ПРОИЗВОДЯЩИЙ ОПЕРАТОР ДИФФУЗИИ ИТО

Определение №1:

Однородная во времени диффузия Ито - это стохастический процесс $X_t(\omega) = X(t,\omega) : [0,\infty) \times \Omega \to \mathbb{R}^n$, удовлетворяющий стохастическому дифференциальному уравнению вида:

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t$$

где

- 1. t > s
- 2. $X_s = x$
- 3. B_t m мерное Броуновское движение
- $4. b: \mathbb{R}^n \to \mathbb{R}^n$
- 5. $\sigma: \mathbb{R}^n \to \mathbb{R}^{n \times m}$

Такой процесс обязан удовлетворять свойству:

$$|b(x) - b(y)| + |\sigma(x) - \sigma(y)| \le D|x - y|; x, y \in \mathbb{R}^n$$

и
$$|\sigma|^2 = \sum_{i=1}^n \sum_{j=1}^m |\sigma_{i,j}|^2$$

Определение №2:

Пространство C^k - пространство функций, в котором k - ая производная непрерывна.

Определение №3:

Носитель функции $u:X\to\mathbb{R}$ - замыкание подмножества X на котором вещественнозначная функция u не обращается в 0.

$$supp\left(u\right) =\overline{\left\{ x:u\left(x\right) \neq 0\right\} }$$

Определение №4:

Пусть $\{\mathcal{N}_t\}$ возрастающее семейство сигма-алгебр помножеств Ω . Функция $\tau:\Omega\to[0,\infty]$ называется моментом остановки относительно $\{\mathcal{N}_t\}$ если

$$\{\omega : \tau(\omega) \le t\} \in \mathcal{N}_t; \forall t \ge 0$$

Определение №5:

Пусть $\{X_t\}$ - однородная во времени диффузия Ито на \mathbb{R}^n . Производящий оператор A случайного процесса X_t при $x \in \mathbb{R}^n$ определяется формулой:

$$Af(x) = \lim_{t\downarrow 0} \frac{\mathbb{E}^{x} \left[f(X_{t}) \right] - f(x)}{t}$$

Определение №6:

Пусть $S\subseteq\mathbb{R}$. Пусть $\xi\in\mathbb{R}$ и пусть $S_\xi:=\{x:x\in S,x\neq\xi\}$, тогда ξ - предельная точка, тогда и только тогда, когда ξ нулевое расстояние от S_ξ . Под расстоянием подразумевается - расстояние $d\left(x,S_\xi\right)=\inf_{y\in S_\xi}d\left(x,y\right)$ в некотором метрическом пространстве.

Определение №7:

Пусть M=(S,d) - метрическое пространство. Пусть τ - топология, индуцированная, метрикой d. Пусть $A\subseteq S$ - подмножество S. Положим $\alpha\in S$. α является предельной точкой A тогда и только тогда, когда каждая проколотая ϵ - окрестность $B_{\epsilon}(\alpha)-\{\alpha\}$ содержит точку в A.

$$\forall \epsilon \in \mathbb{R}_{>0} : (B_{\epsilon}(\alpha) - \{\alpha\}) \cap A \neq \emptyset$$

То есть

$$\forall \epsilon \in \mathbb{E}_{>0} : \{x \in A : 0 < d(x, \alpha) < \epsilon\} \neq \emptyset$$

Заметим, что lpha не обязан быть элементом из A, чтобы являться предельной точкой.

