MUMPS Solver Examples with mumps4py

March 09, 2025

$_{\scriptscriptstyle 4}$ 1 Introduction

- 5 This report describes seven Python scripts demonstrating the MUMPS solver via the mumps4py
- 6 interface. Each example highlights different functionalities, such as centralized and dis-
- ⁷ tributed matrix assembly, sparse RHS solving, and elemental matrix formats. The scripts
- 8 use MPI for parallelism and NumPy for numerical operations. Full Python code with added
- 9 comments is included for clarity.

2 Example 1: Centralized COO Matrix with Dense RHS

This example solves a linear system Ax = b using a centralized sparse matrix in COO format with a dense RHS.

$_{\scriptscriptstyle 14}$ 2.1 Matrix Data

- irn (0-based): [0, 1, 2, 3]
- jcn (0-based): [0,1,2,3]
- a: [1.0, 2.0, 3.0, 4.0]

$_{18}$ 2.2 Code

```
21
   #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
22
23
   Created on Thu Feb 27 14:08:37 2025
24
25
    @author: kissami
26
27
   import numpy as np
28
   from mpi4py import MPI
   from scipy.sparse import coo_matrix
   from mumps4py.mumps_solver import MumpsSolver
31
   # Get MPI rank and size for parallel execution
```

```
rank =MPI.COMM_WORLD.Get_rank()
   size =MPI.COMM_WORLD.Get_size()
35
36
37
   # Set system type to double precision
   system ="double"
38
   dtype =np.float32 if system =="single" else np.float64
   if system in ["complex64", "complex128"]:
40
    dtype =np.complex64 if system =="complex64" else np.complex128
41
42
    # Initialize MUMPS solver with double precision and no verbose output
43
44
    solver =MumpsSolver(verbose=False, system=system)
45
    # Define a 4x4 diagonal matrix in COO format
46
   A = coo_matrix(([1.0, 2.0, 3.0, 4.0], ([0, 1, 2, 3], [0, 1, 2, 3])), shape=(4, 4))
47
48
49
   # Set the centralized COO matrix in the solver
   solver.set_coo_centralized(A)
50
51
   # Define the right-hand side vector
52
53
   rhs =np.array([1.0, 2.0, 3.0, 4.0])
   solver.set_rhs_centralized(rhs)
55
   # Perform analysis phase (symbolic factorization)
56
   solver.analvze()
57
  # Perform numerical factorization
   solver.factorize()
60
   # Solve the system, overwriting rhs with the solution
   solver.solve()
61
62
   # Print the solution on all ranks
   print("Solution is:", rhs)
```

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Expected solution: x = [1, 1, 1, 1].

3 Example 2: Distributed COO Matrix with Dense RHS

This example uses a distributed COO matrix with a dense RHS.

70 3.1 Matrix Data

- irn (0-based): [0,1,3,4,1,0,4,2,1,2,0,2]
- jcn (0-based): [1, 2, 2, 4, 0, 0, 1, 3, 4, 1, 2, 2]
- a: [3.0, -3.0, 2.0, 1.0, 3.0, 2.0, 4.0, 2.0, 6.0, -1.0, 4.0, 1.0]

