Discusion- July 14

	1. Find the set of vectors orthogonal to (1) and (1).
	2. Find the set of vectors orthogonal to (2)
	1. Find the set of vectors orthogonal to (1) and (1). 2. Find the set of vectors orthogonal to (1). 3. Diagonalize (1 1 1). Can you make it so the P
	matrix has orthogonal columns?
	4. Normalize (3)
	1. Normalize $\binom{7}{5}$. 5. Find the distance between $\binom{1}{2}$ and $\binom{2}{3}$. 6. $\binom{7}{5} = \frac{1}{5}$ continuous functions $\binom{7}{5} = \binom{7}{5}$.
	6. $\mathbb{C}([0,1]) = \{ \text{ continuous functions } [0,1] \rightarrow \mathbb{R} \}$.
	$\langle f, g \rangle = \int_0^1 f(t) g(t) dt$ is an inner product on $C([0,1])$
	(a) Sin TEX (b) dist (1+x, ex)
	(C) (Sin Tex, cos Tex) (d) (Sin Tex, sin 200x) 3 orthogonal?
	Interesting but a lot of work: Compute $5n = \langle x - \frac{1}{2}, \sin(k\pi x) \rangle$
	and cn=(x-\frac{1}{2}, cos(2\text{tinx})) for O\left(n\left\left4\right).
_	and $c_n = \langle x - \frac{1}{2}, \cos(2\pi n x) \rangle$ for $0 \leq n \leq 4$ or 5 . Graph $y = \sum_{n} (s_n \sin(2\pi n x) + c_n \cos(2\pi n x))$ and compone to $y = x - \frac{1}{2}$.
	(e) find a quadratic polynomial orthogonal to x.
	(e) find a quadratic polynomial orthogonal to x . 7. $\vec{u} = \begin{bmatrix} 0 \\ -2 \end{bmatrix} \vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \vec{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$
	(a) Company u+v and u + v .
	(a) Compare 1 2 + v and
	(c) Compute UTV, VTU, U.V.
	(d) Compute WYT. This does make sense.
	8. If A has linearly independent columns, is ATA invertible?
	9. If nxn A has columns which sum to 1, show 1 is an eigenvelve
	10. Let ti, v∈Rn, ti +0. Find a formula which gives
	the nearest vector to V in Span & 13.
	· ·
	Hint: Zim vi cu = proju vi (the "projection")