

# 非传统不等式习题集

编者: lyl、chy 时间: Sept, 2023 "一年前, 我第一次踏入联赛考场. 那是近几年第一次代数放三, 天真的我看了一个小时后一无所获. 几个月前, 考前的我做了许多非传统的不等式问题, 再次踏入考场, 迎来的却是一道'陈'的代数四. 我明白, 我站在了一个'时代的边缘'……"

联赛之前未了结的心愿便是整理一些这样的问题. 这里我们便整理了一些非传统的不等式问题, 以便大家学习参考.

上文提及的非传统不等式,是指解答中不完全依赖代数变形与放缩技巧,而使用了其他模块的技巧、方法或思想的不等式.作为对比,我们分别列出两道传统与非传统的不等式题目:

传统不等式: 非负实数 $a_1, a_2, \cdots, a_n$ 满足 $\sum_{i=1}^n a_i = n$ . 求以下表达式的最大值:

$$\sum_{i=1}^{n} \frac{1}{1+a_i} - n \prod_{i=1}^{n} \frac{1}{1+a_i}.$$

非传统不等式: 设m, n是正整数,  $x_{i,j} \in [0,1]$   $(i=1,2,\cdots,m,j=1,2,\cdots,n)$ . 求证:

$$\prod_{j=1}^{n} \left( 1 - \prod_{i=1}^{m} x_{i,j} \right) + \prod_{i=1}^{m} \left( 1 - \prod_{j=1}^{n} (1 - x_{i,j}) \right) \ge 1.$$

虽然这个不等式可以通过数学归纳法,运用传统方法证明,但这个不等式的"非传统"之处在于它有一个惊人的基于概率的解法:

构造一个m行n列的表格,将每个格子随机地染成黑、白两种颜色. 令第i行、第j列的格子为黑色的概率为 $x_{i,j}$ . 则

$$\prod_{j=1}^{n} \left( 1 - \prod_{i=1}^{m} x_{i,j} \right)$$

表示不存在全部为黑格的一列的概率, 此事件记为A:

$$\prod_{i=1}^{m} \left( 1 - \prod_{j=1}^{n} (1 - x_{i,j}) \right)$$

表示不存在全部为白格的一行的概率,此事件记为B. 由于 $\overline{A}$ (即存在全部为黑格的一列)与 $\overline{B}$ (即存在全部为白格的一行)不可能同时发生,因此A与B之一必然发生,故

$$\prod_{j=1}^{n} \left( 1 - \prod_{i=1}^{m} x_{i,j} \right) + \prod_{i=1}^{m} \left( 1 - \prod_{j=1}^{n} (1 - x_{i,j}) \right) = P(\mathbf{A}) + P(\mathbf{B}) \ge 1.$$

这些问题往往跳脱了传统的圈套,不再是满篇的代数变形和一些常见的通法套路,考验我们的创新性思维.大多数这样的问题都有着极好的选拨意义,在很多大型比赛中,都有它们的身影.我们针对这样一类问题,简单梳理了一些赛题.该习题集按照题目来源分为若干节,节内按照时间逆序排列.但由于时间和精力有限,我们未能对题目的难度进行排序,因此可能会出现题目难度变化过大的情况,敬请谅解.因此若遇到实在无法解决的难题,不妨先跳过,等水平提升后再回头补上.所有题目均来自于微信数之谜小程序,题目答案也可以在数之谜相关问题中查询,如果没有答案,后期我们会根据自身的时间与精力在数之谜相关问题上分享解答.

编者保留对此习题集(PDF文件和.tex源文件)的文化产权. 此习题集仅用作学习交流使用, 请勿以盈利为目的对此习题集进行修改与转载, 编者保留对上述行为追究法律责任的权利.

最后,感谢我们的老师,如果没有他的建议,这本习题集不会出现.感谢在编写习题集时提出宝贵建议的所有老师和同学.若发现本习题集的任何错误与疏漏,或是有对于改进此习题集的建议和意见,欢迎联系我们.

# 目录

| 1  | 全国高中数学联赛       | 3   |
|----|----------------|-----|
| 2  | 中国数学奥林匹克       | 5   |
| 3  | 北方希望之星数学夏令营    | 8   |
| 4  | 中国国家集训队选拔      | 9   |
| 5  | 中国女子数学奥林匹克     | 28  |
| 6  | 西部数学邀请赛        | 32  |
| 7  | 中国东南地区数学奥林匹克   | 40  |
| 8  | 陈省身杯全国高中数学奥林匹克 | 43  |
| 9  | 希望联盟夏令营        | 44  |
| 10 | 新星数学奥林匹克       | 51  |
| 11 | 学而思数学竞赛联考      | 61  |
| 12 | 土耳其数学奥林匹克第二轮   | 62  |
| 13 | 谜之竞赛           | 64  |
| 14 | 保加利亚数学奥林匹克     | 65  |
| 15 | 韩国数学奥林匹克决赛     | 68  |
| 16 | 国际数学奥林匹克预选题代数  | 69  |
| 17 | 国际数学奥林匹克预选题组合  | 101 |
| 18 | 欧洲女子数学奥林匹克     | 107 |
| 19 | 国际大都市数学奥林匹克    | 113 |
| 20 | 捷克波兰斯洛伐克数学竞赛   | 115 |
| 21 | 美国数学奥林匹克       | 116 |
| 22 | 美国TSTST        | 122 |
| 23 | 北大夏令营          | 124 |
| 24 | 北大金秋营          | 131 |

## 题目

#### 1 全国高中数学联赛

- **1.1** (2022 全国高中数学联赛-A卷加试 P3) 设  $a_1, a_2, \cdots, a_{100}$  是非负整数, 同时满足以下条件:
  - (1) 存在正整数  $k \le 100$ ,使得  $a_1 \le a_2 \le \cdots \le a_k$ ,而当 i > k 时  $a_i = 0$ ;
  - (2)  $a_1 + a_2 + a_3 + \dots + a_{100} = 100;$
  - (3)  $a_1 + 2a_2 + 3a_3 + \dots + 100a_{100} = 2022$ .

求  $a_1 + 2^2 a_2 + 3^2 a_3 + \cdots + 100^2 a_{100}$  的最小可能值.

**1.2** (2023 全国高中数学联赛-A卷加试 P3) 求具有下述性质的最小正整数k: 若将  $1, 2, \cdots, k$  中的每个数任意染为红色或者蓝色,则或者存在 9 个互不相同的红色的数  $x_1, x_2, \cdots, x_9$  满足 $x_1 + x_2 + \cdots + x_8 < x_9$ ,或者存在 10 个互不相同的蓝色的数  $y_1, y_2, \cdots, y_{10}$  满足 $y_1 + y_2 + \cdots + y_9 < y_{10}$ .

#### 2 中国数学奥林匹克

- **2.1** (2019 CMO PI) 设实数 $a_1, a_2, \cdots, a_{40}$ 满足 $\sum_{i=1}^{40} a_i = 0$ ,且对 $1 \le i \le 40$ ,都有 $|a_i a_{i+1}| \le 1$ ,这里  $a_{41} = a_1$ . 记  $a = a_{10}, b = a_{20}, c = a_{30}, d = a_{40}$ .
  - (1) 求 a+b+c+d 的最大值;
  - (2) 求 ab + cd 的最大值.

- **2.2** (2015 CMO PI) 设正整数  $a_1, a_2, \dots, a_{31}, b_1, b_2, \dots, b_{31}$  满足:
  - (1)  $a_1 < a_2 < \dots < a_{31} \le 2015, b_1 < b_2 < \dots < b_{31} \le 2015;$
  - (2)  $a_1 + a_2 + \cdots + a_{31} = b_1 + b_2 + \cdots + b_{31}$ .
- 求  $S = |a_1 b_1| + |a_2 b_2| + \dots + |a_{31} b_{31}|$  的最大值.

**2.3** (1995 CMO P5) 设  $a_1, a_2, \cdots, a_{10}$  是不同的正整数, 和为 1995.求  $a_1a_2 + a_2a_3 + \cdots + a_{10}a_1$ 

的最小值.

