2015 H2 Math Prelim Paper 1 Solutions

1	$\frac{5x^2 - x - 14}{2x^2 + x - 3} \le 3$
	$\frac{5x^2 - x - 14 - 3(2x^2 + x - 3)}{(2x+3)(x-1)} \le 0, \ x \ne -\frac{3}{2}, x \ne 1$
	$\frac{5x^2 - x - 14 - 6x^2 - 3x + 9}{(2x+3)(x-1)} \le 0$
	(2x+3)(x-1)
	$\frac{-x^2 - 4x - 5}{(2x+3)(x-1)} \le 0$
	$\frac{1}{(2x+3)(x-1)} \le 0$
	$(x^2 + 4x) + 5$
	$\frac{(x^2+4x)+5}{(2x+3)(x-1)} \ge 0$
	$\frac{(x+2)^2 - 4 + 5}{(2x+3)(x-1)} \ge 0$
	$\frac{1}{(2x+3)(x-1)} \ge 0$
	$\frac{(x+2)^2+1}{(2x+3)(x-1)} \ge 0$
	$\frac{1}{(2x+3)(x-1)} \ge 0$
	Since $(x+2)^2 + 1 > 0$ for all $x \in \mathbb{R}$
	Therefore,
	$(2x+3)(x-1) \ge 0$
	Halley Conneces
	$-\frac{3}{2}$ $\sqrt{1}$

	Hence, $x \le -\frac{3}{2}$ or $x \ge 1$.
	Since $x \neq -\frac{3}{2}$ and $x \neq 1, x < -\frac{3}{2}$ or $x > 1$.
2	Let P_n be the statement $\sin x + \sin 11x + \sin 21x + + \sin(10n + 1)x = \frac{\cos 4x - \cos(10n + 6)x}{2\sin 5x}$ for $n = 0, 1, 2, 3,$
	When $n = 0$, LHS = $\sin x$
	$RHS = \frac{\cos 4x - \cos 6x}{2\sin 5x}$
	$= \frac{-2\sin 5x\sin(-x)}{2\sin 5x\sin x}$
	$\frac{2\sin 5x}{2\sin 5x}$
	$= \sin x = \text{LHS}$
	Hence P_0 is true.
	Assume P_k is true for some $k \in \{0,1,2,3,\}$, i.e. $\sin x + \sin 11x + \sin 21x + + \sin(10k + 1)x = \frac{\cos 4x - \cos(10k + 6)x}{2\sin 5x}$.
	To prove P_{k+1} is true, i.e.
	$\sin x + \sin 11x + \dots + \sin(10(k+1)+1)x = \frac{\cos 4x - \cos(10k+16)x}{2\sin 5x}.$

LHS =
$$\sin x + \sin 11x + ... + \sin(10k + 1)x + \sin(10k + 11)x$$

$$= \frac{\cos 4x - \cos(10k + 6)x}{2\sin 5x} + \sin(10k + 11)x$$

$$= \frac{\cos 4x - \cos(10k + 6)x + 2\sin(10k + 11)x\sin 5x}{2\sin 5x}$$

$$= \frac{\cos 4x - \cos(10k + 6)x + \cos(10k + 6)x - \cos(10k + 16)x}{2\sin 5x}$$

$$= \frac{\cos 4x - \cos(10k + 16)x}{2\sin 5x} = RHS$$
Hence P_k is true implies P_{k+1} is true.
Since P_0 is true, and P_k is true implies P_{k+1} is true, by Mathematical induction, P_n is true for all $n \in \{0,1,2,3,..\}$

$$f(x) = \frac{3x - 5}{x - 2} = 3 + \frac{1}{x - 2}.$$

$$f'(x) = -\frac{1}{(x - 2)^2}$$

$$f'(x) < 0 \text{ for all } x \in \mathbb{R}, x \neq 2 \text{ since } (x - 2)^2 > 0 \text{ for all } x \in \mathbb{R}, x \neq 2.$$
Hence, f is decreasing on any interval in the domain.

