
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=8; day=11; hr=17; min=28; sec=25; ms=669;]

Validated By CRFValidator v 1.0.3

Application No: 10591752 Version No: 2.0

Input Set:

Output Set:

Started: 2008-07-09 14:53:32.780 **Finished:** 2008-07-09 14:53:34.029

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 249 ms

Total Warnings: 11
Total Errors: 0

No. of SeqIDs Defined: 18

Actual SeqID Count: 18

Erre	or code	Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	402	Undefined organism found in <213> in SEQ ID (2)
W	402	Undefined organism found in <213> in SEQ ID (3)
W	402	Undefined organism found in <213> in SEQ ID (4)
W	402	Undefined organism found in <213> in SEQ ID (5)
W	402	Undefined organism found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)

SEQUENCE LISTING

<110>	YOKOTA, Akih SHIGEOKA, Sh TOMIZAWA, Ke	igeru				
<120>	METHOD FOR I	MPROVING	PRODUCT	IVITY OF	PLANT B	Y CHLOROPLAST
<130>	2006_1303A					
	10591752 2008-07-09					
	PCT/JP2005/0 2005-03-02	04037				
	JP 2004-0595 2004-03-03	13				
<160>	18					
<170>	PatentIn ver	sion 3.4				
<211> <212>		racea L				
<220>						
<223>	Fructose-1,6	-bisphos	phatase			
<400>	1					
Ala Al 1	a Val Gly Glu 5	Ala Ala	Thr Glu	Thr Lys	Ala Arg	Thr Arg Ser 15
Lys Ty	r Glu Ile Glu 20	Thr Leu	Thr Gly 25	Trp Leu	Leu Lys	Gln Glu Met 30
Ala Gl	y Val Ile Asp 35	Ala Glu	Leu Thr	Ile Val	Leu Ser 45	Ser Ile Ser
Leu Al 50	a Cys Lys Gln	Ile Ala 55	Ser Leu	Val Gln	Arg Ala	Gly Ile Ser
Asn Le	u Thr Gly Ile	Gln Gly 70	Ala Val	Asn Ile	Gln Gly	Glu Asp Gln 80

Lys	Lys	Leu	Asp	Val 85	Val	Ser	Asn	Glu	Val 90	Phe	Ser	Ser	Cys	Leu 95	Arg
Ser	Ser	Gly	Arg 100	Thr	Gly	Ile	Ile	Ala 105	Ser	Glu	Glu	Glu	Asp 110	Val	Pro
Val	Ala	Val 115	Glu	Glu	Ser	Tyr	Ser 120	Gly	Asn	Tyr	Ile	Val 125	Val	Phe	Asp
	Leu 130					135					140				
145	Phe			_	150					155					160
	Asp Val			165					170					175	
	Ser		180					185					190	_	
-	Phe	195					200					205			
	210 Ile					215	_				220				
225 Asn	Tyr	Lys	Met	Trp	230 Asp	Asp	Lys	Leu	Lys	235 Lys	Tyr	Met	Asp	Asp	240 Leu
Lys	Glu	Pro	Gly	245 Glu	Ser	Gln	Lys	Pro	250 Tyr	Ser	Ser	Arg	Tyr	255 Ile	Gly
Ser	Leu	Val	260 Gly	Asp	Phe	His	Arg	265 Thr	Leu	Leu	Tyr	Gly	270 Gly	Ile	Tyr
Gly	Tyr	275 Pro	Arg	Asp	Ala	Lys	280 Ser	Lys	Asn	Gly	Lys	285 Leu	Arg	Leu	Leu
	290					295					300				

