0.1 Вопрос 1.

Числовой ряд $\sum\limits_{k=1}^{\infty}a_k$ называется **сходящимся**, если существует конечный предел последовательности частичных сумм $S=\lim\limits_{n\to\infty}S_n$. Если предел последовательности частичных сумм числового ряда не существует или бесконечен, то ряд $\sum\limits_{k=1}^{\infty}a_k$ называется **расходящимся**.

Суммой сходящегося числового ряда $\sum_{k=1}^{\infty} a_k$ называется предел последовательности его частичных сумм, то есть, $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n = S$.

Арифметические свойства.

Пусть даны числовые последовательности $\sum\limits_{k=1}^{\infty}x_k\to a$ и $\sum\limits_{k=1}^{\infty}y_k\to b$, тогда верны следующие свойства:

1.
$$\lim_{n \to \infty} (c_1 \cdot x_n \pm c_2 \cdot y_n) = c_1 \cdot \lim_{n \to \infty} x_n \pm c_2 \cdot \lim_{n \to \infty} y_n = c_1 \cdot a \pm c_2 \cdot b$$

2.
$$\lim_{n \to \infty} ((c_1 \cdot x_n) \cdot (c_2 \cdot y_n)) = c_1 \cdot \lim_{n \to \infty} x_n \cdot c_2 \cdot \lim_{n \to \infty} y_n = c_1 \cdot a \cdot c_2 \cdot b$$

3.
$$\lim_{n \to \infty} \frac{c_1 \cdot x_n}{c_2 \cdot y_n} = \frac{c_1 \cdot \lim_{n \to \infty} x_n}{c_2 \cdot \lim_{n \to \infty} y_n} = \frac{c_1 \cdot a}{c_2 \cdot b}, b \neq 0, y_n \neq 0, c_2 \neq 0$$

Свойства остатков

Если ряд $\sum_{k=1}^{\infty} a_k$ сходится, то сходится и любой его остаток. Если сходится какой-нибудь остаток ряда, то сходится и сам ряд.

Свойства группировки

Если ряд $A=\sum\limits_{k=1}^{\infty}a_k$ сходится, то ряд $B=\sum\limits_{j=1}^{\infty}b_j$ полученный путем группировки членов ряда A без изменения порядка их расположения, также сходится и его сумма равна сумме ряда A.

Залача

Найдите n-ю частичную сумму и сумму ряда $\sum_{n=1}^{\infty} \ln{(1-n^{-2})}$.

Решение:

С помощью необходимого признака сходимости, проверим, не расходится ли ряд:

$$\lim_{n \to \infty} \ln(1 - n^{-2}) = \ln \lim_{n \to \infty} (1 - n^{-2}) = \ln 1 = 0$$

Рассмотрим, что сокращается при суммировании a_{n-1} , a_n и a_{n+1} :

$$a_{n-1} + a_n + a_{n+1} = \ln\left(1 - (n-1)^{-2}\right) + \ln\left(1 - n^{-2}\right) + \ln\left(1 - (n+1)^{-2}\right) =$$

$$= \ln\frac{(n-1)^2 - 1}{(n-1)^2} + \ln\frac{n^2 - 1}{n^2} + \ln\frac{(n+1)^2 - 1}{(n+1)^2} = \ln\frac{(n-1) - 1}{n-1} \cdot \frac{(n-1) + 1}{n-1} +$$

$$+ \ln\frac{n-1}{n} \cdot \frac{n+1}{n} + \ln\frac{(n+1) - 1}{n+1} \cdot \frac{(n+1) + 1}{n+1} = (\ln(n) - \ln(n-1) + \ln(n-2) - \ln(n-1)) +$$

$$+ (\ln(n+1) - \ln(n) + \ln(n-1) - \ln(n)) + (\ln(n+2) - \ln(n+1) + \ln(n) - \ln(n+1)) =$$

$$= \ln(n-2) - \ln(n-1) + \ln(n) - \ln(n+1)$$

Тогда

$$S_n = \sum_{k=2}^{n} \ln(1 - n^{-2}) = \ln(2 - 1) - \ln 2 + \ln(n + 1) - \ln(n) = \ln\frac{n + 1}{2n}$$

Откуда следует, что

$$\lim_{n \to \infty} \sum_{k=2}^{n} \ln(1 - n^{-2}) = \lim_{n \to \infty} \ln \frac{n+1}{2n} = \ln(\frac{1}{2}) = -\ln 2$$

0.2 Вопрос 3.

