CLASS 19, APRIL 5TH: LOCALIZING MODULES

Today we will naturally extend the notion of localization at a multiplicative set to its modules. This has several advantages, reducing aspects of our study to modules over local rings. Begin by recalling the result of Homework 3, #2:

Proposition 1. Spec
$$(W^{-1}R) \longleftrightarrow \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \cap W = \emptyset \}$$

We can immediately extend this to modules.

Proposition 19.1. Let Mod_R be the collection of R-modules for a ring R. Then

$$Mod_{W^{-1}R} = \{ M \in Mod_R \mid M \xrightarrow{\cdot w} M \text{ is bijective } \forall w \in W \}$$

Proof. If M is a $W^{-1}R$ -module, then it gets the structure of an R-module via the localization map $R \to W^{-1}R : r \mapsto (1, r)$. Also, clearly $\cdot w$ is bijective with inverse $\cdot (w, 1)$. This yields \subseteq .

For the reverse, we can give M a $W^{-1}R$ -module structure by multiplication $(w, r) \cdot m = r \cdot m'$, where m' is the unique element in the preimage of m under $\cdot w$.

If M is any R-module, then we can still produce a $W^{-1}R$ -module via localization. It is defined analogously to the procedure for rings:

Definition 19.2. The localization of M at W is the $W^{-1}R$ -module given as

$$W^{-1}M = W \times M/\sim$$

where $(w, m) \sim (w', m')$ if and only if there exists $s \in W$ such that s(wm' - w'm) = 0 in M. The multiplicative and additive structure are identical to the case of rings.

I leave it to you to check that this yields a well defined $W^{-1}R$ -module, though it is identical to the case of rings. As usual, in the special cases of $W = R \setminus \mathfrak{p}$ and $W = \{1, f, f^2, \ldots\}$, it is common to write $M_{\mathfrak{p}}$ and M_f . We can also localize homomorphisms:

Definition 19.3. If $f: M \to N$ is an R-module homomorphism, its **localization** is the $W^{-1}R$ -module map

$$W^{-1}f:W^{-1}M\to W^{-1}N:(w,m)\mapsto (w,f(m))$$

Again, it is natural to check that this is well defined, but simple to do so. This gives us a way to relate localization of modules and exact sequences in a natural way:

Proposition 19.4. If $M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$ is an exact sequence of R-modules, then $W^{-1}M' \xrightarrow{W^{-1}\alpha} W^{-1}M \xrightarrow{W^{-1}\beta} W^{-1}M''$ is an exact sequence of $W^{-1}R$ -modules.

Proof. For the $\ker(W^{-1}\beta) \supseteq \operatorname{im}(W^{-1}\alpha)$ direction, note

$$W^{-1}\beta(W^{-1}\alpha(w,m')) = (w,\beta(\alpha(m')) = (w,0) = 0$$

Now suppose $(w, m) \in \ker(W^{-1}\beta)$. This is to say there exists $s \in W$ such that $0 = s\beta(m) = \beta(sm)$ in M''. Thus $sm \in \ker(\beta) = \operatorname{im}(\alpha)$. Take $m' \in M'$ mapping to sm (by exactness of the original sequence). Then if we consider $(sw, m') \in W^{-1}M'$, we have

$$W^{-1}\alpha(sw, m') = (sw, \alpha(m')) = (sw, sm') = (w, m')$$

This demonstrates the \subseteq direction and proves the claim.

This result is often stated as **localization is an exact functor** and is central to many corollaries regarding localization.

Corollary 19.5. (a) $W^{-1}(M/N) \cong W^{-1}M/W^{-1}N$ as $W^{-1}R$ -modules. In particular, $W^{-1}(R/I) \cong W^{-1}R/W^{-1}I$ as rings!

- (b) If $M, M' \subseteq N$, then $W^{-1}(M \cap M') = W^{-1}M \cap W^{-1}M'$.
- (c) Given a module homomorphism $f: M \to N$, then $\ker(W^{-1}f) = W^{-1}\ker(f)$ and $\operatorname{coker}(W^{-1}f) = W^{-1}\operatorname{coker}(f)$. In particular, surjectivity and injectivity are preserved under localization.

Proof. Most of these results are acquired by applying Proposition 19.4 appropriately:

- (a) Localize the sequence $0 \to N \to M \to M/N \to 0$.
- (b) The exact sequence of interest is

$$0 \to M \cap M' \to M \to N/M'$$

which yields the localized sequence

$$0 \to W^{-1}(M \cap M') \to W^{-1}(M) \to W^{-1}(N/M') \cong W^{-1}N/W^{-1}M'$$

We can replace $W^{-1}(M \cap M')$ by $W^{-1}M \cap W^{-1}M'$ without changing exactness, so they are isomorphic and thus equal.

(c) Localize the sequences $0 \to \ker(\varphi) \to M \to N$ and $M \to N \to \operatorname{coker}(\varphi) \to 0$.

Finally, a neat result which shows that if a module is *locally* zero, then it in fact is zero. One might even say that being 0 is a **local property**.

Proposition 19.6. If $f: M \to N$ is a map of R-modules such that $f_{\mathfrak{m}}$ is the zero map for every maximal ideal \mathfrak{m} , then f was 0 to begin with. In particular, if $M_{\mathfrak{m}} = 0$ for every maximal ideal, then M = 0.

Proof. The first result follows from the second when combined with part (c) of Corollary 19.5. Suppose $m \neq 0$ in M. Then since $1 \cdot m = m \neq 0$, we have that $\operatorname{Ann}_R(m)$ is a proper ideal of R. Let \mathfrak{m} be a maximal ideal containing it. Then $(1, m) \neq 0$ in $M_{\mathfrak{m}}$, since there exists no $s \notin \operatorname{Ann}_R(m) \subseteq \mathfrak{m}$ such that sm = 0.

Corollary 19.7 (Non-local Nakayama II). If I is an ideal such that

$$I\subseteq Jac(R)=\bigcap_{\mathfrak{m}\ maximal}\mathfrak{m}$$

and M is a finitely generated module with M = IM, then M = 0.

Jac(R) is called the **Jacobson Radical** of R.

Proof. Since $I \subseteq \mathfrak{m}$ for each \mathfrak{m} , $I_{\mathfrak{m}}$ is a proper ideal of $R_{\mathfrak{m}}$ contained within $\mathfrak{m}R_{\mathfrak{m}}$. Then

$$M_{\mathfrak{m}} \supseteq \mathfrak{m} M_{\mathfrak{m}} \supseteq IM_{\mathfrak{m}} \supseteq M_{\mathfrak{m}}$$

Thus everything is equal. By NL2, we see $M_{\mathfrak{m}}=0$ for each maximal ideal \mathfrak{m} , so Proposition 19.6 yields the desired result.