Teoría de Integración

Basado en las clases impartidas por Santiago Saglietti en el segundo semeste del 2025

Contents

1	Inte	gral de Riemann	2
	1.1	Clase 1 $(04/08)$	2
	1.2	Clase 2 (06/08)	3
	1.3	Clase 3 (07/08)	4
	1.4	Clase 4 (08/08)	6
		1.4.1 Limitaciones de la integral de Riemann	6
		1.4.2 Clase 5 (18/08)	8
	1.5	Clase 6 (20/08)	10
			12
	1.7	Clase 8 (25/08)	14
	1.8	Clase 9 (27/08)	16
			18
	1.10	Clase 11 (01/09)	21
			23
	1.12	Clase 16 (12/09)	25

Chapter 1

Integral de Riemann

1.1 Clase 1 (04/08)

Definición 1.1 (partición + intervalos). Una partición de un intervalo $[a,b] \subseteq \mathbb{R}$ es un subconjunto finito $\Pi \subseteq [a,b]$ tal que $a,b \in \Pi$. Denotaremos a las particiones como $\Pi = \{x_0,\ldots,x_n\}$, donde $a=x_0 < x_1 < \cdots < x_n = b$. Los intervalos $I_i = [x_{i-1},x_i], \ i=1,\ldots,n$ serán llamados intervalos de la partición.

Observación. A veces, identificaremos la partición Π con $(I_i)_{i=1,...,n}$. En tal caso, abusando de la notación, escribiremos $I_i \in \Pi$ cuando queramos hablar de los intervalos de Π .

Definición 1.2 (norma de particiones). La norma de una partición Π como $\|\Pi\| \coloneqq \max_{i=1,\dots,n} (x_i - x_{i-1}) = \max_{I_i \in \Pi} |I_i|$.

Definición 1.3 (partición marcada). Una partición marcada de [a,b] es un par $\Pi^* := (\Pi, \varepsilon)$ donde:

- $\Pi = \{x_0, \dots, x_n\}$ es una partición de [a, b];
- $\varepsilon = \{x_1^*, \dots, x_n^*\}$ es una colección de puntos tal que $x_i^* \in I_i$ para cada $i = 1, \dots, n$.

Observación. Dada una partición marcada $\Pi^* = (\Pi, \varepsilon)$, definimos $\|\Pi^*\| := \|\Pi\|$.

Definición 1.4 (Suma de Riemann). Sean $f:[a,b]\to\mathbb{R}$ acotada y $\Pi^*=(\Pi,\varepsilon)$ una partición marcada. Definimos la suma de Riemann de f asociada a Π^* como:

$$S_R(f;\Pi^*) := \sum_{n=1}^n f(x_i^*)(x_i - x_{i-1}) = \sum_{I_i \in \Pi} f(x_i^*)|I_i|.$$

1.2 Clase 2 (06/08)

Definición 1.5 (Riemann integrable). Dada $f:[a,b]\to\mathbb{R}$ acotada, decimos que es Riemann integrable si existe el límite $\lim_{\|\Pi^*\|\to 0} S_R(f;\Pi^*)$. Equivalentemente, $\exists L\in\mathbb{R}$, tal que dado cualquier $\varepsilon>0$, existe $\delta=\delta(\varepsilon)>0$ tal que $\|\Pi^*\|<\delta\Rightarrow|S_R(f;\Pi^*)-L|<\varepsilon$.

Observación. Cuando el límite existe, lo llamamos la integral de Riemann de f en [a,b] y lo notamos $\int_a^b f(x)dx$.

Definición 1.6 (Sumas superior e inferior de Darboux). Dadas $f:[a,b] \to \mathbb{R}$ acotada y $\Pi = (I_i)_{i=1,\dots,n}$ una partición de [a,b], definimos

$$\begin{split} m_{I_i} &\coloneqq \inf_{x \in I_i} f(x), \quad M_{I_i} \coloneqq \sup_{x \in I_i} f(x) \quad \mathbf{y} \\ &\underline{S}(f; \Pi) \coloneqq \sum_{I_i \in \Pi} m_{I_i} |I_i|, \quad \overline{S}(f; \Pi) \coloneqq \sum_{I_i \in \Pi} M_{I_i} |I_i|. \end{split}$$

Llamamos a $\underline{S}(f;\Pi)$ y $\overline{S}(f;\Pi)$ las sumas inferior y superior de Darboux de f con respecto a Π , respectivamente.

Nota. Como $m_{I_i} \leq f(x) \leq M_{I_i}, \ \forall x \in I_i$ para toda partición marcada $\Pi^* = (\Pi; \varepsilon)$, tenemos $\underline{S}(f; \Pi) \leq S_R(f; \Pi^*) \leq \overline{S}(f; \Pi)$.

Definición 1.7 (refinamiento). Diremos que una partición Π' de [a,b] es un refinamiento de otra partición de [a,b], Π , si $\Pi \subseteq \Pi'$. Equivalentemente, si para todo $J_i \in \Pi'$ existe $I_i \in \Pi$ tal que $J_i \subseteq I_i$.

Proposición 1.8. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces,

• Si $\Pi \subseteq \Pi'$ son particiones de [a, b],

$$S(f;\Pi) \le S(f;\Pi'), \quad \overline{S}(f;\Pi) \ge \overline{S}(f;\Pi').$$

• Si Π_1, Π_2 son particiones de [a, b] cualesquiera,

$$S(f;\Pi_1) < \overline{S}(f;\Pi_2)$$

Definición 1.9. Sea $f:[a,b]\to\mathbb{R}$ acotada. Definimos:

- La integral superior (de Darboux) de f como $\overline{\int_a^b} f(x) dx \coloneqq \inf_{\Pi} \overline{S}(f; \Pi)$.
- La integral inferior (de Darboux) de f como $\underline{\int_a^b} f(x) dx \coloneqq \sup_{\Pi} \underline{S}(f;\Pi).$

Teorema 1.10. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces,

$$\int_a^b f(x) dx = \lim_{\|\Pi\| \to 0} \underline{S}(f;\Pi) \quad \text{y} \quad \overline{\int_a^b} f(x) dx = \lim_{\|\Pi\| \to 0} \overline{S}(f;\Pi).$$

Observación. Equivalentemente, para cualquier sucesión $(\Pi_n)_{n\in\mathbb{N}}$ de partición de [a,b] tal que $\|\Pi_n\| \xrightarrow{n\to\infty} 0$, se tiene que

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \underline{S}(f; \Pi_n) \quad \text{y} \quad \overline{\int_{a}^{b}} f(x)dx = \lim_{n \to \infty} \overline{S}(f; \Pi_n).$$

Teorema 1.11. Dada $f:[a,b]\to\mathbb{R}$ acotada, son equivalentes:

- 1. $\int_a^b f(x)dx = \overline{\int_a^b} f(x)dx$ (i.e., f es Darboux integrable).
- 2. f es Riemann integrable.
- 3. $\lim_{\|\Pi\| \to 0} \overline{S}(f; \Pi) S(f; \Pi) = 0.$
- 4. $\forall (\Pi_n)_{n\in\mathbb{N}}$ sucesión de particiones de [a,b] tal que $\|\Pi_n\|\to 0$,

$$\lim_{n \to \infty} \overline{S}(f; \Pi_n) - \underline{S}(f; \Pi_n) = 0.$$

5. $\exists (\Pi_n)_{n \in \mathbb{N}}$ sucesión de particiones de [a, b] tal que

$$\lim_{n \to \infty} \overline{S}(f; \Pi_n) - \underline{S}(f; \Pi_n) = 0.$$

1.3 Clase 3 (07/08)

Nota. Las integrales en el sentido de Darboux y el de Riemann coinciden.

Proposición 1.12. Si $f:[a,b]\to\mathbb{R}$ es monótona, entonces es Riemann integrable.

Observación. Una función monótona tiene discontinuidades numerables.

Proposición 1.13. Si $f:[a,b]\to\mathbb{R}$ es continua, entonces es Riemann integrable.

En particular, existen funciones Riemann integrables con numerables discontinuidades. De hecho, hay ejemplos con c (cardinal del continuo) discontinuidades. No obstante, si f es integral de Riemann, su conjunto de discontinuidades tiene que ser "pequeño".

Teorema 1.14. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces, f es integral de Riemann si y sólo si su conjunto de discontinuidades tiene medida nula.

Definición 1.15 (intervalo). Decimos que un conjunto $I \subseteq \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$ es un intervalo si satisface

 $x, y \in I \Rightarrow z \in I$ para todo $\min x, y \le z \le \max x, y$.

Ejemplo. (y propiedades)

- Dados $a \leq b$ $(a, b \in \mathbb{R})$, los conjuntos (a, b), (a, b], [a, b], [a, b) son intervalos;
- El conjunto vacío es un intervalo ($\emptyset = (a, a)$);
- Los puntos son intervalos. $I = [\lambda, \lambda];$
- La intersección son intervalos de intervalos.

<

Definición 1.16 (intervalo generalizado). Decimos que un conjunto $I \subseteq \mathbb{R}^d$ es un intervalo si puede escribirse como

$$I = \prod_{k=1}^{d} I_k$$

donde cada I_r es un intervalo en \mathbb{R} . La medida de un intervalo $I\subseteq\mathbb{R}^d$ se define como

$$|I| \coloneqq \prod_{k=1}^d |I_k|.$$

Nota. Los intervalos en \mathbb{R}^d heredan las mismas pripiedades en \mathbb{R} :

- Intersección de intervalos en \mathbb{R}^d es intervalo.
- Si $I \subseteq J \subseteq \mathbb{R}^d$ son intervalos, entonces $|I| \le |J|$.

