Boolean Functions

Lecture-7

By

Bhagyalaxmi Behera Asst. Professor (Dept. of ECE)

Contents

Boolean function

Simplification of Boolean Functions

Before simplification of Boolean function

After simplification of Boolean function

Algebraic Manipulation

Boolean function

- \succ Boolean algebra is an algebra that deals with binary variables and logic operations.
- A Boolean function described by an algebraic expression consists of binary variables, the constants 0 and 1, and the logic operation symbols.
- \succ For a given value of the binary variables, the function can be equal to either 1 or 0.
- A Boolean function expresses the logical relationship between binary variables and is evaluated by determining the binary value of the expression for all possible values of the variables.

Boolean Functions

Consider the following Boolean function:

$$F_1 = x + y'z$$

✓ A Boolean function can be represented in a truth table. The binary combinations for the truth table are obtained by counting from 0 through 2ⁿ-1 see 0 to 7.

X	y	Z	F ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Simplification of Boolean Functions

- > There is only one way that a Boolean function can be represented in a truth table.
- In algebraic form, it can be expressed in a variety of ways and all of them have equivalent logic.
- > A Boolean function can be transformed from an algebraic expression into a circuit diagram composed of logic gates connected in a particular structure.
- The particular expression used to represent the function will dictate the interconnection of gates in the logic-circuit diagram. Conversely, the interconnection of gates will dictate the logic expression.

- Here is a key fact that motivates our use of Boolean algebra: By
 manipulating a Boolean expression according to the rules of Boolean
 algebra, it is sometimes possible to obtain a simpler expression for the
 same function and thus reduce the number of gates in the circuit and
 the number of inputs to the gate.
- Designers are motivated to reduce the complexity and number of gates because their effort can significantly reduce the cost of a circuit.

Before simplification of Boolean function

Consider the following Boolean function:

$$F_2 = x'y'z + x'yz + xy'$$

This function with logic gates is shown in Fig.

The function is equal to 1 when xyz = 001 or 011 or when xyz = 100,101.

х	y	Z	F ₂
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

After simplification of Boolean function

Simplify the following Boolean function:

$$F_2 = x'y'z + x'yz + xy'$$

= $x'z (y' + y) + xy'$
= $x'z + xy'$

 The Reduced function would be preferable because it requires less wires and components.

Equivalent Expressions

$$F_2 = x'y'z + x'yz + xy'(primitive)$$

 F_2 =1 when xyz=001 or 011 or when xy=100,101

$$F_7 = x'z + xy'$$

(simplified)

 $F_2 = 1$ when xz = 01 or when

Since both expression produce the same truth table, they are said to be equivalent.

X	у	Z	F ₂
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- Therefore, the two circuits have the same outputs for all possible binary combinations of inputs of the three variables.
- Each circuit implements the same identical function, but the one with fewer gates and fewer inputs to gates is preferable because it requires fewer wires and components.
- In general, there are many equivalent representations of a logic function.

 Finding the most economic representation of the logic is an important design task.

Algebraic Manipulation

- When a Boolean expression is implemented with logic gates, each term requires a gate and each variable within the term designates an input to the gate.
- > We define a *literal to* be a single variable within a term, in complemented or un complemented form.

 $F_2 = x'y'z + x'yz + xy'$ has three terms and eight literals

$$F2 = x'y'z + x'yz + xy'$$

= $x'z(y' + y) + xy'$
= $x'z + xy'$

 $F_2 = x'z + xy'$ has two terms and four literals

- > By reducing the number of terms, the number of literals, or both in a Boolean expression, it is often possible to obtain a simpler circuit.
- The manipulation of Boolean algebra consists mostly of reducing an expression for the purpose of obtaining a simpler circuit.

Simplification of Boolean functions

Simplify the following Boolean functions to a minimum number of literals.

1.
$$x(x' + y) = xx' + xy = 0 + xy = xy$$
.

2.
$$x + x'y = (x + x')(x + y) = 1(x + y) = x + y$$
.

3.
$$(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$$
.

4.
$$xy + x'z + yz = xy + x'z + yz(x + x')$$

= $xy + x'z + xyz + x'yz$
= $xy(1 + z) + x'z(1 + y)$
= $xy + x'z$.

5.
$$(x+y)(x'+z)(y+z) = (x+y)(x'+z)$$
, by duality from function 4.

Simplification of Boolean functions

- The fourth function illustrates the fact that an increase in the number of literals sometimes leads to a simpler final expression.
- Function 5 is not minimized directly, but can be derived from the dual of the steps used to derive function 4.
- > Functions 4 and 5 are together known as the *consensus theorem*.

Assignment

- 1 Demonstrate the validity of the following identities by means of truth tables:
 - (a) DeMorgan's theorem for three variables: (x + y + z)' = x'y'z' and (xyz)' = x' + y' + z'
 - (b) The distributive law: x + yz = (x + y)(x + z)
 - (c) The distributive law: x(y+z) = xy + xz
 - (d) The associative law: x + (y + z) = (x + y) + z
 - (e) The associative law and x(yz) = (xy)z
- 2 Simplify the following Boolean expressions to a minimum number of literals:

$$(a)$$
* $xy + xy'$

(b)*
$$(x + y)(x + y')$$

(c)*
$$xyz + x'y + xyz'$$

$$(d)* (A + B)'(A' + B')'$$

(e)
$$(a+b+c')(a'b'+c)$$

(f)
$$a'bc + abc' + abc + a'bc'$$

Assignment

Simplify the following Boolean expressions to a minimum number of literals:

(a)*
$$ABC + A'B + ABC'$$

(b)*
$$x'yz + xz$$

$$(c)^* (x + y)'(x' + y')$$

$$(d)$$
* $xy + x(wz + wz')$

(e)*
$$(BC' + A'D)(AB' + CD')$$
 (f) $(a' + c')(a + b' + c')$

(f)
$$(a'+c')(a+b'+c')$$

Reduce the following Boolean expressions to the indicated number of literals:

(a)*
$$A'C' + ABC + AC'$$

to three literals

(b)*
$$(x'y' + z)' + z + xy + wz$$

to three literals

$$(c) * A'B(D' + C'D) + B(A + A'CD)$$

to one literal

(d)*
$$(A' + C)(A' + C')(A + B + C'D)$$

to four literals

(e)
$$ABC'D + A'BD + ABCD$$

to two literals