACTGTAAT	TATTGTCGGT	CITATTTCTG	GTGCATTATG	GGCGTTTGGA	2100
	CAAGCGAATC	AGCTTAAATC	TATTAGTTTA	ATCGGTGTAT	CAAATACTAT	GCCAGTTTCT	2160
5	ACAGGTATGC	AATTAGTTGG	TACAACATTA	TTCAGCGTTA	TCTTTTTAGG	TGAATGGTCT	2220
	TCAATGACTC	AAATTATCTT	TGGTTTAATC	GCCATGATAT	TATTAGTTAC	TGGTGTAGCA	2280
	CTTACTTCAC	TTAAAGCTAA	AAATGAACGT	CAATCAGATA	ATCCTGAATT	TAAAAAAGCA	2340
10	ATGGGTATTT	TAATTGTATC	TACAGTTGGA	TATGTAGGTT	TCGTTGTACT	TGGTGACATC	2400
	TTTGGTGTTG	GTGGAACTGA	TGCATTGTTC	TTCCAATCTG	TCGGTATGGC	AATTGGTGGC	2460
15	TITATCCTAT	CCATGAATCA	TAAAACATCA	CTTAAATCAA	CAGCACTTAA	TCTATTGcCA	2520
	GGTGTGATTT	GGGGAATTGG	TAACTTGTTC	ATGTTCTATT	CTCAACCAAA	AGTTGGTGTA	2580
	GCTACAAGTT	TCTCATTATC	ACAGTTACTT	GTTATCGTTT	CAACCTTAGG	CGGTATTTTC	2640
20	ATTTTAGGAG	aaagaaaaga	TCGTCGTCAG	ATGACGGGTA	TTTGGGCAGG	TATTATTATT	2700
	ATCGTGATAG	CTGCTATAAT	TCTAGGTAAT	TTGAAATAGA	AAGTTAAATA	CTCATGTAAC	2760
	GTAAAAATGT	AATCACTTCT	GAAAATAACC	ATTCACTTAT	AGAATGATTA	AAATTAATTT	2820
25	TCGGGAATTT	TACGTTGAAT	GTTCCTCTAT	ATGTCCTAGG	AAATACGTGG	CTCTAAAAAC	2880
	AAAACGCAAT	AACACATCAT	GACATTAATC	ATGCGTTTTA	AGACTTTAAA	ATTAGCGATA	2940
	CTTTTAAAAT	CTTGATGATA	TTCATATATC	AAGTATGCGC	CATACATATG	AAGTGGATAG	3000
30	CTGCATAACG	CACTGCATTA	TCAACTTGAA	TGTATGAGTT	GAACAACTAT	GTCATAAATA	3060
	AAAGCCCCCT	TTTCACAATA	TACATTTACA	TATTGTGGTA	AAGGGGGCTC	TCATTTTCTA	3120
35	CGAATACTAA	AATGGATTTT	ATTTTCAAAT	GTGTAAACTA	GACAAACACT	GCCTGATACA	3180
	CGTACAAAAT	AATGATACTA	ATAATGATTG	TCAAATTGGT	CGTCATACCT	ATAAATGGCA	3240
	GTGTTCGATA	TTTAAACTGA	ATACCATAAG	AAATAATTGC	AACACCTACC	GGGAACATCC	3300
40	AAGTGACCAA	CAATGTCGTC	TTAATCATAT	CATCTGATAC	TGGTAACAAC	ACATATACTA	3360
	ACAATCCCGC	AACTAATGCT	AATCCATAAT	GCAAACATAA	ATATTTAATA	GTAGCAGGTA	3420
	TATACTTTCT	TTCCAGAGTA	AAATTCAACA	TGACACCTAG	CAAAATCATT	GATAACGGCA	3480
45	TATTTGCATG	GGAAAGTATG	CTAAAGAAAT	CGATTGCCAC	ATGTGGTAAA	TGGATGTGAC	3540
	TTATATTCAA	TATAAACATT	ACAATGTATG	TAACGAGTGG	CACTGATTGT	AATAATTTCT	360
	TACCTAAATA	TTTAAAATCG	AATTGATCAC	TACCTTCACT	AAAGTAGCTA	CCTACAAAGT	366
50	AAGTAATTCC	AAACATCACA	AAGGCACCAC	CTATATCAGC	CATAACAAAA	TAAATAAGTC	372
	СССТТТТАСС	CCATATCACT	TCAATTAGTG	GATATGCAAA	CAATCCAATA	TTCATAGCAC	378

	CAATCATTTT	CGCCACAATA	ССАТАТАТАА	TCATTAAAAT	TGGTAAAATG	GAGAATGACA	3900
	ATTTTAATTC	TGCACTGTTT	AAATTCACAA	TAACTAAAGA	TGGGAGTGTG	ACATTAAGAA	3960
5	CTAATGTAGC	AATGACTTGA	CTATCTGTTG	СТТТТАТААА	ATTAATGCGC	TTCAAAAAGT	4020
	AACCAAGCGC	AATTAATAAA	ATAATCATAG	TAAATTGTTC	TGTCACTGTT	ATCCCTTCTT	4080
	TCAATAATCT	TCATAATTTA	TAACTTTAAC	ATACTCCACA	GATATTTTAG	AAGTCTACTG	4140
0	TTTCATGCTA	TAATCTACAT	TAAATGCACT	TAATTATATT	TCAAAGGAGT	GTTATAGTAT	4200
	GTCTTTAGAA	AACCAACTAG	CCGAACTTAA	ATATGATTAT	GTTCGTCTTC	AAGGTGACAT	4260
5	AGAAAAACGG	GAATCTTTGA	ATTTAGATAC	TTCCGCACTT	GTTCGTCAAC	TTAAAGATAT	4320
•	TGAAAATGAA	ATTAGAAACG	TTCGTGCTCA	AATGCAAGAT	ТААТААТСТА	TCATTCAAGC	4380
	AATAAATGCT	TTTTGTTACA	TAAATTIGAC	TAGCATTGCT	CTGAATACGT	TATATTGATG	4440
0	AATTGCTTCA	TTTTTCGCTC	AATTACATCT	AGAATCACAA	GATGTTGTCG	TGTTATGATT	4500
	TAGTGTTTCA	TTAACAACAT	ACACGCATAT	CTATCCCAAC	ACTGCTATTT	ATGTTTTCTA	4560
	CGCTGnTGTA	CTACATGAAC	CCTTTGAAAC	GGAGAGGAAG	TTATCATATG	CAATTTTAnC	4620
5	TGATTTTACT	AGCAATACTT	TAACnAATTG	nTAGTTTAAT	AGAATTTTA		4669
	(2) INFORMA	TION FOR SE	Q ID NO: 13	3:			
o	(QUENCE CHAR A) LENGTH: B) TYPE: nu	2785 base p cleic acid	airs			

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

TTTOCACCCA	TCTGaTACAA	TGCACCATGC	GGTTTAACAT	GATTAATTTT	AACTTGATGA	60
ATGCGACAAA	ACCCTTGTAA	TGCACCTAAT	TGATAAATCA	TCAAATTATA	AATCTCGTCG	120
TTAGAGATAT	CTATATTTCG	TCTGCCAAAG	CCTTTCAAAT	CAGGTAAACC	AGGATGTGCA	,180
CCTACTGCAA	CATTATGTGC	TTTGGCAAGT	TTTACCGTTT	CATTCATTAC	ATTTTCATCA	240
CCAGCGTGAA	AACCACAAGC	AACATTCGCA	CTTGTAATTA	ACGGAATAAT	TTGATGATCA	300
CCACCAAAGG	AATAATTTCC	AAATGCTTCG	CCTAAATCAC	AATTCAAATC	AACTCGCATT	360
ATAATTCCAC	CCCTTTAACA	ATTTGATGTT	TTTCTAAAAA	TTTAATATCA	ACATCTTTTG	420
CATCTCCATC	ACGATATAGT	GGATAATTTA	AAACTGCATA	TAAAAAATCG	GCAGTTGTAG	480
3333TCC3TC	TATCACCA TO	TO A TO COMP A CO	mas ammas s	~~~~		

55

50

	AACCGTGATA	TAGTAAAGAA	TCGACTCGCA	CATTAAAGCC	TTGAGGTAAA	TGTAACGCTG	66
5	TCACTTTACC	TGGTGTTGGT	TGAAATTTCT	TTTCaGGATT	TTCGGCATTT	ATTCTCGCTT	72
	CTATCACATG	ACCATTAAAT	TGAATATCGC	TTTGTGAAAA	AGGTAAATGA	TTATGTTCCA	78
	ATAAATACAG	TTGTGCTGCA	ACCAAATCAC	GTTCTGCTCG	CATCTCTGTA	ACAGTATGTT	84
10	CAACTTGTAT	TCGAGCATTC	ATTTCAATAA	AGTAATGTGC	GGTATCAGTT	ACTAAAAATT	90
	CAATCGTACC	TGCACTTCTA	TAATTTGCTG	CACGTGCAAC	TTTAACAGCA	TCGTTACATA	96
	TTTGTTGTCG	TCTTTCTTCA	GTTAATGCTG	CACAAGGAGA	TTCTTCGATT	AATTTTTGAT	102
15	TTTTACGTTG	TACAGAACAA	TCACGTTCCC	CTAAATGTAC	ATAATTATCC	TGCCCATCTC	108
	CCaTAACTTG	AACTTCAACA	TGTTTTGCAA	CAGGTATAAA	AGCCTCAACA	TAAACACGAT	114
20	CATCATCAAA	GTATTTTTT	CCTTCACTTT	TAGCTTCTTT	AAATGCCTTT	TCTAAATCTT	120
	CAGCTTTCTT	TACAATACGT	ATACCTTTAC	CACCACCGCC	ACTGGCAGCT	TTGATAACAA	126
	CTGGATAACC	GATGTCTTTG	GCAAGATTCT	CAATTTCAGA	CACATGATTC	ACAGCACCAT	1320
	TTGATCCTGG	AATCACAGGA	ACACCTGCAT	GATGAACTGT	TTGTCTTGCT	GTTATTTTAT	1380
25	CCCCCATCAT	TTCCATCGTT	TTTTTAGTAG	GCCCTATAAA	CGCTATGCCT	TGTTCCTCAA	1440
	CGGTTTGAGC	AAATTTTGTT	GATTCTGATA	AAAAGCCATA	TCCTGGGTGA	ATTGCATTAG	1500
30	CACCAGTGAT	TTGTGCAGCA	GATATGATGC	GGTCAATATT	тааатааста	TCTAAAgCAT	1560
	TArcwTCCCC	AATACATATA	GCTTGATCTG	CTAAATGTAC	ATGCAAGCTT	TGCTCGTCCC	1620
	CTTTTGCATA	AACTGCTACA	GTTTCAATCC	CATATTCTCT	GCAAGCTCTT	ATAATCCTTA	1680
35	CAGCAATTTC	ACCTCTGTTC	GCAATTAAAC	AACGAAGCAT	TTACTTACCC	CCTTTACTTA	1740
	ATACGTACCA	AAACTTGGTC	GTATTCAACA	TTTGTGCCAT	GATCAGCTAC	TATTTCAGTA	1800
	ATTICTCCAG	CAACATCTGT	TGTTACCTCG	TTTAATACTT	TCATCGCTTC	AACATATCCT	1860
40	ATAÁTATCTC	CCTTGTTAAC	TTTGTCACCG	ACATTCACAA	TTGGTTCAGT	TAATTCTTTA	1920
	CTATCTTGTA	AAAAGAATGT	ACCTATCATT	GGTGATTTAA	TGTCATGATA	ATCATTTGTC	1980
45	GAAACATCGG	AGTTATCATT	CGCTTTTGAA	GCTGTCAAAT	CATTATTGTT	CATACTTTGA	2040
	TTTGATTGAT	TACTGTGTGC	AGCCAAATGA	TTCGAGTCAG	TGAAGTCAAT	TTCTATTTCA	2100
	TCTTCAAAAT	TTTTATATTT	AAATTTCTTA	ACATCATTTT	CCTTCACTAA	TTTGATTATT	2160
50	TGTTCGATTT	nTTCAATATT	CATTTTACAA	ATCCCCTTTT	AAAATTGTTG	CTAATTTTTT	2220
	CGAAGTATGT	CGCAAGCTAG	ATGTATCAAA	AATTGGAGTC	TTTTGATGAC	TCTTAAGAAT	2280
	TTCATTAAAC	AGAGACATTT	GTTCCCGATT	СТТАТСТАСА	CCTTCTTCCA	ATCATATCCA	2340

	TACAGITGCA ATTITIGGTAT AACCACCTAT CGTTTGTTTA TCATTAAGCA GAATAATAGG	2460
5	TTGACCATCA TTTGGTACCT GAACACTACC AAGAGCAACC GGTTCAGAAA TGATATCTGC	2520
	TTGATTAALT GGTGCAACGC TGTCACCTTC CAAACGATAG CCCATACGGT CTGATTGTTC	2580
	AGTAATTAAA TATGGATGAT TTACAATTTT CGCTCTAGCC TCTTCAGAAA ATGCCTCGAA	2640
10	TTGAGGTCCT TGAAGAATGT GTATAATATT ATTTTCTGGC AATAAATCGT CCTGTAAATG	2700
	AATCGTCTTT CCAATGTTTT CTTTAAAGTC ATTATTTATT TTCACTGTTA TTACATCATC	2760
	AGCTAATAAC TTTCTACCTT TGAAT	2785
15	(2) INFORMATION FOR SEQ ID NO: 134:	
20°	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1010 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:	
25	AATGGAAACG GTTGAAACAG CAATTATTAC TATTTCTATG GGTGAAGGTA TTTCAGAGAT	60
	ATTTAAATCA ATGGGTGCCA CACATATCAT TAGTGGTGGA CAAACGATGA ATCCTTCTAC	120
30	AGAAGATATC GTTAAAGTCA TTGAACAATC AAAATGTAAA CGTGCAATTA TTTTACCGAA	180
	TAATAAAAAT ATCTTAATGG CAAGTGAACA AGCAGCGAGT ATTGTTGATG CAGAAGCTGT	240
	TGTTATTCCA ACGAAATCTA TTCCTCAAGG TATAAGCGCA CTATTCCAAT ATGATGTGGA	300
35	CGCAACACTT GAAGAAAATA AAGCGCAAAT GGCTGATTCA GTAAATAACG TTAAATCTGG	360
	TTCATTAACG TACGCTGTTC GTGATACGAA AATTGATGGC GTTGAGATTA AAAAAGACGC	420
	GTTTÄTGGGC TTGATTGAAG ATAAGATTGT AAGCAGCCAA AGTGATCAAT TAACAACGGT	480
10	TACTGAGTTG TTAAATGAGA TGTTAGCAGA AGATAGTGAA ATATTGACTG TGATTATTGG	540
	TCAAGATGCA GAGCAAGCAG TTACAGATAA CATGATAAAC TGGATCGAAG AGCAATATCC	600
45	AGATGTAGAA GTGGAAGTTC ATGAAGGTGG ACAACCAATT TATCAATATT TCTTTTCAGT	660
	AGAATAAAAA TTTAAAATAA AAAACTACCA ATGATAAATC ATCAGTTGGT AGTTTTTAT	720
	TTTGCTATTT TAGTGATATT GCGGGTTAAA AGTATCGTTC TCGAGTTGCT AACAATGTCA	780
	TGTTCAACTT AGTCATGATA AAATAAATAA CATACTAAAT GATACGTAAA ATCAAATAAA	840
5 0 ,	ACATAGGTGA TITATTTTGG CTAAAGTAAA CTTAATAGAA AGTCCATATT CTCTTTTACA	900
	ATTAAAAGGT ATAGGTCCTA AGAAAATAGA AGTATTGCAA CAACTAAATA TTCATACAGT	960

(2) INFORMATION FOR SEQ ID NO: 135:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1540 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

60	AGCCATTTTG	AAGCAATACA	AAAGACAAAA	AAAAGAAAGA	CATGAACAAC	TGTAGTTGAA	
120	CTTCAAGTCT	CTCCCGGCAC	TGTACTATTA	TACTTATAGT	AGTTTTATAA	GATTGTCATG	
180	TGTGGGTAAC	GCAGTTATTA	TTWAGCTTTT	TACTAGCTAT	GCTAAGGCAG	GCCGATAATĠ	
240	TATTACTTTT	GGCTTAATGA	TTTAATTATT	TGTCAGCAAC	TCATATCCGG	GGAAGCTGTA	
300	GTGGCAGTGC	AATCCGAAAA	GAAGCTAGGT	ATTTAGGGGA	CCTGTTCAAA	AGGATTTAGC	
360	CGTTTAGTGG	TTATCATTAG	TAATCATGCA	TTCTAGGAAC	GGAAGTGACC	TATTTTAGCT	
420	CTGCTATGCA	TTTTTGGCTG	AGCTGCATTA	CTCTCGTTGC	TCAGCTGTAG	ATTTGCAACT	
480	GTAATAAAAC	TCAATTGTTG	TTTAGTGTTA	GACTAGCTCT	TTGCATAAAA	AGAAACGAAT	
540	TCGTTCCTTC	CTTGCATTTT	TTCAATTGTA	CAATTATCGT	GTTATTGGAG	TAGAAATATA	
600	CGGCATTTAA	GGTATGATTG	AATCTTGCTG	CAGTTGTACC	AGAGCAGGGG	TGCAACAGCT	
660	AAGCTGTGTC	ACTTCAGTAC	ATTAATAATT	TAGCGTCTTT	GATAGCAAGT	AGTTTCCAAA	
720	TTAATTTTAT	ATCGTAGCGA	AGCACAAAAT	AAACGGCGGC	ATTGGTATCA	AATTTGGAAT	
780	CAGCGCCTTG	TTCTTATATG	GGGCGAGTGG	ATGTTTCATG	TTAGGATTTG	AAACCATCAA	
840	CTCCAGAAAT	AAAGTGATGC	CATCATGATT	CTTTATATTT	ATGTCCGTAG	GTCCATAGTT	
900	TTGGCCCCGT	TTGCATAAAC	AAAAGAAGAA	AAGATTTAAT	GAAGGTGGTA	TAATACAATA	
960	TTTGGTCAAC	TTATTACTGT	ATCGATGTTA	TAATTGTTAT	GAATGGCGTT	TAGCCCACGT	
1020	TAGGTGTTAT	ATTATTGCTT	ATCCATTACT	TTGACTCTGC	TTACATCCGA	TGAAAAAGTA	
1080	TACCATGGGG	GAAAATAAAA	GAAACATGTT	TCATGACATG	AAAATTGGTG	GTTAATGCCG	
1140	AAACAGGTGC	GTTCTTTTGA	ACTAGGTAAC	TAGGTATTTC	GTGTTTGGTG	AACAATTATC	
1200	TACCTATTAT	TTAAAACATT	TGTTTTAGGT	AAACTTTTGG	TTAAGTGATC	AGCTCAATGG	
1260	TTGCGAGTGC	CATTTGGGCT	TATATTGATT	CGCTTTTTAA	GCACTTATCA	CGCGACAATT	
1320	CGTTACACTT	СТААССТСТА	TTTTATTTCG	TAATACCTGT	TCATCAGCGT	AACAAGTTTA	
1390	ىلىدان ئىدادى ئىدادى ئى ئىدادى ئى ئىدادى ئى ئىدادى	GTTATTAGTT	TCAACAATTT	TTGTTTTAAT	TCTATAGGAT	AGGAGACCAG	

	AGAITTETTO AAGGCAGGTA TACCATTGAC AATTGTAGGG AATACCEAGT GATAGTTTTT	150
	AGCATGACTT ATTGGAAATG GGTAAGGTTG CNTTAATTAA	154
5	(2) INFORMATION FOR SEQ ID NO: 136:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11823 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:	
	ACTICICACA ATAAGAAATA TGAAATTGTT ATGTGTTAGT TGAGATTCAG TGATGAATTA	60
	CTTTTATCAT TTAAAATGTT GTTATCATTG TCATGCGTTA CCAAATCGCT TACGTATACA	120
20	CGATTCCCAA TCTTAACATA GACGATTTGT ATATCAGAAT TTTCTGATTA CTAACAGTTT	180
	ACCTAAGTTT AAATATCTGT TCAATGATTT TCAGTTATTT TTAAAAGAAA AATCGTAATG	240
	CTGCCATGAT AACAATCCCA CTAATAATTG TAATAGTTAA ALACGCGTGA TTATAGATAA	300
25	AATAACCGTC GGAATGAGCG CGATAATGTA AGGGATGTTT AATGTATACC CCTCACCATG	360
	AGGCGTCTGT TGAATAATGC TGTCAATGAC AAGTGCCGTA AATAGTGTGA TTGGGATAAA	420
	TGATAGCCAT CGAACCACGA CATCAGGCAA TTGCACTTTT GAAATCATGA TAAAAGGTAT	480
30	AATTCGAATT AATAGCGTTA CGATACCACA CAATAAAATA AGTATTAACA TGTTCATATG	540
	AGTTATCATT GTTCCATCAT CACTCCTAAC GCTGCTGAAA TTGTGGCTGC AATTAATATT	600
	GCTAGATATG AAGGCATAAA CATACTTAGC GATAACATCA TTACTATGAC GGCAATAATG	660
35	AGTACTATGT AAATTCTTAA TCGCGATTTA GTAATTGATT CAAATTGCGC AATGGCCAAA	720
	AAGATAAACA TAGCCGTGAT AGCAAAATCT AACCCTAGCG TTTGCGGATT TGAGATATAT	780
40	TCGCCAAATA AAGCCCCAGC TACACATGAA ATTGCCCAAA ATAAATATGC TGTGATGTTA	840
40	AGACCATGCA TCCAACGATC ATTGATAGCT TCTCCTTTTA AATAAGGTGT AATGGCGACG	900
•	CCAAACGTTT CGTCAGTTAC TAATGAACCT AATCCAACAC GGTTCCAAAA CCCATATGTC	960
45	TTGAAGTTTG GTGCAAGCGA CATACTTAAA AGGAACATTC TTGAATTTAC GATAAATACA	1020
	GTTAGTACAA TCGCTGATAT AGGTGTACCT GCTATAAACA ACGCGCACAT AATAAATTGC	1080
	GCAGCACCGG CATATATAAC AAGACATAAC AAGACAATTT CTAAAATACT AAAGTTTTGA	1140
50	GACGAAGCCA CAATACCAAA TGAAATACCA ACACCGGCAT AACCCAATAA TGTTGGGATA	1200
	CACTCTTGCA CGCCTTGTCT AAAACTTAAA TGTGTTGTCA TCTCAATTAC CTCCTTTGCC	1260

	TAAGCAATAA	CATTAGACAT	CAGTTTGTCT	GAGGTTAGAC	ATTCCGGAGT	CTTTAGTCAG	1380
	CTTCATATTA	ACTITITATI	TTTGAGAATT	TTCAATTTTT	TATTTAAGAC	TACCTCCATA	1440
5	TTTTCTATGG	aTTTGTAGTT	GTTTTTAAGT	ATCAATTTTA	TAAATTTTTA	TATCTGATGA	1500
	TGAGTCTGGG	aTATTGaTTC	ATGTACCACT	CCCTTaTaAT	CATCCCCTCC	CCCTaCCCTA	1560
	CTCCATCGAT	ATAACTČATA	CTACATATCA	ACGAAATCAG	TATTTTATCG	CTTCCTTTCC	1620
10	TATATTAGTG	ATGCTCAAAC	TTGTTACGTT	TTAGATTGTT	TTAGTTCATC	ATAATTATCC	1680
	CGTATTGTTG	CTATAATGAA	ATGCGTTCAC	CCCATTAAAC	CACAAACTTA	ATTTATTGTT	1740
15	GTTATGTGCA	TTGGCTCACT	ATTATATTTT	TACAGCACAA	AAAAAGTGGC	GACAGTTCGT	1800
15	CACCACTTTT	TAAAATATTA	TTTAAAGTAT	CTTGCCCTTG	CTTTAAGTAT	ACGTAGATAT	1860
	ATACTTTTTA	AAGCTTGTAG	CTAAAGCCTT	TATTTAACTG	GTTTTGAAAT	TTGTGTTTTA	1920
20	CCACCCATAA	ATGGTACTAA	TGCTTCTGGA	ATTGTTACTG	TTCCATCTTC	ATTTTGGTAA	1980
	TTTTCAACAA	TAGCAGCAAA	TGTACGTCCA	ACTGCTAAAC	CACTACCATT	TAATGTATGT	2040
	GCTAATTCTG	GTTTAGCTGC	TTTGTCACGC	TTGAAGCGGA	TGTTAGCACG	ACGCGCTTGG	2100
25	AAATCCGTAC	AGTTTGAGCA	TGAACTAATT	TCTTTATAAT	CATTGTAGCT	TGGTAACCAA	2160
•	ACTTCTAAAT	CATATGTTTT	GCTTGCACTA	AATCCAATAT	CACCTGTACA	TAAAATAACA	2220
•	CGACGGTATG	GTAAACCTAA	CTCTTCTAGA	ATTGCTTCTG	CGTTTGTTGT	CATTTCTTCT	2280
30	AAAGCATTCC	ATGAATCTTC	AGGTTGTTCA	AAACGTACCA	TTTCCACTTT	ATCGAATTGA	2340
	TGTAAACGAA	TTAATCCTCT	TGTATCTCTA	CCTGCTGATC	CTGCTTCACT	ACGGAAACAT	2400
	GCAGATTGAC	CAGTGAATTT	TTCAGGAAGT	ACACCTGGTT	GAATAATTTC	ATTACGGTAG	2460
35	AAATTCGTTA	ATGGTACTTC	AGCAGTTGGA	ATTGTATATA	ATCCTTCTTT	TTCTACTTTA	2520
	AATAAATCTT	CTTCAAATTT	aggtaattga	CCTGTACCAT	ACATTGTATC	TGCGTTCACA	2580
40	AGCTGTGGTA	CCATCATTTC	TGTATAACCA	TGTTGTGTTG	TATGTTTTGT	AATCATATAG	2640
40	TTCATTAAAG	CACGCTCTAA	TTGCGCACCT	TCATTTGTTA	AATATACAAA	ACGCGCACCT	2700
	GAAACTTTTG	CTGCACGATC	AAAATCAGCC	ATTTTCAATT	CTTCTACAAT	ATCCCAATGT	2760
45	GCTTTGGGTT	CAAATGAAAA	CTCaCGTGGT	GTACCCCACT	TTTTAACTTC	AACGTTATCT	2820
•	TCATCAGATT	CACCTTGAGG	TACATCATCA	СТТАТТАААТ	TTGGAATACG	ACAAAGGATA	2880
	CCTGTCATTT	TATTATCAAT	TTCATTTAAT	TGACTATCTT	TTTCTTTAAT	ATCGTCACCT	2940
50	AATGTGCGCA	TTTCAGCAAT	CACATCATCA	GCATTTTCTT	TATTACGTTT	TTTTAATGCG	3000
	ΔΤΤΤΟΤΤΟΟΟ	ملحك لاملحكسات لاملحك	3.CC3.CCCCC		OTTO OTTO OTTO	1 1 mm 1 1 mm 1	

	TCAATTTTGC	TCTTAACTGT	GTCAGGCTCA	TTTCTGAATA	ATCTAATGTC	TAACATTAAC	3180
	CTTCATCCTT	TCCCAAATAA	TTATCATTTA	TTATGGAATG	ACGTACGTCT	TTATTTTTA	3240
5	GAAAATAAAA	AAAGACCACA	TCCCTACAAG	GGACGTGGTC	TACGCGTTGC	CACCCTATTT	3300
	AACAATTTAA	GTTATAAAGA	TACACTAAAC	CTAAATTGCA	CTTCACTAAA	ATAACGGTTA	3360
10	TCACCGATTG	TTCTTTTAAA	TTAAGTAGGT	AGATTCATAT	ATATGTTGAT	TCTTGTTCAC	3420
10	ACTAACCACA	AGCTCTCTGA	TATCGAACAC	TATATATTAC	TTGTCCTACG	AACAATGTCT	3480
	TATTAAGTTA	TTTTTAATAT	AGCAAACTAT	ATTTGCTTTT	TCAAGTAACG	ATTTCAAACA	3540
15	TCACTCATGT	CGATTTAGTG	ACATGCAGTC	GTTTGATAAA	TTGATTGCTT	TAAATACTGT	3600
	GCAACCGCTT	CAATATCTTT	ATGAAATTGA	CGATCATGTG	TAATGGATGG	CACGATACTT	3660
	CGAAACTCAT	CATACTTGCG	ACGTGTTTTT	GGTGATAATC	CTTCAACACC	TTTTAACTCT	3720
20	GCTGCTTGTA	ATGCAATAAC	ACATTCGATT	GCCAGCACAC	GTCTTGCATT	TTCAATAATT	3780
	TGATAACCAT	GTCTAGCAGC	TGTAGTTCCC	ATAGATACGT	GATCTTCTTG	GTTCGCAGAT	3840
ŧ	GAAGTGATAG	AATCAACACT	CGCTGGATGC	GCTAAAGTTT	TATTTTCAGA	AACGAGACTT	3900
25	GCAGCAGCAT	ATTGCATAAT	CATCGCGCCA	CTTTGCAATC	CTGGCTCTGG	ACTAAGAAAT	3960
	GCTGGTAAAT	CACCATTTAA	TTGAGGATTT	ACTAGTCGCT	CTAGACGACG	TTCCGATACG	4020
	TTTGCTAATT	CACTTACACC	TAATTTAAGA	TGATCTAATG	CAAAAGCAAT	AGGTTGTCCA	4080
30	TGGAAGTTAC	CACCTGAAAT	AACAAACGTT	TCATTTGCTT	CCTCAAATAT	AAGTGGATTA	4140
	TCATTAGCCG	CATTCATTTC	AAATTCTAAT	TGCTGTTTAA	CATAATTGAA	TACTTGAAAA	4200
25	CTCGCGCCAT	GGATTTGTGG	TATACAACGC	AACGTATATG	CATCTTGTAC	ACGTATTTCT	4260
<i>35</i>	GATTGTCGCG	TCGTTAATGT	TGATCCTTCT	AACCAATCAC	GCATACGCGC	TGCCACATTA	4320
	ATCTGTTCTT	GAAAATTACG	AACTGCGTGC	ACATCATGTC	GATATGCATC	TATAATGCCA	4380
40	TTAAGAGACT	GATGCGTTAA	TGCAGCAATC	CATTCAGATT	GGTAACCTAA	ATCTTCTGCT	4440
	TCTATATAAC	TAATGACACC	TTGAGCTGTC	ATAGCTTGCG	TACCATTAAT	CAATGCTAAA	4500
	CCTTCTTTAG	CCTGAAGGTT	CAAAGGTTGT	CTATTTAATT	CTCTTAATAC	ATCGTCACTA	4560
45	TCCTTTTCTT	CCCCTCTGTA	CAATACTTTC	CCTTCACCAA	TTAATGCTAA	TGCTAAATGT	4620
	GATAATGGCG	CTAAATCTCC	TGATGCACCG	AGAGAGCCTT	GCTGTGGGAT	TATCGGTATA	4680
	ATACGTTCAT	TTATAAAAAA	TTGTAATTGT	CTCACTAATT	CTAAAGTGGC	ACCTGAATGA	4740
50	CCTTTTAATA	ATGTATTCAA	TCGTAAAATC	ATCATGACTA	ATGCTACTTC	TTTTGAAAAT	4800
	CCCTCX CCTX	CTCCACACCC	*****	ATCACATTCA	שייים איניטישיים	አምተል ጥልምነርር	4860

