MATH 243 Midterm 1

- 1. Consider an infinitely differentiable function f(x(r,s),y(r,s),z(r,s)). Select the right expression for $\frac{\partial f}{\partial r}$
 - A. $\frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial r}$
 - B. $\frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial r} + \frac{\partial f}{\partial r} \frac{\partial r}{\partial r}$
 - C. $\frac{\partial f}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial f}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial f}{\partial r} \frac{\partial r}{\partial z}$
- D. $\frac{\partial f}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial r}+\frac{\partial f}{\partial z}\frac{\partial z}{\partial r}+\frac{\partial f}{\partial x}\frac{\partial x}{\partial s}\frac{\partial s}{\partial r}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial s}\frac{\partial s}{\partial r}+\frac{\partial f}{\partial z}\frac{\partial z}{\partial s}\frac{\partial s}{\partial r}$ 2. General knowledge bonanza. Select all of the following which are true
 A. 4x+3y-z=5 is an equation of the tangent plane to $z=x^3+y^4$ at (1,1,2)
 - B. For $f(x, y, z) = e^{ye^z} + y^{\cos(x)} + (2z + x)^4 \sin(\sin(y))$, we have $f_{zzyzx} = 192 \cos(\sin(y)) \cos(y)$
 - C. The arc length of $\mathbf{r}(t) = (-1, t^2, 420 + t)$ from (-1, 0, 420) to (-1, 4, 422) is given by $\int_0^2 \sqrt{4t^2 + 1} \, dt$
 - D. x 2y + z = 0 is an equation of the plane containing (1, 2, 3), (6, 5, 4), (7, 8, 9)
- 3. Three of these statements are equivalent conditions, select the odd one out
 - A. $\mathbf{u}, \mathbf{v}, \mathbf{w}$ lie on the same plane
 - B. The parallelepiped formed by $\mathbf{u}, \mathbf{v}, \mathbf{w}$ has volume 0
 - C. The vectors $\mathbf{u} \times \mathbf{v}$ and \mathbf{w} are parallel
 - D. If M is the 3×3 matrix where the three rows are $\mathbf{u},\mathbf{v},\mathbf{w}$, then swapping any two rows of M doesn't change its determinant
- **4.** Let $\mathbf{a} = (3,0,1), \mathbf{b} = (0,2,-1)$. Compute $\mathbf{v} = (\mathbf{a} \times \mathbf{b}) \times \mathbf{a} \times \mathbf{a} \times \mathbf{a} \times \mathbf{a} \times \mathbf{a}$ where there are 50 **a**'s following the **b**. If the sum of the coordinates of **v** is $r^s t$ for integers r, s, t where r is positive squarefree and r, t have no common factors, find r + s + t.
- **5.** Convert the point $(r, \theta, z) = (\sqrt{3}, \frac{\pi}{5}, 3)$ in cylindrical coordinates to spherical coordinates (ρ, θ, ψ) , then
- find the following values: $\rho^2, \theta + \psi$.

 6. Let $f(x,y) = \frac{(y^3 x^2y)e^{\cos(\ln(1+|y|))}}{(1+x^2+y^6)(8x^3-6x^2y-3xy^2+y^3)}$. The set of points (a,b) where $\lim_{(x,y)\to(a,b)} f(x,y)$ doesn't exist is composed of n distinct lines. Find n.

Note: this is for grading convenience. You won't get any credit for guessing the answer without actually doing the problem.

- 7. A, B, C, D, E, F, G are collinear points evenly spaced apart in that order with B = (1, 2, 3), E =(-4,5,-6). Parametrize the line through all of the points. Parametrize the line segment from A to G.
- 8. Let $\mathbf{r}(t) = \langle t, 2t^{3/2}, 1-t \rangle$. Compute acceleration, then find the tangential and normal components of acceleration.
- **9.** Consider a differentiable function f(x,y) and let p=(2,3). The directional derivative of f at the point p in the direction of (3, -4) is 9 while the derivative of f at p in direction $\theta = 225^{\circ}$ is $-4\sqrt{2}$. Find the derivative of f at p in the direction of (5,12), and find the maximum rate of change of f at p.