Decision Tree

November 8, 2021

Classification with Decision Tree

Sample		Buy new			
	Age	Income	Student	Credit rating	Computer
S01	Youth	High	No	Good	No
S02	Youth	High	No	Excellent	No
S03	Middle-aged	High	Yes	Good	Yes
S04	Senior	Medium	Yes	Good	Yes
S05	Senior	Low	Yes	Good	Yes
S06	Senior	Low	Yes	Excellent	No
S07	Middle-aged	Low	Yes	Excellent	Yes
S08	Youth	Medium	No	Good	No
S09	Youth	Low	Yes	Good	Yes
S10	Senior	Medium	Yes	Good	Yes
S11	Youth	High	Yes	Excellent	Yes
S12	Middle-aged	Medium	No	Excellent	Yes
S13	Senior	Medium	No	Excellent	No
S14	Middle-aged	High	Yes	Good	Yes

Classification with Decision Tree

Decide if Edward, the senior student, would buy a new PC with his high income and good credit rating.

Sample		Buy new			
	Age	Computer			
Edward	Senior	High	Yes	Good	?

$$I\left(\frac{p}{n}, \frac{q}{n}\right) = -\frac{p}{n}\log_2\frac{p}{n} - \frac{q}{n}\log_2\frac{q}{n}$$

▶ Without looking at the attributes:

$$I(\frac{9}{14}, \frac{5}{14}) = -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14} = 0.940$$

Age = Youth $I(\frac{2}{5}, \frac{3}{5}) = -\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} = 0.971$

Age = Middle-aged $I(\frac{4}{4}, \frac{0}{4}) = -\frac{4}{4} \log_2 \frac{4}{4} - \frac{0}{4} \log_2 \frac{0}{4} = 0.000$

Age = Senior $I(\frac{3}{5}, \frac{2}{5}) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} = 0.971$

► info(Age) =
$$(\frac{5}{14} * 0.971 + \frac{4}{14} * 0 + \frac{5}{14} * 0.971) = 0.694$$

First we have to choose the root node: The one with the highest IG

Attributes		Υ	N	Sum	- 1	Info	IG
Before	None	9	5	14	0.940	0.940	0
	Youth	2	3	5	0.971		
Age	Middle- aged	4	0	4	0.000	0.694	0.247
	Senior	3	2	5	0.971		
	High	3	2	5	0.971		0.015
Income	Medium	3	2	5	0.971	0.925	
	Low	3	1	4	0.811		
Student	Yes	8	1	9	0.503	0.581	0.359
Student	No	1	4	5	0.722	0.561	
Credit_rati	Excellent	3	3	6	1.000	0.892	0.048
ng	Good	6	2	8	0.811	0.092	0.048

We choose the node student as root. We then choose the node for the branch student = yes:

Attributes		Υ	N	Sum		Info	IG
Before	None	8	1	9	0.503	0.503	0.000
	Youth	2	0	2	0.000		0.143
Age	Middle- aged	3	0	3	0.000	0.361	
	Senior	3	1	4	0.811		
	High	3	0	3	0.000		0.143
Income	Medium	2	0	2	0.000	0.361	
	Low	3	1	4	0.811		
Credit_rati	Excellent	2	1	3	0.918	0.306	0.107
ng	Good	6	0	6	0.000	0.506	0.197

We then choose the **node Credit_Rating** and the following rule: **If student and credit_rating = Good,** then **Yes**.

For the branch student = no, we choose the following node:

Attributes		Υ	N	Sum	_	Info	IG
Before	None	1	4	5	0.722	0.722	0.000
	Youth	0	3	3	0.000		0.722
Age	Middle- aged	1	0	1	0.000	0.000	
	Senior	0	1	1	0.00		
	High	0	2	2	0.000		0.171
Income	Medium	1	2	3	0.918	0.551	
	Low	0	0	0	0.000		
Credit_rati	Excellent	1	2	3	0.918	0.551	0.171
ng	Good	0	2	2	0.000	0.331	0.171

We then choose the node age with the following rule.