Tyr Glu Cys Ala Pro Met Ser Phe Ile Val Glu Gln Ala Gly Gly Lys

305 310 315 320

Gly Ser Asp Gly His Gln Arg Ile Leu Asp Ile Gln Pro Thr Glu Ile 325 330 335

His Gln Arg Val Pro Leu Tyr Ile Gly Ser Val Glu Glu Val Glu Lys 340 345 350

Leu Glu Lys Tyr Leu Ala 355

<210> 2

<211> 1074

<212> DNA

<213> Spinacia oleracea L

<220>

<223> Fructose-1,6-bisphosphatase

<400> 2 gcagccgtag gagaggcggc tacagaaaca aaggcaagga ctagaagtaa gtacgaaatt 60 gaaacactaa caggctggct gcttaaacaa gaaatggcag gtgttattga tgctgaactt 120 accatcqttc tttctaqcat ttcattqqct tqtaaacaaa ttqcttcctt qqttcaacqa 180 gctggtattt ctaacttgac tggaattcaa ggtgctgtca atatccaagg agaggatcag 240 aagaaacttg atgttgtctc caatgaggtg ttttcgagct gcttgagatc gagtggaaga 300 acaggaataa tagcatcaga agaagaggat gtaccagtgg cagtggaaga gagttactct 360 ggaaactata ttgttgtgtt tgatccactt gatggttcat ccaacattga tgcagctgtc 420 tccactggtt ccatctttgg catttatagc cctaacgatg agtgcattgt tgactctgat 540 cacgacgatg agtcacagct aagtgcagaa gaacagaggt gtgtagtgaa tgtatgtcaa ccaggggata acctattagc agcagggtat tgtatgtact caagctctgt tatcttcgta 600 cttacaattg gtaaaggtgt gtatgcattc acattagatc caatgtatgg tgaattcgta 660 720 ctcacttcag agaaaatcca aatcccaaaa gctgggaaga tctattcatt caatgaaggt aactacaaaa tgtgggatga taaattgaag aagtacatgg atgatcttaa agagccagga 780 gagtcacaga aaccgtactc gtctcgttac atagggagtt tagttgggga ctttcataga 840 900 acacttttat atggtgggat ttatggttac ccaagagatg caaagagtaa gaatgggaaa 960 ttgaggcttt tgtatgaatg tgcacctatg agttttattg ttgaacaagc tggtggtaaa

ggttctgatg gtcatcaaag aattcttgac attcaaccca ccgagataca tcaacgtgtg	1020
ccactgtaca tcgggagtgt ggaggaagta gagaaattag agaagtactt agca	1074
<210> 3	
<211> 333	
<212> PRT	
<213> Spinacia oleracea L	
<220>	
<223> Sedoheptulose-1, 7-bisphosphatase	
<400> 3	
Val Asn Lys Ala Lys Asn Ser Ser Leu Val Thr Lys Cys Glu Leu Gly	
1 5 10 15	
Asp Ser Leu Glu Glu Phe Leu Ala Lys Ala Thr Thr Asp Lys Gly Leu	
20 25 30	

