Plan of Presentation

- 1. Definition
- 2. Motivation
- 3. Privacy index
- 4. Privacy setting (computation)
 - Behavioral
 - Fuzzy c-means clustering
 - Item Response Theory
 - Social
 - Fake profiles / Spammers

1. Definition

User Privacy risk

Message visibility

Message sensitivity

- Privacy score is the trade-off between:
 - Message sensitivity:
 - Qualitative metric
 - Message visibility:
 - Quantitative metric

2. Motivation

Connection data	SSL sessionDevice / log / TimezoneCookies / Browsing history
Login data	Email / Phone / Password
Mandatory data	Name / birthday / gender
Extended profile data	Education / hometown / languagesPolitical / religion / website / work
Application data	Usage statistics / ScoresPermissions / Credit card
Interests	Hobbies : Books / Music / MoviesLikes / Inspirational_people
Network data	Family / Friends / Groups
Contextual data	Taggable_friends / Tagged_places
Private communication Data	Private messageInbox / Outbox / Poke
Disclosed data	Text post / Photo / VideoCheck-in

2. Motivation

	Connection data	SSL sessionDevice / log / TimezoneCookies / Browsing history
	Login data	Email / Phone / Password
	Mandatory data	Name / birthday / gender
		 Education / hometown / languages Political / religion / website / work Usage statistics / States Sage S Permissions / Credit card
Ca	ne est measu	re Holie Cocky Music MyeVeVacy Liles / Inspirational_people
	Network data	Family / Friends / Groups
	Contextual data	Taggable_friends / Tagged_places
	Private communication Data	Private messageInbox / Outbox / Poke
	Disclosed data	Text post / Photo / VideoCheck-in

Behavioral

- Data: text, URL, Code
- Data type: image, video
- Nb of messages / day

Social

- Family / Friends / Groups
- Spammers / Fake profile

Technical

- SSL session (SSL labs)
- Device / log / Timezone
- Cokies / Browsing history

Behavioral

- Data: text, URL, Code
- Data type: image, video
- Nb of messages / day

Social

- Family / Friends / Groups
- Spammers / Fake profile

Technical

- SSL session (SSL labs)
- Device / log / Timezone
- Cokies / Browsing history

Behavioral

- Data: text, URL, Code
- Data type: image, video
- Nb of messages / day

Social

- Family / Friends / Groups
- Spammers / Fake profile

Technical

- SSL session (SSL labs)
- Device / log / Timezone
- Cokies / Browsing history

4. Privacy settings:4.1 Behavioral privacy

Privacy settings Matrix

Sensitivity	β1	•••	βn
User\Item	msg 1		msg n
User 1			
		visibility	
User N			

- Privacy score is the trade-off between:
 - message sensitivity
 - message visibility
- data visibility and sensitivity depend on:
 - Privacy settings matrix
- Behavioral privacy
 - Examples
 - 1) Fuzzy c-means clustering
 - 2) Item Response Theory

4.1 Behavioral privacy

4.1.1 Fuzzy c-means clustering

Input

- Users: $U = \{ u_1, ..., u_N \}$
- Privacy settings: $S = \{ s_{(1,1)}, \dots, s_{(i,v)} \}$
 - → Data type I = { MyActivity, ContactMe, MyRelations, MyTopics, PersonelInfo, VoteInfo }
 - → Visibilities: V = { OnlyMe, Friends, FriendsOfFriends, Public }

Method

- Fuzzy c-means clustering
- Output
 - Users behavior

User	My Activity	Contact Me	My Relations	My Topics	Personal Info	Vote Intention
1	2	3	2	3	3	2
•••						
N	4	4	4	2	2	1

4.1 Behavioral privacy

4.1.1 Fuzzy c-means clustering

Fuzzy c-means clustering with 4 clusters

4.1 Behavioral privacy

4.1.1 Fuzzy c-means clustering

Input

- Users: $U = \{ u_1, ..., u_N \}$
- Privacy settings: $S = \{ s_{(1,1)}, \dots, s_{(i,v)} \}$
 - → Data type I = { MyActivity, ContactMe, MyRelations, MyTopics, PersonelInfo, VoteInfo }
 - → Visibilities: V = { OnlyMe, Friends, FriendsOfFriends, Public }

Method

- Fuzzy c-means clustering
- Output
 - Users behavior

User	My Activity	Contact Me	My Relations	My Topics	Personal Info	Vote Intention
1	2	3	2	3	3	2
•••						
N	4	4	4	2	2	1

4. Privacy settings:4.1 Behavioral privacy4.1.1 Fuzzy c-means clustering

4.1 Behavioral privacy

4.1.1 Fuzzy c-means clustering

4.1 Behavioral privacy

4.1.2 Item Response Theory (IRT)

Privacy settings Matrix

	Sensitivity	β1		βn
Attitude	User\ltem	msg 1		msg n
θ1	User 1			
	•••		R(i,j)	
θΝ	User N			

- Privacy score is the trade-off between:
 - message sensitivity
 - message visibility
- data visibility and sensitivity depend on:
 - Privacy settings matrix
- data visibility depends on:
 - Response Matrix

$$P_{ij} = Prob\{R(i, j) = k\}$$

Item Response Theory (IRT)

$$P_{ij} = \frac{1}{1 + e^{\alpha_i (\theta_j - \beta_i)}}$$

4.1 Behavioral privacy

4.1.2 Item Response Theory (IRT)

		Sensitivity	β1		βn
Privacy	Attitude	User\ltem	msg 1	•••	msg n
P1	θ1	User 1			
				R(i,j)	
PN	θΝ	User N			

$$\bullet \qquad P_{j} = \sum_{i=1}^{n} \beta_{i}. V_{ij}$$

$$ullet$$
 $oldsymbol{V}_{ij} = oldsymbol{P}_{ij}$

$$\bullet \qquad P_{ij} = \frac{1}{1 + e^{\alpha_i (\theta_j - \beta_i)}}$$

$$\bullet \qquad P_{ij} = Prob\left\{ R\left(i, j\right) = k \right\}$$

4. Privacy settings:4.2 Social privacy

Authors	Features/Attributes	Type of features	Purpose
Zheng et al (2012): Sockpuppet detection in online discussion forums	Nb of repliesRegistration dates	Behavioral	Sock-puppet Detection
Zheng et al (2015): Detecting spammers on social networks	Nb of reposts / Nb of CommentsNb of Likes / Nb of MentionsNb of URL in the postNb of Hash-tags	Behavioral	Spammer Detection
Sarode et al (2015): An experimental approach to detect fake profile in online social network	 Education and work Relationship status / Gender Nb of wall posts by the person Nb of photos of person tagged Nb of photos that has uploaded Nb of tags in the uploaded photos 	Non - Behavioral	Detection of Fake profiles
Zhou et al (2012): Feature analysis of spammers in social networks with active honeypots	- Micro-blogs- Followers / Followings- Friend Number- Nb of micro-blogs to get a fan	Non- Behavioral	Analysis of Spammers

Conclusion & challenges

- Privacy index requires:
 - Qualitative measurement
 - Message sensitivity
 - Quantitative measurement
 - Message visibility
- Behavioral privacy index :
 - Cluster model
 - Stochastic model
- Social privacy index:
 - Detect Spammer
 - Detect fake profile
- Technical privacy index:
 - (see SSL labs)

Thank you for your attention