

Curso:	Ciência da Computação		
Disciplina:	Fundamentos Teóricos da Computação	Valor	
Professor (a):	João Paulo C. Aramuni		
Nome:		Nota	
Nº da Atividade/Nome:	Lista de Revisão	ž	
Data:			
Valor:	0,0 pts		

Assunto: Revisão

- 1. Seja a linguagem L assim definida, recursivamente:
 - λ , 0, 1 ∈ *L*;
 - se $x \in L$ então 0x0, $1x1 \in L$.
- **a)** Faça uma gramática que gere *L*.
- **b)** Faça uma gramática que gere \overline{L} .

Solução:

a)
$$P \rightarrow 0P0 \mid 1P1 \mid \lambda \mid 0 \mid 1$$

b)
$$P \rightarrow 0P0 \mid 1P1 \mid 0X1 \mid 1X0$$

 $X \rightarrow 0X \mid 1X \mid \lambda$

2. Seja a linguagem $L = \{a^n b^i c^j \mid i + j = n\}$

Faça uma gramática G que gere L.

Solução:

$$P \rightarrow aPc \mid B$$

 $B \rightarrow aBb \mid \lambda$

3. Seja
$$L_1 = \{01, 10\}^*$$
 e $L_2 = \{01\}\{0,1\}^*\{10\}$.

a) Construa um AFD que reconheça L_1 .

b) Construa um AFD que reconheça L_2 .

Solução:

4. Encontre um AFD que reconheça $\{00, 1\} * \{0, 11\} *$.

Solução:

- 5. Seja a linguagem $L = \{w \in \{0,1\}^* \mid 00 \text{ \'e subpalavra de } w \text{ e } 11 \text{ não \'e subpalavra de } w\}$. Faça:
- **a)** Um AFD que reconheça L.

Solução:

b) Uma expressão regular que denote L.

Solução: ER: $(0 + 10) (10)*0(0 + 10)*(\lambda + 1)$.

- **6**. Obtenha gramáticas para as seguintes linguagens sobre $\{0,1\}$:
- a) A linguagem da questão anterior.

Solução:

$$P \rightarrow 0A \mid 10A$$

$$A \rightarrow 0B \mid 10A$$

$$B \rightarrow 0B \mid 10B \mid \lambda \mid 1$$

b)
$$\{0^n 1^n 0^n \mid n >= 0\}$$

Solução:

$$X \rightarrow Y \mid \lambda$$

$$Y \rightarrow 0YU0 \mid 010$$

$$0U \rightarrow U0$$

$$1U \rightarrow 11$$

7. Diga que linguagens são geradas pelas gramáticas:

a) ($\{A\}$, $\{0, 1\}$, R_1 , A), sendo R_1 constituído de:

$$A \rightarrow 0A \mid A01 \mid 1$$

Solução:

$$L = \{0\} * \{1\} \{01\} *.$$

b) $({S, A}, {0, 1}, R_2, S)$, sendo R_2 constituído de:

$$S \rightarrow AS \mid \lambda$$
$$A \rightarrow 0A0 \mid 1$$

Solução:

$$L = \{0^{n}10^{n} \mid n \in \mathbf{N}\}^*.$$

8. Partindo do AFNλ a seguir, obtenha um AFN e um AFD equivalentes.

 $AFN\lambda \\$

AFN

AFD

9. Seja o AFNλ com o seguinte diagrama de estados:

Obtenha um AFN equivalente.

Solução:

10. Seja o AFN λ com o seguinte diagrama de estados:

a) Apresente o diagrama de estados de um AFN equivalente.

Solução:

b) Apresente um AFD equivalente.

Solução:

11. Seja o AFD com o seguinte diagrama de estados:

a) Obtenha o AFD Mínimo equivalente.

Solução:

Inicialmente, deve-se eliminar o estado 8, inalcançável a partir do estado inicial. As partições induzidas pela relação de equivalência entre estados evoluem assim:

$$S_0$$
: {1, 2, 3, 5, 7} {4, 6}; S_1 : {1, 2, 5, 7} {3} {4, 6}; S_2 : {1, 2} {5, 7} {3} {4, 6}; S_3 : {1, 2} {5, 7} {3} {4, 6}.

