
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Fri May 11 10:59:23 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10552324 Version No: 1.1

Input Set:

Output Set:

Started: 2007-05-11 10:59:10.439
Finished: 2007-05-11 10:59:10.766

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 327 ms

Total Warnings: 5
Total Errors: 0
No. of SeqIDs Defined: 5

Actual SeqID Count: 5

ErrCode		Code	Error Description											
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)		
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)		
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)		
	W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)		
	M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)		

SEQUENCE LISTING

```
<110> Loibner, Hans
       Himmler, Gottfried
       Waxenecker, Gunter
       Schuster, Manfred
       Putz, Thomas
<120>
       Immunogenic Recombinant Antibody
<130> 4518-0111PUS1
<140> US 10/552,324
<141> 2005-10-07
<150> AT A 599/2003
<151> 2003-04-17
<160> 5
<170> PatentIn version 3.3
<210> 1
<211> 3973
<212> DNA
<213> Artificial Sequence
<220>
<223> recombinant mouse IgG2a mAB 17-1A antibody produced in CHO
       (Chinese Hamster Ovary) cells
<220>
<221> misc_feature
<222>
      (213)..(213)
<223> n = a, g, c, t
<220>
<221> misc_feature
<222> (288)..(288)
<223> n = a, g, c, t
<400> 1
                                                                      60
ataggctagc ctcgagccac caccatgcat cagaccagca tgggcatcaa gatggaatca
                                                                     120
cagactctgg tcttcatatc catactgctc tggttatatg gagctgatgg gaacattgta
                                                                     180
atgacccaat ctcccaaatc catgtccatg tcagtaggag agagggtcac cttgacctgc
                                                                     240
aaggccagtg agaatgtggt tacttatgtt tcntggtatc aacagaaacc agagcagtct
cctaaactgc tgatatatgg ggcatccaac cggtacactg gggtcccnga tcgcttcaca
                                                                     300
                                                                     360
ggcagtggat ctgcaacaga tttcactctg accatcagca gtgtgcaggc tgaagacctt
```

gcagattatc actgtggaca gggttacagc tatccgtaca cgttcggagg ggggaccaag

ctggaaataa aacgggctg	a tgctgcacca	actgtatcca	tcttcccacc	atccagtgag	480
cagttaacat ctggaggtg	c ctcagtcgtg	tgcttcttga	acaacttcta	ccccaaagac	540
atcaatgtca agtggaag <i>a</i>	t tgatggcagt	gaacgacaaa	atggcgtcct	gaacagttgg	600
actgatcagg acagcaaag	a cagcacctac	agcatgagca	gcaccctcac	gttgaccaag	660
gacgagtatg aacgacata	a cagctatacc	tgtgaggcca	ctcacaagac	atcaacttca	720
cccattgtca agagcttca	a caggaatgag	tgttagacgc	gtggatccgc	ccctctccct	780
ccccccccc taacgttac	t ggccgaagcc	gcttggaata	aggccggtgt	gcgtttgtct	840
atatgtgatt ttccaccat	a ttgccgtctt	ttggcaatgt	gagggcccgg	aaacctggcc	900
ctgtcttctt gacgagcat	t cctaggggtc	tttcccctct	cgccaaagga	atgcaaggtc	960
tgttgaatgt cgtgaagga	a gcagttcctc	tggaagcttc	ttgaagacaa	acaacgtctg	1020
tagcgaccct ttgcaggca	g cggaaccccc	cacctggcga	caggtgcctc	tgcggccaaa	1080
agccacgtgt ataagatac	a cctgcaaagg	cggcacaacc	ccagtgccac	gttgtgagtt	1140
ggatagttgt ggaaagagt	c aaatggctct	cctcaagcgt	attcaacaag	gggctgaagg	1200
atgcccagaa ggtacccca	t tgtatgggat	ctgatctggg	gcctcggtgc	acatgcttta	1260
catgtgttta gtcgaggtt	a aaaaaacgtc	taggcccccc	gaaccacggg	gacgtggttt	1320
tcctttgaaa aacacgatg	a taatatggcc	accaccatgg	aatggagcag	agtctttatc	1380
tttctcctat cagtaacto	c aggtgttcac	tcccaggtcc	agttgcagca	gtctggagct	1440
gagctggtaa ggcctggga	c ttcagtgaag	gtgtcctgca	aggcttctgg	atacgccttc	1500
actaattact tgatagagt	g ggtaaagcag	aggcctggac	agggccttga	gtggattggg	1560
gtgattaatc ctggaagtg	g tggtactaac	tacaatgaga	agttcaaggg	caaggcaaca	1620
ctgactgcag acaaatcct	c cagcactgcc	tacatgcagc	tcagcagcct	gacatctgat	1680
gactctgcgg tctatttct	g tgcaagagat	ggtccctggt	ttgcttactg	gggccaaggg	1740
actctggtca ctgtctctg	c agccaaaaca	acagccccat	cggtctatcc	actggcccct	1800
gtgtgtggag atacaactg	g ctcctcggtg	actctaggat	gcctggtcaa	gggttatttc	1860
cctgagccag tgaccttga	c ctggaactct	ggatccctgt	ccagtggtgt	gcacaccttc	1920
ccagctgtcc tgcagtctg	a cctctacacc	ctcagcagct	cagtgactgt	aacctcgagc	1980
acctggccca gccagtcca	t cacctgcaat	gtggcccacc	cggcaagcag	caccaaggtg	2040
gacaagaaaa ttgagccca	g agggcccaca	atcaagccct	gtcctccatg	caaatgccca	2100
gcacctaacc tcttgggtg	g accatccgtc	ttcatcttcc	ctccaaagat	caaggatgta	2160