3(ii) From graph of $y = f(x)$, $D_{f^{-1}} = R_f = \mathbb{R} \setminus \{3\}$.
Let $y = f(x)$

$$y-3 = \frac{1}{x-2}$$

$$x-2 = \frac{1}{y-3}$$

$$x = 2 + \frac{1}{y-3} = \frac{2y-5}{y-3}$$
Hence, $f^{-1}: x \mapsto \frac{2x-5}{x-3}$, for $x \in \mathbb{R}, x \neq 3$.

$$4(i) \qquad x^3y^2 + x^2y^3 = 1$$

Differentiate with respect to *x*:

$$x^{3} \left(2y \frac{dy}{dx}\right) + y^{2} \left(3x^{2}\right) + x^{2} \left(3y^{2} \frac{dy}{dx}\right) + y^{3} \left(2x\right) = 0$$

$$\frac{dy}{dx} (2x^3y + 3x^2y^2) = -(2y^3x + 3x^2y^2)$$

$$\frac{dy}{dx} = -\frac{xy^{2}(2y+3x)}{x^{2}y(2x+3y)}$$

For stationary point, $\frac{dy}{dx} = 0$. Since $x \neq 0$, $y \neq 0$:

$$2y+3x=0 \Rightarrow y=-\frac{3}{2}x \text{ or } x=-\frac{2}{3}y$$

Substitute back into equation of curve:

$$x^{3}\left(-\frac{3}{2}x\right)^{2} + x^{2}\left(-\frac{3}{2}x\right)^{3} = 1$$

$$\frac{9}{4}x^5 - \frac{27}{8}x^5 = 1$$

$$-\frac{9}{8}x^5 = 1$$

	$x = -\sqrt[5]{\frac{8}{9}}$
	$y = -\frac{3}{2} \left(-\sqrt[5]{\frac{8}{9}} \right) = \frac{3}{2} \sqrt[5]{\frac{8}{9}}$
	Hence, the coordinates of A is $\left(-\sqrt[5]{\frac{8}{9}}, \frac{3}{2}\sqrt[5]{\frac{8}{9}}\right)$ or $\left(-\frac{2}{3}\sqrt[5]{\frac{27}{4}}, \sqrt[5]{\frac{27}{4}}\right)$
(ii)	Since B is the reflection of A in $y = x$, the coordinates of B is $\left(\frac{3}{2}\sqrt[5]{\frac{8}{9}}, -\sqrt[5]{\frac{8}{9}}\right)$
5(i)	Transformation 1: stretch with scale factor <i>k</i> parallel to <i>x</i> -axis
	Transformation 2: m units in positive <i>x</i> -direction
	Transformation 3: n units in negative y-direction
	$C_1: \frac{x^2}{6^2} + \frac{y^2}{3^2} = 1 \xrightarrow{\text{Trans 1}} \frac{\left(\frac{x}{k}\right)^2}{6^2} + \frac{y^2}{3^2} = 1$
	$\frac{\text{Trans 2}}{(6k)^2} \to \frac{(x-m)^2}{(6k)^2} + \frac{y^2}{3^2} = 1 \xrightarrow{\text{Trans 3}} \frac{(x-m)^2}{(6k)^2} + \frac{(y+n)^2}{3^2} = 1$
	Final equation: $C_2 : \frac{(x-m)^2}{(6k)^2} + \frac{(y+n)^2}{3^2} = 1$
5(ii)	
	If C_2 is a circle with centre $(4, -7)$, then
	$\left \frac{(x-m)^2}{(6k)^2} + \frac{(y+n)^2}{3^2} \right = 1 \text{ to } \frac{(x-4)^2}{(6k)^2} + \frac{(y+7)^2}{3^2} = 1$
	means $m = 4, n = 7$

	and	6 <i>k</i> =	:3⇒	<i>k</i> =	$\frac{1}{2}$
--	-----	--------------	-----	------------	---------------

$$\frac{6}{(i)} \qquad \frac{du}{dt} = \frac{5t}{t^2 + 1}$$

Integrating both sides with respect to t,

$$u = \frac{5}{2} \int \frac{2t}{t^2 + 1} dt$$

= $\frac{5}{2} \ln(t^2 + 1) + C$, since $(t^2 + 1) > 0$, where C is arbitrary constant.

