Bayesian Modeling of Complex-valued fMRI Signals

Cheng-Han Yu, Raquel Prado, Hernando Ombao, and Daniel Rowe

University of California, Santa Cruz, University of California, Irvine, and Marquette University

Engineering 11 UC SANTA CRUZ

Motivation and Goal

- ► fMRI data are complex-valued. However, most fMRI studies use magnitude-only data and discard phase information.
- ► We propose a Bayesian variable seletion method, both EM and MCMC algorithms, that takes real and imaginary parts of fMRI signals into account to detect which voxels are activated while a subject performs a task.

Complex Normal and Complex-valued Linear Regression: Rowe (2005)

ullet A n-dimensional r.v. ${\it Z}={\it X}+i{\it Y}$ is complex normal ${\it CN}_n(\mu_{\it Z},\Gamma,{\it C})$ iff ${\it Z}$ has real representation:

$$egin{pmatrix} m{X} \ m{Y} \end{pmatrix} \sim m{N}_{2n} \left(egin{pmatrix} m{\mu}_{X} \ m{\mu}_{y} \end{pmatrix}, m{\Sigma} = egin{pmatrix} m{\Sigma}_{X} & m{\Sigma}_{XY} \ m{\Sigma}_{YX} & m{\Sigma}_{Y} \end{pmatrix}
ight),$$

where $\Gamma:=\mathrm{E}(oldsymbol{Z}oldsymbol{Z}^H),~oldsymbol{\mathcal{C}}:=\mathrm{E}(oldsymbol{Z}oldsymbol{Z}')$ if $oldsymbol{\mu}_{oldsymbol{\mathcal{Z}}}=oldsymbol{0}.$

▶ Given time t = 1, ..., T and at voxel v = 1, ..., V, we have

$$y_{t}^{V} = \rho_{t}^{V} \cos(\theta^{V}) + i\rho_{t}^{V} \sin(\theta^{V}) + \eta_{t}^{V},$$

$$\rho_{t}^{V} = \beta_{0}^{V} + \beta_{1}^{V} x_{1,t} + \beta_{2}^{V} x_{2,t} + \dots + \beta_{p}^{V} x_{p,t},$$

•
$$y_t^V = y_{t,re}^V + iy_{t,im}^V$$
 and $\eta_t^V = \eta_{t,re}^V + i\eta_{t,im}^V$.

- ▶ $\eta_t^V \sim CN_1(0, \Gamma_V, C_V)$, and usually circular, i.e., $C_V = 0$.
- ho_t^V is the magnitude of y_t^V , and θ^V is the time-invariant phase of y_t^V
- $\mathbf{y}^{V} = \mathbf{X}(\boldsymbol{\beta}^{V}\cos(\theta^{V})) + i\mathbf{X}(\boldsymbol{\beta}^{V}\sin(\theta^{V})) + \boldsymbol{\eta}^{V}$, and hence $\mathbf{y}^{V} = \mathbf{X}\boldsymbol{\gamma}^{V} + \boldsymbol{\eta}^{V}$,

Simulation Example I

- Simulated 48 \times 48 fMRI data with a linear trend and one task-related covariate, t = 1 : T, T = 200.
- ► The task-related covariate is the blood oxygenation level dependent (BOLD) signal contrast, which is the convolution of the stimulus indicator function with a so called hemodynamic response function (HRF).
- ▶ The model is

$$y_{t,Re}^{V} = (\beta_0 + \beta_1(t/T) + \beta_2 f_V BOLD_t) \cos(\phi) + \eta_{t,Re}^{V}, \quad \eta_{t,Re}^{V} \sim N(0, \sigma^2)$$

$$y_{t,Im}^{V} = (\beta_0 + \beta_1(t/T) + \beta_2 f_V BOLD_t) \sin(\phi) + \eta_{t,Im}^{V}, \quad \eta_{t,Im}^{V} \sim N(0, \sigma^2)$$

- $\beta_1 = 0.00001$, $\sigma^2 = 0.25$, $\phi = \pi/6$
- ► Examine the performance of our method through different signal-noise ratio $SNR = \beta_0/\sigma$ and contrast-to-noise ratio $CNR = \beta_2/\sigma$.