Критерий Коши.

Ряд $\sum_{n=1}^{\infty} z_n$ сходится тогда и только тогда, когда для него выполняется условие Коши: для каждого $\varepsilon>0$ существует номер N_{ε} такой, что для любого $n\geq N_{\varepsilon}$ и для любого $p\in N$ справедливо равенство:

$$|z_{n+1} + Z_{n+2} + \dots + Z_{n+p}| < \varepsilon$$

Или другими словами:

$$\forall \varepsilon > 0 \exists N_{\varepsilon} \forall n \geq N_{\varepsilon} \forall p \in N : |z_{n+1} + Z_{n+2} + \dots + Z_{n+p}| < \varepsilon$$

Доказательство расходимости гармонического ряда.

Применим доказательство от противного , предположим, что гармонический ряд сводится к сумме S:

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = S$$

Гармонический ряд можно представить в виде суммы 2х рядов:

$$S = \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots\right) + \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots\right)$$

$$S = \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots\right) + \frac{1}{2} \cdot \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots\right)$$

$$S = \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots\right) + \frac{1}{2}S$$

$$\frac{1}{2}S = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$

$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots \neq 0$$

Отсюда получаем, что наше предположение не верно, а значит гармонический ряд расходится.

Вопрос 5. 0.3

Доказательства сами придумайте, я их в уши еб.

 $\sum_{k=1}^{\infty} a_n$ неотрицательна, тогда $\lim_{n\to\infty} \sqrt[n]{a_n} = \lambda$. При $\lambda>1$ ряд расходится, при $\lambda<1$ ряд сходится.

Интрегральный признак сходимости

Пусть f(x) монотона на $[1,\infty]$. $\sum_{n=1}^{\infty}f(x)$ сходится \Leftrightarrow сходится $\int\limits_{1}^{\infty}f(x)dx$.

<u>Признак Даламбера</u> Пусть $\sum\limits_{k=1}^{\infty}a_n$ неотрицательна, $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}=\lambda$. При $\lambda>1$ ряд расходится, при $\lambda<1$ ряд сходится.

Исследуйте на сходимость ряд $\sum_{n=1}^{\infty} \frac{(2n)!!}{n!} \arcsin(3^{-n})$

Так как 3^{-n} , при $n \to \infty$ стремится к 0, то $\arcsin x \sim x$. Еще можно заметить, что $\frac{(2n)!!}{n!} = 2^n$. Воспользуемся признаком сходимости Коши:

$$\lim_{n \to \infty} \sqrt[n]{\frac{(2n)!!}{n!} \arcsin{(3^{-n})}} = \lim_{n \to \infty} \sqrt[n]{2^n \cdot 3^{-n}} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2}{3}\right)^n} = \frac{2}{3} < 1$$

Откуда понятно, что ряд сходится.

0.4 Вопрос 6.

Ряд называется **знакочередующимся**, если его члены попеременно принимают значения противоположных знаков, т. е.:

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (-1)^n a_n, a_n > 0$$

Признак Лейбница

Если для знакочередующегося ряда $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (-1)^n a_n, a_n > 0$ выполняются следующие условия:

- 1. $a_{n+1} < a_n$ (монотонное убывание $\{a_n\}$)
- $2. \lim_{n \to \infty} a_n = 0$

Тогда этот ряд сходится.

Задача

Исследуйте на сходимость ряд $\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \frac{\pi}{\sqrt{n}}\right)$.

Решение

Воспользуемся признаком Лейбница:

1.
$$1 - \cos \frac{\pi}{\sqrt{n+1}} < 1 - \cos \frac{\pi}{\sqrt{n}}$$
, t.k $\cos \frac{\pi}{\sqrt{n+1}} > \cos \frac{\pi}{\sqrt{n}}$

2.
$$\lim_{n \to \infty} \left(1 - \cos \frac{\pi}{\sqrt{n}} \right) = 1 - 1 = 0$$

Откуда следует, что ряд сходится.