## 3 北方希望之星数学夏令营

3.1 (2021 北方希望之星数学夏令营 P5) 求最大的正整数 n, 使得存在 n 个正整数 $x_1 < x_2 < \cdots < x_n$ , 满足  $x_1 + x_1 x_2 + \cdots + x_1 x_2 \cdots x_n = 2021.$ 

#### 4 中国国家集训队选拔

**4.1** (2023 CTST P11) 设 n 是正整数,  $a_{ijk} \in \{-1,1\} (1 \le i,j,k \le n)$ . 求证: 存在  $x_1,\cdots,x_n,y_1,\cdots,y_n,z_1,\cdots,z_n \in \{-1,1\}$ , 使得

$$\left| \sum_{s=1}^{n} a_{ijk} x_i y_j z_k \right| > \frac{n^2}{3}.$$

**4.2** (2023 CTST P14) 对非空有限实数集 B 和实数 x, 定义

$$d_B(x) = \min_{b \in B} |x - b|.$$

(1) 给定正整数 m. 求最小的实数  $\lambda$ , 使得对任意正整数 n 和任意实数  $x_1, x_2, \cdots, x_n \in [0, 1]$ , 都存在 m 元实数 集 B, 满足

$$d_B(x_1) + d_B(x_2) + \dots + d_B(x_n) \le \lambda n.$$

(2) 设 m 是正整数,  $\varepsilon$  是正实数. 求证: 存在正整数 n 和非负实数  $x_1, x_2, \cdots, x_n$ , 满足对任意 m 元实数集B, 都有  $d_B(x_1) + d_B(x_2) + \cdots + d_B(x_n) > (1 - \varepsilon)(x_1 + x_2 + \cdots + x_n).$ 

**4.3** (2023 CTST P21) 给定整数  $n \geq 2$ . 求最小的实数  $\lambda$ , 使得对任意实数 $a_1, a_2, \cdots, a_n$  及 b, 均有

$$\lambda \sum_{i=1}^{n} \sqrt{|a_i - b|} + \sqrt{n \left| \sum_{i=1}^{n} a_i \right|} \ge \sum_{i=1}^{n} \sqrt{|a_i|}.$$

**4.4** (2022 CTST P9) 设  $a_1, a_2, \cdots, a_n$  是 n 个两两互相不整除的正整数,求证:  $a_1 + a_2 + \cdots + a_n \geq 1.1 n^2 - 2n.$ 

#### **4.5** (2022 CTST P10) 给定正整数 n. 求使 $\mathbb{R}^n$ 上的函数

$$f(x_1, x_2, \dots, x_n) = \sum_{k_1=0}^{2} \sum_{k_2=0}^{2} \dots \sum_{k_n=0}^{2} |k_1 x_1 + k_2 x_2 + \dots + k_n x_n - 1|$$

达到最小值时的所有  $(x_1, x_2, \cdots, x_n)$ .

**4.6** (2022 CTST P12) 设整数  $m \geq n \geq 2022$ ,  $a_1, a_2, \cdots, a_n, b_1, b_2, b_n$  是实数. 求证: 使得  $|a_i + b_j - ij| \leq m$  的 (i, j)  $(1 \leq i, j \leq n)$ 的对数不超过  $3n\sqrt{m \ln n}$ .

**4.7** (2022 CTST P23) 设 n 是正整数, 2n 个非负实数  $x_1, x_2, \cdots, x_{2n}$  满足 $x_1 + x_2 + \cdots + x_{2n} = 4$ . 求证: 存在非负整数 p,q,使得  $q \leq n-1$ ,且

$$\sum_{i=1}^{q} x_{p+2i-1} \le 1, \ \sum_{i=q+1}^{n-1} x_{p+2i} \le 1,$$

其中下标按模 2n 理解.

**4.8** (2021 CTST P11) 设n是正整数,  $a_1, a_2, \cdots, a_n$ 是正实数. 对 $1 \le k \le 2n+1$ , 记

$$b_k = \max_{0 \le m \le n} \left( \frac{1}{2m+1} \sum_{i=k-m}^{k+m} a_i \right),$$

其中角标按模2n+1理解. 求证: 满足 $b_k \geq 1$ 的k的个数不超过 $2\sum_{i=1}^{2n+1}a_i$ .

**4.9** (2021 CTST P15) 求最大的实数 C, 使得对任意整数  $n \geq 2$ , 存在  $x_1, x_2, \cdots, x_n \in [-1, 1]$ , 满足  $\prod_{1 \leq i < j \leq n} (x_i - x_j) \geq C^{n(n-1)/2}.$ 

- **4.10** (2021 CTST P19) 给定整数  $n \ge 2$ . 求最小的正整数 m, 使得存在不同的正实数  $x_{ij} (1 \le i, j \le n)$ ,满足:
  - (1) 对任意  $1 \le i, j \le n$ ,

$$x_{ij} = \max\{x_{i1}, x_{i2}, \cdots, x_{ij}\}$$

或

$$x_{ij} = \max\{x_{1j}, x_{2j}, \cdots, x_{ij}\};$$

- (2) 对任意  $1 \le i \le n$ ,至多有 m 个脚标 k 使得 $x_{ik} = \max\{x_{i1}, x_{i2}, \dots, x_{ik}\};$
- (3) 对任意  $1 \leq j \leq n$ ,至多有 m 个脚标 k 使得  $x_{kj} = \max\{x_{1j}, x_{2j}, \cdots, x_{kj}\}$  .

**4.11** (2020 CTST P5) 设 n 是正整数,  $a_1, a_2, \cdots, a_n$  是  $1, 2, \cdots, n$  的一个排列, 求

$$\sum_{i=1}^{n} \min\{a_i, 2i-1\}$$

的最小值.

**4.12** (2018 CTST P6) 设m, n为正整数,  $A_1, A_2, \cdots, A_m$ 是某个n元集合的m个子集. 求证:

$$\sum_{i=1}^{m} \sum_{j=1}^{m} |A_i| \cdot |A_i \cap A_j| \ge \frac{1}{mn} \left( \sum_{i=1}^{m} |A_i| \right)^3.$$

**4.13** (2017 CTST P2) 设实数x > 1, n是正整数. 求证:

$$\sum_{k=1}^{n} \frac{\{kx\}}{\lfloor kx \rfloor} < \sum_{i=1}^{n} \frac{1}{2k-1}.$$

**4.14** (2017 CTST P21) 求满足以下条件的数组  $(x_1, x_2, \dots, x_{100})$  的个数:

- (1)  $x_1, x_2, \dots, x_{100} \in \{1, 2, \dots, 2017\}$ ;
- (2)  $2017 \mid x_1 + x_2 + \cdots + x_{100}$ ;
- (3)  $2017 \mid x_1^2 + x_2^2 + \dots + x_{100}^2$ .

**4.15** (2013 CTST P4) 设 n,k 为给定的大于 1 的整数, 非负实数  $a_1,a_2,\cdots,a_n;c_1,c_2,\cdots,c_n$  满足

- (1)  $a_1 \ge a_2 \ge \cdots \ge a_n$ ,  $\exists a_1 + a_2 + \cdots + a_n = 1$ ;
- (2)  $\forall m = 1, 2, \dots, n, \bar{q}c_1 + c_2 + \dots + c_m \leq m^k$ .

求  $c_1 a_1^k + c_2 a_2^k + \dots + c_n a_n^k$  的最大值.

**4.16** (2009 CTST P23) 设 m 是大于 1 的整数, n 是奇数且  $3 \le n < 2m$ .数 $a_{i,j} (1 \le i \le m, 1 \le j \le n)$  满足:

- (1) 对任意  $1 \le j \le n$ ,  $a_{1,j}, a_{2,j}, \cdots, a_{m,j}$  是  $1, 2, \cdots, m$  的一个排列;
- (2) 对任意  $1 \le i \le m, 1 \le j \le n-1, |a_{i,j}-a_{i,j+1}| \le 1.$

求

$$M = \max_{1 \le i \le m} \sum_{j=1}^{n} a_{i,j}$$

的最小值.

