Claims:

1. A compound of Formula (I)

5

$$R^{1a}$$
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1a}
 R^{1b}
 R^{1a}
 R

or a stereoisomer or a pharmaceutically acceptable salt thereof, wherein:

10

ring B is a cycloalkyl group of 3 to 8 carbon atoms wherein the cycloalkyl group is saturated or partially unsaturated; or a heterocycle of 3 to 7 atoms wherein the heterocycle is saturated or partially unsaturated, the heterocycle containing a heteroatom selected from -O-, -S-, -S(=O)-, -S(=O)₂-, and -N(R⁴)-, the heterocycle optionally containing a -C(O)-; ring B being substituted with O-2 R⁵;

20

Z is selected from a bond, -C(0)-, -C(0)NH-, -C(S)NH-, $-SO_2$ -, and $-SO_2NH$ -;

R^{1a} and R^{1b} are independently selected from H, C_{1-4} alkyl, C_{1-4} cycloalkyl, CF_3 , or alternatively, R^{1a} and R^{1b} are taken together to from =0;

 R^1 is selected from a C_{6-10} aryl group substituted with $0-5\ R^6$ and a 5-10 membered heteroaryl system

containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^6 ;

 R^2 is selected from a C_{6-10} aryl group substituted with 0-5 R^7 and a 5-10 membered heteroaryl system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^7 ;

R⁴ is selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $(CRR)_qOH$, $(CRR)_tSH$, $(CRR)_tOR^{4d}$, $(CHR)_tSR^{4d}$, $(CRR)_tNR^{4a}R^{4a}$, $(CRR)_qC(0)OH$, $(CRR)_rC(0)R^{4b}$, $(CRR)_rC(0)NR^{4a}R^{4a}$, $(CRR)_tOC(0)NR^{4a}R^{4a}$, $(CRR)_tNR^{4a}C(0)OR^{4d}$, $(CRR)_tNR^{4a}C(0)OR^{4d}$, $(CRR)_tNR^{4a}C(0)R^{4b}$, $(CRR)_rS(0)_pR^{4b}$, $(CRR)_rS(0)_2NR^{4a}R^{4a}$, $(CRR)_rNR^{4a}S(0)_2R^{4b}$, C_{1-6} haloalkyl, a $(CRR)_r-C_{3-10}$ carbocyclic residue substituted with 0-3 R^{4e} , and a $(CHR)_r-4-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{4e} ;

20

 R^{4a} , at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{4c} , C_{2-6} alkyl substituted with 0-3 R^{4e} , C_{3-8} alkenyl substituted with 0-3 R^{4e} , C_{3-8} alkynyl substituted with 0-3 R^{4e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-4 R^{4e} , and a $(CHR)_r$ -4-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-2 R^{4e} ;

- R^{4b} , at each occurrence, is selected from H, C_{1-6} alkyl substituted with 0-3 R^{4e} , C_{3-8} alkenyl substituted with 0-3 R^{4e} , C_{3-8} alkynyl substituted with 0-3 R^{4e} , a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{4e} , and a $(CHR)_r$ -4-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-2 R^{4e} ;
- R^{4c} is independently selected from $-C(0)R^{4b}$, $-C(0)OR^{4d}$, 10 $-C(0)NR^{4f}R^{4f}$, and $(CH_2)_r$ phenyl;

5

- R^{4d} , at each occurrence, is selected from methyl, CF_3 , C_{1-6} alkyl substituted with 0-3 R^{4e} , C_{3-8} alkenyl substituted with 0-3 R^{4e} , C_{3-8} alkynyl substituted with 0-3 R^{4e} , and a C_{3-10} carbocyclic residue substituted with 0-3 R^{4e} ;
- R^{4e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO₂, $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{4f}R^{4f}$, $-C(0)R^{4i}$, $-C(0)OR^{4j}$, $-C(0)NR^{4h}R^{4h}$, $-OC(0)NR^{4h}R^{4h}$, $-NR^{4h}C(0)NR^{4h}R^{4h}$, and $(CH_2)_r$ phenyl;
- 25 R^{4f} , at each occurrence, is selected from H, C_{1-6} alkyl, C_{3-6} cycloalkyl, and phenyl;
- R^{4h} , at each occurrence, is independently selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, and a $(CH_2)_r$ - C_{3-10} carbocyclic;

 R^{4i} , at each occurrence, is selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, and a $(CH_2)_r$ - C_{3-6} carbocyclic residue;

5

- R^{4j} , at each occurrence, is selected from CF_3 , C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, and a C_{3-10} carbocyclic residue;
- 10 R⁵, at each occurrence, is independently selected from H, $C_{1-6} \text{ alkyl}, \ C_{2-8} \text{ alkenyl}, \ C_{2-8} \text{ alkynyl}, \ (\text{CRR})_r\text{OH},$ $(\text{CRR})_r\text{SH}, \ (\text{CRR})_r\text{OR}^{5d}, \ (\text{CRR})_r\text{SR}^{5d}, \ (\text{CRR})_r\text{NR}^{5a}\text{R}^{5a},$ $(\text{CRR})_r\text{C}(0)\text{OH}, \ (\text{CRR})_r\text{C}(0)\text{R}^{5b}, \ (\text{CRR})_r\text{C}(0)\text{NR}^{5a}\text{R}^{5a},$ $(\text{CRR})_r\text{NR}^{5a}\text{C}(0)\text{R}^{5b}, \ (\text{CRR})_r\text{OC}(0)\text{NR}^{5a}\text{R}^{5a},$
- 15 (CRR) $_{r}$ NR^{5a}C(O)OR^{5d}, (CRR) $_{r}$ NR^{5a}C(O)NR^{5a}R^{5a}, (CRR) $_{r}$ NR^{5a}C(O)H, (CRR) $_{r}$ C(O)OR^{5b}, (CRR) $_{r}$ OC(O)R^{5b}, (CRR) $_{r}$ S(O) $_{p}$ R^{5b}, (CRR) $_{r}$ S(O) $_{2}$ NR^{5a}R^{5a}, (CRR) $_{r}$ NR^{5a}S(O) $_{2}$ R^{5b}, (CRR) $_{r}$ NR^{5a}S(O) $_{2}$ NR^{5a}R^{5a}, C₁₋₆ haloalkyl, a (CRR) $_{r}$ -C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{5c}, and a (CRR) $_{r}$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S,

substituted with $0-2 R^{5c}$;

 R^{5a} , at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{5g} , C_{2-6} alkyl substituted with 0-2 R^{5e} , C_{3-8} alkenyl substituted with 0-2 R^{5e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{5e} , and a $(CH_2)_r$ -5-10 membered heterocyclic

system containing 1-4 heteroatoms selected from N, O, and S, substituted with O-3 R^{5e} ;

- R^{5b} , at each occurrence, is selected from C_{1-6} alkyl substituted with 0-3 R^{5e} , C_{3-8} alkenyl substituted with 0-2 R^{5e} , C_{3-8} alkynyl substituted with 0-2 R^{5e} , a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{5e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-3 R^{5e} ;
- R^{5c}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, C_{1} , C_{1} , C_{1} , C_{1} , C_{1} , C_{2} , C_{1} , C_{2} ,
- R^{5d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-2 R^{5e} , C_{3-8} alkenyl substituted with 0-2 R^{5e} , C_{3-8} alkynyl substituted with 0-2 R^{5e} , and a C_{3-10} carbocyclic residue substituted with 0-3 R^{5e} ;
- R^{5e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} 30 alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I,

- CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{5f}R^{5f}, and (CH₂)_rphenyl;
- R^{5f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;
 - R^{5g} is independently selected from $-C(0)R^{5b}$, $-C(0)OR^{5d}$, $-C(0)NR^{5f}R^{5f}$, and $(CH_2)_r$ phenyl;
- 10 R, at each occurrence, is selected from H, C_{1-6} alkyl substituted with R^{5e} , C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6} \text{ cycloalkyl, and } (CH_2)_r\text{phenyl substituted }$ with R^{5e} ;
- 15 R⁶, at each occurrence, is selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, NO₂, CN, $(CR'R')_rNR^{6a}R^{6a}$, $(CR'R')_rOH$, $(CR'R')_rO(CR'R')_rR^{6d}$, $(CR'R')_rSH$, $(CR'R')_rC(O)H$, $(CR'R')_rS(CR'R')_rR^{6d}$, $(CR'R')_rSC(O)(CR'R')_rR^{6b}$,
- 20 (CR'R')_rC(O)OH, (CR'R')_rC(O) (CR'R')_rR^{6b}, (CR'R')_rNR^{6a}R^{6a}, (CR'R')_rC(O)NR^{6a}R^{6a}, (CR'R')_rNR^{6f}C(O) (CR'R')_rR^{6b}, (CR'R')_rC(O)O(CR'R')_rR^{6d}, (CR'R')_rOC(O) (CR'R')_rR^{6b}, (CR'R')_rOC(O) NR^{6a}(CR'R')_rR^{6d},
- $(CR'R')_{r}NR^{6a}C(O)NR^{6a}(CR'R')_{r}R^{6d},$ $(CR'R')_{r}NR^{6a}C(S)NR^{6a}(CR'R')_{r}R^{6d},$ $(CR'R')_{r}NR^{6f}C(O)O(CR'R')_{r}R^{6b}, (CR'R')_{r}C(=NR^{6f})NR^{6a}R^{6a},$ $(CR'R')_{r}NHC(=NR^{6f})NR^{6f}R^{6f}, (CR'R')_{r}S(O)_{p}(CR'R')_{r}R^{6b},$ $(CR'R')_{r}S(O)_{2}NR^{6a}R^{6a}, (CR'R')_{r}NR^{6f}S(O)_{2}NR^{6a}R^{6a},$
- 30 $(CR'R')_rNR^{6f}S(O)_2(CR'R')_rR^{6b}, C_{1-6} haloalkyl, C_{2-8}$

alkenyl substituted with 0-3 R', C_{2-8} alkynyl substituted with 0-3 R', and $(CR'R')_r$ phenyl substituted with 0-3 R^{6e};

- 5 alternatively, two R^6 on adjacent atoms on R^1 may join to form a cyclic acetal;
- R^{6a} , at each occurrence, is selected from H, methyl substituted with 0-1 R^{6g} , C_{2-6} alkyl substituted with 10 0-2 R^{6e} , C_{3-8} alkenyl substituted with 0-2 R^{6e} , C_{3-8} alkynyl substituted with 0-2 R^{6e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{6e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{6e} ;
- R^{6b} , at each occurrence, is selected from H, C_{1-6} alkyl substituted with 0-2 R^{6e} , C_{3-8} alkenyl substituted with 0-2 R^{6e} , C_{3-8} alkynyl substituted with 0-2 R^{6e} , a $(CH_2)_rC_{3-6}$ carbocyclic residue substituted with 0-3 R^{6e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{6e} ;
- 25 R^{6d} , at each occurrence, is selected from C_{3-8} alkenyl substituted with 0-2 R^{6e} , C_{3-8} alkynyl substituted with 0-2 R^{6e} , methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{6e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-3 R^{6e} , and a $(CH_2)_r$ -5-6 membered

heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e} ;

