# Introduction to Electrical Systems Week 7 – Filters + Communication Systems

Lecturer:

Dr Philip Terrill

## Plan For Rest of Semester:

- Week 7: Filters + Communications 1
- Week 8: Filters + Communications 2
- Week 9: Monday Public Holiday
  - No lecture Anzac day
  - No lab A
  - Lab B: Design project work
- Week 10: Monday Public holiday (but Monday timetable on Tuesday
  - Lecture: Power Systems 1
  - No lab A
  - Lab B: Design project work
- Week 11: Power Systems 2
- Week 12: Control & Op-amps 1
- Week 13: Control & Op-amps 2

## What did we do in Week 6?

- Phasor Diagrams representing circuit solutions graphically
  - An intuitive way of visualising KCL and KVL with phasors (sum of currents to node = 0; or sum of voltages around mesh = 0)
- AC Nodal & Mesh Analysis
  - Extend our DC circuit analysis techniques to solve of sinusoidal timevarying circuits

## So where are we up to?

- We have seen that we can model inductors and capacitors using frequency dependant complex impedances
- Circuits containing inductors and capacitors thus have a frequency dependence



$$Z_2 = j\omega L = j 62.83;$$

$$Z_3 = 50, Z_4 = -j79.6$$

# Magnitude of Component impedance with frequency



## So where are we up to?

- 1. We have seen that we can model inductors and capacitors using frequency dependant complex impedances
- 2. Circuits containing inductors and capacitors thus have a frequency dependence
- 3. We have solved such circuits by substituting in for a particular source frequency (i.e. substituting in for f or w)
- 4. However, we can also make frequency the variable of interest to model how the circuit behaves at different frequencies
  - i.e. model circuit as a function of frequency:  $G(\omega) = ?$
- 5. We would like to plot this frequency response in an intuitive manner to help us understand the behaviour of the circuit.





f-=1000; 
$$\omega = 6283$$
;  $Z_2 = j\omega L = j 62.83$ ;  $Z_3 = 50$ ,  $Z_4 = -j79.6$ 

## Communications + Electronics

- Electronic communication systems rely on frequency dependant behaviour:
  - To remove "noise" from a signal of interest
  - To modulate information
  - To transmit information
  - To de-modulate information
- In weeks 7-8 we will be discussing techniques to model and intuitively present frequency dependant behaviour
- As Engineers, what we want to know is:

  How can we exploit frequency dependant behaviour in real world Communications + Electronics Engineering?

## This Week

Two port networks

[We have previously seen one port networks as a way of simplifying the model behaviour of a circuit with **ONE** terminal]

Transfer Functions

[The function we use to model a two-port network]

Frequency Response

[The frequency dependant behaviour of the transfer function]

Bode Plots

[visualising this frequency dependant behaviour]

Filters

[practical application for this frequency dependant behaviour]

## **One-Port Networks**



- Thevenin equivalent circuits and one port resistor models: Allow us solve complex circuit once. This is now a "module" to which you can connect any arbitrary load.
- However, we often work with circuits that have two ports —an input and an output

## Two Port Networks with Sinusoidal Inputs



- We are only considering a special cases of two port networks:
  - V<sub>1</sub> is a voltage on the "input" port and we will connect a time varying voltage source here.
  - $V_2$  is the open-circuit voltage on the "output" port (i.e. we assume  $I_2 = 0$ )
- We can simplify the network further by assuming that all signals (i.e. input voltages) are sinusoidal, and therefore can be represented by phasors.

## A Simple Example

Consider the following two port network:

We might investigate in the lab:

Might be our function generator



## **Transfer Functions**



\* For 
$$V_2$$
 apply voltage divider:

$$U_2 = U_1 \left( \frac{R}{R+jwL} \right) = U_1 \left( \frac{1000}{000+jw} \right)$$

:. 
$$C(\omega) = \frac{V_2}{V_1} = \frac{1000}{1000 + jw} = Ae^{j\phi}$$

$$\underline{\underline{V}_{in}}$$
  $\underline{\underline{V}_{in}}$   $G(\omega)$ 

