NCERT Solutions for Class 10 Chapter 6-Triangles

EXERCISE 6.2

Question 1:

In the given figure (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

Solution:

(i) In Δ ABC, DE | | BC

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$
or
$$\frac{1.5}{3} = \frac{1}{EC}$$

$$\Rightarrow \qquad \text{EC} = \frac{3}{1.5} = 2 \text{ cm}$$

[By basic proportionality theorem]

(ii) In ΔABC, DE | BC

$$\frac{AD}{DB} = \frac{AE}{EC}$$

[By basic proportionality theorem]

or
$$\frac{AD}{7.2} = \frac{1.8}{5.4}$$

 $\Rightarrow AD = \frac{1.8 \times 7.2}{5.4} = 2.4 \text{ cm}$

NCERT Solutions for Class 10 Chapter 6-Triangles

Question 2:

E and F are points on the sides PQ and PR respectively of a Δ PQR. For each of the following cases, state whether EF || QR:

- (i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
- (ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm
- (iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm

Solution:

(i)
$$\frac{PE}{EQ}' = \frac{3.9}{3} = \frac{1.3}{1}$$

and $\frac{PF}{FR} = \frac{3.6}{2.4} = \frac{3}{2} = \frac{1.5}{1}$
Since $\frac{PE}{EQ} \neq \frac{PF}{FR}$, EF is **not parallel** to QR.

(ii)
$$\frac{PE}{EQ} = \frac{4}{4.5} = \frac{40}{45} = \frac{8}{9}$$
and
$$\frac{PF}{FR} = \frac{8}{9}$$
Since
$$\frac{PE}{EQ} = \frac{PF}{FR}$$
, **EF || QR**.

(iii)
$$\frac{PE}{EQ} = \frac{0.18}{1.28 - 0.18} = \frac{0.18}{1.10} = \frac{9}{55}$$

and $\frac{PF}{FR} = \frac{0.36}{2.56 - 0.36} = \frac{0.36}{2.20} = \frac{9}{55}$
Since $\frac{PE}{EQ} = \frac{PF}{FR}$, **EF || QR**.

NCERT Solutions for Class 10 Chapter 6-Triangles

Question 3:

In the given figure, if LM \parallel CB and LN \parallel CD.

Prove that AM/AB=AN/AD.

Solution:

$$\Rightarrow \frac{AM}{AB} = \frac{AL}{AC}$$

[By B.P.T.] ... (i)

In ΔADC, LN || CD

$$\Rightarrow \frac{AN}{AD} = \frac{AL}{AC}$$

[By B.P.T.] ... (ii)

From equation (i) and (ii)

$$\frac{AM}{AB} = \frac{AN}{AD}$$

Question 4:

In the given figure, DE || AC and DF || AE. Prove that BF/FE=BE/EC.

Solution:

[Given]

$$\therefore \frac{BE}{EC} = \frac{BD}{AD} \dots (i) \text{ [By Basic Proportionality Theorem]}$$

[Given]

$$\therefore \frac{BF}{FE} = \frac{BD}{DA}$$
 ...(ii) [By Basic Proportionality Theorem]

From equations (i) and (ii), we get:

$$\frac{BE}{EC} = \frac{BF}{FE}$$

Hence, proved.

NCERT Solutions for Class 10 Chapter 6-Triangles

Question 5:

In the given figure, DE || OQ and DF || OR. Show that EF || QR.

Solution:

In ΔPOQ,

$$\frac{\text{DE} \mid\mid \text{OQ}}{\text{PE} = \frac{\text{PD}}{\text{PD}}}$$

In ΔPOR,

$$\frac{PF}{FR} = \frac{PD}{DO}$$

From equation (i) and (ii), we get

$$\frac{PE}{EO} = \frac{PF}{FR}$$

Question 6:

In the given figure, A, B and C are points on OP, OQ and OR respectively such that AB \parallel PQ and AC \parallel PR. Show that BC \parallel QR.

NCERT Solutions for Class 10 Chapter 6-Triangles

Solution:

AB || PQ [Given]
$$\therefore \frac{OA}{AP} = \frac{OB}{BQ} \dots (i) \text{ [By Basic Proportionality Theorem]}$$
and AC || PR [Given]
$$\therefore \frac{OA}{AP} = \frac{OC}{CR} \dots (ii)$$

From equations (i) and (iii), we get:

$$\frac{OB}{BQ} = \frac{OC}{CR}$$

[By converse of Basic Proportionality Theorem]

Hence, **proved**.

Question 7:

Using B.P.T., prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that your have proved it in class IX)

Solution:

Given: A ∆ABC in which D is the mid-point of AB and DE || BC

To Prove:
$$AE = EC$$

Proof: In $\triangle ABC$, $DE \mid \mid BC$

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$

But $AD = DB$

$$\Rightarrow \frac{AD}{DB} = 1$$

$$\Rightarrow 1 = \frac{AE}{EC} \Rightarrow AE = EC$$

Hence, DE bisects AC.

NCERT Solutions for Class 10 Chapter 6-Triangles

Question 8:

Using converse of B.P.T., prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that your have done it in class IX)

Solution:

The given figure shows a \triangle ABC in which D and E are mid-points of sides AB and AC respectively.

$$\therefore \frac{AD}{DB} = 1$$
and $\frac{AE}{EC} = 1$

$$\Rightarrow \frac{\mathsf{AD}}{\mathsf{DB}} = \frac{\mathsf{AE}}{\mathsf{EC}} \quad \Rightarrow \frac{\mathsf{AD}}{\mathsf{DB}} \parallel \frac{\mathsf{AE}}{\mathsf{EC}}$$

[By converse of Basic Proportionality Theorem]

Hence, proved.

Question 9:

ABCD is a trapezium in which AB \parallel DC and its diagonals intersect each other at the point O. Show that AO/BO=CO/DO

Solution:

Given: ABCD is a trapezium in which AB||DC

To Prove: $\frac{AO}{BO} = \frac{CO}{DO}$

Construction: Draw EO | DC

Proof: In $\triangle ABD$,

$$EO || DC$$

$$DC || AB$$

$$EO || AB$$

$$\therefore \frac{AE}{ED} = \frac{BO}{DO}$$

[By B.P.T.] ...(i)

In
$$\triangle ADC$$
, EO | | DC $\Rightarrow \frac{AE}{ED} = \frac{AO}{CO}$

From equation (i) and (ii)
$$\frac{BO}{DO} = \frac{AO}{CO} \quad \text{or} \quad \frac{AO}{BO} = \frac{CO}{DO}$$
...(ii)

[By const]

[Given]

NCERT Solutions for Class 10 Chapter 6-Triangles

Question 10:

The diagonals of a quadrilateral ABCD intersect each other at the point O such that AO/BO=CO/DO. Show that ABCD is a trapezium.

Solution:

In the given figure is shown a quadrilateral ABCD. Draw EF || AB.

$$\frac{BO}{BO} = \frac{BO}{OD}$$

$$\frac{AO}{OC} = \frac{BO}{OD}$$

In ∆DAB, EO || AB

[By construction]

$$\therefore \frac{DE}{EA} = \frac{DO}{OB}$$
 [By Basic Proportionality Theorem]

$$\Rightarrow \quad \frac{AE}{ED} = \frac{BO}{OD}$$

From equations (i) and (ii), we get:

$$\frac{AO}{OC} = \frac{AE}{ED}$$

[By converse of Basic Proportionality Theorem]

But we have AB ∥ OE

Hence, quadrilateral ABCD is a trapezium. **Proved**.