Devoirs et Lectures, 2019

William McCausland 2019-10-09

Cours 1, le 4 septembre

Devoirs, Rosenthal (matière du cours 1)

- 1. Exercice 1.3.1
- 2. Exercice 1.3.2
- 3. Exercice 1.3.3
- 4. Exercice 1.3.4
- 5. Exercice 1.3.5

Lectures, Rosenthal (matière du cours 2)

- 1. Chapitre 1
- 2. Chapitre 2

Définitions importantes : espace de probabilité; espace d'état; algèbre; tribu; additivité (finie ou dénombrable); stabilité par complémentation, pour les réunions ou intersections (finies ou dénombrables); semi-algèbre.

Questions sur les lectures

- 1. Soit $\Omega = [0, 1]$. Soit \mathcal{F} l'ensemble des parties de Ω qui sont finis ou de complémentaire fini.
 - a. Est-ce que \mathcal{F} est une algèbre? Appuyez votre réponse.
 - b. Est-ce que \mathcal{F} est une tribu (ou σ -algèbre)? Appuyez votre réponse.
- 2. Soit $\Omega = \{1, 2, 3\}$ et $\mathcal{F} = 2^{\Omega}$. Trouvez une mesure de probabilité additive $P \colon \mathcal{F} \to [0, 1]$ sur (Ω, \mathcal{F}) telle que $P(\{1, 2\}) = 3/4$ et $P(\{2, 3\}) = 1/2$.
- 3. Soit $\mathcal{J}=\{\emptyset,\{1\},\{2\},\ldots,\{n\},\{1,\ldots,n\}\}$. Soit $\Omega=\{1,\ldots,n\}$. Montrez que
 - a. \mathcal{J} est stable pour les intersections finies,
 - b. $\emptyset \in \mathcal{J}$ et $\Omega \in \mathcal{J}$,
 - c. tous les éléments de \mathcal{J} ont un complément par rapport à Ω qui égale une réunion disjointe finie des éléments de \mathcal{J} ,
 - d. \mathcal{J} est une semi-algèbre de parties de Ω .

Cours 2, le 11 septembre

Devoirs, Rosenthal (matière du cours 2)

- 1. Exercice 2.7.4
- 2. Exercice 2.7.8
- 3. Exercice 2.7.14
- 4. Exercice 2.7.20
- 5. Exercice 2.7.22

Lectures, Rosenthal (matière du cours 3)

1. Chapitre 3

Définitions importantes : variable aléatoire, \searrow , \nearrow , $\lim \inf_n$ et \limsup_n pour une suite d'ensembles A_n , indépendance d'événements.

Questions sur les lectures

- 1. Trouver Λ_1 tel que $[-1/n, 1/n) \searrow \Lambda_1$.
- 2. Trouver Λ_2 tel que $[-1+1/n, 1-1/n) \nearrow \Lambda_2$.
- 3. Soit $\Omega = \{1,2,3,4\}$, $A = \{1,2\}$, $B = \{1,3\}$. Soit D_n la séquence où $D_n = A$ pour n pair et $D_n = B$ pour n impair.
 - a. Trouvez l'algèbre (sur Ω) le plus petit qui contient A et B.

 - b. Trouvez $\limsup_{n\to\infty} D_n = \cap_{n=1}^\infty \cup_{k=n}^\infty D_n$ et $\liminf_{n\to\infty} D_n = \cup_{n=1}^\infty \cap_{k=n}^\infty D_n$. c. Soit $P\colon 2^\Omega \to \mathbb{R}$ telle que $(\Omega, 2^\Omega, P)$ est un espace de probabilité. Prouver que si A et B sont indépendants, A et B^c le sont aussi.
- 4. Soit $\Omega = \{1, 2, 3\}, \mathcal{F} = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$
 - a. Donnez une fonction $X: \Omega \to \mathbb{R}$ qui est une variable aléatoire sur (Ω, \mathcal{F}) .
 - b. Donnez une fonction $f: \Omega \to \mathbb{R}$ qui n'est pas une variable aléatoire sur (Ω, \mathcal{F}) .

Cours 3, le 18 septembre

Devoirs, Rosenthal (matière du cours 3)

- 1. Exercice 3.6.2
- 2. Exercice 3.6.6
- 3. Exercice 3.6.10
- 4. Exercice 3.6.12

Lectures, Rosenthal (matière du cours 4)

1. Chapitre 4

Définitions importantes: espérance, variance d'une variable aléatoire simple, covariance, corrélation entre deux variables aléatoires simples.

Questions sur les lectures

1. Soit (Ω, \mathcal{F}, P) la mesure de probabilité où $\Omega = \mathbb{N} = \{1, 2, \ldots\}, \ \mathcal{F} = 2^{\Omega}$ et P est la probabilité où $P(\{\omega\}) = 2^{-\omega}, \ \omega \in \mathbb{N}.$ Soit $X(\omega) = 0.$ Pour $n \in \mathbb{N}$, soit

$$X_n(\omega) = \begin{cases} 2^n & \omega = n \\ 0 & \omega \neq n. \end{cases}$$

Trouver E[X] et $E[X_n]$. Est-ce que $E[X_n] \to E[X]$?