Substitute values t = 0 and u = 3: C = 3

Particular solution is $u = \frac{5}{2} \ln(t^2 + 1) + 3$.

6 (ii) As
$$t \to \pm \infty$$
, $\frac{du}{dt} = \frac{5t}{t^2 + 1} \to 0$.

The gradient of every solution curve tends towards zero as $t \to \pm \infty$.

7 (i)	$y \uparrow$ $(2,4) $
7 (ii)	$\frac{0}{\Rightarrow}$ Area = $\int_{2}^{4} y dx - 4(4-2)$
	Area = $\int_2^{\pi} y dx - 4(4-2)$ = $\int_0^{\pi} (4 + \sin \theta) (3\cos^2 \theta \sin \theta) d\theta - 8$
	$=12\int_0^{\pi} \cos^2 \theta \sin \theta d\theta + 3\int_0^{\pi} \cos^2 \theta \sin^2 \theta d\theta - 8$
	$=-12\int_0^{\pi} \cos^2\theta(-\sin\theta) d\theta + \frac{3}{4}\int_0^{\pi} \sin^22\theta d\theta - 8$
	$=-12\left[\frac{\cos^3\theta}{3}\right]_0^{\pi} + \frac{3}{8}\int_0^{\pi} (1-\cos 4\theta) d\theta - 8$
	$= -4(-1) + \frac{3}{8} \left[\theta - \frac{\sin 4\theta}{4} \right]_0^{\pi} - 8$
	$=\frac{3\pi}{8} \text{ units}^2$

$$\begin{vmatrix} 8 \text{ (i)} & \frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2} \equiv \frac{2(r+1)(r+2) - 3r(r+2) + r(r+1)}{r(r+1)(r+2)} \\ & \equiv \frac{2r^2 + 6r + 4 - 3r^2 - 6r + r^2 + r}{r(r+1)(r+2)} \end{vmatrix}$$

$$\begin{vmatrix} \exists \frac{r+4}{r(r+1)(r+2)} \\ \exists \frac{r+4}{r(r+1)(r+2)} \end{vmatrix}$$

$$\begin{vmatrix} S_n = \sum_{r=1}^n \frac{r+4}{r(r+1)(r+2)} \\ = \sum_{r=1}^n \left(\frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2}\right) \\ = \left(\frac{2}{1} - \frac{3}{2} + \frac{f}{f}\right) \\ + \frac{f}{f} - \frac{f}{f} + \frac{f}{f} \end{vmatrix}$$

$$\begin{vmatrix} \vdots & \vdots & \vdots \\ + \frac{2f}{g/2} - \frac{f}{f'} + \frac{f}{f} \end{vmatrix}$$

$$\begin{vmatrix} \vdots & \vdots & \vdots \\ + \frac{2f}{g/2} - \frac{f}{f'} + \frac{f}{f} \end{vmatrix}$$

$$\begin{vmatrix} \vdots & \vdots & \vdots \\ + \frac{2f}{g/2} - \frac{f}{f'} + \frac{f}{f} \end{vmatrix}$$

$$\begin{vmatrix} + \frac{f}{f} - \frac{3}{n+1} + \frac{f}{n+2} \end{vmatrix}$$

$$= \left(\frac{2}{1} - \frac{3}{2} + \frac{2}{2} + \frac{1}{n+1} - \frac{3}{n+1} + \frac{1}{n+2}\right)$$

$$= \frac{3}{2} - \frac{2}{n+1} + \frac{1}{n+2}$$

(iii)
$$\sum_{r=2}^{n} \frac{r^2 + 3r - 4}{r(r^2 - 1)(r + 2)} = \sum_{r=2}^{n} \frac{(r + 4)(r - 1)}{r(r - 1)(r + 1)(r + 2)}$$

$$= \sum_{r=2}^{n} \frac{r + 4}{r(r + 1)(r + 2)}$$

$$= \sum_{r=1}^{n} \frac{r + 4}{r(r + 1)(r + 2)} - \frac{5}{6}$$

$$= \frac{3}{2} - \frac{2}{n + 1} + \frac{1}{n + 2} - \frac{5}{6}$$

$$= \frac{2}{3} - \frac{2}{n + 1} + \frac{1}{n + 2}$$
9(i) Since $g(2) = g(6) = 5$, the function g is not one-to-one and hence does not have an inverse function.