Ile Arg Leu Met Met Cys Met Gly Glu Ala Leu Arg Thr Ile Gly Phe

Lys Val Arg Thr Ala Ser Cys Gly Gly Thr Gln Cys Val Asn Thr Phe

Gly Asp Glu Gln Leu Ala Ile Asp Val Leu Ala Asp Lys Leu Leu Phe 65 70 75 80

Glu Ala Leu Asn Tyr Ser His Phe Cys Lys Tyr Ala Cys Ser Glu Glu

Leu Pro Glu Leu Gln Asp Met Gly Gly Pro Val Asp Gly Gly Phe Ser 100 105 110

Val Ala Phe Asp Pro Leu Asp Gly Ser Ser Ile Val Asp Thr Asn Phe

Ser Val Gly Thr Ile Phe Gly Val Trp Pro Gly Asp Lys Leu Thr Gly

140

60

35 40 45

55

85 90

120

135

50

115

130

Arg Thr Thr Tyr Val Leu Ala Leu Lys Asp Tyr Pro Gly Thr His Glu 170

Phe Leu Leu Asp Glu Gly Lys Trp Gln His Val Lys Glu Thr Thr 180 185 190

Glu Ile Asn Glu Gly Lys Leu Phe Cys Pro Gly Asn Leu Arg Ala Thr 195 200 205

Ser Asp Asn Ala Asp Tyr Ala Lys Leu Ile Gln Tyr Tyr Ile Lys Glu 210 215

Lys Tyr Thr Leu Arg Tyr Thr Gly Gly Met Val Pro Asp Val Asn Gln 230 235

Ile Ile Val Lys Glu Lys Gly Ile Phe Thr Asn Val Ile Ser Pro Thr 245 250 255

Ala Lys Ala Lys Leu Arg Leu Leu Phe Glu Val Ala Pro Leu Gly Phe 265 260 270

Leu Ile Glu Lys Ala Gly Gly His Ser Ser Glu Gly Thr Lys Ser Val 275 280 285

Leu Asp Ile Glu Val Lys Asn Leu Asp Asp Arg Thr Gln Val Ala Tyr 295 300

Gly Ser Leu Asn Glu Ile Ile Arg Phe Glu Lys Thr Leu Tyr Gly Ser 305 310 315 320

Ser Arg Leu Glu Glu Pro Val Pro Val Gly Ala Ala Ala 325 330

<210> 4

<211> 999

<212> DNA

<213> Spinacia oleracea L

<220>

<223> Sedoheptulose-1,7-bisphosphatase

<400> 4

120 gagttcctag caaaggcaac cacagataaa gggctgatta gattgatgat gtgcatggga gaagcattaa ggaccattgg ctttaaagtg aggactgctt catgtggtgg aactcaatgt 180 gttaacacct ttggagacga acagcttgcc attgatgtgc ttgctgacaa gcttcttttc 240 300 gaggcattga actattcaca cttctgcaag tatgcttgtt cagaagaact ccctgagctt caagatatgg gaggccccgt tgatggcgga ttcagtgtag catttgaccc ccttgatgga 360 tccagcattg tcgataccaa tttctcagtt gggaccatat tcggggtttg gccaggtgac 420 aagctaactg gtgtaacagg cagagatcaa gtggctgctg caatgggaat ttatggtcct 480 aggactactt atgttctcgc tcttaaggac taccctggca cccatgaatt tcttcttctt 540 600 gatgaaggaa agtggcaaca tgtgaaagaa acaacagaaa tcaatgaagg aaaattgttc tgtcctggaa acttgagagc cacttctgac aatgctgatt atgctaagct gattcaatac 660 720 tatataaaag agaaatacac attgagatac actggaggaa tggttcctga tgttaaccag 780 atcatagtga aggagaaagg tatattcaca aatgtaatat cacctacagc caaggcaaag ttgaggttac tgtttgaggt agctcctcta gggttcttga ttgagaaggc tggtggtcac 840 900 agcagtgagg gaaccaagtc tgtgttggac attgaagtca aaaaccttga tgacagaacc caagttgctt acggctcctt gaacgagatc atccgatttg agaagacact atacggatcc 960 tctaggctag aggagccagt tcctgttgga gctgctgct 999

<210> 5

<211> 356

<212> PRT

<213> Synechococcus

<220>

<223> fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase from Synechococcus PCC 7942

<400> 5

Met Glu Lys Thr Ile Gly Leu Glu Ile Ile Glu Val Val Glu Gln Ala 1 5 10 15

Ala Ile Ala Ser Ala Arg Leu Met Gly Lys Gly Glu Lys Asn Glu Ala
20 25 30

Asp Arg Val Ala Val Glu Ala Met Arg Val Arg Met Asn Gln Val Glu 35 40 45

Met	Leu 50	Gly	Arg	Ile	Val	Ile 55	Gly	Glu	Gly	Glu	Arg 60	Asp	Glu	Ala	Pro
Met 65	Leu	Tyr	Ile	Gly	Glu 70	Glu	Val	Gly	Ile	Tyr 75	Arg	Asp	Ala	Asp	Lys 80
Arg	Ala	Gly	Val	Pro 85	Ala	Gly	Lys	Leu	Val 90	Glu	Ile	Asp	Ile	Ala 95	Val
Asp	Pro	Cys	Glu 100	Gly	Thr	Asn	Leu	Cys 105	Ala	Tyr	Gly	Gln	Pro 110	Gly	Ser
Met	Ala	Val 115	Leu	Ala	Ile	Ser	Glu 120	Lys	Gly	Gly	Leu	Phe 125	Ala	Ala	Pro
Asp	Phe 130	Tyr	Met	Lys	Lys	Leu 135	Ala	Ala	Pro	Pro	Ala 140	Ala	Lys	Gly	Lys
Glu 145	Thr	Ser	Ile	Lys	Ser 150	Ala	Thr	Glu	Asn	Leu 155	Lys	Ile	Leu	Ser	Glu 160
Суз	Leu	Asp	Arg	Ala 165	Ile	Asp	Glu	Leu	Val 170	Val	Val	Val	Met	Asp 175	Arg
Pro	Arg	His	Lys 180	Glu	Leu	Ile	Gln	Glu 185	Ile	Arg	Gln	Ala	Gly 190	Ala	Arg
Val	Arg	Leu 195	Ile	Ser	Asp	Gly	Asp 200	Val	Ser	Ala	Ala	Ile 205	Ser	Cys	Gly
Phe	Ala 210	Gly	Thr	Asn	Thr	His 215	Ala	Leu	Met	Gly	Ile 220	Gly	Ala	Ala	Pro
Glu 225	Gly	Val	Ile	Ser	Ala 230	Ala	Ala	Met	Arg	Cys 235	Leu	Gly	Gly	His	Phe 240
Gln	Gly	Gln	Leu	Ile 245	Tyr	Asp	Pro	Glu	Val 250	Val	Lys	Thr	Gly	Leu 255	Ile
Gly	Glu	Ser	Arg	Glu	Ser	Asn	Ile	Ala	Arg	Leu	Gln	Glu	Met	Gly	Ile