0.5 Вопрос 7.

Ряд $\sum\limits_{n=1}^{\infty}a_n$ является абсолютно сходящимся, если сходится ряд из его модулей: $\sum\limits_{n\to\infty}^{\infty}|a_n|.$

<u>Свойство 1</u>: Абсолютно сходяйщися ряд сходится, т.е из сходимости ряда $\sum_{n\to\infty}^{\infty} |a_n|$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$, причем $|S| \le \sigma$, где $S = \sum_{n=1}^{\infty} a_n$, а $\sigma = \sum_{n\to\infty}^{\infty} |a_n|$.

Свойство 2: Если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ абсолютно сходятся, то при любях α и β ряд $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n)$ также абсолютно сходится.

<u>Свойство 3</u>: Если ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, то ряд, составленый из тех же членов, но взятых в другом порядке, также абсолютно сходится, и его сумма равна сумме исходного ряда.

<u>Свойство 4</u>: Если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ абсолютно сходятся, то ряд, составленный из всевозможных попарных произведений $a_i \cdot b_i$ членов этих рядов, расположенных в любом порядке, также абсолютно сходится, а его сумма равна $S\sigma$, где $S = \sum_{n=1}^{\infty} a_n$, $\sigma = \sum_{n=1}^{\infty} b_n$.

Задача

Исследуйте на абсолютную и условную сходимости ряд $\sum_{n=2}^{\infty} \frac{\ln^2 (\ln n)}{n \ln n} \cos \pi n$.

Решение

Заметим, что $\sum_{n=3}^{\infty} \frac{\ln^2(\ln n)}{n \ln n} \cos \pi n = \sum_{n=3}^{\infty} \frac{\ln^2(\ln n)}{n \ln n} \cdot (-1)^n$. Предположим, что ряд абсолютно сходится. Тогда рассмотрим сходимость ряда:

$$\sum_{n=3}^{\infty} \left| \frac{\ln^2 (\ln n)}{n \ln n} \cdot (-1)^n \right| = \sum_{n=3}^{\infty} \frac{\ln^2 (\ln n)}{n \ln n}$$

Воспользуемся интегральным признаком $(t = \ln n, k = \ln t)$:

$$\int_{3}^{\infty} \frac{\ln^2(\ln n)}{n \ln n} dn = \int_{\ln 3}^{\infty} \frac{\ln^2 t}{t} dt = \int_{\ln \ln 3}^{\infty} k^2 dk$$

Откуда видно, что ряд расходится. Т.к первоначальный ряд получился знакочередующийся, то проверим признак Лейбница:

1.
$$\frac{\ln^2(\ln(n+1))}{(n+1)\ln(n+1)} < \frac{\ln^2(\ln n)}{n\ln n}$$

$$2. \lim_{n \to \infty} \frac{\ln^2 (\ln n)}{n \ln n} = 0$$

Признак выполняется, значит ряд $\sum_{n=3}^{\infty} \frac{\ln^2 (\ln n)}{n \ln n} \cos \pi n$ сходится. Теперь ясно, что ряд имеет условную сходимость.

0.6 Вопрос 8.

Признак Дирихле:

 $\overline{\operatorname{Pad} \sum_{n=1}^{\infty} a_n b_n}$ сходится, если последовательность частичных сумм ряда $\sum_{n=1}^{\infty} b_n$ ограничена, т. е.

$$\exists M > 0 | \forall n \in \mathbb{N} \quad \left| \sum_{i=1}^{n} b_i \right| \le M,$$
 (1)

а последовательность $\{a_n\}$ монотонно стремится к нулю, т. е.

$$\exists n_0 \in \mathbb{N} \mid \forall n > n_0 \quad a_n \geq a_{n+1} \quad \text{или} \quad a_{n+1} \geq a_n$$

и $\lim_{n\to\infty} a_n = 0$.

Признак Абеля:

Ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится, если сходится ряд $\sum_{n=1}^{\infty} b_n$, а последовательность $\{a_n\}$ монотонна и ограничена.

