BSM 420 – BİLGİSAYAR SİSTEMLERİNİN PERFORMANS DEĞERLENDİRMESİ

Ders Tanıtımı

Dersin Amacı (1/6)

- Bir sistem için uygun değerlendirme tekniklerini, performans ölçümlerini ve iş yüklerini seçmek
 - Teknikler: ölçüm, simülasyon, analitik modelleme
 - Metrikler: performansı incelemek için kriterler (ör. yanıt süresi)
 - İş yükleri: kullanıcıların/uygulamaların sistemden talepleri
- Örnek: Aşağıdaki sistemler için hangi performans metriklerini kullanmalısınız?
 - a) İki disk sürücüsü
 - b) İki görev(iş) işleme sistemi
 - c) İki paket iletim algoritması

Dersin Amacı (2/6)

- Performans ölçümlerini doğru yapmak
 - İki araca ihtiyaç var: yük üreteci ve izleyici
- Örnek: Aşağıdaki sistemlerde performansı ölçümü için hangi iş yükü uygun olur?
 - a) Bir LAN üzerinde kullanım
 - b) Bir Web sunucusundan yanıt süresi
 - c) VoIP ağındaki ses kalitesi

Dersin Amacı (3/6)

- Birden fazla alternatifi karşılaştırmak için uygun istatistiksel teknikleri kullanmak
 - Bir iş yükünün bir kere çalışması genellikle yeterli değildir
 - Performansı etkileyen birçok deterministik(belirgin) olmayan bilgisayar olayı vardır.
 - Birkaç çalışmanın ortalamasını karşılaştırmak da doğru sonuçlara yol açmayabilir
 - Özellikle varyans/değişim yüksekse

Örnek: Bir bağlantıda kaybolan paketler. Hangi bağlantı daha iyi?

Dosya Boyutu	<u>Bağlantı A</u>	<u>Bağlantı B</u>
1000	5	10
1200	7	3
1300	3	0
50	0	1

Dersin Amacı (4/6)

- En az çabayla en fazla bilgiyi sağlamak için ölçüm ve simülasyon deneyleri tasarlamak.
 - Genellikle performansı etkileyen birçok faktör. Bireysel olarak önemli olan etkileri ayırmak
- Örnek: Bir sistemin performansı üç faktöre bağlıdır:
 - A) Çöp toplama tekniği: G1, G2, yok
 - B) İş yükü türü: düzenleme, derleme, yapay zeka
 - C) CPU tipi: P2, P4, Sparc

Kaç deney gerekiyor? Her bir faktörün performansı nasıl tahmin edilebilir?

Dersin Amacı (5/6)

- Simülasyonları doğru şekilde gerçekleştirmek
 - Doğru dili, rastgele sayılar için tohumları(seed), simülasyon çalıştırmasının uzunluğunu ve analizi seçin
 - Tüm bunlardan önce, simülatörü doğrulamanız gerekebilir
- Örnek: İki önbellek değiştirme algoritmasının performansını karşılaştırmak için:
- A) Simülasyon ne kadar süreyle çalıştırılmalıdır?
- B) Daha kısa sürede aynı doğruluğu elde etmek için ne yapılabilir?

Dersin Amacı (6/6)

- Sistemlerin performansını analiz etmek için basit kuyruk modellerini kullanmak
- Genellikle bilgisayar sistemlerini hizmet hızına ve yükün varış hızına göre modelleyebilir.
 - Birden çok sunucu
 - Birden çok kuyruk
- Örnek:
 - Belirli bir Web istek oranı için 2 tek işlemcili Web sunucusuna mı yoksa 4 tek işlemcili Web sunucusuna mı sahip olmak daha etkili?

