Permutation Group Algorithms

Zoltán Halasi

Eötvös Loránd University

2016

Some basic algorithms for groups

Main areas of Computational Group Theory

- Permutation groups
- Matrix groups
- Finitely presented groups
- Polycyclic groups
- Group representations

CAS. References

- General Computer Algebra Systems:
 - Gap (http://www.gap-system.org/; free)
 - Magma (http://magma.maths.usyd.edu.au; to institutions for charge)
- References:
 - D. F. Holt, B. Eick, E. O'Brien: Handbook of computational group theory
 - A. Hulpke: Notes on Computational Group Theory (lecture notes)
 - Ákos Seress: Permutation Group Algorithms

oups —

Group: (G, *) is a group, if G is a set and $*: G \times G \rightarrow G$, $(a, b) \rightarrow a * b$ is a binary operation satisfying

- **2** Unit element: $\exists e \in G$ such that $e * a = a * e = a \forall a \in G$
- **1** Inverse: $\forall a \in G$, $\exists b \in G$ such that a * b = b * a = e.

Remarks:

- Every group is finite! (In this lecture, of course)
- Notation: $a * b \Rightarrow ab$, Unit element: 1, Inverse: a^{-1}
- Unit element and inverse are unique;
- Cancellation laws:

$$\forall a, x, y \in G, \ ax = ay \iff x = y \iff xa = ya$$

Solving equations:

$$ax = b \iff x = a^{-1}b$$
, $xa = b \iff x = ba^{-1}$

- Powers, power identities
- Order of an element, o(g).

- $H \le G$ is a subgroup if $a, b \in H \Rightarrow a^{-1}, ab \in H$; (If $|H| < \infty$, then $a^{-1} = a^{o(a)-1}$)
- subgroup containing X, i.e. $X \subseteq H \le G \Rightarrow \langle X \rangle \le H \le G$.

• Generated subgroup: $X \subseteq G \Rightarrow \langle X \rangle$ is the unique smallest

- $\langle X \rangle = \{ x_1^{\varepsilon_1} x_2^{\varepsilon_1} \cdots x_s^{\varepsilon_s} \mid s \in \mathbb{N}, \ \forall 1 \leq i \leq s : x_i \in X, \ \varepsilon_i \in \{\pm 1\} \}$
- Special case: $g \in G \Rightarrow \langle g \rangle = \{ g^k \mid 0 \le k < o(g) \}$ is the cyclic subgroup generated by g.
- Cosets: $H \leq G$, $g \in G \Rightarrow$:
 - Left coset: $gH := \{gh \mid h \in H\}$
 - Right coset: $Hg := \{hg \mid h \in H\}$

Terminology: Left/Right coset of H in G represented by g. We use right cosets from now on!

Lagrange theorem, index, transversal

- $H \le G$, $x, y \in G \Rightarrow Hx = Hy$ or $Hx \cap Hy = \emptyset$;
- G is partitioned into right cosets of H
- The index of H in |G| is |G:H|=the number of different (right) cosets;
- $T = \{g_1, \dots, g_k\}$ (where |G:H| = k) is a transversal for H in G if the list $Hg_1, \dots Hg_k$ contains each coset of H exactly once; We also say $T = \{g_1, \dots, g_k\}$ is a complete set of coset representatives;
- $\forall i$: $|Hg_i| = |H| \Rightarrow |G| = |H| \cdot |G:H|$;
- $H \le G \Rightarrow |H| \mid |G|$. In particular, $o(g) = |\langle g \rangle| \mid |G|$ for any $g \in G$.

Permutation groups and group actions

- The symmetric group: Ω is a finite set, $\operatorname{Sym}(\Omega) := \operatorname{All} \Omega \mapsto \Omega$ bijections. Group operation: composition of functions
- Usually, $\Omega = \{1, 2, ..., n\}, \Rightarrow \operatorname{Sym}(\Omega) = S_n$;
- Permutation group on Ω : $G \leq Sym(\Omega)$.
- G acts on Ω if $\forall g, h \in G, \ \forall \omega \in \Omega$
 - $\exists \omega^g \in \Omega$; (The image of ω under G)
 - $\bullet \ (\omega^g)^h = \omega^{gh};$
 - $\bullet \ \omega^1 = \omega.$
- Group action \iff $G \to \operatorname{Sym}(\Omega)$ homomorphism (product presserving map).

