

COLOUR TV

SPECIFICATIONS

French TV standards TV-signal Standards:

System E (819 lines)

System L (625 lines; SECAM

COLOUR system)

Picture Tube:

33 cm (13") 90° deflection

TRINITRON system

Semiconductors:

62 transistors, 56 diodes,

1 tube and 1 IC

Channel Coverage:

VHF; ch. F2~F12

UHF; ch. 21~69

Antenna Input Impedance:

75 ohms unbalanced (VHF);

dipole antenna and external antenna

75 ohms unbalanced (UHF); parabolic antenna and external

antenna

IF Circuit:

4 stages with 2 double tuned and

2 single tuned elements

SIF Circuit:

3 stages with 1 double tuned and

3 single tuned elements

Intermediate Frequency:

Picture i-f carrier; VHF 28.05MHz UHF 32.70MHz

Sound i-f carrier; 39.2 MHz AM detection

Sound System:

Power output; 1W (at 10% harmonic

distortion)

Video System:

Speaker; 8 x 16 cm, 16 ohm voice coil

Red, Green and Blue cathode

drive system

Colour Signal System:

Colour Selecting System:

Colour Demodulation , System:

Convergence Correction

System:

Direct coupling matrix system

FM colour signal amplifier 4 stages

Horizontal; electrostatic deflection system Vertical; magnetism correction system of

magnet

SECAM-IIIb system

Automatic Controls:

ACC (automatic colour control) (automatic colour killer) ACK

ADG (automatic degaussing) (automatic brightness limiter) ABL (automatic resolution control)

ARC Mean-value agc Saw-tooth afc

Power Requirements:

AC 110V, 127V, 220V 50Hz AC 95 watts **Power Consumption:**

Earphone jack 2 pcs Jack:

508 mm (W) x 358 mm (H) x 395 mm (D) Dimensions:

Weight: 19.7 kg

Earphone ME-20B Accessories: Polishing cloth

VHF dipole antenna (AN-14F)

Instruction manual

SERVICE MANUAL

TABLE OF CONTENTS

	<u>Title</u> <u>Page</u>	<u>Title</u>	Page
1. CII	RCUIT DESCRIPTION	4-3. Colour Circuit Adjustments4	0~42
1-1	. Circuit de Fixage 3	4-4. Deflection Circuit Adjustments 4	13~49
1-2	. Circuit de Limiteur Automatique		
	de Blillance (ABL) 4~5	EXTERNAL VIEW OF TRANSISTORS	
1-3	. Circuit d'Identification	AND DIODES5	0~51
	de Couleur		
1-4	. Aimants d'Alignment du	CLASSIFIED TABLE OF DIODES	51
	Faisceau (BAM)11		
1-5	. Circuit de Reglace Automatique	SCHEMATIC DIAGRAM	
	de Chrominance (ACC)13~17	(UHF TUNER, VHF TUNER)	52
EX	TERNAL VIEW 19	BLOCK DIAGRAM 5	3~54
2. DIS	SASSEMBLY	MOUNTING DIAGRAM	
2-1	. Rear Cover Removal 20	P2 Circuit Board	55
2-2	. Cabinet Removal	A Circuit Board	56
2-3	. Speaker Removal	S Circuit Board 5	7 ~ 60
2-4	. VHF Tuner Removal	SW Circuit Board 6	
2-5	. UHF Tuner Removal21~22	T Circuit Board	65
2-6	. Printed Circuit Board Removal 22~24	ABL Circuit Board	66
2-7	. Controls Removal24	P1 Circuit Board6	7 ~ 68
2-8	. Picture Tube Removal25~26	CD Circuit Board6	9~72
2-9	. New Picture Tube Installation 26~27	L Circuit Board	73
		16P Terminal Board	73
3. SEI	RVICE ADJUSTMENTS		
3-1	. Beam Landing Adjustments	WAVEFORMS	74
3-2	. Static Convergence Adjustments28~30		
3-3	. Dynamic Convergence Adjustments 30~31	SCHEMATIC DIAGRAM7	5 ~ 77
3-4	. Screen-Edge Convergence		
3-5	. White Balance Adjustments	EXPLODED VIEW8	1~84
4. CIR	RCUIT ADJUSTMENTS	PARTS LOCATIONS	85
4-1	. Video I-f Alignments33~38		
4-2	. Sound I-f Alignments	ELECTIRCAL PARTS LIST 8	6~93

SECTION 1 CIRCUIT DESCRIPTION

1-1. CIRCUIT DE FIXAGE

Ce circuit de fixage définit un niveau noir pour le signal video au début de chaque ligne de balayage. Le niveau moyen du signal vidéo à la sortie du détecteur est maintenu constant grâce au contrôle automatique de gain (AGC) moyennant la valeur moyenne utilisé dans le KV-1220DF. Par conséquent, une image correcte ne peut être obtenue sur l'écran, si le circuit de fixage n'était pas muni.

Le niveau noir du signal vidéo peut être fixé à un certain niveau au moyen du circuit de fixage, on peut alors obtenir une image nette et de haute qualité (voir le schéma du circuit figure 1-1).

Le signal de synchronisation est séparé par Q408 du signal délivré par l'émetteur de Q411 (Amplificateur Y). Le signal de synchronisation qui apparaît sur le collecteur de Q408 est différencié par un filtre passe-haut constitué de C410 (150 pF) et de 2 résistances montées en parallèle (R420: $10\,\mathrm{k}\Omega$ et R418: $10\,\mathrm{k}$). On obtient alors un signal différencié (voir forme du signal N° 3 figure 1-1) qui est fourni à la base de Q407 (porte de fixage). Le potentiel de l'émetteur de Q407 est plus élevé que celui de la base dans des conditions normales de fonctionnement, Q407 est alors coupé.

Lorsqu'on applique une impulsion négative H à partir de FBT, à l'émetteur, D401 devient conductrice et le potentiel de l'émetteur de O407 devient potentiel de la masse pendant la durée de l'impulsion. En même temps, l'impulsion différenciée est transmise à la base de Q407. Q407 est allumé uniquement lorsqu'une impulsion différenciée positive est appliquée à sa base. On obtient une impulsion négative sur le collecteur de Q407. Cette impulsion négative est transmise à la base de Q417 (fixatif) à travers une capacité C424 de 1 µF, et le transistor non polarisé Q417 devient conducteur. Alors le signal vidéo est fourni à Q417, à travers C415 (2.2 µF). Le niveau noir du signal vidéo est fixé à la tension de l'émetteur de Q417 car la pulsation de fixage est synchronisée avec le palier arrière du signal vidéo. Voir les relations entre phases en figure 1-1.

Le signal vidéo est fixé à chaque 1 H. On obtient ainsi le juste degré de saturation des couleurs.

1-1. CLAMP CIRCUIT

This clamp circuit fixes a black level of the video signal at the beginning of each scanning line. The average value of the video signal at the detector output is kept constantly due to the mean-value agc circuit employed in KV-1220DF. As the result, if the clamp circuit is not used, the correct picture cannot be obtained on the screen.

Black level of the video signal can be clamped at a certain level by the clamp circuit, and a clear and high quality picture can be obtained. See the schematic diagram in Fig. 1-1.

The sync signal is separated by Q408 from the signal supplied from the emitter of Q411 (Y AMP). Sync signal from the collector of Q408 is differentiated by the high-pass filter consisting of C410 (150pF) and a parallel resistance of R420 (10k) and R418 (10k). Thus the signal shown at ③ is obtained, and is supplied to the base of Q407 (CLAMP GATE). The emitter potential of Q407 is higher than its base potential in a normal condition, and Q407 is cut off.

When the negative H pulse is supplied to the emitter from the FBT, D401 becomes ON and the emitter potential of O407 becomes ground potential within pulse duration. At the same time the differentiated pulse is supplied to the base of O407. O407 conducts only when the positive differentiated pulse is supplied to the base. At the collector of Q407, negative pulse is obtained. This negative pulse is supplied to the base of O417 (CLAMPER) through C424 (1µF), and non biased O417 becomes ON. At that time the video signal is supplied to Q417 through C415 (2.2 μ F). The black level of the video signal is clamped to the emitter voltage of Q417, as the clamp pulse is synchronized with the back porch of the video signal. See the phase relation in Fig. 1-1.

The video signal is clamped at each 1 H. Thus the correct degree of color saturation can be obtained

1-2. CIRCUIT DE LIMITEUR AUTOMATIQUE DE BRILLANCE (ABL)

Ce circuit est utilisé pour maintenir le courant du faisceau d'électrons du tube image dans certaines limites, protégeant ainsi le tube image et le transformateur HT d'éventuelles degâts. Le diagramme schématique se trouve en figure 1-2.

Le transistor Q415 du circuit ABL est normalement conducteur (courant de faisceau inférieur à $800\,\mu\text{A}$). Le courant d'électrons s'écoule, de la masse au transformateur de focalisation FBT à travers R807.

Un accroissement du courant du faisceau d'électrons du tube image fait baisser la tension de la base du transistor Q415 du circuit ABL. Lorsque la tension de la base est inférieur à celle de l'émetteur, Q415 est coupé. Par conséquent, la tension du collecteur du transistor Q415 augmente.

Le collecteur de Q415 est relié à l'émetteur du transistor de fixage Q417 à travers R451 et R453. Ainsi la tension du collecteur de Q417 et la tension de l'émetteur de Q413 augmentent. L'émetteur de Q413 est relié à la base de 3 transistors amplificateurs (Q402, Q404 et Q406) à travers la diode de suppression D404 et trois résistances d'ajustement.

1-2. AUTOMATIC BRIGHTNESS LIMITER (ABL) CIRCUIT

This circuit is employed to maintain the beam current of the picture tube within limits, thereby protecting both the picture tube and the high-voltage transformer from possible damage. The schematic diagram is shown in Fig. 1-2.

The ABL transistor Q415 is ON at the normal condition (beam current is less than $800\mu A$). The beam current flows from ground to FBT through R807.

An increase in the beam current of picture tube lowers the base voltage of ABL transistor Q415. When the base voltage drops below the emitter voltage, Q415 becomes OFF. As the result, the collector voltage of Q415 will increase.

The collector of Q415 is connected to the emitter of clamper transistor Q417 through R451 and R453. Thus the collector voltage of Q417 and the emitter voltage of Q413 will increase. The emitter of Q413 is connected to the base of three drive transistors (Q402, Q404 and Q406) through the blanking diode D404 and three drive controls. Therefore, the emitter voltage of three drive transistors (Q402, Q404 and Q406) through the blanking diode D404 and three drive controls.

1a

1-3. CIRCUIT D'IDENTIFICATION DE COULEUR

Dans le système de balayage de chrominance par séquences de ligne employé dans le procédé SECAM, le signal différentiel couleur R-Y est envoyé sur une ligne et le signal B-Y sur la ligne suivante. Le signal de luminance est transmis à chaque ligne de façon normale. Pour modifier proprement les signaux de différence de couleur en signaux simultanés, un signal d'identification de ligne est transmis sur neuf lignes insérées dans les intervalles de suppression de balayage vertical.

Dans le récepteur, le circuit d'identification de couleur, commandé par le signal d'identification de ligne, est utilisé pour les fonctions suivantes; il commande les diodes de blocage (killer) et l'amplificateur de couleur pour éliminer l'élément couleur de l'écran durant la transmission en noir et blanc.

Le signal d'identification de ligne est également utilisé pour commander les diodes commutation de façon à modifier le signal d'entrée en signal simultané par sychronisation de la bascule flip-flop.

Le circuit intégré utilisé pour le circuit d'identification de ligne est composé de trois circuits distincts:

- une bascule flip-flop qui commande les diodes de commutation
- un multivibrateur à retard pour la mise en forme des impulsions du balayage vertical
- une bascule commandant les diodes de blocage (killer) des circuits coulerur (voir figure 1-4).

Circuit de la Bascule Flip-Flop commandant les Diodes de Commutation

L'impulsion de balayage horizontal, issue de HOT, est mise en forme par la capacité C002, la résistance R002 et la diode D002, et est transmise aux bases des transistors Qa et Qb; aux collecteurs 8 et 9 des transistors Qa et Qb, on obtient alors les impulsions de commutation telles qu'elles figurent figure 1-3 (J), et qui sont destinées aux diodes de commutation D305, D306, D313 et D314. Les impulsions de commutation fournient donc le signal couleur directe et le signal couleur retardé de 1-H aux discriminateurs R-Y et B-Y par ordre correct.

Circuit de la Bascule Flip-Flop commandant les Diodes de Blocage (Killer) des Circuits Couleur

La bascule Flip-Flop est constituée des transistors Qe et Qf et fonctionne lorsque les impulsions sont appliquées soit au point 5, 10 ou 4. Le point 11 est relié à la base de l'amplificateur de chrominance Q302 et aux diodes D307 et D315, diodes de blocage des signaux couleur R-Y et B-Y.

1-3. COLOUR-IDENTIFICATION CIRCUIT

In line sequential chrominance scanning employed in SECAM system, R-Y colour-difference signal is sent on one line and B-Y signal on the next line. The luminance signal is transmitted on every line in the normal way. To change the both of the colour-difference signals to the simultaneous signal correctly, line-identification signal is transmitted on nine lines being inserted into the vertical blanking interval.

In the receiver, the colour-identification circuit, driven by line-identification signal, is adopted for the following functions; it turns on or off the killer diodes and the colour amplifier to eliminate colour component from the screen during black-and-white broadcasting time.

The line-identification signal is also used to turn ON or OFF the switching diode to change the input signal to the simultaneous signal by synchronizing the flip-flop circuit.

IC component employed for the colour-identification circuit is consisting of three circuits; flip-flop circuit for operating switching diodes, delay multivibrator circuit for vertical pulse shaper and flip-flop circuit for operating colour killer diodes. (Refer to Fig. 1-4.)

Flip-Flop Circuit for Operating Switching Diodes

The horizontal pulse from HOT is waveshaped by C002, R002 and D002, and is supplied to the bases of Qa and Qb. At the collectors 8 and 9 of Qa and Qb, the switching pulses shown in Fig. 1-3 (J) appear, and are supplied to the switching diodes D305, D306, D313 and D314 respectively. Thus the switching pulses supply the direct colour signal and the 1-H delayed colour signal to each R-Y and B-Y discriminator in right order.

Flip-Flop Circuit for Operating Colour Killer Diodes

This flip-flop circuit, consisting of Qe and Qf, is operated when the pulse is supplied to either terminal (5), (10) or (4). Terminal (11) is connected to the base of Q302 chroma amplifier, and D307 and D315 R-Y and B-Y colour killer diodes.

Near 0V is obtained at terminal (1) during the black-and-white broadcasting time, so colour killer circuit operates and only luminance picture appears on the screen. When the chrominance input signal is supplied, the level at terminal (1) becomes high and the colour killer circuit is cut off. Thus the chroma circuit operates correctly and the colour picture can be obtained on the screen.

On obtient environ 0 volt au point 11 lors d'une transmission en noir et blanc, le circuit des diodes de blocage fonctionne et l'on obtient sur l'écran qu'une image en luminosité. Loraqu'on applique le signal de chrominance, la tension au point 11 augmente et le circuit des diodes de blocage devient inopérant. Le circuit de chrominance est alors en fonctionnement correct et l'on peut ainsi obtenir une image couleur sur l'écran.

Circuit du Multivibrateur de Retard

Le circuit du multivibrateur de retard est déclenché par le front de l'impulsion verticale, provenant du VOT, qui est mis en forme par la capacite C001 et la diode D001. On obtient aux points (12) et (13) l'impulsion retardée par la constante de temps engendrée par la capacité C009 et la résistance R006. dont la forme est représentée en figures 1-3(B) et 1-3(A). Ces impulsions sont transmises aux bases des transistors Qe et Qf comme impulsion de porte après différentiation; l'impulsion positive (voir figure 1-3(A)) est fournie au collecteur du transistor O307 (ACC-2) par l'intermédiaire de la diode D308. Celle-ci commande l'ampli chrominance de manière qu'il ne coupe pas les signaux d'identification de couleur, lorsque le potentiomètre de réglage de couleur est actionné contre le sens des aiguilles d'une montre. La largeur de l'impulsion est déterminée de telle façon que le circuit de chrominance n'agit que durant les intervalles de suppression de balayage vertical, et la durée de la descente de l'impulsion doit être finie lorsque le signal d'identification de - couleur est délivrée à la base.

La diode D006 sert à déclencher le circuit de retard et la diode D007 sert à la protection du circuit intégré.

Fonctionnement lors d'une Emission en Noir et Blanc

Les circuits servant à la mise en marche des diodes de commutation ne servent que pour des réceptions d'émissions en couleur, la description de ces circuits ne sera donc pas faite dans ce paragraphe.

Dans le circuit de retard, les impulsions verticales servent à la commutation. Les impulsions verticales, différenciées par la capacite C001 et la résistance R001 sont mis en forme par la diode D001. Seules les impulsions négatives sont transmises à la cathode de la diode D006.

Lorsqu'aucune impulsion négative n'est transmise à la cathode de la diode D006, on obtient pratiquement le même potentiel aux bornes de la capacité C009 car la diode D006 est hors de conduction. Le transistor Qd est en travail, et

Delay Multivibrator Circuit

Delay multivibrator circuit is triggered by the leading edge of the vertical pulse from VOT which is waveshaped by C001 and D001. At terminals (12) and (13), the pulse delayed by the time constant that is the product of C009 and R006 is obtained as shown in Figs. 1-3 (A) and 1-3 (B) These pulses are supplied to the bases of Qe and Qf as a gate pulse after differentiation, and positive pulse in Fig. 1-3 (A) is also supplied to the collector of Q307 (ACC-2) through D308. It operates the chroma amplifier not to cut off colouridentification signal, when the colour control is turned counterclockwise. The pulse width is determined so that the chroma circuit is operated during only the vertical blanking interval, and the decay time of the pulse should be finished while the colour-identification signal is supplied to the base.

D006 is used to trigger the delay circuit, and D007 is for the protection of IC.

Operation in Black-and-White Broadcasting

The operation of the circuit for operating switching diodes is only necessary in colourcast, so its circuit description is omitted in this section.

In the delay circuit, vertical pulse is used as a switching pulse. Vertical pulse differentiated by C001 and R001 is waveshaped by D001. And only negative pulse is supplied to the cathode of D006.

When the negative pulse is not supplied to the cathode of D006, almost same potential is obtained across C009 because D006 is not conducted. And Qd is ON, accordingly the collector voltage of Qd is OV. Qc is cut off, and the collector voltage of Qc is about 8V.

