

Machine Learning for Signal Processing Supervised Representations:

Class 19. 8 Nov 2016
Bhiksha Raj
Slides by Najim Dehak

Definitions: Variance and Covariance

- Variance: $\Sigma_{XX} = E(XX^T)$, estimated as $\Sigma_{XX} = (1/N) XX^T$
 - How "spread" is the data in the direction of X
 - Scalar version: $\sigma_x^2 = E(x^2)$
- Covariance: $\Sigma_{XY} = E(XY^T)$ estimated as $\Sigma_{XY} = (1/N) XY^T$
 - How much does X predict Y
 - Scalar version: $\sigma_{xy} = E(x^2)$

Definition: Whitening Matrix

- Whitening matrix: $\Sigma_{XX}^{-0.5}$
- Transforms the variable to unit variance
- Scalar version: σ_{χ}^{-1}

Definition: Correlation Coefficient

- Whitening matrix: $\Sigma_{XX}^{-0.5}\Sigma_{XY}\Sigma_{YY}^{-0.5}$
- Scalar version: $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_y \sigma_y}$
 - Explains how Y varies with X, after normalizing out innate variation of X and Y

MLSP

Application of Machine Learning techniques to the analysis of signals

- Feature Extraction:
 - Supervised (Guided) representation

MLSP :

Data specific bases?

- Issue: The bases we have considered so far are *data* agnostic
 - Fourier / Wavelet type bases for all data may not be optimal
- Improvement I: The bases we saw next were data specific
 - PCA, NMF, ICA, ...
 - The bases changed depending on the data
- Improvement II: What if bases are both data specific and task specific?
 - Basis depends on both the data and a task

Recall: Unsupervised Basis Learning

- What is a good basis?
 - Energy Compaction → Karkhonen-Loève
 - Uncorrelated → PCA
 - Sparsity → Sparse Representation, Compressed Sensing,
 ...
 - Statistically Independent → ICA
- We create a narrative about how the data are created

Supervised Basis Learning?

- What is a good basis?
 - Basis that gives best classification performance
 - Basis that maximizes shared information with another 'view'
- We have some external information guiding our notion of optimal basis
 - Can we learn a basis for a set of variables that will best predict some value(s)

Regression

- Simplest case
 - Given a bunch of scalar data points predict some value
 - Years are independent
 - Temperature is dependent

Source: climate.nasa.gov

Temperature Anomaly (C)

Regression

Formulation of problem

$$rg \min_{eta_1,eta_0} \sum_{i=1}^N (y_i - eta_1 x_i - eta_0)^2$$

$$= \operatorname*{arg\,min}_{\beta} \|Y - \beta^T X\|_F^2$$

• Let's solve!

Source: climate.nasa.gov

11

Regression

Expand out the Frobenius norm

$$\mathop{\arg\min}_{\beta} \|Y - \beta^T X\|_F^2 = \mathop{\arg\min}_{\beta} Tr[(Y - \beta^T X)^T (Y - \beta^T X)]]$$

$$= \operatorname*{arg\,min}_{eta} Tr(X^Tetaeta^TX) - 2Tr(Y^Teta^TX)$$

Temperature Anomaly (C)

- Take derivative
- Solve for 0

Source: climate.nasa.gov

Regression

$$\nabla_{\beta} Tr(X^{T}\beta\beta^{T}X) - 2Tr(Y^{T}\beta^{T}X) = 2XX^{T}\beta - 2XY^{T} = 0$$

$$\implies \beta = (XX^{T})^{-1}XY^{T}$$

- This is just basically least squares again
- Note that this looks a lot like the following

$$\Sigma_{XX}^{-1}\Sigma_{XY}$$

— In the 1-d case where x predicts y this is just ...

$$\frac{Cov(X,Y)}{\sigma_X^2} = \rho \frac{\sigma_Y}{\sigma_X}$$

13

Multiple Regression

- Robot Archer Example
 - Our robot fires defective arrows at a target
 - We don't know how wind might affect their movement, but we'd like to correct for it if possible.
 - Predict the distance from the center of a target of a fired arrow
- Measure wind speed in
 3 directions

$$X_i = \begin{bmatrix} 1 \\ w_x \\ w_y \\ w_z \end{bmatrix}$$

Multiple Regression

Wind speed

$$X_i = \begin{vmatrix} 1 \\ w_x \\ w_y \\ w_z \end{vmatrix}$$

- Offset from center in 2 directions $Y_i = \begin{bmatrix} o_x \\ o_y \end{bmatrix}$
- Model

$$Y_i = \beta X_i$$

Multiple Regression

Answer

$$\beta = (XX^T)^{-1}XY^T$$

- Here Y contains measurements of the distance of the arrow from the center
- We are fitting a plane
- Correlation is basically just the gradient