$_{74}$ 3.2 Code

```
<del>7</del>5
    #!/usr/bin/env python3
77
78
    # -*- coding: utf-8 -*-
79
    import numpy as np
    from mpi4py import MPI
80
   from mumps4py.mumps_solver import MumpsSolver
81
82
83
    # MPI setup
    rank =MPI.COMM_WORLD.Get_rank()
84
    size =MPI.COMM_WORLD.Get_size()
85
86
87
    # Set double precision
    system ="double"
88
    dtype =np.float32 if system =="single" else np.float64
89
    if system in ["complex64", "complex128"]:
90
    dtype =np.complex64 if system =="complex64" else np.complex128
91
92
93
    # Initialize solver
    solver =MumpsSolver(verbose=False, system=system)
94
95
96
    # Define matrix size on rank 0 only
97
    if rank ==0:
98
        n = 5
    else:
99
        n = None
100
101
    # Define COO matrix data (0-based indices)
102
    irn =np.array([0,1,3,4,1,0,4,2,1,2,0,2], dtype=np.int32)
103
    jcn =np.array([1,2,2,4,0,0,1,3,4,1,2,2], dtype=np.int32)
104
    a = np.array([3.0,-3.0,2.0,1.0,3.0,2.0,4.0,2.0,6.0,-1.0,4.0,1.0], dtype=dtype)
    b = np.array([[20.0,24.0,9.0,6.0,13.0],[20.0,24.0,9.0,6.0,13.0]], dtype=dtype)
106
107
    # Split matrix entries across MPI processes
108
    indices =np.arange(len(irn))
109
    split_indices =np.array_split(indices, size)
    local_indices =split_indices[rank]
111
112
    # Extract local portions of the matrix
113
    local_irn =irn[local_indices]
114
115
    local_jcn =jcn[local_indices]
116
    local_a =a[local_indices]
117
    # Set distributed matrix (convert to 1-based indices for MUMPS)
118
    solver.set_rcd_distributed(local_irn+1, local_jcn+1, local_a, n)
119
    solver.set_icntl(18,3) # Enable distributed assembly
120
121
    # Analyze and factorize the matrix
122
   solver.analyze()
123
    solver.factorize()
125
126
    # Set RHS on rank 0 only
127
    if MPI.COMM_WORLD.Get_rank() ==0:
128 solver.set_rhs_centralized(b)
130 # Solve the system
131 solver.solve()
132
    if rank ==0:
print("Solution 3", b)
```

$$A = \begin{bmatrix} 2 & 3 & 4 & 0 & 0 \\ 3 & -1 & -3 & 0 & 6 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example 3: Distributed COO Matrix with Distributed Solution

This example extends Example 2 with a distributed solution.

38 4.1 Matrix Data

- irn: [0, 1, 3, 4, 1, 0, 4, 2, 1, 2, 0, 2]
 - jcn: [1, 2, 2, 4, 0, 0, 1, 3, 4, 1, 2, 2]
 - a: [3.0, -3.0, 2.0, 1.0, 3.0, 2.0, 4.0, 2.0, 6.0, -1.0, 4.0, 1.0]

4.2 Code

```
143
145
     #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
146
147
148
    Created on Thu Feb 27 14:23:15 2025
149
150
     @author: kissami
151
    from mumps4py.mumps_solver import MumpsSolver
153
    import numpy as np
154
     from mpi4py import MPI
155
    # MPI initialization
156
    comm =MPI.COMM_WORLD
    rank =comm.Get_rank()
158
     size =comm.Get_size()
160
    # Set double precision
161
    system ="double"
    dtype =np.float32 if system =="single" else np.float64
163
     if system in ["complex64", "complex128"]:
164
    dtype =np.complex64 if system =="complex64" else np.complex128
165
166
167
    # Initialize solver
    solver =MumpsSolver(verbose=False, system=system)
168
    # Define matrix size
170
171
    # Define COO matrix (1-based indices for MUMPS)
172
173
    irn = np.array([0,1,3,4,1,0,4,2,1,2,0,2], dtype=np.int32) +1
     jcn =np.array([1,2,2,4,0,0,1,3,4,1,2,2], dtype=np.int32) +1
    a = np.array([3.0,-3.0,2.0,1.0,3.0,2.0,4.0,2.0,6.0,-1.0,4.0,1.0], dtype=dtype)
175
    b = np.array([20.0,24.0,9.0,6.0,13.0], dtype=dtype)
177
    # Distribute matrix entries across processes
178
179
    indices =np.arange(len(irn))
    split_indices =np.array_split(indices, size)
180
    local_indices =split_indices[rank]
182
     # Local matrix portions
183
    local_irn =irn[local_indices]
184
    local_jcn =jcn[local_indices]
185
    local_a =a[local_indices]
187
    # Configure solver for distributed assembly and solution
    solver.set_icntl(18, 3) # Distributed matrix input
```

```
solver.set_rcd_distributed(local_irn, local_jcn, local_a, n)
191
    solver.set_icntl(21, 1) # Distributed solution output
192
193
    # Analyze and factorize
    solver.analyze()
194
    solver.factorize()
196
    # Set RHS on rank 0
197
198
    if rank ==0:
    solver.set_rhs_centralized(b)
199
200
    # Enable and compute distributed solution
201
    solver.enable_distributed_solution(1)
202
203
    solver.solve()
204
205
    # Retrieve distributed solution
    shape =b.shape
206
207
    dtype =np.float64
    distributed_solution =solver.pointer_to_numpy(solver.struct.sol_loc, dtype, shape)
208
    print("Distributed solution :", distributed_solution)
210
    # Get solution indices
211
    isol_indices =solver.pointer_to_numpy(solver.struct.isol_loc, np.int32, b.shape)
212
    print("Solution indices :", isol_indices)
213
215
    # Reconstruct full solution
216
    final_solution =np.zeros(n, dtype=dtype)
217
    final_solution[isol_indices -1] =distributed_solution # Adjust for 0-based indexing
    print("Final solution :", final_solution)
```

