

CONCOURS D'ACCES A L'ENSAM-MEKNES ET A L'ENSAM-CASABLANCA

Epreuve de Mathématiques : Filières Sciences et Techniques Vendredi 24 Juillet 2015 - Durée : 2h

Partie I : Questions à réponses précises

Chaque réponse est notée sur 2pts

	Questions	Réponses
Q1	Soit la proposition P : " $\forall a \in \mathbb{R}_+^*$; $a + \frac{1}{a} \ge 2$ ". Donner la négation et le tableau de	$ar{P}$:
	vérité de <i>P</i> .	P est
Q2	Soit la proposition A: "Il existe un polynôme $P(x) = ax^3 + bx^2 + cx + d$ à	A est
	coefficients a, b, c et d dans \mathbb{Z} tel que $P(1) = 1$ et $P(2015) = 2$ ". En factorisant	
	P(2015) - P(1) dire si A est vraie ou A est fausse.	
Q3	Le code confidentiel d'une carte bancaire est constitué d'un nombre de 4 chiffres	
	non nuls. Combien y-a-t-il de codes contenant une fois, et une seule, le chiffre 1?	
Q4	Soient les nombres complexes suivants :	S =
	$z=e^{\frac{2\pi}{7}t}$, $a=z+z^2+z^4$ et $b=z^3+z^5+z^6$. Sachant que $a+b=-1$ et $\overline{b}=a$,	
	donner la valeur de la somme $S = cos\left(\frac{2\pi}{7}\right) + cos\left(\frac{4\pi}{7}\right) + cos\left(\frac{8\pi}{7}\right)$.	
Q5	Dans le plan complexe muni d'un repère orthonormé direct $(\mathcal{O}, \vec{u}, \vec{v})$ on considère	
	les points A, B et C d'affixes respectivement $a=2$, $b=-1+i\sqrt{3}$ et $c=-1-i\sqrt{3}$.	z =
	Donner la forme trigonométrique de $z=rac{c-a}{b-a}$ et déduire l'angle $ heta$ de la rotation qui	$\theta =$
	transforme Ben C.	0 =
Q6	Calculer la limite de la suite de terme général $u_n = \frac{1}{1+n^2} + \frac{1}{2+n^2} + \cdots + \frac{1}{n+n^2}$.	$\lim_{n} u_n =$
Q7	Calculer $\lim_{x\to 0} f(x)$; où $f(x) = \frac{e^{x^2 - \cos(x)}}{2x^2}$	$\lim_{x \to 0} f(x) =$
		$Df^{-1} =$
Q8	Soit $f(x) = \ln(1 + e^{-x})$. Déterminer f^{-1} .	
Q9	Déterminer la primitive F de la fonction $x \mapsto \frac{1}{x \ln(x)} \operatorname{sur}]1, +\infty[$ qui vaut 1 en e .	$f^{-1}(x) = F(x) =$
Q10	Soient $f(x) = tan(x)$ et C_f sa courbe représentative dans un repère orthonormé	A =
	$(\mathcal{O}, \vec{\imath}, \vec{\jmath})$ tel que : $ \vec{\imath} = \vec{\jmath} = 1$ cm. Calculer l'aire A de la surface délimitée par \mathcal{C}_f et	·
	les droites $x = 0$, $x = \frac{\pi}{4}$ et $y = 0$.	
Q11	Soit $I_n = \int_0^1 x^n \ln(1+x) dx$, $\forall n \ge 1$. Calculer $\lim_n I_n$.	$\lim_{n} I_{n} =$
	Soit S la sphère d'équation cartésienne : $x^2 + y^2 + z^2 - 2x - 2y = 0$.	(E):
Q12	Déterminer l'équation (E) du plan tangent \mathcal{P} à \mathcal{S} au point $\mathcal{O}(0,0,0)$.	
Q13	Résoudre dans \mathbb{R} l'équation : $(\sqrt{x})^x = x^{\sqrt{x}}$.	S =
	Sachant que $x \mapsto sin^2(x)$ est une solution de l'équation différentielle	$y_0 =$
Q14	(E): $y'' + 4y - 2 = 0$, déterminer la solution particulière y_0 de (E) telle que sa	90 —
	courbe représentative passe par le point $A(0, \sqrt{2})$ et ayant une tangente en A de	
	coefficient directeur 1.	
Q15	Une usine produit des pièces dont 2% sont défectueuses. Après contrôle, on s'est	P =
	aperçu que 97% des pièces bonnes sont acceptées et 99% des pièces défectueuses	
	sont rejetées. Quelle est la probabilité P d'avoir une pièce bonne et rejetée ?	
Q16	On considère un rectangle de longueur x . Déterminer la valeur minimale P_m du	$P_m =$
	périmètre de ce rectangle sachant que sa surface est égale à 100 .	
Q17	Résoudre dans \mathbb{R} l'équation : $\cos(2x) + \cos(x) - 2 = 0$.	S =

