Seminar on Tenosr Optimization Part I: Introduction and Tensor PCA

Lecturer: Bo Jiang

October 9, 2022

OUTLINE

Introduction

Tucker Core

Tensor PCA

OUTLINE

Introduction

Tucker Core

Tensor PCA

WHAT IS A TENSOR?

An $n_1 \times n_2$ matrix:

$$A = [a_{i_1 i_2}]_{n_1 \times n_2} \in \mathbb{C}^{n_1 \times n_2}$$

An $n_1 \times n_2 \times \cdots \times n_d$ tensor:

$$\mathcal{A} = [\mathcal{A}_{i_1 i_2 \cdots i_d}] \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_d}$$

 \mathcal{A} is symmetric if $n_1 = n_2 = \cdots = n_d$ and $\mathcal{A}_{i_1 i_2 \cdots i_d}$ is invariant under any permutation of $\{i_1, i_2, \cdots, i_d\}$.

Space of d-th order super-symmetric tensor is denoted by \mathbb{S}^{n^d} .

Tensor Operations I

► The outer product between $A_1 \in \mathbb{C}^{n_1 \times \cdots \times n_d}$ and $A_2 \in \mathbb{C}^{n_{d+1} \times \cdots \times n_{d+\ell}}$:

$$(\mathcal{A}_1 \otimes \mathcal{A}_2)_{i_1 i_2 \cdots i_{d+\ell}} = (\mathcal{A}_1)_{i_1 i_2 \cdots i_d} (\mathcal{A}_2)_{i_{d+1} \cdots i_{d+\ell}}.$$

► The outer product among vectors

$$(x^1 \otimes x^2 \otimes \cdots \otimes x^d)_{i_1 i_2 \cdots i_m} = \prod_{k=1}^d (x^k)_{i_k}$$
 (Rank-one tensor).

▶ The inner product between A_1 and $A_2 \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_d}$

$$\mathcal{A}_1 \bullet \mathcal{A}_2 = \sum_{i_1, i_2, \dots, i_d} (\mathcal{A}_1)_{i_1 i_2 \cdots i_d} (\mathcal{A}_2)_{i_1 i_2 \cdots i_d}.$$

▶

$$\mathcal{F}(\underbrace{x,\cdots,x}_{2d}) = \sum_{1 \leq i_1,\cdots,i_d \leq n} \mathcal{F}_{i_1\cdots i_{2d}} x_{i_1} \cdots x_{i_{2d}} = \mathcal{F} \bullet \underbrace{x \otimes \cdots \otimes x}_{2d}$$

TENSOR OPERATIONS II

► The Kronecker product of matrices $A \in \mathbb{R}^{I \times J}$ and $B \in \mathbb{R}^{K \times L}$ is denoted by

$$A \circ B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1J}B \\ a_{21}B & a_{22}B & \cdots & a_{2J}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{I1}B & a_{I2}B & \cdots & a_{IJ}B \end{bmatrix}.$$

► The Khatri-Rao is defined by

$$A \odot B = \begin{bmatrix} a_1 \circ b_1 & a_2 \circ b_2 & \cdots & a_K \circ b_K \end{bmatrix}$$

CP DECOMPOSITION I

► The CP (Candecomp/Parafac) rank (denoted by $\operatorname{rank}_{CP}(\cdot)$): For $\mathcal{F} \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_d}$, the smallest integer r such that

$$\mathcal{F} = \sum_{i=1}^r a^{1,i} \otimes a^{2,i} \otimes \cdots \otimes a^{d,i}, \quad a^{k,i} \in \mathbb{C}^{n_i}.$$

► The symmetric CP rank (denoted by $\operatorname{rank}_{SCP}(\cdot)$): For $\mathcal{F} \in \mathbb{S}^{n^d}$, the smallest integer r such that

$$\mathcal{F} = \sum_{i=1}^r \underbrace{a^i \otimes \cdots \otimes a^i}_{d}, \quad a^i \in \mathbb{C}^n.$$