When the negative pulse is supplied to the cathode of D006, D006 conducts and the base voltage of Od is lowered. Od is cut off and high collector voltage is obtained. Qc is turned ON, and C009 is charged through R006. Thus the base voltage of Od rises slowly by the time constant of R006 and C009, and then Qd is turned ON. Thus the pulse, whose width is determined by the time constant of R009 and C009, is obtained at terminals (12) and (13) as illustrated in Fig. 1-4. These pulses are differentiated and supplied to the bases of Qe and Qf respectively to turn ON or OFF the killer diodes. Transistor Qe turns ON, only when the negative pulse is supplied to the base of Qf. Pulses at terminals (12) and (13) are the same in their rise times and have opposite polarities. Therefore, the negative differentiated pulses at terminals (4) and (5) have some time the

line.

ector

value

sult,

cture

nped

clear

e the

1 the

MP).

iffer-

C410

10k)

 \mathfrak{I} is

2407

2407

ondi-

the

and

ound

time se of

sitive

t the

This

2417

iased

ignal

The

the

se is

video

Thus

be

Q 412 Y AMP-3 0411 Q413 Y AMP-Y DRIVE VR903 100 ≥R439 100 CONT C415 Y signal 2.2 µ25V 2435 D404 (2) 1.2k ≥ Q417 CLAMPER R440 sync pulse R909 ₹820 ₹ 330 27k C424 ₹R417 3 VR904 (3) 500B differential BRT 0407 CL AMP R419 IOK GATE R433 H PULSE R910 C427 150p (4) 2.7k 0.01 5 clamp pulse D403-P421 560 (5) R422 C410 150p PHASE RELATION Q408 SYNC SEP Fig. 1-1.

1-2. CIRCUIT DE LIMITEUR AUTOMATIQUE DE BRILLANCE (ABL)

Ce circuit est utilisé pour maintenir le courant du faisceau d'électrons du tube image dans certaines limites, protégeant ainsi le tube image et le transformateur HT d'éventuelles degâts. Le diagramme schématique se trouve en figure 1-2.

Le transistor Q415 du circuit ABL est normalement conducteur (courant de faisceau inférieur à $800\,\mu\text{A}$). Le courant d'électrons s'écoule, de la masse au transformateur de focalisation FBT à travers R807.

Un accroissement du courant du faisceau d'électrons du tube image fait baisser la tension de la base du transistor Q415 du circuit ABL. Lorsque la tension de la base est inférieur à celle de l'émetteur, Q415 est coupé. Par conséquent, la tension du collecteur du transistor Q415 augmente.

Le collecteur de Q415 est relié à l'émetteur du transistor de fixage Q417 à travers R451 et R453. Ainsi la tension du collecteur de Q417 et la tension de l'émetteur de Q413 augmentent. L'émetteur de Q413 est relié à la base de 3 transistors amplificateurs (Q402, Q404 et Q406) à travers la diode de suppression D404 et trois résistances d'ajustement.

1-2. AUTOMATIC BRIGHTNESS LIMITER (ABL) CIRCUIT

This circuit is employed to maintain the beam current of the picture tube within limits, thereby protecting both the picture tube and the high-voltage transformer from possible damage. The schematic diagram is shown in Fig. 1-2.

The ABL transistor Q415 is ON at the normal condition (beam current is less than 800μ A). The beam current flows from ground to FBT through R807.

An increase in the beam current of picture tube lowers the base voltage of ABL transistor Q415. When the base voltage drops below the emitter voltage, Q415 becomes OFF. As the result, the collector voltage of Q415 will increase.

The collector of Q415 is connected to the emitter of clamper transistor Q417 through R451 and R453. Thus the collector voltage of Q417 and the emitter voltage of Q413 will increase. The emitter of Q413 is connected to the base of three drive transistors (Q402, Q404 and Q406) through the blanking diode D404 and three drive controls. Therefore, the emitter voltage of three drive transistors (Q402, Q404 and Q406) through the blanking diode D404 and three drive controls.

Donc, la tension de l'émetteur des 3 transistors amplificateurs s'élève et le courant du collecteur des transistors de sortie (Q401 pour le rouge, Q403 pour le vert, Q405 pour le bleu) diminue.

Le courant d'électrons du faisceau a tendance à diminuer vers sa valeur d'origine en accroissant la tension de la cathode du tube image. L'émetteur de Q413 est relié à la base de Q416 à travers une diode D406 (diode de porte ACC — Réglage Automatique de Chrominance —). Le niveau du signal couleur ne change pas, à cause de l'augmentation de la tension de l'émetteur de Q416 à travers R455 ainsi que de l'augmentation de la tension de la base de Q416 (voir les explications concernant le circuit de réglage automatique de chrominance ACC).

Par conséquent l'image qui a la meilleure saturation des couleurs n'est pas obtenue sur l'écran comme il faut. Pour éliminer ce phénomène, le collecteur de Q415 est relié à l'émetteur de Q416 à travers la résistance R454. C'est à dire, lorsque la tension du collecteur du transistor Q415 s'accroît par suite de fonctionnement du circuit ABL, la tension de l'émetteur augmente en raison de R454 plus que la tension de la base de Q416. Or, l'accroissement de la tension de l'émetteur arrête tout accroissement de la tension de la base. Donc, le signal couleur suit le signal Y, et la meilleure saturation de l'image couleur sur l'écran est obtenue automatiquement.

sistors will increase, and the collector current of red, green and blue output transistor (Q401, Q403 and Q405) will decrease.

Beam current tends to decrease toward the original value by increasing the cathode voltage of the picture tube. The emitter of Q413 is connected to the base of Q416 through a ACC gate diode D406. The level of colour signal, however, will not change because of an increase of the emitter voltage of Q416 through R455 as same as the increase of base voltage of Q416. (See the explanation of ACC circuit).

As the result, the picture which has the best colour saturation is not obtained on the screen as it is. To eliminate this phenomenon, the collector of Q415 is connected to the emitter of Q416 through R454. Namely, when the collector voltage of Q415 is increased by the operation of ABL circuit, the emitter voltage increases by R454 more than the increase of base voltage of Q416. And the increasing of emitter voltage stops the increasing of base voltage. Thus the colour signal follows the Y signal, the best colour saturation picture is obtained on the screen automatically.

Fig.1-2.

On obtient environ 0 volt au point (1) lors d'une transmission en noir et blanc, le circuit des diodes de blocage fonctionne et l'on obtient sur l'écran qu'une image en luminosité. Loraqu'on applique le signal de chrominance, la tension au point (1) augmente et le circuit des diodes de blocage devient inopérant. Le circuit de chrominance est alors en fonctionnement correct et l'on peut ainsi obtenir une image couleur sur l'écran.

Circuit du Multivibrateur de Retard

Le circuit du multivibrateur de retard est déclenché par le front de l'impulsion verticale, provenant du VOT, qui est mis en forme par la capacite C001 et la diode D001. On obtient aux points (12) et (13) l'impulsion retardée par la constante de temps engendrée par la capacité C009 et la résistance R006, dont la forme est représentée en figures 1-3(B) et 1-3(A). Ces impulsions sont transmises aux bases des transistors Qe et Qf comme impulsion de porte après différentiation; l'impulsion positive (voir figure 1-3(A)) est fournie au collecteur du transistor Q307 (ACC-2) par l'intermédiaire de la diode D308. Celle-ci commande l'ampli chrominance de manière qu'il ne coupe pas les signaux d'identification de couleur, lorsque le potentiomètre de réglage de couleur est actionné contre le sens des aiguilles d'une montre. La largeur de l'impulsion est déterminée de telle façon que le circuit de chrominance n'agit que durant les intervalles de suppression de balayage vertical, et la durée de la descente de l'impulsion doit être finie lorsque le signal d'identification de - couleur est délivrée à la base.

La diode D006 sert à déclencher le circuit de retard et la diode D007 sert à la protection du circuit intégré.

Fonctionnement lors d'une Emission en Noir et Blanc

Les circuits servant à la mise en marche des diodes de commutation ne servent que pour des réceptions d'émissions en couleur, la description de ces circuits ne sera donc pas faite dans ce paragraphe.

Dans le circuit de retard, les impulsions verticales servent à la commutation. Les impulsions verticales, différenciées par la capacite C001 et la résistance R001 sont mis en forme par la diode D001. Seules les impulsions négatives sont transmises à la cathode de la diode D006.

Lorsqu'aucune impulsion négative n'est transmise à la cathode de la diode D006, on obtient pratiquement le même potentiel aux bornes de la capacité C009 car la diode D006 est hors de conduction. Le transistor Qd est en travail, et

Delay Multivibrator Circuit

Delay multivibrator circuit is triggered by the leading edge of the vertical pulse from VOT which is waveshaped by C001 and D001. At terminals (12) and (13), the pulse delayed by the time constant that is the product of C009 and R006 is obtained as shown in Figs. 1-3 (A) and 1-3 (B) These pulses are supplied to the bases of Oe and Of as a gate pulse after differentiation, and positive pulse in Fig. 1-3 (A) is also supplied to the collector of Q307 (ACC-2) through D308. It operates the chroma amplifier not to cut off colouridentification signal, when the colour control is turned counterclockwise. The pulse width is determined so that the chroma circuit is operated during only the vertical blanking interval, and the decay time of the pulse should be finished while the colour-identification signal is supplied to the base.

D006 is used to trigger the delay circuit, and D007 is for the protection of IC.

Operation in Black-and-White Broadcasting

The operation of the circuit for operating switching diodes is only necessary in colourcast, so its circuit description is omitted in this section.

In the delay circuit, vertical pulse is used as a switching pulse. Vertical pulse differentiated by C001 and R001 is waveshaped by D001. And only negative pulse is supplied to the cathode of D006.

When the negative pulse is not supplied to the cathode of D006, almost same potential is obtained across C009 because D006 is not conducted. And Qd is ON, accordingly the collector voltage of Qd is OV. Qc is cut off, and the collector voltage of Qc is about 8V.

When the negative pulse is supplied to the cathode of D006, D006 conducts and the base voltage of Qd is lowered. Qd is cut off and high collector voltage is obtained. Qc is turned ON, and C009 is charged through R006. Thus the base voltage of Qd rises slowly by the time constant of R006 and C009, and then Qd is turned ON. Thus the pulse, whose width is determined by the time constant of R009 and C009, is obtained at terminals (12) and (13) as illustrated in Fig. 1-4. These pulses are differentiated and supplied to the bases of Qe and Qf respectively to turn ON or OFF the killer diodes. Transistor Qe turns ON, only when the negative pulse is supplied to the base of Qf. Pulses at terminals (12) and (13) are the same in their rise times and have opposite polarities. Therefore, the negative differentiated pulses at terminals (4) and (5) have some time

la tension de son collecteur est donc 0V. Qc est coupé et la tension de son collecteur est d'environ 8V.

Lorsqu'une impulsion négative apparaît aux bornes de la diode D006, elle est en fonction, et la tension de la base du transistor Qd diminue. Qd est coupé et l'on obtient une tension du collecteur élevée. Qc est mis en conduction et la capacité C009 se charge à travers la résistance R006. La tension de la base du transistor Qd augmente lentement en fonction de la constante de temps déterminée par la résistance R006 et la capacité C009 et Qd devient conducteur. L'impulsion (dont la largeur est déterminée par la constante de temps fournie par la résistance R009 et la capacité C009) est obtenue aux points (12) et (13) ainsi que le montre la figure 1-4. Ces impulsions sont différenciées et transmises aux bases des transistors Qe et Qf pour allumer ou couper les diodes de blocage. Le transistor Qe ne devient conductif uniquement que lorsqu'on applique une impulsion négative à la base du transistor Qf. Les impulsions délivrées aux points 13 et 12 ont les mêmes temps de montée et sont de phase inversée (polarité inversée). Donc, les impulsions négatives différenciées fournies aux points (4) et (5) peuvent présenter parfois quelques différences en temps. Les impulsions différentielles négatives produites au point X (figure 1-3) sont d'abord délivrées au point (5) et le transistor Of est coupé. La tension au point (11) augmente. Etant donné que le point (11) est relié aux circuits de blocage de couleurs et à la base du transistor Q302, les diodes de blocage de couleurs (diodes killer) sont coupées et le signal de chrominance est délivré à l'amplificateur de chrominance. Ceci est réalisé durant l'intervalle de suppression du faisceau de balayage vertical, l'image de chrominance n'apparaît pas sur l'écran. En suite l'impulsion négative produite an point Y est délivrée au point (4), le transistor Qe est coupé et le transistor Qf est allumé. La tension en (11) decroît jusqu'a près de 0 volt et les diodes de blocage de couleurs sont en fonction. Ainsi seule une image en luminosité apparaît sur l'écran durant une émission en noir et blanc.

Fonctionnement lors d'une Emission en Couleur

Durant l'intervalle de suppression du faisceau de balayage vertical, les diodes de blocage de couleurs sont coupées et l'amplificateur de chrominance fonctionne de la même façon que durant une émission en noir et blanc. Toutefois, le fonctionnement est différent lorsque l'impulsion négative produite en Y est délivrée à la base du transistor Qe par l'intermédiaire du point 4, le signal d'identification est fourni à la base du transistor Qf par l'intermédiaire

differences. The negative differentiated pulse produced at point X in Fig. 1-3 is first supplied to terminal (5), and Qf is cut off. The voltage at terminal (11) is increased. As the terminal (11) is connected to the colour killer circuit and also the base of Q302, the colour killer diodes are cut off and chrominance signal is supplied to the chroma amp. But this is done in the vertical blanking interval, colour picture does not appear on the screen. Next the negative pulse produced at point Y is supplied to terminal (4), and Oe is cut off and Qf is turned ON. Accordingly the voltage at terminal (11) is decreased to almost 0V, and colour killer diodes conduct. Thus only luminance image appears on the screen in black-and-white broadcasting.

Operation in Colourcasting

In the vertical blanking interval, colour killer diodes are cut off and chroma amplifier operates in the same way as in black-and-white broadcasting. But the operation is different, when the negative pulse produced at point Y is supplied to the base of Qe through terminal (4), the identification signal is supplied to the base of Qf through terminal (10).

Identification signals shown in Fig. 1-3 (E) are matrixed by R364 and R393, and is integrated by C005, R005 and C014. See Fig. 1-3 (F). It is supplied to terminal (10).

When R-Y and B-Y signals are supplied to each correct discriminator by Qa and Qb, each colour-identification signal is fed into a matrix with correct phase. At the same time the colour-identification signal with solid line as shown in Fig. 1-4 (correct polarity) is fed to terminal (10), the negative pulse produced at point Y is supplied to the base of Qe. Usually Qf turns ON as the collector voltage is decreased, but in this case the base voltage of Qf is forced to be decreased by the G-Y colour-identification signal and Qf is still remained in the cut-off condition. The collector voltage at Qf is not decreased and the colour killer diode does not conduct. Thus normal colour picture can be obtained on the screen.

When the switching diodes are operated by the colour-identification signal with incorrect polarity (positive) as shown by a dotted line in Fig. 1-3 (F), the diode connected to terminal ① is cut off. When the pulse produced at point Y is supplied to terminal ④, Qf turns ON and the collector voltage of Qf is decreased to almost OV. The colour killer diodes conduct and luminance image appears on only one field after pulse produced at point Y.

du point 10

Les signaux d'identification, tels qu'ils se trouvent en figure 1-3(E), sont matricés par les résistances R364 et R393 et intégrés par le système constitué des capacités C005, C014 et de la résistance R005 (voir figure 1-3(F). Ces signaux sont délivrés au point (10). Lorsque les signaux R-Y et B-Y sont fournis à chaque discriminateur correspondant par les transistors Qa et Qb, chaque signal d'identification de couleur est alimenté à une matrice en phase adéquate. En même temps, le signal d'identification de couleur (voir figure 1-4 en trait plein) (polarité correcte) est délivré au point (10) et l'impulsion négative dévivrée au point Y est fournie à la base du transistor Qe. En général Qf devient conducteur lorsque la tension du collecteur décroît, mais dans notre cas, la tension de la base du transistor Qf doit décroître à cause du signal d'identification de couleur G-Y et le transistor Of est toujours maintenu dans l'état de blocage. La tension du collecteur du transistor Qf n'est pas diminuée et les diodes de blocage de couleurs (killer) ne fonctionnent pas. On obtient ainsi une image couleur normale sur l'écran.

Lorsque les diodes de commutation sont mises en fonctionnement par les signaux d'identification de couleur en raison d'une polarité non conforme (positive) (voir figure 1-3(F) en ligne pointillée), la diode reliée au point 10 est coupée.

Lorsque les impulsions produites au point Y sont délivrées au point (4), le transistor Qf devient conducteur et la tension de son collecteur décroît jusqu'à près de O volt. Les diodes de blocage (killer) de couleurs sont reudues conductrices et un seul champs de luminosité apparaît après l'impulsion produite au point Y. En ce cas, l'impulsion du point (11) (voir figure 1-3(G)) est différenciée par la capacité C004 et la résistance R004 (voir figure 1-3(H)) et est ajoutée à l'impulsion de déclenchement horizontal par l'intermédiaire de la diode D003. L'impulsion de commutation est soumise à l'inversion de sa phase dûe à cette impulsion ajoutée de déclenchement (figure 1-3(I)). Les diodes de blocage de couleurs (killer) sont coupées lorsque le signal d'identification de couleur suivant est délivré au point (10) et une image couleur peut être obtenue sur l'écran.

In this case the pulse at terminal (1) as shown in Fig. 1-3 (G) is differentiated by C004 and R004 as shown in Fig. 1-3 (H), and is added to the horizontal triggering pulse through D003. Thus, the switching pulse is reversed its polarity by this added triggering pulse in Fig. 1-3 (I). Thus the colour killer diodes are turned OFF when next identification signal is supplied to terminal (10) and colour picture can be obtained on the screen.

To ARC

To Q302

To D308

To D307

D318

R008

R000

R010

1-4. AIMANTS D'ALIGNEMENT DU FAISCEAU (BAM)

L'aimant d'alignement du faisceau est constitué d'une paire d'aimants permanents disposés en anneaux montés sur le col arrière du tube image couleur (CRT) (voir figure 1-5). Leur rôle consiste à régler la convergence du faisceau d'électrons au centre de l'écran.

La constitution interne d'un aimant d'alignement est dessiné en figure 1-6. Lorsqu'on tourne l'anneau d'un angle de θ degrés dans la direction de la flêche en figure 1-7, les deux faisceaux périphériques subissent l'influence du champ magnétique dont les sens sont figurées par les flêches en figure 1-6. Le faisceau central d'électrons n'est pas influencé par la variation de champ magnétique. Les deux anneaux sont montés de telle façon que les aimants permanents de chaque anneau se touchent.