Определение №7:

Пусть (X, \mathcal{T}) - топологическое пространство. Пусть $A \subseteq X$. Мы называем множество \overline{A} замыканием, если $x \in \overline{A}$, тогда и только тогда, когда для любого открытого множества U, содержащего $U \cap A \neq \emptyset$. Или символьно:

$$\overline{A} := \{ x \in X : \forall U \in \mathcal{T} : x \in U, U \cap A \neq \emptyset \}$$

Лемма №8:

Пусть $Y_t = Y_t^x$ - процесс Ито на \mathbb{R}^n в форме (B - m-мерный процесс)

$$Y_t^x(\omega) = x + \int_0^t u(s,\omega) \, ds + \int_0^t v(s,\omega) \, dB_s(\omega)$$

Пусть $f \in C_0^2(\mathbb{R}^n)$ - пространство дважды дифференцируемых функций, для которых вторая производная непрерывна и для которых существует компактный носитель. Пусть τ - момент остановки относительно $\left\{\mathcal{F}_t^{(m)}\right\}$ и пусть $\mathbb{E}^x\left[au\right]<\infty$. Пусть $u\left(t,\omega\right)$ и $v\left(t,\omega\right)$ ограничены на множестве (t,ω) , так, что Y_t принадлежит носителю f. Тогда

$$\mathbb{E}^{x}\left[f\left(Y_{\tau}\right)\right] = f\left(x\right) + \mathbb{E}^{x}\left[\int_{0}^{\tau}\left(\sum_{i}u_{i}\left(s,\omega\right)\frac{\partial f}{\partial x_{i}}\left(Y_{s}\right) + \frac{1}{2}\sum_{i,j}\left(vv^{T}\right)_{i,j}\left(s,\omega\right)\frac{\partial^{2} f}{\partial x_{i}\partial x_{j}}\left(Y_{s}\right)\right)ds\right]$$

где \mathbb{E}^x - ожидание относительно естественного закона вероятности R^x процесса Y_t , с инициализацией в точке x:

$$R^{x}\left[Y_{t_{1}} \in F_{1},...,Y_{t_{k}} \in F_{k}\right] = \mathbb{P}^{0}\left[Y_{t_{1}}^{x} \in F_{1},...,Y_{t_{k}}^{x} \in F_{k}\right]$$

где F_i - Борелевское множество:

Доказательство:

1. Пусть $Y_t = Y_t^x$ - процесс Ито на \mathbb{R}^n для m-мерного Броуновского движения в следующей форме:

$$Y_t^x(\omega) = x + \int_0^t u(s,\omega) ds + \int_0^t v(s,\omega) dB_s(\omega)$$

- 2. Пусть $f \in C_0^2(\mathbb{R}^n)$
- 3. Пусть au момент остановки относительно $\left\{\mathcal{F}_t^{(m)}\right\}$ для которого $\mathbb{E}^x\left[au
 ight]<\infty$
- 4. Пусть $u(t,\omega)$ и $v(t,\omega)$ ограничены $\forall (t,\omega) \in [0,\infty) \times \Omega$ таким образом, что Y_t лежит на множестве компактного носителя функции f
- 5. Пусть $Z=f\left(Y\right)$, где $Y=\left(Y_{1},...,Y_{n}\right)$ и $B=\left(B_{1},...,B_{m}\right)$. Применим к этой функции Лемму Ито:

$$dZ = (\nabla_Y f)^T dY + \frac{1}{2} Y^T (H_Y f) Y$$

$$= (\nabla_Y f)^T (udt + vdB) + \frac{1}{2} (udt + vdB)^T (H_Y f) (udt + vdB)$$

$$= (\nabla_Y f)^T udt + (\nabla_Y f)^T vdB + \frac{1}{2} (vdB)^T (H_Y f) (vdB)$$

$$= \left\{ (\nabla_Y f)^T udt + \frac{1}{2} Tr \left[v^T (H_Y f) v \right] \right\} dt + (\nabla_Y f)^T vdB$$

6. Уравнение в (5) - это представление интеграла Ито в дифференциальной форме:

$$f(Y_t) = f(Y_0) + \int_0^t \left\{ (\nabla_Y f)^T u dt + \frac{1}{2} Tr \left[v^T (H_Y f) v \right] \right\} ds + \int_0^t (\nabla_Y f)^T v dB_s$$

