マトロイド制約下での 劣モジュラ関数最大化に対する 高速なアルゴリズム

寺尾 樹哉, 小林 佑輔 京都大学数理解析研究所

応用数理学会 2024年度年会 離散システム研究部会@京都大学 9月16日(月)

劣モジュラ関数

定義

 $f: 2^V \to \mathbb{R}$ で次の式を満たすもの

$$S \subseteq T \subseteq V, v \in V \setminus T \Longrightarrow f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$$

小さい集合の増分 大きい集合の増分

劣モジュラ関数

定義

 $f: 2^V \to \mathbb{R}$ で次の式を満たすもの

$$S \subseteq T \subseteq V, v \in V \setminus T \Longrightarrow f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$$

小さい集合の増分

大きい集合の増分

例

限界効用逓減性

劣モジュラ関数

定義

 $f: 2^V \to \mathbb{R}$ で次の式を満たすもの

$$S \subseteq T \subseteq V, v \in V \setminus T \Longrightarrow f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$$

小さい集合の増分

大きい集合の増分

例

$$V = \{ \}, f() \}$$
 $\}$

限界効用逓減性

不可分財の効用を表現するのに適している!

$$f(\bigcirc) - f(\bigcirc) \ge f(\bigcirc) - f(\bigcirc)$$

単調劣モジュラ関数最大化

$$f(S) \leq f(T) \ (S \subseteq T)$$

$$f: \mathbf{2}^V \to \mathbb{R}_{\geq \mathbf{0}}: 非負単調劣モジュラ, f(\emptyset) = 0$$

 $\max f(S)$ s.t. $S \in C$

- 多くの問題の一般化例)最大被覆問題、施設配置問題
- 非常に多くの分野に実応用例)機械学習、コンピュータビジョン、経済学

サイズ制約下での単調劣モ最大化

[Fisher-Nemhauser-Wolsey 1978]

$$f: 2^V \to \mathbb{R}_{\geq 0}$$
: 非負単調劣モジュラ

$$\max f(S) \quad \text{s.t.} \quad |S| \le r$$

☞ 簡単な貪欲アルゴリズムで (1 - 1/e)近似

$$f(S) \ge (1 - 1/e) f(OPT)$$
を出力

☞ 近似比1-1/eは多項式時間アルゴリズムの中で最良

[Nemhauser-Wolsey 1978]

サイズ制約下での単調劣モ最大化

 $f: 2^V \to \mathbb{R}_{>0}: 非負単調劣モジュラ$

max f(S) s.t. $|S| \le r$

☞ 簡単な貪欲アルゴリズムで (1 – 1/e)近似

ナップサック制約: $\sum_{v \in S} w_v \leq 1$

サイズ制約: |**S**| ≤ **r**

マトロイド制約: $S \in \mathcal{J}$

マトロイド制約下での単調劣モ最大化

 $f: 2^V \to \mathbb{R}_{>0}: 非負単調劣モジュラ$

max f(S) s.t. $S \in \mathcal{J}$

☞ (1 - 1/e)近似アルゴリズム?

ナップサック制約: $\sum_{v \in S} w_v \leq 1$

サイズ制約: |**S**| ≤ **r**

マトロイド制約: $S \in \mathcal{I}$

マトロイド制約下での単調劣モ最大化

 $f: 2^V \to \mathbb{R}_{>0}: 非負単調劣モジュラ$

max f(S) s.t. $S \in \mathcal{I}$

☞ 連続貪欲法で(1 – 1/e)近似アルゴリズム [Calinescu-Chekuri-Pál-Vondrák 2007]

ナップサック制約: $\sum_{v \in S} w_v \leq 1$

サイズ制約: |**S**| ≤ **r**

マトロイド制約: $S \in \mathcal{I}$

マトロイド $\mathcal{M} = (V, \mathcal{I})$:線形独立性の一般化

定義

3の要素を**独立**集合と呼ぶ

有限集合 V 上の空でない部分集合族 $J \subseteq 2^V$ で次のよい性質を持つもの

- $\bullet S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$
- $S, T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists v \in S T \text{ s.t. } T \cup \{v\} \in \mathcal{I}$

例) ● 線形マトロイド

 $\begin{bmatrix} 2 & 0 & 1 & 3 \\ 1 & 2 & 3 & 0 \end{bmatrix}$ V = 行ベクトル J = 線形独立