- R^{6e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{6f}R^{6f}$, and $(CH_2)_rphenyl$;
- R^{6f} , at each occurrence, is selected from H, C_{1-5} alkyl, and C_{3-6} cycloalkyl, and phenyl;
 - R^{6g} is independently selected from $-C(0)R^{6b}$, $-C(0)OR^{6d}$, $-C(0)NR^{6f}R^{6f}$, and $(CH_2)_r$ phenyl;
- 15 R^7 , at each occurrence, is selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, NO_2 , CN, $(CR'R')_rNR^{7a}R^{7a}$, $(CR'R')_rOH$, $(CR'R')_rO(CR'R')_rR^{7d}$, $(CR'R')_rSH$, $(CR'R')_rC(O)H$, $(CR'R')_rS(CR'R')_rR^{7d}$, $(CR'R')_rC(O)OH$,
- $(CR'R')_{r}C(0) (CR'R')_{r}R^{7b}, (CR'R')_{r}C(0)NR^{7a}R^{7a}, \\ (CR'R')_{r}NR^{7f}C(0) (CR'R')_{r}R^{7b}, (CR'R')_{r}C(0)O(CR'R')_{r}R^{7d}, \\ (CR'R')_{r}OC(0) (CR'R')_{r}R^{7b}, \\ (CR'R')_{r}OC(0)NR^{7a}(CR'R')_{r}R^{7a},$
 - $(CR'R')_rNR^{7a}C(O)NR^{7a}(CR'R')_rR^{7a},$
- $(CR'R')_{r}NR^{7f}C(O)O(CR'R')_{r}R^{7b}, \quad (CR'R')_{r}C(=NR^{7f})NR^{7a}R^{7a}, \\ (CR'R')_{r}NHC(=NR^{7f})NR^{7f}R^{7f}, \quad (CR'R')_{r}S(O)_{p}(CR'R')_{r}R^{7b}, \\ (CR'R')_{r}S(O)_{2}NR^{7a}R^{7a}, \quad (CR'R')_{r}NR^{7a}S(O)_{2}NR^{7a}R^{7a}, \\ (CR'R')_{r}NR^{7f}S(O)_{2}(CR'R')_{r}R^{7b}, \quad C_{1-6} \text{ haloalkyl}, \quad C_{2-8} \\ \text{alkenyl substituted with 0-3 R', } C_{2-8} \text{ alkynyl}$

substituted with 0-3 R', and $(CR'R')_r$ phenyl substituted with 0-3 R^{7e};

alternatively, two R^7 on adjacent atoms on R^2 may join to form a cyclic acetal;

- R^{7a} , at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{7g} , C_{2-6} alkyl substituted with 0-2 R^{7e} , C_{3-8} alkenyl substituted with 0-2 R^{7e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{7e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-2 R^{7e} ;
- R^{7b} , at each occurrence, is selected from C_{1-6} alkyl substituted with 0-2 R^{7e} , C_{3-8} alkenyl substituted with 0-2 R^{7e} , C_{3-8} alkynyl substituted with 0-2 R^{7e} , a $(CH_2)_rC_{3-6}$ carbocyclic residue substituted with 0-3 R^{7e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{7e} ;

15

 R^{7d} , at each occurrence, is selected from C_{3-8} alkenyl substituted with 0-2 R^{7e} , C_{3-8} alkynyl substituted with 0-2 R^{7e} , methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{7e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-3 R^{7e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e} ;

- R^{7e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{7f}R^{7f}$, and $(CH_2)_rphenyl$;
 - R^{7f} , at each occurrence, is selected from H, C_{1-5} alkyl, and C_{3-6} cycloalkyl, and phenyl;
- 10 R^{7g} is independently selected from $-C(0)R^{7b}$, $-C(0)OR^{7d}$, $-C(0)NR^{7f}R^{7f}$, and $(CH_2)_r$ phenyl;
- R', at each occurrence, is selected from H, C_{1-6} alkyl substituted with R^{6e} , C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6} \text{ cycloalkyl, and } (CH_2)_r\text{phenyl substituted }$ with R^{6e} ;
 - R^8 is selected from H, C_{1-4} alkyl, and C_{3-4} cycloalkyl;
- 20 R^9 is selected from, H, C_{1-4} alkyl, C_{3-4} cycloalkyl, and $(CH_2) R^1;$
 - $\rm R^{10}$ and $\rm R^{10a}$ are independently selected from H, and $\rm C_{1-}$ 4alkyl substituted with 0-1 $\rm R^{10b}$,
 - alternatively, R^{10} and R^{10a} can join to form a C_{3-6} cycloalkyl;

25

 R^{10b} , at each occurrence, is independently selected from -OH, -SH, -NR^{10c}R^{10c}, -C(O)NR^{10c}R^{10c}, and -NHC(O)R^{10c};

 R^{10c} is selected from H, C_{1-4} alkyl and C_{3-6} cycloalkyl;

- R¹¹ is selected from H, C_{1-4} alkyl, $(CHR)_qOH$, $(CHR)_qSH$, $(CHR)_qOR^{11d}, (CHR)_qS(O)_pR^{11d}, (CHR)_rC(O)R^{11b}, \\ (CHR)_rNR^{11a}R^{11a}, (CHR)_rC(O)NR^{11a}R^{11a}, \\ (CHR)_rC(O)NR^{11a}OR^{11d}, (CHR)_qNR^{11a}C(O)R^{11b}, \\ (CHR)_qNR^{11a}C(O)OR^{11d}, (CHR)_qOC(O)NR^{11a}R^{11a}, \\ (CHR)_rC(O)OR^{11d}, a (CHR)_r-C_{3-6} carbocyclic residue \\ substituted with 0-5 R^{11e}, and a (CHR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};$
- R^{11a}, at each occurrence, is independently selected from H, C_{1-4} alkyl, C_{3-4} alkenyl, C_{3-4} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, a $(CH_2)_r-C_{3-6}$ carbocyclic residue substituted with 0-5 R^{11e}, and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};

20

- R^{11b}, at each occurrence, is independently selected from C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, a $(CH_2)_r-C_{3-6}$ carbocyclic residue substituted with 0-2 R^{11e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e} ;
- R^{11d} , at each occurrence, is independently selected from H, methyl, $-CF_3$, C_{2-4} alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, a C_{3-6} carbocyclic residue substituted with

0-3 R^{11e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-3 R^{11e} ;

5 R^{11e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CN, NO₂, $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, $-O-C_{1-6}$ alkyl, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{11f}R^{11f}$, and $(CH_2)_rphenyl$;

10

 R^{11f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;

R¹² is selected from H, C_{1-4} alkyl, $(CHR)_qOH$, $(CHR)_qSH$, $(CHR)_qOR^{12d}, (CHR)_qS(O)_pR^{12d}, (CHR)_rC(O)R^{12b}, \\ (CHR)_rNR^{12a}R^{12a}, (CHR)_rC(O)NR^{12a}R^{12a}, \\ (CHR)_rC(O)NR^{12a}OR^{12d}, (CHR)_qNR^{12a}C(O)R^{12b}, \\ (CHR)_qNR^{12a}C(O)OR^{12d}, (CHR)_qOC(O)NR^{12a}R^{12a}, \\ (CHR)_rC(O)OR^{12d}, a (CHR)_r-C_{3-6} carbocyclic residue \\ substituted with 0-5 R^{12e}, and a (CHR)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e};$

R^{12a}, at each occurrence, is independently selected from H, C_{1-4} alkyl, C_{3-4} alkenyl, C_{3-4} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, a $(CH_2)_r-C_{3-6}$ carbocyclic residue substituted with 0-5 R^{12e}, and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e};

- R^{12b} , at each occurrence, is independently selected from C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, a $(CH_2)_r-C_{3-6}$ carbocyclic residue substituted with 0-2 R^{12e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e} ;
- R^{12d} , at each occurrence, is independently selected from H, methyl, $-CF_3$, C_{2-4} alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, a C_{3-6} carbocyclic residue substituted with 0-3 R^{12e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-3 R^{12e} ;
- 15 R^{12e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂) $_r$ CF₃, (CH₂) $_r$ OC₁₋₅ alkyl, OH, -O-C₁₋₆ alkyl, SH, (CH₂) $_r$ SC₁₋₅ alkyl, (CH₂) $_r$ NR^{12f}R^{12f}, and (CH₂) $_r$ phenyl;
- R^{12f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;

- R^{13} , at each occurrence, is independently selected from methyl, C_{2-4} alkyl substituted with 0-1 R^{13b} ;
 - R^{13b} is selected from -OH, -SH, $-NR^{13c}R^{13c}$, -C(O)NR^{13c}R^{13c}, and -NHC(O)R^{13c};
- 30 R^{13c} is selected from H, C_{1-4} alkyl and C_{3-6} cycloalkyl;

n is selected from 1 and 2;

m is selected from 0 and 1;

10

- 5 p, at each occurrence, is independently selected from 0, 1, and 2;
 - q, at each occurrence, is independently selected from 1,
 2, 3, and 4;

- s, at each occurrence, is independently selected from 0 and 1; and
 - t, at each occurrence, is independently selected from 2, 3, and 4.
- 20 2. A compound claim 1, wherein
- ring B is a cycloalkyl group of 3 to 8 carbon atoms wherein the cycloalkyl group is saturated or partially unsaturated; or a heterocycle of 3 to 7 atoms wherein the heterocycle is saturated or partially unsaturated, the heterocycle containing a heteroatom selected from -O-, -S-, -S(=O)-, -S(=O)₂-, and -N(R⁴)-, the heterocycle optionally containing a -C(O)-; ring B being substituted with 0-2 R⁵;
 - Z is selected from a bond, -C(0)-, -C(0)NH-, -C(S)NH-, $-SO_2-$, and $-SO_2NH-$;

 R^{1a} and R^{1b} are independently selected from H, C_{1-4} alkyl, C_{1-4} cycloalkyl, CF_3 , or alternatively, R^{1a} and R^{1b} are taken together to from =0;

5

 R^1 is selected from a C_{6-10} aryl group substituted with 0-5 R^6 and a 5-10 membered heteroaryl system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^6 ;

10

 R^2 is selected from a C_{6-10} aryl group substituted with 0-5 R^7 and a 5-10 membered heteroaryl system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^7 ;

