第四讲: 元胞自动机简介及其应用 Matlab 编程与模型 / 算法实现

周吕文

中国科学院力学研究所

2017年05月12日

历史

最初的元胞自动机是由冯·诺依曼在 1950 年代为核 细胞的自我复制而提出的. 但是并未受到学术界重视

1970年, 剑桥大学的约翰·何顿·康威设计了一个电 "生命游戏"后, 元胞自动机才吸引了科学家们的注意

1983 年 S.Wolfram 发表了一系列论文. 对初等元胞材 规则所产生的模型进行了深入研究, 并用熵来描述其 为,将细胞自动机分为平稳型,周期型,混沌型和复杂

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法实现:第四

应用

社会学: 元胞自动机经常用于研究个人行为的社会 现象. 例如人口迁移, 公共场所内人员的疏散, 流行病

图形学: 元胞自动机以其特有的结构的简单性, 内存 性以及复杂计算的能力成为密码学中研究的热点方向

物理学: 在物理学中, 元胞自动机已成功的应用于 场, 电场, 热传导等的模拟. 例如格子气自动机.

生物学: 元胞自动机的设计思想本身就来源于生物学 的思想, 因而它在生物学上的应用更为自然而广泛。 胞的增长机理和过程模拟, 人类大脑的机理探索, 支 毒 HIV 的感染过程, 自组织, 自繁殖等生命现象的研

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法实现:第四语

交通规则

元胞分布于一维线性网格上. 元胞仅具有车和空两种状态. 元胞状态由周围两邻居决定.

规则	· ·
	-
<u></u>	—
	→
—	→
	—
	→
	*
	→ <u> </u>
(4.00 - 10.00	

	Notes
莫拟生物 L.	
i. 电脑游戏	
ž.	
л 256 种 其演化行	
₹澳化们 ^快 型.	
#	
	Notes
性, 流行	
病传播.	
生的并行 句之一.	
流体, 磁	
N. J. Mr. J.	
学自繁殖 - 肿瘤细	
た滋病病	
究.	
#	
	Notes
<u></u>	
#	

生命游戏

元胞分布于二维方型网格上. 元胞仅具有生和死两种状态. 元胞状态由周围八邻居决定.

规则

	_			
? ? ?	$\sum ? = 3 $?	?	?
? 🙎 ?		?	\odot	?
? ? ?	$\sum ? \neq 2 3 \bigcirc$?	?	?

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法实现: 第四讲

什么是元胞自动机

元胞自动机是离散的动力学系统

离散的系统: 元胞是定义在有 限的时间和空间上的, 并且元 胞的状态是有限.

动力学系统: 元胞自动机的举 止行为具有动力学特征.

简单与复杂: 元胞自动机用简 单规则控制相互作用的元胞 模拟复杂世界.

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法实现: 第四讲

构成要素

数学表示

A = (L, d, S, N, f)

- L: 元胞网格空间
- d: 元胞空间的维数
- S: 有限离散的状态集合
- N: 某邻域内所有元胞的集合
- f. 局部映射或局部规则

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法实现: 第四讲

元胞 (Cell)

元胞是元胞自动机基本单元

状态: 每一个元胞都有记忆贮 存状态的功能.

离散: 简单情况下, 元胞只有 两种可能状态; 较复杂情况 下, 元胞具有多种状态.

更新: 元胞的状态都安照动力 规则不断更新.

Notes

Notes

Notes

程序实现

```
03 UL = [n 1:n-1]; DR = [2:n 1]; %定义上左,下右邻居 04 veg=zeros(n,n); % 初始化表示森林的矩阵
05 imh = image(cat(3,veg,veg,veg)); % 可示化表示森林的矩阵
06 % veg = {empty=0 burning=1 green=2}
07 for i=1:3000
                                 % 主循环开始
                   (veg(UL,:)==1) +
12
      veg = 2*(veg==2) -
      ( (veg==2) & (sum>0|(rand(n,n)<Plight)) ) + ...
2*((veg==0) & rand(n,n)<Pgrowth);
set(imh, 'cdata', cat(3,(veg==1),(veg==2),zeros(n)) )</pre>
13
14
15
                                 %可示化表示森林的矩阵
%主循环结束
16
17 end
```

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法实现: 第四讲

交通概念: 车距和密度

车距: 相临两车, 后车头到前车尾的距离

$$d = \frac{L - Nl}{N} = \frac{1}{\rho} - l$$

密度: 单位长度上分布的车辆数

$$\rho = \frac{N}{L} = \frac{1}{d+l}, \ \rho_{\rm max} = \frac{1}{l}$$

周吕文 中国科学院力学研究所 🍪 Matlab 编程与模型 / 算法实现: 第四讲

交通概念: 流量方程

如果大尸凶坐在一条公路的边上, 公路上的车速为 70km/hr, 车 流密度为 10 veh/km. 每小时能从大尸凶身边驶过多少辆车?

