IFT 615 – Intelligence Artificielle Hiver 2022

Raisonnement probabiliste temporel

Professeur: Froduald Kabanza

Assistants: D'Jeff Nkashama & Jean-Charles Verdier

Sujets couverts

- Types d'inférence probabiliste temporelle
 - Filtrage
 - Prédiction
 - Explication la plus plausible
 - Lissage
- Réseau bayésien dynamique
- Chaîne de Markov
- Chaîne de Markov cachée
- Filtre de particules

Réseau bayésien dynamique (RBD)

- Comment modéliser des situations dynamiques?
 - les changements dynamiques peuvent être vus comme une séquence d'états,
 chaque état représentant la situation à un instant t donné
 - X_t: ensemble des variables non observables (cachées) décrivant l'état au temps t
 - \bullet E_t : ensembles de **variables observées** (*evidence*) au temps t
- Le terme dynamique réfère au dynamisme du système qu'on veut modéliser et la structure du réseau

Exemple de RDBs

 Réseau bayésien dynamique (RBD) du premier ordre avec une seule variable X, répliquée dans les différents états pour modéliser la dynamique du système:

RBD du second ordre:

Exemple de RDBs

 Réseau bayésien dynamique (RBD) du premier ordre avec une seule variable X, répliquée dans les différents états pour modéliser la dynamique du système:

Représentation dans un RBD

- Problème:
 - → il faudrait spécifier un grand nombre (même infini) de tables de probabilités conditionnelles, c.-à-d. une pour chaque temps t
 - chaque table pourrait impliquer un nombre infini de parents
- Solution:
 - 1. supposer que les changements dynamiques sont causés par un **processus** homogène dans le temps les probabilités ne changent pas dans le temps: $P(X_t \mid Parent(X_t))$ est la même pour tous les t
 - supposer des changements d'états markovien l'état courant dépend seulement d'un nombre fini d'états précédents
 - » ex.: processus markoviens du premier ordre:
 - $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-1})$ modèle pour les transitions
 - 3. supposer des capteurs markoviens : l'observation dépend uniquement de l'état courant
 - $P(E_t \mid X_{0:t}, E_{0:t-1}) = P(E_t \mid X_t)$ modèle pour les observations/capteurs

Exemple

- « Un gardien de sécurité passe un mois dans un édifice sous-terrain, sans sortir. Chaque jour, son directeur arrive avec ou sans parapluie. Le gardien veut inférer la possibilité qu'il ait plu ou non en fonction des séquences d'observation du parapluie. »
- Modélisation:
 - ♦ Variables: $X_t = \{R_t\}$ (pour « Rain ») et $E_t = \{U_t\}$ (pour « Umbrella »).
 - Dépendances entre les variables (c-.à-d., le RBD):

lacktriangle Modèle des transitions: $\mathbf{P}(R_t \mid R_{t-1})$. Modèle d'observation: $\mathbf{P}(U_t \mid R_t)$

Application - Localisation

- Modèle (filtre de particule)
 - \bullet E_t sont l'information fournie par les capteurs du robot
 - \bullet X_t sont l'information sur la position du robot

Source: Udacity

Très utilisé en robotique et conduite autonome (filtre de particules)

Application – Suivi d'objets (tracking)

- Modèle (modèle de Markov caché et filtre de Kalman)
 - ◆ E_t sont les *frames* de la vidéo
 - \diamond X_t sont l'information sur la position d'un/des objet(s)

Application – Traduction automatique

Modèle:

- ◆ E_t sont les mots en français
- \bullet X_t sont les mots de la traduction en anglais

Les réseaux de neurones ont pris le dessus sur les approches probabilistes.

Application - Reconnaissance vocale

Modèle:

- ◆ E_t sont les éléments du signal sonore
- X_t sont les phrases et les mots prononcés ainsi que les phonèmes

Les réseaux de neurones ont remplacé les approches probabilistes.

Types d'inférence dans un RBD

 Filtrage (filtering): calcul de l'état de croyance (belief state), c.-à-d. la distribution à posteriori de la variable cachée la plus récente

$$\mathbf{P}(X_t | e_{1:t})$$

- ◆ex. : quelle est la probabilité qu'il pleuve aujourd'hui?
- ex. : quelle est la position du robot (la plus probable) ?

Programmation dynamique pour le filtrage

• Étant donné le résultat du filtrage au temps t, on peut calculer le résultat du filtrage au temps t+1 à partir des nouvelles observations e_{t+1} .

$$\begin{split} \textbf{\textit{P}}(\textbf{\textit{X}}_{t+1}|\textbf{\textit{e}}_{1:t+1}) &= P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{e}}_{1:t},\textbf{\textit{e}}_{t+1}) \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1},\textbf{\textit{e}}_{1:t}\big)P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{e}}_{1:t}) \quad \text{(Règle de Bayes)} \\ &\alpha : \text{constante de normalisation} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{e}}_{1:t}) \quad \text{(Hypothèse markovienne} \\ &\text{du modèle sensoriel)} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)\sum_{x_t} P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{x}}_t,\textbf{\textit{e}}_{1:t})P(\textbf{\textit{x}}_t|\textbf{\textit{e}}_{1:t}) \quad \text{Marginalisation} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)\sum_{x_t} P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{x}}_t) \textbf{\textit{P}}(\textbf{\textit{x}}_t|\textbf{\textit{e}}_{1:t}) \quad \text{(Hypothèse Markovienne)} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)\sum_{x_t} P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{x}}_t) \textbf{\textit{P}}(\textbf{\textit{x}}_t|\textbf{\textit{e}}_{1:t}) \quad \text{(Hypothèse Markovienne)} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)\sum_{x_t} P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{x}}_t) \textbf{\textit{P}}(\textbf{\textit{x}}_t|\textbf{\textit{e}}_{1:t}) \quad \text{(Hypothèse Markovienne)} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)\sum_{x_t} P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{x}}_t) \textbf{\textit{P}}(\textbf{\textit{X}}_t|\textbf{\textit{e}}_{1:t}) \quad \text{(Hypothèse Markovienne)} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)\sum_{x_t} P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{x}}_t) \textbf{\textit{P}}(\textbf{\textit{X}}_t|\textbf{\textit{e}}_{1:t}) \quad \text{(Hypothèse Markovienne)} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)\sum_{x_t} P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{X}}_t) \textbf{\textit{P}}(\textbf{\textit{X}}_t|\textbf{\textit{e}}_{1:t}) \quad \text{(Hypothèse Markovienne)} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_{t+1}\big)\sum_{x_t} P(\textbf{\textit{X}}_{t+1}|\textbf{\textit{X}}_t) \textbf{\textit{P}}(\textbf{\textit{X}}_t|\textbf{\textit{e}}_{1:t}) \quad \text{(Hypothèse Markovienne)} \\ &= \alpha P\big(e_{t+1}\big|\textbf{\textit{X}}_t) P(\textbf{\textit{X}}_t|\textbf{\textit{A}}_t) P(\textbf{\textit{X}}_t|\textbf{\textit{A}}_t) P(\textbf{\textit{X}}_t|\textbf{\textit{A}}_t) P(\textbf{\textit{X}}_t|\textbf{\textit{A}}_t) P(\textbf{\textit{X}}_t|\textbf{\textit{A}}_t) P(\textbf{\textit{A}}_t|\textbf{\textit{A}}_t) P(\textbf{\textit{A}}_t|\textbf{\textit{A}}_t)$$

