Session 48: Recursively Defined Sets and Structures

- Recursive definitions of sets
- Natural Numbers and Strings
- Recursively defined functions
- Well-formed Formulae

Recursively Defined Sets and Structures

Recursion can be also used to define sets

Recursive definitions of sets have two parts:

- The basis step specifies an initial collection of elements.
- The **recursive step** gives the rules for forming new elements in the set from those already known to be in the set.
- Only elements generated in the basis and recursive steps belong to the set (exclusion rule)

Examples

Recursive definition of the set of natural numbers N:

BASIS STEP: 0 ∈ N.

RECURSIVE STEP: If n is in \mathbb{N} , then n + 1 is in \mathbb{N} .

A subset of Integers S3:

BASIS STEP: 3 ∈ S3.

RECURSIVE STEP: If $x \in S3$ and $y \in S3$, then x + y is in S3.

Strings

Definition: The set $Σ^*$ of *strings* over the alphabet Σ:

BASIS STEP: $\lambda \in \Sigma^*$ (λ is the empty string)

RECURSIVE STEP: If w is in Σ^* and x is in Σ , then $wx \in \Sigma^*$.

The alphabet Σ is a finite set, e.g.

- $\Sigma = \{0, 1\}$
- $\Sigma = \{a, b,, z\}$

Examples

If $\Sigma = \{0, 1\}$, the strings in in Σ^* are the set of all bit strings:

If $\Sigma = \{a, b\}$, showing that aab is in Σ^* :

Recursively defined functions on recursively defined sets

We can define functions by recursion on recursively defined sets

Example: Give a recursive definition of l(w), the **length of the string** w.

String Concatenation

Definition: The **concatenation** of two strings w_1 and w_2 , denoted by $w_1 \cdot w_2$, is defined recursively as follows.

BASIS STEP: If $w \in \Sigma^*$, then $w \cdot \lambda = w$.

RECURSIVE STEP: If $w_1 \in \Sigma^*$ and $w_2 \in \Sigma^*$ and $x \in \Sigma$, then $w_1 \cdot (w_2 x) = (w_1 \cdot w_2)x$.

• Often $w_1 \cdot w_2$ is written as $w_1 w_2$.

Well-Formed Formulae in Propositional Logic

Definition: The set of **well-formed formulae** in propositional logic involving **T**, **F**, propositional variables, and operators from the set $\{\neg, \land, \lor, \rightarrow, \longleftrightarrow\}$ is recursively defined as

BASIS STEP: **T**, **F** and *s*, where *s* is a propositional variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well formed formulae, then $(\neg E)$, $(E \land F)$, $(E \lor F)$, $(E \lor F)$, $(E \lor F)$, are well-formed formulae.

Summary

- Recursive definitions of sets
- Natural Numbers and Strings
- Recursively defined functions
- Well-formed Formulae