

BANCO DE DADOS RELACIONAL

Modelagem Conceitual (MER)

Objetivos da aula

- ✓ Compreender e aplicar o Modelo Entidade-Relacionamento (MER).
- ✓ Criar o MER inicial do projeto ABP.
- ✓ Usar o tema clima_alerta como exemplo real.

Aplicativo Móvel de Monitoramento e Comunicação de Eventos Climáticos e Ambientais Críticos para a População.

O aplicativo será desenvolvido para o **INPE**, com foco em alertas de queimadas, inundações, desmatamento, mudanças climáticas e coleta de dados locais da população em tempo real.

Banco de Dados Relacional

Exercícios Práticos – Aula 02 (Correção)

- Entidade: objeto do mundo real representado no banco.
- Atributos: características da entidade.
- Relacionamentos: associações entre entidades.
- Cardinalidade: define quantos elementos de uma entidade se relacionam com outra (1:1, 1:N, N:M).
- Ferramentas: Draw.io, Lucidchart, DBDiagram.io.

Fundamentação Teórica - Resumo

Parte 1 – Individuais

Criar um MER simples para um sistema de biblioteca com:

Entidades: Livro, Autor, Empréstimo, Cliente.

Atributos:

Livro: idLivro, título, anoPublicacao, isbn.

Autor: idAutor, nome, nacionalidade.

Cliente: idCliente, nome, email, telefone.

Empréstimo: idEmprestimo, dataEmprestimo, dataDevolucao.

Relacionamentos:

Livro-Autor: N:M.

Empréstimo-Livro: N:M.

Empréstimo-Cliente: 1:N.

Fundamentação Teórica - Resumo

Parte 2 – Projeto ABP (incremento)

Tema: Aplicativo Móvel de Monitoramento e Comunicação de Eventos Climáticos e Ambientais Críticos.

Criar o MER do banco *clima_alerta* com mínimo de 4 e máximo de 6 entidades iniciais.

Sugestão de entidades:

Evento

Localização

Usuario

Relato

TipoEvento

Alerta

Exercícios Práticos

Alinhamento com o Projeto ABP

- Início da modelagem conceitual do banco de dados do projeto.
- Essa modelagem será a base para os próximos requisitos.

Individual:

- •Liste 3 entidades e 3 relacionamentos que você imagina que existirão no sistema do seu grupo.
- •Para cada entidade, defina ao menos 3 atributos e a chave primária.
- •Exemplo: Cliente(cod_cliente, nome, CPF).

Exercício Individual (Sistema de Biblioteca)

MER corrigido (descrição textual):

- Livro
- •idLivro (PK)
- •titulo
- anoPublicacao
- •lsbn
- Autor
- idAutor (PK)
- •nome
- Nacionalidade
- Cliente
- •idCliente (PK)
- nome
- •email
- telefone

- Emprestimo
- •idEmprestimo (PK)
- dataEmprestimo
- •dataDevolucao
- •idCliente (FK)
- •LivroAutor (tabela associativa para N:M)
- •idLivro (FK)
- •idAutor (FK)
- •EmprestimoLivro (tabela associativa para N:M)
- idEmprestimo (FK)
- idLivro (FK)

Relacionamentos e cardinalidades:

- •Livro-Autor: N:M (representado pela tabela LivroAutor).
- •Emprestimo–Livro: N:M (representado pela tabela EmprestimoLivro).
- •Emprestimo-Cliente: 1:N (um cliente pode ter vários empréstimos, mas um empréstimo pertence a apenas um cliente).

Exercício Individual (Sistema de Biblioteca)

Representação do MER

Alinhamento com o Projeto ABP

- Início da modelagem conceitual do banco de dados do projeto.
- Essa modelagem será a base para os próximos requisitos.

Em grupo (projeto ABP):

- •Construção colaborativa do primeiro rascunho do MER com:
 - •3 a 5 entidades principais
 - •Relacionamentos iniciais
 - •Chaves primárias e estrangeiras
- •Ferramentas recomendadas: dbdiagram.io ou DB Designer.
- •Compartilhar o link do modelo no GitHub do grupo (pasta: BDR/Aula02/documentos/modelagem/).

Projeto ABP com exemplos concretos

Evento

idEvento (PK)
titulo → "Queimada em área de preservação"
descricao → "Fogo se alastrando na mata próxima à represa."
dataHora → 2025-08-15 14:35:00
status → "Ativo"
idTipoEvento (FK) → 1 (Queimada)
idLocalização (FK) → 5 (Localização da represa)

TipoEvento

idTipoEvento (PK)
nome → "Queimada"
descricao → "Incêndio de grandes proporções em áreas urbanas ou rurais."

