

Universidade do Minho

Escola de Engenharia

Investigação Operacional

Trabalho 2

LEI - 2^{Ω} Ano - 2^{Ω} Semestre

Realizador por:

A98695 Lucas Oliveira A89292 Mike Pinto A96208 Rafael Gomes

 ${\rm Braga},$ 17 de fevereiro de 2025

Conteúdo

1	Introdução	2
	1.1 Análise do Problema	2
2	Formulação do Problema	4
	2.1 Equipas	
	2.3 Custos de deslocação	6
3	Modelação	6
4	Ficheiro de Input	7
5	Ficheiro de Output	9
6	Validação do Modelo	10
7	Conclusão	14

1 Introdução

Este relatório objetiva descrever a resolução do Trabalho n.º 2 da Unidade Curricular de Investigação Operacional.

O trabalho proposto pela equipa docente passa pela resolução de um problema que visa minimizar o custo total de uma operação, que inclui custos de deslocação e de utilização de veículos, em serviços a efetuar a clientes distribuídos geograficamente.

1.1 Análise do Problema

O problema proposto consiste na existência de várias equipas de trabalho, em que estas partem da mesma sede empresarial às 09h00, que se localiza em "Keleirós".

O tempo de serviço de cada cliente é calculado em $^1/_4$ de hora com base no período de trabalho em que cada um começa, sendo acrescentado desde o início do trabalho.

Uma equipa pode efetuar mais que um serviço a um cliente desde que a duração do serviço anterior, com o tempo de deslocação para o seguinte, não ultrapasse a hora estabelecida para esse cliente, resultando na seguinte restrição:

$$a_i + d_i + t_{ij} \le a_j$$

em que, a_i : Hora de início do cliente i a_j : Hora de início do cliente j d_i : Duração serviço do cliente i t_{ij} : Tempo de deslocação do cliente i até ao cliente j

Por fim temos ainda de considerar o custo de deslocação do cliente i até ao cliente j, representado por c_{ij} .

As tabelas em 1 representam os valores de t_{ij} e c_{ij} respetivamente.

Tabela 1: Tempos e custos de deslocação entre clientes, respetivamente

	В	С	D	\mathbf{E}	\mathbf{F}	G	Η	Ι	J	K		В	С	D	\mathbf{E}	F	G	Η	Ι	J	K
A	4	1	2	2	3	2	1	0	3	1	A	13	5	6	5	10	7	5	0	7	1
В		3	5	3	3	2	3	4	2	5	В		11	14	10	8	6	11	13	4	15
$^{\rm C}$			3	2	3	2	0	1	1	2	$^{\rm C}$			8	6	10	6	0	5	6	2
D				1	3	3	3	2	3	1	D				4	8	8	8	6	11	4
\mathbf{E}					2	1	2	2	2	2	\mathbf{E}					6	4	6	5	7	6
\mathbf{F}						2	3	3	3	4	F						5	10	10	8	11
G							2	2	2	3	G							10	7	5	9
Η								1	1	1	Н								5	6	9
I									3	2	I									7	9
J										4	J										10

 ${\bf E}$ através do grafo da figura 1, conseguimos visualizar todas as ligações possíveis entre clientes.

Figura 1: Representação das ligações entre clientes.

2 Formulação do Problema

2.1 Equipas

À semelhança do trabalho anterior selecionámos o maior número de inscrição que pertence ao aluno Lucas Oliveira, com o número mecanográfico A98695.

Considerando que (x, A, B, C, D, E) = (0, 9, 8, 6, 9, 5) e segundo as regras definidas no enunciado do trabalho para a determinação dos clientes e tempos de deslocação:

- $a_1 = B + 1 \Rightarrow 8 + 1 = 9;$
- $a_8 = C + 1 \Rightarrow 6 + 1 = 7$;
- Como o algarismo D é ímpar, não removemos nenhum cliente;
- Como o algarismo E é ímpar, não removemos nenhum cliente.

