Lecture 11: Least squares, OD I

Amos Ron

University of Wisconsin - Madison

February 24, 2021

Outline

- Overdetermined system
 - Overdetermined system and the least square notion
 - Abstraction of least squares

Outline

- Overdetermined system
 - Overdetermined system and the least square notion
 - Abstraction of least squares

Blank page

Problem: Overdetermined systems

Definition: Overdetermined (OD) systems

We are given a system

$$Ax = b$$
.

It is overdetermined if it does not have an exact solution

Problem: Overdetermined systems

Definition: OD Least Squares

We are given an OD system

$$Ax = b$$
.

The vector $x^* \in \mathbb{R}^m$ is the Least Square Solution to the system if

$$||Ax^* - b||_2 \le ||Ax - b||_2, \quad \forall x \in \mathbb{R}^m.$$

The problem restated as an approximation problem

- We work in some vector space V. In our case $V = \mathbb{R}^m$.
- We have $v \in V$ that we need to approximate. In our case, v = b, the right hand side.
- W is some subspace of V.
 In our case, W is the range of the matrix A. Since we know that our equation has no solutions, it must be that W is a proper subspace of V.
- We seek $w^* \in W$ such that

$$||w^* - v||_2 \le ||w - v||_2, \quad \forall w \in W.$$

The problem restated as an approximation problem

- We work in some vector space V. In our case $V = \mathbb{R}^m$.
- We have $v \in V$ that we need to approximate. In our case, v = b, the right hand side.
- W is some subspace of V.
 In our case, W is the range of the matrix A. Since we know that our equation has no solutions, it must be that W is a proper subspace of V.
- We seek $w^* \in W$ such that

$$||w^* - v||_2 \le ||w - v||_2, \quad \forall w \in W.$$

The main characterization theorem

Let $w_0 \in W$ be such