Communication Systems (25751-4)

Problem Set 04

Fall Semester 1402-03

Department of Electrical Engineering

Sharif University of Technology

Instructor: Dr. M. Pakravan

Due on Aban 24, 1402 at 17:00

(*) starred problems are optional and have a bonus mark!

1 DSB Modulation with Periodic Waveforms

A DSB signal is generated by multiplying the message signal m(t) with the periodic rectangular waveform shown in Figure 2 and filtering the product with a bandpass filter tuned to the reciprocal of the period T_p , with bandwidth 2W, where W is the bandwidth of the message signal.

Figure 2: s(t)

1. Demonstrate that the output $x_c(t)$ of the BPF is the desired DSB signal

$$x_c(t) = A_c m(t) \sin(2\pi f_c t)$$

where
$$f_c = \frac{1}{T_p}$$
, and find A_c .

2. Show that it is not necessary that the periodic signal be rectangular. This means that any periodic signal with period T_p can substitute for the rectangular signal in Figure 2.

2 /Weaver's SSB Modulator

We ver's SSB modulator is illustrated in Figure 3. By taking the input signal as $x(t) = \cos(2\pi f_m t)$, where $f_m < W$, demonstrate that by proper choice of f_1 and f_2 the output is a SSB signal.

Figure 3: Weaver's SSB Modulator

SSB Signal

AUSB signal is generated by using the phase shift method.

If the input to this system is $\hat{m}(t)$ instead of m(t), what will be the output?

Can this signal be demodulated (to get back m(t))? If so, how?

VSB Signal

A VSB signal y(t) is as below. α is a non negative constant less than one.

$$y(t) = \frac{\alpha}{2}\cos(2\pi(f_c + f_m)t) + \frac{1-\alpha}{2}\cos(2\pi(f_c - f_m)t) + \cos(2\pi f_c t)$$

1. Prove that the envelop of the signal can be calculated as below. d(t) represents the distortion.

$$e(t) = \left[1 + \frac{1}{2}\cos(2\pi f_m t)\right]d(t)$$

$$d(t) = \sqrt{1 + \left[\frac{(1 - 2\alpha)\sin(2\pi f_m t)}{2 + \cos(2\pi f_m t)}\right]^2}$$

2. Find α such that it maximize d(t).

VSB Modulation System

A vestigial sideband modulation system is shown in figure 4. The bandwidth of the message signal m(t) is W and the transfer function of the bandpass filter is shown in the figure 5.

Determine $h_{lp}(t)$, the lowpass equivalent of h(t), where h(t) represents the impulse response of the bandpass filter.

2. Derive an expression for the modulated signal $x_c(t)$.

Figure 4: VSB Modulator

Figure 5: H(f)

Practical VSB Systems

A vestigial filter $H_i(f)$ in the transmitter of a VSB system has a transfer function as shown in figure 6. The carrier frequency is $f_c = 10$ kHz, and the baseband signal bandwidth is 4 kHz. find the corresponding transfer function of the equalizer filter $H_o(f)$ in the receiver.

Figure 6: Frequency response of the transmitter filter

7 (*) Modulation within Nonlinear Channels

Assume that the channel between a transmitter and a receiver has a non-linear characteristic as

$$y(t) = ax(t) + bx^2(t)$$

also we have just oscillator, adder, inverter and tunable band pass filter. (no mixer or multiplier).

- 1. design a system that can produce the DSB modulated signal at carrier frequency f_c in output.
- 2. now consider the channel has characteristic of the form

$$y(t) = ax(t) + bx^2(t) + cx^3(t)$$

again design a system that can produce the DSB modulated signal carrier frequency f_c in output.