```
In [1]: from scipy.integrate import odeint import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.optimize as optimize
```

1.1 carbon cycle without the buffer effect

```
In [29]: # 导入化石燃料排放的数据 df=pd. read_csv('global.1751_2008.ems.txt',sep='\s+',skiprows=27, names=['year','total','gas','liquids','cement solids','gas production df
```

Out[29]:		year	total	gas	liquids	cement solids	gas production	per flaring	capita
	0	1751	3	0	0	3	0	0	NaN
	1	1752	3	0	0	3	0	0	NaN
	2	1753	3	0	0	3	0	0	NaN
	3	1754	3	0	0	3	0	0	NaN
	4	1755	3	0	0	3	0	0	NaN
	•••			•••	•••				•••
	253	2004	7782	1431	3027	2971	298	55	1.21
	254	2005	8086	1473	3071	3162	320	61	1.24
	255	2006	8350	1519	3080	3333	355	62	1.27
	256	2007	8543	1551	3074	3468	382	68	1.28
	257	2008	8749	1616	3095	3578	386	73	1.30

258 rows × 8 columns

```
In [32]: # 注意到排放是随时间变化,对其进行指数拟合y=exp(a1*x+a2)+a3,得到化石燃料排放的二氧化
         def fossil_emiss(x, a1, a2, a3): # 定义拟合的函数
            return np. \exp(a1*x+a2)+a3
         # 设置拟合的初始值
         a1=0.1
         a2=0.1
         a3 = 0
         p0=[a1, a2, a3]
         # 调用拟合函数
         para, cov=optimize. curve fit(fossil emiss, df['year'], df['total'], p0=p0)
         # 计算拟合后的结果
         y_fit=[fossil_emiss(a,*para) for a in df['year']]
         # 画真实值和拟合后的图
        plt. plot(df['year'], df['total'])
         plt. plot(df['year'], y_fit)
         plt. xlabel ('year')
         plt.ylabel('fossil CO2 emission(million tons/yr)')
         plt. title('1751-2008 fossil CO2 emission')
```

plt. show()
print(para)

1751-2008 fossil CO2 emission

[2.43953715e-02 -3.98729502e+01 -1.12317046e+02]

```
In [34]: # 设置初始值和参数
    t=np.linspace(0, 17, 100)+1987 #时间插值
    a=fossil_emiss(t,*para)

k12=105/740
    k21=102/900
    N1=740*1000
    N2=900*1000
    y0=[N1, N2, a[0]] #初始值

sol = odeint(carbon_cycle, y0, t, args=(k12, k21))/1000/740*347 #计算微分方程,并且转
```

```
In [35]: # 画出结果图

from matplotlib.ticker import MaxNLocator
plt.plot(t, sol[:, 0], 'b', label='CO2 in atmosphere(ppm)')
plt.legend(loc='best')
plt.xlabel('year')
plt.ylabel('CO2 concentration(ppm)')
plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True)) # 设置横坐标轴刻度为整
plt.title('1987-2004 CO2 concentration without the buffer effect')
plt.show()
```

1987-2004 CO2 concentration without the buffer effect

1.2 carbon cycle with the buffer effect

```
# 定义有buffer效应的碳循环函数
In [36]:
         def carbon_cycle2(y, t, k12, k21, N0):
             N1, N2, a2 = y
             bf=3.69+1.86e-2*(N1/740/1000*347)-1.8e-6*((N1/740/1000*347)**2) #buffer factor
             dydt = [-k12*N1+k21*(N0+bf*(N2-N0))+a2,
                   k12*N1-k21*(N0+bf*(N2-N0)),
                   2. 43953715e-02*a2+2. 43953715e-02*1. 12317046e+02]
             return dydt
         # 设置初始值和参数
In [37]:
         t2=np.linspace(0, 253, 253)+1751 #时间插值,从preindustry开始积分
         a2=fossil_emiss(t2,*para)
         k12=105/740
         k21 = 102/900
         N0 = 821 * 1000
         N1 = 618 * 1000
         N2=821*1000
         y0=[N1, N2, a2[0]] #初始值(工业革命前的初始值)
         sol2 = odeint(carbon_cycle2, y0, t2, args=(k12, k21, N0))/740/1000*347 #计算微分方程,
In [39]:
         # 画图
         plt.plot(t2[235:253], sol2[235:253,0], 'b', label='CO2 in atmosphere(ppm)') # 截取19
         plt. legend(loc='best')
         plt. xlabel('year')
         plt. gca(). xaxis. set_major_locator(MaxNLocator(integer=True)) # 设置横坐标轴刻度为整
         plt. title ('1987-2004 CO2 concentration with the buffer effect')
         plt. show()
```