Tabela 2: Quadro final dos tempos de serviço para cada cliente

j	Cliente	a_j (1/4 hora)	a_j (hora do serviço)
1	Ana	9	11:15
2	Beatriz	7	10:45
3	Carlos	4	10:00
4	Diogo	2	09:30
5	Eduardo	10	11:30
6	Francisca	6	10:30
7	Gonçalo	9	11:15
8	Helena	7	10:45
9	Inês	2	09:30
_10	José	5	10:15

Após examinarmos a tabela gerada através dos dados calculados, decidimos estabelecer relação entre os tempos de deslocação e com os respetivos dados obtidos, em que, o resultado foi o seguinte:

Tabela 3: Tabela com a correspondência de origem/destino possíveis

				\mathbf{D}	\mathbf{e}	\mathbf{s}	\mathbf{t}	i	\mathbf{n}	O		
		A	В	С	D	E	F	G	Н	Ι	J	K
	A	-										X
	В		-									X
O	\mathbf{C}	X		-		X		X	X			X
\mathbf{r}	D	X			-	X	\mathbf{x}	X	X			X
i	\mathbf{E}					-						X
\mathbf{g}	\mathbf{F}					X	-	X				X
\mathbf{e}	G							-				X
\mathbf{m}	Η	X				X			-			X
	I	X	X	X		\mathbf{x}	\mathbf{X}	X	X	-		X
	J	X				X		X	X		-	X
	K	x	\mathbf{x}	X	X	-						

E deste modo, conseguimos interpretar graficamente todas as deslocações possíveis através do grafo da figura 2.

Figura 2: Representação gráfica da rede.

2.2 Tempos de deslocação

Relativamente ao tempo de deslocação, foi construída uma nova tabela proveniente da anterior, substituindo o carácter " \mathbf{x} " pelo seu respetivo tempo de deslocação.

Tabela 4: Tabela com o tempo de deslocação de origem/destino possíveis

				D	\mathbf{e}	\mathbf{s}	\mathbf{t}	i	\mathbf{n}	o		
		A	В	С	D	Е	F	G	Н	Ι	J	K
	A	-										1
	В		-									5
O	\mathbf{C}	1		-		2		2	0			2
\mathbf{r}	D	2			-	1	3	3	3			1
i	\mathbf{E}					-						2
\mathbf{g}	\mathbf{F}					2	-	2				4
\mathbf{e}	G							-				3
\mathbf{m}	Η	1				2			-			1
	I	0	4	1		2	3	2	1	_		2
	J	3				2		2	1		-	4
	K	1	5	2	1	2	4	3	1	2	4	-

2.3 Custos de deslocação

De seguida, através do método anterior, foi construída uma nova tabela, representando o custo de deslocação.

Tabela 5: Tabela com o custo de deslocação de origem/destino possíveis

				D	\mathbf{e}	\mathbf{s}	\mathbf{t}	i	n	O		
		A	В	\mathbf{C}	D	Ε	F	G	Н	Ι	J	K
	A	-										1
	В		-									15
O	\mathbf{C}	5		-		6		6	0			2
\mathbf{r}	D	6			-	4	8	8	8			4
i	\mathbf{E}					-						6
\mathbf{g}	\mathbf{F}					6	-	5				11
\mathbf{e}	G							-				9
m	Η	5				6			-			9
	Ι	0	13	5		5	10	7	5	-		9
	J	7				7		5	6		-	10
	K	2	16	3	5	7	12	10	10	10	11	-

3 Modelação

Para conseguirmos converter todas as restrições de modo que satisfaça e seja compatível com o modelo Relax4, consideramos que, em vez de ter 11 pontos de paragem, incluindo a sede, teríamos então 22 pontos no total, onde em cada um existe uma oferta e uma procura, sem exceções, já no ponto ${\bf K}$ temos procura e oferta de 10 unidades.

Sendo assim, temos um total de 22 vértices no modelo. Relativamente aos arcos disponíveis, através da representação exibida na tabela 3 podemos observar um total de 45 arcos disponíveis.

Dos vértices 1 a 10 referem-se aos clientes de $\bf A$ a $\bf J$, representando a sua procura, relativamente aos vértices 11 a 20 simbolizam novamente os clientes de $\bf A$ a $\bf J$, com a exceção destes representarem a sua oferta. Por último, os vértices 21 e 22 representam a sede da empresa.