**4.17** (2008 CTST P24) 求最大的正实数 M,使得对任意正整数 n,存在正实数数列  $a_1, a_2, \cdots, a_n$  及  $b_1, b_2, \cdots, b_n$ , 满足:

- (1)  $\sum_{k=1}^{n} b_k = 1, \exists \exists 2 \leq k \leq n-1, 2b_k \geq b_{k-1} + b_{k+1};$
- (2) 对  $1 \le k \le n$ ,

$$a_k^2 \le 1 + \sum_{i=1}^k a_i b_i,$$

**4.18** (2007 CTST P23) 设  $x_1, x_2, \cdots, x_n$  是不全相等且和不等于 0 的实数, 记

$$A = \left| \sum_{i=1}^{n} x_i \right|, \quad B = \max_{1 \le i < j \le n} |x_i - x_j|.$$

求证: 对任意 n 个复数  $z_1,z_2,\cdots,z_n$  ,存在  $x_1,x_2,\cdots,x_n$  的一个排列  $y_1,y_2,\cdots,y_n$ ,使得

$$\left| \sum_{i=1}^{n} y_i z_i \right| \ge \frac{AB}{2A+B} \max_{1 \le i \le n} |z_i|.$$

- **4.19** (2006 CTST P3) 设  $a_1, a_2, \cdots, a_n$  是 n 个实数.求证: 存在实数  $b_1, b_2, \cdots, b_n$ ,满足:
  - (1) 对  $1 \le i \le n$ ,  $a_i b_i$  是正整数;

(2)

$$\sum_{1 \le i < j \le n} (b_i - b_j)^2 \le \frac{n^2 - 1}{12}.$$

#### 5 中国女子数学奥林匹克

- **5.1** (2022 *CGMO PI*) 考虑所有满足以下两个条件的实数序列  $x_0, x_1, x_2, \cdots, x_{100}$ :
  - (1)  $x_0 = 0$ ;
  - (2) 对任意  $1 \le i \le 100$ , 有  $1 \le x_i x_{i-1} \le 2$ .

求最大的正整数  $k \le 100$ , 使得对任意这样的序列, 均有

$$x_k + x_{k+1} + \dots + x_{100} \ge x_0 + x_1 + \dots + x_{k-1}.$$

**5.2** (2020 CGMO P2) 给定整数  $n \ge 2$ .设  $x_1, x_2, \cdots, x_n$  是实数, 求

$$2\sum_{1 \le i < j \le n} \lfloor x_i x_j \rfloor - (n-1)\sum_{i=1}^n \lfloor x_i^2 \rfloor$$

的最大值.

**5.3** (2017 CGMO P5) 求最大的实数 c, 使得对任意正整数 n 及任意满足 $0=x_0 < x_1 < \cdots < x_n = 1$ 的数列  $\{x_n\}$ , 都有

$$\sum_{k=1}^{n} x_k^2 (x_k - x_{k-1}) > c.$$

**5.4** (2014 CGMO P2) 给定整数  $n \geq 2$ .设  $x_1, x_2, \cdots, x_n$  是正实数且满足 $[x_1], [x_2], \cdots, [x_n]$  是  $1, 2, \cdots, n$  的一个排列.求

$$\sum_{i=1}^{n-1} \lfloor x_{i+1} - x_i \rfloor$$

的最大值和最小值.

#### 6 西部数学邀请赛

**6.1** (2019 CWMO P4) 给定整数  $n \geq 2$ . 求最小的实数 $\lambda$ , 使得对任意实数  $x_1, x_2, \cdots, x_n \in [0, 1]$ ,存在  $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n \in \{0, 1\}$ ,满足对任意  $1 \leq i \leq j \leq n$ , 都有

$$\left| \sum_{k=i}^{j} (\varepsilon_k - x_k) \right| \le \lambda.$$

**6.2** (2018 CWMO P1) 设实数  $x_1, x_2, \cdots, x_{2018}$  满足: 对任意 $1 \le i < j \le 2018$ ,均有  $x_i + x_j \ge (-1)^{i+j}$ .求  $\sum_{i=1}^{2018} i x_i$ 

$$\sum_{i=1}^{2018} ix_i$$

的最小值.

#### **6.3** (2017 CWMO P2) 若存在正整数 $x_1, x_2, \dots, x_n$ 满足

$$x_1 x_2 \cdots x_n (x_1 + x_2 + \cdots + x_n) = 100n,$$

求正整数 n 的最大值.

**6.4** (2015 CWMO P1) 给定正整数 n.设实数  $x_1, x_2, \cdots, x_n$  满足  $\sum_{i=1}^n x_i$  为整数.记  $d_k = \min_{m \in \mathbb{Z}} |x_k - m|, 1 \le k \le n,$ 

求  $\sum_{k=1}^{n} d_k$ 的最大值.

**6.5** (2014 CWMO P6) 给定整数  $n \ge 2$ . 设实数  $x_1, x_2, \dots, x_n$  满足:

- $(1) \sum_{i=1}^{n} x_i = 0;$
- (2)  $|x_i| \le 1, 1 \le i \le n$
- 求 $\min_{1 \le i \le n-1} |x_i x_{i+1}|$ 的最大值.

**6.6** (2009 CWMO P8) 给定整数  $n \geq 3$ .设  $a_1, a_2, \cdots, a_n$  满足 $a_1 + a_2 + \cdots + a_n = 0$ ,且对  $2 \leq k \leq n-1$ ,  $2a_k \leq a_{k-1} + a_{k+1}$ .求最小的实数  $\lambda$ ,使得对任意  $k \in \{1, 2, \cdots, n\}$ ,都有  $|a_k| \leq \lambda \max\{|a_1|, |a_n|\}.$ 

**6.7** (2008 CWMO P8) 设 P 为正 n 边形  $A_1A_2\cdots A_n$  内的任意一点.对  $1\leq i\leq n$ ,直线  $A_iP$  交正 n 边形  $A_1A_2\cdots A_n$  的边界于另一点  $B_i$ .求证:

$$\sum_{i=1}^{n} PA_i \ge \sum_{i=1}^{n} PB_i.$$

**6.8** (2003 CWMO P2) 设实数  $a_1, a_2, \dots, a_{2n}$  满足

$$\sum_{i=1}^{2n-1} (a_{i+1} - a_i)^2 = 1,$$

求

$$(a_{n+1} + a_{n+2} + \dots + a_{2n}) - (a_1 + a_2 + \dots + a_n)$$

的最大值.

# 7 中国东南地区数学奥林匹克

题号"1-x"表示高一组的第x题,"2-x"表示高二组的第x题.

**7.1** (2023 CSMO PI-7) 称正整数 S 为"育英数", 如果存在正整数 n 以及2n 个正整数  $a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_n$ ,使得

$$S = \sum_{i=1}^{n} a_i b_i, \ \sum_{i=1}^{n} (a_i^2 - b_i^2) = 1, \ \sum_{i=1}^{n} (a_i + b_i) = 2023.$$

求: (1)最小的育英数; (2)最大的育英数.

**7.2** (2020 CSMO P1-4) 设 
$$a_1, a_2, \cdots, a_{17}$$
 是  $1, 2, \cdots, 17$  的一个排列,且满足 
$$(a_1-a_2)(a_2-a_3)\cdots(a_{16}-a_{17})(a_{17}-a_1)=2^n.$$

正整数 n 的最大值.

**7.3** (2017 CSMO P1-4) 设实数  $a_1, a_2, \cdots a_{2017}$ 满足  $a_1 = a_{2017}$ ,

$$|a_i + a_{i+2} - 2a_{i+1}| \le 1 \ (i = 1, 2, \dots, 2015).$$

求 
$$\max_{1 \le i < j \le 2017} |a_i - a_j|$$
的最大值.

#### 8 陈省身杯全国高中数学奥林匹克

**8.1** (2021 陈省身杯 P2) 给定整数  $n \ge 2$ . 实数  $x_1, x_2, \dots, x_n$  满足

$$\min_{1\leq k\leq n}\left\{\frac{x_1+x_2+\cdots+x_k}{k}\right\}=0,\quad \max_{1\leq k\leq n}\left\{\frac{x_1+x_2+\cdots+x_k}{k}\right\}=1.$$

记

$$M = \max_{1 \le i < n} \{x_i\}, m = \min_{1 \le i \le n} \{x_i\},$$

求M-m的最小值和最大值.

# 9 希望联盟夏令营

9.1 (希望联盟夏令营 2023-3 P13) 设  $a_1,a_2,\cdots,a_{100}$  是和为 1000 的 100 个正整数. 记  $S=a_1a_2+a_2a_3+\cdots+a_{99}a_{100}.$ 

求 S 的最大值, 并确定使 S 取到最大值的所有可能数组  $(a_1, a_2, \cdots, a_{100})$  的个数.