Lorsque les deux projections sont alignées, avec les deux pattes séparées de l'une à l'autre de 90 degré, les deux aimants en contact ont des polarités opposées, annulant le champ magnétique. Le taux de correction de convergence est alors nul. Lorsque l'aimant d'alignement est monté sur le col du tube couleur, les deux projections et les pattes doivent être montées de cette façon.

Lorsque les deux pattes se sont eloignées de même distances aux sens opposés (voir figure 1-8), les champs magnétiques induits par chaque anneau sont représentés par des lignes pointillées et en trait fin, et les champs magnétiques composés sont dessinés en trait gras (figure 1-9).

Les deux faisceaux périphériques sont donc déviés dans la direction des flêches (figure 1-10) pour corriger fausse-convergence.

Lorsque les deux pattes se sont rapprochées de même distances, les forces magnétiques s'appliquent en directions opposées vis à vis le cas précédent.

La bissectrice de l'angle entre les deux pattes n'est pas toujours verticale (à 12 heures) comme on n'utilise pas de roue différentielle pour les aimants d'alignement. La correction de convergence, en ce cas, peut être effectuée en opérant une rotation de l'ensemble des aimants d'alignement sans faire varier la position relative des pattes jusqu'à ce que la position correcte de la bissectrice soit obtenue.

1-4. BEAM ALIGNMENT MAGNET (BAM)

The beam alignment magnet (BAM), a pair of two rings with permanent magnets, are mounted on the back of the picture tube neck as shown in Fig. 1-5. They are used to correct convergence at the center of the screen.

An inner make of an alignment magnet is shown in Fig. 1-6. When the ring is turned by θ degree in the direction shown by the arrow in Fig. 1-7, the outside two beams are under the influence of magnetic field in the direction shown by the arrows in Fig. 1-7. The center beam is not influenced. The two rings are mated so that the permanent magnets on both rings contact each other.

When the two projections are mated with the two tabs set 90 degree apart, the two contacted magnets with opposite polarities cancel the magnetic fluxes each other. Convergence correcting amount turns to zero. When the alignment magnet is mounted on the picture tube neck, each two projections and tabs should be set in this way.

When the two tabs are spread in equal amounts opposite directions as shown in Fig. 1-8, the magnetic fields generated by each ring are shown by fine solid lines and dotted lines, and the composite magnetic fields are shown by thick solid lines in Fig. 1-9.

Thus the two outside beams are forced to move in the direction shown by the arrows in Fig. 1-10, to correct misconvergence.

When the two tabs are closed in equal amounts, the forces are added in the opposite directions against those when the tabs are spread.

The center of the angle between the two tabs is not often set to the 12 o'clock position, as the differential gear is not employed in the alignment magnet. The convergence correction in this case can be made by turning the whole alignment magnet without the angle between the tabs varied, until the correct center position of the angle can be obtained.

1-5. CIRCUIT DE REGLACE AUTOMATIQUE DE CHROMINANCE (ACC)

Dans les récepteurs de télévision conventionnels, le AGC (contrôle automatique de gain) a pour but de maintenir le signal vidéo à un niveau constant quelles que soient les variations de niveau du signal d'entrée.

Dans le KV-1220DF, on a adopté le AGC à la valeur moyenne. Le niveau de sortie de la détection varie en fonction du niveau moyen de l'image (APL). De l'autre côté, le signal de chrominance transmis en forme de modulation de fréquence est limité dans une valeur constante par le circuit limiteur, ce qui a pour effet que le signal démodulé n'est pas influencé par le niveau moyen d'image du signal d'entrée.

Il en résulte que, si le signal Y et le signal de chrominance sont matricés dans le démodulateur couleur, le degré de saturation de couleur variera et on ne pourra pas obtenir une image en couleur convenable

Dans le KV-1220DF, la différence de niveaux de signal de synchronisation est utilisées pour commander le circuit de réglage automatique de chrominance destiné à fournir l'image en couleur de haute qualité.

Le fonctionnement du circuit de réglage automatique de chrominance est décrit ci-dessous (voir figure 1-11).

Le signal Y est transmis de l'émetteur du transistor Q412 à la base du transistor Q413 par l'intermédiaire de la capacité C415 et la base de Q413 est reliée au collecteur du transistor Q417. Le transistor de fixage Q417 est obligé de se rendre conducteur, lorsqu'une impulsion de fixage est appliquée à sa base à travers Q407. La tension de la base de Q413 est donc fixée par la tension continue (Ec) déterminée. (Se référer à la description du circuit de fixage).

Le transistor Q416 fonctionne de la façon suivante:

La tension de la base est déterminée par la somme de la tension de fixage (Ec) et la tension crête-crête du signal de synchronisation (ec); la tension de l'émetteur étant à peu près identique à la tension de fixage Ec. Donc, une tension proportionnelle à ec est obtenue à la jonction base/émetteur de Q416. Un accroissement de ec diminue la tension du collecteur de Q416 et le courant du collecteur de Q307 s'accroît en conséquence. Un accroissement du collecteur a pour effet d'accroître les tensions les tensions d'anode des diodes D309, D310, D316 et D317, car le collecteur de Q307 est relié au circuit limiteur R-Y à travers la résistance R304, et au circuit limiteur B-Y à travers la résistance R371.

1-5. AUTOMATIC COLOUR CONTROL (ACC) CIRCUIT

In conventional TV sets, automatic-gain-control (agc) circuit is provided for keeping the video signal level constant despite the level fluctuation of input signal.

In KV-1220DF, however, mean-value agc is adopted. Therefore, the detector output level changes according to the average-picture-level (APL). On the other hand, chrominance (colour) signal transmitted by the form of frequency modulation, is limited to the constant value by limiter circuit, so the demodulated signal is not influenced by the APL of input signal.

As the result, if Y signal and colour signal are matrixed in the colour demodulator section, the degree of colour saturation will change and correct colour picture will not be obtained.

In KV-1220DF, the difference of sync signal level is utilized to operate the ACC circuit for reproducing high quality colour picture.

The operation of ACC circuit is described as follows (refer to Fig. 1-11).

Y signal is derived from the emitter of Q412 to the base of Q413 through C415 and the base of Q413 is connected to the collector of Q417. The clamper transistor Q417 is forced into conduction when the clamp pulse is applied to the base of Q417 through Q407. Thus, the base voltage of Q413 is clamped by the dc voltage (Ec) determined. (Refer to the description of clamp circuit.)

Transistor Q416 operates as follows:

The base voltage is determined by the sum of clamp voltage (Ec) and peak-to-peak voltage of sync signal (ec), the emitter voltage is about same as clamp voltage (Ec). Thus, the voltage in proportion to the ec voltage is obtained in the base-emitter junction of Q416. An increase of ec lowers the collector voltage of Q416 and the collector current of Q307 increases consequently. An increase in collector current results in increase of anode voltage of D309, D310, D316 and D317, because the collector of Q307 is connected to the R-Y limiter through R340 and to the B-Y limiter through R371.

The colour signal is limited by D301 and D302, and also D303 and D304. The limited colour signal by R-Y limiter and B-Y limiter is fed to the base of Q308 and Q312. The output of Q308 and Q312 are determined not only by the frequency variation, but also by the amplitude variation of

Le signal couleur est limité par les diodes D301 et D302, et aussi par D303 et D304. Le signal couleur écrêté ainsi par limiteurs R-Y et B-Y est fourni à la base des transistor Q308 et Q312. Les niveaux de sorties de Q308 et Q312 ne sont pas uniquement déterminés par les variations de fréquences, mais aussi par la variation d'amplitude des signaux d'entrée.

Donc, si l'amplitude du signal couleur délivré aux bases des transistors Q308 et Q312 varie proportionnellement au niveau du signal de synchronisation (ec), le signal de chrominance varie proportionnellement à la variation du signal Y. On obtient donc automatiquement une image ayant le degré de saturation de couleurs correct.

input signal.

Therefore, if the amplitude of the colour signal which is supplied to the base of Q308 and Q312 is changed in proportion to the level of sync signal (ec), colour signal changes according to the change of Y signal. It results in obtaining the picture which has the correct degree of colour saturation automatically.

Fig. 1-11.

KV-1220DF KV-1220DF

On trouvera ci-après la description des pannes causés par le circuit intégré défaillant (CX-513), pour les distinguer de celles causées par les autres composants du circuit. Le circuit intégré CX-513 est utilisé pour polariser les diodes de blocage de couleurs (diodes de killer) et les diodes de commutation de couleurs, et le circuit du multivibrateur de retard commandent le circuit de mise en forme des impulsions verticales.

The troubles caused by the defective IC (CX-513) are described as follows, to distinguish those caused by other defective components. IC, CX-513, is used for biasing the Colour Killer Diode and the Colour Switching Diode, and the Delay Multivibrator for Vertical Waveshaper.

Couleur par intermittence Teinte incorrecte Teinte incorrecte par intermittence vérifier la tension aux points 8 et 9 normale vérifier les tensions aux normale (2,5 à 3V)points 12 et 13 6 à 9,5 V en 12 composant défecueux 0,5 à 0,7 V en 13 sauf le circuit intégré 0 V en (12) et (13) 0 V en (13) circuit intégré défectueux Les tensions aux points (8) et (9) sont inversées quand on met (6) et (7) à la masse composant défectueux sauf le circuit intégré environ 0 V

circuit intégré

défectueux

Les tensions aux points (8) et (9) ne sont pas inversées

quand on met 6 et 7 à la masse

- *1: Quand on relie le point 10 à la masse, le transistor Qf de la bascule flip-flop est coupé. La tension obtenue au point 11 (4 à 6 V) est ajoutée à la tension base du transistor Q302 (Amplificateur Nº 1 de chrominance) pour une polarisation correcte, et aux diodes de blocage D307 (Ampli R-Y) et D315 (Ampli B-Y) pour polarisation inverse. Le blocage de couleurs ne s'effectue pas et une image en couleur apparaît sur l'écran, cette image n'étant pas nécessairement de bonne qualité.
 - Si l'on obtient une tension de 4 à $6\,\mathrm{V}$ au point $\widehat{(1)}$, le circuit intégré fonctionne correctement (voir figure 1-12).
- *2: En fonctionnement normal du multivibrateur de retard, le transistor Qc est coupé et Qd est allumé (voir figure 1-13).
- *3: Quand la tension au point (8) ou (9) est de l'ordre de 0V et le point (7) ou (6) est relié à la masse, les tensions aux points (8) et sont inversées. En ce cas, la bascule flip-flop pour commutation dans le circuit intégré fonctionne normalement (voir figure 1-14).

- *1: When terminal ① is connected to ground, transistor Qf of the flip-flop circuit is cut off. 4 to 6V, obtained at terminal ①, is added to the base of Q302 (Chroma Amp-1) for correct bias and to the killer diodes D307 (R-Y) and D315 (B-Y) for reverse bias. Thus the colour killer does not operate, and coloured picture (not always best colour) can be seen on the screen.
 - If 4 to 6V can be obtained at terminal (1), IC operates correctly. (Refer to Fig. 1-12.)
- *2: Qc is OFF and Qd is ON in a normal condition of delay multivibrator. (Refer to Fig. 1-13.)
- *3: When the voltage at the terminal (8) (or (9)) is nearly 0V and the terminal (7) (or (6)) is connected to ground, the voltages at terminals (8) and (9) are exchanged each other. In this case the flip-flop circuit for switcher in the IC operates correctly. (Refer to Fig. 1-14.)

MEMO				
·				
				•••••••••
	••••••••••••			

			······································	

			•	
				••••••
		••••••	••••••	
				••••
	•.			
<u> </u>				
			•••••	***************************************
				.,
		•		
	•••••	***************************************		

EXTERNAL VIEW

Front view

SECTION 2 DISASSEMBLY

2-1. REAR COVER REMOVAL

- 1. Pull off the knobs for the horizontal hold and brightness controls.
- Remove the nine screws labeled A1~9 in Fig. 2-1.
- 3. Place the set rear-side-up on a padded work surface.
- 4. Remove the two screws at the bottom labeled $B1 \sim 2$ in Fig. 2-2.
- 5. Lift the Rear Cover off as shown in Fig. 2-3.

Fig. 2-1

Fig. 2-2.

Fig. 2-3.

2-2. CABINET REMOVAL

- 1. Remove the Rear Cover.
- 2. Remove the two screws labeled $C1 \sim 2$ in Fig. 2-4.
- 3. Remove the two screws labeled $D1 \sim 2$ in Fig. 2-5.
- 4. Pull off the Power Plug, and then pull the Cabinet out as shown in Fig. 2-6.

Fig. 2-4.

Fig. 2-5.

Fig. 2-6.

2-3. SPEAKER REMOVAL

- 1. Remove the Rear Cover and Cabinet.
- Remove the four screws labeled E1~4 in Fig. 2-7.
- Unsolder the two lead wires and then change the speaker.

2-4. VHF TUNER REMOVAL

- 1. Remove the Rear Cover and Cabinet.
- 2. Pull off the VHF Channel selector and the Fine-tuning knob.
- 3. Remove the three screws labeled $F1 \sim 3$ in Fig. 2-8.
- 4. Pull the phono plug from the VHF tuner.

Fig. 2-8.

- 5. Unsolder the following leads at the VHF tuner. (See Fig. 2-9.)
 - a. white/blue lead at agc terminal (to SW board)
 - b. blue lead at +B1 terminal (to SW board)
 - c. white/red lead at +B2 terminal (to SW board)
 - d. VHF IF cable at center of tuner (to SW board)
- 6. Remove the VHF tuner.

Fig. 2-9.

2-5. UHF TUNER REMOVAL

- 1. Remove the Rear Cover and Cabinet.
- Pull off the UHF Channel selector, VHF Channel selector, VHF Fine-tuning Knob and TINT Control Knob.
- 3. Remove the six screws labeled $G1 \sim 6$ in Fig. 2-10.
- 4. Take out the tuner bracket with VHF and UHF tuners carefully.

Fig. 2-10.

KV-1220DF

- 5. Remove the three screws labeled $H1 \sim 3$ in Fig. 2-11.
- 6. Pull off the phono plug as shown in Fig. 2-12.
- 7. Unsolder the following leads at the UHF tuner.
 - a. green lead at +B1 terminal (to SW board)
 - b. red lead at +B2 terminal (to SW board)
 - c. white/green lead at agc terminal (to SW board)

Fig. 2-11.

Fig. 2-12.

2-6. PRINTED CIRCUIT BOARD REMOVAL

Remove the Rear Cover and Cabinet to perform the following items:

SW Circuit Board

- 1. Remove the two screws labeled $J1 \sim 2$ in Fig. 2-13.
- 2. Lift out sound output transformer mounting plate carefully.
- 3. Remove the two screws labeled $K1 \sim 2$ in Fig. 2-13.

- 4. Unsolder a grounding lead as shown in Fig. 2-14.
- 5. Unfasten a wire binder and unfix a wire clamp as shown in Fig. 2-14.
- Move the SW circuit board toward the High Voltage Insulating Case as shown in Fig. 2-15.
- 7. Pull out the SW circuit board as shown in Fig. 2-16.

Fig. 2-13.

Fig. 2-14.

SW circuit board

Fig. 2-15.

Fig. 2-16.

S Circuit Board

- 1. Place the set rear-side-up on a padded work surface.
- 2. Remove the two screws labeled $L1 \sim 2$ in Fig. 2-17.
- 3. Swing the S circuit board to the front.
- 4. If it is necessary to remove the board altogether, remove the two screws that secure the plastic hinges to the chassis.

Fig. 2-17.

CD Circuit Board

- 1. Remove the two screws labeled $M1 \sim 2$ in Fig. 2-18.
- 2. Unfix the board retaining pawl.
- 3. Pull off the three pin-plugs on the T circuit board that connect between the red, green and blue outputs of CD circuit board and the T circuit board as shown in Fig. 2-18.
- 4. Swing the CD circuit board to the front as shown in Fig. 2-19.
- 5. If it is necessary to remove the board al-

together, remove the two screws that secure the plastic hinges to the chassis.

Fig. 2-18.

Fig. 2-19.

P1 Circuit Board

1. Remove the two screws labeled $P1 \sim 2$ in Fig. 2-20.

Fig. 2-20.

KV-1220DF

- 2. Unfix the board retaining pawl.
- 3. Swing the top edge of the P1 circuit board down until the board rests in a horizontal position as shown in Fig. 2-21.
- 4. If it is necessary to remove the board altogether, remove the two screws that secure the plastic hinges to the chassis.

P2 Circuit Board

- 1. Remove the two screws labeled $Q1 \sim 2$ in Fig. 2-22.
- 2. Take off the P2 circuit board.

Fig. 2-22.

2-7. CONTROLS REMOVAL

- 1. Remove the Rear Cover and Cabinet.
- Pull off the three front-panel control knobs (PULL ON/VOL control, COLOUR control and CONTRAST control).
- Remove the two screws labeled R1~2 in Fig. 2-23.
- 4. Remove the two screws labeled $J1 \sim 2$ in Fig. 2-13.
- 5. Lift out the sound output transformer mounting plate carefully.
- 6. Remove a screw labeled S1 in Fig. 2-24.

Fig. 2-23.

mounting plate, sound output transformer Fig. 2-24.

- Perform steps 3~7 in Procedure 2-6 (SW circuit board removal).
- 8. Pull out the front controls mounting bracket as shown in Fig. 2-25.
- Replace the controls (pull on/vol, colour and contrast).

Fig. 2-25.

2-8. PICTURE TUBE REMOVAL

- 1. Remove the Rear Cover and Cabinet.
- Pull off the four control knobs on the front panel.
- 3. Pull off the VHF Channel selector, the Finetuning knob and UHF Channel selector.
- 4. Unsolder the two red leads that are connected to the lug terminal (1L3L1) as shown in Fig. 2-26.
- 5. Pull off the T (socket) board from the picture tube.

Fig. 2-26.

- 6. Pull off the beam alignment magnet assembly.
- Pull off the two anode caps, convergence anode cap and HV anode cap, from the picture tube. Remove the convergence anode cap by removing the two screws and lifting the flaps slowly.
- 8. Unsolder the blue lead on the beam alignment magnet assembly. (See Fig. 2-26.)
- Unsolder the three leads (yellow, green and red) on the deflection yoke.
- 10. Unsolder the two leads (yellow and green) on the earphone jack.