- If not student and youth, then No;
- If not student and middle-aged, then Yes;
- If not student and senior, then No;

We then need to choose the node for the branch Credit_Rating = Excellent.

We then need to choose the node for the branch Credit_Rating = Excellent.

Attributes		Υ	N	Sum		Info	IG
Before	None	2	1	3	0.918	0.918	0
	Youth	1	0	1	0		
Age	Middle- aged	1	0	1	0	0.000	0.918
	Senior	0	1	1	0		
	High	1	0	1	0		0.696
Income	Medium	0	0	0	0	0.222	
	Low	1	1	2	1.000		

We then choose the node age with the following rule.

- If student and credit_rating = excellent and Youth, then Yes;
- If student and credit rating = excellent and Middle-Aged, then Yes;
- If student and credit_rating = excellent and senior, then Yes;

Using the rule: If student and credit rating = Good then Yes We can conclude that Edward will buy a new computer

Decision Tree Classifier

```
import pandas as pd
pd.set option('display.max colwidth', None)
computer = pd.read csv('/Users/catherine/Desktop/NLP/MachineLearning/MachineLearning202
print(computer.head(14), "\n")
Edward = pd.read csv('/Users/catherine/Desktop/NLP/MachineLearning/MachineLearning2021/
print(Edward.head())
                Income Student Credit rating Buy new Computer
                                        Good
0
         Youth
                  High
                            Nο
                                                           Nο
         Youth
                  High
                                   Excellent
1
                            No
                                                           Nο
                                        Good
2
   Middle-aged
                  High
                         Yes
                                                          Yes
3
        Senior Medium
                                        Good
                          Yes
                                                          Yes
4
        Senior
                                        Good
                  Low
                          Yes
                                                          Yes
5
        Senior
                                 Excellent
                  Low
                           Yes
                                                          No
6
   Middle-aged
                                  Excellent
                   LOW
                           Yes
                                                          Yes
7
         Youth Medium
                                        Good
                           Nο
                                                           Nο
8
         Youth
                                        Good
                   LOW
                           Yes
                                                          Yes
9
        Senior Medium
                                        Good
                           Yes
                                                          Yes
10
                  High
                                   Excellent
         Youth.
                           Yes
                                                          Yes
   Middle-aged Medium
                                   Excellent
11
                          No
                                                          Yes
12
         Senior Medium
                                   Excellent
                            No
                                                           Nο
   Middle-aged
                  High
13
                           Yes
                                        Good
                                                          Yes
     Age Income Student Credit rating
  Senior
           High
                    Yes
                                 Good
```

Decision Tree Classifier: Prediction

```
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier
DT classifier = DecisionTreeClassifier()
le = preprocessing.LabelEncoder()
x train = computer[["Age", "Income", "Student", "Credit rating"]]
#converts to 0 and 1
x train = pd.DataFrame(columns=x train.columns, data=le.fit transform(x train.values.flatten()).reshape(x train.shape))
print(x train)
y train = le.fit(computer["Buy new Computer"])
y train = le.transform(computer["Buy new Computer"]) #converts to 0 and 1
print("y train =", y train)
x_test = Edward[["Age", "Income", "Student", "Credit rating"]]
x test = pd.DataFrame(columns=x test.columns, data=le.fit transform(x test.values.flatten()).reshape(x test.shape))
# we want to predict if Edward will buy a new computer
DT classifier.fit(x train, y train)
y pred = DT classifier.predict(x test)
print("")
print("Edward =", y pred)
```

	Age	Income	Student	Credit	rating
0	9	2	6		1
1	9	2	6		0
2	5	2	8		1
3	7	4	8		1
4	7	3	8		1
5	7	3	8		0
6	5	3	8		0
7	9	4	6		1
8	9	3	8		1
9	7	4	8		1
10	9	2	8		0
11	5	4	6		0
12	7	4	6		0
13	5	2	8		1
y_t	rain	= [0 0 1	1 1 0 1	0 1 1 1	1 0 1]

