SOFT COMPUTING ITE1015

Prediction of Heart Disease Occurrence

By

Atchi Sumanth Raju (19BIT0033) Chaitanya Singh (19BIT0044)

Under the guidance of
Prof. Balakrushna Tripathy
School of Information Technology
and
Engineering

Fall Semester 2021-22

Abstract:

AI, a significant fragment of man-made reasoning, has begun to pervade different businesses, among which medical care is unmistakable. Around here, precise expectations of the presence or nonappearance of coronary illness and substantially more are right now created by calculations. Such data can give significant bits of knowledge to clinicians who tailor their finding and treatment to patient-explicit requirements when shown well ahead of time. The current situation is that the medical services industry is gathering tremendous measures of information. All things considered, tragically, not all information is being gathered to find covered up examples and settle on successful choices. Hence, there are critical deviations from the specific worth in the expectations. This undertaking plans to foster a site where clients can give their information on wellbeing determinants, for example, circulatory strain and drug, smoking or drinking propensities, weight file, pulse, uneasiness, yellow fingers, and different capacities that are significant Assume parts in anticipating cellular breakdown in the lungs and coronary illness. The gathered information is exposed to a forecast of the "10-year risk" for the event of coronary illness.

Keywords – Support Vector Machine, Decision Tree Classifier, Logistic Regression, KNN classifier Naive Bayes, Artificial Neural Networks, K-star algorithm, etc.

Introduction

In the US and other underdeveloped nations, half of the passing are caused because of cardiovascular illnesses. Likewise, in numerous nations driving reason for death is a coronary illness. Among many sorts of coronary illnesses, coronary illness prompted the most elevated number of fatalities as these sicknesses happen unexpectedly, or as a rule, they are being analyzed at the last stages, where the patients and specialists are defenseless to fix the infection.

Thus, we thought of this venture thought of making a site with a great UI and more exact expectations of these illnesses to perceive the condition in the beginning stage itself and take gauges appropriately. Lab aides should utilize innovation for business as well as for the better living individuals. Coronary illness Forecast, Backing vector classifier, Arbitrary Woodland Classifier, Slope sponsor classifier, XG Lift classifier, strategic relapse.

This venture objective is to foster a site in which clients can give their information of wellbeing factors like Circulatory strain levels and Prescription, Smoking/Drinking propensities, Weight List, Pulse, Nervousness, Yellow Fingers, and different elements that play a fundamental part in the expectation of coronary illness and more other normal these days factors for this event. The information gathered will go through the expectation of "10-Year Risk" for the occasion of coronary illness.

Nowadays, cardiovascular disease is maybe the most fundamental issue relating to human prosperity. - the treatment of heart issues has actually been communicated in an examination that has gotten tremendous thought in the clinical structure all throughout the planet. Heart contaminations are perhaps the most boss explanations behind death all throughout the planet. At the center, 17.7 million passing results from heart contamination which implies about 31% all through the world in 2016,

as shown by World Prosperity Affiliation (WHO). In the US and other made countries, about segment, in light of everything, are achieved by coronary sickness; in like manner, 33% surprisingly passing generally speaking are related to coronary disease. Heart ailment impacts individuals' prosperity just as the economies and costs of countries too. - the most ordinary heart issues are those of microvascular starting, on a very basic level cardiovascular issues and stroke.

PROBLEM IDENTIFIED:

Being proactive is better than being reactive. What if there is a system to predict the future outcome? And what if it is predicting something about a disease with the help of top-notch data sets and cutting-edge technologies? Many diseases get severe when it is not properly medicated before it starts to spread/grow. Heart disease can be controlled and sustained more effectively with proper food habits, lifestyle, medicine and exercise. Predicting the like hood for diseases like these, would be very much helpful in taking precautionary steps and also to cure them. The predicted outcome can be used to prevent/control these diseases and prove to be a great system in the field of medical science.

H/W REQUIREMENTS (details about Application Specific Hardware)

- Laptop
- Internet
- i5 Processor Based Computer or higher

S/W REQUIREMENTS (details about Application Specific Software)

- Front-End: HTML, CSS, BOOTSTRAP
- Back-End: MYSQL
- ML model training: PYTHON Scikit-Learn/Keras(Google Colab)
- ML model Deployment: Flask

LITERATURE REVIEW:

Authors	Methodologies	Advantages	Issues	Metrics
	or Techniques			used
Mythili T,	Support Vector	proposes a rule-based	When an extensive	accuracy
Dev Mukherje	Machine, decision	model to compare the	dataset is used for	
e, Nikhitha	trees, logistic	accuracies of applying	prediction, SVM cannot	
Padiala,	regression	rules to the individual	perform well, and also	
Abhiram Naidu		results of applied	training time required is	
(2013)		algorithms.	more.	
Sharma	Decision tree	This system helps medical	Decision trees are	Accuracy
Purushottam ,	classifier	practitioners to make	inclined to errors in	for testing
Dr. Kanak		effective decision-making	problems with many	and training
Saxena, Richa		based on certain	classes of the	phase
Sharma (2015)		parameters.	classification	
			Accuracy for testing and	
			training phase	
Boshra Brahmi	K-nearest neighbor,	generated various data	The process is time-	accuracy
(2015)	Sequential Minimal	mining techniques to	consuming. ANN shows	
	Optimization, Naive	evaluate the diagnosis and	results significantly for	
	Bayes algorithm,	prediction of coronary	heart disease prediction.	
	J48 (type of decision	heart disease		
	tree algorithm)			
Noura Ajam	Artificial Neural	innovate its own method of	Here the neural network	accuracy
(2015)	Networks included	the information from	is provided only with	
	with the back-	where it receives during	inputs, but there are no	
	propagation	training time and can solve	known targets given to	
	algorithm	complex tasks	this method.	

Wiharto	K-Star Algorithm	the problem of data	most of the data	F-measure
Wiharto,		imbalance is accounted	available between the	
Mcom, Hari			level/type of coronary	
Kusnanto,			heart disease are	
DrPH,			unbalanced and also it is	
Herianto,			a binary classifier.	
DrEng (2016)			Low System	
			Performance	
Mr. P Sai	ANN algorithm	ability to implicitly	Doesn't automatically	accuracy
Chandrasekhar		determine complex	detects important	
Reddy, Mr.		nonlinear relationships	features without any	
Puneet Palagi,		among independent and	human supervision.	
Ms. Jaya		dependent variables		
(2017)				
SP	Artificial neural	When feature selection is	Techniques for	accuracy
Rajamhoana, C	network using	applied, to decrease the	predicting and	
Kalyan Devi,	feature selection	search space, greedy-	classifying	
Uma		based sequential forward	cardiovascular disease	
Maheswari,		& backward selection is	are time-consuming.	
Kiruba (2018)		used.		
Bo Jin, Chao	EHR Sequential	It is difficult to use the	Leverage similar	accuracy
Che et al	Data Modeling	existing Electronic Health	representations of	
(2018)		Record data directly	medical concepts	
		because the data is sparse	through word vectors,	
		and non-standardized.	but they focused on	
		Sequentially, this paper	temporal modelling in	
		generated a robust and	the use of LSTM to	
		effective architecture for	predict heart failure.	
		the prediction of heart		
		failure		

