

[特許]2003-403692

[受付日]平成19.05.15

【物件名】

刊行物2

1

【添付書類】

刊行物2

09

(16)日本特許庁 (JP)

(18)公開特許公報 (A)

(19)特許出願番号

特開2002-276842

(P2002-276842A)

(20)公開日 平成14年9月23日(2002.9.25)

(21)請求項

請求項番号

P1

請求項(参考)

C 23 C 22/07

4 D 076

B 05 D 1/30

B 05 D 1/30

Z 4 F 100

7/14

7/14

J 4 J 038

B 32 B 15/08

B 32 B 15/08

Q 4 K 026

C 09 D 5/00

C 09 D 5/00

Z 4 K 044

審査請求 水請求 機械類の第14 OL (生10頁) 是検更に該く

(21)出願番号

特2001-74915(P2001-74915)

(21)出願人

000001403

東京ペイント株式会社

兵庫県尼崎市神崎町38番1号

(22)出願日

平成13年3月15日(2001.3.15)

(22)発明者

山本 武人

兵庫県尼崎市神崎町38番1号 17号1号 間

西ペイント株式会社内

(23)発明者

井田 勝彦

兵庫県尼崎市神崎町38番1号 17号1号 間

西ペイント株式会社内

(24)共同者

阿久井 順

兵庫県尼崎市神崎町38番1号 17号1号 間

西ペイント株式会社内

是検更に該く

(25)【実用の名称】耐食性に優れた焼結鋼板

(27)【要約】

【課題】クロム酸処理、リン酸塗装に代わるクロムフリーの下地処理剤による防腐処理を施した耐食性に優れた焼結鋼板を提供すること。

【解決手段】下地金属材料の表面に、(A)加水分解性チタン化合物、加水分解性チタン化合物低錯合物、水酸化チタン及び水酸化チタン低錯合物から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを反応させて得られるチタンを含む水溶液、(B)リン酸系化合物、金属表面水溶液及び金属表面水溶液から選ばれる少なくとも1種の化合物、及び(C)PH7以下で安定な水性高分子化合物を含有することを特徴とする下地処理剤による皮膜が形成され、該表面処理皮膜上に下塗り剤を介して又は介さずに上塗り塗膜が形成されてなる耐食性に優れた焼結鋼板。

[特許] 2003-403692

[受付日] 平成19.05.15

2

(2)

特開2002-275642

2

【特許請求の範囲】

【請求項1】 下地金属材料の表面に、(A) 加水分解性チタン化合物、加水分解性チタン化合物低結合物、水酸化チタン及び水酸化チタン低結合物から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを反応させて得られるチタンを含む水性液、(B)リン酸系化合物、金属界面活性剤及び金属界面活性剤樹脂から選ばれる少なくとも1種の化合物、及び(C) pH 7以下で安定な水性有機高分子化合物を含有することを特徴とする下地処理剤による皮膜が形成され、該下地処理皮膜上に下塗り塗膜を介して又は介さずに上塗り塗膜が形成されてなる耐食性に優れた塗装鋼板。

【請求項2】 水性液(A)が、酸化チタンゾルの存在下で、加水分解性チタン化合物及び/又は加水分解性チタン化合物低結合物と過酸化水素水とを反応させて得られるチタンを含む水性液(A-1)であることを特徴とする請求項1に記載の塗装鋼板。

【請求項3】 水性液(A)が、過酸化水素水中にチタン化合物を添加して調製されたものであることを特徴とする請求項1又は2に記載の塗装鋼板。

【請求項4】 加水分解性チタン化合物が、加水分解して水酸基になる基を含有するチタンモノマーであることを特徴とする請求項1乃至3のいずれか1項に記載の塗装鋼板。

【請求項5】 加水分解性チタン化合物低結合物が、加水分解して水酸基になる基を含有するチタンモノマーの低結合物であることを特徴とする請求項1乃至3のいずれか1項に記載の塗装鋼板。

【請求項6】 加水分解性チタン化合物が、一般式T1 (OR)_n (式中、RはCH₂—もしくは長鎖なって烷基CH₂—Sのアルキル基を示す) であることを特徴とする請求項1乃至4のいずれか1項に記載の塗装鋼板。

【請求項7】 上記低結合物が、結合度2~30であることを特徴とする請求項1、2又は5に記載の塗装鋼板。

【請求項8】 チタン化合物と過酸化水素水との混合剤合が、チタン化合物10重量部に対して過酸化水素が0.1~100重量部であることを特徴とする請求項1乃至3のいずれか1項に記載の塗装鋼板。

【請求項9】 化合物(B)が、リン酸、メタリン酸、結合リン酸、結合メタリン酸、リン酸ガ、メタリン酸ガ、結合リン酸ガ、結合メタリン酸ガ、ジルコニウム等の水溶性チタン界面活性剤、水溶性チタン界面活性剤から選ばれる少なくとも1種の化合物であることを特徴とする請求項1に記載の塗装鋼板。

【請求項10】 化合物(B)の配合割合が、チタンを含む水性液(A)の濃縮分100重量部に対して1~400重量部であることを特徴とする請求項1又は9に記載の塗装鋼板。

【請求項11】 水性有機高分子化合物(C)が、エポキシ系樹脂、フェノール系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリビニルアルコール系樹脂、ポリアルキレンゲリコール系樹脂、オレフィンカルボン酸系樹脂の少なくとも1種の樹脂から選ばれる水性有機高分子化合物であることを特徴とする請求項1に記載の塗装鋼板。

【請求項12】 水性有機高分子化合物(C)の配合割合が、チタンを含む水性液(A)の濃縮分100重量部に対して10~2,000重量部であることを特徴とする請求項1又は11に記載の塗装鋼板。

【請求項13】 下地処理剤が、pH 1~7の水性液であることを特徴とする請求項1乃至2のいずれか1項に記載の塗装鋼板。

【請求項14】 下地金属材料の表面に、(A) 加水分解性チタン化合物、加水分解性チタン化合物低結合物、水酸化チタン及び水酸化チタン低結合物から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを反応させて得られるチタンを含む水性液、(B)リン酸系化合物、金属界面活性剤及び金属界面活性剤樹脂から選ばれる少なくとも1種の化合物、及び(C) pH 7以下で安定な水性有機高分子化合物を含有することを特徴とする下地処理剤を乾燥膜厚が0.001~1.0 μmとなるように塗布、乾燥させた後、該下地処理皮膜上に下塗り塗膜を介して又は介さずに上塗り塗膜を形成させる耐食性に優れた塗装鋼板の製造方法。

【説明の詳細な说明】

【0001】

【発明の属する技術分野】 クロム酸処理、リン酸処理に代わるクロムフリーの下地処理剤による防腐処理を施した、耐食性に優れた塗装鋼板に関するもの。

【0002】

【従来の技術及びその問題】 従来、溶接鋼板、亞鉄系めっき鋼板、アルミニウム鋼板等の金属材料への表面処理として、クロム酸塗装処理及びリン酸塗装処理が一般に行われているが、クロムの毒性が問題になっている。クロム酸塗装処理は、処理工程でのクロム酸濃度ヒュームの採取の問題、排水処理設備に多大の費用を要すること、さらには化成處理被膜からのクロム酸の溶出による問題などがある。また6種クロム化合物は、IARC (International Agency for Research on Cancer Review) を始めとして多くの公的機関が人体に対する発癌性物質に指定しており優れて有害な物質である。

【0003】 またリン酸塗装処理では、リン酸塗装処理後、通常、クロム酸によるリンス処理を行うためクロム処理の問題があるとともに、リン酸塗装処理剤中の反応促進剤、金属イオンなどの排水処理、被処理表面からの金属イオンの溶出によるステッジ処理の問題がある。

【0004】 クロム酸塗装処理やリン酸塗装処理以外の処理方法としては、(i) 重消散アルミニウムを含有する

[受付日] 平成19.05.15

3

(1)

特許 2002-276642

5

水溶液で処理した後、150～550℃の温度で加熱する表面処理方法（特公昭53-28857号公報参照）、（2）タンニン酸を含有する水溶液で処理する方法（特開昭51-7123号公報参照）などが既報され、また、（3）亞硝酸ナトリウム、硫酸ナトリウム、イミダゾール、芳香族カルボン酸、界面活性剤による処理方法もしくはこれらを組合せた処理方法が行われている。

【0005】しかしながら、（1）の方法は、この上に塗料を塗装する場合、塗料の密着性が十分でなく、また、（2）の方法は、耐食性があり、（3）の方法は、いずれも高湿多湿の雰囲気に暴露された場合の耐食性が劣るという問題がある。

【0006】また、膜厚数μm以下の鋼板の被覆を有する亜鉛系鋼板として、特開昭58-224174号公報、特開昭60-50170号公報、特開昭60-50180号公報などには、亜鉛系めっき鋼板を基材とし、これにクロメート被膜を形成し、さらにこの上に最上層として有機樹脂シリケート被膜を形成した防錆鋼板が知られており、このものは、加工性及び耐食性に優れた性質を有する。しかしながら、この防錆鋼板はクロメート被膜を有するため、前記したと同様にクロメートイオンによる安全衛生面の問題があった。また、この防錆鋼板からクロメート被膜を除いた鋼板では、いまだ耐食性が十分ではない。

