# TD 11 - Ondes électromagnétiques suite

#### IPESUP - PC

### 04/12/2024

## 1 Rappels de cours

Conductivité complexe :  $\gamma = \frac{\gamma_0}{1+i\omega\tau}$ 

Equation de propagation :  $\Delta \vec{E} = \mu_0 \frac{\partial \vec{j}}{\partial t} + \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$ 

Relation de dispersion dans un conducteur :  $\underline{k}^2 = \frac{\omega^2}{c^2} - i \frac{\mu_0 \gamma_0 \omega}{1 + i \omega \tau}$ :

#### Capacités exigibles:

- 1. Retrouver la conductivité complexe à partir du PFD à un électron.
- 2. Retrouver l'équation de propagation dans un conducteur.
- 3. Retrouver la relation de dispersion dans un conducteur.
- 4. Effet de peau.

### 2 Pression de radiation

- 1. Soit une onde plane, monochromatique, de fréquence  $\nu$  se propageant le long des x croissants, dont le champ électrique est  $\vec{E}(x,t) = E_0 cos(\omega t kx)\vec{u_y}$ . Soit  $\mathcal{E}$  l'éclairement (défini par la puissance moyenne qui traverse une surface d'aire unité perpendiculaire à la direction de propagation). Exprimer  $\mathcal{E}$  en fonction de  $\epsilon_0$ , c et  $E_0$ .
- 2. On considère cette onde comme un faisceau de photons se propageant le long des x croissants.
  - (a) Exprimer  $N_0$  le nombre de photons traversant par unité de temps l'unité de surface perpendiculaire à Ox en fonction de  $\mathcal{E}$  et de  $\nu$ .
  - (b) L'onde arrive sur une surface plane perpendiculaire à Ox, d'aire S, et parfaitement réfléchissante. On étudie le rebondissement des photons sur cette surface.
    - Quelle est la quantité de mouvement reçue par la paroi au cours d'un choc photon-paroi? Quelle est la force subie par la paroi en fonction de  $\mathcal{E}$ , S et c? Exprimer la pression p subie par la paroi en fonction de  $\mathcal{E}$  et c puis en fonction de  $\mathcal{E}$ 0 et  $\mathcal{E}$ 0.
  - (c) Reprendre la question ci-dessus lorsque la paroi est parfaitement aborbante.
  - (d) Calculer  $\mathcal{E}$ ,  $E_0$  et p sur une paroi totalement absorbante pour un laser ayant un diamètre d=5,00 mm et une puissance moyenne  $\mathcal{P}=100$  W (laser utilisé industriellement pour la découpe de feuilles).
- 3. (a) L'onde est maintenant absorbée par une sphère de rayon a, bien inférieur au rayon du faisceau. Quelle est, en fonction de  $\mathcal{E}$ ,  $E_0$  et p, la force  $\vec{F}$  subie par la sphère?
  - (b) Le soleil donne au voisinage de la Terre l'éclairement  $\mathcal{E}=1,4\times10^3W.m^{-2}$ . L'émission est isotrope. Sur une surface de dimensions petites devant D, l'onde arrivant du Soleil est quasi plane.

Quelle est la puissance  $\mathcal{P}_{t}$  émise par le Soleil?

Un objet sphérique de rayon a, de masse volumique  $\mu$  est situé à une distance r du Soleil et absorbe totalement le rayonnement solaire. Evaluer le rapport entre la force due à l'absorbtion du rayonnement solaire et a force gravitationelle exercée par le Soleil sur cet objet dans les deux cas suivants :

- Cas d'une météorite :  $\mu = 3,0 \times 10^3 kg.m^{-3}$  et a = 1,0m
- Cas d'une poussière interstellaire :  $\mu=1,0\times 10^3 kg.m^{-3}$  Commenter.
- (c) Quelle est la surface minimale de la voile solaire d'un vaisseau spatial pour que celui-ci quitte l'attraction solaire?

# 3 Onde longitudinale dans un plasma

On étudie la propagation d'une onde électromagnétique dans un plasma peu dense. On pose  $\vec{E} = \vec{E}_0 exp(i(\omega t - \vec{k} \cdot \vec{r}))$  et  $\vec{B} = \vec{B}_0 exp(i(\omega t - \vec{k} \cdot \vec{r}))$  On suppose  $\rho$  non nul.

- 1. Etablir l'équation du mouvement d'un électron de masse  $m_e$  et de charge -e, associé à la densité  $n_e$ . Définir la conductivité complexe  $\gamma$  du plasma.
- 2. A l'aide des équations de Maxwell et de l'équation de conservation de la charge, établir une nouvelle expression de  $\gamma$  en fonction de  $\omega$  et  $\epsilon_0$ .
- 3. Montrer que  $\vec{B} = 0$  et en déduire que  $\vec{E}$  est longitudinal.

When you found a mass of -4kg for the cat but the formula is homogenous