- Unsolder the white lead that is connected to the left of the speaker terminal.
- 12. Remove the three screws labeled $T1 \sim 3$ in Fig. 2-26.
- 13. Remove the six screws labeled U1 ~ 6 in Fig. 2-27.
- 14. Remove the two screws labeled $J1 \sim 2$ in Fig. 2-13 and lift out the sound output transformer mounting plate carefully.
- 15. Remove a screw labeled S1 in Fig. 2-24.
- Unsolder the black lead that is connected to the bottom of the chassis as shown in Fig. 2-27.
- 17. Lift off the chassis from the picture tube.

Fig. 2-27.

- 18. Remove the four nuts labeled $V1 \sim 4$ in Fig. 2-28.
- 19. Remove the two wing screws and loosen the clamp band of the deflection yoke as shown in Fig. 2-29.
- 20. Pull out the picture tube from the front panel and then remove the shield cover from the picture tube.

Fig. 2-28.

Fig. 2-29.

Note: The plastic assembly that supports the deflection yoke is permanently affixed to the bell of the picture tube. Do not try to pry the plastic assembly off the picture tube. Replacement picture tubes come with the yoke mount attached.

2-9. NEW PICTURE TUBE INSTALLATION

- 1. Place the shield cover on the new picture tube.
- 2. Place the picture tube on the front panel.
- 3. Tighten the four nuts as shown in Fig. 2-28.
- 4. Install the deflection yoke to the neck of picture tube, and tighten the two wing screws and the clamp band of the deflection yoke as shown in Fig. 2-29.
- 5. Insert the picture tube into the set. Install and tighten the nine screws shown in Figs. 2-26 and 2-27.
- 6. Solder the following leads:
 - a. blue lead at beam alignment assembly
 - b. white lead at speaker
 - c. yellow and green leads at earphone jack
 - d. yellow, green and red leads at deflection yoke
 - e. two red leads at lug terminal (1L3L1)
- 7. Install the convergence and HV anode caps.
- 8. Set the rear edge of the beam alignment magnet assembly to contact with the convergence anode cap. Make sure that the two

- terminals on the beam alignment magnet assembly are uppermost (twelve-o'clock position).
- Install the picture tube socket (T) board on the base of the tube.

2-10. HORIZONTAL OUTPUT TRANSFORMER REPLACEMENT

- 1. Remove the Rear Cover and Cabinet.
- 2. Remove the Antenna Terminal Board.
- 3. Move the two caps (on the lid of insulating case) along the leads to the anode caps. (See Fig. 2-30.)
- 4. Remove the four screws labeled $W1 \sim 4$ in Fig. 2-30.

Fig. 2-30.

- Swing the cover of insulator case as shown in Fig. 2-31. This permits access to the components of the convergence circuit and the socket of the rectifier tube.
- Remove the four screws labeled X1~4 in Fig. 2-32.

socket for HV rectifier Fig. 2-31.

- 7. Swing the cover of high voltage cage down as shown in Fig. 2-33.
- 8. Pull off the cap of the rectifier tube.
- 9. Remove the four screws labeled $Y1 \sim 4$ in Fig. 2-32.

Fig. 2-32.

Fig. 2-33.

- 10. Pull out the rear of high voltage cage as shown in Fig. 2-34.
- 11. Replace the horizontal output transformer by removing the two screws labeled $Z1 \sim 2$ in Fig. 2-32.

Fig. 2-34.

- Note: 1. When handling the rectifier tube, put on gloves.
 - 2. Prohibit the adjustment of high voltage inductance coil (HVL) positively.

SECTION 3 SERVICE ADJUSTMENTS

3-1. BEAM LANDING ADJUSTMENTS

Beam landing adjustments are made to ensure correct landing of the three beams on their designated phosphor stripes. Incorrect beam landing at any point on the screen results in colour contamination (a predominant hue) in those particular areas of the screen. Also, this adjustment is used when a complete realignment is needed following picture tube replacement.

Preparation:

- Receive the dot pattern from the colour-bar generator.
- Set the horizontal frequency control and vertical hold control for correct sync.
- 3. Set the brightness control at fully clockwise position and the contrast control at fully counterclockwise position.

Adjustment Procedure:

- 1. Face the screen due east or west, and degauss the entire screen area using a degaussing coil.
- 2. If misconvergence is found on the screen, adjust the horizontal static control (H-STAT) for best convergence at the centre of the screen.
- 3. Set the purity magnet control to the mechanical centre to obtain minimum magnetic field as shown in Fig. 3-1.
- Loosen the clamp screw that secures the deflection yoke. Slide the deflection yoke forward against the funnel of the picture tube.
- 5. Pull off the pin-plugs of the red and blue leads on the T board or turn the red and blue back-ground controls fully counterclockwise to display a green raster. The screen should appear as shown in Fig. 3-2.
- Adjust the purity magnet control to centre the vertical green band on the screen as shown in Fig. 3-3.
- Slide the deflection yoke back towards the tube base to obtain a uniform green over the entire screen.

Note: In this case, don't set the deflection yoke too far from the funnel of the picture tube.

 If slight mislanding are found, make touch-up adjustments with the purity magnet.

- Push the pin-plugs of the red and blue leads onto the T board or turn the red and blue background controls clockwise to produce a white raster.
- 10. If mislanding is still found, touch up the purity magnet control and the position of the deflection yoke.
- Face the screen due south or north, and degauss the entire screen area using a degaussing coil.
- Confirm that no mislanding is found on the screen.

3-2. STATIC CONVERGENCE ADJUSTMENTS

Preparation:

 The landing and white balance adjustments should be completed before starting the convergence adjustments.

- 2. The following adjustments should be completed:
 - a. Horizontal size and vertical width and linearity adjustments. (See page 45 and page 46.)
 - b. Focus adjustments. (See page 48.)
 - c. Pincushion correction. (See page 45.)
- 3. Set the beam alignment magnet to the mechanical centre as shown in Fig. 3-4.
- 4. Set the contrast control to the mechanical centre position and the brightness control at fully counterclockwise position.
- 5. Receive the dot pattern from the colour-bar generator.
- 6. Set the system selector switch to UHF 625 position.

beam alignment magnet

Fig. 3-4.

Adjustment Procedure:

Horizontal static convergence (UHF 625)

 Adjust the horizontal static convergence control (H-STAT 625L) to converge the red dots and the blue dots with the green dots at the centre of the screen. Fig. 3-5.

Fig. 3-5.

 If the blue dots do not converge with the green and red dots at the centre of the screen, adjust the horizontal magnetic convergence control (HMC) as necessary. See Fig. 3-6 and Fig. 3-7.

Fig. 3-6.

Fig. 3-7.

Vertical static convergence (UHF 625)

- Spread the two tabs of beam alignment magnet in equal amounts opposite directions to converge red dots and blue dots with green dots. See Fig. 3-8.
- 2. If the blue dot does not converge with the green and red dots at the centre of the screen, adjust the vertical magnetic convergence (VMC) control as necessary. See Fig. 3-9.

Fig. 3-8.

Fig. 3-9.

Note: 1. If it is necessary to correct convergence by using the HMC and VMC controls, mislanding may be found on the screen. Therefore, repeat the landing adjustment.

 In most cases adjustment of the HMC and VMC controls will not be needed. Therefore, most of the unit have no HMC and VMC holder.

Set the system selector switch to VHF 819 position.

Horizontal static convergence (VHF 819)

- 1. Adjust the horizontal static convergence control (H-STAT 819L) to converge the red dots and the blue dots with the green dots at the centre of the screen.
- Confirm that misconvergence does not appear on the screen. If misconvergence appear on the screen, repeat the horizontal and vertical static convergence adjustments when the system selector switch is set to UHF 625 position.

Note: Do not readjust the beam alignment magnet.

3-3. DYNAMIC CONVERGENCE ADJUSTMENTS

Adjustment Procedure:

- 1. Set the system selector switch to UHF 625 position.
- Adjust the TILT control (VR604) to obtain the best horizontal convergence at both sides of screen. If correct convergence cannot be obtained, turn the TILT control to display the dot pattern as shown in Fig. 3-10 or Fig. 3-11.
- If misconvergence is as shown in Fig. 3-10, reduce the capacitance value of C605. (Try the next smaller commercial value.) It will probably be necessary to reset the horizontal static convergence control (H-STAT 625L) after C605 has been changed. Readjust the TILT control, if necessary.
- 4. If misconvergence is as shown in Fig. 3-11, increase the capacitance value of C605. (Try the next larger commercial value.) It will probably be necessary to reset the horizontal static convergence control (H-STAT 625L) after C605 has been changed. Readjust the TILT control, if necessary.
- 5. Change the system selector switch to VHF 819 position.
- Adjust the horizontal static convergence control (H-STAT 819L) to obtain the best convergence at the centre of the screen.
- Confirm that the convergence at both sides of screen indicate the same conditions as obtained in UHF 625L.
- 8. If it is not, adjust the TILT control to obtain the best convergence at both VHF 819L and UHF 625L.

Fig. 3-10.

Fig. 3-11.

3-4. SCREEN-EDGE CONVERGENCE **ADJUSTMENTS**

If the conditions shown in Figs. 3-12 and 3-13 are observed, raise or lower the front edge of the deflection yoke to obtain the best vertical convergence at the screen edges.

Note: Confirm that no mislanding is appeared on the screen. If mislanding is found on the screen, repeat the landing adjustment procedure.

Movement of deflection yoke

1. Loosen the two screws labeled A and B in Fig. 3-14.

To correct this condition (to move the red dot as indicated by the arrow), raise the front edge of the yoke.

Fig. 3-12.

To correct this condition (to move the red dot as indicated by the arrow), lower the front edge of the yoke.

Fig. 3-13.

Fig. 3-14.

- Loosen the clamp band labeled C in Fig. 3-15.
- Raise or lower the front edge of the deflection yoke while taking care not to move the yoke forward or backward.
- 4. Secure the yoke in position by tightening the screws labeled A and B in Fig. 3-14. Tighten the clamp band.

Note: Confirm that the same satisfactory results can be obtained with the system selector switch set to both positions (UHF 625L and VHF 819L).

Fig. 3-15.

KV-1220DF

3-5. WHITE BALANCE ADJUSTMENTS

It is important to balance primary-colour beam current to produce a black-and-white monochrome picture that is free of any predominant hue. Correct white balance is a prerequisite for correct colour reproduction.

Landing adjustments should be completed before starting white-balance adjustments.

Preparation:

- 1. Receive the dots pattern from the colour-bar generator.
- Set the horizontal frequency control and vertical hold control for correct sync.
- Confirm that the raster size on the screen is normal.

Adjustment Procedure:

Low-level white balance adjustments

- 1. Turn the brightness control and contrast control counterclockwise to the full.
- Turn the screen (SCRN) control VR 603 on the P board to obtain a dark screen.
- Set all three (red, green and blue) background controls (VR401, VR402 and VR403) to the mechanical centre.
- 4. Turn all three (red, green and blue) drive

- controls (VR404, VR405 and VR406) clockwise to the full (maximum brightness position).
- 5. Turn the screen control clockwise slowly and note the hue (red, green or blue) of the dots that become faintly visible first.
- 6. Adjust the two background controls for other two colours to obtain optimum white balance (neutral gray).
- 7. Turn the brightness and contrast controls clockwise about 60 degrees.
- 8. Confirm that optimum white balance is obtained, and if necessary, readjust the two background controls that was adjusted in step 6 to obtain optimum white balance.

High level white balance adjustments

- 1. Turn the brightness and contrast controls clockwise to the full.
- Adjust the all three (red, green and blue) drive controls to obtain optimum white balance.
- 3. Turn the brightness and contrast controls counterclockwise to the full.
- 4. Confirm that optimum white balance is obtained at low level.
- 5. Repeat the adjustments for low and high level white balance two or three times.

SECTION 4 CIRCUIT ADJUSTMENTS

41. VIDEO IF ALIGNMENTS

Adjustment of the Last-stage of VIF Circuit

PRE	EPARATIONS & REMARKS	ADJUST	PROCEDURES
2. Set activ 3. Con twee line	the system selector switch to F 625 or VHF 819 position. the channel selector to the inverse channel in the area. Innect a 100 k-ohm rheostat been collector of Q205 and +12 V as shown in Fig. 4-1.	T206 (VIFT-4) T207 (VIFT-5) T208 (VIFT-6)	 Adjust the rheostat to eliminate the snow noise on the screen. Set the output level of sweep generator to obtain 1.4 Vp-p on the scope. Adjust the three transformers T206, T207, and T208 to obtain a standard response curve as shown in Fig. 4-3.
T5)	ort the transformer T205 (VIFT-with a short jumper lead as wn in Fig. 4-1.		T206: position of 28.05 MHz marker point T207: position of 38.00 MHz marker
	solder the conductor bridge A as wn in Fig. 4-1.		
base	nnect a sweep generator to the e of Q203 through a network as wn in Fig. 4-2.		4. Repeat the above steps two or three times.
	nect a scope to the emitter of 04 (No. 9 terminal).		
marl swee	ker generator to the output of the ep generator. (marker frequency: 05 MHz and 38.00 MHz)		

Unsolder this point (conductor. rheostat bridge A) rheostat / 100 k-ohm

Short this

Fig. 4-1.

S board

Fig. 4-2.

Adjustment of the Video IF Response Curve

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the channel selector to the inactive channel in the area. Unsolder the conductor bridge A as shown in Fig. 4-1. Unsolder the conductor bridge B as shown in Fig. 4-4. Turn the agc adjustment controls VR151 and VR152 fully clockwise as viewed from component side. Connect a sweep generator to the base of Q203 through a network as shown in Fig. 4-2. Connect a scope to the emitter of Q204 (No. 9 terminal). Loosely couple the output of the marker generator to the output of sweep generator. 	T155 T156 T201 T202 T203 T204 T205	 Adjust the output level of sweep generator to obtain 1.4 Vp-p on the scope. Then, increase the output level of sweep generator by 30 dB. Connect the 100 k-ohm rheostat between collector of Q205 and +12V line as shown in Fig. 4-1. Adjust the 100 k-ohm rheostat to obtain 1.4 Vp-p on the scope. Adjust the transformer T155 until the 28.05 MHz marker point indicates maximum indication on the scope. Adjust the five traps (T156; 24.30 MHz, T201; 39.20 MHz, T202; 39.10 MHz, T203; 41.00 MHz and T205; 39.30 MHz) roughly. Adjust the two transformers T155 and T204 to obtain a VIF response curve as shown in Fig. 4-5.

Fig. 4-3.

Fig. 4-5.

Fig. 4-4.

Fig. 4-6.

Trap Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
Perform preparation steps from 1 to in the video IF response curve adjustment procedure.	T156 (24.30 MHz) T201 (39.20 MHz) T202 (39.10 MHz) T203 (41.00 MHz) T205 (39.30 MHz)	 Adjust five traps for minimum indication on the scope. Adjust T155 and T204 to obtain a VIF response curve as shown in Fig. 4-5.

Adjustment of VIF Response Curve at VHF 819L

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the system selector switch to VHF 819 position. Set the channel selector to the inactive channel in the area. Turn the agc adjustment controls VR151 and VR152 fully clockwise as viewed from component side. Connect a sweep generator to the VHF tuner's test point (TP). Connect a scope to the emitter of Q204 through a network as shown in Fig. 4-6. 	IFT in tuner CV152	 Adjust the output level of sweep generator to obtain 1.4 Vp-p on the scope. Adjust the IFT in the tuner and CV152 on the SW printed board to obtain a response curve as shown in Fig. 4-7.
 Loosely couple the output of the marker generator to the output of sweep generator. 		

Fig. 4-7.

Adjustment of VIF Response Curve at UHF 625L

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the system selector switch to UHF 625 position. Pull off the IF OUT phono plug from UHF tuner. See Fig. 4-9. Turn the agc adjustment controls VR151 and VR152 fully clockwise as viewed from component side. Connect a sweep generator to primary side of BALUN (L151) as shown in Fig. 4-8. Loosely couple the output of the marker generator to the output of sweep generator. Connect a scope to the emitter of Q204 through a network as shown in Fig. 4-6. 	T151 T152 T153 CV151	 Adjust the output level of sweep generator to obtain 1.4Vp-p on the scope. Connect a 100 k-ohm rheostat between collector of Q205 and +12V line as shown in Fig. 4-1. Increase the output level of sweep generator by 30 dB. Adjust the 100 k-ohm rheostat to obtain 1.4 Vp-p on the scope. Adjust the trap T153 until 31.20 MHz marker point indicates minimum indication on the scope. Adjust T151, T152 and CV151 to obtain a standard response curve as shown in Fig. 4-10. Repeat steps 5 and 6 until the standard response curve is obtained on the scope as shown in Fig. 4-10. Decrease the output level of sweep generator by 40 dB. Adjust the 100 k-ohm rheostat to obtain 1.4 Vp-p on the scope. Confirm that the gain difference between the marker point of 33.95 MHz and 38.00 MHz should not exceed the limit of 30%, and the set does not occur the abnormal oscillation.

Fig. 4-9.

Fig. 4-10.

KV-1220DF KV-1220DF

There are two service methods in the following three items. One is Factory Service Method and the other is Field Service Method.

Factory Service Method

Detector Output Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
1. Set the system selector switch to VHF 819 position.	VR201	1. Adjust VR201 to obtain 1.4 Vp-p on the scope as shown in Fig. 4-11.
 Receive an off-the-air signal. (Input voltage is required from 1 mV to 10 mV). 		
3. Connect a scope to the emitter of Q204.		

Adjustment of Tuner AGC at VHF 819L

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
1. Set the system selector switch to VHF 819 position.	VR151	1. Adjust VR151 to obtain 2.0 Vp-p ± 0.2 Vp-p on the VOM.
2. Receive an off-the-air signal. (Input voltage is required from $450\mu\text{V}$ to $700\mu\text{V}$).		
3. Connect a VOM to the emitter of Q153.		

Adjustment of Tuner AGC at UHF 625L

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
Set the system selector switch to UHF 625 position.	VR152	1. Adjust VR152 to obtain 2.0 Vp-p ± 0.2 Vp-p on the VOM.
 Receive an off-the-air signal. (Input voltage is required from 1 mV to 10 mV). 		
3. Connect a VOM to the emitter of Q153.		

Field Service Method

Detector Output Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the system selector switch to VHF 819 position. 	VR 201	1. Adjust VR201 to obtain 1.4Vp-p on the scope as shown in Fig. 4-11.
Receive a strong off-the-air signal in your locality.		
Connect a scope to the emitter of Q204.		