9.2 (希望联盟夏令营 2021-1 P11) 已知正实数  $a_1,a_2,\cdots,a_{2022},b_1,b_2,\cdots,b_{2022}$  满足

$$a_1 + a_2 + \dots + a_{2022} = b_1 + b_2 + \dots + b_{2022} = 1,$$

求

$$S = \min_{1 \le i \le 2022} \frac{a_i}{b_i} + \min_{1 \le i \le 2022} \frac{b_i}{a_i} + \sum_{i=1}^{2022} |a_i - b_i|$$

的最大值.

9.3 (希望联盟夏令营 2021-3 P12) 设  $a_1, a_2, \cdots, a_{2021}$  是整数, 满足 $1 = a_1 \leq a_2 \leq \cdots \leq a_{2021} = 100$  .记

$$f = (a_1^2 + a_2^2 + \dots + a_{2021}^2) - (a_1a_3 + a_2a_4 + \dots + a_{2019}a_{2021}).$$

求f 的最大值  $f_0$ , 并求使得  $f=f_0$  成立的数组  $(a_1,a_2,\cdots,a_{2021})$  的个数.

9.4 (希望联盟夏令营 2021-2 P4) 设  $\vec{u}=(u_1,u_2,u_3)$  和  $\vec{v}=(v_1,v_2,v_3)$  是空间向量, 满足  $u_i,v_i$  (i=1,2,3) 均为整数, 且 0.9999  $<\cos\langle\vec{u},\vec{v}\,\rangle<1$ . 记

$$S = |u_1| + |u_2| + |u_3| + |v_1| + |v_2| + |v_3|,$$

求 $\left[\sqrt{S}\right]$ 的最小可能值.

9.5 (希望联盟夏令营 2020-1 P12) 没正实数  $a_1, a_2, \cdots, a_{2020}$  满足  $\sum_{i=1}^{2020} a_i = 2020$ , 求  $\sum_{k=1}^{2020} a_k^{1/k^2}$ 

$$\sum_{k=1}^{2020} a_k^{1/k^2}$$

的最大值.

9.6 (希望联盟夏令营 2020-2 P13) 设整数  $n \geq 2$ ,  $x_1, x_2, \cdots, x_n$  为互不相同的正实数。求证: 可以选取  $a_1, a_2, \cdots, a_n \in \{-1, 1\}$ , 使得

$$\sum_{i=1}^{n} a_i x_i^2 > \left(\sum_{i=1}^{n} a_i x_i\right)^2.$$

9.7 (希望联盟夏令营 2019-2 P13) 给定正整数 n.求最小的实数  $\lambda$ , 使得存在区间 [0,1] 内的实数  $a_1,a_2,\cdots,a_n$ , 满足对任意  $0 \le x_1 \le x_2 \le \cdots \le x_n \le 1$ ,均有  $\min_{1 \le i \le n} |x_i - a_i| \le \lambda$ .

# 10 新星数学奥林匹克

**10.1** (新星数学奥林匹克 2023春季 P2) 给定偶数  $n \ge 4$ .实数  $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$  满足

$$a_1 + a_3 + \dots + a_{n-1} = 3, \quad a_2 + a_4 + \dots + a_n = 1.$$

求 $\sum_{i=1}^{n} a_i^2$ 的最小值.

10.2 (新星数学奧林匹克 2022春季 P2) 设非负实数  $a_1,a_2,\cdots,a_{15}$  满足 $a_1+a_2+\cdots+a_{15}=1.$ 求  $\sum_{1\leq i< j\leq 15} \left(\frac{3}{2}\right)^{i+j} a_i a_j$ 

$$\sum_{1 \le i \le j \le 15} \left(\frac{3}{2}\right)^{i+j} a_i a_j$$

的最大值.

**10.3** (新星数学奥林匹克 2021春季 P3) 给定整数  $n \geq 4$ . 求最大的实数  $\lambda$ , 使得对任意满足 $\sum_{i=1}^{n} a_i = 1$  的非负实数  $a_1, a_2, \cdots, a_n$ , 均有

$$\sum_{i=1}^{n} a_i a_{i+1} \le \frac{1}{4} - \lambda m M,$$

其中  $a_{n+1} = a_1, m = \min\{a_1, a_2, \dots, a_n\}, M = \max\{a_1, a_2, \dots, a_n\}.$ 

**10.4** (新星数学奥林匹克 2020秋季 PI) 求最小的实数 $\lambda$ ,使得对任意满足 $\sum_{i=1}^{20} ix_i = 0$  的实数 $x_1, x_2, \cdots, x_{20}$ ,都

$$\left| \sum_{i=1}^{20} i^2 x_i \right| \le \lambda \max_{1 \le i \le 20} |x_i|.$$

**10.5** (新星数学奥林匹克 2019夏季 PI) 设  $x_1, x_2, \cdots, x_{2019}$  是实数,满足 $x_1 + x_2 + \cdots + x_{2019} \in \mathbb{Z}$ .求

$$\sum_{1 \le i < j \le 2019} \left\{ x_i + x_j \right\}$$

的最大值, 其中 $\{x\}$ 为x的小数部分.

**10.6** (新星数学奥林匹克 2018秋季 P3) 给定整数  $n \geq 2$ . 设  $x_1, x_2, \cdots, x_n$  是正实数, 满足对任意  $1 \leq i < j \leq n$  都有  $x_i x_j \geq i$ .求  $x_1 x_2 \cdots x_n$ 的最小值.

**10.7** (新星数学奥林匹克 2018春季 PI) 给定整数  $n \geq 2$ .设非负实数  $x_1, x_2, \cdots, x_n$  满足 $\sum_{i=1}^n x_i = n$ .求

$$\left(\sum_{i=1}^n \lfloor x \rfloor\right) \left(\sum_{i=1}^n \{x\}\right)$$

的最大值.

**10.8** (新星数学奥林匹克 2017秋季 P4) 给定整数  $n \geq 2$ .求最小的实数 c, 使得对任意非负实数 $a_1, a_2, \cdots, a_n$ ,都存在  $i \in \{1, 2, \cdots, n\}$ ,满足 $a_{i-1} + a_{i+1} \leq ca_i$ ,其中  $a_0 = a_{n+1} = 0$ .

**10.9** (新星数学奥林匹克 2016秋季 PI) 设  $x_1, x_2, \cdots, x_n$  是 n 个不同的实数, 记 $D = \max_{1 \leq i < j \leq n} |x_i - x_j|$ 。求证: 存在  $x_1, x_2, \cdots, x_n$  的一个排列  $y_1, y_2, \cdots, y_n$ ,使得

$$\left| \sum_{i=1}^{n} i y_i \right| \ge \frac{n-1}{2} D.$$

**10.10** (新星数学奥林匹克 2017夏季 PI) 给定整数  $n \geq 2$ .设实数  $a_1, a_2, \cdots, a_n$  满足

$$\sum_{i=1}^{n} |a_i| + \left| \sum_{i=1}^{n} a_i \right| = 1.$$

求 $\sum_{i=1}^{n} a_i^2$ 的最小值和最大值.

# 11 学而思数学竞赛联考

11.1 (XMO 12th P13) 已知  $a_1, a_2, a_{22} \in [1, 2]$ ,  $\ \, \diamondsuit a_{23} = a_1$ , 求

$$\left(\sum_{i=1}^{22} a_i a_{i+1}\right) / \left(\sum_{i=1}^{22} a_i\right)^2$$

的最大值.

#### 12 土耳其数学奥林匹克第二轮

**12.1** (2022 Turkey MO Round 2 P3) 设  $a_1, a_2, \cdots, a_{2022}$ 是非负实数,满足  $a_1 + a_2 + \cdots + a_{2022} = 1$ .求数对 (i, j) 个数的最大值,满足  $1 \le i, j \le 2022$ ,且  $a_i^2 + a_j \ge \frac{1}{2021}$ .

**12.2** (2019 Turkey MO Round 2 P5) 设函数  $f:\{1,2,\cdots,2019\} \to \{-1,1\}$ , 满足对任意  $1 \le k \le 2019$ , 存在 $1 \le l \le 2019$ , 使得

$$\sum_{i:(l-i)(i-k)\geq 0} f(i) \leq 0.$$

求 $\sum_{i=1}^{2019} f(i)$ 的最大值.