5 Example 4: Elemental Matrix Format

This example uses an elemental matrix format for a complex-valued system.

$_{22}$ 5.1 Matrix Data

```
eltptr (1-based): [1,4,7]
eltvar (1-based): [1,2,3,3,4,5]
a_elt: [-1,2,1,2,1,1,3,1,1,2,1,3,-1,2,2,3,-1,1]
```

5.2 Code

```
337
    #!/usr/bin/env python3
229
    # -*- coding: utf-8
231 import numpy as np
232
    from mpi4py import MPI
233
    from mumps4py.mumps_solver import MumpsSolver
234
235
    # MPI setup
    rank =MPI.COMM_WORLD.Get_rank()
236
237
    size =MPI.COMM_WORLD.Get_size()
238
239 # Set complex128 precision
240 system ="complex128"
    dtype =np.float32 if system =="single" else np.float64
241
    if system in ["complex64", "complex128"]:
```

```
dtype =np.complex64 if system =="complex64" else np.complex128
244
245
    # Initialize solver
246
    solver =MumpsSolver(verbose=False, system=system)
247
    # Define matrix parameters
    n = 5 # Matrix order
249
    nelt =2 # Number of elements
250
251
    # Elemental matrix data (1-based)
252
    eltptr =np.array([1, 4, 7], dtype=np.int32) # Element pointers
253
    eltvar =np.array([1, 2, 3, 3, 4, 5], dtype=np.int32) # Variable indices
254
    a_elt =np.array([-1, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 3, -1, 2, 2, 3, -1, 1], dtype=dtype) # Values
255
    bb =np.array([1, 20, 3, 4, 5], dtype=dtype) # RHS
256
    rhs =bb.copy() # Copy for verification
257
258
    # Configure solver for elemental format
259
260
    solver.set_icntl(5, 1) # Use elemental matrix format
    solver.set_icntl(18, 0) # Centralized assembly
261
262
263
    # Set matrix and RHS
    solver.set_elemental_matrix(eltptr, eltvar, a_elt, n, nelt)
264
    solver.set_rhs_centralized(bb)
265
266
    # Solve the system
267
268
    solver.analyze()
269
    solver.factorize()
270
    solver.solve()
271
    # Print solution on rank 0
273 if rank ==0:
    print("Solution:", bb)
274
275
    # Define A for verification (not in original code)
276
277 A = np.array([[-1, 2, 3, 0, 0], [2, 1, 1, 0, 0], [1, 1, 3, -1, 3], [0, 0, 1, 2, -1], [0, 0, 3, 2, 1]], dtype=dtype)
    print("Check solution:", A.dot(bb) -rhs)
```

$$A = \begin{bmatrix} -1 & 2 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 3 & -1 & 3 \\ 0 & 0 & 1 & 2 & -1 \\ 0 & 0 & 3 & 2 & 1 \end{bmatrix}$$

6 Example 5: Centralized COO Matrix with Manual Job Calls and Reused Factorization

This example uses manual MUMPS job calls to solve a 5×5 system and illustrates that if the matrix structure (irn, jcn) and values (a) remain unchanged, the factorization step can be reused for multiple RHS vectors, avoiding redundant computation.

