Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет Программной инженерии и компьютерной техники

Расчет искусственного освещения

Безопасность жизнедеятельности

Выполнил Ореховский А., группа Р3317

Преподаватель

Слободянюк А. А.

Расчет искусственного освещения по методу коэффициента использования светового потока

Помещение машинного зала вычислительного центра имеет размеры:

- Длину 20 метров
- Ширину 9 метров
- Высоту 4 метра

В помещении используются светильники ЛСП 02 с 2 лампами.

Высоту рабочей поверхности примем равной высоте среднего рабочего стола, 0,8 метра.

Определим норму освещенности для машинного зала вычислительного центра согласно таблице - E=400 лк.

Коэффициент запаса выбираем равным $K_3 = 1.5$.

Исходя из рекомендуемых значений $h_{\rm cB} \le 2$ м, принимаем расстояние от потолка до светильника равным $h_{\rm cB} = 0.5$ м.

Определим высоту установки светильников над рабочей поверхностью h:

$$h = H - (h_{CB} + h_{DH}) = 4 - (0.5 + 0.8) = 2.7 \text{ M}.$$

Из светотехнических данных светильника ЛСП 02 выбираем лучшее отношение $\lambda_{\rm HB}=\frac{L}{h}=1.5.$

Определяем расстояние между соседними рядами светильников L:

$$L = \lambda_{\text{HB}} \cdot h = 1.5 \cdot 2.7 = 4.05 \text{ м}.$$

Тогда при ширине 9 м количество рядов равно $n_{\rm B} = \frac{B}{L} \approx 2.22 = 3$.

Коэффициенты отражения р от поверхностей примем следующими:

- $\rho_{\pi} = 70\%$
- $\rho_{cr} = 50\%$
- $\rho_{\rm pr} = 10\%$

Вычислим индекс помещения i:

$$i = \frac{A \cdot B}{h(A+B)} = \frac{20 \cdot 9}{2.7(20+9)} \approx 2.29 = 2.5$$

Для найденных значений i, $\rho_{\rm n}$, $\rho_{\rm cr}$, $\rho_{\rm pn}$ и светильника ЛСП 02 коэффициент использования светового потока равен $\eta=63\%$.

Определяем световой поток светильников одного ряда Фр:

$$\Phi_{\rm p} = \frac{EK_3Sz}{n_{\rm B}\eta} = \frac{400\cdot1.5\cdot180\cdot1.1}{3\cdot0.63} = 62857,14$$
 лм.

Используя следующие формулы определим оптимальные вид и количество ламп, а также длину ряда:

$$n_A = \frac{\Phi_{\mathrm{p}}}{2 \cdot \Phi_{\mathrm{A}}}; \ L_p = \ L_{\mathrm{cB}} \cdot \ n_A$$

Оптимальным решением, по моему мнению, является использование 15 светильников с лампами ЛДЦ 40 ($\Phi_{\rm л}=2200$ лм). В этом случае имеем следующую длину ряда:

$$L_p = 15 \cdot 1.24 = 18.6 \text{ M}.$$

Определяем расчетную освещенность рабочей поверхности E_p и относительную погрешность расчета $\delta_{\text{отн}}$:

относительную погрешность расчета
$$\delta_{\text{отн}}$$
:
$$E_{\text{p}} = 2E \frac{\Phi_{\text{л}} \cdot n_{\text{A}}}{\Phi_{\text{p}}} = \frac{2 \cdot 400 \cdot 2200 * 15}{62857,14} = 420 \text{ лк;}$$

$$\delta_{\text{отн}} = \frac{E_{\text{p}} - E}{E} = 5\%$$

Данная расчетная освещенность не превышает допустимую. По результатам расчетов построим схему размещения светильников.

Вывод: в ходе данной работы мною был изучен метод расчета освещенности помещений на примере машзала ВЦ; после чего составлен расчет освещенности, которая не отличалась от нормируемой больше допустимой нормы. Я, также, научился составлять план освещения.