SONET

CME 451

Introduction

- Synchronous optical network (SONET).
 - ANSI in 1980s
 - European and Japanese: synchronous digital hierarchy (SDH).
- Based on time-domain multiplexing (TDM)
- Specifications: bit rates, frame formats
- OAM&P: Operations, administration, maintenance and provisioning
 - Fast restoration time, within 50 ms.
- Layer 1 Networking Protocol
 - on top of Layer 0, e.g., WDM (invisible to SONET).

Introduction

FIGURE 4.1 OSI model, SONET Layers, and examples of networking equipment.

SONET Rates

- Optical or electrical line signals
 - Synchronous transport signal (STS):
 - Electrical, shorter distances over copper wires.
 - Optical carrier (OC):
 - Longer distances, optical fibers

TABLE 4.1 SONET and SDH Bandwidth Rates

Bandwidth	SONET	SDH	Optical Carrier	Number of Voice Channels
51.84 Mb/s	STS-1	_	OC-1	672
155.52 Mb/s	STS-3	STM-1	OC-3	2,016
622.08 Mb/s	STS-12	STM-4	OC-12	8,064
2.488 Gb/s	STS-48	STM-16	OC-48	32,256
9.953 Gb/s	STS-192	STM-64	OC-192	129,024
39.813 Gb/s	STS-768	STM-256	OC-768	516,096

SONET Network Architectures

- Add-drop multiplexer (ADM) as SONET workhorse
 - most versatile equipment
 - Creating SONET rings and point-to-point connections

FIGURE 4.2 SONET networking equipment.

SONET Networks

FIGURE 4.3 SONET transport network.

Add-drop multiplexer ADM

Digital Cross-connect System

FIGURE 4.4 SONET digital cross-connect connecting two ADM rings.

SONET Networks

FIGURE 4.5 Example of a SONET network.

SONET Networks

FIGURE 4.6 SONET network overview.

SONET Terminology

section << line << path

FIGURE 4.7 SONET network segment terminology.

SONET Framing

- Byte-interleaved multiplexing scheme
 - Simplifies multiplexing
 - End-to-end network management
- STS-1: building block for STS-N family
 - 51.84 Mb/s (see Table 4.1)
 - Frame length = 125 us (8000 frames per sec)
 - Visualized as row-column format
 - Transmission order: row by row, top to bottom, left to right.
 - Two main areas:
 - transport overhead: info for transporting;
 - synchronous payload: actual data.

STS-1 Frame

STS-1 = 90 Bytes x 9 = 810 Bytes = 6,480 bits 6,480 bits x 8 kHz = 51.84 Mb/s

FIGURE 4.8 STS-1 frame format.

SONET Framing

A1 & A2 for frame boundary and frame error detection

FIGURE 4.9 Finding the beginning of the SONET frame.

SONET Multiplexing

FIGURE 4.10 SONET STS multiplexing hierarchy.

SONET Multiplexing

- What to do with overhead structure in multiplexing?
 - Channelization: overhead unchanged in each stream
 - Concatenation: merging overhead structure

FIGURE 4.11 Channelization vs. concatenation.

Synchronous Payload Envelope (SPE)

- Floating structure, split between two STS-1 frames.
 - H1, H2 pointers

FIGURE 4.12 Synchronous payload envelope position in the STS-1 frame.

SPE

Synchronization problem (minor clock difference)

FIGURE 4.13 Pointer functions to accommodate clock difference between input and output.

SPE

- Floating structure and synchronization
 - H1, H2, H3 pointers
- H3:
 - Output rate > input rate: add meaningless byte
 - Output rate < input rate: discard meaningless byte

FIGURE 4.14 Finding synchronous payload envelope: H1 and H2 pointers.

Overhead and OAM&P

A1	A2	J0	J1
B1	E1	F1	В3
D1	D2	D3	C2
Н1	Н2	нз	G1
B2	K1	K2	F2
D4	D5	D6	H4
D7	D8	D9	Z3
D10	D11	D12	Z4
S1	M0/1	E2	Z 5

- A1, A2 are used to recognize frame boundary
- · J0 is section trace to verify continuity
- B1, B2 represent bit interleaved parity (BIP-8)
- D1 to D12 are used for network management
- H1, H2 are used point to the SPE beginning
- K1, K2 are used for failure messaging (APS)
- · S1, M0/1 are used for synchronization
- J1 is responsible for path tracing
- •C2 and G1 are indicating path status

FIGURE 4.15 SONET overhead information.

Overhead and OAM&P

TABLE 4.2 Section Overhead^a

Byte	Name	Function
A1/A2	Framing bytes	Used to indicate the beginning of an STS-1 frame
J0/Z0	Section trace (J0) and section growth (Z0)	Allocated to trace origins of a frame
B1	Section bit-interleaved parity code (BIP-8) byte	Used to check for transmission errors over a regenerator section
E1	Section orderwire byte	Allocated for local orderwire channel for voice communication for installation operators; not used today
F1	Section user channel byte	Set aside for purposes of network provider
D1/D2/D3	Section data communications channel bytes	Used from a central location for alarms, control, monitoring, administration, and other communication needs

[&]quot;Contains 9 bytes of the transport overhead accessed, generated, and processed by section-terminating equipment. This overhead supports functions such as performance monitoring, framing, and data communication for operation, administration, management, and provisioning.