Programmation dynamique pour le filtrage

L'équation

$$P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$
modèle sensoriel modèle dynamique récursion

Peut se réécrire

$$f_{1:t+1} = \alpha FORWARD(\mathbf{f}_{1:t} \mathbf{e}_{t+1})$$

où FORWARD est un algorithme de programmation dynamique implémentant la récursion de l'équation précédente et $f_{1:0} = P(X_0)$.

Exemple de l'agent de sécurité

RBD:

- \bullet une distribution de **probabilité a priori P**(R_o), par exemple [0.5, 0.5]
- un modèle des transition $P(R_t | R_{t-1})$
- \diamond un **modèle d'observation P**($U_t | R_t$)

R _{t-1}	$P(R_{t} R_{t-1})$
V	0.7
F	0.3

R_t	$P(U_t R_t)$
V	0.9
F	0.2

- **Jour 1**: le parapluie apparait, $(U_1 = true \text{ ou } u_1)$
 - le filtrage de t=0 à t=1 est: $P(R_1 \mid u_1) = \alpha P(u_1 \mid R_1) P(R_1)$ = $\alpha < 0.9, 0.2 > < 0.5, 0.5 >$ = $\alpha < 0.45, 0.1 >$ $\approx < 0.818, 0.182 >$

Exemple de l'agent de sécurité

$$P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

- **Jour 2**: le parapluie apparait de nouveau, c.-à-d., U_2 =true
 - ♦ le filtrage de t=1 à t=2 est:

$$P(R_2 \mid u_1, u_2) = \alpha P(u_2 \mid R_2) \sum_{r_1} P(R_2 \mid r_1) P(r_1 \mid u_1)$$

$$= \alpha < 0.9, 0.2 > (<0.7, 0.3 > *0.818 + <0.7, 0.3 > *0.182)$$

$$= \alpha < 0.565, 0.075 > \approx <0.883, 0.117 >$$

Types d'inférence dans un RBD

Prédiction: calculer la distribution a posteriori sur un état futur

$$P(X_{t+k} | e_{1:t})$$
 où k > 0

- ◆ex. : quelle est la probabilité qu'il pleuve dans k jours ?
- ex.: quelle est la mission la plus probable du drone ?
- ex: quelle est la position probable à un temps future ?
- ex: quelle est la probabilité qu'une composante tombe en panne

Les réseaux de neurones ont pris le dessus sur les approches probabilistes.

Types d'inférence dans un RBD

Lissage (smoothing): calculer la distribution a posteriori sur un état passé

$$P(X_k | e_{1:t})$$
 où $0 \le k < t$

- \bullet ex. : quelle est la probabilité qu'il y ait eu de la pluie hier (k=t-1) ?
- Explication la plus plausible: trouver la séquence d'états cachés qui explique le mieux les observations

$$\underset{X_{1:t}}{\operatorname{argmax}} \ P(x_{1:t} | e_{1:t}) = \underset{X_{1:t}}{\operatorname{argmax}} \ P(x_{1:t}, e_{1:t}) \ / \ P(e_{1:t}) = \underset{X_{1:t}}{\operatorname{argmax}} \ P(x_{1:t}, e_{1:t})$$

- •ex. : quelle a été la météo la plus probable pour toutes les t dernières journées ?
- ex. : quelle est la traduction en anglais d'une phrase donnée en français ?
- ◆ex. : quelle est la phrase qui a été prononcée ?

Chaînes de Markov

- Une chaîne de Markov (de premier ordre) est un cas particulier de RBD
 - avec une seule variable aléatoire discrète X_t dans l'état au temps t
- Le domaine de X_t est souvent un ensemble de symboles (ex.: un caractère, un mot, etc.)
- Une distribution a priori (initiale) de probabilités sur les symboles (états) est spécifiée $P(X_1)$
- Une matrice de transition contenant les probabilités conditionnelles $P(X_{t+1} \mid X_t)$

Illustration

Illustration dans le cas d'une chaîne finie

Visualisation d'une chaîne de Markov

Illustration dans le cas d'une chaîne infinie (flux de symboles)

Exemple de chaîne: ccbbbbaaaaabaabacbabaaa

Probabilité de générer une séquence d'états

Modèle de Markov caché

- Dans un **modèle de Markov caché** (*hidden Markov model* ou **HMM**):
 - \diamond il y a des variables cachées X_t et des variables d'observation E_t , toutes les deux discrètes
 - la chaîne de Markov est sur les variables cachées X_t
 - le symbole observé (émis) $E_t = e_t$ dépend uniquement de la variable cachée actuelle X,

Illustration

Illustration dans le cas d'une chaîne finie

Illustration

Illustration dans le cas d'une **chaîne infinie**, avec visualisation des valeurs de la variable cachée et la variable d'observation

Chaque **nœud caché** (valeur possible *h* de *H*) a un vecteur de **probabilités de transitions** et un **vecteur de probabilités d'émission (observations)**

Probabilité de générer une séquence cachée et une séquence visible

La distribution initiale (à priori) P(H₁) est donnée.

