1.

1	Α	excellent	45
2	В	fair	22
3	С	good	64
4	Α	excellent	28

Isolate objects 1 and 3, convert nominal to dummy and encode ordinal to integer variables fair = 1 good = 2 excellent = 3, letter splits into 3 binary variables. Set to interval such that fair = 0, good = 1/2, excellent = 1 via $\frac{r-1}{R-1}$ where R = 3, r -> $\{1, 2, 3\}$

1	[dentifier	Α	В	C	test - 2	test – 3
	1	1	0	0	3	45
	3	0	0	1	2	64

Apply Euclidean Distance Formula

$$d[i_{j}] = \frac{\sum_{f=1}^{p} \delta_{ij}^{f} d_{ij}^{f}}{\sum_{f=1}^{p} \delta_{ij}^{f}}$$

$$ln[*] := d = \frac{1 \times 1 + 1 \times 0 + 1 \times 1 + 1 \left(1 - \frac{1}{2}\right) + 1 \left(\frac{64 - 45}{64 - 22}\right)}{1 + 1 + 1 + 1 + 1} // N$$

Out[*]= 0.590476

3.

	Passed	Failed	Total
Attended	25	6	31
Skipped	8	15	23
Total	33	21	54

$$ln[\cdot] := \chi^2 = \sum_{i=1}^{n} \frac{(x_i - e_i)^2}{e_i}$$

We define the expected value for a cell to be equally distributed based on rows and columns such that cell 1,1 would be 33*31 / 54 = 18.94

$$ln[\circ] = \chi = \sqrt{\frac{\left(25 - \left(\frac{33 \times 31}{54}\right)\right)^2}{\left(\frac{33 \times 31}{54}\right)} + \frac{\left(6 - \left(\frac{21 \times 31}{54}\right)\right)^2}{\left(\frac{21 \times 31}{54}\right)} + \frac{\left(8 - \left(\frac{33 \times 23}{54}\right)\right)^2}{\left(\frac{33 \times 23}{54}\right)} + \frac{\left(15 - \left(\frac{21 \times 23}{54}\right)\right)^2}{\left(\frac{21 \times 23}{54}\right)} //N}$$

Out[0]= 3.41848

In[•]:=
$$\chi^2$$

Out[]= 11.686