3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 DIGITAL INTEGRATED CIRCUITS

SEMESTER - 3

			and the second s		
m	YY				[Full Marks: 70
Time: 3	Hours]		the second second second		Full Mains. 10
					•

GROUP - A

		(Multiple Ch	oice Type	Questions)	
Cho	ose the	correct alternatives for	any <i>ten</i> of t	he following:	$10\times1=10$
1)	Gray	code of 1011 (binary) =	.		
	a)	0101	b)	1101	
	c)	1110	d)	None of these.	
11)	An ex	cample of reflected code	İs		
	a)	BCD	b)	ASCII	
	c)	GRAY	d)	Hamming code.	
ш)	The n	ninimum number of NAN	ID gates req	uired to design one X	-OR gate is
	a)	3	b)	elae (1.12)	
	c)	5	d)	6.	
iv)	If (21	$(2)_x = (23)_{10}$, where x	is base (+v	e integer), then the v	alue of x is
	a)	2	b)	3	
	c)	4	d)	5. 5.	
v)	Full f	orm of FPGA is			
	a)	Full Programmable Gate	d Array		
	b)	Field Programmable Gat	ed Array	under State (1965). Die eine Granden (1965)	
	c)	Full Peripheral Gated Ar	тау		
	d)	Field Peripheral Gated A	Irray.		

33106 (4/12)

vi)	The	resolution of 8-bit A/d conver	ter is	
	a)	0.62%	b)	0.38%
	c)	0.39%	d)	1.25%.
vii)	One	bit even parity detector code	fails to	detect
	a)	any even number of error	b)	any odd number of error
	c)	both (a) & (b)	d)	none of these.
viii)	Wha	at is the word size of 16×8 RC	OM ?	
4	a)	16	b)	
•	c)	128	d)	None of these.
ix)	(A +	+ B' + A'B) C =		
	a)		b)	0
	c)	C	d)	c ′.
x)	F/F	that makes output equals to i	nput af	ter clock is
	a)	J-K F/F	b)	D F/F
	c)	T F/F	d)	none of these.
xi)	842	l is a		
	a)	weighted code	b)	non-weighted code
	c)	complementary code	d)	none of these.
kii)	The	characteristic equation of T fli	p-flop i	s given by
λЩ				

33106 (4/12)

	and the second second			
والإنجاب	Contract Contract		 	
	The state of the s	2323/422		/ne//col
97.		سبب ارجيد		/06/(09)

5

	<i>f</i> .							_
44			parallel-in-	98.4	- 1. · C			
dilli		on hit	MAMALIAI-IN-	navalial_niii	anım	TECHET	w	neen
X4584	rin a			MI AUCI-VUL	эши	ICEIGIC	\mathbf{w}	11000
-			F	P				

a) 1

b) r

c) 2n+1

d) n+

clock pulse/pulses.

xiv) The number of flip-flops required to design a MOD - 18 counter is

a) 3

b) 4

c) 5

d) 6

L____

xv) A ring counter consisting of 5 flip-flops will have

a) 5 states

b) 10 states

c) 32 states

d) $(2^5 - 1)$ states.

.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Given the Boolean function $F = xy + \overline{xy} + \overline{y}z$:
 - a) Implement it with only OR and NOT gates.
 - b) Implement it with only AND and NOT gates.

 $2 \times 2\frac{1}{2}$

- 3. a) If the solution of the equation $x^2 + 11x + 22 = 0$ are x = 3, 6, then determine base of x.
 - b) What do you mean by arithmetic overflow?

4 + 1

4. Design a 2-input NAND gate using CMOS transistors.

5

5. Implement the following function using a Multiplexer:

$$F(a, b, c) = \sum m(1, 3, 5, 6).$$

5

6. Use a K-MAP to simplify the following Boolean expression

$$F(a, b, c, d) = \sum m(0, 2, 6, 8, 12, 13, 15) + d(3, 9, 10)$$

d = don't care (i.e. either 1, 0).

5

33106 (4/12)

6

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- a) What do you mean by prime-implicant and essential prime-implicant? $1\frac{1}{2} + 1\frac{1}{2}$
 - b) The four-variable function f is given in terms of minterm as $f(A, B, C, D) = \sum m(2, 3, 8, 10, 11, 12, 14, 15)$.

 Using Quine McCluskey method, minimize the function in the SC

Using Quine McCluskey method, minimize the function in the SOP form. Also give the realization using only two-input NAND gate. 10 + 2

8. A new clocked X-Y flip-flop is defined with two inputs, X and Y in addition to the clock input. The flip-flop function as flows:

If XY = 00 the FF changes state with each clock pulse

If XY = 01 the FF states Q become 1 with the next clock pulse

If XY = 10 the FF states Q become 0 with the next clock pulse

If XY = 11 no changes of state occur with the clock pulse

a) Write the truth table for the XY flip-flop.

3

b) Write the excitation table for the XY flip-flop.

3

- c) It is desired to convert a J-K flip-flop into the X-Y flip-flop by adding some extra gates, if necessary. Draw a circuit to show how you will implement the XY flip-flop using a J-K flip-flop.
- 9. a) What are the differences between a latch and a flip-flop?

2

- b) What is Johnson counter? State the advantages and disadvantages of Johnson counter.
 1 + 2
- Design a sequential circuit that implement the following state diagram. Use all
 D flip-flops for the design.

CS/B.TECH(EIE)/SEM-3/EC-302(EI)/08/(09)

					1987 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984		\$00071000
10.	a)	Design	a compactor	circuit to	output logic-	l when a 4 bi	t binary number
		X eatie	fies the conditi	on 4 < X <	12		8

- b) Design a binary multiplier circuit to multiply two 2-bit numbers. Use a suitable decoder and logic gates. Assume that all the outputs of the decoder are active low.
- 11. a) Implement a 16-to-1 MUX using two 8-to-1 MUXs.
 - b) Design a Gray code to binary converter using suitable logic gates.
 - c) How can a decoder be used as a DEMUX?
- 12. Write short notes on any three of the following: 3×5
 - a) PLD
 - b) Even Parity checker and generator
 - c) EEROM
 - d) Successive Approximation register
 - e) Hamming code.

END