Filtrage avec un HMM

- Programments of Personnels of
- Nous avons déjà vu un algorithme de programmation dynamique pour le filtrage qui itère sur la probabilité conditionnelle $P(H_K = k \mid S_{1:T} = s_{1:T})$
- Nous voyons maintenant une programmation dynamique un peu différente, mais équivalente, qui itère sur la probabilité conjointe $P(S_{1:T} = e_{1:T}, S_K = k)$.

Filtrage avec un HMM

Par définition de la probabilité conditionnelle et par marginalisation:

$$P(H_{K} = k \mid E_{1:T} = e_{1:T}) = P(E_{1:T} = e_{1:T}, H_{K} = k) / \sum_{i} P(E_{1:T} = e_{1:T}, H_{K} = i)$$

- On calcule d'abord $P(E_{1:T} = e_{1:T}, H_K = k)$ par **programmation dynamique** :
 - \bullet Notons $\alpha(i,t) = P(S_{1:t} = S_{1:t}, H_t = i)$
 - Récursivement, on a:

On a les valeurs initiales

$$\alpha(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i) \forall i$$

Une fois le tableau α calculé, on peut facilement faire du filtrage:

$$P(H_{K} = k \mid S_{1:T} = S_{1:T}) = \alpha(k,T) / \sum_{i} \alpha(i,T)$$

Ľéqu

P(X)

Peut

où FC la réc

Exemple - Programmation dynamique avant

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• initialisation: $\alpha(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i)$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1	
$P(H_1)$	0.5	0.5	

• initialisation: $\alpha(0,1) = P(S_1=0 \mid H_1=0) P(H_1=0) = 0.9 \times 0.5 = 0.45$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	<i>H</i> ₁ =1	
$P(H_1)$	0.5	0.5	

	i t	1	2	3	4
:(i,t)	0	0.45			
ğ	1	0.1			

• initialisation: $\alpha(1,1) = P(S_1=0 \mid H_1=1) P(H_1=1) = 0.2 \times 0.5 = 0.1$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion (t=1): $\alpha(i,t+1) = P(S_{t+1} = s_{t+1} | H_{t+1} = i) \sum_{j} P(H_{t+1} = i | H_t = j) \alpha(j,t)$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion: $\alpha(0,2) = P(S_2 = 1 | H_2 = 0) (P(H_2 = 0 | H_1 = 0) \alpha(0,1) + P(H_2 = 0 | H_1 = 1) \alpha(1,1))$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0175		
ğ	1	0.1			

• récursion: $\alpha(0,2) = 0.1 (0.3 \times 0.45 + 0.4 \times 0.1) = 0.0175$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	j t	1	2	3	4
(i,t)	0	0.45	0.0175		
ğ	1	0.1_	\rightarrow		

• récursion: $\alpha(1,2) = P(S_2 = 1 | H_2 = 1)$ ($P(H_2 = 1 | H_1 = 0)$ $\alpha(0,1) + P(H_2 = 1 | H_1 = 1)$ $\alpha(1,1)$)

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1	
$P(H_1)$	0.5	0.5	

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175		
ō	1	0.1	0.3		

• récursion: $\alpha(1,2) = 0.8 (0.7 \times 0.45 + 0.6 \times 0.1) = 0.3$

Exemple - Programmation dynamique avant pour un HMM

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
:(i,t)	0	0.45	0.0175		
ğ	1	0.1	0.3	\longrightarrow	

• récursion (t=2): $\alpha(i,t+1) = P(S_{t+1} = s_{t+1} | H_{t+1} = i) \sum_{j} P(H_{t+1} = i | H_t = j) \alpha(j,t)$

Exemple - Programmation dynamique avant pour un HMM

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	j t	1	2	3	4
:(i,t)	0	0.45	0.0175	0.112725	
8	1	0.1	0.3		

• récursion: $\alpha(0,3) = 0.9 (0.3 \times 0.0175 + 0.4 \times 0.3) = 0.112725$

Exemple - Programmation dynamique avant pour un HMM

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
α(i,t)	0	0.45	0.0175	0.112725	0.04427
7	1	0.1	0.3	0.03845	0.02039

on continue d'appliquer la récursion jusqu'à la fin (t=4)...

Exemple - Filtrage avec un HMM

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175	0.112725	0.04427
8	1	0.1	0.3	0.03845	0.02039

on peut calculer les probabilités de filtrage

$$P(H_4 = 0 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = P(H_4 = 0, S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

$$\overline{\sum_i P(H_4 = i, S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)}$$

$$= \alpha(0,4) / (\alpha(0,4) + \alpha(1,4))$$

$$= 0.04427 / (0.04427 + 0.02039)$$

$$\approx 0.6847$$

$$P(H_4 = 1 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = 0.02039 / (0.04427 + 0.02039)$$

 ≈ 0.3153

Probabilité de générer une séquence visible

Un calcul naïf basée sur la sémantique d'un réseau bay

$$P(S_{1:T}) = \sum_{h_{1:T}} P(H_{1:T} = h_{1:T}) P(S_{1:T} \mid H_{1:T} = h_{1:T})$$

- Ce serait inefficace: il y a un nombre exponentiel de sé possibles (la même séquence de sortie peut être produ séquences cachées différentes).
- Les tableaux α(i,t) nous donne une façon plus efficace
- Rappelons-nous que $\alpha(i,t) = P(S_{1:t} = s_{1:t}, H_t = i)$
- Ainsi:

$$P(S_{1:T}=s_{1:T}) = \sum_{j} P(S_{1:T}=s_{1:T}, H_T=j) = \sum_{j} \alpha(j,T)$$