(ii)
$$g^3(3) = ggg(3) = gg(1) = g(4) = 3.$$

(ii)
$$g^3(3) = ggg(3) = gg(1) = g(4) = 3$$
.
Since $g^2(3) = 4$ and $g^3(3) = 3$, n can be 2,5,8,...
The set of values of n is $\{3k-1: k \in \mathbb{Z}^+\}$

(Also accept answers such as $\{2,5,8,11,...\}$, $\{3k+2: k=0,1,2,3,...\}$ etc.)

(iii)
$$g(x) = g(1) + (g(2) - g(1))(x - 1), \text{ for } 1 < x < 2$$

$$g(1.5) = 4 + (5 - 4)(1.5 - 1)$$

$$= 4 + 1(0.5)$$

$$= 4.5.$$

$$g(x) = g(2) + (g(3) - g(2))(x - 1), \text{ for } 2 < x < 3$$

$$g(2.7) = 5 + (1 - 5)(2.7 - 2)$$

$$= 5 - 4(0.7)$$

$$= 2.2.$$

(iv)	

- (v) When g(x) = k has four real distinct roots, the graph of y = k intersects the graph of y = g(x) at four distinct points.
 - From (iv), 2 < k < 3.

10(i)
$$\overrightarrow{AB}$$

10 (ii)

By Sine Rule,
$$\frac{AM}{\sin \frac{\pi}{6}} = \frac{\left| \overrightarrow{OA} \right|}{\sin \frac{2\pi}{3}}$$

$$AM = \frac{|\mathbf{a}|}{\left(\frac{\sqrt{3}}{2}\right)} \left(\frac{1}{2}\right)$$

$$=\frac{1}{\sqrt{3}}|\mathbf{a}|$$

Hence,

$$\overrightarrow{AM} = \frac{1}{\sqrt{3}} |\mathbf{a}| \left(\frac{\mathbf{b} - \mathbf{a}}{|\mathbf{b} - \mathbf{a}|} \right)$$
$$= \frac{|\mathbf{a}|}{\sqrt{3} |\mathbf{b} - \mathbf{a}|} (\mathbf{b} - \mathbf{a})$$

10 (iii)

Shortest distance from M to line OA

$$= \left| \frac{|\mathbf{a}|}{|\mathbf{A}\mathbf{M}|} \times \frac{\mathbf{a}}{|\mathbf{a}|} \right|$$

$$= \left| \frac{|\mathbf{a}|}{\sqrt{3} |\mathbf{b} - \mathbf{a}|} (\mathbf{b} - \mathbf{a}) \times \frac{\mathbf{a}}{|\mathbf{a}|} \right|$$

$$= \frac{1}{\sqrt{3} |\mathbf{b} - \mathbf{a}|} |(\mathbf{b} - \mathbf{a}) \times \mathbf{a}|$$

$$= \frac{1}{\sqrt{3} |\mathbf{b} - \mathbf{a}|} |\mathbf{b} \times \mathbf{a} - \mathbf{a} \times \mathbf{a}|$$

$$= \frac{|\mathbf{a}||\mathbf{b}|}{\sqrt{3} |\mathbf{b} - \mathbf{a}|}, \text{ since } \mathbf{a} \times \mathbf{a} = \mathbf{0} \text{ and } |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin\left(\frac{\pi}{2}\right)|$$