2. Soit (Ω, \mathcal{F}, P) la mesure de probabilité où $\Omega = \mathbb{N} = \{1, 2, \ldots\}, \mathcal{F} = 2^{\Omega}$ et P est la probabilité où $P(\{n\}) = 2^{-n}, n \in \mathbb{N}$. Soit

$$X(\omega) = \begin{cases} 2, & \omega = 2, 3 \\ 1, & \omega = 4 \\ 0, & \text{autrement.} \end{cases}$$

Trouver E[X].

3. Soit (Ω, \mathcal{F}, P) la mesure de Lebesgue sur $\Omega = [0, 1]$. Soit

$$Y(\omega) = \begin{cases} 1, & \omega \text{ irrationel, } \omega < 1/2 \\ 3, & \omega = 1/2 \\ 5, & 1/2 < \omega \le 1 \\ 7, & \text{autrement.} \end{cases}$$

Trouver E[Y].

Cours 4, le 25 septembre

Devoirs, Rosenthal (matière du cours 4)

- 1. Exercice 4.5.1
- 2. Exercice 4.5.2
- 3. Exercice 4.5.3
- 4. Exercice 4.5.4
- 5. Exercice 4.5.13 (considérez les fonctions ω^{-1} , $\omega^{-1/2}$, $(1-\omega)^{-1}$ et $(1-\omega)^{-1/2}$ sur Ω et leurs combinaisons linéaires).

Lectures, Rosenthal (matière du cours 5)

1. Chapitres 5, 6

Définitions importantes : convergence presque sur, convergence en probabilité.

Question sur les lectures

- 1. Soit (Ω, \mathcal{F}, P) un espace de probabilité avec $\Omega = [0, 1]$ et P, la mesure de Lebesgue. Pour tous n > 0, soit $A_n \equiv [0, 1/n]$, $Z_n = 1_{A_n}$, Z = 0. Lesquelles des affirmations suivantes sont vraies? Expliquez. Pour $Z_n = n1_{A_n}$, est-ce que les réponses changent?
 - a. $Z_n \to Z$.
 - b. Z_n converge à Z presque surement.
 - c. Z_n converge à Z en probabilité.

Cours 5, le 2 octobre

Devoirs, Rosenthal (matière du cours 5)

- 1. Exercice 5.5.2
- 2. Exercice 5.5.10
- 3. Exercice 5.5.14
- 4. Exercice 6.3.2
- 5. Exercice 6.3.4

Lectures, Rosenthal (matière du cours 6)

1. Chapitre 9, 10

Définitions importantes : lim inf d'une suite de nombres, lim inf d'une variable aléatoire, fonction géneratrice des moments

Question sur les lectures

1. Selon le lemme de Fatou, pour une séquence de variables aléatoires $X_n \geq 0$,

$$E[\liminf_{n\to\infty} X_n] \le \liminf_{n\to\infty} E[X_n].$$

Supposez que (Ω, \mathcal{F}, P) est un espace de probabilité où $\Omega = \mathbb{N}$, $\mathcal{F} = 2^{\Omega}$ et $P(\{\omega\}) = 2^{-\omega}$.

a. Montrez que la séquence de variables aléatoires $X_n=2^n1_{\{n\}}(\omega)$ vérifie

$$E[\liminf_{n\to\infty} X_n] < \liminf_{n\to\infty} E[X_n].$$

b. Donnez une séquence de variables aléatoires $X_n \geq 0$ telle que

$$E[\liminf_{n\to\infty} X_n] = \liminf_{n\to\infty} E[X_n].$$

- c. Donnez une séquence de variables aléatoires $X_n \geq 0$ telle que $E[\liminf_{n\to\infty} X_n] < \infty$ et $\liminf_{n\to\infty} E[X_n] = \infty$.
- d. Donnez une séquence de variables aléatoires $X_n \geq 0$ telle que $E[\liminf_{n\to\infty} X_n] = \infty$ et $\liminf_{n\to\infty} E[X_n] = \infty$.
- 2. Donnez la fonction génératrice des moments pour une v.a. Bernoulli avec probabilité p de succès.

Cours 6, le 9 octobre

Devoirs, Rosenthal (matière du cours 6)

- 1. Exercise 9.5.4
- 2. Exercise 9.5.6
- 3. Exercise 9.5.8
- 4. Exercise 10.3.4
- 5. Exercise 10.3.6

Lectures, Rosenthal (matière du cours 7)

- 1. Chapitre 11, accent sur l'Intro, 11.1, 11.2
- 2. (si nécessaire, https://fr.wikipedia.org/wiki/Nombre_complexe)

Questions sur les lectures

- 1. Exprimez les nombres complexes suivants sous la forme $\alpha + i\beta$, où $a, b, c, d, r, \theta \in \mathbb{R}$.
 - a. (a+ib)(c+id)
 - b. (a+ib)/(c+id)
 - c. $re^{i\theta}$
 - d. $\log(a+ib)$
- 2. Exprimez les nombres complexes suivants sous la forme $re^{i\theta}$, où $a, b, r, r_1, r_2, \theta \in \mathbb{R}$.
 - a. (a+ib)

- b. $r_1e^{i\theta_1} \cdot r_2e^{i\theta_2}$ c. $re^{i\theta} \cdot i$ d. e^{a+ib}