Category Theory

Peter Johnstone

These notes, taken by Markus Himmel, will at times differ significantly from	
what was lectured. In particular, all errors are almost certainly my own.	
what was lectured. In particular, all errors are almost certainly my own.	

Contents

Exercises	Ę
Chapter 1	Ę
Chapter 2	7

Exercises

Chapter 1

Exercise 17.

EXERCISE. A morphism $e: A \to A$ is called idempotent if ee = e. An idempotent e is said to split if it can be factored as fg where gf is an identity morphism.

- (i) Let \mathcal{E} be a collection of idempotents in a category \mathcal{C} : show that there is a category $\mathcal{C}[\check{\mathcal{E}}]$ whose objects are the members of \mathcal{E} , whose morphisms $e \to d$ are those morphisms f: dom $e \to \mathrm{dom}\,d$ in \mathcal{C} for which dfe = f, and whose composition coincides with composition in \mathcal{C} . [Hint: first show that the single equation dfe = f is equivalent to the two equations df = f = fe. Note that the identity morphism on an object e is not $1_{\mathrm{dom}\,e}$ in general.]
- (ii) If \mathcal{E} contains all identity morphisms of \mathcal{C} , show that there is a full and faithful functor $I \colon \mathcal{C} \to \mathcal{C}[\check{\mathcal{E}}]$, and that an arbitrary functor $T \colon \mathcal{C} \to \mathcal{D}$ can be factored as $\widehat{T}I$ for some \widehat{T} iff it sends the members of \mathcal{E} to split idempotents in \mathcal{D} .
- (iii) Deduce that if all idempotents split in \mathcal{D} , then the functor categories $[\mathcal{C}, \mathcal{D}]$ and $[\widehat{\mathcal{C}}, \mathcal{D}]$ are equivalent, where $\widehat{\mathcal{C}} = \mathcal{C}[\widecheck{\mathcal{E}}]$ for \mathcal{E} the class of all idempotents in \mathcal{C} .

SOLUTION. We will first show that if $f: C \to D$ is any morphism and $c: C \to C$ and $d: D \to D$ are idempotents, then $dfe = f \iff df = f = fe$.

Indeed, if df = f = fe, then dfe = fe = f. Conversely, if dfe = f, then f = dfe = ddfe = df and f = dfe = dfee = fe.

To show that $\mathcal{C}[\check{\mathcal{E}}]$ is a category, we need to show that the composition of two morphisms is indeed a morphism and that there are identity morphism.

Assume that $c\colon C\to C,\ d\colon D\to D,\ e\colon E\to E$ are idempotents and that $f\colon C\to D$ and $g\colon D\to E$ satisfy dfc=f and egd=g. We need to show that egfc=gf. Using the lemma, we have egf=(eg)f=gf and gfc=g(fc)=gf, so, again by the lemma, the claim follows.

If $e: E \to E$ is an idempotent, define $1_e := e \xrightarrow{e} e$. By idempotency of e, this is indeed a morphism. If $f: d \to e$ is a morphism, then the morphism $f1_d$ is the morphism fd = f (here we use the lemma again) in \mathcal{C} , so $f1_d = f$ as required. Similarly, $1_e f = f$. This completes part (i).

Next, assume that $\mathcal E$ contains all identity morphisms of $\mathcal C.$ Define the functor I via

$$I: \mathcal{C} \to \mathcal{C}[\check{\mathcal{E}}]$$

$$A \mapsto 1_A$$

$$(f: A \to B) \mapsto (f: 1_A \to 1_B)$$

This is indeed a functor and since the data of a morphism $A \to B$ in \mathcal{C} is precisely the same as the data of a morphism $1_A \to 1_B$ in $\mathcal{C}[\check{\mathcal{E}}]$, I is fully faithful.

Now let $T: \mathcal{C} \to \mathcal{D}$ be any functor.

