Particle spectrograph

Wave operator and propagator

$\tau_{o}^{#2} = 0$)	
	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	
$\tau_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \ \alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	m
$t_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$\sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	3
$\sigma_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{x}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{x}\partial^{x}\sigma^{\alpha\beta}_{\beta} == \partial_{x}\partial_{\beta}\sigma^{\alpha\beta\chi}$	м
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#1}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha}$	К
•	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$+ \overset{\circ}{\partial_{\chi}} \partial^{\alpha} \iota^{\chi \beta} + \partial_{\chi} \partial^{\beta} \iota^{\alpha \chi} + \partial_{\chi} \partial^{\chi} \iota^{\beta \alpha} +$	
	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\chi\beta}$	
$\sigma_{1+}^{\#1}\alpha\beta == \sigma_{1+}^{\#2}\alpha\beta$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	Е
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha}$	
$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} \partial^{\epsilon} +$	2
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \varepsilon} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta\delta\epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha\delta\epsilon} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\beta\delta}$	
$\tau_{2+}^{\#1}\alpha\beta=0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} t^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial_{\tau_{X}}$	
$\sigma_{2}^{\#1}\alpha\beta=0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi\delta} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge	0	35

		+ 8	$\partial_{\theta} f^{\alpha \prime}$ -	"-4 <i>t</i> 2	$\mathcal{R}_{lpha heta_{\prime}}$ ($\mathcal{R}^{lpha_{\prime} heta}+\partial^{ heta}f^{lpha_{\prime}}$)+2 t_{2} $\mathcal{R}_{lpha_{\prime} heta}$ ($\mathcal{R}^{lpha_{\prime} heta}$ +2 $\partial^{ heta}f^{lpha_{\prime}}$)+			lt.									Š
	α .	$\partial_{ heta}\mathcal{R}_{,}^{ heta}$	$\partial_{\alpha}f_{\ \theta_{I}}$	$^{1\alpha}\partial^{\theta}F_{\sigma}$	(<i>A</i> ^{αιθ}	(<i>αβι</i> +	$\mathcal{A}^{\alpha\beta'}$ - $\mathcal{A}^{\alpha\beta'}$ -	ואמאט	$f_{1^-}^{\#2}$	0	0	0	0	0	0	0	
	$^{\prime}\mathcal{A}^{\alpha\beta}_{\alpha}$	$\mathcal{A}^{\alpha\beta}_{\alpha}$	$f^{lpha \prime}$ - t_2	$t_2\partial_{ heta} f$	$\mathcal{A}_{\alpha l heta}$	E 00 10:	$^{\theta\alpha}_{\beta\alpha}$	αβις : :]dz a	$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	
	$\mathcal{B}_{\theta}^{\theta}$	18 <i>r</i> 3 <i>ð'</i>	$^{\chi}f_{,\theta}\partial^{\theta}$	$\partial_{\theta} f_{\alpha'}$ -	$+2t_{2}$	$\partial_{eta}\mathcal{A}_{lpha}$	$r_3 \partial_{\beta} \mathcal{A}$	2,09,5 X, y, x	${\mathcal A}_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0	
	4 r ₃ 0 _β	$(\frac{\theta}{\beta} + 4$	$-2t_2\partial_c$	$\partial_{\theta}f_{\alpha \prime}$	$\partial^{\theta} f^{\alpha \iota})$	^{ιβι} - 4 _{Γ2}	^(β) - 24 , (β) + 2 ,	$^{(\beta')})[t, \cdot]$	$\mathcal{A}_{1^{ op}lpha}^{\#1}\mathcal{A}_{1^{ op}lpha}^{\#2}f_{1^{ op}lpha}^{\#1}$	0	0	0	0	0	0	0	
	$t^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$ -2	$24 r_3 \partial_{\alpha} \mathcal{A}^{\alpha\beta} \partial_{\theta} \mathcal{A}_{'\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$4t_2\mathcal{A}_{,\theta\alpha}\partial^\theta f^{\alpha\prime} + 2t_2\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} - t_2\partial_\alpha f_{\theta\prime}\partial^\theta f^{\alpha\prime} -$	$t_2\partial_{\scriptscriptstyle{I}} f_{\alpha\theta}\partial^{\theta} f^{\alpha\prime} + t_2\partial_{\theta} f_{\alpha\prime}\partial^{\theta} f^{\alpha\prime} - t_2\partial_{\theta} f_{\scriptscriptstyle{I}\alpha}\partial^{\theta} f^{\alpha\prime} - 4t_2$	$_{\alpha heta _{\prime }}$ ($\mathcal{A}^{lpha _{\prime } heta }$ +	$8 r_2 \partial_{\beta} \mathcal{A}_{\alpha_{1}\theta} \partial^{\theta} \mathcal{A}^{\alpha\beta'} - 4 r_2 \partial_{\beta} \mathcal{A}_{\alpha\theta'} \partial^{\theta} \mathcal{A}^{\alpha\beta'} +$	$4r_2\partial_{eta}\mathcal{H}_{1artheta}\partial^{artheta}\mathcal{H}^{lphaeta_!}$ $-24r_3\partial_{eta}\mathcal{H}_{1arthetalpha}\partial^{artheta}\mathcal{H}^{lphaeta_!}$ $-24r_3\partial_{eta}\mathcal{H}_{1arthetalpha}\partial^{artheta}\mathcal{H}^{lphaeta_!}$ $-24r_3\partial_{eta}\mathcal{H}_{1arthetalpha}\partial^{artheta}\mathcal{H}^{lphaeta_!}$	$2 (2 \partial_{i} \mathcal{A}_{lphaeta eta} \partial_{i} \mathcal{A}_{lphaeta} \partial_{i} \mathcal{A}_{lphaeta})$ $= (2 \partial_{i} \mathcal{A}_{lphaeta} \partial_{i} \mathcal{A}_{lphaeta} \partial_{i} \mathcal{A}_{lphaeta})$ $= (2 \partial_{i} \mathcal{A}_{lphaeta} \partial_{i} \partial_{i} \mathcal{A}_{lphaeta} \partial_{i} \mathcal{A}_{lphaeta} \partial_{i} \partial_{$	$f_1^{\#1}$	$\frac{1}{3}\vec{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0	:
ction	$\tau_{\alpha\beta} + 6 \mathcal{F}$	24 r	4 t2	$t_2 \partial_{ij}$	R	8 12 6	4 7 2 6	4 12 6	${\cal A}_{1}^{\#2}{}_{lphaeta}$	$\frac{\sqrt{2} t_2}{3}$	t2 3	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0	
Quadratic (free) action	$S == \iiint_{\theta} \frac{1}{\theta} (6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 24 r_3 \partial_{\beta} \mathcal{A}_{\mu}^{\theta} \partial^{\mu} \mathcal{A}_{\alpha \beta}^{\alpha \beta})$								${\mathscr A}_{1}^{\#1}_{\alpha\beta}$	2 <i>t</i> 2 3	$\frac{\sqrt{2}t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0	:
Quadra	S == <i>S</i>									$\mathcal{A}_1^{\#1} \dagger^{\alpha \beta}$	$\mathcal{A}_{1}^{\#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\mathcal{A}_{1}^{\#1} \dagger^{lpha}$	$\mathcal{A}_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} + ^{lpha}$	ı

