Przetwarzanie obrazów

Zestaw zadań nr 5

⋆: zadania na ocenę

1. Filtry nieliniowe w ImageJ

Proszę wykonać w ImageJ operacje filtrowania filtrem minimalnym i maksymalnym w kolejności min(max(obraz)) i max(min(obraz)) obrazu Gdansk.png.

Czy obie operacje filtrowania są naprzemienne? Jeżeli nie, proszę znaleźć 3 różnice w detalach na filtrowanych obrazach i wyjaśnić zjawisko.

2. Filtry nieliniowe

Dany jest obraz w skali szarości. Proszę podać wynik filtrowania obrazu w zaznaczonych pozycjach na obrazie wynikowym w przypadku użycia filtra

- (a) minimalnego,
- (b) maksymalnego,
- (c) mediany,
- (d) średniozakresowego (Mid-Range-Filter),
- (e) średniej uciętej (k-trimmed-mean Filter) dla k=2,
- (f) k-Nearest Neighbor z k = 6,
- (g) Symmetric Nearest Neighbor.

o rozmiarach 3×3 .

	obraz											
	1	4	5	6	5	8	4	6	1	1	3	1
	1	4	2	4	5	3	8	9	1	5	1	9
	0	3	4	5	7	2	8	6	1	3	6	1
	1	3	4	3	7	1	7	6	1	1	5	1
Ī	1	4	5	6	5	8	4	6	3	1	3	3
Ī	1	2	3	3	5	6	7	8	7	6	5	4

obraz wyjściowy

X X X

3. Filtry nieliniowe RGB \star (1)

Dane jest sąsiedztwo ośmiospójne pikseli $c_i = (r_i, g_i, b_i), i \in \{1, \dots, 9\}$:

Proszę wyznaczyć wartość c_k piksela centralnego dla

- (a) filtra minimalnego,
- (b) filtra maksymalnego,
- (c) filtra medianowego.

4. Przestrzeń RGB, filtry nieliniowe - egzamin SL 2024

Dane są punkty p_1, p_2, p_3 w przestrzeni RGB:

$$p_1 = (200, 0, 0)$$

 $p_2 = (25, 25, 0)$
 $p_3 = (0, 80, 0)$

Proszę zaznaczyć prawidłowe odpowiedzi:

- (a) p_1 jest szarym punktem na obrazie
- (b) p_2 jest szarym punktem na obrazie
- (c) filtr minimalny, zastosowany do tych trzech punktów, zwraca współrzędne RGB (0,0,0)
- (d) filtr minimalny, zastosowany do tych trzech punktów, zwraca punkt p_2
- (e) filtr minimalny, zastosowany do tych trzech punktów, zwraca punkt p_3
- (f) filtr maksymalny, zastosowany do tych trzech punktów, zwraca współrzędne RGB (200, 80, 0)
- (g) filtr medianowy, zastosowany do tych trzech punktów, zwraca współrzędne RGB (25,25,25)
- (h) filtr medianowy, zastosowany do tych trzech punktów, zwraca punkt p_1
- (i) filtr medianowy, zastosowany do tych trzech punktów, zwraca punkt p_2
- (j) filtr medianowy, zastosowany do tych trzech punktów, zwraca punkt p_3

5. **Filtry nieliniowe** $\star (1 + 1 + 1 + 1 + 1)$

Na (zaszumionym) obrazie meduza.png proszę wykonać filtrowanie filtrem

- (a) medianowym z maską filtra 3×3 ,
- (b) średniozakresowym (Mid-Range-Filter) z maską filtra 3×3 ,
- (c) średniej uciętej (k-trimmed-mean Filter) z maską filtra 3×3 i k = 2,

- (d) k-Nearest Neighbor z maską filtra 3×3 i k=6,
- (e) Symmetric Nearest Neighbor.

i ocenić wyniki filtrowania.

6. Korelacja obrazów

Dany jest obraz w skali szarości i wzorzec w. Proszę podać wynik korelacji w zaznaczonych pozycjach na obrazie wynikowym. Centralny piksel wzorca jest zaznaczony na czerwono.

	obraz											
	1	4	0	0	5	1	4	2	1	0	3	1
	1	4	0	0	0	1	1	0	1	5	1	1
	0	0	0	4	1	2	0	6	1	3	6	1
	1	0	0	1	6	1	1	1	1	1	5	1
ĺ	1	1	1	2	1	4	0	1	3	1	3	3
ĺ	1	0	2	0	0	0	0	0	0	1	2	4

	w	
2	0	1
0	4	0
1	0	2

obraz wyjściowy											
			X	X	X						
			X	X	X						
			X	X	X						

7. Korelacja w ImageJ \star (2+1+1)

Poniższe zdjęcie gromady galaktyk SMACS 0723 i jej otoczenia było pierwszym zdjęciem wykonanym przez James Webb Space Telescope w lipcu 2023 roku. Każde z pięciu powiększeń ma średnicę około 19 000 lat świetlnych i przedstawia galaktyki widziane około 13 miliardów lat wstecz (źródło: The Cosmic Dawn Center).

Na oryginalnym zdjęciu SMACS 0723-73 (Webb's First Deep Field.jpg, źródło: NASA, ESA, CSA, and STScI) należy zlokalizować obiekt (wzorzecSMACS.jpg) przedstawiony w powiększeniu:

SMACS0723 - 73wzorzec SMACS

Webb's First Deep Field

W tym celu należy

- (a) wykonać operację korelacji obrazu z wzorcem dla każdego z kanałów RGB (należy utworzyć pliki tekstowe z wartościami pikseli wzorca dla kanałów RGB i skorelować je z poszczególnymi kanałami obrazu),
- (b) wyznaczyć poprzez operację mnożenia poszczególnych współczynników korelacji dla poszczególnych kanałów miarę dla korelacji wzorca z obrazem RGB (operację należy wykonać na 32 bitach),
- (c) znaleźć w obrazie wynikowym 5 najbardziej prawdopodobnych pozycji występowania wzorca w obrazie. Czy poszukiwany obiekt można w ten sposób prawdiłowo zlokalizować?

Na poszczególnych etapach przetwarzania obrazu pomocne mogą być operacje punktowe (np. progowanie) i operacje filtrowania (np. filtr maksymalny).

Uwaga: W ImageJ możliwe jest podanie współczynników korelacji w formie macierzy: $Process \longrightarrow Filters \longrightarrow Convolve$.

8. Przekształcenia afiniczne \star (1+1)

Na obrazie Sky_and_Water_I.png (autor M. C. Escher, żródło: Official M.C. Escher website) proszę wykonać transformację geometryczną zgodnie z układem równań:

$$\begin{pmatrix} m' \\ n' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} m \\ n \\ 1 \end{pmatrix}$$

a następnie wykonać

- (a) interpolację nearestneighbor obrazu,
- (b) interpolację dwuliniową obrazu.