$$g \in G
ightarrow egin{pmatrix} \omega_1 & \omega_2 & \dots & \omega_n \\ \omega_1^g & \omega_2^g & \dots & \omega_n^g \end{pmatrix}$$

Some important actions

- Action on cosets:
 - Right: H < G, $\Omega := \{ Hx | x \in G \}$, $(Hx)^g := H(xg)$;
- Left: $H \le G$, $\Omega := \{xH | x \in G\}$, $(xH)^g := (g^{-1}x)H$; • Special case of the above: Regular actions (with H=1):

Theorem (Cayley)

Every group can be wieved as a subgroup of a symmetric group

- Action by conjugation:
 - On elements: $\Omega := G$, $x^g := g^{-1}xg$
 - On subgroups: $\Omega := \{H \mid H \leq G\}, H^g := g^{-1}Hg$

(related concepts: conjugacy classes, centraliser, normaliser)

2016

How to handle permutation groups by computer?

- From now on, $\Omega := \{1, \ldots, n\}, G \leq S_n$;
- Representing / Storing an element $\in S_n$:
 - An array of length n containing each number $1, \ldots, n$ exactly once in some order; (roughly $n \log_2 n$ bits)
 - Cycle decomposition (more difficult to use it in algorithms)

(Easily convertable to each other)

- Memory requirement: $n \log_2(n)$ bits for a permutation $\in S_n$: This means 4n bytes in practice for $n = 10^5$ (we do not care with the 4)
- Current CAS-s can calculate with permutations of degree $n = 10^5$ (even more)
- If we have 2GB Memory \Rightarrow 2GB/4n \approx 5000 permutations (for $n = 10^5$) can be stored.
- But $|S_{10^5}| = (10^5)! \approx 2.8 \cdot 10^{456574}$;
- How is this possible?

Some ideas

How define a permutation group?

- Example $S_n = \langle (12), (123...n) \rangle$;
- More generally: Every $G \leq S_n$ can be generated by most n/2elements.
- Input group: $X = [x_1, \dots, x_r] \subset S_n$ with $G = \langle X \rangle$. In practice, usually |X| < 10

How to plan an algorithm?

- Space Time conflict;
- Store/Calculate elements only when you really need it;
- Avoid long lists;
- Different methods for the same problem choose the best one (e.g. for degree n < 1000 we store elements to get a faster algorithm, above it we always recalculate them, when we need)

2016

Storing elements

 $X \to \mathsf{Some}$ algorithm $\to g \in G$ is found. How to handle (store/compute with) g?

- Explicit calculation: g can be written as a product of the generators, so we can calculate it explicitly $\Rightarrow g$ is stored as an array of length n. (It can require both large space and long time)
- Permutation words: g is represented with an array containing pointers to the generators (and their inverses) in the same order as how we should multiply them to get g.
- Straight-line programs (SLP): g is represented with an array $[w_1, \ldots, w_k]$ such that w_i is one of the following for each i:
 - $w_i \in X$;
 - $w_i = (w_j, -1)$ for some $1 \le j < i$ (take the inverse of w_i);
 - $w_i = (w_j, w_k)$ for some $1 \le j, k < i$ (take the product of w_i, w_k).
- Storing base images (later)

Example: Calculating and storing elements

Let X = [a, b] and $g = abab^2 \cdots ab^{100}$

- Explicit calculation?
 - Stupid way Multiply from left to right: Time: $2 + \ldots + 101 1 = 5149$ multiplication of permutations Space: n
 - A bit more clever way

$$d := c := ab;$$

for $i \in [1..99]$ **do**
 $c := cb; d := dc;$

Time: 199 multiplication of permutations in S_n

- Space: 2n
- By a permutation word: $g \rightarrow [1, 2, 1, 2, 2, 1, 2, 2, 2, 1 \dots]$. Space: 5150 (it does not depend on n)
- By SLP:

$$[a, b, (w_1, w_2), (w_3, w_2), (w_3, w_4), (w_4, w_2), (w_5, w_6), \ldots]$$

Space: 201

Computational Complexity

- big-O notation: For $t, f: \mathbb{N} \to \mathbb{R}$ we say $t(n) \in O(f(n))$ if $\exists n_0 \in \mathbb{N}, \ c > 0$ s.t.
- Input length: O(n)

t(n) < cf(n) if $n > n_0$.