CP DECOMPOSITION II

► The real symmetric CP rank (denoted by $\operatorname{rank}_{RCP}(\cdot)$): For $\mathcal{F} \in \mathbf{S}^{n^d}$, the smallest integer r such that

$$\mathcal{F} = \sum_{i=1}^r \lambda_i \underbrace{a^i \otimes \cdots \otimes a^i}_{d}, \quad a^i \in \mathbb{R}^n, \lambda_i \in \mathbb{R}^1.$$

CP DECOMPOSITION III

CHALLENGE: COMPUTING THE RANK OF A TENSOR

- ▶ Determine the CP rank of a specific tensor is already NP-hard in general.
- ► There is a particular $9 \times 9 \times 9$ tensor, whose rank is only known to be in between 18 and 23.

(1,1,1):	1	(4,2,1):	1	(7,3,1):	1
(1,4,2):	1	(4,5,2):	1	(7,6,2):	1
(1,7,3):	1	(4,8,3):	1	(7,9,3):	1
(2,1,4):	1	(5,2,4):	1	(8,3,4):	1
(2,4,5):	1	(5,5,5):	1	(8,6,5):	1
(2,7,6):	1	(5,8,6):	1	(8,9,6):	1
(3,1,7):	1	(6,2,7):	1	(9,3,7):	1
(3,4,8):	1	(6,5,8):	1	(9,6,8):	1
(3,7,9):	1	(6,8,9):	1	(9,9,9):	1

Uniqueness of Tensor Rank Decomposition I

Consider a matrix $X \in \mathbb{R}^{I \times J}$ with rank R. Then a rank decomposition of X is

$$X = AB^{\top} = \sum_{r=1}^{R} a_r \otimes b_r.$$

- ▶ Let the SVD of *X* be $X = U\Sigma V^{\top}$ then we can choose:
 - ► $A = U\Sigma$ and B = V;
 - ► $A = U\Sigma W$ and B = VW, where W is some $R \times R$ orthogonal matrix.
- ► We can easily construct two completely different sets of *R* rank-one matrices that sum to the original matrix.

Uniqueness of Tensor Rank Decomposition II

► For a three-way tensor $\mathcal{X} \in \mathbb{R}^{I \times J \times K}$ of rank R, suppose \mathcal{X} has a CP decomposition:

$$\mathcal{X} = \sum_{i=1}^{R} a_r \otimes b_r \otimes c_r := [A, B, C],$$

where $A = [a_1, \dots, a_R]$ and likewise for B and C.

▶ By uniqueness we mean the decomposition is unique in the sense of scaling and permutation, i.e.

$$\mathcal{X} = [\Pi A, \Pi B, \Pi C] = \sum_{i=1}^{R} (\alpha_r a_r) \otimes (\beta_r b_r) \otimes (\gamma_r c_r),$$

for any permutation matrix Π and $\alpha_r \beta_r \gamma_r = 1$ for r=1,...,R.

Uniqueness of Tensor Rank Decomposition III

- ▶ Define the k rank of a matrix A as k_A , which is the maximum value k such that **any** k columns of A are linearly independent.
- ▶ For a N-way tensor \mathcal{X} with rank R and CP-decomposition

$$\mathcal{X} = \sum_{r=1}^{R} a_r^{(1)} \otimes a_r^{(2)} \otimes \cdots \otimes a_r^{(N)} = [A^{(1)}, A^{(2)}, \dots, A^{(N)}].$$

► The sufficient condition for uniqueness is

$$\sum_{n=1}^{N} k_{A^{(n)}} \ge 2R + (N-1).$$

Uniqueness of Tensor Rank Decomposition IV

► The necessary condition for uniqueness is

$$\min_{n=1,\ldots,N} \quad \operatorname{rank}(A^{(1)} \odot \cdots \odot A^{(n-1)} \odot A^{(n+1)} \odot \cdots \odot A^{(N)}) = R,$$

Further, since ${\rm rank}(A\odot B)\leq {\rm rank}(A\circ B)\leq {\rm rank}(A){\rm rank}(B)$, a simpler necessary condition is

$$\min_{n=1,\dots,N} \left(\prod_{m=1,m\neq n}^{N} \operatorname{rank}(A^{(m)}) \right) \ge R$$

