— Master's Thesis Presentation —

Prototyping NLU Pipelines

A Type-Theoretical Framework

Jan Frederik Schaefer

FAU Erlangen-Nürnberg

Seminar Wissensrepräsentation und -verarbeitung presented virtually due to COVID-19 December 16, 2020

Disclaimer

Some of slides have been adapted from previous presentations by me, often about joint research with other people.

Natural Language Understanding (NLU)

My definition:

NLU means translating natural language into a formal semantic representation.

"How many people live in Slovakia?"
→ "5.458 million"

"Do more people live in Slovakia than in Thailand?" \rightsquigarrow ???

How do we get from messy language to formal logic?

Montague [Mon70]: Look at a "nice" subset and map into logic.

How do we get from messy language to formal logic?

Montague [Mon70]: Look at a "nice" subset and map into logic.

"Ahmed paints and Berta is quiet."

"Ahmed doesn't paint."

$$p(a) \wedge q(b)$$

 $\neg p(a)$

"Every student paints and is quiet."

"Nobody paints."

$$\forall x.s(x) \Rightarrow (p(x) \land q(x))$$
$$\neg \exists x.p(x)$$

"Ahmed isn't allowed to paint."

"Ahmed and Berta must paint."

$$\neg \Diamond p(a)$$

$$(\Box p(a)) \wedge \Box p(b)$$

Hand-waving is problematic:

"Ahmed paints. He is quiet." $\stackrel{?}{\leadsto}$ $p(a) \land q(a)$

Montague: Specify

grammar,

fixes NL subset

- target logic,
- semantics construction.

maps parse trees to logic

Example from [Mon74]

- T11. If $\phi, \psi \in P_t$ and ϕ, ψ translate into ϕ', ψ' respectively, then ϕ and ψ translates into $[\phi \land \psi]$, ϕ or ψ translates into $[\phi \lor \psi]$.
- T12. If $\gamma, \delta \in P_{IV}$ and γ, δ translate into γ', δ' respectively, then γ and δ translates into $\hat{x}[\gamma'(x) \wedge \delta'(x)], \gamma$ or δ translates into $\hat{x}[\gamma'(x) \vee \delta'(x)]$.
- T13. If $\alpha, \beta \in P_T$ and α, β translate into α', β' respectively, then α or β translates into $\widehat{P}[\alpha'(P) \vee \beta'(P)]$.

Claim: That doesn't scale well → We need prototyping!

NLU Prototyping

- Traditionally done in Prolog/Haskell
 - \rightarrow requires a lot of work
- A dedicated framework might be better
 - → only partial solutions exist
- Can we combine existing partial solutions?
 - → GLIF

Research Question

GLIF: Grammatical Logical Inference Framework

"Ahmed and Berta paint."
$$\Longrightarrow$$
 $p(a) \land p(b)$

GLIF: Grammatical Logical Inference Framework

"Ahmed and Berta paint."
$$\Longrightarrow$$
 p(a) \land p(b)

GLIF: Grammatical Logical Inference Framework


```
GF (= grammar framework)
+ MMT (= logic framework)
+ ELPI (= inference framework)

= GLIF (= natural language understanding framework)
```

Components of GLIF: GF

Components of GLIF: Grammatical Framework [GF]

- Specialized for developing natural language grammars
- Abstract syntax based on LF
- Comes with large library

≥ 36 *languages*

- Modular logic development and knowledge representation
- Not specialized in one logical framework
- We will use MMT to:
 - represent abstract syntax
 - specify target logic and discourse domain theory
 - specify semantics construction

we use LF

- Modular logic development and knowledge representation
- Not specialized in one logical framework

we use LF

- We will use MMT to:
 - represent abstract syntax
 - specify target logic and discourse domain theory
 - specify semantics construction

```
      GF
      MMT

      cat
      NP; VP; S;

      fun
      VP: type

      sentence:
      S: type

      sentence:
      NP → VP → S
```

- Modular logic development and knowledge representation
- Not specialized in one logical framework

we use LF

- We will use MMT to:
 - represent abstract syntax
 - specify target logic and discourse domain theory
 - specify semantics construction

Logic Syntax

```
o: type //propositions
\neg: o \rightarrow o
\wedge: o \rightarrow o \rightarrow o
\vee: o \rightarrow o \rightarrow o
\iota: type //individuals
\forall: (\iota \rightarrow o) \rightarrow o
\exists: (\iota \rightarrow o) \rightarrow o
```

