Generative 모델을 활용한 멀웨어 탐지 블랙박스 모델의 취약성 분석

백윤흥

SNU Security Research Group 서울대학교 전기.정보공학부

Topics

- PDF malware
- PDF classifiers
- White/black-box models for classifiers
- Automatic generation of evasive PDF malware
- Our approach using a generative model

SNU Security Research Group

PDF malware

- PDF document can be malicious!
- # of detected PDF-based attacks is drastically increasing*
 - In 2018, >47K new PDF-based attacks were discovered
 - In 2019, >73K PDF-based attacks were reported in one month, and PDF malware accounts for 17% of newly detected threats

 PDF malware is popular as PDF documents can be viewed on any device and are easy to create

PDF malware example

- PDF consists of multiple objects which are hierarchically connected with each other.
- Adversaries can inject their own JavaScript code into the PDF document structure
- JavaScript code exploits specific PDF reader's vulnerability to perform malicious actions

```
&PDF-1.3
1 0 obj
<//Pages 1 0 R /OpenAction 2 0 R>>
2 0 obi
<</S /JavaScript /JS (
var heap ptr
var foxit base = 0;
var pwn array = [];
function prepare heap (size) {
    var arr = new Array(size);
    for(var i = 0; i < size; i++) {
        arr[i] = this.addAnnot({type: "Text"});;
        if (typeof arr[i] == "object") {
            arr[i].destroy();
function qc() {
    const maxMallocBytes = 128 * 0x100000;
    for (var i = 0; i < 3; i++) {
        var x = new ArrayBuffer(maxMallocBytes);
```

Injected Javascript code example

JavaScript encoding

• First, adversaries encode malicious JavaScript

JavaScript injection

• Then, they inject encoded malicious JavaScript code into PDF structure

PDF malware circulation

Adversaries spread their malicious PDF documents

PDF malware download

Victim downloads the malicious PDF document

Malware infection

- When victim opens the malicious PDF document, the system is infected.
- PDF reader application may become malicious

Once infected...

- Private information may be unintentionally leaked to adversaries
- Infected PDF reader application ...
 - may send your documents in web storage everywhere
 - Have access to your web storages to download from them.
 - Have permission to send data over the network.

Once infected...

Control may be hijacked to open malicious payload

PDF malware defense

- PDF malware classifiers
- Rule-based classifiers are easily bypassed
- ML technology has been applied to tackle the rapidly increasing zero-day PDF malware

Content-based Classifier

Metadata of PDF files

PDFrate (ASASC '12)

Structure-based Classifier

Logical structure of PDF files

Hidost (NDSS '13, JIS '16)

Content-based classifier

- Based on features extracted from file document metadata
- A classifier, PDFrate, extracts 202 features manually selected

count_font
count_javascript
count_page
count_endobj
count_stream
count_obj
pos_box_max
pos_eof_avg
pos_ref_avg
producer_len
len_stream_min

title_len
creator_len
producer_len
createdate_tz
ratio_imagepx_size
ref_min_id
count_font_obs
count_image_large
count_image_med
count_image_small
count_image_total
count_startxref

PDFrate example

- For example, count of font objects, page objects, JavaScript objects...
- The count of font objects is 3, and the count of page objects is 2 in here
- No JavaScript object in this example

```
count_font
count_javascript
count_page
count_endobj
count_stream
count_obj
pos_box_max
pos_eof_avg
pos_ref_avg
producer_len
len_stream_min
```

```
PDF
                    4 0 obj <<
  1 0 obi <<
                     /Type /Page
  /Type /Catalog
                     /Content 6 0 R
  /Pages 2 0 R
                    >> endobj
  >> endobi
  2 0 obi <<
                    14 0 obj <<
  /Type /Pages
  /Count 2
                     /Type /Font ...
  /Kids [ ... ]
                     >> endobi
  >> endobi
                     15 0 obi <<
                     /Type /Font ...
  3 0 obj <<
                     >> endobj
  /Type /Page
  /Content 5 0 R
                     16 0 obj <<
  >> endobj
                    /Type /Font ...
                     >> endobj
```

Constructing a decision tree

The data samples follow down the decision tree

Making decision with the tree

 After modifying decision boundary, all the test data is correctly classified

Malware defense with PDFrate

- The font objects identify the font program and contain additional information about it
- A typical PDF malware has a smaller number of font objects than a typical benign PDF because most of PDF malwares do not have any contents.

Decision tree for benign PDF

Decision tree for malicious PDF

Building RF with decision trees

- Random Forest (RF) is used by PDFrate for classifying benign/malicious PDFs
- RF, as its name 'forest' implies, consists of many random individual decision trees independently trained
- Through voting process among selected best trees make a final decision

six 1s & three 0s → predict 1

Machine learning does help!

- PDFrate detection accuracy → 0.997
- Unfortunately, the assumption that training data are reprehensive is often abused by adversaries

Evading PDFrate

- The feature set is manually defined for good performance
- Also the feature values are determined by running a set of simple regular expressions on raw bytes of the PDF file
- Hence, vulnerable to a mimicry attack that crafts feature values.