Условно сходящийся ряд:

Ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся, если ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} |a_n|$ расходится.

Теорема Римана:

Если ряд $\sum_{n=1}^{\infty} a_n$ условно сходится, то $\forall S \in \mathbb{R} \cup \{\pm \infty\}$ существует такая перестановка членов этого ряда, после которой он будет сходиться к этому числу S.

Задачаз

Исследуйте на сходимость ряд $\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1) \cdot \sin n$.

Решение:

Покажем, что последовательность частичных сумм ряда $\sum_{n=1}^{\infty} \sin n$ ограничена сверху. Из формулы разности косинусов:

$$\cos(k - \frac{1}{2}) - \cos(k + \frac{1}{2}) = -2\sin k \cdot \sin(-\frac{1}{2}) = 2\sin k \cdot \sin\frac{1}{2}.$$

Просуммируем левую и правую части от 1 до n.

$$2\sin\frac{1}{2}\cdot\sum_{k=1}^{n}\sin k = \cos\frac{1}{2}-\cos\frac{3}{2}+\cos\frac{3}{2}-\ldots+\cos(n-\frac{1}{2})-\cos(n+\frac{1}{2}) = \cos\frac{1}{2}-\cos(n+\frac{1}{2}).$$

Отсюда

$$\sum_{k=1}^{n} \sin k = \frac{\cos \frac{1}{2} - \cos(n + \frac{1}{2})}{2 \sin \frac{1}{2}} \le \frac{1 + \cos \frac{1}{2}}{2 \sin \frac{1}{2}}.$$

Теперь покажем, что последовательность $\{\sqrt[n]{n}-1\}$ монотонно стремится к нулю.

$$\sqrt[n]{n} - 1 > \sqrt[n+1]{n+1} - 1 \iff n^{n+1} > (n+1)^n \iff n > \left(1 + \frac{1}{n}\right)^n$$

при n>e. Значит, последовательность монотонно убывает, начиная с n=3. С другой стороны,

$$\lim_{n \to \infty} (\sqrt[n]{n} - 1) = e^{\lim_{n \to \infty} \frac{\ln n}{n}} - 1 = e^{\lim_{n \to \infty} \frac{1}{n}} - 1 = 1 - 1 = 0.$$

Таким образом, последовательность стремится к нулю.

Итак, последовательность частичных сумм ряда $\sum_{n=1}^{\infty} \sin n$ ограничена сверху, а последовательность $\{\sqrt[n]{n}-1\}$ монотонно стремится к нулю. Значит, по признаку Дирихле, ряд $\sum_{n=1}^{\infty} (\sqrt[n]{n}-1) \cdot \sin n$ сходится.

0.7 Вопрос 20

Измеримое по Жордану множество в \mathbb{R}^n

Множество $\Pi = \{(x_1, x_2, ..., x_n) : a_i \leq x_i < b_i, i = 1, ..., n\}$ будем называть клеткой в R^n . Пустое множество тоже считается клеткой. Множество $A \in R^n$ клеточное, если оно является объединением конечного числа попарно непересекающихся клеток. Мерой $m(\Pi)$ клетки называется число

$$m(\Pi) = (b_1 - a_1) \times \dots \times (b_n - a_n)$$

Если непересекающиеся клетки $\Pi_1,...,\Pi_n$ образуют разбиение клеточного множества A, то мерой клеточного множества A назовем число

$$m(A) = \sum_{i=1}^{n} m(\Pi_i)$$

Множество $\Omega \subset \mathbb{R}^n$ называется измеримым по Жордану, если для любого $\varepsilon > 0$ найдутся два клеточных множества A и B такие, что $A \subset \Omega \subset B$ и $m(B) - m(A) < \varepsilon$. (По сути, измерить множество по Жордану - значит попробовать воссоздать его с помощью прямоугольников)

Задача

Найдите два клеточных множества A и B таких, чтобы $A \subset \Omega \subset B, m(B) - m(A) \le 1.5$, если $\Omega = \{(x,y): 0 \le y \le x, 0 \le x \le 3\}$.

