Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Рязанский государственный радиотехнический университет имени В.Ф.

Уткина»

Кафедра АСУ

Отчёт о практической работе №8 «Анализ данных на основе тренд-сезонных моделей» По дисциплине

«Технология обработки информации»

Выполнил:

Бардин М.С

Проверил:

Челебаева Ю. А.

Цель работы

Изучение методов прогнозирования на основе тренд-сезонных моделей и их реализация на языке высокого уровня.

Практическая часть. Вариант 1.

Программа для экстраполяции на основе тренд-сезонных моделей (рисунки 1).

Месяц	1-й год	2-й год	3-й год
(на начало месяца,			
млрд.руб)			
Январь	131,4	188,8	267,6
Февраль	117,4	179	233,9
Март	121,4	181,8	243
Апрель	120,1	175,1	252,5
Май	129,6	196,2	280,1
Июнь	130,9	206,3	290,3
Июль	130,8	217,4	322,8
Август	130,3	219,2	335
Сентябрь	134,4	217,2	342,6
Октябрь	155,2	213,8	352
Ноябрь	167,4	223	350,7
Декабрь	168,3	220,3	359,3

```
namespace Ex_8
{
    internal class Program
    {
        public static double opred2(double a11, double a12, double a21, double a22)
        {
            return a11 * a22 - a12 * a21;
        }
        static void Main(string[] args)
        {
            double[] x = new double[40]; // исходные данные ось X
            double[] y = new double[40]; // результаты
экстраполяции ось Y
```

```
double[] eps = new double[40]; // погрешность
экстраполяции
            double[] otkl = new double[40]; // отклонения от
уровня сглаженного ряда
            double[] s = new double[12]; // коэффициенты
сезонности
            double max_eps = 0.0; // Максимальная погрешность
            double otkl_sr;
            double y_sr;
            y[0] = 131.4;
            y[1] = 117.4;
            y[2] = 121.4;
            y[3] = 120.1;
            y[4] = 129.6;
            y[5] = 130.9;
            y[6] = 130.8;
            y[7] = 130.3;
            y[8] = 134.4;
            y[9] = 155.2;
            y[10] = 167.4;
            y[11] = 168.3;
            y[12] = 188.8;
            y[13] = 179.0;
            y[14] = 181.8;
            y[15] = 175.1;
            y[16] = 196.2;
            y[17] = 206.3;
            y[18] = 217.4;
            y[19] = 219.2;
            y[20] = 217.2;
            y[21] = 213.8;
            y[22] = 223.0;
            y[23] = 220.3;
```

```
y[24] = 267.6;
            y[25] = 233.9;
            y[26] = 243.0;
            y[27] = 252.5;
            y[28] = 280.1;
            y[29] = 290.3;
            y[30] = 322.8;
            y[31] = 335.0;
            y[32] = 342.6;
            y[33] = 352.0;
            y[34] = 350.7;
            y[35] = 359.3;
            otkl_sr = 0.0;
            y_{sr} = 0.0;
            for (int i = 0; i < 30; i++)
            {
                x[i] = i + 1;
                if (i > 5)
                {
                    z[i] = (0.5 * y[i - 6] + y[i - 5] + y[i - 4] +
y[i - 3] + y[i - 2] + y[i - 1] + y[i] + y[i + 1] + y[i + 2] + y[i
+ 3] +
                         +y[i + 4] + y[i + 5] + 0.5 * y[i + 6]) /
12.0;
                     eps[i] = Math.Abs(z[i] - y[i]);
                     if (eps[i] > max_eps)
                         max_{eps} = eps[i];
                     otkl[i] = y[i] - z[i]; // Расчет отклонения
от уровня сглаженного ряда
                    otkl_sr += otkl[i];
                    y_{sr} += y[i];
                }
```

```
Console.WriteLine("x = " + x[i] + " v = " + v[i] +
" z = " + z[i] + " Погрешность = " + eps[i] + " Отклонение = " +
otkl[i]);
            }
            otkl_sr = otkl_sr / 24.0;
            y_{sr} = y_{sr} / 24.0;
            Console.WriteLine("Cp. откл. = " + otkl_sr);
            // коэффициенты сезонности
            s[0] = z[6] + z[18] - y[6] - y[18];
            Console.WriteLine("Коэфф. сезонности 1 = " + s[0]);
            s[1] = z[7] + z[19] - y[7] - y[19];
            Console.WriteLine("Коэфф. сезонности 2 = " + s[1]);