15

- R⁴ is selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $(CRR)_qOH$, $(CRR)_tSH$, $(CRR)_tOR^{4d}$, $(CHR)_tSR^{4d}$, $(CRR)_tNR^{4a}R^{4a}$, $(CRR)_qC(0)OH$, $(CRR)_rC(0)R^{4b}$, $(CRR)_rC(0)NR^{4a}R^{4a}$, $(CRR)_tOC(0)NR^{4a}R^{4a}$, $(CRR)_tNR^{4a}C(0)OR^{4d}$, $(CRR)_tNR^{4a}C(0)R^{4b}$, $(CRR)_rS(0)_pR^{4b}$, $(CRR)_rS(0)_2NR^{4a}R^{4a}$, $(CRR)_rNR^{4a}S(0)_2R^{4b}$, $(CRR)_rS(0)_pR^{4b}$, $(CRR)_rC(0)CRR^{4a}$, and a $(CRR)_r-4-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S,
- R^{4a} , at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{4c} , C_{2-6} alkyl substituted with 0-3 R^{4e} , C_{3-8} alkenyl substituted

substituted with $0-2 R^{4e}$;

with 0-3 R^{4e} , C_{3-8} alkynyl substituted with 0-3 R^{4e} , and a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-4 R^{4e} ;

 R^{4b} , at each occurrence, is selected from H, C_{1-6} alkyl substituted with 0-3 R^{4e} , C_{3-8} alkenyl substituted with 0-3 R^{4e} , C_{3-8} alkynyl substituted with 0-3 R^{4e} , and a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{4e} ;

- R^{4c} is independently selected from $-C(0)R^{4b}$, $-C(0)OR^{4d}$, $-C(0)NR^{4f}R^{4f}$, and $(CH_2)_r$ phenyl;
- R^{4d} , at each occurrence, is selected from methyl, CF_3 , C_{1-6} alkyl substituted with 0-3 R^{4e} , C_{3-8} alkenyl substituted with 0-3 R^{4e} , C_{3-8} alkynyl substituted with 0-3 R^{4e} , and a C_{3-10} carbocyclic residue substituted with 0-3 R^{4e} ;
- 20 R^{4e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{4f}R^{4f}$, $-C(O)R^{4i}$, $-C(O)OR^{4j}$, $-C(O)NR^{4h}R^{4h}$, $-OC(O)NR^{4h}R^{4h}$, $-NR^{4h}C(O)NR^{4h}R^{4h}$, $-NR^{4h}C(O)OR^{4j}$, and $(CH_2)_rphenyl$;
 - R^{4f} , at each occurrence, is selected from H, C_{1-6} alkyl, C_{3-6} cycloalkyl, and phenyl;

- R^{4h} , at each occurrence, is independently selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, and a $(CH_2)_r$ C_{3-10} carbocyclic;
- 5 R^{4i} , at each occurrence, is selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, and a $(CH_2)_r-C_{3-6}$ carbocyclic residue;
- R^{4j} , at each occurrence, is selected from CF_3 , C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, and a C_{3-10} carbocyclic residue;
- R⁵, at each occurrence, is independently selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CRR)_rOH$, $(CRR)_rSH$, $(CRR)_rOR^{5d}$, $(CRR)_rSR^{5d}$, $(CRR)_rNR^{5a}R^{5a}$, $(CRR)_rC(0)OH$, $(CRR)_rC(0)R^{5b}$, $(CRR)_rC(0)NR^{5a}R^{5a}$, $(CRR)_rNR^{5a}C(0)R^{5b}$, $(CRR)_rOC(0)NR^{5a}R^{5a}$, $(CRR)_rNR^{5a}C(0)OR^{5d}$, $(CRR)_rNR^{5a}C(0)NR^{5a}R^{5a}$, $(CRR)_rNR^{5a}C(0)H$, $(CRR)_rC(0)OR^{5b}$, $(CRR)_rOC(0)R^{5b}$, $(CRR)_rNR^{5a}C(0)H$, $(CRR)_rS(0)_2NR^{5a}R^{5a}$, $(CRR)_rNR^{5a}S(0)_2R^{5b}$, $(CRR)_rNR^{5a}S(0)_2NR^{5a}R^{5a}$, $(CRR)_rNR^{5a}S(0)_2NR^{5a$
 - R^{5a} , at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{5g} , C_{2-6} alkyl substituted with 0-2 R^{5e} , C_{3-8} alkenyl substituted with 0-2 R^{5e} , C_{3-8} alkynyl substituted with 0-2 R^{5e} ,

substituted with $0-2 R^{5c}$;

25

a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{5e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-3 R^{5e} ;

5

- R^{5b} , at each occurrence, is selected from C_{1-6} alkyl substituted with 0-3 R^{5e} , C_{3-8} alkenyl substituted with 0-2 R^{5e} , C_{3-8} alkynyl substituted with 0-2 R^{5e} , a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{5e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-3 R^{5e} ;
- R^{5c}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_2)_rCF_3$, NO_2 , CN, $(CH_2)_rNR^{5f}R^{5f}$, $(CH_2)_rOH$, $(CH_2)_rOC_{1-4}$ alkyl, $(CH_2)_rSC_{1-4}$ alkyl, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{5b}$, $(CH_2)_rC(O)NR^{5f}R^{5f}$, $(CH_2)_rNR^{5f}C(O)R^{5b}$, $(CH_2)_rC(O)OC_{1-4}$ alkyl, $(CH_2)_rOC(O)R^{5b}$, $(CH_2)_rC(ENR^{5f})NR^{5f}R^{5f}$, $(CH_2)_rS(O)_pR^{5b}$, $(CH_2)_rNHC(ENR^{5f})NR^{5f}R^{5f}$, $(CH_2)_rS(O)_2NR^{5f}R^{5f}$, $(CH_2)_rNR^{5f}S(O)_2R^{5b}$, and $(CH_2)_rDenyl$ substituted with O-3 R^{5e} ;
- 25 R^{5d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-2 R^{5e} , C_{3-8} alkenyl substituted with 0-2 R^{5e} , C_{3-8} alkynyl substituted with 0-2 R^{5e} , and a C_{3-10} carbocyclic residue substituted with 0-3 R^{5e} ;

- R^{5e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CN, NO₂, $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{5f}R^{5f}$, and $(CH_2)_rphenyl$;
- R^{5f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;
- R^{5g} is independently selected from $-C(0)R^{5b}$, $-C(0)OR^{5d}$, 10 $-C(0)NR^{5f}R^{5f}$, and $(CH_2)_r$ phenyl;
 - R, at each occurrence, is selected from H, C_{1-6} alkyl substituted with R^{5e} , C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, and $(CH_2)_r$ phenyl substituted with R^{5e} ;
 - R^6 , at each occurrence, is selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, NO_2 , CN, $(CR'R')_rNR^{6a}R^{6a}$, $(CR'R')_rOH$,
- $(CR'R')_{r}O(CR'R')_{r}R^{6d}, (CR'R')_{r}SH, (CR'R')_{r}C(O)H, \\ (CR'R')_{r}S(CR'R')_{r}R^{6d}, (CR'R')_{r}C(O)OH, \\ (CR'R')_{r}C(O)(CR'R')_{r}R^{6b}, (CR'R')_{r}NR^{6a}R^{6a},$
 - $(CR'R')_rC(O)NR^{6a}R^{6a}$, $(CR'R')_rNR^{6f}C(O)(CR'R')_rR^{6b}$, $(CR'R')_rC(O)O(CR'R')_rR^{6d}$, $(CR'R')_rOC(O)(CR'R')_rR^{6b}$,
- 25 $(CR'R')_rOC(O)NR^{6a}(CR'R')_rR^{6d}$,

5

- $(CR'R')_rNR^{6a}C(O)NR^{6a}(CR'R')_rR^{6d}$,
- $(CR'R')_rNR^{6a}C(S)NR^{6a}(CR'R')_rR^{6d}$
- $(CR'R')_rNR^{6f}C(O)O(CR'R')_rR^{6b}$, $(CR'R')_rC(=NR^{6f})NR^{6a}R^{6a}$,
- $(CR'R')_rNHC (=NR^{6f})NR^{6f}R^{6f}$, $(CR'R')_rS(O)_p(CR'R')_rR^{6b}$,
- 30 $(CR'R')_rS(O)_2NR^{6a}R^{6a}$, $(CR'R')_rNR^{6f}S(O)_2NR^{6a}R^{6a}$,

 $(CR'R')_rNR^{6f}S(O)_2(CR'R')_rR^{6b}$, C_{1-6} haloalkyl, C_{2-8} alkenyl substituted with 0-3 R', C_{2-8} alkynyl substituted with 0-3 R', and $(CR'R')_r$ phenyl substituted with 0-3 R^{6e};

5

alternatively, two R^6 on adjacent atoms on R^1 may join to form a cyclic acetal;

- R^{6a} , at each occurrence, is selected from H, methyl substituted with 0-1 R^{6g} , C_{2-6} alkyl substituted with 0-2 R^{6e} , C_{3-8} alkenyl substituted with 0-2 R^{6e} , C_{3-8} alkynyl substituted with 0-2 R^{6e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{6e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{6e} ;
- R^{6b} , at each occurrence, is selected from H, C_{1-6} alkyl substituted with 0-2 R^{6e} , C_{3-8} alkenyl substituted with 0-2 R^{6e} , a $(CH_2)_rC_{3-6}$ carbocyclic residue substituted with 0-3 R^{6e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{6e} ;

25

30

 R^{6d} , at each occurrence, is selected from C_{3-8} alkenyl substituted with 0-2 R^{6e} , C_{3-8} alkynyl substituted with 0-2 R^{6e} , methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{6e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-3 R^{6e} , and a $(CH_2)_r$ -5-6 membered

heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{6e} ;

- R^{6e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO₂, $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{6f}R^{6f}$, and $(CH_2)_rphenyl$;
- R^{6f} , at each occurrence, is selected from H, C_{1-5} alkyl, and C_{3-6} cycloalkyl, and phenyl;
 - R^{6g} is independently selected from $-C(0)R^{6b}$, $-C(0)OR^{6d}$, $-C(0)NR^{6f}R^{6f}$, and $(CH_2)_r$ phenyl;
- 15 R^7 , at each occurrence, is selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, NO_2 , CN, $(CR'R')_rNR^{7a}R^{7a}$, $(CR'R')_rOH$, $(CR'R')_rO(CR'R')_rR^{7d}$, $(CR'R')_rSH$, $(CR'R')_rC(O)H$, $(CR'R')_rS(CR'R')_rR^{7d}$, $(CR'R')_rC(O)OH$,
- $(CR'R')_{r}C(0) (CR'R')_{r}R^{7b}, (CR'R')_{r}C(0)NR^{7a}R^{7a},$ $(CR'R')_{r}NR^{7f}C(0) (CR'R')_{r}R^{7b}, (CR'R')_{r}C(0)O(CR'R')_{r}R^{7d},$ $(CR'R')_{r}OC(0) (CR'R')_{r}R^{7b},$ $(CR'R')_{r}OC(0)NR^{7a}(CR'R')_{r}R^{7a},$
 - $(CR'R')_rNR^{7a}C(O)NR^{7a}(CR'R')_rR^{7a},$
- $(CR'R')_{r}NR^{7f}C(O)O(CR'R')_{r}R^{7b}, \quad (CR'R')_{r}C(=NR^{7f})NR^{7a}R^{7a}, \\ (CR'R')_{r}NHC(=NR^{7f})NR^{7f}R^{7f}, \quad (CR'R')_{r}S(O)_{p}(CR'R')_{r}R^{7b}, \\ (CR'R')_{r}S(O)_{2}NR^{7a}R^{7a}, \quad (CR'R')_{r}NR^{7a}S(O)_{2}NR^{7a}R^{7a}, \\ (CR'R')_{r}NR^{7f}S(O)_{2}(CR'R')_{r}R^{7b}, \quad C_{1-6} \text{ haloalkyl}, \quad C_{2-8} \\ \text{alkenyl substituted with 0-3 R', } C_{2-8} \text{ alkynyl}$

substituted with 0-3 R', and $(CR'R')_r$ phenyl substituted with 0-3 R^{7e};

alternatively, two R^7 on adjacent atoms on R^2 may join to form a cyclic acetal;