7. Применяя оператор ожидания и теоремы 3.2.1 к (6) получим, что

$$\mathbb{E}^{x} [f(Y_{\tau})] = \mathbb{E}^{x} \left[f(Y_{0}) + \int_{0}^{\tau} \left\{ (\nabla_{Y} f)^{T} u + \frac{1}{2} Tr \left[v^{T} (H_{Y} f) v \right] \right\} ds + \int_{0}^{\tau} (\nabla_{Y} f)^{T} v dB_{s} \right]
= f(Y_{0}) + \mathbb{E}^{x} \left[\int_{0}^{\tau} \left\{ (\nabla_{Y} f)^{T} u + \frac{1}{2} Tr \left[v^{T} (H_{Y} f) v \right] \right\} ds \right] + \mathbb{E}^{x} \left[\int_{0}^{\tau} (\nabla_{Y} f)^{T} v dB_{s} \right]
= f(Y_{0}) + \mathbb{E}^{x} \left[\int_{0}^{\tau} \left\{ (\nabla_{Y} f)^{T} u + \frac{1}{2} Tr \left[v^{T} (H_{Y} f) v \right] \right\} ds \right]$$

8. Ч.Т.Д.

Теорема 8

Пусть X_t - диффузионный процесс Ито

$$dX_{t} = b(X_{t}) dt + \sigma(X_{t}) dB_{t}$$

Если $f \in C_0^2(\mathbb{R}^n)$, то $f \in \mathcal{D}_A$ и

$$Af(x) = (\nabla_X f)^T b(X_t) + \frac{1}{2} Tr \left[\sigma^T (X_t) (H_X f) \sigma(X_t) \right]$$

Доказательство:

1. Пусть X_t - диффузионный процесс Ито:

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t$$

- 2. Пусть $f \in C_0^2(\mathbb{R}^n)$
- 3. По определению \mathcal{D}_A пространство функций, таких, что для любой функции $f \in \mathcal{D}_A$, для любой точке $x \in \mathbb{R}^n$ существует следующий предел:

$$Af(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}^{x} \left[f(X_{t}) \right] - f(x)}{t}$$

4. Используя (1), лемму 7, теорему Фубини и теорему Ньютона Лейбница, получим, что

$$Af(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}^{x} \left[f\left(X_{t}\right) \right] - f\left(x\right)}{t}$$

$$= \lim_{t \downarrow 0} \frac{f\left(x\right) + \mathbb{E}^{x} \left[\int_{0}^{t} \left\{ \left(\nabla_{X} f\right)^{T} b\left(X_{s}\right) + \frac{1}{2} Tr\left[\sigma^{T}\left(X_{s}\right) \left(H_{X} f\right) \sigma\left(X_{s}\right)\right] \right\} ds \right] - f\left(x\right)}{t}$$

$$= \lim_{t \downarrow 0} \frac{\mathbb{E}^{x} \left[\int_{0}^{t} \left\{ \left(\nabla_{X} f\right)^{T} b\left(X_{s}\right) + \frac{1}{2} Tr\left[\sigma^{T}\left(X_{s}\right) \left(H_{X} f\right) \sigma\left(X_{s}\right)\right] \right\} ds \right]}{t}$$

$$F_{ubini} = \lim_{t \downarrow 0} \frac{\int_{0}^{t} \mathbb{E}^{x} \left\{ \left(\nabla_{X} f\right)^{T} b\left(X_{s}\right) + \frac{1}{2} Tr\left[\sigma^{T}\left(X_{s}\right) \left(H_{X} f\right) \sigma\left(X_{s}\right)\right] \right\} ds}{t}$$

$$= \mathbb{E}^{x} \left\{ \left(\nabla_{X} f\right)^{T} b\left(X_{t}\right) + \frac{1}{2} Tr\left[\sigma^{T}\left(X_{t}\right) \left(H_{X} f\right) \sigma\left(X_{t}\right)\right] \right\}$$

5. Ч.Т.Д.