Varianten des Theorems von Kirchberger

Tim Baumann

TopMath-Frühlingsschule in Oberschönenfeld

4. März 2014

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene trennbar, wenn für jede Menge $T \subset E^n$ mit höchstens n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene trennbar sind.

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene trennbar, wenn für jede Menge $T \subset E^n$ mit höchstens n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene trennbar sind.

Übersicht

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathsf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathsf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall \, \mathbf{a} \in \mathbf{A} \, : \, \|\mathbf{p} - \mathbf{a}\| < \alpha$$

und

$$\forall b \in B : ||p - a|| > \alpha$$

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathsf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$

und

$$\forall b \in B : ||p - a|| > \alpha$$

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathsf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$

oder

$$\forall a \in A : \|p - a\| < \alpha$$

$$\forall a \in A : \|p - a\| > \alpha$$

$$\forall b \in B : ||p - a|| > \alpha$$

$$\forall b \in B : \|p - a\| < \alpha$$

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene streng trennbar, wenn für jede Menge $T \subset E^n$ mit höchstens n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene streng trennbar sind.

Theorem (Kirchberger', 8.2)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit höchstens n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Theorem (Kirchberger', 8.2)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit höchstens n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Theorem (Kirchberger', 8.2)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit höchstens n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Beweis:

Beweis: E F

1 Bette E^n wie üblich in den E^{n+1} ein.

Beweis: E F

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.

Beweis: Eⁿ

- ① Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : E^n \to S$.

Beweis: $E \rightarrow \phi(x)$

- Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : E^n \to S$.

Beweis: Eⁿ

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : E^n \to S$.
- **②** Seien $P, Q \subset E^n$ nichtleer und kompakt sodass für jede Menge $T \subset E^n$ mit höchstens n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

- ① Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : E^n \to S$.
- Seien $P,Q \subset E^n$ nichtleer und kompakt sodass für jede Menge $T \subset E^n$ mit höchstens n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.
- **3** Seien P' und Q' die (kompakten) Bilder von P bzw. Q unter ϕ .

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

o Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.

Beweis: E P' P'

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

- **6** Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

- **5** Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- \odot Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).

Beweis: E P Q P

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

- **5** Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- \odot Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).
- lacktriangle Der Kreis auf S ist der Schnitt von S mit einer Hyperebene H.

Beweis: English Policy Policy

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

- **5** Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- lacktriangle Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).
- **9** Der Kreis auf S ist der Schnitt von S mit einer Hyperebene H.
- ① Da H dann $T \cap P'$ und $T \cap Q'$ streng trennt, folgt die Behauptung nach dem Satz von Kirchberger.

Beweis: E

 $\textbf{9} \ \, \mathsf{Sei} \,\, \alpha \in \mathsf{E}^{n+1} \,\, \mathsf{und} \,\, b \in \mathbb{R}, \, \mathsf{sodass} \,\, \langle \alpha, p \rangle < b \,\, \mathsf{für alle} \,\, p \in P' \,\, \mathsf{und} \,\, \langle \alpha, q \rangle > b \,\, \mathsf{für alle} \,\, q \in Q'.$

Beweis: E

- ① Sei $\alpha \in \mathsf{E}^{n+1}$ und $b \in \mathbb{R}$, sodass $\langle \alpha, p \rangle < b$ für alle $p \in P'$ und $\langle \alpha, q \rangle > b$ für alle $q \in Q'$.
- $\hbox{ Da P' und Q' kompakt sind, gibt es $\epsilon > 0$ mit $\langle \alpha, p \rangle \leq b \epsilon$ für alle $p \in P'$ und $\langle \alpha, q \rangle \geq b + \epsilon$ für alle $q \in Q'$. }$

- ① Sei $\alpha \in \mathbb{E}^{n+1}$ und $b \in \mathbb{R}$, sodass $\langle \alpha, p \rangle < b$ für alle $p \in P'$ und $\langle \alpha, q \rangle > b$ für alle $q \in Q'$.
- ② Da P' und Q' kompakt sind, gibt es $\epsilon > 0$ mit $\langle \alpha, p \rangle \leq b \epsilon$ für alle $p \in P'$ und $\langle \alpha, q \rangle \geq b + \epsilon$ für alle $q \in Q'$.
- Somit können wir annehmen, dass H₀ den Nordpol der Sphäre S nicht schneidet.

Beweis: English Policy Control of the Control of th

- ① Sei $\alpha \in \mathbb{E}^{n+1}$ und $b \in \mathbb{R}$, sodass $\langle \alpha, p \rangle < b$ für alle $p \in P'$ und $\langle \alpha, q \rangle > b$ für alle $q \in Q'$.
- ② Da P' und Q' kompakt sind, gibt es $\epsilon > 0$ mit $\langle \alpha, p \rangle \leq b \epsilon$ für alle $p \in P'$ und $\langle \alpha, q \rangle \geq b + \epsilon$ für alle $q \in Q'$.
- Somit können wir annehmen, dass H₀ den Nordpol der Sphäre S nicht schneidet.
- **4** Der Schnitt $H_0 \cap S$ ist ein Kreis und $\phi^{-1}(H_0 \cap S)$ trennt P und Q. \square

Übersicht

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt

$$Z = A + F = \{a + f \mid a \in A, f \in F\}$$

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt $Z = A + F = \{a + f \mid a \in A, f \in F\}$

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt $Z = A + F = \{a + f \mid a \in A, f \in F\}$

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt $Z = A + F = \{a + f \mid a \in A, f \in F\}$

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt $Z = A + F = \{a + f \mid a \in A, f \in F\}$

Sei $A \subset E^n$ und $F \subset E^n$ ein k-dimensionaler Unterraum. Dann heißt $Z = A + F = \{a + f \mid a \in A, f \in F\}$

3-Zylinder

Kirchberger-Theorem für Zylinder?

Theorem (???)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann gibt es einen k-Zylinder $Z = (\operatorname{conv} P) + F$ mit $Z \cap Q = \emptyset$ genau dann, wenn es für alle Teilmengen $T \subset P \cup Q$ mit höchstens f(n,k) Punkten einen k-Zylinder $Z_T = \operatorname{conv}(T \cap P) + F_T$ mit $Z_T \cap (T \cap Q) = \emptyset$ gibt.

Kirchberger-Theorem für Zylinder?

Theorem (???)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann gibt es einen k-Zylinder $Z = (\operatorname{conv} P) + F$ mit $Z \cap Q = \emptyset$ genau dann, wenn es für alle Teilmengen $T \subset P \cup Q$ mit höchstens f(n,k) Punkten einen k-Zylinder $Z_T = \operatorname{conv}(T \cap P) + F_T$ mit $Z_T \cap (T \cap Q) = \emptyset$ gibt.

Kirchberger-Theorem für Zylinder? So nicht!

Theorem (???)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann gibt es einen k-Zylinder Z = (convP) + F mit $Z \cap Q = \emptyset$ genau dann, wenn es für alle Teilmengen T von $P \cup Q$ mit höchstens f(n,k) Purkten einen k-Zylinder $Z_T = conv(T \cap P) + F_T$ mit $Z_T \cap (T \cap Q) = \emptyset$ gibt.

