神经网络训练超详细分解手册

由AI生成

2025年6月21日

目录

1	第零部分: 战场设定	2
	1.1 1. 神经网络结构	2
	1.2 2. 初始参数 (权重 Weights & 偏置 Biases)	2
	1.3 3. 训练数据 (小批量, Batch Size = 2)	2
	1.4 4. 超参数	2
2	第一部分: 首次完整训练周期	3
	2.1 第 1 步:完整前向传播 (Forward Propagation)	3
	2.2 第 2 步: 计算总损失 (体现小批量的作用)	3
3	第二部分: 超详细反向传播 (Backward Propagation)	4
	3.1 A. 追究输出层参数 (w_5, w_6, b_2) 的责任	4
	$3.1.1$ 第 $A.1$ 步: 计算输出神经元 o_1 的"总责任分数" (δ_{o1})	4
	$3.1.2$ 第 $A.2$ 步: 计算权重 w_5 的最终平均梯度 \dots	4
	$3.1.3$ 第 $A.3$ 步: 计算 w_6 和 b_2 的最终平均梯度 \dots	4
	3.2 B. 追究隐藏层参数 $(w_1, w_2, w_3, w_4, b_1)$ 的责任	5
	$3.2.1$ 第 $B.1$ 步: 计算隐藏神经元 h_1,h_2 的"总责任分数" (δ_h)	5
	$3.2.2$ 第 $B.2$ 步: 计算权重 w_1 的最终平均梯度 $\dots \dots \dots \dots$	5
	3.2.3 第 B.3 步: 计算其余隐藏层参数的最终平均梯度	5
4	第三部分:参数更新与验证	6
	4.1 第 4 步: 更新所有参数	6
	4.2 第5步: 再次前向传播 (验证学习效果)	6
5	最终结论	6

1 第零部分: 战场设定

下面是一个极其简化的神经网络,我们将以最详尽、最细致的步骤,手动完成一次完整的"小批量"训练,并进行第二次前向传播来验证学习效果。

1.1 1. 神经网络结构

这是一个 2 输入、1 个隐藏层 (含 2 个神经元)、1 个输出的简单网络。

- **输入层**: 2 个神经元 (*i*₁, *i*₂)
- 隐藏层: 2 个神经元 (h₁, h₂)
- **输出层**: 1 个神经元 (o₁)
- 激活函数: 我们统一使用 Sigmoid 函数, $f(x) = \frac{1}{1+e^{-x}}$
- 损失函数: 使用均方误差 (MSE), $E = \frac{1}{2} (\text{target output})^2$

1.2 2. 初始参数 (权重 Weights & 偏置 Biases)

这些都是我们随机初始化的"出厂设置"。

- 隐藏层权重: $W^{[1]} = \begin{pmatrix} w_1 & w_2 \\ w_3 & w_4 \end{pmatrix} = \begin{pmatrix} 0.15 & 0.20 \\ 0.25 & 0.30 \end{pmatrix}$
- 隐藏层偏置: $b_1 = 0.35$ (为简化,两个隐藏神经元共享一个偏置)
- 输出层权重: $W^{[2]} = \begin{pmatrix} w_5 & w_6 \end{pmatrix} = \begin{pmatrix} 0.40 & 0.45 \end{pmatrix}$
- 输出层偏置: $b_2 = 0.60$

1.3 3. 训练数据 (小批量, Batch Size = 2)

- 样本 1: 输入 $X_1 = [0.05, 0.10]$, 真实目标 $y_1 = 0.01$
- 样本 2: 输入 $X_2 = [0.80, 0.20]$, 真实目标 $y_2 = 0.99$

1.4 4. 超参数

学习率 η: 0.5

2 第一部分: 首次完整训练周期

2.1 第1步: 完整前向传播 (Forward Propagation)

我们的目标是让数据流过整个网络,看看在当前的参数设置下,它的预测结果有多离谱。

A. 对样本 1: $X_1 = [0.05, 0.10]$

1. 隐藏层计算:

$$z_{h1} = w_1 \cdot i_1 + w_2 \cdot i_2 + b_1 = (0.15 \cdot 0.05) + (0.20 \cdot 0.10) + 0.35 = 0.3775$$
 $a_{h1} = \operatorname{Sigmoid}(z_{h1}) = \frac{1}{1 + e^{-0.3775}} = \mathbf{0.59326} \quad (神经元 h1 的输出)$
 $z_{h2} = w_3 \cdot i_1 + w_4 \cdot i_2 + b_1 = (0.25 \cdot 0.05) + (0.30 \cdot 0.10) + 0.35 = 0.3925$
 $a_{h2} = \operatorname{Sigmoid}(z_{h2}) = \frac{1}{1 + e^{-0.3925}} = \mathbf{0.59688} \quad (神经元 h2 的输出)$