First, assume that there is some functor $\widehat{T} \colon \mathcal{C}[\check{\mathcal{E}}] \to \mathcal{D}$ such that $T = \widehat{T}I$. Let $e : A \to A \in \mathcal{E}$ be an idempotent. Then we have

$$Te = \widehat{T}(1_A \xrightarrow{e} 1_A)$$

$$= \widehat{T}(1_A \xrightarrow{e} e \xrightarrow{e} 1_A)$$

$$= \widehat{T}(e \xrightarrow{e} 1_A) \circ \widehat{T}(1_A \xrightarrow{e} e),$$

and we also have

$$\begin{split} \widehat{T}(1_A \overset{e}{\longrightarrow} e) \circ \widehat{T}(e \overset{e}{\longrightarrow} 1_A) &= \widehat{T}(e \overset{e}{\longrightarrow} 1_A \overset{e}{\longrightarrow} e) \\ &= \widehat{T}(e \overset{ee}{\longrightarrow} e) \\ &= \widehat{T}(e \overset{e}{\longrightarrow} e) \\ &= \widehat{T}(1_e) \\ &= 1_{\widehat{T}e}, \end{split}$$

which shows that Te is split.

Next, assume that Te is split for any $e \in \mathcal{E}$. For any $e \in \mathcal{E}$, choose a splitting

$$TA \xleftarrow{g_e} B_e$$
,

i.e., $f_e \circ g_e = Te$, $g_e \circ f_e = 1_{B_e}$. For identity morphisms 1_A (A an object of \mathcal{C}), choose the specific splitting given by $B_{1_A} := TA$, $f_{1_A} := 1_{TA}$, $g_{1_A} := 1_{TA}$.

Now define the functor \widehat{T} via

$$\widehat{T} \colon \mathcal{C}[\check{\mathcal{E}}] \to \mathcal{D}$$

$$(e \colon A \to A) \mapsto B_e$$

$$(f \colon d \to e) \mapsto g_e \circ Tf \circ f_d.$$

If $e \in \mathcal{E}$, then we have

$$\widehat{T}(1_e) = g_e \circ Te \circ f_e$$

$$= g_e \circ f_e \circ g_e \circ f_e$$

$$= 1_{B_e} \circ 1_{B_e} = 1_{B_e}$$

Furthermore, if $f: c \to d$ and $g: d \to e$, then we have

$$\begin{split} \widehat{T}(g \circ f) &= g_e \circ T(g \circ f) = f_c \\ &= g_e \circ Tg \circ Tf = f_c \\ &= g_e \circ Tg \circ T(d \circ f) \circ f_c \\ &= g_e \circ Tg \circ Td \circ Tf \circ f_c \\ &= g_e \circ Tg \circ f_d \circ g_d \circ Tf \circ f_c \\ &= \widehat{T}g \circ \widehat{T}f. \end{split}$$

So \widehat{T} is indeed a functor. If A is an object of \mathcal{C} , then

$$\widehat{T}IA = \widehat{T}1_A = B_{1_A} = TA$$

and if $f: C \to D$ is a morphism in C, then

$$\widehat{T}If = \widehat{T}(1_C \xrightarrow{f} 1_D) = g_{1_D} \circ Tf \circ f_{1_C} = 1_{TD} \circ Tf \circ 1_{TC} = Tf,$$

so \widehat{T} is the required factorisation, completing part (ii).

Define a functor $\Phi \colon [\widehat{\mathcal{C}}, \mathcal{D}] \to [\mathcal{C}, D]$ via $F \mapsto F \circ I$, $\eta \mapsto I\eta$, where $I\eta$ is defined cia $I\eta_C := \eta_{IC} = \eta_{1_C}$. Naturality of $I\eta$ immediately follows from naturality of η . Functoriality is also clear.

We will show that this functor is full, faithful and essentially surjective.

Indeed, let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then \widehat{F} as defined in the previous part satisfies $\Phi \widehat{F} = F$, so Φ is essentially surjective.

