Datamart de Destinadores de Resíduos Sólidos: Análise de Atividades de Destinação e Geradores

Jorge Luiz Otávio da Silva Brito jorgelosb@gmail.com

https://dados.gov.br/dados/conjuntos-dados/residuos-solidos-destinador1

[link aplicação olap]

https://github.com/jorgeotavio/solid-wast-dss

Etapa 1

Planejamento

1. Contextualização

A destinação de resíduos sólidos é uma questão ambiental complexa e desafiadora, enfrentada por empresas e órgãos reguladores. No contexto do Cadastro Técnico Federal de Atividades Potencialmente Poluidoras e Utilizadoras de Recursos Naturais (CTF/APP), o monitoramento e controle das atividades de destinadores de resíduos são essenciais para mitigar impactos ambientais.

2. Escopo/ Objetivo Data Mart

O objetivo principal do data mart é fornecer aos órgãos reguladores e empresas uma ferramenta de análise eficiente para:

- Monitorar a destinação de resíduos sólidos
- Identificar práticas ambientalmente responsáveis
- Fiscalizar a conformidade com as regulamentações
- Gerar insights para tomada de decisões
- Aprimorar a gestão ambiental

3. Arquitetura Tecnológica

4. Processo

- Planejamento
- Levantamento das necessidades;
- Modelagem dimensional;
- Projeto físico dos BD's
- Projeto ETC;
- Desenvolvimento e Aplicações OLAP

5. Abordagem

O Data Mart proposto utiliza a abordagem Bottom-Up para fornecer informações detalhadas sobre a destinação de resíduos sólidos por empresas cadastradas no Cadastro Técnico Federal de Atividades Potencialmente Poluidoras e Utilizadoras de Recursos Naturais (CTF/APP). A estrutura do Data Mart é construída a partir de tabelas dimensionais, representando informações como tempo, localização, entidades (geradores e destinadores), categorias de atividade e tipos de destinação. A tabela fato contém os principais indicadores relacionados à quantidade de resíduos destinados por ano, entidade e categoria de atividade. A abordagem Bottom-Up permite uma análise granular dos dados, facilitando a identificação de padrões, tendências e insights relevantes para a gestão ambiental e o monitoramento das atividades potencialmente poluidoras.

4. Usuários

Os possíveis usuários desse Data Mart seriam profissionais e gestores envolvidos na área ambiental, especialmente aqueles que têm interesse na gestão de atividades potencialmente poluidoras e na destinação adequada de resíduos. Alguns exemplos de usuários incluem:

- Gestores ambientais
- Analistas de sustentabilidade
- Administradores públicos
- Empresas geradoras de resíduos
- Instituições de pesquisa e acadêmicas
- Público em geral

Etapa 2

Levantamento das necessidades

5. Consultas de Apoio à Decisão

- Identificação dos maiores geradores de resíduos por município;
- Identificação dos maiores geradores de resíduos por região;
- Identificação dos maiores geradores de resíduos por estado;
- Análise da destinação por categoria de atividade;
- Acompanhamento de metas de sustentabilidade;
- Análise geográfica da destinação;

6. Indicadores de análise

- Volume total de resíduos destinados por cidade;
- Volume total de resíduos destinados por estado;
- Volume total de resíduos destinados por região;
- Volume total de resíduos destinados

Etapa 3

Modelagem

7. Modelo Relacional

- Entidade Resíduos
- Entidade Gerador
- Entidade Destinador

- A. Área de negócios
 - a. Meio Ambiente

B. Processo

- C. Granularidade
 - a. Gerador de Resíduos X Destinador de Resíduos X Ano

D. Atributos e Hierarquia das Dimensões

- dim_entidade:
 - o razao social
- dim_local:
 - cidade
 - o estado
- dim_tempo:
 - o ano

E. Métricas fato

- Quantidade de resíduos destinados (em kg ou L)
- Quantidade de resíduos destinados por tipo de destinação
- Total de resíduos destinados por estado ou município
- Resíduos destinados por categoria de atividade

F. Esquema estrela

G. Simulação de inserção de "10 Fatos"

H. Estimativa de espaço

Calculando o espaço necessário para a tabela fato "residuos_fato" com uma média de 90 mil registros, precisamos levar em conta o tamanho dos campos e o número de registros. Vamos considerar o tamanho médio de cada campo como segue:

- id: INT (4 bytes)
- ano_destinacao: INT (4 bytes)
- cnpj_entidade: VARCHAR(18) (18 bytes)
- estado: VARCHAR(50) (50 bytes)
- municipio: VARCHAR(100) (100 bytes)
- codigo_categoria: INT (4 bytes)
- quantidade_destinada: DECIMAL(18, 2) (9 bytes)
- tipo_destinacao: VARCHAR(100) (100 bytes)

Tamanho total de cada registro na tabela fato:

Tamanho de cada registro = 4 + 4 + 18 + 50 + 100 + 4 + 9 + 100 = 289 bytes

Número total de registros: 90.000 registros

Espaço tabela fato:

Espaço tabela fato = Número total de registros x Tamanho de cada registro

Espaço tabela fato = 90.000×289 bytes $\approx 25.410.000$ bytes $\approx 25,41$ MB

Portanto, com uma média de 90 mil registros, o espaço ocupado pela tabela fato "residuos_fato" será de aproximadamente 25,41 MB. É importante ressaltar que esse é um cálculo estimado e o tamanho real pode variar dependendo de outros fatores e configurações específicas do banco de dados.