Ricerca operativa

941519

April 26, 2022

1 Programmazione lineare

1.1 Componenti

1.2 Dalla forma generale alla forma alle uguaglianze

- I termini noti nella funzione maximize/minimize possono essere trascurati per poi essere reintrodotti alla fine dell'esercizio (è solo traslazione)
- $\bullet\,$ Quando si fa un maximize, si usa $\leq,$ quando si fa minimize di fa \geq

1.3 Interpretazione geometrica della PL

- Ogni vincolo di uguaglianza corrisponde ad un iperpiano
- Ogni vincolo di disuguaglianza corrisponde ad un semispazio
- L'intersezione di semispiazi è un poliedro
- Le soluzioni ammissibili giacciono su un fascio di iperpiani paralleli, caratterizzati dalla loro direzione di ottimizzazione

1.3.1 Iperpiano e poliedro

1.4 Eliminazione di vincoli di uguaglianza, variabili libere

1.5 Forma standard

- La funzione obbiettivo è posta in forma di minimizzazione
- Tutti i vincoli di disuguaglianza vengono posti in forma di uguaglianze, introducendo opportune variabili non-negative di scarto/slack (minore uguale) o di surplus (maggiore uguale)

1.5.1 Minimizzazione della forma standard

1.5.2 Variabili di scarto e di surplus

1.6 Teorema fondamentale della PL

Dato un problema lineare in forma standard:

- Se esiste una soluzione ammissibile, esiste anche una soluzione ammissibile di base
- Se esiste una soluzione ottima, esiste anche una soluzione ottima di base.

Le forme di un problema di PL

Le 4 forme di un problema di PL sono:

- Forma generale
- Forma alle disuguaglianze
- Forma alle standard
- Forma canonica

2 L'algoritmo del Simplesso

2.1 Forma canonica

- I coefficienti nelle variabili di base formano una matrice identità
- Le variabili di base non compaiono nella funzione obbiettivo
- Una forma canonica è forte se tutti i termini noti sono ≥ 0

2.2 Il tableau

2.3 L'algoritmo fondamentale dell'algoritmo del simplesso

- 1. Verifica di inammissibilità
- 2. Trovare una soluzione ottima, o determinare un problema come illimitato

2.4 Passo di pivot

- Consiste nel cambio di base, una variabile in base esce dalla base, e una variabile fuori base entra in base. Geometricamente consiste nel spostarci lungo uno spigolo
- Si sceglie un pivot positivo (elemento in riga) su una colonna fuori base
- \bullet Si divide la riga r per il pivot

- Sottrarre ad ogni riga $i \neq r$ la riga r moltiplicata per a_{ic}
- In questo modo ci troviamo con un tableau nuovo, con una riga nuova in base, e con la colonna che corrispondeva al pivot fuori base.

2.5 Regole di scelta della colonna e della riga

2.5.1 Scelta della colonna

Per scegliere la colonna possono essere utilizzate diverse strategie, a patto che si evitino cicli infiniti nel caso di soluzioni degeneri

- scegliere la colonna con variabile (numero sopra) con costo ridotto negativo
- la colonna col minimo coefficiente di costo ridotto
- \bullet la colonna che produce il maggior miglioramento di z
- la prima colonna con costo ridotto negativo, secondo un ordinamento fissato (questo metodo è anche chiamato regola di Bland, si fissa un indice all'inizio dell'algoritmo ad ogni riga/colonna, e si segue l'ordine)
- una colonna a scelta a caso tra quelle con costo ridotto negativo

2.5.2 Scelta della riga

Per scegliere la riga bisogna:

- considerare solo candidati pivot a_{ij} positivi
- si sceglie quello col minimo rapporto tra il termino noto (a sinistra) b_i ed il candidato pivot (nella matrice) $a_i j$

Nuovamente applichiamo la regola di Bland per selezionare la riga, quando ci troviamo di fronte ad ambiguità.

2.6 Test di illimitatezza

Se non esistono candidati pivot positivi su una colonna con costo ridotto negativo, il problema è detto *illimitato*. In questo caso il problema è probabilmente degenere.

