Assignment 1

First, type your name in the code cell below and run the cell.

> Full Name

Name: " Edem Faith Dotse

Show code

Name: Edem Faith Dotse

Directions & Business Case:

Directions

In this assignment, you will perform preprocessing and EDA classification.

Include your code and any required written responses immediately under the relevant question prompt in the space provided.

You will include your answers in this .ipynb template notebook in the space provided under the numbered questions below. Under the numbered questions there is either a code cell or text cell provided for your response.

There are 3 deliverables for this assignment:

- 1. *The link to your Google Colab notebook file*: Submit the link to your notebook file. To do so, click **Share** on the top right-hand side. Then a box will pop-up. You need to change "restricted" to "anyone with the link." Then, copy the link and paste it as a comment when submitting the assignment on Canvas.
- 2. *The IPYNB notebook file*: Download the same file as ipynb. To do so, Go to File, select **Download**. Then Click on **ipynb** on the menu box.
- 3. The PDF version of your notebook file: Download the same file as pdf. To do so, Go to File, select Print, A menu box will pop up. Then Click on PDF on the menu box. This will convert the file into a PDF file, instead of printing it using a printer.

All written responses must be in your own words. If using Al in any capacity to aid with written responses to assignment question prompts, there is 1 additional required deliverable for the assignment.

1. A PDF of all AI prompts and responses used: Submit this information aggregated as a PDF.

If this is not included and responses appear to be AI generated you will receive a 0 for the assignment. If this is included and your written responses are plagiarized, you will receive a 0 for the assignment.

Rename this template file - LastnameFirstname_A#.ipynb, where # is the assignment number. As an example, my Assignment #1 would be named HillChelsey_A1.ipynb. Your .pdf file should follow the same file naming format (for example, my Assignment #1 .pdf file would be named HillChelsey_A1.pdf).

Note: Points will be deducted for extraneous code in the submissions, inefficient code, incorrect file naming, and if your answers are not in the space provided for answers.

Business Case

You work for an analytics consulting firm hired by Southwest Airlines. You are given a dataset for airline routes and are tasked with preprocessing and exploring the data.

A basic description of variables in the <u>Airfares2.csv</u> dataset is below:

Variable	Description
S_CODE	starting airport code
S_CITY	starting airport city
E_CODE	ending airport code
E_CITY	ending airport city

Variable	Description
COUPON	average number of coupons for the route
NEW	number of new carriers entering the route
VACATION	indicates if the route is a vacation route (Yes) or not (No)
SW	indicates if Southwest Airlines serves the route (Yes) or not (No)
S_INCOME	starting city's average personal income
E_INCOME	ending city's average personal income
S_POP	starting city's population
E_POP	ending city's population
SLOT	indicates if either endpoint airport is slot controlled (Controlled) or not (Free)
GATE	indicates if either endpoint airport has gate constraints(Constrained) or not (Free)
DISTANCE	distance (miles) between two endpoint airports
PAX	the number of passengers on the route
FARE	the average fare for the route

Import Packages:

```
import numpy as np
import pandas as pd
from sklearn import set_config
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.preprocessing import StandardScaler, RobustScaler, MinMaxScaler, PowerTransformer
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.preprocessing import LabelBinarizer
from sklearn.impute import SimpleImputer, KNNImputer, MissingIndicator
from sklearn.decomposition import PCA
import matplotlib.pylab as plt
import seaborn as sns
set_config(transform_output = "pandas")
```

Questions:

data = pd.read_csv('Airfares2.csv') #read csv

1. (a) (10) Use the 'Airfares2.csv' file to create a dataframe named data. Then, view the first 5 observations in the data dataframe.

data.head() #data preview

₹	S_	CODE	S_CITY	E_CODE	E_CITY	COUPON	NEW	VACATION	SW	HI	S_INCOME	E_INCOME	S_POP	E_POP	SLOT	GATE	I
	0	*	Dallas/Fort Worth TX	*	Amarillo TX	1.00	3.0	No	Yes	5291.99	28637	21112	3036732	205711.0	Free	Free	
	1	*	Atlanta GA	*	Baltimore/Wash Intl MD	1.06	3.0	No	No	5419.16	26993	29838	3532657	7145897.0	Free	Free	
	2	*	Boston MA	*	Baltimore/Wash Intl MD	1.06	3.0	No	No	9185.28	30124	29838	5787293	7145897.0	Free	Free	
	3	ORD	Chicago IL	*	Baltimore/Wash Intl MD	1.06	3.0	No	Yes	2657.35	29260	29838	7830332	7145897.0	Controlled	Free	
	4	MDW	Chicago IL	*	Baltimore/Wash Intl MD	1.06	3.0	No	Yes	2657.35	29260	29838	7830332	7145897.0	Free	Free	