Theorem (9.5)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Angenommen, für $1 \le k \le n$ kann jede Teilmenge von Q mit höchstens k Punkten streng von P mit einer Hyperebene getrennt werden. Dann gibt es zu jedem k-Zylinder $Z_1 = (\operatorname{conv} P) + F_1$ einen (k-1)-Zylinder $Z_2 = (\operatorname{conv} P) + F_2$ mit $Z_2 \subset Z_1$ und $Z_2 \cap Q = \emptyset$.

Seien $P,Q\subset \mathsf{E}^3$ kompakt.

Seien $P, Q \subset E^3$ kompakt.

• Wenn jeder Punkt aus Q mit einer Hyperebene streng von P getrennt werden kann, dann liegt Q außerhalb von convP.

Seien $P, Q \subset E^3$ kompakt.

- Wenn jeder Punkt aus Q mit einer Hyperebene streng von P getrennt werden kann, dann liegt Q außerhalb von convP.
- Wenn je zwei Punkte aus Q mit einer Hyperebene streng von P getrennt werden können, dann gibt es einen 1-Zylinder, der P beinhaltet und disjunkt von Q ist.

Seien $P, Q \subset E^3$ kompakt.

- Wenn jeder Punkt aus Q mit einer Hyperebene streng von P getrennt werden kann, dann liegt Q außerhalb von convP.
- Wenn je zwei Punkte aus Q mit einer Hyperebene streng von P getrennt werden können, dann gibt es einen 1-Zylinder, der P beinhaltet und disjunkt von Q ist.
- Wenn je drei Punkte aus Q mit einer Hyperebene streng von P getrennt werden können, dann gibt es zwei parallele Hypereben, sodass P zwichen ihnen und Q außerhalb liegt.

Eine Teilmenge $K \subset S_{\alpha}(p)$ heißt stark konvex, wenn K keine antipodalen (gegenüberliegenden) Punkte enthält und zu jedem Paar von Punkten auch den kleineren Bogen des Großkreises zwischen diesen Punkten enthält.

Eine Teilmenge $K \subset S_{\alpha}(p)$ heißt stark konvex, wenn K keine antipodalen (gegenüberliegenden) Punkte enthält und zu jedem Paar von Punkten auch den kleineren Bogen des Großkreises zwischen diesen Punkten enthält.

Lemma (9.4)

Sei $S = S_1(0)$ die Einheitssphäre um den Nullpunkt im E^n und $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, stark konvexen Teilmengen von S. Angenommen, je n (oder weniger) Elemente von F haben einen Punkt gemeinsam. Dann gibt es ein Paar von antipodalen Punkten $\{p, -p\}$, sodass $\{p, -p\} \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis von Lemma 9.4.

1 Für alle $i \in I$ gilt: Da $A_i \subset S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.

Theorem (Horn, 6.8)

Sei $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, konvexen Teilmengen von E^n mit mindestens n Elementen. Angenommen, jede Unterfamilie mit k Elementen besitzt einen gemeinsamen Punkt, wobei $1 \leq k \leq n$. Dann gibt es für jeden (n-k)-dimensionalen Unterraum F_1 einen (n-k+1)-dimensionalen Unterraum F_2 , sodass $F_2 \supset F_1$ und $F_2 \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis von Lemma 9.4.

• Für alle $i \in I$ gilt: Da $A_i \subset S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.

Theorem (Horn, 6.8)

Sei $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, konvexen Teilmengen von E^n mit mindestens n Elementen. Angenommen, jede Unterfamilie mit k Elementen besitzt einen gemeinsamen Punkt, wobei $1 \leq k \leq n$. Dann gibt es für jeden (n-k)-dimensionalen Unterraum F_1 einen (n-k+1)-dimensionalen Unterraum F_2 , sodass $F_2 \supset F_1$ und $F_2 \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis von Lemma 9.4.

- Für alle $i \in I$ gilt: Da $A_i \subset S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.
- ② Aus dem Lemma von Horn folgt mit k=n, $F_1=\{0\}$, dass ein 1-dimensionaler Unterraum L mit $L \cap \text{conv} A_i \neq \emptyset$ existiert.

Theorem (Horn, 6.8)

Sei $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, konvexen Teilmengen von E^n mit mindestens n Elementen. Angenommen, jede Unterfamilie mit k Elementen besitzt einen gemeinsamen Punkt, wobei $1 \leq k \leq n$. Dann gibt es für jeden (n-k)-dimensionalen Unterraum F_1 einen (n-k+1)-dimensionalen Unterraum F_2 , sodass $F_2 \supset F_1$ und $F_2 \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis von Lemma 9.4.

- Für alle $i \in I$ gilt: Da $A_i \subset S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.
- ② Aus dem Lemma von Horn folgt mit k=n, $F_1=\{0\}$, dass ein 1-dimensionaler Unterraum L mit $L \cap \text{conv} A_i \neq \emptyset$ existiert.
- **3** Da A_i stark konvex ist, gilt auch $L \cap A_i \neq \emptyset$ für alle $i \in I$.

Theorem (Horn, 6.8)

Sei $F = \{A_i \mid i \in I\}$ eine Familie von kompakten, konvexen Teilmengen von E^n mit mindestens n Elementen. Angenommen, jede Unterfamilie mit k Elementen besitzt einen gemeinsamen Punkt, wobei $1 \leq k \leq n$. Dann gibt es für jeden (n-k)-dimensionalen Unterraum F_1 einen (n-k+1)-dimensionalen Unterraum F_2 , sodass $F_2 \supset F_1$ und $F_2 \cap A_i \neq \emptyset$ für alle $i \in I$.

Beweis von Lemma 9.4.

- Für alle $i \in I$ gilt: Da $A_i \subset S$ kompakt und stark konvex ist, ist conv A_i kompakt und enthält nicht den Nullpunkt.
- ② Aus dem Lemma von Horn folgt mit k=n, $F_1=\{0\}$, dass ein 1-dimensionaler Unterraum L mit $L \cap \text{conv} A_i \neq \emptyset$ existiert.
- **3** Da A_i stark konvex ist, gilt auch $L \cap A_i \neq \emptyset$ für alle $i \in I$.
- **4** Mit $\{p, -p\}$:= $L \cap S$ folgt die Aussage.