ctcatgatct ccctgagccc	catagtcaca	tgtgtggtgg	tggatgtgag	cgaggatgac	2220
ccagatgtcc agatcagctg	gtttgtgaac	aacgtggaag	tacacacagc	tcagacacaa	2280
acccatagag aggattacaa	cagtactctc	cgggtggtca	gtgccctccc	catccagcac	2340
caggactgga tgagtggcaa	ggagttcaaa	tgcaaggtca	acaacaaaga	cctcccagcg	2400
cccatcgaga gaaccatctc	aaaacccaaa	gggtcagtaa	gagctccaca	ggtatatgtc	2460
ttgcctccac cagaagaaga	gatgactaag	aaacaggtca	ctctgacctg	catggtcaca	2520
gacttcatgc ctgaagacat	ttacgtggag	tggaccaaca	acgggaaaac	agagctaaac	2580
tacaagaaca ctgaaccagt	cctggactct	gatggttctt	acttcatgta	cagcaagctg	2640
agagtggaaa agaagaactg	ggtggaaaga	aatagctact	cctgttcagt	ggtccacgag	2700
ggtctgcaca atcaccacac	gactaagagc	ttctcccgga	ctccgggtaa	atgagtcgac	2760
acgcgtcgag catgcatcta	gggcggccaa	ttccgcccct	ctccctcccc	ccccctaac	2820
gttactggcc gaagccgctt	ggaataaggc	cggtgtgcgt	ttgtctatat	gtgattttcc	2880
accatattgc cgtcttttgg	caatgtgagg	gcccggaaac	ctggccctgt	cttcttgacg	2940
agcattccta ggggtctttc	ccctctcgcc	aaaggaatgc	aaggtctgtt	gaatgtcgtg	3000
aaggaagcag ttcctctgga	agcttcttga	agacaaacaa	cgtctgtagc	gaccctttgc	3060
aggcagcgga acccccacc	tggcgacagg	tgcctctgcg	gccaaaagcc	acgtgtataa	3120
gatacacctg caaaggcggc	acaaccccag	tgccacgttg	tgagttggat	agttgtggaa	3180
agagtcaaat ggctctcctc	aagcgtattc	aacaaggggc	tgaaggatgc	ccagaaggta	3240
ccccattgta tgggatctga	tctggggcct	cggtgcacat	gctttacatg	tgtttagtcg	3300
aggttaaaaa aacgtctagg	cccccgaac	cacggggacg	tggttttcct	ttgaaaaaca	3360
cgatgataag cttgccacaa	cccgggatcc	tctagaccac	catggttcga	ccattgaact	3420
gcatcgtcgc cgtgtcccaa	gatatgggga	ttggcaagaa	cggagaccta	ccctggcctc	3480
cgctcaggaa cgagttcaag	tacttccaaa	gaatgaccac	aacctcttca	gtggaaggta	3540
aacagaatct ggtgattatg	ggtaggaaaa	cctggttctc	cattcctgag	aagaatcgac	3600
ctttaaagga cagaattaat	atagttctca	gtagagaact	caaagaacca	ccacgaggag	3660
ctcattttct tgccaaaagt	ttggatgatg	ccttaagact	tattgaacaa	ccggaattgg	3720
caagtaaagt agacatggtt	tggatagtcg	gaggcagttc	tgtttaccag	gaagccatga	3780
atcaaccagg ccacctcaga	ctctttgtga	caaggatcat	gcaggaattt	gaaagtgaca	3840