6.1 Matrix Data

281

- irn: [0, 1, 3, 4, 1, 0, 4, 2, 1, 2, 0, 2]
- jcn: [1, 2, 2, 4, 0, 0, 1, 3, 4, 1, 2, 2]

• a: [3.0, -3.0, 2.0, 1.0, 3.0, 2.0, 4.0, 2.0, 6.0, -1.0, 4.0, 1.0]

6.2 Code

```
<del>2</del>90
    #!/usr/bin/env python3
292
    # -*- coding: utf-8 -*-
293
294
    import numpy as np
    from mpi4py import MPI
295
    from mumps4py.mumps_solver import MumpsSolver
297
    # MPI setup
299
    rank =MPI.COMM_WORLD.Get_rank()
    size =MPI.COMM_WORLD.Get_size()
301
    # Set double precision
302
    system ="double"
    dtype =np.float32 if system =="single" else np.float64
304
    if system in ["complex64", "complex128"]:
305
    dtype =np.complex64 if system =="complex64" else np.complex128
306
307
308 # Initialize solver
    solver =MumpsSolver(verbose=False, system=system)
309
310
    # Define matrix and two different RHS vectors
311
312 n = 5
    irn =np.array([0,1,3,4,1,0,4,2,1,2,0,2], dtype=np.int32)
314
    jcn =np.array([1,2,2,4,0,0,1,3,4,1,2,2], dtype=np.int32)
    a = np.array([3.0, -3.0, 2.0, 1.0, 3.0, 2.0, 4.0, 2.0, 6.0, -1.0, 4.0, 1.0], dtype=dtype)
    b1 =np.array([20.0, 24.0, 9.0, 6.0, 13.0], dtype=dtype) # First RHS
    b2 =np.array([1.0, 2.0, 3.0, 4.0, 5.0], dtype=dtype) # Second RHS
317
318
    n = len(b1) # Matrix size from RHS
319
320
    # Start timing
321
322
    ts = MPI.Wtime()
323
324
    # Set centralized matrix (1-based indices)
325
    solver.set_rcd_centralized(irn+1, jcn+1, a, n)
    solver._mumps_call(job=1) # Analysis phase (symbolic factorization)
326
328
    # Factorize once (numerical factorization)
    solver._mumps_call(job=2) # Factorization phase, done only once
330
    # Solve for first RHS
331
332 rhs1 =b1.copy() # Copy to preserve original
333
    solver.set_rhs_centralized(rhs1)
    solver._mumps_call(3) # Solve phase
334
    if rank ==0:
335
    print("Solution for b1:", rhs1)
336
337
    # Solve for second RHS reusing factorization
338
339
    rhs2 =b2.copy() # Copy to preserve original
    solver.set_rhs_centralized(rhs2)
341 solver._mumps_call(3) # Solve phase, no need to re-factorize
342 if rank ==0:
343 print("Solution for b2:", rhs2)
345 # Print total CPU time
346 if rank ==0:
   print("CPU time is ", MPI.Wtime() -ts)
```

$_{9}$ 6.3 Explanation

The matrix A is defined once, and its factorization (job=2) is performed only once after analysis (job=1). Two different RHS vectors, $b_1 = [20, 24, 9, 6, 13]$ and $b_2 = [1, 2, 3, 4, 5]$, are solved using the same factorization by calling only the solve phase (job=3) for each. This demonstrates that as long as irn, jcn, and a do not change, re-factorization is unnecessary, optimizing performance.

³⁵⁵ 7 Example 6: Updating Centralized Matrix Values

This example updates matrix values without re-analysis.