Sei $\delta := \inf\{\operatorname{dist}(\operatorname{conv} T, \operatorname{conv} P) \mid T \text{ ist Teilmenge von } Q \text{ mit h\"ochstens } k \text{ Punkten } \}.$

Behauptung: $\delta > 0$

Sei $\delta := \inf\{\operatorname{dist}(\operatorname{conv} T, \operatorname{conv} P) \mid T \text{ ist Teilmenge von } Q \text{ mit h\"ochstens } k \text{ Punkten } \}.$

Behauptung: $\delta > 0$

• Sei R die Menge aller $x \in E^n$, die Konvexkombination von höchstens k Punkten aus Q sind. Die Menge R ist kompakt, da sie Bild von

$$\begin{split} Q^k \times \textit{M}^k \to \mathsf{E}^n, & (q_1,...,q_k,\lambda_1,...,\lambda_k) \mapsto \lambda_1 q_1 + ... + \lambda_k q_k, \\ & \text{mit } \textit{M}^k \coloneqq \{(\lambda_1,...,\lambda_k) \in [0,1]^k \mid \lambda_1 + ... + \lambda_k = 1\}, \end{split}$$

Sei $\delta := \inf\{\operatorname{dist}(\operatorname{conv} T, \operatorname{conv} P) \mid T \text{ ist Teilmenge von } Q \text{ mit h\"ochstens } k \text{ Punkten } \}.$

Behauptung: $\delta > 0$

• Sei R die Menge aller $x \in E^n$, die Konvexkombination von höchstens k Punkten aus Q sind. Die Menge R ist kompakt, da sie Bild von

$$\begin{split} Q^k \times \textit{M}^k \to \mathsf{E}^n, & (q_1,...,q_k,\lambda_1,...,\lambda_k) \mapsto \lambda_1 q_1 + ... + \lambda_k q_k, \\ & \text{mit } \textit{M}^k \coloneqq \{(\lambda_1,...,\lambda_k) \in [0,1]^k \mid \lambda_1 + ... + \lambda_k = 1\}, \end{split}$$

einer stetigen Abbildung mit kompakter Definitionsmenge, ist.

② Angenommen, dist(R, convP) = 0. Dann gibt es $r = \lambda_1 q_1 + ... + \lambda_k q_k \in R$ mit dist(r, convP) = 0, also $r \in convP$.

Sei $\delta := \inf\{\operatorname{dist}(\operatorname{conv} T, \operatorname{conv} P) \mid T \text{ ist Teilmenge von } Q \text{ mit h\"ochstens } k \text{ Punkten } \}.$

Behauptung: $\delta > 0$

1 Sei R die Menge aller $x \in E^n$, die Konvexkombination von höchstens k Punkten aus Q sind. Die Menge R ist kompakt, da sie Bild von

$$\begin{split} Q^k \times \textit{M}^k \to \mathsf{E}^n, & (q_1,...,q_k,\lambda_1,...,\lambda_k) \mapsto \lambda_1 q_1 + ... + \lambda_k q_k, \\ & \text{mit } \textit{M}^k \coloneqq \{(\lambda_1,...,\lambda_k) \in [0,1]^k \mid \lambda_1 + ... + \lambda_k = 1\}, \end{split}$$

- ② Angenommen, $\operatorname{dist}(R,\operatorname{conv}P)=0$. Dann gibt es $r=\lambda_1q_1+...+\lambda_kq_k\in R$ mit $\operatorname{dist}(r,\operatorname{conv}P)=0$, also $r\in\operatorname{conv}P$.
- 3 Dann können aber $q_1, ..., q_k$ nicht mit einer Hyperebene stark von convP getrennt werden. Widerspruch.

Sei $\delta := \inf\{\operatorname{dist}(\operatorname{conv} T, \operatorname{conv} P) \mid T \text{ ist Teilmenge von } Q \text{ mit h\"ochstens } k \text{ Punkten } \}.$

Behauptung: $\delta > 0$

1 Sei R die Menge aller $x \in E^n$, die Konvexkombination von höchstens k Punkten aus Q sind. Die Menge R ist kompakt, da sie Bild von

$$\begin{split} Q^k \times \textit{M}^k \to \mathsf{E}^n, & (q_1,...,q_k,\lambda_1,...,\lambda_k) \mapsto \lambda_1 q_1 + ... + \lambda_k q_k, \\ & \text{mit } \textit{M}^k \coloneqq \{(\lambda_1,...,\lambda_k) \in [0,1]^k \mid \lambda_1 + ... + \lambda_k = 1\}, \end{split}$$

- ② Angenommen, dist(R, convP) = 0. Dann gibt es $r = \lambda_1 q_1 + ... + \lambda_k q_k \in R$ mit dist(r, convP) = 0, also $r \in convP$.
- 3 Dann können aber $q_1, ..., q_k$ nicht mit einer Hyperebene stark von convP getrennt werden. Widerspruch.
- **4** Für alle Mengen T wie oben gilt dann conv T ⊂ R und somit dist(conv T, conv P) ≥ dist(R, conv P).

Sei $\delta := \inf\{\operatorname{dist}(\operatorname{conv} T, \operatorname{conv} P) \mid T \text{ ist Teilmenge von } Q \text{ mit h\"ochstens } k \text{ Punkten } \}.$

Behauptung: $\delta > 0$

1 Sei R die Menge aller $x \in E^n$, die Konvexkombination von höchstens k Punkten aus Q sind. Die Menge R ist kompakt, da sie Bild von

$$Q^k \times M^k \to \mathsf{E}^n, \qquad (q_1, ..., q_k, \lambda_1, ..., \lambda_k) \mapsto \lambda_1 q_1 + ... + \lambda_k q_k,$$

$$\mathsf{mit} \ M^k \coloneqq \{(\lambda_1, ..., \lambda_k) \in [0, 1]^k \mid \lambda_1 + ... + \lambda_k = 1\},$$

- ② Angenommen, $\operatorname{dist}(R,\operatorname{conv}P)=0$. Dann gibt es $r=\lambda_1q_1+...+\lambda_kq_k\in R$ mit $\operatorname{dist}(r,\operatorname{conv}P)=0$, also $r\in\operatorname{conv}P$.
- **3** Dann können aber $q_1, ..., q_k$ nicht mit einer Hyperebene stark von convP getrennt werden. Widerspruch.
- **③** Für alle Mengen T wie oben gilt dann convT ⊂ R und somit dist(convT, convP) ≥ dist(R, convP).
- **5** Durch Übergang zum Infimum folgt $\delta \ge \text{dist}(R, \text{conv}P) > 0$.

① Sei $Z_1 = (\text{conv}P) + F_1$ ein k-Zylinder. Annahme: $Z_1 \cap Q \neq \emptyset$.

200

- Sei $Z_1 = (convP) + F_1$ ein k-Zylinder. Annahme: $Z_1 \cap Q \neq \emptyset$.
- ② Setze $\Omega := S_1(0) \cap F = \{x \in F \mid ||x|| = 1\}.$

- **1** Sei $Z_1 = (\text{conv}P) + F_1$ ein k-Zylinder. Annahme: $Z_1 \cap Q \neq \emptyset$.
- ② Setze $\Omega := S_1(0) \cap F = \{x \in F \mid ||x|| = 1\}.$
- § Für $w \in \Omega$ sei F_w das orthogonale Komplement zu span $\{w\}$ in F_1 , also $F_1 = \operatorname{span}\{w\} \perp F_w$ und $r_w := \mathbb{R}_{\geq 0} \cdot w$ der Strahl durch w.

 $(\operatorname{conv} P) + F_w$

- **1** Sei $Z_1 = (\text{conv}P) + F_1$ ein k-Zylinder. Annahme: $Z_1 \cap Q \neq \emptyset$.
- ② Setze $\Omega := S_1(0) \cap F = \{x \in F \mid ||x|| = 1\}.$
- § Für $w \in \Omega$ sei F_w das orthogonale Komplement zu span $\{w\}$ in F_1 , also $F_1 = \operatorname{span}\{w\} \perp F_w$ und $r_w := \mathbb{R}_{>0} \cdot w$ der Strahl durch w.
- **③** Für w ∈ Ω sei G_w diejenige Komponente von $Z_1 \setminus ((convP) + F_w)$, die $(convP) + r_w$ schneidet.