Partie II: Questions à choix multiples

Une réponse correcte = 2pts, aucune réponse = 0pts, plus d'une réponse ou une réponse fausse = - 1pt

Q18. On considère le disque unité $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ et la proposition $P: \exists A, B \subset \mathbb{R}; \ D = A \times B''.$ Alors aucune des trois $(0,1) \in D$ et P est vraie P est fausse $(1,0) \in D$ et P est vraie réponses Q19. Soient $\begin{cases} u_1 = 1 \\ (u_{n+1})^2 = 4u_n; \ \forall n \ge 1 \end{cases}$ et $v_n = \ln\left(\frac{u_n}{4}\right); \ \forall n \ge 1$. La suite (v_n) est aucune des trois réponses géométrique de raison $\frac{1}{2}$ constante arithmétique **Q20.** Soit $f(x) = x - \ln|2e^x - 1|$. Alors aucune des trois f est bornée au f n'est pas bornée au f est bornée au réponses voisinage de $+\infty$. voisinage de +∞. voisinage de $-\infty$. **Q21.** Pour quelle valeur de a la fonction f définie sur $[0, +\infty[$ par $f(x) = ln\left(\frac{x}{x+1}\right) - \frac{\ln(x)}{x+1} + 1$ si $x \in]0, +\infty[$ et f(0) = aest continue? a = 0 $a = \ln(2)$ a = -1**Q22.** La courbe représentative de la fonction P définie sur [0,1] par $P(x)=x^5+3x^3+4x-5$ coupe l'axe des abscisses en: aucune des trois réponses aucun point deux points un unique point **Q23.** Soit f la fonction définie par $f(x) = e^x - 2\sqrt{e^x - 1}$ et soit \mathcal{C} sa courbe représentative. Alors f admet une demi f admet une demif est f est tangente verticale au tangente verticale au dérivable à dérivable à point A(0,1) dirigée point A(0,1) dirigée droite de 0 gauche de 0 vers le bas vers le haut **Q24.** Soit $f(x) = \frac{e^{x}-1}{x} + \ln(x)$. La courbe représentative \mathcal{C}_f de faucune des trois est au-dessus admet une admet en +∞ une réponses de la droite asymptote branche parabolique de y = 0oblique en direction asymptotique la $+\infty$ droite y = 0**Q25.** Soit f la fonction définie sur $\mathbb R$ par $f(x)=(x-1)e^x$. Sa courbe représentative $\mathcal C_f$ admet un point admet un maximum local en 0 est concave est convexe d'inflexion en $A\left(-1, -\frac{2}{e}\right)$

2

CONCOURS D'ACCES A L'ENSAM-MEKNES ET A L'ENSAM-CASABLANCA

Epreuve de Mathématiques : Filières Sciences et Techniques Vendredi 24 Juillet 2015 - Durée : 2h