【0007】また、リン酸塩処理は皮膜形成に関与しなかったリン酸化合物がスラッジとして沈殿し、このスラッジを廃棄物として処理する必要があり、環境対策および処理コスト等の問題がある。

【0008】本発明の目的は、クロム酸処理、リン酸塩処理に代わるクロムフリーの下地処理剤による防錆処理を施した、耐食性に優れた防錆鋼板を提供することである。

【0009】

【課題を解決するための手段】本発明者らは、金属用防錆剤として、特にチタンを含む水性液、リン酸化合物、金属表面化水素酸及び金属表面化水素酸塩から選ばれる少なくとも1種の化合物、及び水性有機高分子化合物を配合してなる下地処理剤を用いてなる防錆鋼板が上記目的を達成するものであることを見出し、本発明を完成するに至った。

【0010】かくして本発明によれば、下地金属材料の表面に、（A）加水分解性チタン化合物、加水分解性チタン化合物低錯合物、水酸化チタン及び水酸化チタン低錯合物から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを反応させて得られるチタンを含む水性液、（B）リン酸塩化合物、金属表面化水素酸及び金属表面化水素酸塩から選ばれる少なくとも1種の化合物、及び（C）pH7以下で安定な水性有機高分子化合物を含有することを特徴とする下地処理剤による皮膜が形成され、該下地処理皮膜上に下塗り塗膜を介して又は介さず

に上塗り塗膜が形成されたものである耐食性に優れた防

錆鋼板が提供される。

【0011】

【説明の実施の形態】本発明の防錆鋼板は、下地金属材料の表面に、クロム酸処理又はリン酸塩処理の代わりに、特定の下地処理剤による下地処理皮膜を形成すると共に特徴があり、該下地処理皮膜上に下塗り塗膜を介して又は介さずして上塗り塗膜を形成することで耐食性に優れた防錆鋼板を得ることができる。

【0012】まず、上記下地処理剤について説明する。

【0013】下地処理剤

本発明に用いられる下地処理剤は、チタンを含む水性液（A）、リン酸化合物、金属表面化水素酸及び金属表面化水素酸塩から選ばれる少なくとも1種の化合物（B）及び水性有機高分子化合物（C）を含有するものである。

【0014】チタンを含む水性液（A）

下地処理剤で使用されるチタンを含む水性液（A）は、加水分解性チタン化合物、加水分解性チタン化合物低錯合物、水酸化チタン及び水酸化チタン低錯合物から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを反応させて得られるチタンを含む水性液である。該水性液としては、上記したものであれば特に制限なしに從前から公知のものを適宜選択して使用することができる。

【0015】上記した加水分解性チタン化合物は、チタンに直接結合する加水分解性基を有するチタン化合物であって、水、水蒸気などの水分と反応することにより水酸化チタンを生成するものである。また、加水分解性チタン化合物において、チタンに結合する基の全てが加水分解性基であっても、もしくはその一部が加水分解された水酸基であってもどちらでも構わない。

【0016】加水分解性基としては、上記した様に水分と反応することにより水酸化チタンを生成するものであれば特に制限されないが、例えは、低級アルゴキシル基やチタンと結合形成する基（例えば、ハログン原子（塩素等）、水素原子、過酸イオン等）が挙げられる。

【0017】加水分解性基として低級アルゴキシル基を含有する加水分解性チタン化合物としては、特に一般式T1～OR₂（式中、Rは同一もしくは異なるて炭素数1～5のアルキル基を示す）のテトラアルゴキシチタンが好ましい。炭素数1～6のアルキル基としては、例えは、メチル基、エチル基、n-ブロピル基、iso-ブロピル基、カーブチル基、iso-ブチル基、n-ブチル基、t-ブチル基等が挙げられる。

【0018】また、加水分解性基としてチタンと塩を形成する性を有する加水分解性チタン化合物としては、塩化チタン、硫酸チタン等が代表的なものとして挙げられる。

【0019】加水分解性チタン化合物低錯合物は、上記した加水分解性チタン化合物同士の低錯合物である。該低錯合物は、チタンに結合する基の全てが加水分解性基であっても、もしくはその一部が加水分解された水酸基

[特許]2003-409692

[受付日]平成19.05.15

4

(4)

特開2002-275642

5

であってもどちらでも構わない。

【0020】また、塩化チタンや硫酸チタン等の水溶液とアンモニアや苛性ソーダ等のアルカリ溶液との反応により得られるオルトチタン酸(水酸化チタンゲル)も低分子物として使用できる。

【0021】上記した水分解性チタン化合物低分子化合物又は水酸化チタン低分子化合物における結合度は、2~30の化合物が使用可能で、特に結合度2~10の範囲内のものを使用することが好ましい水性液(A)としては、上記したチタン化合物と過酸化水素水とを反応させることにより得られるチタンを含む水性液であれば、従来から公知のものを特に制限なしに使用することができる。具体的には下記のものを挙げることができる。

【0022】①合水酸化チタンのゲルあるいはソルと過酸化水素水を試用して得られるチタニカルイオン過酸化水素錯体あるいはチタン酸(ペルオキソチタン水和物)水溶液(特開昭63-35418号及び特開平1-224220号公報参照)。

【0023】②塩化チタンや硫酸チタン水溶液と堿基性溶液から製造した水酸化チタンゲルと過酸化水素水を作成させ、合成することで得られるチタニア酸成形用液体(特開平9-71418号及び特開平10-57518号公報参照)。

【0024】また、上記したチタニア酸成形用液体において、チタンと堿を形成する基を有する過酸化チタンや硫酸チタン水溶液とアンモニアや苛性ソーダ等のアルカリ溶液とを反応させることによりオルトチタン酸と呼ばれる水酸化チタンゲルを生成させる。次いで水を用いたデカントーションによって水酸化チタンゲルを分離し、よく水洗し、さらに過酸化水素水を加え、余分な過酸化水素を分解除去することにより、黄色透明性液体を得ることができ。

【0025】上記、比較したオルトチタン酸はOH四重の置換や水素結合によって高分子化したゲル状態であり、このままではチタンを含む水性液としては使用できない。このゲルに過酸化水素水を滴下するとOH的一部分が過酸化状態になりペルオキソチタン酸イオンとして消滅、あるいは、高分子鎖が低分子に分離された一種のソル状態になり、余分な過酸化水素は水と酸素になって分解し、無機酸成形用のチタンを含む水性液として使用できるようになる。

【0026】このソルはチタン粒子以外に硫酸原子と水酸原子しか含まないので、乾燥や焼成によって酸化チタンに変化する場合、水と酸素しか発生しないため、ソルゲル法や硫酸塩等の熱分解に必要な炭素成分やハロゲン成分の除空が必要でなく、従来より低温でも比較的容易の良い乾燥性の酸化チタン酸を作成することができる。

【0027】③塩化チタン半硫酸チタンの複数チタン化合物水溶液に過酸化水素水を加えてペルオキソチタン水溶液を形成させ、これに堿基性物質を添加して得られた溶液を放置もしくは加熱することによってペルオキソチタ

ンの複数重合体の沈殿物を形成させた後、少なくともチタン含有原料溶液に由来する水以外の複数成分を除去し、さらに過酸化水素を作成させて得られるチタン酸化物形成用溶液(特開2002-247638号及び特開2002-247639号公報参照)。

【0028】本発明で使用する水性液(A)は、上記公知の方法で得られるチタンを含む水性液を用いることができるが、さらに、塩酸化水素水中にチタン化合物を添加して過酸化方法により得られるチタンを含む水性液を用いることができる。該チタン化合物としては、前記一般式T1~T5のアルキル基を示す)で表される加水分解して水酸基になる基を含有する加水分解性チタン化合物やその加水分解性チタン化合物低分子物を用することが好ましい。

【0029】加水分解性チタン化合物及び/又はその低分子物(以下、これらの中を単に「加水分解性チタン化合物」と略す)と過酸化水素水との混合割合は、加水分解性チタン化合物:10重量部に対して過酸化水素水:0.1~100重量部、特に1~20重量部の範囲内が好ましい。過酸化水素濃度:0.1重量部未満になるとキレート活性が十分でなく白濁沈殿してしまう。一方、100重量部を超えると未反応の過酸化水素が現存し易く財庫中に危険な活性酸素を放出するので好ましくない。

【0030】過酸化水素水の過酸化水素濃度は特に限定されないが3~30重量%の範囲内であることが取り扱いやすさ、操作性等に關係する生成液の形状の点で好ましい。

【0031】また、加水分解性チタン化合物を用いてなる水性液(A)は、加水分解性チタン化合物を過酸化水素水と反応温度1~70℃の範囲内で10分~20時間反応させることにより得られる。

