

Modul TA.PR+SY **Zugmittelgetriebe**

1. Teil: Flach- und Keilriemengetriebe

FH Zentralschweiz

Hochschule Luzern Technik & Architektur

Inhalt und Ziele

- Funktion und Aufbau von Flachriemen
- Bauarten von Keilriemen
- Verbindungen von Flach- und Keilriemen
- Zentrieren von Flachriemen
- Ausführungen von Riemenscheiben
- Vorspannung der Zugmittel
- Auslegung der Riementriebe
- Riemenschwingungen
- Anwendungsbeispiele

Ziele: Kennt die Eigenschaften und Charakteristika von Flach- und

Keilriemen.

Kann Flach- und Keilriemengetriebe auslegen und nachrechnen.

Funktion und Aufbau von Flachriemen

Je nach Funktion werden die (Flach)-Riemen in **Antriebsriemen** und **Transportriemen** eingeteilt.

Rilder Siealina

Antriebsriemen

Transportriemen

• Mehrschicht- oder Verbundriemen

• Laufschicht

 Leder oder Kunststoff mit hoher Reibung für geringen Schlupf (PU, Elastomer)

Zugschicht

 reissfeste Fasern oder Bänder (PA, E, Stahl, Glasfasern, Aramid) (Markennamen für Aramid sind Nomex und Kevlar von DUPont)

L) Laufschicht

Z) Zugschicht

D) Deckschicht

Deckschicht

• imprägniertes Textilgewebe oder zweite Laufschicht

© HSLU PR+SY_H16: Flachriemengetriebe

4

Hochschule Luzern

Eigenschaften und Kennwerte moderner Hochleistungsflachriemen

Begriff	Einheit	Zugschicht aus	
		Polyamid PA	Polyestercord [
Zugfestigkeit	N/mm ²	450 - 600	700 – 900
Zugkraft pro Riemenbreite	N/cm	1.300 - 1.800	1.300 - 6.600
Reibungszahl μ gegen Stahl und GG	-	0,6 - 0,7	0,6 - 0,7
Zulässige Riemenspannung σ_{zul}	N/mm ²	6 – 18	14 – 25
Zug-Elastizitäts-Modul E_z	N/mm ²	500 - 600	600 - 700
Biege-Elastizitäts-Modul E_b	N/mm ²	250	300
Bruchdehnung ε_b	%	≈ 22	≈ 12 - 15
Spannung bei 1 % Dehnung	N/cm	30 - 400	100 – 400
Betriebsdehnung ε	%	1,3 - 3,0	1,0 - 1,5
Temperatureinsatzbereich	°C	-50 - +100	-50 - +100
Dichte $ ho$	g/cm ³	1,1 - 1,4	1,1 - 1,4
Spezifische Nenn-Umfangskraft F	N/cm	40 - 800	100 – 400
Spezifische Nennleistung P_N	kW/cm	bis 45	bis 60
Maximale Riemengeschwindigkeit v	m/s	60 - 80	80 - 150
Maximal zulässige Biegefrequenz f	1/s	80 – 100	100 - 250
Dehnschlupf bei Nenn-Umfangskraft s	%	≈ 0,8 - 1,0	≈ 0,4 - 0,6
Dämpfungseigenschaft – logarithmisches Dekrement ϑ	-	≈ 0,28	≈ 0,25
Wirkungsgrad η	-	0,98 - 0,99	0,985 - 0,99
Gesamtdicke a	mm	1,0 - 8,0	0,8 - 4,0
Riemenbreite b ₀	mm	max. 100	max. 450
Riemenlänge I	mm	Ohne Begrenzung	max. 1.200

Quelle: B. Schlecht

Bauarten von Keilriemen

Werkstoffe

- ZugschichtPolyesterfasern
- Kern
 - Kautschuk (Polyurethan)
- Hülle
 - Textilgewebe

Normalkeilriemen $b_0/h \approx 1.6$

Schmalkeilriemen $b_0/h \approx 1.2$, weniger Platz, höherer Wirkungsgrad

Flankenoffene Schmalkeilriemen, geschliffen Flanken, höhere Genauigkeit

Breitkeilriemen, Verstellgetriebe

60°-Keilriemen, Polyurethan, hoher Reibwert, grosser Winkel zur Vermeidung von Selbsthemmung Verbundkeilriemen, gleichmässige Lastverteilung, weniger anfällig gegen Schwingungen Keilrippenriemen, hohe Umfangsgeschwindigkeiten, leise und vibrationsfrei

© HSLU PR+SY_H16: Flachriemengetriebe

7

Hochschule Luzern Technik & Architektur

Verbindungen von Flach- und Keilriemen

Riemen werden in passender Länge endlos hergestellt, oder an den Enden bearbeit und verschweisst oder verklebt.