Discourse Domain Theory

idea: $\forall f$ or $\forall \lambda x. f(x)$ instead of $\forall x. f(x)$

- Modular logic development and knowledge representation
- Not specialized in one logical framework

we use LF

- We will use MMT to:
 - represent abstract syntax
 - specify target logic and discourse domain theory
 - specify semantics construction

Semantics Construction

map symbols in abstract syntax to terms in logic/domain theory

Simple setting

More advanced

Example: Parsing + Semantics Construction

"Ahmed and Berta paint" ↓ parsing sentence (andNP ahmed berta) paint +semantics construction $(\lambda n. \lambda v. n \ v) \ ((\lambda a. \lambda b. \lambda p. a \ p \land b \ p) \ (\lambda p. p \ ahmed) \ (\lambda p. p \ berta))$ paint $\downarrow \beta$ -reduction paint ahmed \land paint berta

Components of GLIF: ELPI

Components of GLIF: ELPI

• Implementation and extension of $\lambda Prolog$

 \approx *Prolog* + *HOAS*

- MMT can generate logic signatures
- Generic inference/reasoning step after semantics construction
- Goal: Use it for semantic/pragmatic analysis

MMT

ELPI

Example: Epistemic Q&A

```
John knows that Mary or Eve knows that Ping has a dog. (S_1) Mary doesn't know if Ping has a dog. (S_2) Does Eve know if Ping has a dog? (Q)
```

$$S_1 = \Box_{john}(\Box_{mary}hd(ping)) \lor \Box_{eve}hd(ping)$$

 $S_2 = \neg((\Box_{mary}hd(ping)) \lor \Box_{mary}\neg hd(ping))$
 $Q = (\Box_{eve}hd(ping)) \lor \Box_{eve}\neg hd(ping)$

$$\begin{array}{ccccc} S_1, S_2 \vdash_{S5_n} Q & \leadsto & \text{yes} \\ S_1, S_2 \vdash_{S5_n} \neg Q & \leadsto & \text{no} \\ \text{else} & \leadsto & \text{maybe} \end{array}$$

Semantic/Pragmatic Analysis

"The trophy doesn't fit in the brown suitcase because it's too big." [LDM12]

Semantic/Pragmatic Analysis

"The trophy doesn't fit in the brown suitcase because it's too big." [LDM12] "The trophy doesn't fit in the brown suitcase because it's too small." [LDM12]

Semantic/Pragmatic Analysis

"The trophy doesn't fit in the brown suitcase because it's too big." [LDM12] "The trophy doesn't fit in the brown suitcase because it's too small." [LDM12]

"The ball has a radius of 2m."
"The ball has a mass of 2m."

"We saw her duck."

 \leadsto semantics construction creates preliminary semantic representation(s) that gets refined by the semantic/pragmatic analysis

Example: Tableaux Machine [KK03]

- Can use tableaux for model generation
- Tableau machine: pick "best" branch as model and continue there with next sentence like a human?

Example: Tableaux Machine [KK03]

- Can use tableaux for model generation
- Tableau machine: pick "best" branch as model and continue there with next sentence like a human?

Example: Tableaux Machine [KK03]

- Can use tableaux for model generation
- Tableau machine: pick "best" branch as model and continue there with next sentence like a human?

Background Knowledge

```
"John talks to Mary."

talkto(j, m)

"Sasha is sad."

sad(s)
```


Example: Translation

- Two German words for "cousin", depending on the gender
- Two entries in abstract syntax: cousin_female and cousin_male
- Use inference to discard ASTs

Example: Translation

- Two German words for "cousin", depending on the gender
- Two entries in abstract syntax: cousin_female and cousin_male
- Use inference to discard ASTs

Example: Translation

- Two German words for "cousin", depending on the gender
- Two entries in abstract syntax: cousin_female and cousin_male
- Use inference to discard ASTs

GLIF Summary

Supporting the Semantic/Pragmatic Analysis

Observation:

- Parsing and semantics construction are based on specialized frameworks
- ELPI is a more general programming language

Can we do something more specialized?

- Not really there is no "standard recipe" for semantic/pragmatic analysis
- But: It usually involves inferential reasoning

Let's generate provers!

Natural Deduction in MMT/LF

$$\frac{A \wedge B}{A} \wedge EI$$

$$\frac{A \vee B}{A} \wedge EI$$

$$\frac{A \vee B}{A} \wedge EI$$

$$\frac{A \vee B}{C} \wedge \frac{C}{C} \vee E^{1}$$

$$\frac{A \vee B}{C} \wedge \frac{C}{C} \wedge \frac{C}{C} \vee E^{1}$$

$$\frac{A \vee B}{C} \wedge \frac{C}{C} \wedge \frac{C}{C} \wedge \frac{C}{C} \vee E^{1}$$

$$\frac{A \vee B}{C} \wedge \frac{C}{C} \wedge$$

Generating Provers in ELPI

LF rule $\wedge E1 : \Pi_{A:o}\Pi_{B:o} \vdash A \wedge B \rightarrow \vdash A$

ELPI equivalent

```
direct: pi A \setminus pi B \setminus ded (and A B) \Rightarrow ded A.
```

syn. sugar: ded A := ded (and A B).