Next, let $F, G: \widehat{\mathcal{C}} \to \mathcal{D}$ be functors and $\eta: F \circ I \to G \circ I$ a natural transformation. For an idempotent $e: A \to A$ in \mathcal{C} , define $\hat{\eta}_e$ to be the composite

$$Fe \xrightarrow{F(e \xrightarrow{e} 1_A)} F1_A = (F \circ I)A \xrightarrow{\eta_A} (G \circ I)A = G1_A \xrightarrow{G(1_A \xrightarrow{e} e)} Ge.$$

We claim that this defines a natural transformation $\hat{\eta} \colon F \to G$. Indeed, if $f \colon d \to e$ is a morphism, then

$$\begin{split} \hat{\eta}_{e} \circ Ff &= G(1_{A} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(e \stackrel{e}{\longrightarrow} 1_{E}) \circ F(d \stackrel{f}{\longrightarrow} e) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{d}{\longrightarrow} 1_{D} \stackrel{d}{\longrightarrow} d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{d}{\longrightarrow} 1_{D} \stackrel{d}{\longrightarrow} d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(1_{D} \stackrel{efd}{\longrightarrow} 1_{E}) \circ F(d \stackrel{d}{\longrightarrow} 1_{D}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(efd) \circ F(d \stackrel{d}{\longrightarrow} 1_{D}), \end{split}$$

and doing the whole thing backwards we conclude that $\hat{\eta}_e \circ Ff = Gf \circ \hat{\eta}_d$, so $\hat{\eta}$ is indeed a natural transformation.

For any $A \in \mathcal{C}$ we have

$$(I\hat{\eta})_A = \hat{\eta}_{IA} = \hat{\eta}_{1_A} = G(1_A \xrightarrow{1_A} 1_A) \circ \eta_A \circ F(1_A \xrightarrow{1_A} 1_A)$$
$$= G(1_{1_A}) \circ \eta_A \circ F(1_{1_A}) = \eta_A,$$

which means that $\Phi(\hat{\eta}) = \eta$, so Φ is full.

Finally, let $F,G\colon\widehat{\mathcal{C}}\to\mathcal{D}$ be functors and $\eta,\eta'\colon F\to G$ be natural transformations such that $\Phi(\eta)=\Phi(\eta')$. To show that Φ is faithful, we need to prove that $\eta=\eta'$. The assumption $\Phi(\eta)=\Phi(\eta')$ means that for all $A\in\mathcal{C}$ we have $\eta_{IA}=\eta'_{IA}$, so $\eta_{1_A}=\eta'_{1_A}$.

so $\eta_{1_A} = \eta'_{1_A}$. Let $e: A \to A$ be any idempotent in \mathcal{C} . We need to show that $\eta_e = \eta'_e$. Indeed, we have

$$\eta_e = G(1_e) \circ \eta_e
= G(e \xrightarrow{e} e) \circ \eta_e
= G(e \xrightarrow{ee} e) \circ \eta_e
= G(e \xrightarrow{e} 1_A \xrightarrow{e} e) \circ \eta_e
= G(1_A \xrightarrow{e} e) \circ G(e \xrightarrow{e} 1_A) \circ \eta_e
= G(1_A \xrightarrow{e} e) \circ \eta_{1_A} \circ F(e \xrightarrow{e} 1_A)
= G(1_A \xrightarrow{e} e) \circ \eta'_{1_A} \circ F(e \xrightarrow{e} 1_A),$$

and the same argument in backwards direction shows that $\eta_e = \eta'_e$, completing the proof.

Chapter 2

Exercise 13.

EXERCISE. The inner automorphisms of \mathcal{C} form a normal subgroup of the group of all automorphisms of \mathcal{C} . [Don't worry about whether these groups are sets or proper classes!]

SOLUTION. Let $F, G: \mathcal{C} \to \mathcal{C}$ be automorphisms and let $\alpha: F \to 1_{\mathcal{C}}$ be a natural isomorphism.

Let $A \in \mathcal{C}$. Define $\beta \colon GFG^{-1} \to 1_A$ via $\beta_A \coloneqq G(\alpha_{G^{-1}A})$ (so $\beta_A \colon GFG^{-1}A \to GG^{-1}A = A \to GG^{-1}A = 1_{\mathcal{C}}A$.

This is indeed a natural transformation: let $f \colon A \to B \in \mathcal{C}$, then we can write the naturality square in a funny way,

$$GFG^{-1}A \xrightarrow{G(\alpha_{G^{-1}A})} G1_CG^{-1}A$$

$$\downarrow^{GFG^{-1}(f)} \qquad \qquad \downarrow^{G1_CG^{-1}f}$$

$$GFG^{-1}B \xrightarrow{G(\alpha_{G^{-1}B})} G1_CG^{-1}B$$

and we see that it is just the functor G applied to the naturality diagram for α and the morphism $G^{-1}f$.

