Econometrics Discussion Section 2

John Green

Spring 2024

Recap

What did we do this week?

- Review of probability and statistics (Stock & Watson chapters 2 and 3)
- Random variables and their first 4 moments
- Marginal and joint distributions
- LLN and CLT
- Properties of estimators: consistency, unbiasedness, normal approximation

Random variables

- A random variable is a *function* from a space of possible outcomes to (usually) the real numbers.
- Example:
 - Roll two dice and add up the numbers
 - Sample space is all the possible rolls of the two dice (how many?)
 - Outcome space is all the possible sums of those rolls (how many?)
 - The sum is a random variable

	FIRST DICE									
		1	2	3	4	5	6			
	1	2	3	4	5	6	7			
	2	3	4	5	6	7	8			
SECOND	3	4	5	6	7	8	9			
DICE	4	5	6	7	8	9	10			
	5	6	7	8	9	10	11			
	6	7	8	9	10	11	12			

Mean

- The first moment of a random variable is its mean, aka average or expected value
- What is the mean value of the result from rolling one die?
- What is the mean value of the sum of rolling both dice?

Mean

- The first moment of a random variable is its mean, aka average, aka expected value
- What is the mean value of the result from rolling one die?

•
$$E[X] = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6 = 3.5$$

- What is the mean value of the sum of rolling both dice?
 - $E[X] = \frac{1}{36} \times 2 + \frac{2}{36} \times 3 + \frac{3}{36} \times 4 + \frac{4}{36} \times 5 + \frac{5}{36} \times 6 + \frac{6}{36} \times 7 + \frac{5}{36} \times 8 + \frac{4}{36} \times 9 + \frac{3}{36} \times 10 + \frac{2}{36} \times 11 + \frac{1}{36} \times 12 = 7$
 - (Could also write out using $\frac{1}{36}$ weight everywhere but easier to consolidate terms)

Variance

- The second moment of a random variable is its variance
 - Think of this as the mean distance from the mean: it measures the spread of our data
 - $Var(X) = E[(X E[X])^2]$
 - Why do we need to square the spread?
- What is the variance of rolling one die?
- What is the variance of the sum of rolling both dice?

Variance

- The second moment of a random variable is its variance
 - Think of this as the mean distance from the mean: it measures the spread of our data
 - $Var(X) = E[(X E[X])^2]$
 - Why do we need to square the spread?
- What is the variance of rolling one die?

•
$$Var(X) = \frac{1}{6} \times (1 - 3.5)^2 + \frac{1}{6} \times (2 - 3.5)^2 + \dots + \frac{1}{6} \times (6 - 3.5)^2 = \frac{35}{12} \approx 2.92$$

- Similar idea for the sum of 2 dice.
- Often we will work with the *standard deviation* which is the square of the variance since the units are more interpretable.

Higher moments

- Third moment is skewness and tells us how symmetric our distribution is
 - What is the skewness of our example?
- Fourth moment is the kurtosis which measures the mass of the tails
 - Gives us an idea of the likelihood of large values

Covariance

- The covariance of two random variables tells us the strength of their *linear* (careful!) relationship
- If two random variables are independent, their covariance is 0
 - What is the covariance in our example?
- Often we will look at the *correlation* instead of the covariance, $\frac{cov(X,Y)}{(var(X)var(Y))^{1/2}}$
 - Unlike covariance, correlation is scaled between -1 and 1 and so is easily interpretable

Rules on joint distributions

- If two variables are independent, P(X = x, Y = y) = P(X = x) * P(Y = y)
- Conditional probability: $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$
 - This gives us the marginal distribution
 - What happens if the events are independent?
- Bayes' Rule: $P(X = x | Y = y) = \frac{P(Y = y | X = x)P(X = x)}{P(Y = y)}$
- Law of total probability: $P(X = x) = \sum_{y} P(X = x, Y = y)$

Second example

- New example:
 - Roll the first dice
 - If first roll \geq 4 then we roll the second die and observe its value
 - ullet If first roll \leq 3 then the second value is simply set to 1
- What is the joint probability distribution?
- What is the covariance of the 2 rolls?
- What is the correlation?
- What is the marginal distribution of the two r.v.?

FIRST DICE												
		1	2	3	4	5	6	Marginal:				
	1	0.17	0.17	0.17	0.03	0.03	0.03	0.58				
	2	0	0	0	0.03	0.03	0.03	0.08				
SECOND	3	0	0	0	0.03	0.03	0.03	0.08				
DICE	4	0	0	0	0.03	0.03	0.03	0.08				
	5	0	0	0	0.03	0.03	0.03	0.08				
	6	0	0	0	0.03	0.03	0.03	0.08				
Marginal:		0.17	0.17	0.17	0.17	0.17	0.17					

Normal distribution

- ullet Two parameters: mean μ and variance σ^2
- We can *standardize* a normal random variable X:
 - $Z = \frac{X-\mu}{\sigma}$ so $Z \sim N(0,1)$
 - Careful to divide by standard deviation and not by variance!
- This will be helpful in hypothesis testing because we can consider how unlikely a given value z is to be drawn from a N(0,1) distribution

Estimation

- We will often be interested in estimating the mean of a distribution
- Example: wait time in Brody Cafe
- Natural estimator is a sample mean:
 - Take a survey of people as they walk out of Brody and ask how long they waited
 - Average the responses
- \bullet Sample mean \bar{Y} is a random variable since we taking a random sample and thus \bar{Y} has a sampling distribution
 - What can we say about it?

Law of Large Numbers

- $E[\bar{Y}] = \mu_Y$
- ullet This means that $ar{Y}$ is an unbiased estimator of μ_Y
- As our sample size grows, the sample mean will converge to the true mean
- $var(\bar{Y}) = \frac{\sigma_Y^2}{n}$ so that the variance of our estimator is decreasing as our sample gets larger
- So as our sample size grows, the sample mean will converge to the true mean: \bar{Y} is a consistent estimator of μ_Y (LLN)

Central Limit Theorem

- Even better: as $n \to \infty$, \bar{Y} becomes normal ie $\bar{Y} \sim \mathcal{N}(\mu_Y, \frac{\sigma_Y^2}{n})$
- This means that we can use the normal distribution to make inferences about the sample mean
- ullet To make it easy, we can standardize the sample mean: $Z=rac{ar{Y}-\mu_Y}{\sigma_Y/\sqrt{n}}\sim N(0,1)$
- We will use the sample variance as an estimator for the population variance, just like we do for mean (but we will need to correct a small bias)

Hypothesis testing

- We can use the normal approximation to perform a hypothesis test
 - One-sided or two-sided
- Intuition: assuming the true mean is some value $\mu_{Y,0}$, how likely is it that we would observe the sample mean \bar{Y} ?
 - If it is "very" unlikely, we will reject the null
 - If it is "reasonably likely" then we fail to reject the null
- p-value: probability of a test statistic at least as unlikely as the one you observe (under the null)

Some other terminology

- Type-1 error: reject a true null hypothesis
 - Size is probability of a type-1 error
- Type-2 error: fail to reject a false hypothesis
 - Power is probability of a type-2 error
- Which of these two mistakes is worse?