Thr Asp Pro Asp Arg Val Tyr Asp Ala Asn Glu Leu Ala Ser Gly Gln
275 280 285

Glu Val Leu Phe Ala Ala Cys Gly Ile Thr Pro Gly Leu Leu Met Glu 290 295 300

Gly Val Arg Phe Phe Lys Gly Gly Ala Arg Thr Gln Ser Leu Val Ile 305 310 315 320

Ser Ser Gln Ser Arg Thr Ala Arg Phe Val Asp Thr Val His Met Phe 325 330 335

Asp Asp Val Lys Thr Val Ser Leu Pro Leu Ile Pro Asp Pro Lys Trp 340 345 350

Arg Pro Glu Arg 355

<210> 6

<211> 1312

<212> DNA

<213> Synechococcus

<220>

<223> fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase from Synechococcus PCC 7942

<400> 6

atcgcaacta aagccagaga tgtgaggagg ggatccggcc tttggtagac tcaactgttg 60 gaatccccag aagcaatcat ccgtaaggag tcaggacggc gtggagaaga cgatcggtct 120 cgagattatt gaagttgtcg agcaggcagc gatcgcctcg gcccgcctga tgggcaaagg 180 240 cgaaaagaat gaagccgatc gcgtcgcagt agaagcgatg cgggtgcgga tgaaccaagt 300 ggaaatgctg ggccgcatcg tcatcggtga aggcgagcgc gacgaagcac cgatgctcta tatcggtgaa gaagtgggca tctaccgcga tgcagacaag cgggctggcg taccggctgg 360 420 caagctggtg gaaatcgaca tcgccgttga cccctgcgaa ggcaccaacc tctgcgccta cggtcagccc ggctcgatgg cagttttggc catctccgag aaaggcggcc tgtttgcagc 480 tecegaette taeatgaaga aactggetge acceecaget geeaaaggea aagagaeate 540 600 aataaagtcc gcgaccgaaa acctgaaaat tctctcggaa tgtctcgatc gcgccatcga

tgaatto	ggtg	gtcgtggtca	tggatcgtcc	ccgccacaaa	gagctaatcc	aagagatccg	660
ccaagc	gggt	gcccgcgtcc	gtctgatcag	cgatggtgac	gtttcggccg	cgatctcctg	720
cggtttt	tgct	ggcaccaaca	cccacgccct	gatgggcatc	ggtgcagctc	ccgagggtgt	780
gatttc	ggca	gcagcaatgc	gttgcctcgg	cgggcacttc	caaggccagc	tgatctacga	840
cccagaa	agtg	gtcaaaaccg	gcctgatcgg	tgaaagccgt	gagagcaaca	tegetegeet	900
gcaagaa	aatg	ggcatcaccg	atcccgatcg	tgtctacgac	gcgaacgaac	tggcttcggg	960
tcaagaa	agtg	ctgtttgcgg	cttgcggtat	caccccgggc	ttgctgatgg	aaggcgtgcg	1020
cttcttc	caaa	ggcggcgctc	gcacccagag	cttggtgatc	tccagccagt	cacggacggc	1080
tegette	cgtt	gacaccgttc	acatgttcga	cgatgtcaaa	acggttagcc	tgccgttaat	1140
tcctgat	tccc	aaatggcggc	cggagcggta	gaacgggtat	agctcgatcg	cttcggtcgt	1200
tgtttt	tcag	cgaatccatt	tgcgatcgct	tttcaaaccc	ttttttcgtc	aaccttcttt	1260
aaacggo	cctc	atgcatctcg	cagttgtcgg	ctcagccatc	ggacagcacc	āā	1312
<210> <211> <212> <212> <213> <223>		otiana tabao A promoter	cum				
<400>	7						
agcttct	taca	tacaccttgg	ttgacacgag	tatataagtc	atgttatact	gttgaataac	60
aagcctt	tcca	ttttctattt	tgatttgtag	aaaactagtg	tgcttgggag	tccctgatga	120
ttaaata	aaac	caa					133
<210> <211> <212> <213> <223>	8 159 DNA Nico	otiana tabad	cum				
<223>	rps]	l6 terminato	or				
<400>	8						

