Optimización Aplicada a Sistemas de Potencia

Oscar Carreño mauricio.carreno@udea.edu.co

Ingeniería Eléctrica Universidad de Antioquia 2020

El profe

- Hijo de Emma y Ray (R.I.P)
- Ingeniero Electricista UdeA (1998)
- Músico de corazón (Punk Rocker).
- Esposo de Carolina
- Padre de Pocho (filósofo-los primos) y Juanita (doctora)
- Me encantan los deportes
- Emprendedor Rightside

Leonhard Euler: 1736

The Königsberg Bridges Problem (briefly KBP):

Is it possible for a pedestrian to walk across all seven bridges in Königsberg without crossing any bridge twice?

Leonhard Euler: 1736

The Königsberg Bridges Problem (briefly KBP):

Is it possible for a pedestrian to walk across all seven bridges in Königsberg without crossing any bridge twice?

El Problema solo tiene solución si cada nodo tiene un número par de arcos asociado.

A1-B3-C6-D7-A5-C4-B2

Propósito

- Abordar de forma teórica y práctica, los problemas asociados al sector eléctrico.
- Motivar a los estudiantes en el conocimiento de la investigación de operaciones.

Justificación

El sector eléctrico en Colombia se encuentra en camino hacia la transición energética que incluye entre otras, el uso de generación limpia y la participación de la demanda. Esto genera nuevos retos para todos los actores del sector, y hace necesario el uso del estado del arte en algoritmos de programación matemática, para procesar gran cantidad de información y usarla para tomar decisiones en todos los horizontes de planeación.

Objetivo

- Guiar a los estudiantes en las bases teóricas del funcionamiento del mercado eléctrico colombiano.
- Guiar a los estudiantes en el aprendizaje del lenguaje Python y la librería de optimización Pyomo.
- · Simular procesos reales relacionados con la transición energética

Programa

- Introducción al mercado eléctrico colombiano (4 h) Teórica
- Introducción a Python-Pyomo (4h) Práctica
- Características del Sistema Interconectado Nacional -SIN (4h) –
 Teórica
- Teoría de optimización lineal. (8h) Teórica
- Teoría de subastas. (8h) Teórica
- Programación de subastas de sobre cerrado. (4h) Práctica
- Programación de subastas de dos puntas. (4h) Práctica
- Modelos de planeación energética. (8h) Teórica
- Programación del despacho económico. (4h) Práctica
- Programación de un despacho hidrotérmico. (4h) -Práctica
- Retos de la Transición energética en Colombia. (4h) Teórica
- Programación de modelos intradiarios. (8h) Práctica

Evaluación

- 1. Parcial 20 % **22 octubre**
- 2. Final 25 % **Enero 2021**
- 3. Talleres prácticos python 25 % (individual) Durante todo el curso (4-6)
- 4. Artículo técnico 25 % (grupos de 4) 15 y 17 diciembre
 - Formato IEEE Resumen, palabras claves, introducción, modelo matemático, pruebas y resultados, conclusiones, bibliografía (al menos 2 referencias).
 - · Resumen en Inglés.
 - Presentación (15 minutos).
- 5. 5% Video individual de 2 minutos en Youtube. Tutorial de Pyomo (individual)

Bibliografía

- 1. BAZARAA M., JARVIS J. Programación lineal y flujo en redes
- 2. L. A. WOLSEY. Integer Programming.
- 3. Revista IEEE Transactions on Power Systems https://ieeexplore.ieee.org/
- 4. A. J. Wood and B. F. Wollenberg. Power Generation, Operation and Control.
- 5. Páginas CREG, UPME, XM.
- 6. http://www.pyomo.org/
- 7. Notas de clase. https://github.com/rightsidesas/claseUDEA

Requisito durante virtualidad

Para el curso el estudiante debe disponer de un computador, preferiblemente Windows y deberá instalar el software Python con la librería de optimización Pyomo y el software de optimización CBC. Además, el ambiente de desarrollo Visual Studio Code. Todas estas herramientas de software están disponibles de forma gratuita en internet.