Partie I : Questions à réponses précises

Chaque réponse est notée sur 2pts

	O No.	Réponses
	Questions	
Q1	Soit la proposition P: " $\forall a \in \mathbb{R}_+^*$; $a + \frac{1}{a} \ge 2$ ". Donner la négation et le tableau de	P: Ja EIK+, a+ 1/a (2""
	vérité de P.	Pest Vraie
Q2	Soit la proposition A: "Il existe un polynôme $P(x) = ax^3 + bx^2 + cx + d$ à	A est fausse
	coefficients a, b, c et d dans \mathbb{Z} tel que $P(1) = 1$ et $P(2015) = 2$ ". En factorisant	tange
	P(2015) - P(1) dire si A est vraie ou A est fausse.	1
Q3	Le code confidentiel d'une carte bancaire est constitué d'un nombre de 4 chiffres	4x83=2048
	non nuls. Combien y-a-t-il de codes contenant une fois, et une seule, le chiffre 1?	
Q4	Soient les nombres complexes suivants :	S =
	$z=e^{\frac{2\pi}{7}i}$, $a=z+z^2+z^4$ et $b=z^3+z^5+z^6$. Sachant que $a+b=-1$ et $\overline{b}=a$,	- 1/2
	donner la valeur de la somme $S = cos\left(\frac{2\pi}{7}\right) + cos\left(\frac{4\pi}{7}\right) + cos\left(\frac{8\pi}{7}\right)$.	12
	donner la valeur de la somme $3 = \cos(\frac{\pi}{7}) + \cos(\frac{\pi}{7}) + \cos(\frac{\pi}{7})$.	
Q5	Dans le plan complexe muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$ on considère	$z = \begin{bmatrix} 1 & \pi/3 \end{bmatrix}$
	les points A, B et C d'affixes respectivement $a=2$, $b=-1+i\sqrt{3}$ et $c=-1-i\sqrt{3}$.	4 - 101
	Donner la forme trigonométrique de $z=rac{c-a}{b-a}$ et déduire l'angle $ heta$ de la rotation qui	$\theta = \pi/3$
	transforme Ben C.	
Q6	Calculer la limite de la suite de terme général $u_n = \frac{1}{1+n^2} + \frac{1}{2+n^2} + \cdots + \frac{1}{n+n^2}$.	$\lim_{n} u_n = \bigcirc$
		1: (()
Q7	Calculer $\lim_{x\to 0} f(x)$; où $f(x) = \frac{e^{x^2 - \cos(x)}}{2x^2}$	$\lim_{x\to 0} f(x) = 3/4$
	Calculation $\chi \to 0$ ($\chi \to 0$), $\chi \to 0$ ($\chi \to 0$). Determine $\chi \to 0$	$Df^{-1} = To + \omega L$
Q8	Soit $f(x) = \ln(1 + e^{-x})$. Déterminer f^{-1} .	$Df^{-1} = \int_{0}^{\infty} 0, + \infty L$ $f^{-1}(x) = -\ln(\ell^{3} - \Lambda)$ $F(x) = \ln(\ln(n)) + \Lambda$
00	The state of the forestion was a surely two quivaut 1 on e	$F(x) = Q_{m}(Q_{m}(x)) + A$
Q9	Déterminer la primitive F de la fonction $x \mapsto \frac{1}{x \ln(x)} \operatorname{sur}]1, +\infty[$ qui vaut 1 en e .	
Q10	Soient $f(x) = tan(x)$ et C_f sa courbe représentative dans un repère orthonormé	A = Pm (2)
	$(\mathcal{O},\vec{\iota},\vec{\jmath})$ tel que : $ \vec{\iota} = \vec{\jmath} = 1$ cm. Calculer l'aire A de la surface délimitée par \mathcal{C}_f et	1 (2)
	les droites $x = 0$, $x = \frac{\pi}{4}$ et $y = 0$.	
Q11	Soit $I_n = \int_0^1 x^n \ln(1+x) dx$, $\forall n \ge 1$. Calculer $\lim_n I_n$.	$\lim_{n} I_{n} = \bigcirc$
Q12	Soit S la sphère d'équation cartésienne : $x^2 + y^2 + z^2 - 2x - 2y = 0$.	(E): × + y = 0
QIZ	Déterminer l'équation (E) du plan tangent \mathcal{P} à \mathcal{S} au point $\mathcal{O}(0,0,0)$.	^ /
Q13	Résoudre dans \mathbb{R} l'équation : $(\sqrt{x})^x = x^{\sqrt{x}}$.	S = \$ 1,47
	Sachant que $x \mapsto sin^2(x)$ est une solution de l'équation différentielle	$y_0 = \sin^2(x) + (2\cos(2x))$
Q14	(E): $y'' + 4y - 2 = 0$, déterminer la solution particulière y_0 de (E) telle que sa	
	courbe représentative passe par le point $A(0, \sqrt{2})$ et ayant une tangente en A de	+ 1 min (2x)
	coefficient directeur 1.	1 2
015	Une usine produit des pièces dont 2% sont défectueuses. Après contrôle, on s'est	P = 901
Q15	aperçu que 97% des pièces bonnes sont acceptées et 99% des pièces défectueuses	98 x 3 = 294
	sont rejetées. Quelle est la probabilité P d'avoir une pièce bonne et rejetée ?	100 100 10000
Q16	On considère un rectangle de longueur x . Déterminer la valeur minimale P_m du	$P_m = /$
Q10	périmètre de ce rectangle sachant que sa surface est égale à 100.	40
Q17	Résoudre dans \mathbb{R} l'équation : $\cos(2x) + \cos(x) - 2 = 0$.	5= \$2kt; KE Z3
-	Honoran harrie and an address of the second	