Diagrama de estados do AFD mínimo:

b) Qual linguagem é reconhecida pelo AFD em questão?

Solução:

Linguagem: $\{0\} * \{1\} \{1\} * \{0\} \{1\} *$.

12. Seja o AFN com o seguinte diagrama de estados:

a) Que linguagem é reconhecida pelo AFN em questão?

Solução: $\{0\}^*\{1\} \cup \{1\}^*\{0\}$.

b) Obtenha um AFD equivalente.

- 13. Construa AFDs que reconheçam as linguagens:
- **a)** $L = {\lambda, 0, 1}{\{\lambda, 0, 1\}\{1\}^*};$

Solução:

b) $L = \{w \in \{0,1\}^* \mid 00 \text{ não \'e prefixo nem sufixo de } w\}.$

Solução:

14. Seja o AFNλ:

a) Obtenha um AFN equivalente.

b) Obtenha um AFD equivalente.

15. Expresse por meio da notação de conjuntos, usando apenas as operações de união, interseção, concatenação e/ou *fecho de Kleene*, as seguintes linguagens:

a) $L = \{w \in \{0,1\}^* \mid w \text{ contém } 00 \text{ como prefixo e como sufixo}\}.$

Solução:

 $\{00\}\{0,1\}*\{00\} \cup \{00,000\}.$

b) $L = \{w \in \{0,1\}^* \mid w \text{ contém } 00 \text{ e } |w| \text{ é par } \}.$

Solução:

$$(\{0,1\}^*\{00\}\{0,1\}^*) \cap (\{0,1\}\{0,1\})^*.$$

c) $L = \{w \in \{a,b\}^* \mid w \text{ cont\'em no m\'aximo dois b's}\}.$

Solução:

$${a}^{*}{\lambda, b}{a}^{*}{\lambda, b}{a}^{*}.$$

d) $L = \{w \in \{a,b\}^* \mid a \text{ subpalavra ab ocorre um número par de vezes em } w\}.$

Solução:

$$({b}^{a}^{a}^{a}^{a})^{a}^{b}^{a}^{a}^{a}^{a}^{a}^{b})^{a}^{b}^{a}^{a}.$$

16. Construa gramáticas para as linguagens:

a) $L = \{w \in \{a,b\}^* \mid w \text{ contém no máximo dois b's}\}.$

Solução:

$$P \rightarrow ABABA$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow \lambda \mid b$$

b) $L = \{w \in \{a,b\}^* \mid a \text{ subpalavra ab ocorre um número par de vezes em } w\}.$

Solução:

$$P \rightarrow BAabBAabP \mid BA$$

$$A \rightarrow aA \mid \lambda$$

$$B \rightarrow bB \mid \lambda$$

17. Construa AFDs que reconheçam:

a) $L = \{w \in \{a,b\}^* \mid a \text{ subpalavra ab ocorre um número par de vezes em } w\}.$

b) $\{000,1\}*\{0,11\}*$.

Solução:

18. Obtenha um AFN equivalente a:

Solução

AFN

19. Seja o AFNλ:

a) Obtenha um AFN equivalente pela eliminação das transições λ.

Solução:

b) Obtenha um AFD equivalente ao AFN.

20. Construa um AFD que reconheça a linguagem denotada por (01)*(00 + 1)*01.

Solução:

Um AFNλ:

Um AFN correspondente:

AFD correspondente:

21. Encontre uma expressão regular que denote $\{0^m1^n \mid m+n \text{ \'e impar}\}$.

Solução: ER: (00)*(0+1)(11)*.