4 Ficheiro de Input

```
22
45
1 22 1 1000
2 22 15 1000
3 11 5 1000
3 15 6 1000
3 17 6 1000
3 18 0 1000
3 22 2 1000
4 11 6 1000
4 15 4 1000
4 16 8 1000
4 17 8 1000
4 18 8 1000
4 22 4 1000
5 22 6 1000
6 15 6 1000
6 17 5 1000
6 22 11 1000
7 22 9 1000
8 11 5 1000
8 15 6 1000
8 22 9 1000
9 11 0 1000
9 12 13 1000
9 13 5 1000
9 15 5 1000
9 16 10 1000
9 17 7 1000
9 18 5 1000
9 22 9 1000
10 11 7 1000
10 15 7 1000
10 17 5 1000
10 18 6 1000
10 22 10 1000
21 11 2 1000
21 12 16 1000
21 13 3 1000
21 14 5 1000
21 15 7 1000
21 16 12 1000
21 17 10 1000
21 18 10 1000
21 19 10 1000
21 20 11 1000
21 22 0 1000
```

1

5 Ficheiro de Output

```
s 97.
f 1 22 1
f 2 22 1
f 3 11 0
f 3 15 0
f 3 17 0
f 3 18 1
f 3 22 0
f 4 11 0
f 4 15 0
f 4 16 1
f 4 17 0
f 4 18 0
f 4 22 0
f 5 22 1
f 6 15 1
f 6 17 0
f 6 22 0
f 7 22 1
f 8 11 1
f 8 15 0
f 8 22 0
f 9 11 0
f 9 12 1
f 9 13 0
f 9 15 0
f 9 16 0
f 9 17 0
f 9 18 0
f 9 22 0
f 10 11 0
f 10 15 0
f 10 17 1
f 10 18 0
f 10 22 0
f 21 11 0
f 21 12 0
f 21 13 1
f 21 14 1
f 21 15 0
f 21 16 0
f 21 17 0
f 21 18 0
f 21 19 1
f 21 20 1
f 21 22 6
```

6 Validação do Modelo

Após recolhida e analisada toda a informação fornecida pelo *output*, podemos afirmar que os arcos a serem utilizados são os que têm o valor 1 associado, representados na tabela 6.

Tabela 6: Correspondência entre o output do Relax4 e os arcos utilizados

Origem	Destino	\mathbf{Origem}	Destino
1	22	A	K
2	22	В	K
3	18	$^{\mathrm{C}}$	H
4	16	D	F
5	22	\mathbf{E}	K
6	15	\mathbf{F}	E
7	22	\mathbf{G}	K
8	11	${ m H}$	A
9	12	I	В
10	17	J	G
21	13	K	$^{\rm C}$
21	14	K	D
21	19	K	I
21	20	K	J

Realizando a correspondência do valor do output com os arcos utilizados, é possível verificar a existência de 4 rotas(origens das rotas no vértice K, $Keleir\acute{os}$), como podemos observar na tabela 6.

Organizamos os vértices, tomando o vértice \mathbf{K} como vértice de origem e seguindo o seu destino até regressar novamente ao vértice de origem, obtemos as rotas demonstradas nas tabelas 7, 8, 9 e 10.

Tabela 7: Tabela correspondente à rota 1

:	Cliente	a_{j}	a_{j}	$a_j + d_j$	Tempo de	Custo de
J	Cheme	(1/4 hora)	(Hora início do serviço)	(Hora fim do serviço)	deslocação	deslocação
	K	0		09:00	[KC] ² / ₄ Hora	3
3	$^{\mathrm{C}}$	4	10:00	10:15	[CH] 0 Hora	0
8	${ m H}$	7	10:45	11:00	$[\mathrm{HA}]$ $^{1}/_{4}$ Hora	5
1	A	9	11:15	11:30	$[AK]$ $^{1}/_{4}$ Hora	1
	K	11	11:45			1
TOTAL						10

Figura 3: Grafo da rota 1.