cgtttttccc agaaattgat ttggggaaat ataaacttct cccagaatac ccaggcgtcc	3900											
tctctgaggt ccaggaggaa aaaggcatca agtataagtt tgaagtctac gagaagaaag	3960											
actaagegge ege	3973											
<210> 2 <211> 465 <212> PRT <213> Artificial Sequence												
<220> <223> recombinant mouse IgG2a mAB 17-1A antibody produced in CHO (Chinese Hamster Ovary) cells												
<400> 2												
Met Glu Trp Ser Arg Val Phe Ile Phe Leu Leu Ser Val Thr Ala Gly 1 5 10 15												
Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg 20 25 30												
Pro Gly Thr Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe 35 40 45												
Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu 50 55 60												
Glu Trp Ile Gly Val Ile Asn Pro Gly Ser Gly Gly Thr Asn Tyr Asn 65 70 75 80												
Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95												
Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val 100 105 110												
Tyr Phe Cys Ala Arg Asp Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 115 120 125												
Thr Leu Val Thr Val Ser Ala Ala Lys Thr Thr Ala Pro Ser Val Tyr 130 135 140												
Pro Leu Ala Pro Val Cys Gly Asp Thr Thr Gly Ser Ser Val Thr Leu												

Gly	Cys	Leu	Val	Lys 165	Gly	Tyr	Phe	Pro	Glu 170	Pro	Val	Thr	Leu	Thr 175	Trp
Asn	Ser	Gly	Ser 180	Leu	Ser	Ser	Gly	Val 185	His	Thr	Phe	Pro	Ala 190	Val	Leu
Gln	Ser	Asp 195	Leu	Tyr	Thr	Leu	Ser 200	Ser	Ser	Val	Thr	Val 205	Thr	Ser	Ser
Thr	Trp 210	Pro	Ser	Gln	Ser	Ile 215	Thr	Cys	Asn	Val	Ala 220	His	Pro	Ala	Ser
Ser 225	Thr	Lys	Val	Asp	Lys 230	Lys	Ile	Glu	Pro	Arg 235	Gly	Pro	Thr	Ile	Lys 240
Pro	Суз	Pro	Pro	Cys 245	Lys	Суз	Pro	Ala	Pro 250	Asn	Leu	Leu	Gly	Gly 255	Pro
Ser	Val	Phe	Ile 260	Phe	Pro	Pro	Lys	Ile 265	Lys	Asp	Val	Leu	Met 270	Ile	Ser
Leu	Ser	Pro 275	Ile	Val	Thr	Cys	Val 280	Val	Val	Asp	Val	Ser 285	Glu	Asp	Asp
Pro	Asp 290	Val	Gln	Ile	Ser	Trp 295	Phe	Val	Asn	Asn	Val 300	Glu	Val	His	Thr
Ala 305	Gln	Thr	Gln	Thr	His 310	Arg	Glu	Asp	Tyr	Asn 315	Ser	Thr	Leu	Arg	Val 320
Val	Ser	Ala	Leu	Pro 325	Ile	Gln	His	Gln	Asp 330	Trp	Met	Ser	Gly	Lys 335	Glu
Phe	Lys	Cys	Lys 340	Val	Asn	Asn	Lys	Asp 345	Leu	Pro	Ala	Pro	Ile 350	Glu	Arg
Thr	Ile	Ser 355	Lys	Pro	Lys	Gly	Ser 360	Val	Arg	Ala	Pro	Gln 365	Val	Tyr	Val
Leu	Pro 370	Pro	Pro	Glu	Glu	Glu 375	Met	Thr	Lys	Lys	Gln 380	Val	Thr	Leu	Thr