Canonical Correlation Analysis

- Further Generalization (CCA)
 - Do all wind factors affect the position
 - Or just some low-dimensional combinations $\hat{X} = AX$
 - Do they affect both coordinates individually
 - Or just some of combination $\hat{y} = BY$

Canonical Correlation Analysis

- Let's call the arrow location vector Y and the wind vectors X
 - Let's find the projection of the vectors for Y and X respectively that are most correlated

Best X projection plane

Predicts best Y projection

Canonical Correlation Analysis

- What do these vectors represent?
 - Direction of max correlation ignores parts of wind and location data that do not affect each other
 - Only information about the defective arrow remains!

CCA Motivation and History

- Proposed by Hotelling (1936)
- Many real world problems involve 2 'views' of data

Economics

- Consumption of wheat is related to the price of potatoes, rice and barley ... and wheat
- Random vector of prices X
- Random vector of consumption Y

CCA Motivation and History

- Magnus Borga, David Hardoon popularized CCA as a technique in signal processing and machine learning
- Better for dimensionality reduction in many cases

21

CCA Dimensionality Reduction

- We keep only the correlated subspace
- Is this always good?
 - If we have measured things we care about then we have removed useless information

CCA Dimensionality Reduction

- In this case:
 - CCA found a basis component that preserved class distinctions while reducing dimensionality
 - Able to preserve class in both views

Comparison to PCA

PCA fails to preserve class distinctions as well

Failure of PCA

- PCA is unsupervised
 - Captures the direction of greatest variance (Energy)
 - No notion of task or hence what is good or bad information
 - The direction of greatest variance can sometimes be noise
 - Ok for reconstruction of signal
 - Catastrophic for preserving class information in some cases

25

Benefits of CCA

- Why did CCA work?
 - Soft supervision
 - External Knowledge
 - The 2 views track each other in a direction that does not correspond to noise
 - Noise suppression (sometimes)
- Preview
 - If one of the sets of signals are true labels, CCA is equivalent to Linear Discriminant Analysis
 - Hard Supervision

Multiview Assumption

- When does CCA work?
 - The correlated subspace must actually have interesting signal
 - If two views have correlated noise then we will learn a bad representation
- Sometimes the correlated subspace can be noise
 - Correlated noise in both sets of views

27

Multiview Assumption

- Why not just concatenate both views?
 - It does not exploit the extra structure of the signal (more on this in 2 slides)
 - PCA on joint data will decorrelate all variables
 - Not good for prediction
 - We want to decorrelate X and Y, but maximize cross-correlation between X and Y
 - High dimensionality → over-fit

Multiview Assumption

 We can sort of think of a model for how our data might be generated

- We want View 1 independent of View 2 conditioned on knowledge of the source
 - All correlation is due to source

Multiview Examples

- Look at many stocks from different sectors of the economy
 - Conditioned on the fact that they are part of the same economy they might be independent of one another
- Multiple Speakers saying the same sentence
 - The sentence generates signals from many speakers.
 Each speaker might be independent of each other conditioned on the sentence

MLSP 29

View 2

Source

Multiview Examples

http://mlg.postech.ac.kr/static/research/multiview_overview.png

Matrix Representation

$$E = \sum_{i} (X_i - Y_i)^2$$

$$\mathbf{X} = [X_1, X_2, ..., X_N]$$
 $\mathbf{Y} = [Y_1, Y_2, ..., Y_N]$

$$\|\mathbf{X}\|_F^2 = \sum_i X_i^T X_i = trace \ \mathbf{X} \mathbf{X}^T$$

$$E = ||\mathbf{X} - \mathbf{Y}||_F^2 = trace(\mathbf{X} - \mathbf{Y})(\mathbf{X} - \mathbf{Y})^T$$

