

Geração de regras de autômatos celulares com complementos de templates

Defesa de dissertação de mestrado

Estrutura da Apresentação

- Autômatos Celulares
- > Tema e Justificativa
- > Problema
- Objetivos
- Roteiro

- Autômatos Celulares
- Aplicações

Autômato Celular, regra 30 com 30 timesteps. Gerado através de Wolfram Research (2015)

Tabela de transição da regra 30 do espaço elementar. Gerado através de Wolfram Research (2015)

- Pesquisas na área
- Metodologias
- Problema

- SoluçõesProposta

- Soluções Proposta

Tabela de transição da regra 30 do espaço elementar. Gerado através de Wolfram Research (2015)

- Soluções Proposta

Tabela de transição da regra 30 do espaço elementar. Gerado através de Wolfram Research (2015)

(0, 0, 0, 1, 1, 1, 1, 0)

- Soluções Proposta

Tabela de transição da regra 30 do espaço elementar. Gerado através de Wolfram Research (2015)

(0, 0, 0, 1, 1, 1, x)

- Soluções Proposta

Tabela de transição da regra 30 do espaço elementar. Gerado através de Wolfram Research (2015)

(0, 0, 0, 1, 1, 1, 1, 0)

- Soluções Proposta

Tabela de transição da regra 30 do espaço elementar. Gerado através de Wolfram Research (2015)

(0, 0, 0, X4, X3, X2, X1, X0)

Regras Balanceadas

Tabela de transição da regra 30 do espaço elementar. Gerado através de Wolfram Research (2015)

Tabela de transição da regra 90 do espaço elementar. Gerado através de Wolfram Research (2015)

Tabela de transição da regra 120 do espaço elementar. Gerado através de Wolfram Research (2015)

Regras Balanceadas

- $> v(k, r) = (k^{(r * 2 + 1))$
- $> t(k, r) = v(k, r)! / ((v(k, r)! / k) ^ k)$

Cronograma

Mês de Entrega	Tópico
Fev/2017	Implementação Template Balanceado
Março/201 <i>7</i>	Programação de expansão de template balanceado
Abril/2017	Estudo de negação de template
Maio/2017	Pesquisa de Viabilidade
Julho/2017	Implementação da negação
Agosto/2017	Análise de Performance
Setembro/2017	Expansão de template paralelizada
Outubro/2017	Análise de performance
Outubro/2017	Parte teórica (montagem final)

Conclusão

- Problema atual
- Soluções existentes
- Melhorias propostas

Referências

WOLFRAM RESEARCH. Wolfram Mathematica. 2015. Disponível em: http://www.wolfram.com/mathematica/.

WOLFRAM. A new kind of science. 1. ed. [S.l.]: Wolfram Media Inc, 2002.

VERARDO, M.; DE OLIVEIRA, P. P. B. CATemplates. [S.I.], 2015. Disponível em: https://github.com/mverardo/CATemplates.

VERARDO, M. Representando famílias de automatos celulares por meio de templates. Dissertação (Mestrado) — Universidade Presbiteriana Mackenzie, 2014.

SOARES, Z. Diferença entre Templates de Autômatos Celulares Unidimensionais Binários. Dissertação (Mestrado) — Universidade Presbiteriana Mackenzie, 2016.

DE OLIVEIRA, P. P. B.; VERARDO, M. Representing families of cellular automata rules. The Mathematica Journal, v. 16, n. 8, 2014. Disponível em: <dx.doi.org/doi:10.3888/tmj.16-8>.

KRONEMBERGER, G.; DE OLIVEIRA, P. P. B. d. O. A hipótese das regras primitivas e derivadas, na busca construtiva por autômatos celulares reversíveis. 2011.

PACKARD, N. H.; WOLFRAM, S. Two-dimensional cellular automata. 1985.