Construction of elliptic curves with high rank

Andrej Dujella

Department of Mathematics University of Zagreb, Croatia

e-mail: duje@math.hr

URL: http://web.math.hr/~duje/

Let E be an elliptic curve over \mathbb{Q} .

By Mordell's theorem, the group $E(\mathbb{Q})$ of rationals points on E is a finitely generated abelian group. Hence, it is the product of the torsion group and $r \geq 0$ copies of infinite cyclic group:

$$E(\mathbb{Q}) \cong E(\mathbb{Q})_{\mathsf{tors}} \times \mathbb{Z}^r.$$

By Mazur's theorem, we know that $E(\mathbb{Q})_{tors}$ is one of the following 15 groups:

$$\mathbb{Z}/n\mathbb{Z}$$
 with $1 \le n \le 10$ or $n = 12$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2m\mathbb{Z}$ with $1 \le m \le 4$.

On the other hand, it is not know what values of rank r are possible for elliptic curves over \mathbb{Q} . The "folklore" conjecture is that a rank can be arbitrary large, but it seems to be very hard to find examples with large rank. The current record is an example of elliptic curve over \mathbb{Q} with rank \geq 28, found by Elkies in May 2006.

$$y^2 + xy + y = x^3 - x^2 -$$

Independent points of infinite order:

 $P_1 = [-2124150091254381073292137463,259854492051899599030515511070780628911531]$ $P_2 = [2334509866034701756884754537,18872004195494469180868316552803627931531]$ $P_3 = [-1671736054062369063879038663,251709377261144287808506947241319126049131]$ P_4 =[2139130260139156666492982137,36639509171439729202421459692941297527531] $P_5 = [1534706764467120723885477337,85429585346017694289021032862781072799531]$ $P_6 = [-2731079487875677033341575063,262521815484332191641284072623902143387531]$ $P_7 = [2775726266844571649705458537,12845755474014060248869487699082640369931]$ $P_8 = [1494385729327188957541833817,88486605527733405986116494514049233411451]$ $P_9 = [1868438228620887358509065257,59237403214437708712725140393059358589131]$ $P_{10} = [2008945108825743774866542537,47690677880125552882151750781541424711531]$ P_{11} =[2348360540918025169651632937,17492930006200557857340332476448804363531] $P_{12} = [-1472084007090481174470008663,246643450653503714199947441549759798469131]$ $P_{13} = [2924128607708061213363288937,28350264431488878501488356474767375899531]$ $P_{14} = [5374993891066061893293934537,286188908427263386451175031916479893731531]$ $P_{15} = [1709690768233354523334008557,71898834974686089466159700529215980921631]$ $P_{16} = [2450954011353593144072595187,4445228173532634357049262550610714736531]$ P_{17} =[2969254709273559167464674937,32766893075366270801333682543160469687531] $P_{18} = [2711914934941692601332882937,2068436612778381698650413981506590613531]$ $P_{19} = [20078586077996854528778328937,2779608541137806604656051725624624030091531]$ $P_{20} = [2158082450240734774317810697,34994373401964026809969662241800901254731]$ P_{21} =[2004645458247059022403224937,48049329780704645522439866999888475467531] P_{22} =[2975749450947996264947091337,33398989826075322320208934410104857869131] $P_{23} = [-2102490467686285150147347863,259576391459875789571677393171687203227531]$ P_{24} =[311583179915063034902194537,168104385229980603540109472915660153473931] P_{25} =[2773931008341865231443771817,12632162834649921002414116273769275813451] $P_{26} = [2156581188143768409363461387,35125092964022908897004150516375178087331]$ $P_{27} = [3866330499872412508815659137,121197755655944226293036926715025847322531]$ $P_{28} = [2230868289773576023778678737,28558760030597485663387020600768640028531]$