Next steps: Generate code with data View recommended plots New interactive sheet

1. (b) (10) View the dataframe information. Are missing values present?

```
→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 638 entries, 0 to 637
    Data columns (total 18 columns):
    # Column Non-Null Count Dtype
                 -----
        S_CODE 638 non-null
S_CITY 638 non-null
    0
        S CODE
                                object
    1
                                object
    2 E_CODE 638 non-null
                                object
                 638 non-null
        E_CITY
                                object
    4 COUPON 637 non-null
                                float64
    5 NEW
                632 non-null
                                float64
        VACATION 636 non-null
                                object
       SW 637 non-null
                                object
                                float64
    8 HI
                 638 non-null
        S_INCOME 638 non-null
                                int64
     10 E_INCOME 638 non-null
                                int64
    11 S_POP
                638 non-null
                                int64
    12 E POP
                 637 non-null
                                float64
    13 SLOT
                 635 non-null
                                object
    14 GATE
                 638 non-null
                                object
    15 DISTANCE 637 non-null
                                float64
    16 PAX
                 638 non-null
                                int64
    17 FARE
                 636 non-null
                                float64
    dtypes: float64(6), int64(4), object(8)
    memory usage: 89.8+ KB
```

Double-click (or enter) to edit

1. (c) (15) Identify variables by variable type and convert any categorical variables to category types. Then, output arrays of variables by type.

```
nums = ['S_INCOME','COUPON','NEW','HI','E_INCOME','S_POP','E_POP','DISTANCE', 'PAX', 'FARE'] #numerical variable list
ords = ['SLOT'] # Ordinal variable list
noms = list(data.columns.difference(nums + ords)) #nominal variable list

data[noms + ords] = data[noms + ords].astype('category') #convert all categorcal varibale to category types
data[nums] = data[nums].apply(pd.to_numeric,errors = 'coerce') #numeric variable to numeric

print('variable by type')
print('Numerical:', nums) # output numerical values
print('Nominal:', noms) # output ordinal values

print('Ordinal:', ords) # output ordinal values

variable by type
Numerical: ['S_INCOME', 'COUPON', 'NEW', 'HI', 'E_INCOME', 'S_POP', 'E_POP', 'DISTANCE', 'PAX', 'FARE']
Nominal: ['E_CITY', 'E_CODE', 'GATE', 'SW', 'S_CITY', 'S_CODE', 'VACATION']
Ordinal: ['SLOT']
```

2. (a) (5) View descriptive statistic information for the numerical variables in the dataframe.

data[nums].describe()

→ *		S_INCOME	COUPON	NEW	HI	E_INCOME	S_POP	E_POP	DISTANCE	PAX	FARE
	count	638.000000	637.000000	632.000000	638.000000	638.000000	6.380000e+02	6.370000e+02	637.000000	638.000000	636.000000
	mean	27759.860502	1.202512	2.775316	4442.141129	27663.727273	4.557004e+06	3.192518e+06	973.406593	12782.214734	160.749607
	std	3596.207837	0.203932	0.723277	1724.267051	4611.325018	3.010985e+06	2.737294e+06	644.251137	13202.228860	75.961846
	min	14600.000000	1.000000	0.000000	1230.480000	14600.000000	2.983800e+04	1.117450e+05	114.000000	1504.000000	42.470000
	25%	24706.000000	1.040000	3.000000	3090.137500	23903.000000	1.862106e+06	1.228816e+06	455.000000	5328.500000	106.245000
	50%	28637.000000	1.150000	3.000000	4208.185000	26409.000000	3.532657e+06	2.195215e+06	846.000000	7792.000000	144.600000
	75%	29693.500000	1.300000	3.000000	5480.575000	31981.000000	7.830332e+06	4.549784e+06	1301.000000	14090.500000	209.350000
	max	38813.000000	1.940000	3.000000	10000.000000	38813.000000	9.056076e+06	9.056076e+06	2764.000000	73892.000000	402.020000

cats = noms + ords
data[cats].describe()

2. (c) (5) Visualize the distribution of the FARE variable.

data.FARE.plot.hist(xlabel='FARE')

2. (d) (5) Describe the shape of the FARE variable.

The distribution is right skewd since majority of the fares lies between 50 and 250 and the highest fare between 100 and 150.

2. (e) (5) Visualize the distribution of the VACATION variable.

2. (f) (5) Describe the distribution of the VACATION variable.

The distribution of the VACATION variable is skewed towards 'No'. A higher number of passengers were not traveling for vacation compared to those who were. This indicates that the dataset contains more business or non-leisure travelers than vacation travelers.

