PRÀCTICA 2

TAULA	DE	RESU	LTATS

Tasca	α	β	Е	K	Ete	Ete (%)	Ite (%)
OCR_14x14	0.1	0.1	0	11	14	4.7	[2.3, 7.1]
expressions	0.1	0.1	0	50	4	6.0	[0.3, 11.6]
gauss2D	0.1	100	824	200	126	10.5	[8.8, 12.2]
gender	0.1	0.1	0	60	39	4.6	[3.2, 6.0]
videos	0.1	1.0	2788	200	647	27.0	[25.2, 28.8]

OCR_14X14

L'algorisme acaba sense errors per a un valor de k<200 (11). Encara que hem provat diferents valors per a α i β , per a 0.1 I 0.1 respectivament trobem una solució òptima. Amb un alfa xicotet assegurem un millor aprenentatge. Concloem per tant que les dades són linealment separables.

EXPRESSIONS

Aquí trobem també que les dades son linealment separables ja que acaba sense error en un nombre finit d'iteracions a l'entrenament. Per a diferents valors de alfa i beta trobem resultats similars encara que aquí mostrem un dels millors alhora de l'entrenament.

GAUSS2D

Com podem observar les dades no son linealment separables ja que consegueix arribar a 0 errors abans de que es realitzen el nombre màxim d'iteracions. Amb un $\alpha > 0$ i una beta alta podem obtindre fronteres de decisió pròximes a ser optimes.

GENDER

Trobem dades linealment separades i amb un entrenament convergent que ens du a un model amb una taxa d'errades prou baixeta.

VIDEOS

En les dades de videos pasa el mateix que en les de Gauss, es a dir que son linealment no separables.