2 Računalna grafička oprema

- sklopovska grafička oprema
 - grafički procesor GPU
 - rasterska prikazna procesna jedinica
 - vektorska prikazna procesna jedinica
 - ulazne grafičke naprave
 - izlazne grafičke naprave
- programska grafička oprema
 - knjižnica grafičkih rutina
 - grafička jezgra načinjena u okviru standarda (API), jezici za sjenčanje
 - gotovi programski paketi
 - za crtanje CAD, animacije
 - za prikaz podataka

2.1 SKLOPOVSKA GRAFIČKA OPREMA

Povezanost grafičkog procesora s ostalim jedinicama sustava

* Primjer sklopovske grafičke opreme

ž. m, zemris, fer 2-3

2.1.1 Grafički procesor GPU

Funkcija rasterske prikazne procesne jedinice

http://www.cs.technion.ac.il/~cs234325/Applets/applets/dither/html/index.html

16 boja

256 boja

2 boje

2-5

16 777 216 boja

Povijesni razvoj GPU-a

- profesionalno grafičko sklopovlje ~ razvoj zadnjih 30 godina
- osobna računala

'95 tvrtka S3 kartica ViRGE, no naprednije mogućnosti spore '96 tvrtka 3DFX kartica Voodoo, 3D ubrzivačka kartica (nema 2D) do '99 sklopovski implementirane funkcije – postiže se velika brzina, no programirljivo sklopovlje (CPU) je fleksibilnije (ovisno o problemu u nekim slučajevima može biti brže)

- '99 važne grafičke funkcije sklopovski su podržane GPU
- '01 kartica GeForce3 podržava male **programe** u geometrijskoj fazi vrlo mali, jednostavne aritmetičke operacije (engl. vertex shader)
- '02 programi za sjenčanje slikovnih elemenata, **floating point** dodaje se pristup teksturama (engl. pixel shader, fragment shader) još uvijek nema prave kontrole toka, postoje uvjetne naredbe ADDNZ ali ne i naredbe skoka JMP
- '04 kartica GeForce6800 **kontrola toka** naredbe skoka povećavanje broja cjevovoda

Povijesni razvoj GPU-a - primjer

Generation	Year	Product Name	Process	Transistors	Antialiasing Fill Rate	Polygon Rate	Note
First	Late 1998	RIVA TNT	0.25 μ	7 M	50 M	6 M	1
First	Early 1999	RIVA TNT2	0.22μ	9 M	75 M	9 M	2
Second	Late 1999	GeForce 256	0.22μ	23 M	120 M	15 M	3
Second	Early 2000	GeForce2	$0.18~\mu$	25 M	200M	25 M	4
Third	Early 2001	GeForce3	$0.15~\mu$	57 M	800 M	30 M	5
Third	Early 2002	GeForce4 Ti	$0.15~\mu$	63 M	1200 M	60 M	6
Fourth	Early 2003	GeForce FX	0.13 μ	125 M	2000 M	200 M	7

ž. m, zemris, fer 2-7

Primjer:

NVIDIA's - GeForce, nForce

- Quadro

AMD(ATI) - Radeon

- FireGL

3Dlabs

Matrox

Slikovna prikazna memorija (eng. frame buffer)

memorija u koju se pohranjuje slika,
iz te memorije se obavlja osvježavanje na zaslonu

pohranjivanje slike
 GL_COLOR_BUFFER

• udaljenost od očišta GL_DEPTH_BUFFER,

http://olli.informatik.uni-oldenburg.de/Grafiti3/grafitiNav/flow8/page8.html#Ref_ID179

dvostruki spremnik GL DOUBLE BUFFER, GL STEREO

• http://www1.ics.uci.edu/~frost/unex/JavaGraphics/course/Double.html

spremnik maske
 GL_STENCIL_BUFFER

kombiniranje slike iz niza slika GL_ACCUM_BUFFER

GL_AUX_BUFFERS

spremnik tekstureGL_TEXTURE_1D

GL_TEXTURE_2D

GL_TEXTURE_3D

• (6 tekstura na kocki) GL_TEXTURE_CUBE_MAP

- posebna funkcija i spremnik za brisanje drugih spremnika brzo
- određivanje broja bita u spremniku
- logičke operacije, operacije usporedbe, akumulacije/stapanja, antialias