	TCCTCATTTT	CAATAATACG	TTCAACTACC	GCTCTACTTT	TTTTGACACG	TTCTAACGCA	4980
	TCATCAATAA	TTTCAATCTT	TGATTGTTGT	TGTAAAAATG	ATTTAATATC	CTCAATTGTT	5040
5	AGTGTTTCAC	CATCTAAATA	TAAAGTCATA	TATGTTACCC	CCTTGTTTAT	ATTAAGTAAC	5100
	CCATCCTTCT	TGAAGTATAC	GTTTTCATTT	TTATTGAAAC	AATGGTTTTA	CGTACATTTA	5160
	TAACCTATTA	TCAGAGCACT	ATTGTAGTGC	GTTAAAGGAT	ATTAAGATTG	TTGTAAGCAT	5220
10	TAATAATTTA	TTATCTATTG	ACGAATTGCA	TATACAGGTA	TAGTATTTTC	TATTGTATTT	5280
	AACGACAAAT	AATAATGAAT	TCAGAAATTT	ATAATACATT	TTGTTAAAAG	TTACTATATA	5340
15	TTTTTTAAAAT	TGAATAAATT	CGGAAAAGGC	TTTTACATGG	GAGGTTATAT	CACTATGGAA	5400
	ACGTTAAATT	CTATTAACAT	TCCTAAGCGT	AAAGAAGATT	CACATAAAGG	TGATTATGGC	5460
	AAAATTTTAT	TAATTGGTGG	ATCTGCTAAC	TTAGGTGGTG	CCATTATGTT	AGCGGCTCGT	5520
20	GCATGTGTAT	TTAGCGGTAG	TGGTTTAATC	ACTGTAGCTA	CACATCCAAC	AAATCATTCA	5580
	GCATTACATT	CTCGTTGCCC	AGAAGCGATG	GTTATTGATA	TTAATGATAC	GAAAATGTTG	5640
	ACGAAAATGA	TTGAAATGAC	TGACAGTATA	CTAATTGGTC	CAGGTCTTGG	CGTTGATTTC	5700
25	AAAGGAAATA	ATGCCATTAC	ATTCCTACTA	CAAAATATAC	AACCGCATCA	AAATTTAATC	5760
	GTAGACGGCG	ATGCGATTAC	AATCTTTAGT	AAACTGAAAC	CGCAATTACC	TACATGTCGT	5820
	GTGATCTTTA	CACCACACCT	CAAAGAATGG	GAACGATTAA	GTGGTATTCC	TATTGAGGAA	5880
30	CAGACATATG	AGCGTAATCG	TGAAGCAGTT	GATCGTTTAG	GTGCAACTGT	TGTACTTAAA	5940
	AAACATGGTA	CTGAAATTTT	CTTTAAAGAT	GAAGACTTTA	AATTGACAAT	CGGTAGCCCA	6000
	GCAATGGCGA	CTGGTGGTAT	GGGCGATACA	CTTGCTGGTA	TGATTACAAG	CTTTGTCGGT	6060
35	CAATTTGATA	ACTTAAAAGA	AGCGGTTATG	AGTGCCACAT	ATACACATAG	TTTTATTGGC	6120
	GAAAACCTTG	CAAAAGATAT	GTATGTGGTG	CCACCATCAA	GACTTATCAA	TGAAATACCT	6180
	TACGCAATGA	AACAATTAGA	AAGTTAGTCA	TTACTAATCA	TTGAATATAG	TAAAGCATTA	6240
40	CTTTCTAGCA	TAAAAATAAG	ACTCCCCTAC	ATATAGGGAA	GTCTTATTTT	TTATTATTCT	6300
	TCATCTGATG	ATTGTTGTAT	ATCTTCTTCA	ACACGATCCA	TGAAATCTTG	TCTTACTTCA	6360
45	ATACGTCCAT	CTTCATCATT	TTCTTCTGAA	TCAATCACTT	CAGTATGAAT	TGCATTTCCT	6420
	GGTGTTTCAT	CATTTaCAAC	CGCTTCACGT	TGTTGTTCAG	TACCATCTTC	AGATACAGTT	6480
	GAAGTAGATT	GCTCATCTTC	ATTCGTTTCA	TCTTCTGCAT	CTTCTTTTAC	TTTAGCAACC	6540
50	GTTGAAACAA	ATTGATCATC	ACCTAAGCGA	ATTAAGCGAA	CACCTTGTGC	TGCACGACCA	6600
	Terror	mamomooa a o	1 mama amaga 1		~~~~		

	GTAGCTGTTT	TAATACCTTI	, yccyccycgy	TTTGATAAGC	GATAGTCATI	AACTGGCGTA	678
_	CGTTTACCAT	AACCATTTTC	AGTAACTACT	AATACTICAT	CAACACTGTT	TGCATGAGCT	6840
<i>5</i>	ACATCAAGCC	CTACAACTTC	GTCACCTTCA	CGAAGTGTAA	TACCTTTCAC	ACCCGTTGCT	6900
	GTACGGCCTA	AAGGACGTAA	TGTTGATTCA	GGGAATCGAA	TTAATGATGC	ATGTGATGTA	6960
10	CCAATCAAGA	TATCTTCTTG	ACCACTTGTT	AAGCGAACTG	CAATTAACTC	ATCATCTTCT	7020
	CTGAACGAAA	TCGCAATCTT	ACCATTTCTA	TTTATTCTTG	AGAAGTTACT	TAATGCTGAA	7080
	CGTTTAACGA	CACCACGTTT	AGTTGCAAAC	ACTAAGAAGT	TGTCTTCACT	TTCAAGGTCT	7140
15	TTAACAGCAA	TCATTGTACT	AATGACTTCA	TCATTTTCAA	GTTCAATAGC	ATTCACTACA	7200
	GGAATACCTT	TAGACTGTCT	TGATAACTCA	GGCACTTCGT	AACCTTTAAG	TTTGTATACA	7260
	CGACCTTTGT	TAGTAAAGAA	CAATACATGG	TCATGTGTAC	TTAAAGTTAC	CAATTGACTG	7320
20	ACAAAATCTT	CTTCCAATGT	ATTCATACCT	TGAACACCAC	GACCACCACG	GTTTTGAGCA	7380
	CGATATGTAG	ATACCGGCAA	ACGTTTAATG	TAGTTATTAT	GGCTTAGTGT	AATTACTATT	7440
	TGTTCTTCTG	GAATTAAGTC	TTCGTCCTCT	AAGTCTTCAA	ATCCACCTAA	TTGAATTTCT	7500
?5	GTACGACGAT	CATCACCGAA	ACGATCTCTA	ATTTCAGTCA	ATTCATCTCT	AACTAACTGT	7560
	AATAACACTT	CTTCATCAGC	TAAGATTGCT	TCTAATTCAC	TAATATAATT	TAATAACTCA	7620
•	TTATATTCAG	CTTCAATTTT	GTCTCTCTCT	AAACCTGTTA	GACGTCTTAA	ACGCATGTCT	7680
30	AAAATAGCTT	GAGCTTGTTT	TTCAGAAAGT	TTGAAGCGTT	GTTGCAAGCT	TTCCATTGCA	7740
	ACTITATCIG	TATCTGACTC	ACGAATCGTT	GAAATAATTT	CATCGATATG	GTCAAGTGCG	7800
_	ATACGTAATC	CTTCTAAAAT	GTGGGCACGA	TCTTTAGCTT	TACGTAAgTT	GTATTGCGTA .	7860
35	CGTCTTCTAA	CAACTGTCTT	TTGATGCTCT	AAATAATGTA	CCAACGCTTC	ATTAAATTT	7920
	ATAAGCTTCG	GTCTACCATT	TACAAGTGCA	ATCATATTCA	CACCAAATGA	TGTTTGAAGA	7980
10	GGTGTTTGTT	TGTATAAGTT	ATTTAAAATG	ACACTAGCAT	TTGCATCCTT	ACGCACATCA	8040
	ATAACGACAC	GCACACCAGT	ACGTAAACTT	GTTTCATCAC	GTAAATCAGT	GATACCGTCA	8100
	ATTTTCTTGT	CACGAACGAG	CTCTGCAATT	TTTTCAATCA	TACGAGCCTT	ATTCACTTGG	8160
15	AAAGGAATTT	CAGTGACAAC	AATACGTTGA	CGTCCGCCTC	CACGTTCTTC	AATAACTGCA	8220
	CGAGAACGCA	TTTGAATTGA	ACCACGACCT	GTTTCATATG	CACGTCTAAT	ACCACTCTTA	8280
	ССТААААТАА	GTCCAGCAGT	TGGGAAATCA	GGACCTTCAA	TATCCTCCAT	TAACTCAGCA	8340
io	ATTGAAATAT	CAGGGTTCTT	ACTTAAGCTA	AGTACACCAT	TGATTAATTC	TGTTAAGTTA	8400
	TGTGGTGGAA	TATTCGTTGC	CATACCTACC	GCGATACCTG	ATGCACCATT	GGCTAATAAG	8460

	AAATCTATTG	TATCTTTATT	AATATCACGT	AACAGTTCAA	GTGTGATTTT	AGTCATACGC	8580
	GCTTCAGTAT	AACGCATTGC	TGCTGCGCCA	TCTCCATCCA	TTGAACCAAA	GTTACCTTGG	8640
5	CCATCAACAA	GCGGATAACG	ATAACTGAAA	TCTTGAGCCA	TACGTACCAT	TGCTTCATAA	8700
	ATAGATGAGT	CACCATGAGG	GTGATATTTA	CCCATTACGT	CACCAACGAT	ACGTGCTGAT	8760
	TTTTTATATG	ATTTATCCGG	TGTCATACCT	TGTTCATTTA	ATCCATATAG	TATACGACGA	8820
10	TGTACTGGTT	TTAAACCGTC	ACGAACATCT	GGCAATGCAC	GAGCAACGAT	AACACTCATC	8880
	GCATAATCTA	AAAATGATTC	ACGCATTTCA	CTGGTAATAT	TTCGTTCATT	TATTCTTGAT	8940
15	TGAGGTAATT	CAGCCATCAA	GAGTTCCTCC	TTCAAAAGTT	CAGTTCACAG	CGCTTAGAAG	9000
	TCTAAGTTTG	CATAAACTGC	ATTATCTTCT	ATAAATTGTC	TACGGTTTTC	TACAACGTCA	9060
	CCCATTAACA	TTTCAAATGT	TTGGTCCGCT	TCAATCGCAT	CTTCAAGTTT	TACTTGTAAA	9120
20	AGAGCGCGGT	GCTCAGGGTT	CATTGTTGTT	TCCCALAATT	GATCTGCATT	CATTTCTCCA	9180
	AGACCTTTGT	ATCGTGCAAT	AGACCATTTT	GGTGTTGGAT	TCAATTCAGA	TTTAAGTTTA	9240
	TCAAGTTCCC	TATCATTGTA	TACATAATAC	TTTTGTTTAC	CTTGTGTCAG	TTTATACAAC	9300
25	GGTGGCTGTG	CAATATACAC	ATAGCCTGCT	TCAATTAACG	GTCTCATAAA	TCGATAGAAG	9360
	AATGTTAATA	ACAATGTTCT	AATATGCGCT	CCATCCACAT	CGGCATCAGT	CATAATGACG	9420
	ATTTTGTGAT	ATCTTGCTTT	CGCTAGATCA	AAGTCGCCAC	CGATTCCTGT	ACCAAATGCT	9480
30	GTGATCATTT	GACGAATTTC	ATTGTTATTC	AAAATTCTAT	CTAATCGTGC	TTTTTCAACA	9540
	TTTAATATCT	TACCTCGTAA	TGGTAAAATC	GCCTGCGTTC	TAGAGTCACG	ACCAGATTTT	9600
	GTAGACCCCC	CGGCAGAGTC	CCCTTCGACT	AAGAAAATCT	CACATTCTTC	AGGACTTTTA	9660
35	CTAGAGCAAT	CGGCTAATTT	ACCTGGAAGG	CTTGCTACAT	CTAACGCTGA	TTTACGACGT	9720
	GTTACTTCAC	GCGCTTTTTT	CGCAGCAACA	CGTGCACGTG	CCGCCATAAT	ACCTTTTTCA	9780
	ACCACTGTAC	GTGCGACTTG	TGGATTTTCA	TATAAAAATC	GTTCAAAGTG	CTCTGAGAAT	9840
10	AATTTATCTA	CAACTTGACG	CACTTCAGAA	TTACCTAATT	TTGTCTTCGT	TTGACCTTCG	9900
	AATTGAGGAT	CACCATGTTT	GATAGATATA	ATTGCTGTCA	TACCTTCACG	TGTATCTTCA	9960
15	CCAGAAAGTC	TATCTTTTTC	TTCTTTCATA	ATCTTGCTAC	TTAAACCATA	ACTATTTAAG	10020
	ACACGCGTTA	ATGCACGTTT	GAATCCGTCT	TCATGCGTAC	CACCTTCATA	CGTATGAATG	10080
	TTATTTGCGT	AAGTTAAAAG	ATTTGTGGCA	TATCCTGAGT	TATATTGAAT	CGCAATTTCT	10140
50	ACTTCAATAT	CATCTTTAGA	TTGATGAATA	TAAATTGGCT	CATCATGAAT	AGGTTCTTTA	10200
	потратительной потратительной потратительной потратительной потратительной потратительной потратительной потра	3 T 3 3 CT C 3 3 C	CTR CCR THEFT	ATTACCCCCCCT	CATACTCATA	CC N CET CETTO	10000

	GCAAGCTCTC	TAATACGCTG	CTGTAATGTT	TCATAGTTGT	ATACAGTTGT	CTCTGTGAAG	10380
_	ATTTCTCCAT	CTGCTTTAAA	ACGAAtGaCA	GTACCTGTCT	TATCAGTEGT	GCCAACTTCT	10440
5	TTTAAGTCAA	ATTGAGGTAC	ACCTTTTTTA	TATGCTTGAT	GATATATAGT	CTCATTTCTG	10500
	TGTACATATA	CTTCTAAGTC	TTGTGACAAT	GCGTTTACAA	CTGATGAACC	AACACCATGT	10560
10	AAACCACCAG	ATACTTTGTA	TCCGCCACCG	CCAAATTTAC	CACCAGCATG	TAAAACAGTT	10620
	AAAATAACTT	CGACAGCTGG	ACGTCCCATT	TTTTCTTGAA	TATCAACTGG	GATACCACGT	, 10680
	CCGTTATCCG	TTACTTTAAT	CCAGTTATCT	TTTTCAATAA	CAACTTCAAT	TTGATTTGCA	.10740
15	TAACCAGCTA	ATGCTTCATC	GATACTATTA	TCGACAATTT	CCCACACTAA	ATGGTGCAAA	10800
	CCTCTCTCTG	AAGTCGATCC	TATATACATA	CCTGGTCTTT	TACGTACTGC	TTCTAAACCT	10860
	TCTAATACTT	GTATTTGCCC	AGCACCATAA	TTATCCGTGT	TGTTTACATC	TGACAATGCA	10920
20	GTCACCATCG	CTTTCTGTTA	CTTTATAATT	TCACCTTGAT	TAATACGATA	CAATTTAGCG	10980
	TTATTCATGA	TTTCATGATC	AATACCATCT	ACAGATGTCG	TAGTGACAAA	TGTTTGTACT	11040
	TTATGCTGAA	TCGTACTTAA	TAAATGCGTT	TGACGCGAAT	CATCTAATTC	ACTGAGTACA	11100
25	TCGTCTAATA	ATAAGATGGG	ATATTCCCCA	ACTTCGATAT	TCATTAACTC	AATTTCAGCT	11160
	AATTTAATGG	ACAAAGCCGT	TGTACGTTGC	TGTCCTTGAG	AACCATATGT	TTGAGCATCC	11220
		CATCAAAACT					11280
30	TCTTTTTCTC	TTTGCATATT	ATCGCTAAGA	ATAGACATAA	TTTCTTCAAG	TCGTGCCGCT	11340
	TCATTTTGAG	CATAATCAAA	TTTAAGACTA	GGTAAATAAT	TCAGCGACAA	CGCTTCTTTA	11400
25		TACCAGCATG			•		11460
35		CAGTTACTTT					11520
	•	CCTTTTTTTG					11580
40		GGTATTGAGC					11640
		AGCGTCGTCT					1170o
		CCACATTGAG					11760
45	ATTCACTTTG	GACTTGTTTA	CCTTTnTTAG	ТТАТАААСАТ	TGTTAATGGG	CATCGTGCCG	11820
	TGT						11823

(2) INFORMATION FOR SEQ ID NO: 137:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 692 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

` *55*

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
	ATAATTATTA ACATGGTGTG TTTAGAAGTT ATCCACGGCT GTTATTTTTTG TGTATAACTT	. 6
5	AAAAATTTAA GAAAGATGGA GTAAATTTAT GTCGGAAAAA GAAATTTGGG AAAAAGTGCT	12
	TGAAATTGCT CAAGAAAAAT TATCAGCTGT AAGTTACTCA ACTTTCCTAA AAGATACTGA	18
10	GCTTTACACG ATTAAAGATG GTGAAGCTAT CGTATTATCG AGTATTCCTT TTAATGCAAA	24
	TTGGTTAAAT CAACAATATG CTGAAATTAT CCAAGCAATC TTATTTGATG TTGTAGGCTA	30
	TGAAGTTAAA CCTCACTTTA TTACTACTGA AGAATTAGCA AATTATAGTA ATAATGAAAC	36
15	TGCTACTCCA AAAGAAACAA CAAAACCTTC TACTGAAACA ACTGAGGATA ATCATGTGCT	42
	TGGTAGAGAG CAATTCAATG CCCATAACAC ATTTGACACT TTTGTAATCG GACCCGGTAA	48
	CCGCTTTCCA CATGCAGCGA GTTTAGCTGT GGCCGAAGCA CCAGCCAAAG CGTACAATCC	54
20	mTTATTTATC TATGGAGGTG TTGGtTTAGG AAAAACCCAT TTAATGCATG CCATTGGTCA	60
	TCATGTTTTA GATAATAATC CAGATGCCAA AGTGATTTAC ACATCAAGTG AAAAATTCAC	66
	AAATGAATTT ATTAAATCAA TTCGTGATAA nA	69
25	(2) INFORMATION FOR SEQ ID NO: 138:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7900 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:	
35	ATACTGTAGC GCAAATTTCA CAATGGCATG TTATAGAAGA TTTAGTTACG AATGAATTAG	6
	GTATTAGTAT TTTACCAACA TCAATTTCAG AGCAACTAAA TGGAGATGTG AAGCTGLACG	12
40	CATTGAAGAT GCTCATGTAC ATTGGGAATT AGGTGTTGTT TGGAAGAAGG ATAAACAATT	18
	AAGTCATGCC ACAACGAAAT GGATAGAATT TTTGAAAGAC CGTTTAGGCT AACATATTAA	24
	TAAAGCACTC ATTATTTAAG GCGCATCATT ACGTGGGTCA TTGAAATAAT GAGTGTTTTT	30
45	TTGTGAAAAT GAAGTGAAAT TTAGAGAGCG TTTCCATAGA AAATAGTAAT ACAAACTATA	36
	AAAAAAGAGT ATTTTTATAT TGTGTACGCC ATCTTTATAA TAGTTATTGT AACAATTTAG	42

ACATATTTAG AAAGGGATGG CGCCATGCAC AAAGTCCAAT TAATAATCAA ACTACTACTA
CAACTAGGAA TCATCATTGT GATTACTTAT ATTGGCACAG AAATTCAAAA GATTTTTCAT

55

	ATTGTACCGC	TAACTTGGGT	AGAAGACGGT	GCAAACTTTT	TATTAAAGAC	GATGGTCTTT	660
	TTCTTCATAC	CGTCAGTTGT	AGGLATTATG	GaTGtgCTTC	CGAAATTACG	CTAAATTATA	720
5	TACTCTTTTT	CGCAGTCATT	ATCATAGGAA	CATGTATCGT	TGCATTATCT	TCAGGTTATA	780
	TTGCTGAAAA	AATGTCyGtT	AAACWTAAAC	ATCGTAAAGG	TGTAGACGCt	TATGAATGAT	840
	TACGTGCAAG	CCTTATTAAT	GATTTTGTTG	ACTGTCGTTT	TATATTATTT	CGCTAAAAGG	900
10	TTACAACAAA	AATATCCGAA	CCCATTTTTG	AATCCAGCAT	TAATTGCATC	TTTAGGAATT	960
	ATTTTTGTCT	TACTTATCTT	TGGAATTAGT	TATAACGGGT	ATATGAAAGG	TGGCAGTTGG	1020
15	ATCAACCATA	TTTTAAACGC	AACGGTCGTA	TGTTTAGCGT	ACCCACTTTA	TAAAAATAGA	1080
15	GAGAAAATTA	AAGACAATGT	CTCTATCATT	TTTGCAAGTG	TATTAAcTGG	CGTCATGCTG	1140
	AATTTCATGT	TAGTGTTCTT	AACACTTAAA	GCATTTGGCT	ATTCTAAAGA	CGTCATTGTA	1200
20	ACGTTATTGC	CCCGATCTAT	AACAGCCGCA	GTAGGTATCG	AAGTGTCACA	TGAACTAGGT	1260
	GGTACAGATA	CGATGACCGT	ACTTTTTATT	ATCACAACGG	GTTTAATCGG	TAGTATTTTA	1320
	GGTTCGATGT	TATTAAGATT	TGGAAGATTT	GAATCTTCTA	TCGCCAAAGG	ATTAACGTAT	1380
25	GGGAATGCGT	CACATGCATT	TGGCACAGCT	AAAGCACTAG	AAATGGATAT	TGAATCCGGT	1440
	GCATTTAGTT	CAATTGGGAT	GATTTTAACT	GCAGTTATTA	GTTCAGTGTT	AATACCTGTT	1500
	CTAATTTTAT	TATTCTATTA	ATTTAGATAT	TTAAAATGAT	AGACAGAAAG	GGAGGCTATT	1560
30	AGTAATAATG	GCAAAAATAA	AAGCAAATGA	AGCATTAGTT	AAAGCATTAC	AAGCaTGGGA	1620
	TATAGATCAC	TTGTATGGTA	TTCCAGGAGA	CTCAATCGAC	GCATAGTCGA	TAGTTTACGT	1680
	ACAGTGAGAG	ATCAATTTAA	ATTTTATCAT	GTACGTCATG	AAGAAGTAGC	AAGCTTAGCG	1740
35	GCTGCTGGTT	ACACAAAATT	AACTGGTAAA	ATCGGTGTGG	CATTAAGTAT	CGGTGGCCCT	1800
	GGTTTAATTC	ATTTATTAAA	TGGTATGTAT	GATGCCAAAA	TGGATAATGT	ACCGCAATTA	1860
	ATATTATCTG	GACAAACGAA	TAGTACAGCA	CTTGGAACGA	AAGCATTCCA	AGAAACAAAT	1920
10	TTACAAAAAT	TATGTGAAGA	TGTAGCCGTT	TATAATCACC	aaattgaaaa	AGGTGACAAT	1980
	GTGTTTGAAA	TCGTTAACGA	AGCAATTCGT	ACGGCATATG	AACAAAAAGG	TGTAGCTGTT	2040
	GTTATTTGTC	CTAACGACTT	ATTAACTGAA	AAAATTAAAG	ATACAACGAA	TAAACCAGTA	2100
15	GATACATCAA	GACCAACAGT	AGTATCACCA	AAATATAAAG	ACATCAAAAA	AGCGGTTAAA	2160
	СТААТТААТА	AAAGTAAAAA	GCCTGTCATG	TTAATTGGTG	TAGGTGCGAA	ACATGCGAAA	2220
•	GATGAGCTAC	GTGAATTTAT	TGAAATGGCT	AAAATTCCTG	TCATTCATTC	ATTACCAGCT	2280
:O	AAAACAATCT	TGCCGGATGA	тсатсоэтат	ል ተጋጋገፐልፒጋል	ስርጥ ተየአረርጥል አ	3 3 TCCCT3 CC	2240

	CCATATGTGG	ATTACTTACC	TAAGAAAAT	ATTAAAGCCA	TTCAAATTGA	CACAAATCCT	2460
	AAAAATATCG	GACATCGTTT	CAATATTAAT	GTAGGAATTG	TTGGAGATAG	TAAAATTGCG	2520
5	TTGCATCAGT	TAACTGAAAA	TATTAAACAT	GTTGCTGAAA	GACCATTCTT	AAACAAAACG	2580
	TTAGAACGTA	AAGCGGTTTG	GGATAAATGG	ATGGAACAAG	ATAAAAATAA	TAATAGTAAA	2640
	CCATTACGTC	CAGAACGATT	AATGGCATCA	ATCAATAAAT	TTATTAAAGA	TGATGCAGTG	2700
10	ATTTCAGCAG	ATGTAGGTAC	AGCAACAGTT	TGGTCAACTC	GATACTTAAA	CCTTGGTGTA	2760
	AATAACAAGT	TCATCATTTC	AAGTTGGTTA	GGTACAATGG	GTTGCGGTCT	TCCAGGTGCA	2820
	ATTGCATCAA	AAATTGCATA	TCCAAATAGA	CAAGCCATCG	CAATTGCTGG	TGACGGTGCA	2880
15	TTCCAAATGG	TAATGCAAGA	CTTCGCTACA	GCAGTACAAT	ATGATTTACC	TTTAACTGTA	2940
	TTTGTACTTA	ATAACAAACA	GTTAGCATTT	ATTAAATATG	AACAACAAGC	AGCTGGTGAA	3000
22	TTAGAATATG	CAGTTGATTT	TTCTGATATG	GATCATGCAA	AATTTGCTGA	GGCAGCAGGT	3060
20	GGTAAAGGTT	ATACAATTAA	GAGTGCTAGC	GAAGTAGATG	CTATAGTCGA	AGAGGCATTA	3120
	GCACAAGATG	TACCAACGAT	TGTAGATGTA	TATGTTGATC	CTAATGCTGC	GCCATTACCA	3180
25	GGTAAAATTG	TAAATGAAGA	AGCGCTTGGT	TATGGTAAGT	GGGCATTTAG	ATCAATTACT	3240
	GAAGATAAAC	ATTTAGATTT	AGATCAAATT	CCACCAATTT	CAGTGGCAGC	AAAACGTTTC	3300
	TTATAACTGA	TTTAAAGGTT	ATCACAATTG	AATTGAACTA	TAAAAACGGT	AATTTCTATT	3360
30	TCAACAAAAT	GGGAATTGCC	GTTTTGTTTA	TTTATCACAA	ATGATCGTAC	TGAATTGATG	3420
	ATAAAATTGT	GAAAAAGTTG	TTGAAAACGC	TTTTACAAAT	ATGTATAATA	GCTATGAATT	3480
	AGATATCACT	TGCGTGTTAC	TGGTAATGCA	GGCATGAGCA	AACAACCGCA	CTATGAGAAT	3540
<i>35</i> .	AGTCTTGTTT	GTTCATGCCT	GCTTTTTTTG	TACATGGAAG	CGGAAATTGA	GATAGGGGAT	3600
	GTTTATATGT	TTAAGAAATT	GTTTGGACAA	TTGCAACGTA	TCGGTAAAGC	ATTAATGTTA	3660
	CCTGTTGCGA	TTTTACCAGC	AGCTGGTATT	TTATTAGCGT	TTGGTAACGC	AATGCACAAC	3720
40	GAACAATTAG	TAGAAATTGC	ACCATGGTTA	AAAAACGATA	TCATTGTAAT	GATTTCGTCG	3780
	GTCATGGAAG	CAGCAGGACA	AGTTGTATTT	GATAACTTGC	CATTATTATT	TGCAGTTGGT	3840
	ACAGCACTTG	GATTAGCAGG	AGGAGACGGT	GTTGCAGCAT	TAGCAGCGCT	AGTAGGTTAC	3900
45	TTAATTATGA	ATGCAACAAT	GGGGAAAGTG	TTGCACATTA	CAATTGATGA	CATTTTCTCA	3960
	TATGCCAAAG	GGGCAAAAGA	ATTAAGTCAA	GCAGCGAAAG	AACCAGCACA	TGCTTTAGTA	4020
	TTAGGTATTC	CAACGTTACA	AACGGGTGTG	TTTGGTGGTA	TTATCATGGG	TGCTTTAGCC	4080
50	GCATGGTGTT	ACAACAAATT	TTATAATATT	ACACTACCAC	CATTTTTAGG	ATTCTTTGCA	4140

	AGCTTTGCGT	GGCCACCAAT	TCAAGATGGA	TTAAATAGTT	TATCGAATTT	CTTATTAAAT	4260
	AATTTAAAAA	CATTAACAAC	GTTTATATTC	GGTATTATTG	AACGCTCATT	AATTCCATTT	4320
5	GGTTTACATC	ATATTTTCTA	TTCACCGTTC	TGGTTTGAAT	TCGGAAGTTA	TACAAATCAC	4380
	GCAGGTGAAT	TGGTTCGTGG	TGACCAACGT	ATTTGGATGG	CACAATTGAA	AGATGGCGTA	4440
	CCATTTACTG	CTGGTGCATT	TACTACTGGT	AAATATCCAT	TTATGATGTT	TGGTTTACCA	4500
10	GCGGCGGCAT	TTGCTATTTA	TAAAAATGCA	CGACCAGAAC	GTAAAAAAGT	CGTGGGTGGT	4560
	TTAATGTTAT	CAGCAGGATT	AACTGCATTT	TTAACTGGTA	TCACTGAGCC	ATTAGAATTT	4620
	TCATTCTTAT	TTGTAGCACC	AGTACTTTAT	GGAATTCACG	TATTATTAGC	TGGTACATCA	4680
15	TTCTTAGTAA	TGCATTTATT	AGGCGTTAAA	ATTGGTATGA	CATTCTCAGG	TGGTTTCATA	4740
	GATTATATTT	TATATGGTTT	ATTAAACTGG	GATCGTTCAC	ACGCATTATT	AGTTATTCCA	4800
	GTCGGTATTG	TATATGCTAT	CGTGTATTAC	TTCTTATTCG	ACTTTGCAAT	TCGTAAGTTT	4860
20	AAATTGAAAA	CACCAGGTCG	TGAAGATGAA	GAAACTGAAA	TTCGTAACTC	TAGTGTCGCA	4920
	AAATTACCAT	TTGATGTCTT	AGATGCAATG	GGTGGAAAAG	AAAACATTAA	ACATTTAGAT	4980
25	GCATGTATTA	CACGTCTACG	CGTAGAAGTG	GTTGATAAAT	CAAAAGTAGA	TGTAGCAGGT	5040
-	ATTAAAGCTT	TAGGCGCATC	AGGTGTATTA	GAAGTTGGAA	ACAATATGCA	AGCTATCTTT	5100
	GGTCCAAAAT	CAGATCAAAT	TAAACATGAT	ATGGCCAAGA	TTATGAGTGG	TGAAATTACG	5160
30	AAACCAAGTG	AAACGACAGT	GACTGAAGAA	ATGTCAGATG	AACCAGTTCA	CGTAGAAGCA	5220
	CTTGGAACAA	CAGACATCTA	TGCACCAGGT	ATCGGTCAAA	TCATTCCATT	ATCAGAAGTA	5280
	CCTGATCAAG	TATTCGCTGG	TAAAATGATG	GGTGATGGTG	TTGGCTTTAT	CCCTGAAAAA	5340
35	GGTGAAATTG	TAGCACCGTT	TGATGGTACA	GTGAAAACAA	TCTTCCCTAC	GAAACATGCG	5400
	ATAGGATTAG	AATCTGAAAG	TGGCGTCGAA	GTACTTATTC	ATATTGGTAT	CGATACAGTG	5460
	AAACTGAATG	GTGAAGGATT	CGAAAGTCTG-	ATTAACGTTG	ATGAAAAAGT	AACACAAGGT	5520
10	CAACCATTAA	TGAAAGTGAA	TTTAGCATAC	TTGAAAGCAC	ACGCACCAAG	CATCGTTACA	5580
	CCAATGATTA	TTACAAATCT	TGAAAATAAA	GAACTTGTCA	TTGAAGATGT	ACAAGATGCT	5640
	GATCCAGGTA	AGCTAATTAT	GACAGTCAAA	TAATGATTAA	AAATGAAACA	GCATATCAAA	5700
15	TGAATGAACT	TTTAGTCATT	CGTAGTGCGT	ATGCGAAGTA	GCGAGTTGAA	AGAGAATACG	5760
•	TTACAAAAGG	CAGTAGCTTA	AAATGAAGCT	ACTGCCTTTT	TAGTGCGCAA	TGATGTATAG	5820
	CAGGTGTGTT	GATGTTAATA	AGTTAAATAT	TAGTGTTAGA	TATAGAAAAC	ATTGCTTATG	5880
50	TTTTTGTCAC	ATTTTAGAAA	AATGCATCTT	CGCGACTAGC	CAAATTAATA	GTCTCATTGA	5940

