Large-scale inference and learning algorithm

Jean-Christophe Janodet University of Evry, France

Objectifs

- Revoir la théorie des langages formels :
 - Automates, CFG, transducteurs, HMM, …
 - Formalismes probabilistes ou non : WFSM /
 WFST
 - Relations entre ces formalismes
- Etudier les principaux algorithmes exploitant ces machines : parsing, inference, équivalence, apprentissage
- Applications en Traitement de la langue

Prisme: Inférence grammaticale

- Ce que ça permet :
 - Apprentissage à partir de données structurées :
 - mots, arbres, graphes, etc.
 - Recherche d'une hypothèse *cible* particulière :
 - automate, grammaire, standard ou stochastique
- Ce que ça ne permet pas (directement) :
 - problèmes de classification
 - problèmes de classement

La communauté en IG

- International Community in Grammatical Inference (ICGI)
- Communauté hétéroclite, avec des chercheurs travaillant en
 - Pattern recognition, Machine learning, Computational linguistics (or not), Bioinformatics
 - Algorithmics, Language theory, Information theory
- Géographie de la communauté :
 - Japan, Spain, Germany, Great Britain, Belgium, The Netherlands, USA, Australia, France

Principaux événements

- The International *Colloquium* in Grammatical Inference (ICGI) tous les 2 ans depuis 1994
- Workshops + écoles en alternance à ECML, NIPS, IJCAI
- Compétitions d'algorithmes :
 - Abbadingo (1998), Omphalos (2004)
 - Gecco (2004), Tenjinno (2006)
 - Zulu (2010), Stamina (2010)

Surveys et livres

Surveys:

- D. Angluin & C. Smith. *Inductive inference: Theory and pratice*. ACM computing surveys, 15(3):237-269, 1983
- L. Miclet. Syntactic and structural pattern recognition. Chap. GI, 237-290. World Scientific, 1990
- Y. Sakakibara. *Recent advances of GI*. Theoretical Computer Science, 185:15-45, 1997

Book:

• C. de la Higuera. *GI: Learning automata & grammars.*Cambridge University Press, 2010.

Caractéristiques d'un problème d'Inférence Grammaticale

- Ce que ça permet :
 - Apprentissage à partir de données structurées :
 - mots, arbres, graphes, etc.
 - Recherche d'une hypothèse *cible* particulière :
 - automate, grammaire, standard ou stochastique
- Ce que ça ne permet pas (directement) :
 - problèmes de classification
 - problèmes de classement

Exemple 1 Modélisation des systèmes

Contexte :

- Réingénierie: reconstruction de la spécification d'un système, « exploration » d'un site web
- Certification : preuve du bon fonctionnement d'un système critique
- Débogage, tests logiciels, tests matériels

Réalisation :

Modélisation sous la forme d'automates de Mealy, d'automates IO, d'automates d'interfaces, etc

Exemple 2 Natural Language Processing

Contexte :

- Modèle de langage attribuant une probabilité à toute phrase, correcte ou non
- Traduction automatique, attribuant une probabilité à toute traduction, correcte ou non

Réalisation :

• Automate stochastique, grammaire probabiliste (PCFG), modèle de Markov (HMM), transducteur (stochastique)

Cas général (1)

- On dispose d'une classe de grammaires :
 - de mots : AFD, AFN, AFER, automates de Moore, de Mealy, GHC, GHC linéaires déterministes, SRM, motifs, boules, expression régulière, ...
 - d'arbres, de graphes, de termes , …
- Grammaire = tout périphérique permettant de reconnaître / engendrer / décrire un langage
- Deux versions : standard *vs* stochastique

Cas général (2)

- Une des grammaires est sélectionnée : la grammaire *cible*, celle que cherche l'apprenant
- Le mode d'acquisition des données est fixé par l'application:
 - Elles peuvent être positives seulement, ou positives et négatives
 - Elles peuvent être subies (apprentissage passif) ou choisies (apprentissage actif)

Cas général (3)

- Ce qu'« apprendre » veut dire est fixé, i.e., un paradigme d'apprentissage est donné:
 - Identification exacte :
 - Données subies : Identification à la limite (Gold 67, 78)
 - Données choisies : Query learning (Angluin 87)
 - Identification approximative :
 - Données subies : PAC-leaning (Valiant 84)
 - Données choisies : active learning