History of elliptic curves rank records:

rank ≥	year	Author(s)
3	1938	Billing
4	1945	Wiman
6	1974	Penney & Pomerance
7	1975	Penney & Pomerance
8	1977	Grunewald & Zimmert
9	1977	Brumer - Kramer
12	1982	Mestre
14	1986	Mestre
15	1992	Mestre
17	1992	Nagao
19	1992	Fermigier
20	1993	Nagao
21	1994	Nagao & Kouya
22	1997	Fermigier
23	1998	Martin & McMillen
24	2000	Martin & McMillen
28	2006	Elkies

http://web.math.hr/~duje/tors/rankhist.html

There is even a stronger conjecture that for any of 15 possible torsion groups T we have $B(T) = \infty$, where

 $B(T) = \sup\{\operatorname{rank}(E(\mathbb{Q})) : \operatorname{torsion} \operatorname{group} \operatorname{of} E \operatorname{over} \mathbb{Q} \text{ is } T\}.$

Montgomery (1987): Proposed the use of elliptic curves with large torsion group and positive rank in factorization.

It follows from results of Montgomery, Suyama, Atkin & Morain (Finding suitable curves for the elliptic curve method of factorization, 1993), that $B(T) \geq 1$ for all torsion groups T.

Womack (2000): $B(T) \ge 2$ for all T

Dujella (2003): B(T) > 3 for all T

$$B(T) = \sup\{\operatorname{rank}(E(\mathbb{Q})) : E(\mathbb{Q})_{\operatorname{tors}} \cong T\}.$$

The best known lower bounds for B(T):

T	$B(T) \geq$	Author(s)
0	28	Elkies (06)
$\mathbb{Z}/2\mathbb{Z}$	19	Elkies (09)
$\mathbb{Z}/3\mathbb{Z}$	13	Eroshkin (07)
$\mathbb{Z}/4\mathbb{Z}$	12	Elkies (06)
$\mathbb{Z}/5\mathbb{Z}$	8	Dujella & Lecacheux (09)
$\mathbb{Z}/6\mathbb{Z}$	8	Eroshkin (08), Dujella & Eroshkin (08),
,		Elkies (08), Dujella (08)
$\mathbb{Z}/7\mathbb{Z}$	5	Dujella & Kulesz (01), Elkies (06)
$\mathbb{Z}/8\mathbb{Z}$	6	Elkies (06)
$\mathbb{Z}/9\mathbb{Z}$	4	Fisher (09)
$\mathbb{Z}/10\mathbb{Z}$	4	Dujella (05), Elkies (06)
$\mathbb{Z}/12\mathbb{Z}$	4	Fisher (08)
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$	15	Elkies (09)
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$	8	Elkies (05), Eroshkin (08),
		Dujella & Eroshkin (08)
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$	6	Elkies (06)
$\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/8\mathbb{Z}$	3	Connell (00), Dujella (00,01,06),
		Campbell & Goins (03), Rathbun (03,06),
		Flores, Jones, Rollick & Weigandt (07), Fisher (09)

http://web.math.hr/~duje/tors/tors.html

Construction of high-rank curves

- 1. Find a parametric family of elliptic curves over \mathbb{Q} which contains curves with relatively high rank (i.e. an elliptic curve over $\mathbb{Q}(t)$ with large generic rank).
- 2. Choose in given family best candidates for higher rank. Genetal idea: a curve is more likely to have large rank if $|E(\mathbb{F}_p)|$ is relatively large for many primes p (Birch and Swinnerton-Dyer conjecture; Meste-Nagao sums).
- 3. Try to compute the rank (Cremona's program MWRANK very good for curves with rational points of order 2), or at least good lower and upper bounds for the rank.