Definición 1.17 (medida nula). Un conjunto $E \subseteq \mathbb{R}^d$ se dice de medida nula si, dado $\varepsilon > 0$, existe una sucesión $(I_n)_{n \in \mathbb{N}}$ de intervalos de \mathbb{R}^d tal que

$$E \subseteq \bigcup_{n \in \mathbb{N}} I_n \quad \text{ y } \quad \sum_{n \in \mathbb{N}} |I_n| < \varepsilon.$$

Ejemplo. (y propiedades)

1. Todo conjunto unitario $\{x\}, (x \in \mathbb{R}^d)$ tiene medida nula;

- 2. Toda unión numerable de conjuntos de medida nula tiene medida nula;
- 3. Cualquier conjunto numerable tiene medida nula;
- 4. Cualquier subconjunto de un conjunto de medida nula tiene medida nula;
- 5. Existen conjuntos no numerables de medida nula:
 - En \mathbb{R}^d con $d \geq 2$, los ejes $\{x : x_1 = 0\}, i = 1, \ldots, d$ tiene medida nula.
 - $\bullet\,$ En $\mathbb{R},$ el conjunto de cantor tiene medida nula.
- 6. $E \subseteq \mathbb{R}^d$ es de medida nula, entonces $\alpha \dot{E}$ tiene medida nula $\forall \alpha \in \mathbb{R}$.
- 7. $E \subseteq \mathbb{R}^d$ es de medida nula, entonces E + v tiene medida nula $\forall v \in \mathbb{R}^d$.
- 8. Si E contiene un intervalo no unitario, entonces no tiene medida nula. Notar que:
 - La vuelta no es válida: $\mathbb{R}\backslash\mathbb{Q}$ no contiene untervalos no unitarios pero no puede tener medida nula.
 - De esto se deduce que si $E \subseteq \mathbb{R}^d$ tiene medida nula. Entonces E^c es denso (no vale la vuelta: $E^c = \mathbb{Q}$).
- 9. $E \subseteq \mathbb{R}^d$ tiene medida nula si y sólo si

$$|E|_e := \inf\{\sum_{n \in \mathbb{N}} |I_n| : E \subseteq \bigcup_{n \in \mathbb{N}} I_n\} = 0, \quad I_n \text{ intervalo } \forall n \in \mathbb{N}.$$

 \Diamond

1.4 Clase 4 (08/08)

Teorema 1.18. Sea $f:[a,b]\to\mathbb{R}$ acotada. Entonces

f Riemann integrable \iff $D_f = \{x \in [a, b] : f$ discontinua en $x\}$ tiene medida nula.

1.4.1 Limitaciones de la integral de Riemann

- 1. Sólo está definida para f acotada y sobre intervalos [a,b] acotados. La teoría de integrales impropias resuelve esto.
- 2. Propiedades del espacio $\mathcal{R}([a,b]) = \{f : [a,b] \to \mathbb{R} : f \text{ Riemann integrable}\}$: Nos gustaría poder definir una noción de convergencia en $\mathcal{R}([a,b])$ tal que

$$f_n \to f \text{ en } \mathcal{R}([a,b]) \Rightarrow \int_a^b f_n \to \int_a^b f \quad \left(\lim \int_a^b f_n = \int_a^b \lim f_n\right).$$

Observación. La convergencia puntal NO cumple esto (punto 2).

Ejemplo (1).

- $f_n := n\chi_{(0,\frac{1}{n}]}$ es Riemann integrable en $[0,1], \ \forall n \in \mathbb{N};$
- $f_n \to f \cong 0$ puntualmente en [0,1];
- $\int_0^1 f_n = 1 \not\to 0 = \int_0^1 f$.

Ejemplo (2).

• Sea $(Q_n)_{n\in\mathbb{N}}$ una enumeración de $\mathbb{Q}\cap[0,1];$

- $f_n := \chi_{\{Q_1, \dots, Q_n\}}$ es Riemann integrable en $[0, 1], \forall n \in \mathbb{N};$
- $f_n \to f \coloneqq \chi_{\mathbb{Q} \cap [0,1]}$ puntualmente en [0,1];
- f no es Riemann integrable. $\underline{\int_0^1} f = 0 \neq 1 = \overline{\int_0^1} f$.

Observación. La convergencia uniforme SÍ cumple esto, pero es demasiado fuerte **Ejercicio** (Guía 1). Sean $(f_n)_{n\in\mathbb{N}}\subset\mathcal{R}([a,b])$ tales que $f_n\to f$ uniformemente en [a,b]. Entonces, $f\in\mathcal{R}([a,b])$ y $\lim_{n\to\infty}\int_a^b f_n=\int_a^b f$. **Ejemplo** (3).

- $f_n(x) := x^n$ en $[0,1], f_n \in \mathcal{R}([a,b]), \forall n \in \mathbb{N}, f_n \to \chi = f$ puntualmente;
- $f \in \mathcal{R}([a,b])$ y $\int_0^1 f_n(x) dx = \frac{1}{n+1} \to 0 = \int_0^1$;
- f_n no converge uniformemente a f.

Resulta que la noción de convergencia "óptima" (la más "débil" que cumple lo que queremos) es la de convergencia en L':

$$f_n \xrightarrow{L'} f$$
 si $\lim_{n \to \infty} \int_a^b |f_n - f| = 0.$

Esta noción de convergencia viene dada por una "norma":

- $||f||_{L'} := \int_a^b |f|$ (recordar que $f \in \mathcal{R}([a,b]) \Rightarrow |f| \in \mathcal{R}([a,b])$);
- $d_{L'}(f,g) := ||f g||_{L'} = \int_a^b |f g|.$

Observación. $\|\cdot\|_{L'}$ no es una norma porque $\|f\|_{L'} = 0 \Rightarrow f = 0$. Decimos que es una *pseudo-norma* y d una *pseudo-métrica*.

 \Diamond

Para arreglar esto, dadas $f,g:[a,b]\to\mathbb{R}$, decimos que son equivalentes y lo notamos $f\sim g$ si $\{x\in[a,b]: f(x)\neq g(x)\}$ tiene medida nula. Resulta que \sim es una relación de equivalencia y, además,

$$f, g \in \mathcal{R}([a, b]), \ f \sim g \Rightarrow \int_a^b f = \int_a^b g.$$

Sea $\overline{\mathcal{R}}([a,b])$ el conjunto de clases de equivalencia de $\mathcal{R}([a,b])$, y denotamos por \overline{f} a la clase de equivalencia de $f \in \mathcal{R}([a,b])$. Con esto, $\|\overline{f}\|_{L'} := \int_a^b |f| dx$ define una norma en $\overline{\mathcal{R}}([a,b])$ que se llama la **norma** L'.

Observación. Hay un problema: $(\overline{\mathcal{R}}([a,b]), \|\cdot\|_{L'})$ NO ES COMPLETO!

3. **TFC:** Si $f \in \mathcal{R}([a,b])$ es continua en $x_0 \in [a,b]$, entonces $F(x) := \int_a^x f(t)dt$ es derivable en x_0 y $F'(x_0) = f(x_0)$. En particular, F es derivable en x y F'(x) = f(x) para todo x salvo un conjunto de medida nula.

1.4.2 Clase 5 (18/08)

Teorema Fundamental del Cálculo: Si $f \in \mathcal{R}([a,b])$ es continua en $x_0 \in [a,b]$, entonces $F:[a,b] \to \mathbb{R}$ dada por $F(x) \coloneqq \int_a^x f(t)dt$ es derivable en $x=x_0$ y vale $F'(x_0) = f(x_0)$. En particular, F'(x) = f(x) salvo quizás por un conjunto de $x \in [a,b]$ de medida nula. O sea, podemos integrar y luego derivar y esto es "casi" como no hacer nada. Pero, tenemos problemas:

1. Este "casi" no puede removerse

Teorema 1.19 (Hankel, 1871). Dado $[a,b] \subseteq \mathbb{R}$, existe $f \in \mathcal{R}([a,b])$ tal que $F(x) := \int_a^x f(t)dt$ no es derivable para ningún x en un subconjunto denso en [a,b] (y, en particular, infinito).

2. A veces no podemos componer en el orden inverso

Teorema 1.20 (Volterra, 1881). Dado $[a,b] \subseteq \mathbb{R}$, existe $f:[a,b] \to \mathbb{R}$ derivable en [a,b], tal que f' es acotada en [a,b] pero $f' \notin \mathcal{R}([a,b])$.

Extendiendo la integral de Riemann

Sean $f:[a,b]\to\mathbb{R}$ acotada y $\Pi=\{x_0,\ldots,x_n\}$ una partición de [a,b]. Definimos:

$$\Phi_{f,\Pi}(x) := m_{I_1} \chi_{[x_0, x_i]}(x) + \sum_{i=2}^n m_{I_i} \chi_{(x_{i-1}, x_i]}(x), \quad m_{I_i} = \inf_{t \in I_i} f(t)$$

$$= m_{I_1} \chi_{\{x_0\}}(x) + \sum_{i=1}^n m_{I_i} \chi_{(x_{i-1}, x_i]}(x)$$

$$\psi_{f,\Pi} := M_{I_1} \chi_{\{x_0\}}(x) + \sum_{i=1}^n M_{I_i} \chi_{(x_{i-1}, x_i]}(x), \quad M_{I_i} = \sup_{t \in I_i} f(t).$$

Observemos que $\Phi_{f,\Pi}(x) \leq f(x) \leq \psi_{f,\Pi}(x) \quad \forall x \in [a,b]$. Además,

$$\int_{a}^{b} \Phi_{f,\Pi}(x) dx = \underline{S}(f,\Pi) \int_{a}^{b} \psi_{f,\Pi}(x) dx = \overline{S}(f,\Pi).$$

En particular, si f es Riemann integrable,

$$\begin{split} \int_a^b f(x) dx &= \overline{\int_a^b} f(x) dx = \inf \left\{ \int_a^b \psi_{f,\Pi} \ : \ \Pi \ \text{partición} \right\} \\ &= \underline{\int_a^b} f(x) dx = \sup \left\{ \int_a^b \Phi_{f,\Pi} \ : \ \Pi \ \text{partición} \right\}. \end{split}$$

Definición 1.21 (función escalonada). Una función $\Phi:[a,b]\to\mathbb{R}$ se dice escalonada si existen $\Pi=\{x_0,\ldots,x_n\}$ partición de [a,b] y $c_1,\ldots,c_n\in\mathbb{R}$ tales que

$$\Phi|_{(x_{i-1},x_i)} \equiv c_i \quad \forall i=1,\ldots,n$$

Notemos que podemos escribir a cualquier función Φ escalonada como

$$\Phi(x) := \sum_{i=1}^{n} c_i \cdot \chi_{(x_{i-1}, x_i)}(x) + \sum_{i=0}^{n} \Phi(x_i) \cdot \chi_{\{x_i\}}(x)$$
$$= \sum_{i=1}^{k} c_j \cdot \chi_{A_j}(x)..$$

donde los A_j son intervalos disjuntos tales que $\bigcup_{j=1}^k A_j = [a, b]$ (se pone una "D" dentro de la unión para denotar que estamos haciendo una unión disjunta).