Adjustment of Tuner AGC at VHF 819L

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the system selector switch to VHF 819 position. Receive a strong off-the-air signal in your locality. 	VR151	Adjust VR151 for minimum noise (snow) and cross modulation. Check each channel.

Adjustment of Tuner AGC at UHF 625L

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the system selector switch to UHF 625 position. Receive a strong off-the-air signal in your locality. 	VR152	Adjust VR152 for minimum noise (snow) and cross modulation. Check each channel.

Fig. 4-11.

KV-1220DF KV-1220DF

4-2. SOUND IF ALIGNMENTS

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the system selector switch to UHF 625 or VHF 819 position. Set the channel selector to the in- active channel in your area. 	SIFT-1 SIFT-2 SIFT-3 SIFT-4 SIFT-5	1. Adjust the five transformers (SIFT-1 to SIFT-5) until the 39.2 MHz marker point indicates maximum indication on the scope as shown in Fig. 4-14.
 Set the horizontal frequency control and vertical hold control for correct sync. 		Note: Keep the output level of sweep generator to obtain always 200 mVp-p on the scope in the above steps.
4. Set the brightness and contrast controls to obtain the optimum picture on the screen.		
5. Connect a sweep generator to the No. 3 terminal of S board through a capacitor 4,700 pF as shown in Fig. 4-12.		
6. Connect a scope to the sound detector output as shown in Fig. 4-13.	, .	
 Loosely couple the output of the marker generator to the output of sweep generator: 		

Fig. 4-12.

Fig. 4-13.

43. COLOUR CIRCUIT ADJUSTMENTS

BELL Characteristic Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Set the brightness and contrast controls to obtain optimum picture on the screen. 	T301	1. If the colour picture does not appear on the screen, ground the No. 10 terminal of IC418 (CX-513) with a jumper.
 Set the system selector switch to UHF 625 position. 		2. Adjust T301 to equalize the amplitude of waveform A with waveform B as shown in Fig. 4-15.
 Turn the colour control clockwise to the full. 		
Connect a scope to the collector of Q302.		

Level Adjustment between Direct Channel and Delayed Channel

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Set the brightness and contrast controls to obtain optimum picture on the screen. 	VR301	1. Adjust VR301 to equalize the amplitude of Direct Channel with the amplitude of Delayed Channel as shown in Fig. 4-16.
 Set the system selector switch to UHF 625 position. 		
4. Turn the colour control clockwise to the full.		
5. Connect a scope to the cathode of D309 as shown in Fig 4-17.		

Fig. 4-15.

Fig. 4-16.

Fig. 4-17.

R-Y Discriminator Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Set the contrast control at fully clockwise position (maximum contrast) and the tint control at the mechanical centre position. Connect a scope to the collector of Q309. Turn off the colour control and note the zero level line. Turn the colour control fully clockwise. 	T302 T303	 Adjust T303 until the position of zero level (Z) of R-Y waveform becomes same as the zero level line which was indicated at step 4 as shown in Fig. 4-18. Adjust T302 to make the R-Y waveform symmetrical on the scope as shown in Fig. 4-18.

B-Y Discriminator Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Set the contrast control at fully clockwise position (maximum contrast) and the tint control at the mechanical centre position. Connect a scope to the collector of Q313. Turn off the colour control and note the zero level line. Turn the colour control fully clockwise. 	T304 T305	 Adjust T305 until the position of zero level (Z) of B-Y waveform becomes same as the zero level line which was indicated at step 4 as shown in Fig. 4-19. Adjust T304 to make the B-Y waveform symmetrical on the scope as shown in Fig. 4-19.

Fig. 4-18.

Fig. 4-19.

Y Trap Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Set the contrast control at fully clockwise (maximum contrast) position. 	T401	1. Adjust the core of T401 to minimize the sub-carrier component on the waveform as shown in Fig. 4-20.
3. Set the colour control at fully counterclockwise position.		
4. Connect a scope to the red cathode output terminal.		

Matrix Check

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Turn the contrast control clockwise to the full, and then turn it counterclockwise about 15 degrees. Set the tint control at the mechanical centre position. Connect a scope to red cathode output terminal. 	VR905 VR303 VR302	 Adjust the colour control (VR905) to obtain the red waveform as shown in Fig. 4-21. Reconnect the scope to blue cathode output terminal. Adjust VR303 to obtain the blue waveform as shown in Fig. 4-22. Reconnect the scope to green cathode output terminal. Confirm that the green waveform is as shown in Fig. 4-23. Turn the colour control and the contrast control clockwise to the full (maximum position). Reconnect the scope to the collector of Q313. Adjust VR302 to obtain 6 Vp-p B-Y waveform on the scope as shown in Fig. 4-24.

Fig. 4-20.

Fig. 4-21.

Fig. 4-22.

Fig. 4-23.

Fig. 4-24.

R-Y Discriminator Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Set the contrast control at fully clockwise position (maximum contrast) and the tint control at the mechanical centre position. Connect a scope to the collector of Q309. Turn off the colour control and note the zero level line. 	T302 T303	 Adjust T303 until the position of zero level (Z) of R-Y waveform becomes same as the zero level line which was indicated at step 4 as shown in Fig. 4-18. Adjust T302 to make the R-Y waveform symmetrical on the scope as shown in Fig. 4-18.
5. Turn the colour control fully clockwise.	·	

B-Y Discriminator Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Set the contrast control at fully clockwise position (maximum contrast) and the tint control at the mechanical centre position. Connect a scope to the collector of Q313. Turn off the colour control and note the zero level line. Turn the colour control fully clock- 	T304 T305	 Adjust T305 until the position of zero level (Z) of B-Y waveform becomes same as the zero level line which was indicated at step 4 as shown in Fig. 4-19. Adjust T304 to make the B-Y waveform symmetrical on the scope as shown in Fig. 4-19.

Fig. 4-18.

Fig. 4-19.

KV-1220DF

Y Trap Adjustment

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Set the contrast control at fully clockwise (maximum contrast) position. 	T401	Adjust the core of T401 to minimize the sub-carrier component on the waveform as shown in Fig. 4-20.
3. Set the colour control at fully counterclockwise position.		
4. Connect a scope to the red cathode output terminal.		

Matrix Check

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the colour-bar signal. Turn the contrast control clockwise to the full, and then turn it counterclockwise about 15 degrees. Set the tint control at the mechanical centre position. Connect a scope to red cathode output terminal. 	VR905 VR303 VR302	 Adjust the colour control (VR905) to obtain the red waveform as shown in Fig. 4-21. Reconnect the scope to blue cathode output terminal. Adjust VR303 to obtain the blue waveform as shown in Fig. 4-22. Reconnect the scope to green cathode output terminal. Confirm that the green waveform is as shown in Fig. 4-23. Turn the colour control and the contrast control clockwise to the full (maximum position). Reconnect the scope to the collector of Q313. Adjust VR302 to obtain 6 Vp-p B-Y waveform on the scope as shown in Fig. 4-24.

Fig. 4-20.

Fig. 4-21.

Fig. 4-22.

Fig. 4-23.

Fig. 4-24.

4-4. DEFLECTION CIRCUIT ADJUSTMENTS

Horizontal Frequency and Horizontal Stabilizing Coil Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the off-the-air signal. Set the brightness and contrast controls to the optimum position. Adjust the vertical hold control for correct sync. Set the system selector switch to UHF 625 position. Short the both ends of horizontal stabilizing coil (HSC1) with short jumper. 	VR504 HSC1	 Set the horizontal frequency control (VR504) to synchronize the picture horizontally for an instant. Remove the jumper from HSC1. Set the horizontal stabilizing coil (HSC1) to synchronize the picture horizontally for an instant. Confirm that the picture is synchronized after removing the 4.7 μF electrolytic capacitor.
6. Connect a $4.7\mu F$ electrolytic capacitor between the collector of Q408 and ground.		

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the system selector switch to VHF 819 position. Short the both ends of horizontal stabilizing coil (HSC2) with short jumper. Connect a 4.7μF electrolytic capacitor between the collector of Q408 and ground. 	VR505 HSC2	 Set the horizontal frequency control (VR505) to synchronize the picture horizontally for an instant. Remove the jumper from HSC2. Set the horizontal stabilizing coil (HSC2) to synchronize the picture horizontally for an instant. Confirm that the picture is synchronized after removing the 4.7 μF electrolytic capacitor.

Adjustments of Pulse Width of Horizontal Oscillator

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the system selector switch to UHF 625 position. Receive the off-the-air signal. Set the brightness and contrast controls to the optimum position. Adjust the horizontal frequency control and vertical hold control for correct sync. Connect a scope to the emitter of O506. 	C520	 Select the capacitance value of C520 to obtain 12.0 ± 0.5 μs pulse width on the scope as shown in Fig. 4-25. Readjust the horizontal frequency controls (H. FREQ1 and H. FREQ2) and horizontal stabilizing coils (HSC1 and HSC2).

Fig. 4-25.

Horizontal and Converter Output Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES If a horizontal output transistor ha been replaced, change R526 according to the hFE rating of transistor as shown in the table below.	
	R526 R527		
•		Q802 hFE rating	R526
•		-2	18Ω
		2SC1086-3	24Ω
•		-4	33Ω
		If a converter output tran	sistor has bee
		replaced, change R527 ac hre rating of transistor the table below.	cording to th
	·	hfe rating of transistor	cording to th
		hFE rating of transistor the table below.	cording to the
	·	hFE rating of transistor the table below. Q801 hFE rating	cording to the as shown in R527

Fig. 4-26.

Horizontal Size and Horizontal Centreing Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the test pattern signal. Adjust the horizontal frequency control and vertical hold control for correct sync. Adjust the brightness control until the test pattern becomes faintly visible on the screen. Set the contrast control at fully counterclockwise position (minimum position). Set the system selector switch to VHF 819 position. Confirm that the pincushion distortion is not found on the screen. 	VR609 VR605 R634 VR602	 Adjust VR609 and VR605 until outside lines of the checkers of test pattern are in contact with the edge of picture tube. If the horizontal pattern is larger than the screen despite the adjustments of VR609 and VR605, add resistor R634 (100 kΩ) on the conductor side. Set the system selector switch to UHF 625 position. Adjust VR602 until outside lines of the checkers of test pattern are in contact with the edge of picture tube. Reset the system select switch to
		VHF 819 position. 6. Confirm that the centre of pattern is at the centre of the screen. If it is not, readjust VR605 for correct position. 7. Readjust VR609 and VR602. 8. Confirm that the optimum white balance is obtained on the screen.

Right and Left Pincushion Correction Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the crosshatch signal. Set the system selector switch to UHF 625 position. Adjust the brightness and contrast controls until the crosshatch pattern becomes faintly visible on the screen. 	VR601	 Adjust VR601 to obtain the correct pattern as shown in Fig. 4-26. Change the system selector switch to VHF 819 position. If there is a noticeable pincushion distortion at either of the switch position, adjust VR601 to produce best pattern at both switch position.

Vertical Bias Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES		
Set the horizontal frequency control and vertical hold control for correct sync.	VR501	1. Adjust VR501 to obtain the emitter voltage of Q902 is between 6.8V and 7.2V.		
2. Adjust brightness and contrast controls to obtain the best picture.				
3. Set the system selector switch to UHF 625 position.				
4. Confirm that the voltage at terminal 8 of P2 board is between 91V and 99V.				
5. Connect a VOM to the emitter of Q902 (V. out).				

Vertical Height and Linearity Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Receive the test pattern. Set the horizontal frequency control and vertical hold control for correct sync. Adjust the brightness and contrast controls until the test pattern becomes faintly visible on the screen. Set the system selector switch to UHF 625 position. 	VR503 VR502 R503	 Adjust VR503 and VR502 for best picture height and linearity while observing the picture. Change the system selector switch to VHF 819 position. Confirm that the picture height is same as obtained in step 1. i) If the picture height is not enough, readjust VR503 and VR502 for best picture. ii) If the picture height is overscanned, unsolder a lead wire that is connected to resistor R503, and then solder the lead wire to R506 as shown in Fig. 4-27.

Fig. 4-27.

Vertical Centreing Adjustments

PREPARATIONS & REMARKS	ADJUST PROCEDURES		
 Receive the test pattern. Set the horizontal frequency control and vertical hold control for correct sync. 	VR606	Adjust VR606 to locate the picture at the centre of the screen while observing the picture.	
 Adjust the brightness and contrast controls until the test pattern becomes faintly visible on the screen. 			
4. Set the system selector switch to UHF 625 position.			
5. Face the set due south or north.		·	
6. Degauss the entire screen area using a degaussing coil.			

Vertical Hold Range Check

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Recieve an off-the-air signal. Set the brightness and contrast controls to obtain the optimum picture. Set the system selector switch to UHF 625 position. 	C514	 Turn the vertical hold control clockwise. And note the position of vertical hold control knob when the picture start rolling upward. Set the system selector switch to VHF 819 position. Turn the vertical hold control until the picture start rolling upward. And note the position. The angle difference of vertical hold control between step 1 and step 3 should be within the range of 15°. If it is not, add or omit the capacitor C514 (0.0022μF). Note: When omitting the capacitor, the range of vertical hold at VHF 819 position becomes wider.

115 V Line Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
1. Set the brightness and contrast controls to obtain the optimum picture on the screen.	VR607	1. Adjust VR607 to obtain the dc voltage of between 114V and 116V.
2. Set the horizontal frequency control and vertical hold control for correct sync.		
3. Confirm that the output of power rectifier is 126V.		
4. Connect a VOM to the emitter of Q901 as shown in Fig. 4-28.		

Focus Adjustments

PREPARATIONS & REMARKS	ADJUST	PROCEDURES
 Set the brightness and contrast controls to obtain the optimum picture on the screen. Set the horizontal frequency control and vertical hold control for correct sync. Receive an off-the-air signal. 	Focus lead	1. Try to connect the focus lead at each of the connecting points on the P1 board. See Fig. 4-29. Connect permanently at the point where gives best focus.

Fig. 4-28.

Fig. 4-29.

Automatic Brightness Limiter (ABL) Adjustments

PREPARATIONS & REMARKS	S & REMARKS ADJUST PROCEDURES		
 Receive the monochrome test pattern. Unsolder R807, C804 and one lead wire from No. 8 pin on 20P terminal board at high voltage block. 	VR407	 Adjust VR407 to obtain the current of between 700μA and 800μA on the VOM. 	
3. Connect an ammeter between No. 8 pin and one lead wire together with R807 and C804 as shown in Fig. 4-30.			

6.5 MHz Trap Adjustments (Serial No. 10501 and later)

PREPARATIONS & REMARKS	ADJUST	PROCEDURES		
 Receive a UHF off-the-air signal. Set the UHF channel selector for just tuning position, then turn it clockwise little by little to obtain 6.5 MHz beat clearly. Connect a scope to the emitter of Q204. 	T905	1. Adjust T905 to minimize the 6.5 MHz beat on the screen. Namely, adjust T905 to minimize the 6.5 MHz component on the backporch of horizontal synchronizing signal as shown in Fig. 4-31.		

Fig. 4-30.

Fig. 4-31.

EXTERNAL VIEW OF TRANSISTORS AND DIODES

CLASSIFIED TABLE OF DIODES

SCHEMATIC DIAGRAM

UHF TUNER (BT-121)

VHF TUNER (BT-621F)

BLOCK DIAGRAM

P2 Circuit Board

- Conductor Side -

- Component Side -

Vote:

- 1. Line voltage maintained at 110V AC.
- 2. Voltage measured from point indicated to chassis with a VOM.

TRAN	NSISTORS	DIC	ODES				
0602	2SC1124	D605	HFSD-1A	D607	10D-2	D609	CDR-
	2SC1124	D606	SK1W-50	D608	ZB1-11	D610	CD-4

MOUNTING DIAGRAM

A Circuit Board

- Conductor Side -

- Component Side -

TRANSISTOR

Q701 **2SC633A** Q702 **2SD24**

Note:

- All capacitors are 50WV unless otherwise specified.
 All resistors are ¼W unless otherwise
- All resistors are ¼W unless otherwise specified.
 Voltage measured from point indi-
- Voltage measured from point indicated to chassis with a VOM.

S Circuit Board

- Conductor Side -

S Circuit Board

- Component Side -

TRANSISTORS

Q201	2SC1128
Q202	2SC1129
Q203	2SC1128
Q204	2SC633A
Q205	2SA564
Q206	2SC1128
Q207	2SC1129
Q208	2SC1128
Q209	2SC633A

- All capacitors are 50WV unless otherwise specified.
 All resistors are ¼W unless otherwise specified.

SW Circuit Board

- Conductor Side -

TRANSISTORS

Q151	2SC1128
Q152	2SC1129
Q153	2SC633A
Q154	2SA 564

DIODES

D151 ZB1-11

- 1. All capacitors are 50WV unless otherwise specified.
- 2. All resistors are ¼W unless otherwise specified.

 3. Voltage measured from point indicated
- to chassis with a VOM.

- T Circuit Board
- Conductor Side -

- Component Side -

MOUNTING DIAGRAM

ABL Circuit Board

- Conductor Side -

- Component Side -

TRANSISTORS

Q415 2SC633A

Note:

- All capacitors are 50WV unless otherwise specified.
- All resistors are ¼W unless otherwise specified.
- 3. Voltage measured from point indicated to chassis with a VOM.

KV-1220DF KV-1220DF

MOUNTING DIAGRAM

DIODES

D601 10D-2 D602 S-4C D603 S-4C D604 SB-2

- Component Side -

Note:

- All capacitors are 50WV unless otherwise specified.
- 2. All resistors are ¼W unless otherwise specified.
- 3. Voltage measured from point indicated to chassis with a VOM.
- 4. Parts marked with * are to be selected to yield specified operating conditions.