POWER SYSTEMS

IEEE POWER & ENERGY SOCIETY

SEPTEMBER 2020

VOLUME 35

NUMBER 5

ITPSEG

(ISSN 0885-8950)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9170931

Buscar en el índice de la revista la palabra opt

Optimización Aplicada a Sistemas de Potencia

2

Universidad de Antioquia-2020

Introducción Al Mercado Eléctrico Colombiano

Cadena Eléctrica

Frecuencia

59.8 - **60 Hz** - 60.2

Voltaje

$$0.9 - 1 p.u - 1.1 (1.05)$$

Fuente P. Kundur Power system stability and control

Introducción a la Investigación de Operaciones

Mejor Camino Entre A-F

Los números en los arcos representan costos o distancia

Mejor Camino Entre A-Z

Toma de Decisiones

- Una "Buena" Decisión La Puede Tomar Cualquiera, Bien Sea Por El Azar O Por Intuición.
- La Finalidad De Los Métodos Para Toma De Decisiones Es Servir De Soporte. (Información)
- Los Métodos Pueden Ser Cualitativos O Cuantitativos.
 Exactos O Aproximados, Determinísticos O Estocásticos,
 Lineales O No-lineales.
- El Desarrollo De Los Computadores Impondrán La "Fuerza Bruta" Sobre Cualquier Método Sofisticado. ¿Cuándo?

Historia

- George B. Dantzig 1947
- Programa De Despliegue Y Logístico Para La Fuerza Aérea De EU
- Programación En Una Estructura Lineal >> Programación Lineal 1948
- 1949 Método Simplex
- ¿Pero Si El Mundo Es No Lineal? Richard Bellman
 - Programación Dinámica 1953

Problemas Típicos

- Problema De La Dieta
- Problema Del Agente Viajero
- Problema De Ruta Mas Corta
- Problema De Knapsack
- Problema De Patrones De Corte
- Problema De Planeación De La Producción
- Despacho Económico
- Despacho Hidrotérmico
- Flujo De Potencia Óptimo

Programación Dinámica

- Principio De Bellman: La Decisión Óptima Inmediata, Solo Depende Del Estado Actual, No De Cómo Se Llegó Hasta Él.
- Surge Por La Necesidad De Disponer De Un Algoritmo Más Sencillo Que El Simplex. (Computadores De La Época)
- Permite Solucionar Problemas No Lineales.
- Es Un Algoritmo Tipo Ascendente. Usa La Solución De Problemas Pequeños (Tablas) Para Encontrar La Solución Del Problema Completo.
- El Problema Debe Tener Una Estructura Especial En Donde Se Tomen Decisiones En Etapas Sucesivas.
- No Tiene Una Forma Estándar. Cada Problema Es Abordado De Forma Diferente.

Heurísticas

- Surgen Ante La Imposibilidad De Solucionar Problemas Complejos Con Métodos Exactos
- Son Algoritmos Basados En El Conocimiento Del Problema Y En Reglas Que Obedecen Mas A La Observación Y Experimentación Que A La Demostración Matemática.
- No Aseguran Un Óptimo. Velocidad Vs Precisión.
- Son De Baja Complejidad.
- Criterios De Parada.

Heurísticas

- Tabú Search
- Algoritmos Genéticos
- Enfriamiento Simulado
- Colonia De Hormigas
- Scatter Search
- Inteligencia Artificial

Programación Lineal

3

Representación estándar

$$\min | \max \rightarrow c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$

$$x_{1}, x_{2}, \dots x_{n} \ge 0$$

Representación estándar

$$x_1 + x_2 = 6$$

$$-x_1 + 2x_2 = 8$$

- Encontrar la solución del sistema de ecuaciones
- Graficar las ecuaciones y la solución

Solución geométrica

Sistema de inecuaciones

$$x_1 + x_2 \le 6$$

$$-x_1 + 2x_2 \le 8$$

- Encontrar la solución del sistema de ecuaciones
- Graficar las ecuaciones y la solución

Sistema de inecuaciones

$$x_1 + x_2 \le 6$$

$$-x_1 + 2x_2 \le 8$$

$$x_1 \ge 0, x_2 \ge 0$$

- Encontrar la solución del sistema de ecuaciones
- Graficar las ecuaciones y la solución

Solución geométrica

Problema de programación lineal

$$min - x_1 - 3x_2$$
 Función objetivo

S. a

$$x_1 + x_2 \le 6$$

Restricciones

$$-x_1 + 2x_2 \le 8$$

$$x_1 \ge 0, x_2 \ge 0$$

Graficar las ecuaciones y la solución

Solución geométrica

$$min - x_1 - 3x_2$$

$$x_1 + x_2 \le 6$$

$$-x_1 + 2x_2 \le 8$$

$$x_1 \ge 0, x_2 \ge 0$$

Solución geométrica

Infinitas soluciones

Solución no acotada

Convertir a forma estándar

$$x_1 + x_2 \le 6$$
 \longrightarrow $x_1 + x_2 + h = 6$
 $x_1 + x_2 \ge 8$ \longrightarrow $x_1 + x_2 - e = 8$

$$x_1 \ge 0$$
, $x_2 \ge 0$, $h \ge 0$, $e \ge 0$

Convertir a forma estándar

$$\max(x) \implies \min(-x)$$

¿Cómo convertir variables no acotadas en variables positivas?