Cys Met Val Thr Asp Phe Met Pro Glu Asp Ile Tyr Val Glu Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val His Glu Gly Leu His Asn His His Thr Thr Lys Ser Phe Ser Arg Thr Pro Gly Lys <210> 3 <211> 243 <212> PRT <213> Artificial Sequence <220> <223> recombinant mouse IgG2a mAB 17-1A antibody produced in CHO (Chinese Hamster Ovary) cells <400> 3 Met His Gln Thr Ser Met Gly Ile Lys Met Glu Ser Gln Thr Leu Val Phe Ile Ser Ile Leu Leu Trp Leu Tyr Gly Ala Asp Gly Asn Ile Val Met Thr Gln Ser Pro Lys Ser Met Ser Met Ser Val Gly Glu Arg Val Thr Leu Thr Cys Lys Ala Ser Glu Asn Val Val Thr Tyr Val Ser Trp Tyr Gln Gln Lys Pro Glu Gln Ser Pro Lys Leu Leu Ile Tyr Gly Ala

Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser

Ala Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr His Cys Gly Gln Gly Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys <210> 4 <211> 243 <212> PRT <213> Artificial Sequence <220> <223> recombinant mouse IgG2a mAB 17-1A antibody produced in CHO (Chinese Hamster Ovary) cells <400> 4

Met His Gln Thr Ser Met Gly Ile Lys Met Glu Ser Gln Thr Leu Val

Phe	Ile	Ser	Ile 20	Leu	Leu	Trp	Leu	Tyr 25	Gly	Ala	Asp	Gly	Asn 30	Ile	Val
Met	Thr	Gln 35	Ser	Pro	Lys	Ser	Met 40	Ser	Met	Ser	Val	Gly 45	Glu	Arg	Val
Thr	Leu 50	Thr	Cys	Lys	Ala	Ser 55	Glu	Asn	Val	Val	Thr 60	Tyr	Val	Ser	Trp
Tyr 65	Gln	Gln	Lys	Pro	Glu 70	Gln	Ser	Pro	Lys	Leu 75	Leu	Ile	Tyr	Gly	Ala 80
Ser	Asn	Arg	Tyr	Thr 85	Gly	Val	Pro	Asp	Arg 90	Phe	Thr	Gly	Ser	Gly 95	Ser
Ala	Thr	Asp	Phe 100	Thr	Leu	Thr	Ile	Ser 105	Ser	Val	Gln	Ala	Glu 110	Asp	Leu
Ala	Asp	Tyr 115	His	Cys	Gly	Gln	Gly 120	Tyr	Ser	Tyr	Pro	Tyr 125	Thr	Phe	Gly
Gly	Gly 130	Thr	Lys	Leu	Glu	Ile 135	Arg	Arg	Ala	Asp	Ala 140	Ala	Pro	Thr	Val
Ser 145	Ile	Phe	Pro	Pro	Ser 150	Ser	Glu	Gln	Leu	Thr 155	Ser	Gly	Gly	Ala	Ser 160
Val	Val	Cys	Phe	Leu 165	Asn	Asn	Phe	Tyr	Pro 170	Lys	Asp	Ile	Asn	Val 175	Lys
Trp	Lys	Ile	Asp 180	Gly	Ser	Glu	Arg	Gln 185	Asn	Gly	Val	Leu	Asn 190	Ser	Trp
Thr	Asp	Gln 195	Asp	Ser	Lys	Asp	Ser 200	Thr	Tyr	Ser	Met	Ser 205	Ser	Thr	Leu
Thr	Leu 210	Thr	Lys	Asp	Glu	Tyr 215	Glu	Arg	His	Asn	Ser 220	Tyr	Thr	Cys	Glu
			Lys				Ser				Lys			Asn	Arg 240

<210> <211> <212> PRT <213> Artificial Sequence <220> recombinant mouse IgG2a mAB 17-1A antibody produced in CHO <223> (Chinese Hamster Ovary) cells <400> 5 Met His Gln Thr Ser Met Gly Ile Arg Met Glu Ser Gln Thr Leu Val Phe Ile Ser Ile Leu Leu Trp Leu Tyr Gly Ala Asp Gly Asn Ile Val Met Thr Gln Ser Pro Arg Ser Met Ser Met Ser Val Gly Glu Arg Val Thr Leu Thr Cys Arg Ala Ser Glu Asn Val Val Thr Tyr Val Ser Trp Tyr Gln Gln Arg Pro Glu Gln Ser Pro Arg Leu Leu Ile Tyr Gly Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr His Cys Gly Gln Gly Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Arg Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser

Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys

Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu 210 215 220

Asn Glu Cys