- An algorithm is polynomial-time if its running time (\approx the number of steps we need) is in $O(n^c)$ for some c>0 constant.
- Example: Multiplication of two permutations $\in O(n)$.
- ullet Theoretical Computer Science: Fast pprox Polynomial-time
- Practice is often different!
 - Even $O(n^2)$ running-time can be too slow;
 - In some cases, even an exponential-time algorithm can work efficiently in practice.
- Randomisation might help to find solution faster with high probability.

2016

Randomised algorithms

- Deterministic: For the same input you always get the same (correct) output.
- Randomised
 - Monte-Carlo (with error probability $\varepsilon < 1/2$): It might give a wrong answer: The probability that the answer is wrong is $< \varepsilon$ for every input; Reliability can be improved by repeated application.
 - One-sided Monte Carlo: A random algorithm for a decision problem; One of the possible answers ('yes' or 'no') is guaranteed to be correct; It can be used as a 'filter'.
 - Las Vegas: It never gives an incorrect answer; There is a probability $< \varepsilon$ that it does not return an answer at all i.e. reports failure.

Randomised algorithms

Remarks:

- Rerunning Las Vegas algorithm as long as it reports failure ⇒ it always give a correct answer, but the running time is random.
- Monte Carlo algorithm + deterministic checking ⇒ Las Vegas algorithm.
- In CGT: Random event: Choose a random element from the group.

How to find a random element of a group?

- A group G is given by a set of generators $X = [x_1, \dots, x_r]$
- \bullet Problem: Choose a "random element" of G, i.e. with uniform distribution:

$$\forall g \in G : P(g \text{ has been chosen}) = 1/|G|$$

- We assume we have a perfect random generator, which provides a uniformly random element of a list
- Easy cases:
 - |G| is small enough to list all elements of G;
 - $G = S_n$; (Homework)
 - A base and a strong generating set is known for G; (later)

Homework 1.

Give an algorithm, which provides a uniformly random element of S_n of running time O(n). (with the assumption that you have a perfect random generator, which can choose an element of [1..n]in constant time.)

The product replacement algorithm

- Let $X = [x_1, \dots, x_r]$ be generators for G with $r \ge 10$. Additionally, let $x_0 = 1$.
- Main step:
 - Choose randomly: $s, t \in [1..r], s \neq t, \varepsilon \in \{\pm 1\}$ and also a "side" from {left,right};
 - Change x_s to either $x_t^{\varepsilon} x_s$ or $x_s x_t^{\varepsilon}$ (depending on which "side" was chosen);
 - Change x_0 to $x_s x_0$ or $x_0 x_s$.
- As an initialistion, run the main step several times. (In practice, 50 step is used)
- After that, each time you need a new random element, run the main step and return with the current value of x_0 .

Remarks:

- Fast, usually works well in practice.
- It is not uniformly distributed, and it is unsatisfactory in some cases. 4 D > 4 P > 4 B > 4 B > B 9 Q P

Orbit and stabilizer

Definition (Orbit and stabilizer)

Let G act on Ω .

- The orbit of $\alpha \in \Omega$: $\alpha^G := \{ \alpha^g \mid g \in G \}$;
- $\alpha, \beta \in \Omega$ in the same orbit if $\alpha^G = \beta^G$;
- Equivalence classes: Orbits of G on Ω ;
- *G* is transitive: there is just one orbit;
- The stabiliser of $\alpha \in \Omega$ in G: $G_{\alpha} := \{g \in G \mid \alpha^g = \alpha\} \leq G$.

Theorem (Orbit-stabiliser theorem)

Let $G \leq \Omega$, $\alpha \in \Omega$ and $H = G_{\alpha}$.

• There is a bijective correspondence:

$$\alpha^{\mathsf{G}} \longleftrightarrow \{\mathsf{Hg} \mid \mathsf{g} \in \mathsf{G}\}, \qquad \alpha^{\mathsf{g}} \longleftrightarrow \mathsf{Hg}, \ \forall \mathsf{g} \in \mathsf{G}\}$$

•
$$|\alpha^{G}| = |G: G_{\alpha}| \Rightarrow |G| = |\alpha^{G}| \cdot |G_{\alpha}|$$

