Predictive Logistics

TIME SERIES FORECASTING

Vania Crystal Halim

INTRODUCTION

BACKGROUND

Certain materials
have similar demand
patterns. Association
between buys can
subsequently be
used to forecast the
future demand of
the materials

SCOPE

Using Walmart's M5
dataset (the unit
sales of various
products sold
in the USA,
organized in the
form of grouped
time series)

OBJECTIVES

Identify the method(s) that provide the most accurate point forecasts for each of the time series

TECHNICAL APPROACH

1. Data Ingestion

Train-test split, extracting useful components

3. Forecasting

Scoring methods to identify best solution

Understanding and concatenating dataframes

2. Data Preparation

Univariate forecasting with Croston, MLP, LTSM

4. Evaluation

CHALLENGES

Reshaping data with relevant features

—DATA INGESTION

Scaling down and finding a suitable approach

—DATA PREPARATION

Identifying which models to use

—FORECASTING

Visualizing results

—EVALUATION

MODELLING AND ANALYSIS (1)

• Baseline model: Moving average window

Croston: normal + TSB

MODELLING AND ANALYSIS (2)

• Multi Layer Perceptron (MLP)

Long Short Term Memory (LSTM) + Bidirectional LSTM

Actual
Benchmark
Model
Forecast

RESULTS

Neural networks generally perform better than traditional methods

	BASELINE	CROSTON	MLP	LSTM	BI-LSTM
RMSE	5.261	4.530	5.236	4.916	5.256
RELATIV E RMSE	1.000	5.261	0.995	0.934	0.999
% IMPROV EMENT	0.0 · · · .	13.9	0.5	6.6	0.1
MAE	3.893	3.522	3.955	3.735	3.912
MAE TO MEAN RATIO	0.498	0.365	0.505	0.477	0.450

CONCLUSION

CONCLUSION

Best forecast method: Croston

INSIGHTS

Similar methods can be used on actual logistics datasets

EXTENSION

Multivariate forecasting, grouping related items

TAKEAWAYS

Understanding multivariate data, application of various models