dentro de la unión para denotar que estamos haciendo una unión disjunta). Si tomamos Φ de la forma $\Phi = \sum_{j=1}^k c_j \cdot \chi_{A_j}$ con $(A_j)_{j=1,\dots,k}$ disjuntos, $D \cap A_j = [a,b]$ pero A_j no son necesariamente intervalos, diremos que Φ es una función escalonada generalizada. Como para funciones escalonadas "normales", tenemos

$$\int_a^b \Phi(x)dx = \sum_{j=1}^k c_j \cdot |A_j| \left(= \sum_{i=1}^n c_i \cdot |I_i| \right)$$

La función longitud Sea \mathcal{I} la colección de los intervalos en \mathbb{R} . Definimos la función longitud $\lambda: \mathcal{I} \to [0,\infty]$ como $\lambda(I) := |I|$. Propiedades:

- 1. $\lambda(\varnothing) = 0;$
- 2. $I_1, I_2 \in \mathcal{I}, I_1 \subseteq I_2 \Rightarrow \lambda(I_1) \leq \lambda(I_2)$ (Monotonía de λ);
- 3. (Aditividad finita de λ) Si $I \in \mathcal{I}$ es tal que $I = \bigcup_{i=1}^n J_i$ con $J_i \in \mathcal{I}$, $\forall i = 1, \ldots, n, \ J_i \cap J_i = \emptyset$ sin $i \neq j$, entonces

$$\lambda(I) = \sum_{i=1}^{n} \lambda(J_i);$$

4. (σ -aditividad de λ) Si $I \in \mathcal{I}$ es tal que $I = \bigcup_{i=1}^{\infty} I_i$, con $(I_i)_i \in \mathbb{N} \subseteq \mathcal{I}$ disjuntos, entonces

$$\lambda(I) = \sum_{i=1}^{\infty} \lambda(I_i);$$

- 5. (σ -subaditividad de λ) Si $I \in \mathcal{I}$ verifica $I \subseteq \bigcup_{i=1}^{\infty} I_i$, $(I_1)_{i \in \mathbb{N}}$) intervalos (no necesariamente disjuntos), entonces $\lambda(I) \leq \sum_{i=1}^{\infty} \lambda(I_i)$;
- 6. $\lambda(I+x) = \lambda(I), \ \forall x \in \mathbb{R}, \ I+x := \{a+x : a \in I\};$
- 7. $\lambda(\{x\}) = 0 \ \forall \ x \in \mathbb{R}$.

1.5 Clase 6 (20/08)

Nos gustaría extender λ a una clase más grande que \mathcal{I} . Más precisamente, nos gustaría definir una aplicación $m: \mathcal{M} \to [0, \infty]$, donde \mathcal{M} es una coleccción de subconjuntos de \mathbb{R} tal que $\mathcal{I} \subseteq \mathcal{M}$, de manera tal que, dado $E \in \mathcal{M}$, m(E) represente la "longitud" de E. Idealmente, nos gustaría que m cumpla lo siguiente:

- 1. $\mathcal{M} = \mathcal{P}(\mathbb{R})$;
- 2. Si $I \in \mathcal{I}$, entonces m(I) = |I|;
- 3. m es σ -aditiva $(E, (E_n)_{n \in \mathbb{N}} \in \mathcal{M}, E = \bigcup_{n=1}^{\infty} E_n \Rightarrow m(E) = \sum_{n=1}^{\infty} m(E_n));$

Ejercicio. $(1) + (2) + (3) \Rightarrow m$ es monóton, σ -subaditiva y finitamente aditiva.

4 Si $E \in \mathcal{M}$, entonces $E + x \in \mathcal{M}$ y $m(E + x) = m(E) \ \forall x \in \mathbb{R}$.

El problema es que, si asumimos el Axioma de Elección, uno puede mostrar que no existe una tal m que cumpla (1) - (2) - (3) - (4) y, de hecho, no se sabe si existe m que cumpla (1) - (2) - (3). (Si asumimos la hipótesis del continuo, entonces no existe m que cumpla (1) - (2) - (3)).

Luego, para construir m debemos debilitar alguna de las propiedades:

- Si debilitamos (1) \Rightarrow TEORÍA DE LA MEDIDA;
- Si debilitamos (3) pidiento solo (hay dos opciones):
 - \rightarrow aditividad finita \Rightarrow "medidas finitamente aditivas";
 - $\rightarrow \sigma$ -subaditividad \Rightarrow "medidas exteriores".

Vamos a optar por debilitar (1).

Una manera de extender λ es la siguiente:

i. Si
$$E = \bigcup_{i=1}^{n} I_i$$
 entonces definitions $\lambda(E) := \sum_{i=1}^{n} \lambda(I_i)$;

ii. Si
$$E = \bigcup_{i=1}^{\infty} I_i$$
 entonces definimos $\lambda(E) := \sum_{i=1}^{\infty} \lambda(I_i);$

- iii. La fórmula anterior nos permite definir $\lambda(6)$ para todo 6 abierto en \mathbb{R} ;
- iv. Para conjuntos mas generales, "aproximar" por abiertos.

Definición 1.22 (premedida). Sea X un conjunto no vacío y $\mathscr C$ una colección de subconjuntos de X tal que $\varnothing \in \mathscr C$. Diremos que una aplicación $\mathcal T : \mathscr C \to [0,\infty]$ es una premedida si $\mathcal T(\varnothing)=0$.

Observación. El conjunto no vacío X será llamado un espacio y la colección \mathscr{C} será llamada una clase (de subconjuntos de X).

Intuitivamente, $\mathscr C$ representa la colección de subconjuntos cuyo "tamaño" sabemos medir y $\mathcal T$ nos da su medida.

Ejemplo.

- 1. Premedida de Lebesgue: $\mathscr{C}\coloneqq\mathcal{I}\coloneqq\{I\subseteq\mathbb{R}:\ I\ \mathrm{intervalo}\},\ \mathcal{T}(I)\coloneqq|I|.$
- 2. Premedidas de Lebesgue-Stieltjes: Sea $F: \mathbb{R} \to \mathbb{R}$ monótona creciente y continua a derecha $(\lim_{x\to x_0}^+ F(x) = F(x_0))$. Una función tal se dice una función de Lebesgue-Stieltjes.

 \Diamond

Observemos que, por monotonía, existen límites

$$\begin{cases} F(\infty) \coloneqq \lim_{x \to \infty} F(x) \\ F(-\infty) \coloneqq \lim_{x \to -\infty} F(x) \end{cases} \in \mathbb{R}$$

Sea además la clase $\widetilde{\mathcal{I}}$ de intervalos de $\mathbb R$ dada por

$$\widetilde{\mathcal{I}} := \{ I(a,b) : \} \text{ donde } I(a,b) := (a,b] \cap \mathbb{R}$$

$$= \{ (a,b] : -\infty \le a \le b \} \cup \{ (a,\infty) : -\infty \le a \le \infty \}..$$

Definimos la premedida \mathcal{T}_F de Lebesgue-Stieltjes asociada a F como la aplicación $\mathcal{T}_F: \widetilde{\mathcal{I}} \to [0, \infty]$, dada por

$$\mathcal{T}_F(I(a,b)) = F(b) - F(a).$$

Nota. Observar que si F(x)=x entonces \mathcal{T}_F es la premedida de Lebesgue (sobre $\widetilde{\mathcal{T}}$

3. **Premedidas de Probabilidad:** Si F es una función de L-S tal que $F(\infty) = 1$ y $F(-\infty) = 0$, decimos que F es una función de distribución (acumulada). En tal caso, la premedida \mathcal{T}_F se conoce como premedida de probabilidad o predistribución (en \mathbb{R}).

Observación. $\mathcal{T}_F(\mathbb{R}) = \mathcal{T}_F(I(-\infty,\infty)) = F(\infty) - F(-\infty) = 1 - 0 = 1.$

4. Premedida...

1.6 Clase 7 (22/08)

Definición 1.23 (semiálgebra). Sea X un espacio y $\mathscr C$ una clase de subconjuntos de X. Decimos que $\mathscr C$ es una semiálgebra (de subconjuntos de X) si cumple:

- 1. $\varnothing \in \mathscr{C}$;
- 2. (\mathscr{C} es cerrada por intesecciones finitas) $A, B \in \mathscr{C} \Rightarrow A \cap B \in \mathscr{C}$;
- 3. Si $A \in \mathcal{C}$, existen $C_1, \ldots, C_n \in \mathcal{C}$ disjuntos tal que $A^c = \bigcup_{i=1}^n C_i$.

Ejemplo.

- 1. La clase \mathcal{I}_d de intervalos en \mathbb{R}^d es una semiálgebra.
- 2. La clase $\widetilde{\mathcal{I}} := \{(a, b] \cap \mathbb{R} : -\infty \le a \le b \le \infty\}$ es una semiálgebra.
- 3. Si X e Y son espacios y $\mathscr{C}_X,\mathscr{C}_Y$ son semiálgebras en X e Y respectivamente, entonces

$$\mathscr{C}_X \times \mathscr{C}_Y := \{ F \times G : F \in \mathscr{C}_X, G \in \mathscr{C}_Y \}$$

es una semiálgebra en $X \times Y$, llamada "semiálgebra producto".

 \Diamond

Definición 1.24 (álgebra). Sean X un espacio y $\mathscr A$ una clase de subconjuntos de X. Decimos que $\mathscr A$ es un álgebra (de subconjuntos de X) si cumple que:

- (i) $\varnothing \in \mathscr{A}$;
- (ii) \mathscr{A} es cerrado por intersecciones finitas;
- (iii) (\mathscr{A} es cerrada por complementos) $A \in \mathscr{A} \Rightarrow A^c \in \mathscr{A}$.

Equivalentemente, en presencia de (iii), (ii) se puede reemplazar por:

(ii') ($\mathscr A$ es cerrada por uniones finitas) $A,B\in\mathscr A\Rightarrow A\cup B\in\mathscr A$. (**Dem:** Ejercicio!)

Ejemplo.

