Degenerate Representations and Fusion Rules in the $\widetilde{SL}_2(\mathbb{R}) \ \mathsf{WZW} \ \mathsf{Model}$

Hexuan Li

Advisor: Prof. Sylvain Ribault

July 16, 2025

Contents

- Introduction
- $\ \ \, \widetilde{SL}_2(\mathbb{R}) \,\, \mathsf{WZW} \,\, \mathsf{model} \,\,$
- Section Fulles
- 4 Conclusion

Introduction

The crossing symmetry equation:

Degenerate representations ⇒ Finite many terms

Symmetry algebra

• The \mathfrak{sl}_2 algebra:

$$\left[J^0,J^{\pm}\right]=\pm J^{\pm},\quad \left[J^+,J^-\right]=2J^0.$$

• The $\widehat{\mathfrak{sl}_2}$ algebra are defined by:

$$\left[J_m^a,J_n^b\right]=f_c^{ab}J_{m+n}^c+kmK^{ab}\delta_{m+n,0},\quad m,n\in\mathbb{Z}$$

where k is the level, and $K^{ab}=\frac{1}{2g}f_d^{ac}f_c^{bd}$ is the Killing tensor.

The Sugawara construction of the conformal symmetry generator:

$$L_0 = \frac{K_{ab}}{2(k-2)} \left(J_0^a J_0^b + 2 \sum_{m>0} J_{-m}^a J_m^b \right).$$

Irreducible representations of \mathfrak{sl}_2

We characterize different representations by the spin j and the eigenvalue m of J_0^0 :

• \mathcal{C}^{j}_{α} : $j \in \frac{1}{2} + i\mathbb{R}_{+}$, $m \in \alpha + \mathbb{Z}$.

• \mathcal{E}^j : $j \in \mathbb{N}/2$, $m \in \{-j, -j+1, \cdots, j-1, j\}$.

 \mathcal{E}^j is a level 0 degenerate representation, with the following null vector:

$$J_0^- |j, -j\rangle = 0.$$

Affine highest-weight representations of $\widehat{\mathfrak{sl}}_2$

Affine highest-weight representations of $\widehat{\mathfrak{sl}}_2$

Spectral flow

• The spectral flow is a family $(\rho_{\omega})_{\omega \in \mathbb{Z}}$ of automorphisms of $\widehat{\mathfrak{sl}}_2$:

$$\begin{split} &\rho_{\omega}(J_m^{\pm}) = J_{m\pm\omega}^{\pm},\\ &\rho_{\omega}(J_m^0) = J_m^0 + \frac{1}{2}k\omega\delta_{m,0}. \end{split}$$

ullet The spectral flowed representation $ho_{\omega}\left(\widehat{\mathcal{R}}
ight)$ is related to $\widehat{\mathcal{R}}$ through

$$J_{n}^{a}\left|v,\omega\right\rangle = \rho_{-\omega}\left(J_{n}^{a}\right)\left|v\right\rangle.$$

My contributations

- Spectral flowed degenerate representation
 - Spectral flowed vacuum representation
- Fusion rules with degenerate representations
 - level 0
 - level 1

Fusion rules

• The fusion rules are determined from the OPE

$$\phi^{j_1,\omega_1}(z_1)\phi^{j_2,\omega_2}(z_2) \sim \sum_{j_3,\omega_3} \left\langle \phi^{j_1,\omega_1}(z_1)\phi^{j_2,\omega_2}(z_2) \left(\phi^{j_3,\omega_3}(z_3)\right)^* \right\rangle \phi^{j_3,\omega_3}(z_3).$$

$$\left\langle \phi^{j_1,\omega_1}(z_1)\phi^{j_2,\omega_2}(z_2) \left(\phi^{j_3,\omega_3}(z_3)\right)^* \right\rangle \neq 0 \iff \widehat{\mathcal{R}}^{j_1,\omega_1} \times \widehat{\mathcal{R}}^{j_2,\omega_2} \supset \widehat{\mathcal{R}}^{j_3,\omega_3}$$

 The fusion rules involving degenerate representations is constrained by the null vector equations:

$$\hat{N}|j,m,\omega\rangle = 0 \Longrightarrow \left\langle \hat{N}\phi_m^{j,\omega}(z) \prod_i \phi_{m_i}^{j_i,\omega_i}(z_i) \right\rangle = 0.$$

Spectral flowed vacuum representation

• $\rho_{\pm}\left(\widehat{\mathcal{E}}^{0}\right)$ is a level 1 degenerate representation, with the corresponding null vector:

$$J_{-1}^{\mp} |k/2, \mp k/2\rangle = 0.$$

• The corresponding null vector equation:

$$\left\langle J_{-1}^{\pm}\phi\left(\left|k/2,\pm k/2\right\rangle,z_{1}\right)\phi\left(\left|j_{2},m_{2}\right\rangle,z_{2}\right)\phi\left(\left|j_{3},m_{3},\mp1\right\rangle,z_{3}\right)\right\rangle=0,$$

$$\Rightarrow j_{2}(j_{2}+1)=j_{3}(j_{3}+1)$$

• We have the following fusion rule:

$$\rho_{\pm 1}\left(\hat{\mathcal{E}}^{0}\right) \times \widehat{\mathcal{R}}^{j} = \rho_{\pm 1}\left(\widehat{\mathcal{R}}^{j}\right).$$

Fusion with spectral flowed representations

• We conjecture that the spectral flow commutes with fusion, which means,

$$\rho_{\omega_{1}}\left(\hat{\mathcal{R}}\right) \times \rho_{\omega_{2}}\left(\mathcal{R}'\right) = \rho_{\omega_{1} + \omega_{2}}\left(\hat{\mathcal{R}} \times \mathcal{R}'\right).$$