 $(\operatorname{conv} P) + r_w$

 $(\operatorname{conv} P) + F_w$

- **1** Sei $Z_1 = (\text{conv}P) + F_1$ ein k-Zylinder. Annahme: $Z_1 \cap Q \neq \emptyset$.
- ② Setze $\Omega := S_1(0) \cap F = \{x \in F \mid ||x|| = 1\}.$
- § Für $w \in \Omega$ sei F_w das orthogonale Komplement zu span $\{w\}$ in F_1 , also $F_1 = \operatorname{span}\{w\} \perp F_w$ und $r_w := \mathbb{R}_{>0} \cdot w$ der Strahl durch w.
- **③** Für w ∈ Ω sei G_w diejenige Komponente von $Z_1 \setminus ((convP) + F_w)$, die $(convP) + r_w$ schneidet.

- **1** Sei $Z_1 = (\text{conv}P) + F_1$ ein k-Zylinder. Annahme: $Z_1 \cap Q \neq \emptyset$.
- ② Setze $\Omega := S_1(0) \cap F = \{x \in F \mid ||x|| = 1\}.$
- § Für $w \in \Omega$ sei F_w das orthogonale Komplement zu span $\{w\}$ in F_1 , also $F_1 = \operatorname{span}\{w\} \perp F_w$ und $r_w := \mathbb{R}_{>0} \cdot w$ der Strahl durch w.
- Für $w \in \Omega$ sei G_w diejenige Komponente von $Z_1 \setminus ((\text{conv}P) + F_w)$, die $(\text{conv}P) + r_w$ schneidet.

q

Beweis von Theorem 9.5.

 $\bullet \ \mathsf{F\"{u}r} \ q \in Q \cap Z_1 \ \mathsf{setze}$

lacksquare Für $q \in Q \cap Z_1$ setze

$$S_q := B_{\delta/2}(q) \cap Z_1 = \{x \in Z_1 \mid ||x - q|| < \delta/2\}$$

 $(convP) + F_w$

Beweis von Theorem 9.5.

lacktriangle Für $q \in Q \cap Z_1$ setze

$$S_q := B_{\delta/2}(q) \cap Z_1 = \{x \in Z_1 \mid ||x - q|| < \delta/2\}$$

$$A_q := \{ w \in \Omega \mid S_q \subset G_w \}$$

 $(\operatorname{conv} P) + F_{w'}$

 $(convP) + F_w$

Beweis von Theorem 9.5.

lacktriangledown Für $q \in Q \cap Z_1$ setze

$$S_q := B_{\delta/2}(q) \cap Z_1 = \{x \in Z_1 \mid ||x - q|| < \delta/2\}$$

$$A_q := \{ w \in \Omega \mid S_q \subset G_w \}$$

 $(\operatorname{conv} P) + F_{w'}$

 $(convP) + F_w$

Beweis von Theorem 9.5.

6 Für $q \in Q \cap Z_1$ setze

$$S_q := B_{\delta/2}(q) \cap Z_1 = \{x \in Z_1 \mid ||x - q|| < \delta/2\}$$

$$A_q := \{ w \in \Omega \mid S_q \subset G_w \}$$

 $(convP) + F_w$

Beweis von Theorem 9.5.

o Für $q \in Q \cap Z_1$ setze

$$S_q := B_{\delta/2}(q) \cap Z_1 = \{x \in Z_1 \mid ||x - q|| < \delta/2\}$$

$$A_q := \{ w \in \Omega \mid S_q \subset G_w \}$$

Man kann zeigen: Für alle $q ∈ Q ∩ Z_1$ ist A_q kompakt und stark konvex.

Behauptung: Seien $q_1,...,q_m \in Q \cap Z_1$ mit $1 \leq m \leq k$.

Dann gilt $\bigcap_{i=1}^m A_{q_i} \neq \emptyset$.

Behauptung: Seien $q_1, ..., q_m \in Q \cap Z_1$ mit $1 \le m \le k$. Dann gilt $\bigcap_{i=1}^m A_{q_i} \ne \emptyset$.

• Es gilt dist(conv $\{q_1,...,q_m\}$, convP) $\geq \delta$.

- Es gilt dist(conv $\{q_1,...,q_m\}$, convP) $\geq \delta$.
- 2 Es folgt dist(conv($S_{q_1} \cup ... \cup S_{q_m}$), convP) $> \delta/2$.

- Es gilt dist(conv $\{q_1,...,q_m\}$, convP) $\geq \delta$.
- ② Es folgt dist(conv($S_{q_1} \cup ... \cup S_{q_m}$), convP) $> \delta/2$.
- Also gibt es eine Hyperebene H, die S_{q1} ∪ ... ∪ S_{qm} und P streng trennt. Sei H' der zu H parallele (n−1)-dimensionale Unterraum.

- Es gilt dist(conv $\{q_1,...,q_m\}$, convP) $\geq \delta$.
- ② Es folgt dist(conv($S_{q_1} \cup ... \cup S_{q_m}$), convP) $> \delta/2$.
- Also gibt es eine Hyperebene H, die S_{q1} ∪ ... ∪ S_{qm} und P streng trennt. Sei H' der zu H parallele (n−1)-dimensionale Unterraum.
- Es gilt $F \not\subset H'$, da sonst $Z_1 \cap Q = \emptyset$.

- Es gilt dist(conv $\{q_1,...,q_m\}$, convP) $\geq \delta$.
- ullet Es folgt dist $(\operatorname{conv}(S_{q_1} \cup ... \cup S_{q_m}), \operatorname{conv} P) > \delta/2.$
- Also gibt es eine Hyperebene H, die S_{q1} ∪ ... ∪ S_{qm} und P streng trennt. Sei H' der zu H parallele (n−1)-dimensionale Unterraum.
- Es gilt $F \not\subset H'$, da sonst $Z_1 \cap Q = \emptyset$.
- **5** Somit ist $G := H' \cap F$ ein (k-1)-dimensionaler Unterraum.

- Es gilt dist(conv $\{q_1,...,q_m\}$, convP) $\geq \delta$.
- ② Es folgt dist(conv($S_{q_1} \cup ... \cup S_{q_m}$), convP) $> \delta/2$.
- Also gibt es eine Hyperebene H, die S_{q1} ∪ ... ∪ S_{qm} und P streng trennt. Sei H' der zu H parallele (n−1)-dimensionale Unterraum.
- Es gilt $F \not\subset H'$, da sonst $Z_1 \cap Q = \emptyset$.
- **5** Somit ist $G := H' \cap F$ ein (k-1)-dimensionaler Unterraum.
- **o** Dann liegt $S_{q_1} \cup ... \cup S_{q_m}$ in einer der beiden Komponenten von $Z_1 \setminus ((\text{conv}P) + G)$.