1. X espacio, $\mathscr{A}_1 := \{\varnothing, X\}$, $\mathscr{A}_2 := \mathcal{P}(X)$ son álgebras (donde \mathscr{A} es llamada el álgebra trivial);

2. Sea ${\mathscr S}$ una semiálgebra de subconjuntos de un espacio X. Entonces

$$\mathscr{A} := \{ E \subseteq X : \exists S_1, \dots, S_n \in \mathscr{S} \text{ disjuntos tal que } E = \bigcup_{i=1}^n S_i \}$$

es un álgebra, llamada el álgebra generada por $\mathscr S.$ Notemos que $\mathscr A(\mathscr S$ es el menor álgebra que contiene a $\mathscr S:$

 \Diamond

13

- (i) $\mathscr{A}(\mathscr{S})$ es un álgebra y $\mathscr{S} \subseteq \mathscr{A}(\mathscr{S})$;
- (ii) Si \mathscr{A}' es un álgebra con $\mathscr{S} \subseteq \mathscr{A}'$ entonces $\mathscr{A}(\mathscr{S} \subseteq \mathscr{A}')$.

Nota. Toda álgebr es una semiálgebra.

Definición 1.25 (σ -álgebra). Una clase (no vacía) \mathcal{M} de subconjuntos de un espacio X se dice una σ -álgebra si cumple:

- 1. $\emptyset \in \mathcal{M}$;
- 2. $E \in \mathcal{M} \Rightarrow E^c \in \mathcal{M}$;
- 3. $(E_n)_{n\in\mathbb{N}}\subseteq\mathcal{M}\Rightarrow\bigcup_{n\in\mathbb{N}}E_n\in\mathcal{M}$.

Llamamos al par (X, \mathcal{M}) un <u>espacio medible</u> y a los elementos de \mathcal{M} , conjuntos medibles.

Nota.

- 1. Todo σ -álgebra es un álgebra;
- 2. Equivalentemente, en presencia de (1), (3) se puede reemplazar por

(iii')
$$(E_n)_{n\in\mathbb{N}}\subseteq \mathscr{M}\Rightarrow \bigcap_{n\in\mathbb{N}}E_n\in \mathscr{M}.$$

Ejemplo.

- 1. σ -álgebra \Rightarrow álgebra \Rightarrow semiálgebra (no valen las recíprocas);
- 2. $\{\emptyset, X\}, \mathcal{P}(X)$ son σ -álgebras;
- 3. Si $(\mathcal{M}_{\gamma})_{\gamma \in \Gamma}$ son σ -álgebras, entonces

$$\bigcap_{\gamma \in \Gamma} \mathcal{M}_{\gamma} := \{ E \subseteq X : E \in \mathcal{M}_{\gamma}, \ \forall \gamma \in \Gamma \}$$

es una σ -álgebra.

4. Si \mathcal{M} es una clase de subconjuntos de X, entonces

$$\sigma(\mathcal{M}) \coloneqq \bigcap_{\mathcal{M} \text{ σ-\'algebra}} \mathcal{M}$$

$$\mathscr{C} \subseteq \mathcal{M}$$

CHAPTER 1. INTEGRAL DE RIEMANN

es la σ -álgebra generada por $\mathscr C.$ De hecho, $\sigma(\mathscr M)$ es la menor σ -álgebra que contiene a $\mathscr C\colon$

- (a) $\sigma(\mathscr{C})$ es σ -álgebra y $\mathscr{C} \subseteq \sigma(\mathscr{C})$;
- (b) Si \mathscr{F} es σ -álgebra y $\mathscr{C} \subset \mathscr{F}$ entonces $\sigma(\mathscr{C}) \subseteq \mathscr{F}$.
- 5. Si (X, \mathcal{T}) es un espacio topológico, $\sigma(\mathcal{T})$ se conoce como la σ -álgebra de Borel, y sus elementos se llaman Borelianos. La notamos $\overline{\beta(X)}$ (= $\sigma(\mathcal{T})$).

Ejemplo. $\beta(\mathbb{R})$ contiene a tods los abiertos, cerrados, intervalos, conjuntos de tipo G_{δ} y F_{σ}, \ldots De hecho, $\beta(\mathbb{R}) = \sigma(\text{cerrados}) = \sigma(\text{compactos}) = \sigma(\mathcal{I}) = \sigma(\widetilde{\mathcal{I}})$.

Definición 1.26. Sea $\mathscr C$ una clase (no vacía) de subconjuntos de X y $\mu: \mathscr C \to [0,\infty]$ una función (la llamamos una función de conjuntos). Diremos que:

- (i) μ es monótona (en \mathcal{M}) si $A, B \in \mathcal{C}$, $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$;
- (ii) μ es finitamente aditiva si $(A_i)_{i=1,...,n} \subseteq \mathscr{C}$ disjuntos $\Rightarrow \mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$;
- (iii) μ es σ -aditiva si $(A_n)_{n\in\mathbb{N}}\subseteq\mathscr{C}$ disjuntos $\Rightarrow \mu(\left[\begin{smallmatrix} \mathsf{D} \end{smallmatrix}\right]_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\mu(A_i);$
- (iv) μ es σ -subaditiva si $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_n)$, para todo $A \in \mathscr{C}$ y $(A_n)_{n \in \mathbb{N}} \subseteq \mathscr{C}$ tal que $A \subseteq \bigcup_{n \in \mathbb{N}} A_n$

1.7 Clase 8 (25/08)

Observación. Rana da una definición más débil de (4):

$$A \in \mathcal{C}, \ A = \bigcup_{i=1}^{\infty} A_i, \ A_i \in \mathcal{C} \ \forall i \Rightarrow \mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$$

Ambas definiciones son equivalentes si $\mathscr C$ es una semiálgebra y μ es monótona (siempre será el caso para nosotros).

Definición 1.27 (premedida finita y σ -finita). Una premedida $\mathcal{T}:\mathscr{C}\to [0,\infty]$ se dice:

- 1. finita si $X \in \mathcal{C}$ y $\mathcal{T} < \infty$;
- 2. σ -finita si existen $(C_n)_{n\in\mathbb{N}}\subseteq\mathscr{C}$ <u>disjuntos</u> tales que $\bigcup_{n=1}^{\infty}C_n=X$ y $\mathcal{T}(C_n)<\infty\ \forall n\in\mathbb{N}.$

Ejemplo.

- 1. finita $\Rightarrow \sigma$ -finita;
- 2. La función longitud $\lambda: \mathcal{I} \to [0, \infty]$ es σ -finita pero no finita;
- 3. Si F es una función de L-S, entonces $\mathcal{T}_F: \widetilde{\mathcal{I}} \to [0, \infty]$ es siempre σ -finita $(\mathcal{T}_F((n, n+1]) = F(n+1) F(n) < \infty \ \forall n \in \mathbb{Z})$ y es finita si y sólo si $\mathcal{T}_F(\mathbb{R}) = \mathcal{T}_F((-\infty, \infty] \cap \mathbb{R}) = F(\infty) F(-\infty) < \infty$.

 \Diamond

Definición 1.28 (medida). Sea (X, \mathcal{M}) es un espacio medible. Diremos que $\mu : \mathcal{M} \to [0, \infty]$ es una medida (en (X, \mathcal{M})) si:

- 1. $\mu(\emptyset) = 0;$
- 2. μ es σ -subaditiva en $\mathscr{M}\left(\mu\left(\bigcup_{i=1}^{\mathfrak{D}}A_{i}\right)=\sum_{i=1}^{\infty}\mu(A_{i})\right)$.

Llamamos a la terna (X, \mathcal{M}, μ) un epacio de medida.

Objetivo. Construir un espacio de medida $(\mathbb{R}, \mathcal{M}, \mu)$ tal que $\mathcal{I} \subseteq \mathcal{M}$ y

$$\begin{cases} \mu(I) = |I| \ \forall I \in \mathcal{I}, \\ \mu(E+x) = \mu(E) \ \forall E \in \mathcal{M}. \end{cases}$$

Ejemplo (Espacios de Probabilidad). Si (X, \mathcal{M}, μ) es un EdM tal que $\mu(X) = 1$, (X, \mathcal{M}, μ) recibe el nombre de espacios de probabilidad. \diamond

- X recibe el nombre de espacio muestral, y se lo nota Ω (en lugar de X);
- \mathcal{M} se suele notar como \mathcal{F} (ó \mathcal{Y}). Sus elementos se dicen <u>eventos</u>;
- μ recibe el nombre de medida de probabilidad ó distribución y se la nota \mathbb{P} .

En probabilidad, típicamente se estudian 2 tipos de distribuciones en \mathbb{R} (o en \mathbb{R}^d).

1. **Distribuciones discretas:** $\exists S \subseteq \mathbb{R}$ numerable y $(p_x)_{x \in S} \subseteq [0, 1]$ tal que $\mathbb{P}(A) = \sum_{x \in A \cap S} p_x$.

Ejemplo. Binomial, Geométrica, Poisson,...

2. Distribuciones (absolutamente) continuas: $\exists f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ "integrable" tal que $\mathbb{P}(A) = \int_A f(x) dx$.

Ejemplo. Uniforme, Exponencial, Normal,...

Propiedades generales de una medida. Si μ es una medida sobre (X, \mathscr{M}) , entonces:

- 1. μ es monótona (en \mathcal{M});
- 2. μ es σ -subaditiva;

3. μ es **continua por debajo**: si $(A_n)_{n\in\mathbb{N}}\subseteq \mathcal{M}$ es <u>creciente</u> $(A_n\subseteq A_{n+1}\ \forall n)$ entonces

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

4. μ es **continua por arriba**: si $(A_n)_{n\in\mathbb{N}}\subseteq \mathcal{M}$ es <u>decreciente</u> $(A_{n+1}\subseteq A_n \ \forall n)$ y $\mu(A_{n_0})<\infty$ para algún $n_0\ (\Rightarrow \mu(A_n)<\infty \ \forall n\geq n_0)$, entonces

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

(Cuidado! (4) puede no valer si $\mu(A_n) = \infty \ \forall n \in \mathbb{N}$)

Definición 1.29 (premedida extendible y unívocamente extendible). Una premedida $\mathcal{T}: \mathscr{S} \to [0,\infty]$ definida sobre una semiálgebra de subconjunto de X, se dice:

- 1. Extendible si es
 - (E1) finitamente aditiva en \mathscr{S} ;
 - (E2) σ -subaditiva en \mathscr{S} .
- 2. Univocamente extendible si es extendible y se cumple
 - (E3) σ -finita

Observación. Los nombres de extendible y unívocamente extendible no se encontrarán en el Rana (los puso el profe).

Teorema 1.30 (Extensión de Carathéodory). Dados un espacio X y una premedida \mathcal{T} sobre una semiálgebra \mathscr{S} de subconjuntos de X tal que \mathcal{T} es extendible, existe una extensión de \mathcal{T} a una medida $\mu_{\mathcal{T}}$ definida sobre $\sigma(\mathscr{S})$ la σ -álgebra generada por \mathscr{S} . Más aún, si \mathcal{T} es unívocamente extendible, entonces la extensión $\mu_{\mathcal{T}}$ a $\sigma(\mathscr{S})$ es <u>única</u>.