$_{57}$ 7.1 Matrix Data

```
• irn: [0, 1, 3, 4, 1, 0, 4, 2, 1, 2, 0, 2]
```

```
• jcn: [1, 2, 2, 4, 0, 0, 1, 3, 4, 1, 2, 2]
```

- Initial a: [3.0, -3.0, 2.0, 1.0, 3.0, 2.0, 4.0, 2.0, 6.0, -1.0, 4.0, 1.0]
 - Updated a: [6.0, -33.0, 2.0, 1.0, 33.0, 22.0, 41.0, 2.0, 66.0, -11.0, 4.0, 1.0]

7.2 Code

359

360

```
363
    #!/usr/bin/env python3
365
366
    # -*- coding: utf-8 -*-
367
    Created on Wed Mar 5 11:23:56 2025
368
369
370
    Qauthor: kissami
371
    from scipy.sparse import coo_matrix
372
    from mumps4py.mumps_solver import MumpsSolver
    import numpy as np
374
375
    from mpi4py import MPI
376
    # MPI setup
377
378
    rank =MPI.COMM_WORLD.Get_rank()
    size =MPI.COMM_WORLD.Get_size()
379
    # Set double precision
381
    system ="double"
382
    dtype =np.float32 if system =="single" else np.float64
    if system in ["complex64", "complex128"]:
384
    dtype =np.complex64 if system =="complex64" else np.complex128
385
386
    # Initialize solver
387
    solver =MumpsSolver(verbose=False, system=system)
388
389
390
    # Define initial matrix and RHS
391
    irn =np.array([0,1,3,4,1,0,4,2,1,2,0,2], dtype=np.int32)
392
   jcn =np.array([1,2,2,4,0,0,1,3,4,1,2,2], dtype=np.int32)
393
    a = np.array([3.0, -3.0, 2.0, 1.0, 3.0, 2.0, 4.0, 2.0, 6.0, -1.0, 4.0, 1.0], dtype=dtype)
394
395
    b = np.array([20.0, 24.0, 9.0, 6.0, 13.0], dtype=dtype)
396
```

```
# Set initial matrix (1-based)
398
    solver.set_rcd_centralized(irn+1, jcn+1, a, n)
399
     solver._mumps_call(job=1) # Analyze structure
400
    # Solve with initial values
401
    rhs =b.copy()
    solver._mumps_call(job=2) # Factorize
403
     solver.set_rhs_centralized(rhs)
404
405
    solver._mumps_call(3) # Solve
    print("Solution:", rhs)
406
407
408
    # Update matrix values
     a = np.array([6.0, -33.0, 2.0, 1.0, 33.0, 22.0, 41.0, 2.0, 66.0, -11.0, 4.0, 1.0], dtype=dtype)
409
410
    solver.set_data_centralized(a, n) # Update values only
411
412
    # Solve with updated values
    rhs =b.copy()
413
414
     solver._mumps_call(job=2) # Re-factorize
    solver.set_rhs_centralized(rhs)
415
    solver._mumps_call(3) # Re-solve
417
    print("Solution:", rhs)
418
419
    # Verify solution
    n = 5
420
    A = coo_matrix((a, (irn, jcn)), shape=(n, n))
421
    print("check the solution:", A.dot(rhs), b)
423
```

8 Example 7: Sparse RHS with Centralized COO Matrix

This example solves a system with a sparse RHS.

427 8.1 Matrix Data

- irn: [0,0,1,1,1,2,2,3,3]
- jcn: [0, 1, 0, 1, 2, 1, 2, 2, 3]
- a: [4.0, -1.0, -1.0, 4.0, -1.0, -1.0, 4.0, -1.0, 3.0]

8.2 Sparse RHS Data

- rhs values: [1.1, 2.2, 3.1, 4.1, 3.2]
- rhs_row_indices (1-based): [1, 3, 4, 2, 3]
- rhs col ptr (1-based): [1, 4, 6]

