

FIRST SEMESTER 2020-2021

Course Handout (Part II)

In addition to part-I (General handout for all courses appended to the timetable) this portion gives further specific details regarding the course:

COURSE NO : CS G623

COURSE TITLE : ADVANCED OPERATING SYSTEMS

Instructor In-charge : Avinash Gautam [avinash@pilani.bits-pilani.ac.in]

1. COURSE OBJECTIVE

To introduce the design and implementation issues of distributed operating systems

2. PRE-REQUISITES

It is assumed that the students have done a basic course on operating systems and computer networks. Also the students should have good programming experience in C/C++/Java languages.

3. SCOPE

Distributed Operating Systems work in an environment where we have independent machines (both hardware and software) connected with each other over a network. A Distributed OS makes a Distributed System a virtual uni-processor system. The distributed OS to be studied in this course is microkernel based. It's just that the user level processes that are separated from the kernel can run on remote machines. Also, the OS has some sort of idea what machines are hooked up, and can make decisions about where to run things based on the relative speed of the machines.

4. BOOKS

Text Book

[T1] M. Singhal & N. Shivaratri, "Advanced Concepts in Operating Systems: Distributed, Database and Multiprocessor Operating Systems", Tata McGraw Hill, 2001.

Reference Books

[R1] Distributed Systems Principles and Paradigms 2/E by A. S. Tanenbaum, PHI

[R2] Distributed Operating Systems – The Logical Design by A. Goscinski, AW

[R3] Distributed Systems-Concepts and Design by G. Coulouris, AW

5. PLAN OF STUDY

Lec#	Lecture Session	Learning Outcome	REFS (Text)
1	Overview of Advanced Operating System	Design approaches, Motivation, Types of Advanced OS.	T1. Ch 1, R1. Ch 1
2-3	Architecture and Models for Communication	Architectural Issues, Communication Networks, and Communication Primitives. Need for a model, Message Passing for IPC, Shared Variables, Relationship among models	T1. Chap 4, <class Notes></class
4-7	Time in distributed systems	Limitations of DS, logical clock, vector clock, physical clock synchronization, causal ordering of messages, global state, cuts of distributed computation	T1. Ch 5, R1. Ch 6, <class notes=""></class>

7.40	B:		T4 CI C CI
7-10	Distributed Mutual Exclusion	Lamport, Recart-agrawala, and Maekawa's	T1. Ch 6, <class< td=""></class<>
		algorithms; Suzuki-kasami broadcast algorithm,	Notes>
		and Raymond's tree based algorithm	
11-14	Global State Collection and	Termination Detection, Resource and	T1. Ch 7, <class< td=""></class<>
	Distributed Deadlock Detection	Communication deadlock, Strategies to handle	Notes>
		deadlock, Deadlock Detection Algorithms	
15-18	Agreement Protocols	System model, Classification of agreement	T1. Ch 8
		problems, Solutions to Byzantine agreement	
		problems	
19-20	Coordination Algorithms	Leader Election, Synchronizers	<class notes=""></class>
21-24	Graph Algorithms	Routing Algorithms, Graph Traversal and	<class notes=""></class>
		Coloring	
25-27	Distributed Scheduling	Issues in Load Distribution, Components of a	T1. Ch 11
		load distribution algorithm, Load Distribution	
		Algorithms, Case studies: V-System, Sprite, and	
		Condor	
28-30	Fault Tolerance	Commit Protocols, Voting Protocols, Failure	T1. Ch 13, <class< td=""></class<>
		Resilient Processes	Notes>
31-33	Distributed Transactions	Concurrency control and serializability, atomic	<class notes=""></class>
		commit protocols and recovery	
34-37	Group Communication	Multicasting in Distributed Systems	<class notes=""></class>

EVALUATION SCHEME

Component & Nature	Duration	Weightage	Date and Time	Nature of
				component
Test-1	30 Min	15%	10 th Sep to 20 th Sep	[@] TBA
Test-2	30 Min	15%	9 th Oct to 20 th Oct	[@] TBA
Test-3	30 Min	15%	10 th Nov to 20 th Nov	[@] TBA
First Term Paper	30 Min	10%	[@] TBA	Open Book
Presentation			STBA	
Second Term Paper	30 Min	10%	[@] TBA	Open Book
Presentation			- I BA	
Comprehensive Exam	3 hrs	35%	Refer to the Time-Table	Open Book

[®]To be announced later

NOTICES

All notices related to the course will be posted on Nalanda.

MAKE-UP

- For make-up in Test-1, Test-2, Test-3, and Term paper presentations: makeup will be given only in case of hospitalization (student will have to provide evidence for that).
- For comprehensive examination make-up: contact AUGSD/AGSRD.

CHAMBER CONSULTATION HOUR: send an email to the IC and seek time for consultation.

Instructor-in-charge, CS G623

