Interpretación sobre modelos lineales y logarítmicos

1. Modelo lin-lin

$$Y = \beta_0 + \beta_1 X + \epsilon.$$

La interpretación de los parámetros es la siguiente:

- β_0 representa el valor medio de Y cuando X=0.
- $\bullet \ \beta_1$ indica el incremento medio en Y por cada cambio unitario en X

2. Modelo lin-log

$$Y = \beta_0 + \beta_1 \log(X) + \epsilon.$$

Por cada cambio unitario en log(X) se produce un cambio medio en β_1 unidades en Y.

Para esto veamos que

$$\log(X) + 1 = \log(X) + \log(e) = \log(eX),$$

donde $eX \approx 2.72X$, en términos porcentuales X se incrementa en $(100 \times (2.72-1) = 172)$ 172%.

Es decir, cuando X se incrementa 172%, Y en promedio se incrementa en β_1 unidades.

Para δ pequeño $log(1 + \delta) \approx \delta$, luego tenemos que para cada cambio porcentual en X se espera que Y aumente aproximadamente β_1 unidades.

3. Modelo log-lin

$$\log(Y) = \beta_0 + \beta_1 X + \epsilon.$$

Por cada unidad que aumenta X se espera que $\log(Y)$ aumente en β_1 unidades, es decir, se espera que para cada cambio unitario en X se multiplica la media de Y por $\exp(\beta_1)$.

Si se produce un incremento en unitario en X, entonces el valor medio de la Y se multiplica por $\exp(\beta_1)$. Si β es pequeño, entonces tenemos que $\exp(\beta_1) \approx 1 + \beta_1$

Luego, un cambio unitario en X corresponde en promedio a un cambio porcentual de $\beta_1\%$

4. Modelo log-log

$$\log(Y) = \beta_0 + \beta_1 \log(X) + \epsilon.$$

Es una conjunción de los dos modelos anteriores Cuando X varía 1%, Y varía aproximadamente en promedio β_1 %.