CD Circuit Board

- Conductor Side -

CD Circuit Board

- Component Side -

	TRANS	SISTORS	
Q301	2SC633A	Q406	2SA564
Q302	2SC633A	Q407	2SC633.
Q303	2SC633A	Q408	2SC403
Q304	2SC633A	Q409	2SC633
Q306	2SC633A	Q410	2SC318
Q307	2SA564	Q411	2SC318
Q308	2SC403A	Q412	2SC633
Q309	2SC633A	Q413	2SA 564
Q310	2SC633A	Q414	2SA 564
Q311	2SC633A	Q416	2SC633
Q312	2SC403A	Q417	2SA 564
Q313	2SC633A		
Q314	2SC633A	Q501	2SA 564
Q315	2SC633A	Q502	2SC633
		Q503	2SC633
Q401	2SC1127	Q504	2SC633
Q402	2SA564	Q505	2SC633
Q403	2SC1127	Q506	2SC403
Q404	2SA564	Q507	2SC867
Q405	2SC1127		
	DIC	ODES	
D001	1T40	D315	1T22
D002	1T40	D316	1T22
D003	1T40	D317	1T22
D005	1T40	D318	1T23
D006	1T40	D319	1T23
D007	1T40		11-0
		D401	1T40
D301	1T22	D402	1T22
D302	1T22	D403	1T22
D305	1T22	D404	1T40
D306	1T22	D405	1T40
D307	1T22	D406	1T22
D308	1T40		
D309	1T22	D501	1T40
D310	1T22	D502	1T22A
D311	1T23	D503	1T22A
D312	1T 23	D504	1T22A
D313	1T22	D505	1T22A
D314	1T22	D506	10D-2

Note

- 1. All capacitors are 50WV unless otherwise specified.
- 2. All resistors are ¼W unless otherwise specified.
- 3. Parts marked with are to be selected to yield specified operating conditions.

L Circuit Board

- Conductor Side -

R330

TRANSISTOR

2SC633A

D303 1T22

DIODES

D304 1T22 - Component Side -

Note:

- 1. All capacitors are 50WV unless otherwise specified.
- 2. All resistors are 1/4 W unless otherwise specified.
- 3. Voltage measured from point indicated to chassis with a VOM.

MOUNTING DIAGRAM

16P Terminal Board

WAVEFORMS

SCHEMATIC DIAGRAM

-1220DF KV-1220DF

- 1. All capacitors are 50WV unless other-
- 2. All resistors are ¼W unless otherwise
- 3. Resistance and capacitance values marked * are to be selected to yield specified operating conditions.
- 4. Voltages measured from chassis to point indicated with a VOM (20 k ohm/V) with colour signal input.
- 5. Design and specifications subject to change without notice.
- 6. A marks show the internal components of transformers.

KV-1220DF KV-1220DF

- Hardware Nomenclature -P - Pan Head Screw **SC** − Set Screw ⊕ **5** E - Retaining Ring (E Washer)..... PS - Pan Head Screw with Spring Washer W - Washer
SW - Spring Washer
LW - Lock Washer
N - Nut K - Flat Countersunk Head Screw . . . B — Binding Head Screw - Example -RK – Oval Countersunk Head Screw . . 🔷 Type of Slot T - Truss Head Screw Length in mm (L) R - Round Head Screw -Diameter in mm (D)
-Type of Head F - Flat Fillister Head Screw

– 80 –

KV-1220DF KV-1220DF

EXPLODED VIEW

Note: ▲ 7-621-722-57 tapping screw ⊕ BV 3x8

PARTS LOCATIONS

Signal Circuit Board (S)

Switch Circuit Board (SW)

ELECTRICAL PARTS LIST

Ref. No.	Part No.	Desc	ription	Ref. No.	Part No.	Des	cription
	GE	NERAL		Q402		transistor	2SA564
	8-983-606-15	vhf tuner ass	y (BT-621F)	Q403		transistor	2SC1127
	8-983-606-25	transformer,	sound output	Q404		transistor	2SA564
	8-983-606-35		vertical output	Q405		transistor	2SC1127
	8-983-606-45	uhf tuner ass	'y (BT-121)	Q406	. •	transistor	2SA564
•	8-983-112-15	chroma-deflec	ction circuit board (CD),	Q407		transistor	2SC633A
		complete		Q408	•	transistor	2SC403A
	8-983-112-25	signal circuit	board (S),	Q409		transistor	2SC633A
		complete		Q410		transistor	2SC318A
	8-983-112-35	power-supply	circuit board (P1),	Q411		transistor	2SC318A
		complete		Q412		transistor	2SC633A
	8-983-112-45	power-regulat	or circuit board (P2),	Q413		transistor	2SA564
		complete		Q414		transistor	2SA564
	8-983-112-55	system-changi	ng-switch circuit board	Q415		transistor	2SC633A
		(SW), com	plete	Q416		transistor	2SC633A
	8-983-112-65	sound output	transformer circuit	Q417		transistor	2SA564
		board (SO	Γ), complete				
	8-983-113-35		board (T), complete	Q501		transistor	2SA564
	1-493-091	transformer a	ss'y, flyback	Q502		transistor	2SC633A
				Q503		transistor	2SC633A
	SEMIC	ONDUCTORS		Q504		transistor	2SC633A
Q151		transistor	2SC1128	Q505		transistor	2SC633A
Q152		transistor	2SC1129	Q506		transistor	2SC403A
Q153		transistor	2SC633A	Q507		transistor	2SC867
Q154		transistor	2SA564				
				Q602		transistor	2SC1124
Q201		transistor	2SC1128	Q603		transistor	2SC1124
Q202		transistor	2SC1129				2006224
Q203		transistor	2SC1128	Q701		transistor	2SC633A
Q204		transistor	2SC633A	Q702		transistor	2SD24
Q205		transistor	2SA564	0001		transistor	2SC806A
Q206		transistor transistor	2SC1128 2SC1129	Q801		transistor	2SC1086
Q207		transistor	2SC1129 2SC1128	Q802		transistor	2301000
Q208		transistor	2SC633A	Q901		transistor	2SD201
Q209		transistor	23C033A	Q902		transistor	2SC867
Q301		transistor	2SC633A	Q903		transistor	2SC867
Q301 Q302		transistor	2SC633A	9,03		transistor	250007
Q302 Q303		transistor	2SC633A	D001		diode	1T40
Q304		transistor	2SC633A	D002		diode	1T40
Q305		transistor	2SC633A	D003		diode	1T40
Q306		transistor	2SC633A	D005	,	diode	1T40
Q307		transistor	2SA564	D006		diode	1T40
Q308		transistor	2SC403A	D007		diode	1T40
Q309		transistor	2SC633A				
Q310		transistor	2SC633A	D151	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	diode	ZB1-11
Q311		transistor	2SC633A		₩.		
Q312		transistor	2SC403A	D201		diode	1T261
Q313		transistor	2SC633A				
Q314		transistor	2SC633A	D301		diode	1T22
Q315		transistor	2SC633A	D302		diode	1T22
				D303		diode	1T22
Q401		transistor	2SC1127	D304		diode	1T22

Ref. No.	Part No.	<u>D</u>	escription	Ref. No.	Part No.	<u></u>	Description
D305		diode	1T22			COILS	
D306		diode	1T22	L151	1-417-008	balun	
D307		diode	1T22	L152	1-407-157	$10\mu H$	micro inductor
D308		diode	1T40	L153	1-407-157	10μH	micro inductor
D309		diode	1T22	L154	1-407-157	10μΗ	micro inductor
D310		diode	1T22	L155	1-407-157	10μΗ	micro inductor
D311		diode	1T23	2100	2 107 101	20,000	
D312		diode	1T23	L201	1-407-157	10μΗ	micro inductor
D313		diode	1T22	L202	1-407-157	10μΗ	micro inductor
D314		diode	1T22	L203	1-407-157	10μH	micro inductor
D315		diode	1T22	L204	1-407-188	6.8µH	micro inductor
D316		diode	1T22	L205	1-407-157	10μΗ	micro inductor
D317		diode	1T22	L206	1-407-188	6.8µH	micro inductor
D317		diode	1T23	L207	1-407-187	5.6 µH	micro inductor
D319		diode	1T23	L208	1-407-159	15μH	micro inductor
D317		aloue	1123	L209	1-407-184	3.3µH	micro inductor
D401		diode	1T40	1 200	1407104	3.5 MII .	micro maucroz
D401		diode	1T22	L301	1-407-166	56µH	micro inductor
D402 D403		diode	1T22	L302	1-407-189	8.2μH	micro inductor
D403		diode	1T40	L303	1-407-189	8.2µH	micro inductor
D405		diode	1T40	L304	1-407-166	56μH	micro inductor
D406		diode	1T22	L305	1-407-166	56μH	micro inductor
D+00		diode	1122	L306	1-407-176	390µH	micro inductor
D501		diode	1T40	L307	1-407-176	56μH	micro inductor
D502		diode	1T22A	L308	1-407-176	390μH	micro inductor
D502	·	diode	1T22A	1300	1-407-170	370μ11	micro mauctor
D503		diode	1T22A	L501	1-407-177	470μH	micro inductor
D505		diode	1T22A	L501	1-407-177	2.2 mH	micro inductor
D505	1	diode	10D-2	1.502	1-407-136	2.21111	micro madetor
D300		diode	100-2	L601	1-407-363	6.8mH	micro inductor
D601		diode	10D-2	L602	1-407-198	2.2 mH	micro inductor
D601		diode	S-4C	L602	1-459-034		izontal stat (625L)
D602		diode	S-4C	L604	1-459-057	*	izontal stat (819L)
		diode	SB-2	1.604	1-439-007	con, non	Zontai stat (0172)
D604 D605		diode	HFSD-1A	L802		built in f	lyback transformer ass'y
		diode	SK1W-50	1	1-407-364	3.3µH	micro inductor
D606		diode	10D-2	L803	1-407-364	3.3µH	micro inductor
D607		diode	ZB1-11	L804	1-407-346		ok choke
D608		diode	CDR-4	L805	1-452-039		iproving coil (PIC)
D609 D610		diode	CD-4	L806 L808	1-459-069	coil. HL	
D010		diode	CD-4	Loud	1-439-009	COII. TIL	
D801		diode	S-4C	L902	1-421-200	coil nine	cushion choke
D801	•	diode	AD-2	L902	1-421-200	coil, dega	
D802		diode	TD-13	L903	1-425-512	con, acga	iussing
D803		diode	TD-13		TR	ANSFORM	FRC
D805		diode	S-4C	T151	1-403-713		ner, uhf i-f
D805		diode	SB-2	T151	1-403-713		ner, uhf i-f
2000		diode	<i>55 2</i>	T152	1-403-715		ner, uhf i-f
Th151	1-800-059	thermisto	or TH-200	T154	1-403-715		her, whf i-f
SR701	1-800-039	varistor	TD-80	T154	1-403-716		ner, vhf i-f
PR901	1-800-032	thermisto		T156	1-403-717		ner, vhf i-f
1 1301	1-000-003	ther miste		1136	1-402-110	11 an 31 UT	noi, viii i i
IC		IC	CX-513	T201	1-403-719	transform	ner, vhf i-f; 39.2MHz

Ref. No.	Part No.	Description	Ref. No	. Part No.	Des	cription	
T202	1-403-720	transformer, vhf i-f; 39.1 MHz	C101	1-121-471		$\pm^{100}_{10}\%$	16WV, electrolytic
	1-403-721	transformer, vhf i-f; 40.0 MHz	C102	1-121-403		$\pm^{100}\%$	16WV, electrolytic
	1-403-722	transformer, vhf i-f	C103	1-121-403		$\pm^{100}\%$	16WV, electrolytic
	1-403-723	transformer, vhf i-f; 39.3 MHz	C104	1-121-403		$\pm^{100}_{10\%}$	16WV, electrolytic
	1-403-724	transformer, vhf i-f	C105	1-121-403	33μF	$\pm^{100}_{10\%}$	16WV, electrolytic
	1-403-725	transformer, vhf i-f	C106	1-121-471	10μF	$\pm^{100}_{10\%}$	16WV, electrolytic
	1-403-726	transformer, vhf i-f	C151	1-102-102	$0.0047\mu\mathrm{F}$	± 20%	50WV, ceramic
	1-403-380	transformer, sound i-f	C152	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
	1-403-381	transformer, sound i-f	C153	1-102-936	3pF ± 0	.25 pF	50WV, ceramic
	1-403-382	transformer, sound i-f	C154	1-102-102	$0.0047\mu\mathrm{F}$	± 20%	50WV, ceramic
	1-403-382	transformer, sound i-f	C155	1-101-361	150 pF	± 5%	50WV, ceramic
	1-403-383	transformer, sound i-f	C156	1-102-515	24 pF	± 5%	50WV, ceramic
			C157	1-102-515	24 pF	± 5%	50WV, ceramic
T301	1-425-657	transformer, bell filter	C158	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
T302	1-425-658	bandpass transformer (R-Y)	C159	1-102-511	13pF	± 5%	50WV, ceramic
T303	1-425-659	transformer, discriminator (R-Y)	C160	1-102-102	$0.0047\mu\mathrm{F}$	± 20%	50WV, ceramic
T304	1-425-658	bandpass transformer (B-Y)	C161	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
T305	1-425-659	transformer, discriminator (B-Y)	C162	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
			C163	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
T401	1-409-207	transformer, Y trap	C164	1-102-518	33pF	± 5%	50WV, ceramic
mene	4.405.000	for the state of the state of	C165	1-102-518	33 pF	± 5%	50WV, ceramic
T501	1-435-008	transformer, vertical blocking	C166	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
T502	1-435-034	transformer, horizontal blocking	C167	1-121-403	33μF	$\pm^{100}\%$	16WV, electrolytic
T503	1-437-025	transformer, horizontal drive	C168	1-102-973	100 pF	± 5%	50WV, ceramic
T701	1-427-242	transformer, audio output	C169	1-121-415	100μF	$\pm^{100}_{10}\%$	16WV, electrolytic
1701	1427 242	transformer, address output					
T801	1-439-049-15	transformer, HCT-2	C201	1-101-886	62pF	± 5%	50WV, ceramic
T802	1-439-048-15	transformer, HCT-1	C202	1-101-361	150pF	±5%	50WV, ceramic
T803		built in flyback transformer ass'y	C203	1-101-361	150pF	± 5%	50WV, ceramic
T804	1-439-088	transformer, horizontal output	C204	1-102-514	22pF	±5%	50WV, ceramic
			C205	1-102-506	$7 \mathrm{pF}$ \pm	$0.5\mathrm{pF}$	50WV, ceramic
T901	1-421-199	transformer, vertical output	C206	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
T902	1-441-434	transformer, filament	C207	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
T903	1-441-715	transformer, power	C208	1-101-361	150pF	± 5%	50WV, ceramic
T904	1-421-302-12	coil, line choke	C209	1-102-510	12pF	± 5%	50WV, ceramic
T905	1-409-208	transformer, 6.5 MHz trap	C210	1-101-361	150pF	± 5%	50WV, ceramic
		(Serial No. 10,501 and later)	C211	1-102-513	18pF	± 5%	50WV, ceramic
			C212	1-102-510	12pF	± 5%	50WV, ceramic
	CA	PACITORS	C213	1-101-361	150pF	± 5%	50WV, ceramic
C001	1-101-007	$0.047 \mu\text{F} \pm^{100}_{0}\% 50\text{WV, ceramic}$	C214	1-101-361	150pF	± 5%	50WV, ceramic
C002	1-102-989	68 pF $\pm 5\%$ 500WV, ceramic	C215	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
C003	1-102-136	$0.001 \mu F$ $\pm 20\%$ 50WV, ceramic	C216	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
C004	1-105-707-12	$0.0033 \mu F \pm 10\% 100 WV$, mylar	C217	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
C005	1-105-713-12	$0.01 \mu \text{F}$ $\pm 10\%$ 100WV, mylar	C218	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
C006	1-105-701-12	$0.001 \mu F$ $\pm 10\%$ 100WV, mylar	C219	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
C007	1-105-701-12	100	C220	1-121-416	$100 \mu F$	$\pm^{100}_{10}\%$	25WV, electrolytic
C008	1-121-471	$10\mu\text{F}$ $\pm \frac{100}{10}\%$ 16WV, electrolytic	C221	1-102-515	24 pF	±5%	50WV, ceramic
C009	1-105-721-12		C222	1-102-510	12pF	± 5%	50WV, ceramic
C010	1-105-701-12		C223	1-102-522	51 pF	± 5%	50WV, ceramic
C011	1-105-701-12		C224	1-102-976	180 pF	± 5%	50WV, ceramic
C012	1-105-707-12		C225	1-102-976	180 pF	± 5%	50WV, ceramic
C013	1-105-707-12		C226	1-102-102	$0.0047 \mu F$	± 20%	50WV, ceramic
C014	1-105-717-13	$0.022 \mu F \pm 10\% 100WV$, mylar	C227	1-121-402	$33\mu F$	$\pm^{100}_{10}\%$	10WV, electrolytic
			1				

