1 BASIC LOGIC

1 Basic Logic

1. truth value:

P	Q	$P \wedge \neg P$	$P \vee \neg P$	$(P \lor Q) \Rightarrow (P \land Q)$	$(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$
Т	Т	F	Т	Τ	Т
F	Т	F	Т	F	F
Т	F	F	Т	F	Т
F	F	F	Т	Τ	Т

1

Table 1: truth value table

2. (1)
$$Q \land \neg Q = F, P \Rightarrow (Q \land \neg Q) = \neg P \lor F = \neg P$$

(2) $(P \land \neg Q) \Rightarrow Q = \neg P \lor Q \lor Q = \neg P \lor Q = P \Rightarrow Q$

3.
$$(1)P \land Q \Rightarrow R$$

 $(2)Q \Rightarrow P$
 $(3)P \Leftarrow Q$

- 4. We denote that "bear is smart" as P, "bear is lazy" as Q, then "bear is not smart" can be denoted as $\neg P$. We have $(P \land Q \lor (\neg P)) \land P$, it's equivalent to $P \land Q$, then Q must be true.
- 6. We denote "At door 1,2,3" as P,Q,R, one of them is true, while we can get another information: one of $\neg P, \neg Q, Q$ is true. Due to "not Q then $\neg Q$ ", we can infer that $\neg P$ is false. (We can confirm while Q = R = false, it can satisfies the requirements of the question) so the treasure is behind the Door 1!
- 7. We denote . . .can leads to the capital as P, Q, R, then $P \wedge (R \Rightarrow Q) = (\neg P) \wedge (\neg R) = P \wedge (\neg Q)$ =False. Combine the first and the third formula $P \wedge (\neg R \vee Q \vee \neg Q) = P$ =False, then from the second $\neg R$ =False. We are not sure about the stone path ,but we are sure that the dirt path can lead to capital.

8. Denote "
$$a+1 == 0$$
" as P , $b+1 == 0$ as Q , then $ab+a+b \neq -1 = (a+1)(b+1) == 0 = \neg P \land \neg Q$

9. (1) Use the proof by contradiction. Not losing generality , we assume that a=1,

4 Ordering

1.
$$\frac{7}{13} < \frac{6}{11}$$

4 ORDERING 2

2. If
$$ab < 0$$
, $a^2 + b^2 > 0 > ab$. If $ab > 0$, $a^2 + b^2 > 2ab > ab$. Thus, $a^2 + b^2 > ab$.

3. Let c = 1000000001, then $a = (c+1)^2$, b = (c-7)(c+7), a-b = 2c+50 > 0. So a > b.

4.
$$\frac{2+\sqrt{3}}{2-\sqrt{3}} = 7 + 4\sqrt{3}$$

- 5. (1) $x \in]-8, 2[$
 - $(2) \ x \in \frac{2}{3}, 6[$
 - $(3) \ x \in]-2,4[$

6.
$$x \in [-2, \frac{3+\sqrt{13}}{2}]$$

- 7. (1) 0.
 - (2) -1.
 - (3) No.

8.

$$A^{\mathbf{u}} = \{x \in \mathbb{R} | \sqrt{2} \le x\}, A^{\mathbf{l}} = \{x \in \mathbb{R} | -\sqrt{2} \ge x\}$$

$$\sup A = \sqrt{2}, \inf A = -\sqrt{2}$$

$$B^{\mathbf{u}} = \{x \in \mathbb{R} | x \ge 1\}, B^{\mathbf{l}} = \{x \in \mathbb{R} | x \le 0\}$$

$$\sup B = 1, \inf B = 0$$

- 9. 2.
- 10. Cauchy's inequality. n^2
- 11. (1) (a) reflexive: $A \subseteq A$
 - (b) transitive $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
 - (c) antisymmetric $A \subseteq B \land B \subseteq A \Rightarrow A = B$
 - (2) Denote $\bigcup_{i \in I} A_i$ as A $\forall i \in I, A_i \subseteq A$, so $A \in (A_i)_{i \in I}^{\mathrm{u}}. \forall B \in (A_i)_{i \in I}^{\mathrm{u}}, \forall i \in I, A_i \subseteq B$, so $A \subseteq B, A = \min(A_i)_{i \in I}^{\mathrm{u}}, \sup(A_i)_{i \in I} = A$. Similarly, $\inf(A_i)_{i \in I} = \bigcap_{i \in I} A_i$
- 12. The following is about induction, we skip it.
- 22. (1) (a) reflexive: $\forall n \in \mathbb{N}, n | n$
 - (b) transitive: If a|b,b|c, where $(a,b,c) \in \mathbb{N}^3$, then $\exists (m,n) \in \mathbb{N}^2$ such that b=am,c=nb, so c=(nm)a, which leads to a|c.
 - (c) antisymmetric:Let $a = mb, b = na, (m, n) \in \mathbb{N}^2$ Then 1 = mn, m = n = 1.Hence a = b

Therefore $(\mathbb{N}, |)$ is a partially ordered set.

