Exercises, Algebraic Geometry II – Week 12

Exercise 50. (2 points) Connectedness.

Let $f: X \to Y$ be a projective morphism of Noetherian schemes. Assume that f is surjective, Y is connected and all the fibres of f are connected. Show that X is also connected. Replace 'connected' by 'irreducible'. Is the assertion still true?

Exercise 51. (4 points) Rigidity I.

Let $f: X \to Y$ and $g: X \to Z$ be projective morphisms of varieties (i.e. integral schemes of finite type over a field) with $\mathcal{O}_Y \cong f_*\mathcal{O}_X$ and such that g contracts each fibre of f (i.e. $g(f^{-1}(y))$ is a point for each $g \in Y$). Show that there exists a morphism $h: Y \to Z$ with $h \circ f = g$.

Exercise 52. (4 points) Rigidity II.

Let X, Y and Z be varieties over an algebraically closed field k, and let X be proper over k. Let $f: X \times Y \to Z$ be a morphism. Assume that there exists a closed point $y_0 \in Y$, such that $f(X \times \{y_0\})$ is a single point in Z. Prove that there exists $g: Y \to Z$, such that $f = g \circ \pi_Y$ where $\pi_Y: X \times Y \to Y$ is the projection.

Exercise 53. (2 points) Adjunction.

Let $f: X \to Y$ be a morphism of schemes with $\mathcal{O}_Y \xrightarrow{\sim} f_* \mathcal{O}_X$. Show that for every invertible sheaf \mathcal{L} on Y the natural adjunction morphism $\mathcal{L} \to f_* f^* \mathcal{L}$ is an isomorphism. Suppose \mathcal{L} is an invertible sheaf on X. What can you say about the adjunction morphism $f^* f_* \mathcal{L} \to \mathcal{L}$?

Exercise 54. (4 points) Globally generated line bundles.

Let \mathcal{L} be a globally generated invertible sheaf on a normal projective scheme X over a field k. Consider the induced morphism $\varphi \colon X \to \mathbb{P}^N_k$. Show that the morphism φ can be decomposed as $\varphi = g \circ \varphi'$ with $\varphi' \colon X \to Z$ projective with connected fibres and $g \colon Z \to \mathbb{P}^N_k$ finite such that:

- 1. $\deg(\mathcal{L}|_C) = 0$ for a complete connected curve $C \subset X$ if and only if $\varphi(C) = \operatorname{pt}$.
- 2. Z is normal.

Assume that for every complete curve $C \subset X$ we have $\deg(\mathcal{L}|_C) \neq 0$. Show that \mathcal{L} is ample.

Exercise 55. (2 points) Components of the fibre.

Let $f: X \to Y$ be a projective morphism with Y locally Noetherian. Show that connected components of a fibre X_y are in bijection with maximal ideals of $(f_*\mathcal{O}_X)_y$.