Expressing total error as a matrix operation

32

Recall: Objective Functions

Least Squares

$$\underset{Y \in \mathbb{R}^{kxN}}{\operatorname{arg\,min}} \|X - UY\|_F \quad s.t. \quad U \in \mathbb{R}^{dxk} \quad rank(U) = k$$

- What is a good basis?
 - Energy Compaction → Karkhonen-Loève

$$\underset{Y \in \mathbb{R}^{kxN}, U \in \mathbb{R}^{dxk}}{\operatorname{arg \, min}} \|X - UY\|_F \quad s.t. \quad U^T U = I_k$$

Positive Sparse → NMF

$$\underset{Y \in \mathbb{R}^{kxN}, U \in \mathbb{R}^{dxk}}{\arg \min} \|X - UY\|_F \quad s.t. \quad U, Y \ge 0$$

Regression

$$\mathop{\arg\min}_{\beta} \|Y - \beta^T X\|_F^2$$

A Quick Review

Cross Covariance

$$\mathbb{E}\left[\begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}^T\right] \approx \frac{1}{N} \begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}^T$$

$$=egin{bmatrix} C_{xx} & C_{xy} \ C_{yx} & C_{yy} \end{bmatrix}$$

A Quick Review

The effect of a transform

$$Z = UX$$

$$C_{XX} = E[XX^T]$$

$$C_{ZZ} = E[ZZ^T] = UC_{XX}U^T$$

35

Recall: Objective Functions

- So far our objective needs to external data
 - No knowledge of task

$$\underset{\mathbf{Y} \in \mathbb{R}^{k \times N}}{\operatorname{argmin}} \|\mathbf{X} - U\mathbf{Y}\|_F^2$$

$$s.t. \ U \in \mathbb{R}^{d \times k}$$

$$rank(U) = k$$

- CCA requires an extra view
 - We force both views to look like each other

$$\min_{U \in \mathbb{R}^{d_{\mathcal{X}} \times k}, \ V \in \mathbb{R}^{d_{\mathcal{Y}} \times k}} ||U^T \mathbf{X} - Y^T \mathbf{Y}||_F^2$$

s.t.
$$U^T C_{XX} U = I_k$$
, $V^T C_{YY} V = I_k$

Interpreting the CCA Objective

- Minimize the reconstruction error between the projections of both views of data
- Find the subspaces U,V onto which we project views X and Y such that their correlation is maximized
- Find combinations of both views that best predict each other

A Quick Review

Cross Covariance

$$\mathbb{E}\left[\begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}^T\right] \approx \frac{1}{N} \begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}^T$$

$$=egin{bmatrix} C_{xx} & C_{xy} \ C_{yx} & C_{yy} \end{bmatrix}$$

A Quick Review

Matrix representation

$$\mathbf{X} = [X_1, X_2, \dots, X_N] \qquad \mathbf{Y} = [Y_1, Y_2, \dots, Y_N]$$

$$C_{XX} = \sum_{i} X_i X_i^T = \frac{1}{N} \mathbf{X} \mathbf{X}^T$$

$$C_{YY} = \sum_{i} Y_i Y_i^T = \frac{1}{N} \mathbf{Y} \mathbf{Y}^T$$

$$C_{XY} = \sum_{i} X_i Y_i^T = \frac{1}{N} \mathbf{X} \mathbf{Y}^T$$

MISP

Interpreting the CCA Objective

- CCA maximizes correlation between two views
- While keeping individual views uncorrelated
 - Uncorrelated measurements are easy to model

$$\min_{U \in \mathbb{R}^{d_x \times k}, \ V \in \mathbb{R}^{d_y \times k}} \|U^T \mathbf{X} - Y^T \mathbf{Y}\|_F^2$$

s.t.
$$U^T \mathbf{X} \mathbf{X}^T U = I_k$$
, $V^T \mathbf{Y} \mathbf{Y}^T V = I_k$

s.t.
$$U^T C_{XX} U = I_k$$
, $V^T C_{YY} V = I_k$

$$\min_{U \in \mathbb{R}^{d_X \times k}, \ V \in \mathbb{R}^{d_Y \times k}} ||U^T \mathbf{X} - Y^T \mathbf{Y}||_F^2$$

