Lista de Exercícios de Lógica de Primeira Ordem Professores: Karina G. R. e Kariston P.

Monitor: Miguel A. Nunes Joinville, 30 de outubro de 2019

1. Determine o valor verdade $(\{V, F\}, \{1, 0\})$ (ou seja, a interpretação ou valoração) de cada uma das fórmulas abaixo em seu respectivo domínio.

Obs.: Para questões que tem ambos x e y, assuma que ambos fazem parte do mesmo domínio.

	Domínios						
Fórmulas	\mathbb{R}	$\mathbb{R} \geq 0$	\mathbb{Z}	$\mathbb{Z} \geq 0$	$\{-4, -3\}$	${3,4}$	$\{-10, 0, 10\}$
$\exists x(x=-x^2)$							
$\forall x (3x \le 3x)$							
$\exists x(x^2 = 16)$							
$\forall x(x^4 \ge x^2)$							
$\forall x \exists y (xy = 2)$							
$\forall x (2x \le x^2)$							
$\exists x((2x)^2 > 16)$							
$\forall x(x^3 < 1)$							
$\forall x \exists y (y = x^3)$							
$\forall x \exists y (xy = 12)$							

2. Seja o conjunto \mathbb{N}^* dos números naturais. Determine o conjunto-verdade ou domínio para o qual a fórmula é **verdadeira**, para cada uma das fórmulas abaixo:

(a)
$$\forall x.((2x = 6) \lor (2x = 8))$$

(b)
$$\forall x.(x^2 - 5x + 6 = 0)$$

(c)
$$\exists x.(x^2 - 5x + 6 = 0)$$

(d)
$$\exists x.(x^2 - 3x = 0)$$

(e)
$$\forall x.(x-1<4)$$

(f)
$$\exists x. \sim (x \notin \text{impar})$$

(g)
$$\exists x : (x \neq primo)$$
 (1 não $\neq primo$)

(h)
$$\exists y \forall x : (x \ge y + 10)$$

- 3. Em contação de estória infantis, os tipos clássicos de personagens são chamados *arquéti*pos e cada um apresenta sempre um comportamento padrão específico. Seja o conjunto das seguintes fórmulas em lógica de primeira-ordem (LPO), prove que o dragão irá atacar o cavaleiro:
- $1. \quad personagem(dragao, mau)$
- 2. personagem(cavaleiro, bom)
- 3. personagem(princesa, bom)
- $4. \quad captura(dragao, princesa)$
- $5. \quad armado(cavaleiro)$
- 6. $\forall x \exists y : personagem(x, bom) \land personagem(y, mau) \land ameacado(y) \rightarrow ataca(y, x)$
- 7. $\forall x \exists y \exists z : (personagem(x, bom) \land personagem(z, bom) \land armado(x) \land captura(y, z) \rightarrow ameacado(y))$
 - 4. Em uma universidade fictícia chamada "Ude-SC" há um sistema de pré-requisitos de matérias. Ou seja, para um acadêmico desta universidade cursar uma matéria é necessário que ele tenha completado seus pré-requisitos.

Logo, se uma disciplina x é um pré-requisito de alguma disciplina y, então x deve preceder y. Esta sequência de pré-requisitos eventualmente atrasa a graduação de alguns estudantes por lá...

Assim, a situação desta grade-curricular é dada pelo conjunto das seguintes fórmulas em lógica de primeira-ordem (LPO):

- (1) requisito(aqt, lpq)
- (2) requisito(agt, poo)
- (3) requisito(lpg, eda)
- (4) requisito(lpq, ppr)
- (5) requisito(eda, teg)
- (6) requisito(eda, pra)
- (7) requisito(teg, cal)
- (8) requisito(cal, tcc1)
- (9) requisito(tcc1, tcc2)
- (10) $\forall x \; \exists y : requisito(x,y) \to precede(x,y)$
- (11) $\forall x \; \exists z \; \exists y : (requisito(x, z) \land precede(z, y)) \rightarrow precede(x, y)$

Demonstre que a matéria "agt" precede a matéria "tcc2".

- 5. [Adams, 1995] afirma que o peixe-babel é pequeno, amarelo e semelhante a uma sanguessuga, e é a mais estranha criatura de todo o universo. Esta criatura peculiar se alimenta da energia mental das criaturas ao redor dele, não da qual ele se hospeda, e expele na mente de seu hospedeiro algo que é interpretado pelo cérebro deste como a fala dos seres ao seu redor.
 - Na prática, quando um peixe-babel é inserido no ouvido de algum ser ele imediatamente compreende tudo que lhe for dito, em qualquer idioma jamais inventado por qualquer criatura do universo. Alguns pensadores dizem que a existência do peixe-babel é uma coincidência tão absurdamente improvável que um ser como ele não pudesse surgir por meio da evolução das espécies, portanto é uma prova concreta da <u>inexistência</u> de alguma entidade divina.