グラフ的マトロイド

V = 辺集合 J = 森全体

計算量の評価

Q. 劣モジュラ関数やマトロイドをどう扱うのか?

計算量の評価

Q. 劣モジュラ関数やマトロイドをどう扱うのか?

劣モジュラ関数へのアクセス

マトロイドへのアクセス

マトロイド制約下での単調劣モ最大化の(1-1/e)近似アルゴリズムの計算量

クエリ回数

2007 Calinescu-Chekuri-Pál-Vondrák $ilde{O}(n^8)$

 $n = |V|, \forall \vdash \Box \land \vdash \circlearrowleft \supset \neg \nearrow r (\leq n)$

マトロイド制約下での単調劣モ最大化の $(1-1/e-\epsilon)$ 近似アルゴリズムの計算量

クエリ回数

2007	Calinescu-Chekuri-Pál-Vondrák	$\tilde{O}(n^8)$
2012	Filmus-Ward	$\tilde{O}_{\epsilon}(rn^4)$
2014	Badanidiyuru-Vondrák	$\tilde{O}_{\epsilon}(rn)$
2015	Buchbinder-Feldman-Schwartz	$\tilde{O}_{\epsilon}(r^2 + \sqrt{r}n)$

n = |V|, マトロイドのランク $r(\leq n)$

マトロイド制約下での単調劣モ最大化の $(1-1/e-\epsilon)$ 近似アルゴリズムの計算量

クエリ回数

2007	Calinescu-Chekuri-Pál-Vondrák	$\tilde{O}(n^8)$
2012	Filmus-Ward	$\tilde{O}_{\epsilon}(rn^4)$
2014	Badanidiyuru-Vondrák	$\tilde{O}_{\epsilon}(rn)$
2015	Buchbinder-Feldman-Schwartz	$\tilde{O}_{\epsilon}(r^2 + \sqrt{r}n)$
2024	本研究	$\widetilde{\boldsymbol{o}}_{\epsilon}(\sqrt{r}n)$

n = |V|, マトロイドのランク $r(\leq n)$

元問題

 $\max f(S)$ s.t. $S \in \mathcal{I}$

劣モジュラ関数 $f: 2^V \to \mathbb{R}_{\geq 0}$

1 連続緩和

 $\max f(S)$ s.t. $S \in \mathcal{I}$

緩和問題

 $\max F(x)$ s.t. $x \in \mathcal{B}(\mathcal{M})$

多重線形拡張 $F: [0,1]^V \to \mathbb{R}_{>0}$

$$F(x) = \sum_{S \subseteq V} f(S) \prod_{v \in S} x_v \prod_{v \in V \setminus S} (1 - x_v)$$

マトロイド基多面体

 $\mathcal{B}(\mathcal{M}) = \text{conv} \{ \chi_B \mid B \in \mathcal{B} \}$

① 連続緩和

元問題

 $\max f(S)$ s.t. $S \in \mathcal{I}$

 $\max F(x)$ s.t. $x \in \mathcal{B}(\mathcal{M})$

連続最適化

$$x \in \mathcal{B}(\mathcal{M})$$

 $\mathbb{E}[F(x)] \geq (1 - 1/e - \epsilon)f(OPT)$

① 連続緩和

元問題

 $\max f(S)$ s.t. $S \in \mathcal{I}$

 $\max F(x)$ s.t. $x \in \mathcal{B}(\mathcal{M})$

② 連続最適化

$$S \in \mathcal{I}$$

 $\mathbb{E}[f(S)] \geq (1 - 1/e - \epsilon)f(OPT)$

$$x \in \mathcal{B}(\mathcal{M})$$
s.t.
$$\mathbb{E}[F(x)] \ge (1 - 1/e - \epsilon)f(OPT)$$

3対め

元問題

 $\max f(S)$ s.t. $S \in \mathcal{I}$

①連続緩和

緩和問題

 $\max F(x)$ s.t. $x \in \mathcal{B}(\mathcal{M})$

②連続最適化

 $oldsymbol{\widetilde{o}}_{\epsilon}(rn)$ 回クエリ

[Badanidiyuru-Vondrák 2014]

$$S \in \mathcal{I}$$

s.t.