DISCONTINUITY OF TENSOR RANK I

► For matrices, the best rank-*k* approximation is given by the leading *k* factors of the SVD, i.e. if a rank *R* matrix *A* has its SVD

$$A = \sum_{r=1}^{R} \sigma_r u_r \otimes v_r \quad \text{with} \quad \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_R > 0,$$

then a rank-k approximation that minimizes ||A - B|| is given by

$$B = \sum_{r=1}^k \sigma_r u_r \otimes v_r.$$

► However, the result does not hold true for higher-order tensors.

DISCONTINUITY OF TENSOR RANK II

► For example, a rank-three tensor defined by

$$\mathcal{X} = a_1 \otimes b_1 \otimes c_2 + a_1 \otimes b_2 \otimes c_1 + a_2 \otimes b_1 \otimes c_1$$

can be approximated arbitrarily closely by a rank-two tensor of the following form:

$$\mathcal{Y} = \alpha(a_1 + \frac{1}{\alpha}a_2) \otimes (b_1 + \frac{1}{\alpha}b_2) \otimes (c_1 + \frac{1}{\alpha}c_2) - \alpha a_1 \otimes b_1 \otimes c_1.$$

DISCONTINUITY OF TENSOR RANK III

- ► We say a tensor is **degenerate** if it may be approximated arbitrarily well by a factorization of low rank.
- ▶ The following picture shows a sequence $\{\mathcal{X}_k\}$ of rank-two tensors converging to a rank three tensor \mathcal{X}^* .

OUTLINE

Introduction

Tucker Core

Tensor PCA

TUCKER DECOMPOSITION I

$$\mathcal{X} = \mathcal{G} \times_1 A^{(1)} \times_2 \dots \times_N A^{(N)} \triangleq \llbracket \mathcal{G}; A^{(1)}, \dots, A^{(N)} \rrbracket$$
 (1)

Tucker Decomposition II

- ▶ $G \in \mathbb{C}^{J_1 \times J_2 \times \cdots \times J_N}$ is called the *core tensor*.
- ▶ $A^{(n)} \in \mathbb{C}^{I_n \times J_n}$ is the *n*-th factor matrix for n = 1, ..., N, where \times_n is the mode-n (matrix) product.
- ► Tucker decomposition is said to be independent if each of the factor matrix has full column rank; a Tucker decomposition is said to be orthonormal (more standard) if each of the factor matrix has orthonormal columns.

How to Compute Independent Tucker Decomposition I

Orthonormal Tucker Decomposition is named as higher-order SVD (HOSVD) in DeLathauwer, Moor and Vandewalle in 2000. Then how about independent Tucker decomposition.

- ► For each n one performs a mode-n matricization on \mathcal{X} to get $X_{(1)}, \dots, X_{(N)}$.
- ► For each mode-n one computes a matrix factorization such that $X_{(n)} = A^{(n)}C^{(n)}$ and $A^{(n)}$ has full column rank.
- Letting $\mathcal{G} = \mathcal{X} \times_1 (A^{(1)})^H \times_2 \cdots \times_N (A^{(N)})^H$ and $B^{(n)} = A^{(n)} \left((A^{(n)})^H A^{(n)} \right)^{-1}$, $[\![\mathcal{G}; B^{(1)}, \dots, B^{(N)}]\!]$ is an independent Tucker decomposition of \mathcal{X} .

How to Compute Independent Tucker Decomposition II

Algorithm 1 HOSVD

- 1: **for** $n = 1, 2, \dots, N$ **do**
- 2: $A^{(n)} \leftarrow R_n$ leading left singular vectors of $X^{(n)}$
- 3: end for
- 4: $\mathcal{G} = \mathcal{X} \times_1 (A^{(1)})^H \times_2 \cdots \times_N (A^{(N)})^H$
- 5: **return** $G, A^{(1)}, \dots, A^{(N)}$

Are the two decompositions related?

