Alex J. Best

6/4/20

Last time: Angus gave an overview and some cases of Raynaud's proof of Ab-

This time: Give more detail on the extension steps of Raynaud's proof.

Let *k* be an algebraically closed field of characteristic *p*. *R* be a complete DVR with

Extension

residue field k and fraction field K, π a normalized uniformizer.

Theorem 1. Consider a connected etale cover $X \to \mathbf{A}_k^1$, which is Galois with Galois group

cover.

corresponding to \mathcal{U} .

that w generates $B \otimes_A K(x)$.

of these disks inside of \mathcal{D} .

sponding to \mathcal{U} .

 $D^{(n)}$ is no longer affine.

hyankar's conjecture.

G, and let $Q \subseteq G$ be the inertia subgroup at ∞ . *Write* $\mathcal{X} \to \mathcal{D}$ *for the corresponding connected cover of the rigid unit disk.*

Then for n sufficiently large this cover extends to a connected Galois cover $\mathcal{X}' \rightarrow \mathcal{D}' =$ the disk defined by $v(T) \ge -1/n$.

Additionally for any n sufficiently large, the connected components of \mathcal{X}' above the boundary annulus \mathcal{A}' defined by

Theorem 2 (3.4.1). Let \mathscr{D} be the closed unit rigid disk ($|T| \leq 1$). And $\mathscr{U} \to \mathscr{D}$ a finite etale

v(T) = -1/n are in a natural bijection with the points at

infinity of X*. In particular if* $\mathcal{U}' \to \mathcal{A}'$ *is such a component* then it is a connected Galois cover with Galois group Q.

v = -1/n $\cdot \infty$

v = 0

Then there exists $\epsilon > 0$ and a finite etale cover of \mathcal{D}' defined by $|T| < 1 + \epsilon$, which extends $\mathcal{U} \to \mathcal{D}$. This cover is unique, any two such are isomorphic via an isomorphism which is the identity on \mathcal{U} .

 $|T-s| \leq \delta$ for $s \in S$ are disjoint and contained in \mathcal{D} . Taking the affinoid \mathcal{V} to be the complement of the union

Then the subalgebra $B' = A[w] \subseteq B$ equals B except in a finite set of points $S \subseteq \mathcal{D}$. We write B' = A[W]/f with $f = \sum a_i W^i$ for $a_i \in A$. For sufficiently small $\delta > 0$ the disks $\Delta_{s,\delta}$ defined by

Proof. If $A = K\{T\}$ is the Tate algebra of \mathcal{D} and B is the finite etale A algebra

As the residue fields at points of Spec A are infinite B is locally over Spec A a monogenic A-algebra. I.e. there exists for each $x \in \mathcal{D}$ an element $w \in B$ such

On the space $\mathcal V$ the series a_i are approximated arbitrarily well by polynomials $b_i \in K[T]$. We can therefore let $g = \sum b_i W^i \in K[T][W]$ in such a way that C = K[T][W]/(g) is a finite K[T]-algebra. Which above ${\mathscr V}$ is etale and isomorphic to the algebra corre-

C will be ramified over the affine line over K at finitely many points, so there exists

To prove uniqueness we must first introduce some more results on models.

some $\epsilon > 0$ such that *C* is etale over the annulus $1 < |T| \le 1 + \epsilon$.

The two components intersect transversely at a point ∞ .

On P_k is a point called 0 that all points with v(T) > 0 specialise to.

 $v(T) \ge -1/n$. This induces a morphism of the formal models

component A_k of multiplicity n to the point ∞.

closed point of the special fiber of X.

Therefore *C* defines for us such an etale cover.

 $D^{(n)}$ can be obtained by gluing the standard disc \mathcal{D} , with coordinate x, having coordinate ring $R\{x\}$, with the annulus $C^{(n)}$ with coordinate ring $R\{x,y\}/(x^ny-x^ny)$ π). Gluing is done on the annulus of zero thickness, which has coordinate ring $R\{x, x^{-1}\}$. The special fiber $D_k^{(n)}$ has two irreducible components, a projective line with multiplicity 1 and an affine line A_k with multiplicity n.

If n' > n is an integer, there is a natural inclusion of disks as $v(T) \ge -1/n'$ implies

 $D^{(n')} \to D^{(n)}$

when we reduce to the special fibre it identifies the P_k components and sends the

Let *n* be an integer > 0. Consider the closed rigid disk $v(T) \ge -1/n$, as the union of the unit disk $v(T) \le 0$ and the closed annulus $0 \ge v(T) \ge -1/n$. The formal model

Theorem 5 (3.4.6). For each integer n > 0 consider the formal R-model $D^{(n)}$ of the rigid

Write P_k (resp. A_k) for the irreducible component of the projective (resp. affine) line of the

Let $\mathcal{U}^{(n)} \to \mathcal{D}^{(n)}$ be a rigid finite etale cover and $U^{(n)} \to D^{(n)}$ the finite morphism of normal

special fibre of $D^{(n)}$ and write ∞ for the point of intersection of these fibres.

The points z of $\mathcal{U}^{(n)}$ above the annulus specialise in $U_k^{(n)}$ to the points y_i for $i \in I$.

