

Regular Languages Discrete Mathematic

Anders Kalhauge

Fall 2017

Set Theory

Computing

Formal languages

Regular expressions

RegEx

Finite State Automata

Non-regular Languages

Computing

Formal languages

Regular expressions

RegEx

Finite State Automata

Non-regular Languages

Theoretical foundation of Computing

- □ Logic the foundations of mathematics
- □ Electrical engineering the design of switching circuits
- ☐ Brain research models of neurons
- Linguistic the formal specification of languages

Church-Turing thesis

A function on the natural numbers is computable by a human being following an algorithm, ignoring resource limitations, if and only if it is computable by a Turing machine

Chomsky's language specifications

- Regular languages
 - Regular expressions
 - □ Pattern matching
 - □ Finite-state automaton
 - Not Turing-complete
- □ Context-free languages
 - □ Backus-Naur notation
 - □ Push-down automaton
 - Turing-complete

Computing

Formal languages

Regular expressions

RegEx

Finite State Automata

Non-regular Languages

Formal languages

- □ Lexical scanner
- Syntactic Analyser
- Code generator

Alphabet Σ a finite set of characters

String over Σ Either a finite sequence of characters in Σ or the empty (null) string ϵ

Length of a string over Σ The number of characters in the string, the length of ϵ is 0

Formal language over Σ a set of strings over Σ

 \emptyset is a formal language who nothing does, does nothing wrong

Alphabets and strings

- \square Σ is an alphabet
- \square Σ^n is all strings over Σ with the length n
- \square Σ^* is all strings over Σ the Kleene closure of Σ

 \square LL': Concatenation of L and L'

$$LL' = \{x \ y \mid x \in L \land y \in L'\}$$

 \square $L \cup L'$: **Union** of L and L'

$$L \cup L' = \{x \mid x \in L \lor x \in L'\}$$

 \square L^* : Kleene closure of L

 $L^* = \{x \mid \text{ is a concatenation of strings in } L\}$

The following are regular expressions over Σ :

Base
$$\emptyset$$
, ϵ , $x \mid x \in \Sigma$

Recursion $r,s \in \text{regular expressions over } \Sigma \to$

- $\ \square \ (rs)$ r concatenated with s
- $\hfill\Box$ $(r\,|\,s)$ r or s

Restriction Nothing else is a regular expression

Some syntactic sugar:

- 1. If "(", "|", ")", or "*" are members of the alpfabet Σ , an escape character as "\" can be used.
- 2. The order of precedence, "*", concatenation, and "|" can be used to remove parantheses
- 3. Outer parenthesis can be removed

¹the Kleene closure of r

Exercise

- □ Define the alphabet to express an ISO-month (yyyy-mm)
- □ Define the regular expression for the language of ISO-months

- Define the alphabet to express an ISO-month (yyyy-mm)
 - $\square \{0,1,2,\ldots,9,-\}$
- □ Define the regular expression for the language of ISO-months

- □ Define the alphabet to express an ISO-month (yyyy-mm)
 - \square {0, 1, 2, ..., 9, -}
- □ Define the regular expression for the language of ISO-months
 - \square year: (0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)... (four times)
 - \square month: (0)(1|2|3|4|5|6|7|8|9)|(1)(0|1|2)
 - \square date: < date > < month >

defined by regular expressions

L(r) is the language defined by r

- Base \square $L(\emptyset) = \emptyset$
 - $\Box L(\epsilon) = \{\epsilon\}$
 - $\square \ \forall a \in \Sigma, L(a) = \{a\}$
- Recursion $\Box L(r\,r') = L(r)L(r')$
 - \square $L(r \mid r') = L(r) \cup L(r')$
 - \square $L(r^*) = (L(r))^*$

What is $\{a, b, z\}^*$?

What is
$$\{a, b, z\}^*$$
?

$$\{\epsilon, a, b, z, aa, ab, az, ba, bb, bz, za, zb, zz, aaa, aab \dots\}$$

What is
$$\{a,b,z\}^*$$
 ?
$$\{\epsilon,a,b,z,aa,ab,az,ba,bb,bz,za,zb,zz,aaa,aab\dots\}$$
 Is $\{a,b,z\}^*$ countable?

- \square abc same as abc
 - $lue{}$. same as any character $x\,|\,x\in\Sigma$
 - $ldsymbol{\square}$ ast same as ast
- \square a+ same as aa*
- \square [abc] same as a|b|c
- \square a|b|c same as a|b|c
- \square [0-9] same as 0|1|2|3|4|5|6|7|8|9
- $\ \, \Box \ \, [\mathrm{pq0-9a-d}] \ \, \mathrm{same} \ \, \mathrm{as} \ \, p|q|0|1|2|3|4|5|6|7|8|9|a|b|c|d \\$
- \square [^xyz] same as $\Sigma \{x, y, z\}$
- \square a{4} same as aaaa
- \square [0-9]{4}-(0[1-9])|(1[012]) same as ?

Finite-state Automaton

Diagram

Definition

A finite-state automaton consists of:

- 1. a finite **input alphabet** I of input symbols
- 2. a finite set of states S
- 3. an initial state $s_0, s_0 \in S$
- 4. a set of final states² F
- 5. a next-state function $N: S \times I \rightarrow S$

²accepting states

- \square A is a finite-state automaton with input alphabet I
- \square The string w over I, $w \in I^*$
- $\ \square$ The symbols in w brings A from its initial state s_0 to a final state $s_f \in F$
- \square L(A) is the language accepted by A.
- $\ \square \ L(A) = \{w \in I^* \, | \, w \text{ is accepted by } A\}$

- $\hfill N:S\times I\to S$ is the next-state function N(s,m) gives the next state of A if A was in the state s, given the symbol $m\in I$
- \square $N^*:S imes I^* o S$ is the eventual-state function $N^*(s,w)$ gives the state to which A goes if the symbols of w are input to A in sequence, starting when A is in state s

$$w$$
 is accepted by $A \iff N^*(s_0, w) \in F$
$$L(A) = \{ w \in I^* \mid N^*(s_0, w) \in F \}$$

F is the final (or accepting) states of A

Regular languages

Regular languages:

can be defined by a regular expression

 \updownarrow

can be accepted by a finite-state automata

Regular languages

Regular languages:

can be defined by a regular expression

1

can be accepted by a finite-state automata

but not all languages are regular...

- \square L is the language over the alphabet $\Sigma = \{a, b\}$
- $\square L = \{ w \in \Sigma^*, k \in \mathbb{N} \mid w = a^k b^k \}$
- \square a7 = aaaaaaa as an example of a^k
- $\square L = \{ab, aabb, aaabbb, aaaabbbb, \dots\}$
- $lue{}$ A is a finite-state automaton, it has a finite number n of states
- $lue{}$ Choosing a k>n must bring A to a state s_m already visited by h< k a's
- $\square : N^*(s_0, a^h b^k) \in F, h \neq k \text{ and } a^h b^k \notin L$