TODAY'S GOALS

- Drinking water and wastewater treatment
 - Early drinking water treatment
 - Epidemics and the microscope
 - Federal protection of drinking water
 - Drinking water issues: past and present
 - Wastewater treatment: past and present
- At the end of the lecture, we should be able to identify potential issues with drinking water and wastewater, as well as how to minimize or eliminate those issues.

- Mercury contamination
 - Why do we care about mercury contamination?
 - How are mercury compounds classified?
 - Mercury cycle
- At the end of the lecture, we should be able to understand how mercury affects organisms, ecosystems, and the water cycle.

INTRODUCTION TO WATER TREATMENT

"Water is fundamental for a life of human dignity. It is a prerequisite to the realization of all other human rights."

- World Health Organization

EARLY DRINKING WATER TREATMENT

Methods:

- Filtering through charcoal, sand, and gravel
- Water placed in sunlight, boiled, inserted hot instruments into the water, and strained

Reasons:

- Not to disinfect (had no knowledge of microbial life and pathogens)
- To improve its taste

Examples:

- Ancient Egyptians used alum as a flocculant (forces particulate matter to clump together and sink to the bottom)
- Ancient Greeks lined their water transportation tunnels with ceramic tiles and posted guards at every fountain to ensure no one polluted the water

EPIDEMICS AND THE MICROSCOPE

Microscope timeline

- 1595 First tube with lenses built (3-9x)
- 1665 Improved and drawings of microbes were published (30x)
- ~ 1700 Adjustable optics and careful lens polishing (200x)

Epidemics

- Prior to the 1800s, diseases were believed to have come from evil spirits or bad air
- Cholera outbreak of 1854, Dr. John Snow was suspicious about the origins.
 - He conducted interviews and marked the outbreak sites on a map, which created a pattern, later identified as a particular fountain pump
 - Taking a sample of the water, he then observed the bacteria under a microscope
 - He also found the source of the contamination as a leaky cesspool near the pump site

FEDERAL PROTECTION OF DRINKING WATER

- 1914 First restrictions regarding bacteria
- 1920s Filtration and chlorination was common
- 1942 The first official drinking water standards were enacted
- 1974, 1986, 1996 More strict regulations including, not only drinking water treatment guidelines, but also protections for the source water
- Now, states can set their own guidelines (with Federal minimums in place) but the EPA can reject them if they are insufficient
- The EPA also sets the maximum contaminant levels (MCLs)

DRINKING WATER ISSUES

THEN

- Biological (parasites, bacteria, viruses...)
- Inorganic chemicals (cyanide, fluoride, heavy metals, also lead pipes)
- Fertilizers (Phosphates, nitrates!!)
- Organic chemicals (DDT, PCB, typically carcinogenic agents)
- Radioactive elements (radium, uranium, nuclear waste sites, nuclear testing)

NOW

- MTBE (methyl tertiary butyl ether) carcinogen
- Perchlorates (in missiles, fireworks and a few fertilizers) – carcinogen
- Arsenic (pesticides, semiconductors, alloys, batteries, LEDs) – toxic
- One billion people still do not have safe drinking water!!!
- Waterborne illnesses account for the deaths of 2 million babies every year!!!

WASTEWATER TREATMENT

THEN

- NONE!
- Chamber pots emptied them into the street from 5-6 stories up!
- Later, canals and rudimentary sewers transported the waste and dumped it in a nearby river (hopefully downstream from the drinking water source)
- The Black Death or Bubonic Plague (1347-1350)
 - Killed 40% of people in Europe
 - 75 million people worldwide

NOW

- Prior to 1972, debris, oil, sludge, industrial wastes, and sewage were dumped into rivers unregulated
 - Consider industrial waste unexpected example in Omaha – cattle and hog packing plants would dump blood and offal into the Missouri River
- The Clean Water Act of 1972 required every city with >100,000 people to install wastewater treatment plans/facilities
- Today, >70% of rural households in Vietnam have NO bathroom facilities

MERCURY CONTAMINATION

WHY DO WE CARE ABOUT MERCURY CONTAMINATION?

