Implementing MoNDE

2024 Summer

Inho Park

Mixture of Experts

- Increase number of parameters while restraining calculation burden
- Increase training speed

Mixture of Experts

Token N

Weights must be moved to GPU from Memory

Weights must be moved to GPU from Memory

- Device entirely dedicated for MoE
- ALL Expert Parameters are stored at MoNDE's memory

Overall Structure

Systolic Array

"2 x 32bit Bus"

Systolic Array

Due to limitation of U280's capabilities, **16 systolic arrays** were implemented

Memory

Each systolic array is connected to two HBM pseudo channels, 32 channels are used in total.

Since HBMs can be connected to maximum 32 channels, activation data are stored at PLRAMs (each 128KB).

Control

Control

AXI Control Slave

AXI Read Master

AXI Write Master

AXI Control Slave

- 1. The address of expert parameters that should be used for this token is passed.
- Read&Write control signals (ap_start, ap_done)

AXI Read Master

- 1. Base address of 34(32 HBM, 2 PLRAM) memory blocks are passed to Read Master
- 2. Data is read from Memory and passed to systolic arrays

AXI Write Master

- 1. Base address of 2 memory blocks are passed to Write Master
- 2. Calculation Results are passed and written from systolic arrays to PLRAM

Timeline (Basic Control)

Timeline

- read arguments as soon as systolic arrays start execution

HBM

Ideal Bandwidth

- HBM:

 $32ports \times 4byte/ports \times 133.9MHz = 17.1392 GB/s$

- PLRAM:

2ports x 4byts/ports x 133.9MHz = 1.0712 GB/s

 \rightarrow 17.1392 GB/s + 1.0712 GB/s = **18.2104 GB/s**

Measured Bandwidth

matrix A: 4 x 30,000

matrix B: 30,000 x 64

matrix C: 64 x 64

- ✓ to check <u>performance</u>:

 measured execution time of 10,000 times of A x B
- ✓ to check <u>accuracy</u>:

 checked calculation result of A x B x C.

Results

- Ideal Bandwidth: 18.2104 GB/s
- Basic Control: 8.988 GB/s (49.3%)
- Improved Control: 17.3943 GB/s (95.5%)

Results

- Ideal Bandwidth: 18.2104 GB/s
- Basic Control: 8.988 GB/s (49.3%)
- Improved Control: 17.3943 GB/s (95.5%)

[Test Info]

Matrix A: 4 x 30000 Matrix B: 30000 x 64

Matrix C: 64 x 64

Number of Repeats: 10000

Bandwidth: 17.3943GB/s

TEST FINISHED

MoE model for summarizing task using 'google/switch-base-8'

Encoder

- 6 Dense layers
- 6 MoE layers

Decoder

- 6 Dense layers
- 6 MoE layers

Each MoE Layer 8 Experts

Size of MoE parameters

- 1. Each Expert's parameter count:
 - Matrix 1 : $768 \times 3072 = 2,359,296$
 - Matrix 2 : $3072 \times 768 = 2,359,296$
 - Total data size = $2 \times 2,359,296 \times 2$ bytes = 9MB
- 2. Each Layer's Data size:
 - 8 expert x 9MB/expert = 72 MB/layer
- 3. Total Data size:
 - 12 layers x 72MB/layer = **864MB of MoE parameters**

0. Expert Data is Uploaded in HBM

- Activation is moved to PLRAM
- 2. Calculation: matrix mult. + ReLU
- 3. Result is stored in PLRAM
- 4. Calculation
- 5. Result is stored in PLRAM

6. Final Data is moved to Host

[Tokens per Expert]

Layer	1	2	3	4	5	6	7	8	Experts Used
1	10	7	9	10	6	6	16	11	8
2	2	12	3	14	14	16	8	6	8
3	10	9	9	5	20	8	5	9	8
4	17	6	11	0	3	30	0	8	6
5	2	1	40	4	8	9	2	9	8
6	3	4	15	13	11	15	6	8	8

CPU

```
...Programmed Successfully: device[0]
...Uploading Weights (Host -> FPGA)
...Uploading Weights Done: 0s
...Inference Start
...Inference Done: 19.265466s

Result: <pad> Peter and Elizabeth were in a party in Paris.
```

MoNDE

```
...Programmed Successfully: device[0]
...Uploading Weights (Host -> FPGA)
...Uploading Weights Done: 9s

...Inference Start
...Inference Done: 7.179557s

Result: <pad> Peter and Elizabeth were in a party in Paris.
...Inference Done: 7.505218s

Result: <pad> Peter and Elizabeth were in a party in Paris.
```

1. CPU

Expert Movement(Memory -> CPU) + Calculation

19.09s

2. MoNDE