Basic Orbit algorithm

- The Orbit algorithm:
 - Input: $X = [x_1, ..., x_r] \subset \operatorname{Sym}(\Omega)$ with $\langle X \rangle = G$, and $\alpha \in \Omega$
 - Problem: Find α^G
 - Maintain an array Δ . At the first step, $\Delta := [\alpha]$.
 - For any $\beta \in \Delta$, calculate β^x for every $x \in X$.
 - Check whether $\beta^x \in \Delta$; If not, we append β^x to Δ .
 - Continue, until $\beta^x \in \Delta$ for every $\beta \in \Delta$, $x \in X$. Then $\Delta = \alpha^G$.
- Membership testing: Use a characteristic vector for $\Delta \subset \Omega$. (This can be a problem if the action is not the natural one)

Pseudocode: The Orbit algorithm

```
Orbit(X, \alpha)
      Input: X \subset \operatorname{Sym}(\Omega) with \langle X \rangle = G, \alpha \in \Omega
      \overline{\mathbf{Output}}: \Delta = \alpha^{G}
     \Delta := [\alpha];
     for \beta \in \Delta do
               for x \in X do
                       if \beta^x \notin \Delta then
5
                                Append \beta^{x} to \Delta;
6
      return \Delta:
```

Computing transversals

- Often, we are not only interested in α^{G} , but for some/every $\beta \in \alpha^{G}$ also in a $u_{\beta} \in G$, which moves α to β , i.e. for which $\beta = \alpha^{u_{\beta}}$.
- $\{u_{\beta} \mid \beta \in \alpha^{G}\}$ is a right transversal for G_{α} .
- Modification of the Orbit algorithm:
 - Maintain an array Δ containing ordered pairs (β, u_{β}) for $\beta \in \alpha^{G}$, $\alpha^{u_{\beta}} = \beta$. Initially, $\Delta = [(\alpha, 1_{G})]$;
 - Every time a new element $\gamma = \beta^x$ of α^G if found, (i.e. when there is no element of $(\gamma,*) \in \Delta$) choose $u_{\gamma} := u_{\beta} \cdot x$ and append (γ, u_{γ}) to Δ ;
 - At the end of the algorithm, we get an array Δ containing $\{(\beta, u_{\beta}) \mid \beta \in \alpha^{G}\}.$

Pseudocode: The Orbit-Transversal algorithm

```
Orbit-Trans(X, \alpha)

Input: X \subset \text{Sym}(\Omega) with \langle X \rangle = G, \alpha \in \Omega

Output: \Delta = \{(\beta, u_{\beta}) \mid \beta \in \alpha^{G}, \alpha^{u_{\beta}} = \beta\}

1 \Delta := [(\alpha, 1_{G})];

2 for (\beta, u_{\beta}) \in \Delta do

3 for x \in X do

4 if (\beta^{x}, *) \notin \Delta then

5 Append (\beta^{x}, u_{\beta} \cdot x) to \Delta;

6 return \Delta;
```

Schreier vectors

- Storing a set of transversals $\{u_{\beta} \mid \beta \in \alpha^{G}\}$ requires place $|\alpha^G| \cdot n$. This is n^2 if G is transitive.
- We run out of memory if *n* is large.
- Solution: Schreier vector. We modify the Orbit algorithm as follows.
 - Besides Δ , we maintain an array Sv indexed by elements $\Omega = \{1, 2, \dots, n\}.$
 - Initalise Sv as $Sv[\alpha] = -1$, $Sv[\beta] = 0$ for $\beta \neq \alpha$.
 - When a new element $\beta^{x_i} \notin \Delta$ found, we not only append β^x to Δ , but we also change $Sv[\beta^{x_i}]$ to i;
 - When the algorithm ends we return Δ , Sv (or just Sv)
- At the end, Sv can also be used as a characteristic vector for α^{G} . since $\beta \in \alpha^{G} \iff Sv[\beta] \neq 0$.

Pseudocode: Orbit-Sv

```
Orbit-Sv(X, \alpha)
     Input: X = [x_1, ..., x_r] \subset \text{Sym}(\Omega) with \langle X \rangle = G, \alpha \in \Omega
     Output: Sv for \alpha
    for i = [1 ... n] do Sv[i] := 0;
   \Delta := [\alpha]; Sv[\alpha] := -1;
    for \beta \in \Delta do
            for i = [1 ... r] do
                   if \beta^{x_i} \notin \Delta then
5
6
                          Append \beta^{x_i} to \Delta;
                          Sv[\beta^{x_i}] := i:
8
     return Sv:
```

Calculating transversal from Schreier vector

Sometimes we need to explicitly calculate an $u_{\beta} \in G$ which moves α to β . We can do this from Sv for α as follows.