Pasquale De Meo, Giacomo algorithm algorithm less time consuming available but some 167 patient features were missing. Sabrina Mezzatesta, Claudia Torino(2019) Avinash Decision Tree, Golande, Pavan Kumar Clustering, and Adaboost with a different technologies that are used in different accuracies turn on the tools that are designed for execution. Khaled KNN, SVM, Mohamad Adaboost, SGD, and Amulstafa (2020) Khaled KNN, SVM, Hierarchical datasets gives promising results in terms of classification accuracy of classification accu	Antonio Vilasi,	non-linear SVC with	more effective in high	the target variable was	accuracy
Fiumara, Sabrina Mezzatesta, Claudia Torino(2019) Avinash Pavan Kumar Clustering, and T (2019) Adaboost KNN, K-mean accuracies turn on the tools that are designed for execution. Khaled Adaboost, SGD, and Amulstafa Decision Table For the categorization of (2020) K-nearest neighbor, Samir Patel, Devansh Shah, Santosh Kumar Santosh Kumar Tandom forest Bharti (2020) Fiumara, Sabrina missing. pecrease of accuracy accuracy rate due to fewer combinations of data mining techniques with a different count of attributes with different accuracies turn on the tools that are designed for execution. Set holds 76 attributes which include the class attribute but in this paper, only a subset of 14 accuracy implemented for heart disease prediction Samir Patel, Devansh Shah, Santosh Kumar Bharti (2020) Bridgert technologies that are used in different papers with a different accuracies turn on the tools that are designed for execution. Set holds 76 attributes accuracy which include the class attribute but in this paper, only a subset of 14 accuracy implemented for heart disease prediction Samir Patel, Devansh Shah, Santosh Kumar Fandom forest along approach using a computer to gain an implement a more decision tree understanding of complex and	Pasquale De	RBF kernel	dimensional spaces and	available but some 167	
Sabrina Mezzatesta, Claudia Torino(2019) Avinash Colande, Golande, Pavan Kumar T (2019) Khaled Mohamad Adaboost, SGD, and Amulstafa (2020) Samir Patel, Devansh Shah, Santosh Kumar Bharti (2020) Avinash Decision Tree, investigation tells us about different technologies that are used in different papers with a different count of attributes with different accuracies turn on the tools that are designed for execution. It is a substitute to the routine prediction Samir Patel, Santosh Kumar Bharti (2020) Avinash Decision Tree, investigation tells us about different technologies that are used in different papers with a different count of attributes with different accuracies turn on the tools that are designed for execution. Set holds 76 attributes which include the class which include the class paper, only a subset of 14 accuracy implemented for heart disease prediction Samir Patel, Devansh Shah, Santosh Kumar Bharti (2020) Browness Tree, investigation tells us about different technologies that are used in different papers with a different count of attributes with different accuracies turn on the tools that are designed for execution. Set holds 76 attributes which include the class paper, only a subset of 14 accuracy implemented for heart disease prediction Samir Patel, Devansh Shah, Naïve Bayes, southe prediction modeling approach using a there is a need to implement a more complex and	Meo, Giacomo	algorithm	less time consuming	patient features were	
Mezzatesta, Claudia Torino(2019) Avinash Golande, KNN, K-mean Pavan Kumar T (2019) Khaled Mohamad Adaboost Mohamad Adaboost, SGD, and Amulstafa (2020) Samir Patel, Devansh Shah, Santosh Kumar Devansh Shah, Santosh Kumar Santosh Kumar Claudia Tree, investigation tells us about different technologies that are used in different papers with a different count of attributes with different accuracies turn on the tools that are designed for execution. Khaled KNN, SVM, Using contrasting set holds 76 attributes which include the class attribute but in this paper, only a subset of 14 attributes are implemented for heart disease prediction Samir Patel, K-nearest neighbor, Toutine prediction Santosh Kumar random forest Bharti (2020) algorithm, and decision tree In vestigation tells us about pace of accuracy rate due to fewer combinations of data mining techniques mining techniques mining techniques set holds 76 attributes accuracy which include the class attribute but in this attribute but in this attributes are implemented for heart disease prediction sesential attributes and there is a need to implement a more understanding of complex complex and	Fiumara,			missing.	
Claudia Torino(2019) Avinash Decision Tree, investigation tells us about Golande, Pavan Kumar T (2019) Adaboost T (2019) Khaled Adaboost, SGD, and Amulstafa (2020) Kenearest neighbor, Devansh Shah, Santosh Kumar Santosh Kumar Sharti (2020) Avinash Decision Tree, investigation tells us about different sacouracy different technologies that are used in different papers combinations of data mining techniques with a different count of attributes with different accuracies turn on the tools that are designed for execution. Khaled KNN, SVM, Using contrasting classification algorithms for the categorization of Hierarchical datasets gives promising results in terms of classification accuracy It is a substitute to the consider only 14 accuracy essential attributes and there is a need to implement a more decision tree understanding of complex Avinash Decrease of accuracy accuracy accuracy accuracy accuracy accuracy accuracy accuracy accuracy accuracy combinations of data mining techniques mining techniques accuracy which include the class attribute but in this paper, only a subset of 14 attributes are implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy essential attributes and there is a need to implement a more computer to gain an decision tree understanding of complex Andaboost Adaboost Birlia due to fewer combinations of data mining techniques accuracy accuracy accuracy accuracy accuracy accuracy accuracy accuracy accuracy which include the class attributes but in this paper, only a subset of 14 attributes are implemented for heart disease prediction accuracy accuracy which include the class attributes and the paper, only a subset of 14 attributes are implemented for heart disease prediction consider only 14 accuracy implemented for heart disease prediction implemented in the paper of accuracy implemented for heart disease prediction consider only 14 accuracy implemented for heart disease prediction impl	Sabrina				
Torino(2019) Avinash Decision Tree, investigation tells us about Golande, KNN, K-mean Pavan Kumar Clustering, and are used in different papers with a different count of attributes with different accuracies turn on the tools that are designed for execution. Khaled KNN, SVM, Using contrasting that are designed for execution. Khaled KNN, SVM, Using contrasting classification algorithms Adaboost, SGD, and Decision Table for the categorization of Hierarchical datasets gives promising results in terms of classification accuracy disease prediction Samir Patel, Devansh Shah, Santosh Kumar Bharti (2020) K-nearest neighbor, It is a substitute to the Consider only 14 accuracy accuracy accuracy winch include the class attributes are implemented for heart disease prediction Santosh Kumar Bharti (2020) Adaboost With a different papers combinations of data mining techniques accuracy which include the class attribute but in this paper, only a subset of 14 attributes are implemented for heart disease prediction Samir Patel, Naïve Bayes, routine prediction essential attributes and there is a need to implement a more computer to gain an decision tree understanding of complex and	Mezzatesta,				
Avinash Decision Tree, investigation tells us about Decrease of accuracy accuracy different technologies that are used in different papers combinations of data mining techniques Total Computer	Claudia				
Golande, Pavan Kumar Clustering, and Clustering, and Clustering, and Adaboost With a different papers with a different count of attributes with different accuracies turn on the tools that are designed for execution. Khaled KNN, SVM, Mohamad Adaboost, SGD, and Amulstafa Decision Table Filerarchical datasets gives promising results in terms of classification accuracy which include the class are implemented for heart disease prediction Samir Patel, Naïve Bayes, Santosh Kumar Bharti (2020) RNN, K-mean different technologies that are used in different papers combinations of data mining techniques with a different count of attributes with different accuracies turn on the tools that are designed for execution. Using contrasting set holds 76 attributes which include the class attribute but in this paper, only a subset of 14 attributes are implemented for heart disease prediction Samir Patel, K-nearest neighbor, Naïve Bayes, random forest algorithm, and decision tree understanding of complex and	Torino(2019)				
Pavan Kumar T (2019) Adaboost With a different papers with a different count of attributes with different accuracies turn on the tools that are designed for execution. Khaled KNN, SVM, Using contrasting Mohamad Adaboost, SGD, and Decision Table for the categorization of Hierarchical datasets gives promising results in terms of classification accuracy T (2020) Samir Patel, Devansh Shah, Santosh Kumar Patel, Devansh Shah, Santosh K	Avinash	Decision Tree,	investigation tells us about	Decrease of accuracy	accuracy
T (2019) Adaboost with a different count of attributes with different accuracies turn on the tools that are designed for execution. Khaled KNN, SVM, Using contrasting set holds 76 attributes which include the class attribute but in this paper, only a subset of 14 attributes are implemented for heart disease prediction Samir Patel, Devansh Shah, Naïve Bayes, Santosh Kumar Random forest Bharti (2020) Samir Patel, Adaboost, SGD, and classification algorithms for the categorization of Hierarchical datasets gives promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, Naïve Bayes, routine prediction santosh Kumar random forest modeling approach using a lagorithm, and decision tree understanding of complex and more complex and	Golande,	KNN, K-mean	different technologies that	rate due to fewer	
Attributes with different accuracies turn on the tools that are designed for execution. Khaled KNN, SVM, Using contrasting set holds 76 attributes accuracy which include the class of the categorization of Hierarchical datasets gives paper, only a subset of 14 promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, routine prediction santosh Kumar random forest modeling approach using a there is a need to Bharti (2020) algorithm, and decision tree understanding of complex complex and	Pavan Kumar	clustering, and	are used in different papers	combinations of data	
khaled KNN, SVM, Using contrasting set holds 76 attributes accuracy Mohamad Adaboost, SGD, and Amulstafa Decision Table for the categorization of Hierarchical datasets gives promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, Devansh Shah, Naïve Bayes, Santosh Kumar random forest Bharti (2020) algorithm, and decision tree understanding of complex and	T (2019)	Adaboost	with a different count of	mining techniques	
that are designed for execution. Khaled KNN, SVM, Using contrasting set holds 76 attributes accuracy Mohamad Adaboost, SGD, and Classification algorithms which include the class attribute but in this Hierarchical datasets gives paper, only a subset of 14 promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, Santosh Kumar random forest Bharti (2020) algorithm, and decision tree understanding of complex and implement a more understanding of complex and			attributes with different		
Khaled KNN, SVM, Using contrasting set holds 76 attributes accuracy Mohamad Adaboost, SGD, and Amulstafa Decision Table for the categorization of Hierarchical datasets gives promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, Devansh Shah, Naïve Bayes, Santosh Kumar Random forest Bharti (2020) algorithm, and decision tree understanding of complex complex and			accuracies turn on the tools		
Khaled KNN, SVM, Using contrasting set holds 76 attributes accuracy Mohamad Adaboost, SGD, and Classification algorithms which include the class attribute but in this paper, only a subset of 14 promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, routine prediction santosh Kumar random forest Bharti (2020) algorithm, and decision tree understanding of complex complex and			that are designed for		
Mohamad Adaboost, SGD, and Classification algorithms which include the class attribute but in this paper, only a subset of 14 promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the Devansh Shah, Naïve Bayes, routine prediction random forest modeling approach using a Bharti (2020) algorithm, and decision tree understanding of complex complex and			execution.		
Mohamad Adaboost, SGD, and Classification algorithms which include the class attribute but in this paper, only a subset of 14 promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the Devansh Shah, Naïve Bayes, routine prediction random forest modeling approach using a Bharti (2020) algorithm, and decision tree understanding of complex complex and					
Amulstafa (2020) Decision Table for the categorization of Hierarchical datasets gives paper, only a subset of 14 attributes are of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, routine prediction essential attributes and modeling approach using a there is a need to Bharti (2020) algorithm, and decision tree understanding of complex complex and	Khaled	KNN, SVM,	Using contrasting	set holds 76 attributes	accuracy
Hierarchical datasets gives paper, only a subset of 14 promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, routine prediction essential attributes and Santosh Kumar random forest modeling approach using a there is a need to Bharti (2020) algorithm, and computer to gain an implement a more decision tree understanding of complex complex and	Mohamad	Adaboost, SGD, and	classification algorithms	which include the class	
promising results in terms of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, routine prediction essential attributes and santosh Kumar random forest modeling approach using a there is a need to algorithm, and computer to gain an implement a more decision tree understanding of complex complex and	Amulstafa	Decision Table	for the categorization of	attribute but in this	
of classification accuracy implemented for heart disease prediction Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, routine prediction essential attributes and Santosh Kumar random forest modeling approach using a there is a need to Bharti (2020) algorithm, and computer to gain an implement a more decision tree understanding of complex complex and	(2020)		Hierarchical datasets gives	paper, only a subset of 14	
Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, routine prediction essential attributes and Santosh Kumar random forest modeling approach using a there is a need to Bharti (2020) algorithm, and computer to gain an implement a more decision tree understanding of complex complex and			promising results in terms	attributes are	
Samir Patel, K-nearest neighbor, It is a substitute to the consider only 14 accuracy Devansh Shah, Naïve Bayes, routine prediction essential attributes and Santosh Kumar random forest modeling approach using a there is a need to Bharti (2020) algorithm, and computer to gain an implement a more decision tree understanding of complex complex and			of classification accuracy	implemented for heart	
Devansh Shah, Naïve Bayes, routine prediction essential attributes and Santosh Kumar random forest modeling approach using a there is a need to Bharti (2020) algorithm, and computer to gain an implement a more decision tree understanding of complex complex and				disease prediction	
Santosh Kumar random forest modeling approach using a there is a need to Bharti (2020) algorithm, and computer to gain an implement a more decision tree understanding of complex complex and	Samir Patel,	K-nearest neighbor,	It is a substitute to the	consider only 14	accuracy
Bharti (2020) algorithm, and computer to gain an implement a more decision tree understanding of complex complex and	Devansh Shah,	Naïve Bayes,	routine prediction	essential attributes and	
decision tree understanding of complex complex and	Santosh Kumar	random forest	modeling approach using a	there is a need to	
	Bharti (2020)	algorithm, and	computer to gain an	implement a more	
and non-linear interactions combination of models		decision tree	understanding of complex	complex and	
			and non-linear interactions	combination of models	
among different factors by			among different factors by		