Por último, si \mathcal{T} es unívocamente extendible, entonces se puede extender de manera única a una medida $\overline{\mu_{\mathcal{T}}}$ sobre la $\mu_{\mathcal{T}}$ -completación de $\sigma(\mathscr{S})$, i.e. la σ -álgebra $\overline{\sigma(\mathscr{S})}$ dada por

$$\overline{\sigma(\mathscr{S})} \coloneqq \{B \cup N : B \in \sigma(\mathscr{S}), \exists \widetilde{N} \in \sigma(\mathscr{S}) \text{ con } N \subseteq \widetilde{N} \text{ y } \mu_{\mathcal{T}}(\widetilde{N}) = 0\}$$

mediante la fórmula $\overline{\mu_{\mathcal{T}}}(B \cap N) := \mu_{\mathcal{T}}(B)$.

1.8 Clase 9 (27/08)

Observación. Si $\mathcal{T}: \mathscr{S} \to [0, \infty]$ es σ -aditiva en \mathscr{S} y \mathscr{S} es una semiálgebra, entonces \mathcal{T} es extendible.

Observación. La extensión puede no ser única si \mathcal{T} no es σ -finita.

Ejemplo. $\widetilde{\mathcal{I}}_{\mathbb{Q}} := \widetilde{\mathcal{I}} \cap \mathbb{Q} = \{(a,b] \cap \mathbb{Q} \ : \ -\infty \leq a \leq b \leq \infty\}$ Nota.

- $\widetilde{\mathcal{I}}_{\mathbb{O}}$ es una semiálgebra;
- $\sigma(\widetilde{\mathcal{I}}_{\mathbb{Q}}) = \sigma(\widetilde{\mathcal{I}} \cap \mathbb{Q}) \stackrel{\text{Ej!}}{=} \sigma(\widetilde{\mathcal{I}}) \cap \mathbb{Q} = \beta(\mathbb{R}) \cap \mathbb{Q} = \mathcal{P}(\mathbb{Q})$ (9.52)
- $\mathcal{T}: \widetilde{\mathcal{I}}_{\mathbb{Q}} \to [0, \infty]$, dada por $\mathcal{T}(A) := \begin{cases} 0 & A = \emptyset \\ \infty & A \neq \emptyset, \ A \in \widetilde{\mathcal{I}}_{\mathbb{Q}} \end{cases}$ (Observar que \mathcal{T} no es σ -finita)
- Para cada r > 0, $\mu_r : \mathcal{P}(\mathbb{Q}) \to [0, \infty]$ dada por $\mu_r(A) := r(\#A)$ es una extensión de \mathcal{T} (y es una medida)

Definición 1.31 (espacio completo y conjuntos μ -nulos). Sea (X, \mathcal{M}, μ) un EdM y definamos

$$\mathcal{N}_{\mu} := \{ E \subset X : \exists N \in \mathcal{M} \text{ con } E \subseteq N \text{ y } \mu(N) = 0 \}$$

Los elementos de \mathcal{N}_{μ} se dicen <u>conjuntos μ -nulos</u>. Diremos que (X, \mathcal{M}, μ) es <u>completo</u> si $\mathcal{N}_{\mu} \subseteq \mathcal{M}$

Observación. $(X, \overline{\sigma(\mathscr{S})}, \overline{\mu_{\delta}})$ es <u>completo</u>. En efecto, $\mathscr{N}_{\overline{\mu_{\delta}}}$ corresponde al subconjunto de $\overline{\sigma(\mathscr{S})}$ que se obtiene tomando $B = \varnothing$.

Observación. Veremos más adelante que las siguientes premedidas son UE:

- (i) Premedidas de Lebesgue-Stieltjes (en particular, la función longitud λ (sobre $\widetilde{\mathcal{I}}$) y las premedidas de probabilidad).
- (ii) Premedidas de Lebesgue en \mathbb{R}^d , con $d \in \mathbb{N}$.

En particular;

Corolario 1.32. Para cada función F de Lebesgue-Stieltjes, existe una σ -álgebra \mathcal{M}_F sobre \mathbb{R} y una única medida μ_F en $(\mathbb{R}, \mathcal{M}_F)$ tal que

$$\mu_F = (I(a,b)) = F(b) - F(a) \quad \forall -\infty < a < b < \infty$$

Además, $\beta(\mathbb{R}) \subseteq \mathcal{M}_F$. Es decir, μ_F es una medida que extiende a \mathcal{T}_F , a todo \mathcal{M}_F (y en particular, a todo $\beta(\mathbb{R})$). Además, $(\mathbb{R}, \mathcal{M}_F, \mu_F)$ es un EdM completo. $(\mathcal{M}_F := \overline{\sigma(\widetilde{\mathcal{I}})^F}, \ \mu_F := \overline{\mu_{\mathcal{T}_F}})$. La medida μ_F se conoce como medida de L-S asociada a F. En particular, para cualquier función de distribución F, existe una única medida de probabilidad \mathbb{P}_F en $(\mathbb{R}, \beta(\mathbb{R}))$ tal que

$$\mathbb{P}_F(I(a,b)) = F(b) - F(a) \quad \forall -\infty \le a \le b \le \infty$$

(En la guía 3 veremos que $F \to \mathbb{P}_F$ es una biyección)

Nota. Los β son los Borelianos y $I(a,b)=(a,b]\cap\mathbb{R}$. (super $F\to 10.26$).

Ejemplo (Importante!). Medida de Lebesgue en \mathbb{R} . Tomando F = id en el Corolario anterior, obtenemos una σ -álgebra $\mathscr{L}(\mathbb{R}) := \mathscr{M}_{id}$ con $\beta(\mathbb{R}) \subseteq \mathscr{L}(\mathbb{R})$ y una medida μ_{id} en $(\mathbb{R}, \mathscr{L}(\mathbb{R}))$ tal que $\mu_{id}(I(a,b)) = b - a \quad \forall -\infty \leq a \leq b \leq \infty$. En particular, de esto se deduce que $\mu_{id}(I) = |I| \quad \forall I \in \mathcal{I}$. Dicha medida recibe el nombre de medida de Lebesgue (en \mathbb{R}), y los elementos de $\mathscr{L}(\mathbb{R})$ se dicen conjuntos medibles Lebesgue. Adoptaremos la notación $\mu_{id}(E) := \lambda(E) := |E|$. La medida μ_{id} es la extensión de la noción de longitud que buscábamos y $\mathscr{L}(\mathbb{R})$ son los conjuntos cuya "longitud" podremos medir. Además, los conjuntos de medida nula (de la guía 2), son exactamente aquellos $A \in \mathscr{L}(\mathbb{R})$ tal que $\mu_{id}(A) = 0$ (lo veremos más adelante!).

Ejemplo (Medida de Lebesgue en \mathbb{R}^d). Si \mathcal{I}_d son los intervalos en \mathbb{R}^d y definimos $\mathcal{T}: \mathcal{I}_d \to [0,\infty]$ como $\mathcal{T}(I) \coloneqq |I|$, entonces \mathcal{I}_d es una semiálgebra y \mathcal{T} es una premedida σ -aditiva en \mathcal{I}_d (lo veremos después). Por lo tanto, \mathcal{T} se puede extender (de manera única, pues \mathcal{T} es σ -finita) a una medida μ_δ sobre la σ -álgebra $\mathscr{L}(\mathbb{R}^d) = \overline{\sigma(\mathcal{I}_d)^{\mathcal{T}}}$, llamada medida de Lebesgue en \mathbb{R}^d y $\mathscr{L}(\mathbb{R}^d)$ es la clase de conjuntos medibles Lebesgue en \mathbb{R}^d . Al igual que antes, dado $E \in \mathscr{L}(\mathbb{R}^d)$, notamos $|E| \coloneqq \mu_{\mathcal{T}}(E)$.

1.9 Clase 10 (29/08)

Demostración del teorema de extensión de Carathéodory

Paso 1: Medidas Exteriores

Proposición 1.33. Si $I \subseteq \mathbb{R}$ es un intervalo,

$$|E|_e = \inf\{\sum_{n=1}^{\infty} |I_n| : (I_n)_{n \in \mathbb{N}} \text{ intervalos, } E \subseteq \bigcup_{n=1}^{\infty} I_n\}$$

Demostración. \geq) Tomando $I_1 = I, \ I_{n+1} = \emptyset \quad \forall n \in \mathbb{N}$

 \leq) Por la σ -subaditividad de λ en \mathcal{I} : si $I \subseteq \bigcup_{n=1}^{\infty}$ entonces $\lambda(I) \leq \sum_{i=1}^{\infty} \lambda(I_i)$.

Definición 1.34 (Medida exterior inducida por una premedida). Sea X un espacio, $\mathscr C$ una clase de subconjuntos de X y $\mathcal T:\mathscr C\to [0,\infty]$ una premedida. Definimos la medida exterior inducida por $\mathcal T$ como la aplicación $\mu_{\mathcal T}^*:\mathscr P(X)\to [0,\infty]$ dada por

$$\mu_{\mathcal{T}}^*(A) := \inf\{\sum_{n=1}^{\infty} \mathcal{T}(C_i) : (C_i)_{i \in \mathbb{N}} \subseteq \mathscr{C} \text{ y } A \subseteq \bigcup_{i=1}^{\infty} C_i\}$$

con la convención de que inf $\varnothing := \infty$.

Ejemplo. $\mu_{\lambda}^* = medida \ exterior \ de \ Lebesgue \ y \ la \ notamos \ |E|_e := \mu_{\lambda}^*(E)$.

Idealmente, nos gustaría que $\mu_{\mathcal{T}}^*$ cumpla

$$\begin{cases} (C1) \ \mu_{\mathcal{T}^*}(C) = \mathcal{T}(C) & \forall C \in \mathscr{C} \\ (C2) \ \mu_{\mathcal{T}}^* \text{ es } \sigma\text{-subaditiva en } \mathscr{P}(X) \end{cases}$$

no tienen por qué cumplirse ninguna de la 2:

(C1)
$$X = \{a, b\}, \mathcal{C} = \{\varnothing, \{a\}, X\}, \mathcal{T}(A) = \begin{cases} 0 & A = \varnothing \\ 2 & A = \{a\} \\ 1 & A = X \end{cases} \mathcal{T}(\{a\}) = 2, \ \mu_{\mathcal{T}}^*(\{a\}) = 1 \neq \mathcal{T}(\{a\}).$$

(C2) Medida exterior de Lebesgue no es σ -aditiva (lo vemos mas adelante!)