22. Construa um AFN de 3 estados que reconheça (a + b)*bc* + (a + d)*dc*.

23. Construa uma GLC e um AP para a linguagem: $\{a^{m+n}b^mc^n \mid m+n>=1\}$.

Solução:

GLC:

$$P \rightarrow aPc \mid aXb \mid aXc$$

 $X \rightarrow aXb \mid \lambda$

AP:

a,
$$P/P$$
c λ , X/λ

a, P/X b b, b/ λ

a, P/X c c, c/ λ

a, X/X b

- **24**. Para cada linguagem a seguir, construa um APD que a reconheça, se possível. Se não for possível, construa um APN. Critério de reconhecimento: por estado final e pilha vazia.
- **a)** $\{0^n 1^k \mid n > k\}$

Solução:

APN

$$0,\lambda/X$$

$$0,\lambda/\lambda$$

$$0,\lambda/\lambda$$

$$0,\lambda/\lambda$$

- **b)** $\{0^n 1^k \mid n < k\}$
- Solução:

APD

- **25**. Seja $L = \{a^m b^n c^p \mid m >= n \text{ ou } m >= p\}.$
- a) Construa uma GLC que gere L.

Solução:

 $P \rightarrow XC \mid Y$

 $X \rightarrow aXb \mid aX \mid \lambda$

 $C \rightarrow cC \mid \lambda$

 $Y \rightarrow aYc \mid aY \mid B$

 $B \rightarrow bB \mid \lambda$

b) Mostre que a GLC construída é ambígua ou apresente uma argumentação convincente de que não é.

Solução:

A GLC é ambígua, pois há duas derivações mais à esquerda para λ:

 $P \Rightarrow XC \Rightarrow C \Rightarrow \lambda$

 $P \Rightarrow Y \Rightarrow B \Rightarrow \lambda$

26. Seja $L = \{0^k 1^n \mid k \text{ \'e impar e } k \text{ \'e diferente de } n\}$. Construa uma GLC que gere L.

Solução:

 $P \rightarrow X \mid Y$

 $X \rightarrow 00X \mid 0A$

 $A \rightarrow 11A | \lambda$

 $Y \rightarrow 00Y11 \mid 0B1 \mid 0C1$

 $B \rightarrow 00B \mid 00$

 $C \rightarrow 11C \mid 11$

27. Apresente um diagrama de estados de um AFD que reconheça (000 + 1)*(00 + 11).

28. Apresente um diagrama de estados de um AFN que reconheça a linguagem:

$$L = \{w \in \{0,1\}^* \mid 001 \text{ não é sufixo de } w\}$$

e que tenha as seguintes características:

- tem um único estado final; e
- para cada $w \in L$ existe uma única computação de sucesso.

Solução:

29. Seja a gramática:

$$P \rightarrow A \mid BC$$

$$A \rightarrow B \mid C$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid c$$

a) Use o método visto no curso para criar uma gramática equivalente sem regras unitárias (regras de cadeias).

Solução:

Variáveis encadeadas: $enc(P) = \{P, A, B, C\}$, $enc(A) = \{A, B, C\}$, $enc(B) = \{B\}$, $enc(C) = \{C\}$. Com isto a gramática fica assim:

$$P \rightarrow BC \mid bB \mid b \mid cC \mid c$$

 $A \rightarrow bB \mid b \mid cC \mid c$
 $B \rightarrow bB \mid b$
 $C \rightarrow cC \mid c$

b) Mostre que a gramática criada contém símbolos inúteis (um ou mais).

Solução:

Aplicando-se o método de detecção de variáveis inúteis obtém-se inicialmente $V' = \{P, A, B, C\}$ e depois $V'' = \{P, B, C\}$, e portanto A é inútil.

30. Construa uma gramática que gere:

a)
$$\{a^n b^n a^n \mid n >= 1\}.$$

Solução:

$$P \rightarrow aPBa \mid aba$$

$$aB \rightarrow Ba$$

$$bB \rightarrow bb$$

b)
$$\{a^n b^i c^j \mid n > i + j\}.$$

Solução:

$$X \rightarrow aXc \mid Y$$

$$Y \rightarrow aYb \mid A$$

$$A \rightarrow aA \mid a$$

31. Seja a GLC
$$G: A \rightarrow AA \mid 01 \mid 1$$

a) Mostre que G é ambígua apresentando duas árvores de derivação para a menor palavra para a qual existam duas árvores de derivação.

