N85-32437

SILICON RIBBON STRESS-STRAIN ACTIVITIES

JET PROPULSION LABORATORY

B.K. Wada C.F. Shih C.P.Kuo W.M. Phillips

Objective

PRESENT PRELIMINARY RESULTS

- STRESS STRAIN
- MATERIAL PROPERTIES

Ultimate Goal

· ULTIMATE GOAL-ANALYTICAL SIMULATION

- · VALUABLE FOR
 - · LOWER COST, LOWER YIELD
 - · HIGH EFFICIENT CELLS

JPL Stress-Strain Effort

- * USE EXISTING FINITE ELEMENT CODES
 - * FLEXIBILITY IN GEOMETRY
- THO APPROACHES
- I. QUASI-STATIC NASTRAN DR. C-F SHIH
- 11. IN-PROCESS GROWTH ANSYS DR. C. P. KUO

- * TOTAL PROBLEM
 - STRESS, BUCKLING, MATERIAL NON-LINEARITY, CREEP, IMPERFECTION ----> WHAT'S CRITICAL?
 - PARAMETRIC STUDY ----> VARY ENGINEERING PARAMETERS
 -----> SUPPORT PROJECT

Quasi-Static

In-Process Growth

Failure Considerations

- HIGH FINAL RESIDUAL STRESS ----->
 HANDLING PROBLEMS
- HIGH IN-PROCESS RESIDUAL STRESS ----->
 DISLOCATIONS -----> LOW EFFICIENCIES
- * BUCKLING -----> DEFORMED PRODUCTS ----->
 INSTALLATION -----> BREAKAGE

in which had been a

Temperature Profile

ORIGINAL PAGE IS OF POOR QUALITY Finite Element Model of 4 × 2 in. Silicon Ribbon

(Genm)

A-A Cres Section

- Carried States

Elastic Constant as a Function of Temperature (Burenkov)

Stress Contours and Their Corresponding Stress Levels

While Kindle Williams

SILICON SHEET

ORIGINAL PAGE IS OF POOR QUALITY

L = 4 in., c = 1 in., t = 0.01 in., D = 0.07 in.

λ. = 0.3987

4th Mode \(\lambda = 0.7289 \)

5th Mode \(\lambda_3 = 1.1649\)

First Five Buckling Modes of EFG Ribbon (D = 0.0 in.)

Buckling Mode (D = 0.035 in.)

Buckling Mode Shapes at Melt Interface (x = 0) and Their Corresponding Eigenvalues

d. $\lambda_1 = 0.3452$ (ist mode) e. $\lambda_2 = 0.3969$ (2-4 mode) f. $\lambda_2 = 0.2281$ (2-14 mode) OF POCK WA

(4)

OF POOR QUALITY

SILICON SHEET

Dendrites Effect

	D = 0.07"	D=0.435"	D= 0.0 "
σ ,	-3017 psi +4318 psi	-5011 psi +3792 psi	-4043 psi +3396 psi
ΔŒ	7335 psi	8803 psi	9439 ps
- - -	-10643 ps; + 2467 ps;	- 5990 psi + 1648 psi	- 4997 ps. + 1450 ps.
₹ 05	131 10 Psi	7638 Psi	6477 psi
λ _ι λ _z	0,213 0,22 8	0.329 0.396	0. 36 3 0.379

> increases as of (compression) decrease

Influence of Young's Modulus (Sylwestrowica)

	EI	E _{IL}
Ten	-3017 psi +4318 psi	-2666 Psi +3805 Psi
Tz	-10643 psi + 2467 psi	-3828 psi +1818 psi
λ ₁	0.213	0.085 0.109

OF FUCH CURLING

Buckling Mode Shapes at Melt interface (x = 0) and Their Corresponding Eigenvalues

a. > = 0.2126 (midel in ref. 1) Es

b. λ1= 0.0849 (Current Model) Ex

Finite Element Model of 8 in. × 2 in. Silicon Ribbon

Temperature Profile

	D = 0.07"	D=Q035"	D= 0.0"
Q.	-3017 psi (-2967 psi) +4318 psi (+4245 psi)	-5011 psi (-5315 psi) +3792 psi (+2787 psi)	-6043 psi +3396 psi
۵۵۶	7335 psi	8803 psi	9439 ps
63 	-10643 ps; (-10644 ps;) + 2467 ps; (+2505 ps;)	- 5990 psi (-5994 psi) + 1648 psi (+1650 psi)	- 4997 ps; + 1450 ps;
407	131 lo baj	7638 Psi	6447 psi
	(0)(0)		
λ ₁ λ ₂ λ ₃	0,213(QH7) 0,228(Q24) 0,399(Q420)	0.329 (0.311) 0.396 (0.393) 0.730 (0.707)	0.363 0,37 9

> Increases as of (compression) decrease

Temperature Profiles Across the Ribbon Width

Eigenvalues for Corresponding Temperature Profile Acting on a Dendritic Web (D = 0.07 in)

Made No.	Ti (%)	T2 (x, y)	T5(X, y)	T4 (2.8)
ist	0.2126	0.2150	0. 2174	
2 ml	0.2281	0.2644	0. 2695	0.2705
3 ed	0.3487	0.4645	0.4751	0.4751
4 th	0.7289	07685	0.7853	

