Attorney Docket No.: Q75992

U.S. Application No.: 10/626,740

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): A European digital audio broadcast receiver having diverse fast Fourier transform (FFT) modes based on sizes of transmitted data, comprising:

an address generator for generating a predetermined number of write addresses and read addresses;

a fast Fourier transform (FFT) processor for repeating data of FFT modes to generate a predetermined number of data and implementing a fast Fourier transform (FFT) by using the predetermined number of data; and

a controller for controlling the address generator to generate the write addresses and the a number of read addresses according to operations of the FFT processor.

- 2. (original): The receiver as claimed in claim 1, wherein the predetermined number of data is 4096, and the FFT processor uses the 4096 data to implement the fast Fourier transform.
- 3. (currently amended): The receiver as claimed in claim 1, wherein the FFT processor includes:
 - a memory controller for repeating the data of FFT modes to generate 4096 data;
 - a memory having a size capable of storing 2048 data; and
- an algorithm unit for using the 4096 data and implementing Radix-4 based operations on the 4096 data to generate Radix-4 implemented data that is stored in the memory, and,

U.S. Application No.: 10/626,740

in the case that the read addresses are generated, the memory controller digit-reverses the addresses of the memory in correspondence to correspond to the generated read addresses.

4. (currently amended): The receiver as claimed in claim 3, wherein the memory controller has a virtual memory storing <u>data</u> other than the 2048 data stored in the memory in order for the algorithm unit to implement the Radix-4 based operations.

5. (original): The receiver as claimed in claim 4, wherein the algorithm unit implements the Radix-4 based operations, and, accordingly, "0" data blocks are stored in the virtual memory in correspondence to the FFT modes.

6. (currently amended): The receiver as claimed in claim 3, wherein the memory controller digit-reverses the data operated on based on the Radix-4 algorithm and Radix-4 implemented data stored in the memory corresponding to the FFT modes.

7. (original): The receiver as claimed in claim 3, wherein, in the case that a bit array of the read addresses from a highest bit to a lowest bit has $\{a_{11}, a_{10}, a_9, a_8, a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0\}$ in 2048 FFT mode, the memory controler digit-reverses the bit array of the memory addresses from the highest bit to the lowest bit into $\{a_1, a_3, a_2, a_5, a_4, a_7, a_6, a_9, a_8, a_{11}, a_{10}\}$.

8. (original): The receiver as claimed in claim 3, wherein, in the case that a bit array of the read addresses from a highest bit to a lowest bit has $\{a_{11}, a_{10}, a_9, a_8, a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0\}$

3

U.S. Application No.: 10/626,740

in 1024 FFT mode, the memory controller digit-reverses the bit array of the memory addresses from the highest bit to the lowest bit into $\{0, a_3, a_2, a_5, a_4, a_7, a_6, a_9, a_8, a_{11}, a_{10}\}$.

9. (original): The receiver as claimed in claim 3, wherein, in the case that a bit array of the read addresses from a highest bit to a lowest bit has $\{a_{11}, a_{10}, a_9, a_8, a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0\}$ in 256 FFT mode, the memory controler digit-reverses the bit array of the memory addresses from the highest bit to the lowest bit into $\{0, 0, 0, a_5, a_4, a_7, a_6, a_9, a_8, a_{11}, a_{10}\}$.

10. (original): The receiver as claimed in claim 3, wherein, in the case that a bit array of the read addresses from a highest bit to a lowest bit has $\{a_{11}, a_{10}, a_9, a_8, a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0\}$ in 512 FFT mode, the memory controller digit-reverses the bit array of the memory addresses from the highest bit to the lowest bit into $\{0, a_3, 0, a_5, a_4, a_7, a_6, a_9, a_8, a_{11}, a_{10}\}$.

11. (currently amended): An operation method for a European digital audio broadcast receiver having diverse FFT modes based on sizes of transmitted data, comprising steps of:

generating a predetermined number of write addresses;

repeating data of FFT modes to generate a predetermined number of data in correspondence to the generated write addresses, and

implementing a fast Fourier transform (FFT) by using the predetermined number of data; and

generating read addresses if the operation of implementing the FFT step-is completed.

Attorney Docket No.: Q75992

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Application No.: 10/626,740

12. (currently amended): The operation method as claimed in claim 11, wherein the predetermined number of data is 4096, and the <u>implementing the FFT step</u>-uses the 4096 data to implement the fast Fourier transform.