Solução:

Duas árvores de derivação para 111:

b) Construa duas GLCs equivalentes a *G*, ambas não ambíguas.

$$P \rightarrow PX \mid X$$

$$X \rightarrow 1 \mid 01$$

$$P \rightarrow XP \mid X$$

$$X \rightarrow 1 \mid 01$$

32. Construa uma gramática que gere $\{w \in \{a,b,c\}^* \mid w \text{ não contém ab nem bc}\}.$

$$X \rightarrow aA \mid bB \mid cX \mid \lambda$$

$$A \rightarrow aA \mid cX \mid \lambda$$

$$B \rightarrow aA \mid bB \mid \lambda$$

33. Seja o AFNE com o diagrama de estados:

Obtenha um AFN equivalente.

Solução:

AFNλ equivalente:

AFN:

34. Considere o AFN com o seguinte diagrama de estados (note que ele tem dois estados iniciais):

AFN

Obtenha um AFD equivalente.

Solução:

35. Obtenha uma expressão regular que denote a linguagem reconhecida pelo AFN:

Solução:

Colocando-se um estado final único e transformando em diagrama ER:

Eliminando-se o estado 3:

Eliminando-se o estado 4:

Eliminando-se o estado 2:

$$(a+c)(b+ac^*a)^*(\lambda+ac^*b(b+c)^*)$$

A ER é, então: $a*(a + c)(b + ac*a)*(\lambda + ac*b(b + c)*)$.

36. Obtenha uma expressão regular que denote a linguagem reconhecida pelo AFN:

AFN

Solução:

Eliminando-se o estado 2, obtém-se:

Eliminando-se o estado 3, obtém-se:

ER: $(1 + 01*0)*[\lambda + (0 + 01*1)0*1(0 + 10*1)*].$

37. Seja o AFNE com o diagrama de estados a seguir. Obtenha o AFN equivalente.

Solução:

AFNλ equivalente:

AFN:

Página 19 / 27

38. Seja o AFN com o diagrama de estado (note que ele tem dois estados iniciais):

Obtenha um AFD equivalente.

Solução:

AFD

- **39**. Descreva utilizando apenas notação de conjunto e as operações de união, concatenação e *fecho de Kleene*:
- a) O conjunto das palavras de 0s e 1s que começam com 0 e terminam com 1.

 $\{0\}\{0,1\}*\{1\}.$

b) O conjunto das palavras de 0s e 1s que contém 00.

 $\{0, 1\}*\{00\}\{0, 1\}*.$

c) O conjunto das palavras de 0s e 1s que começam com 0 e contém a subpalavra 00.

 $\{00\}\{0,1\}^* \cup \{01\}\{0,1\}^*\{00\}\{0,1\}^*.$

d) O conjunto das palavras de 0s e 1s com número par de 1s.

 $\{0\}*(\{1\}\{0\}*\{1\}\{0\}*)*.$

- 40. Obtenha gramáticas para as seguintes linguagens:
- a) O conjunto das palavras de 0s e 1s com número par de 1s.

Solução:

$$P \rightarrow Z1Z1P \mid Z$$
$$Z \rightarrow 0Z \mid \lambda$$

b) $\{w \in \{0,1\}^* \mid w \text{ não contém } 00\}.$

Solução:

$$X \rightarrow 1P \mid 01P \mid 0 \mid \lambda$$

c)
$$\{a\} * \{0^n 1^n \mid n >= 0\} \{b\} *.$$

Solução:

$$R \rightarrow aR \mid Rb \mid N$$
$$N \rightarrow 0N1 \mid \lambda$$

d) $\{w \in \{0,1\}^* \mid w \text{ tem mais 0s que 1s}\}.$

Solução:

$$Z \rightarrow 0Z1 \mid 0Z \mid 0$$
$$01 \rightarrow 10$$

41. Construa AFDs que reconheçam as linguagens a seguir:

a)
$$\{0,1\}^* - \{0,1\}.$$

b) O conjunto das palavras de 0s e 1s que começam com 0 e tem número par de 0s.

c) $\{w \in \{0,1,2\}^* \mid w \text{ não contém } 010\}.$

d) $\{w \in \{0,1\}^* \mid w \text{ contém } 00, \text{ mas não contém } 11\}.$

42. Descreva em português, de forma *precisa* e *concisa*, as linguagens:

Por exemplo: $\{0\}\{0,1\}^*\{1\}$ é o conjunto das palavras de 0s e 1s que começam com 0 e terminam com 1.

