# Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

# Wstęp do Sztucznej Inteligencji Semestr 24L Sprawozdanie z ćwiczenia nr 3

Algorytm MinMax dla gry "Kółko i krzyżyk"

Mikołaj Wewiór

Warszawa, 16 IV 2024

#### 1. Opis problemu

Celem ćwiczenia było zaimplementowanie algorytmu MinMax dla gry "Kółko i krzyżyk". Jest to jedna z metod przeszukiwania przestrzeni stanów gry, która pozwala znaleźć optymalne ruchy dla bieżącego stanu. Reprezentacją algorytmu jest drzewo stanów gry. W przeciwieństwie do algorytmu pełnego przeglądu, MinMax nie musi sprawdzać całego drzewa - jest to oszczędność czasu i zasobów. Dodatkowo algorytm może niezależnie i wielokrotnie analizować te same stany gry w różnych momentach. Modyfikacją algorytmu jest implementacja heurystyki alpha pruning (czasem nazywana  $\alpha - \beta$ ). Ta opcja pozwala przyspieszyć działanie i zmniejszyć liczbę przeszukiwanych stanów.

#### 2. Implementacja logiki gry

Pierwszą częścią zadania była implementacja gry w "Kółko i krzyżyk". Zostało to wykonane jako gra terminalowa. Plansza została utworzona jako klasa Board, której jednym z głównych atrybutów była tablica ją reprezentująca. Pole, które miało być uzupełnione odpowiednim graczem (znakiem) wybierane było jako liczba od 1 do 9. Jeżeli wybrane pole było zajęte gra odpowiednio o tym informowała, a w przypadku algorytmu MinMax nie dozwolone było wybieranie zajętych pól. Po każdym wykonanym ruchu klasa sprawdza czy któraś z kombinacji nie jest wygrywająca.



## 3. Implementacja MinMaxa i Alpha-pruningu

Oba algorytmy zostały zaimplementowane w jednej klasie MinMaxSolver jako jej metody. Są to funkcje rekurencyjne. Ich wyjściem jest ruch, który należy wykonać, aby zagranie było optymalne, a na wejście przyjmują obecny stan planszy, głębokość, którą mają przeszukać oraz informację czy maksymalizować wartość funkcji celu (lub minimalizować - zależnie od gracza). Atrybutem klasy jest również tablica wag, która następnie przekazuje wartości, dla funkcji nagrody, która odpowiednio punktuje wybrane pola wg heurystyki. Dodatkowe punkty są za wybranie pól, które wygrywają rozgrywkę.

## 4. Badanie algorytmów

Wszystkie z poniższych testów zostały wykonane po 15 razy dla danego stanu gry, z których wyciągnięto 10 środkowych wartości - z nich wyliczono średnią oraz odchylenie standardowe.

### 4.1. Liczba odwiedzonych węzłów

#### 9 stanów początkowych

| tryb           | MinMax | Alpha-Pruning |       |  |
|----------------|--------|---------------|-------|--|
| rozpoczynający | -      | x o           |       |  |
| średnia        | 59704  | 19998         | 17001 |  |

Tab. 1: lewe górne pole (1)

| tryb           | MinMax | Alpha-Pruning |       |  |
|----------------|--------|---------------|-------|--|
| rozpoczynający | -      | x o           |       |  |
| średnia        | 63905  | 19668         | 16992 |  |

Tab. 2: lewe środkowe pole (4)

| tryb           | MinMax | Alpha-Pruning |       |  |
|----------------|--------|---------------|-------|--|
| rozpoczynający | -      | х о           |       |  |
| średnia        | 59704  | 19998         | 17001 |  |

Tab. 3: lewe dolne pole (7)

| tryb           | MinMax | Alpha-Pruning |       |  |
|----------------|--------|---------------|-------|--|
| rozpoczynający | -      | X             | О     |  |
| średnia        | 63904  | 17838         | 15332 |  |

Tab. 4: środkowe górne pole (2)

| tryb           | MinMax | Alpha-Pruning |       |
|----------------|--------|---------------|-------|
| rozpoczynający | -      | X             | О     |
| średnia        | 55504  | 25818         | 20686 |