Exemple - I

- Décoder un message binair
 - \bullet message observé: S_1 =0, S

• on peut calculer les proba $P(H_A = 0 \mid S_1 = 0, S_2 = 1, S_3 = 0)$

$$P(H_4 = 1 \mid S_1 = 0, S_2 = 1, S_3 = 0)$$

IFT615

Application: reconnaissance vocale

- La reconnaissance vocale est difficile:
 - bruit ambiant ou introduit par la digitalisation
 - variations dans la prononciation
 - différents mots ont la même prononciation
- Problème: Quelle est la séquence de mots la plus vraisemblable étant donné un signal sonore ?
- Réponse: Choisir la séquence de mots la plus probable a posteriori
 - argmax P(mots | signal) = argmax α P(mots, signal) mots

Modèle acoustique et modèle du langage

- En utilisant la règle de Bayes
 - ♦ $P(mots \mid signal) = \alpha P(signal \mid mots) P(mots)$
- On peut donc décomposer le problème en deux:
 - ◆ P(Signal | Mots): modèle acoustique
 - ◆ P(Mots): modèle de langage
- Chaîne cachée: les mots
- Chaîne observée: le signal

Application - Reconnaissance vocale

Modèle:

- ◆ E_t sont les éléments du signal sonore
- \bullet X_t sont les phrases et les mots prononcés ainsi que les phonèmes

Phones: exemple

Phones pour l'anglais américain:

[iy]	b <u>ea</u> t	[b]	<u>b</u> et	[p]	${f p}$ et
[ih]	b <u>i</u> t	[ch]	$\underline{\mathbf{Ch}}$ et	[r]	${f r}$ at
[ey]	b <u>e</u> t	[d]	${f d}$ ebt	[s]	<u>s</u> et
[ao]	bought	[hh]	<u>h</u> at	[th]	${f th}$ ick
[ow]	b <u>oa</u> t	[hv]	${f h}$ igh	[dh]	${ m \underline{th}}$ at
[er]	B <u>er</u> t	[1]	<u>l</u> et	[w]	$\underline{\mathbf{w}}$ et
[ix]	ros <u>e</u> s	[ng]	$si\mathbf{ng}$	[en]	$butt\underline{\mathbf{on}}$
:	:	:	i	:	i

Modèle acoustique

- Rappel:
 - ♦ $P(Mots \mid Signal) = \alpha P(Signal \mid Mots) P(Mots)$
 - » P(Signal | Mots): modèle acoustique
 - » **P**(*Mots*): modèle de langage
- L'existence des phones permet de diviser le modèle acoustique en deux autres parties:
 - modèle de prononciation: spécifie, pour chaque mot, une distribution de probabilités sur une séquence de phones
 - » par exemple, « ceiling » est parfois prononcé [s iy l ih ng], ou [s iy l ix ng], ou encore [s iy l en]
 - » le phone est une variable cachée, le signal est la variable observée
 - modèle phonique: le modèle phonique $P(e_t|x_t)$ donne la probabilité que le signal échantillonné soit observé au temps t si le phone est x_t

Exemple de modèle de prononciation

- Modèle de prononciation
 - → P([towmeytow]| « tomato») = P([towmaatow]| « tomato») = 0.1
 - → P([tahmeytow] | « tomato») = P([tahmaatow] | « tomato») = 0.4
- Les transitions sont apprises automatiquement d'un corpus
- Les probabilités sont aussi apprises

Apprendre les tables des probabilités conditionnelles

 Observer plusieurs chaînes et définir les probabilités conditionnelles en fonction des fréquences d'occurrence des symboles

$$P(B=b \mid a) = \frac{\sum_{\substack{\text{chaînes} \\ \text{chaînes}}} freq(a,b)}{\sum_{\substack{\text{chaînes} \\ \text{chaînes}}} freq(a)}$$

Pour éviter les problèmes avec zéro occurrences, on utilise plutôt:

$$P(B=b \mid A=a) = \frac{1 + \sum_{\text{chaînes}} \text{freq}(a,b)}{\text{Nb. symboles} + \sum_{\text{chaînes}} \text{freq}(a)}$$

Conversation continue

- Dans une conversation continue on doit tenir compte de la corrélation des mots adjacents et non juste la reconnaissance d'un mot isolé.
- Actuellement, les HMM ont été dépassé par les réseaux de neurones pour la reconnaissance vocale.

Filtre de particules

- Au temps t, on a un incertitude sur la valeur de la variable X
- ◆ On maintient une population **N** des valeurs (états) probables. Chaque valeur probable est représentée par une particule. On a donc N particules.
- → À chaque temps t, on met à jour la population de particules, en échantillonnant la population courante, tenant compte du modèle dynamique (propagation par échantillonnage) et du modèle de transition (rééchantillonnage pondérée)
- Utilisée notamment pour le tracking (estime la position d'un objet mobile).

Source: **Udacity**

Filtre de particules - Algorithme

- Générer une population de N particules selon $P(X_0)$
- À chaque transition $X_t \rightarrow X_{t+1}$:
 - **1. Propager** la population en échantillonnant la prochaine valeur x_{t+1} étant donné la valeur courante x_t , selon le modèle de transition $P(X_{t+1} \mid X_t)$
 - 2. Étant donné la nouvelle observation e_{t+1} , **pondérer** chaque particule X_{t+1} par $P(X_{t+1} \mid X_t)$
 - c.-à-d., pondérer chaque particule par la vraisemblance qu'elle accorde à la nouvelle observation
 - 3. Rééchantillonner (avec replacement) la population pour générer N nouveaux particules $P(X_{t+1} \mid X_t)$
 - La probabilité qu'un échantillon particulier soit choisi est proportionnelle à son poids.