- Health effects
 - Nervous system
 - Kidneys

- Environmental effects
 - Plants and Bacteria
 - Food chain

CLASSIFICATION OF MERCURY COMPOUNDS

- Elemental Mercury
 - Hg⁰
 - Hg₂²⁺
 - Hg²⁺
- Inorganic mercury
 - HgCl₂, Hg₂Cl₂, HgS, HgC₄H₆O₄
- Methylmercury
 - CH₃Hg⁺
 - Easily forms complexes with anions, such as Cl⁻, OH⁻, NO₃⁻
 - Thiols

MERCURY CYCLE THE

www.usgs.gov.Accessed Sept 2014.

HOW DOES MERCURY ENTER OUR WATER SUPPLY?

WHAT HAPPENS ONCE THE MERCURY HAS ENTERED THE WATER SUPPLY?

CHEMICAL REACTIONS - PHASES


```
Hg^{2+} + OH^{-} \leftrightarrow Hg(Hg_1^2) + CI^{-} \leftrightarrow HgCI^{+}
CH_3HgCI(g) \leftrightarrow CH_3HgCI(aq)
(CH_3Hg)_2S \rightarrow (CH_3)_2Hg + HgS
   \begin{array}{c} \text{Hg(OH)}_2(g) & \text{(CH}_3)_2\text{Hg} + \text{H}^+ \rightarrow \text{CH}_4 + \text{CH}_3\text{Hg}^+ \\ \text{Hg(OH)}_2(g) & \text{Hg(OH)}_2(gq) \\ \text{Hg(CH}_3)_2(g) & \leftrightarrow \text{Hg(CH}_3)_2(gq) \end{array}
Hg^{0}(g) \leftrightarrow Hg^{0}(aq)_{CH_{3}}^{2})_{2}Hg \rightarrow CH_{3}Hg + CH_{3}
Hg^{2+} + 4 Cl^{-} \leftrightarrow HgCl_{4}^{2+} + 3 Cl^{-} \leftrightarrow HgCl_{3}^{-}
 Hg^{2+} + C_2O_4^{2-} \leftrightarrow HgC_2O_4^{2+} + 2 Cl^- \leftrightarrow HgCl_2
 \begin{array}{c} 2\mathsf{CH_3Hg^+ + HS^-} \to (\mathsf{CH_3Hg})2\mathsf{S} + \mathsf{H^+} \\ \mathsf{Hg^{2+} + 2OH_2^-} & \mathsf{Hg}(\mathsf{OH})_2 \\ \mathsf{Hg^{2+} + 2SO_3^{2-}} & \mathsf{Hg}(\mathsf{SO_3})_2^{2-} & \mathsf{Hg}(\mathsf{SO_3})_2^{2-} \\ 4\mathsf{CH_3Hg^+ + 2H_2O} + 4\mathsf{H^+} \to 3\mathsf{CH_4} + \mathsf{CO_2} + 4\mathsf{Hg^{2+}} + 4\mathsf{H_2} \\ \end{array} 
      CH_{3}Hg \rightarrow Hg + CH_{4}HgCl_{2}(g) \leftrightarrow HgCl_{2}(aq)
+ GG_{3}Hg^{2} + GG_{3}^{2} + \leftrightarrow HgGG_{3}
```

CHEMICAL REACTIONS

$$Hg^0+CH_4 \leftrightarrow HgCH_3^-+H^+$$

$$HgCH_3^++CH_4 \leftrightarrow Hg(CH_3)_2+H^+$$

Body

$$Hg(CH_3)_2 \xrightarrow{h\nu} Hg^0 + 2CH_4$$

$$2CH_3Hg^+ + HS^- \rightarrow (CH_3Hg)_2S + H^+$$

HOW DOES MERCURY EXIT THE WATER SUPPLY? ABSORPTION BY PLANTS/ANIMALS

HOW DOES MERCURY EXIT THE WATER SUPPLY? REMOVAL FROM DRINKING WATER

- Coagulation/Filtration methods use metal salts that bind to metals, including mercury, allowing for it to be filtered out of the water.
- Coagulant Formulas: FeCl₃, Fe₂(SO₄)₃, Al_nCl_(3n-m)(OH)_m

HOW DOES MERCURY EXIT THE WATER SUPPLY? REMOVAL FROM DRINKING WATER

 Granular Activated Carbon is a highly porous carbon structure usually derived from plant material.

HOW DOES MERCURY EXIT THE WATER SUPPLY? REMOVAL FROM DRINKING WATER

 Osmosis is the spontaneous net movement of solvent molecules through semipermeable membrane into a region of higher solute concentration

CONCLUSION