Önemli kavramlar: performans

Amdahl kuralı
 kaynakları iyileştirilen bir sistemden
 beklenebilecek hızlanmayı veren bir formül

<u>Önemli kavramlar-eşzamanlılık</u>

Çok çekirdekli sistemlere geçişin nedenleri

<u>Önemli kavramlar: sanallaştırma</u>

Donanımı / sistemi tam kapasite kullanmak

Haftalık Plan

Hafta	Ders Konuları
1	Giriş
2	Performans Değerlendirme Metrikleri
3	Kıyas Setleri
4	Güç ve Enerji
5	Bellek Performansı
6	Bilgisayar Sistemlerinin Modellenmesi ve Performans Değerlendirmesi
7	İstatistikler
8	Ara Sınav
9	Ölçütler
10	Ortalamalar
11	Deney Tasarımı
12	Sunum
13	Simülasyon
14	Kuyruk modelleri

Kaynaklar

- David J. Lilja. Measuring Computer
 Performance: A Practitioner's Guide, Cambridge
 University Press, New York, NY, 2000.
- Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, John Wiley and Sons, Inc., New York, NY, 1991.
- Douglas C. Montgomery. Design and Analysis of Experiments, 5th Edition, Wiley Text Books, June 2000.

<u>Değerlendirme</u>

YARIYIL İÇİ ÇALIŞMALARI	KATKI YÜZDESİ		
Ara Sinav	20		
Kisa Sinav I	7,5		
Kisa Sinav II	7,5		
Ödev	15		
Final	50		
Toplam	100		

Biraz istatistik

- Derse katılım teşvik edilir (karşılıksız kalmaz)
- Vize, Kısa Sınav II, Final test
- Ödev önemli!!

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku – Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit – IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra – IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight – Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Perlmutter – HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE DOE/SC/LBNL/NERSC United States	761,856	70,870.0	93,750.0	2,589
6	Selene – NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646
7	Tianhe-2A – TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
8	JUWELS Booster Module – Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	70,980.0	1,764
9	HPC5 – PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz, NVIDIA Tesla V100, Mellanox HDR Infiniband, DELL EMC Eni S.p.A. Italy	669,760	35,450.0	51,720.8	2,252
10	Voyager-EUS2 – ND96amsr_A100_v4, AMD EPYC 7V12 48C 2.45GHz, NVIDIA A100 80GB, Mellanox HDR Infiniband, Microsoft Azure Azure East US 2 United States				

SUPERCOMPUTER FUGAKU

Dünyanın en hızlı bilgisayarları

Summit (US): Amerika Enerji Bakanlığı

- 122.3 -148.6 petaFLOPS
- Akademik kullanıma açık

Sierra (US)

- 1,572,480 cores
- 94.6 petaFLOPS
- IBM CPU ve NVIDIA GPU
- modelleme and simülasyon
- US National Nuclear Security Administration.

Sunway TaihuLight (China)

- 93.01 petaFLOPS
- 10,649,000 cores
- National Supercomputing Center in Wuxi,

Tianhe-2 (China) Frontera (US)

Türkiye'de Süperbilgisayarlar

- Tübitak Ulakbim
- İTÜ UYBHM
- YTU SVR Bilgi Teknolojileri

Geri sayım başladı: Türkiye'nin süper bilgisayarı olacak

Türkiye, süper bilgisayarı için gün sayıyor. Geliştirilen "süper bilgisayarda" 500'den fazla sunucu ve 56 bin çekirdek olacağı belirtilirken, Türkiye'yi dünyanın en gelişmiş bilgisayarlarının sıralandığı "Top500" listesine sokacağı kaydedildi.

26.12.2023 - 15:07 Haberler - ntv.com.tr

Top 500 HPC

Kaynak https://www.top500.org/lists/

Lawrence Livermore IBM Sequoia

- LINPACK: 16.32 petaflops per second
- 1,572,864 cores
- 1.6 PetaBytes of RAM, 55 PB storage
- 3 Gflops/watt
- 98,304 devre kartı üzerine monte,
- 96 rack sunucu
- 318 m2 sunucu odasi
- 768 I/O düğümü
- Linux
- 200 milyon dolar
- yıllık 7.9 milyon dolar elektrik tüketimi

The 2023 Stack Overflow Developer Survey

Ref: https://survey.stackoverflow.co/2023/

Eğitim Durumu

Türkiye: 1054 Katılımcı %1,26

Kod Öğrenme Yeri

Eğitim Alma Aracı

Geliştirici Türü

Çalışma Şekli

Demografi

 Türkiye 20. sıra %1 (2022- 15. sıra %1.42)!!!!