$$\mathbb{E}[f(S)] \geq (1 - 1/e - \epsilon)f(OPT)$$

s.t.
$$\mathbb{E}[F(x)] \ge (1 - 1/e - \epsilon)f(OPT)$$

 $x \in \mathcal{B}(\mathcal{M})$

③丸め

元問題

 $\max f(S)$ s.t. $S \in \mathcal{I}$

①連続緩和

緩和問題

 $\max F(x)$ s.t. $x \in \mathcal{B}(\mathcal{M})$

②連続最適化

 $\widetilde{m{o}}_{\epsilon}(rn)$ 回クエリ

[Badanidiyuru-Vondrák 2014]

$$S \in \mathcal{I}$$

s.t.

$$\mathbb{E}[f(S)] \geq (1 - 1/e - \epsilon)f(OPT)$$

 $x \in \mathcal{B}(\mathcal{M})$ s.t. $\mathbb{E}[F(x)] \ge (1 - 1/e - \epsilon)f(OPT)$

③丸め

 $O_{\epsilon}(r^2)$ 回クエリ [Chekuri-Vondrák-Zenklusen 2010]

元問題

 $\max f(S)$ s.t. $S \in \mathcal{I}$

①連続緩和

緩和問題

 $\max F(x)$ s.t. $x \in \mathcal{B}(\mathcal{M})$

②連続最適化

$$oldsymbol{\widetilde{o}}_{\epsilon}(\sqrt{r}n)$$
回クエリ

[Buchbinder et al. 2015]

$$S \in \mathcal{I}$$

s.t.

$$\mathbb{E}[f(S)] \geq (1 - 1/e - \epsilon)f(OPT)$$

$$x \in \mathcal{B}(\mathcal{M})$$
s.t.
$$\mathbb{E}[F(x)] \ge (1 - 1/e - \epsilon)f(OPT)$$

③丸め

 $O_{\epsilon}(r^2)$ 回クエリ [Chekuri-Vondrák-Zenklusen 2010]

元問題

 $\max f(S)$ s.t. $S \in \mathcal{I}$

①連続緩和

緩和問題

 $\max F(x)$ s.t. $x \in \mathcal{B}(\mathcal{M})$

②連続最適化

$$\widetilde{m{o}}_{\epsilon}(\sqrt{r}n)$$
回クエリ

[Buchbinder et al. 2015]

$$S \in \mathcal{I}$$

s.t.

$$\mathbb{E}[f(S)] \geq (1 - 1/e - \epsilon)f(OPT)$$

s.t. $\mathbb{E}[F(x)] \ge (1 - 1/e - \epsilon)f(OPT)$

 $x \in \mathcal{B}(\mathcal{M})$

③丸め

 $\widetilde{O}_{\epsilon}(r^{3/2})$ 回クエリ [本研究]

$$x = \beta_1 \chi_{B_1} + \dots + \beta_t \chi_{B_t}$$

入力: $\mathcal{M} = (V, \mathcal{I})$, t個の基の凸結合で与えられる点 $x \in \mathcal{B}(\mathcal{M})$

入力: $\mathcal{M} = (V, \mathcal{I})$, t個の基の凸結合で与えられる点 $x \in \mathcal{B}(\mathcal{M})$

出力: \mathcal{M} の基 S s.t. 任意の劣モ関数fに対して $\mathbb{E}[F(\chi_S)] \geq F(x)$

$$F(\chi_S) = f(S)$$

高速な丸めアルゴリズム

入力: $\mathcal{M} = (V, \mathcal{I}), t$ 個の基の凸結合で与えられる点 $x \in \mathcal{B}(\mathcal{M})$

出力: \mathcal{M} の基 S s.t. 任意の劣モ関数fに対して $\mathbb{E}[f(S)] \geq (1-\epsilon)F(x)$

定理 [Chekuri-Vondrák-Zenklusen 2010] $O(r^2t)$ 回の独立性オラクルの使用

定理 [本研究]