- In general, it is worth precalculate $X^{-1}:=[x_1^{-1},\ldots,x_r^{-1}]$, since we will use them.
- Input: $X, X^{-1}, \beta \in \Omega$, Sv for α Problem: Find an $u_{\beta} \in G$ with $\alpha^{u_{\beta}} = \beta$ if $\beta \in \alpha^{G}$
- First, we check whether $Sv[\beta] = 0$; If yes, then $\beta \notin \alpha^G$ and the algorithm terminates; Otherwise, $\beta \in \alpha^G$.
- By using Sv we step back from β on α^G (by applying some x_k^{-1} -s according to the vector Sv until we reach an $\omega \in \Omega$ satisfying $Sv[\omega] = -1$. Then $\omega = \alpha$ and we get u_β by taking the product of all the x_i -s according to the entries of Sv we touched on the way to α .

Pseudocode: U-beta

```
U-BETA(\beta, Sv, X, X^{-1})
     Input: \beta \in \Omega, a Schreier vector Sv for \alpha
     and X = [x_1, \dots, x_r], X^{-1} \subset \operatorname{Sym}(\Omega) with \langle X \rangle = G
     Output: u_{\beta} \in G with \alpha^{u_{\beta}} = \beta if \beta \in \alpha^{G}; otherwise false
   if Sv[\beta] = 0 then
            return false:
    \omega := \beta; u := 1_G; k := Sv[\omega];
     while k \neq -1 do
            u := x_k u;
           \omega := \omega^{x_k^{-1}}:
            k := Sv[\omega];
8
     return u:
```

Calculating the stabiliser of α

Theorem (Schreier's Lemma)

Let $H \leq G$ be groups, X: a set of generators for G and $T \ni 1$: a right transversal for H in G. For any $g \in G$ let $\overline{g} := t \in T$ if Hg = Ht. Then $Y = \{tx(\overline{tx})^{-1} \mid t \in T, x \in X\} \subset H$ generates H.

Proof.

- $Y \subset H$ by definition;
- Let $g \in H$ and write $g = x_1 \cdots x_m$ by a product of generators;
- Define recursively elements $t_i \in T$ and $y_i \in Y$ by $t_1 = 1$, $t_{i+1} = \overline{t_i x_i}$ and $y_i = t_i x_i (\overline{t_i x_i})^{-1}$; Then $t_i x_i = y_i t_{i+1}$ for 1 < i < m. So

$$g = (t_1 x_1) x_2 \cdots x_m = y_1 (t_2 x_2) \cdots x_m = y_1 y_2 (t_3 x_3) \cdots x_m$$

= $y_1 y_2 \cdots y_m t_{m+1} = y_1 y_2 \cdots y_m \in \langle Y \rangle$

4

5

6

8

Calculating the stabiliser of α

We use the previous Orbit-Transversal algorithm, but if we get a β^{x} which is already in Δ , then we append the Schreier generator $u_{\beta}x(u_{\beta^{\times}})^{-1}$ to Y.

```
Orbit-Stabiliser(X, \alpha)
```

```
Input: X \subset \text{Sym}(\Omega) with \langle X \rangle = G, \alpha \in \Omega
      \overline{\mathbf{Output:}} \ \Delta = \{(\beta, u_{\beta}) \mid \beta \in \alpha^{\mathsf{G}}, \ \alpha^{u_{\beta}} = \beta\},\
      Y \subset \operatorname{Sym}(\Omega) with \langle Y \rangle = G_{\alpha}
1 \Delta := [(\alpha, 1_G)]:
2 Y := [];
3
     for (\beta, u_{\beta}) \in \Delta do
                for x \in X do
                         if \beta^x \notin \Delta then
                                   Append (\beta^x, u_\beta \cdot x) to \Delta;
                         else Append u_{\beta}x(u_{\beta^{\times}})^{-1} to Y;
      return \Delta, Y;
```

How to reduce the number of generators?

- If there is a membership test available, one can check a newly constructed Schreier generator whether it is already in the subgroup generated by the current Y and append to Y ony if it is not.
 - It still not provides a minimal set of generators;
 - It requires many element tests;
- We can choose a relatively small random subset of Y and "hope" that it still generates G_{α} ; (its probability is often very high)
- By using random subproducts of the Schreier generators one can find subsets of Y of moderate size which generate G_{α} with high probability. Here, a random subproduct of $Y = \{y_1, \dots, y_s\}$ is an element of the form

$$y_1^{\varepsilon_1}y_2^{\varepsilon_2}\cdots y_s^{\varepsilon_s}, \quad \varepsilon_1,\ldots,\varepsilon_s\in\{0,1\}.$$

Bases and strong generating sets (BSGS)

Definition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group acting on Ω .