- Es gilt dist(conv $\{q_1,...,q_m\}$, convP) $\geq \delta$.
- ② Es folgt $\operatorname{dist}(\operatorname{conv}(S_{q_1} \cup ... \cup S_{q_m}), \operatorname{conv} P) > \delta/2.$
- Also gibt es eine Hyperebene H, die S_{q1} ∪ ... ∪ S_{qm} und P streng trennt. Sei H' der zu H parallele (n−1)-dimensionale Unterraum.
- Es gilt $F \not\subset H'$, da sonst $Z_1 \cap Q = \emptyset$.
- **5** Somit ist $G := H' \cap F$ ein (k-1)-dimensionaler Unterraum.
- Dann liegt $S_{q_1} \cup ... \cup S_{q_m}$ in einer der beiden Komponenten von $Z_1 \setminus ((\text{conv}P) + G)$.
- **⊘** Wähle w ∈ Ω, sodass w ⊥ G und $S_{q_1} ∪ ... ∪ S_{q_m} ⊂ G_w$.

- Es gilt dist(conv $\{q_1,...,q_m\}$, convP) $\geq \delta$.
- 2 Es folgt $\operatorname{dist}(\operatorname{conv}(S_{q_1} \cup ... \cup S_{q_m}), \operatorname{conv} P) > \delta/2.$
- Also gibt es eine Hyperebene H, die S_{q1} ∪ ... ∪ S_{qm} und P streng trennt. Sei H' der zu H parallele (n−1)-dimensionale Unterraum.
- Es gilt $F \not\subset H'$, da sonst $Z_1 \cap Q = \emptyset$.
- **5** Somit ist $G := H' \cap F$ ein (k-1)-dimensionaler Unterraum.
- Dann liegt $S_{q_1} \cup ... \cup S_{q_m}$ in einer der beiden Komponenten von $Z_1 \setminus ((\text{conv}P) + G)$.
- **⊘** Wähle w ∈ Ω, sodass w ⊥ G und $S_{q_1} ∪ ... ∪ S_{q_m} ⊂ G_w$.
- **3** Folglich gilt $w \in \bigcap_{i=1}^m A_{q_i}$.

Wir haben gesehen, dass $\{A_q \mid q \in Q \cap Z_1\}$ eine Familie kompakter, stark konvexer Mengen ist. Zusammen mit vorheriger Behauptung folgt aus Lemma 9.4:

Wir haben gesehen, dass $\{A_q \mid q \in Q \cap Z_1\}$ eine Familie kompakter, stark konvexer Mengen ist. Zusammen mit vorheriger Behauptung folgt aus Lemma 9.4:

Es gibt ein Paar von antipodalen Punkten $\{y, -y\}$ in Ω , sodass $\forall q \in Z_1 \cap Q : A_q \cap \{p, -p\} \neq \emptyset$.

Wir haben gesehen, dass $\{A_q \mid q \in Q \cap Z_1\}$ eine Familie kompakter, stark konvexer Mengen ist. Zusammen mit vorheriger Behauptung folgt aus Lemma 9.4:

Es gibt ein Paar von antipodalen Punkten $\{y,-y\}$ in Ω , sodass $\forall \ q \in Z_1 \cap Q : A_q \cap \{p,-p\} \neq \emptyset$. Somit hat der (k-1)-Zylinder $Z_2 := (\mathsf{conv}P) + F_v \subset Z_1$ leeren Schnitt mit Q.

Übersicht

Definition

Sei $\beta = \{b_1, b_2, ..., b_n\}$ eine Basis von Eⁿ. Sei H_i für i = 1, ..., n die Hyperebene span $(b_1, ..., \widehat{b_i}, ..., b_n)$. Eine β -Box ist ein Parallelotop, in dem jede Seite parallel zu einer Hyperebene H_i ist.

Definition

Sei $\beta = \{b_1, b_2, ..., b_n\}$ eine Basis von Eⁿ. Sei H_i für i = 1, ..., n die Hyperebene span $(b_1, ..., \widehat{b_i}, ..., b_n)$. Eine β -Box ist ein Parallelotop, in dem jede Seite parallel zu einer Hyperebene H_i ist.

$$\beta = \{b_1, b_2, b_3\}$$

Eine β -Box

Die Koordinatenfunktionen dieser Basis sind

$$\pi_i: \mathsf{E}^n \to \mathbb{R}, \quad \sum_{j=1}^n \lambda_j b_j \mapsto \lambda_i \quad \text{für } i=1,...,n.$$

Dann ist eine β -Box gegeben durch reelle Zahlen $m_1,...,m_n$ und $M_1,...,M_n$ mit $m_i \leq M_i$ für i=1,...,n und besteht aus allen $x \in E^n$, die folgendes lineare Ungleichungssystem erfüllen:

$$m_1 \le \pi_1(x) \le M_1$$

$$m_2 \le \pi_2(x) \le M_2$$

$$\vdots$$

$$m_n \le \pi_n(x) \le M_n$$

Sei $P \subset E^n$ nichtleer und kompakt. Dann existiert eine eindeutige minimale β -Box B_P , die P enthält. Diese ist gegeben durch

$$m_i := \inf_{p \in P} \pi_i(p)$$
 und $M_i := \sup_{p \in P} \pi_i(p)$ für $i = 1, ..., n$.

minimale β -Box um P

Sei $P \subset E^n$ nichtleer und kompakt. Dann existiert eine eindeutige minimale β -Box B_P , die P enthält. Diese ist gegeben durch

$$m_i := \inf_{p \in P} \pi_i(p)$$
 und $M_i := \sup_{p \in P} \pi_i(p)$ für $i = 1, ..., n$.

minimale β -Box um P

Seien P und Q nichtleere, kompakte Teilmengen von E^n ($n \ge 2$). Dann sind für eine Basis β von E^n äquivalent:

- (a) Es gibt eine β -Box B, sodass $P \subset B$ und $Q \cap B = \emptyset$.
- (b) Für jede Teilmenge $S \subset P \cup Q$ mit maximal n+1 Punkten gibt es eine β -Box B_S , sodass $(P \cap S) \subset B_S$ und $(Q \cap S) \cap B_S = \emptyset$.
- (c) Für jede Teilmenge $T \subset P$ mit maximal n Punkten ist die minimale β -Box B_T , die T enthält, disjunkt von Q, also $B_T \cap Q = \emptyset$.

Seien P und Q nichtleere, kompakte Teilmengen von E^n ($n \ge 2$). Dann sind für eine Basis β von E^n äquivalent:

- (a) Es gibt eine β -Box B, sodass $P \subset B$ und $Q \cap B = \emptyset$.
- (b) Für jede Teilmenge $S \subset P \cup Q$ mit maximal n+1 Punkten gibt es eine β -Box B_S , sodass $(P \cap S) \subset B_S$ und $(Q \cap S) \cap B_S = \emptyset$.
- (c) Für jede Teilmenge $T \subset P$ mit maximal n Punkten ist die minimale β -Box B_T , die T enthält, disjunkt von Q, also $B_T \cap Q = \emptyset$.

Beweis.

 $(a) \Rightarrow (b)$ Klar.