Where: 
$$V_{out} = V_{in} \times G(\omega)$$

Or: 
$$G(\omega) = \frac{V_{out}}{V_{in}}$$

$$G(w) = \frac{1000}{1000+jw} = \frac{1}{1000}$$

$$G(w) = \frac{1e^{j0}}{1000} = \frac{1}{1000} = \frac{1}{1000}$$

$$G(w) = \frac{1e^{j0}}{11+\frac{w^2}{100}} = \frac{1}{11+\frac{w^2}{100}} = \frac{1}{11+\frac{w^2}{100}}$$

$$|G(w)| = \frac{1e^{j0}}{11+\frac{w^2}{100}} = \frac{1}{11+\frac{w^2}{1000}} = \frac{1}{11+\frac{w^2}{1000}}$$

## **Transfer Function**

The transfer function,  $G(\omega)$  has the following characteristics:

- $G(\omega)$  is a complex number, and we typically write it in polar form, i.e., as an amplitude and an angle.
- We usually call the amplitude,  $|G(\omega)|$ , the gain of the transfer function. [More correctly we should call it the voltage gain. Sometimes it is called magnitude].
- We usually call the angle,  $\angle(G(\omega))$ , the phase of the transfer function.
- $G(\omega)$  is a function of angular frequency, and typically it can vary considerably for different frequencies.
- Note that  $G(\omega)$  does not depend on the amplitude or phase of the input voltage:
  - $G(\omega)$  is the ratio between output voltage and input voltage phasors.
- $G(\omega)$  does depend on the impedance connected to the output port: We will only consider an open-circuit or very high impedance load on the output (e.g. oscilloscope probe)

[In future courses, you will consider input and output impedances that allow you generalise – See ELEC3400]

## Plotting Frequency Response

• Tabulating  $\omega$  (2 $\pi f$ ), Gain and Phase:

Gain: 
$$|G(\omega)| = \frac{1}{\sqrt{(1+\omega^2/10^6)}}$$
; and phase:  $\angle G(\omega) = -\tan^{-1}\frac{\omega}{1000}$ 

#### **FREQUENCY**

1 Hz

10 Hz

100 Hz

1000 Hz

10 kHz

100 kHz

1 MHz

## Plotting Frequency Response

• We can plot this on a graph:

| FREQUENCY | ω                             | GAIN ,<br> G(ω) |
|-----------|-------------------------------|-----------------|
| 1 Hz      | 6.283 rad s <sup>-1</sup>     | 0.99998         |
| 10 Hz     | 62.83 rad s <sup>-1</sup>     | 0.998           |
| 100 Hz    | 628.3 rad s <sup>-1</sup>     | 0.847           |
| 1000 Hz   | 6283 rad s <sup>-1</sup>      | 0.157           |
| 10 kHz    | 62832 rad s <sup>-1</sup>     | 0.0159          |
| 100 kHz   | 628319 rad s <sup>-1</sup>    | 0.00159         |
| 1 MHz     | 6,283,185 rad s <sup>-1</sup> | 0.000159        |



Notice the first problem – we can't see the detail at low frequencies, because the values are all crowded at the left.

## Plotting Frequency Response

• We can fix this by plotting frequency on a logarithmic scale



PROBLEM: We can't easily see the differences between small values on the gain axis.

• We can fix Y axis by also plotting gain on a logarithmic scale.



On this plot, gain is "approximately" two straight lines:

- 1-100Hz and
- 1kHz 1MHz,

With a transition between them

#### Think or Stretch

Can you think of some other measurements or scales which are logarithmic?

#### **ANSWER:**

```
Audio: sound pressure level
(washing machine = 50 dB, jet engine = 120 dB)
Optical fibre loss (0.4dB/km) = 10% loss each km
Richter Scale for Earthquakes
```

## **Decibels**

- The decibel is a logarithmic measure of gain.
- It is measures the relative power of two signals (i.e. the ratio of two powers .
- The bel, B, named after Alexander Graham Bell, is defined as:

Gain in Bels = 
$$log_{10}(\frac{P_2}{P_1})$$

- Instead, we use decibels, dB. [10dB = 1 B] Gain in decibels =  $10log_{10}(\frac{P_2}{P_1})$
- Power in a resistor is related to voltage by

$$P_R = \frac{V^2}{R}$$
, [P is proportional to V<sup>2</sup>]

So we can write:

Gain in decibels = 
$$10log_{10}\left(\frac{P_2}{P_1}\right) = 10log_{10}\left(\frac{{V_2}^2}{{V_1}^2}\right) = 20log_{10}\left(\frac{{V_2}}{{V_1}}\right)$$

It doesn't matter whether the voltages are peak, peakto-peak or RMS, the ratio (gain) is the same!

