

2nd list of excercices Match 21^{st} , 2024

Student: Jaider Torres RA: 241343

Notation: Again, for $n \in \mathbb{N}$, we define $[n] := \{k \in \mathbb{N} : k \le n\} = \mathbb{N} \cap [0, n] \subset \mathbb{R}$.

1. a. Seja $X\subset\mathbb{R}^n$ e $T:X\to X$ uma c-contação. Queremos provar que T tem um único punto fixo $x^\star\in X$. Assim, seja $x_0\in X$ um punto qualquer de X e defina a sucessão $(x_n)_{n\in\mathbb{N}}\subset X$ as $x_n=T(x_{n-1})$. Como T é uma c-contração, temos $d(T(x_1),T(x_0))\leq cd(x_1,x_0)$. Agora suponha que $d(x_n,x_{n-1})\leq c^{n-1}d(x_1,x_0)$ para algun $k\in\mathbb{N}$. Então

$$d(T(x_{n+1}), T(x_n)) \le cd(x_{n+1}, x_n)$$

$$= cd(T(x_n), T(x_{n-1}))$$

$$\le cc^{n-1}d(x_1, x_0)$$

$$= c^n d(x_1, x_0).$$

O principio da Indução garantis este fato para cada $n \in \mathbb{N}$.

Vamos a provar agora que $(x_n)_{n\in\mathbb{N}}$ é uma sucessão de Cauchy. Note que, dados $n,m\in\mathbb{N}$ tais que n>m, temos

$$d(x_{n}, x_{m}) \leq d(x_{n}, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \dots + d(x_{m+1}, x_{m})$$

$$\leq c^{n-1} d(x_{1}, x_{0}) + c^{n-2} d(x_{1}, x_{0}) + \dots + c^{m} d(x_{1}, x_{0})$$

$$= c^{m} d(x_{1}, x_{0}) \sum_{k \in [n-m-1]} c^{k}$$

$$\leq c^{m} d(x_{1}, x_{0}) \sum_{k \in \mathbb{N}} c^{k}$$

$$= c^{m} d(x_{1}, x_{0}) \left(\frac{1}{1-c}\right).$$

Como $c \in [0,1)$, dado qualquer $\varepsilon > 0$ podemos encontrar $N \in \mathbb{N}$ tal que

$$c^N \le \frac{\varepsilon(1-c)}{d(x_1, x_0)}.$$

Assim, considerando $n > m \ge N$, temos que

$$d(x_m, x_n) \le c^m d(x_1, x_0) \left(\frac{1}{1 - c}\right)$$

$$\le \left(\frac{\varepsilon(1 - c)}{d(x_1, x_0)}\right) \frac{d(x_1, x_0)}{1 - c}$$

$$< \varepsilon.$$

Portanto, $(x_n)_{n\in\mathbb{N}}$ é uma sucessão de Cauchy e como $X\subset\mathbb{R}^n$ é completo, temos que existe um único $x^\star\in X$ tal que

$$x^{\star} = \lim_{n \to \infty} x_n = \lim_{n \to \infty} T(x_{n-1}) = T\left(\lim_{n \to \infty} x_{n-1}\right) = T(x^{\star}),$$

pela unicidade do límite. Isso prova o resultado.

b. Seja $x_0 \in X$ e defina $(x_k)_{k \in \mathbb{N}}$ por $x_{k+1} = T^k(x_0)$ Novamente, vejamos que

$$d(x_3, x_2) = d(T(T(x_0)), T(X_0))$$

$$\leq cd(x_2, x_1).$$

Suponhamos que $d(x_k,x_{k-1}) \leq c^{k-2}d(x_2,x_1)$ para algun $k \in \mathbb{N}$. Então,

$$d(x_{k+1}, x_k) \le d(T^k(x_0), T^{k-1}(x_0))$$

$$= d(T(T^{k-1}(x_0)), T(T^{k-1}(x_0)))$$

$$\le cd(x_k, x_{k-1})$$

$$\le cc^{k-2}d(x_2, x_1)$$

$$= c^{k-1}d(x_2, x_1).$$

O principio do indução garantis este fato para todo $k\in\mathbb{N}$. Vamos a provar agora que $(x_n)_{n\in\mathbb{N}}$ é uma sucessão de Cauchy. Para isso, sejam n>m em \mathbb{N} . Temos que