Nilam Harkulkar,	CNN Deep Learning Model	reducing the errors in predicted and factual outcomes. it spontaneously detects the essential features	Lack of ability to be spatially invariant to the	accuracy
Swati Nadkarni		without any human	input data and the work	
, Dr. Bhavesh		supervision. CNN is also	can be extended to study	
Patel (2020)		computationally efficient	ensemble models or	
			combining different	
			parameters for hidden	
			layers	
Sarthak	logistic regression,	This heart disease	With large data, the	accuracy
Agrawal,	random forest	prediction system	prediction stage might be	
Harshit Jindal,	classifier, and KNN	intensifies medical care	slow and also Require	
Rachna		and brings down the cost	high memory to store all	
Jain, Rishabh		by using computer-aided	of the training data.	
Khera(2021)		approaches.		
Xiao-Yan	KNN, Support	Entity methods which are	Researchers have	Accuracy,
Gao, Abdelmeg	vector machine,	known as bagging and	declared that there are no	ROC, F-
eid Amin	Random forest,	boosting with feature	issues with the system	measure,
Ali,Hassan	Decision tree, Naive	extraction algorithms i.e.		precision,
Shaban Hassan	Bayes	PCA and LDA (Principal		recall
Eman M.		Component Analysis and		
Anwar (2021)		Linear Discriminant		
		Analysis respectively)that		
		are used to build predicting		
		heart disease performance.		
Jaymin Patel,	J48 algorithm,	J48 algorithm utilizes an	prediction system should	accuracy
Samir Patel,	Logistic model tree	acquisitive method to form	not presuppose any prior	
TejalUpadhyay	algorithm, Random	decision trees for the	knowledge regarding	