- A sequence $B = (\beta_1, \beta_2, \dots, \beta_k) \subset \Omega$ is a base for G if $\bigcap_{i=1}^k G_{\beta_i} = 1;$
- The stabiliser chain defined by the base $B = (\beta_1, \dots, \beta_k)$ is

$$G = G^{(0)} \ge G^{(1)} \ge \ldots \ge G^{(k)} = 1,$$

where $G^{(i)}:=G_{\beta_i}^{(i-1)}=G_{(\beta_1,\ldots,\beta_i)}$ is the subgroup $\{g \in G \mid g(\beta_i) = \beta_i, \ \forall \ 1 \leq i \leq i\};$

- A set of generators $S \subset G$ is a strong generating set for Grelative to B if $S \cap G^{(i)}$ generates $G^{(i)}$ for every 0 < i < k;
- If $B = (\beta_1, \beta_2, \dots, \beta_k) \subset \Omega$ is a base for G, then the i-th fundamental orbit Δ_i is the orbit of β_i under the action of $G^{(i-1)}$, i.e. $\Delta_i := \beta_i^{G^{(i-1)}}$.

The importance of BSGS

- Almost every advanced permutation group algorithm uses them;
- Storing group elements with base images: If $B = (\beta_1, \beta_2, \dots, \beta_k)$ is a base for G, then every $g \in G$ is determined by $(\beta_1^g, \beta_2^g, \dots, \beta_{\iota}^g)$ Most interesting permutation groups in practice has a base of size $< 10 \Rightarrow$ very efficient way to store group elements;
- Calculating the order of the group:

$$|G| = |G^{(0)}: G^{(1)}| \cdots |G^{(k-1)}: G^{(k)}| = |\Delta_1| \cdot |\Delta_2| \cdots |\Delta_k|.$$

By using the orbit algorithm for each pair $(\beta_i, S \cap G^{(i-1)})$ we can calculate each fundamental orbit Δ_i .

- A (perfectly) random element $g \in G$ can be chosen;
- Provides membership test (by shifting);

Finding a random element

- Let U_i be a (right) transversal for G⁽ⁱ⁾ in G⁽ⁱ⁻¹⁾ for every 1 ≤ i ≤ k;
 (Such transversals can be find with the orbit-transversal algorithm for input (β_i, S ∩ G⁽ⁱ⁻¹⁾);)
- We have $G = U_k \times ... \times U_1$, i.e. every $g \in G$ can be written of the form $g = u_k \cdots u_1$ in a unique way!
- Generating random element $g \in G$:
 - For every $1 \le i \le k$, calculate the *i*-th fundamental orbit Δ_i ;
 - Choose random elements $\gamma_i \in \Delta_i$;
 - Calculate elements $u_i := u_{\gamma_i}$ such that $\beta_i^{u_i} = \gamma_i$;
 - By taking the product $u_k \cdots u_1$, we get a random element of G.

Membership testing (By shifting)

Idea: For a given $g \in \text{Sym}(\Omega)$, we search for a decomposition $g = u_k \cdots u_1$ (with $u_i \in U_i$); such u_i -s can be find $\iff g \in G$. The shifting algorithm

- Check whether $\beta_1^g \in \Delta_1$: If not, $g \notin G$;
- Otherwise, find $u_1 \in G^{(1)}$ s.t. $\beta_1^g = \beta_1^{u_1}$;
- Continue with gu_1^{-1} and β_2 ...;
- The algorithm terminate in step m < k if $gu_1^{-1} \cdots u_{m-1}^{-1}$ moves β_m outside of Δ_m . In that case, $g \notin G$;
- If you reach the k-th step, then $gu_1^{-1} \cdots u_k^{-1}$ fixes each element of B.

Then
$$g \in G \iff gu_1^{-1} \cdots u_k^{-1} = 1$$
. (Check this!)

Note: Until the last step, you should not explicitly multiply the permutations!