	AATAAATTAA	CATGATTTTA	AATCTATTTG	TAAGATAAGG	AGATTTGTCA	TTATGACAAC	606
	AGAAGGTCTA	TTAGTTGCAG	AGAAAGAAAT	CGAAGTGAAT	GGTTACGACA	TTGATGCGAT	612
5	GGGTGTCGTT	AGTAATATCG	TTTATATTAG	ATGGTTCGAA	GATTTGAGAA	CAGCGTTTAT	618
	TAATCAGCAC	ATGAATTACT	CAACAATGAT	CAATCAAGGC	ATTTCACCTA	TACTTATGAA	624
	AACGGAAGCA	GAGTATAAAG	TACCTGTCAC	AATACATGAC	AAACCAGTAG	GTCGTATTTA	630
10	CTTAGTTAAA	GCAAGCAAGA	TGAAATGGGT	GTTTCAGTTT	GAAATTGTGT	CCGCACATGG	636
	CGTGCATTGT	ATTGGTACAC	AGACAGGCGG	TTTTTACAGA	TTGAGTGATA	AGAAGATAAC	642
	CTCTGTGCCA	CAAGTGTTTC	AAGACATTTT	AGCAACAAAA	TAATGACTTC	TAAAATTTTA	648
15	ATAAAAAGTA	AGAAGGTGTT	CGAAATGGTT	AAGCAATTAA	ATAGTGTCGA	AGCATTCCGT	654
	GAATTTATTC	ATCAATATCC	GTTAGCAGTT	GTACATGTCA	TGCGCGATCA	GTGTAGCGTG	660
	TGTCATGCCG	TTTTACCACA	AATTGAAGAC	TTGATGCAAT	CATATCCCAA	TGTGCCATTA	666
20	GCTGTGATTA	ATCAAAGTCA	GGTGGAAGCT	ATTGCTGGAG	TATAAATAT	TTTCaCTGTA	672
	CCTGTGGATT	TAATTTTTAT	GAATGGAAAA	GAAATGCATC	GTCAAGGGCG	TTTTATCGAT	678
25	ATGCAACGTT	TTGAACATCA	TCTTAAGCAA	ATGAATGATA	GTGTAAATAA	CGATGTCGAT	684
	GAGCATTAAT	ATCGCAAATG	ATTAGCATTG	CTAAGATTAT	GTAGACATCA	TAACTTATTT	690
	CCCAGTAAAT	ATTGGTAGTA	ATTAGAATCA	GCATGGTACA	GTAGAACTAT	AGTAGAAATC	696
30	ATCAAAGAGG	AGTGACGACA	AATGCGTAAA	AAATGGTCTA	CACTTGCGTT	TGGATTTTTA	702
	GTTGCAGCAT	ACGCACATAT	TAGAATTAAA	GAAAAACGCA	GTGTGAAAAG	TTATATGTTA	708
	GAACAAGGTA	TACGATTATC	TAGAGCTAAG	CGTCGTTTTA	TGTATAAAGA	AGAAGCGATG	714
35	AAAGCATTAG	AAAAAATGGC	GCCACAGACA	GCAGGCGAAT	ATGAGGGAAC	CAATTATCAG	720
	TTTAAGATGC	CAGTAAAAGT	GGATAAGCAC	TTCGGTTCAA	CCGTTTATAC	CGTTAACGAT	726
	AAACAAGATA	AGCATCAACG	CGTTGTATTA	TATGCACATG	GAGGCGCATG	GTTCCAAGAC	732
10	CCACTCAAAA	TTCATTTCGA	ATTTATTGAT	GAACTTGCAG	AAACACTCAA	TGCTAAAGTC	738
	ATCATGCCAG	TATATCCGAA	GATTCCGCAT	CAAGATTATC	AAGCGACGTA	TGTGCTTTTT	744
	GAAAAGTTGT	ACCATGATTT	ATTGAATCAA	GTAGCAGATT	CTAAACAAAT	CGTTGTAATG	750
15	GGTGACTCTG	CGGGCGGTCA	AATTGCTTTA	TCATTTGCTC	aattgttaaa	AGAAAACAT	756
	ATTGTGCAAC	CAGGACATAT	TGTATTAATT	TCACCAGTTT	TAGATGCAAC	GATGCAGCAT	7626
	CCTGAAATTC	CTGACTACTT	AAAGAAAGAC	CCAATGGTAG	GTGTGGATGG	CaGTGTGTTC	7686
50							

	CCAGATGCTT TGAACTTATC GCAATTGTTG AGTGCGAAAG GTATCGAACA TGACTTTATA	7860
	CCTGGATATT ACCAATTCCA TATTTATCCA GTATTTCCGA	7900
5	(2) INFORMATION FOR SEQ ID NO: 139:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1984 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:	
15	GTCTAAATAA ACAAAATTAT CATTGATTAC TGAACTGGCA TTTCGAAGTA ATGCTTCAAT	60
	ATCATTCGAA TATTTCTTCA ATTTATGATT GTGAAATAAT TCTTGCATCA AAAATGGTCT	120
20	TTGGTCACAT GAATGTGCAT CTGAAGCTAC AAAATGAGCC AAATTACATT CTATAAATTG	180
.0	TAATGATAAC TTTTGAATGT TTTTACCAAA TCCACCAACT AAAGAACTCG ATGTTAATTG	240
	ACTCAGTGCC CCATTTGCAA CCAATTCATA TAATATTTCC GGATTTTTGG CGATACTTCT	300
25	ATTTCTTTCA GGATGTGCAA TGATTGGTAT GTAACCTCTC GATTGTATTT CAAAAAACAA	360
	TIGITITGTA TAATGTGGTA CTTCGCCCGT TGGAAATTCA ATTAATAAAT ATTTCGAACG	420
	ATTAATACCT TGAATACTAC CATTATCTAA GCCTTTCAGA ATCGAATCTG TAATTCTAAT	480
30	TTCTTGCCCG GGAAATAATT TAATATCCAA TGCTTGAACT TCTGGATGCG TTCTTAACTC	540
	CGCCAATTTC ACAAGCACTT GTTGAAATGT ATTATCATAT CTCGGATGCA AATGATGAGG	600
	TGTCGCTACA ATACTTGTTA CACCTTCATC CTTAGCTTGC TTTAATAGTG CAATACTCTT	660
35	TTCAATTGTT TTAGGACCAT CATCTATATC AACTAATATA TGGTTATGAA TATCAATCAT	720
	GATTCATCAG TCCCATAATA TGCATAGTAA CTAGCACTTT TATCTTTAGG CATTCTATTT	780
	AAGACTACAC CTAATAATTT AGCACCTGTT GCTTCAATAA GTTCTTTTCC TTTTTTAACT	840
10	TCATCTCTAT TATTATTTTC CGAATTAACT ACGTAGACAA CATTGCCGGT AAACTTTGAA	900
	AATAATTGCG CATCTGTAAC TGTGTTCACT GGTGGCGTAT CGATAATTAC AAAGTTATAA	960
	TTCATCAATA ATGTGTCATA CAAATTTGCA AATGCCCTTG ATGTAATTAA CTCTGACGGA	1020
15	TTCGGTGGGA TTGGCCCAGA CGTCAAGACG TCTAAATCTT GAATTTCAGT TGAGATAATA	1080
	CTGTCTTGAT AAGTTGACCA ATTTAGCAAT AAACTTGATA GGCCTTCATT GTTTGGCAAA	1140

TTAAAAATAT AATGCTGCGT AGGTTTACGC ATATCCCCGT CTACGATTAG TGTTTTATAA

CCTGCTTGCG CATATGCAAC TGCTAAATTT GCTGCAATTG TAGACTTACC TGCGCCTGGT

55

1200

	GATCTTATGC CTCGAAATTT CTCGCTAATA GGTGACTTTG GTTGTTCATG GACAATTAAA	1380
	CTTGATGTAC TTCYTCGTGT ATTCGTCATG GTAATTCCTC GTAAATTAAA ATTTTTGTAT	1440
5	TGAACCTAAA ATAGGTAATC CTAGTTGCGA TTCAACATCT TCTTCTGTCT TAATACGCTT	1500
	ATCTAATAAT TCTTTTAAGA AAATAATCAA TATTGCTAAA ACAATACCAA CAATAATGCT	1560
10	GATAACTAAG TTGACAGATA CTATTGGAGA TACTTTTACA GCATTATCAT GTGCTGAGGA	1620
10	AAGTATCGTA ACATTATCAA CACTCATAAT TTTAGGCATG TCATGAGCAA AAACTTTAGA	1680
	TATTITATTA ACAATTITGT CAGATTCAGA TITATTCCCA GTGGTAACTG ATACAGTAAT	1740
15	AATTTGAGAG TTTGTTTGAT TGGTTACTTT TAAAAATGAA TTCAACTCAG CTGTTGAATA	1800
15 0	CTGACCATCA ANTTCTCTAG ATACTTTATC TAGAATTCTA GGACTTTTGA TAATTTCCGT	1860
	ATATGTATTA ACAGACTGCA AACTACTTTG AACATTTTGG AAAGCTAAAT CACTTGAGGA	1920
20	CTTTTTCATG TTCACTAATA TTTGAGTAGA AGCAGTATAT TTGTCAGGCA TAACAAAAAA	1980
	GGTT	1984
	(2) INFORMATION FOR SEQ ID NO: 140:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6272 base pairs (B) TYPE: nucleic acid	

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

CAAATCCCTT	GGTGATGAtA	AAtGtATTGC	TGTGTAGCCA	AATAATCTTC	GTATATATGA	60
CTGACGTTCA	ACAACAGCTT	GCAATCGTTT	CGTTGGTACA	GTTACTTTCT	TCTTGTTAAA	120
GAÇACCATAT	TCAATTTTAA	GTTGCTCATT	TTCAAGCATC	ACCGAAAAGC	CATAAAATCT	180
TATCATTGTT	ATAATCGTTC	CAATAATATA	TGCCACTATT	AATACTAGTA	AAATGATGAT	240
TAATACTGAA	ATACTTACAA	TTTGAACCCA	TTGACTAATT	TCATGATTTA	GCTTCGACCA	300
TGGGATCAAC	TCTCTTACAG	CCCCGTAAAT	CGGTACTAAA	GCTGCTAACG	TTACACCAAT	360
GGCGCCACTG	GTCATTGCCA	TAAATAGTGA	TTCTTTAAAA	TTCATCTGAT	ATATAGGAAT	420
GCGTTTATTT	TTCTGATTAA	GCATACTATC	AGTGTTCTGC	ACTTCATCTA	AGCGACCTTC	480
TGCGATGTCT	TCCACATTAC	CTTCAATGTC	ATGATTACAG	TTGTCATTCT	TCTCAGCACT	540
AGACTTTTGC	GCCACTTCTG	TCTTCAACTC	TGTTTGCAAT	TGATCAATAT	ATCGTTCAAG	600
ATATTCACCT	TGTTTTTTCG	AAATAACACT	TAAGACAATA	CCATCACTTG	GTGTTTTGAT	660

	AATACGTTTT	TTAATTTAATT	CTTTACGCTT	TTTATTAAAA	ATACCTGTTG	TTAAAATGAA	780
_	ATAATTATCC	tCAATCCAAT	ATCGCGTGTT	CATAATTCCG	ACAATTTGAG	AAATGTATGA	840
5	TATTAAAAAG	AATACAAATA	CAATACCTAT	CCATAAATAT	GATTCGGGAT	TCGTATAATC	900
	AAAATCTTTC	AATTGAAAGA	TAATGAAAAT	AAAAAAGACG	ACTATGTTTT	GTTTGATAGC	960
10	ATTGATTATG	CCATTAAAAT	ATGAAATCGG	ATGTAATTTT	TGAGGTTCAG	ACATCACTTT	1020
	CAACCCCTCT	CAAATTCGAC	ATAGTTCTCT	CTTCGATTAT	TTTAACATCG	TCATGAGACA	1080
	TCATCGGTAA	ATAAATAGTA	TGACCTGCAG	TCATAAATCC	AACTTTATAC	AAATTAÁGCA	1140
15	CTTTACTAAT	TGGATTAGAT	TTAATCGACA	AGTATTGTAA	ACGTTCAATT	CGACTCGTTT	1200
	CTTCTTTATA	TATAAAAAAT	GATGTACGAT	ATTGTACACT	TAGTTGATCA	ACTTTATAAA	1260
	AGCGACAATG	ATATTGCCAT	AAAGGCTTAA	TAAATAATTT	TAATGTACTC	AGAGCACCTA	1320
20	AAACCAACAA	AATATAAAGT	AAGTAATGTG	GCCATTCAAA	TCTTAACCAT	ATAAAATAAA	1380
	AAATGACATA	CACAGCTACA	CTCAATATAA	ATTCTAAGCC	ATTCGTAATG	TAGTAATACA	1440
05	ACAATGCTGA	CTTAGGACTC	TTAGTCAACT	TAGTATAATC	TGACATATAC	CCCTCTCCCC	1500
25	AAAAAATAAA	TTATACGGAT	TTATAATCTA	TTTCATTTTA	TTTTTATATG	ATGATAATTA	1560
	TAGCATATGG	AATATTTCAT	GCTAATTTAT	TCTTCCTAAA	GGTACATCTA	AAAATTTAAT	.1620
30	TAAGCAGAAA	GTGCTTGAAT	TGCTAAAAAG	ACACCATGTT	ATAATTTTAT	CAACATGATG	1680
	CCTTTCATCT	ATAATCAATC	TTTCATCTTA	TCAAGAGCGA	TATTTAGTTC	AAGCACATTC	1740
	ACATAATCAT	TTGTTAACAC	ACCACGCTGC	TTACGATGTT	GAATCAAGTC	GGCCACTCTT	1800
35	GAAGTAGATA	CATGACGAGC	ATCAGCAATA	CGAGGTGCTT	GCTTCAATGC	ATTTTCGACC	1860
•	GTAATATGCG	GATCTAAGCC	CGACCCAGAA	CTTGTTGCAG	CATCTATTGT	TACATTTGAA	1920
	TTCCCAAATT	TAACATGATG	TTTCATGCGT	GCTATTAATT	CGGTGTTTCC	ATTCGATTCA	1980
40	TTACTTCCAC	CTGAAGATAC	GCCGTTTTTA	TATAATTTTT	CAGGATTCAT	ATTATAATCA	2040
	ACTGCACTCG	GTCTCCCGTG	AAAATATCGT	GTCTCTGTCC	AGTGCTGTCC	AATCAATTTT	2100
4 5	GATCCAACTA	TACGATTGTC	ATACGTAATT	AAACTGCCAT	TTGCTTGTTG	TAAAAAATA	2160
	ATTTGACCAA	TTAACGTGAT	AGCTAACGGG	AATAAAAATC	CACATAATAC	CATAGTTATT	2220
	ATCGTTAAAC	AAATACTATT	TCTTATCGTA	TTCATGGTAC	AGGCTCCTTC	CTCTTTACAC	2280
50	AAAAAATTGT	ACAATCATAT	CTATTAATTT	AATGCCTAAA	AACGGGACGA	TTAATCCACC	2340
	TAATCCATAA	ATCAACATAT	TATTTATAAA	GATTCTATCA	ATGCTGTAAC	CCTTTACTTT	2400
	TACACCTTTC	ATGGCAATTG	GAATTAAGGC	AACAATGATT	AATGCATTGA	ATATCAAAGC	2460

	AATTGTTGAC	ATCATTAGTG	CAGGTAAAAT	TGCAAAGTAT	TTTGCTACGT	CATTAGCCAA	2580
_	ACTAAATGTC	GTTAATGCAC	CTCTCGTCAT	TAATAATTGT	TTGCCTATTT	TTACAACCTC	2640
5	TATTAACTTT	GTAGGATTCG	AATCTAAATC	AATTAGATTA	GCTGCCTCTT	TAGCACTAAT	2700
	TGTCCCTGAG	TTCATAGCTA	ATCCTATATT	CGCTTtGTGc	tAGCGCAGGT	GCATCATTTG	2760
10	TACCATCTCC	TGTCATCGCA	ACAATATGGC	CTTTCGCTTG	TTCATCTTTG	ATGACTTTAA	2820
	TTTTATCTTC	GGGTTTACAC	TCTGCAACAA	ATCTATCAAC	CCCGGCTTCT	TTTGCAATTG	2880
	TAGCTGCTGT	TAAAGCATTA	TCACCTGTAC	ACATAACTGT	TTCAATCCCC	ATTTTTCTCA	2940
15	ATTCAGTAAA	TCGTTCTACA	AGACCATCTT	TAATCACATC	TTTTAAATAA	ATCACGCCAA	3000
	GCATGACATT	GTTTTCAATG	ACTATTAAtG	GnGTGCCACC	TTTACTCGAT	ACATCCATAC	3060
	AGAGAGACTC	AATATTAAGA	GGAATATTGC	CTTGTTGTTG	TTTGACAAGA	TTTATCATAC	3120
20	TATTAGGTGC	ACCTTTGAAT	ACCGATATTT	CATTTGTAAT	GATTCCGCTC	ATTCTAGTTT	3180
	CAGCTGTAAA	AGGCTTATAT	GTGCCATCAA	TGTCTTTAGG	CAGCTCATTT	ATATACATCT	3240
	GCTTCGCTAA	TCGTACAATA	CTTTTTCCTT	CTGGCGTATC	ATCGTAGATT	GATGACATAT	3300
25	AAGÇAGCGAC	TATCAATTTT	TCAAGCATTT	GTTGATTCAC	TGGTAAAAAT	TCACTAGCGA	3360
	TTCGATTGCC	ATAAGTGATT	GTGCCTGTCT	TGTCTAAAAT	CATTACATCG	ACATCTCCAC	3420
30	ATACTTCTAC	AGCACGCCCA	CTTTTCGCTA	ATACATTGAA	TTGAGTAACA	CGATCCATGC	3480
	CTGCAATACC	AATCGCCGAT	AACAAACCAC	CGATTGTCGT	TGGTATTAAA	CATACTGTTA	3540
	ACGCAATGAG	CATCGCAATA	GGTAAAATTA	AATGCAGGTA	AGATGCTATT	GGATATAACG	3600
35	TTACAATAAC	GACTAAAAAT	ATAATTGTTA	ACGTTGTTAA	TAATGTAAAA	AGTGCAATTT	3660
	CATTTGGTGT	TTTATTTCTT	TCCGCCCCTT	CAACTAAGGC	AATCATTTTA	TCTAAAAAG	3720
	ATGTĀCNCGC	TTCACTCTCA	ACACGTATTT	CTAACCAATC	AGATGTTACA	AGTGTACCGC	3780
40	CAATGACTCC	ATCAAAATCG	CCACCTGATT	CTTTTATCAC	AGGTGCAGAC	TCACCAGTAA	3840
	TTGCAGATTC	ATCAACGGTT	GCTAATCCAT	TTATTACAAC	GCCATCAGCA	GGGATTGTTT	3900
	CTCCATTTTC	TACCCGAATA	TTTTGTCCGG	CTTTTAACTC	TGTGGCGTTC	ACTATCCGAT	3960
45	ACGCACCATT	TTCTTCTATC	AATCGAGCAG	TTAAATTTGA	TTGTGCTTGT	CTTAAACTAT	4020
	CAGCTTGCGC	TTTTCCACGA	CCTTCAGCAA	AGGCTTCTGA	AAAATTAGCA	AACAATATAG	4080
50	TTATTAATAA	TATGATAAAA	ATTGTAATCA	AATAACCTCG	CGATAGATAG	CTAGTTCCAA	4140
	ATATGTCAGG	AAAACATATT	AATATCAACG	TTAAAATCAT	TCCAACCTCA	ACGACAAACA	4200
	mma mccca mm		manuma a cam	TCACCTTATA	3 5 3 5 CTC 5 TT	THE A A COTTO	4266

	TTTATTTTAA	AGTTAAAAAT	TCACCAATAG	GACCAAGTAA	TAGTACTGGA	ATAAATGTCA	4380
_	AACCACTTAG	TAAAACGATA	AATACGATTA	GTGATACGCC	AAAATAAGGT	TTATCAATCG	4440
5	CTATTGTATA	TTTATCTTGA	TGGTATGATT	TTTTTTCAC	TAAACTTGAT	GCAATCATTA	4500
	ATTGCAAAAT	AATTGGTATA	TAACGAGAAA	GCAACATAAT	GATTCCTGTA	GAGATATTCC	4560
10	AGAATGTTGT	ATCATCTTTC	AGTCCTTCAA	ACCCTGATCC	ATTGTTCGCA	GCAGCTGATG	4620
	TCATTTCATA	CATAACTTGT	GAAATACCAT	GAAAAGACGG	ATTCGTtATa	CTTtCACTTG	4680
•	CTCCAGGAAT	CATAAAAGCA	AGTGCTGAAA	ATACTAAAAT	TAAAATTGGG	TGTATGAGAA	4740
15	AGACTAAGAC	AATACATTTC	ATTTCACGGG	CGCCAATTGG	CATATTTAAA	TATTCTGGTG	4800
	TTTTACCAAC	CATCAAACTG	CATATAAACA	CCGTCAGTAA	GACAAATATC	AATAAATTCA	4860
	TGAGTCCTAC	GCCTTCGCCA	CCAAATACAA	CATTTAGCAT	CATTAATACC	ATTGGTCCTA	4920
20	ATCCACCTAT	AGGCGTTAAG	CTATCATGCA	TGTTATTAAC	AGAACCCGTT	GTAAATGCCG	4980
	TCGTAATAAC	TGTAAATAGT	GCTGACAAAC	CTGCTCCAAA	CCGTACCTCT	TTACCTTCCA	5040
	TATTCGGTCC	ATAAATGCCT	AAATTCGCTA	GTATTGGATT	ACCACGATAC	TCACTCCACA	5100
25	TAGTTAATGT	AAGAATTGCT	ATAAAAATGA	AAAACATTGC	GACAAATAAT	ATCAACGCAT	5160
	GACGATGTAC	TCGTTTACCA	TGTCTACTTA	ACATGCGACC	AAATAAGAAC	AACATTGACA	5220
30	TAGGAAGTAA	CATCATACTG	CCCATTTCTA	TAAAATTGCT	CCAAATATTT	GGATTTTCAA	5280
	AAGGTGTTGC	AGAATTTCCT	GCTAAAAATC	CTCCACCATT	CGTACCAAGA	TGTTTTATTG	5340
	ATTCAAGTGA	TGCAATAGGT	CCAAATGCAA	TATGTTGAAT	ATGTCCGCTT	AAAGTCCGAA	5400
35	TCATTAAATT	AGCATGCAAC	GTTTGTGGTA	CaCCTTGAGT	CATCAATAAA	ATACTAATTA	5460
	AACATGATAA	TGGTAAAAGT	ACTCGGACAA	TAAACCGAAC	AATATCTTGA	TAAAAATTAC	5520
	CAATGATATT	AGTTAATCCA	GTTAAACGTC	TCAACATCGC	TATACAAACG	GCGTAACCTG	5580
40	ATGCACTAGA	TGTAAACATT	AAATATGTCA	TTACAATCAT	TTGCGTTAAA	TATGTCACAT	5640
	CTGaTTCACC	GTTATAGTGT	TGLAAATTAC	TATTTGTTAA	AAAAGATATT	GCTGTATTAA	5700
45	ACGCTAAATC	TATCGATTGG	TATTAAATTAT	GATTTGGATT	TAAAAAAAGC	CATTGCTGAA	5760
••	CTATTAGCAA	TACAAATGTT	ATAAACCCCA	TAAATCCATT	AAATGCCAGA	AAATGTTTGA	5820
	CATATGTTTT	AGCTGACATG	TGTTCTAAAT	CTGTGCCGAT	AATTTTAAAA	CACATATTTT	5880
50	CAAATCTAGT	AAATTATAAA	TCTACTCTTG	ACGATTGCAC	CAATGCTACG	CGATATAGAT	5940
	ATCCACTAAA	AACATACGTA	ATCATAACCA	TCATTGTTAG	AAACAAAATT	ATTTCCATGA	6000
	TAACCCTCAC	TTAATATATT	TCTAAAATTT	TTCACTACGA	ATTAAGGCAT	AAAATAAATA	6060

ACACAACAAC	ATCGTAACAA	CTTGTTTATG	AGAGAAATnT	TAATTTTCAA	ACTTAGTTAT	6180
TAAGAAAnCA	TTAAGATGTG	TATGCAGAAA	TAAATTTTAT	AGCATTTAAT	TGTGAAGAAT	6240
ATTATGATAT	TGCTATCGAG	GTGAAGGTTA	ŤG			6272
(2) INFORMA	ATION FOR SE	Q ID NO: 14	11:			
	-	ACTERISTICS				
(B) TYPE: nu	-			•	
	(D) TOPOLOGY		·e			
١			٠.,	•		
(xi) S	SEQUENCE DES	SCRIPTION: S	SEQ ID NO: 1	L 41:		
AAATGATGTT	TTACAATAAA	TATAnAAACG	TATCAACATA	TATCATCATA	TTTTTAGTTT	, 60
CAAGTGCAGC	CTTTGCAATA	TTCTTGTTAA	GTGCGnACAT	TAGTGCTCAC	TCGGAACAAG	120
TGTACGAAAT	GACTGACCAT	CAAATTAAGA	ACAATACGAT	AAATAAAGCA	TACGAACATA	180
AAGACCCTAC	AAACAATAGC	GAACAAAGAG	ATGGGAAAGT	GTTCGCTTTA	ATAAATTGAT	240
ACATTGTCAC	AACGTTATTT	TGCCTATTTT	TGCGmAATAG	CGTTTTTTAT	TACWTTTTTG	300
CTGATSTTAA	ATTTGTTATA	TTTTGTTAAA	GTATTATAAT	GATTGAATAA	ACAAATTGAA	360
GGTAGGTTTT	TTAATTGAGT	AATTCTGATT	TGAATATCGA	AAGAATTAAC	GAGTTAGCTA	420
AAAAGAAAAA	AGAAGTAGGA	TTAACTCAAG	AAGAAGCAAA	GGAGCAAACA	GCCTTAAGaA	480
AAGCTTATCT	TGAGAGTTTT	AGAAAAGGGT	TTAAACAACA	AATTGaAAAT	ACTAAAGTAA	540
TTGATCCAGr	AGGTAATGAT	GTAACACCTG	AATTAAAAAA	AGAGATACAA	CAAAAAAGAG	. 600
АТААТАААА	TTAAATCACA	AATCTGTAAA	GAATTTTCTG	ACATTATAAC	TTGAAATAAG	660
TATTTTACTT	ATCTTTTTAT	TTTAAAATAA	GTTATAATGT	ATTTGATAAA	ATTGAAGAAG	720
GGAAGATACA	CAAGATGTTT	AATGAAAAAG	ATCAATTAGC	TGTTGATACG	CTACGTGCAC	780
TAAGTATCGA	CACAATCGAA	AAAGCGAATT	CTGGTCATCC	AGGATTACCT	ATGGGAGCTG	840
CCCCAATGGC	TTACACTTTG	TGGACACGTC	ATCTGAATTT	TAATCCACAA	TCTAAAGATT	900
ACTTCAATAG	AGACCGTTTC	GTATTATCTG	CAGGGCATGG	TTCAGCATTA	TTGTATAGCT	960
TGTTACATGT	TTCTGGTAGT	TTAGAATTAG	AAGAATTAAA	GCAATTTAGA	CAATGGGGTT	1020
CTAAAACACC	AGGTCATCCT	GAATACAGAC	ATACAGATGG	TGTAGAAGTT	ACTACCGGAC	1080
CACTTGGACA	AGGTTTTGCT	ATGTCAGTAG	GATTAGCTTT	ACAGAAGATC	ACCTAGCAGG	1140

GAAATTTAAT AAAGAAGGAT ATAATGTTGT AGATCATTAC ACATATGTAT TAGCTLCTGA

	AAGTAAATTA GTTGTTTTAT ACGATTCAAA TGATATTTCA TTAGATGGCG AATTAAACAA	1320
	AGCTTTTTCT GAAAACACAA AAGCTCGTTT TGAAGCATAT GGTTGGAATT ACTTACTAGT	1380
5	TAAAGATGGT AATGATTTAG AAGAAATTGA TAAAGCGATT ACTACAGCTA AATCTCAAGA	1440
	AGGACCAACG ATTATTGAAG TTAAAACAAC AATCGGATTT GGTTCACCGA ATAAAGCAGG	1500
	AACTAATGGT GTTCATGGGG CACCTTTAGG TGAAGTTGAA AGAAAATTAA CATTCGAAAA	1560
10	TTACGGTTTA GATCCTGAAA AACGTTTTAA TGTTTCAGAA GAGGTATACG AAATTTTCCA	1620
	AAATACTATG TTAAAACGTG CTAATGAAGA TGAATCTCAA TGGAATTCAT TATTAGAAAA	1680
15	ATATGCAGAA ACATATCCTG AATTAGCAGA AGAATTTAAA TTAGCGATTA GTGGTAAATT	1740
	GCCTAAAAAT TATAAGGATG AATTACCACG TTTTGAACTG GGTCATAATG GTGCATCTCG	1800
	TGCTGATTCT GGTACTGTTA TTCAAGCAAT CAGTAAAACT GTCCCTTCAT TCTTTGGTGG	1860
20	ATCAGCAGAC CTTGCTGGTT CAAACAAATC CAATGTAAAT GATGCAACTG ATTATAGTTC	1920
	TGAAACACCT GAAGGLAAAA ATGTGTGGTT TGGTGTACGT GAATTTGCTA TGGGTGCT	1978
	(2) INFORMATION FOR SEQ ID NO: 142:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7588 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	
	TAGTAGTATT TATTAAATTA TACGAAGGGA CCCAACACAG AAAATTCATT TTATTGAATT	60
35	TTACATTTAT GTGCCAAGTT GGGAAAAATG TCTTATTTTT TCAAAGTATT TAAAAGTAAA	120
	ATTACATGTT AATACGTAGT ATTAATGGCG AGACTCCTGA GGGAGCAGTG CCAGTCGAAG	180
40 .	ACCGAGGCTG AGACGGCACC CTAGGAAAGC GAAGCCATTC AATACGAAGT ATTGTATAAA	240

