

A summary of Groups and Rings SF2729

JIM HOLMSTRÖM

Abstract

This paper contains a brief summary of the course Groups and Rings which is given at KTH in Stockholm. The basis for this is the book: A First Course In Abstract Algebra by John B. Fraleigh.

Contents

1	Def	Definitions								
	1.1	Struct	tures	1						
		1.1.1	Set	1						
		1.1.2	Binary algebraic structure	1						
		1.1.3	Group	2						
		1.1.4	Ring	2						
		1.1.5	Field	2						
	1.2	Substi	ructures	2						
		1.2.1	Subgroup	2						
		1.2.2	Subring	2						
		1.2.3	Ideal	2						
	1.3	Relati	ions between structures	2						
		1.3.1	Homomorphism	2						
		1.3.2	Isomorphism	2						
		1.3.3	Group action	2						
	1.4	ive functions	2							
		1.4.1	Permutation	2						
2	Useful theorems									
	2.1	LORE	EM IPSUM	3						
		2.1.1	Lagrange's Theorem	3						
		2.1.2	Cauchy's Theorem	3						
3 N	Mis	isc. Later put into some of the above chapters								
		3.0.3	Equivalence relation \mathfrak{R}	1						
		3.0.4	Binary operations *	5						
	3.1	these	are grouped somehow	6						
		3.1.1	One-to-one	6						
		3 1 2	Onto	6						

Chapter 1

Definitions

1.1 Structures

1.1.1 **Set**

1.1.2 Binary algebraic structure

Denoted by $\langle \mathcal{S}, * \rangle$ is a set \mathcal{S} with a binary operator * on \mathcal{S} .

Identity element

An element e is an identity element in the structure $\langle \mathcal{S}, * \rangle$

$$e * x = x * e = x \quad \forall x \in \mathcal{S} \tag{1.1}$$

Theorem 1. The identity element e is unique in the binary structure ... p32

Theorem 2. If $\phi: \mathcal{S} \to \mathcal{S}'$ is an isomorphism of $\langle \mathcal{S}, * \rangle$ with $\langle \mathcal{S}', *' \rangle$ then $\phi(e)$ will be the identity in $\langle \mathcal{S}', *' \rangle$.

Proof. Need to show

$$\phi(e) *' x' = x' *' \phi(e) = x' \quad \forall x' \in \mathcal{S}'$$

$$(1.2)$$

 ϕ is onto (3.1.2).

$$e * x = x * e = x \Rightarrow \phi(e * x) = \phi(x * e) = \phi(x) \tag{1.3}$$

We chose $x:\phi(x)=x'$ using the homomorphism property we can rewrite it to

$$\phi(e) *' \phi(x) = \phi(x) *' \phi(e) = \phi(x)$$
(1.4)

1.1.3 Group

A group is a binary algebraic structure (1.1.2) with the following properties:

G1

 $G2 \dots$

- 1.1.4 Ring
- 1.1.5 Field

1.2 Substructures

- 1.2.1 Subgroup
- 1.2.2 Subring
- 1.2.3 Ideal

1.3 Relations between structures

1.3.1 Homomorphism

A map that preserves the algebraic structure between $\langle \mathcal{S}, * \rangle, \langle \mathcal{S}', *' \rangle$ by satisfying:

$$\phi(x * y) = \phi(x) *' \phi(y) \quad \forall x, y \in \mathcal{S}$$
 (1.5)

1.3.2 Isomorphism

A isomorphism is a homomorphism (1.3.1) with the additional property of ϕ being a one-to-one map between \mathcal{S} and \mathcal{S}' .

 $\exists \phi$ isomorphism between $\langle \mathcal{S}, * \rangle, \langle \mathcal{S}', *' \rangle$ we say that those are isomorphic. Isomorphic is denoted by $\mathcal{S} \cong \mathcal{S}'$ omitting the $\langle \cdot, * \rangle$ since it almost always clear which operator is considered.

Showing that binary structures are isomorphic

- **Step 1** Define ϕ , that is describe $\phi(a) \forall a \in \mathcal{S}$
- **Step 2** Show that ϕ is one-to-one. (3.1.1)
- **Step 3** Show that ϕ is onto. (3.1.2)
- **Step 4** Show that ϕ is a homomorphism. (1.3.1)

1.3.3 Group action

1.4 Bijective functions

1.4.1 Permutation

Chapter 2

Useful theorems

- 2.1 LOREM IPSUM
- 2.1.1 Lagrange's Theorem
- 2.1.2 Cauchy's Theorem

Chapter 3

Misc. Later put into some of the above chapters

3.0.3 Equivalence relation \mathfrak{R}

 ${\mathfrak R}$ is an equivalence relation on a set ${\mathcal S}$

 \Leftrightarrow

$$\begin{cases} x\Re x \\ x\Re y \Rightarrow y\Re x \\ x\Re y \wedge y\Re z \Rightarrow x\Re z \end{cases}, \forall x, y, z \in \mathcal{S}$$
 (3.1)

The equivalence relation is often denoted with a \sim

3.0.4 Binary operations *

$$\begin{array}{ccc}
*: \mathcal{S} \times \mathcal{S} & \to \mathcal{S} \\
(x, y) & \mapsto *((x, y)) = x * y
\end{array}$$
(3.2)

The binary function *((x,y)) is denoted by x*y.

${\mathcal H}$ closed under *

 $\mathcal{H} \subseteq \mathcal{S}$ closed under *:

$$a, b \in \mathcal{H} \Rightarrow (a * b) \in \mathcal{H}$$
 (3.3)

Note that in the case $\mathcal{H} = \mathcal{S}$ will always be closed from the definition of the operation.

Commutative

Commutativity is the operation property:

$$a * b = b * a \quad \forall a, b \in \mathcal{S}$$
 (3.4)

Associative

Associativity is the operation property:

$$(a*b)*c = a*(b*c) \quad \forall a, b, c \in \mathcal{S}$$

$$(3.5)$$

which basically means that the order of operation is invariant and we might as well denote both expressions in (3.5) unambiguously without specifying the operation order with a * b * c.

3.1 these are grouped somehow

3.1.1 One-to-one

A one-to-one map ϕ means that each element x has a corresponding $\phi(x)$. Show one-to-one by showing:

$$\phi(x) = \phi(y) \in \mathcal{S}' \Rightarrow x = y \in \mathcal{S} \tag{3.6}$$

That is given the first statement in (3.6) deduce the next statement.

3.1.2 Onto

 ϕ is onto \mathcal{S}' if ... Show onto by showing:

$$\forall x' \exists x : \phi(x) = x' \quad x \in \mathcal{S}, x' \in \mathcal{S}'$$
(3.7)

That is assume x' is given show that $\exists ...$