# 13 谜之竞赛

13.1 (谜之竞赛 2023年7月 P13) 设数列  $\{a_n\}$  满足  $a_1=1$ , 且对任意正整数  $n, a_{n+1}=a_n+a_{i_n}$ ,其中  $i_n=\min\{1\leq i\leq n\mid 3a_i+2023\geq a_n\}.$ 

求证: 存在非负整数 d, N, 使得对任意整数  $n \ge N$ , 都有  $a_{n+1} = a_n + a_{n-d}$ .

#### 14 保加利亚数学奥林匹克

**14.1** (Bulgaria MO 2023 P5) 给定正整数 n.设实数  $x_1, x_2, \cdots, x_n$  满足 $|x_1| + |x_2| + \cdots + |x_n| = 1$ ,求  $|x_1| + |x_1 - x_2| + |x_1 + x_2 - x_3| + \cdots + |x_1 + x_2 + \cdots + x_{n-1} - x_n|$ 

的最小值.

**14.2** (*Bulgaria MO 2020 P2*) 设 n 是正整数, 非负实数  $b_1, b_2, \cdots, b_n$  的和为2, 实数  $a_0, a_1, \cdots, a_n$  满足  $a_0 = a_n = 0$ , 且对任意 $1 \le i \le n$ ,  $|a_i - a_{i-1}| \le b_i$ . 求证:

$$\sum_{i=1}^{n} (a_i + a_{i-1})b_i \le 2.$$

**14.3** (Bulgaria MO 2018 P3) 求证:

$$\left(\frac{6}{5}\right)^{\sqrt{3}} > \left(\frac{5}{4}\right)^{\sqrt{2}}.$$

# 15 韩国数学奥林匹克决赛

#### **15.1** (Korea MO Final 2013 P3) 设整数 $n \ge 2$ , 记集合

$$T = \{(i, j) \mid 1 \le i < j \le n, i \mid j\}.$$

设  $x_1, x_2, \cdots, x_n$  是非负实数, 满足 $x_1 + x_2 + \cdots + x_n = 1$ .求  $\sum_{(i,j) \in T} x_i x_j$  的最大值.

#### 16 国际数学奥林匹克预选题代数

**16.1** (2022 IMOSL A4) 设整数  $n \geq 3$ , 实数 $x_1, x_2, \cdots, x_n \in [0,1]$ . 记 $s = x_1 + x_2 + \cdots + x_n$ ,且设  $s \geq 3$ .求证: 存在 $1 \leq i < j \leq n$ ,使得

$$2^{j-i}x_ix_j > 2^{s-3}.$$

**16.2** (2022 IMOSL A5) 求所有的整数  $n \geq 2$ , 使得存在正实数 $a_1 < a_2 < \cdots < a_n$  和正实数 r, 满足  $\{a_j - a_i \mid 1 \leq i < j \leq n\} = \{r, r^2, \cdots, r^{n(n-1)/2}\}.$ 

**16.3** (2021 IMOSLAI) 设 n 是正整数, A 是  $\{0,1,\cdots,5^n\}$  的一个4n+2 元子集. 求证: 存在 A 中的元素 a < b < c , 使得c+2a > 3b.

**16.4** (2021 IMOSL A2) 求所有的正整数n, 使得

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left\lfloor \frac{ij}{n+1} \right\rfloor = \frac{n^{2}(n-1)}{4}.$$

**16.5** (2021 IMOSL A3) 给定正整数 n.设  $a_1, a_2, \cdots, a_n$  是  $1, 2, \cdots, n$ 的一个排列, 求下列表达式的最小值:

$$\sum_{k=1}^{n} \left\lfloor \frac{a_k}{k} \right\rfloor.$$

**16.6** (2020 IMOSL AI) 给定正整数 N. 求最小的实数  $b_N$ , 使得对任意实数x, 均有

$$\sqrt[N]{\frac{x^{2N}+1}{2}} \le b_N(x-1)^2 + x.$$

**16.7** (2019 IMOSL A2) 设实数  $u_1, u_2, \cdots, u_2$ 019, 满足

$$\sum_{i=1}^{2019} u_i = 0, \sum_{i=1}^{2019} u_i^2 = 1.$$

设 $a = \min\{u_1, u_2, \cdots, u_{2019}\}, b = \max\{u_1, u_2, \cdots, u_{2019}\}.$ 求证: ab < -1/2019.

**16.8** (2019 IMOSL A3) 设整数 $n \geq 3$ ,  $a_1, a_2, \cdots, a_n$  是和为 2 的严格递增的正实数数列. X 是集合  $\{1, 2, \cdots, n\}$  的子集, 使得

$$\left| 1 - \sum_{i \in X} a_i \right|$$

最小. 求证: 存在和为2的严格递增的正实数数列  $b_1, b_2, \cdots, b_n$ , 使得

$$\sum_{i \in X} b_i = 1.$$

**16.9** (2019 IMOSL A4) 设整数  $n \ge 2$ , 实数  $a_1, a_2, \cdots, a_n$  满足 $a_1 + a_2 + \cdots + a_n = 0$ .定义集合  $A = \{(i,j): \ 1 \le i < j \le n, |a_i - a_j| \ge 1\}.$ 

求证:若 A 非空,则

$$\sum_{(i,j)\in A} a_i a_j < 0.$$

**16.10** (2018 IMOSL A3) 设 S 是由正整数构成的集合, 求证: 下述命题中至少有一个成立:

(1) 存在 S 的不同的有限子集 F, G, 使得

$$\sum_{x \in F} \frac{1}{x} = \sum_{x \in G} \frac{1}{x};$$

(2) 存在有理数  $r \in (0,1)$ , 使得对 S 的任一有限子集F,

$$\sum_{x \in F} \frac{1}{x} \neq r.$$

**16.11** (2018 IMOSL A4) 设数列 $\{a_n\}$ 满足 $a_0=0, a_1=1,$  且当 $n\geq 2$ 时, 存在 $1\leq k\leq n$ , 使得  $a_n=\frac{a_{n-1}+a_{n-2}+\cdots+a_{n-k}}{k}.$ 

求  $a_{2018} - a_{2017}$  的最大可能值.

**16.12** (2017 IMOSL A2) 设q 是实数. 甲有一张餐巾纸, 上面写着 10 个不同的实数, 他在黑板上写下以下三行实数:

在第一行, 甲写下了所有形如 a-b 的数, 其中 a,b是餐巾纸上的两个数 (可以相同); 在第二行, 甲写下了所有形如 qab 的数, 其中 a,b 是第一行的两个数 (可以相同); 在第三行, 甲写下了所有形如  $a^2+b^2-c^2-d^2$  的数, 其中 a,b,c,d 是第一行中的四个数 (可以相同). 求所有的 q, 使得无论餐巾纸上的数是什么, 第二行中的每个数都出现在第三行中.

**16.13** (2017 IMOSL A5) 给定整数  $n \geq 3$ . 设  $x_1, x_2, \cdots, x_n$  是实数, 如果对它的任意一个排列  $y_1, y_2, \cdots, y_n$ , 都有

$$\sum_{i=1}^{n-1} y_i y_{i+1} \ge -1,$$

求最大的实数 $\lambda$ , 使得总有

$$\sum_{1 \le i < j \le n} x_i x_j \ge \lambda.$$

**16.14** (2016 IMOSL A2) 求最小的实数 C, 使得对任意正实数  $a_1, a_2, a_3, a_4, a_5$ (允许相同), 总可以选择不同的下标 i, j, k, l, 满足

$$\left| \frac{a_i}{a_j} - \frac{a_k}{a_l} \right| \le C.$$

**16.15** (2016 IMOSL A3) 求所有的整数  $n \geq 3$ , 使得对任意满足  $|a_k| + |b_k| = 1$   $(1 \leq k \leq n)$ 的实数  $a_1, a_2, \cdots, a_n$ 和  $b_1, b_2, \cdots, b_n$ , 均存在  $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n \in \{-1, 1\}$  满足

$$\left| \sum_{k=1}^{n} \varepsilon_k a_k \right| + \left| \sum_{k=1}^{n} \varepsilon_k b_k \right| \le 1.$$

