System Setting

CLKE

I_ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value

#0 W/R "0" "0" "0" "0" "0" "0" "0" CLKE 00H

Description

The CLKE is the register bit for controlling the internal master clock gating (ENABLE/DISABLE).

To activate the clock, set the CLKE to "1" with the ALRST set to "1". See "Initialization Procedure" for details of controlling the clock.

- "0": Clock disabled (reset value)
- "1": Clock enabled

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").

ALRST

I ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value

#1 W/R ALRST "0" "0" "0" "0" "0" "0" "0" 80H

Description

The ALRST is the register used to reset all the interface register.

- "0": Out of the reset state.
- "1": Resets the interface registers. (reset value)

The following interface registers are reset:

• I_ADR#3, #5 to #28, and from #32 to #79

The following interface registers including the control registers are not reset with this register bit:

- I_ADR#0: CLKE
- I_ADR#1: ALRST (this register bit)
- I_ADR#2: AP0-3
- I_ADR#29: DRV_SEL
- I_ADR#80: COMM

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").

AP0, AP1, AP2, AP3

I ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value

#2 W/R "0" "0" "0" "0" AP3 AP2 AP1 AP0 0FH

Description

The APO-3 is the power-down control register bits in the analog block.

When setting a register bit to "1" (reset value), its power-down state is established, resulting in lower power consumption. The correspondence between each register bit and its controllable

blocks is as follows:

- AP0: VREF, IREF
- AP1: SPAMP, SPOUT1
- AP2: SPAMP, SPOUT2
- AP3: DAC

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").

GAIN

I ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value

#3 W/R "0" "0" "0" "0" "0" GAIN1 GAIN0 01H

Description

The GAIN is the register used for selecting a speaker amplifier gain as shown below:

GAIN1 GAIN0 SPAmplifier Gain

"0"	"0"	SPOUT	gain =5.0dB
"0"	"1"	SPOUT	gain =6.5dB (reset value)
"1"	"0"	SPOUT	gain =7.0dB
"1"	"1"	SPOUT	gain =7.5dB

Note) Gain values above assume no-load conditions.

With 80hm loaded, the gains become lower by about 0.2 dB (typ.).

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").
- 3. When the ALRST is set to "1".

HW_ID

I_ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value

#4 R "0" "0" "0" "0" "0" "0" "0" "1" 01H

Description

The HW_ID is the register used to hold the hardware version and read-only.

The value is "01H" (fixed).

The value can be read even if the ALRST bit is set to "1".

CONTENTS_DATA_REG

I ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value

#7 W DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 -

Description

The register is used to write contents data.

Sequencer Setting

I_ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value

#8 W/R AllKeyOff AllMute AllEGRst R_FIFOR REP_SQ R_SEQ R_FIFO START 00H

AllKeyOff

Description

The AllKeyOff is the register bit used to set the KeyOn registers of all the voices to "0".

- "0": no processing (reset value)
- "1": Sets the KeyOn registers to "0".

After setting the register bit to "1", wait for more than 6us and then return it to "0".

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").
- 3. When the ALRST is set to "1".

AllMute

Description

The AllMute is the register bit used to set the Mute registers of all the voices to "1".

- "0": no processing (reset value)
- "1": Sets the Mute registers to "1".

After setting the register bit to "1", wait for more than 6us and then return it to "0".

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").
- 3. When the ALRST is set to "1".

AllEGRst

Description

The AllEGRst is used to set the EG_RST registers of all the voices to "1".

- "0": no processing (reset value)
- "1": Sets the EG_RST registers to "1".

After setting the register bit to "1", wait for more than 6us and then return it to "0".

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").
- 3. When the ALRST is set to "1".

SEQ_Vol

I_ADR	R W/R	D7	D6	D5	D4	D3	D2	D1	D0	Reset Value
#9	W/R SE	Q_Vol4 S	EQ_Vol3 S	EQ_Vol2	SEQ_Vol1	SEQ_Vol0	DIR_SV	"0"	SIZE8	00H
#10	W/R SI	ZE7 S	IZE6 S	SIZE5	SIZE4	SIZE3	SIZE2	SIZE1	SIZE0	00H

Description

The SEQ_Vol is the volume setting register of the sequencer volume.

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").
- 3. When the ALRST is set to "1".

