

Разрешающая способность

Хомутов Андрей, Б06-903 Φ БМ Φ , 2021

1 Практическая часть

1.1 Определение периодов решеток по их пространственному спектру

Длина волны излучения лазера $\lambda=532$ нм (зеленый). По измеренному расстоянию между максимумами можно определить период решетки $d=\frac{nH}{\sin(\varphi)}$. Соответсвущие измерения и расчеты приведены в таблице 1.

Решетка	Н, см	Δx	$sin(\varphi)$	n	d, мкм	δ_d , mkm
1	120	194	0,080	3	20,0	0,4
2	120	214	0,088	5	30,3	0,5
3	120	215	0,088	10	60,3	1,1
4	120	109	0,045	10	118	3
5	120	161	0,066	20	160	3
волос	144	89	0,031	5	86,2	2,7

Таблица 1: Расчет периода решеток

1.2 Определение периодов решеток по изображению, увеличенному с помощью микроскопа

Соберем модель проекционного микроскопа (см. рис. 1), отцентрируем ее и настроим. Далее измерим соответствующие параметры установки и рассчитаем периоды решеток. Значения и расчеты представлены в таблице 2. Период вычисляем как $d = \frac{\Delta x}{kN}, N = \frac{b_1 b_2}{a_1 a_2}$.

Рис. 1: Схема экспериментальной установки

Таблица 2: Период решетки через увеличение микроскопа

Решетка	а1, мм	b1, мм	а2, мм	b2, мм	Δx , mm	k	d, мкм	δ_d , mkm
1	135	1050	25	370	100	43	20,2	0,5
2	135	1050	25	370	100	29	30,0	0,7
3	135	1050	25	370	110	16	59,7	1,4
4	135	1050	25	370	110	8	119,4	2,9
5	135	1050	25	370	110	6	159	4

Как видим, результаты обоих методик идентичны (более того, результаты 20, 30, 60, 120, 160 мкм естественны), а значит они обе одинаково хорошо пригодны для определения периодов дифракционных решеток.

1.3 Определение периодов решеток по оценке разрешающей способности микроскопа

Минимальное разрешаемое объективом микроскопа расстояние определяется условием

$$\ell_{\min} pprox rac{\lambda}{\sin A} pprox rac{\lambda}{D/2f},$$

где D - диаметр диафрагмы, A - апертура.

1.4 Пространственная фильтрация и мультиплицирование

При фильтрации с помощью щели, мы будем наблюдать различные картины при изменении ориентации щели. Для вертикальной щели - вертикальные полосы, для горизонтальной - горизонатльные, для наклоненной под 45 градусов - наклоненные соответсвенно (но с периодом, в корень из двух раз меньше).

Также был получен эффект мульиплицирования, от рассечения сеткой фурье-образа щели.

2 Выводы

- 1. Были успешно определены периоды решеток оп их пространственному спектру и их изображению, результаты совпали в пределах погрешности
- 2. Были получены явления пространственной фильтрации мультиплицирования