Conditional Densities

Conditional Densities example:

$$X \sim Uiniform(O, X)$$
 $Y \mid X = x \sim Uiniform(O, x)$

Goal: find pdf's fx, fy, fx|Y

 $f_{Y\mid X = x}(y) = f_{Y\mid X = x}(y) = \frac{1}{x}$

Guess: $f_{X\mid Y}(x, \frac{3}{4})$
 $f_{X\mid Y}(x, y) = f_{Y\mid X}(y) f_{X\mid X}(y)$
 $f_{X\mid Y}(x, y) = f_{Y\mid X}(y) f_{X\mid X}(y)$
 $f_{X\mid Y}(x, y) = f_{X\mid X}(x, y)$
 $f_{X\mid X}(x, y) = f_{X\mid X}(x, y)$

Def. of Conditional density

$$f_{Y|X}(x,y) = \frac{f_{XY}(x,y)}{f_{X}(x)} \quad \text{for } f_{X(X)} > 0 \Rightarrow f_{XY}(x,y) = f_{Y|X}(x,y)f_{X}(y)$$

$$f_{X|Y}(x,y) = \frac{f_{XY}(x,y)}{f_{X}(x,y)} \quad \text{for } f_{Y}(y) > 0 \Rightarrow f_{XY}(x,y) = f_{X|Y}(x,y)f_{X}(y)$$

$$f_{Y|X}(x,y) = \frac{f_{X|Y}(x,y)}{f_{X}(x)} \quad \text{for } f_{Y}(y) > 0 \Rightarrow f_{XY}(x,y) = f_{X|Y}(x,y)f_{X}(y)$$

$$f_{Y|X}(x,y) = \frac{f_{X|Y}(x,y)}{f_{X}(x)} \quad \text{for } f_{Y}(y) \quad \text{also same as } f_{Y|X}(x,y)$$

$$f_{X|Y}(x,y) = \frac{f_{X|Y}(x,y)}{f_{X}(x)} \quad \text{for } f_{Y}(y) \quad \text{combine } D \text{ and } D$$

$$f_{Y|X}(x,y) = \frac{f_{XY}(x,y)}{f_{XY}(x,y)} \quad \text{for } f_{Y|X}(x,y) = f_{Y|X}(x,y) \quad \text{for } f_{Y|X$$

$$\begin{array}{l}
x \sim u(o, i) \\
Y \mid X = x \sim u(o, i) \\
f_{x}(x) = i \cdot 1 x \in [0, i] \\
f_{xy}(x) = \frac{1}{x} 1 y \in [0, x] 1 x \in [0, i] \\
= \frac{1}{x} 1_{0 \leq y \leq x \leq i} \\
= \frac{1}{x} 1_{y \in [0, i]} 1_{x \in [y, i]} \\
f_{x}(y) = \int_{\mathbb{R}} \frac{1}{x} 1_{y \in [0, i]} 1_{x \in [y, i]} \\
= 1_{y \in [0, i]} \left[\frac{1}{x} dx \right] \\
= 1_{y \in [0, i]} \left[\frac{1}{x} (x) \right]_{y} \\
= 1_{y \in [0, i]} \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac{1}{x} (x) \right) \\
= -\frac{1}{x} y \in [0, i] \left(\frac{1}{x} (x) - \frac$$

$$f_{xy}(xy) = \frac{f_{xx}(x,y)}{f_{y}(y)} = \frac{1}{x} \underbrace{1_{y \in [0,1]}} \underbrace{1_{x \in [y,1]}}$$

$$= -\underbrace{1_{x \mid n(y)}} \underbrace{1_{x \in [y,1]}}$$

$$= e.g. \ f_{xy}(x, \frac{3}{4}) \approx \frac{3.5}{x} \underbrace{1_{x \in [\frac{3}{4}, \frac{1}{4}]}}$$

