Lesson 3, week 13, class 25

Juan A Fdez del Pozo (CIG-UPM)

December 2, 2015

Contens

1 IdR

Outline of Contens

Influence Diagrams on R: IdR

Keywords: Machine Learning, Probabilistic Graphical Models, Bayesian Networks, Classification, Decision Making

- Decision making models: Bayesian Networks and Influence Diagrams
- Decision model evaluations
- Analysis and explanations of the results

** An educational package for Probabilistic Graphical Models http://www.dia.fi.upm.es/j̃afernan/research/idr/idr.html http://www.dia.fi.upm.es/j̃afernan/research/idr/IdR_1.0.zip

YARP: Yet Another R Package?

Educational and Research purposes about Probabilistic Graphical Models using the R environment (RGui, lattice, cluster, gat,...)

- Grappa: R functions for probability propagation, http://www.maths.bris.ac.uk/peter/Grappa/
 Peter J. Green
 University of Bristol, UK
- Related R packages
 CRAN Task View: gRaphical Models in R deal, bnlearn, MASTINO,...
- Other Software (not in R):
 GeNIe & SMILE: http://genie.sis.pitt.edu (*)
 Hugin: http://www.hugin.com
 - Elvira: http://www.leo.ugr.es/elvira/

Ace, the Bayesian network compiler: http://reasoning.cs.ucla.edu/ace Mark Chavira and Adnan Darwiche The Automated Reasoning group at UCLA

IdR: an overview

Influence diagrams (ID) and Bayesian network (BN) with discrete random variables as R scripts (pure R):

- Description of the model: graph + probability distributions
- Build the graph and assign the probability distributions
- Learn Bayesian networks from data and simulate data from the model
- Inference: optimal decision policies and marginal distributions
- Mining the results for validation and sensitivity analysis

A. Einstein

"The formulation of a problem is more important than its solution"

IdR, intro

Decision Support

 $\mathsf{Models} \to \mathsf{Evaluation} \to \mathsf{simulation} \to \mathsf{learning} \to \mathsf{queries} \to \mathsf{explantions}$

- Influence Diagram & Bayesian Network Bayes' theorem, Conditional expectation, Expected Utility maximization
- Node definition

Attributes

Arcs and

Probabilistic dependence

Conditional probability tables (CPT's):

Probability distributions (matrix by rows)

R code

```
node < - function( Node=NULL, ## copy
Type=NULL, Name=NULL, Values=NULL, Preds=NULL, Pots=NULL, ## new
Mpot=NULL, Maxszpot=0, EPSILON=1e-25, trz.definition=FALSE)</pre>
```

Main functions...

- node: type, values, links, probabilistic dependences
- influence.diagram (chance, decision and utility variables)
- bayesian.network (chance variables)

Inference functions...

- remarc.eval and remnod.eval ID exact evaluation
- marnod.eval and sample.eval BN exact and approximate inference
- evid.inst queries

Core functions (graph and probability management)...

- check.rr: DAG conditions and other properties (c.c, mady)
- bayes.i, bayes.j implementation of Bayes rule
- conditional.expectation combine utilities and uncertainty
- max.utility define the optimal decision policy on every scenario

Bayesian network definition and evaluation: Asia

A "hello world" bayesian network

IdR, bn

```
## Bayesian Network, 31-07-10
asia = list(
VisitToAsia = node( Type = "CHANCE", Name = "VisitToAsia", Values =
c("NoVisit","Visit"), Preds = c(),
Pots = matrix( data = c(
0.99, 0.01),
nrow=1,ncol=2,byrow=TRUE,dimnames=NULL)),
Smoking = node( Type = "CHANCE", Name = "Smoking", Values =
c("NonSmoker","Smoker"), Preds = c(),
Pots=matrix(data = c(
0.50, 0.50),
nrow=1,ncol=2,byrow=TRUE,dimnames=NULL)),
```

```
Tuberculosis = node( Type = "CHANCE", Name = "Tuberculosis",
Values=c("ABSENT","PRESENT"), Preds=c("VisitToAsia"),
Pots=matrix( data = c(
0.99, 0.01,
0.95, 0.05).
nrow = 2, ncol = 2, byrow = TRUE, dimnames = NULL)),
LungCancer = node( Type = "CHANCE", Name = "LungCancer",
Values=c("ABSENT","PRESENT"), Preds=c("Smoking"),
Pots=matrix( data = c(
0.99, 0.01,
0.90, 0.10),
nrow = 2, ncol = 2, byrow = TRUE, dimnames = NULL)),
```

