Adversarially Constrained Autoencoder Interpolations using Wasserstein Autoencoder

Machine Learning

Lorenzo Palloni

University of Florence

lorenzo.palloni@stud.unifi.it

April 16, 2020

Introduction

- Unsupervised Learning context
- we aim to obtain "high-quality" interpolations
- interpolations example:

ooo INSERT AN IMAGE HERE ooo

Motivation

- uncover underlying structure of dataset
- ullet better representations o better results in other tasks

- An "high-quality" interpolation point have two characteristics:
 - is indistinguishable from real data
 - represent a semantically smooth morphing between the endpoints

Techniques implemented (using pytorch)

- ACAI (Adversarially Constrained Autoencoder Interpolations)
- WAE (Wasserstein Autoencoder)
- WWAE (Wasserstein-Wassertein Autoencoder)

ACAI

WAE

WWAE

Results on MNIST

Problems encoutered

Other applications

Conclusion

Appendix - Wasserstein distance

Appendix - Maximum Mean Discrepancy

Appendix - Inverse Multiquadratic kernel

Appendix - Frechèt distance between two Multinormals

Conclusion

- Entity Embedding is an useful technique to put into your toolbox;
- in some situations can lead to a **crucial** saving in computational resources.

References

Guo, C., & Berkhahn, F. (2016). Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (pp. 265-283).

18 / 24