- $\blacktriangleright \ \, \text{For independent Tucker decomposition} \, \, \mathcal{X} = [\![\mathcal{G}; X^{(1)}, \ldots, X^{(N)}]\!],$
- ► CP decomposition of the core $\mathcal{G} = \sum_{t=1}^{r} b^{(1,t)} \otimes b^{(2,t)} \otimes \cdots \otimes b^{(N,t)}$.
- ► Then $\mathcal{X} = \sum_{t=1}^r \left(A^{(1)} b^{(1,t)} \right) \otimes \cdots \otimes \left(A^{(N)} b^{(N,t)} \right)$.
- ▶ Could be very efficient when the size of the core \mathcal{G} is much smaller than the original tensor \mathcal{X} .
- ► It is known as CANDELINC in the case of orthornormal Tucker decomposition.
 - ► Based on: "Tensor and Its Tucker Core: the Invariance Relationships", with F. Yang and S. Zhang, Numerical Linear Algebra with Applications, 24(3), e2086, 2017.

RANK EQUIVALENCE

- ▶ On the other hand, $\mathcal{G} = \mathcal{X} \times_1 B^{(1)} \times_2 \cdots \times_N B^{(N)}$ and $\mathcal{G} \in \mathbb{C}^{R_1 \times R_2 \times \cdots \times R_N}$, where $B^{(n)} = (A^{(n)H}A^{(n)})^{-1}A^{(n)H}$.
- ▶ Suppose $\mathcal{X} = \sum_{t=1}^{r} a^{(1,t)} \otimes a^{(2,t)} \otimes \cdots \otimes a^{(N,t)}$, similar argument yields that

$$\mathcal{G} = \sum_{t=1}^{r} \left(B^{(1)} a^{(1,t)} \right) \otimes \cdots \otimes \left(B^{(N)} a^{(N,t)} \right)$$

- ► Recall that $\mathcal{X} = \sum_{t=1}^{r} \left(A^{(1)} b^{(1,t)} \right) \otimes \cdots \otimes \left(A^{(N)} b^{(N,t)} \right)$.
- ▶ We have $\operatorname{rank}_{CP}(\mathcal{X}) = \operatorname{rank}_{CP}(\mathcal{G})$.
- ► The goal of matrix completion problem:

$$\min_{\mathcal{X}} \ \sum_{i=1}^{N} \|X^{(i)}\|_* + \frac{\mu}{2} \|L(\mathcal{X}) - b\|_2^2$$

Tensors with a symmetric structure

- ▶ Symmetric CP decomposition: $\mathcal{X} = \sum_{t=1}^{r} a^{(t)} \otimes \cdots \otimes a^{(t)}$. The symmetric rank of \mathcal{X} , denoted by $\operatorname{rank}_{S}(\mathcal{X})$, is the minimal integer r such that a size-r symmetric CP decomposition exists.
- ▶ *Symmetric Tucker decomposition*: $\mathcal{X} = [\![\mathcal{G}^s; X, X, \dots, X]\!]$, and \mathcal{G}^s is also symmetric.
- ▶ We still have that $\operatorname{rank}_{S}(\mathcal{G}^{s}) = \operatorname{rank}_{S}(\mathcal{X})$.
- ▶ In particular, we can first decompose $\mathcal{G}^s = \sum_{t=1}^r \underbrace{b^t \otimes \cdots \otimes b^t}_N$ and then

$$\mathcal{X} = \sum_{t=1}^{r} \underbrace{\left(Xb^{t}\right) \otimes \cdots \otimes \left(Xb^{t}\right)}_{N}.$$

Frobenius Norm

- ▶ $\|\mathcal{X}\|_F \triangleq \sqrt{\langle \mathcal{X}, \mathcal{X} \rangle}$, where $\langle \cdot, \cdot \rangle$ stands for the inner product of two tensors.
- ▶ For any given tensor $\mathcal{X} \in \mathbb{C}^{I_1 \times I_2 \times \cdots \times I_N}$ with independent Tucker decomposition $\mathcal{X} = \llbracket \mathcal{G}; X^{(1)}, \dots, X^{(N)} \rrbracket$, we have that

$$\alpha \|\mathcal{G}\|_F \le \|\mathcal{X}\|_F \le \beta \|\mathcal{G}\|_F,\tag{2}$$

where $\beta = \|X^{(1)}\|_2 \|X^{(2)}\|_2 \cdots \|X^{(N)}\|_2$ and $\alpha = \beta/(\prod_{n=1}^N \kappa(X^{(n)}))$ with $\kappa(X^{(n)})$ being the condition number of the matrix $X^{(n)}$ for all n.