$$d(x_m, x_n) \le d(x_m, x_{m-1}) + d(x_{m-1}, d_{m-2}) + \dots + d(x_{n+1}, x_n)$$

$$\le c^{m-2} d(x_2, x_1) + \dots + c^{n-1} d(x_2, x_1)$$

$$\le c^{n-1} d(x_2, x_1) \sum_{k \in [m-n-1]} c^k$$

$$\le c^{n-1} d(x_2, x_1) \sum_{k \in \mathbb{N}} c^k$$

$$= c^{n-1} d(x_2, x_1) \left(\frac{1}{1-c}\right).$$

Como $c \in [0,1)$, dado $\varepsilon > 0$ arbitrário, existe $N \in \mathbb{N}$ tal que

$$n^{n-1}d(x_2, x_1)\left(\frac{1}{1-c}\right) < \varepsilon$$

sempre que $n \geq N$, i.e.,

$$c^{n-1} < \frac{\varepsilon(1-c)}{d(x_2, x_1)}.$$

Assim, dados $\varepsilon > 0$ e m, n > N, temos que

$$d(x_m, x_n) \le \frac{c^{n-1}d(x_2, x_1)}{1 - c}$$

$$\le \frac{\varepsilon(1 - c)}{d(x_2, x_1)} \frac{d(x_2, x_1)}{1 - c}$$

$$= \varepsilon$$

Portanto, $(x_n)_{n\in\mathbb{N}}$ é uma sucessão de Cauchy e converge para um único punto $x^{\star_1}\in X$ (já que X é completo). Como $x_{k+1}=T(T^{k-1}(x_0))$, temos que

$$x^{*1} = \lim_{k \to \infty} x_{k+1}$$

$$= \lim_{k \to \infty} T(T^{k-1}(x_0))$$

$$= T\left(\lim_{k \to \infty} x_k\right)$$

$$= T(x^{*1}),$$

i.e., $x^\star = x^{\star_1}$. Isso completa a prova.

c. No punto anterior vimos que a sucessão $(x_n)_{n\in\mathbb{N}}$ era uma sucessão de Cauchy pelo fato que, para m>n naturais, teve que

$$d(x_m, x_n) \le c^{n-1} d(x_2, x_1) \sum_{k \in [n-m-1]} c^k.$$

Assim, fazendo m tende a ∞ , temos que

$$\lim_{m \to \infty} d(x_m, x_n) \le \lim_{n \to \infty} c^{n-1} d(x_2, x_1) \sum_{k \in [n-m-1]} c^k,$$

i.e.,

$$d(x^*, x_n) \le \frac{c^{n-1}d(x_2, x_1)}{1 - c}$$
.

Como $(x_n)_{n\in\mathbb{N}}$ convergem, para todo $\varepsilon>0$ podemos encontrar $N\in\mathbb{N}$ tal que, se $n\geq N$,

$$d(x_n, x^*) \le \frac{c^{n-1}d(x_2, x_1)}{1 - c} < \varepsilon,$$

i.e.,
$$x_n \in B_{\delta_n}(x^\star)$$
, onde $\delta_n = \frac{c^{n-1}d(x_2,x_1)}{1-c}$.

- d. Considere os seguentes dois exemplos:
 - Seja $f:[1,\infty)\to[1,\infty)$ definida por $x\mapsto x+\frac{1}{x}$. Observe que para $x\neq y$, temos que

$$f(x) - (y) = (x - y)\left(1 - \frac{1}{xy}\right) < x - y,$$

pois $1 - \frac{1}{xy} < 1$ dado que $x, y \ge 1$.

Então,

$$|f(x) - f(y)| \le 1 \cdot |x - y|,$$

i.e., f é uma 1-contração. Porém, f não tem puntos fixos.