Eigenvalues of EFG Ribbon (D = 0.0 in.) Subjected to Two Temperature Profiles

Mnde No.	T ₁ (%)	T3 (x, y)
ist	0.3632	0.4116
2nd	0.3786	
364	0.5142	0.5868

Eigenvalues of EFG Ribbon With Constant Material Properties

Mode	T ₁ (x)	て(を省)	Ts (2, 3)
lst	0.632	0.714	0.821
2nd	0.664	0.759	1.112

Temperature Profiles Along the Ribbon Length

Eigenvalues of a Dendritic Web (D = 0.07 in.) Subjected to Two 1-D Temperature Profiles

Mode No.	Ti(x)	T ₅ (x)	T ₆ (x)
1st	0.2126	0.295	0,204
2nd	0.2281	0.466	0.244
3rd	0.3987	0.929	0.429
4th	a7z89		

Eigenvalues of Ribbons Subjected to Linear Temperature Profile

Mode No.	Dendrific Web Descoy (a(T); E(T)	Dendritic Web # fit) OLE are uniform	EFG Ribbon, D=0.0; al(1), E(1)
1	0. 295	0.406	0.566
2	0.466	0.153	0.581
3	0.929	!	1.087

Summary: Linear Buckling Analysis

- 1. THE PLAY AN IMPORTANT PART IN THE RIBBON BUCKLING PROBLEM.
- 2. $\Delta\sigma_{x}$ is not an adequate design parameter.
- 3. BUCKLING MODE INCLUDES BOTH BEAM TYPE AND PLATE TYPE.
- 4. DENDRITES AFFECT THE THERMAL STRESSES AS WELL AS THE BUCKLING ANALYSIS.
- 5. L = 4" MODEL PROVIDES SUFFICIENTLY GOOD RESULTS.
- 6. NEED MORE RELIABLE DATA OF E(T) FOR 1000°C < T < 1400°C.
- 7. EFFECT OF TEMPERATURE VARIATION ACROSS THE RIBBON MIDTH IS MORE SIGNIFICANT IN THE EFG RIBBON.
- 8. LINEAR TEMPERATURE PROFILE PROVIDES A SLIGHTLY HIGHER CRITICAL TEMPERATURE MULTIPLIER. A BETTER TEMPERATURE PROFILE SHOULD BE INVESTIGATED TO ACHIEVE ZERO STRESS (IF PUSSIBLE).

Elastic-Plastic Stress-Strain Relationship

Yield Stress vs Distance From Interface

Effective Stresses of a Dendritic Web at T(x)

OF POOR COMMING

Residual Stresses on a Dendritic Web at Room Temperature (20°C)

JAR: Residual Stresses of JAX (X-X Normal Stress)

(Oge): Residual Stresses of Ogy (Y-Y Normal Stress)

D = 0.07"

t = 0. • 15"

C . 0.5"

入_{min} = 1.02

Geometrical Nonlinearity and Imperfection (5.0 \times 10⁻⁴ in.)

TABLE 1. Thermal Stresses (PSI) at Each Increment

(E = 5.0 X10" (n.)					
	Case I	Case II	Case III		
λ	Δλ = 0·05	Δλ = 0.02 <u>5</u>	△入 = 0.025		
	"SEMIQN" Mathod	"SEMION" Method	ITER"Method		
C.10	-5 15 . 5 -483 · 7	-515.5 -483.7	-515.0 -484.2		
0.125		-644.5 -604.5	-644.2 -604.9		
c. 15	- 773.6 - 725.0	Numerical Unstable	-173.2 -1255		
0.175			Divergina		
0.20	Negative Drageness				
0.225					

Creep Analysis

. CREEP LAW

$$\mathcal{E}' = a \sigma^b c^{(T_o/T-1)} t$$

KESULTS

LA STREET STREET

What Is the Pull-Up Process?

MATERIAL PROPERTIES ARE:

- (1) HOMOGENEOUS AND ISOTROPIC (NO CRACKING, DISLOCATIONS, ETC.)
- (2) MECHANICAL PROPERTIES OF SILICON BEING A FUNCTION OF TEMPERATURE ONLY (NOT FUNCTION OF STRESS OR STRAIN)
- (3) HAVING A BI-LINEAR STRESS-STRAIN CURVE (TRUE STRESS-STRAIN CAN BE USED) -
- (4) HAVING A PRIMARY AND A SECUNDARY CREEP FUNCTION

$$\frac{dE_{17}}{dt} = C_1 6^{C_2} E^{C_3} e^{\frac{C_4}{T}} + C_7 6^{C_8} e^{\frac{C_{10}}{T}}$$

C1, C2, C3, C4, C7, C8, C10 - CUNSTANTS

& - EQUIVALENT STRAIN

6 - EQUIVALENT STRESS

T - TEMPERATURE (ARSOLUTE)

Methods, Criteria and Model Used in the Analysis

- (1) FINITE ELEMENT METROD
- (2) ANSYS (GENERAL PURPOSE STRUCTURAL ANALYSIS PROGRAM)
 2-DIMENSIONAL ISOPARAMETRIC PLANE STRESS ELEMENT
 3-DIMENSIONAL ELEMENT

CAPABILITIES: PLASTICITY, CREEP, LARGE DEFORMATION, STYSS STIFFNESS, ETC.

(3) MODEL:

2" WIDE AND 4" LONG STRIP

294 D.O.F., 100 2-D PLANE STRESS QUADRALTERAL ELEMENTS

20 3-D BEAM ELEMENTS (FOR DENDRITE)

(4) CRITERIA:

TEMPERATURE IS CONSTANT LATERALLY (ACROSS THE WIDTH)