

# 1.7 Watt Audio Power Amplifier

#### **Features**

|   | Improved PSRR at 217 Hz & 1 KHz                              | 60 dB                    |
|---|--------------------------------------------------------------|--------------------------|
| _ | Power output at 5.0V, 10%THD+N, 4 $\Omega$ (SOP8 package)    | 1.7W(typ.)               |
| _ | Power output at 5.0V, 1% THD+N, $8\Omega$                    | 1.1 W (typ.)             |
|   | Ultra low shutdown current                                   | 0.1 uA (typ.)            |
| _ | 2.2V - 5.5V operation                                        |                          |
| _ | Improved circuitry eliminates pop-click noise during turn-on | and turn-off transitions |
|   | No output coupling capacitors, snubber networks or bootstrap | capacitors required      |
|   | Unity-gain stable                                            |                          |
|   | External gain configuration capability                       |                          |
| _ | Packages: MSOP8、SOP8                                         |                          |

#### **General Description**

The BL6281 is a Class-AB audio power amplifier designed for mobile phone, MID and other portable communication devices. It is capable of delivering 1.1 watts of continuous average power to an  $8\Omega$  BTL load with less than 1% distortion (THD+N) from a  $5V_{DC}$  power supply.

The BL6281 was designed specifically to provide high quality output power with a minimal amount of external components. It does not require output coupling capacitors or bootstrap capacitors. And with ultra low shutdown current, the BL6281 is ideally suited for mobile phone, MID and other low voltage applications where minimal power consumption is a primary requirement.

With special pop-click eliminating circuit, the BL6281 provides perfect pop-click characteristic during turn-on and turn-off transitions.

The BL6281 is unity-gain stable and can be configured by external gain-setting resistors.

#### **Applications**

| MID                         |
|-----------------------------|
| Wireless handsets           |
| Portable electronic devices |
| PDAs, Handheld computers    |



#### **Order Information**

| Part Number | Package | MOQ                    |
|-------------|---------|------------------------|
| BL6281MM    | MSOP8   | 3000 pcs / Tape & Reel |
| BL6281SO-R  | SOP8    | 2500 pcs / Tape & Reel |
| BL6281SO-T  | SOP8    | 20000pcs / Tube        |

# Pin Diagrams

## MSOP8/SOP8 Top View



## **Pin Description**

| No. | Pin Name | I/O | Description                                             |
|-----|----------|-----|---------------------------------------------------------|
| 1   | SHD      | I   | Shut-down Logical Control, '0' is active.               |
| 2   | BP       | I/O | Analog ground for inner OPAs. It's about a half of VDD. |
| 3   | INP      | I   | Positive Input                                          |
| 4   | INN      | I   | Negative Input                                          |
| 5   | Vout1    | О   | Negative BTL Output                                     |
| 6   | VDD      | I/O | Power Supply (2.2 – 5.5 V)                              |
| 7   | GND      | I/O | Ground                                                  |
| 8   | Vout2    | О   | Positive BTL Output                                     |



## **Typical Application Circuit**



FIGURE 1. BL6281 Typical Application Circuit



FIGURE 2. BL6281 Differential Amplifier Configuration



## **External Components Description**

| Components                                                                     | Functional Description                                                              |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Ri Inverting input resistance which sets the closed-loop gain in conjunction w |                                                                                     |  |
|                                                                                | Rf. This resistor also forms a high pass filter with Ci at $fc = 1/(2\pi Ri *Ci)$ . |  |
| Ci                                                                             | Input coupling capacitor which blocks the DC voltage at the amplifiers input        |  |
| terminates. Also creates a high-pass filter with Ri at fc = $1/(2\pi Ri*Ci)$ . |                                                                                     |  |
| Rf                                                                             | Feedback resistance which sets the closed-loop gain in conjunction with Ri. The     |  |
|                                                                                | gain is $A_{VD}=2*(Rf/Ri)$ .                                                        |  |
| Cs                                                                             | Supply bypass capacitor which provides power supply filtering.                      |  |
| Cb                                                                             | Bypass pin capacitor which provides half-supply filtering. Refer to the section.    |  |

