МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 3.6.1

Спектральный анализ электрических сигналов

Автор: Киркича Андрей Александрович Б01-202

Долгопрудный, 29 сентября 2023 г.

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, получение амплитудно-частотных и фазовочастотных характеристик, определение основных параметров контура.

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье.

Теоретические сведения

Разложение сложных сигналов на периодические колебания

В работе используется разложение функции в сумму синусов и косинусов с различными аргументами или, как чаще его называют, разложение в ряд Φy -рье.

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T — период повторения импульсов. Её разложение в ряд Фурье имеет вид:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$
 (1)

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n).$$
 (2)

Если сигнал чётен относительно t=0, в тригонометрической записи остаются только члены с косинусами. Для нечетного - наоборот.

Коэффициенты определяются по формулам:

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
(3)

Здесь t_1 — время, с которого мы начинаем отсчет.

Сравнив формулы (1) и (2), можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2},$$

$$\psi_n = \arctan \frac{b_n}{a_n}.$$
(4)

Периодическая последовательность прямоугольных импульсов

Введем величину: $\Omega_1 = \frac{2\pi}{T}$, где T — период повторения импульсов.

Коэффициенты при косинусных составляющих будут равны:

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}.$$
 (5)

Здесь V_0 - амплитуда сигнала.

Поскольку наша функция четная, $b_n=0$.

Пусть T кратно τ . Тогда введем ширину спектра, равную $\Delta \omega$ — расстоянию от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедиться, при $n=\frac{2\pi}{\tau\Omega_1}$. При этом:

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1. \tag{6}$$

В работе мы будем проверять справедливость этой формулы.

Периодическая последовательность цугов

Возьмём цуги колебания $V_0\cos(\omega_0 t)$ с длительностью цуга τ и периодом повторений T.

Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен:

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}} + \frac{\sin\left[\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}} \right).$$

$$(7)$$

Пусть T кратно τ . Тогда спектры последовательности прямоугольных сигналов и цугов аналогичны, но максимумы сдвинуты на ω_0 .

Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$:

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t. \tag{8}$$

Коэффициент m называется глубиной модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$.

Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}. (9)$$

Простым тригонометрическим преобразованием уравнения (8) можно найти спектр колебаний:

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
 (10)

В дальнейшем мы будем использовать эту формулу.

Результаты измерений

Исследование спектра периодических последовательностей прямоугольных импульсов

Устанавив прямоугольные колебания с $\nu_{\text{повт}}=1$ к Γ ц (период T=1 мс) и длительностью импульса $\tau=T/20=50$ мкс, мы получили на экране спектр сигнала и, изменяя либо τ , либо $\nu_{\text{повт}}$, наблюдали, как изменяется спектр.

(e) $\nu_{\text{повт}}=1$ к Γ ц, au=60 мкс

(f) $\nu_{\text{повт}}=1$ к Γ ц, au=100 мкс

(g) $\nu_{\text{повт}}=1$ к Γ ц, au=150 мкс

Проведя измерения зависимости ширины спектра от $\Delta \nu$, установили связь между $\Delta \nu$ и τ , полученную из формулы (6):

τ , MKC	50	75	100	125	150	175	200
$\Delta \nu$, к Γ ц	19.6	13.4	9.8	8.0	6.5	5.5	4.5
$1/\tau \cdot 10^3$, c ⁻¹	20	13	10	8	7	6	5

$$\Delta\nu\tau = 1,00 \pm 0,02$$

Формула (6) действительно выполняется.

Исследование спектра периодической последовательности цугов

На экране была получена последовательность цугов с характерными параметрами: $\nu_0=50$ к Γ ц, T=1 мс, число периодов в одном импульсе N=5 (длительность импульса $\tau=T/\nu_0=100$ мкс).

Мы изменяли эти параметры по одному и фиксировали результат:

Далее мы зафиксировали $\nu_0=50$ к Γ ц, N=5. Для этих параметров измерили, меняя T ($\nu_{\text{повт}}$), зависимость $\delta \nu$ от τ .

$\Delta \nu$, к Γ ц	23	32	35	38	35	45
n	42	33	18	13	10	8
$ u_{\text{повт}}, \text{к}\Gamma$ ц	0.5	1.0	2.0	3.0	4.0	6.0

Итоговое отношение:
$$\sqrt{\frac{\delta \nu}{\nu_{\text{повт}}}} = 1,05 \pm 0,08$$

Исследование спектра амплитудно-модулированного сигнала

На экран выводилась картина амплитудно-модулированного сигнала с характерными параметрами: несущая частота $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц, глубина

модуляции - 50% (m=0.5). Картины данного сигнала и его спектра выглядят следующим образом:

(р) Амплитудно-модулированный сигнал

(q) Спектр для $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц

Найдем для этого сигнала A_{max} и A_{min} и проверим справедливость формулы (9):

$$A_{max} = 1,52 \text{ B}, \quad A_{min} = 0,48 \text{ B}, \quad m = 0,52$$

Поскольку мы установили глубину модуляции на 0.5, а из теоретических расчётов получили 0.52, то видно, что формула (9) верна.

Затем мы получили на экране спектр и изменяли параметры сигнала:

Из формулы (10) следует, что $a_{\text{осн}} = A_0$, а $a_{\text{бок}} = \frac{mA_0}{2}$.

m, %	10	25	50	75	100		
$a_{\text{бок}}, \text{ мB}$	360	820	1660	2320	3260		
$a_{\rm och}$, мВ	6240	6240	6240	6240	6240		
$a_{ m for}/a_{ m och}$	0.06	0.13	0.27	0.37	0.52		
$a_{\text{бок}}/a_{\text{осн}} \cdot m, \%$	57.7	52.6	53.2	49.6	52.2		
$a_{\text{бок}}/a_{\text{осн}} \cdot m = (53, 1 \pm 1, 3)\%$							

Из (10) имеем $\frac{a_{\text{бок}}}{a_{\text{осн}}} \cdot m = 0.5$, что с высокой точностью повторяет наш результат.

Заключение

Исследования зависимости ширины спектра периодической последовательности прямоугольных импульсов от длительности отдельного импульса в первой части работы полностью совпали с теоретическими рассчетами. По наклону графика из этой части можно убедиться в соотношении неопределенностей ($\Delta \nu \Delta t \simeq 1$).

Исследования зависимости расстояния между ближайшими спектральными компонентами от частоты повторения цугов дали схожие результаты.

В последней части коэффициенты, получаемые в результате исследования зависимости отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции полностью совпали с теоретически рассчитаными.