A prova fornecida é a seguinte:

- (a) Deus existe enquanto houver fé
- (b) A prova nega a fé
- (c) É impossível que o peixe-babel tenha evoluído, portanto foi criado por Deus
- (d) Como ele foi criado por Deus, ele prova que existe Deus
- (e) Como há uma prova que existe Deus, então não há fé em Deus
- (f) Portanto não Deus não existe

Transcreva esta prova para a Lógica de Primeira Ordem.

Referências

[Adams, 1995] Adams, D. (1995). The Hitchhiker's Guide to the Galaxy. San Val.

Equivalências Notáveis:

$$P \vee \blacksquare \Leftrightarrow \blacksquare$$

Identidade (IDENT):
$$P \lor \Box \Leftrightarrow P$$

 $P \land \blacksquare \Leftrightarrow P$

$$P \wedge \Box \Leftrightarrow \Box$$

Idempotência (ID):
$$P \Leftrightarrow P \land P$$

 $P \Leftrightarrow P \lor P$

Comutação (COM):
$$P \land Q \Leftrightarrow Q \land P$$

 $P \lor Q \Leftrightarrow Q \lor P$

Associação (ASSOC):
$$\begin{array}{ll} P \wedge (Q \wedge R) \Leftrightarrow (P \wedge Q) \wedge R \\ P \vee (Q \vee R) \Leftrightarrow (P \vee Q) \vee R \end{array}$$

Distribuição (DIST):
$$\begin{array}{ll} P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R) \\ P \vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P \vee R) \end{array}$$

De Morgan (DM):
$$\sim (P \land Q) \Leftrightarrow \sim P \lor \sim Q$$

 $\sim (P \lor Q) \Leftrightarrow \sim P \land \sim Q$

Contradição:
$$P \land \sim P \Leftrightarrow \square$$

 $P \leftrightarrow \sim P \Leftrightarrow \square$

$$P \lor \sim P \Leftrightarrow \blacksquare$$

Tautologia:
$$P \rightarrow P \Leftrightarrow \blacksquare$$

$$P \leftrightarrow P \Leftrightarrow \blacksquare$$

$$\textbf{Absorção:} \quad \begin{array}{ll} P \wedge (P \vee Q) \Leftrightarrow P \\ P \vee (P \wedge Q) \Leftrightarrow P \end{array}$$

Conectivos de Scheffer
$$P \uparrow Q \Leftrightarrow \sim P \lor \sim Q$$

 $P \downarrow Q \Leftrightarrow \sim P \land \sim Q$

Dupla Negação (DN):
$$P \Leftrightarrow \sim \sim P$$

Condicional (COND):
$$P \rightarrow Q \Leftrightarrow \sim P \lor Q$$

Bicondicional (BICOND):
$$P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$$

Contraposição (CP):
$$P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$$

Exportação-Importação (EI):
$$P \wedge Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$$

Ou-Exclusivo (X-or)
$$P \supseteq Q \Leftrightarrow (P \lor Q) \land \sim (P \land Q)$$

Regras de Inferência Válidas:

Adição (AD): $P \vdash P \lor Q$ $P \vdash Q \lor P$

Simplificação (SIMP): $P \land Q \vdash P \\ P \land Q \vdash Q$

Conjunção (CONJ) $\begin{array}{cc} P,Q \vdash P \land Q \\ P,Q \vdash Q \land P \end{array}$

Absorção (ABS): $P \rightarrow Q \vdash P \rightarrow (P \land Q)$

Modus Ponens (MP): $P \rightarrow Q, P \vdash Q$

Modus Tollens (MT): $P \to Q, \sim Q \vdash \sim P$

Silogismo Disjuntivo (SD): $P \lor Q, \sim P \vdash Q$ $P \lor Q, \sim Q \vdash P$

Silogismo Hipotético (SH): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Dilema Construtivo (DC): $P \rightarrow Q, R \rightarrow S, P \lor R \vdash Q \lor S$

Dilema Destrutivo (DD): $P \to Q, R \to S, \sim Q \lor \sim S \vdash \sim P \lor \sim R$