Generating Provers in ELPI

```
LF rule \wedge E1 : \Pi_{A:o}\Pi_{B:o} \vdash A \wedge B \rightarrow \vdash A
```

ELPI equivalent

```
direct: pi A \setminus pi B \setminus ded (and A B) => ded A.

syn. sugar: ded A := ded (and A B).
```

Example: Or-Elimination

 $\mathsf{LF}\colon\quad \forall \mathsf{E}\ :\ \Pi_{\mathsf{A}:\mathsf{o}}\Pi_{\mathsf{B}:\mathsf{o}}\Pi_{\mathsf{C}:\mathsf{o}}\ \vdash \mathsf{A} \forall \mathsf{B}\ \to\ (\vdash \mathsf{A}\ \to\ \vdash \mathsf{C})\ \to\ (\vdash \mathsf{B}\ \to\ \vdash \mathsf{C})\ \to\ \vdash \mathsf{C}$

ELPI: ded C:- ded (or A B), ded A => ded C, ded B => ded C.

Example: Forall-Introduction

 $\mathsf{LF}\colon \quad \forall \mathsf{I} \; : \; \Pi_{\mathsf{P} \colon \iota \; \to \; \mathsf{o}} \; \left(\Pi_{\mathsf{x} \colon \iota} \; \vdash \mathsf{P} \; \mathsf{x}\right) \; \to \; \vdash \forall \mathsf{P}$

ELPI: ded (forall P) :- pi x \ ded (P x).

Controlling the Proof Search

- Problem: Search diverges
 searching harder than checking
- Solution: Control search with helper predicates:

inspired by ProofCert project by Miller et al.

- Intuition: Decide whether to apply rule
- Do not affect correctness
- Extra argument tracks aspects of proof state

```
Before: ded A:- ded (and AB).
```

Now: ded X A := help/andEl X A B X1, ded X1 (and A B).

Helper Predicates

Name	Predicate	Argument
Iter. deepening	checks depth	remaining depth
Proof term	generates term	proof term
Product	calls other predicates	arguments for other predicates
Backchaining	Prolog's backchaining (\approx forward reasoning from axioms via \Rightarrow/\forall elimination rules)	pattern of formula to be proven (e.g. a conjunction)

Example helper: Iterative deepening

help/andEl (idcert N) $_$ (idcert N1) :- N > 0, N1 is N - 1.

Tableau Provers

LF:
$$\wedge^F$$
: $\Pi_{A:o}\Pi_{B:o}$ $A \wedge B^F \rightarrow (A^F \rightarrow \bot) \rightarrow (B^F \rightarrow \bot) \rightarrow \bot$
ELPI: closed X : - help/andF X A B $X1$ $X2$ $X3$, f $X1$ (and A B),
 $f/\text{hyp }A$ => closed $X2$, $f/\text{hyp }B$ => closed $X3$.

With iterative deepening we get a working prover!

ightarrow Other helpers result in more efficient provers

Conclusion: Prototyping NLU Pipelines

References I

- [GF] GF Grammatical Framework. URL: http://www.grammaticalframework.org (visited on 09/27/2017).
- [KK03] Michael Kohlhase and Alexander Koller. "Resource-Adaptive Model Generation as a Performance Model". In: Logic Journal of the IGPL 11.4 (2003), pp. 435-456. URL: http: //jigpal.oxfordjournals.org/cgi/content/abstract/11/4/435.
- [LDM12] Hector Levesque, Ernest Davis, and Leora Morgenstern. "The Winograd Schema Challenge". In: Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning. 2012.
- [Mon70] R. Montague. "English as a Formal Language". In: Reprinted in [Tho74], 188–221. Edizioni di Communita, Milan, 1970, pp. 189–224.

References II

- [Mon74] Richard Montague. "The Proper Treatment of Quantification in Ordinary English". In: Formal Philosophy. Selected Papers. Ed. by R. Thomason. New Haven: Yale University Press, 1974.
- [Tho74] R. Thomason, ed. Formal Philosophy: selected Papers of Richard Montague. Yale University Press, New Haven, CT, 1974.