Obliczenia Naukowe - Lista 2

Szymon Brzeziński

2 kwietnia 2022

1 Zadanie 1

1.1 Opis problemu

Obliczenie iloczynu skalarnego dwóch wektorów, przy użyciu 4 metod:

x = [2.718281828, 3.141592654, 1.414213562, 0.5772156649, 0.3010299957]

y = [1486.2497, 878366.9879, 22.37492, 4773714.647, 0.000185049].

W arytmetykach Float32 oraz Float64, oraz wykononać te same obliczenia dla zaburzonego wektora x:

 $x = [2.718281828, 3.141592654, 1.414213562, \mathbf{0.577215664}, \mathbf{0.301029995}]$

1.2 Wyniki

	Metoda "w przód"	Metoda "w tył"	Metoda od najwięszego do najmniejszego	Metoda od najmniejszego do największego
Niezaburzone Float32	-0.4999443	-0.4543457	-0.5	-0.5
Zaburzone Float32	-0.4999443	-0.4543457	-0.5	-0.5
Niezaburzone Float64	$1.0251881368296672 \times 10^{-10}$	$1.5643308870494366 \times 10^{-10}$	0.0	-0.004296342842280865
Zaburzone Float64	-0.004296342739891585	-0.004296342998713953	0.0	-0.004296342842280865

1.3 Wnioski

W arytmetyce Float32 zaburzenie wektora nie wpływa w ogóle na wynik, wynika to po prostu z niskiej precyzji Float32. Natomiast w Float64 zachodzi duża zmiana wyników, co pokazuje wysoką wrażliwość algorytmów liczących iloczyn na zmiany danych, zadanie jest źle uwarunkowane.

2 Zadanie 2

2.1 Opis problemu

Obliczenie $\lim_{x\to\infty} f(x)$ dla:

$$f(x) = e^x ln(1 + e^{-x})$$

Oraz wizualizacja funkcji w dwóch różnych programach.

2.2 Wyniki

Policzona granica funckji przez program przy użyciu SymPy wynosi:

$$\lim_{x \to \infty} f(x) = 1$$

2.3 Wnioski

W obydwu przypadkach programów, funkcja zamiast do 1.0 zbiega okolicach x=37 do 0. Wahania wykresu wynikają z mnożenia dużej liczby e^x z małą wartością logarytmu. Natomiast zbieganie do 0 zamiast 1 wiąże

się z małą wartością logarytmu, który dla x=36 wynosi 2.22045×10^{-16} . Zadanie jest dobrze uwarunkowane, problemem jest prezycji arytmetyki.

3 Zadanie 3

Opis problemu 3.1

Rozwiązanie układu równań liniowych

Dla macierzy współczyników: - równej H_n , gdzie H_n jest macierzą Hilberta stopnia n, Przy użyciu eliminacji Gaussa (x = Ab) oraz metody z

odwrotnością macierzy(x=inv(A)*B), a także porównanie wyników z rozwiązaniem dokładnym.

3.2 Wyniki

Dla macierzy Hilberta:

n	cond(A)	Błąd względny Gauss	Błąd względny odwrotność macierzy
1	1.0	0.0	0.0
2	19.28147006790397	5.661048867003676e-16	1.4043333874306803e-15
3	524.0567775860644	8.022593772267726e-15	0.0
4	15513.73873892924	4.4515459601812086e-13	4.0996530221808757e-13
5	476607.25024331047	1.6828426299227195e-12	3.2543043465682462e-12
6	1.4951058641261548e7	2.618913302311624e-10	1.2883031376157472e-10
7	4.7536735652509147e8	1.1328142969056265e-8	4.032805581748429e-9
8	1.5257575489006056e10	1.582997989737445e-7	4.73672307652826e-7
9	4.9315395006911786e11	9.390769524774878e-6	1.433221949678536e-5
10	1.602486837935334e13	0.00010722274297833791	0.0002552291736870214
11	5.223784536174276e14	0.0025862011476354917	0.0034866375235030815
12	1.7542409094246292e16	0.1518709168402471	0.2632983265514875
13	1.3920946546564006e19	1.897928202227098	3.5084335243483897
14	3.082422355144714e17	14.305098140219044	33.55024572718358
15	6.504049098176895e17	2.604428943246226	2.587993295805448
16	4.467108725820065e17	3.7730906010082808	6.929356667711515
17	4.01698907634531e17	5.243908209359828	11.72261214730923
18	6.333261689765678e17	7.422805537982255	10.677977659270706
19	8.559281093112518e17	13.408413006788757	15.365194403109921
20	2.53824963821978e18	30.190208082054518	28.934225761082203