45

50 TTCCATACAT TAATAGCGTT GGCATTGGTT GAATGTCATG AATATGAGCC ATCGTATCTT

GTGTTTGATA TTTTTCTTTA AACTCATCAA TTGCCCTAGT ATCAACAATT AAATCCTTCG

300

360

420

480

540

600

TAGAGAACAG CAGTAAGATA TTTTCTAATT GAAAATTATC TTACTGCTGT TTTTTAGGGA

TTTATGTCCC AACCTTTTTA GAATATTAAA TTTCTACAAT TTCGTCATCT TCAACAATAA

AGCCCATTGT ATTGACGCTG TTATTTAAGA AAGTCAGAAT ATAACGCATT ACTTCATCAC

GTTCTGGCTC ATTGTGAACC TCGTGGTAAA AACCTTGCCA AGCTTTAAAA TATAATTCAG

TCATCGTCTC ATTAATTGTA TTATACCAAT GATACGTTGC TTTTTTTAAC ATTAAACCAT 660

	CATTAAAACG	TGTGTCTTTT	GAAATTTTAC	CTATATTTGA	AACAAGTTTA	TCTTTACGAT	780
	TTTTTCCATT	CTTTTGAAGT	TCTAGCATAG	GAGAAATTAA	CATCATCCCC	TCGATTGGCA	840
5	ATTCTACTTT	TTCAAGTAAA	TTTAATAAAA	TCAAACCGCC	AAGTCCTACC	CCTAATACAT	900
	AAGTAGGAAT	TTTATATTCA	TTAGCTATCT	TTAACCAGTC	TAGCAAACTT	TCGTGATACG	960
	TTTGAAAGTT	TTCAATTTGT	CCTTTATTAG	CTCTTGAAGT	TTGACCTTGA	CCAGGCAAAT	1020
10	CTCCCATAAT	CACATGATAG	CCATTTCTTC	TTAACATCGT	AATAACATAT	GCATATCTTC	1080
	CCGTATGTTC	TAATATATTA	TGAGCAATAA	CAACGACGCC	TTTCGCATCA	TTTTCAGCTT	1140
15	CCCACTTCCA	CATTATTATA	CTGCCCCTTT	TTCATTAATC	TTCAATAACA	TAATTATAGC	1200
	AAATTCACTA	TGTAGATTTC	TATTTATAGT	ATTATTGTTG	TCCATATTAT	TATATATAAA	1260
	TGAAATCAAC	ATCAATAATA	GTGTAATTAT	ACATAATTAT	TTTTGATTGT	TTTTGATGAA	1320
20	AACGCTTTCT	CGAATATTTT	TTTCATGCTA	AACTTATTGT	AAACACAAGG	GTTTGGAGGA	1380
	GTAGCAATGG	CACTATTAAA	GAATTTTTT	ATCGGATTAT	CTAATAATAG	TTTTTTAAAC	1440
	AACGCAGCAA	AAAAAGTGGG	CCCACGTTTG	GGCGCCAATA	AAGTCGTTGC	CGGAAATACA	1500
25	ATTCCAGAGT	TAATTAATAC	AATCGAATAC	TTAAATGACA	AGAATATCGC	TGTTACGGTA	1560
	GACAATTTAG	GGGAATTTGT	CGGTACAGTT	GAAGAAAGTA	ATCATGCTAA	AGAACAAATT	1620
	TTAACAATTA	TGGACGCGCT	TCATCAACAT	GGCGTAAAGG	CACATATGTC	TGTTAAATTG	1680
30	AGTCAGTTAG	GTGCAGAATT	CGACTTAGAA	TTAGCTTACC	AAAATTTAAG	AGAGATTTTA	1740
	CTTAAAGCAA	ATACTTACAA	CAATATGCAT	ATAAATATTG	ATACTGAAAA	ATATGCTAGC	1800
35	CTGCAACAAA	TTGTTCAAGT	TTTAGATCGC	TTAAAAGGCG	AATTTAGAAA	TGTTGGTACT	1860
	GTAATTCAAG	CATATTTATA	CGATAGCCAC	GAATTAGTTG	ATAAGTACCA	AGATTTACGA	1920
	TTACGTTTGG	TTAAAGGTGC	atataaagaa	AACGAATCAA	TTGCATTTCA	ATCTAAGGAA	1980
40	GACGTAGATG	CAAATTACAT	CAAAATAATT	GAACAACGTT	TGTTAAACGC	ACGCAATTTC	2040
	ACTTCAATTG	CAACACATGA	CCATCGCATC	ATTAATCATG	TAAAACAATT	TATGAAAGAA	2100
	AATCACATTG	AAAAAGATCG	TATGGAATTC	CAAATGCTCT	ATGGTTTTAG	ATCAGAGTTA	2160
45	GCAGAAGAAA	TCGCAAATGA	AGGCTATAAT	TTCACTATTT	ATGTACCTTA	TGGCGATGAT	2220
	TGGTTTGCGT	ATTTTATGAG	AAGATTAGCA	GAACGCCCAC	AAAACCTATC	TCTTGCTGTA	2280
	AAAGAATTTG	TGAAACCTGC	TGGCTTAAAA	CGTGTTGGCA	TAATTGCAGC	TTTAGGAGCT	2340
50	ACAGTTATGT	TAGGTTTAAG	TACAATTAAA	AAATTATGCC	GTAAATAGAG	CAAGACATAA	2400

	TAGATTTTAA	TAAATTAGCC	ATTTCAATTG	CACTTACTGC	TGCTTCAGCA	CCTTTATTGC	258
	CAGCTTTCGT	ACCTGCTCTT	TCCACAGCTT	GTTCAATACT	TTCAGTCGTT	AAAATACCAA	264
5	ATATGACTGG	TACATTAGTT	TGATCATTCA	CTTTAGAAAC	ACCTTTCGCG	ACTTCATTAC	270
	AAACATAATC	ATAATGAGAC	GTAGCACCGC	GAATTACGCA	TCCTAATGTA	ATTACTGCAT	276
	CATAATTTCC	TGATGAGGCT	AATTTTTTAG	CTACTAAAGG	AATTTCAAAC	GCACCTGGCA	282
10	CAAATGCTAC	ATCAATATTG	TCTTCATTAA	CATCATGTCG	AATCAAAGTA	TCTTTTGCAC	288
	CTTCAAGTAA	TCTTCCAGTG	ATAAAATCAT	TAAATCGACT	AACTACGATT	GCAACTTTCA	294
15	AATCTTTTCC	AATTAATTTA	CCTTCAAAAT	TCATGTTAAA	ATCCTCCTAT	ATTAAATGAC	300
	CCATTTTTAT	TTTTTTCGTT	TCCATATAAT	CATGATTATG	TACCGTTTCT	GGTACGATAA	306
	CTTCAATTCT	TTCTGCAATA	TCAATGCCAT	ATTGTTTTAA	TCCCTCAAAT	TTACTTGGAT	312
20	TATTACTTAA	TAAATTGATA	TGTTCGATGT	TAAAATATTT	TAAAATCTGT	GCAGCAATAT	318
	GATAATCTCG	CAAATCTTCA	TCAAAACCTA	ATGCTAAATT	TGCAGTTACT	GTATCATATC	324
	CTTGCTCAAT	TAATTCATAT	GCGCGTAATT	TGTTTAACAA	TCCTATGCCA	CGACCTTCTT	330
25	GAGGTAGATA	AATAATCATG	CCACCATGTT	CATTGATATA	CTTCATAGAC	GATTCAAGTT	3360
	GAGCACCACA	ATCACAACGT	TGACTATGGA	AAATATCGCC	TGTAAGgCAC	GCAGAATGTA	3420
	AGCGTACATT	TTCATGTTGT	CGAATTGCAC	CTTTTGTCAG	TACAACTATC	TCTTCATCTG	348
30	TGTATGTCGC	TTTAAAACCA	TACATATCAA	ATGTTCCGAA	ATCTGTAGGC	ATTTTCACTT	3540
	TTGCCTTAAA	TTCAATTTCT	GGTTCTAATT	TTTTACGATA	TTCAATTAAA	TCATCAATCG	3600
35	TAATCATCTT	TAATTGATGT	TTTTCTTTAA	ACTTTTGTAA	ATCTTGTCCT	TTCGCCATCG	3660
	TGCCGTCATC	ATTCATAATC	TCACAAATGA	CACCAGCGGG	CTTGGCACCA	GTAAGTTTAG	3720
	CTAÃATCAAC	AGCCGCTTCT	GTGTGTCCAT	TTCTAGCTAA	TACGCCTTTA	TCTTGTGCTA	3780
40	CTAATGGAAA	TAAATGACCA	GGACGATTAA	AATCTTTAGC	TTCACTACTA	GGATCAATGA	3840
•	GCTTTTTGGC	AGTCAATGTA	CGTTCATAAG	CACTAATTCC	TGTTGTTGTA	TCTACATGAT	3900
	CAATACTCAC	TGTAAATTGC	GTACCAAAGA	TGTCGGAGTT	ATCATCAACC	ATTTGTACCA	3960
45	AATCCAAACG	TTGTGCAATA	TCTTTAGACA	CTGGTGCGCA	TATTAATCCC	CtTGCTTCTT	4020
	TCGCCATAAA	ATTAATGGTA	TTATCGTTCA	TCCATTCAGT	AACCGCTACT	AAATCACCTT	4080
	CATTTTCACG	ATTCTCATCA	TCTACTACAA	TAATTGGTTC	TCCATTTTTT	AAAGCCATTA	4140
50	AAGCACTGTC	AATATTATCG	AATTGCATGC	TACCCCTCCt	АААААССААА	TGCTCTTAAT	4200
	ттатстасас	ATA ATTCCTC	THE THE PERSON THE PER	ምምም እ አ አ ጥ ም	TOTAL S CRES	mma a a ca a a	

	CTCGTTTCTG	GAATAAGATG	AATGTCAAAA	CTGTTATCAT	GCTTATCAAA	TACCGTTAGA	4380
	CTAACACCAT	CCACAGTAAT	AGACCCTTGC	TTAACTAACT	GATTATTAAT	ATGTTGGCTA	4440
5	CATTGAATCG	TAATAATTTT	TGCATTGGCT	GTTTCATTTA	TTTTTGAAAC	TGTTCCTAGT	4500
	TCATCTACAT	GACCGAGGAC	AAAATGTCCA	CCAAACCTAC	CGTTACCACT	CATGGCACGC	4560
	TCTAAATTTA	CTTCTGATTG	TCGCTTAACA	TCTGCTAAAT	AGGTTTTATT	TTCAGTGCCT	4620
10	TTAATTACTT	GAACAGTAAA	AGATGTCTGA	TTAAAATCAA	TCACTGTTAA	ACATGCACCA	4680
	TTAACACTGA	TGGAATCACC	AATATGCATA	TCTGCCGTAA	TCTTATGTGC	TTCAATTTCA	4740
15	ATCGTCCTGA	CTGATTGACG	AATTTGAACA	CTTTTAACGA	CACCTATTTC	TTCAACGATG	4800
	CCAGTAAACA	TGCATCATCA	CTTCTTTCGT	AAAGTTAATT	TAACATTTTG	ATTTAATAAC	4860
	TCGGAATGAA	CAATTTCAAA	TTGGTTCGCA	TCTGGTATCT	CAATCACATC	ATTTGTTTGA	4920
20	TAAAATTGAT	AATTTCCAGA	TCCGCCAATT	AATTTCGGGG	CATAATAGAG	AATAAATTCA	4980
	TCTATATAAT	TAGATTGGAG	AAATTCTGAA	GTAGTGGTTG	GACCTGCCTC	GACTAGCAAA	5040
	GTTCCAACTC	CTCTTTTATA	TAAATTGTGA	AGAATTGTTG	TTAAATCGCA	AGACTTCAAG	5100
25	TTTAATAATT	CAATATGTGT	TTGATTGGTT	GTTAAATTTG	GATTTTCAGT	ATATATCCAA	5160
	ATTGGTGTTG	ATTCATCTTG	ATAAATTTGC	TGATTAAAAT	GAATATTCCC	AGACTTAGAC	5220
	AATATTACTT	TTATAGGGTT	TTTTCCATCT	TGAATACGTG	TAGTATATTG	TGGATCATCT	5280
30	AATTCAACTG	TACGTCTTCC	AGTTAACACT	GCGTCGTGTC	GATGTCTTAA	CTTATAGACA	5340
	TCTTGTTTAA	CCTCTTTGTT	AGTAATCCAT	TGACTTTGTC	CATTATCATT	CGCTTGTTTA	5400
35	CCATCTAAAC	TTGCAGATAC	TTTCACTGTA	ATTTGTGGCA	GTTGCTTTGC	TTTTGCTTTA	5460
	AAAAAGTCTT	GGTATAATTG	TGATGCCCGT	TCATCATCAA	CGCATTCAAC	CTCAATACCG	5520
	TGAĢECCGTA	ACGTCTCATC	ACCATGTGTG	TCTAACGAAT	TGTCTTTTGT	TGCGTATACT	5580
40	ACTTTTGCTA	TCTTACAATC	AATTATTTTG	TTAACACAGG	GTGGTGTTGA	ACCAAAATGA	5640
	CTACATGGCT	CTAACGTAAT	ATAAATCGTC	GCACCTTCAG	CATTTTGTTG	TGCCATATCA	5700
	AGTGCTTGAA	CCTCCGCATG	CTTGTCACCT	TTTCTCAAGT	GTGCACCAAT	ACCAACAATC	5760
45	CTACCTTCTT	TAACTACAAC	AGCGCCAACG	GGTGGATTAA	CACCTGTTTG	ACCTTGTACC	5820
	ATATTTGCAA	GTTGAATCGC	ATAATCCATA	AATTGACTCA	AATGATCACC	TCTATAAACA	5880
-	AAAATCCTCA	CATCATGAAT	TAAGATGCAA	GGAGaAAAAT	TTATCGTTAA	ATAAGCCTAT	5940
50	TTGTACACAT	TTTTACAAAT	ACGCTACATT	ATCTTTGTCG	ATAATTAACA	TTCTTTCTCC	6000
	CATCCACACT	тта в стетее	CCTCTAGAAT	СТСАСТАСАТ	СУСССУСТУУ	татсааасат	6060

	TIATATGA	AATTGTTATA	GATTATTTGA	GTACGTAGTA	TGTCAACTAC	ATTTAAAATG	618
	ATACTATATG	TTTTCTGAAA	AAACAATTAA	TGACGGTTTT	AATTTAATAT	AATCTGAGTA	624
5	CTATAGGCAT	CTCATTGATA	TGATTCTTAC	TAACAGACAT	TAAAATCAAA	CCTTCAATTC	630
	GTCTCTATAG	AGCGTTCTCT	TTATTATCTT	CTAGTTACAA	ATTATTGATT	GtCACtGCGC	636
	TGTTGTTGCT	CATTCGATTC	TAAAGCATCA	TATAATTGAG	ATACTGTATG	CGCAACTTGT	642
10	TCTACAATCA	TTTTCACACC	GTTTCGTAGT	TTATTAACAC	CGTTTGTCAT	TTGACCTATC	6480
	GCAATCATAT	TTGTTAATGT	TCCAAACCTT	GGACTAATAA	CTTGATTGGT	TTCCGGAATG	654
15	ATTTGTATGC	CTCCCATTGG	GTGTGCTTGT	ACAATTTGTC	TATTTTCAAG	ATTTCTAATT	6600
,	AATTGATCAT	CTTGATCCAA	TTCATTTAAA	TGACTTTTTG	CACCTGTCGC	GTTAATGACA	6660
	ACATTATATA	TGTCTACTGA	TTCTTGGTTT	TTGTATGAAA	AATAATACAA	CTTGCCATaC	6720
20	ATGTTCACAT	CTTCTAAATC	TTTTTTCAAA	ATTAAAGACT	TATTTTCTAT	TAATTCAATA	6780
	ATTAGTTCAG	CAGTTCTTGG	AGGCATTGGA	TTTGAATTTA	ATTGAATCAT	CTTTGAGTAT	6840
	TTTTGATTAA	ATTGATGTTG	GTCTTCAATA	CTTAAGCTAT	TCCATATCCA	ATTTAAATTC	6900
25	TCTTTCAAAT	GTTCAATCAT	ACTTTGGAAA	ATGCCCaTTT	CTGTTGGACG	CGCTAAATCA	6960
	TACTTCAAAT	CTGCAATATG	ATTTCCTGTA	CGTCTATGTA	CTAATTTTTT	AAAATCAATG	7020
	TCATATTCAG	CACATTCTTT	TAAAAATAAA	GAAACTAAAG	TATCAAGCGG	TGCATTGCCG	7080
30	AAATGATGTT	TTTTAATGTC	ATTTAATTTG	TCTTTAGTTA	AGTACTTGAA	TGTCACGTCT	7140
	ATCATTGTAC	CTCTTACACT	TGGTAAATGA	GCAGAACGAC	TCGTCATAGT	AATTGGTAAT	7200
35	TTTGGATGAT	GAGCAGCAAC	ATAACGGACA	ACATCTAAAC	TGGCAAGGCC	TGTACCAATA	7260
	ATCGCAATAT	CGTCCAGTTC	ATTTACTTCG	TCTAACGTAT	TATATGTTGG	ATAAGGCGTA	7320
	gcGATATATC	CTTTTTTACC	CTTTAAGTTA	TATGGATCAT	GGTAGGCAAA	TGTACCACAT	7380
40	GTTÄAAAATA	CATAATCGTA	CGCTTGCCAT	GATTGTCCTG	AATTTGTAGT	ACATATGTAA	7440
	TAAGTTAAAT	TCGTTTCATC	GATATTAGAA	TTTGTATAAA	TCTCTTGAAC	TTTATTATA	7500
	TTAGTTGATA	TATTTGGATA	TTTTTTCGTG	AACATAGATA	AATAAGATTT	CATATAATGT	7560
45	CCGAATACAA	ATCTCGGTAA	ATATGCAG				7588

(2) INFORMATION FOR SEQ ID NO: 143:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10320 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

	nCTAGGTATT	TTAAACCTAA	TCTAGATAAA	CTAGCTTCGT	AAGCAGCTGC	TACATTTTCA	60
5	CGACCGAAAT	CCTCAAAATA	TAATTTTGAA	GTAATAAATA	AGTCTTCTCT	AGCAATACCA	120
	GTTGACTCCA	ATCCGGCACG	AATGCCAGCA	CCTACTTGTT	CTTCATTCCC	ATAAACTTTT	180
	GCGGTATCAA	TACTACGATA	TCCTTGTTCA	ATGGCATACT	TAACACTTTC	CATGCAATTT	240
10	TCATCATTTT	CCACACGAAA	TGTCCCTAAA	CCAATTTGTG	GCATCGTGTT	TCCATTATAA	300
	AATGTTTTAA	CCTCCATAAA	TATCGCCTCA	CCTTTTTGAT	GTATTATACC	CTGTTATCAT	360
15	AACAAATCTG	AGTTGAATAC	ATGAGAAAAA	ACACTTAGAG	CAATCAACCA	CTAAAATTCT	420
15	AGTAATATCT	CTCAAATATT	AATCAAATTG	TAAAAGTAAT	TCTGTTTAAT	TTATGACAAA	480
	CTAAAAAAGC	CGAAGTAACA	ACATATAGTC	ATCACTTCAG	CCTAACATTT	AATTGAATGA	540
20	TTCAATTTTA	TCCATCATTT	GTTGTAAGTC	TTCCACGTTG	TATTGAATAC	GACCATGGAA	600
	TACAAATTTG	TTAAAGAACT	CGTCTAATTG	TTCAGCACCG	ACAAGCACTT	TGACAGCACT	660
	ATTTTGATTA	TAATTTGAAA	TCGTTACATC	GCCTTCATTT	TTAAGATTAA	AGTATAAAAT	720
25	TGAAGTTGGT	GTATATTTGG	CACCTAATTC	TTTTTGTAAG	TCTTCAGCCA	ATTGTTTAAT	780
	CGCCTCAATT	TGATCTGAAT	AATTTACAAA	TGATAATGAA	CGTTTGTCAT	CATTTTGATC	840
	CATCACAATA	GTTTGCGGTC	TAGATTTATC	TAAATCCAAT	GTATCAAATA	CTTGTTCCAT	900
30	TGGTGGTAAA	TCTTTAAATT	GACCGCCACT	AATACCATTA	TAAACATGAC	CTTTTAACAA	960
	TTGAGAATCA	ATAATATAAA	GACCAGTTCT	TGTTAATACT	AAATGACTAA	TTCGTTCAAT	1020
35	ATTATTAAAG	CCATCCTTTG	GTAAAAAGAT	ATTTGCCATA	ATGTGCATAT	CTTCTGGTCG	1080
33	AATTCGTTTT	TCTTTAACTA	ATCTTTCACG	AATACCAATT	AATCTCATGT	CCGTTACATA	1140
	TTCACTATGA	TTTTTCGAGA	ACAATTTTAA	TGCGTCAATC	TCACGATCTT	TTGTACTAAC	1200
40	CATGTGATTA	TAATCTTCTT	GTTGTTTTGT	AATTGTCTTT	TTATTTTGAA	TACGCTCTTT	1260
	CTCTAAAGCT	TCTTCATGAG	ACTTTTTAAT	GTTTTGTTCT	TGTTGTTCAT	ACTTTTCTTC	1320
	TGTTTGTCGC	TTAACTTTTT	TCTTACTACC	TAAGGCAACT	AAAAAAAGGA	CAAAAAAGAT	1380
45	TAATGCAATG	AgCTACTGCA	ATAATGAGTC	CAATGACTAT	CGGTGAAGAT	AAATCCATCA	1440
	CAACAACGCT	CCTTTTTAAT	ATATGAATAA	CTTTAATTAT	AATAGAaAAG	CTAAAGATTT	1500
	TCGATACATA	TTATCATTTA	TATACCGAAA	ATCTTTTATT	TAGCTATATT	CAATTCATCT	1560
50	TATTATTTTA	CTGCGTCTTT	TAATTCTTCC	ACTTTGTCTA	ATTTTTCCCA	TGGGAATAAG	1620
	ACATCTGTAC	GTCCAAAATG	ACCATAAGCA	GCAGTTTGTT	TGTAAATCGG	TTGTTTCAAA	1680

	AGTTGCCCTT	CAGAAACTTT	ACCTGTTCCA	AATGTATCAA	TTGCAATTGA	CACTGGTTCT	1800
	GCAACACCAA	TCGCATATGC	CAATTGTACT	TCACATTGAT	CTGCTAAACC	TGCTGCAACA	1860
5	ATATTTTTAG	CCACATAACG	TGCAGCGTAT	GCAGCTGAAC	GGTCTACTTT	TGTAGGATCC	1920
	TTACCACTGA	AGCATCCGCC	ACCATGACGT	GCATAGCCAC	CGTACGTATC	AACAATGATT	1980
	TTACGTCCTG	TTAATCCTGC	ATCACCTTGA	GGTCCACCGA	TTACAAAGCG	TCCTGTAGGA	2040
10	TTGATGTAGA	ATTTAGTTTG	TTCATTAATC	AAGTTTTCTG	GAACAGTTGG	ATAAATGACA	2100
	TGTGCTTTAA	TGTCTTCTTG	AATTTGTTCA	AGTGTCACAT	CCTCAGCATG	TTGTGTTGAT	2160
15	ACGACAATCG	TATCAATACG	TACTGGGTTA	TCATTTTCAT	CATATTCAAC	AGTGACCTGA	2220
	ACTTTACCGT	CTGGTCGTAA	ATAATTTAAC	GTACCATCTT	TACGCACATC	TGATAAACGT	2280
	TTTGCCAATT	GATGTGATAA	ATAAATTGCT	AGAGGCATAT	ACGTCTCTGT	TTCATTCGTT	2340
20	GCGTAACCAA	ACATTAAACC	TTGGTCACCT	GCACCTGTTG	CTTCAATTTC	TTCTTCGCTA	2400
	TCTTTATCAC	GATACTCTAA	TGCTTTATCC	ACGCCTTGTG	CAATGTCAGG	TGATTGTTCA	2460
	TCAATCGCAG	TTAAAATTGC	CATTGTTTCA	TAATCATAAC	CATATTTTGC	TCTTGTGTAT	2520
25	CCAATTTCTT	TAATTGTTTC	TCTAACAACT	TTCGGAATAT	CAACATATGT	TGTTGTAGAA	2580
	ATTTCGCCGG	CGATCAATGC	CATACCTGTT	GTAACAGTTG	TTtCACAAGC	TACACGTGCA	2640
	TTTGGATCGT	CTTTTAAAAT	AGCATCTAAT	ATTGCATCTG	ACACTTGGTC	AGCGATTTTA	2700
30	TCTGGGTGTC	CTTCTGTAAC	AGACTCTGAA	GTAAATAATC	GTTTGTTATT	TAACATAGTT	2760
	TGCTCCTTTA	AATTTATATT	ACGAAAATTC	TCTCTCTGTG	AGCTAAATAA	AAAAGACCTT	2820
35	CTAACTATTA	ATATAGAGAG	AAGGCCTAAT	ACGTCCATTC	GCTCTTATCG	TTCAGACCTA	2880
	TTTGTCTGCA	AAcGGTTTGG	CACCTTTCTT	TTATAAAAAA	GAGGTTGCTG	GGTTTCATTG	2940
	GGTCCATGTC	CCTCCACCAC	TCAGGATAAG	AGAATCCGTT	AAAAATAATA	GTACCTAATT	3000
40	AATGAATTAA	TGTCAATTTT	TCACAAATAA	ATTTACAGTA	AAATATTGTA	GATTAATTAT	3060
	GTTAATGTGT	TATACTAATT	AAATGTAAAG	GCTTACATTT	AAATTATCGC	TTTGGAGGGA	3120
	TTTAGGATGT	CAGTAGACAC	ATACACTGAA	ACAACTAAAA	TTGACAAATT	ACTGAAAAA	3180
45	CCAACGTCAC	ATTTTCAACT	TTCGACGACA	CAACTTTATA	ATAAAATCTT	AGACAATAAC	3240
	GAAGGGGTAT	TAACAGAACT	TGGTGCTGTT	AATGCAAGTA	CTGGAAAATA	TACTGGTCGT	3300
	TCGCCTAAAG	ACAAATTTTT	TGTCTCTGAA	CCTTCATATA	GAGATAACAT	TGATTGGGGA	3360
50	GAAATTAATC.	AACCTATCGA	TGAAGAAACT	TTCTTGAAGT	TATACCATAA	AGTACTAGAC	3420
	TATTTAGATA	AAAAAGATGA	ACTATACGTA	TTTAAAGGcT	ACGCTGGTAG	CGATAAAGAT	3480

	ATGTTTATTA	GACCTGAATC	AAAAGAAGAA	GCTACAAAGA	TTAAACCTAA	CTTCACTATC	3600
	GTTTCTGCAC	CACATTTTAA	AGCAGATCCA	GAAGTTGATG	GTACTAAATC	TGAAACCTTT	3660
5	GTCATTATTT	CATTTAAACA	CAAAGTCATT	TTAATCGGCG	GTACTGAATA	CGCTGGTGAA	3720
	ATGAAAAAAG	GTATCTTCTC	TGTAATGAAT	TATCTCTTAC	CGATGCAAGA	TATTATGAGC	3780
	ATGCATTGCT	CAGCAAACGT	TGGTGAAAAA	GGCGATGTTG	CATTATTCTT	TGGTCTATCT	3840
10	GGCACTGGTA	AAACAACCTT	ATCGGCTGAC	CCACACCGTA	AACTAATCGG	TGATGATGAA	3900
	CACGGCTGGA	ATAAAAACGG	GGTCTTTAAT	ATCGAAGGTG	GCTGCTATGC	AAAAGCAATT	3960
15	AATCTTTCCA	AAGAAAAAGA	ACCACAGATT	TTTGACGCAA	TCAAATATGG	TGCAATTITA	4020
	GAGAACACTG	TAGTTGCAGA	AGATGGTTCA	GTGGACTTTG	AAGACAATCG	TTATACAGAA	4080
	AACACGCGTG	CCGCTTATCC	AATTAATCAC	ATTGACAATA	TTGTAGTACC	ATCTAAAGCA	4140
20	GCACATCCAA	ATACAATTAT	TTTCTTAACT	GCGGATGCAT	TTGGTGTTAT	TCCACCGATT	4200
	TCAAAGTTAA	ATAAAGACCA	AGCAATGTAT	CATTTCTTGA	GTGGTTTCAC	TTCTAAATTA	4260
	GCTGGTACAa	GCGTGGTGTG	ACAGAACCTG	AACCATCATT	CTCAACATGT	TTCGGAGCAC	4320
25	CGTTCTTCCC	GTTACACCCT	ACTGTTTACG	CTGATCTATT	AGGTGAACTT	ATCGATTTAC	4380
	ATGATGTTGA	TGTTTATCTT	GTTAATACTG	GATGGACTGG	CGGAAAATAT	GGTGTAGGAC	4440
	GTAGAATCAG	CTTACATTAC	ACACGTCAAA	TGGTAAACCA	AGCGATTTCT	GGCAAATTGA	4500
30	AAAATGCAGA	ATATACAAAA	GATAGTACGT	TTGGTTTAAG	CATTCCTGTA	GAAATTGAAG	4560
	ATGTACCGAA	AACAATTTTA	AATCCAATTA	ATGCTTGGAG	CGACAAAGAG	AAATATAAAG	4620
35	CACAAGCAGA	AGATTTAATT	CAACGTTTTG	AAAAGAACTT	CGAAAAATTT	GGTGAAAAG	4680
	TTGAACATAT	TGCTGAAAAA	GGTAGCTTCA	ACAAATAAAT	TTGAATACTA	AATCaAAACC	4740
	ACCŒTGTGA	ACGGGTGGTT	TGTTCTGCGG	CTATAAGCCT	TCCTTACTGG	CCAGCCCTAA	4800
10 .	AAGĠGCACTG	ACAAGTCAGC	CAACTGCACT	ACTATTCCAG	CAACCCTAAA	GGGTTACTCT	4860
	TTTTTCTTTC	TTTTTTTATT	TTTCTCTCCA	GTGAAAGGAT	CTAAATATTC	TTCCATTGAG	4920
	ATTTGGTCTG	CAACGATATC	CTCTTGTAAT	TGATTACGAA	TATAATTTTC	AATCACTTTT	4980
15	TTATTTCTAC	CTACTGTATC	CACATAAAAT	CCTTTACACC	AAAACTTTCT	ATTTCCATAT	5040
	СТАТАСТТТА	AGTTAGCATG	TCTATCAAAT	ATCATTAAAC	TACTTTTTCC	TTTTAAATAG	5100
	CCAACAAATG	ATGATACCCC	AAGTTTGGGT	GGTATACTAA	CTAACATATG	GATATGATCT	5160
50	TTACATGCCT	CTGCTTCAAT	TATCTCTACA	CCTTTTCTTT	CACATAATTG	ACGCAATATA	5220
	ATCCCTATATA	CONTRACTOR AND A STATE OF	THE THE PARTY OF T	3 TC 3 CTTCTC		NCCTCCN NAC	