IdR, bn

```
Bronchitis = node( Type = "CHANCE", Name = "Bronchitis",
Values=c("ABSENT","PRESENT"), Preds=c("Smoking"),
Pots=matrix( data = c(
0.70, 0.30,
0.40, 0.60).
nrow = 2, ncol = 2, byrow = TRUE, dimnames = NULL)).
TbOrCa = node( Type = "CHANCE", Name = "TbOrCa",
Values=c("None", "Sick"), Preds=c("Tuberculosis", "LungCancer"),
Pots=matrix( data = c(
1.0, 0.0,
0.0, 1.0,
0.0, 1.0,
0.0, 1.0),
nrow = 4, ncol = 2, byrow = TRUE, dimnames = NULL)),
```

IdR, bn

```
XRay = node(Type = "CHANCE", Name = "XRay",
Values=c("NORMAL","ABNORMAL"), Preds=c("TbOrCa"),
Pots=matrix( data = c(
0.95, 0.05,
0.02, 0.98).
nrow = 2, ncol = 2, byrow = TRUE, dimnames = NULL)).
Dyspnea = node( Type = "CHANCE", Name = "Dyspnea",
Values=c("ABSENT","PRESENT"), Preds=c("TbOrCa","Bronchitis"),
Pots=matrix( data = c(
0.90, 0.10,
0.20, 0.80,
0.30, 0.70,
0.10, 0.90).
nrow = 4, ncol = 2, byrow = TRUE, dimnames = NULL))
cat( "Bayesian network – asia: ", names(asia)," n")
```

Bayesian network definition and evaluation: Asia

BN represents the joint probability distribution over all variables using the chain rule and the independences expressed by the graph

Node definition

```
\begin{split} & Bronchitis = node( \ Type = "CHANCE", \ Name = "Bronchitis", \\ & Values = c("ABSENT", "PRESENT"), \ Preds = c("Smoking"), \\ & Pots = matrix( \ data = c( \ 0.70, \ 0.30, \ 0.40, \ 0.60), \\ & nrow = 2, \ ncol = 2, \ byrow = TRUE, \ dimnames = NULL)), \end{split}
```

Reference

This is an example of graphical model useful in demonstrating basic concepts of Bayesian networks in diagnosis. Lauritzen, Steffen L. & Spiegelhalter, David J. (1988). Local computations with probabilities on graphical structures and their application to expert systems, Journal of the Royal Statistical Society B, 50(2):157-224.

IdR, bn

Bayesian network definition and evaluation: Asia

> summary.network(asia, verbose=TRUE)

Network summary: netname, Nodes: 8

Arcs: 8, Max preds: 2, Max succs: 2

Node	grade	complexity	Predecessor
VisitToAsia	0	2	
Smoking	0	2	
Tuberculosis	1	4	VisitToAsia
LungCancer	1	4	Smoking
Bronchitis	1	4	Smoking
TbOrCa	2	8	Tuberculosis LungCancer
XRay	1	4	TbOrCa
Dyspnea	2	8	TbOrCa Bronchitis

Bayesian network definition and evaluation: Asia

> summary.network(asia, verbose=TRUE)

Network summary: netname, Nodes: 8

Arcs: 8, Max preds: 2, Max succs: 2

		1	2	3	4	5	6	7	8
1	VisitToAsia	0	0	1	0	0	0	0	0
2	Smoking	0	0	0	1	1	0	0	0
3	Tuberculosis	0	0	0	0	0	1	0	0
4	LungCancer	0	0	0	0	0	1	0	0
5	Bronchitis	0	0	0	0	0	0	0	1
6	TbOrCa	0	0	0	0	0	0	1	1
7 6XRay	0	0	0	0	0	0	0	0	
8	Dyspnea	0	0	0	0	0	0	0	0

Maxszpot: 18

TOTAL COMPLEX: 36 MAX COMPLEX: 8

Bayesian network definition and evaluation: Asia

> summary.network(marnod.eval(asia), verbose=TRUE)