Seien P und Q nichtleere, kompakte Teilmengen von E^n ($n \ge 2$). Dann sind für eine Basis β von E^n äquivalent:

- (a) Es gibt eine β -Box B, sodass $P \subset B$ und $Q \cap B = \emptyset$.
- (b) Für jede Teilmenge $S \subset P \cup Q$ mit maximal n+1 Punkten gibt es eine β -Box B_S , sodass $(P \cap S) \subset B_S$ und $(Q \cap S) \cap B_S = \emptyset$.
- (c) Für jede Teilmenge $T \subset P$ mit maximal n Punkten ist die minimale β -Box B_T , die T enthält, disjunkt von Q, also $B_T \cap Q = \emptyset$.

- $(a) \Rightarrow (b)$ Klar.
- (b) \Rightarrow (c) Sei $T \subset P$ eine Menge mit maximal n Punkten und B_T die minimale β -Box, die T enthält.

Seien P und Q nichtleere, kompakte Teilmengen von E^n ($n \ge 2$). Dann sind für eine Basis β von E^n äquivalent:

- (a) Es gibt eine β -Box B, sodass $P \subset B$ und $Q \cap B = \emptyset$.
- (b) Für jede Teilmenge $S \subset P \cup Q$ mit maximal n+1 Punkten gibt es eine β -Box B_S , sodass $(P \cap S) \subset B_S$ und $(Q \cap S) \cap B_S = \emptyset$.
- (c) Für jede Teilmenge $T \subset P$ mit maximal n Punkten ist die minimale β -Box B_T , die T enthält, disjunkt von Q, also $B_T \cap Q = \emptyset$.

- $(a) \Rightarrow (b)$ Klar.
- (b) \Rightarrow (c) Sei $T \subset P$ eine Menge mit maximal n Punkten und B_T die minimale β -Box, die T enthält. Sei $q \in Q$ beliebig.

Seien P und Q nichtleere, kompakte Teilmengen von E^n ($n \ge 2$). Dann sind für eine Basis β von E^n äquivalent:

- (a) Es gibt eine β -Box B, sodass $P \subset B$ und $Q \cap B = \emptyset$.
- (b) Für jede Teilmenge $S \subset P \cup Q$ mit maximal n+1 Punkten gibt es eine β -Box B_S , sodass $(P \cap S) \subset B_S$ und $(Q \cap S) \cap B_S = \emptyset$.
- (c) Für jede Teilmenge $T \subset P$ mit maximal n Punkten ist die minimale β -Box B_T , die T enthält, disjunkt von Q, also $B_T \cap Q = \emptyset$.

- $(a) \Rightarrow (b)$ Klar.
- $(b)\Rightarrow (c)$ Sei $T\subset P$ eine Menge mit maximal n Punkten und B_T die minimale β -Box, die T enthält. Sei $q\in Q$ beliebig. Dann ist die Menge $S_q:=T\cup\{q\}$ eine Teilmenge von $P\cup Q$ mit maximal n+1 Punkten.

Seien P und Q nichtleere, kompakte Teilmengen von E^n ($n \ge 2$). Dann sind für eine Basis β von E^n äquivalent:

- (a) Es gibt eine β -Box B, sodass $P \subset B$ und $Q \cap B = \emptyset$.
- (b) Für jede Teilmenge $S \subset P \cup Q$ mit maximal n+1 Punkten gibt es eine β -Box B_S , sodass $(P \cap S) \subset B_S$ und $(Q \cap S) \cap B_S = \emptyset$.
- (c) Für jede Teilmenge $T \subset P$ mit maximal n Punkten ist die minimale β -Box B_T , die T enthält, disjunkt von Q, also $B_T \cap Q = \emptyset$.

- $(a) \Rightarrow (b)$ Klar.
- (b) \Rightarrow (c) Sei $T \subset P$ eine Menge mit maximal n Punkten und B_T die minimale β -Box, die T enthält. Sei $q \in Q$ beliebig. Dann ist die Menge $S_q := T \cup \{q\}$ eine Teilmenge von $P \cup Q$ mit maximal n+1 Punkten. Sei B_{S_q} die β -Box aus (b).

Seien P und Q nichtleere, kompakte Teilmengen von E^n ($n \ge 2$). Dann sind für eine Basis β von E^n äquivalent:

- (a) Es gibt eine β -Box B, sodass $P \subset B$ und $Q \cap B = \emptyset$.
- (b) Für jede Teilmenge $S \subset P \cup Q$ mit maximal n+1 Punkten gibt es eine β -Box B_S , sodass $(P \cap S) \subset B_S$ und $(Q \cap S) \cap B_S = \emptyset$.
- (c) Für jede Teilmenge $T \subset P$ mit maximal n Punkten ist die minimale β -Box B_T , die T enthält, disjunkt von Q, also $B_T \cap Q = \emptyset$.

- $(a) \Rightarrow (b)$ Klar.
- (b) \Rightarrow (c) Sei $T \subset P$ eine Menge mit maximal n Punkten und B_T die minimale β -Box, die T enthält. Sei $q \in Q$ beliebig. Dann ist die Menge $S_q := T \cup \{q\}$ eine Teilmenge von $P \cup Q$ mit maximal n+1 Punkten. Sei B_{S_q} die β -Box aus (b). Dann gilt: $T \subset P \cap S_q \subset B_{S_q}$, also $B_T \subset B_{S_q}$, und $B_T \cap \{q\} \subset B_{S_q} \cap (S_q \cap Q) = \emptyset$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsanfang (n = 2):

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsanfang (n = 2):

Sei B_P die minimale β -Box, die P enthält.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsanfang (n = 2):

Sei B_P die minimale β -Box, die P enthält. Da P kompakt ist, können wir einen Punkt aus P auf jeder der vier Seiten des Parallelogramms B_P wählen. Nenne diese Punkte p_1, p_2, p_3, p_4 .

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsanfang (n = 2):

Sei B_P die minimale β -Box, die P enthält. Da P kompakt ist, können wir einen Punkt aus P auf jeder der vier Seiten des Parallelogramms B_P wählen. Nenne diese Punkte p_1, p_2, p_3, p_4 . Für jedes Paar von Punkten p_i und p_j mit $i \neq j$ sei B_{ij} die minimale β -Box, die p_i und p_j enthält.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsanfang (n = 2):

Sei B_P die minimale β -Box, die P enthält. Da P kompakt ist, können wir einen Punkt aus P auf jeder der vier Seiten des Parallelogramms B_P wählen. Nenne diese Punkte p_1, p_2, p_3, p_4 . Für jedes Paar von Punkten p_i und p_j mit $i \neq j$ sei B_{ij} die minimale β -Box, die p_i und p_j enthält. Es gilt $B_P = \bigcup_{i \neq j} B_{ij}$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsanfang (n = 2):

Sei B_P die minimale β -Box, die P enthält. Da P kompakt ist, können wir einen Punkt aus P auf jeder der vier Seiten des Parallelogramms B_P wählen. Nenne diese Punkte p_1, p_2, p_3, p_4 . Für jedes Paar von Punkten p_i und p_j mit $i \neq j$ sei B_{ij} die minimale β -Box, die p_i und p_j enthält. Es gilt $B_P = \bigcup_{i \neq j} B_{ij}$. Angenommen, (a) ist falsch, also $q \in Q \cap B_P = Q \cap (\bigcup_{i \neq j} B_{ij})$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsanfang (n = 2):

