Approssimazione del potenziale ai capi di un condensatore all'interno di un circuito elettrico.

Si consideri il circuito rappresentato in figura:

Si vuole approssimare l'andamento della differenza di potenziale v(t) ai capi del condensatore C a partire dal tempo t=0 in cui viene chiuso il circuito.

Leggi fisiche

- $i = \frac{dQ}{dt}$ (legame intensità carica),
- $V_1 V_2 = iR$ (legge di Ohm),

- 1a legge di Kirchhoff: $\sum_{k} i_{k} = 0$ in ogni nodo della rete
- 2a legge di Kirchhoff: $\sum_{k} (\Delta V)_{k} = 0$ in ogni maglia chiusa della rete
- $V_1 V_2 = L \frac{di}{dt}$
- $V_1 V_2 = e$

2a legge di Kirchoff sulla maglia sinistra:

$$(V_A - V_B) + (V_B - V_C) + (V_C - V_D) + (V_D - V_E) + (V_E - V_A) = 0$$
$$-e + i_1 R_1 + L \frac{di_1}{dt} + v + 0 = 0$$

da cui $L \frac{di_1}{dt} = -R_1 i_i - v + e$

1a legge di Kirchoff sul nodo D: $i_1 = i_2 + i_3$, con:

$$v = i_2 R_2$$
, cioè $i_2 = \frac{v}{R_2}$, e $i_3 = \frac{dQ}{dt} = C \frac{dv}{dt}$

da cui
$$C \frac{dv}{dt} = i_1 - \frac{v}{R_2}$$

Denotando con $i_1 = i_1(t)$ l'intensità di corrente nella prima maglia e con v = v(t) la differenza di potenziale ai capi del condensatore, applicando le leggi fisiche, otteniamo il modello matematico:

$$\begin{cases} v' = \frac{1}{C} \left(i_1 - \frac{v}{R_2} \right) \\ i'_1 = \frac{1}{L} (-i_1 \ R_1 - v + e), \end{cases}$$
 (1)

completato con le condizioni iniziali:

$$v(t_0) = 0 e i_1(t_0) = 0.$$

 R_1 , R_2 , C, L, e sono costanti nel tempo.

Facendo la sostituzione $y_1(t) = v(y)$ e $y_2(t) = i_1(t)$, si ha:

$$\begin{cases} y_1' = \frac{1}{C} \left(y_2 - \frac{y_1}{R_2} \right) \\ y_2' = \frac{1}{L} (-y_2 R_1 - y_1 + e) \\ y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

Ponendo:

$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}, \quad \mathbf{y}'(t) = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix}, \quad \mathbf{y}_0 = \begin{bmatrix} y_1(t_0) \\ y_2(t_0) \end{bmatrix}$$

е

$$\mathbf{F}(t,\mathbf{y}(t)) = \begin{bmatrix} \frac{1}{C} \left(y_2 - \frac{y_1}{R_2} \right) \\ \frac{1}{L} (-y_2 \ R_1 - y_1 + e) \end{bmatrix}$$

il sistema si riscrive in forma compatta:

$$\left\{ \begin{array}{l} \mathbf{y}'(t) = \mathbf{F}(t, \mathbf{y}(t)) & t \ge t_0 \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{array} \right.$$

Scrivere un m-file che

- 1. definisca i dati
- 2. risolva con Eulero esplicito (e in un secondo momento con Runge-Kutta4)
- 3. rappresenti il grafico del potenziale in funzione del tempo
- 4. rappresenti il grafico dell'intensità di corrente i_1 in funzione del tempo.

Si prendano i seguenti dati:

$$L = 0.1$$
, $R_1 = R_2 = 10$, $C = 1.e - 3$, $e = 5$.

$$t_0 = 0$$
, $T = .1$.

Si consideri dapprima h = 0.001, in un secondo momento h = 0.005, h = 0.01 e h = 0.02.

Si deve costruire una function matlab che, dati in input t scalare e \mathbf{y} vettore, costruisca il vettore $\mathbf{f} = \mathbf{F}(t, \mathbf{y})$ della stessa dimensione di \mathbf{y} (vettore colonna o riga a seconda di come è \mathbf{y}). Prima possibilità: funzione \mathbf{F} definita con function handle

Seconda possibilità: funzione **F** costruita in un m-file con nome fcirc.m

```
function [f]=fcirc(t,y);
R1=10; R2=10; e=5; L=0.1; C=1.e-3;
f=zeros(size(y));
f(1)=(y(2)-y(1)/R2)/C;
f(2)=(-y(2)*R1-y(1)+e)/L;
La chiamata ad eulero_esp è:
tspan=...; y0=...; Nh=...;
[tn,un]=eulero_esp(@fcirc,tspan,y0,Nh)
```

Il primo argomento in input ad eulero_esp deve essere un function handle, quindi il nome della function deve essere preceduto da @

Risultato per L=0.1;C=1.e-3;R1=R2=10;e=5; h=0.001

Soluzione per h = 0.005

Soluzione per h = 0.01

Soluzione per h = 0.02

La soluzione numerica con h = 0.001 è buona, quella con h = 0.005 è poco accurata, quella con h = 0.01 presenta delle oscillazioni non realistiche, quella con h = 0.02 "esplode" (blow-up). Sono oscillazioni numeriche, dovute alla mancanza di stabilità assoluta.

