Задание 11-2. Движение в поле.

Часть 1. Прямолинейное движение в магнитном поле.

Небольшая бусинка массы m и несущая электрический заряд +q может скользить по прямолинейному стержню. Коэффициент трения бусинки о стержень равен μ . Стержень и бусинка находятся в однородном магнитном поле, вектор индукции которого \vec{B} направлен под углом α к стержню, как показано на рисунке. Бусинке толчком сообщают начальную скорость \vec{v}_0 , направленную вдоль стержня как показано на рисунке. Действием силы тяжести следует пренебречь.

- 1.1 Найдите зависимость ускорения бусинки \vec{a} от ее скорости \vec{v} .
- 1.2 Нарисуете схематический график зависимости модуля скорости бусинки от времени v(t).
- 1.3 Рассчитайте, какой путь S_1 пройдет бусинка до полной остановки.
- 1.4 Какой путь S_2 пройдет бусинка, если ее начальную скорость \vec{v}_0 направить в противоположном направлении?

Часть 2. Движение по окружности в электрическом поле.

Описанная в первой части бусинка (масса - m, электрический заряд +q) может скользить по плоскому кольцу радиуса R. Коэффициент трения бусинки о кольцо равен μ . Силой тяжести пренебрегайте.

2.1 Поля нет.

Бусинке сообщают начальную скорость \vec{v}_0 , направленную по касательной к кольцу.

2.1.1 Покажите, что кинетическая энергия бусинки при ее последовательном смещении на некоторый угол $\Delta \varphi$ по кольцу убывает в геометрической прогрессии.

После того, как бусинка прошла один полный оборот по кольцу, ее скорость уменьшилась на 20%.

2.1.2 Рассчитайте, на сколько процентов уменьшится скорость бусинки после того, как она сделает 5 полных оборотов по кольцу.

2.2 Поле появилось.

Для уменьшения силы трения в центре кольца закрепляют точечный заряд Q.

Этот заряд создает в точках кольца электрическое поле, модуль напряженности которого равен E_0 (далее считайте эту величину известной). Будем считать, что это поле может уменьшить силу трения, действующую на бусинку.

- 2.2.2 Найдите при какой скорости v^* бусинка может скользить по кольцу с постоянной по модулю скоростью.
- 2.2.3 Нарисуйте на бланке листа ответов схематические графики зависимости скорости бусинки от времени при следующих начальных скоростях a) $v_0 > v^*$; б) $v_0 < v^*$.

Заданию 11-2. Движение в поле. Листы ответов

Часть 1. Прямолинейное движение в магнитном поле.

1.1 Зависимость ускорения бусинки $\vec{a}\,$ от ее скорости $\vec{v}\,$

 $\vec{a} =$

1.2 Схематический график зависимости модуля скорости бусинки от времени v(t).

1.3 Путь до остановки

 $S_1 =$

1.4 Путь до остановки

 $S_2 =$

Часть 2. Движение по окружности в электрическом поле.

2.1 Движение без электрического поля.

2.1.2 Скорость уменьшится на		
%		

2.2 Движение в электрическом поле.

Q 2.2.1 Укажите знак заряда Q

 $v^* = v^*$ 2.2.2 Значение «критической» скорости v^* бусинки

2.2.3 Схематические графики зависимости скорости от времени

