Motivation du sujet Présentation de la Problématique Démarche Résultats et interprétations Conclusion

UE Recherche: Prise de recul "Ségmentation de structures tubulaires par Deep Learning avec ajout de contraintes topologiques"

Dhia, Rayen, Patrick

IMT Atlantique

16/12/2022

Plan de l'exposé

- 1 Motivation du sujet
- 2 Présentation de la Problématique
- 3 Démarche
- 4 Résultats et interprétations
- 5 Conclusion

Motivation du sujet

- Le diagnostic de différentes maladies dégénératives de la rétine
 - la rétinopathie diabétique
 - l'œdème maculaire
 - la rétinite à cytomégalovirus

Problématique

- Nécessité d'un système précis pour la ségmentation des vaisseaux rétiniens.
- Arriver à entraîner un modèle qui permet de préserver la structure topologique des vaisseaux et voir les ramifications fines
- Approche mixte entre l'imagerie médicale et l'imagerie de télédétection satellitaire

UNET

De quoi s'agit-il?

- UNet : Réseau de neurones convolutif pour la segmentation d'images biomédicales.
- Composé de 2 parties : une contractante et une expansive.

Exploration des données

■ Dataset DRIVE :

- 40 images, 20 pour l'entraînement et 20 pour les test
- Des images pour la segmentation des vaisseaux de rétine.

■ Dataset ROADS :

- 5Go d'images
- Des images pour la segmentation de routes en imagerie satellitaire.

Augmentation des données

■ Dataset DRIVE :

- Très peu d'images pour entraîner notre réseau
- Besoin de faire de l'augmentation des données
- Modifié l'image pour avoir de la variété

Fonctions de coûts

DiceLoss

- DiceLoss : 1 DSC
- Compare localement la prédiction avec la vérité
 Dans le coefficient dice, les variables sont :
 - x: l'entrée
 - \bullet f(x): la prédiction
 - y: la vérité

$$DSC(f, x, y) = \frac{2 \times \sum_{i,j} f(x)_{ij} \times y_{ij} + \epsilon}{\sum_{i,j} f(x)_{ij} + \sum_{i,j} y_{ij} + \epsilon}$$

Fonctions de coûts

- \blacksquare Masque de vérité V_L et masque prédit V_P
- Extraction des squelettes S_P et S_L de V_P et V_L respectivement
- Calcul de la fraction de S_P qui se trouve dans V_L : $pr\'{e}cision\ topologique$: Tprec (S_P, V_L)
- Calcul de la fraction de S_L qui se trouve dans V_P : sensibilité topologique : Tsens (S_L, V_P)

Fonctions de coûts CLDice Loss

■ Tprec
$$(S_P, V_L) = \frac{|S_P \cap V_L|}{|SP|} \implies$$
 susceptible to FP

■ Tsens $(S_L, V_P) = \frac{|S_L \cap V_P|}{|SL|} \implies$ susceptible to FN

■ Tsens
$$(S_L, V_P) = \frac{|S_L \cap V_P|}{|S_L|} \implies$$
 susceptible to FN

$$clDice(S_P, V_L) = 2 \times \frac{\operatorname{Tsens}(S_L, V_P) \times \operatorname{Tprec}(S_P, V_L)}{\operatorname{Tsens}(S_L, V_P) + \operatorname{Tprec}(S_P, V_L)}$$

Fonctions de coûts

CLDice Loss

Encodeur Resnet-50

\blacksquare Resnet 50:

- Pas assez des données pour entraîner notre réseau
- On utilise un encodeur pré-entraîner avec du ImageNet

Résultats

UNET standard - Diceloss

Observations :

- On récupère les ramifications les plus notables
- les ramifications fines sont perdues
- On arrive a une limite au bout de 60 itérations

Résultats

Resnet50-UNet - Diceloss

Observations :

- On voit une amélioration lors de la récupération des ramifications fines
- On atteint une limite au bout de 60 itérations

Résultats

Resnet50-UNet - (ClDice + Dice)loss

Diviser pour régner

■ Approche :

- On fait des coupes de l'image de base
- On entraîne le Resnet 50-Unet
- On espère récupérer des ramifications fines

Entraînement

- Observations :
 - On atteint une limite au bout de 60 itérations
 - On observe des pics temporaires

Reconstruction

- Application
 - Redimensionner à (640,640)
 - Diviser en 25 portions de taille (128,128)
- Chaque portion (image, masque) sera rentrée au modèle en mode de eval

- Récupérer les prédictions de chaque portion
- Reconstruire le masque prédit par le modèle à partir des portions.

Application sur la Dataset ROADS

- Utilisation d'un Unet standard
- On obtient des résultats satisfaisant

Conclusions et Prise de Recul

- A chaque nouvelle étape on améliorer la segmentation
- On est arrivé a des résultats prometteur
- Notre approche de diviser pour régner permet de mieux estimer les ramifications fines
- Avec cette méthode on pourrais avoir des éventuels problèmes de mémoire
- Cette méthode peut etre perfectionner avec par exemple le RVGAN

Ouverture sur le RVGAN