▶ For an orthonormal Tucker decomposition, its factor matrix $X^{(n)}$ is orthonormal. Thus $\|X^{(n)}\|_2 = \|(X^{(n)})^H\|_2 = 1$ for n = 1, 2, ..., N, and we have $\|\mathcal{X}\|_F = \|\mathcal{G}\|_F$.

The quasi-p norm and the tensor nuclear norm I

► For any tensor $\mathcal{X} \in \mathbb{C}^{I_1 \times I_2 \times \cdots \times I_N}$, the *tensor p-quasi norm* for 0

$$\|\mathcal{X}\|_{p} \triangleq \min \left\{ \left(\sum_{s=1}^{r} |\lambda_{s}|^{p} \right)^{1/p} : \ \mathcal{X} = \sum_{s=1}^{r} \lambda_{s} x_{s}^{(1)} \otimes x_{s}^{(2)} \otimes \cdots \otimes x_{s}^{(N)}, \right.$$
$$\|x_{s}^{(n)}\| = 1, \ \forall s = 1, 2, \dots, r, \ \forall n = 1, 2, \dots, N \right\}.$$

- ▶ When p = 1, the above definition corresponds to the tensor nuclear norm, which was shown to be NP hard (Friedland and Lim).
- ▶ Recently, this tensor nuclear norm was applied by Yuan and Zhang (2015) to establish a better statistical properties of Tensor completion problem.

The quasi-p norm and the tensor nuclear norm II

- ▶ $\|\mathcal{X}\|_p$ trivially equals to zero for any tensor \mathcal{X} for any p > 1 (from Lim).
- ► For any given tensor $\mathcal{X} \in \mathbb{C}^{I_1 \times I_2 \times \cdots \times I_N}$ with independent Tucker decomposition $\mathcal{X} = \llbracket \mathcal{G}; X^{(1)}, \dots, X^{(N)} \rrbracket$, we have

$$\alpha \|\mathcal{G}\|_p \le \|\mathcal{X}\|_p \le \beta \|\mathcal{G}\|_p$$

where $\beta = \|X^{(1)}\|_2 \|X^{(2)}\|_2 \dots \|X^{(N)}\|_2$ and $\alpha = \beta/(\prod_{n=1}^N \kappa(X^{(n)}))$ with $\kappa(X^{(n)})$ being the condition number of matrix $X^{(n)}$ for all n.

► For an orthonormal Tucker decomposition, we have $\|\mathcal{X}\|_p = \|\mathcal{G}\|_p$.

Invariance of Z-eigenvalue

► A notation:

$$(\mathcal{T}(x^{\circ(N-1)}))_{i_N} \triangleq \sum_{i_1,i_2,\dots,i_{N-1}=1}^{I} T_{i_1i_2\cdots i_{N-1}i_N} \cdot x_{i_1}x_{i_2}\cdots x_{i_{N-1}}.$$

• (Qi, Lim) For a symmetric tensor $\mathcal{T} \in \mathbb{R}^{I \times \cdots \times I}$, exists $\lambda \in \mathbb{R}$ and $x \in \mathbb{R}^I$ such that

$$\mathcal{T}(x^{\circ(N-1)}) = \lambda x, \ x^{\mathsf{T}}x = 1. \tag{4}$$

Then λ is called the *Z-eigenvalue* of \mathcal{T} , and x is called the corresponding *Z-eigenvector*.