This version for two port network voltage gains!

Bode Plot Linear Y-axis

• So, for: 
$$|G(\omega)| = \frac{1}{\sqrt{(1 + \omega^2/10^6)}}$$

We can write: Gain in dB=  $20log_{10}$ 

|   | /          | 1               |        |
|---|------------|-----------------|--------|
| 0 | $\sqrt{1}$ | $+\omega^{2/2}$ | $10^6$ |

| Log | X-axis |
|-----|--------|
|     |        |

| FREQUENCY | ω                            | GAIN, $ G(\omega) $ |
|-----------|------------------------------|---------------------|
| 1 Hz      | 6.283 rad s <sup>-1</sup>    | 0.99998             |
| 10 Hz     | 62.83 rad s <sup>-1</sup>    | 0.998               |
| 100 Hz    | 628.3 rad s <sup>-1</sup>    | 0.847               |
| 1000 Hz   | 6283 rad s <sup>-1</sup>     | 0.157               |
| 10 kHz    | 62832 rad s <sup>-1</sup>    | 0.0159              |
| 100 kHz   | 628319 rad s <sup>-1</sup>   | 0.00159             |
| 1 MHz     | 6,283,185 rad s <sup>-</sup> | 0.000159            |



## **Bode Phase Plot**

• We plot phase on a linear y axis, we still use a logarithmic frequency axis:

| FREQUENCY | ω                            | PHASE of G(ω) radians |
|-----------|------------------------------|-----------------------|
| 1 Hz      | 6.283 rad s <sup>-1</sup>    | -0.00314158           |
| 10 Hz     | 62.83 rad s <sup>-1</sup>    | -0.0314056            |
| 100 Hz    | 628.3 rad s <sup>-1</sup>    | -0.3043958            |
| 1000 Hz   | 6283 rad s <sup>-1</sup>     | -1.26262726           |
| 10 kHz    | 62832 rad s <sup>-1</sup>    | -1.53897608           |
| 100 kHz   | 628319 rad s <sup>-1</sup>   | -1.56761324           |
| 1 MHz     | 6,283,185 rad s <sup>-</sup> | -1.57047802           |



### The Filter



We define the cut-off frequency as the "half power point":

i.e.: 
$$\left| \frac{P_2}{P_1} \right| = \left| \frac{{V_2}^2}{{V_1}^2} \right| = \frac{1}{2}$$

Therefore: 
$$\left| \frac{V_2}{V_1} \right| = \frac{1}{\sqrt{2}}$$

in dB: 
$$20log_{10}\left(\frac{1}{\sqrt{2}}\right) = -3$$

Higher frequencies are "blocked" (attenuated)

Lower frequencies pass through unaltered

Cut-off Frequency = 159 Hz

We call this a low-pass filter



## Low Pass Filter – Frequency Response

-70

• "Ideal" Filter with a cut-off Frequency at 1 kHz:

• Simple RL filter with a cut-off at 1KHz:



100

10000

1000000

## Other Ideal Filters:

• High Pass:

Band Pass:

• Band Stop:



## Can you think any practical applications of filters?

• In other words, why would we want to remove certain frequencies from a voltage signal?

## Filtering Example – ECG Example



http://www.meditech.cn/meditech-edu/ecg-2.asp

## Electrocardiogram (ECG)

 Measures electric field, on skin surface, generated by heart as it contracts



## Text book ECG Trace:



## ECG Example: In the real world



## ECG Example: Zoomed in:



## ECG Example: 50Hz Band Stop Filter



## ECG Example: 10Hz LPF:



## This week ahead

- Prac 7A:
  - Transfer functions and frequency response of filters
- Prac 7B:
  - Transfer functions and frequency response of filter cont. and applications of filters to audio signals
- Flexible Students: Classes are back on-campus, see: <a href="https://about.uq.edu.au/coronavirus">https://about.uq.edu.au/coronavirus</a>
- Until 12-noon Thursday 15th of April:
  - You need to bring your masks. Should be worn when social distancing is not possible.
  - Exemptions from mask wearing include where you need to be able to easily communicate such as teaching
  - Please "check-in" to practical rooms with QR codes
  - Continue to wash or sanitise your hands on entry to, and exit from our ENGG1300 practical room