1987-2004 CO2 concentration with the buffer effect

1.3 reproduce Figure 2

	year	CO2	unc
0	1959	315.98	0.12
1	1960	316.91	0.12
2	1961	317.64	0.12
3	1962	318.45	0.12
4	1963	318.99	0.12
•••	•••	•••	•••
58	2017	406.76	0.12
59	2018	408.72	0.12
60	2019	411.66	0.12
61	2020	414.24	0.12
62	2021	416.45	0.12
	0 1 2 3 4 58 59 60 61	 1959 1960 1961 31962 41963 582017 2018 2019 2020 	 1 1959 315.98 1 1960 316.91 2 1961 317.64 3 1962 318.45 4 1963 318.99

63 rows × 3 columns

```
In [41]: # 画图 plt. plot(t, sol[:, 0], 'b') # without buffer effect plt. plot(t2[235:253], sol2[235:253,0], 'r') # with buffer effect plt. scatter(df2['year'][28:45], df2['CO2'][28:45], s=5) # observed data

plt. legend(['without buffer effect', 'with buffer effect', 'observed'], loc='best') plt. xlabel('year') plt. ylabel('CO2(ppm)') plt. ylabel('CO2(ppm)') plt. gca(). xaxis. set_major_locator(MaxNLocator(integer=True)) # 设置横坐标轴刻度为整 plt. title('1987-2004 CO2 concentration in atmosphere (ppm)') plt. show() # 不考虑buffer效应时比观测值低估,可能是由于人为源排放拟合时有一定的低估,因此积分之
```

1987-2004 CO2 concentration in atmosphere (ppm)

seven-box model

Out[43]:

	year	global	USA	Canada	rest America	Europe	Africa	Asia	Southest Region	China	South+	Paci
0	1850	500.6	164.1	5.5	23.5	55.0	4.0	-1.3	58.6	101.8	87.3	
1	1851	492.7	165.7	5.4	23.2	55.0	4.0	-1.1	58.6	93.1	86.9	
2	1852	548.5	230.7	5.3	22.9	55.0	4.0	-1.0	58.9	83.8	86.9	
3	1853	546.8	238.5	5.3	22.6	55.0	4.0	-1.1	59.2	74.2	87.0	
4	1854	544.8	246.2	5.3	22.4	54.9	4.0	-1.0	59.6	64.3	87.1	
•••					•••				•••			
151	2001	1385.4	-31.9	17.6	643.2	-18.1	23.2	261.7	20.1	-12.9	478.5	
152	2002	1517.7	-31.9	17.6	625.5	-18.1	23.2	258.5	20.1	-12.9	631.7	
153	2003	1513.2	-31.9	17.6	616.5	-18.1	23.2	225.5	20.1	-12.9	669.3	
154	2004	1534.9	-31.9	17.6	609.4	-18.1	23.2	225.8	20.1	-12.9	697.8	
155	2005	1467.3	-31.9	17.6	606.4	-18.1	23.2	239.2	20.1	-12.9	619.7	

Former

156 rows × 12 columns

```
# 对land use进行指数拟合y=exp(a1*x+a2)+a3, 得到land use排放的二氧化碳随时间变化的曲约
In [44]:
         def land_use(x, a1, a2, a3): # 定义拟合的函数
            return np. \exp(a1*x+a2)+a3
         # 设置拟合的初始值
         a1=0.1
         a2=1
         a3=500
         p0=[a1, a2, a3]
         # 调用拟合函数
         para2, cov=optimize. curve_fit(land_use, df3['year'], df3['global'], p0=p0, maxfev = 1000(
         # 计算拟合后的结果
         y_fit2=[land_use(a,*para2) for a in df3['year']]
         # 画真实值和拟合后的图
         plt. plot(df3['year'], df3['global'])
         plt. plot(df3['year'], y_fit2)
         plt. xlabel('year')
         plt.ylabel('land use CO2 emission(Tg/yr)')
         plt.title('1850-2005 land use CO2 emission')
         plt. show()
         print(para2)
```