- Sejam $\Delta := \overline{B_1(0)} \subset \mathbb{C}$ o espacio métrico com a métrica induzida por a métrica usual de \mathbb{C} , $\theta \in (0,1)$ irracional e considere $f:\partial \Delta \to \partial \Delta$ definida por $z\mapsto ze^{2\pi i\theta}$. Em o conjunto $\partial \Delta$ considere também a métrica induzida por a métrica no Δ . Então o conjunto $\partial \Delta$ é completo e como $A = \{w \in \partial \Delta : w = ze^{2n\pi i\theta}, z \in \partial \Delta, n \in \mathbb{N}\} \subset \partial \Delta$ é denso em $\partial \Delta$ (um resultado bem maravilhoso), temos que a função $f^n:\partial \Delta \to \partial \Delta$ é uma 1—contração sem puntos fixos, para qualquer $n \in \mathbb{N}$.
- **2.** Seja $m \in \mathbb{N}$ tal que $T^m: X \to X$ é uma c-contração. Então existe um único $x^\star \in X$ tal que $T^m(x^\star) = x^\star$ pelo item **a**. no punto anterior, i.e., tem um único punto fixo $x^\star \in X$. Denote $F = T^m$ e defina $(x_k)_{k \in \mathbb{N}}$ como

$$x_{k+1} = F^{k}(x_{0})$$

$$= (T^{m})^{k}(x_{0})$$

$$= \underbrace{(T \circ \cdots \circ T)}_{m} \circ \cdots \circ \underbrace{(T \circ \cdots \circ T)}_{m}(x_{0})$$

para qualquer $x_0 \in X$. Pelo visto no item **b**. do punto anterior temos que $(x_k)_{k \in \mathbb{N}}$ convergem para $x^* \in X$. Queremos provar agora que $x^* \in X$ é de fato un punto fixo de T. Para isso, note que

$$T^{m}(T(x^{\star})) = T^{m+1}(x^{\star})$$
$$= T(T^{m}(x^{\star}))$$
$$= T(x^{\star}).$$

Assim, $T(x^\star)$ é um punto fixo de T^n também e portanto $T(x^\star) = x^\star$ pela unicidade de $x^\star \in X$. Se $y \in X$ é algum outro punto fixo de T, então $T^m(y) = y = x^\star$. Isso completa a prova.

3. Sejam

$$\mathcal{E}_{\mathbf{a}}^{n} = \left\{ (x_1, \dots, x_n) = \mathbf{x} \in \mathbb{R}^n : \left(\frac{x_1}{a_1}\right)^2 + \dots + \left(\frac{1}{a_n}\right)^2 = 1, a_i > 0 \forall i \in [n] \right\}$$

e \mathbb{S}^n a elipsoide e a n-esfera, respetivamente.

Note que o elipsoide pode ser escrito como

$$\mathbf{x}^T\underbrace{\begin{pmatrix} \frac{1}{a_1^2} & & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & \frac{1}{a_n^2} \end{pmatrix}}_{\mathbf{A}} \mathbf{x} = 1,$$

onde $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^T \in \mathcal{M}_{1 \times n}(\mathbb{R})$ e $\mathbf{a} = (a_1, \dots, a_n)$ é o vector indicador de $\mathcal{E}^n_{\mathbf{a}}$. Como $A_{\mathbf{a}}$ é simétrica, exitem $R \in SO(n)$ e D diagonal tais que $A_{\mathbf{a}} = R^TDR$. Tomando $Y = R\mathbf{x}$, temos que $Y^TDY = 1$. Como D tem números positivos na diagonal, é o quadrado de alguma outra matriz diagonal E, i.e., $D = E^2$. Então EY é um punto de \mathbb{S}^n quando $\mathbf{x} \in \mathcal{E}^n_{\mathbf{a}}$, e como E é invertível, $E^{-1}\mathbf{x}$ é um punto de $\mathcal{E}^n_{\mathbf{a}}$ quando $\mathbf{x} \in \mathbb{S}^n$. Neste caso (que é o mais imediato, pois se trata da elipsoide centrada no origem e cujos eixos principais coincidem com os vetores canônicos de \mathbb{R}^n , i.e., não tem rotações), temos que $R = Id_n$ e

$$E = \begin{pmatrix} \frac{1}{a_1} & & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & \frac{1}{a} \end{pmatrix}.$$

Esta observação permite notar que a aplicação que transforma $\mathcal{E}^n_{\mathbf{a}}$ para \mathbb{S}^n é da forma $(x_1,\ldots,x_n)\mapsto (\frac{x_1}{a_1},\ldots,\frac{x_n}{a_n})$ e seu inversa é da forma $(x_1,\ldots,x_n)\mapsto (a_1x_1,\ldots,a_nx_n)$.

