Lab 1: Generalized linear models

March 29, 2018

Generalized linear models

- Specify distribution for response variable
- Specify linear predictor
- Specify link function
 - Calculates expected response given linear predictor

Example

Counts for local densities

$$C_i \sim Poisson(\lambda_i)$$
$$\log(\lambda_i) = \mathbf{x}_i \mathbf{\beta}$$

Common distributions for data

Discrete

Name	Notation	Domain	Range
Bernoulli	$B \sim Bernoulli(p)$	$0 \le p \le 1$	$B \in \{0,1\}$
Binomial	$\mathbb{N} \sim Binomial(p, n)$	$0 \le p \le 1$	$N \in \{0,1,\dots,n\}$
Poisson	$N\sim Poisson(\lambda)$	λ>0	$N \in \{0,1,2,\}$
Negative binomial	$N\sim Negative Binomial(\lambda, \theta)$	λ>0 θ>0	$N \in \{0,1,2,\}$
Conway-Maxwell- Poisson	$N\sim CMP(\mu,\nu)$	μ>0 ν>0	$N \in \{0,1,2,\}$

Common distributions for data

Continuous

Name	Notation	Domain	Range
Normal	$Y \sim Normal(\mu, \sigma^2)$	$\sigma^2 > 0$	Unrestricted
Lognormal	$Y \sim Lognormal(\mu, \sigma^2)$ which is similar to $log(Y) \sim Normal(\mu, \sigma^2)$	$\sigma^2 > 0$	Y > 0
Gamma	$Y \sim Gamma(\mu, CV)$	μ > 0 CV > 0	Y > 0
Beta	$p\sim Beta(\alpha,\beta)$	$\alpha > 0$, $\beta > 0$	0 < p < 1

Common link functions

Name	Notation	Implies that	Range
Identify	$\lambda_i = \mathbf{x}_i \mathbf{\beta}$	$\lambda_i = \mathbf{x}_i \mathbf{\beta}$	$-\infty < \lambda_i < \infty$
Log	$\log(\lambda_i) = \mathbf{x}_i \mathbf{\beta}$	$\lambda_i = \exp(\mathbf{x}_i \mathbf{\beta})$	$0 < \lambda_i < \infty$
Logit	$\operatorname{logit}(\lambda_i) = \mathbf{x}_i \mathbf{\beta}$	$\lambda_i = \operatorname{logistic}(\mathbf{x}_i \boldsymbol{\beta})$	$0 < \lambda_i < 1$

- Choice 1 is it continuous or discrete?
 - Continuous: normal, lognormal, beta, gamma
 - Discrete: Bernoulli, binomial, poisson, negative binomial
- Choice 2 what is the range of possible values?
 - E.g., if discrete:
 - If is is 0 or 1, then its Bernoulli
 - If its between 0 and N, where N is the number of trials, then its Binomial
- Choice 3 How flexible do you want it?

- Frequent null models:
 - 1. Binomial
 - 2. Poisson
 - 3. Normal

Binomial

— If you have one or more binary events:

$$B_i \sim \text{Bernoulli}(p)$$

Then the sum of successes...

$$N = \sum_{i=1}^{n_i} B_i$$

... follows a binomial distribution

$$N \sim Binomial(p, n)$$

- Characteristics:

$$\mathbb{E}(N) = np$$

$$\mathbb{V}(N) = np(1-p)$$

Poisson

 If you have a lot of independent events, each with low probability:

$$N \sim \text{Binomial}(p, n)$$

where $pn \gg 0$ and $p \ll 1$

- Then the number of successes follows a Poisson distribution $N \sim Poisson(np)$

– Characteristics:

$$\mathbb{E}(N) = np$$

$$\mathbb{V}(N) = np$$

- Normal
 - If you have one or more events:

$$B_i \sim g(\mathbf{\theta})$$

where $g(\theta)$ is some unknown density function

Then the sum of outcomes ...

$$N = \sum_{i=1}^{n_i} b_i$$

... will converge on a normal distribution

$$N \sim \text{Normal}(\mu, \sigma_b^2)$$

... as the number of events gets large $n_i \rightarrow \infty$

$$\mathbb{E}(N) = \mu = n_i \mathbb{E}(g(\mathbf{\theta}))$$

$$\mathbb{V}(N) = \sigma_b^2 = n_i^2 \mathbb{V}(g(\mathbf{\theta}))$$

Review:

Maximum likelihood estimation (MLE)

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}}(L(\boldsymbol{\theta}; \mathbf{y}))$$

- Where $\widehat{m{\theta}}$ is the MLE estimate of parameters
- Where $\arg\max_{\boldsymbol{\theta}}(L(\boldsymbol{\theta}; \mathbf{y}))$ is the maximum value for $L(\boldsymbol{\theta}; \mathbf{y})$ that can be achieved for any value of $\boldsymbol{\theta}$
- argmax is done using maximization algorithms

How to maximize the likelihood function

- Nonlinear minimizers
- Test using Rosenbrook "Banana" function

How to maximize the likelihood function

Methods without gradients are slow

How to maximize the likelihood function

Methods with gradients are much faster!