Tab. 5: centralne pole (5)

| tryb           | MinMax | Alpha-Pruning |       |  |
|----------------|--------|---------------|-------|--|
| rozpoczynający | -      | X             | О     |  |
| średnia        | 64904  | 23429         | 23307 |  |

Tab. 6: środkowe dolne pole (8)

| tryb           | MinMax | Alpha-Pruning |       |  |
|----------------|--------|---------------|-------|--|
| rozpoczynający | -      | X O           |       |  |
| średnia        | 59704  | 21335         | 17282 |  |

Tab. 7: prawe górne pole (3)

| tryb           | MinMax | Alpha-Pruning |       |  |
|----------------|--------|---------------|-------|--|
| rozpoczynający | -      | X             | О     |  |
| średnia        | 63904  | 22921         | 21260 |  |

Tab. 8: prawe środkowe pole (6)

| tryb           | MinMax | Alpha- | Pruning |
|----------------|--------|--------|---------|
| rozpoczynający | -      | X      | О       |
| średnia        | 59704  | 20200  | 18607   |

Tab. 9: prawe dolne pole (9)

Eksperymenty zostały przeprowadzone dla głębokości przeszukiwania 9. Spodziewanym efektem jest symetryczna względem położenia na planszy liczba odwiedzonych węzłów w przypadku zwykłego MinMaxa. Różne wartości w przypadku alpha-pruningu względem położenia startowego również są oczekiwanym efektem. Natomiast różnica między tym, czy zaczyna x, czy o nie jest oczekiwana. Według założeń nie powinny się one różnić.

#### 3 stany ze środka (przykładowe)



| tryb           | MinMax | Alpha-Pruning |
|----------------|--------|---------------|
| rozpoczynający | -      | О             |
| średnia        | 926    | 550           |

Tab. 10: dla 3 zapełnionych pól



| tryb           | MinMax | Alpha-Pruning |     |
|----------------|--------|---------------|-----|
| rozpoczynający | -      | X             | О   |
| średnia        | 177    | 135           | 135 |

Tab. 11: dla 4 zapełnionych pól



| tryb           | MinMax | Alpha-Pruning |    |
|----------------|--------|---------------|----|
| rozpoczynający | _      | X             | О  |
| średnia        | 10     | 10            | 10 |

Tab. 12: dla 6 zapełnionych pól

### 4.2. Czas wykonania ruchu



Rys. 2: czas wykonania dla MinMax

| liczba figur           | 0         | 1        | 2       | 3      | 4      | 5     | 6     | 7     | 8     |
|------------------------|-----------|----------|---------|--------|--------|-------|-------|-------|-------|
| średnia                | 40852.047 | 4062.826 | 526.293 | 88.476 | 41.604 | 5.810 | 1.398 | 0.967 | 0.190 |
| odchylenie standardowe | 1212.624  | 91.339   | 24.900  | 9.749  | 6.937  | 2.241 | 0.342 | 0.847 | 0.154 |

Tab. 13: czas wykonania dla MinMax



Rys. 3: czas wykonania dla Alpha-pruning

|   | liczba figur           | 0        | 1        | 2       | 3      | 4      | 5     | 6     | 7     | 8     |
|---|------------------------|----------|----------|---------|--------|--------|-------|-------|-------|-------|
| ĺ | średnia                | 6149.194 | 2073.538 | 185.880 | 71.897 | 19.400 | 4.525 | 2.278 | 1.041 | 0.196 |
| Ì | odchylenie standardowe | 131.369  | 44.721   | 13.229  | 5.728  | 4.676  | 1.130 | 1.061 | 0.389 | 0.119 |

Tab. 14: czas wykonania dla Alpha-pruning

### 5. Podsumowanie

Algorytm MinMax i Alpha-pruning w powyższych testach dawały te same wyjścia, które były najlepszymi do zagrania ruchami dla zastanej planszy. Po przeprowadzeniu badań widać, że Modyfikacja alpha-pruning daje dużo lepsze efekty - liczba przeszukanych węzłów jest mniejsza, dzięki czemu zużywamy mniej zasobów, a odpowiedź uzyskujemy szybciej. Zdziwieniem jest przypadek, kiedy dla alpha-pruningu wpływ na liczbę odwiedzonych węzłów ma to kto zaczyna grę. Istnieje możliwość, że jest to implikacja błędu implementacji algorytmu, której dotychczas niewykryto.