PROGRAMMING FOR AI

Lecture 6

Data Handling and Preprocessing

Instructor: Zafar Iqbal

Agenda

- Handling Missing Values
- Scaling and Normalization
- Parsing Dates
- Character Encodings
- Inconsistent Data Entry

1. Handling Missing Values

Data Cleaning

- A crucial part of data science but often frustrating.
- Common issues: garbled text, missing values, incorrect date formatting, inconsistent data entry.

Goal

- Understand common data cleaning problems and how to fix them.
- Learn to clean data efficiently for faster analysis.
- Missing values (NaN, None) occur when data is absent in a dataset.
- Can lead to errors in analysis or biased results if not handled properly

Handling Missing Values

Common Causes:

- Data not recorded (e.g., sensor failure).
- Data doesn't exist (e.g., no children for a "height of oldest child" field).

■ Load and Inspect Data:

- Use pandas to read data (e.g., pd.read_csv()).
- Check the first few rows with **head()** to spot missing values.

Quantify Missingness:

Count missing values per column: df.isnull().sum()

Dropping Missing Values

- Drop rows with any missing values: df.dropna().
- Drop columns with any missing values: df.dropna(axis=1).

Handling Missing Values

Filling Missing Values (Imputation)

- When retaining data is critical.
- Replace with a constant (e.g., 0)
- df.fillna(0)
- Forward/Backward Fill: Propagate adjacent values
- df.fillna(method='bfill').fillna(0) # Backward fill

Before		After				
	Α	В			Α	В
0	1.0	NaN		0	1.0	2.0
1	NaN	2.0		1	3.0	2.0
2	3.0	NaN		2	3.0	0.0
3	NaN	NaN		3	0.0	0.0

2. Scaling and Normalization

Scaling

■ What it does: Changes the range of the data (e.g., min-max scaling).

Example Methods:

- Min-Max Scaling (0 to 1 range)
- Standardization (mean=0, std=1)

■ When to Use:

- When features have different units (e.g., kg vs. cm).
- Needed for distance-based algorithms (e.g., KNN, SVM).

Scaling and Normalization

Normalization

- What it does: Changes the shape of the distribution (e.g., Gaussian).
- Example Methods:
 - Log transformation
 - Box-Cox transformation
- When to Use:
 - When data is skewed (non-normal).
 - Needed for models assuming normality (e.g., linear regression).

Scaling and Normalization

Aspect	Scaling	Normalization
Goal	Adjusts range	Adjusts distribution shape
Example	MinMaxScaler()	Log transformation
Use Case	Standardizing features	Making data more Gaussian

Simple Rule of Thumb

- Use Scaling → For adjusting feature ranges (e.g., preprocessing for ML).
- Use Normalization → For fixing skewed data (e.g., statistical modeling).

3. Parsing Dates

What is Date Parsing?

- Date parsing is the process of converting date strings
- (e.g., "3/2/07", "2023-12-25") into a machine-readable datetime format (like Python's datetime64).

■ This allows:

- Proper sorting (2007-03-02 comes before 2007-04-06).
- Easy extraction of components (day, month, year).
- Time-based calculations (e.g., time intervals).

Why Parse Dates?

Correct Data Type

- Raw dates are often stored as strings (object dtype in pandas).
- Parsing converts them to datetime64, enabling date operations.

Avoid Errors

 Without parsing, functions like .dt.day or .sort_values() won't work.

Consistency

Fixes varying formats (e.g., MM/DD/YYYY vs. DD-MM-YYYY).

How to Parse Dates in Pandas

1. Basic Parsing

Use pd.to_datetime()

```
df['date_parsed'] = pd.to_datetime(df['date_column'])
```

■ Problem: Pandas might misinterpret formats (e.g., "01/04/2023" → January 4th or April 1st?).

2. Specify Format

■ Use format parameter with strftime directives

```
df['date_parsed'] = pd.to_datetime(df['date_column'],
format="%m/%d/%y")
```

- Example Formats:
 - "3/2/07" \rightarrow format="%m/%d/%y"
 - "17-1-2007" → format="%d-%m-%Y"

How to Parse Dates in Pandas

3. Handle Multiple Formats

- If dates are mixed (e.g., "3/2/07" and "2007-01-17")
- df['date_parsed'] = pd.to_datetime(df['date_column'], infer_datetime_format=True)

Common Use Cases After Parsing

■ Extract Date Components

```
df['day'] = df['date_parsed'].dt.day # Day of month (1-31)
```

```
df['month'] = df['date_parsed'].dt.month # Month (1-12)
```

```
df['year'] = df['date_parsed'].dt.year # Year (e.g., 2007)
```

Filter by Date

```
df_2007 = df[df['date_parsed'].dt.year == 2007]
```

Plotting Trends Over Time

■ sns.lineplot(x='date_parsed', y='fatalities', data=df)

4. Character Encodings

- Character encodings map binary byte sequences (e.g., 01101000 01101001) to human-readable text (e.g., "hi").
- Mismatched encoding can lead to scrambled text (mojibake) or unknown characters □□□□□□□.
 - Example: æ-‡å-åŒ-ã??
- UTF-8 is the standard encoding in Python and is recommended for data handling.
- Python 3 simplifies encoding handling compared to Python 2

Encoding and Decoding Strings in Python

- Strings in Python are UTF-8 by default.
- Bytes data type represents encoded strings.
- Example:

```
before = "This is the euro symbol: €"
after = before.encode("utf-8", errors="replace")
print(after) # Output: b'This is the euro symbol: \xe2\x82\xac'
print(after.decode("utf-8")) # Correct decoding
```