Review:

Maximum likelihood estimation (MLE)

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}}(L(\boldsymbol{\theta}; \mathbf{y}))$$

How to check convergence?

1. Check that the gradient is near zero:

$$\left| \frac{d}{d\theta_i} \log (L(\mathbf{\theta}; \mathbf{y})) \right| < 0.0001$$

- 2. Check the Hessian matrix
 - See Lab 1 code

Example #1 – What is the mean density of canary rockfish in the California Current?

Define linear predictor matrix

$$x_i = 1$$

– i.e.,

$$X = 1$$

We call X an intercept matrix

Example #1 – What is the mean density of canary rockfish in the California Current?

Issues:

- Contains many samples where $c_i = 0$
- Samples where $c_i > 0$ are not whole numbers

Example #1 – What is the mean density of canary rockfish in the California Current?

Reminder:

Axiom of conditional probability:

$$Pr(X, Y) = Pr(Y|X) Pr(X)$$

- Where

$$X = \Pr(c_i > 0)$$

$$Y = \Pr(c_i = C)$$

Solution:

Use a "delta-model"

$$Pr(c_i = C) = Pr(c_i > 0) Pr(c_i = C | c_i > 0)$$

- Where we use separate models for $Pr(c_i > 0)$ and $Pr(c_i = C | c_i > 0)$

Generalized linear models

- Specify one for encounter/nonencounter
- Species another for positive catch rates

Canary catch rates

$$Pr(C = c_i) = \begin{cases} \log(\lambda_i) = \mathbf{x}_i \mathbf{\beta} \\ \theta_1 & \text{if } c_i = 0 \\ (1 - \theta_1) Lognormal(\lambda_i, \theta_2) & \text{if } c_i > 0 \end{cases}$$

Hint

If:

$$\Pr(c_i = C) = \begin{cases} \theta_1 & \text{if } c_i = 0\\ (1 - \theta_1) Lognormal(c_i = C | \lambda_i, \theta_2) & \text{if } c_i > 0 \end{cases}$$

Then:

$$\begin{split} \log(\Pr(c_i = C)) \\ = \begin{cases} \log(\theta_1) & \text{if } c_i = 0 \\ \log(1 - \theta_1) + \log(Lognormal(c_i = C | \lambda_i, \theta_2)) & \text{if } c_i > 0 \end{cases} \end{split}$$

[Work on TMB code in groups of 2 for 20 minutes]

Conclusion

Decent fit...

How do we assess fit?

- We want expected predictive loss
 - Assume there's a true "data-generating process" (DGP)

$$f(y_i)$$

- Where $Pr(y|\theta) = L(\theta; y)$ is your specified probability distribution

predictive probability =
$$\int \Pr(y^*|\widehat{\boldsymbol{\theta}}) f(y^*) dy^*$$

- Where
 - *y** is some future data

Then

expected predictive log. probability =
$$\sum_{j=1}^{J} \log(\Pr(y_j | \widehat{\boldsymbol{\theta}}))$$

- Where
 - y_i is some data that were "held out" when estimating parameters $\widehat{m{\theta}}$

More reading: Gelman, A., Hwang, J. & Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. *Stat. Comput.*, 24, 997–1016.

How do we assess fit?

- K-fold crossvalidation
 - 1. Divide data set into *K* even partitions
 - 2. Calculate predictive probability for 1st partition
 - For each piece K, fit the model to all data except data in that partition
 - Calculate the predictive probability of data in partition K using this model
 - Record predictive probability
 - 3. Repeat step 2 for all K partitions
 - 4. Chose the model with the highest predictive probability

Confidence interval:

- Parameter estimates are normally distributed
- Computation

$$CI_{\chi\%}(\hat{\theta}) = \hat{\theta} \pm \widehat{SE}(\hat{\theta}) \times \Phi^{-1}(\frac{x}{2})$$

- Where $CI_{x\%}$ contains the true value x% of the time if the model is correct
- $-\Phi^{-1}$ is the inverse cumulative distribution for a normal distribution
- $\hat{\theta}$ is the estimate for parameter θ
- $-\widehat{SE}(\widehat{\theta})$ is the estimated standard error for parameter θ

Confidence interval coverage

Coverage – the expected proportion of times that an estimated x% confidence interval contains the true value given an estimation model and true "data-generating process"

Estimation:

- 1. Simulate data with a known value for parameter heta
- 2. Record true parameter values
- 3. Apply estimator
- 4. Record confidence interval $CI_{x\%}(\widehat{\theta})$ for parameter θ
- 5. Repeat steps 1-4 hundreds of times
- 6. Compute the proportion of times where $CI_{x\%}(\widehat{\theta})$ contains the true value for parameter θ

Homework assignment:

- Due at beginning of Lab #2
- Must turn in your own code
- Cannot cut-paste any code from other students
 - You can hand-write your own code while working with someone else, or looking at my example code