L'esattamente come con

J le successioni

24/10/2024

Strumenti elementari per il calcdo di limiti di funzioni

- → teoremi di confronto a 2 e a 3
- -> teoremi algebrici
- -> funcioni continue
- -> limiti notevoli
- -> cambi di variabile

Def. Sia D S R un insieure e sia f: D → R una funcione Si dice che f è continua in xo ED se serccede una di queste due cose

- [ox] = C∩[3 +ox, 3-ox] .o.t o< 3 E so sois, C wi otalozi s ox ← (cioè se la tutto l'intervallo xo è l'unico elemento di D)
- -> xo è un p.to di accumularione per D e

lin f(x) = f(x) Operativamente: per fone il $x \rightarrow x_0$ limite basta sostituix il valore

Volendo scrivere in simboli, la definizione diventa

3+(m) \$ ≥ 3 - (m) \$ 10 × 3 × 0 × 8 € (m) + E

 $\forall \times \in [x_0 - \delta, x_0 + \delta] \cap D$

"quando x è vicino a xo, allora f(x) è vicino a f(xo)"

Metateorema (Molto misterioso) agui funzione ottenuta a partire dalle funcioni elementari mediante operarsioni algebriche ex composizioni è continua in tutti i pti in un usu presenta problemi bunocratici di definizione (demoninatori = 0, radice (roba < 0), log (roba < 0) e così via)

Cosa servitebbe per dimostranto
1 Le funcioni elementari sono continue nel lors insieme di
definizione (va fatto caso per caso)
2) Teoremi algebrici (somma, prodotto, quoziente)
3 La compositione di funcioni continue è continua.
Escupio liu $\frac{\log(\cos x + \sqrt{x})}{2^{x^2} + \arctan(\sin x)} = 0$
per colpa di [x
Quando x -> 0, allora Cosx -> cos 0 = 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
arctan (sinx) -> arctan (sino) = 0
Quiusi tuto feceste a
$\frac{\log(1)}{4} = 0$
In poche parole, bastava sostituire x = 0 e non c'erano problemi
Oss. log × = lu × si cutende log _e ×
'namero di Nepero
Log x = logio x 1 L mainscola
Griterio Successioni -> funcioni (I l'initi d' successioni aintano
i Dimiti d' funzioni)
Esempio lim 2 = + ∞ per la stesso motivo per cui
lim 2 ⁿ = + ∞ m->+∞ m ¹⁰⁰ = + ∞

Occlio! Questo uou basta perché mi serve fare i carabinieri Esempio di cambio di variabili lim (1+ 1) = e Occlio: ora x -> - 00 [viene qualcosa del tipo 1 00] Pougo $y = - \times$. Quando $x \to -\infty$, ho che $y \to +\infty$. Diventa line (1+ \frac{1}{\times}) = line (1-\frac{1}{\times})^{-3} = lim $\left(\frac{y^{-1}}{y}\right)^{-y} = \lim_{y \to +\infty} \left(\frac{y}{y^{-1}}\right)^{y}$ $=\lim_{y\to+\infty}\left(\frac{y-1+1}{y-1}\right)^{y}=\lim_{y\to+\infty}\left(\frac{z+\frac{1}{y-1}}{y-1}\right)^{y}$ $=\lim_{y\to+\infty}\left(1+\frac{1}{y-1}\right)^{y-1}\left(1+\frac{1}{y-1}\right)=e$ Volendo nell'ultimo limite si potera fare un enteriore combio di variabili pouendo 2=y-1. Ora quando y -> +00 ho che 2->+00 $\lim_{N \to +\infty} \left(1 + \frac{1}{N-1}\right)^{N-1} = \lim_{z \to +\infty} \left(1 + \frac{1}{z}\right)^{z} = e$ Silv Esempio Dim (1+ sinx) sinx [1ⁿ] Pougo y = 1 Quando x > 0 ho de siux > 0+, quiudi siux > 0+, quiudi siux > 100 e quiudi diventa lim (1+ 1/y) = e