**16.16** (2016 IMOSL A8) 求最大的实数 a, 使得对任意正整数 n 及任意实数 $0 = x_0 < x_1 < \dots < x_n$ , 均有

$$\sum_{i=1}^{n} \frac{1}{x_i - x_{i-1}} \ge a \sum_{i=1}^{n} \frac{i+1}{x_i}.$$

**16.17** (2015 IMOSL A3) 给定正整数n. 设 $x_1, x_2, \cdots, x_{2n} \in [-1, 1]$ . 求下列表达式的最大值:

$$\sum_{1 \le r < s \le 2n} (s - r - n) x_r x_s.$$

## **16.18** (2014 IMOSL A2) 定义函数

$$f(x) = \begin{cases} x + \frac{1}{2}, & 0 < x < \frac{1}{2}; \\ x^2, & \frac{1}{2} \le x < 1. \end{cases}$$

设正实数 a,b 满足 a < b < 1,数列  $\{a_n\},\{b_n\}$ 满足 $a_0 = a,b_0 = b,a_n = f(a_{n-1}),\ b_n = f(b_{n-1}),n \geq 1$ . 求证: 存在 正整数n, 满足

$$(a_n - a_{n-1})(b_n - b_{n-1}) < 0.$$

**16.19** (2014 IMOSL A3) 对于实数数列  $x_1, x_2, \cdots, x_n$ , 定义其"价值"为

$$\max_{1 \le i \le n} \{ |x_1 + x_2 + \dots + x_i| \}.$$

给定 n 个实数,甲和乙想把这 n 个实数排成低价值的数列.一方面,勤奋的甲检验了所有可能的方式来寻找其最小的价值 D.另一方面,贪婪的乙先选择  $x_1$ ,使得  $|x_1|$  尽可能地小;再在剩下的数中选择  $x_2$ ,使得  $|x_1+x_2|$  尽可能地小;在第 i 步,在剩下的数中选择  $x_i$ ,使得  $|x_1+x_2+\cdots+x_i|$  尽可能地小在每一步,若有不止一种选择,则乙任意选择一种. 设乙最后得到的数列的价值为G.

求最小的实数 c, 使得对于每个正整数 n、每个由 n 个实数构成的数组和每个乙可以得到的数列, 均有  $G \leq cD.$ 

**16.20** (2013 IMOSL A2) 求证: 在任意由 2000 个不同实数构成的集合中, 存在实数 a>b 和 c>d, 使得  $a\neq c$  或  $b\neq d$ , 且

$$\left|\frac{a-b}{c-d} - 1\right| < \frac{1}{10^5}.$$

**16.21** (2013 IMOSLA4) 设 n 是正整数, 正整数  $a_1, a_2, \cdots, a_n$  满足 $a_1 \le a_2 \le \cdots \le a_n \le n + a_1$ , 且  $a_{a_i} \le n + i - 1$ ,  $1 \le i \le n$ (其中脚标按模 n 理解). 求证:

$$a_1 + a_2 + \dots + a_n \le n^2.$$

## **16.22** (2012 IMOSL A2)

- (1) 是否能将  $\mathbb{Z}$  表示成三个非空子集 A, B, C 的不交并, 使得 A + B, B + C, C + A 两两不交?
- (2) 是否能将  $\mathbb Q$  表示成三个非空子集 A,B,C 的不交并, 使得 A+B,B+C,C+A 两两不交?

**16.23** (2011 IMO PI) 对于由四个不同的正整数组成的集合  $A = \{a_1, a_2, a_3, a_4\}$ , 定义 $s_A = a_1 + a_2 + a_3 + a_4$ . 设恰有  $n_A$  对 (i,j),  $1 \le i < j \le 4$ , 使得  $a_i + a_j \mid s_A$ . 求所有的集合 A, 使得 $n_A$  达到最大值.

**16.24** (2011 IMOSL A2) 求所有的正整数数列  $x_1, x_2, \cdots, x_{2011}$ ,使得对每个正整数 n,都存在整数 a,满足  $x_1^n + 2x_2^n + \cdots + 2011 x_{2011}^n = a^{n+1} + 1.$ 

**16.25** (2011 IMOSL A5) 设 n 是正整数. 求证: 可以将集合 $\{2,3,\cdots,3n+1\}$ 划分为 n 个三元子集的不交并, 使得每个子集中的三个数都能构成钝角三角形的三边长.

**16.26** (2010 IMOSL A3) 设非负实数  $x_1, x_2, \cdots, x_{100}$  满足: 对 $1 \le i \le 100$ , 有  $x_i + x_{i+1} + x_{i+2} \le 1$ , 其中 $x_{101} = x_1, x_{102} = x_2$ . 求 $\sum_{i=1}^{100} x_i x_{i+2}$  的最大值.

**16.27** (2010 IMOSL A4) 设数列  $\{x_n\}$  满足  $x_1=1, x_{2k}=-x_k, x_{2k-1}=(-1)^{k+1}x_k, k\geq 1$ . 求证: 对任意正整数  $n, x_1+x_2+\cdots+x_n\geq 0$ .

**16.28** (2009 IMOSL AI) 已知 2009 个非退化的三角形,将每个三角形的三边分别染上蓝、红、白色. 对于每种颜色,将边按长度排序. 设蓝色边的长度为  $b_1 \leq b_2 \leq \cdots \leq b_{2009}$ ;红色边的长度为  $r_1 \leq r_2 \leq \cdots \leq r_{2009}$ ;白色边的长度为 $w_1 \leq w_2 \leq \cdots \leq w_{2009}$ .求最大的整数 k,使得存在k 个下标 j,满足以  $b_j, r_j, w_j$  为边长能构成一个非退化的三角形.

**16.29** (2006 IMOSL A3) 设数列  $c_0, c_1, c_2 \cdots$  满足:  $c_0 = 1, c_1 = 0, c_{n+2} = c_{n+1} + c_n, n \ge 0$ . 考虑有序数对 (x, y) 构成的集合 S, 其中 (x, y) 满足: 有一个由正整数构成的有限集J, 使得

$$x = \sum_{j \in J} c_j, \quad y = \sum_{j \in J} c_{j-1}.$$

求证: 存在实数  $\alpha, \beta, m, M$ , 使得对  $x,y \in \mathbb{N}$ ,  $(x,y) \in S$  的充分必要条件是  $m < \alpha x + \beta y < M$ . 注: 空集的元素和为0.

**16.30** (2003 IMOSL AI) 设实数  $a_{ij}$  满足:当 i=j 时,  $a_{ij}$  为正数; 当 $i\neq j$  时,  $a_{ij}$  为负数, 其中  $1\leq i,j\leq 3$ .求证: 存在正实数  $c_1,c_2,c_3$ , 使得

 $a_{11}c_1+a_{12}c_2+a_{13}c_3, a_{21}c_1+a_{22}c_2+a_{23}c_3, a_{31}c_1+a_{32}c_2+a_{33}c_3$ 要么都是负数, 要么都是正数, 要么都是0.

**16.31** (2003 IMOSL A3) 考虑两个正实数列  $a_1 \ge a_2 \ge a_3 \ge \cdots, b_1 \ge b_2 \ge b_3 \ge \cdots$ 记

$$A_n = a_1 + a_2 + \dots + a_n, B_n = b_1 + b_2 + \dots + b_n, n \ge 1.$$

设

$$c_i = \min\{a_i, b_i\}, \quad C_n = c_1 + c_2 + \dots + c_n, n \ge .1$$

- (1) 是否存在数列  $\{a_i\}$ ,  $\{b_i\}$ , 使得数列  $\{A_n\}$ ,  $\{B_n\}$  无界, 而数列  $\{C_n\}$  有界?
- (2) 若 $b_i = \frac{1}{i}, i \ge 1$ ,则(1)的结论是否改变?