 $G(T) = \sup\{\operatorname{rank} E(\mathbb{Q}(t)) : E(\mathbb{Q}(t))_{\operatorname{tors}} \cong T\}.$

The best known lower bounds for G(T):

T	$B(T) \geq$	Author(s)
0	18	Elkies (2006)
$\mathbb{Z}/2\mathbb{Z}$	11	Elkies (2009)
$\mathbb{Z}/3\mathbb{Z}$	7	Elkies (2007)
$\mathbb{Z}/4\mathbb{Z}$	5	Kihara (2004), Elkies (2007)
$\mathbb{Z}/5\mathbb{Z}$	3 3	Lecacheux (2001), Eroshkin (2009)
$\mathbb{Z}/6\mathbb{Z}$	3	Lecacheux (2001), Kihara (2006),
		Eroshkin (2008), Woo (2008)
$\mathbb{Z}/7\mathbb{Z}$	1	Kulesz (1998), Lecacheux (2003),
		Rabarison (2008), Harrache (2008)
$\mathbb{Z}/8\mathbb{Z}$	1	Kulesz (1998), Lecacheux (2002),
		Rabarison (2008)
$\mathbb{Z}/9\mathbb{Z}$	0	Kubert (1976)
$\mathbb{Z}/10\mathbb{Z}$	0	Kubert (1976
$\mathbb{Z}/12\mathbb{Z}$	0	Kubert (1976)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	7	Elkies (2007)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/4\mathbb{Z}$	3	Lecacheux (2001), Elkies (2007),
		Eroshkin (2008)
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$	1	Kulesz (1998), Campbell (1999),
		Lecacheux (2002), Dujella (2007),
		Rabarison (2008)
$\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/8\mathbb{Z}$	0	Kubert (1976)

http://web.math.hr/~duje/tors/generic.html

Mestre's polynomial method (1991):

Lemma: Let $p(x) \in \mathbb{Q}[x]$ be a monic polynomial and $\deg p = 2n$. Then there exist unique polynomials $q(x), r(x) \in \mathbb{Q}[x]$ such that $p = q^2 - r$ and $\deg r \leq n - 1$.

The polynomial q can be obtained from the asymptotic expansion of \sqrt{p} .

Assume now that $p(x) = \prod_{i=1}^{2n} (x - a_i)$, where a_1, \ldots, a_{2n} are distinct rationals. The curve

$$C: \quad y^2 = r(x)$$

contains the points $(a_i, \pm q(a_i))$, $i=1,\ldots,2n$. If $\deg r=3$ or 4, and r(x) has only simple roots, then C is an elliptic curve. This statement is clear for $\deg r=3$. If $\deg r=4$, we choose one rational point on C (e.g. $(a_1,q(a_1))$) for the points in infinity and transform C into an elliptic curve.

For n=5, almost all choices of a_i 's give $\deg r=4$. Then C has 10 rational points of the form $(a_i,q(a_i))$ and by the mentioned transformation we may expect to obtain an elliptic curve with rank ≥ 9 . Mestre constructed a family of elliptic curves (i.e. a curve over $\mathbb{Q}(t)$) with rank ≥ 11 , by taking n=6 and $a_i=b_i+t$, $i=1,\ldots,6$; $a_i=b_{i-6}-t$, $i=7,\ldots,12$, and by choosing numbers b_1,\ldots,b_6 in such a way that the coefficient with x^5 in r(x) be equal to 0 (e.g. $b_1=-17$, $b_2=-16$, $b_3=10$, $b_4=11$, $b_5=14$, $b_6=17$).

- extended by Mestre, Nagao and Kihara up to rank 14 over $\mathbb{Q}(t)$
- generalized by Fermigier, Kulesz and Lecacheux to curves with nontrivial torsion group
- Elkies (2006): rank 18 over $\mathbb{Q}(t)$ (methods from algebraic geometry)

Upper bounds for the rank:

If E has a rational point of order 2, i.e. an equation of the form $y^2 = x^3 + ax^2 + bx$, by the method of 2-descent, we have

$$r \le \omega(b) + \omega(b') - 1,$$

where $b' = a^2 - 4b$ and $\omega(b)$ denotes the number of distinct prime factors of b.

