Aufgabe 1 a) Geben Sie *minimale* Domänen für die Attribute an. (Berücksichtigen Sie nur auftretende Werte)

- b) Bestimmen Sie das volle Schema der Relation. (Wählen Sie dafür geeignetere Domänen als die in a) bestimmten)
- c) Geben Sie die Tabelle als Relation (Menge von Tupeln) an.

Lösung

```
a)
                        TelefonNr: D = \{NULL, 0338541212, 0338541214\}
                        Talort: D = \{NULL, Grindelwald, Wengen\}
                        Skigebiet: D = \{NULL, First, Kl.Scheidegg\}
                        Lift: D = \{NULL, Oberjoch, Oberj\"{a}er, Fallboden\}
                        Kapazit\ddot{a}t: D = \{NULL, 2000, 2500, 300\}
b)
                           S_{Liftbetreiber} = (\text{TelefonNr: string} \cup \{\text{NULL}\},
                                            Talort: string \cup {NULL},
                                            Skigebiet: string \cup {NULL},
                                            Lift: string \cup {NULL},
                                            Kapazität: int ∪ {NULL})
c)
              S_{Liftbetreiber} = \{(0338541212, Grindelwald, First, Oberjoch, 2500),
                              (0338541212, Grindelwald, First, Oberläger, 2000),
                              (0338541212, Grindelwald, Kl. Scheidegg, Fallboden, 3000),
                              (0338541214, Wengen, Kl. Scheidegg, Fallboden, 3000)}
```

Aufgabe 2

Definition: Ein Schlüsselkandidat heisst **minimal** falls keines der Attribute darin weggelassen werden kann ohne dass er die Primärschlüssel-Eigenschaft verliert. Das heisst formal:

Falls $K = (U_1, \dots, U_n)$ eine Sequenz von Attributen ist, so dass für alle Instanzen R von Schema S gilt dass

$$\forall s, t \in R : s[K] = t[K] \implies s \simeq t,$$

dann ist K minimal falls eine Instanz R_1 , zwei Tupel $s_1, t_1 \in R_1$ und ein $1 \le i \le n$ existieren, so dass gilt:

$$s_1[(U_1,\ldots,U_{i-1},U_{i+1},\ldots,U_n)] = t_1[(U_1,\ldots,U_{i-1},U_{i+1},\ldots,U_n)] \land \neg(s_1 \simeq t_1)$$

a) Bestimmen Sie alle für das Schema der gegebenen Tabelle noch möglichen minimalen Schlüsselkandidaten (möglichen Primärschlüssel) und zwei nichtminimale Schlüsselkandidaten. Sie müessen die Minimalität Ihrer Schlüssel *nicht* beweisen.

b) Welchen Primärschlüssel (primary key) würden Sie wählen? Warum? Das Hinzufügen von Spalten ist erlaubt, falls es sinnvoll ist.

Lösung

Minimale Schlüssel sind: Schlüssel, die minimal sind \Rightarrow 2 Eigenschaften!

Es sind Schlüssel, sie erschliesen also die restlichen Attribute.

Sie sind minimal, es können also keine Attribute weggelassen werden, ohne dass die Schlüsseleigenschaft verloren geht.

- a) Minimale Schlüssel:
 - K_1 =(TelefonNr, Lift)
 - K_2 =(TelefonNr, Kapazität)
 - $K_3 = (Talort, Lift)$
 - K_4 =(Talort, Kapazität)

Nicht minimale Schlüssel. z.B.:

- K_5 =(TelefonNr, Skigebiet, Lift)
- K_6 =(Talort, Lift, Kapazität)
- b) Einen neuen Schlüssel LiftbetreiberID oder ähnlich.

Aufgabe 3

Wie kann man die folgenden Integritätsbedingungen formulieren? Ausser bei der Aufgabe a) darf davon ausgegangen werden, dass keine NULL-Werte vorkommen.

- a) Jeder Liftbetreiber muss eine Telefonnummer besitzen.
- b) Jeder Liftbetreiber muss eine Kapazität von mindestens 1000 und höchstens 5000 aufweisen.
- c) Liftbetreiber mit gleichem Talort müssen über die selbe Telefonnummer erreicht werden.
- d) Verschiedene Liftbetreiber müssen entweder unterschiedliche Lifte haben, oder in unterschiedlichen Talorten sein.

Zusatzaufgabe(freiwillig): Wie müssen die entsprechenden Integritätsbedingungen in den Aufgaben c) und d) lauten, wenn NULL-Werte möglich sind?

Lösung

a) $\forall s \in Liftbetreiber$: s[TelefonNr] is not NULL

Eine falsche Lösung wäre zum Beispiel: $\forall s \in Liftbetreiber$: s[TelefonNr] \neq NULL Weil: Das Tupel (NULL, Grindelwald, First, Oberläger, 2000) erfüllt obige Bedingungen weil: NULL \neq NULL

- b) $\forall s \in Liftbetreiber : 1000 \le s[\text{Kapazit"at}] \le 5000$
- c) $\forall s, t \in Liftbetreiber$: (t[Talort]=s[Talort] \Rightarrow t[TelefonNr] = s[TelefonNr]) Falls NULL-Werte möglich sind: $\forall s, t \in Liftbetreiber$: (s[Talort] NULL \vee t[Talort] NULL) \vee (t[Talort]=s[Talort] \Rightarrow t[TelefonNr] \simeq s[TelefonNr])
- d) $\forall s,t \in Liftbetreiber$: (s[Lift, Talort] = t[Lift, Talort] \Rightarrow s = t) Falls NULL-Werte möglich sind: $\forall s,t \in Liftbetreiber$: (s[Lift] NULL \vee t[Lift] NULL \vee s[Talort] NULL \vee t[Talort] NULL) \vee (s[Lift, Talort] = t[Lift, Talort] \Rightarrow s \simeq t)

Warum ist $\forall s,t \in Liftbetreiber$: (s[Lift] \neq t[Lift] \vee s[Talort] \neq t[Talort]) keine Lösung? Nur ein Tupel in dem Lift oder Talort NULL sind, erfüllt diese Bedingung. Begründung: Mit \forall verlangen wir, dass wir jedes beliebige Tupel für s und t einsetzen können, insbesondere auch für beide das gleiche Tupel.