TraceCipherText 구성

① 생성일 @2023년 8월 10일 오후 5:19ः 태그

암호 디버그를 돕는 새로운 자료형 TraceCipherText

Class 구성

TraceCipherText 는 SEAL 라이브러리의 Replace 방식과 Return 방식을 모방하여 구현하였다. 상속의 방법은 계속 시도 하였으나 많은 어려움이 있어 클래스를 구성하는 방식을 계속하였다.

멤버변수

- · Ciphertext ct
- · Cyptocontext cc
- · privatekey pk
- vector<double> trueValue :: 실제로 정답인 값을 갖고 있음
- errorStandard :: 어느정도로 값이 커지면 에러로 간주. 디폴트 값은 10만 사용자가 지정가능

메소드

- · Getter, Setter
- show_Detaile: 현재 암호문의 레벨, 스케일, 암호문의 복호문, 원문을 출력하고 에러를 체크
- show_decode : 해독문을 출력
- decode : 해독한 평문을 리턴
- errorcheck : 한 원소가 설정 기준보다 높으면 경고
- replace_add(TraceCipherText &) : 들어온 추적 암호문과 더하여 현재 추적 암호문과 truevalue 값을 갱신
- replace_add(double &) : 들어온 소수를 현재 추적 암호문에 더하여 갱신
- replace mul(TraceCipherText &): 들어온 추적 암호문과 곱하여 현재 추적 암호문을 갱신
- add(double number) : replace와 달리 새로운 추적 암호문을 리턴함 현재 암호문은 그대로 유지됨
- add(TraceCiphertext &) : 위와 같음
- Mul(TraceCipherText &): 위와 같음
- Rescale : 현재 암호문을 재스케일

class 원문

```
class TraceCipherText{
   private:
        vector<double> trueValue;
        Ciphertext<DCRTPoly> ct;
        CryptoContext<DCRTPoly> cc;
        PrivateKey<DCRTPoly> pk;
        double errorStandard = 100000;
   public:
        \label{top:context} Trace Cipher Text (vector < double> tv, Cipher text < DCRTPoly> a, Crypto Context < DCRTPoly> cc, Private Key < DCRTPoly> pk) \\
        : trueValue(tv), ct(a), cc(cc), pk(pk) \{
            //cout << "암호문 생성" << endl;
        void showDetatil(){
            cout << "scale : " << log2(ct->GetScalingFactor()) << endl;</pre>
            cout << "Level : " << ct->GetLevel() << endl;</pre>
            cout << "true value : (";</pre>
            for(auto iter : trueValue){
                cout << iter << ", ";
            cout << ")" << endl;
            cout << "decode value : ";
            show_decode();
            errorCheck();
            cout << endl;
        Ciphertext<DCRTPoly> getCiphertext(){
            return ct;
        vector<double> getTrueValue(){
            return trueValue;
        void setError(double error){
            errorStandard = error;
        void show_decode(){
            Plaintext plaintext;
            cc->Decrypt(pk, ct, &plaintext);
            plaintext->SetLength(8);
            cout << plaintext;</pre>
        Plaintext decode(){
            Plaintext plaintext;
            cc->Decrypt(pk, ct, &plaintext);
            plaintext->SetLength(8);
            return plaintext;
        void errorCheck(){
            for(int i = 0; i < trueValue.size(); i++){</pre>
                if((double)decode()->GetRealPackedValue()[i] >= errorStandard){ // 기준 에러보다 큼
                     cout << "WARNING ! 기준 에러 " << errorStandard << " 보다 큽니다." << endl;
                    cout << "index : " << i << endl;
cout << "value : " << (double)decode()->GetRealPackedValue()[i] << endl;</pre>
                     cout << endl;</pre>
                }
            }
        void replace_add(TraceCipherText traceciphertext){
            ct = cc->EvalAdd(ct, traceciphertext.getCiphertext());
            for(int i = 0; i < trueValue.size(); i++){</pre>
                trueValue[i] += traceciphertext.getTrueValue()[i];
            showDetatil();
        void replace_add(double number){
            ct = cc->EvalAdd(ct, number);
            for(int i = 0; i < trueValue.size(); i++){</pre>
                trueValue[i] += number;
            showDetatil();
        }
```

```
void replace_Mul(TraceCipherText traceciphertext){
           ct = cc->EvalMult(ct, traceciphertext.getCiphertext());
            for(int i = 0; i < trueValue.size(); i++){</pre>
                trueValue[i] *= traceciphertext.getTrueValue()[i];
            showDetatil();
       }
        TraceCipherText add(double number){
            Ciphertext<DCRTPoly> newciphertext = cc->EvalAdd(ct, number);
            vector<double> newVector(trueValue.size(), 0);
           for(int i = 0; i < trueValue.size(); i++){</pre>
               newVector[i] = trueValue[i] + number;
            return TraceCipherText(newVector, newciphertext, cc, pk);
       TraceCipherText add(TraceCipherText traceciphertext){
           Ciphertext<DCRTPoly> newciphertext = cc->EvalAdd(ct, traceciphertext.getCiphertext());
           vector<double> newVector(trueValue.size(), 0);
           for(int i = 0; i < trueValue.size(); i++){</pre>
               newVector[i] += traceciphertext.getTrueValue()[i];
            return TraceCipherText(newVector, newciphertext, cc, pk);
       TraceCipherText Mul(TraceCipherText traceciphertext){
            Ciphertext<DCRTPoly> newciphertext = cc->EvalMult(ct, traceciphertext.getCiphertext());
            vector<double> newVector(trueValue.size(), 0);
            for(int i = 0; i < trueValue.size(); i++){}
               newVector[i] = trueValue[i] * traceciphertext.getTrueValue()[i];
           return TraceCipherText(newVector, newciphertext, cc, pk);
        void Rescale(){
           this->ct = cc->Rescale(ct);
};
```

example

1. 추적 암호문 생성

TraceCipherText는 생성자로 원문 x, 암호문, cc, privatekey를 받는다.

2. Replace 방식으로 (x + 1)^2 * (x^2 + 2) 계산

위에서 선언한 a,b 값이 계속 갱신되어간다. 새롭게 선언할 필요가 없어 간편하지만, 암호문을 재활용할 수는 없다. 또한, 에 러를 일으킬 정도로 큰 수가 발견되지 않아 에러 메세지가 출력되지 않았다.

그리고 replace 함수들은 자동으로 showDetail을 출력하도록 구성하였다. 아무래도 같은 값을 갱신시키다보니 되돌리기 힘들어 정확해야한다고 생각하였다.

3. 새로운 암호문 반환 방식

새롭게 암호문을 반환하고 저장하는 방식이다. 반환형에는 showDetail이 포함되어있지 않다. 사용자가 보고 싶을 때만 보는 것이 나을 것이라 판단하였다.

4. 에러 경고 메세지

0번째 인덱스의 값을 크게 설정

디폴트 에러 검출값인 10만 이상을 포함하고 있는 암호문들에게 인덱스 위치와 값, 경고 메세지 출력 . 5번째 암호문 부터 결과에 오차가 발생한 것을 확인 할 수 있다.