Localizacao

idLocalizacao (PK) latitude → -23.305 longitude → -45.965 cidade → "Jacareí" estado → "SP"

Banco de Dados Relacional - Profa Lucineide Pimenta

Usuario

idUsuario (PK)
nome → "Maria Oliveira"
email → "maria.oliveira@email.com"
senhaHash → "2b6c7f64f76b09d0a7b9e..." (hash da senha, não a senha em si)

<u>Relato</u>

idRelato (PK)
texto → "Fumaça intensa e chamas visíveis a partir da rodovia."
dataHora → 2025-08-15 15:10:00
idEvento (FK) → 1 (Queimada em área de preservação)
idUsuario (FK) → 2 (Maria Oliveira)

Alerta

idAlerta (PK) mensagem \rightarrow "Evacuação imediata da área próxima à represa." dataHora \rightarrow 2025-08-15 15:20:00 nivel \rightarrow "Crítico" idEvento (FK) \rightarrow 1 (Queimada em área de preservação)

MER corrigido (descrição textual):

Evento

idEvento (PK)

titulo

descricao

dataHora

status

idTipoEvento (FK) idLocalizacao (FK)

TipoEvento

idTipoEvento (PK)

nome

Descricao

Localização

idLocalizacao (PK)

latitude

longitude cidade

estado

Usuario

idUsuario (PK)

nome email

senhaHash

Relato

idRelato (PK)

texto

dataHora

idEvento (FK)

idUsuario (FK)

Alerta

idAlerta (PK)

mensagem dataHora

nivel

idEvento (FK)

Banco de Dados Relacional - Profa Lucineide Pimenta

Relacionamentos e cardinalidades:

- •Evento-TipoEvento: N:1 (vários eventos podem ser do mesmo tipo).
- •Evento-Localizacao: N:1 (vários eventos podem ocorrer na mesma localização).
- •Relato-Evento: N:1 (vários relatos podem estar vinculados a um mesmo evento).
- •Relato-Usuario: N:1 (um usuário pode criar vários relatos).
- •Alerta–Evento: N:1 (um evento pode ter vários alertas).

O que é senhaHash

No banco de dados, **nunca** devemos armazenar senhas em texto puro (ex.: **123456**).

Em vez disso, usamos um **algoritmo de hashing** (como SHA-256 ou bcrypt) para gerar uma sequência criptografada (*hash*).

Essa sequência é o que fica no campo senhaHash.

Exemplo:

Senha digitada pelo usuário: segura@2025

Hash gerado: 9e0c8b8763ac93d4d2a1f6d31cf40a88f2740a4e... (sequência longa de caracteres)

Assim, mesmo que alguém tenha acesso ao banco, não consegue ver a senha original.

Conteúdo Teórico

- Conversão do MER para o modelo relacional:
 - Entidades viram tabelas.
 - Atributos viram colunas.
 - Relacionamentos viram chaves estrangeiras.
- Breve introdução às formas normais (1FN a 3FN) apenas como orientação prática para evitar:
 - Dados repetidos
 - Dependências funcionais desnecessárias
 - Estruturas que atrapalham o uso de junções e agrupamentos

Conteúdo Teórico

- Boas práticas de definição de tabelas:
 - Nomes padronizados
 - □ Tipos de dados compatíveis
 - Definição correta de chaves

Exercícios Práticos

Individual:

 Dado um MER simples, Biblioteca, transformar em um conjunto de tabelas com chaves primárias e estrangeiras.

- □ **★** Livros:
 - Elmasri & Navathe (2010). Sistemas de Banco de Dados.
 - Silberschatz et al. (2011). Sistemas de Banco de Dados.
- Links úteis:
 - PostgreSQL Docs
 DBDiagram.io

- □ DATE, C. J. Introdução a sistemas de bancos de dados. Rio de Janeiro, Elsevier: Campus, 2004.
- □ ELMASRI, R.; NAVATHE, S. B. Sistemas de Banco de Dados. 7 ed. São Paulo: Pearson, 2018.
- □ SILBERSCHATZ, A.; SUNDARSHAN, S.; KORTH, H. F. **Sistema de banco de dados**. Rio de Janeiro: Elsevier Brasil, 2016.

Bibliografia Complementar

- □ BEAULIEU, A. **Aprendendo SQL**. São Paulo: Novatec, 2010.
- GILLENSON, M. L. Fundamentos de Sistemas de Gerência de Banco de Dados. Rio de Janeiro: LTC, 2006.
- MACHADO, F. N. R. Banco de Dados: Projeto e Implementação. São Paulo: Érica, 2005.
- □ OTEY, M; OTEY, D. **Microsoft SQL Server 2005:** Guia do Desenvolvedor. Rio de Janeiro: Ciência Moderna, 2007.
- □ RAMAKRISHNAN, R.; GEHRKE, J. **Sistemas de Gerenciamento de Bancos de Dados**. 3 ed. Porto Alegre: Bookman, 2008.
- □ ROB, P; CORONEL, C. **Sistemas de Banco de Dados:** Projeto, Implementação e Gerenciamento. 8 ed. São Paulo: Cencage Learning, 2011.
- □ TEOREY, T; LIGHTSTONE, S; NADEAU, T. **Projeto e Modelagem de Bancos de Dados.** São Paulo: Campus, 2006.

Dúvidas?

Banco de Dados Relacional - Profa Lucineide Pimenta

Considerações Finais

Professor(a): Lucineide Pimenta

Bom descanso à todos!

