11 класс, вариант 37111, задача 1

В теории чисел натуральное число называется В-гладким, если все его простые делители не превосходят В. Разработайте алгоритм проверки чисел в диапазоне от Р до Q на В-гладкость.

Решение (схема). Строится массив простых чисел. Далее для каждого числа n из диапазона от P до Q проверяем, являются ли простые числа, большие B, делителями числа n. Если это так, то число не является B-гладким. B противном случае число является B-гладким.

11 класс, вариант 37111, задача 2

Марина и Светлана разговаривают по телефону и хотят выбрать секретное число так, чтобы оно осталось неизвестным постороннему, возможно подслушивающему их разговор. Для этого Марина подбирает натуральное число $a \le 256$ такое, что числа $R_{257}(a^i)$ различны при всех $1 \le i \le 256$ и $R_{257}(a^{256}) = 1$, где $R_{257}(t)$ – остаток от деления числа t на 257. Затем Марина загадывает натуральное число $x \le 256$, а Светлана – натуральное число $y \le 256$. После этого Марина сообщает числа a и $R_{257}(a^x)$ Светлане, а Светлана ей – число $R_{257}(a^y)$. Теперь они обе вычисляют их секретное число $R_{257}(a^{xy})$. Составьте алгоритм для нахождения этого секретного числа, если известно, что $R_{257}(a^x) = 9$, $R_{257}(a^y) = 256$.

Решение (схема).

Вводим значение a и проверяем условия $R_{257}(a^1) \neq R_{257}(a^2) \neq ... \neq R_{257}(a^{256})$ и $R_{257}(a^{256}) = 1$. Если условия не выполняются, то вводим новое значение a. Генерируем случайное значение x (1 < $x \le 256$), для которого $R_{257}(a^x) = 9$, и случайное значение y (1 < $y \le 256$), для которого $R_{257}(a^y) = 256$. Вычисляем $k_1 = R_{257}(256^x)$ и $k_2 = R_{257}(9^y)$. Проверяем $k_1 = k_2$ и выводим $k = k_1$.

11 класс, вариант 37111, задача 3

По квадратной матрице А размера n построить матрицу В того же размера, где b_{ij} определяется следующим образом. Через a_{ij} проведём в А диагонали, параллельные главной и побочной диагоналям (главная диагональ квадратной матрицы – диагональ, которая проходит через верхний левый и нижний правый углы, побочная диагональ проходит через верхний правый и нижний левый углы); b_{ij} определяется как максимум в заштрихованной части матрицы А (см. рис. 1).

Рис. 2

Решение (схема). Для каждого элемента a_{ij} в первой строке (с номером i) заштрихованной части матрицы находится только один элемент. Используем его для инициализации переменной, в которой будет записано максимальное значение. Номера строк, которые надо обработать, меняются от i+1 до n (n – количество строк и столбцов матрицы). Номера обрабатываемых столбцов для строки с номером i+1 будут следующие: $j_{Hay} = j - 1$, $j_{KOH} = j + 1$. Для каждой следующей строки j_{Hay} уменьшается на 1, а j_{KOH} увеличивается

на 1. При этом (а также при инициализации j_{Haq} и j_{KOH}) надо проверять, чтобы эти значения не стали меньше 1 и больше n соответственно.

11 класс, вариант 37111, задача 4

На листе бумаги нарисована квадратная таблица размера 2n. В клетках написаны различные целые числа. Необходимо получить новую таблицу, переставляя блоки размера $n \times n$ в соответствии с рис. 2.

Решение (схема). Сначала обработаем левый верхний квадрат, в котором номера строк i=1,...,n, а номера столбцов – j=1,...,n. Каждый элемент $a_{i,j}$ надо поменять с элементом $a_{i+n,j+n}$. Затем обработаем правый верхний квадрат, в котором номера строк i=1,...,n, а номера столбцов – j=n+1,...,2n. Каждый элемент $a_{i,j}$ надо поменять с элементом $a_{i+n,j-n}$.

11 класс, вариант 37111, задача 5

В теории чисел задача Знама спрашивает, какие множества k целых чисел имеют свойство, что каждое целое в множестве является собственным делителем произведения других целых чисел в множестве плюс 1. То есть, если дано число k, какие существуют множества целых

чисел
$$\{n_1, ..., n_k\}$$
 таких, что для любого i число n_i делит, но не равно $\left(\prod_{j\neq i}^k n_j + 1\right)$. Разработайте

алгоритм нахождения числа решений задачи Знама для k в диапазоне от P до Q. Принять верхнюю границу $n_i = 10^{15}$.

Решение (схема). Задача решается перебором всех вариантов.