به نام خدا

معماری و سازمان کامپیوتر- نیمسال 4012

تكليف شماره سوم

تنظيم كننده: اميررضا حسيني

فصل پنجم: سازمان و طراحي يک كامپيوتر پايه

سوال چهارم)

Figure 5-4 Basic computer registers connected to a common but

(a)	AR ←	PC
(a)	1111	

- (b) IR \leftarrow M[AR]
- (c) M[AR] ← TR
- (d) DR ← AC

AC ← DR

AC

(3)	(4)
Memory	Adder
_	_
Read	_
Write	_
_	Transfer

DR to AC

توضیح قسمت (d): توجه کنید که این دو عمل همزمان میتوانند انجام پذیرند چون یکی از گذرگاه استفاده کرده و دیگری نیاز به گذرگاه ندارد. همچنین با توجه به حساس بر لبه بودن ثباتها و در نظر گرفتن زمان انتشار مقدار های نامعتبر (در اثر تغییر مقدار همزمان) در ثباتها ثبت نمیشود.

سوال دهم)

	PC	AR	DR	AC	IR
مقدار اوليه	021	_	_	A937	_
AND	022	083	B8F2	A832	0083
ADD	022	083	B8F2	6229	1083
LDA	022	083	B8F2	B8F2	2083
STA	022	083	_	A937	3083
BUN	083	083	_	A937	4083
BSA	084	084	_	A937	5083
ISZ	022	083	B8F3	A937	6083

سوال دوازدهم)

الف) باتوجه به محتوا داخل آدرس 3AF داريم:

 $9_{10} = (1001)_2$

I=1 ADD => ADD I 32E

در نتیجه داریم:

حافظه	
3AF	932E
32E	09AC
9AC	8B9F

ب)

AC = 7EC3 جمع DR = 8B9F 0A62 (E=1)

SC=0000

سوال سيزدهم)

TABLE 5-4 Memory-Reference Instructions

Symbol	Operation decoder	Symbolic description
AND ADD LDA STA BUN BSA ISZ	D ₀ D ₁ D ₂ D ₃ D ₄ D ₅ D ₆	$AC \leftarrow AC \land M[AR]$ $AC \leftarrow AC + M[AR], E \leftarrow C_{out}$ $AC \leftarrow M[AR]$ $M[AR] \leftarrow AC$ $PC \leftarrow AR$ $M[AR] \leftarrow PC, PC \leftarrow AR + 1$ $M[AR] \leftarrow M[AR] + 1,$ If $M[AR] + 1 = 0$ then $PC \leftarrow PC + 1$

XOR	D_0T_4 : D_0T_5 :	
ADM	D ₁ T ₄ : D ₁ T ₅ : D ₁ T ₆ :	DR ← AC, AC ← AC + DR
SUB	D ₂ T ₅ :	$AC \leftarrow \overline{AC}$ $AC \leftarrow AC + 1$
XCH	D ₃ T ₄ : D ₃ T ₅ :	$DR \leftarrow M[AR]$ $M[AR] \leftarrow AC, AC \leftarrow DR, SC \leftarrow 0$
SEQ	D ₄ T ₄ : D ₄ T ₅ : D ₄ T ₆ :	DR \leftarrow M[AR] TR \leftarrow AC, AC \leftarrow AC \oplus DR If (AC = 0) then (PC \leftarrow PC + 1), AC \leftarrow TR, SC \leftarrow 0
BPA	D ₅ T ₄ :	If (AC ≠ 0 ∧ AC (15) = 0) then (PC +x(AR)), SC ← 0

سوال پانزدهم)

این طراحی از هدر رفتن T3در حالت آدرسدهی مستقیم جلوگیری کرده و از آن برای آدرسدهی ۱۶ بیتی استفاده کرده که حافظهی بزرگتری را پشتیبانی میکند.

سوال بیست و پنجم)

از جدول ۵-۶ کتاب داریم:

$$CLR(SC) = RT_2 + D_7T_3(I'+I) + (D_0 + D_1 + D_2 + D_5)T_5 + (D_3 + D_4)T_4 + D_6T_6$$