Problema de la mochila

variable	Peso	Valor
x1	5	8
x 2	7	3
x 3	4	6
x4	3	11

$$pesoMax = 14$$

$$\max 8x_1 + 3x_2 + 6x_3 + 11x_4$$

s.a

$$5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$$

$$x_1 \ge 0, x_2 \ge 0$$

¿Qué diferencia hay entre este problema y el resuelto en el taller cero?

Forma matricial

Forma matricial

$$\max \sum_{i=1}^{4} VALOR_i \cdot x_i$$

$$\sum_{i=1}^{4} PESO_i \cdot x_i \le 14$$

$$x_i \ge 0 \quad \forall i$$

Problema de la mochila

Forma algebraica

$$\min/\max \sum_{i=1}^{n} \sum_{j=1}^{m} C_{i,j} \cdot x_{i,j}$$

$$\sum_{i=1}^{n} A_{i,j} \cdot x_{i,j} \le B_{j} \quad \forall_{j}$$

$$x_{i,j} \ge 0 \quad \forall i, j$$

Forma algebraica

$$\max \sum_{i=1}^{4} VALOR_i \cdot x_i$$

$$\sum_{i=1}^{4} PESO_i \cdot x_i \le 14$$
$$x_i \ge 0 \quad \forall i$$

Problema de la mochila

Pasos iteración simplex

- 1. Convertir el problema a la forma estándar
- 2. Elegir una solución que cumpla las restricciones (factible)
- 3. Validar si es la solución óptima. (Costo reducido)
- 4. Elegir que variable entra y que variable sale
- 5. Encontrar el valor de las variables de decisión y validar si es factible

Ejemplo simplex

Introduction to Linear Optimization

Dimitris Bertsimas John N. Tsitsiklis

Example 3.1 Consider the linear programming problem

minimize
$$c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$$

subject to $x_1 + x_2 + x_3 + x_4 = 2$
 $2x_1 + 3x_3 + 4x_4 = 2$
 $x_1, x_2, x_3, x_4 \ge 0$.

The first two columns of the matrix **A** are $\mathbf{A}_1 = (1,2)$ and $\mathbf{A}_2 = (1,0)$. Since they are linearly independent, we can choose x_1 and x_2 as our basic variables. The corresponding basis matrix is

$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}.$$

Ejemplo simplex

Introduction to Linear Optimization

Dimitris Bertsimas John N. Tsitsiklis

We set $x_3 = x_4 = 0$, and solve for x_1 , x_2 , to obtain $x_1 = 1$ and $x_2 = 1$.

reduced cost \overline{c}_3 of the nonbasic variable x_3 was found to be $-3c_1/2 + c_2/2 + c_3$.

$$\overline{c}_j = c_j - \mathbf{c}_B' \mathbf{B}^{-1} \mathbf{A}_j.$$

Suppose that c = (2, 0, 0, 0), in which case, we have $\overline{c}_3 = -3$.

Problema lineal Entera

$$\max \to x_1 + 0.64 x_2$$
s.a
$$50x_1 + 31x_2 \le 250$$

$$3x_1 - 2x_2 \ge -4$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in Z$$

Branch and Bound

$$\max \to 8x_1 + 11x_2 + 6x_3 + 4x_4$$
s.a
$$5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$$

$$x_1, x_2, x_3, x_4 \in \{0,1\}$$

 $\max \rightarrow 8x_1 + 11x_2 + 6x_3 + 4x_4$

s.a

Branch and Bound

Pasos para implementar una herramienta de optimización

- 1. Entender el Problema.
- Identificar el objetivo. Definir si hay o no un problema de optimización.
- 3. Identificar variables de decisión.
- 4. Definir subíndices y conjuntos.
- 5. Definir Datos de entrada.
- Definir función objetivo y restricciones.
- 7. Escribir el modelo en un software de programación algebraica. (Prototipo)
- 8. Solucionar el problema con un optimizador y validar resultados.
- 9. Implementar software de usuario final. (industrial)