[I01] history of cyber attacks

[l01_t02] case study

wim mees

learning objectives

- understand a real-world recent incident
- be able to discuss the proposed counter measures

the organization

Figure 1: Maastricht university

the organization

Maastricht university

- publication organization with:
 - ▶ 4500 employees,
 - ▶ 18000 students,
 - ▶ 70000 alumni.
- IT infrastructure with:
 - diverse range of servers and workstations,
 - some (not all) managed by the university's central "ICT Service Centre" (ICTS),
 - others connected to the same network, yet managed by other entities (research labs, etc.),
 - some (not all) connected to the university's central Windows domain "UNIMAAS",
 - combination of desktops, laptops, and
 "Virtual Desktop Infrastructure" (VDI) virtual hosts accessed through thin clients and local browsers.

Figure 2: sowing phase

- user1@maastrichtuniversity.nl receives phishing email with subject "Documents"
- link in email points to Excel document on onedrive.com

Figure 3: phishing email

- user1 opens the Excel document on workstation ws1
- the Excel document contains a macro that:
 - connects to a server "windows-en-us-update.com" with IP address 185.225.17.99
 - downloads a malware known as "SDBBot"
 - executes the malware on workstation ws1

- user2@maastrichtuniversity.nl and 5 others receive phishing email with subject "CL meeting schedule.xls"
- link in email points to Excel document on dropbox-eu.com

Figure 4: phishing email

- user2 opens the Excel document on virtual desktop vdi1
- the Excel document contains a macro that:
 - connects to a server "windows-afx-update.com" with IP address 185.212.128.146
 - downloads the same malware and executes it

result

- ws1 and vdi1 are infected with SDBBot:
 - ▶ registry key set to launch malware at startup
 - every 15' a connection is made to CnC-server with domainname drm-server13-login-microsoftonline.com and IP address 195.123.242.250

Figure 5: harvesting phase

- first remotely controlled manual activities on vdi1
- from SDBBot the tool "Meterpreter" is launched
- it is unclear what exactly the attacker does with this tool (due to unavailability of relevant forensic data)

171733oct19

- server srv1 is compromised and is now running "Meterpreter"
- ▶ not certain how compromise was performed, however:
 - server was running Windows Server 2003 R2, with patch MS17-010 not installed
 - therefore server was vulnerable to EternalBlue, that gives access to local SYSTEM account

171740oct19

server srv2 gets compromised in same way as srv1

201900oct19

server srv3 is compromised, was running same OS as srv1 and srv2, therefore presumably same exploit was used

201902oct19

server srv4 is compromised,
 was however not vulnerable to EternalBlue,
 therefore unclear how they got in

attacker now has local SYSTEM account on 4 servers, and therefore is **local admin** on these servers

241138oct19

- ▶ attacker is active on *ws1* under regular user account *user1*:
 - uses PowerSploit, a set of PowerShell scripts used for pentesting
 - scans the host itself for vulnerabilities
 - scans the internal network

- attacker is active on vdi1 under regular user account user2:
 - uses PingCastle to
 - (graphically) map ActiveDirectory (AD) structure of university
 - collect info on AD config to look for attack opportunities

prepare for the kill

Figure 6: preparing the final product

prepare for the kill

211134nov19

- attacker again active on vdi1
- at 13:06 he compromises srv5 that was not fully patched, so EternalBlue may have been used again, and runs Meterpreter with local SYSTEM account
- ▶ at 13:19 the attacker logs on to srvAD1, this is one of the AD domain controllers, he is using the Administrator.UNIMAAS account, which has full domain administrator rights
- hypothesis on how the attacker got in:
 - Administrator.UNIMAAS had a user profile on srv5, so at some point this account was used to log on to srv5
 - the login credentials were extracted from memory on srv5

prepare for the kill

 attacker now has access to the most privileged account (Administrator.UNIMAAS)
 and controls the system with the highest access rights (the domain controller srvAD1)

191449dec19

- attacker uses a number of tools to prepare the final hit:
 - MeterPreter
 - ► Cobalt Strike
 - ▶ PingCastle
 - AdFind
- he is mapping hosts on the network and the processes and services they are running

Figure 7: bring in the profits

- attacker puts a tool called sage.exe on a few servers in C:\Users\Public\Music\
- ▶ it runs as a service Winsysstrinsag
- this tool is removed by McAfee AV on one server
- attacker removes McAfee AV from a few servers

231826dec19

- attacker uses sage.exe to launch the ransomware attack on all Windows servers that are part of UNIMAAS domain:
 - disable Windows Defender
 - distribute and launch the ransomware (in file swaqp.exe)
 - it runs as a service called psxexesvo

231852dec19

- result: 267 servers infected with ransomware that is rapidly encrypting all non-system files
- these servers include:
 - domain controllers
 - exchange servers
 - file servers
 - backup servers
- attacker used Clop (capital "i") ransomware:
 - RC4 encryption
 - a seperate random key is generated for every file and this key is encrypted using a RSA-1024 bit public key
 - only the attacker has the matching private key...
- filenames of encrypted files have .Clop added as extension
- ▶ a ClopReadMe.txt file is put in every folder (cfr. next slide)

```
*-*ALL FILES ON EACH HOST IN THE NETWORK HAVE BEEN ENCRYPTED WITH A STRONG ALGORITHM*-*
-Backups were either encrypted or deleted or backup disks were formatted.
-Shadow copies also removed, so F8 or any other methods may damage encrypted data but not
recover.
-If you want to restore your files write to emails (contacts are at the bottom of the sheet)
and attach 3-5 encrypted files
-(Less than 6 Mb each, non-archived and your files should not contain valuable information
-(Databases, backups, large excel sheets, etc.)).
-You will receive decrypted samples.
-MESSAGE THIS INFORMATION TO COMPANY'S CEO, UNLOCKING OF 1 COMPUTER ONLY IS IMPOSSIBLE, ONLY
WHOLE NETWORK.
-ATTENTION-
-Your warranty - decrypted samples.
-Do not rename encrypted files.
-Do not try to decrypt your data using third party software.
-We don't need your files and your information.
:::CONTACT EMAIL:::
AND
NOTHING PERSONAL IS A BUSINESS
PLEASE DO NOT USE GMAIL, MAIL DOES NOT REACH OR GETS INTO THE SPAM FOLDER.
PLEASE CHECK SPAM FOLDER!!! CLOP^ -
```

Figure 8: ClopReadMe.txt

ransom paid

Maastricht University pays €200,000 to Russian hackers

A Dutch university has taken the difficult decision to pay hundreds of thousands of Euros to Russian hackers that compromised its systems through a ransomware attack

By Kim Loohuis Published: 06 Feb 2020 15:30

Maastricht University has paid nearly €200,000 worth of bitcoin to Russian hackers after 267 servers were compromised in December 2019.

Figure 9: https://www.computerweekly.com/news/252477997/Maastricht-University-pays-200000-to-Russian-hackers

conclusions

Figure 10: questions or comments ?