اصول پردازش تصویر Principles of Image Processing

مصطفی کمالی تبریزی ۳ آبان ۱۳۹۹ جلسه دهم

Geometric Transformations and Image Warping

Geometric Transformations

	,
7	, ,
J	

			_	_			
(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	(1,8)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	(2,8)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)	(3,8)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)	(4,8)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)	(5,8)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)	(6,8)
(7,1)	(7,2)	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)	(7,8)

$$T \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 5.23 \\ 7.81 \end{bmatrix}$$

1. Translation

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

$$\begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

What does it preserve?								
Orientation								
Scale								
Angle	J.							
Parallelism								
Lines								

$$x' = x + t_{\chi}$$
$$y' = y + t_{\gamma}$$

2. Rotation

What does it preserve?									
Orientation	*								
Scale									
Angle									
Parallelism									
Lines									

$$\mathbf{x}' = \mathbf{R} \, \mathbf{x}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

3. Scale

What does	it preserve?
Orientation	1
Scale	*
Angle	
Parallelism	
Lines	1

$$\mathbf{x}' = a \mathbf{x}$$

$$\begin{bmatrix} ax \\ ay \\ 1 \end{bmatrix} = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

4. Shear

$$x' = x + a y$$
$$y' = y + b x$$

Vertical

$$\begin{bmatrix} 1 & a & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

5. Euclidean

Rotation + Translation

What does it preserve?									
Orientation	*								
Scale									
Angle									
Parallelism									
Lines									

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & t_x \\ \sin(\theta) & \cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & t_x \\ \sin(\theta) & \cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

6. Similarity

Rotation + Scale + Translation

DoF = 4

$$\begin{bmatrix} a\cos(\theta) & -a\sin(\theta) & t_x \\ a\sin(\theta) & a\cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a\cos(\theta) & -a\sin(\theta) & t_x \\ a\sin(\theta) & a\cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

7. Affine

Wh	What does it preserve?										
Orier	tation	*									
Sc	ale	*									
Ar	igle	*									
Paral	lelism										
Liı	nes										

$$\mathbf{x}' = \mathbf{A} \, \mathbf{x} + \mathbf{t}$$

$$\begin{bmatrix} a_1 & a_2 & t_x \\ a_3 & a_4 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

8. Projective (Homographies)

What does it preserve?									
Orientation	*								
Scale	*								
Angle	*								
Parallelism	*								
Lines									

$$\begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$x' = \frac{u}{w}$$
$$y' = \frac{v}{w}$$

2D Image Transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[oldsymbol{I} ig oldsymbol{t} ig]_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg igg[m{R} igg m{t} igg]_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Fitting an Affine Transformation

 Assume we know the correspondences, how do we get the transformation?

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_i & y_i & 1 \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Fitting an Affine Transformation

$$\begin{bmatrix} x_{i} & y_{i} & 0 & 0 & 1 & 0 \\ 0 & 0 & x_{i} & y_{i} & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{21} \\ a_{22} \\ a_{23} \end{bmatrix} = \begin{bmatrix} \dots \\ x'_{i} \\ y'_{i} \\ \dots \end{bmatrix}$$

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Image warping

• Given a coordinate transform (x', y') = T(x, y) and a source image f(x, y), how do we compute a transformed image g(x', y') = f(T(x, y))?

Forward warping

- Send each pixel f(x, y) to its corresponding location
- (x', y') = T(x, y) in the second image

Image Warping

180	184	181	187	185	188	199	189	192	199	
186	184	191	195	169	49	15	10	10	11	•
187	186	191	37	13	21	12	11	11	11	
186	187	100	13	18	18	15	12	17	12	Forward Transform
189	192	148	15	10	9	9	9	11	12	Forward II
185	194	14	10	10	8	8	8	10	15	
187	88	11	10	10	9	9	10	12	10	
190	17	9	8	9	9	9	9	8	11	
201	11	9	10	10	9	9	9	11	13	
196	11	10	10	10	9	9	8	10	10	

$$\begin{bmatrix} 1 & 0.8 & 2 \\ 1.2 & 0.5 & 1.1 \\ 1 & 0.3 & 0.1 \end{bmatrix} \begin{bmatrix} 5 \\ 9 \\ 1 \end{bmatrix} = \begin{bmatrix} 14.2 \\ 11.6 \\ 7.8 \end{bmatrix} \rightarrow \begin{bmatrix} 1.82 \\ 1.49 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1.82 \\ 1.49 \end{bmatrix}$$

Some pixels might remain empty!

Image Warping

Original Frame

After Rotation

Image Warping

180	184	181	187	185	188	199	189	192	199							
186	184	191	195	169	49	15	10	10	11							
187	186	191	37	13	21	12	11	11	11							
186	187	100	13	18	18	15	12	17	12							
189	192	148	15	10	9	9	9	11	12							
185	194	14	10	10	Я	8	8	10	15							
187	88	11	10	10	Ğ	9	10	12	10	Backward +						
190	17	9	3	9		9	9	8	11	Backward Transform						
201	11	9	10	10	9	9	9	11	13						·	
196	11	10	10	10	9	9	8	10	10						·	

$$\begin{bmatrix} 1 & 0.8 & 2 \\ 1.2 & 0.5 & 1.1 \\ 1 & 0.3 & 0.1 \end{bmatrix} \begin{bmatrix} 5 \\ 9 \\ 1 \end{bmatrix} = \begin{bmatrix} 14.2 \\ 11.6 \\ 7.8 \end{bmatrix} \rightarrow \begin{bmatrix} 1.82 \\ 1.49 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1.82 \\ 1.49 \end{bmatrix}$$

Some pixels might remain empty!

Solution: Backward Transformation

Inverse warping

Q: what if pixel comes from "between" two pixels?

Computing values of pixels at fractional positions

Bilinear interpolation:

Bicubic interpolation fits a higher order function using a larger area of support.

References

 Geometric Transformations and Image Warping Gonzalez: Section 6.2

Szeliski: Section 2.1 and 3.6