

WHAT IS CLAIMED IS:

1

1 1. An active electrode, comprising:

2 an active electrode filament and an active electrode head located at
3 the distal end of the active electrode filament, the active electrode head comprising a
4 coil of wire, the coil comprising from about 0.5 to 1.5 turns of the wire, the distal
5 end of the wire defining a dividing portion, and the dividing portion located within
6 the coil.

7

1 2. The active electrode of claim 1, wherein the dividing portion
2 bisects the coil to form a first void and a second void within the coil.

3

1 3. The active electrode of claim 2, wherein the first void and the
2 second void are adapted for retaining a liquid therein.

3

1 4. The active electrode of claim 1, wherein the dividing portion
2 is arranged at an angle of about 45° to the longitudinal axis of the active electrode
3 filament.

4

1 5. The active electrode of claim 1, wherein the wire comprises a
2 material selected from the group consisting of molybdenum, platinum, tungsten,
3 palladium, iridium, titanium, and their alloys.

4

1 6. The active electrode of claim 1, wherein the wire has a
2 diameter in the range of from about 0.006 inch to 0.020 inch.

3

1 7. A return electrode, comprising:

2 a return electrode filament and a return electrode head located at the
3 distal end of the return electrode filament, the return electrode head comprising a
4 coil of wire, the coil comprising from about 3 to 10 turns.

5

1 8. The return electrode of claim 7, wherein the distal end of the
2 wire terminates within the return electrode coil at the return electrode coil proximal
3 end.

4

1 9. The return electrode of claim 7, wherein the return electrode
2 filament is adapted for direct insertion in a connection block of an electrosurgical
3 probe.

4

1 10. The return electrode of claim 7, wherein the wire comprises a
2 material selected from the group consisting of molybdenum, platinum, tungsten,
3 palladium, iridium, titanium, and their alloys.

4

1 11. The return electrode of claim 7, wherein the wire has a
2 diameter in the range of from about 0.008 inch to 0.030 inch.

3

1 12. A method of treating a target tissue of a patient, comprising:
2 a) providing an electrosurgical probe having an active electrode and a
3 return electrode, the return electrode comprising a return electrode coil, the return
4 electrode coil having from about 3 to 10 turns, the active electrode adapted for
5 ablating tissue via molecular dissociation of components of the tissue and for
6 coagulating tissue;

7 b) positioning the active electrode in at least close proximity to the
8 target tissue; and

9 c) applying a high frequency voltage between the active electrode and
10 the return electrode, wherein at least a portion of the tissue at the target site is
11 ablated or modified.

1 13. The method of claim 12, wherein the active electrode
2 comprises a flattened active electrode coil.

3

1 14. The method of claim 13, further comprising:

2 d) during said step c) translating the active electrode coil in the plane
3 of the active electrode coil with respect to the target tissue, wherein the target tissue
4 is severed.

5

1 15. The method of claim 13, further comprising:
2 e) during said step c), translating the active electrode coil in a
3 direction orthogonal to the plane of the active electrode coil, wherein the target
4 tissue is volumetrically removed.

5

1 16. The method of claim 13, further comprising:
2 f) during said step c), engaging at least one side of the active
3 electrode coil against the target tissue, wherein the target tissue is coagulated.

4

1 17. The method of claim 12, wherein the active electrode
2 comprises a hook, a coil, or a disc.

3

1 18. The method of claim 12, further comprising:
2 g) prior to said step c), delivering an electrically conductive fluid to
3 the return electrode coil.

4

1 19. The method of claim 18, wherein the probe includes a shaft
2 having a shaft distal end, the electrically conductive fluid delivered axially from the
3 shaft distal end via a fluid delivery port.

4

1 20. The method of claim 19, wherein the electrically conductive
2 fluid is delivered against interior and exterior surfaces of the return electrode coil.

3

1 21. The method of claim 12, further comprising:
2 h) aspirating unwanted materials from the surgical site via an
3 aspiration lumen.

4

1 22. The method of claim 12, wherein the high frequency voltage
2 applied in said step c) is in the range of from about 10 volts RMS to 500 volts RMS.
3

1 23. The method of claim 12, wherein during said step c) the
2 target tissue is exposed to a temperature in the range of from about 40° C to 90° C.
3

1 24. The method of claim 12, wherein the probe includes a shaft,
2 the shaft comprising a multi-lumen tube having a plurality of lumens therein.
3

1 25. The method of claim 24, wherein the plurality of lumens
2 include a first lumen and a second lumen, and the return electrode and the active
3 electrode are arranged in the first lumen and the second lumen, respectively.
4

1 26. The method of claim 24, wherein the multi-lumen tube
2 comprises a polyurethane elastomer extrusion.
3

1 27. A method of modifying a tissue at a target site of a patient,
2 comprising:
3

