Math 856 Homework 2

Target date for starred (*) problems to be handed in: Friday, September 25

(*) 7: [Lee, problem 2-1 (part)] Using the charts on the circle S^1 given by steriographic projection, compute the local coordinate representations of the functions

$$f_n: S^1 \to S^1$$
 given by $f_n(z) = z^n$ (in complex coordinates)

and use this to demonstrate that each f_n is C^{∞} .

- (*) 8: Show that a function $f: M^n \to N^m$ is $C^{\infty} \Leftrightarrow g \circ f: M^n \to \mathbb{R}$ is C^{∞} for every C^{∞} function $g: N^m \to \mathbb{R}$. (Hint: you might need to use the technology of bump functions to do this?)
- **9:** Let $\mathbb{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n \geq 0\}$. Suppose that $f : \mathbb{H}^n \to \mathbb{R}$ is a function for which every $x \in \mathbb{H}^n$ has an open neighborhood U_x of x such that f extends to a C^{∞} function on U_x . Show that f extends to a C^{∞} function on a neighborhood of \mathbb{H}^n in \mathbb{R}^n . (Short version: show that if f is locally smooth, then f is smooth. A well-chosen partition of unity might help?)
- **10:** We know that if $C, D \subseteq M$ are disjoint closed sets of the smooth manifold M, then there exists a smooth function $f: M \to [0,1]$ with $C \subseteq f^{-1}(0)$ and $D \subseteq f^{-1}(1)$. But we can in fact make these containments equalities:
 - (a) Show that it suffices to build a smooth function $g: M \to [0,1]$ with $C = g^{-1}(0)$.
- (b) Build a countable cover $\{U_i\}$ of $M \setminus C$ by open sets of the form $h_i^{-1}(B(x_i, 1))$ for a collection of coordinate charts $h_i = (x^1, \ldots, x^n)$ with image containing $B(x_i, 2)$. Build C^{∞} functions $g_i : M \to \mathbb{R}$ which are > 0 in U_i and = 0 on $M \setminus U_i$. Note that $\overline{U_i}$ is compact; for each i, let

$$\alpha_i = \sup_{x \in \overline{U_i}; j \le i; m \le i; k_1, \dots k_m \le n} \left\{ \frac{\partial^m g_j}{\partial x^{k_1} \cdots \partial x^{k_m}} (x) \right\}.$$

Show that the function $g = \sum g_i/(\alpha_i 2^i)$ is C^{∞} and $C = g^{-1}(0)$.

- **11:** [Lee, problem 2-6] For M a (smooth) manifold, let C(M) denote the set of continuous functions from M to \mathbb{R} , thought of as an algebra (i.e., a ring and a vector space over \mathbb{R}) with scalar multiplication by \mathbb{R} , and pointwise addition and multiplication. Let $C^{\infty}(M)$ be the subalgebra of smooth functions. If $F: M \to N$ is continuous, let $F^*: C(N) \to C(M)$ be given by $F^*(f) = f \circ F$.
 - (a) Show that F^* is a linear map.
 - (b) Show that F is smooth $\Leftrightarrow F^*(C^{\infty}(N)) \subseteq C^{\infty}(M)$.
- (c) Suppose F is a homeomorphism. Show that F is a diffeomorphism $\Leftrightarrow F^*: C^\infty(N) \to C^\infty(M)$ is an isomorphism.
- (*) 12: [Lee, problem 2-17] Find an example of a (non-closed: it can't be done if the set is closed!) subset A of a smooth manifold M, and a smooth function $f: A \to \mathbb{R}$ which admits **no** extension to a smooth function $\tilde{f}: M \to \mathbb{R}$.

(Note that f is called smooth if for every $x \in A$ there is a neighborhood $x \in \mathcal{U}$ and a smooth extension of $f|_{A \cap \mathcal{U}}$ to the neighborhood \mathcal{U} .