Solutions for Problem Set 1

Advanced Logic 21st September 2022

1. Prove that for any sets *A* and *B*, $A \subseteq B$ if and only if $A \cup B = B$.

Left to right: Suppose $A \subseteq B$. Then also $A \cup B \subseteq B$, since if $x \in A \cup B$, then either $x \in A$ or $x \in B$, and either way $x \in B$ since $A \subseteq B$. Also $B \subseteq A \cup B$ since obviously every member of B is either a member of A or a member of B. Hence, $A \cup B = B$ by the Axiom of Extensionalty.

Right to left: Suppose that $A \cup B = B$. Let x be an arbitrary member of A. Then x is either a member of A or a member of B, so $x \in A \cup B$, so $x \in B$. Since x was arbitrary we can conclude that $A \subseteq B$.

- 2. Prove that whenever *R* is a relation from *A* to *B* and *S* is a relation from *B* to *C*,
- (a) If R and S are both serial, then $S \circ R$ is serial.

Suppose R and S are serial and consider $x \in A$. Since R is serial there is some $y \in B$ such that Rxy. Since S is serial, for any such y there is some $z \in C$ such that Syz. But in that case $(S \circ R)xz$, so x bears $S \circ R$ to something.

(b) If R and S are both functional, then $S \circ R$ is functional.

Suppose R and S are functional and consider some $x \in A$ and $z, z' \in C$ such that both $(S \circ R)xz$ and $(S \circ R)xz'$. By definition of $S \circ R$ there are y, y'inB such that Rxy, Syz, Rxy', and Sy'z'. But then y = y' since R is functional, and so z = z' since S is functional.

3. Let $A = \{a, b\}$ and $B = \{c, d\}$ be two-membered sets. Then $A \times B$ is the four-membered set $\{\langle a, c \rangle, \langle a, d \rangle, \langle b, c \rangle, \langle b, d \rangle\}$, and there are thus 16 (= 2^4) relations from A to B. List all 16, for each one, specify whether it is serial, surjective, functional, and injective.

$\langle a, c \rangle$	$\langle a, d \rangle$	$\langle b, c \rangle$	$\langle b, d \rangle$	Properties
×	×	×	×	Functional, Injective
×	×	×	\checkmark	Functional, Injective
×	×	\checkmark	×	Functional, Injective
×	×	\checkmark	\checkmark	Surjective, Injective
×	\checkmark	×	×	Functional, Injective
×	\checkmark	×	\checkmark	Serial, Functional,
×	\checkmark	\checkmark	×	Serial, Surjective, Functional, Injective
×	\checkmark	\checkmark	\checkmark	Serial, Surjective,
\checkmark	×	×	×	Functional, Injective
\checkmark	×	×	\checkmark	Serial, Surjective, Functional, Injective
\checkmark	×	\checkmark	×	Serial, Functional,
\checkmark	×	\checkmark	\checkmark	Serial, Surjective,
\checkmark	\checkmark	×	×	Surjective, Injective
\checkmark	\checkmark	×	\checkmark	Serial, Surjective,
\checkmark	\checkmark	\checkmark	×	Serial, Surjective,
\checkmark	\checkmark	\checkmark	\checkmark	Serial, Surjective,

4. Prove that when *R* is a relation from *A* to *B* and *S* is a relation from *B* to *C*, $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Consider an arbitrary $x \in A$ and $z \in C$. Using the definitions of composition and converse, we have

$$\langle z, x \rangle \in (S \circ R)^{-1}$$
 iff $\langle x, z \rangle \in S \circ R$
iff $\langle x, y \rangle \in R$ and $\langle y, z \rangle \in S$ for some $y \in B$
iff $\langle y, x \rangle \in R^{-1}$ and $\langle z, y \rangle \in S^{-1}$ for some $y \in B$
iff $\langle z, x \rangle \in R^{-1} \circ S^{-1}$

So by the Axiom of Extensionality $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

- 5. Show that when *R* is a relation from *A* to *B*,
- a. R is serial iff $id_A \subseteq R^{-1} \circ R$

Left to right: Suppose R is serial. Every member of id_A is of the form $\langle x, x \rangle$ for some $x \in A$. For any such x, there is some $y \in B$ such that Rxy. In that case we also have $R^{-1}yx$ and hence $\langle x, x \rangle \in (R^{-1} \circ R)$.

Right to left: Suppose $id_A \subseteq R^{-1} \circ R$ and $x \in A$. Then since $\langle x, x \rangle \in id_A$, $\langle x, x \rangle \in R^{-1} \circ R$, i.e. there is some $y \in B$ such that Rxy and $R^{-1}yx$. We just need the first conjunct.

b. *R* is injective iff $R^{-1} \circ R \subseteq id_A$.

Left to right: Suppose R is injective, and consider $\langle x, z \rangle \in R^{-1} \circ R$. Then there is some $y \in B$ such that Rxy and $R^{-1}yz$. But then Rzy, which implies x = z since R is injective, and thus $\langle x, z \rangle \in \mathrm{id}_A$ as desired.

Right to left: Suppose $R^{-1} \circ R \subseteq id_A$, and consider some $x, z \in A$ and $y \in B$ such that Rxy and Rxy. Then $R^{-1}yz$, so $(R^{-1} \circ R)xz$, so $(x,z) \in id_A$, i.e. x = z, thus establishing the injectivity of R.