3. (a) (15) Next, you will use imputation to handle class imbalance. For numerical variables, impute the median. For categorical variables, impute the mode. Be sure to apply your changes to the data dataframe. Then, output dataframe information to confirm the transformation.

```
miss = MissingIndicator()
miss_id = miss.fit_transform(data)
miss_df = pd.DataFrame(miss_id, columns=miss.features_)
input_nums = SimpleImputer(strategy = 'median') #impute median
data[nums] = input_nums.fit_transform(data[nums])
input_cats = SimpleImputer(strategy="most_frequent")
data[cats] = input_cats.fit_transform(data[cats])
data.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 638 entries, 0 to 637
     Data columns (total 18 columns):
     # Column Non-Null Count Dtype
                   -----
     0
         S_CODE
                   638 non-null
                                   object
         S_CITY
                   638 non-null
                                  object
         E CODE
                   638 non-null
                                  object
     3
         E CITY
                   638 non-null
                                   object
         COUPON
                   638 non-null
                                   float64
     5
         NEW
                   638 non-null
                                   float64
      6
         VACATION 638 non-null
                                  object
         SW
                   638 non-null
                                   object
      8
         ΗI
                   638 non-null
                                   float64
         S INCOME 638 non-null
                                   float64
     9
     10 E_INCOME 638 non-null
                                   float64
      11 S_POP
                   638 non-null
                                   float64
     12 E_POP
                   638 non-null
                                   float64
     13 SLOT
                   638 non-null
                                   object
      14 GATE
                   638 non-null
                                   object
     15 DISTANCE 638 non-null
                                   float64
     16 PAX
                   638 non-null
                                   float64
     17 FARE
                   638 non-null
                                   float64
```

dtypes: float64(10), object(8)

memory usage: 89.8+ KB

3. (b) (10) Next, rescale your numerical variables using Min-Max normalization. Then, output the first 5 observations of the data dataframe to preview the transformation.

```
# Create scaler instance
mm_norm = MinMaxScaler()
```

Apply Min-Max scaling to numerical variables
data[nums] = mm_norm.fit_transform(data[nums])

Check dataframe info
data.head()

_	S_CODE	S_CITY	E_CODE	E_CITY	COUPON	NEW	VACATION	SW	HI	S_INCOME	E_INCOME	S_POP	E_POP	SLOT	GATE
	0 *	Dallas/Fort Worth TX	*	Amarillo TX	0.00000	1.0	No	Yes	0.463139	0.579730	0.268946	0.333128	0.010506	Free	Free
	1 *	Atlanta GA	*	Baltimore/Wash Intl MD	0.06383	1.0	No	No	0.477641	0.511832	0.629331	0.388071	0.786437	Free	Free
	2 *	Boston MA	*	Baltimore/Wash Intl MD	0.06383	1.0	No	No	0.907096	0.641143	0.629331	0.637858	0.786437	Free	Free
	3 ORD	Chicago IL	*	Baltimore/Wash Intl MD	0.06383	1.0	No	Yes	0.162708	0.605460	0.629331	0.864202	0.786437	Controlled	Free
	4 MDW	Chicago IL	*	Baltimore/Wash Intl MD	0.06383	1.0	No	Yes	0.162708	0.605460	0.629331	0.864202	0.786437	Free	Free
Next steps: Generate code with data View recommended plots New interactive sheet															

4. (10) Finally, transform your categorical variables using one-hot encoding. Create a new dataframe, named data_ohe, which contains your transformed numerical variables and the one-hot encoded categorical variables. Then, preview the last 5 rows of the data_ohe dataframe to preview the transformation.

data_ohe = pd.get_dummies(data, columns=cats, drop_first=False)
data_ohe.tail()

₹		COUPON	NEW	HI	S_INCOME	E_INCOME	S_POP	E_POP	DISTANCE	PAX	FARE	• • •	S_CODE_EWR	S_CODE_IAD	S_CODE_JFK
	633	0.085106	1.0	0.112460	0.759551	0.94061	0.951812	0.098383	0.345660	0.453390	0.242414		False	False	False
	634	0.085106	1.0	0.112460	0.759551	0.94061	0.951812	0.098383	0.345660	0.453390	0.242414		True	False	False
	635	0.180851	1.0	0.634849	0.553174	0.94061	0.544912	0.098383	0.319245	0.062331	0.229175		False	False	False
	636	0.297872	1.0	0.494434	0.717838	0.94061	0.500756	0.098383	0.280755	0.046596	0.242386		False	True	False
	637	0.297872	1.0	0.494434	0.717838	0.94061	0.500756	0.098383	0.280755	0.046596	0.242386		False	False	False
	5 rows	s × 153 colu	ımns												