流量方程: 单位时间内通过某路段的车辆数

$$J = \rho v$$

量纲: [veh/hr] = [veh/km][km/h]

 $\rho=0\Longrightarrow J=0,\; \rho=\rho_{\max}\Longrightarrow v=0\Longrightarrow J=0$

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法实现: 第四讲

森林火火 交通模拟 应用展示

交通概念: 守恒方程

长为 $\Delta x = x_2 - x_1$ 的一段公路, 在时间间隔 $\Delta t = t_2 - t_1$ 里, 车 辆数 N 变化如何?

$$(J_{x_1}-J_{x_2})\Delta t = \Delta N = (\rho_{t_2}-\rho_{t_1})\Delta x \Longrightarrow \frac{J_{x_1}-J_{x_2}}{\Delta x} = \frac{\rho_{t_2}-\rho_{t_1}}{\Delta t}$$

守恒方程

 $J_x + \rho_t = (\rho v)_x + \rho_t = 0$

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法

Notes			
Notes			

交通概念: 时空轨迹

周吕文 中国科学院力学研究所 🍪 Matlab 编程与模型 / 算法实现: 第四讲

交通概念: 宏观连续模型

Lighthill-Whitham-Richards 模型

$$\begin{split} \frac{\partial \rho(x,t)}{\partial t} + \frac{\partial q(x,t)}{\partial x} &= 0\\ J &= q(\rho,v) = q\big(\rho,v(\rho)\big) = q(\rho) \end{split}$$

Greenshields 速度函数

$$v(\rho) = v_{\rm max} \Big(1 - \frac{\rho}{\rho_{\rm max}} \Big)$$

$$J(\rho) = v_{\text{max}} \left(\rho - \frac{\rho^2}{\rho_{\text{max}}} \right)$$

周吕文 中国科学院力学研究所 🍪 Matlab 编程与模型 / 算法实现: 第四讲

规则

0. 初始	状态: v_1	$= 2, v_2$	$= 1, v_3$	$= 1, v_4$	= 0
_					

1. 加速规则: $v_n = \min\{v_{\max}, v_n + 1\}$, $v_{\max} = 2$

2. 防止碰撞: $v_n = \min\{v_n, d_n - 1\}$

3. 随机减速: $v_n \stackrel{p}{=} \max\{v_n - 1, 0\}$,

理论分析

临界密度

$$\rho_c = \frac{1}{v_{\text{max}} + 1} = \frac{1}{5 + 1}$$

平均速度

$$v = \min\{v_{\text{max}}, d\} = 2$$

车流量

$$J = \min\{\rho v_{\text{max}}, \rho d\} = 2/3$$
$$= \min\{\rho v_{\text{max}}, 1 - \rho\}$$

N	Ο.	۲	٥.
IV	O	ιe	35

Notes

Notes

结果分析: 密度与流量

周吕文 中国科学院力学研究所 🍪 Matlab 编程与模型 / 算法实现: 第四讲

结果分析: 时空轨迹

周吕文 中国科学院力学研究所 🛞 Matlab 编程与模型 / 算法实现: 第四讲

% d(i) = x(i+1)-x(i)

程序实现

```
01 function flux = ns(rho,p,L,tmax)% rho=0.2;p=0.2;L=72;tmax=72
                                 % ncar=L*rho
02 ncar = round(L*rho);
03 x = sort(randperm(L, ncar));
                                   % 1:ncar中随机不重复的L个数
                                   % 最大速度
04 vmax = 5;
05 v = vmax * ones(1, ncar);

06 for t = 1:tmax

07 v = min(v+1, vmax);
                                  %初始化所有车速度为vmax
                                       % 加速规则
08
       gaps = gaplength(x,L,ncar);
       v = min(v, gaps-1); % 防止碰撞
v = max(v- (rand(1,ncar)<p), 0);% 随机减速 binornd
09
10
      x = x + v;
x(x>L) = x(x>L) - L;
flux = flux + sum(v)/L;
                                       % 位置更新
% 周期边界
11
12
                                       % 空间平均
13
15 flux = flux / tmax;
                            % 时间平均
```

19 gaps(gaps<=0) = gaps(gaps<=0)+L;% d(i) = d(i) + L, if d(i)<0

交通问题: 收费亭最优数量

Notes			
Notes			

Notes

与其它网格方法的差别

有限差分解热传导方程

格子玻尔兹曼法解扩散方程

周吕文 中国科学院力学研究所 🍪 Matlab 编程与模型 / 算法实现: 第四讲

与粒子方法的差别

总结

离散的空间, 离散的时间.

离散有限的状态. 同质的元胞.

局部的作用, 同步的计算.

元胞自动机比较适合解决具有空间离散特点的动力学问题. 根据问题适当改造元胞自动机, 可使应用范围更广. 不要在不适当的问题上迁强地使用元胞自动机.

作业

阅读论文 Manukyan, Liana, et al. "A living mesoscopic cellular automaton made of skin scales." Nature 544.7649 (2017): 173-179. 并提练出文中的元胞自动机模型.

根据提练出的元胞自动机模型, 尝试编写 Matlab 程序实现. 整理成报告.

Notes

_

Notes			
140103			

	Notes
Thank You!!!	
Thank Tou	
	Notes
	Notes
	Notes