

Ciência da Computação

Circuitos Lógicos Digitais

Prof. Me. Athos Denis

Roteiro da aula

- Regras básicas da Álgebra Booleana;
- Mapa de Karnaugh "Dont' Care";
- Circuitos combinacionais;

Regras básicas Álgebra Booleana: Simplificação

	Propriedade	OU	E
P1	Identidade	X + 1 = 1	$X \cdot 0 = 0$
P2	Elemento Neutro	X + 0 = X	$X \cdot 1 = X$
Р3	Idempotência	X + X = X	$X \cdot X = X$
P4	Involução	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$
P5	Complemento	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$
P6	Comutatividade	X + Y = Y + X	$X \cdot Y = Y \cdot X$
P7	Associatividade	(X+Y)+Z=X+(Y+Z)	$(X\cdot Y)\cdot Z=X\cdot (Y\cdot Z)$
P8	Distributividade	$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$	$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$
P9	Cobertura	$X \cdot (X + Z) = X$	$X + (X \cdot Y) = X$
P10	Combinação	$(X\cdot Y)+\left(X\cdot\overline{Y}\right)=X$	$(X+Y)\cdot \left(X+\overline{Y}\right)=X$
P11	Consenso	$(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z)$ = $(X \cdot Y) + (\overline{X} \cdot Z)$	$(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z)$ = $(X + Y) \cdot (\overline{X} + Z)$
P12	De Morgan	$\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$	$\overline{(X\cdot Y)}=\overline{X}+\overline{Y}$

Mapa de Karnaugh - Don't Care

Bit de Don't-Care (X) é uma sequência de entrada para qual a saída não importa. Uma entrada a qual é conhecida por nunca ocorrer é chamada de Can't-Happen.

Os dois casos são tratado de mesma forma no projeto de lógica, e são referidos de modo genérico por don't-care.

O projetista não precisa se importar com a saída gerada para esses termos, logo essa saída pode ser tratada da forma que for mais conveniente (gerar menor circuito).

CD AB	00	01	11	10
00	0	1	0	1
01	1	1	0	1
11	X	X	X	X
10	1	0	X	1

A'C'D + A'BC' + A'CD' + AB'D'

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

CD AB	00	01	11	10
00	0	1	0	1
01	1	1	0	1
11	Х	X	X	X
10	1	0	X	1

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

CD AB	. 00	01	11	10
00	0	1	0	1
01	1	1	0	1
11	Х	X	X	X
10	1	0	X	1

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

A'C'D + A'BC' + A'CD' + AB'D' (Expressão original)

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

CD AB	00	01	11	10
00	1	0	X	X
01	1	1	X	X
11	1	1	X	1
10	X	X	X	X

BC' + A'C'D' + ABD'

A	В	С	D	S
0	0	0	0	1
0	0	0	1	0
0	0	1	0	X
0	0	1	1	X
0	1	0	0	1
0	1	0	1	1
0	1	1	0	X
0	1	1	1	X
1	0	0	0	X
1	0	0	1	X
1	0	1	0	X
1	0	1	1	X
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	X

CD AB	0	0	01	11	1	0
00	1		0	Χ	Х	
01	1	П	1	Χ	Х	
11	1		1	Χ	1	
10	Х		Х	Х	Χ	

D' + B

BC' + A'C'D' + ABD' (Expressão original)

A	В	С	D	S
0	0	0	0	1
0	0	0	1	0
0	0	1	0	X
0	0	1	1	X
0	1	0	0	1
0	1	0	1	1
0	1	1	0	X
0	1	1	1	X
1	0	0	0	X
1	0	0	1	X
1	0	1	0	X
1	0	1	1	X
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	X

Circuitos combinacionais

É todo circuito cuja saída depende única e exclusivamente das várias combinações das variáveis de entrada.

Por meio do estudo desses circuitos, podemos entender o funcionamento de circuitos somadores, somadores completos, subtratores, codificadores, decodificadores, circuitos que executam prioridades, dentre outros circuitos utilizados na construção de computadores ou sistemas digitais.

Circuitos combinacionais

BC A	00	01	11	10
0	0	0	0	1
1	1	1	1	0

A'BC' + AB'C' + AC

BC A	00	01	11	10
0	0	0	0	1
1	1	1	1	0

A'BC' + AB' + AC

Α	В	С	S	Expressão
0	0	0	0	
0	0	1	0	
0	1	0	1	-> A'BC'
0	1	1	0	
1	0	0	1	-> AB'C'
1	0	1	1	-> AB'C
1	1	0	0	
1	1	1	1	-> ABC

A'BC' + AB'C' + AB'C + ABC

Circuitos combinacionais

Para construir um circuito, como já visto, é necessário conhecer sua expressão característica. Uma forma de obter a expressão de um problema consiste em construir a tabela verdade para cada situação do problema para, em seguida, obter a expressão

Esquematicamente,

O desenho representa o cruzamento das ruas A e B, cada uma com seu semáforo.