2. 输出层计算:

3. 样本 1 的误差:

$$E_1 = \frac{1}{2}(y_1 - \hat{y}_1)^2 = \frac{1}{2}(0.01 - 0.75136)^2 = \mathbf{0.27483}$$

B. 对样本 2: $X_2 = [0.80, 0.20]$

(计算过程与样本 1 完全相同, 此处从略)

- 最终预测输出: $\hat{y}_2 = 0.75798$
- 样本 2 的误差: $E_2 = 0.02692$

2.2 第2步: 计算总损失 (体现小批量的作用)

目的: 我们不能只根据一个样本的表现就去调整网络,那太片面了。我们需要综合这个批次里所有样本的表现,得出一个"平均表现分",以此为依据进行调整。

$$E_{total} = \frac{E_1 + E_2}{2} = \frac{0.27483 + 0.02692}{2} = \mathbf{0.150875}$$

3

3 第二部分: 超详细反向传播 (Backward Propagation)

我们的目标是,根据总误差,像侦探一样,从后往前,一环一环地追究每一个参数的"责任", 这个"责任"就是梯度。

3.1 A. 追究输出层参数 (w_5, w_6, b_2) 的责任

3.1.1 第 A.1 步: 计算输出神经元 o_1 的"总责任分数" (δ_{o_1})

目的: 在追究权重 w_5 , w_6 之前,我们先要确定它们连接的下游神经元 o_1 本身,应该为最终的错误负多大的责任。这个责任分数由两部分决定:一是最终错误有多大,二是它自己当时有多"敏感"。

对于样本 1:

- 1. **计算"最终错误程度"**: $\frac{\partial E_1}{\partial a_{o1}} = a_{o1} y_1 = 0.75136 0.01 = 0.74136$ 含义: 预测值偏离真实值有多远。
- 2. **计算"神经元敏感度"**: $\frac{\partial a_{o1}}{\partial z_{o1}} = a_{o1}(1 a_{o1}) = 0.75136(1 0.75136) = 0.18681$ 含义: 神经元当时是否处于容易被影响的"激活区"。
- 3. **计算"总责任分数"**: $\delta_{o1,\text{样本 }1} = 0.74136 \times 0.18681 = \textbf{0.13849}$ 含义:综合了错误程度和敏感度的最终责任分数。

对于样本 2:

- 1. 计算"最终错误程度": $a_{o1} y_2 = 0.75798 0.99 = -0.23202$
- 2. 计算"神经元敏感度": $a_{o1}(1-a_{o1}) = 0.75798(1-0.75798) = 0.18345$
- 3. 计算"总责任分数": $\delta_{o1,\text{#本 2}} = -0.23202 \times 0.18345 = -0.04256$

3.1.2 第 A.2 步: 计算权重 w₅ 的最终平均梯度

目的: 将神经元 o_1 的责任,根据连接它的上游信号的"嗓门大小",分摊给权重 w_5 。最后再综合两个样本的分析,求出平均责任。

- 1. **计算样本 1** 对 w_5 的梯度: $\frac{\partial E_1}{\partial w_5} = \delta_{o1, \text{##} 1} \cdot a_{h1, \text{##} 1} = 0.13849 \cdot 0.59326 = 0.08217$ 含义: 在案件 l 中, w_5 的责任 = l 的责任分数 × 当时 l 的输出信号强度。
- 2. **计算样本 2 对** w_5 **的梯度**: $\frac{\partial E_2}{\partial w_5} = \delta_{o1, \text{## }2} \cdot a_{h1, \text{## }2} = -0.04256 \cdot 0.62483 = -0.02659$ 含义: 在案件 2 中, w_5 的责任。
- 3. **计算最终平均梯度**: $\frac{\partial E_{total}}{\partial w_5} = \frac{0.08217 + (-0.02659)}{2} = \mathbf{0.02779}$ 含义: 综合两起案件, 得出 w_5 最终的"判决书", 也就是它需要调整的方向和幅度。

3.1.3 第 A.3 步: 计算 w₆ 和 b₂ 的最终平均梯度

(计算逻辑与 w5 完全相同)

- w_6 的最终平均梯度: $\frac{\partial E_{total}}{\partial w_6} = 0.02757$
- b_2 的最终平均梯度: $\frac{\partial E_{total}}{\partial b_2} = 0.04797$

3.2 B. 追究隐藏层参数 $(w_1, w_2, w_3, w_4, b_1)$ 的责任

3.2.1 第 B.1 步: 计算隐藏神经元 h_1, h_2 的"总责任分数" (δ_h)

