Inferring Link Weights using End-to-End Measurements

Ratul Mahajan
Neil Spring
David Wetherall
Tom Anderson

University of Washington

Motivation: topology -> routing

Accurate and detailed ISP topologies are now available

But how to route over them?
 Hop count and latency based models are poor
 Which way to g?

- Obtain a link weight based routing model
 - Most common model (OSPF, IS-IS, RIP)
 - Disclaimer: these are not the real weights!
- Also helpful in understanding intra-domain traffic engineering

Problem definition, basic solution

Keys to the solution

- All chosen paths between a node-pair have the same weight (ECMP)
- This weight is less than that of other possible paths

Given:

- Map of a network w/ weighted shortest path routing
- Routing chosen paths between node pairs

Wanted:

 Weights that characterize routing

A constraint-based solution

1.
$$W_{ad} + W_{dq} = W_{ab} + W_{be} + W_{eq}$$
 [ADG=ABEG]

2.
$$W_{ad} + W_{dg} < W_{ac} + W_{cg}$$
 [ADG

3.
$$W_{ad} + W_{dq} < W_{ac} + W_{cf} + W_{fq}$$
 [ADG

4.
$$W_{ad} + W_{dg} < W_{ab} + W_{bd} + W_{dg}$$
 [ADG

5.
$$W_{ad} + W_{dg} < W_{ad} + W_{de} + W_{eg}$$
 [ADG

6.
$$W_{ad} + W_{dg} < W_{ab} + W_{bd} + W_{de} + W_{eg}$$
 [ADG

Making it tractable

- Problem: too many constraints
 - Exponential in number of nodes
- Solution: use knowledge of chosen paths between other node-pairs to remove redundant constraints

Example

- CG is a chosen path
- The following exists in the system

$$W_{cg} < W_{cf} + W_{fg}$$

1.
$$W_{ad} + W_{dg} = W_{ab} + W_{be} + W_{eg}$$

$$2. W_{ad} + W_{dg} < W_{ac} + W_{cg}$$

3.
$$W_{ad} + W_{dg} < W_{ac} + W_{cf} + W_{fg}$$

4.
$$W_{ad} + W_{dq} < W_{ab} + W_{bd} + W_{dq}$$

5.
$$W_{ad} + W_{dq} < W_{ad} + W_{de} + W_{eq}$$

6.
$$W_{ad} + W_{dg} < W_{ab} + W_{bd} + W_{de} + W_{eg}$$

Hello, real world!

Limitations of routing information gathered using traceroute

- Problem: some observed paths are non-chosen paths
 - Due to transient events such as failures
 - Renders the constraint system inconsistent
 - Solution: use error variables, minimize the weighted sum of errors
 - 1. $W_{ad} + W_{dg} e_{adg} = W_{ab} + W_{be} + W_{eg} e_{abeg}$
 - 2. $W_{ad} + W_{dg} e_{adg} < W_{ac} + W_{cg}$
- Problem: all chosen paths between a node-pair may not be observed
 - Due to a small number of measurements between the node-pair
 - $w_{ad} + w_{dg} e_{adg} < w_{ac} + w_{cg}$ (but ACG may also be a chosen path for a \rightarrow g)
 - Solution: $W_{ad} + W_{dg} e_{adg} <= W_{ac} + W_{cg}$

Evaluation

- Dataset: backbone topologies collected by Rocketfuel
 - 600+ vantage points, 9-200K+ traceroutes
 - Telstra (au), Ebone, Tiscali (eu), Abovenet, Exodus, Sprint (us)
- Compare the inferred weights with three alternate models
 - Hops: Minimum hop count path
 - Latency: Minimum latency (geographical) path
 - HopLat: Minimum latency minimum hop count path
- Criteria
 - 1. What fraction of all observed paths fit?
 - 2. What fraction of dominant paths fit
 - 3. What is the accuracy of multi-path prediction?

Fraction of all paths that fit

- Weights describe the routing well
 - Weights: 87-99%
 - Hops: 67-92% (best alternate metric)
 - Performance level of hops is misleading (2 slides away)

Fraction of dominant paths that fit

Dominant path: most common path between a node-pair

- Weights fit more dominant paths
 - Weights: 76-98%
 - Hops: 49-82% (best alternate metric)

Accuracy of multi-path prediction

- Classify routing characterization between a node-pair as one of
 - Full: all predicted paths were observed

Partial: some predicted path was not observed (

None: none of the predicted paths was observed

(accurate)
(over prediction)

- Hops tends to predict more paths as being the preferred paths
 - 4-20% node-pairs are partial, only 47-81% full
- Weights: 84-99% full, 1-3% partial

Conclusions

- A novel constraint-based approach to approximate intradomain link weights
- The inferred weights characterize intra-domain routing better than hop count and latency based metrics
 - Good predictive power
- Future work
 - Investigate the "realism" of our weights
 - Predict backup paths
 - Understand intra-domain traffic engineering policies
 - Study link weight changes and link failures