**16.32** (2009 IMOSL A6) 设 n 是正整数,  $x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n, z_2, \cdots, z_{2n}$  是正实数, 满足对  $1 \le i, j \le n$ ,  $z_{i+j}^2 \ge x_i y_j$ . 记  $M = \max\{z_2, z_3, \cdots, z_{2n}\}$ , 求证:

$$\left(\frac{M+z_2+z_3+\cdots+z_{2n}}{2n}\right)^2 \ge \left(\frac{x_1+x_2+\cdots+x_n}{n}\right) \left(\frac{y_1+y_2+\cdots+y_n}{n}\right).$$

## 17 国际数学奥林匹克预选题组合

**17.1** (2022 IMOSL CI) 一个±1 - 序列是一个长为 2022 的序列  $a_1,a_2,\cdots,a_{2022}$ , 其中每个  $a_i\in\{-1,1\}$ . 求最大的整数 C, 使得对任意一个±1 - 序列, 存在一个正整数 k 和一列下标  $1\leq t_1<\cdots< t_k\leq 2022$ , 满足 $t_{i+1}-t_i\leq 2$   $(i=1,\cdots,k-1)$ , 且

$$\left| \sum_{i=1}^{k} a_{t_i} \right| \ge C.$$

**17.2** (2013 IMOSL CI) 给定正整数 n. 求最小的正整数 k, 使得对任意正整数 d 及任意不超过 1 的正实数  $a_1, a_2, \cdots, a_d$ , 只要 $a_1 + a_2 + \cdots + a_d = n$ , 那么总能将这些数分成不超过 k 组, 满足每组中的数之和不超过 1.

**17.3** (2009 IMOSL C3) 设 n 是正整数,数列  $c_1, c_2, \cdots, c_{n-1}$  的各项为 0 或 1 .数列  $a_0, a_1, \cdots, a_n$  和  $b_0, b_1, \cdots, b_n$  满足 $a_0 = b_0 = 1, a_1 = b_1 = 7$ ,且对于任意 $1 \le i \le n-1$ ,

$$a_{i+1} = \begin{cases} 2a_{i-1} + 3a_i, & c_i = 0; \\ 3a_{i-1} + a_i, & c_i = 1, \end{cases}, \quad b_{i+1} = \begin{cases} 2b_{i-1} + 3b_i, & c_{n-i} = 0; \\ 3b_{i-1} + b_i, & c_{n-i} = 1. \end{cases}$$

求证:  $a_n = b_n$ .

**17.4** (2008 IMOSL C5) 设 k,l 是正整数, 实数  $x_i \in [0,1], 1 \le i \le k+l$ .称集合  $S = \{x_1,x_2,\cdots,x_{k+l}\}$  的 k元子集 A 是 "好的", 如果

$$\left| \frac{1}{k} \sum_{x_i \in A} x_i - \frac{1}{l} \sum_{x_j \in S \setminus A} x_j \right| \le \frac{k+l}{2kl}.$$

求证: 好子集至少有 $\frac{2}{k+l} \binom{k+l}{k}$ 

**17.5** (2007 IMOSL CI) 设整数  $n \ge 2$ . 求满足下列条件的所有数列  $a_1, a_2, \dots, a_{n^2+n}$ :

- (1)  $\forall 1 \leq i \leq n^2 + n, a_i \in \{0, 1\};$
- (2)  $\forall 0 \leq i \leq n^2 n$ ,

$$a_{i+1} + a_{i+2} + \dots + a_{i+n} < a_{i+n+1} + a_{i+n+2} + \dots + a_{i+2n}.$$

**17.6** (2007 IMOSL C4) 设  $A_0 = (a_1, a_2, \dots, a_n)$  是实数数列. 对每个非负整数 k, 由数列  $A_k = (x_1, x_2, \dots, x_n)$  来构造一个新的数列 $A_{k+1}$ , 满足以下条件:

(1) 选取  $\{1, 2, \dots, n\}$  的一个划分 (I, J),使

$$\left| \sum_{i \in I} x_i - \sum_{j \in J} x_j \right|$$

取得最小值(允许 I 或 J 是空集, 这种情况的和为 0 ). 如果有多于一个这样的划分, 任选其中一个;

(2) 设数列  $A_{k+1}=(y_1,y_2,\cdots,y_n)$ , 其中若  $i\in I$ , 则  $y_i=x_i+1$ ; 若  $i\in J$ , 则  $y_i=x_i-1$ . 求证: 存在非负整数 k, 使得数列  $A_k$  中包含一项 x, 满足  $|x|\geq n/2$ .

## 18 欧洲女子数学奥林匹克

- **18.1** (2022 EGMO P4) 给定整数  $n \ge 2$ . 求最大的正整数 N, 使得存在N + 1 个实数  $a_0, a_1, \dots, a_N$ , 满足
  - (1)  $a_0 + a_1 = -1/n$ ;
  - (2) 对任意  $1 \le k \le N 1$ ,

$$(a_k + a_{k-1})(a_k + a_{k+1}) = a_{k-1} - a_{k+1}.$$

- **18.2** (2020 EGMO P2) 求所有的非负实数组  $(x_1, x_2, \cdots, x_{2020})$ ,满足:
  - (1)  $x_1 \le x_2 \le \cdots \le x_{2020} \le x_1 + 1$ ;
  - (2) 存在  $x_1, x_2, \cdots, x_{2020}$  的一个排列 $y_1, y_2, \cdots, y_{2020}$ ,使得

$$\sum_{i=1}^{2020} ((x_i+1)(y_i+1))^2 = 8 \sum_{i=1}^{2020} x_i^3.$$

- **18.3** (2019 EGMO P5) 设整数  $n \geq 2, a_1, a_2, \cdots, a_n$  是正整数. 求证: 存在正整数  $b_1, b_2, \cdot, b_n$ 满足以下条件:
  - (1) 对任意  $1 \le i \le n$ , 均有  $a_i \le b_i$ ;
  - (2)  $b_1, b_2, \dots, b_n$  两两模 n 不同余;

(3)

$$b_1 + b_2 + \dots + b_n \le n \left( \frac{n-1}{2} + \left\lfloor \frac{a_1 + a_2 + \dots + a_n}{n} \right\rfloor \right).$$

**18.4** (2016 EGMO PI) 设 n 是正奇数,  $x_1, x_2, \cdots, x_n$  是非负实数.求证:

$$\min_{1 \le i \le n} \{x_i^2 + x_{i+1}^2\} \le \max_{1 \le i \le n} \{2x_i x_{i+1}\},\,$$

其中  $x_{n+1} = x_1$ .

**18.5** (2014 EGMO PI) 求所有的实数 t, 使得当 a, b, c 为某个三角形的三边长时,  $a^2 + bct$ ,  $b^2 + cat$ ,  $c^2 + abt$  也为某个三角形的三边长.

**18.6** (2012 EGMO P2) 给定正整数 n. 求最大的正整数 m, 使得存在一个 m 行 n 列的实矩阵, 满足对于任意两个不同的行  $(a_1,a_2,\cdots,a_n)$  和  $(b_1,b_2,\cdots,b_n)$ , 有

$$\max\{|a_1-b_1|, |a_2-b_2|, \cdots, |a_n-b_n|\} = 1.$$

### 19 国际大都市数学奥林匹克

- **19.1** (2020 International Mathematical Tournament of Towns P3) 设整数  $n \ge 2$ . 铸币厂需要铸造一套有 n 种面值的硬币,每种面值都是正整数,且每种面值的硬币个数不限. 称面值  $\{a_1, a_2, \cdots, a_n\}$  是"幸运的",如果  $a_1 + a_2 + \cdots + a_n$  只能通过唯一的一种方式给出,即每种面值的硬币各一个. 求证:
  - (1) 存在幸运的面值  $a_1, a_2, \cdots, a_n$ , 使得

$$a_1 + a_2 + \dots + a_n < n \cdot 2^n;$$

(2) 对任意幸运的面值  $a_1, a_2, \cdots, a_n$ , 均有

$$a_1 + a_2 + \dots + a_n > n \cdot 2^{n-1}$$
.

**19.2** (2016 International Mathematical Tournament of Towns P3) 设  $A_1A_2\cdots A_n$  是内接于  $\odot O$  的凸 n 边形, O 是  $A_1A_2\cdots A_n$  内的点.  $B_1,B_2,\cdots,B_n$  分别是边  $A_1A_2,A_2A_3,\cdots,A_nA_1$  上的点 (均不与顶点重合). 求证:  $\frac{B_1B_2}{A_1A_3}+\frac{B_2B_3}{A_2A_4}+\cdots+\frac{B_nB_1}{A_nA_2}>1.$ 

$$\frac{B_1 B_2}{A_1 A_3} + \frac{B_2 B_3}{A_2 A_4} + \dots + \frac{B_n B_1}{A_n A_2} > 1$$

## 20 捷克波兰斯洛伐克数学竞赛

**20.1** (2023 Czech-Polish-Slovak Match P2) 设  $a_1, a_2, \cdots, a_n$  是实数, 满足对任意  $1 \leq k \leq n$ , 均有

$$n \cdot a_k \ge \sum_{i=1}^k a_i^2.$$

求证: 存在至少  $n/10 \uparrow k$  使  $a_k \leq 1000$ .

