

CS 423 Operating System Design: Virtual Memory Wrap-Up

Professor Adam Bates Spring 2018

Goals for Today

- Learning Objective:
 - Conclude exploration of virtual memory systems
- Announcements, etc:
 - Next C4 Summaries due today
 - Midterm March 7th!! Details on next slide
 - MP2 due March 16th
 - Strike Update: Classes continue as scheduled, assignment distribution/grading will likely be affected.

Reminder: Please put away devices at the start of class

Midterm Details

- In-Class on March 7th.
 - i.e., <u>50 minutes</u>
- Multiple choice
- 20-30 Questions

- Openbook: Textbooks, paper notes, printed sheets allowed. No electronic devices permitted (or necessary)!
- Content: All lecture and text material covered prior to March 5th (i.e., up to and including memory).
- We will have a review session, Q&A on March 5th.

Page Replacement Strategies

The Principle of Optimality

Replace the page that will not be used the most time in the future.

Random page replacement

Choose a page randomly

FIFO - First in First Out

Replace the page that has been in primary memory the longest

LRU - Least Recently Used

Replace the page that has not been used for the longest time

LFU - Least Frequently Used

Replace the page that is used least often

Second Chance

An approximation to LRU.

Question from Last Class

Belady's Anomally...

Paging Intuition??

Until Bélády's anomaly, it was believed that an increase in the # of pages would always result in the same number of or fewer page faults.

Number of Frames

FIFO w/ Page #'s 3 vs. 4

Page	3 Page Frames						
Refs	Fault?	Page Contents					
A	yes	A					
В	yes	\mathbf{B}	A				
С	yes	С	В	A			
D	yes	\mathbf{D}	С	В			
A	yes	A	D	C			
В	yes	В	A	D			
E	yes	E	В	A			
A	no	E	В	A			
В	no	E	В	A			
C	yes	С	E	В			
D	yes	D	С	E			
E	no	D	C	E			

Page	4 Pag	9						
Refs	Fault?	Page Contents						
A	yes	A						
В	yes	В	A					
C	yes	С	В	Α				
D	yes	D	С	В	A			
A	no	D	С	В	A			
В	no	D	С	В	A			
E	yes	E	D	С	В			
A	yes	A	E	D	C			
В	yes	В	A	E	D			
O	yes	С	В	A	E			
D	yes	D	С	В	A			
E	yes	E	D	C	В			

Belady's Anomaly

- Increasing the number of page frames will affect the order in which items are removed.
- For certain memory access patterns, this can actually increase the page fault rate!
- Belay's Anomaly is reference string dependent; intuition about increasing page count should hold in general case.

FIFO w/ Page #'s 3 vs. 4

Page	3 Page Frames							
Refs	Fault?	Page Contents						
A	yes	A						
В	yes	\mathbf{B}	A					
С	yes	С	В	A				
D	yes	D	С	В				
A	yes	A	D	C				
В	yes	В	A	D				
E	yes	E	В	A				
A	no	E	В	A				
В	no	E	В	A				
C	yes	С	E	В				
D	yes	D	С	E				
E	no	D	C	E				

Page	4 Pag	9						
Refs	Fault?	Page Contents						
A	yes	A						
В	yes	В	A					
C	yes	С	В	Α				
D	yes	D	С	В	A			
A	no	D	С	В	A			
В	no	D	С	В	A			
E	yes	E	D	С	В			
A	yes	A	E	D	C			
В	yes	В	A	E	D			
O	yes	С	В	A	E			
D	yes	D	С	В	A			
E	yes	E	D	C	В			

FIFO w/ Page #'s 3 vs. 4

Page	3 Page Frames				Page	4 Page Frames			9		
Refs	Fault?	$\mathbf{Pa}_{\mathbf{q}}$	ge C	ontents		Refs	Fault?	Page Conte			ents
A	yes	A									
В	yes	\mathbf{B}	A	Ca	ch	es / (Cache ₄ !	111	Α		
C	yes	C	В			°3 ≠ `		• • •	В	A	
D	yes	D	С				J (С	В	A
A	yes	A	D	ans c	bs	etæq	no	D	С	В	A
В	yes	В	A	I		В	no	D	С	В	A
E	yes	E	В	A		E	yes	E	D	С	В
A	no	E	В	A		A	yes	A	E	D	C
В	no	\mathbf{E}	В	A		В	yes	В	A	E	D
C	yes	С	E	В		C	yes	С	В	A	E
D	yes	D	С	E		D	yes	D	С	В	A
E	no	D	C	E		E	yes	E	D	С	В

Question from Last Class

Why not use very large pages to reduce page faults?

Paging Terminology

- Reference string: the memory reference sequence generated by a program.
- Paging moving pages to (from) disk
- Optimal the best (theoretical) strategy
- Eviction throwing something out
- Pollution bringing in useless pages/lines

Page Size Considerations

- Small pages
 - Reason:
 - Locality of reference tends to be small (256)
 - Less fragmentation
 - Problem: require large page tables
- Large pages
 - Reason
 - Small page table
 - I/O transfers have high seek time, so better to transfer more data per seek
 - Problem: Internal fragmentation, needless caching

Second Chance

- Only one reference bit in the page table entry.
 - 0 initially
 - 1 When a page is referenced
- pages are kept in FIFO order using a circular list.
- Choose "victim" to evict
 - Select head of FIFO
 - If page has reference bit set, reset bit and select next page in FIFO list.
 - keep processing until you reach page with zero reference bit and page that one out.
- System V uses a variant of second chance

Second change is a variant of FIFO, not LRU.

LRU

12 references,10 faults

Pro: (In spite of example,) provides near-optimal performance.

Con: costs of maintaining access history.

Page	3 Page Frames						
Refs	Fault?	Page Contents					
A	yes	A					
В	yes	\mathbf{B}	A				
С	yes	C	В	A			
D	yes	\mathbf{D}	О	В			
A	yes	A	D	С			
В	yes	В	A	D			
E	yes	E	В	A			
A	no	A	E	В			
В	no	В	A	E			
C	yes	С	В	A			
D	yes	D	С	В			
E	yes	E	D	С			

Thrashing

- Computations have locality.
 - principle of locality: a program clusters its access to data and text temporally.
- As page frames decrease, the page frames available are not large enough to contain the locality of the process.
- The processes start faulting heavily.
- Pages that are repeatedly read in, used and then immediately paged out.

Thrashing & CPU Utilization

- As the page rate goes up, processes get suspended on page out queues for the disk.
- the system may try to optimize performance by starting new jobs.
- starting new jobs will reduce the number of page frames available to each process, increasing the page fault requests.
- system throughput plunges.

Degree of Multiprogramming

Working Set

- the working set model accounts for locality.
- Working Set: the collection of pages that a process is working with, and which must thus be resident if the process is to avoid thrashing
 - Identify working set based on the pages referenced by process in last t seconds.
 - Do not schedule process unless entire working set is in main memory
- As the number of page frames increases above some threshold, the page fault rate will drop dramatically.