• The fusion rule with $ho_{\pm 1}\left(\widehat{\mathcal{E}}^0\right)$ proves the simplest case:

$$\begin{split} \rho_{\pm 1} \left(\widehat{\mathcal{R}}^{j_1} \right) \times \widehat{\mathcal{R}}^{j_2} &= \left(\rho_{\pm 1} \left(\widehat{\mathcal{E}}^0 \right) \times \widehat{\mathcal{R}}^{j_1} \right) \times \widehat{\mathcal{R}}^{j_2} \\ &= \rho_{\pm 1} \left(\widehat{\mathcal{E}}^0 \right) \times \left(\widehat{\mathcal{R}}^{j_1} \times \widehat{\mathcal{R}}^{j_2} \right) \\ &= \rho_{\pm 1} \left(\widehat{\mathcal{R}}^{j_1} \times \widehat{\mathcal{R}}^{j_2} \right). \end{split}$$

Level 1 degenerate representations

ullet The level 1 degenerate representation $\widehat{\mathcal{R}}^{\langle 1,1 \rangle}$ is of spin

$$j_{1,1} = -\frac{k+2}{2}.$$

• The null vector is given by the following null operator:

$$\hat{N}^c = K_{ab}J^a_{-1}J^b_0J^c_0 + j_{1,1}f^c_{ab}J^a_{-1}J^b_0 - 2j^2_{1,1}J^c_{-1}.$$

Fusion with level 1 degenerate representation

 Let's first consider the spectral flow preserving case. The null vector equation gives

$$\left\langle \hat{N}^{c} \phi \left(\left| j_{1,1}, m_{1} \right\rangle, z_{1} \right) \phi \left(\left| j_{2}, m_{2} \right\rangle, z_{2} \right) \phi \left(\left| j_{3}, m_{3} \right\rangle, z_{3} \right) \right\rangle = 0.$$

$$\Longrightarrow \left(j_{1,1}^{2} - (j_{2} - j_{3})^{2} \right) (1 + j_{1,1} + j_{2} + j_{3}) = 0.$$

The solution to this equation is $j_3 = j_2 \pm j_{1,1}, -j_2 - 1 + j_{1,1}$.

• We find the following fusion rule:

$$\hat{\mathcal{R}}^{\langle 1,1\rangle} \times \hat{\mathcal{R}}^j \supset \hat{\mathcal{R}}^{j+j_{1,1}} \oplus \hat{\mathcal{R}}^{j-j_{1,1}}.$$

Fusion with level 1 degenerate representation

 Next, let's consider the spectral flow violating case. The null vector equation becomes

$$\left\langle \hat{N}^{c}\phi\left(\left|j_{1,1},m_{1}\right\rangle,z_{1}\right)\phi\left(\left|j_{2},m_{2}\right\rangle,z_{2}\right)\phi\left(\left|j_{3},m_{3},\pm1\right\rangle,z_{3}\right)\right\rangle = 0.$$

$$\Longrightarrow j_{2}(j_{2}+1) = j_{3}(j_{3}+1)$$

• We find:

$$\hat{\mathcal{R}}^{\langle 1,1\rangle} \times \hat{\mathcal{R}}^j \supset \rho_1 \left(\hat{\mathcal{R}}^j\right) \oplus \rho_1 \left(\hat{\mathcal{R}}^j\right).$$

• In conclusion, we find the fusion rule with the level 1 degenerate representation to be:

$$\widehat{\mathcal{R}}^{\langle 1,1\rangle} \times \widehat{\mathcal{R}}^j = \widehat{\mathcal{R}}^{j+j_{1,1}} \oplus \widehat{\mathcal{R}}^{j-j_{1,1}} \oplus \rho_1 \left(\widehat{\mathcal{R}}^j\right) \oplus \rho_{-1} \left(\widehat{\mathcal{R}}^j\right).$$

Conclusion and Outlook

 We determined the fusion rules between spectral flowed vacuum representation with affine highest weight representations, which gives

$$\rho_{\pm 1} \left(\hat{\mathcal{E}}^1 \right) \times \hat{\mathcal{R}}^j = \rho_{\pm 1} \left(\hat{\mathcal{R}}^j \right).$$

• We also give the fusion rule between level 1 degenerate representations with affine highest representations:

$$\widehat{\mathcal{R}}^{\langle 1,1\rangle} \times \widehat{\mathcal{R}}^j = \widehat{\mathcal{R}}^{j+j_{1,1}} \oplus \widehat{\mathcal{R}}^{j-j_{1,1}} \oplus \rho_1 \left(\widehat{\mathcal{R}}^j\right) \oplus \rho_{-1} \left(\widehat{\mathcal{R}}^j\right).$$

• In the future, one possible generalizing of our results is to extend the fusion rules with spectral flowed vacuum representations to generic $\omega \in \mathbb{Z}$.

Thank You

Sugawara construction

• The symmetry algebra of 2D CFT is the Virasoro algebra, whose generators are $(L_n)_{n\in\mathbb{Z}}$. The commutation relations for Virasoro generators are

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(n-1)n(n+1)\delta_{n+m,0}.$$
 (1)

The energy momentum T(z) is a generating function of L_n :

$$T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}.$$
 (2)

• We introduce the Sugawara construction for the energy momentum tensor T(z):

$$T(z) = \frac{K_{ab}}{2(k-2)} : J^a(z)J^b(z) :, \tag{3}$$

where $K_{ab}=K^{ab}=rac{1}{2g}f_d^{ac}f_c^{bd}$