# 21 美国数学奥林匹克

**21.1** (2012 USAMO P1) 求所有的整数  $n \ge 3$ , 使得对任意满足

$$\max\{a_1, a_2, \cdots, a_n\} \le n \cdot \min\{a_1, a_2, \cdots, a_n\}$$

的 n 个正实数  $a_1, a_2, \cdots, a_n$ , 其中都存在三个为一个锐角三角形的三边长.

**21.2** (2012 USAMO P6) 设整数 n > 2,实数  $x_1, x_2, \dots, x_n$  满足

$$x_1 + x_2 + \dots + x_n = 0, \ x_1^2 + x_2^2 + \dots + x_n^2 = 1.$$

对于  $\{1,2,\cdots,n\}$  的子集 A,定义  $S_A = \sum_{i \in A} x_i$ , 规定  $S_\emptyset = 0$ .

求证: 对任意正数  $\lambda$ , 满足  $S_A \geq \lambda$  的集合 A 的个数不超过  $2^{n-3}/\lambda^2$ , 并求出等号成立时的  $x_1, x_2, \cdots, x_n, \lambda$ .

**21.3** (2010 USAMO P3) 设  $a_1, a_2, \cdots, a_{2010}$ 是正实数, 满足对任  $1 \leq i < j \leq 2010$ , 都有  $a_i a_j \leq i + j$ . 求  $a_1 a_2 \cdots a_{2010}$  的最大值.

**21.4** (2006 USAMO P4) 求所有的正整数 n, 使得存在整数  $k \geq 2$  及正有理数 $a_1, a_2, \cdots, a_k$ ,满足  $a_1 + a_2 + \cdots + a_k = a_1 a_2 \cdots a_k = n.$ 

**21.5** (2000 USAMO P6) 设  $a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_n$  是非负实数, 求证:

$$\sum_{i,j=1}^{n} \min\{a_i a_j, b_i b_j\} \le \sum_{i,j=1}^{n} \min\{a_i b_j, a_j b_i\}.$$

**21.6** (1997 USAMO P6) 设  $a_1, a_2, \cdots, a_{1997}$  是非负整数, 满足对任意 $1 \leq i, j \leq 1997,$  若 $i+j \leq 1997,$  则  $a_i + a_j \leq a_{i+j} \leq a_i + a_j + 1.$ 

求证: 存在实数 x, 使得对任意  $1 \le n \le 1997$ , 均有 $a_n = \lfloor nx \rfloor$ .

## 22 美国TSTST

**22.1** (2019 American TSTST P4) 求最小的实数  $\lambda$ , 使得对任意不超过 1 且和为 50 的正实数  $x_1, x_2, \cdots, x_{100}$ , 总存在集合  $\{1, 2, \cdots, 100\}$  的划分 (A, B), 满足 |A| = |B|, 且

$$\left| \sum_{i \in A} x_i - \sum_{j \in B} x_j \right| \le \lambda.$$

**22.2** (2015 American TSTST P1) 设正整数 m < n,  $a_1, a_2, \cdots, a_n$  是实数. 对 $1 \le k \le n$ , 称k 是"好的", 如果存在  $1 \le l \le m$ , 使得  $a_k + a_{k+1} + \cdots + a_{k+l-1} \ge 0$ , 其中脚标按模n 理解. 用 T 表示所有好数构成的集合, 求证:

$$\sum_{k \in T} a_k \ge 0.$$

## 23 北大夏令营

**23.1** (2023 北大夏令营 P2) 对正整数 n, 用 S(n) 表示  $0 \sim n-1$  在十进制中的数码和之和. 求证: 对任意正整数 m, n,

$$S(m+n) \ge S(m) + S(n) + \min\{m, n\}.$$

**23.2** (2023 北大夏令营 P5) 给定正整数 n>m.求所有的数组  $(i_1,i_2,\cdots,i_m)$   $(1 \le i_1 < i_2 < \cdots < i_m \le n)$ ,使得对任意满足  $\sum_{i=1}^n x_i = 0$  的实数组  $(x_1,x_2,\cdots,x_n)$   $(x_1 < x_2 < \cdots < x_n)$ ,都有

$$\sum_{k=1}^{m} x_{i_k} > 0.$$

**23.3** (2022 北大夏令营 P2) 设数列  $\{f_n\}_{-\infty}^{+\infty}$  满足只有  $f_1, f_2, \cdots, f_{2022}$  可能不为 0. 令

$$M(n) = \max_{r,s \ge 0} \left( \sum_{i=n-r}^{n+s} |f_i| \right) / (r+s+1).$$

求证:

$$\sum_{n=1}^{2023} |M(n) - M(n-1)| \le \sum_{n=1}^{2023} |f_n - f_{n-1}|.$$

**23.4** (2021 北大夏令营 PI) 设  $a_1, a_2, a_3, a_4, k$  是两两不同的正整数, 且不小于 80,满足  $a_1^2 + a_2^2 + a_3^2 + a_4^2 - 4k^2$  是正整数. 求 $(a_1^2 + a_2^2 + a_3^2 + a_4^2 - 4k^2) \cdot k^2$ 的最小值.

**23.5** (2019 北大夏令营 P6) 对正实数  $a_1, a_2, \cdots, a_n$ , 定义

$$\sigma(a_1, a_2, \cdots, a_n) = \min \left\{ \left| \sum_{k=1}^n e_k a_k \right| : e_k = \pm 1 \right\}.$$

求最小的实数 $\lambda$ ,使得

$$\sigma(a_1, a_2, \cdots, a_n) \left( \sum_{k=1}^n a_k \right) \le \lambda \sum_{k=1}^n a_k^2$$

对任意正实数  $a_1, a_2, \cdots, a_n$  都成立.

23.6 (2018 北大夏令营 P3) 设实数  $a_1, a_2, \cdots, a_{2018}$  满足  $|a_{i+1} - a_i| \le 1$  ( $1 \le i \le 2018$ ), 其中  $a_{2019} = a_1$ . 求  $\sum_{i=1}^{2018} |a_i| - \left|\sum_{i=1}^{2018} a_i\right|$ 

$$\sum_{i=1}^{2018} |a_i| - \left| \sum_{i=1}^{2018} a_i \right|$$

的最大值.

**23.7** (2018 北大夏令营 P5) 设实数 a > 2, 整数  $0 \le j \le n$ . 求证:

$$\sum_{k=0}^{n} (-1)^{k-j} a^{-k^2 + 2kj} > 0.$$

## 24 北大金秋营

**24.1** (2020 北大金秋营 PI) 给定正整数 n. 设非负实数  $a_1, a_2, \cdots, a_n$  的和为 1, 记 S 为如下  $2^n$  个实数

$$\varepsilon_1 a_1 + \varepsilon_2 a_2 + \dots + \varepsilon_n a_n, \varepsilon_i \in \{-1, 1\}$$

中所有正数之和. 求 S 的最小可能值.

**24.2** (2019 北大金秋营 *P4*) 设  $\theta_1, \theta_2, \cdots, \theta_l$  是实数. 求证: 存在正整数 k 和正实数  $a_1, a_2, \cdots, a_k$ , 满足  $\sum_{i=1}^k a_i = 1$ , 且对任意正整数 $n \le k$  和  $m \le l$ , 都有

$$\left| \sum_{j=1}^{n} a_j \sin\left(j\theta_m\right) \right| \le \frac{1}{2018n}.$$

**24.3** (2017 北大金秋营 P4) 求最小的实数  $\lambda$ , 使得对一切满足  $a_i < 2^i$  的正实数 $a_1, a_2, \cdots, a_n$ ,都有

$$\sum_{1 \le i, j \le n} \{a_i a_j\} \le \lambda \sum_{i=1}^n \{a_i\}.$$

**24.4** (2016 北大金秋营 P2) 设  $a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_n$  是  $1, 2, \cdots, 2n$  的一个排列, 求

$$\sum_{i=1}^{n} |a_i b_i - a_{i+1} b_{i+1}|$$

的最小值.