 $(2x+1)^2 - 4x(x+1) = 0$ i.e.

value 0 hence changing $\sqrt{x+1} \leftrightarrow -\sqrt{x+1}$ is in the inertia group at these points and $\sqrt{x} \leftrightarrow -\sqrt{x}$ swaps them.

of the visualization.

x = -1 we have two points $y = \pm i$ each with ramification index 2. The cover can be visualised as follows

We write Q_k for the reduced subscheme of the special fibre of $U^{(n)}$ which lies above P_k and y_i for $i \in I$ for the points above ∞ . Then for n sufficiently large Q_k is normal above the point of the cover $\mathcal{U}^{(n)} \to \mathcal{D}^{(n)}$ above the open annulus 0 > v(T) > -1/n. These components remain connected when restricted to 0 > v(T) > -1/n' for any n' > n. *Proof.* The normality of Q_k is proved in 3.4.2. components of the cover. If n' > n the canonical morphism $U^{(n')} \rightarrow U^{(n)}$ induces the identity on Q_k and is normal at infinity, hence the restriction of $\mathcal{U}_i^{(n)}$ to the smaller annulus remains connected. *Interlude:* The complex picture. Consider the extension of function fields $\mathbf{C}(\sqrt{x}, \sqrt{x+1})/\mathbf{C}(x)$ this is a V_4 extension with $\sqrt{x} \mapsto \pm \sqrt{x}$, $\sqrt{x+1} \mapsto \pm \sqrt{x+1}$.

On the other hand $U^{(n)}$ is normal so by 3.2.6 the rigid open subspaces given by taking those that reduce to a single point are connected, hence they are the connected

so this point does not lie on the curve.
$$1 = 0$$
 so this point does not lie on the curve. For $y = \pm \sqrt{2x+1}$ we have $4x(x+1) = 0$ so the ramification points are $x = 0, -1$. Above $x = 0$ we have two points $y = \pm 1$ each with ramification index 2. Above $x = -1$ we have two points $y = \pm i$ each with ramification index 2.

Theorem 6 (3.4.8). Suppose $\mathcal{U} \to \mathcal{D}$ is a galois cover with group G. For $n \gg 0$ we can assume that the extended cover $\mathcal{U}^{(n)} \to \mathcal{D}^{(n)}$ is also galois with group G. And that the finite formal morphism $U^{(n)} \to D^{(n)}$ is also galois with group G.

annulus 0 > v(T) > -1/n with galois group H_i .

order coprime to the residue characteristic by a *p* group.

In addition H_i is a solvable group.

An inertia group of a local field is solvable, as it is an extension of a cyclic group of

Theorem 3 (3.2.6). Let X be a normal formal R-curve with generic fiber \mathcal{X} and let x be a

Then the set of points z in \mathcal{X} which reduce to x is an open rigid connected subspace of \mathcal{X} , it

is a union of a increasing set of connected quasi-compact opens.

We now assume n is chosen such that this holds.

 $disk \mathcal{D}^{(n)}$ defined by $v(T) \geq -1/n$.

formal schemes which extends it.

(Ignoring infinity for this story).

 $\pm \sqrt{2}x + 1$. In the y = 0 case we have

Theorem 4 (3.4.2). For $n \gg 0$ the fibre Q_k is normal at all points above ∞ . *Proof.* Consider the normalization of Q_k call it Q'_k , the morphism $Q'_k \to Q_k$ is a blow up at points above infinity, and so we can obtain it inside of a blow up $Y'^{(n)} \to Y^{(n)}$ above infinity, with Q'_k being the strict transform of Q_k . This blow up introduces on the special fiber of *Y*, irreducible components above the point ∞ . Let E be the open subscheme of the formal scheme $Y'^{(n)}$ which, on the special fiber, is the complement of the union of the irreducible components which are finite on $D_k^{(n)}$ and let $\mathscr E$ be its generic fiber. Then E lies above the open annulus 0 > v(T) > -1/n and by the maximum modulus principle, there exists an integer n' > n such that on \mathscr{E} , we have v(T) < -1/n'. So let's make the base change $D^{(n')} \rightarrow D^{(n)}$ and remove the π -torsion from the fiber product $Y'^{(n)} \times_{D^{(n)}} D^{(n')}$. We then obtain a formal *R*-scheme *Z* which is now finite

Letting $\mathcal{U}_i^{(n)}$ be the set of points z of $\mathcal{U}^{(n)}$ that reduce to y_i the map $y_i \mapsto \mathcal{U}_i^{(n)}$ induces a natural bijection between the points of Q_k lying above infinity and the connected components

We can take a primitive element to be $y = \sqrt{x} + \sqrt{x+1}$ so that $y^2 = x + x + 1 + 2\sqrt{x}\sqrt{x+1}$ and $(y^2 - 2x - 1)^2 - 4x(x + 1) = 0$ is an equation for the curve *C* giving the cover $C \xrightarrow{x} \mathbf{P}^1$.

This cover is ramified at the locus where $4y(y^2 - 2x - 1) = 0$, i.e. when y = 0 or

Even though this looks ramified above lines instead of just points this is an artifact

What are the inertia groups in this case? At $(x, y) = (0, \pm 1)$ we see that \sqrt{x} takes on the value 0 hence changing $\sqrt{x} \leftrightarrow -\sqrt{x}$ is in the inertia group at these points and $\sqrt{x+1} \leftrightarrow -\sqrt{x+1}$ swaps them. At $(x,y) = (-1,\pm i)$ we see that $\sqrt{x+1}$ takes on the

Proof. For the last part. Note that if y_i belongs to the irreducible component of Q_k , whose generic point is η_i we can consider the decomposition group D_i and the inertia group I_i of η_i , and $G_i = D_i/I_i$ acts faithfully on the component of Q_k , passing through y_i . Then H_i , is extension of the inertia subgroup of G_i at y_i by I_i .

If H_i is the decomposition group at the point y_i then $\mathcal{U}^{(n)}$ is an etale galois cover of the

1