 $\widetilde{O}_{\epsilon}(r^{3/2}t)$ 回の独立性オラクルの使用

```
SwapRound(\mathbf{x} = \boldsymbol{\beta}_1 \boldsymbol{\chi}_{B_1} + \dots + \boldsymbol{\beta}_t \boldsymbol{\chi}_{B_t})
C_1 \leftarrow B_1, \, \gamma_1 \leftarrow \beta_1
For i = 1, \dots t - 1:
C_{i+1} \leftarrow \mathbf{MergeBases}(\gamma_i, C_i, \beta_{i+1}, B_{i+1})
\gamma_{i+1} \leftarrow \gamma_i + \beta_{i+1}
Return C_t
```

SwapRound(
$$\mathbf{x} = \boldsymbol{\beta}_1 \boldsymbol{\chi}_{B_1} + \dots + \boldsymbol{\beta}_t \boldsymbol{\chi}_{B_t}$$
)
$$C_1 \leftarrow B_1, \, \gamma_1 \leftarrow \beta_1$$
For $i = 1, \dots t - 1$:
$$C_{i+1} \leftarrow \mathsf{MergeBases}(\gamma_i, C_i, \beta_{i+1}, B_{i+1})$$

$$\gamma_{i+1} \leftarrow \gamma_i + \beta_{i+1}$$

Return C_t

MergeBases ($\beta_1, B_1, \beta_2, B_2$)

While $B_1 \neq B_2$:

(Step1) Find v, u such that $B_1 + v - u \in \mathcal{I}$ and $B_2 + u - v \in \mathcal{I}$

(Step2)
$$B_1 \leftarrow B_1 + v - u$$
 w.p. $\beta_2/(\beta_1 + \beta_2)$
 $B_2 \leftarrow B_2 + u - v$ w.p. $\beta_1/(\beta_1 + \beta_2)$

SwapRound(
$$\mathbf{x} = \boldsymbol{\beta_1} \boldsymbol{\chi_{B_1}} + \cdots + \boldsymbol{\beta_t} \boldsymbol{\chi_{B_t}}$$
)
$$C_1 \leftarrow B_1, \ \gamma_1 \leftarrow \beta_1$$
For $i = 1, \dots t - 1$:
$$C_{i+1} \leftarrow \mathbf{MergeBases}(\gamma_i, C_i, \beta_{i+1}, B_{i+1})$$

$$\gamma_{i+1} \leftarrow \gamma_i + \beta_{i+1}$$
Return C_t

$$\mathbf{MergeBases}(\beta_1, B_1, \beta_2, B_2)$$
While $B_1 \neq B_2$:
$$(Step1) \ \mathbf{Find} \ v, u \ \mathbf{such} \ \mathbf{that} \ B_1 + v - u \in \mathcal{I}$$
and $B_2 + u - v \in \mathcal{I}$

$$(Step2) \ B_1 \leftarrow B_1 + v - u \ \text{w.p.} \ \beta_2/(\beta_1 + \beta_2)$$

 $B_2 \leftarrow B_2 + u - v$ w.p. $\beta_1/(\beta_1 + \beta_2)$

<u>定理</u> [Chekuri-Vondrák-Zenklusen 2010]

 $O(r^2t)$ 回の独立性クエリを使用

```
SwapRound(x = \beta_1 \chi_{B_1} + \cdots + \beta_t \chi_{B_t})
   C_1 \leftarrow B_1, \, \gamma_1 \leftarrow \beta_1
   For i = 1, ... t - 1:
       C_{i+1} \leftarrow \mathsf{MergeBases}(\gamma_i, C_i, \beta_{i+1}, B_{i+1})
       \gamma_{i+1} \leftarrow \gamma_i + \beta_{i+1}
                                        MergeBases(\beta_1, B_1, \beta_2, B_2)
   Return C_t
                                                                                                        \mathbf{0}(\mathbf{r}) 回クエリ
                                           While B_1 \neq B_2:
                                               (Step1) Find v, u such that B_1 + v - u \in \mathcal{I}
                                                            and B_2 + u - v \in \mathcal{I}
                                               (Step2) B_1 \leftarrow B_1 + v - u w.p. \beta_2/(\beta_1 + \beta_2)
                                                             B_2 \leftarrow B_2 + u - v w.p. \beta_1/(\beta_1 + \beta_2)
```

事実: Step1 は **O**(**r**t) 回実行

事実: Step2で $\mathbb{E}[F(x)]$ は非減少

[Chekuri-Vondrák-Zenklusen 2010]

$$B_1 + v - u \in \mathcal{I}$$
かつ $B_2 + u - v \in \mathcal{I}$ なる2要素 v, u を使用

拡張!