Network summary: netname, Nodes: 8

Arcs: 18, Max preds: 5, Max succs: 5

	•		
Node	grade	complexity	Predecessor
VisitToAsia	1	4	Tuberculosis
Smoking	2	8	LungCancer Bronchitis
Tuberculosis	4	32	Bronchitis XRay Dyspnea TbOrCa
LungCancer	5	64	Tuberculosis Bronchitis
			XRay Dyspnea TbOrCa
Bronchitis	3	16	XRay Dyspnea TbOrCa
TbOrCa	0	2	
XRay	2	8	Dyspnea TbOrCa
Dyspnea	1	4	TbOrCa

Bayesian network definition and evaluation: Asia

> summary.network(asia, verbose=TRUE)

Network summary: netname, Nodes: 8

Arcs: 8, Max preds: 2, Max succs: 2

		1	2	3	4	5	6	7	8
1	VisitToAsia	0	0	0	0	0	0	0	0
2	Smoking	0	0	0	0	0	0	0	0
3	Tuberculosis	1	0	0	1	0	0	0	0
4	LungCancer	0	1	0	0	0	0	0	0
5	Bronchitis	0	1	1	1	0	0	0	0
6	TbOrCa	0	0	1	1	1	0	1	1
7	XRay	0	0	1	1	1	0	0	0
8	Dyspnea	0	0	1	1	1	0	1	0

Maxszpot: 114

TOTAL COMPLEX: 138 MAX COMPLEX: 64

Bayesian network definition and evaluation: Asia

Approximate sampling evaluation

> B j- samnod.eval(asia)

Network summary: netname, Nodes: 8

Arcs: 8, Max preds: 2, Max succs: 2, Maxszpot: 18

TOTAL COMPLEX: 36, MAX COMPLEX: 8 SAMPLE EVALUATION: netname, size: 36

mpd: 0.9897 0.0103 Node: VisitToAsia

• mpd: 0.4994 0.5006 Node: Smoking

mpd: 0.9897 0.0103 Node: Tuberculosis

mpd: 0.9478 0.0522 Node: LungCancer

mpd: 0.5444 0.4556 Node: Bronchitis

mpd: 0.9381 0.0619 Node: TbOrCa

mpd: 0.1050 0.8950 Node: XRay

mpd: 0.6050 0.3905 Node: Dyspnea

Bayesian network definition and evaluation: Asia

Marginal distribution

IdR, bn

Bayesian network definition and evaluation: Asia

Exact marginalization

- 0.99 0.01 ::-n-:: VisitToAsia ----- NoVisit Visit ::-p-:: Tuberculosis
- 0.50 0.50 ::-n-:: Smoking ——- NonSmoker Smoker ::-p-:: LungCancer Bronchitis
- 0.989 0.0104 ::-n-:: Tuberculosis ——- ABSENT PRESENT ::-p-:: Bronchitis XRay Dyspnea TbOrCa
- 0.945 0.0550 ::-n-:: LungCancer ——- ABSENT PRESENT ::-p-:: Tuberculosis Bronchitis XRay Dyspnea TbOrCa
- 0.550 0.450 ::-n-:: Bronchitis ——- ABSENT PRESENT ::-p-:: XRay Dyspnea TbOrCa
- 0.946 0.054 ::-n-:: TbOrCa ----- None Sick ::-p-::
- 0.901 0.099 ::-n-:: XRay ------ NORMAL ABNORMAL ::-p-:: Dyspnea TbOrCa
- 0.528 0.471 ::-n-:: Dyspnea ----- ABSENT PRESENT ::-p-:: TbOrCa

Influence diagram definition and evaluation: ByPass

ID represents a decision process under uncertainty with a decision sequence and preferences (utility) over the results

Node types: decision, chance and utility; Arc types: informative and conditional; Regular ID: oriented, no cycles, defined decision sequence; Normalized ID: normalized potentials and normalized utility function