Решение

Чтобы понять решение, необходимо нарисовать все 3 множества на плоскости XOY.

Пусть множество A - объединение клеток:

$$\begin{split} &\{(x,y): 0.5 \leq x \leq 1, 0 \leq y \leq 0.5\}, \\ &\{(x,y): 1 \leq x \leq 3, 0 \leq y \leq 1\}, \\ &\{(x,y): 1.5 \leq x \leq 2, 1 \leq y \leq 1.5\}, \\ &\{(x,y): 2.5 \leq x \leq 3, 2 \leq y \leq 2.5\}, \\ &\{(x,y): 2 \leq x \leq 3, 1 \leq y \leq 2\}. \end{split}$$

$$m(A) = 3\frac{3}{4}$$

Пусть множество B - объединение клеток: $\{(x,y): 0 \le x \le 1, 0 \le y \le 0.5\}$,

$$\begin{cases} (x,y): 0.5 \leq x \leq 1, 0.5 \leq y \leq 1 \}, \\ \{(x,y): 1 \leq x \leq 3, 0 \leq y \leq 1 \}, \\ \{(x,y): 1 \leq x \leq 2, 1 \leq y \leq 1.5 \}, \\ \{(x,y): 1.5 \leq x \leq 2, 1.5 \leq y \leq 2 \}, \\ \{(x,y): 2 \leq x \leq 3, 2 \leq y \leq 2.5 \}, \\ \{(x,y): 2 \leq x \leq 3, 1 \leq y \leq 2 \}, \\ \{(x,y): 2.5 \leq x \leq 3, 2.5 \leq y \leq 3 \}. \end{cases}$$

$$m(B) = 5\frac{1}{4}$$

$$m(B) - m(A) = 1.5$$

0.8 Вопрос 39

Векторное поле \overline{F} - потенциальное, если $\overline{F}=grad(u)$ Функция и называется потенциалом векторного поля \overline{F} . Поле $\overline{F}=(P,Q,R)$ потенциально в односвязной области тогда и только тогда, когда $rot(\overline{F})=\overline{0}$ или $\frac{dR}{dy}=\frac{dQ}{dz}$, $\frac{dP}{dz}=\frac{dR}{dx}$, $\frac{dQ}{dx}=\frac{dP}{dy}$ Потенциал в этом случае можно найти, например, по формуле

$$u(x,y,z) = \int_{x_0}^{x} P(x,y,z)dx + \int_{y_0}^{y} Q(x_0,y,z)dy + \int_{z_0}^{z} R(x_0,y_0,z_0)dz + C$$
$$rot(\overline{F}) = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{d}{dx} & \frac{d}{dy} & \frac{d}{dz} \\ \frac{du}{dx} & \frac{du}{dy} & \frac{du}{dz} \end{bmatrix} = 0$$

Если поле потенциально

Решение

Показать, что F = $(3x^2y+xy^2)i+(x^3+x^2y)j$ = потенциально и найти его потенциал P = $(3x^2y+xy^2)$ Q = (x^3+x^2y) R = 0

Покажем, что поле потенциально:

$$\frac{dR}{dy} = \frac{dQ}{dz} : 0 = 0;$$
 $\frac{dP}{dz} = \frac{dR}{dx} : 0 = 0;$ $\frac{dQ}{dx} = \frac{dP}{dy} : 3x^2 + 2xy = 3x^2 + 2xy$

Найдем его потенциал:

$$u(x,y,z) = \int_{x_0}^{x} P(x,y,z)dx + \int_{y_0}^{y} Q(x_0,y,z)dy + \int_{z_0}^{z} R(x_0,y_0,z_0)dz + C$$

Функции непрерывны во всех точках, поэтому возьмем точку (0, 0, 0)

$$\int_0^x (3x^2y + xy^2) dx + \int_0^y (x^3 + x^2y) dy + \int_0^z 0 dz + C = x^3y + \frac{x^2y^2}{2} + x^3y + \frac{x^2y^2}{2} + C = 2x^3y + x^2y^2 + C$$