■[本研究]

任意の長さの有向閉路を使用

[Chekuri-Vondrák-Zenklusen 2010]

 $B_1 + v - u \in \mathcal{I}$ かつ $B_2 + u - v \in \mathcal{I}$ なる2要素 v, u を使用

長さ2の有向閉路(双方向辺)

■[本研究]

任意の長さの有向閉路を使用

$$B_1 + v - u \in \mathcal{I}$$

$$B_2 + u - v \in \mathcal{I}$$

W.p. $eta_2/(eta_1+eta_2)$: B_1 を更新
W.p. $eta_1/(eta_1+eta_2)$: B_2 を更新

W.p.
$$eta_2/(eta_1+eta_2)$$
:
 B_1 を更新
W.p. $eta_1/(eta_1+eta_2)$:
 B_2 を更新

 $\{0,1\}$ からiを一様ランダムに選ぶ $B_2 \leftarrow B_2 + u_{i+1} - v_i$

W.p.
$$eta_2/(eta_1+eta_2)$$
: B_1 を更新
W.p. $eta_1/(eta_1+eta_2)$: B_2 を更新

$$\{0,1\}$$
から i を一様ランダムに選ぶ $B_2 \leftarrow B_2 + u_{i+1} - v_i$

補題: $\mathbb{E}[\boldsymbol{\beta}_1 \chi_{B_1^{\text{new}}} + \boldsymbol{\beta}_2 \chi_{B_2^{\text{new}}}] = \boldsymbol{\beta}_1 \chi_{B_1^{\text{old}}} + \boldsymbol{\beta}_2 \chi_{B_2^{\text{old}}}$

w.p.
$$eta_2/(eta_1+eta_2)$$
:
 B_1 を更新
w.p. $eta_1/(eta_1+eta_2)$:
 B_2 を更新

 $\{0,1\}$ から i を一様ランダムに選ぶ $B_2 \leftarrow B_2 + u_{i+1} - v_i$

$$\mathbb{E}[F(x^{\text{new}})] \geq F(x^{\text{old}})$$

補題: $\mathbb{E}[\boldsymbol{\beta}_1 \boldsymbol{\chi}_{B_1^{\text{new}}} + \boldsymbol{\beta}_2 \boldsymbol{\chi}_{B_2^{\text{new}}}] = \boldsymbol{\beta}_1 \boldsymbol{\chi}_{B_1^{\text{old}}} + \boldsymbol{\beta}_2 \boldsymbol{\chi}_{B_2^{\text{old}}}$

マトロイド交叉の高速化の道具

[Nguyễn 2019, Chakrabarty-Lee-Sidford-Singla-Wong 2019]

入力: $\mathcal{M} = (V, \mathcal{I}), B \in \mathcal{I}, v \in V \setminus B, A \subseteq B$

出力: $B-u+v\in\mathcal{I}$ なる $u\in A$ を一つ

二分探索を用いることで、 **O**(log |A|) 回の独立性オラクル へのクエリでできる

補題

十分高い確率で、 $\tilde{O}(\sqrt{r})$ 回の独立性クエリで閉路をみつけることができる

補題

十分高い確率で、 $\tilde{O}(\sqrt{r})$ 回の独立性クエリで閉路をみつけることができる

閉路をみつけるアルゴリズム

① $B_1 \setminus B_2$ (と $B_2 \setminus B_1$)から $\widetilde{O}(\sqrt{r})$ 要素の集合 L (と R)をサンプル

補題

十分高い確率で、 $\tilde{O}(\sqrt{r})$ 回の独立性クエリで閉路をみつけることができる

- ① $B_1 \setminus B_2$ (と $B_2 \setminus B_1$)から $\widetilde{\boldsymbol{O}}(\sqrt{\boldsymbol{r}})$ 要素の集合 L (と R) をサンプル
- ② $G[L \cup R]$ の各頂点に入る有向辺を1本ずつみつける

補題

十分高い確率で、 $\tilde{O}(\sqrt{r})$ 回の独立性クエリで閉路をみつけることができる

- ① $B_1 \setminus B_2$ (と $B_2 \setminus B_1$)から $\tilde{O}(\sqrt{r})$ 要素の集合 I(V D) を サンプル こ分探索で $\tilde{O}(\sqrt{r})$ 回クエリ
- ② $G[L \cup R]$ の各頂点に入る有向辺を1本ずつみつける

