Proof:

(S 230 - Week 1 Assignment)

a) Observe that a 4x5 chess board his to white squares and 10 hknole

Squares. Each tetris pieces (overs exactly 2 black squares and 2

White squares, with the exception of the following, which covers

either 3 black squares and 1 white square or 3 white squares and 1 black

square:

This, there could not be a way to fit those pieces on a 405 class bound, regardless of rotation, because they could not cover the some amount of white squares as squares of by Yes, it is possible

2) Proof If Le divide the 4x6 square into 6 sections, the box could look like the following Lith 2x2 side lengths or an area of4.

for points on the lies between squares, consider them part of the

Square above or to the right. If each of these 6 boxes has

assigned to the less to amount of points, them by the pigeontale primite 5 hours assigned to the less to amount of points, them by the pigeontale primite 5 hours and one box would have 4 points. Specifically this

can be represented by kn + 1 (Pigeon hole principle existion), when k : 3 and n : 6, so

(3.6) +1 = 19

which is represented in the 6 boxes of 2x2 aren by the fellowing:

6

This, we see that at least box must have 4 points and since the size of a box has an area of 4, then the 4 points hould at most form a quadrilateral of area 4 if they were placed on the corners of the box.

x, y are real numbers 1x+1 = 1x+141 4) a) X=-2, Y=3, X|-2+3|=|-2|+13) 1 = 5 , so fabe because x and y must be great than or egal to 0 x2 <x4 , x is real number X = 0.5 x 3 < x 4 -> 0.25 < 0.0615 false beause x mist be a real number greater than I c) X, y are real numbers IF |X+4| = |x.4|, then 4:0 X= 0 |1 = |-1 => |=1, but y to so the conjective is fake 5) front for each set of n alien socks, such that n is a positive, integer, there exists 3 mindicidual socks being bushed. If he create a box for each type of sock in set n he would have n boxes, by using the general form of the pigeonbole principle, he hold need to pull out Intl socks to guarantee a matching tipled (6) a) froposition: If m and n are odd, then 5m-3n is even. Proof) Assume m and n are both odd integers, By the definition of an odd integer, m=Zatl and n=Zttl for some integers a and Next, he need to prove that Sm - 3n is even, this we can set up the follows: 5(20+1) -3(26+1) = 26+1 104+5-66-3 = 109-66+2 = 2 (59-36+1) Since Sa-66+4 is an integer that can be represented as 15, our result could be ZK, which resembles the definition of an even of

-		6 b) Reasition: It mand n are even, then Smn is disisible by 4;
-		Proof: Assume m and n are both even numbers. By the definition of
-		Eum numbers, m=2a and n=2b for some integers a and b.
-		Next, Lenerd to prove 3mn is divisible by 4, this he can set of the following
-		and the state of t
-		3(24)(26) = 12ab
-		The state of the s
-		Since our result is 12a b. which is an integer divisible by then we can conclude
7		this theorem to be true!
-		the first that the second design is a second design of the second design
2		7) a) Ropositor: If n is a positive integer, then 4 airiles It (-1) (2n-1)
		proof: Assume that h is a positive integer that is either even or add!
	(ums	Cose 1: n is even. Then n= 2 a for some integer a. Thes,
-	744	$1 + (-1)^{2\alpha} (2(2\alpha) - 1) = 1 + 1 (4\alpha - 1) = 4\alpha$
*		the Particular and the first of
-		Since 4 a is an integer dissible by 4, Le know that 4 disdes 1+(+1" (2n-1) when h is even
0		
1		(csc2: his odd. Then n = 2a+1 for some integer a. Ths, 1+1-1/2011 (2(2011)-1) = 1+-1(4a+2-1) = 1-4a-1 = -4a
A		
2		Since - Ha is an integer dissible 4, we know that 4 divides 1+ (-1) (20-1) chan is act
2		We have star that 4 divides 14 (-15" (2n+1) whether is even or odd, clan
2		in is a positive integer, this completing the proof.
2	- 7	the second secon
-		507
7		8) 302 mod 28? 3'= 27 27 mod 28 = -1 mod 28
1		(33) mod 28 = 9 mod 28 = (1 mod 28. 9 mod 28 nod 28
9	-	3 mod 28 9 mod 28 mod 28 = (1 mod 28. 9 mod 28) nod 28
9		(-1) = 1 mod 28
9		So remaider of 3 302 : 28 15 9
9	9	So remaider of 3 = 28 is 19
1		
2		

PSet #1 Continued 76) Every multiple of 4 is equal to 14 (4)" (2411) for some pasition Proof: Assume is a positive integer that is either even or odd; and a multiple of U can be represented by 4/6 for some integer k. he can use two cases to prove this proposition the: Case 1: n is even. Then n = 2a for some integer a. This 1+ (-1)2a (2(20)+1) = 1 + 4a-1 = -4a Since 4a Can also be represented by 4k, Le know that every maltiple of U Lillegue 1+ (-1)h (2n+1) for an every positive integer of h. Lillegue Case 2: n is odd. Then n = 2 b+1 for some integer b. This, 1+(-1)201(2(26+1)+1) = 1 = (46+2-1) = -4P Sine -46 can also be represented by UK, he know that every multiple of 4 Lill equal 1+ (+)"(2241) for an odd, positive integer of n. This he have shown that every multiple of Ul is equal to 1 + (-1) (2nti) for some positive integer n when n is either even or odd, which completes the proof. Proof: Let X be an integer where X= 4 mod 3 and 4 & 80,1,23. First, he an 9 use cases Of 4 to pove that any square mist be congrect to Ond ? or I hand } (se]: y=0 X= O med 3, x2 = 0 med 3 Case 2: 421 X= | mod 3, x = | mod 3 Case 3: 4= 2 X= Zmod 3, X = 4 mod 3 = 1 mod 3 This x2 med 3 is congrest to exter O med 3 or I med 3. Next, he can use a proof by controdiction to show that if neither a nor b is divisible by 3, then the squares must be I mad 3. Assume a and b an interes Not divisible by 3: a = 1 mod 3, a = I nod 5 a = 2 md 3 , a = 4 md 3 = 1 mod 3 b= 1 mod 3, b= = 1 mod 3 b=2mod 3, b= 4mod 3 = 1 mod 3 proof continued on next page

75,9

This, he can observe that when a, b are not divisible by 3, 9 Continued 92, 62 = 1 mod 3 for every case, Consequently, on also write a2 = 3 m+1 and b2 = 3n+1 where m, n are integers. This can then be remitten as: 3mt1) + (3n+1) = c3 3mn+2 = c2 (mist then be congruent to 2 mod 3 since 3 mm 1 is a multiple of 3 and the reminder could be 2. However, we initially proved that any square is congruent to O med 3 or I mad 3 0 so Hereton c2 \$ 2 mod sand either a or bo mest be divisible by 3, this completing the proof. D Some the condition to a reproved by it has been the form mitter 2 0 0 0 0 Q. 0 0 0000