8.3 Code

```
      439

      438
      #!/usr/bin/env python3

      439
      # -*- coding: utf-8 -*-

      440
      """
```

```
441
    Created on Thu Feb 27 14:08:37 2025
442
443
    Qauthor: kissami
444
445 import numpy as np
446 from mpi4py import MPI
    from mumps4py.mumps_solver import MumpsSolver
447
448
449
    # MPI setup
450 rank =MPI.COMM_WORLD.Get_rank()
451
    size =MPI.COMM_WORLD.Get_size()
452
    # Set double precision
453
454 system ="double"
dtype =np.float32 if system =="single" else np.float64
456 if system in ["complex64", "complex128"]:
dtype =np.complex64 if system =="complex64" else np.complex128
458
459 # Initialize solver
460 solver =MumpsSolver(verbose=False, system=system)
461
462
    # Define 4x4 matrix
463 n = 4
464 nnz =9
irn =np.array([0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=np.int32)
466 jcn =np.array([0, 1, 0, 1, 2, 1, 2, 2, 3], dtype=np.int32)
    a = np.array([4.0, -1.0, -1.0, 4.0, -1.0, 4.0, -1.0, 3.0], dtype=dtype)
467
468
   # Set centralized matrix (1-based)
469
470 solver.set_rcd_centralized(irn+1, jcn+1, a, n)
471
    solver.analyze()
    solver.factorize()
472
473
474 # Configure for sparse RHS
475 solver.set_icntl(20, 1) # Enable sparse RHS
476
    # Define sparse RHS parameters
477
478 nz_rhs =5 # Number of non-zeros
479 nrhs =2 # Number of RHS columns
480 rhs_values =np.array([1.1, 2.2, 3.1, 4.1, 3.2], dtype=dtype) # Non-zero values
481 rhs_row_indices =np.array([1, 3, 4, 2, 3], dtype=np.int32) # Row indices (1-based)
    rhs_col_ptr =np.array([1, 4, 6], dtype=np.int32) # Column pointers (1-based)
483
    # Initialize dense RHS storage on rank 0
484
485 if rank ==0:
486 rhs =np.zeros((2,4))
    solver.set_rhs_centralized(rhs)
487
488
   # Set sparse RHS
490 solver.set_rhs_sparse(rhs_values, rhs_row_indices, rhs_col_ptr, nrhs)
    solver.solve()
491
492
493 # Print solution
   print("Solution is :", rhs)
484
```

$$A = \begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 3 \end{bmatrix}$$

9 Benchmarks: Python vs C

In this section, we compare the runtime of Python and C (through Cython wrapper) using MUMPS-5.3.5 (pt-scotch, without OpenMP) for various matrix sizes obtained from Finite Volume discretization using Manapy [?]. We attempt to determine if the Cython-based interface imposes any extra computational cost over the pure C implementation.

Figures 1 and 3 show the performance of the 2D and 3D problems, respectively. The x-axis is the configuration (matrix size and number of processes), and the y-axis (log scale) is the execution time in seconds for analysis, factorization, and solution phases.

Figure 1: Timing (s) using MUMPS through C vs through Python for 2D matrices

Key Observations:

- All configurations tested have Python (through Cython) performing as well as C.
- There is no extra CPU cost of calling the Cython wrapper, i.e., the Python function calls are just as efficient as direct C function calls. This validates that Cython removes Python overhead by compiling Python code to C and providing almost native call speed in calling MUMPS.

Figures 2 and 4 illustrate the speedup achieved when using the Python-based MUMPS wrapper compared to the native C implementation for 2D and 3D matrices, respectively.

10 Conclusion

This report has demonstrated the use of MUMPS via the mumps4py interface for solving sparse linear systems in a parallel computing environment. Several examples were presented,

Figure 2: Speedup using MUMPS through C vs through Python for 2D matrices

Figure 3: Timing (s) using MUMPS through C vs through Python for 3D matrices

covering different matrix assembly techniques (centralized and distributed), right-hand side (RHS) handling (dense and sparse), and factorization reuse to optimize performance.

The benchmarking results show that the Python-based MUMPS interface (via Cython) achieves performance comparable to the native C implementation, with negligible overhead. This validates the efficiency of the Python wrapper and confirms its suitability for high-performance computing (HPC) applications. The experiments also highlight the scalability of MUMPS and its ability to handle large sparse matrices efficiently.

Figure 4: Speedup using MUMPS through C vs through Python for 3D matrices

Overall, mumps4py provides a convenient and flexible interface for leveraging MUMPS within Python, making it an excellent choice for researchers and engineers working on large-scale scientific computations. Future work could explore GPU acceleration and further optimizations for heterogeneous computing environments.