Introduction to Optimization

Lecture 06: Gradient descent, continued. Geometry and convergence rates. Computational exercise.

Juan PEYPOUQUET Optimization 2022-2023 1

The gradient method

f is L-smooth and $x_{n+1} = x_n - \alpha \nabla f(x_n)$, with $0 < \alpha < \frac{2}{L}$

Proposition

- ② If f is convex, $\lim_{n\to\infty} f(x_n) = \inf(f)$ and every cluster point of (x_n) is a minimizer of f.
- **③** If, moreover, f has minimizers, then x_n converges to one of them, $f(x_n) \min(f) \le \frac{\operatorname{dist}(x_0, S)^2}{\alpha(2 \alpha L)n}$, and $\lim_{n \to \infty} n \left[f(x_n) \min(f) \right] = 0$.

4D > 4A > 4E > 4E > 9QQ

 Juan PEYPOUQUET
 Optimization
 2022-2023
 2 / 10

Strong convexity and the gradient method

The simplest example, one more time

For
$$f(x) = x^2$$
, we obtained $x_n = (1 - 2\alpha)^n x_0$, and so

$$f(x_n) - \min(f) = (1 - 2\alpha)^{2n} (f(x_0) - \min(f)).$$

3/10

Juan PEYPOUQUET Optimization 2022-2023

Strong convexity and the gradient method

The simplest example, one more time

For
$$f(x) = x^2$$
, we obtained $x_n = (1 - 2\alpha)^n x_0$, and so

$$f(x_n) - \min(f) = (1 - 2\alpha)^{2n} (f(x_0) - \min(f)).$$

Part of an exercise from Lecture 04

If f is μ -strongly convex, it has exactly on minimizer, and

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x) + \frac{\mu}{2} ||y - x||^2$$
 for all $x, y \in \mathbb{R}^N$.

Strong convexity and the gradient method

The simplest example, one more time

For
$$f(x) = x^2$$
, we obtained $x_n = (1 - 2\alpha)^n x_0$, and so

$$f(x_n) - \min(f) = (1 - 2\alpha)^{2n} (f(x_0) - \min(f)).$$

Part of an exercise from Lecture 04

If f is μ -strongly convex, it has exactly on minimizer, and

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x) + \frac{\mu}{2} ||y - x||^2$$
 for all $x, y \in \mathbb{R}^N$.

An important consequence

If f is μ -strongly convex, then $2\mu(f(x) - \min(f)) \le ||\nabla f(x)||^2$.

f is L-smooth and $x_{n+1} = x_n - \alpha \nabla f(x_n)$, with $0 < \alpha < \frac{2}{L}$

Proposition

If f has minimizers and $2\mu(f(x) - \min(f)) \le \|\nabla f(x)\|^2$ for all $x \in \mathbb{R}^N$, then

$$f(x_n) - \min(f) \le \left[1 - \alpha\mu(2 - \alpha L)\right]^n (f(x_0) - \min(f)).$$

f is L-smooth and $x_{n+1} = x_n - \alpha \nabla f(x_n)$, with $0 < \alpha < \frac{2}{L}$

Proposition

If f has minimizers and $2\mu(f(x) - \min(f)) \le \|\nabla f(x)\|^2$ for all $x \in \mathbb{R}^N$, then

$$f(x_n) - \min(f) \le \left[1 - \alpha\mu(2 - \alpha L)\right]^n (f(x_0) - \min(f)).$$

Questions

• How does this compare with the example?

f is L-smooth and $x_{n+1} = x_n - \alpha \nabla f(x_n)$, with $0 < \alpha < \frac{2}{L}$

Proposition

If f has minimizers and $2\mu(f(x) - \min(f)) \le \|\nabla f(x)\|^2$ for all $x \in \mathbb{R}^N$, then

$$f(x_n) - \min(f) \le \left[1 - \alpha\mu(2 - \alpha L)\right]^n (f(x_0) - \min(f)).$$

Questions

- How does this compare with the example?
- What value of α gives the best rate?

Juan PEYPOUQUET

f is L-smooth and $x_{n+1} = x_n - \alpha \nabla f(x_n)$, with $0 < \alpha < \frac{2}{L}$

Proposition

If f has minimizers and $2\mu(f(x) - \min(f)) \le \|\nabla f(x)\|^2$ for all $x \in \mathbb{R}^N$, then

$$f(x_n) - \min(f) \le \left[1 - \alpha\mu(2 - \alpha L)\right]^n (f(x_0) - \min(f)).$$

Questions

- How does this compare with the example?
- What value of α gives the best rate?
- How does this relate to the homework assignment?