- R^{7a} , at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{7g} , C_{2-6} alkyl substituted with 0-2 R^{7e} , C_{3-8} alkenyl substituted with 0-2 R^{7e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{7e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-2 R^{7e} ;
- R^{7b} , at each occurrence, is selected from C_{1-6} alkyl substituted with 0-2 R^{7e} , C_{3-8} alkenyl substituted with 0-2 R^{7e} , C_{3-8} alkynyl substituted with 0-2 R^{7e} , a $(CH_2)_rC_{3-6}$ carbocyclic residue substituted with 0-3 R^{7e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{7e} ;

15

 R^{7d} , at each occurrence, is selected from C_{3-8} alkenyl substituted with 0-2 R^{7e} , C_{3-8} alkynyl substituted with 0-2 R^{7e} , methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{7e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-3 R^{7e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e} ;

- R^{7e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{7f}R^{7f}$, and $(CH_2)_rphenyl$;
 - R^{7f} , at each occurrence, is selected from H, C_{1-5} alkyl, and C_{3-6} cycloalkyl, and phenyl;
- 10 R^{7g} is independently selected from $-C(0)R^{7b}$, $-C(0)OR^{7d}$, $-C(0)NR^{7f}R^{7f}$, and $(CH_2)_r$ phenyl;
- R', at each occurrence, is selected from H, C_{1-6} alkyl substituted with R^{6e} , C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6} \text{ cycloalkyl, and } (CH_2)_r\text{phenyl substituted with } R^{6e};$
 - R^8 is selected from H, C_{1-4} alkyl, and C_{3-4} cycloalkyl;
- 20 R^9 is selected from, H, C_{1-4} alkyl, C_{3-4} cycloalkyl, and $(CH_2) R^1;$
 - ${\rm R}^{10}$ and ${\rm R}^{10a}$ are independently selected from H, and ${\rm C}_{1-4}{\rm alkyl}$ substituted with 0-1 ${\rm R}^{10b}$,
 - alternatively, R^{10} and R^{10a} can join to form a C_{3-6} cycloalkyl;

25

 R^{10b} , at each occurrence, is independently selected from -OH, -SH, -NR^{10c}R^{10c}, -C(O)NR^{10c}R^{10c}, and -NHC(O)R^{10c};

 R^{10c} is selected from H, C_{1-4} alkyl and C_{3-6} cycloalkyl;

- R¹¹ is selected from H, C_{1-4} alkyl, $(CHR)_qOH$, $(CHR)_qSH$, $(CHR)_qOR^{11d}, (CHR)_qS(O)_pR^{11d}, (CHR)_rC(O)R^{11b}, \\ (CHR)_rNR^{11a}R^{11a}, (CHR)_rC(O)NR^{11a}R^{11a}, \\ (CHR)_rC(O)NR^{11a}OR^{11d}, (CHR)_qNR^{11a}C(O)R^{11b}, \\ (CHR)_qNR^{11a}C(O)OR^{11d}, (CHR)_qOC(O)NR^{11a}R^{11a}, \\ (CHR)_rC(O)OR^{11d}, a (CHR)_r-C_{3-6} carbocyclic residue \\ substituted with 0-5 R^{11e}, and a (CHR)_r-5-10 membered \\ heterocyclic system containing 1-4 heteroatoms \\ selected from N, O, and S, substituted with 0-3 R^{11e};$
- R^{11a}, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₃₋₄ alkenyl, C₃₋₄ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-5 R^{11e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};
- 20 R^{11b} , at each occurrence, is independently selected from C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, a $(CH_2)_r-C_{3-6}$ carbocyclic residue substituted with 0-2 R^{11e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e} ;
 - R^{11d}, at each occurrence, is independently selected from H, methyl, -CF₃, C₂₋₄ alkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, a C₃₋₆ carbocyclic residue substituted with 0-3 R^{11e}, and a $(CH_2)_r$ -5-6 membered heterocyclic

system containing 1-4 heteroatoms selected from N, O, and S, substituted with O-3 R^{11e} ;

- R^{11e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, C_{1} , F, F, I, CN, NO_{2} , $(CF_{2})_{r}CF_{3}$, $(CH_{2})_{r}OC_{1-5}$ alkyl, OH, $-O-C_{1-6}$ alkyl, SH, $(CH_{2})_{r}SC_{1-5}$ alkyl, $(CH_{2})_{r}NR^{11}fR^{11}f$, and $(CH_{2})_{r}phenyl$;
- 10 R^{11f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;
- R¹² is selected from H, C_{1-4} alkyl, $(CHR)_qOH$, $(CHR)_qSH$, $(CHR)_qOR^{12d}$, $(CHR)_qS(O)_pR^{12d}$, $(CHR)_rC(O)R^{12b}$, $(CHR)_rNR^{12a}R^{12a}$, $(CHR)_rC(O)NR^{12a}R^{12a}$, $(CHR)_rC(O)NR^{12a}OR^{12d}$, $(CHR)_qNR^{12a}C(O)R^{12b}$, $(CHR)_qNR^{12a}C(O)OR^{12d}$, $(CHR)_qOC(O)NR^{12a}R^{12a}$, $(CHR)_rC(O)OR^{12d}$, a $(CHR)_r-C_{3-6}$ carbocyclic residue substituted with 0-5 R^{12e} , and a $(CHR)_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e} ;
- R^{12a} , at each occurrence, is independently selected from H, C_{1-4} alkyl, C_{3-4} alkenyl, C_{3-4} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, a $(CH_2)_r-C_{3-6}$ carbocyclic residue substituted with 0-5 R^{12e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e} ;

 R^{12b} , at each occurrence, is independently selected from C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, a $(CH_2)_r-C_{3-6}$ carbocyclic residue substituted with 0-2 R^{12e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{12e} ;

5

- R^{12d} , at each occurrence, is independently selected from H, methyl, $-CF_3$, C_{2-4} alkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, a C_{3-6} carbocyclic residue substituted with 0-3 R^{12e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-3 R^{12e} ;
- 15 R^{12e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, C_{1} , C_{1} , C_{1} , C_{1} , C_{1} , C_{1} , C_{2} , C_{2} , C_{3} , C_{1} , C_{2} , C_{1} , C_{2} , C_{3} , C_{3} , C_{4} , C_{1} , C_{5} , C_{1} , C_{5} , C_{1} , C_{1} , C_{2} , C_{1} , C_{2} , C_{3} , C_{4} , C_{4} , C_{5} , C_{1} , C_{5} ,
- R^{12f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;
- R^{13} , at each occurrence, is independently selected from methyl, C_{2-4} alkyl substituted with 0-1 R^{13b} ;
 - R^{13b} is selected from -OH, -SH, -NR^{13c}R^{13c}, -C(O)NR^{13c}R^{13c}, and -NHC(O)R^{13c};
- 30 R^{13c} is selected from H, C_{1-4} alkyl and C_{3-6} cycloalkyl;

```
n is selected from 1 and 2;
    m is selected from 0 and 1;
   p, at each occurrence, is independently selected from 0,
         1, and 2;
    q, at each occurrence, is independently selected from 1,
         2, 3, and 4;
10
    r, at each occurrence, is independently selected from 0,
         1, 2, 3, and 4;
    s, at each occurrence, is independently selected from 0
15
         and 1; and
    t, at each occurrence, is independently selected from 2,
         3, and 4.
20
    3. The compound of claim 2, wherein:
    R^{10} and R^{10a} are H;
    m is 0;
25
    n is 1; and
    s is 0.
30
    4. The compound of claim 3, wherein:
```

ring B is selected from

5 optionally substituted with $0-1 R^5$; and

 R^{11} and R^{12} are H.

5. The compound of claim 4, wherein:

and C_{1-6} haloalkyl;

20

10 $R^{5}, \text{ at each occurrence, is independently selected from H,} \\ C_{1-6} \text{ alkyl, } C_{2-8} \text{ alkenyl, } C_{2-8} \text{ alkynyl, } (CRR)_{r}OH, \\ (CRR)_{r}SH, (CRR)_{r}OR^{5d}, (CRR)_{r}SR^{5d}, (CRR)_{r}NR^{5a}R^{5a}, \\ (CRR)_{r}C(0)OH, (CRR)_{r}C(0)R^{5b}, (CRR)_{r}C(0)NR^{5a}R^{5a}, \\ (CRR)_{r}NR^{5a}C(0)R^{5b}, (CRR)_{r}NR^{5a}C(0)OR^{5d}, \\ (CRR)_{r}OC(0)NR^{5a}R^{5a}, (CHR)_{r}NR^{5a}C(0)NR^{5a}R^{5a}, \\ CRR(CRR)_{r}NR^{5a}C(0)H, (CRR)_{r}C(0)OR^{5b}, (CRR)_{r}OC(0)R^{5b}, \\ (CRR)_{r}S(0)_{p}R^{5b}, (CRR)_{r}S(0)_{2}NR^{5a}R^{5a}, (CRR)_{r}NR^{5a}S(0)_{2}R^{5b}, \\ (CRR)_{r}S(0)_{p}R^{5b}, (CRR)_{r}S(0)_{p}R^{5a}R^{5a}, (CRR)_{r}NR^{5a}S(0)_{p}R^{5b}, \\ (CRR)_{r}S(0)_{p}R^{5b}, (CRR)_{r}S(0)_{p}R^{5a}R^{5a}, (CRR)_{r}NR^{5a}S(0)_{p}R^{5b}, \\ (CRR)_{r}S(0)_{p}R^{5b}, (CRR)_{r}S(0)_{p}R^{5a}R^{5a}, (CRR)_{r}NR^{5a}S(0)_{p}R^{5b}, \\ (CRR)_{r}S(0)_{p}R^{5b}, (CRR)_{r}S(0)_{p}R^{5a}R^{5a}, (CRR)_{r}NR^{5a}S(0)_{p}R^{5b}, \\ (CRR)_{r}S(0)_{p}R^{5b}, (CRR)_{r}S(0)_{p}R^{5a}R^{5a}, (CRR)_{r}NR^{5a}S(0)_{p}R^{5a}R^{5a}, \\ (CRR)_{r}S(0)_{p}R^{5b}, (CRR)_{r}S(0)_{p}R^{5a}R^{5a}, (CRR)_{r}S(0)_{p}R^{5a}R^{5a}, \\ (CRR)_{r}S(0)_{p}R^{5b}, (CRR)_{r}S(0)_{p}R^{5a}R^{5a}, \\ (C$

