

WiFi LoRa 32 (V2)

LoRa Node Development Kit

https://heltec.org

Documents Rev 1.1 P 1/13 May, 2020 Heltec Automation © Limited standard files

Document version

Version	Time	Description	Remark
V2.0	2020-02-21	Documents creating	肖鸿
V2.1	2020-05-07	Document structure update	Aaron

Copyright Notice

All contents in the files are protected by copyright law, and all copyrights are reserved by Chengdu Heltec Automation Technology Co., Ltd. (hereinafter referred to as Heltec). Without written permission, all commercial use of the files from Heltec are forbidden, such as copy, distribute, reproduce the files, etc., but non-commercial purpose, downloaded or printed by individual are welcome.

Disclaimer

Chengdu Heltec Automation Technology Co., Ltd. reserves the right to change, modify or improve the document and product described herein. Its contents are subject to change without notice. These instructions are intended for you use.

WiFi LoRa 32 (V2)
Document version
Copyright Notice
Disclaimer
Content3
1. Description4
1.1 Overview
1.2 Product features4
2. Pin Definition
2.1 Pin assignment
2.2 Pin description6
3. Specifications
3.1 General specifications
3.2 Power supply9
3.3 Power output
3.4 Power characteristics
3.5 LoRa RF characteristics
3.6 Operation Frequencies
4. Hardware resource
4.1 Physical dimensions
5. Resource
5.1 Relevant Resource
5.2 Contact Information

1. Description

1.1 Overview

WiFi LoRa 32 is a classic IoT dev-board designed & produced by Heltec Automation(TM), it's a highly integrated product based on ESP32 + SX127x, it has Wi-Fi, BLE, LoRa functions, also Li-Po battery management system, 0.96" OLED are also included. It's the best choice for smart cities, smart farms, smart home, and IoT makers.

WiFi LoRa 32 are available in two product variants:

Table 1.1 Product model list

No.	Model	Description
1	HTCC-WB32LA-L	470~510MHz working LoRa frequency, used for China mainland (CN470) LPW band.
2	HTCC-WB32LA-F	For EU868, IN865, US915, AU915, AS923, KR920 and other LPW networks with operating frequencies between 863~928MHz.

1.2 Product features

- CE Certificate;
- Microprocessor: ESP32 (dual-core 32-bit MCU + ULP core), with LoRa node chip SX1276/SX1278;
- Micro USB interface with a complete voltage regulator, ESD protection, short circuit protection, RF shielding, and other protection measures;

https:/	'/hel	ltec.	ora
---------	-------	-------	-----

- Onboard SH1.25-2 battery interface, integrated lithium battery management system (charge and discharge management, overcharge protection, battery power detection, USB / battery power automatic switching);
- Integrated WiFi, LoRa, Bluetooth three network connections, onboard Wi-Fi, Bluetooth dedicated 2.4GHz metal 3D antenna, reserved IPEX (U.FL) interface for LoRa use;
- Onboard 0.96-inch 128*64 dot matrix OLED display, which can be used to display debugging information, battery power, and other information;
- Integrated CP2102 USB to serial port chip, convenient for program downloading, debugging information printing;
- Support the Arduino development environment;
- ➤ We provide ESP32 + LoRaWAN protocol Arduino® library, this is a standard LoRaWAN protocol that can communicate with any LoRa gateway running the LoRaWAN protocol. In order to make this code running, a unique license is needed. it can be found on this page;
- ➤ With good RF circuit design and basic low-power design (sleep current ≤ 800uA), it is convenient for IoT application vendors to quickly verify solutions and deploy applications.

2. Pin Definition

2.1 Pin assignment

2.2 Pin description

Header J2

Table 2-2-1 Pin description

No.	Name	Туре	Function
1	GND	Р	Ground.
2	5V	Р	5V Power Supply.
3	Ve	Р	Output 3.3V, power supply for external sensor.
4	Ve	Р	Output 3.3V, power supply for external sensor.
5	RX	I/O	GPIO44, U0RXD, connected to CP2102 TXD.
6	TX	I/O	GPIO43, U0RXD, connected to CP2102 RXD.
7	RST	I	CHIP_PU, connect to RST switch.
8	0	I/O	GPIO0, connect to PRG switch.

Documents	Rev 1.1	P 6/13	May. 2020	HelTec Automation © Limited standard files

GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-2.

Header J3

19

1/0

18

Table 2-2-2 Pin description

No.	Name	Туре	Function
1	GND	Р	Ground.
2	3V3	Р	3.3V Power Supply.
3	3V3	Р	3.3V Power Supply.
4	37	I/O	GPIO37, SPIDQS, FSPIQ, SUBSPIQ.
5	46	I/O	GPIO46.
6	45	I/O	GPIO45.
7	42	I/O	GPIO42, MTMS.
8	41	I/O	GPIO41, MTDI.
9	40	I/O	GPIO40, MTDO.
10	39	I/O	GPIO39, MTCK.
11	38	I/O	GPIO38, FSPIWP, SUBSPIWP.
12	1	I/O	GPIO1, ADC1_CH0 ³ , TOUCH1, Read VBAT Voltage.
13	2	I/O	GPIO2, ADC1_CH1, TOUCH2.
14	3	I/O	GPIO3, ADC1_CH2, TOUCH3.