4 a) providing an electrosurgical probe including a return electrode and
5 an active electrode, the active electrode comprising a substantially flat active
6 electrode head adapted for severing tissue via molecular dissociation of components
7 of the tissue, the active electrode head including a dividing portion, the active
8 electrode head having at least one void therein;

9 b) positioning the active electrode head in at least close proximity to
the tissue at the target site; and

10 c) applying a high frequency voltage between the active electrode and
11 the return electrode, the high frequency voltage sufficient to ablate or modify at
12 least a portion of the tissue at the target site.
13

1 28. The method of claim 27, wherein the active electrode head
2 comprises an active electrode coil having from about 0.5 to 1.5 turns.
3

1 29. The method of claim 28, wherein the active electrode coil has
2 a diameter in the range of from about 0.050 inch to 0.200 inch, and a width in the
3 range of from about 0.003 inch to about 0.012 inch.

4

1 30. The method of claim 27, wherein the return electrode
2 comprises a return electrode coil having from about 3 to about 10 turns.

3

1 31. The method of claim 27, wherein said step c) effects localized
2 molecular dissociation of tissue components at the target site.

3

1 32. The method of claim 27, further comprising:

2 d) during said step c), reciprocating the active electrode head in the
3 plane of the active electrode head with respect to the tissue, wherein the tissue is
4 severed by localized molecular dissociation of tissue components.

5

1 33. The method of claim 27, further comprising:

2 e) during said step c), engaging at least one side of the active
3 electrode head against a severed tissue, whereby the severed tissue is coagulated.

4

1 34. An electrosurgical probe, comprising:

2 a shaft having a shaft proximal end portion and a shaft distal end
3 portion; and

4 an electrode assembly disposed on the shaft distal end portion, the
5 electrode assembly comprising a return electrode and an active electrode, wherein
6 the return electrode comprises a distal return electrode head having an open
7 structure whereby the return electrode head allows the passage of an electrically
8 conductive fluid therethrough.

9

1 35. The probe of claim 34, wherein the return electrode head has
2 an internal void therethrough, and wherein the active electrode passes within the
3 internal void.

4

1 36. The probe of claim 34, wherein the return electrode head is
2 adapted for retaining an electrically conductive fluid thereon.

3

1 37. The probe of claim 36, wherein the electrically conductive
2 fluid is retained on a surface of the return electrode head via surface tension.

3

1 38. The probe of claim 34, wherein the return electrode head
2 comprises a coil of wire.

3

1 39. The probe of claim 34, wherein the return electrode head
2 comprises a return electrode coil having up to about 50 turns.

3

1 40. The probe of claim 34, wherein the active electrode comprises
2 a distal active electrode head having at least one void therein.

3

1 41. The probe of claim 40, wherein the active electrode head is
2 adapted for retaining an electrically conductive fluid within the at least one void.

3

1 42. The probe of claim 34, wherein the active electrode head
2 comprises a metal disc or a flattened coil.

3

1 43. The probe of claim 34, wherein the active electrode head
2 comprises an active electrode coil having from about 0.5 to 1.5 turns.

3

1 44. An electrosurgical probe, comprising:
2 a shaft having a shaft proximal end portion and a shaft distal end
3 portion; and

4 an electrode assembly at the shaft distal end portion, the electrode
5 assembly comprising an active electrode and a return electrode, wherein the return
6 electrode comprises a return electrode filament and a return electrode head located
7 at the distal end of the return electrode filament, the return electrode filament
8 coupled directly to the connection block, wherein the return electrode conducts
9 electric current from the return electrode head to the connection block as a single
10 component.

11

1 45. A return electrode for an electrosurgical probe, comprising:
2 a return electrode filament and a return electrode head disposed at the
3 distal end of the return electrode filament, the return electrode head having an
4 internal void therein, and the return electrode head allowing the passage of a fluid
5 therethrough.

1 46. The return electrode of claim 45, wherein the return electrode
2 head comprises a return electrode coil having from about 1 to 50 turns.

1 47. The return electrode of claim 45, wherein the return electrode
2 head is adapted for retaining an electrically conductive fluid thereon.

1 48. The return electrode of claim 47, wherein the electrically
2 conductive fluid is retained on a surface of the return electrode head via surface
3 tension.

1 49. The return electrode of claim 45, wherein the return electrode
2 filament is adapted for coupling directly to a connection block.

1 50. An electrosurgical probe, comprising:

2 a shaft having a shaft proximal end portion and a shaft distal end
3 portion; and

CB-11-1

4 an electrode assembly at the shaft distal end portion, the electrode .
5 assembly comprising an active electrode and a return electrode, the return electrode
6 including a return electrode filament and a return electrode head, wherein the return
7 electrode head is formed by winding a distal end of the return electrode filament
8 into a coil.

10

PRINTED IN U.S.A. 100% RECYCLED PAPER