Em poucas palavras, em \mathbb{S}^n e $\mathcal{E}^n_{\mathbf{a}}$ considere a topologia subespacio e defina a função $f:\mathcal{E}^n_{\mathbf{a}} o\mathbb{S}^n$ como $\mathbf{x}\mapsto E\mathbf{x}$.

Note que se $E\mathbf{x}=E\mathbf{y}$, então $\mathbf{y}=E^{-1}\mathbf{x}E=\mathbf{x}$ e portanto f é injetora. Além disso, dado $(x_1,\ldots,x_n)\in\mathbb{S}^n$, temos que $(a_1x_1,\ldots,a_nx_n)\in\mathcal{E}^n_{\mathbf{a}}$ é enviado a (x_1,\ldots,x_n) . Logo, f é uma bijeção de inversa $f^{-1}:\mathbb{S}^n\to\mathcal{E}^n_{\mathbf{a}}$ definida por $\mathbf{x}\mapsto E^{-1}\mathbf{x}$. Como E é uma transformação linear de \mathbb{R}^n , então ela é continua restrita a \mathbb{S}^n e

respectivamente para E^{-1} . Mas, note que as funções componentes de f e f^{-1} são todas lineares e portanto são continuas. Isso prova o homeomorfísmo entre \mathbb{S}^n e $\mathcal{E}^n_{\mathbf{a}}$.

Observe que isso nos permite encontrar um homeomorfismo entre a esfera e qualquer elipsoide sempre que ele este centrado na origem (ao trabalhar em $\mathbb{A}^n_{\mathbb{R}}$ não é um problema já que é possível trasladar a elipsoide de modo que ele este centrado na origem).

4. Seja $f:\overline{B_1(0)}\subset\mathbb{R}^n o\overline{B_1^{\|\cdot\|_M}(0)}\subset\mathbb{R}^n$ definida por $x\mapsto k(x)x$, onde

$$\begin{split} k: \overline{B_1(0)} &\to \mathbb{R} \\ x &\mapsto k(x) = \begin{cases} \frac{\|x\|}{\|x\|_M} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases} \end{split}$$

Primeiro vejamos que f é uma bijecção. Sejam $x,y\in\overline{B_1(0)}$ tais que $x\neq y$. Então $f(x)=k(x)x\neq k(y)y=f(y)$. Assim, f é injectora. Além disso, dado $x\in\overline{B_1^{\|\cdot\|_M}(0)}$, o vector $y=\frac{\|x\|_M}{\|x\|}\in\overline{B_1(0)}$ é tal que f(y)=x. Portanto, f es sobrejetora e a função $f^{-1}:\overline{B_1^{\|\cdot\|_M}(0)}\to\overline{B_1(0)}$ definida por $x\mapsto\frac{1}{k(x)}x$ para $x\neq 0$ e $0\mapsto 0$ é sua inversa pois $f^{-1}(f(x))=f^{-1}(k(x)x)=x$ e $f(f^{-1}(x))=f\left(\frac{1}{k(x)}x\right)=x$.

Agora, dado $a\in \overline{B_1(0)}$ qualquer, para cada $x\in \overline{B_1(0)}$ considere $M=\max\{k(x),k(a)\}$. Assim, como

$$\begin{split} \left\| f(x) - f(y) \right\|_M & \leq M \|x - y\|_M \\ & \leq M \|x - y\| \\ & < \varepsilon, \end{split}$$

para $\varepsilon>0$. Assim, tomando $\delta=\frac{\varepsilon}{M}$, temos que si $\|x-y\|<\delta$, então $\|f(x)-f(a)\|\leq M\|x-y\|< M\frac{\varepsilon}{M}=\varepsilon$. Portanto, f é continua em $a\in\overline{B_1(0)}$ e como a é arbitrário, f é continua em $\overline{B_1(0)}$.

