CSCI 390, Artificial Intelligence

Assignment 8

Question 1 (Linear regression)

The following is a table of data to be used for linear regression. This table describes the expenditure (in dollars) on recreation per month by employees at a certain company, and their corresponding monthly incomes. We treat the left-hand column as the input and the right-hand column as the output. Considering the bias parameter in your computation.

Expenditure (\$)	Income (\$)
2400	41200
2650	50100
2350	52000
4950	66000
3100	44500
2500	37700
5106	73500
3100	37500
2900	56700
1750	35600

Answer the following questions:

- a. Find the equation of the linear regression line for the data
- **b.** What is the slope? What is the y-intercept?
- **c.** Using the equation for the linear regression that you calculated, estimate the monthly income of an employee at this company who spends 5000 dollars per month on recreation.

Question 2 (Binary perceptron)

Apply the binary perceptron algorithm for the following data set. The training samples (i.e., 3D data points with the corresponding labels) are given as the following table.

#	Features (x_1, x_2, x_3)	Class label
1	(4,3,6)	-
2	(2,-2,3)	+
3	(1,0,-3)	+
4	(4,2,3)	-

Start with weight vector $w = (w_0, w_1, w_2, w_3) = (1,0,0,0)$, where w_0 is the bias parameter. Then, you need to use the bias feature together with given features during your computation.

- a. Will the perceptron algorithm converge? Write "never" if it will never converge and prove.
- b. If the perceptron algorithm converges, fill out the table below. After how many steps will the perceptron algorithm converge? Note: one step means processing one data point. Data points are processed in order and then repeated, until convergence.

Step	Weights	Score	Correct?
1	(1,0,0,0)		

Final weights:

Question 3 (Multi-class perceptron)

Consider a multi-class perceptron with current weight vectors $\mathbf{w}_A = (1, 2, 3)$, $\mathbf{w}_B = (-1, 0, 2)$, $\mathbf{w}_C = (0, -2, 1)$. A new training sample is provided, which has feature vector $\mathbf{x} = (x_0, x_1, x_2) = (1, -3, 1)$ and label $\mathbf{y}^* = \mathbf{B}$. Here, x_0 is the bias feature.

- a. Which class y would be predicted by the current weight vectors?
- b. Would the perceptron update the weight vectors after having seen this training example? If yes, write the resulting weight vectors below:

 $w_A =$

 $w_B =$

 $w_C =$