Data Structures and Algorithms Bloom Filters

CS 225 G Carl Evans

April 25, 2025

Department of Computer Science

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of objects *in a memory-constrained environment*?

Constrained by Big Data (Large N)

Sky Survey Projects	Data Volume
DPOSS (The Palomar Digital Sky Survey)	3 TB
2MASS (The Two Micron All-Sky Survey)	10 TB
GBT (Green Bank Telescope)	20 PB
GALEX (The Galaxy Evolution Explorer)	30 TB
SDSS (The Sloan Digital Sky Survey)	40 TB
SkyMapper Southern Sky Survey	500 TB
PanSTARRS (The Panoramic Survey Telescope and Rapid Response System)	~ 40 PB expected
LSST (The Large Synoptic Survey Telescope)	~ 200 PB expected
SKA (The Square Kilometer Array)	~ 4.6 EB expected

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB

Image: https://doi.org/10.1038/nature03597

Bloom Filter: Insertion

 $S = \{ 16, 8, 4, 13, 29, 11, 22 \}$

h(k) = k % 7

- 0 0
- 1 0
- 2 0
- 3 0
- **4** 0
- 5 0
- 6 0

Bloom Filter: Insertion

An item is inserted into a bloom filter by hashing and then setting the hash-valued bit to 1

If the bit was already one, it stays 1

Bloom Filter: Search

```
S = { 16, 8, 4, 13, 29, 11, 22 } _find(16)
```

h(k) = k % 7

```
0112130
```

4 1

5 0

6 1

_find(20)

_find(3)

Bloom Filter: Search

The bloom filter is a *probabilistic* data structure!

If the value in the BF is 0:

If the value in the BF is 1:

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive:

False Positive:

False Negative:

True Negative:

Imagine we have a **bloom filter** that **stores malicious sites...**

Bit Value = 1 Bit Value = 0 H(z)H(z)'Yes' 'No' True Positive False Negative H(z)H(z)'Yes' 'No' True Negative False Positive

Item Inserted

Item NOT inserted

Probabilistic Accuracy: One-sided error

Probabilistic Accuracy: One-sided error

Use many hashes/filters; add each item to each filter

 h_1

 h_2

Use many hashes/filters; add each item to each filter

 h_1

Use many hashes/filters; add each item to each filter

	0		0		0
	1		0		1
	0		0		1
	1		1		1
	0		0		0
	0		0	h_3	0
	0		0		1
	1		1		1
h_1	0	h_2	0		0
''1	1		1		1
	1		0		1
	0		0		0
	1		1		1
	0		1		0
	1		1		1
	1		0		1
	0		0		0
	1		1		1
	0		0		0
	1		0		1

Use many hashes/filters; add each item to each filter

		,						
	0		0		0			0
	1		0		1			1
	0		0		1			1
	1		1		1			1
	0		0		0			1
		0		0			1	
	0		0	h	1			0
	1		1		1			0
h_1	0	h_2	0		0		h.	0
''1	1 12	1	h_3	1		h_k	1	
	1		0		1			0
	0		0		0			1
	1		1		1			0
	0		1		0			0
	1		1		1			1
	1		0		1			1
	0		0		0			1
	1		1		1			1
	0		0		0			1
	1		0		1			1

0	
1	
0	
1	
0	
0	
0	
1	
0	
1	
1	
0	
1	
0	
1	
1	
0	
1	
0	
1	

0	
0	
0	
1	
0	
0	
0	
1	
0	
1	
0	
0	
1	
1	
1	
0	
0	
1	
0	
0	

$$h_{\{1,2,3,\ldots,k\}}(y)$$

Using repeated trials, even a very bad filter can still have a very low FPR!

If we have k bloom filter, each with a FPR p, what is the likelihood that **all** filters return the value '1' for an item we didn't insert?

But doesn't this hurt our storage costs by storing k separate filters?

	0		0		0			0
	1		0		1			1
	0		0	1			1	
	1				1			1
	0	0		0			1	
	0		0		0			1
	0		0		1			0
	1		1		1			0
h_1	0	h_{-}	0	h_3	0	··· <i>k</i>	$ l_k $	0
''1	1	h_2	1		1		${}^{\iota} \mathcal{K} $	1
	1		0		1			0
	0		0		0			1
	1		1		1			0
	0		1		0			0
	1		1		1			1
	1		0		1			1
	0		0		0			1
	1		1		1			1
	0		0		0			1
	1		0		1			1

Rather than use a new filter for each hash, one filter can use k hashes

$$S = \{ 6, 8, 4 \}$$

$$h_1(x) = x \% 10$$
 $h_2(x) = 2x \% 10$ $h_3(x) = (5+3x) \% 10$

$$h_3(x) = (5+3x) \% 10$$

9

Rather than use a new filter for each hash, one filter can use k hashes

```
0 0 h<sub>1</sub>(x) = x % 10 h<sub>2</sub>(x) = 2x % 10 h<sub>3</sub>(x) = (5+3x) % 10

1 0
2 1
3 1
4 1
5 0
6 1
7 1
8 1
```

Bloom Filter

A probabilistic data structure storing a set of values

 $H = \{h_1, h_2, \dots, h_k\}$

Built from a bit vector of length m and k hash functions

Insert / Find runs in: _____

Delete is not possible (yet)!

Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?

Given bit vector of size m and 1 SUHA hash function

What's the probability a specific bucket is 1 after one object is inserted?

Same probability given k SUHA hash function?

Given bit vector of size m and k SUHA hash function

Probability a specific bucket is 0 after one object is inserted?

After n objects are inserted?

m

Given bit vector of size m and k SUHA hash function

What's the probability a specific bucket is ${\bf 1}$ after n objects are inserted?

 $h_{\{1,2,3,...,k\}}$

Given bit vector of size m and k SUHA hash function

What is our expected FPR after n objects are inserted?

The probability my bit is 1 after n objects inserted

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

The number of [assumed independent] trials

m

Vector of size m, k SUHA hash function, and n objects

To minimize the FPR, do we prefer...

(A) large k

(B) small k

$$\left(1-\left(1-\frac{1}{m}\right)^{nk}\right)^k$$