$$s.t. \ U^T \mathbf{X} \mathbf{X}^T U = I_k, \ V^T \mathbf{Y} \mathbf{Y}^T V = I_k$$

$$s.t. \ U^T C_{XX} U = I_k, \ V^T C_{YY} V = I_k$$

- Assume C_{XX} , C_{XX} are invertible
- Create the Lagrangian and differentiate

$$||U^T \mathbf{X} - Y^T \mathbf{Y}||_F^2 = trace(U^T \mathbf{X} - Y^T \mathbf{Y})(U^T \mathbf{X} - Y^T \mathbf{Y})^T$$

$$= trace(U^T \mathbf{X} \mathbf{X}^T U + V^T \mathbf{Y} \mathbf{Y}^T V - U^T \mathbf{X} \mathbf{Y}^T V - V^T \mathbf{Y} \mathbf{X}^T U)$$

$$= 2k - 2trace(U^T \mathbf{X} \mathbf{Y}^T V)$$

• So we can solve the equivalent problem below $\max_{U,V} trace(U^T \mathbf{X} \mathbf{Y}^T V)$

s.t.
$$U^T C_{XX} U = I_k$$
, $V^T C_{YY} V = I_k$

Incorporating Lagrangian, maximize

$$\mathcal{L}(\Lambda_X, \Lambda_Y)$$

$$= tr(U^T \mathbf{X} \mathbf{Y}^T V)$$

$$- tr(((U^T \mathbf{X} \mathbf{X}^T U) - I_k) \Lambda_X)$$

$$- tr(((V^T \mathbf{Y} \mathbf{Y}^T V) - I_k) \Lambda_Y)$$

Remember that the constraints matrices are symmetric

Taking derivatives and after a few manipulations

$$\Lambda_X = \Lambda_Y = \Lambda$$

We arrive at the following system of equation

$$C_{YX}\tilde{U} = C_{YY}\tilde{V}D$$
$$C_{XY}\tilde{V} = C_{XX}\tilde{U}D$$

• We isolate $ilde{V}$

$$\tilde{V} = C_{YY}^{-1} C_{YX} \tilde{U} D^{-1}$$

We arrive at the following system of equation

$$C_{XX}^{-1}C_{XY}C_{YY}^{-1}C_{YX}\tilde{U} = \tilde{U}D^2$$

$$C_{YY}^{-1}C_{YX}C_{XX}^{-1}C_{XY}\tilde{V} = \tilde{V}D^2$$

We just have to find eigenvectors for

$$C_{XX}^{-1}C_{XY}C_{YY}^{-1}C_{YX}$$

- We then solve for the other view using the expression for \tilde{V} on the previous slide.
- In PCA the eigenvalues were the variances in the PCA bases directions
- In CCA the eigenvalues are the squared correlations in the canonical correlation directions

47

HOPKINS NG SCHOOL CCA as Generalized Eigenvalue Problem

Combine the system of eigenvalue eigenvector equations

$$\begin{bmatrix} 0 & C_{XY} \\ C_{YX} & 0 \end{bmatrix} \begin{bmatrix} \tilde{U} \\ \tilde{V} \end{bmatrix} = \begin{bmatrix} C_{XX} & 0 \\ 0 & C_{YY} \end{bmatrix} \begin{bmatrix} \tilde{U} \\ \tilde{V} \end{bmatrix} D$$

Generalized eigenvalue problem

$$AU = BU\Lambda$$

- We assumed invertible $C_{XX}, C_{YY} \rightarrow \exists B^{-1}$
- Solve a single eigenvalue/vector equation

$$B^{-1}A\tilde{U} = \tilde{U}D$$

48

JOHNS HOPKINS WHITING SCHOOL CCA as Generalized Eigenvalue **Problem**

Rayleigh Quotient

$$\lambda_{max}(B^{-1}A) = \max_{x} \frac{x^{T}Ax}{x^{T}Bx}$$

$$\frac{\delta}{\delta x} \frac{x^{T}Ax}{x^{T}Bx} = \frac{\delta}{\delta x} x^{T}Ax(x^{T}Bx)^{-1} = 0$$

$$= 2Ax(x^{T}Bx)^{-1} - x^{T}Ax(x^{T}Bx)^{-2}2Bx = 0$$

$$\implies \frac{1}{x^{T}Bx}(Ax - \frac{x^{T}Ax}{x^{T}Bx}Bx) = 0$$

$$\implies Ax = \frac{x^{T}Ax}{x^{T}Bx}Bx$$

CCA as Generalized Eigenvalue Problem

- So the solutions to CCA are the same as those to the Rayleigh quotient
- PCA is actually also this problem with

$$A = C_{XX}, B = I$$

 We will see that Linear Discriminant Analysis also takes this form, but first we need to fix a few CCA things