0.9 Вопрос 40

Пусть Ω - ограниченная область в R^2 , а функции $\Phi(u,v), \Psi(u,v), \Xi(u,v)$ непрерывно дифференцируемы на замкнутом множестве $\bar{\Omega}=\Omega\cup\partial\Omega$, где $\partial\Omega$ - граница области Ω . Тогда отображение $F=\bar{\Omega}\to R^3$, определяемое формулами

$$x = \Phi(u, v), \quad y = \Psi(u, v), \quad z = \Xi(u, v), \quad (u, v) \in \bar{\Omega}$$

Является непрерывно дифференцируемым. Если при этом в каждой точке $(u,\,v)$ ранг функциональной матрицы

$$\begin{vmatrix} \Phi_u(u,v) & \Psi_u(u,v) & \Xi_u(u,v) \\ \Phi_v(u,v) & \Psi_v(u,v) & \Xi_v(u,v) \end{vmatrix}$$

равен двум, то отображение называется гладким.

Если $\bar{\Omega}$ есть замкнутое ограниченное множество в R^2 , а $F=\bar{\Omega}\to R^3$ есть такое гладкое отображение, что соответствие между множествами $\bar{\Omega}$ и $\Sigma=F(\bar{\Omega})$ является взаимнооднозначным, то Σ - простая поверхность в R^3 , а уравнения $\Phi(u,v), \Psi(u,v), \Xi(u,v)$ - параметрические уравнения простой поверхности Σ .

Пусть Ω - плоская область и $F: \bar{\Omega} \to R^3$ - непрерывно дифференцируемое отображение. Будем множество $\Sigma = F(\bar{\Omega})$ считать почти простой поверхностью в R^3 , если найдется расширяющая последовательность $\{\Omega_n\}$ таких, что $\bar{\Omega_n} \subset \Omega_{n+1}, \Omega = \bigcup_{n=1}^\infty \Omega_n$ и поверхности $\Sigma_n = F(\bar{\Omega_n})$ простые.

Запишите поверхность $x^2 + y^2 = z^2 - 1$ в параметрическом виде. Двухполостной гиперболоид. Каноническое уравнение:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} - \frac{(z-z_0)^2}{c^2} = -1$$

Параметрические уравнения:

$$\begin{cases} x = 0 + 1 * \text{ch(u)}, \\ y = 0 + 1 * \text{sh(u)}, \\ z = 0 + 1 * \text{v}, \quad \text{u, v} \in (-\infty; \infty) \end{cases}$$

Является простой поверхностью (взаимно-однозначное отображение плоскости)

0.10 Вопрос 50

Пусть $\overline{F} = P\overline{i} + Q\overline{j} + R\overline{k}$. Тогда его дивергенция

$$div\overline{F} = (\overline{\nabla}, \overline{F}) = div\overline{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

$$r = x\overline{i} + y\overline{j} + z\overline{k} \Longrightarrow P = x, Q = y, R = x.$$

$$|r|^3 = (\sqrt{x^2 + y^2 + z^2})^3 = (x^2 + y^2 + z^2)^{3/2}.$$

$$\overline{F} = \frac{r}{|r^3|} \Longrightarrow P = \left(\frac{x}{(x^2 + y^2 + z^2)^{3/2}}\right)_x' = \frac{(x^2 + y^2 + z^2)^{3/2} - x \cdot \frac{3}{2} \cdot (x^2 + y^2 + z^2)^{1/2} \cdot 2x}{(x^2 + y^2 + z^2)^3} = \frac{x^2 + y^2 + z^2 - 3x^2}{(x^2 + y^2 + z^2)^{5/2}} = \frac{-2x^2 + y^2 + z^2}{(x^2 + y^2 + z^2)^{5/2}}.$$

Аналогично,

$$Q_y' = \frac{-2y^2 + x^2 + z^2}{(x^2 + y^2 + z^2)^{5/2}}, R_z' = \frac{-2z^2 + y^2 + x^2}{(x^2 + y^2 + z^2)^{5/2}}.$$

Значит,

$$div\overline{F} = \frac{-2\cdot \left(x^2+y^2+z^2\right) + 2\cdot \left(x^2+y^2+z^2\right)}{(x^2+y^2+z^2)^{5/2}} = 0.$$