4 D > 4 A > 4 E > 4 E > E 9 Q C

Juan PEYPOUQUET Optimization 2022-2023

Uniform growth and Łojasiewicz inequalities

Proposition

If f is convex, has minimizers, and has quadratic growth:

$$c\operatorname{dist}(x,S)^2 \le f(x) - \min(f)$$

for all $x \in \mathbb{R}^N$, then $c^2(f(x) - \min(f)) \le ||\nabla f(x)||^2$ for all $x \in \mathbb{R}^N$.

Uniform growth and Łojasiewicz inequalities

Proposition

If f is convex, has minimizers, and has quadratic growth:

$$c\operatorname{dist}(x,S)^2 \le f(x) - \min(f)$$

for all $x \in \mathbb{R}^N$, then $c^2(f(x) - \min(f)) \le \|\nabla f(x)\|^2$ for all $x \in \mathbb{R}^N$.

Exercise

Suppose f has minimizers, and there is p > 0 such that, for all $x \in \mathbb{R}^N$, we have $c \operatorname{dist}(x, S)^p \leq f(x) - \min(f)$.

- Which values of p are compatible with f being convex?
- 2 How fast does the gradient method converge in that case?

Break

Computational exercise

A simple example of image processing

Deblurring

In-painting

Warm up

We will solve a problem of the form

$$\min_{x \in \mathbb{R}^N} \left\{ \frac{1}{2} \|Ax - b\|^2 + \rho \|Lx\|_1 \right\},\,$$

but we do not have the tools yet.

Juan PEYPOUQUET

Warm up

We will solve a problem of the form

$$\min_{x \in \mathbb{R}^N} \left\{ \frac{1}{2} \|Ax - b\|^2 + \rho \|Lx\|_1 \right\},\,$$

but we do not have the tools yet.

Let us begin with something simpler: set $N, M \in \mathbb{N}$, $A \in \mathbb{R}^{M \times N}$, $b \in \mathbb{R}^{M}$, and consider the least squares minimization problem:

$$\min_{x\in\mathbb{R}^N}\left\{\frac{1}{2}\|Ax-b\|^2\right\}.$$

Juan PEYPOUQUET Optimization 2022-2023 8 / 10

1 Define a (pseudo)random matrix A of size $M \times N$.

- **1** Define a (pseudo)random matrix A of size $M \times N$.
- Write the optimality conditions and find a formula for a solution \bar{x} (it depends on whether $b \in ran(A)$ or not).

- **1** Define a (pseudo)random matrix A of size $M \times N$.
- Write the optimality conditions and find a formula for a solution \bar{x} (it depends on whether $b \in ran(A)$ or not).
- **3** Set $b = A\mathbf{1}$ and compute \bar{x} with the formula.

Juan PEYPOUQUET

- **1** Define a (pseudo)random matrix A of size $M \times N$.
- ② Write the optimality conditions and find a formula for a solution \bar{x} (it depends on whether $b \in \text{ran}(A)$ or not).
- **3** Set $b = A\mathbf{1}$ and compute \bar{x} with the formula.
- lacktriangle Now compute $ar{x}$ by applying gradient descent with constant (in the appropriate range) and step sizes, as well as using exact minimization and backtracking.

Juan PEYPOUQUET Optimization 2022-2023 9 / 10

- **1** Define a (pseudo)random matrix A of size $M \times N$.
- Write the optimality conditions and find a formula for a solution \bar{x} (it depends on whether $b \in \text{ran}(A)$ or not).
- **3** Set $b = A\mathbf{1}$ and compute \bar{x} with the formula.
- Now compute \bar{x} by applying gradient descent with constant (in the appropriate range) and step sizes, as well as using exact minimization and backtracking.
- **ullet** Compare the execution times for different combinations of M and N.

Juan PEYPOUQUET Optimization 2022-2023 9 / 10

Reminder

Choices for α_n

- Constant: $\alpha_n \equiv \alpha \in (0, 2/L)$.
- Vanishing: $\alpha_n \to 0$, $\sum \alpha_n = \infty$.
- Exact minimization: $\min_{\alpha>0} f(x_n \alpha \nabla f(x_n))$.
- Limited minimization: $\min_{\alpha \in (0,A]} f(x_n \alpha \nabla f(x_n))$.
- Backtracking: Pick $\alpha_0 > 0$ and $\sigma, \beta \in (0,1)$, and set

$$m_n := \min \left\{ j \in \mathbb{N} : f(x_n - \alpha_0 \beta^j \nabla f(x_n)) \le \alpha_0 \beta^j \sigma \|\nabla f(x_n)\|^2 \right\},$$

and then define $x_{n+1} = x_n - \alpha_0 \beta^{m_n} \nabla f(x_n)$.

(ロ) (型) (重) (重) (重) の(○)

Juan PEYPOUQUET Optimization 2022-2023 10 / 10