Alternative Method

	Shortest distance from M to line OA
	= projection of \overrightarrow{AM} onto \overrightarrow{OB}
	$= \left \overrightarrow{AM} \cdot \frac{\mathbf{b}}{ \mathbf{b} } \right $
	$ = \frac{ \mathbf{a} }{\sqrt{3} \mathbf{b}-\mathbf{a} }(\mathbf{b}-\mathbf{a}) \cdot \frac{\mathbf{b}}{ \mathbf{b} } $
	$= \frac{ \mathbf{a} }{\sqrt{3} \mathbf{b} \mathbf{b}-\mathbf{a} } (\mathbf{b}-\mathbf{a})\cdot\mathbf{b} $
	$= \frac{ \mathbf{a} }{\sqrt{3} \mathbf{b} \mathbf{b}-\mathbf{a} } \mathbf{b} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b} $
	$= \frac{ \mathbf{a} \mathbf{b} }{\sqrt{3} \mathbf{b} \mathbf{b}-\mathbf{a} } \text{(Since } \mathbf{b} \cdot \mathbf{b} = \mathbf{b} ^2 \text{ and } \mathbf{a} \cdot \mathbf{b} = 0)$
	$=\frac{ \mathbf{a} }{\sqrt{3} \mathbf{b}-\mathbf{a} }$
11 (i)	$\ln\left(1+y\right) = \tan^{-1}x$
	Differentiate w.r.t. x
	$\frac{1}{1+y}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$
	$\left(1+x^2\right)\frac{\mathrm{d}y}{\mathrm{d}x} = 1+y \qquad \text{(Shown)}$
(ii)	Differentiate w.r.t. x:
	$\left(1+x^2\right)\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 2x\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x}$

$\left(1+x^2\right)\frac{\mathrm{d}^3y}{\mathrm{d}x^3}+$	a^2y	2 dy	$\int_{\mathcal{L}} d^2y$	d^2y
$\int (1+x) \frac{dx^3}{dx^3} +$	$2x \frac{d}{dx^2}$	$-2\frac{d}{dx}$	$\frac{2x}{dx^2}$	$=\frac{1}{\mathrm{d}x^2}$

When x = 0, $y = e^{\tan^{-1} x} - 1 = 0$, $\frac{dy}{dx} = 1$, $\frac{d^2 y}{dx^2} = 1$, $\frac{d^3 y}{dx^3} = -1$

$$\therefore y = x + \frac{x^2}{2} - \frac{x^3}{6} + \dots$$

$$y = x + \frac{x^2}{2} - \frac{x^3}{6} + \dots$$
(iii)
(a)
$$\int_0^{\frac{1}{2}} \left(e^{\tan^{-1}x} - 1\right) dx \approx \int_0^{\frac{1}{2}} \left(x + \frac{x^2}{2} - \frac{x^3}{6}\right) dx$$

(b)
$$\approx 0.14323 \approx 0.143 \text{ (to 3sf)}$$

Using GC, $\int_0^{\frac{1}{2}} (e^{\tan^{-1}x} - 1) dx = 0.141709578 \approx 0.142$ (3 s.f)

The approximation will be better if more terms in the Maclaurin's series are included in the integral.

12(i)

For a regular hexagon, each internal angle is $\frac{(6-2)\times180^0}{6} = 120^0$.

Consider the triangle ADC:

$$\sin 60^0 = \frac{DC}{a}$$
 and $\cos 60^0 = \frac{AD}{a}$
 $DC = \frac{a\sqrt{3}}{2}$ and $AD = \frac{1}{2}a$

$$DC = \frac{a\sqrt{3}}{2}$$
 and $AD = \frac{1}{2}a$

= 2 (Area of triangle ABC) + Area of rect BCFE

Area of the hexagon =2
$$\left(\frac{1}{2} \times \frac{1}{2} a \times a\sqrt{3}\right) + a^2\sqrt{3}$$