	AAATAGCATC	TCCTCGTGTT	GATTATTTTG	GTTGGCTGAC	CAATATTTAT	TCTAGCACGT	5400
	AGAGATGCAT	TTTTTGTGAC	AATGGTAGAA	CCTTTTCtGa	ACCATACGCA	TAGCGTATGG	5460
5	TTTTCTTTTT	ACAATTAAAG	AGCCAACCGT	TGTTATAGTC	TAACAATGGT	TGGCTCCTCT	5520
	TATTTTATGT	GCTAAAAATT	TATAGGCAAT	TTTATTACAA	CAATGTACAT	TTAAGGTGAC	5580
10	CTTCATGCCA	AAATCGCATC	ACTCATTTAA	TGGAAGCAGC	ACGTCTTCAT	ATAAAGTACC	5640
10	GATCCCTAAT	TCAACGCATG	TAGTACCACA	TCTTCAAAGC	TTGATAGTTC	CCATGCGCAC	5700
	ACCACGTTTC	ATACTAGCTA	TGCGACTCAA	CTTGGTTCAT	AAACTCTTTA	ATATAAGTCA	5760
15	ATGTTTCAAC	CATCGCTGGT	GGTCTTGGCA	CATGTCCTTC	TGCCATTTGA	TAAAATGTTT	5820
	CATGCGTGGC	ACCTTTTAAC	TCTAGTTGGT	CCGCTAAATA	ATACGCATGA	TGAATACCAA	5880
	CTTGCTGGTC	TTTCCCTCCA	TGTACAATTA	ATATTGGCGG	ACTGTTTTCA	TTAATGTTTG	5940
20	GAATCGCTTG	GCGTGCCTCA	TATGCCGCTC	GATCTTTTTT	CGGATGACCA	ATCATTCTTC	6000
	GTAGCATGCC	TCTTAAATCG	ACACGTTCTT	CATACATTAA	ATCAATATCT	GAGACACCAC	6060
	CCCAGATTGT	ATAACTTGTT	ACTGGTAAGT	CTTGAAATGT	CAACAATCCT	TGTAAACCAC	6120
25	CTCGCGAAAA	ACCAACCATG	TGGATAAATG	CATGTGGATA	TTTATCATGT	AGCAACCTTA	6180
	ATAATTGCGT	CACATCATTT	AAATCGCCAC	GGTAAAATTC	GTCTTTGCCT	TCACTCCCAT	6240
•	TGTTACCTCG	GTAGTATGGC	CCAATCACTA	AAGTTTGACT	ATCTGAAAAT	TGCATTAATC	6300
30	TACCTGCGCG	CACACGTCCT	ACTTGACCTT	TGCCACCTCG	CAAATAAACT	ACAATGCGAT	6360
	TTACTTCATG	ATGTGGTGTC	ATCATTAAAG	CTTTTACTTG	TAAGTCATCT	GACAAATATG	6420
35	TAATTTCTTC	GAATTGATGC	GTAAAATATT	CAATTGGCAT	TCGTTTACGT	TTGATAAAAC	6480
	CCAAGTGATT	GCACCCTCTC	TACGCATTTT	AAAATGGTAC	TATCTTGCAG	TAAGAAACTC	6540
	CGTTGTGCGA	GTTCAATATC	ATTGATACAG	TTAAACAACA	CTGGCCCTGC	TGTTTCTAAA	6600
40	TAATCGTTCT	TGCTTACCAA	TGATTCAACT	TCGATAAAAT	ATACATCTTT	TACAAAATCA	6660
	GTTTGATCAT	GTGTTTCAAT	GGTATATTGT	GCTATGTAAT	AAATATTTT	AACTTTGGCG	6720
	CCTGTTTCTT	CATATAATTC	aCGTGTAACT	GCTTCAGCAC	TACTTTCCCC	GCGTTCCCTT	6780
45	TTACCACCAG	GAAATTCAAT	CCCCCGTAAA	TTATGTTTGG	TAAAAAGCAA	TTGATTTTTA	6840
	AACGTTGGAA	TAGCTAGCAC	ATGATTGCCA	TCTGCTATCT	CATTATCCTT	TTTAAATGTC	6900
	AAATTAACTT	GACGATTATC	TTTATCCCTA	AACTTCACGC	GCATCACATC	CCTACATTGT	6960
50	ATGTTAATAT	AATAGTTAAT	TACTATCGTT	GGAGGCATTA	attatgaaaa	AGATATTCTT	7020
	GGCGATGATT	CATTTTTATC	AACGTTTCAT	TTCGCCACTC	ACTCCACCAA	CTTGTCGTTT	7080

	CCTTTATTTA	GGTATCCGTC	GTATTTTAAA	ATGTCATCCG	CTTCATAAAG	GCGGCTTTGA	7200
	CCCTGTTCCG	TTAAAAAAAG	ACAAGTCAGC	AAGCAAGCAT	TCACATAAAC	ATAACCATTA	7260
5	ATATGGTTGT	AATTGAGTTA	TATCCACTAA	AGGGGGGCGA	AATTCGAGTC	GCCCCTCTTT	7320
	TAATATGCCT	GAATGCGCCA	CCACATCTTG	TTCAAAATAA	TAACCTGCTG	GTGTAACATC	7380
	TCCTGGATAA	TCACCTTTAC	GAGCAAGCAT	CGCTGTAAAA	TAGCGGCTTA	AACCATATTC	7440
10	GTACATGCCG	CCAATAACCA	CTTTTGCACC	ATGACTTTTC	AAAGTATCAA	TTGCCGTTTG	7500
	CACTTTATCA	ATGCCACCTA	GACGAAATGG	TTTTAATACA	ACAACTTTCA	CATTGTATAA	7560
15	TTCTATCAAA	TTAATTATGT	CCAACAACGA	TGTTGCCTTT	TCATCAAGGG	CTATTGGAGG	7620
.0	TATTGTTCCA	TCCGCTACTT	CATCAAGCAT	GGAGATATCT	TTAÄATGGCT	CTTCGATATA	7680
	AAGAACCTGT	TCACGCGCTA	ATAACTGTAA	CTGTGTGAAA	TCTTGACGAT	CCAAGGACTC	7740
20	ATTTGCATCT	ATAACCAATT	GAAAGTGAAA	GTCTAATTCC	CGTAACACTC	TAATTTGATG	7800
	CATGATTTGA	GGCGTCCATT	TTAATTTAAT	TCTGGTCGGC	TTTGTTGCTT	TTAATGACTC	7860
	TAGTTGTTTA	TTTGATAAGC	CGCTCGcTGT	CGCTCCATAT	GCTACTGAAA	ATGAAGGCAG	7920
25	TACATGAAAC	ATTTGATACA	ATGCCATGAC	AATAGTTGCC	CTTGCAGCAG	GCGTATTTTC	7980
	CAATGAATCT	ACTAATTTTA	GTGCTGCTTC	ATACGTTTCA	AATGATTTAT	TTCTATTATC	8040
	TTCGAACCAT	TGCTCAATTA	CATGTTTCAC	TGAGGCAATT	GTTTCATGAT	CATACCAATC	8100
30	TGTTTGAAAA	GCGTTACATT	CCCCGAAATA	TGCATTTCCT	TTGTCATCAA	TCAATTCGAT	8160
	AAACAAACAA	TCACGATGCG	TTAAAGTGAC	TTTCGGTGTT	ACAATTTGTG	ACTTAAATGG	8220
35	CTCACTATAT	TTATAAAAAT	GCAAAGCTGT	CAACTTCATC	AAATCATCCT	CTATACAACT	8280
33	TATTTCTTTG	TAATTTACCT	GTTGATGTAT	AAGGTAAAGT	ATCAACCTTT	TCAAAGTGTT	8340
	TCGGTACTTT	ATATTTCGCT	AAATGTTGTG	ATAAATATGC	AATCAATTGT	GCCTTTGAAA	8400
40	TGTCACTTTC	ACTGACAAAA	TATAATTTAG	GCACTTGGCC	CCAAGTATCA	TCAGGATGCC	8460
	CTACACATAC	TGCGTCACTG	ATACCTGGAA	ATTGCTTCGC	TACCGTTTCA	ATTTGATATG	8520
	GATAAATATT	TTCACCGCCA	СТААТААТТА	AATCTTTACG	TCGGTCATAA	ATCATGACAT	8580
45	AACCTTCATG	ATCTATTTCA	GCAATGTCAC	CCGTATTAAA	ATAACCATTT	TCAAACGTAC	8640
	CCGTTAAATC	TGTTGGATAC	AAATATACAT	TCATCACATT	GGCGCCTTTA	ATCATTAATT	8700
	CTCCATGACC	TTCTTTATTA	GGATTTTTAA	TTTTTACGTC	AACATTGGCA	CTTGGCATCC	8760
50	CTACAGTGTC	AGGACGTGCA	TGCAACATTT	CCGGTGTTGC	TGTTAAAAAT	TGCGAACATG	8820
	тстсастсат	ACCABATGAA	באדיים במדביים	CCACCTTATA	ттстаатссс	СТСТСТАТСА	8880

	AACCTTGTTG	CATAAGCCAA	TTTAAAGTTT	GTGGCACAAG	CGAAATGTGC	GTGATTCGTT	9000
	CATTTTTAAT	CATCGTTAAA	ATTTGTTCGG	CATTGAATTT	ATCAACAATG	CGCACAGTAA	9060
5	AACCTTCAAT	AACAGCTCTT	AAAAGTACAC	TGAGACCCGA	AATATGATAA	ATCGGCAAGA	9120
	CAGATAGCCA	ATTAGTGTCA	CGATCAAATC	CCAAGCTCTC	TTTACATCCG	ATTGCACTGG	9180
10	CATAATGATT	ACGAAACGTT	TGTGGCACCG	CTTTTTGAGG	GCCCGTTGTC	CCTGATGTAA	9240
10	ACATAATCGA	TGCAATGTCA	TCTAAATTAA	ATGATGTATT	TAATATGTTG	GACGGCGACT	9300
	CTTTCGGCAC	CACAGTTTCA	TTCGATGTTT	CATATTGGAT	ACCCATTGTG	TTGTCCAACA	9360
15	AACTGTTCGT	TGTAATATCC	CTTCCAGCGA	ATTCAATATC	ATCCAGCGAT	ACAATTTGAA	9420
	ACCCTCGTAA	TTCCAGTGGC	AAGGTACAAA	AAATCAATTG	TACATCGATT	GACTTCATCT	9480
	GATTCGTCAT	CTCATTAGGT	GTCAACCTTG	TATTAATCAT	CGCAATTTCA	ATATTTGCCA	9540
20 .	ACCAACATGC	ATGTATTAAA	ATGATCGATT	GAATCGAATT	ATCTATGTAT	AGCCCAACAC	9600
	GAGATTGTTG	ATAAGCCTTG	AGTCTTTTAG	CCAATAGACT	CGCTTCACAG	TATAAATTTT	9660
	GATAAGTATA	AGATTCTTGA	CCGTCTGTTA	TCGCAATATG	ATGTCCATTT	TGTTGTGCTT	9720
25	GTTTATATAA	CCAAAAGTCC	ATGCGTTATT	CCTCCAAAAT	CATTTACATT	ATAATTATAA	9780
	CGATTTTATG	ACATTCTAGC	AGTGGTTATG	TTTAAAAATA	TAAAAAAGTA	GACGAATTGA	9840
	TGCATTGATA	TGATTGTTAT	AATGCTCAAT	ACATATCGTT	ATATCATTCG	TCTACTATTA	9900
30	TCAGTTATTT	TTATTTAATT	TTAGTGTCAT	TCTGTCATTT	TGATGTGGTG	ATTTACCCAT	9960
	TGTTGCCACA	TCATCTGCAA	TGTCAATTGG	TATACGGTTC	ATGTCTTGTA	ATGCACTTAA	10020
35	ATGGAATACT	TCATCATCTA	AATTTTCAAT	GAGATATACA	TAATATGTTA	CCTTGTCCTT	10080
	TTTATATTTT	AACGTTTTCC	AAAAGTCCGG	CTTGCAATTC	AATACATTAT	CCGGAATATA	10140
	TTCĀĀTĀĀĀT	AAGTAACGTT	TGCTGCCTAC	TTTGTCTATG	AAATATTTTG	CAGTGCCTTT	10200
40	TTCTATACCT	CTTATATGTG	CATAGTCTGC	TGAAAAGTAA	ATACTACCTA	TTGTTTCATT	10260
	ATGTTGTTGT	ATTTCAAATC	GTTGGCCTAC	TATTTTATTA	TTTGTGCTAC	nGGGGACTTA	10320

(2) INFORMATION FOR SEQ ID NO: 144:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1477 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

750

45

	GTGTGGATTG	GATTTTAAAA	TCACCCTCAT	AAATACTGTC	ATCAATATGA	TAAGTTACAA	120
	TTTCACCTAT	TATTAAATCA	GCCCCATCTA	ATACATCTCC	AAGCAATATC	ATTTGCGmTA	180
5	GTTTACATTC	GAATCTCATT	TTCGCATCTT	TAATTCCTGG	CGTCTTAATC	GTTGTAGATG	240
	TTAAAAGTGA	TAATTCTGTA	CGACTCAACT	CACTGTCACC	ATATGCTAAC	GGCGCTGCAG	300
o	TCTCATTAAT	ATCTTGAACA	TTATCTTCGT	CTGTAATATG	CACAACAAAG	TCTCCAGTCC	360
•	GTTCTATATT	TAATGCAGTA	TCTTTTCTCT	TACCTCCTGC	ACGTTGAACT	GCAATAGCAA	420
	TCATTGGCGG	ATGATTATTA	ACAATATTAA	AAAAGCTAAA	TGGTGCTGCA	TTTACTGATG	480
5	CATCTTGATT	TAATGTTGTA	ACAAAAGCTA	TAGGTCGTGG	AATAATTGAA	CCAATTAATA	540
	ATTTATAGTT	TTCTCTAGCA	GTTAATGATT	GTGCATCAAA	CGTATACATA	ATACCTACCT	600
	CTTTTCTAAG	TATATCTAGG	TATTTCTCCG	ATTTTGGTTA	ATTTAAACAT	CTATTCTCCT	660
o .	CTGAAAATCA	CTTGTATTTA	TTTAGCAAAT	CTTTTGAAAT	ATGACACATA	TGCATATCTT	720
	CTGGATATTT	TTCTAAATGT	TGCTGATGTT	CTTCAGCACT	TTTAATGTAG	TTAGACAGCG	780
	GTAAGACTTC	CACTGCAATT	TGATCTCTGT	CTTTACGTCG	TTCAATGAAC	TGACGCGCTT	840
5	CAATTAAGTG	GTCATCTACA	CAACTATATA	AACCCGTTCG	ATACTTTTGT	CCAATATCAT	900
	TTCCTTGTTG	ATTCACACTG	TAAGGATCAA	TGATTTCAAA	TAAATAATTC	ATAATGTCTG	960
0	TAATTGTTAA	CATACGATCA	TCGAAATGAA	GTTTGACACA	TTCAGCATAA	CCATCATACG	1020
U	GACCGTCTAA	TTTAGAGCTT	CTTCCATTTG	CTCTTCCTGC	TTCTGTATGT	ATAATTCCAG	1080
	GTATTGTTGC	AAAAAATGCT	TCAACACCCC	ATAAACATCC	TCCTGCTACA	TAAACAACTG	1140
5	CCATATTTAC	ACCTCATCAT	CCTTTTTTAT	ATTTTTAACA	AGGTTATACC	ATTTAATACC	1200
	GCCATGACAT	GATTCTGATA	CACCTTCATT	ACGATACCCA	TATTTTTCAT	AAAATGAAAT	1260
_	TAATGATTCT	CGACATGTTA	ACGTTACACC	ATGTCGATGA	TGATTCTTAG	CAAGAGTTTC	1320
0	AAAATAGTTT	AGTAAGCGAC	CTGCAATACC	CTGACCTTGA	TAATTTGGTG	CTACAACAAG	1380
	ACCTAACACA	CTAATATAGC	CACCTTCACT	ATTATTTGTG	GAGACATTTT	TAAATAAATC	1440
	ATCGCTAATG	TAACGCTCTT	TTATGACTGG	ACCGTTG			1477

(2) INFORMATION FOR SEQ ID NO: 145:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3976 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

45

	AGGTGATTAT	CCTAAAAATG	CTCATGAGGT	CGCTATTAAT	GATAAGTTAG	CTGCAGACAA	6
	CATTAGAGTC	GGGGATAGAT	TACATTTTAA	AAATAATTCA	ACTAGTTATA	GAGTTTCTGG	12
5	TATTTTAAAC	GACACAATGT	ATGCGCATAG	TTCCATTGTG	CTATTGAACG	ATAACGGATT	18
	TAATGCATTG	AATAAGGTTA	ATACGGCATT	TTATCCAGTG	AATTTAAAAA	CACAACAACA	24
	ACGTGATGAG	СТТААТААА	TAAATGACGT	TCAAGTTGTG	AGTGAAAAAG	ATTTAACAGG	30
10	TAATATTGCG	AGTTATCAAG	CAGAGCAAGC	ACCGTTAAAT	ATGATGATTG	TTAGTTTGTT	36
	TGCTATTACA	GCAATCGTTC	TAAGTGCATT	TTTCTATGTT	ATGACGATTC	AAAAAATATC	42
15	ACAAATTGGC	ATTTTGAAAG	CAATTGGTAT	TAAGACAAGA	CATTTATTGA	GTGCGTTAGT	48
	TTTACAAATT	TTAACACTAA	CAATAATTGG	GGTAGGTATT	GCTGTGATCA	TCATAGTAGG	54
	ACTATCATTT	ATGATGCCGG	TAACGATGCC	TTTTTACTTA	ACAACGCAAA	ATATTTTATT	60
20	AATGGTGGGG	TATTTTATAT	TAGTAGCGAT	TTTAGGTGCC	TCACTATCAT	TTATCAAATT	. 66
	ATTTAAAGTG	GATCCTATCG	AAGCAATTGG	AGGTGCAGAA	TAATGGCATT	AGTCGTTGAA	72
	GATATCGTCA	AAAATTTCGG	AGAAGGTTTG	TCTGAAACAA	AAGTTTTAAA	AGGTATTAAT	786
25	TTTGAAGTGG	AACAAGGGGA	ATTTGTCATT	TTAAATGGTG	CCTCTGGTTC	TGGGAAAACA	840
	ACATTGCTAA	CGATATTAGG	CGGATTGTTA	AGTCAAACGA	GTGGTACAGT	GCTTTACAAT	900
	GATGCGCCAT	TGTTTGATAA	ACAGCATCGT	CCTAGTGATT	TACGATTGGA	AGATATTGGT	960
30	TTTATTTTTC	AATCTTCACA	TTTAGTTCCT	TATTTAAAAG	TGATAGAGCA	ATTGACACTC	1020
	GTAGGTCAAG	AAGCGGGAAT	GACCAAACAA	CAAAGTTCAA	CAAGAGCAAT	ACAACTTTTG	1080
35	AAAAATATTG	GTTTAGAAGA	TCGCTTGAAT	GTATATCCGC	ATCAGTTATC	TGGCGGTGAA	1140
	AAGCAACGTG	TTGCGATTAT	GAGAGCATTT	ATGAATAATC	CGAAAATCAT	TTTAGCAGAT	1200
	GAGÇCCACAG	CAAGTTTAGA	TGCCGATAGA	GCAACAAAAG	TTGTTGAGAT	GATACGTCAA	1260
10	CAAATTAAAG	AACAACAAAT	GATTGGTATT	ATGATTACAC	ACGATCGAAG	ATTATTTGAA	1320
	TATGCAGATC	GAGTGATTGA	ATTAGAAGAT	GGCAAAATAA	CTGATTAGTG	GCTTGTAAAG	1380
	ACGCTAAATG	TTAATGATTT	AAGACATAGT	agtataaaag	TTAGATAACA	GAATACGATT	1440
15	ŢGGGTTTACA	AAAAACAGGC	TGGGACATTA	AGTTCTTAGG	CAATGTAAAA	AAGCTGATTT	1500
	СТАТТААТТА	TTTGATAGAA	ATCAGCTTTT	TTGATATGTĄ	TTTTATAATG	TACAGCTCGT	1560
	TGCATTCATA	TAGCTTGAAG	TCACGTTTAA	ĀACCATATCT	ATCATTATGG	TATGCATATC	1620
50	TTTTAAAACC	TATTCTTTTG	TTATTAGGAC	ATATAAATTC	ATCATTAAGT	TCGTCATATT	1680
	mcar rooms	3.CECCERTS 3.3.3	3 mana 2 mmm	~~ · · · · · · · · · · · · · · · · · ·			

	CACTATCATA	ACATGCATCA	GCTACAATAT	ACTCCGGTAA	ATAACCGAAG	nTATTTTgAA	1860
	TCATTGTTAA	AAATGGAATT	AAAGTTCTAG	TATCTGTTGG	GTTTTGAAAT	AGGTCATAGG	1920
5	АТААААСААА	TTGAGAATTT	GTCGCTATTT	GTAAATTGTA	TCCTGGCTTA	AGTTGGCCAA	1980
	AGTGTCTTAT	TTTTTTAAAG	TATTTAAAAG	TAAAATTACA	TGTTAATACG	TAGTATTAAT	2040
	GGCGAGACTC	CTGAGGGAGC	AGTGCCAGTC	GAAGaCAGGG	GCCCCAACAC	AGAArcTGAC	2100
10	ATATAGTCAG	CTTACAACAA	TGTGCCGGTT	GGGGTGGCTG	AGACGGCACC	CTAGGAAGGG	2160
	ACCCGTCATC	AAAAATTCTA	TTTATAGAAT	TTTACAGTAA	TGTGCCAGAT	GGGCATAGCG	2220
15	AAgcCATTCA	ATACGAAGTA	TTGTATAAAT	AGAGAACAGC	AGTAAGATAT	TTTCTAATTG	2280
15	AAAATTATTT	TACTGCTGTT	TTTTTTAGGG	ATTAATGTCC	CAGACTCTTT	AGTTTATTTA	2340
	TTTTCAATAT	AACAATTGTC	TAATCAAGGA	TTAACGAATA	TTTAAAGATA	GTTTGACGCA	2400
20	ATATTAGAAA	CAACCTATAA	TAATAGTTTG	TTTGTGGATT	AACTATTATA	AATAAAAGCG	2460
	GCGTAAAGAC	ATATAAACCA	ACTACTTGAA	CAATATAACG	TTAATAACAA	TCTATACTGA	2520
	TACATTACGC	CTAGATAATC	TTTGATGAGC	ACATGTAAGA	AAAAGTGATA	TGGTGTATGA	2580
25	CTTCCGACAC	CATCGATAGA	TAAACCTAAT	TTTTGGGCTA	GTCGTAAGGC	GCGCAATACA	2640
	TGAAACTGAC	TTGTtACACA	AACAATTTTA	ACTGCTTCAT	GATACAAATT	GTTGATGATT	2700
	TGTTTAGAAT	ATAAAAAGTT	TGTGTATGTA	TTTATAGAGT	GAGATTCCAT	TAGTATATCT	2760
30	GTTTTATCAA	CACCATGTGC	AATCAAATAA	CGTTGCATAG	CTAAAGCTTC	AGAAATTGGT	2820
	TCGTCTGGTC	CTTGTCCGCC	AGATACAATG	ATCTTTGTTG	CTGATGCTTG	TTGTTGATAG	2880
35	ATATCAAGTG	CACGATCTAA	ACGCGCTGCA	AGCATTGGTG	TGACAAATTC	GGTAAAAATA	2940
00	CCAGCACCTA	ACACAATTAT	GATATCAACT	TCTTTGTTGT	ATGATCTATG	TCTATATGAT	3000
	ACTGTCCAAA	CGAGATAACA	AATAAAGGTT	AGTAACAGGG	AAAGACATAA	TATAGCTAAC	3060
40	CACATAGACA	AACCTTTCAC	AATAGGTGAC	TGAATCGTAC	TTATAAATAG	AAGTGCTGAT	3120
	GTGTAGAGTA	CAAATTTATA	TGAAAAAGAT	AATAATTTTT	TAATAAATAA	GCGACTAGAA	3180
	GTATGAGAAA	АТАААТАТСТ	ATGTTTGAAT	AGCATGATAA	TACTGATTAT	TATAAATGTT	3240
45	ACAAACATAG	ACCAAGGGAA	AGTATAGGTC	ATGATGCTAT	AGATGAGTGA	CAAAAATATC	3300
	GATATGACAA	CTAAGATGTA	GCATGTTAAA	TTTAACGTCA	GAGTATAGTT	GAAAATTAAC	3360
	GGACAAATAA	CGATAAGTAT	AAATATTAAT	AATAAATTCA	ATAACATACT	GACACCTCGC	3420
50	TTATAATAAA	TATTAAATTAT	AAATGTAGAT	GATTTAATTT	ATTAAAGCAA	GGAGAAAGCA	3480
	CCAACATCTA	አአጥርጥጥ አጥጥ	ጥር ምም እ ሞ እ ጥሞ እ	ጥ ለጥለጥር ረርመር	እ እ ጥ እ ጥጥጥጥ ጥ		2540

	TATGGTAAAA CATTTACAAG ACCATATTCA ATTTTTAGAG CAGTTTATAA ATAACGTTAA	366 0
	CGCATTAACT GCAAAAATGT TGAAAGATTT ACAAAATGAA TATGAAATTT CATTAGAGCA	3720
5	GTCTAACGTA TTAGGTATGT TAAATAAAGA ACCTTTGACA ATTAGTGAAA TCACGCAAAG	3780
•	ACAAGGTGTA AATAAGGCCG CAGTAAGCCG ACGAATTAAA AAGTTAATCG ATGCTTAATT	3840
	AGTTAAGTTA GATAAACCAA ATTTAAATAT TGATCAACGT TTGAAATTCA TAACCTTAAC	3900
10	TGACAAAGGT AGAGCATATT TGAAAGAACG TAATGCGATT ATGACAGATA TTGCGCAAGA	3960
	TATTACTAAT GATTTA	3976
15	(2) INFORMATION FOR SEQ ID NO: 146:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3346 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:	
25	GCTACCTAGG CATTTAAGAG ATCAAAAAAT GTATGAATAT GAACGTTATT TTTATGAGCA	60
	AGAACTTAAT GGCGTTGATG AAGGGGAAAT TTTAAAGAAG TTAAAAGACC CACAAGATGT	120
30	TGCAGCTGAA ACAAAAGCTA GAAGTGTTAT TGATTATGCT GAATCTAAAC CAACATTTGA	180
-0	AAATATTTCA AGAGCTGTTG CTGCTTCATT AAGTTTAGGC ATTCTATCTA TTTTTGTCAT	240
	CCTTATACCA GTATCTATAG TTGGATTATT TGTATTAGCA TTATTTTTAA TATCACTTTT	. 300
35	GCTGCTGTTT TGTCCAATTA TTTTATTAGC ATCAGCAATA TCCAGAGGAA TTGTGGACTC	360
	AATTAGTAAT GTATTTTTG CCATATCATA TTCAGGATTA GGATTAGTAT TTATCATTGT	420
	CATATTTAAG ATTTTAGAAT ACATTTATCG TTTAATCTTA AAATATTTAC TTTGGTATAT	480
40	TAAAACTGTC AAAGGAAGCG TTAGAAAATG AAGAAATTCT TTTTTATTGG GCTTTTAGTG	540
	TTTGTTGTCT TTTTTACAGC AGCAACCATT ATTTGGTTCA GCTATGATAA AAACAAATAT	600
	GGTACTAAAC AATATGATAA AACATTCAAA GACGATGCTT TTGACAATGT ATCTATAAAT	660
45	TTGGATAGTA CAGAACTTCG TATAAAACGG GGGAATCAAT TTAGAGTTAA ATATGATGGT	720
	GACAATGATA TATTAATTAA TATAGTAGAT AAGACGTTGA AGATTAGTGA TAAAAGGTCT	780
	AAGACAAGAG GATATGCAAT TGATATGAAT CCTTTTCATG AGAATAAGAA AACGTTAACG	840
50	ATTGAAATGC CTGATAAAAT GATTAAACGT TTAAATCTAT CATCTGGAGC AGGAAGTGTT	900

55

960

AGAATCAGTG ATGTTGATTT AGAGAACACA AGTATTCAAA GCATTAACGG TGAAGTAGTT

	AGTAAAAGTA	ACATTAAAAA	TAGCAATATT	AAAGTTGTTA	TTGGTACGCT	ACAAATCGAC .	1080
•	AAGAGTCAAA	TTAAACAATC	CATATTTTTA	AACGATCATG	GTGACATTGA	ATTTAAAAAC	114
5	ATGCCATCAA	AAGTAGATGC	AAAAGCTTCT	ACTAAACAAG	GAGATATTCG	TTTTAAGTAT	120
	GATAGTAAAC	CTGAAGACAC	TATACTAAAG	CTAAATCCGG	GAACGGGTGA	TAGCGTAGTT	1260
	AAAAATAAAA	CATTTACTAA	TGGtAAAGTT	GGGAAAAGCG	ACAATGTTTT	AGAATTTTAT	1320
10	ACGATTGATG	GTAATATCAA	AGTTGAATAA	ATAAAGGATG	TAAGCACCGA	TATTAGGAAG	1380
	CATAATTTCT	CTAATATCGG	TGTTATTTAT	TTGTTGGCAA	AAGTTAAGTC	GGTATCTATA	1440
15	TTGCCAGTAA	AGTGAGTGAT	ATTAAGGTCT	TGACCATCTA	ACCATGATTT	GAAATCTATT	1500
	ATTTCTGGTG	GCGCATTTTC	TCCCAATGTA	AAATATGCAG	TTAATGTTTC	AGGTTGATAC	1560
	ATTGATGTAT	GGATGGTGCC	AGACCAGCTT	TTGAATAGTT	TACTGTAAAT	TTCATACTGA	1620
20	GGATTATTGA	ATAACTTAAA	TGCTGTAGTC	ATATCTAAAT	TATCATTAGT	TTGTGAAATG	1680
	GTACGCGCCA	GTCTTTCTTT	AGATTCTTTT	GTATAATTAC	GATTTTCATG	TGTTAATATT	1740
	TCAAAATGAT	TTGTACATAT	ATTATCATAA	CGAACATCTA	TTGATCTCGG	TGTCACTTCA	1800
25	ACAATTGCAT	GGTTCAATGA	TTTGTCCATC	AGTATGTAGC	TAAATGAGCT	TCTGTGTGGT	1860
	ATTTCTTTCA	ATAATTGGAT	TGCTTCTGTT	ACATTTCGGC	AATTTTCAAG	AATTAGACGA	1920
	CCAATCATAT	AACATACAAA	ACCATTTGCT	GGTTTCTTCC	GGTGCATAAA	GTTATAGCCC	1980
30	ATAGTTAATC	CTGACTCATT	CATACCATCC	ATTCTTCCAG	TTACCCTTGA	TACAGGACCA	2040
	ATTTGAGCTA	AACCGCTATC	TGTAGGTTGA	TAAAGTAAGT	AGCGACCATC	ATAAGTTGCA	2100
35	GGGTGGTAAT	CATAATTTCT	AACCATGAAG	TCTTTGCCTT	GAAAGACCGT	GCAaCCACTT	2160
	TCTTTTAAAT	CGGTAAAACG	ATAATGŢCCA	AAGTTTAAAA	TAATTTGGCG	TGTTGGCATT	2220
	TTGAGTATAC	TTTGTAGTCC	CATTAATTCT	TCCCATATTT	GAGGTGCGTA	TGTTTGGAAT	2280
40	ATTTGATAAG	TTTCATTTAC	ATCTATATCG	AAACGTGGGA	CaCnTTTTTT	CCATTCTTTT	2340
	TCTCGATTTT	TTAGAAGAGG	TGTTTGTTGA	AGCCATTTAC	CAGTTTTAAC	ACCTAACTCG	2400
	AAATGTGAAC	CTCTAAAAGT	CATGATATCT	GATGTCACTT	GTTGCATATC	ATCGGCCCCT	2460
45	TTCTTTTTAG	TTGTAATATA	TTGTAAATAA	ATAGTAATCG	TATGTATATT	GAATGTCATG	2520
	TTAAATAAAG	TTATATTTTA	CTAAATGAAA	TATAAAATTG	TTTGAGGTGA	TTTCTCGGTG	2580
	TATAAGACTT	ATCAATCAGT	TAAAACATAT	TTTTATAGAT	GGTGGGGATA	TTGAGTTAAA	2640
50	AACTTAAAAT	CATCTTATCA	TAAATATCAA	TCTTAAGTTA	GCATTCACGA	TAATAGTCAT	2700
	TGTTAACATT	AGCATATAAG	GTCATGTCAC	GTTGAAACAG	AGGTTCCTCG	GCATTTTTGA	2760

TTATTTAATG	ATTATTCTAT	ATATGATAGT	ATAATGAAAT	GTAGATAGGT	ATTTAATTTA	2880
ACAGAGGTGA	AATTGAGATG	TGGAATTTTA	TTAAATGtGT	GkTTAAATTC	GTATTTAGCT	2940
TAGTTGCTAT	TACAACATTA	GTTGCTGGTG	TTGGTGTAGT	AGCATTTGCT	TATATCTTTA	3000
AAAAAGATTT	TGAAGATATT	GAAAGAAAA	CTAAAGAAAT	TATTTCTGAT	ATTGAAAGTA	3060
AAAATAACTA	ATAACATTTA	GAGGCTGGGA	CATAAATCCC	TAAAAAACAG	CAGTAAGATA	3120
ATTTTCAATT	AGAAAATATC	TTACTGCTGT	TCTCTATTTn	ATCAMTACTt	CGTATTGAAT	3180
GGCTTCGCTT	TCCTAGGGTG	CCGTCTCAGC	CTTGGTCTTC	GACTGGCACT	GCTCCCTCAG	3240
GAGTCTCGCC	ATTAATACTA	CGTATTAACA	TGTAATTTTA	CTTTGGAAAT	ACTTTTAAAA	3300
AATAAGACAC	TTTGGCCCAA	CTTGGCACAT	AAATGTAAAA	TTCAAT		3346
(2) INFORMA	ATION FOR SE	EQ ID NO: 14	17:	/		

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2375 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

25

30

35

45

50

10

15

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

GTTGAAGAAA GAAATATAAC AGTCAATTAT AATTATAACC TTGTTGAAAT CGACGGTGAC 60 AAAAAAGTGG CTACATTCGA ACATATCAAA GCATACGATA GAAAAACAAT AAGTTATGAT 120 ATGTTACATG TAACACCACC TATGGGTCCC TTAGATGTAG TAAAAGAAAG TACACTTTCA 180 GATAGTGAGG GTTGGGTAGA TGTTAACCCA ACCACATTAC AGCATAAAAG CTACTCTAAT 240 GTATTTGCAC TTGGTGATGC TTCAAATGTA CCTACTTCAA AAACAGGCGC ACTATTCGTA 300 AGCAGCACC TATCGTCGCT AATAATTTAT TGCAAGTGAT GAATAATCAA ATGTTAACGC 360 ATCATTATGA TGGTTATACT TCATGCCCTA TTGTTACTGG ATATAATAGG TTAATACTTG 420 CAGAGTTTGA TTATAATAAA AATACTAAAG AAACAATGCC GTTTAATCAG GCCAAAGAAC 480 GTAGAAGTAT GTATATATTT AAGAAAGATT TATTACCTAA AATGTATTGG TACGGCATGC 540 TAAAAGGATT AATATAATAA AGTACAGAAA ACAATAAATT TITAATGAAA AATCTTTTAC 600 TATAAAAGAT TAAGTATTTA AATGACGTGT CAGTGTTGTG TTTATATGTC GTGAATTTTT AGCTCTAAAT AGTATAAGAT TGAAAAAGTT GTTACTGTTT TAAATGATCA CGATGAAGTC 720 ATTCAATAAG AATGATTATG AAAATAGAAA CAGCAGTAAG ATATTTTCTA ATTGAAAATC 780 ATCTCACTGC TGTTTTTTAA AGGTTTATAC CTCATCCTCT AAATTATTTA AAAATAATTA 840

	AGATATICAA	ACCACGIGIA	CTCAAAATGA	TAGCTTGGTA	TGTACCTCCA	ATAGTAATIT	960
	CAATAACTTT	GTCTGTTGAA	CACTAAGAGC	AATTTTAATT	TCATAATGTG	TTGTAAACAT	1020
5	TTTTTTTGAT	TGGAGTTTTT	TTCTGAGTTA	AACGATATCC	TGATGTATTT	TTAATTTTGC	1080
	ACCATTTCCA	AAAGGATAAG	TGACATAAGT	AAAAAGGCAT	CATCGGGAGT	TATCCTATCA	1140
0	GGAAAACCAA	GATAATACCT	AAGTAGAAAG	TGTTCAATCC	GTGTTAAATT	GGGAAATATC	1200
0	ATCCATAAAC	TTTATTACTC	ATACTATAAT	TCAATTTTAA	CGTCTTCGTC	CATTTGGGCT	1260
	TCAAATTCAT	CGAGTAGTGC	TCGTGCTTCT	GCAATTGATT	GTGTGTTCAT	CAATTGATGT	1320
5	CGAAGTTCGC	TAGCGCCTCT	TATGCCACGC	ACATAGATTT	TAAAGAATCT	ACGCAArCTC	1380
	TTGAATTGTC	GTATTTCATC	TTTYTCATAT	TTGTTAAACA	ATGATATATG	CAATCTCAAy	1440
	AFATCTAATA	GTTCYTTGCT	TGTGTGTTCG	CGTGGTTCTT	TTTCAAAAGT	GAATGGATTG	1500
0	TGGAAAATGC	CTCTACCAAT	CATGATGCCA	TCAATACCAT	ATTTTTCTGC	AAGTTCAAGT	1560
	CCTGTTTTTC	TATCGGGAAT	ATCATCGTTA	ATTGTTAACA	ATGTGTTTGG	TGCAATTTCG	1620
	TCACGTAAAT	TTTTAATAGC	TTCGATTAAT	TCCCAATGTG	CATCTACTTT	ACTCATGCGT	1680
5	TTGATAAAA	CTTAAATAAT	ATTAATTCGG	TCATCAGTGG	CGTTAAATCT	TTTATCATTT	1740
	TTAGTTATAG	TTGATAAATT	TATATTTATA	AGCATATATG	GATATTTCAT	CAAAAATTIT	1800
	TATTTATATA	AATCCGAACT	GCATACATAT	TTGTTTAAAT	AAGAGGTATT	ATTTTTCGGG	1860
0	AAATTGCTGT	CTGAGTTAAA	AGGATTAGTT	TTATAAAATG	AGTTGAACTA	TAGCCAAAAA	1920
	CGATTAAAAT	ACTGATAATC	CATTTTTGLA	TTATGTTAGG	GACTTTTTTA	CTTAATTTTA	1980
5	ACCCTATTGG	aGCmAATATA	ATACTCCCTA	TTATAAGGAA	TAAGGCGTCA	ŢATAAaGGGA	2040
	TATAACCTTG	AATAAGTTTG	ATGACAAAAG	CACCAATTGA	AGATATAAAA	GCAATTACTA	2100
	TACTATTAGC	GACTACAGTA	TTCATTGGTA	ATTTGAATAA	AACCAATAAT	ATAGGAATAA	2160
0	TAATGAAGGC	ACCACCTGCA	CCTACTATAC	CTGAAATAAT	ACCAATGAAA	AGGCCAATGA	2220
	TAACTAATAA	ATATTTATTA	AATGAAGACT	TTTCGGAACT	AGGTTL CACT	TTAATAAACA	2280
	TTAATGTTAA	TGCAAGTAAA	GCAATAATGA	TATATACCGT	ATTTACAAAT	GTAGCATCAA	2340
5	ATAAATTTGC	TAGAAATGCA	CCTAACATAC	TCCCT			2375

(2) INFORMATION FOR SEQ ID NO: 148:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6115 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

	GAGGTTTCTA	GACAAGCTTT	TAATAACTTA	CCAAACTCAT	TAAgrTGGTT	gTGtTGGACT	60
5	GCCLATTATC	mAAGtATTAT	GaGTTGTTTA	ATATTAGEGC	TAATACATAC	GAAGAGTGGT	120
	TTAAACAATT	TAGTAGTAAG	AAAGCACAAT	TCAGTATTAA	TCTCACGGAT	AAATGGATAA	18
	TTCAAATCGC	ATATGGTAAA	TTAATAATAA	TGGCTAAAAA	TAATGGCGAT	ACATATTTTA	240
10	GAGTTCAAAC	AATTAAAAAG	CCAGGTAATT	ATATTTTTAA	CAAATATCGA	TTAGAGATAC	300
	ATTCTAATTT	ACCAAAATGT	TTATTTCCGC	TTACAGTGAG	AACACGACAA	AGTGGCGATA	360
15	CATTTAAACT	GAATGGGCGC	GATGGTTATA	AGAAAGTGAA	TCGCCTGTTT	ATAGATTGTA	420
	AAGTGCCACA	GTGGGTTCGG	GATCAAATGC	CAATCGTATT	GGATAAACAA	CAGCGCATTA	480
	TTGCGGTAGG	AGATTTATAT	CAACAACAAA	CAATAAAAA	ATGGATTATA	ATTAGTAAAA	540
20	ATGGAGATGA	ATAGCGTTAT	GCATAATGAT	TTGAAAGAAG	TATTGTTAAC	TGAAGAAGAT	600
	ATTCAAAATA	TCTGTAAGGA	ATTGGGAGCA	CAATTAACAA	AGGATTATCA	AGGTAAACCA	660
	TTAGTATGCG	TGGGTATCTT	AAAAGGCTCA	GCAATGTTTA	TGTCAGATTT	AATTAAACGA	720
?5	ATTGATACCC	ATTTATCAAT	TGATTTCATG	GATGTTTCTA	GTTATCACGG	AGGCACTGAG	780
	TCAACTGGTG	AAGTTCAAAT	CATTAAAGAT	TTAGGTTCTT	CTATTGAAAA	TAAAGACGTA	840
	TTAATTATTG	AAGATATCTT	AGAGACTGGT	ACTACACTTA	AGTCAATTAC	TGAATTATTA	900
30	CAATCTAGAA	AAGTTAATTC	ATTAGAAATA	GTTACTTTAT	TAGATAAACC	AAACCGTCGT	960
	AAAGCGGACA	TTGAAGCTAA	GTATGTAGGT	AAAAAAATAC	CAGATGAATT	TGTTGTTGGt	1020
35	TACGGTTTAG	ATTATCGTGA	ATTATACCGA	AACTTACCAT	ATATCGGTAC	GTTAAAACCT	1080
	GAAGTGTATT	CAAATTAATT	TTTTAATCAA	TTTCAGTTAT	TATTACTATG	CGTTTGAGAA	1140
	ATAATAGTGT	AGACTCAAAA	ATATGAAAAA	TGTATTTCAT	ATATATTTAA	TTTTAGACAA	1200
10	GACATATGTC	TTGAAAAGTT	GAAAAATATA	GAGATTGATA	AAACTAATAC	GGGTGTGAAT	1260
	GACATTGATG	TTAAGCTCAA	TTACTAGCTT	ATAAAACATG	TCATATGTTA	CAATTTTTGT	1320
	TAGTTTTATT	ATGGGAAGTA	GGAGGAAATG	ACGCATGCAG	AAAGCTTTTC	GCAATGTGCT	1380
15	AGTTATCGTA	ATAATAGGCG	TTATTATTTT	TGGTCTATTT	TCATATTTAA	ACGGTAATGG	1440
	AAATATGCCG	AAACAGCTTA	CATATAATCA	ATTTACTGAG	AAGTTGGAAA	AAGGTGACCT	1500
	TAAAACTTTA	GAAATCCAAC	CACAACAAAA	TGTCTATATG	GTAAGTGGTA	AAACGAAAAA	1560
	TGATGAAGAC	TATTCATCAA	СТАТТТТАТА	TAACAACGAA	AAAGAATTAC	AAAAAATTAC	1620
	ma a ma a ma a a m	******	A CCCCCCCCC A A A	*******************************	********		

	TITCITCCTA	AGCCAAGCAC	AAGGTGGCGG	TAGTGGCGGT	CGTATGATGA	ACTTTGGTAA	180
	ATCTAAAGCA	AAAATGTACG	ATAATAATAA	ACGTCGTGTT	CGTTTCTCTG	ATGTAGCAGG	186
5	GGCAGATGAA	GAAAAACAAG	AATTAATTGA	AATTGTTGAT	TTCTTGAAAG	АТААТАААА	192
	ATTCAAAGAA	ATGGGATCTA	GGATTCCTAA	AGGTGTCTTA	CTTGTTGGAC	CTCCAGGTAC	198
	TGGTAAAACA	TTACTTGCTA	GAGCGGTTGC	AGGTGAAGCT	GGCGCACCAT	TCTTCTCTAT	204
10	TAGTGGTTCA	GACTTTGTAG	AGATGTTTGT	TGGTGTTGGT	GCGAGCCGTG	TTCGTGACTT	210
	ATTCGATAAT	GCTAAGAAAA	ACGCGCCTTG	TATCATCTTT	ATCGATGAGA	TTGATGCTGT	216
15	TGGTCGTCAA	CGTGGTGCAG	GTGTTGGTGG	CGGTCATGAT	GAACGTGAAC	AAACCCTAAA	222
	CCAATTATTA	GTTGAAATGG	ATGGTTTCGG	TGAAAATGAA	GGTATCATTA	TGATAGCTGC	228
	TACAAACCGT	CCTGATATCC	TTGACCCAGC	CTTATTACGT	CCAGGTCGTT	TTGATAGACA	234
20	AATTCAAGTT	GGTCGTCCAG	ATGTGAAAGG	CCGTGAAGCA	ATTCTTCATG	TTCATGCTAA	240
	AAACAAACCA	CTTGATGAAA	CGGTTGATTT	AAAAGCAATT	TCACAACGTA	CACCTGGTTT	246
	CTCAGGTGCT	GATTTAGAGA	ACTTATTAAA	TGAAGCATCT	TTAATTGCTG	TACGTGAAGG	252
25	TAAAAAGAAA	ATTGACATGA	GAGATATCGA	AGAGGCAACG	GATAGAGTTA	TAGCCGGACC	258
	TGCTAAGAAA	TCTCGAGTTA	TTTCTAAGAA	AGAACGTAAT	ATTGTTGCTC	ATCACGAAGC	264
	TGGTCATACA	ATTATCGGTA	TGGTACTTGA	TGAGGCAGAA	GTAGTGCATA	AAGTTACTAT	2700
30	TGTTCCACGT	GGACAAGCAG	GTGGTTATGC	AATGATGCTA	CCTAAACAAG	ATCGTTTCTT	2760
	AATGACTGAA	CAAGAGTTAT	TAGATAAAAT	CTGTGGTTTA	CTTGGTGGAC	GTGTATCAGA	2820
35	AGATATTAAC	TTTAACGAAG	TATCAACAGG	TGCTTCAAAT	GACTTCGAAC	GTGCAACACA	2880
	AATCGCACGC	TCAATGGTTA	CGCAATATGG	TATGAGTAAA	AAATTAGGAC	CATTACAGTT	2940
	CGGŦCATAGC	AATGGTCAAG	TATTCTTAGG	TAAAGATATG	CAAGGTGAGC	CTAATTATTC	3000
10	AAGCCAAATC	GCATATGAAA	TTGATAAAGA	AGTTCAACGA	ATCGTTAAAG	AACAATACGA	3060
	ACGTTGTAAA	CAAATTTTAT	TAGAGCACAA	AGAACAATTA	ATTTTAATTG	CTGAAACATT	3120
	ATTAACAGAA	GAAACATTAG	TTGCTGAACA	AATTCAATCA	TTATTCTACG	AAGGTAAATT	3180
15	ACCTGAAATT	GATTATGATG	CAGCTAAAGT	TGTTAAAGAT	GAAGATTCTG	AATTTAATGA	3240
	TGGTAAATTC	GGTAAATCTT	ATGAAGAGAT	TCGTAAAGAG	CAATTAGAAG	ATGGACAACG	3300
	TGACGAAAGT	GAAGATCGTA	aagaagaaaa	AGATATTGCT	GAGGATAAAA	AAGAAGCTGA	3360
50	TAAATCTGAT	GAAAAAGATG	AACCAGCACA	TCGACAAGCC	CCAAATATCG	AAAAACCTTA	3420
	CCATCCAAAT	CACCCACACA	>T>>>T>>	~ A TOTA TO A TOTA	3 C	TCT TC TT T	

	AATTGTTATA	GCAGAAAATA	ATTGTAAAAC	AAGTTACTTC	ATTATTTAGA	ATGATGGGTG	360
	TAGAATAAGT	ACAATTGTTG	CATTTTATGA	AGTAAAGTAA	TTTTTTAAAT	ATAGAGTAAT	366
5	AGAGGAGATT	GAAATAATGA	CACACGATTA	TATTGTTAAA	GCATTAGCAT	TTGATGGAGA	372
	GATTAGGGCT	TATGCTGCTT	TGACAACTGA	AACTGTTCAA	GAAGCACAAA	CGAGACATTA	378
	TACATGGCCG	ACAGCATCTG	CTGCAATGGG	AAGAACAATG	caCAGCAACA	GCTATGATGG	384
10	GCGCAATGTT	GAAAGGTGAT	CAAAAATTAA	CTGTCACTGT	AGATGGCCAA	GGACCTATTG	390
	GACGAATTAT	TGCCGATGCA	AATGCTAAAG	GCGAGGTGCG	TGCTTATGTA	GACCATCCAC	396
15	AAACTCATTT	TCCATTAAAT	GAGCAAGGTA	AACTTGATGT	AAGACGAGCG	GTAGGGACAA	402
	ATGGATCTAT	TATGGTTGTT	AAAGACGTTG	GAATGAAAGA	CTATTTCtCT	GGAGCAAGTC	408
	CaATTGTTTC	AGGAGAACTT	GGTGAAGATT	TTACTȚATTA	TTATGCTACA	AGTGAACAAA	414
20.	CACCTTCATC	GGTAGGTCTT	GGTGTATTGG	TAAATCCTGA	TAATACGATT	AAAGCAGCAG	420
	GAGGATTTAT	CATTCAAGTT	ATGCCAGGTG	CCAAAGATGA	AACAATTTCA	AAATTAGAAA	426
	AAGCAATTAG	TGAAATGACA	CCAGTTTCTA	AATTAATTGA	ACAAGGATTA	ACGCCAGAAG	4320
25	GATTACTAAA	CGAAATCTTA	GGTGAAGACC	ATGTGCAAAT	TTTAGAGAAA	ATGCCTGTTC	4380
	AATTTGAATG	TAATTGTAGT	CATGAGAAAT	TTTTAAATGC	TATTAAAGGA	TTGGGCGAGG	444
	CTGAGATTCA	AAATATGATT	AAAGAAGATC	ATGGTGCTGA	AGCAGTATGT	CATTTCTGTG	4500
30	GAAATAAATA	TAAATATACT	GAAGAAGAAT	TAAACGTGTT	GCTAGAAAGT	TTAGCGTAAT	4560
	TTAATTTAAA	TCAATACGCT	AAAATGTTTA	TTTTTAGCGG	TTTAGTGAAA	TGTAGAACTA	4620
35	AATAGTTGTA	TAATCCTTAG	TGATTTTGTT	TGCTTTCTAG	AATTTATTTG	TAATAAATA	4680
,,	TCTATATCCG	ATAAATAAAC	TAAGATTTCA	ACAACTAACT	AAAAAGGAGT	GTTCTTAATG	4740
	GCAGAAAAAC	CAGTAGATAA	TATTACTCAA	ATTATTGGCG	GTACACCGGT	AGTCAAATTG	4800
10	AGAAATGTAG	TAGATGACAA	TGCAGCAGAT	GTTTATGTAA	AATTGGAATA	TCAAAATCCA	4860
	GGTGGTTCTG	TAAAGGATAG	AATTGCTTTA	GCAATGATTG	AAAAAGCAGA	GCGAGAAGGC	4920
	AAAATTAAAC	CTGGCGATAC	AATTGTAGAA	CCAACAAGTG	GTAATACAGG	TATCGGTTTA	4980
15	GCATTTGTAT	GTGCTGCTAA	AGGATATAAA	GCAGTATTTA	CTATGCCCGA	AACAATGAGC	5040
•	CAAGAGCGTC	GTAATTTATT	AAAAGCATAC	GGTGCGGAAT	TAGTTTTAAC	GCCTGGATCA	5100
	GAAGCGATGA	AAGGTGCAAT	TAAAAAAGCT	AAAGAATTGA	AAGAAGAACA	TGGTTACTTC	5160
50	GAGCCACAAC	AATTTGAAAA	CCCTGCGAAC	CCTGAAGTTC	ATGAGTTAAC	TACAGGTCCT	5220
	GAGTTATTAC	AACAATTTCA	ACCCAAAACT	ATCGATGCGT	тестрасстае	TOTTOOTSOT	E200

GTTGCTATAG	AGCCTGAGGC	TTCTCCAGTA	TTGAGCGGTG	GTGAGCCAGG	TCCACATAAA	5400
TTACAAGGTT	TAGGTGCTGG	ATTTATTCCA	GGCACTTTGA	ATACAGAAAT	CTATGACAGT	5460
ATTATTAAAG	TAGGAAATGA	TACAGCGATG	GAAATGTCTC	GTCGAGTTGC	TAAAGAGGAA .	5520
GGTATTTTAG	CAGGTATTTC	ATCAGGTGCT	GCGATTTATG	CTGCCATTCA	AAAAGCAAAA	5580
GAATTAGGAA	AAGGTAAAAC	AGTAGTAACA	GTATTGCCGA	GTAATGGTGA	ACGCTACTTA	5640
TCAACACCTT	TATATTCATT	CGATGACTAA	TTAATGTCAT	TTAAAAGAGT	GAGTTATCTT	5700
TTTGAGATAA	CTTGCTCTTT	TTTTCTACCA	TGTATATTTT	TAAAAATATG	AGCGTTAAAT	5760
TAAACATTTT	TCTGATAAAA	ATATCCAGTG	AATGATAAGA	TAATAAACGT	ACATACTAAT	5820
AACTAGTAAA	TAGCAGGAGT	AAATTTTATT	AGAGTTAAAC	AATACATAAT	TAAAGGGTGG	5880
TTAACATGAC	ТААААСАААА	ATTATGGGCA	TATTAAACGT	CACACCTGAT	TCATTCTCAG	5940
ATGGTGGAAA	ATTTAATAAT	GTTGAATCAG	CTATAAATAG	aGTGAAAGCC	ATGATAGATG	6000
AAGGTGCTGA	CATTATAGAT	GTTGGAGGTG	TTTCAACGAG	ACCCGGTCAT	GAAATGGTTT	6060
CATTAGAAGA	TGAGATGAAC	AGAGTATTAC	CTGTTGTTGA	AGCTATTGTC	GGTTT	6115

(2) INFORMATION FOR SEQ ID NO: 149:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10401 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

TAGATACTGG GNTAAAcaTc AAAAATAtyT GCtTaTTCaC GTGTTTAcGc TCCCtCAAAC 60 GCAACGTTAA TTGCGTGTAA TCATTTAGTG TGAATTCAGA CGCTTCTTCC ATGACTATGT 120 CTGATATGCC TTTTATCGAC TTTATTTTCT CTGGGTTATC TAATCCTTTA AACAAAAAA 180 CTGCGCCGTT TGGCAATTCA ACTTTGTTAT CAGTCTTATT CCAAAGGCAC ATGTCCCAAA 240 TACCAAAGTT TATCAAACAA TCTTTAACAT CTTCGAACAA ACTATCTTTA ATTGTTGATT 300 GTACTTTTCT AAGCCACAGT ATACGCCTAG GATATTTCCA ATCTTGCAAT GCTTTGAGTA 360 CAACTTTTTG TATAACGCCG TGAGACTTAC CGCTCGAACC TCCACCGTAA TGKACTTCAG TGAAGTLATC GTAATTGGTT AGTATTTCGA ATATGTTTCT ATTGAAAACA TTAGACGGTT 480 TGTTAAAGTT TAATTTAACT TTCGTCATCG TACTCACCAA TATTAATCTC AATATTCTTC 540 TGAGTAATTT CTTTTTTATC GATATACGCA CCATGTACTT TTAGTATGTG GTCAATAGAT 600

55

10

15

20

25

30

35

40

45

	TTTAAATGGT	CATATTTCTT	ACTGTAAGCC	TCTTGAGGTT	CTCCTCTAGC	AATAGAAGCA	720
	GATAACGCTA	AAGCTTCTGT	AATACTCATT	AAACGCTCTT	CTTGTATCTG	TTCTAATCGT	780
5	TCTTTAATAT	ATTCCGAAAC	ATTAACATTT	CTTAACAATC	GACTTGCTAA	AGACTCTGCT	840
	GTTTTCTTAC	TATAACCTGC	TGTAATTGCT	GCTTTTTTAC	CATTACATCC	ATTCATTATA	900
	TATTCATCTG	CGAATCTCTT	TTGTTTTTCG	TTCATTTCAT	TTACCACCAA	CTCTCGCGCT	960
10	ATACGCTTTT	TÄAAATTAAA	AAAGGATTGG	CTATAATCAG	CCAACCCACA	TAGATCCTTT	1020
	ATTCCTAATT	GCGATAAGGG	AAACGCAGTA	CGATAGTCAA	TATCCTACAC	TATCATAATA	1080
15	TCTCATTTAA	GGTATCAAAA	ACTGCCACTT	TACTGCCAAT	TTCAGTCTTC	CCCTAACTCT	1140
15	TCCGCCAATC	TAGATATGAT	TTTTCTTTTG	ATTCTATGAG	CAGTTCTATC	AGAAATGTGT	1200
	ATGTCAACAC	AAACTTTCAC	TAATTCCTTT	TTATTAAAAT	AATACTCTTG	AATGAATTCG	1260
20	CGTTCTTTCC	TGCTTGATGT	GTTGATTATA	CGTTCAATAG	CGCTCTTAAA	CTCAAGGATT	1320
	TTACCTCTTC	GTATACTACA	AAGATAATTA	GTTACTGCCA	TTTCTGTTTT	CGATGTATTA	1380
	GACGGTACAA	ACTCCCCGCC	TATATTTGTA	TCTGTTGGAA	TCCACGGTGT	CATTATTTCA	1440
25	CTTCTTAAAT	CTTCAAGTTG	TTTATGATAA	TTAGGATAAT	CACACAACTC	ATCTTCTAAC	1500
	TTTCGAACTG	TTGATAATTT	TAATCCGTAT	TTCTTTTTAG	TCATGAATAC	CCTCCGTACA	1560
	AATATGTTTA	ATCTTCAAAG	TGTCTCAATC	TACTTCTTAA	TATCTCTATC	TCTCGCTCTT	1620
30	TAACTTTTAC	ATCACCTTTT	AACTGTTCCG	CTTGTAACAT	CACACCAAAC	AATAAGATGA	1680
	CTAGTAATAT	AATTGCTATG	ATTAACCACA	TCATCTACTC	CGACACCTCC	GCCCTCATCA	1740
	AATCAGACTG	ATCACTCAAC	TTTGCGAAGT	CACTTGGCGC	CTCTACATCA	TCATTAGCCG	1800
35	TCATCATAAT	ATATACTTGC	TCAGTTACAT	ACTTACCTAA	CTCATACATC	GCTAGTAAGA	1860
	ATAATAGTCT	CAAAATTTCT	TTAACCACCA	CTAAACACCC	CATGTTAATT	TATCGATAAT	1920
40	TTGTATAGCT	TGTTTTAATG	CGTCTCTTTT	TTCTTTGATA	TCTCTATTAT	CGCCATCTTC	1980
	ATCAGCTGAC	ATTAACTCAC	TGTCATATTC	ATATAATAGT	TCTGATATTT	CATTACTAGC	2040
	TACTACTAAT	AAGTTTTCAT	CTACATCAAT	CGTTACCGTT	TTCTTTGGCA	TCTCCATCTC	2100
45	TCCTTATCTT	AACTTGTGCC	TCGTATTTGC	GCTCAGCTTC	TTCTTTACTC	TCTGCCTCAA	2160
	CAACTGTAAA	CGTCTGATTA	TCTCTAGCAG	TAGTAAAATG	TTCATGTGGT	TGTCCTGTTG	2220
	AATCTTTGAA	TGTTGTGACT	AAGTATTGCG	TCACTTCTTA	TCACTCCTTT	GAATGATTCT	2280
50	AAGTTTTTCT	ACGAATAAAA	GTATTAGTAC	AACACTCAAT	GTAGCCAACA	TATTTTTTTG	2340
	CTTTGCAAAA	TCTACTATAA	CGATTAAGAC	TAATAACATT	CCAATTCTGC	ATGTAAATAA	2400

	TACAAGTATT	GGAACTAATG	TAATGATGTA	ACTCACTTCC	CCAAAACCTC	CTTGACTCGA	2520
	TCTAAGATGT	CTTTACACTC	CGCTACTTCC	GAAGCCTTTT	TCTCCACGTT	CTGAAACACT	2580
5	TTCGAATTCC	TCCACTTGCT	TTAGTTCAGG	TGTCCATATA	GGCACGATAA	CCAATTGAGC	2640
	TAGTTTGTCT	CCTTCGTTGA	TTTGATAAGT	TCCGTATTGT	CTTATGGCGT	CACTCAAATC	2700
	GATTTCTCCT	TTAATATCAA	AAACACCTGG	TGTGATATAA	CCATTCGATG	CAATAGCGTC	2760
10	ATTCTTGATA	TTAATCCCTA	AATTGCCGTG	ATATCCCGCG	TCTATCTTGC	CTGTTTCAAT	2820
	CACTAAATGC	GTTTTACTAC	TTACACCACT	ACGGCTAGTT	AATAGTCCGA	CATAGCCCTC	2880
15	TGGTATGCTT	ACAGCTACAT	CTGTTTTAAT	CACTGCCTTT	TCTTGTGGCT	CAAGTACGAC	2940
10	AGTTTCAGCT	GAGAATATGT	CATAACCTGC	ATCCGTCTTA	TGATTTCGTT	CGGGCATTCT	3000
	AGCATTTTCT	GATAATAGCC	TTACTTGTAA	TGTGTTAGTC	ATTTTCCTGC	TCCTCCCTAG	3060
20	CTGTAGCAAA	CGCTATTCTC	AATTTCAATC	TTTCAACAAT	ATGAATTAGT	GCGGTATTGA	3120
	GGAATATTTC	AAATTCTTCA	ATGTTCTCAT	CTATAAAATC	AAGTATTTCT	TCCTCTTGTT	3180
	CACTGTCAAA	CTCGCTTAGT	ACATCCCAAA	TATTTATGTC	GCTTTTGCTC	GTTTCTAATA	3240
25	CTCTTTTGAT	TATTTCTGAA	TTACTTTTAT	TACTCATTTT	CCTTGTTCCT	CCTCATATTT	3300
	ATAGACAACT	TGACCTGCCA	TAATCCCTAC	TGCTTCATCA	AGTTCAATAC	CTTCTTTAAC	3360
	TGAATGTTGA	ATAGCATTTG	TCATTCCCTC	AAGTATTTCA	TCAAACGCTT	GTGCTCTCTT	3420
30	ATACACGTCC	TCAATCTCTT	TTAGTAATCC	CTCTGTGTCA	TTACCGTTAT	ACGCACTAGC	3480
	ACTGATCACT	GATTGTTCAA	TTTGTTCGCG	GTTATTCATC	ATTTCCATCT	CCTCTAAAAT	3540
	AAAGTTAGTT	GCTTCTGCTC	CTCGTATTCC	AAACCATGTT	GCTTTATATA	TGTTTCGAGC	3600
35	TCTTCCGCTG	TATCAAATGT	CTTTTTCACG	CCTTGCCAAC	CTGGCACGAT	ATGCCCATGa	3660
	aagtāataag	TGCCGTTCAC	TACATGGATA	TGTGCCACTC	GTTCGTTATC	CTGATACAGA	3720
10	TATCTCTTAG	ATCCGAAAAA	TTGGTTTAAG	TATTCTTTAC	ATGCGCTATC	GGTTTTAGGC	3780
, ,	ATTTATGCTT	CCTGCCATTT	CTTAAACATT	TGGTTATAAG	TAGTATCAAA	CCAGTACGGA	3840
	TCACGTGAAT	GTTTTTGAGG	CACATTAAAC	AAATGTGGCT	TCTTCTTACG	TAGTTCAGCC	3900
15 .	TCTTTACGTC	GTTGCCTAGC	CATTTCACGC	TCTTTGCTCT	CTCGCTCCAT	GATTTTGGAT	3960
•	AACACAATTT	CTTTATACTC	AGCTAAGCGC	ATACCATAAG	GTGCATGTAA	GGCTTCTAAC	4020
	AACGCCCAGC	CACCTCGTAC	TCTTTTTGCA	ACCATTCCTG	GAGTTAAACC	GTTCTTTTTT	4080
50	ATCAATTCAT	TTTCATGTTC	GGTAAATTTA	TATGGTTTAC	CGTTAATCTT	TACGATACTC	4140
	ATTTATTCCA	CCTCTATACA	TTTACTTTT	ТТААТССААТ	ССТСТАВТТТ	стесететте	4200

	ACATTTAAGT	TAACCATCTC	AGCTTTTCCG	TTTTTATATC	CACTAATAGT	TGATCTTGAT	4320
	ACGCCAGTTT	CATTGTGCAA	ATCTTGGACA	CTTACGTTAT	CTCTAGCCAT	GATTACCCTT	4380
5	AAATTAGTTG	CGAATACTLC	GTTCAACTTC	ATTTATTCCA	CCTCTATATA	TGCATGTCTT	4440
	ATTGTTATGT	TGTCATACTT	TAGTAATTCG	TCCGGATTGT	CATCTAAGCG	CTTTGCCAGC	4500
	GTATCTTTTT	CTTTATCCAC	ATCATCGTAA	TGCTGATATT	CAACTTCTGT	AGGTATTCTT	4560
10	ATATCAATCG	TTGCGTTTAT	ATATGCTTGT	TGTTGCATTA	GATCACTTCA	TTTCTCTTTT	4620
	TCTTTTACGT	CTGACTTTCA	CTAAGTCCTC	ATATACCATC	CATTCTTGAC	CTGTGTATTT	4680
15 .	AGGCGCTTTA	CATATCCACG	TTAAATTCAC	ATCTCTATAC	TGATATCTGA	ATATCTTCGC	4740
-	TTTGATGTTG	GCAACTTCAG	TCGCCTTACC	TTTAACGTCT	ATAACTTCAA	CCAGTTTCCC	4800
	TTCCTTCCAC	AAAGAGAAAT	CGGCTATATA	CGTAATCGGT	CTTTGTTTCC	CGAATTTAGG	4860
20	TTGTAATTCA	AATTTCGGTT	GTATTTCGAT	ACGATCATAG	TTAGTGCCAT	TCATATTACT	4920
	TTCTAAATAT	TGGTAATATT	CGCACTCTAC	TTTGCTATCA	AATACAATTC	CTTTGTACTC	4980
	AACTTTCTTA	GCATTGTATT	TACTCATTGT	GCCACCTCTA	AATATCAAAT	ATCGTTGCTT	5040
?5	GCAATCCTAG	CTCTTGCTCA	TATAGAAGCC	CGTGAGCGCC	TTTGAATCGT	TTTAGGTCAC	5100
	TATCAGTCAT	AATTTTCTTT	TCGTCGCTGA	AATGGGCTCC	TGTGAGCGAA	TAAACTTCAT	5160
	TTACGTTGTC	TTTATACTTG	ATGACCTTAA	TATCTTCCGT	GCCATCTTCT	CGGTATAAGT	5220
30	AATATTTTTC	TTTCGGCATT	TTTTAACACT	CCTTAATGTG	TGTTTTCTTC	CAGTTGATTT	5280
	CATTCATGAT	TTTCTTTTCA	ACTCTGTCGT	AATCATCGAA	AGGCGATAAC	TCGTTATTGT	5340
_	CCAACAATCT	ATTGACCGCC	CAACCAGTCT	CGATATATAC	ATTTGCTACA	ATCGGGTCGC	5400
35	TTTGCTTTGT	CTCTTCATAC	ATCGATTTCA	ATAAGCTTTT	GAATTGCATT	ATATTCATGT	5460
	GAAAÃACCTC	TGAGTCTTCT	TGTAATACTC	AAATTCAATT	ATTCCGGTTT	CGCCGTCTTT	5520
10	GTTTTTGGCT	ATGTTACATT	CAACAATAGA	TTTGCCAGTG	ATACTGTCAT	CTTCGTCACG	5580
	GTTATAATAA	TCATCACGGT	AAAGTAGCAT	CGCTAAACTC	GCATCTGCTT	CTATTCCGCC	5640
	TGATTCTTTC	ATGTCCGATA	GCATTGGTCT	TTTATCCTGT	CTAGACTCGA	CACCACGATT	5700
15	CAGTTGTGAA	AGTAGTACGA	TGATTGCGCC	TGTCTCGTTA	GCGATTATCT	TTAAGTCACG	5760
	TGATATCTTT	TCTACTGCTA	CACGTCTATC	AACTTTCGCA	TCAGTATCCA	TCAGTTGAAG	5820
	АТААТСТАТА	ААААТААСТТ	GTTGCCTGTC	TGAATGCCTC	ATTGtTGCGC	TCGCACATCT	5880.
0	TGCGGTGTGA	TATTACTTTT	ATCAGAAATA	TCGATGCCTA	ATTTCATGAT	TTTATCCATC	5940
	GCATTCGTTA	ACTTTGTTAA	GTCATCCGGC	GTTAAGTTCC	TGATTTCTTT	TATCTTTCTT	6000

	AGACTAAAGA	AAGATGTTTT	GTATCCATTT	TGTGCTATGT	TCAGCATCAT	GTTTAATGCA	612
	AAACCTGTCT	TACCCACTGA	GGGACGCGCT	GCGATGACGA	TTAATTGTGA	TGGTTCTAAT	618
5	CCCCCTATTT	TGTAATCCAT	TAGCTTGTAA	CCCGTCTTAA	TTTGCTTCTT	AGGGCTATCG	624
	CTGTATAACT	CTTCGACAAA	CTCCTCAACA	AACTTCTTGG	TTCCATCTTC	TTTTTTGTTA	630
	GTAATTGTTT	TTAAATCCTT	GAGTTCATCA	ATCAAGTTGT	TAAAGTTTTG	GTTCGTAGGT	636
10	TGTTGTTTGA	ACTCAGTTAC	CAATTCGTTA	GCTTTGTTGA	GCTGATAACT	TTCCAATAAT	642
	TCTTGTTGAT	AACGTTCAAA	GAAGCCATAT	CCAATGAAAT	CGGAGTTGTA	AAGTTTAGTT	648
15	ATAGTATCTG	САТСТААААА	TTCTTTATCT	TTAGTTGCTT	TTAAATAGAT	TTCTTGATGA	654
	TCTATCTTTC	CGACGTCCAT	TACATAATTG	AAAAAGGTTT	TAAACTTTTC	GTTCGTAAAC	660
	ATGTAATCTT	TAACTCTTAT	CTTTTCTAAT	ACGTCCGGTT	GTTTAAGTAG	CGTAGCGATT	666
20	ATTGTACTTT	CAATTTCGAA	TTGTCCGTAA	TTCATTCGTT	TTCGCCCCCA	AATTCTGCCA	6720
	ACTTATTCAT	GAACTTATCT	AGCGCTATTT	TTCTTTGTCT	GACATATTCG	GGGTCATTCT	6780
	GCATTTTCCA	TTGGTGTGTA	GCGGTTTCGT	TATCTACTGG	CTCGATAGAT	ACTTTTTAG	6840
25	GTTCCTTACG	CATGATTGCT	GGTAAGTTAG	GCGGGTACGG	GTTGTTACTG	TTGATATAAA	6900
	CATCTACCGC	TTTTACAGTT	GGTTGATAAT	CTCCATTTTG	ACTTAATACA	TCAATCCACA	6960
	TTTCTAACTT	CGGTTTATCA	AAATCAATGT	TGTATACGTA	CCTAACTITT	TTAATAATTT	7020
30	CTAATGCTTG	TGTTTTGCTC	ATCGGCATTA	GTCATCACTC	AATTCTTTTT	CCATTTGTGC	7080
	AATGACATCA	TCAGTAGTAT	TTTTTCTAGG	TGCTATTTTA	TTTTCTGCAT	CTTCTTTTGT	7140
	TTTGACATTC	TCTTTAGCCC	AGTTGTTTAA	AACTTTAATT	AAATAGCCAC	CATGCGCACT	7200
35	TTTGCTTTTA	GTGTACTCAA	CACCTACTTT	TACAACTTCA	AAAGCGTTTG	TACCTATATC	7260
	ATCAATAGCA	AACCCTAATT	GTTCCATTTG	ATTAGGTGTT	AACTTATCAT.	CCAAATTTGC	7320
40	AATTATATAT	TTTATTGAAG	ATGAGAAGAC	GGCTTCTCTT	TCTTCTTCTT	TATTCTTATA	7380
	TTCTTCTTCT	TTTTCTTCTT	CTCTTTCTTC	TTCTTCTTCT	GTATCGTTAC	GTAACGTTAC	7440
	GGTAACGTTA	CGTTTTGCTT	CTAGTAACTT	TTTCTGTTTC	TCACGATAGC	GTTGTTGTCG	7500
45	CAATTTATTT	TTTTCTTTAT	GCTTAGCTTT	GCTATCTAAG	CTTTGATGCT	TCTCCCAGTT	7560
	TGTCACTTTT	ATGACACCAT	TAACTTTTTC	AATCATGCCC	AATGTCTCAA	AAGTTTGAAT	7620
	TGCTAACCTT	ATTGAGTTAA	TAGGTCTATT	AAATTCATTT	GCTAACATTT	CTTCGTTGTA	7680
50	CGGCAAGTTT	TCGGATAGCA	ТААТАТААСС	TTGTTCATTG	TACTTTCCTG	ATAAAGTTAG	7740
	TAACTTAACC	СВВВТВСТТВ	тсатестате	тсттсссст	אַאַאַכריייייריכא	ጥል ጥል ጥጥጥ አጥ	7900

	CTCCTTTCAG	CATTTTGTTG	AGCCTCTCAT	CAACTTTTAT	CCACGAGTCA	TGCAAGTGAT	7920
	ATTTATCATC	AAACGACTTA	ACGCCAATTG	CGTGCTGTTC	ATTATGATGT	TGTCTACACA	7980
5	GTGCTAACAC	ATGTTTGTCG	TAGTGATTCA	TTTTGTTTCT	GTTCATGCCT	CTGCCGACTG	8040
	CTTCATAATG	TGCCAGGTCT	GCGTGAGGCT	TTCCGCATAT	TACACAGTTG	CGGTTGATTG	8100
10	TAGCCCAATA	TAATAACGCT	TTATCTTCGC	TTAACAACTT	ACTCGTTTCT	ACACTCATAG	8160
10	GTATTTGATG	ATGAAACATA	AACGCTATAA	TCAGTTCTAT	TAACTCCCTT	GCAACTTTCA	8220
	TAGAACAGTC	GCGCAGACTG	ATTTCTTCAT	AACCTTTCAT	AATTTCCAAT	TCTGTTTGTA	8280
15	ATAATTTTCT	AGTTGATTCT	ACTGGTTCGC	CCCAGTGAAG	TTCTATATCT	CTACACATTG	8340
	CGAATATTTT	TTTGCGTTGT	TCTATAGATA	GTTTTTTATT	GTCCGGAACC	TCTACTTCTG	8400
	CTTTTAGTGG	ATATCCGTTT	TCTAGTAAGT	CAATGTGACT	TTGTTCAAGT	TCAACACCAG	8460
20	TAGCAACGAC	GGAATAAGTA	CCGTCATTGT	CTTTCTGGTA	TCTTGTAATG	TATTGCATTT	8520
	AAACCACGTC	CTAGAACGGT	AAATCATCAT	CATTGATTTC	TATTGGACCA	TTAGCATTAG	8580
	CGAATGGGTT	TGATTGTTGA	CTCATTGGCG	TCTGTTTCCC	ATTTGCTTGC	TGTTCTTTTT	8640
25	GTTTCATCTC	ATCAGTTTTA	GGTTCTGGTT	TATTAACTAC	TTCATCGTCT	TTATTCCAAA	8700
	CTTTTACATA	TGAGAGTCTT	ACAAAATACT	TGCCTTGTTC	CTCGTTAAAT	TTATTTTTAA	8760
	GTACAATAGT	TCCGATTTTG	TTAATTAATT	GATCTGTGTC	AAAAGTTAAA	TCTGGTAAGT	8820
30	TCAATTTAAT	TCCTAATCTA	CTAAGTAACT	CGATATATTG	TTTTTCTTGA	TAATCTTGTT	8880
	GGAATGGTGG	GACGAATTGG	TTGTGTTTGT	ATTGTTTACC	TTCGTTGTTT	TCAAAAACAA	8940
35	TCGTGAAGTA	TCTGTTTTCT	CTGTCGTTAA	ACTCGACATT	TGCAACTTTT	ACTGTAAATT	9000
	CTCCAGCTCC	TAAAAAGTCC	CCACCTTTCA	TGAATGCCTC	TTGATTAGTT	TCTTGAATGT	9060
	ATTGTGTTCT	ACCAGTGATT	TTCATAATTT	TTATACCGTC	CTTTTAATTA	TTAATTTTA	9120
40	ACCATTTCTA	ATTGCTTGTA	CAACATCGTT	AATACTTGGA	TTAATGAAAC	GTTTGTTGTT	9180
	AATTTTGATG	TTGCTTGAGT	GTCTTATCTT	TGTCTCGAAT	AAATTTGATG	GTTCAGCGTT	9240
	AAGTACATAT	TGATAAGTTT	TTTCGCCGTC	TTGCTCATGT	TCTTCTATTG	TCATTCTTGC	9300
45	TAACACGTCA	GATTGACTGA	TGACTGCTTT	TTTTATTTGG	TCTTGTGCCT	CTATCGTGAT	9360
	TGTTGGATTG	ATAGTACTTC	CCTCATCATC	TTTGTCTTTG	TTAATGCCCT	CGTGTCCGCT	9420
	TATAGCAAGA	TGAAATTGAT	AATGTTCTTG	TAATTTAGAA	ATATAACGAT	AAATACTTAC	9480
50	AATGCGTGTA	GCACACTCGC	CCCAATCATT	AAATGTCGGT	TTCTTTGATT	TACCGTCCAT	9540
	C N TO TO TO TO TO TO TO TO TO TO TO TO TO	10100001010	03 00m3 3 0mm	~~~~~~~~~	MO3 3 MO3		

AAAATGCTTA	TAATTCTTAA	TCTGCACAAC	TGCCCCATCT	TCTGTTACCG	TTGTTCCGTC	9720
CTCATTTATA	TCTAGTACTA	AGGCATTGTT	ATCTTTTGTT	AAAAACGTAG	TTTTACCAGT	9780
ACCGAACTTG	CCGTATATCG	CAAATTTATA	AAACTTGTTT	GCATTTTGTT	TGCTGATGTC	9840
TTTTACACCT	AGTTGCGTTA	AAATATCGAC	ATCTTGATTA	GTTTTTTCAG	TCATCTATTC	9900
TCCCACCTTT	ACCGTGTATG	ACGTTGGTTT	CTCCACAATG	CTAGCACCCT	CTAAAACTTC	9960
GCCGTTTGCG	TCAATCAATG	TGCCGTTTTC	AGTTACATTG	AAATCTTTCT	TAATGTCTGA	10020
TTGGCTAAGT	TTTTTAGTTA	CTTTTACATA	GTTGTCAAAA	CCTCGTTGCT	CAAGTTGTnT	10080
AATGACTTCT	TGCTCATTGC	TAACTTGAAT	GACTTTTGAA	CCTTTTCTGG	CTGTCACTTT	10140
TCCGTAAGtG	TATTCAACTT	GAATTTGCTA	TCTTGTTCTT	TTTGTATTCT	GTAATATTCA	10200
ATTACAAGGC	TTTGTAAATA	TTCTTTGCCA	CTCTGTAATT	TTTCTACTTC	TTTATCTTTC	10260
CATTCGTTTA	TGCGTTCAAT	TTCTTTATTT	GCTAAATCGT	TGATTTCATT	CTCTTTAGTT	10320
GTGATTGCAT	CCAGTTTCTn	AAAAACCCAG	TTAGCACTGT	CTAGATCAGT	nACTTTGAAT	10380
CGGTCGTCTT	GTTCGAATGT	n				10401

(2) INFORMATION FOR SEQ ID NO: 150:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2989 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

TTTCTCTCTA TTATTCTCGA TGCGTAGATA ATTGTTTAAA TTTAAGTTTA TAGTAATGTT 60 GAGTTTATAA TTTCATATAT CTAAAAACAG GTGTTGTATA TATAATCATT CATCTAGTTA 120 TACTTACTTT AAAAATAATA TAATTTCATG CGATGCAATT CATTGATGGA TGTTTTTAAT 180 CTTAATCAAA TCCABATAAA GCATATATTT TTAAATTCAC TTTCTTTCGA ATCGATTTTT 240 ATCTCTTGNA TTAAACTTTT CCATTGTTTC ATTAAAGCTC TCTGTCATAT CTATTCCCAT 300 TGAATTCGCT AAACATAACA ACACAAATAA ATTATCACCT AATTCTGCTT TAATCGTATT 360 TGCTTCCTCT GAATCTTTCT TCTTTTTTC ACCATAGGTA TGATTTATTT CACGTGCAAG 420 TTCGCCCACT TCTTCAGTCA ATCTAGCTAA GTTAGCTAAT GGTGAAAAAT ATCCTGTTTT 480 AAATTGTCCA ATATATTCAT CAACTTCACG TTGCATTTCT ACCATTGATT TCATTTCTAC 540 GTTCTCCTTA TATTGCATTT CTAATATAGT ATATATCAAT TTGAAGTCTC ATGCATGTTT 600

55

50

5

10

15

20

25

30

35

40

	AATTCAGTTT	ATATAAATGT	AATGCATTCC	TAACTAAATT	AAATCAATTG	AAATTGGGAT	720
	TATAACTTTA	TGATACGTAC	CACTACAATA	AAATAATATA	GTGAATAATC	TACCATTAGA	780
5	AAAATAAGCA	CAAAAAAACT	AGCAACCACA	CAAAAATGTG	ATTAGCTAGT	TAATAAGTGT	840
	CTAATTTAAG	TTAATTGTTA	ATCTATAAGA	TTAATCACTT	GAACGCGCAA	TCAAAATAAT	900
	ACGTACAAGC	TCTGCTACAG	CGACTGCAGT	TGCTGCAACA	TAAGTCATTG	CTGCTGCAGA	960
10	TAATACTTTA	CGCGCATGCT	TGTATTCTTT	TTCATTTACA	ATGTTCAATG	CCGTAATTTG	1020
	TTTCATCGCT	CTTGAACTCG	CATCAAACTC	AACTGGTAAC	GTAACAATTG	AGAATAATAC	1080
15	CGCTAATGAC	ATTAAACCAG	CACCAATCCA	TAAAGCAGTT	GAACCAAATG	CACTACCTAT	1140
	CGCTGTTAAG	ATAATACCTA	ACATGATGAT	CATATAACTT	AATGAACTCC	CTAGGTTTGC	1200
	AACAGGTACT	AATGCTGCTC	TGAATCTTAA	GAACCAATAT	CCTTGGTGAT	CTTGAATGGC	1260
20	ATGACCAACT	TCGTGGGCTG	CAATTGCAGT	TCCAĞCAACT	GATGGTCTGT	CATAGTTTGC	1320
	AGGAGATAGT	GAAACAACTT	TCTTTTTAGG	ATCGTAATGA	TCTGTTAAGA	ATCCTTCACC	1380
	TTTAACAACT	TCGACATCAT	AAATACCGTT	TGCATGTAAA	ATTTCTAATG	CAACTTCACG	1440
25	ACCCGTTTTA	CCACTAGTTG	ATCTAACTTG	TGAATATTTC	TCATAGTTAG	ATTTAACTTT	1500
	GTGTTGTGCC	CATAAAGGAA	GCACCATTAA	TATTACGAAA	TAAATTATCA	TAGTAAAAAT	1560
	TGAAGACAAT	AAACTCACTC	TCCTTTATAA	ATATTTTACT	GTCATTTGCC	GTTTTTATCA	1620
30	AATCATTTAC	ACTTTAATAA	TTTGTTTAAT	TCAATATAAA	GCAAAAGTCC	AAAAACACTT	1680
	AGACAACATG	ATAATACACC	AATTTGCCAC	ACATGTGTAG	TTATAAAATC	ATAATATGGA	1740
95	AATTGAAGGT	GAAAATAGTC	AATATAATCA	TTCAAAAACA	CCCAAATCAT	YGCTACACTG	1800
35	ATTCCAATCA	TAGAACGTTT	AAACCTAGGA	TAGAAGTAAA	TTGCCTGAAC	AGCCATTATA	1860
	CTGTGGGAAA	ACATTAATAC	CAAACCATTT	ACTGTAATAT	CACCTTGTTC	AATAATAAAT	1920
40	AATATATTCA	TTATAACTGC	CCAAATCCCA	TATTTGAATA	ATGTTACAAA	TGCCAGTGCA	1980
	TCGATAATAC	TATTTTGTTT	TTGAATTAAT	ATCAATGAGA	TAGAAATAAC	TAAGTATAAT	2040
	ATTGCAGTTG	GGCTATCTGG	AACAAAAATC	TTAAAATGCC	AGGGCGTATG	ACTTAATTGT	2100
45	TCACCATACC	ATATATAACC	ATAAATCATC	CCTAATATAT	TACAAATGAG	TAGCATCATT	2160
	AACCAAGAAC	GTTGATAAAG	TGTATATTGC	CAAAATGCTT	TAATTGTCAT	CTGCTAAGTC	2220
	CTCAAATTGA	TTATGTTTAT	TTACTAGCTT	GAGTGTATTT	AAAATTTGCG	TTAGTTGATA	2280
50	AAAACGTTGC	TTTTCATTCA	TCTGTAAACT	TAAATCAATA	TTGTGTAACA	AGTAATCTAT	2340
	MARKAGOO	momman mocco	CATCTATACC		AACTCATCAA	C A dr A A Convenience	2400

	TGACACGTTT GCGAAGTGAA TTTGAATATC AAAAGCACAG TTATGATTAG CGATATAATC	2520
	AAATATTTCA TTTGTATTCA TTAACTTTAT ATTACGCTTA GTAAATTGAA TTGCAGAAGC	2580
5	GTGACTTCCC ACTTCTGCAA TTTCTAATGT TTCATGATGA TTAATTTTTG TATCTACAAA	2640
	ATGAATGTTT GCCAATTTCG CCTCATTCAC TTTTATATAG TTAAGCACCC AAACTGCAAT	2700
	ACGCGACTTA AATCGATATT GAAAAAGTAA ATATTCAATA AAACTTTCTT TAATTTGATT	2760
10	GAGTGTCTCT GACATCAAAT ACCCCATTTT AAGATTGCAA TCTTGaTAAT TCGTCATGCC	2820
	AATTITCGTT ACTTGGCTCT AGTTCCAACA ATTGATTTAA AATAGTAATT GCTTGTTCCT	2880
15	TTTGACCAAT TTCAATTAAA TAGAAATAAT AATCACTCAT AAAATCAATA TTTGTTTTCA	2940
	TCGTTGGATA TGCTAATTCA AAGAAATGTT GAGCTTCTTT ATCTCGCTC	2989
	(2) INFORMATION FOR SEQ ID NO: 151:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1143 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:	
	CATCAACTCC TTAATTACAC TGTAAATGAT ATGCGTCTTT TTGACAACTA TATTTGTCAA	60
30	ATCTACACCA AAAAATATGA TTATCCACCT ATGTATGACA TTTTGAAACA AACACCTCAA	120
	CGCCTACAAG TCATAATTGT TTACTTTCGT TACACCTTCC TGCATAATTA ACAGCATTCT	180
	AATTTTAGTA TGATGCACGC ATTTTCACTA AATCAAACCA TTCAAAGGAG ACTATTATGG	240
35	CATTTACATT ATCTGCAATT CAACAAGCAC ATCAACAATT TACTGGTGTT GACTTTCCAA	300
	AACTATTCAA AGCTTTTAAA GATATGGGGA TGACTTACAA TATCGTCAAC ATTCAAGATG	360
40	GCACTGCAAC ATACGTACAT CAATCAGAAG ATGATATCGT TACGTCATCT GTAAAAAGTA	420
	ATCATCCTGT TGCTCAAAAA TCAAACAAAA CAATAGTTCA AGACGTCTTA ACTAGACATC	480
	AACAAGGGCA AACAGATTTT GAAACATTTT GTGATGAAAT GGCTGAAGCT GGCATTTATA	540
45	AATGGCATAT CGATATTCMA GCGGGCACTT GTACTTATAT CGACTTGCAA GACCAAGCTG	600
	TTATTTCAGA ATTAATCCCT CAATAAACTA TATTTATAGC AACATTTTAA TTATTTCATA	660
	AAATTTTATT GATAATCATT ATCGTTCGGT ATAAAGTAAA TACTATATAC TACTTATGAG	720

TGAGGTTGAT TATCATGATA ACTAACACTT TTATTTTAGG CATCACAGGC CCAACAAGTC

TTGTCGTCAT TAGCATTATC GCTTTAATTA TTTTTGGTCC GAAAAAATTA CCACAATTTG

AGTCTCACGA TACACCCAGT AAGGAATCGA AACAACAGCG AGAGCAATAG CACTGACCAC 960
ACCTTACTGG TTCACTTTAG CGAACTACGC CATCGGTTAG TAAAAATTTT ATTGTCGTTC 1020
GTCATTACGG TCATCGTCGT ATATGTYTCA TCATTTTGGT GGATGACACC ATTCATAACG 1080
TATATYACCC GGCACATGTG TCCTTACATG CATTTCATTC ACAGAAATGA TACAAATAAC 1140
GTG 1143

(2) INFORMATION FOR SEQ ID NO: 152:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7953 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:

CAACGCCTGA ACGTAAACCA TATCGTTTCG CGATTTCCTC ATCTTGACTA TTTACTAAAA 60 ACTCTCTCAT GGCGATTAAT GTTTCTTTTT CTTCTTTAGT TAATGGTAAT TCTAACTCAG 120 CTGCTTTTTG ACGCAAAGTT GGATGACCAT CTCTAATGAT GTCTTCATT GTTAACATAT 180 ATTGCACCTT CCTTATTTTA ATTTGTTTTA GTTGAATGAC AGTAAAAAGG TTGTTAAGAT 240 ACTCATACAT TTTTATGTGT AAATATCTAC AAAGTTAACC AACTACTGCC AATGTTTATT 300 TTAGATAGTA TATGTAAATT TTCAAGALAT GCGTAATTGC GTTAAAAAAT GATTAAAGTG TTGGTTTCAA GCAATGATAC TTTAGAAATT TATTTATCAT CTTGACTTTA AAAATTATAT 420 TATAAATGAC GTAACTGTCA ACAGATATAC TTAGTATTGA AGATGTGTAA TGTAATTGTT 480 TAAAATTGAT TTCCAAGCAG ATTTTATTTA TCATTTAATT TAAATAGCAA GTGGAGGTAC 540 AAGTAATGAA ATTTGGAAAA ACAATCGCAG TAGTATTAGC ATCTAGTGTC TTGCTTGCAG 600 GATGTACTAC GGATAAAAA GAAATTAAGG CATATTTAAA GCAAGTGGAT AAAATTAAAG 660 ATGATGAAGA ACCAATTAAA ACTGTTGGTA AGAAAATTGC TGAATTAGAT GAGAAAAAGA 720 AAAAATTAAC TGAAGATGTC AATAGTAAAG ATACAGCAGT TCGCGGTAAA GCAGTAAAGG 780 ATTTAATTAA AAATGCCGAT GATCGTCTAA AGGAATTTGA AAAAGAAGAA GACGCAATTA 840 AGAAGTCTGA ACAAGACTTT AAGAAAGCAA AAAGTCACGT TGATAACATT GATAATGATG 900 TTAAACGTAA AGAAGTAAAA CAATTAGATG ATGTATTAAA AGAAAAATAT AAGTTACACA 960 GTGATTACGC GAAAGCATaT AAAAAGGCTG TAAACTCAGA GAAAACATTA TTTAAATATT 1020 TAAATCAAAA TGACGCGACA CAACAAGGTG TTAACGAAAA ATCAWAAGCA ATAGAACAGA 1080

55

5

10

15

25

30

35

40

45

	AAGAAAAGCA	AGACGTTGAT	CAATTTAAAT	ATTAATTAA	ATACAGATGG	TAGGAAACAA	120
	CTAATACAGT	TCCTATTATC	TGTATCTTTT	TTTATTAAAA	CAGAACTTTT	TCAAATGGTT	126
5	TAACAGTCCC	ATTTATTTGT	GGTACAATTA	GTAAGGATAA	AATGAATTIC	TATACAATTA	132
	TGGGAAAGGT	ATTGTGAATT	GAATGGCTCC	TAAGTTACAA	GCCCAATTCG	ATGCAGTAAA	138
10	AGTTTTAAAT	GATACTCAAT	CGAAATTTGA	AATGGTTCAA	ATTTTGGATG	AGAATGGTAA	144
	CGTCGTAAAT	GAAGACTTAG	TACCTGATCT	TACGGATGAA	CAATTAGTGG	AATTAATGGA	150
	AAGAATGGTA	TGGACTCGTA	TCCTTGATCA	ACGTTCTATC	TCATTAAACA	GACAAGGACG	156
15	TTTAGGTTTC	TATGCACCAA	CTGCTGGTCA	AGAAGCATCA	CAATTAGCGT	CACAATACGC	162
	TTTAGAAAAA	GAAGATTACA	TTTTACCGGG	ATACAGAGAT	GTTCCTCAAA	TTATTTGGCA	168
	TGGTTTACCA	TTAACTGAAG	CTTTCTTATT	CTCAAGAGGT	CACTTCAAAG	GAAATCAATT	174
20	CCCTGAAGGC	GTTAATGCAT	TAAGCCCACA	AATTATTATC	GGTGCACAAT	ACATTCAAGC	180
	TGCTGGTGTT	GCATTTGCAC	TTAAAAAACG	TGGTAAAAAT	GCAGTTGCAA	TCACTTACAC	186
	TGGTGACGGT	GGTTCTTCAC	AAGGTGATTT	CTACGAaGGT	ATTAACTTTG	CAGCAGCTTA	1920
25	TAAAGCACCT	GCAATTTTCG	TTATTCAAAA	CAATAACTAT	GCAATTTCAA	CACCAAGAAG	1986
	CAAGCAAACT	GCTGCTGAAA	CATTAGCTCA	AAAAGCAATT	GCTGTAGGTA	TTCCTGGTAT	204
••	CCAAGTTGAT	GGTATGGATG	CGTTAgcTGT	nATATCAAGC	AACTAAAGAA	GCACGTGACC	2100
30	GCGCAgTTGC	AGGTGAAGGT	CCAACATTAA	TTGAAACTAT	GACATATCGT	TATGGTCCTC	2160
•	ATACAATGGC	TGGTGACGAT	CCAACTCGTT	ACAGAACTTC	AGACGAAGAT	GCTGAATGGG	2220
35	AGAAAAAAGA	CCCATTAGTA	CGTTTCCGTA	AATTCCTTGA	AAACAAAGGT	TTATGGAATG	2280
	AAGACAAAGA	AAATGAAGTT	ATTGAACGTG	CAAAAGCTGA	TATTAAAGCA	GCAATTAAAG	2340
	AGGCTGATAA	CACTGAAAAA	CAAACTGTTA	CTTCTCTAAT	GGAAATTATG	TATGAAGATA	2400
40	TGCCTCAAAA	CTTAGCAGAA	CAATATGAAA	TTTACAAAGA	GAAGGAGTCG	AAGTAAGCCA	2460
	TGGCACAAAT	GACAATGGTT	CAAGCGATTA	ATGATGCGCT	TAAAACTGAA	CTTAAAAATG	2520
	ACCAAGATGT	TTTAATTTT	GGTGAAGACG	TTGGTGTTAA	CGGCGGTGTT	TTCCGTGTTA	2580
45	CTGAAGGACT	ACAAAAAGAA	TTTGGTGAAG	ATAGAGTATT	CGATACACCT	TTAGCTGAAT	2640
	CAGGTATTGG	TGGTTTAGCG	ATGGGTCTTG	CAGTTGAAGG	ATTCCGTCCG	GTTATGGAAG	2700
	TACAATTCTT	AGGTTTCGTA	TTCGAAGTAT	TTGATGCGAT	TGCTGGACAA	ATTGCACGTA	2760
50	CTCGTTTCCG	TTCAGGCGGT	ACTAAAACTG	CACCTGTAAC	AATTCGTAGC	CCATTTGGTG	2820
	CTCCCCTACA	CACACCACAA	דידא כא כככרארי	8 TO 8 COTT 8 C 8	ACCES DEDUCES	CCMC> > MCMC	200

