MAT 243 ONLINE WRITTEN HW 5

NAME:	
(1) (4)	ots) Fill in the blank in the statements below:
(a)	In an inductive proof verifying the condition for $n=1$ (or the lowest possible value) is called the
(b)-(c)	In the induction step first we assume $P(n)$, called the for, and then we show that $P(n+1)$ is true as well using the inductive hypothesis.
(d)	A recurrence relation is an
	pts) Prove that for any positive integer n , $\sum_{k=1}^{n} (4k-3) = 2n^2 - n$ using mathematical action.
(3) (10	pts) Prove that for any integer $n \ge 7$, $3^n < n!$ using mathematical induction.
(4) (10	pts) Use induction to prove that 6 divides $9^n - 3^n$ for all integer $n \ge 0$.
(5) (10	pts)
(a)	Given the recursive definition for the set S below. Describe the elements of S .
	$4 \in S$ $x - y \in S$ if $x \in S$ and $y \in S$.
(b)	Give a recursive definition for the set of positive integers that are powers of 4. (1,4,16,64,)
(c)	Give a recursive definition for the set of positive integers that are not divisible by 3.
В	pts) Let S be the set of binary strings defined recursively as follows: asis step: $1 \in S$ ecursive step: If $x \in S$ then $xx \in S$ and $0x0 \in S$
,	f x and y are binary strings then xy is the concatenation of x and y. For instance, if 0111 and $y = 101$ then $xy = 0111101$.)
(a)	(3 pts) List the elements of S produced by the first 2 applications of the recursive definition. Find S_0 , S_1 and S_2 .

- (b) (7 pts) Use Structural induction to prove that every element of S has even number of 0's in it.
- (7) (10 pts) Find a closed-form representation of the following recurrence relations:
 - (a) $a_n = 6a_{n-1} 9a_{n-2}$ for $n \ge 2$ with initial conditions $a_0 = 4$ and $a_1 = 6$
 - (b) $a_n = 4a_{n-1} + 5a_{n-2}$ for $n \ge 2$ with initial conditions $a_0 = 2$ and $a_1 = 8$

Show all you steps for full credit.