Model and Algorithm: C-EMVS and C-SSVS

▶ The basic model is

$$\mathbf{y}^{V} = \mathbf{X} \boldsymbol{\gamma}^{V} + \boldsymbol{\eta}^{V}, \boldsymbol{\eta}^{V} \sim CN_{T}(\mathbf{0}, 2\sigma_{V}^{2}\mathbf{I}, \mathbf{0}),$$

$$\gamma_{j}^{V} | \psi_{j}^{V} \sim (1 - \psi_{j}^{V})CN_{1}(0, 2v_{0}\sigma_{V}^{2}, 0) + \psi_{j}^{V}CN_{1}(0, 2v_{1}\sigma_{V}^{2}, 0),$$

$$p(\sigma_{V}^{2}) \propto 1/\sigma_{V}^{2}, \quad \psi_{j}^{V} | \theta \sim Bernoulli(\theta), \quad \theta \sim Beta(a_{\theta}, b_{\theta}),$$

$$\boldsymbol{\omega}$$

- ▶ dodge controling errors (e.g. Bonferroni correction)
- voxels are related through $Pr(\psi_j^V = 1 | \theta) = \theta$ for all voxels $V = 1, \dots, V$
- We generalize the SSVS and EMVS algorithm proposed by George and McCulloch (1993) and Rockova and George (2014) to the complex-valued domain.
- ▶ An voxel is active if $Pr(\psi_2^V = 1|y, \gamma, \sigma) > 0.5$

Simulation Results: Example I

		CNR = (.38, .53, .75)			CNR=(.625, .88, 1.25)		
Measure	Model	SNR = .5	SNR = 1	SNR = 2	SNR = .5	SNR = 1	SNR = 2
	CP	0.321	0.335	0.340	0.829	0.842	0.852
sensitivity	LA	0	0	0.083	0.266	0.664	0.824
	ALA	0	0.087	0.402	0.279	0.735	0.818
	CP	1	1	1	1	0.999	0.999
specificity	LA	1	1	1	1	0.999	0.999
	ALA	1	0.999	0.998	1	0.998	0.998
	CP	0.973	0.994	0.997	0.994	0.985	0.983
propinion	LA	0	0	0.300	0.690	0.966	0.985
precision	ALA	0	0.274	0.937	0.900	0.955	0.959
	CP	0.969	0.970	0.970	0.992	0.992	0.993
accuracy	LA	0.955	0.955	0.959	0.966	0.984	0.992
accuracy	ALA	0.955	0.958	0.971	0.968	0.986	0.990

Table: CP: complex-valued EM, LA: Lasso, and ALA: Adaptive Lasso.

Simulation Example II

▶ A simulated data with dimension $96 \times 96 \times 490$ was generated using **MR signal equation**.

How to choose the tuning parameter v_0 and v_1 ?

- ▶ Wang et al (2015) suggests $v_1 = 1$.
- ► Rockova and George (2014) suggests to choose v_0^* with the highest marginal posterior probability of $p_0(\psi|\mathbf{y})$ that evaluates according to the submodel that contains only those variables for which $\psi_i^V = 1$.
- ► For fMRI, $1/\sqrt{100Tp} < v_0^* < 1/\sqrt{10Tp}$ usually.
- Suggestion: create a grid for v_0 between $1/\sqrt{100Tp}$ and $1/\sqrt{10Tp}$

Data Analysis

A human subject complex data set from Karaman, Bruce and Rowe (2014) is considered.

- A bilateral finger-tapping task was performed.
- ▶ A block design with an initial 30 s rest followed by 16 epochs of 15 s on and 15 s off.
- ▶ Data dimension is $96 \times 96 \times 510$.

Results from Karaman, Bruce and Rowe (2014)

- ▶ a) Complex-Valued; b) Magnitude-Only; c) Nonlinear experiment-related.
- ▶ Likelihood ratio test statistics $-2 \log \lambda$ and activation is thresholded at a 5% Bonferroni family-wise error rate.
- ▶ a): many false positives outside the brain; b): few activations; c): a few false positives in the left-upper side of the brain.

C-EMVS with AR(1) noise

Figure : Human data: Activation map (left); Estimated values of ϕ_v^2 for a models with voxel-specific σ_v^2 (center plot); estimated values of the σ_v^2 s

Conclusions

- ► The C-EMVS approach is able to detect **more true positives** and **less false positives** than magnitude-only models, especially when the SNR is small.
- ► The C-EMVS algorithms are computationally fast and have run times comparable to those needed by Lasso or Adaptive Lasso.
- The models considered here do not use any sophisticated spatio-temporal or nonlinear structure that more appropriately model fMRI data (we only considered an AR(1) temporal structure), but would also lead to more computationally-intensive models that may be not be feasible for detecting brain activation at the voxel-specific level.
- ► MCMC approaches for full posterior inference are also provided (results not shown).
- ► This algorithm is quite general, and can be applied to any complex-valued data, and for both circular or noncircular normal case.