| Absolute Maximus     | m Ratings             | <b>Operating Ratings</b>    |                                                          |
|----------------------|-----------------------|-----------------------------|----------------------------------------------------------|
| Supply Voltage       | -0.3V to 6V           | Temperature Range           | $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$ |
| Input Voltage        | -0.3V to VDD+0.3V     | Supply Voltage              | $2.2V \leq V_{DD} \leq 5.5V$                             |
| Power Dissipation    |                       |                             |                                                          |
| See Dis              | sipation Rating Table |                             |                                                          |
| Junction Temperature | -40°C to +150°C       | NOTE: Absolute Maximus      | m Ratings indicate limits                                |
| Storage Temperature  | -65°C to +150°C       | beond which damage to       | the device may occur.                                    |
| Thermal Resistance   |                       | Operating Rating indicate   | conditions for which the                                 |
| $\theta_{JC}(MSOP8)$ | 56℃/W                 | device is functional, but d | o not guarantee specific                                 |
| $\theta_{JA}(MSOP8)$ | 190℃/W                | performance limits.         |                                                          |
| $\theta_{JA}(SOP8)$  | 184°C/W               |                             |                                                          |
|                      |                       |                             |                                                          |

## **Electrical Characteristics**

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for  $T_A = 25\,^{\circ}\text{C}$ .

## $\Box$ $V_{DD} = 5V$

| Cymbol              | Parameter                      | Conditions                                          | Spec |      |      | Units |
|---------------------|--------------------------------|-----------------------------------------------------|------|------|------|-------|
| Symbol              | i ai ameter                    | Conditions                                          | Min. | Тур. | Max. | Units |
| т                   | Ovigagant Bower Sumply Current | $V_{IN} = 0V$ , $8\Omega$ Load                      |      | 3.0  | 8    | mA    |
| $I_{DD}$            | Quiescent Power Supply Current | $V_{IN} = 0V$ , No Load                             |      | 2.5  | 7    | mA    |
| $I_{\mathrm{SD}}$   | Shutdown Current               | V <sub>IN</sub> =0V, V <sub>SHD</sub> =GND, No Load |      | 0.1  | 2    | uA    |
| $V_{\mathrm{SDIH}}$ | Shutdown Voltage Input High    |                                                     | 1.2  |      |      | V     |



| V <sub>SDIL</sub> | Shutdown Voltage Input Low      |                                                                            |     |      | 0.9 | V  |
|-------------------|---------------------------------|----------------------------------------------------------------------------|-----|------|-----|----|
| V <sub>os</sub>   | Output Offset Voltage           |                                                                            | -50 | 6    | 50  | mV |
| THD+N             | Total Harmonic Distortion+Noise | Po=0.5Wrms, f=1KHz,                                                        |     | 0.07 |     | %  |
| $P_{O}$           | Output Power                    | THD+N<=1%, f=1KHz, $8\Omega$ Load                                          | 0.9 | 1.1  |     | W  |
| PSRR              | Davor Supply Paigation Patio    | Input terminated with $10\Omega$ , $V_{DDRIPPLE}$ =0.2 $V_{P-P}$ , f=217Hz |     | 60   |     | dB |
| PSKK              | Power Supply Rejection Ratio    | Input terminated with $10\Omega$ , $V_{DDRIPPLE}$ =0.2 $V_{P-P}$ , f=1KHz  |     | 61   |     | dB |
| $T_{\mathrm{WU}}$ | Wake-up time                    |                                                                            |     | 100  |     | ms |

# 

| Cb - 1              | Parameter                       | C 1:4:                                                                     | Spec |      |      | TI24  |
|---------------------|---------------------------------|----------------------------------------------------------------------------|------|------|------|-------|
| Symbol              |                                 | Conditions                                                                 | Min. | Тур. | Max. | Units |
| т                   | Quiggant Dawar Sumply Current   | $V_{IN} = 0V$ , $8\Omega$ Load                                             |      | 2    | 7    | mA    |
| $I_{DD}$            | Quiescent Power Supply Current  | $V_{IN} = 0V$ , No Load                                                    |      | 1.5  | 6    | mA    |
| $I_{SD}$            | Shutdown Current                | V <sub>IN</sub> =0V, V <sub>SHD</sub> =GND, No Load                        |      | 0.1  | 2    | uA    |
| $V_{\mathrm{SDIH}}$ | Shutdown Voltage Input High     |                                                                            | 1.0  |      |      | V     |
| $V_{\mathrm{SDIL}}$ | Shutdown Voltage Input Low      |                                                                            |      |      | 0.7  | V     |
| V <sub>OS</sub>     | Output Offset Voltage           |                                                                            | -50  | 6    | 50   | mV    |
| THD+N               | Total Harmonic Distortion+Noise | Po=0.25Wrms, f=1KHz,                                                       |      | 0.08 |      | %     |
| Po                  | Output Power                    | THD+N<=1%, f=1KHz,<br>8Ω Load                                              |      | 310  |      | mW    |
| DCDD                | D. and O. and D. inglies D. die | Input terminated with $10\Omega$ , $V_{DDRIPPLE}$ =0.2 $V_{P-P}$ , f=217Hz |      | 57   |      | dB    |
| PSRR                | Power Supply Rejection Ratio    | Input terminated with $10\Omega$ , $V_{DDRIPPLE}$ =0.2 $V_{P-P}$ , f=1KHz  |      | 58   |      | dB    |
| $T_{ m WU}$         | Wake-up time                    |                                                                            |      | 75   |      | ms    |