(2013)	Forest algorithm,	classification and also uses	patient records from	
	WEKA Tool	for decreased-error	which it is contrasting.	
		pruning.		
R.Chitra and	"Classification"	The proposed hybrid	Very high cost and takes	accuracy
V.Seenivasaga	technique used as	intelligent algorithm	Pre-processing of data is	
m (2013)	data mining	magnifies the accuracy in	no less than a big	
	technique, "Neural	predicting coronary heart	challenge.	
	Network" used as an	disease. The proposed		
	intelligent	system will provide an aid		
	technique. SLM	for the physicians to		
		diagnose the disease in a		
		more efficient way.		
Jayshri S.	Learning vector	The neural network during	There are many chances	accuracy
Sonawane ,	Quantization neural	this system accepts 13	of errors, unwanted	
D.Patil (2014)	network algorithm	clinical features as input	biases and also it takes	
		and predicts that there's a	longer time in accurate	
		presence or absence of	diagnosis of disease. The	
		heart condition within the	diagnosis of coronary	
		patient, along side	heart disease is strenuous	
		different performance		
		measures.		
Sivagowry.S ,	Particle Swarm	The PSO is much easier	reducing the amount of	ROC Value
Dr.Durairaj.M	Optimization (PSO)	than genetic algorithm to	attributes without	
(2014)	algorithm and ANN	lay into operation. In PSO,	affecting the accuracy is	
		each particle can adjusts its	that the problem taken to	
		flying memory and it can	review	
		also adjust its companion's		
		flying involvement so that		
		to fly within the search		
		space with velocity.		
Ilayaraja M,	Frequent Item sets	Association rule mining is	Applied only for small	Risk level

Meyyappan T	Association Rule	a most efficient algorithm	datasets (<500)	(using
(2015)	Mining Medical	for extracting frequent		minimum
	Data Mining	item sets from huge data		support
		and avoids the generation		value)
		of unnecessary item sets		
Prachi Paliwal	Introduced a new	In the proposed method	Taken only ten attributes	accuracy
and Mahesh	method based on	they use the concepts of		
Malviya (2015)	fitness value. 10	fitness number. In this		
	attributes were used	approach as per the given		
	which are	condition for heart attack		
	responsible for heart	the given data can convert		
	disease.	into binary format		
Ashwini Shetty	Neural Network and	The hybrid system which	Less attributes are	accuracy
A1 , Chandra	Genetic Algorithm	uses global optimization	considered	
Naik		which is also a advantage		
(2016)		of Genetic Algorithm in		
		the initializing the Neural		
		Network weight.		
Prajakta	Big Data solution	big data infrastructure	Refers to a particular size	accuracy
Ghadge,		gives for both predictive	of dataset	
Vrushali ,		modeling and information		
Kajal, Prajakta		extraction		
Deshmukh				
(2016)				
Azam	hybrid model with	A combination of	Takes much time and	accuracy
Dekamin,	Naive Bayes	classification algorithms	cost of experiment is	
Ahmad	learners, decision	and ensemble methods	high	
Shaibatalhamd	tree, and K-nearest	were applied to develop a		
i (2017)	algorithms, RMS	prediction with gives only		
		very few errors.		
Shashikanth R.	Logistic regression,	Increased accuracy for	Prediction of disorder	accuracy