Pseudocode: Shifting

```
SHIFTING(g, B, S, \Delta_*)
    Input: g \in Sym(\Omega), B, S BSGS,
            and \Delta_* (reference to the orbit-transversal algorithm)
    Output: m \le k + 1 (the step when terminated),
                h = gu_1^{-1} \cdots u_m^{-1}
   h := g;
    for m \in [1 ... k] do
         \gamma := \beta_m^h;
         if \gamma \notin \Delta_m then
                return m, h;
6
          else h := hu_{\sim}^{-1};
    Return k+1, h
```

Note: $g \in G \iff$ the output is $k + 1, 1_G$.

The Schreier–Sims algorithm

Problem: $G < \text{Sym}(\Omega)$ is given as $G = \langle X \rangle$. Find a BSGS (B, S).

- Initial step: B := []. Extend B to $B := [\beta_1, \dots, \beta_k]$ such that no element of X fixes B pointwise;
- $\forall 1 \leq i \leq k \text{ let } S^{(i)} := X \cap G_{\beta_1,...,\beta_i} \text{ and } H^{(i)} := \langle S^{(i)} \rangle$. Then

$$G = H^{(0)} \ge H^{(1)} \ge \ldots \ge H^{(k)} = 1.$$

Lemma

$$(B,S)$$
 is a BSGS for $G\iff H^{(k)}=1$ and $H^{(i-1)}_{\beta_i}=H^{(i)}$ for all i .

- For i = k, k 1, ..., we check whether $H_{\beta}^{(i-1)} \leq H^{(i)}$. If this holds for each i, then B, S is a BSGS by Lemma;
- Let us assume that this holds for every l > i. To check whether $H_{\beta}^{(i-1)} \leq H^{(i)}$ for i we take the Schreier generators for $H_{\beta}^{(i-1)}$ in $H^{(i-1)}$, and test whether they are in $H^{(i)}$; (Remark: $(\beta_{i+1}, \dots, \beta_k)$ and $S^{(i)}$ is a BSGS for $H^{(i)}$ by assumption, so we can do this!)

The Schreier–Sims algorithm

- If not, we found a $g \in H_{\beta_i}^{(i-1)}$ with $g \notin H^{(i)}$.
- In fact, when we checked $g \notin H^{(i)}$ with algorithm Shifting, it provided us m, h with $i + 1 \le m \le k + 1$ and h such that hfixes $\beta_1, \ldots, \beta_{m-1}$ and
 - either m < k and $\beta_m^h \notin \Delta_m$;
 - 2 or m = k + 1 and $h \neq 1$ fixes every element of B.
- In both case, we add h to each of $S^{(i)}, \ldots, S^{(m-1)}$. (Hence we redefine the subgroups $H^{(i)}, \ldots, H^{(m-1)}$ and the fundamental orbits $\Delta_i, \ldots, \Delta_{m-1}$
- In the second case, we also add a new element β_{k+1} to B not fixed by h, and define $S^{(k+1)} = [], k := k + 1$:
- We start again to check the assumption of Lemma . . .
- The algorithm must terminate after finitely many steps; Then (B, S) is a BSGS for G, where $S := \bigcup_{i=1}^k S_i$.

Complexity of Schreier–Sims

The time and space need for calculating a BSGS for $G = \langle X \rangle \leq S_n$ with this (deterministic) algorithm:

By calculating the transversals explicitly:

Time:
$$O(n^2 \log^3 |G| + |X|n^2 \log |G|)$$

Space: $O(n^2 \log |G| + |X|n)$

By using Schreier vectors:

Time:
$$O(n^3 \log^3 |G| + |X|n^3 \log |G|)$$

Space: $O(n \log^2 |G| + |X|n)$

A usual situation is when B is small, and n is large. Then

- Definitely use Schreier vectors:
- Modify algorithms to work with permutation words or SLP-s
- Slowest part: When "Shifting" returns with k + 1, h, you need to check whether $h = 1_G$.
- "Known-base version" ⇒ Fast computation of SGS.

Homework 2.

Prove that if we apply the Shifting algorithm for a group $G = \langle S \rangle \leq S_n$ such that (B, S) is not a BSGS, then it behaves similar to a one-sided Monte Carlo algorithm, except that the error-probability is $\varepsilon > 1/2$. More precisely,

- If $g \in S_n$ is any permutation such that $g \notin G$, then it still always recognises this fact;
- ② On the other hand; if $g \in G$ is chosen with uniform distribution, then the probability that the shifting procedure gives an incorrect answer is at least 1/2.

Remark: With the help of this, one can define a "Random Schreier-Sims method" which runs much more guickly, and finds a BSGS with prescribed high probability.