Deseja-se instalar, no cruzamento, um sistema automático de semáforos, com as seguintes características:

- 1)Quando houver carros transitando somente na rua B, o semáforo 2 deverá permanecer verde para os carros trafegarem livremente.
- 2)Igualmente, quando houver carros transitando somente na rua A,o semáforo 1 deverá permanecer verde
- 3)Quando houver carros transitando em ambas as ruas, o semáforo da rua A deve ficar verde, pois é a rua preferencial

É possível usar um circuito lógico para solucionar este problema; para isso é necessário obter sua expressão. Para tanto, estabelece-se a notação:

Condição	Notação
Existência de carro na rua A	A = 1
Não existência de carro na rua A	A = 0 (ou Ā = 1)
Existência de carro na rua B	B = 1
Não existência de carro na rua B	B = 0 (ou B = 1)
Verde do sinal 1 aceso	G1 = 1
Verde do sinal 2 aceso	G2 = 1
Se G1=1 então Vermelho do sinal 1 apagado Verde do sinal 2 apagado Vermelho do sinal 2 aceso	R1 = 0 G2 = 0 R2 = 1
Se G2=1 então Vermelho do sinal 1 aceso Verde do sinal 1 apagado Vermelho do sinal 2 apagado	R1 = 1 G1 = 0 R2 = 0

Com base nisso, a tabela verdade é montada e cada situação é analisada individualmente

Situação	Α	В	G1	R1	G2	R2
0	0	0				
1	0	1				
2	1	0				
3	1	1				

Situação 0: representa a ausência de veículos em ambas as ruas (A=0 e B=0). Assim, é irrelevante qual sinal permanece aceso. Em situações irrelevantes, utiliza-se o símbolo Ø para indicar que as variáveis podem assumir 0 ou 1

Situação	Α	В	G1	R1	G2	R2
0	0	0	Ø	Ø	Ø	Ø
1	0	1				
2	1	0				
3	1	1				

Situação 1: representa presença de veículos na rua B e ausência de veículos na Rua A. Portanto, é necessário acender o sinal verde para a rua B e lembrar da convenção:

Se G2=1 então	
Vermelho do sinal 1 aceso	R1 = 1
	G1 = 0
. •	R2 = 0

Situação	Α	В	G1	R1	G2	R2	
0	0	0	Ø	Ø	Ø	Ø	
1	0	1	0	1	1	0	
2	1	0					
3	1	1					

Situação 2: representa presença de veículos na rua A e ausência de veículos na Rua B. Portanto, é necessário acender o sinal verde para a rua A e lembrar da convenção:

Se G1=1 então	
Vermelho do sinal 1 apagado	R1 = 0
Vermelho do sinal 1 apagado Verde do sinal 2 apagado	G2 = 0
_	R2 = 1

Situação	Α	В	G1	R1	G2	R2
0	0	0	Ø	Ø	Ø	Ø
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1				

Situação 3: Situação 3: representa a presença de veículos em ambas as ruas. Nesse caso, o sinal verde para a rua A deve permanecer aceso, pois ela é preferencial, aplicando-se, novamente, a convenção:

Se G1=1 então	
Vermelho do sinal 1 apagado Verde do sinal 2 apagado	R1 = 0
Verde do sinal 2 apagado	G2 = 0
Vermelho do sinal 2 aceso	R2 = 1

Situação	Α	В	G1	R1	G2	R2
0	0	0	Ø	Ø	Ø	Ø
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

Na situação 0, com saídas irrelevantes, tanto faz qual sinal permanece aceso. Portanto, é possível adotar que o verde do sinal 2 permaneça aceso. Isso nos leva a uma tabela verdade com novos valores preenchidos para a situação 0, lembrando que:

Se G2=1 então	
	R1 = 1
	G1 = 0
Vermelho do sinal 2 apagado	R2 = 0

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

- 1) Cada saída, G1, R1, G2, R2 terá um circuito independente
- 2)Iniciando pela escrita da expressão de G1, em quais situações G1 acende?

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

Iniciando pela escrita da expressão de G1, em quais situações G1 acende? Nas Situações 2 OU 3

	Situ	Jação	2:
--	------	-------	----

- G1=1 quando A = 1 e B = 0, ou seja,
 A = 1 e B̄ = 1
- Usando uma porta E, é possível escrever G1=1 quando A.B =1
- Situação 3:
- G1=1 quando A = 1 e B = 1
- Portanto, G1=1 quando A.B =1

Como tem-se G1=1 na Situação 2 **OU**Situação 3, uma porta **OU** contendo as expressões tanto da Situação 2 quanto da Situação 3 resultará no valor 1 nesses casos, que representa a situação referente ao verde aceso do semáforo 1

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

Agora, em quais situações R1 acende? Nas Situações 0 **OU** 1

- Situação 0:
- R1=1 quando A = 0 e B = 0, ou seja,
 Ā = 1 e B = 1
- Usando uma porta E, é possível escrever R1=1 quando Ā.B =1
- Situação 1:
- R1=1 quando A = 0 e B = 1
- Portanto, R1=1 quando Ā.B =1

Como tem-se R1=1 na Situação 0 OU Situação 1, uma porta OU contendo as expressões tanto da Situação 0 quanto da Situação 1 resultará no valor 1 nesses casos, que representa a situação referente ao vermelho aceso do semáforo

R1 = Ā.B + Ā.B

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

G2=1 nas situações 0 OU 1

- Situação 0: Ā.B = 1
- Situação 1: Ā.B = 1
- Portanto, G2 = Ā.B + Ā.B

R2=1 nas situações 2 OU 3

- Situação 2: A.B = 1
- Situação 3: A.B = 1
- Portanto, R2 = A.B + A.B

Situação	Α	В	G1	R1	G2	R2
0	0	0	0	1	1	0
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	1	1	1	0	0	1

Em resumo:

- G1 = A.B + A.B
- R1 = $\bar{A}.\bar{B} + \bar{A}.B$
- $G2 = \bar{A}.\bar{B} + \bar{A}.B$
- $R2 = A.\bar{B} + A.B$

Ou seja,

- G1 = R2 = A.B̄ + A.B
- $G2 = R1 = \bar{A}.\bar{B} + \bar{A}.B$