Chetankumar P. (2019) Random Forest diagnosis. Reduce the time complexity of doctors.	and	Decision tree,	effective heart disease	results isn't accurate.	
Galla Siva Sai Bandom forest Bindhika, Linear model Prediction of the disease and is used in many ways, where as it is being provided with the input, in order to find the heart rate based on the health condition. Apurb Naive Bayes, Rajdhan, Avi Decision Tree, Agarwal, Dundigalla Ravi, Milan Sai. (2020) Apurb Rajolana (2020) Apurb Naive Bayes, Rajolana, Avi Decision Tree, Agarwal, Dundigalla Ravi, Milan Classifier Understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Chaitra K , Support vector Chandana HM , Kiran G, Swathi (2020) Kiran G, Swathi (2020) Kandom Forest Rajolana, Avi Decision Tree, Logistic Regression and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Chaitra K , Support vector Swathi (2020) Anusha MB, Kiran G, Swathi (2020) Kiran G, Swathi (2	Chetankumar	Random Forest	diagnosis. Reduce the time		
Bindhika, Rajalakshmi, Manchuri Sathvika Reddy, Munaga Meghana (2020) Apurb Naive Bayes, It is a substitute to routine prediction modeling approach employing a and Random Forest computer to realize an understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Repeating feature Chaitra K, Support vector Selection and modelling of attributes of attributes of attributes of attributes of heart disease. Bindhika, Linear model prediction of the disease and is used in many ways, where as it is being provided with the input, in order to find the heart rate based on the health condition. Did not do web accuracy, Recall, Preci special application based on Recall, Preci special application based on accuracy, application based on application bas	P. (2019)		complexity of doctors.		
Rajalakshmi, Manchuri where as it is being provided with the input, in order to find the heart rate based on the health condition. Apurb Naive Bayes, It is a substitute to routine prediction modeling approach employing a papplication based on approach employing a papplication based on approach employing a nunderstanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naive bayes Repeating feature Chandana HM machine, logistic for various combinations of attributes Swathi (2020) weighted KNN Li Yang, Random forest Haibin Wu, Multivariate had the benefits that unlike Xiaoqing Jin, regression model model ling or the health condition. It is a substitute to routine Did not do web accuracy, application based on Recall.Preci sion, Recall Algorithm as well as for large dataset measure scores Recall.Preci sion, Recall Algorithm as well as for large dataset measure scores Recall.Preci sion, Recall Algorithm as well as for large dataset measure scores Anusha MB, KNN N Naive bayes Repeating feature No combinational and Risk level complex models to increase the accuracy of predicting the early onset of heart disease. Li Yang, Random forest Random Forest used here The main limitation of AUC this study is that it was in lacked external	Galla Siva Sai	Random forest	RFA helps in early	Prediction of disorder	F-measure
Manchuri Sathvika Reddy, Munaga Meghana (2020) Apurb Rajdhan, Avi Agarwal, Dundigalla and Random Forest Ravi, Milan Sai. (2020) Anusha MB, Chaitra K , Support vector Chandana HM Amshine, logistic Kiran G, Kiran G, Kiran G, Swathi (2020) Li Wang, Random Forest Reddy, Munaga based on the health condition. It is a substitute to routine prediction modeling application based on approach employing a computer to realize an understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Chaitra K , Support vector selection and modelling for various combinations increase the accuracy of predicting the early onset of heart disease. Li Yang, Random forest Random Forest used here Random Forest used here The main limitation of AUC This study is that it was in lacked external	Bindhika,	Linear model	prediction of the disease	results isn't accurate.	
Sathvika Reddy, Munaga Munaga Meghana (2020) Apurb Rajdhan, Avi Agarwal, Dundigalla Ravi, Milan Sai. (2020) Anusha MB, KNN N Naïve bayes Chaitra K , Support vector Chandana HM Risk Iran G, Swathi (2020) Apurb Rayin, Random Rorest Chaitra K , Support vector Swathi (2020) Apurb Rayin, Milan Sai. (2020) Anusha MB, KNN N Naïve bayes Chaitra K , Support vector Swathi (2020) Anusha MB, Kan G, Swathi (2020) Anusha MB, Kan MB, K	Rajalakshmi,		and is used in many ways,		
Reddy, Munaga Meghana (2020) Apurb Naive Bayes, Rajdhan, Avi Logistic Regression and Random Forest Ravi, Milan Sai. (2020) Anusha MB, Chaitra K, Chandana HM Chandana HM Chaitra K, Chandana HM Chaitra Chandana HM	Manchuri		where as it is being		
Munaga Meghana (2020) Apurb Rajdhan, Avi Decision Tree, Agarwal, Dundigalla Ravi, Milan Sai. (2020) Anusha MB, Chaitra K, Chandana HM, Kiran G, Swathi (2020) Apurb Rajdhan, Avi Decision Tree, Agarwal, Dundigalla Ravi, Milan Sai. (2020) Anusha MB, Chaitra K, Chandana HM Chandana	Sathvika		provided with the input, in		
Meghana (2020) Apurb Naive Bayes, It is a substitute to routine prediction modeling and Random Forest classifier understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Chaitra K , Support vector amachine, logistic regression , Weighted KNN Li Yang, Random forest Multivariate Says Andom Forest used here Haibin Wu, Multivariate Magnetic Rayis Anusha it is a substitute to routine prediction modeling application based on Recall, Preci sion, Recall Algorithm as well as for understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes selection and modelling for various combinations of heart disease. The main limitation of AUC this study is that it was in lacked external	Reddy,		order to find the heart rate		
Apurb Naive Bayes, It is a substitute to routine Did not do web accuracy, Rajdhan, Avi Decision Tree, prediction modeling and Random Forest classifier understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Repeating feature Chandana HM machine, logistic for various combinations (Kiran G, Swathi (2020) weighted KNN Li Yang, Random forest Multivariate State (Apure Multivariate State) Respective (Apure Multivariate State) Respective (Apure Multivariate State) Respective (Apure Multivariate State) (Apure No combination of Auccomplex (Apure Multivariate) (Apure Multivaria	Munaga		based on the health		
Apurb Naive Bayes, Rajdhan, Avi Decision Tree, prediction modeling application based on Recall, Preci approach employing a and Random Forest computer to realize an understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Repeating feature No combinational and Risk level complex models to increase the accuracy of predicting the early onset swathi (2020) Kiran G, Swathi (2020) Kiran G, Swathi (2020) Rajdhan, Avi Decision Tree, prediction modelling to regression model most ML algorithms, it lacked external	Meghana		condition.		
Rajdhan, Avi Decision Tree, Agarwal, Logistic Regression approach employing a application based on Recall, Precision, Agarwal, Logistic Regression approach employing a application based on Recall, Precision, Recall approach employing a application based on Recall, Precision, Recall approach employing a application based on Recall, Precision, Recall approach employing a application based on Recall, Precision, Recall approach employing a application based on Recall, Precision, Recall approach employing a Random Forest sion, Recall Random Forest sion, Recall approach employing a Random forest Random Forest sion, Recall Random Forest sion, Recall approach employing a Random forest sion, Recall Random Forest sion, Random	(2020)				
Agarwal, Logistic Regression approach employing a computer to realize an and Random Forest computer to realize an and Random Forest computer to realize an and and fravious factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Repeating feature Chaitra K , Support vector selection and modelling Chandana HM machine, logistic for various combinations (Airan G, Swathi (2020) weighted KNN Li Yang, Random forest Random Forest used here Haibin Wu, Multivariate Natural Manushar Manushar Melastic Multivariate Natural N	Apurb	Naive Bayes,	It is a substitute to routine	Did not do web	accuracy,
Dundigalla and Random Forest computer to realize an understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Repeating feature Chaitra K , Support vector selection and modelling machine, logistic for various combinations (Swathi (2020)) weighted KNN Li Yang, Random forest Random Forest used here Haibin Wu, Multivariate had the benefits that unlike Xiaoqing Jin, regression model model model for computer to realize an Algorithm as well as for and fractual and fractual large dataset measure scores Algorithm as well as for and fractual large dataset measure Algorithm as well as for and fractual large dataset measure No combinational and Risk level complex models to increase the accuracy of predicting the early onset of heart disease. The main limitation of AUC this study is that it was in lacked external scores.	Rajdhan, Avi	Decision Tree,	prediction modeling	application based on	Recall,Preci
Ravi, Milan Classifier understanding of complex and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Chaitra K, Support vector Selection and modelling Chandana HM machine, logistic For various combinations of attributes for various combinations of heart disease. Li Yang, Random forest Random Forest used here Haibin Wu, Multivariate Had the benefits that unlike Milanding Tegression model most ML algorithms, it lacked external measure scores large dataset measure scores measure scores Measure Statistic measure scores measure scores Risk level complex models to increase the accuracy of predicting the early onset of heart disease. The main limitation of AUC this study is that it was in lacked external	Agarwal,	Logistic Regression	approach employing a	Random Forest	sion, Recall
Sai. (2020) and non-linear interactions among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Repeating feature Chaitra K, Support vector selection and modelling complex models to increase the accuracy of For various combinations increase the accuracy of predicting the early onset of heart disease. Li Yang, Random forest Random Forest used here had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external	Dundigalla	and Random Forest	computer to realize an	Algorithm as well as for	and f-
among various factors by reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Repeating feature No combinational and Risk level Chaitra K , Support vector selection and modelling complex models to increase the accuracy of for various combinations increase the accuracy of predicting the early onset swathi (2020) weighted KNN Li Yang, Random forest Random Forest used here had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external	Ravi, Milan	classifier	understanding of complex	large dataset	measure
reducing the errors in predicted and factual outcomes Anusha MB, KNN N Naïve bayes Repeating feature No combinational and Risk level Chaitra K , Support vector selection and modelling complex models to Chandana HM machine, logistic for various combinations increase the accuracy of , Kiran G, regression , of attributes predicting the early onset Swathi (2020) weighted KNN of heart disease. Li Yang, Random forest Random Forest used here had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external	Sai. (2020)		and non-linear interactions		scores
Anusha MB, KNN N Naïve bayes Repeating feature No combinational and Risk level Chaitra K , Support vector selection and modelling complex models to Chandana HM machine, logistic for various combinations increase the accuracy of , Kiran G, regression , of attributes predicting the early onset Swathi (2020) weighted KNN of heart disease. Li Yang, Random forest Random Forest used here Haibin Wu, Multivariate had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external			among various factors by		
Anusha MB, KNN N Naïve bayes Repeating feature No combinational and Risk level Chaitra K , Support vector selection and modelling complex models to Chandana HM machine, logistic for various combinations increase the accuracy of , Kiran G, regression , of attributes predicting the early onset Swathi (2020) weighted KNN of heart disease. Li Yang, Random forest Random Forest used here The main limitation of AUC Haibin Wu, Multivariate had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external			reducing the errors in		
Anusha MB, KNN N Naïve bayes Repeating feature No combinational and Risk level Chaitra K , Support vector selection and modelling complex models to Chandana HM machine, logistic for various combinations increase the accuracy of , Kiran G, regression , of attributes predicting the early onset Swathi (2020) weighted KNN of heart disease. Li Yang, Random forest Random Forest used here The main limitation of AUC Haibin Wu, Multivariate had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external			predicted and factual		
Chaitra K , , Support vector selection and modelling complex models to increase the accuracy of predicting the early onset of heart disease. Li Yang, Random forest Random Forest used here Haibin Wu, Multivariate had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external			outcomes		
Chandana HM machine, logistic for various combinations increase the accuracy of predicting the early onset of heart disease. Li Yang, Random forest Random Forest used here Haibin Wu, Multivariate had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external	Anusha MB,	KNN N Naïve bayes	Repeating feature	No combinational and	Risk level
, Kiran G, Swathi (2020)regression weighted KNN, of attributespredicting the early onset of heart disease.Li HaibinYang, RandomRandom Forest used here had the benefits that unlike most ML algorithms, itThe main limitation of limitation of this study is that it was in lacked	Chaitra K ,	, Support vector	selection and modelling	complex models to	
Swathi (2020) weighted KNN of heart disease. Li Yang, Random forest Random Forest used here The main limitation of AUC Haibin Wu, Multivariate had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external	Chandana HM	machine, logistic	for various combinations	increase the accuracy of	
Li Yang, Random forest Random Forest used here The main limitation of AUC Haibin Wu, Multivariate had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external	, Kiran G,	regression ,	of attributes	predicting the early onset	
Haibin Wu, Multivariate had the benefits that unlike this study is that it was in Xiaoqing Jin, regression model most ML algorithms, it lacked external	Swathi (2020)	weighted KNN		of heart disease.	
Xiaoqing Jin, regression model most ML algorithms, it lacked external	Li Yang,	Random forest	Random Forest used here	The main limitation of	AUC
	Haibin Wu,	Multivariate	had the benefits that unlike	this study is that it was in	
Pinpin Zheng, could accept dirty data, validation.	Xiaoqing Jin,	regression model	most ML algorithms, it	lacked external	
	Pinpin Zheng,		could accept dirty data,	validation.	

