PRIMER SEMESTRE 2021

Problema 1 Demuestre por inducción que

$$\forall n \in \mathbb{N}: \frac{n^4}{4} < 1^3 + 2^3 + 3^3 + \dots + n^3$$

Problema 2.

a) ¿ Cuantos cuadriláteros tiene la siguiente figura?

(Respuesta correcta es 45)

1	2	3	4	5	6	7	8	9

¿ Cual sería la fórmula para el caso de n arbitrario ?

- (Respuesta correcta es $\frac{n(n+1)}{2}$)
- (Respuesta correcta es 204) \cdot 8 × 8 oñamat es zarbeja es orientes a correcta es 204) (d
 - ¿ Cuál sería la formula para un tablero de largo $n \times n$? (Sugerencia: Prueba con formula polinomial en n de grado a lo más 3) $(n\frac{1}{6} + 2n\frac{1}{2} + 8n\frac{1}{6} + 8n\frac{1}$

Problema 3. Queremos tapizar un tablero cuadrado y cuadrículado (estilo tablero de ajedrez) con baldosas verdes de tres casilleros en forma "L" (poseemos una cantidad ilimitada de esas baldosas) y una sola baldosa blanca que consiste de un solo casillero.

- a) ξ Se puede tapizar un tablero de largo 8×8 completamente?
- b) i. Se puede tapizar un tablero de largo 1024×1024 completamente?
- c) En caso que se puede tapizar: ¿ Se puede evitar usar la baldosa blanca ?
- d) En caso que no se puede evitar: ¿ Se puede posicionar la baldosa blanca en cualquier lado ?

(8 y 1024 son ambos potencias de 2. Formula una proposición universal para tableros $2^n \times 2^n$ y demuestra esa por inducción.)