1er cas: Query learning

- D. Angluin. Learning regular sets from queries and counterexamples. Inform. and Computat. 75:87-106, 1987
- Cadre : identification exacte, données choisies
- Problème : deviner un DFA en posant des questions (requêtes) à un professeur
- Applications actuelles :
- Tests de protocoles de sécurité ou de comm. (Shu & Lee 2007, Aarts et al 2014), détection de failles de sécurité dans les sites web (Hossen et al 2014)
- Formalisation des langues rares (…)

Mots

- Un alphabet Σ est un ensemble fini non vide de symboles qu'on appelle lettres. E.g., $\Sigma = \{0,1\}$.
- Un mot w sur Σ est une séquence finie de lettres. E.g., 0, 1, 00, 10, 11010, λ , ...
- Notations:
 - |w| : 1ongueur du mot w
 - uv : concaténation des mots u et v
 - lacksquare * dénote 1' ensemble de tous les mots

Langages

- Un langage est une sous-ensemble de Σ^*
- Hiérarchie de Chomsky :
 - Couche 4: Langages finis
 - Couche 3: Langages réguliers
 - Couche 2: Langages hors-contextes
 - Couche 1: Langages sous-contextes
 - Couche 0: Langages récursivement énumérables
- De nombreux langages n' entrent pas dans cette hiérarchie (e.g., pattern languages, multiple CFL)

Langages réguliers (1)

- Réguliers = rationnels = reconnaissables
 = reconnus par des automates
- Un AFD est un tuple A=<Q, Σ , i, F, δ > t.q.
 - Q: ensemble fini d'états
 - lacksquare : alphabet d'entrée
 - ■i : état initial
 - F : ensemble des états acceptants
 - δ : Q x $\Sigma \rightarrow$ Q : fonction de transition

Langages réguliers (2)

- Taille de A = |Q| = nombre d' états
- Parsing : linéaire en |w|
- Equivalence: $0(n_1 \log n_1 + n_2 \log n_2)$
- Propriétés « jolies », beaucoup d'algorithmes :
 - Déterminisation des AFN
 - Minimisation des AFD

Paradigme d'Angluin

- Contexte :
 - L'oracle choisit un DFA, 1'apprenant doit le trouver
- Règles:
 - L'apprenant pose des questions (requêtes) à 1'Oracle
 - L' Oracle répond sans mentir
 - Le type de requêtes est fixé : appartenance, équivalence, . . .

Résultats

- Les AFD sont identifiables en temps polynomial à partir de requêtes d'appartenance et d'équivalence
- □ ··· « polynomial » en :
 - 1a taille de 1' AFD cible
 - la longueur du plus long contre-exemple
- L*: algorithme de référence aujourd'hui
- Extensions théoriques aux GHC

2nd cas: appr. passif des AFD

- Exemple: On considère $E_{+} = \{ \lambda, 1, 01, 011, 101 \}$ et $E_{-} = \{ 00, 10 \}$.
- Problème: apprendre un AFD compatible avec les données, i.e., qui accepte tous les mots de E+ et rejette tous ceux de E-

Problème mal formulé

- On calcule le PTA de E_{+} = { λ , 1, 01, 011, 101 }
- Problème pas très intéressant …

Problème trop difficile

Problème : on cherche le *plus petit* AFD compatible avec les données

Théorème [Gold 78] :

Le problème suivant est NP-complet :

- \blacksquare Données : 1 entier N, 2 ensembles $E_{\scriptscriptstyle +}$ et $E_{\scriptscriptstyle -}$ de mots
- Problème : Existe-t'il un AFD de moins de N états reconnaissant tous les mots de E_+ et aucun de E_- ?

Biais inductif

- On suppose que les données caractérisent la cible :
 - Les mots de E₊ exercent tous les états, tous les états finaux, et toutes les transitions de 1' AFD cible
 - Les mots de E₁ et E₂ permettent de distinguer deux états qui sont différents
- Déf. formelle : cf (de la Higuera '10)

RPNI (Oncina '92)

On considère la cible précédente et 1' échantillon $E_+ = \{ \lambda, 1, 01, 011, 101 \}$ et $E_- = \{ 00, 10 \}$.