Como podemos observar na tabela 7 e na figura 3, a rota inicia no vértice ${\bf K}$ e deslocámo-nos para o vértice ${\bf C}$ com um tempo de deslocação de $^2/4$ hora e com um custo de deslocação 3, a seguir do vértice ${\bf C}$ deslocámo-nos para o vértice ${\bf H}$ sem tempo e custo associado, a seguir do vértice ${\bf H}$ deslocámo-nos para o vértice ${\bf A}$, com um tempo de deslocação de $^1/4$ Hora e com um custo de deslocação 5, por fim do vértice ${\bf A}$ deslocámo-nos de volta para o vértice ${\bf K}$, com um tempo de deslocação de $^1/4$ Hora e com um custo de deslocação 1, sendo que no final existe sempre um custo fixo de valor 1 como referenciado no enunciado.

Por fim, conseguimos observar o custo da operação total da equipa. Repetimos o mesmo processo para as tabelas 8, 9 e 10.

Tabela 8: Tabela correspondente à rota $2\,$

:	Cliente	a_{j}	a_{j}	$a_j + d_j$	Tempo de	Custo de
J	Cheme	(1/4 Hora)	(Hora início do serviço)	(Hora fim do serviço)	deslocação	deslocação
•	K	0		09:00	[KD] ¹ / ₄ Hora	5
4	D	2	09:30	09:45	$[\mathrm{DF}]$ $^3/_4$ Hora	8
6	\mathbf{F}	6	10:30	10:45	[FE] ² / ₄ Hora	6
5	$\mathbf E$	10	11:30	11:45	[EK] ² / ₄ Hora	6
	K	13	12:15			1
TOTAL						26

Figura 4: Grafo da rota 2.

Tabela 9: Tabela correspondente à rota $3\,$

•	Cliente	a_{j}	a_{j}	$a_j + d_j$	Tempo de	Custo de
J	Cliente	(1/4 Hora)	(Hora início do serviço)	(Hora fim do serviço)	deslocação	deslocação
	K	0		09:00	[KI] ² / ₄ Hora	10
9	I	2	09:30	09:45	$[IB]$ $^4/_4$ Hora	13
2	В	7	10:45	11:00	[BK] ⁵ / ₄ Hora	15
	K	13	12:15			1
TOTAI						30

Figura 5: Grafo da rota 3.

Tabela 10: Tabela correspondente à rota $4\,$

•	Cliente	a_{j}	a_{j}	$a_j + d_j$	Tempo de	Custo de
J	Cheme	(1/4 Hora)	(Hora início do serviço)	(Hora fim do serviço)	deslocação	deslocação
	K	0		09:00	[KJ] 4/4 Hora	11
10	J	5	10:15	10:30	[JG] ² / ₄ Hora	5
7	\mathbf{G}	9	11:15	11:30	$[GK]$ $^{3}/_{4}$ Hora	9
	K	13	12:15			1
TOTAL						26

Figura 6: Grafo da rota 4.

Notando que para a última linha do output obtivemos f 21 21 6, isto vem de ter estabelecido oferta e procura de valor 10 no vértice de origem e destino que

representa a sede (vértice \mathbf{K}), e ao somar as rotas obtidas (4) com a quantidade obtida nesta última linha (6), obtemos no final o valor 10 de oferta e procura inicialmente definida. Com a soma do custo total das tabelas 7, 8, 9 e 10 obtemos o valor de 101, retirando os custos fixos das equipas ao deslocaremse para $Keleir\acute{o}s$, obtemos então o valor de 97 correspondente à solução ótima obtida.

Figura 7: Grafo da rota final.

Através das figuras 3, 4, 5 e 6 obtivemos o grafo da figura 7 representando as rotas tomadas por todas as equipas, onde conseguimos verificar visualmente o cumprimento de todas as restrições.

7 Conclusão

Na realização deste trabalho prático foi possível aplicar os conceitos básicos adquiridos ao longo das aulas lecionadas, e utilizar mais um solver (Relax4). Desta forma, adquiriram-se mais competências técnicas para resolver uma possível situação real.

Acreditamos ter sido o mais críticos possível relativamente a este trabalho, superando todas as dificuldades encontradas. Além disso, foi possível realizar com sucesso todos os objetivos pretendidos, nomeadamente, minimizar os custos de utilização de veículos e utilização dos mesmos, através da metodologia Simplex. Assim, foi possível obter quatro rotas de equipas para clientes, nas quais os custos são mínimos.