4 ORDERING 3

- (2) Obvious.
- (3) $\forall n \in \mathbb{N}, 1 | n.1$ is the least element.
- (4) $\forall n \in \mathbb{N}, n | 0.0$ is the greatest element.
- (5) If there exists a $n \in \mathbb{N}$, $n \neq 0$, such that $\forall a \in A, a | n$, then $a \leq n$. That contradicts to A is infinite. Thus n can only be $0.\sup_{(\mathbb{N},\mathbb{I})} A = 0$
- (6) (a) $\forall a \in A, a | n, \text{where}, n = \prod_{x \in A} x, \text{so } n \in M(A).$
 - (b) Suppose $\exists n \in M(A), n_0 \nmid n$ we can write $n = dn_0 + r$, where $d, r \in \mathbb{N}, 0 < r < n_0$. Claim $r \in M(A)$: Take $x \in A$, since $n, n_0 \in M(A), \exists s, s_0 \in \mathbb{N}, xs = n, xs_0 = n_0$, then $xs = dxs_0 + r, x \mid r, \text{sor} \in M(A)$. That contradicts to the fact that n_0 is the least number in M(A).
 - (c) $\sup A = n_0$
- (7) (a) Let $x = \sum_{i=1}^{k} a_i n_i, y = \sum_{j=1}^{t} b_j m_j, \sum_{i=1}^{k} a_i n_i + \sum_{j=1}^{t} b_j m_j \in A\mathbb{Z}$.
 - (b) $\sum_{i=1}^{k} a_i(yn_i) \in A\mathbb{Z}$
 - (c) $\forall a \in A$, let $k = 1, a_1 = a, n_1 = 1$, we have $a \in A\mathbb{Z}.A \cap (\mathbb{N} \setminus \{0\}) \neq \emptyset$, hence, $(A\mathbb{Z}) \cap (\mathbb{N} \setminus \{0\}) \neq \emptyset$.
 - (d) $\{d\} \subseteq A\mathbb{Z}$.By (b), we have $d\mathbb{Z} \subseteq A\mathbb{Z}$.If $A\mathbb{Z} \nsubseteq d\mathbb{Z}$, then $\exists x = \sum a_i x_i \notin d\mathbb{Z}$, i.e. $d \nmid x$. Write x = dm + r, where $m, n \in \mathbb{N}, 0 < r < d.r = x dm = \sum a_i x_i + (-m)d \in A\mathbb{Z}$. But that's impossible. Hence $A\mathbb{Z} \subseteq d\mathbb{Z}$, $A\mathbb{Z} = d\mathbb{Z}$.
 - (e) By (d), $A\mathbb{Z} = d\mathbb{Z}$,by (c), $A \subseteq A\mathbb{Z} \Rightarrow A \subseteq d\mathbb{Z}$,i.e. $d|a, \forall a \in A \Rightarrow d$ is a lower bound of A. Take another lower bound d' of $A.d'|a, \forall a \in A \Rightarrow d|y, \forall y \in A\mathbb{Z} = d\mathbb{Z} \Rightarrow d'|d \Rightarrow d$ is the greatest lower bound of A.i.e.inf A = d.
- (8) If A is empty, it is easy to check gcd(A) = 0, lcm(A) = 1. Assume $A = \neq \emptyset$. If $A = \{0\}$, then easy to check gcd(A) = lcm(A) = 0. Set $A' = \{a \in A | a \neq 0\} \subseteq A, A' \neq \emptyset$. By (7)-(e), A' has infimum d. d is also the infimum of A. By (5), (6)-(c), A' has a supremum D.d is also the supremum of A.
- (9) $A = \{a, b\}$, by (7)-(d)(e), $A\mathbb{Z} = d\mathbb{Z} \Rightarrow d \in A\mathbb{Z} \Rightarrow \exists m, n \text{ such that } d = ma + nb \text{ (Bézout Lemma)}$
- (10) $\frac{ab}{\gcd(a,b)} = a \frac{b}{\gcd(a,b)} = b \frac{a}{\gcd(a,b)} \Rightarrow \frac{ab}{\gcd(a,b)}$ is an upper bound of $A = \{a,b\}$ under $(\mathbb{N},|)$. Since $\operatorname{lcm}(a,b)$ is the least upper bound of A, $\gcd(a,b)|\frac{ab}{\gcd(a,b)}$

$$a = \frac{ab}{\operatorname{lcm}(a, b)} \frac{\operatorname{lcm}(a, b)}{b}, b = \dots$$

4 ORDERING 4

 $\frac{ab}{\operatorname{lcm}(a,b)}$ is a lower bound of $A=\{a,\}$ under $(\mathbb{N},|), \operatorname{gcd}$ is the greatest \ldots $\frac{ab}{\operatorname{lcm}(a,b)}|\gcd(a,b), ab=\gcd(a,b)\operatorname{lcm}(a,b).$

23. (1) Obvious.