Ž. M, ZEMRIS, FER 2-9

Sinkronizacija rada dvostrukog spremnika (engl. Double buffer)

http://www.developer.com/repository/softwaredev/content/article/2000/06/20/SDtravisdblbuf/test1a.html

Upotreba spremnika – OpenGl

2.1.2 Izlazne grafičke naprave

podjela izlaznih grafičkih naprava

jedinice za prikaz objekata (CRT, LCD, s plazmom, pisači, crtala)

- vektorske
- rasterske http://www.cs.unc.edu/~mcmillan/comp136/Lecture1/disptech.html
- emitirajuće (CRT, s plazmom, OLED organske diode)
- ne emitirajuće (LCD tekući kristali)
- osvježavajuće
- s pamćenjem
- jednobojne
- sivi klin
- višebojne

jedinice za izradu 3D objekata

- vektorski pristup (tokarilice, glodalice)
- sloj po sloj

Ž. M, ZEMRIS, FER 2-12

Usporedba vektorske i rasterske prikazne procesne jedinice

- Vektorska
 - nekadašnja izvedba(ograničenost količine memorije)

prednosti

- točnost prikaza (ploteri)
- jednostavna promjena mjerila

nedostaci

- dugačka prikazna datoteka
- popunjavanje poligona
- => problem osvježavanja

Rasterska

danas uobičajeno

prednosti

 veličina prikazne datoteke ne utječe na frekv. osvježavanja

nedostaci

- potreba pretvorbe u diskretnu reprezentaciju
- => pogreška diskretizacije (eng. alias-sampling error nazubljene linije, moarè)

Jedinice za prikaz (različite karakteristike)

- slika se pohranjuje u slikovnoj prikaznoj memoriji
- iz memorije podaci se prenose preko DAC do zaslona puno puta u sekundi
- važna je *brzina* osvježavanja zbog eksponencijalnog slabljenja intenziteta svjetla koje emitira fosfor, više kvantnih razina:
 - florescencija dio μs (snop uključen)
 - fosforescencija 10-60 μs (snop isključen)

Visoka *perzistencija* znači da svjetlu treba dugo da oslabi (manje od 10% maksimalne vrijednosti), te se tada može sporije osvježavati

<= kontradiktorni zahtjev => http://www.colorado.edu/physics/2000/tv/black_and_white.html brzina animacije traži brži fosfor

- dijagonala
 - nazivna dijagonala 17''
 - vidljiva dijagonala 15,6-16,2"

- frekvencije osvježavanja
 - vertikalna frekvencija (broj slika u sekundi) 60-160 Hz
 (85 Hz propisano VESA standardom)
 - horizontalna frekvencija (broj linija u sekundi) 30-100 kHz
 - frekvencija osvježavanja slikovnih elemenata (brzina paljenja i gašenja elektronskog snopa) 50-160 MHz - širina pojasa (engl. pixel rate) http://www.colorado.edu/physics/2000/tv/moving_electrons.html
- *geometrijska* svojstva
 - kada prikazujemo kružnicu želimo da nema oblik elipse
- razlučivost, zrnatost, rezolucija
 - broj crnih/bijelih linija koje se mogu prikazati i odvojene su (obično se izražava po jedinici udaljenosti dpi)

- razmak
 - između točaka iste boje (eng. dot pitch) dijagonalno razmak
 između točaka 0,25-0,28 mm, razmak rupica na sitastoj maski
 - između pruga (eng. stripe pitch) horizontala udaljenost 0,21-0,28
 mm, razmak na aperturnoj rešetki
- *veličina* jedne točke koja može biti načinjena (eng. dot, spot size)
- *adresibilnost* broj individualnih točaka (po inču) koji može biti načinjen obrnuto proporcionalno udaljenosti
 - poželjno je da veličina točke bude veća od udaljenosti središta

- iscrtavanje s *preplitanjem*
 - (engl. interlaced
 /non interlaced)
 ako sporije iscrtavamo
 možemo iscrtati veću sliku

→ → → → → →

paran prolaz

neparan prolaz

- *toplina boje* spektar zračenja (eng. color temperature)
 - kada se crno tijelo zagrije na temperaturu 9300K ima identično zračenje monitoru
- degauss
 - uklanjanje statičkog naboja

Ž. M, ZEMRIS, FER 2-17

• Različite karakteristke fosfora, DAC, elektronskog topa, sitaste maske, brzine i organizacije memorije utječu na konačne mogućnosti.

NPR:

vertikalna frekvencija - 76 Hz, NI

razlučivost - 1152x900

razmak pruga - 0,26 mm = 0,0103"

dijagonala d = 20"

tipičan omjer slike y/x = 0.75

$$\Rightarrow 20^2 = x^2 + 0.75^2 \ x^2 \Rightarrow x = 16$$
' $\Rightarrow 1550 \ \text{slikovnih el.}$

=> paljenje/gašenje elektronskog snopa

$$1152 \times 900 \times 76 + 30\%$$
 ~ 100 MHz

=> postavlja zahtjeve na brzinu D/A pretvorbe 3x8b

i vrijeme pristupa memoriji ~ 10 ns

Pojasna propusnost prema memoriji (engl. memory bandwidth)

NPR:

2 – pristupa (piši/čitaj) = 16 bajta

$$1280 \times 1024 \times 16$$
 bajta $\times 60$ fps = 1,26 GB/sec.
dubinska složenost (engl. depth complexity, engl. overdraw)

$$1280 \times 1024 \times 16$$
 bajta \times 60 fps \times 3 = 3,78 GB/sec.
prikaz teksture – trilinearna interpolacija (8 vrhova \times 4 bajta)

$$1280 \times 1024 \times (16 + 32)$$
 bajta \times 60 fps \times 3 = 11,32 GB/sec. antialias \times 4 (engl. FSAA Full Screen Antialiasing)

$$1280 \times 1024 \times (16 + 32)$$
 bajta $\times 60$ fps $\times 3 \times 4 = 45,3$ GB/sec.

Primjer: Pojasna propusnost prema memoriji (engl. memory bandwidth)

ž. m, zemris, fer 2-20

- rapoložive *memorije* (256 KB 1971 = 2 mil \$)
 - SDRAM, (interno paralelna organiz.) ~ 60 ns sljedeći ~10ns
 - SGRAM (synchronous graphics RAM, ima dodatne grafičke mogućnosti, može biti i dvopristupni)
 - DRAM (engl. dynamic)
 - VRAM (engl. dual port),
 - EDO RAM
 - RAMBUS
 - WRAM (engl. window)

DDR (engl. Double-Data-Rate) za neke od navedenih memorija postoji mogućnost (GDDR SDRAM ~ 1 ns)

- ostvarivanje potrebnog vremena pristupa (brzine)
 - FPM (eng. fast page mod) prisutna je adresa retka, potrebno je mijenjati samo adrese stupaca
 - paralelne organizacije, dohvaćanje u brze posmačne registre

JEDINICE ZA PRIKAZ

- CRT (princip rada)
 - u elektronskom topu *žarna nit* grije *katodu* koja emitira snop elektrona
 - *kontrolna mrežica* određuje količinu elektrona koja će proći dalje i na taj način određuje svjetlinu
 - sustav za *fokusiranje* elektronskog snopa dinamički fokusira snop ovisno o položaju na zaslonu (defokusiran-mutna slika) teži se ravnom zaslonu (horizontalno, vertikalno)
 - horizontalni i vertikalni *otklonski sustav* otklanjaju snop
 - visoko pozitivna *metalizacija* (anoda) 15.000-20.000V ubrzava elektrone
 - sitasta *maska* ili aperturna rešetka

- *fosfor* naparen na staklo prelazak u više kvantno energetsko stanje a prilikom povratka elektrona emitira se energija u obliku *svjetla* određene valne duljine r, g, b obično postoje razlike u fosforu tako da ista slika izgleda različito na različitim monitorima
- miješanje valnih duljina => oko čovjeka
- utjecaj ambijentnog svjetla na svjetlinu i kontrast

http://www.sandlotscience.com/Contrast/Checker_Board_2.htm

- kalibriranje boja
- na elektronski snop (elektro) magnetska polja imaju utjecaj

CRT - FST (Flat Square Tube) s ravnom cijevi

sitasta maska (eng. shadow mask)

- delta raspored fosfornih cijevi (topova)
- u nizu (eng. in line)
- sitasta maska se radi od legure invar, problem grijanja i naprezanja

- problem je vrlo preciznog fokusiranja snopa na pripadni fosfor (neujednačena slika po površini zaslona, crveno-zeleni tragovi, moarè)
 - veliki dio površine je zaklonjen maskom (~20% elektrona pogodi fosfor) pa je smanjena je svjetlina

http://www.colorado.edu/physics/2000/tv/merging_color.html

CRT - trinitron cijev

sa aperturnom rešetkom (eng. aperture grill)

- niz vertikalnih traka (žica)
- zauzimaju manju površinu pa je slika svjetlija, kontrasnija, vjernije boje
- prilikom rada rešetka se ugrije, pa se javlja problem deformacija i vibracija - dodaju se dvije žice od volframa za učvršćivanje (obično su teži zbog problema učvršćivanja, osjetljiviji na transport)
- horizontalna zakrivljenost
- 30-50% skuplji

Sony - 64 - koristio cijev chromatron za prvi TV u boji, ima niz vertikalnih žica

- 67 načinjena cijev s tri elektronska topa i jednim sustavom za fokusiranje
- CRT kombinacija prethodnih
 - NEC, KFC

LCD prikazna jedinica s tekućim kristalima

- http://www.colorado.edu/physics/2000/polarization/polarizationI.html
- http://www.colorado.edu/physics/2000/laptops/index.html

- šest slojeva : reflektirajući sloj
horizontalna polarizacija
horizontalne žičice
sloj tekućih kristala
vertikalne žičice
vertikalna polarizacija

princip rada

- materijal tekućih kristala je načinjen od dugačkih molekula
 - kada je kristal u *električnom polju* nema polarizirajuća svojstva na svjetlo koje dolazi, pa svjetlo ostaje vertikalno polarizirano i *ne prolazi* kroz horizontalnu polarizaciju
 - kada je kristal *nije* u električnom polju *zakreće* ravninu polarizacije za 90° iz vertikalne u horizontalnu
- http://www.colorado.edu/physics/2000/laptops/index.html#demo
- http://www.colorado.edu/physics/2000/polarization/molecular_view.html
- TFT (eng. thin film transistor) na svakom (x, y) ima tranzistor, služe kao aktivna memorija dok se stanje ne promijeni

prednosti - lagani, mala potrošnja, mali po z-osi,

nedostaci - nisu izvor svjetlosti no može se koristiti stražnje osvjetljenje za projekcije, spora promjena slike, kut gledanja je ograničen, osjetljivi na pritisak i visoku temperaturu

upotreba

- prijenosna računala
- projektori http://www.colorado.edu/physics/2000/laptops/laptop_screen.html
- HMD

Prikazna jedinica s plazmom

- kod CRT prikaznih jedinica velika je dubina po z osi i tehnološki je ograničena veličina
- LCD prikazne jedinice nisu izvor svjetlosti
- na mjestu ukrštanja elektroda je adresirano mjesto zatim dolazi do ionizacije xenon/neon (xenon/neon XeNe) plina, to izaziva ultravioletno zračenje koje aktivira fosfor - svjetlo (nije pasivni uređaj)
- jedinice s plazmom mogu imati veličinu ~ 40'', 61'' (-100'')
- nedostatci veliki slikovni elementi (1 mm, CRT 0,2 mm),
 vakuum u malim fluorescentnim cijevima deblje staklo
 velika potrošnja (40" ~ 300W) uz slabu svjetlinu (~ 1/3 CRT),

Nove tehnologije:

- OLED (engl. Organic Light-Emitting Diode Arrays)
- DMD / DLP Digital Micromirror Devices /Digital Light Processing
- SED (engl. Surface-conduction Electronemitter Display)

3D PRIKAZ

OLED Display Screen (from Universal Display Corp.)

2-30

Jedinice za izradu 3D objekata

po uzoru na pisače (printeri)

- matrični
- laserski
- ink-jet
- termo
 - CMYK (više prolaza)

- izrada objekata sloj po sloj
 - 3D pisači (ZPrinter)
 - uređaji za stereolitografiju

(važno za brzu izradu prototipa)

- po uzoru na crtala (ploteri)
 - s pisaljkom (PEN)
 - optimiranje praznog hoda, akceleracija
 - prikaz karata
 - elektrostatski
 - negativno nabijeni papir, pozitivno nabijena tinta
 - brži, manje kontrastni od crtala s pisaljkom
- TOKARILICE, GLODALICE
 - izrada trodimenzijskih objekata

2.2.3 Ulazne grafičke naprave

- tablica (engl. tablet) s pisaljkom, na dodir osjetljiva ploča
 - kapacitivna sprega, elektromagnetska, zvučna, naponski gradijent
- miš
- mehanički, mehaničko optički, optički
- 3D zvučno pero, svjetlosno pero
- sustavi za 3D uzorkovanje
 - ultrazvučno
 - CT, PET (računalna tomografija)
 - MR (magnetska rezonancija)
 - laserskim snopom mogućnost uzorkovanja boje i temperature

http://www.cyberware.com/

Primjeri objekata:

http://www.cc.gatech.edu/projects/large_models/

ž. m, zemris, fer 2-33

2.2 PROGRAMSKA GRAFIČKA OPREMA

- Knjižnica grafičkih rutina (grafičke rutine koje se pozivaju iz nekog višeg programskog jezika s atributima C, C++). Teži se da ova knjižnica bude načinjena prema specifikaciji API-a, tj. prema nekom standardu.
 - "+" neovisnost radnog programa o sklopovskoj opremi
 - "-" obično se ne može ostvariti potpuna iskorištenost sklopovske opreme
- Standardima je propisano
 - API prema kojima se načine grafičke biblioteke
 - OpenGL-Mesa, DirectX Direct3D, Phigs-PEX
 - zapisi
 - slika TIF, GIF, BMP, JPEG, HPGL, PS (rasterski, vektorski)
 - niza slika GIF, video AVI, MOV, WMV, MPG, MP4, SWF, RM
 - scene, objekti DXF, MAX, 3DS, WRL-vrml, PLY, OBJ

- Grafičke jezgre načinjene u okviru standarda
 - 3D CORE (Core Graphics System)
 - 1979. ACM SIGGRAPH (Association for Computing Machinery Special Interest Group on Graphics)
 - GKS (Graphics Kernel System)
 - ISO 88, 94, 97, 98, 99 (International Standards Organization)
 - ANSI 85 (American National Standards Institute)
 - PHIGS (Programmer's Hierarchical Interactive Graphics System),
 PHIGS+ za pseudorealističan prikaz
 - ISO 90, 97
 - ANSI 88

Strukt. slike

VRML (Virtual Reality Modelling Language)

• ISO 97, 98, 99

- Osim službenih standarda postoje "de facto" ili industrijski standardi
 - 93' GL, OpenGL SGI
 - 95' Direct 3D Microsoft
 - X Window System's Xlib MIT PEX
 - RenderMan Pixar
 - PostScript Adobe
 - OpenFlight

Komercijalno su ovi standardi značajniji od službenih standarda jer se jednostavnije mogu mijenjati.

OpenGL - SIGGRAPH

- 2001. OpenML integracija i sinkronizacija 3D grafike s video i audio zapisima (Media rich programming, Khronos group)
- 2003. OpenES podrška za ugrađene sustave (embedded 3D graphics)
- 2004. OpenGL 2.0

Jezici i tehnologije za paralelno programiranje

Brook – programski jezik – programiranje tokova (stream program)

• http://graphics.stanford.edu/projects/brookgpu/index.html

CUDA paralelno obavljanje operacija na različitim podacima

• http://developer.nvidia.com/object/cuda.html

Jezici za sjenčanje (engl. shading languages)

• programiranje grafičkog sklopovlja korištenjem jezika više razine (kako ne bi morali programirati u asembleru za karticu)

HLSL (engl. High-Level Shading Languages) – Direct3D, Microsoft, '02.

CG (engl. C for graphics) – Opengl, Direct3D, NVidia, '02.

GLSL (engl. The OpenGL Shading Language) – open standard, ARB, '03.

• Alati za izradu programa u SL FX-composer (NVidia – HLSL)

http://developer.nvidia.com/object/fx_composer_home.html

Usporedba jezika za sjenčanje (engl. Shading Languages):

- HLSL Direct3D
- GLSL OpenGL

Assembly

```
DP3 R0, c[11].xyzx, c[11].xyzx;
RSQ R0, R0.x;
MUL R0, R0.x, c[11].xyzx;
MOV R1, c[3];
MOL R1, R1.x, c[0].xyzx;
DP3 R2, R1.xyzx, R1.xyzx;
RSQ R2, R2.x;
MUL R1, R2.x, R1.xyzx;
ADD R2, R0.xyzx, R1.xyzx;
DP3 R3, R2.xyzx, R2.xyzx;
RSQ R3, R3.x;
MUL R2, R3.x, R2.xyzx;
DP3 R2, R1.xyzx, R2.xyzx;
MOV R2, R3, R3.x;
MOV R2.z, c[3].z, R2.x;
MOV R2.z, c[3].y;
MOV R2.x, c[3].y;
LIT R2, R2;
```

High-Level Language

OpenGL (engl. Open Graphics Library)

http://www.opengl.org/

• IrisGL - SGI temelj za OpenGL, 1992. industrijski standard

state.pdf

- engl. state machine koji kontrolira skup specifičnih operacija crtanja
 2D/3D (definira kontekst za prikaz)
- OpenGL se temelji na FrameBuffer-u no u svom konceptu ne podržava grafičke ulazno izlazne naprave kao što su miš ili tipkovnica
- programsko sučelje prema grafičkom sklopovlju, neovisan o platformi tj. o OS-u i grafičkom sučelju (engl. window system)

Dodatne biblioteke

- rad u prozoru
 - WGL Microsoft Windows,
 - GLX X Windows system, na Unix-u
 - AGL Apple Macintosh

- GLU Utility Library (pomaže u modeliranju i nekim operacijama s prozorima)
 - objekti (kugla, cilindar, čajnik)
 - dijeljenje poligona, NURBS
- GLUT (OpenGL Utility Toolkit, truly cross-platform)
 - neslužbeni dio OpenGL, pisanje prenosivih aplikacija koje rade u okruženju prozora
 - pojednostavnjuje stvaranje prozora, rukovanje događajima (engl. events)

```
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h> // uključuje gl.h i glu.h pa ih nije potrebno navoditi
```

- GLEW (OpenGL Extension Wrangler Library) http://glew.sourceforge.net/
 olakšava korištenje OpenGL ekstenzija
- OpenGL Performer olakšava pisanje složenijih aplikacija

OpenGL

shapes.exe

- definirani su osnovni tipovi podataka zbog prenosivosti
 - GLfloat, GLint ...
- primjer naredbe u OpenGL-u