Stabilità assoluta per sistemi di eq

Poiché il sistema $\mathbf{y}'(t) = \mathbf{F}(t, \mathbf{y})$ è lineare, si ha

$$\mathbf{F}(t,\mathbf{y}(t)) = A\mathbf{y}(t) + \mathbf{g}.$$

dove $A \in \mathbb{R}^{2 \times 2}$ e $\mathbf{g} \in \mathbb{R}^2$ sono una matrice ed un vettore indipendenti dal tempo.

Il termine costante \mathbf{g} si può non considerare perchè non influisce sull'analisi della stabilità assoluta.

$$\mathbf{y}'(t) = A\mathbf{y}(t)$$
 è la controparte vettoriale di $y'(t) = \lambda y(t)$

Gli autovalori di A giocano il ruolo di λ .

Un metodo risulta assolutamente stabile per un certo valore di h se $h\lambda_i$ cade nella regione di assoluta stabilità del metodo per ogni autovalore λ_i della matrice A.

Determinare la matrice A, calcolarne gli autovalori e determinare limitazioni su h affinché Eulero esplicito sia assolutamente stabile. I risultati numerici ottenuti concordano con quanto si è trovato per via teorica?

Se i dati sono: L=0.1; C=1e-3; R1=R2=10; e=5 si ha:

$$A = \left[\begin{array}{cc} -100 & 1000 \\ -10 & -100 \end{array} \right].$$

Si ha $\lambda_{1,2}(A)=-100\pm 100 i$, quindi la condizione di assoluta stabilità per EE è

$$h < \frac{-2Re(\lambda_i(A))}{|\lambda_i(A)|^2} = 0.01$$

Effettivamente, i risultati numerici mostrano che per h < 0.01 la soluzione numerica tende ad uno stato stazionario senza oscillazioni, mentre se h = 0.01 si hanno oscillazioni di ampiezza costante nel tempo. Se si considera h > 0.01 si ottengono oscillazioni di ampiezza crescente nel tempo.

Risoluzione con Runge-Kutta 4

Lo schema RK4 è esplicito, ad un passo, convergente di ordine 4 rispetto a h, con regione di assoluta stabilità limitata:

$$K_{1} = f(t_{n}, u_{n});$$

$$K_{2} = f(t_{n+1/2}, u_{n} + \frac{h}{2}K_{1})$$

$$K_{3} = f(t_{n+1/2}, u_{n} + \frac{h}{2}K_{2})$$

$$K_{4} = f(t_{n+1}, u_{n} + hK_{3})$$

$$u_{n+1} = u_{n} + \frac{h}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4})$$

Scaricare rk4 dalla pagina matlab del corso. [tn,un]=rk4(odefun,tspan,y0,Nh)

real

Scelta di h che garantisca assoluta stabilità a RK4

Riprendiamo la matrice A del sistema ed i suoi autovalori

Se $h < h_0 \sim 1/50$, allora $h\lambda_1 \in \mathcal{A}_{RK4}$ (cioè $h\lambda_1$ cade nella regione di ass. stab.) ed il metodo risulta assolutamente stabile. La limitazione con $\lambda_2 = -100 - 100i$ è uguale perché la regione di assoluta stabilità è simmetrica.

RK4, h = 0.005

Risultato per L=0.1;C=1.e-3;R1=R2=10;e=5;

Lo schema è ass. stabile con questa scelta di h

RK4, h = 0.01

Lo schema è ass. stabile con questa scelta di h

RK4, h = 0.02

Lo schema NON è ass. stabile con questa scelta di h

Risoluzione con Eulero implicito

Si considerino gli stessi valori di h utilizzati con Eulero esplicito: h = 0.001, h = 0.005, h = 0.01 e h = 0.02.

Al crescere di h la soluzione ottenuta con Eulero implicito è sempre meno accurata, ma non si generano oscillazioni.

Eulero implicito infatti è assolutamente stabile per ogni valore di h>0 e quindi la soluzione numerica del problema $\mathbf{y}'=A\mathbf{y}$ (con $\mathbf{g}=\mathbf{0}$) tenderà a zero per $t_n\to\infty$, anche con h grande.