Sequences	
Sketch and state = $ax f(x) = x^2$	the domain by g(x)= x/(x+1)
Sketch the above if the	domain is restricted
to the Natural Numl	36\Z
Notation $a) a_n = n^2$	b) bn= n/cn+1)
Ends,	or €n/(n+1)3, or €n/(n+133
2 n 5	€n/(n+135

Defini An ir	tioni finite sea	qvence is	s a func	Fron	
				tive integer.	
				terms of	
	sequence:				
a) n^2	$\frac{2}{1}$	Ь)		(De cos	£11.71
	COS (NTT)	3			
	• · · · · · · · · · · · · · · · · · · ·				
How a) €	do the foll	owing graf	ohs of Juc b E	sequences n/(n+1)}	differ?

lim an=L. provided the values of an
get closer and closer to L as $n \to \infty$.
We say that the sequence & an's converges
, to L, and Ean's is called a convergent
segvence.
Note: What this means graphically is that
only a finite number of elements of
Ean's may be outside the "lane" determined
by (L-E, L+E) for any value of E.
-L-E
It there does not exist such L, then
Ean's Liverges, and is called a divergent
segvence.

Determine whether the following
Sequences have limits:
a) $1/2^n$ b) $(n^2+2)/(2n^2+3n+7)$
c) (-1)n d) (-1)n/n
e) $(n^2+1)/(n-1)$
Note in the case of e) we write
"diverges to ∞".
· · · · · · · · · · · · · · · · · · ·
,

Limit Theorems, It lim $a_n = A$, $\lim_{n \to \infty} b_n = B$ then I. $\lim_{n \to \infty} (ka_n) = n \to \infty$ 2. $\lim_{n\to\infty} (a_n \pm b_n) =$ 3. lim (an bn)=
n→∞ 4. Assuming $B \neq 0$, $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) =$ Sequences can also be given recursively, Fibonacci Sequence $a_{1} = 1$ $a_{1} = a_{n-1} + a_{n-2} + a_{n-2} = n \ge 3$ To find the limit of this sequence we need more tools,

Limit Squeeze Theorem
It an $\leq b_n \leq c_n$ for $n \geq N$, and
$\lim_{h \to \infty} a_n = L = \lim_{h \to \infty} c_n \text{then } \lim_{h \to \infty} b_n = L_1$
Application & n!/nn3
Monotonis Sequences!
Earlis Monotonic increasing if aptitan for all n21
Earlis Monotonic decreasing it anti Lan for all nZl
Bounded Sequences!
U is an upper bound of Ean's iff an EU for all nz.
EN is a lower bound of Eans iff an = V for all n = 1
Ean's is a bounded sequence it it has
both an upper and lower bound.

To show a lower bound, show $a_n-V \ge 0$ If an upper bound, show $U-a_n \ge 0$ If I monotonic increasing $a_{n+1}-a_n \ge 0$ If I decreasing $a_n-a_{n+1} \ge 0$
If a sequence is monotonic increasing and
is bounded above, then it is convergent.
Similarly if a sequence is bounded below and
monotic decreasing, then it is convergent.
Example Exhibit $a_1 = \sqrt{2}$ $a_{1} = \sqrt{2}$ $a_{1} = \sqrt{2}$
First show bounded.

•