- (2) $\forall x \in \emptyset, P(x)$ is true. There is no non-empty set can be the subset of $\emptyset, (\emptyset, \underline{\in})$ is true.
- (3) $(\alpha, \underline{\in})$ is a well-ordered set since it is a subset of $(\alpha \cup \{\alpha\}, \underline{\in})$. $\forall x \in \alpha \cup \{\alpha\}$, if $x = \alpha, x \subseteq (\alpha \cup \{\alpha\})$; if $x \in \alpha, x \subseteq \alpha \subseteq (\alpha \cup \{\alpha\})$. So α is ordinal.
- (4) $\forall x \in \alpha, x \subseteq \alpha, \forall A \subseteq \alpha, \min(A) \in \alpha \subseteq (\alpha \cup \{\alpha\}), \text{so } (\alpha \cup \{\alpha\}, \underline{\in}) \text{ is well ordered.} \forall x \in \alpha \cup \{\alpha\}, \text{if } x = \alpha, \alpha \subseteq \alpha \cup \{\alpha\}, \text{if } x \in \alpha, \text{since } \alpha \text{ is ordinal, } x \subseteq \alpha \subseteq \alpha \cup \{\alpha\}. \text{Thus } \alpha \cup \{\alpha\} \text{ is an ordinal.}$ Obviously,

$$\alpha \subseteq \bigcup_{x \in \alpha \cup \{\alpha\}} x$$

Conversely, $\forall y \in x, x \in \alpha \cup \{\alpha\}$, if $x = \alpha$, then $y \in \alpha$. If $x \in \alpha$, since α is ordinal, $y \in x \subseteq \alpha$, $y \in \alpha$. Hence,

$$\alpha \supseteq \bigcup_{x \in \alpha \cup \{\alpha\}} x$$

Therefore,

$$\alpha = \bigcup_{x \in \alpha \cup \{\alpha\}} x$$

(5)
$$\alpha = \bigcup_{x \in \alpha \cup \{\alpha\}} x = \bigcup_{x \in \beta \cup \{\beta\}} x = \beta$$

- (6) If $x = \alpha \lor y = \alpha$, easy. If $x, y \in \alpha$, since $(\alpha, \underline{\in})$ is well ordered, consider $\{x, y\} \subseteq \alpha, x \underline{\in} y \lor y \underline{\in} x$.
- (7) $\forall x \in \alpha, x \subseteq \alpha$, since $(\alpha, \underline{\in})$ is well ordered, $(x, \underline{\in})$ is well ordered. $\forall y \in x, z \in x$, by transitive $z \in x, y \subseteq x$. Therefore, all elements of α are ordinals.
- (8) Take $x \in \beta$, denote $X := \{ y \in \alpha | y \in x \}$. Take $y \in X$, since $y \in x \in \beta$, by transitivity, $y \in \beta$. If $y = \beta, \beta \in x \land x \in \beta$, contradicts to axiom of foundation. So $y \in \beta, X \subseteq \beta$.
- (9) If $\beta \in \alpha \cup \{\alpha\}$ and $\beta \neq \alpha, \beta \subseteq \alpha$.By (8), β is an initial segment of α . If β is an initial segment of α

5

24. (1) \Rightarrow :Let $\alpha = A \cup \{A\}$ for an ordinal A.By (4) of 23.

$$A = \bigcup_{x \in A \cup \{A\}} x = \bigcup_{x \in \alpha} x \subseteq \alpha$$

 \Leftarrow : Let $U = \bigcup_{x \in \alpha} x$, claim that $\alpha = U \cup \{U\}$ (to be continue to check)

- (2) -
- (3) N.T.S. $\forall x \in \emptyset \cup \{\emptyset\}, x \text{ is not a limit ordinal.} \Rightarrow x = \emptyset$, which is not a limit ordinal by definition.
- (4) $\alpha = n$ is a natural number $\Leftrightarrow \forall x \in \alpha \cup \{\alpha\}, x$ is not limit.N.T.S $\alpha + 1$ is not \mathbb{N} , i.e. $\forall x \in \alpha \cup \{\alpha\} \cup \{\alpha \cup \{\alpha\}\}, x$ is not limit.Whether $x \in \alpha \cup \{\alpha\}$ or $x = \alpha \cup \{\alpha\}$, it's right.
- (5) -
- (6) $\alpha = n$ natural number $. \forall x \in \alpha + 1, x$ is not limit. N.T.S $\forall y \in \alpha, \forall z \in y + 1, z$ is not limit. $z \in y + 1 \nsubseteq \alpha + 1 \Rightarrow z \in \alpha + 1 \Rightarrow z$ is not a limit ordinal.
- (7) -
- (8) -
- (9) f increasing $\Leftrightarrow \forall x_1, x_2 \in \mathbb{N}, f(x_1) \leq f(x_2)$. Prove by induction. Claim f(0) = 0. Pf.: If not ,then $f(0) \neq 0 \Rightarrow f(0) \geq 1$. By increasing, $\forall n > 0, f(n) \geq f(0) \geq 1$. $\forall n \in \mathbb{N}, f(n) \neq 0, f$ is not surjective. Claim: If $f(n) = n, \forall n \geq m$, then f(m+1) = m+1. Pf. $f(m+1) \geq f(m) = m$. If $f(m+a) = m = f(m) \Rightarrow f$ is not injective. If f(m+1) > m+1, then $\forall i > m+1, f(i) \geq f(m+1) > m+1$.