2.7 Test di inamissibilità

Se l'inammissibilità rispetto ad un vincolo violato è stata minimizzata, ma il valore della corrispondente rimane negativo, questo dimostra che il problema è inammissibile e l'algoritmo del simplesso termina.

- 2.8 Metodo delle variabili artificiali
- 2.9 Metodo "big M"
- 2.10 Metodo di Balinski-Gomory

3 Analisi post-ottimale

Dopo aver calcolato la soluzione ottima di un problema, è importante valutare la robustezza dei dati (per tenere conto di incertezze, approssimazioni, arrotondamenti)

- 3.1 Analisi di sensitività
- 3.1.1 Condizioni di ammissibilità e condizioni di ottimalità
- 3.2 Variazione del coefficiente b_i e del coefficiente c_i
- 3.3 Analisi parametrica
- 3.4 Costi ridotti e profitti marginali

4 Teoria della dualità

Si applica su problemi non lineari e problemi nel discreto. Ogni problema di PL, che d'ora in poi chiamiamo problema primale, ammette un problema duale. Le corrispondenze sono definite secondo questo schema:

4.1 Il problema duale: coppia primale-duale

Problema primale	Problema duale
Minimizzazione	Massimizzazione
<i>m</i> vincoli	<i>m</i> variabili
<i>n</i> variabili	<i>n</i> vincoli
coefficienti della f.o.	termini noti dei vincoli
termini noti dei vincoli	coefficienti della f.o.
matrice dei coefficienti A	matrice dei coefficienti A^T
vincoli di uguaglianza	variabili libere
variabili libere	vincoli di uguaglianza
vincoli di disuguaglianza ≥	variabili non-negative
variabili non-negative	vincoli di disuguaglianza ≤

4.2 Teorema della dualità in forma debole

Data una coppia primale-duale:

P: maximize z(x), $s.t.x \in X$ D: minimize w(y), $s.t.y \in Y$

Per ogni soluzione ammissibile di $x \in X$ di P, e per ogni soluzione ammissibile di $y \in Y$ di D si ha

$$z(x) \le w(y)$$

4.3 Teorema fondamentale dell'algebra

Dato un sistema di equazioni lineari:

- \bullet o esiste un certificato di ammissibilità x, la cui esistenza dimostra che il sistema ha una soluzione
- \bullet o esiste un certificato di inammissibilità y, la cui esistenza dimostra che il sistema non ha una soluzione

4.3.1 Lemma di Farkas

Dato un sistema di equazioni lineari:

(i)
$$\exists \mathbf{x} \in \Re^n : A\mathbf{x} = b, \mathbf{x} \geq 0$$

(ii) $\exists \mathbf{y} \in \Re^m : A^T\mathbf{y} \geq 0, b^T\mathbf{y} < 0$.

- i: esiste una soluzione ammissibile del problema
- ii: non esiste una soluzione ammissibile del problema

4.3.2 Lemma di Farkas: variante

Dato un sistema di disequazioni lineari:

(i)
$$\exists x \in \Re^n : Ax \le b, x \ge 0$$

(ii) $\exists y \in \Re^m : A^T y \ge 0, b^T y < 0, y \ge 0$.

4.4 Teorema della dualità in forma forte

Data una coppia primale-duale, se uno dei due problemi ammette una soluzione ottima finita, allora anche l'altro ammette una soluzione ottima finita, ed i due valori ottimi coincidono.