Edward = [1]

Decision Tree Classifier: Performance

confusion_matrix [[2 0]

[0 3]]

```
from sklearn.metrics import accuracy score, classification report, confusion matrix
from sklearn.model selection import train test split
Xd train dt, Xd test dt, y train dt, y test dt = train test split(x train, y train, test size=0.35)
print(Xd train dt)
print("y train = ",y train dt, "\n")
print(Xd test dt)
DT classifier.fit(Xd train dt, y train dt)
y pred = DT classifier.predict(Xd test dt)
DT_Accuracy = accuracy_score(y_test_dt, y_pred)
print("y test = ",y test dt)
print("y pred = ",y pred,"\n")
print("DT Accuracy = ", DT Accuracy, "\n")
print("confusion matrix \n", confusion matrix(y test dt, y pred))
    Age Income Student Credit rating
7
5
6
              3
11
3
10
              2
y train = [0 1 0 1 1 0 1 1 1]
        Income Student Credit rating
12
     7
v test = [0 0 1 1 1]
y pred = [0 0 1 1 1]
DT Accuracy = 1.0
```

Decision Tree Classifier: pre-pruning

Maximum depth of the tree can be used as a control variable for pre-pruning.

```
DT_classifier_en = DecisionTreeClassifier(criterion="entropy", max_depth=2)

DT_classifier_en.fit(Xd_train_dt, y_train_dt)

y_pred = DT_classifier_en.predict(Xd_test_dt)

DT_Accuracy_en = accuracy_score(y_test_dt, y_pred)

print("y_test = ",y_pred,"\n")

print("y_pred = ",y_pred,"\n")

print("DT_Accuracy_en = ", DT_Accuracy_en, "\n")

print("confusion_matrix \n", confusion_matrix(y_test_dt, y_pred))

y_test = [0 0 1 1 1]

y_pred = [0 0 1 1 1]

DT_Accuracy_en = 1.0

confusion_matrix

[12 0]

[0 3]]
```

Decision Tree Classifier: Feature selection

```
best features = SelectKBest(score func=chi2, k=4)
fit = best features.fit(Xd train dt,y train dt)
df scores = pd.DataFrame(fit.scores )
df columns = pd.DataFrame(Xd train dt.columns)
# concatenate dataframes
feature scores = pd.concat([df columns, df scores],axis=1)
feature scores.columns = ['Feature Name', 'Score'] # name output columns
print(feature scores.nlargest(4, Score')) # print all 4 features
    Feature Name
                     Score
             Age 1.142857
         Student 0.272727
3 Credit rating 0.125000
         Income 0.017857
best features = SelectKBest(score func=mutual info classif, k=4)
fit = best features.fit(Xd train dt,y train dt)
df scores = pd.DataFrame(fit.scores )
df columns = pd.DataFrame(Xd train dt.columns)
# concatenate dataframes
feature scores = pd.concat([df columns, df scores],axis=1)
feature scores.columns = ['Feature Name', 'Score'] # name output columns
print(feature scores.nlargest(4, 'Score')) # print all 4 features
    Feature Name
                    Score
        Student 0.942725
Λ
             Age 0.079762
         Income 0.000000
3 Credit rating 0.000000
best features = SelectKBest(score func=f classif, k=4)
fit = best features.fit(Xd train dt.v train dt)
df scores - pd.DataFrame(fit.scores)
df columns = pd.DataFrame(Xd train dt.columns)
# concatenate dataframes
feature scores = pd.concat([df columns, df scores],axis=1)
feature scores.columns = ['Feature Name', 'Score'] # name output columns
print(feature scores.nlargest(4, 'Score')) # print all 4 features
    Feature Name
                     Score
             Age 3.500000
Λ
```

Student 2.3333333 Credit rating 0.179487 Income 0.056911