Sei B_P die minimale β -Box, die P enthält. Da P kompakt ist, können wir einen Punkt aus P auf jeder der vier Seiten des Parallelogramms B_P wählen. Nenne diese Punkte p_1, p_2, p_3, p_4 . Für jedes Paar von Punkten p_i und p_j mit $i \neq j$ sei B_{ij} die minimale β -Box, die p_i und p_j enthält. Es gilt $B_P = \bigcup_{i \neq j} B_{ij}$. Angenommen, (a) ist falsch, also $q \in Q \cap B_P = Q \cap (\bigcup_{i \neq j} B_{ij})$. Dann gibt es $i,j \in \{1,2,3,4\}$ mit $i \neq j$ und $q \in B_{ij}$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt ($n \rightarrow n+1$):

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt $(n \rightarrow n+1)$:

Sei B_P die minimale β -Box, die P enthält.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt $(n \rightarrow n+1)$:

Sei B_P die minimale β -Box, die P enthält. Angenommen, (a) gilt nicht, es gibt also $q \in B_P \cap Q$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt ($n \rightarrow n+1$):

Sei B_P die minimale β -Box, die P enthält. Angenommen, (a) gilt nicht, es gibt also $q \in B_P \cap Q$. Definiere $f : E^{n+1} \to E^n$ durch $f(\lambda_1 b_1 + ... + \lambda_{n+1} b_n) = \lambda_1 b_1 + ... + \lambda_n b_n$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt ($n \rightarrow n+1$):

Sei B_P die minimale β -Box, die P enthält. Angenommen, (a) gilt nicht, es gibt also $q \in B_P \cap Q$. Definiere $f : E^{n+1} \to E^n$ durch $f(\lambda_1 b_1 + ... + \lambda_{n+1} b_n) = \lambda_1 b_1 + ... + \lambda_n b_n$. Dann ist $\beta' := \{b_1, ..., b_n\}$ eine Basis von E^n und $f(B_P)$ die minimale β' -Box, die f(P) enthält.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt $(n \rightarrow n+1)$:

Sei B_P die minimale β -Box, die P enthält. Angenommen, (a) gilt nicht, es gibt also $q \in B_P \cap Q$. Definiere $f: E^{n+1} \to E^n$ durch $f(\lambda_1b_1+...+\lambda_{n+1}b_n)=\lambda_1b_1+...+\lambda_nb_n$. Dann ist $\beta':=\{b_1,...,b_n\}$ eine Basis von E^n und $f(B_P)$ die minimale β' -Box, die f(P) enthält. Da $f(q) \in f(B_P)$, gibt es nach Induktionsannahme eine Teilmenge $T' \subset f(P)$ mit maximal n-1 Punkten, sodass f(q) in der minimalen β' -Box um T' enthalten ist.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt ($n \rightarrow n+1$):

Sei B_P die minimale β -Box, die P enthält. Angenommen, (a) gilt nicht, es gibt also $q \in B_P \cap Q$. Definiere $f: E^{n+1} \to E^n$ durch $f(\lambda_1b_1+\ldots+\lambda_{n+1}b_n)=\lambda_1b_1+\ldots+\lambda_nb_n$. Dann ist $\beta':=\{b_1,\ldots,b_n\}$ eine Basis von E^n und $f(B_P)$ die minimale β' -Box, die f(P) enthält. Da $f(q) \in f(B_P)$, gibt es nach Induktionsannahme eine Teilmenge $T' \subset f(P)$ mit maximal n-1 Punkten, sodass f(q) in der minimalen β' -Box um T' enthalten ist. Sei $T \subset P$ mit maximal n-1 Punkten und f(T)=T'.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt ($n \rightarrow n+1$):

Sei B_P die minimale β -Box, die P enthält. Angenommen, (a) gilt nicht, es gibt also $q \in B_P \cap Q$. Definiere $f: \mathbb{E}^{n+1} \to E^n$ durch $f(\lambda_1b_1+...+\lambda_{n+1}b_n)=\lambda_1b_1+...+\lambda_nb_n$. Dann ist $\beta':=\{b_1,...,b_n\}$ eine Basis von \mathbb{E}^n und $f(B_P)$ die minimale β' -Box, die f(P) enthält. Da $f(q) \in f(B_P)$, gibt es nach Induktionsannahme eine Teilmenge $T' \subset f(P)$ mit maximal n-1 Punkten, sodass f(q) in der minimalen β' -Box um T' enthalten ist. Sei $T \subset P$ mit maximal n-1 Punkten und f(T) = T'. Es gilt $\inf_{x \in T} \pi_i(x) \leq \pi_i(q) \leq \sup_{x \in T} \pi_i(x)$ für $i \in \{1,...,n\}$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt ($n \rightarrow n+1$):

Sei B_P die minimale β -Box, die P enthält. Angenommen, (a) gilt nicht, es gibt also $q \in B_P \cap Q$. Definiere $f: \mathbb{E}^{n+1} \to E^n$ durch $f(\lambda_1b_1+\ldots+\lambda_{n+1}b_n)=\lambda_1b_1+\ldots+\lambda_nb_n$. Dann ist $\beta':=\{b_1,\ldots,b_n\}$ eine Basis von \mathbb{E}^n und $f(B_P)$ die minimale β' -Box, die f(P) enthält. Da $f(q) \in f(B_P)$, gibt es nach Induktionsannahme eine Teilmenge $T' \subset f(P)$ mit maximal n-1 Punkten, sodass f(q) in der minimalen β' -Box um T' enthalten ist. Sei $T \subset P$ mit maximal n-1 Punkten und f(T)=T'. Es gilt $\inf_{x \in T} \pi_i(x) \leq \pi_i(q) \leq \sup_{x \in T} \pi_i(x)$ für $i \in \{1,\ldots,n\}$.