Therefore, β is a natural transformation, and since functors map isomorphisms to isomorphisms, it is also a natural isomorphism. So GFG^{-1} is an inner automorphism as required.

LEMMA. Let $1 \in \mathcal{C}$ be a terminal object and $F: C \to C$ an automorphism. Then F1 is a terminal object.

PROOF. If $A \in \mathcal{C}$, the functor F, which is fully faithful, induces a bijection between the collection of morphisms $F^{-1}A \to 1$ and the collection of morphisms $A \to F1$. Since 1 is terminal, there is exactly one morphism $A \to F1$.

EXERCISE. If $F \colon \mathsf{Set} \to \mathsf{Set}$ is an automorphism, then there is a unique natural isomorphism $1_{\mathcal{C}} \to F$.

SOLUTION. Of course, the terminal object in the category of sets is just the one-element set $1 = \{\star\}$. Since F1 is also terminal, it is in bijection with 1. We write $F1 = \{\star_{F1}\}$.

By the Yoneda lemma, the set of natural transformations $\mathsf{Set}(1,-) \to F$ is in bijection with F1, so there is a unique natural transformation $\eta \colon \mathsf{Set}(1,-) \to F$. Examining the proof, we see that the components of this natural transformation are given by

$$\eta_A \colon \mathsf{Set}(1,A) \to FA$$

$$f \mapsto Ff(\star_{F1})$$

for any object A of C. Let A be an object of C. We will show that η_A is an isomorphism, i.e., a bijection.

First, let $x \in FA$. Then $\eta_A(F^{-1}(\star_{F1} \mapsto x)) = x$, so η_A is surjective.

Additionally, let $f, g: 1 \to A$ such that $\eta_A(f) = \eta_A(g)$. Since a map $F1 \to FA$ is completely determined by its value at \star_{F1} , we must have Ff = Fg. But then $f = F^{-1}F(f) = F^{-1}F(g) = g$.

This means that η_A is an isomorphism, so η is in fact a natural isomorphism. We define a natural transformation $\alpha \colon 1_{\mathsf{Set}} \to \mathsf{Set}(1,-)$ by setting

$$\alpha_A(a)(\star) \coloneqq a.$$

The naturality square for $f: A \to B$ is

$$\begin{array}{ccc} A & \stackrel{\alpha_A}{\longrightarrow} & \mathsf{Set}(1,A) \\ \downarrow^f & & \downarrow^{g \mapsto f \circ g} \\ B & \stackrel{\alpha_B}{\longrightarrow} & \mathsf{Set}(1,B) \end{array}$$

Both paths are just $a \mapsto (\star \mapsto f(a))$, so α is natural. It is also clear that α_A is bijective, so α is a natural isomorphism. In other words, \star is a universal element of the identity functor.

In particular, this tells is that composition with α and its inverse exhibits a bijection between the collection of natural transformations

$$1_{\mathsf{Set}} \to F$$

and the collection of natural transformations

$$Set(1, -) \rightarrow F$$
.

This means that there is a unique natural transformation $1_{\mathsf{Set}} \to F$, and it is given by $\alpha \circ \eta$, and since α and η are both natural isomorphisms, so is $\alpha \circ \eta$, completing the proof.

EXERCISE. The Sierpiński space S is, up to isomorphism, the unique topological space which has precisely three endomorphisms.

SOLUTION. Let X be a topological space. Then for any $x \in X$, the constant map $c_x \colon X \to X$ sending $y \in X$ to x is continuous. Furthermore, the identity on X is continuous. This, if X is infinite, then X has infinitely many endomorphisms, and if X is finite, then X has at least |X| + 1 endomorphisms.

Now assume that X has precisely three endomorphisms. Then X is finite and has at most two points. Clearly, if X has zero or one point, then there is only one endomorphism. So X has two points, say $X = \{a, b\}$. There are four set-functions $\{a, b\} \to \{a, b\}$, three of which (the identity and the two constant maps) are continuous regardless of the topology. The final map interchanges a and b and is not continuous.