Influence diagram **definition** and evaluation: ByPass

```
## Influence Diagram 03-09-08
bypass = list(
PAIN = node( Type = "CHANCE", Name = "PAIN", Values =
c("ABSENT","PRESENT"), Preds = c("HEARTDISEASE"),
Pots = matrix( data = c(0.80, 0.20, 0.70, 0.30),
nrow = 2, ncol = 2, byrow = TRUE, dimnames = NULL)),
ANGIOGRAM = node(Type = "CHANCE", Name = "ANGIOGRAM", Values =
c("NEGATIVE","POSITIVE"), Preds = c("HEARTDISEASE"),
Pots = matrix( data = c(0.95, 0.05, 0.15, 0.85),
nrow = 2, ncol = 2, byrow = TRUE, dimnames = NULL)),
HEARTSURGERY = node( Type = "DECISION", Name = "HEARTSURGERY",
Values = c("NO", "YES"), Preds=c("PAIN", "ANGIOGRAM"),
Pots = matrix( data = c(1.0), dimnames = list("phase", "HEARTSURGERY"))),
```

Graphical Models for Decision Making

Influence diagram definition and evaluation: ByPass

```
HEARTDISEASE = node(Type="CHANCE", Name = "HEARTDISEASE",
Values=c("ABSENT","PRESENT"), Preds = c(),
Pots = matrix( data = c(0.85, 0.15),
nrow = 1,ncol = 2,byrow = TRUE,dimnames = NULL)),
LIFEQ = node(Type="CHANCE", Name = "LIFEQ", Values =
c("DEAD", "LIVE2ALQ", "LIVE2AHQ"), Preds =
c("HEARTDISEASE","HEARTSURGERY"),
Pots = matrix( data = c(0.02, 0.08, 0.90, 0.09, 0.29, 0.62, 0.15, 0.30, 0.55, 0.17,
0.23, 0.60),
nrow = 4, ncol = 3, byrow = TRUE, dimnames = NULL)),
ECONOMICALC = node(Type="CHANCE", Name = "ECONOMICALC",
Values = c("LOW", "MEDIUM", "HIGH"), Preds = c("HEARTSURGERY"),
Pots = matrix( data = c(0.70, 0.25, 0.05, 0.05, 0.35, 0.60),
nrow=2,ncol=3,byrow=TRUE,dimnames=NULL)),
```

4 D > 4 A > 4 B > 4

Influence diagram definition and evaluation: ByPass

```
\begin{split} & \mathsf{UTILITY} = \mathsf{node}(\mathsf{Type} = \mathsf{"UTILITY"}, \, \mathsf{Name} = \mathsf{"UTILITY"}, \, \mathsf{Values} = \mathsf{c}(0.0, 1.0), \\ & \mathsf{Preds} = \mathsf{c}(\mathsf{"LIFEQ"}, \mathsf{"ECONOMICALC"}), \\ & \mathsf{Pots} = \mathsf{matrix}( \, \mathsf{data} = \mathsf{c}(1.0, \, 0.90, \, 0.70, \, 0.80, \, 0.50, \, 0.10, \, 1.40, \, 1.50, \, 1.80), \\ & \mathsf{nrow} = \mathsf{9}, \mathsf{ncol} = \mathsf{1}, \mathsf{byrow} = \mathsf{TRUE}, \mathsf{dimnames} = \mathsf{list}( \, \mathsf{NULL}, \, \mathsf{c}(\mathsf{"UTILITY"})))) \\ & \mathsf{cat}( \, \mathsf{"Influence \, Diagram - bypass: \, ", \, \mathsf{names}(\mathsf{bypass}), "n") \end{split}
```

Influence diagram definition and evaluation: ByPass

Code for decision and utility nodes

- HEARTSURGERY = node(Type = "DECISION", Name = "HEARTSURGERY", Values=c("NO","YES"),
 Preds=c("PAIN","ANGIOGRAM"), Pots=matrix(data = c(1.0), dimnames = list("phase","SURGERY"))),
- UTILITY = node(Type="UTILITY", Name="UTILITY", Values=c(0.0,1.0), Preds=c("LIFEQ","ECONOMICALC"), Pots=matrix(data=c(1.0, 0.90, 0.70, 0.80, 0.50, 0.10, 1.40, 1.50, 1.80), nrow=9,ncol=1,byrow=TRUE, dimnames=list(NULL, c("UTILITY"))))