Shiyun Hu,		and in contrast to some		
Jing Yan,		traditional regression		
Xiaoling		models, it also could		
Xu,Wei Yu.		model nonlinear relations		
(2020)		and accept both regression		
		and classification		
		problems at meanwhile.		
Armin	proposes an		The machine learning	confidence
Yazdani,	algorithm that		techniques utilized in	score
Kasturi Dewi	measures the		feature selection phase is	
Varathan, Asad	strength of the		restricted to the foremost	
Waqar Malik	significant features		popular techniques	
& Wan Azman	that contribute to		utilized in heart	
Wan Ahmad,	heart disease		condition prediction.	
Yin Kia Chiam	prediction using			
(2021)	Weighted			
	Associative Rule			
	Mining.			

Gaps in Literature:

In the research papers mentioned above, we've found various kinds of drawbacks like lower accuracy was detected due to lack of sufficient number of attributes in the dataset. The models seemed to be more time consuming due to more pre-processing time. Some models require high memory to store all of the training data. High cost is also a major problem identified in the papers. No combinational and complex models were used to increase the accuracy of predicting the early onset of heart disease.

SYSTEM ARCHITECTURE

WORKFLOW

CONTENT MODULES:

Libraries used – seaborn, sklearn, matplotlib, pandas, numpy, pickle **Seaborn** is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. It builds on top of matplotlib and integrates closely with pandas data structures.

Pickle module implements binary protocols for serializing and de-serializing a Python object structure. "*Pickling*" is the process whereby a Python object hierarchy is converted into a byte stream, and "*unpickling*" is the inverse operation, whereby a byte stream (from a binary file or bytes-like object) is converted back into an object hierarchy.

NumPy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays. It is the fundamental package for scientific computing with Python. It contains various features including these important ones powerful N-dimensional array object, Sophisticated (broadcasting) functions, Tools for integrating C/C++ and Fortran code and Useful linear algebra, Fourier transform, and random number capabilities.

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. It offers vareity of functionalities like make interactive figures that can zoom, pan, update, customize visual style and layout, export to many file formats, embed in JupyterLab and Graphical User Interfaces and can also use a rich array of third-party packages built on Matplotlib.

Pandas is an open-source library that is built on top of NumPy library. It is a Python package that offers various data structures and operations for manipulating numerical data and time series. It is mainly popular for importing and analyzing data much easier. Pandas is fast and it has high-performance & productivity for users.

Scikit-learn (**Sklearn**) is the most useful and robust library for machine learning in Python. It provides a selection of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction via a consistence interface in Python. This library, which is largely written in Python, is built upon NumPy, SciPy and Matplotlib.

ALGORITHMIC STEPS:

MODULES AND ITS DESCRIPTION

- Loading Dataset: We are using "pandas" a machine learning library in our project for further processing. This loads the dataset.
- Data pre-processing: It is an important process as it ensures valid data is given to machine to learn. So, any null values in data are replaced with other values like mean, median or less-dominant value in order to balance the dataset and ensuring result is un-biased. We had to do 'Feature Scaling' using 'Standardization' technique. This technique rescales value such that it has distribution with 0 mean value and variance equal to 1.
- **Feature Engineering:** This is used to select particular features which are more impactful on result and which improves the performance.
- **Training the Model:** We train our model with a dataset of 4238 records and Supervised ML algorithms are used to train the model and their respective F1-Scores are recorded.

• Testing the M EVALUATION METRICS:

- 1. Precision = True Positive / (True Positive + False Positive)
- 2. Recall = True Positive / (True Positive + False Negative)
- 3. F1-score = (2 * (Precision * Recall)) / (Precision + Recall)
- 4. Confusion Matrix
- **Model Deployment**: Convert .ipynb file to pickle file(.pkl) and load the file in "app.py". We collect data from user through web-interface, data collected is passed through "Flask" to the trained model as input and the result predicted by the model is displayed to user.

Snapshots:

Pre-processing

Correlation Analysis

Data transformation and splitting

Decision Tree Classifier

```
[ ] from sklearn.tree import DecisionTreeClassifier
      decision_tree=DecisionTreeClassifier()
     scores_decisionTree=cross_val_score(decision_tree,x,y,cv=10,scoring="f1_micro")
[ ] scores_decisionTree
     array([0.74056604, 0.76886792, 0.74528302, 0.75943396, 0.74292453, 0.74528302, 0.73584906, 0.76595745, 0.73286052, 0.73049645])
[ ] scores_decisionTree.mean()
     0.7467521967973594
[ ] models.append("Decision Tree")
     f1Scores.append(scores_decisionTree.mean())
[ ] decision_tree2=DecisionTreeClassifier(criterion="entropy",min_samples_split=10,splitter="random")
     scores_decisionTree2=cross_val_score(decision_tree2,x,y,cv=10,scoring="f1_micro")
scores_decisionTree2
array([0.79245283, 0.81367925, 0.75235849, 0.80896226, 0.78537736, 0.79716981, 0.81839623, 0.81323877, 0.79905437, 0.80378251])
scores_decisionTree2.mean()
      0.7984471876533299
[ ] models.append("Decision Tree 2")
      \verb|f1Scores.append(scores_decisionTree2.mean())|\\
```

Logistic Regression and SVM Classifier

[] from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression logreg=LogisticRegression() scores=cross_val_score(logreg,x,y,cv=10,scoring="f1_micro")	
[] print(scores)	
[0.84433962 0.86320755 0.85377358 0.86084906 0.8490566 0.8490566 0.86792453 0.85815603 0.85579196 0.84869976]	
[] scores.mean()	
0.8550855301306927	
[] models.append("Logitic Regression") f1Scores.append(scores.mean())	
[] models, f1Scores	
(['Logitic Regression'], [0.8550855301306927])	
<pre>[] lr=LogisticRegression() lr.fit(x_train,y_train)</pre>	
LogisticRegression()	
[] y_predicted=lr.predict(x_test)	
[] score_lr = lr.score(x_test, y_test) print(score_lr)	
0.8466981132075472	
[] from sklearn.metrics import classification_report	
[] print(classification_report(y_test,y_predicted))	
precision recall f1-score support	
0 0.85 0.99 0.92 714 1 0.67 0.06 0.11 134	

```
[ ] from sklearn.svm import SVC
    svm1=SVC(kernel="poly",degree=5,gamma="auto")
    scores_svm1=cross_val_score(svm1,x,y,cv=10,scoring="f1_micro")
[ ] scores_svm1
    array([0.83254717, 0.84669811, 0.83726415, 0.86084906, 0.8254717,
           0.84198113, 0.86556604, 0.8534279 , 0.8392435 , 0.82742317])
[ ] scores_svm1.mean()
    0.8430471921138321
[ ] models.append("SVM 1")
    f1Scores.append(scores_svm1.mean())
svm2=SVC(kernel="rbf")
    scores_svm2=cross_val_score(svm2,x,y,cv=10,scoring="f1_micro")
    print(scores_svm2)
    print(scores_svm2.mean())
 [0.8490566 0.84669811 0.84669811 0.85377358 0.84669811 0.84433962
     0.84433962 0.85106383 0.84869976 0.84869976]
    0.84800671305589
[ ] models.append("SVM 2")
     f1Scores.append(scores svm2.mean())
```