Dla macierzy losowej:

mastering rose well.						
n	c	Błąd względny Gauss	Błąd względny odwrotność macierzy			
5	1.0	1.85775845048325e-16	9.930136612989092e-17			
5	10.0	3.2934537262255424e-16	3.7155169009665e-16			
5	1000.0	6.75030207011721e-15	1.2829874848792539e-14			
5	1.0e7	9.445570942928647e-11	5.12425812824484e-11			
5	1.0e12	2.969973133824062e-5	3.617997028089834e-5			
5	1.0e16	0.03854333972949325	0.0625			
10	1.0	3.9565083834082103e-16	2.1642230995786354e-16			
10	10.0	3.020133145511626e-16	2.937374022976103e-16			
10	1000.0	1.3633611069437946e-15	2.120496913404914e-15			
10	1.0e7	2.021649518555114e-10	1.7854379419786221e-10			
10	1.0e12	3.72365339172814e-5	2.432336949321146e-5			
10	1.0e16	0.17843996928714653	0.21667543051186028			
20	1.0	3.236828524569469e-16	4.482332113961174e-16			
20	10.0	7.643625500567855e-16	7.30557120414681e-16			
20	1000.0	3.342542100982217e-14	2.4824348498950362e-14			
20	1.0e7	2.126782938839667e-10	2.3833204105149476e-10			
20	1.0e12	2.3420304520128517e-5	2.1446965447211313e-5			
20	1.0e16	0.04531981097624573	0.08490591788902659			

3.3 Wnioski

Dla macierzy Hilberta błędy względne dla obydwu metod rosną wraz ze wzrostem rozmiaru macierzy.

Dla macierzy losowej błędy również rosną, jednak dużo wolniej. Owe zjawiska wskazują na złe uwarunkowanie zadania dla macierzy Hilberta.

4 Zadanie 4

4.1 Opis problemu

Obliczenie 20 zer wielomianu P gdzie, P(x) jest postacią naturalną

$$\begin{split} P(x) &= x^{20} - 210x^{19} + 20615xx^{18} - 1256850x^{17} + 53327946x^{16} \\ &- 1672280820x^{15} + 40171771630x^{14} - 756111184500x^{13} \\ &+ 11310276995381x^{12} - 135585182899530x^{11} \\ &+ 1307535010540395x^{10} - 10142299865511450x^{9} \\ &+ 63030812099294896x^{8} - 311333643161390640x^{7} \\ &+ 1206647803780373360x^{6} - 3599979517947607200x^{5} \\ &+ 8037811822645051776x^{4} - 12870931245150988800x^{3} \\ &+ 13803759753640704000x^{2} - 8752948036761600000x \\ &+ 2432902008176640000 \end{split}$$

p(x) kanoniczną

$$p(x) = (x20)(x19)(x18)(x17)(x16)$$
$$(x15)(x14)(x13)(x12)(x11)$$
$$(x10)(x9)(x8)(x7)(x6)$$
$$(x5)(x4)(x3)(x2)(x1)$$

Następnie obliczonych sprawdzenie pierwiastków z_k poprzez obliczenie: $|P(z_k)|, |p(z_k)|$ i $|z_k-k|$ gdzie $1 \le k \le 20$