Prefix Tree Acceptor

• On calcule le PTA de E_+ = { λ , 1, 01, 011, 101 }

1ère fusion (de 1 et 0)

- On a E_{-} = { 00, 10 } et 00 est reconnu
- La fusion est rejetée

2^{nde} fusion (de 2 et 0)

- On a $E_{-} = \{ 00, 10 \}$, pas d'inconsistance
- La fusion est acceptée

3ème fusion (de 3 et 0)

- \blacksquare On a E_{\bot} = { 00, 10 }, pas d'inconsistance
- La fusion est acceptée
- Miracle : c' est la cible

Propriétés de RPNI

- Théorème :
 - L'AFD retourné par RPNI est toujours consistant avec l'échantillon initial
 - Chaque AFD admet au moins un échantillon caractéristique de taille polynomial qui, s'il est inclus dans l'échantillon d'apprentissage, fait converger RPNI vers l'AFD minimal équivalent.

Extensions de RPNI

- Approches data-driven : EDSM :
 - L'ordre des fusions d'états dépend de statistiques sur les données (*ie*, on favorise les fusions les plus sures)
 - Arbitrairement mauvais sur un plan théorique, mais pas sur un plan pratique ...
- Extensions aux transducteurs de mots, aux automates d'arbres, etc.

3^{ème} cas : appr. passif des GHC

- Pb. beaucoup plus difficile que pour le AFD
 - Dans le cas des AFD, relation profonde entre les données (mots) et les états de l'AFD (notion de résiduel), mais rien de ce genre pour les règles d'une grammaire : les données ne nous apportent pas d'info. sur la structure de la GHC cible
 - Exemples positifs uniquement

Langages hors-contextes (1)

- Engendrés par des GHC
- Une GHC est un tuple $G=<\Sigma$, V, P, S> t.q.
 - Σ : alphabet d'entrée
 - V : alphabet non terminal
 - ${\mathbb P}$: ensemble des productions de la forme ${\mathbb X} \to {\mathbb W}$, où w est un mot de $(\Sigma \ {\mathbb U} \ {\mathbb V})^*$
 - ■S : symbole start

Langages hors-contextes (2)

- Parsing : O(|| G || || w|₃) :
 - Passage à la forme normale de Chomsky
 - Algo. CYK par programmation dynamique
- Equivalence : indécidable
- Nombreuses « mauvaises » propriétés :
 - problèmes d'ambiguité, de déterminisme
 - problèmes de non linéarité
 - problèmes de clôture

Lien données / GHC (Clark '07)

- Congruence syntaxique : soit L un langage ; $u \approx v \; si \; pour \; tous \; mots \; 1, r \; , \; (\; 1ur \; \pmb{\epsilon} \; L \; ssi \; 1vr \; \pmb{\epsilon} \; L \;)$
- Intuition : deux mots équivalents sont générés par le même non terminal (Harris '57)
- Congruence » faible : soit L un langage ; $u \sim v \text{ si il existe l,r, (lur } \boldsymbol{\epsilon} \text{ L ssi lvr } \boldsymbol{\epsilon} \text{ L})$
- Lest substituable si pour tout mot u, v si u \sim v alors $u \approx v$

Algorithme SGL (Clark '07) (1)

- On suppose que le langage cible est substituable
- On a un échantillon positif de mots E,
- On construit un graphe:
 - Nœuds : facteurs des mots de E,
 - Arêtes : u et v sont liés si u ~ v , ie, ils apparaissent dans le même contexte

Algorithme SGL (2)

- Construction de la grammaire :
 - Non terminaux : composante connexe du graphe
 - ${lue{ }}$ Starter : composante contenant tous les mots de $E_{\scriptscriptstyle +}$
 - Règles :
 - \blacksquare [[a]] \rightarrow a pour toute lettre a
 - [[uv]] \rightarrow [[u]] [[v]] pour tout facteur uv de longueur $\geqslant 2$
 - $[[u]] → [[v]] pour tout <math>u \sim v$