P: maximize
$$\mathbf{z} = \mathbf{c}^T \mathbf{x}$$
, s.t. $A\mathbf{x} \leq b, \mathbf{x} \geq 0$

D: minimize
$$\mathbf{w} = \mathbf{b}^T \mathbf{y}$$
, s.t. $\mathbf{A}^T \mathbf{y} \geq \mathbf{c}$, $\mathbf{y} \geq \mathbf{0}$,

4.5 Teorema fondamentale della dualità lineare

Data una coppia primale-duale, esiste una sequenza finita di passi di pivot che porta l'algoritmo del simplesos a terminare, portandoci ad uno di quesit 4 casi:

- $\bullet\,$ soluzione ottima di P e D
- P è illimitato e D è inamissibile
- D è illimitato e P è inamissibile
- \bullet sia P che D sono inamissibili

4.6 Teorema dello scarto complementare

Data una coppia primale-duale, la condizione necessaria e sufficiente per l'ottimalità di due soluzioni ammissibili \bar{x} , \bar{y} è che valgono le seguenti equazioni:

$$\overline{\mathbf{y}}^T(b-A\overline{x})=0$$

$$(A^T\overline{y}-c)\overline{x}=0$$

4.7 L'algoritmo del simplesso duale

Considerando che i coefficienti di P (primale) e D (duale) sono gli stessi, entrambi i problemi della coppia primale-duale possono essere rappresentati sullo stesso tableau.

L'algoritmo del simplesso duale funziona lavorando sul tableau del problema primale, ed eseguendo gli stessi passi di pivot sul problema duale, o viceversa, a seconda della comodità.

- L'algoritmo del simplesso primale conserva l'ammissibilità e persegue l'ottimalità
- L'algoritmo del simplesso duale conserva l'ottimalità e persegue l'ammissibilità

4.7.1 Algoritmo di scelta delle righe

- la riga del pivot viene scelta prima della colonna, ed il so termine noto dev'essere negativo
- il pivot deve essere negativo
- la colonna del pivot viene scelta minimizzando il valore assoluto del rapporto tra il coefficiente di costo ridotto ed il candidato pivot.

L'algoritmo del simplesso duale è applicato principalmente quando la base iniziale è inamissibile e super-ottima, utile per algoritmi di tipo "cutting planes", in cui viene man mano "tagliata" una parte del piano, per raggiungere l'ottimalità

5 Programmazione a molti obbiettivi

- 5.1 Le due fasi distinte
- 5.1.1 calcolo della regione Pareto-ottima
- 5.1.2 scelta della soluzione
- 5.2 Dominanza
- 5.3 Metodo dei pesi
- 5.3.1 Analisi parametrica
- 5.4 Metodo dei vincoli
- 5.4.1 Analisi parametrica
- 5.5 Regioni paretiane continue e discrete
- 5.6 Scelta della soluzione
- 5.6.1 Metodo delle curve di indifferenza
- 5.6.2 Criterio della massima curvatura
- 5.6.3 Criterio del punto utopia
- 5.6.4 Criterio degli standard

6 Modelli di ottimizzazione discreta

Le variabili nei problemi di ottimizzazione rappresentano quantità, che possono essere continue o discrete. In altri casi invece le variabili non rappresentano quantità, e quindi non hanno un'unità di misura e non ammettono approssimazioni.

6.1 Variabili binarie

In questi modelli, le variabili sono binarie, e hanno come dominio $\{0,1\}$, dato un x_i

- $x_1 = 1$ capita l'evento i
- $x_1 = 0$ non capita l'evento i

Chiaramente anche in questo caso possiamo avere vincoli di disuguaglianza, valgono infatti tutte le relazioni binarie: \neq , \leq , =

Le variabili binarie sono principalmente utilizzati per:

- selezionare sottoinsiemi di un insieme.
- ullet introdurre dei "se" nei modelli (se investo e produco ho costi x, se non investo e non produco ho costi y)
- \bullet attivare e disattivare vincoli a piacimento (con M abbastanza grande fai)
- quando si vuole introdurre un vincolo disgiuntivo

$$|a-b| \ge k$$

con a,b valori continue non negative, e k>0 dato. In questo caso il vincolo non è lineare ed è un vincolo disgiuntivo. Possiamo quindi introdurre una variabile binaria x ed una costante M "abbastanza grande". A seconda del valore di x, quindi, uno dei vincoli viene imposto mentre l'altro viene disattivato.

• quando si presentano vogliono rappresentare regioni non convesse

7 Algoritmo del simplesso rivisto