 R^{5a} , at each occurrence, is independently selected from H, methyl, C_{1-6} alkyl substituted with 0-2 R^{5e} wherein the alkyl is selected from ethyl, propyl, i-propyl, butyl, i-butyl, pentyl, hexyl, C_3 alkenyl substituted with 0-1 R^{5e} , wherein the alkenyl is selected from

allyl, C_3 alkynyl substituted with 0-1 R^{5e} wherein the alkynyl is selected from propynyl, and a $(CH_2)_r-C_{3-4}$ carbocyclic residue substituted with 0-5 R^{5e} , wherein the carbocyclic residue is selected from cyclopropyl, and cyclobutyl;

- R^{5b}, at each occurrence, is selected from C₁₋₆ alkyl substituted with 0-2 R^{5e}, wherein the alkyl is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, pentyl, and hexyl, a (CH₂)_r-C₃₋₄ carbocyclic residue substituted with 0-2 R^{5e}, wherein the carbocyclic residue is selected from cyclopropyl, and cyclobutyl; and
- 15 R^{5d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-2 R^{5e} , wherein the alkyl is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, pentyl, and hexyl, C_{3-8} alkenyl, C_{3-8} alkynyl, and a C_{3-10} carbocyclic residue substituted with 0-3 R^{5e} .
 - 6. The compound of claim 5, wherein:

5

R⁴ is selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $(CRR)_qOH$, $(CRR)_tSH$, $(CRR)_tOR^{4d}$, $(CRR)_tSR^{4d}$, $(CRR)_tNR^{4a}R^{4a}$, $(CRR)_qC(0)OH$, $(CRR)_rC(0)R^{4b}$, $(CRR)_rC(0)NR^{4a}R^{4a}$, $(CRR)_tNR^{4a}C(0)R^{4b}$, $(CRR)_tOC(0)NR^{4a}R^{4a}$, $(CRR)_tNR^{4a}C(0)OR^{4d}$, $(CRR)_tNR^{4a}C(0)R^{4b}$, $(CRR)_tNR^{4a}C(0)R^{4b}$, $(CRR)_tNR^{4a}C(0)R^{4b}$, $(CRR)_tC(0)R^{4b}$, $(CRR)_tC(0)R^{4b}$, $(CRR)_tC(0)R^{4a}R^{4a}$, $(CRR)_t$

- R, at each occurrence, is independently selected from H, methyl, ethyl, propyl, allyl, propynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, and $(CH_2)_r$ phenyl substituted with R^{6e} ;
- 5 R⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, allyl, propynyl, $(CH_2)_rOH$, $(CH_2)_rOR^{5d}$, $(CH_2)_rNR^{5a}R^{5a}$, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{5b}$, $(CH_2)_rC(O)NR^{5a}R^{5a}$, $(CH_2)_rNR^{5a}C(O)R^{5b}$, $(CH_2)_rOC(O)NR^{5a}R^{5a}$, $(CH_2)_rNR^{5a}C(O)OR^{5d}$, $(CH_2)_rNR^{5a}C(O)R^{5b}$, $(CH_2)_rNR^{5a}C(O)R^{5b}$, $(CH_2)_rNR^{5a}C(O)R^{5b}$, and $(CH_2)_rOC(O)R^{5b}$, $(CH_2)_rOC(O)R^{5b}$, and $(CH_2)_rOC(O)R^{5b}$, $(CH_2)_rNR^{5a}C(O)_2R^{5b}$, and $(CH_2)_rOC(O)R^{5b}$, $(CH_2)_rOC(O)R^{5b}$, $(CH_2)_rOC(O)R^{5b}$, and $(CH_2)_rOC(O)R^{5b}$, and $(CH_2)_rOC(O)R^{5b}$, $(CH_2)_rOC(O)R^{5b}$, and $(CH_2)_rOC(O)R^{5b}$.
- R^{5a}, at each occurrence, is independently selected from H,
 methyl, ethyl, propyl, i-propyl, butyl, i-butyl,
 pentyl, hexyl, cyclopropyl, and cyclobutyl; and
 - r, at each occurrence, is selected from 0, 1, and 2.
- 20 7. The compound of claim 6, wherein:

haloalkyl;

R¹ is selected from phenyl substituted with 0-2 R⁶,
naphthyl substituted with 0-2R⁶, and a 5-10 membered
heteroaryl system containing 1-4 heteroatoms

25 selected from N, O, and S, substituted with 0-3 R⁶
wherein the heteroaryl is selected from indolyl,
benzimidazolyl, benzofuranyl, benzothiofuranyl,
benzoxazolyl, benzthiazolyl, benztriazolyl,
benztetrazolyl, benzisoxazolyl, benzisothiazolyl,
indazolyl, indolyl, cinnolinyl, furanyl, imidazolyl,
indazolyl, indolyl, isoquinolinyl isothiazolyl,
isoxazolyl, oxazolyl, pyrazinyl, pyrazolyl,

pyridazinyl, pyridyl, pyridinyl, pyrimidinyl,
pyrrolyl, quinazolinyl, quinolinyl, thiazolyl,
thienyl, and tetrazolyl;

- 5 R² is selected from phenyl substituted with 0-2 R⁷, and a
 5-10 membered heteroaryl system containing 1-4
 heteroatoms selected from N, O, and S, substituted
 with 0-3 R⁷ wherein the heteroaryl is selected from
 indolyl, benzimidazolyl, benzofuranyl,

 benzothiofuranyl, benzoxazolyl, benzthiazolyl,
 benztriazolyl, benztetrazolyl, benzisoxazolyl,
 benzisothiazolyl, benzimidazalonyl, cinnolinyl,
 furanyl, imidazolyl, indazolyl, indolyl,
 isoquinolinyl isothiazolyl, isoxazolyl, oxazolyl,

 pyrazinyl, pyrazolyl, pyridazinyl, pyridyl,
 pyridinyl, pyrimidinyl, pyrrolyl, quinazolinyl,
 quinolinyl, thiazolyl, thienyl, and tetrazolyl;
- R⁴ is selected from H, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, allyl, propynyl, $(CRR)_qOH$, $(CRR)_tSH$, $(CRR)_tOR^{4d}$, $(CRR)_tSR^{4d}$, $(CRR)_tNR^{4a}R^{4a}$, $(CRR)_qC(O)OH$, $(CRR)_rC(O)R^{4b}$, $(CRR)_rC(O)NR^{4a}R^{4a}$, $(CRR)_tNR^{4a}C(O)R^{4b}$, $(CRR)_tOC(O)NR^{4a}R^{4a}$, $(CRR)_tNR^{4a}C(O)OR^{4d}$, $(CRR)_tNR^{4a}C(O)R^{4b}$, $(CRR)_tNR^{4a}C(O)R^{4b}$, $(CRR)_tNR^{4a}C(O)R^{4b}$, $(CRR)_tC(O)OR^{4b}$, $(CRR)_tC(O)R^{4b}$, $(CRR)_tC(O)R^$
 - R^{4a} , at each occurrence, is independently selected from H, methyl substituted with 0-1 R^{4c} , C_{2-6} alkyl substituted with 0-3 R^{4e} wherein C_{2-6} is selected from ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl and hexyl, and a $(CH_2)_r$ - C_{3-6}

carbocyclic residue substituted with $0-4~\mathrm{R}^{4\,\mathrm{e}}$ wherein the carbocyclic residue is selected from cyclopropyl, cyclohexyl, and phenyl;

- 5 R^{4b} is selected from H, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, and cyclopropyl;
 - R^{4d} is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, and cyclopropyl;

R⁸ is selected from H, methyl, ethyl, propyl, i-propyl, and cyclopropyl; and

- R^9 is selected from H, methyl, ethyl, propyl, i-propyl, and cyclopropyl, and CH_2-R^1 .
 - 8. The compound of claim 7, wherein:
- R⁶, at each occurrence, is selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CRR)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, NO₂, CN, $(CRR)_rNR^{6a}R^{6a}$, $(CRR)_rOH$, $(CRR)_rO(CRR)_rR^{6d}$, $(CRR)_rSH$, $(CRR)_rC(O)H$, $(CRR)_rS(CRR)_rR^{6d}$, $(CRR)_rC(O)OH$, $(CRR)_rC(O)NR^{6a}R^{6a}$, $(CRR)_rNR^{6f}C(O)(CRR)_rR^{6b}$, $(CRR)_rC(O)O(CRR)_rR^{6d}$, $(CRR)_rNR^{6a}C(O)NR^{6a}R^{6a}$, $(CRR)_rNR^{6a}C(O)NR^{6a}R^{6a}$, $(CRR)_rNR^{6a}C(S)NR^{6a}R^{6a}$, $(CRR)_rOC(O)(CRR)_rR^{6b}$, $(CRR)_rS(O)_p(CRR)_rR^{6b}$, $(CRR)_rS(O)_2NR^{6a}R^{6a}$, $(CRR)_rNR^{6f}S(O)_2(CRR)_rR^{6b}$, $(CRR)_rNR^{6f}S(O)_2NR^{6a}R^{6a}$, $(CRR)_rNR^{6f}S(O)_2(CRR)_rR^{6b}$, $(CRR)_rNR^{6f}S(O)_2NR^{6a}R^{6a}$, $(CRR)_rNR^{6f}S(O)_2NR^{6a}R^{6a}$

30

10

haloalkyl, and (CRR) rphenyl substituted with 0-3 R6e;

- R^{6a}, at each occurrence, is independently selected from H,
 methyl, ethyl, propyl, i-propyl, butyl, i-butyl,
 t-butyl, pentyl, hexyl, cyclopropyl and phenyl;
- 5 R^{6b}, at each occurrence, is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, cyclopropyl, and phenyl;
- R^{6d}, at each occurrence, is selected from methyl, CF₃,

 ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl,

 pentyl, hexyl, cyclopropyl, and phenyl;
 - R^{6e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{6f}R^{6f}$, and $(CH_2)_rphenyl$;

- R^{6f}, at each occurrence, is selected from H, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, cyclopropyl, and phenyl;
- R⁷ is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s- butyl, t-butyl, pentyl, hexyl, $(CRR)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, NO₂, CN, $(CRR)_rNR^{7a}R^{7a}$, $(CRR)_rOH$, $(CRR)_rO(CH)_rR^{7d}$, $(CRR)_rSH$, $(CRR)_rC(O)H$, $(CRR)_rS(CRR)_rR^{7d}$, $(CRR)_rC(O)OH$, $(CRR)_rC(O)(CRR)_rR^{7b}$, $(CRR)_rC(O)NR^{7a}R^{7a}$, $(CRR)_rNR^{7f}C(O)(CRR)_rR^{7b}$, $(CRR)_rC(O)O(CRR)_rR^{7d}$, $(CRR)_rOC(O)(CRR)_rR^{7b}$, $(CRR)_rNR^{7a}C(O)NR^{7a}R^{7a}$, $(CRR)_rNR^{7a}C(O)(CRR)_rR^{7b}$, $(CRR)_rNR^{7a}C(O)(CRR)_rR^{7b}$, $(CRR)_rNR^{7a}C(O)(CRR)_rR^{7b}$, $(CRR)_rNR^{7a}C(O)(CRR)_rR^{7b}$, $(CRR)_rNR^{7a}C(O)(CRR)_rR^{7b}$,

 $(CRR)_rS(0)_2NR^{7a}R^{7a}$, $(CRR)_rNR^{7f}S(0)_2(CRR)_rR^{7b}$, C_{1-6} haloalkyl, and $(CRR)_r$ phenyl substituted with 0-3 R^{7e} ;

- R^{7a}, at each occurrence, is selected from H, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl,, prop-2-enyl, 2-methyl-2-propenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, CH₂cyclopropyl, and benzyl;
- 10 R^{7b}, at each occurrence, is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, cyclopropyl, cyclopentyl, CH₂-cyclopentyl, cyclohexyl, CF₃, pyrrolidinyl, morpholinyl, and azetidinyl;

R^{7d}, at each occurrence, is selected from methyl, CF₃, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, and cyclopropyl;

- 20 R^{7e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{7f}R^{7f}$, and $(CH_2)_rphenyl$;
- 25 R^{7f}, at each occurrence, is selected from H, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, cyclopropyl, and phenyl; and

r is 0 or 1.