$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0					
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0					
$\tau_1^{\#\frac{1}{4}} \alpha \beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0					
$\sigma_1^{\#2} + \alpha eta$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0	$^{\chieta}$ $\sigma_{2}^{\#1}$ lphaeta	0	0	0	
$\sigma_1^{\#_1}\!\!+\!lpha_eta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0	$\sigma_{2}^{\#1}_{\alpha\beta} \iota_{2}^{\#1}_{\alpha\beta} \sigma_{2}^{\#1}_{2}$	0 0	0 0	0 0	
,	$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1^-}^{\#1} +^\alpha$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^-}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$		$\sigma_2^{\#1} + ^{\alpha\beta}$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

0 0 0 0

0 0 0 0

 $\mathcal{A}_{2^{+}\alpha\beta}^{\#1} \, f_{2^{+}\alpha\beta}^{\#1} \, \mathcal{A}_{2^{-}\alpha\beta\chi}^{\#1}$

0

 $\sigma_{0^{+}}^{\sharp 1}$ $\tau_{0^{+}}^{\sharp 1}$ $\tau_{0^{+}}^{\sharp 2}$ $\sigma_{0^{-}}^{\sharp 1}$

 $\mathcal{R}_{0^{+}}^{\sharp 1} f_{0^{+}}^{\sharp 1} f_{0^{+}}^{\sharp 2} \mathcal{R}_{0^{-}}^{\sharp 1}$

0 0 0 $k^2 r_2 + t_2$

0

0 0

0

Massive and massless spectra

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$