Welcome

Hello! I Am

SAJIB KHAN

Executive, Data Analytics & Strategy at pathao

Lead Data Instructor, at Contractive

+88 01717 015761

M sajibkhansk19@gmail.com

Class 1: Introduction to SQL and Database Fundamentals

INTRODUCTION TO DATABASE & DBMS

- Database: A structured collection of data that can be easily accessed, managed, and updated.
- Database Management System (DBMS): Software that interacts with the user, applications, and the database itself to capture and analyze data.

Relational Database Management System (RDBMS)

What is an RDBMS?

- A software system for creating, managing, and querying relational databases.
- Organizes data into tables with rows and columns.
- Uses Structured Query Language (SQL) for data manipulation.

Key Features

- **Data Integrity**: Enforces constraints (e.g., primary keys, foreign keys).
- Scalability: Handles large datasets and multiple users.
- Query Optimization: Efficiently retrieves data using indexes.
- ACID Compliance: Ensures reliable transactions (Atomicity, Consistency, Isolation, Durability).

Popular RDBMS Examples

- MySQL
- PostgreSQL
- Oracle Database
- Microsoft SQL Server

Relational Database Management System (RDBMS)

Benefits

- Structured data storage.
- Easy data retrieval and updates.
- Supports complex queries and joins.
- Ensures data consistency and security.

Use Cases

- Financial systems (e.g., banking).
- E-commerce platforms.
- Customer relationship management (CRM).
- Data analytics and reporting.

INTRODUCTION TO SQL

SQL (Structured Query Language): A standardized programming language used for managing and manipulating relational databases.

Types of SQL Commands

Understanding ACID Properties

These properties guarantee reliable and secure database transactions, ensuring data integrity and consistency even in the face of errors or failures.

- ACID: Ensures reliable database transactions
- Atomicity: Ensures transactions are all-or-nothing (fully completed or not executed)
- **Consistency**: Maintains database integrity, ensuring valid states before and after transactions
- o **Isolation**: Transactions are independent; partial changes are not visible until complete
- o **Durability**: Committed transactions are permanently saved, even in case of system failure

What does ACID Really Mean?

NORMALIZATION

The process of organizing data in a database to minimize redundancy and dependency by dividing large tables into smaller, related tables.

Benefits:

- Eliminates Redundancy: Reduces repeated data, saving storage and improving efficiency.
- Improves Data Integrity: Ensures consistency and reduces the chances of data anomalies.
- Optimizes Query Performance: Makes data retrieval more efficient by structuring data logically.

A NORMALIZED DATABASE

Employee					
employeeID	employeeName	managerID	sectorID		
1	David D.	1	4		
2	Eugene E.	1	3		
3	George G.	2	2		
4	Henry H.	2	1		
5	Ingrid I.	2	4		
6	James J.	3	1		
7	Katy K.	3	4		

Sector				
sectorID	sectorName			
1	Administration			
2	Security			
3	IT			
4	Finance			

Manager				
managerID	managerName	area		
1	Adam A.	East		
2	Betty B.	West		
3	Carl C.	North		

Data Warehouse

Data Lake

Data Lakehouse

EXECUTION ORDER OF SQL QUERY

SQL

NoSQL

blog.algomaster.io

Main Differences Between SQL and NoSQL Databases

Feature	SQL Databases	NoSQL Databases
Key Focus	Reducing data duplication	Scaling and rapid application change
Data Storage Model	del Tables with fixed rows and colums Document: JSON documents; keep pairs; Wide-column: tables with columns; Graph: nodes and ed	

Flexible

Typically doesn't require ORMs. E.g. MongoDB

Schemas

Rigid

WHY SHOULD YOU LEARN SQL IN 2025?

- 🔽 1. Essential for Data-Driven Decision Making
- 🔽 2. Universal in Databases (MySQL, PostgreSQL, SQL Server, BigQuery, Snowflake, etc.)
- ✓ 3. Must-Have for BI & Data Analytics (Power BI, Tableau, Looker, etc.)
- 4. High Demand in the Job Market
- 5. Crucial for Al & Machine Learning (Data Preprocessing & Feature Engineering)
- 6. Compatible with Cloud & Big Data (Google Cloud, AWS, Azure, Databricks, etc.)
- 7. Powers Automation in Data Pipelines (ETL & Workflow Automation)
- 8. Easy to Learn & User-Friendly (Simple Syntax & Readability)

CHALLENGES YOU WILL FACE WITHOUT SQL KNOWLEDGE

- **X** Reduced Job Opportunities (SQL is a key requirement for data-related roles)
- X Limited Data Access & Analysis (Struggle to retrieve and analyze structured data efficiently)
- Dependency on Others (Need developers or IT teams for data extraction and reports)
- X Slower Decision-Making (Unable to quickly query databases for insights)
- ➤ Difficulty in Using BI Tools (Power BI, Tableau, and other tools rely on SQL for advanced analysis)
- X Challenges in Al & Machine Learning (Harder to preprocess and structure data for models)
- X Inefficiency in Data Engineering & ETL (Unable to automate data workflows and transformations)
- X Struggle with Big Data & Cloud Platforms (BigQuery, Snowflake, AWS Redshift require SQL for queries)
- X Inability to Optimize Performance (Poor understanding of indexing, joins, and query optimization)
- X Falling Behind in a Data-Driven World (SQL remains the foundation of data handling)

THANKYOU