Name:	"I hate these nerds! Just 'cause I'm stupider
MATH 101	than them they think they're smarter than
Spring 2024	me."
HW 10: Due 03/04	— Hubert J. Farnsworth, Futurama

Problem 1. (10pts) Let f(x) be the function given by f(x) = 4x - 5.

- (a) Find a value in the range of f. Be sure to justify why the value is in the range.
- (b) Compute f(-1). Is (-1, -9) on the graph of f? Explain.
- (c) Is there an x such that f(x) = 11? Explain.
- (d) Is $2 \in f^{-1}(0)$? Explain.
- (e) Assuming f^{-1} exists, what is $f(f^{-1}(\sqrt{2}))$ and $f^{-1}(f(\sqrt{2}))$?

Problem 2. (10pts) Consider the relation f plotted below.

- (a) Compute f(-9) and f(10).
- (b) Is f(x) a function? Explain.
- (c) Does f(x) have an inverse? If so, sketch the inverse. If not, explain why.

Problem 3. (10pts) Showing all your work, verify that $g(x) = \frac{1-x}{5}$ is the inverse function for f(x) = 1 - 5x. Also, compute g(6). What does the value of g(6) tell you about the function f(x)?

Problem 4. (10pts) A relation ϕ is plotted below.

Using the plot above, answer the following:

- (a) Compute $\phi(5)$.
- (b) Find the *y*-intercept for $\phi(x)$.
- (c) Find the *x*-intercepts for $\phi(x)$.
- (d) As accurately as possible, compute the preimage of -5, i.e. $\phi^{-1}(-5)$.
- (e) Explain why (d) implies that ϕ does not have an inverse function.