MATHS TUTORIAL-2 (Set Theory)

Questions)

1. Let $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{x \in \mathbb{Z} \mid x \text{ is divisible by 6}\}$, and $C = \{x \in \mathbb{R} \mid x^2 = 2 \text{ or } x^3 = 1\}$. Mark the following true or false.

a. 3 ∈ A

b. $6 \in A$

c. 2 ∉ A

d. $2 \in B$

e. $6 \in B$

f. 24 ∈ B

g. 28 ∉ B

h. 2 ∈ C

i. 1 ∈ C

j. $-\sqrt{2} \in C$

k. $5 \in A \cup B$

1. $6 \in A \cap B$

m. $1 \in A \cap C$ n. $\sqrt{2} \in B \cup C$

2. Mark the following true or false.

a. 28 ∈ Z

b. $-5 \in \mathbb{N}$

c. √2 ∉ O∩R

d. $\mathbb{Z} \cup \mathbb{Q} = \mathbb{R}$

e. $\mathbb{R} \cap \mathbb{C} = \mathbb{R}$

3. Let $U = \{a, b, c, d, e, f, g\}$, $A = \{a, d, e, f\}$, and $B = \{b, e, g\}$ be sets, where U acts as the universal set. Determine the following.

a. $(A \cup B)'$

b. $A \cap B$

c. A-B

d. B-A

4. Let *U* be the set of all students in a college. Let *A* be the set of students taking the discrete mathematics course and *B* be the set of students taking the calculus course. Describe the following.

a. $A \cup B$

b. $A \cap B$

c. A-B

d. B-A

e. A'

5. Let $P = \{x \in \mathbb{N} \mid 2 < x \le 8\}$, $Q = \{x \in \mathbb{Z} \mid 0 \le x < 5\}$, $R = \{x \in \mathbb{N} \mid 1 \le x \le 10\}$. Let $U = \{x \in \mathbb{Z} \mid -2 \le x < 12\}$ be the universal set. Determine the following.

a. $P \cup R$

b. $Q \cap R$

c. $P\Delta R$

d. Q'

6. Let *P*, *Q*, *R*, and *U* be the same as in Exercise 5. Verify the following.

a. $(P \cup Q)' = P' \cap Q'$ b. $P \cap (P \cup R) = P$

c. $P \cup (Q \cap R) = (P \cup Q) \cap (P \cup R)$

7. Let $A = \{x \in \mathbb{R} \mid 1 < x \le 5\}$ and $B = \{x \in \mathbb{R} \mid 3 \le x \le 8\}$. Find $A \cup B$, $A \cap B$, A - B, B - A.

8. Determine whether the following pairs of sets are equal. Justify your answer.

$$A = \left\{ n \in \mathbb{Z} \mid n = \frac{1}{n} \right\} \quad \text{and} \quad B = \{ x \in \mathbb{R} \mid x^2 = 1 \}.$$

- 9. Does every set has a subset? Give an example of a set that has only one proper subset.
- 10. Let X be a set with 4 elements. Find $|\mathcal{P}(X)|$.
- 11. Find $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- 12. Let $I_n = \{1, 2, \dots, n\}$, the set of first n natural numbers.
 - Describe the set $I_{10} I_5$.
 - b. Describe the set $I_n I_m$ if

 - (i) n > m (ii) n = m (iii) n < m
- 13. Let A and B be subsets of the set U. Draw the Venn diagram of the following sets.
 - $(A \cup B)'$
- b. $(A \cap B)'$

 $A\Delta B$

- d. $(A \cup B) (A \cap B)$
- 14. Let A, B, and C be subsets of the set U. Draw the Venn diagram of the following sets.
 - $(A \cup B) \cap C$
- $(A \cap B) \cup C$
- $(A \cap B) C$ C.
- d. (A-B)-C
- $(A (B \cup C)) \cup (B (A \cup C))$
- 15. Let A, B, C, and D be subsets of the set U. Draw the Venn diagram of the following sets.
 - a. $A \cap B \cap C \cap D$
 - b. $(A \cup B \cup C) \cap D$
 - $c. (A \cup B) \cap (C \cap D)$
- 16. Let A and B be sets. Prove that $A \subseteq B$ if and only if $A \cap B = A$.
- 17. Prove those parts of Theorem 1.1.3 that are not proved in this section.
- 18. Suppose P and Q are two sets. Let R be a set that contains elements belonging to P or Q but not both. Let T be a set that contains elements belonging to Q or the complement of P but not both. Show that R is the complement of T.
- 19. Let A and B be sets. Prove that $A (A B) = A \cap B$.
- 20. Justify the following statements or else give an example to disprove the result. Let A, B, and C be subsets of a set U.
 - (a) $A \triangle C = B \triangle C \Rightarrow A = B$
 - (b) (A-C)-(B-C)=(A-B)-C
 - (c) (A B)' = (B A)'

Theorem 1.1.3: Let X, Y, Z be subsets of a set U. Then the following assertions hold.

- (i) If $X \subseteq Y$, then $X \cup Y = Y$ and $X \cap Y = X$.
- (ii) Laws of identity: $X \cup \emptyset = X$ and $X \cap \emptyset = \emptyset$.
- (iii) Laws of idempotency: $X \cup X = X$ and $X \cap X = X$.
- (iv) Laws of commutativity: $X \cup Y = Y \cup X$ and $X \cap Y = Y \cap X$.
- (v) Laws of associativity:

$$(X \cup Y) \cup Z = X \cup (Y \cup Z),$$

 $(X \cap Y) \cap Z = X \cap (Y \cap Z).$

(vi) Laws of distributivity:

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z),$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$$

(vii) Laws of absorptivity:

$$X \cap (X \cup Y) = X$$
, $X \cup (X \cap Y) = X$.