Yaş Aralığı

Cinsiyet

Teknoloji

Veritabanı

Bulut

Web Frameworks

Kütüphaneler

Destekleyici Teknoloji

IDE

Online Meeting Platform

OS

Yapay Zeka

Yapay Zeka Geliştirici Araçları

THE WORLD'S TOP 10 MOST VALUABLE BRANDS 2023

Brand Finance

Source: Brand Finance Global 500 2023

brandirectory.com/global

En Değerli İlk 10 Marka © Brand Finance Plc 2023 TURKISH AIRLINES *▶arçelik* VESTEL **\$Garanti BB**V∧ USD\$0.7 bn USD\$2.0 bn USD\$1.5 bn USD\$0.9 bn USD\$0.8 bn +26% +4% +29% +44% +45% 8 + 3 10 121 **a** BIM Ziraat Bankası TURKCELL FORD OTOSAN AKBANK USD\$0.6 bn USD\$0.6 bn USD\$0.5 bn USD\$0.5 bn USD\$0.5 bn +12% +22% -34% -24% +9%

software development

Country	Avg Cost Rate per Hour (£)	Avg Cost Rate per Hour (\$)
India	£10 – £20	\$12 - \$25
Philippines	£8 – £15	\$10 - \$20
China	£12 – £25	\$15 - \$30
Mexico	£15 – £30	\$18 - \$35
Poland	£15 – £30	\$18 - \$35
Ukraine	£15 – £35	\$18 - \$40
Romania	£12 – £28	\$15 - \$35
Vietnam	£8 – £15	\$10 - \$20
Malaysia	£10 – £20	\$12 - \$25
Brazil	£10 – £25	\$12 - \$30
Thailand	£12 – £20	\$15 - \$25
Hungary	£12 – £25	\$15 - \$30
Argentina	£12 – £25	\$15 - \$30
South Africa	£10 – £18	\$12 - \$22
Egypt	£8 – £15	\$10 - \$20

USD) were:

- 1. United States \$171.7 billion
- 2. Ireland \$139.2 billion
- 3. India \$126.2 billion
- 4. China \$85.8 billion
- 5. Germany \$70.7 billion
- 6. United Kingdom \$60.3 billion
- 7. Canada \$43.9 billion
- 8. France \$42.7 billion
- 9. Israel \$21.5 billion
- 10. Japan \$21.2 billion

Türkiye 2023 sonu itibariyle 600 milyon (yıllık %10 büyüme)

Dijital Ülkeler

Rami	Country	\$	Internet Affordability	\$	Internet Quality	E-Infrastructure	\$	E-Security	\$	E- Govt ≑
1	■ France		1		5	16		13		11
2	+ Finland		11		24	8		11		3
3	■ Denmark		29		4	2		13		5
4	Germany		7		40	12		5		22
5	= Luxembourg		2		31	11		26		23
6	Spain		14		9	26		9		21
7	■ Estonia		17		44	15		2		6
8	= Austria		5		66	24		11		15
9	Switzerland		9		7	3		29		29
10	Singapore		4		3	9		56		1
11	Sweden		25		27	1		13		13

55 Turkey 65 77 50 53 33

Yazılım Sektörü Pazar Büyüklüğü, Dünya Toplam,

_ Kaynak: IDC Software Tracker Veri Tabanı

https://tusiad.org/tr/yayinlar/raporlar/item/download/954 2 a7e88172c603200ba9a01ddd99a33c5f

TÜRKİYE, YAZILIMCI SAYISI ARTIŞINDA AVRUPA'DA 1. SIRADA

Avrupa'nın en önemli girişim sermayesi şirketlerinden biri olarak gösterilen Atomico, her yıl kullanıcılarla paylaştığı "Avrupa Bölgesi Teknoloji Raporu"nu yayınladı.

