This is a two-hour test. There are 11 questions for 70 marks. A score of 50 will be full marks.

- You will see only one question at a time.
 Once you have moved to the next question,
 you cannot go back and change your answer to a previous question.
- 2. Enter the exact numerical answer.
- 3. Do not enter units in your answer.
- 4. Enter your answer in normal number format with a decimal point. Eg. 0.012 and not 1.2×10^{-2}
- 5. DT stands for Discrete Time and CT stands for Continuous time.

Question 1 6/6

For the CT signal x(t) shown below, find y(t) = 2x(3-t) and determine $\int_{1}^{5} y(t) dt$

29/10/2023, 21:52 Feedback

Correct

The answer is 19.

Question 2 8/8

For the causal DT LTI system shown below with a = 0.7, find the response y[n] to input x[n] = 2u[n] and determine y[2].

Your Answer: 4.38

Correct

The answer is 4.38.

Question 3 6/6

For the DT signal x[n] shown below, find y[n] = 2 x[-2-n] +1 and determine $\sum_{n=0}^{3} y[n]$

Your Answer: -4

Correct

The answer is **-4**.

Question 4 7/7

For the CT signal shown below, find the even part $x_e(t)$ and determine $\int_{-2}^{3} x_e(t) dt$

Your Answer: 14.5

Correct

The answer is 14.5.

Question 5

7/7

Find the odd part $x_o[n]$ for the DT signal x[n] shown below, and determine $\sum_{n=-1}^4 x_o[n]$

Your Answer: 4

Correct

The answer is 4.

Question 6 0/6

For a CT signal given by x(t) = 5u(t+4) + 2u(t+1) - 3u(t-3) - 4u(t-5) draw the signal and find

$$\int_{0}^{3} x(t) dt$$

Your Answer: 30

Incorrect

The answer is 33.

Question 7

0/5

The DT signal x[n] shown below is the input of the system shown below. Find y[n] and determine $\sum_{n=-3}^{3} y[n]$

Your Answer: -4.5

29/10/2023, 21:52 Feedback

The answer is 2.5.

Question 8

5/5

A CT LTI system has the response $y_1(t) = t u(t)$ to input $x_1(t) = u(t)$. Find the response $y_2(t)$ to input $x_2(t) = 4u(t-3)$ and then determine $y_2(1)$.

Round your answer to 0 decimal places.

Your Answer: 32

Correct

The answer is 32.

Question 9

0/8

A CT LTI system has an impulse response h(t) = t u(t). Find the output y(t) when the input is x(t) = u(t-1) - u(t-3) and determine y(2).

Your Answer: 1

Incorrect

The answer is **0.5**.

Question 10

0/4

29/10/2023, 21:52 Feedback

Find $\int_{-\infty}^{\infty} \delta(t-3) \ x(t) \ dt$ for the CT signal x(t) shown below.

Your Answer: 8.5

Incorrect

The answer is 7.

Question 11

0/8

A DT system has an impulse response h[n] shown below and input x[n] shown below. Find the output y[n] and determine y[1].

Your Answer: 1

Incorrect

The answer is **-5**.