IdR, id

Influence diagram definition and evaluation: ByPass Evaluation output is an optimal decision table for every decision **HEARTSURGERY** :Decision: UTILITY < PAIN ANGIOGRAM HEARTSURGERY > ;Preds utility node: File: dec-HEARTSURGERY: S: 10 HEARTSURGERY 2: NO YES; Val: Att: 200 PAIN 2: Val: ABSENT PRESENT: Att: 300 ANGIOGRAM 2: Val· **NEGATIVE POSITIVE:** Att: 400 SURGERY 2: Val: NO YES:

Influence diagram definition and evaluation: ByPass

Evaluation output is an optimal decision table for every decision

Max utility in bold font

PAIN	ANGIOGRAM	SURGERY	Utility
ABSENT	NEGATIVE	\rightarrow NO	0.74673
ABSENT	NEGATIVE	YES	0.64070
ABSENT	POSITIVE	\rightarrow NO	0.65233
ABSENT	POSITIVE	YES	0.64598
PRESENT	NEGATIVE	\rightarrow NO	0.74453
PRESENT	NEGATIVE	YES	0.64083
PRESENT	POSITIVE	NO	0.63965
PRESENT	POSITIVE	\rightarrow YES	0.64668

Influence diagram definition and evaluation: ByPass

Evaluation output is an optimal decision table for every decision Optimal policy (Rules):

Pain Absent & Angiogram Negative then Surgery No

Pain Absent & Angiogram Positive then Surgery No

Pain Present & Angiogram Negative then Surgery No

Pain Present & Angiogram Positive then Surgery Yes

Influence diagram definition and evaluation: ByPass; explanation

KBM2L: Kowledge Base Matrix to List

Fernandez del Pozo, J. A., C. Bielza, and M. Gómez, "A List-Based Compact Representation for Large Decision Tables Management", European Journal of Operational Research, vol. 160, no. 3, pp. 638-662, 2005.

PAIN	ANGIOGRAM	SURGERY	Utility
ABSENT	NEGATIVE	NO	0.746733
ABSENT	NEGATIVE	YES	0.640708
ABSENT	POSITIVE	NO	0.652331
ABSENT	POSITIVE	YES	0.645981
PRESENT	NEGATIVE	NO	0.744533
PRESENT	NEGATIVE	YES	0.640831
PRESENT	POSITIVE	NO	0.639655
PRESENT	POSITIVE	YES	0.646689
PRESENT		YES	

Table - Multidimensional Matrix

Influence diagram definition and evaluation: ByPass; explanation

KBM2L: Kowledge Base Matrix to List

Bielza, C., J. A. Fernandez del Pozo, and P. Lucas, "Explaining Clinical Decisions by Extracting Regularity Patterns", Decision Support Systems

- KBM2L:
 - < (Present, Negative), No|< (Present, Positive), Yes|
- Explanation:
 - Surgery No < (Pain Absent) OR (Angiogram Negative)
 - Sugery Yes < (Pain Present) AND (Angiogram Positive)
- The best explanation is available using the most concise list; How?
 Searching the proper permutation of the attibutes (and domains) on the table! Also useful for conditional probability tables.

IdR, Ibn

Learning Bayesian Networks

- Learning a marginal / naive / generic Bayesian network model for Classification
- Structure learning and probability model estimation

Ibn function code:

function (filename, tab0, nettype = "mbayes", noise = NULL, class.name = NULL, maxnode.input = -1, laplace.correction = FALSE, time.out = 300, trz.probability = FALSE)

Simulating Bayesian Networks

- Simulating a data set from the model for Inference
- Sampling the model P(abcd) = P(a)P(d)P(b|a)P(c|b)

sbn function code:

function (bn.file, tab0, ssz = N, nettype = "xbayes", class.name = NULL, trz.probability = FALSE)

35 / 37

Future lines of research

- More general decision networks (continuous variables, several utility nodes, non sequential decision nodes,...)
- Alternatives to the (large) conditional probability tables (linear models) and utility tables (multiattribute utility functions)
- ullet Implementation of an R package for KBM2L (java) o KBMR
- Evaluation and learning algorithms from data
- Complex queries, MPE, MAP
 Fernandez del Pozo, J. A., and C. Bielza, "Dealing with Complex Queries in Decision Support Systems", Data & Knowledge Engineering, vol. 70, pp. 167-181, 2011
- We are interesting on paralell evaluation of huge models, using packages like snow, i.e. very large decision sequences

¿Remarks and Questions?

IDA 2015 12/01/2015, CIG