Angenommen, obige Ungleichung gilt auch für i = n+1. Dann sind wir fertig.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt ($n \rightarrow n+1$):

Sei B_P die minimale β -Box, die P enthält. Angenommen, (a) gilt nicht, es gibt also $q \in B_P \cap Q$. Definiere $f: \mathbb{E}^{n+1} \to E^n$ durch $f(\lambda_1b_1+\ldots+\lambda_{n+1}b_n)=\lambda_1b_1+\ldots+\lambda_nb_n$. Dann ist $\beta':=\{b_1,\ldots,b_n\}$ eine Basis von \mathbb{E}^n und $f(B_P)$ die minimale β' -Box, die f(P) enthält. Da $f(q)\in f(B_P)$, gibt es nach Induktionsannahme eine Teilmenge $T'\subset f(P)$ mit maximal n-1 Punkten, sodass f(q) in der minimalen β' -Box um T' enthalten ist. Sei $T\subset P$ mit maximal n-1 Punkten und f(T)=T'. Es gilt

$$\inf_{x \in T} \pi_i(x) \le \pi_i(q) \le \sup_{x \in T} \pi_i(x) \qquad \text{für } i \in \{1, ..., n\}.$$

Angenommen, obige Ungleichung gilt auch für i = n+1. Dann sind wir fertig. Andernfalls gilt

$$\pi_{n+1}(q) > \sup_{x \in T} \pi_{n+1}(x)$$
 oder $\pi_{n+1}(q) < \inf_{x \in T} \pi_{n+1}(x)$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt (Fortsetzung):

Angenommen, es gilt $\pi_{n+1}(q) > \sup_{x \in T} \pi_{n+1}(x)$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt (Fortsetzung):

Angenommen, es gilt $\pi_{n+1}(q) > \sup_{x \in T} \pi_{n+1}(x)$. Da P kompakt ist, gibt es $p \in P$ mit $\pi_{n+1}(p) = \sup_{x \in P} \pi_{n+1}(x)$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt (Fortsetzung):

Angenommen, es gilt $\pi_{n+1}(q) > \sup_{x \in T} \pi_{n+1}(x)$. Da P kompakt ist, gibt es $p \in P$ mit $\pi_{n+1}(p) = \sup_{x \in P} \pi_{n+1}(x)$. Aus $q \in B_P$ folgt $\pi_{n+1}(q) \le \pi_{n+1}(p)$.

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt (Fortsetzung):

Angenommen, es gilt $\pi_{n+1}(q) > \sup_{x \in T} \pi_{n+1}(x)$. Da P kompakt ist, gibt es $p \in P$ mit $\pi_{n+1}(p) = \sup_{x \in P} \pi_{n+1}(x)$. Aus $q \in B_P$ folgt $\pi_{n+1}(q) \le \pi_{n+1}(p)$. Somit gilt für $i \in \{1, ..., n, n+1\}$: inf $\pi_i(x) < \pi_i(q) < \sup_{x \in P} \pi_i(x)$

$$\inf_{x \in T \cup \{p\}} \pi_i(x) \leq \pi_i(q) \leq \sup_{x \in T \cup \{p\}} \pi_i(x)$$

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt (Fortsetzung):

Angenommen, es gilt $\pi_{n+1}(q) > \sup_{x \in T} \pi_{n+1}(x)$. Da P kompakt ist, gibt es $p \in P$ mit $\pi_{n+1}(p) = \sup_{x \in P} \pi_{n+1}(x)$. Aus $q \in B_P$ folgt $\pi_{n+1}(q) \le \pi_{n+1}(p)$. Somit gilt für $i \in \{1, ..., n, n+1\}$:

$$\inf_{x \in T \cup \{p\}} \pi_i(x) \leq \pi_i(q) \leq \sup_{x \in T \cup \{p\}} \pi_i(x)$$

Widerspruch zu (c).

 $(c) \Rightarrow (a)$ Durch Induktion über n.

Induktionsschritt (Fortsetzung):

Angenommen, es gilt $\pi_{n+1}(q) > \sup_{x \in T} \pi_{n+1}(x)$. Da P kompakt ist, gibt es $p \in P$ mit $\pi_{n+1}(p) = \sup_{x \in P} \pi_{n+1}(x)$. Aus $q \in B_P$ folgt $\pi_{n+1}(q) \le \pi_{n+1}(p)$. Somit gilt für $i \in \{1, ..., n, n+1\}$: $\inf_{x \in T \cup \{p\}} \pi_i(x) \leq \pi_i(q) \leq \sup_{x \in T \cup \{p\}} \pi_i(x)$

$$x \in T \cup \{p\}$$

$$x \in T \cup \{p\}$$

$$x \in T \cup \{p\}$$

Widerspruch zu (c). Der andere Fall folgt analog.

Korollar (10.3)

Sei $P \subset E^n$ $(n \ge 2)$ nichtleer und kompakt.

Angenommen, $q \in E^n$ erfüllt das System von Ungleichungen

$$\inf_{x\in P}\pi_i(x)\leq \pi_i(q)\leq \sup_{x\in P}\pi_i(x)\quad \text{für }i\in\{1,...,n\}.$$

Dann gibt es eine Menge $T \subset P$ mit höchstens n Punkten und

$$\inf_{x \in T} \pi_i(x) \leq \pi_i(q) \leq \sup_{x \in T} \pi_i(x) \quad \text{für } i \in \{1, ..., n\}.$$

Theorem (Carathéodory, 2.23)

TODO: Noch zu ergänzen!

Theorem (Carathéodory, Umformulierung)

Sei $P \subset E^n$ $(n \ge 2)$ nichtleer und kompakt und sei $q \in E^n$. Angenommen, für jede Menge $T \subset P$ mit höchstens n+1 Punkten gibt es eine Hyperebene, die T und $\{q\}$ streng trennt. Dann ist q nicht in der konvexen Hülle von P enthalten.

Korollar (10.4)

Sei $P \subset E^n$ $(n \ge 2)$ nichtleer und kompakt und sei $q \in E^n$. Sei $\beta = \{b_1, ..., b_n\}$ eine Basis von E^n und H_i der von $\beta \setminus \{b_i\}$ aufgespannte Unterraum für $i \in \{1, ..., n\}$. Angenommen, für jede Menge $T \subset P$ mit höchstens n Punkten gibt es eine Hyperebene, die parallel zu einem der H_i ist und T und $\{q\}$ streng trennt. Dann ist P nicht in der konvexen Hülle von P enthalten.

Korollar (10.4)

Sei $P \subset E^n$ $(n \ge 2)$ nichtleer und kompakt und sei $q \in E^n$. Sei $\beta = \{b_1, ..., b_n\}$ eine Basis von E^n und H_i der von $\beta \setminus \{b_i\}$ aufgespannte Unterraum für $i \in \{1, ..., n\}$. Angenommen, für jede Menge $T \subset P$ mit höchstens n Punkten gibt es eine Hyperebene, die parallel zu einem der H_i ist und T und $\{q\}$ streng trennt. Dann ist P nicht in der konvexen Hülle von P enthalten.

Beweis.

Wegen Satz 10.4 gibt es eine β -Box B_P , die P enthält und disjunkt zu $\{q\}$ ist.

Korollar (10.4)

Sei $P \subset E^n$ $(n \ge 2)$ nichtleer und kompakt und sei $q \in E^n$. Sei $\beta = \{b_1, ..., b_n\}$ eine Basis von E^n und H_i der von $\beta \setminus \{b_i\}$ aufgespannte Unterraum für $i \in \{1, ..., n\}$. Angenommen, für jede Menge $T \subset P$ mit höchstens n Punkten gibt es eine Hyperebene, die parallel zu einem der H_i ist und T und $\{q\}$ streng trennt. Dann ist P nicht in der konvexen Hülle von P enthalten.

Beweis.

Wegen Satz 10.4 gibt es eine β -Box B_P , die P enthält und disjunkt zu $\{q\}$ ist. Es folgt $\{q\}\cap\operatorname{conv} P\subset\{q\}\cap B_P=\emptyset$, also $q\not\in\operatorname{conv} P$.

Danke für die Aufmerksamkeit!