= $\frac{a^2\sqrt{3}}{2} + a^2\sqrt{3} = \frac{3\sqrt{3}}{2}a^2$

Given that the volume is 100, (ii)

$$V = \frac{3\sqrt{3}}{2}a^2h = 100$$

Thus,

$$h = \frac{100(2)}{3\sqrt{3}a^2} = \frac{200}{3\sqrt{3}a^2}$$

Surface Area, A

$$=6ah + 6kah + 3\sqrt{3}a^2$$

$$=6ah(k+1)+3\sqrt{3}a^2$$

$$=\frac{6a(k+1)200}{3\sqrt{3}a^2}+3\sqrt{3}a^2$$

$$=\frac{400(k+1)}{\sqrt{3}a}+3\sqrt{3}a^2$$

$$\frac{dA}{da} = -\frac{400(k+1)}{\sqrt{3}a^2} + 6\sqrt{3}a$$

For stationary points, $\frac{dA}{da} = 0$

$$\frac{400(k+1)}{\sqrt{3}a^2} = 6\sqrt{3}a$$

$$400(k+1) = 18a^3$$

$$a^3 = \frac{400(k+1)}{18} = \frac{200(k+1)}{9}$$

$$\frac{dA}{da} = -\frac{400(k+1)}{\sqrt{3}a^2} + 6\sqrt{3}a$$

$$\Rightarrow \frac{d^2A}{da^2} = \frac{800(k+1)}{\sqrt{3}a^3} + 6\sqrt{3} > 0$$
Thus, $a = \sqrt[3]{\frac{200(k+1)}{9}}$ gives a minimum surface area.

$$(iii) \qquad \frac{h}{a} = \frac{200}{3\sqrt{3}a^3} = \frac{200}{3\sqrt{3}} \left(\frac{200(k+1)}{9}\right) = \frac{3}{\sqrt{3}(k+1)} = \frac{\sqrt{3}}{(k+1)}$$

$$(iv) \qquad 0 < k \le 1$$

$$1 < k + 1 \le 2$$

$$\frac{1}{2} \le \frac{1}{k+1} < 1$$

$$\frac{\sqrt{3}}{2} \le \frac{\sqrt{3}}{k+1} < \sqrt{3} \Rightarrow \frac{\sqrt{3}}{2} \le \frac{h}{a} < \sqrt{3}$$

13(a)
$$w = \frac{z - 2i}{z + 4}$$
, where $z \neq -4$,
Let $z = x + iy$,
 $w = \frac{(x + iy) - 2i}{z}(x + 4) - iy$

$$w = \frac{(x+iy)-2i}{(x+iy)+4} \cdot \frac{(x+4)-iy}{(x+4)-iy}$$
$$= \frac{(x^2+4x+y(y-2))+i(-xy+x(y-2)+4(y-2)}{(x+4)^2+y^2}$$

If Re(w) = 0, then

$$\frac{x^2 + 4x + y^2 - 2y}{(x+4)^2 + y^2} = 0,$$

$$\Rightarrow x^2 + 4x + y^2 - 2y = 0$$

$$\Rightarrow (x+2)^2 - 4 + (y-1)^2 - 1 = 0$$

$$\Rightarrow (x+2)^2 + (y-1)^2 = (\sqrt{5})^2$$

 \therefore The locus of P is a circle with centre at (-2,1) and radius $\sqrt{5}$ units (Shown)

13(b) $|z+2-i| \le \sqrt{5}$ and $\arg(z-1+2i) = \frac{3\pi}{4}$

(::)	
(ii)	Minimum $ z-1+2i = PB = BC - CP = \sqrt{18} - \sqrt{5}$ units
	Maximum $ z-1+2i = AB = BC + AC = \sqrt{18} + \sqrt{5}$ units
(iii)	$\sqrt{5}$
	$\sin \theta = \frac{\sqrt{5}}{\sqrt{18}}$
	Minimum $arg(w-1+2i)$
	$=\frac{3\pi}{4}-\theta$
	4
	$= \frac{3\pi}{4} - \sin^{-1}(\frac{\sqrt{5}}{\sqrt{18}})$
	$=\frac{3\pi}{4}-0.55512$
	$=1.80 \mathrm{rad}$
	Maximum $arg(w-1+2i)$
	$=\frac{3\pi}{2}+\theta$
	$= \frac{3\pi}{4} + \theta$ $= \frac{3\pi}{4} + \sin^{-1}(\frac{\sqrt{5}}{\sqrt{18}})$
	= 2.91 rad