30

15

9. The compound of claim 8, wherein

R⁷ is selected from methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-butyl, pentyl, hexyl, Cl, Br, I, F, NO₂, NR^{7a}R^{7a}, NHC(O)NHR^{7a}, NR^{7a}C(O)R^{7b}, NR^{7a}C(O)OR^{7d}, CF₃, OCF₃, C(O)R^{7b}, NR^{7f}C(O)NR^{7a}R^{7a}, NHS(O)₂R^{7b},

10. The compound of claim 9, wherein

ring B is selected from $\frac{1}{2}$ $\frac{1}{2}$

Z is -C(0)-;

=0;

5

10

15

 ${\bf R^{1a}}$ and ${\bf R^{1b}}$ are selected from H and methyl, or alternatively, ${\bf R^{1a}}$ and ${\bf R^{1b}}$ are taken together to form

20 R^1 is selected from a C_{6-10} aryl group substituted with 0-3 R^6 wherein the aryl group is selected from phenyl and naphthyl, and a 5-10 membered heteroaryl system containing 1-4 heteroatoms selected from N

and O, substituted with $0-3~\mathrm{R}^6$ wherein the heteroaryl system is selected from furyl, indolyl, and benzotriazolyl;

5 R^2 is phenyl substituted with 0-1 R^7 ;

 R^4 is selected from H, methyl, ethyl, propyl, i-propyl, butyl, I-butyl, t-butyl, pentyl, hexyl, and $(CH_2)_r$ $C(0)R^{4b}$;

10

 R^6 is selected from methyl, ethyl, propyl, i-propyl, butyl, F, Cl, Br, I, NO_2 , CN, $O(CH_2)_rR^{6d}$, C(O)H, SR^{6d} , $NR^{6a}R^{6a}$, $OC(O)R^{6b}$, $S(O)_pR^{6b}$, $(CHR')_rS(O)_2NR^{6a}R^{6a}$, CF_3 ;

15

R^{6a} is H methyl, or ethyl;

R^{6b} is H or methyl;

20 R^{6d} is methyl, phenyl, CF_{3} and (CH_{2}) -phenyl;

 ${\rm R}^9$ is selected from H, methyl, and (CH $_2)\,{\rm -R}^1;$ and

r is 0 or 1.