For curves with nontrivial torsion point, we have the *Mazur's bound*. Let E be given with its minimal Weierstrass equation, and let E has a rational point of prime order p. Then it holds

$$r \le m_p = b + a - m - 1,$$

- b is the number of primes with bad reduction;
- a is the number of primes with additive reduction;
- m is the number of primes q with multiplicative reduction which satisfy that p does not divide the exponent of q in the prime factorization of discriminant Δ and $q \not\equiv 1 \pmod{p}$.

Example (Dujella-Lecacheux): Compute the rank of

$$E: y^2 + y = x^3 + x^2 - 1712371016075117860x + 885787957535691389512940164.$$

Solution: We have

$$\begin{split} \mathit{E}(\mathbb{Q})_{tors} &= \{\mathcal{O}, [888689186, 8116714362487], \\ &[-139719349, -33500922231893], \\ &[-139719349, 33500922231892], \\ &[888689186, -8116714362488]\} \cong \mathbb{Z}_5. \end{split}$$

Let us compute Mazur's bound m_5 :

$$\Delta = -3^{15} \cdot 5^5 \cdot 7^5 \cdot 11^5 \cdot 19^5 \cdot 41^5 \cdot 127^5 \cdot 1409 \cdot 10864429,$$
 so $b = 9$, $a = 0$, $m = 2$, and $r \le m_5 = 6$.

We find the following 6 independent points modulo $E(\mathbb{Q})_{tors}$:

```
[624069446, 7758948474007], [763273511, 4842863582287] \\ [680848091, 5960986525147], [294497588, 20175238652299] \\ [-206499124, 35079702960532], [676477901, 6080971505482],
```

thus proving that rank(E) = 6 (in 2001 that was the highest know rank for curves with torsion $\mathbb{Z}/5\mathbb{Z}$).

High-rank elliptic curves with some other additional properties:

- Mordell curves (j = 0): $y^2 = x^3 + k$, r = 15, Elkies (2009)
- congruent numbers: $y^2 = x^3 n^2x$, r = 7, Rogers (2004)
- curves with j = 1728: $y^2 = x^3 + dx$, r = 14, Elkies & Watkins (2002)
- taxicab problem: $x^3 + y^3 = m$, r = 11, Elkies & Rogers (2004)
- Diophantine triples: $y^2 = (ax + 1)(bx + 1)(cx + 1)$ r = 9, Dujella (2007)
- Diophantine quadruples: $y^2 = (ax+1)(bx+1)(cx+1)(dx+1)$ r=8, Dujella & Gibbs (2000)
- $E(\mathbb{Q}(i))_{tors} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ r = 7, Dujella & Jukić-Bokun

A set $\{a_1, a_2, \ldots, a_m\}$ of m non-zero integers (rationals) is called a *(rational) Diophantine* m-tuple if $a_i \cdot a_j + 1$ is a perfect square for all $1 \le i < j \le m$.

Diophantus of Alexandria: $\left\{ \frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16} \right\}$

Fermat: $\{1, 3, 8, 120\}$

Baker and Davenport (1969): Fermat's set cannot be extended to a Diophantine quintuple.

D. (2004): There does not exist a Diophantine sextuple and there are only finitely many Diophantine quintuples. Let $\{a,b,c\}$ be a (rational) Diophantine triple. Define nonnegative rational numbers q,s,t by

$$ab + 1 = q^2$$
, $ac + 1 = s^2$, $bc + 1 = t^2$.

In order to extend this triple to a quadruple, we have to solve the system

$$ax + 1 = \square$$
, $bx + 1 = \square$, $cx + 1 = \square$.

It is natural idea to assign to this system the elliptic curve

E:
$$y^2 = (ax + 1)(bx + 1)(cx + 1)$$
.