4.2 Wyniki

i	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	0.999999999996989	36352.0	209.999999991991	3.0109248427834245e-13
2	2.00000000000283182	181760.0	1.9922945005107336e7	2.8318236644508943e-11
3	2.9999999995920965	209408.0	3.3996147824308136e10	4.0790348876384996e-10
4	3.9999999837375317	3.106816e6	7.207909012183567e12	1.626246826091915e-8
5	5.000000665769791	2.4114688e7	4.708778703270961e14	6.657697912970661e-7
6	5.999989245824773	1.20152064e8	1.4477899246134156e16	1.0754175226779239e-5
7	7.000102002793008	4.80398336e8	2.638302009019657e17	0.00010200279300764947
8	7.999355829607762	1.682691072e9	3.2655678578341893e18	0.0006441703922384079
9	9.002915294362053	4.465326592e9	3.03894746617516e19	0.002915294362052734
10	9.990413042481725	1.2707126784e10	2.1701870613582384e20	0.009586957518274986
11	11.025022932909318	3.5759895552e10	1.3975365635281886e21	0.025022932909317674
12	11.953283253846857	7.216771584e10	6.445296082005807e21	0.04671674615314281
13	13.07431403244734	2.15723629056e11	3.513529575319011e22	0.07431403244734014
14	13.914755591802127	3.65383250944e11	1.1422753421823105e23	0.08524440819787316
15	15.075493799699476	6.13987753472e11	5.2053723983939024e23	0.07549379969947623
16	15.946286716607972	1.555027751936e12	1.5074147841636416e24	0.05371328339202819
17	17.025427146237412	3.777623778304e12	5.209830317494113e24	0.025427146237412046
18	17.99092135271648	7.199554861056e12	1.4811575734419122e25	0.009078647283519814
19	19.00190981829944	1.0278376162816e13	4.1730015177751455e25	0.0019098182994383706
20	19.999809291236637	2.7462952745472e13	1.1006606618326301e26	0.00019070876336257925
7 1	TTT: 1 .			

Zaburzony Wielomian:

i	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	0.999999999998357 + 0.0im	20992.0	22016.0	$1.643130076445231 \times 10^{13}$
2	2.0000000000550373 + 0.0im	349184.0	365568.0	$5.50373080443478 \times 10^{11}$
3	2.99999999660342 + 0.0im	2.22156×10^{6}	2.29529×10^{6}	$3.396579906222996 \times 10^{9}$
4	4.000000089724362 + 0.0im	1.04678×10^{7}	1.072998×10^{7}	$8.97243621622578 \times 10^{8}$
5	4.99999857388791 + 0.0im	3.946393×10^{7}	4.330393×10^{7}	$1.426112089752962 \times 10^{6}$
6	6.000020476673031 + 0.0im	1.2914841×10^{8}	2.0612044 ×10 ⁸	$2.047667303095579 \times 10^{5}$
7	6.99960207042242 + 0.0im	3.8812313×10^{8}	1.75767091×10^{9}	0.00039792957757978087
8	8.007772029099446 + 0.0im	1.07254732×10^{9}	$1.852548659 \times 10^{10}$	0.007772029099445632
9	8.915816367932559 + 0.0im	3.06557542×10^{9}	$1.3717431705 \times 10^{11}$	0.0841836320674414
10	10.095455630535774 0.6449328236240688im	$7.14311363803582 \times 10^9$	$1.491263381675401 \times 10^{12}$	0.6519586830380406
11	10.095455630535774 + 0.6449328236240688im	$7.14311363803582 \times 10^9$	$1.491263381675401 \times 10^{12}$	1.1109180272716561
12	11.793890586174369 1.6524771364075785im	$3.35775611317185 \times 10^{10}$	$3.296021414130166 \times 10^{13}$	1.665281290598479
13	11.793890586174369 + 1.6524771364075785im	$3.35775611317185 \times 10^{10}$	$3.296021414130166 \times 10^{13}$	2.045820276678428
14	13.992406684487216 2.5188244257108443im	$1.061206453308197 \times 10^{11}$	$9.54594159518366 \times 10^{14}$	2.5188358711909045
15	13.992406684487216 + 2.5188244257108443im	$1.061206453308197 \times 10^{11}$	$9.54594159518366 \times 10^{14}$	2.7128805312847097
16	16.73074487979267 2.812624896721978im	$3.31510347598176 \times 10^{11}$	$2.742089401676406 \times 10^{16}$	2.9060018735375106
17	16.73074487979267 + 2.812624896721978im	$3.31510347598176 \times 10^{11}$	2.742089401676406 ×101 ⁶	2.825483521349608
18	19.5024423688181 1.940331978642903im	$9.53942460981782 \times 10^{12}$	$4.252502487993469 \times 10^{17}$	2.454021446312976
19	19.5024423688181 + 1.940331978642903im	$9.53942460981782 \times 10^{12}$	$4.252502487993469 \times 10^{17}$	2.004329444309949
20	20.84691021519479 + 0.0im	$1.11445350451 \times 10^{13}$	$1.374373319724971 \times 10^{18}$	0.846910215194789

4.3 Wnioski

Obliczone pierwiastki różnią się od rzeczywistych, wynika to z ograniczeń arytmetki(Float64 pozwala na zapis od 15 do 17 cyfr znaczących w systemie dziesiętnym).