	•							•
Ref. No.	Part No.	Description	<u>n</u>	Ref. No	Part No.	$D\epsilon$	escriptio	<u>n</u>
C228	1-102-102	0.0047μF ± 20%	50WV, ceramic	C319	1-102-136	0.001μF	± 20%	50WV, ceramic
C229	1-102-508	10pF ±5pF	50WV, ceramic	C320	1-102-136	0.001µF	± 20%	50WV, ceramic
C230	1-121-398	$10\mu F$ $\pm \frac{100}{10}\%$	25WV, electrolytic	C321	1-102-136	$0.001 \mu F$	± 20%	50WV, ceramic
C231	1-102-102	$0.0047 \mu\text{F} \pm 20\%$	50WV, ceramic	C322	1-101-884	56 pF	± 5%	50WV, ceramic
C232	1-102-102	$10pF \pm 5pF$	50WV, ceramic	C323	1-101-004	0.01 μF	±100%	50WV, ceramic
C232	1-102-303	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C324	1-101-004	0.01 μ1· 4.7 μF	$\pm^{150}\%$	•
C234	1-102-102	$0.0047 \mu F \pm 20\%$ $0.0047 \mu F \pm 20\%$	50WV, ceramic	i		•	±100%	25WV, electrolytic
C235	1-102-102	$10 \text{ pF} \qquad \pm 5 \text{ pF}$	50WV, ceramic	C325	1-101-004	0.01 μF		50WV, ceramic
C236	1-121-416	$100 \mu F$ $\pm \frac{30}{10} \%$	25WV, electrolytic	C326	1-102-883	27 pF	± 5%	50WV, ceramic
C237	1-121-413	100	•	C327	1-102-730	56 pF	± 5%	50WV, ceramic
			16WV, electrolytic	C328	1-102-730	56 pF	± 5%	50WV, ceramic
C238	1-102-958	20pF ± 5%	50WV, ceramic	C329	1-102-720	22 pF	± 5%	50WV, ceramic
C239	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C330	1-102-965	39pF	± 5%	50WV, ceramic
C240	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C331	1-102-965	39 pF	± 5%	50WV, ceramic
C241	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C332	1-101-004	$0.01\mu\mathrm{F}$	±100%	50WV, ceramic
C242	1-121-422	$220 \mu F$ $\pm \frac{100}{10}\%$	25WV, electrolytic	C333	1-102-953	18pF	± 5%	50WV, ceramic
C243	1-102-942	5 pF ± 0.5 pF	50WV, ceramic	C334	1-102-961	27 pF	± 5%	50WV, ceramic
C244	1-101-837	$0.5 \mathrm{pF}$ $\pm 0.2 \mathrm{pF}$	50WV, ceramic	C335	1-102-980	270 pF	± 5%	50WV, ceramic
C245	1-102-977	200pF $\pm 5\%$	50WV, ceramic	C336	1-121-422	$220\mu F$	$\pm^{100}_{10}\%$	25WV, electrolytic
C246	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C337	1-102-136	$0.001 \mu F$	± 20%	50WV, ceramic
C247	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C338	1-101-361	150 pF	± 5%	50WV, ceramic
C248	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C339	1-101-361	150 pF	± 5%	50WV, ceramic
C249	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C340	1-102-136	$0.001 \mu F$	± 20%	50WV, ceramic
C250	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C341	1-101-004	$0.01\mu\mathrm{F}$	$\pm^{100}\%$	50WV, ceramic
C251	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C342	1-102-136	$0.001 \mu F$	± 20%	50WV, ceramic
C252	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C343	1-102-136	$0.001 \mu F$	± 20%	50WV, ceramic
C253	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C344	1-102-136	$0.001 \mu F$	± 20%	50WV, ceramic
C254	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C345	1-101-884	56 pF	± 5%	50WV, ceramic
C255	1-102-934	$1 \mathrm{pF}$ $\pm 0.25 \mathrm{pF}$	50WV, ceramic	C346	1-102-004	$0.01 \mu F$	±100%	50WV, ceramic
C256	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C347	1-121-395	$4.7 \mu F$	$\pm^{150}\%$	25WV, electrolytic
C257	1-121-471	$10\mu F$ $\pm \frac{100}{10}\%$	16WV, electrolytic	C348	1-102-884	33 pF	± 5%	50WV, ceramic
C258	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C349	1-101-004	$0.01 \mu F$	±100%	50WV, ceramic
C259	1-121-471	$10\mu F$ $\pm ^{100}_{10}\%$	16WV, electrolytic	C350	1-101-004	$0.01\mu\mathrm{F}$	$\pm^{100}\%$	50WV, ceramic
C260	1-102-102	$0.0047 \mu F \pm 20\%$	50WV, ceramic	C351	1-102-730	56 pF	± 5%	50WV, ceramic
C261	1-121-403	$\pm 100\%$	16WV, electrolytic	C352	1-102-730	56 pF	± 5%	50WV, ceramic
				C353	1-102-722	27 pF	± 5%	50WV, ceramic
C301	1-102-980	270pF $\pm 5\%$	50WV, ceramic	C354	1-102-965	39 pF	± 5%	50WV, ceramic
C302	1-101-007	$0.047 \mu F \pm \frac{100}{0}\%$	50WV, ceramic	C355	1-102-965	39 pF	± 5%	50WV, ceramic
C303	1-102-136	$0.001 \mu F \pm 20\%$	50WV, ceramic	C356	1-121-395	$4.7 \mu F$	$\pm^{150}\%$	25WV, electrolytic
C304	1-102-889	$39 \mathrm{pF}$ $\pm 5\%$	50WV, ceramic	C357	1-102-953	18pF	± 5%	50WV, ceramic
C305	1-102-136	$0.001 \mu F \pm 20\%$	50WV, ceramic	C358	1-102-961	27 pF	± 5%	50WV, ceramic
C306	1-121-398	$10\mu F$ $\pm ^{100}_{10}\%$	25WV, electrolytic	C359	1-102-980	270 pF	± 5%	50WV, ceramic
C307	1-121-395	$4.7 \mu F \pm \frac{150}{10}\%$	25WV, electrolytic					
C308	1-101-361	$150 \mathrm{pF}$ $\pm 5\%$	50WV, ceramic	C401	1-121-902	$1 \mu F$		160WV, electrolytic
C309	1-102-136	$0.001 \mu F \pm 20\%$	50WV, ceramic	C402	1-102-824	470pF	± 5%	50WV, ceramic
C310	1-101-004	$0.01 \mu \text{F} \qquad \pm^{100} \%$	50WV, ceramic	C403	1-121-902	$1 \mu F$		160WV, electrolytic
C311	1-121-395	$4.7 \mu F$ $\pm ^{150}_{10}\%$	25WV, electrolytic	C404	1-102-824	470 pF	± 5%	50WV, ceramic
C312	1-121-395	$4.7\mu F$ $\pm ^{150}_{10}\%$	25WV, electrolytic	C405	1-121-902	$1 \mu F$		160WV, electrolytic
C313	1-121-471	$10\mu F$ $\pm ^{100}_{10}\%$	16WV, electrolytic	C406	1-102-824	470pF	±5%	50WV, ceramic
C314	1-102-136	$0.001 \mu F \pm 20\%$	50WV, ceramic	C407	1-105-765-13	0.1μF	±10%	200WV, mylar
C315	1-102-136	$0.001 \mu F \pm 20\%$	50WV, ceramic	C408	1-121-395	$4.7 \mu F$	$\pm^{150}\%$	25WV, electrolytic
C316	1-101-361	$150 \mathrm{pF}$ $\pm 5\%$	50WV, ceramic	C409	1-101-361	150pF	± 5%	50WV, ceramic
C317	1-101-361	150 pF $\pm 5\%$	50WV, ceramic	C410	1-101-361	150pF	± 5%	50WV, ceramic
C318	1-101-004	$0.01 \mu \text{F} \qquad \pm^{100} \%$	50WV, ceramic	C411	1-102-115	560pF	±10%	50WV, ceramic
			1					

Doč M	Dayt Mo	ת	escriptio		Ref. No	o. Part No.	De	escriptio	n
Ref. No	o. Part No.	. De	escripito	<u> </u>	Kej. No	<u>I urt No.</u>		scripito	<u>n</u>
C412	1-121-391	$1\mu F$	$\pm^{150}\%$	50WV, electrolytic	C534	1-121-391	$1\mu F$	$\pm^{150}_{10}\%$	50WV, electrolytic
C413	1-102-884	33pF	± 5%	50WV, ceramic					
C414	1-101-004	$0.01\mu\mathrm{F}$	$\pm^{100}\%$	50WV, ceramic	C601	1-121-405	$33 \mu F$	$\pm^{100}_{10}\%$	50WV, electrolytic
C415	1-121-705	$2.2\mu F$	± 30%	25WV, electrolytic	C602	1-121-901	$22\mu F$	± 20%	50WV, electrolytic
C416	1-101-884	56pF	± 5%	50WV, ceramic	C603	1-105-741-12	$0.001 \mu F$	±10%	200WV, mylar
C417	1-101-884	56 pF	± 5%	50WV, ceramic	C604	1-105-731-13	$0.33 \mu F$	± 10%	100WV, mylar
C418	1-101-884	56 pF	± 5%	50WV, ceramic		1-105-759-13	$0.033 \mu F$	±10%	200WV, mylar
C419	1-121-391	$1\mu F$	$\pm^{150}_{10}\%$	50WV, electrolytic	* C605	1-105-763-13	$0.068 \mu F$	±10%	200WV, mylar
C420	1-121-398	$10\mu F$	±100%	25WV, electrolytic		1-105-761-13	0.047μ F	±10%	200WV, mylar
C421	1-121-391	$1 \mu F$	±150%	50WV, electrolytic	C606	1-129-497-11	$1 \mu F$. 100	200WV, mylar
C422	1-121-391	1μF	±150%	50WV, electrolytic	C607	1-121-743	220μF	$\pm^{100}_{10}\%$	25WV, electrolytic
C423	1-101-004	$0.01\mu\mathrm{F}$	±100%	50WV, ceramic	C608	1-108-547-11	0.4μF	.100~	200WV, mylar
C424	1-121-391	$1 \mu F$	±150%	50WV, electrolytic	C609	1-121-736	$1,000 \mu F$	±100%	10WV, electrolytic
C425	1-121-391	1 μF	±150%	50WV, electrolytic	C610	1-121-743	220μF	$\pm^{100}_{10}\%$	25WV, electrolytic
. C426	1-102-824	470 pF	± 5%	50WV, ceramic	C611	1-121-747	4.7μF	$\pm^{150}_{10}\%$ $\pm^{100}_{10}\%$	250WV, electrolytic
C427	1-101-004	0.01 μF	±100%	50WV, ceramic	C612	1-119-324	2.2μF	± 10%	500WV, electrolytic 200WV, mylar
C428	1-102-978	220 pF	± 5%	50WV, ceramic	C613	1-105-747-12	0.003μF 0.01μF	± 10%	200WV, mylar
0501	1 121 245	1.000E	$\pm^{100}_{10}\%$	16WW alastralutia	C614 C615	1-105-753-12 1-102-147	$0.01 \mu F$ $0.0047 \mu F$	$\pm \frac{10\%}{20\%}$	150WV, ceramic
C501 C502	1-121-245 1-127-305	1,000μF 4.7μF	± 20%	16WV, electrolytic 16WV, electrolytic	C616	1-102-147	$0.0047 \mu F$ $0.0047 \mu F$	$\pm^{80}_{20}\%$	150WV, ceramic
C302	1-127-303	4./μ1	- 20%	(alox)	C617	1-105-731-13	0.33 µF	$\pm 10\%$	100WV, mylar
C503	1-121-403	33μ F	$\pm^{100}\%$	16WV, electrolytic	C618	1-121-396	4.7μF	$\pm^{150}\%$	50WV, electrolytic
C504	1-131-155	15μF	± 20%	16WV, electrolytic	C651	1-519-030	spark gap	1075	,
C501	1 131 133	10 [41	- 20,0	(alox)	C652	1-119-242	1μF	\pm^{150} %	500WV, electrolytic
C505	1-121-471	$10 \mu F$	$\pm^{100}\%$	16WV, electrolytic	C653	1-519-030	spark gap		·
C506	1-121-426	470μF	±100%	16WV, electrolytic	C654		- discard	led –	
C507		•	arded -	•	C655	1-105-793-16	$0.01\mu\mathrm{F}$	±10%	400WV, mylar
C508	1-101-896	100 pF	± 5%	50WV, ceramic					
C509	1-101-896	100 pF	± 5%	50WV, ceramic	C701	1-121-471	$10\mu F$	$\pm^{100}_{10}\%$	16WV, electrolytic
C510	1-121-398	$10\mu F$	$\pm^{100}_{10}\%$	25WV, electrolytic	C702	1-121-413	$100 \mu F$	$\pm^{100}_{10}\%$	6.3WV, electrolytic
C511	1-105-719-12	$0.033 \mu F$	± 10%	100WV, mylar	C703	1-121-416	$100 \mu F$	±100%	25WV, electrolytic
C512	1-121-391	$1\mu F$	±150%	50WV, electrolytic	C704	1-121-415	$100 \mu F$	±100%	16WV, electrolytic
C513	1-105-715-12	$0.015 \mu F$	± 10%	100WV, mylar	C705	1-121-189	$1 \mu F$	$\pm^{150}_{10}\%$	160WV, electrolytic
* C514	1-105-705-12	$0.0022 \mu F$	± 10%	100WV, mylar	C706	1-105-681-12	$0.047 \mu F$	±10%	50WV, mylar
C515	1-105-765-12	$0.1 \mu F$	± 10%	200WV, mylar	C707	1-101-810	100pF	± 5%	500WV, ceramic
C516	1-105-729-13	$0.22 \mu F$	± 10%	100WV, mylar	C708	1-105-681-12		±10%	50WV, mylar
C517	1-108-549-11	$0.68 \mu F$		200WV, mylar	C709	1-101-455	1,000pF	± 20%	50WV, ceramic
C518	1-105-461-12	$0.001 \mu F$		600WV, mylar				Ladar	
C519		0.033μF		100WV, mylar	C801	1-102-146	250pF		25kWV, ceramic
* C520	1-105-705-12	$0.0022 \mu F$		100WV, mylar	C802	1-105-467-13	$0.01\mu\mathrm{F}$	±10%	600WV, mylar
C521	1-105-721-12	0.047µF	± 10%	100WV, mylar	C803	1-519-030	spark gap	+ 100	200WV, mylar
C522	1-105-715-12	$0.015 \mu F$	$\pm 10\%$ $\pm ^{150}$ %	100WV, mylar	C804	1-105-753-12	0.01 μF		1kWV, ceramic
C523	1-121-395	4.7μF 4.7μF	$\frac{1}{10}\%$	25WV, electrolytic 25WV, electrolytic	C805 C806	1-102-095 1-129-855-11	330pF 0.013μF	± 20% ± 10%	1kWV, mylar
C524 C525	1-121-395 1-105-725-12	•	± 10%	100WV, mylar	C807	1-123-653-11	100pF	± 20%	2kWV, ceramic
C525	1-105-725-12		± 10%	100WV, mylar	C808	1-102-133	0.001μF		630WV, mylar
C527	1-105-725-12	$0.1 \mu F$ $0.022 \mu F$	± 10%	100WV, mylar	C809	1-129-702-12	0.001μΓ 10μF		200WV, mylar
C528	1-105-717-12	$0.022 \mu F$	± 10%	100WV, mylar	C810				
C529	1-101-896	100 pF	± 5%	50WV, ceramic	C811	1-102-087	47 pF	± 10%	1.5kWV, ceramic
C530	1-121-391	1μF	±150%	50WV, electrolytic	C812	1-102-153	100 pF	± 20%	2kWV, ceramic
C531	1-105-717-12	0.022µF	± 10%		C813	1-129-854-11	0.009µF		1.5kWV, mylar
C532	1-102-212	820 pF		500WV, ceramic	C814	1-129-798-11	0.0094 μF		1.5kWV, mylar
C533	e	-	arded –		C815		- discard		
					1		Note: *	to be s	elected.

	Ref. No.	Part No.	D	escriptic	<u>on</u>	Ref. N	o. Part No.		Description	
	C816		- discar	rded		R172	1-244-697	10kΩ		
	C817	1-119-310	40µF		160WV, electrolytic	RITZ	1-244-097	10K22		
	C818		- disca	rded –		R201	1-244-659	290Ω		
		1-101-845	$0.001 \mu F$		500WV, ceramic	R202	1-244-694	7.5kΩ		
	C820	1-119-244	$47\mu F$		160WV, electrolytic	R203	1-244-679	1.8kΩ		
	C821	1-119-222	$100 \mu F$	$\pm^{100}\%$	50WV, electrolytic	R204	1-244-663	390Ω		
	C822	1-119-322	$22\mu F$	± 20%	160WV, electrolytic	R205	1-244-672	910Ω		
	C901	1-125-071	470+47+10)+10E	160WW alastra last	R206	1-244-655	180Ω		
			170.47.1	το <i>μ</i> ι·	160WV, electrolytic (block)	R207	1-244-653	150Ω		* *
	C902	1-108-318-11	$0.01\mu\mathrm{F}$	± 10%	1kWV, mylar	R208	1-244-649	100Ω		
	C903	1-129-739-11			630WV, mylar	R209	1-244-666	510Ω		
	C904	1-102-102	$0.0047 \mu F$	±20%		R210	1-244-653	150Ω		
			-		of my, columns 1 and later)	R211	1-244-687	$3.9k\Omega$		
					, i mid mioi)	R212	1-206-126	390Ω	± 10%	2W, metal oxide
			ESISTORS			R213	1-206-125	82 Ω	± 10%	2W, metal oxide
		All resistors as		arbon, ur	aless	R214	1-244-651	120Ω		
		otherwise spec	cified.			R215	1-244-689	$4.7k\Omega$		
		1-244-685	$3.3 k\Omega$			R216	1-244-679	$1.8k\Omega$		
		1-244-685	$3.3 k\Omega$			R217	1-244-667	560Ω		
		1-244-685	$3.3 k\Omega$			R218	1-244-657	220Ω		
		1-244-685	$3.3 k\Omega$			R219	1-244-693	6.8 k Ω		
		1-244-697	$10k\Omega$			R220	1-244-677	$1.5 k\Omega$		
		1-244-707	$27k\Omega$			R221	1-244-681	$2.2k\Omega$		
		1-244-697	$10k\Omega$			R222	1-244-673	1kΩ		
		1-244-697	$10k\Omega$			R223	1-244-673	$1 k\Omega$		
		1-244-673	1kΩ			R224	1-244-671	820Ω		
		1-244-865	470 Ω	± 10%	ERD½SP	R225	1-244-649	100Ω		
		1-244-703	18kΩ			R226	1-244-684	$3k\Omega$		
		1-244-669	680Ω			R227	1-244-673	lkΩ		
		1-244-709	33 kΩ			R228	1-244-701	15kΩ	•	
r	R014 1	l-244-719	82kΩ			R229	1-244-683	2.7kΩ		
R	.151 1	-244-699	$12k\Omega$			R230	1-244-673	1kΩ		•
R	.152 1	-244-691	$5.6k\Omega$			R231 R232	1-244-649 1-244-673	100Ω		
R	153 1	-244-667	560Ω			R232	1-244-673	1 kΩ	é	
R	.154 1	-244-661	330Ω			R234	1-244-703	22kΩ		
R	.155 1	-244-681	2.2kΩ·			R235	1-244-697	12kΩ		
R	156 1	-244-689	$4.7k\Omega$			R236	1-244-660	10kΩ 300Ω		
R	157 1	-244-625	10Ω			R237	1-244-695	8.2kΩ		
R	158 1	-250-855	180Ω		ERD12T	R238	1-244-684	3kΩ		
R	159 1	-244-671	820Ω			R239	1-244-660	300Ω	*	•
R	160 1	-244-649	100Ω				1-244-697	10kΩ		
		-244-649	100Ω				1-244-660	300Ω		
		-244-666	300Ω				1-244-689	4.7kΩ		
		-244-651	120 Ω				1-244-679	1.8kΩ		
		-244-629	15 Ω				1-244-667	560Ω		
		-244-705	22kΩ		·		1-244-653	150 Ω		•
		-244-649	100 Ω				1-244-690	5.1kΩ		
		-244-687	3.9kΩ				1-247-660	300Ω		
		-244-673	1kΩ				1-244-704	$20k\Omega$		
		-244-663	390 Ω							
		-244-643	56Ω			R301	1-244-649	100Ω		
R	171 1-	-244-649	100 Ω			R302	1-244-675	$1.2k\Omega$		
					1					

Note: * to be selected.

