Let's Start

Telco Customer Churn

By Smart Python

Mentor

Members of Smart Python

Jaelani

Vanadhia Amanita

Pingki Vila

What We Did

- 1. Overview of the Business Understanding
- 2. Identify The Dataset
- 3. EDA
- 4. Data Pre-Processing
- 5. Develop Model and Evaluation
- 6. Recommendation

Overview of the Business Understanding

Telco Company

Telco Company has provided home phone and Internet services to 7043 customers in California in Q3.

Telco Company has a problem like Customer Churn. It indicates which customers have left, stayed, or signed up for their service.

Source: community.ibm.com

Background

 Customer Churn means losing customers from a business.

• Churn is calculated by how many customers leave your business in a time.

• Customer Churn is important for businesses because it is a picture of the success business in retaining customers.

"Predict behavior to retain customers"

Background

Annual churn rates for telecommunications companies average between 10% and 67%.

Industry retention surveys have shown that while price and product are important, most people leave any service because of dissatisfaction with the way they are treated.

It costs hundreds of dollars to acquire a new customer in most Telecom industries.

Source: Database Marketing Institute, 2022

Objectives

- 1 To identify which the best model in predicting the customer churn
- 2 To identify which variables are significantly affect the customer churn

Identify The Dataset

• • • •

About Dataset

Churn

Customers who left within the last month

Demographic

Gender
Senior Citizen
Partners
Dependents

Account Information

Tenure
Contract
Payment Method
Paperless Billing
Monthly Charges
Total Charges

Services

Phone
Multiple lines
Internet
Online security
Online backup
Device protection
Tech support
Streaming TV
Streaming movies

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Correlation

- TotalCharges and tenure have strong positive correlation
- Tenure and contracts have a strong correlation
- Monthly charges and total charges have strong positive correlation

Exploratory Data Analysis

Demographic data

According to the charts, the following are characteristics of customers that are churn:

- 1. Customer with no partner
- 2. Customer with no dependents
- 3. Customer who are younger

Account Information

Customer with higher monthly charges are likely to churn, affecting the tenure to be shorter

Services

- Customers are likely to churn when they don't have online security, online backup, device protection, and tech support.
- Mostly because of small price differences of subscription to these service and without service

		count	mean		
		MonthlyCharges	MonthlyCharges		
Churn	OnlineSecurity				
No	No	2037	74.625233		
	No internet service	1413	21.136058		
	Yes	1724	78.369432		
Yes	No	1461	77.181896		
	No internet service	113	20.368142		
	Yes	295	81.581356		

Data Pre-Processing

Steps on Data Pre-Processing

Checking Null Values

Checking Duplicate Values

```
#Check missing values
data.isnull().sum()
customerID
gender
SeniorCitizen
Partner
Dependents
tenure
PhoneService
MultipleLines
InternetService
OnlineSecurity
OnlineBackup
DeviceProtection
TechSupport
StreamingTV
StreamingMovies
Contract
PaperlessBilling
PaymentMethod
MonthlyCharges
TotalCharges
Churn
dtype: int64
```

```
# check duplicate data
data.duplicated().sum()
0
```


Feature Encoding One-Hot Encoding

Change each category so that it has a value of 1 or 0

Feature Encoding Label Encoding

Converts each category to numbers 1,2,3, ... etc

```
#label encoding (categorical encoding)
cats = df_X.select_dtypes(include=['object', 'bool']).columns
cat_features = list(cats.values)
cat_en = LabelEncoder()
for i in cat_features:
 df_X[i] = cat_en.fit_transform(df_X[i])
df_X
      gender Partner Dependents PhoneService MultipleLines InternetService OnlineSecurity
  0
7038
7039
7040
7041
7042
```

```
#label encoding for y
le = LabelEncoder()
le.fit(df_y)
df_y= le.fit_transform(df_y)
df_y
array([0, 0, 1, ..., 0, 1, 0])
```


Develop Model, Evaluation, and Recomendation

HANDLING IMBALANCED DATA USING SMOTE

	Accuracy		Precision		Recall		F1 Score	
	Before	After	Before	After	Before	After	Before	After
Logistic Regression	80.97%	78.42%	67.84%	59.02%	56.97%	67.25%	61.93%	62.87%
Xgboost	80.36%	79.51%	67.87%	62.09%	52.61%	63.07%	59.27%	62.58%
KNN	76.86%	70.71%	59.64%	47.25%	45.82%	67.42%	51.82%	55.56%
Random Forest	79.37%	79.08%	66.02%	63.12%	47.39%	52.79%	55.17%	57.5%
Gradien Boosting	8064%	80.03%	68.46%	63.57%	53.31%	62.02%	59.90%	62.79%

MODELLING RESULT

Prediction and Evaluation

	Accuracy	Precision	Recall	F1 Score	ROC
Logistic Regression	80.12%	63.51%	63.07%	63.29%	74.76%
Gradien Boosting	79.98%	62.08%	67.6%	64.72%	76.98%
Xgboost	79.7%	62.56%	62.89%	62.73%	74.43%
Random Forest	79.56%	61.75%	64.98%	63.33%	74.99%
KNN	71.89%	48.73%	66.72%	56.32%	70.27%

RECOMENDATION

Model yang direkomendasikan yaitu Gradient Boosting yang memiliki:

Accuracy: 79,98%

• Precision : 62.08%

• Recall : 67.7%

• F1 Score : 64.72%

• ROC : 76.98%

• Execution Time: 23 s

Conclusion

- 1. Gradient Boosting is the best model according to the performance of the model
- 2. Monthly charges are significantly affect the customer churn

Recommendation

- 1. Use feature selection, so it could improve the performance of the model
- 2. Retargeting to younger customer by creating the promo discount for longer term and other services
- 3. Increase the performance for all services to reduce customer churn and increase customer satisfaction

Thankyou

Google Collab Link

EDA Link:

https://colab.research.google.com/drive/1V9Si_7DRGv7L5

DRta6AdnzikbRNWGBmk?usp=sharing

Modelling Link:

https://colab.research.google.com/drive/1F2TIXPT91-

6ITg2iHmAx4Gp8R4zj_EP8?usp=sharing