Table of Contents

Problem 2	
Deterimining the Weights	
Approximate Integral	

Problem 2

Jean-Christophe Perrin 2018 February 26

```
clear all
```

Deterimining the Weights

If our method exactly integrates up to a 2nd degree polynomial, then we know that at g(x) = 1, g(x) = x,

and $g(x) = x^2$ that $\sum w_i g_i = \int \frac{g(x)}{\sqrt{1-x^2}}$. Further we are given the final values for the three analytic integrals listed above.

analyticIntegrals = [pi; 0; pi/2];
sumFnEvals = [1 1 1; -1 0 1; 1 0 1]; % linear comb of weighted evals
disp(sumFnEvals);

We can take the inverse of the matrix of function evals to find the weights.

```
weights = sumFnEvals\analyticIntegrals;
disp(weights);

0.7854
   1.5708
   0.7854
```

Approximate Integral

Use your method to approximate: $\int_4^9 \frac{\sin(x)}{\sqrt{25x-(x+6)^2}} dx$

Published with MATLAB® R2017b