O conjunto das palavras de 0s e 1s que começam com 1.

O conjunto das palavras de 0s e 1s que contém 11.

c)
$$\{0,1\}^*\{11\}^*\{0,1\}^*$$
.

O conjunto de todas as palavras de 0s e 1s.

d)
$$(\{1\}^* \cup \{0\}\{1\}^*\{0\})^*$$
.

O conjunto das palavras de 0s e 1s com número par de 0s.

43. Obtenha gramáticas para as seguintes linguagens:

a)
$$\{0,1\}^*\{11\}\{0,1\}^*$$
.

$$P \rightarrow X11X$$
$$X \rightarrow 0X \mid 1X \mid \lambda$$

b) $\{w \in \{0,1\}^* \mid |w| \text{ é múltiplo de 3}\}.$

Solução:

$$M \to XXXM / \lambda$$
$$X \to 0 \mid 1$$

c)
$$\{ww^r \mid w \in \{a,b\}^*\}.$$

Solução:

$$R \rightarrow aRa / bRb \mid \lambda$$

d) A concatenação das linguagens dos itens (a) e (c).

Solução:

$$C \rightarrow PR$$

$$P \rightarrow X11X$$

$$X \rightarrow 0X / 1X \mid \lambda$$

$$R \rightarrow aRa / bRb \mid \lambda$$

44. Construa AFDs que reconheçam as linguagens a seguir. Apresente apenas o diagrama de estados (que podem ser simplificados).

a)
$$\{0,1\}^* - \{\lambda,0\}.$$

Solução:

b)
$$\{0,1\}*\{11\}\{0,1\}*$$
.

Solução:

c) $\{w \in \{0,1,2\}^* \mid w \text{ tem número par de 0s e ímpar de 2s}\}.$

d) $\{w \in \{0,1\}^* \mid w \text{ não contém três símbolos consecutivos idênticos}\}.$

Solução:

45. Obtenha ERs que denotem as linguagens:

a) $\{w \in \{0,1\}^* \mid w \text{ tem um número par de 0s antes de seu primeiro 1}\} \cup \{0\}^*$.

Solução: ER: (00)*1(0+1)*+0*.

b) $\{w \in \{0,1\}^* \mid w \text{ não contém a subpalavra } 010\}.$

Solução:

Um AF que reconhece $\{w \in \{0,1\}^* \mid w \text{ não contém a subpalavra } 010\}$:

Eliminando-se 3 e 2, nesta ordem, obtém-se a ER: $(1+00*11)*(\lambda+00*(\lambda+1))$.

- **46**. Seja a gramática G de regras $X \rightarrow XX / 0 | 1$.
- **a)** Mostre que G é ambígua.

Solução:

Duas DMEs para 000:

$$X \Rightarrow XX \Rightarrow 0X \Rightarrow 0XX \Rightarrow 00X \Rightarrow 000$$

 $X \Rightarrow XX \Rightarrow XXX \Rightarrow 0XX \Rightarrow 00X \Rightarrow 000$

b) Construa uma gramática não ambígua equivalente a G.

Solução:

$$X \rightarrow 0X / 1X | 0 | 1$$
.

47. Transforme a GLC a seguir em uma equivalente na forma normal de Chomsky (FNC).

$$F \to FTC \mid CD$$

$$T \to TC \mid \lambda$$

$$C \to CD \mid D$$

 $D \rightarrow aDb \mid \lambda$

Solução:

- Eliminação de regras λ.