agcttgaaat tcaattaagg aaataaatta aggaaataca aaaagggggg tagtcatttg 60

tatataactt tgtatgactt ttctcttcta tttttttgta tttcctccct ttccttttct 120

<210> 9 <211> 805

<212> DNA

<213> Escherichia coli

<220>

<223> aadA

<400> 9

gatecatgge tegtgaageg gttategeeg aagtateaae teaactatea gaggtagttg 60 gcgtcatcga gcgccatctc gaaccgacgt tgctggccgt acatttgtac ggctccgcag 120 180 tggatggcgg cctgaagcca cacagtgata ttgatttgct ggttacggtg accgtaaggc 240 ttgatgaaac aacgcggcga gctttgatca acgacctttt ggaaacttcg gcttcccctg gagagagcga gattctccgc gctgtagaag tcaccattgt tgtgcacgac gacatcattc 300 cgtggcgtta tccagctaag cgcgaactgc aatttggaga atggcagcgc aatgacattc 360 420 ttgcaggtat cttcgagcca gccacgatcg acattgatct ggctatcttg ctgacaaaag caagagaaca tagcgttgcc ttggtaggtc cagcggcgga ggaactcttt gatccggttc 480 ctgaacagga tctatttgag gcgctaaatg aaaccttaac gctatggaac tcgccgcccg 540 600 actgggctgg cgatgagcga aatgtagtgc ttacgttgtc ccgcatttgg tacagcgcag taaccggcaa aatcgcgccg aaggatgtcg ctgccgactg ggcaatggag cgcctgccgg 660 cccagtatca gcccgtcata cttgaagcta gacaggctta tcttggacaa gaagaagatc 720 gcttggcctc gcgcgcagat cagttggaag aatttgtcca ctacgtgaaa ggcgagatca 780 805 ctaaggtagt tggcaaataa ctgca

<210> 10

<211> 4591

<212> DNA

<213> Artificial sequence

<220>

<223> synthetic construct

<220>

<223> pLD6

<400> 10

gtggcacttt tcggggaaat	gtgcgcggaa	cccctatttg	tttattttc	taaatacatt	60
caaatatgta teegeteatg	agacaataac	cctgataaat	gcttcaataa	tattgaaaaa	120
ggaagagtat gagtattcaa	catttccgtg	tcgcccttat	tcccttttt	gcggcatttt	180
gccttcctgt ttttgctcac	ccagaaacgc	tggtgaaagt	aaaagatgct	gaagatcagt	240
tgggtgcacg agtgggttac	atcgaactgg	atctcaacag	cggtaagatc	cttgagagtt	300
ttcgccccga agaacgtttt	ccaatgatga	gcacttttaa	agttctgcta	tgtggcgcgg	360
tattatcccg tattgacgcc	gggcaagagc	aactcggtcg	ccgcatacac	tattctcaga	420
atgacttggt tgagtactca	ccagtcacag	aaaagcatct	tacggatggc	atgacagtaa	480
gagaattatg cagtgctgcc	ataaccatga	gtgataacac	tgcggccaac	ttacttctga	540
caacgatcgg aggaccgaag	gagctaaccg	cttttttgca	caacatgggg	gatcatgtaa	600
ctcgccttga tcgttgggaa	ccggagctga	atgaagccat	accaaacgac	gagcgtgaca	660
ccacgatgcc tgtagcaatg	gcaacaacgt	tgcgcaaact	attaactggc	gaactactta	720
ctctagcttc ccggcaacaa	ttaatagact	ggatggaggc	ggataaagtt	gcaggaccac	780
ttetgegete ggeeetteeg	gctggctggt	ttattgctga	taaatctgga	gccggtgagc	840
gtgggtctcg cggtatcatt	gcagcactgg	ggccagatgg	taagccctcc	cgtatcgtag	900
ttatctacac gacggggagt	caggcaacta	tggatgaacg	aaatagacag	atcgctgaga	960
taggtgcctc actgattaag	cattggtaac	tgtcagacca	agtttactca	tatatacttt	1020
agatt					