13. (currently amended): The operation method as claimed in claim 11, wherein the implementing the FFT step-includes-steps of:

repeating the data of FFT modes to generate 4096 data;

using the <u>generated</u> 4096 data to implement Radix-4 based operations to generate Radix-4 implemented data, and storing the <u>Radix-4</u> implemented data in a memory in correspondence to write addresses of the memory; and

digit-reversing, in the case that the read addresses are generated, the digit reversing read addresses to the addresses of the memory corresponding to correspond to the generated read addresses.

14. (currently amended): The operation method as claimed in claim 13, further comprising: a step of

storing the 4096 data repeated in the operation step Radix-4 implemented data in the memory and a virtual memory for the Radix-4 based operations,

wherein the memory is capable of storing 2048 data.

15. (currently amended): The operation method as claimed in claim 14, wherein the operation step using the 4096 data implements the Radix-4 based operations, and, accordingly, "0" data blocks are stored in the virtual memory in correspondence to the FFT modes.

U.S. Application No.: 10/626,740

16. (currently amended): The operation method as claimed in claim 13, wherein the digit-

reversing step-digit-reverses the data operated on based on the Radix-4 algorithm addresses of

the Radix-4 implemented data and stored in the memory corresponding to the FFT modes.

17. (currently amended): The operation method as claimed in claim 13, wherein, in the

case that a bit array of the read addresses from a highest bit to a lowest bit has {a₁₁, a₁₀, a₉, a₈, a₇,

a₆, a₅, a₄, a₃, a₂, a₁, a₀} in 2048 FFT mode, the digit-reversing step-digit-reverses the bit array of

the memory addresses from the highest bit to the lowest bit into {a₁, a₃, a₂, a₅, a₄, a₇, a₆, a₉, a₈,

 a_{11}, a_{10} .

18. (currently amended): The operation method as claimed in claim 13, wherein, in the

case that a bit array of the read addresses from a highest bit to a lowest bit has {a₁₁, a₁₀, a₉, a₈, a₇,

a₆, a₅, a₄, a₃, a₂, a₁, a₀} in 1024 FFT mode, the digit-reversing step-digit-reverses the bit array of

the memory addresses from the highest bit to the lowest bit into {0, a₃, a₂, a₅, a₄, a₇, a₆, a₉, a₈, a₁₁,

 a_{10} }.

19. (currently amended): The operation method as claimed in claim 13, wherein, in the

case that a bit array of the read addresses from a highest bit to a lowest bit has $\{a_{11}, a_{10}, a_9, a_8, a_7, a_{10}, a$

a₆, a₅, a₄, a₃, a₂, a₁, a₀} in 256 FFT mode, the digit-reversing step-digit-reverses the bit array of

the memory addresses from the highest bit to the lowest bit into {0, 0, 0, a₅, a₄, a₇, a₆, a₉, a₈, a₁₁,

 a_{10} }.

6

Attorney Docket No.: Q75992

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Application No.: 10/626,740

20. (currently amended): The operation method as claimed in claim 13, wherein, in the case that a bit array of the read addresses from a highest bit to a lowest bit has $\{a_{11}, a_{10}, a_{9}, a_{8}, a_{7}, a_{6}, a_{5}, a_{4}, a_{3}, a_{2}, a_{1}, a_{0}\}$ in 512 FFT mode, the digit-reversing step-digit-reverses the bit array of the memory addresses from the highest bit to the lowest bit into $\{0, a_{3}, 0, a_{5}, a_{4}, a_{7}, a_{6}, a_{9}, a_{8}, a_{11}, a_{10}\}$.

21. (new): A receiver for processing data, the receiver comprising:

a receiving circuit that receives data;

a generating circuit that generates a predetermined number of write addresses if the receiving circuit receives the data;

a processing circuit that processed the received data through fast Fourier transform modes to generate a first number of data corresponding to the generated predetermined number of write addresses, wherein the processing is repeated based on a size of the received data;

a fast Fourier transform circuit that implements a fast Fourier transform using the generated first number of data; and

a control circuit that controls the generating circuit to generate a number of read addresses according to operations of the fast Fourier transform circuit.

22. (new): A method for processing data in a receiver, the method comprising: receiving data by a receiver;

generating a predetermined number of write addresses if the receiver receives the data;

U.S. Application No.: 10/626,740

processing the received data through fast Fourier transform modes to generate a first number of data corresponding to the generated predetermined number of write addresses, wherein the processing is repeated based on a size of the received data;

implementing a fast Fourier transform using the generated first number of data; and generating read addresses if the implementing the fast Fourier transform is completed.