tículas de spin 1/2, sem cor, que podem ter carga elétrica ou não (neutrinos). Parecem ser partículas verdadeiramente elementares, *i.e.*, nenhuma delas aparenta ter uma estrutura interna como a dos hádrons. O elétron é o lépton mais familiar, mas além dele existem o múon (μ), o tau (τ) e três neutrinos (neutrino do elétron, neutrino do múon e neutrino do tau). Como a cada lépton corresponde um antilépton, parece haver um total de 12 léptons na natureza.

Começamos falando de elétrons, prótons e nêutrons e chegamos a léptons, passando por hádrons, bárions e mésons. Mas essa história ainda vai longe. Para se ter uma idéia da constituição da matéria, não basta saber que existem tais e tais partículas, que umas parecem ser realmente elementares e outras são compostas por "sub-partículas" confinadas. É preciso também levar em conta como elas interagem, como integram sistemas estáveis e como se desintegram, ou seja, é preciso considerar interações e campos de força, o que nos leva a outra categoria de partículas, as chamadas partículas mediadoras das interações fundamentais da natureza.

Interações Fundamentais

Há quatro tipos de interações fundamentais: eletromagnética, gravitacional, forte e fraca. A interação entre um elétron e um núcleo atômico é um exemplo de interação eletromagnética; a atração entre quarks é do tipo interação forte; o decaimento β (por

exemplo, um nêutron decaindo para próton pela emissão de um elétron e um neutrino) exemplifica a interação fraca; a interação gravitacional atua entre todas as partículas massivas, e é a que governa o movimento dos corpos

celestes, mas é irrelevante em domínios muito pequenos, assim como as demais podem não ser relevantes em alguns domínios.

A interação forte, como sugere o nome, é a mais forte no âmbito das partículas elementares e mantém juntos prótons e nêutrons no núcleo atômico. Afeta somente hádrons. A interação fraca é responsável pelo decaimento relativamente lento de partículas como nêutrons e múons, e também por todas reações envolvendo neutrinos.

Tais interações são descritas através de campos de força. Campo é um conceito fundamental nas teorias

Mediar a interação significa

que a força existente entre

as partículas interagentes

resulta de uma "troca"

(emissão e absorção) de

outras partículas (virtuais)

entre elas

sobre partículas elementares. Aliás, é um conceito fundamental em toda a Física. Os quanta desses campos são partículas mediadoras das interações correspondentes.

Assim, o fóton é o quantum do campo eletromagnético e media a interação eletromagnética, os glúons são os quanta do campo forte e mediam a interação forte, o gráviton é o quantum do campo gravitacional, mediando a interação gravitacional, e as partículas denominadas W+, W- e Zº são os quanta do campo fraco e são mediadoras da interação fraca. Tais partículas são chamadas bósons, um termo genérico para partículas de spin inteiro (férmions é o termo genérico para partículas de spin 1/2,3/2,5/ 2...; léptons e quarks são férmions). De todas essas partículas, a única que ainda não foi detectada experimentalmente é o gráviton4.

Mediar a interação significa que a força existente entre as partículas

A família dos léptons (do

grego leptos, que significa

delgado, fino, leve)

apresenta partículas de spin

1/2, sem cor, que podem ter

carga elétrica ou não e

parecem ser partículas

verdadeiramente

elementares: nenhuma

delas aparenta ter uma

estrutura interna

interagentes resulta de uma "troca" (emissão e absorção) de outras partículas (virtuais) entre elas. Assim, a força eletromagnética resulta da troca de fótons entre as partículas (eletricamente carregadas) interagentes. Fótons são portadores

da força eletromagnética, são partículas de radiação, não de matéria; têm spin 1, não têm massa e são idênticos às suas antipartículas. É a energia de um fóton que determina seu "tipo":

fótons de ondas de rádio, de luz visível, de radiação ultravioleta, de raios-X, de raios γ (embora seja γ o símbolo que representa qualquer fóton).

Analogamente, o campo de forças produzido por quarks e antiquarks, atuando sobre eles, é chamado de campo de glúons, e a força entre eles resulta da troca de glúons. Glúons representam para o campo de glúons o

mesmo que os fótons para o campo eletromagnético. Quarks emitem e absorvem glúons e assim exercem a interação forte entre si. Glúons, tal como os fótons,

têm spin 1, mas, diferentemente deles, têm cor, *i.e.*, fótons são incolores, ou "brancos", e glúons não. Assim como a carga elétrica é a fonte do campo fotônico, as cargas cor são a fonte dos campos gluônicos (há oito tipos de glúons)⁵.

Da mesma forma, a interação fraca é mediada por partículas, conhecidas como W (do inglês weak, que significa fraca) e Z, i.e., pela troca de tais partículas, assim como a interação gravitacional é, teoricamente, mediada pela troca de grávitons.

A rigor, todas estas interações são mediadas por partículas virtuais. Consideremos, por exemplo, a interação eletromagnética entre um elétron livre e um próton livre: uma das partículas emite um fóton e a outra o absorve; no entanto, esse fóton não é um fóton livre ordinário, pois aplicando as leis de conservação da energia e momentum a tal processo poder-se-ia mostrar que haveria uma violação da conservação da energia (a energia do fóton emitido não seria igual ao produto de seu momentum pela velocidade da luz, como seria de se esperar para um fóton livre). Mas seria uma violação virtual porque, devido ao Princípio da Incerteza de Heisenberg⁶, a incerteza na energia do fóton implica que tal violação ocorreria em intervalos de tempo muito pequenos. Isso significa que o fóton seria imediatamente absorvido, i.e., não seria livre, mas sim virtual.