Incorrect decoding results in errors

```
print(after.decode("ascii")) # UnicodeDecodeError
```

Handling Encoding Issues in Files

- Reading files with encoding issues might cause UnicodeDecodeError.
- Use charset_normalizer to detect encoding

```
import charset_normalizer
with open("file.csv", 'rb') as rawdata:
    result = charset_normalizer.detect(rawdata.read(10000))
print(result) # Example output: {'encoding': 'Windows-1252', 'confidence': 0.73}
```

Read file with the detected encoding

```
df = pd.read_csv("file.csv", encoding='Windows-1252')
```

Converting Data to UTF-8

- Convert text to UTF-8 as soon as possible.
- Avoid lossy encoding conversions

```
before = "This is the euro symbol: €"
after = before.encode("ascii", errors="replace")
print(after.decode("ascii")) # Output: "This is the euro symbol: ?" (lost characte
```

Save files with UTF-8 encoding

```
df.to_csv("file_utf8.csv", encoding='utf-8', index=False)
```

Character Encodings - Suggestions

- Always prefer UTF-8 encoding.
- Detect encoding issues early with charset_normalizer.
- Handle encoding conversions carefully to prevent data loss.
- Save files explicitly in UTF-8 to maintain consistency.

5. Inconsistent Data Entry

Need of Data Cleaning

- Ensures data consistency and accuracy.
- Reduces errors and improves analysis.
- Essential for handling large datasets efficiently.

Common Issues in Text Data

- Inconsistent capitalizations (e.g., "Germany" vs. "germany").
- Extra white spaces (e.g., " Germany" vs. "Germany").
- Misspellings and variations (e.g., "South Korea" vs. "SouthKorea").
- Abbreviations and alternative spellings (e.g., "USA" vs. "USofA").

Initial Data Inspection

- Before cleaning, always inspect the dataset to understand inconsistencies.
- Use head() and unique() to identify variations in textbased data.

```
# Load dataset
import pandas as pd
import numpy as np

professors = pd.read_csv("../input/pakistan-intellectual-capital/pakistan_intellectual
# Inspect first few rows
print(professors.head())

# Check unique values in a column (e.g., Country)
countries = professors['Country'].unique()
countries.sort()
print(countries)
```

Standardizing Text Data

- Convert text to lowercase to maintain uniformity.
- Remove leading and trailing whitespace.

```
# Convert to lowercase
professors['Country'] = professors['Country'].str.lower()
# Remove leading and trailing whitespaces
professors['Country'] = professors['Country'].str.strip()
```

Using Fuzzy Matching for Data Cleaning

- Fuzzy matching helps detect and correct variations in text entries.
- The fuzzywuzzy package can be used to find similar text strings.

```
from fuzzywuzzy import process, fuzz

# Get top 10 closest matches to 'south korea'
matches = process.extract("south korea", countries, limit=10, scorer=fuzz.token_sort_ratio)
print(matches)
```


Automating Inconsistent Data Correction

A function can be written to replace similar text entries automatically.

```
# Function to replace similar text values
def replace matches in column(df, column, string to match, min ratio=47):
    # Get unique values
    strings = df[column].unique()
    # Get closest matches
    matches = process.extract(string to match, strings, limit=10, scorer=fuzz.token sort ratio)
    # Filter matches above similarity threshold
    close matches = [match[0] for match in matches if match[1] >= min ratio]
    # Replace values in DataFrame
    df.loc[df[column].isin(close_matches), column] = string_to_match
    print("All done!")
# Apply function to clean 'Country' column
replace matches in column(professors, 'Country', "south korea")
```

Verifying Data Cleaning

 After making changes, always recheck unique values to confirm corrections.

```
# Check updated unique values
countries = professors['Country'].unique()
countries.sort()
print(countries)
```


Task: Cleaning Inconsistent University Names in a Dataset

Problem Statement

A dataset contains a column "University Currently Teaching", but due to inconsistent data entry, some universities have multiple variations. For example:

Original Entry
myu University
Muslim University
MY University
Maslim university
Stanford Univ.
Stanford University

Your task is to standardize all entries to "MY University" & Stanford University using preprocessing techniques.

Code

```
import pandas as pd
from fuzzywuzzy import process, fuzz
# Sample dataset
data = {'University Currently Teaching': [
  'myu University', 'Muslim University', 'MY University', 'Maslim university',
  'Stanford Univ.', 'Stanford University',
]}
df = pd.DataFrame(data)
# Convert text to lowercase and remove extra spaces
df['University Currently Teaching'] = df['University Currently Teaching'].str.lower().str.strip()
# Function to standardize university names
def replace_matches_in_column(df, column, string_to_match, min_ratio=80):
  unique values = df[column].unique()
# Find close matches
  matches = process.extract(string_to_match, unique_values, limit=10,
scorer=fuzz.token_sort_ratio)
```

Code

```
# Get matches above similarity threshold
  close_matches = [match[0] for match in matches if match[1] >=
min ratio
  # Replace matches in the dataset
  df.loc[df[column].isin(close_matches), column] = string_to_match
  print(f"Replaced {close_matches} with '{string_to_match}'")
# Standardize MY University entries
replace_matches_in_column(df, 'University Currently Teaching', "my
university")
# Standardize Stanford University entries
replace_matches_in_column(df, 'University Currently Teaching', "stanford
university")
# View cleaned dataset
print(df)
```