Variáveis anuláveis: {T, D, C, F}. GLC resultante:

$$F \to FTC \mid TC \mid FC \mid FT \mid T \mid C \mid CD \mid D \mid \lambda$$

$$T \to TC \mid C$$

$$C \to CD \mid D$$

$$D \to aDb \mid ab$$

- Eliminação de regras unitárias.

$$enc(F) = \{F, T, C, D\}; enc(T) = \{T, C, D\}; enc(C) = \{C, D\}; enc(D) = \{D\}. GLC resultante:$$

$$F \rightarrow FTC \mid TC \mid FC \mid FT \mid CD \mid aDb \mid ab \mid \lambda$$

 $T \rightarrow TC \mid CD \mid aDb \mid ab$
 $C \rightarrow CD \mid aDb \mid ab$
 $D \rightarrow aDb \mid ab$

- Introdução de novas variáveis. GLC resultante:

$$F \rightarrow FTC \mid TC \mid FC \mid FT \mid CD \mid ADB \mid AB \mid \lambda$$

$$T \rightarrow TC \mid CD \mid ADB \mid AB$$

$$C \rightarrow CD \mid ADB \mid AB$$

$$D \rightarrow ADB \mid AB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

- Quebrando as regras. GLC resultante:

$$F \rightarrow FX \mid TC \mid FC \mid FT \mid CD \mid AY \mid AB \mid \lambda$$

$$T \rightarrow TC \mid CD \mid AY \mid AB$$

$$C \rightarrow CD \mid AY \mid AB$$

$$D \rightarrow AY \mid AB$$

 $A \rightarrow a$

$$B \rightarrow b$$

$$X \to TC$$

$$Y \rightarrow DB$$

- 48. Obtenha gramáticas para as linguagens:
- **a)** $\{0\}\{0,1\}*\{1\}.$

Solução:

$$P \rightarrow 0X1$$

$$X \rightarrow 0X \mid 1X \mid \lambda$$

b) O conjunto das palavras no alfabeto $\{0,1\}$ com número par de símbolos.

Solução:

$$P \rightarrow BBP / \lambda$$

$$B \rightarrow 0 \mid 1$$

c) $\{0^{2n}1^{3n} \mid n \in \mathbf{N}\}.$

Solução:

$$A \rightarrow 00A111 / \lambda$$

d) $\{w \in \{0,1\}^* \mid w = w^r\}.$

Solução:

$$P \to 0P0 \mid 1P1 / \lambda \mid 0 \mid 1$$

- 49. Encontre expressões regulares para as seguintes linguagens:
- a) $\{w \in \{0,1\}^* \mid w \text{ contém um, dois ou três 0s}\}.$

Solução: ER: $1*01*(\lambda + 01*(\lambda + 01*))$.

b) $\{w \in \{0,1\}^* \mid w \text{ contém número ímpar de 0s e par de 1s}\}.$

Solução:

Um AFD para a linguagem:

Eliminando ii:

Eliminando pi:

ER: (1(00)*1)*(0+1(00)*01)[11+10(00)*01+(0+10(00)*1)(1(00)*1)*(0+1(00)*01)]*.

c) $\{w \in \{a,b\}^* \mid |w| <= 4\}.$

Solução: ER: $(a + b + \lambda)(a + b + \lambda)(a + b + \lambda)(a + b + \lambda)$.

d) $\{w \in \{0,1\}^* \mid w \text{ inicia com } 0 \text{ e } |w| \text{ é par}\}.$

Solução: ER: 0(0+1)((0+1)(0+1))*.

e) $\{w \in \{0,1\}^* \mid |w| > 0 \text{ e } w \text{ tem um único } 0 \text{ nas posições ímpares}\}$. Exemplos, sublinhando o zero na posição ímpar: $\underline{0}, \underline{00}, \underline{01}, \underline{001}, \underline{011}, \underline{100}, \underline{110}, \underline{0}010 \text{ etc.}$

Solução: ER: $(1(0+1))*0((0+1)1)*(\lambda+0+1)$.

50. Construa:

a) Um APD que reconheça $\{a^n(cba)^n \mid n \in \mathbb{N}\}.$

Solução:

$$\begin{array}{c|c} a, \lambda/C \\ \hline & c, C/B \\ \hline & b, B/A \\ c, C/B \end{array}$$

b) Um APN que reconheça $\{a^n(abc)^n \mid n \in \mathbf{N}\}.$

$$\begin{array}{c|c} \mathbf{a}, \lambda/\mathbf{A} \\ \hline & \mathbf{a}, \mathbf{A}/\mathbf{B} \\ \hline & \mathbf{b}, \mathbf{B}/\mathbf{C} \\ \mathbf{c}, \mathbf{C}/\lambda \end{array}$$