The empty set and all of X are open. If X had the trivial or the discrete topology, then the interchange would be continuous, a contradiction. Hence, precisely one of the sets $\{a\}$ and $\{b\}$ is open. Sending the member of that set to 1 and the other element to 0 describes a homeomorphism with S.

EXERCISE. Let \mathcal{C} be a full subcategory of Top containing the singleton space 1 and the Siperpiński space S and let F be an automorphism of \mathcal{C} . Then

- (a) we have $FS \cong S$,
- (b) there is a unique natural isomorphism $\alpha \colon U \to UF$, where $U \colon \mathcal{C} \to \mathsf{Set}$ is the forgetful functor,
- (c) if C contains a space in which not every union of closed sets is closed, then α_S is continuous, and
- (d) F is uniquely naturally isomorphic to the identity functor.

SOLUTION. For (a), we just need to notice that F is fully faithful, so it induces a bijection between the sets of morphisms $S \to S$ and $FS \to FS$. Since S is determined up to isomorphism by having exactly three endomorphisms, the claim follows.

The proof of (b) is entirely analogous to the proof of 2.13(ii).

Exercise 14.

EXERCISE. Let $e: A \to A$ be an idempotent. Then the following are equivalent:

- (i) e is split,
- (ii) the pair $(e, 1_A)$ has an equaliser,
- (iii) the pair $(e, 1_A)$ has a coequaliser.

SOLUTION. We will show that (i) is equivalent to (ii). By duality, this implies that (i) is equivalent to (iii).

Assume that there are $f: B \to A$ and $g: A \to B$ such that fg = e and $gf = 1_B$. We claim that f is an equaliser of e and 1_A . We must show that any $h: C \to A$ satisfying he = h factors uniquely through f.

$$B \overset{h'}{\underset{g}{\longleftarrow}} A \xrightarrow{e} A$$

Indeed, given such h. Then fgh = eh = h, hence gh is one such factoring factoring. If $h': C \to B$ is another factoring such that fh' = h, then h' = gfh' = gh, so the factoring is unique.

Conversely, assume that the pair $(e, 1_A)$ admits an equaliser $f: B \to A$. Since $ee = e = 1_A e$, e factors through f via some $g: A \to B$. Hence, fg = e. On the other hand, fgf = ef = f, and by a result from the lecture, f is monic, so $gf = 1_A$, so e is split.

Exercise. A split monomorphism is regular.

SOLUTION. If $f: A \to B$ is a split monomorphism, then there is some $g: B \to A$ such that $gf = 1_A$. Then $fgfg = f1_Ag = fg$, so fg is a split idempotent. By what we just saw, this means that f is an equaliser of $(fg, 1_A)$, hence f is a regular monomorphism.

Exercise 15.

EXERCISE. Every regular monomorphism is strong.

Solution. Let f be the equaliser of u and v and take a commutative square as in the definition of strongness.

$$\begin{array}{ccc}
C & \xrightarrow{h} & A \\
\downarrow^{g} & \stackrel{t}{\downarrow} & & \downarrow^{f} \\
\downarrow^{g} & \downarrow^{g} & \downarrow^{g} & \downarrow^{g} \\
D & \xrightarrow{k} & B & \xrightarrow{u} & E
\end{array}$$

We have ukg = ufh = vfh = vkg. Since g is epi, this means that uk = vk, and since f is the equaliser of u and v, we find $t: D \to A$ such that ft = k. Now ftg = kg = fh. Since f is mono, we conclude that tg = h, so t has the desired properties. Hence, f is a strong monomorphism.

EXERCISE. Let $\mathcal C$ be the finite category whose non-identity morphisms are represented by the diagram

The morphism f is strong monic but not regular monic.

Solution. The strongness condition for f is actually vacuous: if we have a diagram

then we must have $u = 1_A$. The morphism f is not an epimorphism, as witnessed by the fact that hf = kf, but $h \neq k$, so we must have v = l. Then w is a morphism $D \to B$, but such a morphism does not exist. Hence, the square does not exist, so f is strong.