25

11. The compound of claim 1, wherein the compound is selected from:

N-[2-[[(1S,2S)-2-[[(4-

30 Chlorophenyl)methyl]amino]cyclohexyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide;

```
N-[2-[(1S,2S)-2-[(2,4-
          Dimethylphenyl)methyl]amino]cyclohexyl]amino]-2-
          oxoethyl]-3-(trifluoromethyl)benzamide;
 5
    N-[2-[(1S,2S)-2-[(2,4,6-
         Trimethylphenyl)methyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(1S,2S)-2-[(4-
10
         Benzyloxyphenyl)methyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[[(1S,2S)-2-[[(2,4-
         Difluorophenyl) methyl] amino] cyclohexyl] amino] -2-
15
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(1S,2S)-2-[(2-Chloro-4-
         fluorophenyl)methyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
20
    N-[2-[(1S,2S)-2-[(2-Trifluoromethyl-4-
         fluorophenyl)methyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
25
    N-[2-[(1S,2S)-2-[(2,4-
         Dichlorophenyl) methyl] amino] cyclohexyl] amino] -2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(1S,2S)-2-[(2-Fluoro-6-
30
         trifluoromethylphenyl)methyl]amino]cyclohexyl]amino]
         -2-oxoethyl]-3-(trifluoromethyl)benzamide;
```

```
N-[2-[(1S,2S)-2-[(2-Chloro-5-
         trifluoromethylphenyl)methyl]amino]cyclohexyl]amino]
          -2-oxoethyl]-3-(trifluoromethyl)benzamide;
 5
    N-[2-[(1S,2S)-2-[(1-
         Naphthyl)methyl]amino]cyclohexyl]amino]-2-oxoethyl]-
         3-(trifluoromethyl)benzamide;
    N-[2-[(1S,2S)-2-[bis(3-
10
         furylmethyl)amino]cyclohexyl]amino]-2-oxoethyl]-3-
          (trifluoromethyl)benzamide;
    N-[2-[(1S,2S)-2-[(2,4-
         Dimethylbenzyl) (methyl) amino]cyclohexyl]amino]-2-
15
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(1S,2S)-2-[(4-
         Chlorobenzyl) (methyl) amino]cyclohexyl] amino] -2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
20
    N-[2-[(cis)-2-[((2,4-
         Dimethylphenyl)methyl]amino]cyclohexyl]amino]-2-
         oxoethy1]-3-(trifluoromethyl)benzamide;
25
    N-[2-[(cis)-2-[(4-
         Chlorophenyl) methyl] amino] cyclohexyl] amino] -2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[[(cis)-2-[[(4-
30
         Nitrophenyl)methyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
```

```
N-[2-[(cis)-2-[(4-
         Isopropylphenyl)methyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-
 5
         Trifluorophenyl)methyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-
         Trifluoromethoxyphenyl)methyl]amino]cyclohexyl]amino
10
         ]-2-oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-
         Phenoxyphenyl)methyl]amino]cyclohexyl]amino]-2-
15
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(1-
         Naphthyl)methyl]amino]cyclohexyl]amino]-2-oxoethyl]-
         3-(trifluoromethyl)benzamide;
20
    N-[2-[(cis)-2-[(2-
         Naphthyl)methyl]amino]cyclohexyl]amino]-2-oxoethyl]-
         3-(trifluoromethyl)benzamide;
25
    N-[2-[(cis)-2-[(3-
         Indoly1)methy1]amino]cyclohexy1]amino]-2-oxoethy1]-
         3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[[1-(4-
30
         Chlorophenyl) ethyl] amino] cyclohexyl] amino] -2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
```

```
N-[2-[(cis)-2-[Bis(3-
          furylmethyl)amino]cyclohexyl]amino]-2-oxoethyl]-3-
          (trifluoromethyl)benzamide;
   N-[2-[(1S,2R)-2-[(4-
         Chlorobenzoyl)amino]cyclopentyl]amino]-2-oxoethyl]-
         3-(trifluoromethyl)benzamide;
    N-[2-[(1S,2R)-2-[(4-
10
          (Methylthio) benzoyl) amino] cyclopentyl] amino] -2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(1S, 2R)-2-[(4-
          (Methylsulfonyl)benzoyl)amino]cyclopentyl]amino]-2-
15
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(1S, 2R)-2-[(4-
         Iodobenzoyl)amino]cyclopentyl]amino]-2-oxoethyl]-3-
          (trifluoromethyl)benzamide;
20
    N-[2-[(1S,2R)-2-[(4-
          (Aminosulfonyl) benzoyl) amino]cyclopentyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
25
    N-[2-[(1S,2R)-2-[(4-
         Chlorophenyl) methyl] amino] cyclopentyl] amino] -2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(1S,2R)-2-[(2,4-
30
         Dimethylphenyl)methyl]amino]cyclopentyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
```

```
N-[2-[(1S, 2R)-2-[(4-
         Methylphenyl)methyl]amino]cyclopentyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
 5
    N-[2-[[(cis)-2-[(4-Chlorobenzoyl)amino]cyclohexyl]amino]-
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-Methylbenzoyl)amino]cyclohexyl]amino]-
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
10
    N-[2-[[(cis)-2-[(4-Fluorobenzoyl)amino]cyclohexyl]amino]-
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[[(cis)-2-[Benzoylamino]cyclohexyl]amino]-2-
15
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[[(cis)-2-[(4-Bromobenzoyl)amino]cyclohexyl]amino]-
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
20
    N-[2-[(cis)-2-[(4-
         Phenoxybenzoyl)amino]cyclohexyl]amino]-2-oxoethyl]-
         3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-
25
         Trifluoromethylbenzoyl)amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(5-
         Benzotriazolecarbonyl)amino]cyclohexyl]amino]-2-
30
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[[(cis)-2-[(4-Iodobenzoyl)amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
```

```
N-[2-[[(cis)-2-[(4-Cyanobenzoyl)amino]cyclohexyl]amino]-
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
 5
    N-[2-[(cis)-2-[(4-
         Trifluoromethoxybenzoyl)amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-Formylbenzoyl)amino]cyclohexyl]amino]-
10
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-
         Carbomethoxybenzoyl)amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
15
    N-[2-[[(cis)-2-[(4-Nitrobenzoyl)amino]cyclohexyl]amino]-
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[[(cis)-2-[(4-Aminobenzoyl)amino]cyclohexyl]amino]-
20
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-
         Methoxybenzoyl)amino]cyclohexyl]amino]-2-oxoethyl]-
         3-(trifluoromethyl)benzamide;
25
    N-[2-[(cis)-2-[(4-
         Methylthiobenzoyl)amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
30
    N-[2-[(cis)-2-[(4-
         Methylsulfonylbenzoyl)amino]cyclohexyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
```

```
N-[2-[(cis)-2-[(4-
          Aminosulfonylbenzoyl)amino]cyclohexyl]amino]-2-
          oxoethyl]-3-(trifluoromethyl)benzamide;
 5
    N-[2-[(cis)-2-[(4-
          Isopropylbenzoyl) amino] cyclohexyl] amino] -2-
          oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-
10
          Phenylthiobenzoyl) amino]cyclohexyl]amino]-2-
          oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-(N,N-
         diethylsulfamoyl)benzoyl)amino]cyclohexyl]amino]-2-
15
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[(cis)-2-[(4-
         Trifluoromethylthiobenzoyl)amino]cyclohexyl]amino]-
         2-oxoethyl]-3-(trifluoromethyl)benzamide;
20
    N-[2-[[(cis)-2-[[(4-
         Chlorophenyl) methyl] amino] cyclopropyl] amino] -2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
25
    N-[2-[(cis)-2-[(3,4-
         Dimethylphenyl)methyl]amino]cyclopropyl]amino]-2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
    N-[2-[[(cis)-2-[[(4-
30
         Methylphenyl) methyl] amino] cyclopropyl] amino] -2-
         oxoethyl]-3-(trifluoromethyl)benzamide;
```

```
2-Amino-N-[2-[[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
          oxoethyl]-5-iodobenzamide;
    2-Amino-N-[2-[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
          oxoethyl]-5-chlorobenzamide;
    N-[2-[(cis)-2-[[4-
10
          (Aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
          oxoethyl]-3-chlorobenzamide;
    N-[2-[(cis)-2-[[4-
          (Aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
15
          oxoethyl]-3-trifluoromethoxybenzamide;
     Tert-butyl 2-[({2-[((cis)-2-{[4-
          (aminosulfonyl)benzoyl]amino}cyclohexyl)amino]-2-
         oxoethyl amino ) carbonyl 1-4-
20
          (trifluoromethyl) phenylcarbamate;
    2-Amino-N-[2-[[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethylbenzamide
25
         trifluoroacetate;
    4-(Aminosulfonyl)-N-((cis)-2-{[({[2-
          (trifluoromethyl) anilino] carbonyl amino) acetyl amino
         }cyclohexyl)benzamide;
30
    4-(Aminosulfonyl)-N-{(cis)-2-[({[(3-
         chlorophenyl) sulfonyl] amino acetyl) amino cyclohexyl}
         benzamide;
```

```
Methyl 2-[({2-[((cis)-2-{[4-
          (aminosulfonyl)benzoyl]amino}cyclohexyl)amino]-2-
          oxoethyl}amino)carbonyl]-4-(iodo)phenylcarbamate;
 5
    Tert-butyl N-Methyl-2-[({2-[((cis)-2-{[4-
          (aminosulfonyl)benzoyl]amino}cyclohexyl)amino]-2-
         oxoethyl amino carbonyl -4-
          (trifluoromethyl) phenylcarbamate;
10
     Ethyl 2-[({2-[((cis)-2-{[4-
          (aminosulfonyl)benzoyl]amino}cyclohexyl)amino]-2-
         oxoethyl amino ) carbonyl ] -4-
          (trifluoromethyl) phenylcarbamate;
15
    2-(Benzylamino)-N-[2-[(cis)-2-[(4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-(Ethylamino)-N-[2-[(cis)-2-[[4-
20
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-(Methylamino)-N-[2-[[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
25
         oxoethyl]-5-trifluoromethyl benzamide;
    2-Amino-N-[2-[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-bromo benzamide;
30
    Tert-butyl 2-[({2-[((cis)-2-{[4-
         (aminosulfonyl)benzoyl]amino}cyclohexyl)amino]-2-
```

```
oxoethyl amino ) carbonyl ] -4-
          (trifluoromethoxy) phenylcarbamate;
    2-Amino-N-[2-[[(cis)-2-[[4-
 5
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
          oxoethyl]-5-trifluoromethoxy benzamide;
    2-(Allylamino)-N-[2-[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
10
          oxoethyl]-5-trifluoromethyl benzamide;
    2-((2-methyl-2-propenyl)amino)-N-[2-[(cis)-2-[[4-methyl-2-propenyl)amino)]
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
          oxoethyl]-5-trifluoromethyl benzamide;
15
    2-(cyclopropylmethylene)amino-N-[2-[[(cis)-2-[[4-
         (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-(butyl) amino-N-[2-[(cis)-2-[[4-
20
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-(propyl)amino-N-[2-[[(cis)-2-[[4-
25
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-(propyl) amino-N-[2-[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
30
         oxoethyl]-5-trifluoromethyl benzamide;
```

```
2-((2-methyl-2-propyl)amino)-N-[2-[[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
          oxoethyl]-5-trifluoromethyl benzamide;
 5
    2-((aminocarbonyl)amino)-N-[2-[[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-(acetylamino)-N-[2-[(cis)-2-[[4-
10
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-(Methylamino)-N-[2-[[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
15
         oxoethyl]-5-iodomethyl benzamide;
    2-(Ethylamino)-N-[2-[(cis)-2-[(4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-iodomethyl benzamide;
20
    2-(Trifluoroacetylamino)-N-[2-[(cis)-2-[(4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-iodomethyl benzamide;
25
    2-(amino)-N-[2-[[(cis)-2-[[4-
         (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-nitro benzamide;
    Iso-propyl 2-[({2-[((cis)-2-{[4-
30
         (aminosulfonyl)benzoyl]amino}cyclohexyl)amino]-2-
         oxoethyl amino) carbonyl ] -4- (iodo) phenyl carbamate;
```

```
Tert butyl 2-[({2-[((cis)-2-{[4-
          (aminosulfonyl)benzoyl]amino}cyclohexyl)amino]-2-
          oxoethyl}amino)carbonyl]-4-(iodo)phenylcarbamate;
    2-(amino)-N-[2-[[(cis)-2-[[4-
 5
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-3,5-dinitro benzamide;
    2-((Isopropylaminocarbonyl)amino)-N-[2-[[(cis)-2-[[4-
10
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((cyclohexylcarbonyl)amino)-N-[2-[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
15
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Cyclopentylmethylenecarbonyl)amino)-N-[2-[[(cis)-2-
          [[4-(aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-
         2-oxoethyl]-5-trifluoromethyl benzamide;
20
    2-((cyclohexylcarbonyl)amino)-N-[2-[(cis)-2-[[4-
          (methylsulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
25
    2-((cyclohexylcarbonyl)amino)-N-[2-[(cis)-2-[[4-
          (methylthio) benzoyl] amino] cyclohexyl] amino] -2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Isopropylaminocarbonyl)amino)-N-[2-[(cis)-2-[[4-
30
         (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
```

```
2-((Isopropylaminocarbonyl)amino)-N-[2-[(cis)-2-[[4-
          (methylsulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
 5
    2-((Methylsulfonyl)amino)-N-[2-[[(cis)-2-[[4-
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Aminocarbonyl)amino)-N-[2-[[(cis)-2-[[4-
10
          (aminosulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Allyl)amino)-N-[2-[[(cis)-2-[[4-
          (methylsulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
15
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Allyl)amino)-N-[2-[[(cis)-2-[[4-
          (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
20
    2-((2-Methyl-2-propenyl)amino)-N-[2-[[(cis)-2-[[4-
          (methylsulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
25
    2-((2-methyl-2-propenyl)amino)-N-[2-[[(cis)-2-[[4-
          (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Propyl)amino)-N-[2-[[(cis)-2-[[4-
30
         (methylsulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
```

```
2-((Propyl)amino)-N-[2-[(cis)-2-[(4-
          (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
 5
    2-((2-Methylpropyl)amino)-N-[2-[(cis)-2-[(4-
         (methylsulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((2-Methylpropyl)amino)-N-[2-[(cis)-2-[(4-
10
         (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Butyl)amino)-N-[2-[[(cis)-2-[[4-
         (methylsulfonyl)benzoyl]amino]cyclohexyl]amino]-2-
15
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Butyl)amino)-N-[2-[[(cis)-2-[[4-
         (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
20
    2-((Ethylaminocarbonyl)amino)-N-[2-[(cis)-2-[[4-
         (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
25
    2-((Allylaminocarbonyl)amino)-N-[2-[(cis)-2-[[4-
         (methylthio) benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Iso-butylaminocarbonyl)amino)-N-[2-[(cis)-2-[[4-
30
         (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
```

```
2-((Cyclopentylaminocarbonyl)amino)-N-[2-[[(cis)-2-[[4-
          (methylthio) benzoyl]amino]cyclohexyl]amino]-2-
          oxoethyl]-5-trifluoromethyl benzamide;
 5
    2-((Tert-butoxycarbonyl)amino)-N-[2-[(cis)-2-[(4-
          (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Iso-propoxycarbonyl)amino)-N-[2-[(cis)-2-[[4-
10
          (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Ethoxycarbonyl)amino)-N-[2-[(cis)-2-[(4-
          (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
15
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Pyrrolidinylcarbonyl)amino)-N-[2-[[(cis)-2-[[4-
          (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
20
    2-((Morpholinylcarbonyl)amino)-N-[2-[(cis)-2-[(4-
          (methylthio) benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-((Azetidinylcarbonyl)amino)-N-[2-[[(cis)-2-[[4-
25
          (methylthio)benzoyl]amino]cyclohexyl]amino]-2-
         oxoethyl]-5-trifluoromethyl benzamide;
    2-\{[1-Pyrrolidinylcarbonyl]amino\}-N-\{2-[((cis)-4-\{[4-
30
         (methylthio) benzyl] amino} tetrahydro-2H-pyran-3-
         yl)amino]-2-oxoethyl}-5-(trifluoromethyl)benzamide;
```

```
2-\{[1-Azetidinylcarbonyl]amino\}-N-\{2-[((cis)-4-\{[4-
          (methylthio) benzyl]amino}tetrahydro-2H-pyran-3-
          yl)amino]-2-oxoethyl}-5-(trifluoromethyl)benzamide;
 5
    2-\{[1-Azetidinylcarbonyl]amino\}-N-\{2-[((cis)-4-\{[4-
          (methoxy)benzyl]amino}tetrahydro-2H-pyran-3-
          yl)amino]-2-oxoethyl}-5-(trifluoromethyl)benzamide;
    1-(4-Methylthiobenzoylamino)-2-[2-(2-amino-5-
10
          trifluoromethylbenzoylamino)-acetylamino]-4-
          aminocyclohexane;
     [2-({[5-benzyloxycarbonylamino-2-(4-methylthio-
         benzoylamino)cyclohexylcarbamoyl]-methyl}carbamoyl)-
15
          4-trifluoromethylphenyl] carbamic acid tert-butyl
         ester;
    \{4-(4-Methylthiobenzoylamino)-3-[2-(3-
         trifluoromethylbenzoylamino)-acetylamino]-4-
20
         aminocyclohexane;
    \{4-(4-methylthiobenzoylamino)-3-[2-(3-
         trifluoromethylbenzoylamino)acetylamino]-
         cyclohexyl}carbamic acid benzyl ester;
25
    1-(4-Methanesulfonylbenzoylamino)-2-[2-(3-
         trifluoromethylbenzoylamino)-acetylamino]cyclohexyl-
         4-aminocyclohexane;
30
    1-(4-Methylthiobenzoylamino)-2-[2-(2-amino-5-
         trifluoromethylbenzoylamino) acetylamino] -4-(2-
         propylamino) cyclohexane;
```

```
1-(4-Methylthiobenzoylamino)-2-[2-(2-amino-5-
          trifluoromethylbenzoylamino)acetylamino]-4-(3-
          methylureido) cyclohexane;
 5
    1-(4-Methylthiobenzoylamino)-2-[2-(3-
          trifluoromethylbenzoylamino)acetylamino]6-
          aminocyclohexane;
    1-(4-Methylthiobenzoylamino)-2-[2-(3-
10
          trifluoromethylbenzoylamino)acetylamino]6-(2-
          propylamino) cyclohexane;
    1-(4-Methylthio-benzoylamino)-2-[2-(2-Amino-5-
          trifluoromethyl-benzoylamino)-acetylamino]-4-
15
          aminocyclohexane;
    4-(4-Methylthiobenzoylamino)-3-[2-(3-
         trifluoromethylbenzoylamino)acetylamino]-4-(2-
         propylamino) -cyclohexane;
20
    1-(4-Methylthiobenzoylamino)-2-[2-(3-
         trifluoromethylbenzoylamino)acetylamino]-5-
         aminocyclohexane;
25
    2-Amino-N-({2-[(4-
         methylthiophenylamino) methyl]cyclohexylcarbamoyl}-
         methyl) -5-(trifluoromethyl) benzamide;
    2-Isopropylamino-N-{[(cis)2-(4-methylthiobenzylamino)-
30
         cyclohexylcarbamoyl]-methyl}-5-trifluoromethyl-
         benzamide;
```

```
2-(3-Isopropylureido)-N-{[2-(4-
                              methylthiobenzylamino)cyclohexylcarbamoyl]-methyl}-
                               5-trifluoromethylbenzamide;
    5
              2-(3-Morpholinylureido)-N-{[2-(4-
                              methylthiobenzylamino)cyclohexylcarbamoyl]-methyl}-
                              5-trifluoromethylbenzamide;
              2-Amino-N-({2-(cis)-[3-(4-
10
                              methylthiophenyl)ureido]cyclohexylcarbamoyl}methyl)-
                              5-trifluoromethyl benzamide;
              \{2-[(\{2-(Cis)-[3-(4-
                              methanesulfonylphenyl)ureido]cyclohexylcarbamoyl}met
15
                              hyl) carbamoyl]-4-trifluoromethylphenyl} carbamic
                              acid tert-butyl ester;
              2-amino-N-\{2-[((3S,4R)-4-\{[4-(methylthio)benzyl]amino\}-1-
                             propyl-3-piperidinyl)amino]-2-oxoethyl}-5-
20
                              (trifluoromethyl)benzamide;
              2-Amino-N-\{2-[((3R,4S)-4-\{[4-(methylthio)benzyl]amino\}-1-(methylthio)benzyl]amino\}-1-(methylthio)benzyl]amino\}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1-(methylthio)benzyl]amino}-1
                             propyl-3-piperidinyl)aminol-2-oxoethyl}-5-
                              (trifluoromethyl)benzamide;
25
              2-amino-N-\{2-[((cis)-4-\{[4-(methylthio)benzoyl]amino\}-1-(methylthio)benzoyl]amino\}-1-(methylthio)benzoyl]amino}
                             methyl-3-piperidinyl)amino]-2-oxoethyl}-5-
                              (trifluoromethyl)benzamide;
30
             N-\{2-[((cis)-4-\{[4-chlorobenzyl]amino\}-3-
                             piperidinyl)amino]-2-oxoethyl}-3-
                              (trifluoromethyl)benzamide;
```

```
N-\{2-[((cis)-4-\{[4-(methylthio)benzyl]amino\}-3-
          piperidinyl)amino]-2-oxoethyl}-3-
          (trifluoromethyl)benzamide;
 5
    2-Amino-N-\{2-[((cis)-4-\{[4-chlorobenzyl]amino\}-3-
          piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
    2-Amino-N-\{2-[((cis)-4-\{[4-methylthiobenzyl]amino\}-3-
10
          piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
    2-Amino-N-\{2-[((cis)-4-\{[4-ethylthiobenzyl]amino\}-3-
          piperidinyl)amino]-2-oxoethyl}-5-
15
          (trifluoromethyl)benzamide;
    N-\{2-[((cis)-4-\{[4-methylthiobenzyl]amino\}-1-methyl-3-
         piperidinyl)amino]-2-oxoethyl}-3-
          (trifluoromethyl)benzamide;
20
    N-\{2-[((cis)-4-\{bis[4-methylthiobenzyl]amino\}-1-methyl-3-
         piperidinyl)amino]-2-oxoethyl}-3-
          (trifluoromethyl)benzamide;
25
    2-Amino-N-\{2-[((cis)-4-\{[4-methylthiobenzyl]amino\}-1-
         methyl-3-piperidinyl)aminol-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
    N-\{2-[((cis)-4-\{[4-methylthiobenzyl]amino\}-1-acetyl-3-
30
         piperidinyl)amino]-2-oxoethyl}-3-
          (trifluoromethyl)benzamide;
```

```
butyl-3-piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
 5
    2-Cyclohexylamino-N-\{2-[((cis)-4-\{[4-
          methylthiobenzyl]amino}-1-propyl-3-
          piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl) benzamide;
    2-Iso-propylamino-N-{2-[((cis)-4-{[4-
10
          methylthiobenzyl]amino}-1-propyl-3-
          piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
15
    2-(Pyrrolidinylcarbonyl) amino-N-{2-[((cis)-4-{[4-
         methylthiobenzyl]amino}-1-propyl-3-
         piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
    2-(Methylaminocarbonyl)amino-N-{2-[((cis)-4-{[4-
20
         methylthiobenzyl]amino}-1-propyl-3-
         piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl) benzamide;
25
    3-Amino-N-\{2-[((cis)-4-\{[4-methylthiobenzyl]amino\}-1-
         propyl-3-piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
    N-\{2-[((cis)-4-\{[4-aminosulfonylbenzoyl]amino\}-3-
30
         piperidinyl)amino]-2-oxoethyl}-3-
          (trifluoromethyl)benzamide;
```

