IGM-Vis

visualizing the intergalactic medium

David Abramov

What is a quasar?

- Quasars are astronomical objects
- Comprised of
 - a supermassive <u>black hole</u> at the center
 - hot gas and dust that is pulled towards the black hole through a structure known as an accretion disk
 - energy is released in the form of light and, sometimes, as a <u>beam of charged particles</u> called a jet.

~350 Quasar sightlines

- Position (RA, DEC)
- Redshift / Wavelength
- Flux / Absorption Spectra

Since quasars are very bright sources of electromagnetic radiation, their emission spectra can be used to study objects between us and them

~20,000 Galaxies

- Position (RA, DEC)
- Redshift
- Stellar mass
- Star formation rate
- Virial radius
- Images from Sloan Digital
 Sky Survey

Quasar emission spectra collected by the Hubble space telescope

- Elemental (ex: hydrogen, carbon) redshift and flux
- Angular Position (right ascension & declination)

http://pcmhahn.wixsite.com/foamyether/expanding-universe

https://news.ucsc.edu/2017/04/cosmic-ripples.html

What does Joe Burchett want to do with the data?

- Compare the spectra of QSOs (quasi-stellar objects) "skewers"
- Test the coherence (absorption patterns) between sightlines
- Know the properties any adjacent galaxies
- Test whether a galaxy is responsible for patterns in the spectral data
- Learn about the structure of the universe

What analysis tasks are enabled?

Quasar sightline observations can be quickly viewed

Look for coherence (absorption that lines up in redshift) among sightlines

Can easily identify interesting Quasar-galaxy pairs based on proximity and absorption patterns

Compare the qualities of galaxies in dense clusters vs in isolation

No need to manually generate plots

Equivalent Width Plots

- Want to be able to generate equivalent-width plots on demand
- What is an EW plot?

https://www.researchgate.net/figure/Rest-frame-EW-of-Mg-III2796-absorption-line-as-a-function-of-projected-distance-and_fig2_233409354

Equivalent Width Plots

- Want to be able to generate equivalent-width plots on demand
- How does it work in IGM-Vis?

Equivalent Width Calculation

- And then what?
- I had to convert script that Joe wrote in Python into JS
- Challenging because JS does not natively handle vector math very well
- Used a library called math.js

vellax: 10,11,12,13,14,15,16,17,18,1	9,20,21,22,23
velup: 45.391027974343494	quasar.js:544
veldown: -48.04064452542896	<u>quasar.js:546</u>
dv: 93.43167249977245	quasar.js:548
belowerr: 16	<pre>quasar.js:569</pre>
0.112	<pre>quasar.js:571</pre>
EWpix: 0.19473868749629575,0.283015 5522333,0.3307526735102455,0 05684009574777,0.33643570913 4,0.376216958528836,0.361441 4128735,0.32203868554834897, 0064281122697	.31180922141916617,0.336 75693,0.3534848160195407 06589779407,0.3455285661
sigEWf: 0.04319107076766092,0.042054	<u>quasar.js:590</u> 463642196165,0.041296725

sigEWf: quasar.js:590
0.04319107076766092,0.042054463642196165,0.041296725
55855299,0.04129672555855299,0.04167559460037457,0.0
4281220172583934,0.04243333268401775,0.0409178565167
314,0.042054463642196165,0.0409178565167314,0.042812
20172583934,0.044706546934947265,0.04205446364219616
5,0.04053898747490982

Tauv: 0.7215466550816433,0.7215466550816433,0.721546655081 6433,0.7215466550816433,0.7215466550816433,0.721546655081 550816433,0.7215466550816433,0.7215466550816433,0.72 15466550816433,0.7215466550816433,0.7215466550816433,0.72 0.7215466550816433,0.7215466550816433,0.7215466550816433

tauverr_f0.23456790123456792,0.234567 <u>guasar.js:592</u>
90123456792,0.23456790123456792,0.23456790123456792,
0.23456790123456792,0.23456790123456792,0.2345679012
3456792,0.23456790123456792,0.23456790123456792,0.23
456790123456792,0.23456790123456792,0.23456790123456792,0.23456790123456792,0.23456790123456792

Npix: quasar.js:598
50180062983580.26,50180062983580.26,50180062983580.2
6,50180062983580.26,50180062983580.26,50180062983580.2
26,50180062983580.26,50180062983580.26,50180062983580.26,50180062983580.26,50180062983580.26,50180062983580.26,50180062983580.26

sigNf:16313057478653.27,1631305747865 <u>quasar.js:600</u> 3.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27,16313057478653.27