CCA Fixes

- We assumed invertibility of covariance matrices.
 - Sometimes they are close to singular and we would like stable matrix inverses
 - If we added a small positive diagonal element to the covariances then we could guarantee invertibility.
- It turns out this is equivalent to regularization

CCA Fixes

- The following problems are equivalent
 - They have the same gradients

$$\min_{U,V} \| U^T \mathbf{X} - V^T \mathbf{Y} \|_F^2 + \lambda_{\chi} \| U \|_F^2 + \lambda_{\chi} \| V \|_F^2$$

$$\max_{U,V} trace(U^T \mathbf{X} \mathbf{Y}^T V)$$

s.t.
$$U^T(C_{XX}+\lambda_x I)U=I_k$$
, $V^T(C_{YY}+\lambda_y I)V=I_k$

 The previous solution still applies but with slightly different autocovariance matrices

52

CCA Fixes

 Since we now have strictly positive autocovariance matrices, we know they have Cholesky decompositions.

$$(C_{XX} + \lambda_x I) = L_{XX} L_{XX}^T$$

· This results in the following problem

$$L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY} + \lambda_y I)^{-1}C_{YX}(L_{XX}^{-\frac{1}{2}})^T \tilde{U} = \tilde{U}D$$

- We note that the matrix is symmetric and
- So the problem is solved by SVD on the matrix M

$$L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY}+\lambda_yI)^{-1}C_{YX}(L_{XX}^{-\frac{1}{2}})^T=MM^T \text{ with } M=L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY}+\lambda_yI)^{-\frac{1}{2}}$$

What to do with the CCA Bases?

- The CCA Bases are important in their own right.
 - Allow us a generalized measure of correlation
 - Compressing data into a compact correlative basis
- For machine learning we generally ...
 - Learn a CCA basis for a class of data
 - Project new instances of data from that class onto the learned basis
 - This is called multi-view learning

Multiview Setup

Multiview Setup

- Often one view consists of measurements that are very hard to collect
 - Speakers all saying the same sentence
 - Articulatory measurements along with speech
 - Odd camera angles
 - Etc.

Multiview Setup

- We learn the correlated direction from data during training
- Constrain the common view to lie in the correlated subspace at test time
 - Removes useless information (Noise)

http://ema.umcs.pl/pl/laboratorium/

57

Linear Discriminant Analysis

- Given data from two classes
- Find the projection U
- Such that the separation between the classes is maximum along U
 - $Y = U^TX$ is the projection bases in U
 - No other basis separates the classes as much as U

Linear Discriminant Analysis

- We have 2 views as in CCA
- What if one view is the true labels for the task at hand?
 - Learn the direction that is maximally correlated with the right answers!
- It turns out that LDA and CCA are equivalent when the situation above is true

- LDA setup
 - Assume classes are roughly Gaussian
 - Still works if they are not, but not as well
 - We know the class membership of our training data
 - Classes are distinguishable by ...
 - Big gaps between classes with no data points
 - Relatively compact clusters

LDA setup

61

LDA Formulation

- We define a few Quantities
 - Within-class scatter

$$\mathbf{S}_{\mathrm{W}} = \sum_{k=1}^{K} \mathbf{S}_{k} \quad \mathbf{S}_{k} = \sum_{n \in \mathcal{C}_{k}} (\mathbf{x}_{n} - \mathbf{m}_{k}) (\mathbf{x}_{n} - \mathbf{m}_{k})^{\mathrm{T}}$$

- Minimize how far points can stray from the mean
- Compact classes
- Between-class scatter
 - Maximize the variance of the class means (distance between means)

$$\mathbf{S}_{\mathrm{B}} = \sum_{k=1}^{K} N_k (\mathbf{m}_k - \mathbf{m}) (\mathbf{m}_k - \mathbf{m})^{\mathrm{T}}.$$

- We want a small within-class variance
- We want a high between-class variance
- Let's maximize the ratio of the two!!
 - Remember we are looking for the basis W onto which projections maximize this ratio
 - In both cases we are finding covariance type functions of transformations of Random Vectors
 - What is the covariance of $Y = W^T X$?