補題

十分高い確率で、 $\tilde{O}(\sqrt{r})$ 回の独立性クエリで閉路をみつけることができる

- ① $B_1 \setminus B_2$ (と $B_2 \setminus B_1$)から $\tilde{\boldsymbol{O}}(\sqrt{\boldsymbol{r}})$ 要素の集合 L (と R) をサンプル
- ② $G[L \cup R]$ の各頂点に入る有向辺を1本ずつみつける
- ③ $\mathsf{If}(G[L \cup R] \ \boldsymbol{CO} \ \boldsymbol{v} \in L \cup R \ \boldsymbol{O} \ \boldsymbol{v} \otimes \boldsymbol{v}) = \mathbf{0}$ Then $G \subset \boldsymbol{v}$ に入る双方向辺を探す

補題

十分高い確率で、 $\tilde{O}(\sqrt{r})$ 回の独立性クエリで閉路をみつけることができる

閉路をみつけるアルゴリズム

- ① $B_1 \setminus B_2$ (と $B_2 \setminus B_1$)から $\widetilde{\boldsymbol{O}}(\sqrt{\boldsymbol{r}})$ 要素の集合 L (と R) をサンプル
- ② $G[L \cup R]$ の各頂点に入る有向辺を1本ずつみつける

<u>補題</u> 二分探索で,十分高い確率で $\tilde{o}(\sqrt{r})$ 回クエリ

補題

十分高い確率で、 $\tilde{O}(\sqrt{r})$ 回の独立性クエリで閉路をみつけることができる

- ① $B_1 \setminus B_2$ (と $B_2 \setminus B_1$)から $\tilde{\boldsymbol{O}}(\sqrt{\boldsymbol{r}})$ 要素の集合 L (と R) をサンプル
- ② $G[L \cup R]$ の各頂点に入る有向辺を1本ずつみつける
- ③ If $(G[L \cup R]$ での $v \in L \cup R$ の次数) = 0 Then Gで v に入る双方向辺を探す Else $G[L \cup R]$ には有向閉路が存在

結論

- マトロイド制約下での単調劣モジュラ最大化問題に対して オラクルの使用回数の少ないアルゴリズムを設計
- [Chekuri-Vondrák-Zenklusen 2010]よりも高速な丸めアルゴリズム
 - 任意の長さの閉路に拡張
 - 閉路を高速に見つけるアルゴリズムの開発 『マトロイド交叉の高速化のテクニック

結論

- マトロイド制約下での単調劣モジュラ最大化問題に対して オラクルの使用回数の少ないアルゴリズムを設計
- [Chekuri-Vondrák-Zenklusen 2010]よりも高速な丸めアルゴリズム
 - 任意の長さの閉路に拡張
 - 閉路を高速に見つけるアルゴリズムの開発 ☞ マトロイド交叉の高速化のテクニック

後続研究

[Buchbinder-Feldman 2024] $(1-1/e-\epsilon)$ -近似が決定的 $\tilde{O}_{\epsilon}(rn)$ 回クエリ, 乱択 $\tilde{O}_{\epsilon}(n+r\sqrt{n})$ 回クエリ

 $1/\epsilon$ の項は指数

結論

- マトロイド制約下での単調劣モジュラ最大化問題に対して オラクルの使用回数の少ないアルゴリズムを設計

[本研究]

連続最適化 $\widetilde{O}_{\epsilon}(n\sqrt{r})$ 回クエリ $\stackrel{+}{+}$ 丸め $\widetilde{O}_{\epsilon}(r^{3/2})$ 回クエリ

(補足)

マトロイドが**ランクオラクル**で与えられている場合: $\widetilde{O}_{\epsilon}(n+r^{3/2})$ 回クエリ

後続研究

[Buchbinder-Feldman 2024]

 $(1-1/e-\epsilon)$ -近似が決定的 $\tilde{O}_{\epsilon}(rn)$ 回クエリ, 乱択 $\tilde{O}_{\epsilon}(n+r\sqrt{n})$ 回クエリ

 $1/\epsilon$ の項は指数