MATH 131: Numerical Methods for scientists and engineers – Discussion 4: Paper

The goals of this discussion section are:

- Get a deeper understanding of Lagrange interpolant, Newton's divided differences and cubic splines.
- 1. Use Lagrange interpolating polynomials of degree one, two and three to approximate f(8.4), knowing that f(8.1) = 16.9, f(8.3) = 17.6, f(8.6) = 18.5 and f(8.7) = 18.8.
 - (a) Sketch the situation.
 - (b) Give the general expression of the Lagrange polynomials $L_{n,k}$ and the Lagrange interpolant.
- 2. Repeat the previous exercise using Newton's divided differences. Comment on the result.
 - (a) Give the general expression of the coefficients involved in the Newton's divided differences.
 - (b) Make a table and store all coefficients.
- - (a) List all conditions you need to build this cubic spline.
- 4. BONUS: Download on Catcourses cubic_spline.mlx. Complete the MATLAB function, called cubic_spline that inputs a set of data points (x,y) = (datx, daty), x the numbers at which to interpolate, and outputs the cubic spline interpolant, S, evaluated at x using natural cubic spline interpolant:

Use your textbook to complete the code. Use the code to interpolate a the data points:

X	0.9	1.3	1.9	2.1	2.6	3.0	3.9	4.4	4.7	5.0	6.0	7.0	8.0	9.2	10.5	11.3	11.6	12.0	12.6	13.0	13.3
f(x)	1.3	1.5	1.85	2.1	2.6	2.7	2.4	2.15	2.05	2.1	2.25	2.3	2.25	1.95	1.4	0.9	0.7	0.6	0.5	0.4	0.25

Interpolate using x=1.0:0.1:14.

Hint: your results should be the same as the ones obtained in Table 3.19 of your textbook.