	CTATTAGAAG	TAATGACCCA	GTCGTATACT	TAGAGCATAT	GAAATTGTAT	CGTTCATTCC	3000
	GTGAAGAAGT	ACCTGAAGAA	GAATATACAA	TTGACATTGG	TAAGGCTAAT	GTGAAAAAG	3060
5	AAGGTAATGA	CATTTCAATC	ATCACATACG	GTGCAATGGT	TCAAGAATCA	ATGAAAGCTG	3120
	CAGAAGAACT	TGAAAAAGAT	GGTTATTCTG	TTGAAGTAAT	TGACTTACGT	ACTGTTCAAC	3180
	CAATCGATGT	TGACACAATT	GTAGCTTCAG	TTGAAAAAAC	TGGTCGTGCA	GTTGTAGTTC	3240
10	AAGAAGCACA	ACGTCAAGCT	GGTGTTGGTG	CAGCAGTTGT	AGCTGAATTA	AGTGAACGTG	3300
	CAATCCTTTC	ATTAGAAGCA	CCTATTGGAA	GAGTTGCAGC	AGCAGATACA	ATTTATCCAT	3360
15	TCACTCAAGC	TGAAAATGTT	TGGTTACCAA	ACAAAAATGA	CATCATCGAA	AAAGCAAAAG	3420
,	AAACTTTAGA	ATTTTAATAC	ATTTTAAAAG	TTAACGAAGT	TAGCGTATTT	TAGTCTCATT	3480
	GATTAAAATG	AAATGTTTAA	TTTACGAAAT	CTTAGGAGGG	CAAAAACGTG	GCATTTGAAT	3540
20	TTAGATTACC	CGATATCGGG	GAAGGTATCC	ACGAAGGTGA	AATTGTAAAA	TGGTTTGTTA	3600
	AAGCTGGAGA	TACTATTGAA	GAAGACGATG	TTTTAGCTGA	GGTACAAAAC	GATAAATCAG	3660
	TAGTAGAAAT	CCCATCACCA	GCATCTGGTA	CTGTAGAAGA	AGTTATGGTA	GAAGAAGGTA	3720
25	CAGTAGCTGT	AGTTGGTGAC	GTTATTGTTA	AAATCGATGC	ACCTGATGCA	GAAGATATGC	3780
	AATTTAAAGG	TCATGATGAT	GATTCATCAT	CTAAAGAAGA	ACCTGCGAAA	GAGGAAGCGC	3840
•	CAgcAGaGCA	AGCACCTGTA	GCTACTCAAA	CTGAAGAAGT	AGATGAAAAC	AGAACTGTTA	3900
30	AAGCAATGCC	TTCAGTACGT	AAATACGCAC	GTGAAAAAGG	TGTTAACATT	AAAGCAGTTT	3960
	CTGGATCTGG	TAAAAATGGT	CGTATTACAA	AAGAAGATGT	AGATGCATAC	TTAAATGGTG	4020
25	GTGCACCAAC	AGCTTCAAAT	GAATCAGCTG	CTTCAGCTAC	AAGTGAAGAA	GTTGCTGAAA	4080
35	CTCCTGCAGC	ACCTGCAGCA	GTAACATTAG	AAGGCGACTT	CCCAGAAACA	ACTGAAAAA	4140
	TCCCTGCTAT	GCGTAGAGCA	ATTGCGAAAG	CAATGGTTAA	CTCTAAGCAT	ACTGCACCTC	4200
10	ATGTAACATT	aatggatgaa	ATTGATGTTC	AAGCATTATG	GGATCACCGT	AAGAAATTTA	4260
	AAGAAATCGC	AGCTGAACAA	GGTACTAAGT	TAACATTCTT	ACCTTATGTT	GTTAAAGCAC	4320
	TTGTTTCTGC	attgaaaaaa	TACCCAGCAC	TTAACACTTC	ATTCAATGAA	GAAGCTGGTG	4380
1 5	AAATCGTTCA	TAAACATTAC	TGGAATATCG	GTATTGCAGC	AGACACTGAT	AGAGGATTAT	4440
٠	TAGTACCTGT	TGTTAAACAT	GCTGATCGTA	AGTCTATTTT	CCAAATTTCA	GATGAAATTA	4500
	ATGAATTAGC	TGTTAAAGCA	CGTGATGGTA	AATTAACAGC	CGATGAAATG	AAAGGTGCTA	4560
50	CATGCACAAT	CAGTAATATC	GGTTCAGCTG	GTGGACAATG	GTTCACTCCA	GTTATCAATC	4620
	ACCCAGAAGT	AGCAATCTTA	GGAATTGGCC	GTATTGCTCA	AAAACCTATC	GTTAAAGATG	4680

	AIGGIGCAAC	TGGCCAAAAT	GCAATGAATC	ACATTAAACG	TITATTAAAT	AATCCAGAAT	480
	TATTATTAAT	GGAGGGGTAA	AACATGGTAG	TTGGAGATTT	CCCAATTGAA	ACAGATACTA	486
5	TAGTAATCGG	AGCAGGTCCT	GGTGGATACG	TTGCAGCAAT	TCGTGCAGCT	CAATTAGGAC	492
	AAAAAGTAAC	AATCGTTGAG	AAAGGTAATC	TTGGTGGTGT	TTGCTTAAAC	GTAGGATGTA	4986
10	TTCCTTCAAA	AGCATTACTA	CATGCTTCTC	ACCGTTTTGT	TGAAGCACAA	CATTCTGAAA	504
70	ACTTAGGTGT	TATTGCTGAA	AGTGTTTCTT	TAAACTTCCA	AAAAGTTCAA	GAATTCAAAT	510
	CATCAGTTGT	TAATAAATTA	ACTGGTGGTG	TTGAAAGCTT	ACTTAAAGGT	AACAAAGTTA	516
15	ACATCGTTAA	AGGTGAAGCA	TATTTCGTAG	ATAACAATAG	CTTACGTGTT	ATGGACGAAA	5220
	AGAGCGCACA	AACATACAAC	TTTAAAAATG	CAATCATTGC	AACAGGTTCA	AGACCAATTG	5280
	AAATTCCTAA	TTTCAAATTC	GGTAAACGTG	TTATCGACTC	AACAGGTGCT	TTAAACTTAC	5340
20	AAGAAGTACC	aGGTAAATTA	GTTGTAGTTG	GTGGAGGATA	CATTGGATCA	GAATTAGGTA	5400
	CAGCATTTGC	TAACTTTGGT	TCAGAAGTAA	CCATCCTTGA	AGGTGCTAAA	GATATCTTAG	5460
	GTGGCTTCGA	AAAACAAATG	ACACAACCTG	TTAAAAAAGG	TATGAAAGAA	AAAGGTGTTG	5520
25	AAATCGTTAC	TGAAGCTATG	GCTAAATCAG	CTGAAGAAAC	AGATAACGGA	GTTAAAGTTA	5580
	CTTATGAAGC	TAAAGGCGAA	GAGAAAACAA	TCGAAGCTGA	TTATGTATTA	GTAACTGTAG	5640
	GTCGTCGTCC	AAACACAGAC	GAATTAGGCC	TAGAAGAATT	AGGTGTTAAA	TTCGCTGACC	570
30	GTGGATTATT	AGÄAGTTGAT	AAACAAAGCC	GTACGTCTAT	CAGCAATATC	TATGCAATTG	576
	GTGATATCGT	TCCAGGTTTA	CCACTTGCTC	ACAAAGCTAG	CTATGAAGCT	AAAGTTGCTG	5820
35	CTGAAGCAAT	TGATGGTCAA	GCTGCTGAAG	TTGATTACAT	TGGTATGCCA	GCAGTATGCT	5886
,	TTACTGAACC	AGAATTAGCT	ACAGTTGGTT	ATTCAGAAGC	GCAAGCTAAA	GAAGAAGGTT	594
	TAGCAATTAA	AGCTTCTAAA	TTCCCATATG	CAGCAAATGG	TCGTGCATTA	TCATTAGATG	6000
40	ATACTAACGG	ATTTGTTAAA	CTTATTACAC	TTAAAGAAGA	TGATACTTTA	ATCGGTGCTC	606
	AAGTAGTTGG	TACTGGTGCA	TCAGATATTA	TCTCTGAATT	AGGTTTAGCA	ATTGAAGCTG	6120
	GTATGAATGC	TGAAGATATC	GCATTAACAA	TCCATGCACA	TCCAACATTA	GGTGAGATGA	6180
45	CTATGGAAGC	AGCAGAAAAA	GCTATCGGAT	ACCCAATCCA	TACAATGTAA	TAACTGATTA	624
	TCTATAAAGA	TTCAGTCATT	AAAAGCTGTA	GCATATGCTA	CGGCTTTTTT	GTTTTAGGTA	630
	AAGTAATGTA	AGGAAATTGA	TTTGAGATAT	CGTTAACATG	TGACATGCAT	GTTATACTAG	636
50	CGATGCTAAT	AAAAGAATTG	AAATGGAGGG	TTCAACAATG	GAATATGAGT	ATCCAATTGA	642
	TTT A C A CTC C	3003300330	NONTONTON	200020222	THE CHAPTER STO	A TOTAL CA CA A	C40

	AATTGTGCCT	GCTAAAGCAG	AGGAAAAACA	AATTTTTAAT	ACTTTCGAAA	AAAGTAGTGG	6600
	CTATAATAGT	TACAAAGCAG	TTCAAGATGT	AAAAACTCAC	TCTGAAGAAC	AAAGAGTAAC	6660
5	AGCTAAAnAA	TAATTCGTTC	GAAATTAACA	CAATTTAATA	GGAATTTTTC	TTTAAAACTA	6720
	TTGCTAATAA	AGCTATATTT	TGATACCTTT	ATCAAGTGTT	AAACAAAATG	TTTGATAAAA	6780
	GTAAACTTAA	TATAGCTTTT	TTAGGTGGAA	AAATAAATGA	ACATAGGTAA	TAAAATTAAA	6840
10	AATCTTAGAA	GAATTAAAAA	TTTAACGCAA	GAAGAACTTG	CTGAACGTAC	AGACTTATCG	6900
	AAAGGCTACA	TTTCACAAAT	AGAAAGTGAA	CATGCCTCAC	CAAGTATGGA	AACTTTCTTA	6960
15	AATATTATAG	AGGTGTTAGG	AACGACGCCA	AGTGAATTTT	TTAAAGACAG	TGAAAATGAA	7020
	AAAGTATTAT	ACAAGAAGGA	AGAACAAGTT	ATTTATGATG	AGTATGATGA	AGGTTATATA	7080
	TTAAATTGGT	TAGTTTCAAA	GTCAAATGAA	TATGATATGG	AGCCATTAAT	ATTAACTTTA	7140
20	AAGCCTGGAG	CATCATATAA	AAATTTTAAT	CCATCAGÁGT	CTGATACGTT	TATTTATTGT	7200
•	ATGTCAGGTC	AGATAACACT	TAATTTAGGC	AAAGAGATAT	ATCAAGCACA	AGAAGAAGAC	7260
	GTTTTGTATT	TTAAAGCACG	AGATAATCAT	CGTTTGTCAA	ACGAATCAAA	CAATGAAACA	7320
25	CGAATACTTA	TTGTAGCGAC	AGCTTCATAT	TTATAGGGGG	GATCTTATTT	GGAACCGTTA	7380
	TTATCATTAA	AATCAGTTAG	TAAAAGCTAT	GATGATCTTA	ATATCTTAGA	TGACATAGAT	7440
	ATTGATATTG	AATCAGGATA	CTTTTATACA	TTATTAGGTC	CTTCAGGTTG	TGGTAAAACA	7500
30	ACAATTTTAA	AATTAATTGC	AGGGTTTGAA	TATCCTGACA	GTGGTGAAGT	GATTTATCAA	7560
	AACAAACCAA	TTGGTAATTT	ACCACCAAAT	AAACGTAAAG	TGAATACAGT	CTTTCAAGAT	7620
35	TATGCATTAT	TTCCACACTT	AAACGTCTAT	GATAATATCG	CTTTTGGTTT	GAAATTAAAA	7680
33	AAATTATCAA	AAACCGAAAT	TGATCAAAAA	GTAACTGAGG	CATTAAAATT	AGTAAAACTT	7740
•	TCAGGTTATG	AAAAAAGAAA	TATTAATGAA	ATGAGTGGCG	GACAAAAGCA	ACGTGTTGCA	7800
40	ATTGCACGTG	CTATCGTAAA	TGAACCAGAA	ATATTATTGT	TAGATGAATC	TTTATCCGCA	7860
	TTAGATTTGA	AATTGCGTAC	TGAAATGCAA	TATGAATTAC	GAGAATTGCa	ATCTAGATTA	7920
	GGtATTACAT	TTATATTTGT	aACACATGAT	CCA			7953

(2) INFORMATION FOR SEQ ID NO: 153:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2347 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

45

	GGCGTGATCA	TACGACCGTC	ATTCATGCTC	ATGAAAAAAT	ATCTAAAGAT	TTAAAAGAAG	60
	ATCCTATTTT	TAAACAAGAA	GTAGAGAATC	TTGAAAAAGA	AATAAGAAAT	GTATAAGTAG	120
5	GAAACTTTGG	GAAATGTAAT	CTGTTATATA	ACAGCACTAA	TGATNACAAT	CATTTTTTAC	180
	ATTTCTATAT	GCTAATGTGG	CAAGATGAGC	AAAACTCATT	TTGTGGATaA	TGTTTaAAAG	240
	TCATACACAC	CATACACAAG	TTATCAACAT	GTGTATAAyT	CGCCAAATCT	ATGTTTTTAA	300
10	GACTTATCCA	CCAATCCACA	GCACCTACTA	CTATTACTAA	GAACTTAAAA	CCTATATAAT	360
	AAATATATA	CGACTGGAAG	GAGTTTTAAT	TAATGATGGA	ATTCACTATT	AAAAGAGATT	420
15	ATTTTATTAC	ACAATTaAAT	GACACATTAA	AAGCTATTTC	ACCAAGaACA	ACATTACCTA	480
	TATTAACTGG	TATCAAAATC	GATGCGAAAG	AACATGAAGT	TATATTAACT	GGTTCAGACT	540
	CTGAAATTTC	AATAGAAATC	ACTATTCCTA	AAACTGTAGA	TGGCGAAGAT	ATTGTCAATA	600
20	TTTCAGAAAC	AGGCTCAGTA	GTACTTCCTG	GACGATTCTT	TGTTGATATT	TAAAAAATA	660
	TACCTGGTAA	AGATGTTAAA	TTATCTACAA	ATGAACAATT	CCAGACATTA	ATTACATCAG	720
	GTCATTCTGA	ATTTAATTTA	AGTGGCTTAG	ATCCAGATCA	ATATCCTTTA	TTACCTCAAG	780
?5	TTTCTAGAGA	TGACGCAATT	CAATTGTCGG	TAAAAGTGCT	TAAAAACGTG	ATTGCACAAA	840
	CAAATTTTGC	AGTGTCCAcC	TCAGAAACAC	GCCCAGTACT	AACTGGTGTG	AACTGGCTTA	900
	TACAAGAAAA	TGAATTAATA	TGCACAGCGA	CTGACTCACA	CCGCTTGGCT	GTAAGAAAGT	960
30	TGCAGTTAGA	AGATGTTTCT	GAAAACAAAA	ATGTCATCAT	TCCAGGTAAG	GCTTTAGCTG	1020
	AATTAAATAA	AATTATGTCT	GACAATGAAG	AAGACATTGA	TATCTTCTTT	GCTTCAAACC	1080
	AAGTTTTATT	TAAAGTTGGA	AATGTGAACT	TTATTTCTCG	ATTATTAGAA	GGACATTATC	1140
35	CTGATACAAC	ACGTTTATTC	CCTGAAAACT	ATGAAATTAA	ATTAAGTATA	GACAATGGGG	1200
	AGTŢTTATCA	TGCGATTGAT	CGTGCCTCTT	TATTAGCGCG	TGAAGGTGGT	AATAACGTTA	1260
10	TTAAATTAAG	TACAGGTGAT	GACGTTGTTG	AATTGTCTTC	TACATCACCA	GAAATTGGTA	1320
	CTGTAAAAGA	AGAAGTTGAT	GCAAACGATG	TTGAAGGTGG	TAGCCTGAAA	ATTTCATTCA	1380
	ACTCTAAATA	TATGATGGAT	GCTTTAAAAG	CAATCGATAA	TGATGAGGTT	GAAGTTGAAT	1440
15	TCTTCGGTAC	AATGAAACCA	TTTATTCTAA	AACCAAAAGG	TGACGACTCG	GTAACGCAAT	150
	TAATTTTACC	AATCAGAACT	TACTAAAAAT	AAATATAAAT	AAAGGATGAC	GTGATTAATT	,156
	AAAACGTCAT	CCTTTATTTT	TTGGCAAAAA	TAATTCTAGG	TGCGTATGTA	TTTAAATAAA	162
50	GGCAGCATTT	TAAACAGCAA	ATAAAAGACG	CCAATTAAAT	TTATGACAAA	TGTATCCAAA	168
			mccccmmn	3 mmm 3 3 3 mm	****************	3 T 3 3 C 3 3 C TT	274

	AAAAATAAGA	ATTAATTATT	TATATGTAAA	CGGTTTCTAC	CTCTATTTTA	AATGAAATTT	1860
	GTGACAAAAA	AAGGTATAAT	ATATTAATGA	CATACAAAGA	AATGGAGTGA	TTATTTTGGT	1920
5	TCAAGAAGTT	GTAGTAGAAG	GAGACATTAA	TTTAGGTCAA	TTTCTAAAAA	CAGAAGGGAT	1980
	TATTGAATCT	GGTGGTCAAG	CAAAATGGTT	CTTGCAAGAC	GTTGAAGTAT	TAATTAATGG	2040
10	AGTGCGTGAA	ACACGTCGCG	GTAAAAAGTT	AGAACATCAA	GATCGTATAG	ATATCCCAGA	2100
10	ATTACCTGAA	GATGCTGGTT	CTTTCTTAAT	CATTCATCAA	GGTGAACAAT	GAAGTTAAAT	2160
	ACACTCCAAT	TAGAAAATTA	TCGTAACTAT	GATGAGGTTA	CGTTGAAATG	TCATCCTGAC	2220
15	GTGAATATCC	TCATTGGAGA	AAATGCACAA	GGGAAAGACA	AATTTACTTG	GAATCAATTT	2280
	ATACCTTAGC	TTTAGCAAAA	AGTCATAGAA	CGAGTAATGG	ATAAGGGACT	CCATACCGTT	2340
	TTAATGC						2347
20	(2) INFORM	ATION FOR SI	EQ ID NO: 15	54:			
				· ·			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13542 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

ACAAGACGTn	TCTATAACTT	ATCTGAAATC	GCTCGTCAAG	ATAAAGATTA	TGCAACTATC	60
TCATTCTTAA	ACTGGTTCTT	AGATGAACAA	GTCGAAGAAG	AATCAATGTT	TGAAACTCAC	120
ATCAATTATT	TAACTCGTAT	CGGCGATGAC	AGCAATGCAT	TATATCTTTA	CGAAAAAGAA	180
CTTGGCGCTC	GTACATTCGA	CGAAGAATAA	TTAAACATCA	CTACAATAGA	CAGATAAATA	240
TCATACGACA	TGATAGGCAT	TTGGGTCACT	TACAATAACC	CAATGTCTAT	ATTATTTTGC	300
TTTACGGAGA	TCACTAGATT	CATTTTCTGA	ATCATTGATC	TGCGTTTTTT	CATTTTCAAG	360
GCTAATTATT	GTATTTTTAG	TCATTTATTT	TTTAAACTAC	TAATGTTAAT	AACTCTAAAT	420
TTGATGTTGA	ATTAATTTGA	CGATTTTAAA	GCATATCATC	ATTTACTTTT	TAATCAGAGT	480
TACATCCAAA	TGATAGATTT	CACGTTATAC	CTTCACGTAT	AATATTATGT	ATCGTTTGTA	540
AGCAAATGAC	TAAAAGTCTA	TTAATATATA	CATTTAATTA	ATTGAAAGGA	TTGACTACAT	600
GATACAAGAT	GCGTTTGTTG	CACTTGATTT	TGAAACAGCA	AATGGTAAAC	GTACAAGTAT	660
TTGTTCTGTC	GGAATGGTTA	AAGTCATTGA	TAGTCAAATA	ACAGAAACAT	TTCATACTCT	720
TGTGAATCCG	САВСВСТАТТ	מסממסמשדים	מממידימימממ	АТТСАТСССА	TACAACCAGA	780

	aGATTTACCT	GTTGTCGCAC	ATAACGCGGC	ATTTGATATG	AACGTCTTAC	ATCAAAGCAT	90
	TCAAAATATT	GGTTTACCAA	CTCCAAATTT	AACTTACTTT	TGTAGTTATC	AACTTGCTAA	96
5	AAGAACCGTT	GATTCGTATC	GATACGGTTT	AAAACATATG	ATGGAGTTTT	ATCAATTAGA	102
	TTTTCATGGT	CATCATGATG	CATTGAATGA	TGCCAAAGCA	TGCGCAATGA	TTACTTTTAG	108
	GCTACTGAAA	AATTATGAAA	ATTTAACATA	TGTAACTAAT	ATTTATGGTA	ААААТСТААА	114
10	AGATAAAGGC	TAGGACTAAA	TAAAATACTC	CCTTCAAAAG	TAAGCATTGT	AAAAATGTAA	120
	ACTTTGCAGG	GAGCTTTATT	TTATATAAAG	TCATATATCG	TCATATTTTT	ATAAGTTGAT	126
15	TGTTCTAAAT	TACCTACAGT	GACACCAATA	AGTCGAATTG	GTACATCAGG	GTCTTTTAAA	132
	TCGTTATAAA	GTAAATATGC	AATATTATAA	ATATCTTCTT	CAGAACTAAC	CGAATCTCTT	138
	AAACTCATCT	GTTTAGATAG	CGTTTCAAAT	TGATAAGTTT	TAATTTTAAC	CGTTACAGTT	144
20	TTAGCTGACT	TCTGTAATTT	ATTTAGACGT	TCAGCTGTTT	TACCTGNACA	ATTCCCATAC	150
	TTTTCTTAAA	ATCTCTTCAT	CATCATTCAC	GTCTGTTGCA	AATGTGCGTT	CAGTCCCTAC	156
	TGATTTTCTT	ACTCTTGATG	ATTTCACTTC	ACTATGGTCA	ATACCGCGTG	CCTTGTTATA	162
25	TAAACCCCGA	CCTCTTTTTC	CAAACAAACG	TATTAATTCA	AATTCCGTTT	TCTCATATAA	168
	ATCTCTACCG	TTAAAAATAC	CATTATCATG	CATTACTTTT	TTGGAAGCTT	TACCTACGCC	174
	TGGaAAATCT	CCAATATCCA	ATGTCATCAA	AATATCATGG	aCATTTTGAT	AATCAATCAC	180
30	AGTCATACCA	TCAGGTTTAT	TCATACCACT	CGCTAATTTA	GCTAAAAATT	TGTTATAAGA	1860
	AACACCTGCA	GATGCTGTTA	AATGTGTCTG	CTCTAGAATA	TCTTTTCTAA	TATACTGAGC	1920
05	AATTTTCGAA	GCAGGAAGGT	CTGGTCTCAC	TAATTCTGTA	ATATCTAAAT	ACGCTTCATC	1980
35	CAATGACATC	GGTTCTACCT	TATCTGTATA	ACTTCGGAAA	ATAGACATAA	TCTGCGCAGA	2040
	TGTTTCTCGG	TAAGCACCAA	AATTACTTGT	GACAAAGTAT	CCATTTGGAÇ	ATAATTTATG	2100
40	CGCTTGTGAC	ATAGGCATTG	CTGAATGGAC	GCCGTATTTT	CGTGCTTCAT	AGGATGCCGT	2160
	AGAGACAACA	CCCCTACTGC	TTGCTTTACC	ACCAACAATG	ACTGGTTTCC	CTTTCAATTT	2220
	GGGGTTATCT	CTCATTTCGA	CTTGTGCAAA	AAAATAGTCC	ATATCTATAT	GAATAATTCG	2280
45	TCTCTCAGTC	AAGTGCTCAC	CTCCCTACTA	ATTTTTACTT	TTATAACGCA	CAAAAATATC	2340
	TCAACATAAT	TATACGCTGT	GTACGATTTT	TTTACATAAA	TCTTGCACTT	AGCGATAACT	2400
	ATATTGaGAT	AACTACAAGT	TGTTATAAAA	TCAATTGCTA	TTTAAGCATG	ATGATGAAGA	2460
50	CGATTGAGTA	AGAAAACATA	GGTAATCTGA	AATAATTCAA	GCAAATTCAT	TTTGTTGGTA	2520
	でこれでこれでれてい	7 7 7 7 mmm 7 7 mm	3 TTC 3 CTCCC	CONTRACTOR A CONTRACTOR	ጥእ	TO COURT THE COURT	250/

	AAAGCAATAA	GCGGTATGCA	TACTAAACAT	AAAAATAAGT	GATGAATAAC	CAAATACCTT	270
	AATTAAAATA	AGCAAGCCAG	TACTTAATAG	GATTAGTGGT	GACAGCATAA	TAATTGAGAA	276
5	TTGCCATTTG	TTGAAGCAAG	CATCTGCTGT	TTGGAATAAG	ATTCTGTCTT	TTTTTATATT	282
-	AAACATAGGT	TTGCTATCTT	TTTTAAATAA	AAGAAATAAT	GCTCTATGGA	TAAGTTCATG	288
	TAAAATCAAT	AAAATAATGA	ATCCAGCAAA	CCCATATACA	AGATTGATGA	TGATATTTTG	294
10	ATCGACAACC	GCTGTGACAC	CTAACGCCCA	CTTATACGTA	AATAAAATCA	CGAATAACGC	300
	AATAACAAGT	TGCAAGATAA	TAAACCTTCG	CATTTGAAAA	TTATTTGTCG	TTAAATCAAT	306
15	TTTATGCATT	ACCAACCCTC	CCGATCATGA	CATTCTTATT	CTTCTTTAAA	TATAGTATAC	312
	AATGTCACAT	TTAATTTAAA	AAGTTCATAT	CAAGAAAGTA	AATTGGCTGT	AATAAAATTT	318
	TAATATACGA	CTTCTTTCTT	CACTTATTAA	GGCGAAATTT	TATCECAAAT	CATGTGCGCT	324
20	ATTTCAAATT	GAATAATGCC	ACTGTCTCAA	CATGTGTTGT	TTGTGGAAAC	ATATCTACCG	330
	GTGTTACCTC	TTCAAGTTGA	TATTTTTCAG	СТААТААТАА	TGCATCACGT	TGCTGTGTTG	336
	CGGGATTACA	TGAAATATAG	ACAATACGCT	TAGGTTCTAA	TGTAAGCAAA	GTCTGAATAA	342
?5	ACGTTTCGTC	ACAGCCCTTT	CTTGGCGGAT	CAACCATTAC	AACATCTGGT	TTAATCCCTT	348
	GTGCTTTCCA	TTGTAAAATA	ACTTCTTCAG	CTTTCCCACA	GACAAAAGTT	GTATTATTGC	354
	ATTGGTTTAT	AGTCGCATTT	TGTTGTGCGT	CTTCAATTGC	AGAAGGTACT	ACTTCAACAC	360
30	CGTATACATG	TTTTGCAAGT	GGTGCCATAT	ATAGCCCTAT	TGTTCCAATA	CCACAATAGG	366
	TATCTAATAC	AACTTCATTA	CCTGTCAATT	GCGCATACTC	AATTGCTTTA	TTATATATT	372
35	TCTCTGTTTG	TTCAGAATTA	ATTTGGTAGA	ATGACTGATC	ACTTATTTTA	AATGTACTAT	378
	CTGTTAATTG	ATCAATAATT	GTATCTTTAC	CATATAGCGT	TATAGATTGA	CGTCCCATAA	384
	TAAÇĀTTAGA	GTGGCTATCA	TTAATGTTTT	GTTTAATGCT	TGTCACATTA	GGAAATGCAT	390
10	CTAATATCTT	CTCAACAACA	GCATTTTTTT	GTGGCCACTT	TTTACCATTA	GTTACAAAAA	396
	TAATCATCAT	TTCGTCTGTA	TGATATCCTG	TTCTTACAAC	CAAATGTCTC	ATTAAACCTT	402
	TTTTCAATTG	TTCTTGATAA	ATACTTACAT	TTAAATCTTT	TAAAATAGAT	TTAACTTCAT	408
15	TCATCACTTC	TTGATGTTGT	GAATCTTGTA	TTAAACAACT	TTCCATGTCA	ATAATGTCAT	414
	GGCTTCTTTG	ACGATAAAAG	CCCATAATAA	CTTCATTCTG	TTCATTCTTA	CCAACTGGAA	420
	TCTGGGACTT	GTTTCGATAT	CTCCAAGGAT	CTGTCATGCC	AACTGTATCG	TTAATCTTAG	426
50	AATTATCAAA	ATGCGCTTTT	CGCTGAAACA	AATTAATCAC	TTGTTCCTTT	TTCATTTCAA	432
	Carrence	CTATCATAAC	тотто в вотт	GGCACCCACC	ACAACGTTCA	ТААТАТАТАС	438