Parallel & Distributed Computing: Lecture 30

Alberto Paoluzzi

December 10, 2019

Project A – Overview

Parallelizable tasks

Project A – Overview

Introduction

Produce a report, using Pandoc (Markdown + LaTeX), including:

- the link to the personal project repository in GitHub;
- for each feature parallelized / optimized:
 - specific examples/feature.jl file, demostrating the working feature;
 - test/feature.jl file testing the feature implementation;
 - doc/feature.md file with problems description, and type of parallelization / optimization;
 - study of the speed-up obtained, including a graph, in doc/feature.md.

The project must include at least 3 features modified / optimized.

For each modified feature, the project should discuss (why) the preference between shared memory (threads) and distributed parallelization (processes)

Overview of Arrangement pipeline 1/2

- Input Facet selection, i.e., construction of the collection S_{d-1} from S_d , using LAR.
- Indexing Spatial index made by intersection of d interval-trees on bounding boxes of $\sigma \in \mathcal{S}_{d-1}$.
- Decomposition Pairwise z=0 intersection of line segments in $\sigma \cup \mathcal{I}(\sigma)$, for each $\sigma \in \mathcal{S}_{d-1}$.
- Congruence Graded bases of equivalence classes $C_k(U_k)$, with $U_k = X_k/R_k$ for $0 \le k \le 2$.
- Connection Extraction of $(X_{d-1}^{\rho}, \partial_{d-1}^{\rho})$, maximal connected components of X_{d-1} $(0 \le p \le h)$.
 - Bases Computation of redundant cycle basis $[\partial_d^+]^p$ for each p-component, via TGW.

Overview of Arrangement pipeline 2/2

- Boundaries Accumulation into $H += [o]^p$ (hole-set) of outer boundary cycle from each $[\partial_d^+]^p$.
- Containment Computation of antisymmetric containment relation S between $[o]^p$ holes in H.
 - Reduction Transitive R reduction of S and generation of forest of flat trees $\langle [o_d]^p, [\partial_d]^p \rangle$.
 - Adjoining of roots $[o_d]^r$ to (unique) outer cell, and non-roots $[\partial_d^+]^q$ to container cells.
 - Assembling Quasi-block-diagonal assembly of matrices relatives to isolated components $[\partial_d]^p$.
 - Output Global boundary map $[\partial_d]$ of $\mathcal{A}(\mathcal{S}_{d-1})$, and reconstruction of 0-chains of d-cells in X_d .

Overview of Boolean mapping

```
Atomic description Boolean description of **CSG terms** as *d-chains* ("oracle" answering if atom i \subset \text{term } j)
```

pointInPolyhedron Computation of **intersection number** of a ray from a point with a *3D polyhedron* boundary.

Other parallelizable algorithms in LAR

pointInPolygon | Computation of **intersection number** of a ray from a point with a *2D polygon boundary*.

Integration

Monomial *integration on triangular domains* (2D/3D signed *volumes* and *inertia*)

Parallelizable tasks

aaaaaaaa

aaaaaaaa