1. Propagate

2. Weight 3. Resample

 $Rain_{t+1}$

Au temps *t+1,* _¬ *Umbrella* est observé

Filtre de particules - Algorithme

```
function Particle-Filtering(\mathbf{e}, N, dbn) returns a set of samples for the next time step inputs: \mathbf{e}, the new incoming evidence N, the number of samples to be maintained dbn, a DBN defined by \mathbf{P}(\mathbf{X}_0), \mathbf{P}(\mathbf{X}_1 \mid \mathbf{X}_0), and \mathbf{P}(\mathbf{E}_1 \mid \mathbf{X}_1) persistent: S, a vector of samples of size N, initially generated from \mathbf{P}(\mathbf{X}_0) local variables: W, a vector of weights of size N for i=1 to N do S[i] \leftarrow \text{sample from } \mathbf{P}(\mathbf{X}_1 \mid \mathbf{X}_0 = S[i]) \qquad // \text{ step 1} \\ W[i] \leftarrow \mathbf{P}(\mathbf{e} \mid \mathbf{X}_1 = S[i]) \qquad // \text{ step 2} \\ S \leftarrow \text{Weighted-Sample-With-Replacement}(N, S, W) \qquad // \text{ step 3} return S
```

Consistance de l'algorithme

On peut prouver (par induction) que l'algorithme est consistent, c.-à.d-., que lorsque le nombre d'échantillons N tend vers l'infini, il se rapproche de la probabilité de filtrage.

• Cas de base: On suppose que la population initiale est consistante avec P(XO).

Notons $N(x_t|e_{1:t})$, le nombre de particules ayant la valeur x_t après avoir observé $e_{1:t}$.

Cas inductif: Supposons que $N(x_t|e_{1:t})$ / $N = P(x_t|e_{1:t})$ Montrons que $N(x_{t+1}|e_{1:t+1})$ / $N = P(x_{t+1}|e_{1:t+1})$

Consistance de l'algorithme

- Se rappeler que $N(x_t|e_{1:t})$ est le nombre de particules ayant la valeur x_t après avoir observé $e_{1:t}$.
- On suppose que $N(x_t|e_{1:t})$ / $N = P(x_t|e_{1:t})$ -- Notre hypothèse inductive
- On veut montrer que $N(x_{t+1}|e_{1:t+1}) / N = P(x_{t+1}|e_{1:t+1})$
 - Partant de $N(x_t|e_{1:t})$, l'étape de propagation va donner $N(x_{t+1}|e_{1:t}) = \Sigma_{xt} P(x_{t+1}|x_t) N(x_t|e_{1:t})$
 - lacktriangle Après avoir observé e_{t+1} l'étape de pondération donne une population de particules dont le poids total est

$$W(x_{t+1}|e_{1:t}) = P(e_{t+1}|x_{t+1}) N(x_{t+1}|e_{1:t})$$

◆ Après l'étape de rééchantillonnage, vu que chaque échantillon est choisi proportionnellement à son poids, le poids total des échantillons ayant la valeur x_{t+1} est proportionnel à leur poids total avant le rééchantillonnage, c.-à-d.,

$$N(x_{t+1}|e_{1:t+1}) / N = \alpha W(x_{t+1}|e_{1:t})$$

Consistance de l'algorithme, suite

- Cas inductif: Supposons que $N(x_t|e_{1:t})$ / $N = P(x_t|e_{1:t})$ Montrons que $N(x_{t+1}|e_{1:t+1})$ / $N = P(x_{t+1}|e_{1:t+1})$
 - Partant de $N(x_t|e_{1:t})$, l'étape de propagation va donner $N(x_{t+1}|e_{1:t}) = \Sigma_{xt} P(x_{t+1}|x_t) N(x_t|e_{1:t})$
 - lack Après avoir observé e_{t+1} l'étape de pondération donne que le poids total des particules est

$$W(x_{t+1}|e_{1:t}) = P(e_{t+1}|x_{t+1}) N(x_{t+1}|e_{1:t})$$

◆ Après l'étape de rééchantillonnage, vu que chaque échantillon est choisi proportionnellement à son poids, le poids total des échantillons ayant la valeur x_{t+1} est proportionnel à leur poids total avant le rééchantillonnage, c.-à-d.,

$$N(x_{t+1}|e_{1:t+1}) / N = \alpha W(x_{t+1}|e_{1:t})$$

Consistance de l'algorithme, suite ...

- Cas inductif: En supposant que $N(x_t|e_{1:t})$ / $N = P(x_t|e_{1:t})$ On veut montrer $N(x_{t+1}|e_{1:t+1})$ / $N = P(x_{t+1}|e_{1:t+1})$
 - On était rendu à $N(x_{t+1}|e_{1:t+1}) / N = \alpha W(x_{t+1}|e_{1:t})$

$$N(x_{t+1}|e_{1:t+1}) / N = \alpha W(x_{t+1}|e_{1:t})$$

$$= \alpha P(e_{t+1}|x_{t+1}) N(x_{t+1}|e_{1:t}) - \text{selon la définition de W}$$

$$= \alpha P(e_{t+1}|x_{t+1}) \sum_{x_t} P(x_{t+1}|x_t) N(x_t|e_{1:t})$$

$$= \text{selon l'équation de } N(x_{t+1}|e_{1:t}) \text{ à la slide précédente}$$

$$= \alpha N P(e_{t+1}|x_{t+1}) \sum_{x_t} P(x_{t+1}|x_t) P(x_t|e_{1:t})$$

$$= \alpha N P(e_{t+1}|x_{t+1}) \sum_{x_t} P(x_{t+1}|x_t) P(x_t|e_{1:t}) / N = P(x_t|e_{1:t})$$

$$= \alpha' P(e_{t+1}|x_{t+1}) \sum_{x_t} P(x_{t+1}|x_t) P(x_t|e_{1:t}) - \text{en posant } \alpha' = \text{NP}$$

$$= P(x_{t+1}|e_{t+1})$$

Selon l'équation de programmation dynamique pour le filtrage

CQFD

Filtre de particules - Exemple

Source: Wikimedia

Filtre de Kalman

- Dans un HMM, la variable cachée est discrète et change dynamiquement ses valeurs en suivant une chaîne de Markov et sa distribution de probabilité conditionnelle (modèle dynamique)
- Un Filtre de Kalman est la version continue d'un HMM. La variable est continue, avec une distribution gaussienne.
- C'est une méthode très utilisée pour le suivi d'objets (tracking).
- Pas couverte dans ce cours. Voir section 14.4.