目的: 我们要顺藤摸瓜,把输出层 o_1 的责任,通过连接权重 w_5, w_6 , "甩锅" 给更上游的隐藏层神经元 h_1, h_2 。

计算 h_1 的责任分数 δ_{h1} (对样本 1):

- 1. **计算"继承来的锅"**: $\delta_{o1,\#_{4}} \cdot w_{5} = 0.13849 \cdot 0.40 = 0.05540$ 含义: 从下游 o_{1} 沿着权重 w_{5} 这条路反向传回来的责任有多大。
- 2. 计算"自身敏感度": $a_{h1}(1-a_{h1}) = 0.59326(1-0.59326) = 0.24128$
- 3. 计算"总责任分数": $\delta_{h1.44\pm 1} = 0.05540 \times 0.24128 = 0.01337$

(用同样的方法, 我们可以计算出所有隐藏神经元在两个样本中的责任分数)

- $\delta_{h1,\text{#}} = -0.00401$
- $\delta_{h2, \not \models \Rightarrow 1} = 0.01499$
- $\delta_{h2,\text{#} \pm 2} = -0.00440$

3.2.2 第 B.2 步: 计算权重 w_1 的最终平均梯度

目的: 现在我们有了隐藏神经元 h_1 的责任分数,就可以用同样的方法,把它分摊给最源头的权重 w_1 了。

- 1. **计算样本 1** 对 w_1 **的梯度**: $\frac{\partial E_1}{\partial w_1} = \delta_{h1, \# + 1} \cdot i_1 = 0.01337 \cdot 0.05 = 0.00067$ 含义: 在案件 1 中, w_1 的责任 $= h_1$ 的责任分数 × 当时输入信号 i_1 的强度。
- 2. 计算样本 2 对 w_1 的梯度: $\frac{\partial E_2}{\partial w_1} = \delta_{h1, \text{##}} \cdot i_1 = -0.00401 \cdot 0.80 = -0.00321$
- 3. 计算最终平均梯度: $\frac{\partial E_{total}}{\partial w_1} = \frac{0.00067 + (-0.00321)}{2} = -0.00127$

3.2.3 第 B.3 步: 计算其余隐藏层参数的最终平均梯度

(计算逻辑与 w₁ 完全相同)

- $\frac{\partial E_{total}}{\partial w_2} = 0.000265$
- $\frac{\partial E_{total}}{\partial w_3} = -0.00138$
- ullet $rac{\partial E_{total}}{\partial w_4} = 0.00031$
- $\frac{\partial E_{total}}{\partial b_1} = 0.00498$

4 第三部分:参数更新与验证

4.1 第 4 步: 更新所有参数

目的: 我们已经拿到了所有参数的"判决书"(最终平均梯度)。现在,我们根据这个判决书和学习率 (每次调整的力度),来对所有参数进行最终的调整。

公式:
$$W_{new} = W_{old} - \eta \cdot$$
梯度
 $w_{1,new} = 0.15 - 0.5 \cdot (-0.00127) = \mathbf{0.150635}$
 $w_{2,new} = 0.20 - 0.5 \cdot (0.000265) = \mathbf{0.1998675}$
 $w_{3,new} = 0.25 - 0.5 \cdot (-0.00138) = \mathbf{0.25069}$
 $w_{4,new} = 0.30 - 0.5 \cdot (0.00031) = \mathbf{0.299845}$
 $w_{5,new} = 0.40 - 0.5 \cdot (0.02779) = \mathbf{0.386105}$
 $w_{6,new} = 0.45 - 0.5 \cdot (0.02757) = \mathbf{0.436215}$
 $b_{1,new} = 0.35 - 0.5 \cdot (0.00498) = \mathbf{0.34751}$
 $b_{2,new} = 0.60 - 0.5 \cdot (0.04797) = \mathbf{0.576015}$

4.2 第5步: 再次前向传播(验证学习效果)

目的: 用调整后的新参数,再来处理一下样本 1,看看它的"错误分数"是不是降低了。**使用新参数计算**:

- 新预测 $\hat{y}_{1,new} = \mathbf{0.74363}$
- 新误差 $E_{1,new} = \frac{1}{2}(0.01 0.74363)^2 = \mathbf{0.26909}$

5 最终结论

	训练前	训练后
样本 1 的误差	0.27483	0.26909

表 1: 训练前后误差对比

误差减小了! 这清晰地证明了我们的网络通过这一次极其详尽的"责任追究"过程,成功地学习到了如何微调自己,并朝着正确的方向前进了一小步。