However, the only pairs of morphisms that f can be an equaliser of are $(1_B, 1_B)$, (k, k), (h, h) and (h, k). If f was the equaliser of any of these pairs, g would factor through f, but there is no morphism $C \to A$, hence that is not the case. So we conclude that f is not regular.

Exercise 16.

EXERCISE. Let $f: A \to B$, $g: B \to C$ be two morphisms.

- (a) If f and g are monic, then gf is monic,
- (b) If f and g are strong monic, then gf is strong monic,
- (c) If f and g are split monic, then gf is split monic,
- (d) If gf is monic, then f is monic,
- (e) If gf is strong monic, then f is strong monic,
- (f) If gf is split monic, then f is split monic.
- (g) If gf is regular monic and g is monic, then f is regular monic.

SOLUTION. (a) If gfu = gfv, then fu = fv since g is monic, and u = v, since f is monic.

(b) Consider the diagram

Since g is strong monic, using the square (fh, g, l, k), we find $t: E \to B$ such that gt = k and tl = fh. Since f is strong epic, using the square (h, f, l, t), we find $u: E \to A$ such that fu = t and ul = h. Then we have gfu = gt = k, so u is the required morphism.

- (c) If $u: B \to A$ satisfies $uf = 1_A$ and $v: C \to B$ satisfies $vg = 1_B$, then uv is the desired retraction, as $uvgf = u1_B f = uf = 1_A$.
- (d) If fu = fv, then trivially, gfu = gfv, so u = v.

(e) Consider the diagram

Since gf is strong monic, using the square (h, gf, l, gk) we find $t: E \to A$ such that tl = h (and gft = gk, but that is not important). We have ftl = fh = kl, so since l is epi, we have ft = k, so t is indeed the required diagonal morphism, so f is strong monic.

- (f) If $u: C \to A$ satisfies $ugf = 1_A$, then $(ug)f = 1_A$, so f is split monic.
- (g) Say gf is an equalizer of u and v.

$$A \xrightarrow{\ell} B \xrightarrow{g} C \xrightarrow{u} D$$

If $h: T \to B$ satisfies ugh = vgh, then since gf is an equaliser of u and v, we find a unique $\ell: T \to A$ such that $gf\ell = gh$. Since g is monic, we have $f\ell = h$. The morphism ℓ is the unique morphism satisfying $f\ell = h$, since if $\hat{\ell}$ also satisfies $f\hat{\ell} = h$, then certainly $gf\hat{\ell} = gh$, hence $\ell = \hat{\ell}$.

EXERCISE. Let \mathcal{C} be the full subcategory of Ab whose objects are groups having no elements of order 4 (though they may have elements of order 2). Then

- (i) multiplication by 2 is a regular monomorphism $\mathbb{Z} \to \mathbb{Z}$,
- (ii) multiplication by 4 is not a regular monomorphism $\mathbb{Z} \to \mathbb{Z}$,
- (iii) there is a pair of morphisms (f,g) such that gf is regular monix but f is not.

SOLUTION. (i) We claim that multiplication by 2 is an equalizer in \mathcal{C} of the projection $\pi \colon \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ and the zero map $0 \colon \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$.

$$\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z}$$

Indeed, if $f: G \to \mathbb{Z}$ equalizes π and 0, then its image is contained in $2\mathbb{Z}$, hence it factors uniquely through multiplication by 2 via the map $g \mapsto f(g)/2$.

(ii) Assume that multiplication by 4 is an equalizer in \mathcal{C} of f and g.

$$\mathbb{Z} \xrightarrow{\cdot 4} \mathbb{Z} \xrightarrow{f} G$$

Clearly, the kernel of f - g has no elements of order 4 and the inclusion equalizes f and g, hence it factors through multiplication by 4. Consider the element $\alpha := f(1) - g(1) \in G$. We know that $\alpha + \alpha + \alpha + \alpha = f(4) - g(4) = 0$,

since multiplication by 4 equalises f and g. Since G is an object of \mathcal{C} , the order of α is 2 or 1. In either case, we have $2 \in \ker(f-g)$, which is not in the image of multiplication by 4, hence ι cannot factor through multiplication by 4, so multiplication by 4 is not an equalizer of f and g.