$$f_{xy}(1, \frac{3}{4}) \approx 3.5$$

$$f_{xy}(\frac{3}{4}, \frac{3}{4}) \approx 4.6$$

-	
	Mixture and compound Distributions
	e.g. If there is no internet traffic, downloads take ~ Exp(=) seconds.
	downloads take ~ Exp(=) seconds.
	If there is internet traffic,
	downloads take ~ Exp (10) seconds
	Traffic is happening & of the time.
	downloads take ~ Exp (10) seconds Traffic is happening 3 of the time. How long do downloads take in general?
	(Find the density)
	Let Xn Bern (3)
	if X=0 → traffic
	X=1 => no traffic
	Let $T/X = 1 \sim E_{XP}(\frac{1}{5})$
	Let $T/X = 1$ $N Exp(\frac{1}{5})$ be time for downloads with no traffic
	Let $T/X = 0 \sim E_{XP}(\frac{1}{20})$
	Let $T/X=0 \sim Exp(\frac{1}{20})$ be time for downloads with traffic
	Want density of T
	mixture model
	Draw a tree diagram. hierarchical model
	X T/X T = mixture dist.
	3 (a) Fx12(1)
	(20) 7
	2 (1) ·
	5 -12(3)

1 8 30 8

$$f_{T}(t) = \sum_{x \in \mathbb{R}} f_{T|X}(x,t) p_{X}(x) = \sum_{x \in \mathbb{R}} f_{T|X}(x,t)$$

$$= \sum_{x \in \mathbb{R}} \left(\frac{1}{5} e^{\frac{t}{5}t} \mathbf{1}_{x=1} + \frac{1}{20} e^{-\frac{t}{20}t} \mathbf{1}_{x=0} \right) \cdot \left(\frac{2}{5} \right)^{\frac{1}{2}} \mathbf{1}^{\frac{1}{2}} \mathbf{1}^{\frac{1}{2}}$$

$$= \frac{1}{3} \left(\frac{1}{20} e^{-\frac{t}{20}t} \right) + \frac{2}{3} \left(\frac{1}{5} e^{-\frac{t}{5}t} \right)$$

$$= \frac{1}{3} \left(\frac{1}{20} e^{-\frac{t}{20}t} \right) + \frac{2}{3} \left(\frac{1}{5} e^{-\frac{t}{5}t} \right)$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{15} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{15} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{5}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t}$$

$$= \frac{1}{4} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t} + \frac{2}{3} e^{-\frac{t}{20}t}$$

 $X \sim U(0,1)$ $Y/X=x \sim U(0,x)$ $f_{Y}(y) = \int f_{Y|X}(x,y) f_{X}(x) dx$ (Ynfy(y) mixture dist (9x) ? is continuous, then Y is called "compound" Ex: X~ Gamma (d, B) here, $\lambda = x$ Y/X=x~Poisson(x) $P_Y(y) = \int P_{Y|X}(x,y) f_X(x) dy$ $=\int_{\mathcal{R}} \left(\frac{x^{2}e^{-x}}{y!} \right) \frac{1}{y \in \{0,1,2,\ldots\}} \left(\frac{\mathcal{B}^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \right)$ X Ext Neg Bin (x, B+1) Extended Negative Binomial"

 $X \sim Beta(\alpha, B)$ $Y \mid X = x, n \sim Bin(n,x)$ $P_Y(y) = \int P_{YIX}(x,y) f_X(x) dx$ $= \int \left(\binom{n}{x} \chi^{y} (1-x)^{n-y} 1_{y \in \{0,1,\dots,n\}} \right)$ (2(4,3) X2-1(1-x)B-11xE(0,1) $=\frac{\binom{n}{x}}{\mathcal{B}(x,B)}\int_{0}^{1}x^{y+x-1}\left(1-x\right)^{n-y+B-1}dx$ = $\frac{\binom{n}{x}}{2}\binom{n}{2}\binom{y+d}{n-y+B} 1_{y\in\{0,1\}\dots,n\}}$ = Beta Binomial (X, B,n) X~Gamma (x,B) $X = X \sim Exp(X)$ for HW YN LO MAX (B,X)

Complex numbers

a,
$$b \in \mathbb{R}$$

define complex number z (means the complex numbers $z := a + bi$ \in C where $i = \sqrt{-1}$

real component $\operatorname{Re}[z] = a$ $\operatorname{Im}(z)$

imaginary component $\operatorname{Im}[z] = b$ $f = \sqrt{-1}$

$$|Z| = \sqrt{a^2 + b^2}$$

Arg[z] = *arctan(
$$\frac{b}{a}$$
) \leftarrow def. depends on quadrant

 $i' = i$

$$i' = i$$

$$i^2 = -1$$

$$i^3 = -i$$