1850-2005 land use CO2 emission

[4.47292783e-03 -1.19483115e+00 -7.14450749e+02]

```
# 定义seven-box model
In [45]:
                                        def carbon cycle3(y, t, k12, k21, k23, k24, k32, k34, k43, k45, k51, k67, k71, N0, b):# b是fertili
                                                        N1, N2, N3, N4, N5, N6, N7, a3, 1u = y
                                                        bf = 3.\,69 + 1.\,86e - 2*\,(N1/740/1000*347) - 1.\,8e - 6*\,(\,(N1/740/1000*347) **2) \;\; \#buffer \;\; factor \;\; here is a constant of the constant 
                                                        f=62000*(1+b*math. log(N1/618/1000)) # net primary productivity
                                                        dydt = [-k12*N1+k21*(N0+bf*(N2-N0))+a3-f+1u+k51*N5+k71*N7,
                                                                                 k12*N1-k21*(N0+bf*(N2-N0))-k23*N2+k32*N3-k24*N2,
                                                                                 k23*N2-k32*N3-k34*N3+k43*N4,
                                                                               k34*N3-k43*N4+k24*N2-k45*N4,
                                                                                k45*N4-k51*N5,
                                                                                 f-k67*N6-2*1u,
                                                                               k67*N6-k71*N7+1u,
                                                                                2. 43953715e-02*a3+2. 43953715e-02*1. 12317046e+02, # fossil排放对时间求导
                                                                            4.47292783e-03*1u+4.47292783e-03*7.14450749e+02] # land use对时间求导
                                                        return dydt
```

```
In [46]:
         # 设置初始值和参数
         t3=np. linspace(0, 253, 253)+1751 #时间插值,从preindustry开始积分
         a3=fossil_emiss(t3,*para)
         lu=land_use(t3,*para2)
         # 设置参数
         k12=60/615
         k21=60/842
         k23=9/842
         k24=43/842
         k32=52/9744
         k34 = 162/9744
         k43=205/26280
         k45=0.2/26280
         k51=0.2/90000000
         k67 = 62/731
         k71=62/1328
```

```
N0 = 842 * 1000
          b=0.38
          # 设置初始值
          N1 = 615 * 1000
          N2 = 842 * 1000
          N3 = 9744 * 1000
          N4 = 26280 * 1000
          N5 = 90000000 * 1000
          N6 = 731 * 1000
          N7 = 1238 * 1000
          y0=[N1, N2, N3, N4, N5, N6, N7, a3[0], lu[0]] #初始值(工业革命前的初始值)
          sol3 = odeint(carbon cycle3, y0, t3, args=(k12, k21, k23, k24, k32, k34, k43, k45, k51, k67, k
In [47]:
          # b=0.50的情形
          b=0.50
          sol4 = odeint(carbon cycle3, y0, t3, args=(k12, k21, k23, k24, k32, k34, k43, k45, k51, k67, k
          # ice core的数据只有1010-1960的数据,因此1959之后的数据用df2,将两个dataframe连接
In [48]:
          df4=pd. read_csv('lawdome.combined.dat.txt', sep='\s+', skiprows=273, names=['year', 'CO4
          df5=pd. concat([df4. iloc[0:189, 0:2], df2[['year', 'CO2']]])
          df5
                     CO<sub>2</sub>
Out[48]:
              year
           0 1010 279.50
           1 1015 279.60
           2 1020 279.70
           3 1025 279.80
           4 1030 279.90
             ... ...
          58 2017 406.76
          59 2018 408.72
          60 2019 411.66
          61 2020 414.24
          62 2021 416.45
         252 rows × 2 columns
In [49]: # 画图
          plt.plot(t3, so13[:,0], 'b') # b=0.38
          plt. plot(t3, so14[:,0], 'r') # b=0.50
          plt. scatter(df5['year'][149:234], df5['CO2'][149:234], s=5) # ovserved data
          plt.legend(['seven-box model(b=0.38)', 'seven-box model(b=0.50)', 'observed data'], loc
          plt. xlabel('year')
          plt. ylabel ('CO2(ppm)')
```

plt. gca(). xaxis. set major locator(MaxNLocator(integer=True)) # 设置横坐标轴刻度为整

plt. title ('seven-box model & observed data')

plt. show()

C:\Users\17978\AppData\Local\Temp\ipykernel_23668\2301373622.py:4: FutureWarning: The behavior of `series[i:j]` with an integer-dtype index is deprecated. In a future version, this will be treated as *label-based* indexing, consistent with e.g. `series [i]` lookups. To retain the old behavior, use `series.iloc[i:j]`. To get the future behavior, use `series.loc[i:j]`.

plt.scatter(df5['year'][149:234], df5['CO2'][149:234], s=5) # ovserved data

In []: