

Figura 8.2.7 Circulación de un campo vectorial (campo de velocidades de un fluido): (a) la circulación alrededor de C es cero; (b) circulación no nula alrededor de C ("remolino").

Circulación y rotacional El producto escalar de rot $\mathbf{V}(P)$ por un vector unitario \mathbf{n} , es decir, rot $\mathbf{V}(P) \cdot \mathbf{n}$, es igual a la circulación de \mathbf{V} por unidad de área en P sobre una superficie perpendicular a \mathbf{n} .

Obsérvese que la magnitud de rot $\mathbf{V}(P) \cdot \mathbf{n}$ se maximiza cuando $\mathbf{n} = \operatorname{rot} \mathbf{V}/\|\operatorname{rot} \mathbf{V}\|$ (evaluado en P). Por tanto, el efecto de rotación en P es mayor alrededor del eje que es paralelo a rot $\mathbf{V}/\|\operatorname{rot} \mathbf{V}\|$. Por esto, rot \mathbf{V} es adecuadamente denominado $\operatorname{vector} \operatorname{vorticidad}$.

Podemos utilizar estas ideas para calcular el rotacional en coordenadas cilíndricas. .

Ejemplo 4

Sean $\mathbf{e}_r, \mathbf{e}_\theta, \mathbf{e}_z$ los vectores unitarios asociados a las coordenadas cilíndricas, como se muestra en la Figura 8.2.8. Sea $\mathbf{F} = F_r \mathbf{e}_r + F_\theta \mathbf{e}_\theta + F_z \mathbf{e}_z$. (Los subíndices en este caso denotan componentes de \mathbf{F} , no derivadas parciales.) Hallar una fórmula para la componente \mathbf{e}_r de $\nabla \times \mathbf{F}$ en coordenadas cilíndricas.

Figura 8.2.8 Vectores ortonormales \mathbf{e}_r , \mathbf{e}_θ y \mathbf{e}_z asociados a las coordenadas cilíndricas. El vector \mathbf{e}_r es paralelo a la línea etiquetada con r.

Solución

Sea S la superficie mostrada en la Figura 8.2.9. El área de S es $r\,d\theta\,dz$ y la normal unitaria es \mathbf{e}_r . La integral de \mathbf{F} alrededor de los bordes de S es aproximadamente