【0032】加水分解性チタン化合物を用いてなる水性液(A)は、加水分解性チタン化合物と過酸化水素水とを反応させることにより、加水分解性チタン化合物が水で加水分解されて水酸基含有チタン化合物を生成し、次いで過酸化水素が生成した水酸基含有チタン化合物に配位するものと推測され、この加水分解反応及び過酸化水素による配位が同時に起こることにより得られるものであり、室温域で安定性が極めて高く長期の保存に耐えるキレート液を生成する。従来の製法で用いられる水酸化チタンゲルはT1-O-T1結合により部分的に三次元化しており、このゲルと過酸化水素を反応させた物とは組成、安定性に同じ本質的に異なる。

【0033】加水分解性チタン化合物を用いてなる水性液(A)を80℃以上で加熱処理あるいはオートクレーブ処理を行うと結晶化した酸化チタンの結晶粒子を含む酸化チタン分離が得られる。80℃未満では十分に酸化チタンの結晶化が進まない。このようにして製造さ

50

[特許] 2003-403692

[受付日] 平成19.05.15

5

(5)

7

れた酸化チタン分散液は、酸化チタン懸濁粒子の粒子径が 10 nm 以下、好ましくは 1 nm ~ 6 nm の範囲である。また、該分散液の外観は半透明状のものである。該粒子径が 10 nm より大きくなると透明性が低下($1\mu\text{ m}$ 以上でフレキシブル)するので好ましくない。この分散液も同様に使用することができます。

【0034】加水分解性チタン化合物 α を用いてなる水性液(A)は、鋼板材料に塗布乾燥、または低温で加熱処理することにより、それ自体で付着性に優れた透明な酸化チタン膜を形成できる。

【0035】加熱処理温度としては、例えば 200°C 以下、特に 150°C 以下の温度で酸化チタン膜を形成することが好ましい。

【0036】加水分解性チタン化合物 α を用いてなる水性液(A)は、上記した温度により水酸基を若干含む非晶質(アモルフス)の酸化チタン膜を形成する。

【0037】また、 80°C 以上の加熱処理をした酸化チタン分散液は透明するだけで結晶性的酸化チタン膜が形成できるため、加熱処理をできない材料のコーティング材として有用である。

【0038】本発明において、水性液(A)として、さらに、酸化チタンソルの存在下で、上記と同様の加水分解性チタン化合物及び/又は加水分解性チタン化合物低結合物と過酸化水素水とを反応させて得られるチタン化合物水溶液(以下、「水性液(A-1)」と略す)を使用することができる。加水分解性チタン化合物及び/又は加水分解性チタン化合物低結合物(即ち加水分解性チタン化合物 α)としては、上記した式 $A-1$ (OB)

・(式中、Rは同一もしくは異なって既定式1~5のアルキル基を示す)で表される加水分解して水酸基になる基を含有するチタンモノマーやその加水分解性チタン化合物低結合物を使用することが好ましい。

【0039】上記した酸化チタンソルは、無定形チタニア、アナタース型チタニア懸濁粒子が水(必要に応じて、例えば、アルコール系、アルコールエーテル系等の水性有機溶剤を含有しても構わない)に分散したソルである。

【0040】上記した酸化チタンソルとしては既来から公知のものを使用することができる。酸化チタンソルとしては、例えば、(1)酸化チタンや酸化チタニルなどの含チタン化合物を加水分解して得られるもの、(2)チタンアルゴキシド等の有機チタン化合物を加水分解して得られるもの、(3)四塩化チタン等のハロゲン化チタン複数を加水分解又は中和して得られるもの等の酸化チタン複数を水に分散した無定形チタニアソルや酸化チタン複数を焼成してアナタース型チタン懸濁粒子としこのものを水に分散したものを使用することができる。無定形チタニアの焼成は少なくともアナターゼの結晶化温度以上の温度、例えば、 400°C ~ 500°C 以上の温度で焼成すれば、無定形チタニアをアナターゼ型チ

20

特開2002-275642

8

タニアに変換させることができる。酸化チタンの水性ソルとして、例えば、TKS-201(ティカ(株)社製、商品名、アナタース型結晶形、平均粒子径 6 nm)、TA-15(日産化学(株)社製、商品名、アナタース型結晶形)、STS-11(石原産業(株)社製、商品名、アナタース型結晶形)等が挙げられる。

【0041】加水分解性チタン化合物 α と過酸化水素水とを反応させるために使用する際の上記酸化チタンソルとチタン過酸化水素反応比との重量比率は $3/10\sim9/10$ 、好ましくは約 $10/90\sim90/10$ 範囲である。重量比率が $1/90$ 未満になると安定性、光反応性等酸化チタンソルを添加した効果が見られず、 $90/1$ を超えると透明性が劣るので好ましくない。

【0042】加水分解性チタン化合物 α と過酸化水素水との混合割合は、加水分解性チタン化合物 α 10重量部に対して過酸化水素溶液 $0.1\sim100$ 重量部、特に $1\sim20$ 重量部の範囲内が好ましい。過酸化水素溶液で 0.1 重量部未満になるとレート形成が十分でなく白濁沈殿してしまう。一方、 100 重量部を超過すると次反応の過酸化水素が残存し周囲中に危険な活性酸素を放出するので好ましくない。

【0043】過酸化水素水の過酸化水素濃度は特に規定されないが $3\sim30$ 重量%の範囲内であることが取り扱いやすさ、操作性に優れる生成液の固形分の点で好ましい。

【0044】また、水性液(A-1)は、酸化チタンソルの存在下で加水分解性チタン化合物 α を過酸化水素水と反応温度 $1\sim70^\circ\text{C}$ の範囲内で $10\text{分}\sim20\text{時間}$ 反応させることにより製造できる。

【0045】水性液(A-1)は、加水分解性チタン化合物 α を過酸化水素水と反応させることにより、加水分解性チタン化合物 α が水で加水分解されて水酸基含有チタン化合物を生出し、次いで過酸化水素が生成した水酸基含有チタン化合物に定位するものと推察され、この加水分解反応及び過酸化水素による配位が同時に起こることにより得られたものであり、無定形で安定性が極めて高く長時間の保存に耐えるレート液を生成する。從来の製法で用いられる水酸化チタンソルは $T-1-O-T$ 構造により部分的に三次元化しており、このゲルと過酸化水素水を反応させた物とは組成、安定性に制し本質的に異なる。また、酸化チタンソルを使用することにより、合成分時に一部結合反応が起きて堆積するのを防ぐようになる。その理由は結合反応物が酸化チタンソルの表面に吸着され、離脱状態での高分子化を防ぐためと考えられる。

【0046】また、チタンを含む水性液(A-1)を 80°C 以上で加熱処理あるいはオートクレーブ処理を行うと結晶化した酸化チタンの結晶粒子を含む酸化チタン分散液が得られる。 80°C 未満では十分に酸化チタンの結晶化が進まない。このようにして製造された酸化チタン

[特許] 2003-403692

[受付日] 平成19.05.15

6

(6)

特開2002-275542

10

分散度は、酸化チタン高嶺粒子の粒子径が1.0 nm以下、好ましくは1 nm～5 nmの範囲である。また、該分散液の外観は半透明状のものである。該粒子径が1.0 nmより大きくなると過濾性が低下(1 μm以上でフレを生じる)するので好ましくない。この分散液も同様に使用することができる。

【0047】チタンを含む水性液(A-1)は、樹脂材料に笠布乾燥、または板幅で加熱乾燥することにより、それ自身で付着性に優れた緻密な酸化チタン膜を形成できる。

【0048】加熱處理温度としては、例えば200°C以下、特に150°C以下の温度で酸化チタン膜を形成することが好ましい。

【0049】チタンを含む水性液(A-1)は、上記した温度により水酸基を含むアクリル酸型の酸化チタン膜を形成する。

【0050】本発明の水性液(A)としては、中でも加水分解性チタン化合物を用いた上記水性液や水性液(A-1)が好適安定性、耐食性などに優れた性質を有するのでこのものを使用することが好ましい。

【0051】上記チタンを含む水性液(A)には、他の調味料やソルトを必要に応じて添加分散する事も出来る。調味料としては、市販されている酸化チタンソルト、酸化チタン粉末等、マイカ、タルク、シリカ、パリタ、クレート等が一例として挙げることができる。

【0052】化合物(B)

下地処理剤の(B)成分である化合物は、リン酸系化合物、金属堿化水素酸及び金属堿化水素酸塩から選ばれる少なくとも1種の化合物である。

【0053】上記リン酸系化合物としては、例えば、正リン酸、換リン酸、三リン酸、次亜リン酸、次リン酸、トリメタリン酸、二亞リン酸、ニリン酸、ピロリリン酸、ピロリン酸、メタジリン酸、メタリリン酸、リン酸(オルトリリン酸)、及びリン酸誘導体等のモノリン酸類及びこれらの塩類、トリポリリン酸、ヘトライリン酸、ヘキサリン酸、及び結合リン酸誘導体等の結合リン酸及びこれらの塩類等が挙げられる。これらの化合物は1種もしくは2種以上組合せて使用することができる。また、上記した酸を形成するアルカリ化合物としては、例えば、リチウム、ナトリウム、カリウム、アンモニウム等の有機又は無機アルカリ化合物が挙げられる。さらに、リン酸系化合物として水に溶解性のあるものを使用することが好ましい。

【0054】リン酸系化合物としては、特に、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、ヘトライリン酸ナトリウム、メタリン酸、メタリン酸アンモニウム、ヘキサメタリン酸ナトリウムなどが、塗布剤の防錆安定性又は塗膜の防錆性等に優れた効果を發揮することから、このものを使用することが好ましい。

【0055】本発明において、上記したチタンを含む水

性液(A)とリン酸系化合物との配合比は、該リン酸系化合物に結合する陰性リン酸基イオンがチタンイオンに配位することにより両者間で錯体構造を形成していると考えられる。

【0056】また、この様な反応は両者の成分を単に混合することにより容易に反応を行うことができる。例えば、常温(20°C)で約5分間～約1時間放置することにより、また混合物を強制的に過濾する場合には、例えば、約30～約70°Cで約1分間～約10分間加熱することができる。

【0057】上記、金属堿化水素酸及び金属堿化水素酸塩としては、例えば、ジルコニウム堿化水素酸、チタン堿化水素酸、鎌堿化水素酸、ジルコニウム堿化塩、チタン堿化塩、鎌堿化塩などを挙げることができる。金属堿化水素酸の塩を形成するものとしては、例えば、ナトリウム、カリウム、リチウム、アンモニウム等が挙げられるが、中でもカリウム、ナトリウムが好ましく、具体的として、ジルコニウム堿化カリウム、チタン堿化カリウム、鎌堿化カリウムなどが挙げられる。

【0058】リン酸系化合物、金属堿化水素酸及び金属堿化水素酸塩は1種では又は2種以上混ぜて用いることができる、化合物(B)の配合割合は、チタンを含む水性液(A)の固形分100重量部に対して、1～400重量部、特に10～200重量部の範囲内が好ましい。

【0059】水性有機高分子化合物(C)

下地処理剤は、上記した成分以外に水性有機高分子化合物(C)が配合される。水性有機高分子化合物(C)はpH7以下で水に溶けやすく溶解した有機高分子成分が凝聚して沈殿したり、また糊結やゲル化の性質を生じる恐れのない有機高分子化合物(C)自体の水性液の生成に優れたものであれば従来から公知のものを使用することができる。

【0060】水性有機高分子化合物(C)は、水溶性、水分散性またはエマルジョン性の形態を有するものを使用することができる。有機高分子化合物を水に水溶化、分散化、エマルジョン化させる方法としては、従来から公知の方法を使用して行うことができる。具体的には、有機高分子化合物として、单體で水溶化や水分散化できる官能基(例えば、水解基、カルボキシル基、アミノ(イミノ)基、スルフィド基、ホスフィン基などの少なくとも1種)を含有するもの及び必要に応じてそれらの官能基の一様又は全部を、酸性樹脂(カルボキシル基含有樹脂等)であればエタノールアミン、トリエチルアミン等のアミン化合物；アンモニア水；水溶化リチウム、水溶化ナトリウム、水溶化カリウム等のアルカリ金属水溶化物で中和したもの、また塩基性樹脂(アミノ基含有樹脂等)であれば、酢酸、乳酸等の脂肪酸；リン酸等の酸度で中和したものなどを使用することができます。

【0061】かかる水性有機高分子化合物(C)として

[特許] 2003-403692

[受付日] 平成19. 05. 15

7

(7)

特許2002-275642

12

は、例えば、エポキシ系樹脂、フェノール系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン-カルボン酸系樹脂、ナイロン系樹脂、ポリオキシアルキレン系を有する樹脂、ポリビニルアルコール、ポリグリセリン、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロースなどが挙げられる。

【0062】上記エポキシ系樹脂としては、エポキシ樹脂にアミンを付加してなるカチオン系エポキシ樹脂；アクリル酸性、ウレタン酸性等の酸性エポキシ樹脂などが適宜に使用できる。カチオン系エポキシ樹脂としては、例えば、エポキシ化合物と、1級モノーもしくはポリアミン、2級モノーもしくはポリアミン、1, 2級混合ポリアミンなどとの付加物（例えば米国特許第3 984 299号明細書参照）；エポキシ化合物とケチミン化された1級アミノ基を有する2級モノーまたはポリアミンとの付加物（例えば米国特許第4 017 433号明細書参照）；エポキシ化合物とケチミン化された1級アミノ基を有するヒドロキシル化合物とのエーテル化反応生成物（例えば特開昭59-143013号公報参照）などがあげられる。

【0063】上記エポキシ化合物は、数平均分子量が400~4,000、特に800~2,000の範囲内にあり、かつエンドシラントが1.0~2,000、特に400~1,000の範囲内にあるものが適している。そのようなエポキシ化合物は、例えば、ポリフェノール化合物とエピルロヒドリンとの反応によって得ることができ、ポリフェノール化合物としては、例えば、ビス(4-ヒドロキシフェニル)-2, 2-プロパン、4-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)-1, 1-エタン、ビス(4-ヒドロキシフェニル)-1, 1-イソブタン、ビス(4-ヒドロキシ-1-エチル)ブチル-1-エチル、2-プロパン、ビス(2-ヒドロキシナフチル)メタン、1, 5-ジヒドロキシナフタレン、ビス(2, 4-ジヒドロキシフェニル)メタン、テトラ(4-ヒドロキシフェニル)-1, 1, 2, 2-エタン、4, 4-ジヒドロキシジフェニルスルホン、フェノールノボラック、クレゾールノボラックなどが挙げられる。

【0064】上記フェノール系樹脂としては、フェノール成分とホルムアルデヒド類とを反応樹脂の存在下で加熱して付加、縮合させて得られる高分子化合物を水溶化したものをお好適に使用することができる。出発原料である上記フェノール成分としては、2官能性フェノール化合物、3官能性フェノール化合物、4官能性以上のフェノール化合物などを使用することができ、例えば、2官能性フェノール化合物として、ローケレゾール、p-クレゾール、p-メト-ブチルフェノール、p-エチルフェノール、2, 3-キシレノール、2, 5-キシレノールなど、3官能性フェノール化合物として、フェノール、m-クレゾール、m-エチルフェノール、3, 5-50

キシレノール、m-メトキシフェノールなど、4官能性フェノール化合物として、ビスフェノールA、ビスフェノールFなどを挙げることができる。これらのフェノール化合物は1種で、又は2種以上組合して使用することができる。

【0065】上記アクリル系樹脂としては、例えば、カルボキシ基、アミノ基、水酸基などの親水性の基を持つモノマーの樹脂重合体又は共重合体、親水性の基を持つモノマーとその他共重合可能なモノマーとの共重合体などが挙げられる。これらは、乳化重合、懸滴重合又は滴液重合し、必要に応じて、中和、水性化した樹脂または樹脂型を活性化して得られる樹脂である。

【0066】上記カルボキシル基含有モノマーとしては、アクリル酸、メタアクリル酸、マレイン酸、無水マレイン酸、クロトン酸、イダコン酸などを挙げることができる。

【0067】含窒素モノマーとしては、N, N-ジメチルアミノエチル（メタ）アクリレート、N, N-ジエチルアミノエチル（メタ）アクリレート、N-メチルアミノエチル（メタ）アクリレートなどの含窒素アルキル（メタ）アクリレート；アクリルアミド、メタクリルアミド、N-メチル（メタ）アクリルアミド、N-エチル（メタ）アクリルアミド、N-メチロール（メタ）アクリルアミド、N-メトキシメチル（メタ）アクリルアミド、N-アトキシメチル（メタ）アクリルアミド、N, N-ジメチルアミノプロピル（メタ）アクリルアミド、N, N-ジメチルアミノエチル（メタ）アクリルアミド等の質合性アミド類；2-ビニルビリジン、1-ビニル-2-ビロリドン、4-ビニルビリジンなどの芳香族含窒素モノマー、アリルアミンなどが挙げられる。

【0068】水酸基含有モノマーとして、2-ヒドロキシエチル（メタ）アクリレート、ヒドロキシプロピル（メタ）アクリレート、2, 3-ジヒドロキシブチル（メタ）アクリレート、4-ヒドロキシブチル（メタ）アクリレート及びボリエチレンジリコールモノ（メタ）アクリレート等の、多価アルコールとアクリル酸又はメタクリル酸とのモノエステル化合物；上記多価アルコールとアクリル酸又はメタクリル酸とのモノエステル化合物にε-カプロラクトンを開環重合した化合物などが挙げられる。

【0069】その他のモノマーとして、メチル（メタ）アクリレート、エチル（メタ）アクリレート、n-ブロピル（メタ）アクリレート、イソブロピル（メタ）アクリレート、n-ブチル（メタ）アクリレート、イソブチル（メタ）アクリレート、t-ブチル（メタ）アクリレート、2-エチルヘキシルアクリレート、ローオクチル（メタ）アクリレート、ラウリル（メタ）アクリレート、トリデシル（メタ）アクリレート、オクタデシル（メタ）アクリレート、イソステアリル（メタ）アクリ

[特許]2003-403692

「受付日」平成19.05.16

8

(8)

特開2002-275642

13

レート等の説明欄1～24のアルキル(メタ)アクリレート、ステレン、酢酸ビニルなどを挙げられる。これらの化合物は、1種で、又は2種以上を組合せて使用することができる。本発明において、「(メタ)アクリレート」は、アクリレート又はメタアクリレートを意味する。

【0070】上記ウレタン系樹脂としては、ポリエステルポリオール、ポリエーテルポリオール等のポリオールとジイソシアネートからなるポリウレタンを必要に応じてジオール、ジアミン等のような2種以上の活性水素を持つ低分子量化合物である鎮静長剤の存在下で製造し、水中に安定に分散もしくは溶解させたものを好適に使用でき、公知のものを広く使用できる(例えば特公昭42-24192号、特公昭42-24194号、特公昭42-5118号、特公昭49-986号、特公昭49-33104号、特公昭50-15027号、特公昭53-29175号(公報登録))。ポリウレタン樹脂を水中に安定に分散もしくは溶解させる方法としては、例えば下記の方法が利用できる。

【0071】(1) ポリウレタンポリマーの側鎖又は末端に水酸基、アミノ基、カルボキシル基等のイオン性基を導入することにより親水性を付与し、自己乳化により水中に分散又は溶解する方法。

【0072】(2) 反応の完結したポリウレタンポリマー又は末端イソシアネート基をオキシム、アルコール、フェノール、メルカプタン、アミン、直鎖或短ソーダ等のプロック剤でプロックしたポリウレタンポリマーを乳化剤と機械的剪断力を用いて強制的に水中に分散する方法。さらに末端イソシアネート基を持つウレタンポリマーを水/乳化剤/顕料共溶媒と混合し機械的剪断力を用いて分散化と高分子量化を行なう方法。

【0073】(3) ポリウレタン主原料のポリオールとしてポリエーテングリコールのごとき水溶性ポリオールを使用し、水に可溶をポリウレタンとして水中に分散又は溶解する方法。

【0074】上記ポリウレタン系樹脂には、前述の分散又は溶解方法については單一方法に限られるものではなく、各々の方法によって得られた混合物も使用できる。

【0075】上記ポリウレタン系樹脂の合成に使用できるジイソシアネートとしては、芳香族、環状及び脂肪族のジイソシアネートが挙げられ、具体的にはヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、3, 3'-ジメトキシ-4, 4'-ビフェニルジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート、1, 3-(ジイソシアナトメチル)シクロヘキサン、1, 4-(ジイソシアナトメチル)シクロヘキサン、4, 4'-メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート、2, 4-トリレンジイソシアネート、2, 6-50%対して10~2, 000重量部、特に100~1, 00

14

トリレンジイソシアネート、p-フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、m-フェニレンジイソシアネート、2, 4-ナフタレンジイソシアネート、3, 3'-ジメチル-4, 4'-ビフェニルジイソシアネート、4, 4'-ビフェニレンジイソシアネート等が挙げられる。これらのうち2, 4-トリレンジイソシアネート、2, 6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートが特に好適しい。

【0076】上記ポリウレタン系樹脂の市販品としては、ハイドランHW-980、同HW-940、同HW-950(いずれも大日本インキ化学工業(株)製)、スーパーフレックス100D、同150、同3438D(いずれも第一工業製革(株)製)などを導入などができる。

【0077】上記ポリビニルアルコール樹脂としては、ケン化度9.7%以上のポリビニルアルコールであることが好ましく、なかでもケン化度9.8%以上の、いわゆる完全ケン化ポリビニルアルコールであることが特に好適しく、また該平均分子量が3, 000~100, 000の範囲内にあることが好適である。

【0078】上記ポリオキシアルキレン樹脂としては、ポリオキシエチレン類又はポリオキシプロピレン類を有するものが好適に使用でき、例えば、ポリエチレングリコール、ポリプロピレングリコール、上記ポリオキシエチレン類と上記ポリオキシプロピレン類とがプロック状に結合したプロック化ポリオキシアルキレングリコールなどを挙げることができる。

【0079】上記オレフィン-カルボン酸系樹脂としては、エチレン、プロピレン等のオレフィンと聚合性不飽和カルボン酸との共重合体の、及び該共重合体の分散液に重合性不飽和化合物を加えて乳化処合しさらに粒子内架橋してなる樹脂の2種から選ばれる少なくとも1種の水分散性又は水溶性樹脂を使用できる。

【0080】上記共重合体のは、オレフィンと(メタ)アクリル酸やマレイン酸等の不飽和カルボン酸との1種又は2種以上の共重合体である。該共重合体においては、該不飽和カルボン酸の含有量が3~80重量%、好ましくは5~40重量%の範囲内であることが適当であり、共重合体中の酸素を活性化物質で中和することにより水に分散できる。

【0081】上記組合せは、共重合体の水分散液に、重合性不飽和化合物を加えて乳化処合し、さらに粒子内架橋してなる樹脂樹脂である。該重合性不飽和化合物としては、例えば前述水分散性又は水溶性のアクリル系樹脂の説明で列挙したビニルモノマー類等が挙げられ、1種又は2種以上の組合せして使用できる。

【0082】水溶性高分子化合物(C)の配合割合は、ウランを含む水溶液(A)の固形分100重量部に

[特許]2003-403692

[受付日]平成19.05.15

9

(9)

特開2002-275642

15

0塗装部の範囲内が被の安定性、防食性などの点から好ましい。

【0083】下地処理剤は、中性もしくは酸性領域で供給される液体となるので、特にPH1~7、特に1~5の範囲が好ましい。

【0084】下地処理剤には、必要に応じて、例えば、上記した成分以外に、増粘剤、界面活性剤、防腐剤、分散剤（タンニン酸、フィチン酸、ベンゾトリアソールなど）、着色剤、体质調和剤、防腐剤などを含有することができる。

【0085】また、下地処理剤には、必要に応じて、例えば、メタノール、エタノール、イソブロピルアルコール、エチレングリコール系、プロピレングリコール系等の相溶性溶剤で希釈して使用することができる。

【0086】次に、本発明の塗装鋼板について詳細に説明する。

【0087】塗装鋼板

本発明の塗装鋼板に用いられる下地金属材料としては、特に鉄素されるものではなく、例えば、冷延鋼板、焼鍛鋼板めっき鋼板、電気亜鉛めっき鋼板、第一亜鉛合金めっき鋼板、ニッケルー亜鉛合金めっき鋼板、アルミニウムー亜鉛合金めっき鋼板（例えば、「ガルバリウム」、「ガルファン」という商品名で販売されている合金めっき鋼板）、アルミニウムめっき鋼板、アルミニウム板などを挙げることができる。また、下地金属材料としては通常熱処理のものが適しているが、クロム酸洗浄液、リン酸鉻酸処理、複合酸化膜処理などの化成処理を施したものに使用しても特に問題はない。

【0088】上記下地金属材料の表面に前述下地処理剤を塗布、乾燥させて表面処理皮膜が形成される。

【0089】下地処理剤は、下地金属材料（組立立てられたものであっても構わない）上に、それ自身堅硬の成膜方法、例えば、浸漬法、シャワー塗装、スプレー塗装、ロール塗装、電着塗装などによって成膜することができる。下地処理剤の乾燥条件は、通常、素材到達最高温度が約60~250°Cとなる条件で約2秒から約30分間乾燥させることができるのである。

【0090】また、下地処理剤の成膜物膜厚としては通常、0.001~10μm、特に0.1~3μmの範囲が好ましい。0.001μm未満になると、耐食性、防水性などの性能が劣り、一方10μmを超えると、表面処理膜が弱れたり加工性が低下したりするので好ましくない。

【0091】上記表面処理皮膜上に下塗り塗膜を介して、又は介さずに上塗り塗膜が被覆される。下塗り塗料、上塗り塗料の種類による制限は特になく、目的に応じて適宜選定すればよい。例えば、塗料組成物は、その形態から溶剤型塗料、水性型塗料、粉末型塗料などに、その硬化方式から熱付け型塗料、光硬化型塗料、冷却硬化型塗料などに、また、塗料組成物を塗布、乾燥して母

50
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
55468
55469
55470
55471
55472
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
554100
554101
554102
554103
554104
554105
554106
554107
554108
554109
554110
554111
554112
554113
554114
554115
554116
554117
554118
554119
554120
554121
554122
554123
554124
554125
554126
554127
554128
554129
554130
554131
554132
554133
554134
554135
554136
554137
554138
554139
554140
554141
554142
554143
554144
554145
554146
554147
554148
554149
554150
554151
554152
554153
554154
554155
554156
554157
554158
554159
554160
554161
554162
554163
554164
554165
554166
554167
554168
554169
554170
554171
554172
554173
554174
554175
554176
554177
554178
554179
554180
554181
554182
554183
554184
554185
554186
554187
554188
554189
554190
554191
554192
554193
554194
554195
554196
554197
554198
554199
554200
554201
554202
554203
554204
554205
554206
554207
554208
554209
554210
554211
554212
554213
554214
554215
554216
554217
554218
554219
554220
554221
554222
554223
554224
554225
554226
554227
554228
554229
554230
554231
554232
554233
554234
554235
554236
554237
554238
554239
554240
554241
554242
554243
554244
554245
554246
554247
554248
554249
554250
554251
554252
554253
554254
554255
554256
554257
554258
554259
554260
554261
554262
554263
554264
554265
554266
554267
554268
554269
554270
554271
554272
554273
554274
554275
554276
554277
554278
554279
554280
554281
554282
554283
554284
554285
554286
554287
554288
554289
554290
554291
554292
554293
554294
554295
554296
554297
554298
554299
554300
554301
554302
554303
554304
554305
554306
554307
554308
554309
554310
554311
554312
554313
554314
554315
554316
554317
554318
554319
554320
554321
554322
554323
554324
554325
554326
554327
554328
554329
554330
554331
554332
554333
554334
554335
554336
554337
554338
554339
554340
554341
554342
554343
554344
554345
554346
554347
554348
554349
554350
554351
554352
554353
554354
554355
554356
554357
554358
554359
554360
554361
554362
554363
554364
554365
554366
554367
554368
554369
554370
554371
554372
554373
554374
554375
554376
554377
554378
554379
554380
554381
554382
554383
554384
554385
554386
554387
554388
554389
554390
554391
554392
554393
554394
554395
554396
554397
554398
554399
554400
554401
554402
554403
554404
554405
554406
554407
554408
554409
554410
554411
554412
554413
554414
554415
554416
554417
554418
554419
554420
554421
554422
554423
554424
554425
554426
554427
554428
554429
554430
554431
554432
554433
554434
554435
554436
554437
554438
554439
554440
554441
554442
554443
554444
554445
554446
554447
554448
554449
554450
554451
554452
554453
554454
554455
554456
554457
554458
554459
554460
554461
554462
554463
554464
554465
554466
554467
554468
554469
554470
554471
554472
554473
554474
554475
554476
554477
554478
554479
554480
554481
554482
554483
554484
554485
554486
554487
554488
554489
554490
554491
554492
554493
554494
554495
554496
554497
554498
554499
554500
554501
554502
554503
554504
554505
554506
554507
554508
554509
554510
554511
554512
554513
554514
554515
554516
554517
554518
554519
554520
554521
554522
554523
554524
554525
554526
554527
554528
554529
554530
554531
554532
554533
554534
554535
554536
554537
554538
554539
554540
554541
554542
554543
554544
554545
554546
554547
554548
554549
554550
554551
554552
554553
554554
554555
554556
554557
554558
554559
554560
554561
554562
554563
554564
554565
554566
554567
554568
554569
554570
554571
554572
554573
554574
554575
554576
554577
554578
554579
554580
554581
554582
554583
554584
554585
554586
554587
554588
554589
554590
554591
554592
554593
554594
554595
554596
554597
554598
554599
554600
554601
554602
554603
554604
554605
554606
554607
554608
554609
554610
554611
554612
554613
554614
554615
554616
554617
554618
554619
554620
554621
554622
554623
554624
554625
554626
554627
554628
554629
554630
554631
554632
554633
554634
554635
554636
554637
554638
554639
554640
554641
554642
554643
554644
554645
554646
554647
554648
554649
554650
554651
554652
554653
554654
554655
554656
554657
554658
554659
554660
554661
554662
554663
554664
554665
554666
554667
554668
554669
554670
554671
554672
554673
554674
554675
554676
554677
554678
554679
554680
554681
554682
554683
554684
554685
554686
554687
554688
554689
554690
554691
554692
554693
554694
554695
554696
554697
554698
554699
554700
554701
554702
554703
554704
554705
554706
554707
554708
554709
554710
554711
554712
554713
554714
554715
554716
554717
554718
554719
554720
554721
554722
554723
554724
554725
554726
554727
554728
554729
554730
554731
554732
554733
554734
554735
554736
554737
554738
554739
554740
554741
554742
554743
554744
554745
554746
554747
554748
554749
554750
554751
554752
554753
554754
554755
554756
554757
554758
554759
554760
554761
554762
554763
554764
554765
554766
554767
554768
554769
554770
554771
554772
554773
554774
554775
554776
554777
554778
554779
554780
554781
554782
554783
554784
554785
554786
554787
554788
554789
554790
554791
554792
554793
554794
554795
554796
554797
554798
554799
554800
554801
554802
554803
554804
554805
554806
554807
554808
554809
554810
554811
554812
554813
554814
554815
554816
554817
554818
554819
554820
554821
554822
554823
554824
554825
554826
554827
554828
554829
554830
554831
554832
554833
554834
554835
554836
554837
554838
554839
554840
554841
554842
554843
554844
554845
554846
554847
554848
554849
554850
554851
554852
554853
554854
554855
554856
554857
554858
554859
554860
554861
554862
554863
554864
554865
554866
554867
554868
554869
554870
554871
554872
554873
554874
554875
554876
554877
554878
554879
554880
554881
554882
554883
554884
554885
554886
554887
554888
554889
554890
554891
554892
5

[特許]2003-403692

[受付日]平成19.05.15

10

(10)

特開2002-275648

18

を、2, 3'-アソビス(2, 4-ジメチルワレニトリル)6部よりも少ない量とともに約2時間を要して液下する。液下終了後両温度で、さらに5時間反応を続けると重合率がほぼ100%、固形分約83%、融点約87の褐色透明な樹脂溶液が得られる。この樹脂溶液500部に対してジメチルアミノエタノール108部を混合し、加水後十分に搅拌することによって固形分30%のアクリル樹脂水分散液(C1)を得た。

【0106】アミン活性エポキシ樹脂の製造

製造例9

搅拌装置、測定冷却器、温度計、液体滴下装置を備えた反応装置に、エピコート1000gレジン(シェル化学会製エポキシ樹脂；分子量3, 760)1, 880g(0.5モル)とメタルイソブチルケトン/キシレン=1/1(質量比)の混合溶媒1, 000gを加えたら後、搅拌開始し、均一に搅拌した。その後70℃まで冷却し、液体滴下装置に分取したジ(n-プロパンオール)アミン70gを30分間を要して液下した。この間、反応温度を70℃に保持した。液下終了後120℃で2時間保持し、反応を完結させることにより、固形分66%のアミン活性エポキシ樹脂を得た。得られた樹脂1, 000gに対して83%の過酸25部を混合し、加水後十分に搅拌することによって、固形分30%のアミン活性エポキシ樹脂水分散液(C2)を得た。

【0107】下地処理剤の製造

下地処理剤S1(実験用)

2%チタン系水性液(A1)50部、20%ジルコニアム氧化水溶液5部、30%アクリル樹脂水分散液(C1)10部及び脱イオン水85部を配合して下地処理剤S1を得た。

【0108】下地処理剤S2～S11(実験用)及び下地処理剤H1～H3(比較例用)表1に示す配合以外以上記下地処理剤S1の製造例と同様にして各下地処理剤を得た。

【0109】

【成1】

17

2)を得た。

【0100】製造例3

チタン系水性液(A2)の製造例のテトラ180-プロポキシチタンの代わりにテトラ-ブトキシチタンを使用して同様の製造条件で固形分2%のチタン系水性液(A3)を得た。

【0101】製造例4

チタン系水性液(A2)の製造例のテトラ180-プロポキシチタンの代わりにテトラ180-ブロボキシチタンの3量体を使用して同様の製造条件で固形分2%のチタン系水性液(A4)を得た。

【0102】製造例5

チタン系水性液(A2)の製造例において過酸化水素水を3倍量用い50℃で1時間かけて液下しさらにもう一度3時間熟成し固形分2%のチタン系水性液(A5)を得た。

【0103】製造例6

チタン系水性液(A3)を85℃で6時間加熱処理し、白黄色の半透明な固形分2%のチタン系水性液(A6)を得た。

【0104】製造例7

テトラ180-ブロボキシチタン10部と150-ブロボノール10部の混合物を、TKS-203(ティカ(株)製、酸化チタンソリ)を5部(固形分)、30%過酸化水素水10部、脱イオン水100部の混合物中に10℃で1時間かけて搅拌しながら液下した。その後10℃で24時間熟成し黄色透明の少し粘性のある固形分2%のチタン系水性液(A7)を得た。

【0105】アクリル樹脂の製造

製造例8

搅拌計、搅拌機、冷却器、液下ロートを備えた1Lの四ツ口フラスコに、イソプロピルアルコール180部を入れ、空気導線の後、フラスコ内の温度を85℃に調整し、エチルアクリレート140部、メチルメタクリレート88部、ステレン15部、N-ホーブトキシメチルアクリルアミド15部、2-ヒドロキシエチルアクリレート38部及びアクリル酸24部よりも少ない单量体混合物