Random Forest Classifier, Gradient Boosting Classifier and Stacking Classifier

```
randomforest=RandomForestClassifier(max_depth=10)
                scores_randomforest*cross_val_score(randomforest,x,y,cv=10,scoring="f1_micro")
print(scores_randomforest)
          print(scores_randomforest.mean())
               [0.84433962 0.84669811 0.85141509 0.85377358 0.84433962 0.84198113 0.85377358 0.85579196 0.84869976 0.85106383] 0.8491876310272536
[ ] models.append("Random Forest")
f1Scores.append(scores_randomforest.mean())
 from sklearn.ensemble import GradientBoostingClassifier gradBoost=GradientBoostingClassifier(loss="exponential",learning_rate=0.001, n_estimators=50, max_depth=10)
               scores_gradBoost.eross_val_score(gradBoost,x,y,cv=10,scoring="fl_micro")
print(scores_gradBoost.mean())
 [0.8490566 0.8490566 0.8490566 0.8490566 0.84669811 0.84669811 0.84669811 0.84669811 0.84869976 0.84869976]
                 f1Scores.append(scores gradBoost.mean())
 [ ] from xgboost import XGBClassifier
                xaport xa
            print(scores_xgBoost.mean())
              [0.8490566 0.8490566 0.8490566 0.8490566 0.84669811 0.84669811 0.84669811 0.84869976 0.84869976]
                0.8482420045497123
[ ] models.append("XG Boost Classifier")
                  f1Scores.append(scores_xgBoost.mean())
[] from sklearn.ensemble import StackingClassifier estimators=[('xgBoost',XGBClassifier(learning_rate=0.01, n_estimators=25, max_depth=15,gamma=0.6, subsample=0.52,colsample_bytree=0.6,seed=27,
```

```
stackClassifier.fit(x_train,y_train)
      StackingClassifier(cv=10.
                              estimators=[('xgBoost',
XGBClassifier(booster='dart'
                                                                (booster='dart',
colsample_bylevel=0.6,
colsample_bynode=0.5,
colsample_byrce=0.6, gamma=0.6,
learning_rate=0.01, max_depth=15,
n_estimators=25, reg_lambda=2,
seed=27, subsample=0.52)),
                              ('randomforest', Subsamplewe.32))
('randomforest', RandomforestClassifier(max_depth=10)),
'svm', SVC()],
final_estimator=LogisticRegression())
[ ] stackClassifier.score(x_test,y_test)
      0.8419811320754716
[ ] y_predicted_stackClass=stackClassifier.predict(x_test)
print("F1-score of Stacking classifier",f1_score(y_test,y_predicted,average="micro"))
F1-score of Stacking classifier 0.8466981132075472
[ ] models.append("Stacking Classifier")
f1Scores.append(0.8466981132075472)
[ ] from sklearn.ensemble import GradientBoostingClassifier gradBoost=GradientBoostingClassifier(loss="exponential",learning_rate=0.01, n_estimators=50, max_depth=10,random_state=42)
      gradBoost.fit(x_train,y_train)
      \label{lem:contingclassifier} Gradient Boosting Classifier (learning_rate=0.01, loss='exponential', max_depth=10, n_estimators=50, random_state=42)
[ ] ypredGradBoost=gradBoost.predict(x_test)
```

Grid Search using different parameters (Hyper-tuning)

```
[] from sklearn.model_selection import GridSearchCV

[] param_prids("n_strimators":reage(08,15,10))
pridsearchCodicSearchColistation - GridSearchColistation - GridSearchColis
```


Comparison of F1 scores of all the models

Decision Tree

```
nodels, f1Scores
         (['Logitic Regression',
               'Decision Tree',
               'Decision Tree 2',
               'SVM 1',
               'SVM 2',
               'Random Forest',
              'Gradient Boosting Classifier',
              'XG Boost Classifier',
              'Stacking Classifier'
               'Gradient Boosting Classifier - After hyper parameter tuning'],
             [0.8550855301306927,
              0.7467521967973594,
              0.7984471876533299,
              0.8430471921138321,
              0.84800671305589,
              0.8491876310272536,
              0.8482420045497123.
              0.8482420045497123,
              0.8466981132075472,
              0.8542363280654282])
[ ] zipped_lists=zip(f1Scores, models)
    ripped_lists=zip(flScores, models)
zipped_lists=list(sorted(ripped_lists))
flScoresSorted,modelsSorted = zip("zipped_lists)
fig = plt.figure(figsize = (20, 5))
plt.barh(list(modelsSorted), list(flScoresSorted), color ='cyan')
plt.taltel("Models and their performance')
plt.xlabel("Fl Score of classifiers")
plt.ylabel("Models/Classifiers")
plt.show()
                                                                                                                         Models and their performance
        Gradient Boosting Classifier - After hyper parameter tuning
                                      XG Boost Classifie
                               Gradient Boosting Classifier
                                              SVM 2
                                             SVM 1
                                        Decision Tree 2
```

0.4 0.5 F1 Score of classifiers

Home Page:

Type here to search

O H 🦮 🚆 🗞 📴 🥲 🖄 🧳 🧳

Sign Up:


```
File Edit Selection View Go Run Terminal Help
                                                                                                                                                                signup.html - SoftComputingProject - Visual Studio Code
                                                                                                                                                                                                                                                                                                                                                                                     - o ×
                                                                                                                                                                                                                                                                                                                                                                                              ь ш ...
             o signup.html ×
                    1 <!DOCTYPE html>
                      2 <html lang="en">
                             <head>
                                         <meta charset="UTF-8">
                                       P
                   10
                   11
                   13
                               </head>
                   14
                               kbody class="signin-body"
                   15
                               <div>
                   16
                                         <nav class="navbar navbar-light navbar-expand fixed-top nav-custom">
                   17
                                                    <a class="navbar-brand" href="home.html">
                                                              < img src = \underbrace{\{\{url\_for('static',filename'assets/healthcare-2.png')\}\}^{m}}_{} width = "30" height = "30" class="d-inline-block align-line-block align-line-bl
                   18
                   19
                                                             Healthyfy
                   21
                                                   <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNavDropdown" aria-controls="navbarNavDropdown"</pre>
                                                             <span class="navbar-toggler-icon"></span>
                                                    </button>
                                                    <div class="collapse navbar-collapse" id="navbarNavDropdown">
                   24
                                                             <div class="my-2 my-1g-0">
                   26
                                                                        <button type="button" class="btn btn-primary btn-sm" onclick="location.href='/signin';">Sign In</button>
                                                               </div>
                                                    </div>
                  28
                  29
                               </div>
 0
                               <div class="container signin-container" style="padding-bottom: 18px">
⊗ 0 △ 0
                                                                                                                                                                                                                                                                                               Ln 14, Col 27 Spaces: 4 UTF-8 CRLF HTML @ Go Live & C
```