PDF malware

PDF malware with mimicry attack

PDFrate under attack

 Decision tree of PDFrate for PDF malware evading with mimicry attack

Structure-based classifier

- A classifier, Hidost, discriminates between malicious and benign files based on the logical structure
- Not relying on a collection of individual features and their values, but on their relations in the PDF structures.
- Thus, relatively more robust against naïve mimicry attacks that only manipulate feature values → accuracy: 0.999
- A total of 6,087 features are used

Hidost – Feature

- Parse PDF into a structural representation
- The feature set consists of paths from "/Root" to leaf nodes

/Root	/Root/Pages	/Root/Pages	/Root/Pages/	/Root/Pages/	
/Type	/Type	/Count	/Type	/S	
	/Pages	2	/Font	/JavaScript	

Mimicry defense

- Mimicry attack that inserts objects of benign PDF into PDF malware without a sense of PDF structure
- Hidost will discard those objects in the feature set

Hidost classification

Training with SVM

- Hidost used the support vector machine (SVM) as a large set of features are used (a total of 6,087)
- SVM can deal with a large set of features
- SVM fits a hyperplane to data points in such a way that separates two classes

<Support Vector Machine>

Beating malware classifiers

- A content-based classifier, PDFrate, has been subverted by mimicry attack techniques manipulating feature values.
- A structure-based classifier, Hidost, is also vulnerable to a mimicry attack crafted by additional human endeavor.
- An adversary may beat Hidost by insert objects from benign PDF into PDF malware to look structurally similar to benign PDF.

Mimicry attack on Hidost

/Root	/Root/Pages	/Root/Pages/	/Root/Pages/	/Root/Pages/
/Type	/Type	Count	/Type	/S
/Catalog	/Pages	2	/Font	

/Root/Pages/	/Root/Pages/	/Root/Pages/	/Root/Pages/
/Type	/Type	/Type	/Type
/Font	/Font	/Page	/Page

Manual malware generation

- First of all, too time consuming ...
- The human usually need to understand the classifier
 - Must know everything about the classifier's detection process
 - Training data (D), Feature Extractor (FE), Feature set (F), Model (M)

Black-box attack

- White-box attacks are not realistic in practice.
- Attackers usually have the lowest level of knowledge about classifier's detection process
- They are only allowed to know the final classification result (either benign or malicious) → Black-box attacks

Automating malware generation

- Develop an adaptive adversary that automatically generates adversarial example (malware) against black-box classifiers
- Goals
 - Test the robustness of existing classifiers against advanced attacks
 - Try to construct more robust classifiers

- Adversarial examples must ...
 - Maintain the maliciousness of the original malicious file
 - Evade the target classifier

EvadeML

 Automatically generating adversarial example to evade PDF classifier

	Target classifier	Attack scenario	Strategy to evade classifiers	Strategy to maintain maliciousness
EvadeML	PDFrate Hidost	Black-box attack	Genetic programming (Random mutation)	X

Genetic operators

- Generating variants by mutating the PDF malware
- Three operations for random mutation
 - Deletion: Object is removed
 - Insertion: Object is inserted (from benign file)
 - Replacement: Object is replaced (from benign file)

Example of insertion operation

Bypassing Hidost

• Classification threshold value is zero (0)

• Score ≤ 0 : benign

• Score > 0: malware

Bypassing PDFrate

- Classification threshold value is 0.5
 - Score ≤ 0.5 : benign
 - Score > 0.5: malware

Oracle: Cuckoo Sandbox

- Verifying whether variant maintains the original malicious behavior
- Cuckoo sandbox runs a submitted sample with several virtual machines in parallel

Fitness score

- Fitness score of each generated variant
- High scores are better

$$fitness_{hidost}(x) = \begin{cases} hidost(x) \times (-1) & oracle(x) = 1 \\ LOW_SCORE & oracle(x) = 0 \end{cases}$$

Fitness score

- Fitness score of each generated variant
- High scores are better

$$fitness_{pdfrate}(x) = \begin{cases} 0.5 - pdfrate(x) & oracle(x) = 1\\ LOW_SCORE & oracle(x) = 0 \end{cases}$$

Genetic programming

- The process continues over multiple generations until the adversarial example is created
- No learning-based intelligence in generating variants

Trials to evade classifiers

Limitations

- All generated variants must go through the oracle
- Due to lack of intelligence, most variants are generated randomly, losing the original maliciousness
- Hence, the speed to generated evasive malware is high
 - → > 120 hours are required

Our approach

- To overcome the limitations of EvadeML, we employ a generative ML model that can automatically generate adversarial examples.
- By learning the structures of both benign and malicious PDFs, the model aims to simultaneously achieve two goals: evading classifier and maintaining maliciousness.

Learning to keep maliciousness

- The generator model must not modify the features that are related to the malicious behavior
- Let S be the entire feature set, S' be the features related to the malicious behavior
- We have another ML model that guides the generator to only modify the features in S-S'.

Taxonomy of generative models

Inspired by GAN

- Generative Adversarial Network (GAN)
- Suitable in generating variants

Our way to keep maliciousness

- Use the discriminator as a assistant tool to find S-S' and only modify those features
- Hence, successfully maintain the original maliciousness

Speed comparison with EvadeML

- 13 times faster than EvadeML (to evade Hidost)
- 30 times faster than EvadeML (to evade PDFrate)

Evasion success rate

- Attack against commercial anti-virus engines
- Achieved more than 60% evasion success rate in 27 engines

Arms race is on-going...

- EvadeML has been subverted
 - Usenix Security '19: Retraining ML PDF classifiers with S'
 - Usenix Security '20: Enhancing robustness of Hidost and PDFrate
- Extension to binary malware
 - Binary has much more complex structures/semantics than PDF
 - The challenge is difficult to retain code semantics which can easily be broken if binary malware is randomly mutated
 - Maliciousness will be lost if the code semantics is not retained
 - IEEE Security & Privacy '20: generate Android malware by selecting appropriate benign features that preserve the original code semantics

If code semantics is broken, malicious node is non-reachable (Lost maliciousness)

Yunheung Paek

SNU Security Research Group
Electrical and Computer Engineering Department
Seoul National University