Niewielkie zaburzenie wielomianu spowowało pojawienie się pierwiastków zespolonych, co jednoznacznie świadczny o złym uwarunkowaniu zadania.

5 Zadanie 5

5.1 Opis problemu

Przeprowadzenie eksperymentów, poprzez wyliczenie w arytmetyce Float32, Float 64 równiania rekurencyjnego:

$$p_{n+1} := p_n + rp_n(1 - p_n) \tag{1}$$

w 40 iteracjach
(zwiekszającn)dla $p_n=0.01$ i $r=3\,$

Przy obliczeniach w Float
32 należy wykonać taki sam test ale wynik w 10 iteracji zastąpić obcięciem tego wyniku po 3 mie
jscu po przecinku(0.722)

5.2 Wyniki

n	Float32	Float32(obcięcie)	Float64
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.7229306	0.7229306	0.722914301179573
11	1.3238364	1.3241479	1.3238419441684408
12	0.037716985	0.036488414	0.03769529725473175
13	0.14660022	0.14195944	0.14651838271355924
14	0.521926	0.50738037	0.521670621435246
15	1.2704837	1.2572169	1.2702617739350768
16	0.2395482	0.28708452	0.24035217277824272
17	0.7860428	0.9010855	0.7881011902353041
18	1.2905813	1.1684768	1.2890943027903075
19	0.16552472	0.577893	0.17108484670194324
20	0.5799036	1.3096911	0.5965293124946907
21	1.3107498	0.09289217	1.3185755879825978
22	0.088804245	0.34568182	0.058377608259430724
23	0.3315584	1.0242395	0.22328659759944824
24	0.9964407	0.94975823	0.7435756763951792
25	1.0070806	1.0929108	1.315588346001072
26	0.9856885	0.7882812	0.07003529560277899
27	1.0280086	1.2889631	0.26542635452061003
28	0.9416294	0.17157483	0.8503519690601384
29	1.1065198	0.59798557	1.2321124623871897
30	0.7529209	1.3191822	0.37414648963928676
31	1.3110139	0.05600393	1.0766291714289444
32	0.0877831	0.21460639	0.8291255674004515
33	0.3280148	0.7202578	1.2541546500504441
34	0.9892781	1.3247173	0.29790694147232066
35	1.021099	0.034241438	0.9253821285571046
36	0.95646656	0.13344833	1.1325322626697856
37	1.0813814	0.48036796	0.6822410727153098
38	0.81736827	1.2292118	1.3326056469620293
39	1.2652004	0.3839622	0.0029091569028512065
40	0.25860548	1.093568	0.011611238029748606

5.3 Wnioski

Wyniki po obcięciu różnią sie znacząco, co jest spowodowane nawarstwieniem się jednego błędu popełnionego poprzez obcięcie cyfr znaczących. Takie nawarstwienie powoduje fakt, że każdy kolejny wynik korzysta bezpośrednio z poprzedniego wyniku, proces jest numerycznie niestabilny.

Różnica w wynikach w różnych arytmetykach zaczyna się w okolicach 22 iteracji, wynika ona z prezycji arytmetyki, oraz podobnie jak w pierwszym przypadku z faktu, że jeden błąd wpływa na drugi.

6 Zadanie 6

6.1 Opis problemu

Przeprowadzenie eksperymentów liczących w arytmetyce Float64, 40 iteracji(zwiększająć n) wyrażenia:

$$x_{n+1} := x_n^2 + c \tag{2}$$

Dla danych:

1.
$$c = -2, x_0 = 1$$

2.
$$c = -2, x_0 = 2$$

4.
$$c = -1, x_0 = 1$$

5.
$$c = -1, x_0 = -1$$

6.
$$c = -1, x_0 = 0.75$$

7.
$$c = -1, x_0 = 0.25$$

6.2 Wyniki

1	2	3	4	5	6	7	8
1	-1.0	2.0	1.9999999999996	0.0	0.0	-0.4375	-0.9375
2	-1.0	2.0	1.999999999998401	-1.0	-1.0	-0.80859375	-0.12109375
3	-1.0	2.0	1.999999999993605	0.0	0.0	-0.3461761474609375	-0.9853363037109375
4	-1.0	2.0	1.99999999997442	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135
5	-1.0	2.0	1.99999999999897682	0.0	0.0	-0.2253147218564956	-0.9991524699951226
6	-1.0	2.0	1.9999999999590727	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965
7	-1.0	2.0	1.999999999836291	0.0	0.0	-0.0989561875164966	-0.9999971292061947
8	-1.0	2.0	1.9999999993451638	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6
9	-1.0	2.0	1.9999999973806553	0.0	0.0	-0.01948876442658909	-0.999999999670343
10	-1.0	2.0	1.999999989522621	-1.0	-1.0	-0.999620188061125	-6.593148249578462e-11
11	-1.0	2.0	1.9999999580904841	0.0	0.0	-0.0007594796206411569	-1.0
12	-1.0	2.0	1.9999998323619383	-1.0	-1.0	-0.9999994231907058	0.0
13	-1.0	2.0	1.9999993294477814	0.0	0.0	-1.1536182557003727e-6	-1.0
14	-1.0	2.0	1.9999973177915749	-1.0	-1.0	-0.999999999986692	0.0
15	-1.0	2.0	1.9999892711734937	0.0	0.0	-2.6616486792363503e-12	-1.0
16	-1.0	2.0	1.9999570848090826	-1.0	-1.0	-1.0	0.0
17	-1.0	2.0	1.999828341078044	0.0	0.0	0.0	-1.0
18	-1.0	2.0	1.9993133937789613	-1.0	-1.0	-1.0	0.0
19	-1.0	2.0	1.9972540465439481	0.0	0.0	0.0	-1.0
20	-1.0	2.0	1.9890237264361752	-1.0	-1.0	-1.0	0.0
21	-1.0	2.0	1.9562153843260486	0.0	0.0	0.0	-1.0
22	-1.0	2.0	1.82677862987391	-1.0	-1.0	-1.0	0.0
23	-1.0	2.0	1.3371201625639997	0.0	0.0	0.0	-1.0
24	-1.0	2.0	-0.21210967086482313	-1.0	-1.0	-1.0	0.0
25	-1.0	2.0	-1.9550094875256163	0.0	0.0	0.0	-1.0
26	-1.0	2.0	1.822062096315173	-1.0	-1.0	-1.0	0.0
27	-1.0	2.0	1.319910282828443	0.0	0.0	0.0	-1.0
28	-1.0	2.0	-0.2578368452837396	-1.0	-1.0	-1.0	0.0
29	-1.0	2.0	-1.9335201612141288	0.0	0.0	0.0	-1.0
30	-1.0	2.0	1.7385002138215109	-1.0	-1.0	-1.0	0.0
31	-1.0	2.0	1.0223829934574389	0.0	0.0	0.0	-1.0
32	-1.0	2.0	-0.9547330146890065	-1.0	-1.0	-1.0	0.0
33	-1.0	2.0	-1.0884848706628412	0.0	0.0	0.0	-1.0
34	-1.0	2.0	-0.8152006863380978	-1.0	-1.0	-1.0	0.0
35	-1.0	2.0	-1.3354478409938944	0.0	0.0	0.0	-1.0
36	-1.0	2.0	-0.21657906398474625	-1.0	-1.0	-1.0	0.0
37	-1.0	2.0	-1.953093509043491	0.0	0.0	0.0	-1.0
38	-1.0	2.0	1.8145742550678174	-1.0	-1.0	-1.0	0.0
39	-1.0	2.0	1.2926797271549244	0.0	0.0	0.0	-1.0
40	-1.0	2.0	-0.3289791230026702	-1.0	-1.0	-1.0	0.0
							I .

6.3 Wnioski

Gdy wartości c i x są liczbami calkowitmi, liczone wartości są poprawne. Natomiast gdy przyjmują one wartości 0.25 lub 0.75 wartości funkcji zaczynają zbiegać do liczb całkowitych, dzieje się tak poprzez nawarstwienie błędów.

Zmiana wartości na 1.999999999999 z 2, powoduje całkowite odbieganie wyników od rzeczywistości, co jest kolejnym dowodem jak duże znaczneie ma nawarstawianie się błędów oraz mówi że układ jest numerycznie niestabilny.