Schäftung an der Verbindungsstelle von Flachriemen

Mechanische Verbinder für Flachriemen

Z-Verbindung für Flachriemen

Lösbare Verbindung für einen Keilriemen

Vergleich Wirkungsgrad Flachriemen-Keilriemen

© HSLU PR+SY_H16: Flachriemengetriebe

10

Hochschule Luzern

Beispiel: Antrieb mit Keilriemen für Rotationswärmetauscher

Antrieb am Zylinderumfang der Wärmetauschertrommel mit Keilriemen

Zentrieren von Flachriemen

Durch die Wölbung der Riemenscheiben wird ein Zentrieren der Riemen erreicht.

Zentrierwirkung durch unterschiedliche Geschwindigkeiten.

Zentrierwirkung durch Biegemoment aufgrund eines Schrägzuges.

© HSLU PR+SY_H16: Flachriemengetriebe

Wölbung und Abmasse von Riemenscheiben

Quelle: B. Schlecht

11

Hochschule Luzern Technik & Architektur

Möglichkeiten zur Vorspannung des Zugmittels

Ausführungsformen verstellbarer Riemenscheiben (Spreizschieben)

Bilder B. Schlecht

Beispiel Riemenantrieb: Variomatik Antriebe für Roller

© HSLU PR+SY_H16: Zahnriemengetriebe

14

Hochschule Luzern Technik & Architektur

Auslegung der Riementriebe

• Kräfte am Riementrieb

$$F_t = F_1 - F_2$$
 (16.2)

17

Auslegung der Riementriebe

• Kräfte am Riementrieb

Euler-Eytelwein-Seilreibungsformel

$$\frac{F_1}{F_2} = e^{\mu\beta_1} = m$$
(16.3)
m: Trumkraftverhältnis

Übertragbare Umfangskraft (Nutzkraft)

$$F_t = F_1 - \frac{F_1}{m} = F_1 * \frac{m-1}{m} = F_1 * \kappa$$
 (16.4)

Belastung des Riemens durch die Fliehkraft F_z

$$F_z = A_S * \rho * v^2 \tag{16.5}$$

© HSLU PR+SY_H16: Flachriemengetriebe

18

Hochschule Luzern Technik & Architektur

Anwendung Euler-Eytelwein-Seilreibungsformel

Schiffspoller

Halbmastwurf Sicherungsknoten

Quelle: de.academic.ru/

Quelle: www.bildarchiv-hamburg.de/

Auslegung der Riementriebe

Wellenbelastung

Wellenbelastung (auch grafisch zu ermitteln)

$$F_{w} = \sqrt{F_{1}^{2} + F_{2}^{2} - 2 * F_{1} * F_{2} * \cos \beta_{1}}$$

$$F_w = F_t \cdot \frac{\sqrt{m^2 + 1 - 2 \cdot m \cdot \cos \beta_1}}{m - 1} = k \cdot F_t$$
 (16.6)

Wellenbelastung im Stillstand

$$F_{w0} = F_w + F_z$$
 (16.7)

ist grösser, da die Fliehkräfte nicht wirken

$$F_{w0} = 2 * F_{v} * \cos \alpha$$

© HSLU PR+SY_H16: Flachriemengetriebe

22

Hochschule Luzern Technik & Architektu

Auslegung der Riementriebe

- Dehn- und Gleitschlupf, Übersetzung
 - Dehnschlupf
 - Dehnungsausgleich aufgrund der unterschiedlichen Trumkräfte F₁ und F₂
 - Kann nicht vermieden werden
 - Macht genaue Übersetzung unmöglich
 - Gleitschlupf
 - $F_t > F_R$
 - Darf nicht längere Zeit auftreten wegen Verschleiss
 - Übersetzung

$$i = \frac{n_1}{n_2} = \frac{d_2 + t}{d_1 + t} * \frac{100\%}{100\% - \Psi}$$
 (16.9)

Schlupf

$$\Psi = \frac{(v_1 - v_2) * 100\%}{v_2}$$
 (16.8)

$$i \approx \frac{n_1}{n_2} = \frac{d_2}{d_1}$$
 (16.10)

