Random Forests

INDRAPRASTHA INSTITUTE *of* INFORMATION TECHNOLOGY **DELHI**

Bias vs. Variance Analysis

Reduce Variance Without Increasing Bias

• Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

- Average models to reduce model variance
- Problem: Only one training set
 - Where do multiple models come from?
- Ensemble learning
 - Combining weak classifiers (of the same type) in order to produce a strong classifier
 - Condition: diversity among the weak classifiers
- Weak classifiers: only need to be better than random guess

Decision Trees -> Random Forests

- DT are non-flexible -> Inaccurate
 - Performance on unseen data suffers -> High Variance
- Definition: Random Forests
 - Collection of unpruned CARTs
 - Rule to combine individual tree decisions
- Ensemble learning: Two ways to introduce randomness/diversity
 - o "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of m attributes instead of all attributes.

Random Forests

Figure 5.40. Random forests.

Bagging

- L: original learning set composed of n samples
- Generate K learning sets L_k...
 - \circ ... composed of m samples, m ≤ n,...
 - ... obtained by uniform sampling with replacement from L
 - o In consequences, L_k may contain repeated samples

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

0.632 Bootstrap

- \bullet m=n
- A particular training data has a probability of (1-1/n) of not being picked
- Thus its probability of ending up in the test data (not selected) is, when picking *n* data points :

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

- -> Training data will contain approximately 63.2% of the instances
- Out of Bag (OOB) samples-> Out-Of-Bag Error

Out-of-bag error

- For each sample *S* of the OOB set
 - Predict the class of S with OOB classifiers that does not contain the sample S
 - Error = is prediction correct?
- Out-of-bag error = average over all samples of *S*
- Provides an estimation of the generalization error
 - Can be used to decide when to stop adding trees to the forest
 - As accurate as using a test set of the same size as the training set.
 - Therefore, using the out-of-bag error estimate removes the need for a set aside test set.

Random forest > Bagging > Aggregation

- Bagging: Bootstrap aggregation
- Technique of ensemble learning
 - To avoid over-fitting
 - Important since trees are unpruned
 - To improve stability and accuracy
- Idea
 - Create *N* bootstrap samples $\{S_1, ..., S_N\}$ of *S* as follows:
 - For each S_i randomly draw |S| examples from S with replacement
 - For each $i = 1, ..., N, h_i = Learn(S_i)$
 - Output $H = \langle \{h_1, \dots, h_N\} \rangle$, majority Vote >
 - Use average or majority voting to aggregate results

Random forest > Bagging > Aggregation

Bagging Example -1

Goal: Find a collection of 10 simple thresholding classifiers that collectively can classify correctly.

• Each simple (or weak) classifier is: (x<=K class = +1 or -1 depending on which value yields the lowest error)

Bagging Example - I

Bagging Round 1:

х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
У	1	1	1	1	-1	-1	-1	-1	1	1

$$x <= 0.35 ==> y = 1$$

 $x > 0.35 ==> y = -1$

Bagging Round 2:

X	0.1	0.2	0.3	0.4	0.5	0.8	0.9	1	1	1
У	1	1	1	-1	-1	1	1	1	1	1

$$x \le 0.65 ==> y = 1$$

 $x > 0.65 ==> y = 1$

Bagging Round 3:

х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9
у	1	1	1	-1	-1	-1	-1	-1	1	1

$$x \le 0.35 ==> y = 1$$

 $x > 0.35 ==> y = -1$

Bagging Round 4:

	0.1									
у	1	1	1	-1	-1	-1	-1	-1	1	1

$$x \le 0.3 ==> y = 1$$

 $x > 0.3 ==> y = -1$

Bagging Example - II

Bagging Round 5:

х	0.1	0.1	0.2	0.5	0.6	0.6	0.6	. 1	1	1
у	1	1	1	-1	-1	-1	-1	1	1	1

Bagging Round 6:

X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1
у	1	-1	-1	-1	-1	-1	-1	1	1	1

$$x \le 0.75 ==> y = -1$$

 $x > 0.75 ==> y = 1$

Bagging Round 7:

X	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1
У	1	-1	-1	-1	-1	1	1	1	1	1

$$x <= 0.75 ==> y = -1$$

 $x > 0.75 ==> y = 1$

Bagging Round 8:

X	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1
у	1	1	-1	-1	-1	-1	-1	1	1	1

$$x <= 0.75 ==> y = -1$$

 $x > 0.75 ==> y = 1$

Bagging Example - III

Bagging Round 9:

X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1
у	1	1	-1	-1	-1	-1	-1	1	1	1

Bagging Round 10:

	0.1									
у	1	1	1	1	1	1	1	1	1	1

$$x \le 0.05 ==> y = -1$$

 $x > 0.05 ==> y = 1$

Bagging Example - IV

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

Method for Growing the tree

- Fix a $m \le M$. At each node
- Method 1
 - Choose *m* attributes randomly, compute their information gains, and choose the attribute with the largest gain to split
- Method 2: (When *M* is not very large):
 - Select L of the attributes randomly. Compute a linear combination of the L attributes using weights generated from [-1,+1] randomly. That is, new $A = Sum(W_i * M_i)$, i=1..L.

Method for Growing the tree

• Method 3:

 \circ Compute the information gain of all M attributes. Select the top m attributes by information gain. Randomly select one of the m attributes as the splitting node.

Value of m

- For classification, the default value for m is $\lfloor \sqrt{M} \rfloor$ and the minimum node size is one.
- For regression, the default value for m is $\lfloor M/3 \rfloor$ and the minimum node size is five.

Reducing Variance

The variance of B i.i.d. random variables \circ B = number of trees, σ^2 = variance of each individual tree

variance of the ensemble is

- If the variables are simply i.d. (identically distributed, but not
- $\rho\sigma^2 + \frac{1-\rho}{R}\sigma^2$ • The variance of an ensemble is strictly smaller than the variance of an individual model.

necessarily independent) with positive pairwise correlation ρ the

Reducing Variance

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

- As B increases, the second term disappears
- Size of the correlation of pairs of bagged trees limits the benefits of averaging
- To improve the variance reduction of bagging by reducing the correlation ρ between the trees, without increasing the variance too much
 - o Random selection of the input variables during tree growing
 - \circ Specifically, before each split, select m <= p of the input variables at random as candidates for splitting

Reducing Bias and Variance

- Bagging: Each individual classifier is independent
 - o Bagging has little effect on bias
- Each tree generated in bagging is identically distributed (i.d.), the expectation of an average of B such trees is
 - the same as the expectation of any one of them
 - The bias of bagged trees is the same as that of the individual trees
- Can we average and reduce bias?
 - o YES
 - Boosting
- In Boosting the trees are grown in an adaptive way to remove bias, and hence are not i.d.

Boosting

- Boosting is iterative and adaptive:
 - Looks at the errors from previous classifiers to decide what to focus on for the next iteration
 - Successive classifiers depend on their predecessors
 - Key idea: place more weight on "hard" examples (i.e., instances that were misclassified on previous iterations)
 - Records that are classified correctly will have their weights decreased
- Adaboost popular boosting algorithm

Boosting

Bagging and Boosting Summary

Bagging

- Resample data points
- Weight of each classifier is the same
- Only variance reduction
- Robust to noise and outliers

Boosting

- Reweight data points(modify data distribution)
- Weight of classifier vary depending on accuracy
- Reduces both bias and variance
- Can hurt performance with noise and outliers

References

- 1. The Elements of Statistical Learning, Chapter 15
- 2. Efron, B. and R. Tibshirani (1997), "Improvements on Cross-Validation: The .632+ Bootstrap Method," Journal of the American Statistical Association Vol. 92, No. 438. (Jun), pp. 548-560
- 3. https://perso.math.univ-toulouse.fr/motimo/files/2013/07/random-forest.pdf
- 4. https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v10.2.pdf
- 5. StatQuest: Random Forests Part 1 Building, Using and Evaluating a. Look at Part 2 also.