Para a continuidade de f^{-1} , dado $\varepsilon>0$, $x,a\in\overline{B_1^{\|\cdot\|_M}(0)}$ e considerando $M=\max\left\{\frac{1}{k(x)},\frac{1}{k(a)}\right\}$, temos que

$$\begin{split} \left\|f^{-1}(x) - f^{-1}(a)\right\| &\leq M \|x - a\| \\ &\leq n^{\frac{1}{2}} M \|x - a\|_M \\ &< \varepsilon. \end{split}$$

Tomando $\delta=rac{arepsilon}{n^{\frac{1}{2}}M}$, temos que se $\|x-a\|_{M}<\delta$, então

$$\begin{split} \left\| f^{-1}(x) - f^{-1}(a) \right\| &\leq n^{\frac{1}{2}} M \|x - a\|_{M} \\ &< n^{\frac{1}{2}} M \delta \\ &= n^{\frac{1}{2}} M \frac{\varepsilon}{n^{\frac{1}{2}} M} \\ &= \varepsilon. \end{split}$$

 $\mathsf{Como} \ \mathsf{o} \ a \in \overline{B_1^{\|\cdot\|_M}(0)} \ \mathsf{\acute{e}} \ \mathsf{arbitr\acute{a}rio}, f^{-1} \ \mathsf{\acute{e}} \ \mathsf{continua} \ \mathsf{e} \ \mathsf{portanto} \ f \ \mathsf{\acute{e}} \ \mathsf{um} \ \mathsf{homeomorfismo} \ \mathsf{entre} \ \overline{B_1(0)} \ \mathsf{e} \ \overline{B_1^{\|\cdot\|_M}(0)}.$

Agora, a aplicação f transforma $\overline{B_1(0)}$ para $\overline{B_1^{\|\cdot\|_M}(0)}$ dilatando os puntos (pois $k(x)=\frac{\|x\|}{\|x\|_M}>1$ para todo $x\neq 0$ dado que $\|x\|_M\leq \|x\|$) e sua inversa faz uma contração (pois $\frac{1}{k(x)}<1$ para cada $x\neq 0$). Note que, para $x\neq 0$, $k(x)=\frac{1}{k(x)}=1$ se $\|x\|_M=\|x\|$. Portanto, os únicos puntos fixos de f e f^{-1} são $\{\mathbf{0}\}\cup\{\mathbf{e}_i\}_{i\in[n]}$.

- 5. Seja $\pi: T \to Y$ definida por $(x,y,z) \mapsto \frac{1}{1-z}(x,y)$. Dados $x,y \in T$, note que $x \neq y$ então $\pi(x) \neq \pi(y)$. Além disso, se $(x_1,x_2) \in Y$, então $y = \left(\frac{2x_1}{1+\|(x_1,x_2)\|^2}, \frac{2x_2}{1+\|(x_1,x_2)\|^2}, \frac{\|(x_1,x_2)\|^2-1}{1+\|(x_1,x_2)\|^2}\right) \in T$ é tal que $\pi(y) = (x_1,x_2)$. Assim, π é uma bijecção com inversa $\pi^{-1}: Y \to T$ definida por $(x_1,x_2) \mapsto \frac{1}{\|(x_1,x_2)\|^2+1}(2x_1,2x_2,\|(x_1,x_2)\|^2-1)$. Como as funções componente de π e π^{-1} são continuas, então elas são continuas. Assim, $T \cong Y$.
 - Considere a parametrização de $V=\{(x,y,z)\in\mathbb{R}^3:z=\sqrt{x^2+y^2}\}$. Seja $f:Y\to V$ definida por $(x,y)\mapsto (x,y,\sqrt{x^2+y^2})$. Se $x,y\in Y$ são tais que $x\neq y$, então $f(x)\neq f(y)$ Assim, f é injetora. Agora, se $(x,y,z)\in V$, então $z=\sqrt{x^2+y^2}$ e o ponto $(x,y)\in Y$ é tal que f(x,y)=(x,y,z). Assim, f é sobrejetora. Portanto, f es bijetiva de inversa $f^{-1}:V\to Y$ dada pela projeção das dois primeiras entradas, i.e., $(x,y,z)\mapsto (x,y)$. Note que as funções componente de f são todas continuas e portanto f é continua (pois $\lim_{(x,y)\to(a,b)}f_3(x,y)=f_3(a,b)$ para cada $(x,y)\in Y$, onde $f_3(x,y)=\sqrt{x^2+y^2}$), e la continuidade de sua inversa f^{-1} é imediata. Por tanto, $V\stackrel{\mathsf{Top}}{\cong} Y$.