► For $\mathcal{T} \in \mathbb{R}^{I \times I \times \dots \times I}$ with independent symmetric Tucker decomposition $\mathcal{T} = \llbracket \mathcal{G}^s; X, X, \dots, X \rrbracket$, construct

$$\hat{\mathcal{G}}^s = \mathcal{G}^s \times_1 (X^T X)^{1/2} \times_2 \cdots \times_N (X^T X)^{1/2}.$$

Invariance of Z-eigenvalue

- ► Any Z-eigenvalues of $\hat{\mathcal{G}}^s$ are also Z-eigenvalues of \mathcal{T} .
- ► Any non-zero Z-eigenvalue of \mathcal{T} are also Z-eigenvalues of $\hat{\mathcal{G}}^s$.
- ▶ If the Tucker decomposition is orthonormal then $(X^TX)^{1/2} = I$, $\hat{\mathcal{G}}^s = \mathcal{G}^s$, and all the Z-eigenvalues (except zero) of a symmetric tensor equal to the Z-eigenvalues of its core.
- ▶ $\mathcal{T} \in \mathbb{R}^{I \times I \times \cdots \times I}$ has an independent symmetric Tucker decomposition $\mathcal{T} = \llbracket \mathcal{G}^s; X, X, \dots, X \rrbracket$ such that $\mathcal{G}^s \in \mathbb{R}^{J \times J \times \cdots \times J}$. If I > J, then 0 is an Z-eigenvalue.

Invariance of the M-eigenvalue

• (M-eigenvalue) $\mathcal{T} \in \mathbb{R}^{N \times M \times N \times M}$ partial symmetric, exist two numbers λ and $\mu \in \mathbb{R}$, two nonzero vectors $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^M$ such that

$$\mathcal{T}(\cdot, y, x, y) = \lambda x, \ x^{\mathsf{T}} x = 1$$

$$\mathcal{T}(x, y, x, \cdot) = \mu y, \ y^{\mathsf{T}} y = 1$$

 $ightharpoonup \mathcal{T} = \llbracket \mathcal{G}^{ps}; A, B, A, B \rrbracket$, construct

$$\hat{\mathcal{G}}^{ps} = \times_1 (A^{\mathsf{T}} A)^{1/2} \times_2 (B^{\mathsf{T}} B)^{1/2} \times_3 (A^{\mathsf{T}} A)^{1/2} \times_4 (B^{\mathsf{T}} B)^{1/2}.$$

Then any M-eigenvalues of $\hat{\mathcal{G}}^{ps}$ are also M-eigenvalues of \mathcal{T} while any non-zero M-eigenvalues of \mathcal{T} are also M-eigenvalues of $\hat{\mathcal{G}}^{ps}$.

▶ $\mathcal{T} \in \mathbb{R}^{I_1 \times I_2 \times I_1 \times I_2}$ has an independent partial symmetric Tucker decomposition $\mathcal{T} = \llbracket \mathcal{G}^{ps}; A, B, A, B \rrbracket$ such that $\mathcal{G}^{ps} \in \mathbb{R}^{J_1 \times J_2 \times J_1 \times J_2}$. Either $J_1 < I_1$ or $J_2 < I_2$ implies the existence of a zero M-eigenvalue.

OUTLINE

Introduction

Tucker Core

Tensor PCA

Tensor matricization / Matrix unfolding I

Consider the following tensor $A \in \mathbb{R}^{3\times 4\times 2}$ with:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix} \qquad \mathcal{A}_{:,:,2} = \begin{bmatrix} 13 & 16 & 19 & 22 \\ 14 & 17 & 20 & 23 \\ 15 & 18 & 21 & 24 \end{bmatrix}$$

(b) Lateral slices: X:i:

(c) Frontal slices: X_{::k} (or X_k)

Tensor matricization / Matrix unfolding II

▶ The mode-k matricization of $A \in \mathbb{C}^{n_1 \times \cdots \times n_d}$ (denoted by $A_{(k)}$):

$$(A_{(k)})_{i_k\ell} = \mathcal{A}_{i_1\cdots i_d}, \quad \ell = \sum_{j=2, j\neq k}^d (i_j - 1) \prod_{q=1, q\neq k}^{j-1} n_q + i_1.$$