Résumé

- Un réseau bayésien dynamique (RBD) permet de tenir compte de la nature séquentielle d'un environnement
- Un modèle de Markov caché (HMM) est un cas particulier de RBD avec
 - une seule variable cachée $X_t = \{H_t\}$ et une seule variable observée $E_t = \{S_t\}$
 - les variables H, et S, sont discrètes
- Il existe des procédures de programmation dynamique efficaces dans un HMM pour faire de l'inférence : filtrage, prédiction, lissage, explication la plus plausible. Le cours couvre seulement le filtrage.
- Un filtre de particule est une méthode approximative de filtrage pour un RBD. Très utilisée pour le suivi des objets en mouvement.

Raisonnement probabiliste pour quel type d'agents?

Model-based reflex Sensors -State What the world How the world evolves is like now What my actions do What action I Condition-action rules should do now Actuators Agent

Goal-based

Utiliy-based

Sujets couverts par le cours

Vous devriez être capable de...

- Distinguer les différents types d'inférence probabiliste temporelle:
 - filtrage
 - prédiction
 - lissage
 - explication la plus plausible
- Décrire ce qu'est un modèle de Markov caché
 - \diamond Définir et calculer le tableau α par la programmation dynamique avant
 - Appliquer le tableau α pour le filtrage et le calcul d'une séquence visible
- Décrire et appliquer un filtre de particules
- Note: TP #3 porte sur ces sujets.

Prédiction avec un HMM

- $\alpha(i,t)$ peut être utilisé pour inférer la distribution de prédiction $P(H_{t+k}|s_{1:t})$
- On utilise également un programme dynamique
 - Notons $\pi(i,k) = P(H_{t+k} = i | S_{1:t} = s_{1:t})$
 - Récursivement:

$$\begin{split} \pi(\mathsf{i},\mathsf{k}+1) &= P(H_{t+k+1} = i \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_s \sum_j P(H_{t+k+1} = i,\, H_{t+k} = j,\, S_{t+k} = s \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_s \sum_j P(S_{t+k} = s \,|\, H_{t+k} = j) \,P(H_{t+k+1} = i \,|\, H_{t+k} = j) \,P(H_{t+k} = j \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_j P(H_{t+k+1} = i \,|\, H_{t+k} = j) \,P(H_{t+k} = j \,|\, S_{1:t} = s_{1:t}) \,\sum_s P(S_{t+k} = s \,|\, H_{t+k} = j) \\ &= \sum_j P(H_{t+k+1} = i \,|\, H_{t+k} = j) \,\pi(\mathsf{j},\mathsf{k}) \end{split}$$

On a les valeurs initiales

$$\pi(i,0) = P(H_t = i \mid s_{1:t}) = \alpha(i,t) / \sum_{i} \alpha(j,t) \quad \forall i$$

• On pourrait également faire une prédiction de S_{t+k}

$$P(S_{t+k} = s | S_{1:t} = s_{1:t}) = \sum_{j} P(S_{t+k} = s | H_{t+k} = j) P(H_{t+k} = j | S_{1:t} = s_{1:t})$$

$$= \sum_{j} P(S_{t+k} = s | H_{t+k} = j) \pi(j,k)$$

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

Voir la suite dans les diapos en ligne (cachés)

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• initialisation: $\pi(i,0) = \alpha(i,t) / \sum_i \alpha(j,t)$

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	j t	•••	4
α(i,t)	0		0.04427
٥	1		0.02039

•	j k	0	1	2
(i,k)	0			
K	1			

 \bullet initialisation: $\pi(0,0) = \alpha(0,4) / (\alpha(0,4) + \alpha(1,4))$

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	t	•••	4
α(i,t)	0		0.04427
8	1		0.02039

	j k	0	1	2
(i,k)	0	0.68466		
K	1			

 \bullet initialisation: $\pi(0,0) = 0.04427 / (0.04427 + 0.02039) = 0.68466$

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

	j k	0	1	2
л(i,k)	0	0.68466		
F	1	0.31534		

• initialisation: $\pi(1,0) = 0.02039 / (0.04427 + 0.02039) = 0.31534$

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i k	0	1	2
τ(i,k)	0	0.68466		
F	1	0.31534		

• récursion (k=0): $\pi(i,k+1) = \sum_{j} P(H_{t+k+1} = i | H_{t+k} = j) \pi(j,k)$

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion (k=0): $\pi(0, 1) = P(H_5 = 0 | H_4 = 0) \pi(0,0) + P(H_5 = 0 | H_4 = 1) \pi(1,0)$

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

	j k	0	1	2
τ(i,k)	0	0.68466	0.33154	
F	1	0.31534		

• récursion (k=0): $\pi(0, 1) = 0.3 \times 0.68466 + 0.4 \times 0.31534 = 0.33154$

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

	j k	0	1 2
(i,k)	0	0.68466 0.331	154
K	1	0.31534	

• récursion (k=0): $\pi(1, 1) = P(H_5 = 1 | H_4 = 0) \pi(0,0) + P(H_5 = 1 | H_4 = 1) \pi(1,0)$

Exemple - Prédiction avec un HMM

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

	j k	0	1	2
π(i,k)	0	0.68466	0.33154	
F	1	0.31534	0.66846	

• récursion (k=0): $\pi(0, 1) = 0.7 \times 0.68466 + 0.6 \times 0.31534 = 0.66846$

Exemple - Prédiction avec un HMM

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

	i k	0	1	2
π(i,k)	0	0.68466	0.33154	0.36685
K	1	0.31534	0.66846	0.63315

on continue d'appliquer la récursion jusqu'à la fin (k=2)...

