DatafestAfrica 2024 Datathon

09.10.2024

Team Rosh

Adebola Rabiu Anuoluwapo Tenibiaje Timilehin Olowolafe

1. Project Overview

Title:

Data-Driven Solution to Improve Student Performance in Ikorodu Community High School

Objective:

To design a data-driven system that helps improve students performance, focusing on preparing students for key standardized exams like JAMB and WASSCE. The solution will establish a robust data infrastructure, analyze key performance factors, and offer predictive insights and actionable recommendations.

Scope:

The solution will include data collection, storage, predictive modeling, and reporting, aiming to enhance performance through early interventions and data-driven decisions.

2. Problem Definition

Challenges Identified:

- Poor foundational education infrastructure.
- Limited data collection and utilization for improving academic outcomes.
- Low student performance in exams like JAMB (76% of students scored below 200 in 2024).
- Lack of insights into factors beyond academic scores, such as teacher impact, attendance, and resource allocation.

Goals:

- Understand key challenges affecting student performance.
- Develop a predictive model to identify students at risk of failing.
- Provide actionable insights to improve educational outcomes.

3. Solution Design

3.1. Data Collection Plan

Collection Methods:

- Digital surveys and forms for teachers and school administrators.
- Attendance tracking via digital or IoT systems.
- Periodic assessments and student engagement metrics.

Data Types:

Tables:

Academic Schema:

1. Students

- StudentID (PK, int)
- FirstName (varchar(50))
- LastName (varchar(50))
- DateOfBirth (date)
- Gender (varchar(10))

- AdmissionDate (date)
- CurrentClass (varchar(10))

2. Classes

- ClassID (PK, int)
- ClassName (varchar(20))
- ClassTeacherID (FK to Teachers, int)

3. Subjects

- SubjectID (PK, int)
- SubjectName (varchar(50))
- SubjectCode (varchar(10))

4. ExamResults

- ResultID (PK, int)
- StudentID (FK to Students, int)
- SubjectID (FK to Subjects, int)
- Score (decimal(5,2))
- Grade (varchar(2))

5. Attendance

- AttendanceID (PK, int)
- StudentID (FK to Students, int)
- Date (date)
- Status (varchar(10))

Administrative Schema:

6. Staff

- StaffID (PK, int)
- FirstName (varchar(50))
- LastName (varchar(50))
- Role (varchar(50))
- Department (varchar(50))

Extracurricular Schema:

7. Clubs

- ClubID (PK, int)
- ClubName (varchar(50))

8. ClubMembership

- MembershipID (PK, int)
- StudentID (FK to Students, int)

- ClubID (FK to Clubs, int)
- JoinDate (date)

Facilities Schema:

9. Resources

- ResourceID (PK, int)
- ResourceName (varchar(100))
- ResourceType (varchar(50))
- Quantity (int)
- LastMaintenanceDate (date)

10. ResourceUsage

- UsageID (PK, int)
- ResourceID (FK to Resources, int)
- UserID (int)
- UserType (varchar(20))
- UsageDate (date)
- Duration (int)
- **Academic Schema::** Demographics, attendance, academic scores.
- Facilities Schema: Resources, facilities, internet access.
- Extracurricular Activities: Participation in non-academic programs.

All the data are collected in csv formats

Data Flow and Processing Pipeline

3.2. Data Lakehouse & Structuring

Ingesting the Excel/CSV File to the Lakehouse

We started by ingesting the CSV files, which contained both fact and dimension data, into Microsoft Fabric's Lakehouse which was used to store the data

Database Schema:

• Tables: StudentData,, Academics, Clubs, ClubsID, Resources, ResourcesUsage

• **Relationships:** Establish relationships between tables for a comprehensive view (e.g., students related to classes and teachers).

Data Storage:

- Centralized data lake designed to scale and integrate.
- Ensures secure and efficient access to data with role-based access controls.

Predictive Model:

- **Inputs:** Demographics, academic history, attendance, teacher performance, extracurricular participation.
- **Output:** Predicts likelihood of passing or failing upcoming exams.
- **Objective:** Early identification of at-risk students for targeted intervention.

After preparing the data, we transitioned to the data science phase:

Feature Engineering Process:

Academic Features

- Calculates current performance metrics per subject
- Generates progress metrics tracking improvement

- Measures consistency using score standard deviations
- Creates performance categories (Needs Improvement to Excellent)

Demographic Features

- Derives age categories
- Calculates socioeconomic scores
- Generates learning environment scores
- Creates engagement scores based on participation and resource usage

Performance Metric Calculation

The system generates three key metrics:

- 1. Academic Base Score
 - Normalized average of current subject scores
- 2. Academic Potential Score
 - Weighted combination of:
 - Academic base (40%)
 - Progress (20%)
 - Engagement (20%)
 - Learning environment (10%)
 - Consistency (10%)
- 3. Risk Factor Score
 - Identifies at-risk students using:
 - Academic performance
 - Learning disabilities
 - Parental education
 - Engagement levels

- 4. Clustering Analysis
- Processes data for each class level separately
- Uses multiple performance indicators for clustering
- Determines optimal cluster count (2-8 clusters)

Key Considerations

- Adjusts calculations based on class levels
- Handles missing data gracefully
- Uses class-specific thresholds
- Weights factors based on empirical importance
- Ensures fair comparison within class levels

Once the data science tasks were complete, we saved the processed data back into the Lakehouse as a CSV file making it accessible for further analysis or reporting.

4. Reporting and Visualization

Interactive Dashboard:

- Features:
 - Individual and collective performance trends.
 - At-risk student identification.
 - Teacher impact assessment and resource utilization metrics.
- **Audience:** School administrators, teachers, parents.

Automated Reporting:

- Weekly/monthly performance reports with actionable insights.
- Alerts for underperforming students and interventions for improvement.

Click **HERE** to interact with the dashboard.

5. Key Recommendations

1. Early Interventions:

Use predictive insights to provide additional support for students identified as high risk (tutoring, counseling, etc.).

2. Teacher Development:

Provide continuous professional development for teachers based on their performance data and student outcomes.

3. Resource Allocation:

Prioritize schools and students with limited access to learning resources and ensure equitable distribution.

4. Parental Involvement:

Increase communication with parents on their child's progress and offer guidance on how to support learning at home.

6. Conclusion

This solution leverages data analytics to improve education outcomes by identifying key performance factors, predicting student success, and offering actionable insights. With a comprehensive data infrastructure and predictive model, schools can implement timely interventions to significantly enhance student performance in exams like JAMB and WASSCE.