Ref. No.	Part No.		Description		Ref. No.	Part No.	•	Description	
R303	1-244-693	6.8kΩ			R356	1-244-657	220Ω		
R304	1-244-701	$15 k\Omega$			R357	1-244-675	1.2kΩ		
R305	1-244-673	$1 k\Omega$			R358	1-244-657	220Ω		
R306	1-244-667	560Ω			R359	1-244-685	3.3kΩ		
R307	1-244-629	15Ω			R360	1-244-694	$7.5 k\Omega$		
R308	1-244-697	$10 \mathrm{k}\Omega$			R361	1-244-689	$4.7k\Omega$		
R309	1-244-681	$2.2k\Omega$			R362	1-244-649	100Ω		
R310	1-244-705	$22k\Omega$.	R363	1-244-679	$1.8 k\Omega$		·
R311	1-244-681	$2.2k\Omega$			R364	1-244-687	$3.9 k\Omega$		
R312	1-244-701	$15 k\Omega$			R365	1-244-649	100Ω		
R313	1-244-707	$27k\Omega$		ĺ	R366	1-244-673	$1k\Omega$		
R314	1-244-649	100Ω			R367	1-244-673	$1k\Omega$		
R315	1-244-653	150Ω			R368	1-244-697	$10 \mathrm{k}\Omega$		
R316	1-244-673	$1k\Omega$		I	R369	1-244-685	$3.3 k\Omega$		
R317	1-244-661	330Ω		.	R370	1-244-677	$1.5 k\Omega$		
R318	1-244-707	$27k\Omega$			R371	1-244-699	$12k\Omega$		
R319	1-244-703	$18k\Omega$			R372	1-244-677	$1.5\mathrm{k}\Omega$		
R320	1-244-661	330Ω			R373	1-244-679	$1.8 k\Omega$		·
R321	1-244-643	56Ω			R374	1-244-703	$18k\Omega$		
R322	1-244-669	680Ω			R375	1-244-707	$27k\Omega$		
R323	1-244-689	$4.7 k\Omega$			R376	1-244-633	22Ω		
R324	1-244-681	$2.2k\Omega$			R377	1-244-669	680Ω		
R325	1-244-681	2.2 k Ω			R378	1-244-681	$2.2k\Omega$		
R326	1-244-701	$15 k\Omega$			R379	1-244-665	470Ω		
R327	1-244-707	$27k\Omega$			R380	1-244-661	330Ω		
R328	1-244-703	$18 \mathrm{k}\Omega$			R381	1-244-661	330Ω		
R329	1-244-681	2.2 k Ω			R382	1-244-695	$8.2k\Omega$		
R330	1-244-673	1kΩ			R383	1-244-695	$8.2k\Omega$		
R331	1-244-649	100Ω			R384	1-244-701	$15 k\Omega$		
R332	1-244-679	1.8kΩ			R385	1-244-681	2.2 k Ω		
R333	1-244-649	100Ω		1	R386	1-244-685	$3.3k\Omega$		
R334	1-244-681	2.2kΩ			R387	1-244-657	220Ω		
R335	1-244-673	1kΩ			R388	1-244-675	1.2kΩ		
R336	1-244-673	1kΩ			R389	1-244-657	220Ω		
R337 R338	1-244-697	10kΩ			R390	1-244-685	3.3kΩ		
R339	1-244-685 1-244-677	3.3kΩ 1.5kΩ			R391	1-244-649	100Ω		
	1-244-699	1.3 ksz 12kΩ			R392	1-244-679	1.8kΩ		
	1-244-677	1.5kΩ			R393 R394	1-244-697 1-244-649	10kΩ 100Ω		
R342	1-244-679	1.8kΩ			K334	1-244-043	10022	•	
	1-244-703	18kΩ			R401	1-206-012	15kΩ	±10%	2W, metal oxide
R344	1-244-707	27kΩ			R402	1-244-709	33kΩ	±10 <i>7</i> 0	2 W, metal oxide
R345	1-244-633	22Ω			R403	1-244-667	560Ω		
R346	1-244-669	680Ω			R404	1-244-723	120kΩ		
R347	1-244-681	$2.2k\Omega$			R405	1-244-641	47Ω		
R348	1-244-665	470Ω			R406	1-206-012	15kΩ	±10%	2W, metal oxide
R349	1-244-661	330Ω			R407	1-244-709	33kΩ	-1070	2 //, 1110 1111 0111111
R350	1-244-661	330Ω			R408	1-244-723	120kΩ		
R351	1-244-695	8.2kΩ			R409	1-244-667	560Ω	•	
R352	1-244-695	8.2kΩ			R410	1-244-641	47Ω		
R353	1-244-681	$2.2k\Omega$		-	R411	1-206-012	15kΩ	±10%	2W, metal oxide
R354	1-244-701	15kΩ			R412	1-244-709	33kΩ	7,0	
R355	1-244-685	$3.3 k\Omega$	•		R413	1-244-723	120kΩ		
				. 1					

Ref. No	o. Part No.	<u></u>	Description	Ref. N	Vo. Part No.	Des	cription	
R414	1-244-667	560Ω		R508	1-244-689	4.7kΩ		
R415	1-244-641	47Ω		R509	1-244-675	$1.2k\Omega$	•	
R416	1-244-671	820Ω		R510	1-244-625	10Ω		
R417	1-244-679	$1.8k\Omega$		R511	1-244-689	$4.7k\Omega$		
R418	1-244-697	10kΩ		R512	1-244-637	33Ω		
R419	1-250-897	10kΩ	ERD12T	R513	1-244-705	$22k\Omega$		
R420	1-244-697	10kΩ		R514	1-244-697	$10k\Omega$		
R421	1-244-667	560Ω		R515	1-244-707	$27k\Omega$	•	
R422	1-244-673	1kΩ		R516	1-244-679	$1.8 k\Omega$		
R423	1-244-697	10kΩ		R517	1-244-689	$4.7k\Omega$,	•
R424	1-244-695	8.2kΩ		R518	1-244-697	$10k\Omega$		
R425	1-244-733	330kΩ		R519	1-244-693	$6.8k\Omega$		
R426	1-244-697	10kΩ	•	R520	1-244-673	1kΩ		•
R427	1-244-697	10kΩ		R521	1-244-723	120kΩ		
R428	1-244-667	560Ω		R522	1-244-649	100Ω		
R429	1-244-677	$1.5k\Omega$	•	R523	1-244-713	$47k\Omega$		
R430	1-244-653	150 Ω		R524	1-244-685	$3.3k\Omega$		
R431	1-244-709	$33k\Omega$		R525	1-244-693	- 6.8kΩ		
R432	1-244-677	1.5kΩ			(1-207-284	18Ω	± 10%	1.5W, wire wound
R433	1-244-681	$2.2k\Omega$		* R526	1-207-287	24 Ω	±10%	1.5W, wire wound
R434	1-244-649	100Ω			1-207-290	33Ω	±10%	1.5W, wire wound
R435	1-244-675	$1.2k\Omega$			(1-207-288	27 Ω	±10%	1.5W, wire wound
R436	1-244-657	220Ω		* R527	1-207-290	33Ω	±10%	1.5W, wire wound
R437	1-244-649	100Ω			1-207-293	43Ω	±10%	1.5W, wire wound
R438	1-244-675	$1.2k\Omega$		R528	1-207-277	7.5Ω	±10%	1.5W, wire wound
R439	1-244-673	$1k\Omega$		R529	1-250-825	10Ω	EF	RD12T
R440	1-244-661	330Ω		R530	1-206-132	$8.2k\Omega$	±10%	2W, metal oxide
R441	1-244-661	330Ω		R531	1-244-667	560Ω		
R442	1-244-679	1.8kΩ		R532	1-244-677	$1.5k\Omega$		
R443	1-244-689	4.7kΩ		R533	1-244-667	560Ω		
R444	1-244-687	3.9kΩ	•	R534	1-244-673	1kΩ		
R445	1-244-707	27kΩ		R535	1-244-665	470Ω		
R446	1-244-697	$10k\Omega$		R536	1-244-673	1kΩ		
R447	1-244-671	820Ω		R537	1-244-687	$3.9k\Omega$		
R448	1-244-689	4.7kΩ		R538	1-244-672	910Ω		
R449	1-244-705	$22k\Omega$	*	R539	1-244-667	560Ω		
R450	1-244-687	3.9kΩ		R540	1-244-703	18kΩ		
R451	1-244-679	1.8kΩ		R541	1-244-697	$10k\Omega$		
R452	1-244-661	330Ω		R542	1-244-707	$27k\Omega$		
R453	1-244-683	$2.7k\Omega$		R543	1-244-687	$3.9k\Omega$		•
R454	1-244-729	$220k\Omega$		R544	1-244-687	$3.9k\Omega$		
R455	1-244-697	$10k\Omega$		R545	1-244-659	270Ω		
R456	1-244-713	$47k\Omega$		R546	1-244-665	470Ω		
R457	1-244-657	220Ω		R547	1-244-665	470Ω		
R458	1-244-685	$3.3k\Omega$	•	R548	1-244-701	$15k\Omega$		
				R549	1-244-709	$33k\Omega$		
R501	1-217-031	100Ω	± 10% 3W, cement coated	R550	1-206-130	$1.5k\Omega$	±10%	2W, metal oxide
R502	1-244-707	$27k\Omega$		R551	1-244-693	$6.8k\Omega$		
R503	1-244-639	39 Ω						
R504	1-244-677	$1.5k\Omega$		R601	1-207-109	1Ω	±10%	1.5W, wire wound
R505	1-244-633	22Ω		R602	1-217-060	3.3 Ω	±10%	5W, cement coated
K506	1-207-185	1Ω	½W, wire wound	R603	1-244-675	$1.2k\Omega$		
R507	1-244-661	330Ω		R604	1-206-012	$15k\Omega$	±10%	2W, metal oxide
				1		Note: ×	to be se	lected.

	•		1						
Ref. No.	Part No.	<u>De</u>	scription	!	Ref. No.	Part No.	<u>De</u>	scription	
R605	1-250-908	30kΩ	ER	D12T	R803	1-202-631	270kΩ	±10%	R½, composition
R606	1 230 700	 discarde 			R804	1-202-575	$1.2k\Omega$	±10%	R1/2, composition
R607	1-206-018	10kΩ	± 10%	2W, metal oxide	R805	1-244-895	$8.2k\Omega$		
R608	1-250-903	18kΩ		D12T	R806	1-207-249	1.8Ω		1W, wire wound
R609		- discarde	i –		R807	1-244-895	8.2kΩ		
R610	1-244-685	$3.3k\Omega$			R808	1-217-062	4.7Ω	±10%	5W, cement coated
R611		- discarde	d –		R809	1-206-127	470Ω	±10%	2W, metal oxide
R612		- discarde	1 –		R810		 discarde 	d -	
R613	1-244-709	$33k\Omega$			R811		 discarde 	d –	
R614	1-244-733	$330k\Omega$			R812	1-244-823	8.2Ω		
R615	1-244-735	390kΩ			R813	1-217-035	220Ω	± 10%	3W, cement coated
R616	1-207-241	5 Ω	±10%	0.65A, wire wound	R901	1-205-805	180Ω	:	20WV, cement coated
R617	1-207-241	5 Ω	±10%	0.65A, wire wound	R902	1-217-060	3.3Ω	±10%	5WV, cement coated
R618	1-207-241	5 Ω	±10%	0.65A, wire wound	R903	1-250-857	220Ω	ER	D12T
R619	1-250-817	4.7 Ω	± 5%	ERD12T	R904	1-250-857	220Ω		D12T
R620	1-217-038	390Ω	± 10%	3W, cement coated	R905	1-211-169	$12k\Omega$	± 10%	RD1P
R621	1-207-268	3.3Ω	± 10%	1.5W, wire wound	R906	1-205-462	$1.2k\Omega$	±10%	5W, cement coated
R622	1-250-846	75Ω	ER	D12T	R907	1-244-669	680Ω		
R623	1-206-111	$39k\Omega$	±10%	1W, metal oxide	R908	1-244-669	$\Omega 089$		
R624	1-250-911	39kΩ	ER	D12T	R909	1-244-683	$2.7k\Omega$		
R625	1-206-079	47Ω	±10%	1W, metal oxide	R910	1-244-683	2.7kΩ		
R626	1-250-909	$33k\Omega$	ER	D12T	R911	1-244-911	$3.9 \mathrm{k}\Omega$		
R627	1-250-885	3.3kΩ	ER	D12T	R912	1-244-694			0,501 and later)
R628	1-250-905	$22k\Omega$	ER	RD12T	R913	1-244-683			0,501 and later)
R629	1-250-905	$22k\Omega$	ER	RD12T	VR151	1-222-805	470 Ω-B	adjustab	
R630	1-206-081	100Ω	± 10%	1W, metal oxide	VR152	1-222-805	470 Ω-B	adjustab!	
R631	1-250-899	12kΩ	ER	D12T	VR 201	1-222-804	1kΩ-B	adjustab!	
R632	1-250-937	$470k\Omega$	ER	D12T	VR301	1-222-701	10k-B	adjustab	
R633	1-244-670	750Ω	•		VR 302	1-221-997	2.2kΩ-B	adjustab	
R634	1-244-721	$100 k\Omega$		•	VR 303	1-221-997	2.2kΩ-B	adjustab	
R651	1-202-629	$220k\Omega$	± 20%	RC½, composition	VR401	1-222-717	250kΩ-B	adjustab	
R652	1-202-806	470kΩ	± 20%	RC1, composition	VR402	1-222-717	250kΩ-B	adjustab	
R655 '	1-202-800	4/0822	- 20,0	ico, composition	VR403	1-222-717	250kΩ-B	adjustab	
R653					VR404	1-222-978	4.7kΩ-B	adjustab	
· × R654 }	1-202-581	$2.2k\Omega$	± 20%	RC½, composition	VR405	1-222-978	4.7kΩ-B	adjustab	
R656					VR406	1-222-978	4.7kΩ-B	adjustab	
R657	1-202-585	$3.3k\Omega$	± 20%	RC½, composition	VR407	1-222-701	10kΩ-B	adjustab	
					VR501	1-222-807	20kΩ-B	adjustab	
R701	1-244-717	68kΩ			VR502	1-221-389	5kΩ-B	adjustab	
R702	1-244-705	$22k\Omega$			VR503	1-221-389	5kΩ-B	adjustab	
R703	1-244-665	470Ω			VR504	1-221-304	10kΩ-B	adjustab	
R704	1-244-671	820Ω			VR505	1-221-979	22kΩ-B	adjustab	
R705	1-244-627	12Ω			VR601	1-222-701	10kΩ-B	adjustab	
R706	1-244-673	1kΩ			VR602	1-222-724	10kΩ-B	adjustab	
R707	1-205-456	390Ω	± 10%	3W, cement coated	VR603	1-222-809	500kΩ-B	adjustab	
R708	1-244-709	33kΩ			VR604	1-222-172	50Ω-B	variable	
R709	1-244-705	22kΩ			VR605	1-222-172	50Ω-B	variable	
R710	1-244-649	100Ω			VR606	1-222-172	50Ω-B	variable	
R711	1-244-661	330Ω			VR607	1-221-997	2.2kΩ-B	adjustab	oie
R712	1-205-464	2.2Ω	± 10%	7W, cement coated	VR608		- discard		1-
					VR609	1-222-769	20kΩ-B	adjustal	
R801	1-202-776	1kΩ	± 20%	RC1, composition	VR901	1-222-482	5kΩ-B	variable	
R802	1-202-631	270kΩ	± 10%	R½, composition	VR902	1-222-342	50kΩ-D	variable	
							Note: *	to be se	lected.

Ref. No.	Part No.	<u>Description</u>	Ref. No.	Part No.	<u>Description</u>
VR903	1-222-484	1 kΩ-B variable	NE653	1-519-013-13	neon lamp
VR904	1-222-483	500 Ω-B variable	NE654	1-519-013-13	neon lamp
VR 904 VR 905	1-222-485	20kΩ-B variable	V801	1-525-118	vacuum tube, 3AT2
VR906	1-222-174	20kΩ-B variable	K651	1-526-086	socket, picture tube
VICOU	1 222 17 1		K801	1-526-187	socket, mold
	MISC	ELLANEOUS	FUSE	1-532-140	fuse, 3.15A
CV151	1-141-136	ceramic capacitor, cylinder trimmer		1-533-075	fuse holder
CV152	1-141-136	ceramic capacitor, cylinder trimmer	CN903	1-534-526	cord, ac power supply (J)
SD201	1-403-366	detector block, sound	CN901	1-534-587	cord, ac power supply (E)
DL301	1-415-037	delay line, Y		1-535-036	terminal, hermetic
DL401	1-415-036	delay line, 1H	TB701	1-536-146	lug terminal plate, 1L1
SC1	1-413-005	coil, horizontal stabilizing; 1.3 mH		1-536-046	terminal strip, E
SC2	1-413-017	coil, horizontal stabilizing; 1.9 mH		1-536-181	lug terminal plate, 2L1
	1-452-014	magnet, disk	TB801	1-536-220	terminal plate ass'y, 16P
	1-452-032	magnet, disk	TB802	1-536-221	terminal plate ass'y, 3P
	1-452-038	magnet, disk		1-536-270	lug terminal, 1L3L1
L807 L901)	1-451-070	deflection yoke		1-536-296 8-735-300-00	lug terminal plate picture tube, (330AB22)
	1-502-237	speaker, 8 \Omega			
	1-506-108	terminal pin, SV		CARTONS AN	ID ACCESSORIES
	1-506-186	pin plug		4-303-349	sheet, upper
J901	1-507-169-13	jack, earphone		4-304-163	carton, packing
J902	1-507-169-13	jack, earphone		4-304-164	cushion, left
	1-507-901-02	nut, jack		4-304-165	cushion, right
CN902	1-509-015	socket, ac power		4-304-166	protection sheet
SW152	1-514-533	switch, sub miniature (SW152)		4-304-167	label, antenna
SW151	1-514-843	switch, system selector (SW151)			
OCP901	1-515-119	protector, over current		X-43041-10	card ass'y
ANODE	1-526-130	cap, anode		X-44900-02-1	polishing cloth in polyethylene bag
NECK	1-526-131	cap, convergence		Y-20823-01	telescopic antenna ass'y (AN-14F)
CNJ	1-526-165-21	socket, voltage changeover		4-302-759	label, serial number
NE901	1-519-019-14			4-491-045-51	caution label, power cord
NE902	1-519-019-14	lamp ass'y, neon		4-495-281-51	instruction manual
NE651	1-519-013-13	neon lamp			polyethylene bag, instruction manual
NE652	1-519-013-13	neon lamp		1-504-034-22	earphone (ME-20B)