Exemple - Prédiction avec un HMM

- Décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

,	i k	0	1	2
π(i,k)	0	0.68466	0.33154	0.36685
K	1	0.31534	0.66846	0.63315

$$ightharpoonup P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0) = \pi(0,2) = 0.36685$$

Lissage pour un HMM

- Pour faire le lissage, en plus du tableau des α(i,t) généré par un balayage de gauche à droite, nous avons besoin d'un tableau analogue, β(i,t), généré de de droite à gauche
 - \bullet Notons $\beta(i,t) = P(S_{t+1} T = S_{t+1} T \mid H_t = i)$
 - Récursivement on a:

$$\begin{split} \beta(i,t-1) &= P(S_{t:T} = s_{t:T} \mid H_{t-1} = i) \\ &= \sum_{j} P(S_{t:T} = s_{t:T}, H_{t} = j \mid H_{t-1} = i) = \sum_{j} P(S_{t+1:T} = s_{t+1:T}, S_{t} = s_{t}, H_{t} = j \mid H_{t-1} = i) \\ &= \sum_{j} P(S_{t} = s_{t} \mid H_{t} = j) \ P(H_{t} = j \mid H_{t-1} = i) \ P(S_{t+1:T} = s_{t+1:T} \mid H_{t} = j) \\ &= \sum_{j} P(S_{t} = s_{t} \mid H_{t} = j) \ P(H_{t} = j \mid H_{t-1} = i) \ \beta(j,t) \end{split}$$

- On a les valeurs initiales $\beta(i,T) = 1 \forall i$
- Remarquez le tableau β calculé donne aussi une autre façon de calculer la probabilité d'une séquence de sortie:

$$P(S_{1:T} = s_{1:T}) = \sum_{j} P(S_{1:T} = s_{1:T}, H_1 = j)$$

$$= \sum_{j} P(S_{2:T} = s_{2:T} | H_1 = j) P(S_1 = s_1 | H_1 = j) P(H_1 = j)$$

$$= \sum_{j} \beta(j,1) P(S_1 = s_1 | H_1 = j) P(H_1 = j)$$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

initialisation: β(i,4) = 1

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

 \rightarrow initialisation: β(i,4) = 1

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
(i,t)	0				1
Θ	1				1

 \rightarrow initialisation: β(i,4) = 1

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0			*	1
8	1			¥	1

• récursion (t=4): $\beta(i,t-1) = \sum_{j} P(S_t = s_t | H_t = j) P(H_t = j | H_{t-1} = i) \beta(j,t)$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

IFT615

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion
$$\beta(0,3) = P(S_4=0|H_4=0) P(H_4=0|H_3=0) \beta(0,4) + P(S_4=0|H_4=1) P(H_4=1|H_3=0) \beta(1,4)$$
Hugo Larochelle et Froduald Kabanza

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
β(i,t)	0			0.41	1
മ	1				1

• récursion $\beta(0,3) = 0.9 \times 0.3 \times 1 + 0.2 \times 0.7 \times 1 = 0.41$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

IFT615

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	<i>H</i> ₁ =1
$P(H_1)$	0.5	0.5

• récursion
$$\beta(1,3) = P(S_4=0|H_4=0) P(H_4=0|H_3=1) \beta(0,4) + P(S_4=0|H_4=1) P(H_4=1|H_3=1) \beta(1,4)$$
Hugo Larochelle et Froduald Kabanza

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
β(i,t)	0			0.41	1
Ω	1			0.48	1

• récursion $\beta(1,3) = 0.9 \times 0.4 \times 1 + 0.2 \times 0.6 \times 1 = 0.48$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
β(i,t)	0		€	0.41	1
8	1		K	0.48	1

• récursion (t=3): $\beta(i,t-1) = \sum_{j} P(S_t = s_t | H_t = j) P(H_t = j | H_{t-1} = i) \beta(j,t)$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion
$$\beta(0,2) = P(S_3=0|H_3=0) P(H_3=0|H_2=0) \beta(0,3) + P(S_3=0|H_3=1) P(H_3=1|H_2=0) \beta(1,3)$$
Hugo Larochelle et Froduald Kabanza

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
β(i,t)	0		0.1779	0.41	1
Ω	1			0.48	1

• récursion $\beta(0,2) = 0.9 \times 0.3 \times 0.41 + 0.2 \times 0.7 \times 0.48 = 0.1779$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
β(i,t)	0	0.120249	0.1779	0.41	1
മ	1	0.105612	0.2052	0.48	1

on continue d'appliquer la récursion jusqu'au début (t=1)...

Lissage avec un HMM

 Les tables α(i,t) et β(i,t) peuvent également être utilisées pour faire du lissage

$$P(H_k = i \mid S_{1:T} = s_{1:T}) = \Upsilon P(H_k = i, S_{1:k} = s_{1:k}, S_{k+1:T} = s_{k+1:T}) \text{ (Υ est la normalisation)}$$

$$= \Upsilon P(H_k = i, S_{1:k} = s_{1:k}) P(S_{k+1:T} = s_{k+1:T} \mid H_k = i)$$

$$= \Upsilon \alpha(i,k) \beta(i,k)$$

On peut également faire du lissage sur deux variables cachées adjacentes

$$P(H_{k} = i, H_{k+1} = j \mid S_{1:T} = s_{1:T}) = \Upsilon' P(H_{k} = i, H_{k+1} = j, S_{1:k} = s_{1:k}, S_{k+1:T} = s_{k+1:T})$$

$$= \Upsilon' P(H_{k} = i, S_{1:k} = s_{1:k}) P(H_{k+1} = j \mid H_{k} = i) P(S_{k+1} = s_{k+1} \mid H_{k+1} = j)$$

$$P(S_{k+2:T} = s_{k+2:T} \mid H_{k+1} = j)$$

$$= \Upsilon' α(i,k) β(j,k+1) P(H_{k+1} = j \mid H_{k} = i) P(S_{k+1} = s_{k+1} \mid H_{k+1} = j)$$

 À noter que Υ correspond à une somme sur i seulement, tandis que Υ' est une somme sur i et j