Dehn- und Gleitschlupf

Quelle: Siegling

© HSLU PR+SY_H16: Flachriemengetriebe

25

Hochschule Luzern Technik & Architektur

Geometrische und kinematische Beziehungen

Umschlingungswinkel an der kleinen Scheibe

$$\beta_1 = 2 * \arccos\left(\frac{d_2 - d_1}{2 * e}\right)$$
 (16.24)

Wellenabstand

$$e \approx \frac{L}{4} - \frac{\pi}{8} * (d_2 + d_1) + \sqrt{\left[\frac{L}{4} - \frac{\pi}{8} * (d_2 + d_1)\right]^2 - \frac{(d_2 - d_1)^2}{8}}$$
 (16.22)

Grenzwerte nach 16.21 beachten

Riemenlänge

$$L = 2 * e + \frac{\pi}{2} * (d_2 + d_1) + \frac{(d_2 - d_1)^2}{4 * e}$$

Spannweg x

Flachriemen und Keilriemen: $x \ge 0.03 \times L$

(16.25)

(16.23)

Unbedingt Herstellerangaben beachten

Leistungsberechnung

• Umfangskraft F,

$$F_t = \frac{K_A * P_{nenn}}{v} = \frac{K_A * T_{nenn}}{d_d/2}$$

- Riemenbreiten, Riemenzahl
 - Flachriemen

$$b' = \frac{F_t}{F'_t}$$
 (16.28) b' theoretische Riemenbreite, b und b' nach TB 16-9 b' spezifische Umfangskraft TB 16-8

Keilriemen, Keilrippenriemen

$$z \ge \frac{K_A * P_{nenn}}{(P_N + \ddot{\mathbf{U}}_Z) * c_1 * c_2}$$
 (16.29)

 $z \geq \frac{K_A * P_{nenn}}{(P_N + \ddot{\mathbf{U}}_Z) * c_1 * c_2} ~~ \text{(16.29)} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Winkelfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~~ \frac{P_N \text{ von einer Rippe übertragbare Nennleistung TB 16-15}}{\ddot{c}_2 \text{ Längenfaktor nach TB 16-17}} ~$

© HSLU PR+SY_H16: Flachriemengetriebe

27

Hochschule Luzern

Riemenvorspannung

Flachriemen

$$F_{v} \approx (1.....2) * F_{t}$$

$$F_{v} \approx (1.....2) * F_{t}$$
 $F_{w0} \approx (2.....4) * F_{t}$

Keilriemen

$$F_{v} \approx (1.....1.25) * F_{t}$$
 $F_{w0} \approx (2.....2.5) * F_{t}$

Kontrolle der Vorspannkraft F_V

$$t_e = \frac{l_f}{50}$$

• Flachriemen
$$F_e = \frac{F_t}{25} \cdots \frac{F_t}{12.5}$$

Keilriemen

$$F_e = \frac{F_t}{25} \cdots \frac{F_t}{20}$$

Praktische Riemenauslegung am Beispiel des Flachriemens

1. Festlegen der Berechnungsleistung

$$P_B = K_A * P_n = K_A * T_n * \omega$$
 (16.27)

2. Festlegen der Scheibendurchmesser

Kleiner Scheibendurchmesser d_1 gemäss Faktor P/n gemäss TB 16-7

3. Ermittlung des vorläufigen Wellenabstandes

Flachriemen:
$$0.7*(d_2+d_1) \le e' \le 2*(d_2+d_1)$$
 (16.21)

- 4. Ermittlung und Festlegung der Riemenlänge
- 5. Festlegen des endgültigen Wellenabstandes
- 6. Berechnen der Umfangskraft

$$F_t = \frac{P_B}{v} = \frac{T_B}{r}$$

7. Ermittlung des Riementyps (TB 16-8)

© HSLU PR+SY_H16: Flachriemengetriebe

8. Berechnen der Riemenbreite

$$b' = \frac{F_t}{F_t'}$$

- 9. Festlegen der Riemenbreite b
- 10. Festlegen der Scheibenbreite B
- 11. Festlegen der Vorspannkraft und Ermittlung der Wellenbelastung

$$F_{w0} \approx \varepsilon_{\text{ges}} * k_1 * b$$
 (16.34)

$$F_{w0} \approx (2.0....4.0) * F_t$$
 (16.35)

Überschlagsberechnung

12. Berechnung des Spannwegs x

$$x \ge 0.03 * L$$

13. Kontrolle der Biegefrequenz

$$f_B = \frac{v * z}{L} \le f_{Bzul} \quad (16.37)$$

31