▶ The square unfolding for $\mathcal{F} \in \mathbb{C}^{n_1 \times n_2 \cdots \times n_{2d}}$ (denoted by $M(\mathcal{F})$):

$$M(\mathcal{F})_{k\ell} := \mathcal{F}_{i_1\cdots i_{2d}}$$
,

where
$$k = \sum_{j=2}^{d} (i_j - 1) \prod_{q=1}^{j-1} n_q + i_1, \ell = \sum_{j=d+2}^{2d} (i_j - 1) \prod_{q=d+1}^{j-1} n_q + i_{d+1}.$$

Tensor matricization / Matrix unfolding III

- ► The way of square unfolding is **not unique**.
- ▶ Three options for $\mathcal{F} \in \mathbb{C}^{n_1 \times n_2 \times n_3 \times n_4}$:
 - $ightharpoonup M(\mathcal{F}) \in \mathbb{C}^{(n_1n_2)\times (n_3n_4)};$
 - $ightharpoonup M(\mathcal{F}_{\pi_1}) \in \mathbb{C}^{(n_1n_3) \times (n_2n_4)};$
 - $lackbox{} M(\mathcal{F}_{\pi_2}) \in \mathbb{C}^{(n_1n_4)\times (n_2n_3)};$

TENSOR PCA I

ightharpoonup Find the leading principle component of tensor \mathcal{F} :

$$\max \quad \mathcal{F}(x, \cdots, x) := \sum_{1 \le i_1, \cdots, i_d \le n} \mathcal{F}_{i_1 \cdots i_d} x_{i_1} \cdots x_{i_d}$$

s.t.
$$||x|| = 1,$$

▶ Based on: "Tensor Principal Component Analysis via Convex Optimization", with S. Ma and S. Zhang, Mathematical Programming Series A, 150, 423-457, 2015.

TENSOR PCA II

► Consider the even order tensor: recall that

$$\mathcal{F}(\underbrace{x,\cdots,x}_{2d}) = \mathcal{F} \bullet \underbrace{x \otimes \cdots \otimes x}_{2d}.$$

By letting

$$\mathcal{X} = \underbrace{x \otimes \cdots \otimes x}_{2d},$$

the tensor PCA problem can be reformulated as:

$$\begin{aligned} & \max & \mathcal{F} \bullet \mathcal{X} \\ & \text{s.t.} & & \sum_{k \in \mathbb{K}(n,d)} \frac{d!}{\prod_{j=1}^n k_j!} \mathcal{X}_{1^{2k_1} 2^{2k_2} \dots n^{2k_n}} = 1, \\ & & \mathcal{X} \in \mathbf{S}^{n^{2d}}, \ \text{rank}_{RCP}(\mathcal{X}) = 1, \end{aligned}$$

where the equality due to $\sum\limits_{k\in\mathbb{K}(n,d)}rac{d!}{\prod_{j=1}^nk_j!}\prod_{j=1}^nx_j^{2k_j}=\|x\|^{2d}=1.$

TENSOR PCA III

▶ Denote $X = M(\mathcal{X})$, $F = M(\mathcal{F})$. Then the objective is $\mathcal{F} \bullet \mathcal{X} = \operatorname{tr}(FX)$.

$$\begin{aligned} &\max & & \operatorname{tr}\left(FX\right) \\ & \text{s.t.} & & \operatorname{tr}\left(X\right) = 1, \; \boldsymbol{M}^{-1}(X) \in \mathbf{S}^{n^{2d}}, \\ & & & X \in \mathbf{S}^{n^d \times n^d}, \; \operatorname{rank}(X) = 1, \end{aligned}$$

We convert a tensor rank-constrained problem into a matrix rank-constrained problem.