Programčić koji crta kvadrat:

```
Aplikacija
#include <GL/glut.h>
                                                                          Sakupljanje vrhova
void crtai() {
  glClear(GL COLOR BUFFER BIT);
  glLoadIdentity();
                                       konverzija u internu
                                                                        Operacije s vrhovima
  glOrtho(0, 4, 0, 4, -1, 1);
                                       reprezentaciju npr:
  glBegin(GL_POLYGON);
                                       glVertex2i(3, 3); 1 u float
     glVertex2i(1, 1);
                                                                        Sakupljanje primitiva
                                       z, w - inicijalizira na 0 1
     glVertex2i(3, 1);
     glColor3f(0.5, 0, 0.5);
                                       postavlja stanje npr. boju
     glVertex2i(3, 3);
                                                                       Operacije s primitivama
     glVertex2i(1, 3);
                                       interna reprezentacija:
  glEnd();
  glFlush();
                                        struct {
                                                                              Rasterizacija
                                        float x,y,z,w; // 3, 3, 0, 1
                                        float r,g,b,a; // 0.5, 0, 0.5, 1
                                       } vertex:
                                                                      Operacija s fragmentima
int main(int argc, char** argv) {
  glutInit(&argc, argv);
  glutInitDisplayMode (GLUT_RGBA);
                                                                              Framebuffer
  glutCreateWindow ("kvadrat");
  glutDisplayFunc (crtaj);
  glutMainLoop();
                                                                                  Prikaz
```

Operacije s vrhovima (procesor vrhova):

- transformiranje vrhova(množenje transformacijskom matricom)
- proračun osvjetljenja u vrhovima
- proračun koordinata teksture
- **..**.

skalira koordinate obzirom na veličinu prozora

U našem slučaju:

 skaliranje koordinata na veličinu prozora glLoadldentity(); glOrtho(0, 4, 0, 4, -1, 1);

 veličine koje nismo odredili npr. dimenzije prozora su predefinirane

(default npr. 300×300)

Ž. M. ZEMRIS, FER

Sakupljanje primitiva:

- povezivanje vrhova primitivama
- primitive su točke, linije, trokuti, niz trokuta, ...

```
glBegin(GL_POLYGON);

glColor3f(1, 1, 1);

glVertex2i(1, 1);

glColor3f(1, 0, 0);

glVertex2i(3, 1);

glColor3f(0, 1, 0);

glVertex2i(3, 3);

glColor3f(0, 0, 1);

glVertex2i(1, 3);

glEnd();
```

U našem slučaju:

poligon se rastavlja na niz trokuta

2-44

Operacije s primitivama:

- odsijecanje obzirom na prozor
 odnosno prema piramidi pogleda (frustum surfaces)
- uklanjanje stražnjih poligona (Culling)

odsijecanje (clipping)

U našem slučaju:

- ništa (samo se provjerava)
- ako bi neki vrh bio van prozora tada se odsijeca

Rasterizacija:

- određuje se koji slikovni elementi čine primitivu
- stvaranje fragmenta za svaki sl. el.
- pridruživanje atributa (npr. boja) svakom fragmentu

U našem slučaju:

Operacije s fragmentima (fragmet shader):

- preslikavanje teksture, magla,
- proračun osvjetljenja po fragmentu
 (različiti l, n vektori prema izvoru i vektor normale za svaki slikovni element)

Veza sa slikovnom memorijom (FrameBuffer)

 konačna slika se gradi i sastavlja ovisno o Z-spremniku, miješanju boja (color blending), ...

struct {
 int depth;

} pixel;

byte r,g,b,a;

U našem slučaju:

– ništa

Protočni sustav za OpenGL ES (ugrađene sustave)