Partie II : Questions à choix multiples

Une réponse correcte = 2pts, aucune réponse = 0pts, plus d'une réponse ou une réponse fausse = - 1pt

Q18. On considère le disque ur	$\text{ nité } D = \{(x, y) \in \mathbb{R}^2 : x^2 \}$	$y^2 + y^2 \le 1$ et la proposition P :	$\exists A, B \subset \mathbb{R}; \ D = A \times B$ ". Alors
$(1,0) \in D$ et P est vrai	e (0,1) ∈ <i>D</i> et	P est vraie	aucune des trois réponses
Q19. Soient $\begin{cases} u_1 = 1 \\ (u_{n+1})^2 = 4u_n; \end{cases}$	$\forall n \geq 1$ et $v_n = \ln\left(\frac{u_n}{4}\right)$	$\forall n \geq 1$. La suite (v_n) est	
arithmétique	géométrique de raison $\frac{1}{2}$	constante	aucune des trois réponses
Q20. Soit $f(x) = x - \ln 2e^x $	– 1 . Alors	100	
f est bornée au voisinage de $-\infty$.	f n'est pas bornée voisinage de +∞	1 1 1 1 1 1 1 1 1	aucune des trois réponses
Q21. Pour quelle valeur de α la est continue ?	fonction f définie sur [(), $+\infty$ [par $f(x) = ln\left(\frac{x}{x+1}\right) - \frac{ln(x)}{x+1}$	$\frac{x}{1} + 1 \text{ si } x \in]0, +\infty[\text{ et } f(0) = a]$
$\alpha = -1$	a =	ln (2)	a=1 $a=0$
en : un unique point	deux points		4x - 5 coupe l'axe des abscisses aucune des trois réponses ative. Alors
f est dérivable à gauche de 0	f est dérivable à droite de 0	f admet une demitangente verticale au point $A(0,1)$ dirigée vers le haut	f admet une demi tangente verticale au point A(0,1) dirigée vers le bas
Q24. Soit $f(x) = \frac{e^{x}-1}{x} + \ln(x)$	c). La courbe représentat	ive \mathcal{C}_f de f	
admet en $+\infty$ und branche parabolique direction asymptotique droite $y = 0$	de asymptot	te de la droite	aucune des trois réponses
Q25. Soit f la fonction défini	e sur \mathbb{R} par $f(x) = (x - x)$	1)e ^x . Sa courbe représentative C	Pf .
est convexe	est concave ac	dmet un maximum local en 0	admet un point d'inflexion en $A\left(-1, -\frac{2}{e}\right)$

2