Overhead and OAM&P

TABLE 4.3 Line Overhead^a

Byte	Name	Function
H1/H2	STS payload pointers	Allocated to a pointer that indicates an offset between the pointer and the first byte of the SPE
H3	Pointer action byte	Allocated for SPE frequency justification purposes
B2	Line bit-interleaved parity code (BIP-8) byte	Used to determine if a transmission error has occurred over a line; calculated over all bits of the line overhead
K1/K2	Automatic protection switching bytes	Used for protection signaling, detecting alarm indications, and remote defect indication signals
D4-D12	Line data communications channel bytes	Used for OAM&P information (alarms, control, maintenance, remote provisioning, monitoring, and administration)
S1	Synchronization status	Allocated to convey the synchronization status of the network element
Z 1	Growth byte	Allocated for future growth
M0	M0 byte	Allocated for a line remote error indication
Z 2	Growth byte	Allocated for future growth
E2	Orderwire byte	Allocated for local orderwire channel, voice communication, and installation operators; not used today

^aContains 18 bytes of overhead accessed, generated, and processed by line-terminating equipment. This overhead supports functions such as locating SPE in the frame, multiplexing signals, line maintenance, automatic protection switching, and performance monitoring.

OAM&P Example

FIGURE 4.16 Work and protection links for automatic protection switching.

FIGURE 4.17 Example of SONET network failure.

SONET Virtual Tributaries (VTs)

- Handle payloads smaller than STS-1 rate.
 - STS-1 SPE divided into 7 VT groups, each 12 columns.

FIGURE 4.18 STS-1 frame and virtual tributaries.

FIGURE 4.19 Relationship between SONET SPE and virtual tributaries.

SDH vs. SONET

- Synchronous digital hierarchy (SDH)
 - Outside North America
 - Based on synchronous transport module STM-1
 - 3 times STS-1: 3 x 51.84 = 155.84 Mb/s
 - STM-1 corresponds to STS-3 in SONET
 - Compatible with a subset of SONET
 - Traffic interworking possible
 - Alarms and performance management not possible between SDH and SONET
 - Virtual containers (VCs) vs. VTs
 - differences from E-carrier vs. T-carrier

SDH Frame

STM-1 = 270 Bytes x 9 = 2430 Bytes = 19,440 bits 19,440 bits x 8 kHz = 155.52 Mb/s

FIGURE 4.20 STM-1 frame for SDH protocol.

SONET Equipment

- Similar to optical devices previously studied (Chap. 3)
- Devices must comply with jitter requirements and SONET standards
 - SONET O-E-O regenerator
 - Short reach (SR): up to 2km; IR: up to 40km; LR: up to 80km; ULR: over 80km;
 - In MANs, IR and LR typical.
 - SONET ADM Multiplexer
 - Multiplexing hub; most versatile equipment.
 - SONET Terminal Multiplexer
 - Specialized ADM used at edges of networks;
 - Handles signals from SONET and non-SONET networks.

FIGURE 4.2 SONET networking equipment.

SONET Implementation Features

- SONET Scrambling
 - scheme to maximize state changes in data stream
 - facilitates clock recovery
- SONET Clock Distribution
 - cascading of primary clock signal through network
- SONET Byte Stuffing
 - adding or removing of byte in response to clock variations.

SONET Scrambling

- As a synchronous design, SONET relies heavily on clock
 - Separate clock signal transmission too expensive
 - Clock should be embedded in data stream
 - Examine the state changes
 - Need to maximize state changes
- Modulation in SONET:
 - Non-return-to-zero (NRZ): 1 = transmit pulse; 0 = no transmission
 - Potential long runs of 1's or 0's: no transition or change in signal level; not DC balance.
 - Rearrange transmitting bits using scrambling
 - Increase state transitions through pseudorandom operations
 - Scrambler: divide by xⁿ+1
 - Descrambler: multiply by xⁿ+1

SONET Scrambling

- XOR of current data with preceding data (n bits delay)
- In SONET, n = 43 to minimize "data killer" patterns

FIGURE 4.21 SONET scrambling process: (a) $x^n + 1$ scrambler; (b) $x^n + 1$ descrambler.

SONET Clock Distribution

- As master clock (reference) is cascaded down hierarchy, clock variations occur:
 - Jitter = frequency variation within duration < 0.1 s</p>
 - Wander = freq. variation within duration > 0.1 s.
 - Recall: H1, H2, H3 and floating SPE to handle slight clock differences.
- Clock classification based on accuracy
 - Stratum 1 (atomic): $\pm 1 \times 10^{-11}$
 - Stratum 2 (atomic): $\pm 1.6 \times 10^{-8}$
 - Stratum 3 (oscillator): $\pm 4.6 \times 10^{-6}$
 - SONET minimum clock (SMC) (oscillator): $\pm 20 \times 10^{-6}$

SONET Clock Distribution

- S1 byte of LOH used to communicate quality info
- Receiving node accordingly derives its own reference clock (a.k.a., line timing or loop timing)

FIGURE 4.22 Examples of clocking schemes in a SONET network.

SONET Byte Stuffing

- Recall pointers H1, H2 (location of SPE)
- Adding byte = Positive byte stuffing
 - Input rate < Output rate</p>
 - Frame rate of SPE < frame rate of STS-1
 - Inversion of increment bits: 7,9,11,13,15 of pointer word
 - Added byte follows H3 byte
- Removing byte = Negative byte stuffing
 - Input rate > Output rate
 - Frame rate of SPE > frame rate of STS-1
 - Inversion of decrement bits: 8,10,12,14,16
 - Actual data byte written in the H3 byte.