10

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

「特許」2003-403692

[受付日]平成19.05.15

11

10

NE2002-275842

2

19

GE1772-1774-111:化成高工製社製、塗化ビニリデン樹脂、固形分30%
(GE222-224-114):クラフト紙、ペリビニルアルコール、固形分10%

10.1.1.01 対象地図の作成

附錄二

第十一章 例題1-3

板厚0.6mm、片面の重ね付着量20g/m²の電気歪めつき複板を脱脂洗浄後、その上に上記式1に示す下地処理剤を塗装膜厚が0.3μmとなるよう塗装し、15秒間でPMT(複板の最高燃焼温度)が100°Cとなる条件で焼き付けて各試験板を作成した。ついで得られた各処理板上に、コスマー2050(西ペイント(株)製、商品名、アクリル/シリカ複合化樹脂)を塗装膜厚が0.5μmとなるよう塗装し、20秒間でPMT120°Cになる条件で焼き付けて各試験板を作成した。

[10.1.1] 得られた各試験結果に對照性及び上層組織の密着性の試験を行った。その試験結果を表表2に示す。試験は以下の基準方法に沿って行った。

【0112】耐久性：試験過程の端面部及び底面部をシールした試験容器に、JIS Z 2371に規定する塩水噴霧試験を240時間まで行い、120時間経過時及び240時間経過時ににおける底面の割れの程度を下記基準により判定した。

a : 白鶴の発生が認められない、
 b : 白鶴の発生頻度が陰道面積の 0 %未満、
 c : 白鶴の発生頻度が陰道面積の 5 %以上で 10 %未

三

- ・ d：白瘡の発生率が並頭面積の10%以上及び50%未満、

e: 白鷺の発生頻度が塗膜面積の50%以上。
 [0113] 上塗装膜の密着性: 試験塗板にアミドラック
 オリ1000ホワイト(関西ペイント(株)製、熟硬化型
 アルキド樹脂塗料、白色)を乾燥膜厚が30μmとなる
 ように塗装し、180℃で20分間焼付けて上塗装塗
 板-1を得た。また別に、試験塗板にマジクロン#10
 00ホワイト(関西ペイント(株)製、熟硬化型アクリ
 ル樹脂塗料、白色)を乾燥膜厚が30μmとなるよう
 に塗装し、180℃で20分間焼付けて上塗装塗板-2
 を得た。得られた上塗装塗板-1及び上塗装塗板-2に
 ついて、塗膜面にナイフにて深さに達する凹部を1本
 の線を基準目状に入れて1mm角のマスクを100箇所
 成した。この基盤目間にセロハン接着テープを密着させ
 て瞬時にテープを剥がした際の上塗装膜の剥離程度を下
 部基盤にとり評定した。

a: 上層地盤の刺繡が全く認められない、
 b: 上層地盤の刺繡が1~2個認められる、
 c: 上層地盤の刺繡が3~10個認められる、
 d: 上層地盤の刺繡が10個以上認められる。

10114

132

[特許]2003-403692

[受付日]平成19.05.15

12

(12)

特開2002-275642

21
22

下地材種別 No	表面仕上げ			
	耐水性 A	耐油性 B	耐溶剤性 C	マジカル D
1	A	b	a	a
2	B	a	b	a
3	C	a	a	a
4	D	a	a	a
5	E	a	b	a
6	F	a	a	a
7	G	a	a	a
8	H	a	a	a
9	I	a	a	a
10	J	a	a	a
11	K	a	a	a
12	L	a	a	a
13	M	a	a	a
14	N	a	a	a
15	O	a	a	a
16	P	a	a	a
17	Q	a	a	a
18	R	a	a	a
19	S	a	a	a
20	T	a	a	a
21	U	a	a	a
22	V	a	a	a
23	W	a	a	a
24	X	a	a	a
25	Y	a	a	a
26	Z	a	a	a

【0116】試験方法(2)

実施例12~22及び比較例4~8

板厚0.4mm、片面のめっき付重量120g/m²の
被膜塗りぬき鋼板を試験用鋼板、その上に上記下地材
塗装を乾燥膜厚が0.3μmとなるように塗装し、10
秒間でPMT(鋼板の最高強度温度)が100°Cとなる
条件にて乾燥板を作成した。ついで、この乾燥板上にK
Pカラー8000プライマー(界面ペイント(株)製、
酸性エボキシ系塗料)を乾燥膜厚が5μmとなるよう
に塗装し、20秒間でPMTが210°Cとなる条件で塗装
を形成し、ついでこのプライマー塗膜上にPカラー-
580ホワイト(界面ペイント(株)製、ポリエスチル
樹脂系塗料、白色)を乾燥膜厚が1.5μmとなるよう
に塗装し、40秒間でPMTが215°Cとなる条件で塗付
けて上層塗装を有する各試験板を作成した。これら
の試験板について、上層塗装の剥離性、耐食性及び耐温
性の試験を行った。その試験結果を後記表3に示す。各
試験は下記の試験方法に従って行った。

【0116】上層塗装の密着性：塗膜面にナイフにて表
面に達する鉛筆11本の墨を基盤目状に入れて1mm
角のマス目を100個作成した。この基盤目部にセロハ
ン粘着テープを密着させて同時にテープを剥がした際の
上層塗装の剥離度を下記基準により評価した。
a：上層塗装の剥離が全く認められない、
b：上層塗装の剥離が1~2個認められる、
c：上層塗装の剥離が3~10個認められる、
d：上層塗装の剥離が10個以上認められる。

【0117】耐食性：70×150mmの大きさに切削
した、上層塗装を有する試験用鋼の端面部及び裏面部を
シールした後、試験用鋼の上面に4T折り曲げ部(塗面
面を外側にして0.4mm厚のスペーサー4枚を挟んで
180度折り曲げ加工した部分)を設け、試験用鋼の下
部にクロスカット部を設けた試験板についてJISZ22
371に規定する塩水攻撃試験を1000時間行った。

試験後の試験板における、4T折り曲げ部での白錆の発
生程度、クロスカット部のふくれ幅、一般部(即工、カ
ットのない中央部)のふくれ発生程度を下記基準にて評
価した。

【一般部のふくれ発生範囲】

a：ふくれの発生が認められない、

b：わずかにふくれの発生が認められる、

c：かなりのふくれの発生が認められる、

d：著しいふくれの発生が認められる。

【クロスカット部のふくれ幅】

e：クロスカットからの片側ふくれ幅が1mm未溝、

b：クロスカットからの片側ふくれ幅が1mm以上で2
mm未溝、c：クロスカットからの片側ふくれ幅が2mm以上で5
mm未溝、

d：クロスカットからの片側ふくれ幅が5mm以上。

【4T折り曲げ部での白錆の発生程度】

a：白錆の発生が認められない、

b：白錆がわずかに発生、

c：白錆がかなり発生、

d：白錆が著しく発生。

【0118】耐湿性：上層塗装を有する試験用鋼の想面
及び裏面部をシールした試験用鋼を、JIS X 84
00 9.2.2に準じて耐湿試験を行った。耐湿試験
機ボックス内の温度が49°C、相対湿度が95~100
%の条件下試験時間は1000時間とした。試験後の試
験用鋼の腐敗のふくれ発生程度を下記基準により評価し
た。

a：ふくれの発生が認められない、

b：わずかにふくれの発生が認められる、

c：かなりのふくれの発生が認められる、

d：著しいふくれの発生が認められる。

【0119】

【走3】

[特許]2003-403692

[受付日]平成19.05.15

13

(19)

特別2002-275642

23

24

試験番号	試験結果					
	下層塗装用 N _o	上層塗装 N _o	初期 温度 (℃)	初期 湿度 (%)	初期 露点 (℃)	初期 風速 (m/s)
試験1	S1	S1	3	5	-2	0.2
試験2	S2	S2	2	5	-5	0.4
試験3	S3	S3	4	5	-3	0.3
試験4	S4	S4	5	5	-2	0.5
試験5	S5	S5	6	5	-1	0.6
試験6	S6	S6	7	5	0	0.7
試験7	S7	S7	8	5	-1	0.8
試験8	S8	S8	9	5	-2	0.9
試験9	S9	S9	10	5	-3	1.0
試験10	S10	S10	11	5	-4	1.1
試験11	S11	S11	12	5	-5	1.2
試験12	S12	S12	13	5	-6	1.3
試験13	H1	H1	14	5	-7	1.4
試験14	H2	H2	15	5	-8	1.5
試験15	H3	H3	16	5	-9	1.6

【0120】試験方法(9)

実施例23～28及び比較例7～8
板厚0.6mm、片面のけっこう付着量20g/m²の遮
気型外めっき鋼板を耐候防錆漆。その上に上記表1に示
す下地処理剤を充満濃度が0.3μmとなるように塗装
し、15秒間でPMT(鋼板の吸湿吸透速度)が100
でとなる条件で焼き付けた後、マジクロン#1000ホ
ワイト(調合ペイント(株)製、耐候化型アクリル樹脂
塗料、白色)を乾燥膜厚が30μmとなるように塗装
し、150℃で20分間焼き付けて各試験塗被を作成し
た。

