2020节能减排大赛

基于人工智能的物联网水上清污船

团队成员:张皓源,姜帅康,刘星,李东

汇报人: 邹子宁

目录

01 选题背景

02 环保需求

03 视频展示

04 作品介绍

选题背景

水面垃圾清理难 整治耗费资源大 整治实际效果差 二次污染易多发

环保需求

立口力势 / 到口 \	收集储存装置特征		715 =1-71	□ I/- 1 米/r	
产品名称(型号)	装载方式	装载体积(m³)	一驱动方式	操作人数	
垃圾打捞运输船	人工持网操作	8	艉轴螺旋桨	1	
漂浮物打捞运输船	吊网式半人工操作	10.4	明轮	2	
GJ-H-A	巨型折叠引导板收集	3	艉轴螺旋桨	2	
清洁船	泵吸式收集	5	喷水造流	1~2	
FCQX10-8B	传送带式收集	1.5	明轮	1~2	
清理船	机械铲斗式收集	7.4	艉轴螺旋桨	1	

当前缺陷

人力资源消耗严重 小型、危险水域无法清理 化石燃料易造成二次污染 垃圾清理困难

自动巡航,路径规划体积小巧,安全稳定清洁能源,配套船坞视觉识别,后台定位

作品展示

整体介绍

模块介绍-电路控制

模块介绍-罗盘

模块介绍-视觉识别

模块介绍-垃圾清理

模块介绍-磁吸充电

配件介绍-船坞

续航能力分析

名称	电池种类	电池容量	额定 电流 大小	充电时长	工作时长
清污船	航模锂电池	9000mAH	10A	2h	3h
船坞	铅蓄电池	200AH	2A	24h	40h

创新点

- 1) 该船体采用双体船加半潜船的设计,降低了船只重量,提高了船体稳定性,大大降低了船体建材的使用,有效降低了成本。
- 2) 采用船坞加船的配套组合,使船体下水方便,通过磁吸充电的方式,大大提高船体的整体续航能力。
- 3) 船只可以实现自主巡航、实时画面回传监控、路线规划,减少人力消耗。
- 4) 使用视觉识别的方式来定位水上漂浮垃圾,并可以在靠近船坞附近时实现自主定位回航。

THANKS

恳请各位老师批评指导!