THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial Week 6

STAT3023: Statistical Inference

Semester 2, 2022

- 1. Let X_1, \ldots, X_n be a random sample from a Poisson(λ) distribution. Let $T = \sum_{i=1}^{n} X_i$. Show that T is a sufficient statistic for λ by:
 - (a) Showing the conditional distribution of X_1, \ldots, X_n given T = t is independent of λ .
 - (b) Using the Neyman factorization theorem.
- 2. (Problem 10.43 & 10.44 of Freund's) Let $X_1 \sim \text{Bin}(n_1, \theta)$ and $X_2 \sim \text{Bin}(n_2, \theta)$. Show that $T_1 = \frac{X_1 + X_2}{n_1 + n_2}$ is a sufficient statistic for θ . Is $T_2 = \frac{X_1 + X_2}{n_1 + 2n_2}$ sufficient for θ ?
- 3. (Problem 10.41 of Freund's) To show that an estimator can be consistent without being unbiased nor asymptotically unbiased, consider the following estimation procedure. Let X_1, \ldots, X_n be a random sample from a population with mean μ and finite variance σ^2 . Consider the following estimation procedure: First, we randomly draw one slip of n papers numbered from 1 to n. If we get $2, 3, \ldots, n$, we use $\bar{X} = n^{-1} \sum_{i=1}^{n}$ as our estimate for μ ; otherwise, we use n^2 as the estimate for μ . Show that this estimation procedure is
 - (a) consistent.
 - (b) neither unbiased nor asymptotically unbiased.
- 4. (a) The exponential distribution with mean $\theta > 0$ has pdf

$$f_{\theta}(x) = \frac{1}{\theta} e^{-x/\theta}, \ x > 0.$$

This distribution has mean θ and variance θ^2 . Show that the sample mean $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ is a minimum-variance unbiased estimator of θ . Verify that \bar{X} achieves the CRLB for estimating θ .

(b) The Pareto distribution with mean $\theta > 1$ has pdf and PDF

$$f_{\theta}(x) = \left(\frac{\theta}{\theta - 1}\right) x^{-\left(\frac{2\theta - 1}{\theta - 1}\right)}, \ x > 1.$$

Suppose X_1, \ldots, X_n are iid with common PDF $f_{\theta}(\cdot)$.

- (i) The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is an unbiased estimator of θ . Derive a formula for its variance as a function of θ .
- (ii) Write down the log-likelihood $\ell_{\theta}(\theta; \mathbf{X})$ based on $\mathbf{X} = (X_1, \dots, X_n)$.
- (iii) Write down the score function $\frac{\partial}{\partial \theta} \ell(\theta; \mathbf{X})$. Can it be written in the form

$$C_{\theta}\left[\hat{\theta}(\mathbf{X}) - \theta\right]$$
?

- (iv) Show that $\log(X_1)$ has an exponential distribution with a rate depending on θ . Hence determine the CRLB for estimating θ
- (v) Identify a change of parameters from θ to $\eta = \eta(\theta)$ such that a MVU estimator $\hat{\eta}(\mathbf{X})$ exists for η . Determine the form of this $\hat{\eta}(\mathbf{X})$.
- **5.** Consider a random sample $X_1, \ldots, X_n \sim N(\theta, 1)$. Let $\bar{X} = n^{-1} \sum_{i=1}^n X_i$.
 - (a) Show that $T_n = \bar{X}^2 1/n$ is the MVU estimator for θ^2 .
 - (b) Determine the CRLB for estimating θ^2 and show that this lower bound is not achieved by T_n . (hint: for a normal distribution $X \sim N(\mu, \sigma^2)$, then $E(X^4) = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$).