Value(HEX) Volume[dB]

_	-	
00H	mute	
01H	-47.9	
02H	-42.6	
03H	-37.2	
04H	-33.1	
05H	-29.8	
06H	-27.0	
07H	-24.6	
08H	-22.4	
09H	-20.6	
0AH	-18.9	
0BH	-17.3	
0CH	-15.9	
0DH	-14.6	
0EH	-13.4	
0FH	-12.2	

10H	-11.1
11H	-10.1
12H	-9.2
13H	-8.3
14H	-7.4
15H	-6.6
16H	-5.8
17H	-5.1
18H	-4.4
19H	-3.6
1AH	-3.0
1BH	-2.3
1CH	-1.7
1DH	-1.1
1EH	-0.6
1FH	0.0

DIR_SV

Description

The DIR_SV register bit controls whether to apply the interpolation to the SEQ_Vol and the ChVol0-15. When the register bit is set to "1", the interpolation is not applied to the SEQ_Vol and the ChVol0-15 regardless of the settings of the DIR_CV0?15 and the CHVOL_ITIME.

When it is set to "0" (reset value), the interpolation is dependent on the DIR_CV0?15 and CHVOL_ITIME settings.

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N= "L").
- 3. When the ALRST is set to "1".

SIZE

Description

The SIZE is the register used to set the size of sequence data in bytes.

Synthesizer Setting

CRGD_VNO

I_ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value#11 W/R "0" "0" "0" "0" CRGD_VNO3 CRGD_VNO2 CRGD_VNO1 CRGD_VNO0 00H

Description

The CRGD_VNO is used to specify a tone number.

Reset Conditions

- 1. When the power supplies are turned on (power-on reset).
- 2. When the hardware reset is applied (RST_N="L").
- 3. When the ALRST is set to "1".

Control Register Write Registers

I_ADR	W/R	D7	D6	D5	D4	D3	D2	D1	D0
#12	W	"0"	VoVoI4	VoVoI3	VoVoI2	VoVol1	VoVoI0	"0"	"0"
#13	W	"0"	"0"	FNUM9	FNUM8	FNUM7	BLOCK2	BLOCK1	BLOCK0
#14	W	"0"	FNUM6	FNUM5	FNUM4	FNUM3	FNUM2	FNUM1	FNUM0
#15	W	"0"	KeyOn	Mute	EG_RST	ToneNum3	ToneNum2	ToneNum1	ToneNum0
#16	W	"0"	ChVol4	ChVol3	ChVol2	ChVol1	ChVol0	"0"	DIR_CV
#17	W	"0"	"0"	"0"	"0"	"0"	XVB2	XVB1	XVB0
#18	W	"0"	"0"	"0"	INT1	INT0	FRAC8	FRAC7	FRAC6
#19	W	"0"	FRAC5	FRAC4	FRAC3	FRAC2	FRAC1	FRAC0	"0"
#20	W	"0"	"0"	"0"	"0"	"0"	"0"	"0"	DIR_MT

VoVol

Description

The VoVol is the volume setting registers for each voice number.

The relationship between setting values and volume gain values is the same as that of ChVol and SEQ_Vol.

The interpolation function is not provided for these volume setting registers.

Reset Value

• 00H (Mute)

FNUM, BLOCK

Description

- BLOCK: Specifies an octave.
- FNUM: Sets the frequency information for one octave.

They are set for each voice.

Reset Value

FNUM: 000HBLOCK: 00H

Pitch Table

Note Frequency BLOCK FNUM

C2 130.8 3 357

C#2	138.6	3	378
D2	146.8	3	401
D#2	155.6	3	425
E2	164.8	3	450
F2	174.6	3	477
F#2	185	3	505
G2	196	3	535
G#2	207.7	3	567
A2	220	3	601
A#2	233.1	3	637
B2	246.9	3	674
C3	261.6	4	357
C#3	277.2	4	378
D3	293.7	4	401
D#3	311.1	4	425
E3	329.6	4	450
F3	349.2	4	477
F#3	370	4	505
G3	392	4	535
G#3	415.3	4	567
А3	440	4	601
A#3	466.2	4	637
В3	493.9	4	674
C4	523.3	5	357

ToneNum

Description

The ToneNum is used to select a tone parameter to use. This register is provided for each voice.

Reset Value

• 00H

KeyOn

Description

The KeyOn is used to control the sound generation.

• "0": KeyOff (reset value)

• "1": KeyOn

This register is provided for each voice.

Mute

Description

The Mute is the mute control register.

This register is provided for each voice.

- "0: Cancels the mute (reset value)
- "1": Shifts to the mute state.

The volume of a voice with the Mute set to "1" shifts to a mute state according to the DIR_MT(I_ADR#20) and the MUTE_ITIME(I_ADR#27) settings; however, when the mute is cancelled, the interpolation is not performed regardless of these settings.

EG RST

Description

A voice with the EG_RST set to "1" shifts to a mute state immediately regardless of the DIR_MT and MUTE_ITIME settings.

This register is provided for each voice.

Reset Value is "0".

ChVol

Description

This volume setting register is provided for each voice.