A Nuclear Norm Penalty Approach

- ► The constraint rank(X) = 1 is still hard.
- ▶ $||X||_* := \operatorname{tr}\left((X^\top X)^{\frac{1}{2}}\right)$, which is the good convex approximation of rank(X).
- ► Nuclear norm penalty formulation

$$\max \quad \operatorname{tr}(FX) - \rho ||X||_*$$
s.t.
$$\operatorname{tr}(X) = 1, \ M^{-1}(X) \in \mathbf{S}^{n^{2d}},$$

$$X \in \mathbf{S}^{n^d \times n^d}.$$

► If the solution to the above problem is rank-one, then this solution is also optimal to the original problem.

RANK-ONE FREQUENCY OF NUCLEAR NORM PENALTY FORMULATION

Test results using cvx for randomly generated instances when d=2 and $\rho=10$.

Dim	Num	Ratio(%)	AT(Seconds)	
3	1000	100	0.1649	
4	1000	100	0.3667	
5	1000	100	1.0886	
6	1000	100	5.7045	
7	300	100	37.1881	
8	100	100	167.2816	

An Alternating Direction Method of Multipliers (ADMM) Implementation

min
$$-\text{tr}(FY) + \rho ||Y||_*$$

s.t. $X - Y = 0$,
 $\text{tr}(X) = 1$, $M^{-1}(X) \in \mathbf{S}^{n^{2d}}$.

ADMM procedure:

$$\left\{ \begin{array}{ll} \boldsymbol{X}^{k+1} & = & \mathbf{argmin}_{\operatorname{tr}\,(\boldsymbol{X})=1,\;\boldsymbol{M}^{-1}(\boldsymbol{X})\in \mathsf{S}^{n^{2d}}} \; \mathcal{L}(\boldsymbol{X},\boldsymbol{Y}^k;\boldsymbol{\Lambda}^k) \\ \boldsymbol{Y}^{k+1} & = & \operatorname{argmin}\; \mathcal{L}(\boldsymbol{X}^{k+1},\boldsymbol{Y};\boldsymbol{\Lambda}^k) \\ \boldsymbol{\Lambda}^{k+1} & = & \boldsymbol{\Lambda}^k - (\boldsymbol{X}^{k+1}-\boldsymbol{Y}^{k+1})/\mu, \end{array} \right.$$

where the augmented Lagrangian function is

$$\mathcal{L}(X, Y; \Lambda) := -\text{tr}(FY) + \rho ||Y||_* - \text{tr}(\Lambda(X - Y)) + \frac{1}{2\mu} ||X - Y||_F^2.$$

Both two subproblems can be easily (explicitly) solved.

Numerical Performance of ADMM

Performance of CVX and ADMM when d=2, n=6, $\mu=0.1$, and $\rho=10$.

Inst. #	Differe	ADMM		CVX	
	$ X_{ADMM} - X_{CVX} _F$	$ v_{ADMM} - v_{CVX} $	Iter#	Time	Time
1	3.949037e-005	2.653805e-006	258	0.109	1.076
2	5.218683e-005	8.584708e-008	252	0.094	0.421
3	2.638832e-005	1.578413e-007	253	0.094	0.406
4	7.813928e-005	2.650758e-006	231	0.094	0.468
5	3.220476e-005	6.379380e-007	229	0.078	0.359
6	9.221593e-005	1.957860e-007	231	0.078	0.359
7	5.094511e-005	3.025078e-006	249	0.078	0.390
8	1.014394e-004	3.282918e-007	248	0.078	0.421
9	1.675034e-005	2.524454e-006	245	0.078	0.406
10	2.557981e-005	4.178700e-007	242	0.078	0.390

What happens when $\rho \to \infty$?

Consider the following SDP relaxation:

```
(SDR) max tr (FX)
s.t. tr (X) = 1,
\mathbf{M}^{-1}(X) \in \mathbf{S}^{n^{2d}}, X \succeq 0.
```

- ▶ Denote X_{SDR}^* to be the solution of (*SDR*).
- ▶ Denote $X_{PNP}^*(\rho)$ to be the solution of the nuclear norm penalty formulation with parameter ρ .

Then it holds that:

$$\lim_{\rho \to +\infty} \operatorname{tr} \left(F X_{PNP}^*(\rho) \right) = \operatorname{tr} \left(F X_{SDR}^* \right)$$