- vrhovi
- primitive
- fragmenti

Osnove GLUT-a

struktura aplikacije

- konfiguracija i otvaranje prozora
- inicijalizacija OpenGL stanja
 - npr. boja pozadine, položaji izvora,
- funkcije povratnog poziva (engl. callback) kada se dese događaji pozivaju se funkcije (osvježi prozor...)
 - prikaz osvježavanje prikaza
 - promjena veličine prozora
 - ulazne naprave: miš, tipkovnica rukovanje događajima (engl. events)
 - animacija
- ulazak u glavnu petlju procesiranja događaja
 - aplikacija prati događaje i rukuje (poziva funkcije ovisno o događaju)

primjer glavnog programa:

```
void main (int argc, char** argv)
 glutlnitDisplayMode (GLUT_RGB | GLUT_DOUBLE); // konfiguracija i otvaranje prozora
 glutInitWindowSize (200, 300);
 glutInitWindowPosition (100, 100);
 glutCreateWindow ("Moj prozor");
 glClearColor(0.0, 0.0, 0.0, 1.0); // inicijalizacija OpenGL stanja
 glClearDepth( 1.0 );
                      // inicijalizacija početnih stanja je često u potprogramu init();
 glEnable(GL LIGHT0);
 glEnable(GL LIGHTING);
 glEnable(GL DEPTH TEST):
                               // funkcije povratnog poziva -- callback
 glutDisplayFunc (crtaj);
 glutReshapeFunc (resize);
 glutKeyboardFunc (tipkovnica);
 glutIdleFunc (idle);
 glutMainLoop();
                                   // glavna petlja procesiranja događaja
```

```
neke od funkcija povratnog poziva koje GLUT podržava:

    korisnik treba napisati ove funkcije

poziva se kada:
 glutDisplayFunc (crtaj); - treba osvježiti slikovne elemente
  glutReshapeFunc (); - se promijeni veličina prozora
  glutKeyboardFunc (tipkovnica); – je pritisnuta tipka na tipkovnici
  glutMouseFunc (mojmis); - je pritisnuta tipka na mišu
  glutMotionFunc (); - je pritisnuta tipka na mišu i pomičemo miša
  glutPassiveMouseFunc (); - pomičemo miša neovisno o tipkama miša
  glutIdleFunc (); - kada se ništa drugo ne dešava - korisno u animaciji
primjer:
void crtai (void)
 glClear (GL COLOR BUFFER BIT): // brisanje i obično glavno iscrtavanje
 glBegin (GL_TRIANGLES);
           glColor3ub(255, 0, 0); glVertex3f(-1.0, 0.0, 0.0);
           glColor3ub(0, 0, 0); glVertex3f(0.0, 1.0, 0.0);
           glColor3ub(100, 0, 0); glVertex3f(0.0, 0.0, 1.0);
 glEnd();
 glutSwapBuffers ();
                                              // ako je jedan spremnik onda je glFlush();
```

Interaktivni rad - GLUT funkcije:

kada je pritisnuta neka tipka tipkovnice poziva se funkcija: glutKeyboardFunc (tipkovnica); void tipkovnica (unsigned char tipka, int x, int y) // za tekući prozor pritisak tipke generira // ASSCI znak – pokreće funkciju – prosljeđuje znak i x, y miša switch (tipka) { case 'r': case 'R': glColor3f (1,0,0); // promijenimo stanje – aktivna boja prikaza je crvena glutPostRedisplay(); break; case 27 : exit (0); break: pritisnuta tipka miša: void moimis (int button, int state, int x, int y) if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) {...} else if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN) {...}

Animacija - GLUT funkcije:

potrebno je osvježavati prikaz za svaki dt:

```
glutIdleFunc (idle);
void idle (void)
{
   t += dt;
   glutPostRedisplay();
}
```

ž. m, zemris, fer 2-53

Grafičko korisničko sučelje

Fizičke naprave

Stisnuta tipka(e) Miš – pozicija - promjena, pomak - klik 3D podaci ... Osluškivanje procesa (notify process)

Događaji (event)

kontekstno ovisne akcije
ovisno u kojem prozoru,
na kojem mjestu
i kada (poslije/prije neke akcije)

Podjela zaslona (layout), logički elementi sučelja

- padajući izbornici (menu)
- panel
- canvas

Pokretanje funkcija (callback)

 npr. rotacijom u sceni možemo upravljati s tipkovnice ili mišem