Proposición 1.35. Si $\mathcal T$ es una premedida sobre una semiálgebra $\mathcal S$ que satisface

(E2) \mathcal{T} es σ -subaditiva en \mathscr{S} ,

entonces $\mu_{\mathcal{T}}^*(A) = \mathcal{T}(A) \quad \forall A \in \mathcal{S} \text{ (i.e. } \mu_{\mathcal{T}}^* \text{ cumple (C1))}.$

Demostración. $\underline{\mu}_{\mathcal{T}}^*(A) \leq \mathcal{T}(A)$. Tomando $C_1 = A \in \mathcal{S}$, $C_{n+1} = \emptyset \in \mathcal{S}$. Luego $(C_n)_{n \in \mathbb{N}}$ es cubrimiento de A por elementos de \mathcal{S} y luego

$$\mu_{\mathcal{T}}^*(A) \le \sum_{n \in \mathbb{N}} \mathcal{T}(C_n) = \mathcal{T}(A)$$

 $\underline{\mathcal{T}(A)} \leq \mu_{\mathcal{T}}^*(A)$. Si $(C_n)_{n \in \mathbb{N}} \subseteq \mathscr{S}$ es un cubrimiento de $A \in \mathscr{S}$ entonces por (E2), tenemos que $\mathcal{T}(A) \leq \sum_{n \in \mathbb{N}} \mathcal{T}(C_n)$. Tomando inf sobre tales cubrimientos, resulta $\mathcal{T}(A) \leq \mu_{\mathcal{T}}^*(A)$.

Teorema 1.36. Sean X un espacio, $\mathscr C$ una clase de subconjuntos de X y $\mathcal T:\mathscr C\to [0,\infty]$ una premedida. Entonces,

- 1. $\mu_{\mathcal{T}}^*(\varnothing)$;
- 2. $\mu_{\mathcal{T}}^*$ es monótona $(A \subseteq B \Rightarrow \mu_{\mathcal{T}}^*(A) \leq \mu_{\mathcal{T}}^*(B));$
- 3. $\mu_{\mathcal{T}}^*$ es σ -subaditiva $(A \subseteq \bigcup_{n \in \mathbb{N}} A_n \Rightarrow \mu_{\mathcal{T}}^*(A) \le \sum_{n=1}^{\infty} \mu_{\mathcal{T}}^*(A_n)$.

Demostración. 1. $\mu_{\mathcal{T}}^*(\varnothing) \geq 0$ es por definición. Para ver que $\mu_{\mathcal{T}}^*(\varnothing) \leq 0$, tomamos el cubrimiento $C_n = \varnothing$ y repetimos el argumento de la Proposición anterior.

2. Si $\mu_{\mathcal{T}}^*(B) = \infty$, la desigualdad es inmediata. Si $\mu_{\mathcal{T}}^*(B) < \infty$, entonces existen cubrimientos de B por elementos de \mathscr{S} . Sea $(C_n)_{n \in \mathbb{N}} \subseteq \mathscr{S}$ un cubrimiento de B. Entonces, $(C_n)_{n \in \mathbb{N}}$ es también cubrimiento de A y, luego, $\mu_{\mathcal{T}}^*(A) \leq \sum_{n \in \mathbb{N}} \mathcal{T}(C_n)$. Como esto es cierto para todo

cubrimiento $(C_n)_{n\in\mathbb{N}}$ de B, tomando ínfimo en la desigualdad anterior sobre tales cubrimientos resulta $\mu_{\mathcal{T}}^*(A) \leq \mu_{\mathcal{T}}^*(B)$.

3. Dado $\varepsilon > 0$, sea $(C_i^{(n)})_{i \in \mathbb{N}}$ un cubrimiento de A_n tal que $\sum_{i=1}^{\infty} \mathcal{T}(C_i^{(n)}) \le \mu_{\mathcal{T}}^*(A_n) + \frac{\varepsilon}{2^n}$. Luego, notando que $(C_i^{(n)} : i \in \mathbb{N}, n \in \mathbb{N})$ es un cubrimiento de A, obtenemos que

$$\mu_{\mathcal{T}}^*(A) \leq \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \mathcal{T}(C_i^{(n)}) \leq \sum_{n=1}^{\infty} \left(\mu_{\mathcal{T}}^*(A_n) + \frac{\varepsilon}{2^n} \right)$$
$$\leq \sum_{n=1}^{\infty} \mu_{\mathcal{T}}^*(A_n) + \varepsilon \underbrace{\sum_{n=1}^{\infty} \frac{1}{2^m}}_{1}$$

Luego, $\mu_{\mathcal{T}}^*(A) \leq \sum_{n=1}^{\infty} \mu_{\mathcal{T}}^*(A_n) + \varepsilon \quad \forall \varepsilon > 0$. Tomando $\varepsilon \to 0^+$, obtenemos la σ -subaditividad de $\mu_{\mathcal{T}}^*$.

Definición 1.37 (medida exterior). Sea X un espacio. Decimos que μ^* : $\mathscr{P}(X) \to [0, \infty]$ es una medida exterior si:

- 1. $\mu^*(\emptyset) = 0;$
- 2. $A \subseteq B \Rightarrow \mu^*(A) \le \mu^*(B)$;
- 3. $A \subseteq \bigcup_{n \in \mathbb{N}} A_n \Rightarrow \mu^*(A) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$.

Ejemplo.

- 1. Medidas exteriores generadas por una premedida;
- 2. Si $(\mu_{\gamma}^*)_{\gamma \in \Gamma}$ son medidas exteriores sobre X, entonces

$$\mu^*(A) := \sup_{\gamma \in \Gamma} \mu_{\gamma}^*(A)$$

es una medida exterior (Ej. Guía 3).

- 3. Medida exterior s-dimensional de Hausdorff en \mathbb{R}^d .
- Si I es un intervalo en \mathbb{R}^d , entonces $|rI| = r^d |I|$;
- Si $E \subseteq \mathbb{R}^d$ es medible Lebesgue, entonces $|rE| = r^d |E|$;
- En particular, si E = B(x, r), entonces

$$|E| = |B(0,r)| = |rB(0,1)| = r^d |B(0,1)| = C_d (diam E)^d, \quad C_d := \frac{|B(0,1)|}{2^d}$$

• Si $E\subseteq \mathbb{R}^d$ es "s-dimensional" y \mathscr{H}_s es la medida que queremos, entonces debería valer que

$$\mathscr{H}_s(E \cap B(x,r)) = \mathscr{H}_s(\text{entorno s-dimensional}) \approx (diam \text{ (entorno)})^s$$

Luego, si cubrimos a E por entornos pequeños $(E \cap B(x,r))_{i \in \mathbb{N}}$, entonces

$$\mathscr{H}_s(E) \approx \sum_{i \in \mathbb{N}} \mathscr{H}_s(E \cap B(x_i, r_i)) \approx \sum_{i \in \mathbb{N}} (diam(E \cap B(x_i, r_i)))^s.$$

 \Diamond

1.10 Clase 11 (01/09)

Medida exterior de Hausdorff

 $\mathcal{H}_s = \text{medida que "mide" el tamaño de objetos s-dimensionales en <math>\mathbb{R}^d$.

Si E es un conjunto s-dimensional en \mathbb{R}^d , entonces

$$\mathscr{H}_s(E) \stackrel{r_1 \ll 1}{\approx} \sum_{i \in \mathbb{N}} \mathscr{H}_s(E \cap B(x_i, r_i)) \approx \sum_{i \in \mathbb{N}} (\operatorname{diam}(E \cap B(x_i, r_i)))^s.$$

Teniendo esto en cuenta, dados $d \in \mathbb{N}, \ s \in [0,d], \ \delta > 0$, definimos:

- $C_{\delta} := \{ A \subseteq \mathbb{R}^d : \operatorname{diam} A < \delta \};$
- $\mathscr{H}_{s}^{(\delta)}(E) := \inf\{\sum_{n \in \mathbb{N}} (\operatorname{diam} A_{n})^{s} : (A_{n})_{n \in \mathbb{N}} \subseteq C_{\delta}, E \subseteq \bigcup_{n \in \mathbb{N}} A_{n}\}.$ Donde $\mathscr{H}_{s}^{(\delta)}(E)$ es la medida exterior inducida por $\mathcal{T}_{s}^{(\delta)}$ y $\mathcal{T}_{s}^{(\delta)}(A) := (\operatorname{diam} A)^{s}$ la δ -premedida de Hausdorff s-dimensional en \mathbb{R}^{d} con $\mathcal{T}_{s}^{(\delta)}$: $C_{\delta} \to [0, \infty].$

Observar. Si $\delta' < \delta$ entonces $\mathscr{H}_s^{(\delta')}(E) \geq \mathscr{H}_s^{(\delta)}(E)$.

Luego, podemos definir

$$\mathscr{H}_s(E) := \sup_{\delta > 0} \mathscr{H}_s^{(\delta)}(E) = \lim_{\delta \to 0^+} \mathscr{H}_s^{(\delta)}(E),$$

donde \mathcal{H}_s es la medida exterior de Hausdorff s-dimensional en \mathbb{R}^d .

Definición 1.38 (conjunto μ^* -medible). Sea X un espacio y $\mu^* : \mathcal{P}(X) \to [0, \infty]$ medida exterior. Decimos que $E \subseteq X$ es un conjunto μ^* -medible si

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c) \quad \forall A \subseteq X.$$

Observar. $\mu^*(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E^c)$ vale siempre (por σ -subaditividad de μ^* . Luego, para ver que R es μ^* -medible, basta ver que $\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \cap E^c)$.

Teorema 1.39. Sea μ^* una medida exterior sobre un espacio X. Entonces:

- 1. $\mu^*(E) = 0 \Rightarrow E \text{ es } \mu^*\text{-medible};$
- 2. La clase \mathcal{M}_{μ^*} de conjuntos μ^* -medibles es una σ -álgebra;
- 3. La restricción μ de μ^* a \mathcal{M}_{μ^*} es una medida.

En particular, $(X, \mathcal{M}_{\mu^*}, \mu)$ es un espacio de medida completo.

Demostración.