 $2-Amino-N-\{2-[((cis)-4-\{[4-methylthiobenzyl]amino\}-1-$

```
N-\{2-[((cis)-4-\{[4-methylsulfonylbenzoyl]amino\}-3-
          piperidinyl)amino]-2-oxoethyl}-3-
           (trifluoromethyl)benzamide;
 5
     2-Amino-N-\{2-[((cis)-4-\{[4-(methylthio)benzoyl]amino\}-3-(methylthio)benzoyl]amino\}-3-(methylthio)benzoyl]amino\}
          piperidinyl)amino]-2-oxoethyl}-5-
           (trifluoromethyl)benzamide;
     N-\{2-[((cis)-4-\{[4-methylthiobenzoyl]amino\}-1-methyl-3-
10
          piperidinyl)amino]-2-oxoethyl}-3-
           (trifluoromethyl)benzamide;
     N-\{2-[((cis)-4-\{[4-methylthiobenzoyl]amino\}-1-acetyl-3-
          piperidinyl)amino]-2-oxoethyl}-3-
15
           (trifluoromethyl)benzamide;
     2-Amino-N-\{2-[((cis)-4-\{[4-methylthiobenzoyl]amino\}-1-
          butyl-3-piperidinyl)amino]-2-oxoethyl}-3-
          (trifluoromethyl)benzamide;
20
     2-Cyclohexylamino-N-\{2-[((cis)-4-\{[4-
          methylthiobenzoyl]amino}-1-propyl-3-
          piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
25
```

```
2-Iso-propylamino-N-\{2-[((cis)-4-\{[4-
         methylthiobenzoyl]amino}-1-propyl-3-
         piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
 5
    3-Amino-N-\{2-[((cis)-4-\{[4-methylthiobenzoyl]amino\}-1-
         propyl-3-piperidinyl)amino]-2-oxoethyl}-5-
          (trifluoromethyl)benzamide;
10
    N-\{2-[((cis)-3-\{[4-(aminosulfonyl)benzoyl]amino\}-4-
         piperidinyl)aminol-2-oxoethyl}-3-
          (trifluoromethyl)benzamide;
    N-{[4-Dimethylamino-2-(4-methylsulfanyl-benzylamino)-
15
         cyclohexylcarbamoyl]-methyl}-3-trifluoromethyl-
         benzamide trifluoroacetate;
    N-{[2-(4-Chloro-benzylamino)-4-dimethylamino-
         cyclohexylcarbamoyl]-methyl}-3-trifluoromethyl-
20
         benzamide trifluoroacetate:
    N-{[4-Dimethylamino-2-(4-methoxy-benzylamino)-
         cyclohexylcarbamoyl]-methyl}-3-trifluoromethyl-
         benzamide trifluoroacetate; and
25
    N-{[4-Dimethylamino-2-(4-methyl-benzylamino)-
         cyclohexylcarbamoyl]-methyl}-3-trifluoromethyl-
         benzamide trifluoroacetate.
```

30

12. A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 1.

13. A method for modulation of chemokine or chemokine receptor activity comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.

5

10

- 14. A method for modulation of MCP-1, MCP-2, MCP-3 and MCP-4, and MCP-5 activity that is mediated by the CCR2 receptor comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.
- 15. A method for modulation of MCP-1 activity comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.
- 16. A method for treating or preventing disorders, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 20 1, said disorders being selected from osteoarthritis, aneurism, fever, cardiovascular effects, Crohn's disease, congestive heart failure, autoimmune diseases, HIVinfection, HIV-associated dementia, psoriasis, idiopathic pulmonary fibrosis, transplant arteriosclerosis, 25 physically- or chemically-induced brain trauma, inflammatory bowel disease, alveolitis, colitis, systemic lupus erythematosus, nephrotoxic serum nephritis, glomerularnephritis, asthma, multiple sclerosis, 30 artherosclerosis, and rheumatoid arthritis.
 - 17. The method for treating or preventing disorders, of claim 16, wherein said disorders being

selected from psoriasis, idiopathic pulmonary fibrosis, transplant arteriosclerosis, physically- or chemically-induced brain trauma, inflammatory bowel disease, alveolitis, colitis, systemic lupus erythematosus, nephrotoxic serum nephritis, glomerularnephritis, asthma, multiple sclerosis, artherosclerosis, and rheumatoid arthritis.

18. The method for treating or preventing
10 disorders, of claim 17, wherein said disorders being selected from alveolitis, colitis, systemic lupus erythematosus, nephrotoxic serum nephritis, glomerularnephritis, asthma, multiple sclerosis, artherosclerosis, and rheumatoid arthritis.

15

19. The method for treating or preventing disorders, of claim 18, wherein said disorders being selected from asthma, multiple sclerosis, artherosclerosis, and rheumatoid arthritis.

20

20. A method for treating or preventing rheumatoid arthritis, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.

25

21. A method for treating or preventing multiple sclerosis, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.

30

22. A method for treating or preventing atherosclerosis, comprising administering to a patient in

need thereof a therapeutically effective amount of a compound of claim 1.

- 23. A method for treating or preventing asthma, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.
- 24. A method for treating or preventing

 10 inflammatory diseases, comprising administering to a
 patient in need thereof a therapeutically effective
 amount of a compound of claim 1.
- 25. A method for modulation of CCR2 activity

 15 comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.