■ Considere a parametrização de $X=\{(\cos\theta,\sin\theta,y)\in\mathbb{R}^3:\theta\in[0,2\pi),r\in\mathbb{R}\}$. Note que a parametrização de X rotamos sobre o eixe z a linha $\{(1,0,z)\in\mathbb{R}^3\}$, i.e.,

$$\begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ z \end{pmatrix},$$

onde $\theta \in [0,2\pi)$ e $z \in \mathbb{R}$. Além disso, note que o feixe $(0,\infty)$ é transformado em $\{(1,0,z) \in \mathbb{R}^3\}$. Esta não é a única aplicação que faz isso, e de fato uma parametrização conveniente neste caso é $X=\{(\cos\theta,\sin\theta,\ln(r))\in\mathbb{R}^3:\theta\in[0,2\pi),r\in\mathbb{R}^+\}$, onde o feixe $(0,\infty)$ também é transformado em $\{(1,0,z)\in\mathbb{R}^3\}$. Com esta nova parametrização, temos que a aplicação f:Y o X definida por $(x,y) = (r\cos\theta, r\sin\theta) \mapsto (\cos\theta, \sin\theta, \ln(r))$. Note que se $(\cos\theta_1, \sin\theta_1, \ln(r_1)) = (\cos\theta_2, \sin\theta_2, \ln(r_2))$ de $\cos\theta_1=\cos\theta_2$ e $\sin\theta_1=\sin\theta_2$ temos que $\theta_1=\theta_2$ e de $\ln(r_1)=\ln(r_2)$ temos que $r_1=r_2$. Assim, $(r_1\cos\theta_1,r_1\sin\theta_1)=(r_2\cos\theta_2,r_2\sin\theta_2)$ e f é injetora. Agora, dado $(x,y,z)\in X$, pela segunda parametrização de X temos que tem a forma $(\cos \theta, \sin \theta, \ln(r))$ para alguns $\theta \in [0, 2\pi)$ e $r \in \mathbb{R}^+$, e assim o punto $(r\sin\theta,r\cos\theta)$ é enviado a (x,y,z), i.e., f é sobrejetora. Portanto, f é uma bijecção e sua inversa $f^{-1}:S \to X$ definida por $(\cos\theta,\sin\theta,\ln(r))\mapsto (r\cos\theta,r\sin\theta)$. Novamente, pela continuidade de as funciones componente de f, temos que f é continua e a continuidade de f^{-1} é imediata. Portanto,

f é um homeomorfismo entre X e Y , i.e., $X \overset{\mathsf{Top}}{\cong} Y.$

Assim, todas as superfícies mostradas anteriormente são homeomorfas dois a dois pois todas são homeomorfas a Y e a composição de homeomorfismos é homeomorfismo.

6. Seja $\Pi:\mathbb{S}^n \to \mathbb{R}^n$ uma função tal que $\Pi|_{\mathbb{S}^n\setminus\{\mathbf{N}\}}=\pi$, onde $\pi:\mathbb{S}^n\setminus\{\mathbf{N}\}\to\mathbb{R}^n$ é a projeção estereográfica. Note que, usando um argumento topológico, Π não pode ser uma extensão continua de π pois $\Pi(\mathbb{S}^n)=\mathbb{R}^n$ deve ser compacto já que a compacidade é um invariante topológico e $\mathbb{S}^n\subset\mathbb{R}^{n+1}$ é compacto pelo Teorema

No entanto, note que $\mathbb{R}^n \overset{\pi^{-1}}{\hookrightarrow} \mathbb{S}^n$ e $\overline{\pi^{-1}(\mathbb{R}^n)} = \mathbb{S}^n$, obtendo assim que \mathbb{S}^n é a compactação por um punto de \mathbb{R}^n . De fato, a compactação é única salvo isomorfismos em Top. Isso diz que Π não pode ter uma extensão