Prediction Page:


```
🖈 File Edit Selection View Go Run Terminal Help coronary-heart-disease-prediction.html - SoftComputingProject - Visual Studio Code
                                                                                                                                                                                 o coronary-heart-disease-prediction.html ×
                                                                                                                                                                                 ▷ ጠ ...
                             var agef = document.forms["myForm"]["age"].value;
         42
         43
                             if(agef >=18 && agef<=100)
go
                                 validage=true;
<u></u>
         46
         47
                             else
         48
                                  alert(" This website is only for people aged 18 and above");
                                  validage=false;
         51
                            // var smokec = document.forms["myForm"]["smoking_yes"].value;
// var smokeno=document.forms["myForm"]["smoking_no"].value;
var numofcigars = document.forms["myForm"]["num_cigars"].value;
         52
         53
         55
                             if (numofcigars >=0 && numofcigars <=100)
         56
         57
                                 validcigars=true;
         58
         59
         60
                                  alert("Please enter number of cigars/day ranging from 0 to 100");
         61
                                  validcigars=false;
         62
         64
                             if(document.getElementById('smoking_yes').checked==true)
         65
                                  if(numofcigars>0)
         66
         68
                                  checksmoke=true;
         69
                                  if(numofcigars<=0)
         70
         71
                                       alert("You checked 'YES' for smoking and Number of cigars/day value is invalid");
 0
                                                                                                                                        Ln 1. Col 1 Spaces: 4 UTF-8 CRLF HTML @ Go Live & C
```

```
coronary-heart-disease-prediction.html - SoftComputingProject - Visual Studio Code
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                o x
🛪 File Edit Selection View Go Run Terminal Help
                  o coronary-heart-disease-prediction.html ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ▷ □ …
                      255 <body>
                      256 <div>
                                                     <nav class="navbar navbar-light navbar-expand fixed-top nav-custom">
                                                                  <a class="navbar-brand" href="home.html">
 D
                                                                                   < img \ src="\underline{\{\{url\_for('static', \ filename='assets/healthcare-2.png')\}\}}" \ width="30" \ height="30" \ class="d-inline-block \ align="10" \ height="30" \ class="d-inline-block \ align="10" \ height="30" \ he
                      259
                       260
                                                                                Healthyfy
                      261
                                                                     kbutton class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNavDropdown" aria-controls="navbarNavDropdown" aria-co
                                                                                   <span class="navbar-toggler-icon"></span>
                       263
                                                                     </button>
                       264
                                                                     <div class="collapse navbar-collapse" id="navbarNavDropdown">
                      265
                       266
                                                                                   267
                                                                                                  268
                                                                                                              <a class="nav-link" href="/homeredirect">Home</a>
                                                                                                  269
                       270
                                                                                                 <a class="nav-link" href="/homeredirect#about-us">About Us</a>
                                                                                                  <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownMenuLink" role="button" data-toggle="dropdown" a</pre>
                                                                                                                            Tools
                       276
                                                                                                               <div class="dropdown-menu" aria-labelledby="navbarDropdownMenuLink">
                                                                                                                           278
                       279
                                                                                                                 </div>
                       281
                                                                                                  282
                       283
                                                                                                               285
                                                                                                                                                                                                                                                                                                                                                                                            Ln 1, Col 1 Spaces: 4 UTF-8 CRLF HTML @ Go Live 尽 🕻
```

Results and Analysis:

People with hyper tension and a record of previous strokes have high risk of getting a heart stroke in the future 10 years. The distribution of people with heart diseases is wider between the ranges of 5 to 10 cigarettes per day. Cigarette smoking is highly dangerous and can cause heart diseases if it is done regularly. It is observed that aged people who are suffering from hypertension are more in numbers who have the risk of getting the disease. Younger people with no hypertension are not prone to get this disease. Therefore, age is positively correlated with coronary heart disease variable. It is also observed that, men are more prone to getting this disease compared to women. People with smoking and drinking habits are mostly men. Alcohol consumption and number of cigarettes per day are also contributing factors for the heart disease. Having high glucose levels is also dangerous as people with diabetes.

Conclusion:

From our experiment, it is clearly visible that Out of all the models used, **Logistic Regression** came out to be the best, followed by Gradient Boosting Classifier, Random Forest, XG Boost Classifier, SVM, Stacking Classifier and Decision Tree. But we implemented **Gradient Boosting Classifier** in our website, because of Logistic Regression was already existing in many projects. And we have successfully created a full stack website with the application of this model. This project, heart disease prediction has a great scope since Logistic Regression can predict if a person will have heart disease or not with an accuracy of 85.5%.

References

- Mythili T, Dev Mukherjee, Nikitha padiala, Abhiram Naidu. A Heart Disease Prediction Model using SVM-Trees-Logistic Regression. 2013
- 2. Sharma Purushotham, Dr. Kanak Saxena, Richa Sharma. Efficient Heart Disease Prediction.2016.
- 3. Boshra Brahmi. Prediction and Diagnosis of Heart Disease by Data Mining Techniques.2015.
- 4. Noura Ajam. Heart Disease Diagnoses using Artificial Neural Network. 2015
- 5. Wiharato Wharto, Hari Kusnanto, Herianto. Intelligence System for Diagnosis Level of Coronary Heart Disease with K-Star Algorithm.2016
- 6. Mr. P Sai Chandrasekhar Reddy, Mr. Puneet Palagi, Ms. Jaya. Heart Disease Prediction Using ANN Algorithm in Data Mining. 2017.
- 7. SP Rajamohana, C Akalya Devi, Uma Maheswari. Analysis of Neural Networks Based Heart Disease Prediction System.2018.
- 8. Bo Jin, Chao Che et al. Predicting the Risk of Heart Failure with EHR Sequential Data Modeling.2018.
- Sabrina Mezzatesta, Claudia Torino, Pasquale De Meo, Giacomo Fiumara, Antonio Vilasi. A
 Machine Learning-based approach for predicting the outbreak of cardiovascular diseases in
 patients on dialysis. 2019.
- 10. Avinash Golande, Pavan Kumar T. Heart Disease Prediction Using Effective Machine Learning Techniques. 2019.
- 11. Khaled Mohamad Amulstafa . Prediction of heart disease and classifier's sensitivity analysis.2020.
- 12. Devansh Shah, Samir Patel, Santosh Kumar Bharti. Heart Disease Prediction using Machine Learning Techniques.2020.
- 13. Nilam Harkulkar, Swati Nadkarni, Bhavesh Patel. Heart Disease Prediction using CNN, Deep Learning Model.2020.
- Harshit Jindal, Sarthak Agarwal, Rishabh Khera, Rachna Jain, Preeti Nagrath. Heart Disease
 Prediction using Machine Learning Algorithms. 2021
- 15. Xiao-Yan Gao, Abdelmegeid Amin, Hassan Shaban Hassan, Eman M.Anwar. Improving the Accuracy for Analyzing Heart Disease Prediction based on Ensemble Method. 2021

- 16. Jaymin Patel, Samir B Patel, TejalUpadhyay. Heart Disease Prediction using Machine Learing and Datamining Technique. 2016.
- 17. R Chitra, V Sreenivasagam. Review of heart disease prediction system using data mining and hybrid intelligent techniques. 2013.
- Jayshri S. Sonawane, D. Patil. Prediction of Heart Disease using Vector Quantization Algorithm. 2014
- 19. Sivagowry S, Dr. Durairaj.M. An Empirical study on applying data mining techniques for the analysis and prediction of heart disease. 2014.
- 20. Ilayaraja M, Meyyappan T. Efficient Data Mining Method to Predict the Risk of Heart Diseases Through Frequent itemsets. 2015.
- 21. Prachi Paliwal, Mahesh Malviya. Prediction for Heart Attack Problem Using Various Classification. 2015.
- 22. Aswhini Shetty, Chandra Naik. Different Data Mining Approaches for Predicting Heart Disease. 2016.
- 23. Prajakta Ghadge, Vrushali, Kajal, Prajakta Deshmukh. Intelligent Heart Attack Prediction System Using Big Data. 2016.
- 24. Azam Dekamin, Ahmad Shaibatalhamdi. A Datamining approach for coronary artery Disease prediction. 2017.
- 25. Shashikanth R, Chetankumar P. Predictive Model of cardiac arrest in smokers using machine learning based on heart rate variability parameter. 2020
- 26. Galla Siva Sai Bindhika, Munaga Meghana, Mnachuri Sathvika Reddy, Rajalakshmi. Heart Disease Prediction Using Machine Learning Techniques. 2020
- Apurb Rajdhan, Milan Sai, Avi Agarwal, Dundigulla Ravi. Heart Disease Prediction Uisng Machine Learning. 2020
- 28. Anusha MB, Chaitra K, Chandana HM, Kiran G, Swathi D. Heart Disease Prediction Using Machine Learning Techniques. 2020
- 29. Li Yang, Hiabin Wu, Xiaoqing Jin, Pinpin Zheng, Shiyun Hu, Xiaoling Xu, Wei Yu, Jing Yan. Study of Cardiovascular Disease prediction Model based on random forest. 2020.
- 30. Amin Yazdani, Kasturi Dewi Varathan, Yin Kia Chiam, Asad Waqar Malik, Wan Azman Wan Ahamd. Identification of significant features and data mining techniques in predicting heart disease. 2018