The interpolation function is provided for this volume setting register.

The relationship between setting values and volume gain values is the same as that of VoVol and SEQ_Vol.

Reset Value is "18H" (-4.4 dB)

DIR CV

Description

The DIR_CV controls the interpolation of the SEQ_Vol and ChVol.

This register is provided for each voice.

DIR_CV="1":

No interpolation in the SEQ_Vol and the ChVol# regardless of the DIR_SV and CHVOL_ITIME settings.

DIR_CV# = "0" (reset value):

The interpolation depends on the DIR_SV and CHVOL_ITIME settings.

XVB

Description

The XVB is used to set a vibrato modulation.

This register is provided for each voice.

A setting value relatively acts on a DVB setting value of the voice parameter, as shown below.

When the calculation (add) result exceeds "3", "3"is used for the processing.

- "0": OFF (reset value)
- "1": 1 x (DVB value is used as is.)
- "2": 2 x (DVB += 1)
- "3": 2 x (DVB += 1)
- "4": 4 x (DVB += 2)
- "5": 4 x (DVB += 2)
- "6": 8 x (DVB += 3)
- "7": 8 x (DVB += 3)

INT, FRAC

Description

These registers specify a multiplier to the generated audio frequency. This number and frequency are proportional.

The INT is an integer part and FRAC is a fraction part.

These registers are provided for each voice.

Reset Value

INT: "01H"FRAC: "000H"

DIR MT

The DIR_MT is used to control the interpolation in a mute state. This register bit works for all the 16 voices.

- "0": Enables the interpolation. (reset value)
- "1": Disables the interpolation.

When this register bit is set to "0", the MUTE_ITIME (I_ADR#27) setting becomes valid; however, the interpolation is not performed when the mute is cancelled regardless of this register and MUTE_ITIME setting.

Volume Settings

MASTER_VOL

I_ADR W/R D7 D6 D5 D4 D3 D2 D

#25 W/R MASTER_VOL5 MASTER_VOL4 MASTER_VOL3 MASTER_VOL2 MASTER_VOL1 MASTER_VOL0 "(

Description

The MASTER_VOL is used to control the master volume level. The interpolation function is available.

DEC HEX Volume Level[dB]

- 0 00H muted
- 1 01H -50
- 2 02H -49

- 3 03H -48
- 4 04H -47
- 5 05H -46
- 6 06H -45
- 7 07H -44
- 8 08H -43
- 9 09H -42
- 10 0AH -41
- 11 0BH -40
- 12 OCH -39
- 13 0DH -38
- 14 0EH -37
- 15 0FH -36
- 16 10H -35
- 17 11H -34
- 18 12H -33
- 19 13H -32
- 20 14H -31
- 21 15H -30
- 22 16H -29
- 23 17H -28
- 24 18H -27
- 25 19H -26
- 26 1AH -25
- 27 1BH -24
- 28 1CH -23
- 29 1DH -22
- 30 1EH -21
- 31 1FH -20
- 32 20H -19
- 33 21H -18
- 34 22H -17
- 35 23H -16
- 36 24H -15
- 37 25H -14
- 20 2011 42
- 38 26H -13
- 39 27H -12
- 40 28H -11 41 29H -10
- 42 2AH -9
- 43 2BH -8
- 44 2CH -7
- 45 2DH-6
- 46 2EH -5
- 47 2FH -4

- 48 30H -3
- 49 31H -2
- 40 32H -1
- 51 33H 0
- 52 34H +1
- 53 35H +2
- 54 36H +3
- 55 37H +4
- 56 38H +5
- 57 39H +6
- 58 3AH +7
- 59 3BH +8
- 60 3CH +9
- 61 3DH +10
- 62 3EH +11
- 63 3FH +12

MUTE ITIME

I_ADR W/R D7 D6 D5 D4 D3 D2 D1 D

#27 W/R "0" DADJT MUTE_ITIME1 MUTE_ITIME0 CHVOL_ITIME1 CHVOL_ITIME0 MVOL_ITIME1 MVOL_

Description

The MUTE_ITIME is used to specify the volume level variation under the muted condition when the DIR_MT is "0".

- "00b": No interpolation (reset value)
- "01b": Setting prohibited
- "10b": Enables the interpolation. (in 0.3750dB steps, 128/fs (0dB <-> Mute (approx. 2.7 ms))
- "11b": Enables the interpolation. (in 0.1875dB steps, 256/fs (0dB <-> Mute (approx. 5.3 ms))

When the DIR_MT is "1", no interpolation is selected regardless of this register setting.