- We actually have too much freedom
 - Without any constraints on w
 - Let's fix the within-class variance to be 1.

$$\underset{W \in \mathbb{R}^{dxk}}{\operatorname{arg} \max} Tr \left(W^T S_B W \right) \ s.t. \ W^T S_W W = I$$

The Lagrangian is ...

$$\mathcal{L}(\Lambda) = rg \max_{W \in \mathbb{R}^{dxk}} Tr \; (W^T S_B W) - Tr((W^T S_W W - I)\Lambda)$$

So we see that we have a generalized eigenvalue solution

- When does LDA fail?
 - When classes do not fit into our model of a blob
 - We assumed classes are separated by means
 - They might be separated by variance
 - We can fix this using heteroscedastic LDA
 - Fixes the assumption of shared covariance across class.

https://www.lsv.uni-saarland.de/fileadmin/teaching/dsp/ss15/DSP2016/matdid437773.pdf MLSP

65

LDA as Classifier

- For each class assume a Gaussian Distribution
 - Estimate parameters of the Gaussian
 - We want argmax P(Y = K | X)
 - We use Bayes rule

$$P(Y = K \mid X) = P(X \mid Y = K)P(Y = K)$$

We end up with linear decision surfaces between classes

$$\log\left(\frac{P(y=k|X)}{P(y=l|X)}\right) = 0 \Leftrightarrow (\mu_k - \mu_l)\Sigma^{-1}X = \frac{1}{2}(\mu_k^t \Sigma^{-1} \mu_k - \mu_l^t \Sigma^{-1} \mu_l)$$

Bakeoff – PCA, CCA, LDA on Vowel Classification

- Speech is produced by an excitation in the glottis (vocal folds)
- Sound is then shaped with the tongue, teeth, soft palate ...
- This shaping is what generates the soft palate (velum) different vowels upper lip https://www.youtube.com/watch?v=58AJya7 pharynx **JzOU#t=00m36s**

Bakeoff – PCA, CCA, LDA on Vowel Classification

 To represent where in the mouth the vowels are being shaped linguists have something called a vowel diagram

It classifies vowels as front-back, open-closed depending

on tongue position

Where symbols appear in pairs, the one to the right represents a rounded vowel

Bakeoff – PCA, CCA, LDA on Vowel Classification

- Task:
 - Discover the vowel chart from data
- CCA on Acoustic and Articulatory View
 - Project Acoustic data onto top 3 dimensions

VOWELS Front Central Back Close i y i u u u Close-mid e Ø 9 0 0 0 Open-mid & Open-mi

Where symbols appear in pairs, the one to the right represents a rounded vowel

CCA

 $\label{eq:Where symbols appear in pairs, the one to the right MLSP represents a rounded vowel$

Bakeoff – PCA, CCA, LDA on Vowel Classification

Using a one hot encoding of labels as a view gives LDA

CCA

Where symbols appear in pairs, the one to the right represents a rounded vowel

LDA

Where symbols appear in pairs, the one to the right represents a rounded vowel

Multilingual CCA

- Another Example of CCA
 - Word is mapped into some vector space
 - A notion of distance between words is defined and the mapping is such that words that are semantically similar are mapped to near to each

other (hopefully)

http://www.trivial.jo/word2vec-on-databricks/

Multilingual CCA

- What if parallel text in another language exists?
- What if we could generate words in another language?
- Use different languages as different views

Multilingual CCA

Faruqui, Manaal, and Chris Dyer. "Improving vector space word representations using multilingual correlation." Association for Computational Linguistics, 2014.

Fisher Faces

- We can apply LDA to the same faces we all know and love.
 - The details, especially stranger ones such as eye depth emerge as discriminating

features

Conclusions

- LDA learns discriminative representations by using supervision
 - Knowledge of Labels
- CCA is equivalent to LDA when one view is labels
 - CCA provides soft supervision by exploiting redundant view of data