            s[2] = z[8] + z[20] - y[8] - y[20];
            Console.WriteLine("Коэфф. сезонности 3 = " + s[2]);
            s[3] = z[9] + z[21] - y[9] - y[21];
            Console.WriteLine("Коэфф. сезонности 4 = " + s[3]);
            s[4] = z[10] + z[22] - y[10] - y[22];
            Console.WriteLine("Коэфф. сезонности 5 = " + s[4]);
            s[5] = z[11] + z[23] - y[11] - y[23];
            Console.WriteLine("Коэфф. сезонности 6 = " + s[5]);
            s[6] = z[12] + z[24] - y[12] - y[24];
            Console.WriteLine("Коэфф. сезонности 7 = " + s[6]);
            s[7] = z[13] + z[25] - y[13] - y[25];
            Console.WriteLine("Коэфф. сезонности 8 = " + s[7]);
            s[8] = z[14] + z[26] - y[14] - y[26];
            Console.WriteLine("Коэфф. сезонности 9 = " + s[8]);
            s[9] = z[15] + z[27] - y[15] - y[27];
            Console.WriteLine("Коэфф. сезонности 10 = " + s[9]);
            s[10] = z[16] + z[28] - y[16] - y[28];
            Console.WriteLine("Коэфф. сезонности 11 = " + s[10]);
            s[11] = z[17] + z[29] - y[17] - y[29];
            Console.WriteLine("Коэфф. сезонности 12 = " + s[11]);
        }
```

```
}
}
   1 y = 131,4 z = 0 Погрешность = 0 Отклонение = 0
   2 y = 117,4 z = 0 Погрешность = 0 Отклонение = 0
   3 y = 121,4 z = 0 Погрешность = 0 Отклонение = 0
 = 4 у = 120,1 z = 0 Погрешность = 0 Отклонение = 0
   5 y = 129,6 z = 0 Погрешность = 0 Отклонение = 0
 = 6 y = 130,9 z = 0 Погрешность = 0 Отклонение = 0
 = 7 у = 130,8 z = 138,825000000000002 Погрешность = 8,025000000000000 Отклонение = -8,0250000000000000
 = 9 у = 134,4 z = 148,8666666666665 Погрешность = 14,466666666664 Отклонение = -14,4666666666666
 = 10 y = 155,2 z = 153,67499999999998 Погрешность = 1,5250000000000007 Отклонение = 1,52500000000000057
   11 у = 167,4 z = 158,74166666666665 Погрешность = 8,658333333333 Отклонение = 8,658333333333
   12 y = 168,3 z = 164,6583333333333 Погрешность = 3,6416666666668 Отклонение = 3,6416666666688 13 y = 188,8 z = 171,408333333333 Погрешность = 17,3916666666671 14 y = 179 z = 178,7208333333333 Погрешность = 0,279166666666856 Отклонение = 0,279166666666856
 = 15 y = 181,8 z = 185,8749999999997 Погрешность = 4,074999999999 Отклонение = -4,0749999999999
 = 16 y = 175,1 z = 191,76666666666668 Погрешность = 16,666666666666 Отклонение = \cdot16,66666666666666 = 17 y = 196,2 z = 196,525 Погрешность = 0,32500000000001705 Отклонение = \cdot0,32500000000001705
 = 18 y = 206,3 z = 201,00833333333333 Погрешность = 5,29166666666657 Отклонение = 5,29166666666657
 = 19 y = 217,4 z = 206,4583333333337 Погрешность = 10,941666666666664 Отклонение = 10,941666666666664
   22 у = 213,8 z = 222,6416666666668 Погрешность = 8,8416666666669 Отклонение = -8,84166666666669
   23 у = 223 z = 229,36250000000004 Погрешность = 6,36250000000004 Отклонение = -6,36250000000004
   26 у = 233,9 z = 253,466666666667 Погрешность = 19,566666666669 Отклонение = -19,5666666666666
          243 z = 263,516666666667 Погрешность = 20,5166666666671 Отклонение = -20,5166666666671
   28 у = 252,5 z = 274,50000000000000 Погрешность = 22,00000000000007 Отклонение = -22,000000000000057 29 у = 280,1 z = 285,579166666666665 Погрешность = 5,479166666666629 Отклонение = -5,47916666666629
 Ср. откл. = -3,486458333333333
.
Коэфф. сезонности 1 = -2,9166666666666003
Коэфф. сезонности 2 = 6,3125
Коэфф. сезонности 3 = 14,133333333333334
Коэфф. сезонности 4 = 7,316666666666663
Коэфф. сезонности 5 = -2,29583333333333
Коэфф. сезонности 6 = 12,4166666666666629
«оэфф. сезонности 7 = -40,74166666666673
Коэфф. сезонности 8 = 19,287499999999994
«оэфф. сезонности 9 = 24,59166666666664
«оэфф. сезонности 10 = 38,66666666666674
⟨оэфф. сезонности 11 = 5,804166666666617
.
Соэфф. сезонности 12 = 1,10000000000000227
```

Рисунок 1 – Результат работы программы