CS & IT ENGINEERING

Compiler Design

Syntax Directed Translation

Lecture No.

By- DEVA Sir

TOPICS TO BE COVERED

Review

SDT 9

Attributes ?

Definitions ?

Compiler phases Language Translation

Lexical Analysis

Symbol Table, Tokens

Loxical Exxors

Functionality

Syntax Analysis:

Ambiguous & unamb CFG
Elimination of Left Rocursion
Left fortoing, FIRST & Follow SET
LL(1) CFG, LL(1) Table, LMD/Algo
LR CFG, LR Table, Reversely Romandon
Operator procedence

Court | Court

Syntax Directed Translation:


```
> It can be used anywhere in Translation
It can be used to perform semantic Analysis
It can be used to produce Intermedate code
In It can be used to evaluate expressions
I It can be used to convert one form of exp to other
Li It can be used to translate one number system to oker
```


SDT Vs Semantic Analysis

-all functionalities - Type chocking

of Semantic Analysis

- any other functionality - Declaration of variables

Function Compatibility

Semantic corot declared void main() int X=10; THE entr is blank in symbol table

		1:12	NISC	
L	idi	3,4	injutio	
y	182	4		
		•		

Pw

Pw

Plinker Error resolved

Pris not resolved

main()

also do impició convertions Semantic Exory Some Compilers

char chi,

Write => character => Lexical

See => Structure => Syntan

think => Semantic

Words

Syntax) eye

23

Semantic & Minderstand (Interpretation)

Syntax Directed Translation

SDT:

Syntax + Translation

$$E \rightarrow E_1 + E_2 G E_2 = E_1 \times E_2 \times E_3 \times E_4 \times$$

Pw

$S \rightarrow AaB$

Left sibling of B

S is parent for A, a, B

A is child of S, Left sibling of a and B a is child of S, Right sibling of A

B is child of S.
Right sibling of A4a.

Parent Child Sibling , Right

Attributes

- 1 Inherited Attribute
- 2) Synthesited Attoibute

Attribute value at any node

computed based on parent

orland siblings.

 $S \rightarrow AB = \{(S.y \text{ or } A.z)\}$

ox is inharited

(2) Syntkerited Attorbute

Inherited Attobute

LHS-RHS

computation happens on RHS Side symbols

Syntherited Attobake

LHS—> RHS

computation

tappem on

LHS sile

Symbol

not synthetited

(1) 1. D-> T(L) {L.type=T.type} type is -{2. Tint} f T. type = float } 3. T- float of Litype = Litype; *L- L, id Addry Pe (id. entrs, L. type) is. L- id of Add Type (it. entry, L. type)

type entry

In production 3, type is syntaxed stribute.

In SDT, type is reliked mor Attribute.

 $E \rightarrow E_1 + E_2 \quad \begin{cases} E_1 \cdot x = E_2 \cdot y ; E_1 \cdot x + 2 \end{cases}$ E, * Fz { E2. Y=E1. X+3; E.Y=E2. Y*2} E -> id { E.x=id.val+1; E.y=id.val*3} Is reiter inherited nor synterited

Attoibute y is Neither inherited nor syntherists
Attable te

E -> AB & Foint (D.X) A) -> a (A.x) = a.num; Print (a.num)} B-7 b {B.y=100} Is reiter inherital nor synterial

y is your choice

B-7 b {B-y=100} Independent Computation

I is writer inherital nor synterial

y is syntherited

Summary

SDT

-> SDT

-> Attaibuter

-> Next: Definitions of SDT

-> C-attaibuted SDT