CHVOL_ITIME

Description

The CHVOL_ITIME is used to specify the volume level variation time of the SEQ_Vol and the ChVol0-15. This variation time becomes valid only for voices with the DIR_SV set to "0" and the DIR_CV0-15 set to "1".

- "00b": No interpolation (reset value)
- "01b": Setting prohibited
- "10b": Enables the interpolation. (approx. 0.2dB steps, 256/fs (0dB <-> Mute: approx. 5.3ms))
- "11b": Enables the interpolation. (approx. 0.05 dB steps, 1024/fs (0dB <-> Mute: approx. 21.3ms))

MVOL_ITIME

Description

The MVOL_ITIME is used to specify the master volume level variation time.

- "00b": No interpolation (The setting value in the MASTER_VOL (I_ADR#25) is immediately reflected.) (reset value)
- "01b": Enables the interpolation. (approx. 0.2 dB steps, 512/fs (+12dB <-> Mute: approx. 10.6ms))
- "10b": Enables the interpolation. (approx. 0.1 dB steps, 1024/fs (+12dB <-> Mute: approx. 21.3 ms))
- "11b": Enables the interpolation. (approx. 0.05 dB steps, 2048/fs (+12dB <-> Mute: approx. 42.6 ms))

LFO_RST

I ADR W/R D7 D6 D5 D4 D3 D2 D1 D0 Reset Value

#28 W/R "0" "0" "0" "0" "0" "0" "0" LFO RST 00H

Description

The LFO_RST is used to reset the phase of the LFO (Low Frequency Oscillator).

- "0": No processing (reset value)
- "1": Reset

Write "0" into the register bit after writing "1" to the bit.

W_CEQ0/1/2

I_ADR W/R D7-D0 Reset Value

#32 W W CEQ0 -

#33 W W_CEQ1 -

#34 W W CEQ2 -

Description

The W CEQ registers are used to set equalizer coefficients.

There are 3 bytes x 5 coefficients (CEQ#0[23:0] to CEQ#4[23:0]) for each band and they correspond to the coefficient setting registers as follows:

- W_CEQ0: Band 0 coefficients (CEQ00[23:0] to CEQ04[23:0])
- W_CEQ1: Band 1 coefficients (CEQ10[23:0] to CEQ14[23:0])
- W_CEQ2: Band 2 coefficients (CEQ20[23:0] to CEQ24[23:0])

The setting is independent one another. Write the coefficients to the registers in this order, as shown below:

No. W_CEQ0 W_CEQ1 W_CEQ2

- 1 CEQ00[23:16] CEQ10[23:16] CEQ20[23:16]
- 2 CEQ00[15:8] CEQ10[15:8] CEQ20[15:8]
- 3 CEQ00[7:0] CEQ10[7:0] CEQ20[7:0]
- 4 CEQ01[23:16] CEQ11[23:16] CEQ21[23:16]

- 5 CEQ01[15:8] CEQ11[15:8] CEQ21[15:8]
- 6 CEQ01[7:0] CEQ11[7:0] CEQ21[7:0]
- 7 CEQ02[23:16] CEQ12[23:16] CEQ22[23:16]
- 8 CEQ02[15:8] CEQ12[15:8] CEQ22[15:8]
- 9 CEQ02[7:0] CEQ12[7:0] CEQ22[7:0]
- 10 CEQ03[23:16] CEQ13[23:16] CEQ23[23:16]
- 11 CEQ03[15:8] CEQ13[15:8] CEQ23[15:8]
- 12 CEQ03[7:0] CEQ13[7:0] CEQ23[7:0]
- 13 CEQ04[23:16] CEQ14[23:16] CEQ24[23:16]
- 14 CEQ04[15:8] CEQ14[15:8] CEQ24[15:8]
- 15 CEQ04[7:0] CEQ14[7:0] CEQ24[7:0]

The 15-byte coefficient values are reflected at the moment when the 15th coefficient (CEQ#4[7:0]) is written.

Write 15 bytes of coefficients in burst mode for each band.

If the write operation is stopped in the middle (less than 15 bytes), values are not reflected. And on the contrary, if the write operation continues even after the 15th bytes, the 15-byte coefficients are overwritten when all the next 15 coefficients are written.

The coefficient data format is as follows:

Sign bit: 1 bit (CEQ##[23]), integer part: 3 bits (CEQ##[22:20]) and fraction part: 20 bits (CEQ##[19:0])

in 2'complement.

The figure bellows shows the relationship between the coefficients and the circuit configuration.

The expression below shows the transfer function H(z).

$$H(z) = \frac{CEQ * 0 + CEQ * 1 \times z^{-1} + CEQ * 2 \times z^{-2}}{1 - CEQ * 3 \times z^{-1} - CEQ * 4 \times z^{-2}}$$