¹ DP pin connectable to USB socket, solder R29

 $^{^3}$ ADC1_CH0 is used to read the lithium battery voltage, the voltage of the lithium battery is: VBAT = 100 / (100+390) * VADC_IN1

https://heltec.org	:://heltec.ord	ne	7	ns:/	htti
--------------------	----------------	----	---	------	------

Documents Rev 1.1 P 7/13 May. 2020 HelTec Automation © Limited standard files

² DN pin connectable to USB socket, solder R3

15	4	I/O	GPIO4, ADC1_CH3, TOUCH4.
16	5	I/O	GPIO5, ADC1_CH4, TOUCH5.
17	6	I/O	GPIO6, ADC1_CH5, TOUCH6.
18	7	I/O	GPIO7, ADC1_CH6, TOUCH7.

3. Specifications

3.1 General specifications

Table 3-1: General specifications

Parameters	Description
Master Chip	ESP32 (240MHz Tensilica LX6 dual-core+1 ULP, 600 DMIPS)
LoRa Chipset	SX1276/SX1278
USB to Serial Chip	CP2102
Frequency	470~510 MHz, 863~923 MHz
Max TX Power	19dB ± 1dB
Receiving sensitivity	-135 dBm
Wi-Fi	802.11 b/g/n (802.11n up to 150 Mbps)
Bluetooth	Bluetooth V4.2 BR/EDR and Bluetooth LE specification
Hardware Resource	UART x 3; SPI x 2; I2C x 2; I2S x 1; 12-bits ADC input x 18;
	8-bits DAC output x 2; GPIO x 22, GPI x 6
Memory	8MB(64M-bits) SPI FLASH; 520KB internal SRAM
Interface	Micro USB x 1; LoRa Antenna interface(IPEX) x 1; 18 x 2.54 pin x 2

3.2 Power supply

Except when USB or 5V Pin is connected separately, lithium battery can be connected to charge it. In other cases, only a single power supply can be connected.

Table 3-2: Power supply

Power supply mode	Minimum	Typical	Maximum	Company
USB powered (≥500mA)	4.7	5	6	V
Lithium battery(≥250mA)	3.3	3.7	4.2	V
5V pin(≥500mA)	4.7	5	6	V
3V3 pin(≥150mA)	2.7	3.3	3.5	V

3.3 Power output

Table 3-3: Power output

Output Pin	Minimum	Typical	Maximum	Company
3.3V Pin			500	mA
5V Pin (USB Powered only)		Equal to		
		the input		
		current		

Vext Pin	350	mA

3.4 Power characteristics

Table 3-4: Power characteristics

Mode	Condition	Min.	Typical	Max.	Company
WiFi Scan	USB powered		115		mA
WiFi AP	USB powered		135		mA
	LoRa 10dB output		50		mA
Power	LoRa 12dB output		60		mA
Consumption(mA)	LoRa 15dB output		110		mA
	LoRa 20dB output		130		mA

3.5 LoRa RF characteristics

3.5.1 Transmit power

Table3-5 Transmit power

Operating frequency band	Maximum power value/[dBm]
470~510	19 ± 1
867~870	19 ± 1
902~928	19 ± 1

3.5.2 Receiving sensitivity

The following table gives typically sensitivity level of the HTCC-WB32LA-(L/H).

https	//	hΔ	lt۵	\sim	ro
TILLDS).//		ııc	u.U	ı u

Documents	Rev 1.1	P 10/13	Mav. 2020	HelTec Automation © Limited standard files

Table3-6: Receiving sensitivity

Signal Bandwidth/[KHz]	Spreading Factor	Sensitivity/[dBm]
125	SF12	-135
125	SF10	-130
125	SF7	-124

3.6 Operation Frequencies

HTCC-WB32LA(F) supports LoRaWAN frequency channels and models corresponding table.

Table3-7: Operation Frequencies

Region	Frequency (MHz)	Model
EU433	433.175~434.665	HTCC-WB32LA-L
CN470	470~510	HTCC-WB32LA-L
IN868	865~867	HTCC-WB32LA-F
EU868	863~870	HTCC-WB32LA-F
US915	902~928	HTCC-WB32LA-F
AU915	915~928	HTCC-WB32LA-F
KR920	920~923	HTCC-WB32LA-F
AS923	920~925	HTCC-WB32LA-F

4. Hardware resource

4.1 Physical dimensions

https://heltec.org

Documents Rev 1.1 P 12/13 May. 2020 HelTec Automation © Limited standard files

5. Resource

5.1 Relevant Resource

- Source Code
 - Heltec ESP (ESP32 & ESP8266) framework (Already included Heltec ESP32 LoRaWAN library)
 - Heltec ESP32 library
- Schematic diagram
- Pin map
- Downloadable resource

5.2 Contact Information

Heltec Automation Technology Co., Ltd

Chengdu, Sichuan, China

Email: support@heltec.cn

Phone: +86-028-62374838

https://heltec.org