EWpix: quasar.js:626 0.19473868749629575,0.28301517424072553,0.2777110076 5522333,0.3307526735102455,0.31180922141916617,0.336 05684009574777,0.3364357091375693,0.3534848160195407 4,0.376216958528836,0.36144106589779407,0.3455285661 4128735,0.32203868554834897,0.27771100765522333,0.30 0064281122697 sigEWf: quasar.js:590
0.04355692816467801,0.03986067354166253,0.0432773027
0237646,0.04213842631547182,0.041379175390868723,0.0
41379175390868723,0.04175880085317027,0.042897677240
07492,0.04251805177777337,0.04099954992856717,0.0421
3842631547182,0.04099954992856717,0.0428976772400749
2,0.04479580455158265

tauv: quasar.js:591
0.013085239548655534,0.013085239548655534,0.01308523
9548655534,0.013085239548655534

tauverr_f0.1165146909827761,0.1165146 <u>guasar.js:592</u> 909827761,0.1165146909827761,0.1165146909827761,0.11 65146099827761,0.1165146909827761,0.116514699827761,0.11 0.1165146909827761,0.1165146909827761,0.11651469098 27761,0.1165146909827761,0.1165146909827761,0.116514

Npix: <u>quasar.js:598</u> 911831678274.5979,911831678274.5979,911831678274.597 9,911831678274.5979,911831678274.5979,911831678274.5979,911831678274.5979,911831678274.5979,911831678274.5979,911831678274.5979,911831678274.5979,911831678274.5979

sigNf:8119208351320.315,8119208351320 <u>quasar.js:600</u>
.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315,8119208351320.315

EWpix: quasar.js:626 0.004935131009920127,-0.019360898577378913,0.0565641 9388293064,-0.011009138406744856,0.04897168463689968 0.04403655362697955,0.08880731072539591,0.0649159540 535647,0.07288808876189717,0.09756374381149781,0.037 203295305551685,0.05238831379761361,0.06491595405356 47,0.032268164295631556

sigEWf: quasar.js:627
0.04365692816467801,0.03986067354166253,0.0432773027
0237646,0.04213842631547182,0.041379175390868723,0.0
41379175390868723,0.04175880085317027,0.042897677240
07492,0.04251805177777337,0.04099954992856717,0.0421
3842631547182,0.04099954992856717,0.0428976772400749
2,0.04479580455158265

Npix: quasar.js:628 911831678274.5979,911831678274.5979,911831678274.597 9,911831678274.5979,911831678274.5979,911831678274.597 979,911831678274.5979,911831678274.5979,911831678274 .5979,911831678274.5979,911831678274.5979,911831678274

sigNf: quasar.js:629 8119208351320.315,8119208351320.315,8119208351320.31 5,8119208351320.315,8119208351320.315,8119208351320.31 315,8119208351320.315,8119208351320.315,811920835132 0.315,8119208351320.315,8119208351320.315,8119208351

EW: 0.6343541475058865

N: 12765643495844.37

quasar.js:633

Equivalent Width Next Step

Generate a plot...

- We can collect and store EW values, the corresponding skewer, and the redshift range
- We can filter galaxies based on its impact parameter (angular distance from the skewer)
- But we still need to filter nearby galaxies that fit within the EW redshift range
- Once we filter down the relevant galaxies, a plot can be generated

What else could be done?

- Port the 3D visualization into VR (A-Frame)
- Center the camera on a stored galaxy when its image is clicked on
- Sonify the spectral data
- Use machine learning to possibly automate EW plot generation or run statistical analysis based on selected samples
- Visualize holistic details about the dataset
 - EX: histograms for galaxy attributes
- Enable more analysis tasks
- Add an interface to load new datasets within the webpage

How is the data being visualized?

- 3D interactive view created using THREE.js
- 2. 2D spectral line graphs with ticks indicating nearby galaxies, using D3
- 3. Galaxy images with attribute description

Why is it visualized this way?

- 1. The 3D view is an intuitive way to explore the data spatially.
- 2. 2D line graphs are easy to interpret, and information about the galaxies can be encoded with their height and width.
- 3. The images tie the visualization back to reality and what can be observed optically, along with its significant features.

Who will (or could) use this software?

- Astronomers
 - Interact with and explore the cosmological data in a 3D environment before diving into analysis
 - Identify interesting regions of space
- Citizen scientists
 - If specific tasks were isolated, they could be gamified
 - Zooniverse already has a handful of astronomy games that crowdsource discovery

Is this tool generalizable?

- It could be
- Some of the ranges are hard-coded (i.e. low-redshift domain) to work better with the data, but could be adapted for high-redshift galaxies.
- Other tools directly query sky survey databases. Integrating with existing data pipelines would make this tool more versatile.
- Limited to visual exploration the intergalactic scale