Causal Inference

A linear relationship between X and Y does not imply causation

Causation implies:

- ullet Changing X necessarily changes Y
- ullet Typically a time component, so the change in X has to occur before the change in Y

Counterfactual Model

Let $X \in \{0,1\}$ be a random variable denoting whether or not a treatment was applied

- X=0 is the "control"
- ullet $Y\in\mathbb{R}$ is the response, which is typically a binary response but really could be any real

We define C_0 and C_1 to be the potential outcomes, i.e. the potential values of Y in the case that X=0 or X=1

- These are random variables
- $Y = C_X$
- ullet When X=0, C_0 is the observed, and C_1 is the counterfactual. Vice versa for when X=1

■ Average Treatment Effect

$$heta = \mathbb{E}\left[C_1\right] - \mathbb{E}\left[C_0\right]$$

 Generally, we do want to find the ATE, but it is not computable directly because we don't know the counterfactual for each observation

Association

$$\alpha = \mathbb{E}\left[Y|X=1\right] - \mathbb{E}\left[Y|X=0\right]$$

• We can estimate this directly through the plugin estimator

In general, these are not equal to each other due to the idea of confounding variables

- Consider the example where we have $Z \sim \mathrm{Unif}([-1,1])$ and let X = 1(Z>0)
- We let $C_0=C_1=Z$
 - $\circ~$ Clearly, the treatment has no effect, and we get that $heta=\mathbb{E}\left[C_{1}
 ight]-\mathbb{E}\left[C_{0}
 ight]=0$
 - \circ However, $lpha=\mathbb{E}\left[Y|X=1
 ight]-\mathbb{E}\left[Y|X=0
 ight]=1/2--1/2=1$
- ullet Z is a confounding variable that impacts both X and Y
 - An example of another confounding variable is the decision to give someone a treatment or not based on their current health

Estimating ATE with Association

- We can design an experiment to guarantee heta=lpha
 - Known as randomized controlled trials, or A/B testing
 - This is done by determining who gets which treatment entirely by a random coin
 - This can be unethical, i.e. denying someone with a medical condition a treatment based on a flipped coin
- ullet As long as X is a pure Bernoulli random variable, then we guarantee that lpha= heta
 - \circ This is because C_0 and C_1 are independent of X
- ullet Often, we use observational studies where the outcomes are not independent of X

- \circ However, we might be able to find a feature vector Z such that C_0, C_1 are independent of X conditioned on Z
 - lacksquare I.e. in a treatment, we could have Z be a vector of all of your health conditions
- \circ We could then split up our observations based on the value of Z, and for each of these, we would have that heta=lpha
- ullet However, this is hard to do when Z is high-dimensional
 - \circ You would have to create bins for each Z, but then each bin would only have a small number of observations
 - \circ We want to somehow reduce Z to a single number, which is much easier to bin up

Propensity Score

$$p(z) = P(X = 1|Z = z)$$

ullet If we calculate this for each Z value and then bin them up then we can apply the following theorem:

Rosenbaum and Rubin

If C_i is strongly unconfound with X given Z, then it is also strongly unconfound with X given p(Z)

Typically, we can't compute p(z) directly, but we could learn it via logistic regression