# $\Box$ $V_{DD} = 2.6V$

| Cymh al             | Parameter                       | Conditions                                          | Spec |      |      | Units  |
|---------------------|---------------------------------|-----------------------------------------------------|------|------|------|--------|
| Symbol              | Parameter                       | Conditions                                          | Min. | Тур. | Max. | Units  |
| ī                   | Quiescent Power Supply Current  | $V_{\rm IN} = 0V$ , $8\Omega$ Load                  |      | 1.7  |      | mA     |
| $I_{DD}$            | Quiescent rower suppry Current  | $V_{IN} = 0V$ , No Load                             |      | 1.2  |      | mA     |
| $I_{SD}$            | Shutdown Current                | V <sub>IN</sub> =0V, V <sub>SHD</sub> =GND, No Load |      | 0.1  |      | uA     |
| $V_{\mathrm{SDIH}}$ | Shutdown Voltage Input High     |                                                     | 1.0  |      |      | V      |
| $V_{\mathrm{SDIL}}$ | Shutdown Voltage Input Low      |                                                     |      |      | 0.7  | V      |
| Vos                 | Output Offset Voltage           |                                                     | -50  | 4    | 50   | mV     |
| THD+N               | Total Harmonic Distortion+Noise | Po=0.15Wrms, f=1KHz,                                |      | 0.08 |      | %      |
| D                   | Output Power                    | THD+N<=1%, f=1KHz,                                  |      | 230  |      | mW     |
| P <sub>O</sub>      | Ծութու i owei                   | 8Ω Load                                             |      | 230  |      | 111 VV |
| PSRR                | Power Supply Rejection Ratio    | Input terminated with $10\Omega$ ,                  |      | 56   |      | dB     |



|          |              | V <sub>DDRIPPLE</sub> =0.2V <sub>P-P</sub> , f=217Hz |    |    |
|----------|--------------|------------------------------------------------------|----|----|
|          |              | Input terminated with $10\Omega$ ,                   | 57 | dB |
|          |              | $V_{DDRIPPLE}=0.2V_{P-P}, f=1KHz$                    | 31 | uБ |
| $T_{WU}$ | Wake-up time |                                                      | 70 | ms |







THDN vs Output Power VDD=3V RL= $8\Omega$  F=1KHz

THDN vs Output Power VDD=2.6V RL=8Ω F=1KHz



http://www.belling.com.cn



NOISE\_F



Noise Floor 20KBW VDD=5V RL=8 $\Omega$ 



## **Package Dimensions**







#### MSOP8

All dimension values are in millimeter.









| SYMBOL  | MI      | LLIMET  | ER   |  |  |
|---------|---------|---------|------|--|--|
| STWIDOL | MIN     | NOM     | MAX  |  |  |
| Α       |         |         | 1.77 |  |  |
| A1      | 0.08    | 0.18    | 0.28 |  |  |
| A2      | 1.20    | 1.40    | 1.60 |  |  |
| A3      | 0.55    | 0.65    | 0.75 |  |  |
| ь       | 0.39    | 1       | 0.48 |  |  |
| b1      | 0.38    | 0.41    | 0.43 |  |  |
| с       | 0.21    |         | 0.26 |  |  |
| c1      | 0.19    | 0.20    | 0.21 |  |  |
| Đ       | 4.70    | 4.90    | 5.10 |  |  |
| E .     | 5.80    | 6.00    | 6.20 |  |  |
| EI      | 3.70    | 3.90    | 4.10 |  |  |
| e       |         | 1.27BSC |      |  |  |
| L       | 0.50    | 0.65    | 0.80 |  |  |
| LI      | 1.05BSC |         |      |  |  |
| θ       | 0       | _       | 8°   |  |  |
|         |         |         |      |  |  |

SOP8