Фотодетекторы нового поколения - Микропиксельные лавинные фотодиоды

Анфимов Николай

anphimov@gmail.com,

+7(49621)6-24-83

Лаборатория Ядерных Проблем, Объединенный Институт Ядерных Исследований, 141980, Жолио-Кюри 6, Дубна, Россия.

Научная Школа для учителей физики из стран-участниц ОИЯИ, Дубна. 2010

Что такое фотодетектор?

- Фотодетектор (фотоприемник) прибор для регистрации света.
- Фотодетекторы переводят *световой* сигнал в электрический.
- Принцип действия большинства современных фотодетекторов основан на явлении фотоэлектрического эффекта.

Где фотодетекторы встречаются в обычной жизни?

Сколько фотонов в помещении?

- Типичная освещенность в помещении ≈ 200 лк (люкс)
- 1 лк = 1 лм / м². (люмен на метр квадратный)
- 1 лм = 1 кд \times ср. (кандела на стерадиан)
- 1 кд = (1/683) Вт/ср. (при ν = 540 ТГц или λ = 555 нм)
- $E_{\chi}(\nu = 540 \text{ ТГц}) = h\nu = 6.62 \cdot 10^{-34} [Дж \cdot c] \cdot 540 \cdot 10^{12} [c^{-1}] = 3.57 \cdot 10^{-19} Дж. энергия одного фотона!$
- 1 лм = 1/683 Вт = 1/683 Дж/с = $4.1 \cdot 10^{15}$ фотонов/с
- 200 лк = $8.2 \cdot 10^{17}$ [фотонов/м²/с] $\approx 10^{18}$ [фотонов/м²/с]

Зачем нужны фотодетекторы в ядерной физике?

• Сцинтилля́торы — вещества, обладающие способностью излучать свет при прохождении/поглощении ионизирующего излучения (гамма-квантов, электронов, альфа-частиц и пр.).

При прохождении ионизирующей частицы возникает быстрая вспышка света ($<1\mu$ s) малой интенсивности (вплоть до единичных фотонов) Вывод: Для регистрации излучений при помощи сцинтилляторов требуются очень чувствительные фотодетекторы!!!

Основные разновидности фотодетекторов

- Вакуумные лампы: в настоящее время это ФотоЭлектронные Умножители — ФЭУ (используются для регистрации света сверхмалых интенсивностей вплоть до единичных фотонов)
- Полупроводниковые: фотосопротивления (практически не используются), фотодиоды и фототранзисторы (бытовая техника, и приборы где необходимо регистрировать достаточно большие интенсивности света > 10⁶ фотонов), лавинные фотодиоды (для регистрации малых интенсивностей света > 10³ фотонов), Микропиксельные Лавинные ФотоДиоды МЛФД (полупроводниковый аналог ФЭУ).

Фотографии различных фотодетекторов

Принцип работы МЛФД

На сегодняшний день при изготовлении глубинных МЛФД используется техпроцесс от 130 нм!

Возможность счета фотонов

Где можно применять МЛФД?

- Ядерная медицина: <u>ПЭТ-, ПЭТ/МРТ</u> томографии.
- Физика высоких энергии: счетчики, калориметрия, годоскопы и пр;

Приборы контроля багажа (интроскопы);

Индивидуальные, компактные дозиметры;

Мониторинг радиоактивности;

Волоконно-оптическая связь;

Секвенирование ДНК;

Оптические суперкомпьютеры;

и др. области где необходима регистрация света малой интенсивности.

Применение МЛФД в Позитрон-Эмиссионной Томографии (ПЭТ)

Применение МЛФД в Позитрон-Эмиссионной Томографии (ПЭТ)

Изготовление МЛФД в ЛЯП ОИЯИ

Спасибо за внимание!!!