Exemple - Lissage avec un HMM

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

	i t	•••	2	•••
α(i,t)	0		0.0175	
8	1	•••	0.3	•••

,	i t		2	•••
β(i,t)	0	•••	0.1779	
&	1	•••	0.2052	

on peut calculer les probabilités de lissage au temps t=2

$$P(H_2 = 0 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = \frac{\alpha(0,2) \beta(0,2)}{\sum_i \alpha(i,2) \beta(i,2)}$$

$$= \alpha(0,2) \beta(0,2) / (\alpha(0,2) \beta(0,2) + \alpha(1,2) \beta(1,2))$$

$$= 0.0175 \times 0.1779 / (0.0175 \times 0.1779 + 0.3 \times 0.2052)$$

$$P(H_2 = 1 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

= 0.3 x 0.2052 / (0.0175 x 0.1779 + 0.3 x 0.2052)
 ≈ 0.95186

Explication la plus plausible avec un HMM

- On peut également éviter une énumération exponentielle
 - exemple avec T=3 $\max_{h^*_{1:3}} P(h^*_1) P(s_1|h^*_1) P(h^*_2|h^*_1) P(s_2|h^*_2) P(h^*_3|h^*_2) P(s_3|h^*_3)$ $= \max_{h^*_{1:3}} P(s_3|h^*_3) \max_{h^*_{2}} P(s_2|h^*_2) P(h^*_3|h^*_2) \max_{h^*_{1:3}} P(h^*_1) P(h^*_1) P(s_1|h^*_1)$
- Solution: programmation dynamique, avec un max au lieu de la somme
 - Notons $\alpha^*(i,t) = P(S_{1:t} = S_{1:t}, H_{1:t-1} = h^*_{1:t-1}, H_t = i)$
 - Recursivement, on a:

$$\alpha^*(i,t+1) = \max_{j} P(S_{1:t+1} = s_{1:t+1}, H_{1:t-1} = h^*_{1:t-1}, H_t = j, H_{t+1} = i)$$

$$= \max_{j} P(S_{t+1} = s_{t+1} \mid H_{t+1} = i) P(H_{t+1} = i \mid H_t = j) P(S_{1:t} = s_{1:t}, H_{1:t-1} = h^*_{1:t-1}, H_t = j)$$

$$= P(S_{t+1} = s_{t+1} \mid H_{t+1} = i) \max_{j} P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$$

- On a les valeurs initiales: $\alpha^*(i,1) = P(S_1 = s_1 | H_1 = i) P(H_1 = i) \forall i$
- On a alors que $P(S_{1:T} = s_{1:T}, H_{1:T} = h^*_{1:T}) = \max_{i} \alpha^*(j,T)$
- On retrouve h*_{1:T} à partir de tous les argmax_j

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• initialisation: $\alpha^*(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i)$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	j t	1	2	3	4
(i,t)	0	0.45			
ð	1				

• initialisation: $\alpha^*(0,1) = P(S_1=0) H_1 = 0$ $P(H_1=0) = 0.9 \times 0.5 = 0.45$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• initialisation: $\alpha^*(1,1) = P(S_1=0 \mid H_1=1) P(H_1=1) = 0.2 \times 0.5 = 0.1$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion (t=1): $\alpha^*(i,t+1) = P(S_{t+1} = s_{t+1} \mid H_{t+1} = i) \max_j P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion: $\alpha^*(0,2) = P(S_2=1|H_2=0) \max\{P(H_2=0|H_1=0) \alpha^*(0,1), P(H_2=0|H_1=1) \alpha^*(1,1)\}$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

•	j t	1	2	3	4
(i,t)	0	0.45	0 .0135		
ð	1	0.1			

• récursion: $\alpha^*(0,2) = 0.1 \text{ max} \{ 0.3 \times 0.45, 0.4 \times 0.1 \} = 0.0135$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion: $\alpha^*(1,2) = P(S_2=1|H_2=1) \max\{P(H_2=1|H_1=0) \alpha^*(0,1), P(H_2=1|H_1=1) \alpha^*(1,1)\}$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

_	i t	1	2	3	4
(i,t)	0	0.45	0.0135		
ō	1	0.1	0.252		

• récursion: $\alpha^*(1,2) = 0.8 \text{ max} \{ 0.7 \times 0.45, 0.6 \times 0.1 \} = 0.252$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion (t=2): $\alpha^*(i,t+1) = P(S_{t+1} = s_{t+1} \mid H_{t+1} = i) \max_j P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

• récursion: $\alpha^*(0,3) = 0.9 \text{ max} \{ 0.3 \times 0.0135, 0.4 \times 0.252 \} = 0.09072$

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	j t	1	2	3	4
(i,t)	0	0.45	0.0135	0.09072	0.02449
0	1	0.1	0.252	0.03024	0.01270

on continue d'appliquer la récursion jusqu'à la fin (t=4)...

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1	
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4	
$P(H_t=1 \mid H_{t-1})$	0.7	0.6	

Distribution initiale

	H ₁ =0	H ₁ =1	
$P(H_1)$	0.5	0.5	

on trouve le maximum à la dernière colonne...

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1	
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4	
$P(H_t=1 \mid H_{t-1})$	0.7	0.6	

Distribution initiale

	H ₁ =0	H ₁ =1	
$P(H_1)$	0.5	0.5	

... puis on retrouve le chemin qui a mené là

- Décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1	
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4	
$P(H_t=1 \mid H_{t-1})$	0.7	0.6	

Distribution initiale

	H ₁ =0	H ₁ =1	
$P(H_1)$	0.5	0.5	

α*(i,t)	i t	1		2		3		4	
	0	0.45		0.0	135	0.09072		0.02449	
8	1		0.1	0.	252	0.03	3024	0.0	L270
		H_1	=0	H_2 =	1	H_3	=0	H_{λ}	₁ =0

ce chemin nous donne la séquence des H_t la plus probable

Simuler un HMM

- Il est facile de générer des observations d'un HMM
 - échantillonner une valeur initiale $H_1 = h_1$ de $P(H_1)$
 - pour t = 2 jusqu'à T, répéter les deux échantillonnage suivants:
 - » utiliser les probabilités de transition de l'état caché courant pour obtenir un échantillon $h_{t'}$ sachant l'état caché précédent: $\mathbf{P}(H_t \mid H_{t-1} = h_{t-1})$
 - » utiliser les probabilités de sortie de la variable d'observation étant donné l'état caché courant, pour obtenir le symbole d'observation (émission) s_t : $P(S_t \mid H_t = h_t)$
- On peut aussi générer la séquence des états cachés d'abord et ensuite générer les observations
 - les variables cachées dépendent uniquement des variables cachées précédentes
 - chaque observation (émission) ne dépendra pas des autres