- 1. Si $A \subseteq X$, $\mu^*(A \cap E) \le \mu^*(E) = 0$. Además, por monotonía, $\mu^*(A \cap E^c) \le \mu^*(A)$. Luego, $\mu^*(A \cap E) + \mu^*(A \cap E^c) = 0 + \mu^*(A \cap E^c) \le \mu^*(A)$.
- 2. $\emptyset \in \mathcal{M}_{\mu^*}$: Se sigue de (1), pues $\mu^*(\emptyset) = 0$, por definición.

 $E \in \mathcal{M}_{\mu^*}$: Directo de la definición de \mathcal{M}_{μ^*} , puesto que es simétrica en $E \vee E^c$.

 $(E_n)_{n\in\mathbb{N}}\subseteq \mathcal{M}_{\mu^*}\Rightarrow \bigcup_{n\in\mathbb{N}}E_n\in \mathcal{M}_{\mu^*}$: Esto lo demostramos en tres pasos. En primer lugar, demostramos que si $E_1,E_2\in \mathcal{M}_{\mu^*}$, entonces $E_1\cap E_2,E_1\cup E_2\in \mathcal{M}_{\mu^*}$.

Demostración. Si $A \subseteq X$, entonces

$$\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c)$$

$$= \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c \cap E_2) + \mu^*(A \cap E_1^c \cap E_2^c)$$

$$\geq \mu^*(A \cap (E_1 \cup E_2)) + \mu^*(A \cap (E_1 \cup E_2)^c).$$

Notar que la primera igualdad se tiene por $E_1 \in \mathcal{M}_{\mu^*}$ y la segunda por $E_2 \in \mathcal{M}_{\mu^*}$. Esto implica que $E_1 \cap E_2 \in \mathcal{M}_{\mu^*}$. Pero entonces $E_1 \cap E_2 = ((E_1 \cap E_2)^c)^c = (\underbrace{E_1^c}_{\in \mathcal{M}_{\mu^*}} \cup \underbrace{E_2^c}_{\in \mathcal{M}_{\mu^*}})^c \in \mathcal{M}_{\mu^*}$

Para el segundo paso, demostramos que si $E_1, \ldots, E_n \in \mathcal{M}_{\mu^*}$ disjuntos, entonces $\mu^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n \mu^* (A \cap E_i)$.

Demostración. La idea es probarlo por inducción. Basta ver el caso n=2 (los otros casos salen iterando éste)

$$\mu^*(A \cap (E_1 \uplus E_2)) = \mu^*(\underbrace{A \cap (E_1 \uplus E_2) \cap E_1}_{A \cap E_1}) + \mu^*(\underbrace{A \cap (E_1 \uplus E_2) \cap E_1^c}_{A \cap E_2}).$$

pues $E_2 \subseteq E_1^c$ por ser disjuntos.

Por último, vemos que si $(E_n)_{n\in\mathbb{N}}\subseteq \mathcal{M}_{\mu^*}$, entonces $\bigcup_{n\in\mathbb{N}}E_n\in \mathcal{M}_{\mu^*}$.

Demostración. Podemos suponer que los E_n son disjuntos. Si no, los cambiamos por

$$E'_{1} := E_{1} \in \mathcal{M}_{\mu^{*}}$$

$$E'_{2} := E_{2} \setminus E_{1} = E_{2} \cap E_{1}^{c} \in \mathcal{M}_{\mu^{*}}$$

$$\vdots$$

$$E'_{n+1} := E_{n+1} \setminus \bigcup_{i=1}^{n} E_{i} \in \mathcal{M}_{\mu^{*}},$$

y $\bigcup_{n\in\mathbb{N}} E_n = \bigcup_{n=1}^{\infty} E'_n$. Sea $F_n := \bigcup_{i=1}^{n} E_i \longrightarrow E := \bigcup_{n\in\mathbb{N}} E_n$. Notar que si $F_n \subseteq E$, entonces $E^c \subseteq F_n^c$. Luego, dado $A \subseteq X$, como $F_n \in \mathcal{M}_{\mu^*}$, se tiene

$$\mu^*(A) = \underbrace{\mu^*(A \cap F_n)}_{=\sum_{i=1}^n \mu^*(A \cap E_i)} + \mu^*(\underbrace{A \cap F_n^c}_{\subseteq A \cap E^c})$$
$$\geq \sum_{i=1}^n \mu^*(A \cap E_i) + \mu^*(A \cap E^c).$$

Tomando $n \to \infty$,

$$\mu^*(A) \ge \sum_{i=1}^n \mu^*(A \cap E_i) + \mu^*(A \cap E^c)$$

$$\ge \mu^*(A \cap E) + \mu^*(A \cap E^c) \qquad (\mu^* \text{ σ-subad.})$$

$$A \cap E = \bigcup_{i=1}^\infty A \cap E_i.$$

1.11 Clase 13 (05/09)

Demostración (Continuación clase anterior). 1) \Rightarrow 2) Si $\mu_{\mathcal{T}}^*(A) < \infty$ (LISTO!). Si $\mu_{\mathcal{T}}^*(A) = \infty$, tomamos $(E_n)_{n \in \mathbb{N}} \subseteq \mathscr{S}$ disjuntos tal que $X = \bigcup_{n \in \mathbb{N}} E_n$ y $\mathcal{T}(E_n) < \infty$. Luego, $\mu_{\mathcal{T}}^*(A \cap E_n) \leq \mu_{\mathcal{T}}^*(E_n) = \mathcal{T}(E_n) < \infty$ (La igualdad es, pues $E_n \in \mathscr{S}, \mathcal{T}$ σ -sub). Por ende, por lo ya probado, existe $B_n \in \sigma(\mathscr{S})$ tal que $A \cap E_n \subseteq B_n$ y $\mu_{\mathcal{T}}(B_n) = \mu_{\mathcal{T}}(A \cap E_n) < \infty$. Luego, $B := \bigcup_{n \in \mathbb{N}} B_n$ y $A \cap E_n \subseteq \bigcup_{n \in \mathbb{N}} B_n = B$

У

$$\mu_{\mathcal{T}}(B \setminus A) = \mu_{\mathcal{T}} \left(\bigcup_{n \in \mathbb{N}} B_n \setminus A \right) \le \sum_{n \in \mathbb{N}} \mu_{\mathcal{T}}(B_n \setminus A)$$

$$\le \sum_{n \in \mathbb{N}} \mu_{\mathcal{T}}(B_n \setminus (A \cap E_n))$$

$$= \sum_{n \in \mathbb{N}} \mu_{\mathcal{T}}(B_n) - \mu_{\mathcal{T}}(A \cap E_n) = 0$$

2) \Rightarrow 3) Notemos que por (2) \Rightarrow (1), $A \in \mathcal{M}_{\mu_{\mathcal{T}}^*}$ si vale (2). En particular, $A^c \in \mathcal{M}_{\mu_{\mathcal{T}}^*}$. Luego, por (1) \Rightarrow (2) para A^c , $\exists \widetilde{B} \in \sigma(\mathscr{S})$ y $N_2 \in \mathcal{M}_{\mu_{\mathcal{T}}^*}$ con $\mu_{\mathcal{T}}(N_2) = 0$ tal que $A^c = \widetilde{B} - N_2$. Pero entonces, tomando $C := \widetilde{B}^c$, vemos que $C \in \sigma(\mathscr{S})$ y $A = (A^c)^c = (\widetilde{B} \cap N_2^c)^c = \widetilde{B}^c \cup (N_2^c)^c = C \cup N_2$. \square

Observar. $\mathcal{M}_{\mu_{\mathcal{T}}^*} = \overline{\sigma(\mathcal{S})}$ (con resp. a $\mu_{\mathcal{T}}^*|_{\sigma(\mathcal{S})}$). En efecto, si $A \in \mathcal{M}_{\mu_{\mathcal{T}}^*}$ entonces, por (1) \Rightarrow (3), existen $C \in \sigma(\mathcal{S})$ y $N \in \mathcal{M}_{\mu_{\mathcal{T}}^*}$ tal que $A = C \cup N$ y $\mu_{\mathcal{T}}^*(N) = 0$. Como $N \in \mathcal{M}_{\mu^*}$, por (1) \Rightarrow (2) para N, existe $\widetilde{N} \in \sigma(\mathcal{S})$ tal que $N \subseteq \widetilde{N}$ y $0 = \mu_{\mathcal{T}}(N) = \mu_{\mathcal{T}}(\widetilde{N})$. Luego, N resulta $\mu_{\mathcal{T}}^*|_{\sigma(\mathcal{S})}$ -nulo y, por lo tanto, $N \in \overline{\sigma(\mathcal{S})^{\mu_{\mathcal{T}}^*|_{\sigma(\mathcal{S})}}}$.

Por otro lado, si $A \in \overline{\sigma(\mathscr{S})}$ (resp. a $\mu_{\mathcal{T}}^*|_{\sigma(\mathscr{S})}$), entonces $A = B \cup N$ donde $B \in \sigma(\mathscr{S})$ y $\exists \widetilde{N} \in \sigma(\mathscr{S})$ tal que $N \subseteq \widetilde{N}$ y $\mu_{\mathcal{T}}^*(N) = 0$, y entonces $A = B \cup N \in \mathcal{M}_{\mu_{\mathcal{T}}^*}$ (pues $\sigma(\mathscr{S}) \subseteq \mathcal{M}_{\mu_{\mathcal{T}}^*}$).

Observar. En particular, hemos probado:

Proposición 1.40. Si \mathcal{T} es una premedida UE sobre una semiálgebra \mathscr{S} entonces, dado $A \subseteq X$ (no necesariamente $\mu_{\mathcal{T}}^*$ -medible),

$$\mu_{\mathcal{T}}^*(A) := \min\{\mu_{\mathcal{T}}(B) \mid B \in \sigma(\mathscr{S}), \ A \subseteq B\}$$
$$= \max\{\mu_{\mathcal{T}}(C) \mid C \in \sigma(\mathscr{S}), \ C \subseteq A\}.$$

Teorema 1.41. $\beta(\mathbb{R}^d) \subsetneq \mathcal{L}(\mathbb{R}^d) \subsetneq \mathcal{P}(\mathbb{R}^d)$. De hecho, $\#\mathscr{L}(\mathbb{R}^d) = 2^c$, $\#\mathcal{P}(\mathbb{R}^d) \setminus \mathscr{L}(\mathbb{R}^d) = 2^c$, $\#\beta(\mathbb{R}^d) = c$.