【0121】得られた各試験塗被について、耐候性及び
塗膜の密着性の試験を行った。その試験結果を表記表4
に示す。試験は下記の試験方法に準じて行った。

【0122】塗膜の密着性：塗装面にナイフにて素的に
達する状況を11本の線を基盤目状に入れて1mm角の
マス目を100個作成した。この基盤目部にセロハン粘
着テープを密着させて瞬時にテープを剥がした際の上層
塗膜の剥離程度を下記基準により評価した。
 a：上層塗膜の剥離が全く認められない。
 b：上層塗膜の剥離が1～2箇認められる。
 c：上層塗膜の剥離が3～10箇認められる。
 d：上層塗膜の剥離が10箇以上認められる。

【0123】耐食性：試験塗板の輪郭部及び裏面部をシ
ールした試験塗板に、JIS Z 22371に規定する塩
水噴霧試験を240時間まで行い、一般塗膜部の両の強
度、クロスカット部のフレの程度を下記基準により評
価するとともに、クロスカット部をテープで封がした後
の塗膜剥離寸(μm)を測定した。

【一般部の白錆発生程度】

- a：白錆の発生が認められない。
- b：白錆の発生程度が塗膜面積の5%未満。
- c：白錆の発生程度が塗膜面積の6%以上で10%未
満。

d：白錆の発生程度が塗膜面積の10%以上で50%未
満。

e：白錆の発生程度が塗膜面積の50%以上。

【クロスカット部のふくれ幅】

- a : クロスカットからの片側ふくれ幅が1mm未満。
- b : クロスカットからの片側ふくれ幅が1mm以上で2
mm未満。
- c : クロスカットからの片側ふくれ幅が2mm以上で5
mm未満。
- d : クロスカットからの片側ふくれ幅が5mm以上。

【基盤】

13

[特許]2003-403692

[受付日]平成19.05.15

14

(14)

特開2002-275642

23

22

図4

	下地処理剤 No.	被覆性 △	上地材			寸法 mm
			一般部	穴部分	200×200mmブロック、粗粒部	
1	G1	△	△	△	△	25
2	G2	△	△	△	△	20
3	G3	△	△	△	△	10
4	G4	△	△	△	△	15
5	G5	△	△	△	△	25
6	G6	△	△	△	△	10
7	G7	△	△	△	△	20
8	G8	△	△	△	△	10
9	G9	△	△	△	△	20
10	G10	△	△	△	△	30
11	G11	△	△	△	△	25
12	G12	△	△	△	△	10
13	G13	△	△	△	△	10
14	G14	△	△	△	△	10
15	G15	△	△	△	△	10
16	G16	△	△	△	△	10
17	G17	△	△	△	△	10
18	G18	△	△	△	△	10
19	G19	△	△	△	△	10

【0125】試験方法(4)

実施例34~44及び比較例10~12

厚さ0.27mmの#5182アルミニウム板に脱脂洗浄液、その上に上記表に示す下地処理剤を乾燥膜厚が0.3μmとなるように塗装し、15秒間でPMT100℃となる条件で焼付けた後、エピコート1009(ジヤパンエポキシレジン社製)、ビスフェノールA型エポキシ樹脂、エポキシ樹脂量3.500、硬化促進子量2.750)80g、ビタノール4020(日立化成工業社製、フェノール樹脂)20g、リン酸0.4gとなりるクリヤー塗料を乾燥膜厚が120mg/cm²となるようにロールコーティングで塗装し、コンペア塗装式の熱風乾燥機内を通過させて焼付け試験盤板を得た。焼付け条件は、PMTが240℃、乾燥炉内通過時間が20秒間の条件とした。得られた試験盤板について下記の試験方法に基いて各種試験を行った。その試験結果を後記表5に示す。

【0126】試験方法

加工性:特製ハゼ折り型デュポン耐溶性試験用い、断面端が外側になるように下部を2つ折りした試験装置の折り曲げ部の間に厚さ0.3mmのアルミニウム板を1枚挟んで試験器に設置し、接触面が平らな厚さ1kgの板の端を高さ60cmから落下げて折り曲げ部に衝撃を与えた後、折り曲げ先端部に5.5Vの電圧を5秒間通させた際の、折り曲げ先端部2mm幅の電流値(mA)を測定し、下記基準にて評価した。

- :電流値が0.5mA未満、
- :電流値が0.5mA以上で1.0mA未満、
- △:電流値が1.0mA以上で5.0mA未満、
- ×:電流値が5.0mA以上。

【0127】加工部耐食性:超音波洗浄機を用いて試験盤板の表面加工を行った表面を、リンゴ酸2g、クエン酸2g及び食塩2gを脱イオン水100mlに溶解した水溶液を充填した恒温槽に巻き始め、試験加工された試験盤板の塗装面が内容物に浸漬された状態で50℃での室内で5日間放置した後、缶を切り開き缶口の状態を観察し

下記基準にて評価した。

- :缶蓋に異常は認められない、
- :缶蓋に斑は認められないが、軽くわずか変化が認められる、

△:缶蓋に少し斑が認められる、

×:缶蓋に著しく斑が認められる、

【0128】耐食性(即ちフェザリング性):加工部耐食性を評価する場合と同様にして試験盤板に鋼線加工を行い、この缶蓋を100℃の沸騰水中に10分間浸漬後、盤面を下側にした状態でその裏の開口部を上方に引き上げるように開口し、開口端からからの油漏れを下記基準により評価した。

- :油漏の最大距離が0.2mm未満、
- :油漏の最大距離が0.2mm以上で0.5mm未満、

△:油漏の最大距離が0.5mm以上で1.0mm未満、
×:油漏の最大距離が1.0mm以上。

【0129】溶剤耐性:試験盤板を水に浸漬し、オートクレーブ中で125℃で30分間処理した生菌の白化状態を下記基準により評価した。

- :全く白化が認められない、
- :ごくわずかに白化が認められる、

△:少し白化が認められる、

×:著しく白化が認められる。

【0130】衛生性:試験盤板と活性炭処理した水道水と、試験盤板の塗装面積1cm²に対して活性炭処理した水道水の量が1ccとなる割合で、耐熱ガラス製ポートルに入れ、蓋をしてオートクレーブ中にて125℃で30分間処理を行い、処理後の内溶液について食品衛生法認定の試験法に準じて過マンガン酸カリウムの消費量(ppm)に基づき、衛生性を評価した。

- :消費量が1ppm未満、
- :消費量が1ppm以上3ppm未満、
- △:消費量が3ppm以上10ppm未満、

×:消費量が10ppm以上。

[特許]2003-403692

[受付日]平成19.05.15

15

(15)

特開2002-275842

27

28

- 【0131】接着性：2枚の試験基板（150×5mm）の底面を被検面としてナイロンフィルムを嵌め込み、これを200°Cで60秒間加熱し、その後200°Cで30秒間加圧してナイロンを貫通面に接着させたものを試験片とした。次に、この試験片のT型引張強度を引張り試験機（標準オートグラフAGS-500A）を使用して引張り速度200mm/分、温度20°Cの条件下で測定した。5回の平均値を下記基準により評価した。
- : 3kg/5mm以上
 - : 2kg/5mm以上で3kg/5mm未満
 - △: 1kg/5mm以上で2kg/5mm未満
 - ×: 1kg/5mm未満
- 【0132】
【東6】

下地処理番 No.	加工性	耐溶剤 性	引張り強度(4)		耐水性	耐湿性
			引張り 強度 N/mm	伸び %		
実験番号34	○	○	○	○	○	○
実験番号35	○	○	○	○	○	○
実験番号36	○	○	○	○	○	○
実験番号37	○	○	○	○	○	○
実験番号38	○	○	○	○	○	○
実験番号39	○	○	○	○	○	○
実験番号40	○	○	○	○	○	○
実験番号41	○	○	○	○	○	○
実験番号42	○	○	○	○	○	○
実験番号43	○	○	○	○	○	○
実験番号44	○	○	○	○	○	○
実験番号45	△	△	△	△	○	○
実験番号46	△	△	△	△	○	○
実験番号47	△	△	△	△	○	○
実験番号48	○	○	○	○	○	○
実験番号49	○	○	○	○	○	○
実験番号50	○	○	○	○	○	○
実験番号51	○	○	○	○	○	○
実験番号52	△	△	△	△	○	○
実験番号53	○	△	○	○	○	△
比収率12	○	△	○	○	○	△

フロントページの焼き

(51) Int. Cl.
C09B 5/08
185/00
201/00
C23C 22/36
28/00

F.I
C09D 5/08
185/00
201/00
C23C 22/36
28/00

トヨード(参考)

C

(72) 権利者 遠峰 遼
神奈川県平塚市第八橋4丁目17番1号 内
西ペイント株式会社内