Transformation $x \mapsto \frac{x}{abc}$, $y \mapsto \frac{y}{abc}$ leads to

$$E': y^2 = (x+bc)(x+ac)(x+ab).$$

Three rational points on E' of order 2:

$$T_1 = [-bc, 0], \quad T_2 = [-ac, 0], \quad T_3 = [-ab, 0],$$

and also other obvious rational points

$$P = [0, abc], \quad Q = [1, qst].$$

In general, we may expect that the points P and Q will be two independent points of infinite order, and therefore that $\operatorname{rank} E(\mathbb{Q}) \geq 2$. Thus, assuming various standard conjectures, we may expect that the most of elliptic curves induced by Diophantine triples with the above construction will have the Mordell-Weil group $E(\mathbb{Q})$ isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^2$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^3$.

Question: Which other groups are possible here?

Mazur's theorem: $E(\mathbb{Q})_{tors} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2m\mathbb{Z}$ with m = 1, 2, 3, 4.

D. (2001): If a, b, c are positive integers, then the cases m = 2 and m = 4 are not possible.

For each $1 \le r \le 9$, there exists a Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and the rank equal to r.

$$y^2 = ((k-1)x+1)((k+1)x+1)((16k^3-4k)x+1)$$

generic rank = 2

Meste-Nagao sum:

$$s(N) = \sum_{p \leq N, \ p \ \text{prime}} \frac{|E(\mathbb{F}_p)| + 1 - p}{|E(\mathbb{F}_p)|} \ \log(p)$$

 $s(523) > 22 \& s(1979) > 33 \& Selmer rank <math>\geq 8$

$$k = 3593/2323, r = 9$$

$$y^2 = ((k-1)x+1)(4kx+1)((16k^3-4k)x+1)$$

$$k = -2673/491$$
, $r = 9$

For each $0 \le r \le 7$, there exists a Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ and the rank equal to r.

Curves with torsion $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}$ have the equation of the form

$$y^2 = x(x + \alpha^2)(x + \beta^2), \quad \alpha, \beta \in \mathbb{Q}.$$

Comparison with $y^2 = x(x+ac-ab)(x+bc-ab)$ lead to conditions $ac-ab = \Box$, $bc-ab = \Box$. A simple way to fulfill these conditions is to choose a and b such that ab = -1. Then $ac-ab = ac + 1 = s^2$ and $bc-ab = bc + 1 = t^2$. It remains to find c such that $\{a, -1/a, c\}$ is a Diophantine triple.

Parametric solution:

$$a = \frac{2T+1}{T-2}$$
, $c = \frac{8T}{(2T+1)(T-2)}$.

$$T = 7995/6562, r = 7$$

For each $1 \le r \le 4$, there exists a Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ and the rank equal to r.

General form of curves with the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ is

$$y^2 = (x + \alpha^2)(x + \beta^2) \left(x + \frac{\alpha^2 \beta^2}{(\alpha - \beta)^2} \right).$$

Comparison gives: $\alpha^2+1=bc+1=t^2$, $\beta^2+1=ac+1=s^2$, $\alpha^2\beta^2+(\alpha-\beta)^2=\square$. We have: $\alpha=\frac{2u}{u^2-1}$, $\beta=\frac{v^2-1}{2v}$, and inserting this in third condition we obtain the equation of the form $F(u,v)=z^2$,

Parametric solution: $u = \frac{v^3 + v}{v^2 - 1}$

$$v = 7, [r = 3]$$

$$u = 34/35$$
, $v = 8$, $r = 4$

For each $0 \le r \le 3$, there exists a Diophantine triple $\{a,b,c\}$ such that the elliptic curve $y^2 = (ax+1)(bx+1)(cx+1)$ has the torsion group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ and the rank equal to r.

Every elliptic curve over \mathbb{Q} with torsion group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ is induced by a Diophantine triple (D., Campbell & Goins).

Connell, D. (2000):
$$r = 3$$

$$\left\{ \frac{408}{145}, -\frac{145}{408}, -\frac{145439}{59160} \right\}.$$

D. (2007):
$$r = 3$$
 (4-descent, MAGMA)
$$\left\{ \frac{451352}{974415}, -\frac{974415}{451352}, -\frac{745765964321}{439804159080} \right\}.$$