Teorema 1.42. Existe $V \subseteq \mathbb{R}$ no medible Lebesgue.

Lema 1.43. $|E+x|_e=|E|_e \quad \forall E\subseteq \mathbb{R}, \ x\in \mathbb{R}.$ Además, si $E\in \mathscr{L}(\mathbb{R}),$ entonces $E+x\in \mathscr{L}(\mathbb{R})$ y $|E|=|E+x| \quad \forall x\in \mathbb{R}.$

Axioma de Elección. Si $(A_{\gamma})_{\gamma \in \Gamma}$ es una familia de conjuntos disjuntos, no vacíos, entonces existe un conjunto A tal que $A \cap A_{\gamma}$ tiene exactamente 1 elemento $\forall \gamma \in \Gamma$.

Demostración (lema 1.43). Definimos una relación de equivalencia \sim en [0,1) decretando que $x\sim y$ si $x-y\in\mathbb{Q}$. Por el Axioma de Elección, existe un conjunto $V\subseteq\mathbb{R}$ que tiene exactamente 1 elemento de cada clase de equivalencia de \sim . Observemos que:

- V1) $(V+Q_1)\cap (V+Q_2)=\varnothing \quad \forall Q_1,Q_2\in \mathbb{Q}$ distintos. En efecto, si $v_1+Q_1=v_2+Q_2$ con $v_1,v_2\in V\Rightarrow v_1-v_2=Q_2-Q_1\in \mathbb{Q}\Rightarrow v_1\sim v_2\Rightarrow v_1=v_2\Rightarrow Q_1=Q_2.$
- V2) $[0,1)\subseteq\bigcup_{Q\in\mathbb{Q}}V+Q$. Notar que dado $x\in[0,1)$, existe un único $v\in V$ tal que $x\sim v$, i.e., $x-v=Q\in\mathbb{Q}\Rightarrow x=v+Q\in V+Q$.

Si V fuera medible, por (V2) y el Lema,

$$1 == |[0,1)| \le \sum_{Q \in \mathbb{Q}} |V + Q| = \sum_{Q \in \mathbb{Q}} |V| \Rightarrow |V| > 0$$

Por otro lado, por (V1), $\bigcup_{Q\in\mathbb{Q}\cap[0,1)}V+Q\subseteq[0,2)$, y luego, por el Lema y como |V|>0,

lo cual es una contradicción. Luego V no es medible.

1.12 Clase 16 (12/09)

Comentario. Si queremos definir una medida finita sobre $(\mathbb{R}, \beta(\mathbb{R}))$, por el comentario de la vez pasada, basta predefinirla en un π -sistema \mathcal{P} que genere a $\beta(\mathbb{R})$ (si queremos unicidad de la extensión a $\beta(\mathbb{R})$).

Una elección natural es tomar $\mathcal{P} := \{(-\infty, x] : x \in \mathbb{R}\} \ (\sigma(\mathcal{P}) = \beta(\mathbb{R})).$

Luego, si μ es una medida que extiende a una premedida τ sobre \mathcal{P} , entonces μ queda unívocamente determinada sobre $\widetilde{\mathcal{I}}$:

- $\mu(\mathbb{R}) = \mu\left(\bigcup_{n \in \mathbb{N}} (-\infty, n]\right) = \lim_{n \to \infty} \mu((-\infty, n]) = \lim_{n \to \infty} \tau((-\infty, n]).$
- $\mu((a,b]) = \mu((-\infty,b] \setminus (-\infty,b]) = \tau((-\infty,b]) \tau((-\infty,a]).$
- $\mu((a,\infty)) = \mu(\mathbb{R} (-\infty, a]) = \lim_{n \to \infty} \tau((-\infty, n]) \tau((-\infty, a]).$

En conclusión, $\widetilde{\mathcal{I}}$ es la semiálgebra natural que aparece cuando buscamos extender un apremedida definida sobre \mathcal{P} (y necesitamos definirla al menos sobre un π -sistema como \mathcal{P} si queremos unicidad).

Luego, la idea será:

au sobre $\mathcal{P} \Rightarrow \text{ extensión automática a } \widetilde{\mathcal{I}}$ $\Rightarrow \text{ extensión a } \beta(\mathbb{R}) \text{ por Carathéodory..}$

$$\tau((-\infty, x]) =: F_{\tau}(x).$$

Teorema 1.44. Sea $F: \mathbb{R} \to \mathbb{R}$ monótona creciente. Entonces, $\tau_F: \widetilde{\mathcal{I}} \to [0, \infty]$ dada por $\tau(I(a, b)) = F(b) - F(a) \ (-\infty \le a \le b \le \infty)$ cumple que:

- E1) τ_F es finitamente aditiva;
- E2) Si F es continua a derecha, τ_F es σ -subaditiva.

Es decir, si F es de L-S entonces τ_F es extendible (de hecho, es unívocamente extendible)

Demostración.

- E1) Sea $I \in \widetilde{\mathcal{I}}$. Luego, I = I(a,b) para ciertos $-\infty \leq a \leq b \leq \infty$ y $\tau(I) = F(b) F(a)$. Ahora, si $I = \bigcup_{i=1}^n J_i$ entonces, eventualmente reordenando los J_i , podemos suponer que $J_i = I(a_i,b_i)$ para cada $i = 1, \ldots, n$, donde $a = a_1 \leq b_1 = a_2 \leq \cdots \leq b_{n-1} = a_n \leq b_n = b$. Luego, $\tau(I) = F(b) F(a) = \sum_{i=1}^n F(b_i) F(a_i) = \sum_{i=1}^n \tau(J_i)$.
- E2) Supongamos primero que I=(a,b] con $-\infty < a < b < \infty$. Si $I\subseteq \bigcup_{i=1}^\infty J_i$ con $J_i\in \widetilde{\mathcal{I}}$, entonces $J_i=(a_i,b_i]\cap \mathbb{R}$ con $-\infty \le a_i \le b_i \le \infty$. Eventualmente, cambiando $a_i\longrightarrow \max\{a,a_i\},\ b_i\longrightarrow \min\{b,b_i\},$ puedo suponer que $-\infty < a_i \le b_i < \infty$. Ahora, como F es continua a derecha, dado $\varepsilon>0$, existen
 - $\delta > 0$ tal que $a + \delta < b$ y $F(a + \delta) < F(a) + \varepsilon$;
 - $\eta_i > 0$ tal que $F(b_i + \eta_i) < F(b_i) + \frac{\varepsilon}{2i}$ para cada $i \in \mathbb{N}$.

Luego, los intervalos de la forma $((a_i, b_i + \eta_i))_{i \in \mathbb{N}}$ cubren $[a + \delta, b]$, con lo cual, existe $N \in \mathbb{N}$ tal que $[a + \delta, b] \subseteq \bigcup_{i=1}^{N} (a_i, b_i + \eta_i)$. Como $a + \delta \in [a + \delta, b]$, existe $i_1 \in \{1, \ldots, N\}$ tal que $a + \delta \in (a_i, b_i + \eta_i) =: I_1$.

1. Si $b \in I_1$, entonces

$$\begin{split} F(b) - F(a+\delta) &\leq F(b_{i_1} + \eta_{i_1}) - F(a_{i_1}) \\ &\leq F(b_{i_1}) + \frac{\varepsilon}{2^{i_1}} - F(a_{i_1}) \\ &\leq \sum_{i \in \mathbb{N}} \left(F(b_i) + \frac{\varepsilon}{2^i} - F(a_i) \right) \\ &= \sum_{i \in \mathbb{N}} F(b_i) - F(a_i) + \varepsilon. \end{split}$$

- de modo que $F(b)-F(a) \leq F(b)-F(a+\delta)+\varepsilon \leq \sum_{i\in\mathbb{N}} F(b_i)+2\varepsilon$. Tomando $\varepsilon \longrightarrow 0^+$, resulta $\tau(I) \leq \sum_{i=1}^\infty \tau(J_i)$. \checkmark
- 2. Si $b \notin I_1$, entonces $b_{i_1} + \eta_{i_1} \leq b$ y, luego, $b_{i_1} + \eta_{i_1} \in [a + \delta, b]$, de modo tal que existe $i_2 \in \{1, \ldots, N\} \setminus \{i_1\}$ tal que $b_{i_1} + \eta_{i_1} \in (a_{i_2}, b_{i_2} + \eta_{i_2}) = I_2$. En general, existen $m \leq N$ e $i_1, \ldots, i_m \in \{1, \ldots, N\}$ tales que

$$a_{i_1} < a + \delta < b_{i_1} + \eta_{i_1} < \dots < b_{i_{m-1}} - \eta_{i_{m-1}} \le b < b_{i_m} + \eta_{i_m}$$

con
$$b_{i_k} + \eta_{i_k} \in (a_{i_{k+1}}, b_{i_{k+1}} + \eta_{i_{k+1}}) \quad \forall k = 1, \dots, m.$$
 Luego,

$$\begin{split} F(b) - F(a+\delta) &\leq F(b_{i_m} + \eta_{i_m}) - F(a_{i_1}) \\ &= \left(\sum_{k=1}^{m-1} F(b_{i_{k+1}} + \eta_{i_{k+1}}) - F(b_{i_k} + \eta_{i_k})\right) \\ &+ F(b_{i_1} + \eta_{i_1}) - F(a_{i_1}) \\ &\leq \left(\sum_{k=1}^{m-1} F(b_{i_{k+1}} + \eta_{i_{k+1}}) - F(a_{i_{k+1}})\right) \\ &+ F(b_{i_1} + \eta_{i_1}) - F(a_{i_1}) \\ &\leq \sum_{i=1}^{\infty} F(b_i + \eta_i) - F(a_i) \\ &\leq \sum_{i=1}^{\infty} F(b_i) - F(a_{i_1}) + \varepsilon. \end{split}$$

Con lo cual, $\tau(I) = F(b) - F(a) \leq \sum_{i \in \mathbb{N}} \tau(j_i) + 2\varepsilon$. Tomando $\varepsilon \longrightarrow 0^+$, obtenemos el resultado (en el caso $-\infty < a < b < \infty$).

- 3. Si a=b entonces $I=\varnothing$ y el resultado es inmediato.
- 4. Si $a = -\infty$ ó $b = \infty$ y $a \neq b$, entonces

$$(\max\{a, -N\}, \min\{b, N\} \subseteq I \quad \forall N \in \mathbb{N}$$

de modo que, si $I \subseteq \bigcup_{i \in \mathbb{N}} J_i$, por el caso anterior,